TOPOLOGÍA. UAM, 15 de junio de 2016

Apellidos, Nombre:						
Grupo:						
-						
Ejercicio 1	Ejercicio 2	Ejercicio 3	Ejercicio 4	Ejercicio 5	Ejercicio 6	TOTAL

1 puntos

2 puntos

2 puntos

10

1. Sea X un especio topológico.

2 puntos

1 puntos

(a) Define con precisión qué es la **frontera** Fr(A) de un conjunto $A \subset X$.

2 punto

- (b) Define con precisión el significado de las frases que siguen. Pon algún ejemplo.
 - $\blacksquare X \text{ es conexo}.$
 - $\blacksquare X \text{ es contractible.}$
 - X es simplemente conexo.

Solución.

(a) $Fr(A) = \overline{A} \cap \overline{\mathbb{C}A}$. En otras palabras

$$x \in Fr(A) \iff \forall V \text{ entorno de } x, \ (V \cap A \neq \emptyset) \land (V \cap \complement A \neq \emptyset).$$

(b) **•**

$$X$$
 es conexo $\iff \not\exists$ abiertos $A \neq \emptyset, B \neq \emptyset \ni X = A \biguplus B$.

La notación $X=A\biguplus B$ ("unión disjunta") significa que $X=A\bigcup B$ y, además, $A\bigcap B=\emptyset.$ La usaremos sistemáticamente para abreviar.

- \blacksquare X es contractible si y sólo si X es homotópicamente equivalente a un punto.
- X es simplemente conexo si y sólo si su grupo fundamental es el grupo trivial.

Puesto que un espacio contractible es simplemente conexo y un espacio simplemente conexo es conexo, un ejemplo de espacio contractible, como un disco o un espacio euclídeo, vale como ejemplo de los tres tipos de espacios.

La esfera de dimensión 2 es un ejemplo de espacio simplemente conexo no contractible y un toro es un ejemplo de espacio conexo que no es simplemente conexo.

 ${\bf 2.}$ Sean Xe Yespacios topológicos. Se considera el conjunto producto cartesiano $X\times Y$ y las proyecciones

- (a) Describe la topología producto sobre $X \times Y$ mediante una subbase utilizando las proyecciones y explica cuál es la correspondiente base.
- (b) Demuestra que las proyecciones son aplicaciones **continuas**. Demuestra que las proyecciones llevan cada abierto del producto a un abierto; es decir, que son aplicaciones **abiertas**.
- (c) Demuestra que si Y es **compacto**, entonces π_1 lleva cerrados a cerrados, es decir, es una aplicación **cerrada**. ¿Es esto cierto, en general, aunque Y no sea compacto?

Solución.

(a) Una subbase es

$$\Sigma = \left\{ \pi_1^{-1}(A) = A \times Y : \text{ A abierto de X} \right\} \cup \left\{ \pi_2^{-1}(B) = X \times B : \text{ B abierto de Y} \right\}.$$

Y la base correspondiente es

$$\mathcal{B} = \left\{ \pi_1^{-1}(A) \cap \pi_2^{-1}(B) = (A \times Y) \cap (X \times B) = A \times B : A \text{ abierto de } X, B \text{ abierto de } Y \right\}$$

(b) $\pi_1: X \times Y \longrightarrow X$ es continua porque $\forall A$ abierto de X, $\pi_1^{-1}(A)$ es abierto de $X \times Y$. $\pi_2: X \times Y \longrightarrow Y$ es continua porque $\forall B$ abierto de Y, $\pi_2^{-1}(B)$ es abierto de $X \times Y$. Un abierto G de $X \times Y$ será de la forma $G = \bigcup_{j \in A} (A_j \times B_j) \ni A_j$ es abierto de X y B_j es abierto de Y, $\forall j \in A$. Para G de esta forma, se tiene

$$\pi_1(G) = \pi_1 \left(\bigcup_{j \in \mathcal{A}} (A_j \times B_j) \right) = \bigcup_{j \in \mathcal{A}} \pi_1(A_j \times B_j) = \bigcup_{j \in \mathcal{A}} A_j$$
, que es un abierto de X

У

$$\pi_2(G) = \pi_2 \left(\bigcup_{j \in \mathcal{A}} (A_j \times B_j) \right) = \bigcup_{j \in \mathcal{A}} \pi_2(A_j \times B_j) = \bigcup_{j \in \mathcal{A}} B_j$$
, que es un abierto de Y .

(c) Sea C un cerrado de $X \times Y$. Para ver que $\pi_1(C)$ es cerrado en X, vamos a ver que $\mathfrak{C}\pi_1(C)$ es abierto. Sea $x \in \mathfrak{C}\pi_1(C)$. Puesto que

$$x \in \mathfrak{C}\pi_1(C) \iff \{x\} \times Y \subset \mathfrak{C}C,$$

dado $x \in \mathfrak{C}\pi_1(C)$, para cada $y \in Y$, tenemos que $(x,y) \not\in C$, de modo que, por ser C cerrado, existirán abiertos $A_y \subset X \ni A_y \ni x \ y \ B_y \subset Y \ni B_y \ni y \ y \ A_y \times B_y \subset \mathfrak{C}C$.

Desde luego, $Y \subset \bigcup_{y \in Y} B_y$. Pero, por ser Y compacto, existirán y_1, \dots, y_n tales que $Y \subset \bigcup_{j=1}^n B_{y_j}$.

Si ahora tomamos $A = \bigcap_{j=1}^{n} A_{y_j}$, A será un abierto de X, tal que $A \ni x$ y, además

$$A \times Y \subset \bigcup_{j=1}^{n} (A \times B_{y_j}) \subset \bigcup_{j=1}^{n} (A_{y_j} \times B_{y_j}) \subset CC.$$

Por lo tanto $\forall z \in A$, $\{z\} \times Y \subset \complement{C}$, de donde se sigue que $z \in \complement{\pi_1(C)}$; es decir, el abierto A cumple $x \in A \subset \complement{\pi_1(C)}$. Así queda visto que $\complement{\pi_1(C)}$ es abierto y, por consiguiente, $\pi_1(C)$ es cerrado.

Cuando Y no es compacto, no es cierto, en general, que C cerrado implique $\pi_1(C)$ cerrado.

Lo demuestra el ejemplo siguiente: Sea $C \subset \mathbb{R} \times \mathbb{R}$ el conjunto $C = \{(x, 1/x) : x \in \mathbb{R} \setminus \{0\}\}$. C es cerrado. En efecto

$$\complement C = \left(\bigcup_{a>0}]-a, a[\times]-1/a, 1/a[\right) \bigcup \left(\bigcup_{a>0}]a, \to [\times]1/a, \to [\right) \bigcup \left(\bigcup_{a>0}] \leftarrow, -a[\times] \leftarrow, -1/a[\right).$$

Y, sin embargo, $\pi_1(C) = \mathbb{R} \setminus \{0\}$, que no es cerrado.

- **3.** Sean X e Y espacios topológicos. Para cada aplicación $f: X \longrightarrow Y$ se considera su gráfico que es, por definición, el conjunto $\Gamma_f = \{(x,y) \in X \times Y : f(x) = y\}$.
 - (a) Demuestra que, si Y es un espacio separado de Hausdorff, entonces se cumple que

f continua $\Longrightarrow \Gamma_f$ es cerrado en $X \times Y$.

(b) Demuestra que si Y es un espacio compacto, entonces se cumple que

 Γ_f es cerrado en $X \times Y \Longrightarrow f$ continua.

(c) ¿Se puede quitar en el punto anterior la hipótesis de que Y sea compacto? Razona tu respuesta.

Solución.

(a) Si Y es Hausdorff, vamos a ver que Γ_f es cerrado demostrando que $\mathfrak{C}\Gamma_f$ es abierto.

Sea $(x,y) \in \mathfrak{C}\Gamma_f$. Entonces $y \neq f(x)$. Como Y es Hausdorff, $\exists U, V$ abiertos de Y tales que $U \ni y, V \ni f(x)$ y $U \cap V = \emptyset$.

Por ser f continua, $\exists W$, abierto de X tal que $f(W) \subset V$.

Entonces, $(W \times U) \cap \Gamma_f = \emptyset$, ya que, si $(a, b) \in W \times U$, entonces $f(a) \in V$ y $b \in U$, de modo que, puesto que $U \cap V = \emptyset$, tenemos $f(a) \neq b$, es decir $(a, b) \notin \Gamma_f$.

(b) Sea C un cerrado de Y. Si demostramos que $f^{-1}(C)$ es, siempre, cerrado, habremos visto que f es continua.

Pero $f^{-1}(C) = \pi_1 (\Gamma_f \cap (X \times C))$. En efecto $(x, y) \in \Gamma_f \cap (X \times C) \iff (f(x) = y) \land (y \in C)$. Así pues $x \in f^{-1}(C) \iff f(x) \in C \iff x \in \pi_1(\Gamma_f \cap (X \times C))$.

Por el apartado c) del problema anterior, si Y es compacto, la proyección π_1 es una aplicación cerrada. Así pues, si Γ_f es cerrado, $\Gamma_f \cap (X \times C)$ será cerrado, como intersección de dos cerrados y, finalmente, $f^{-1}(C) = \pi_1(\Gamma_f \cap (X \times C))$ será cerrado.

(c) No se puede quitar. La aplicación

$$\mathbb{R} \xrightarrow{f} \mathbb{R}$$

$$x \longmapsto \begin{cases} 1/x & \text{si } x \neq 0 \\ 0 & \text{si } x = 0. \end{cases}$$

tiene gráfico cerrado y no es continua.

4. Sea X un espacio topológico y sea $G \subset X$. Demuestra que

$$G$$
 es abierto $\iff \forall A \subset X, \ G \cap \overline{A} \subset \overline{G \cap A}$.

Solución. Sea G abierto y $x \in G \cap \overline{A}$. $\forall V$ abierto tal que $V \ni x$, puesto que $V \cap G$ es un entorno de x, se tendrá que $V \cap G \cap A \neq \emptyset$. Se sigue que $x \in \overline{G \cap A}$.

Recíprocamente, si sabemos que $\forall A \subset X, \ G \cap \overline{A} \subset \overline{G \cap A}$; se tendrá, en particular, tomando $A = \complement G$, que $G \cap \overline{\complement G} \subset \overline{G \cap \complement G} = \emptyset$. Pero, como $G = \overset{\circ}{G} \biguplus \overline{\complement G}$, se sigue que $G = \overset{\circ}{G}$, abierto.

- **5.** Sea X un espacio topológico.
 - (a) Demuestra que si X es conexo y A es un subconjunto propio no vacío de X, entonces $Fr(A) \neq \emptyset$.
 - (b) Demuestra que si F es un subconjunto conexo de X, entonces se cumple la implicación:

$$(A \subset X) \land (F \cap A \neq \emptyset) \land (F \cap CA \neq \emptyset) \Longrightarrow F \cap Fr(A) \neq \emptyset.$$

(c) Demuestra que si A es un subconjunto de un espacio topológico conexo X, entonces:

$$Fr(A)$$
 conexo $\Longrightarrow \overline{A}$ es conexo.

Solución.

(a) $X = \overset{\circ}{A} \biguplus Fr(A) \biguplus \overset{\circ}{\mathbb{C}A}$. Si $Fr(A) = \emptyset$, como X es conexo, se tendrá que, o bien es $\overset{\circ}{A} = \emptyset$, o bien es $\overset{\circ}{C}A = \emptyset$.

Si $\overset{\circ}{A} = \emptyset$, entonces $X = \overset{\circ}{\mathsf{C}A} = \mathsf{C}A \Longrightarrow A = \emptyset$, que es una contradicción.

Del mismo modo, si $\overset{\circ}{\mathsf{C}A} = \emptyset$, será $X = \overset{\circ}{A} = A \Longrightarrow \mathsf{C}A = \emptyset$, también contradicción.

$$(b) X = \overset{\circ}{A} \biguplus Fr(A) \biguplus \overset{\circ}{\complement A} \Longrightarrow F = (F \cap \overset{\circ}{A}) \biguplus (F \cap Fr(A)) \biguplus (F \cap \overset{\circ}{\complement A}).$$

Si $F \cap Fr(A) = \emptyset$, entonces, por ser F conexo, o bien es $F \cap \mathring{A} = \emptyset$ o bien es $F \cap \mathring{\mathbb{C}A} = \emptyset$. Si $F \cap \mathring{A} = \emptyset$, se tiene que $F = F \cap \mathring{\mathbb{C}A} \Longrightarrow F \subset \mathring{\mathbb{C}A} \subset \mathbb{C}A \Longrightarrow F \cap A = \emptyset$, contradicción. Y si $F \cap \mathring{\mathbb{C}A} = \emptyset$, se tiene que $F = F \cap \mathring{A} \Longrightarrow F \subset \mathring{A} \subset A \Longrightarrow F \cap \mathbb{C}A = \emptyset$, contradicción.

(c) Si \overline{A} no fuera conexo, sería $\overline{A} = (\overline{A} \cap U) \biguplus (\overline{A} \cap V)$, para ciertos abiertos U, V. Entonces $Fr(A) = (Fr(A) \cap U) \biguplus (Fr(A) \cap V)$. Como Fr(A) es conexo, será $Fr(A) \cap U = \emptyset$ o $Fr(A) \cap V = \emptyset$. Supongamos, SPDG, que $Fr(A) \cap U = \emptyset$. Entonces $Fr(A) \subset V$ y $\overline{A} \cap U = \mathring{A} \cap U$. Se sigue que $X = \overline{A} \biguplus \mathring{CA} = (\overline{A} \cap U) \biguplus (\overline{A} \cap V) \biguplus \mathring{CA} = (\mathring{A} \cap U) \biguplus (V \cup \mathring{CA})$, contradicción.

- **6.** Sea X un espacio topológico.
 - (a) Demuestra que X es contractible si y sólo si la aplicación identidad $id_X: X \ni x \mapsto x \in X$ es homotópica a una aplicación constante.
 - (b) Demuestra que se cumple
 - (1) $X \text{ contractible } \implies X \text{ simplemente conexo.}$

¿Es cierta la implicación recíproca de (1)? Razona tu respuesta.

- (c) Demuestra que X es contractible si y sólo si toda aplicación continua de X en un espacio topológico cualquiera Y o de un espacio topológico cualquiera Y en X es homotópica a una constante.
- (d) Demuestra que si Y es contractible, entonces X es homotópicamente equivalente a al producto $X \times Y$.

Solución.

(a) Si X es contractible, tenemos

$$X \xrightarrow{f} \{x\} \xrightarrow{g} X \ni g \circ f \simeq \mathrm{id}_X$$

y $g \circ f$ es una aplicación constante $(\forall a \in X, g(f(a)) = g(x))$.

Recíprocamente, si $\mathrm{id}_X \simeq c$, constante; será

$$X \xrightarrow{f} \{c\} \xrightarrow{j} X \text{ con } j(c) = c$$

y $c = j \circ f \simeq id_X$.

- (b) Si X es contractible, será, como al principio del punto anterior, $g \circ f \simeq \operatorname{id}_X \Longrightarrow g_\star \circ f_\star = \operatorname{id}$; de modo que los grupos de homotopía $\pi_1(X,x)$ y $\pi_1(x,x) = 0$ son isomorfos. Y esto es, justamente, que X sea simplemente conexo.
 - El recíproco no es cierto. Por ejemplo, la esfera de dos dimensiones S^2 es un espacio simplemente conexo no contractible.
- (c) Si X es contractible y tenemos una aplicación continua $X \xrightarrow{f} Y$; como la identidad id $_X$ es homotópica a una constante, componiendo resulta que $f = f \circ \mathrm{id}_X \simeq f \circ \mathrm{const} = \mathrm{const}$.

El recíproco es obvio pues la identidad en X es un caso particular de aplicación $X \xrightarrow{f} Y$.

El caso de aplicaciones $Y \longrightarrow X$ se trata igual que el anterior componiendo por el otro lado.

(d) Si Y es contractible, tenemos, para un punto c, $Y \xrightarrow{f} c \xrightarrow{j} Y$ con $j \circ f \simeq \mathrm{id}_Y$. Pero, entonces, también tenemos $X \times Y \xrightarrow{\mathrm{id}_X \times f} X \times c \xrightarrow{\mathrm{id}_X \times j} X \times Y$, con $(\mathrm{id}_X \times j) \circ (\mathrm{id}_X \times f) = \mathrm{id}_X \times (j \circ f) \simeq \mathrm{id}_{X \times Y}$. Podemos sustituir estas aplicaciones por $X \times Y \xrightarrow{\pi_1} X \xrightarrow{g} X \times Y$, donde g(x) = (x, c).