CONCEITOS DE OTIMIZAÇÃO EM REDES

DCE692 - Pesquisa Operacional

Atualizado em: 9 de outubro de 2023

Iago Carvalho

Departamento de Ciência da Computação

OTIMIZAÇÃO EM REDES

Problemas em redes são aqueles que podem ser representados como uma rede

- Conjunto de elementos
 - Nós
 - Vértices
- Conexões entre os elementos
 - Arcos
 - Arestas

GRAFOS

Problemas de otimização em redes são definidos sob grafos

- Uma estrutura de dados especial
- Representação de uma rede
- Talvez seja a estrutura mais útil em toda a Ciência da Computação

Um grafo G é definido como G = (V, E)

- $V = \{v_1, v_2, \dots, v_n\}$ é o conjunto de vértices
- $C = \{e_1, e_2, \dots, e_m\}$ $C = \{e_1, e_2, \dots, e_m\}$

3

DIREÇÃO

Um grafo pode ser direcionado ou não-direcionado

CAMINHOS E CICLOS

Caminho $C = \langle c, e, d, c \rangle$

5

ADJACÊNCIA E GRAU

FECHO TRANSITIVO

Direto e inverso

FONTE E SUMIDOURO

Ω

GRAFO COMPLETO

9

GRAFO COM PESOS

GRAFO CONEXO

GRAFO DESCONECTADO E COMPONENTES CONEXAS

ÁRVORE GERADORA (MÍNIMA)

GRAFO BIPARTIDO

PROPRIEDADES ADICIONAIS

Diversas destas propriedades serão utilizadas no decorrer deste curso

Grafos são uma das estruturas mais importantes em Ciência da Computação, tendo aplicações em uma infinidade de áreas

- Redes
- Biologia
- Eletrônica
- Pesquisa Operacional
- ... ► Link

Interessados em um pouco mais de propriedades de grafos podem acessar o seguinte link

ESTRUTURAS DE DADOS

Existem duas estruturas de dados capazes de representar grafos

- Matriz de adjacência
- Lista de adjacência

Cada estrutura difere-se da outra pela complexidade de suas operações

- Complexidade de adicionar ou retirar nós
- Complexidade de inserir ou remover arestas
- Complexidade de pesquisa
 - Saber se uma aresta existe ou não
- O Diferentes complexidades de espaço

MATRIZ DE ADJACÊNCIA

Talvez seja a maneira mais natural de se representar um grafo

- Grafo com n vértices
- \bigcirc Matriz bi-dimensional $n \times n$
- Omplexidade de espaço: $O(n^2) = O(m)$

Inserção e remoção de vértices é cara

Necessário alocar ou desalocar memória

Modificação de arestas e pesquisa é barata

 Necessário apenas modificar (ou verificar) uma célula específica da matriz

MATRIZ DE ADJACÊNCIA

	1	2	3	4	5
1			1	1	
2				1	1
3	1				1
3 4 5	1	1			
5		1	1		

	1	2	3	4	5
1		1			1
2	1		1		
3		1		1	
3			1		1
5	1			1	

MATRIZ DE ADJACÊNCIA

	1	2	3	4	5	6
1	0	1	12	0	0	0
2	-1	0	0	-1	0	0
3	-12	0	0	8	0	0
4	0	1	-8	0	3	0
(5)	0	0	0	-3	0	19
6	0	0	0	0	-19	0

Uma lista de adjacência pode ser representada como uma lista de listas

- Uma lista que contém todos os vértices do grafo
- Cada lista contém outra lista
 - Contém todos os vértices adjacentes

Complexidades diferem das de matriz de adjacência

- O Complexidade de espaço: $O(n^2) = O(m)$
- \bigcirc Inserção, pesquisa e remoção de arestas: O(n)
- \bigcirc Inserção e remoção de vértices: O(1)

PROPRIEDADES ADICIONAIS

Todas estas propridades de grafos nos serão úteis para estudar problemas de otimização em redes

Grafos, por si só, são um assunto para uma disciplina inteira de graduação

Interessados em um pouco mais de propriedades de grafos podem acessar o seguinte link