Cuarto Informe de Calidad de Aire - 2024

Distrito de Tacna - Escuela de Posgrado UNJBG

Gobierno Regional de Tacna

2024-09-03

El presente reporte muestra los resultados del monitoreo de la calidad de aire, el cual fue realizado con la estación de monitoreo de calidad de aire del Gobierno Regional de Tacna en un espacio proporcionado por la Escuela de Posgrado de la Universidad Nacional Jorge Basadre Grohmann en el distrito de Tacna durante el 23 de agosto del 2024 al 31 de agosto del 2024. Los parámetros de calidad de aire evaluados fueron $PM_{2.5}$, PM_{10} , NO_2 , O_3 , CO, SO_2 , H_2S y datos meteorológicos generados por la estación de monitoreo. Las concentraciones de cada uno de estos parámetros no deben superar el Estándar de Calidad Ambiental para Aire (ECA-aire), establecidos mediante el D.S. N° 003-2017-MINAM (MINAM, 2017), a fin de evitar problemas en la salud de las personas y el ambiente. También se ha considerado en el análisis los niveles recomendados por las Directrices de la Organización Mundial de la Salud (OMS, 2021) sobre la calidad del aire. Como principales paquetes computacionales de R para llevar a cabo el procesamiento de la información se tiene a openair (Carslaw & Ropkins, 2012), zoo (Zeileis & Grothendieck, 2005) y tidyverse (Wickham et al., 2019).

Tabla 1: Estándares de Calidad Ambiental para Aire - D.S. Nº 003-2017 MINAM

Parámetros	Período	ootnotesize Valor (ug/m3)	Criterios de evaluación	Método de análisis ¹
$\overline{SO_2}$	24 horas	250	NE ² más de 7 veces al año	Fluorescencia ultravioleta (método automático)
NO_2	1 hora	200	NE más de 24 veces al año	Quimioluminiscencia (método automático)
$PM_{2.5}$	24 horas	50	NE más de 7 veces al año	Separación incercial/filtración (gravimetría)
PM_{10}	24 horas	100	NE más de 7 veces al año	Separación inercial/filtración (gravimetría)
СО	1 hora	10000	NE más de 1 vez al año	Infrarrojo no dispersivo (NDIR) (método
	8 horas	30000	Media aritmética móvil	automático)
O_3	8 horas	100	Máxima media diaria	Fotometría de absorción ultravioleta (método
			NE más de 24 veces al	automático)
			año	,
H_2S	24 horas	150	Media aritmética	Fluorescencia ultravioleta (método automático)

Una manera muy útil de medir la calidad de aire de diferentes zonas del país era utilizando el Índice de Calidad de Aire del Perú, sin embargo, este instrumento técnico se encuentra desactualizado respecto a la normativa vigente. Por lo cual en este estudio se utilizó el Índice de Calidad de Aire (AQI por sus siglas en inglés) de la Agencia de Protección Ambiental de los Estados Unidos (US-EPA, 2024), cuya simbología se aprecia en la tabla 2.

Tabla 2: Rangos del AQI y su simbología de colores

Categoría	Rango AQI	Color		
Buena	0 - 50	Verde		
Moderada	51 - 100	Amarillo		
No saludable para	101 - 150	Naranja		
grupos sensibles				
No saludable	151 - 200	Rojo		
Muy no saludable	201 - 300	Púrpura		
Peligrosa	301 - 500	Marrón		

²NE: No exceder más de una cantidad

¹O método equivalente aprobado

1 Estación de monitoreo de calidad de aire EMCA - 04

Durante el 23 de agosto del 2024 al 31 de agosto del 2024 se realizó el monitoreo de calidad del aire, en el la Escuela de Posgrado de la Universidad Nacional Jorge Basadre Grohmann en el distrito de Tacna, utilizando la Estación Móvil de Monitoreo de Calidad de aire del Gobierno Regional de Tacna.

Figura 1: Mapa de Ubicación de la estación EMCA - 04

2 Parámetros de calidad de aire

Con los datos obtenidos de la estación de monitoreo de la calidad del aire del Gobierno Regional de Tacna, se realizó un análisis de la variabilidad horaria de las concentraciones de $PM_{10}, PM_{2.5}, CO, NO_2, O_3, SO_2$ y H_2S las cuales se presentan en la figura 2 y están expresadas en ug/m^3 .

Figura 2: Datos horarios de calidad de aire (ug/m3)

Parámetros de calidad de aire (µg m⁻³)

2.1 Comparación con el Estándar de Calidad de aire

2.1.1 Concentraciones diarias de los parámetros monitoreados

A continuación, se presenta la comparación de las concentraciones diarias obtenidas durante el monitoreo de calidad de aire, con los valores que establece el Estándar de Calidad Ambiental de Aire (D.S. N° 003-2017-MINAM).

Así mismo se compara con los niveles recomendados de las Directrices de la OMS sobre la calidad del aire, la cual ofrece recomendaciones cuantitativas relativas a la salud para la gestión de la calidad del aire.

Figura 3: Comparación de concentraciones diarias con el ECA-aire del 23 de agosto al 31 de agosto

Por otro lado, las concentraciones diarias de los parámetros SO_2 , H_2S y CO se muestran en la siguiente tabla:

Tabla 3: Comparación de concentraciones diarias con el ECA-aire

Parámetros	23-08	24-08	25-08	26-08	27-08	28-08	29-08	30-08	31-08	ECA	OMS
SO2	2.8	3.2	2.9	3.3	2.9	2.8	2.2	2.2	2.3	250	40
H2S	3.0	3.4	2.6	2.8	2.0	2.9	2.6	1.8	2.6	150	NA
CO (8h)	496.1	534.3	479.9	606.9	591.9	570.1	616.5	606.1	655.4	30000	10000
CO (1h)	479.9	547.0	479.6	592.9	587.5	579.3	604.7	606.8	646.9	10000	35000

Lo visto en la figura 3 y la tabla 3 muestra que las concentraciones diarias no superan el Estándar de Calidad Ambiental de Aire en ningún día de monitoreo. En el caso del $PM_{2.5}$ la concentración diaria más alta se dio el jueves 26 de agosto con 25.95 ug/m3 y en el caso del PM_{10} la concentración diaria más alta también se dio el día 26 de agosto con 61.85 ug/m3.

Sin embargo, al realizar la comparación con las Directrices sobre la calidad de aire de la Organización Mundial de la Salud (OMS), los parámetros $PM_{2.5}$, PM_{10} y NO_2 superan estos valores en varios días de monitoreo.

2.1.2 Concentraciones horarias de los parámetros monitoreados

A continuación, se muestran las concentraciones horarias de los parámetros comparados de forma referencial con los Estándares de Calidad Ambiental (ECA) para aire del Perú y los niveles de la Directriz de la Organización Mundial de la Salud (OMS). El gráfico muestra que los parámetros $PM_{2.5}$, PM_{10} y NO_2 superan en algunas horas de monitoreo, ambos umbrales de referencia, en el caso de los parámetros O_3 , SO_2 , H_2S y CO no se llega a superar estos umbrales en ningún

momento del periodo de monitoreo. Así también, de forma complementaria en la figura 5 para una mejor comprensión, se muestra el comportamiento semanal de cada uno de los parámetros monitoreados.

Figura 4: Comparación referencial de concentraciones horarias con el Estándar de Calidad Ambiental de Aire del 23 de agosto al 31 de agosto

Figura 5: Comportamiento semanal de datos horarios - 23 de agosto al 31 de agosto

2.1.3 Gráficos polares

Son gráficos que presentan una relación entre las concentraciones horarias de los contaminantes y el comportamiento de los vientos. La dirección del viento se muestra en el plano cartesiano, la velocidad del viento en las circunferencias, la cual aumenta a medida que se aleja del origen, y la concentración en la paleta de colores.

En la figura 6 se aprecia la representación polar de 4 parámetros de calidad de aire de interés PM_{10} , $PM_{2.5}$, NO_2 y O_3 . En el caso del parámetro PM_{10} , esta muestra mayores concentraciones a velocidades de viento entre 1.5 a 2.5 m/s, los cuales provienen principalmente de dirección oeste y suroeste, también se aprecia un aporte de dirección este a bajas velocidades de viento; en el caso del $PM_{2.5}$ las mayores concentraciones se dan a bajos niveles de velocidad del viento, y en mayor medida de dirección este. Así mismo según el gráfico, las mayores concentraciones de NO_2 se presentan a valores reducidos de velocidad de viento, en todas las direcciones de viento. En el caso del O_3 las mayores concentraciones se presentan con valores altos de velocidad de viento y provenientes con mayor predominancia de dirección suroeste.

Figura 6: Gráficos polares de los principales parámetros evaluados

2.2 Índice de Calidad de Aire

El índice de Calidad de Aire (AQI por sus siglas en inglés) muestra los estados de la calidad del aire, en general la zona monitoreada durante el 23 de agosto del 2024 al 31 de agosto del 2024 presenta estados de calidad de aire "Bueno" en los parámetros NO_2 , O_3 , SO_2 , y CO, durante todos los días de medición. En el caso del $PM_{2.5}$ se observa que del 23 al 29 de agosto presenta todos los días estado de calidad del aire "Moderado", que puede no ser favorable para personas sensibles a una exposición prolongada de este parámetro en la zona de evaluación. Finalmente, los valores de PM_{10} presenta estado de calidad del aire "Bueno" en casi todos los días monitoreados, a excepción del día lunes 26 con estado de calidad del aire "Moderado".

Figura 7: Índice de Calidad de Aire - 23 de agosto al 31 de agosto

3 Parámetros meteorológicos

El siguiente gráfico muestra la distibución de los vientos en intervalos de 30 grados sexagesimales, de manera que, la dirección predominante del viento se da a los 240 grados en sentido horario.

Figura 8: Distibución de la dirección de los vientos

Así también se presenta el gráfico de rosa de viento donde se evidencia que el promedio de velocidades es de 1.24 m/s. De

acuerdo con los rangos propuestos por la OMM (2023), los rangos de velocidades de viento en este periodo de monitoreo, se encuentran en las categorías de "brisa muy débil" y "brisa débil".

Figura 9: Rosa de vientos

Frequency of counts by wind direction (%)

A continuación, se presenta la información obtenida durante el periodo de monitoreo respecto a los parámetros temperatura, precipitación, humedad relativa, presión, velocidad del viento y radiación solar.

Figura 10: Datos horarios de los parámetros meteorológicos de la estación evaluada

4 Conclusiones

- Las concentraciones diarias de material particulado en la zona evaluada cumple con los Estándar de Calidad Ambiental para aire, establecidos en el D.S. N° 003-2017-MINAM. Asimismo, en el caso del $PM_{2.5}$ la concentración diaria más alta se dio el lunes 26 de agosto con 25.95 ug/m3 y en el caso del PM_{10} la concentración diaria más alta se dio también el 26 de agosto con 61.85 ug/m3.
- Los contaminantes gaseosos NO_2 , O_3 , SO_2 , H_2S y CO no superaron sus respectivos ECA-aire. Asimismo, la mayor concentración de NO_2 se registró el día lunes 26 de agosto del 2024 con 40.06 ug/m3 y de O3 el día domingo 25 de agosto con 45.09 ug/m3.
- El Índice de Calidad de Aire utilizado para determinar los estados de la calidad de aire en la zona de estudio muestra que durante los días de monitoreo los parámetros evaluados presentan la categoría de "Bueno" en la mayoría de los casos (a excepción de los parámetros $PM_{2.5}$ y PM_{10}). Asimismo, para el parámetro $PM_{2.5}$ presenta estado de calidad del aire "Moderado" en todos los días de monitoreo y respecto al parámetro PM_{10} este presenta estado de calidad de aire "Bueno" en casi todos los días monitoreados, a excepción del día 26 de agosto con estado de calidad del aire "Moderado".
- Respecto a la comparación con las Directrices de la Organización Mundial de la Salud (OMS) sobre la calidad del aire, los parámetros $PM_{2.5}$, PM_{10} y NO_2 superan sus valores de referencia respectivos.
- En cuanto a los parámetros meteorológicos se destaca la predominancia del viento suroeste (240°) y el valor medio de la velocidad del viento en 1.24 m/s.

5 Referencias

- Carslaw, D. C., & Ropkins, K. (2012). openair An R package for air quality data analysis. *Environmental Modelling & Software*, 27–28(0), 52-61. https://doi.org/10.1016/j.envsoft.2011.09.008
- MINAM. (2017). Decreto Supremo N° 003-2017-MINAM que aprueba los Estándares de Calidad Ambiental (ECA) para Aire. *El peruano*, 34(4), 6-9. https://sinia.minam.gob.pe/normas/aprueban-estandares-calidad-ambiental-eca-aire-establecen-disposiciones
- OMM. (2023). Guía de instrumentos y métodos de observación (8; Vol. 1, p. 226). https://library.wmo.int/viewer/68714/download?file=8_I_es_2023.pdf&type=pdf&navigator=1
- OMS. (2021). WHO global air quality guidelines. Particulate matter (PM2.5 and PM10), ozone, nitrogen dioxide, sulfur dioxide and carbon monoxide. Geneva: World Health Organization. https://iris.who.int/bitstream/handle/10665/345329/9789240034228-eng.pdf
- US-EPA. (2024). Technical Assistance Document for the Reporting of Daily Air Quality the Air Quality Index (AQI). United States Environmental Protection Agency. https://document.airnow.gov/technical-assistance-document-for-the-reporting-of-daily-air-quailty.pdf
- Wickham, H., Averick, M., Bryan, J., Chang, W., McGowan, L. D., François, R., Grolemund, G., Hayes, A., Henry, L., Hester, J., Kuhn, M., Pedersen, T. L., Miller, E., Bache, S. M., Müller, K., Ooms, J., Robinson, D., Seidel, D. P., Spinu, V., ... Yutani, H. (2019). Welcome to the tidyverse. *Journal of Open Source Software*, 4(43), 1686. https://doi.org/10.21105/joss.01686
- Zeileis, A., & Grothendieck, G. (2005). zoo: S3 Infrastructure for Regular and Irregular Time Series. *Journal of Statistical Software*, 14(6), 1-27. https://doi.org/10.18637/jss.v014.i06