Data Structures and Algorithms

(ESO207)

Lecture 22

Graphs

- Notations and terminologies
- Data structures for graphs
- A few algorithmic problems in graphs

Why **Graphs** ??

Finding shortest route between cities

Given a network of **roads** connecting various cities, compute the <u>shortest route</u> between any two <u>cities</u>.

Just imagine how you would solve/approach this problem.

Embedding an integrated circuit on mother board

How to embed ports of various ICs on a plane and make connections among them so that

- No two connections <u>intersect</u> each other
- The <u>total length</u> of all the connections is <u>minimal</u>

A social network or world wide web (WWW)

Do you know about the "6 degree of separation principle" of the world? Visit the site https://en.wikipedia.org/wiki/Six_degrees_of_separation

How will you model these problems?

I

II

Ш

Graph

Graph

Definitions, notations, and terminologies

Graph

A graph **G** is defined by two sets

V: set of vertices

• E: set of edges

Notation:

• A graph G consisting of vertices V and edges E is denoted by (V,E)

Types of graphs

Undirected Graph

Directed Graph

Notations

Notations:

- n = |V|
- m = |E|

Note: For directed graphs, $m \le n(n-1)$

For undirected graphs, $m \le \frac{n(n-1)/2}{2}$

Walks, paths, and cycles

Walk:

A sequence $\langle v_0, v_1, ..., v_k \rangle$ of vertices is said to be a **walk** from x to y

- $x = v_0$
- $y = v_k$
- For each i < k, $(v_i, v_{i+1}) \in E$

Path:

A walk $\langle v_0, v_1, ..., v_k \rangle$ on which no vertex appears twice.

Cycle:

A walk $\langle v_0, v_1, ..., v_k \rangle$ where no **intermediate** vertex gets repeated

and $v_0 = v_k$

Examples

- <1,5,4> is a walk from 1 to 4.
- <1,3,2,5> is not a walk.
- <1,2,5,2,3,4,5,4,6> is a walk from 1 to 6.
- <1,2,5,4,6> is a path from 1 to 6.
- <2,3,4,5,2> is a cycle.

two vertices are said to be *connected* if there is a **path** between them

Connected component:

A maximal subset of connected vertices

You can not add any more vertex to the subset and still keep it connected.

Data Structures for Graphs

Vertices are always numbered

Or
$$0, ..., n-1$$

Link based data structure for graph

Undirected Graph

Adjacency Lists

Link based data structure for graph

Advantage of Adjacency Lists:

- Space efficient
- Computing all the neighbors of a vertex in <u>optimal time</u>.

Disadvantage of Adjacency Lists:

How to determine if there is an edge from x to y?

 $(\mathbf{O}(n))$ time in the worst case).

Array based data structure for graph

Undirected Graph

V= {1,2,3,4,5,6} E= {(1,2), (1,5), (2,5), (2,3), (3,4), (4,5), (4,6)}

Adjacency Matrix

,	1	2	3	4	5	6
1	0	1	0	0	1	0
2	1	0	1	0	1	0
3	0	1	0	1	0	0
4	0	0	1	0	1	1
5	1	1	0	1	0	0
6	0	0	0	1	0	0

Size = $O(n^2)$

Array based data structure for graph

Advantage of Adjacency Matrix:

Determining whether there is an edge from x to y in O(1) time
for any two vertices x and y.

Disadvantage of Adjacency Matrix:

- Computing all neighbors of a given vertex x in O(n) time
- It takes $O(n^2)$ space.

Which data structure is commonly used for storing graphs?

Adjacency lists

Reasons:

- Graphs in real life are sparse $(m \ll n^2)$.
- Most algorithms require <u>processing neighbors</u> of each vertex.
 - \rightarrow Adjacency matrix will enforce $O(n^2)$ bound on time complexity for such algorithm.

An interesting problem

(Finding a sink)

A vertex x in a given directed graph is said to be a sink if

- There is no edge emanating from (leaving) x
- Every other vertex has an edge into x.

Given a directed graph G=(V,E) in an adjacency matrix representation, design an O(n) time algorithm to determine if there is any sink in G.

Graph traversal

Topic for the next class

Graph traversal

Definition:

A vertex y is said to be reachable from x if there is a path from x to y.

Graph traversal from vertex x: Starting from a given vertex x, the aim is to visit all vertices which are reachable from x.

Non-triviality of graph traversal

Avoiding loop:

How to avoid visiting a vertex multiple times? (keeping track of vertices already visited)

Finite number of steps:

The traversal **must stop** in finite number of steps.

Completeness:

We must visit **all** vertices reachable from the start vertex **x**.

A sample of Graph algorithmic Problems

- Are two vertices x and y connected ?
- Find all connected components in a graph.
- Is there is a cycle in a graph?
- Compute a path of shortest length between two vertices?
- Is there is a cycle passing through all vertices?