Electromagnetic Field Equations

Differential Form		
Differential Form	Integral Form	
$\nabla \times \mathbf{E} = -\frac{\partial \mathbf{B}}{\partial t}$	$\oint_C \mathbf{E} \cdot d\mathbf{l} = -\int_S \frac{\partial \mathbf{B}}{\partial t} \cdot d\mathbf{S}$	Faraday's Law
$\nabla \bullet \mathbf{D} = \rho$	$\oint_{S} \mathbf{D} \cdot d\mathbf{S} = \int_{V} \rho dV$	Gauss's Law
$\nabla \times \mathbf{H} = \frac{\partial \mathbf{D}}{\partial t} + \mathbf{J}$	$\oint_C \mathbf{H} \cdot d\mathbf{l} = \int_S \left(\frac{\partial \mathbf{D}}{\partial t} + \mathbf{J} \right) \cdot d\mathbf{S}$	Ampere's Law
$\nabla \bullet \mathbf{B} = 0$	$\oint_{S} \mathbf{B} \cdot d\mathbf{S} = 0$	
$\mathbf{B} = \nabla \times \mathbf{A} \qquad \mathbf{E} = -\frac{\partial \mathbf{A}}{\partial t} - \nabla \varphi$	Potential Functions	
$\mathbf{A}(\mathbf{r}_{2},t) = \oint_{1} \frac{\mu_{o} I_{1}(t') d\mathbf{l}_{1}}{4\pi \left \mathbf{r}_{2} - \mathbf{r}_{1}\right }$	Vector potential due a current element of length $d\mathbf{l}_1$	
$t' = t - \frac{\left \mathbf{r}_2 - \mathbf{r}_1\right }{c}$		
$\mathbf{D} = \varepsilon_o \mathbf{E} + \mathbf{P} \qquad \mathbf{B} = \mu_o \left(\mathbf{H} + \mathbf{M} \right)$	Fields in isotropic materials	
$\rho_D = -\nabla \cdot \mathbf{P}(\mathbf{r}) \rho_S = -\mathbf{P}(\mathbf{r}) \cdot \mathbf{n}$	Volume and surface bound c densities- isotropic materials	harge
$\mathbf{P} = \varepsilon_0 \chi \mathbf{E}$	Linear isotropic dielectric	
$\mathbf{E}_{C}(\mathbf{r}) = \frac{q(\mathbf{r} - \mathbf{r}_{o})}{4\pi\varepsilon_{o} \left \mathbf{r} - \mathbf{r}_{o}\right ^{3}}$	Point Charge Electric Field	
$\Psi = \int_{S} \mathbf{B} \cdot d\mathbf{S}$	Magnetic Flux	
$\mathbf{F} = Q(\mathbf{E} + \mathbf{v} \times \mathbf{B})$	Lorentz Force	
$\nabla \cdot \mathbf{A} + \mu \varepsilon \frac{\partial \varphi}{\partial t} = 0$	Lorenz Gauge	
$\mathbf{P} = \mathbf{E} \times \mathbf{H} \text{ (watts/m}^2)$	Poynting's Vector	
$w_E = \frac{1}{2} \mathbf{D} \cdot \mathbf{E} w_M = \frac{1}{2} \mathbf{B} \cdot \mathbf{H}$		Energy Density
$-\frac{d}{dt} \int_{V} \left(\frac{1}{2} \mathbf{D} \cdot \mathbf{E} + \frac{1}{2} \mathbf{B} \cdot \mathbf{H} \right) d\mathbf{v} = \int_{V} \mathbf{J} \cdot \mathbf{E} d\mathbf{v} + \int_{V} \nabla \cdot (\mathbf{E} \times \mathbf{H}) d\mathbf{v}$		

Plane waves and Wave Impedance

$\gamma = \sqrt{-(\omega^2 \varepsilon \mu - j\omega \sigma \mu)} = \alpha + j\beta$	$u = \frac{\omega}{\beta} \qquad \tan \vartheta = \frac{\sigma}{\omega \varepsilon}$
$\alpha = \omega \sqrt{\frac{\mu \varepsilon}{2} \left[\sqrt{1 + \left(\frac{\sigma}{\omega \varepsilon}\right)^2} - 1 \right]}$	$\beta = \omega \sqrt{\frac{\mu \varepsilon}{2} \left[\sqrt{1 + \left(\frac{\sigma}{\omega \varepsilon}\right)^2 + 1} \right]}$
$\eta = \sqrt{\frac{\omega\mu}{\omega\varepsilon - j\sigma}} = \eta e^{j\theta_{\eta}}$	

Boundary Conditions

Right Handed Co-ordinate System Unit Vectors

Vector Field Components in Cartesian Coordinates

$$A_x = \mathbf{A} \bullet \mathbf{a}_x$$
 $A_y = \mathbf{A} \bullet \mathbf{a}_y$ $A_z = \mathbf{A} \bullet \mathbf{a}_z$

Vector Operations

$$\mathbf{A} \bullet \mathbf{B} = A_x B_x + A_y B_y + A_z B_z$$

$$\mathbf{A} \times \mathbf{B} = -\mathbf{B} \times \mathbf{A} = \left(A_y B_z - A_z B_y\right) \mathbf{a}_x + \left(A_z B_x - A_x B_z\right) \mathbf{a}_y + \left(A_x B_y - A_y B_x\right) \mathbf{a}_z$$

$$\mathbf{a}_x \times \mathbf{a}_y = \mathbf{a}_z$$
 $\mathbf{a}_y \times \mathbf{a}_z = \mathbf{a}_x$ $\mathbf{a}_z \times \mathbf{a}_x = \mathbf{a}_y$

$$\mathbf{a}_{\rho} \times \mathbf{a}_{\phi} = \mathbf{a}_{z} \quad \mathbf{a}_{\phi} \times \mathbf{a}_{z} = \mathbf{a}_{\rho} \quad \mathbf{a}_{z} \times \mathbf{a}_{\rho} = \mathbf{a}_{\phi}$$

$$\mathbf{a}_r \times \mathbf{a}_\theta = \mathbf{a}_\phi \quad \mathbf{a}_\theta \times \mathbf{a}_\phi = \mathbf{a}_r \quad \mathbf{a}_\phi \times \mathbf{a}_r = \mathbf{a}_\theta$$

$$\mathbf{A} \bullet (\mathbf{A} \times \mathbf{C}) = -\mathbf{A} \bullet (\mathbf{A} \times \mathbf{C}) = 0$$

$$\mathbf{A} \times (\mathbf{B} \times \mathbf{C}) = (\mathbf{A} \bullet \mathbf{C})\mathbf{B} - (\mathbf{A} \bullet \mathbf{B})\mathbf{C}$$

$$\mathbf{A} = \mathbf{n} \times (\mathbf{A} \times \mathbf{n}) + (\mathbf{n} \bullet \mathbf{A})\mathbf{n} \qquad \mathbf{n} \cdot \mathbf{n} = 1$$

$$\nabla \equiv \mathbf{a}_x \frac{\partial}{\partial x} + \mathbf{a}_y \frac{\partial}{\partial y} + \mathbf{a}_z \frac{\partial}{\partial z}$$

$$\nabla \times \nabla V = 0$$

$$\nabla \bullet (\nabla \times \mathbf{A}) = 0$$

$$\nabla \bullet (\mathbf{A} \times \mathbf{B}) = \mathbf{B} \bullet (\nabla \times \mathbf{A}) - \mathbf{A} \bullet (\nabla \times \mathbf{B})$$

$$\nabla \times (\nabla \times \mathbf{A}) = \nabla (\nabla \cdot \mathbf{A}) - \nabla^2 \mathbf{A}$$

 $\nabla (\phi \chi) = \phi \nabla \chi + \chi \nabla \phi$, where ϕ and χ are any scalar fields.

$$\nabla (e^{-j\mathbf{k}\cdot\mathbf{r}}) = -j\mathbf{k}e^{-j\mathbf{k}\cdot\mathbf{r}}$$

$$\nabla^2 \left(\mathbf{A} e^{-j\mathbf{k} \cdot \mathbf{r}} \right) = - \left(\mathbf{k} \cdot \mathbf{k} \right) \mathbf{A} e^{-j\mathbf{k} \cdot \mathbf{r}}$$

$$\nabla \bullet (\mathbf{A} e^{-j\mathbf{k} \bullet \mathbf{r}}) = -j\mathbf{k} \bullet \mathbf{A} e^{-j\mathbf{k} \bullet \mathbf{r}}.$$

$$\nabla \times (\mathbf{A}e^{-j\mathbf{k} \cdot \mathbf{r}}) = -j\mathbf{k} \times \mathbf{A}e^{-j\mathbf{k} \cdot \mathbf{r}}$$

Divergence Theorem (Gauss Theorem) for a surface S enclosing a volume V

$$\oint_{S} \mathbf{A} \bullet d\mathbf{S} = \int_{V} \nabla \bullet \mathbf{A} dV$$

Stokes' Theorem for an open surface S with closed boundary L

$$\oint_L \mathbf{A} \bullet d\mathbf{l} = \int_S (\nabla \times \mathbf{A}) \bullet d\mathbf{S}$$

Helmholtz Transport Theorem

$$\frac{d}{dt} \int_{S(t)} \mathbf{F} \cdot d\mathbf{S} = \int_{S(t)} \left(\frac{\partial \mathbf{F}}{\partial t} + \mathbf{v} \nabla \cdot \mathbf{F} - \nabla \times (\mathbf{v} \times \mathbf{F}) \right) \cdot d\mathbf{S}$$

Green's Theorem:
$$\oint_{S} (\chi \mathbf{b}) \cdot d\mathbf{S} = \int_{V} (\chi \nabla \cdot \mathbf{b} + \mathbf{b} \cdot \nabla \chi) dV$$

Physical constants

$$\mu_0 = 4\pi \times 10^{-7} \,\mathrm{Hm}^{-1}$$
 $\varepsilon_0 = 8.854 \times 10^{-12} \,\mathrm{Fm}^{-1}$ $e = 1.6 \times 10^{-19} \,\mathrm{C}$
 $c = 3 \times 10^8 \,\mathrm{ms}^{-1}$ $e/m = 1.76 \times 10^{11} \,\mathrm{Ckg}^{-1}$

Some vector differential operators.

Gradient

$$\nabla \varphi = \frac{\partial \varphi}{\partial x} \mathbf{a}_{x} + \frac{\partial \varphi}{\partial y} \mathbf{a}_{y} + \frac{\partial \varphi}{\partial z} \mathbf{a}_{z} \qquad \nabla \varphi = \frac{\partial \varphi}{\partial \rho} \mathbf{a}_{\rho} + \frac{1}{\rho} \frac{\partial \varphi}{\partial \phi} \mathbf{a}_{\phi} + \frac{\partial \varphi}{\partial z} \mathbf{a}_{z}$$

Laplacian

$$\nabla^{2} \varphi = \frac{\partial^{2} \varphi}{\partial x^{2}} + \frac{\partial^{2} \varphi}{\partial y^{2}} + \frac{\partial^{2} \varphi}{\partial z^{2}} \qquad \nabla^{2} \varphi = \frac{1}{\rho} \frac{\partial}{\partial \rho} \left(\rho \frac{\partial \varphi}{\partial \rho} \right) + \frac{1}{\rho^{2}} \frac{\partial^{2} \varphi}{\partial \phi^{2}} + \frac{\partial^{2} \varphi}{\partial z^{2}}$$

Curl of a vector field F in spherical co-ordinates:

$$\nabla \times \mathbf{F} = \frac{1}{r \sin \theta} \left[\frac{\partial}{\partial \theta} (F_{\phi} \sin \theta) - \frac{\partial F_{\theta}}{\partial \phi} \right] \mathbf{a}_{r} + \frac{1}{r} \left[\frac{1}{\sin \theta} \frac{\partial F_{r}}{\partial \phi} - \frac{\partial}{\partial r} (rF_{\phi}) \right] \mathbf{a}_{\theta} + \frac{1}{r} \left[\frac{\partial}{\partial r} (rF_{\theta}) - \frac{\partial F_{r}}{\partial \theta} \right] \mathbf{a}_{\phi}$$

DIFFERENTIATION

$$\frac{d}{dx}(f(x) \cdot g(x)) = f(x) \cdot g'(x) + g(x) \cdot f'(x)$$

$$\frac{d}{dx}\left(\frac{f(x)}{g(x)}\right) = \frac{g(x) \cdot f'(x) - f(x) \cdot g'(x)}{(g(x))^2}$$

$$\frac{d}{dx}(x^n) = nx^{n-1} \qquad \frac{d}{dx}(\ln x) = \frac{1}{x}$$

$$\frac{d}{dx}(\sin x) = \cos x$$

$$\frac{d}{dx}(\cos x) = -\sin x \qquad \frac{d}{dx}(\tan x) = \sec^2 x$$

$$\frac{d}{dx}(\cot x) = -\csc^2 x \qquad \frac{d}{dx}(\sec x) = \sec x \tan x$$

$$\frac{d}{dx}(\arcsin x) = \frac{1}{\sqrt{1-x^2}} \qquad \frac{d}{dx}(\arctan x) = \frac{1}{1+x^2}$$

$$\frac{d}{dx}(\arcsin x) = \frac{1}{x\sqrt{x^2-1}} \qquad \frac{d}{dx}(\sinh x) = \cosh x$$

INTEGRATION

$$\int x^{n} dx = \frac{1}{n+1} x^{n+1} + c, \quad n \neq -1$$

$$\int \frac{1}{x} dx = \ln|x| + c$$

$$\int a^{x} dx = \frac{1}{\ln a} a^{x} + c$$

$$\int \cos x dx = \sin x + c$$

$$\int \frac{dx}{1+x^{2}} = \arctan x + c$$

$$\int \frac{dx}{\sqrt{1-x^{2}}} = \arcsin x + c$$

$$\int \frac{dx}{\sqrt{1-x^{2}}} = \cot x + c$$

$$\int \frac{dx}{\sqrt{1-x^{2}}} = \cot x + c$$

$$\int \frac{dx}{\sqrt{1-x^{2}}} = \cot x + c$$

LAPLACE TRANSFORMS

f(t) t > 0
f(t), t > 0 $y(t)$
$y(t) = \frac{1}{i2\pi} \int_{c-j\infty}^{c+j\infty} \exp(st) Y(s) ds$
y ⁽ⁿ⁾ (t)
$\int_0^t Y(\tau) d\tau$
$\int_0^t f(t-\tau)g(\tau)d\tau$
f (\alpha t)
$\exp(-\alpha t) f(t)$
$\delta(t)$

$\exp(-\alpha s), \alpha \ge 0$	$\delta(t-\alpha)$
1/s	u(t)
$\frac{1}{s} \exp(-\alpha s)$	$u(t-\alpha)$
$\frac{1}{s^n}, n = 1, 2, 3, \dots$	$\frac{t^{n-1}}{(n-1)!}$
$\frac{1}{(s+\alpha)^n} , n=1, 2, 3, \dots$	$\left[\frac{t^{n-1}}{(n-1)!}\right] \exp\left(-\alpha t\right)$
$\frac{\alpha}{s(s+\alpha)}$	1 - exp(-αt)
$\frac{1}{(s+\alpha)(s+\beta)}, \beta \neq \alpha$	$\frac{1}{(\beta-\alpha)} \left[\exp(-\alpha t) - \exp(-\beta t) \right]$
$\frac{s}{(s+\alpha)(s+\beta)}, \beta \neq \alpha$	$\frac{1}{(\alpha - \beta)} \left[\alpha \exp(-\alpha t) - \beta \exp(-\beta t) \right]$
$\frac{\alpha}{s^2 + \alpha^2}$	sin(αt)
$\frac{s}{s^2 + \alpha^2}$	cos(αt)
$\frac{s^2 - \alpha^2}{\left[s^2 + \alpha^2\right]^2}$	t cos(αt)
$\frac{\alpha}{s^2(s+\alpha)}$	$t - \frac{1}{\alpha} [1 - \exp(-\alpha t)]$
$\frac{\beta}{(s+\alpha)^2+\beta^2}$	exp(-αt)sin(βt)
$\frac{\beta}{(s+\alpha)^2+\beta^2}$	exp(-αt)sin(βt)
$\frac{s+\lambda}{(s+\alpha)^2+\beta^2}$	$\exp(-\alpha t) \left\{ \cos(\beta t) + \left[\frac{\lambda - \alpha}{\beta} \right] \sin(\beta t) \right\}$
$\frac{s+\alpha}{s^2+\beta^2}$	$\frac{\sqrt{\alpha^2 + \beta^2}}{\beta} \sin(\beta t + \phi), \phi = \arctan\left(\frac{\beta}{\alpha}\right)$