Birla Institute of Technology Mesra Off Campus Deoghar

EC204 Digital System Design Lab Experiment 1

Name: Harsh Govind

Roll no.: BTECH/60023/20

Semester: III

Date of experiment: 02 Aug 2021

Aim: Verification and interpretation of truth table for AND, OR, NOT, NAND NOR, Ex-OR and Ex-Nor gates.

Apparatus: Logic trainer kit, logic gates / ICs and wires.

Theory: Logic gates are electronic circuits which perform logical functions on one or more inputs to produce one output. There are seven logic gates. When all the input combinations of a logic gate are written in a series and their corresponding outputs written along them, then this input/output combination is called Truth Table.

AND Gate

AND gate produces an output as 1, when all its inputs are 1; otherwise, the output is 0. This gate can have minimum 2 inputs but output is always one. Its output is 0 when any input is 0.

 A
 B
 Y = A.B

 0
 0
 0

 0
 1
 0

 1
 0
 0

 1
 1
 1

Truth table

Both A and B are 0

OR Gate

OR gate produces an output as 1, when any or all its inputs are 1; otherwise the output is 0. This gate can have minimum 2 inputs but output is always one. Its output is 0 when all input are 0.

IC 7432

Α	В	Y = A+B
0	0	0
0	1	1
1	0	1
1	1	1

Truth table

Both A and B are 0

A = 0 and B = 1

A = 1 and B = 0

Both A and B are 1

NOT Gate

NOT gate produces the complement of its input. This gate is also called an INVERTER. It always has one input and one output. Its output is 0 when input is 1 and output is 1 when input is 0.

IC 7404

Α	Y = A'	
0	1	
1 0		
Truth table		

NAND Gate

NAND gate is actually a series of AND gate with NOT gate. If we connect the output of an AND gate to the input of a NOT gate, this combination will work as NOT-AND or NAND gate. Its output is 1 when any or all inputs are 0, otherwise output is 1.

Α	В	Y = (A.B)'
0	0	1
0	1	1
1	0	1
1	1	0

Truth table

NOR Gate

NOR gate is actually a series of OR gate with NOT gate. If we connect the output of an OR gate to the input of a NOT gate, this combination will work as NOT-OR or NOR gate. Its output is 0 when any or all inputs are 1, otherwise output is 1.

IC 7402

Α	В	Y = (A+B)'
0	0	1
0	1	0
1	0	0
1	1	0

Truth table

Exclusive OR (X-OR) Gate

X-OR gate produces an output as 1, when number of 1's at its inputs is odd, otherwise output is 0. It has two inputs and one output.

IC 7486

Α	В	Y = A XOR B
0	0	0
0	1	1
1	0	1
1	1	0

Truth table

Both A and B are 0

A = 0 and B = 1

A = 1 and B = 0

Both A and B are 1

Exclusive NOR (X-NOR) Gate

X-NOR gate produces an output as 1, when number of 1's at its inputs is not odd, otherwise output is 0. It has two inputs and one output.

Α	В	Y = A XNOR B
0	0	1
0	1	0
1	0	0
1	1	1

Truth table

Both A and B are 0

19

