### Thresholding Bandits with Augmented UCB

Subhojyoti Mukherjee <sup>1</sup>
K.P. Naveen <sup>2</sup>
Nandan Sudarsanam <sup>1,3</sup>
Balaraman Ravindran <sup>1,3</sup>

August 24, 2017

 <sup>&</sup>lt;sup>1</sup> Indian Institute of Technology Madras,
 <sup>2</sup> Indian Institute of Technology Tirupati,

<sup>&</sup>lt;sup>3</sup> Robert Bosch Centre for Data Science and Al

#### Overview

- **Problem Definition**
- Contribution
- **AugUCB**
- Theoretical Analysis
- **Experiments**
- Conclusion



 At every timestep the learner selects (pulls) a single action (arm) and receives an i.i.d random reward from the distribution attached to that arm.

- At every timestep the learner selects (pulls) a single action (arm) and receives an i.i.d random reward from the distribution attached to that arm.
- **Primary aim:** Identify *all* the arms whose expected mean of the reward distribution  $(r_i)$  is above a particular threshold  $\tau$  given as input.

- At every timestep the learner selects (pulls) a single action (arm) and receives an i.i.d random reward from the distribution attached to that arm.
- **Primary aim:** Identify *all* the arms whose expected mean of the reward distribution  $(r_i)$  is above a particular threshold  $\tau$  given as input.
- **Condition:** This has to be achieved within *T* timesteps of exploration and this is termed as a fixed-budget problem.

• We define the set  $S_{\tau} = \{i \in \mathcal{A} : r_i \geq \tau\}.$ 

- We define the set  $S_{\tau} = \{i \in \mathcal{A} : r_i \geq \tau\}.$
- $S_{\tau}^{c}$  denote the complement of  $S_{\tau}$ , i.e.,  $S_{\tau}^{c} = \{i \in A : r_{i} < \tau\}$ .

- We define the set  $S_{\tau} = \{i \in \mathcal{A} : r_i \geq \tau\}$ .
- $S_{\tau}^{c}$  denote the complement of  $S_{\tau}$ , i.e.,  $S_{\tau}^{c} = \{i \in A : r_{i} < \tau\}$ .
- Let  $\hat{S}_{\tau}$  denote the recommendation of a learning algorithm after T time units of exploration, while  $\hat{S}_{\tau}^{c}$  denotes its complement.

- We define the set  $S_{\tau} = \{i \in A : r_i \geq \tau\}$ .
- $S_{\tau}^{c}$  denote the complement of  $S_{\tau}$ , i.e.,  $S_{\tau}^{c} = \{i \in \mathcal{A} : r_{i} < \tau\}$ .
- Let  $\hat{S}_{\tau}$  denote the recommendation of a learning algorithm after T time units of exploration, while  $\hat{S}_{\tau}^{c}$  denotes its complement.
- The goal of the learning agent is to minimize the expected loss at the end of budget T:

$$\mathbb{E}[\mathcal{L}(T)] = \mathbb{P}\big(\underbrace{\{\mathcal{S}_{\tau} \cap \hat{\mathcal{S}}_{\tau}^{\textit{c}} \neq \emptyset\}}_{\text{Rejected good arms}} \ \cup \underbrace{\{\hat{\mathcal{S}}_{\tau} \cap \mathcal{S}_{\tau}^{\textit{c}} \neq \emptyset\}}_{\text{Accepted bad arms}}\big)$$

### Challenges in the TBP Settings

• Closer an arm's reward mean to  $\tau \Rightarrow$  Harder the problem.

## Challenges in the TBP Settings

- Closer an arm's reward mean to  $\tau \Rightarrow$  Harder the problem.
- Lesser the budget ⇒ Harder the problem.

## Challenges in the TBP Settings

- Closer an arm's reward mean to  $\tau \Rightarrow$  Harder the problem.
- Lesser the budget ⇒ Harder the problem.
- Higher the variance of an arm's reward distribution ⇒ Harder the problem.

 We propose the Augmented UCB (AugUCB) algorithm for the fixed-budget TBP setting.

- We propose the Augmented UCB (AugUCB) algorithm for the fixed-budget TBP setting.
- AugUCB takes into account the empirical variances of the arms along with mean estimates.

- We propose the Augmented UCB (AugUCB) algorithm for the fixed-budget TBP setting.
- AugUCB takes into account the empirical variances of the arms along with mean estimates.
- It is the first variance-based arm elimination algorithm for the considered TBP settings.

- We propose the Augmented UCB (AugUCB) algorithm for the fixed-budget TBP setting.
- AugUCB takes into account the empirical variances of the arms along with mean estimates.
- It is the first variance-based arm elimination algorithm for the considered TBP settings.
- It addresses an open problem discussed in Auer and Ortner (2010) of designing an algorithm that can eliminate arms based on variance estimates.

- We propose the Augmented UCB (AugUCB) algorithm for the fixed-budget TBP setting.
- AugUCB takes into account the empirical variances of the arms along with mean estimates.
- It is the first variance-based arm elimination algorithm for the considered TBP settings.
- It addresses an open problem discussed in Auer and Ortner (2010) of designing an algorithm that can eliminate arms based on variance estimates.
- We also define a new problem complexity which uses empirical variance estimates along with arm's mean for giving the theoretical bound.

### AugUCB algorithm



## AugUCB algorithm (Intuition, Arm pulling)

- Like UCB-Imp, AugUCB also divides the time budget T into rounds.
- At every timestep we pull arm j s.t.  $j \in \arg\min_{i \in B_m} \left\{ |\hat{r}_i \tau| 2s_i \right\}$  (like APT).



ullet We pull the arm that minimizes  $j\in rg \min_{i\in B_m}\left\{|\hat{r}_i- au|-2s_i
ight\}$ 



- ullet We pull the arm that minimizes  $j\in rg\min_{i\in B_m}\left\{|\hat{ au}_i- au|-2s_i
  ight\}$
- We define the confidence interval  $s_i = \sqrt{\frac{\rho \psi_m(\hat{v}_i+1)\log(T\epsilon_m)}{4n_i}}$ .

- ullet We pull the arm that minimizes  $j\in rg\min_{i\in B_m}\left\{|\hat{ au}_i- au|-2s_i
  ight\}$
- We define the confidence interval  $s_i = \sqrt{\frac{
  ho\psi_m(\hat{v}_i+1)\log(T\epsilon_m)}{4n_i}}$ .
- $s_i$  decreases with more  $n_i$  and  $\psi_m$  and  $\rho$  ensures that it decreases at a correct rate.

- ullet We pull the arm that minimizes  $j\in rg\min_{i\in B_m}\left\{|\hat{ au}_i- au|-2s_i
  ight\}$
- We define the confidence interval  $s_i = \sqrt{\frac{
  ho\psi_m(\hat{v}_i+1)\log(T\epsilon_m)}{4n_i}}$ .
- $s_i$  decreases with more  $n_i$  and  $\psi_m$  and  $\rho$  ensures that it decreases at a correct rate.
- Note that  $\hat{v}_i$  estimated variance in  $s_i$  makes the algorithm pull the arm which shows more variance.

## AugUCB algorithm (Intuition, Arm Elimination)

- We eliminate an arm when we are sure that  $\hat{r}_i$  is close to  $r_i$  with high probability and hence identify it as good or bad arm.
- It's risky to eliminate an arm when  $\hat{r}_i$  is inside *Margin*.
- Confidence interval s<sub>i</sub> will make sure arm i is not eliminated while inside Margin with a high probability.



### AugUCB algorithm (Intuition, Arm Elimination)

- Now we see that  $\hat{r}_i$  has moved close to its true estimate  $r_i$ .
- We eliminate i and re-allocate the remaining budget to pull arms close to the threshold



## **Expected Loss of AugUCB**

#### Theorem

For  $K \ge 4$  and  $\rho = 1/3$ , the expected loss of the AugUCB algorithm is given by.

$$\mathbb{E}[\mathcal{L}(T)] \leq 2KT \exp\bigg(-\frac{T}{4096\log(K\log K)H_{\sigma,2}}\bigg).$$

Table: AugUCB vs. State of the art

| Algorithm | Upper Bound on Expected Loss |                                                                                | Oracle |
|-----------|------------------------------|--------------------------------------------------------------------------------|--------|
| AugUCB    | exp (                        | $\left(-\frac{T}{4096\log(K\log K)H_{\sigma,2}} + \log\left(2KT\right)\right)$ | No     |
| UCBEV     | exp (                        | $\left(-\frac{1}{512}\frac{T-2K}{H_{\sigma,1}}+\log\left(6KT\right)\right)$    | Yes    |
| APT       | exp (                        | $\left(-\frac{T}{64H_1} + 2\log((\log(T) + 1)K)\right)$                        | No     |
| UCBE      | exp (                        | $\left(-\frac{T-K}{18H_1}-2\log(\log(T)K)\right)$                              | Yes    |

### Experiments

• We compare with APT, AugUCB, UCBE, UCBEV, UA.

#### **Experiments**

- We compare with APT, AugUCB, UCBE, UCBEV, UA.
- Note that UCBE and UCBEV require access to  $H_1$  and  $H_{\sigma,1}$  as input and hence not implementable in real life.
- By access we mean that an oracle supplies them the  $H_1$  or  $H_{\sigma,1}$ . They do not have access to individual means and variances.

### Experiments

- We compare with APT, AugUCB, UCBE, UCBEV, UA.
- Note that UCBE and UCBEV require access to  $H_1$  and  $H_{\sigma,1}$  as input and hence not implementable in real life.
- By access we mean that an oracle supplies them the  $H_1$  or  $H_{\sigma,1}$ . They do not have access to individual means and variances.
- APT, AugUCB, UA do not require access to  $H_1$  or  $H_{\sigma,1}$ .

### **Experimental Setup**

• This setup involves Gaussian reward distributions with K=100, T=10000 and  $\tau=0.5$  with the reward means set in two groups.

### **Experimental Setup**

- This setup involves Gaussian reward distributions with K=100, T=10000 and  $\tau=0.5$  with the reward means set in two groups.
- The first 10 arms partitioned into two groups; the respective means are  $r_{1:5} = 0.45$ ,  $r_{6:10} = 0.55$ .

### **Experimental Setup**

- This setup involves Gaussian reward distributions with K=100, T=10000 and  $\tau=0.5$  with the reward means set in two groups.
- The first 10 arms partitioned into two groups; the respective means are  $r_{1:5} = 0.45$ ,  $r_{6:10} = 0.55$ .
- The means of arms i = 11 : 100 are chosen same as  $r_{11:100} = 0.4$ .
- Variances are set as  $\sigma_{1:5}^2=0.3$  and  $\sigma_{6:10}^2=0.8$ ;  $\sigma_{11:100}^2$  are independently and uniformly chosen in the interval [0.2, 0.3].

#### **Experimental Results**





(b) Expt-2: Two Group Setting (Advance)

### **Experimental Results**





(d) Expt-2: Geometric Progression (Gaussian)

#### Conclusions

 We proposed the AugUCB algorithm for the fixed budget TBP which uses variance estimation and arm elimination to give an improved theoretical and experimental guarantees than APT.

#### Conclusions

- We proposed the AugUCB algorithm for the fixed budget TBP which uses variance estimation and arm elimination to give an improved theoretical and experimental guarantees than APT.
- Further studies are required to establish a lower bound on the expected loss of AugUCB.

#### Conclusions

- We proposed the AugUCB algorithm for the fixed budget TBP which uses variance estimation and arm elimination to give an improved theoretical and experimental guarantees than APT.
- Further studies are required to establish a lower bound on the expected loss of AugUCB.
- A more detailed analysis of the non-uniform arm selection and parameter selection is also required.

# Thank You