Pattern Evaluation

- Association rule algorithms tend to produce too many rules
 - many of them are uninteresting or redundant
 - Redundant if {A,B,C} → {D} and {A,B} → {D} have same support & confidence
- Interestingness measures can be used to prune/rank the derived patterns
- In the original formulation of association rules, support & confidence are the only measures used

© Tan,Steinbach, Kumar

Introduction to Data Mining

4/18/2004

Computing Interestingness Measure

 Given a rule X → Y, information needed to compute rule interestingness can be obtained from a contingency table

Contingency table for $X \to Y$

	Y	Y	
Х	f ₁₁	f ₁₀	f ₁₊
X	f ₀₁	f ₀₀	f _{o+}
	f ₊₁	f ₊₀	T

 f_{11} : support of X and Y f_{10} : support of X and Y f_{01} : support of X and Y f_{01} : support of X and Y

Used to define various measures

 support, confidence, lift, Gini, J-measure, etc.

© Tan,Steinbach, Kumar

Introduction to Data Mining

4/18/2004

Drawback of Confidence

	Coffee	Coffee	
Tea	15	5	20
Tea	75	5	80
	90	10	100

Association Rule: Tea → Coffee

Confidence = P(Coffee | Tea) = 0.75

but P(Coffee) = 0.9

⇒ Although confidence is high, rule is misleading

 \Rightarrow P(Coffee|Tea) = 0.9375

© Tan,Steinbach, Kumar

Introduction to Data Mining

4/18/2004

Statistical Independence

- Population of 1000 students
 - 600 students know how to swim (S)
 - 700 students know how to bike (B)
 - 420 students know how to swim and bike (S,B)
 - $P(S \land B) = 420/1000 = 0.42$
 - $P(S) \times P(B) = 0.6 \times 0.7 = 0.42$
 - P(S∧B) = P(S) × P(B) => Statistical independence
 - P(S∧B) > P(S) × P(B) => Positively correlated
 - P(S∧B) < P(S) × P(B) => Negatively correlated

© Tan,Steinbach, Kumar

Introduction to Data Mining

4/18/2004

5

Statistical-based Measures

Measures that take into account statistical dependence

$$Lift = \frac{P(Y \mid X)}{P(Y)}$$

$$Interest = \frac{P(X,Y)}{P(X)P(Y)}$$

$$PS = P(X,Y) - P(X)P(Y)$$

$$\phi - coefficient = \frac{P(X,Y) - P(X)P(Y)}{\sqrt{P(X)[1 - P(X)]P(Y)[1 - P(Y)]}}$$

© Tan.Steinbach, Kumar

Introduction to Data Mining

4/18/2004

Example: Lift/Interest

	Coffee	Coffee	
Tea	15	5	20
Tea	75	5	80
	90	10	100

Association Rule: Tea → Coffee

Confidence = P(Coffee|Tea) = 0.75

but P(Coffee) = 0.9

 \Rightarrow Lift = 0.75/0.9= 0.8333 (< 1, therefore is negatively associated)

© Tan,Steinbach, Kumar

Introduction to Data Mining

4/18/2004

7

Drawback of Lift & Interest

	Υ	Y	
Х	10	0	10
X	0	90	90
	10	90	100

$$Lift = \frac{0.1}{(0.1)(0.1)} = 10$$

$$Lift = \frac{0.9}{(0.9)(0.9)} = 1.11$$

Statistical independence:

If $P(X,Y)=P(X)P(Y) \Rightarrow Lift = 1$

© Tan,Steinbach, Kumar

Introduction to Data Mining

4/18/2004

			·
	#	Measure	Formula
There are lots of	1	ϕ -coefficient	$\frac{P(A,B)-P(A)P(B)}{P(A)P(B)(1-P(A))(1-P(B))}$
measures proposed	2	Goodman-Kruskal's (λ)	$\frac{\sqrt{P(A)P(B)(1-P(A))(1-P(B))}}{\sum_{j} \max_{i} P(A_{j}) + \sum_{k} \max_{j} P(A_{j}, B_{k}) - \max_{j} P(A_{j}) - \max_{k} P(B_{k})}{- \max_{j} P(A_{j}) - \max_{k} P(B_{k})}$
in the literature	3	Odds ratio (\alpha)	$\frac{P(A,B)P(\overline{A},\overline{B})}{P(A,\overline{B})P(\overline{A},B)}$
	4	Yule's Q	$\frac{P(A,B)P(\overline{AB})-P(A,\overline{B})P(\overline{A},B)}{P(A,B)P(\overline{AB})+P(A,\overline{B})P(\overline{A},B)} = \frac{\alpha-1}{\alpha+1}$
	5	Yule's Y	$\frac{\sqrt{P(A,B)P(AB)} + P(A,B)P(A,B)}{\sqrt{P(A,B)P(AB)} - \sqrt{P(A,B)P(A,B)}} = \frac{\sqrt{\alpha} - 1}{\sqrt{\alpha} + 1}$
Some measures are good for certain	6	Kappa (κ)	$\frac{P(A,B)+P(\overline{A},\overline{B})-P(A)P(B)-P(\overline{A})P(\overline{B})}{1-P(A)P(B)-P(\overline{A})P(\overline{B})}$
applications, but not	7	Mutual Information (M)	$\frac{\sum_{i} \sum_{j} P(A_{i}, B_{j}) \log \frac{P(A_{i}, B_{j})}{P(A_{i}) P(B_{j})}}{\min(-\sum_{i} P(A_{i}) \log P(A_{i}), -\sum_{j} P(B_{j}) \log P(B_{j}))}$
for others	8	J-Measure (J)	$\max \left(P(A,B) \log(\frac{P(B A)}{P(B)}) + P(A\overline{B}) \log(\frac{P(\overline{B} A)}{P(\overline{B})}), \right.$
			$P(A,B)\log(\frac{P(A B)}{P(A)}) + P(\overline{A}B)\log(\frac{P(\overline{A} B)}{P(A)})$
	9	Gini index (G)	$= \max \left(P(A)[P(B A)^2 + P(\overline{B} A)^2] + P(\overline{A})[P(B \overline{A})^2 + P(\overline{B} \overline{A})^2] \right)$
What criteria should			$-P(B)^2 - P(\overline{B})^2$,
we use to determine			$P(B)[P(A B)^{2} + P(\overline{A} B)^{2}] + P(\overline{B})[P(A \overline{B})^{2} + P(\overline{A} \overline{B})^{2}]$
whether a measure			$-P(A)^3 - P(\overline{A})^3$
is good or bad?	10	Support (s)	P(A,B)
	11	Confidence (c)	$\max(P(B A), P(A B))$
	12	Laplace (L)	$\max\left(\frac{NP(A,B)+1}{NP(A)+2},\frac{NP(A,B)+1}{NP(B)+2}\right)$
What about Apriori-	13	Conviction (V)	$\max\left(\frac{P(A)P(\overline{B})}{P(A\overline{B})}, \frac{P(B)P(\overline{A})}{P(B\overline{A})}\right)$
style support based	14	Interest (I)	$\frac{P(A,B)}{P(A)P(B)}$
pruning? How does	15	cosine (IS)	$\frac{\frac{P(A,B)}{\sqrt{P(A)P(B)}}}{\sqrt{P(A)P(B)}}$
it affect these	16	Piatetsky-Shapiro's (PS)	P(A,B) - P(A)P(B)
measures?	17	Certainty factor (F)	$\max\left(\frac{P(B A)-P(B)}{1-P(B)}, \frac{P(A B)-P(A)}{1-P(A)}\right)$
	18	Added Value (AV)	$\max(P(B A) - P(B), P(A B) - P(A))$
	19	Collective strength (S)	$\frac{P(A,B)+P(\overline{AB})}{P(A)P(B)+P(A)P(\overline{B})} \times \frac{1-P(A)P(B)-P(\overline{A})P(\overline{B})}{1-P(A,B)-P(\overline{AB})}$
	20	Jaccard (ζ)	$\frac{P(A,B)}{P(A)+P(B)-P(A,B)}$
	21	Klosgen (K)	$\sqrt{P(A,B)}\max(P(B A)-P(B),P(A B)-P(A))$

Comparing Different Measures																					
	10 examples of Example f ₁₁ f ₁₀ f ₀₁ f ₀₀																				
				10	ex	am	nple	es (ot			E1		812	3	83	424	137	0		
				CO	ntir	าตะ	nc	v ts	able	٥٥.		E2		833	0	2	622	104	16		
				CO	11(11	ige	,,,,	y to	יוטג	<i>-</i> 3.		E3		948	1	94	127	29	8		
												E4		395	4 3	080	5	296	61		
												E5		288	6 1	363	1320	443	31		
												E6		150	0 2	000	500	600	00		
												E7		400	0 2	000	1000	300	00		
Б.,												E8		400	0 2	000	2000	200	00		
Ran		_			_			oies	3			E9		172	0 7	121	5	115	54		
usin	ıg v	ario	ous	me	asu	res	:					E10)	61	2	483	4	745	52		
#	φ	λ	α	Q	Y	κ	M	J	G	s	c	L	V	Ī	IS	PS	F	AV	S	ζ	K
E1	1	1	3	3	3	1	2	2	1	3	5	5	4	6	2	2	4	6	1	2	5
E2	2	2	1	1	1	2	1	3	2	2	1	1	1	8	3	5	1	8	2	3	6
E3	3	3	4	4	4	3	3	8	7	1	4	4	6	10	1	8	6	10	3	1	10
E4	4	7	2	2	2	5	4	1	3	6	2	2	2	4	4	1	2	3	4	5	1
E5	5	4	8	8	8	4	7	5	4	7	9	9	9	3	6	3	9	4	5	6	3
E6	6	6	7	7	7	7	6	4	6	9	8	8	7	2	8	6	7	2	7	8	2
E7	7	5	9	9	9	6	8	6	5	4	7	7	8	5	5	4	8	5	6	4	4
E8	8	9	10	10	10	8	10	10	8	4	10	10	10	9	7	7	10	9	8	7	9
E9	9	9	5	5	5	9	9	7	9	8	3	3	3	7	9	9	3	7	9	9	8
E10	10	8	6	6	6	10	5	9	10	10	6	6	5	$\begin{pmatrix} 1 \end{pmatrix}$	10	10	5	1	10	10	7
© Ta	ın,Ste	inbad	ch, Ku	mar			Inti	oduct	tion to	Data	Minin	g					4/18	/2004		10	

Properties of A Good Measure

Piatetsky-Shapiro:

3 properties a good measure M must satisfy:

- -M(A,B) = 0 if A and B are statistically independent
- M(A,B) increases monotonically with P(A,B) when P(A) and P(B) remain unchanged
- M(A,B) decreases monotonically with P(A) [or P(B)]
 when P(A,B) and P(B) [or P(A)] remain unchanged

© Tan,Steinbach, Kumar

Introduction to Data Mining

4/18/2004

11

Property under Variable Permutation

	В	$\overline{\mathbf{B}}$		A	$\overline{\mathbf{A}}$
A	p	q	В	р	r
$\overline{\mathbf{A}}$	r	S	$\overline{\mathbf{B}}$	q	S

Does M(A,B) = M(B,A)?

Symmetric measures:

support, lift, collective strength, cosine, Jaccard, etc

Asymmetric measures:

• confidence, conviction, Laplace, J-measure, etc

© Tan,Steinbach, Kumar

Introduction to Data Mining

4/18/2004

Property under Row/Column Scaling

Grade-Gender Example (Mosteller, 1968):

	Male	Female	
High	2	3	5
Low	1	4	5
	3	7	10

	Male	Female	
High	4	30	34
Low	2	40	42
	6	70	76
	<u> </u>	<u> </u>	
	2x	10x	

Mosteller:

Underlying association should be independent of the relative number of male and female students in the samples

© Tan,Steinbach, Kumar Introduction to Data Mining 4/18/2004 13

Example: φ-Coefficient

 φ-coefficient is analogous to correlation coefficient for continuous variables

	Υ	Y	
Χ	60	10	70
X	10	20	30
	70	30	100

	Υ	Y	
Χ	20	10	30
X	10	60	70
	30	70	100

$$\phi = \frac{0.6 - 0.7 \times 0.7}{\sqrt{0.7 \times 0.3 \times 0.7 \times 0.3}}$$
$$= 0.5238$$

$$\phi = \frac{0.6 - 0.7 \times 0.7}{\sqrt{0.7 \times 0.3 \times 0.7 \times 0.3}} \qquad \phi = \frac{0.2 - 0.3 \times 0.3}{\sqrt{0.7 \times 0.3 \times 0.7 \times 0.3}}$$
$$= 0.5238 \qquad = 0.5238$$

\phi Coefficient is the same for both tables

© Tan,Steinbach, Kumar

Introduction to Data Mining

4/18/2004

Property under Null Addition

	В	$\overline{\mathbf{B}}$			В	$\overline{\mathbf{B}}$
A	р	q		A	р	q
$\overline{\mathbf{A}}$	r	S	Į V	$\overline{\mathbf{A}}$	r	s + k

Invariant measures:

support, cosine, Jaccard, etc

Non-invariant measures:

• correlation, Gini, mutual information, odds ratio, etc

© Tan,Steinbach, Kumar

Introduction to Data Mining

4/18/2004

Different Measures have Different Properties

Symbol	Measure	Range	P1	P2	P3	01	02	03	03'	04
Φ	Correlation	-1 0 1	Yes	Yes	Yes	Yes	No	Yes	Yes	No
λ	Lambda	0 1	Yes	No	No	Yes	No	No*	Yes	No
α	Odds ratio	0 1 ∞	Yes*	Yes	Yes	Yes	Yes	Yes*	Yes	No
Q	Yule's Q	-1 0 1	Yes	Yes	Yes	Yes	Yes	Yes	Yes	No
Υ	Yule's Y	-1 0 1	Yes	Yes	Yes	Yes	Yes	Yes	Yes	No
κ	Cohen's	-1 0 1	Yes	Yes	Yes	Yes	No	No	Yes	No
M	Mutual Information	0 1	Yes	Yes	Yes	Yes	No	No*	Yes	No
J	J-Measure	0 1	Yes	No	No	No	No	No	No	No
G	Gini Index	0 1	Yes	No	No	No	No	No*	Yes	No
S	Support	0 1	No	Yes	No	Yes	No	No	No	No
С	Confidence	0 1	No	Yes	No	Yes	No	No	No	Yes
L	Laplace	0 1	No	Yes	No	Yes	No	No	No	No
V	Conviction	0.5 1 ∞	No	Yes	No	Yes**	No	No	Yes	No
I	Interest	0 1 ∞	Yes*	Yes	Yes	Yes	No	No	No	No
IS	IS (cosine)	0 1	No	Yes	Yes	Yes	No	No	No	Yes
PS	Piatetsky-Shapiro's	-0.25 0 0.25	Yes	Yes	Yes	Yes	No	Yes	Yes	No
F	Certainty factor	-1 0 1	Yes	Yes	Yes	No	No	No	Yes	No
AV	Added value	0.5 1 1	Yes	Yes	Yes	No	No	No	No	No
S	Collective strength	0 1 ∞	No	Yes	Yes	Yes	No	Yes*	Yes	No
ζ	Jaccard	0 1	No	Yes	Yes	Yes	No	No	No	Yes
K	Klosgen's	$\left(\sqrt{\frac{2}{\sqrt{3}}-1}\right)\left(2-\sqrt{3}-\frac{1}{\sqrt{3}}\right)\dots 0\dots \frac{2}{3\sqrt{3}}$	Yes	Yes	Yes	No	No	No	No	No

Support-based Pruning

- Most of the association rule mining algorithms use support measure to prune rules and itemsets
- Study effect of support pruning on correlation of itemsets
 - Generate 10000 random contingency tables
 - Compute support and pairwise correlation for each table
 - Apply support-based pruning and examine the tables that are removed

Effect of Support-based Pruning

- Investigate how support-based pruning affects other measures
- Steps:
 - Generate 10000 contingency tables
 - Rank each table according to the different measures
 - Compute the pair-wise correlation between the measures

© Tan, Steinbach, Kumar Introduction to Data Mining 4/18/2004

Without Support Pruning (All Pairs) All Pairs (40.14%) Conductor Construction United to the pair of measures > 0.85 Tan, Steinbach, Kumar Introduction to Data Mining 4/18/2004 22

Subjective Interestingness Measure

- Objective measure:
 - Rank patterns based on statistics computed from data
 - e.g., 21 measures of association (support, confidence, Laplace, Gini, mutual information, Jaccard, etc).
- Subjective measure:
 - Rank patterns according to user's interpretation
 - A pattern is subjectively interesting if it contradicts the expectation of a user (Silberschatz & Tuzhilin)
 - A pattern is subjectively interesting if it is actionable (Silberschatz & Tuzhilin)

© Tan,Steinbach, Kumar

Introduction to Data Mining

4/18/2004

25

Interestingness via Unexpectedness

Need to model expectation of users (domain knowledge)

- + Pattern expected to be frequent
- Pattern expected to be infrequent
- Pattern found to be frequent
- Pattern found to be infrequent
- + Expected Patterns
- Unexpected Patterns
- Need to combine expectation of users with evidence from data (i.e., extracted patterns)

© Tan,Steinbach, Kumar

Introduction to Data Mining

4/18/2004

Simpson's Paradox

- Hidden influences can produce misleading results
 - C(EM=Y | HDTV=Y) = 55%
 - C(EM=Y | HDTV=N) = 45%
 - Conclude HDTV -> EM?

Buy HDTV	Buy Exercise		
	Yes	No	
Yes	99	81	180
No	54	66	120
Totals	153	147	300

© Tan,Steinbach, Kumar Introduction to Data Mining 4/18/2004 28

Simpson's Paradox

College Students Working Adults

 $C(EM=Y \mid HDTV=Y) = 10\%$ $C(EM=Y \mid HDTV=Y) = 57.7\%$

 $C(\mathsf{EM} = \mathsf{Y} \mid \mathsf{HDTV} = \mathsf{N}) = 11.8\% \qquad C(\mathsf{EM} = \mathsf{Y} \mid \mathsf{HDTV} = \mathsf{N}) = 58.1\%$

Customer	Buy HDTV	Buy Exercise Machine		Total
Group		Yes	No	
College	Yes	1	9	10
Students	No	4	30	34
Working	Yes	98	72	170
Adults	No	50	36	86

© Tan,Steinbach, Kumar Introduction to Data Mining 4/18/2004 29