CS 188: Artificial Intelligence Fall 2011

Lecture 13: Bayes' Nets 10/6/2011

Dan Klein - UC Berkeley

Probabilistic Models

- Models describe how (a portion of) the world works
- Models are always simplifications
 - May not account for every variable
 - May not account for all interactions between variables
 - "All models are wrong; but some are useful."
 George E. P. Box
- What do we do with probabilistic models?
 - We (or our agents) need to reason about unknown variables, given evidence
 - Example: explanation (diagnostic reasoning)
 - Example: prediction (causal reasoning)
 - Example: value of information

Model for Ghostbusters

- Reminder: ghost is hidden, sensors are noisy
- T: Top sensor is red
 B: Bottom sensor is red
 G: Ghost is in the top
- Queries:

 Problem: joint distribution too large / complex

Joint Distribution

T	В	G	P(T,B,G)
+t	+b	+g	0.16
+t	+b	¬д	0.16
+t	Гb	+g	0.24
+t	$\neg b$	¬д	0.04
−t	+b	+g	0.04
−t	+b	¬д	0.24
−t	¬b	+g	0.06
−t	$\neg b$	¬д	0.06

Independence

Two variables are independent if:

$$\forall x, y : P(x, y) = P(x)P(y)$$

- This says that their joint distribution factors into a product two simpler distributions
- Another form:

$$\forall x, y : P(x|y) = P(x)$$

- We write: $X \perp \!\!\! \perp Y$
- Independence is a simplifying modeling assumption
 - Empirical joint distributions: at best "close" to independent
 - What could we assume for {Weather, Traffic, Cavity, Toothache}?

Example: Independence

N fair, independent coin flips:

$$P(X_2)$$
h 0.5
t 0.5

$$\begin{array}{c|c} P(X_n) \\ \hline h & 0.5 \\ \hline t & 0.5 \end{array}$$

6

Example: Independence?

 $P_1(T, W)$

± (
Т	W	Р	
warm	sun	0.4	
warm	rain	0.1	
cold	sun	0.2	
cold	rain	0.3	

P(T)

Т	Р
warm	0.5
cold	0.5

P(W)

sun

0.6

0.4

Т	W	Р
warm	sun	0.3
warm	rain	0.2
cold	sun	0.3
cold	rain	0.2

 $P_2(T,W)$

Conditional Independence

- P(Toothache, Cavity, Catch)
- If I have a cavity, the probability that the probe catches in it doesn't depend on whether I have a toothache:
 - P(+catch | +toothache, +cavity) = P(+catch | +cavity)
- The same independence holds if I don't have a cavity:
 - P(+catch | +toothache, ¬cavity) = P(+catch | ¬cavity)
- Catch is conditionally independent of Toothache given Cavity:
 - P(Catch | Toothache, Cavity) = P(Catch | Cavity)
- Equivalent statements:
 - P(Toothache | Catch , Cavity) = P(Toothache | Cavity)
 - P(Toothache, Catch | Cavity) = P(Toothache | Cavity) P(Catch | Cavity)
 - One can be derived from the other easily

8

Conditional Independence

- Unconditional (absolute) independence very rare (why?)
- Conditional independence is our most basic and robust form of knowledge about uncertain environments:

$$\forall x, y, z : P(x, y|z) = P(x|z)P(y|z)$$

$$\forall x, y, z : P(x|z, y) = P(x|z)$$

$$X \perp \!\!\! \perp Y|Z$$

- What about this domain:
 - Traffic
 - Umbrella
 - Raining
- What about fire, smoke, alarm?

The Chain Rule

$$P(X_1, X_2, ... X_n) = P(X_1)P(X_2|X_1)P(X_3|X_1, X_2)...$$

Trivial decomposition:

$$P(\text{Traffic}, \text{Rain}, \text{Umbrella}) =$$

$$P(\text{Rain})P(\text{Traffic}|\text{Rain})P(\text{Umbrella}|\text{Rain}, \text{Traffic})$$

With assumption of conditional independence:

$$P(\text{Traffic}, \text{Rain}, \text{Umbrella}) = P(\text{Rain})P(\text{Traffic}|\text{Rain})P(\text{Umbrella}|\text{Rain})$$

 Bayes' nets / graphical models help us express conditional independence assumptions

Ghostbusters Chain Rule

- Each sensor depends only on where the ghost is
- That means, the two sensors are conditionally independent, given the ghost position
- T: Top square is red
 B: Bottom square is red
 G: Ghost is in the top
- Givens:

$$\begin{array}{l} P(\ +g\) = 0.5 \\ P(\ +t\ |\ +g\) = 0.8 \\ P(\ +t\ |\ \neg g\) = 0.4 \\ P(\ +b\ |\ \neg g\) = 0.4 \\ P(\ +b\ |\ \neg g\) = 0.8 \end{array}$$

P(T,B,G) = P(G) P(T|G) P(B|G)

T	В	G	P(T,B,G)
+t	+b	+g	0.16
+t	+b	¬g	0.16
+t	¬b	+g	0.24
+t	$\neg b$	¬g	0.04
⊸t	+b	+g	0.04
¬t	+b	g	0.24
¬t	¬b	+g	0.06
⊸t	¬b	¬д	0.06

Bayes' Nets: Big Picture

- Two problems with using full joint distribution tables as our probabilistic models:
 - Unless there are only a few variables, the joint is WAY too big to represent explicitly
 - Hard to learn (estimate) anything empirically about more than a few variables at a time
- Bayes' nets: a technique for describing complex joint distributions (models) using simple, local distributions (conditional probabilities)
 - More properly called graphical models
 - We describe how variables locally interact
 - Local interactions chain together to give global, indirect interactions
 - For about 10 min, we'll be vague about how these interactions are specified

12

Example Bayes' Net: Insurance

Graphical Model Notation

- Nodes: variables (with domains)
 - Can be assigned (observed) or unassigned (unobserved)
- Arcs: interactions
 - Similar to CSP constraints
 - Indicate "direct influence" between variables
 - Formally: encode conditional independence (more later)
- For now: imagine that arrows mean direct causation (in general, they don't!)

Example: Coin Flips

N independent coin flips

. . .

No interactions between variables: absolute independence

16

Example: Traffic

- Variables:
 - R: It rains
 - T: There is traffic
- Model 1: independence
- Model 2: rain causes traffic
- Why is an agent using model 2 better?

T

Example: Traffic II

- Let's build a causal graphical model
- Variables
 - T: Traffic
 - R: It rains
 - L: Low pressure
 - D: Roof drips
 - B: Ballgame
 - C: Cavity

18

Example: Alarm Network

- Variables
 - B: Burglary
 - A: Alarm goes off
 - M: Mary calls
 - J: John calls
 - E: Earthquake!

Bayes' Net Semantics

- Let's formalize the semantics of a Bayes' net
- A set of nodes, one per variable X
- A directed, acyclic graph
- A conditional distribution for each node
 - A collection of distributions over X, one for each combination of parents' values

$$P(X|a_1 \ldots a_n)$$

$$P(X|A_1 \ldots A_n)$$

- CPT: conditional probability table
- Description of a noisy "causal" process

A Bayes net = Topology (graph) + Local Conditional Probabilities

24

Probabilities in BNs

- Bayes' nets implicitly encode joint distributions
 - As a product of local conditional distributions
 - To see what probability a BN gives to a full assignment, multiply all the relevant conditionals together:

$$P(x_1, x_2, \dots x_n) = \prod_{i=1}^n P(x_i | parents(X_i))$$

Example:

 $P(+cavity, +catch, \neg toothache)$

- This lets us reconstruct any entry of the full joint
- Not every BN can represent every joint distribution
 - The topology enforces certain conditional independencies

Example: Coin Flips

. . .

$$P(X_1)$$
h 0.5
t 0.5

$$P(X_2)$$
h 0.5
t 0.5

. . .

$$P(X_n)$$
h 0.5
t 0.5

$$P(h, h, t, h) =$$

Only distributions whose variables are absolutely independent can be represented by a Bayes' net with no arcs.

Example: Traffic

$$P(+r, \neg t) =$$

Example: Reverse Traffic

Reverse causality?

P(T,R)			
r	t	3/16	
r	⊸t	1/16	
⊸r	t	6/16	
⊸r	⊣t	6/16	

27

Causality?

- When Bayes' nets reflect the true causal patterns:
 - Often simpler (nodes have fewer parents)
 - Often easier to think about
 - Often easier to elicit from experts
- BNs need not actually be causal
 - Sometimes no causal net exists over the domain (especially if variables are missing)
 - E.g. consider the variables *Traffic* and *Drips*
 - End up with arrows that reflect correlation, not causation
- What do the arrows really mean?
 - Topology may happen to encode causal structure
 - Topology really encodes conditional independence

Bayes' Nets

- So far: how a Bayes' net encodes a joint distribution
- Next: how to answer queries about that distribution
 - Key idea: conditional independence
 - Today: assembled BNs using an intuitive notion of conditional independence as causality
 - Next: formalize these ideas
 - Main goal: answer queries about conditional independence and influence
- After that: how to answer numerical queries (inference)