MATH 164, Optimization Assignment 5

- Due: June 8 (Friday). Late homeworks will not be accepted.
- 1. Consider the linear program

maximize
$$2x_1 + x_2$$

subject to $0 \le x_1 \le 5$
 $0 \le x_2 \le 7$
 $x_1 + x_2 \le 9$.

Convert the problem to standard form and solve it using the simplex method.

- 2. Problem 20.4 from textbook.
- 3. Consider the problem

minimize
$$\|\mathbf{x} - \mathbf{x}_0\|^2$$

subject to $\|\mathbf{x}\|^2 = 9$,

where $\mathbf{x}_0 = [1, \sqrt{3}]^{\top}$. Find all points satisfying the Lagrange condition for the problem.

4. Consider the problem

minimize
$$\frac{1}{2} \|\mathbf{x}\|^2$$

subject to $\mathbf{a}^{\top} \mathbf{x} = b$
 $\mathbf{x} \ge \mathbf{0}$,

where $\mathbf{a} \in \mathbb{R}^n$, $\mathbf{a} \geq \mathbf{0}$, and $b \in \mathbb{R}$, b > 0. Show that if a solution (or global minimizer) to the problem exists, then it is unique, and find an expression for it in terms of \mathbf{a} and b. (Hint: show that the KKT point is unique.)

5. Problem 23.4 from textbook.