Assignment Project Microeconometrics Help

Finite Mixtures

https://tutorcs.com

WeChall CSIIIOrcs

Review: Series Estimation

- Series estimation is widely used for nonparametric analysis.
- Let $\phi_1(\cdot), \phi_2(\cdot), \ldots$ be a sequence of (basis) functions such

Assignment Project Exam Help

approximates any function on the same domain with some $\theta_1, \theta_2, D.S.$

- ▶ Then, if $\phi_1(\cdot), \phi_2(\cdot), \ldots$ are densities, by restricting θ_i to be positive and sum to one, we have a fully flexible density specification with infinite direction S.

 If $\phi_1(\cdot), \phi_2(\cdot), \ldots$ are not densities, by normalising

$$\exp\left(\sum_{j=1}^{\infty}\theta_j\phi_j(\cdot)\right)$$

we may approximate any density.

Series Estimation

Assignments and the light and the components. Help

- K determines the smoothness of the estimate like h of KDE.
- Intition in the tenth of the single of the informative.
 If K is too large, the density estimate would be too noisy
- The optimal number of components K should increase as the sample size increases.

Series Estimation

► How to choose *K*?

Assignments: Project Exam Help cross-validation, or even use prior information informally.

- lacktriangle There is no universally accepted rule for choosing K.
- In any case, computation of parameter estimates is for each diventixed K, but be ence is no parameter; (slow-convergence).
- Bayesian:
 - vega d Klas a latent variable (parameter), put a prior on K with a full support \mathbb{N} , and obtain the posterior of K as well as other parameters using an MCMC method.
 - Do not choose an arbitrary K as its distribution is determined.

Series Estimation

Assignment Project Examis Help functions $\{\phi_j(\cdot)\}$

- Examples include tropped in the polynomials, etc.
 - ► Splines: piecewise linear splines, *B*-splines, etc.
 - Densities: Beta densities (Bernstein polynomials), normal densities Genma densities, etc.

Series Estimation: BPD

Assignment Project Exam Help

 $f(y|\theta_1,\ldots,\theta_K) := \sum_{i=1}^K \theta_i \text{Beta}(j,K-j+1)$

https://tutorcs.com

where ϑ_j are all positive and sum to 1 and Beta(a,b) denotes the Beta density with parameters a and b, i.e., its

when $x \to \infty$, the BPD approximates any absolutely

When K → ∞, the BPD approximates any absolutely continuous density on [0,1]; see Petrone (1999) for Bayesian nonparametric method using BPD.

Series Estimation: BPD

The Basis functions are plotted below

► The BPD is a histogram smoothing; see Petrone (1999)

Series Estimation: normal mixture

Assignment Project conxumer bidelp

$$\mathbf{http}^{\mathsf{f}(\mathsf{y})}_{\mathsf{s}'} + \mathbf{t}^{\mathsf{f}(\mathsf{y})}_{\mathsf{t}'} + \mathbf{t}^{\mathsf{f}(\mathsf{y})}_{\mathsf{t}'}$$

where $\phi(\cdot)$ is the PDF of $\mathcal{N}(0,1)$.

The hour (all inixture approximates any absolutely continuous density.

Series Estimation: normal mixture

Assime directive has 6 decody sexwittinic leep process prior in nonparametric Bayesian literature; Ferguson (1973), Escobar and West (1995), Walker (2006), etc. //tutores.com Note that Dirichlet process can be viewed as a probability

- Note that Dirichlet process can be viewed as a probability distribution over the space of density functions.
- ► Walker (2006) developed an efficient Gibbs sampler to sample deposites from the postelior ICS

Series Estimation → FMM

► For the rest of the lecture, we consider the normal mixture with a fixed *K*.

SS Tremixoremodel Painty flexible tout it ix a paname ride produced by the production of the productio

- When we use a fixed K, the parametric model is called the finite mixture model (EMM). CS. COM
- Note that frequentiest nonparametric methods use a fixed K for estimation purpose, in which case the nonparametric extracte is name cally the same as the estimate of FMM with the same K.
- However, nonparametric <u>inference</u> is different from parametric inference, e.g., hypothesis testing, confidence intervals, etc.

Series Estimation → FMM

Assibismatura boponsi len FMV as a ton venient m Help approximation of a nonparametric model: nonparametric analysis is more complicated.

- Indowever, FMM itself can be a reasonable specification for der land propirical platford CS.COM
- Suppose the population can be partitioned into two sub-classes. Within the class, individuals are relatively hope eous at between the class, individuals are more heterogeneous.

Series Estimation → FMM

As signature initial reproductives XVIIII purely probability $\pi_0=1-\pi_1$.

► Then the following firite mixture may be reasonable;

$$f(y|\{\pi_j, \mu_j, \sigma_j^2\}_{j=0}^1) = \pi_0 \left\{ \frac{1}{\sigma_0} \phi \left(\frac{y - \mu_0}{\sigma_0} \right) \right\} + \pi_1 \left\{ \frac{1}{\sigma_1} \phi \left(\frac{y - \mu_1}{\sigma_1} \right) \right\}$$

It is straightforward to extend to the many class case.

FMM, an example

Estimating parameters of the distribution of lengths of

Assignment Project Exam Help

FMM, an example

Some are small, but some are very large!

Assignment Project Exam Help

https://tutorcs.com

WeChat: cstutorcs

FMM, an example

Assimple national particles and the distribution of lengths and the distribution of lengths and the distribution of lengths and the lengths are not be determined at measurement.

- Gender cannot be determined at measurement
- Then distribution is a 2-component finite mixture of representation in a 2-component finite mixture of representation.
- A finite mixture model allows one to estimate:
 - mean/variance of lengths of male and female halibut
 mixing probability (proportions)
- Other example a Stock Centralit Typical Sand "crisis" regimes, GDP growth, Insurance with "risk loving" and "risk averse"

Normal mixture with two components

Normal mixture with two components

Normal mixture with two components

FMM, covariates

Suppose we observe $\{(y_i, x_i)\}_{i=1}^N$ and there are two latent

classes, {0,1} and define the membership indicator. Assignmental roject Exam Help Moreover, we assume

https://tutorcs.com

If we observed d_i , the likelihood would be

where $\pi_i = \Pr(d_i = j)$ for $j \in \{0, 1\}$.

We will briefly discuss about how to obtain the estimates.

FMM, generalisation

Assignment Project Exam Help

where $f(y_i|x_i,\theta_i)$ is a parametric density function with Then, if we observed d_i , the likelihood would be

WeChat: Icstutores

A problem is that $d := (d_1, \ldots, d_N)$ is not observed.

FMM, estimation

- Frequentist:
 - EM algorithm can be used, which iterates between
 - 1. Computing the expectation of the log-likelihood as a function

Assignment Project Exam He

- 2. Maximizing with respect to θ to obtain $\theta^{(s)}$.
- for FMM, /t/stikely that the tikelihood has multiple local maxima: So, many initial values have to be considered to be sure of a global maximum.
 - We will see how to estimate a FMM using Stata.
- We obtain the posterior of $(d, \pi_1, \theta_0, \theta_1)$ using an MCMC
 - method.
 - In the Bayesian framework, there is no distinction between missing data d and parameters $(\pi_1, \theta_0, \theta_1)$.
 - Especially, the method to handle the missing data in an MCMC method is called the Data Augmentation.

FMM, some properties

ightharpoonup After integrating d_i out, the model can be written as

Assignment, Project Exam, Help

- Moreover, the marginal effect is $\underbrace{W}_{\partial x_i} E[y_i | x_i, \pi_1, \theta_0, \theta_1] = \underbrace{C}_{\partial x_i} \underbrace{E}[y_i | x_i, \theta_1] + \underbrace{C}_{\partial x_i} E[y_i | x_i, \theta_0]$
- Extension to many classes is straightforward.