	Module: Super conductivity
	·Introduction
	· properties of superconductors
	- Effect of magnetic field
	- Meissner effect
	- Pressure effect
	- impurity effect
	- isotopic mass effect
	· Mechanism of Superconductors - BCS theory
1	· Penetrution depth: magnetic field
	· Josephson Junction and its application.
	· Application of superconducters.
	Introduction
	it was observed by kymerlingh onnes in 1911,
•	while he was observing resistivity of Ha at lower
	temp. The resistivity of Hg became o at 4.2 k.
	" Superconductivity means the electrical resistance
	of a material suddenly drops to zero when it
	is cooled below a certain temp. Called critical
	temperature. This property is known as super conductivity
	The temp at which a normal metal
	is converted into a superconductor and vice versu
	is known as critical temp (transition temp) To

	Now B=0 inside the material (SC)
	:. 40 (M+H) = 0
	No + 0
	.'. (M+H) = 0
	M= -H
	$\frac{M}{H} = -1$
	: M is also known us Xm = susceptibility
	2m=-1
	so xm=-ve and IF xm=-ve then the
	naterials are diamagnetic. so superandictors
	are diamagnetic.
	3 Pressure effect.
	few material Shows superconductivity on
	increasing pressure over them.
	For example cesium is normal amductor
	at normal atmospheric pressure, but if
	at Tc = 1.5 k we apply pressure of 110 kbur.
	then cessum will convert into a superconductor
	(4) impurity effect.
	when impurities are added to a
	superconductor the superconducting property is
	Not lost but their To Value is lowered
	This is known as impurity effect.
74	(5) Isotopic mass effect.
	maxwell found that To is inversely proportional
,	to the Square root of Atomic weights of S.C.

	this is known as isotope effect.
	mathe matically it is expressed
	Tc $\propto \frac{1}{\sqrt{M}}$
	Vm.Tc = a constant.
	The To value of a superconductor is
	changes with change in isotopic mass the
	variation in To with isotopic mass (M) is known
D	as isotopic effect.
	· Mechanism of superconductivity: BCS theory.
	in 1957 Bardeen, cooper and schrieffer
	proposed a Microscopic theory known as BCS theory.
	The theory explains the phenomena associated with
	Super conductivity it involves electron interaction
	through phonons as mediators.
	superconductivity occurring at low temp.
	because the resistance decreases. Which is given by
	damping of the interior magnetic field (meissner effect)
	and the complete absence of electrical resistance.
	in conventional superconductors superconductivity
	is happen because certain conduction electrons axising
	from exchange of phonons.
	According to BCS theory superconductivity
	is due to attractive interaction between electrons
	at very low temperature. Due to attractive interaction
	electron start moving in Pair called cooper pour.

The two electrons in the cooper pair move concrently through lattice in such a way that they do not suffer any collision with lattice ions. it appears as if two electrons are bonded to each other and behave like a single particle known as cooper pair. The two electrons in (doper pair exchange phonon through lattice ions. Electron - Lattice - Electron Interaction: K - 9 14 The main idea behind BCS theory is experimental results of two effects (D) isotop effect 2) variation of specific heat with temperature From isotope effect ToVM = constein, one can say that the transition resulting in s.c. state must involve the dynamic of ion motions, lattice -Vibrations, or phonons It is assumed from BCs theory that the electron - phonon interaction produce an attractive Interaction between two electrons.

	For example an electron of wave vector KI
	emits a virtual phonon which is absorbed by
	an an electron k. Thus k is scattered as
	KI-9 and K2+9 as shown in Figure. The
	resulting electron electron interaction depends on
	relative magnitude of the electronic energy change
	and phonon energy, once the Phonon energy exceeds
	the electronic energy the interdction becomes
	attractive interaction
	Thus for attractive interaction the wave
	vector and spin are represented as Ri and Re
	Therefore, the two electrons interacting attractively
-	in the pronon Field are called cooper pair and the
	same is shown in figure.
Wa.	coherence length:
	The Paired electron (cooper pair) are no
	scattered because of their they smoothery ride
	over lattice point. the cooper pairs are not
	Slowed down hence the substance does not
	Posses any lelectrical resistivity.
	Superconductivity is due to the mutual
	interaction and correlation of electrons over
	a considerable distance couled conference length (E0)
	The maximum distance up to which
-	the states of pair electrons are correlated to

	generally Eo = 106 m.
	The ratio of London penetration depth (2)
	to the corresponde length (EO) is given by K
-	K= 2 is a number.
	FOR TYPE-I S.C. K< 1
	for type-II SC. K > 1/2
	VZ
	· Penetization depth (London equ) ! Magnetic Field.
	In 1935 F. London and H. London obtain
	the landon ean for perseputan depth.
	According to them the applied mag. Field
	does not drop to zero at the surface of the
	superconductor but decreases exponentially as giron by the equation.
	$H = H_0 \exp\left(-\frac{3C}{\lambda}\right)$
	where H=10 tensity of mag. Field at
	Has sun
	Ho= Intensity of mag. Field at sur
	n = London penetration depth
	" London penetration depth (2) is defined as
	the distance from the surface of the superconductor
	to a point maide the material at which the intensity
	of may field is (1/e) of the mag field at surface
	(1e Ho/e)

	The magnitude of current depends on the thickness
	of the insulator, the nature of the material and
	the temperature.
1	on the other hand, when a potential
	difference V is applied between two sides of the
	tunneling current with angular frequency $V = \frac{2eV}{h}$.
	This is called a.c. Josephson effect.
	Thus according to a.c. Josephson effect
	the junction generates an all convent at a freq.
	of <u>sev</u> Hz pen volt.
	h
_	* Application of Josephson junction.
	C
	The AMA AMA
<i>(</i> 2)	Josephson
	Junction
	Joseph son Junction
	11111111
	Josephson Junction are used in sensitive
,	magnetometers called SQUID C superconducting
	quantum interference device)
	guantum involvemence govice

·
when current is passed into the arrangement
it splits flowing across the two opposite arc.
The cyrrent through the circuits will have a periodicity
 which is very sensitive to the magnetic Flux passing
normally through the closed circuit. As a result
extremely small magnetic flux can be detected with
this device.
This device can also be used to detect voltages
as small as 10-15 V.
magnetic field changes as small as 10 T
can be detected.
weak magnetic field produced by biological
current such as those in brain can also be
detected Using SQUIDS.
SQUID detectors are used to measure the
levels of iron in liver so that iron-built up can
be treated before much harmais done to the body.
· Applications of Superconductors.
* Magler (magnetic Levitation)
 it is the Phenomenon in which an object
 is suspended above another object with no other
support but no magnetic fields.
we know that perfect diamagnetic substance
repels a magnetic field. Superconductors are perfect
diamagnetic they are useful in motors and bearings.
 it is on the basis of meissnereffect.
[2]

	- in magier there is absence of contact between
	moving and stationary systems, the Friction is?
	eliminated, with such arrangement great speed
	can be achieved with low energy consymption.
	The magner is based on (1) Fie. Mag. suspension
	(EMS) and (2) Electrodynamic Suspension (EDS)
	in Ems the 'electromagnets installed on
	the train bogies attract the mon rails (guidways)
()	The vehicle magnets wrap ground the iron wroop
+	the guidways upwould force lift the tryin.
	in EDS levitation is achieved by creating
	repulsive force between the train and guideways.
	* Josephson Effect and its application.
	Answer is given in the previous point.
	* Sevin - Superconducting quantum interference
	device.
	which is useful to detect very small current
	or magnetic flux.
	* superconductors can be used to transmit
	electrical power over very long distence without
	only power loss or any voltage drop.
	* superconducting generator has the benefits
	of small size and low energy consumption than
	the conventional generators
	* superconducting coils are used in NMR
	(nyclear magnetic resonance) imaging equipment
(13)	which are used in hospital to scanning of

whole body to diagnose medical problems. * very strong magnetic field can be generated with coils made of high To superconductor · materials. * Superconductors can act as relay or switening Systems in a computer They can also be used as memory storage elements in computer. corpotron: It is a relay or switch made of superconductors whose size can be made very Small and they consume very less current. it consist of two superconducting material A and B. Let the material A be inside the coil of wire B. B I Let the critical field of material A be Her and their of B. be Her respectively, and HeakHen if current I is passed through the material B, the curent induces maynetic field H. IF H>HeA then the Superconducting property of material A is destroyed so the resistivity increases and the confact is broken. Thus the current A combe controlled by the current in B. So the system act as relay or switch (14)

 * very fast and accurate computers com be
 constructed using superconductors and the power
consumption is also very 1000.
ore separation can be done efficiently
using superconducting magnets.