Angles between vectors using a non-standard inner product

latest submission grade 100%

1. 1/1 point

Compute the angle between $\mathbf{x}=\begin{bmatrix}1\\1\end{bmatrix}$ and $\mathbf{y}=\begin{bmatrix}-1\\1\end{bmatrix}$ using the inner product defined by

$$\langle \mathbf{x}, \mathbf{y} \rangle = \mathbf{x}^T \begin{bmatrix} 2 & -1 \\ -1 & 4 \end{bmatrix} \mathbf{y}$$

- \bigcirc 0.35 rad (20°)
- 1.57 rad (90°)
- $\bigcirc \hspace{0.1in} \text{1.2 rad } (69^{\circ}) \\$

/

Correct

Absolutely right!

Compute the angle between $\mathbf{x}=\begin{bmatrix}0\\-1\end{bmatrix}$ and $\mathbf{y}=\begin{bmatrix}1\\1\end{bmatrix}$ using the inner product defined by

$$\langle \mathbf{x}, \mathbf{y} \rangle = \mathbf{x}^T \begin{bmatrix} 1 & -\frac{1}{2} \\ -\frac{1}{2} & 5 \end{bmatrix} \mathbf{y}$$

- \bigodot 2.69 rad (154°)
- \bigcirc -0.9 rad ($-52^\circ)$
- \bigcirc 2.35 rad (135°)

✓ Correct

Well done!

Compute the angle between $\mathbf{x}=\begin{bmatrix}2\\2\end{bmatrix}$ and $\mathbf{y}=\begin{bmatrix}-2\\-2\end{bmatrix}$ using the inner product defined by

$$\langle \mathbf{x}, \mathbf{y} \rangle = \mathbf{x}^T \begin{bmatrix} 2 & 1 \\ 1 & 4 \end{bmatrix} \mathbf{y}$$

 \bigcirc 0 rad (0 $^{\circ}$)

 \odot 3.14 rad (180°)

✓ Correct

Well done: $\pi pprox 3.14$ is the right answer.

Compute the angle between $\mathbf{x}=\begin{bmatrix}1\\1\end{bmatrix}$ and $\mathbf{y}=\begin{bmatrix}1\\-1\end{bmatrix}$ using the inner product defined by

$$\langle \mathbf{x}, \mathbf{y} \rangle = \mathbf{x}^T \begin{bmatrix} 1 & 0 \\ 0 & 5 \end{bmatrix} \mathbf{y}$$

- $\bigcirc \hspace{0.1cm} \text{1.57 rad } (90^{\circ})$
- \odot 2.3 rad (131°)
- \bigcirc -2.3 rad (-131°)
- \bigcirc -1.57 rad (-90°)

Correct

Good job.

5. Compute the angle between
$$\mathbf{x}=\begin{bmatrix}1\\1\\1\end{bmatrix}$$
 and $\mathbf{y}=\begin{bmatrix}2\\-1\\0\end{bmatrix}$ using the inner product defined by

$$\langle \mathbf{x}, \mathbf{y}
angle = \mathbf{x}^T egin{bmatrix} 1 & 0 & 0 \ 0 & 2 & -1 \ 0 & -1 & 3 \end{bmatrix} \mathbf{y}$$

- \bigcirc 1.37 rad (78°)
- \bigcirc 1.31 rad (75°)
- $\bigcirc \ \ \, \text{0.2 rad (11}^{\circ}\text{)}$

Well done!

1/1 point