DM $N^{o}6$ (pour le 29/11/2008)

Endomorphismes cycliques

Notations:

Le problème est consacré à l'étude des endomorphismes cycliques, et à certaines de leurs applications.

- ullet Dans tout le problème, E désigne un \mathbb{K} -espace vectoriel de dimension finie n ($n\geqslant 2$) (avec $\mathbb{K}=\mathbb{R}$ ou \mathbb{C}). $\mathcal{L}(E)$ désigne le \mathbb{K} -espace vectoriel des endomorphismes du \mathbb{K} -espace vectoriel E et I_E l'application identique de E.
 - Si $u \in \mathcal{L}(E)$, on note :
- $\mathcal{C}(u)$ le <u>commutant</u> de u, i.e l'ensemble des endomorphismes $v \in \mathcal{L}(E)$ tels que $v \circ u = u \circ v$. On admettra sans démonstration, (facile), que $\mathcal{C}(u)$ est une sous-algèbre commutative de $\mathcal{L}(E)$.
 - χ_u le polynôme caractéristique de u.
 - pour tout polynôme $P \in \mathbb{K}[X]$, défini par $P = \sum_{k=0}^{N} a_k X^k$, P(u) désigne l'endomorphisme de

E défini par : $P(u) = \sum_{k=0}^{N} a_k u^k$ (avec $u^0 = I_E$ et $u^k = u \circ u^{k-1}$ pour tout entier $k \ge 1$).

On rappelle que : $\forall P \in \mathbb{K}[X]$, $P(u) \in \mathcal{C}(u)$.

• Pour tout vecteur $x \in E$, $E_u(x)$ désignera le sous-espace vectoriel de E engendré par la famille de vecteurs $\{u^p(x), p \in \mathbb{N}\}$. $E_u(x)$ s'appelle le sous-espace cyclique associé à u et relatif à x.

Enfin, $u \in \mathcal{L}(E)$ sera dit cyclique s'il existe $x \in E$ tel que $E_u(x) = E$.

PREMIÈRE PARTIE:

Soit x un vecteur de E, et u un endomorphisme de E.

- 1°) a) Montrer que $E_u(x)$ est le plus petit sous-espace vectoriel de E, stable par u et contenant x.
 - **b)** On suppose $x \neq 0$. Soit k le plus grand des entiers r non nuls tels que la famille $\{x, u(x), \dots, u^{r-1}(x)\}$ soit libre.

Justifier l'existence de k et montrer que la famille $\{x, u(x), \dots, u^{k-1}(x)\}$ est une base de $E_u(x)$.

- c) Montrer que x est vecteur propre de u si et seulement si $\dim(E_u(x))=1$.
- 2°) On suppose, dans cette question, que \underline{u} est un endomorphisme cyclique. Il existe alors $x_0 \in E$ tel que la famille $\{x_0, u(x_0), \dots, u^{n-1}(x_0)\}$ soit une base de E (dite adaptée à u).
 - a) Montrer que $\{I_E, u, \dots, u^{n-1}\}$ est une partie libre de $\mathcal{L}(E)$.
 - **b)** Soient v et w deux éléments de C(u) tels que $v(x_0) = w(x_0)$. Montrer que : v = w.
 - c) Montrer que $\{I_E, u, \dots, u^{n-1}\}$ est une base de C(u).

- **d)** On pose : $u^n(x_0) = \sum_{k=0}^{n-1} a_k u^k(x_0)$, où $a_k \in \mathbb{K}$ pour $k \in [0, n-1]$.
 - i) Exprimer, en fonction des a_k , la matrice de u dans la base $\{x_0, u(x_0), \dots, u^{n-1}(x_0)\}$ (une telle matrice s'appelle une matrice compagnon.
 - ii) Déterminer le polynôme caractéristique χ_u de u.
 - iii) En utilisant la question b), prouver que : $\chi_u(u) = 0$.
- 3°) Dans cette question, u désigne un endomorphisme quelconque de E.
 - a) Soit F un sous-espace vectoriel de E stable par u, et soit v l'endomorphisme de F induit par u. Montrer que χ_v divise χ_u . En déduire que Ker ($\chi_v(u)$) est inclus dans Ker ($\chi_u(u)$).
 - b) Soit $x \in E$, $x \neq 0$. Montrer que u induit sur le sous-espace vectoriel $E_u(x)$ un endomorphisme cyclique de $E_u(x)$. En déduire que $\chi_u(u)(x) = 0$.
 - c) Montrer que : $\chi_u(u) = 0$ (théorème de Cayley-Hamilton).

DEUXIÈME PARTIE:

Dans toute cette partie, u désigne un endomorphisme de E, $(\lambda_i)_{1 \leq i \leq p}$ les valeurs propres de u dans \mathbb{K} , et $(r_i)_{1 \leq i \leq p}$ leurs ordres de multiplicité respectifs.

- 1°) On suppose ici p=n, i.e que u possède n valeurs propres distinctes dans \mathbb{K} , $\lambda_1, \lambda_2, \dots \lambda_n$. Soient alors $\overline{x_1, x_2, \dots, x_n}$ des vecteurs propres associés, et soit enfin $x=x_1+x_2+\dots+x_n$. Montrer que la famille $\{x, u(x), \dots, u^{n-1}(x)\}$ est libre, et en déduire que u est un endomorphisme cyclique.
- 2°) On suppose dans cette question u diagonalisable.
 - a) Montrer qu'un endomorphisme v de E appartient à C(u) si et seulement si v laisse stable tous les sous-espaces propres de u.
 - **b)** En déduire : dim $(C(u)) = \sum_{i=1}^{p} r_i^2$.
 - c) Montrer que : $(u \lambda_1 I_E) \circ (u \lambda_2 I_E) \circ \cdots \circ (u \lambda_p I_E) = 0$. En déduire que, si la famille $\{I_E, u, \dots, u^{n-1}\}$ est une partie libre de $\mathcal{L}(E)$, alors u possède n valeurs propres distinctes dans \mathbb{K} .
 - d) Déduire des résultats précédents que les propriétés suivantes sont équivalentes, $pour \ un \ endomorphisme \ u \ diagonalisable$:
 - (i) u est cyclique.
 - (ii) la famille $\{I_E, u, \dots, u^{n-1}\}$ est une partie libre de $\mathcal{L}(E)$.
 - (iii) u possède n valeurs propres distinctes.
 - (iv) $\dim(\mathcal{C}(u)) = n$
- 3°) Dans cette question, on suppose u cyclique.

- a) Démontrer, en utilisant la matrice de u dans une base convenable, que, pour tout $\lambda \in \mathbb{K}$, $\operatorname{rg}(u \lambda I_E) \geqslant n 1$.
- b) En déduire que u est diagonalisable si et seulement si u admet n valeurs propres distinctes dans \mathbb{K} .
- 4°) Dans cette question, on suppose u cyclique.

Soit alors $x_0 \in E$ tel que la famille $\{x_0, u(x_0), \dots, u^{n-1}(x_0)\}$ soit une base de E, et A la matrice de u dans cette base.

Soit
$$P = \sum_{i=0}^{n-1} b_i X^i \in \mathbb{K}[X].$$

Montrer que la première colonne de la matrice P(A) est (b_0, b_1, \ldots, b_n) .

En déduire que le polynôme minimal de u est égal, au signe près, à son polynôme caractéristique.

(Rem : la réciproque de cette propriété est vraie, mais n, 'est pas demandée : tout endomorphisme dont le polynôme minimal est égal au polynôme caractéristique est cyclique...)

5°) Cette question est une application de II.2.b.

Soit \mathcal{M} l'ensemble des matrices carrées d'ordre n $(n \ge 2)$, à coefficients dans \mathbb{K} , telles que :

$$A = (a_{ij}) \in \mathcal{M} \iff \forall (i,j) \in [[1,n]]^2, \sum_{i=1}^n a_{ij} = \sum_{j=1}^n a_{ij}.$$

Pour $A \in \mathcal{M}$, on notera d(A) la valeur commune ci-dessus.

Soit enfin J l'élément de \mathcal{M} dont tous les éléments sont égaux à 1.

- a) Montrer que \mathcal{M} est le commutant de J, et que d est une forme linéaire sur \mathcal{M} .
- b) Déterminer les valeurs propres de J, ainsi que leurs ordres de multiplicité. En déduire la dimension de \mathcal{M} .

TROISIÈME PARTIE:

Dans cette partie, u désigne un endomorphisme de E ayant n valeurs propres distinctes dans \mathbb{K} , notées $\lambda_1, \lambda_2, \ldots, \lambda_n$. On sait, d'après II.1, que u est cyclique. Soit alors $\mathcal{B} = \{x_0, u(x_0), \ldots, u^{n-1}(x_0)\}$ une base de E adaptée à u, soit A la matrice de u dans \mathcal{B} , et $u^n(x_0) = \sum_{k=0}^{n-1} a_k u^k(x_0)$, où $a_k \in \mathbb{K}$ pour $k \in [0, n-1]$.

1°) On considère le système de vecteurs $(\varepsilon_i)_{1 \leq i \leq n}$ définis par :

$$\begin{cases} \forall i \in [1, n-1], & \varepsilon_{n-i} = u^i(x_0) - \sum_{j=0}^{i-1} a_{n-i+j} u^j(x_0) \\ & \varepsilon_n = x_0 \end{cases}$$

- a) Écrire la matrice T de ce système dans la base \mathcal{B} . En déduire que $(\varepsilon_i)_{1 \leqslant i \leqslant n}$ est une base de E, notée \mathcal{B}' .
- **b)** Comparer AT et T^tA . En déduire que A est semblable à sa transposée. Quelle est la matrice de u dans la base \mathcal{B}' ?
- **2°)** Pour tout $i \in [1, n]$, on note V_i le vecteur de E dont les coordonnées dans la base \mathcal{B}' sont $(1, \lambda_i, \lambda_i^2, \dots, \lambda_i^{n-1})$.
 - a) Montrer que, pour tout $i \in [1, n]$, V_i est un vecteur propre de u associé à la valeur propre λ_i .
 - b) Soit M la matrice du système (V_1, V_2, \ldots, V_n) dans la base \mathcal{B}' . Montrer que ${}^tAM = MD$, où D est une matrice diagonale que l'on précisera. Calculer $(M^tM)^{-1} {}^tA(M^tM)$.

- 3°) a) Soit v un automorphisme de E tel que $v \circ u \circ v^{-1} = u$. Montrer que la restriction de v à chaque sous-espace propre de u est une homothétie.
 - **b)** Montrer qu'il existe une matrice diagonale Δ telle que : ${}^tMTM = \Delta$.

QUATRIÈME PARTIE:

Soit u un endomorphisme nilpotent d'indice p ($p \ge 2$).

- 1°) a) Montrer que, pour tout vecteur x_0 tel que $u^{p-1}(x_0) \neq 0$, le système de vecteurs $\{x_0, u(x_0), \dots, u^{p-1}(x_0)\}$ est libre.
 - b) En déduire que $p \leq n$, et que u est cyclique si et seulement si p = n.
- 2°) Application 1 : Pour tout entier $k \in \mathbb{N}$, on note $\mathbb{R}_k[X]$ l'espace vectoriel des polynômes à coefficients réels de degré inférieur ou égal à k. Soit Δ l'application définie par :

$$\forall P \in \mathbb{R}_k[X] , \ \Delta P = P(X+1) - P(X)$$

- a) Vérifier que Δ est un endomorphisme de $\mathbb{R}_k[X]$.
- b) Déterminer son noyau, son image. Montrer que Δ est cyclique.
- c) Soit D l'endomorphisme de $\mathbb{R}_k[X]$ qui, à tout polynôme P, associe son polynôme dérivé P'. Montrer que D est élément de $\mathcal{C}(\Delta)$.
- d) En déduire qu'il existe des réels $(a_i)_{0 \le i \le k}$, uniques, tels que $D = \sum_{i=0}^k \alpha_i \Delta_i$.
- 3°) Application 2 : Déterminer toutes les matrices carrées réelles d'ordre n qui commutent avec la matrice

$$N \text{ carr\'ee d'ordre } n \text{ d\'efinie par} : N = \begin{pmatrix} 0 & 1 & 0 & \dots & 0 \\ 0 & 0 & 1 & \dots & 0 \\ 0 & 0 & \ddots & \ddots & \vdots \\ \vdots & \vdots & \ddots & \ddots & 1 \\ 0 & 0 & \dots & \dots & 0 \end{pmatrix}$$