Suffix Arrays und BWT

Tobias Harrer

19.11.12

Suffix Arrays

Grundlager

Suffix Arrays aus Suffix Trees

Anwendung von Suffix Arrays

Backward Search

Forward Searching

Burrows-Wheeler Transformation

Suffix Arrays

Definition

Sei T ein String der Länge n über Σ und $T_{i,j} (i \leq j)$ der Substring von i bis j, dann ist $T_{i,n}$ ein Suffix von T. Das Suffix Array von T ist die Permutation der Startindizes i der alphabetischen geordneten Suffixes $T_{i,n}$ von T.

Anmerkung: jeder String T endet mit \$

 $\forall c \in \Sigma : \$ < c$

Beispiel

```
T = "abacabra$"
 i T_{i,n}
                 alphabetisch geordnet
 1 abacabra$
                                     $9
 2 bacabra$
                                    a$ 8
 3 acabra$
                           abacabra$ 1
 4 cabra$
                                abra$ 5
 5 abra$
                              acabra$ 3
 6 bra$
                             bacabra$ 2
 7 ra$
                                 bra$ 6
 8 a$
                               cabra$ 4
 9 $
                                   ra$ 7
Das Suffix Array von T lautet:
1\ 2\ 3\ 4\ 5\ 6\ 7\ 8\ 9 \rightarrow i
981532647 \rightarrow S(i)
```

Suffix Arrays aus Suffix Trees

- ▶ Sortierung durch z.B. mergeSort in $\mathcal{O}(n * logn)$
- Ein Suffix Array kann aus des Blättern eines Suffix Trees durch Tiefensuche hergeleitet werden: T = "abacabra\$"


```
► Finde Pattern p ("cab") in String T ("abacabra")
```

```
Naiver Ansatz: "schiebe" p über T: abacabra cab→
... abacabra
. cab

Problem: o(n + m)
```

▶ Problem: $\mathcal{O}(n*m)$

- Vorteil: alle Suffixes lexikografisch sortiert
- ▶ p "cab" ist Prefix $T_{1,i}$ des Suffix $T_{4,n}$:
 - i $T_{i,n}$
 - 9 \$
 - 8 a\$
 - 1 abacabra\$
 - 5 abra\$
 - 3 acabra\$
 - 2 bacabra\$
 - 6 bra\$
 - 4 cabra\$
 - 7 ra\$
- Beste Suchstrategie in sortiertem Array?

▶ Binäre Suche, Vergleich von "cab" mit Ti, i + 3:

```
i T_{i,n}
```

9 \$

8 a\$

1 abacabra\$

5 abra\$

3 acabra\$ "cab" > "aca" \rightarrow zweite Hälfte

2 bacabra\$

6 bra\$

4 cabra\$

7 ra\$

```
i T_{i,n} 3 acabra$ 2 bacabra$ 6 bra$ "cab" > "bra" \rightarrow zweite Hälfte 4 cabra$ 7 ra$
```

```
i T_{i,n}
6 bra$
4 cabra$ "cab" = "cab" 	o Pattern ist T_{4,4+3}
7 ra$
```

- Anschliessend Suche nach weiteren Vorkommen von p.
- ► Suche in $\mathcal{O}(logn)$

Zusammenfassung: Binäre Suche in Suffix Arrays

- Finden der n Suffixes in T: $\mathcal{O}(n)$
- ▶ Alphabetisch Sortieren des Suffix Arrays: $\mathcal{O}(n * logn)$
- ▶ Binäre Suche eines Patterns in T: O(logn)
- ▶ Insgesamt $\mathcal{O}(nlogn)$ (oder m log n?)

Backward Search

- Grundlage: Suffix Array
- Neu: keine binäre Suche, finden von zB "b" mit Array C["b"] = 5
- ▶ Vorheriger Buchstabe $T_{A[i]-1}$ des Suffix $T_{A[i],n}$

Bsp.: Suche von p = "abra"

```
T = "abacabra$"
         T_{A[i]-1}
                       а$
3
                   abacabra$
   5
                    abra$
 5
                  acabra$
 6
                   bacabra$
     6
                    bra$
 8
                    cabra$
 9
                      ra$
```

[&]quot;abra" von hinten: alle "a", von C["a"]+1 bis C["b"]

Bsp.: Suche von p = "abra" (Schritt 1)

▶ Darunter alle "a" mit Vorgänger "r"

i	A[i]	$T_{A[i]-1}$	$T_{A[i],n}$
2	8	r	a\$
3	1	\$	abacabra\$
4	5	С	abra\$
5	3	b	acabra\$

Bsp.: Suche von p = "abra" (Schritt 2)

▶ b ist bei i = 5 bereits *einmal* in $T_{A[i]-1}$ vorgekommen \rightarrow suche von C["b"]+1+1 bis C["c"], d.h. bei i = 7

Bsp.: Suche von p = "abra" (Schritt 3)

► Finde alle "abra" in b mit Vorgänger "a":

i
$$A[i]$$
 $T_{A[i]-1}$ $T_{A[i],n}$
1 9 a \$
.
6 2 a bacabra\$
7 6 a bra\$

▶ Da bei i = 1 und 6 a bereits *zweimal* in $T_{A[i]-1}$ vorkam \rightarrow suche von C["a"]+1+2 bis C["b"], d.h. bei i = 4

Bsp.: Suche von p = "abra" (Schritt 4)

- i A[i] $T_{A[i]-1}$ $T_{A[i],n}$ 4 5 c abra\$
 - Nach 4 Schritten (= Länge m von p) ist das Pattern gefunden → O(m)
 - ▶ Problem: z.B. "wie oft ist "b" in Spalte $T_{A[i]-1}$ vor i = 5" erfordert lineares Durchsuchen von $T_{A[i]-1} \to \mathcal{O}(m*n)$.
 - Effizientes Vorgehen nötig, sonst Laufzeit wie bei naiver Suche!

Lösung: Funktion Occ(c,i)

- ▶ Die Spalte des Vorgänger-Buchstaben $T_{A[i]-1}$ nennen wir ab jetzt $L_{1,n}$
- ▶ Für alle c aus Σ sei B^c ein Bit-Vektor mit $B^c[i] = 1$ falls $L_i = c$
- ▶ Eine weitere Funktion $rank_b(B, i)$ liefert die Anzahl von zB b=1 in B vor i, s.d $rank_1(B^c, i) = Occ(c, i)$.
- ▶ Dies benötigt linear mehr Speicher, doch der Zugriff durch rank ist konstant, s.d. $\mathcal{O}(m)$ insgesamt garantiert ist.
- ► Wavelet Trees?

Forward Searching

- ▶ Vorherige Position: $LF(i) = C[L_i] + Occ(L_i, i)$
- Während beim Backward Searching ein Suffix auf das vorhergehende abgebildet wird, ist es hier umgekehrt
- ▶ Inverse Funktion $\Psi(i) = i'$, s.d. $A[i'] = (A[i] \mod n) + 1$ bildet die Pos. eines Suffix auf die seines Nachfolgers ab

Bsp.: Ψ zu T = "abacabra\$"

i	A[i]	Ψ	newF	$T_{A[i],n}$
1	9	3	1	\$
2	8	1	1	a\$
3	1	6	0	abacabra\$
4	5	7	0	abra\$
5	3	8	0	acabra\$
6	2	5	1	bacabra\$
7	6	9	0	bra\$
8	4	4	1	cabra\$
9	7	2	1	ra\$

Suche von p in T

- ► Falls $\forall c : c \in \Sigma \Rightarrow c \in T$ ex. σ aufsteigende Zahlenfolgen in Ψ : 3; 1,6,7,8; 5,9; 4; 2;
- ▶ Diese zeigen an, wo sich der erste Buchstabe des Suffix ändert. Als Bitvektor newF = 110001011
- ▶ Die Suche von p erfolgt binär, wobei p ein Prefix des jew. Suffix ist, welches durch rekursives Folgen von $\Psi(i)$ ohne das Suffix Array gefunden werden kann
- ▶ Der jew. erste Buchstabe $T_{A[i]}$ des Suffixes $T_{A[i],n}$ wird durch rank(newF, i) ermittelt. Falls zB rank(newF, i) = 2 ist c = "a".

Fazit Forward Searching

- Ψ ersetzt A[i].
- Weder A[i] noch T sind zur Suche von p in T nötig
- Ψ kann durch gap-encoding weiter komprimiert werden.

Burrows-Wheeler Transformation

▶ Die BWT ist eine Permutation von T, s.d. an jeder Stelle des Suffix Arrays der vorherige Buchstabe angehängt wird:

Definition

Sei $T_{1,n}$ ein String und A[1,n] sein Suffix Array. Dann ist die BWT $T_{1,n}^{bwt}$ von T:

$$T_i^{bwt} = T_{A[i]-1} \ \forall 1 \le i \le n \text{ ausser A[i]} = 1 \Rightarrow T_i^{bwt} = T_n =$$
\$

Anschauliches Beispiel, T = "abacabra\$"

Permutationen	alph. geordnet	$FL = T^{bwt}$
abacabra\$	\$abacabra	\$a
bacabra\$a	a\$abacabr	ar
acabra\$ab	abacabra\$	a\$
cabra\$aba	abra\$abac	ac
abra\$abac	acabra\$ab	a…b
bra\$abaca	bacabra\$a	ba
ra\$abacab	bra\$abaca	ba
a\$abacabr	cabra\$aba	ca
\$abacabra	ra\$abacab	rb

- $ightharpoonup T^{bwt} = ar\$cbaaab$
- ▶ BWT Permutation besser f
 ür weitere Komprimierung von T als T selbst

BWT Rücktransformation

▶ Da L_i F_i voransteht, kann T aus T^{bwt} wie folgt wiederhergestellt werden:

```
nach links sortiert L links angehängt
$...a ...a$ ...$a
                           ...a$a
a...r ...ra ...a$
                           ...ra$
a...$ ...$a ...ab
                           ...$ab
a...c ...ca ...ab
                           ...cab
a...b ...ba ...ac
                          ...bac
b...a ...ab ...ba
                           ...aba
b...a ...ab ...br
                        ...abr
c...a ...ac ...ca
                           ...aca
r...b ...br
               ...ra
                           ...bra
```

- ▶ Reihe L = T^{bwt} bekannt, F wird aus L alph. sortiert
- Verschieben "nach links", sortieren
- $ightharpoonup L = T^{bwt}$ links "anhängen, sortieren...

BWT Rücktransformation

```
Nach n Durchgängen ist die Matrix wiederhergestellt:
 $abacabra
 a$abacabr
 abacabra$
 abra$abac
 acabra$ab
 bacabra$a
 bra$abaca
 cabra$aba
 ra$abacab
T ist derjenige String, der mit "$" endet.
```