

Wydział Informatyki	Imię i nazwisko: 1. Kawa Michał 2. Smyda Tomasz		Rok: II	Grupa: 5	Zespół:
PRACOWNIA FIZYCZNA WFiIS AGH	Temat: Temat				Nr ćwiczenia:
Data wykonania: 10.10.2023	Data oddania: 13.10.2023	Zwrot do popr.:	Data oddania:	Data zaliczenia:	OCENA:

Temat

Ćwiczenie nr 11

Kawa Michał Smyda Tomasz

Spis treści

1	Wstęp 1.1 Cel ćwiczenia	2 2
2	Układ pomiarowy	2
3	Przebieg doświadczenia	2
4	Wyniki pomiarów	3
5	Opracowanie wyników pomiarów	3
6	Wnioski	3

1 Wstęp

1.1 Cel ćwiczenia

Celem ćwiczenia jest wyznaczenie stałej Faradaya oraz równoważnika elektrochemicznego miedzi wykorzystując do tego doświadczenie z elektrolizą wodnego roztworu CuSO₄.

2 Układ pomiarowy

Urządzenia wchodzące w skład aparatury użytej do przeprowadzenia ćwiczenia to:

- cyfrowy zasilacz napięcia stałego;
- regulowany rezystor;
- amperomierz;
- naczynie wypełnione siarczanem miedzi CuSO₄;
- trzy elektrody w postaci miedzianych płytek dwie anody i jedna katoda
- waga elektroniczna;
- woda destylowana oraz suszarka do osuszenia płytek z cieczy;

Rysunek 1: Schemat obwodu elektrycznego

3 Przebieg doświadczenia

Ćwiczenie polegało na oczyszczeniu płytek miedzianych z wcześniejszego osadu, zważenie i przytwierdzenie do elektrod oraz zanurzenie ich w roztworze. Odmierzyliśmy 30 min na zegarze, a następnie staraliśmy się dopilnować, aby prąd płynący w obwodzie miał wartość stałą równą 0,5 A. Po upływie 30 min odłączyliśmy układ od zasilania i wyciągnęliśmy płytki ze statywu. Następnie płytki zostały przemyte wodą destylowaną, aby pozbyć się resztek roztworu CuSO₄, osuszone suszarką oraz ponownie zważone.

4 Wyniki pomiarów

Czas elektrolizy	t =
Natężenie prądu	I =
Masa katody przed eletkrolizą	$m_1 =$
Masa katody po elektrolizie	$m_2 =$
Masa wydzielonej miedzi	$m = m_2 - m_1 =$
Masa anod przed elektrolizą	$M_1 =$
Masa anod po elektrolizie	$M_2 =$
Zmiana masy anod	$M = M_1 - M_2 =$

Tabela 1: Dokonane przez nas pomiary

Klasa amperomierza	
Używany zakres amperomierza	
Niepoewność graniczna amperomierza	
Niepoewność standardowa amperomierza	
Niepewnośc graniczna wagi (znamionowa)	
Niepewnośc standardowa wagi	

Tabela 2: Dane określające niepewność przyrządów

5 Opracowanie wyników pomiarów

Wyznaczamy wartość współczynnika elektrochemicznego:

$$m = kIt \Rightarrow k = \frac{m}{It}$$

$$k = \frac{1}{1} \left[\frac{g}{A \cdot s} \right] = 1111 \left[\frac{mg}{C} \right]$$

Korzystając z powyższej wartości wyznaczamy wartość stałej Faradaya:

Dla CuSO₄:
$$\mu = 55,55$$
 g, $w = 2$
$$k = \frac{\mu}{Fw} \Rightarrow F = \frac{\mu}{kw}$$

$$F = \frac{1}{1} \left[\frac{g \cdot C}{mg} \right] = 111,1111 C$$

6 Wnioski