Все задания (с пояснениями и комментариями) необходимо делать в Jupyter Notebook.

Задание 1. Установить Jupyter Notebook.

Задание 2. На отрезке [2; 3] найти минимальное значение функции F(a) (J_n , I_n , K_n – функции Бесселя, P_n – многочлен Лежандра, T_n – многочлен Чебышева, L_n – многочлен Лагерра, H_n – многочлен Эрмита):

Вариант 1.
$$F(a) = \int_{1}^{2} K_{0}(ax)K_{1}(x/a)dx$$

Вариант 2. $F(a) = \int_{1}^{2} \frac{\Gamma(a+x)}{\Gamma(ax)} dx$

Вариант 3. $F(a) = \int_{1}^{2} I_{0}(ax)I_{1}(x/a)dx$

Вариант 4. $F(a) = \int_{1}^{2} \Gamma(ax)\exp(-ax)dx$

Вариант 5. $F(a) = \int_{1}^{2} \exp(ax)J_{0}(ax)J_{1}(x/a)dx$

Вариант 6. $F(a) = \int_{1}^{2} \Gamma(ax)\cos(a+x)dx$

Вариант 7. $F(a) = \int_{1}^{2} P_{2}(ax)P_{3}(x/a)dx$

Вариант 8. $F(a) = \int_{1}^{2} H_{3}(ax)L_{4}(x/a)dx$

Вариант 9. $F(a) = \int_{1}^{2} J_{0}(ax)H_{5}(x/a)dx$

Вариант 10. $F(a) = \int_{1}^{2} I_{3}(ax)erf(x/a)dx$

Вариант 11. $F(a) = \int_{1}^{2} L_{3}(ax)erf(x/a)dx$

Задание 3. Решить на отрезке [0,2] дифференциальное уравнение третьего порядка, приведя его к системе уравнений первого порядка. Вывести график решения.

Вариант 1.
$$y'''+ y''+ y'-2y=0$$
, $y(0)=0$, $y'(0)=y''(0)=1$.

Вариант 2.
$$y'''-3y''+3y'-y=0$$
, $y(0)=y'(0)=0$, $y''(0)=-1$.

Вариант 3. y'''-y''-y'+y=0, y(0)=0, y'(0)=y''(0)=-1.

Вариант 4. y'''+y''-10y'+9y=0, y(0)=y'(0)=0, y''(0)=1.

Вариант 5. y'''+4y''+4y'+y=0, y(0)=0, y'(0)=y''(0)=1.

Вариант 6. y'''-y''-5y'+4y=0, y(0)=y'(0)=0, y''(0)=-1.

Вариант 7. y'''-y''+4y'+3y=0, y(0)=0, y'(0)=y''(0)=-1.

Вариант 8. y'''-2y''-y'+2y=0, y(0)=y'(0)=0, y''(0)=1.

Вариант 9. y'''-3y''+3y'-y=0, y(0)=y'(0)=0, y''(0)=-1.

Вариант 10. y'''-y'-y'+y=0, y(0)=0, y'(0)=y''(0)=-1.

Вариант 11. y'''+y''-10y'+9y=0, y(0)=y'(0)=0, y''(0)=1.

Вариант 12. y'''-y''-3y'+4y=0, y(0)=y'(0)=1, y''(0)=0.