HOJA DE EJERCICIOS 4: Grafos y Árboles EDyL 2011-2012

[Fecha de publicación: 21 noviembre 2011]

[Fecha de entrega: 5 diciembre 2011, 10 horas]

[Resolución en clase 5 diciembre 2011]

EJERCICIO 1: Determinar si los pares de grafos siguientes son o no isomorfos. Justificar las respuestas.

a) Grafo G

Grafo H

RESPUESTA: G y H son isomorfos. Una posible función que relaciona los vértices de uno y otro grafo es la siguiente:

$$f(a) = 1$$

$$f(b) = 6$$

$$f(c) = 8$$

$$f(d) = 3$$

$$f(g) = 5$$

$$f(h) = 2$$

$$f(i) = 4$$

$$f(j) = 7$$

También se puede verificar mediante las correspondientes matrices de adyacencia.

b) Grafo G

Grafo H

Estos dos grafos no son isomórficos ya que, aunque tienen el mismo número de vértices y de aristas, el grado de los vértices adyacentes en cada uno de los grafos no coincide.

EJERCICIO 2: Determinar la existencia de circuitos o caminos eulerianos en los grafos siguientes. Justificar las respuestas.

G1 contiene una trayectoria euleriana entre b y d: b-d-c-b-a-d G2 contiene un circuito euleriano, por lo que es un grafo euleriano: a-b-a-c-a-d-a-e-a

EJERCICIO 3: Determinar la existencia de circuitos o caminos hamiltonianos en los grafos siguientes. Justificar las respuestas.

G1 contiene un circuito hamiltoniano: a-b-c-d-a

G2 no contiene ni trayectorias ni circuitos hamiltonianos.

EJERCICIO 4: Dado el siguiente grafo, emplear el algoritmo de Dijkstra para encontrar la distancia más corta entre los nodos A y E, indicando a qué trayectoria corresponde. Utilizar tantas columnas de la tabla como sea necesario.

SOLUCIÓN:

	L(0)	L(1)	L(2)	L(3)	L(4)	L(5)	L(6)
A	(0)	-		-	-	-	-
В	8	Ва З	B*a (3)	-	-	-	-
С	8	∞	œ	Св 5	Св 5	C*B (5)	-
D	œ	D*A (1)	-	-	-	-	-
E	œ	∞	E D 7	Ев 6	Ев 6	Ев 6	E*B (6)
F	8	∞	∞	œ	œ	œ	Fc 6
G	œ	∞	GD 3	G*D(3)	-	-	-
Н	8	∞	œ	œ	H*G (4)	-	-
I	8	∞	∞	œ	∞	Ін 7	Ін 7

La distancia más corta entre A y E es 6, y la trayectoria: A-B-E.

EJERCICIO 5: Utilizando el algoritmo de Warshall, determinar las distancias más cortas entre cada par de vértices del grafo, así como las trayectorias correspondientes.

LO	а	b	С	d	е	h
а	0	2	3	8	8	8
b		0	8	5	2	8
С			0	8	5	8
d				0	1	2
е					0	4
h						0

L1 (a)	а	b	С	d	е	h
а	0	2(ab)	3(ac)	8	8	8
b		0	5(bac)	5(bd)	2(be)	8
С			0	8	5(ce)	8
d				0	1(de)	2(dh)
е					0	4(eh)
h						0

L2 (b)	A	b	С	d	е	h
а	0	2(ab)	3(ac)	7(abd)	4(abe)	8
b		0	5(bac)	5(bd)	2(be)	∞
С			0	10(cabd)	5(ce)	∞
d				0	1(de)	2(dh)
е					0	4(eh)
h						0

L3 (c)	Α	b	С	d	е	h
а	0	2(ab)	3(ac)	7(abd)	4(abe)	8
b		0	5(bac)	5(bd)	2(be)	7(bdh)
С			0	10(cabd)	5(ce)	8
d				0	1(de)	2(dh)
е					0	4(eh)
h						0

L4 (d)	Α	b	С	d	E	h
а	0	2(ab)	3(ac)	7(abd)	4(abe)	9(adh)
b		0	5(bac)	5(bd)	2(be)	7(bdh)
С			0	10(cabd)	5(ce)	12(cabdh)
d				0	1(de)	2(dh)
е					0	3(edh)
h						0

L5 (e)	Α	b	С	d	E	Н
а	0	2(ab)	3(ac)	5(abed)	4(abe)	7(abedh)
b		0	5(bac)	3(bed)	2(be)	5(bedh)
С			0	6(ced)	5(ce)	8(cedh)
d				0	1(de)	2(dh)
е					0	3(edh)
h						0

L6 (h)	Α	b	С	d	E	Н
а	0	2(ab)	3(ac)	5(abed)	4(abe)	7(abedh)
b		0	5(bac)	3(bed)	2(be)	5(bedh)
С			0	6(ced)	5(ce)	8(cedh)
d				0	1(de)	2(dh)
е					0	3(edh)
h						0

EJERCICIO 6: Dado el siguiente grafo, emplear el algoritmo de Búsqueda en Profundidad para descubrir todos los nodos accesibles desde A. Incluir las etiquetas de tiempo inicial y final de exploración para cada nodo accedido.

SOLUCIÓN:

Búsqueda en profundidad Cormen

A (1/) B(2/) C(3/) D(4/) F(5/) E(6/) G(7/) G(7/8) E(6/9) F(5/10) D(4/11) C(3/12) B(2/13) A (1/14)

EJERCICIO 7: Para el grafo del ejercicio anterior, emplear el algoritmo de Búsqueda en Anchura para descubrir todos los nodos accesibles desde A.

SOLUCIÓN:

Búsqueda en anchura Cormen

Α

B E G

C

F

D

EJERCICIO 8: Hallar un árbol extendido mínimo para el grafo siguiente, utilizando el algoritmo de Kruskal.

SOLUCIÓN:

Aristas por orden creciente de peso (y orden alfabético):

arista 1	A-B: 1
arista 2	C-G: 1
arista 3	E-F: 1
arista 4	F-G: 1
arista 5	B-G: 2
arista 6	D-F: 2
arista 7	E-G: 2
arista 8	A-G: 3
arista 9	B-C: 3
arista 10	C-D: 3
arista 11	A-E: 4
arista 12	F-G: 4

El orden en el que incluyen aristas y nodos es el siguiente:

- 1) Incluir A-B (arista 1), se acceden A y B
- 2) Incluir C-G (arista 2), se acceden C y G

- 3) Incluir E-F (arista 3), se acceden E y F
- 4) Incluir F-G (arista 4), se accede G (F ya se había accedido)
- 5) Incluir B-G (arista 5), se conectan B y G, aunque no se accede ningún nuevo nodo
- 6) Incluir D-F (arista 6), se accede D (F ya se había accedido)

El algoritmo concluye habiéndose accedido ya a todos los nodos, y el resto de las aristas NO se consideran.

El árbol resultante se representa a continuación, y su peso es 8.

EJERCICIO 9: Hallar un árbol extendido mínimo para el grafo del ejercicio anterior utilizando el algoritmo de Prim.

Selección:

AB (1) Selecciona

Vértices={A, B}

Posibilidades (adyacentes a A o B):

- BG (2) Selecciona (adyacente a B) Vértices={A, B, G}
- AG (3)
- BC (3)
- AE (4)

Posibilidades (adyacentes a A, B o G):

- CG (1) Selecciona (adyacente a G) Vértices={A, B, C, G}
- FG (1)
- EG (2)
- AG (3)
- BC (3)
- AE (4)
- DG (4)

```
Posibilidades (adyacentes a A, B, C o G):
FG
      (1)
            Selecciona (adyacente a G) Vértices={A, B, C, F, G}
EG
      (2)
      (3)
AG
ВС
      (3)
      (4)
CD
ΑE
      (4)
DG
      (4)
Posibilidades (adyacentes a A, B, C, F o G):
            Selecciona (adyacente a F) Vértices={A, B, C, E, F, G}
EF
      (1)
DF
      (2)
EG
      (2)
AG
      (3)
BC
      (3)
      (4)
CD
      (4)
ΑE
DG
      (4)
Posibilidades (adyacentes a A, B, C, E, F o G):
            Selecciona (adyacente a F) Vértices={A, B, C, D, E, F, G}
DF
      (2)
EG
      (2)
      (3)
AG
BC
      (3)
CD
      (4)
ΑE
      (4)
DG
      (4)
Peso = 8
```

EJERCICIO 10: Demostrar, por inducción, que un árbol con n vértices posee n-1 aristas.

SOLUCIÓN:

Base: es cierto para n=1, 2, 3...

Hipótesis: es cierto para todos los árboles con menos de n vértices (n-1 vértices es el último para el que es cierto)

Inducción: se elimina una arista de T \Rightarrow quedan dos componentes conexas sin circuitos: T1, con r vértices, y T2, con n-r vértices. Por la hipótesis, T1 tiene (r-1) aristas y T2 tiene (n-r-1). Luego T tiene (r-1)+(n-r-1) +1=n-1