50 Functional Equations

1 Definitions

- 1. N is the set of positive integers.
- 2. $\mathbb{N} \cup \{0\} = \mathbb{N}_0$ is the set of non-negative integers.
- 3. \mathbb{Z} is the set of integers.
- 4. Q is the set of rational numbers.
- 5. \mathbb{R}_+ is the set of positive real numbers.
- 6. \mathbb{R}_0 is the set of nonnegative real numbers.
- 7. \mathbb{R} is the set of real numbers.
- 8. $\forall x$ is the short from of **for all** x.
- 9. $\exists x \text{ is the short from of there exists } x$.
- 10. s.t. is the short form of such that.
- 11. WLOG is the short form of without loss of generality.
- 12. [x] denotes the largest integer that is not greater than x.
- 13. For a function f and set S, $f(S) = \{f(x) \mid x \in S\}$
- 14. If a function f is defined on the set A to the set B, we write $f: A \longrightarrow B$ and read f is a function from the set A to the set B.
- 15. If $f: A \longrightarrow B$, then A and B are the **Domain** and **Range** of f, respectively. And C = f(A) is called the **Co-domain** of f.
- 16. A function $f: A \longrightarrow B$ is called **surjective** if B = f(A), is called **injective** if for all $x, y \in A$, $f(x) = f(y) \iff x = y$ and is called **bijective** if it is both injective and surjective.
- 17. $f: A \longrightarrow \mathbb{R}$ has a limit $y = \lim_{x \longrightarrow c} f(x)$ if $(\forall \varepsilon > 0)(\exists \delta > 0)(\forall x \in A), |x c| < \delta \Longrightarrow |f(x) y| < \varepsilon$.
- 18. $f: [a, b] \longrightarrow \mathbb{R}$ is called **continuous** if $(\forall x \in [a, b])(\forall \varepsilon > 0)(\exists \delta > 0)$ s.t. $|x y| < \delta \Longrightarrow |f(x) f(y)| < \varepsilon$.
- 19. $f: A \longrightarrow \mathbb{R}$ is called **differentiable** at x if the limit $f'(x) = \lim_{h \longrightarrow 0} \frac{f(x+h) f(x)}{h}$ exists. And if f is differentiable at x, f'(x) is called it's derivative or first differential.

2 Basic(Trivial) Functions and Their Children

[In this section, assume that all functions are continuous]

- 1. $f: \mathbb{R} \longrightarrow \mathbb{R}$, f(x+y) = f(x) + f(y) for all $x, y \in \mathbb{R}$
- 2. $f: \mathbb{R} \longrightarrow \mathbb{R}$, f(x+y) = f(x)f(y) for all $x, y \in \mathbb{R}$
- 3. $f: \mathbb{R}_+ \longrightarrow \mathbb{R}$, f(xy) = f(x) + f(y) for all $x, y \in \mathbb{R}_+$
- 4. $f: \mathbb{R} \longrightarrow \mathbb{R}$, f(xy) = f(x)f(y) for all $x, y \in \mathbb{R}$
- 5. $f: \mathbb{R} \longrightarrow \mathbb{R}, f\left(\frac{x+y}{2}\right) = \frac{f(x) + f(y)}{2}$ for all $x, y \in \mathbb{R}$
- 6. $f: \mathbb{R} \longrightarrow \mathbb{R}, f(x+y) + f(x-y) = 2f(x)f(y)$ for all $x, y \in \mathbb{R}$
- 7. $f: \mathbb{R}_+ \longrightarrow \mathbb{R}$, $f(x)f(y) = f(xy) + f\left(\frac{x}{y}\right)$ for all $x, y \in \mathbb{R}_+$

2 Section 5

8.
$$f: \mathbb{R} \longrightarrow \mathbb{R}, f(\sqrt{x^2 + y^2}) = f(x)f(y)$$
 for all $x, y \in \mathbb{R}$

9.
$$f: \mathbb{R} \longrightarrow \mathbb{R}$$
, $f(0) = 0$, $f(1) = 1$, $f(a) + f(b) = f(a)f(b) + f(a+b-ab)$ for all $a, b \in \mathbb{R}$

10.
$$f: \mathbb{R}_+ \longrightarrow \mathbb{R}_+, f\left(\frac{x+y}{2}\right) = \frac{2f(x)f(y)}{f(x)+f(y)}$$
 for all $x, y \in \mathbb{R}_+$

3 Functions involving Natural Number

- 1. $f: \mathbb{N} \longrightarrow \mathbb{N}$, f(n+1) > f(f(n)) for all $n \in \mathbb{N}$
- 2. Find a function $f: \mathbb{N} \longrightarrow \mathbb{N}$ such that, f(f(n)) = 2n for all $n \in \mathbb{N}$
- 3. $f: \mathbb{N} \longrightarrow \mathbb{N}$, $f(m)^2 + f(n) \mid (m^2 + n)^2$ for all $m, n \in \mathbb{N}$
- 4. $f: \mathbb{N} \longrightarrow \mathbb{N}$, f(f(a) + f(b)) = a + b 1 for all $a, b \in \mathbb{N}$
- 5. $f: \mathbb{N} \longrightarrow \mathbb{N}$, for all $a, b \in \mathbb{N}$ there exists a non-degenerate triangle with side length a, f(b), f(b+f(a)-1).

4 Elementary Non-trivial Functions

- 1. Let $g: \mathbb{R} \longrightarrow \mathbb{R}$, such that g(x) = x [x]. Find all functions $f: \mathbb{R} \longrightarrow \mathbb{R}$ such that, g(f(x+y)) = g(f(x)) + g(f(y)) for all $x, y \in \mathbb{R}$
- 2. $f: \mathbb{R} \longrightarrow \mathbb{R}, (f(x) + f(z))(f(y) + f(t)) = f(xy + zt) + f(xt yz)$ for all $x, y, z, t \in \mathbb{R}$
- 3. $f: \mathbb{R}_+ \longrightarrow \mathbb{R}_+$, f continuous, $f(x) + f(y) = f\left(\frac{x+y}{2}\right) + f\left(\frac{2xy}{x+y}\right)$ for all $x, y \in \mathbb{R}_+$
- 4. $f: \mathbb{R} \longrightarrow \mathbb{R}, f(x+y) = \max\{f(x), y\} + \min\{f(y), x\} \text{ for all } x, y \in \mathbb{R}$
- 5. $f: \mathbb{R} \longrightarrow \mathbb{R}, \ f(x f(y)) = f(f(y)) + xf(y) + f(x) 1 \text{ for all } x, y \in \mathbb{R}$
- 6. $f: \mathbb{R} \longrightarrow \mathbb{R}, f(x) \ge e^x$ for all $x \in \mathbb{R}$ and $f(x+y) \ge f(x)f(y)$ for all $x, y \in \mathbb{R}$
- 7. Prove that there are no functions f, g such that, $f(g(x)) = x^2$ and $g(f(x)) = x^3$ for all $x \in \mathbb{R}$.
- 8. Does there exist any continuous function $f: \mathbb{R} \longrightarrow \mathbb{R}$ such that, $f(x) \in \mathbb{Q} \iff x \notin \mathbb{Q}$?
- 9. $f: \mathbb{R}_+ \longrightarrow \mathbb{R}_+, f\left(yf\left(\frac{x}{y}\right)\right) = \frac{x^4}{f(y)}$ for all $x, y \in \mathbb{R}_+$

5 Advanced Functions

- 1. $f: \mathbb{R} \longrightarrow \mathbb{R}, |f(x) f(y)| \le (x y)^2$ for all $x, y \in \mathbb{R}$
- 2. $f: \mathbb{R} \longrightarrow \mathbb{R}, \ f(x+f(y)) = y+f(x) \text{ for all } x,y \in \mathbb{R} \text{ and the set } \left\{ \frac{x}{f(x)} \mid x \in \mathbb{R} \right\} \text{ is finite.}$
- 3. $f: \mathbb{R}_+ \longrightarrow \mathbb{R}$, $f(x)f(y) = y^{\alpha}f\left(\frac{x}{2}\right) + x^{\beta}f\left(\frac{y}{2}\right)$ for some constant $\alpha, \beta \in R$ and for all $x, y \in \mathbb{R}_+$
- 4. $f: \mathbb{R}_+ \longrightarrow \mathbb{R}, x f(y) y f(x) = f\left(\frac{x}{y}\right) \text{ for all } x, y \in \mathbb{R}_+$
- 5. $f: \mathbb{R} \longrightarrow \mathbb{R}, f(f(x) y^2) = f(x)^2 2f(x)y^2 + f(f(y))$ for all $x, y \in \mathbb{R}$
- 6. $f: \mathbb{R} \longrightarrow \mathbb{R}$, f(f(x) + y) = x f(1 + xy) for all $x, y \in \mathbb{R}$
- 7. $f: \mathbb{R} \longrightarrow \mathbb{R}, f\left(\frac{x+f(x)}{2}+y+f(2z)\right) = 2x-f(x)+f(f(y))+2f(z)$ for all $x, y, z \in \mathbb{R}$
- 8. $f: \mathbb{R} \longrightarrow \mathbb{R}$, f surjective and strictly increasing, f(f(x)) = f(x) + 12x. for all $x \in \mathbb{R}$
- 9. $f: \mathbb{R} \longrightarrow \mathbb{R}$, $f(x+y^2) \ge (y+1)f(x)^2$ for all $x, y \in \mathbb{R}$
- 10. $f: \mathbb{R} \longrightarrow \mathbb{R}, f(y)f(xf(y)) = f(xy)$ for all $x, y \in \mathbb{R}$

Extreme Functions!

- 11. $f: \mathbb{R} \longrightarrow \mathbb{R}$, $f(x) f(y) \le |x y|$ for all $x \in \mathbb{Q}$ and $y \notin \mathbb{Q}$
- 12. $f: \mathbb{R} \longrightarrow \mathbb{R}$, $f(x+y) \le yf(x) + f(f(x))$, Prove that f(x) = 0 for all $x \le 0$
- 13. $f: \mathbb{R} \longrightarrow \mathbb{R}$, f((x+1)f(y)) = y(f(x)+1) for all $x, y \in \mathbb{R}$
- 14. $f: \mathbb{R}_+ \longrightarrow \mathbb{R}_+, \ f(x+y) \ge f(x) + y f(f(x))$ for all $x, y \in \mathbb{R}_+$
- 15. $f: \mathbb{R}_+ \times \mathbb{R}_+ \longrightarrow \mathbb{R}_+, x f(x, y) f(y, \frac{1}{x}) = y f(y, x)$ for all $x, y \in \mathbb{R}_+$
- 16. $f: \mathbb{R}_+ \longrightarrow \mathbb{R}_+, f(x)^2 \ge f(x+y)(f(x)+y)$ for all $x, y \in \mathbb{R}_+$
- 17. $f: \mathbb{R} \longrightarrow \mathbb{R}$, f(xy)(f(x) f(y)) = f(x)f(y)(x-y) for all $x, y \in \mathbb{R}$
- 18. Prove that there doesn't exist any function $f: \mathbb{R} \longrightarrow \mathbb{R}$, such that,
 - f(1) = 1
 - $\exists M \in \mathbb{R}_+ \text{ s.t. } |f(x)| \leq M \ \forall x \in \mathbb{R}$
 - $f\left(x + \frac{1}{x^2}\right) = f(x) + f\left(\frac{1}{x}\right)^2$ for all $x \in \mathbb{R}$
- 19. $f: \mathbb{R}_0 \longrightarrow \mathbb{R}$ and $f(x) \leq \int_0^x f(t) dt$ for all $x \geq 0$. Prove that, f(x) = 0 for all $x \geq 0$
- 20. $f: \mathbb{R}_+ \longrightarrow \mathbb{R}_+, \ f(x+y^n+f(x)) = f(x)$, $\frac{f(x)+x^n}{f(y)+y^n} \in \mathbb{Q}$ for all $x,y \in \mathbb{R}_+$
- 21. $f: \mathbb{R}_+ \longrightarrow \mathbb{R}_+, f(x+y^n+f(x)) = f(x)$ for all $x, y \in \mathbb{R}_+$

6 Extreme Functions!

- 1. Find all functions $f: \mathbb{R}_+ \longrightarrow \mathbb{R}_+$, such that, $f(x f(y)) = f(x + y^n) + f(y + f(y))$ for all $x, y \in \mathbb{R}_+$ and a fixed positive integer $n \ge 2$.
- 2. Find all continuous functions $f: \mathbb{R}_+ \longrightarrow \mathbb{R}_+$, such that, f(xf(y) + yf(x)) = f(f(xy)) for all $x, y \in \mathbb{R}_+$
- 3. f is a function such that $f'(x) = \frac{x^2 f(x)^2}{x^2(f(x)^2 + 1)}$ for all x > 1. Prove that, $\lim_{x \to \infty} f(x) = \infty$
- 4. Is there any strictly increasing function $f: \mathbb{R}_+ \longrightarrow \mathbb{R}_+$, such that, f'(x) = f(f(x))?
- 5. $f: \mathbb{R}_+ \longrightarrow \mathbb{R}_+$ such that,
 - $f(x) = x \text{ if } x \leq e$
 - $f(x) = x f(\ln x)$ if x > e

Prove that $\sum_{n=1}^{\infty} \frac{1}{f(x)}$ diverges.

Dhananjoy Biswas ebappa1971@gmail.com