Yokota Sequence SEQUENCE LISTING

- <110> NATIONAL UNIVERSITY CORPORATION NARA INSTITUTE OF SCIENCE AND TECHNOLOGY RESEARCH INSTITUTE OF INNOVATIVE TECHNOLOGY FOR THE EARTH KINKI UNIVERSITY YOKOTA, Akiho SHIGEOKA, Shigeru TOMIZAWA, Ken-ichi
- <120> METHOD FOR IMPROVING PRODUCTIVITY OF PLANT BY CHLOROPLAST TECHNOLOGY
- <130> 2006_1303A
- <140> US 10/591,752
- <141> 2006-09-01
- <150> PCT/JP2005/004037
- <151> 2005-03-02
- <150> JP 2004-059513
- <151> 2004-03-03
- <160> 18
- <170> PatentIn version 3.4
- <210> 1
- <211> 358
- <212> PRT
- <213> Spinacia oleracea L
- <220>
- <223> Fructose-1,6-bisphosphatase
- <400> 1
- Ala Ala Val Gly Glu Ala Ala Thr Glu Thr Lys Ala Arg Thr Arg Ser 10 15
- Lys Tyr Glu Ile Glu Thr Leu Thr Gly Trp Leu Leu Lys Gln Glu Met 20 25 30
- Ala Gly Val Ile Asp Ala Glu Leu Thr Ile Val Leu Ser Ser Ile Ser 35 40 45
- Leu Ala Cys Lys Gln Ile Ala Ser Leu Val Gln Arg Ala Gly Ile Ser 50 60
- Asn Leu Thr Gly Ile Gln Gly Ala Val Asn Ile Gln Gly Glu Asp Gln 65 70 75 80
- Lys Lys Leu Asp Val Val Ser Asn Glu Val Phe Ser Ser Cys Leu Arg 85 90 95

Ser Ser Gly Arg Thr Gly Ile Ile Ala Ser Glu Glu Glu Asp Val Pro $100 \hspace{1cm} 105 \hspace{1cm} 110$ Val Ala Val Glu Glu Ser Tyr Ser Gly Asn Tyr Ile Val Val Phe Asp 115 120 125 Pro Leu Asp Gly Ser Ser Asn Ile Asp Ala Ala Val Ser Thr Gly Ser 130 140 Ile Phe Gly Ile Tyr Ser Pro Asn Asp Glu Cys Ile Val Asp Ser Asp 145 150 155 160 His Asp Asp Glu Ser Gln Leu Ser Ala Glu Glu Gln Arg Cys Val Val 165 170 175 Asn Val Cys Gln Pro Gly Asp Asn Leu Leu Ala Ala Gly Tyr Cys Met 180 185 190 Tyr Ser Ser Val Ile Phe Val Leu Thr Ile Gly Lys Gly Val Tyr 195 200 205 Ala Phe Thr Leu Asp Pro Met Tyr Gly Glu Phe Val Leu Thr Ser Glu 210 215 220 Lys Ile Gln Ile Pro Lys Ala Gly Lys Ile Tyr Ser Phe Asn Glu Gly 225 230 235 240 Asn Tyr Lys Met Trp Asp Asp Lys Leu Lys Lys Tyr Met Asp Asp Leu 245 250 255 Lys Glu Pro Gly Glu Ser Gln Lys Pro Tyr Ser Ser Arg Tyr Ile Gly 260 265 270 Ser Leu Val Gly Asp Phe His Arg Thr Leu Leu Tyr Gly Gly Ile Tyr 275 280 285 Gly Tyr Pro Arg Asp Ala Lys Ser Lys Asn Gly Lys Leu Arg Leu Leu 290 295 300 Tyr Glu Cys Ala Pro Met Ser Phe Ile Val Glu Gln Ala Gly Gly Lys 305 310 315 Gly Ser Asp Gly His Gln Arg Ile Leu Asp Ile Gln Pro Thr Glu Ile 325 330 335 His Gln Arg Val Pro Leu Tyr Ile Gly Ser Val Glu Glu Val Glu Lys 340 345 350 Page 2

```
Leu Glu Lys Tyr Leu Ala
355
 <210>
        1074
 <211>
        DNA
        Spinacia oleracea L
 <220>
 <223>
       Fructose-1,6-bisphosphatase
 <400>
gcagccgtag gagaggcggc tacagaaaca aaggcaagga ctagaagtaa gtacgaaatt
                                                                        60
gaaacactaa caggctggct gcttaaacaa gaaatggcag gtgttattga tgctgaactt
                                                                       120
accatcgttc tttctagcat ttcattggct tgtaaacaaa ttgcttcctt ggttcaacga
                                                                       180
gctggtattt ctaacttgac tggaattcaa ggtgctgtca atatccaagg agaggatcag
                                                                       240
aagaaacttg atgttgtctc caatgaggtg ttttcgagct gcttgagatc gagtggaaga
                                                                       300
acaggaataa tagcatcaga agaagaggat gtaccagtgg cagtggaaga gagttactct
                                                                       360
ggaaactata ttgttgtgtt tgatccactt gatggttcat ccaacattga tgcagctgtc
                                                                       420
tccactggtt ccatctttgg catttatagc cctaacgatg agtgcattgt tgactctgat
                                                                       480
cacgacgatg agtcacagct aagtgcagaa gaacagaggt gtgtagtgaa tgtatgtcaa
                                                                       540
ccaggggata acctattagc agcagggtat tgtatgtact caagctctgt tatcttcgta
                                                                       600
cttacaattg gtaaaggtgt gtatgcattc acattagatc caatgtatgg tgaattcgta
                                                                       660
ctcacttcag agaaaatcca aatcccaaaa gctgggaaga tctattcatt caatgaaggt
                                                                      720
aactacaaaa tgtgggatga taaattgaag aagtacatgg atgatcttaa agagccagga
                                                                      780
gagtcacaga aaccgtactc gtctcgttac atagggagtt tagttgggga ctttcataga
                                                                      840
acacttttat atggtgggat ttatggttac ccaagagatg caaagagtaa gaatgggaaa
                                                                      900
ttgaggcttt tgtatgaatg tgcacctatg agttttattg ttgaacaagc tggtggtaaa
                                                                      960
ggttctgatg gtcatcaaag aattcttgac attcaaccca ccgagataca tcaacgtgtg
                                                                     1020
ccactgtaca tcgggagtgt ggaggaagta gagaaattag agaagtactt agca
                                                                     1074
<210>
       3
<211>
       333
<212>
       PRT
<213>
       Spinacia oleracea L
<220>
```

<223> Sedoheptulose-1, 7-bisphosphatase

<400> 3

Val Asn Lys Ala Lys Asn Ser Ser Leu Val Thr Lys Cys Glu Leu Gly 1 5 10 15 Asp Ser Leu Glu Glu Phe Leu Ala Lys Ala Thr Thr Asp Lys Gly Leu 20 25 30 Ile Arg Leu Met Met Cys Met Gly Glu Ala Leu Arg Thr Ile Gly Phe 35 40 45Lys Val Arg Thr Ala Ser Cys Gly Gly Thr Gln Cys Val Asn Thr Phe 50 60 Gly Asp Glu Gln Leu Ala Ile Asp Val Leu Ala Asp Lys Leu Leu Phe 65 70 75 80 Glu Ala Leu Asn Tyr Ser His Phe Cys Lys Tyr Ala Cys Ser Glu Glu 85 90 95 Leu Pro Glu Leu Gln Asp Met Gly Gly Pro Val Asp Gly Gly Phe Ser 100 105 110 Val Ala Phe Asp Pro Leu Asp Gly Ser Ser Ile Val Asp Thr Asn Phe 115 120 125 Ser Val Gly Thr Ile Phe Gly Val Trp Pro Gly Asp Lys Leu Thr Gly 130 135 140 Val Thr Gly Arg Asp Gln Val Ala Ala Ala Met Gly Ile Tyr Gly Pro 145 150 155 160 145 Arg Thr Thr Tyr Val Leu Ala Leu Lys Asp Tyr Pro Gly Thr His Glu 165 170 175 Phe Leu Leu Asp Glu Gly Lys Trp Gln His Val Lys Glu Thr Thr 180 185 190 Glu Ile Asn Glu Gly Lys Leu Phe Cys Pro Gly Asn Leu Arg Ala Thr 195 200 205 Ser Asp Asn Ala Asp Tyr Ala Lys Leu Ile Gln Tyr Tyr Ile Lys Glu 210 215 220 Lys Tyr Thr Leu Arg Tyr Thr Gly Gly Met Val Pro Asp Val Asn Gln 225 230 235 240

Yokota Sequence Ile Ile Val Lys Glu Lys Gly Ile Phe Thr Asn Val Ile Ser Pro Thr 245 250 255

Ala Lys Ala Lys Leu Arg Leu Leu Phe Glu Val Ala Pro Leu Gly Phe 260 265 270

Leu Ile Glu Lys Ala Gly Gly His Ser Ser Glu Gly Thr Lys Ser Val 275 280 285

Leu Asp Ile Glu Val Lys Asn Leu Asp Asp Arg Thr Gln Val Ala Tyr 290 295 300

Gly Ser Leu Asn Glu Ile Ile Arg Phe Glu Lys Thr Leu Tyr Gly Ser 310 315 320

Ser Arg Leu Glu Glu Pro Val Pro Val Gly Ala Ala Ala 325 330

<210> 4

<211> 999

<212> DNA

<213> Spinacia oleracea L

<220>

<223> Sedoheptulose-1,7-bisphosphatase

<400> 60 gtgaacaagg caaagaactc ttcccttgta accaaatgtg aacttggtga cagtttggag 120 gagttcctag caaaggcaac cacagataaa gggctgatta gattgatgat gtgcatggga 180 gaagcattaa ggaccattgg ctttaaagtg aggactgctt catgtggtgg aactcaatgt 240 gttaacacct ttggagacga acagcttgcc attgatgtgc ttgctgacaa gcttcttttc gaggcattga actattcaca cttctgcaag tatgcttgtt cagaagaact ccctgagctt 300 360 caagatatgg gaggccccgt tgatggcgga ttcagtgtag catttgaccc ccttgatgga 420 tccagcattg tcgataccaa tttctcagtt gggaccatat tcggggtttg gccaggtgac 480 aagctaactg gtgtaacagg cagagatcaa gtggctgctg caatgggaat ttatggtcct 540 aggactactt atgttctcgc tcttaaggac taccctggca cccatgaatt tcttcttctt gatgaaggaa agtggcaaca tgtgaaagaa acaacagaaa tcaatgaagg aaaattgttc 600 660 tgtcctggaa acttgagagc cacttctgac aatgctgatt atgctaagct gattcaatac 720 tatataaaag agaaatacac attgagatac actggaggaa tggttcctga tgttaaccag 780 atcatagtga aggagaaagg tatattcaca aatgtaatat cacctacagc caaggcaaag 840 ttgaggttac tgtttgaggt agctcctcta gggttcttga ttgagaaggc tggtggtcac

V٥	レヘナコ	SAMI	IANCA

agcagtgagg	gaaccaagtc	tgtgttggac	attgaagtca	aaaaccttga	tgacagaacc	900
caagttgctt	acggctcctt	gaacgagatc	atccgatttg	agaagacact	atacggatcc	960
tctaggctag	aggagccagt	tcctgttgga	gctgctgct			999

<210> 5

<211> 356

<212> PRT

<213> Synechococcus

<220>

<223> fructose-1,6-bisphosphatase/sedoheptulose-1,7-bisphosphatase from Synechococcus PCC 7942

<400> 5

Met Glu Lys Thr Ile Gly Leu Glu Ile Ile Glu Val Val Glu Gln Ala 1 5 10 15

Ala Ile Ala Ser Ala Arg Leu Met Gly Lys Gly Glu Lys Asn Glu Ala 20 25 30

Asp Arg Val Ala Val Glu Ala Met Arg Val Arg Met Asn Gln Val Glu 35 40 45

Met Leu Gly Arg Ile Val Ile Gly Glu Gly Glu Arg Asp Glu Ala Pro 50 60

Met Leu Tyr Ile Gly Glu Glu Val Gly Ile Tyr Arg Asp Ala Asp Lys 65 70 75 80

Arg Ala Gly Val Pro Ala Gly Lys Leu Val Glu Ile Asp Ile Ala Val 85 90 95

Asp Pro Cys Glu Gly Thr Asn Leu Cys Ala Tyr Gly Gln Pro Gly Ser 100 105 110

Met Ala Val Leu Ala Ile Ser Glu Lys Gly Gly Leu Phe Ala Ala Pro 115 120 125

Asp Phe Tyr Met Lys Lys Leu Ala Ala Pro Pro Ala Ala Lys Gly Lys 130 135 140

Glu Thr Ser Ile Lys Ser Ala Thr Glu Asn Leu Lys Ile Leu Ser Glu 145 150 155 160

Cys Leu Asp Arg Ala Ile Asp Glu Leu Val Val Val Met Asp Arg 165 170 175

Pro Arg His Lys Glu Leu Ile Gln Glu Ile Arg Gln Ala Gly Ala Arg 180 185 190

Val Arg Leu Ile Ser Asp Gly Asp Val Ser Ala Ala Ile Ser Cys Gly 195 200 205

Phe Ala Gly Thr Asn Thr His Ala Leu Met Gly Ile Gly Ala Ala Pro 210 215 220

Glu Gly Val Ile Ser Ala Ala Ala Met Arg Cys Leu Gly Gly His Phe 225 230 235 240

Gln Gly Gln Leu Ile Tyr Asp Pro Glu Val Val Lys Thr Gly Leu Ile 245 250 255

Gly Glu Ser Arg Glu Ser Asn Ile Ala Arg Leu Gln Glu Met Gly Ile 260 265 270

Thr Asp Pro Asp Arg Val Tyr Asp Ala Asn Glu Leu Ala Ser Gly Gln 275 280 285

Glu Val Leu Phe Ala Ala Cys Gly Ile Thr Pro Gly Leu Leu Met Glu 290 295 300

Gly Val Arg Phe Phe Lys Gly Gly Ala Arg Thr Gln Ser Leu Val Ile 305 310 315 320

Ser Ser Gln Ser Arg Thr Ala Arg Phe Val Asp Thr Val His Met Phe 325 330 335

Asp Asp Val Lys Thr Val Ser Leu Pro Leu Ile Pro Asp Pro Lys Trp 340 345 350

Arg Pro Glu Arg 355

<210> 6

<211> 1312

<212> DNA

<213> Synechococcus

<220>

<223> fructose-1,6-bisphosphatase/sedoheptulose-1,7-bisphosphatase from Synechococcus PCC 7942

<400> 6
atcgcaacta aagccagaga tgtgaggagg ggatccggcc tttggtagac tcaactgttg

60

		Yokota Se		castcaatct	120
	atcat ccgtaaggag				
	tgtcg agcaggcagc				180
	cgatc gcgtcgcagt				240
ggaaatgctg ggccg	catcg tcatcggtga	aggcgagcgc	gacgaagcac	cgatgctcta	300
tatcggtgaa gaagt	gggca tctaccgcga	tgcagacaag	cgggctggcg	taccggctgg	360
caagctggtg gaaat	cgaca tcgccgttga	cccctgcgaa	ggcaccaacc	tctgcgccta	420
cggtcagccc ggctc	gatgg cagttttggc	catctccgag	aaaggcggcc	tgtttgcagc	480
tcccgacttc tacat	gaaga aactggctgc	acccccagct	gccaaaggca	aagagacatc	540
aataaagtcc gcgac	cgaaa acctgaaaat	tctctcggaa	tgtctcgatc	gcgccatcga	600
tgaattggtg gtcgt	ggtca tggatcgtcc	ccgccacaaa	gagctaatcc	aagagatccg	660
ccaagcgggt gcccg	cgtcc gtctgatcag	cgatggtgac	gtttcggccg	cgatctcctg	720
cggttttgct ggcac	caaca cccacgccct	gatgggcatc	ggtgcagctc	ccgagggtgt	780
gatttcggca gcagc	aatgc gttgcctcgg	cgggcacttc	caaggccagc	tgatctacga	840
cccagaagtg gtcaa	aaaccg gcctgatcgg	tgaaagccgt	gagagcaaca	tcgctcgcct	900
gcaagaaatg ggcat	caccg atcccgatcg	tgtctacgac	gcgaacgaac	tggcttcggg	960
tcaagaagtg ctgtt	tgcgg cttgcggtat	caccccgggc	ttgctgatgg	aaggcgtgcg	1020
cttcttcaaa ggcgg	gcgctc gcacccagag	cttggtgatc	tccagccagt	cacggacggc	1080
tcgcttcgtt gacac	cgttc acatgttcga	cgatgtcaaa	acggttagcc	tgccgttaat	1140
tcctgatccc aaatg	ggcggc cggagcggta	gaacgggtat	agctcgatcg	cttcggtcgt	1200
tgtttttcag cgaat	tccatt tgcgatcgct	tttcaaaccc	ttttttcgtc	aaccttcttt	1260
aaacggcctc atgca	atctcg cagttgtcgg	ctcagccatc	ggacagcacc	gg	1312
<210> 7 <211> 133 <212> DNA <213> Nicotiana	a tabacum				
<220>					
<223> psbA prom	noter				
_	ccttgg ttgacacgag				60
aagccttcca tttto	ctattt tgatttgtag	ı aaaactagtg	tgcttgggag	tccctgatga	120
ttaaataaac caa					133

<210> 8 <211> 159

<212> DNA <213> Nicotiana tabacum	a Sequence
<220>	
<223> rps16 terminator	
<400> 8 agcttgaaat tcaattaagg aaataaatta aggaaat	aca aaaagggggg tagtcatttg 60
tatataactt tgtatgactt ttctcttcta tttttt	gta tttcctccct ttccttttct 120
attigtattt tittatcatt gcttccattg aattact	ag 159
<210> 9 <211> 805 <212> DNA <213> Escherichia coli	
<220>	
<223> aadA	
<400> 9 gatccatggc tcgtgaagcg gttatcgccg aagtatc	aac tcaactatca gaggtagttg 60
gcgtcatcga gcgccatctc gaaccgacgt tgctggc	cgt acatttgtac ggctccgcag 120
tggatggcgg cctgaagcca cacagtgata ttgattt	gct ggttacggtg accgtaaggc 180
ttgatgaaac aacgcggcga gctttgatca acgacct	ttt ggaaacttcg gcttcccctg 240
gagagagcga gattctccgc gctgtagaag tcaccat	tgt tgtgcacgac gacatcattc 300
cgtggcgtta tccagctaag cgcgaactgc aatttgg	aga atggcagcgc aatgacattc 360
ttgcaggtat cttcgagcca gccacgatcg acattga	tct ggctatcttg ctgacaaaag 420
caagagaaca tagcgttgcc ttggtaggtc cagcggc	gga ggaactcttt gatccggttc 480
ctgaacagga tctatttgag gcgctaaatg aaacctt	aac gctatggaac tcgccgcccg 540
actgggctgg cgatgagcga aatgtagtgc ttacgtt	gtc ccgcatttgg tacagcgcag 600
taaccggcaa aatcgcgccg aaggatgtcg ctgccga	ctg ggcaatggag cgcctgccgg 660
cccagtatca gcccgtcata cttgaagcta gacaggc	tta tcttggacaa gaagaagatc 720
gcttggcctc gcgcgcagat cagttggaag aatttgt	cca ctacgtgaaa ggcgagatca 780
ctaaggtagt tggcaaataa ctgca	805
<210> 10 <211> 4591 <212> DNA <213> Artificial sequence <220>	
<223> synthetic construct	

<220> <223> pLD6 <400> 10 60 gtggcacttt tcggggaaat gtgcgcggaa cccctatttg tttatttttc taaatacatt 120 caaatatgta tccgctcatg agacaataac cctgataaat gcttcaataa tattgaaaaa ggaagagtat gagtattcaa catttccgtg tcgcccttat tccctttttt gcggcatttt 180 240 gccttcctgt ttttgctcac ccagaaacgc tggtgaaagt aaaagatgct gaagatcagt 300 tgggtgcacg agtgggttac atcgaactgg atctcaacag cggtaagatc cttgagagtt 360 ttcgccccga agaacgtttt ccaatgatga gcacttttaa agttctgcta tgtggcgcgg 420 tattatcccg tattgacgcc gggcaagagc aactcggtcg ccgcatacac tattctcaga 480 atgacttggt tgagtactca ccagtcacag aaaagcatct tacggatggc atgacagtaa 540 gagaattatg cagtgctgcc ataaccatga gtgataacac tgcggccaac ttacttctga 600 caacgatcgg aggaccgaag gagctaaccg cttttttgca caacatgggg gatcatgtaa ctcgccttga tcgttgggaa ccggagctga atgaagccat accaaacgac gagcgtgaca 660 720 ccacgatgcc tgtagcaatg gcaacaacgt tgcgcaaact attaactggc gaactactta 780 ctctagcttc ccggcaacaa ttaatagact ggatggaggc ggataaagtt gcaggaccac ttctgcgctc ggcccttccg gctggctggt ttattgctga taaatctgga gccggtgagc 840 900 gtgggtctcg cggtatcatt gcagcactgg ggccagatgg taagccctcc cgtatcgtag 960 ttatctacac gacggggagt caggcaacta tggatgaacg aaatagacag atcgctgaga 1020 taggtgcctc actgattaag cattggtaac tgtcagacca agtttactca tatatacttt 1080 agattgattt aaaacttcat ttttaattta aaaggatcta ggtgaagatc ctttttgata 1140 atctcatgac caaaatccct taacgtgagt tttcgttcca ctgagcgtca gaccccgtag aaaagatcaa aggatcttct tgagatcctt tttttctgcg cgtaatctgc tgcttgcaaa 1200 1260 caaaaaaacc accgctacca gcggtggttt gtttgccgga tcaagagcta ccaactcttt 1320 ttccgaaggt aactggcttc agcagagcgc agataccaaa tactgtcctt ctagtgtagc cgtagttagg ccaccacttc aagaactctg tagcaccgcc tacatacctc gctctgctaa 1380 tcctgttacc agtggctgct gccagtggcg ataagtcgtg tcttaccggg ttggactcaa 1440 1500 gacgatagtt accggataag gcgcagcggt cgggctgaac ggggggttcg tgcacacagc 1560 ccagcttgga gcgaacgacc tacaccgaac tgagatacct acagcgtgag ctatgagaaa gcgccacgct tcccgaaggg agaaaggcgg acaggtatcc ggtaagcggc agggtcggaa 1620 caggagagcg cacgagggag cttccagggg gaaacgcctg gtatctttat agtcctgtcg 1680 1740 ggtttcgcca cctctgactt gagcgtcgat ttttgtgatg ctcgtcaggg gggcggagcc Page 10

tatggaaaaa	cgccagcaac	gcggcctttt	tacggttcct	ggccttttgc	tggccttttg	1800
ctcacatgtt	ctttcctgcg	ttatcccctg	attctgtgga	taaccgtatt	accgcctttg	1860
agtgagctga	taccgctcgc	cgcagccgaa	cgaccgagcg	cagcgagtca	gtgagcgagg	1920
aagcggaaga	gcgcccaata	cgcaaaccgc	ctctccccgc	gcgttggccg	attcattaat	1980
gcagctggca	cgacaggttt	cccgactgga	aagcgggcag	tgagcgcaac	gcaattaatg	2040
tgagttagct	cactcattag	gcaccccagg	ctttacactt	tatgcttccg	gctcgtatgt	2100
tgtgtggaat	tgtgagcgga	taacaatttc	acacaggaaa	cagctatgac	catgattacg	2160
ccaagcgcgc	aattaaccct	cactaaaggg	aacaaaagct	ggagctccac	cgcggtggcg	2220
gccgctctag	ttggatttgc	tccccgccg	tcgttcaatg	agaatggata	agaggctcgt	2280
gggattgacg	tgagggggca	gggatggcta	tatttctggg	agcgaactcc	gggcgaattt	2340
gaagcgcttg	gatacagttg	tagggaggga	tccatggctc	gtgaagcggt	tatcgccgaa	2400
gtatcaactc	aactatcaga	ggtagttggc	gtcatcgagc	gccatctcga	accgacgttg	2460
ctggccgtac	atttgtacgg	ctccgcagtg	gatggcggcc	tgaagccaca	cagtgatatt	2520
gatttgctgg	ttacggtgac	cgtaaggctt	gatgaaacaa	cgcggcgagc	tttgatcaac	2580
gaccttttgg	aaacttcggc	ttcccctgga	gagagcgaga	ttctccgcgc	tgtagaagtc	2640
accattgttg	tgcacgacga	catcattccg	tggcgttatc	cagctaagcg	cgaactgcaa	2700
tttggagaat	ggcagcgcaa	tgacattctt	gcaggtatct	tcgagccagc	cacgatcgac	2760
attgatctgg	ctatcttgct	gacaaaagca	agagaacata	gcgttgcctt	ggtaggtcca	2820
gcggcggagg	aactctttga	tccggttcct	gaacaggatc	tatttgaggc	gctaaatgaa	2880
accttaacgc	tatggaactc	gccgcccgac	tgggctggcg	atgagcgaaa	tgtagtgctt	2940
acgttgtccc	gcatttggta	cagcgcagta	accggcaaaa	tcgcgccgaa	ggatgtcgct	3000
gccgactggg	caatggagcg	cctgccggcc	cagtatcagc	ccgtcatact	tgaagctaga	3060
caggcttatc	ttggacaaga	agaagatcgc	ttggcctcgc	gcgcagatca	gttggaagaa	3120
tttgtccact	acgtgaaagg	cgagatcact	aaggtagttg	gcaaataact	gcaggatcct	3180
ggcctagtct	ataggaggtt	ttgaaaagaa	aggagcaata	atcattttct	tgttctatca	3240
agagggtgct	attgctcctt	tcttttttc	tttttattta	tttactagta	ttttacttac	3300
atagactttt	ttgtttacat	tatagaaaaa	gaaggagagg	ttattttctt	gcatttattc	3360
atgattgagt	attctatttt	gattttgtat	ttgtttaaaa	ttgtagaaat	agaacttgtt	3420
tctcttcttg	ctaatgttac	tatatctttt	tgatttttt	tttccaaaaa	aaaatcaaat	3480
tttgacttct	tcttatctct	tatctttgaa	tatctcttat	ctttgaaata	ataatatcat	3540
tgaaataaga	aagaagagct	atattcgaag	cttctacata	caccttggtt	gacacgagta	3600

Volume Communication	
Yokota Sequence tataagtcat gttatactgt tgaataacaa gccttccatt ttctattttg atttgtagaa	3660
aactagtgtg cttgggagtc cctgatgatt aaataaacca agatctaaaa ggagaaatta	3720
agcatgctct agatcgatga attcgccctt ccgaagcttg aaattcaatt aaggaaataa	3780
attaaggaaa tacaaaaagg ggggtagtca tttgtatata actttgtatg acttttctct	3840
tctattttt tgtatttcct ccctttcctt ttctatttgt attttttat cattgcttcc	3900
attgaattac tagtcgacct cgaggggggg cccggtaccc aattcgccct atagtgagtc	3960
gtattacgcg cgctcactgg ccgtcgtttt acaacgtcgt gactgggaaa accctggcgt	4020
tacccaactt aatcgccttg cagcacatcc ccctttcgcc agctggcgta atagcgaaga	4080
ggcccgcacc gatcgccctt cccaacagtt gcgcagcctg aatggcgaat gggacgcgcc	4140
ctgtagcggc gcattaagcg cggcgggtgt ggtggttacg cgcagcgtga ccgctacact	4200
tgccagcgcc ctagcgcccg ctcctttcgc tttcttccct tcctttctcg ccacgttcgc	4260
cggctttccc cgtcaagctc taaatcgggg gctcccttta gggttccgat ttagtgcttt	4320
acggcacctc gaccccaaaa aacttgatta gggtgatggt tcacgtagtg ggccatcgcc	4380
ctgatagacg gtttttcgcc ctttgacgtt ggagtccacg ttctttaata gtggactctt	4440
gttccaaact ggaacaacac tcaaccctat ctcggtctat tcttttgatt tataagggat	4500
tttgccgatt tcggcctatt ggttaaaaaa tgagctgatt taacaaaaat ttaacgcgaa	4560
ttttaacaaa atattaacgc ttacaattta g	4591
<210> 11 <211> 51 <212> DNA <213> Artificial sequence	
<220> <223> synthetic construct	
<220> <223> multi-cloning regions	
<400> 11 ccaagatcta aaaggagaaa ttaagcatgc tctagatcga tgaattcgcc c	51
<210> 12 <211> 142 <212> DNA <213> Nicotiana tabacum	
<220> <223> rrn promoter	
<400> 12 ctagttggat ttgctcccc gccgtcgttc aatgagaatg gataagaggc tcgtgggatt	60

Yokota Sequence	
gacgtgaggg ggcagggatg gctatatttc tgggagcgaa ctccggggcga atttgaagcg	120
cttggataca gttgtaggga gg	142
<210> 13 <211> 390 <212> DNA <213> Nicotiana tabacum	
<220> <223> psbA terminator	
<400> 13 gatcctggcc tagtctatag gaggttttga aaagaaagga gcaataatca ttttcttgtt	60
ctatcaagag ggtgctattg ctcctttctt tttttctttt tatttattta ctagtatttt	120
acttacatag acttttttgt ttacattata gaaaaagaag gagaggttat tttcttgcat	180
ttattcatga ttgagtattc tattttgatt ttgtatttgt ttaaaattgt agaaatagaa	240
cttgtttctc ttcttgctaa tgttactata tctttttgat ttttttttc caaaaaaaaa	300
tcaaattttg acttcttctt atctcttatc tttgaatatc tcttatcttt gaaataataa	360
tatcattgaa ataagaaaga agagctatat	390
<210> 14 <211> 5581 <212> DNA <213> Artificial sequence <220> <223> Synthetic construct	
<220> <223> pLD200	
<400> 14 tcgcgcgttt cggtgatgac ggtgaaaacc tctgacacat gcagctcccg gagacggtca	60
cagcttgtct gtaagcggat gccgggagca gacaagcccg tcagggcgcg tcagcgggtg	120
ttggcgggtg tcggggctgg cttaactatg cggcatcaga gcagattgta ctgagagtgc	180
accatatgcg gtgtgaaata ccgcacagat gcgtaaggag aaaataccgc atcaggcgcc	240
attcgccatt caggctgcgc aactgttggg aagggcgatc ggtgcgggcc tcttcgctat	300
tacgccagct ggcgaaaggg ggatgtgctg caaggcgatt aagttgggta acgccagggt	360
tttcccagtc acgacgttgt aaaacgacgg ccagtgaatt catgagttgt agggagggat	420
ttatgtcacc acaaacagag actaaagcaa gtgttggatt caaagctggt gttaaagagt	480
acaaattgac ttattatact cctgagtacc aaaccaagga tactgatata ttggcagcat	540
tccgagtaac tcctcaacct ggagttccac ctgaagaagc aggggccgcg gtagctgccg	600

Yokota Sequence 660 aatcttctac tggtacatgg acaactgtat ggaccgatgg acttaccagc cttgatcgtt 720 acaaagggcg atgctaccgc atcgagcgtg ttgttggaga aaaagatcaa tatattgctt 780 atgtagctta ccctttagac ctttttgaag aaggttctgt taccaacatg tttacttcca 840 ttgtaggtaa cgtatttggg ttcaaagccc tgcgcgctct acgtctggaa gatctgcgaa 900 tccctcctgc ttatgttaaa actttccaag gtccgcctca tgggatccaa gttgaaagag ataaattgaa caagtatggt cgtcccctgt tgggatgtac tattaaacct aaattggggt 960 1020 tatctgctaa aaactacggt agagccgttt atgaatgtct tcgcggtgga cttgatttta 1080 ctaaagatga tgagaacgtg aactcacaac catttatgcg ttggagagat cgtttcttat 1140 tttgtgccga agcactttat aaagcacagg ctgaaacagg tgaaatcaaa gggcattact 1200 tgaatgctac tgcaggtaca tgcgaagaaa tgatcaaaag agctgtattt gctagagaat 1260 tgqqcqttcc gatcgtaatg catgactact taacgggggg attcaccgca aatactagct 1320 tggctcatta ttgccgagat aatggtctac ttcttcacat ccaccgtgca atgcatgcgg 1380 ttattgatag acagaagaat catggtatcc acttccgggt attagcaaaa gcgttacgta 1440 tgtctggtgg agatcatatt cactctggta ccgtagtagg taaacttgaa ggtgaaagag 1500 acataacttt gggctttgtt gatttactgc gtgatgattt tgttgaacaa gatcgaagtc 1560 gcggtattta tttcactcaa gattgggtct ctttaccagg tgttctaccc gtggcttcag gaggtattca cgtttggcat atgcctgctc tgaccgagat ctttgggggat gattccgtac 1620 1680 tacagttcgg tggaggaact ttaggacatc cttggggtaa tgcgccaggt gccgtagcta 1740 atcgagtagc tctagaagca tgtgtaaaag ctcgtaatga aggacgtgat cttgctcagg 1800 aaggtaatga aattattcgc gaggcttgca aatggagccc ggaactagct gctgcttgtg 1860 aagtatggaa agagatcgta tttaattttg cagcagtgga cgttttggat aagtaaaaac 1920 agtagacatt agcagataaa ttagcaggaa ataaagaagg ataaggagaa agaactcaag taattatcct tcgttctctt aattgaattg caattaaact cggcccaatc ttttactaaa 1980 2040 aggattgagc cgaatacaac aaagattcta ttgcatatat tttgactaag tatatactta 2100 cctagatata caagatttga aatacaaaat ctagaaaact aaatcaaaat ctaagactca 2160 aatctttcta ttgttgtctt ggatcgcggc cgcgctagcg tcgacgatcc ttaggattgg 2220 tatattcttt tctatcctgt agtttgtagt ttccctgaat caagccaagt atcacacctc 2280 tttctaccca tcctgtatat tgtccccttt gttccgtgtt gaaatagaac cttaatttat 2340 tacttatttt tttattaaat tttagatttg ttagtgatta gatattagta ttagacgaga 2400 ttttacgaaa caattatttt tttatttctt tataggagag gacaaatctc ttttttcgat gcgaatttga cacgacatag gagaagccgc cctttattaa aaattatatt attttaaata 2460

atataaaggg ggttccaaca tattaatata tagtgaagtg ttcccccaga ttcagaactt

Page 14

2520

٠.

1.5

tttttcaata ctcacaatcc ttattagtta ataatcctag tgattggatt tctatgctta 2580 2640 gtctgatagg aaataagata ttcaaataaa taattttata gcgaatgact attcatctat tgtattttca tgcaaatagg gggcaagaaa actctatgga aagatggtgg tttaattcga 2700 tgttgtttaa gaaggagttc gaacgcaggt gtgggctaaa taaatcaatg ggcagtcttg 2760 gtcctattga aaataccaat gaagatccaa atcgaaaagt gaaaaacatt catagttgga 2820 ggaatcgtga caattctagt tgcagtaatg ttgattattt attcggcgtt aaagacattc 2880 ggaatttcat ctctgatgac acttttttag ttagtgatag gaatggagac agttattcca 2940 tctattttga tattgaaaat catatttttg agattgacaa cgatcattct tttctgagtg 3000 aactagaaag ttctttttat agttatcgaa actcgaatta tcggaataat ggatttaggg 3060 3120 gcgaagatcc ctactataat tcttacatgt atgatactca atatagttgg aataatcaca ttaatagttg cattgatagt tatcttcagt ctcaaatctg tatagatact tccattataa 3180 gtggtagtga gaattacggt gacagttaca tttatagggc cgtttgtggt ggtgaaagtc 3240 gaaatagtag tgaaaacgag ggttccagta gacgaactcg cacgaagggc agtgatttaa 3300 ctataagaga aagttctaat gatctcgacc tgcaggcatg caagcttggc gtaatcatgg 3360 3420 tcatagctgt ttcctgtgtg aaattgttat ccgctcacaa ttccacacaa catacgagcc ggaagcataa agtgtaaagc ctggggtgcc taatgagtga gctaactcac attaattgcg 3480 ttgcgctcac tgcccgcttt ccagtcggga aacctgtcgt gccagctgca ttaatgaatc 3540 ggccaacgcg cggggagagg cggtttgcgt attgggcgct cttccgcttc ctcgctcact 3600 3660 gactcgctgc gctcggtcgt tcggctgcgg cgagcggtat cagctcactc aaaggcggta 3720 atacggttat ccacagaatc aggggataac gcaggaaaga acatgtgagc aaaaggccag 3780 caaaaggcca ggaaccgtaa aaaggccgcg ttgctggcgt ttttccatag gctccgcccc 3840 cctgacgagc atcacaaaaa tcgacgctca agtcagaggt ggcgaaaccc gacaggacta 3900 taaagatacc aggcgtttcc ccctggaagc tccctcgtgc gctctcctgt tccgaccctg 3960 ccgcttaccg gatacctgtc cgcctttctc ccttcgggaa gcgtggcgct ttctcaatgc tcacgctgta ggtatctcag ttcggtgtag gtcgttcgct ccaagctggg ctgtgtgcac 4020 4080 gaacccccg ttcagcccga ccgctgcgcc ttatccggta actatcgtct tgagtccaac ccggtaagac acgacttatc gccactggca gcagccactg gtaacaggat tagcagagcg 4140 aggtatgtag gcggtgctac agagttcttg aagtggtggc ctaactacgg ctacactaga 4200 4260 aggacagtat ttggtatctg cgctctgctg aagccagtta ccttcggaaa aagagttggt agctcttgat ccggcaaaca aaccaccgct ggtagcggtg gtttttttgt ttgcaagcag 4320 cagattacgc gcagaaaaaa aggatctcaa gaagatcctt tgatcttttc tacggggtct 4380

	55 5	-	555 55		55	
atcttcacct	agatcctttt	aaattaaaaa	tgaagtttta	aatcaatcta	aagtatatat	4500
gagtaaactt	ggtctgacag	ttaccaatgc	ttaatcagtg	aggcacctat	ctcagcgatc	4560
tgtctatttc	gttcatccat	agttgcctga	ctccccgtcg	tgtagataac	tacgatacgg	4620
gagggcttac	catctggccc	cagtgctgca	atgataccgc	gagacccacg	ctcaccggct	4680
ccagatttat	cagcaataaa	ccagccagcc	ggaagggccg	agcgcagaag	tggtcctgca	4740
actttatccg	cctccatcca	gtctattaat	tgttgccggg	aagctagagt	aagtagttcg	4800
ccagttaata	gtttgcgcaa	cgttgttgcc	attgctacag	gcatcgtggt	gtcacgctcg	4860
tcgtttggta	tggcttcatt	cagctccggt	tcccaacgat	caaggcgagt	tacatgatcc	4920
cccatgttgt	gcaaaaaagc	ggttagctcc	ttcggtcctc	cgatcgttgt	cagaagtaag	4980
ttggccgcag	tgttatcact	catggttatg	gcagcactgc	ataattctct	tactgtcatg	5040
ccatccgtaa	gatgcttttc	tgtgactggt	gagtactcaa	ccaagtcatt	ctgagaatag	5100
tgtatgcggc	gaccgagttg	ctcttgcccg	gcgtcaatac	gggataatac	cgcgccacat	5160
agcagaactt	taaaagtgct	catcattgga	aaacgttctt	cggggcgaaa	actctcaagg	5220
atcttaccgc	tgttgagatc	cagttcgatg	taacccactc	gtgcacccaa	ctgatcttca	5280
gcatctttta	ctttcaccag	cgtttctggg	tgagcaaaaa	caggaaggca	aaatgccgca	5340
aaaaagggaa	taagggcgac	acggaaatgt	tgaatactca	tactcttcct	ttttcaatat	5400
tattgaagca	tttatcaggg	ttattgtctc	atgagcggat	acatatttga	atgtatttag	5460
aaaaataaac	aaataggggt	tccgcgcaca	tttccccgaa	aagtgccacc	tgacgtctaa	5520
gaaaccatta	ttatcatgac	attaacctat	aaaaataggc	gtatcacgag	gccctttcgt	5580
c						5581
<210> 15 <211> 1434 <212> DNA <213> Nice	4 otiana tabad	cum				
<220> <223> rbc	_					
<400> 15 atgtcaccac	aaacagagac	taaagcaagt	gttggattca	aagctggtgt	taaagagtac	60
aaattgactt	attatactcc	tgagtaccaa	accaaggata	ctgatatatt	ggcagcattc	120
cgagtaactc	ctcaacctgg	agttccacct	gaagaagcag	gggccgcggt	agctgccgaa	180
tcttctactg	gtacatggac	aactgtatgg	accgatggac	ttaccagcct	tgatcgttac	240
aaagggcgat	gctaccgcat	cgagcgtgtt	gttggagaaa	aagatcaata	tattgcttat	300

Yokota Sequence gacgctcagt ggaacgaaaa ctcacgttaa gggattttgg tcatgagatt atcaaaaagg 4440

gtagcttacc ct	ttagacct	ttttgaagaa	Yokota Se ggttctgtta	quence ccaacatgtt	tacttccatt	360
gtaggtaacg ta				_		420
cctcctgctt at				_		480
aaattgaaca ag						540
tctgctaaaa ac						600
aaagatgatg ag	aacgtgaa	ctcacaacca	tttatgcgtt	ggagagatcg	tttcttattt	660
tgtgccgaag ca	ctttataa	agcacaggct	gaaacaggtg	aaatcaaagg	gcattacttg	720
aatgctactg ca	ggtacatg	cgaagaaatg	atcaaaagag	ctgtatttgc	tagagaattg	780
ggcgttccga tc	gtaatgca	tgactactta	acggggggat	tcaccgcaaa	tactagcttg	840
gctcattatt gc	cgagataa	tggtctactt	cttcacatcc	accgtgcaat	gcatgcggtt	900
attgatagac ag	aagaatca	tggtatccac	ttccgggtat	tagcaaaagc	gttacgtatg	960
tctggtggag at	catattca	ctctggtacc	gtagtaggta	aacttgaagg	tgaaagagac	1020
ataactttgg gc	tttgttga	tttactgcgt	gatgattttg	ttgaacaaga	tcgaagtcgc	1080
ggtatttatt tc	actcaaga	ttgggtctct	ttaccaggtg	ttctacccgt	ggcttcagga	1140
ggtattcacg tt	tggcatat	gcctgctctg	accgagatct	ttggggatga	ttccgtacta	1200
cagttcggtg gag	ggaacttt	aggacatcct	tggggtaatg	cgccaggtgc	cgtagctaat	1260
cgagtagctc tag	gaagcatg	tgtaaaagct	cgtaatgaag	gacgtgatct	tgctcaggaa	1320
ggtaatgaaa tta	attcgcga	ggcttgcaaa	tggagcccgg	aactagctgc	tgcttgtgaa	1380
gtatggaaag ag	atcgtatt	taattttgca	gcagtggacg	ttttggataa	gtaa	1434
	ana tabac	um				
<220> <223> accD						
<400> 16 aatgactatt cat	tctattgt	attttcatgc	aaataggggg	caagaaaact	ctatggaaag	60
atggtggttt aa	ttcgatgt	tgtttaagaa	ggagttcgaa	cgcaggtgtg	ggctaaataa	120
atcaatgggc ag	tcttggtc	ctattgaaaa	taccaatgaa	gatccaaatc	gaaaagtgaa	180
aaacattcat ag	ttggagga	atcgtgacaa	ttctagttgc	agtaatgttg	attatttatt	240
cggcgttaaa gad	cattcgga	atttcatctc	tgatgacact	tttttagtta	gtgataggaa	300
tggagacagt ta	ttccatct	attttgatat	tgaaaatcat	atttttgaga	ttgacaacga	360
tcattctttt ctg	gagtgaac	tagaaagttc	tttttatagt	tatcgaaact	cgaattatcg	420

	.**		Yokota Se	auence	•	
gaataa	tgga tttaggggcg	aagatcccta	ctataattct	tacatgtatg	atactcaata	480
tagttg	gaat aatcacatta	atagttgcat	tgatagttat	cttcagtctc	aaatctgtat	540
agatac	ttcc attataagtg	gtagtgagaa	ttacggtgac	agttacattt	atagggccgt	600
ttgtgg	tggt gaaagtcgaa	atagtagtga	aaacgagggt	tccagtagac	gaactcgcac	660
gaaggg	cagt gatttaacta	taagagaaag	ttctaatgat	ctcga	1 d 4 2 1	705
<210> <211> <212> <213>	17 21 DNA Artificial sequ	ience		-		
<220> <223>	synthetic const	ruct			· · ·	
<220> <223> <400> cgcggc	polylinker 17 cgcg ctagcgtcga	C ·				21
<210> <211> <212> <213>	18 7 DNA Artificial sequ	ence	·		. 6.	
<220> <223>	Synthetic const	ruct				
<220> <223>	Shine-Dalgarno	sequence		ı		
<400> aggaggi	18 u					7