Merge Sort Quick Sort

Comparison

Summary

COMP2521 25T1

Sorting Algorithms (III)
Divide-and-Conquer Sorting Algorithms

Kevin Luxa

cs2521@cse.unsw.edu.au

merge sort quick sort

Divide-and-Conquer Algorithms

Merge Sort
Quick Sort
Comparison

Summary

divide-and-conquer algorithms
split a problem into two or more subproblems,
solve the subproblems recursively,
and then combine the results.

Method

Splitting

Merging

Analysis

Sorting Lists Bottom-Up

Quick Sort

Comparison

Summary

Merge Sort

Method

Splitting Merging

Analysis

Sorting Lists

Bottom-Up

Quick Sort

Comparison

Summary

Invented by John von Neumann in 1945

Merge So Method

Morgin

Implement

....ptc...c.

Properti

Bottom-H

Quick Sort

Comparison

Summary

A divide-and-conquer sorting algorithm:

split the array into two roughly equal-sized parts recursively sort each of the partitions merge the two now-sorted partitions into a sorted array

Method

Splitting

Merging

Implementa

Propertie

Sorting Lists Bottom-Up

Quick Sort

Comparison

Method

Splitting

Merging

Implementat

Analysis Properties

Sorting Lists Bottom-Up

Quick Sort

Comparison

Method Splitting Merging Implementation Analysis Properties

Merge Sort

Ouick Sort

Comparison

Summary

How do we split the array?

- We don't physically split the array
- We simply calculate the midpoint of the array
 - mid = (lo + hi) / 2
- Then recursively sort each half by passing in appropriate indices
 - Sort between indices lo and mid
 - Sort between indices mid + 1 and hi
- ullet This means the time complexity of splitting the array is ${\cal O}(1)$

Merge Sort
Method
Splitting
Merging
Example 1

Analysis
Implementation
Analysis
Properties

Quick Sort
Comparison

Summary

How do we merge two sorted subarrays?

- We merge the subarrays into a temporary array
- Keep track of the smallest element that has not been merged in each subarray
- Copy the smaller of the two elements into the temporary array
 - If the elements are equal, take from the left subarray
- Repeat until all elements have been merged
- Then copy from the temporary array back to the original array

Merge Sort
Method
Splitting
Merging

Example 1
Example 2
Analysis
Implementation

Sorting Lists Bottom-Up

Quick Sort

Comparison

Example 1 Example 2 Analysis Implementation

Analysis
Properties
Sorting Lists
Bottom-Up

Quick Sort

Comparison

Merging
Example 1

Analysis Implementati

Properties
Sorting Lists
Bottom-Up

Quick Sort

Comparison

Summary

When items are equal, merge takes from the left subarray (this ensures stability)

Example 1
Example 2
Analysis

Analysis Properties

Sorting Lists Bottom-Up

Quick Sort

Comparison

Summary

When items are equal, merge takes from the left subarray (this ensures stability)

Merging
Example 1
Example 2

Analysis Implementati Analysis

Sorting Lists Bottom-Up

Quick Sort

Comparison

Merging
Example 1

Analysis Implementati Analysis

Sorting Lists Bottom-Up

Quick Sort

Comparison

Merging
Example 1
Example 2

Analysis Implementati Analysis

Sorting Lists
Bottom-Up

Quick Sort

Comparison

Merging
Example 1
Example 2

Analysis Implementati Analysis

Sorting Lists
Bottom-Up

Quick Sort

Comparison

Example 1 Example 2 Analysis

Analysis

Sorting Lists Bottom-Up

Quick Sort

Comparison

Example 1 Example 2 Analysis

Implementati Analysis

Sorting Lists Bottom-Up

Quick Sort

Comparison

Example 1 Example 2 Analysis

Implementati Analysis

Sorting Lists
Bottom-Up

Quick Sort

Comparison

Example 1
Example 2
Analysis
Implementation
Analysis

Sorting Lists Bottom-Up

Quick Sort

Comparison

Example 1 Example 2 Analysis

Implementati Analysis

Sorting Lists Bottom-Up

Quick Sort

Comparison

Merging
Example 1

Analysis Implementati Analysis

Properties
Sorting Lists
Bottom-Up

Quick Sort

Comparison

Merge Sort
Method
Splitting
Merging

Example 1
Example 2
Analysis
Implementation
Analysis

Sorting Lists
Bottom-Up

Quick Sort

Comparison

Merge Sort
Method
Splitting
Merging

Example 1
Example 2
Analysis
Implementation
Analysis

Sorting Lists Bottom-Up

Quick Sort

Comparison

Merge Sort
Method
Splitting
Merging
Example 1
Example 2

Analysis Implementation

Sorting Lists
Bottom-Up

Quick Sort

Comparison

Summary

Now copy back to original array

Merging

Example 2

Analysis

Implementat Analysis

Sorting Lists

Bottom-Up

Quick Sort

Comparison

Merge Sort Method

Splitting Merging

Example 2

Analysis

Analysis

Sorting Lists Bottom-Up

Quick Sort

Comparison

Merging Example 1 Example 2

Analysis

Implementa Analysis

Sorting Lists

Bottom-Up
Ouick Sort

Comparison

Merging Example

Example 2 Analysis

Implemen

Analysis

Sorting Lists

Bottom-Up

Quick Sort

Comparison

Splitting Merging

Example 2

Analysis

A -- lu-i-

Propertie

Sorting Lists Bottom-Up

Quick Sort

Comparison

Summary

Now copy back to original array

Merging Merging

Merge Sort
Method
Splitting
Merging
Example 1
Example 2
Analysis

Implementati Analysis Properties Sorting Lists Bottom-Up

Quick Sort

Comparison

- The time complexity of merging two sorted subarrays is O(n), where n is the total number of elements in both subarrays
- Therefore:
 - Merging two subarrays of size 1 takes 2 "steps"
 - Merging two subarrays of size 2 takes 4 "steps"
 - Merging two subarrays of size 4 takes 8 "steps"
 - ...

```
Merge Sort
Method
Splitting
Merging
Implementation
```

Ouick Sort

Comparison

```
void mergeSort(Item items[], int lo, int hi) {
   if (lo >= hi) return;
    int mid = (lo + hi) / 2;
   mergeSort(items, lo, mid);
   mergeSort(items, mid + 1, hi);
   merge(items, lo, mid, hi);
```

C Implementation: Merge

```
Merge Sort
Method
             void merge(Item items[], int lo, int mid, int hi) {
Splitting
                 Item *tmp = malloc((hi - lo + 1) * sizeof(Item));
Merging
                 int i = lo, j = mid + 1, k = 0;
Implementation
                 // Scan both segments, copying to `tmp'.
                 while (i <= mid && j <= hi) {</pre>
                      if (le(items[i], items[j])) {
Ouick Sort
                          tmp[k++] = items[i++];
Comparison
                      } else {
Summary
                          tmp[k++] = items[i++]:
                 // Copy items from unfinished segment.
                 while (i <= mid) tmp[k++] = items[i++];</pre>
                 while (j <= hi) tmp[k++] = items[j++];</pre>
                 // Copy `tmp' back to main array.
                 for (i = lo, k = 0; i \le hi; i++, k++) {
                      items[i] = tmp[k]:
                 free(tmp);
```

Merge Sort Analysis

Merge Sort

Method

Splitting Merging

Analysis

Sorting Lists Bottom-Up

Quick Sort

Comparison

Merge Sort Analysis

Merge Sort

Method

Splitting

Merging Implement Analysis

Properties Sorting Lis

Bottom-Up

Quick Sort

Comparison

Analysis

Properties Sorting Lists Bottom-Up

Quick Sort

Comparison

Summar

Analysis:

- Merge sort splits the array into equal-sized partitions halving at each level $\Rightarrow \log_2 n$ levels
- The same operations happen at every recursive level
- Each 'level' requires $\leq n$ comparisons

Therefore:

- The time complexity of merge sort is $O(n \log n)$
 - Best-case, average-case, and worst-case time complexities are all the same

Ouick Sort

Comparison

Summary

Note: Not required knowledge in COMP2521!

Let T(n) be the time taken to sort n elements.

Splitting arrays into two halves takes constant time. Merging two sorted arrays takes n steps.

So we have that:

$$T(n) = 2T(n/2) + n$$

Then the Master Theorem (see COMP3121) can be used to show that the time complexity is $O(n \log n)$.

Merge Sort
Method
Splitting
Merging
Implementation
Analysis
Properties
Sorting Lists

Quick Sort

Comparison

Summary

Stable

Due to taking from left subarray if items are equal during merge

Non-adaptive

 $O(n \log n)$ best case, average case, worst case

Not in-place

Merge uses a temporary array of size up to nNote: Merge sort also uses $O(\log n)$ stack space Merge Sort
Method
Splitting
Merging
Implementation
Analysis
Properties
Sorting Lists

Quick Sort

Comparison

Summary

Merge Sort Method Splitting Merging Implementation Analysis Properties Sorting Lists Bottom-Up

Ouick Sort

Comparison

Summary

An approach that works non-recursively!

- On each pass, our array contains sorted *runs* of length m.
- Initially, *n* sorted runs of length 1.
- The first pass merges adjacent elements into runs of length 2.
- The second pass merges adjacent elements into runs of length 4.
- Continue until we have a single sorted run of length n.

Can be used for external sorting; e.g., sorting disk-file contents

Summary

Bottom-Up Merge Sort

Example

[15]

Bottom-Up Merge Sort

C Implementation

```
Merge Sort
Method
Splitting
Merging
Implementation
Analysis
Properties
Sorting Lists
Bottom-Up
Implementation
```

Quick Sort

Comparison Summary

```
void mergeSortBottomUp(Item items[], int lo, int hi) {
   for (int m = 1; m <= hi - lo; m *= 2) {
      for (int i = lo; i <= hi - m; i += 2 * m) {
        int end = min(i + 2 * m - 1, hi);
        merge(items, i, i + m - 1, end);
    }
}</pre>
```

Quick Sort

Method
Partitioning
Implementation
Analysis
Properties
Issues
Median-of-Three
Partitioning
Randomised
Partitioning
Improvements

Sorting Lists Comparison

Summary

Quick Sort

Quick Sort

Method Partitioning

rattitioning

Analysis

Properties Issues

Median-of-Three

Partitioning

Randomised

Partitioning Improvements

Sorting Lists

Comparison

Summary

Invented by Tony Hoare in 1959

Quick Sort

Method

Partitioning Implementatio Analysis

Properties Issues

Median-of-Three Partitioning Randomised Partitioning

Improvement Sorting Lists

Comparison

Summary

Method:

- 1 Choose an item to be a pivot
- Rearrange (partition) the array so that
 - All elements to the left of the pivot are less than (or equal to) the pivot
 - All elements to the right of the pivot are greater than (or equal to) the pivot
- 3 Recursively sort each of the partitions

Quick Sort

Method

Partitioning

Analysis

Properti

Issues Median-of-Three

Partitioning

Randomised Partitioning

Improvement Sorting Lists

Comparison

Summary

Quick Sort

Partitioning

Example

Analysis

Implementati

Analysis

Propertie

Median-of-Thre Partitioning Randomised

Partitioning
Improvements
Sorting Lists

Comparison

Summary

How to partition an array?

- Assume the pivot is stored at index lo
- Create index 1 to start of array (lo + 1)
- Create index r to end of array (hi)
- Until 1 and r meet:
 - Increment 1 until a[1] is greater than pivot
 - Decrement r until a[r] is less than pivot
 - Swap items at indices l and r
- Swap the pivot with index l or l 1 (depending on the item at index l)

Merge Sort

Quick Sort

Method Partitioning

Example 1

Example 2 Analysis

Implementation

Analysis

Droportic

Issues

Median-of-Three

Partitioning

Randomised

Improvements

Sorting Lists

Comparison

Summary

Pivot is 4

Quick Sort

Method Partitioning

Example 1

Example 2 Analysis

Implements

Analysis

Propertie

Issues

Median-of-Three

Partitioning

Randomised

_

Sorting Lists

Comparison

Summary

Create left and right indices

Quick Sort

Method

Example 1

Example 2 Analysis

.....

Analysis

Droporti

Issues

Median-of-Three Partitioning

raitiuoiiiig

Randomised

Improvemen

Sorting Lists

Comparison

Summary

Until the indices meet: Increment left index while element is \leq pivot

Merge Sort

Quick Sort

Method

Example 1

Example 2 Analysis

Anatysis

Analysis

Properti

Issues

Median-of-Three Partitioning

Partitioning

Randomised

Sorting Lists

Comparison

Summary

 $\label{eq:continuous} \mbox{Until the indices meet:} \\ \mbox{Increment left index while element is} \leq \mbox{pivot}$

Merge Sort

Quick Sort

Method

Example 1

Example 2 Analysis

Allatysis

Analysis

Properti

Issues

Median-of-Three

Randomised

Partitioning

Improvemen

Sorting Lists

Comparison Summary Until the indices meet: Decrement right index while element is \geq pivot

Merge Sort

Quick Sort

Method

Example 1

Example 2 Analysis

Allatysis

Analysis

Properti

Issues

Median-of-Three

Partitioning

Randomised

Improvemer

Sorting Lists

Comparison

Summary

$\label{eq:continuous} \mbox{Until the indices meet:} \\ \mbox{Decrement right index while element is} \geq \mbox{pivot}$

Merge Sort

Quick Sort

Method Partitioning

Example 1

Example 2 Analysis

Analysis

Properti

Issues Median-of-Three

Partitioning

Randomised

Partitioning

Improvemen

Sorting Lists

Comparison

Summary

Until the indices meet: Swap the two elements

Merge Sort

Quick Sort

Method

Example 1

Example 2 Analysis

Annual Control of the

Analysis

Propertie

Issues

Median-of-Three Partitioning

Randomised

Partitioning

illiproveilleli

Sorting Lists

Comparison

Summary

Until the indices meet: Swap the two elements

Merge Sort

Quick Sort

Method

Example 1

Example 2 Analysis

Allatysis

Analysis

Propertie

Issues

Median-of-Three Partitioning

Partitioning

Randomised

Improvemen

Sorting Lists

Comparison

Summary

Quick Sort

Method

Example 1

Example 2 Analysis

.....

Analysis

Properti

Issues

Median-of-Three Partitioning

Randomised

Partitioning

Improvemen

Sorting Lists

Comparison

Summary

Until the indices meet: Increment left index while element is \leq pivot

Quick Sort

Method

Example 1

Example 2 Analysis

Implementat

Analysis

Properti

Issues Median-of-Three

Partitioning

Randomised

Partitioning

Improvemen

Sorting Lists

Comparison

Summary

$\label{eq:continuous} \mbox{Until the indices meet:} \\ \mbox{Increment left index while element is} \leq \mbox{pivot}$

Quick Sort

Method

Example 1

Example 2 Analysis

Implements

Analysis

Properti

Issues Median-of-Three

Partitioning

Randomised

Partitioning

Improvement Sorting Lists

Comparison

Summary

$\label{eq:continuous} \mbox{Until the indices meet:} \\ \mbox{Decrement right index while element is} \geq \mbox{pivot}$

Quick Sort

Method

Example 1

Example 2 Analysis

Analysis

Properti

Issues

Median-of-Three

Randomised

Partitioning

Improvemen

Sorting Lists

Comparison

Summary

Until the indices meet: Decrement right index while element is \geq pivot

Merge Sort

Quick Sort

Method

Example 1

Example 2 Analysis

Anatysis

Analysis

Properti

Issues Median-of-Three

Partitioning

Randomised

Randonniseu Dantitianian

Improvemen

Sorting Lists

Comparison

Summary

Until the indices meet: Swap the two elements

Quick Sort

Method

Example 1

Example 2 Analysis

. .

Analysis

Properti

Issues

Median-of-Three

Partitioning

Randomised

Improvemen

Sorting Lists

Comparison

Summary

Until the indices meet: Swap the two elements

Quick Sort

Method

Example 1

Example 2 Analysis

rinarysis

Analysis

Properti

Issues

Median-of-Three

Partitioning

Randomised

Improveme

Sorting Lists

Comparison

Summary

 $\label{eq:continuous} \mbox{Until the indices meet:} \\ \mbox{Increment left index while element is} \leq \mbox{pivot}$

Merge Sort

Quick Sort

Method

Example 1

Example 2 Analysis

rinarysis

Analysis

Properti

Issues

Median-of-Three Partitioning

Randomised

Partitioning

Sorting Lists

Comparison

Summary

 $\label{eq:continuous} \mbox{Until the indices meet:} \\ \mbox{Increment left index while element is} \leq \mbox{pivot}$

Quick Sort

Method

Example 1

Example 2 Analysis

Allatysis

Analysis

Proportio

Issues

Median-of-Three

Partitioning

Randomised

raiddoning

improvemen

Sorting Lists

Comparison

Summary

Swap the pivot into the middle (be careful!)

Quick Sort

Method

Example 1

Example 2 Analysis

rindiyolo

Analysis

Droporti

Issues

Median-of-Three

Partitioning

Randomised

Improvemen

Sorting Lists

Comparison

Summary

Swap the pivot into the middle (be careful!)

Quick Sort

Method Partitioning

Example 1

Example 2 Analysis

Implementation

Analysis

Propertie

Issues

Median-of-Three Partitioning

Randomised

Partitioning

Improvements

Sorting Lists

Comparison

Summary

Quick Sort
Method
Partitioning

Example 1

Example 2

Analysis Implementation

Analysis Propertie

Issues

Median-of-Three Partitioning

Randomised

Partitioning

Improvements
Sorting Lists

Comparison

Summary

Pivot is 1

1 2 3 4 5

Quick Sort
Method
Partitioning

Evample

Example 2

Analysis

Analysis

Propertie Issues

Median-of-Three

Partitioning

Randomised

Improvemen

Sorting Lists

Comparison

Summary

Create left and right indices

Quick Sort

Method Partition

Example

Example 2

Analysis

Analysis

Propert

Issues

Median-of-Three Partitioning

Randomised

Randomised

_

Sorting Lists

Comparison

Summary

 $\label{eq:continuous} \mbox{Until the indices meet:} \\ \mbox{Increment left index while element is} \leq \mbox{pivot}$

Method Partition

Evamni

Example 2

Analysis

Analysis

Droporti

Issues

Median-of-Three

Partitioning

Randomised

Sorting Lists

Comparison

Summary

Until the indices meet: Decrement right index while element is \geq pivot

Ouick Sort

Method

Evampl

Example 2

Analysis

Implementat

Analysis

Properti Issues

Median-of-Three

Partitioning

Randomised

Partitioning

improvemen

Sorting Lists

Comparison

Summary

Until the indices meet: Decrement right index while element is \geq pivot

Ouick Sort

Method

Evampl

Example 2

Analysis

Implement

Analysis

Propert

Issues Median-of-Three

Partitioning

Randomised

Randomised

Improvemen

Sorting Lists

Comparison

Summary

Until the indices meet: Decrement right index while element is \geq pivot

Ouick Sort

Method Partition

Evamnl

Example 2

Analysis

Analysis

Properti

Issues

Median-of-Three

raiddoning

Randomised

Improvemen

Sorting Lists

Comparison

Summary

Until the indices meet: Decrement right index while element is \geq pivot

Quick Sort

Partition

Example

Example 2

Analysis

Analysis

- Andry Siz

Issues

Median-of-Three

Partitioning

Randomised

Sorting Lists

Comparison

Summary

Swap the pivot into the middle (be careful!)

Ouick Sort

Method

Evamel

Example 2

Analysis

Implomo

Analysis

Properti

Issues

Median-of-Three Partitioning

raradoning

Randomised

Sorting Lists

Comparison

Summary

Swap the pivot into the middle (be careful!)

Quick Sort

Method Partitioning

Example 1

Example 2

Analysis Implementation

Analysis

Issues

Median-of-Three Partitioning

Randomised

Partitioning

Improvements

Sorting Lists

Comparison

Partitioning Analysis

Merge Sort

Quick Sort

Method

Example 2

Analysis

Median-of-Three

Comparison

- Partitioning is O(n), where n is the number of elements being partitioned
 - About n comparisons are performed, at most $\frac{n}{2}$ swaps are performed

```
Merge Sort
```

Quick Sort

Implementation

Analysis Properties

Median-of-Three Partitioning

Partitioning Improvements Sorting Lists

Comparison

```
void naiveQuickSort(Item items[], int lo, int hi) {
   if (lo >= hi) return;
   int pivotIndex = partition(items, lo, hi);
   naiveQuickSort(items, lo, pivotIndex - 1);
   naiveQuickSort(items, pivotIndex + 1, hi);
}
```

Quick Sort

C Implementation: Partition

```
Merge Sort
Ouick Sort
```

Method Partitioning Implementation

Implementation Analysis

Properties Issues

Median-of-Three Partitioning Randomised

Improvement Sorting Lists

Comparison

```
int partition(Item items[], int lo, int hi) {
    Item pivot = items[lo];
    int l = lo + 1;
    int r = hi:
    while (l < r) {
        while (l < r && le(items[l], pivot)) l++;</pre>
        while (l < r && ge(items[r], pivot)) r--;</pre>
        if (l == r) break;
        swap(items, l, r);
    }
    if (lt(pivot, items[l])) l--;
    swap(items, lo, l);
    return l;
```

Quick Sort Analysis

Merge Sort
Ouick Sort

Method Partitioning

Implementat
Analysis

Propertie

Median-of-Three Partitioning Randomised Partitioning Improvements Sorting Lists

Comparison

Summary

Best case: $O(n \log n)$

- Choice of pivot gives two equal-sized partitions
- Same happens at every recursive call
 - Resulting in $\log_2 n$ recursive levels
- Each "level" requires approximately *n* comparisons

Quick Sort Analysis

Merge Sort
Ouick Sort

Method Partitioning

Analysis

Properties Issues Median-of-Three Partitioning Randomised Partitioning Improvements

Comparison

Summary

Worst case: $O(n^2)$

- Always choose lowest/highest value for pivot
 - Resulting in partitions of size 0 and n-1
 - Resulting in n recursive levels
- Each "level" requires one less comparison than the level above

Quick Sort Analysis

Merge Sort
Ouick Sort

Method Partitioning

Implementa

Analysis

Issues Median-of-Three

Partitioning Randomised

Improvemen Sorting Lists

Comparison

Summarv

Average case: $O(n \log n)$

- If array is randomly ordered, chance of repeatedly choosing a bad pivot is very low
- Can also show empirically by generating random sequences and sorting them

Quick Sort Properties

Merge Sort

Ouick Sort

Method

Analysis

Properties

Median-of-Three

Partitioning

Partitioning

Sorting Lists

Comparison

Summarv

Unstable

Due to long-range swaps

Non-adaptive

 $O(n\log n)$ average case, sorted input does not improve this

In-place

Partitioning is done in-place Stack depth is O(n) worst-case, $O(\log n)$ average

Quick Sort
Method
Partitioning

Implementat

Propert

Median-of-Thre Partitioning Randomised Partitioning Improvements

Comparison

Summarv

Choice of pivot can have a significant effect:

- Ideal pivot is the median value
- Always choosing largest/smallest ⇒ worst case

Therefore, always picking the first or last element as pivot is not a good idea:

- Existing order is a worst case
- Existing reverse order is a worst case
- Will result in partitions of size n-1 and 0
- This pivot selection strategy is called naïve quick sort

Quick Sort with Median-of-Three Partitioning

Merge Sort

Quick Sort

metriou

Implementati

Analysis

Propertie:

Median-of-Three Partitioning

Randomise

Improvement

Sorting Lists

Comparison

Summary

Pick three values: left-most, middle, right-most. Pick the median of these three values as our pivot.

Ordered data is no longer a worst-case scenario. In general, doesn't eliminate the worst-case but makes it much less likely.

Quick Sort with Median-of-Three Partitioning

Merge Sort

Ouick Sort

Method

Partitioning

Analysis

Properties

Median-of-Three

Partitioning Randomised Partitioning

Improvement Sorting Lists

Comparison

- f a Sort a[lo], a[(lo+hi)/2], a[hi], such that $a[(lo+hi)/2] \le a[lo] \le a[hi]$
- **2** Partition on a[lo] to a[hi]

Quick Sort

Method

Partitioning

Analysis

Propertie

Median-of-Three Partitioning

Partitioning

Improvemen

Sorting Lists

Comparison

Summary

Which element is selected as the pivot?

Quick Sort with Median-of-Three Partitioning

Example

Merge Sort

Ouick Sort

Method

Partitioning

Analysis

Propertie Issues

Median-of-Three Partitioning

Partitioning Pandomised

Improvement Sorting Lists

Comparison

Summary

Quick Sort

Method

Partitioning

Analysis

Propertie

Median-of-Three Partitioning

Randomised Partitioning

Improvement Sorting Lists

Comparison

Quick Sort with Median-of-Three Partitioning

C Implementation

Merge Sort
Ouick Sort

Method Partitioning

Implementat

Analysis Properties

Median-of-Three Partitioning

Randomised Partitioning Improvements

Comparison

```
void medianOfThreeQuickSort(Item items[], int lo, int hi) {
   if (lo >= hi) return;
   medianOfThree(items, lo, hi);
   int pivotIndex = partition(items, lo, hi);
   medianOfThreeQuickSort(items, lo, pivotIndex - 1);
   medianOfThreeQuickSort(items, pivotIndex + 1, hi);
void medianOfThree(Item a[], int lo, int hi) {
   int mid = (lo + hi) / 2;
   if (gt(a[mid], a[lo])) swap(a, mid, lo);
   if (gt(a[lo], a[hi])) swap(a, lo, hi);
   if (gt(a[mid], a[lo])) swap(a, mid, lo);
   // now, we have a[mid] \le a[lo] \le a[hi]
```

Quick Sort with Randomised Partitioning

Merge Sort

Quick Sort

Method

Partitioning

Analysis

Properti

Median-of-Three

Partitioning

Randomised

Partitioning

Continuities

Comparison

Companisor

Summarv

Idea: Pick a random value for the pivot

This makes it nearly impossible to systematically generate inputs that would lead to $O(n^2)$ performance

Quick Sort with Randomised Partitioning

C Implementation

```
Merge Sort
Quick Sort
```

Median-of-Three Randomised

Partitioning

Summarv

```
Comparison
```

```
void randomisedQuickSort(Item items[], int lo, int hi) {
   if (lo >= hi) return;
   swap(items, lo, randint(lo, hi));
   int pivotIndex = partition(items, lo, hi);
    randomisedQuickSort(items, lo, pivotIndex - 1);
    randomisedQuickSort(items, pivotIndex + 1, hi);
int randint(int lo, int hi) {
   int i = rand() % (hi - lo + 1);
   return lo + i;
```

Note: rand() is a pseudo-random number generator provided by <stdlib.h>. The generator should be initialised with srand().

Insertion Sort Improvement

Merge Sort

Quick Sort

Method

Partitioning

Analysis

Properti

Issues

Median-of-Three

- . . .

Randomised

Improvemen

Insertion Sort

maer don ac

Comparison

Summarv

For small sequences (when n < 5, say), quick sort is expensive because of the recursion overhead.

Solution: Handle small partitions with insertion sort

Insertion Sort Improvement

C Implementation - Version 1

Merge Sort
Ouick Sort

Method Partitioning

Implementati

Properties

Median-of-Three Partitioning

Randomised Partitioning

Insertion Sort

Comparison

```
#define THRESHOLD 5
void quickSort(Item items[], int lo, int hi) {
    if (hi - lo < THRESHOLD) {</pre>
        insertionSort(items, lo, hi);
        return;
    medianOfThree(items, lo, hi);
    int pivotIndex = partition(items, lo, hi);
    quickSort(items, lo, pivotIndex - 1);
    quickSort(items, pivotIndex + 1, hi);
```

Insertion Sort Improvement

C Implementation - Version 2

Merge Sort
Ouick Sort

Method Partitioning

Analysis Properties

Median-of-Three Partitioning Randomised

Improvements
Insertion Sort

Sorting Lists

Comparison

```
#define THRESHOLD 5
void quickSort(Item items[], int lo, int hi) {
    doQuickSort(items, lo, hi);
    insertionSort(items, lo, hi);
void doQuickSort(Item items[], int lo, int hi) {
    if (hi - lo < THRESHOLD) return;</pre>
    medianOfThree(items, lo, hi);
    int pivotIndex = partition(items, lo, hi);
    doQuickSort(items, lo, pivotIndex - 1);
    doQuickSort(items, pivotIndex + 1, hi);
```

Quick Sort

Partitioning

Analysis

Properti

Median-of-Thre Partitioning Randomised

Improvemen Sorting Lists

Comparisor

Summary

It is possible to quick sort a linked list:

- 1 Pick first element as pivot
 - Note that this means ordered data is a worst case again
 - Instead, can use median-of-three or random pivot
- $oldsymbol{2}$ Create two empty linked lists A and B
- 3 For each element in original list (excluding pivot):
 - If element is less than (or equal to) pivot, add it to A
 - ullet If element is greater than pivot, add it to B
- $oldsymbol{4}$ Recursively sort A and B
- \bullet Form sorted linked list using sorted A, the pivot, and then sorted B

Quick Sort vs Merge Sort

Merge Sort

Quick Sort

Comparison

Summary

Design of modern cpus mean, for sorting arrays in RAM quick sort *generally* outperforms merge sort.

Quick sort is more 'cache friendly': good locality of access on arrays.

On the other hand, merge sort is readily stable, readily parallel, a good choice for sorting linked lists

Summary of Divide-and-Conquer Sorts

Merge Sort
Quick Sort
Comparison

	Time complexity			Properties	
	Best	Average	Worst	Stable	Adaptive
Merge sort	$O(n \log n)$	$O(n \log n)$	$O(n \log n)$	Yes	No
Quick sort	$O(n \log n)$	$O(n \log n)$	$O(n^2)$	No	No

Merge Sort
Quick Sort
Comparison

Summary

https://forms.office.com/r/2BW7BasQ77

