Profiling the Epigenome Using Long-Read Sequencing

Journal Club Presentation

Liu T, Conesa A. Nature Genetics. 2025;57:27-41

Journal Club Discussion October 3, 2025

Outline

Genomics of Gene Expression Lab

- 1. Overview
- 2. Background
- 3. DNA Methylation Detection
- 4. Chromatin Accessibility
- 5. Protein-DNA Interactions
- 6. 3D Genome Organization
- 7. Multi-Omics Integration

Review Scope and Objectives

What This Review Covers

- ▶ Long-read sequencing (LRS) technologies for epigenomics research
- ► Experimental and computational strategies for characterizing chromatin states
- Advantages of LRS over short-read sequencing (SRS) methods
- ▶ Integration of epigenomic and transcriptomic data for multi-omics studies

Key Technologies

Oxford Nanopore Technologies (ONT) and Pacific Biosciences (PacBio)

Long-Read Sequencing: Key Advantages

Technical Advantages

- ▶ Direct DNA methylation detection
- ► Single-molecule resolution
- ▶ No PCR amplification needed
- ► Long reads (>10 kb)

Research Applications

- ► Haplotype-resolved analysis
- ► Highly repetitive regions (HRRs)
- ► Multi-epigenetic events on same molecule
- ► Complex genomic interactions

Overview of LRS Epigenomic Strategies

Figure 1 | Single-molecule LRS strategies for epigenomic profiling and chromatin interactions.

Four Main LRS Strategies

- 1. **Direct DNA methylation detection**: Sequencing native DNA molecules without bisulfite conversion to detect 5mC, 6mA, and other modifications
- 2. **3D chromosome interaction**: Coupling ligation of long-range interacting regions with LRS to resolve complex 3D topologies and multiway contacts
- 3. Chromatin accessibility profiling: Treatment with methyltransferases that mark open regions, followed by LRS to analyze accessibility and nucleosome positioning
- 4. **Protein-DNA interaction mapping**: Fusion of methyltransferases to antibodies for targeted modifications at specific chromatin sites to reveal histone marks and transcription factor binding

Traditional SRS Methods for DNA Methylation

Figure 2a | SRS methods: bisulfite conversion, affinity enrichment, and enzymatic cleavage.

Limitations of Short-Read Methylation Methods

Key Limitations

- ▶ DNA degradation from bisulfite conversion
- ▶ Bias toward CpG-rich regions (affinity enrichment)
- Limited methylome coverage (restriction enzyme methods)
- ► Cannot distinguish modification types (5mC vs 5hmC vs 6mA)
- ▶ Poor performance in extreme GC content regions
- Difficulty mapping highly repetitive regions
- No allele-specific methylation (ASM) detection

LRS Direct Methylation Detection Workflow

Figure 2b | LRS methylation detection: feature extraction, read-level prediction, and site-level calling.

Three-Step Methylation Calling Process

1. Feature extraction

- ▶ ONT: Electrical current signals through nanopore
- ▶ PacBio: Interpulse distance and pulse width

2. Read-level prediction

- ► Statistical tests or deep learning models
- ► Tools: Nanopolish, Dorado/Remora, Fibertools, Primrose

3. Site-level prediction

▶ Direct count or model-based approach

Key Methylation Calling Tools

Platform	Tool	Modification Types
ONT	Nanopolish	5mC
ONT	Dorado + Remora	5mC, 5hmC, 6mA, 4mC (combinations)
PacBio	Fibertools	бтА
PacBio	Primrose	5mC

Performance

Recent comparisons show both ONT and PacBio offer high-quality CpG methylation detection, with strong correlation to bisulfite sequencing

Traditional vs LRS Chromatin Accessibility Methods

Figure 3a | Cleavage-based methods: ATAC-seq, DNase-seq, and MNase-seq.

Short-Read Chromatin Accessibility Limitations

Cleavage-Based Methods (ATAC-seq, DNase-seq, MNase-seq)

- ▶ No coordination or co-occurrence of distal accessibility events
- ▶ Poor performance in segmental duplications and HRRs

Methyltransferase-Based Methods (NOMe-seq)

- ▶ Require bisulfite treatment with lower resolution
- ► Cannot distinguish endogenous from exogenous methylation

LRS Methyltransferase-Based Accessibility Assays

Figure 3b | DNA methyltransferase treatment followed by direct LRS methylation detection.

Method	Enzyme	Platform	Year
Fiber-seq	Hia5 (6mA)	PacBio, ONT	2020
SAMOSA	EcoGII (6mA) + MNase	PacBio	2020
nanoNOMe	CviPI (GpC)	ONT	2020
SMAC-seq	CviPI + SssI + EcoGII	ONT	2020
STAM-seq	EcoGII (6mA)	ONT	2023
SAM-seq	EcoGII (6mA)	ONT	2024

Key Advantage of 6mA-Based Methods

Higher resolution (shorter adenine distances) and no endogenous 6mA in most eukaryotes

Single-Molecule Chromatin Accessibility Analysis

Figure 4 | Data analysis workflow for LRS chromatin accessibility profiling.

Analytical Workflow for Accessibility Data

- 1. Nucleosome footprints: Detect 147 bp inaccessible regions
- Methylase-sensitive patches (MSPs): Identify accessible regions between nucleosomes
- Machine learning classification: FIRE tool distinguishes open chromatin from linker DNA
- 4. Protein footprints: FiberHMM identifies RNA Pol/TF occupancy
- 5. **Co-actuation analysis**: How one region's accessibility influences adjacent regions

Traditional SRS Protein-DNA Mapping Methods

Figure 5a | SRS methods: ChIP-seq, CUT&RUN, CUT&Tag, and DamID.

Limitations of SRS Protein-DNA Methods

Major Limitations

- ▶ Cannot measure multiple protein-binding events on same DNA molecule
- ▶ No combinatorial binding pattern analysis
- Cannot phase haplotype-specific interactions
- ▶ Poor mapping in highly repetitive regions
- ▶ DNA methylation information lost during PCR amplification
- ► Limited to pairwise interaction detection

LRS Antibody-Targeted Methylation Methods

Figure 5b | LRS protein-DNA interaction mapping: DiMeLo-seq, nanoHiMe-seq, BIND&MODIFY.

LRS Protein-DNA Interaction Workflow

Protocol Steps

- 1. Permeabilize nuclei; add antibody and magnetic beads
- 2. Apply pA-methyltransferase fusion protein
- 3. Activate with SAM; methylate adenines near target sites
- 4. Extract DNA and sequence with ONT/PacBio
- 5. Detect methylation as binding markers

Signal Characteristics

Methylation signal decays exponentially (170 bp half-life)

Quantitative Advantages: DiMeLo-seq Example

CENP-A Density in Centromeres

- >20-fold coverage in repetitive regions
- ightharpoonup 26% \pm 5% nucleosomes contain CENP-A
- ► ChIP-seq estimate: 4% (1 in 25)

Key Advantage

Absolute frequency measurements without PCR bias

Single-Molecule Histone Modification Analysis

BIND&MODIFY Approach

Categorize into heavy (>75%), medium (25-75%), light (<25%) states

Key Findings

- ► Heavy/medium H3K27me3 = lower expression
- ► H3K27me3 + CpG methylation on same fibers

Long-Read 3D Genome Methods

LRS-Based 3D Methods

Method	Platform	Capability
C-walk	PacBio	First LRS 3D genome
MC-4C	PacBio, ONT	Targeted loci
MC-3C	PacBio	All-vs-all
Pore-C	ONT	Multiway contacts
HiPore-C	ONT	Enhanced resolution

Major Advantage

Multiway chromatin interactions in single molecules

Pore-C Multiway Interaction Analysis

Integration Potential

Transcription clusters: Colocalized loci coordinating expression

Current Limitations

- ▶ Tools not designed for single-molecule
- ▶ 3D loops are dynamic and short-lived

LRS in Transcriptomics

ONT

- >100M reads/flow cell
- ► Direct RNA-seq (m6A)
- ► Real-time acquisition

PacBio

- >99% HiFi accuracy
- ▶ 100M reads/run
- ▶ Isoform resolution

Emerging Applications

Nascent-seq, Ribo-STAMP, single-cell and spatial RNA-seq

Toward Multi-Omics Applications

Examples

- ► Hi-C + LRS + RNA-seq
- ▶ Synchronized genome, methylome, epigenome, transcriptome
- scNanoCOOL-seq: Single-cell profiling

Key Challenge

Cannot map modalities to same molecules

Analytical Challenges for Multi-Omics

Experimental Needs

Higher signal-to-noise, coverage, reduced costs

Computational Needs

- ► Benchmarks and signal extraction
- ► Co-occurrence detection
- ► Integration frameworks

Current State of Knowledge

LRS Achievements

- ▶ Direct detection of 5mC, 6mA, 4mC, 5hmC
- ► Single-molecule chromatin states
- Haplotype-resolved analysis
- Mapping repetitive regions
- Multiway chromatin interactions
- Quantitative protein-DNA without PCR bias

Gaps and Challenges

Technical

- ► High costs, limited coverage
- ► Model retraining with updates
- ► Signal decay, limited standardization

Analytical

- ► TF motif degeneracy
- ► Lack of single-molecule 3D tools
- ► Cannot link DNA to RNA

Future Directions

- 1. Technology: Universal models, cost reduction, enrichment
- 2. Analytics: Integration frameworks, co-occurrence detection, TF assignment
- 3. Biology: Link chromatin to transcription, combinatorial regulation, disease

Take-Home Messages

Key Points

- 1. Direct detection without conversion/amplification
- 2. Single-molecule, haplotype-resolved
- 3. Overcomes SRS limitations
- 4. Multi-omics profiling
- 5. Linking chromatin to transcription

Discussion Questions

- 1. How might single-molecule data change our understanding of gene regulation?
- 2. What computational challenges need addressing?
- 3. Which biological questions could benefit from LRS?
- 4. How to balance cost vs coverage?
- 5. How to link DNA to RNA molecules?

Thank you for your attention!

Questions and Discussion?

References I

