Research Notes [Threshold regression]

ZZZ

Renmin University of China, Beijing since August 7, 2014 Current Version: September 20, 2014

Contents

1 问题描述

对于回归树来说: 给定训练集 $D=(X_i,y_i)$,一个回归树对应着输入空间的一个划分以及在划分空间上的输出值。假设输入空间可以划分为M个类, R_1,R_2,\cdots,R_M .并且在每个类上有一个固定的输出值 c_m 。则模型可以写成 $y=\sum_{m=1}^M c_m I(x\in R_m)$

对于threshold regression来说, 假设真实的模型是:

$$y = \beta_0 + \beta_1 I(x_1 > t_1) + \beta_2 I(x_2 > t_2) + \epsilon$$

其可以写为

$$y = \beta_0 I(X_i \in R_1) + (\beta_0 + \beta_1) I(X_i \in R_2) + (\beta_0 + \beta_2) I(X_i \in R_3) + (\beta_0 + \beta_1 + \beta_2) I(X_i \in R_4)$$

其中 R_i 是x之前不同的排列组合组成的4类。当然这里还对系数之间有一些潜在的约束。模型可以视为4个类的输出, c_m 相当于每一类的均值。

2 模拟结果

$2.1 \mod el1$

$$y = 1 + 2I(x_1 > t_1) + 3I(x_2 > t_2) + c\epsilon$$

其中 $t_1 = 0.5, t_2 = 0.2$

c=0.1时的决策树 模拟的n=1000的数据的y的分布如下,相当于是从4类中生成出来的数据。

Figure 1: y的散点图,c=0.1

决策树的效果如下;

Figure 2: 噪声c=0.1

说明:

- 其中每个节点方框中的数代表当前单元下的估计的y的均值,即 c_m
- 模型估计的叶子节点上的 c_m 精确的值是0.9998, 3.0003, 3.9999 5.9996
- 与真实值1,3,4,6.即 β_0 , β_0 + β_1 , β_0 + β_2 , β_0 + β_1 + β_2 几乎一致,估计的 很准确。
- cut points的估计是 $t_2 = 0.198t_1 = 0.5, 0.5$

当逐渐增大噪声c,令c=1时,虽然从散点图上已经看不出数据的类,但是决策树效果仍然非常稳定。[在c较大时,出来的决策树变量有时会重复出现。这时可以给生成过程加入一些限制。比如maxdepth=p]

Figure 3: y的散点图,c=1

Figure 4: 噪声c=1

故意将噪声c加到5,决策树的结构如下

Figure 5: 噪声c=5

估计的cut points是 $t_2 = 0.2$, $t_1 = 0.51$ 和0.42. c_m 是0.84, 3.4, 3.8, 6. 与真实值1,3,4,6有一定误差,但是在噪音c=5的情况下,决策树仍然是很稳定的。

以上估计结果整理如下:

	估计的系数c_i	真实的系数c_i	估计的cut points	真实的cut points
	0.9998	1	t2=0.1983821	t2=0.2
p=2	3.0003	3	t1=0.5001336	t1=0.5
噪音c=0.1	3.9999	4	t1=0.5039988	(1-0.5
	5. 9996	6		
p=2 噪音c=1	0.9763	1	t2=0.1983821	t2=0.2
	3.0339	3	t1=0.5001336	t1=0.5
	3.9809	4	t1=0.4825968	
	5.9518	6		
p=2 噪音c=5	0.8436	1	t2=0.1983821	t2=0.2
	3.3580	3	t1=0.5232845	t1=0.5
	3.8321	4	t1=0.412538	
	5.9545	6		

Figure 6: 估计结果

$2.2 \mod 2$

假设有三个变量的:

$$y = 1 + 2I(x_1 > t_1) + 3I(x_2 > t_2) + 4I(x_3 > t_3) + c\epsilon$$

其中 $t_1 = 0.5, t_2 = 0.2, t_3 = 0$

效果仍然很好,这里只列出c=1时候的一个例子

Figure 7: p=3,噪声c=1

从图中看,估计的cut point是 $t_3 = -0.0013$, $t_2 = 0.2$, 0.2, 估计的 t_3 是0.5, 0.46, 0.5, 0.48. 估计的模型系数是0.92, 3.9, 3.9, 5.9, 5.1, 7.8, 1.10 和真实的相差不大

3 比较

用cart回归树模型和原来的threshold regression问题还是有一些差别的。

- CART会涉及选变量,在高维的时候实际生成的树层次不是很深
- CART算法不会保证在不同的分叉下,同一个 t_i 是相同的,所以若用估计出来的 c_i 去反解 β_i 时,会出现过度识别的情况。
- CART算法是对二叉树的,不过也有别的理论方法去处理multi-way decision trees的情况