Application of Information Theory, Lecture 3 Graph Covering, Differential Entropy

Iftach Haitner

Tel Aviv University.

November 3, 2015

Part I

Applications to Graph Covering

► How may graphs of certain type it takes to cover the full graph?

- How may graphs of certain type it takes to cover the full graph?
- ightharpoonup K_n the complete graph over [n]

- How may graphs of certain type it takes to cover the full graph?
- $ightharpoonup K_n$ the complete graph over [n]
- ▶ Let $G_1, ..., G_t$ be bipartite graphs over [n] with $\bigcup_i G_i = K_n$. What can we say about t?

- How may graphs of certain type it takes to cover the full graph?
- $ightharpoonup K_n$ the complete graph over [n]
- ▶ Let $G_1, ..., G_t$ be bipartite graphs over [n] with $\bigcup_i G_i = K_n$. What can we say about t?
- ► Clearly, $t \ge \frac{\binom{n}{2}}{(n/2)^2} \approx 2$,

- How may graphs of certain type it takes to cover the full graph?
- $ightharpoonup K_n$ the complete graph over [n]
- ▶ Let $G_1, ..., G_t$ be bipartite graphs over [n] with $\bigcup_i G_i = K_n$. What can we say about t?
- ► Clearly, $t \ge \frac{\binom{n}{2}}{(n/2)^2} \approx 2$,

- How may graphs of certain type it takes to cover the full graph?
- $ightharpoonup K_n$ the complete graph over [n]
- ▶ Let $G_1, ..., G_t$ be bipartite graphs over [n] with $\bigcup_i G_i = K_n$. What can we say about t?
- ▶ Clearly, $t \ge \frac{\binom{n}{2}}{(n/2)^2} \approx$ 2, but can we give a better bound?

- How may graphs of certain type it takes to cover the full graph?
- $ightharpoonup K_n$ the complete graph over [n]
- ▶ Let $G_1, ..., G_t$ be bipartite graphs over [n] with $\bigcup_i G_i = K_n$. What can we say about t?
- ▶ Clearly, $t \ge \frac{\binom{n}{2}}{(n/2)^2} \approx$ 2, but can we give a better bound?

Theorem 1

Let G_1, \ldots, G_t be bipartite graphs over [n] with $\bigcup_{i=1}^t G_i = K_n$, then $t \ge \log n$.

- How may graphs of certain type it takes to cover the full graph?
- $ightharpoonup K_n$ the complete graph over [n]
- ▶ Let $G_1, ..., G_t$ be bipartite graphs over [n] with $\bigcup_i G_i = K_n$. What can we say about t?
- ▶ Clearly, $t \ge \frac{\binom{n}{2}}{(n/2)^2} \approx$ 2, but can we give a better bound?

Theorem 1

Let G_1, \ldots, G_t be bipartite graphs over [n] with $\bigcup_{i=1}^t G_i = K_n$, then $t \ge \log n$.

- How may graphs of certain type it takes to cover the full graph?
- $ightharpoonup K_n$ the complete graph over [n]
- ▶ Let $G_1, ..., G_t$ be bipartite graphs over [n] with $\bigcup_i G_i = K_n$. What can we say about t?
- ▶ Clearly, $t \ge \frac{\binom{n}{2}}{(n/2)^2} \approx$ 2, but can we give a better bound?

Theorem 1

Let G_1, \ldots, G_t be bipartite graphs over [n] with $\bigcup_{i=1}^t G_i = K_n$, then $t \ge \log n$.

Proof: Let $\chi(G)$ be the chromatic number of G.

▶ $\chi(G_i) \leq 2$ and $\chi(K_n) = n$.

- How may graphs of certain type it takes to cover the full graph?
- $ightharpoonup K_n$ the complete graph over [n]
- ▶ Let $G_1, ..., G_t$ be bipartite graphs over [n] with $\bigcup_i G_i = K_n$. What can we say about t?
- ▶ Clearly, $t \ge \frac{\binom{n}{2}}{(n/2)^2} \approx$ 2, but can we give a better bound?

Theorem 1

Let G_1, \ldots, G_t be bipartite graphs over [n] with $\bigcup_{i=1}^t G_i = K_n$, then $t \ge \log n$.

- ▶ $\chi(G_i) \leq 2$ and $\chi(K_n) = n$.
- $\chi(G \cup G') \leq \chi(G) \cdot \chi(G'). (?)$

- How may graphs of certain type it takes to cover the full graph?
- $ightharpoonup K_n$ the complete graph over [n]
- ▶ Let $G_1, ..., G_t$ be bipartite graphs over [n] with $\bigcup_i G_i = K_n$. What can we say about t?
- ▶ Clearly, $t \ge \frac{\binom{n}{2}}{(n/2)^2} \approx$ 2, but can we give a better bound?

Theorem 1

Let G_1, \ldots, G_t be bipartite graphs over [n] with $\bigcup_{i=1}^t G_i = K_n$, then $t \ge \log n$.

- ▶ $\chi(G_i) \leq 2$ and $\chi(K_n) = n$.
- $\chi(G \cup G') \leq \chi(G) \cdot \chi(G').(?)$
- $\implies \chi(\bigcup_{i=1}^t G_i) \leq 2^t$

- How may graphs of certain type it takes to cover the full graph?
- $ightharpoonup K_n$ the complete graph over [n]
- ▶ Let $G_1, ..., G_t$ be bipartite graphs over [n] with $\bigcup_i G_i = K_n$. What can we say about t?
- ▶ Clearly, $t \ge \frac{\binom{n}{2}}{(n/2)^2} \approx$ 2, but can we give a better bound?

Theorem 1

Let G_1, \ldots, G_t be bipartite graphs over [n] with $\bigcup_{i=1}^t G_i = K_n$, then $t \ge \log n$.

- ▶ $\chi(G_i) \leq 2$ and $\chi(K_n) = n$.
- $\chi(G \cup G') \leq \chi(G) \cdot \chi(G'). (?)$
- $\implies \chi(\bigcup_{i=1}^t G_i) \leq 2^t$
- $\implies t \ge \log n$

$$\blacktriangleright \ G_i = (A_i, B_i, E_i)$$

- $\blacktriangleright \ G_i = (A_i, B_i, E_i)$
- ► $X \leftarrow [n]$

- $\blacktriangleright \ G_i = (A_i, B_i, E_i)$
- $\triangleright X \leftarrow [n]$
- $Y_i = \left\{ \begin{array}{ll} 0, & X \in A_i \\ 1, & X \in B_i \end{array} \right.$

- $G_i = (A_i, B_i, E_i)$
- $\triangleright X \leftarrow [n]$
- $Y_i = \left\{ \begin{array}{ll} 0, & X \in A_i \\ 1, & X \in B_i \end{array} \right.$
- \blacktriangleright X is determined by Y_1, \ldots, Y_t (?)

- $G_i = (A_i, B_i, E_i)$
- $\triangleright X \leftarrow [n]$
- $Y_i = \left\{ \begin{array}{ll} 0, & X \in A_i \\ 1, & X \in B_i \end{array} \right.$
- \blacktriangleright X is determined by Y_1, \ldots, Y_t (?)

$$0 = H(X|Y_1, \ldots, Y_t)$$

- $G_i = (A_i, B_i, E_i)$
- $\triangleright X \leftarrow [n]$
- $Y_i = \left\{ \begin{array}{ll} 0, & X \in A_i \\ 1, & X \in B_i \end{array} \right.$
- \blacktriangleright X is determined by Y_1, \ldots, Y_t (?)

$$0 = H(X|Y_1, \ldots, Y_t)$$

- $G_i = (A_i, B_i, E_i)$
- $\triangleright X \leftarrow [n]$
- $Y_i = \left\{ \begin{array}{ll} 0, & X \in A_i \\ 1, & X \in B_i \end{array} \right.$
- \blacktriangleright X is determined by Y_1, \ldots, Y_t (?)

$$0 = H(X|Y_1, ..., Y_t) = H(X, Y_1, ..., Y_t) - H(Y_1, ..., Y_t)$$

- $G_i = (A_i, B_i, E_i)$
- $\triangleright X \leftarrow [n]$
- $Y_i = \left\{ \begin{array}{ll} 0, & X \in A_i \\ 1, & X \in B_i \end{array} \right.$
- \blacktriangleright X is determined by Y_1, \ldots, Y_t (?)

$$0 = H(X|Y_1,...,Y_t) = H(X,Y_1,...,Y_t) - H(Y_1,...,Y_t)$$

$$\geq H(X) - \sum_i H(Y_i)$$

- $G_i = (A_i, B_i, E_i)$
- $\triangleright X \leftarrow [n]$
- $Y_i = \left\{ \begin{array}{ll} 0, & X \in A_i \\ 1, & X \in B_i \end{array} \right.$
- \blacktriangleright X is determined by Y_1, \ldots, Y_t (?)

$$0 = H(X|Y_1, ..., Y_t) = H(X, Y_1, ..., Y_t) - H(Y_1, ..., Y_t)$$

$$\geq H(X) - \sum_i H(Y_i)$$

$$\geq \log n - t.$$

▶ nonls(G) — non-isolated vertices in G.

▶ nonls(G) — non-isolated vertices in G.

▶ nonls(G) — non-isolated vertices in G.

Theorem 2

Let G_1, \ldots, G_t be bipartite graphs over [n] with $\bigcup_{i=1}^t G_i = K_n$, then $\frac{1}{n} \sum_{i=1}^t |\mathsf{nonls}(G_i)| \ge \log n$.

▶ nonls(G) — non-isolated vertices in G.

Theorem 2

Let G_1, \ldots, G_t be bipartite graphs over [n] with $\bigcup_{i=1}^t G_i = K_n$, then $\frac{1}{n} \sum_{i=1}^t |\mathsf{nonls}(G_i)| \ge \log n$.

▶ nonls(G) — non-isolated vertices in G.

Theorem 2

Let G_1, \ldots, G_t be bipartite graphs over [n] with $\bigcup_{i=1}^t G_i = K_n$, then $\frac{1}{n} \sum_{i=1}^t |\mathsf{nonls}(G_i)| \ge \log n$.

Definition 3 (graph content)

Let G be a graph over [n], let $Z \leftarrow \operatorname{nonls}(G)$ and let $\hat{\chi}$ be a (valid) coloring of G such that $H(\hat{\chi}(Z))$ is minimal. Then $\operatorname{content}(G) := \frac{|\operatorname{nonls}(G)|}{n} \cdot H(\hat{\chi}(Z))$.

▶ nonls(G) — non-isolated vertices in G.

Theorem 2

Let G_1, \ldots, G_t be bipartite graphs over [n] with $\bigcup_{i=1}^t G_i = K_n$, then $\frac{1}{n} \sum_{i=1}^t |\mathsf{nonls}(G_i)| \ge \log n$.

Definition 3 (graph content)

Let G be a graph over [n], let $Z \leftarrow \operatorname{nonls}(G)$ and let $\hat{\chi}$ be a (valid) coloring of G such that $H(\hat{\chi}(Z))$ is minimal. Then $\operatorname{content}(G) := \frac{|\operatorname{nonls}(G)|}{n} \cdot H(\hat{\chi}(Z))$.

▶ nonls(G) — non-isolated vertices in G.

Theorem 2

Let G_1, \ldots, G_t be bipartite graphs over [n] with $\bigcup_{i=1}^t G_i = K_n$, then $\frac{1}{n} \sum_{i=1}^t |\mathsf{nonls}(G_i)| \ge \log n$.

Definition 3 (graph content)

Let G be a graph over [n], let $Z \leftarrow \operatorname{nonls}(G)$ and let $\hat{\chi}$ be a (valid) coloring of G such that $H(\hat{\chi}(Z))$ is minimal. Then $\operatorname{content}(G) := \frac{|\operatorname{nonls}(G)|}{n} \cdot H(\hat{\chi}(Z))$.

Theorem 4

Let G_1, \ldots, G_t be graphs over [n] with $\bigcup_{i=1}^t G_i = K_n$. Then $\sum \operatorname{content}(G_i) \ge \log n$.

▶ nonls(G) — non-isolated vertices in G.

Theorem 2

Let G_1, \ldots, G_t be bipartite graphs over [n] with $\bigcup_{i=1}^t G_i = K_n$, then $\frac{1}{n} \sum_{i=1}^t |\mathsf{nonls}(G_i)| \ge \log n$.

Definition 3 (graph content)

Let G be a graph over [n], let $Z \leftarrow \mathsf{nonls}(G)$ and let $\hat{\chi}$ be a (valid) coloring of G such that $H(\hat{\chi}(Z))$ is minimal. Then $\mathsf{content}(G) := \frac{|\mathsf{nonls}(G)|}{n} \cdot H(\hat{\chi}(Z))$.

Theorem 4

Let G_1, \ldots, G_t be graphs over [n] with $\bigcup_{i=1}^t G_i = K_n$. Then $\sum \operatorname{content}(G_i) \ge \log n$.

► Since content(G) $\leq \frac{|\text{nonls}(G)|}{n}$ for bipartite G,

▶ nonls(G) — non-isolated vertices in G.

Theorem 2

Let G_1, \ldots, G_t be bipartite graphs over [n] with $\bigcup_{i=1}^t G_i = K_n$, then $\frac{1}{n} \sum_{i=1}^t |\mathsf{nonls}(G_i)| \ge \log n$.

Definition 3 (graph content)

Let G be a graph over [n], let $Z \leftarrow \operatorname{nonls}(G)$ and let $\hat{\chi}$ be a (valid) coloring of G such that $H(\hat{\chi}(Z))$ is minimal. Then $\operatorname{content}(G) := \frac{|\operatorname{nonls}(G)|}{n} \cdot H(\hat{\chi}(Z))$.

Theorem 4

Let G_1, \ldots, G_t be graphs over [n] with $\bigcup_{i=1}^t G_i = K_n$. Then $\sum \operatorname{content}(G_i) \ge \log n$.

► Since content(G) $\leq \frac{|\text{nonls}(G)|}{n}$ for bipartite G,

▶ nonls(G) — non-isolated vertices in G.

Theorem 2

Let G_1, \ldots, G_t be bipartite graphs over [n] with $\bigcup_{i=1}^t G_i = K_n$, then $\frac{1}{n} \sum_{i=1}^t |\mathsf{nonls}(G_i)| \ge \log n$.

Definition 3 (graph content)

Let G be a graph over [n], let $Z \leftarrow \operatorname{nonls}(G)$ and let $\hat{\chi}$ be a (valid) coloring of G such that $H(\hat{\chi}(Z))$ is minimal. Then $\operatorname{content}(G) := \frac{|\operatorname{nonls}(G)|}{n} \cdot H(\hat{\chi}(Z))$.

Theorem 4

Let G_1, \ldots, G_t be graphs over [n] with $\bigcup_{i=1}^t G_i = K_n$. Then $\sum \operatorname{content}(G_i) \ge \log n$.

► Since content(G) $\leq \frac{|\text{nonls}(G)|}{n}$ for bipartite G, Thm 4 yields Thm 2.

Proving Thm 4

Proving Thm 4

▶ Let χ_i be a (valid) coloring of G_i .

- Let χ_i be a (valid) coloring of G_i .
- ► Let $X \leftarrow [n]$, and let $Y_i = \begin{cases} \chi_i(X) & X \in \mathsf{nonls}(G_i) \\ \chi_i(Z_i) & \mathsf{otherwise}, \, \mathsf{for} \, Z_i \leftarrow \mathsf{nonls}(G_i) \, (\mathsf{ind. of the other } Z'\mathsf{s}). \end{cases}$

- Let χ_i be a (valid) coloring of G_i.
- ► Let $X \leftarrow [n]$, and let $Y_i = \begin{cases} \chi_i(X) & X \in \mathsf{nonls}(G_i) \\ \chi_i(Z_i) & \mathsf{otherwise}, \, \mathsf{for} \, Z_i \leftarrow \mathsf{nonls}(G_i) \, (\mathsf{ind. of the other } Z'\mathsf{s}). \end{cases}$
- \blacktriangleright X is determined by Y_1, \ldots, Y_t (?)

- Let χ_i be a (valid) coloring of G_i .
- ► Let $X \leftarrow [n]$, and let $Y_i = \begin{cases} \chi_i(X) & X \in \mathsf{nonls}(G_i) \\ \chi_i(Z_i) & \mathsf{otherwise}, \, \mathsf{for} \, Z_i \leftarrow \mathsf{nonls}(G_i) \, (\mathsf{ind. of the other } Z'\mathsf{s}). \end{cases}$
- \blacktriangleright X is determined by Y_1, \ldots, Y_t (?)

$$0 = H(X|Y_1, ..., Y_t) = H(X, Y_1, ..., Y_t) - H(Y_1, ..., Y_t)$$

- Let χ_i be a (valid) coloring of G_i .
- ► Let $X \leftarrow [n]$, and let $Y_i = \begin{cases} \chi_i(X) & X \in \mathsf{nonls}(G_i) \\ \chi_i(Z_i) & \mathsf{otherwise}, \, \mathsf{for} \, Z_i \leftarrow \mathsf{nonls}(G_i) \, (\mathsf{ind. of the other } Z'\mathsf{s}). \end{cases}$
- \blacktriangleright X is determined by Y_1, \ldots, Y_t (?)

$$0 = H(X|Y_1, ..., Y_t) = H(X, Y_1, ..., Y_t) - H(Y_1, ..., Y_t)$$

- Let χ_i be a (valid) coloring of G_i.
- ► Let $X \leftarrow [n]$, and let $Y_i = \begin{cases} \chi_i(X) & X \in \mathsf{nonls}(G_i) \\ \chi_i(Z_i) & \mathsf{otherwise}, \, \mathsf{for} \, Z_i \leftarrow \mathsf{nonls}(G_i) \, (\mathsf{ind. of the other } Z'\mathsf{s}). \end{cases}$
- \blacktriangleright X is determined by Y_1, \ldots, Y_t (?)

$$0 = H(X|Y_1,...,Y_t) = H(X,Y_1,...,Y_t) - H(Y_1,...,Y_t)$$

$$\geq H(X) + H(Y_1,...,Y_t|X) - \sum_i H(Y_i)$$

- Let χ_i be a (valid) coloring of G_i.
- Let $X \leftarrow [n]$, and let $Y_i = \begin{cases} \chi_i(X) & X \in \mathsf{nonls}(G_i) \\ \chi_i(Z_i) & \mathsf{otherwise}, \, \mathsf{for} \, Z_i \leftarrow \mathsf{nonls}(G_i) \, (\mathsf{ind. of the other } Z'\mathsf{s}). \end{cases}$
- \blacktriangleright X is determined by Y_1, \ldots, Y_t (?)

$$0 = H(X|Y_1, ..., Y_t) = H(X, Y_1, ..., Y_t) - H(Y_1, ..., Y_t)$$

$$\geq H(X) + H(Y_1, ..., Y_t|X) - \sum_i H(Y_i)$$

$$= \log n + H(Y_1, ..., Y_t|X) - \sum_i H(Y_i).$$

- Let χ_i be a (valid) coloring of G_i .
- ► Let $X \leftarrow [n]$, and let $Y_i = \begin{cases} \chi_i(X) & X \in \mathsf{nonls}(G_i) \\ \chi_i(Z_i) & \mathsf{otherwise}, \, \mathsf{for} \, Z_i \leftarrow \mathsf{nonls}(G_i) \, (\mathsf{ind. of the other } Z'\mathsf{s}). \end{cases}$
- \blacktriangleright X is determined by Y_1, \ldots, Y_t (?)

$$0 = H(X|Y_1,...,Y_t) = H(X,Y_1,...,Y_t) - H(Y_1,...,Y_t)$$

$$\geq H(X) + H(Y_1,...,Y_t|X) - \sum_i H(Y_i)$$

$$= \log n + H(Y_1,...,Y_t|X) - \sum_i H(Y_i).$$

 \triangleright Y_1, \dots, Y_t are independent conditioned on X —

$$Pr[Y_1 = y_1 \land Y_2 = y_2 \mid X = x] = Pr[Y_1 = y_1 \mid X = x] \cdot Pr[Y_2 = y_2 \mid X = x]$$

- Let χ_i be a (valid) coloring of G_i .
- ► Let $X \leftarrow [n]$, and let $Y_i = \begin{cases} \chi_i(X) & X \in \mathsf{nonls}(G_i) \\ \chi_i(Z_i) & \mathsf{otherwise}, \, \mathsf{for} \, Z_i \leftarrow \mathsf{nonls}(G_i) \, (\mathsf{ind. of the other } Z'\mathsf{s}). \end{cases}$
- \blacktriangleright X is determined by Y_1, \ldots, Y_t (?)

$$0 = H(X|Y_1, ..., Y_t) = H(X, Y_1, ..., Y_t) - H(Y_1, ..., Y_t)$$

$$\geq H(X) + H(Y_1, ..., Y_t|X) - \sum_i H(Y_i)$$

$$= \log n + H(Y_1, ..., Y_t|X) - \sum_i H(Y_i).$$

 $ightharpoonup Y_1, \ldots, Y_t$ are independent conditioned on X —

$$\Pr[Y_1 = y_1 \land Y_2 = y_2 \mid X = x] = \Pr[Y_1 = y_1 \mid X = x] \cdot \Pr[Y_2 = y_2 \mid X = x]$$

► Hence, $H(Y_1, ..., Y_t | X) = \sum_i H(Y_i | X)$ (board)

- Let χ_i be a (valid) coloring of G_i .
- ► Let $X \leftarrow [n]$, and let $Y_i = \begin{cases} \chi_i(X) & X \in \mathsf{nonls}(G_i) \\ \chi_i(Z_i) & \mathsf{otherwise}, \, \mathsf{for} \, Z_i \leftarrow \mathsf{nonls}(G_i) \, (\mathsf{ind. of the other } Z'\mathsf{s}). \end{cases}$
- \blacktriangleright X is determined by Y_1, \ldots, Y_t (?)

$$0 = H(X|Y_1, ..., Y_t) = H(X, Y_1, ..., Y_t) - H(Y_1, ..., Y_t)$$

$$\geq H(X) + H(Y_1, ..., Y_t|X) - \sum_i H(Y_i)$$

$$= \log n + H(Y_1, ..., Y_t|X) - \sum_i H(Y_i).$$

 Y_1, \dots, Y_t are independent conditioned on X —

$$Pr[Y_1 = y_1 \land Y_2 = y_2 \mid X = x] = Pr[Y_1 = y_1 \mid X = x] \cdot Pr[Y_2 = y_2 \mid X = x]$$

- ► Hence, $H(Y_1, ..., Y_t | X) = \sum_i H(Y_i | X)$ (board)
- ▶ We conclude that $\sum_i H(Y_i) \sum_i H(Y_i|X) \ge \log n$

- ▶ Let χ_i be a (valid) coloring of G_i .
- ► Let $X \leftarrow [n]$, and let $Y_i = \begin{cases} \chi_i(X) & X \in \mathsf{nonls}(G_i) \\ \chi_i(Z_i) & \mathsf{otherwise}, \, \mathsf{for} \, Z_i \leftarrow \mathsf{nonls}(G_i) \, (\mathsf{ind. of the other } Z'\mathsf{s}). \end{cases}$
- \blacktriangleright X is determined by Y_1, \ldots, Y_t (?)

$$0 = H(X|Y_1, ..., Y_t) = H(X, Y_1, ..., Y_t) - H(Y_1, ..., Y_t)$$

$$\geq H(X) + H(Y_1, ..., Y_t|X) - \sum_i H(Y_i)$$

$$= \log n + H(Y_1, ..., Y_t|X) - \sum_i H(Y_i).$$

 $ightharpoonup Y_1, \dots, Y_t$ are independent conditioned on X —

$$\Pr[Y_1 = y_1 \land Y_2 = y_2 \mid X = x] = \Pr[Y_1 = y_1 \mid X = x] \cdot \Pr[Y_2 = y_2 \mid X = x]$$

- ► Hence, $H(Y_1, ..., Y_t | X) = \sum_i H(Y_i | X)$ (board)
- ▶ We conclude that $\sum_i H(Y_i) \sum_i H(Y_i|X) \ge \log n$
- ► Since $H(Y_i) = H(\chi_i(Z_i))$ and $H(Y_i|X) = (1 \frac{|\text{nonls}(G_i)|}{n}) \cdot H(\chi_i(Z_i))$,

- ▶ Let χ_i be a (valid) coloring of G_i .
- ► Let $X \leftarrow [n]$, and let $Y_i = \begin{cases} \chi_i(X) & X \in \mathsf{nonls}(G_i) \\ \chi_i(Z_i) & \mathsf{otherwise}, \, \mathsf{for} \, Z_i \leftarrow \mathsf{nonls}(G_i) \, (\mathsf{ind. of the other } Z'\mathsf{s}). \end{cases}$
- \blacktriangleright X is determined by Y_1, \ldots, Y_t (?)

$$0 = H(X|Y_1, ..., Y_t) = H(X, Y_1, ..., Y_t) - H(Y_1, ..., Y_t)$$

$$\geq H(X) + H(Y_1, ..., Y_t|X) - \sum_i H(Y_i)$$

$$= \log n + H(Y_1, ..., Y_t|X) - \sum_i H(Y_i).$$

 $ightharpoonup Y_1, \dots, Y_t$ are independent conditioned on X —

$$\Pr[Y_1 = y_1 \land Y_2 = y_2 \mid X = x] = \Pr[Y_1 = y_1 \mid X = x] \cdot \Pr[Y_2 = y_2 \mid X = x]$$

- ► Hence, $H(Y_1, ..., Y_t | X) = \sum_i H(Y_i | X)$ (board)
- ▶ We conclude that $\sum_i H(Y_i) \sum_i H(Y_i|X) \ge \log n$
- ► Since $H(Y_i) = H(\chi_i(Z_i))$ and $H(Y_i|X) = (1 \frac{|\text{nonls}(G_i)|}{n}) \cdot H(\chi_i(Z_i))$,

- ▶ Let χ_i be a (valid) coloring of G_i .
- ► Let $X \leftarrow [n]$, and let $Y_i = \begin{cases} \chi_i(X) & X \in \mathsf{nonls}(G_i) \\ \chi_i(Z_i) & \mathsf{otherwise}, \, \mathsf{for} \, Z_i \leftarrow \mathsf{nonls}(G_i) \, (\mathsf{ind. of the other } Z'\mathsf{s}). \end{cases}$
- \blacktriangleright X is determined by Y_1, \ldots, Y_t (?)

$$0 = H(X|Y_1, ..., Y_t) = H(X, Y_1, ..., Y_t) - H(Y_1, ..., Y_t)$$

$$\geq H(X) + H(Y_1, ..., Y_t|X) - \sum_i H(Y_i)$$

$$= \log n + H(Y_1, ..., Y_t|X) - \sum_i H(Y_i).$$

 $ightharpoonup Y_1, \ldots, Y_t$ are independent conditioned on X —

$$\Pr[Y_1 = y_1 \land Y_2 = y_2 \mid X = x] = \Pr[Y_1 = y_1 \mid X = x] \cdot \Pr[Y_2 = y_2 \mid X = x]$$

- ► Hence, $H(Y_1, ..., Y_t | X) = \sum_i H(Y_i | X)$ (board)
- ▶ We conclude that $\sum_i H(Y_i) \sum_i H(Y_i|X) \ge \log n$
- ► Since $H(Y_i) = H(\chi_i(Z_i))$ and $H(Y_i|X) = (1 \frac{|\text{nonls}(G_i)|}{n}) \cdot H(\chi_i(Z_i))$, it follows that $\sum_i H(\chi_i(Z_i)) \frac{|\text{nonls}(G_i)|}{n} \ge \log n$. \square

Extension

Let $\alpha(G)$ be the size of the maximal independent set in G

Extension

Let $\alpha(G)$ be the size of the maximal independent set in G.

Theorem 5

Let G, G_1, \ldots, G_t be graphs over [n] with $\bigcup_{i=1}^t G_i = G$, then $\sum \operatorname{content}(G_i) \ge \log \frac{n}{\alpha(G)}$.

Proof: HW

Theorem 6

Theorem 6

Let $\mathcal S$ be a set of permutations over [n] s.t. for any triplet (i,j,k) of distinct elements of [n], exists $\pi \in \mathcal S$ with $\pi(i) < \pi(j) < \pi(k)$ or $\pi(i) > \pi(j) > \pi(k)$. Then $|\mathcal S| \geq \frac{2}{\log e} \log n$.

▶ For $\pi \in S$, the graph $G_{\pi} = (V, E_{\pi})$ is defined by:

Theorem 6

- ▶ For $\pi \in \mathcal{S}$, the graph $G_{\pi} = (V, E_{\pi})$ is defined by:
 - ► $V = \{(i,j) \in [n]^2 : i \neq j\}$

Theorem 6

- ▶ For $\pi \in \mathcal{S}$, the graph $G_{\pi} = (V, E_{\pi})$ is defined by:
 - ► $V = \{(i, j) \in [n]^2 : i \neq j\}$
 - $E_{\pi} = \{((i,j),(k,j)) \in V^2 : \pi(i) < \pi(j) < \pi(k) \lor \pi(i) > \pi(j) > \pi(k)\}$

Theorem 6

- ▶ For $\pi \in \mathcal{S}$, the graph $G_{\pi} = (V, E_{\pi})$ is defined by:
 - ► $V = \{(i,j) \in [n]^2 : i \neq j\}$
 - ► $E_{\pi} = \{((i,j),(k,j)) \in V^2 : \pi(i) < \pi(j) < \pi(k) \lor \pi(i) > \pi(j) > \pi(k)\}$
- ▶ $G = \bigcup_{\pi \in S} G_{\pi}$ has n connected components, each consists of (n-1)-vertex cliques:

Theorem 6

- ▶ For $\pi \in \mathcal{S}$, the graph $G_{\pi} = (V, E_{\pi})$ is defined by:
 - ► $V = \{(i,j) \in [n]^2 : i \neq j\}$
 - ► $E_{\pi} = \{((i,j),(k,j)) \in V^2 : \pi(i) < \pi(j) < \pi(k) \lor \pi(i) > \pi(j) > \pi(k)\}$
- ▶ $G = \bigcup_{\pi \in S} G_{\pi}$ has n connected components, each consists of (n-1)-vertex cliques:

Theorem 6

- ▶ For $\pi \in \mathcal{S}$, the graph $G_{\pi} = (V, E_{\pi})$ is defined by:
 - ► $V = \{(i,j) \in [n]^2 : i \neq j\}$
 - ► $E_{\pi} = \{((i,j),(k,j)) \in V^2 : \pi(i) < \pi(j) < \pi(k) \lor \pi(i) > \pi(j) > \pi(k)\}$
- ▶ $G = \bigcup_{\pi \in S} G_{\pi}$ has n connected components, each consists of (n-1)-vertex cliques: $\{(i,j): i \in [n] \setminus \{j\}\}$ for each $j \in [n]$.

Theorem 6

- ▶ For $\pi \in \mathcal{S}$, the graph $G_{\pi} = (V, E_{\pi})$ is defined by:
 - ► $V = \{(i,j) \in [n]^2 : i \neq j\}$
 - ► $E_{\pi} = \{((i,j),(k,j)) \in V^2 : \pi(i) < \pi(j) < \pi(k) \lor \pi(i) > \pi(j) > \pi(k)\}$
- ▶ $G = \bigcup_{\pi \in S} G_{\pi}$ has n connected components, each consists of (n-1)-vertex cliques: $\{(i,j): i \in [n] \setminus \{j\}\}$ for each $j \in [n]$.
- G_{π} consists of *n* complete bipartite graphs (two are empty):

Theorem 6

- ▶ For $\pi \in \mathcal{S}$, the graph $G_{\pi} = (V, E_{\pi})$ is defined by:
 - ► $V = \{(i,j) \in [n]^2 : i \neq j\}$
 - ► $E_{\pi} = \{((i,j),(k,j)) \in V^2 : \pi(i) < \pi(j) < \pi(k) \lor \pi(i) > \pi(j) > \pi(k)\}$
- ▶ $G = \bigcup_{\pi \in S} G_{\pi}$ has n connected components, each consists of (n-1)-vertex cliques: $\{(i,j): i \in [n] \setminus \{j\}\}$ for each $j \in [n]$.
- G_{π} consists of *n* complete bipartite graphs (two are empty):

Theorem 6

- ▶ For $\pi \in \mathcal{S}$, the graph $G_{\pi} = (V, E_{\pi})$ is defined by:
 - ► $V = \{(i,j) \in [n]^2 : i \neq j\}$
 - $E_{\pi} = \{((i,j),(k,j)) \in V^2 : \pi(i) < \pi(j) < \pi(k) \lor \pi(i) > \pi(j) > \pi(k)\}$
- ▶ $G = \bigcup_{\pi \in S} G_{\pi}$ has n connected components, each consists of (n-1)-vertex cliques: $\{(i,j): i \in [n] \setminus \{j\}\}$ for each $j \in [n]$.
- ▶ G_{π} consists of n complete bipartite graphs (two are empty):

$$\{(i,j) : \pi(i) \le \pi(j)\}$$
 and $\{(i,j) : \pi(i) > \pi(j)\}$ for each $j \in [n]$.

Theorem 6

Let $\mathcal S$ be a set of permutations over [n] s.t. for any triplet (i,j,k) of distinct elements of [n], exists $\pi \in \mathcal S$ with $\pi(i) < \pi(j) < \pi(k)$ or $\pi(i) > \pi(j) > \pi(k)$. Then $|\mathcal S| \geq \frac{2}{\log e} \log n$.

- ▶ For $\pi \in \mathcal{S}$, the graph $G_{\pi} = (V, E_{\pi})$ is defined by:
 - ► $V = \{(i,j) \in [n]^2 : i \neq j\}$
 - $E_{\pi} = \{((i,j),(k,j)) \in V^2 : \pi(i) < \pi(j) < \pi(k) \lor \pi(i) > \pi(j) > \pi(k)\}$
- ▶ $G = \bigcup_{\pi \in S} G_{\pi}$ has n connected components, each consists of (n-1)-vertex cliques: $\{(i,j): i \in [n] \setminus \{j\}\}$ for each $j \in [n]$.
- G_{π} consists of *n* complete bipartite graphs (two are empty):

$$\{(i,j) : \pi(i) \le \pi(j)\}$$
 and $\{(i,j) : \pi(i) > \pi(j)\}$ for each $j \in [n]$.

Theorem 6

Let $\mathcal S$ be a set of permutations over [n] s.t. for any triplet (i,j,k) of distinct elements of [n], exists $\pi \in \mathcal S$ with $\pi(i) < \pi(j) < \pi(k)$ or $\pi(i) > \pi(j) > \pi(k)$. Then $|\mathcal S| \geq \frac{2}{\log e} \log n$.

- ▶ For $\pi \in \mathcal{S}$, the graph $G_{\pi} = (V, E_{\pi})$ is defined by:
 - ► $V = \{(i,j) \in [n]^2 : i \neq j\}$
 - $E_{\pi} = \{((i,j),(k,j)) \in V^2 : \pi(i) < \pi(j) < \pi(k) \lor \pi(i) > \pi(j) > \pi(k)\}$
- ▶ $G = \bigcup_{\pi \in S} G_{\pi}$ has n connected components, each consists of (n-1)-vertex cliques: $\{(i,j): i \in [n] \setminus \{j\}\}$ for each $j \in [n]$.
- G_{π} consists of *n* complete bipartite graphs (two are empty):

$$\{(i,j) : \pi(i) \le \pi(j)\}$$
 and $\{(i,j) : \pi(i) > \pi(j)\}$ for each $j \in [n]$.

Theorem 6

Let $\mathcal S$ be a set of permutations over [n] s.t. for any triplet (i,j,k) of distinct elements of [n], exists $\pi \in \mathcal S$ with $\pi(i) < \pi(j) < \pi(k)$ or $\pi(i) > \pi(j) > \pi(k)$. Then $|\mathcal S| \geq \frac{2}{\log e} \log n$.

- ▶ For $\pi \in \mathcal{S}$, the graph $G_{\pi} = (V, E_{\pi})$ is defined by:
 - ► $V = \{(i,j) \in [n]^2 : i \neq j\}$
 - $E_{\pi} = \{ ((i,j),(k,j)) \in V^2 \colon \pi(i) < \pi(j) < \pi(k) \lor \pi(i) > \pi(j) > \pi(k) \}$
- ▶ $G = \bigcup_{\pi \in S} G_{\pi}$ has n connected components, each consists of (n-1)-vertex cliques: $\{(i,j): i \in [n] \setminus \{j\}\}$ for each $j \in [n]$.
- G_{π} consists of n complete bipartite graphs (two are empty):

$$\{(i,j) : \pi(i) \le \pi(j)\}$$
 and $\{(i,j) : \pi(i) > \pi(j)\}$ for each $j \in [n]$.

$$\sum_{i=0}^{n-1} h(\frac{i}{n-1})$$

Theorem 6

Let $\mathcal S$ be a set of permutations over [n] s.t. for any triplet (i,j,k) of distinct elements of [n], exists $\pi \in \mathcal S$ with $\pi(i) < \pi(j) < \pi(k)$ or $\pi(i) > \pi(j) > \pi(k)$. Then $|\mathcal S| \geq \frac{2}{\log e} \log n$.

- ▶ For $\pi \in \mathcal{S}$, the graph $G_{\pi} = (V, E_{\pi})$ is defined by:
 - ► $V = \{(i,j) \in [n]^2 : i \neq j\}$
 - $E_{\pi} = \{((i,j),(k,j)) \in V^2 : \pi(i) < \pi(j) < \pi(k) \lor \pi(i) > \pi(j) > \pi(k)\}$
- ▶ $G = \bigcup_{\pi \in S} G_{\pi}$ has n connected components, each consists of (n-1)-vertex cliques: $\{(i,j): i \in [n] \setminus \{j\}\}$ for each $j \in [n]$.
- G_{π} consists of *n* complete bipartite graphs (two are empty):

$$\{(i,j) : \pi(i) \le \pi(j)\}$$
 and $\{(i,j) : \pi(i) > \pi(j)\}$ for each $j \in [n]$.

$$\textstyle \sum_{i=0}^{n-1} \, h(\frac{i}{n-1}) = (n-1) \sum_{i=0}^{n-1} \, h(\frac{i}{n-1}) \cdot \frac{1}{n-1}$$

Theorem 6

Let $\mathcal S$ be a set of permutations over [n] s.t. for any triplet (i,j,k) of distinct elements of [n], exists $\pi \in \mathcal S$ with $\pi(i) < \pi(j) < \pi(k)$ or $\pi(i) > \pi(j) > \pi(k)$. Then $|\mathcal S| \geq \frac{2}{\log e} \log n$.

- ▶ For $\pi \in \mathcal{S}$, the graph $G_{\pi} = (V, E_{\pi})$ is defined by:
 - ► $V = \{(i,j) \in [n]^2 : i \neq j\}$
 - $E_{\pi} = \{((i,j),(k,j)) \in V^2 : \pi(i) < \pi(j) < \pi(k) \lor \pi(i) > \pi(j) > \pi(k)\}$
- ▶ $G = \bigcup_{\pi \in S} G_{\pi}$ has n connected components, each consists of (n-1)-vertex cliques: $\{(i,j): i \in [n] \setminus \{j\}\}$ for each $j \in [n]$.
- G_{π} consists of *n* complete bipartite graphs (two are empty):

$$\{(i,j) : \pi(i) \le \pi(j)\}$$
 and $\{(i,j) : \pi(i) > \pi(j)\}$ for each $j \in [n]$.

$$\sum_{i=0}^{n-1} h(\frac{i}{n-1}) = (n-1) \sum_{i=0}^{n-1} h(\frac{i}{n-1}) \cdot \frac{1}{n-1} \le (n-1) \int_0^1 h(p) dp$$

Theorem 6

Let $\mathcal S$ be a set of permutations over [n] s.t. for any triplet (i,j,k) of distinct elements of [n], exists $\pi \in \mathcal S$ with $\pi(i) < \pi(j) < \pi(k)$ or $\pi(i) > \pi(j) > \pi(k)$. Then $|\mathcal S| \geq \frac{2}{\log e} \log n$.

- ▶ For $\pi \in \mathcal{S}$, the graph $G_{\pi} = (V, E_{\pi})$ is defined by:
 - ► $V = \{(i,j) \in [n]^2 : i \neq j\}$
 - $E_{\pi} = \{((i,j),(k,j)) \in V^2 : \pi(i) < \pi(j) < \pi(k) \lor \pi(i) > \pi(j) > \pi(k)\}$
- ▶ $G = \bigcup_{\pi \in S} G_{\pi}$ has n connected components, each consists of (n-1)-vertex cliques: $\{(i,j): i \in [n] \setminus \{j\}\}$ for each $j \in [n]$.
- G_{π} consists of *n* complete bipartite graphs (two are empty):

$$\{(i,j) : \pi(i) \le \pi(j)\}$$
 and $\{(i,j) : \pi(i) > \pi(j)\}$ for each $j \in [n]$.

$$\textstyle \sum_{i=0}^{n-1} h(\frac{i}{n-1}) = (n-1) \sum_{i=0}^{n-1} h(\frac{i}{n-1}) \cdot \frac{1}{n-1} \leq (n-1) \int_0^1 h(p) dp = (n-1) \cdot \frac{\log e}{2}.$$

Theorem 6

Let $\mathcal S$ be a set of permutations over [n] s.t. for any triplet (i,j,k) of distinct elements of [n], exists $\pi \in \mathcal S$ with $\pi(i) < \pi(j) < \pi(k)$ or $\pi(i) > \pi(j) > \pi(k)$. Then $|\mathcal S| \geq \frac{2}{\log e} \log n$.

- ▶ For $\pi \in \mathcal{S}$, the graph $G_{\pi} = (V, E_{\pi})$ is defined by:
 - ► $V = \{(i,j) \in [n]^2 : i \neq j\}$
 - $E_{\pi} = \{((i,j),(k,j)) \in V^2 : \pi(i) < \pi(j) < \pi(k) \lor \pi(i) > \pi(j) > \pi(k)\}$
- ▶ $G = \bigcup_{\pi \in S} G_{\pi}$ has n connected components, each consists of (n-1)-vertex cliques: $\{(i,j): i \in [n] \setminus \{j\}\}$ for each $j \in [n]$.
- ▶ G_{π} consists of *n* complete bipartite graphs (two are empty):

$$\{(i,j) : \pi(i) \le \pi(j)\}$$
 and $\{(i,j) : \pi(i) > \pi(j)\}$ for each $j \in [n]$.

The sum of content of these bipartite graphs is

$$\textstyle \sum_{i=0}^{n-1} \, h(\frac{i}{n-1}) = (n-1) \sum_{i=0}^{n-1} \, h(\frac{i}{n-1}) \cdot \frac{1}{n-1} \leq (n-1) \int_0^1 \, h(p) dp = (n-1) \cdot \frac{\log e}{2}.$$

▶ By Thm 5 (applied for each component) $|S| \cdot \frac{\log e}{2} \cdot (n-1) \ge n \log(n-1)$.

Theorem 6

Let $\mathcal S$ be a set of permutations over [n] s.t. for any triplet (i,j,k) of distinct elements of [n], exists $\pi \in \mathcal S$ with $\pi(i) < \pi(j) < \pi(k)$ or $\pi(i) > \pi(j) > \pi(k)$. Then $|\mathcal S| \geq \frac{2}{\log e} \log n$.

- ▶ For $\pi \in \mathcal{S}$, the graph $G_{\pi} = (V, E_{\pi})$ is defined by:
 - ► $V = \{(i,j) \in [n]^2 : i \neq j\}$
 - $E_{\pi} = \{((i,j),(k,j)) \in V^2 : \pi(i) < \pi(j) < \pi(k) \lor \pi(i) > \pi(j) > \pi(k)\}$
- ▶ $G = \bigcup_{\pi \in S} G_{\pi}$ has n connected components, each consists of (n-1)-vertex cliques: $\{(i,j): i \in [n] \setminus \{j\}\}$ for each $j \in [n]$.
- ▶ G_{π} consists of *n* complete bipartite graphs (two are empty):

$$\{(i,j) : \pi(i) \le \pi(j)\}$$
 and $\{(i,j) : \pi(i) > \pi(j)\}$ for each $j \in [n]$.

$$\textstyle \sum_{i=0}^{n-1} \, h(\frac{i}{n-1}) = (n-1) \sum_{i=0}^{n-1} \, h(\frac{i}{n-1}) \cdot \frac{1}{n-1} \leq (n-1) \int_0^1 \, h(p) dp = (n-1) \cdot \frac{\log e}{2}.$$

- ▶ By Thm 5 (applied for each component) $|S| \cdot \frac{\log e}{2} \cdot (n-1) \ge n \log(n-1)$.
- ► Hence, $|S| \ge \frac{2}{\log e} \cdot \frac{n}{n-1} \cdot \log(n-1) \ge \frac{2}{\log e} \log n$. \square

Part II

Differential Entropy

Entropy of continues random variable

► Entropy of discrete random variable: $H(X) = -\sum_i p_i \log p_i$

Entropy of continues random variable

- ▶ Entropy of discrete random variable: $H(X) = -\sum_i p_i \log p_i$
- ► Also used when X has infinite # of states (entropy might be infinite!)

- ▶ Entropy of discrete random variable: $H(X) = -\sum_i p_i \log p_i$
- ► Also used when X has infinite # of states (entropy might be infinite!)
- Continues random variable is defined by its density function: $f: \mathbb{R} \mapsto \mathbb{R}^+$, for which $\int_{\mathbb{R}} f(x) dx = 1$.

- ▶ Entropy of discrete random variable: $H(X) = -\sum_i p_i \log p_i$
- ▶ Also used when X has infinite # of states (entropy might be infinite!)
- Continues random variable is defined by its density function: $f: \mathbb{R} \mapsto \mathbb{R}^+$, for which $\int_{\mathbb{D}} f(x) dx = 1$.
- $F_X(x) := \Pr[X \le x] = \int_{-\infty}^x f(x) dx$

- ▶ Entropy of discrete random variable: $H(X) = -\sum_i p_i \log p_i$
- ▶ Also used when X has infinite # of states (entropy might be infinite!)
- Continues random variable is defined by its density function: $f: \mathbb{R} \mapsto \mathbb{R}^+$, for which $\int_{\mathbb{D}} f(x) dx = 1$.
- $ightharpoonup F_X(x) := \Pr[X \le x] = \int_{-\infty}^x f(x) dx$
- ► E $X = \int x \cdot f(x) dx$ and $\forall X = \int x^2 \cdot f(x) dx (E X)^2$

- ▶ Entropy of discrete random variable: $H(X) = -\sum_i p_i \log p_i$
- ▶ Also used when X has infinite # of states (entropy might be infinite!)
- Continues random variable is defined by its density function: $f: \mathbb{R} \mapsto \mathbb{R}^+$, for which $\int_{\mathbb{D}} f(x) dx = 1$.
- $ightharpoonup F_X(x) := \Pr[X \le x] = \int_{-\infty}^x f(x) dx$
- ► E $X = \int x \cdot f(x) dx$ and $\forall X = \int x^2 \cdot f(x) dx (E X)^2$
- ▶ Examples: $X \sim [0, 1], X \sim N(0, 1)$

- ▶ Entropy of discrete random variable: $H(X) = -\sum_i p_i \log p_i$
- ▶ Also used when X has infinite # of states (entropy might be infinite!)
- Continues random variable is defined by its density function: $f: \mathbb{R} \mapsto \mathbb{R}^+$, for which $\int_{\mathbb{D}} f(x) dx = 1$.
- $ightharpoonup F_X(x) := \Pr[X \le x] = \int_{-\infty}^x f(x) dx$
- ► E $X = \int x \cdot f(x) dx$ and $\forall X = \int x^2 \cdot f(x) dx (E X)^2$
- ► Examples: $X \sim [0, 1], X \sim N(0, 1)$
- \vdash H(X) must be infinite! it takes infinite number of bits to describe X

- ▶ Entropy of discrete random variable: $H(X) = -\sum_i p_i \log p_i$
- ▶ Also used when X has infinite # of states (entropy might be infinite!)
- Continues random variable is defined by its density function: $f: \mathbb{R} \mapsto \mathbb{R}^+$, for which $\int_{\mathbb{D}} f(x) dx = 1$.
- $ightharpoonup F_X(x) := \Pr[X \le x] = \int_{-\infty}^x f(x) dx$
- ► E $X = \int x \cdot f(x) dx$ and $\forall X = \int x^2 \cdot f(x) dx (E X)^2$
- ▶ Examples: $X \sim [0, 1], X \sim N(0, 1)$
- H(X) must be infinite! it takes infinite number of bits to describe X
- ▶ The differential entropy of *X* is defined by $h(X) = -\int f(x) \log f(x) dx$.

- ▶ Entropy of discrete random variable: $H(X) = -\sum_i p_i \log p_i$
- ▶ Also used when X has infinite # of states (entropy might be infinite!)
- Continues random variable is defined by its density function: $f: \mathbb{R} \mapsto \mathbb{R}^+$, for which $\int_{\mathbb{D}} f(x) dx = 1$.
- $ightharpoonup F_X(x) := \Pr[X \le x] = \int_{-\infty}^x f(x) dx$
- ► E $X = \int x \cdot f(x) dx$ and $\forall X = \int x^2 \cdot f(x) dx (E X)^2$
- ► Examples: $X \sim [0, 1], X \sim N(0, 1)$
- H(X) must be infinite! it takes infinite number of bits to describe X
- ▶ The differential entropy of *X* is defined by $h(X) = -\int f(x) \log f(x) dx$.
- ▶ We focus on cases where h(X) is well defined.

- ▶ Entropy of discrete random variable: $H(X) = -\sum_i p_i \log p_i$
- ▶ Also used when X has infinite # of states (entropy might be infinite!)
- Continues random variable is defined by its density function: $f: \mathbb{R} \mapsto \mathbb{R}^+$, for which $\int_{\mathbb{D}} f(x) dx = 1$.
- $ightharpoonup F_X(x) := \Pr[X \le x] = \int_{-\infty}^x f(x) dx$
- ► E $X = \int x \cdot f(x) dx$ and $\forall X = \int x^2 \cdot f(x) dx (E X)^2$
- ▶ Examples: $X \sim [0, 1], X \sim N(0, 1)$
- \blacktriangleright H(X) must be infinite! it takes infinite number of bits to describe X
- ▶ The differential entropy of *X* is defined by $h(X) = -\int f(x) \log f(x) dx$.
- ▶ We focus on cases where h(X) is well defined.
- ▶ Since h is a function of the density function, we sometimes write h(f)

- ▶ Entropy of discrete random variable: $H(X) = -\sum_i p_i \log p_i$
- ▶ Also used when X has infinite # of states (entropy might be infinite!)
- Continues random variable is defined by its density function: $f: \mathbb{R} \mapsto \mathbb{R}^+$, for which $\int_{\mathbb{D}} f(x) dx = 1$.
- $ightharpoonup F_X(x) := \Pr[X \le x] = \int_{-\infty}^x f(x) dx$
- ightharpoonup E $X = \int x \cdot f(x) dx$ and $\forall X = \int x^2 \cdot f(x) dx (E X)^2$
- ▶ Examples: $X \sim [0, 1], X \sim N(0, 1)$
- H(X) must be infinite! it takes infinite number of bits to describe X
- ▶ The differential entropy of *X* is defined by $h(X) = -\int f(x) \log f(x) dx$.
- ▶ We focus on cases where h(X) is well defined.
- ▶ Since h is a function of the density function, we sometimes write h(f)
- ▶ If not stated otherwise, we integrate over ℝ

$$X^{\Delta} \sim (\dots, p_{-2}, p_{-1}, p_0, p_1, p_2, \dots),$$

where $p_i = \int_{i \cdot \Delta}^{(i+1) \cdot \Delta} f(x) dx = f(x_i) \cdot \Delta$
for some $x_i \in [i \cdot \Delta, (i+1) \cdot \Delta]$ (?)

$$X^{\Delta} \sim (\dots, p_{-2}, p_{-1}, p_0, p_1, p_2, \dots),$$

where $p_i = \int_{i \cdot \Delta}^{(i+1) \cdot \Delta} f(x) dx = f(x_i) \cdot \Delta$
for some $x_i \in [i \cdot \Delta, (i+1) \cdot \Delta]$ (?)

$$X^{\Delta} \sim (\dots, p_{-2}, p_{-1}, p_0, p_1, p_2, \dots),$$

where $p_i = \int_{i \cdot \Delta}^{(i+1) \cdot \Delta} f(x) dx = f(x_i) \cdot \Delta$
for some $x_i \in [i \cdot \Delta, (i+1) \cdot \Delta]$ (?)

$$X^{\Delta} \sim (\dots, p_{-2}, p_{-1}, p_0, p_1, p_2, \dots),$$

where $p_i = \int_{i \cdot \Delta}^{(i+1) \cdot \Delta} f(x) dx = f(x_i) \cdot \Delta$
for some $x_i \in [i \cdot \Delta, (i+1) \cdot \Delta]$ (?)

$$X^{\Delta} \sim (\dots, p_{-2}, p_{-1}, p_0, p_1, p_2, \dots),$$

where $p_i = \int_{i \cdot \Delta}^{(i+1) \cdot \Delta} f(x) dx = f(x_i) \cdot \Delta$
for some $x_i \in [i \cdot \Delta, (i+1) \cdot \Delta]$ (?)

$$\blacktriangleright H(X^{\triangle}) = -\sum_{i=-\infty}^{\infty} p_i \log p_i$$

$$X^{\Delta} \sim (\ldots, p_{-2}, p_{-1}, p_0, p_1, p_2, \ldots),$$

where $p_i = \int_{i \cdot \Delta}^{(i+1) \cdot \Delta} f(x) dx = f(x_i) \cdot \Delta$
for some $x_i \in [i \cdot \Delta, (i+1) \cdot \Delta]$ (?)

$$\blacktriangleright H(X^{\Delta}) = -\sum_{i=-\infty}^{\infty} p_i \log p_i$$

$$H(X^{\Delta}) = -\sum_{i=-\infty}^{\infty} f(x_i) \cdot \Delta \cdot \log(f(x_i) \cdot \Delta) = -\sum_{i=-\infty}^{\infty} f(x_i) \cdot \Delta \cdot (\log f(x_i) + \log \Delta)$$

$$X^{\Delta} \sim (\ldots, p_{-2}, p_{-1}, p_0, p_1, p_2, \ldots),$$

where $p_i = \int_{i \cdot \Delta}^{(i+1) \cdot \Delta} f(x) dx = f(x_i) \cdot \Delta$
for some $x_i \in [i \cdot \Delta, (i+1) \cdot \Delta]$ (?)

$$\blacktriangleright H(X^{\Delta}) = -\sum_{i=-\infty}^{\infty} p_i \log p_i$$

$$H(X^{\Delta}) = -\sum_{i=-\infty}^{\infty} f(x_i) \cdot \Delta \cdot \log(f(x_i) \cdot \Delta) = -\sum_{i=-\infty}^{\infty} f(x_i) \cdot \Delta \cdot (\log f(x_i) + \log \Delta)$$

$$X^{\Delta} \sim (\ldots, p_{-2}, p_{-1}, p_0, p_1, p_2, \ldots),$$

where $p_i = \int_{i \cdot \Delta}^{(i+1) \cdot \Delta} f(x) dx = f(x_i) \cdot \Delta$
for some $x_i \in [i \cdot \Delta, (i+1) \cdot \Delta]$ (?)

$$\blacktriangleright H(X^{\Delta}) = -\sum_{i=-\infty}^{\infty} p_i \log p_i$$

$$H(X^{\Delta}) = -\sum_{i=-\infty}^{\infty} f(x_i) \cdot \Delta \cdot \log(f(x_i) \cdot \Delta) = -\sum_{i=-\infty}^{\infty} f(x_i) \cdot \Delta \cdot (\log f(x_i) + \log \Delta)$$
$$= -\sum_{i=-\infty}^{\infty} f(x_i) \cdot \log f(x_i) \cdot \Delta - \left(\sum_{i=-\infty}^{\infty} f(x_i) \cdot \Delta\right) \log \Delta$$

$$X^{\Delta} \sim (\ldots, p_{-2}, p_{-1}, p_0, p_1, p_2, \ldots),$$

where $p_i = \int_{i \cdot \Delta}^{(i+1) \cdot \Delta} f(x) dx = f(x_i) \cdot \Delta$
for some $x_i \in [i \cdot \Delta, (i+1) \cdot \Delta]$ (?)

$$\blacktriangleright H(X^{\Delta}) = -\sum_{i=-\infty}^{\infty} p_i \log p_i$$

$$H(X^{\Delta}) = -\sum_{i=-\infty}^{\infty} f(x_i) \cdot \Delta \cdot \log(f(x_i) \cdot \Delta) = -\sum_{i=-\infty}^{\infty} f(x_i) \cdot \Delta \cdot (\log f(x_i) + \log \Delta)$$
$$= -\sum_{i=-\infty}^{\infty} f(x_i) \cdot \log f(x_i) \cdot \Delta - \left(\sum_{i=-\infty}^{\infty} f(x_i) \cdot \Delta\right) \log \Delta$$

$$\blacktriangleright \lim_{\Delta \to 0} H(X^{\Delta}) = h(X) - \log \Delta$$

$$X^{\Delta} \sim (\ldots, p_{-2}, p_{-1}, p_0, p_1, p_2, \ldots),$$
 where $p_i = \int_{i \cdot \Delta}^{(i+1) \cdot \Delta} f(x) dx = f(x_i) \cdot \Delta$ for some $x_i \in [i \cdot \Delta, (i+1) \cdot \Delta]$ (?)

$$\blacktriangleright H(X^{\Delta}) = -\sum_{i=-\infty}^{\infty} p_i \log p_i$$

$$H(X^{\Delta}) = -\sum_{i=-\infty}^{\infty} f(x_i) \cdot \Delta \cdot \log(f(x_i) \cdot \Delta) = -\sum_{i=-\infty}^{\infty} f(x_i) \cdot \Delta \cdot (\log f(x_i) + \log \Delta)$$
$$= -\sum_{i=-\infty}^{\infty} f(x_i) \cdot \log f(x_i) \cdot \Delta - \left(\sum_{i=-\infty}^{\infty} f(x_i) \cdot \Delta\right) \log \Delta$$

- $\blacktriangleright \lim_{\Delta \to 0} H(X^{\Delta}) = h(X) \log \Delta$
- ▶ Hence, $\lim_{\Delta \to 0} H(X^{\Delta}) + \log \Delta = h(x)$

$$X^{\Delta} \sim (\ldots, p_{-2}, p_{-1}, p_0, p_1, p_2, \ldots),$$

where $p_i = \int_{i \cdot \Delta}^{(i+1) \cdot \Delta} f(x) dx = f(x_i) \cdot \Delta$
for some $x_i \in [i \cdot \Delta, (i+1) \cdot \Delta]$ (?)

$$\blacktriangleright H(X^{\Delta}) = -\sum_{i=-\infty}^{\infty} p_i \log p_i$$

$$H(X^{\Delta}) = -\sum_{i=-\infty}^{\infty} f(x_i) \cdot \Delta \cdot \log(f(x_i) \cdot \Delta) = -\sum_{i=-\infty}^{\infty} f(x_i) \cdot \Delta \cdot (\log f(x_i) + \log \Delta)$$
$$= -\sum_{i=-\infty}^{\infty} f(x_i) \cdot \log f(x_i) \cdot \Delta - \left(\sum_{i=-\infty}^{\infty} f(x_i) \cdot \Delta\right) \log \Delta$$

- \blacktriangleright $\lim_{\Delta \to 0} H(X^{\Delta}) = h(X) \log \Delta$
- ▶ Hence, $\lim_{\Delta \to 0} H(X^{\Delta}) + \log \Delta = h(x)$
- ▶ Intuitively, h(X) is the entropy of X plus const $(-\log \Delta)$.

$$X^{\Delta} \sim (\ldots, p_{-2}, p_{-1}, p_0, p_1, p_2, \ldots),$$

where $p_i = \int_{i \cdot \Delta}^{(i+1) \cdot \Delta} f(x) dx = f(x_i) \cdot \Delta$
for some $x_i \in [i \cdot \Delta, (i+1) \cdot \Delta]$ (?)

$$\blacktriangleright H(X^{\Delta}) = -\sum_{i=-\infty}^{\infty} p_i \log p_i$$

$$H(X^{\Delta}) = -\sum_{i=-\infty}^{\infty} f(x_i) \cdot \Delta \cdot \log(f(x_i) \cdot \Delta) = -\sum_{i=-\infty}^{\infty} f(x_i) \cdot \Delta \cdot (\log f(x_i) + \log \Delta)$$
$$= -\sum_{i=-\infty}^{\infty} f(x_i) \cdot \log f(x_i) \cdot \Delta - \left(\sum_{i=-\infty}^{\infty} f(x_i) \cdot \Delta\right) \log \Delta$$

- \blacktriangleright $\lim_{\Delta \to 0} H(X^{\Delta}) = h(X) \log \Delta$
- ► Hence, $\lim_{\Delta \to 0} H(X^{\Delta}) + \log \Delta = h(x)$
- ▶ Intuitively, h(X) is the entropy of X plus const $(-\log \Delta)$.
- ▶ Note that $\lim_{\Delta \to 0} \log \Delta = \infty$

► Shift invariant: h(f) = h(g) for g(x) = f(x + a)

- ► Shift invariant: h(f) = h(g) for g(x) = f(x + a)
- ► $h(X) = -\int f(x) \log f(x) dx$ might be infinite (?)

- ► Shift invariant: h(f) = h(g) for g(x) = f(x + a)
- ▶ $h(X) = -\int f(x) \log f(x) dx$ might be infinite (?)
- ► Example $f(x) = 2^{-2^i}$ with probability $1/2^i$ (i.e., over segment of length $2^{-i}/2^{-2^i}$)

- ► Shift invariant: h(f) = h(g) for g(x) = f(x + a)
- ▶ $h(X) = -\int f(x) \log f(x) dx$ might be infinite (?)
- ► Example $f(x) = 2^{-2^i}$ with probability $1/2^i$ (i.e., over segment of length $2^{-i}/2^{-2^i}$)
- $\blacktriangleright h(X)$ might be negative

- ► Shift invariant: h(f) = h(g) for g(x) = f(x + a)
- ▶ $h(X) = -\int f(x) \log f(x) dx$ might be infinite (?)
- ► Example $f(x) = 2^{-2^i}$ with probability $1/2^i$ (i.e., over segment of length $2^{-i}/2^{-2^i}$)
- $\blacktriangleright h(X)$ might be negative
- Example: $X \sim [0, a] f(x) = \frac{1}{a}$ on [1, a]

- ► Shift invariant: h(f) = h(g) for g(x) = f(x + a)
- ▶ $h(X) = -\int f(x) \log f(x) dx$ might be infinite (?)
- ► Example $f(x) = 2^{-2^i}$ with probability $1/2^i$ (i.e., over segment of length $2^{-i}/2^{-2^i}$)
- $\blacktriangleright h(X)$ might be negative
- ► Example: $X \sim [0, a] f(x) = \frac{1}{a}$ on [1, a]
 - $-\int f(x)\log f(x)dx = -\log \tfrac{1}{a} = \log a.$

- ► Shift invariant: h(f) = h(g) for g(x) = f(x + a)
- ▶ $h(X) = -\int f(x) \log f(x) dx$ might be infinite (?)
- ► Example $f(x) = 2^{-2^i}$ with probability $1/2^i$ (i.e., over segment of length $2^{-i}/2^{-2^i}$)
- $\blacktriangleright h(X)$ might be negative
- ► Example: $X \sim [0, a] f(x) = \frac{1}{a}$ on [1, a]
 - $-\int f(x)\log f(x)dx = -\log \tfrac{1}{a} = \log a.$

- ► Shift invariant: h(f) = h(g) for g(x) = f(x + a)
- ▶ $h(X) = -\int f(x) \log f(x) dx$ might be infinite (?)
- ► Example $f(x) = 2^{-2^i}$ with probability $1/2^i$ (i.e., over segment of length $2^{-i}/2^{-2^i}$)
- $\blacktriangleright h(X)$ might be negative
- ► Example: $X \sim [0, a] f(x) = \frac{1}{a}$ on [1, a]
 - $-\int f(x) \log f(x) dx = -\log \frac{1}{a} = \log a$. Negative for a < 1.

- ► Shift invariant: h(f) = h(g) for g(x) = f(x + a)
- ▶ $h(X) = -\int f(x) \log f(x) dx$ might be infinite (?)
- ► Example $f(x) = 2^{-2^i}$ with probability $1/2^i$ (i.e., over segment of length $2^{-i}/2^{-2^i}$)
- $\blacktriangleright h(X)$ might be negative
- ► Example: $X \sim [0, a] f(x) = \frac{1}{a}$ on [1, a]- $\int f(x) \log f(x) dx = -\log \frac{1}{a} = \log a$. Negative for a < 1.
- \blacktriangleright h(X) should be interpreted as the uncertainty up to a certain constant

- ► Shift invariant: h(f) = h(g) for g(x) = f(x + a)
- ▶ $h(X) = -\int f(x) \log f(x) dx$ might be infinite (?)
- ► Example $f(x) = 2^{-2^i}$ with probability $1/2^i$ (i.e., over segment of length $2^{-i}/2^{-2^i}$)
- $\blacktriangleright h(X)$ might be negative
- ► Example: $X \sim [0, a] f(x) = \frac{1}{a}$ on [1, a]- $\int f(x) \log f(x) dx = -\log \frac{1}{a} = \log a$. Negative for a < 1.
- \blacktriangleright h(X) should be interpreted as the uncertainty up to a certain constant
- Used for comparing two distributions

Common distribution (in nature)

▶ The uniform distribution: $X \sim [a, b]$

Common distribution (in nature)

- ► The uniform distribution: X ~ [a, b]
- Normal (Gaussian) distribution: (we focus on E = 0 and V = 1)

$$X \sim N(0,1)$$
: $f(x) = \frac{1}{\sqrt{2\pi}} \cdot e^{-x^2/2}$

Common distribution (in nature)

- ► The uniform distribution: X ~ [a, b]
- Normal (Gaussian) distribution: (we focus on E = 0 and V = 1)

$$X \sim N(0,1)$$
: $f(x) = \frac{1}{\sqrt{2\pi}} \cdot e^{-x^2/2}$

► Boltzmann (Gibbs) distribution:

$$X \in \{E_1, E_2, \dots, E_m\}$$
, $\Pr[X = E_i] = C \cdot e^{-\beta E_i}$ for $\beta > 0$ (the distribution constant) and $C = 1/\sum_i e^{-\beta E_i}$.

- ► The uniform distribution: X ~ [a, b]
- Normal (Gaussian) distribution: (we focus on E = 0 and V = 1)

$$X \sim N(0,1)$$
: $f(x) = \frac{1}{\sqrt{2\pi}} \cdot e^{-x^2/2}$

► Boltzmann (Gibbs) distribution:

$$X \in \{E_1, E_2, \dots, E_m\}$$
, $\Pr[X = E_i] = C \cdot e^{-\beta E_i}$ for $\beta > 0$ (the *distribution constant*) and $C = 1/\sum_i e^{-\beta E_i}$.

▶ Describes a (discrete) physical system that can take states $\{1, ..., m\}$ with energies $E_1, ..., E_m$.

- ► The uniform distribution: X ~ [a, b]
- Normal (Gaussian) distribution: (we focus on E = 0 and V = 1)

$$X \sim N(0,1)$$
: $f(x) = \frac{1}{\sqrt{2\pi}} \cdot e^{-x^2/2}$

► Boltzmann (Gibbs) distribution:

$$X \in \{E_1, E_2, \dots, E_m\}$$
, $\Pr[X = E_i] = C \cdot e^{-\beta E_i}$ for $\beta > 0$ (the distribution constant) and $C = 1/\sum_i e^{-\beta E_i}$.

- ▶ Describes a (discrete) physical system that can take states $\{1, ..., m\}$ with energies $E_1, ..., E_m$.
- Probability is inverse to the energy

- ▶ The uniform distribution: $X \sim [a, b]$
- Normal (Gaussian) distribution: (we focus on E = 0 and V = 1)

$$X \sim N(0,1)$$
: $f(x) = \frac{1}{\sqrt{2\pi}} \cdot e^{-x^2/2}$

► Boltzmann (Gibbs) distribution:

$$X \in \{E_1, E_2, \dots, E_m\}$$
, $\Pr[X = E_i] = C \cdot e^{-\beta E_i}$ for $\beta > 0$ (the distribution constant) and $C = 1/\sum_i e^{-\beta E_i}$.

- ▶ Describes a (discrete) physical system that can take states $\{1, ..., m\}$ with energies $E_1, ..., E_m$.
- Probability is inverse to the energy
- Why are these distributions so common?

- ▶ The uniform distribution: $X \sim [a, b]$
- Normal (Gaussian) distribution: (we focus on E = 0 and V = 1)

$$X \sim N(0,1)$$
: $f(x) = \frac{1}{\sqrt{2\pi}} \cdot e^{-x^2/2}$

► Boltzmann (Gibbs) distribution:

$$X \in \{E_1, E_2, \dots, E_m\}$$
, $\Pr[X = E_i] = C \cdot e^{-\beta E_i}$ for $\beta > 0$ (the distribution constant) and $C = 1/\sum_i e^{-\beta E_i}$.

- ▶ Describes a (discrete) physical system that can take states $\{1, ..., m\}$ with energies $E_1, ..., E_m$.
- Probability is inverse to the energy
- Why are these distributions so common?
- What is common to these distributions?

► Shannon (1948) $H = -\sum_i p_i \log p_i$

- ► Shannon (1948) $H = -\sum_i p_i \log p_i$
- But the notion of entropy already existed in statistical physics

- ► Shannon (1948) $H = -\sum_i p_i \log p_i$
- But the notion of entropy already existed in statistical physics
- There, entropy energy that cannot used, statistical disorder

- ► Shannon (1948) $H = -\sum_i p_i \log p_i$
- But the notion of entropy already existed in statistical physics
- There, entropy energy that cannot used, statistical disorder
- ► Clausius (1865), who coined the name *entropy*, based on Carnot (1824), $H = \int_t \frac{\delta Q}{T} dt$ (Q is *heat* and T is *temperature*)

- ► Shannon (1948) $H = -\sum_i p_i \log p_i$
- But the notion of entropy already existed in statistical physics
- There, entropy energy that cannot used, statistical disorder
- ► Clausius (1865), who coined the name *entropy*, based on Carnot (1824), $H = \int_{t} \frac{\delta Q}{T} dt$ (Q is *heat* and T is *temperature*)
- ▶ Boltzmann (1877) $H = \log S$, for S being the number of states a system can be in (after measuring the macro parameters: pressure, temperature)

- Shannon (1948) $H = -\sum_i p_i \log p_i$
- But the notion of entropy already existed in statistical physics
- There, entropy energy that cannot used, statistical disorder
- ► Clausius (1865), who coined the name *entropy*, based on Carnot (1824), $H = \int_{t} \frac{\delta Q}{T} dt$ (Q is *heat* and T is *temperature*)
- ▶ Boltzmann (1877) $H = \log S$, for S being the number of states a system can be in (after measuring the macro parameters: pressure, temperature)
- ▶ log # of states is Shannon entropy of the uniform distribution

- ► Shannon (1948) $H = -\sum_i p_i \log p_i$
- But the notion of entropy already existed in statistical physics
- There, entropy energy that cannot used, statistical disorder
- ► Clausius (1865), who coined the name *entropy*, based on Carnot (1824), $H = \int_t \frac{\delta Q}{T} dt$ (Q is *heat* and T is *temperature*)
- ▶ Boltzmann (1877) $H = \log S$, for S being the number of states a system can be in (after measuring the macro parameters: pressure, temperature)
- ▶ log # of states is Shannon entropy of the uniform distribution
- Shannon looked for a name for his measure, von Neumann pointed out the relation to physics and suggested the name entropy.

- ► Shannon (1948) $H = -\sum_i p_i \log p_i$
- But the notion of entropy already existed in statistical physics
- There, entropy energy that cannot used, statistical disorder
- ► Clausius (1865), who coined the name *entropy*, based on Carnot (1824), $H = \int_{t} \frac{\delta Q}{T} dt$ (*Q* is *heat* and *T* is *temperature*)
- ▶ Boltzmann (1877) $H = \log S$, for S being the number of states a system can be in (after measuring the macro parameters: pressure, temperature)
- ▶ log # of states is Shannon entropy of the uniform distribution
- Shannon looked for a name for his measure, von Neumann pointed out the relation to physics and suggested the name entropy.
- ➤ Today it is accepted that Shannon's entropy is the right notion also in statistical mechanic. Measures the uncertainty of a system energy that cannot be used.

- ► Shannon (1948) $H = -\sum_i p_i \log p_i$
- But the notion of entropy already existed in statistical physics
- There, entropy energy that cannot used, statistical disorder
- ► Clausius (1865), who coined the name *entropy*, based on Carnot (1824), $H = \int_{t} \frac{\delta Q}{T} dt$ (Q is *heat* and T is *temperature*)
- ▶ Boltzmann (1877) $H = \log S$, for S being the number of states a system can be in (after measuring the macro parameters: pressure, temperature)
- ▶ log # of states is Shannon entropy of the uniform distribution
- Shannon looked for a name for his measure, von Neumann pointed out the relation to physics and suggested the name entropy.
- ➤ Today it is accepted that Shannon's entropy is the right notion also in statistical mechanic. Measures the uncertainty of a system energy that cannot be used.
- Carnot was also an engineer...

▶ The entropy of a closed physical system never decreases.

- ▶ The entropy of a closed physical system never decreases.
- If we wait enough time, the system tends to be in maximal entropy.

- ▶ The entropy of a closed physical system never decreases.
- If we wait enough time, the system tends to be in maximal entropy.
- If there are constrains, the it tends to be in maximal entropy under this constrains.

- ► The entropy of a closed physical system never decreases.
- If we wait enough time, the system tends to be in maximal entropy.
- If there are constrains, the it tends to be in maximal entropy under this constrains.
- ► This suggests that distributions that are common in nature, are distributions of maximal entropy, under some constrains.

- The entropy of a closed physical system never decreases.
- If we wait enough time, the system tends to be in maximal entropy.
- If there are constrains, the it tends to be in maximal entropy under this constrains.
- This suggests that distributions that are common in nature, are distributions of maximal entropy, under some constrains.
- In contradiction with "reversible laws"

►
$$X \sim N(0,1)$$
: $f(x) = \frac{1}{\sqrt{2\pi}} \cdot e^{-x^2/2}$

- ► $X \sim N(0,1)$: $f(x) = \frac{1}{\sqrt{2\pi}} \cdot e^{-x^2/2}$
- Why is it so common?

- ► $X \sim N(0,1)$: $f(x) = \frac{1}{\sqrt{2\pi}} \cdot e^{-x^2/2}$
- ▶ Why is it so common?
- Answer: the central limit theorem (CLT):

- $X \sim N(0,1)$: $f(x) = \frac{1}{\sqrt{2\pi}} \cdot e^{-x^2/2}$
- Why is it so common?
- ► Answer: the central limit theorem (CLT):

Let
$$X_1,\ldots,X_n$$
 be iid with E $X_i=0$ and V $X_i=1$. Then $\lim_{n\to\infty} \frac{\sum_i X_i}{\sqrt{n}} = N(0,1)$.

- $X \sim N(0,1)$: $f(x) = \frac{1}{\sqrt{2\pi}} \cdot e^{-x^2/2}$
- ▶ Why is it so common?
- ► Answer: the central limit theorem (CLT): Let $X_1, ..., X_n$ be iid with $E[X_i] = 0$ and $V[X_i] = 1$. Then $\lim_{n\to\infty} \frac{\sum_i X_i}{\sqrt{n}} = N(0, 1)$.
- ▶ But why does it converge to N(0,1)??

- $X \sim N(0,1)$: $f(x) = \frac{1}{\sqrt{2\pi}} \cdot e^{-x^2/2}$
- Why is it so common?
- Answer: the central limit theorem (CLT):

Let
$$X_1,\ldots,X_n$$
 be iid with E $X_i=0$ and V $X_i=1$. Then $\lim_{n\to\infty}\frac{\sum_i X_i}{\sqrt{n}}=N(0,1)$.

- ▶ But why does it converge to N(0,1)??
- CLT holds also in many other variants: not id, not fully independent, ...

- $X \sim N(0,1)$: $f(x) = \frac{1}{\sqrt{2\pi}} \cdot e^{-x^2/2}$
- Why is it so common?
- ► Answer: the central limit theorem (CLT):

Let
$$X_1, \ldots, X_n$$
 be iid with E $X_i = 0$ and V $X_i = 1$. Then $\lim_{n \to \infty} \frac{\sum_i X_i}{\sqrt{n}} = N(0, 1)$.

- ▶ But why does it converge to N(0,1)??
- CLT holds also in many other variants: not id, not fully independent, ...
- We know that $\mathsf{E} \frac{\sum_i X_i}{\sqrt{n}} = 0$ and $\mathsf{V} \frac{\sum_i X_i}{\sqrt{n}} = 1$, but it could have converge to any other distribution with these constraints.

- $X \sim N(0,1)$: $f(x) = \frac{1}{\sqrt{2\pi}} \cdot e^{-x^2/2}$
- Why is it so common?
- Answer: the central limit theorem (CLT):

Let
$$X_1, \ldots, X_n$$
 be iid with E $X_i = 0$ and V $X_i = 1$. Then $\lim_{n \to \infty} \frac{\sum_i X_i}{\sqrt{n}} = N(0, 1)$.

- ▶ But why does it converge to N(0,1)??
- CLT holds also in many other variants: not id, not fully independent, ...
- We know that $\mathsf{E} \, \frac{\sum_i X_i}{\sqrt{n}} = 0$ and $\mathsf{V} \, \frac{\sum_i X_i}{\sqrt{n}} = 1$, but it could have converge to any other distribution with these constraints.
- The reason is that

- $X \sim N(0,1)$: $f(x) = \frac{1}{\sqrt{2\pi}} \cdot e^{-x^2/2}$
- Why is it so common?
- Answer: the central limit theorem (CLT):

Let
$$X_1, \ldots, X_n$$
 be iid with E $X_i = 0$ and V $X_i = 1$. Then $\lim_{n \to \infty} \frac{\sum_i X_i}{\sqrt{n}} = N(0, 1)$.

- ▶ But why does it converge to N(0,1)??
- CLT holds also in many other variants: not id, not fully independent, ...
- We know that $\mathsf{E} \, \frac{\sum_i X_i}{\sqrt{n}} = 0$ and $\mathsf{V} \, \frac{\sum_i X_i}{\sqrt{n}} = 1$, but it could have converge to any other distribution with these constraints.
- The reason is that

- $X \sim N(0,1)$: $f(x) = \frac{1}{\sqrt{2\pi}} \cdot e^{-x^2/2}$
- Why is it so common?
- ► Answer: the central limit theorem (CLT):

Let
$$X_1,\ldots,X_n$$
 be iid with $\mathsf{E}\,X_i=0$ and $\mathsf{V}\,X_i=1$. Then $\lim_{n\to\infty} \frac{\sum_i X_i}{\sqrt{n}} = N(0,1)$.

- ▶ But why does it converge to N(0,1)??
- CLT holds also in many other variants: not id, not fully independent, ...
- ▶ We know that $\mathsf{E}\, \frac{\sum_i X_i}{\sqrt{n}} = \mathsf{0}$ and $\mathsf{V}\, \frac{\sum_i X_i}{\sqrt{n}} = \mathsf{1}$, but it could have converge to any other distribution with these constraints.
- ► The reason is that N(0,1) has the highest entropy among all distribution with E=0 and V=1.

- ► $X \sim N(0,1)$: $f(x) = \frac{1}{\sqrt{2\pi}} \cdot e^{-x^2/2}$
- Why is it so common?
- Answer: the central limit theorem (CLT):

Let
$$X_1, \ldots, X_n$$
 be iid with $\mathsf{E}\, X_i = 0$ and $\mathsf{V}\, X_i = 1$. Then $\lim_{n \to \infty} \frac{\sum_i X_i}{\sqrt{n}} = N(0,1)$.

- But why does it converge to N(0,1)??
- CLT holds also in many other variants: not id, not fully independent, ...
- ▶ We know that $\mathsf{E}\, \frac{\sum_i X_i}{\sqrt{n}} = \mathsf{0}$ and $\mathsf{V}\, \frac{\sum_i X_i}{\sqrt{n}} = \mathsf{1}$, but it could have converge to any other distribution with these constraints.
- ► The reason is that N(0,1) has the highest entropy among all distribution with E=0 and V=1.
- ► CLT and the normal distribution where known and studied way before Shannon, yet this striking property was not known until his theory.

Theorem 7

$$h(X) \le h(N(0,1))$$
, for any rv X with $\forall X = 1$.

Theorem 7

$$h(X) \le h(N(0,1))$$
, for any rv X with $\forall X = 1$.

▶ Among the distributions of V = 1, the distribution N(0, 1) has maximal entropy.

Theorem 7

$$h(X) \le h(N(0,1))$$
, for any rv X with $VX = 1$.

- ▶ Among the distributions of V = 1, the distribution N(0, 1) has maximal entropy.
- Generalizes to any variance:

Theorem 7

$$h(X) \le h(N(0,1))$$
, for any rv X with $\forall X = 1$.

- Among the distributions of V = 1, the distribution N(0, 1) has maximal entropy.
- Generalizes to any variance:

$$h(X) \leq h(N(0, V(X))) = \frac{1}{2} \cdot \log(2\pi e) \cdot V(X)$$

Theorem 7

$$h(X) \le h(N(0,1))$$
, for any rv X with $\forall X = 1$.

- Among the distributions of V = 1, the distribution N(0, 1) has maximal entropy.
- Generalizes to any variance:

$$h(X) \leq h(N(0, V(X))) = \frac{1}{2} \cdot \log(2\pi e) \cdot V(X)$$

The normal distribution, cont.

Theorem 7

$$h(X) \le h(N(0,1))$$
, for any rv X with $VX = 1$.

- Among the distributions of V = 1, the distribution N(0, 1) has maximal entropy.
- Generalizes to any variance:

$$h(X) \leq h(N(0,V(X))) = \frac{1}{2} \cdot \log(2\pi e) \cdot V(X)$$

Let g be a density function with $\int g(x)x^2dx = 1$, and let $f(x) = \frac{1}{\sqrt{2\pi}} \cdot e^{-x^2/2}$. We will show that

- 1. $-\int g(x) \log g(x) dx \le -\int g(x) \log f(x) dx$
- 2. $-\int g(x) \log f(x) dx = -\int f(x) \log f(x)$

 $-\int g(x)\log g(x)dx \le -\int g(x)\log f(x)dx$

 $-\int g(x)\log g(x)dx \le -\int g(x)\log f(x)dx$

Claim 8

 $-\int g(x) \log g(x) dx \le -\int g(x) \log q(x) dx$ for any two density functions q, g.

$$-\int g(x)\log g(x)dx \le -\int g(x)\log f(x)dx$$

$$-\int g(x) \log g(x) dx \le -\int g(x) \log q(x) dx$$
 for any two density functions q, g .

Proof: (the continuous version of Q3 in handout 1)

▶ Jensen: For any function t and density function λ : $\int \lambda(x) \log t(x) \le \log \int \lambda(x) t(x) dx$

$$-\int g(x)\log g(x)dx \le -\int g(x)\log f(x)dx$$

 $-\int g(x) \log g(x) dx \le -\int g(x) \log q(x) dx$ for any two density functions q, g.

Proof: (the continuous version of Q3 in handout 1)

- ▶ Jensen: For any function t and density function λ : $\int \lambda(x) \log t(x) \le \log \int \lambda(x) t(x) dx$
- Assume for simplicity that g(x) > 0 for all x.

$$-\int g(x)\log g(x)dx \le -\int g(x)\log f(x)dx$$

 $-\int g(x) \log g(x) dx \le -\int g(x) \log q(x) dx$ for any two density functions q, g.

Proof: (the continuous version of Q3 in handout 1)

- ▶ Jensen: For any function t and density function λ : $\int \lambda(x) \log t(x) \le \log \int \lambda(x) t(x) dx$
- Assume for simplicity that g(x) > 0 for all x.
- ▶ By Jensen, $\int g(x) \log \frac{q(x)}{g(x)} \le \log \int g(x) \frac{q(x)}{g(x)} dx = \log 1 = 0$

$$-\int g(x)\log g(x)dx \le -\int g(x)\log f(x)dx$$

 $-\int g(x) \log g(x) dx \le -\int g(x) \log q(x) dx$ for any two density functions q, g.

Proof: (the continuous version of Q3 in handout 1)

- ▶ Jensen: For any function t and density function λ : $\int \lambda(x) \log t(x) \le \log \int \lambda(x) t(x) dx$
- Assume for simplicity that g(x) > 0 for all x.
- ▶ By Jensen, $\int g(x) \log \frac{q(x)}{g(x)} \le \log \int g(x) \frac{q(x)}{g(x)} dx = \log 1 = 0$
- ► Hence, $-\int g(x) \log g(x) \le -\int g(x) \log q(x)$

 $-\int g(x)\log f(x)dx = -\int f(x)\log f(x)dx$

$$-\int g(x)\log f(x)dx = -\int f(x)\log f(x)dx$$

Exists $c \in \mathbb{R}$ such that $-\int g(x) \log f(x) dx = c$ for any density function g with $\int g(x)x^2 dx = 1$.

$$-\int g(x)\log f(x)dx = -\int f(x)\log f(x)dx$$

Exists $c \in \mathbb{R}$ such that $-\int g(x) \log f(x) dx = c$ for any density function g with $\int g(x) x^2 dx = 1$.

Hence, $-\int g(x) \log f(x) dx = -\int f(x) \log f(x) dx$.

$$-\int g(x)\log f(x)dx = -\int f(x)\log f(x)dx$$

Exists $c \in \mathbb{R}$ such that $-\int g(x) \log f(x) dx = c$ for any density function g with $\int g(x) x^2 dx = 1$.

Hence, $-\int g(x) \log f(x) dx = -\int f(x) \log f(x) dx$.

Proof:

$$-\int g(x)\log f(x)dx = -\int f(x)\log f(x)dx$$

Exists $c \in \mathbb{R}$ such that $-\int g(x) \log f(x) dx = c$ for any density function g with $\int g(x) x^2 dx = 1$.

Hence,
$$-\int g(x) \log f(x) dx = -\int f(x) \log f(x) dx$$
.

Proof:
$$-\int g(x)\log f(x)dx = -\int g(x)\log \frac{1}{\sqrt{2\pi}} \cdot e^{-x^2/2}dx$$

$$-\int g(x)\log f(x)dx = -\int f(x)\log f(x)dx$$

Exists $c \in \mathbb{R}$ such that $-\int g(x) \log f(x) dx = c$ for any density function g with $\int g(x) x^2 dx = 1$.

Hence,
$$-\int g(x) \log f(x) dx = -\int f(x) \log f(x) dx$$
.

Proof:
$$-\int g(x) \log f(x) dx = -\int g(x) \log \frac{1}{\sqrt{2\pi}} \cdot e^{-x^2/2} dx$$
$$= -\int g(x) \left(\log \frac{1}{\sqrt{2\pi}} - \frac{x^2}{2} \cdot \log e \right)$$

$$-\int g(x)\log f(x)dx = -\int f(x)\log f(x)dx$$

Exists $c \in \mathbb{R}$ such that $-\int g(x) \log f(x) dx = c$ for any density function g with $\int g(x)x^2 dx = 1$.

Hence,
$$-\int g(x) \log f(x) dx = -\int f(x) \log f(x) dx$$
.

Proof:
$$-\int g(x)\log f(x)dx = -\int g(x)\log \frac{1}{\sqrt{2\pi}} \cdot e^{-x^2/2}dx$$
$$= -\int g(x)\left(\log \frac{1}{\sqrt{2\pi}} - \frac{x^2}{2} \cdot \log e\right)$$
$$= -\log \frac{1}{\sqrt{2\pi}} \int g(x)dx + \frac{\log e}{2} \int g(x)x^2dx$$

$$-\int g(x)\log f(x)dx = -\int f(x)\log f(x)dx$$

Exists $c \in \mathbb{R}$ such that $-\int g(x) \log f(x) dx = c$ for any density function g with $\int g(x) x^2 dx = 1$.

Hence, $-\int g(x) \log f(x) dx = -\int f(x) \log f(x) dx$.

Proof:
$$-\int g(x)\log f(x)dx = -\int g(x)\log \frac{1}{\sqrt{2\pi}} \cdot e^{-x^2/2}dx$$
$$= -\int g(x)\left(\log \frac{1}{\sqrt{2\pi}} - \frac{x^2}{2} \cdot \log e\right)$$
$$= -\log \frac{1}{\sqrt{2\pi}} \int g(x)dx + \frac{\log e}{2} \int g(x)x^2dx$$
$$= -\log \frac{1}{\sqrt{2\pi}} + \frac{\log e}{2}.$$

$$-\int g(x)\log f(x)dx = -\int f(x)\log f(x)dx$$

Exists $c \in \mathbb{R}$ such that $-\int g(x) \log f(x) dx = c$ for any density function g with $\int g(x) x^2 dx = 1$.

Hence, $-\int g(x) \log f(x) dx = -\int f(x) \log f(x) dx$.

Proof:
$$-\int g(x)\log f(x)dx = -\int g(x)\log \frac{1}{\sqrt{2\pi}} \cdot e^{-x^2/2}dx$$
$$= -\int g(x)\left(\log \frac{1}{\sqrt{2\pi}} - \frac{x^2}{2} \cdot \log e\right)$$
$$= -\log \frac{1}{\sqrt{2\pi}} \int g(x)dx + \frac{\log e}{2} \int g(x)x^2dx$$
$$= -\log \frac{1}{\sqrt{2\pi}} + \frac{\log e}{2}.$$

▶ States $\{1, ..., m\}$, energies $E_1, ..., E_m$.

- ▶ States $\{1, ..., m\}$, energies $E_1, ..., E_m$.
- ▶ $\Pr[X = E_i] = C \cdot e^{-\beta E_i}$ for $\beta > 0$ and $C = 1/\sum_i e^{-\beta \cdot E_i}$

- ▶ States $\{1, ..., m\}$, energies $E_1, ..., E_m$.
- ▶ $\Pr[X = E_i] = C \cdot e^{-\beta E_i} \text{ for } \beta > 0 \text{ and } C = 1/\sum_i e^{-\beta \cdot E_i}$
- We will denote it by $\sim B(\beta, E_1, \dots, E_m)$

- ▶ States $\{1, ..., m\}$, energies $E_1, ..., E_m$.
- ▶ $\Pr[X = E_i] = C \cdot e^{-\beta E_i}$ for $\beta > 0$ and $C = 1/\sum_i e^{-\beta \cdot E_i}$
- We will denote it by $\sim B(\beta, E_1, \dots, E_m)$
- ▶ Like the exponential distribution (i.e., $f(x) = \lambda e^{-\lambda x}$), but discrete.

- ▶ States $\{1, ..., m\}$, energies $E_1, ..., E_m$.
- ▶ $\Pr[X = E_i] = C \cdot e^{-\beta E_i}$ for $\beta > 0$ and $C = 1/\sum_i e^{-\beta \cdot E_i}$
- We will denote it by $\sim B(\beta, E_1, \dots, E_m)$
- ▶ Like the exponential distribution (i.e., $f(x) = \lambda e^{-\lambda x}$), but discrete.
 - ▶ Describes a (discrete) physical system that can take states $\{1, ..., m\}$ with energies $E_1, ..., E_m$.

- ▶ States $\{1, ..., m\}$, energies $E_1, ..., E_m$.
- ▶ Pr $[X = E_i] = C \cdot e^{-\beta E_i}$ for $\beta > 0$ and $C = 1/\sum_i e^{-\beta \cdot E_i}$
- We will denote it by $\sim B(\beta, E_1, \dots, E_m)$
- Like the exponential distribution (i.e., $f(x) = \lambda e^{-\lambda x}$), but discrete.
 - ▶ Describes a (discrete) physical system that can take states $\{1, ..., m\}$ with energies $E_1, ..., E_m$.
 - Probability is inverse to energy

- ▶ States $\{1, ..., m\}$, energies $E_1, ..., E_m$.
- ▶ Pr $[X = E_i] = C \cdot e^{-\beta E_i}$ for $\beta > 0$ and $C = 1/\sum_i e^{-\beta \cdot E_i}$
- We will denote it by $\sim B(\beta, E_1, \dots, E_m)$
- Like the exponential distribution (i.e., $f(x) = \lambda e^{-\lambda x}$), but discrete.
 - ▶ Describes a (discrete) physical system that can take states $\{1, ..., m\}$ with energies $E_1, ..., E_m$.
 - Probability is inverse to energy

- ▶ States $\{1, ..., m\}$, energies $E_1, ..., E_m$.
- ▶ $\Pr[X = E_i] = C \cdot e^{-\beta E_i} \text{ for } \beta > 0 \text{ and } C = 1/\sum_i e^{-\beta \cdot E_i}$
- We will denote it by $\sim B(\beta, E_1, \dots, E_m)$
- Like the exponential distribution (i.e., $f(x) = \lambda e^{-\lambda x}$), but discrete.
 - ▶ Describes a (discrete) physical system that can take states $\{1, ..., m\}$ with energies $E_1, ..., E_m$.
 - Probability is inverse to energy

Theorem 10

Let $X \sim B(\beta, E_1, \dots, E_m)$. Then $H(Y) \leq H(X)$ for any rv Y over $\{E_1, \dots, E_m\}$, with E Y = E X.

- ▶ States $\{1, ..., m\}$, energies $E_1, ..., E_m$.
- ▶ $\Pr[X = E_i] = C \cdot e^{-\beta E_i} \text{ for } \beta > 0 \text{ and } C = 1/\sum_i e^{-\beta \cdot E_i}$
- We will denote it by $\sim B(\beta, E_1, \dots, E_m)$
- Like the exponential distribution (i.e., $f(x) = \lambda e^{-\lambda x}$), but discrete.
 - ▶ Describes a (discrete) physical system that can take states $\{1, ..., m\}$ with energies $E_1, ..., E_m$.
 - Probability is inverse to energy

Theorem 10

Let $X \sim B(\beta, E_1, \dots, E_m)$. Then $H(Y) \leq H(X)$ for any rv Y over $\{E_1, \dots, E_m\}$, with E Y = E X.

- ▶ States $\{1, ..., m\}$, energies $E_1, ..., E_m$.
- ▶ $\Pr[X = E_i] = C \cdot e^{-\beta E_i} \text{ for } \beta > 0 \text{ and } C = 1/\sum_i e^{-\beta \cdot E_i}$
- We will denote it by $\sim B(\beta, E_1, \dots, E_m)$
- Like the exponential distribution (i.e., $f(x) = \lambda e^{-\lambda x}$), but discrete.
 - ▶ Describes a (discrete) physical system that can take states $\{1, ..., m\}$ with energies $E_1, ..., E_m$.
 - Probability is inverse to energy

Theorem 10

Let $X \sim B(\beta, E_1, \dots, E_m)$. Then $H(Y) \leq H(X)$ for any rv Y over $\{E_1, \dots, E_m\}$, with E Y = E X.

► The Boltzmann distribution is maximal among all distributions of the same energy.

▶
$$\sim B(\beta, E_1, \dots, E_m)$$
 and E Y = E X

- ightharpoonup $\sim B(\beta, E_1, \dots, E_m)$ and E Y = E X
- ▶ Let $X \sim (p_1, \ldots, p_m)$ and $Y \sim (q_1, \ldots, q_m)$.

- $ightharpoonup \sim B(\beta, E_1, \dots, E_m)$ and E Y = E X
- ▶ Let $X \sim (p_1, ..., p_m)$ and $Y \sim (q_1, ..., q_m)$.
- ► $H(Y) \le \sum_i q_i \log p_i$ (Q3 in Handout 1)

- ightharpoonup $\sim B(\beta, E_1, \dots, E_m)$ and E Y = E X
- ▶ Let $X \sim (p_1, ..., p_m)$ and $Y \sim (q_1, ..., q_m)$.
- ► $H(Y) \le \sum_i q_i \log p_i$ (Q3 in Handout 1)
- ▶ Let $C = 1/\sum_i e^{-\beta \cdot E_i}$.

- $ightharpoonup \sim B(\beta, E_1, \dots, E_m)$ and E Y = E X
- ▶ Let $X \sim (p_1, \ldots, p_m)$ and $Y \sim (q_1, \ldots, q_m)$.
- ► $H(Y) \le \sum_i q_i \log p_i$ (Q3 in Handout 1)
- ▶ Let $C = 1/\sum_{i} e^{-\beta \cdot E_{i}}$.

Then
$$\sum_i q_i \log p_i = \sum_i q_i \log (C \cdot e^{-\beta E_i})$$

- $ightharpoonup \sim B(\beta, E_1, \dots, E_m)$ and E Y = E X
- ▶ Let $X \sim (p_1, \ldots, p_m)$ and $Y \sim (q_1, \ldots, q_m)$.
- ► $H(Y) \le \sum_i q_i \log p_i$ (Q3 in Handout 1)
- ▶ Let $C = 1/\sum_{i} e^{-\beta \cdot E_{i}}$.

Then
$$\sum_i q_i \log p_i = \sum_i q_i \log (C \cdot e^{-\beta E_i})$$

- $ightharpoonup \sim B(\beta, E_1, \dots, E_m)$ and E Y = E X
- ▶ Let $X \sim (p_1, \ldots, p_m)$ and $Y \sim (q_1, \ldots, q_m)$.
- ► $H(Y) \le \sum_i q_i \log p_i$ (Q3 in Handout 1)
- ▶ Let $C = 1/\sum_{i} e^{-\beta \cdot E_{i}}$.

$$\sum_{i} q_{i} \log p_{i} = \sum_{i} q_{i} \log(C \cdot e^{-\beta E_{i}})$$

$$= \sum_{i} q_{i} \log C - \sum_{i} q_{i} \cdot \beta E_{i} \cdot \log e$$

- $ightharpoonup \sim B(\beta, E_1, \dots, E_m)$ and E Y = E X
- ▶ Let $X \sim (p_1, \ldots, p_m)$ and $Y \sim (q_1, \ldots, q_m)$.
- ► $H(Y) \le \sum_i q_i \log p_i$ (Q3 in Handout 1)
- ▶ Let $C = 1/\sum_{i} e^{-\beta \cdot E_{i}}$.

$$\sum_{i} q_{i} \log p_{i} = \sum_{i} q_{i} \log(C \cdot e^{-\beta E_{i}})$$

$$= \sum_{i} q_{i} \log C - \sum_{i} q_{i} \cdot \beta E_{i} \cdot \log e$$

$$= \log C - \beta \cdot \log e \cdot \sum_{i} q_{i} E_{i}$$

Proving Theorem 10

- $ightharpoonup \sim B(\beta, E_1, \dots, E_m)$ and E Y = E X
- ▶ Let $X \sim (p_1, \ldots, p_m)$ and $Y \sim (q_1, \ldots, q_m)$.
- ► $H(Y) \le \sum_i q_i \log p_i$ (Q3 in Handout 1)
- ▶ Let $C = 1/\sum_i e^{-\beta \cdot E_i}$.

$$\sum_{i} q_{i} \log p_{i} = \sum_{i} q_{i} \log(C \cdot e^{-\beta E_{i}})$$

$$= \sum_{i} q_{i} \log C - \sum_{i} q_{i} \cdot \beta E_{i} \cdot \log e$$

$$= \log C - \beta \cdot \log e \cdot \sum_{i} q_{i} E_{i}$$

$$= \log C - \beta \cdot \log e \cdot E X$$

Proving Theorem 10

- $ightharpoonup \sim B(\beta, E_1, \dots, E_m)$ and E Y = E X
- ▶ Let $X \sim (p_1, \ldots, p_m)$ and $Y \sim (q_1, \ldots, q_m)$.
- ► $H(Y) \le \sum_i q_i \log p_i$ (Q3 in Handout 1)
- ▶ Let $C = 1/\sum_{i} e^{-\beta \cdot E_{i}}$.

Then
$$\sum_{i} q_{i} \log p_{i} = \sum_{i} q_{i} \log(C \cdot e^{-\beta E_{i}})$$

$$= \sum_{i} q_{i} \log C - \sum_{i} q_{i} \cdot \beta E_{i} \cdot \log e$$

$$= \log C - \beta \cdot \log e \cdot \sum_{i} q_{i} E_{i}$$

ightharpoonup Hence, $\sum_i q_i \log p_i = \sum_i p_i \log p_i$. \square

 $= \log C - \beta \cdot \log e \cdot \mathsf{E} X$

► *X* ~ [*a*, *b*].

- \triangleright $X \sim [a, b].$
- ► E $X = \frac{1}{2}(a+b)$ and V $X = \frac{1}{12}(b-a)^2$

- ► $X \sim [a, b]$.
- E $X = \frac{1}{2}(a+b)$ and V $X = \frac{1}{12}(b-a)^2$
- ▶ What come to mind when saying "X takes values in [0, 1]".

- ► $X \sim [a, b]$.
- E $X = \frac{1}{2}(a+b)$ and V $X = \frac{1}{12}(b-a)^2$
- ▶ What come to mind when saying "X takes values in [0, 1]".

- \blacktriangleright $X \sim [a, b].$
- ► E $X = \frac{1}{2}(a+b)$ and $V X = \frac{1}{12}(b-a)^2$
- ▶ What come to mind when saying "X takes values in [0, 1]".

Theorem 11

 $h(X) \leq -h(\sim [a,b])$, for any RV with Supp $(X) \subseteq [a,b]$.

- \blacktriangleright $X \sim [a, b].$
- ► E $X = \frac{1}{2}(a+b)$ and $V X = \frac{1}{12}(b-a)^2$
- ▶ What come to mind when saying "X takes values in [0, 1]".

Theorem 11

 $h(X) \leq -h(\sim [a,b])$, for any RV with Supp $(X) \subseteq [a,b]$.

- \blacktriangleright $X \sim [a, b].$
- ► E $X = \frac{1}{2}(a+b)$ and $V X = \frac{1}{12}(b-a)^2$
- ▶ What come to mind when saying "X takes values in [0, 1]".

Theorem 11

$$h(X) \le -h(\sim [a,b])$$
, for any RV with Supp $(X) \subseteq [a,b]$.

Proof: HW

Proposition 12

Let
$$X \sim (p_1, p_2, \ldots)$$
, then $H(X) \leq \frac{\log 2\pi e}{2} \cdot \left(\sum_{i=1}^{\infty} p_i \cdot i^2 - (\sum_{i=1}^{\infty} p_i \cdot i)^2 - \frac{1}{12}\right)$

Proposition 12

Let
$$X \sim (p_1, p_2, ...)$$
, then $H(X) \leq \frac{\log 2\pi e}{2} \cdot \left(\sum_{i=1}^{\infty} p_i \cdot i^2 - (\sum_{i=1}^{\infty} p_i \cdot i)^2 - \frac{1}{12}\right)$

We assume wlg. that $p_i = \Pr[X = i]$.

Proposition 12

Let
$$X \sim (p_1, p_2, ...)$$
, then $H(X) \leq \frac{\log 2\pi e}{2} \cdot \left(\sum_{i=1}^{\infty} p_i \cdot i^2 - (\sum_{i=1}^{\infty} p_i \cdot i)^2 - \frac{1}{12}\right)$

We assume wlg. that $p_i = \Pr[X = i]$.

Proposition 12

Let
$$X \sim (p_1, p_2, ...)$$
, then $H(X) \leq \frac{\log 2\pi e}{2} \cdot \left(\sum_{i=1}^{\infty} p_i \cdot i^2 - (\sum_{i=1}^{\infty} p_i \cdot i)^2 - \frac{1}{12}\right)$

We assume wlg. that $p_i = \Pr[X = i]$.

$$H(X) = -\sum_{i=1}^{\infty} p_i \log p_i$$

Proposition 12

Let
$$X \sim (p_1, p_2, ...)$$
, then $H(X) \leq \frac{\log 2\pi e}{2} \cdot \left(\sum_{i=1}^{\infty} p_i \cdot i^2 - (\sum_{i=1}^{\infty} p_i \cdot i)^2 - \frac{1}{12}\right)$

We assume wlg. that $p_i = \Pr[X = i]$.

$$H(X) = -\sum_{i=1}^{\infty} p_i \log p_i$$

Proposition 12

Let
$$X \sim (p_1, p_2, ...)$$
, then $H(X) \leq \frac{\log 2\pi e}{2} \cdot \left(\sum_{i=1}^{\infty} p_i \cdot i^2 - (\sum_{i=1}^{\infty} p_i \cdot i)^2 - \frac{1}{12}\right)$

We assume wlg. that $p_i = \Pr[X = i]$.

$$H(X) = -\sum_{i=1}^{\infty} p_i \log p_i$$
$$= -\sum_{i=1}^{\infty} \left(\int_i^{i+1} f_{\tilde{X}}(x) dx \right) \cdot \log p_i$$

Proposition 12

Let
$$X \sim (p_1, p_2, ...)$$
, then $H(X) \leq \frac{\log 2\pi e}{2} \cdot \left(\sum_{i=1}^{\infty} p_i \cdot i^2 - (\sum_{i=1}^{\infty} p_i \cdot i)^2 - \frac{1}{12}\right)$

We assume wlg. that $p_i = \Pr[X = i]$.

$$H(X) = -\sum_{i=1}^{\infty} p_i \log p_i$$

$$= -\sum_{i=1}^{\infty} \left(\int_i^{i+1} f_{\tilde{X}}(x) dx \right) \cdot \log p_i = -\sum_{i=1}^{\infty} \int_i^{i+1} f_{\tilde{X}}(x) \log p_i dx$$

Proposition 12

Let
$$X \sim (p_1, p_2, ...)$$
, then $H(X) \leq \frac{\log 2\pi e}{2} \cdot \left(\sum_{i=1}^{\infty} p_i \cdot i^2 - (\sum_{i=1}^{\infty} p_i \cdot i)^2 - \frac{1}{12}\right)$

We assume wlg. that $p_i = \Pr[X = i]$.

$$H(X) = -\sum_{i=1}^{\infty} p_i \log p_i$$

$$= -\sum_{i=1}^{\infty} \left(\int_i^{i+1} f_{\tilde{X}}(x) dx \right) \cdot \log p_i = -\sum_{i=1}^{\infty} \int_i^{i+1} f_{\tilde{X}}(x) \log p_i dx$$

$$= -\sum_{i=1}^{\infty} \int_i^{i+1} f_{\tilde{X}}(x) \log f_{\tilde{X}}(x) dx$$

Proposition 12

Let
$$X \sim (p_1, p_2, ...)$$
, then $H(X) \leq \frac{\log 2\pi e}{2} \cdot \left(\sum_{i=1}^{\infty} p_i \cdot i^2 - (\sum_{i=1}^{\infty} p_i \cdot i)^2 - \frac{1}{12}\right)$

We assume wlg. that $p_i = \Pr[X = i]$.

$$H(X) = -\sum_{i=1}^{\infty} p_{i} \log p_{i}$$

$$= -\sum_{i=1}^{\infty} \left(\int_{i}^{i+1} f_{\tilde{X}}(x) dx \right) \cdot \log p_{i} = -\sum_{i=1}^{\infty} \int_{i}^{i+1} f_{\tilde{X}}(x) \log p_{i} dx$$

$$= -\sum_{i=1}^{\infty} \int_{i}^{i+1} f_{\tilde{X}}(x) \log f_{\tilde{X}}(x) dx \qquad (f_{\tilde{X}}(x) = p_{i} \text{ for all } x \in [i, i+1])$$

Proposition 12

Let
$$X \sim (p_1, p_2, ...)$$
, then $H(X) \leq \frac{\log 2\pi e}{2} \cdot \left(\sum_{i=1}^{\infty} p_i \cdot i^2 - (\sum_{i=1}^{\infty} p_i \cdot i)^2 - \frac{1}{12}\right)$

We assume wlg. that $p_i = \Pr[X = i]$.

$$H(X) = -\sum_{i=1}^{\infty} p_{i} \log p_{i}$$

$$= -\sum_{i=1}^{\infty} \left(\int_{i}^{i+1} f_{\tilde{X}}(x) dx \right) \cdot \log p_{i} = -\sum_{i=1}^{\infty} \int_{i}^{i+1} f_{\tilde{X}}(x) \log p_{i} dx$$

$$= -\sum_{i=1}^{\infty} \int_{i}^{i+1} f_{\tilde{X}}(x) \log f_{\tilde{X}}(x) dx \qquad (f_{\tilde{X}}(x) = p_{i} \text{ for all } x \in [i, i+1])$$

$$= -\int_{1}^{\infty} f_{\tilde{X}}(x) \log f_{\tilde{X}}(x) dx$$

Proposition 12

Let
$$X \sim (p_1, p_2, ...)$$
, then $H(X) \leq \frac{\log 2\pi e}{2} \cdot \left(\sum_{i=1}^{\infty} p_i \cdot i^2 - (\sum_{i=1}^{\infty} p_i \cdot i)^2 - \frac{1}{12}\right)$

We assume wlg. that $p_i = \Pr[X = i]$.

$$H(X) = -\sum_{i=1}^{\infty} p_i \log p_i$$

$$= -\sum_{i=1}^{\infty} \left(\int_i^{i+1} f_{\tilde{X}}(x) dx \right) \cdot \log p_i = -\sum_{i=1}^{\infty} \int_i^{i+1} f_{\tilde{X}}(x) \log p_i dx$$

$$= -\sum_{i=1}^{\infty} \int_i^{i+1} f_{\tilde{X}}(x) \log f_{\tilde{X}}(x) dx \qquad (f_{\tilde{X}}(x) = p_i \text{ for all } x \in [i, i+1])$$

$$= -\int_1^{\infty} f_{\tilde{X}}(x) \log f_{\tilde{X}}(x) dx$$

$$= h(\tilde{X})$$

Proposition 12

Let
$$X \sim (p_1, p_2, ...)$$
, then $H(X) \leq \frac{\log 2\pi e}{2} \cdot \left(\sum_{i=1}^{\infty} p_i \cdot i^2 - (\sum_{i=1}^{\infty} p_i \cdot i)^2 - \frac{1}{12}\right)$

We assume wlg. that $p_i = \Pr[X = i]$.

$$H(X) = -\sum_{i=1}^{\infty} p_i \log p_i$$

$$= -\sum_{i=1}^{\infty} \left(\int_i^{i+1} f_{\tilde{X}}(x) dx \right) \cdot \log p_i = -\sum_{i=1}^{\infty} \int_i^{i+1} f_{\tilde{X}}(x) \log p_i dx$$

$$= -\sum_{i=1}^{\infty} \int_i^{i+1} f_{\tilde{X}}(x) \log f_{\tilde{X}}(x) dx \qquad (f_{\tilde{X}}(x) = p_i \text{ for all } x \in [i, i+1])$$

$$= -\int_1^{\infty} f_{\tilde{X}}(x) \log f_{\tilde{X}}(x) dx$$

$$= h(\tilde{X})$$

$$H(X) = h(\tilde{X})$$

$$H(X) = h(\tilde{X})$$

$$H(X) = h(\tilde{X})$$

 $\leq \frac{1}{2} \log(2\pi e) V(\tilde{X})$

$$\begin{aligned} H(X) &= h(\tilde{X}) \\ &\leq \frac{1}{2} \log(2\pi e) \, \mathsf{V}(\tilde{X}) \\ &= \frac{1}{2} \log(2\pi e) \, (\mathsf{V}(X) + \mathsf{V}(U)) \end{aligned}$$

$$H(X) = h(\tilde{X})$$

$$\leq \frac{1}{2} \log(2\pi e) \, V(\tilde{X})$$

$$= \frac{1}{2} \log(2\pi e) \, (V(X) + V(U))$$

$$= \frac{\log 2\pi e}{2} \cdot \left(\left(\sum_{i=1}^{\infty} p_i \cdot i^2 - \left(\sum_{i=1}^{\infty} p_i \cdot i \right)^2 \right) + \frac{1}{12} \right)$$

► Hence,

$$H(X) = h(\tilde{X})$$

$$\leq \frac{1}{2} \log(2\pi e) \, V(\tilde{X})$$

$$= \frac{1}{2} \log(2\pi e) \, (V(X) + V(U))$$

$$= \frac{\log 2\pi e}{2} \cdot \left(\left(\sum_{i=1}^{\infty} p_i \cdot i^2 - \left(\sum_{i=1}^{\infty} p_i \cdot i \right)^2 \right) + \frac{1}{12} \right)$$

How good is this bound?

Hence,

$$H(X) = h(\tilde{X})$$

$$\leq \frac{1}{2} \log(2\pi e) \, V(\tilde{X})$$

$$= \frac{1}{2} \log(2\pi e) \, (V(X) + V(U))$$

$$= \frac{\log 2\pi e}{2} \cdot \left(\left(\sum_{i=1}^{\infty} p_i \cdot i^2 - \left(\sum_{i=1}^{\infty} p_i \cdot i \right)^2 \right) + \frac{1}{12} \right)$$

- How good is this bound?
- ▶ Let $X \sim (\frac{1}{2}, \frac{1}{2})$. Hence, $V[X] = \frac{1}{4}$ and H(X) = 1.

Hence,

$$\begin{aligned} H(X) &= h(\tilde{X}) \\ &\leq \frac{1}{2} \log(2\pi e) \, V(\tilde{X}) \\ &= \frac{1}{2} \log(2\pi e) \, (V(X) + V(U)) \\ &= \frac{\log 2\pi e}{2} \cdot \left(\left(\sum_{i=1}^{\infty} p_i \cdot i^2 - (\sum_{i=1}^{\infty} p_i \cdot i)^2 \right) + \frac{1}{12} \right) \end{aligned}$$

- How good is this bound?
- ▶ Let $X \sim (\frac{1}{2}, \frac{1}{2})$. Hence, $V[X] = \frac{1}{4}$ and H(X) = 1.
- ▶ Proposition 12 grantees that $H(X) \leq \frac{\log 2\pi e}{2} (\frac{1}{4} + \frac{1}{12}) \sim 1.255$