The GENMOD Toolkit: What do you do when things aren't Normal?

General Linear Models

$$y_{i} = \beta_{0} + \beta_{1}x_{1i} + \dots + \beta_{k}x_{ki} + \varepsilon_{i}$$

$$\varepsilon_{i} \sim i.i.d. \ N(0, \sigma^{2})$$

$$E(y_{i}) = \beta_{0} + \beta_{1}x_{1i} + \dots + \beta_{k}x_{ki}$$

$$var(y_{i}) = \sigma^{2}$$

Generalized Linear Models

$$g(E(y_i)) = \beta_0 + \beta_1 x_{1i} + ... + \beta_k x_{ki} = X\beta$$

- The distribution of the observations can come from the exponential family of distributions.
- The variance of the response variable can be expressed as a function of its mean.
- $X\beta$ is fit to a function of E(y) (called a link function), which is suggested by the distribution of the observations: $g(E(y)) = g(\mu) = X\beta$.

5

Copyright © SAS institute Inc. All rights reserved

Ssas

Examples of Generalized Linear Models

Model	Response	Distribution	Mean	Variance	Canonical Link
Linear Regression	Continuous	Normal	μ	σ^2	identity μ
Logistic regression	Dichotomous	Binomial	π	π(1- π)/n	logit log[π/(1-π)]
Poisson Regression	Count	Poisson	λ	λ	log log(λ)
Gamma Regression	Continuous	Gamma	μ	μ²/ν	*inverse 1/μ

^{*} Models often use the LOG link in practice.

The GENMOD Procedure

General form of the GENMOD procedure:

PROC GENMOD options PLOTS=requests; CLASS variables; **MODEL** response=effects / options; ESTIMATE 'label' effect values / options; RUN;

Ssas

Available Distributions

Click to edit subtitle

Poisson Gamma Neg Binomial

Geometric

Normal

Zero-Inflated Neg Bin* Zero-Inflated Poisson*

Available Link Functions

Inverse Logit Power Identity

Probit Complementary Log-Log

Cumulative Logit

LOB

*Can define your own link functions using programming statements within proc

9 SSAS

In [4]: /*Patients in each of two centers are randomly assigned to groups receiving the active During treatment, respiratory status, represented by the variable outcome (coded her is determined for each of four visits. The variables center, treatment, sex, and bas are classification variables with two levels. The variable age (age at time of entry

/

data resp;

input center id treatment \$ sex \$ age baseline visit1-visit4;
datalines;

1 1 P M 46 0 0 0 0 0

1 2 P M 28 0 0 0 0 0

1 3 A M 23 1 1 1 1 1

1 4 P M 44 1 1 1 1 0

1 5 P F 13 1 1 1 1 1

1 6 A M 34 0 0 0 0 0

1 7 P M 43 0 1 0 1 1

1 8 A M 28 0 0 0 0 0

1 9 A M 31 1 1 1 1 1

1 10 P M 37 1 0 1 1 0

1 11 A M 30 1 1 1 1 1

1 12 A M 14 0 1 1 1 0

1 13 P M 23 1 1 0 0 0

1 14 P M 30 0 0 0 0 0

1 15 P M 20 1 1 1 1 1

1 16 A M 22 0 0 0 0 1

1 17 P M 25 0 0 0 0 0

1 18 A F 47 0 0 1 1 1

1 19 P F 31 0 0 0 0 0

1 20 A M 20 1 1 0 1 0

1 21 A M 26 0 1 0 1 0

1 22 A M 46 1 1 1 1 1

1 23 A M 32 1 1 1 1 1

1 24 A M 48 0 1 0 0 0

1 25 P F 35 0 0 0 0 0

1 26 A M 26 0 0 0 0 0

```
1 27 P M 23 1 1 0 1 1
1 28 P F 36 0 1 1 0 0
1 29 P M 19 0 1 1 0 0
1 30 A M 28 0 0 0 0 0
1 31 P M 37 0 0 0 0 0
1 32 A M 23 0 1 1 1 1
1 33 A M 30 1 1 1 1 0
1 34 P M 15 0 0 1 1 0
1 35 A M 26 0 0 0 1 0
1 36 P F 45 0 0 0 0 0
1 37 A M 31 0 0 1 0 0
1 38 A M 50 0 0 0 0 0
1 39 P M 28 0 0 0 0 0
1 40 P M 26 0 0 0 0 0
1 41 P M 14 0 0 0 0 1
1 42 A M 31 0 0 1 0 0
1 43 P M 13 1 1 1 1 1
1 44 P M 27 0 0 0 0 0
1 45 P M 26 0 1 0 1 1
1 46 P M 49 0 0 0 0 0
1 47 P M 63 0 0 0 0 0
1 48 A M 57 1 1 1 1 1
1 49 P M 27 1 1 1 1 1
1 50 A M 22 0 0 1 1 1
1 51 A M 15 0 0 1 1 1
1 52 P M 43 0 0 0 1 0
1 53 A F 32 0 0 0 1 0
1 54 A M 11 1 1 1 0
1 55 P M 24 1 1 1 1 1
1 56 A M 25 0 1 1 0 1
2 1 P F 39 0 0 0 0 0
2 2 A M 25 0 0 1 1 1
2 3 A M 58 1 1 1 1 1
2 4 P F 51 1 1 0 1 1
2 5 P F 32 1 0 0 1 1
2 6 P M 45 1 1 0 0 0
2 7 P F 44 1 1 1 1 1
2 8 P F 48 0 0 0 0 0
2 9 A M 26 0 1 1 1 1
2 10 A M 14 0 1 1 1 1
2 11 P F 48 0 0 0 0 0
2 12 A M 13 1 1 1 1 1
2 13 P M 20 0 1 1 1 1
2 14 A M 37 1 1 0 0 1
2 15 A M 25 1 1 1 1 1
2 16 A M 20 0 0 0 0 0
2 17 P F 58 0 1 0 0 0
2 18 P M 38 1 1 0 0 0
2 19 A M 55 1 1 1 1 1
2 20 A M 24 1 1 1 1 1
2 21 P F 36 1 1 0 0 1
2 22 P M 36 0 1 1 1 1
2 23 A F 60 1 1 1 1 1
2 24 P M 15 1 0 0 1 1
2 25 A M 25 1 1 1 1 0
2 26 A M 35 1 1 1 1 1
2 27 A M 19 1 1 0 1 1
```

```
2 28 P F 31 1 1 1 1 1
2 29 A M 21 1 1 1 1 1
2 30 A F 37 0 1 1 1 1
2 31 P M 52 0 1 1 1 1
2 32 A M 55 0 0 1 1 0
2 33 P M 19 1 0 0 1 1
2 34 P M 20 1 0 1 1 1
2 35 P M 42 1 0 0 0 0
2 36 A M 41 1 1 1 1 1
2 37 A M 52 0 0 0 0 0
2 38 P F 47 0 1 1 0 1
2 39 P M 11 1 1 1 1 1
2 40 P M 14 0 0 0 1 0
2 41 P M 15 1 1 1 1 1
2 42 P M 66 1 1 1 1 1
2 43 A M 34 0 1 1 0 1
2 44 P M 43 0 0 0 0 0
2 45 P M 33 1 1 1 0 1
2 46 P M 48 1 1 0 0 0
2 47 A M 20 0 1 1 1 1
2 48 P F 39 1 0 1 0 0
2 49 A M 28 0 1 0 0 0
2 50 P F 38 0 0 0 0 0
2 51 A M 43 1 1 1 1 0
2 52 A F 39 0 1 1 1 1
2 53 A M 68 0 1 1 1 1
2 54 A F 63 1 1 1 1 1
2 55 A M 31 1 1 1 1 1
data resp;
  set resp;
  visit=1; outcome=visit1; output;
  visit=2; outcome=visit2; output;
  visit=3; outcome=visit3; output;
  visit=4; outcome=visit4; output;
run;
proc print data=resp (obs=20);
run;
proc genmod data=resp;
  class id treatment(ref="P") center(ref="1") sex(ref="M")
     baseline(ref="0");
  model outcome(event='1')=treatment center sex age baseline / dist=bin;
  repeated subject=id(center) / corr=unstr corrw;
run;
```

Obs	center	id	treatment	sex	age	baseline	visit1	visit2	visit3	visit4	visit	outcome
1	1	1	Р	М	46	0	0	0	0	0	1	0
2	1	1	Р	М	46	0	0	0	0	0	2	0
3	1	1	Р	М	46	0	0	0	0	0	3	0
4	1	1	Р	М	46	0	0	0	0	0	4	0
5	1	2	Р	М	28	0	0	0	0	0	1	0
6	1	2	Р	М	28	0	0	0	0	0	2	0
7	1	2	Р	М	28	0	0	0	0	0	3	0
8	1	2	Р	М	28	0	0	0	0	0	4	0
9	1	3	А	М	23	1	1	1	1	1	1	1
10	1	3	А	М	23	1	1	1	1	1	2	1
11	1	3	А	М	23	1	1	1	1	1	3	1
12	1	3	А	М	23	1	1	1	1	1	4	1
13	1	4	Р	М	44	1	1	1	1	0	1	1
14	1	4	Р	М	44	1	1	1	1	0	2	1
15	1	4	Р	М	44	1	1	1	1	0	3	1
16	1	4	Р	М	44	1	1	1	1	0	4	0
17	1	5	Р	F	13	1	1	1	1	1	1	1
18	1	5	Р	F	13	1	1	1	1	1	2	1
19	1	5	Р	F	13	1	1	1	1	1	3	1
20	1	5	Р	F	13	1	1	1	1	1	4	1

The SAS System

The GENMOD Procedure

Model Information					
Data Set WORK.RESF					
Distribution	Binomial				
Link Function	Logit				
Dependent Variable	outcome				

Number of Observations Read	444
Number of Observations Used	
Number of Events	248

		Class Level Information
Class	Levels	Values
id	56	1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56
treatment	2	AP
center	2	2 1
sex	2	F M
baseline	2	10

Response Profile					
Ordered Value	outcome	Total Frequency			
1	1	248			
2	0	196			

PROC GENMOD is modeling the probability that outcome='1'. One way to change this to model the probability that outcome='0' is to specify the DESCENDING option in the PROC statement.

	Parameter Information							
Parameter	Effect	treatment	center	sex	baseline			
Prm1	Intercept							
Prm2	treatment	А						
Prm3	treatment	Р						
Prm4	center		2					
Prm5	center		1					
Prm6	sex			F				
Prm7	sex			М				
Prm8	age							
Prm9	baseline				1			
Prm10	baseline				0			

Gl	GEE Model Information				
Correlation Structure	Unstructured				
Subject Effect	id(center) (111 levels)				

GEE Model Information				
Number of Clusters	111			
Correlation Matrix Dimension	4			
Maximum Cluster Size	4			
Minimum Cluster Size	4			

Working Correlation Matrix							
	Col1	Col1 Col2 Col3 Col					
Row1	1.0000	0.3351	0.2140	0.2953			
Row2	0.3351	1.0000	0.4429	0.3581			
Row3	0.2140	0.4429	1.0000	0.3964			
Row4	0.2953	0.3581	0.3964	1.0000			

GEE Fit Criteria					
QIC	512.3416				
QICu	499.6081				

	Analysis Of GEE Parameter Estimates								
Empirical Standard Error Estimates									
Parameter	meter Estimate Standard Error 95% Confidence Limits Z Pr						Pr > Z		
Intercept		-0.8882	0.4568	-1.7835	0.0071	-1.94	0.0519		
treatment	Α	1.2442	0.3455	0.5669	1.9214	3.60	0.0003		
treatment	Р	0.0000	0.0000	0.0000	0.0000				
center	2	0.6558	0.3512	-0.0326	1.3442	1.87	0.0619		
center	1	0.0000	0.0000	0.0000	0.0000				
sex	F	0.1128	0.4408	-0.7512	0.9768	0.26	0.7981		
sex	М	0.0000	0.0000	0.0000	0.0000				
age		-0.0175	0.0129	-0.0427	0.0077	-1.36	0.1728		
baseline	1	1.8981	0.3441	1.2237	2.5725	5.52	<.0001		
baseline	0	0.0000	0.0000	0.0000	0.0000				

Poisson Regression

Poisson regression has the following characteristics:

- is one type of generalized linear model
- assumes that the response variable follows a Poisson distribution that is conditional on the values of the predictor variables
- can be used to model the number of occurrences of an event of interest or the rate of occurrence of an event of interest as a function of some predictor variables
- is most appropriate for counts of rare events

Ssas

Overdispersion

- Poisson regression models assume that the variance is equal to the mean.
- Count data often exhibit variability that exceeds the mean.
- <u>Overdispersion</u> leads to underestimates of the standard errors of parameter estimates.
- Overdispersion results in overestimates of the test statistic and liberal *p*-values.

Causes of Overdispersion

- subject heterogeneity due to an under-specified model
- · outliers in the data
- positive correlation between the responses in clustered data

12

Ssas

Correcting for Overdispersion

- Make sure that you do not have erroneous data.
- Recheck your model to include all important variables.
 Re-specify your model if necessary.

After these assessments are completed, you can do one of the following:

- Use the negative binomial distribution to model the <u>overdispersion</u> (DIST=NEGBIN option in the MODEL statement in PROC GENMOD).
 - or
- Apply a multiplicative adjustment factor to adjust the standard errors accordingly (PSCALE or DSCALE option in the MODEL statement in PROC GENMOD).

Negative Binomial Distribution

The negative binomial distribution has the following attributes:

- It is the distribution for count data that permits the variance to exceed the mean.
- This distribution enables the model to have greater flexibility in modeling the relationship between the mean and the variance of the response variable than the Poisson model has.

14

Ssas

Negative Binomial Model

Response	Distribution	Link	Variance
Variable		Function	Function
Count	Negative Binomial	Natural Log	$\mu + k \mu^2$

Dispersion Parameter k

- The dispersion parameter k is not allowed to vary over observations.
- The limiting case when the parameter *k* is equal to 0 corresponds to a Poisson regression model.
- When the parameter is greater than 0, <u>overdispersion</u> is evident and the standard errors increase. The fitted values are similar, but the larger standard errors reflect the <u>overdispersion</u> that is uncaptured with the Poisson model.

16

Zero-Inflated Poisson Models

- In some settings, the incidence of zero counts will be much greater than expected for the Poisson distribution.
- Poisson regression models will exhibit overdispersion when they are fit to data with an excess number of zeros.
- Zero-inflated Poisson (ZIP) models might be a better fit to the data.

18 SSAS.

Count Data with Many Zeros

ZIP Models

- The population that can be modeled with the zero-inflated Poisson distribution is considered to consist of two types of responses.
- The first type gives Poisson distributed counts, which can produce the zero outcome or some other positive outcome.
- The second type always gives a zero count.
- Therefore, the relevant distribution is a mixture of a Poisson distribution and a distribution that is constant at zero.

A Biological Example

photoperiod	concentration (μM)				
(hour)	2.2	4.4	8.8	17.6	
8	Number of roots	Number of roots	Number of roots	Number of roots	
16	Number of roots	Number of roots	Number of roots	Number of roots	

Distribution

The GENMOD Procedure

Inclusion of the ZEROMODEL statement:

PROC GENMOD options PLOTS=requests;
CLASS variables;
MODEL response=effects / options;
ZEROMODEL response=effects / options;
RUN;

- *Default LINK in ZEROMODEL is LOGIT
- *Same effects can appear in both MODEL and ZEROMODEL

23 SSAS

```
In [2]: /*We have data on 250 groups that went to a park.
    Each group was questioned about how many fish they caught (count),
    how many children were in the group (child),
    how many people were in the group (persons),
    and whether or not they brought a camper to the park (camper).
*/

data WORK.FISH(label='Written by SAS ');
    infile datalines dsd truncover;
    input nofish:32. livebait:32. camper:32. persons:32. child:32. xb:32. zg:32. count:3
    datalines4;
    1,0,0,1,0,-0.896314561,3.0504047871,0
```

```
0,1,1,1,0,-0.55834496,1.7461489439,0
0,1,0,1,0,-0.401731014,0.2799388766,0
0,1,1,2,1,-0.956298113,-0.601525664,0
0,1,0,1,0,0.4368909597,0.5277091265,1
0,1,1,4,2,1.3944854736,-0.70753479,0
0,1,0,3,1,0.1847167462,-3.398022175,0
0,1,0,4,3,2.3291065693,-5.450901508,0
1,0,1,3,2,0.188386485,-1.527417779,0
0,1,1,1,0,0.2876899242,1.3938905001,1
0,1,0,4,1,1.9909527302,-1.933189988,0
0,1,1,3,2,1.3178931475,-2.471574545,0
1,0,0,3,0,0.2980416715,1.5912652016,1
0,1,0,3,0,1.2908734083,0.8295348883,2
0,1,1,1,0,-0.06088984,2.8205792904,0
1,1,1,1,0,0.3700492084,2.1583449841,1
0,1,0,4,1,1.9790934324,-3.069952726,0
1,1,1,3,2,0.7153370976,-1.952804923,0
0,1,1,2,1,1.5160530806,-0.186567351,1
0,1,0,3,1,-0.034895968,-0.118922494,0
0,1,0,4,1,1.1782302856,0.0018565661,1
0,1,1,4,0,1.6421117783,1.892821312,5
0,1,1,2,1,0.5977273583,-0.294278145,0
0,1,1,2,0,1.1397230625,1.9317910671,3
0,1,1,3,0,3.5002975464,1.4512708187,30
0,1,1,2,0,-0.789978385,2.817448616,0
0,1,1,4,0,2.6623561382,1.6565625668,13
0,1,0,2,1,1.6061724424,-1.064542532,0
0,1,0,1,0,0.0185501799,0.0807982683,0
0,1,0,4,3,3.0345590115,-4.824044704,0
0,1,0,1,0,0.0510007553,0.9218238592,0
0,1,1,3,1,0.7452588081,-0.663867116,0
0,1,1,4,0,2.4531366825,3.5083677769,11
0,1,1,4,1,2.3527066708,0.1766097248,5
0,1,1,1,0,-1.108257532,0.7720884085,0
1,0,0,2,0,0.5154194236,1.6566575766,1
1,1,1,2,1,1.9827685356,-0.642237127,1
1,1,1,4,1,2.0668559074,1.244507432,7
1,1,1,3,1,0.0950117707,-2.268660784,0
0,1,1,4,1,5.3526740074,-1.472992539,14
0,1,1,1,0,-0.711813927,3.0204780102,0
0,1,1,4,0,3.4840462208,2.3556528091,32
1,0,0,3,2,2.4009063244,-3.086473703,0
1,0,1,4,0,0.3760284781,2.6760778427,1
1,1,0,4,2,1.0850564241,-2.654790401,0
0,1,1,1,0,-1.067198753,2.1330449581,0
0,1,1,2,1,0.3229970634,0.3034364879,0
0,1,0,1,0,0.5010663271,1.5531616211,1
0,1,1,2,1,2.0114884377,0.6270364523,5
0,1,0,2,1,0.9571473598,-2.05817461,0
0,1,1,2,1,1.1144340038,0.2847320735,1
0,1,1,2,1,-0.673830032,-0.708101988,0
0,1,1,4,0,3.1967058182,1.5154833794,22
1,0,0,2,0,-0.3863208,2.0795879364,0
```

```
0,1,1,3,0,2.7185115814,2.6293129921,15
1,0,1,1,0,-1.269290566,4.179599762,0
0,1,1,1,0,-1.087805986,2.1226129532,0
0,1,1,1,0,-0.984578311,1.351520896,0
1,1,1,4,1,1.8724677563,1.2611768246,5
1,1,1,1,0,1.547955513,1.6289883852,4
0,1,0,2,0,1.004094243,1.0836246014,2
0,1,1,2,1,-0.165202618,2.0952503681,0
0,1,0,2,1,1.471645236,-0.073470898,2
0,1,1,4,0,3.4893360138,2.5479974747,32
0,1,0,4,3,1.8857758045,-4.232519627,0
0,1,1,1,0,-2.272530079,1.6007531881,0
0,1,0,1,0,0.6138409972,1.1117559671,1
1,1,0,3,2,2.8789975643,-2.766067028,0
1,1,1,1,0,-0.944848835,2.0116078854,0
0,1,1,2,1,0.8200352192,-1.285437942,0
0,1,1,3,0,2.0881836414,2.2687482834,7
0,1,0,4,3,2.1653063297,-5.035178185,0
1,0,0,4,2,0.55752635,-2.696651697,0
0,1,1,3,2,-0.627695501,-3.22431159,0
1,0,1,1,0,-3.275050163,0.9133918285,0
0,1,0,2,0,0.3073975742,-0.431482762,0
0,1,0,3,2,0.4593037367,-3.140106678,0
1,1,1,1,0,-0.188099161,3.2674453259,0
0,1,0,2,1,-0.19742322,-0.238331914,0
0,1,0,4,0,0.9011332393,1.3939222097,2
0,1,1,4,1,2.2297375202,-0.410112113,3
1,1,0,2,1,1.1500788927,-0.320476443,1
0,1,1,3,0,1.7165309191,2.6540598869,5
0,1,0,1,0,-0.465738386,0.2460825294,0
0,1,1,1,0,1.0195733309,1.7188441753,2
1,0,0,3,1,1.8674137592,-0.54847914,1
1,0,0,4,1,0.7143785357,-2.550681114,0
1,1,1,1,0,0.0440081209,2.2629549503,1
0,1,1,4,0,5.0050396919,3.5721342564,149
0,1,1,3,2,2.4615564346,-2.769872427,0
0,1,1,3,1,1.5704168081,-0.390616268,1
0,1,0,2,0,-1.490852475,0.0889994577,0
0,1,1,3,0,-0.865133345,0.9720797539,0
0,1,0,2,1,0.8338031769,0.0233576857,1
0,1,0,4,2,2.2084999084,-1.734373331,0
0,1,1,3,1,1.6332079172,-1.501252651,0
0,1,0,4,2,1.5240097046,-4.324279785,0
1,0,0,4,0,2.4913747311,-0.722057521,2
0,1,1,2,0,1.0847690105,2.9630026817,2
0,1,0,4,0,3.5946772099,0.860208869,29
0,1,1,1,0,1.1288346052,2.0607004166,3
1,0,1,2,0,-0.385939926,2.2662763596,0
0,1,0,4,2,2.2135095596,-2.06809473,0
1,0,0,3,0,2.5187780857,-0.110921405,5
0,1,1,2,0,0.0115894843,-0.33921802,0
0,1,0,4,1,3.2988061905,-2.671430111,0
0,1,1,1,0,-0.258302957,0.7147980928,0
```

```
0,1,0,3,1,0.931161046,-1.925231814,0
0,1,1,4,1,3.2343406677,-1.934120536,0
0,1,1,4,1,0.5665621161,1.3611514568,1
0,1,1,1,0,1.9740951061,3.1780841351,7
0,1,1,2,0,0.1099227741,2.1244986057,1
0,1,0,1,0,-1.052196026,-1.837709427,0
1,0,0,4,1,1.1932103634,0.7328076363,2
0,1,0,3,2,0.3515802324,-2.184268236,0
1,1,0,2,0,1.1800631285,1.2939589024,2
0,1,0,2,1,0.4423512518,-0.252750695,0
0,1,0,4,1,0.3395077288,-0.768189728,0
1,0,1,3,1,0.368057549,-0.848371208,0
1,1,1,3,2,2.4312150478,-0.945337653,1
0,1,0,2,1,-0.267399877,-1.620429158,0
1,1,0,1,0,-0.36659652,2.514541626,0
1,0,1,4,3,1.4816583395,-2.82096076,0
0,1,0,1,0,-0.620765746,0.5831140876,0
1,0,1,4,3,1.5936685801,-2.947399616,0
0,1,0,4,1,2.8242943287,-0.742032945,3
0,1,1,1,0,1.4875385761,2.2652254105,4
0,1,1,3,0,1.1390730143,3.4486987591,3
0,1,0,2,0,1.4158217907,1.2972024679,3
0,1,1,4,0,2.1720778942,4.2631850243,8
1,0,1,3,0,0.8180824518,3.0585968494,2
1,1,1,1,0,0.3325906694,2.0458590984,1
0,1,0,4,0,1.8568427563,2.5167958736,6
1,1,1,4,2,0.5936886668,-1.977207899,0
0,1,1,2,1,0.0617640056,1.2698074579,0
1,1,0,4,0,1.9847823381,0.8246141672,5
0,1,1,4,1,1.9638563395,0.0315203704,3
0,1,0,3,1,3.7260725498,0.7016750574,31
0,1,1,2,1,0.3493249118,-0.161479443,0
0,1,0,2,0,0.7040555477,2.3449170589,2
1,1,1,4,3,1.5692437887,-4.469278812,0
0,1,1,2,1,0.781064868,-1.890136719,0
1,0,0,3,0,0.139555037,0.3391566873,0
0,1,1,3,1,1.5416204929,-1.531070232,0
1,1,0,1,0,0.0718735531,1.3057957888,0
0,1,0,2,0,0.7465148568,-0.650594831,0
1,1,1,4,0,1.9250824451,3.5670778751,6
0,1,0,3,0,2.2142121792,2.6915719509,9
1,0,1,3,2,-0.599701524,-2.059751987,0
1,0,1,2,1,-2.107331038,0.1413461715,0
0,1,1,1,0,-2.490455389,2.0737595558,0
0,1,1,2,1,-0.070476264,-0.478490353,0
0,1,0,1,0,-0.233503744,0.1525063664,0
0,1,0,2,0,2.1488587856,-0.488574415,2
0,1,0,3,0,3.1737546921,0.378390342,15
0,1,1,1,0,0.6767058372,1.6237850189,1
1,1,1,2,0,0.9033687115,2.0153822899,2
0,1,1,3,1,2.1214718819,-0.091606267,3
1,1,1,1,0,-1.680656552,2.2772350311,0
0,1,1,4,0,4.2684879303,1.3622959852,65
```

```
0,1,1,3,0,1.7596712112,1.4781696796,5
0,1,0,1,0,0.0071598762,0.1845640987,0
1,1,1,3,2,3.5338106155,-3.252695322,0
0,1,0,4,1,1.902828455,-1.590401888,0
0,1,0,4,2,2.0543143749,-3.139189243,0
1,1,0,1,0,0.1320486069,2.2440671921,1
0,1,1,4,1,2.8445887566,-0.078207836,8
0,1,1,3,0,-0.150227517,2.4962151051,0
0,1,1,3,2,0.3775939643,-2.29437232,0
0,1,1,4,3,1.461001873,-3.943372011,0
0,1,1,3,0,0.9519529343,2.6063089371,2
0,1,1,2,1,1.531072855,1.537260294,4
1,1,0,4,0,1.7160952091,1.8269017935,5
0,1,0,2,0,2.2420418262,2.3986170292,9
0,1,0,4,2,3.3890376091,-2.893302679,0
0,1,0,2,0,-0.457464665,3.17933321,0
0,1,1,2,0,-0.263669461,1.7608680725,0
0,1,0,1,0,-0.71243757,1.1771656275,0
1,1,1,2,0,3.0539169312,2.4691078663,21
0,1,0,1,0,-2.708276749,0.3473309875,0
0,1,1,3,0,1.8720514774,2.3079695702,6
0,1,0,2,1,0.1697490066,-0.835122049,0
1,0,1,2,0,-0.348856091,2.94145751,0
0,1,1,2,1,0.2402192205,-0.403173774,0
1,1,0,3,1,2.4038770199,-1.568528771,0
0,1,1,4,1,2.9885745049,0.9501032233,16
1,0,0,3,2,0.005257762,-3.463099957,0
0,1,1,3,2,0.4007853568,-1.719052434,0
1,1,1,4,0,1.5923120975,3.4721469879,4
0,1,1,2,1,1.022531271,0.5986690521,2
0,1,1,3,0,2.3773417473,2.5786168575,10
1,0,1,1,0,-2.112927198,1.6301124096,0
0,1,1,1,0,-0.557507157,1.9381258488,0
1,0,0,1,0,-1.276221037,0.145860225,0
1,0,1,2,0,1.0607860088,2.9731755257,2
1,1,1,2,0,0.4099714458,1.287543416,1
0,1,0,1,0,1.4727476835,1.0017284155,3
0,1,1,3,1,1.1222449541,-1.014991045,0
0,1,1,4,2,2.2423763275,-2.386286736,0
0,1,1,2,0,3.1638433933,1.2968349457,21
0,1,0,2,1,-0.585306764,-2.07876277,0
0,1,0,2,0,-0.015607119,2.2990167141,0
1,0,1,1,0,0.8344883323,2.2055110931,2
1,0,1,2,1,-1.268876076,1.5709195137,0
0,1,1,4,1,2.7570819855,-0.866619527,3
0,1,1,3,1,1.703949213,-1.154581547,0
0,1,1,4,0,3.7650024891,1.1892702579,38
1,1,1,4,3,2.7190511227,-4.614192963,0
0,1,1,1,0,-0.154021844,2.4653201103,0
0,1,0,1,0,-0.411525637,0.257135123,0
0,1,1,1,0,0.5311220288,2.9289655685,1
0,1,0,1,0,1.3403061628,3.5663721561,3
0,1,1,1,0,-1.562050104,1.4067739248,0
```

```
0,1,0,2,0,0.2253839523,2.2209911346,1
1,1,0,4,2,4.5026636124,-4.730084896,0
1,0,0,2,1,0.1621997654,-1.125854254,0
0,1,0,4,2,3.0470135212,-3.184262991,0
0,1,0,3,1,1.6307533979,-2.707653284,0
0,1,1,4,2,1.9832550287,0.5738066435,5
0,1,0,4,2,3.8771114349,-2.179812431,0
1,0,0,4,1,1.5847555399,-1.289599061,0
0,1,0,3,0,1.7011432648,0.0051179253,2
1,1,1,2,1,-0.170604989,1.469863534,0
0,1,1,1,0,-0.49698019,0.957906127,0
0,1,0,2,1,1.2182699442,-0.664241612,0
0,1,1,2,0,0.0375366136,2.8617730141,1
1,1,1,3,1,1.5232441425,3.0395727158,4
1,1,0,1,0,-0.907698154,0.6114888191,0
0,1,1,3,2,2.3313765526,-2.355525732,0
0,1,1,2,1,1.0680860281,1.375056386,2
0,1,1,1,0,1.4012657404,2.1410496235,3
1,1,0,4,2,3.9304218292,-2.74390316,0
0,1,0,3,1,0.1962469816,-1.781073928,0
0,1,0,2,0,0.0295273811,1.002204299,0
1,0,0,2,0,-0.766901433,-0.44208771,0
0,1,1,1,0,0.6611886621,3.2413334846,1
0,1,1,2,0,1.0150740147,0.9489593506,2
0,1,1,1,0,-1.046668053,0.7609766126,0
0,1,1,3,0,1.9380548,2.1590342522,6
0,1,1,2,0,1.7247505188,0.927846849,4
0,1,1,2,0,0.602655232,3.5716090202,1
0,1,1,4,2,2.4137816429,-1.316399097,1
1,0,0,2,0,-1.20076859,1.0577998161,0
0,1,1,3,1,1.9638493061,-0.733001232,1
0,1,0,3,0,-0.291065693,1.3155082464,0
1,1,1,2,0,-0.755235732,2.3242087364,0
0,1,1,4,3,1.7948591709,-5.625943661,0
0,1,1,2,1,-0.392648846,0.6772754192,0
1,1,1,3,2,1.374640584,-2.595630169,0
1,1,1,2,1,0.8288341165,-1.457115412,0
;;;;
run; quit;
proc means data = fish mean std min max var;
 var count child persons;
run;
proc univariate data = fish noprint;
 histogram count / midpoints = 0 to 50 by 1 vscale = count;
run;
proc freq data = fish;
 tables camper;
run;
proc genmod data = fish;
 class camper;
```

```
model count = child camper /dist=zip;
zeromodel persons /link = logit;
run;

proc genmod data = fish;
class camper;
model count = child camper /dist=zip;
zeromodel persons /link = logit;
estimate "camper = 0" intercept 1 child .684 camper 1 0 @ZERO intercept 1 persons 2.
estimate "camper = 1" intercept 1 child .684 camper 0 1 @ZERO intercept 1 persons 2.
run;
```

The MEANS Procedure

Variable	Mean	Std Dev	Minimum	Maximum	Variance
count	3.2960000	11.6350281	0	149.0000000	135.3738795
child	0.6840000	0.8503153	0	3.0000000	0.7230361
persons	2.5280000	1.1127303	1.0000000	4.0000000	1.2381687

The SAS System

The UNIVARIATE Procedure

The SAS System

The FREQ Procedure

camper	Frequency	Percent	Cumulative Frequency	Cumulative Percent
0	103	41.20	103	41.20

camper	Frequency	Percent	Cumulative Frequency	Cumulative Percent
1	147	58.80	250	100.00

The GENMOD Procedure

Model Information				
Data Set	WORK.FISH	Written by SAS		
Distribution	Zero Inflated Poisson			
Link Function	Log			
Dependent Variable	count			
Zero Model Link Function	Logit			

Number of Observations Read	250
Number of Observations Used	250

Class Level Information				
Class	Levels	Values		
camper	2	0 1		

Criteria For Assessing Goodness Of Fit					
Criterion	DF	Value	Value/DF		
Deviance		2063.2168			
Scaled Deviance		2063.2168			
Pearson Chi-Square	245	1543.4597	6.2998		
Scaled Pearson X2	245	1543.4597	6.2998		
Log Likelihood		774.8999			
Full Log Likelihood		-1031.6084			
AIC (smaller is better)		2073.2168			
AICC (smaller is better)		2073.4627			
BIC (smaller is better)		2090.8241			

	Analysis Of Maximum Likelihood Parameter Estimates								
Parameter		DF	Estimate	Standard Error	Wald 95% Confidence Limits		Wald Chi-Square	Pr > ChiSq	
Intercept		1	2.4319	0.0413	2.3510	2.5128	3472.23	<.0001	
child		1	-1.0428	0.1000	-1.2388	-0.8469	108.78	<.0001	
camper	0	1	-0.8340	0.0936	-1.0175	-0.6505	79.35	<.0001	
camper	1	0	0.0000	0.0000	0.0000	0.0000			
Scale		0	1.0000	0.0000	1.0000	1.0000			

Note: The scale parameter was held fixed.

Analysis Of Maximum Likelihood Zero Inflation Parameter Estimates							
Parameter	DF	Estimate	Standard Error	Wald 95% Con	fidence Limits	Wald Chi-Square	Pr > ChiSq
Intercept	1	1.2974	0.3739	0.5647	2.0302	12.04	0.0005
persons	1	-0.5643	0.1630	-0.8838	-0.2449	11.99	0.0005

The SAS System

The GENMOD Procedure

Model Information					
Data Set	WORK.FISH	Written by SAS			
Distribution	Zero Inflated Poisson				
Link Function	Log				
Dependent Variable	count				
Zero Model Link Function	Logit				

Number of Observations Read	250
Number of Observations Used	250

Class L	evel Info	rmation
Class	Levels	Values
camper	2	0 1

Parameter Information					
Parameter	Effect	camper			
Prm1	Intercept				

Par	ormation	
Parameter	Effect	camper
Prm2	child	
Prm3	camper	0
Prm4	camper	1

Zero Inflation Parameter Information		
Parameter	Effect	
Prm5	Intercept	
Prm6	persons	

Criteria For Assessing Goodness Of				
Criterion	DF	Value	Value/DF	
Deviance		2063.2168		
Scaled Deviance		2063.2168		
Pearson Chi-Square	245	1543.4597	6.2998	
Scaled Pearson X2	245	1543.4597	6.2998	
Log Likelihood		774.8999		
Full Log Likelihood		-1031.6084		
AIC (smaller is better)		2073.2168		
AICC (smaller is better)		2073.4627		
BIC (smaller is better)		2090.8241		

Algorithm converged.

Analysis Of Maximum Likelihood Parameter Estimates									
Parameter		DF	Estimate	Standard Error	Wald 95% Con	fidence Limits	Wald Chi-Square	Pr > ChiSq	
Intercept		1	2.4319	0.0413	2.3510	2.5128	3472.23	<.0001	
child		1	-1.0428	0.1000	-1.2388	-0.8469	108.78	<.0001	
camper	0	1	-0.8340	0.0936	-1.0175	-0.6505	79.35	<.0001	
camper	1	0	0.0000	0.0000	0.0000	0.0000			
Scale		0	1.0000	0.0000	1.0000	1.0000			

Note: The scale parameter was held fixed.

			Analys	is Of Maximum	Likelihood Zero	Inflation Paramete	er Estimates
Parameter	DF	Estimate	Standard Error	Wald 95% Confidence Limits		Wald Chi-Square	Pr > ChiSq
Intercept	1	1.2974	0.3739	0.5647	2.0302	12.04	0.0005
persons	1	-0.5643	0.1630	-0.8838	-0.2449	11.99	0.0005

								Cont	rast Estin	nate Result
	Maan		Mean	LiBete	Ctondord			L'Beta	Chi	
Label	Mean Estimate	Cor	nfidence Limits	L'Beta Estimate	Standard Error	Alpha	Cor	fidence Limits	Chi- Square	Pr > ChiS
camper = 0	2.4220	1.9724	2.9741	0.8846	0.1048	0.05	0.6792	1.0899	71.28	<.000
camper = 0 (Zero Inflation)	0.4677	0.3838	0.5536	-0.1292	0.1756	0.05	-0.4735	0.2150	0.54	0.461
camper = 1	5.5768	4.8823	6.3701	1.7186	0.0679	0.05	1.5856	1.8516	641.42	<.000
camper = 1 (Zero Inflation)	0.4677	0.3838	0.5536	-0.1292	0.1756	0.05	-0.4735	0.2150	0.54	0.461

```
In [3]: proc genmod data = fish;
    class camper;
    model count = child camper /dist=nb;
    run;
```

The GENMOD Procedure

Model Infor					
Data Set	WORK.FISH	Written by SAS			
Distribution	Negative Binomial				
Link Function	Log				
Dependent Variable	count				

Number of Observations Read	250
Number of Observations Used	250

Class L	evel Info	rmation	
Class	Levels	Values	
camper	2	0 1	

Criteria For Assessing Goodness Of Fit					
Criterion	DF	Value	Value/DF		
Deviance	247	201.8949	0.8174		
Scaled Deviance	247	201.8949	0.8174		
Pearson Chi-Square	247	551.5932	2.2332		
Scaled Pearson X2	247	551.5932	2.2332		
Log Likelihood		1366.7980			
Full Log Likelihood		-439.7103			
AIC (smaller is better)		887.4206			
AICC (smaller is better)		887.5839			
BIC (smaller is better)		901.5064			

Analysis Of Maximum Likelihood Parameter Estimates									
Parameter		DF	Estimate	Standard Error	Wald 95% Confidence Limits		Wald Chi- Square	Pr > ChiSq	
Intercept		1	1.9821	0.2040	1.5823	2.3818	94.45	<.0001	
child		1	-1.3753	0.2082	-1.7834	-0.9672	43.62	<.0001	
camper	0	1	-0.9094	0.2831	-1.4642	-0.3545	10.32	0.0013	
camper	1	0	0.0000	0.0000	0.0000	0.0000			
Dispersion		1	3.9171	0.5060	3.0410	5.0455			

What is Tweedie?

- Nonnegative support
- · Can have a discrete mass at zero
- Is a member of the Exponential family (is found in GENMOD)
- Includes several important distributions as special cases:
 - Normal (p=0)
 - Poisson (p=1)
 - Gamma (p=2)
 - Inv Gaussian (p=3)

Distribution	Range Requirements
Beta	Values must be between 0 and 1, exclusive.
Binary	Exactly two distinct values
Exponential	Nonnegative real values
Gamma	Nonnegative real values
Geometric	Positive integers
Inverse Gaussian	Positive real values
Negative Binomial	Nonnegative integers
Normal	Real values
Poisson	Nonnegative integers
Tweedie	Nonnegative real values

```
In [1]: ods listing;
        %let nObs = 250;
        %let nClass = 5;
        %let nLevs = 4;
        %let seed = 100;
        data tmp1;
           array c{&nClass};
           keep c1-c&nClass yTweedie d1 d2;
           /* Tweedie parms */
           phi=0.5;
           p=1.5;
           do i=1 to &nObs;
              do j=1 to &nClass;
                 c{j} = int(ranuni(1)*&nLevs);
              end;
              d1 = ranuni(&seed);
              d2 = ranuni(&seed);
              xBeta = 0.5*((c2<2) - 2*(c1=1) + 0.5*c&nClass + 0.05*d1);
                      = exp(xBeta);
              /* Poisson distributions parms */
              lambda = mu**(2-p)/(phi*(2-p));
              /* Gamma distribution parms */
              alpha = (2-p)/(p-1);
              gamma = phi*(p-1)*(mu**(p-1));
```

```
rpoi = ranpoi(&seed,lambda);
     if rpoi=0 then yTweedie=0;
     else do;
        yTweedie=0;
        do j=1 to rpoi;
        yTweedie = yTweedie + rangam(&seed,alpha);
        yTweedie = yTweedie * gamma;
     end;
     output;
  end;
run;
proc genmod data=tmp1;
  class C1-C5;
  model yTweedie = C1-C5 D1 D2 / dist=Tweedie type3;
run;
proc genmod data=tmp1;
  class C1 C2;
  model yTweedie = C1 C2 D1 / dist=Tweedie(p=1.5) type3;
run;
```

SAS server started using Context SAS Studio compute context with SESSION_ID=548e576e-ac08-475e-a48a-f14ce7225f2e-ses0000

The GENMOD Procedure

Model Information				
Data Set	WORK.TMP1			
Distribution	Tweedie			
Link Function	Log			
Dependent Variable	yTweedie			
Number of Threads	32			

Number of Observations Read	250
Number of Observations Used	250

Class Level Information					
Class	Levels	Values			
c1	4	0123			
c2	4	0123			
с3	4	0123			
с4	4	0123			
с5	4	0123			

Criteria For Assessing Goodness Of Fit					
Criterion	DF	Value	Value/DF		
Pearson Chi-Square	232	101.9124	0.4393		
Scaled Pearson X2	232	251.5826	1.0844		
Log Likelihood		-297.2106			
Full Log Likelihood		-297.2106			
AIC (smaller is better)		634.4212			
AICC (smaller is better)		638.0893			
BIC (smaller is better)		704.8504			

Analysis Of Maximum Likelihood Parameter Estimates								
Parameter		DF	Estimate	Standard Error	Wald 95	% Confidence Limits	Wald Chi- Square	Pr > ChiSq
Intercept		1	0.7570	0.1684	0.4268	1.0871	20.20	<.0001
c1	0	1	-0.1840	0.0990	-0.3781	0.0101	3.45	0.0632

Analysis Of Maximum Likelihood Parameter Estimates									
Parameter		DF	Estimate	Standard Error	Wald 95	Wald 95% Confidence Limits		Pr > ChiSq	
c1	1	1	-0.9397	0.1107	-1.1567	-0.7227	72.03	<.0001	
c1	2	1	0.0267	0.0962	-0.1618	0.2153	0.08	0.7810	
c1	3	0	0.0000	0.0000	0.0000	0.0000			
c2	0	1	0.6219	0.1035	0.4190	0.8249	36.08	<.0001	
c2	1	1	0.4987	0.1043	0.2943	0.7032	22.86	<.0001	
c2	2	1	0.1062	0.1102	-0.1098	0.3222	0.93	0.3353	
c2	3	0	0.0000	0.0000	0.0000	0.0000			
с3	0	1	0.0103	0.1014	-0.1885	0.2090	0.01	0.9195	
с3	1	1	-0.0503	0.0992	-0.2447	0.1441	0.26	0.6122	
с3	2	1	-0.0437	0.1084	-0.2562	0.1687	0.16	0.6865	
с3	3	0	0.0000	0.0000	0.0000	0.0000			
c4	0	1	-0.1151	0.1072	-0.3252	0.0949	1.15	0.2826	
c4	1	1	0.1244	0.1044	-0.0801	0.3290	1.42	0.2332	
c4	2	1	0.1714	0.0953	-0.0154	0.3582	3.23	0.0721	
c4	3	0	0.0000	0.0000	0.0000	0.0000			
с5	0	1	-0.6632	0.1008	-0.8608	-0.4656	43.26	<.0001	
c5	1	1	-0.5171	0.1036	-0.7202	-0.3141	24.93	<.0001	
с5	2	1	-0.2547	0.0921	-0.4351	-0.0742	7.65	0.0057	
c5	3	0	0.0000	0.0000	0.0000	0.0000			
d1		1	-0.0067	0.1326	-0.2666	0.2531	0.00	0.9595	
d2		1	-0.1440	0.1255	-0.3899	0.1019	1.32	0.2511	
Dispersion		1	0.4051	0.0326	0.3412	0.4690			
Power		1	1.3607	0.0660	1.2313	1.4901			

Note: The Tweedie dispersion parameter was estimated by maximum likelihood.

Note: The Tweedie power parameter was estimated by maximum likelihood.

LR Statistics For Type 3 Analysis						
Source	e DF Chi-Square Pr > ChiSq					
c1	3	85.46	<.0001			
c2	3	48.18	<.0001			
с3	3	0.56	0.9050			
с4	3	9.38	0.0247			

LR Statistics For Type 3 Analysis						
Source	DF	Chi-Square	Pr > ChiSq			
с5	3	47.76	<.0001			
d1	1	0.00	0.9595			
d2	1	1.31	0.2518			

The GENMOD Procedure

Model Information					
Data Set	WORK.TMP1				
Distribution	Tweedie				
Link Function	Log				
Dependent Variable	yTweedie				
Number of Threads	32				

Number of Observations Read				
Number of Observations Used	250			

Class Level Informatio				
Class	Levels	Values		
с1	4	0123		
c2	4	0123		

Criteria For Assessing Goodness Of Fit				
Criterion	DF	Value	Value/DF	
Pearson Chi-Square	242	125.9834	0.5206	
Scaled Pearson X2	242	254.4442	1.0514	
Log Likelihood		-328.1245		
Full Log Likelihood		-328.1245		
AIC (smaller is better)		674.2490		
AICC (smaller is better)		674.9990		
BIC (smaller is better)		705.9421		

Analysis Of Maximum Likelihood Parameter Estim								er Estimates
Parameter		DF	Estimate	Standard Error	Wald 95% Confidence Limits		Wald Chi- Square	Pr > ChiSq
Intercept		1	0.3440	0.1347	0.0801	0.6080	6.53	0.0106
c1	0	1	-0.0722	0.1101	-0.2880	0.1436	0.43	0.5120
c1	1	1	-0.8952	0.1196	-1.1296	-0.6607	56.01	<.0001
c1	2	1	0.0770	0.1073	-0.1334	0.2873	0.51	0.4733
c1	3	0	0.0000	0.0000	0.0000	0.0000		
c2	0	1	0.6138	0.1161	0.3862	0.8414	27.93	<.0001
c2	1	1	0.5103	0.1150	0.2849	0.7356	19.70	<.0001
c2	2	1	0.1001	0.1215	-0.1380	0.3381	0.68	0.4099
c2	3	0	0.0000	0.0000	0.0000	0.0000		
d1		1	-0.0211	0.1493	-0.3136	0.2714	0.02	0.8876
Dispersion		1	0.4951	0.0398	0.4172	0.5731		
Power		0	1.5000	0.0000	1.5000	1.5000		

Note: The Tweedie dispersion parameter was estimated by maximum likelihood.

Note: The Tweedie power parameter was held fixed.

LR Statistics For Type 3 Analysis						
Source	DF	Chi-Square	Pr > ChiSq			
c1	3	72.11	<.0001			
c2	3	39.24	<.0001			
d1	1	0.02	0.8876			

Resources

https://go.documentation.sas.com/doc/en/pgmsascdc/v_054/statug/statug_genmod_overview07.html

https://support.sas.com/resources/papers/proceedings/proceedings/sugi26/p264-26.pdf

https://www.lexjansen.com/wuss/2006/tutorials/TUT-Smith.pdf

https://www.lexjansen.com/nesug/nesug99/po/po140.pdf

https://support.sas.com/resources/papers/sgf2008/countreg.pdf

https://stats.oarc.ucla.edu/sas/dae/zero-inflatedpoisson-regression/

In []: