Learning Goals What?

Learning Goals

Development for special hardware

Efficient creation of good documentation

Experiencing freedom

in development

 Results are demanded, not the way of fulfilling them

Content of the Course

- Foundation: Lectures about selected topics
 - Experts from industry will share their knowledge
- Your project
 - Development of a real-time system or comparable other topics
 - Paper about your project topic
 - Presentation of your project topic

Selected Topics

Project Details

- Different possibilities for your project topic all are related to real-time systems
- Some ideas on the next two slides
- Any other (acceptable) topic related to real-time systems – the lecturer has to agree to the topic
- You might have to share equipment with other groups with the same topic

Project Details

- Work with embedded hardware
 - Control of a BLDC motor (4 groups)
 - Profiling on the Arduino (4 groups)
 - Converter for RS-232 signals (2 groups)
- Multicore (4 groups)
- Simulators
 - Flight arrival and departure simulator (2 groups)
 - Antilock-Braking-System simulator (2 groups)

Project Details – Lego Mindstorms

- Autonomous vehicles (3 groups)
 - Only Autonomous Vehicle 2
- Sound detection (1 group)
- Obstacle detection (1 group)
- Balancing robots (3 groups)

Project Details – BLDC motor

- Hardware
 - BLDC motor
 - Arduino controller
 - Several electronic parts, especially a three phase motor driver IC

Project Details – BLDC motor

- The system shall control a BLDC motor in different speeds and in both directions.
- The speed shall be changed by two buttons for turning slower and faster.
- The direction shall be changed by another button.
 - The direction can be changed only if the motor is switched off. –
 Alternatively it is slowed down automatically, stops, and is accelerated again into the other direction.
- Another test program shall move the motor in a predefined way, e.g. half a turn clockwise, then wait one second, then three and a quarter turn counter-clockwise,

Introduction to electrical motors on 6.11.2017

Project Details – Profiling

- Hardware
 - Arduino Controller
 - ARM Cortex-M3
 development board
 with touchscreen
 - Logic Analyzer

Project Details – Profiling

- Sometimes profiling is useful during development
- How can profiling be done on the Arduino?
- Identify and try out at least two completely different approaches
- Available hardware
 - Arduino controller (with display, if necessary)
 - Logic analyzer
- Write a cyclic program with some calculations and functions and apply your profiling approaches to analyze it

Project Details - Profiling

- Optimize the given program ProfilingProgram.py for the Arduino
 - Translate it from python first
 - Find appropriate constructs with similar runtime
 - Analyze and optimize it in the second step using
 - your profiling approaches
 - your knowledge about simplification of algorithms
 - Test it

Project Details – Multicore

- The focus of that task is on multicore
 - This can also be done in a non-real-time environment
- Hardware: Raspberry Pi 3 Model B
- Software: Parallel programs from different domains
- Select an appropriate programming environment
 - Programming language
 - Multicore support
 - Runtime measuring

Project Details – Multicore

- Image-Processing ideas
 - Each core processes a part of the picture
 - Reformat picture by averaging the new color based on the colors of the neighbors?
 - What about unavailability of pixels at the edges?
- 2,5%

 7,5%

 15%

 7,5%

 15%

 7,5%

 15%

 7,5%

 2,5%

- Each core processes one aspect for the whole picture
 - Calculate the average RGB-values
- Further computer science or mathematical problems
- ProfilingProgram.py

Project Details – Multicore

- The task in detail
 - Compare the runtime of (at least three) programs from three different domains when using 1, 2, 3, and 4 cores in each experiment
 - Explain the kind of parallelization
 - Explain the measured values
 - Can race conditions happen in the respective case?
 - Implement (at least two) synchronization mechanisms
 - They certainly can be used by your programs
 - How to test or prove the correctness?
 - Implement a simple runtime measurement and use it

Project Details – Autonomous vehicles

with Lego Mindstorms

- These vehicles drive around and avoid collisions
- Programming language:
 LEGO NXT

Project Details – Mindstorms Autonomous Vehicle 2

- Vehicle that follows a colored line or an illuminated line on the ground
 - Autonomous steering is required
- The vehicle shall be as fast as possible
- Sensors: Two light or RGB sensors

Project Details – Mindstorms Sound Detection

- The system shall point into the direction with the highest volume within an area of 180 degrees
- Sensors
 - 4 Sound sensors calibration of sensors necessary?

Project Details – Mindstorms Sound Detection

- Analyze the quality of the sensors this is necessary for the implementation
 - Detection range
 - Detection error
 - Differences of the sensors
- Think about how to test this
 - Realize the test

Project Details – Mindstorms Obstacle Detection

- The system shall point into the direction with the largest distance to an obstacle within an area of 120 degrees
- Sensors
 - 4 ultrasonic sensors calibration of sensors necessary?

Project Details – Mindstorms Obstacle Detection

- Analyze the quality of the sensors this is necessary for the implementation
 - Detection range
 - Detection error
 - Differences of the sensors
- Think about how to test this
 - Realize the test

Project Details – Mindstorms Balancing Robots

- Create some moving object balancing around one axis, e.g.
 - Sketches below (balancing by wheel rotation)
 - Let the vehicle move and stop with keeping the object in balance
 - Bike (balancing by steering)
- Hardware
 - Motor(s)
 - Gyro sensor

Project Details – Converter for RS-232 Real time noise analyses command transmitter – by Alexander Pfaff

Current situation: In the laboratory for automotive engineering there is a sound intensity probe to create sound intensity maps. Once placed, the sound intensity at that point can be measured (middle image). For this purpose, a remote control is provided for facilitating the handling of the probe, whereby measurements can be started and stopped.

Project Details – Converter for RS-232 Real time noise analyses command transmitter – by Alexander Pfaff

Problem: The commands of the remote control are no longer supported.

Task: Design and construction of a "translator", which enables the remote control function. The system shall finish sending the respective output-command after having detected the input-command within 15 milliseconds.

Project Details – Flight Arrival and Departure Simulator

- Write a simulation for arrivals and departures
 - Fair schedule decreasing the overall waiting time
- Parameters
 - Number of runways: 1, 2, or 3
 - Number, frequency, randomness, ... of arriving and departing planes
 - Scheduler (different algorithms?)
- Hardware: PC
 - Graphical user interface for setting the parameters
 - Graphical output

Project Details – Antilock-Braking-System Simulator

- Write a simulation for one wheel of a vehicle
 - When full braking, the brake pressure shall be as high as possible without locking of the wheel, i.e.
 - when locking is detected, then the brake pressure shall be decreased until the wheel is not locking any more
 - when no locking is detected, the brake pressure shall be increased until the wheel is locking

Project Details – Antilock-Braking-System Simulator

- The vehicle shall brake on a simulated road with changing frictional coefficient
 - Test it with different roads and measure the braking distance depending on the road
- Hardware: PC
 - Graphical user interface for setting the parameters
 - Algorithm
 - Road
 - Graphical output
 - Graph with friction data of the road, speed, and braking pressure and distances

Project Details – Other Topic?

- Perhaps you already have an idea ... ???
- The topic has to be related to real-time systems
- The topic must not be the same as other topic from preceding semesters
- The lecturer has to agree to the topic

Work Products in Moodle

- Which ones?
 - Handouts by the lecturers
 - Deliverables by the participants
 - Language: English
- Where?
 - https://moodle.frankfurt-university.de/
 - Course: Advanced Real-Time Systems Winter 2017/18
 - Access code: G4m7Ta

 One personal grade for every participant

- Each of the items counts as much as the others
 - Quality of written paper
 - Working project based on the project type:
 - Running software(-system)
 - Working schedulability analysis
 - Quality of presentation

- Paper
 - Delivered by every participant
- Project
 - Delivered by the team
 - It has to be obvious who contributed to which part,
 e.g. add a simple file that describes who contributed to which part or mark the parts
- Presentation
 - Every participant presents one part in the team presentation

- Work products have to be delivered in time
- Language: English
- Work products have to be understandable
- Work products have to fulfill scientific standards
- Plagiarism is an attempt of deception
 - No copies of parts of relevant size from other resources (also not from other team members!)
 - Correct citations of used work products
- Deviations from these points influence the grade

Plagiarism

Plagiaris mo

- Paper
 - Needs to include your name, matriculation number, group number and the name of the course
 - Well structured, e.g.
 - Abstract
 - Citation of necessary references
- Deviations from these points influence the grade

- Author's (not the group's) contribution to the project
- Embed your contribution into a meaningful context, depending on the contribution, e.g.
 - Theoretical foundation
 - Software design
 - Testing
 - Visualization
 - Examples
- Deviations from these points influence the grade

- Paper
 - Two-weekly reports to be included in the paper
 - Author's contributions to the project
 - Two-week-periods starting after the topic has been selected
 - Task for the group: Split topics for the papers such that every paper contains different aspects related to the project
- Deviations from these points influence the grade

- Paper
 - Maximum of 6 pages
 - Quality, not quantity!
 - If there are many figures and/or large tables in the paper,
 then up to 8 pages is acceptable
 - Font size: 12 pt
 - One or two columns
 - Format: pdf
- Deviations from these points influence the grade

 Delivered project has to fulfill its requirements

- Implementation of the theoretical foundation in the papers
- Project presentation by the group
 - Based on the content of the papers
 - Includes practical presentation and theoretical foundation
 - Each participant: 5 to 7 minutes
 - Task for the group: Split topics for the presentation such that every person talks about different aspects related to the project
- Naming convention for deliverables to be used
- Deviations from these points influence the grade

Important Dates

- Selection of your topic: 13.11.2017, 8:30 (or earlier)
- Your presentation:29.01.2018 or 05.02.2018
 - Date and time planning during the presence time

- Delivery dates
 - Work products of your project: 09.02.2018
 - Your paper: 09.02.2018

Presence Dates and Time in Room 1-250

- Presence dates (Monday)
 - **23.10.2017**
 - **3**0.10.2017
 - **•** 06.11.2017
 - **1**3.11.2017
 - **2**0.11.2017
 - **27.11.2017**
 - **•** 04.12.2017
 - **1**1.12.2017
 - **1**8.12.2017
 - **15.01.2018**
 - **22.01.2018**
 - **29.01.2018**
 - **•** 05.02.2018

Time for working on your project topic in the presence time.

Lectures about selected topics on

- -06.11.2017
- 13.11.2017
- 04.12.2017
- 11.12.2017

Presentation of your results

Presence time

■ 8:15 – 9:45

10:00 - 11:30

Group A / B – two slides

Rules of the Game

Next Step: Grouping

- Form teams based on interests for the topics
 - The whole group works on one project
- Two or three people in a team
 - Not one, not four!
- Consensus of all participants
- Fill in your names etc. in the forms