Lead-Log compense		Controller Plant G(s) G(s)
General form of Gc zeros: S= -1	$\left(S + \frac{1}{\alpha T}\right)$	G(s) -giren (fixed) G(cs) -designable
$\frac{pola}{6} = -\frac{1}{AT}$	Desired dominant closed $\frac{1}{AT}$ $\frac{1}{T}$ $\frac{1}{AT}$	-
$[G_c(s) = \frac{(s+1/T)}{(s+1/T)}$ $[G_c(s) = \frac{(s+1/T)}{(s+1/T)}$	Derive d dominant closed loop pole	Lag compensator $ \begin{array}{c} $
$\angle G_{C}(s) = \Theta_{Z} - \Theta_{P}$ * For lead compensor	ator: $\theta_z - \theta_P > 0$	
* For log compens		be on most lows (conditions):
	Angle / Phase condition	
	[Gc G(P')=	
p! → denred	2 Magnitude condition	
poles :	10 01211	
	$\left \left(G_{ic} + G_{ic} \right) \right =$	$rac{1}{2}$
	(Ge : G(P)) =	

. 5	teps for	lead-lag co	ompensator.	design:			
(i). I	Determine.	the de	rired location	m of the do	ominant closed	loop poles	(GIVEN)
•			the denir				
			deficiency				
•		i i i If	j φ > j0 j	= lead 0 ompensator	compensator		
•		else	log c	ompensator			
4	. Determize	inizontal :	-1/ _{dT} :		sning through c		
•					ring through c	denired pole	·
•			p¹ with o	ngio : : : :			
•	* Bisect						
•	* Draw	lines of	ϕ_{2}	i axis are d	eured points		
•	. % midse	μποτ), ₍ wi	· · · · · · · · · · · · · · · · · · ·	axis are d	210 St. John		
•				Lead	d compensator:		
•					* Improves stab	oility :	
•				Lag	compensator:		
•					* reduces st	eady state e	ennor
						• • • •	
•	· · · · · · · · · · · · · · · · · · ·		· · · · · · · · · · · · · · · · · · ·		•	•	desired poles
					(S-p1)	$(S - p_2^t) = 0$	desired poles
					(S-p1)	•	desired poles

Example: Res Set Greek Gal Ves We Gal We Gal K
$$(s+\frac{1}{17})$$

The property of the property o

Law of Sines:
$$\frac{3}{\sin 80.465} = \frac{y}{\sin 39.535}$$

$$\begin{vmatrix} y = 1.9364 \\ T = 1.9364 \end{vmatrix}$$

$$\frac{1}{dT} = 4.647$$

$$d = \frac{1}{4.647} = 0.4167$$

$$d = 0.4167$$

Compensation Transfer function

$$G_{C}(s) = K \frac{(S+1.9364)}{(S+4.647)}$$

Determine K: G(cs) G(s) = 1

using magnitude condition

$$K = \frac{(S+4.647)5(S+1)}{10(S+1.9364)}$$

$$@S = -1.5 \pm j2.59$$

#Lead compensator T.F $G_{C}(s) = [-225] (5+1.9364)$ (5+4.647)

* Open loop compensated system: $G_c(s)G(s) = \frac{1.2251(s+1.9364)}{(s+4.647)} \frac{10}{5(s+1)}$

* Closed loop compensated system: $\frac{Y(s)}{R(s)} = \frac{12.251 (s+1.9364)}{5(s+1)(s+4.647)+12.251(s+1.9364)}$

* Required specifications of the compensated system

$$W_0 = 4$$
 3=0.5

52+ 23wn + wn2 = 0

desired poles can be

computed from this

equation