IDL

Interactive Data Language

Álgebra Booleana

- Computador binário
 - * True/False, 1/0, 5v/ov, On/Off, Não-Zero/Zero.
- * Proposições:
 - * Verdadeiras ou Falsas? 1 ou o?
 - * 5 > 2
 - * 4 < 8
 - * 3 > x → Não é uma proposição
 - * 4 + 2 → Não é uma proposição

* AND(e)

* Relaciona duas proposições para formar uma única de forma que esta terá valor verdadeiro somente se as duas proposições que se unirão para formá-la tiverem ambas o valor verdadeiro.

* Exemplos:

- * 5>3 AND 2<4
- * 3<8 AND 3=0

* AND(e)

* Relaciona duas proposições para formar uma única de forma que esta terá valor verdadeiro somente se as duas proposições que se unirão para formá-la tiverem ambas o valor verdadeiro.

* Exemplos:

- * 5>3 AND 2<4 V
- * 3<8 AND 3=0 F

8<2 AND 2<8 F

4>9 AND 2=1 F

- * OR (ou)
 - * Relaciona duas proposições para formar uma terceira onde esta possuirá o valor verdadeiro se pelo menos uma das duas que a formam possuir o valor verdadeiro.
 - * Exemplos:
 - * 5>2 OR 3<5
 - * 1>9 OR 7>6

* OR (ou)

* Relaciona duas proposições para formar uma terceira onde esta possuirá o valor verdadeiro se pelo menos uma das duas que a formam possuir o valor verdadeiro.

* Exemplos:

- * 5>2 OR 3<5 V
- * 1>9 OR 7>6 V

- * NOT (não)
 - * Inverte o valor de uma proposição, de forma que a proposição resultante será verdadeira quando a inicial for falsa, e será falta quando a inicial for verdadeira.
 - * Exemplos:
 - * NOT 5>2

NOT 2<1

- * NOT (não)
 - * Inverte o valor de uma proposição, de forma que a proposição resultante será verdadeira quando a inicial for falsa, e será falta quando a inicial for verdadeira.
 - * Exemplos:
 - * NOT 5>2 F

NOT 2<1 V

- * Associar com o português:
 - * "Você só poderá ir a esta festa se a Natália e a Joana forem."
 - * "Chame o João e o Bruno, se qualquer um deles for, você pode ir também."
 - * "Eu só vou àquela festa se o Jorge não for."

$$2 > -2 \text{ OR } 2 = -2$$

$$2 < 4 OR 2 = 1$$

NOT
$$3 > 8 - 6$$

NOT
$$4 = 9 \text{ AND } 2 > -1$$

NOT
$$3 > 8 - 6$$

2 > -2 OR 2 = -2

* 2 > 2 OR NOT 3 < 8

$$NOT 4 = 9 AND 2 > -1$$

* 2 > 8 AND (5 < 3 OR NOT 3 = 15*1/3)

* NOT (5 > 2 AND ((3 > 2 AND 8 < 2) OR NOT 4 > 2))

* NOT (NOT 5 > 2 OR NOT (NOT (3> 2 OR NOT 8<2)))

* NOT (5 > 2 AND ((3 > 2 AND 8 < 2) OR NOT 4 > 2))

* NOT (NOT 5 > 2 OR NOT (NOT (3> 2 OR NOT 8<2)))

Revisão de Álgebra Linear

- * Operações com matrizes
 - Soma e subtração
 - Multiplicação por escalar
 - * Multiplicação entre matrizes
- * Transposição de matrizes

Revisão de Álgebra Linear

$$A_{m \times n} = \begin{bmatrix} a & b & c \\ d & e & f \\ g & h & i \end{bmatrix}$$

* Onde m = n = 3

$$A_{m \times n} = \begin{bmatrix} \begin{bmatrix} a \\ d \\ g \end{bmatrix} \begin{bmatrix} b \\ e \\ h \end{bmatrix} \begin{bmatrix} c \\ f \\ i \end{bmatrix} \text{ ou } A_{m \times n} = \begin{bmatrix} \begin{bmatrix} a & b & c \\ d & e & f \end{bmatrix} \\ \begin{bmatrix} g & h & i \end{bmatrix}$$

Revisão de Álgebra Linear

$$A_{m \times n} = \begin{bmatrix} a & b & c \\ d & e & f \\ g & h & i \end{bmatrix}$$

* Onde m = n = 3

$$A_{m \times n} = \begin{bmatrix} \begin{bmatrix} a \\ d \\ g \end{bmatrix} \begin{bmatrix} b \\ e \\ h \end{bmatrix} \begin{bmatrix} c \\ f \\ i \end{bmatrix} \text{ ou } A_{m \times n} = \begin{bmatrix} \begin{bmatrix} a & b & c \\ d & e & f \end{bmatrix} \\ \begin{bmatrix} g & h & i \end{bmatrix} \end{bmatrix}$$

- * Soma e subtração de matrizes
 - * Necessário que ambas tenham o mesmo número de linhas e colunas.

$$* A_{2x2} = \begin{bmatrix} 1 & 2 \\ 3 & 4 \end{bmatrix}$$

$$B_{2x2} = \begin{bmatrix} 2 & 1 \\ 1 & 0 \end{bmatrix}$$

$$* C = A + B$$

$$C_{2x2} = \begin{bmatrix} 1+2 & 2+1 \\ 3+1 & 4+0 \end{bmatrix} = \begin{bmatrix} 3 & 3 \\ 4 & 4 \end{bmatrix}$$

- * Multiplicação por escalar
 - * Multiplica-se cada termo da matriz pelo escalar.

*
$$A_{3x2} = \begin{bmatrix} 1 & 2 \\ 3 & 2 \\ 1 & 4 \end{bmatrix}$$
 $B_{3x2} = A * 2$
* $B_{3x2} = \begin{bmatrix} 1 * 2 & 2 * 2 \\ 3 * 2 & 2 * 2 \\ 1 * 2 & 4 * 2 \end{bmatrix} = \begin{bmatrix} 2 & 4 \\ 6 & 4 \\ 2 & 8 \end{bmatrix}$

- * Multiplicação entre matrizes
 - * Necessita-se que o número de colunas da primeira seja igual ao número da segunda.
 - * O resultado terá o mesmo número de linhas da primeira e o mesmo número de colunas da segunda.
 - * Multiplica-se cada linha da primeira por cada coluna da segunda para gerar cada termo da matriz resultado.
 - * Multiplica cada termo da linha, pelo correspondente da coluna, e soma-se os resultados.

$$* A_{3x2} = \begin{bmatrix} a & b \\ c & d \\ e & f \end{bmatrix}$$

$$B_{2x2} = \begin{bmatrix} 1 & 2 \\ 3 & 4 \end{bmatrix}$$

*
$$C = A * B = C_{3x2} = \begin{bmatrix} a * 1 + b * 3 & a * 2 + b * 4 \\ c * 1 + d * 3 & c * 2 + d * 4 \\ e * 1 + f * 3 & e * 2 + f * 4 \end{bmatrix}$$

- * Transposição de matrizes
 - * A transposta de uma matriz é uma matriz onde suas colunas são as linhas da primeira e suas linhas são as colunas da primeira.

$$* A_{3x1} = \begin{bmatrix} 1 \\ 2 \\ 3 \end{bmatrix}$$

$$B_{1x3} = [1 \quad 1 \quad 1]$$

$$* C = A * B$$

$$D = B * A$$

$$E = A^T * B^T$$

$$* F = A * 2$$

$$G = (A * 2) + (B^T * 0.5)$$

Algoritmo e Programação

- * Algoritmo
- * Programação
- * Criatividade
- * O que é mais importante?
 - * Saber em que posso aplicar um conceito.
 - * Saber como funciona o conceito.

Organizando o pensamento

- * Fluxograma
 - * Diagrama visual que explica um processo passo a passo.
- * Diagrama de blocos
 - * Diagrama que mostra os blocos de processos relacionando-os e mostrando as informações que são necessárias para a serem recebidas e transmitidas.

Fluxogramas

Diagrama de blocos

- * Dado um vetor com várias distâncias, acessados um de cada vez por um índice, calcule o valor de uma função f(x). Organize em um fluxograma e em um diagrama de blocos.
 - * (Suponha f(x) sendo uma função qualquer)
- * Faça um fluxograma e um diagrama de blocos para um programa que exiba a série de Fibonacci.

Recursividade

* Recursividade é quando uma função é capaz de chamar uma outra instância dela mesma para solucionar um problema semelhante, só que menor.

* Exemplo:

* Crie um fluxograma que calcule o fatorial de um número com recursividade.

Fatorial

Imagem obtida em: http://www.realidadevirtual.com.br/cmsimple-rv/images/torre13.JPC

Torre de Hanoi

Objetivos: Mover todos os discos para outra torre.

Regras:

- Não é permitido segurar os discos, estes devem estar ou sendo movido, ou em uma das torres.
- Só é possível mover um único disco por vez.
- Não é permitido por um disco maior em cima de um menor.

Criar um fluxograma e um diagrama de blocos que explique a solução da torre de Hanoi.

Torre de Hanoi

Dúvidas?

E-mail: antoniopaulovp@gmail.com

Blog: http://idltutorial.blogspot.com