

RADIO TEST REPORT

Report No: STS1905131W02

Issued for

Shenzhen Astrotec Acoustic Technology Co., Itd.

5F, Bldg D, Dunfa Industrial Park, Hangcheng Blvd, Bao'an District, Shenzhen, Guangdong, China

Product Name:	Astrotec S80 True Wireless Earphone
Brand Name:	Astrotec
Model Name:	S80
Series Model:	S80, S80 BA, Motivation
FCC ID:	2AKA3S80
Test Standard:	FCC Part 15.247

Any reproduction of this document must be done in full. No single part of this document may be reproduced we permission from STS, All Test Data Presented in this report is only applicable to presented Test sample VAL

TEST RESULT CERTIFICATION

Applicant's Name:	Shenzhen Astrotec Acoustic Technology Co., ltd.
Address:	5F, Bldg D, Dunfa Industrial Park, Hangcheng Blvd, Bao'an District, Shenzhen, Guangdong, China
Manufacture's Name:	Shenzhen Astrotec Acoustic Technology Co., ltd.
Address:	5F, Bldg D, Dunfa Industrial Park, Hangcheng Blvd, Bao'an District, Shenzhen, Guangdong, China
Product Description	
Product Name:	Astrotec S80 True Wireless Earphone
Brand Name	Astrotec
Model Name:	S80
Series Model	S80, S80 BA, Motivation
Test Standards	FCC Part15.247
Test Procedure	ANSI C63.10-2013
under test (EUT) is in compliance sample identified in the report. This report shall not be reproduce	been tested by STS, the test results show that the equipment with the FCC requirements. And it is applicable only to the tested d except in full, without the written approval of STS, this document, personal only, and shall be noted in the revision of the document
Date of Test:	
Date (s) of performance of tests:	07 May 2019~ 20 May 2019
Date of Issue:	21 May 2019
Test Result:	Pass
Testing Engineer	Chris cher
Technical Manag	(Chris Chen) Ger : Sunday Jul (Sunday Hu)
Authorized Signa	a sudi

Table of Contents	Page
1. SUMMARY OF TEST RESULTS	6
1.1 TEST FACTORY	7
1.2 MEASUREMENT UNCERTAINTY	7
2. GENERAL INFORMATION	8
2.1 GENERAL DESCRIPTION OF THE EUT	8
2.2 DESCRIPTION OF THE TEST MODES	10
2.3 TABLE OF PARAMETERS OF TEXT SOFTWARE SETTING	11
2.4 BLOCK DIGRAM SHOWING THE CONFIGURATION OF SYSTEM TESTED	12
2.5 DESCRIPTION OF NECESSARY ACCESSORIES AND SUPPORT UNITS	12
2.6 EQUIPMENTS LIST	13
3. EMC EMISSION TEST	14
3.1 CONDUCTED EMISSION MEASUREMENT	14
3.2 RADIATED EMISSION MEASUREMENT	16
4. CONDUCTED SPURIOUS & BAND EDGE EMISSION	27
4.1 LIMIT	27
4.2 TEST PROCEDURE	27
4.3 TEST SETUP	27
4.4 EUT OPERATION CONDITIONS	27
4.5 TEST RESULTS	28
5. NUMBER OF HOPPING CHANNEL	40
5.1 LIMIT	40
5.2 TEST PROCEDURE	40
5.3 TEST SETUP	40
5.4 EUT OPERATION CONDITIONS	40
5.5 TEST RESULTS	41
6. AVERAGE TIME OF OCCUPANCY	42
6.1 LIMIT	42
6.2 TEST PROCEDURE	42
6.3 TEST SETUP	42
6.4 EUT OPERATION CONDITIONS	42
6.5 TEST RESULTS	43
7. HOPPING CHANNEL SEPARATION MEASUREMEN	49
7.1 LIMIT	49

Table of Contents Page 7.2 TEST PROCEDURE 49 7.3 TEST SETUP 49 7.4 EUT OPERATION CONDITIONS 49 7.5 TEST RESULTS 50 8. BANDWIDTH TEST 56 8.1 LIMIT 56 **8.2 TEST PROCEDURE** 56 8.3 TEST SETUP 56 8.4 EUT OPERATION CONDITIONS 56 8.5 TEST RESULTS 57 9. OUTPUT POWER TEST 63 9.1 LIMIT 63 9.2 TEST PROCEDURE 63 9.3 TEST SETUP 63 9.4 EUT OPERATION CONDITIONS 63 9.5 TEST RESULTS 64 **10. ANTENNA REQUIREMENT** 65 10.1 STANDARD REQUIREMENT 65 10.2 EUT ANTENNA 65

Report No.: STS1905131W02

Revision History

Rev.	Issue Date	Report NO.	Effect Page	Contents
00	21 May 2019	STS1905131W02	ALL	Initial Issue

1. SUMMARY OF TEST RESULTS

Test procedures according to the technical standards: KDB 558074 D01 15.247 Meas Guidance v05r02

FCC Part 15.247, Subpart C				
Standard Section	Test Item	Judgment	Remark	
15.207	Conducted Emission	N/A		
15.247(a)(1)	Hopping Channel Separation	PASS		
15.247(a)(1)&(b)(1)	Output Power	PASS		
15.247(c)	Radiated Spurious Emission	PASS		
15.247(d)	Conducted Spurious & Band Edge Emission	PASS		
15.247(a)(iii)	Number of Hopping Frequency	PASS		
15.247(a)(iii)	Dwell Time	PASS		
15.247(a)(1)	Bandwidth	PASS		
15.205	Restricted Band Edge Emission	PASS		
Part 15.247(d)/part 15.209(a)	Band Edge Emission	PASS		
15.203	Antenna Requirement	PASS		

NOTE:

- (1)" N/A" denotes test is not applicable in this Test Report
- (2) All tests are according to ANSI C63.10-2013

1.1 TEST FACTORY

Shenzhen STS Test Services Co., Ltd.

Add.: 1/F., Building B, Zhuoke Science Park, No.190, Chongqing Road,

Fuyong Street, Bao'an District, Shenzhen, Guangdong, China

FCC test Firm Registration Number: 625569

A2LA Certificate No.: 4338.01;

1.2 MEASUREMENT UNCERTAINTY

The reported uncertainty of measurement $y \pm U$, where expended uncertainty U is based on a standard uncertainty multiplied by a coverage factor of k=2, providing a level of confidence of approximately 95 %.

No.	Item	Uncertainty
1	RF output power, conducted	±0.71dB
2	Unwanted Emissions, conducted	±0.63dB
3	All emissions, radiated 30-200MHz	±3.43dB
4	All emissions, radiated 200MHz-1GHz	±3.57dB
5	All emissions, radiated>1G	±4.13dB
6	Conducted Emission (9KHz-150KHz)	±3.18dB
7	Conducted Emission (150KHz-30MHz)	±2.70dB

2. GENERAL INFORMATION

2.1 GENERAL DESCRIPTION OF THE EUT

Product Name	Astrotec S80 True Wireless Earphone
Trade Name	Astrotec
Model Name	S80
Series Model	S80, S80 BA, Motivation
Model Difference	Just different in model name and internal speaker
Channel List	Please refer to the Note 2.
Bluetooth	Frequency:2402 – 2480 MHz Modulation: GFSK(1Mbps), π/4-DQPSK(2Mbps), 8DPSK(3Mbps)
Bluetooth Version	5.0
Bluetooth configuration	BR+EDR
Adapter	Input: 5V/500mA Output: 5V/300mA
Battery	Rated Voltage: 3.7V Charge Limit: 5V Capacity: 55mA
Hardware version number	V02
Software version number	1.0
Connecting I/O Port(s)	Please refer to the User's Manual

Note:

1. For a more detailed features description, please refer to the manufacturer's specifications or the User's Manual.

2.

Channel List					
Channel	Frequency (MHz)	Channel	Frequency (MHz)	Channel	Frequency (MHz)
00	2402	27	2429	54	2456
01	2403	28	2430	55	2457
02	2404	29	2431	56	2458
03	2405	30	2432	57	2459
04	2406	31	2433	58	2460
05	2407	32	2434	59	2461
06	2408	33	2435	60	2462
07	2409	34	2436	61	2463
08	2410	35	2437	62	2464
09	2411	36	2438	63	2465
10	2412	37	2439	64	2466
11	2413	38	2440	65	2467
12	2414	39	2441	66	2468
13	2415	40	2442	67	2469
14	2416	41	2443	68	2470
15	2417	42	2444	69	2471
16	2418	43	2445	70	2472
17	2419	44	2446	71	2473
18	2420	45	2447	72	2474
19	2421	46	2448	73	2475
20	2422	47	2449	74	2476
21	2423	48	2450	75	2477
22	2424	49	2451	76	2478
23	2425	50	2452	77	2479
24	2426	51	2453	78	2480
25	2427	52	2454		
26	2428	53	2455		

3. Table for Filed Antenna

Ant.	Brand	Model Name	Antenna Type	Connector	Gain (dBi)	NOTE
1	Astrotec	S80	Ceramic	N/A	3.09 dBi	BT Antenna

2.2 DESCRIPTION OF THE TEST MODES

To investigate the maximum EMI emission characteristics generates from EUT, the test system was pre-scanning tested base on the consideration of following EUT operation mode or test configuration mode which possible have effect on EMI emission level. Each of these EUT operation mode(s) or test configuration mode(s) mentioned above was evaluated respectively.

Worst Mode	Description	Data Rate/Modulation
Mode 1	TX CH00	1Mbps/GFSK
Mode 2	TX CH39	1Mbps/GFSK
Mode 3	TX CH78	1Mbps/GFSK
Mode 4	TX CH00	2 Mbps/π/4-DQPSK
Mode 5	TX CH39	2 Mbps/π/4-DQPSK
Mode 6	TX CH78	2 Mbps/π/4-DQPSK
Mode7	TX CH00	3 Mbps/8DPSK
Mode 8	TX CH39	3 Mbps/8DPSK
Mode 9	TX CH78	3 Mbps/8DPSK

Note:

(1) The measurements are performed at all Bit Rate of Transmitter, the worst data was reported

2.3 FREQUENCY HOPPING SYSTEM REQUIREMENTS

(1)Standard and Limit

According to FCC Part 15.247(a)(1), The system shall hop to channel frequencies that are selected at the system hopping rate from a pseudo randomly ordered list of hopping frequencies. Each frequency must be used equally on the average by each transmitter. The system receivers shall have input bandwidths that match the hopping channel bandwidths of their corresponding transmitters and shall shift frequencies in synchronization with the transmitted signals.

Frequency hopping spread spectrum systems are not required to employ all available hopping channels during each transmission. However, the system, consisting of both the transmitter and the receiver, must be designed to comply with all of the regulations in this section should the transmitter be presented with a continuous data (or information) stream. In addition, a system employing short transmission bursts must comply with the definition of a frequency hopping system and must distribute its transmissions over the minimum number of hopping channels specified in this section.

The incorporation of intelligence within a frequency hopping spread spectrum system that permits the system to recognize other users within the spectrum band so that it individually and independently chooses and adapts its hop sets to avoid hopping on occupied channels is permitted. The coordination of frequency hopping systems in any other manner for the express purpose of avoiding the simultaneous occupancy of individual hopping frequencies by multiple transmitters is not permitted.

(2) EUT Pseudorandom Frequency Hopping Sequence

Pseudorandom Frequency Hopping Sequence Table as below:

Channel: 03, 14, 11, 35, 43, 37, 50, 61, 77, 55, 71, 02, 23, 07, 27, 39, 54, 46, 48, 15, 63, 62, 67, 25, 31, 12, 28, 19, 60, 42, 57, 74, 16, 05, 18, 30, 45, 08, 24, 40, 56, 34, 51, 72, 09, 01, 64, 22, 33, 41, 32, 47, 65, 73, 53, 69, 06, 17,04, 20, 36, 52, 38, 66, 70, 78, 68, 76, 21, 29, 10, 26, 49, 00, 58, 44, 59, 75, 13, etc.

The system receiving have input bandwidths that match the hopping channel bandwidths of their corresponding transmitters and shift frequencies in synchronization with the transmitted signals.

(3)Frequency Hopping System

This transmitter device is frequency hopping device, and complies with FCC part 15.247 rule.

This device uses Bluetooth radio which operates in 2400-2483.5 MHz band. Bluetooth uses a radio technology called frequency-hopping spread spectrum, which chops up the data being sent and transmits chunks of it on up to 79 bands (1 MHz each; centred from 2402 to 2480 MHz) in the range 2,400-2,483.5MHz. The transmitter switches hop frequencies 1,600 times per second to assure a high degree of data security. All Bluetooth devices participating in a given piconet are synchronized to the frequency-hopping channel for the piconet. The frequency hopping sequence is determined by the master's device address and the phase of the hopping sequence (the frequency to hop at a specific time) is determined by the master's internal clock. Therefore, all slaves in a piconet must know the master's device address and must synchronize their clocks with the master's clock.

Adaptive Frequency Hopping (AFH) was introduced in the Bluetooth specification to provide an effective way for a Bluetooth radio to counteract normal interference. AFH identifies "bad" channels, where either other wireless devices are interfering with the Bluetooth signal or the Bluetooth signal is interfering with another device. The AFH-enabled Bluetooth device will then communicate with other devices within its piconet to share details of any identified bad channels. The devices will then switch to alternative available "good" channels, away from the areas of interference, thus having no impact on the bandwidth used.

This device was tested with a bluetooth system receiver to check that the device maintained hopping synchronization, and the device complied with these requirements FCC Part 15.247 rule.

2.4 TABLE OF PARAMETERS OF TEXT SOFTWARE SETTING

During testing channel & power controlling software provided by the customer was used to control the operating channel as well as the output power level. The RF output power selection is for the setting of RF output power expected by the customer and is going to be fixed on the firmware of the final end product power parameters of FHSS.

Test software Version	Test program: Bluetooth			
Frequency	2402 MHz	2441 MHz	2480 MHz	
(Power control software) Parameters(1/2/3Mbps)	Power class: 1 M rate:4:27 2 M rate:11:183 3 M rate:15:339	Power class: 1 M rate:4:27 2 M rate:11:183 3 M rate:15:339	Power class: 1 M rate:4:27 2 M rate:11:183 3 M rate:15:339	

2.5 BLOCK DIGRAM SHOWING THE CONFIGURATION OF SYSTEM TESTED

During testing channel & power controlling software provided by the customer was used to control the operating channel as well as the output power level. The RF output power selection is for the setting of RF output power expected by the customer and is going to be fixed on the firmware of the final end product power parameters of FHSS

Radiated Spurious Emission Test

2.6 DESCRIPTION OF NECESSARY ACCESSORIES AND SUPPORT UNITS

The EUT has been tested as an independent unit together with other necessary accessories or support units. The following support units or accessories were used to form a representative test configuration during the tests.

Necessary accessories

Item	Equipment	Mfr/Brand	Model/Type No.	Serial No.	Note
N/A	N/A	N/A	N/A	N/A	N/A
	\				

Support units

Item	Equipment	Mfr/Brand	Model/Type No.	Serial No.	Note
E-2	Notebook	DELL	VOSTRO.3800	N/A	N/A
C-1	USB Cable	N/A	100cm	N/A	N/A

Note:

- (1) The support equipment was authorized by Declaration of Confirmation.
- (2) For detachable type I/O cable should be specified the length in cm in Length column.
- (3) "YES" is means "shielded" "with core"; "NO" is means "unshielded" "without core".

2.7 EQUIPMENTS LIST

Radiation Test equipment

tadiation root equipment					
Kind of Equipment	Manufacturer	Type No.	Serial No.	Last calibration	Calibrated until
Test Receiver	R&S	ESCI	101427	2018.10.13	2019.10.12
Signal Analyzer	Agilent	N9020A	MY51110105	2019.03.02	2020.03.01
Active loop Antenna	ZHINAN	ZN30900C	16035	2018.03.11	2021.03.10
Bilog Antenna	TESEQ	CBL6111D	34678	2017.11.02	2020.11.1
Horn Antenna	SCHWARZBECK	BBHA 9120D(1201)	9120D-1343	2018.10.19	2021.10.18
SHF-EHF Horn Antenna (18G-40GHz)	A-INFO	LB-180400-KF	J211020657	2018.03.11	2021.03.10
Pre-Amplifier(0.1M-3G Hz)	EM	EM330	060665	2018.10.13	2019.10.12
Pre-Amplifier (1G-18GHz)	SKET	LNPA-01018G-45	SK201808090 1	2018.10.13	2019.10.12
Temperature & Humidity	HH660	Mieo	N/A	2018.10.11	2019.10.10
turn table	EM	SC100_1	60531	N/A	N/A
Antenna mast	EM	SC100	N/A	N/A	N/A
Test SW	FARAD	EZ-EMC(Ver.STSLAB-03A1 RE)			

RF Connected Test

Kind of Equipment	Manufacturer	Type No.	Serial No.	Last calibration	Calibrated until
USB RF power sensor	DARE	RPR3006W	15I00041SNO03	2018.10.13	2019.10.12
Signal Analyzer	Agilent	N9020A	MY49100060	2018.10.13	2019.10.12
Temperature & Humidity	HH660	Mieo	N/A	2018.10.11	2019.10.10
Test SW	FARAD		LZ-RF/L	zRf-3A3	

3. EMC EMISSION TEST

3.1 CONDUCTED EMISSION MEASUREMENT

3.1.1 POWER LINE CONDUCTED EMISSION LIMITS

Operating frequency band. In case the emission fall within the restricted band specified on Part 207(a) limit in the table below has to be followed.

EDEOLIENCY (MHz)	Conducted Emissionlimit (dBuV)		
FREQUENCY (MHz)	Quasi-peak	Average	
0.15 -0.5	66 - 56 *	56 - 46 *	
0.50 -5.0	56.00	46.00	
5.0 -30.0	60.00	50.00	

Note:

- (1) The tighter limit applies at the band edges.
- (2) The limit of " * " marked band means the limitation decreases linearly with the logarithm of the frequency in the range.

The following table is the setting of the receiver

Receiver Parameters	Setting
Attenuation	10 dB
Start Frequency	0.15 MHz
Stop Frequency	30 MHz
IF Bandwidth	9 kHz

3.1.2 TEST PROCEDURE

- a. The EUT was 0.8 meters from the horizontal ground plane and 0.4 meters from the vertical ground plane with EUT being connected to the power mains through a line impedance stabilization network (LISN). All other support equipments powered from additional LISN(s). The LISN provide 50 Ohm/ 50uH of coupling impedance for the measuring instrument.
- b. Interconnecting cables that hang closer than 40 cm to the ground plane shall be folded back and forth in the center forming a bundle 30 to 40 cm long.
- c. I/O cables that are not connected to a peripheral shall be bundled in the center. The end of the cable may be terminated, if required, using the correct terminating impedance. The overall length shall not exceed 1 m.
- d. LISN at least 80 cm from nearest part of EUT chassis.
- e. For the actual test configuration, please refer to the related Item -EUT Test Photos.

3.1.3 TEST SETUP

Note: 1.Support units were connected to second LISN.

2.Both of LISNs (AMN) are 80 cm from EUT and at least 80 from other units and other metal planes

3.1.4 TEST RESULT

0.1.1 1 LO1 1 LOOL	1201 (12002)					
Temperature:	22.8℃	Relative Humidity:	63%			
Test Voltage:	N/A	Phase:	L/N			
Test Mode:	N/A					

Note: The BT function will be disabled (not transmitting) when the EUT is charging, the test is not available.

3.2 RADIATED EMISSION MEASUREMENT

3.2.1 RADIATED EMISSION LIMITS

In any 100 kHz bandwidth outside the operating frequency band. In case the emission fall within the Restricted band specified on Part15.205(a)&209(a) limit in the table and according to ANSI C63.10-2013 below has to be followed

LIMITS OF RADIATED EMISSION MEASUREMENT (0.009MHz - 1000MHz)

Frequencies	Field Strength	Measurement Distance
(MHz)	(micorvolts/meter) (meters	
0.009~0.490	2400/F(KHz)	300
0.490~1.705	24000/F(KHz)	30
1.705~30.0	30	30
30~88	100	3
88~216	150	3
216~960	200	3
Above 960	500	3

LIMITS OF RADIATED EMISSION MEASUREMENT (1GHz-25 GHz)

EDEOLIENCY (MLI-)	(dBuV/m) (at 3M)		
FREQUENCY (MHz)	PEAK	AVERAGE	
Above 1000	74	54	

Notes:

- (1) The limit for radiated test was performed according to FCC PART 15C.
- (2) The tighter limit applies at the band edges.
- (3) Emission level (dBuV/m)=20log Emission level (uV/m).

For Radiated Emission

Spectrum Parameter	Setting
Attenuation	Auto
Detector	Peak/AV
Start Frequency	1000 MHz(Peak/AV)
Stop Frequency	10th carrier hamonic(Peak/AV)
RB / VB (emission in restricted	DIC 4841 - /4841 - 82/ 4841 - /40 I -
band)	PK=1MHz / 1MHz, AV=1 MHz /10 Hz

For Band edge

Spectrum Parameter	Setting	
Detector	Peak/AV	
Chart/Chan Fraguency	Lower Band Edge: 2300 to 2403 MHz	
Start/Stop Frequency	Upper Band Edge: 2479 to 2500 MHz	
RB / VB (emission in restricted band)	PK=1MHz / 1MHz, AV=1 MHz / 10 Hz	

Report No.: STS1905131W02

Receiver Parameter	Setting
Attenuation	Auto
Start ~ Stop Frequency	9kHz~90kHz / RB 200Hz for PK & AV
Start ~ Stop Frequency	90kHz~110kHz / RB 200Hz for QP
Start ~ Stop Frequency	110kHz~490kHz / RB 200Hz for PK & AV
Start ~ Stop Frequency	490kHz~30MHz / RB 9kHz for QP
Start ~ Stop Frequency	30MHz~1000MHz / RB 120kHz for QP

3.2.2 TEST PROCEDURE

- a. The measuring distance of at 3 m shall be used for measurements at frequency 0.009MHz up to 1GHz, and above 1GHz.
- b. The EUT was placed on the top of a rotating table 0.8 meters (above 1GHz is 1.5 m) above the ground at a 3 meter anechoic chamber test site. The table was rotated 360 degrees to determine the position of the highest radiation.
- c. The height of the equipment shall be 0.8 m(above 1GHz is 1.5 m); the height of the test antenna shall vary between 1 m to 4 m. horizontal and vertical polarizations of the antenna are set to make the measurement.
- d. The initial step in collecting conducted emission data is a spectrum analyzer peak detector mode pre-scanning the measurement frequency range. Significant peaks are then marked and then QuasiPeak detector mode re-measured.
- e. If the Peak Mode measured value compliance with and lower than Quasi Peak Mode Limit, the EUT shall be deemed to meet QP Limits and then no additional QP Mode measurement performed.
- f. For the actual test configuration, please refer to the related Item –EUT Test Photos.

Both horizontal and vertical antenna polarities were tested and performed pretest to three orthogonal axis. The worst case emissions were reported

3.2.3 DEVIATION FROM TEST STANDARD No deviation

3.2.4 TESTSETUP

(A) Radiated Emission Test-Up Frequency Below 30MHz

(B) Radiated Emission Test-Up Frequency 30MHz~1GHz

(C) Radiated Emission Test-Up Frequency Above 1GHz

3.2.5 EUT OPERATING CONDITIONS

The EUT tested system was configured as the statements of 2.4 Unless otherwise a special operating condition is specified in the follows during the testing.

3.2.6 FIELD STRENGTH CALCULATION

The field strength is calculated by adding the Antenna Factor and Cable Factor and subtracting the Amplifier Gain and Duty Cycle Correction Factor (if any) from the measured reading. The basic equation with a sample calculation is as follows:

FS = RA + AF + CL - AG

Where

FS = Field Strength

CL = Cable Attenuation Factor (Cable Loss)

RA = Reading Amplitude

AG = Amplifier Gain

AF = Antenna Factor

For example

Frequency	FS	RA	AF	CL	AG	Factor
(MHz)	(dBµV/m)	(dBµV/m)	(dB)	(dB)	(dB)	(dB)
300	40	58.1	12.2	1.6	31.9	-18.1

Factor=AF+CL-AG

3.2.7 TEST RESULTS

(9KHz-30MHz)

Temperature:	23.6℃	Relative Humidity:	62%
Test Voltage:	DC 3.7V	Test Mode:	TX Mode

Freq.	Reading	Limit	Margin	State	Test Result	
(MHz)	(dBuV/m)	(dBuV/m)	(dB)	P/F	rest Result	
					PASS	
					PASS	

Note:

The amplitude of spurious emissions which are attenuated by more than 20dB below the permissible value has no need to be reported.

Distance extrapolation factor =40 log (specific distance/test distance)(dB);

Limit line = specific limits (dBuv) + distance extrapolation factor.

(30MHz-1000MHz)

Temperature:	23.6℃	Relative Humidity:	62%			
Test Voltage:	DC 3.7V	Phase:	Horizontal			
Test Mode:	Mode 1/2/3/4/5/6/7/8/9(Mode 9 worst mode)					

No.	Frequency	Reading	Correct	Result	Limit	Margin	Remark
	(MHz)	(dBuV)	Factor(dB/m)	(dBuV/m)	(dBuV/m)	(dB)	
1	35.2511	36.14	-13.88	22.26	40.00	-17.74	QP
2	48.5016	42.18	-20.71	21.47	40.00	-18.53	QP
3	102.7192	38.52	-18.96	19.56	43.50	-23.94	QP
4	189.0740	39.57	-20.18	19.39	43.50	-24.11	QP
5	316.5890	35.18	-14.28	20.90	46.00	-25.10	QP
6	996.4995	25.26	-0.09	25.17	54.00	-28.83	QP

Remark:

1. Margin = Result (Result = Reading + Factor)-Limit

Temperature:	23.6℃	Relative Humidity:	62%			
Test Voltage:	DC 3.7V	Phase:	Vertical			
Test Mode:	Mode 1/2/3/4/5/6/7/8/9(Mode 9 worst mode)					

No.	Frequency	Reading	Correct	Result	Limit	Margin	Remark
	(MHz)	(dBuV)	Factor(dB/m)	(dBuV/m)	(dBuV/m)	(dB)	
1	49.0144	39.03	-20.97	18.06	40.00	-21.94	QP
2	76.5121	46.65	-23.18	23.47	40.00	-16.53	QP
3	120.6991	36.15	-17.68	18.47	43.50	-25.03	QP
4	189.0740	34.84	-20.18	14.66	43.50	-28.84	QP
5	408.9460	31.51	-11.08	20.43	46.00	-25.57	QP
6	955.4380	28.58	-0.26	28.32	46.00	-17.68	QP

Remark:

1. Margin = Result (Result = Reading + Factor)-Limit

(1GHz~25GHz) Restricted band and Spurious emission Requirements

8DPSK

Frequency	Meter Reading	Amplifier	Loss	Antenna Factor	Orrected Factor	Emission Level	Limits	Margin	Detector	Commont
(MHz)	(dBµV)	(dB)	(dB)	(dB/m)	(dB)	(dBµV/m)	(dBµV/m)	(dB)	Туре	Comment
				Low C	hannel (2402	MHz)				
3264.67	61.14	44.70	6.70	28.20	-9.80	51.34	74.00	-22.66	PK	Vertical
3264.67	50.28	44.70	6.70	28.20	-9.80	40.48	54.00	-13.52	AV	Vertical
3264.81	62.12	44.70	6.70	28.20	-9.80	52.32	74.00	-21.68	PK	Horizontal
3264.81	50.55	44.70	6.70	28.20	-9.80	40.75	54.00	-13.25	AV	Horizontal
4804.54	58.84	44.20	9.04	31.60	-3.56	55.28	74.00	-18.72	PK	Vertical
4804.54	49.79	44.20	9.04	31.60	-3.56	46.23	54.00	-7.77	AV	Vertical
4804.31	59.41	44.20	9.04	31.60	-3.56	55.85	74.00	-18.15	PK	Horizontal
4804.31	50.43	44.20	9.04	31.60	-3.56	46.87	54.00	-7.13	AV	Horizontal
5359.62	49.02	44.20	9.86	32.00	-2.34	46.68	74.00	-27.32	PK	Vertical
5359.62	39.38	44.20	9.86	32.00	-2.34	37.04	54.00	-16.96	AV	Vertical
5359.60	47.23	44.20	9.86	32.00	-2.34	44.89	74.00	-29.11	PK	Horizontal
5359.60	38.53	44.20	9.86	32.00	-2.34	36.19	54.00	-17.81	AV	Horizontal
7205.69	53.94	43.50	11.40	35.50	3.40	57.34	74.00	-16.66	PK	Vertical
7205.69	43.91	43.50	11.40	35.50	3.40	47.31	54.00	-6.69	AV	Vertical
7205.79	54.01	43.50	11.40	35.50	3.40	57.41	74.00	-16.59	PK	Horizontal
7205.79	43.64	43.50	11.40	35.50	3.40	47.04	54.00	-6.96	AV	Horizontal
		1		Middle	Channel (244	1 MHz)				
3264.86	60.90	44.70	6.70	28.20	-9.80	51.10	74.00	-22.90	PK	Vertical
3264.86	49.90	44.70	6.70	28.20	-9.80	40.10	54.00	-13.90	AV	Vertical
3264.67	61.90	44.70	6.70	28.20	-9.80	52.10	74.00	-21.90	PK	Horizontal
3264.67	50.37	44.70	6.70	28.20	-9.80	40.57	54.00	-13.43	AV	Horizontal
4882.39	58.43	44.20	9.04	31.60	-3.56	54.87	74.00	-19.13	PK	Vertical
4882.39	49.82	44.20	9.04	31.60	-3.56	46.26	54.00	-7.74	AV	Vertical
4882.42	59.42	44.20	9.04	31.60	-3.56	55.86	74.00	-18.14	PK	Horizontal
4882.42	50.54	44.20	9.04	31.60	-3.56	46.98	54.00	-7.02	AV	Horizontal
5359.83	48.66	44.20	9.86	32.00	-2.34	46.32	74.00	-27.68	PK	Vertical
5359.83	39.41	44.20	9.86	32.00	-2.34	37.07	54.00	-16.93	AV	Vertical
5359.70	47.17	44.20	9.86	32.00	-2.34	44.83	74.00	-29.17	PK	Horizontal
5359.70	38.54	44.20	9.86	32.00	-2.34	36.20	54.00	-17.80	AV	Horizontal
7323.83	54.87	43.50	11.40	35.50	3.40	58.27	74.00	-15.73	PK	Vertical
7323.83	43.92	43.50	11.40	35.50	3.40	47.32	54.00	-6.68	AV	Vertical
7323.78	54.73	43.50	11.40	35.50	3.40	58.13	74.00	-15.87	PK	Horizontal
7323.78	44.18	43.50	11.40	35.50	3.40	47.58	54.00	-6.42	AV	Horizontal

	High Channel (2480 MHz)									
3264.82	61.35	44.70	6.70	28.20	-9.80	51.55	74.00	-22.45	PK	Vertical
3264.82	50.71	44.70	6.70	28.20	-9.80	40.91	54.00	-13.09	AV	Vertical
3264.69	61.14	44.70	6.70	28.20	-9.80	51.34	74.00	-22.66	PK	Horizontal
3264.69	51.09	44.70	6.70	28.20	-9.80	41.29	54.00	-12.71	AV	Horizontal
4960.51	59.20	44.20	9.04	31.60	-3.56	55.64	74.00	-18.36	PK	Vertical
4960.51	49.32	44.20	9.04	31.60	-3.56	45.76	54.00	-8.24	AV	Vertical
4960.49	59.56	44.20	9.04	31.60	-3.56	56.00	74.00	-18.00	PK	Horizontal
4960.49	50.17	44.20	9.04	31.60	-3.56	46.61	54.00	-7.39	AV	Horizontal
5359.84	48.15	44.20	9.86	32.00	-2.34	45.81	74.00	-28.19	PK	Vertical
5359.84	39.16	44.20	9.86	32.00	-2.34	36.82	54.00	-17.18	AV	Vertical
5359.70	48.47	44.20	9.86	32.00	-2.34	46.13	74.00	-27.87	PK	Horizontal
5359.70	39.50	44.20	9.86	32.00	-2.34	37.16	54.00	-16.84	AV	Horizontal
7439.72	54.49	43.50	11.40	35.50	3.40	57.89	74.00	-16.11	PK	Vertical
7439.72	43.66	43.50	11.40	35.50	3.40	47.06	54.00	-6.94	AV	Vertical
7439.96	54.59	43.50	11.40	35.50	3.40	57.99	74.00	-16.01	PK	Horizontal
7439.96	43.94	43.50	11.40	35.50	3.40	47.34	54.00	-6.66	AV	Horizontal

Note:

3)

- 1) Scan with GFSK, $\pi/4$ -DQPSK,8DPSK,the worst case is 8DPSK Mode
- 2) Factor = Antenna Factor + Cable Loss Pre-amplifier.

Emission Level = Reading + Factor

The frequency emission of peak points that did not show above the forms are at least 20dB below the limit, the frequency

emission is mainly from the environment noise.

Restricted band Requirements

8DPSK-Low Horizontal

No.	Frequency	Reading	Correct	Result	Limit	Margin	Remark
	(MHz)	(dBuV)	Factor(dB/m)	(dBuV/m)	(dBuV/m)	(dB)	
1	2334.008	49.78	-10.08	38.70	74.00	-35.30	peak
2	2390.000	48.78	-10.75	38.03	74.00	-35.97	peak

Vertical

No.	Frequency	Reading	Correct	Result	Limit	Margin	Remark
	(MHz)	(dBuV)	Factor(dB/m)	(dBuV/m)	(dBuV/m)	(dB)	
1	2340.976	50.00	-11.30	38.70	74.00	-35.30	peak
2	2390.000	48.01	-11.02	36.99	74.00	-37.01	peak

8DPSK-High Horizontal

No.	Frequency	Reading	Correct	Result	Limit	Margin	Remark
	(MHz)	(dBuV)	Factor(dB/m)	(dBuV/m)	(dBuV/m)	(dB)	
1	2483.500	47.95	-10.20	37.75	74.00	-36.25	peak
2	2518.680	50.06	-10.03	40.03	74.00	-33.97	peak

Vertical

Note: GFSK, $\pi/4$ -DQPSK, 8DPSK of the nohopping and hopping mode all have been test, the worst case is 8DPSK of the nohopping mode, this report only show the worst case.

4. CONDUCTED SPURIOUS & BAND EDGE EMISSION

4.1 LIMIT

According to FCC section 15.247(d), in any 100kHz bandwidth outside the frequency band in which the spread spectrum or digitally modulated intentional radiator is operating, the radio frequency power that is produced by the intentional radiator shall be at least 20dB below that in the 100kHz bandwidth within the band that contains the highest level of the desired power, based on either an RF conducted or a radiated measurement.

4.2 TEST PROCEDURE

Spectrum Parameter	Setting
Detector	Peak
Start/Stop Frequency	30 MHz to 10th carrier harmonic
RB / VB (emission in restricted band)	100 KHz/300 KHz
Trace-Mode:	Max hold

For Band edge

Spectrum Parameter	Setting	
Detector	Peak	
Start/Stop Frequency	Lower Band Edge: 2300– 2403 MHz	
	Upper Band Edge: 2479 – 2500 MHz	
RB / VB (emission in restricted band)	estricted band) 100 KHz/300 KHz	
Trace-Mode:	Max hold	

Remark: Hopping on and Hopping off mode all have been tested, only worst case hopping off is reported.

4.3 TEST SETUP

The EUT is connected to the Spectrum Analyzer; the RF load attached to the EUT antenna terminal is 50Ohm; the path loss as the factor is calibrated to correct the reading. Make the measurement with the spectrum analyzer's resolution bandwidth (RBW) = 100 kHz. In order to make an accurate measurement, set the span greater than RBW.

4.4 EUT OPERATION CONDITIONS

The EUT tested system was configured as the statements of 2.3 Unless otherwise a special operating condition is specified in the follows during the testing.

4.5 TEST RESULTS

Temperature:	25 ℃	Relative Humidity:	50%
Test Mode:	GFSK(1Mbps)-00/39/78 CH	Test Voltage:	DC 3.7V

39 CH

For Band edge

00 CH

For Hopping Band edge

00 CH

Page 32 of 66 Report No.: STS1905131W02

Temperature:	25 ℃	Relative Humidity:	50%
TAGE MINANA	π/4-DQPSK(2Mbps)– 00/39/78 CH	Test Voltage:	DC 3.7V

00 CH

For Band edge

00 CH

For Hopping Band edge

00 CH

Temperature:	25 ℃	Relative Humidity:	50%
Test Mode:	8DPSK(3Mbps) -00/39/78 CH	Test Voltage:	DC 3.7V

39 CH

78 CH

For Band edge

00 CH

78 CH

For Hopping Band edge

00 CH

78 CH

5. NUMBER OF HOPPING CHANNEL

5.1 LIMIT

FCC Part 15.247,Subpart C				
Section	Test Item	Limit	FrequencyRange (MHz)	Result
15.247 (a)(1)(iii)	Number of Hopping Channel	≥15	2400-2483.5	PASS

Spectrum Parameters	Setting
Attenuation	Auto
Span Frequency	> Operating FrequencyRange
RB	300KHz
VB	300KHz
Detector	Peak
Trace	Max Hold
Sweep Time	Auto

5.2 TEST PROCEDURE

- a. The EUT was directly connected to the spectrum analyzer and antenna output port as show in the block diagram below,
- b. Spectrum Setting: RBW= 300KHz, VBW=300KHz, Sweep time = Auto.

5.3 TEST SETUP

EUT	SPECTRUM
	ANALYZER

5.4 EUT OPERATION CONDITIONS

The EUT tested system was configured as the statements of 2.4 Unless otherwise a special operating condition is specified in the follows during the testing.

5.5 TEST RESULTS

Temperature:	25 ℃	Relative Humidity:	60%
Test Mode:	Hopping Mode -GFSK Mode	Test Voltage:	DC 3.7V

Number of Hopping Channel

79

Hopping channel

AVERAGE TIME OF OCCUPANCY

6.1 LIMIT

FCC Part 15.247,Subpart C				
Section Test Item Limit FrequencyRange (MHz)				Result
15.247 (a)(1)(iii)	Average Time of Occupancy	0.4sec	2400-2483.5	PASS

6.2 TEST PROCEDURE

- a. The transmitter output (antenna port) was connected to the spectrum analyzer
- b. Set RBW =1MHz/VBW =3MHz.
- c. Use a video trigger with the trigger level set to enable triggering only on full pulses.
- d. Sweep Time is more than once pulse time.
- Set the center frequency on any frequency would be measure and set the frequency span to e. zero span.
- f. Measure the maximum time duration of one single pulse.
- g. Set the EUT for DH5, DH3 and DH1 packet transmitting.
- h. Measure the maximum time duration of one single pulse.
- i. DH5 Packet permit maximum 1600/79 / 6 = 3.37 hops per second in each channel (5 time slots RX, 1 time slot TX). Sothe dwell time is the time duration of the pulse times 3.37 x 31.6 = 106.6 within 31.6 seconds.
- j. DH3 Packet permit maximum 1600 / 79 / 4 = 5.06 hops per second in each channel (3 time slots RX, 1 time slot TX). Sothe dwell time is the time duration of the pulse times $5.06 \times 31.6 = 160$ within 31.6 seconds.
- k. DH1 Packet permit maximum 1600 / 79 / 2 = 10.12 hops per second in each channel (1 time slot RX, 1 time slot TX). So the dwell time is the time duration of the pulse times $10.12 \times 31.6 = 320$ within 31.6 seconds.

6.3 TEST SETUP

EUT	SPECTRUM
	ANALYZER

6.4 EUT OPERATION CONDITIONS

The EUT tested system was configured as the statements of 2.4 Unless otherwise a special operating condition is specified in the follows during the testing.

6.5 TEST RESULTS

Temperature:	25 ℃	Relative Humidity:	50%
Test Mode:	GFSK(1Mbps)-DH1/DH3/DH5	Test Voltage:	DC 3.7V

Data Packet	Channel	pulse time(ms)	Dwell Time(s)	Limits(s)
DH1	middle	0.384	0.123	0.4
DH3	middle	1.647	0.264	0.4
DH5	middle	2.894	0.309	0.4

CH39-DH1

CH39-DH3

CH39-DH5

Page 45 of 66 Report No.: STS1905131W02

Temperature:	25 ℃	Relative Humidity:	50%
LIDET MICHAE:	π/4-DQPSK(2Mbps)– 2DH1/2DH3/2DH5	Test Voltage:	DC 3.7V

Data Packet	Channel	pulse time(ms)	Dwell Time(s)	Limits(s)
2DH1	middle	0.395	0.126	0.4
2DH3	middle	1.650	0.264	0.4
2DH5	middle	2.897	0.309	0.4

CH39-2DH1

CH39-2DH3

CH39-2DH5

Page 47 of 66 Report No.: STS1905131W02

Temperature:	25 ℃	Relative Humidity:	50%
LIDET IVIOND:	8DPSK(3Mbps)- 3DH1/3DH3/3DH5	Test Voltage:	DC 3.7V

Data Packet	Channel	pulse time(ms)	Dwell Time(s)	Limits(s)
3DH1	middle	0.394	0.126	0.4
3DH3	middle	1.649	0.264	0.4
3DH5	middle	2.902	0.310	0.4

CH39-3DH1

CH39-3DH3

CH39-3DH5

7. HOPPING CHANNEL SEPARATION MEASUREMEN

7.1 LIMIT

Frequency hopping systems shall have hopping channel carrier frequencies separated by a minimum of 25 kHz or the 20 dB bandwidth of the hopping channel, whichever is greater. Alternatively, frequency hopping systems operating in the 2400-2483.5 MHz band may have hopping channel carrier frequencies that are separated by 25 kHz or two-thirds of the 20 dB bandwidth of the hopping channel, whichever is greater, provided the systems operate with an output power no greater than 125 mW.

Spectrum Parameter	Setting	
Attenuation	Auto	
Span Frequency	> 20 dB Bandwidth or Channel Separation	
RB	30 kHz (20dB Bandwidth) / 30 kHz (Channel Separation)	
VB	100 kHz (20dB Bandwidth) / 100 kHz (Channel Separation)	
Detector	Peak	
Trace	Max Hold	
Sweep Time	Auto	

7.2 TEST PROCEDURE

- a. The transmitter output (antenna port) was connected to the spectrum analyser in peak hold mode.
- b. The resolution bandwidth of 30 kHz and the video bandwidth of 100 kHz were utilised for 20 dB bandwidth measurement.
- c. The resolution bandwidth of 30 kHz and the video bandwidth of 100 kHz were utilised for channel separation measurement.

7.3 TEST SETUP

7.4 EUT OPERATION CONDITIONS

The EUT was programmed to be in continuously transmitting mode.

7.5 TEST RESULTS

Temperature:	25 ℃	Relative Humidity:	50%
I I DOT IVIDAD.	CH00 / CH39 / CH78 (GFSK(1Mbps) Mode)	Test Voltage:	DC 3.7V

Frequency	Ch. Separation (MHz)		
2402 MHz	1.002	0.964	Complies
2441 MHz	1.002	0.964	Complies
2480 MHz	1.002	0.962	Complies

For GFSK: Ch. Separation Limits: > 20dB bandwidth

CH00 -1Mbps

CH39 -1Mbps

CH78 -1Mbps

Temperature:	25 ℃	Relative Humidity:	50%
I LAST IVIDAA'	CH00 / CH39 / CH78 (π/4-DQPSK(2Mbps) Mode)	Test Voltage:	DC 3.7V

Frequency	Ch. Separation (MHz)	· I Imit (MH2)	
2402 MHz	1.002	0.912	Complies
2441 MHz	0.996	0.912	Complies
2480 MHz	0.999	0.912	Complies

For $\pi/4$ -DQPSK(2Mbps): Ch. Separation Limits: > two-thirds 20dB bandwidth

CH00 -2Mbps

CH39 -2Mbps

CH78 -2Mbps

Page 54 of 66 Report No.: STS1905131W02

Temperature:	25℃	Relative Humidity:	50%
I LAST IVIDAA'	CH00 / CH39 / CH78 (8DPSK(3Mbps)Mode)	Test Voltage:	DC 3.7V

Frequency	Ch. Separation (MHz)		
2402 MHz	0.999	0.901	Complies
2441 MHz	1.002	0.901	Complies
2480 MHz	1.002	0.901	Complies

For 8DPSK(3Mbps):Ch. Separation Limits: > two-thirds 20dB bandwidth CH00 -3Mbps

CH39 -3Mbps

CH78 -3Mbps

8. BANDWIDTH TEST

8.1 LIMIT

FCC Part15 15.247,Subpart C				
Section Test Item Limit FrequencyRange (MHz) Result				
15.247 (a)(1)	Bandwidth	(20dB bandwidth)	2400-2483.5	PASS

Spectrum Parameter	Setting	
Attenuation	Auto	
Span Frequency	> Measurement Bandwidth or Channel Separation	
RB	30 kHz (20dB Bandwidth) / 30 kHz (Channel Separation)	
VB	100 kHz (20dB Bandwidth) / 100 kHz (Channel Separation)	
Detector	Peak	
Trace	Max Hold	
Sweep Time	Auto	

8.2 TEST PROCEDURE

- a. The EUT was directly connected to the spectrum analyzer and antenna output port as show in the block diagram below,
- b. Spectrum Setting: RBW= 30KHz, VBW=100KHz, Sweep time = Auto.

8.3 TEST SETUP

EUT	SPECTRUM
	ANALYZER

8.4 EUT OPERATION CONDITIONS

The EUT tested system was configured as the statements of 2.4 Unless otherwise a special operating condition is specified in the follows during the testing.

8.5 TEST RESULTS

Temperature:	25℃	Relative Humidity:	50%
I LAST IVIDAA'	GFSK(1Mbps) CH00 / CH39 / C78	Test Voltage:	DC 3.7V

Frequency	20dB Bandwidth (MHz)	Result
2402 MHz	0.964	PASS
2441 MHz	0.964	PASS
2480 MHz	0.962	PASS

CH00 -1Mbps

CH39 -1Mbps

CH78 -1Mbps

Page 59 of 66 Report No.: STS1905131W02

Temperature:	25 ℃	Relative Humidity:	50%
LAST MICHAE.	π/4-DQPSK(2Mbps) CH00 / CH39 / C78	Test Voltage:	DC 3.7V

Frequency	20dB Bandwidth (MHz)	Result
2402 MHz	1.368	PASS
2441 MHz	1.368	PASS
2480 MHz	1.368	PASS

CH00 -2Mbps

CH39 -2Mbps

CH78 -2Mbps

Page 61 of 66 Report No.: STS1905131W02

Temperature:	25℃	Relative Humidity:	50%
LIDST MINOUD.	8DPSK(3Mbps) CH00 / CH39 / CH78	Test Voltage:	DC 3.7V

Frequency	20dB Bandwidth (MHz)	Result
2402 MHz	1.351	PASS
2441 MHz	1.351	PASS
2480 MHz	1.351	PASS

CH00 -3Mbps

CH39 -3Mbps

CH78 -3Mbps

9. OUTPUT POWER TEST

9.1 LIMIT

FCC Part 15.247,Subpart C					
Section	Test Item	Limit	FrequencyRange (MHz)	Result	
15.047	Output	1 W or 0.125W			
15.247 (a)(1)&(b)(1)	Power	if channel separation > 2/3 bandwidthprovided thesystems operatewith an output power no greater than125 mW(20.97dBm)	2400-2483.5	PASS	

9.2 TEST PROCEDURE

a. The EUT was directly connected to the Power Sensor&PC

9.3 TEST SETUP

9.4 EUT OPERATION CONDITIONS

The EUT tested system was configured as the statements of 2.4 Unless otherwise a special operating condition is specified in the follows during the testing.

9.5 TEST RESULTS

Temperature:	25℃	Relative Humidity:	60%
Test Voltage:	DC 3.7V		

Mode	Channel		Peak Power	Average Power	Limit
	Number		(dBm)	(dBm)	(dBm)
	0	2402	-1.62	-1.79	30.00
GFSK	39	2441	-1.50	-1.66	30.00
	78	2480	-1.21	-1.42	30.00

Note: the channel separation >20dB bandwidth

Mode	Channel	Frequency	Peak Power	Average Power	Limit
	Number (MHz)	(dBm)	(dBm)	(dBm)	
	0	2402	0.35	-2.11	20.97
π/4-DQPSK	39	2441	0.90	-1.66	20.97
	78	2480	1.21	-1.39	20.97

Note: the channel separation >2/3 20dB bandwidth

Mode	Channel	Frequency	Peak Power	Average Power	Limit
	Number (MHz)	(dBm)	(dBm)	(dBm)	
8-DPSK	0	2402	0.86	-2.26	20.97
	39	2441	1.35	-1.67	20.97
	78	2480	1.69	-1.34	20.97

Note: the channel separation >2/3 20dB bandwidth

10. ANTENNA REQUIREMENT

10.1 STANDARD REQUIREMENT

15.203 requirement: For intentional device, according to 15.203: an intentional radiator shall be designed to ensure that no antenna other than that furnished by the responsible party shall be used with the device.

10.2 EUT ANTENNA

The EUT antenna is Ceramic Antenna. It comply with the standard requirement.

APPENDIX-PHOTOS OF TEST SETUP

Note: See test photos in setup photo document for the actual connections between Product and support equipment.

* * * * * END OF THE REPORT * * * * *

