2021 Spring MAS 365 Chapter 3: Interpolation and Polynomial Approximation

Donghwan Kim

KAIST

Introduction

Vanc

ullet A census of the population of the US is taken every 10 years.

rear	1930	1900	1970	1980	1990	2000
Population (in thousands)	151,326	179,323	203,302	226,542	249,633	281,422
	F	P(t) A				
	3×1 2×1 uoi perindo.	08 _				
	∑ 1×1	08				

1950 1960 1970 1980 1990 2000 t Year

Q. Can we reasonably estimate the population in 1975 or 2020?

Chapter 3 1 / 104

- 1 3.1 Interpolation and the Lagrange Polynomial
- 2 3.2 Data Approximation and Neville's Method
- 3.3 Divided Differences
- 4 3.4 Hermite Interpolation
- **5** 3.5 Cubic Spline Interploation
- 6 3.6 Parametric Curves

Weierstrass Approximation Theorem

• Consider the algebraic polynomials, the set of functions of the form

$$P_n(x) = a_n x^n + a_{n-1} x^{n-1} + \dots + a_1 x + a_0,$$

where n is a nonnegative integer and a_0, \ldots, a_n are real constants.

Q. Why polynomials in interpolation?

Chapter 3 2 / 104

Weierstrass Approximation Theorem (cont'd)

Theorem 1 (Weierstrass Approximation Theorem)

Suppose that f is defined and continuous on [a,b]. For each $\epsilon>0$, there exists a polynomial P(x), with the property that

$$|f(x) - P(x)| < \epsilon$$
, for all x in $[a, b]$.

Q. How can we construct such polynomial?

Chapter 3 3 / 104

Taylor Polynomials for Interpolation

Q. How about Taylor polynomials?

Chapter 3 4 / 104

Taylor Polynomials for Interpolation (cont'd)

Ex. Consider Taylor polynomials about $x_0 = 0$ for $f(x) = e^x$

- $P_0(x) = 1$
- $P_1(x) = 1 + x$

•
$$P_5(x) = 1 + x + \frac{x^2}{2} + \frac{x^3}{6} + \frac{x^4}{24} + \frac{x^5}{120}$$

- The error becomes progressively worse as we move away from zero...
- The approximation improves with higher-degree, but not in general? Chapter 3

5 / 104

Taylor Polynomials for Interpolation (cont'd)

Ex. Taylor polynomials about $x_0 = 1$ for f(x) = 1/x to approximate f(3).

• Since $f^{(k)}(x) = (-1)^k k! x^{-k-1}$, the Taylor polynomials are

$$P_n(x) = \sum_{k=0}^n \frac{f^{(k)}(1)}{k!} (x-1)^k = \sum_{k=0}^n (-1)^k (x-1)^k.$$

• $P_n(3)$ for larger n provides more inaccurate approximations.

n	0	1	2	3	4	5	6	7
$P_n(3)$	1	-1	3	-5	11	-21	43	-85

• All the information used in the approximation by Taylor polynomials is concentrated at the single number x_0 .

Chapter 3 6 / 104

Lagrange Interpolating Polynomials

Q. How can we construct a polynomial of degree at most n that passes through the n+1 points?

$$(x_0, f(x_0)), (x_1, f(x_1)), \dots, (x_n, f(x_n)).$$

Chapter 3 7 / 104

- Q. How can we construct a polynomial of degree one that passes through the distinct points (x_0, y_0) and (x_1, y_1) ?
- Q. How can we approximate a function f for which $f(x_0) = y_0$ and $f(x_1) = y_1$ by a first-order polynomial?

Chapter 3 8 / 104

• The linear Lagrange interpolating polynomial through (x_0, y_0) and (x_1, y_1) is

$$P(x) = L_0(x)f(x_0) + L_1(x)f(x_1)$$

where

$$L_0(x) = \frac{x - x_1}{x_0 - x_1}$$
 and $L_1(x) = \frac{x - x_0}{x_1 - x_0}$.

• Note that $L_0(x_0)=1$, $L_1(x_0)=0$, and $L_0(x_1)=0$, $L_1(x_1)=1$, so $P(x_0)=y_0$ and $P(x_1)=y_1$.

Chapter 3 9 / 104

Ex. Determine the linear Lagrange interpolating polynomial that passes through the points $(x_0, y_0) = (2, 4)$ and $(x_1, y_1) = (5, 1)$.

Chapter 3 10 / 104

• Let's construct a polynomial of degree at most n that passes through the n+1 points?

$$(x_0, f(x_0)), (x_1, f(x_1)), \dots, (x_n, f(x_n)).$$

Chapter 3 11 / 104

• Let's first construct a function $L_{n,k}(x)$ for $k=0,1,\ldots,n$ that generalizes our previous choice $L_{1,0}(x)$ and $L_{1,1}(x)$. (We will omit n in $L_{n,k}$ when there is no confusion on its degree n.)

Q. Which property should we enforce?

Chapter 3 12 / 104

The *n*th Lagrange Interpolating Polynomial

Theorem 2

If x_0, x_1, \ldots, x_n are n+1 distinct numbers and f is a function whose values are given at these numbers, then a unique polynomial P(x) of degree at most n exists with

$$f(x_k) = P(x_k)$$
, for each $k = 0, 1, ..., n$.

This polynomial is given by

$$P(x) = \sum_{k=0}^{n} f(x_k) L_{n,k}(x),$$

where for each $k = 0, 1, \dots, n$,

$$L_{n,k}(x) = \frac{(x - x_0) \cdots (x - x_{k-1})(x - x_{k+1}) \cdots (x - x_n)}{(x_k - x_0) \cdots (x_k - x_{k-1})(x_k - x_{k+1}) \cdots (x_k - x_n)}$$
$$= \prod_{\substack{i=0\\i\neq k}}^{n} \frac{(x - x_i)}{(x_k - x_i)}.$$

Chapter 3 13 / 104

Ex. Find the second Lagrange interpolating polynomial for f(x)=1/x given $x_0=2,\ x_1=2.75,$ and $x_2=4.$ And approximate f(3)=1/3.

Chapter 3 14 / 104

Chapter 3 15 / 104

Error Term for Lagrange Interpolating Polynomial

Theorem 3

Suppose x_0, x_1, \ldots, x_n are distinct numbers in the interval [a,b] and $f \in C^{n+1}[a,b]$. Then, for each x in [a,b], a number $\xi(x)$ between the minimum and the maximum of $\{x_0,x_1,\ldots,x_n\}$, and hence in (a,b), exists with

$$f(x) = P(x) + \frac{f^{(n+1)}(\xi(x))}{(n+1)!}(x-x_0)(x-x_1)\cdots(x-x_n)$$

where P(x) is the nth Lagrange interpolating polynomial.

Proof. If $x=x_k$ for any $k=0,1,\ldots,n$, then $f(x_k)=P(x_k)$, and choosing $\xi(x_k)$ arbitrarily in (a,b) is enough.

If $x \neq x_k$, for all $k = 0, 1, \dots, n$, define the function g for $t \in [a, b]$ by

$$g(t) := f(t) - P(t) - [f(x) - P(x)] \prod_{i=0}^{n} \frac{(t - x_i)}{(x - x_i)}.$$

Chapter 3 16 / 104

Theorem 4 (Generalized Rolle's Theorem)

Suppose $f \in C[a,b]$ is n times differentiable on (a,b). If f(x)=0 at the n+1 distinct numbers $a \le x_0 < x_1 < \ldots < x_n \le b$, then a number c in (x_0,x_n) , and hence in (a,b), exists with $f^{(n)}(c)=0$.

Chapter 3 17 / 104

Proof. Since $f \in C^{n+1}[a,b]$, and $P \in C^{\infty}[a,b]$, it follows that $q \in C^{n+1}[a,b]$. We also have $q(x_k) = 0$ for k = 0, 1, ..., n and q(x) = 0.

By Generalized Rolle's Theorem, there exists a number ξ in (a,b) for which $q^{(n+1)}(\xi) = 0$, so

$$0 = g^{(n+1)}(\xi)$$

$$= f^{(n+1)}(\xi) - P^{(n+1)}(\xi) - [f(x) - P(x)] \frac{d^{n+1}}{dt^{n+1}} \left[\prod_{i=0}^{n} \frac{(t-x_i)}{(x-x_i)} \right]_{t=\xi}$$

$$= f^{(n+1)}(\xi) - 0 - [f(x) - P(x)] \frac{(n+1)!}{\prod_{i=0}^{n} (x-x_i)}$$

18 / 104

• Error term of nth Taylor polynomial about x_0 :

$$\frac{f^{(n+1)}(\xi(x))}{(n+1)!}(x-x_0)^{n+1}$$

• Error term of *n*th Lagrange polynomial:

$$\frac{f^{(n+1)}(\xi(x))}{(n+1)!}(x-x_0)(x-x_1)\cdots(x-x_n)$$

Chapter 3 19 / 104

Ex. Determine the error form and the maximum error (for $x \in [2,4]$) for the second Lagrange polynomial for f(x) = 1/x on [2,4] using the nodes $x_0 = 2$, $x_1 = 2.75$, and $x_2 = 4$.

Chapter 3 20 / 104

Ex. Consider preparing a table for $f(x) = e^x$, for $x \in [0,1]$. Assume that the difference between adjacent x-values, the step size, is h. Which h will ensure that linear interpolation gives an absolute error of at most 10^{-6} for all x in [0,1]?

Chapter 3 21 / 104

Q. Will a sequence of nth Lagrange polynomial $\{P_n\}$ converge to a continuous function f as $n \to \infty$?

Chapter 3 22 / 104

• If the following satisfies

$$\lim_{n \to \infty} \frac{\max_{\xi \in (a,b)} |f^{(n+1)}(\xi)|}{(n+1)!} \max_{x \in [a,b]} |(x-x_0)(x-x_1) \cdots (x-x_n)| = 0,$$

we have

$$\lim_{n \to \infty} \max_{x \in [a,b]} |f(x) - P_n(x)| = 0.$$

Chapter 3 23 / 104

Runge Phenomenon

• Consider the sequence of the Lagrange interpolating polynomials $\{P_n(x)\}$ with equally spaced points on [-5,5]

$$x_i = -5 + \frac{10i}{n}, \quad i = 0, \dots, n$$

to

$$f(x) = \frac{1}{1+x^2}, \quad x \in [-5, 5].$$

er 3 24 / 104

Runge Phenomenon (cont'd)

- Table: $\max_{x \in [-5,5]} |f(x) P_n(x)|$
- Solid line: $f(x) = \frac{1}{1+x^2}$, Dotted line: $P_{10}(x)$

Degree n	Max error
2	0.65
4	0.44
6	0.61
8	1.04
10	1.92
12	3.66
14	7.15
16	14.25
18	28.74
20	58.59
22	121.02
24	252.78

Q. Can we do better?

Chapter 3 25 / 104

- 1 3.1 Interpolation and the Lagrange Polynomial
- 2 3.2 Data Approximation and Neville's Method
- 3.3 Divided Differences
- 4 3.4 Hermite Interpolation
- 5 3.5 Cubic Spline Interploation
- 6 3.6 Parametric Curves

Data Approximation

- Lagrange polynomials are frequently used when interpolating tabulated data
- In such case, only the values of the polynomial at specified points are needed (rather than an explicit form of the polynomial).
- Also, the function underlying the data might be unknown, so the explicit form of the error cannot be used.

r 3 26 / 104

Ex. Given values of a function f at various points, provide approximations to f(1.5) by various Lagrange polynomials.

x	f(x)
1.0	0.7651977
1.3	0.6200860
1.6	0.4554022
1.9	0.2818186
2.2	0.1103623

Chapter 3 27 / 104

• The most appropriate linear polynomial uses $x_0 = 1.3$ and $x_1 = 1.6$, which gives

$$P_1(1.5) = \frac{1.5 - 1.6}{1.3 - 1.6} f(1.3) + \frac{1.5 - 1.3}{1.6 - 1.3} f(1.6) = 0.5102968.$$

Chapter 3 28 / 104

• Two polynomials of degree 2 can reasonably used, one with $x_0=1.3$, $x_1=1.6$ and $x_2=1.9$:

$$P_2(1.5) = \frac{(1.5 - 1.6)(1.5 - 1.9)}{(1.3 - 1.6)(1.3 - 1.9)} f(1.3) + \frac{(1.5 - 1.3)(1.5 - 1.9)}{(1.6 - 1.3)(1.6 - 1.9)} f(1.6) + \frac{(1.5 - 1.3)(1.5 - 1.6)}{(1.9 - 1.3)(1.9 - 1.6)} f(1.9) = 0.5112857,$$

and one with $x_0 = 1.0$, $x_1 = 1.3$, $x_2 = 1.6$ yielding $\hat{P}_2(1.5) = 0.5124715$.

Third-degree case:

$$x_0=1.3,\ x_1=1.6,\ x_2=1.9,\ x_3=2.2$$
 gives $P_3(1.5)=0.5118302.$ $x_0=1.0,\ x_1=1.3,\ x_2=1.6,\ x_3=1.9$ gives $\hat{P}_3(1.5)=0.5118127.$

• Fourth-degree case: $x_0 = 1.0$, $x_1 = 1.3$, $x_2 = 1.6$, $x_3 = 1.9$, $x_4 = 2.2$ gives $P_4(1.5) = 0.5118200$.

Chapter 3 29 / 104

- Since $P_3(1.5) = 0.5118302$, $\hat{P}_3(1.5) = 0.5118127$, $P_4(1.5) = 0.5118200$ all agree to within 2×10^{-5} , we expect this degree of accuracy for these approximations.
- We also expect $P_4(1.5)$ to be the most accurate approximations, since it uses more data.

3 30 / 104

• The function f we are approximating has f(1.5) = 0.5118277, so true accuracies are

$$|P_1(1.5) - f(1.5)| \approx 1.53 \times 10^{-3},$$

$$|P_2(1.5) - f(1.5)| \approx 5.42 \times 10^{-4},$$

$$|\hat{P}_2(1.5) - f(1.5)| \approx 6.44 \times 10^{-5},$$

$$|P_3(1.5) - f(1.5)| \approx 2.5 \times 10^{-6},$$

$$|\hat{P}_3(1.5) - f(1.5)| \approx 1.50 \times 10^{-5},$$

$$|P_4(1.5) - f(1.5)| \approx 7.7 \times 10^{-6}.$$

ullet We have no knowledge of the fourth derivative of f, so the Lagrange error term cannot be computed.

Chapter 3 31 / 104

Neville's Method

- Error term is difficult to apply, so the degree of the polynomial needed for the desired accuracy is generally not known.
- A common practice is to compute the results from various polynomials until appropriate agreement is obtained.
- Q. Can we do this efficiently?

Chapter 3 32 / 104

Neville's Method (cont'd)

Definition 1

Let f be a function defined at $x_0, x_1, x_2, \ldots, x_n$, and suppose that m_1, m_2, \ldots, m_k are k distinct integers, with $0 \le m_i \le n$ for each i. The Lagrange polynomial that agrees with f(x) at the k points $x_{m_1}, x_{m_2}, \ldots, x_{m_k}$ is denoted $P_{m_1, m_2, \ldots, m_k}(x)$.

Ex. Suppose that $x_0 = 1$, $x_1 = 2$, $x_2 = 3$, $x_3 = 4$, $x_4 = 6$, and $f(x) = e^x$. Determine the interpolating polynomial denoted $P_{1,2,4}(x)$, and use this polynomial to approximate f(5).

Chapter 3 33 / 104

Theorem 5

Let f be defined at x_0, x_1, \ldots, x_k and let x_j and x_i be two distinct numbers in this set. Then

$$P(x) = \frac{(x - x_j)P_{0,1,\dots,j-1,j+1,\dots,k}(x) - (x - x_i)P_{0,1,\dots,i-1,i+1,\dots,k}(x)}{x_i - x_j}$$

is the kth Lagrange polynomial that interpolates f at the k+1 points x_0, x_1, \ldots, x_k (i.e., $P(x) = P_{0,1,\ldots,k}(x)$).

Proof. For simplicity, let $Q_i \equiv P_{0,1,\dots,i-1,i+1,\dots,k}$ and $Q_j \equiv P_{0,1,\dots,j-1,j+1,\dots,k}$. Since $Q_i(x)$ and $Q_j(x)$ are polynomials of degree k-1 or less, P(x) is of degree at most k.

Chapter 3 34 / 104

Proof. Using $Q_j(x_i) = f(x_i)$, we have

$$P(x_i) = \frac{(x_i - x_j)Q_j(x_i) - (x_i - x_i)Q_i(x_i)}{x_i - x_j} = f(x_i).$$

Similarly. since $Q_i(x_j) = f(x_j)$, we have $P(x_j) = f(x_j)$.

In addition, if $0 \le r \le k$ and r is neither i nor j, then

$$Q_i(x_r) = Q_j(x_r) = f(x_r)$$
. So

$$P(x_r) = \frac{(x_r - x_j)Q_j(x_r) - (x_r - x_i)Q_i(x_r)}{x_i - x_j} = f(x_r).$$

By definition, $P_{0,1,...,k}(x)$ is the unique polynomial of degree at most k that agrees with f at $x_0, x_1, ..., x_k$, so $P \equiv P_{0,1,...,k}$.

Chapter 3 35 / 104

Ex. Interpolating polynomials can be generated recursively, for example

$$P_{0,1} = \frac{(x - x_0)P_1 - (x - x_1)P_0}{x_1 - x_0}$$

$$P_{1,2} = \frac{(x - x_1)P_2 - (x - x_2)P_1}{x_2 - x_1}$$

and

$$P_{0,1,2} = \frac{(x - x_0)P_{1,2} - (x - x_2)P_{0,1}}{x_2 - x_0}$$

Chapter 3 36 / 104

Neville's method: recursively generate interpolating polynomial approximations

<i>x</i> ₀	P_0				
x_1	P_1	$P_{0,1}$			
x_2	P_2	$P_{1,2}$	$P_{0,1,2}$		
x_3	P_3	$P_{2,3}$	$P_{1,2,3}$	$P_{0,1,2,3}$	
x_4	P_4	$P_{3,4}$	$P_{2,3,4}$	$P_{1,2,3,4}$	$P_{0,1,2,3,4}$

Chapter 3 37 / 104

The notation can be simplified by introducing

$$Q_{i,j} = P_{i-j,i-j+1,...,i-1,i}$$
 for $0 \le j \le i$,

which denotes the interpolating polynomial of degree i on the (i+1)numbers $x_{i-j}, x_{i-j+1}, \ldots, x_i$.

Then.

$$Q_{i,j} = \frac{(x - x_{i-j})Q_{i,j-1} - (x - x_i)Q_{i-1,j-1}}{(x_i - x_{i-j})}.$$

```
P_0 = Q_{00}
x_0
          P_1 = Q_{1.0}
                              P_{0.1} = Q_{1.1}
x_1
          P_2 = Q_{2.0}
                          P_{1,2} = Q_{2,1}
                                                       P_{0.1.2} = Q_{2.2}
x_2
                         P_{23} = Q_{31}
                                                       P_{123} = Q_{32}
           P_3 = Q_{30}
                                                                                P_{0123} = Q_{33}
\chi_2
x_4
           P_4 = Q_{4,0}
                             P_{3.4} = Q_{4.1}
                                                       P_{2,3,4} = Q_{4,2}
                                                                               P_{1,2,3,4} = Q_{4,3}
                                                                                                          P_{0.1,2,3,4} = Q_{4,4}
```

Chapter 3 38 / 104

Ex. The table lists the values of $f(x) = \ln x$ at given points. Use Neville's method and four-digit rounding arithmetic to approximate f(2.1).

i	x_i	$\ln x_i$
0	2.0	0.6931
1	2.2	0.7885
2	2.3	0.8329

Sol. Using
$$x-x_0=0.1,\ x-x_1=-0.1,\ x-x_2=-0.2$$
 and $Q_{0,0}=0.6931,\ Q_{1,0}=0.7885,\ Q_{2,0}=0.8329,$ we have

$$Q_{1,1} = \frac{1}{0.2}[(0.1)0.7885 - (-0.1)0.6931] = \frac{0.1482}{0.2} = 0.7410$$

$$Q_{2,1} = \frac{1}{0.1}[(0.1)0.8329 - (-0.2)0.7885] = \frac{0.07441}{0.1} = 0.7441$$

and

$$Q_{2,2} = \frac{1}{0.3}[(0.1)0.7441 - (-0.2)0.7410] = \frac{0.2276}{0.3} = 0.7420.$$

Chapter 3 39 / 104

• We know $f(2.1) = \ln 2.1 = 0.7419$ to four decimal places, so the absolute error is

$$|f(2.1) - P_2(2.1)| = |0.7419 - 0.7420| = 10^{-4}.$$

The Lagrange error formula gives

$$|f(2.1) - P_2(2.1)| = \left| \frac{f'''(\xi(2.1))}{3!} (x - x_0)(x - x_1)(x - x_2) \right|$$

Chapter 3 40 / 104

- 1 3.1 Interpolation and the Lagrange Polynomial
- 2 3.2 Data Approximation and Neville's Method
- 3 3.3 Divided Differences
- 4 3.4 Hermite Interpolation
- 5 3.5 Cubic Spline Interploation
- 6 3.6 Parametric Curves

Neville's Method vs. Divided Difference Method

- Neville's method: successively generates $P_n(x)$ for a fixed x.
- Divided difference method: successively generates the Lagrange polynomials themselves.

Chapter 3 41 / 104

Alternate Representation of Lagrange Polynomial

• Although the Lagrange interpolating polynomial $P_n(x)$ is unique, there are alternate representations that are useful in certain situations, *e.g.*,

$$P_n(x) = a_0 + a_1(x - x_0) + a_2(x - x_0)(x - x_1) + \dots + a_n(x - x_0) \dots (x - x_{n-1}).$$

Q. How can we determine the constants a_0, a_1, \ldots, a_n ?

Chapter 3 42 / 104

Alternate Representation of Lagrange Polynomial (cont'd)

• Evaluating $P_n(x)$ at x_0 yields

$$a_0 = P_n(x_0) = f(x_0).$$

• Evaluating $P_n(x)$ at x_1 yields

$$f(x_0) + a_1(x_1 - x_0) = P_n(x_1) = f(x_1),$$

SO

$$a_1 = \frac{f(x_1) - f(x_0)}{x_1 - x_0}.$$

Chapter 3 43 / 104

Divided Difference

ullet The zeroth divided difference of f with respect to x_i is defined as

$$f[x_i] = f(x_i)$$

• The first divided difference of f with respect to x_i and x_{i+1} is defined as

$$f[x_i, x_{i+1}] = \frac{f[x_{i+1}] - f[x_i]}{x_{i+1} - x_i}.$$

The second divided difference is defined as

$$f[x_i, x_{i+1}, x_{i+2}] = \frac{f[x_{i+1}, x_{i+2}] - f[x_i, x_{i+1}]}{x_{i+2} - x_i}.$$

• Then kth divided difference relative to $x_i, x_{i+1}, \dots, x_{i+k}$ is defined as

$$f[x_i, x_{i+1}, \dots, x_{i+k}] = \frac{f[x_{i+1}, x_{i+2}, \dots, x_{i+k}] - f[x_i, x_{i+1}, \dots, x_{i+k-1}]}{x_{i+k} - x_i}.$$

• This ends with the single *n*th divided difference.

Chapter 3 44 / 104

Newton's Divided Difference

• We have that $a_k = f[x_0, x_1, \dots, x_k]$, and thus $P_n(x)$ can be rewritten in a form called Newton's Divided Difference:

$$P_n(x) = f[x_0] + \sum_{k=1}^n f[x_0, x_1, \dots, x_k](x - x_0) \cdots (x - x_{k-1})$$

 $f[x_0, x_1, \dots, x_k]$ is independent of the order of x_0, x_1, \dots, x_k .

Chapter 3 45 / 104

Newton's Divided Difference (cont'd)

x	f(x)	First divided differences	Second divided differences	Third divided differences
<i>x</i> ₀	$f[x_0]$	$f[x_0, x_1] = \frac{f[x_1] - f[x_0]}{x_1 - x_0}$		
x 1	$f[x_1]$	$f[x_1, x_2] = \frac{f[x_2] - f[x_1]}{x_1 - x_2}$	$f[x_0, x_1, x_2] = \frac{f[x_1, x_2] - f[x_0, x_1]}{x_2 - x_0}$	$f[x_0, x_1, x_2, x_3] = \frac{f[x_1, x_2, x_3] - f[x_0, x_1, x_2]}{x_1 - x_2}$
<i>x</i> ₂	$f[x_2]$	x2 - x1	$f[x_1, x_2, x_3] = \frac{f[x_2, x_3] - f[x_1, x_2]}{x_3 - x_1}$	73 70
<i>x</i> ₁	$f[x_3]$	$f[x_2, x_3] = \frac{f[x_3] - f[x_2]}{x_3 - x_2}$	$f[x_2, x_3, x_4] = \frac{f[x_3, x_4] - f[x_2, x_3]}{f[x_2, x_3]}$	$f[x_1, x_2, x_3, x_4] = \frac{f[x_2, x_3, x_4] - f[x_1, x_2, x_3]}{x_4 - x_1}$
-	,,,,	$f[x_3, x_4] = \frac{f[x_4] - f[x_3]}{x_4 - x_3}$	$x_4 - x_2$	$f[x_2, x_3, x_4, x_5] = \frac{f[x_3, x_4, x_5] - f[x_2, x_3, x_4]}{x_5 - x_2}$
<i>x</i> ₄	$f[x_4]$	$f[x_4, x_5] = \frac{f[x_5] - f[x_4]}{f[x_5] - f[x_4]}$	$f[x_3, x_4, x_5] = \frac{f[x_4, x_5] - f[x_3, x_4]}{x_5 - x_3}$	
Х5	$f[x_3]$	$x_5 - x_4$		

Chapter 3 46 / 104

Generalized Mean Value Theorem

By the Mean Value Theorem,

$$f[x_0, x_1] = \frac{f(x_1) - f(x_0)}{x_1 - x_0}$$

implies that when f' exists, $f[x_0,x_1]=f'(\xi)$ for some number ξ between x_0 and x_1 .

Theorem 6 (Generalized Mean Value Theorem)

Suppose that $f \in C^n[a,b]$ and x_0, x_1, \ldots, x_n are distinct numbers in [a,b]. Then a number ξ exists in (a,b) with

$$f[x_0, x_1, \dots, x_n] = \frac{f^{(n)}(\xi)}{n!}.$$

Q. What do we have here?

Chapter 3 47 / 104

Generalized Mean Value Theorem

Proof Let
$$g(x) := f(x) - P_n(x)$$
.

Theorem 7 (Generalized Rolle's Theorem)

Suppose $f \in C[a,b]$ is n times differentiable on (a,b). If f(x)=0 at the n+1 distinct numbers $a \leq x_0 < x_1 < \cdots < x_n \leq b$, then a number c in (x_0,x_n) and hence in (a,b) exists with $f^{(n)}(c)=0$.

Chapter 3 48 / 104

Newton's Divided-Difference with Equal Spacing

• Consider the case when the nodes are equally spaced, i.e.,

$$h = x_{i+1} - x_i$$
 for each $i = 0, 1, \dots, n-1$.

• Let $x = x_0 + sh$, then $x - x_i = (s - i)h$, so

$$P_n(x) = P_n(x_0 + sh) = ?$$

Chapter 3 49 / 104

Newton Forward-Difference Formula

 Newton forward-difference formula is constructed by using the forward difference notation Δ:

$$f[x_0, x_1] = \frac{f(x_1) - f(x_0)}{x_1 - x_0} = \frac{1}{h} \Delta f(x_0)$$
$$f[x_0, x_1, x_2] = \frac{f[x_1, x_2] - f[x_0, x_1]}{x_2 - x_0} = ?$$

In general,

$$f[x_0, x_1, \dots, x_k] = \frac{1}{k!h^k} \Delta^k f(x_0)$$

and thus

$$P_n(x) = f(x_0) + \sum_{k=1}^{n} {s \choose k} \Delta^k f(x_0).$$

Chapter 3 50 / 104

Newton Backward-Difference Formula

• Consider the reordered $x_n, x_{n-1}, \ldots, x_0$, then we have

$$P_n(x) = f[x_n] + f[x_n, x_{n-1}](x - x_n) + \dots + f[x_n, \dots, x_0](x - x_n)(x - x_{n-1}) \dots (x - x_1).$$

- Let $x = x_n + sh$, then $x x_i = (s + n i)h$.
- By defining the backward difference ∇p_n (read *nabla* p_n) by

$$\nabla p_n = p_n - p_{n-1},$$

we have

$$f[x_n, x_{n-1}, \dots, x_{n-k}] = \frac{1}{k!h^k} \nabla^k f(x_n)$$

and thus

$$P_n(x) = f[x_n] + \sum_{k=1}^{n} (-1)^k \binom{-s}{k} \nabla^k f(x_n).$$

Chapter 3 51 / 104

Newton Difference: Forward and Backward

x	f(x)	First divided differences	Second divided differences	Third divided differences
<i>x</i> ₀	$f[x_0]$	$f[x_0, x_1] = \frac{f[x_1] - f[x_0]}{x_1 - x_2}$		
<i>x</i> ₁	$f[x_1]$	$x_1 - x_0$	$f[x_0, x_1, x_2] = \frac{f[x_1, x_2] - f[x_0, x_1]}{x_2 - x_0}$	$f[x_1, x_2, x_3] - f[x_0, x_1, x_2]$
<i>x</i> ₂	$f[x_2]$	$f[x_1, x_2] = \frac{f[x_2] - f[x_1]}{x_2 - x_1}$	$f[x_1, x_2, x_3] = \frac{f[x_2, x_3] - f[x_1, x_2]}{x_3 - x_1}$	$f[x_0, x_1, x_2, x_3] = \frac{f[x_1, x_2, x_3] - f[x_0, x_1, x_2]}{x_3 - x_0}$
<i>x</i> ₃	$f[x_3]$	$f[x_2, x_3] = \frac{f[x_3] - f[x_2]}{x_3 - x_2}$	$f[x_2, x_3, x_4] = \frac{f[x_3, x_4] - f[x_2, x_3]}{x_4 - x_2}$	$f[x_1, x_2, x_3, x_4] = \frac{f[x_2, x_3, x_4] - f[x_1, x_2, x_3]}{x_4 - x_1}$
<i>x</i> ₄	$f[x_4]$	$f[x_3, x_4] = \frac{f[x_4] - f[x_3]}{x_4 - x_3}$	$f[x_3, x_4, x_5] = \frac{f[x_4, x_5] - f[x_3, x_4]}{x_5 - x_5}$	$f[x_2, x_3, x_4, x_5] = \frac{f[x_3, x_4, x_5] - f[x_2, x_3, x_4, x_5]}{x_5 - x_2}$
X5	$f[x_3]$	$f[x_4, x_5] = \frac{f[x_5] - f[x_4]}{x_5 - x_4}$	A3 — A3	

Q. Why do we care forward and backward?

Chapter 3 52 / 104

Newton Difference: Forward and Backward (cont'd)

		First divided differences	Second divided differences	Third divided differences	Fourth divided differences
1.0	0.7651977				
		-0.4837057			
1.3	0.6200860		-0.1087339		
		-0.5489460		0.0658784	
1.6	0.4554022		-0.0494433		0.0018251
		-0.5786120		0.0680685	
1.9	0.2818186		0.0118183		
		-0.5715210			
2.2	0.1103623				

• Approximate f(1.1): consider the earliest use of points closest to x=1.1. Newton forward divided-difference uses those with a *solid* underline

$$P_4(1.1) = P_4(1.0 + \frac{1}{3}0.3) = 0.7651977 + \frac{1}{3}(0.3)(-0.4837057) + \dots + \frac{1}{3}\left(-\frac{2}{3}\right)\left(-\frac{5}{3}\right)\left(-\frac{8}{3}\right)(0.3)^4(0.0018251)$$

• Approximate f(2.0): Newton backward uses those with a wavy underline.

Chapter 3 53 / 104

Centered Differences

- We noticed that Newton forward- and backward-difference formulas may not be appropriate for x near the center of the table.
- Stirling's formula (one of centered-difference formulas): If n = m + 1 is odd.

$$P_n(x) = P_{2m+1}(x) = f[x_0] + \frac{sh}{2}(f[x_{-1}, x_0] + f[x_0, x_1])$$

$$+ \dots + \frac{s(s^2 - 1) \dots (s^2 - m^2)h^{2m+1}}{2}(f[x_{-m-1}, \dots, x_m] + f[x_{-m}, \dots, x_{m+1}])$$

x	f(x)	First divided differences	Second divided differences	Third divided differences	Fourth divided differences
x_2	$f[x_{-2}]$				
		$f[x_{-2}, x_{-1}]$			
x_{-1}	$f[x_{-1}]$		$f[x_{-2}, x_{-1}, x_0]$		
		$f[x_{-1}, x_0]$		$f[x_{-2}, x_{-1}, x_0, x_1]$	
x_0	$f[x_0]$		$f[x_{-1}, x_0, x_1]$		$f[x_{-2}, x_{-1}, x_0, x_1, x_0]$
		$f[x_0, x_1]$		$f[x_{-1}, x_0, x_1, x_2]$	
x_1	$f[x_1]$		$f[x_0, x_1, x_2]$		
		$f[x_1, x_2]$			
x_2	$f[x_2]$				

Chapter 3 54 / 104

- 1 3.1 Interpolation and the Lagrange Polynomial
- 2 3.2 Data Approximation and Neville's Method
- 3.3 Divided Differences
- 4 3.4 Hermite Interpolation
- 5 3.5 Cubic Spline Interploation
- 6 3.6 Parametric Curves

Taylor and Lagrange Polynomials

ullet Taylor polynomials: degree at most m

$$\frac{d^k P(x_0)}{dx^k} = \frac{d^k f(x_0)}{dx^k}, \quad k = 0, \dots, m$$

ullet Lagrange polynomials: degree at most n

$$P(x_i) = f(x_i), \quad i = 0, \dots, n$$

Osculating polynomials: ?

Chapter 3 55 / 104

Osculating Polynomials

Definition 2

Let x_0, x_1, \ldots, x_n be n+1 distinct numbers in [a,b] and for $i=0,1,\ldots,n$ let m_i be a nonnegative integer. Suppose that $f\in C^m[a,b]$, where $m=\max_{0\leq i\leq n}m_i$. The osculating polynomial approximating f is the polynomial P(x) of least degree such that

$$\frac{d^k P(x_i)}{dx^k} = \frac{d^k f(x_i)}{dx^k}, \quad \text{for each } i = 0, 1, \dots, n, \quad \text{and} \quad k = 0, 1, \dots, m_i.$$

- m_0 th Taylor polynomials for f at x_0 : ?
- nth Lagrange polynomials for f on x_0, x_1, \ldots, x_n : ?
- Hermite polynomials for f on x_0, x_1, \ldots, x_n : ?

Chapter 3 56 / 104

Hermite Polynomials

• Hermite Polynomials:

$$\frac{d^k P(x_i)}{dx^k} = \frac{d^k f(x_i)}{dx^k}, \quad i = 0, \dots, n, \ k = 0, 1$$

have the "shape" as the function at $(x_i, f(x_i))$ in the sense that the tangent lines to the polynomial and the function agree.

- Construction of Hermite polynomials: degree at most ?
- Uniqueness and the error formula of Hermite polynomials

er 3 57 / 104

Recall: Uniqueness of Lagrange Polynomials

• Consider $P(x)=a_0+a_1x+a_2x^2+\cdots+a_nx^n$ that satisfies $P(x_i)=y_i$ for $i=0,1,\ldots,n$. Then a_0,\ldots,a_n satisfy $a_0+a_1x_0+a_2x_0^2+\cdots+a_nx_0^n=y_0,$ $a_0+a_1x_1+a_2x_1^2+\cdots+a_nx_1^n=y_1,$ \vdots $a_0+a_1x_n+a_2x_n^2+\cdots+a_nx_n^n=y_n.$

3 58 / 104

Recall: Uniqueness of Lagrange Polynomials (cont'd)

ullet a_0,\ldots,a_n are uniquely determined when the following Vandermonde matrix

$$\begin{pmatrix} 1 & x_0 & x_0^2 & \cdots & x_0^n \\ 1 & x_1 & x_1^2 & \cdots & x_1^n \\ \vdots & \vdots & \vdots & & \vdots \\ 1 & x_n & x_n^2 & \cdots & x_n^n \end{pmatrix}$$

is non-singular.

The Vandermonde determinant

$$\det\{V\} = \prod_{0 \le i < j \le n} (x_j - x_i)$$

is nonzero if all points are distinct.

Chapter 3 59 / 104

Hermite Polynomials (cont'd)

Theorem 8

If $f \in C^1[a,b]$ and $x_0, \ldots, x_n \in [a,b]$ are distinct, the unique polynomial of least degree agreeing with f and f' at x_0, \ldots, x_n is the Hermite polynomial of degree at most 2n+1 given by

$$H_{2n+1}(x) = \sum_{j=0}^{n} f(x_j) H_{n,j}(x) + \sum_{j=0}^{n} f'(x_j) \hat{H}_{n,j}(x)$$

where, for $L_{n,j}(x)$ denoting the jth Lagrange coefficient polynomial of degree n, we have

$$H_{n,j}(x) = [1 - 2(x - x_j)L'_{n,j}(x_j)]L^2_{n,j}(x)$$
 and $\hat{H}_{n,j}(x) = (x - x_j)L^2_{n,j}(x)$.

Moreover, if $f \in C^{2n+2}[a,b]$, then

$$f(x) = H_{2n+1}(x) + \frac{(x-x_0)^2 \cdots (x-x_n)^2}{(2n+2)!} f^{(2n+2)}(\xi(x)),$$

for some (generally unknown) $\xi(x)$ in the interval (a,b).

Chapter 3 60 / 104

Hermite Polynomials (cont'd)

Proof.

- $H_{2n+1}(x_i) = f(x_i)$
- $H'_{2n+1}(x_i) = f'(x_i)$
- Uniqueness
- Error formula (Exercise 11)

r 3 61 / 104

$$H_{2n+1}(x_i) = f(x_i)$$
 of Hermite Polynomials

Proof. Recall
$$L_{n,j}(x_i) = \begin{cases} 0, & i \neq j, \\ 1, & i = j. \end{cases}$$

Chapter 3 62 / 104

$$H'_{2n+1}(x_i) = f'(x_i)$$
 of Hermite Polynomials

Proof. We have

$$\begin{split} H'_{n,j}(x_i) &= -2L'_{n,j}(x_j)L^2_{n,j}(x_i) + \left[1 - 2(x_i - x_j)L'_{n,j}(x_j)\right] \cdot 2L_{n,j}(x_i)L'_{n,j}(x_i) \\ &= L_{n,j}(x_i)\left[-2L'_{n,j}(x_j)L_{n,j}(x_i) + \left[1 - 2(x_i - x_j)L'_{n,j}(x_j)\right] \cdot 2L'_{n,j}(x_i)\right]. \end{split}$$

Hence, $H'_{n,j}(x_i) = 0$ when $i \neq j$. When i = j, we have $L_{n,i}(x_i) = 1$, so

$$H'_{n,i}(x_i) = ?$$

Finally,

$$\hat{H}'_{n,j}(x_i) = L^2_{n,j}(x_i) + (x_i - x_j)2L_{n,j}(x_i)L'_{n,j}(x_i)$$

= $L_{n,j}(x_i)[L_{n,j}(x_i) + 2(x_i - x_j)L'_{n,j}(x_i)],$

so
$$\hat{H}'_{n,j}(x_i)=0$$
 if $i\neq j$ and $\hat{H}'_{n,i}(x_i)=1$, yielding $H'_{2n+1}(x_i)=f'(x_i)$.

Chapter 3 63 / 104

Uniqueness of Hermite Polynomials

Proof. Consider $P(x) = a_0 + a_1x + a_2x^2 + \cdots + a_{2n+1}x^{2n+1}$ that satisfies $P(x_i) = y_i$ and $P'(x_i) = z_i$ for $i = 0, 1, \dots, n$.

• Then a_0, \ldots, a_n satisfy

$$a_0 + a_1 x_0 + \dots + a_{2n+1} x_0^{2n+1} = y_0, \quad a_1 + 2a_2 x_0 + \dots + (2n+1) a_n x_0^{2n} = z_0,$$

$$\vdots$$

$$a_0 + a_1 x_n + \dots + a_{2n+1} x_n^{2n+1} = y_n, \quad a_1 + 2a_2 x_n + \dots + (2n+1) a_n x_n^{2n} = z_n.$$

• a_0, \ldots, a_n are uniquely determined when the following is non-singular.

$$\begin{pmatrix} 1 & x_0 & x_0^2 & \cdots & x_0^{2n+1} \\ \vdots & \vdots & \vdots & & \vdots \\ 1 & x_n & x_n^2 & \cdots & x_n^{2n+1} \\ 0 & 1 & 2x_0 & \cdots & (2n+1)x_0^{2n} \\ \vdots & \vdots & \vdots & & \vdots \\ 0 & 1 & 2x_n & \cdots & (2n+1)x_n^{2n} \end{pmatrix}$$

Chapter 3 64 / 104

Example of Hermite Polynomials

Ex. Construct a cubic polynomial H_3 such that

$$H_3(0) = 0$$
, $H_3(1) = 1$, $H'_3(0) = 1$, and $H'_3(1) = 0$.

Chapter 3 65 / 104

Hermite Polynomials Using Divided Differences

• Recall: Newton's divided-difference formula

$$P_n(x) = f[x_0] + \sum_{k=1}^n f[x_0, x_1, \dots, x_k](x - x_0) \cdots (x - x_{k-1}),$$

where

$$f[x_0, x_1, \dots, x_k] = \frac{f[x_1, x_2, \dots, x_k] - f[x_0, x_1, \dots, x_{n-1}]}{x_k - x_0}.$$

• Define a new sequence $\{z_i\}_{i=0}^{2n+1}$ by

$$z_{2i} = z_{2i+1} = x_i, \quad i = 0, 1, \dots, n.$$

and construct the Hermite polynomial

$$H_{2n+1}(x) = f[z_0] + \sum_{k=1}^{2n+1} f[z_0, \dots, z_k](x-z_0) \cdots (x-z_{k-1}).$$

Chapter 3 66 / 104

Hermite Polynomials Using Divided Differences (cont'd)

• Let $f[z_{2i}, z_{2i+1}] = f[x_i, x_i] = f'(x_i)$.

z	f(z)	First divided differences	Second divided differences
$z_0 = x_0$	$f[z_0] = f(x_0)$	er 7 et/)	
		$f[z_0,z_1]=f'(x_0)$	$f[\tau_1, \tau_2] = f[\tau_2, \tau_2]$
$z_1 = x_0$	$f[z_1] = f(x_0)$		$f[z_0, z_1, z_2] = \frac{f[z_1, z_2] - f[z_0, z_1]}{z_2 - z_0}$
		$f[z_1, z_2] = \frac{f[z_2] - f[z_1]}{z_2 - z_1}$	$z_2 - z_0$
		$f[z_1, z_2] = {z_2 - z_1}$	(f1 (f1
$z_2 = x_1$	$f[z_2] = f(x_1)$		$f[z_1, z_2, z_3] = \frac{f[z_2, z_3] - f[z_1, z_2]}{z_3 - z_1}$
		$f[z_2, z_3] = f'(x_1)$	$z_3 - z_1$
$z_3 = x_1$	$f[z_3] = f(x_1)$	J 1-27-31 J (-1)	$f[z_2, z_3, z_4] = \frac{f[z_3, z_4] - f[z_2, z_3]}{z_4 - z_2}$
$L_3 - \lambda_1$	$f(x_3) = f(x_1)$	fra 1 fra 1	$J[z_2, z_3, z_4] = - z_4 - z_2$
		$f[z_3, z_4] = \frac{f[z_4] - f[z_3]}{z_4 - z_3}$	
	f(= 1	24 - 23	$f[z_4, z_5] - f[z_3, z_4]$
$z_4 = x_2$	$f[z_4] = f(x_2)$		$f[z_3, z_4, z_5] = \frac{f[z_4, z_5] - f[z_3, z_4]}{z_5 - z_3}$
		$f[z_4,z_5]=f'(x_2)$	
$z_5 = x_2$	$f[z_5] = f(x_2)$		

Chapter 3 67 / 104

Hermite Polynomials Using Divided Differences (cont'd)

Ex. Use the Hermite polynomial that agrees with the data to find an approximation of f(1.5).

k	x_k	$f(x_k)$	$f'(x_k)$	
0	1.3	0.6200860	-0.5220232	
1	1.6	0.4554022	-0.5698959	
2	1.9	0.2818186	-0.5811571	

1.3	0.6200860					
_		-0.5220232				
1.3	0.6200860		-0.0897427			
		-0.5489460		0.0663657		
1.6	0.4554022		-0.0698330		0.0026663	
		-0.5698959		0.0679655		-0.0027738
1.6	0.4554022		-0.0290537		0.0010020	
		-0.5786120		0.0685667		
1.9	0.2818186		-0.0084837			
		-0.5811571				
1.9	0.2818186					

Chapter 3 68 / 104

Hermite Polynomials Using Divided Differences (cont'd)

Hermite Interpolation

To obtain the coefficients of the Hermite interpolating polynomial H(x) on the (n + 1) distinct numbers x_0, \ldots, x_n for the function f:

INPUT numbers
$$x_0, x_1, \ldots, x_n$$
; values $f(x_0), \ldots, f(x_n)$ and $f'(x_0), \ldots, f'(x_n)$.

OUTPUT the numbers $Q_{0,0}, Q_{1,1}, \dots, Q_{2n+1,2n+1}$ where

$$\begin{split} H(x) &= Q_{0,0} + Q_{1,1}(x-x_0) + Q_{2,2}(x-x_0)^2 + Q_{3,3}(x-x_0)^2(x-x_1) \\ &+ Q_{4,4}(x-x_0)^2(x-x_1)^2 + \cdots \\ &+ Q_{2n+1,2n+1}(x-x_0)^2(x-x_1)^2 \cdots (x-x_{n-1})^2(x-x_n). \end{split}$$

Step 1 For i = 0, 1, ..., n do Steps 2 and 3.

Step 2 Set
$$z_{2i} = x_i$$
;
 $z_{2i+1} = x_i$;
 $Q_{2i,0} = f(x_i)$;
 $Q_{2i+1,0} = f(x_i)$;
 $Q_{2i+1,1} = f'(x_i)$.

Step 3 If $i \neq 0$ then set

$$Q_{2i,1} = \frac{Q_{2i,0} - Q_{2i-1,0}}{z_{2i} - z_{2i-1}}.$$

Step 4 For
$$i = 2, 3, ..., 2n + 1$$

for $j = 2, 3, ..., i$ set $Q_{i,j} = \frac{Q_{i,j-1} - Q_{i-1,j-1}}{2i-2i-2i}$.

Step 5 OUTPUT
$$(Q_{0,0}, Q_{1,1}, \dots, Q_{2n+1,2n+1})$$
;
STOP

Chapter 3 69 / 104

- 1 3.1 Interpolation and the Lagrange Polynomial
- 2 3.2 Data Approximation and Neville's Method
- 3.3 Divided Differences
- 4 3.4 Hermite Interpolation
- **5** 3.5 Cubic Spline Interploation
- 6 3.6 Parametric Curves

Runge Phenomenon

Ex. Runge Phenomenon: Lagrange polynomial of degree 20

Chapter 3 70 / 104

Piecewise-Polynomial Approximation

- Piecewise-polynomial approximation: divide the interval into a collection of subintervals and construct a polynomial on each subinterval.
- The simplest version is a **piecewise-linear** interpolation.

Q. Is this good enough?

Chapter 3 71 / 104

Piecewise-Hermite Cubic Approximation

• Given f and f' at the points $x_0 < x_1 < \cdots < x_n$, one can use Hermite cubic polynomial on each subinterval $[x_i, x_{i+1}]$ to construct a function that has a continuous derivative on the entire interval $[x_0, x_n]$.

Chapter 3 72 / 104

Piecewise-Quadratic Approximation

• Let f be defined on [a,b], and let the nodes $a=x_0 < x_1 < x_2 = b$ be given. A quadratic spline interpolating function S consists of the quadratic polynomial

$$S_0(x) = a_0 + b_0(x - x_0) + c_0(x - x_0)^2$$
 on $[x_0, x_1]$

and

$$S_1(x) = a_1 + b_1(x - x_1) + c_1(x - x_1)^2$$
 on $[x_1, x_2]$

Q. What are the conditions that we would like to impose?

Chapter 3 73 / 104

Cubic Splines

ter 3 74 / 104

Cubic Splines (cont'd)

Definition 3

Given a function f defined on [a,b] and a set of nodes $a=x_0 < x_1 < \cdots < x_n = b$, a cubic spline interpolant S for f is a function that satisfies the following conditions:

- (a) S(x) is a cubic polynomial, denoted $S_j(x)$, on the subinterval $[x_j, x_{j+1}]$ for each $j = 0, 1, \ldots, n-1$;
- (b) $S_j(x_j) = f(x_j)$ and $S_j(x_{j+1}) = f(x_{j+1})$ for each j = 0, 1, ..., n-1;
- (c) $S_{j+1}(x_{j+1}) = S_j(x_{j+1})$ for each j = 0, 1, ..., n-2; (Implied by (b).)
- (d) $S'_{i+1}(x_{i+1}) = S'_{i}(x_{i+1})$ for each j = 0, 1, ..., n-2;
- (e) $S''_{i+1}(x_{j+1}) = S''_i(x_{j+1})$ for each j = 0, 1, ..., n-2;
- (f) One of the following sets of boundary conditions is satisfied:
 - (1) $S''(x_0) = S''(x_n) = 0$ (natural (or free) boundary);
 - (2) $S'(x_0) = f'(x_0)$ and $S'(x_n) = f'(x_n)$ (clamped boundary).
 - A **spline** is a special function defined piecewise by polynomials.

Chapter 3 75 / 104

Cubic Splines (cont'd)

Ex. Construct a natural cubic spline that passes through the points (1,2), (2,3), and (3,5).

Chapter 3 76 / 104

Construction of a Cubic Spline

Apply conditions to the cubic polynomials

$$S_j(x)=a_j+b_j(x-x_j)+c_j(x-x_j)^2+d_j(x-x_j)^3,$$
 for each $j=0,1,\ldots,n-1.$

• Since $S_j(x_j) = a_j = f(x_j)$, we have

Chapter 3 77 / 104

Construction of a Cubic Spline (cont'd)

• Similarly, let $b_n = S'(x_n)$, and we have

$$b_{j+1} = S'_{j+1}(x_{j+1}) = S'_j(x_{j+1}) = b_j + 2c_jh_j + 3d_jh_j^2,$$
 for each $j=0,1,\dots,n-1.$

• Let $c_n = S''(x_n)/2$, and we have

$$c_{j+1} = S''_{j+1}(x_{j+1})/2 = S''_{j}(x_{j+1})/2 = c_j + 3d_jh_j$$

for each j = 0, 1, ..., n - 1.

Chapter 3 78 / 104

Construction of a Cubic Spline (cont'd)

• Removing d_i yields

$$a_{j+1} = a_j + b_j h_j + \frac{h_j^2}{3} (2c_j + c_{j+1}).$$

 $b_{j+1} = b_j + h_j (c_j + c_{j+1}).$

• Further removing b_i yields

$$h_{j-1}c_{j-1} + 2(h_{j-1} + h_j)c_j + h_jc_{j+1} = \frac{3}{h_j}(a_{j+1} - a_j) - \frac{3}{h_{j-1}}(a_j - a_{j-1})$$
 for each $j = 1, 2, \dots, n-1$.

Natural Splines

Theorem 9

If f is defined at $a=x_0 < x_1 < \cdots < x_n = b$, then f has a unique natural spline interpolant S on the nodes x_0, x_1, \ldots, x_n ; that is, a spline interpolant that satisfies the natural boundary conditions S''(a)=0 and S''(b)=0

3 80 / 104

Proof. The equations with the boundary conditions $c_n = S''(x_n)/2 = 0$ and $0 = S''(x_0) = 2c_0$ yield a linear system $\mathbf{A}\mathbf{x} = \mathbf{b}$, where

$$A = \begin{bmatrix} 1 & 0 & 0 & \vdots & \vdots & \vdots & \vdots \\ h_0 & 2(h_0 + h_1) & h_1 & h_2 & \vdots & \vdots & \vdots \\ \vdots & \ddots & \ddots & \ddots & \ddots & \vdots \\ \vdots & \ddots & \ddots & \ddots & \ddots & \vdots \\ \vdots & \ddots & \ddots & \ddots & \ddots & \ddots$$

Chapter 3 81 / 104

Natural Cubic Spline

To construct the cubic spline interpolant S for the function f, defined at the numbers $x_0 < x_1 < \cdots < x_n$, satisfying $S''(x_0) = S''(x_n) = 0$:

$$\begin{split} \text{INPUT} \quad & n; x_0, x_1, \dots, x_n; a_0 = f(x_0), a_1 = f(x_1), \dots, a_n = f(x_n). \\ \text{OUTPUT} \quad & a_j, b_j, c_j, d_j \text{ for } j = 0, 1, \dots, n-1. \\ (\textit{Note: } S(x) = S_j(x) = a_j + b_j(x - x_j) + c_j(x - x_j)^2 + d_j(x - x_j)^3 \text{ for } x_j \leq x \leq x_{j+1}.) \\ \textit{Step 1} \quad & \text{For } i = 0, 1, \dots, n-1 \text{ set } h_i = x_{i+1} - x_i. \\ \textit{Step 2} \quad & \text{For } i = 1, 2, \dots, n-1 \text{ set} \\ & \alpha_i = \frac{3}{h_i}(a_{i+1} - a_i) - \frac{3}{h_{i-1}}(a_i - a_{i-1}). \end{split}$$

Step 3 Set $l_0 = 1$; (Steps 3, 4, 5, and part of Step 6 solve a tridiagonal linear system using a method described in Algorithm 6.7.)

$$\mu_0 = 0;$$
 $z_0 = 0.$

Step 4 For
$$i = 1, 2, \dots, n-1$$

set $l_i = 2(x_{i+1} - x_{i-1}) - h_{i-1}\mu_{i-1};$
 $\mu_i = h_i/l_i;$
 $z_i = (\alpha_i - h_{i-1}z_{i-1})/l_i.$

Step 5 Set
$$l_n = 1$$
;
 $z_n = 0$;
 $c_n = 0$.

Step 6 For
$$j = n - 1, n - 2, ..., 0$$

set $c_j = z_j - \mu_j c_{j+1}$;
 $b_j = (a_{j+1} - a_j)/h_j - h_j (c_{j+1} + 2c_j)/3$;
 $d_j = (c_{j+1} - c_j)/(3h_j)$.

Step 7 OUTPUT
$$(a_j, b_j, c_j, d_j \text{ for } j = 0, 1, \dots, n-1);$$

STOP.

Chapter 3 82 / 104

Ex. Use the data points (0,1),(1,e), $(2,e^2)$, and $(3,e^3)$ to form a natural spline S(x) that approximates $f(x)=e^x$.

Chapter 3 83 / 104

Sol. The system has the solution

$$c_0 = 0,$$

 $c_1 = \frac{1}{5}(-e^3 + 6e^2 - 9e + 4) \approx 0.757,$
 $c_2 = \frac{1}{5}(4e^3 - 9e^2 + 6e - 1) \approx 5.830,$
 $c_3 = 0.$

After solving for the remaining constants, we have

$$S(x) = \begin{cases} 1 + 1.466x + 0.252x^3, & x \in [0, 1], \\ 2.718 + 2.223(x - 1) + 0.757(x - 1)^2 + 1.691(x - 1)^3, & x \in [1, 2], \\ 7.389 + 8.810(x - 2) + 5.830(x - 2)^2 - 1.943(x - 2)^3, & x \in [2, 3]. \end{cases}$$

Chapter 3 84 / 104

ullet To approximate the integral of $f(x)=e^x$ on [0,3], which has the value

$$\int_0^3 e^x dx = e^3 - 1 \approx 19.08553692,$$

we piecewise integrate the splines:

$$\int_0^3 S(x)dx = ?$$

Chapter 3 85 / 104

Clamped Splines

Ex. Construct a clamped cubic spline s that passes through the points (1,2), (2,3), and (3,5) that has ? and ?.

Chapter 3 86 / 104

Clamped Splines (cont'd)

Sol. Solving the system of equation gives the clamped cubic spline

$$s(x) = \begin{cases} 2 + 2(x-1) - \frac{5}{2}(x-1)^2 + \frac{3}{2}(x-1)^3, & x \in [1,2], \\ 3 + \frac{3}{2}(x-2) + 2(x-2)^2 - \frac{3}{2}(x-2)^3, & x \in [2,3]. \end{cases}$$

Recall: Natural cubic spline:

$$S(x) = \begin{cases} 2 + \frac{3}{4}(x-1) + \frac{1}{4}(x-1)^3, & x \in [1,2], \\ 3 + \frac{3}{2}(x-2) + \frac{3}{4}(x-2)^2 - \frac{1}{4}(x-2)^3, & x \in [2,3]. \end{cases}$$

$$\begin{array}{c} 5 \\ 4.5 \\ 4 \\ 3.5 \\ 2.5 \\ 1.5 \\ 2 \\ 2.5 \\ 3 \end{array}$$

Clamped Splines (cont'd)

Theorem 10

If f is defined at $a = x_0 < x_1 < \cdots < x_n = b$ and differentiable at a and b, then f has a unique clamped spline interpolant S on the nodes x_0, x_1, \ldots, x_n ; that is, a spline interpolant that satisfies the clamped boundary conditions S'(a) = f'(a) and S'(b) = f'(b).

Proof.

$$A = \begin{bmatrix} 2h_0 & h_0 & 0 & \cdots & 0 \\ h_0 & 2(h_0 + h_1) & h_1 & \cdots & \cdots & 0 \\ \vdots & \vdots & \ddots & \ddots & \ddots & \vdots \\ 0 & \cdots & h_1 & 2(h_1 + h_2) & h_2 & \cdots & \ddots & \vdots \\ \vdots & \ddots & \ddots & \ddots & \ddots & \ddots & \ddots \\ \vdots & \ddots & \ddots & \ddots & \ddots & \ddots & \ddots \\ \vdots & \ddots & \ddots & \ddots & \ddots & \ddots & \ddots \\ \vdots & \ddots & \ddots & \ddots & \ddots & \ddots & \ddots \\ \vdots & \ddots & \ddots & \ddots & \ddots & \ddots & \ddots \\ \vdots & \ddots & \ddots & \ddots & \ddots & \ddots & \ddots \\ \vdots & \ddots & \ddots & \ddots & \ddots & \ddots & \ddots \\ \vdots & \ddots & \ddots & \ddots & \ddots & \ddots & \ddots \\ \vdots & \ddots & \ddots & \ddots & \ddots & \ddots & \ddots \\ b = \begin{bmatrix} \frac{3}{h_0}(a_1 - a_0) - 3f'(a) \\ \frac{3}{h_1}(a_2 - a_1) - \frac{3}{h_0}(a_1 - a_0) \\ \vdots & \ddots & \ddots & \ddots & \ddots \\ \frac{3}{h_{n-1}}(a_n - a_{n-1}) - \frac{3}{h_{n-2}}(a_{n-1} - a_{n-2}) \\ 3f'(b) - \frac{3}{h_{n-1}}(a_n - a_{n-1}) \end{bmatrix}, \text{ and } \mathbf{x} = \begin{bmatrix} c_0 \\ c_1 \\ \vdots \\ c_n \end{bmatrix}.$$

88 / 104

Clamped Splines (cont'd)

Ex. Use the data points (0,1), (1,e), $(2,e^2)$, $(3,e^3)$ and ? to form a clamped spline S(x) that approximates $f(x)=e^x$.

Sol. It is

$$s(x) = \begin{cases} 1 + x + 0.445x^2 + 0.274x^3, & x \in [0, 1], \\ 2.718 + 2.710(x - 1) + 1.265(x - 1)^2 + 0.695(x - 1)^3, & x \in [1, 2], \\ 7.389 + 7.327(x - 2) + 3.351(x - 2)^2 + 2.019(x - 2)^3, & x \in [2, 3]. \end{cases}$$

Recall: Natural cubic spline:

$$S(x) = \begin{cases} 1 + 1.466x + 0.252x^3, & x \in [0, 1], \\ 2.718 + 2.223(x - 1) + 0.757(x - 1)^2 + 1.691(x - 1)^3, & x \in [1, 2], \\ 7.389 + 8.810(x - 2) + 5.830(x - 2)^2 - 1.943(x - 2)^3, & x \in [2, 3]. \end{cases}$$

Chapter 3 89 / 104

Comparison to Lagrange Polynomial

Chapter 3 90 / 104

Comparison to Lagrange Polynomial (cont'd)

• Natural Cubic Spline vs. Lagrange polynomial of degree 20

Chapter 3 91 / 104

Error Bound for Clamped Splines

Theorem 11

Let $f \in C^4[a,b]$ with $\max_{a \le x \le b} |f^{(4)}(x)| = M$. If s is the unique clamped cubic spline interpolant to f with respect to the nodes $a = x_0 < x_1 < \cdots < x_n = b$, then for all x in [a,b],

$$|f(x) - s(x)| \le \frac{5M}{384} \max_{0 \le j \le n-1} (x_{j+1} - x_j)^4.$$

- A fourth-order error-bound for the natural boundary conditions exist, but it is more complicated so omitted here.
- In general, the natural boundary conditions will give less accurate results than the clamped conditions near the ends of the interval $[x_0, x_n]$ unless the function f happens to nearly satisfy $f''(x_0) = f''(x_n) = 0$.
- An alternative condition is the *not-a-knot* condition requiring that S'''(x) be continuous at x_1 and x_{n-1} . This is a default option in the MATLAB built-in function "spline".

Chapter 3 92 / 104

- 1 3.1 Interpolation and the Lagrange Polynomial
- 2 3.2 Data Approximation and Neville's Method
- 3.3 Divided Differences
- 4 3.4 Hermite Interpolation
- 5 3.5 Cubic Spline Interploation
- 6 3.6 Parametric Curves

Parametric Curves

• Determine a polynomial or piecewise polynomial to connect the points $(x_0, y_0), (x_1, y_1), \ldots, (x_n, y_n)$ in the order given. How?

Chapter 3 93 / 104

• Use a parameter t on an interval $[t_0, t_n]$, with $t_0 < t_1 < \cdots < t_n$, and construct approximation functions with

$$x_i = x(t_i)$$
 and $y_i = y(t_i)$, for each $i = 0, 1, \dots, n$.

er 3 94 / 104

Ex. Construct a pair of Lagrange polynomials to approximate the previous curve using the following data points shown on the curve

$$(-1,0), (0,1), (1,0.5), (0,0), (1,-1).$$

Chapter 3 95 / 104

• Choose the points $\{t_i\}_{i=0}^4$ equally spaced in [0,1].

i	0	1	2	3	4
t_i	0	0.25	0.5	0.75	1
x_i	-1	0	1	0	1
y_i	0	1	0.5	0	-1

This then produces the interpolating polynomials

$$\begin{split} x(t) &= \left(\left(\left(64t - \frac{352}{3} \right) t + 60 \right) t - \frac{14}{3} \right) t - 1, \\ y(t) &= \left(\left(\left(-\frac{64}{3}t + 48 \right) t - \frac{116}{3} \right) t + 11 \right) t. \end{split}$$

Chapter 3 96 / 104

Q. How can we improve the accuracy?

Chapter 3 97 / 104

Piecewise Cubic Hermite Polynomial

Q. In computer graphics, piecewise cubic Hermite polynomial is preferred. Why?

Chapter 3 98 / 104

- Suppose the curve has n+1 data points $(x(t_0), y(t_0)), \ldots, (x(t_n), y(t_n))$. Then we must specify $x'(t_i)$ and $y'(t_i)$, for each $i=0,1,\ldots,n$.
- Constructing a piecewise cubic Hermite polynomial reduces to determining a pair of cubic Hermite polynomials in t, where $t_0=0$ and $t_1=1$ given $(x(0)),y(0)), (x(1),y(1)), \frac{dy}{dx}(t=0)$ and $\frac{dy}{dx}(t=1)$.

r 3 99 / 104

• We have six conditions for eight unknowns, and we need to specify x'(0), x'(1), y'(0), y'(1) considering

$$\frac{dy}{dx}(t=0) = \frac{y'(0)}{x'(0)}$$
 and $\frac{dy}{dx}(t=1) = \frac{y'(1)}{x'(1)}$.

• The choice of x'(0) and y'(0) affects the shape of the curve. The larger the value, the closer the curve comes to approximating the tangent line near (x(0), y(0)).

Chapter 3 100 / 104

 To further simply the process in interactive computer graphics (using a mouse or touchpad), the derivative at an endpoint is specified by using a second point, called a *guidepoint*, on the desired tangent line.

• The farther the guidepoint is from the node, the more closely the curve approximates the tangent line near the node.

Chapter 3 101 / 104

• The cubic Hermite polynomial x(t) on [0,1] satisfying the conditions

$$x(0) = x_0, \quad x(1) = x_1, \quad x'(0) = \alpha_0, \quad x'(1) = \alpha_1$$

is

$$x(t) = [2(x_0 - x_1) + (\alpha_0 + \alpha_1)]t^3 + [3(x_1 - x_0) - (\alpha_1 + 2\alpha_0)]t^2 + \alpha_0 t + x_0.$$

• Similarly for y(t), the conditions

$$y(0) = y_0, \quad y(1) = y_1, \quad y'(0) = \beta_0, \quad y'(1) = \beta_1$$

are satisfied by

$$y(t) = [2(y_0 - y_1) + (\beta_0 + \beta_1)]t^3 + [3(y_1 - y_0) - (\beta_1 + 2\beta_0)]t^2 + \beta_0 t + y_0.$$

Chapter 3 102 / 104

Ex Determine the graph of the parametric curve when the endpoints are $(x_0, y_0) = (0, 0)$ and $(x_1, y_1) = (1, 0)$ and respective guide points are (2, 2) and (2, -1).

er 3 103 / 104

104 / 104