题目:课程资料整理

作者: 数学强基 2301 刘欣楠

关键词:数学专业课、专业基础课、知识点、作业

Title:			
Name:			
Supervisor:			

ABSTRACT

KEY WORDS: Wikipedia; Free encyclopedia; Winner; Good morning

目 录

I	数学分析	1
数	学分析定义及主要定理	2
积	分表	3
第	一章 多元函数极限	4
	1.1 \mathbb{R}^n 中的点集	4
	1.1.1 邻域、开集	4
	1.1.2 聚点、闭集	5
	1.1.3 连通集	7
	1.2 多元函数的极限	8
	1.3 连续映射	9
第	二章 多元函数的微分	11
	2.1 微分的定义	11
	2.2 方向导数与偏导数	11
	2.3 有限增量定理与泰勒公式	12
	2.4 反函数定理	12
	2.5 隐函数定理	13
第	三章 含参变量的积分与反常积分	14
专	题一 欧拉积分	15
	3 ε.1 第一型欧拉积分	15
	3ε.2 第二型欧拉积分	16
	3ε.2.1 定义	16
	3ε.2.2 性质	18
	3ε.2.3 应用	22
	3ε .2.4 以书本例题为例	
	四章 重积分	
	4.1 若尔当测度	30
	4.1.1 简单集合的测度	30
	4.1.2 若尔当测度	31
	4.2 闭矩形上的积分	33
	4.3 有界集上的积分	
	4.4 富比尼定理	
	4.5 变量替换	35

uuku 的课程整理

4.6	反常重积分	35
专题二		
第五章		
5.1	曲线的弧长	
5.2	第一型曲线积分	1 2
5.3	第二型曲线积分	43
5.4	格林公式	1 5
5.5	应用: 调和函数	47
第六章	曲面积分	1 9
6.1	曲面的面积	1 9
6.2	第一型曲面积分5	50
6.3	曲面的侧与定向5	50
6.4	第二型曲面积分5	50
6.5	高斯公式	50
6.6	斯托克斯公式5	50
第七章	Fourier 分析初步5	51
7.1	Fourier 级数定义	51
7.2	局部化原理5	54
7.3	费耶尔定理5	57
7.4	均值定理5	58
参考文	献 \ldots	51
致谢.	ϵ	62

Part I 数学分析

这部分内容主要参考陆亚明《数学分析入门》[2].

数学分析定义及主要定理

简单曲线	40
第一型曲线积分	42
\mathbb{R}^3 上的光滑曲线段 \dots	43
格林公式	45

积分表

$$\int \sqrt{x^2 \pm a^2} \, dx$$

$$\frac{1}{2} \left(x \sqrt{x^2 \pm a^2} \pm a^2 \ln \left| x + \sqrt{x^2 \pm a^2} \right| \right)$$

$$\int 1$$
1

第一章 多元函数极限

§ 1.1 \mathbb{R}^n 中的点集

1.1.1 邻域、开集

定义 $1.1.(\varepsilon$ -邻域、去心邻域)

设 $a \in \mathbb{R}^n$, ε 是一个正实数, 我们称集合

$$\{x \in \mathbb{R}^n : |\boldsymbol{x} - \boldsymbol{a}| < \varepsilon\}$$

为 \boldsymbol{a} 的 ε -邻域, 记作 $B(\boldsymbol{a}, \varepsilon)$.

称 $B(\boldsymbol{a}, \varepsilon) \setminus \{\boldsymbol{a}\} = \{\boldsymbol{x} \in \mathbb{R}^n : 0 < |\boldsymbol{x} - \boldsymbol{a}| < \varepsilon\}$ 为 \boldsymbol{a} 的去心邻域.

定义 1.2.(内点、内部)

设 $E \subseteq \mathbb{R}^n$ 且 $\mathbf{a} \in E$. 若存在 $\varepsilon > 0$ 使得 $B(\mathbf{a}, \varepsilon) \subseteq E$, 则称 \mathbf{a} 是 E 的内点. E 的全体内点所成之集被称作 E 的内部,记作 E° .

定义 1.3.(外点、外部)

设 $E \subseteq \mathbb{R}^n$. 若 \mathbf{a} 是 E^c 的内点, 则称 \mathbf{a} 为 E 的外点. E 的全体外点所成之集被称作 E 的外部.

定义 1.4.(边界点、边界)

设 $E \subseteq \mathbb{R}^n$. 若 \boldsymbol{a} 既不是 E 的内点, 也不是 E 的外点, 则称 \boldsymbol{a} 为 E 的边界点. E 的全体边界点所成之集被称作 E 的边界, 记作 ∂E .

定义 1.5.(开集)

设 $D \subseteq \mathbb{R}^n$, 若 G 中每个点均为内点, 则称 G 是 \mathbb{R}^n 中的开集. 即 G 是开集, 当且仅当 $G = G^\circ$.

命题 1.1. 设 $E \subset \mathbb{R}^n$, 则 E° 是开集.

命题 1.2. 我们有

- (1) \emptyset 和 \mathbb{R}^n 都是开集.
- (2) 设 $(G_{\lambda})_{\lambda \in L}$ 是一族开集, 则 $\bigcup_{\lambda \in L} G_{\lambda}$ 也是开集.

(3) 设 G_1, \dots, G_m 是开集, 则 $\bigcap_{j=1}^m G_j$ 也是开集.

定义 1.6.(邻域)

设 $E \subseteq \mathbb{R}^n$, 若开集 G 满足 $E \subseteq G$, 则称 G 是 E 的一个邻域. 特别的, 当 $E = \{a\}$ 时我们称 G 是 a 的一个邻域.

1.1.2 聚点、闭集

定义 1.7.(闭集)

设 $F \subseteq \mathbb{R}^n$, 若 F^c 是 \mathbb{R}^n 中的开集, 则称 F 是 \mathbb{R}^n 中的闭集.

命题 1.3. 我们有

- (1) \emptyset 和 \mathbb{R}^n 都是闭集.
- (2) 设 $(G_{\lambda})_{\lambda \in L}$ 是一族闭集, 则 $\bigcap_{\lambda \in L} G_{\lambda}$ 也是闭集.
- (3) 设 G_1, \dots, G_m 是开集, 则 $\bigcup_{j=1}^m G_j$ 也是闭集.

定义 1.8.(聚点、导集)

设 $E \subset \mathbb{R}^n$, $\mathbf{a} \in \mathbb{R}^n$. 若对任意的 $\varepsilon > 0$ 均有

$$(B(\boldsymbol{a},\varepsilon)\backslash\{\boldsymbol{a}\})\cap E\neq\varnothing,$$

则称 a 是 E 的聚点. 称 E 的全体聚点所成之集为 E 的导集, 记作 E'

定义 1.9.(孤立点)

设 $E \subseteq \mathbb{R}^n$, 如果 $\mathbf{a} \in E \setminus E'$, 则称 $\mathbf{a} \in E$ 的孤立点.

定义 1.10.(闭包)

设 $E \subset \mathbb{R}^n$, 称 $E \cup E'$ 为 E 的闭包, 记作 \overline{E} .

命题 1.4. 设 $E \subseteq \mathbb{R}^n$, 则 \overline{E} 是闭集.

命题 1.5. 设 $E \subseteq \mathbb{R}^n$, 则 E 是闭集当且仅当 $E = \overline{E}$.

命题 1.6. 设 $E \subseteq \mathbb{R}^n$, 则 $\overline{E} = E^{\circ} \cup \partial E$.

定义 1.11.(极限、收敛)

设 $\{x_m\}$ 是 \mathbb{R}^n 中的一个点列, 如果存在 $a \in \mathbb{R}^n$, 使得对任意的 $\varepsilon > 0$, 均存在正整数 N 满足

$$|\boldsymbol{x}_{m}-\boldsymbol{a}|<\varepsilon, \quad \forall m>N.$$

则称 a 为 $\{x_m\}$ 的极限, 并称 $\{x_m\}$ 收敛于 a.

定义 1.12.(柯西列)

若 \mathbb{R}^n 中的点列 $\{x_m\}$ 满足: 对任意的 $\varepsilon > 0$, 均存在正整数 N 使得

$$|\boldsymbol{x_l} - \boldsymbol{x_m}| < \varepsilon, \quad \forall l, m > N,$$

则称 $\{x_m\}$ 是柯西列.

定理 1.7.(柯西收敛准则)

 \mathbb{R}^n 中的点列 $\{x_m\}$ 收敛当且仅当它是柯西列.

定理 1.8.(压缩映像原理)

设 $E \in \mathbb{R}^n$ 中的闭集, $f: E \to E$. 如果存在 $\theta \in (0,1)$ 使得

$$|f(\boldsymbol{x}) - f(\boldsymbol{y})| \le \theta |\boldsymbol{x} - \boldsymbol{y}|, \quad \forall \boldsymbol{x}, \boldsymbol{y} \in E,$$

那么存在唯一的 $a \in E$ 使得 f(a) = a. 我们称 a 为 f 的不动点.

定义 1.13.(闭矩形)

形如 $[a_1,b_1] \times [a_2,b_2] \times \cdots \times [a_n,b_n]$ 的集合为 \mathbb{R}^n 中的闭矩形.

定义 1.14.(直径)

对 \mathbb{R}^n 的任意非空子集 E 记

$$\mathrm{diam}(E) = \sup_{\boldsymbol{x},\boldsymbol{y} \in E} |\boldsymbol{x} - \boldsymbol{y}|,$$

并称之为 E 的**直径**.

定理 1.9.(闭矩形套定理)

设闭矩形列 $\{I_m\}$ 满足 $I_{m+1} \subseteq I_m(\forall m \in \mathbb{Z}_{>0})$ 以及 $\lim_{m \to \infty} \operatorname{diam}(I_m) = 0$,那么存在 唯一的 $\boldsymbol{a} \in \mathbb{R}^n$ 使得

$$\bigcap_{m=1}^{\infty} I_m = \{\boldsymbol{a}\}.$$

定义 1.15.(紧集)

设 $K \subset \mathbb{R}^n$, 如果 K 的每个开覆盖均有有限子覆盖, 那么我们称 K 是一个**紧集**,

命题 1.10. \mathbb{R}^n 中的闭矩形是紧集.

定义 1.16.(有界)

设 $E \subseteq \mathbb{R}^n$. 若存在 M > 0, 使得对任意的 $\mathbf{x} \in E$ 均有 $|\mathbf{x}| \leq M$, 则称 E 是**有界**的.

定理 1.11

设 $K \subseteq \mathbb{R}^n$,则 K 是紧集当且仅当它是有界闭集.

定理 1.12.(波尔查诺-魏尔斯特拉斯定理)

 \mathbb{R}^n 的任意一个有界无限子集必有聚点.

1.1.3 连通集

定义 1.17.(开(闭)子集)

设 $A \subseteq E \subseteq \mathbb{R}^n$. 若存在 \mathbb{R}^n 中的开集 (相应的, 闭集) S 使得 $A = E \cap S$, 则称 A 是 E 上的开子集 (相应的, 闭子集).

命题 1.13. 设 $E \subseteq \mathbb{R}^n$, $A, B \subseteq E$, 那么

- (1) $A \neq E$ 的开子集当且仅当对任意的 $a \in A$, 存在 a 的邻域 U 使得 $E \cap U \subset A$.
- (2) $B \notin E$ 的闭子集当且仅当 $E \setminus B \notin E$ 的开子集.

定义 1.18.(连通集)

设 $E \subseteq \mathbb{R}^n$. 若不存在 E 的两个非空开子集 A 和 B 使得 $A \cup B = E$ 且 $A \cap B = \emptyset$, 则称 $E \neq \mathbb{R}^n$ 中的**连通集**.

定义1.19.(区域、闭区域)

 \mathbb{R}^n 中的连通开集被称作**区域**. 如果 E 是区域,那么也将 \overline{E} 称作**闭区域**. 要注意的是, **闭区域**不是**区域**.

命题 1.14. 设 $E \in \mathbb{R}$ 的非空子集, 那么 $E \in \mathbb{R}$ 中的连通集当且仅当 $E \in \mathbb{R}$ 是区间.

命题 1.15. 设 $E \in \mathbb{R}^n$ 中的连通集, 且 $E \subseteq S \subseteq \overline{E}$, 那么 S 也是 \mathbb{R}^n 中的连通集. 特别的 \overline{E} 是 \mathbb{R}^n 中的连通集.

§ 1.2 多元函数的极限

定义 2.1.(极限)

设 $E \subseteq \mathbb{R}^n$, $f: E \to \mathbb{R}^m$, \boldsymbol{a} 是 E 的聚点. 若存在 $\boldsymbol{b} \in \mathbb{R}^m$, 使得对任意的 $\varepsilon > 0$, 均存在 $\delta > 0$ 满足

$$|f(\boldsymbol{x}) - \boldsymbol{b}| < \varepsilon, \quad \forall \boldsymbol{x} \in (B(\boldsymbol{a}, \delta) \setminus \{\boldsymbol{a}\}) \cap E,$$

则称 b 为 f 沿 E 中元素趋于 a 的**极限**.

命题 2.1. (极限的唯一性) 设 $E \subseteq \mathbb{R}^n$, $f: E \to \mathbb{R}^m$, $a \in E$ 的聚点. 如果 $b \in c \in F$ 沿 E 中元素趋于 a 的极限, 则 b = c.

定理 2.2.(海涅归结原理)

 $\lim_{\substack{\boldsymbol{x} \to \boldsymbol{a} \\ \boldsymbol{x} \in E}} f(\boldsymbol{x}) = \boldsymbol{b}$ 的充要条件是: 对于 E 中满足 $\lim_{k \to \infty} \boldsymbol{x}_k = \boldsymbol{a}$ 且 $\boldsymbol{x}_k \neq \boldsymbol{a}$ ($\forall k$) 的任一序列 $\{x_k\}$ 均有 $\lim_{k \to \infty} f(\boldsymbol{x}_k) = \boldsymbol{b}$.

定理 2.3.(柯西收敛准则)

 $\lim_{\substack{x \to a \\ E}} f(x)$ 存在的重要条件是: 对任意的 $\varepsilon > 0$, 存在 $\delta > 0$, 使得对于任意的 $x, y \in (B(a, \delta) \setminus \{a\}) \cap E$ 有

$$|f(\boldsymbol{x}) - f(\boldsymbol{y})| < \varepsilon.$$

定理 2.4.(夹逼定理)

设 $E \subseteq \mathbb{R}^n$, \mathbf{a} 是 E 的聚点, f, g, h 均是定义在 E 上的函数, 并且存在 $\delta > 0$, 使得存在 $(B(\mathbf{a}, \delta) \setminus \{\mathbf{a}\}) \cap E$ 内有 $f(\mathbf{x}) \leq g(\mathbf{x}) \leq h(\mathbf{x})$. 如果

$$\lim_{\substack{\boldsymbol{x} \to \boldsymbol{a} \\ \boldsymbol{x} \in E}} f(\boldsymbol{x}) = \lim_{\substack{\boldsymbol{x} \to \boldsymbol{a} \\ \boldsymbol{x} \in E}} h(\boldsymbol{x}) = A,$$

那么 $\lim_{\substack{x \to a \\ x \in E}} g(x) = A.$

§ 1.3 连续映射

定义 3.1.(连续)

设 $E \subseteq \mathbb{R}^n$, $f: E \to \mathbb{R}^m$. 又设 $\mathbf{a} \in E$. 若对任意的 $\varepsilon > 0$, 存在 $\delta > 0$, 使得对任意的 $\mathbf{x} \in E \cap B(\mathbf{a}, \delta)$ 均有

$$|f(\boldsymbol{x}) - f(\boldsymbol{a})| < \varepsilon,$$

则称 f 在 a 处连续. 若 f 在 E 的每一点处均连续, 则称 f 在 E 上连续.

注 3.1. 按照上述定义, E 上的任一映射 f 在 E

定理 3.2

设 $E \subseteq \mathbb{R}^n$ 且 $f: E \to \mathbb{R}^m$, 则下列命题等价:

- (1) f 在 E 上连续.
- (2) 对 \mathbb{R}^m 中任意的开集 G, $f^{-1}(G)$ 均是 E 的开子集.
- (3) 对 \mathbb{R}^m 中任意的闭集 F, $f^{-1}(F)$ 均是 E 的闭子集.

命题 3.3. 设 $E \subseteq \mathbb{R}^n$ 且 $f = (f_1, \dots, f_m)^T : E \to \mathbb{R}^m$, 那么 $f \in E$ 上的连续函数当且仅当每个 f_i $(1 \le j \le m)$ 均是 E 上的连续函数.

定理 3.4

设 $f: \mathbb{R}^n \to \mathbb{R}^m$ 是连续映射. 若 $K \in \mathbb{R}^n$ 中的紧集, 则 f(K) 是 \mathbb{R}^m 中的紧集.

定义 3.2.(凸集)

 \mathbb{R}^n 的子集 S 被称为凸集当且仅当对任意的 $x, y \in S$ 均有

$$\{(1-\lambda)\boldsymbol{x} + \lambda\boldsymbol{y} : \lambda \in [0,1]\} \subseteq S.$$

第二章 多元函数的微分

§ 2.1 微分的定义

定义 1.1.(可微)

设 $E \subseteq \mathbb{R}^m$, $f: E \to \mathbb{R}^m$. 又设 $a \not\in E$ 的一个内点. 若存在线性映射 $L: \mathbb{R}^n \to \mathbb{R}^m$ 使得

$$\lim_{\boldsymbol{h}\to 0}\frac{f(\boldsymbol{a}+\boldsymbol{h})-f(\boldsymbol{a})-L\boldsymbol{h}}{|\boldsymbol{h}|}=\boldsymbol{0},$$

则称 f 在 a 处可微. 若 f 在 E 中每个点处均可微, 我们就称 f 在 E 上可微.

§ 2.2 方向导数与偏导数

定义 2.1.(方向导数)

设 $E \subseteq \mathbb{R}^n$, $f: E \to \mathbb{R}^m$, 且 a 是 E 的一个内点. 对 \mathbb{R}^n 中给定的非零向量 u, 若极限

$$\lim_{t\to 0} \frac{f(\boldsymbol{a}+t\boldsymbol{u})-f(\boldsymbol{a})}{t}$$

存在, 我们就称 f 在 a 处沿方向 u 是可微的, 并将上述极限称为 f 在 a 处沿方向 u 的方向导数, 记作 $\frac{\partial f}{\partial u}(a)$.

命题 2.1. 设 $E \subseteq \mathbb{R}^n$, $f: E \to \mathbb{R}^m$, 且 a 是 E 的一个内点. 若 f 在 a 处可微, 则 f 在 a 处的所有方向导数均存在, 并且对于 \mathbb{R}^n 中的任意非零向量 u 有

$$\frac{\partial f}{\partial \boldsymbol{u}}(\boldsymbol{a}) = f'(\boldsymbol{a})\boldsymbol{u}.$$

定义 2.2.(雅可比矩阵)

$$f'(\boldsymbol{a}) = \begin{bmatrix} \frac{\partial f_1}{\partial x_1}(\boldsymbol{a}) & \frac{\partial f_1}{\partial x_2}(\boldsymbol{a}) & \cdots & \frac{\partial f_1}{\partial x_n}(\boldsymbol{a}) \\ \frac{\partial f_2}{\partial x_1}(\boldsymbol{a}) & \frac{\partial f_2}{\partial x_2}(\boldsymbol{a}) & \cdots & \frac{\partial f_2}{\partial x_n}(\boldsymbol{a}) \\ \vdots & \vdots & & \vdots \\ \frac{\partial f_m}{\partial x_1}(\boldsymbol{a}) & \frac{\partial f_m}{\partial x_2}(\boldsymbol{a}) & \cdots & \frac{\partial f_m}{\partial x_n}(\boldsymbol{a}) \end{bmatrix}$$

$$(2.1)$$

定义 2.3.(偏导数的链式法则)

如果 $f(x_1, x_2, ..., x_m)$ 是一个 m 元可微函数, 并且每个 x_j 均是 n 元可微函数 $x_j(t_1, t_2, ..., t_n)$, 那么我们也可以把 f 看作变量 $t_1, t_2, ..., t_n$ 的函数, 于是由链式法则及 (2.1) 知

因此对 $1 \le j \le n$ 有

$$\frac{\partial f}{\partial t_j} = \sum_{i=1}^m \frac{\partial f}{\partial x_i} \cdot \frac{\partial x_i}{\partial t_j}.$$
(2.2)

这一公式也被称作偏导数的链式法则.

定义 2.4.(中值定理)

1

§ 2.3 有限增量定理与泰勒公式

定义 3.1.(范数)

设 $L \in \mathcal{L}(\mathbb{R}^n, \mathbb{R}^m)$,定义L的范数 ||L||为

$$||L|| = \sup_{|\boldsymbol{h}|=1} |L\boldsymbol{h}|.$$

并且我们有 $|L\mathbf{x}| \leq ||L|| \cdot |\mathbf{x}|, \quad \forall \mathbf{x} \in \mathbb{R}^n$.

定理 3.1.(有限增量定理)

设 $E \in \mathbb{R}^n$ 中的凸开集, $f: E \to \mathbb{R}^m$ 在 E 上可微, 且存在 M > 0 使得对任意的 $\mathbf{x} \in E$ 均有 $\|f'(\mathbf{x})\| \leq M$. 那么对任意的 $\mathbf{a}, \mathbf{b} \in E$ 有

$$|f(\boldsymbol{b}) - f(\boldsymbol{a})| \leqslant M|\boldsymbol{b} - \boldsymbol{a}|.$$

§ 2.4 反函数定理

定理 4.1.(反函数定理)

设 $E \in \mathbb{R}^n$ 中的开集, $f: E \to \mathbb{R}^n$ 且 $f \in C^1(E)$. 又设 $\mathbf{a} \in E$. 若 $f'(\mathbf{a})$ 非奇异, 那 么必存在 \mathbf{a} 的邻域 U 使得 V = f(U) 是 \mathbb{R}^n 中的开集, 且 $f|_U: U \to V$ 是双射. 此外, g 表示 $f|_U$ 的逆映射, 则 $g \in C^1(V)$, 并且对任意的 $\mathbf{y} \in V$ 有

$$g'(\boldsymbol{y}) = f'(g(\boldsymbol{y}))^{-1}.$$

换种说法,如果有

- $E \in \mathbb{R}^n$ 中的开集.
- $f: E \to \mathbb{R}^n \coprod f \in C^1(E)$
- $a \in E$, f'(a) 非奇异, 即 det $f'(a) \neq 0$

那么

- 存在 a 的邻域 U 使得 V = f(U) 是 \mathbb{R}^n 中的开集
- $f|_U:U\to V$ 是双射.
- 若设 $g = f|_{U}^{-1} 则 g \in C^{1}(E)$, 并且对任意的 $\mathbf{y} \in V$ 有

$$g'(\mathbf{y}) = f'(g(\mathbf{y}))^{-1}.$$

§ 2.5 隐函数定理

定理 5.1.(隐函数定理)

设 $E \in \mathbb{R}^{n+m}$ 中的开集, $f = (f_1, f_2, \dots, f_m)^T : E \to \mathbb{R}^m$ 连续可微. 又设 $\mathbf{a} \in \mathbb{R}^n$ 及 $\mathbf{b} \in \mathbb{R}^m$, 使得 $(\mathbf{a}, \mathbf{b}) \in E$ 且 $f(\mathbf{a}, \mathbf{b}) = \mathbf{0}$. 现将 f 的雅可比矩阵写成如下分块矩阵

$$\begin{bmatrix} \frac{\partial f}{\partial \boldsymbol{x}} & \frac{\partial f}{\partial \boldsymbol{y}} \end{bmatrix}$$

的形式,其中

$$\frac{\partial f}{\partial \boldsymbol{x}} = \left(\frac{\partial f_i}{\partial x_j}\right)_{1 < i < m, 1 < j < n}, \qquad \frac{\partial f}{\partial \boldsymbol{y}} = \left(\frac{\partial f_i}{\partial x_{n+j}}\right)_{1 < i, j < m}.$$

那么当

$$\det \frac{\partial f}{\partial \boldsymbol{y}}(\boldsymbol{a}, \boldsymbol{b}) \neq 0$$

时, 存在 a 的邻域 U, b 的邻域 V 以及唯一的连续可微映射 $g: U \to V$, 使得

- (1) q(a) = b.
- (2) 对任意的 $x \in U$ 有 f(x, g(x)) = 0.
- (3) 对任意的 $\mathbf{x} \in U$ 有 $\det \frac{\partial f}{\partial \mathbf{y}}(\mathbf{x}, g(\mathbf{x})) \neq 0$, 并且

$$g'(\boldsymbol{x}) = -\left(\frac{\partial f}{\partial \boldsymbol{y}}(\boldsymbol{x}, g(\boldsymbol{x}))\right)^{-1} \frac{\partial f}{\partial \boldsymbol{x}}(\boldsymbol{x}, g(\boldsymbol{x})).$$

定义 5.1

在上述定理中, y = q(x)

第三章 含参变量的积分与反常积分

专题一 欧拉积分

§ $3\varepsilon.1$ 第一型欧拉积分

定义 1.1

我们称 $\mathbf{B}(a,b) = \int_0^1 x^{a-1} (1-x)^{b-1} \mathbf{d}x \ (a,b>0)$ 为第一型欧拉积分.

下面我们给出几个它的简单性质.

性质 1.1. 作变量替换 x = 1 - t 易知 $\mathbf{B}(a, b) = \mathbf{B}(b, a)$ 也就是说第一型欧拉积分具有对称性.

性质 1.2. 当 b > 1 时,由分部积分可得

$$\begin{split} \mathbf{B}(a,b) &= \int_0^1 (1-x)^{b-1} \mathrm{d} \frac{x^a}{a} \\ &= \frac{x^a (1-x)^{b-1}}{a} \bigg|_0^1 + \frac{b-1}{a} \int_0^1 x^a (1-x)^{b-2} \mathrm{d} x \\ &= \frac{b-1}{a} \int_0^1 x^{a-1} (1-x)^{b-2} \mathrm{d} x - \frac{b-1}{a} \int_0^1 x^{a-1} (1-x)^{b-1} \mathrm{d} x \\ &= \frac{b-1}{a} \mathbf{B}(a,b-1) - \frac{b-1}{a} \mathbf{B}(a,b). \end{split}$$

其中第三个等号用到了 $x^a = x^{a-1} - x^{a-1}(1-x)$.

曲此
$$B(a,b) = \frac{b-1}{a+b-1}B(a,b-1).$$

那么由对称性, 我们也能得到 $B(a,b) = \frac{a-1}{a+b-1}B(a-1,b)$ (a>1). 而当 a,b 均为正整数时, 我们有

$$B(n,m) = \frac{(n-1)!(m-1)!}{(n+m-1)!}.$$

性质 1.3. 我们作变量替换 $x = \frac{y}{1+y}$ 可将 B(a,b) 转化为无穷积分, 这种形式也有很好的性质.

$$B(a,b) = \int_0^\infty \frac{y^{a-1}}{(1+y)^{a+b}} dy$$

而如果令 b = 1 - a (0 < a < 1) 我们就得到

$$B(a, 1-a) = \int_0^\infty \frac{y^{a-1}}{1+y} dy$$

而这个积分的值是可以计算的,就是

$$B(a, 1 - a) = \frac{\pi}{\sin a\pi}$$

§ $3\varepsilon.2$ 第二型欧拉积分

3ε .2.1 定义

定义 2.1

我们称

$$\Gamma(a) = \int_0^\infty x^{a-1} e^{-x} \mathrm{d}x \ (a > 0)$$

为第二型欧拉积分.

其实这个 $\Gamma(a)$ 函数在我们之前的课程中也定义过, 不过当时我们是用阶乘函数, 用无穷乘积的形式来定义的.

$$\Gamma(x) = \Pi(x-1) = x^{-1}\Pi(x),$$

$$\frac{1}{\Gamma(x)} = x \prod_{n=1}^{\infty} (1 + \frac{x}{n})(1 + \frac{1}{n})^{-x}.$$

下面我们先来探究这两个证明是否等价.

证明. 当 s > 0 时有

$$\Gamma(s) = \frac{1}{s} \prod_{n=1}^{\infty} (1 + \frac{s}{n})^{-1} (1 + \frac{1}{n})^{s}$$

$$= \frac{1}{s} \cdot \lim_{N \to \infty} \prod_{n=1}^{N} (1 + \frac{s}{n})^{-1} (1 + \frac{1}{n})^{s}$$

$$= \frac{1}{s} \cdot \lim_{N \to \infty} \frac{N! \cdot N^{s}}{(s+1)(s+2) \cdots (s+N)}.$$

注意到极限中的内容和我们之前推导的 B 函数的递推式相似, 不难发现, 当我们取 a = N + 1, b = s 时, 我们有

$$B(s, N+1) = \frac{N}{s+N}B(s, N) = \dots = B(s, 1)\frac{N!}{(s+1)(s+2)\cdots(s+N)}$$

又由
$$B(s,1) = \int_0^1 x^{s-1} (1-x)^0 dx = \frac{1}{s}$$
 我们可以得到

$$\Gamma(s) = \frac{1}{s} \cdot \lim_{N \to \infty} \frac{N! \cdot N^s}{(s+1)(s+2) \cdot \cdot \cdot (s+N)}$$

$$= \lim_{N \to \infty} \mathbf{B}(s,1) \frac{N! \cdot N^s}{(s+1)(s+2) \cdot \cdot \cdot (s+N)}$$

$$= \lim_{N \to \infty} \mathbf{B}(s,N+1) N^s$$

$$= \lim_{N \to \infty} N^s \int_0^1 x^{s-1} (1-x)^N dx.$$

接着我们做变量替换 $x \to \frac{x}{N}$

$$\Gamma(s) = \lim_{N \to \infty} N^s \int_0^1 x^{s-1} (1-x)^N dx$$

$$= \lim_{N \to \infty} N^s \int_0^N \left(\frac{x}{N}\right)^{s-1} (1-\frac{x}{N})^N d\frac{x}{N}$$

$$= \lim_{N \to \infty} \int_0^N x^{s-1} (1-\frac{x}{N})^N dx.$$

下面我们考虑证明

$$\lim_{N \to \infty} \left(\int_0^N x^{s-1} e^{-x} dx - \int_0^N x^{s-1} (1 - \frac{x}{N})^N dx \right) = 0.$$

由伯努利不等式 x > -1 时,有 $(1+x)^N \ge 1 + Nx$.

和不等式 $e^t \geqslant 1+t$, 把 $t=\frac{x}{N}$ 带入得到 $e^{\frac{x}{N}} \geqslant 1+\frac{x}{N}$ 即 $e^x \geqslant (1+\frac{x}{N})^N$.

我们可以得到

$$0 \leqslant e^{-x} - (1 - \frac{x}{N})^N = e^{-x} \left[1 - e^x (1 - \frac{x}{N})^N \right] \leqslant e^{-x} \left[1 - (1 - \frac{x^2}{N^2})^N \right] \leqslant \frac{e^{-x} x^2}{N}.$$

进而有

$$\left| \int_0^N e^{-x} x^{s-1} \mathrm{d}x - \int_0^N \left(1 - \frac{x}{N} \right)^N x^{s-1} \mathrm{d}x \right| \leqslant \int_0^N \frac{e^{-x} x^{s+1}}{N} \mathrm{d}x < \frac{1}{N} \int_0^{+\infty} e^{-x} x^{s+1} \mathrm{d}x.$$

易知 $\int_0^{+\infty} e^{-x} x^{s+1} dx$ 收敛, 故当 $N \to \infty$ 时, $\frac{1}{N} \int_0^{+\infty} e^{-x} x^{s+1} dx \to 0$. 讲而可知

$$\lim_{N \to \infty} \left(\int_0^N x^{s-1} e^{-x} dx - \int_0^N x^{s-1} (1 - \frac{x}{N})^N dx \right) = 0.$$

即
$$\int_0^N x^{s-1}e^{-x}\mathrm{d}x = \int_0^N x^{s-1}(1-\frac{x}{N})^N\mathrm{d}x, \quad N \to \infty.$$
故这两种定义方式等价.

除此之外, Γ 函数,还有两种定义方式.

第一种是上述证明过程中出现过的极限定义,也称欧拉-高斯公式.

$$\Gamma(s) = \lim_{N \to \infty} \frac{N! \cdot N^s}{s(s+1)(s+2)\cdots(s+N)}.$$

第二种则引入了欧拉常数
$$\gamma$$
. 设 $H_n = \sum_{i=1}^n \frac{1}{i}$, 则称 $\gamma = \lim_{n \to \infty} H_n - \ln n$.

$$\Gamma(s) = \frac{e^{-\gamma s}}{s} \prod_{n=1}^{\infty} \left(1 + \frac{s}{n}\right)^{-1} e^{\frac{s}{n}}.$$

$3\varepsilon.2.2$ 性质

从我们证明两种定义方式等价的过程中,不难发现这两类欧拉积分并不是孤立的, 下面我们就来探究这两类欧拉积分的关系.

接下来,我们证明

性质 2.1.

$$\mathbf{B}(p,q) = \frac{\Gamma(p)\Gamma(q)}{\Gamma(p+q)}, \qquad \forall p > 0, q > 0.$$

证明. 对 B(p,q) 用 $x = \sin^2 \theta$ 换元得到

$$B(p,q) = 2 \int_0^{\frac{\pi}{2}} \sin^{2p-1}\theta \cos^{2q-1}\theta d\theta.$$

对 $\Gamma(p)$ 用 $x=s^2$ 换元得到

$$\Gamma(p) = 2 \int_0^\infty s^{2p-1} e^{-s^2} \mathrm{d}s.$$

我们考虑

$$\Gamma(p)\Gamma(q) = 4 \int_0^\infty s^{2p-1} e^{-s^2} ds \int_0^\infty t^{2q-1} e^{-t^2} dt.$$

下面我们进行极坐标变换, 令 $s = r \sin \theta$, $t = r \cos \theta$ 则有 $r^2 = s^2 + t^2$, $\mathbf{d}s\mathbf{d}t = r\mathbf{d}r\mathbf{d}\theta$. 又由 Γ 函数的连续性, 我们可以对积分符号进行交换, 进而得到.

$$\begin{split} \Gamma(p)\Gamma(q) &= 4 \int_0^\infty r^{2p+2q-2} e^{-r^2} r \mathrm{d}r \int_0^{\frac{\pi}{2}} \sin^{2p-1}\theta \cos^{2q-1}\theta \mathrm{d}\theta \\ &= 4 \int_0^\infty r^{2(p+q)-1} e^{-r^2} \mathrm{d}r \int_0^{\frac{\pi}{2}} \sin^{2p-1}\theta \cos^{2q-1}\theta \mathrm{d}\theta \\ &= \int_0^\infty r^{(p+q)-1} e^{-r} \mathrm{d}r \cdot 2 \int_0^{\frac{\pi}{2}} \sin^{2p-1}\theta \cos^{2q-1}\theta \mathrm{d}\theta \\ &= \Gamma(p+q) \mathbf{B}(p,q). \end{split}$$

进而得到

$$\mathbf{B}(p,q) = \frac{\Gamma(p)\Gamma(q)}{\Gamma(p+q)}.$$

推论 2.2

在上述证明过程中,我们取 $q=\frac{1}{2}$,则对于 j>-1 我们有

$$\int_{0}^{\pi} \sin^{j} \theta \ \mathrm{d}\theta = \mathbf{B}\left(\frac{j+1}{2}, \frac{1}{2}\right) = \frac{\Gamma\left(\frac{j+1}{2}\right) \Gamma\left(\frac{1}{2}\right)}{\Gamma\left(\frac{j+2}{2}\right)}$$

性质 2.3. (余元公式)

$$\Gamma(p)\Gamma(1-p) = \frac{\pi}{\sin p\pi}$$

为了证明这个事情, 我们先证明一个引理.

引理 2.4

$$\sin x = x \prod_{n=1}^{\infty} \left(1 - \frac{x^2}{n^2 \pi^2} \right)$$

证明. 通过二倍角公式, 我们可以将 $\sin(2n+1)x$ 不断升幂, 可以将其表示为形如 $\sin x \cdot P(\sin^2 x)$ 的式子, 其中 P(x) 表示关于 x 的 n 次多项式.

因为 $\lim_{x\to 0} \sin(2n+1)x\sin(x) = 2n+1$, 所以 P(x) 的常数项为 2n+1.

同时我们有, $\sin(2n+1)x$ 的根为 $\frac{k\pi}{2n+1}$, $k \in \mathbb{Z}$, 所以 $\sin^2 \frac{k\pi}{2n+1}$, k = 1, 2, ..., n 恰为 P(x) 的 n 个根.

所以

$$P(x) = (2n+1)\left(1 - \frac{x}{\sin^2\frac{\pi}{2n+1}}\right)\left(1 - \frac{x}{\sin^2\frac{2\pi}{2n+1}}\right)\cdots\left(1 - \frac{x}{\sin^2\frac{n\pi}{2n+1}}\right)$$

即

$$P(x) = (2n+1) \prod_{k=1}^{n} \left(1 - \frac{x}{\sin^2 \frac{k\pi}{2n+1}} \right)$$

故我们有

$$\frac{\sin(2n+1)x}{\sin x} = P(\sin^2 x) = (2n+1) \prod_{k=1}^{n} \left(1 - \frac{\sin^2 x}{\sin^2 \frac{k\pi}{2n+1}}\right)$$

帶入 $x \to \frac{x}{2n+1}$

$$\Rightarrow \frac{\sin x}{(2n+1)\sin\frac{1}{2n+1}x} = \prod_{k=1}^{n} \left(1 - \frac{\sin^2\frac{1}{2n+1}x}{\sin^2\frac{k\pi}{2n+1}}\right)$$

$$\frac{\sin x}{(2n+1)\sin\frac{1}{2n+1}x\prod_{k=1}^{m}\left(1-\frac{\sin^2\frac{1}{2n+1}x}{\sin^2\frac{k\pi}{2n+1}}\right)} = \prod_{k=m+1}^{n}\left(1-\frac{\sin^2\frac{1}{2n+1}x}{\sin^2\frac{k\pi}{2n+1}}\right)$$

当 $n \to \infty$ 时, 左边为

$$\frac{\sin x}{x \prod_{k=1}^{m} \left(1 - \frac{x^2}{k^2 \pi^2}\right)}$$

对于右边, 我们考虑下列不等式, 当 n 充分大时.

(1)
$$\frac{2}{\pi}x < \sin x < x, x \in (0, \frac{\pi}{2})$$

(2)
$$\sin^2 \frac{1}{2n+1}x < \frac{x^2}{(2n+1)^2}$$

(3)
$$\sin^2 \frac{k\pi}{2n+1} > \frac{4k^2}{(2n+1)^2}$$

$$(4) \frac{\sin^2 \frac{1}{2n+1} x}{\sin^2 \frac{k\pi}{2n+1}} < \frac{x^2}{4k^2}$$

其中由(1)可得(2),(3),进而可知(4).

于是我们有

$$1 > \prod_{k=m+1}^{n} \left(1 - \frac{\sin^2 \frac{1}{2n+1} x}{\sin^2 \frac{k\pi}{2n+1}} \right) > \prod_{k=m+1}^{n} \left(1 - \frac{x^2}{4k^2} \right) > \prod_{k=m+1}^{\infty} \left(1 - \frac{x^2}{4k^2} \right)$$

所以 $n \to \infty$ 时,

$$1 > \frac{\sin x}{x \prod_{k=1}^{m} \left(1 - \frac{x^2}{k^2 \pi^2}\right)} > \prod_{k=m+1}^{\infty} \left(1 - \frac{x^2}{4k^2}\right)$$

由
$$\prod\limits_{k=1}^{\infty}\left(1-\frac{x^2}{4k^2}\right)$$
 收敛,
可知 $m\to\infty$ 时

$$\prod_{k=m+1}^{\infty} \left(1 - \frac{x^2}{4k^2} \right) = 1$$

所以由夹逼定理,我们可以得到

$$\sin x = x \prod_{k=1}^{\infty} \left(1 - \frac{x^2}{k^2 \pi^2} \right).$$

下面由Γ函数的极限定义来证明余元公式

证明.

$$\Gamma(p)\Gamma(1-p) = \lim_{N \to \infty} \frac{N! \cdot N^p \cdot N! \cdot N^{1-p}}{p(p+1) \cdots (p+N)(1-p)(1-p+1) \cdots (1-p+N)}$$

$$= \lim_{N \to \infty} \frac{N \cdot N! \cdot N!}{p(1-p^2)(2^2-p^2) \cdots (N^2-p^2)(1+N-p)}$$

$$= \lim_{N \to \infty} \frac{N}{1-p+N} \cdot \frac{1}{p \prod_{k=1}^{N} (1-\frac{p^2}{k^2})}$$

由引理 2.4 可知

$$\sin p\pi = p\pi \prod_{n=1}^{\infty} \left(1 - \frac{p^2}{n^2}\right)$$

故

$$\Gamma(p)\Gamma(1-p) = 1 \cdot \frac{\pi}{\sin p\pi} = \frac{\pi}{\sin p\pi}.$$

性质 2.5. (倍元公式, 也称勒让德公式)

$$\Gamma\left(\frac{1}{2}\right)\Gamma(2x) = 2^{2x-1}\Gamma(x)\Gamma\left(x + \frac{1}{2}\right)$$

21

在之前的作业中, 我们已经用无穷乘积的定义方式证明过该公式, 下面我们用另一种方式再次证明这个问题.

证明. 由前面给出的性质

$$\frac{\Gamma(\frac{1}{2})}{\Gamma(x+\frac{1}{2})} = \frac{\mathbf{B}(x,\frac{1}{2})}{\Gamma(x)}, \quad \frac{\Gamma(x)}{\Gamma(2x)} = \frac{\mathbf{B}(x,x)}{\Gamma(x)}.$$

带入之后,我们只需证明

$$B\left(x, \frac{1}{2}\right) = 2^{2x-1}B(x, x)$$

$$\Leftrightarrow \int_0^1 t^{x-1} (1-t)^{-\frac{1}{2}} dt = 2^{2x-1} \int_0^1 t^{x-1} (1-t)^{x-1} dt$$

接下来通过若干次变量替换可得

$$\begin{split} 2^{2x-1} \int_0^1 t^{x-1} (1-t)^{x-1} \mathrm{d}t &= \int_0^1 (2t)^{x-1} (2-2t)^{x-1} \mathrm{d}(2t) = \int_0^2 t^{x-1} (2-t)^{x-1} \mathrm{d}t \\ &= \int_{-1}^1 (1+t)^{x-1} (1-t)^{x-1} \mathrm{d}t = \int_{-1}^1 (1-t^2)^{x-1} \mathrm{d}t \\ &= 2 \int_0^1 (1-t^2)^{x-1} \mathrm{d}t = 2 \int_0^1 (1-t)^{x-1} \mathrm{d}\sqrt{t} \\ &= 2 \int_0^1 (1-t)^{x-1} \cdot \frac{1}{2} t^{-\frac{1}{2}} \mathrm{d}t = \int_0^1 (1-t)^{x-1} t^{-\frac{1}{2}} \mathrm{d}t \\ &= \int_0^1 t^{x-1} (1-t)^{-\frac{1}{2}} \mathrm{d}t \end{split}$$

这样我们就证明了

$$\int_0^1 t^{x-1} (1-t)^{-\frac{1}{2}} dt = 2^{2x-1} \int_0^1 t^{x-1} (1-t)^{x-1} dt$$

即

$$\Gamma\left(\frac{1}{2}\right)\Gamma(2x) = 2^{2x-1}\Gamma(x)\Gamma\left(x + \frac{1}{2}\right)$$

3ε .2.3 应用

在之前的作业中, 我们已经证明过了斯特林 (Stirling) 公式. 下面我们用另外的两种方式进行证明.

引理 2.6

对于任意给定的 a 有,

$$\frac{\Gamma(x)}{\Gamma(x+a)} = x^{-a} + O\left(x^{-a-1}\right)$$

证明. 先假定 a > 1,

$$\begin{split} \frac{\Gamma(x)\Gamma(a)}{\Gamma(x+a)} &= \mathbf{B}(x,a) \\ &= \int_0^1 (1-y)^{a-1} y^{x-1} \mathrm{d}y \\ &= \int_0^\infty (1-e^{-t})^{a-1} e^{-xt} \mathrm{d}t \\ &= \int_0^{\frac{1}{\sqrt{x}}} (1-e^{-t})^{a-1} e^{-xt} \mathrm{d}t + \int_{\frac{1}{\sqrt{x}}}^\infty (1-e^{-t})^{a-1} e^{-xt} \mathrm{d}t \\ &\triangleq I_1 + I_2 \end{split}$$

下面我们分别对 I_1 和 I_2 进行估计.

$$I_{1} = \int_{0}^{\frac{1}{\sqrt{x}}} (1 - e^{-t})^{a-1} e^{-xt} dt$$

$$= \int_{0}^{\frac{1}{\sqrt{x}}} (t + O(t^{2}))^{a-1} \cdot e^{-xt} dt$$

$$= \int_{0}^{\frac{1}{\sqrt{x}}} t^{a-1} (1 + O(t))^{a-1} \cdot e^{-xt} dt$$

当 x 充分大时, t 在 0 附近, 我们有, $(1+O(t))^{a-1} \sim 1 + (a-1)O(t) \sim 1 + O(t)$

$$\begin{split} I_{1} &= \int_{0}^{\frac{1}{\sqrt{x}}} t^{a-1} (1 + O(t))^{a-1} \cdot e^{-xt} \mathrm{d}t \\ &= \int_{0}^{\frac{1}{\sqrt{x}}} t^{a-1} (1 + O(t)) \cdot e^{-xt} \mathrm{d}t \\ &= \int_{0}^{\frac{1}{\sqrt{x}}} t^{a-1} \cdot e^{-xt} \mathrm{d}t + \int_{0}^{\frac{1}{\sqrt{x}}} O(t) \cdot t^{a-1} \cdot e^{-xt} \mathrm{d}t \\ &= \int_{0}^{\frac{1}{\sqrt{x}}} t^{a-1} \cdot e^{-xt} \mathrm{d}t + O\left(\int_{0}^{\frac{1}{\sqrt{x}}} \cdot t^{a} \cdot e^{-xt} \mathrm{d}t\right) \end{split}$$

作换元 t = xt

$$\begin{split} I_1 &= \int_0^{\frac{1}{\sqrt{x}}} t^{a-1} \cdot e^{-xt} \mathrm{d}t + O\left(\int_0^{\frac{1}{\sqrt{x}}} \cdot t^a \cdot e^{-xt} \mathrm{d}t\right) \\ &= x^{-a} \int_0^{\sqrt{x}} t^{a-1} \cdot e^{-t} \mathrm{d}t + O\left(\int_0^{\frac{1}{\sqrt{x}}} \cdot t^a \cdot e^{-xt} \mathrm{d}t\right) \\ &= x^{-a} \int_0^{\infty} t^{a-1} \cdot e^{-t} \mathrm{d}t + O\left(x^{-a} \int_{\sqrt{x}}^{\infty} t^{a-1} \cdot e^{-t} \mathrm{d}t\right) + O\left(x^{-a-1} \int_0^{\sqrt{x}} \cdot t^a \cdot e^{-t} \mathrm{d}t\right) \end{split}$$

由 Γ 函数收敛, $\int_0^{\sqrt{x}} \cdot t^a \cdot e^{-t} dt \sim O(1)$. 而 $\int_{\sqrt{x}}^{\infty} t^{a-1} \cdot e^{-t} dt = O\left(\int_{\sqrt{x}}^{\infty} e^{-\frac{t}{2}} dt\right) = O\left(\frac{1}{x}\right)$. 故

$$I_1 = x^{-a}\Gamma(a) + O(x^{-a-1})$$

$$I_2 = \int_{\frac{1}{\sqrt{x}}}^{\infty} (1 - e^{-t})^{a-1} \cdot e^{-xt} dt = O\left(\int_{\frac{1}{\sqrt{x}}}^{\infty} e^{-xt} dt\right) = O\left(\frac{1}{xe^{\sqrt{x}}}\right) = O\left(x^{-a-1}\right).$$

因此

$$I_1 + I_2 = x^{-a}\Gamma(a) + O(x^{-a-1})$$

$$\Rightarrow \frac{\Gamma(x)}{\Gamma(x+a)} = x^{-a} + O(x^{-a-1})$$

对于 0 < a < 1 的情况, 我们取 $k \in \mathbb{Z}_{\geqslant 1}$ 使得 a + k > 1 可以得到

$$\frac{\Gamma(x)}{\Gamma(x+a+k)} = x^{-a-k} + O(x^{-a-k-1})$$

进而通过 Γ 函数的递推公式可以得到相应的结论.

定理 2.7.(斯特林公式)

$$\log \Gamma(s) = \left(s - \frac{1}{2}\right) \log s - s + \frac{1}{2} \log 2\pi + O\left(\frac{1}{s}\right).$$

证明. 我们先对x为正整数的情形进行估计

$$\log \Gamma(n) = \log[(n-1)!] = \sum_{k=1}^{n-1} \log k = \sum_{k=1}^{n-1} \int_{k}^{k+1} \log k dt$$

$$= \sum_{k=1}^{n-1} \int_{k}^{k+1} \log k - \log t dt + \int_{k}^{k+1} \log t dt$$

$$= \int_{1}^{n} \log t dt - \sum_{k=1}^{n-1} \int_{k}^{k+1} \log \frac{t}{k} dt$$

$$= n \log n - n + 1 + \sum_{k=1}^{n-1} \int_{0}^{1} \log \frac{t + k}{k} dt$$

$$= n \log n - n + 1 + \sum_{k=1}^{n-1} \int_{0}^{1} \log(1 + \frac{t}{k}) dt$$

$$= n \log n - n + 1 + \sum_{k=1}^{n-1} \left(\frac{1}{2k} + O\left(\frac{1}{k^{2}}\right)\right)$$

$$= n \log n - n + 1 - \frac{1}{2} \log n + C + O\left(\frac{1}{n}\right)$$

$$= \left(n - \frac{1}{2}\right) \log n - n + C + O\left(\frac{1}{n}\right)$$

下面我们将这个结论推广到任意实数上, 令 x = n + a, 0 < a < 1由引理可知

$$\log \frac{\Gamma(n)}{\Gamma(n+a)} = \log(n^{-a} + O(n^{-a-1}))$$

$$= \log n^{-a} + \log\left(1 + O\left(\frac{1}{n}\right)\right)$$

$$= -a\log n + O\left(\frac{1}{n}\right)$$

从而

$$\begin{split} \log \Gamma(x) &= \log \Gamma(n) + a \log n + O\left(\frac{1}{n}\right) \\ &= (n - \frac{1}{2}) \log n - n + C + a \log n + O\left(\frac{1}{2}\right) \\ &= (x - a - \frac{1}{2}) \log(x - a) - x + a + C + a \log(x - a) + O\left(\frac{1}{x}\right) \\ &= (x - \frac{1}{2}) [\log x + \log(1 - \frac{a}{x})] - x + a + C + O\left(\frac{1}{x}\right) \\ &= (x - \frac{1}{2}) \log x - x + C + (x - \frac{1}{2}) \left(-\frac{a}{x} + O\left(\frac{1}{x^2}\right)\right) + a + O\left(\frac{1}{x}\right) \\ &= (x - \frac{1}{2}) \log x - x + C + O\left(\frac{1}{x}\right) \end{split}$$

下面我们来确定常数 C 的值.

考虑倍元公式

$$\Gamma(2x)\Gamma(\frac{1}{2}) = 2^{2x-1}\Gamma(x)\Gamma(x+\frac{1}{2})$$

对两边取对数得

$$\log \Gamma(2x) + \log \Gamma(\frac{1}{2}) = (2x - 1)\log 2 + \log \Gamma(x) + \log \Gamma(x + \frac{1}{2})$$

再带入我们得到的估计式,并整理可得

$$x \log(1 + \frac{1}{2x}) - \frac{1}{2} - \frac{1}{2} \log 2 + C + O\left(\frac{1}{x}\right) = \log \Gamma(\frac{1}{2})$$

当
$$x \to +\infty$$
 时, $x \log(1 + \frac{1}{2x}) - \frac{1}{2} = x \cdot \frac{1}{2x} - \frac{1}{2} = 0$

$$C = \log \Gamma(\frac{1}{2}) + \frac{1}{2} \log 2, \qquad x \to +\infty$$

下面我们来求 $\Gamma(\frac{1}{2})$

由余元公式
$$\Gamma(p)\Gamma(1-p) = \frac{\pi}{\sin p\pi}$$

我们取
$$p = \frac{1}{2}$$
,则有 $\Gamma(\frac{1}{2})^2 = \pi \Rightarrow \Gamma(\frac{1}{2}) = \sqrt{\pi}$

故
$$C = \log \sqrt{\pi} + \frac{1}{2} \log 2 = \log \sqrt{2\pi}$$
 综上, 我们就得到了斯特林公式

$$\log \Gamma(s) = \left(s - \frac{1}{2}\right) \log s - s + \frac{1}{2} \log 2\pi + O\left(\frac{1}{s}\right).$$

$3\varepsilon.2.4$ 以书本例题为例

除了这种方式之外,下面再通过书本习题 14.2 中的一组题来证明这件事. 16. 设 $s \ge 2$, 利用 (14.17) 以及变量替换证明

$$\Gamma(s) = (s-1)^s e^{1-s} \int_{-1}^{+\infty} ((1+x)e^{-x})^{s-1} dx.$$

证明. 做变量替换 $x \to (s-1)(x+1)$ 则有

$$\Gamma(s) = \int_0^{+\infty} e^{-x} x^{s-1} dx$$

$$= \int_{-1}^{+\infty} e^{-(s-1)(x+1)} [(s-1)(x+1)]^{s-1} dx$$

$$= (s-1)^s e^{1-s} \int_{-1}^{+\infty} ((1+x)e^{-x})^{s-1} dx$$

17. 设 $s \ge 2$, 并记 $\delta = s^{-0.4}$, 利用 2.24 证明

$$\int_{-\delta}^{\delta} ((1+x)e^{-x})^{s-1} \mathrm{d}x = \sqrt{\frac{2\pi}{s}} + O\left(\frac{1}{s\sqrt{s}}\right).$$

证明. 因为当 $|x| \leq \delta$ 时

$$\log((1+x)e^{-x})^{s-1} = (s-1)(\log(1+x) - x) = (s-1)(-\frac{x^2}{2} + \frac{x^3}{3} + O(x^4)).$$
所以 $((1+x)e^{-x})^{s-1} = e^{-\frac{s-1}{2}x^2}(1 + \frac{(s-1)}{3}x^3 + O(sx^4)),$ 进而有
$$\int_{-\delta}^{\delta} ((1+x)e^{-x})^{s-1} dx = \int_{-\delta}^{\delta} e^{-\frac{s-1}{2}x^2} dx + \int_{-\delta}^{\delta} e^{-\frac{s-1}{2}x^2} \frac{x^3}{3} dx + O\left(s\int_{-\delta}^{\delta} e^{-\frac{s-1}{2}x^2} x^4 dx\right)$$

$$= \int_{-\infty}^{\infty} e^{-\frac{s-1}{2}x^2} dx + O\left(\int_{\delta}^{\infty} e^{-\frac{s-1}{2}x^2} dx\right) + \int_{-\delta}^{\delta} e^{-\frac{s-1}{2}x^2} \frac{x^3}{3} dx$$

$$+ O\left(s\int_{0}^{\delta} e^{-\frac{s-1}{2}x^2} x^4 dx\right)$$

其中

(1)

$$\int_{-\infty}^{+\infty} e^{-\frac{s-1}{2}x^2} \mathrm{d}x = \sqrt{\frac{2}{s-1}} \int_{-\infty}^{+\infty} e^{-x^2} \mathrm{d}x = \sqrt{\frac{2\pi}{s-1}}.$$

(2)

$$\int_{\delta}^{+\infty} e^{-\frac{s-1}{2}x^{2}} dx = \sqrt{\frac{2}{s-1}} \int_{\delta\sqrt{\frac{s-1}{2}}}^{+\infty} e^{-x^{2}} dx \ll \frac{1}{\sqrt{s}} \int_{\delta\sqrt{\frac{s-1}{2}}}^{+\infty} e^{-x} dx
= \frac{1}{\sqrt{s}} \cdot e^{-\delta\sqrt{\frac{s-1}{2}}} \ll \frac{1}{s\sqrt{s}}.$$
(3.1)

(3) $e^{-\frac{s-1}{2}x^2}\frac{x^3}{3}$ 是奇函数积分是 0.

$$s \int_0^\delta e^{-\frac{s-1}{2}x^2} x^4 dx = s \int_0^{\frac{s-1}{2}\delta^2} e^{-x} \frac{4}{(s-1)^2} x^2 d\sqrt{\frac{2}{s-1}x}$$
$$= \frac{2\sqrt{2}s}{(s-1)^{\frac{5}{2}}} \int_0^{\frac{s-1}{2}\delta^2} e^{-x} x^{\frac{3}{2}} dx \ll \frac{1}{s\sqrt{s}}.$$

所以有

$$\int_{-\delta}^{\delta} ((1+x)e^{-x})^{s-1} \mathrm{d}x = \sqrt{\frac{2\pi}{s}} + O\left(\frac{1}{s\sqrt{s}}\right).$$

18. 通过考察被积函数的单调性证明

$$\int_{-1}^{-\delta} ((1+x)e^{-x})^{s-1} \mathrm{d}x + \int_{\delta}^{+\infty} ((1+x)e^{-x})^{s-1} \mathrm{d}x \ll \frac{1}{s\sqrt{s}}.$$

证明. 一方面, 因为 $(1+x)e^{-x}$ 在 $[-1,-\delta]$ 上单调递增, 故而

$$\int_{-1}^{-\delta} ((1+x)e^{-x})^{s-1} dx \le ((1-\delta)e^{\delta})^{s-1} = \exp((s-1)(\log(1-\delta)+\delta))$$

$$= \exp\left(-\frac{s\delta^2}{2} + O(s\delta^3)\right) \ll e^{-\frac{1}{2}s^{0.2}} \ll \frac{1}{s\sqrt{s}}.$$
(3.2)

另一方面, 由 $(1+x)e^{-x}$ 在 $\mathbb{R}_{\geqslant 0}$ 上单调递减, 以及在 $\mathbb{R}_{\geqslant 4}$ 上有 $e^{-\frac{x}{2}}\geqslant (1+x)e^{-x}$ 知

$$\begin{split} \int_{\delta}^{+\infty} ((1+x)e^{-x})^{s-1} \mathrm{d}x &= \int_{\delta}^{4} ((1+x)e^{-x})^{s-1} \mathrm{d}x + \int_{4}^{+\infty} ((1+x)e^{-x})^{s-1} \mathrm{d}x \\ &\leqslant 4 \times ((1+\delta)e^{-\delta})^{s-1} + \int_{4}^{+\infty} (e^{-\frac{x}{2}})^{s-1} \mathrm{d}x \\ &\ll ((1+\delta)e^{-\delta})^{s-1} + \int_{4}^{+\infty} e^{-\frac{s-1}{2}x} \mathrm{d}x \\ &= \exp\left((s-1)(\log(1+\delta)-\delta)\right) + \frac{2}{s-1}e^{-\frac{s-1}{2}} \\ &= \exp\left(-\frac{s\delta^2}{2} + O(s\delta^3)\right) + \frac{2}{s-1}e^{-\frac{s-1}{2}} \\ &\ll e^{-\frac{1}{2}s^{0.2}} + e^{-\frac{s-1}{2}} \ll \frac{1}{s\sqrt{s}}. \end{split}$$

所以有

$$\int_{-1}^{-\delta} ((1+x)e^{-x})^{s-1} dx + \int_{\delta}^{+\infty} ((1+x)e^{-x})^{s-1} dx \ll \frac{1}{s\sqrt{s}}.$$

19. 对 $s \ge 2$ 证明斯特林公式

$$\log \Gamma(s) = \left(s - \frac{1}{2}\right) \log s - s + \frac{1}{2} \log 2\pi + O\left(\frac{1}{s}\right).$$

证明. 有了前几题的铺垫, 我们可以得到

$$\begin{split} \log \Gamma(s) &= s \log(s-1) + 1 - s + \log \left(\sqrt{\frac{2\pi}{s}} + O\left(\frac{1}{s\sqrt{s}}\right) \right) \\ &= s \log(s-1) + 1 - s + \log \left(\sqrt{\frac{2\pi}{s}} \left(1 + O\left(\frac{1}{s}\right) \right) \right) \\ &= s \log(s-1) + 1 - s + \frac{1}{2} \log 2\pi - \frac{1}{2} \log s + O\left(\frac{1}{s}\right) \\ &= (s - \frac{1}{2}) \log s - s + \frac{1}{2} \log 2\pi + O\left(\frac{1}{s}\right) + s \left(\log \left(1 - \frac{1}{s}\right) + \frac{1}{s}\right) \\ &= (s - \frac{1}{2}) \log s - s + \frac{1}{2} \log 2\pi + O\left(\frac{1}{s}\right) \end{split}$$

至此, 我们已经重新证明了斯特林公式. 但在此之中我们取 $\delta = s^{-0.4}$ 这个值并不是唯一的, 下面我们在来观察一下 δ 的取值. 我们设 $\delta = s^{-\alpha}$.

首先我们先关注所有用到 δ 取值的等式,(3.1),(3.2)(3.3).

其中 (3.1) 最后一步要成立就得满足 $\alpha < \frac{1}{2}$

- (3.2) 最后一步要满足 $3\alpha > 1 \land 2\alpha < 1 \Rightarrow \frac{1}{3}\alpha < \frac{1}{2}$
- (3.3) 要求与 (3.2) 相同

综上 α 的取值范围为 $(\frac{1}{3}, \frac{1}{2})$.

第四章 重积分

§ 4.1 若尔当测度

4.1.1 简单集合的测度

定义 1.1

设 I_j ($1 \le j \le n$) 是 \mathbb{R} 中的有界区间, 我们称 $I_1 \times I_2 \times \cdots \times I_n$ 为 \mathbb{R}^n 中的矩形. 若 \mathbb{R}^n 中的子集 E 可表为有限多个矩形的并, 则称 E 是 \mathbb{R}^n 中的简单集合. 特别的, 空集也是简单集合.

命题 1.1. 设 E, F 是 \mathbb{R}^n 中的简单集合, 则 $E \cup F, E \cap F, E \setminus F, E \Delta F$ 也均是 \mathbb{R}^n 中的简单集合. 此外, 对任意的 $\mathbf{a} \in \mathbb{R}^n, E + \mathbf{a} = \{\mathbf{x} + \mathbf{a} : \mathbf{x} \in E\}$ 是 \mathbb{R}^n 中的简单集合.

定义 1.2

我们用 |I| 来表示 \mathbb{R} 中有界区间 I 的长度, 由此我们定义 \mathbb{R}^n 中矩形 $Q = I_1 \times I_2 \times \cdots \times I_n$ 的体积 |Q| 为

$$|Q| = \prod_{j=1}^{n} |I_j|$$

根据这个定义知, $|Q| = |\overline{Q}|$.

命题 1.2. 设 $E \in \mathbb{R}^n$ 中的一个简单集合, 那么

- (1) E 可表为有限多个两两不相交的矩形的并,并称之为 E 的划分.
- (2) 若 E 可用如下两种方式写成互不相交的矩形的并

$$E = \bigcup_{i=1}^{m} Q_i = \bigcup_{j=1}^{k} Q'_j,$$

则

$$\sum_{i=1}^{m} |Q_i| = \sum_{j=1}^{j} |Q_j'|.$$

定义 1.3

设 $E \in \mathbb{R}^n$ 中的一个简单集合, $E = Q_1 \cup \cdots \cup Q_m$ 是 E 的一个划分, 则记

$$\mu(E) = \sum_{i=1}^{m} |Q_i|$$

并称之为的测度.

命题 1.3. 设 E, F 均是 \mathbb{R}^n 中的简单集合, 则

- (1) (有限可加性) 若 $E \cap F = \emptyset$, 则 $\mu(E \cup F) = \mu(E) + \mu(F)$;
- (2) (单调性) 若 $E \subset F$, 则 $\mu(E) \leq \mu(F)$;
- (3) (次可加性) $\mu(E \cup F) \leq \mu(E) + \mu(F)$;
- (4) (平移不变性) 对任意的 $\mathbf{a} \in \mathbb{R}^n$ 有 $\mu(E + \mathbf{a}) = \mu(E)$.

4.1.2 若尔当测度

定义 1.4

设 $S \in \mathbb{R}^n$ 中的有界集, 我们称由

$$\mu_*(S) = \sup\{\mu(A) : A \subseteq S \perp A \in \mathbb{A} \times \mathbb{A} \in \mathbb{A} \times \mathbb{A} \times \mathbb{A} = \mathbb{A} \in \mathbb{A} \times \mathbb{A}$$

定义的 $\mu_*(S)$ 为 S 的**若尔当内测度**; 称由

定义的 $\mu^*(S)$ 为 S 的**若尔当外测度**.

当 $\mu_*(S) = \mu^*(S)$ 时, 则称 S 为**若尔当可测集**, 并将这一值记作 $\mu(S)$ 称为 S 的**若尔当测度**或**容度**.

特别的, 当 $\mu(S) = 0$ 时, 我们称之为**若尔当零测集**.

命题 1.4. 根据定义, 对任意的有界集 S 有

$$0 \leqslant \mu_*(S) \leqslant \mu^*(S). \tag{4.1}$$

定理 1.5

设 $S \in \mathbb{R}^n$ 中的有界集, 则下列命题等价:

(1) S 是若尔当可测集.

- (2) 对任意的 $\varepsilon > 0$, 存在简单集合 A, B 满足 $A \subseteq S \subseteq B$ 以及 $\mu(B \setminus A) < \varepsilon$.
- (3) ∂S 为若尔当零测集.

命题 1.6. 设 $E, F \in \mathbb{R}^n$ 中的若尔当可测集,则

- (1) $E \cup F$, $E \cap F$, $E \setminus F$, $E \triangle F$ 均是 \mathbb{R}^n 中的若尔当可测集.
- (2) (有限可加性) 若 E 和 F 无公共内点, 则 $\mu(E \cup F) = \mu(E) + \mu(F)$.
- (3) (单调性) 若 $E \subseteq F$, 则 $\mu(E) \leqslant \mu(F)$.
- (3) (次可加性) $\mu(E \cup F) \leq \mu(E) + \mu(F)$.
- (4) (平移不变性) 对任意的 $\mathbf{a} \in \mathbb{R}^n$ 有 $\mu(E + \mathbf{a}) = \mu(E)$.

命题 1.7. 设 $K \in \mathbb{R}^{n-1}$ 中的紧集, $f: K \to \mathbb{R}$ 是一个连续函数, 那么集合

$$S = \{(\boldsymbol{x}, f(\boldsymbol{x})) : x \in K\}$$

是 \mathbb{R}^n 中的若尔当零测集.

习题 4.1

1. 设 E, F 均是 \mathbb{R}^n 中的有界集且 $E \subseteq F$, 证明

$$\mu_*(E) \leqslant \mu_*(F)$$
 以及 $\mu^*(E) \leqslant \mu^*(F)$.

证明. 对任一的 $\varepsilon > 0$, 存在简单集合 A, 满足 $A \subseteq E \land \mu(A) \geqslant \mu_*(E) - \varepsilon$, 又 $A \subseteq E \subseteq F$, $\mu_*(F)$ 是上界有 $\mu(A) \leqslant \mu_*(F)$. 从而 $\mu_*(E) - \varepsilon \leqslant \mu(A) \leqslant \mu_*(F)$, 再由 ε 的任意性知 $\mu_*(E) \leqslant \mu_*(F)$.

2. 设 $E \in \mathbb{R}^n$ 中的有界集, 并且 E 只有有限多个聚点, 证明 $\mu(E) = 0$.

证明. 设 E 的聚点为 $\{a_1, a_2, \ldots, a_m\}$. $\forall \varepsilon > 0$, 我们取矩形列 $\{Q_j\}$ 满足 $|Q_j| = \frac{\varepsilon}{2m} \wedge a_j \in Q_j^{\circ}$.

那么考虑 $E \setminus \bigcup_{j=1}^{m} Q_j$ 就应该是有限集, 否则由波尔查诺-魏尔斯特拉斯定理 $E \setminus \bigcup_{j=1}^{m} Q_j$ 存在聚点 \boldsymbol{b} , 但 $\boldsymbol{b} \notin Q_j^{\circ}$, $\forall j \leq m$, 所以与 E 的全部聚点为 $\{\boldsymbol{a}_1, \boldsymbol{a}_2, \ldots, \boldsymbol{a}_m\}$ 矛盾, 从而 $E \setminus \bigcup_{j=1}^{m} Q_j$ 是有限集, 记作 $\{\boldsymbol{b}_1, \boldsymbol{b}_2, \ldots, \boldsymbol{b}_n\}$.

那么取矩形列 $\{Q_i'\}$ 满足 $|Q_i'| = \frac{\varepsilon}{2n} \wedge \mathbf{b}_i \in Q_i'$. 从而 $E \subseteq \bigcup_{j=1}^m Q_j \cup \bigcup_{i=1}^n Q_i'$,则有 $\mu^*(E) \leqslant \sum_{j=1}^m |Q_j| + \sum_{i=1}^n |Q_i'| = \varepsilon$. 再由 ε 的任意性知 $\mu^*(E) = 0$,即 $\mu(E) = 0$.

- 3. 设 $E \in \mathbb{R}^n$ 中的有界集, 证明 $\mu^*(E) = \mu^*(\overline{E}) \wedge \mu_*(E) = \mu_*(E^\circ)$.
- 4. 把 $\mathbb{Q} \cap [0,1]$ 中的元素排成一列, 记作 $a_1,a_2,\ldots,a_m,\ldots$, 又令 $\varepsilon=\frac{1}{4}$. 证明集合

$$\bigcup_{m=1}^{\infty} \left(a_m - \frac{\varepsilon}{2^m}, a_m + \frac{\varepsilon}{2^m} \right)$$

是 ℝ 中的一个若尔当不可测的开集,并由此构造出一个若尔当不可测的闭集.

解. 考虑集合 [-2,2]\S.

§ 4.2 闭矩形上的积分

定义 2.1

闭矩形上的黎曼可积.

命题 2.1. 若 f 在 Q 上可积, 则 f 在 Q 上有界.

定义 2.2

达布和.

定义 2.3

设 $S \subseteq \mathbb{R}^n$. 若对任意的 $\varepsilon > 0$, 存在至多可数个开矩形 Q_i , 使得

$$S \subseteq \bigcup_{i} Q_{i}$$
 \mathbb{H} $\sum_{i} |Q_{i}| < \varepsilon$

则称 S 为 \mathbb{R}^n 中的**勒贝格零测集**.

命题 2.2.

- (1) \mathbb{R}^n 中的至多可数集是 \mathbb{R}^n 中的勒贝格零测集.
- (2) \mathbb{R}^n 中至多可数个勒贝格零测集的并仍是 \mathbb{R}^n 中的勒贝格零测集.

命题 2.3.

(1) 若尔当零测集是勒贝格零测集.

- (2) 有界闭的勒贝格零测集是若尔当零测集.
- **注 2.4.** 因为边界集是闭集, 所以有界集 S 是若尔当可测集当且仅当 ∂S 是勒贝格零测集.

定理 2.5.(勒贝格)

设 $Q \in \mathbb{R}^n$ 中的闭矩形,那么定义在 Q 上的有界函数 f 在 Q 上黎曼可积的充要条件是 f 的全体间断点构成勒贝格零测集.

推论 2.6

设Q是 \mathbb{R}^n 中的闭矩形, f在Q上可积.

- (1) 若 $\{x \in Q : f(x) \neq 0\}$ 是勒贝格零测集, 则 $\int_{Q} f = 0$.
- (2) 若 f 非负且 $\int_{Q} f = 0$, 则 $\{x \in Q : f(x) \neq = 0\}$ 是勒贝格零测集.

习题 4.2

1. 对 $1 \leq j \leq n$, 设 $f_j(x)$ 在 $[a_j, b_j]$ 上可积. 证明 n 元函数 $f_1(x_1) f_2(x_2) \cdots f_n(x_n)$ 在 $Q = [a_1, b_1] \times [a_2, b_2] \times \cdots \times [a_n, b_n]$ 上可积且

$$\int_{O} \cdots \int f_1(x_1) \cdots f_n(x_n) dx_1 \cdots dx_n = \prod_{j=1}^n \left(\int_{a_j}^{b_j} f_j(x) dx \right).$$

2. 设 Q 是 \mathbb{R}^n 中的一个闭矩形, $f:Q\to\mathbb{R}$. 证明 f 在 Q 上可积且 $\int_Q f=A$ 的充要条件是: 对任意的 $\varepsilon>0$, 存在 $\delta>0$, 使得 \mathbb{R}^n 中两两无公共内点的若尔当可测集 J_1,\ldots,J_k 只要满足

$$\max_{1 \leqslant i \leqslant k} \operatorname{diam}(J_i) < \delta \quad \text{以及} \quad Q = \bigcup_{i=1}^k J_i,$$

就对任意的 $\boldsymbol{\xi}_i \in J_i$ 有

$$\left|\sum_{i=1}^k f(\boldsymbol{\xi}_i)\mu(J_i) - A\right| < \varepsilon.$$

§ 4.3 有界集上的积分

定理 3.1.(积分中值定理)

设 $E \in \mathbb{R}^n$ 中的若尔当可测集, $f \vdash g$ 在 E 上可积且 g 在 E 上<mark>不变号</mark>. 现记 $m = \inf_{\boldsymbol{x} \in E} f(\boldsymbol{x}), M = \sup_{\boldsymbol{x} \in E} f(\boldsymbol{x}),$ 那么存在 $\kappa \in [m, M]$ 使得

$$\int_E fg = \kappa \cdot \int_E g.$$

特别地, 存在 $\lambda \in [m, M]$ 使得

$$\int_{E} f = \lambda \cdot \mu(E).$$

习题 4.3

1.

§ 4.4 富比尼定理

定理 4.1.(富比尼 (Fubini) 定理)

设 $Q = Q_1 \times Q_2$ 是 \mathbb{R}^n 中的闭矩形,

§ 4.5 变量替换 § 4.6 反常重积分

定义 6.1

设 $E \subseteq \mathbb{R}^n$, 如果若尔当可测集列 $\{E_m\}$ 满足

$$E_m \subseteq E_{m+1} \ (\forall \ m \geqslant 1)$$
 以及 $\bigcup_{m=1}^{\infty} E_m = E,$

则称 $\{E_m\}$ 是 E 的一个**穷竭**. 注: 该名称并不是通用的, 仅在陆亚明《数学分析入门》中使用.

定义 6.2

设 $E \subseteq \mathbb{R}^n$, $f: E \longrightarrow \mathbb{R}$. 如果对 E 的使得 f 在每个 E_m 上均可积的任意穷竭 $\{E_m\}$, 极限

$$\lim_{m \to \infty} \int_{E_m} f$$

都存在且相等, 那么我们就称 f 在 E 上**可积**, 并将上述极限值记作

$$\int_{E} f$$
,

此时也称积分 $\int_E f$ **收敛**. 否则就称 $\int_E f$ **发散**, 或称 f 在 E 上**不可积**.

引理 6.1

设 $E \subseteq \mathbb{R}^n$, f 是定义在 E 上的函数. 若存在 E 的一个穷竭 $\{E_m\}$, 使得 f 在每个 E_m 上均可积, 那么对于 E 的任一穷竭 $\{F_k\}$, 只要 f 在每个 F_k 上有界, 它就在每个 F_k 上可积.

证明. 考虑 $\{E_m \cap F_k : m \ge 1\}$ 是 F_k 的穷竭. 考虑 F_k 的不连续点由 $E_m \cap F_k$ 的内部的不连续点和 $\partial(E_m \cap F_k)$ 中的不连续点构成. 又 E_m 可积, $E_m \cap F_k$ 若当可测. 那么就有上述两部分的点均为勒贝格零测集. 由此 f 在 F_k 上可积.

命题 6.2. 设 E 若尔当可测且 f 在 E 上可积, $\{E_m\}$ 是 E 的一个穷竭, 那么 $\lim_{m\to\infty}\mu(E_m)=\mu(E)$ 并且

$$\lim_{m \to \infty} \int_{E_m} f = \int_E f.$$

命题 6.3. 设 $E \subseteq \mathbb{R}^n$, $f: E \longrightarrow \mathbb{R}^n$ 是一个非负函数, 那么 $\int_E f$ 收敛的充要条件是: 存在 E 的穷竭 $\{E_m\}$ 使得 f 在每个 E_m 上均可积, 并且极限

$$\lim_{m \to \infty} \int_{E_m} f$$

存在.

命题 6.4. (比较判别法) 设 $E \subseteq \mathbb{R}^n$, f = g 均是定义在 E 上的非负函数并且

$$f(x) \leqslant g(x), \quad \forall x \in E.$$

又设存在 E 的穷竭 $\{E_m\}$ 使得 f 与 g 均在每个 E_m 上可积. 如果 $\int_E g$ 收敛, 那么 $\int_E f$ 也收敛.

命题 6.5. 设 $E \in \mathbb{R}^n$ 的一个无界子集, f 是定义在 E 上的非负函数. 又设对任意的 $m \ge 1$, $B(\mathbf{0}, m) \cap E$ 均是若尔当可测集且 f 在其上可积. 此外, 还设存在常数 p > n, 使得 $\frac{1}{|x|^p}$ 在 $(E \cap B(\mathbf{0}, m)) \setminus B(\mathbf{0}, 1)$ $(m \ge 1)$ 上可积, 并且当 |x| 充分大时有

$$f(\boldsymbol{x}) << \frac{1}{|\boldsymbol{x}|^p},$$

那么 $\int_E f$ 收敛.

命题 6.6. 设 $E \in \mathbb{R}^n$ 中的有界集, f 是定义在 E 上的非负函数, 且 $\mathbf{x}_0 \in \partial E$ 是 f 的 唯一奇点. 又设对任意的 $m \geq 1$, $E \setminus B(\mathbf{x}_0, \frac{1}{m})$ 均是若尔当可测集且 f 在其上可积, 此外, 还假设存在常数 p < n, 使得函数 $\frac{1}{|\mathbf{x} - \mathbf{x}_0|^p}$ 在 $E \setminus B(\mathbf{x}_0, \frac{1}{m})$ $(m \geq 1)$ 上可积, 并且当 $\mathbf{x} \to \mathbf{x}_0$ $(\mathbf{x} \in E)$ 时有

$$f(\boldsymbol{x}) << \frac{1}{|\boldsymbol{x} - \boldsymbol{x}_0|^p},$$

那么 $\int_E f$ 收敛.

引理 6.7

设 $E \subseteq \mathbb{R}^n$, $f \ni g$ 是定义在 E 上的非负函数. 如果 $\int_E f \ni \int_E g$ 均收敛, 那么 $\int_E f + g$ 也收敛且

$$\int_{E} f + g = \int_{E} f + \int_{E} g.$$

命题 6.8. 设 $E\subseteq \mathbb{R}^n,\; f:E\longrightarrow \mathbb{R}.$ 如果 $\int_E f$ 收敛, 那么 $\int_E |f|$ 也收敛.

命题 6.9. 设 $E, F \subseteq \mathbb{R}^n$, 函数 f 在 $E \cup F$ 上有定义, g 在 E 上有定义.

(1) 若
$$\int_{E} f$$
 收敛,则对任意的 $a \in \mathbb{R}$, $\int_{E} af$ 收敛,且

$$\int_{E} af = a \int_{E} f.$$

(2) 若
$$\int_{E} f$$
 和 \int_{g} 均收敛,则 $\int_{E} (f+g)$ 也收敛,且

$$\int_{E} (f+g) = \int_{E} f + \int_{E} g.$$

(3) 若
$$E$$
 和 F 无公共内点, 且 $\int_{E} f$ 与 $\int_{F} f$ 均收敛, 则 $\int_{E \cup F} f$ 收敛, 且

$$\int_{E \cup F} f = \int_{E} f + \int_{F} f.$$

定理 6.10

设
$$E\subseteq \mathbb{R}^n,\; f:E\longrightarrow \mathbb{R},$$
 那么 $\int_E f$ 收敛当且仅当 $\int_E |f|$ 收敛.

注 6.11. 此处重积分与一元反常积分略有差异,在本节定义 6.2 中需针对任意穷竭,对应到一元中其实就是在考虑黎曼重排,而一元中仅仅是条件收敛,即意味着可以黎曼重排使极限为任意值时,在本节定义 6.2 下是发散的.而当一元情形是绝对收敛的,在该定义下才是收敛的,故在多元中收敛与绝对值收敛等价.

定理 6.12

设 $E \in \mathbb{R}^n$ 中的开集, $\varphi: E \longrightarrow \varphi(E)$ 是一个连续可微的双射, 并且对任意的 $\mathbf{x} \in E$ 而言 $\varphi'(\mathbf{x})$ 均非奇异. 又设定义在 $\varphi(E)$ 的函数 f 在 $\varphi(E)$ 的任一若尔当可测紧子集上可积. 那么当

$$\int_{\varphi(E)} f \quad \boxminus \quad \int_E (f \circ \varphi) |\det \varphi'|$$

中有一个收敛时,另一个必收敛,且有

$$\int_{\varphi(E)} f = \int_{E} (f \circ \varphi) |\det \varphi'|$$

专题二 双曲几何下的面积

题目源自《数学分析入门》习题 15.6 题目 11-15.

证明. 设
$$z=x+y\mathbf{i},\ (y>0),$$
 则映射后的结果为 $\frac{ax+b+ay\mathbf{i}}{cx+d+cy\mathbf{i}}=$

第五章 曲线积分

§ 5.1 曲线的弧长

定义 1.1

对于空间中的参数方程

$$\begin{cases} x = x(t), \\ y = y(t), & t \in [a, b] \\ z = z(t), \end{cases}$$
 (5.1)

所定义的曲线段 C, 如果对任意的 $a \le t_1 < t_2 \le b$, 当 $t_1 = a$ 与 $t_2 = b$ 不同时成立时有

$$(x(t_1), y(t_1), z(t_1)) \neq (x(t_2), y(t_2), z(t_2)),$$

则称 C 是**简单曲线**. 更进一步的, 如果有 (x(a), y(a), z(a)) = (x(b), y(b), z(b)) 则称 C 为**简单闭曲线**.

定义 1.2

设曲线段 C 由 (5.1) 所定义. 若存在 $s \in \mathbb{R}$, 使得对任意的 $\varepsilon > 0$ 而言, 存在 $\delta > 0$, 对由区间 [a,b] 的任意一组满足 $\max_i \Delta t_i < \delta$ 的分点

$$a = t_0 < t_1 < \dots < t_n = b$$

所定义的曲线上的点 $M_i(x(t_i), y(t_i), z(t_i))$ 均有

$$\left| \sum_{1 \leqslant i \leqslant n} \overline{M_{i-1}M_i} - s \right| < \varepsilon,$$

那么就称曲线段 C 是**可求长的**, 并称 s 是 C 的**弧长**.

类似也可以给出由参数方程

$$\begin{cases} x = x(t), \\ y = y(t), \end{cases} \quad t \in [a, b]$$
(5.2)

所定义的平面上的曲线段及其弧长定义.

命题 1.1. 设 C 是由 (5.1) 给出的可求长的曲线段, $\varphi:[c,d]\longrightarrow [a,b]$ 是严格单调的满

射,并记

$$C_1: \begin{cases} x = x(\varphi(u)), \\ y = y(\varphi(u)), \quad u \in [c, d] \\ z = z(\varphi(u)), \end{cases}$$

那么 C_1 也是可求长的曲线, 且其弧长等于 C 的弧长. 简而言之, 曲线的弧长与参数方程的选取无关.

命题 1.2. 如果 x(t), y(t), z(t) 均在区间 [a, b] 上连续可导,则由 (5.1) 所定义的曲线段 C 是可求长的,且弧长为

$$s = \int_{a}^{b} \sqrt{[x'(t)]^{2} + [y'(t)]^{2} + [z'(t)]^{2}} dt.$$

命题 1.3. 如果 x(t), y(t) 均在区间 [a, b] 上连续可导, 那么平面上由 (5.2) 所定义的曲 线段 C 是可求长的, 且弧长为

$$s = \int_a^b \sqrt{[x'(t)]^2 + [y'(t)]^2} dt.$$

推论 1.4

对于定义在平面上的极坐标方程 $r = r(\theta)$ ($\theta \in [\alpha, \beta]$) 可以将其视作由参数方程

$$\begin{cases} x = r(\theta)\cos\theta, \\ y = r(\theta)\sin\theta, \end{cases} \quad \theta \in [\alpha, \beta]$$
 (5.3)

那么此时就有

$$s = \int_{\alpha}^{\beta} \sqrt{[r'(\theta)]^2 + [r(\theta)]^2} d\theta.$$

例 1.5. 设
$$a>0$$
. 对于**星形线 (astroid)**
$$\left\{ \begin{array}{l} x=a\cos^3t,\\ y=a\sin^3t, \end{array} \right. \ (t\in[0,2\pi]) \ \text{而言, 其弧长为}$$

$$\int_0^{2\pi} \sqrt{[x'(t)]^2 + [y'(t)]^2} dt$$

$$= 3a \int_0^{2\pi} \sqrt{\cos^4 t \sin^2 t + \sin^4 t + \cos^2 t} dt$$

$$= 3a \int_0^{2\pi} |\sin t \cos t| dt = 6a.$$

例 1.6.

命题 1.7. 简单曲线 C 的弧长在正交变换下保持不变.

§ 5.2 第一型曲线积分

定义 2.1

设 C 是一条可求长的曲线, 其两端点是 A 和 B (若是闭曲线则 A 和 B 是一个点), f 是定义在 C 上的一个函数. 如果存在实数 I, 使得对任意的 $\varepsilon > 0$, 均存在 $\delta > 0$, 当我们依次取分点

$$A = M_0, M_1, \ldots, M_n = B$$

时, 只要 $\max_{1\leqslant i\leqslant n}\Delta s_i<\delta$ (其中 Δs_i 表示曲线段 $\widehat{M_{i-1}M_i}$ 的弧长), 就对任意的 $\pmb{\xi}_i\in\widehat{M_{i-1}M_i}$ 有

$$\left| \sum_{i=1}^{n} f(\boldsymbol{\xi}_i) \Delta s_i - I \right| < \varepsilon,$$

那么就称 I 为 f 在 C 上的**第一型曲线积分** (line integral of the first kind), 记作

$$I = \int_C f \, \mathrm{d}s.$$

特别地, 当 C 是闭曲线时, 我们也采用记号

$$I = \oint_C f \, \mathrm{d}s.$$

注 2.1. 当第一型曲线积分存在时, 积分值与曲线的定向无关.

命题 2.2. 设 C 时一条可求长曲线, f 与 g 是定义在 C 上的两个函数,

(1) 如果 f 与 g 在 C 上的第一型曲线积分都存在,那么对任意的 $\alpha, \beta \in \mathbb{R}, \alpha f + \beta g$ 在 C 上的第一型曲线积分存在并且,

$$\int_C (\alpha f + \beta g) \, \mathrm{d}s = \alpha \int_C f \, \mathrm{d}s + \beta \int_C g \, \mathrm{d}s.$$

(2) 如果 $C = C_1 \cup C_2$, C_1 , C_2 均是可求长曲线, 且公共点为端点, 那么当 C_1 , C_2 的第一型曲线积分都存在时, f 在 C 上的第一型曲线积分也存在, 且

$$\int_C f \, \mathrm{d}s = \int_{C_1} f \, \mathrm{d}s + \int_{C_2} f \, \mathrm{d}s.$$

定义 2.2

设 $C \in \mathbb{R}^3$ 中的**光滑曲线段**, 即存在参数方程

$$\begin{cases} x = x(t), \\ y = y(t), & t \in [a, b] \\ z = z(t), \end{cases}$$

表示 C, 且 x(t), y(t), z(t) 均在 [a, b] 上连续可微.

取分点,求黎曼和,用积分第一中值定理及闵可夫斯基不等式进行等价,可得上述 光滑曲线段的第一型曲线积分为

$$\int_C f(x, y, z) \, \mathrm{d}s = \int_a^b f(x(t), y(t), z(t)) \sqrt{[x'(t)]^2 + [y'(t)]^2 + [z'(t)]^2} \, \mathrm{d}t. \tag{5.4}$$

类似地,如果是平面上的曲线,则有

$$\int_C f(x,y) \, \mathrm{d}s = \int_a^b f(x(t), y(t)) \sqrt{[x'(t)]^2 + [y'(t)]^2} \, \mathrm{d}t. \tag{5.5}$$

§ 5.3 第二型曲线积分

定义 3.1

设 $C \in \mathbb{R}^3$ 中的一条**定向**的可求长的曲线, **起点**为 A, **终点**为 B, 在 C 上定义映射 $f = (P,Q,R)^T: C \longrightarrow \mathbb{R}^3$. 若存在实数 I, 使得对任意的 $\varepsilon > 0$, 均存在 $\delta > 0$, 当我们在 C 上从 A 到 B 依次取分点

$$A = M_0, M_1, \dots, M_n = B$$

时, 只要 $\max_{1 \leq i \leq n} \overline{M_{i-1}M_i} < \delta$, 就对任意的 $\boldsymbol{\xi}_i \in \widehat{M_{i-1}M_i}$ 有

$$\left| \sum_{i=1}^{n} \left\langle f(\boldsymbol{\xi}_i), \overline{M_{i-1}M_i} \right\rangle - I \right| < \varepsilon,$$

则称 I 为 $f = (P, Q, R)^T$ 沿定向曲线 C 的**第二型曲线积分 (line integral of the second kind)**. 也称作 f 沿道路 \widehat{AB} 的**第二型曲线积分**, 记作

$$I = \int_C P \, \mathrm{d}x + Q \, \mathrm{d}y + R \, \mathrm{d}z = \int_{\widehat{AB}} P \, \mathrm{d}x + Q \, \mathrm{d}y + R \, \mathrm{d}z.$$

特别地, 当 C 是闭曲线时, 我们也采用记号

$$I = \oint_C P \, \mathrm{d}x + Q \, \mathrm{d}y + R \, \mathrm{d}z.$$

类似可定义 \mathbb{R}^2 中定向曲线 C 的第二型曲线积分

$$\int_C P \, \mathrm{d}x + Q \, \mathrm{d}y.$$

注 3.1. 在计算第二型曲线积分时, 需注意曲线的定向, 因为对于以 A, B 为端点的曲线

$$\int_{\widehat{AB}} P \, dx + Q \, dy + R \, dz = -\int_{\widehat{BA}} P \, dx + Q \, dy + R \, dz$$

命题 3.2. 设 \widehat{AB} 是 \mathbb{R}^3 中的一条可求长的定向曲线, $f = (P_1, Q_1, R_1)^T$ 和 $g = (P_2, Q_2, R_2)^T$ 均是从 \widehat{AB} 到 \mathbb{R}^3 的映射.

(1) 若 f,g 沿 \widehat{AB} 的第二型曲线积分均存在,则对任意的 $\alpha,\beta\in\mathbb{R}$, $\alpha f+\beta g$ 沿 \widehat{AB} 的第二型曲线积分也存在,并且等于

$$\alpha \left(\int_{\widehat{AB}} P_1 \ \mathrm{d}x + Q_1 \ \mathrm{d}y + R_1 \ \mathrm{d}z \right) + \beta \left(\int_{\widehat{AB}} P_2 \ \mathrm{d}x Q_2 \ \mathrm{d}y R_2 \ \mathrm{d}z \right).$$

(2) 设 D 是 \widehat{AB} 上一点, 如果 f 沿 \widehat{AD} 和 \widehat{DB} 的第二型曲线积分均存在, 则 f 沿 \widehat{AB} 的第二型曲线积分也存在, 并且等于

$$\int_{\widehat{AD}} P_1 \, dx + Q_1 \, dy + R_1 \, dz + \int_{\widehat{DB}} P_1 \, dx + Q_1 \, dy + R_1 \, dz.$$

设 \widehat{AB} 是 \mathbb{R}^3 中的定向光滑曲线段,再设

$$f(P,Q,R)^T:\widehat{AB}\longrightarrow \mathbb{R}^3$$

则有

$$\int_{\widehat{AB}} P \, dx + Q \, dy + R \, dz = \int_{a}^{b} [P(x(t), y(t), z(t))x'(t) + Q(x(t), y(t), z(t))y'(t) + R(x(t), y(t), z(t))z'(t)] \, dt$$

§ 5.4 格林公式

定义 4.1

对于 \mathbb{R}^2 平面上的有界闭区域 D, 其边界 ∂D , 是由有限条光滑曲线组成. 当在边界上行走时, 如果与之相邻的区域的内部总是在左侧, 则称这个方向是**正向**

定理 4.1.(格林公式)

设 S 是 \mathbb{R}^2 中的有界闭区域, ∂S 由有限多条分段光滑曲线组成, 若 $P,Q\in C^1(S)$, 则

$$\int_{\partial S} P \, dx + Q \, dy = \iint_{S} \left(\frac{\partial Q}{\partial x} - \frac{\partial P}{\partial y} \right) \, dx \, dy \tag{5.6}$$

其中 ∂S 的定向为正向.

在定理 4.1 条件下, 再设 u(x,y) 在 S 上连续可微, 那么将 (5.6) 中的 P 换为 uP, 并取 Q=0 可得

$$\int_{\partial S} u P \, \mathrm{d}x = - \iint\limits_{S} \frac{\partial (u P)}{\partial y} \, \mathrm{d}x \, \mathrm{d}y = - \iint\limits_{S} \left(P \frac{\partial u}{\partial y} + u \frac{\partial P}{\partial y} \right) \, \mathrm{d}x \, \mathrm{d}y,$$

也即

$$-\iint_{S} u \frac{\partial P}{\partial y} dx dy = \int_{\partial S} u P dx + \iint_{S} P \frac{\partial u}{\partial y} dx dy.$$
 (5.7)

同理,将Q换为uQ可得,

$$\iint_{S} u \frac{\partial Q}{\partial x} dx dy = \int_{\partial S} u Q dy - \iint_{S} Q \frac{\partial u}{\partial x} dx dy.$$
 (5.8)

相加后可得,

$$\iint\limits_{S} u \left(\frac{\partial Q}{\partial x} - \frac{\partial P}{\partial y} \right) dx dy = \left(\int_{\partial S} u P dx + u Q dy \right) - \iint\limits_{S} \left(Q \frac{\partial u}{\partial x} - P \frac{\partial u}{\partial y} \right) dx dy.$$
 (5.9)

以上三式均被称作平面上的分部积分公式.

定义 4.2

对于 \mathbb{R}^2 中的一个区域 D, 若 D 中任意一条简单闭曲线所围成的区域均包含于 D, 则称 D 是**单连通的 (simply connected)**, 否则称 D 为**多连通的 (multiply connected)** 或者称作**复连通的**.

命题 4.2. 利用格林公式计算闭曲线围成的面积. 设 $S \in \mathbb{R}^2$ 中的一个有界闭区域, 且 ∂S 由有限多条光滑曲线组成, 那么由格林公式知

$$\mu(S) = \iint\limits_{S} dx dy = \int_{\partial S} x dy = -\int_{\partial S} y dx.$$
 (5.10)

更进一步的,有

$$\mu(S) = \frac{1}{2} \int_{\partial S} x \, \mathrm{d}y - y \, \mathrm{d}x. \tag{5.11}$$

虽然看上去 (5.11) 和 (5.10) 没有实质上的差异. 但在实际计算中, 如果曲线有一定的对称性 (5.11) 能带来很大的便利.

定理 4.3

设 $D \in \mathbb{R}^2$ 中的一个单连通区域, $P,Q \in C^1(D)$, 则下列命题等价:

(1) 对 D 中任意两点 A,B 以及 D 中从 A 到 B 的任意两条分段光滑曲线 C_1,C_2 有

$$\int_{C_1} P \, \mathrm{d}x + Q \, \mathrm{d}y = \int_{C_2} P \, \mathrm{d}x + \, \mathrm{d}y.$$

即第二型曲线积分与路径无关.

(2) 对于 D 中由有限多条光滑曲线组成的任一闭曲线 C 有

$$\int_C P \, \mathrm{d}x + Q \, \mathrm{d}y = 0.$$

(3) 在
$$D$$
 上有 $\frac{\partial P}{\partial y} = \frac{\partial Q}{\partial x}$.

§ 5.5 应用: 调和函数

定义 5.1

设 D 是一个平面 (闭) 区域, f 是定义在 D 上的具有二阶偏导数的函数, 若在 D 上有

$$\frac{\partial^2 f}{\partial x^2} + \frac{\partial^2 f}{\partial y^2} = 0,$$

则称 $f \in D$ 上的**调和函数 (harmonic function)**.

通常记

$$\Delta f = \frac{\partial^2 f}{\partial x^2} + \frac{\partial^2 f}{\partial y^2},$$

并称 $\Delta = \frac{\partial^2}{\partial x^2} + \frac{\partial^2}{\partial y^2}$ 为**拉普拉斯算子 (Laplace operator).**

性质 5.1. (拉普拉斯算子在正交变换下的不变性) 设 $f \in \mathbb{C}^2$ 类的调和函数,

$$A = \begin{bmatrix} a & b \\ c & d \end{bmatrix}$$
 是一个正交矩阵, $g(x,y) = f(ax + by, cx + dy)$. 则有 $\Delta f = \Delta g$.

证明. 记 x' = ax + by, y' = cx + dy, 利用偏导数的链式法则可得

$$\begin{split} \Delta g &= \frac{\partial^2 g}{\partial x^2} + \frac{\partial^2 g}{\partial y^2} \\ &= \frac{\partial}{\partial x} \left(\frac{\partial g}{\partial x'} \cdot \frac{\partial x'}{\partial x} + \frac{\partial g}{\partial y'} \cdot \frac{\partial y'}{\partial x} \right) + \frac{\partial}{\partial y} \left(\frac{\partial g}{\partial x'} \cdot \frac{\partial x'}{\partial y} + \frac{\partial g}{\partial y'} \cdot \frac{\partial y'}{\partial y} \right) \\ &= \frac{\partial}{\partial x} \left(\frac{\partial f}{\partial x'} \cdot a + \frac{\partial f}{\partial y'} \cdot c \right) + \frac{\partial}{\partial y} \left(\frac{\partial f}{\partial x'} \cdot b + \frac{\partial f}{\partial y'} \cdot d \right) \\ &= \frac{\partial}{\partial x'} \left(\frac{\partial f}{\partial x'} \cdot a + \frac{\partial f}{\partial y'} \cdot c \right) \frac{\partial x'}{\partial x} + \frac{\partial}{\partial y'} \left(\frac{\partial f}{\partial x'} \cdot a + \frac{\partial f}{\partial y'} \cdot c \right) \frac{\partial y'}{\partial x} \\ &+ \frac{\partial}{\partial x'} \left(\frac{\partial f}{\partial x'} \cdot b + \frac{\partial f}{\partial y'} \cdot d \right) \frac{\partial x'}{\partial y} + \frac{\partial}{\partial y'} \left(\frac{\partial f}{\partial x'} \cdot b + \frac{\partial f}{\partial y'} \cdot d \right) \frac{\partial y'}{\partial y} \\ &= (a^2 + b^2) \frac{\partial^2 f}{\partial x'^2} + (c^2 + d^2) \frac{\partial^2 f}{\partial y'^2} + (ac + ac + bd + bd) \frac{\partial^2 f}{\partial x' \partial y'} \\ &= \frac{\partial^2 f}{\partial x'^2} + \frac{\partial^2 f}{\partial y'^2} = \Delta f. \end{split}$$

上述最后一行利用了正交矩阵的性质,任意两行向量点积是 0,即 ac + bd = 0.

更进一步的, 如果是 n 元调和函数 $g(x_1,x_2,\ldots,x_n)=f(x_1',x_2',\ldots,x_n')$ 其中, $(x_1',\ldots,x_n')^T=A(x_1,\ldots,x_n)^T$, 且 A 是 n 阶正交矩阵.

那么有
$$\frac{\partial x_i'}{\partial x_j} = a_{i,j}$$
.

则

$$\Delta g = \sum_{i=1}^{n} \frac{\partial^{2} g}{\partial x_{i}^{2}}$$

$$= \sum_{i=1}^{n} \frac{\partial}{\partial x_{i}} \left(\sum_{j=1}^{n} \frac{\partial g}{\partial x'_{j}} \cdot \frac{\partial x'_{j}}{\partial x_{i}} \right)$$

$$= \sum_{i=1}^{n} \sum_{k=1}^{n} \frac{\partial}{\partial x'_{k}} \left(\sum_{j=1}^{n} \frac{\partial f}{\partial x'_{j}} \cdot a_{j,i} \right) \frac{\partial x'_{k}}{\partial x_{i}}$$

$$= \sum_{i=1}^{n} \sum_{k=1}^{n} \frac{\partial}{\partial x'_{k}} \left(\sum_{j=1}^{n} \frac{\partial f}{\partial x'_{j}} \cdot a_{j,i} \right) a_{k,i}$$

$$= \sum_{k=1}^{n} \sum_{j=1}^{n} \sum_{i=1}^{n} a_{k,i} a_{j,i} \frac{\partial^{2} f}{\partial x'_{k} \partial x'_{j}}$$

$$= \sum_{k=1}^{n} \frac{\partial^{f}}{\partial x'_{k}^{2}} = \Delta f.$$

利用到了
$$\sum_{i=1}^{n} a_{j,i} a_{k,i} = \begin{cases} 1, & j=k \\ 0, & j \neq k \end{cases}$$

引理 5.2

设 D 是平面上由有限多条光滑曲线所围城的有界闭区域, u 和 v 是定义在 D 上的两个函数, 且 $u \in C^2(D), v \in C^1(D), 则$

$$\iint\limits_{D} v \Delta u \; \mathrm{d}x \; \mathrm{d}y = - \int\limits_{D} \left(\frac{\partial u}{\partial x} \; \frac{\partial v}{\partial x} + \frac{\partial u}{\partial y} \; \frac{\partial v}{\partial y} \right)$$

第六章 曲面积分

§ 6.1 曲面的面积

定义 1.1

设 Ω 时 \mathbb{R}^2 中的一个区域, $D \subseteq \Omega$, 且 D 是由分段光滑曲线所围成的有界闭区域. 若存在 Ω 上的映射

$$\mathbf{r}(u,v) = (x(u,v), y(u,v), z(u,v)), \quad (u,v) \in \Omega$$
 (6.1)

满足

- (1) $r \in C^1(\Omega)$.
- (2) \mathbf{r} 在 D° 上是双射, 并且对任意的 $(u,v) \in D^{\circ}$ 有 $\mathbf{r}_u \times r_v \neq \mathbf{0}$, 其中 \times 为向量积且 称 $\mathbf{r}(D)$ 为 \mathbb{R}^3 中的一个**光滑曲面**.

若 $S \subseteq \mathbb{R}^3$ 由有限多个光滑曲面拼接而成,则称之为**分片光滑曲面**.

定义 1.2

设 Ω, D, \mathbf{r} 如定义 1.1 中所给出, $S = \mathbf{r}(D)$ 是由方程 (6.1) 定义的光滑曲面, 那么 S 的面积为

$$\iint\limits_{D} |\boldsymbol{r}_{u} \times \boldsymbol{r}_{v}| \, \mathrm{d}u \, \mathrm{d}v. \tag{6.2}$$

如果 S 是由若干光滑曲面拼接而成,且这些光滑曲面至多在边界处有公共点,那么 S 的面积就定义为 S_i 的面积和.

命题 1.1. 和曲线积分类似, 曲面的面积和参数方程的选取无关.

定义 1.3.(高斯 (Gauss) 系数)

为了方便我们将, $\frac{\partial x}{\partial u}$ 记作 x_u . 同理有 y_u, z_u, x_v, y_v, z_v . 我们设

$$\begin{cases}
E = |\mathbf{r}_{u}|^{2} = x_{u}^{2} + y_{u}^{2} + z_{u}^{2} \\
F = \langle \mathbf{r}_{u}, \mathbf{r}_{v} \rangle = x_{u}x_{v} + y_{u}y_{v} + z_{u}z_{v} \\
G = |\mathbf{r}_{v}|^{2} = x_{v}^{2} + y_{v}^{2} + z_{v}^{2}
\end{cases} (6.3)$$

我们称 E, F, G 为**高斯 (Gauss) 系数**或曲面的第一基本量.

此时,式(6.2)就变为

$$\iint\limits_{D} \sqrt{EG - F^2} \, \mathrm{d}u \, \mathrm{d}v. \tag{6.4}$$

§ 6.2 第一型曲面积分 § 6.3 曲面的侧与定向 § 6.4 第二型曲面积分 § 6.5 高斯公式 § 6.6 斯托克斯公式

第七章 Fourier 分析初步

定义

设 S 是一个非空集合, 我们用 \mathbb{C}^S 表示从 S 到 \mathbb{C} 的全部映射所成之集, 也即定义在 S 上的全体复值函数所成之集.

对任意的 $f, g \in \mathbb{C}^S$ 以及 $\lambda \in \mathbb{C}$, 令

$$(f+g)(x) = f(x) + g(x), \qquad \forall x \in S.$$
$$(\lambda f)(x) = \lambda f(x),$$

则在上述运算下 \mathbb{C}^S 是 \mathbb{C} 上的线性空间, 从而 \mathbb{C}^S 有一个基.

§ 7.1 Fourier 级数定义

定义 1.1.(复值函数积分)

对于复值函数 g(x) = u(x) + iv(x), $u(x), v(x) \in \mathbb{R}[x]$. 若 u(x), v(x) 均在 [a, b] 上可积, 则定义

$$\int_a^b g(x) dx = \int_a^b u(x) dx + i \int_a^b v(x) dx.$$

不难验证,按上述定义的复值函数积分,也满足实值函数积分的运算法则,如分部积分以及微积分学基本定理.

定义 1.2

设 ℓ 是一个正常数, 记 $e(t) := e^{2\pi i t}$, 我们称形如

$$\frac{a_0}{2} + \sum_{n=1}^{\infty} \left(a_n \cos \frac{2\pi nx}{\ell} + b_n \sin \frac{2\pi nx}{\ell} \right) \tag{7.1}$$

$$\sum_{n\in\mathbb{Z}} c_n e\left(\frac{nx}{\ell}\right) \tag{7.2}$$

的关于变量 x 的函数项级数为**三角级数 (trigonometric series)**, 其中 (7.1) 的级数收敛 是指极限

$$\lim_{N \to \infty} \sum_{n=-N}^{N} c_n e\left(\frac{nx}{\ell}\right)$$

存在. 我们称以上两个级数的部分和为三角多项式 (trigonometic ploynomial).

利用欧拉公式 $e^{i\theta} = \cos\theta + i\sin\theta$, 我们可以探究 (7.1) 和 (7.2) 之间的关系. 如果记

$$\begin{cases}
c_0 = \frac{a_0}{2}, \\
c_n = \frac{a_n - ib_n}{2}, \quad c_{-n} = \frac{a_n + ib_n}{2}, \quad \forall n \geqslant 1.
\end{cases}$$
(7.3)

那么就可以将 (7.1) 变为 (7.2) 的形式.

注 1.1. $a_n, b_n \in \mathbb{R} \Leftrightarrow c_n = \overline{c_{-n}}$.

我们把在区间 [a,b] 上黎曼可积,或者在 [a,b] 上有有限多个奇点但积分 $\int_a^b |f(x)| \, \mathrm{d}x$ 收敛的全体实值函数所成之集记作 $\mathscr{R}[a,b]$.

定义 1.3

设 ℓ 是一个正实数, f(x) 是定义在 \mathbb{R} 上的以 ℓ 为周期的函数, 并且 $f \in \mathcal{R}[0,\ell]$. 我们记

$$a_n = \frac{2}{\ell} \int_0^{\ell} f(x) \cos \frac{2\pi nx}{\ell} \, \mathrm{d}x, \quad \forall n \geqslant 0.$$
 (7.4)

$$b_n = \frac{2}{\ell} \int_0^{\ell} f(x) \sin \frac{2\pi nx}{\ell} \, \mathrm{d}x, \quad \forall n \geqslant 0.$$
 (7.5)

$$c_n = \frac{1}{\ell} \int_0^{\ell} f(x)e\left(-\frac{nx}{\ell}\right) dx, \quad \forall n \geqslant 0.$$
 (7.6)

由上三式定义的三角级数称作 f(x) 的 Fourier **级数 (Fourier series)** 或 Fourier **展开式 (Fourier expansion)**, 记作

$$f(x) \sim \frac{a_0}{2} + \sum_{n=1}^{\infty} \left(a_n \cos \frac{2\pi nx}{\ell} + b_n \sin \frac{2\pi nx}{\ell} \right)$$

$$f(x) \sim \sum_{n \in \mathbb{Z}} c_n e\left(\frac{nx}{\ell}\right)$$

称 a_n, b_n, c_n 为 f(x) 的 Fourier 系数. 通常将 c_n 记作 $\hat{f}(n)$.

注 1.2. 上述定义中采用 \sim 的记号是因为目前我们并不知道 f(x) 的 Fourier 级数是否 收敛于 f(x).

定义 1.4

设 f 是定义在 $(0,\ell)$ 上的函数, 如果以 2ℓ 为周期的函数 g 满足

$$g(x) = \begin{cases} f(x), & x \in (0, \ell) \\ f(-x), & x \in (-\ell, 0). \end{cases}$$

则称 g 为 f 的**偶性延拓**, 此时 g 是 $(-\ell,\ell)\setminus\{0\}$ 上的偶函数. 如果以 2ℓ 为周期的函数 h 满足

$$h(x) = \begin{cases} f(x), & x \in (0, \ell) \\ -f(-x), & x \in (-\ell, 0). \end{cases}$$

则称 g 为 f 的**奇性延拓**, 此时 h 是 $(-\ell, \ell)\setminus\{0\}$ 上的奇函数.

为了方便, 我们将 f 作偶性延拓/奇性延拓得到的函数仍记作 f.

定义 1.5

如果对 f 做偶性延拓, 那么它的 Fourier 级数中只含有余弦项, 称为 f(x) 的**余弦 级数**, 记作

$$f(x) \sim \frac{a_0}{2} + \sum_{n=1}^{\infty} a_n \cos \frac{\pi nx}{\ell},$$

其中

$$a_n = \frac{1}{\ell} \int_{-\ell}^{\ell} f(x) \cos \frac{\pi nx}{\ell} \, \mathrm{d}x = \frac{2}{\ell} \int_0^{\ell} f(x) \cos \frac{\pi nx}{\ell} \, \mathrm{d}x. \tag{7.7}$$

如果对 f 做奇性延拓, 那么它的 Fourier 级数中只含有正弦项, 称为 f(x) 的**正弦 级数**, 记作

$$f(x) \sim \sum_{n=1}^{\infty} b_n \sin \frac{\pi nx}{\ell},$$

其中

$$b_n = \frac{1}{\ell} \int_{-\ell}^{\ell} f(x) \sin \frac{\pi nx}{\ell} dx = \frac{2}{\ell} \int_0^{\ell} f(x) \sin \frac{\pi nx}{\ell} dx.$$
 (7.8)

§ 7.2 局部化原理

引理 2.1.(黎曼-勒贝格引理)

设 $f \in \mathcal{R}[a,b]$ (这里 a 可以是 $+\infty$, b 可以是 $+\infty$), 那么

$$\lim_{\lambda \to \infty} \int_a^b f(x)e(\lambda x) \, \mathrm{d}x = 0.$$

特别地, $\lim_{|n| \to \hat{f}(n)} = 0$.

注 2.2. 由引理 2.1 以及

$$\cos \theta = \frac{e^{i\theta} + e^{-i\theta}}{\sin \theta} \qquad \sin \theta = \frac{e^{i\theta} - e^{-i\theta}}{\sin \theta}$$

我们可以推出

$$\lim_{\lambda \to \infty} \int_a^b f(x) \cos \lambda x \, dx = 0,$$
$$\lim_{\lambda \to \infty} \int_a^b f(x) \sin \lambda x \, dx = 0.$$

进而可以得到

$$\lim_{n \to \infty} a_n = \lim_{n \to \infty} b_n = 0.$$

下面研究 $f(x) \in \mathcal{R}[0,1]$ 的 Fourier 级数的收敛性问题. 而对于周期是一般的正实数的情形, 可以通过伸缩变换或者类似的讨论研究.

此时 Fourier 级数为

$$f(x) \sim \sum_{n \in \mathbb{Z}} \hat{f}(n)e^{(nx)},$$

其中

$$\hat{f}(n) = \int_0^1 f(t)e(-nt) dt.$$
 (7.9)

用

$$S_N(x) = \sum_{n=-N}^{N} \hat{f}(n)e(nx)$$

表示该 Fourier 级数的部分和, 那么将 (7.9) 代入可得

$$S_N(x) = \sum_{n=-N}^{N} e(nx) \int_0^1 f(t)e(-nt) dt = \int_0^1 f(t) \sum_{n=-N}^{N} e(n(x-t)) dt$$

$$= \int_0^1 f(t)D_N(x-t) dt.$$
(7.10)

定义 2.1.(狄利克雷核)

上式中 $D_N(y) := \sum_{n=-N}^N e(ny)$ 称为**狄利克雷核 (Dirichlet kernel)**.

首先, $D_N(y)$ 是以 1 为周期的偶函数.

$$y = 0$$
 时, f $D_N(0) = 2N + 1$.

 $y \in (0,1)$ 时,有

$$D_N(y) = \frac{e(-Ny)(e((2N+1)y) - 1)}{e(y) - 1} = \frac{e\left(\frac{2N+1}{2}y\right) - e\left(-\frac{2N+1}{2}y\right)}{e\left(\frac{y}{2}\right) - e\left(-\frac{y}{2}\right)}$$
$$= \frac{\sin(2N+1)\pi y}{\sin \pi y}.$$

那么在 (7.10) 中作变量替换 $t \mapsto x - t$ 可得

$$S_N(x) \int_{x-1}^x f(x-t) D_N(t) dt.$$

又被积函数的周期是 1. 所以

$$S_N(x) = \int_0^{\frac{1}{2}} (f(x+t) + f(x-t)) D_N(t) dt.$$
 (7.11)

此外, $D_N(t)$ 是偶函数.

$$\int_0^{\frac{1}{2}} D_N(t) \, dt = \frac{1}{2} \int_{-\frac{1}{2}}^{\frac{1}{2}} D_N(t) \, dt = \frac{1}{2} \sum_{n=-N}^N \int_{-\frac{1}{2}}^{\frac{1}{2}} e(nt) \, dt = \frac{1}{2}.$$
 (7.12)

上述求和考虑交换积分求和号后用等比数列求和公式.

定理 2.3.(黎曼局部化原理)

假设 f 是以 1 为周期的函数并且 $f \in \mathcal{R}[0,1]$, 那么对给定的 x, f 的 Fourier 级数 在点 x 处收敛于 s 当且仅当存在 $\delta > 0$ 使得

$$\lim_{N \to \infty} \int_0^{\delta} (f(x+t) + f(x-t) - 2s) \frac{\sin(2N+1)\pi t}{t} dt = 0.$$
 (7.13)

定理 2.4.(迪尼判别法)

设 f 是以 1 为周期的函数并且 $f \in \mathcal{R}[0,1]$, 如果对给定的 x 及 s, 存在 $\delta \in (0,1)$ 使得 $\frac{f(x+t)+f(x-t)-2s}{t}$ 是关于变量 t 的属于 $\mathcal{R}[0,\delta]$ 的函数 (单独定义该函数在 0 处的值), 那么 f 的 Fourier 级数在 x 处收敛于 s.

定义 2.2

设 f(x) 在 x_0 的邻域 $(x_0 - \delta, x_0 + \delta)$ (事实上, 只要求去心邻域内) 内有定义, 若存在常数 L > 0 及 $\alpha > 0$ 使得对任意的 $x \in (x_0 - \delta, x_0)$ 有

$$|f(x) - f(x_0 - 0)| \le L|x - x_0|^{\alpha},$$

且对任意的 $x \in (x_0, x_0 + \delta)$ 有

$$|f(x) - f(x_0 + 0)| \le L|x - x_0|^{\alpha}$$
.

则称 f(x) 在 x_0 附近满足 α **阶利普希茨条件**

注. 上述定理中 $f(x_0 - 0)$ 和 $f(x_0 + 0)$ 分别表示 f(x) 在 x_0 处的左/右极限.

注 2.5. 一般而言, 我们不会去研究 $\alpha > 1$ 时的情况, 因为当 $\alpha > 1$ 时, 考虑

$$\left| \frac{f(x) - f(x_0)}{x - x_0} \right| \leqslant Lx^{\alpha - 1},$$

当 $x \to x_0$ 时,右侧为 0 即 f'(x) = 0, f(x) 是常值函数.

推论 2.6

设 f 以 1 为周期且 $f \in \mathcal{R}[0,1]$, $\alpha \in (0,1]$. 如果 f 在 x 的附近满足 α 阶利普希茨条件, 那么 f 的 Fourier 级数在 x 处收敛于 $\frac{f(x+0)+f(x-0)}{2}$. 特别地, 若 x 是 f 的 连续点, 则 f 的 Fourier 级数在 x 处收敛于 f(x).

证明. 考虑证明
$$s = \frac{f(x+0) + f(x-0)}{2}$$
 满足定理 2.4 的条件.

定义 2.3

设 f 是定义在 [a,b] 上的一个函数, 若存在 [a,b] 的一个分划

$$a = x_0 < x_1 < \dots < x_n = b,$$

使得在每个子区间 $[x_{j-1},x_j]$ 上定义的函数

$$g_j(x) = \begin{cases} f(x_{j-1} + 0), & x = x_{j-1}, \\ f(x), & x \in (x_{j-1}, x_j) \\ f(x_j - 0), & x = x_j \end{cases}$$

均在 $[x_{j-1},x_j]$ 上可微,则称 f 是 [a,b] 上的**分段可微函数**.

推论 2.7

设 f 是以 1 为周期且在 [0,1] 上分段可微的函数, 则 f 的 Fourier 级数在每个点 x 处均收敛于 $\frac{f(x+0)+f(x-0)}{2}$. 特别地, 若 f 满足以上条件且 x 是 f 的连续点, 则 f 的 Fourier 级数在 x 处收敛于 f(x).

例 2.8.

$$\sum_{n=1}^{\infty} \frac{\cos 2\pi nx}{n^2} = \pi^2 \left(x^2 - x + \frac{1}{6} \right).$$

当 x = 0 则有

$$\zeta(2) = \sum_{n=1}^{\infty} \frac{1}{n^2} = \frac{\pi^2}{6}.$$

$$\sum_{n=1}^{\infty} \frac{\sin n}{n} = \frac{\pi - 1}{2}.$$

习题 7.2

1.

§ 7.3 费耶尔定理

定义 3.1

设 $\sum_{n=1}^{\infty} u_n$ 是一个级数, 用 S_n 表示其部分和, 即 $S_n = \sum_{k=1}^{n} u_k$. 再记

$$\sigma_n = \frac{S_1 + S_2 + \dots + S_n}{n},$$

并称之为 $\sum n = 1^{\infty} u_n$ 的第 n 个**切萨罗和**. 如果 $\{\sigma_n\}$ 收敛, 则称 $\sum_{n=1}^{\infty} u_n$ 是**切萨罗可和**

的, 此时称 $\{\sigma_n\}$ 的极限为 $\sum_{n=1}^{\infty} u_n$ 的**切萨罗和**.

定理 3.1.(费耶尔)

设 f 是定义在 \mathbb{R} 上的以 1 为周期的函数且 f 在 [0,1] 上黎曼可积, 又设 f 至多有第一类间断点, 则 f 的 Fourier 级数是切萨罗可和的, 且在 x 处的切萨罗和为

$$\frac{f(x+0)+f(x-0)}{2}.$$

特别地, 若 x 是连续点, 则 x 处的切萨罗和为 f(x).

注. P234

定理 3.2

设 f 是 [0,1] 上的连续函数且 f(0)=f(1), 则对任意的 $\varepsilon>0$, 存在三角多项式 $P(x)=\sum_{n=-N}^{N}c_{n}e(nx)$ 使得

$$\max_{x \in [0,1]} |f(x) - P(x)| < \varepsilon$$

命题 3.3. (Fourier 级数的唯一性) 设 f, g 均是以 1 为周期的连续函数, 如果对任意的 n 有 $\hat{f}(n) = \hat{g}(n)$, 那么 f = g.

§ 7.4 均值定理

定义 4.1

设 f 是以 1 为周期的实值函数, 并且 f 在 [0,1] 上可积或者 f 在 [0,1] 上有有限多个奇点但反常积分 $\int_0^1 f(x)^2 dx$ 收敛, 我们把满足上述条件的 f 所成的集合记作 $\mathcal{R}^2[0,1]$. 值得一提的, $\mathcal{R}^2[0,1] \subseteq \mathcal{R}[0,1]$.

定理 4.1

设f以1为周期且 $f \in \mathcal{R}^2[0,1]$.

(1) 对任意的正整数 N 及复数 α_n ($-N \leqslant n \leqslant N$) 有

$$\int_0^1 \left| f(x) - \sum_{n=-N}^N \alpha_n e(nx) \right|^2 \, \mathrm{d}x \geqslant \int_0^1 \left| f(x) - \sum_{n=-N}^N \hat{f}(x) e(nx) \right|^2 \, \mathrm{d}x.$$

(2) 我们有

$$\int_0^1 \left| f(x) - \sum_{n=-N}^N \hat{f}(x)e(nx) \right|^2 dx = \int_0^1 f(x)^2 dx - \sum_{n=-N}^N |\hat{f}(n)|^2$$

注. 注意辨别上述过程中每一项是实数还是复数, 上式中 |x| 均表为复数的模长.

并利用
$$\int_0^1 f(x)e(nx) dx = \overline{\int_0^1 f(x)e(-nx) dx} = \overline{\hat{f}(n)}.$$

 $2\Re\alpha_n\overline{\hat{f}(n)} = \overline{\alpha_n}\hat{f}(n) + \alpha_n\overline{\hat{f}(n)}$. 两倍实部等于自身加共轭.

定理 4.2.(贝塞尔 (Bessel) 不等式)

设 f 以 1 为周期且 $f \in \mathcal{R}^2[0,1]$, 则对任意的整数 N 有

$$\sum_{n=-N}^{N} |\hat{f}(n)|^2 \leqslant \int_{0}^{1} f(x)^2 \, \mathrm{d}x.$$

定理 4.3.(Fourier 级数在积分均值意义下的收敛性)

设 f 以 1 为周期且 $f \in \mathcal{R}^2[0,1]$, 则有

$$\lim_{N \to \infty} \inf_{0}^{1} \left| f(x) - \sum_{n=-N}^{N} \hat{f}(n)e(nx) \right|^{2} dx = 0.$$
 (7.14)

定理 4.4.(帕塞瓦尔 (Parseval) 恒等式)

设f以1为周期且 $f \in \mathcal{R}^2[0,1]$,则

$$\sum_{n \in \mathbb{Z}} |\hat{f}(n)|^2 = \int_0^1 f(x)^2 \, \mathrm{d}x.$$

如果用 a_n, b_n 表示也即

$$\int_0^1 f(x)^2 dx = \frac{a_0^2}{4} + \frac{1}{2} \sum_{n=1}^{\infty} (a_n^2 + b_n^2).$$
 (7.15)

例 4.5. 利用例 2.8 及上述定理知

$$\int_{-\frac{1}{2}}^{\frac{1}{2}} x^4 \, \mathrm{d}x = \frac{1}{144} + \frac{1}{2} \sum_{n=1}^{\infty} \frac{1}{\pi^4 n^4},$$

整理可得

$$\zeta(4) = \sum_{n=1}^{\infty} \frac{1}{n^4} = \frac{\pi^4}{90}.$$

注 4.6. 类似的, 设 $k \in \mathbb{Z}_{\geq 1}$. 通过考察以 1 为周期的函数

$$f(x) = x^k, \quad \forall x \in [-\frac{1}{2}, \frac{1}{2})$$

可以归纳的证明

$$\zeta(2k) = \frac{(-1)^{k+1} B_{2k} (2\pi)^{2k}}{2(2k)!}$$

其中 B_n 是伯努利数.

定理 4.7.(广义帕塞瓦尔恒等式)

设 f,g 均是以 1 为周期的函数, 且 $f,g \in \mathcal{R}^2[0,1]$, 则

$$\sum n \in \mathbb{Z}\widehat{f}(n)\overline{\widehat{g}(n)} = \int_0^1 f(x)g(x) \ \mathrm{d}x.$$

参考文献

- [1] 丘维声. 近世代数 [M]. [S.l.]: 北京大学出版社, 2015.
- [2] 陆亚明. 数学分析入门 [M]. [S.l.]: 高等教育出版社, 2023.

致 谢