

Europäisches Patentamt

European Patent Office

Office européen des brevets

(11) EP 0 791 654 A1

(12)

EUROPEAN PATENT APPLICATION

- (43) Date of publication: 27.08.1997 Bulletin 1997/35
- (21) Application number: 96102575.6
- (22) Date of filing: 21.02.1996

- (51) Int. Cl.⁶: **C12N 15/40**, C07K 14/00, G01N 33/569, A61K 39/12, A61K 48/00
- (84) Designated Contracting States:

 AT BE CH DE DK ES FR GB IT LI LU NL PT SE
- (71) Applicant: Richt, Jürgen A., Dr. 35248 Langgöns-Niederkleen (DE)
- (72) Inventor: Richt, Jürgen A., Dr. 35248 Langgöns-Niederkleen (DE)
- (74) Representative: Keller, Günter, Dr. et al Lederer, Keller & Riederer Patentanwälte Prinzregentenstrasse 16 80538 München (DE)
- (54) Polypeptides corresponding to the amino acid sequences of proteins p57 or p9.5 of Borna disease virus, nucleic acid fragments coding therefore and their use for diagnostic and immunization purposes
- (57) The present invention concerns polypeptides corresponding to the amino acid sequence of the protein p57 or p9.5, respectively, encoded by the Borna disease virus. Said polypeptide and isolated DNA and RNA fragments can be used in testkits and for vaccination.

15

25

35

The present invention relates to the diagnosis and vaccination of a viral infection caused by the Borna disease virus.

1

Borna disease virus (BDV) is a neurotropic virus that causes an immune-mediated syndrome resulting in disturbances in movement and behaviour. Originally the disease was described as a natural infection of horses in a small city, Borna, in Southeast Germany.

Borna disease (BD) is an infectious disease of the central nervous system characterized by profound behavioural abnormalities, inflammatory cell infiltrates and the accumulation of disease-specific antigens in limbic system neurons. Naturally occurring infections with Borna disease virus (BVD), the etiological agent of Borna disease, have been confirmed mainly in horses and sheep. The disease can, however, be experimentally transmitted to a wide range of animal species including rodents and nonhuman primates with variable clinical and pathological manifestations. Recent epidemiological data suggest that Borna disease may be more widespread in a subclinical form. It is possible that Borna disease virus is involved in human disorders of the central nervous system. Therefore, it is important to have a reliable diagnostic test system and an effective vaccination.

Borna disease virus has not been fully characterized yet, however, the genome of cell adapted Borna disease virus (BDV)-strains have been cloned and sequenced by Cubitt et al. [J. Virol. 68, p. 1382-1396 (1994)] and Briese et al. [Proc. Natl. Acad. Sci., USA, vol. 91, p. 4362-4366 (May 1994)].

BDV contains a nonsegmented negative-sense 8.9 kb RNA-genome with complementary 3' and 5' termini. Subgenomic RNAs have been mapped to the viral genome and some of them found to undergo posttranscriptional modification by RNA splicing. The features known up to now seem to indicate that BDV represents the prototype of a new group of animal viruses within the order Mononegavirales.

BDV is strictly neurotropic and disseminates by intra-axonal transport from the site of infection. The virus replicates in vitro in embryonic brain cells of various animal species. Cocultivation of such brain cells with various permanent cell lines such as MDCK or Vero cells results in a persistent infection. Infectivity is mainly cell associated, the virus is noncytopathic and spreads by cell to cell contact. Intracellular viral antigen can be demonstrated in the cell nucleus and cytoplasm of infected cells. Morphologically the virion appears to be a 60-90 nm enveloped, spherical particle containing an electron dense internal structure.

BDV replication in cells is associated with the presence of at least three virus-specific antigens with a molecular weight of 18 (gp18), 24 (p24) and 38/40 (p38 or p40) kilodalton. An enzyme-linked immunosorbent assay for detecting antibodies to Borna disease virus by specific proteins is described by Briese et al. (Journal of

Clinical Microbiology, 33, p. 348-351 (February 1995)]. The ELISA test described by Briese uses the proteins p38/40, p23 and gp18 which are found in vitro and in vivo in the nucleus and cytoplasm of infected cells. The recombinant proteins used in the ELISA assay of Briese were produced by using a cell-adapted laboratory BDV strain from persistently BDV-infected MDCK cells.

The disadvantage of the known ELISA test is that only a few BDV proteins are used and therefore not all infections of Borna disease virus can be reliably detected.

In the course of the present invention it has been found that polypeptides corresponding to the proteins p57 and p9.5, respectively, allow a better diagnosis of BDV infection and can be advantageously used for the preparation of vaccines.

The present invention relates therefore to polypeptides corresponding to the amino acid sequence of the protein p57 or p9.5 encoded by the Borna disease virus having a sequence of at least 10 consecutive amino acids of the amino acid sequence given in Figure 1 or Figure 2, respectively.

From the prior art it was not clear whether the proteins p9.5 and p57 are in fact existing or whether they are only hypothetical proteins which are not produced in natural infections with BDV. Neither Briese et al. nor Cubitt et al. confirmed the expression of p57 or p9.5 or provided the isolated proteins.

In the course of the present invention it was found that the protein p9.5 is in fact produced and that this protein which is not glycosylated is located in the nucleus of infected MDCK cells. The protein p57 apparently is a glycosylated protein and the major BDV-specific surface protein which occurs not only in the cytoplasm of infected cells but also in their cell membrane probably determining the tropism of BDV by binding to the respective virus-specific cell receptor. The protein p57 probably also functions as a fusion protein which causes the fusion of an infected cell with another not infected cell. Such fusions allow the spread of the virus from cell to cell. Therefore, this protein is from the therapeutic point of view extremely important, since humoral or cell-mediated immune response directed against such a surface protein with fusion activity can be used for the preparation of an effective vaccine. Probably the protein p57 is modified after the translation by a protease like subtilisin or a furin protease which converts the p57 protein to the active form.

There is another advantage of the polypeptides according to the present invention. Since the sequences of the present invention were obtained from a field isolate of Borna disease virus (from horse), no modifications caused by the permanent culture of the laboratory strain occurred. The sequences of the claimed polypeptide p57 and of p9.5 differ therefore from the corresponding sequence described in the prior

The protein p9.5 occurs in the nucleus of persistently BDV-infected MDCK cells and is probably associ-

35

40

45

4).

ated with the nucleic acid of the virus. Therefore, this protein can be advantageously used for the preparation of genomic viral RNA by selectively binding the protein p9.5 to a solid phase. This can be achieved by using affinity chromatography with specific antibodies directed against protein 9.5.

In a preferred embodiment of the present invention the polypeptides comprise the main epitope or main epitopes against which antibodies are formed. Therefore, the polypeptides have preferably a length of at least 25 consecutive amino acids and more preferably of at least 50 consecutive amino acids of the amino acid sequence given in Figure 1 or Figure 2, respectively.

On the other hand the polypeptides according to the invention have preferably an upper limit of not more than 80 consecutive amino acids of the amino acid sequence given in Figure 1 or Figure 2, respectively.

The present invention concerns also testkits for the determination of antibodies directed against Borna disease virus in a sample comprising at least one polypeptide according to the present invention and a label for the detection of the complex formed by the polypeptide and the antibodies to be determined.

The testkits are generally based on the detection of a complex formed by the polypeptide comprising at least one epitope and antibodies directed against said epitope. There are various forms of such testkits whereby the ELISA test is one of the most commonly used tests, because such a test can easily be handled by laboratories. In a preferred embodiment the polypeptide is linked to the surface of the wells of microtiter plates. The sample to be tested which is preferably a serum sample of the individual to be tested is brought into the well and removed after a definite period of time. Afterwards the well is washed and antibodies binding specifically to the polypeptide can be visualized by adding another antibody which specifically binds to the antibody remaining in the well. Said second antibody is usually covalently bound to a label which allows the detection of the complex formed within the test well. Such a label can preferably be selected from enzymes catalyzing a colour reaction as for example horseradish peroxidase.

In preferred embodiments of the present invention the testkits comprise the components for performing an ELISA, Western blot, RIA or dot blot test.

The method according to the invention for determining an infection by Borna disease virus comprises

- a) contacting a sample to be determined with at least one polypeptide according to the invention whereby the polypeptide binds to antibodies elicited by a former infection of Borna disease virus and
- b) determining the binding of said polypeptide to the specific antibodies which are present in the sample to be tested.

In a further aspect the present invention concerns

isolated DNA fragments which encode a polypeptide according to the invention whereby the DNA fragment is preferably not longer than 240 base pairs and more preferably not longer than 150 base pairs.

A further aspect of the present invention concerns isolated RNA fragments which encode a polypeptide according to the invention whereby the RNA fragment is not longer than 240 base pairs.

In preferred embodiments of the present invention the DNA and RNA fragments, respectively, have a sequence which corresponds at least partially to the sequences given in Figure 4 and 5, respectively, or are complementary thereto.

The polypeptides according to the present invention can be used for the production of a vaccine.

The use of proteins, peptides and polypeptides for vaccination has been well-known for a long time. The methods of preparing the vaccine are well-known to those skilled in the art.

There is, however, a further technique for vaccination which can be performed with the nucleic acid fragments of the present invention. It has recently been found that plasmid DNA can be taken up by skeletal muscle cells in vivo without any special delivery mechanism and persist long-term in an extra-chromosomal, nonreplicative circular form. Thus foreign genes can be expressed transiently in skeletal muscle. It is also possible to include the DNA or RNA fragments of the present invention in infectious suicide virus particles which can be used directly for immunization. Furthermore it is also possible to inject the isolated DNA and RNA fragments, respectively, into the muscle of the human or animal to be immunized.

Depending on the form how the DNA fragment is introduced into the individual to be immunized the isolated DNA fragment can further comprise the sequences required for regulation of transcription and expression of the DNA fragment. If the nucleic acid is introduced in a vector, the nucleic acid fragment will be linked to suitable viral vectors or recombinant plasmids.

The DNA fragments and RNA fragments according to the present invention can therefore be used for nucleic acid immunization.

The present invention is further illustrated by the enclosed Figures.

Figure 1 shows the amino acid sequence of the protein p57 (Seq.-ID 1).

Figure 2 shows the amino acid sequence of the protein 9.5 (Seq.-ID 2).

Figure 3 reflects the amino acid sequence of a polypeptide corresponding to the C-terminal region of p57 (Seq.-ID 3).

Figure 4 shows the DNA sequence of p57 (Seq.-ID

Figure 5 corresponds to the DNA sequence of p9.5 (Seq.-ID 5).

Figure 6 shows the results obtained by the ELISA test as described in example 4.

Figure 7 shows the results obtained by the ELISA

25

35

40

١

test as described in example 10.

Example 1

Cloning and expression of the p57 and p47/c BDV-gene

The entire and the C-terminal region of the open reading frame of the p57 BDV-protein [p57/c; bp 2685-bp 3747, Cubitt et al., (1994) J. Virol. **68**, 7669-7675, Briese et al. (1994) p57 bp x - 3747] was amplified from RNA isolated from BDV-infected rats using the following primers:

C-terminal region:

3' Primer (anti-sense) GTAGAATTC TTATTCCT-GCCACCGGCCGAGGCGTC Seq.-ID 6 entire p57 ORF:

5' Primer (sense): GATGGATCC ATGTACT-GCAGTTTCGCGGACTGTAG Seq.-ID 7
5'-Primer:

RNA was isolated from BDV-infected rat brain using the standard acid guanidium isothiocyanate-phenol-chloroform method and 2 μg RNA was used for RT-reaction. The conditions for the RT-reaction and the PCR were described by Richt et al., [Med. Microbiol. Immunol. 182 (1993) S. 293-304].

The amplified product was purified from agarose gels and cloned into the plasmid vector pGEX-2T (Pharmacia, #27-4801-01) after the restriction sites were cleaved using the restriction enzymes BamHI and EcoRI (Promega, Madison, USA). The viral gene was fused to the Glutathion-S-transferase (GST) gene of Schistosoma japonicum controlled by the tac promotor. The expression plasmid was transformed into competent E. coli SureTM-cells. Recombinant plasmids were analyzed using restriction analysis and DNA-sequencing methods. The amino acid sequence of the fragment p57c deduced from the sequenced DNA fragment is shown in Fig. 3.

Example 2

Expression and purification of the p57 and p57/c BDV-proteins in E. coli:

100 ml of pGEX-p57/c containing *E. coli* were grown overnight in LB-medium with 0.1 mg/ml ampicillin (Serva, Heidelberg). This overnight culture was diluted in 1 liter of LB-medium with ampicillin and grown to log phase for 2-4 hours. The expression of the GST-p57/c and GST-p57 fusion proteins were induced with IPTG (0.1 mM; Promega, Heidelberg, Germany) for 4 hours. The bacteria were pelleted by centrifugation (5900 g. 10 min, 4°C) and resuspended in PBS. The cells were lysed by sonication on ice and the cell debris pelleted by centrifugation (9800 rpm, 10 min, 4°C). The sonicated fusion protein supernatants were added to an affinity matrix with Glutathione (Glutathione Sepharose 4 B;

Pharmacia, Nr. 27-4570-01). The purification of the GST-p57/c and GST-p57 fusion proteins using Glutathione Sepharose 4B was done according to the protocol of the manufacturer. The eluted fusion proteins were dialyzed against 1 x PBS for 24 hours at 4°C. The expression product was analyzed in SDS-PAGE and Immunoblot assays.

The expression of the virus-specific GST-p57/c and GST-p57 fusion protein by recombinant pGEX-p.57/c or pGEX-p57 clones were analyzed in immunoblotting using *E.coli* lysates treated with and without IPTG. As a control an *E.coli* lysate transformed with the nonrecombinant pGEX-2T plasmid was used. The quality of the eluted fusion protein was then analyzed in Western blot analyses using BDV-specific rat and rabbit antisera. The purified GST-p57/c as well as GST-p57 were easily detected by virus-specific antisera from rat and rabbit as a distinct band with a MW of ca. 65 or 80 kilodalton, where 26 kd of the fusion protein represent the GST protein and ca. 40 kd or 57 kd represent the C-terminal part of the p57 BDV-protein.

Example 3

Preparation of antisera and monoclonal antibodies

Polyvalent monospecific antiserum against the GST-p57/c fusion protein was obtained from a rabbit immunized subcutaneously with 1 mg GST-p57/c fusion protein in complete Freund's adjuvant (CFA). After 4 and 8 weeks the rabbit received a booster immunization with the same amount of antigen and was bled 1 week after the last immunization procedure. The serum was tested for its reactivity in indirect immunofluorescence assays on BDV-infected and uninfected MDCK cells as well as in Western blot analyses with the fusion protein.

Monoclonal antibodies were prepared using published procedures (Köhler & Milstein, 1975). Spleen cells were obtained from a Balb/c mouse immunized three times with 100 μ g GST-p57/c in CFA.; the animal had a strong antibody reponse at the time of sacrification. The supernatants of hybridomas were tested for BDV-specific antibodies by the indirect immunofluorescence assay (IFA) on persistently infected MDCK cells. Additionally, ELISA and Western blot analysis was performed. Hybridoma cells were cloned twice by picking single cells under a light microscope.

Polyvalent monospecific antiserum against the GST-p57/c fusion protein was obtained from a rabbit immunized subcutaneously with the GST-p57/c fusion protein as described above. This antisera was applied to persistently BDV-infected MDCK cells fixed in aceton (60 min at -20°C) or 4% paraformaldehyde (PFA) for 30 min at room temperature. The monospecific antiserum recognized virus-specific proteins in aceton-fixed cells scattered throughout the cytoplasm of infected MDCK cells. When the cells were fixed with PFA in order to stain for surface antigen, intensive staining was found

20

30

35

45

on the surface of BDV-infected MDCK cell. Furthermore, brain sections of experimentally BDV-infected rats were incubated with the monospecific and monoclonal anti-p57/c antisera. Viral antigen was detected mainly throughout the cytoplasm of infected neurons in the CNS of rats.

Example 4

ELISA

Screening of antibody-producing hybridomas and sera from BDV-infected rats was performed using recombinant GST-p57/c protein and GST as the control protein.

Ninety-six well microtiter plates (Greiner, Germany) were coated overnight at 4°C with 31 and 125 ng of recombinant GST-p57/c or GST protein per well in 50 μ l of buffer (1.59 g Na_2CO_3 , 2.93 g $NaHCO_3$ and 0.20 g NaN_3 in 1000 ml H_2O). Plates were washed three times with washing buffer (0.5% Tween-20 in PBS) and incubated 1 hour with blocking buffer (0.5% gelatine, 1% BSA, 0.1% Thimerosal in PBS with 0.5% Tween-20) at room temperature. The microtiter plate was washed three times with washing buffer and 2 fold dilutions of the sera were prepared in the blocking buffer. 50 µl of the respective sera diluted from 1:20 to 1: 10240 was added to each well and incubated for 1 hour at room temperature. Plates were washed three times with washing buffer and biotin-conjugated rabbit anti-rat or anti-mouse IgG and IgM diluted 1:10 000 in blocking buffer were added to each well and incubated 1 hour at room temperature. After washing three times the plates were incubated with horseradish peroxidase conjugated to streptavidin (Amersham, Braunschweig), diluted 1:10 000 in blocking buffer for 1 hour at room temperature. After washing the plates three times, 200 μ l of substrate solution was added to each well. The substrate solution consisted of 0.5 M Na₂PO_{4.} 0.1 M citric acid, 20 mg phenyldiamine and 20 ml 30% H_2O_2 in 50 ml H_2O . The plates were incubated for 5-10 min at room temperature and the reaction stopped by the addition of 50 μ l sulphuric acid to each well. The absorbance at 492 nm was determined for each well using a microplate reader. Negative control wells without the primary antisera were used for calibration. The ELISA titer for each serum was defined as the endpoint dilution that yielded an optical density of 0.2. The results of this test using a convalescent and control rat serum are shown in Figure 6.

In order to establish a specific and sensitive ELISA for the recombinant BDV p57/c protein, the optimal antigen concentration was determined by checkerboard titration of positive and negative rat sera versus the following antigen concentrations: 31, 62, 125, 250 ng/well. The optimal concentration with the most linear response was 31 ng/well. The sensitivity of the ELISA system for the recombinant p57/c BDV-protein was established using sera from experimentally infected rats on days 40, 50 and 60 post infection (p.i.) known to be reactive by

IFA (Titers ranging from 1:2280 to 1:5120) and Western blot analysis. All sera that has been found positive by these methods were also positive in the ELISA-system using the recombinant p57/c protein. The specificity was tested using sera from 5 noninfected rats and recombinant GST protein. Each ELISA proved to be highly specific for the detection of antibodies to the recombinant p57/c BDV-protein: at a dilution of 1:80 the noninfected rat sera had an OD-range from 0.026 to 0.051, the BDV-infected rat sera from 0.363 to 0.566. No nonspecific background was observed at dilutions 1:40 or higher.

Example 5

Cloning and expression of the p9.5 BDV-gene

The open reading frame of the p9.5 BDV-protein was amplified from cDNA of the B8 clone [VandeWoude et al., (1990) Science 250, p. 1278-1281] and from a field isolate of BDV (horse) using the following primers:

3' Primer (anti-sense) GCGGAATTC TCATCATTC-GATAGCTGCTCCC (Seq.-ID 8)
5' Primer (sense): ATAGGATCC ATGAGTTC-CGACCTCCGGC (Seq.-ID 9)

The conditions for the PCR reaction were described in example 1.

The amplified product was purified from agarose gels and cloned into the plasmid vector pGEX-2T (Pharmacia, Freiburg, Germany; Nr. 27-4801-01) after the restriction sites were cleaved using the restriction enzymes BamHI and EcoRI (Promega, Madison, USA). The viral gene was fused to the Glutathion-S-transferase (GST) gene of *Schistosoma japonicum* controlled by the *tac* promotor. The expression plasmid was transformed into competent *E. coli* SureTM-cells. Recombinant plasmids were analyzed using restriction analysis and DNA-sequencing methods. The DNA sequence of the cloned fragment (pGEX-p9.5) from the field isolate is shown in Figure 5.

Example 6

Expression and purification of the p9.5 BDV-protein in E. coli:

100 ml of pGEX-p9.5 containing *E. coli* were grown overnight in LB-medium with 0.1 mg/ml ampicillin (Serva, Heidelberg). This overnight culture was diluted in 1 liter of LB-medium with ampicillin and grown to log phase for 2-4 hours. The expression of the GST-p9.5 fusion protein was induced with IPTG (0.1 mM; Promega, Heidelberg, Germany) for 4 hours. The bacteria were pelleted by centrifugation (5900 g, 10 min, 4°C) and resuspended in PBS. The cells were lysed by sonication on ice and the cell debris pelleted by centrifugation (9800 g, 10 min, 4°C). The sonicated fusion

25

30

protein supernatant was added to an affinity matrix with glutathione (Glutathione Sepharose 4 B; Pharmacia, Nr. 27-4570-01). The purification of the GST-p9.5 fusion protein using Glutathione Sepharose 4B was done according to the manufacturer's protocol. The eluted fusion protein was dialyzed against 1xPBS for 24 hours at 4°C. The expression product was analyzed in SDS-PAGE and Immunoblot assays.

The expression of the virus-specific GST-p9.5 fusion protein by a recombinant pGEX-p.9.5 clone was analyzed in immunoblotting using *E.coli* lysates treated with and without IPTG. As a control an *E.coli* lysate transformed with the nonrecombinant pGEX-2T plasmid was used. The quality of the eluted fusion protein was analyzed in Western blot analyses using BDV-specific rat and rabbit antisera. The purified GST-p9.5 was easily detected by virus-specific antisera from rat and rabbit as a distinct band with a MW of ca. 35 kilodalton; 26 kd of the fusion protein represent the GST protein and ca. 9 kb represent the p9.5 BDV-protein.

Example 7

SDS-PAGE, SDS-PAGE-Tricin and Western blot analysis

10 ml of the purified recombinant GST-p9.5 and GST proteins, uninfected and BDV-infected OligoTL cell lysates as well as uninfected and BDV-infected rat brain homogenates were suspended in Laemmli sample buffer (Laemmli, 1970), heated for 2 min at 100°C, and separated by sodium dodecyl sulfatepolyacrylamide gel electrophoresis (SDS-PAGE) on gels containing 12 % polyacrylamide. The separated proteins were transferred to nitrocellulose membrane by electroblotting. Polyclonal antisera from rabbits and rats and monospecific rabbit anti-GST-p9.5 antisera were diluted 1:100 in PBS containing 0.5 % Tween-80 and 5% BSA. Nitrocellulose strips were incubated overnight at 4°C with the respective diluted antisera. After the strips were washed three times with PBS/0.5% Tween-20 (washing buffer) they were incubated with anti-species antibodies marked with biotin (Amersham, Braunschweig, Germany) in a dilution of 1:1000. After three washes with washing buffer the nitrocellulose strips were incubated with streptavidin conjugated horseradish peroxidase (Amersham, Braunschweig, Germany) diluted 1:2000 in washing buffer. Finally the strips were washed three times in PBS and stained in a solution of 0.5 mg/ml 4chloro-1-naphtol, 20% (v/v) methanol and 0.4 ml/ml H₂O₂.

Tricin-SDS-PAGE gels were used for the separation of the affinity purified proteins; tricin allows the resolution of small proteins. Shortly, 12% acrylamid gels were prepared as described above. The anode buffer consisted of 0.2 M Tris (pH 8.9), the kathode buffer of 0.1 M Tris (pH8.25), 0.1 M Tricin and 0.1 % SDS (Schägger & Jagow, 1987). The separated proteins of the Tricin-SDS-PAGE gel were further analyzed by immunoblot

technique as described above.

Example 8

Preparation of antisera

Polyvalent monospecific antiserum against the GST-p9.5 fusion protein was obtained from a rabbit immunized subcutaneously with 1 mg GST-p9.5 fusion protein in complete Freund's adjuvant (CFA). 4 and 8 weeks later the rabbit received booster immunizations with the same amount of antigen and was bled 1 week after the last immunization procedure. The sera was tested for their reactivity in indirect immunofluorescence assays on BDV-infected and uninfected MDCK cells as well as in Western blot analyses.

This antisera was applied to persistently BDV-infected MDCK cells fixed in aceton for 60 min at -20°C. The monospecific antiserum recognized virus-specific proteins mainly located in the nuclei of infected cells. This staining pattern was analogous to the reaction with monoclonal or monospecific antibodies specific for the p38 BDV-protein. Double immunofluorescence techniques using FITC and TRITC-labelled secondary antibodies revealed that the p9.5 BDV-protein colocalizes in the nucleus of infected cells with the p38 BDV-protein, the putative nucleoprotein of BDV. Furthermore, brain sections of experimentally BDV-infected rats were incubated with the monospecific anti-GST-p9.5 rabbit antiserum. Viral antigen was detected in the nucleus and cytoplasm of infected neurons in the CNS of rats.

Example 9

Antibody-mediated affinity chromatography

The procedure has been described by Haas et al. [J. Gen. Virol. 67 (1986), p. 235-241]. Shortly, sepharose CL-6B was treated with phoroglucinol and epichlorhydrin, activated with cyanogen bromide dissolved in acetonitrile, and conjugated with the gamma globulin fraction of the monospecific rabbit anti-GST-p9.5 serum at 4°C overnight. About 300 mg of protein was used per 10 ml of packed, activated sepharose. The column with the antibody-coated sepharose was equilibrated with PBS. After the application of the tissue or cell extracts, the column was washed extensively with PBS/1M NaCl and finally with Tris/NaCl (TN) buffer only. The material retained on the immunosorbent was eluted with PBS/1M NaClO₄. The eluate was concentrated by centrifugation dialysis using the Ultrafree-MC 10 kD-filters (Millipore, Germany) at 4°C.

In order to purify the p9.5 BDV-protein from BDV-infected cells, BDV-infected OligoTL cells were washed with PBS and scraped from the bottom of culture dish. The cell suspension was then washed and resuspended with PBS and sonicated three times for 10 seconds. The cell homogenate was centrifuged (5000 g, 10 min, 4°C) and the supernatant applied to the affinity col-

umn with anti-p9.5 antibodies. The column was washed and eluted as described above. Similarly, a 10% homogenate of a BDV-infected rat brain in TN-buffer was stirred for 1 hour at room temperature after the addition of 1% Triton X-100 and 0.5 % deoxycholate. The homogenate was centrifuged for 2 hours at 30 000 r.p.m. in a Beckman 45 Ti rotor to remove cell debris. The supernatant was applied to the affinity column and processed as described above.

The antibody-mediated affinity purification procedure with both antigen sources resulted clearly in the isolation of a virus-specific protein with a MW of approximately 9.5 kd; the 9.5 BDV-protein does not contain carbohydrate side chains as analyzed using a DIG glycon detection kit.

Example 10

ELISA

Screening of antibody-producing hybridomas and sera from BDV-infected rats was performed using recombinant GST-p9.5 protein and GST as the control protein.

Ninety-six well microtiter plates (Greiner, Germany) were coated overnight at 4°C with 31 and 125 ng of recombinant GST-p9.5 or GST protein per well in 50 μl of buffer (1.59 g Na_2CO_3 , 2.93 g $NaHCO_3$ and 0.20 g NaN₃ in 1000 ml H₂O). Plates were washed three times with washing buffer (0.5% Tween-20 in PBS) and incubated 1 hour with blocking buffer (0.5% gelatine, 1% BSA, 0.1% Thimerosal in PBS with 0.5% Tween-20) at room temperature. The microtiter plate was washed three times with washing buffer and 2 fold dilutions of the sera were prepared in the blocking buffer. 50 μ l of the respective sera diluted from 1:20 to 1: 10240 was added to each well and incubated for 1 hour at room temperature. Plates were washed three times with washing buffer and biotin-conjugated rabbit anti-rat or anti-mouse IgG and IgM diluted 1:10 000 in blocking buffer were added to each well and incubated 1 hour at room temperature. After washing three times the plates were incubated with horseradish peroxidase conjugated to streptavidin (Amersham, Braunschweig), diluted 1:10 000 in blocking buffer for 1 hour at room temperature. After washing the plates three times, 200 µl of substrate solution was added to each well. The substrate solution consisted of 0.5 M Na₂PO_{4.} 0.1 M citric acid, 20 mg phenyldiamine and 20 ml 30% H₂O₂ in 50 ml H₂O. The plates were incubated for 5-10 min at room temperature and the reaction stopped by the addition of 50 μ l sulphuric acid to each well. The absorbance at 492 nm was determined for each well using a microplate reader. Negative control wells without the primary antisera were used for calibration. The ELISA titer for each serum was defined as the endpoint dilution that yielded an optical density of 0.2. The results of this test using a convalescent and control rat serum are shown in Figure 7.

In order to establish a specific and sensitive ELISA

for the recombinant BDV p9.5 protein, the optimal antigen concentration was determined by checkerboard titration of positive and negative rat sera versus the following antigen concentrations: 31, 62, 125, 250 ng/well. The optimal concentration with the most linear response was 31 ng/well. The sensitivity of the ELISA system for the recombinant p9.5 BDV-protein was established using sera from experimentally infected rats on days 40, 50 and 60 post infection (p.i.) known to be reactive by IFA (Titers ranging from 1:2280 to 1:5120) and Western blot analysis. All sera that has been found positive by these methods were also positive in the ELISA-system using the recombinant p9.5 protein. The specificity was tested using sera from 5 noninfected rats and recombinant GST protein. Each ELISA proved to be highly specific for the detection of antibodies to the recombinant p57/c BDV-protein: at a dilution of 1:80 the noninfected rat sera had an OD-range from 0.026 to 0.051, the BDV-infected rat sera from 0.363 to 0.566. No nonspecific background was observed at dilutions 1:40 or higher.

Claims

25

30

35

40

45

- Polypeptide corresponding to the amino acid sequence of the protein p57 or p9.5 encoded by the Borna disease virus having a sequence of at least 10 consecutive amino acids of the amino acid sequence given in Figure 1 or Figure 2, respectively.
- Polypeptide according to claim 1 characterized in that the protein p57 or p9.5, respectively, is encoded by a field isolate of Borna disease virus.
- Polypeptide according to claim 1 or 2 characterized in that the polypeptide has a sequence of at least 25 consecutive amino acids of the amino acid sequence given in Figure 1 or Figure 2, respectively.
- Polypeptide according to any of claims 1 to 3 characterized in that the polypeptide has a sequence of at least 50 consecutive amino acids of the amino acid sequence given in Figure 1 or Figure 2, respectively.
- Polypeptide according to any of claims 1 to 4 characterized in that the polypeptide has a sequence of not more than 80 consecutive amino acids of the amino acid sequence given in Figure 1 or Figure 2, respectively.
- 6. Testkit for the determination of antibodies directed against Borna disease virus in a sample comprising at least one polypeptide according to claims 1 to 5 and a label for the detection of the complex formed by the polypeptide and the antibodies to be determined.

20

25

30

- Testkit according to claim 6 characterized in that the label is linked to an antibody which specifically binds to the antibody to be determined.
- Testkit according to claim 6 characterized in that it 5 is a kit for performing an ELISA, Western blot, RIA or dot blot test.
- Testkit according to claim 7 characterized in that the label is an enzyme which can catalyze a reaction 10 resulting in a coloured end product.
- Method for determining an infection by Borna disease virus comprising

a) contacting a sample to be determined with at least one polypeptide according to claims 1 to 5 whereby the polypeptide binds to antibodies elicited by a former infection of Borna disease virus and

b) determining the binding of said polypeptide to the specific antibodies which are present in the sample to be tested.

11. Isolated DNA fragment characterized in that said DNA encodes a polypeptide according to claim 1 to 5 whereby the DNA fragment comprises not more than 240 base pairs.

 Isolated DNA fragment according to claim 11 characterized in that the DNA fragment comprises not more than 150 base pairs.

- 13. Isolated DNA fragment according to claims 11 or 12 characterized in that the DNA sequence corresponds to a part of the sequence of Figure 4 or 5, respectively.
- 14. Isolated RNA fragment characterized in that said RNA fragment encodes a polypeptide according to claims 1 to 5 with the proviso that the RNA fragment comprises not more than 240 base pairs.
- 15. Use of a polypeptide according to claims 1 to 5 for 45 the production of a vaccine.
- Use of a DNA fragment according to claims 11 to 13 for nucleic acid immunization.

 Use of an RNA fragment according to claim 14 for nucleic acid immunization.

Figure 1

Val	. Leu		Pro	Ser			Phe	Leu	Ile	Gly	Phe	Gly	Thr	Leu
15	1		,		5					10				
Asn	Ala Thr	Leu	Ser	Ala	Arg	Thr	Phe	Asp	Leu	Gln	Gly	Leu	Ser	Cys
				20					25					30
Cys	Asp His	Ser	Thr	Pro	Gly	Leu	Ile	Asp	Leu	Glu	Ile	Arg	Arg	Leu
			35					40					45	
Asn	Thr His	Pro	Thr	Glu	Asn	Val	Ile	Ser	Cys	Glu	Val	Ser	Tyr	Leu
		50					55					60		
Tyr	Thr His	Thr	Ile	Ser	Leu	Pro	Ala	Val	His	Thr	ser	Cys	Leu	Lys
80	65					70					75			
Arg	Cys	Lys	Thr	Tyr	Trp	Gly	Phe	Phe	Gly	Ser	Tyr	Ser	Ala	Asp
	TTE													
	116				85					90				
95		den) ra	Т агж		61	mb	**- 1						
95		Asn	Arg			Gly	Thr	Val			Cys	Leu	Asn	Asn
95	Ile	Asn	Arg	Tyr 100		Gly	Thr	Val	Lys 105		Cys	Leu	Asn	Asn 110
95 Ser	Ile Ala Pro			100	Thr		Thr		105	Gly				110
95	Ile Ala Pro			100	Thr				105	Gly				110
95 Ser	Ile Ala Pro Ile	Glu	Asp 115	100 Pro	Thr	Glu		Asn 120	105 Trp	Gly	Tyr	Cys	Cys 125	110 Ser
95 Ser	Ile Ala Pro Ile	Glu	Asp 115	100 Pro	Thr	Glu	Cys	Asn 120	105 Trp	Gly	Tyr	Cys	Cys 125	110 Ser
95 Ser Ala	Ile Ala Pro Ile Thr Val	Glu Thr 130	Asp 115 Glu	100 Pro	Thr Phe Cys	Glu A rg	Cys Cys 135	Asn 120 Ser	105 Trp Ile	Gly Phe Thr	Tyr Asn	Cys Val 140	Cys 125 Thr	110 Ser Val
95 Ser	Ile Ala Pro Ile Thr Val Gln Thr	Glu Thr 130	Asp 115 Glu	100 Pro	Thr Phe Cys	Glu Arg Phe	Cys	Asn 120 Ser	105 Trp Ile	Gly Phe Thr	Tyr Asn Phe	Cys Val 140	Cys 125 Thr	110 Ser Val
95 Ser Ala	Ile Ala Pro Ile Thr Val	Glu Thr 130	Asp 115 Glu	100 Pro	Thr Phe Cys	Glu A rg	Cys Cys 135	Asn 120 Ser	105 Trp Ile	Gly Phe Thr	Tyr Asn	Cys Val 140	Cys 125 Thr	110 Ser Val
95 Ser Ala Ala Ser 160	Ile Ala Pro Ile Thr Val Gln Thr 145	Glu Thr 130 Thr	Asp 115 Glu Phe	100 Pro Ile Pro	Thr Phe Cys	Glu Arg Phe 150	Cys Cys 135	Asn 120 Ser Tyr	105 Trp Ile Cys	Gly Phe Thr	Tyr Asn Phe 155	Cys Val 140 Ala	Cys 125 Thr Asp	110 Ser Val

Val	Ser Asn	Thi	r Leu			Thr	Pro	Tyr			Gln	Ser	Glu	
				180					185					190
Ile	Arg Val	Thr	Leu	ı Asn	Gly	Thr	Ile	Leu	Cys	Asn	Ser	Ser	Ser	Lys
			195	•				200					205	
Ser	Ser Tyr	Phe	e Asp	Glu	Phe	Arg	Arg	Ser	Tyr	Ser	Leu	Thr	Asn	Gly
	-1-	210)				215					220		
Sar	Gln Cys	Ser	Ser	Ser	Ile	Asn	Val	Thr	Cys	Ala	Asn	Tyr	Thr	Ser
	225					230					235			
240			_	_	_	_	_							
Glu	Arg Tyr	Pro	Arg	Leu		Arg	Arg	Arg	Arg		Thr	Gln	Gln	Ile
255					245					250				
	Leu	Val	His	Lys	Leu	Arg	Pro	Thr	Leu	Lys	Asp	Ala	Trp	Glu
Asp	Cys			260					265					270
	Glu	Ile	Leu	Gln	Ser	Leu	Leu	Leu	Gly	Val	Phe	Gly	Thr	Gly
Ile	Ala		275					280	-			•	285	•
	Ser	Ala	Ser	Gln	Phe	Leu	Arσ	Glv	ጥተኮ	Leu	Asn	His		λen
Ile	Val	290					295	U -1				300	110	nsp
	Glv		Tle	Va l	Agn	Glv		Glw	พรไ	W al	Trp		C	774
Arg	Val 305	-1-	110	VUL	AGII	310	116	GIY	val	val		GIN	cys	HIS
320	303					310					315			
Dwa	Asn	Val	Thr	Phe	Met	Ala	Trp	Asn	Glu	Ser	Thr	Tyr	Tyr	Pro
_	Val				325					330				
335														
Leu	Asp Gln	Tyr	Asn		Arg	Lys	Tyr	Phe	Leu	Asn	Asp	Glu	Gly	Arg
				340					345					350
rp	Thr Phe	Asn	Thr	Pro	Glu	Ala	Arg	Pro	Gly	Leu	Lys	Arg	Val	Met
			355					360					365	
Ara	Gly Arg	Arg	Tyr	Phe	Leu	Gly	Thr	Val	Gly	Ser	Gly	Val	Lys	Pro
-~ y	y	370					375					380		

	385	Arg	Tyr	Asn	Lys	Thr 390	Ser	Arg	Asp	Tyr	His 395	Leu	Glu	Glu
400		Ser	Lou) an	Wot	mh w	Dwo	<i>a</i> 1-	m\	2	-1			
His	Glu	261	beu	ASII	405	TILL	Pro	GIN	Thr		11e	Ala	Ser	Gly
415					405					410				
Leu	Thr Pro	Asp	Pro	Ile	Asn	His	Ala	Tyr	Gly	Thr	Gln	Ala	Asp	Leu
				420					425					430
Glv	Tyr Trp	Thr	Arg	Ser	Ser	Asn	Ile	Thr	Ser	Thr	Asp	Thr	Gly	Ser
- 1			435					440					445	
Glv	Val Trp	His	Ile	Gly	Leu	Pro	Ser	Phe	Ala	Phe	Leu	Asn	Pro	Leu
•		450					455					460		
Leu	Leu Tyr	Arg	Asp	Leu	Leu	Ala	Trp	Ala	Ala	Trp	Leu	Gly	Gly	Val
480	465					470					475			
Arg	Leu	Ile	Ser	Leu	Cys	Val	Ser	Leu	Pro	Ala	Ser	Phe	Ala	Arg
495	9				485					490				
	Arg	Leu	Ala	Arg 500	Trp	Gln	Glu		,	`				

Figure 2

Arg 15	Met Leu 1	Ser	Ser	Asp	Leu 5	Arg	Leu	Thr	Leu	Leu 10	Glu	Leu	Val	Arg
Arg	Asn Arg	Gly	Asn	Ala 20	Thr	Ile	Glu	Ser	Gly 25	Arg	Leu	Pro	Gly	Gly 30
Thr	Arg Thr	Ser	Pro 35	Asp	Thr	Thr	Thr	Gly 40	Thr	Ile	Gly	Val	Ala 45	Lys
Pro	Glu Glu	Asp 50	Pro	Lys	Glu	Cys	Ile 55	Asp	Pro	Thr	Ser	Arg 60	Pro	Ala
Ala 30	Gly Asn 65	Pro	Gln	Glu	Glu	Pro 70	Leu	His	Asp	Leu	Arg 75	Pro	Arg	Pro
	Arg	Lys	Gly	Ala	Ala 85	Val	Glu							

Figure 3

Gl	ı Ler	1	Cys	s Ser			Asp	Cys	s Ser			Ser	Gln	Gln
15	3	•			5)				10				
Ty :	Glu Thr	Ser	Gly	Lys	Ala	Met	Leu	Ser	Asp	Gly	Ser	Thr	Leu	Thr
_				20					25					30
Gl	Pro Thr	Tyr	Ile	Leu	Gln	Ser	Glu	Val	Val	Asn	Arg	Thr	Leu	Asn
_			35					40					45	
Ph€	Ile Arg	Leu	Суѕ	Asn	Ser	Ser	Ser	Lys	Ile	Val	Ser	Phe	Asp	Glu
	,	50					55					60		
Il€	Arg Asn	Ser	Tyr	Ser	Leu	Thr	Asn	Gly	Ser	Tyr	Gln	Ser	Ser	Ser
80	65					70					75			
gerige s	Val	Thr	Cys	Ala	Asn	Tvr	Thr	Ser	Ser	Cvs	Ara	Pro	λrσ	Leu
	Arg	•	•		85	-1 -				90	9	110	Arg	Leu
95										,,,				
Leu	Arg Arg	Arg	Arg	Asp	Thr	Gln	Gln	Ile	Glu	Tyr	Leu	Val	His	Lys
	3			100					105					110
Ser	Pro Leu	Thr	Leu	Lys	Asp	Ala	Trp	Glu	Asp	Cys	Glu	Ile	Leu	Gln
			115					120					125	
Phe	Leu Leu	Leu	Gly	Val	Phe	Gly	Thr	Gly	Ile	Ala	Ser	Ala	Ser	Gln
		130					135					140		
Asn	Arg Gly	Gly	Trp	Leu	Asn	His	Pro	Asp	Ile	Val	Gly	Tyr	Ile	Val
160	145					150					155			
	Ile	Glv	Val	Val	Trn	Gln	Cve	Hie	λrα	Wa I	7 an	Val	m ► –	Db a
Met	Ala	O ₂		,	165	O.I.I.	Cys	urs	AIG		ASN	vai	Thr	Pne
175					100					170				
Arg	Trp	Asn	Glu	Ser	Thr	Tyr	Tyr	Pro	Pro	Val	Asp	Tyr	Asn	Gly
9	~ _I .			180					185					190

Glu	Tyr Ala	Phe	Leu	Asn	Asp	Glu	Gly	Arg	Leu	Gln	Thr	Asn	Thr	Pro
		•	195					200					205	
Lou	Arg	Pro	Gly	Leu	Lys	Arg	Val	Met	Trp	Phe	Gly	Arg	Tyr	Phe
ьеu	. Сту	210					215					220		
T ***	Thr	Val	Gly	Ser	Gly	Val	Lys	Pro	Arg	Arg	Ile	Arg	Tyr	Asn
	Thr 225					230					235			
240														
Met	Ser Thr	Arg	Asp	Tyr	His	Leu	Glu	Glu	Phe	Glu	Ala	Ser	Leu	Asn
255					245					250				
233	_		_,											
Asn	Pro His	Gln	Thr	Ser	Ile	Ala	Ser	Gly	His	Glu	Thr	Asp	Pro	Ile
				260					265					270
Sor	Ala Asn	Tyr	Gly	Thr	Gln	Ala	Asp	Leu	Leu	Pro	Tyr	Thr	Arg	Ser
	ASII		275					280					285	
.	Ile	Thr	Ser	Thr	Asp	Thr	Gly	Ser	Gly	Trp	Val	His	Ile	Gly
Leu	Pro	290					295					300		
	Ser	Phe	Ala	Phe	Leu	asa	Pro	Leu	Gly	Trp	Leu	Arg	Asp	Leu
Leu	Ala 305					310					315	_	_	
320														
Cys	Trp Val	Ala	Ala	Trp	Leu	Gly	Gly	Val	Leu	Tyr	Leu	Ile	Ser	Leu
335					325					330				
333														
Trp	Ser Gln	Leu	Pro	Ala	Ser	Phe	Ala	Arg	Arg	Arg	Arg	Leu	Ala	Arg
•				340					345					350
	Glu													

Figure 4

ATGCAGCCTT CCTCTCGGCC	CAATGTCTTT 60	TCTTATCGGC	TTCGGAACAT	TGGTGTTGGC
CGGACATTCG ACTGATCGAC	ATCTTCAGGG	G CCTTAGTTGC	AATACTGACT	CCACTCCTGG
CTGGAGATAA CGAGGTTAGT	GGCGACTTTG 180	CCACACCCCA	ACGGAAAATG	TCATTTCATG
TATCTTAACC CAAGTACCAC	ACACGACTAT 240	TAGCCTCCCG	GCAGTCCACA	CATCATGCCT
TGCAAAACCT CAATCGGTAC	ATTGGGGATT 300	CTTTGGTAGT	TACAGCGCTG	ACCGAATCAT
ACTGGTACTG CGAGTGCAAC	TTAAGGGTTG 360	TTTAAACAAC	TCAGCACCAG	AAGACCCCTT
TGGTTCTACT TACAAATGTC	GCTGCTCGGC 420	GATTACAACA	GAAATCTGCC	GATGCTCTAT
ACAGTGGCTG CTGTAGCACC	TACAAACATT 480	CCCACCGTTT	ATGTACTGCA	GCTTTGCGGA
GTGAGTCAGC CACATTAACT	AGGAGCTAGA 540	GAGTGGAAAG	GCAATGCTGA	GCGATGGCAG
TATACCCCTT GACCATACTC	ATATCTTACA 600	GTCAGAAGTC	GTGAACAGAA	CCCTTAATGG
TGCAACTCAT CTCCCTAACG	CCTCCAAGAT 660	AGTTTCCTTT	GATGAATTTA	GGCGTTCATA
AATGGTAGTT GTCGTCCTGC	ACCAGAGCTC 720	ATCAATCAAT	GTGACGTGTG	CAAACTACAC
CGGCCCAGGT AGTTCACAAG	TGAAAAGGCG 780	GCGTAGGGAC	ACCCAGCAGA	TTGAGTATCT
CTTAGGCCCA TCTGCTCCTA	CACTGAAAGA 840	TGCATGGGAG	GACTGTGAGA	TCCTCCAGTC
GGGGTGTTTG GCTCAACCAC	GTACTGGGAT 900	CGCAAGTGCT	TCTCAATTTT	TGAGGGGCTG
CCTGACATCG CCATCGTGTT	TCGGGTATAT 960	AGTTAATGGA	ATTGGGGTTG	TCTGGCAATG
AATGTCACAT TTACAATGGG	TCATGGCGTG 1020	GAATGAGTCC	ACATATTACC	CTCCAGTAGA

GGC	CGGAAGTACT GAGGCCA	TTCTGAATGA 1080	TGAGGGGAGG	CTACAAACAA	ACACCCCGA
GTC	GGGCTAAAGC TGGGGTG	GGGTCATGTG 1140	GTTCGGTAGG	TACTTCCTAG	GGACAGTAGG
GGA	AAACCGAGGA GTTTGAG	GGATTCGGTA 1200	CAATAAGACT	TCACGTGACT	ACCACCTAGA
AGA	GCAAGTCTCA CCCCATA	ACATGACCCC 1260	CCAGACCAGT	ATCGCTTCAG	GTCATGAGAC
TAA	AATCATGCCT TATAACG	ACGGAACGCA 1320	GGCTGATCTC	CTTCCATACA	CCAGGTCTAG
CTT	TCTACAGATA CCTCAAT	CAGGCTCAGG 1380	CTGGGTGCAC	ATCGGCCTAC	CCTCATTTGC
GGT	CCCCTCGGGT CCTATAC	GGCTCAGGGA 1440	CTTACTTGCA	TGGGCGGCCT	GGTTGGGTGG
CCT	TTAATAAGTC CGCGCGG	TTTGTGTTTC 1500	CTTACCAGCC	TCCTTCGCGA	GGAGGAGACG
1512	TGGCAGGAAT	AA			

Figure 5

TGG	ATGAGTTCCG CAACGCG	ACCTCCGGCT 60	GACATTGCTT	GAACTAGTCA	GGAGGCTCAA
TAC	ACCATCGAGT SACGGGA	CTGGTCGACT 120	CCCTGGAGGA	CGAAGAAGAT	CCCCAGACAC
AAC	ACGATCGGGG AGTCGA	TCACCAAGGC 180	CACGGAAGAT	CCCAAGGAAT	GCATTGACCC
ACCA	CCAGCTCCTG GCGAAC	AAGGACCTCA 240	GGAAGAACCC	CTCCATGATC	TCAGACCCAG
264	CGGAAGGGAG	CAGCTGTCGA	ATGA		

ELISA BDV rat serum

Reciprocal serum dilution

Figure 6

ELISA BDV rat serum

Figure 7

EUROPEAN SEARCH REPORT

Application Number EP 96 10 2575

Category	Citation of document with of relevant p	indication, where appropriate, assages	Relevant to claim	CLASSIFICATION OF THE APPLICATION (Int.CL6)
D,X	JOURNAL OF VIROLOGY vol. 68, no. 3, Man pages 1382-1396, XI BEATRICE CUBITT ET genome organization virus"	rch 1994, P002003339 AL.: "Sequence and	1-5	C12N15/40 C07K14/00 G01N33/569 A61K39/12 A61K48/00
Y A			6-10 11-14	
	1 * page 1384, left-h paragraph - page 13 paragraph 1; figure page 1391, left-h right-hand column	390, right-hand column, e 2 * nand column, paragraph 3 n, paragraph 1 * nand column, paragraph 2		
D,Y	immunosorbent assay antibodoes to Borna proteins" * abstract * * page 348, left-ha * * page 349, left-ha	oruary 1995, 90571175 L.: "Enzyme-linked		TECHNICAL FIELDS SEARCHED (Int.Cl.6) C07K C12N G01N A61K
X : part	The present search report has I Place of search THE HAGUE CATEGORY OF CITED DOCUME icularly relevant if taken alone	Date of completion of the search 21 August 1996 T: theory or princip E: earlier patent do after the filing of	ole underlying the cument, but pub- late	lished on, or
Y : part doct A : tech	icularly relevant if combined with an ument of the same category nological background -written disclosure	other D: document cited L: document cited &: member of the s	in the application for other reasons	

EUROPEAN SEARCH REPORT

Application Number EP 96 10 2575

Category	Citation of document with of relevant	indication, where appropriate, passages	Relevant to claim	CLASSIFICATION OF THAPPLICATION (Int.CL6)
D,A	250(4985), 12/8-81 0036-8075, 1990, XP002003342 VANDEWOUDE, SUSAN cDNA encoding a pr antibodies in huma diseases" * abstract * * page 1279, left right-hand colum * * page 1279, right	ET AL: "A Borna virus otein recognized by	11-14	
- 1	VIRLAX; ISSN: 0042- 1993, XP002003350 PYPER, J. M. ET AL of the structural disease virus reve encoding the 38-kD * abstract * * page 229, right-l - page 230, left-ha * * page 232, right-l	: "Genomic organization proteins of borna aled by a cDNA clone		TECHNICAL FIELDS SEARCHED (Int.Cl.6)
	,	-/		·
	The present search report has i			
	THE HAGUE	Date of completion of the search 21 August 1996	Mon	tero Lopez, B
X : partidocum A : techn O : non-	ATEGORY OF CITED DOCUME cularly relevant if taken alone cularly relevant if combined with an ment of the same category sological background written disclosure mediate document	NTS T: theory or principl E: earlier patent do	le underlying the current, but publicate in the application or other reasons	invention shed on, or

EUROPEAN SEARCH REPORT

Application Number EP 96 10 2575

Category	Citation of document with of relevant p	indication, where appropriate, assages	Relevant to claim	CLASSIFICATION OF THE APPLICATION (Int.CL6)
Α	* page 5007, left-l	gust 1994, 2002003341 ER ET AL.: "RNA disease virus, a tive-strand RNA virus " nand column, paragraph 1		
D,A	SCIENCES OF USA, vol. 91, no. 10, 10 US, pages 4362-4366, XI THOMAS BRIESE ET Al organization of Bot page 4362, right-paragraph - page 43 paragraph 1 * * page 4365, left-left-left-left-left-left-left-left-	: "Genomic rna disease virus" -hand column, last 865, left-hand column,		TECHNICAL FIELDS SEARCHED (Jat.Cl.6)
	The present search report has i	seco drawn up for all claims		÷
	Place of search	Date of completion of the search		Exemiser
	THE HAGUE	21 August 1996	Mon	tero Lopez, B
X : part Y : part docs A : tech O : non-	CATEGORY OF CITED DOCUME icularly relevant if taken alone icularly relevant if combined with an ment of the same category nological background written disclosure mediate document	E : earlier patent de after the filing	ocument, but publi late in the application for other reasons	ished on, or