SANYO

三洋半導体ニューズ

VO. 4283B

33098

半導体ニューズNe4283Aとさしかえてください。

LC81192, 81096— CMOS LSI 1チップ音声合成システム

LC81192,81096はPARCOR方式により1チップで約120秒 (LC81192)/60秒 (LC81096)の発声が可能なLSIである。 1チップの中に、音声合成部,パラメータROM (192Kピット/96Kピット), DAコンパータなどを集積している。また、パラメータROMの外部拡張機能,キースイッチやマイコンとのインタフェイス機能,自動パワーダウン機能などの特長を持っている。

LC81192とLC81096とは、内蔵のパラメータROMの容量のみが異なっている。その他の機能,端子配列等は全く同じである。また、LC81192,81096は、従来品LC8100のSOP28パッケージ品と機能 および ピン配置が同じで、パラメータROMの容量のみが異なっている。従来品LC8100を使用しているセットでは、発声時間増によるフィーチャーアップが図れる。特に、LC81192はLC8100と拡張ROM LC3100を併用しているセットにおいて、1チップ化による合理化が図れる。なお、LC81192,81096では、従来品LC8100に対し、C0~C5端子の入力レベル規格値と、5VバージョンのRC発振回路定数,3Vバージョンのリセット回路定数が変わっているため、従来品LC8100の置き換えをする場合は、特に注意が必要である。

特長 · 発声時間

:LC81192/82秒,LC81096/42秒 (内蔵ROM 2400bps データ無圧縮)

LC81192/100秒~150秒, LC81092/50秒~75秒 (データ圧縮を行った際)

·発声時間拡張可能

:LC3100 128Kビット ROMと直接インタフェイス

約100秒/個で最大14個まで接続可能

·発声語数

:63語(間接指定方式), 特に制限なし(直接指定方式)

· 発声速度可変

:3段階 -25%,0%,+25%(フレーム周期との組み合せによりさらに可変)

・DAコンパータ内蔵

:9ピット

・パラメータビットレート選択可能 : 2400,4800,9600bps

・自動パワーダウン機能 :発声指示により動作を開始し、発声終了でパワーダウン

· 単一電源動作

:5Vパージョン /4.5V~6.5V, 3Vパージョン /2.7V~3.5V

ピン配置図

〒370-0596 群馬県邑楽郡大泉町坂田―丁目1番1号 三洋電機株式会社 半導体事業本部

C0~C5 : 語選択入力

OSCG : パワーダウン制御入力

 BUSY
 : 「発声中」出力

 SFRM
 : フレーム長切換え入力

RESET : リセット入力

V_{DD}, V_{SS} : 電源端子

OSC1, OSC2 : 発振子接続端子

START : 発声スタート入力

DIRECT : 語選択方法切換え入力 SLOW, FAST : 発声速度切換え入力

TEST : テストモード設定入力

DIN, A0~A3, ASTRB, DREQ, CT:

外部ROMインタフェイス端子

[ブロック図の動作説明]

・INDEX ADDRESS TABLE ROM(63×18ビット) : 発声させる言葉のアドレスをC0~C5のコーどによって間接指

定するためのROM

:有声,無声音源

• PARAMETER ROM : LC81192/192K & 9 F, LC81096/96K & 9 F

· P-S, S-P CONVERTER : 音声パラメータを読み出すためのパラレル・シリアル変換器

・PARAMETER RAM (96ビット) :1フレーム分のパラメータを格納するRAM

- PARAMETER DECODING ROM (2170ピット) : パラメータを非線形に複合化するROM

・INTERPOLATOR
 ・K STACK
 : パラメータを2.5msecごとに補間する回路
 ・ パラメータを格納し演算するためのレジスタ

· PITCH COUNTER, NOISE GENERATOR

· DIGITAL FILTER (15ビット×10段) : 格子形ディジタルフィルタ

・DA CONVERTER (9ビット) : DAコンバータ

[内部システム仕様]

- コーディング方式 : PARCOR (パーコール)方式

・サンプリング間波数 : 9.1kHz・フィルタ段数 : 10段

・フレーム周期 : 標準 20ms (10ms 可能)

・1フレーム当たりのパラメータ数 : 標準 48ビット/フレーム (96ビット/フレーム可能)

·バラメータ補間周期 : 2.5ms

・データ圧縮率 : 標準 2.4kbps (4.8kbps, 9.6kbps可能)

・内部演算精度 : 15ビット・合成音の基本周波数範囲 : 約50~500Hz

·DAコンバータ : 9ピット (符号を含む)

端子機能

子機能 	T 1		
端子名	1/0	等価回路	機能説明
V _{DD}	_	-	電源の+(プラス)側端子。
v_{ss}	-		電源のグランド (0V)側端子。
TEST	I	ADD	内部回路テスト入力端子。 V _{SS} 端子と接続する。
RESET	1/0	† ∨DD	リセット入力端子。
		Aool	パワーダウン状態では、LSIの内部からリセット信号が出力される。パワーダウン状態(OSCG=「H」)において発声スタート信号を印加した場合、外部リセット回路(通常はコンデンサをV _{SS} とRESET間に接続)の時定数で定められた時間リセット状態を保ち、その後動作を開始する。
OSC1	I	V DD	発振回路用の発振子を接続する端子。 セラミック発振子を接続し、400kHzの発振を行う。 外部クロックは、OSC1端子へ入力し、OSC2端子はオーブンとする。
OSC2	0		129
ōsca	I	AOOI	発振回路,DAコンバータ,リセット回路の制御信号入力端子。 OSCG=「L」の時、それぞれの回路が動作状態になる。 OSCG=「H」の時、発声スタート指示によって各回路が動作状態になり、発声が終了するとパワーダウン状態となり、発振停止,DAコンバータ出力オフ,リセット状態で停止する。また、OSCG=「H」の時は、CO~C5端子またはSTART端子による発声スタート時、各端子入力信号に対してチャタリング吸収回路が働く。
DA	0	V _{DD}	DAコンバータ (音声)の出力端子。 定電流ソース型のDAコンバータが内蔵されている。通常外部抵抗負荷をV _{SS} 端子間に接続する。パワーダウン状態では、出力ハイインピーダンスとなる。
SFRM	I	VpD A00	フレーム長切換え入力端子。 SFRM=「H」の時、フレーム長=10ms SFRM=「L」の時、フレーム長=20ms 音声分析時と異なるフレーム長に設定した時は、1/2倍速ま たは2倍速で発声する。
DIRECT	I	V DD	発声語句の指定方法切換え入力端子。 DIRECT=「H」の時、C0~C3端子の4ピットデータを5回用いてパラメータROMのアドレス (18ピット)を直接指定する。 DIRECT=「L」の時、63種の間接アドレステーブルをC0~
CT	0		外部ROM (LC3100)へ供給する基準クロック信号出力端子。 200kHz標準
DIN	I	VDD A00	外部ROM (LC3100)からのデータ入力端子。
DREQ	0		外部ROM (LC3100)に対するデータ要求信号出力端子。

次ページへ続く。

前ページより続く。

端子名	I/O	等価回路	機能説明			
ASTRB	0	-d>	外部ROM (LC3100)に対してパラメータのアドレスを設定する際に、アドレスデータ (A0~A3)のラッチを指定するストローブ信号出力。			
A0, A1, A2, A3	0	-d>	外部ROM (LC3100)に対するアドレス出力端子。 発声スタート時に4ピットずつ5回に分けて出力される。 非発声時 (BUSY=「H」)の時は、C0~C3端子から入力され た信号がA0~A3端子に出力される。また、C4,C5から入力 された信号がASTRB, DREQ端子に出力される。従って、 C0~C5端子を利用して外部ROMのアドレス設定とデータ腕 み出しができる。			
C0, C1, C2, C3, C4, C5	I	VDD OSCG	発声語の選択を行うための入力端子。 DIRECT=「H」の時、C0~C3端子の4ピットデータ5回を 用いて、パラメータROMの先頭アドレス (18ピット)を指定する。 DIRECT=「L」の時、C0~C5端子の組合せによって発声語を選択する。C0~C5によって指定される間接アドレステーブル(マスクプログラム)が示すアドレスを指定する間接アドレス指定方式であり、63種までの選択ができる。 OSCG=「H」の時は、ブルダウン抵抗付きとなる。			
START	I	VDD	発声スタートを指示する信号入力端子。 この端子の立ち上がりによって発声スタートする。 DIRECT=「L」で、START端子が常に「H」レベルの状態 になっている時は、C0~C5端子の全てが「L」の状態か ら、C0~C5端子のいずれか1つでも「H」になった時発声ス タートする。			
FAST SLOW	I	A00827	発声スピードの選択とパラメータピットレート (ピット/フレーム: BPF)の指定を行うための入力端子。 FAST SLOW 動作 L 48BPF,通常スピード L H H L H H H 96BPF,通常スピード			
BUSY	0		発声中または発振回路の安定時間待ちを示す信号出力発振中 または、OSCGとRESET端子が共に「L」レベルの時BUSY			

語句の選択方法

語句の選択方法に関して、LC81192,81096は2つの機能を持っており、3通りの使い方ができる。

(1) 間接指定方式 (Index Addressing Mode)/DIRECT端子「し」に設定。

C0~C5の6端子からなるコードによって最大63語まで語句を指定する。コードと語句の対応は、マスク·オブションによってあらかじめLC81192,81096の間接アドレステーブルに作り込まれる。この方式には次の2通りの応用がある。

① キー入力モード (ページ6の応用例1参照)

端子条件 : DIRECT=「L」, OSCG=「H」, START=「H」

語句の選択 : C0~C5の各端子に対応した語句を選択する

(あらかじめマスクオプションで設定しておく)

語句発声開始 : C0~C5端子を全て「L」レベルの状態からいずれか1端子以上を「H | レベルにし

た時発声を開始する (START=『H』のため)。

チャタリング: C0~C6端子入力信号に対してチャタリング吸収回路が働く。

パワーダウン: C0~C5端子入力により自動的に動作状態になり、発声終了後自動的にパワーダウ

ンする。

このモードは語句数が6語以下で語句の編集を行わない場合に用いる(エンコーダICを用いれば6語以上も可能)。キースイッチをC0~C5端子に接続するだけで使用できる。

② マイコン制御モード (ページ7の応用例2参照)

端子条件 : DIRECT=「L」

題句の選択 : C0~C5端子のコードで63語まで選択する。C0~C5端子が全て「L」の時は、何も

選択されない。

語句発声開始 : START端子に「H」レベルのバルスを入力する。

チャタリング: OSCG=「L」の時はチャタリング吸収回路は働かない。

パワーダウン: I)パワーダウン機能を用いない時は、OSCG端子に「L」を印加する。

II) パワーダウン機能を用いる時は、マイコンにより OSCG端子に印加する信号を

制御する(ページ9のパワーダウンの項目参照)。

このモードは63語以下の語句をマイコンで制御または編集しながら発声させる場合に用いる。

(2) 直接指定方式 (Direct Addressing Mode)/DIRECT端子=「H」

LC81192,81096は、最大256Kバイト(2Mピット)のパラメータROM用アドレス空間と18ピットのアドレスカウンタを持っている。C0~C4端子を用いて任意のアドレスデータをカウンタに設定できる。従って63語以上の任意の語句を18ピットアドレスにより直接指定できる。指定方法は、多少複雑であるが多数の語句を扱うことができる(ページ8の応用例3参照)。

端子条件 : DIRECT=[H]

語句の選択 : C0~C3端子の4ビットデータとC4端子に与えるクロックによって語句の先頭アド

レスを設定する。

語句発声開始 : START端子に「H」レベルのバルスを入力する。

チャタリング : OSCG=「L」の時はチャタリング吸収回路は働かない。

パワーダウン : I)パワーダウン機能を用いない時は、OSCG端子に「L」を印加する。

II) パワーダウン機能を用いる時は、マイコンにより OSCG端子に印加する信号を 制御する (ページ9のパワーダウンの項目参照)。

発声スタート方法

(1) スタート検出回路

SEBOOA

スタート検出回路の概念図を上図に示す。語句のスタート指示をするためには、C0~C5端子のうち1端子以上が「H」レベルとなり、START端子が「H」レベルでなければならない。このことから語句のスタート指示方法には、次の2つの方法を利用できる。

- ① あらかじめC0~C5端子で語句を選択してから、START端子を「H」レベルにする方法。
- ② START端子は、常に「H」レベルにしておき、 $C0\sim C5$ 端子を全て「L」レベルの状態から語句を選択した状態に変化させる。この時には、 $C0\sim C5$ 端子の変化と同時に発声スタートが指示される。さらにDIRECT端子を組合せることにより、応用例1 \sim 3で示すような3通りの方法が利用できる。

(2) BUSY信号の検出

BUSY信号は、次の条件で「L」レベルとなる。

- ① 音声発声中
- ② 非発声中(BUSY=「H」)の時に発声スタート信号を受け付けた時に「L」レベルになる。
- ③ ŌSCG端子に「L」レベルが印加されてパワーダウンモードから抜け出した時、発振が安定するまでの間 RDSET端子が「L」レベルになり、その期間に「L」レベルになる(OSCG=「L」, RESET=「L」の時 $\overline{BUSY} = [L]$ となる)。

以上のことから、マイコンを用いて編集発声を行うような場合、マイコンは次のようにBUSY端子の状態を 監視しなければならない。

- ① 発声スタートを指示する前に、BUSY信号が「H」であることを確認する。
- ② スタート指示時に、C0~C5端子(直接アドレスモード時は、最終桁データ印加時のC0~C3端子)に印加する 信号は、BUSY端子出力が「L」レベルになるまで変化させてはならない。

(3) 割り込み発声機能

LC81192,81096が発声動作中に新しい語句のスタート指示があった場合、発声動作を中止し新しい語句の発声 を開始する。この動作を割り込み発声と呼ぶ。

割り込み発声を行う時は、BUSY端子出力は「L」レベルのまま変化しないので、C0~C5端子に与える語句選択 コードは、(2)-②項のようにBUSYで制御できない。従ってC0~C5端子は、30msec以上の間変化させないよう に印加する必要がある。

(4) キー入力モードにおける割り込み発声の禁止方法

後述するキー入力モードの応用例1の回路を利用した場合 に、キーチャタリング吸収時間経過後に再度キーを押すと、 割り込み発声機能が働く。これを禁止したい場合、C0~C5 端子を右図のように用いる。この回路を用いた時は、発声が 終了してからのキー入力しか受け付けない。

A00833

応用例1 1語1キー対応システム・・・・・C0~C5キーに対応して最大6語まで発声

キー入力のチャタリング吸収あり(OSCG=「H」)。 ₩ 887 EST CO C 1 CS cэ Filter amp. C4 C5 IJ. START LC81192/096 SP. OSCG DIRECT SLOW RESET CRST FAST Ţ SERM BUSY

- ·C0~C5端子全でが「L」の状態からいずれか1端子以 上が「H」レベルになると、パワーダウンを解除し 発声を開始する。
- ・発振回路が安定に発振するまで多少の時間が必要に なるために、RESET端子に付加したコンデンサ CRSTにより一定時間自動的にリセット状態を維持す
- ·発声終了後C0~C5端子が全て「L」レベルであれ ば、パワーダウンモードに入る。
- ·C0~C5端子に引き続き「H」レベルが印加されてい る場合、発声は終了するが、パワーダウンモードに 入らずCO~ C5端子が全て「L」レベルになった時点 で、パワーダウンモードに入る。
- ·発声速度を変える時は、SLOW, FAST端子を用い る。

発声スタートのタイミングチャート

A00634

間接アドレス指定,語句指定,発声スタート時のタイミングチャート

· OSCG=「L」の時 (チャタリング吸収なし)

C0~C5端子に印加するデータはBUSY出力が「L」になるまで保持しなければならない。

A00837

·OSCG=「H」の時 (チャタリング吸収あり)

C0~C5端子に印加するデータはBUSY出力が「L」になるまで保持しなければならない。

A0083B

本例は、 $\overline{OSCG} = \lceil H \rfloor$ の時連続発声をさせた例を示す。一方 $\overline{OSCG} = \lceil H \rfloor$ の時は、発声終了後、START端子 および $C0 \sim C5$ 端子全てが $\lceil L \rfloor$ レベルであると自動的にパワーダウンモードになる。実際の応用では、連続発声させる期間は、 $\overline{OSCG} = \lceil L \rfloor$ とし、発声終了後に $\lceil H \rfloor$ レベルにする等の制御が必要である。

「応用例3」 マイコン制御モード(直接アドレス指定)

- ·CO~C4端子を用いて語句の先頭アドレス (18ピット) を直接指定することにより63語以上の語句指定ができる。
- ·この時、18ビットのアドレスデータをC0~C3端子4 ビットから5回に分けて入力する。各4ビットデータ のセットクロックとしてC4端子を用いる。

直接アドレス指定, 語句指定, 発声スタート時のタイミングチャート $\cdot \overline{OSCG} = \lceil L \rfloor$ の時 (チャタリング吸収なし)

A20~A23データの入力時にC4端子にパルスを印加してはならない。 A20~A23データのBUSY端子出力が「L」レベルになるまで保持しなければならない。

· OSCG=「H」の時 (チャタリング吸収あり)

 $A20\sim A217$: スタートアドレス,分析時に分析システムから得る。 $A20\sim A23$ データの入力時にC4端子にパルスを印加してはならない。 $A20\sim A23$ データのBUSY端子出力が「L」レベルになるまで保持しなければならない。

 $\overline{OSCG} = \Gamma H$ 」の時は、発声終了後、START端子 および $C0 \sim C4$ 端子全てが「L」レベルであると自動的にパワーダウンモードになる。実際の応用では、連続発声させる期間は、 $\overline{OSCG} = \Gamma L$ 」とし、発声終了後に ΓH 」レベルにする等の制御が必要である。

A00845

パワーダウンモードの使い方

パワーダウンモードでは、LC81192,81096は発振を停止させ消費電流を減少させる。パワーダウンの制御は、 OSCG端子により行う。OSCG端子が「L」レベルの時LC81192,LC81096は常に動作状態になっている。

(1) パワーダウン状態にする方法

LC81192,81096をパワーダウン状態にする時は、OSCG端子に「H」レベルを印加すると、現在発声中かどうかを判定し、発声中でなければすぐにパワーダウンモードに入る。もし発声中であれば、発声が終了してからパワーダウンモードに入る。

- (2) パワーダウンを解除する方法 (その1) \overline{OSCG} 端子を「L」レベルにすると、パワーダウンが解除される。
- (3) パワーダウンを解除する方法(その2)

発声スタート指示をする。LC81192,81096がパワーダウン状態の時に発声スタート指示があるとOSCG端子の信号に関係なく自動的にパワーダウンを解除する。パワーダウンを解除し、発振を開始した直後は、発振が不安定なため、LC81192,LC81096は一定時間自動的に自己リセット状態になる。自己リセット時間は、RESET端子に接続された外付け容量と内部プルアップ抵抗との時定数で決まる。

一定時間のリセット後、LC81192,81096は指示されたスタート信号に従って、発声を開始する。発声終了後、もしOSCG端子が「H」レベルであれば、再び自動的にパワーダウンモードに入る。

(4) パワーダウン応用例 ① スタンドアロンで使用する時

LC81192,81096を1チップスタンドアロンで使用する時は、通常OSCG端子は「H」レベルとし、自動パワーダウン機能を用いる。この時RESET端子には、発振安定時間以上のリセットをかける容量を必ず接続する。

スタンドアロン使用 自動自己リセット動作

CRSTの容量について:

CRSTによる自己リセット機能は、電源投入時のイニシャルパワーオンリセットとしても機能する。使用する電源の立ち上がり時間がCRSTによりつくられる時定数(tRST)より長い場合は、電源の立ち上がり時間特性に合わせてCRSTの容量を大きくするなどの調整が必要である。

発声が終了して自動的にパワーダウン状態に入ろうとする時、LC81192,81096はC0~C5端子 および START端子 の状態を判定する。

(C0+C1+C2+C3+C4+C5)·STARTの論理を判定し、結果が「0」であれば自動的にパワーダウン状態に入る。結果が「1」の場合は、結果が「0」になるまで動作状態(非発声)を保つ(応用例(1) 1語1キーシステムを参照)。

(5) パワーダウン応用例② マイクロコンピュータを用いて文章を編集する時

いくつかの単語を用いて文章を編集し、なおかつパワーダウン機能を用いる時は、マイクロコンピュータにより OSCG端子を制御する必要がある。パワーダウンを解除した時は必ず発振判定時間だけ待ち時間が必要なため、文章編集を行う時は最初にOSCG端子を「L」レベルにして動作状態とし、その後動作状態のまま全単語を発声させる。その後再びOSCG端子を「H」レベルにしてパワーダウンに入れる。最初にパワーダウンを解除した時には、やはり発振安定のための待ち時間が必要である。この時間は、RESET端子の外付け容量によって作る。OSCG端子を「L」レベルにすると、発振が安定したことをマイクロコンピュータに知らせるために、発振の不安定時間(リセット時間)の間、マイクロコンピュータに対して、BUSY=「L」を出力する。マイクロコンピュータは、BUSY出力が「H」レベルになったことを検出した後にスタート指示する。

次ページに続く。

マイコン制御によるパワーダウン タイミングチャート

ADDB44

(6) パワーダウンモードと動作状態における主な回路の状態

表1 パワーダウン時の各部の状態

状態 主な回路	動作状態 (非発声時を含む)	パワーダウン状態
発振回路	常に発振	停止
DAコンパータ	動作	停止 (出力フローティング)
リセット回路	RESET端子に外部から印加された個号によりリセットされる。	・内部リセットが働き、常にリセット状態になっている。 ・パワーダウンが解除された時には、RESET端子に外付けされたCRSTと内部プルアップ抵抗Rによる時定数で決まる時間を経過した後リセットが解除される。
BUSY出力	発声中「L」出力 非発声中「H」出力	・常に「H」出力 ・ OSCG=「L」によってパワーダウンが解除された時で、発振安定までのリセット期間、すなわち OSCG、RESET共に「L」の時BUSY=「L」となる (発振指示があったがまだ発振が安定していないため)。

パワーダウン制御回路の概略図

キーチャタリング吸収回路

C0~C5端子 および START 端子には、スイッチが接続される場合とマイクロコンピュータなどの出力信号が接続される場合とがある。

スイッチ信号に対してはチャタリング吸収処理が必要であり、マイクロコンピュータの出力信号に対してはチャタリング吸収処理は不要である。そこで、LC81192,81096では、OSCG端子入力信号によってチャタリング吸収処理の有無を制御している。

- ① OSCG=「L」の時チャタリング吸収処理をしない。従って極短いスタート信号により動作を開始するが、CO~C5端子信号はBUSY端子に「L」レベルが出力されるまで印加し続けなければならない。 通常、BUSY端子出力はスタート指示後5~10ms で「L」レベルとなる。
- ② OSCG=「H」の時チャタリング吸収回路が働く。チャタリング吸収は、10ms 前後(7.5~25ms)働く。

発声速度の制御とパラメータビットレート

LC81192,81096には、発声速度とパラメータのピットレートを変化させるために3つの端子がある。これらは、SFRM,SLOW および FASTの3端子で、いずれもLC81192,81096のフレーム長(分析,合成時の単位時間)を制御している。スピードとパラメータのピットレートは、パラメータの分析時の条件と密接な関係がある。その関係を下表2に示す。

分	析条件	フレーム長	20ms.	10ms	20ms	10ms	25ms	
合成時の 端子条件		フレーム内の パラメータ	48ピット	48ピット	96ピット	96ピット	48ピット	
SFRM	FAST	SLOW						
L	L	Н	0.75	0.375	禁止	禁止	1.0 (1880bps)	
L	L	L	1.0 (2400bps)	0.5	禁止	禁止	1.25	
L	Н	L	1.25	0.625	禁止	禁止	1.5	
Н	L	H	1.5	0.75	禁止	禁止	2.0	
Н	L	L	2.0	1.0 (4800bps)	禁止	禁止	2.5	
Н	Н	L	2.5	1.25	禁止	禁止	3.0	
L	Н	Н	禁止	禁止	1.0 (4800bps)	0.5	禁止	
Н	н	Н	禁止	禁止	2.0	1.0 (9600bps)	禁止	

表2分析・合成条件と発声スピードの関係(1.0を標準スピードとする)

発振回路

発振回路として次の3種類の回路が使える。

- ① セラミック発振回路
- ② RC発振回路
- ③ 外部クロック入力

動作周波数は、標準400kHzである。

発振回路定数は、図1,図2を参照すること。

DA出力端子(音声信号出力端子)

DA出力端子を抵抗でV_{SS}側に終端するとDA端子から音声信号が出力される。

DA端子はパワーダウンモード時にはハイインピーダンス状態になる。従って抵抗で終端している場合は、V_{SS}電位になる。

外部拡張ROMとのインタフェイス

外部ROM LC3100とのインタフェイス回路を右図に示す。

LC81192, 81096とLC3100は、インタフェイス回路を内蔵しているので、A0~A3, ASTRB, DREQ, DOUT (DIN), CT端子をそれぞれ結線する。

外部ROMを利用する時のメモリマップを下図に示す。 アドレス (04000等)は、パイト単位で16進数表示 LC81192内蔵ROM (192Kビット)

- 注1 LC81192の内蔵ROMアドレス02000~03FFFまでの領域は使用できない。
- 注2 LC81192の内蔵ROMを使わない場合 (発注時マスク切換えで指定)、00000~07FFFまでの領域を外部ROM (LC3100)に割り付けることができる。
- 注3 間接アドレス指定方式は、全ROM領域をアドレス指定できる。

次ページへ続く。

アドレス (04000等)は、バイト単位で16進数表示 LC81096 内蔵 ROM (96Kビット)

- 注1 LC81096の内蔵ROMアドレス01000~03FFFまでおよび06000~07FFFの領域は使用できない。
- 注2 LC81096の内蔵ROMを使わない場合 (発注時マスク切換えで指定)、00000~07FFFまでの領域を外部ROM (LC3100)に割り付けることができる。
- 注3 間接アドレス指定方式は、全ROM領域をアドレス指定できる。

音声パラメータ以外のデータを外部ROMに入れる方法

非発声中は、LC81192,81096のC0~C5端子は、 A0~A3,ASTRB,DREQ端子とそれぞれ電気的に接続されている。

マイクロコンピュータはLC81192,81096を中継して外 部ROM LC3100のアドレスを設定し、ROMデータを読み出すことができる。従って、LC3100の中に音声パラメータとパラメータ以外のデータを同時に格納することにより、LC3100をマイクロコンピュータの外部メモリとして利用できる。

A00B51

LSIのリセット方法

LC81192,81096は、リセット信号を自動的に作成し、RESET端子(入出力共用)に出力して自動的に自己リセット動作を行う。この出力信号に逆らって外部から強制的にリセットする時(発声を途中で強制停止する場合など)には、以下の注意を守る必要がある。

- ① RESET端子と外部信号間にダイオードを入れる。
- ② RESET端子を強制的に「L」レベルにする時間は、0.8µ8 以上必要である。

外部からのリセット億号印加方法

応用回路例

3Vバージョンの応用回路例

絶対最大定格 / Ta = 25℃ , V _{SS} :	- 037				
				unit	
最大電源電圧	$ m V_{DD}$ max	V _{DD} : 5Vバージョン	$-0.3 \sim +7.0$	V	
		V _{DD} :3Vバージョン	$-0.3\sim+5.0$	V	
最大入力電圧	V_{IN} max		$0.3 \sim V_{DD} + 0.3$	v	
最大出力電圧	V _{OUT} max		$0.3 \sim V_{DD} + 0.3$	V	
最大出力電流	I _{OUT} max	(DA端子を除く全端子: 1端子当たり	$-2.0 \sim +2.0$	mA	
許容消費電力	Pd max	$Ta = -30 \sim +70$ °C	200	mW	
動作周囲温度	Topg		30~+70	${f c}$	
保存周囲温度	Tstg		-55~+125	°C	
許容動作範囲 / Ta = -30~+7	5℃, V _{SS} =0V		min	typ max	unit
動作電源電圧	$ m V_{DD}$	V _{DD} 5Vバージョン	4.5	6.5	V
		V _{DD} 3Vパージョン	2.7	3.5	v
入力「H亅レベル電圧	V _{IH} 1	RESET, OSC1, C0~C5 以外の 入力端子	$0.7V_{DD}$	v_{DD}	v
	V_{II} 2	RESET, C0~C5	$0.75 V_{ m DD}$	$v_{ m DD}$	v
入力「L」レベル電圧	$V_{lL}1$	(RESET, OSC1, C0~C5 以外の 入力端子	v_{ss}	$0.3V_{\mathrm{DD}}$	v
	$v_{n,2}$	RESET, C0~C5	V_{SS}	$0.25 V_{ m DD}$	v
「セラミック発振外付け	C1	OSC1, 2: 図1	. 33	図1の表に示す	v
容量值	C2	OSC1, 2: 🖾 1		4	v
、 (セラミック発振外付け	R1	OSC1, 2: 🖾 1		,	v
抵抗值	R2	OSC1, 2: 🖾 1		,	v
RC発振外付け容量値	Cext	OSC1, 2: 図2, 5Vパージョンの	Ժ typ_5%	330 typ+5%	pF
RC発振外付け抵抗値	Rext	OSC1, 2: 図2, 5Vパージョンの	* *	18 typ+1%	kΩ
リセット保証定数	CRST	RESET: 図3,5Vバージョン	typ=176	0.068 typ+10%	μ F
, - , , promote a	ONDI	RESET: 図3,3Vバージョン		0.033 typ+10%	•
[外部クロック条件]		TUBBLE LESO, UVA DE A	typ – 10%	0.033 typ+10%	μ F
動作周波数	fext	OSC1:図5	200	400 520	kHz
「H亅レベルクロック パルス幅	tw∳H	OSC1: 図5	0.75	1.25	μ 8
「L」レベルクロック パルス幅	$\iota_{\mathbf{W}\phi}\mathbf{L}$	OSC1:図5	0.75	1.25	μ s
「「H」レベルクロック 入力電圧	$V_{IH}\phi$	OSC1:図5	$0.75 V_{DD}$	V_{DD}	v
(「L」レベルクロック 入力電圧	$V_{1L\phi}$	OSC1:図5	V_{SS}	$0.25 V_{\mathrm{DD}}$	v
データ入力設定時間	t_{IS}	DREQ, DIN : 図6	1.2		μS
チャタリング吸収時間	t _C	$C0\sim C5$, START: $\overline{OSCG} = \lceil H \rceil$		50	ms
データセットアップ時間	ts1	$C0\sim C3$, $C4:DIRECT= [H]$,			μ8
	t _S 2	$C0\sim C5$, START: DIRECT= [1]			μ8
	ts3	$C0\sim C5$, START: DIRECT=	•		μ8
C4端子入力パスル幅	tw1	$C4: DIRECT = \lceil H \rfloor, $	0.8		-
START端子入力パスル幅	tw2	START: DIRECT= 「H」, OSCG= 「L」, 図8	0.8		μ8 -
リセットパルス幅	tw3	RESET: OSCG=「L」, 発振安定時,図9	0.8		μθ
データホールド時間	t _H 1	C0~C3, C4: DIRECT= [H],	図7 0		*1BI
5 5 5 5 5 1 5 3 1 C3	t _H 2	$C0\sim C5$, \overline{BUSY} : $\boxtimes 8$	0		μ9
	'H"	0M, 1800,00° vo	U		μ 8

The content of th	電気的特性 / Ta = -30~+70℃	$v_{SS} = 0V$, 5Vバージョン; V _{DD} =4.5~6.5V/3V/ 定格値は特に断らない場合は、5V,3	バージョン; W各バージ	V _{DD} =2.7 ョン共通	7∼3.5V	
SLOW_SFRM_CO~C5:			是旧屋城村在断り家、湯日は、07,6			max	unit
IIII2	入力「H」レベル電流	I _{III} 1	SLOW, SFRM, C0~C5:	5T,		1.0	μ A
Aカ「L」レベル電流		$I_{IH}2$),			
入力「L」レベル電流							•
HAST, SLOW, SFRM, CO~C5 : VDD~0.6	- 1 - 1					20	,
John = -0.3mA	入力丨L」レベル電流	IIL	FAST, SLOW, SFRM, C0~C5:	ST, -1.0			μΑ
	出力「H亅レベル電圧		$I_{OH} = -0.3 \text{mA}$	V _{DD} 0.6			V
おいて、ジョン: 10H = -0.3mA		V _{OH} 2		Vpp06			v
Busy			1				
出力「L」レベル電圧 VOL1 (A0~A3, ASTRR, DREQ, CT: 10L=0.3mA VDD-0.6 V VDL2 (BUSY: 5Vバージョン; 10L=1.0mA 0.6 V 3Vバージョン; 10L=30µA 0.6 V 0.							
出力「L」レベル電圧		Vou3					
I _{OL} =0.3mA BUSY: SV/t-ジョン; I _{OL} =1.0mA 0.6 V 3V/t-ジョン; I _{OL} =1.0mA 0.6 V 3V/t-ジョン; I _{OL} =30µA 0.2 V Uセット時間	出力「L レベル電圧			יטטי		0.6	
「ロー・・			$I_{OL} = 0.3 \text{mA}$				
3Vバージョン; O ₁ L=30		V2	5Vパージョン; I _{OL} =1.0mA			0.6	v
Vol3			3Vバージョン; I _{OL} =1.0mA			0.6	V
リセット時間			$3V$ バージョン; I_{OL} = 30μ A			0.2	v
アルアップ抵抗 R _{UP}		v_{ol} 3	$OSC2:1_{OL}=0.3mA$			0.6	v
TV グウン 短抗	リセット時間	t_{RST}	RESET : 図3	7	20	70	ms
スワバージョン; V _{OUT} =1/2V _{DD} 300 800 2300 kΩ RESET : 5Vバージョン; V _{OUT} =1/2V _{DD} 3.5 8 20 kΩ 3Vバージョン; V _{OUT} =1/2V _{DD} 8.0 20 65 kΩ SVバージョン; V _{OUT} =1/2V _{DD} 8.0 20 65 kΩ SVバージョン; V _{OUT} =1/2V _{DD} 8.0 20 65 kΩ SVバージョン 0.4V _{DD} 0.65V _{DD} 0.75V _{DD} V 3Vバージョン 0.36V _{DD} 0.65V _{DD} 0.75V _{DD} V SESET : 5Vバージョン 0.25V _{DD} 0.45V _{DD} 0.60V _{DD} V 3Vバージョン 0.25V _{DD} 0.45V _{DD} 0.70V _{DD} V SESET : 5Vバージョン 0.25V _{DD} 0.45V _{DD} 0.70V _{DD} V V V V V V V V V	プルアップ抵抗	R_{UP}					
RDOWN RESET 5Vバージョン; VOUT=1/2VDD 3.5 8 20 kΩ 3Vバージョン; VOUT=1/2VDD 8.0 20 65 kΩ 10 10 10 10 10 10 10 1							
SV/バージョン; VOUT=1/2VDD 3.5 8 20 kΩ 3V/バージョン; VOUT=1/2VDD 8.0 20 65 kΩ NΩ SV/バージョン; VOUT=1/2VDD 8.0 20 65 kΩ NΩ NO SV/NDD NO NO NO NO NO NO NO	一种 11、 种 24、 2、 4年 4世	n		300	800	2300	Kil
RESET :	ノルタリン抵抗	KDOWN		3.5	8	20	kΩ
RESET :							
スレッショルド電圧	「FH レベル	VTOR		0.0		•	
Table Variable Variable Variable RESET :	スレッショルド電圧	. 1 11		$0.4V_{DD}$	$0.55V_{DD}$	$0.75V_{DD}$	v
3Vバージョン			(3Vバージョン	$0.35V_{DD}$	$0.55 V_{DD}$	$0.75V_{DD}$	v
3Vバージョン	{「L」レベル	$V_{T^{\bullet}L}$	1				
ヒステリシス電圧 VHIS RESET 0.1VDD V セラミック発振周波数 f _{XOSC} OSC1, OSC2: 図1 384 400 416 kHz kHz セラミック発振安定時間 f _{XS} OSC1, OSC2: 図1 7 ms RC発振周波数 f _{CROSC} (OSC1, OSC2: 図2, 5Vパージョンのみ 308 400 520 kHz RC発振安定時間 RC発振安定時間 t _{CRS} (Cext=330pF±5%, Rext=18kΩ±1% 7 ms 7 ms DAコンパータ VDAO DA: 5Vパージョン; R _L =100Ω 0.2 0.6 1.5 Vp-p 3Vパージョン; R _L =240Ω 0.12 0.4 1.2 Vp-p R _L =100Ω, V _{DD} =5V, Ta=25℃ 0.4 0.6 0.9 Vp-p R _L =240Ω, V _{DD} =3V, Ta=25℃ 0.4 0.6 0.9 Vp-p R _L =240Ω, V _{DD} =3V, Ta=25℃ 0.22 0.4 0.7 Vp-p DA: Vp-p Tax Da: Vp-	(スレッショルド電圧		L				
セラミック発振周波数 f _{XOSC} OSC1, OSC2: 図1 384 400 416 kHz セラミック発振安定時間 f _{XS} OSC1, OSC2: 図1 7 ms RC発振周波数 f _{CROSC} (OSC1, OSC2: 図2, 5Vバージョンのみ 308 400 520 kHz RC発振安定時間 t _{CRS} (Cext=330pF±5%, Rext=18kΩ±1% 7 ms DAコンバータ 最大出力振幅 VDAO (DA: 5Vバージョン; R _L =100Ω 0.2 0.6 1.6 Vp-p 3Vバージョン; R _L =240Ω 0.12 0.4 1.2 Vp-p R _L =100Ω, V _{DD} =5V, Ta=25℃ 0.4 0.6 0.9 Vp-p R _L =240Ω, V _{DD} =3V, Ta=25℃ 0.22 0.4 0.7 Vp-p オフリーク電流 DA: V _{OUT} =V _{SS} -10 μA オフリーク電流 I _{DD} V _{DD} : DA出力開放, 図10 2 mA パワーダウン消費電流 I _{DDPD} V _{DD} : 図11 10 μA			1= :	$0.25V_{DD}$			
セラミック発振安定時間 f_{XS} OSC1, OSC2: 図1 7 ms RC発振周波数 f_{CROSC} (OSC1, OSC2: 図2, $5V/-9$ 308 400 520 kHz RC発振安定時間 f_{CRS} (Cext=330pF±5%, Rext=18k Ω ±1% 7 ms DAコンバータ 最大出力振幅 V_{DAO} (DA: $5V/-9$ $3V/-9$	• •						
RC発振周波数 f_{CROSC} $OSC1,OSC2: 図2,5Vバージョンのみ 308 400 520 kHz RC発振安定時間 t_{CRS} Cext=330pF\pm5\%, Rext=18k\Omega\pm1\% 7 ms OA = 1.5 OA$				384	400		
RC発振安定時間 t_{CRS} $Cext=330pF\pm5\%, Rext=18k\Omega\pm1\%$ 7 ms DA DA V_{DAO} DA DA $Extit{DAD}$ DA $Extit{DAD}$ $Extit{Mag}$ V_{DAO} DA $Extit{DAD}$ $Extit{Mag}$ V_{DAO} DA $Extit{Mag}$ V_{DAO} DA $Extit{Mag}$ V_{DAO} DA $Extit{Mag}$ V_{DAO} DA $Extit{Mag}$ V_{DC} $V_{$			•	. 1. 700	400		
$ \begin{bmatrix} DA \Rightarrow \forall V_{DAO} \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\$			1		400		
最大出力振幅				1%		ſ	шь
$3V \!$	I	* DAO		0.2	0.6	1.5	Vp-p
$R_L = 100\Omega, V_{DD} = 5V, Ta = 25 °C$ 0.4 0.6 0.9 $Vp-p$ $R_L = 240\Omega, V_{DD} = 3V, Ta = 25 °C$ 0.22 0.4 0.7 $Vp-p$ $DA = 240\Omega, V_{DD} = 3V, Ta = 25 °C$ 0.22 0.4 0.7 $Vp-p$ $DA = 240\Omega, V_{DD} = 240\Omega,$	`						
$R_L = 240\Omega, V_{DD} = 3V, Ta = 25$ \sim 0.22 0.4 0.7 \sim Vp-p \sim DA : \sim Vp-p \sim			, 2	0.4	0.6		
オフリーク電流 動作消費電流 I _{DD} V _{DD} : DA出力開放, 図10 2 mA パワーダウン消費電流 I _{DDPD} V _{DD} : 図11 10 μA				0.22	0.4		
パワーダウン消費電流 $I_{ m DDPD}$ $V_{ m DD}$: 図 11 10 μA		I_{OFF}	. –	-10			
700.5	動作消費電流	I_{DD}	V _{DD} : DA出力開放,図10			2	mA
入力端子容量 CI 全入力端子:f=1MHz 5 pF	パワーダウン消費電流	I_{DDPD}	V _{DD} : 図11			10	μ A
	入力端子容量	CI	全入力端子:f=1MHz		б		pF

回路定数は、5V,3V各バージョン共通

CF	R1 (kΩ)	R2 (kΩ)	C1 (pF)	C2 (pF)
CSB400P/J (ムラタ)	1000	4.7	330	330
KBR400B/Y (京セラ)	1000	4.7	470	470

抵抗は±5%,コンデンサは±10%以内を使用すること。

図1 セラミック発振推奨回路

5Vバージョンのみ

Rext (kΩ)	Cext (pF)
18	330

抵抗は土1%。コンデンサは土5%以内を使用すること。

図2 RC発振推奨回路

図3 リセット回路

図4 DA負荷回路

図5 OSC1外部入力波形

図6 データ入力設定時間

図7 アドレスセット時の波形 (1)

図8 アドレスセット時の波形 (2)

図9 リセット波形

注) ES, 量産日程につきましては、最新情報を弊社営業所にお問合せ下さい。

(2) 開発の詳細

LC81192,81096(および拡張ROM LC3100)は、PARCOR方式の音声合成LSIである。PARCOR方式の音声合成は、人間の発声器官(声帯, 喉, 口等)をシミュレーションするもので、原音を作成する際に、話者は正確に発声をする必要がある。また、話者にはそれぞれアナウンスの際に癖があり、その癖が合成音のクオリティや応用開発日程に大きな影響を与える。合成音の良否,応用開発日程の長さは、原音の良否によると言える。話者の選択および原音録音は、合成音のクオリティを含めた音声合成の応用開発を行う際の、一番重要な作業と言える。

合成音のクオリティをより高く、応用開発をより短くするためには、以下の手続を踏まえる必要がある。

① 話者の選択

- 1) 三洋が話者を推薦する場合
 - · 三洋がPARCOR方式音声合成に適した話者および話者が所属する広告代理店を紹介する。
 - ・ 話者のデモテープは広告代理店に請求すれば入手できる。
- Ⅱ) ユーザで話者の選択をする場合、ユーザ側で数名の話者を推薦し、デモテープを三洋へ提出する。
 - ・デモテープは一般に、話者所属のプロダクションに請求すると入手できる。デモテープには音声以外の音 (B.G.M等)が一緒に録音されていないことが必要である。
 - · 三洋でデモテープをテスト分析し、各話者のPARCOR方式に対する適、不適を判断する。
 - 三洋がデモテープ入手後、約5日でテスト分析結果をユーザへ発送する。
- II) テスト分析の結果を踏まえ、ユーザ側で話者を決定する。
- ② 原音録音(立ち会い録音)
 - I) 話者、録音スタジオの手配
 - ユーザにて話者と録音スタジオを手配する。希望録音日の2週間程度前に広告代理店等への予約をする 必要がある。
 - ・希望により、三洋で話者,録音スタジオの手配をする。この場合は、三洋が推薦する話者,録音スタジオとなる。
 - Ⅱ)録音の3日前までに、三洋へアナウンス原稿を提示する。
 - ・ 三洋にて録音に際して注意する個所等の検討をする。
 - ・ ユーザでワードリストも用意する。
 - 町)録音には三洋の担当者が立ち会い、テスト分析の結果、録音時に気づいた点およびその他のノウハウを踏まえ、話者にアドバイスする。
 - · 立ち会い録音ができない場合は、P.20の「原音録音 注意事項」を参考にして原音を作成する。
 - ・録音時間は、仕様により大幅に異なる。提示したアナウンス原稿を基に、三洋が必要な録音時間等のアドバイスをする。
- ③ 費用.日程の見積り
 - 1)分析費用,日程の見積り。
 - 三洋推薦の話者の場合は、三洋がワードリスト入手に見積りをする。
 - ・ ユーザにて話者の選択,録音をする場合は、三洋が原音テープを入手後見積りをする。
 - Ⅱ) 原音テープ入手後のワードの追加,大幅な仕様変更は、別途見積りをする。また、日程も別途となる。
- ④ ワードリストについて
 - 1)分析費用,日程の見積りに必要である。見積りを要求の前に三洋へ提示する。
 - Ⅱ) 最終のワードリストは、遅くとも分析着手までに三洋へ提示する。
- ⑤ コントロールマイコンのソフトウェア評価用 評価ボード,評価用1次ROM(粗分析)
 - 1) 三洋からユーザに、評価ボードおよび 評価用1次ROMを提出する。
 - 11) 単語または、文節を組合せて文章を作成するような場合(時計やタイムスタンプ等)、マイコンの動作を評価するために使用する音声評価ボードと音声データである。粗分析なので、音声クオリティは最終のものではない。
 - III) 間接アドレス方式を使用する場合は、あらかじめアドレス値の指定が必要である。アドレス値の指定がない場合は、三洋でアドレスの割付けをする。
- ⑥ 合成音音質評価用2次ROM (分析データ)
 - I) 立ち会い評価の約1~2週間前に三洋がユーザへ提出する。ユーザは逐次評価結果を三洋へ提示し、三洋では立ち会い評価までの期間修正作業を続ける。

⑦ 合成者立ち会い評価

- I) 最終の音質評価と修正をユーザ立ち会いのもとに行う。
- Ⅱ) 立ち会い評価の時にユーザに準備してもらうもの、または来社してもらう人。
 - 評価セット(コントロールマイコン,アンプ,スピーカ等)
 - · コントロールマイコン ソフトウエア修正装置(ROMライタ等)
 - ・ コントロールマイコン ソフトウエア担当者
 - ・ 外国語の場合は、外国人またはその外国語を評価できる人

(3) 原音話者の注意事項

① 原音話者の選択

PARCOR方式の合成音の良否は、原音の質に大きく影響される。このため、原音の録音に先立って、原音話者を選択する「テスト分析」を行う場合がある。「テスト分析」は、ユーザでの商品企画上採用したい数人の話者の音声を録音したものを、三洋でテスト的に分析し、最適者を推奨する。

原音話者はプロのアナウンサであることが望ましく、テスト分析用テーブには、B.G.Mなどの余分な音の重なりがあってはならない。

② 原音録音時の環境

決定された話者による原音録音は、下記の内容で行うことを推奨する。

- · 原音音質向上 (S/N比向上)のため、録音スタジオを使用すること。
- オープンリールデッキを使用すること。
- フルトラック録音テープ速度 38cm/secが望ましい。
- ・ 同じ発声語を数回(最低スローテンポ1回,通常テンポ2回)録音すること。

③ 発声の注意事項

- · 音程は、女性,男性とも低めの方が望ましい。男性で高めの原音は、合成音では女性の声に近くなることがある。女性で非常に高い声(キンキン声)は、避けた方が良い。
- · 警報音(ブー、ビー)などは、周波数と長さを指定しても良い。ただし、合成音では厳密な周波数を再現 することは難しい。
- ・ 擬音(動物の鳴き声を含む)の合成は非常に難しい。
- ・ 特に注意を要する語句
 - 鼻に抜ける音声で高い声(シンプン, ηa, ηi ···· など)
 - ▶ 同一の段の母音が続くもの (iue, おおおとこ … など) これらの音声は小さめに発音することが必要である。
- · 早口の個所は、別にスローで発声したものも録音すること。
- ・ 重要な語句 (間違って聞こえては、困るもの)は、数度調子を変えて録音すること。
- ④ 合成音で再現しにくい音声
 - ・ 弱く発声される摩擦音

d, z, r ····

·破裂音

p, t, ts

. 鼻音

η, m ····

・ 日本語のラリルレロ

特に「リ」が「ギ」に聞こえやすい。

⑤ 擬音の注意事項

I) チャイム等

· Pin Pon または、Pin Pon Panと連続するものについては、それぞれPin/Pon/Pan/Ponと各音を個別に録音したものが必要である。

Ⅱ) 擬音の重なり

· 一度に複数のチャイム等が重なって鳴るようなものは避けること。

Ⅲ)音楽等

- 簡単なものは、合成が可能だが、一度に複数の楽器が鳴るもの、特に周波数の高いもの、音の変化の速いものについては、不可能または非常に困難なため避けること。
- 録音に際しては、メロディを一通り録音したものの他に、メロディを各音別に前の余韻が残らぬように 分けて録音したものが必要である。

IV) 擬音は、1回だけでなく同じものを数回録音することが望ましい。

(4)発注ガイド

LC81192,81096,LC3100の応用開発 および ROM出図作業にあたり、以下の情報,資料が必要である。予め用意すること。

① LC81192,81096クロック発振の種類

下表の中から1つを選択し、選択欄に○印を記入し、コピーを弊社へ提示すること。遅くても、立ち会い評価後の承認までに提示すること。

電源		電源電圧	クロック発振	選択
電源電圧		4.5~6.5V	CF発振 400kHz	
· ·	5 V バージョン	4.5~6.5V	RC発振 400kHz	
ים		4.5~6.5V	外部クロック入力	
9	3 V バージョン	2.7~3.5V	CF発振 400kHz	
発振		2.7~3.5V	外部クロック入力	

② 間接アドレステーブル アドレス値

間接アドレス方式のアドレス指定を使用する場合に必要である。間接アドレス (C5~C0)とそれに対応する発 声語のリストである。遅くとも、分析作業が始まるまでに提示すること。

(例)

C5~C0(16進数表示の場合)

発声語

01

おはようございます。

0F

Good morning.

20

いらっしゃいませ。

38

Wellcome.

■この資料の情報(掲載回路ま	らよび回路定数を含む)は一例を示すもの。	き、量産セットとしての設計を係	R証するものではありません。
	信頼すべきものであると確信しております		
の実施に対する保証を行う			

[■]本書記載の製品は、極めて高度の信頼性を要する用途(生命維持装置、航空機のコントロールシステム等、多大な人的・物的損害を及ぼす恐れのある用途)に対応する仕様にはなっておりません。そのような場合には、あらかじめ三洋電機販売窓口までご相談下さい。

[■] へきい。 ■ 本書記載の製品が、外国為替および外国貿易管理法に定める戦略物資(役務を含む)に該当する場合、輸出する際に同法に基づく 輸出許可が必要です。

[■]弊社の承諾なしに、本書の一部または全部を、転載または複製することを禁止します。

[■]本書に記載された内容は、製品改善および技術改良等により将来予告なしに変更することがあります。したがって、ご使用の際には、「納入仕様書」でご確認下さい。