PageRank

Laura Lehmann

Alina Fastowski

LMU München, CIS 11.02.21

Überblick

- 1) Einführung
- 2) PageRank:
 - Was ist die Idee?
 - Berechnung
 - Beispiele
- 3) Initialisierung und Random Surfer Modell
- 4) Abschließendes

Was? Wer? Warum?

- o PageRank: Algorithmus zur "Bewertung" von Websites
 - -> welche sind relevant und wichtig?
- o Ende 90er Jahre entwickelt von Larry Page und Sergey Brin
- o Idee: Bewertung anhand der Verlinkungsstruktur. Denn: Wenn man in Literatur Zitaten folgt, wird man feststellen, dass die relevantesten Werke am meisten zitiert werden. Also müssen oft verlinkte Websites auch irgendwie relevant sein, oder?

The PageRank Citation Ranking: Bringing Order to the Web

January 29, 1998

Anstoß für Erschaffung von Google

Die Idee

Inhalt von Websites irrelevant – es geht nur um die Links zwischen ihnen.

$$PR(A) = \frac{(1-d)}{N} + d (PR(T_1)/C(T_1) + ... + PR(T_n)/C(T_n))$$

- PR(A) = PageRank einer Seite A
- $PR(T_i) = PageRank der Seiten T_i$, welche auf A verlinken
- $C(T_i) = \#$ Links auf Seite T_i
- d = Dämpfungsfaktor
- N = Gesamtzahl aller Seiten

$$(PR(T_1)/C(T_1) + ... + PR(T_n)/C(T_n))$$
=

"Anteil" des PR jeder Seite, die auf A verlinkt

Beispiel

$$PR(A) = \frac{(1-d)}{4} + d (PR(B)/2)$$

$$PR(B) = \frac{(1-d)}{4} + d (PR(A)/2 + PR(D)/1)$$

$$PR(C) = \frac{(1-d)}{4} + d \times 0$$

$$PR(D) = \frac{(1-d)}{4} + d (PR(A)/2 + PR(B)/2 + PR(C)/1)$$

Beobachtungen:

- Seite kann hohen PR erreichen, wenn wenige Seiten mit jeweils hohen PR's auf sie verlinken

- Seite kann hohen PR erreichen, wenn viele Seiten mit jeweils niedrigen PR's auf sie verlinken

- Je mehr ausgehende Links auf einer Seite, desto weniger PR kann sie "weitergeben"

- Je weniger ausgehende Links, desto mehr PR kann sie an andere Seiten "weitergeben"

Problem

$$PR(A) = \frac{(1-d)}{4} + d (PR(B)/2)$$

PR(A) basiert auf PR(B), welcher wiederum auf anderen PR's basieren usw.

Wie erhält man nun den PageRank einer Seite?

Grundidee:

- Mehrfaches zufälliges Klicken auf Links von Websites
- Auf welcher Seite wird man am wahrscheinlichsten laden?

Intuitiv:

- C am unwichtigsten
- D und B am wichtigsten

Links zwischen Seiten in Matrixform:

$$M := \begin{bmatrix} 0 & 0.5 & 0 & 0 \\ 0.5 & 0 & 0 & 1 \\ 0 & 0 & 0 & 0 \\ 0.5 & 0.5 & 1 & 0 \end{bmatrix} \xrightarrow{A} \xrightarrow{B} \xrightarrow{Sac}$$

Links zwischen Seiten in Matrixform:

Von
$$A \quad B \quad C \quad D$$

$$M := \begin{bmatrix} 0 & 0.5 & 0 & 0 \\ 0.5 & 0 & 0 & 1 \\ 0 & 0 & 0 & 0 \\ 0.5 & 0.5 & 1 & 0 \end{bmatrix} \quad A \quad B \quad C \quad D$$

$$(m)_A := \begin{bmatrix} 0 \\ 0.5 \\ 0 \\ 0.5 \end{bmatrix} \quad (m)_A := \begin{bmatrix} 0 \\ 0.5 \\ 0 \\ 0 \end{bmatrix}$$

$$(m)_{AA} := (m)_{_A} * (m)_{A} := 0 * 0 + 0.5 * 0.5 + 0 * 0 + 0.5 * 0 = 0.25$$

$$M^2 := \begin{bmatrix} A & B & C & D \\ 0.25 & m2_{AB} & m2_{AC} & m2_{AD} \\ m2_{BA} & m2_{BB} & m2_{BC} & m2_{BD} \\ m2_{CA} & m2_{CB} & m2_{CC} & m2_{CD} \\ m2_{DA} & m2_{DB} & m2_{DC} & m2_{DD} \end{bmatrix} \begin{bmatrix} A & B & Z \\ C & D & C \\ D & D & C \end{bmatrix}$$

Links zwischen Seiten in Matrixform:

$$M := \begin{bmatrix} 0 & 0.5 & 0 & 0 \\ 0.5 & 0 & 0 & 1 \\ 0 & 0 & 0 & 0 \\ 0.5 & 0.5 & 1 & 0 \end{bmatrix} \xrightarrow{A} \xrightarrow{B} \xrightarrow{C} \xrightarrow{C}$$

$$(m)_{A} := \begin{bmatrix} 0 \\ 0.5 \\ 0 \\ 0.5 \end{bmatrix} \quad (m)_{A} := \begin{bmatrix} 0 \\ 0.5 \\ 0 \\ 0 \end{bmatrix}$$

$$(m)_{AA} := (m)_{_A} * (m)_{A} := 0 * 0 + 0.5 * 0.5 + 0 * 0 + 0.5 * 0 = 0.25$$

$$M^{2}:=\begin{bmatrix} 0.25 & 0 & 0 & 0.5\\ 0.5 & 0.75 & 1 & 0\\ 0 & 0 & 0 & 0\\ 0.25 & 0.25 & 0 & 0.5 \end{bmatrix} \begin{array}{c} A \\ B \\ C \\ D \end{array}$$

$$M^{3} := \begin{bmatrix} 0.25 & 0.375 & 0.5 & 0 \\ 0.375 & 0.25 & 0 & 0.75 \\ 0 & 0 & 0 & 0 \\ 0.375 & 0.375 & 0.5 & 0.25 \end{bmatrix} \begin{bmatrix} A \\ B \\ C \\ D \end{bmatrix}$$

Links zwischen Seiten in Matrixform:

Von

		, ,	-			
	A	В	C	D		
M :=	0	0.5	0	[0	A	
	0.5	0	0	1	В	Na
	0	0	0	0	C	ch
	0.5	0.5	1	0	D	

Vorgehen:

- Potenzieren der Matrix
- Jede weitere Potenz ist ein weiterer zufälliger Klick des Surfers

Beispiel:

von B kommend, befindet sich der Surfer nach 3 Klicks mit einer Wahrscheinlichkeit von 0.375 in A, 0.25 in B, 0.0 in C und 0.375 in D

$$M^{2}: = \begin{bmatrix} 0.25 & 0 & 0 & 0.5 \\ 0.5 & 0.75 & 1 & 0 \\ 0 & 0 & 0 & 0 \\ 0.25 & 0.25 & 0 & 0.5 \end{bmatrix} \begin{bmatrix} A \\ B \\ C \\ D \end{bmatrix}$$

$$M^{3} := \begin{bmatrix} 0.25 & 0.375 & 0.5 & 0 \\ 0.375 & 0.25 & 0 & 0.75 \\ 0 & 0 & 0 & 0 \\ 0.375 & 0.375 & 0.5 & 0.25 \end{bmatrix} \begin{bmatrix} A \\ B \\ C \\ D \end{bmatrix}$$

Links zwischen Seiten in Matrixform:

Von

		, 01	•			
	A	В	C	D		
M :=	$\begin{bmatrix} 0 \\ 0 \end{bmatrix}$	0.5	0	0	A	7
	0.5	0	0	0	С	lach
	0.5	0.5	1	0	D	

Beobachtung:

- Je öfter der Surfer von Seite zu Seite springt, desto mehr pendeln sich die Wahrscheinlichkeiten ein
- Seite B ist die wahrscheinlichste und damit informativste Seite

$$M^{10} := \begin{bmatrix} 0.22 & 0.22 & 0.21 & 0.23 \\ 0.45 & 0.45 & 0.46 & 0.44 \\ 0 & 0 & 0 & 0 \\ 0.33 & 0.33 & 0.33 & 0.33 \end{bmatrix} \begin{bmatrix} A \\ B \\ C \\ D \end{bmatrix} \qquad M^{20} := \begin{bmatrix} 0.22 & 0.22 & 0.22 & 0.22 \\ 0.44 & 0.44 & 0.44 & 0.44 \\ 0 & 0 & 0 & 0 \\ 0.33 & 0.33 & 0.33 & 0.33 \end{bmatrix} \begin{bmatrix} A \\ B \\ C \\ D \end{bmatrix}$$

Vorteile und Nachteile

Vorteile:

- Möglichkeit von Modifikation
- Dient als Grundlage zur Seitenbewertung
- weitere Faktoren bspw. Bewertungen/Gewichtung von Links, maximale Distanz auf weitere Seiten, Nutzerfreundlichkeit, Ladegeschwindigkeit

Nachteile:

- Bietet viele Möglichkeiten zur Manipulation
- Link "Tauschbörse"
- Künstliches Aufblähen von eigentlich irrelevanten Seiten
- Je mehr Faktoren mit einbezogen, desto höher der Rechenaufwand
- Keine Aussage über inhaltliche Qualität
- PageRank anfangs die Basis für die Suchmaschine Google
 Heute: PageRank spielt nur noch eine kleine Rolle und ist nur noch einer von vielen Parametern beim Ranking von Seiten

 14

Danke für Eure **Aufmerksamkeit! 15**

Quellen

- Page, L., Brin, S., Motwani, R., & Winograd, T. (1999). *The PageRank citation ranking: Bringing order to the web*. Stanford InfoLab.
- Bianchini, M., Gori, M., & Scarselli, F. (2005). Inside pagerank. *ACM Transactions on Internet Technology (TOIT)*, *5*(1), 92-128.
- https://webworkshop.net/pagerank/