STA 303/1002-Methods of Data Analysis II Sections L0101& L0201, Winter 2018

Shivon Sue-Chee

February 27, 2018

Using Logistic Regression for Classification

Using Logistic Regression for Classification

► Want: predict outcome as

$$y^*|(x_1^*,x_2^*,\ldots,x_p^*)=\begin{cases}1\\0\end{cases}$$

▶ Do: calculate $\widehat{\pi}_{M}^{*}$ - the estimated probability that $y^{*}=1$ based on the fitted model given $X_{1}=x_{1}^{*}, X_{2}=x_{2}^{*}, \ldots, X_{p}=x_{p}^{*}$. From this we want to predict that

$$y^* = egin{cases} 1 & ext{if } \widehat{\pi}_M^* ext{ is large} \ 0 & ext{if } \widehat{\pi}_M^* ext{ is small} \end{cases}$$

► Need: choose a cut-off probability to distinguish between large and small.

Classification: Approaches to choosing a threshold

Approach 1 - Set cut-off probability as 0.5

- ▶ If $\widehat{\pi}_M^* > 0.5$, classify y^* as 1
- ▶ Useful if there are equal numbers of 1's and 0's
- ▶ Useful if false negatives and false positives are equally bad.

Classification: Approaches to choosing a threshold

Approach 2- Find "best" cut-off probability from data.

- ► Try different cut-offs and see which gives fewest incorrect classifications
- Useful if proportions of 1's and 0's in data reflect their relative proportions in the population
- ► Likely to overestimate the proportions of correct predictions that model makes. Then, one should assess model correct classification rates on different data than was used to fit the model.

More reliable way to find a cut-off porb. Is to

USE (WSS-validationtrain & estimates

sessification and Review

Lest & test estimates.

Obsersed Confusion Matrix Truth Positive (Y = 1)Negative $(Y = \emptyset)$ Prediction Prop (row) Positive Negative FN typellerror TN Prop (column) Specificity= Sensitivity= $TPR = \frac{TP}{TP + FN}$ $TNR = \frac{TN}{TN + FP}$

- ► TP: true positive; TN: true negative
- ► FP: false positive (type I error); FN: false negative (type II error)
- ▶ PPV: precision or positive predictive value; false discovery rate=1-PPV
- ▶ NPV: negative predictive value; false omission rate=1-NPV
- 1. Sensitivity (True Positive Rate, TPR)- hit rate
- Specificity (True Negative Rate, TNR)- prop. of correctly classified negatives
- 3. False Positive Rate, FPR=1-TNR, fall-out rate
- 4. False Negative Rate, FNR=1-TPR, miss rate
- 5. Classification rate=(TN+TP)/(TP+FN+FP+TN); accuracy

Diagnostic Accuracy

- Choose a cut-off probability based on one of the 5 criteria for success of classification that is most important to you.
 - ► High Sensitivity (TPR) makes good screening test.
 - ► High Specificity (TNR) makes a good confirmatory test.
 - ► A screening test followed by a confirmatory test is a good (but expensive) diagnostic procedure.

Confusion Matrix

From Wikipedia

		True co	ondition			
	Total population	Condition positive	Condition negative	$\label{eq:prevalence} Prevalence = \frac{\Sigma \ Condition \ positive}{\Sigma \ Total \ population}$	Σ True positive	cy (ACC) = + Σ True negative population
Predicted condition	Predicted condition positive	True positive, Power	False positive, Type I error	Positive predictive value (PPV), Precision = Σ True positive Σ Predicted condition positive	False discovery rate (FDR) = Σ False positive Σ Predicted condition positive	
	Predicted condition negative	False negative, Type II error	True negative	False omission rate (FOR) = Σ False negative Σ Predicted condition negative	Negative predictive value (NPV) = Σ True negative Σ Predicted condition negative	
		True positive rate (TPR), Recall, Sensitivity, probability of detection $= \frac{\Sigma \text{ True positive}}{\Sigma \text{ Condition positive}}$	False positive rate (FPR), Fall-out, probability of false alarm $= \frac{\Sigma \text{ False positive}}{\Sigma \text{ Condition negative}}$	Positive likelihood ratio (LR+) = TPR FPR	Diagnostic odds	F ₁ score =
		False negative rate (FNR), Miss rate = $\frac{\Sigma}{\Sigma}$ False negative $\frac{\Sigma}{\Sigma}$ Condition positive	True negative rate (TNR), Specificity (SPC) = $\frac{\Sigma \text{ True negative}}{\Sigma \text{ Condition negative}}$	Negative likelihood ratio (LR-) = FNR TNR	= LR+ LR-	1 1 Recall + Precision

https://en.wikipedia.org/wiki/Confusion_matrix

Least Squares Regression vs Logistic Regression $\mathcal{L}_{\mathcal{L}} \sim \mathcal{N}(0, \sigma^2)$

			(muts
	<u></u>	(Ordinary) Least Squares	(Binomial) Logistic	
(, -	Response, (Y)	Normal	# of successes in m trials \sim ?	Bin (mi/ti
٦	Variance	Equal for each level of X	mp(1-p) for each level of X	U (
			M	7-11)
	Model	$\mu_y = \beta_0 + \beta_1 X$	$\log(\frac{\mu}{1-\mu}) = \beta_0 + \beta_1 X$	
	Model fitting	Least Squares	MLE	
>	Exploratory plot	X vs Y (add line)	logit vs X	
	Comparing	Partial F-test	LRT/Deviance tests	
	models	AIC/BIC	AIC/ BIC	
		Residuals	(Pearson, Deviance) Residuals	χ^{2}
	Interpreting	eta_1 : change in μ_y for unit change in X	e^{eta_1} : % change in odds for unit change in X	

Barfevroni vs Jukey's
Tuesday, February 27, 2018 10:48 AM

Benf:
$$(y_i - y_j) \stackrel{+}{=} t_{a_{2}} = \int_{-\infty}^{\infty} \int_{-\infty$$

Tuesday, February 27, 2018 10:59 AM does the estimated logistic model

Change as we change the Success" and reference level of X? $\pi_{\overline{s}} P(\text{success})$ $(\text{lrgit}(\widehat{\pi}_s) = \widehat{\beta}_s + \widehat{\beta}_1 X_1 + \widehat{\beta}_2 X_2, \text{ref} = 1$ Dehanging "success" $t_{\mathcal{F}}^{-P(failure)}|_{l \neq f}(\hat{\mathcal{T}}_{f}) = \frac{1}{l \neq f} = \frac{1}{l \neq f} = -\left(\frac{1}{2} \left(\frac{\hat{\mathcal{T}}_{f}}{\hat{\mathcal{T}}_{f}}\right) - \frac{1}{2} \left(\frac{\hat{\mathcal{T}}_{f}}{\hat{\mathcal{T}}_{$ $\left(\operatorname{rgit}(\widehat{T}_{S}) - \operatorname{log}(\widehat{T}_{S}) - \operatorname{log}(\widehat{T}_{S})\right) = \frac{\log \widehat{T}_{S}}{(\operatorname{rg})\widehat{T}_{f}} = \log \widehat{T}_{S} - \log \widehat{T}_{f}$

$$(\operatorname{sgit}(\widehat{A}_{s}) = \widehat{\beta}_{s} + \widehat{\beta}_{1} \times_{1} + \widehat{\beta}_{2} + \operatorname{ref}_{1}$$

$$\operatorname{lrgit}(\widehat{A}_{s}) = (\widehat{\beta}_{s} + \widehat{\beta}_{2}) + \widehat{\beta}_{1} \times_{1} - \widehat{\beta}_{2} + \operatorname{ref}_{0}$$

$$\operatorname{lrgit}(\widehat{A}_{s}) = (\widehat{\beta}_{s} + \widehat{\beta}_{2}) + \widehat{\beta}_{1} \times_{1} - \widehat{\beta}_{2} + \operatorname{ref}_{0}$$

See Case III-Donner Budy Eg