

SYLLABUS

Course Name: Digital Signal and Image Processing

Course Code: DSP501 No of credits: 03

Time Allocation: 30 sessions

20 Study in Class4 Self Study2 Presentation4 Assignment

Prerequisite: No

I. DESCRIPTION

The course is to provide students with knowledge in Digital Signal Processing. The course focuses on DSP theory and the practical applications of DSP. The course has the following contents:

- 1. Introduction to DSP
- 2. Discrete-Time Signals & Systems
- 3. Tools and Software for Digital Signal Processing
- 4. **z-Transform**
- 5. Frequency Analysis of Signals & Systems
- 6. Discrete Fourier Transform
- 7. Efficient Computation of DFT: Fast Fourier Transform
- 8. Implementation of Discrete-Time Systems
- 9. Design of Digital Filters
- 10. Sampling & Reconstruction of Signals
- 11. Multirate Digital Signal Processing

12. Power Spectrum Estimation

13. Introduction DS Processor & Realization of FIR filter on the hardware

II. MAIN OBJECTIVES

By the end of the course, students will be able to:

• Master The Underlying Principles Of Digital Signal And Image Processing And Its

Many Applications;

• Understand The Transformations: Zt, Dft, Fft

Design Digital Filters

Design Digital Systems

III. TEACHING METHODS

To achieve the best course objectives, teaching methods and activities are used spontaneously, including:

• Teaching theory

• Group activities

• Group presentations

In addition, during the learning process, faculty can use different methods to achieve the teaching goals in the best way.

IV. STUDENT'S TASK

• Students are responsible for doing all exercises given by the instructor in class or at

home and submitting them on time.

• Constantly follow announcements on intranet/CMS for up-to-date course information.

V. ASSESSMENT SCHEME

On-going assessment:

• 01 Assignment: 40%

• 01 theory presentation: 15%

• 02 exercises: 30%

• 01 quiz: 15%

Final Result: 100%

Completion Criteria:

• Assignment >=4 & Final Result >=5

VI. TEACHING & LEARNING MATERIALS

Textbook:

- Digital signal processing using matlab for students and researchers John W. Leis, 2011 by John Wiley & Sons.
- The Scientist and Engineer's Guide to Digital Signal Processing by Steven W. Smith, Ph.D. Information website: http://www.dspguide.com/

Reference:

• Documents at http://www.mathworks.com/index.html?sec=training

VII. SCHEDULE

Session	Content
1	Course introduction Introduction to DSP
2	Softwares for Digital Signal Processing Matlab programming
3	Self-study at home
4	
5	Self-study at home
	Statistics, Probability and Noise
6	Complex Numbers
	Exercise 1
7	Sampling & Reconstruction of Signals

	8	Discrete-Time Signals
	9	Self-study at home
	10	Convolution
	11	Random Signals
	12	Self-study at home
	13	Temporal and spatial Signal Processing Topics for Presentations and Assignments
	14	Frequency Analysis of Signals & Systems
	15	Discrete Fourier Transform
	16	Efficient Computation of DFT: Fast Fourier Transform Exercise 2
	17	Introduction to Digital Filters QUIZ
	18	Moving Average Filters, Windowed-Sinc Filters, Custom Filters
	19	Self-study at home
	20	Exercise 2 Recursive Filters
	21	Chebyshev Filter & Filter Comparison
	22	Z Transform
	23	Audio Processing
	24	Diomadical Signal Dragosins
2	25	Biomedical Signal Processing

26	Theory Presentation
27	Theory Presentation
28	Self-study at home
29	Presentation of Assignment
30	Presentation of Assignment

