Econ 521 Final Exam Tuesday, May 11

Do 10 out of 12 problems.

1. Consider the process,

$$u_{t} = \rho u_{t-1} + \varepsilon_{t},$$

$$\varepsilon_{t} \sim iid(0, \sigma_{\varepsilon}^{2}),$$

$$t = 1, 2, ..., T.$$

Define

$$\widehat{\rho} = \frac{\sum u_t u_{t-1}}{\sum u_t^2}.$$

Derive $plim\hat{\rho}$, and derive the asymptotic distribution of $\sqrt{T}(\hat{\rho} - plim\hat{\rho})$.

2. Consider the model,

$$y_i = X_i \beta + u_i,$$

$$u_i \sim iid(0, \sigma_u^2),$$

$$i = 1, 2, ..., n.$$

We want to test

$$H_0: \beta_2 = \beta_3 \text{ vs } H_A: \beta_2 \neq \beta_3.$$

Construct a test statistic associated with this test, and derive its distribution under H_0 .

3. Consider the model,

$$y_i = \underset{1 \times K}{X_i} \beta + u_i,$$

$$u_i \sim iid(0, \sigma_u^2),$$

$$i = 1, 2, ..., n.$$

The data available to estimate β is $\{y_i, x_{i1}, w_i, x_{i3}, ..., x_{iK}\}_{i=1}^n$ where

$$w_i = \alpha x_{i2} + e_i.$$

What must be true about α and the distribution of e_i in order to get a consistent estimate of β ?

4. We are interested in estimating the factors that affect demand for record albums by Neil Diamond. Let $y_{it} \sim Poisson(\lambda_{it})$. Specify a model for λ_{it} that allows for variation in demand by gender, race, and age. Assume

that, in your available data, age is bracketed in ten year intervals; i.e., observed age of person i at time t, $OAge_{it}$, is

$$OAge_{it} = k \text{ iff } k - 1 \le Age_{it}/10 < k$$

where Age_{it} is unobserved actual age. Allow the effect of age to vary by race and gender. Hint: you can go to https://www.youtube.com/watch?v=1vhFnTjia_I if you think it would be helpful to listen to a Neil Diamond song.

5. Consider the model,

$$y_i = X_i \beta + u_i,$$

$$u_i \sim iid(0, \sigma_u^2),$$

$$i = 1, 2, ..., n.$$

We want to test

$$H_0: \beta_2 = \beta_3 = \beta_4 = \beta_5 \text{ vs } H_A: \beta_2 \neq \beta_3 \neq \beta_4 \neq \beta_5.$$

Construct a test statistic associated with this test, and derive its distribution under H_0 . Also, derive its distribution under H_0 if there were some omitted variables in your estimation procedure.

6. Consider the model,

$$\begin{array}{rcl} y_{it}^* & = & x_{it}\beta + u_i + e_{it}, \\ u_i & \sim & iidN\left(0,\sigma_u^2\right), \\ e_{it} & = & \rho e_{it-2} + \varepsilon_{it}, \\ \varepsilon_{it} & \sim & iidN\left(0,1\right), \\ y_{it} & = & 1\left(y_{it}^* > 0\right), \\ t & = & 1,2,..,T, \\ i & = & 1,2,..,n. \end{array}$$

Define

$$v_{it} = u_i + e_{it},$$

 $v_i = (v_{i1}, v_{i2}, ..., v_{iT})'$, and $v = (v_1, v_2, ..., v_n)'$. Derive the covariance matrix of v, and describe what covariation in the data would allow you to identify its terms.

7. Let

$$y = X\beta + u,$$

$$u \sim (0, \Omega).$$

Let $\widehat{\Omega}$ be a consistent estimator of Ω . Prove that

$$E\left(X'\widehat{\Omega}^{-1}X\right)^{-1}X'\widehat{\Omega}^{-1}y = \beta.$$

8. Consider the model,

$$y_{1i} = \beta_{12}y_{2i} + \alpha_{10} + \alpha_{11}x_{11i} + \alpha_{12}x_{12i} + u_{1i},$$

$$y_{2i} = \beta_{21}y_{1i} + \alpha_{20} + \alpha_{21}x_{11i} + u_{2i}.$$

How can we estimate β_{12} ?

9. Consider the model,

$$y = X\beta + Q\gamma + u$$

where y is a vector of dependent variables, X is a matrix of endogenous explanatory variables, Q is a matrix of exogenous explanatory variables, and u is a vector of errors. Construct the orthogonality used to estimate the structural parameters, (β, γ) .

10. Consider the model,

$$y_{i}^{*} = x_{i}\beta + u_{i},$$

$$u_{i} \sim iidN(0,1),$$

$$y_{i} = 1(y_{i}^{*} > 0),$$

$$i = 1, 2, ..., n.$$

Show how to use the log likelihood function for this model to construct an orthogonality condition for estimation.

11. Consider the model,

$$\begin{array}{lcl} y_{ijt}^* & = & x_{ijt}\beta + z_{it}\gamma_j + u_{ij} + \varepsilon_{ijt}, \\ u_i & = & \left(u_{i1}, u_{i2}, ..., u_{iJ}\right)' \sim iidN\left(0, \Omega\right), \\ \varepsilon_{ijt} & \sim & iidEV, \\ y_{ijt} & = & 1\left(y_{ijt}^* > y_{ikt}^* \forall k \neq j\right), \\ j & = & 1, 2, ..., J, \\ t & = & 1, 2, ..., T, \\ i & = & 1, 2, ..., n. \end{array}$$

Construct the likelihood function for estimation of this model. Provide intuition for what covariation in the data identifies Ω .

12. Consider the model,

$$\begin{array}{rcl} y_1^* & = & \alpha y_2 + x_1 \beta + u_1, \\ y_2^* & = & \alpha y_1 + x_2 \beta + u_2, \\ y_j & = & k \text{ iff } \tau_k \leq y_j^* < \tau_{k+1}, \ j = 1, 2; \ k = 1, 2, .., 4, \\ u & = & \left(\begin{array}{c} u_1 \\ u_2 \end{array} \right) \sim F. \end{array}$$

Assuming that $\alpha < 0$, show the regions of the support of u where there are multiple equilibria to the model.