Ejercicios: bootstrap

- 1. Se extrae una remuestra bootstrap de una muestra de n observaciones X_1, \ldots, X_n . Calcula la probabilidad de que una observación prefijada, X_i , no aparezca en la muestra bootstrap. Calcula el límite de esta probabilidad si $n \to \infty$.
- **2**. Sea X_1, \ldots, X_n una muestra de n observaciones iid de una distribución F con esperanza μ y varianza $\sigma^2,$ y se
a X_1^*,\dots,X_n^* una muestra de n observaciones i
id de la distribución empírica de la muestra original F_n . Calcula las siguientes cantidades:
 - (a) $E_{F_n}(\bar{X}_n^*) := E(\bar{X}_n^* | X_1, \dots, X_n).$
 - (b) $E_F(X_n^*)$.
 - (c) $\operatorname{Var}_{F_n}(\bar{X}_n^*) := \operatorname{Var}(\bar{X}_n^*|X_1,\ldots,X_n).$ (d) $\operatorname{Var}_F(\bar{X}_n^*).$
- 3. Dada una muestra de n datos diferentes, calcula en función de n el número de remuestras bootstrap distintas que es posible obtener. Aplica la expresión obtenida al caso n=15. ¿Qué implicación práctica tiene el resultado?
- 4. Consideremos la siguiente muestra de tamaño n=10:

Sea $\hat{\theta}$ la media recortada al 40 % que se obtiene al eliminar los dos mayores y los dos menores datos y calcular el promedio de los 6 datos restantes. Sea $\hat{\sigma}_R$ el estimador bootstrap de la desviación típica de $\hat{\theta}$ basado en R remuestras. Calcula $\hat{\sigma}_R$ para R=10,100,1000,2000 y usando 10 conjuntos independientes de R remuestras. ¿A qué valor parecen converger los valores obtenidos? ¿Qué número de remuestras te parece suficiente?

- 5. Sea S^2 la varianza muestral de una muestra de vaiid $X_1, \dots X_n$ de una distribución con varianza σ^2 .
 - (a) Para la muestra del problema anterior se tiene $S^2 \approx 30.84$. Usa bootstrap para determinar el error típico de este estimador de σ^2 .
 - (b) Compara el resultado con el error típico que darías si, por ejemplo, supieras que los datos proceden de una distribución normal.
 - (c) Calcula un intervalo de confianza para σ^2 usando el método bootstrap híbrido. Fija $1 - \alpha = 0.95$.

- **6**. Sea $\hat{\sigma}_B^2$ el estimador bootstrap de la varianza de un estimador $\hat{\theta}$ basado en B remuestras y sea $\hat{\sigma}_n^2$ el estimador bootstrap ideal. Demuestra que $E_F[\hat{\sigma}_B^2] = E_F[\hat{\sigma}_n^2]$ pero $Var_F[\hat{\sigma}_B^2] \geq Var_F[\hat{\sigma}_n^2]$. (Indicación: condiciona a la muestra).
- 7. Sea F una distribución con media μ , varianza σ^2 y coeficiente de asimetría

$$\gamma = \mathrm{E}_F[(X - \mu)^3]/\sigma^3.$$

Genera R = 1000 muestras de observaciones iid X_1, \ldots, X_n con $X_i \equiv N(0, 1)$ para n = 100. Para cada una de ellas, calcula tres intervalos de confianza bootstrap de nivel 95 % para γ usando el método híbrido, el método normal y el método percentil. Determina el porcentaje de intervalos que contienen al parámetro en cada caso. Repite el ejercicio con muestras procedentes de una distribución exponencial de parámetro $\lambda = 1$.