

## Clustering of complex datasets

Milestone Presentation

Ahmed Tidjani, Fabio Buso, Paul Velthuis & Zahin Azher Service-centric Networking | Tu Berlin | May 11<sup>th</sup>, 2016





# **Complex Datasets** Technische Universität Berlin





**Normal Dataset** 





## Clustering



Grouping a set of objects in a way that similar objects are in the same cluster.

#### Types:

- Connectivity Based (Hierarchical)
- Centroid Based (kMeans)
- Density Based (OPTICS)
- Self-Tuning Spectral Clustering







## Self-tuning Spectral Clustering<sup>[2]</sup>



#### Requires:

Max number of Clusters

Builds the affinity matrix based on the relations between objects in the dataset.

Operate a dimensionality reduction based the eigenvectors of the matrix.

Exploits the eigenvectors structure to determine the optimal number of clusters.







## Self-tuning Spectral Clustering<sup>[2]</sup> - contd



Building of the Affinity Matrix:

$$\hat{A}_{ij} = e^{\left(\frac{-d^2(s_i, s_j)}{\sigma_i \sigma_j}\right)}$$

$$\sigma_i = d(s_i, s_K), K = 7$$



## Self-tuning Spectral Clustering<sup>[2]</sup> - contd



Implementations already available in: C++ and Matlab

#### Objective:

- Investigate the construction of the affinity matrix
- Comparison with OPTICS
- Performance Analysis



#### OPTICS [1]



#### **Density Based**

#### Requires:

- Min # Points in a Cluster (MinPts),
- Max Neighborhood radius (ε),
- Degree of Steepness (ξ).

**Produces Reachability Plot** 

Automatic cluster extraction from the plot







#### OPTICS<sup>[1]</sup> - contd



Implementations already available in: Java, Python, R and Matlab.

#### Objective:

- Comparison of the different Implementations
- Focus on the automatic cluster extraction
- Performance Analysis

#### Problem:

Not all implementations extract automatically the clusters



#### **Visualization Tool**



Website to run the experiments and visualize the results.

Possibility to set the parameters and see the result in real time.

Plot with the Javascript library D3.js

Backend in Python to execute the different algorithms.







## **ORGANIZATION**





#### **Timeline**







#### Tools





#### **Trello**





#### Tools



Trello Slack







#### **Tools**



Trello Slack GitLab (Wiki)









## THANK YOU FOR YOUR ATTENTION QUESTIONS?





#### References



[1] Ankerst, M., Breunig, M. M., Kriegel, H. P., & Sander, J. (1999, June). OPTICS: ordering points to identify the clustering structure. In ACM Sigmod Record (Vol. 28, No. 2, pp. 49-60). ACM.

[2] Zelnik-Manor, L., & Perona, P. (2004). Self-tuning spectral clustering. InAdvances in neural information processing systems (pp. 1601-1608).

