ЛАБОРАТОРНАЯ РАБОТА 6.10.1

ЭЛЕКТРОННЫЙ ПАРАМАГНИТНЫЙ РЕЗОНАНС

ТЕОРИЯ

Рисунок 1 Схема резонансного поглощения электромагнитного излучения для изолированного спина S=1/2. (а) Зеемановское расщепление спинового уровня в магнитном поле. (б) Переход между подуровнями «снизу-вверх» с поглощением фотона резонансной частоты $h \, {\bf v} = {\bf g} \, {\bf u}_B \, B$. (в) Переход между подуровнями «сверху-вниз» с излучением дополнительного фотона резонансной частоты.

Поглощаемая мощность

$$P_{\text{noch}} = \frac{1}{2} \omega \left(\frac{LI}{c \, nS} \right)^2 \chi^{\,\prime\prime}(\omega \, , B) \qquad \qquad P_{\text{noch}} = \frac{1}{2} \, R_{\text{ЭПР эфф}} I^2 \qquad \qquad R_{\text{ЭПР эфф}} = \omega \left(\frac{L}{c \, nS} \right)^2 \chi^{\,\prime\prime}(\omega \, , B)$$

Добротность и изменение сигнала при резонансном поглощении

$$Q = \frac{1}{cR} \sqrt{\frac{L}{C}} = \frac{\omega_0 L}{c^2 R} \qquad \frac{\Delta U}{U} \simeq \frac{8\pi Q_0}{S l} \chi''$$

ХОД РАБОТЫ

УСТАНОВКА

НАСТРОЙКА ВЧ ГЕНЕРАТОРА

 $f_0 = 129.2MHz$ Настроим генератор на резонансную частоту контура:

Определим добротность:

 $f_{+\frac{1}{2}} = 129.7 MHz$ $f_{-\frac{1}{2}} = 128.6 MHz$ Q = 120

НАБЛЮДЕНИЕ СИГНАЛА РЕЗОНАНСНОГО ПОГЛОЩЕНИЯ

Основные катушки подключим к источнику постоянного тока, а модуляционные к трансформатору ЛАТР, с которого подадим 50В. Плавно увеличим напряжение на основных катушках пока не увидим на осцилографе резонансное поглощение. Добьемся также эквидистантности пиков. $V_R = 61.50 \pm 0.3$ мВ

ОПРЕДЕЛЕНИЕ ШИРИНЫ ЛИНИИ

Ширина на полувысоте модулирующего поля	$A_{1/2}$	6.5 ± 1
Полный размах модулирующего поля	$A_{\text{полн}}$	50 ± 1
ЭДС в пробной катушке	V_i	0.25 ± 0.01 mB
Диаметр намотки в пробной катушке	d	14.6 ± 0.1 mm
Число витков пробной катушки	$N_{\rm npo6}$	46
Частота модулирующего напряжения	ν	50Гц
Амплитуда модулирующего поля	$B_{ ext{mod}}$	$\sqrt{2} \frac{2V_i}{\pi^2 d^2 N_{\text{проб}} \nu} = 1.46 \times 10^{-4} \text{Тл}$
Ширина линии	ΔB	$rac{A_{1/2}}{A_{ ext{полн}}} B_{ ext{мод}} = 1.90 imes 10^{-5} ext{Тл}$

ОПРЕДЕЛЕНИЕ G-ФАКТОРА

Для определения связи между напряжением на резисторе в в цепи основных катушек и магнитным полем в центре магнита нужно подать в основные катушки переменный ток и измерить с помощью пробной катушки ЭДС. Подключим ЛАТР к основным катушкам. Вольтметр переведем в режим измерения переменного тока. Проведем измерения с помощью пробной катушки, построим график и поределим g-фактор.

$oldsymbol{V}_{ ext{och}}$, м $\mathrm{B} \pm 0$. 05 м B	$oldsymbol{V}_{ ext{пробн+}}$, м $\mathrm{B} \pm 0$. 02 м B	$oldsymbol{V}_{ ext{пробн-}}$, м $\mathrm{B} \pm 0$. 02 м B
26.15	4.62	4.90
31.98	5.64	5.93
33.02	5.81	6.07
38.05	6.70	7.04
43.00	7.59	7.99
48.20	8.55	8.91
52.00	9.24	9.65
57.20	10.09	10.64
62.40	10.93	11.48
67.00	11.80	12.35

$$B = \frac{V_{\text{проб}H\pm}}{N_{\text{проб}}S\omega_{\sim}} = \frac{2V_{\text{осн}}p1_{\pm}}{\pi^2d^2N_{\text{проб}}\nu} = 45.7\Gamma c$$

$$g = \frac{h\nu}{\mu_{\text{B}}B} = 2.06$$

$$\Delta B = B \times \sqrt{\varepsilon(V_{\text{осн}})^2 + \varepsilon(p1)^2 + 4\varepsilon(d)^2 + \varepsilon(\nu)^2} = 1.4\Gamma c$$

$$\Delta g = g \times \sqrt{\varepsilon(\nu)^2 + \varepsilon(B)^2} = 0.06$$

