Uninformed Search

CMPUT 366: Intelligent Systems

P&M §3.5

Logistics

- TA office hours begin this week
 - See eClass page for times and meeting links
- Assignment #1 released next week

Recap: Graph Search

- Many Al tasks can be represented as search problems
 - A single generic graph search algorithm can then solve them all!
- A search problem consists of states, actions, start states, a successor function, a goal function, optionally a cost function
- Solution quality can be represented by labelling arcs of the search graph with costs

Recap: Generic Graph Search Algorithm

Input: a graph; a set of start nodes; a goal function

```
frontier := { <s> | s is a start node}

while frontier is not empty:

select a path <n<sub>1</sub>, n_2, ..., n_k> from frontier

remove <n<sub>1</sub>, n_2, ..., n_k> from frontier

if goal(n_k):

return <n<sub>1</sub>, n_2, ..., n_k>

for each neighbour n of n_k: (i.e., expand node n_k)

add <n<sub>1</sub>, n_2, ..., n_k, n> to frontier

end while
```


https://artint.info/2e/html/ArtInt2e.Ch3.S4.html

Which value is selected from the frontier defines the search strategy

Lecture Outline

- 1. Logistics & Recap
- 2. Markov Assumption
- 3. Properties of Algorithms and Search Graphs
- 4. Depth First Search
- 5. Breadth First Search

Markov Assumption: GasBot

The Markov assumption is crucial to the graph search algorithm

Getting to the pump:

from the **left** goes through sensor from the **right** does not

Question: Does this environment satisfy the Markov assumption? Why or why not?

Markov Assumption: GasBot

The Markov assumption is crucial to the graph search algorithm

- 1. Does *this* environment satisfy the Markov assumption? Why or why not?
- 2. How else could we have fixed up the previous example?

Algorithm Properties

What properties of algorithms do we want to analyze?

- A search algorithm is complete if it is guaranteed to find a solution within a finite amount of time whenever a solution exists.
- The time complexity of a search algorithm is a measure of how much time the algorithm will take to run, in the worst case.
 - In this section we measure by number of paths added to the frontier.
- The space complexity of a search algorithm is a measure of how much space the algorithm will use, in the worst case.
 - We measure by maximum number of paths in the frontier.

Search Graph Properties

What properties of the search graph do algorithmic properties depend on?

- Forward branch factor: Maximum number of neighbours Notation: *b*
- Maximum path length. (Could be infinite!)
 Notation: *m*
- Presence of cycles
- Length of the shortest path to a goal node

Depth First Search

Input: a *graph*; a set of *start nodes*; a *goal* function

```
frontier := \{ \langle s \rangle \mid s \text{ is a start node} \}
while frontier is not empty:
   select the newest path \langle n_1, n_2, ..., n_k \rangle from frontier
   remove \langle n_1, n_2, ..., n_k \rangle from frontier
   if goal(n_k):
       return < n_1, n_2, ..., n_k >
   for each neighbour n of n_k:
       add \langle n_1, n_2, ..., n_k, n \rangle to frontier
end while
```

Question:

What **data structure** for the frontier implements this search strategy?

Depth First Search

Depth-first search always removes one of the longest paths from the frontier.

Example:

Frontier: $[p_1, p_2, p_3, p_4]$

successors(p_1) = { n_1, n_2, n_3 }

What happens?

- 1. Remove p_1 ; test p_1 for goal
- 2. Add $\{\langle p_1, n_1 \rangle, \langle p_1, n_2 \rangle, \langle p_1, n_3 \rangle\}$ to **front** of frontier
- 3. New frontier: $[<p_1,n_1>, <p_1,n_2>, <p_1,n_3>, p_2,p_3,p_4]$
- 4. p2 is selected only after all paths starting with p1 have been explored

Question: When is $\langle p_1, n_3 \rangle$ selected?

Depth First Search Analysis

For a search graph with maximum branch factor *b* and maximum path length *m...*

- 1. What is the worst-case time complexity?
 - [A: O(m)] [B: O(mb)] [C: O(bm)] [D: it depends]
- 2. When is depth-first search complete?
- 3. What is the worst-case space complexity?
 - [A: O(m)] [B: O(mb)] [C: $O(b^m)$] [D: it depends]

When to Use Depth First Search

- When is depth-first search appropriate?
 - Memory is restricted
 - All solutions at same approximate depth
 - Order in which neighbours are searched can be tuned to find solution quickly
- When is depth-first search inappropriate?
 - Infinite paths exist
 - When there are likely to be shallow solutions
 - Especially if some other solutions are very deep

Breadth First Search

Input: a *graph*; a set of *start nodes*; a *goal* function

```
frontier := \{ \langle s \rangle \mid s \text{ is a start node} \}
while frontier is not empty:
   select the oldest path \langle n_1, n_2, ..., n_k \rangle from frontier
   remove \langle n_1, n_2, ..., n_k \rangle from frontier
   if goal(n_k):
       return < n_1, n_2, ..., n_k >
   for each neighbour n of n_k:
       add \langle n_1, n_2, ..., n_k, n \rangle to frontier
end while
```

Question:

What **data structure** for the frontier implements this search strategy?

Breadth First Search

Breadth-first search always removes one of the **shortest** paths from the frontier.

Example:

Frontier: $[p_1, p_2, p_3, p_4]$ successors $(p_1) = \{n_1, n_2, n_3\}$

What happens?

- 1. Remove p_1 ; test p_1 for goal
- 2. Add $\{\langle p_1, n_1 \rangle, \langle p_1, n_2 \rangle, \langle p_1, n_3 \rangle\}$ to **end** of frontier:
- 3. New frontier: $[p_2, p_3, p_4, \langle p_1, n_1 \rangle, \langle p_1, n_2 \rangle, \langle p_1, n_3 \rangle,]$
- 4. p₂ is selected next

Breadth First Search Analysis

For a search graph with maximum branch factor b and maximum path length m...

- 1. What is the worst-case time complexity?
 - [A: O(m)] [B: O(mb)] [C: $O(b^m)$] [D: it depends]
- 2. When is breadth-first search complete?
- 3. What is the worst-case space complexity?
 - [A: O(m)] [B: O(mb)] [C: $O(b^m)$] [D: it depends]

When to Use Breadth First Search

- When is breadth-first search appropriate?
 - When there might be infinite paths
 - When there are likely to be shallow solutions, or
 - When we want to guarantee a solution with fewest arcs
- When is breadth-first search inappropriate?
 - Large branching factor
 - All solutions located deep in the tree
 - Memory is restricted

Comparing DFS vs. BFS

	Depth-first	Breadth-first
Complete?	Only for finite graphs	Complete
Space complexity	O(mb)	O(b ^m)
Time complexity	$O(b^m)$	$O(b^m)$

- Can we get the space benefits of depth-first search without giving up completeness?
- Run depth-first search to a maximum depth
 - then try again with a larger maximum
 - until either goal found or graph completely searched

Iterative Deepening Search

Input: a graph; a set of start nodes; a goal function

for max_depth from 1 to ∞:

Perform **depth-first search** to a maximum depth *max_depth* **end for**