

Problem #2: Eight cousins are at a family reunion. Some of them don't like each other.

Problem #2: Eight cousins are at a family reunion. Some of them don't like each other.

Cousin	Doesn't like					
Alice	Bob, Chloe, Fred, Horace					
Bob	Alice, Dave, Gina, Horace					
Chloe	Alice					
Dave	Bob, Fred, Horace					
Edith	Horace					
Fred	Alice, Dave					
Gina	Bob, Horace					
Horace	Alice, Bob, Dave, Edith, Fred, Gina					

Problem #2: Eight cousins are at a family reunion. Some of them don't like each other.

Cousin	Doesn't like					
Alice	Bob, Chloe, Fred, Horace					
Bob	Alice, Dave, Gina, Horace					
Chloe	Alice					
Dave	Bob, Fred, Horace					
Edith	Horace					
Fred	Alice, Dave					
Gina	Bob, Horace					
Horace	Alice, Bob, Dave, Edith, Fred, Gina					

How many tables are necessary so that no one has to sit at a table with someone s/he doesn't like?

			_					
8	9	7	1	2	3	4	6	5
5	3	2	7	6	4	1	9	8
4	6	1	8	5	9	2	3	7
9	8	3	4	7	6	5	2	1
6	2	4	5	1	8	9	7	3
1	7	5	9	3	2	8	4	6
3	1	6	2	4	5	7	8	9
7	4	9	6	8	1	3	5	2
2	5	8	3	9	7	6	1	4

8	9	7	1	2	3	4	6	5
5	3	2	7	6	4	1	9	8
4	6	1	8	5	9	2	3	7
9	8	3	4	7	6	5	2	1
6	2	4	5	1	8	9	7	3
1	7	5	9	3	2	8	4	6
3	1	6	2	4	5	7	8	9
7	4	9	6	8	1	3	5	2
2	5	8	3	9	7	6	1	4

Suppose that G is a graph and k is a positive integer.

Definition: A k-coloring of G is a coloring of the vertices of G using k colors, such that adjacent vertices are colored with different colors.

Suppose that G is a graph and k is a positive integer.

Definition: A k-coloring of G is a coloring of the vertices of G using k colors, such that adjacent vertices are colored with different colors.

Definition: The **chromatic number** of G is the smallest number k for which a k-coloring of G is possible. (Notation: $\chi(G)$.)

Suppose that G is a graph and k is a positive integer.

Definition: A k-coloring of G is a coloring of the vertices of G using k colors, such that adjacent vertices are colored with different colors.

Definition: The **chromatic number** of G is the smallest number k for which a k-coloring of G is possible. (Notation: $\chi(G)$.)

Definition: A coloring of G is **optimal** if it uses exactly $\chi(G)$ colors (and no more).

- ▶ What are the chromatic numbers of special graphs that we know (e.g., complete graphs, circuits, trees, ...)
- How can we calculate the chromatic number of an arbitrary graph?
- ▶ How can we construct an optimal coloring?

▶ In a complete graph K_N , each vertex has to receive a different color.

$$\chi(K_N)=N.$$

▶ In a complete graph K_N , each vertex has to receive a different color.

$$\chi(K_N) = N.$$

▶ In a circuit $C_{N...}$

A Graph Coloring Algorithm

What are we doing when we color a graph?

- 1. List the vertices in order: v_1, v_2, \ldots, v_n .
- 2. Number the colors $1, 2, \ldots, k$.
- 3. Color the vertices in that order. Assign each vertex the smallest possible color.

(E.g., if vertex v_6 has neighbors that have already been colored 1 and 2, but has no neighbors that have been colored 3, then assign color 3 to v_6 .)

A Graph Coloring Algorithm

Question: Does this algorithm always produce an optimal coloring?

That is, does coloring a graph G in this way always use **only** $\chi(G)$ colors, never more than that?

Oops.

The Bad News

➤ This algorithm is **efficient** but **not optimal** — the number of colors required might be depends on the order in which the vertices are chosen.

The Bad News

- ➤ This algorithm is efficient but not optimal the number of colors required might be depends on the order in which the vertices are chosen.
- ► There is always some order that produces an optimal coloring; however, it is very hard to know in advance what order to use.

The Bad News

- ► This algorithm is efficient but not optimal the number of colors required might be depends on the order in which the vertices are chosen.
- ► There is always some order that produces an optimal coloring; however, it is very hard to know in advance what order to use.
- Finding an optimal coloring is theoretically just as hard as the Traveling Salesman Problem — there is no efficient algorithm known.

The Good News

- 1. List the vertices in order: v_1, v_2, \ldots, v_n .
- 2. Number the colors $1, 2, \ldots, k$.
- 3. Color the vertices in that order. Assign each vertex the smallest possible color.

Observation: If vertex v_i has degree d, then at least one of the colors 1, 2, ..., d+1 is available when it is v_i 's turn to get colored.

That means we can say at least something about $\chi(G)$.

If every vertex in a graph G has degree Δ or less, then $\chi(G) \leq \Delta + 1$.

Actually, we can do even better than that!

Brooks' Theorem: If every vertex in a graph G has degree Δ or less, then $\chi(G) \leq \Delta$, unless G is a complete graph or a cycle of odd length.