MULUNGUSHI UNIVERSITY

SCHOOL OF SCIENCE, ENGINEERING AND TECHNOLOGY DEPARTMENT OF MATHEMATICS AND SCIENCES

MSM 111 - Mathematical Methods I

Tutorial Sheet 1 - 2020/2021 - Introduction to the Theory of Sets

1.	Given that $U = \{-2, -1, 0, 1, 2, 3, 4, 5, 6, 7\}$, $X = \{\text{Even numbers in } U\}$, $Y = \{\text{ Prime numbers in } U\}$ and $Z = \{-2, 3, 5, 6\}$, perform the following operations
	(i) XUY (ii) $(X \cap Y)^c$ (iii) $X \cap (Y \setminus Z)$ (iv) The cardinality of $X \cup Y$
2.	Let $X = [0, 10]$ be the universal set and $A = [1, 4]$, $B = (2, 8)$, $C = [3, 6)$ be the subsets of X . Find each of the following and display them on the real line.
	(i) B^c , (ii) $A \cap B$ (iii) $(A \cap B)^c$ (iv) $A \cap (B \setminus C)$ (v) $(X \setminus A) \cup (A \setminus B)$
3.	Let \mathbb{R} be the universal set and $D=(-7,4], E=(0,8), F=\{x:x\leq 10,x\in\mathbb{R}\}$ be the subsets of X .
	(i) Find the set $E \setminus F$ and display it on the real line.
	(ii) Using the sets above, verify that $D^c \cap E^c = (D \cup E)^c$
4	(i) For each of the following sets state whether it is finite or infinite and in each case justify your answer.
	$A = \{0,1\} \cap \mathbb{R} \qquad B = \{x \in \mathbb{R} : x^2 < 4\} \qquad C = [0,1] \cap \left(\frac{4}{3},\frac{3}{2}\right) \qquad D = \{x \in \mathbb{R} : x^2 = 4, \ x \text{ is old }\}$
	(ii) Which of the sets listed below are equal to other on the list?
	$A = [1,2] \cap (2,3) \qquad \qquad B = [1,2] \cap [2,3] \qquad \qquad C = \{1,2\} \cap \{2,3\} \qquad \qquad D = \{1,3\} \cap [2,3]$
	Justify your answer.
5	(a) Let $A = \{x \in \mathbb{Z} : x > 5\}$, $B = \{x \in \mathbb{Z} : x < 9\}$ and $C = \{x \in \mathbb{Z} : 5 \le x \le 7\}$. Find
	(i) $A \cap B$ (ii) $B \cup C$ (iii) $(A \cup C)^c$ (iv) $(A^c \cup B)^c$ (v) $n[P(C)]$
	(b) Let $X = \{x \in \mathbb{R} : 3 < x < 6\}, Y = \{x \in \mathbb{R} : 5 \le x \le 7\}$ and $Z = \{0, 1, 2, 3\}$. Find
	(i) $X \cup Y$ (ii) $X^c \cap Z$ (iii) $(X \cap Y) \cup Z$ (iv) $X \cap (Y \cap Z)$.
6.	(a) Given that X and Y are disjoint sets, simplify $X^c \cup Y^c$.
	(b) Given that P and Q are any two sets, express the following in its simplest form:
	(i) $P^c \cap (P \cup Q)^c$ (ii) $(P \cap Q) \cup (P \cap Q^c)$ (iii) $[P^c \cap Q^c]^c$
	$(\mathbf{v}) \ [(P\cap Q)\cup (P\setminus Q)]^c \qquad \qquad (\mathbf{v}\mathbf{i}) \ (P\cap Q)\cup (P\cap Q^c) \qquad \qquad (\mathbf{v}\mathbf{i}\mathbf{i}) \ (P\cap Q)\cup (P\cap Q^c)\cup (P^c\cap Q)$
7.	Express each of the following in the form $\frac{x}{y}$, where x and y are integers and $y \neq 0$:
	(i) 0.1666 (ii) $0.\overline{24}$ (iii) $0.016\overline{7}$ (iv) 2.99999 (iv) $1.34\overline{355}$
8.	Prove that the following are irrational numbers:
	(i) $\sqrt{3}$ (ii) $1 + \sqrt{2}$ (iii) $\sqrt{3} + \sqrt{2}$ (iv) $\frac{1}{1+\sqrt{2}}$
9.	The operation $*$ on the set of real numbers $\mathbb R$ is defined by $a*b=a^2+b^2-2$ where $a,b\in\mathbb R$.
	(i) Is $*$ a binary operation on \mathbb{R} ?

(ii) Determine whether * is commutative(iii) Determine whether * is associative

(iv) Evaluate (3*2)*5