Artificial Neural Network

Dr. Avinash Kumar Singh AI Consultant and Coach, Robaita

Discussion Points

- How brain works
- Similarity between brain and artificial neural network
- Perceptron learning
 - AND
 - OR
 - XOR
- Multilayer Perceptron
- Sigmoid, Tanh, ReLU: concepts and usage, Leaky ReLU and ELU, Effect on learning and gradient flow, Saturation and dead neurons

How Brain Works

- The human brain incorporates nearly 10 billion neurons and 60 trillion connections, synapses, between them.
- A neuron consists of a cell body, <u>soma</u>, a number of fibers called <u>dendrites</u>, and a single long fiber called the **axon**.

Similarity between brain and ANN

Biological Neural Network	Artificial Neural Network
Soma	Neuron
Dendrite	Input
Axon	Output
Synapse	Weight

Perceptron Learning

Activation Functions

$$Y^{step} = \begin{cases} 1, & \text{if } X \ge 0 \\ 0, & \text{if } X < 0 \end{cases}$$

Sign function

$$Y^{sign} = \begin{cases} +1, & \text{if } X \ge 0 \\ -1, & \text{if } X < 0 \end{cases}$$

Sigmoid function

$$Y^{sigmoid} = \frac{1}{1+e^{-X}}$$

Linear function

$$Y^{linear} = X$$

Rectified Linear Unit (RELU)

ReLU

$$R(x) = \begin{cases} x & \text{if } x \ge 0\\ 0 & \text{otherwise} \end{cases}$$

Activation & Loss Functions

Leaky ReLU $\max(0.1x, x)$

$$f(x) = egin{cases} x & ext{if } x > 0 \ lpha x & ext{if } x \leq 0 \end{cases}$$

Hyperbolic tangent (Tan-h)

$$f(x) = egin{cases} x & ext{if } x > 0 \ lpha x & ext{if } x \leq 0 \end{cases} \hspace{0.5in} f(x) = rac{1 - e^{-2x}}{1 + e^{-2x}}$$

SoftMax

Binary Cross Entropy

$$H_p(q) = -\frac{1}{N} \sum_{i=1}^{N} y_i \cdot log(p(y_i)) + (1 - y_i) \cdot log(1 - p(y_i))$$

Categorical Cross **Entropy**

$$H(P^*|P) = -\sum_{i} \underbrace{P^*(i)}_{\text{TRUE CLASS}} \underbrace{\log P(i)}_{\text{PREDICTED CLASS}}$$
DISTIRBUTION

PREDICTED CLASS
DISTIRBUTION

■ In 1958, Frank Rosenblatt introduced a training algorithm that provided the first procedure for training a simple ANN: a perceptron, inspired by

McCulloch and Pitts neuron model

Inputs

Decision boundary

(a) Two-input perceptron.

(b) Three-input perceptron.

Threshold: $\theta = 0.2$; learning rate : $\alpha = 0.1$; activation function : step

x_1	x_2	y_d	w_1	w_2	y_a	Error	w_1^{new}	w_2^{new}
0	0	0	0.3	-0.1				
0	1	0						
1	0	0						
1	1	1						

Weight Updation
$$w_i(p+1) = w_i(p) + \Delta w_i(p)$$

$$\Delta w_i(p) = \alpha \cdot x_i(p) \cdot e(p)$$

Threshold: $\theta = 0.2$; learning rate : $\alpha = 0.1$; activation function : step

Epoch	x_1	x_2	y_d	w_1	w_2	y _a	Error	w_1^{new}	w_2^{new}	MSE
	0	0	0	0.3	-0.1					
1	0	1	0							
1	1	0	0							
	1	1	1							
	0	0	0							
2	0	1	0							
	1	0	0							
	1	1	1							
	0	0	0							
3	0	1	0							
3	1	0	0							
	1	1	1							

How a perceptron learns : Decision Boundary

Multi Layer Perceptron

Multi Layer Perceptron: Weight Updation

Neuron output at layer "k"
$$y_{k}(p) = sigmoid \left[\sum_{j=1}^{m} x_{jk}(p) \cdot w_{jk}(p) - \theta_{k} \right]$$

Error at layer "k"

$$-e_k(p) = y_{d,k}(p) - y_k(p)$$

Error gradient at layer "k"

$$-\delta_k(p) = y_k(p) \cdot [1 - y_k(p)] \cdot e_k(p)$$

Change in weight

$$\Delta w_{jk}(p) = \alpha \cdot y_j(p) \cdot \delta_k(p)$$

Weight Updation

$$w_{jk}(p+1) = w_{jk}(p) + \Delta w_{jk}(p)$$

Error gradient at layer "j"

$$\delta_j(p) = y_j(p) \cdot [1 - y_j(p)] \cdot \sum_{k=1}^{l} \delta_k(p) w_{jk}(p)$$

Change in weight

$$\Delta w_{ij}(p) = \alpha \cdot x_i(p) \cdot \delta_j(p)$$

Weight Updation

$$w_{ij}(p+1) = w_{ij}(p) + \Delta w_{ij}(p)$$

x_1	x_2	w_{13}	w_{23}	θ_3	y_3	w_{14}	w_{24}	θ_4	y_4	w_{35}	w_{45}	θ_5	y_d	y_5	Е	$w_{13}{}'$	$w_{23}{}'$	$\theta_4{}'$	$w_{14}{'}$	$w_{24}{}'$	$\theta_4{}'$	w_{35}'	w_{45}'	θ_5
1	1	0.5	0.4	0.8		0.9	1.0	-0.1		-1.2	1.1	0.3	0											
0	1												1											
1	0												1											
0	0												0											

Robotics and Artificial Intelligence Training Academy

Hidden layer

$$y_{3} = sigmoid (x_{1}w_{13} + x_{2}w_{23} - \theta_{3}) = 1/\left[1 + e^{-(1 \cdot 0.5 + 1 \cdot 0.4 - 1 \cdot 0.8)}\right] = 0.5250$$

$$y_{4} = sigmoid (x_{1}w_{14} + x_{2}w_{24} - \theta_{4}) = 1/\left[1 + e^{-(1 \cdot 0.9 + 1 \cdot 1.0 + 1 \cdot 0.1)}\right] = 0.8808$$

$$y_{5} = sigmoid(y_{3}w_{35} + y_{4}w_{45} - \theta_{5}) = 1/\left[1 + e^{-(-0.52501.2 + 0.88081.1 - 1 \cdot 0.3)}\right] = 0.5097$$

$$e = y_{d,5} - y_5 = 0 - 0.5097 = -0.5097$$

x_1	x_2	w_{13}	w_{23}	θ_3	y_3	w_{14}	w_{24}	θ_4	y_4	w_{35}	w_{45}	θ_5	y_d	y_5	Е	$w_{13}{}'$	$w_{23}{}'$	$\theta_4{}'$	$w_{14}{'}$	$w_{24}{}'$	$\theta_4{}'$	w_{35}'	w_{45}'	θ_5
1	1	0.5	0.4	0.8	0.52	0.9	1.0	-0.1	0.88	-1.2	1.1	0.3	0	0.50	-0.5									
0	1												1											
1	0												1											
0	0												0											

$$\delta_5 = y_5 (1 - y_5) e = 0.5097 \cdot (1 - 0.5097) \cdot (-0.5097) = -0.1274$$

$$\Delta w_{35} = \alpha \cdot y_3 \cdot \delta_5 = 0.1 \cdot 0.5250 \cdot (-0.1274) = -0.0067$$

$$\Delta w_{45} = \alpha \cdot y_4 \cdot \delta_5 = 0.1 \cdot 0.8808 \cdot (-0.1274) = -0.0112$$

$$\Delta\theta_5 = \alpha \cdot (-1) \cdot \delta_5 = 0.1 \cdot (-1) \cdot (-0.1274) = -0.0127$$

$$\delta_3 = y_3(1 - y_3) \cdot \delta_5 \cdot w_{35} = 0.5250 \cdot (1 - 0.5250) \cdot (-0.1274) \cdot (-1.2) = 0.0381$$

$$\delta_4 = y_4(1 - y_4) \cdot \delta_5 \cdot w_{45} = 0.8808 \cdot (1 - 0.8808) \cdot (-0.1274) \cdot 1.1 = -0.0147$$

x_1	x_2	w_{13}	w_{23}	θ_3	y_3	w_{14}	w_{24}	θ_4	y_4	w_{35}	W_{45}	θ_5	y_d	y_5	Е	$w_{13}{}'$	w_{23}'	$\theta_4{}'$	w_{14}'	$w_{24}{}'$	$\theta_4{}'$	w_{35}'	w_{45}'	θ_5
1	1	0.5	0.4	0.8	0.52	0.9	1.0	-0.1	0.88	-1.2	1.1	0.3	0	0.50	-0.5									
0	1												1											
1	0												1											
0	0												0											

$$\Delta\theta_4 = \alpha \cdot (-1) \cdot \delta_4 = 0.1 \cdot (-1) \cdot (-0.0147) = 0.0015$$

 $\Delta w_{13} = \alpha \cdot x_1 \cdot \delta_3 = 0.1 \cdot 1 \cdot 0.0381 = 0.0038$

 $\Delta w_{23} = \alpha \cdot x_2 \cdot \delta_3 = 0.1 \cdot 1 \cdot 0.0381 = 0.0038$

 $\Delta\theta_3 = \alpha \cdot (-1) \cdot \delta_3 = 0.1 \cdot (-1) \cdot 0.0381 = -0.0038$

 $\Delta w_{14} = \alpha \cdot x_1 \cdot \delta_4 = 0.1 \cdot 1 \cdot (-0.0147) = -0.0015$

 $\Delta w_{24} = \alpha \cdot x_2 \cdot \delta_4 = 0.1 \cdot 1 \cdot (-0.0147) = -0.0015$

Hidden layer

Robaita

x_1	x_2	w_{13}	w_{23}	θ_3	y_3	w_{14}	w_{24}	θ_4	y_4	w_{35}	W_{45}	θ_5	y_d	y_5	Е	w_{13}'	$w_{23}{}'$	θ_3	$w_{14}{'}$	$w_{24}{}'$	$\theta_4{}'$	w ₃₅ ′	W_{45}'	θ_5
1	1	0.5	0.4	0.8	0.52	0.9	1.0	-0.1	0.88	-1.2	1.1	0.3	0	0.50	-0.5	0.50	0.40	0.79	0.89	0.99	09	-1.2	1.08	0.31
0	1												1											
1	0												1											
0	0												0											

$$w_{13} = w_{13} + \Delta w_{13} = 0.5 + 0.0038 = 0.5038$$

$$w_{14} = w_{14} + \Delta w_{14} = 0.9 - 0.0015 = 0.8985$$

$$w_{23} = w_{23} + \Delta w_{23} = 0.4 + 0.0038 = 0.4038$$

$$w_{24} = w_{24} + \Delta w_{24} = 1.0 - 0.0015 = 0.9985$$

$$w_{35} = w_{35} + \Delta w_{35} = -1.2 - 0.0067 = -1.2067$$

$$w_{45} = w_{45} + \Delta w_{45} = 1.1 - 0.0112 = 1.0888$$

$$\theta_{3} = \theta_{3} + \Delta \theta_{3} = 0.8 - 0.0038 = 0.7962$$

$$\theta_{4} = \theta_{4} + \Delta \theta_{4} = -0.1 + 0.0015 = -0.0985$$

$$\theta_{5} = \theta_{5} + \Delta \theta_{5} = 0.3 + 0.0127 = 0.3127$$

Inp	outs	Desired output	Actual output	Error	Sum of squared
x_1	x_2	y_d	<i>y</i> ₅	е	errors
1	1	0	0.0155	-0.0155	0.0010
0	1	1	0.9849	0.0151	
1	0	1	0.9849	0.0151	
0	0	0	0.0175	-0.0175	

- a) Decision boundary created by hidden neuron 3
- b) Decision boundary created by hidden neuron 4
- c) Decision boundary created by output neuron 5

Gradient Descent

Step 1: Initialize Parameters

Choose initial values for the model parameters (weights w and bias b or θ), usually random or zero.

Example:

 $w = \text{random value}, \quad b = \text{random value}$

Step 2: Compute the Gradient

Calculate the derivative of the **loss function** with respect to each parameter to understand the slope (direction and steepness) of the loss surface.

For Mean Squared Error (MSE) loss:

$$L(w) = \frac{1}{n}\sum_{i=1}^n (y_i - \hat{y}_i)^2$$

$$rac{\partial L}{\partial w} = -rac{2}{n} \sum_{i=1}^n x_i (y_i - \hat{y}_i)$$

$$rac{\partial L}{\partial b} = -rac{2}{n} \sum_{i=1}^n (y_i - \hat{y}_i)$$

★ Step 3: Update Parameters

Move the parameters in the direction opposite to the gradient to minimize the loss.

General update rule:

$$\theta := \theta - \eta \cdot \frac{\partial L}{\partial \theta}$$

Where:

- θ = parameter (like weight or bias),
- η = learning rate (small positive number),
- $\frac{\partial L}{\partial \theta}$ = gradient of loss w.r.t. parameter.

Example for weight:

$$w := w - \eta \cdot \frac{\partial L}{\partial w}$$
, ∂L

$$b:=b-\eta\cdotrac{\partial L}{\partial b}$$