On my honor, I submit that I have neither given or received assistance on this exam or consulted any prohibited materials (beyond the one page crib sheet allowed for the exam).

Date: February 10, 2022 Name: _

MEGR 3122 Dynamics Systems II: Exam 1, Spring 2022

Multiple Choice Problems (Total 20 Points)

Directions: Circle the best answer. Each question is worth 2 points.

- 1. In this course, system dynamics are modeled as:
 - A. partial differential equations
 - B. ordinary differential equations
 - C. hyperbolic equations
 - D. asymptotic equations
- 2. If x(t) is a function of time (the state of a mechanical system), and a and b are constants, then $\ddot{x} + a\dot{x} + \sqrt{b}t = 1$ is which of the following?
 - A. linear, time-varying, second-order, homogeneous
 - B. linear, time-invariant, second-order, homogeneous
 - C. linear, time-invariant, second-order, inhomogeneous
 - D. nonlinear
- 3. Which case in Fig. 1 (below) could plausibly represent the response of a system $\dot{x} 2x = 0$? (Note: the initial condition is not necessary to answer this question.)
 - A. Case 1
 - B. Case 2
 - C. Case 3
 - D. Both Case 1 and Case 2

Figure 1: System response

4. Consider the following initial value problem:

$$\dot{x} + 4x = 0 , \qquad x(0) = 5$$

The solution is:

A
$$r(t) = 5e^{-4t}$$

$$R r(t) = 4e^{-5t}$$

A.
$$x(t) = 5e^{-4t}$$
 B. $x(t) = 4e^{-5t}$ C. $x(t) = e^{-4t}\cos 5t$ D. $x(t) = e^{4t}\sin t$

D.
$$x(t) = e^{4t} \sin t$$

5. If $z_1 = -i$ and $z_2 = e^{i\pi/2}$, then what is the sum $z_1 + z_2$?

- B. 1
- C. -1
- D. 0

6. Consider the following system

$$\dot{x} + ax = 0$$

with initial condition of x(0) = 100. The state x(t) decays to a value of 36.8 after 3 seconds. That is, x(3) = 36.8. What is the value of a?

- A. a = 100/3
- B. a = 1/3
- C. a = 3
- D. a = (100 36.8)/3
- 7. What is the Laplace transform of the function x(t) = (t-2)H(t-2), where $H(\cdot)$ is the unit step or Heaviside function?
 - A. $\frac{1}{s^2}$
- B. $\frac{1}{(s+1)^2}$ C. $\frac{e^{-2s}}{s^2}$
- 8. Consider the second order system $6\ddot{x} + 3x = 0$ and define a new set of variables $z_1 = x$ and $z_2 = \dot{x}$. Which of the following first-order systems of two equations (in z_1 an z_2) is equivalent to the second order system (in x)?

A.

В.

C.

D.

$$z_1 = \dot{z}_2 z_2 = 6\dot{z}_1 + 3\dot{z}_2$$

$$\dot{z}_1 = 3z_2$$

$$\dot{z}_1 = 3z_2$$
 $\dot{z}_1 = z_2$ $\dot{z}_2 = 6z_1$ $\dot{z}_2 = 6z_2 + 3z_1$

$$\dot{z}_1 = z_2$$
 $\dot{z}_2 = -(1/2)z_1$

- 9. Which case in Fig. 2 (below) could plausibly represent the response of a system $\ddot{x} + \dot{x} + x = 0$ with x(0) = 4 and $\dot{x}(0) = -10$?
 - A. Case 1
 - B. Case 2
 - C. Case 3
 - D. None of the above

Figure 2: System response

10. What is the final value of x(t) as $t \to 0$ if the Laplace transform of x(t) is the following?

$$X(s) = \frac{s+10}{5s^2 + 2s + 1}$$

- A. $x(t) \rightarrow 10$
- B. $x(t) \rightarrow 5$
- C. $x(t) \rightarrow 2$
- D. $x(t) \to 1$

Workout Problem Instructions

To receive full credit on the workout problems show all of your work.

Workout Problem 1 (5 pts)

Consider the ODE

$$\ddot{x} + 4\dot{x} + 8x = 0$$

with initial conditions x(0) = 0 and $\dot{x}(0) = 10$.

- Find the eigenvalues of the system
- $\bullet\,$ State the general solution of the ODE
- ullet Determine the particular solution x(t) that satisfies the initial conditions

Workout Problem 2 (5 pts)

Compute the Laplace transform $F(s) = \mathcal{L}[f(t)]$ of the following function:

$$f(t) = \frac{e^{-t}}{4} [2 + t^2 + \cos(3t)]$$

Workout Problem 3 (5 pts)

Compute the inverse Laplace transform $f(t) = \mathcal{L}^{-1}[F(s)]$ of the following function:

$$F(s) = \frac{s+1}{s^2 + 6s + 9}$$

Table 2.1 Laplace transforms [2]

	1	
	f(t)	F(s)
1	Unit impulse $\delta(t)$	1
2	Unit step $u(t)$	1
		S
3	t	1
		$\overline{s^2}$
4	t^{n-1}	$\frac{1}{s^n}$
	$\frac{t}{(n-1)!}$, $n=1, 2, 3,$	$\overline{s^n}$
5	t^n , $n=1,2,3,\ldots$	n!
		$\overline{s^{n+1}}$
6	e^{-at}	1
		$\overline{s+a}$
7	te ^{-at}	1
		$\overline{(s+a)^2}$
8	t^{n-1} at	1
	$\frac{t^{n-1}}{(n-1)!}e^{-at}, n=1, 2, 3, \dots$	$\sqrt{(s+a)^n}$
9	$t^{n}e^{-at}, n=1,2,3,$	<u>n!</u>
	, , , , , , , , , , , , , , , , , , , ,	$\overline{(s+a)^{n+1}}$
10	$\sin(\omega t)$	ω
10	Sin(wi)	$\frac{\overline{s^2 + \omega^2}}{s}$
11	$\cos(\omega t)$	S
		$\frac{\overline{s^2 + \omega^2}}{\omega}$
12	$\sinh(\omega t)$	$\frac{\omega}{2}$
13	$\cosh(\omega t)$	$\frac{\overline{s^2 - \omega^2}}{s}$
13	cosn(wr)	$\frac{\overline{s^2-\omega^2}}{1}$
14	$1_{(1, 2^{-at})}$	1
	$\frac{1}{a}(1-e^{-at})$	$\overline{s(s+a)}$
15	$\frac{1}{b-a}(e^{-at}-e^{-bt})$	1
	$\frac{1}{b-a}(e^{-e})$	$\overline{(s+a)(s+b)}$
16	$\frac{1}{b-a}(be^{-bt}-ae^{-at})$	
		$\overline{(s+a)(s+b)}$
17	$\left \frac{1}{ab} \left(1 + \frac{1}{a-b} \left(b e^{-at} - a e^{-bt} \right) \right) \right $	11
	$\left(\frac{ab}{ab}\left(1+\frac{a-b}{a-b}\left(bc-ac-b\right)\right)\right)$	$\overline{s(s+a)(s+b)}$
18	$\frac{1}{a^2}(1 - e^{-at} - ate^{-at})$	1
	$\frac{1}{a^2}(1-e^{-a}ue^{-a}ue^{-a})$	$\overline{s(s+a)^2}$
19	1 (, , , , , , , , , , , , , , , , , ,	1
	$\frac{1}{a^2}(at-1+e^{-at})$	$s^2(s+a)$
20	$e^{-at}\sin(\omega t)$	ω
		$\overline{(s+a)^2+\omega^2}$
21	$e^{-at}\cos(\omega t)$	s+a
		$\sqrt{(s+a)^2+\omega^2}$
22	$\omega_n = -\zeta_{m,t} \cdot \left(-\zeta_{m,t} \cdot \zeta_{m,t} \right)$	$\frac{s+a}{(s+a)^2 + \omega^2}$ $\frac{\omega_n^2}{s^2 + 2\zeta\omega_n s + \omega_n^2}$
	$\left \frac{\omega_n}{\sqrt{1-\zeta^2}}e^{-\zeta\omega_n t}\sin\left(\omega_n\sqrt{1-\zeta^2}t\right)\right $	$\frac{1}{s^2+2\zeta\omega_n s+\omega_n^2}$
	V 1 5	. 5-n- · · · η

(continued)

 Table 2.1 (continued)

	f(t)	F(s)
23	$-\frac{1}{\sqrt{1-\zeta^2}}e^{-\zeta\omega_n t}\sin\left(\omega_n\sqrt{1-\zeta^2}t-\phi\right)$	$\frac{s}{s^2 + 2\zeta\omega_n s + \omega_n^2}$
	$\phi = \tan^{-1}\left(\frac{\sqrt{1-\zeta^2}}{\zeta}\right)$	
24	$1 - \frac{1}{\sqrt{1-\zeta^2}} e^{-\zeta \omega_n t} \sin\left(\omega_n \sqrt{1-\zeta^2} t + \phi\right)$	$\frac{\omega_n^2}{s(s^2 + 2\zeta\omega_n s + \omega_n^2)}$
	$\phi = \tan^{-1}\left(\frac{\sqrt{1-\zeta^2}}{\zeta}\right)$	
25	$1-\cos(\omega t)$	$\frac{\omega^2}{s(s^2+\omega^2)}$
26	$\omega t - \sin(\omega t)$	$\frac{\omega^3}{s^2(s^2+\omega^2)}$
27	$\sin(\omega t) - \omega t \cos(\omega t)$	$\frac{2\omega^3}{\left(s^2+\omega^2\right)^2}$
28	$\frac{1}{2\omega}t\sin(\omega t)$	$\frac{s}{\left(s^2+\omega^2\right)^2}$
29	$t\cos(\omega t)$	$\frac{s^2 - \omega^2}{\left(s^2 + \omega^2\right)^2}$
30	$\frac{1}{\omega_2^2 - \omega_1^2} (\cos{(\omega_1 t)} - \cos{(\omega_2 t)}), \omega_1^2 \neq \omega_2^2$	$\frac{s}{(s^2 + \omega_1^2)(s^2 + \omega_2^2)}$
31	$\frac{1}{2\omega}(\sin(\omega t) + \omega t \cos(\omega t))$	$\frac{s^2}{\left(s^2+\omega^2\right)^2}$