

Alumnos

Arturi Augusto 97498
Rozanec Matias 97404

Profesor

Pantazis, Ricardo Demetrio

Facultad de Ingeniería - Universidad de Buenos Aires

Diciembre 2018

Contenidos

Resumen

Objetivo del proyecto

Herramientas

Análisis preliminar

Casos de estudio

Preparación del entorno

Ejecución

Análisis de las ejecuciones

Conclusiones

Posibles expansiones del proyecto

Resumen

¿Qué se estudia en este trabajo?

- Factores que puedan llegar a afectar el speedup en la resolución de problemas que requieren soluciones numéricas.
- Centrado en las funcionalidades que brinda el software OpenFOAM y mpirun.
- Problema de Dinámica de Fluidos
- Desempeño del solver en función de la cantidad de procesadores disponibles y en función de las distintas opciones de binding que admite mpirun.

Poder integrar todos los conceptos estudiados en la materia a lo largo del cuatrimestre en un estudio de caso real.

Salir así del esquema fuertemente estructurado y entrar en un análisis que exija desarrollar una mirada dinámica de los temas y que deba ser apreciado desde distintas perspectivas.

Hardware

- PC 1: Intel Core i5-7200U 2.5 GHz with Turbo Boost up to 3.1 Ghz
 - 2 núcleos, 4 subprocesos.
 - 2 canales de memoria
 - 6 GB DDR4 memoria RAM 2400 MHz
- PC 2: AMD Ryzen[™] 5 2400G 3.6GHz
 - 4 núcleos, 8 subprocesos.
 - 2 canales de memoria
 - 16 GB DDR4 memoria RAM 2400 MHz
- PC 3: Intel® Core™ i5-5200U CPU @ 2.20GHz 3M Cache, up to 2.70 GHz
 - 2 núcleos, 4 subprocesos.
 - 2 canales de memoria
 - 8 GB DDR4 memoria RAM 2400 MHz

Software - Sistemas operativos

• PC 1: Ubuntu 16.04 LTS

• PC 2: Ubuntu 18.04 LTS

PC 3: Ubuntu 16.04 LTS

Software de resolución numérica

OpenFOAM

- Open source
- Utilizado en muchas áreas de ciencia e ingeniería, tanto en ámbitos comerciales como educativos
- Permite resolver una amplísima gama de problemas de fluidos, incluyendo pero no limitándose a:
 - reacciones químicas
 - turbulencias
 - transferencia de calor
 - acústica
 - mecánica de sólidos
 - electromagnetismo
 - o otros

Software de paralelización

mpirun (Open MPI) 1.10.2

Software de medición de tiempo

comando time desde la terminal.

- Real: mide el tiempo desde que arrancó a correr el programa hasta que terminó.
- User: mide tiempo en que la CPU está ocupada en modo usuario.
- Sys: mide tiempo en que la CPU está ocupada en modo kernel.

Análisis preliminar

Hardware

- Velocidad de CPU/RAM
- Canales de memoria RAM
- Turbo boost
- Hyper-threading

Análisis preliminar

Software

- Binding y distribución
- Case size y descomposición
 - Simple
 - Jerárquica
 - Scotch
 - Manual

Casos de estudio

Problema que involucra dos fluidos compresibles no isotérmicos e immiscibles, en este caso se los estudia en un recipiente, habiendo una burbuja en la parte inferior.

Opciones: 2d vs 3d.

Casos de estudio

- Preparación del dominio de acuerdo a la cantidad de procesadores disponibles o que se quieran utilizar.
- Detalles de discretización (cantidad de celdas a usar)
- Tipo de descomposición a usar
- Flags mpi

Detalles

Problema en su subdivisión en 4 núcleos.

Detalles

Detalle de la discretización

Detalles

Descomposición Jerárquica vs Scotch

Ejecución

Monocore

./Allrun

Ejecución

Multicore

Ejecución

Multicore bindings

- --bind-to core
- --bind-to none
- --bycore

PC #2

PC 2: AMD Ryzen™ 5 2400G 3.6GHz
4 núcleos, 8 subprocesos.
2 canales de memoria
16 GB DDR4 memoria RAM 2400 MHz

PC #3

PC 3:

Intel® Core™ i5-5200U CPU @ 2.20GHz 3M Cache, up to 2.70 GHz

2 núcleos, 4 subprocesos.

2 canales de memoria

8 GB DDR4 memoria RAM 2400 MHz

Descomposición jerárquica vs scotch

Óptimo speedup para cada caso

Comparación de bindings

Descomposición jerárquica con 2 núcleos

#PC

Comparación de bindings

Descomposición jerárquica con 3 núcleos

#PC

Comparación de bindings Descomposición jerárquica con 4 núcleos

Conclusiones

- No siempre se cumple que al agregar más procesadores aumenta el speedup (tener cuidado con los hyper-threads!)
- Setear Binding de a acuerdo a topología usada.

Posibles extensiones del proyecto

- continuar la investigación expandiéndose a un cluster de computadoras
- estudiar desempeño aumentando el tamaño del problema
- utilizar otra implementación de MPI (por ejemplo IntelMPI)
- usar software de análisis de desempeño (profiling), como Intel Parallel studio (licencia gratis por 30 días o para completa para estudiantes)

