Отчёт по лабораторной работе №1

Сетевые технологии

Мурашов Иван Вячеславович

Содержание

1	Цель работы	5
2	Задание	6
3	Выполнение лабораторной работы	7
4	Выводы	10

Список иллюстраций

3.1	Таблица значений	7
3.2	Топология сети	7
3.3	Предельно допустимый диаметр домена коллизий в Fast Ethernet	8
3.4	Оценка работоспособности сети в соответствии с первой моделью	8
3.5	Таблица метрик	9
3.6	Временные задержки компонентов сети Fast Ethernet	9
3.7	Оценка работоспособности сети в соответствии со второй моделью .	9

Список таблиц

1 Цель работы

Цель данной работы — изучение принципов технологий Ethernet и Fast Ethernet и практическое освоение методик оценки работоспособности сети, построенной на базе технологии Fast Ethernet.

2 Задание

Требуется оценить работоспособность 100-мегабитной сети Fast Ethernet в соответствии с первой и второй моделями.

3 Выполнение лабораторной работы

Конфигурации сети приведены в табл. 2.4 (рис. 3.1)., топология сети представлена на рис. 3.2.

Варианты заданий

Таблица 2.4

эцэлингы заданяя									
No	Сегмент 1	Сегмент 2	Сегмент 3	Сегмент 4	Сегмент 5	Сегмент 6			
1.	100BASE-	100BASE-	100BASE-	100BASE-	100BASE-	100BASE-			
	ТХ, 96 м	ТХ, 92 м	ТХ, 80 м	ТХ, 5 м	ТХ, 97 м	ТХ, 97 м			
2.	100BASE-	100BASE-	100BASE-	100BASE-	100BASE-	100BASE-			
	ТХ, 95 м	ТХ, 85 м	ТХ, 85 м	ТХ, 90 м	ТХ, 90 м	ТХ, 98 м			
3.	100BASE-	100BASE-	100BASE-	100BASE-	100BASE-	100BASE-			
	ТХ, 60 м	ТХ, 95 м	ТХ, 10 м	ТХ, 5 м	ТХ, 90 м	ТХ, 100 м			
4.	100BASE-	100BASE-	100BASE-	100BASE-	100BASE-	100BASE-			
	ТХ, 70 м	ТХ, 65 м	ТХ, 10 м	ТХ, 4 м	ТХ, 90 м	ТХ, 80 м			
5.	100BASE-	100BASE-	100BASE-	100BASE-	100BASE-	100BASE-			
	ТХ, 60 м	ТХ, 95 м	ТХ, 10 м	ТХ, 15 м	ТХ, 90 м	ТХ, 100 м			
6.	100BASE-	100BASE-	100BASE-	100BASE-	100BASE-	100BASE-			
	ТХ, 70 м	ТХ, 98 м	ТХ, 10 м	ТХ, 9 м	ТХ, 70 м	ТХ, 100 м			

Рисунок 3.1: Таблица значений

Рис. 2.4. Топология сети

Рисунок 3.2: Топология сети

Оценим работоспособность сети в соответствии с первой моделью. Посчитаем диаметр домена коллизий и сравним его с предельно допустимым значением для нашей конфигурации сети. Сеть состоит из терминалов с интерфейсами ТХ и двух повторителей класса II, следовательно предельно допустимый диаметр домена коллизий равен 205 м в соответствии с таблицей (рис. 3.3).

Предельно допустимый диаметр домена коллизий в Fast Ethernet

Тип повторителя	Все сегменты ТХ или Т4	Все сегменты FX	Сочетание сегментов (Т4 и ТХ/FX)	Сочетание сегментов (ТХ и FX)
Сегмент, соеди- няющий два узла без повторителей	100	412,0	_	-
Один повтори- тель класса I	200	272,0	231,0	260,8
Один повтори- тель класса II	200	320,0	-	308,8
Два повторителя класса II	205	228,0	_	216,2

Рисунок 3.3: Предельно допустимый диаметр домена коллизий в Fast Ethernet

В Excel составляю таблицу со всеми метриками, выделяя жёлтым те элементы, которые в сумме будут давать наибольшее значение с учётом повторетеля. Рассчитываю диаметр домена коллизий как сумму выделенных ячеек. Формирую столбец «Работоспособность», где TRUE - если значение диаметра <= 205 и FALSE - в противном случае (рис. 3.4).

No	Сегмент 1	Сегмент 2	Сегмент 3	Сегмент 4	Сегмент 5	Сегмент 6	Диаметр домена коллизий	Работоспособность
1	96	92	80	5	97	97	198	TRUE
2	95	85	85	90	90	98	283	FALSE
3	60	95	10	5	90	100	200	TRUE
4	70	65	10	4	90	80	170	TRUE
5	60	95	10	15	90	100	210	FALSE
6	70	98	10	9	70	100	207	FALSE

Рисунок 3.4: Оценка работоспособности сети в соответствии с первой моделью

Затем необходимо оценить работоспособность сети в соответствии со второй моделью. Дублирую таблицу метрик и выделяю сегменты, которые в сумме дают наихудший путь между двумя узлами домена коллизий (рис. 3.5).

No	Сегмент 1	Сегмент 2	Сегмент 3	Сегмент 4	Сегмент 5	Сегмент 6
1	96	92	80	5	97	97
2	95	85	85	90	90	98
3	60	95	10	5	90	100
4	70	65	10	4	90	80
5	60	95	10	15	90	100
6	70	98	10	9	70	100

Рисунок 3.5: Таблица метрик

Просматриваю таблицу временных задержек компонентов сети Fast Ethernet, дублирую значения для витой пары категории 5, повторителя класса II и пары терминалов с интерфейсами ТХ себе в Excel (рис. 3.6).

Компонент	Удельное время двойного оборота (би/м)			
Витая пара категории 5	1,112			
Повторитель класса II	92			
Пара терминалов с	100			
интерфейсами TX	100			

Рисунок 3.6: Временные задержки компонентов сети Fast Ethernet

Составляю таблицу с выделенными элементами помноженными на коэффициент 1,112 (удельное время двойного оборота для нашей витой пары), затем формирую столбец с макс. временем двойного оборота, значения которого являются суммами значений по строке + времени для повторителей и пары терминалов. Формирую столбец с макс. временем двойного оборота с учётом непредвиденных задержек, прибавляя 4 битовых интервала к значениям из предыдущего столбца. «Работоспособность» - наш следующий столбец, где значения TRUE и FALSE проставлены на основе условия «Если макс. время двойного оборота с учётом непредвиденных задержек <= 512, то TRUE» (рис. 3.7).

No	Сегмент 1	Сегмент 2	Сегмент 3	Сегмент 4	Сегмент 5	Сегмент 6		С учётом непредвиденных задержек	Работоспособность
1	106,752			5,56		107,864	504,176	508,176	TRUE
2	105,64			100,08		108,976	598,696	602,696	FALSE
3		105,64		5,56		111,2	506,4	510,4	TRUE
4					100,08	88,96	381,04	385,04	TRUE
5		105,64		16,68		111,2	517,52	521,52	FALSE
6		108,976		10,008		111,2	514,184	518,184	FALSE

Рисунок 3.7: Оценка работоспособности сети в соответствии со второй моделью

4 Выводы

В ходе данной лабораторной работы я изучил принципы технологий Ethernet и Fast Ethernet и практически освоил методики оценки работоспособности сети, построенной на базе технологии Fast Ethernet.