CS372 FORMAL LANGUAGES & THE THEORY OF COMPUTATION

Dr. Nguyen Thi Thu Huong, PhD.

Phone: +84 24 38696121, Mobi: +84 903253796

Email: huongnt@soict.hust.edu.vn,

huong.nguyenthithu@hust.edu.vn

Unit 5

Push Down Automata Context Free Pumping Lemma

Push Down Automata (PDA)

- Informal description
- Formal Definition
- Equivalence between PDA and CFG

Informal Description

- Push Down Automata (PDAs) are ε-NFAs with stack memory.
- Transitions are decided by an input symbol together with a pair of the form X/α
- The transition is possible only if the top of the stack contains the symbol X
- After the transition, the stack is changed by replacing the top symbol X with the string of symbols α. (Pop X, then push symbols of α)

Components of a PDA

- A control with a finite number of states
- A tape contains the input string
- The input head
- A stack

Formal Definition of a Nondeterministic PDA

- A nondeterministic pushdown automaton is a 6-tuple (Q, Σ, Γ, δ, q₀, F), where
 - 1. Q is the set of states,
 - 2. Σ is the input alphabet,
 - 3. Γ is the stack alphabet,
 - 4. δ : Q × Σ_{ϵ} × Γ_{ϵ} →P (Q × Γ_{ϵ}) is the transition function,
 - 5. $q_0 \in Q$ is the start state,
 - 6. $F \subseteq Q$ is the set of accept states.

Example

 Here is the formal description of the PDA that recognizes the language $\{0^n1^n| n \ge 1\}$. Let M_1 be $(Q, \Sigma, \Gamma, \delta, q_1, F)$, where $Q = \{q_1, q_2, q_3, q_4\},\$ $\Sigma = \{0,1\},$ $\Gamma = \{0, \$\},\$ $F = \{q_{a}\}\$, and δ is given table on the next slide, wherein blank entries signify Ø.

Transition function of M₁

Input:	0			1			ϵ		
Stack:	0	\$	ε	0	\$	ε	0	\$	ε
q_1			The Set Dimension	Marco A America	2.	. 0.			$\{(q_2,\$)\}$
q_2			$\{(q_2,\mathtt{0})\}$	$\{(q_3,oldsymbol{arepsilon})\}$					
q_3				$\{(q_3,\boldsymbol{\varepsilon})\}$				$\{(q_4,oldsymbol{arepsilon})\}$	
q_4									

$$\delta(q_1, \epsilon, \epsilon) = \{(q_2, \$)\}$$

 $\delta(q_2, 0, \epsilon) = \{(q_2, 0)\}$
 $\delta(q_2, 1, 0) = \{(q_3, \epsilon)\}$
 $\delta(q_3, 1, 0) = \{(q_3, \epsilon)\}$
 $\delta(q_3, \epsilon, \$) = \{(q_4, \epsilon)\}$

Details of transition function

$$\Sigma_{\varepsilon} = \Sigma \cup \{\varepsilon\}, \Gamma_{\varepsilon} = \Gamma \cup \{\varepsilon\}$$

- $(q, \gamma) \in \delta(p, a, \epsilon)$: make this transition without reading and popping any symbol from the stack.
- $(q, \gamma) \in \delta(p, \varepsilon, b)$: make this transition without reading any symbol from the input
- $(q, \epsilon) \in \delta(p, a, b)$: does not write any symbol on the stack when going along this transition

Transitions

- Let $((q, \gamma) \in \delta(p, a, \beta))$ be a transition.
- It means that we
 - Start in state p.
 - Read a from the tape,
 - Pop the string β from the stack,
 - Move to state q,
 - Push string γ onto the stack.
- The first three (p, a, β), are "input."
- The last two (q, γ) are "output."

Transitions

We will draw it as

Pushing and Popping

- When we push string β, we push the symbols of β as we read them *right to left*.
- When we pop γ, we pop the symbols of γ as we read them from left to right (reverse order).
- For example,
 - When we push the string abc, we push c, then push
 b, then push a, i.e., a is on top.
 - When we pop the string abc, we pop a, then pop b, then pop c.
 - Thus, if we push the string abc and then pop it, we will get back abc, not cba.

Configurations

- A configuration fully describes the current "state" of the PDA.
 - The current state.
 - The remaining input.
 - The current stack contents.
- Thus, a configuration is a triple

$$(p, w, \alpha) \in (Q, \Sigma^*, \Gamma^*).$$

State diagram of PDA

- State diagrams of PDAs are similar to the state diagrams of finite automata, with an addition of activities in the stack
- Write "a,b → c" to signify that when the machine is reading an a from the input, it may replace the symbol b on the top of the stack with a c.
- Any of a, b, and c may be ε.
- Example: State diagram of PDA
 P that recognize language
 L = {0ⁿ1ⁿ | n ≥ 1}

Computations

 A configuration (p, w, α) yields a configuration (p', w', α') in one step, denoted

$$(p, w, \alpha) \Rightarrow (p', w', \alpha'),$$

if there is a transition $((p, a, \beta), (p', \gamma)) \in \delta$ such that w = aw', $\alpha = \beta\eta$, and $\alpha' = \gamma\eta$ for some $\eta \in \Gamma^*$.

The reflexive, transitive closure of ⇒ is denoted ⇒ *.

Accepting Strings

- After processing the string on the tape,
 - The PDA is in either a final or a nonfinal state, and
 - The stack is either empty or not empty.
- The input string is accepted if
 - The ending state is a final state, and
 - The stack is empty.
- That is, the string $w \in \Sigma^*$ is accepted if

$$(q_0, w, \varepsilon) \Rightarrow^* (p, \varepsilon, \varepsilon)$$

for some $p \in F$.

Example of PDA P's computation

$$(q_{1}, 000111, \varepsilon) \Rightarrow (q_{2}, 000111, \$)$$

$$\Rightarrow (q_{2}, 00111, 00\$)$$

$$\Rightarrow (q_{2}, 111, 000\$)$$

$$\Rightarrow (q_{3}, 11, 00\$)$$

$$\Rightarrow (q_{3}, 1, 0\$)$$

$$\Rightarrow (q_{3}, \varepsilon, \$)$$

$$\Rightarrow (q_{4}, \varepsilon, \varepsilon)$$
000111 is accepted by P

The Language of a PDA

The language of a PDA A is

$$L(A) = \{ w \in \Sigma^* \mid A \text{ accepts } w \}.$$

Or

$$L(A) = \{ w \in \Sigma^* \mid (q_0, w, \varepsilon_n) \Rightarrow^* (p, \varepsilon, \varepsilon), p \in F \}$$

Example of a PDA

 Run the following PDA on the input string aaabbb.

Example of a PDA

The steps in the processing are

$$-(s, aaabbb, \varepsilon,) \Rightarrow (p, aabbb, a)$$

$$\Rightarrow (p, abbb, aa)$$

$$\Rightarrow (p, bbb, aaa)$$

$$\Rightarrow (p, bb, aa)$$

$$\Rightarrow (p, b, \varepsilon,)$$

$$\Rightarrow (p, b, \varepsilon,)$$

$$\Rightarrow (q, \varepsilon, \varepsilon,).$$

Example of a PDA

 What is the language of the following PDA?

(s, aaabbb, ε ,)

 \Rightarrow (p, aabbb, a)

 \Rightarrow (p, abbb, aa)

 \Rightarrow (p, bbb, aaa)

 \Rightarrow (p, bb, aa)

 \Rightarrow $(p, b, \varepsilon,)$

 \Rightarrow $(q, \varepsilon, \varepsilon,).$

CFG → PDA

Lemma

If a language is context free, then some pushdown automaton recognizes it.

Proof Idea:

- Let L be a CFL. From the definition we know that L has a CFG, G, generating it.
- We show how to convert G into an equivalent PDA, which we call P.

CFG → PDA

- The PDA P will accept string w, if G generates that input, by determining whether there is a derivation for w
- P begins by writing the start variable on its stack.
- It goes through a series of intermediate strings, making one substitution after another.
- Eventually it may arrive at a string that contains only terminal symbols, meaning that it has used the grammar to derive a string

Informal description of P

- 1. Place the marker symbol \$ and the start variable on the stack.
- 2. Repeat the following steps forever.
 - a. If the top of stack is a variable symbol A, select one of the rules for A and substitute A by the string on the RHS of the rule.
 - b. If the top of stack is a terminal symbol a, read the next symbol from the input and compare it to a.
 - If they match, repeat.
 - If they do not match, reject on this branch of the nondeterminism
- c. If the top of stack is the symbol \$, enter the accept state. Doing so accepts the input if it has all been read.

Implement of PDA P

Assume L = L(G), G = (Σ, N, R, S) , we construct PDA $P = (Q, \Sigma, \Gamma, \delta, q_{start}, F)$ $Q = \{q_{start}, q_{loop}, q_{accept}\} \cup E$, E is a set of states used to push the string $w = u_1 \cdots u_l$ on the stack $\Gamma = \Sigma \cup \Delta \cup \{\$\}$, $F = \{q_{accept}\}$. δ is built by the following set of rules $\delta(q_{\text{start}}, \epsilon, \epsilon) = \{(q_{\text{loop}}, S\$)\}.$ $\delta(q_{loop}, \epsilon, A) = \{(q_{loop}, w) \mid where A \rightarrow w \text{ is a rule in R}\}.$ $\delta(q_{loop}, a, a) = \{(q_{loop}, \epsilon)\}.$

 $\delta(q_{loop}, \epsilon, \$) = \{(q_{accept}, \epsilon)\}$

State Diagram of P

To push a string on to a stack

To push a string $w=u_1,...u_l$, a RHS of a rule on stack, we use a set of states $q_1,...,q_{l-1}$ and setting the transition function as follows:

 $\delta(q,a,s)$ to contain (q_1,u_1) ,

$$\delta(q_1, \varepsilon, \varepsilon) = \{(q_2, u_{l-1})\},\$$

$$\delta(q_2, \epsilon, \epsilon) = \{(q_3, u_{l-2})\}, \dots$$

$$\delta(q_{l-1}, \epsilon, \epsilon) = \{(r, u_1)\}.$$

Example:

- PDA accepts language L = {aⁿbⁿ |n ≥ 1}
- It is known that L = L(G) with rule set:

$$S \rightarrow aSb \mid ab$$

- $P = (Q, \Sigma, \Gamma, \delta, q_{start}, F)$
- Q = $\{q_{start}, q_{loop}, q_{accept}\} \cup E, E = \{q_1, q_2, q_3\}$

$$\delta(q_{\text{start}}, \epsilon, \epsilon) = \{(q_{\text{loop}}, S\$)\}.$$

$$\delta(q_{loop}, \epsilon, S)$$
 contains $(q_1, b), \delta(q_1, \epsilon, \epsilon) = \{(q_2, S)\},$

$$\delta(q_2, \epsilon, \epsilon) = \{(q_{loop}, a)\},\$$

$$\delta(q_{loop}, \epsilon, S)$$
 contains (q_3, b) , $\delta(q_3, \epsilon, \epsilon) = \{(q_{loop}, a)\}$,

$$\delta(q_{loop}, a, a) = \{(q_{loop}, \epsilon)\}. \ \delta(q_{loop}, b, b) = \{(q_{loop}, \epsilon)\}.$$

$$\delta(q_{loop}, \epsilon, \$) = \{(q_{accept}, \epsilon)\}$$

Example

PDA TO CFG

Lemma:

If a PDA recognizes some language, then it is context free.

Proof Idea:

Create from P a CFG G that generates all strings that P accepts, i.e., G generates a string if that string takes PDA from the start state to some accepting state.

Let us modify the PDA P

- 1. The PDA has a single accept state q_{accept}
 - Use additional ϵ , $\epsilon \to \epsilon$ transitions.
- 2. The PDA empties its stack before accepting.
 - Add an additional loop to flush the stack.

- More modifications to the PDA P:
- Each transition either pushes a symbol to the stack or pops a symbol from the stack, but not both!.
 - 1 Replace each transition with a pop-push, with a two-transition sequence.

For example replace a,b \rightarrow c with a,b \rightarrow followed by , \rightarrow c, using an intermediate state.

2 Replace each transition with no pop-push, with a transition that pops and pushes a random symbol. For example, replace a, \rightarrow with $a, \rightarrow x$ followed by $x, x \rightarrow$, using an intermediate state.

- For each pair of states p and q in P, the grammar with have a variable A_{pq}.
- A_{pq} generates all strings that take P from p with an empty stack, to q, leaving the stack empty.
- A_{pq} also takes P from p to q, leaving the stack as it was before p!

- Let x be a string that takes P from p to q with an empty stack.
- There are two cases:
 - Symbol pushed after p, is the same symbol popped just before q
 - If not, that symbol should be popped at some point before!
 - First case can be simulated by rule A_{pq} →aA_{rs}b Read a, go to state r, then transit to state s somehow, and then read b.
 - Second case can be simulated by rule A_{pq} →A_{pr}A_{rq} r is the state the stack becomes empty on the way from p to q

PDA to CFG: proof

- Assume P = $(Q, \Sigma, \Gamma, \delta, q_0, \{q_{accept}\})$. The variables of G are $\{A_{pq} \mid p, q \in Q\}$ The start variable is Aq_0, q_{accept}
- The rules of G are as follows:
- For each p,q,r,s \in Q, t \in Γ , and a,b \in Σ_{ϵ_i} if $\delta(p,a,\epsilon)$ contains (r,t) and $\delta(s,b,t)$ contains (q, ϵ) Add rule $A_{pq} \rightarrow aA_{rs}b$ to G.
- For each p,q,r \in Q, add rule $A_{pq} \rightarrow A_{pr}A_{rq}$ to G. For each, p \in Q, add the rule $A_{pp} \rightarrow \epsilon$ to G.

PDA computation for $A_{pq} \rightarrow aA_{rs}b$

PDA computation for $A_{pq} \rightarrow A_{pr}A_{rq}$

Example

Pumping lemma for CFG

Lemma

If L is a CFL, then there is a number p such that if s is any string in L of length at least p, then s can be divided into 5 pieces s = uvxyz satisfying the conditions:

- -|vy| > 0
- |vxy|≤p
- for each i ≥0, uvixyiz ∈L

p is called the pumping length. It is the number of variables of the grammar that generates L

Applications of the pumping lemma

- To prove that a language is not a CFL.
- Use proof by contradiction
- Assume L is CFL. Following the pumping lemma, we have the pumping length p
- We pick string s in L such that |s|≥p. By the pumping lemma, s = uvxyz - the decomposition subject to |vxy|≤p and|vy|≥1.
- We try to pick an i such that uvⁱxyⁱz ∉L for all possible decompositions. If we can find an i, it's a contradiction
- The contradiction proves that L is not context free.

Surgery on Parse Trees (Grammar in CNF)

Example

Consider the language L = {aⁿbⁿcⁿ |n≥0}
 Opponent picks p. We pick s = a^pb^pc^p.
 Clearly|s|≥p. Opponent may pick the string partitioning in a number of ways. Let's look at each of these possibilities:

Cases 1,2 and 3:

vxy contains symbols of only one kind

Only a's: $\underbrace{a \cdots a \underbrace{a \cdots a \underbrace{a \cdots a b \cdots b c \cdots c}_{vxy}}_{vxy}$ Only b's: $\underbrace{a \cdots a b \underbrace{b \cdots b b \cdots b c \cdots c}_{vxy}}_{z}$ Only c's: $\underbrace{a \cdots a b \cdots b c \underbrace{c \cdots c c \cdots c}_{z}}_{z}$

Pumping v and y will introduce *more symbols of one type* into the string. The resulting strings will not be in the language.

Cases 4 and 5

vxy contains two symbols – crosses symbol boundaries.

Only a's and b's: a···aa···ab···bb···bc···c
 Only b's and cs: a···ab···bb···cc··c

Note that vxy has length at most p so can not have 3 different symbols. Pumping v and y will both upset the *symbol counts* and the symbol patterns. The resulting strings will not be in the language.