The Art of Linear Algebra

- Graphic Notes on "Linear Algebra for Everyone" -

Kenji Hiranabe * with the kindest help of Gilbert Strang † translator: Kefang Liu ‡

September 1, 2021/updated August 19, 2023

Abstract

我尝试为 Gilbert Strang 在书籍 "Linear Algebra for Everyone" 中介绍的矩阵的重要概念进行可视化图释,以促进从矩阵分解的角度对向量、矩阵计算和算法的理解. ¹ 它们包括矩阵分解 (Column-Row, CR)、高斯消去法 (Gaussian Elimination, LU)、格拉姆-施密特正交化 (Gram-Schmidt Orthogonalization, QR)、特征值和对角化 (Eigenvalues and Diagonalization, $Q\Lambda Q^{\rm T}$)、和奇异值分解 (Singular Value Decomposition, $U\Sigma V^{\rm T}$).

序言

我很高兴能看到 Kenji Hiranabe 的线性代数中的矩阵运算的图片! 这样的图片是展示代数的绝佳方式. 我们当然可以通过行·列的点乘来想象矩阵乘法, 但那绝非全部——它是"线性组合"与"秩 1 矩阵"组成的代数与艺术. 我很感激能看到日文翻译的书籍和 Kenji 的图片中的想法.

- Gilbert Strang 麻省理工学院数学教授

Contents

1	理解矩阵——4 个视角	2
2	向量乘以向量——2 个视角	2
3	矩阵乘以向量——2 个视角	3
4	矩阵乘以矩阵——4 个视角	4
5	实用模式	4
	矩阵的五种分解 $6.1 A = CR$ $6.2 A = LU$ $6.3 A = QR$ $6.4 S = Q\Lambda Q^{T}$ $6.5 A = UNY^{T}$	8
	6.5 $A = U\Sigma V^{\mathrm{T}}$	10

^{*}twitter: @hiranabe, k-hiranabe@esm.co.jp, https://anagileway.com

[†]Massachusetts Institute of Technology, http://www-math.mit.edu/~gs/

[‡]twitter: @kfchliu, 微博用户: 5717297833

^{1&}quot;Linear Algebra for Everyone": http://math.mit.edu/everyone/.

1 理解矩阵——4 个视角

一个矩阵 $(m \times n)$ 可以被视为 1 个矩阵, mn 个数, n 个列和 m 个行.

$$A = \begin{bmatrix} 1 & 4 \\ 2 & 5 \\ 3 & 6 \end{bmatrix} = \begin{bmatrix} 1 & 4 \\ 2 & 5 \\ 3 & 6 \end{bmatrix}$$

$$1 \text{ matrix} \qquad 6 \text{ numbers} \qquad 2 \text{ column vectors}$$
with 2 numbers with 2 numbers with 2 numbers with 2 numbers with 3 num

Figure 1: 从四个角度理解矩阵

$$A = \begin{bmatrix} a_{11} & a_{12} \\ a_{21} & a_{22} \\ a_{31} & a_{32} \end{bmatrix} = \begin{bmatrix} | & | \\ \boldsymbol{a_1} & \boldsymbol{a_2} \\ | & | \end{bmatrix} = \begin{bmatrix} -\boldsymbol{a_1^*} - \\ -\boldsymbol{a_2^*} - \\ -\boldsymbol{a_3^*} - \end{bmatrix}$$

在这里, 列向量被标记为粗体 a_1 . 行向量则有一个 * 号, 标记为 a_1^* . 转置向量和矩阵则用 T 标记为 $a^{\rm T}$ 和 $A^{\rm T}$.

2 向量乘以向量——2 个视角

后文中, 我将介绍一些概念, 同时列出"Linear Algebra for Everyone"一书中的相应部分(部分编号插入如下). 详细的内容最好看书, 这里我也添加了一个简短的解释, 以便您可以通过这篇文章尽可能多地理解. 此外, 每个图都有一个简短的名称, 例如 v1 (数字 1 表示向量的乘积)、Mv1 (数字 1 表示矩阵和向量的乘积), 以及如下图 (v1) 所示的彩色圆圈. 如你所见, 随着讨论的进行, 该名称将被交叉引用.

- 1.1 节 (p.2) Linear combination and dot products
- 1.3 节 (p.25) Matrix of Rank One
- 1.4 节 (p.29) Row way and column way

Figure 2: 向量乘以向量 - (v1), (v2)

(v1) 是两个向量之间的基础运算, 而 (v2) 将列乘以行并产生一个秩 1 矩阵. 理解 (v2) 的结果 (秩 1) 是接下来章节的关键.

3 矩阵乘以向量——2 个视角

一个矩阵乘以一个向量将产生三个点积组成的向量 (Mv1) 和一种 A 的列向量的线性组合.

- 1.1 节 (p.3) Linear combinations
- 1.3 节 (p.21) Matrices and Column Spaces

The row vectors of A are multiplied by a vector x and become the three dot-product elements of Ax.

Mv2 = • + • []

The product Ax is a linear combination of the column vectors of A.

$$Ax = \begin{bmatrix} 1 & 2 \\ 3 & 4 \\ 5 & 6 \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \end{bmatrix} = \begin{bmatrix} (x_1 + 2x_2) \\ (3x_1 + 4x_2) \\ (5x_1 + 6x_2) \end{bmatrix}$$

$$A\mathbf{x} = \begin{bmatrix} 1 & 2 \\ 3 & 4 \\ 5 & 6 \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \end{bmatrix} = x_1 \begin{bmatrix} 1 \\ 3 \\ 5 \end{bmatrix} + x_2 \begin{bmatrix} 2 \\ 4 \\ 6 \end{bmatrix}$$

Figure 3: 矩阵乘以向量- (Mv1), (Mv2)

往往你会先学习 (Mv1). 但当你习惯了从 (Mv2) 的视角看待它, 会理解 Ax 是 A 的列的线性组合. 矩阵 A 的列向量的所有线性组合生成的子空间记为 $\mathbf{C}(A)$. Ax=0 的解空间则是零空间, 记为 $\mathbf{N}(A)$. 同理, 由 (vM1) 和 (vM2) 可见, 行向量乘以矩阵也是同一种理解方式.

Figure 4: 向量乘以矩阵 - (vM1), (vM2)

上图 A 的行向量的所有线性组合生成的子空间记为 $\mathbf{C}(A^{\mathrm{T}})$. yA=0 的解空间是 A 的左零空间, 记为 $\mathbf{N}(A^{\mathrm{T}})$.

本书的一大亮点即为四个基本子空间: 在 \mathbb{R}^n 上的 $\mathbf{N}(A) + \mathbf{C}(A^{\mathrm{T}})$ (相互正交) 和在 \mathbb{R}^m 上的 $\mathbf{N}(A^{\mathrm{T}}) + \mathbf{C}(A)$ (相互正交).

• 3.5 节 (p.124) Dimensions of the Four Subspaces

Figure 5: 四个子空间

关于秩 r, 请见 A = CR (6.1 节).

4 矩阵乘以矩阵——4 个视角

由"矩阵乘以向量"自然延伸到"矩阵乘以矩阵".

- 1.4 $\ensuremath{\ddagger}$ (p.35) Four ways to multiply $\pmb{AB} = \pmb{C}$
- 也可以见书的封底

Figure 6: 矩阵乘以矩阵 - (MM1), (MM2), (MM3), (MM4)

5 实用模式

在这里, 我展示了一些实用的模式, 可以让你更直观地理解接下来的内容。

Operations from the left act on the rows of the matrix. This expression can be seen as the three linear combinations in the right in one formula.

MM Mv2

Figure 7: 图 1, 2 - (P1), (P1)

列向量左乘/右乘: 这里是对列向量的线性组合 , 所以看成右乘; 在坐标系的转换中,是基的转 换,看成左乘。

P1 是 (MM2) 和 (Mv2) 的结合. P2 是 (MM3) 和 (vM2) 的扩展. 注意, P1 是列运算 (右乘 个矩阵), 而 P2 是行运算 (左乘一个矩阵).

对角矩阵只对列向量(基)缩放

Applying a diagonal matrix from the right

Applying a diagonal matrix from the left scales each row.

$$AD = \begin{bmatrix} \boldsymbol{a}_1 & \boldsymbol{a}_2 & \boldsymbol{a}_3 \end{bmatrix} \begin{bmatrix} d_1 \\ d_2 \\ d_3 \end{bmatrix} = \begin{bmatrix} d_1 \boldsymbol{a}_1 & d_2 \boldsymbol{a}_2 & d_3 \boldsymbol{a}_3 \end{bmatrix}$$

$$DB = \begin{bmatrix} d_1 \\ d_2 \\ d_3 \end{bmatrix} \begin{bmatrix} \boldsymbol{b}_1^* \\ \boldsymbol{b}_2^* \\ \boldsymbol{b}_3^* \end{bmatrix} = \begin{bmatrix} d_1 \boldsymbol{b}_1^* \\ d_2 \boldsymbol{b}_2^* \\ d_3 \boldsymbol{b}_3^* \end{bmatrix}$$

Figure 8: 图 1', 2' - (P1'), (P2')

(P1') 将对角线上的数乘以矩阵的列, 而 (P2') 将对角线上的数乘以矩阵的行. 两个分别为 (P1) 和 (P2)的变体.

This pattern makes another combination of columns. You will encounter this in differential/recurrence equations.

$$XDc = [x_1 \quad x_2 \quad x_3] \begin{bmatrix} d_1 \\ d_2 \\ d_3 \end{bmatrix} \begin{bmatrix} c_1 \\ c_2 \\ c_3 \end{bmatrix} = c_1 d_1 x_1 + c_2 d_2 x_2 + c_3 d_3 x_3$$

Figure 9: 图 3 - (P3)

当解决微分方程和递归方程时的也会出现这一模式:

- 6 节 (p.201) Eigenvalues and Eigenvectors
- 6.4 节 (p.243) Systems of Differential Equations

$$\begin{split} \frac{d\boldsymbol{u}(t)}{dt} &= A\boldsymbol{u}(t), \quad \boldsymbol{u}(0) = \boldsymbol{u}_0 \\ \boldsymbol{u}_{n+1} &= A\boldsymbol{u}_n, \quad \boldsymbol{u_0} = \boldsymbol{u}_0 \end{split}$$

在两种问题中,它的解都可以用 A 的特征值 $(\lambda_1, \lambda_2, \lambda_3)$ 、特征向量 $X = \begin{bmatrix} \boldsymbol{x}_1 & \boldsymbol{x}_2 & \boldsymbol{x}_3 \end{bmatrix}$ 和系数 $c = \begin{bmatrix} c_1 & c_2 & c_3 \end{bmatrix}^{\mathrm{T}}$ 表示. 其中 C 是以 X 为基底的初始值 $\boldsymbol{u}(0) = \boldsymbol{u}_0$ 的坐标.

$$egin{aligned} oldsymbol{u}_0 &= c_1 oldsymbol{x}_1 + c_2 oldsymbol{x}_2 + c_3 oldsymbol{x}_3 \ oldsymbol{c} &= egin{bmatrix} c_1 \\ c_2 \\ c_3 \end{bmatrix} = X^{-1} oldsymbol{u}_0 \end{aligned}$$

以上两个问题的通解为:

$$\mathbf{u}(t) = e^{At} \mathbf{u}_0 = X e^{\Lambda t} X^{-1} \mathbf{u}_0$$
 $= X e^{\Lambda t} \mathbf{c} = c_1 e^{\lambda_1 t} \mathbf{x}_1 + c_2 e^{\lambda_2 t} \mathbf{x}_2 + c_3 e^{\lambda_3 t} \mathbf{x}_3$
 $\mathbf{u}_n = A^n \mathbf{u}_0 = X \Lambda^n X^{-1} \mathbf{u}_0$
 $= X \Lambda^n \mathbf{c} = c_1 \lambda_1^n \mathbf{x}_1 + c_2 \lambda_2^n \mathbf{x}_2 + c_3 \lambda_3^n \mathbf{x}_3$

见 Figure9: 通过 P3 可以得到 XDc.

A matrix is broken down to a sum of rank 1 matrices, as in singular value/eigenvalue decomposition.

$$U\Sigma V^{\mathrm{T}} = \begin{bmatrix} \boldsymbol{u}_1 & \boldsymbol{u}_2 & \boldsymbol{u}_3 \end{bmatrix} \begin{bmatrix} \sigma_1 \\ \sigma_2 \\ \sigma_3 \end{bmatrix} \begin{bmatrix} \boldsymbol{v}_1^{\mathrm{T}} \\ \boldsymbol{v}_2^{\mathrm{T}} \\ \boldsymbol{v}_2^{\mathrm{T}} \end{bmatrix} = \sigma_1 \boldsymbol{u}_1 \boldsymbol{v}_1^{\mathrm{T}} + \sigma_2 \boldsymbol{u}_2 \boldsymbol{v}_2^{\mathrm{T}} + \sigma_3 \boldsymbol{u}_3 \boldsymbol{v}_3^{\mathrm{T}}$$

Figure 10: Pattern 4 - (P4)

P4 在特征值分解和特异值分解中都会用到. 两种分解都可以表示为三个矩阵之积, 其中中间的矩阵均为对角矩阵. 且都可以表示为带特征值/特异值系数的秩 1 矩阵之积.

更多细节将在下一节中讨论.

6 矩阵的五种分解

• 前言 p.vii, The Plan for the Book.

 $A = CR, A = LU, A = QR, A = Q\Lambda Q^{T}, A = U\Sigma V^{T}$ 将一一说明.

Table 1: 五种分解

6.1 A = CR

• 1.4 \dagger Matrix Multiplication and A = CR (p.29)

所有一般的长矩阵 A 都有相同的行秩和列秩. 这个分解是理解这一定理最直观的方法. C 由 A 的线性无关列组成, R 为 A 的行阶梯形矩阵 (消除了零行). A=CR 将 A 化简为 r 的线性无关列 C 和线性无关行 R 的乘积.

$$A = CR$$

$$\begin{bmatrix} 1 & 2 & 3 \\ 2 & 3 & 5 \end{bmatrix} = \begin{bmatrix} 1 & 2 \\ 2 & 3 \end{bmatrix} \begin{bmatrix} 1 & 0 & 1 \\ 0 & 1 & 1 \end{bmatrix}$$

推导过程: 从左往右看 A 的列. 保留其中线性无关的列, 去掉可以由前者线性表出的列. 则第 1、2 列被保留, 而第三列因为可以由前两列之和表示而被去掉. 而要通过线性无关的 1、2 两列重新构造出 A, 需要右乘一个行阶梯矩阵 R.

Figure 11: CR 中列的秩

现在你会发现列的秩为 2, 因为 C 中只有 2 个线性无关列. 而 A 中所有的列都可以由 C 中的 2 列线性表出.

Figure 12: CR 中行的秩

同样, 行秩也为 2, 因为 R 中只有 2 个线性无关行, 且 A 中所有的行都可以由 R 中的 2 行线性表出.

6.2 A = LU

用高斯消除法求解 Ax = b 也被称为 LU 分解. 通常, 是 A 左乘一个初等行变换矩阵 (E) 来得到一个上三角矩阵 U.

$$EA = U$$

$$A = E^{-1}U$$
 let $L = E^{-1}, \quad A = LU$

现在, 求解 Ax = b 有 2 步: (1) 求解 Lc = b, (2) 代回 Ux = c.

• 2.3 $\mbox{$\stackrel{\triangle}{\tau}$}$ (p.57) Matrix Computations and A=LU

在这里, 我们直接通过 A 计算 L 和 U.

$$A = \begin{bmatrix} | \\ l_1 \\ | \end{bmatrix} \begin{bmatrix} -u_1^* - \end{bmatrix} + \begin{bmatrix} 0 & 0 & 0 \\ 0 & A_2 \end{bmatrix} = \begin{bmatrix} | \\ l_1 \\ | \end{bmatrix} \begin{bmatrix} -u_1^* - \end{bmatrix} + \begin{bmatrix} | \\ l_2 \\ | \end{bmatrix} \begin{bmatrix} -u_2^* - \end{bmatrix} + \begin{bmatrix} 0 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & A_3 \end{bmatrix} = LU$$

Figure 13: *A* 的递归秩 1 矩阵分离

要计算 L 和 U, 首先分离出由 A 的第一行和第一列组成的外积. 余下的部分为 A_2 . 递归执行此操作, 将 A 分解为秩 1 矩阵之和.

Figure 14: 由 LU 重新构造 A

由 L 乘以 U 来重新构造 A 则相对简单.

6.3 A = QR

A = QR 是在保持 C(A) = C(Q) 的条件下,将 A 转化为正交矩阵 Q.

• 4.4 节 Orthogonal matrices and Gram-Schmidt (p.165)

在格拉姆-施密特正交化中, 首先, 单位化的 a_1 被用作 q_1 , 然后求出 a_2 与 q_1 正交所得到的 q_2 , 以此类推.

投影向量
$$q_1=a_1/||a_1||$$
 $q_2=a_2-(q_1^{
m T}a_2)q_1, \quad q_2=q_2/||q_2||$ $q_3=a_3-(q_1^{
m T}a_3)q_1-(q_2^{
m T}a_3)q_2, \quad q_3=q_3/||q_3||$

或者你也可以写作 $r_{ij} = \mathbf{q}_i^{\mathrm{T}} \mathbf{a}_j$:

$$egin{aligned} oldsymbol{a}_1 &= r_{11} oldsymbol{q}_1 \ oldsymbol{a}_2 &= r_{12} oldsymbol{q}_1 + r_{22} oldsymbol{q}_2 \ oldsymbol{a}_3 &= r_{13} oldsymbol{q}_1 + r_{23} oldsymbol{q}_2 + r_{33} oldsymbol{q}_3 \end{aligned}$$

QR分解通过Schmidt正交化将 矩阵A分解成单位正交矩阵与 上三角矩阵的乘积

原本的 A 就可以表示为 QR: 正交矩阵乘以上三角矩阵.

$$A = \begin{bmatrix} | & | & | \\ q_1 & q_2 & q_3 \\ | & | & | \end{bmatrix} \begin{bmatrix} r_{11} & r_{12} & r_{13} \\ & r_{22} & r_{23} \\ & & r_{33} \end{bmatrix} = QR$$

$$QQ^{\mathrm{T}} = Q^{\mathrm{T}}Q = I$$

$$\begin{bmatrix} A \\ A \end{bmatrix} = \begin{bmatrix} Q \\ 1 & 2 \end{bmatrix} \begin{bmatrix} R \\ P \end{bmatrix} = \begin{bmatrix} a_1 & a_2 & a_3 \\ & 1 + 2 & 1 + 2 + 3 \end{bmatrix} \xrightarrow{\text{using p1}} \begin{bmatrix} a_1 & a_2 & a_3 \\ & 1 + 2 & 1 + 2 + 3 \end{bmatrix}$$

Figure 15: A = QR

A 的列向量就可以转化为一个正交集合: Q 的列向量. A 的每一个列向量都可以用 Q 和上三角矩阵 R 重新构造出.

图释可以回头看 P1.

6.4 $S = Q\Lambda Q^{\mathrm{T}}$

所有对称矩阵 S 都必须有实特征值和正交特征向量. 特征值是 Λ 的对角元素, 特征向量在 Q 中.

• 6.3 节 (p.227) Symmetric Positive Definite Matrices

$$S = Q\Lambda Q^{\mathrm{T}} = \begin{bmatrix} | & | & | \\ \mathbf{q}_1 & \mathbf{q}_2 & \mathbf{q}_3 \\ | & | & | \end{bmatrix} \begin{bmatrix} \lambda_1 \\ \lambda_2 \\ \lambda_3 \end{bmatrix} \begin{bmatrix} -\mathbf{q}_1^{\mathrm{T}} - \\ -\mathbf{q}_2^{\mathrm{T}} - \\ -\mathbf{q}_3^{\mathrm{T}} - \end{bmatrix}$$

$$= \lambda_1 \begin{bmatrix} | \\ \mathbf{q}_1 \\ | \end{bmatrix} [-\mathbf{q}_1^{\mathrm{T}} -] + \lambda_2 \begin{bmatrix} | \\ \mathbf{q}_2 \\ | \end{bmatrix} [-\mathbf{q}_2^{\mathrm{T}} -] + \lambda_3 \begin{bmatrix} | \\ \mathbf{q}_3 \\ | \end{bmatrix} [-\mathbf{q}_3^{\mathrm{T}} -]$$

$$= \lambda_1 P_1 + \lambda_2 P_2 + \lambda_3 P_3$$

$$P_1 = \mathbf{q}_1 \mathbf{q}_1^{\mathrm{T}}, \quad P_2 = \mathbf{q}_2 \mathbf{q}_2^{\mathrm{T}}, \quad P_3 = \mathbf{q}_3 \mathbf{q}_3^{\mathrm{T}}$$

Figure 16: $S = Q\Lambda Q^{T}$

投影矩阵P=qqT:

x在q上的投影可表示为:(qqT)x

谱分解可以看成:

Ax=(λ1q1q1T+λ2q2q2T+...)x 即x在各个q上投影的和

一个对称矩阵 S 通过一个正交矩阵 Q 和它的转置矩阵, 对角化为 Λ . 然后被分解为一阶投影矩阵 $P=qq^{\mathrm{T}}$ 的组合. 这就是谱定理.

注意, 这里的分解用到了 P4.

$$S = S^{T} = \lambda_{1}P_{1} + \lambda_{2}P_{2} + \lambda_{3}P_{3}$$

$$QQ^{T} = P_{1} + P_{2} + P_{3} = I$$

$$P_{1}P_{2} = P_{2}P_{3} = P_{3}P_{1} = O$$

$$P_{1}^{2} = P_{1} = P_{1}^{T}, \quad P_{2}^{2} = P_{2} = P_{2}^{T}, \quad P_{3}^{2} = P_{3} = P_{3}^{T}$$

6.5 $A = U\Sigma V^{\mathrm{T}}$

• 7.1 节 (p.259) Singular Values and Singular Vecrtors

包括长方阵在内的所有矩阵都具有奇异值分解 (SVD). $A=U\Sigma V^{\rm T}$ 中, 有 A 的奇异向量 U 和 V. 奇异值则排列在 Σ 的对角线上. 下图就是"简化版"的 SVD.

Figure 17: $A = U\Sigma V^{\mathrm{T}}$

你可以发现, $V \in \mathbb{R}^n$ (A^TA 的特征向量) 的标准正交基, 而 $U \in \mathbb{R}^m$ (AA^T 的特征向量) 的标准正交基. 它们共同将 A 对角化为 Σ . 这也可以表示为秩 1 矩阵的线性组合.

$$A = U\Sigma V^{\mathrm{T}} = \begin{bmatrix} | & | & | \\ \boldsymbol{u}_1 & \boldsymbol{u}_2 & \boldsymbol{u}_3 \\ | & | & | \end{bmatrix} \begin{bmatrix} \sigma_1 \\ \sigma_2 \end{bmatrix} \begin{bmatrix} -\boldsymbol{v}_1^{\mathrm{T}} - \\ -\boldsymbol{v}_2^{\mathrm{T}} - \end{bmatrix} = \sigma_1 \begin{bmatrix} | \\ \boldsymbol{u}_1 \\ | \end{bmatrix} \begin{bmatrix} -\boldsymbol{v}_1^{\mathrm{T}} - \end{bmatrix} + \sigma_2 \begin{bmatrix} | \\ \boldsymbol{u}_2 \\ | \end{bmatrix} \begin{bmatrix} -\boldsymbol{v}_2^{\mathrm{T}} - \end{bmatrix} = \sigma_1 \boldsymbol{u}_1 \boldsymbol{v}_1^{\mathrm{T}} + \sigma_2 \boldsymbol{u}_2 \boldsymbol{v}_2^{\mathrm{T}}$$

注意:

$$UU^{\mathrm{T}} = I_m$$
$$VV^{\mathrm{T}} = I_n$$

图释见 P4.

总结和致谢

我展示了矩阵/向量乘法的系统可视化与它们在五种矩阵分解中的应用. 我希望你能够喜欢它们、通过它们加深对线性代数的理解.

Ashley Fernandes 在排版时帮我美化了这篇论文, 使它更加一致和专业.

在结束这篇论文之前, 我要感谢 Gilbert Strang 教授出版了《Linear Algebra for Everyone》一书. 它引导我们通过新的视角去了解线性代数中这些美丽的风景. 其中介绍了当代和传统的数据科学和机器学习, 每个人都可以通过实用的方式对它的基本思想进行基本理解. 矩阵世界的重要组成部分.

参考文献与相关工作

- 1. Gilbert Strang(2020), Linear Algebra for Everyone, Wellesley Cambridge Press., http://math.mit.edu/everyone
- 2. Gilbert Strang(2016), Introduction to Linear Algebra, Wellesley Cambridge Press, 5th ed., http://math.mit.edu/linearalgebra

3. Kenji Hiranabe(2021), Map of Eigenvalues, An Agile Way(blog), https://anagileway.com/2021/10/01/map-of-eigenvalues/

实 $n \times n$ 方阵的特征值映射

By Kenji Hiranabe with the kindest help of Prof. Gilbert Strang. Translator: Kefang Liu

Figure 18: 特征值图

4. Kenji Hiranabe(2020), *Matrix World*, An Agile Way(blog), https://anagileway.com/2020/09/29/matrix-world-in-linear-algebra-for-everyone/

Figure 19: 矩阵世界