CHEM 3610 Lecture Notes

Matthew Rowley

Fall 2020

COURSE ADMINISTRATIVE DETAILS

- o My office hours
- o Intro to my research
- o Introductory Quiz
- o Grading details
 - · Exams 40, Final 15, Quizzes 15, Homework 30
 - · Homework
 - · Quizzes
- o Importance of reading and learning on your own
- Learning resources
 - · My Office Hours
 - · Tutoring services https://www.suu.edu/academicsuccess/tutoring/
- Show how to access Canvas
 - · Calendar, Grades, Modules, etc.
 - · Zoom, etc.

TEXTBOOK ERRATA

Chapter 1

- $\circ~$ p. 42 In Brief illustration 1B.2 the v_{rms} is used where v_{mean} should be
- \circ p. 46 $Z=\frac{RT}{pV_m^{\circ}}$ in the paragraph between equations 1C.1 and 1C.2 is wrong. The expression for the molar volume of an ideal gas was erroneously substituted into the real gas molar volume

Chapter 2

 \circ p.86 – Equations 2C.6 and 2C.7a both should have "...= $H(T_1)$..." instead of "...= $H(T_2)$..."

Chapter 5

$$\circ \ \ \text{p.203-Equation 5C.4 should be:} \ y_A = \frac{\chi_A p_A^\star}{p_B^\star + \left(p_A^\star - p_B^\star\right)\chi_A} = 1 - y_B$$

CHAPTER 1

THE PROPERTIES OF GASES

1A The Perfect Gas

Variables of State

- o Gases are composed of particles moving freely through space
- Gas particles interact only weakly, and only near the point of collision
- Collisions can explain all of the observed gas properties (such as temperature and pressure)
- Variables of state:
 - Pressure (p)
 - * Pressure is the force a gas exerts on its surroundings (chamber walls)
 - * Pressure can be measured by a barometer, manometer, or other gauge
 - * Volume will change unless the pressure is in mechanical equilibrium with another force
 - \cdot Temperature (T)
 - * Temperature is a measure of the kinetic energy of the gas particles
 - * A perfect gas can be used to determine the *thermodynamic temperature scale*
 - * This scale (called "Kelvin") relates to Celsius by: $T_K = T_{\circ C} 273.15$ (exact)
 - · Volume (V)
 - · Moles (n) The number of moles of gas particles in a particular gas sample

Equations of State

- o An equation of state relates all of the state variables for a gas
- Developing the perfect gas equation of state:
 - · By keeping one variable (plus n) fixed, the relationship between the other two can be determined (isotherms, isochores, and isobars)
 - Boyle's Law: $p \propto \frac{1}{V}$ at constant n,T
 - · Charles's Law: $V \propto T$ at constant n, p
 - · Avogardro's Principle: $V \propto n$ at constant T,p
- \circ The same proportionality constant consistently appears: The gas constant R

- $\circ~$ The gas constant can also be related to the Boltzmann constant: $R=N_Ak_B$
- \circ Combining these relations gives the perfect gas law: pV = nRT
- o For mixtures of perfect gases, each gas exerts a partial pressure as if the others were not present
- $\circ~$ This is Dalton's law of partial pressures: $p_{Total} = \sum \chi_i p_i$

1B The Kinetic Model

Pressure and Molecular Speeds

- The kinetic-molecular theory of gases explains gas properties solely through elastic collisions of gas particles
- Despite being remarkably simple, kinetic theory accurately describes almost all physical properties and processes a gas can exhibit.
- o This theory has three main assumptions:
 - · A gas is composed of molecules in random ceaseless motion
 - · The size of the molecules is negligible
 - · All molecular collisions are elastic (translational kinetic energy is conserved)
- Pressure can be determined by analyzing the momentum transferred to the walls of a container through molecular collisions
- $\circ~$ This approach also leads to the perfect gas law in a different form: $pV=\frac{1}{3}nMv_{rms}^2$
- \circ Here, M is the molar molecular mass and $v_{rms} = \langle v^2 \rangle^{1/2}$
- $\circ~$ Comparing this to the perfect gas law gives the relation: $v_{rms} = \left(\frac{3RT}{M}\right)^{1/2}$

The Maxwell-Boltzmann Distribution of Speeds

- o In a ensemble of molecules, not all of them will have the average velocity
- Determining the distribution of speeds was a tour-de-force for Boltzmann and Maxwell, and one
 of the first applications of statistical mechanics
- $\circ \ \ \mbox{For a perfect gas:} \ f(v) = 4\pi \left(\frac{M}{2\pi RT}\right)^{3/2} v^2 e^{\frac{-Mv^2}{2RT}}$
- Figure 1B.4 compares the velocity distributions of molecules of different sizes and at different temperatures

Mean Values

$$\circ \ \ \text{Mean Speed:} \ v_{mean} = \left(\frac{8RT}{\pi M}\right)^{1/2} = \left(\frac{8}{3\pi}\right)^{1/2} v_{rms}$$

$$\circ \ \ \text{Most Probable Speed:} \ v_{mp} = \left(\frac{2RT}{M}\right)^{^{1/2}} = \left(\frac{2}{3}\right)^{^{1/2}} v_{rms}$$

• Mean Relative Speed (Similar Particles): $v_{rel} = \sqrt{2}v_{mean}$

$$\circ$$
 Mean Relative Speed (Different Particles): $v_{rel} = \left(\frac{8RT}{\pi\mu}\right)^{1/2}$ $\mu = \frac{M_A M_B}{M_A + M_B}$

Collisions

- o Figure 1B.8 provides a framework for evaluating collisions
- $\circ \sigma$, the collision cross-section, for some common gases is given in Table 1B.2 (For N₂, $\sigma = 0.43 \, nm^2$)

$$\circ$$
 This gives the collision frequency as: $z = \sigma v_{rel} \mathcal{N}$ $\mathcal{N} = \frac{N}{V} = \frac{p N_A}{RT} = \frac{p}{k_B T}$

 \circ The mean free path (λ) is the average distance a particle travels between collisions

$$\circ \ \lambda = \frac{v_{rel}}{z} = \frac{k_B T}{\sigma p}$$
 Note that for unit cancellation, p should be in Pa

1C Real Gases

Deviations from Perfect Behavior

- o Real gases interact with each other through both attractions and repulsions
- o Under different circumstances, either of the two effects can dominate
- Attractions give a lower pressure than a perfect gas, while repulsions give a higher pressure than a perfect gas
- Figure 1C.1 shows the potential curve which is relevant as particles approach and collide
- At low pressures, the attractive portion of the potential dominates and the gases are more easily compressed
- At high pressures, the repulsive portion of the potential dominates and gases are more difficult to compress
- The potential curve will come up again soon in an unusual way, with respect to the Joule-Thompson coefficient

- \circ Examine the path from A \rightarrow F in Figure 1C.2
 - · For A \rightarrow B, the gas behaves like a perfect gas
 - \cdot For B \to C, the gas deviates from a perfect gas, requiring more pressure to compress the gas
 - For $C \to E$, the gas compresses with no additional pressure increase. During this period, the gas is actually condensing out as a liquid. The gas phase remains the same, but through the compression it comprises a smaller and smaller fraction of the whole, with the liquid phase growing
 - For $E \rightarrow F$, only liquid phase remains, and liquids are very incompressible
- Figure 1C.2 contains a few more interesting points:
 - · Low temperature isotherms intersect with the blue region at the vapor pressure for that temperature
 - $31.1^{\circ}C$ is the *critical* isotherm, the warmest isotherm which can exhibit liquid and gas coexisting in equilibrium
 - · Supercritical fluids are shown above the critical pressure and critical temperature
- \circ The *compression factor* (Z) is a convenient way to characterize a gases deviation from perfect gas behavior

$$\cdot Z = \frac{V_m}{V_m^{\circ}}$$

$$\cdot pV_m = RTZ$$

- Figure 1C.3 shows how Z varies with pressure for different gases
- This behavior $(Z>1\,{\rm vs}\,Z<1)$ can be explained by the relative importance of the repulsive and attractive portions of the potential curve
- Table 1C.2 shows how different gases have a similar compression factor at the critical point, even if their critical constants vary widely

The Virial Equation

- o A mathematical model for the compression factor could give us a reliable equation of state
- \circ One approach is to expand Z as a power series with respect to one of the state variables:

·
$$pV_m = RT \left(1 + B'p + C'p^2 + \cdots\right)$$

· $pV_m = RT \left(1 + \frac{B}{V_m} + \frac{C}{V_m^2} + \cdots\right)$ (More Common)

- These are different forms of the *Virial Equation*
- $\circ~$ The expansion could in principle be expanded indefinitely but in practice is limited to only the B or sometimes also the C terms

- \circ Table 1C.1 gives the B virial coefficient for several gases and two temperatures
- \circ The *Boyle temperature* is the temperature at which the second Virial coefficient (B) is zero
- This temperature exhibits behavior closest to that of a perfect gas over the widest ranges of pressure

The Van der Waals Equation of State

- The Virial equation makes sense mathematically, but is not easily related to specific properties of real gases
- \circ Van der Waals (in 1873) proposed an equation which explicitly considered both the attractive forces and finite volume of real gas particles
- $\circ~$ The van der Waals equation: $p = \frac{nRT}{V-nb} a\frac{n^2}{V^2}$
- \circ In this equation, b accounts for the size of the gas particles, and a accounts for the attractive forces
- \circ To be clear, a and b are strictly empirical constants, but they very closely map on to these physical properties
- o Table 1C.3 shows van der Waals coefficients for a variety of gases
- o There are other equations of state, each with strengths and weaknesses

The Principle of Corresponding States

- The compression factor of different gases is similar at the critical point
- o Using reduced state variables, gases give similar compression factors at all states

$$V_r = \frac{V_m}{V_c}$$

$$\cdot \ p_r = \frac{p}{p_c}$$

$$T_r = \frac{T}{T_c}$$

- The van der Waals equation can be expressed in terms of reduced variables, and represent all gases simultaneously
- $\circ~$ Reduced van der Waals equation: $p_r = \frac{8T_r}{3V_r 1} \frac{3}{V_r^2}$

CHAPTER 2

THE FIRST LAW

• The first law of thermodynamics states that energy can be neither created nor destroyed, but only change form or transfer between systems

2A Internal Energy

Terms and Definitions

- When considering thermodynamic potentials, the universe is split into system and surroundings
- We must further define the interactions which can occur between the system and surroundings

Open System: Energy and matter can transfer between system and surroundings

Closed System: Only energy can transfer between system and surroundings

Isolated System: Neither energy nor matter can transfer between system and surroudnings

 Energy can transfer as either heat or work, so boundaries can come in two different varieties as well

Diathermic: Boundaries which can transfer heat

Adiabatic: Boundaries which do not transfew heat

And lastly, processes come in two varieties

Exothermic: A process which releases heat into the surroundings

Endothermic: A process which takes heat in from the surroundings

Developing the First Law

- *Internal Energy* is the total energy of a system
- Internal energy is a state function, which depends only on state variables of a system and not on its past processes or the state of the surroundings
- Internal energy can be reported either as a total (extensive property) or molar (intensive property) amount
- Generally, internal energy can include both kinetic and potential energy
- The *equipartition theory* states that at equilibrium the kinetic energy will be shared equally between all degrees of freedom

- \circ Each degree of freedom will hold $\frac{1}{2}RT$ units of energy per mole
- o For a monoatomic perfect gas, internal energy can be easily analyzed
 - · With no interactions, the perfect gas has no potential energy
 - · There are also no vibrations or rotations, so tranlation is the only component of kinetic energy
 - · The average translational kinetic energy in an ensemble of gas molecules is: $\frac{3}{2}k_BT$ for an individual molecule, or $\frac{3}{2}RT$ per mole
 - · Note that the internal energy is independent of both p and V
- $\circ~$ For a linear diatomic at room temperature (2 rotations added), $U_m = \frac{5}{2}RT$
- \circ Mathematically, the first law can be stated as: $\Delta U = q + w$
- \circ Considering infinitesimal changes gives: dU = dq + dw

Work

- $\circ~$ Generally, we can express work as force times distance: $\mathrm{d} w = -\left|F\right| \mathrm{d} z$
- o Table 2A.1 shows the equations for several forms of work
- $\circ~$ For gas expansion work this becomes: $\mathrm{d}w=-p_{ex}\mathrm{d}V$
- \circ The total work is: $w = -\int_{V_i}^{V_f} p_{ex} \mathrm{d}V$
- $\circ~$ It is important to note that the pressure here is the $\it external$ pressure. This is true whether $\Delta V<0$ or $\Delta V>0$
- \circ Indicator diagrams (p vs V) are useful when analyzing changes in gas states
- o Free expansions have no external pressure, and so involve no work
- o Infinitesimal changes in the state variables make any change *reversible*, but mostly we are concerned with two particular reversible processes
- o Isothermal Reversible Expansion:
 - · For the process to be reversible, $p_{ex} = p$
 - . This allows us to replace $w=-\int_{V_i}^{V_f}p_{ex}\mathrm{d}V$ with $w=-nRT\int_{V_i}^{V_f}\frac{\mathrm{d}V}{V}=-nRT\ln\frac{V_f}{V_i}$
- Adiabatic Reversible Expansion: These are a little more complex to analyze and are covered in section 2E

Heat

- On the molecular level, work can be seen as coordinate motion of the gas particles. Heat, on the other hand, represents a change in the velocities of *random*, undirected particle motion
- \circ In the absence of work (isochoric gas processes), $\int_i^f \mathrm{d}U = \int_i^f \mathrm{d}q_V$
- Constant volume calorimeters ("bomb calorimeters") take advantage of this fact to relate internal energy changes to measured temperature changes
- $\circ~$ For a bomb calorimeter: $q=-C\Delta T$, where C is a calibrated heat capacity
- $\circ~$ Heat capacity at constant volume is defined as $C_V = \left(\frac{\partial U}{\partial T}\right)_V$
- $\circ \ \ \text{For a monoatomic perfect gas this gives:} \ C_{V,m} = \frac{\partial}{\partial T} \left(\frac{3}{2} RT \right)_V = \frac{3}{2} R = 12.47 \frac{J}{mol \ K}$
- $\circ~$ And the heat at constant volume is: $q_V = C_V \Delta T = \Delta U_V$

2B Enthalpy

- When the volume is no longer constant, internal energy is no longer easy to measure or useful in determining spontaneity
- \circ Under constant pressure conditions, *enthalpy* takes the place of internal energy in both respects
- o Enthalpy is also a state function, and makes our second *Thermodynamic Potential*
- $\circ \ H = U + pV$
- $\circ dH = dU + d(pV)$ can be simplified in constant pressure to dH = dU + pdV
- $\circ \,$ Since ${\rm d}U={\rm d}q+{\rm d}w,$ if only expansion work is involved then it can be further simplified to ${\rm d}H={\rm d}q_p$
- o Enthalpy can be measured with an *isobaric* (coffee-cup) calorimeter
- $\circ \ \Delta H = -C\Delta T$, where C is a calibrated heat capacity
- $\circ \ \Delta H$ can also be related to ΔU
 - · For solids and liquids, $p\Delta V_m$ is often very small so $\Delta H \approx \Delta U$
 - · For gases, $\Delta H \approx \Delta U + \Delta n_{gas} RT$
- $\circ~$ Constant pressure heat capacity: $C_p=\left(\frac{\partial H}{\partial T}\right)_p$ and $\Delta H_p=C_p\Delta T$

- Isobaric heat capacity is a function of temperature, as different energetic degrees of freedom become available at higher temperature
- $\circ~$ An common empirical equation for C_p is: $C_{p,m} = a + bT + \frac{c}{T^2}$
- \circ For a perfect gas, $C_p = C_V + nR$ and $C_{p,m} = C_{V,m} + R$

2C Thermochemistry

Standard Enthalpy Changes

- o Studying the flow of energy through the course of a reaction is called thermochemistry
- \circ Values in thermochemistry are often referenced to a *standard state*, defined as p=1 bar for gases
- \circ Other phases, mixtures, etc. have different standard state definitions, but they are all notated with the symbol: $^{\ominus}$
- o For example, the standard enthalpy of vaporization for water would be:

$$H_2O(1) \longrightarrow H_2O(g)$$
 $\Delta_{vap}H^{\Theta}(373 K) = 40.55 kJ/mol$

- o Because enthalpy is a state function, Hess's law applies
- $\circ \text{ e.g. } \Delta_{sub} H^{\ominus} = \Delta_{fus} H^{\ominus} + \Delta_{vap} H^{\ominus}$
- o For a reaction, standard enthalpy change can be generally calculated as:

$$\Delta H^{\ominus} = \sum_{Products} \nu H_m^{\ominus} - \sum_{Reactants} \nu H_m^{\ominus}$$

 Usually, however, finding molar enthalpies is not as convenient as using enthalpies related to some defined elemental state (enthalpies of formation)

Standard Enthalpies of Formation

- $\circ~$ For convenience, we define a reference state as an element at its most stable state and a pressure of $1\,bar$
- \circ Compounds can be formed from that reference state, with a enthalpy of reaction called the standard enthalpy of formation: $\Delta_f H^\Theta$
- One special exception is that for ionic solutions the hydrogen ion is also defined as a reference state $(\Delta_f H^{\oplus}(\mathbf{H}^+,aq)=0)$
- We can imagine a reaction as breaking the reactants apart into their elements, then using them to form the products
- $\circ \ \ Because \ enthalpy \ is \ a \ state \ function, it \ doesn't \ matter \ that \ this \ process \ is \ completely \ hypothetical$

$$\circ \ \Delta_r H^{\ominus} = \sum_{Products} \nu \Delta_f H^{\ominus} - \sum_{Reactants} \nu \Delta_f H^{\ominus}$$

Temperature Dependence of Reaction Enthalpies

- \circ When we have dealt with reaction enthalpies before, we have assumed that they are independent of temperature (e.g. $\Delta G = \Delta H T \Delta S$)
- The enthalpies of reactants and products will both increase with temperature, but not at the same rate
- $\circ C_p$ describes how the enthalpy of a substance changes with temperature: $H(T_2)=H(T_1)+\int_{T_1}^{T_2}C_p\mathrm{d}T$
- $\circ \,$ p.86 Equations 2C.6 and 2C.7a both should have $= H(T_1)$ instead of $= H(T_2)$
- \circ Figure 2C.2 illustrates how the reaction enthalpy might change with temperature if C_p is different for reactants and products
- This relation is summarized in Kirchoff's Law: $\Delta_r H^{\Theta}(T_2) = \Delta_r H^{\Theta}(T_1) + \int_{T_1}^{T_2} \Delta_r C_p^{\Theta} dT$
- o Note that this is the total change in heat capacity, taking into account the reaction stoichiometry:

$$\Delta_r C_p^{\Theta} = \sum_{Products} \nu C_p^{\Theta} - \sum_{Reactants} \nu C_p^{\Theta}$$

 $\circ\;$ Even this approach is an approximation, as the heat capacities of individual substances can change with temperature

2D State Functions and Exact Differentials

- Changes in state functions can be found without dependance on the path from initial to final states
- \circ This is why the differential of a state function is called and exact differential: $\Delta U = \int_i^f \mathrm{d}U$
- Other functions depend on the path and are called path functions
- \circ The differential of a path function is called an *inexact differential*: $q=\int_i^f \mathrm{d}q$
- The "d" indicates that this is an inexact differential and a path integral

Changes in Internal Energy

- $\circ \ \ \text{Because internal energy is a function of both } V \ \text{and} \ T \colon \mathrm{d} U = \left(\frac{\partial U}{\partial V}\right)_T \mathrm{d} V + \left(\frac{\partial U}{\partial T}\right)_V \mathrm{d} T$
- \circ Note the natural variables of U, and reference the Wikipedia "Thermodynamic Potentials" page

- $\circ~$ Partial derivatives of natural variables yield state variables, but here we differentiate with respect to easily measurable V and T
- \circ Sometimes a partial derivative has a straightforward physical interpretation (such as C_p and C_V), and sometimes not
- $\circ \ \ \text{The } \textit{internal pressure } \text{characterizes how internal energy changes with volume: } \pi_T = \left(\frac{\partial U}{\partial V}\right)_T$
- \circ So, the exact differntial is: $\mathrm{d}U = \pi_T \mathrm{d}V + C_V \mathrm{d}T$
- o Figures 2D.2 and 2D.3 illustrate what the exact and partial derivative mean
- \circ Note that while we use C_V in this expression, the differential is exact regardless of the conditions
- At constant pressure we can get new equations which give us new physical constants:
- $\circ~$ The expansion coefficient: $\alpha = \frac{1}{V} \left(\frac{\partial V}{\partial T} \right)_p$
- \circ The isothermal compressibility: $\kappa_T = -\frac{1}{V} \left(\frac{\partial V}{\partial p} \right)_T$
- $\circ~$ With some algebra, we finally arrive at: $\left(\frac{\partial U}{\partial T}\right)_p = \alpha \pi_T V + C_V$
- And finally, we can (Justification 2D.1) get the general expression: $C_p C_V = \frac{\alpha^2 TV}{\kappa_T}$

The Joule-Thompson Effect

• We can examine the exact differential for enthalpy in a similar way:

$$dH = \left(\frac{\partial H}{\partial p}\right)_T dp + \left(\frac{\partial H}{\partial T}\right)_p dT = -\mu C_p dp + C_p dT$$

- $\circ~\mu$ is the Joule-Thompson coefficient, $\mu = \left(\frac{\partial T}{\partial p}\right)_H$
- $\circ \mu$ can be directly observed under *isenthalpic* conditions, as we will do next week in lab
- $\circ \ \mu > 0$ for most gases under standard conditions, but can become negative under certain conditions
- \circ Figures 2D.10 and 2D.11 show the heating and cooling regions in T/p space
- The Joule-Thompson effect can be interpreted with respect to the exchange between potential and kinetic energy as gas molecules move farther apart in an expansion

2E Adiabatic Changes

- \circ We can find ΔU through a hypothetical two-step process shown in Figure 2E.1
 - \cdot First an isothermal expansion. For an ideal gas this process keeps U constant
 - · Then an isochoric cooling. For any substance $\Delta U = C_V \Delta T$
- $\circ~$ For an adiabatic process, there is no heat exhanged so $\delta U = w = C_V \Delta T$
- $\circ~$ The temperature change can be found by: $V_iT_i^c=V_fT_f^c$ where $c=\frac{C_{V,m}}{R}$
- $\circ~$ And the change in pressure is: $p_i V_i^{\gamma} = p_f V_f^{\gamma}$ where $\gamma = \frac{C_{p,m}}{C_{V,m}}$

CHAPTER 3

THE SECOND AND THIRD LAWS

3A Entropy

Discovering and Defining Entropy

- The direction of spontaneous change is *not* always in the direction of lower energy
- \circ Instead it relates to the distribution of energy, but understanding this concept will require the introduction f a new state variable, S
- \circ You probably conceptualize S as a measure of disorder. This isn't wrong, but it is very different from how early physicists thought when discovering the second law
- Consider a bouncing ball (Figures 3A.1 and 3A.2):
 - Directed kinetic energy is converted into random thermal motion in the floor and air through friction and inelastic collisions
 - This process distributes the energy more widely, into more particles and more diverse energy modes
 - · We wouldn't expect the random thermal motion of the floor to spontaneously transfer into a ball-at-rest as directed kinetic energy (i.e. the ball won't spontaneously bounce up from the floor)
 - · Such a spontaneous coordination of the thermal energy would result in the floor getting colder, effectively converting thermal energy into work
- $\circ~$ Kelvin's formulation of the second law (Figure 3A.3):
 - No process is possible in which the sole result is the absorption of heat from a reservoir and its complete conversion into work.
- This is actually synonymous with Clausius's formulation fo the second law (Figure 3A.4):
 Heat does not flow spontaneously from a cool body to a hotter body.
- o To transfer heat in this way will always require an amount of work
- \circ The thermodynamic definition of entropy is: $\mathrm{d}S = \frac{\mathrm{d}q_{rev}}{T}$
- This definition came from studying heat engine cycles, and we will revisit it later, but for now suppose that it is true
- It is *essential* that you use the heat from an equivalent reversible process if the actual process is irreversible

- For finding entropy change of the surroundings, you can use the actual heat since the surrounding are modeled as an infinite thermal reservoir
- The statistical definition of entropy is: $S = k_B \ln \mathcal{W}$
- $\circ \ \mathcal{W}$ is the number of microstates available at a given temperature
- o Hard spheres gas simulation

Entropy as a State Function – Heat Engines

- $\circ~$ If entropy is truly a state function, then $\oint \mathrm{d}S = \oint \frac{\mathrm{d}q_{rev}}{T} = 0$
- Any arbitrary cycle can be approximated as a series of adiabats and isotherms (Figure 3A.10), so we need only consider those reversible processes
- These reversible processes can combine in a heat engine cycle known as a *Carnot Cycle* (Figure 3A.7):
 - · Walk through the heat engine process qualitatively
 - · When considering the entropy of each step, the adiabats don't contribute because q=0
 - · The two isotherms take place at different temperatures, with heat entering the system during the isothermal expansion and leaving the system during the isothermal compression

$$\cdot \oint \mathrm{d}S = \frac{q_h}{T_h} + \frac{q_c}{T_c}$$

- · Assuming that the heat engine utilizes a perfect gas, we can prove the relation: $\frac{q_h}{q_c} = -\frac{T_h}{T_c}$
- This proves that $\oint \mathrm{d}S = 0$ and that entropy is therefore a state function
- $\circ~$ The next step is to prove that this result applies for any substance and not only for perfect gases
- $\circ \ \ \text{Define the engine efficiency:} \ \eta = \frac{\text{workperformed}}{\text{heatabsorbedfromhotsource}} = \frac{|w|}{|q_h|}$
- \circ Energy conservation dictates that $|w|=|q_h|-|q_c|$, so we can re-write the efficiency as: $\eta=1-\frac{T_c}{T_h}$
- Now the efficiency of all reversible heat engines are equal, and greater than any non-reversible heat engines
- This can be shown by using a heat engine to power a heat pump. If the efficiencies were different, then they could be configured to convert heat directly into work, contrary to the second law
- This leads to the conclusion that the limits on efficiency apply regardless of configuration or working substance

- By comparing the efficiency of a carnot heat engine with different temperatures, absolute zero can be extrapolated
 - Let the hot source remain fixed, while decreasing the temperature of the cold sink, and extrapolate to the temperature which gives 100% efficiency
- $\circ~$ Ultimately, we can give the Clausius inequality: $\mathrm{d}S \geq \frac{\mathrm{d}q}{T}$
- o The equality holds only for reversible processes

Calculating Entropy Changes for Various Processes

- Reversible Processes:
 - · For an isothermal process (on a perfect gas), q=-w and $w=-nRT\ln\frac{V_f}{V_i}$, so $q=nRT\ln\frac{V_f}{V_i}$ and $\Delta S=nT\ln\frac{V_f}{V_i}$
 - For a reversible adiabatic process, q=0 so $\Delta S=0$
 - · For a reversible isochoric process, $dq = C_V T$ so $\Delta S = \int \frac{dq}{T} = \int \frac{C_V}{T} dT$
 - · If C_V is independent of temperature over the relevant range it becomes $\Delta S = C_V \ln \frac{T_f}{T_i}$
 - · Reversible isobaric warming similarly gives $\Delta S = \int \frac{C_V}{T} \mathrm{d}T = C_V \ln \frac{T_f}{T_i}$
 - \cdot For arbitrary processes, since S is a state function we can model them as a combination of any two of the above
 - · Phase transitions at the transition temperature and constant pressure are: $\Delta_{trs}S = \frac{\Delta_{trs}H}{T_{trs}}$
 - For reversible processes $\Delta_{surr}S=-\Delta_{sys}S$
- o Irreversible Processes:

$$\cdot \ \Delta_{surr} S = \int \frac{\mathrm{d}(-q_{sys})}{T_{surr}}$$

- For ΔS_{sys} , model the change as reversible processes
- $\cdot\,$ For example, an irreversible adiabatic free expansion can be modeled as an isotherm
- · A phase change at a different temperature is modeled as an isobaric heating heating to T_{trs} , reversible phase change, and another isobaric heating to T_f

3B The Measurement of Entropy

 One way to find the absolute molar entropy of a substance is the calorimetric measurement of entropy $\circ~$ Essentially, you add up the integral of $\frac{C_p}{T}$ and the contribution from phase changes:

$$S_m(T) = S_m(0) + \int_0^T \frac{C_{P,m}(T)}{T} dT + \sum_{transitions} \frac{\Delta_{trs}H}{T_{trs}}$$

- o Figure 3B.1 illustrates the integral in this expression
- \circ Heat capacities for solids near T=0 are hard to directly measure, but can be modeled using the Debye approximation (extrapolating a cubic function)
- The third law of thermodynamics states that $S_m(0) = 0$ for all perfect crystalline substances
- We find $\Delta_{rxn}S$ entropies using Hess's law in the same way as $\Delta_{rxn}H$

3C Concentrating on the System

- $\circ~$ Re-arranging the Claussius inequality gives us: $\mathrm{d}S \frac{\mathrm{d}q}{T} \geq 0$
- o This is true for any spontaneous process, and it can be modified under specific conditions
 - For constant volume, $\mathrm{d}S \frac{\mathrm{d}U}{T} \geq 0$ and $\mathrm{d}U T\mathrm{d}S \leq 0$
 - + For constant pressure, $\mathrm{d}S \frac{\mathrm{d}H}{T} \geq 0$ and $\mathrm{d}H T\mathrm{d}S \leq 0$
 - \cdot These expressions give a condition for spontanaety referring only to state variables!
- We can now define new thermodynamic potentials:
 - · Helmholtz energy: A = U TS
 - · Gibbs energy: G = H TS
 - · Conditions for spontanaety: $dA_{T,V} \leq 0$ and $dG_{T,p} \leq 0$
- The tendency toward spontanaety for exothermic reactions has more to do with increasing the entropy of the surroundings than with the system seeking lower energy
- o The Helmholtz energy can also be shown to equal the maximum work possible for a process
- Similarly, the Gibbs energy is the maximum non-expansion work possible for a process
- In both cases, the maximum work is always less than the corresponding change in internal energy or enthalpy
- When $\Delta A = 0$ or $\Delta G = 0$ for processes in equilibrium under the appropriate conditions
- $\circ \;$ Like H and S , we use tables of $\Delta_f G$ but must be careful because these values are only applicable at $T=298\;K$

3D Combining the First and Second Laws

- \circ Recall that the exact differential of internal energy is: dU = TdS pdV
- \circ This expresses $\mathrm{d}U$ in terms of only state variables, and so is path independent
- Mathematically, the exact differential of a state function gives rise to an important equality:
 - · For function f(x, y), we can write df = gdx + hdy
 - · It can also be shown to be true that: $\left(\frac{\partial g}{\partial y}\right)_x=\left(\frac{\partial h}{\partial x}\right)_y$
 - In the case of internal energy, this becomes: $\left(\frac{\partial T}{\partial V}\right)_S=-\left(\frac{\partial p}{\partial S}\right)_V$
 - · Table 3D.1 shows all the Maxwell relations

Properties of the Gibbs Energy

- \circ The differential form of Gibbs energy is: dG = VdP SdT (From G = H TS)
- $\circ~$ This gives us a few differentials: $\left(\frac{\partial G}{\partial T}\right)_p=-S$ and $\left(\frac{\partial G}{\partial p}\right)_T=V$
- \circ Figures 3D.2 and 3D.3 integrate these derivatives across T and p
- $\circ~$ The Gibbs-Helmholtz equation relates how entropy changes with temperature:

$$\left(\frac{\partial^{G/T}}{\partial T}\right)_p = -\frac{H}{T^2}$$

- $\circ~$ This becomes particularly useful when relating energies of change: $\left(\frac{\partial^{\Delta G}/T}{\partial T}\right)_p = -\frac{\Delta H}{T^2}$
- \circ Since the equilibrium composition depends on G, this equation tells how an equilibrium reaction might shift in response to a temperature change
- \circ By examining $\Delta G = \Delta H T \Delta S$, it might seem strange that enthalpy, and not entropy determines the shift with a temperature change. The Gibbs-Helmholtz equation explains the experiments which prove this to be the case
- o As pressure increases, the Gibbs energy increases with a slope equal to the volume
- $\circ~$ For a perfect gas, we can calculate the molar Gibbs energy at different pressures:

$$G_m(p) = G_m^{\Theta} + RT \ln \frac{p}{p^{\Theta}}$$

fugacity

- o For real gases, the Gibbs molar energy deviates from the ideal
- $\circ~$ We replace the pressure with a new effective pressure called the *fugacity*:

$$G_m(p) = G_m^{\Theta} + RT \ln \frac{f}{p^{\Theta}}$$

$$\circ \ \ {
m Here}$$
 , $f=\phi p$ and $\ln \phi = \int_0^p rac{Z-1}{p} {
m d} p$

- $\circ~$ Fugacity can be compared to Activity: $\mathcal{A}=\gamma C$
- $\circ~$ The fugacity of all van der Waals gases follow the same curve if reduced variables are used (Figure 3D.8)

CHAPTER 4

PHYSICAL TRANSFORMATIONS OF PURE SUBSTANCES

- A phase, generally, is any form of matter that is uniform throughout in chemical composition
- This goes beyond just solid, liquid, and gas
- Many substances have more than one solid phase, and solutions can have phases which vary by % composition
- \circ We call the number of components in a system C, and the number of phases in a system P
- One component can have multiple phases, and multiple components can exist in a single phase
- Phase transitions can be detected by thermal analysis (Figure 4A.2), even when the two phases are difficult to distinguish
- Here, thermodynamics and kinetics must be distinguished. Metastable phases persist even when a phase change becomes thermodynamically spontaneous
- Chemical potential (μ) is a new, strange state variable, along with n
 - For phase changes and reactions, we will eventually talk about how the number of particles of each species may change (think leChâtelier's principle)
 - · Consider a chamber with a movable wall. We would determine how the volumes of the two sides might change by comparing their pressures
 - · Similarly, when there is a possible transition (phase change, reaction, etc.), we determine how the ns might change by comparing the μ s
 - · At equilibrium, the chemical potential of all phases and species is the same

4A Phase Diagrams of Pure Substances

- $\circ~$ A phase diagram (Figure 4A.4) shows which phases are thermodynamically stable at various $p{\rm s}$ and $T{\rm s}$
- At phase boundaries, multiple phases can coexist
- \circ Condensed phases have a vapor pressure at all temperatures. The phase boundary occurs when $p_{vap}=p_{ext}$
- The phase rule describes the variance, or the number of variables which can be varied while maintaining equilibrium:

$$F = C - P + 2$$
 For pure substances, this is $F = 3 - P$

- o So, 1-phase equilibria are areas, 2-phase equilibria are lines, and 3-phase equilibria are points
- o The solid/liquid line for water is sloped negatively because of the low density of ice
- o Discuss the phase diagrams in Figures 4A.7, 4A.9, and 4A.11

4B Thermodynamic Aspects of Phase Transitions

- $\circ~~\mu$, like G, changes with temperature according to molar entropy: $\left(\frac{\partial\mu}{\partial T}\right)_n=-S_m$
- o Figure 4B.1 shows how the stability of different phases compete at different temperatures
- $\circ~$ Applying pressure to chemical potential is again like $G\!\!:\!\left(\frac{\partial\mu}{\partial p}\right)_T=V_m$
- o Figure 4B.2 shows how the a substance's freezing point will respond to changes in pressure

Phase Boundaries

- Phase boundaries occur where the chemical potentials of both phases are the same
- As both phases respond to changes in temperature and pressure, the line of the phase boundary keeps the potentials equal to each other
- $\circ~$ The Clapeyron equation gives the slope of phase boundaries: $\frac{\mathrm{d}p}{\mathrm{d}T}=\frac{\Delta_{trs}S}{\Delta_{trs}V_m}$
- \circ Since phase changes along the boundary are reversible, we can replace $\Delta_{trs}S = \frac{\Delta_{trs}H}{T}$, giving $\frac{\mathrm{d}p}{\mathrm{d}T} = \frac{\Delta_{trs}H}{T\Delta_{trs}V_m}$
- \circ For vaporization, $\Delta_{vap}V_m=rac{RT}{p}$, giving us $rac{\mathrm{d}p}{\mathrm{d}T}=rac{p\Delta_{vap}H}{RT^2}$
- $\circ~$ Put the pressures on the same side, and use the identity $\frac{\mathrm{d}p}{p}=\mathrm{d}\ln p$
- $\circ~$ This gives us the Clausius-Clapeyron equation: $\frac{\mathrm{d}\ln p}{\mathrm{d}T} = \frac{\Delta_{vap}H}{RT^2}$
- Integrating across a temperature and assuming $\Delta_{vap}H$ is constant across the range gives:

$$p_{T_2} = p_{T_1} e^{-\chi}$$
 $\chi = \frac{\Delta_{vap} H}{R} \left(\frac{1}{T_2} - \frac{1}{T_1} \right)$

 $\circ~$ For the solid/gas boundary, merely substitute the enthalpy of sublimation: $\Delta_{sub}H=\Delta_{fus}H+\Delta_{vap}H$

Ehrenfest Classification of Phase Transitions

- o Phase transitions can be classified as first-order or second-order transitions
- $\circ\;$ All of the phase transitions familiar to you are first-order
- \circ Figure 4B.9 shows the changes in V_m , H, μ , S, and C_p across phase transitions of both types
- $\circ~$ A third type, λ transitions, have C_p approach ∞ at the transition, but does so via asymptotes rather than discontinuously
- o Figure 4B.11 shows how a second-order transition might occur on a molecular level

CHAPTER 5

SIMPLE MIXTURES

5A The Thermodynamic Description of Mixtures

- $\circ~$ In binary mixtures, the mole fractions are dependent according to: $\chi_A + \chi_B = 1$
- o The volume change as one component is added depends on the interactions between components
- \circ Partial molar volume: $V_j = \left(\frac{\partial V}{\partial n_j}\right)_{p,t,n'}$
- $\circ~$ Figure 5A.1 shows the partial molar volumes of a water/ethanol mixture Note the min/max at $\chi\approx0.1$
- \circ Adding $20\,ml$ of ethanol to $20\,ml$ water will give a final volume substantially lower than $40\,ml$
- The total change in volume is:

The Chemical Potential

- $\circ~$ The mathematical definition of chemical potential is: $\mu_j=\left(\frac{\partial G}{\partial n_j}\right)_{p,T,n'}$
- \circ This gives the exact differential of Gibbs energy as: $dG = V dp S dT + \mu_A dn_A + \mu_B dn_B + \dots$
- $\circ~$ At constant pressure and temperature, $\mathrm{d}G=\mu_A\mathrm{d}n_A+\mu_B\mathrm{d}n_B+\dots$
- We can also state that the total Gibbs energy is: $G = n_A \mu_A + n_V \mu_B + \dots$
- \circ Now, this equation can be differentiated to give: $dG = \mu_A d_A + n_A d\mu_A + \mu_B dn_B + n_B d\mu_B + \dots$
- $\circ~$ Setting this equal to the constant T and p expression lets us remove the $\mu\mathrm{d}n$ terms
- $\circ~$ This gives the Gibbs-Duhem equation: $\sum n_j \mathrm{d}\mu_j = 0$
- The Gibbs-Duhem equation explicitly shows how the chemical potential of one component is dependent on the chemical potentials of all other components

Thermodynamics of Mixing

- The dependence of μ with p is just like for G: $\mu = \mu^{\ominus} + RT \ln \frac{p}{p^{\ominus}}$
- $\circ~$ We can use this to find the Gibbs energy of mixing for perfect gases
 - · Imagine a box split with one pure component on one side and another on the other
 - · Mixing is analogous to expanding both components to fill the whole box (Figure 5A.6)
 - · Because perfect gases don't interact, each gas expansion can be considered independently

$$\Delta_{mix}G = \Delta\mu_A + \Delta\mu_B = n_A RT \ln \frac{p_A}{p} + n_B RT \ln \frac{p_B}{p}$$

 $\boldsymbol{\cdot}\;$ It is useful to simplify this and express it in terms of mole fractions:

$$\Delta_{mix}G = nRT \left(\chi_A \ln \chi_A + \chi_B \ln \chi_B \right)$$

$$\circ \ \ \text{Entropy of mixing:} \ \Delta_{mix}S = -\left(\frac{\partial \Delta_{mix}G}{\partial T}\right)_{p,n_A,n_B} = -nR\left(\chi_A \ln \chi_A + \chi_B \ln \chi_B\right)$$

 \circ For a perfect gas, the enthalpy of mixing is 0

Chemical Potentials of Liquids

- We can use the fact that two phases in equilibrium have the same chemical potential
- o $\;\mu_A^\star=\mu_A^{\oplus}+RT\ln p_A^\star$ Where μ_A^\star is the chemical potential of a pure liquid
- $\circ~$ This can be rearranged into $\mu_A^{\Theta} = \mu_A^{\star} RT \ln p_A^{\star}$
- $\circ \ \ \mbox{For a mixture, the liquid isn't pure:} \ \mu_A = \mu_A^{\Theta} + RT \ln p_A$
- $\circ~$ Combining the two gives: $\mu_A = \mu_A^\star + RT \ln \frac{p_A}{p_A^\star}$
- $\circ \;\;$ Rault's law states that: $p_A = \chi_A p_A^\star$
- $\circ~$ We finally get: $\mu_A = \mu_A^\star + RT \ln \chi_A$
- $\circ~$ Rault's law works well for concentrated solutions, but dilute solutions follow Henry's law: $p_B = \chi_B K_B$
- $\circ~$ Figures 5A.12-14 Show vapor pressures as a function of χ

5B The Properties of Solutions

Colligative Properties

- o Colligative properties depend only on the mole fraction of a substance, but not its identity
- Figure 5B.6 shows how dissolved solutes can affect the freezing and boiling points of a substance
- o Boiling point elevation: $\Delta T_b = K_b \chi_B$ Where $K_b = \frac{RT^{\star 2}}{\Delta_{vap}H}$
- Freezing point depression: $\Delta T_f = K_f \chi_B$ Where $K_f = \frac{RT^{\star 2}}{\Delta_{freeze}H}$
- \circ Table 5B.1 gives K_b and K_f for some common substances
- \circ Solubility can be estimated, recognizing that when solute B is saturated in solvent A: $\mu_A(l)=\mu_A(g)=\mu_B^\star(s)=\mu_B^\star+RT\ln\chi_B$
- Osmotic pressure is the pressure of solvent across a semi-permeable membrane with a concentration gradient
- $\circ~$ Osmotic pressure follows an equation just like the perfect gas law: $\Pi = \frac{n_B RT}{V}$

5C Phase Diagrams of Binary Systems

• For a mixture of two substances, the total vapor pressure must include the vapor pressures for both components:

$$p = p_A + p_B = \chi_A p_A^* + \chi_B p_B^* = p_B^* + (p_A^* - p_B^*) \chi_A$$

- o Figure 5C.1 shows the vapor pressure of a liquid following Rault's law
- When the pressure is less than the vapor pressure of either liquid, both are able to vaporize (The one makes head-space for the other)
- $\circ~$ The two-dimensional region of coe-existant phases follows the rule F=C-P+2
- \circ The mole-fractions of the vapor phase $(y_A \text{ and } y_B)$ do not match the mole-fractions of the liquid phase

$$\circ \ \text{ p.203 - Equation 5C.4 should be: } \\ y_A = \frac{\chi_A p_A^\star}{p_B^\star + (p_A^\star - p_B^\star)\,\chi_A} = 1 - y_B$$

We can express the total vapor pressure in terms of its composition as well:

$$p = \frac{p_A^{\star} p_B^{\star}}{P_A^{\star} + (p_B^{\star} - p_A^{\star}) y_A}$$

 $\circ~$ Figure 5C.4 shows a mole-fraction plot, combining χ and y

- Figure 5C.5 shows how to draw tie-lines
 - · Composition of the liquid and vapor phases are found by the intersections with the composition curves
 - The lever rule gives the fraction in vapor and liquid phases: $n_{\alpha}l_{\alpha}=n_{\beta}l_{\beta}$
- \circ Considering the system in Figure 5C.8, with $z_A=0.4$ and $T=80^{\circ}C$, estimate:
 - χ_A and χ_B
 - $\cdot y_A$ and y_B
 - · The fraction of moles in the vapor and liquid phases

Distillation and Azeotropes

- Because the composition of the vapor phase is enriched in one component, we can use this as a method of purification
- Condensing the vapor and doing a second, third, etc. distillation can give very pure results
- Figures 5C.10 and 5C.11 illustrate this process
- Azeotropes have more complex composition curves with either a maximum or minimum boiling point
- Distillations with azeotropes result in one pure phase, and one phase at the min/max composition
- Figure 5C.12 shows a maximum boiling point azeotrope
- Figure 5C.13 shows a minimum boiling point azeotrope
- For these systems, which phase will have mixed composition, and what will be the composition?

Liquid-Liquid Phase Diagrams

- Some liquids are only miscible in certain ratios and at certain temperatures
- Demo with isopropyl alcohol/water mixture and beads
- Figure 5C.15 shows one example
- Like before, use tie-lines to determine the composition of the two phases (this time both are liquid)
- There will be one or two *critical* temperatures, which mark the extremes where phase separation occur
- Figure 5C.23 shows the water-nicotine phase diagram with upper and lower critical temperatures
- When the temperature increases to the vapor pressure, we add the vapor composition curves

- Figure 5C.24 is when the upper critical temperature is below the point where any vapor exists
- Figure 5C.25 shows when the vapor composition curves collide with the liquid-liquid composition curves

Liquid-Solid Phase Diagrams

- Figure 5C.27 shows a typical liquid-solid phase diagram
- o For most compositions, a pure solid will begin to freeze out first
- The composition will change as the one component freezes, until the mixture reaches the *eutectic* composition
- Then a eutectic solid freezes out
- Eutectic mixtures can have dramatically lower melting points than the pure substances themselves
- o Lead/Tin solder or gold/silicon

5D Phase Diagrams of Ternary Systems

Skip this section.

5E Activities

- o Fugacity relates how a gas is more or less chemically active than its pressure might suggest
- For solutions, *activity* plays the same role
- $\circ~$ For a solvent, $\mu_A = \mu_A^\star + RT \ln a_A$ where $a_A = \frac{p_A}{p_A^\star}$
- Note that this expression is general, and does not necessarily follow Rault's law
- o For a solute we get an expression referenced to Henry's law:

$$\mu_B = \mu^{\Theta} + RT \ln a_B$$
 where $a_B = \frac{p_B}{K_B}$

- In both cases we can give an activity coefficient γ where $a_A = \gamma_A \chi_A$
- The parameter ξ compares the solvent-solute interactions to the pure substance interactions
 - $\xi = 0$ Is an ideal mixture, where mixing is driven entirely by entropy
 - $\xi < 0$ Gives exothermic mixing. Solvent-solute interactions are favorable, mixing is always spontaneous, and vapor pressures are depressed

- $\xi>0$ Gives endothermic mixing. Solvent-solute interactions are unfavorable, mixing is favorable at high temperatures, and vapor pressures are elevated
- \circ This parameter is used in the Margules equations: $\ln \gamma_A = \xi \chi_B^2$ and $\ln \gamma_B = \xi \chi_A^2$
- \circ Figure 5E.2 shows the vapor pressure of one component at various values of ξ , and Figure 5E.3 shows the total pressure of mixtures with two values of ξ

5F The Activities of Ions

- o Activities for ions are much more complex than for neutral solutes
- \circ While we could assign a γ for each ion, in practice it is far easier to work with γ_{\pm}
- o Debye-Hückel limiting law:
 - The Debye-Hückel limiting law states that: $\log \gamma_{\pm} = -A \, |z_+ z_-| \, \sqrt{I}$
 - · Here, A is a constant related to the solvent. A=0.509 for water at $25^{\circ}C$
 - · I is the ionic strength: $I=\frac{1}{2}\sum z_i^2\left(\frac{b_i}{b^{\oplus}}\right)$ where $b^{\oplus}=1\ molal$
 - Table 5F.2 shows how even modestly concentrated solutions deviate significantly from ideality
 - · At higher ionic strengths, this law is less reliable
- o Extended Debye-Hückel law:
 - . The extended Debye-Hückel law: $\log \gamma_{\pm} = \frac{A \, |z_+ z_-| \, \sqrt{I}}{1 + B \sqrt{I}}$
 - · The Davies Equation: $\log \gamma_{\pm} = -\frac{A |z_+ z_-| \sqrt{I}}{1 + B \sqrt{I}} + CI$
 - $\cdot\,$ Here, B and C are both dimensionless, empirical quantities
 - $\cdot \,\, B$ can be interpreted as the closest approach of two ions
- $\circ~$ At lower salt concentrations, $\gamma_{\pm} < 1$ and sparingly soluble solutes can be "salted in"
- \circ At higher salt concentrations, $\gamma_{\pm}>1$ and even miscible solutes can be "salted out," as in the water-isopropanol system
- \circ Consider the solubility of a sparingly soluble salt in solutions of various ionic strengths:
 - · Solve iteratively for a pure water solution
 - \cdot Assume that I is buffered by the other salt for a salt-buffered solution
 - $\cdot~K_{SP} = 9.8 \times 10^{-9}~{\rm for~PbI_2}$ and $K_{SP} = 1.9 \times 10^{-13}~{\rm for~Mn(OH)_2}$

CHAPTER 6

CHEMICAL EQUILIBRIUM

- o In a chemical system, the system will evolve until it minimizes the total Gibbs energy
- For an equilibrium reaction, this means consuming reactants and producing products, or viceversa
- \circ We can call the extent of a reaction ξ , which is the number of moles of reaction which have occurred

$$\circ \ \ \text{The reaction Gibbs energy is } \Delta_{rxn}G = \left(\frac{\partial G}{\partial \xi}\right)_{p,T} = \sum_{Products} \nu_i \mu_i - \sum_{Reactants} \nu_j \mu_j$$

- Figure 6A.1 shows how $\Delta_r G$ might vary as a function of ξ
- $\circ~$ When $\Delta_{rxn}G=0$ the reaction is at the equilibrium composition and will remain in a dynamic equilibrium
- When $\Delta_{rxn}G < 0$, the forward reaction is spontaneous and the reaction is called *exergonic*
- When $\Delta_{rxn}G>0$, the reverse reaction is spontaneous and the reaction is called *endergonic*
- An exergonic reaction can be made to do work, and an endergonic reaction can be made to proceed anyway if sufficient work is input

6A The Equilibrium Constant

 \circ Consider a gas-phase reaction: $A(g) \longleftrightarrow B(g)$

$$\circ \ \Delta_{rxn}G = \mu_B - \mu_A = \left(\mu_B^{\Theta} + RT \ln p_B\right) - \left(\mu_A^{\Theta} + RT \ln p_A\right) = \Delta_{rxn}G^{\Theta} + RT \ln \frac{p_B}{p_A}$$

- $\circ\,$ Note that if $\Delta_{rxn}G^{\ominus}<0$ the reaction is not necessarily spontaneous under any but standard conditions
- $\circ~$ This ratio of partial pressures is called the reaction quotient: $Q=\frac{p_B}{p_A}$
- $\circ~$ Generally, $Q=\prod \mathcal{A}_i^{
 u_i}$ where u_i are the signed stoichiometric coefficients
- $\circ \ \ \text{For any reaction} \ \Delta_{rxn}G = \Delta_{rxn}G^{\ominus} + RT \ln Q$
- \circ When the system is at equilibrium, $\Delta_{rxn}G=0$, and Q becomes K
- We can rearrange the above equation to give: $RT \ln K = -\Delta_{rxn} G^{\Theta}$

- In fact, the existence of equilibrium reactions is quite surprising:
 - The Gibbs energy of the pure reactants or the pure products will be lower, so you should always be able to minimize the Gibbs energy by going to one extreme
 - · What is missed is the Gibbs energy of mixing for mixed composition in the middle
 - Figure 6A.3 shows how the total system Gibbs energy would vary with ξ both neglecting and considering the Gibbs energy of mixing
 - The presence of a minimum is only possible when mixing is considered
- \circ The equilibrium constant can be expressed in terms of concentrations (K_c) or of pressure (K_p)

$$\circ K_p = K_c \left(\frac{c^{\Theta}RT}{p^{\Theta}} \right)^{\Delta \nu}$$

• Figure 6A.4 shows the molecular interpretation of equilibrium. It maximizes the distribution of energy

6B The Response of Equilibria to the Conditions

- \circ Any perturbation from equilibrium will cause a response, or change in the extent of reaction (ξ)
- This response will act to restore equilibrium, and will often be in direct opposition to the perturbation

The Response to Pressure

- o This is really the response to the *partial* pressures of the reacting gases (As by a change in volume)
- \circ I.e., adding an inert gas to increase the total pressure will not affect the value of K_p
- \circ Changes in the partial pressures will result in a shift based on $\Delta_{rxn}n_q$
- \circ Increases in pressure will shift ξ toward the side with fewer moles of gas

The Response to Temperature

- \circ Unlike with p, changes in T affect the actual value of K
- The direction of the shift depends on $\Delta_{rxn}H$
- As a rule of thumb, we can treat "heat" as either a product or a reactant
- \circ The van't Hoff equation, derived from Gibbs energy equations, gives the change in $\ln K$:

$$\frac{\mathrm{d}\ln K}{\mathrm{d}^{1/T}} = -\frac{\Delta_{rxn}H^{\Theta}}{R}$$

- $\circ \ \ \mbox{If} \ \ln K$ is plotted against $^1\!/\! T$, the slope of the curve will be: $-\frac{\Delta_{rxn} H^{\ominus}}{R}$
- $\circ \ \ \text{Integrating the van't Hoff equation gives:} \ \ln K_2 \ln K_1 = -\frac{\Delta_{rxn} H^{\ominus}}{R} \left(\frac{1}{T_2} \frac{1}{T_1} \right)$
- \circ Note that here we use $\Delta_{rxn}H^{\ominus}$ even though standard conditions are not necessarily at equilibrium. This is because we are relying on the earlier equation: $RT \ln K = -\Delta_{rxn}G^{\ominus}$

6C Electrochemical Cells

- Electrochemical cell construction and operation:
 - The cathode is the electrode where reduction occurs (cathode and reduction both begin with consonants)
 - The anode is the electrode where oxidation occurs (anode and oxidation both begin with vowels)
 - · This is true for both electrolytic and voltaic cells
 - The salt bridge completes the circuit, with anions flowing toward the anode, and cations flowing toward the cathode
- $\circ \ \ The \ half-reactions \ can \ be \ notated \ like \ this: \ Zn(s)|ZnSO_4(aq)||CuSO_4(aq)||Cu(s)$
- \circ For a cell at standard conditions, we can use the half-cell reduction potentials and $E_{cell} = E_{r,\ cathode} E_{r,\ anode}$ (no consideration of ν is necessary)
- $\circ~$ Under non-standard conditions, we use the Nernst equation: $-\nu F E_{cell} = \Delta_{rxn} G$
- $\circ~F$ is Faraday's constant, and ν is the moles of electrons transferred in the reaction
- $\circ~$ We can also relate $\Delta_{rxn}G$ to the reaction quotient, as seen above. Done here gives:

$$E_{cell} = E_{cell}^{\ominus} - \frac{RT}{\nu F} \ln Q$$

- \circ This equation also demonstrates why potential is, in one sense, independent of ν . Double the reaction to double ν , and you will also square Q which cancels out the effect and gives the same E_{cell}
- $\circ~$ Similarly, we can apply the relation between G and K to get: $E_{cell}^{\ominus} = \frac{RT}{\nu F} \ln K$

$$\circ \ \ \text{Since} \left(\frac{\partial G}{\partial T}\right)_p = -S \text{, we can also say that } \frac{\mathrm{d} E_{cell}^{\Theta}}{\mathrm{d} T} = \frac{\Delta_{rxn} S^{\Theta}}{\nu F}$$

$$\circ \ \ \text{And finally, we find that} \ \Delta_{rxn} H^{\ominus} = -\nu F \left(E_{cell}^{\ominus} - T \frac{\mathrm{d} E_{cell}^{\ominus}}{\mathrm{d} T} \right)$$

- $\circ \ \ Consider an \ electrochemical \ cell \ constructed \ with \ a \ AgCl(s)/Ag(s) + Cl^-(aq) \ electrode \ and \ a \ Zn(s)/Zn^{2+}(aq) \ electrode$
 - · Under standard conditions, what will be the cell potential?
 - · Under standard conditions, which electrode will be the cathode and which will be the anode?
 - · Draw the cell with a salt bridge, and indicate how charge will flow through every stage of the circuit
 - · How would the addition of NaCl into the $AgCl(s)/Ag(s) + Cl^{-}(aq)$ half-cell affect the cell potential (note that NaCl will not participate in direct redox chemistry at all)
 - If a cell begins under standard conditions and is run until it "dies," what will be the final concentrations of Cl^- and Zn^{2+} ?

6D Electrode Potentials

- Electric potential must be referenced to some standard. For cells, we reference the reduction of hydrogen
- We could find reduction potentials by measuring half-reactions against a standard hydrogen electrode
- In practice, we can also chain known redox reactions together to get an unknown half-cell potential (kind of like Hess's law)
- \circ For example, if you know the potential of the redox couples Fe(s)/Fe²⁺(aq) and Fe²⁺(aq)/Fe³⁺(aq), you can calculate the potential for Fe(s)/Fe³⁺(aq)
- \circ In this instance, the number of electrons matters! $\nu_C E^{\Theta}(C) = \nu_A E^{\Theta}(A) + \nu_B E^{\Theta}(B)$
- $\circ \ \ \mathrm{So,} \ 3E^{std}\big(\mathrm{Fe(s)/Fe^{3^{\scriptscriptstyle +}}}\big) = 2E^{\ominus}\big(\mathrm{Fe(s)/Fe^{2^{\scriptscriptstyle +}}(aq)}\big) + 1E^{\ominus}[\mathrm{Fe^{2^{\scriptscriptstyle +}}(aq)/Fe^{3^{\scriptscriptstyle +}}(aq)}]$

CHAPTER 16

MOLECULES IN MOTION

16A Transport in Gases

- When a gas is not homogeneous, there will be a net flow of gas particles
- o The flow of heat and viscosity behave similarly, so all will have similar equations
- $\circ~$ Fick's first law of diffusion: $J_{\mathrm{Matter}} = -D \frac{\mathrm{d} \mathcal{N}}{\mathrm{d} z}$
- $\circ \ D$ is called the "Diffusion Coefficient"
- $\circ~$ For heat: $J_{\rm Energy} = -\kappa \frac{{\rm d}T}{{\rm d}z}$
- $\circ \kappa$ is the coefficient of thermal conductivity
- $\circ J_{\text{x-Momentum}} = -\eta \frac{\mathrm{d}v_x}{\mathrm{d}z}$
- $\circ \eta$ is the coefficient of viscosity
- $\circ~$ We can understand transport by considering the collision flux through a slice along the gradient (Figure 19A.3)
 - $\boldsymbol{\cdot}$ Collision frequency depends on the number density, temperature, and mass of a gas
 - · With different densities across a gradient, the number of collisions from the dilute side is lower than the number of collisions from the concentrated side
 - $\cdot\,$ Of course, particles don't actually collide since the slice is not a real barrier
 - $\cdot\,$ The collisions represent particles traveling across the slice
 - The diffusion coefficient can be expressed as: $D = \frac{1}{3} \lambda v_{mean} = \frac{1}{3} \left(\frac{k_B T}{\sigma p} \right) \left(\frac{8RT}{\pi M} \right)^{1/2}$
 - · Higher pressures give slower diffusion
 - · Hotter temperatures give faster diffusion
 - $\cdot\,$ Smaller particles (both mass and size) give faster diffusion
- o Things are a bit different for thermal conductivity

$$\cdot \kappa = \frac{1}{3} \nu v_{mean} \lambda \mathcal{N} k_B = \frac{1}{3} \lambda v_{mean} [J] C_{V, m} = \frac{\nu p D}{T}$$

· Here, $\nu = \frac{1}{2} N_{D.o.F}$ (Degrees of freedom divided by 2)

- $\cdot \ [J]$ is the molar concentration of the carrier particles J
- · Thermal conductivity is *independent* of pressure
- · The heat capacity scales the energy gradient for a given temperature gradient
- And for viscosity

$$\cdot \eta = \frac{1}{3} v_{mean} \lambda m \mathcal{N} = MD[J] = \frac{pMD}{RT}$$

- $\cdot \,\, m$ is the particle mass, M is the molar mass, and λ is the mean free path
- $\cdot \ [J]$ is the molar concentration of the momentum-carrying particles
- · Viscosity is also independent of pressure
- Hotter temperatures increase the viscosity of gases (This is the reverse of liquids, which must overcome intermolecular forces)
- o Effusion is also a transport phenomenon
 - · Again, consider "collisions" this time collisions with the hole

$$\cdot Rate = Z_W A_0 = \frac{pA_0}{\sqrt{2\pi mk_B T}} = \frac{pA_0 N_A}{\sqrt{2\pi MRT}}$$

- · A_0 is the area of the hole, and Z_W is the collision rate
- · Note that p is a function of T, so the final dependence is $Rate \propto \sqrt{T}$
- Rate $\propto M^{-1/2}$

16B Motion in Liquids

- o For liquids to flow, intermolecular forces must be overcome
- \circ This gives a temperature dependence at constant volume of: $\eta = \eta_0 e^{E_a/RT}$
- Under constant pressure, the thermal expansion is a more important factor than the activation energy

Conductivity in Electrolytes

- \circ For any electrical conductor, the conductance G is the inverse resistance: $G = \frac{1}{R}$
- \circ Conductance can also be expressed in terms of conductivity (κ) , cross-sectional area (A) , and length (l)

$$G = \kappa \frac{A}{I}$$

- o For a solution, we can expect that more ions would lead to higher conductivity
- $\circ~$ This leads to the molar conductivity: $\Lambda_m = \frac{\kappa}{c}$

- \circ It is even worse, however, since the molar conductivity is not constant, but varies with concentration too: $\Lambda_m = \Lambda_m^{\circ} \mathcal{K}\sqrt{c}$ (\mathcal{K} is an empirical constant)
- o On the microscopic level, we see that electrolyte conductivity has to do with ion mobility
 - · Ions in solution are met with a coefficient of friction: $f = 6\pi\eta a$
 - \cdot Here, a is the hydrodynamic radius (or Stokes radius)
 - · The ion mobility is: $u = \frac{ze}{f}$ (z is the ion charge and e is the elementary charge)
 - The ion drift speed is: s = uE
 - Molar ion conductivity is: $\lambda = zuF$
 - · Table 19B.2 shows a few ion mobilities. Note the Grotthuss mechanism for H⁺ and OH⁻
- o Skip the Einstein relations, even though they are very cool

16C Diffusion

- $\circ~$ Fick's first law, $J_{\rm Matter}=-D\frac{{\rm d}\mathcal{N}}{{\rm d}z}$, only addresses an instantaneous flux
- o Fick's second law, or the diffusion equation, tells how concentrations change over time:

$$\frac{\partial c}{\partial t} = D \frac{\partial^2 c}{\partial x^2}$$

- We see that the concentration over time will change according to the curvature of the concentration gradient
- \circ Note that this is a partial derivative with respect to x. In 3-D space, you would have to include the partials along y and z as well
- o Integrating Fick's second law gives the time-dependence of the concentration:

$$c(x,t) = \frac{n_0}{A\sqrt{\pi Dt}}e^{-x^2/4Dt} \qquad \text{ for 1 dimension}$$

$$c(r,t) = \frac{n_0}{8\left(\pi Dt\right)^{3/2}}e^{-r^2/4Dt} \qquad \text{ for 3 dimensions}$$

- $\circ A$ is the cross-sectional area and n_0 is the initial number of moles which start at point x, r = 0
- $\circ~$ We can quantify the extent of diffusion by the rms displacement: $x_{rms}=\sqrt{2Dt}$
- o Generally, diffusion can be very slow. Mixtures must be well stirred for efficient reaction

Practice and Application

- Gas diffusion
 - · YouTube videos on Bromine diffusion by channel Isaac Physics
 - · Calculate the diffusion coefficient for Bromine in 1 atm and in 0.01 atm of pressure
 - Predict the $x_r ms$ after 10 minutes, and compare to the video
 - · Use the diffusion spreadsheet
- o Viscosity and electrical conductance
 - · A fluorescent lamp is filled with $0.003 \ atm$ of mercury vapor
 - Find η for the mercury vapor at 315~K
 - · Assume that while the lamp is lit all mercury is in the Hg²⁺ state
 - What is the ion mobility? (assume $a \approx 1.00\text{Å}$)
 - What is the ion drift speed at 120 V?
 - · What is the molar ion conductivity?
 - What is the resistance, and current through the lamp (assume Hg^{2+} is the sole charge-carrier)?
 - · Note that in reality the plasma in a fluorescent lamp has free electrons, unlike in an electrolyte solution. Those electrons actually carry the charge in these lamps

CHAPTER 17

CHEMICAL KINETICS

17A The Rates of Chemical Reactions

- $\circ \ \, \text{For a reaction: aA + bB=cD + dD, } \\ v = -\frac{\mathrm{d}[A]}{a\mathrm{d}t} = -\frac{\mathrm{d}[B]}{b\mathrm{d}t} = \frac{\mathrm{d}[C]}{c\mathrm{d}t} = \frac{\mathrm{d}[D]}{d\mathrm{d}t}$
- $\circ~$ The extent of the reaction can be expressed as: $\xi = \frac{n_J n_{J,0}}{\nu_J}$
- $\circ~$ This gives the rate as: $v=\frac{1}{V}\frac{\mathrm{d}\xi}{\mathrm{d}t}$
- \circ If the concentration of a species can be monitored over time (e.g. spectrophotometrically) then the tangent slope will give the rate at any given time (Figure 20A.3)
- o The rate is ultimately governed by the opportunities for reactants to encounter and react together
- Therefore, the rate can also be expressed in terms of the reactant concentrations: $v = k_r[A]^m[B]^n$
- o This form is called the rate law, and the exponents must be found experimentally
- The exponents give the reaction order with respect to each reactant, and overall
- The units of k_r must correspond to the overall reaction order to give final units of $v = \frac{mol}{ls}$
- Method of initial rates to determine the reaction order:
 - · The effect of a single reactant can be isolated by using all other reactants in large excess
 - · This creates a psudo-reaction order that depends only on the limited reactant
 - · A method must be used to determine the average initial rate v_0 (color indicator, spectrophotometrically, electrochemically, etc.)
 - · Varying the concentration of the limiting reactant and comparing the rates can give the reaction order
 - $\cdot \log v_0 = \log k_r' + a \log[A]_0$
 - · This method will not reveal complex kinetics, such as product-catalyzed reactions
- \circ Sample data for initial rate method with reaction A + B \longrightarrow C:

Run	$ A _0$	$ B _0$	Rate M/s
1	1.0 M	0.010 M	1.5×10^{-4}
2	1.0 M	$ \mid 0.030 M$	4.5×10^{-4}
3	0.010M	1.0 M	1.5×10^{-6}
4	0.030 M	1.0 M	1.4×10^{-5}

 \circ Give the rate law, including k_r with proper units

17B Integrated Rate Laws

- $\circ \ \mbox{ We can equate the two forms of the rate to get: } \frac{\mathrm{d}[A]}{a\mathrm{d}t} = -k_r[A]^m$
- $\circ~$ This differential equation can be solved for different cases of the exponent m
- First Order:
 - · If m=1, then the integrated form is: $\ln\frac{[A]}{[A]_0}=-k_rt$ $[A]=[A]_0e^{-k_rt}$
 - · If $\ln[A]$ is plotted against time, then the data will fit a line with $slope = -k_r$
 - · We can also consider the special case where $[A]=rac{1}{2}[A]_0$ and $t_{1/2}=rac{\ln 2}{k_r}$
 - For first-order reactions, there is a characteristic time constant: $au = \frac{1}{k_r}$
- o Second-Order:
 - · If m=2, then the integrated form is: $\frac{1}{[A]}-\frac{1}{[A]_0}=k_rt$ $[A]=\frac{[A]_0}{1+k_rt[A]_0}$
 - · If $\frac{1}{[A]}$ is plotted against time, then the data will fit a line with $slope=k_r$
 - · For 2nd-order reactions, the half-life is not constant: $t_{1/2} = \frac{1}{k_r[A]_0}$

17C Reactions Approaching Equilibrium

- As reactions approach dynamic equilibrium, the rate law must take into account the reverse reaction too
- \circ For the reaction A \longrightarrow B, the master rate equation is: $\frac{\mathrm{d}[A]}{\mathrm{d}t} = -k_r[A] + k_r'[B]$

- $\circ~$ At equilibrium, the forward and reverse rates will be the same, so $k_r[A]=k_r'[B]$
- $\circ~$ This means we can relate the rate constants to the equilibrium constant: $K = \frac{k_r}{k_r'}$
- \circ If the system is perturbed away from equilibrium (say, by a sudden increase in temperature or pressure) it will relax into the new equilibrium according to: $\chi = \chi_0 e^{-t/\tau}$ and $\tau = \frac{1}{k_r + k_r'}$

17D The Arrhenius Equation

- \circ So far we have talked about k_r as simply an empirical constant (found by fitting data)
- \circ Arrhenius found the dependence of k_r on temperature, and proposed a theory to describe this behavior

$$\circ \ln k_r = \ln A - \frac{E_a}{RT} \text{ or } k_r = Ae^{-\frac{E_a}{RT}}$$

- \circ The activation energy can be plotting $\ln k_r \text{ vs } ^1/T$: $slope = -\frac{E_a}{R_c}$
- $\circ \ A$ is the pre-exponential factor, or frequency factor
- The frequency factor can be interpreted as the rate of "reaction attempts," or collisions with the proper orientation for a reaction to occur
- o A reaction coordinate diagram (Figure 20D.3) shows how a reaction might proceed
 - · The E_a and ΔH_{rxn} are found on the diagram
 - · The maximum energy point is called an activated complex or transition state
 - · Catalysts change the pathway taken in the reaction coordinate diagram
 - · What is the physical interpretation for the x-axis in this diagram?

17E Reaction Mechanisms

- Many reactions actually take place in a series of steps
- Each step (and any one-step reactions) are called "elementary reactions"
- Elementary reactions can have different molecularity
 - · Molecularity is the number of molecules that come together for the elementary reaction
 - · Molecularity is also like reaction order in the rate law for an elementary reaction
 - · Unimolecular elementary reactions: A \longrightarrow P $rate = k_r[A]$
 - · Bimolecular elementary reactions: A+B \longrightarrow P $rate=k_r[A][B]$

- · Trimolecular elementary reactions...don't exist!
- It is important to remember that the reaction order of an overall reaction is not necessarily related to the molecularity of the elementary steps
- o Multi-step reactions:
 - · Multi-step reactions proceed through reaction intermediates
 - · Intermediates are not the same as activated complexes (transition states)
 - · Figure 20E.1 shows how the concentrations of
- The steady-state approximation:
 - · The steady-state approximation assumes that any intermediates maintain a low, steady concentration after an initial induction period
 - · A steady state is distinct from equilibrium
 - This is the case when the second step is much faster than the first step $(k_b \gg k_a)$
 - · Figure 20E.2 shows the reactant, product, and intermediate concentrations under this model
 - \cdot The concentration of the intermediate can be found by setting its master rate equation equal to \circ
 - · Solve the rate equation for the reaction $A \longrightarrow I \longrightarrow B$
 - · The overall rate law can be predicted by the "slow step"
 - · Figure 20E.5 shows a reaction coordinate diagram for this case
- o Pre-equilibria
 - · Consider the reaction: A+B \longleftrightarrow I->P
 - · In this case, the second step is much slower than the first step, allowing equilibrium to be reached
 - · Solve the rate law
- If more than one product can be formed, kinetics and thermodynamics are both relevant
- In the long time limit, the thermodynamic product is produced
- In the short time limit, the kinetic product is produced

17F Examples of Reaction Mechanisms

- o Lindemann-Hinshelwood mechanism
 - · Some gas-phase reactions exhibit first-order kinetics, but they must occur via bimolecular collisions

· The Lindemann-Hinshelwood mechanism solves this question

$$A+A \longrightarrow A^*+A$$

$$A+A^* \longrightarrow A+A$$

$$A^* \longrightarrow P$$

$$\cdot \frac{d[P]}{dt} = k_b[A^*] \text{ and } \frac{d[A^*]}{dt} = k_a[A]^2 - k'_a[A][A^*] - k_b[A^*]$$

$$\cdot [A^*] = \frac{k_a[A]^2}{k_b + k'_a[A]}$$

$$\cdot rate = \frac{k_a k_b[A]^2}{k_b + k'_a[A]}$$

- · This is only first-order if $k'_a[A] \gg k_b$, so going to lower pressures reveals the more complex kinetics
- Skip polymerization except to say that we can talk statistically about how long an average polymer chain will be based on the reaction kinetics

17G Photochemistry

- Photochemical processes are chemical reactions which require a photoexcited reactant (Table 20G.1)
- Photophysical processes are processes which involve changes in electronic states, but not the breaking or forming of bonds (Table 20G.2)
- Timescales are in femtoseconds for electronic transitions, picoseconds for fluorescence (excited state lifetime), and milliseconds to seconds for phosphorescence
- \circ Quantum yield (ϕ) is the fraction of absorption events which lead to the product or process of interest
- Excited state decay
 - · The rate of absorption is merely the intensity of absorption
 - Fluorescence (k_F) , internal conversion (k_{IC}) , and intersystem crossing (k_{ISC}) are unimolecular decay processes

- Quenching
 - · Any side-reactions which reduce the quantum yield contribute to quenching
 - · By varying the concentration of quencher, we can find the rate of the quenching reaction

- A quenching reaction is: S * + Q $\,\longrightarrow\,$ S + Q $\,v_Q = k_Q[Q][S^*]$
- · Stern-Volmer Equation: $\frac{\phi_0}{\phi} = 1 + \tau_0 k_Q[Q]$
- · Self-quenching and the paradox: Aren't photoexcited molecules constantly bumping into solvent molecules?
- The answer lies in the requirement for resonance in collisional energy transfer as well as for photon absorption
- Förster Theory
 - · Another quenching reaction is resonance energy transfer: $S^* + Q \longrightarrow S + Q^*$
 - · Usually we are interested in the fluorescence of the acceptor molecule (Q)
 - · Efficiency of transfer is: $\eta_T = 1 \frac{\phi_F}{\phi_{F.0}}$
 - · Transfer is efficient when:
 - * Donor and acceptor are able to get close to each other
 - * Donor fluorescence and acceptor absorbance spectra overlap (resonance)
 - · Förster theory describes the distance relationship: $\eta_T = \frac{R_0^6}{R_0^6 + R^6}$
 - · R_0 is a parameter defined as the distance where transfer is 50% efficient
 - · FRET spectroscopy is used to measure molecular distances in proteins and other biomolecules

17H Enzymes

- $\circ~$ Enzymes are biomolecules which act as catalysts for essential biochemical reactions
- The substrates dock into the active sites of enzymes
- $\circ~$ The "lock-and-key" model has been largely supplanted by the "induced fit" model
- o The Michaelis-Menten Mechanism

$$\cdot E + S \iff ES$$

$$\cdot$$
 ES \longrightarrow P + E

- · The rate equation will be: $\frac{k_b[E]_0}{1+{}^{K_M/[S]_0}}$
- \cdot Here, $K_M = rac{k_a' + k_b}{k_a}$
- · Lineweaver-Burk Plots (Figure 20H.4)

*
$$\frac{1}{[S]}$$
 vs $\frac{1}{v}$

* Slope is
$$\frac{K_M}{v_{max}}$$
 , y-intercept is $\frac{1}{v_{max}}$, and x-intercept is $\frac{-1}{K_M}$

- The turnover rate is a measure of how quickly an enzyme can do its work: $k_{cat} = k_b = \frac{v_{max}}{|E|_0}$
- \circ The catalytic efficiency can be interpreted as an effective rate constant, but it is also related to the fraction of substrate docking events which eventually lead to product: $\eta = \frac{k_{cat}}{K_M} = \frac{k_a k_b}{k_a' + k_b}$
- Enzyme inhibition:
 - Inhibition is when a different, inactive substrate can also bind with the enzyme and prevent or delay production of products

$$EIn \longleftrightarrow E + In$$

 $ESIn \longleftrightarrow ES + In$

- · Don't worry about the complex rate equation for inhibited enzymes
- · Figure 20H.6 shows the effects of different types of inhibition
- · Competitive inhibition: An inhibitor binds to the active site, blocking access for the substrate
- · Uncompetitive inhibition: An inhibitor binds to some other site, but only if the substrate is already present at the active site, and prevents product formation
- · Non-competitive inhibition: An inhibitor binds to some other site and reduces the binding activity of the active site

CHAPTER 18

REACTION DYNAMICS

18A Collision Theory

- o Here we will analyze the exponential pre-factor
- Recall from chapter 1 that the collision frequency is: $z = \sigma v_{rel} \mathcal{N}$ $\mathcal{N} = \frac{N}{V} = \frac{p N_A}{RT} = \frac{p}{k_B T}$
- o This number is the collision rate from the perspective of a single particle
- \circ To find the rate of collisions throughout a substance, we use: $Z_{AB} = \sigma v_{rel} N_A^2[A][B]$
- $\circ~$ For dissimilar molecules, $v_{rel} = \left(\frac{8kT}{\pi\mu}\right)^{1/2}$
- $\circ~$ Not all collisions lead to a reaction due to an activation energy requirement: $e^{-\frac{E_a}{RT}}$
- \circ Not all collisions lead to a reaction due to a steric factor (P)
 - The steric factor is usually less than $1\ \mathrm{because}$ improper orientation will stop a reaction
 - · The steric factor can be greater than 1 if molecules need not actually collide to react
 - · For example in the harpoon mechanism of K + $Br_2 \longrightarrow KBr + Br$
 - The RRK model accounts for collisions which have enough energy, but distribute that energy into modes which are not conducive to reaction
 - · RRK theory gives $P = \left(1 \frac{E^{\star}}{E}\right)^{s-1}$ for the Lindemann mechanism
 - \cdot s is the number of energetic modes
 - E is the kinetic energy transferred in the collision and E^{\star} is the energy needed to sufficiently activate the reactive molecule
- $\circ~$ Taken together, the rate is: $v=PZ_{AB}e^{-\frac{E_a}{RT}}=P\sigma v_{rel}N_A^2[A][B]e^{-\frac{E_a}{RT}}$
- \circ This means that for collision theory, $k_r = P\sigma v_{rel}N_A^2 e^{-\frac{E_a}{RT}}$
- \circ $P\sigma$ can be interpreted to mean the reactive cross-section (rather than the van der Waals collisional cross-section alone). This is particularly appropriate for the harpoon mechanism

18B Diffusion-Controlled Reactions

- In liquids, reactants and products encounter each other far less frequently, but the encounters last much longer
- This "cage effect" gives an encounter pair the opportunity to acquire enough energy to overcome the activation energy barrier, even if they didn't have it initially
- o Many solvent reactions can be described by the following mechanism:

$$A + B \longrightarrow AB$$
 $v = k_d[A][B]$
 $AB \longrightarrow A + B$ $v = k'_d[AB]$
 $AB \longrightarrow P$ $v = k_a[AB]$

- $\circ~$ Applying a steady-state approximation gives $v = \frac{k_a k_d}{k_a + k_d'} [A] [B]$
- There are two extreme limits: Diffusion controlled and activation-controlled
- Diffusion controlled ($k'_d \ll k_a$): $k_r \approx k_d$
- Activation controlled $(k_a \ll k_d')$: $k_r \approx \frac{k_a k_d}{k_d'} \approx k_a K$
- $\circ k_d$ is the rate at which molecules diffuse together: $k_d = 4\pi R^{\star} D N_A$
- \circ Here, D is the sum of the diffusion coefficients for both reactants and R^{\star} is the reaction distance
- \circ Using the Stokes-Einstein equation and a convenient approximation of R^\star simplifies this to: $k_d=\frac{8RT}{3\eta}$
- $\circ~$ Note that R here is the gas constant, and this expression is now general for all reactions in a given solvent

18C Transition-State Theory

- \circ Transition state theory (or activated complex theory) attempts to refine our estimates of the value of k_r based on statistical mechanics and the structure of the transition state
- \circ Assume that there is an equilibrium established between reactants and the activated complex A+B \longleftrightarrow C[‡] with equilibrium constant K^{\ddagger}
- $\circ~$ The activated complex can dissociate to products with rate constant k^{\ddagger}
- $\circ~$ In the end, the effective rate constant is: $k_r=RTk^{\ddagger}K^{\ddagger}$
- $\circ~$ Around the transition state, bonds are forming and breaking with an oscillatory frequency of ν^{\ddagger}
- $\circ k^{\ddagger} = \kappa \nu^{\ddagger}$ where κ is assumed to be 1
- o We will cover vibrational structure, etc. next year, but

- 18D The Dynamics of Molecular Collisions
- 18E Electron Transfer in Homogeneous Systems
- 18F Processes at Electrodes

CHAPTER 19

PROCESSES ON SOLID SURFACES

- 19A An Introduction to Solid Surfaces
- 19B Adsorption and Desorption
- 19C Heterogeneous Catalysis