MAT137 Lecture 15

Huan Vo

University of Toronto

October 30, 2017

Agenda

Inverse Functions.

Definition

Let $f\colon A\to B$ be a one-to-one and onto function. Then the *inverse* of f is the function $f^{-1}\colon B\to A$ given by

$$f^{-1}(y) = x \iff f(x) = y.$$

Suppose a function $f:A\to B$ has the inverse $f^{-1}:B\to A$, show that

- (a) $f(f^{-1}(y)) = y$, $\forall y \in B$.
- (b) $f^{-1}(f(x)) = x$, $\forall x \in A$.

Warning: f^{-1} is NOT the same as 1/f.

(a) If
$$f(x) = x^5 + x^3 + x$$
, find $f^{-1}(3)$.

(b) If $h(x) = x + \sqrt{x}$, find $h^{-1}(6)$.

Find f^{-1} for each of the following f

(a)
$$f(x) = x^3 + 1$$
.

(b)
$$f(x) = \begin{cases} x, & x \text{ is rational,} \\ -x, & x \text{ is irrational} \end{cases}$$

(c)
$$f(x) = x^2 - x$$
, $x \le \frac{1}{2}$

(d)
$$f(x) = \frac{1 - \sqrt{x}}{1 + \sqrt{x}}$$

Injective functions

Let $f:A\to B$ be a function and suppose there exists a function g such that g(f(x))=x for all $x\in A.$ Show that f is injective.

Huan Vo (UofT) MAT137 Lecture 15 October 30, 2017 6 / 10

Surjective functions

Let $f:A\to B$ be a function and suppose there exists a function h such that f(h(y))=y for all $y\in B.$ Show that f is surjective.

Huan Vo (UofT) MAT137 Lecture 15 October 30, 2017 7 / 10

Consider the following function

$$f(x) = \begin{cases} -x^2, & x \ge 0, \\ 1 - x^3, & x < 0. \end{cases}$$

- (a) Show that f is injective, a.k.a. one-to-one.
- (b) Describe the range B of f.
- (c) Write down $f^{-1}: B \to \mathbb{R}$.

For constants a,b,c,d such that $a\neq 0$ and $c\neq 0$, consider the function

$$f(x) = \frac{ax+b}{cx+d}, \quad x \neq -d/c.$$

Suppose that $ad-bc\neq 0$, show that f is one-to-one and write down f^{-1} . What happens when ad-bc=0?

Next Class: Thu November 2

Watch videos 4.5, 4.6, 4.7, 4.8 in Playlist 4.