Definition

Let G, G' be groups Then $\Phi: G \rightarrow G'$ is a g(oup) homomorphism iff $\forall q_1, q_2 \in G$ $\Phi(q_1, q_2) = \Phi(q_1) \cdot \Phi(q_2)$

Note: there is at least one homomorphism bhan any 2 groups, namely the trivial homomorphism $\phi: G \rightarrow G'$ defined $\phi(g) = e'$ gEG since $\forall g_1, g_2 \in G$ $g_1 \cdot g_2 \in G$ $\phi(g_1 \cdot g_2) = e' = e' \cdot e' = \phi(g_1) \cdot \phi(g_2)$

$$) \varphi : \leq_n \rightarrow \mathbb{Z}_2$$

$$|) \varphi : S_n \rightarrow \mathbb{Z}_2 \qquad \varphi(\sigma) = \{0 \text{ if } \sigma \text{ even} \}$$

grosp homomorphism bcs

$$\forall \sigma, \delta \in S_n, \quad \phi(\sigma \cdot \delta) = \phi(\sigma) +_z \phi(\delta)$$

2)
$$\phi: \mathbb{Z} \to \mathbb{Z}_n$$
 $\phi(m) = m \mod n = r$

where $m = nk + r$

$$\forall w_1, m_2 \qquad \phi(m_1 + m_2) = r_1 + r_2 = \phi(m_1) + r_1\phi(n_1)$$
 $k_1 + k_2 + k_3 + r_3 \qquad (k_1 + k_2) \cdot n + (r_1 + r_2)$

Define $\phi: F \to R$ by $\phi(f) = f(c)$ ϕ is group homomorphism bes $\forall f, g \in F$ $\phi(f+g) = (f+g)(c) = f(c) + g(c) = \phi(f) + \phi(g)$