Introduction to Organic Chemistry

Organic Compounds

Elements that most organic compounds contain:

- All organic compounds contain carbon.
- Most also contain hydrogen
- Others may contain elements such as oxygen, nitrogen or a halogen.

Homologous Series

- A homologous series is a family of compounds with the **same** general formula and similar chemical properties.
- Each homologous series has a general formula.
 - Subsequent members of organic compounds in the same homologous series differ by a chemical formula of -CH₂

Functional Group

• A functional group is a group of atoms that are bonded together in a way that is unique to that particular homologous series. The functional group is responsible for a compound's characteristic

chemical properties.

• As they possess the same functional group, members of the same homologous series will **react in a similar way to one another.**

Alkanes and Alkenes

Properties

	Alkane	Alkene
Saturated or Unsaturated?	Saturated hydrocarbon. An alkane contains only single covalent bonds between carbon atoms, C – C.	Unsaturated hydrocarbon. An alkene contains a double covalent bond between carbon
General Formula	Cn H _{2n+2}	atoms, $C = C$ $Cn H_{2n+2}$

Using Prefixes to Name Organic Compounds

Prefix	Number of Carbon	Name of Alkane	Name of Alkene
meth-	1	methane	-
eth-	2	ethane	ethene
prop-	3	propane	propene
but-	4	butane	butene
pent-	5	pentane	pentene

Properties

- E.g. Boiling point, Melting point, Electrical conductivity (physical properties).
- For Organic Chemistry: Viscosity (physical) and Flammability
 (Chemical)

Viscosity

- Measure of "thickness" and stickiness of a liquid
- Ability of fluid to flow

Flammability

- **Chemical property:** The ability of a chemical to burn or ignite, causing fire or combustion.
- Can compare flashpoints: GENERALLY higher flashpoint, lower flammability.

Trends: MP and BP (physical)

Trend and Explanation

The melting points and boiling points of the alkanes generally increases as *relative molecular mass* increases.

- Larger molecules have stronger intermolecular forces of attraction.
- More energy is required to overcome the stronger intermolecular forces of attraction.
- higher MP and BP.

Trends: Flammability (chemical)

Trend and Explanation

The flashpoints of the alkanes and alkenes generally increases as *relative* $molecular\ mass\ increases \rightarrow flammability\ decreases.$

• larger molecules have stronger intermolecular forces of attraction,

thus less volatile (likelihood of existing as a gas)

• larger molecules also have higher percentage of carbon → requires

more oxygen to burn \rightarrow less flammable.

Trends: Viscosity (Physical)

Trend and Explanation

As relative molecular mass increases, the liquid alkanes and alkenes have higher viscosity.

• larger molecules have stronger intermolecular forces of attraction.

• harder for liquid containing larger molecules to flow.

Summary

The gradual change in properties can be observed in **all** homologous series as a result of the increase in molecular mass of molecules down the homologous series.

Isomerism

Definition

Isomerism is the phenomenon where **compounds (isomers) have the** same molecular formula but different structural formulae.

- Do not have to be of the same homologous series.
- Different homologous series can have the **same molecular formula.**