UFBA - IME - DMAT — ÁLGEBRA LINEAR I (MATA07) - PROFA: ISAMARA 1^a LISTA DE EXERCÍCIOS — MATRIZES E SISTEMAS DE EQUAÇÕES LINEARES

- 1. Seja o conjunto $I = \{1, 2, 3, \dots, n\} \subset \mathbb{N}$. Vamos definir uma matriz real $A: I \times I \to \mathbb{R}$ da seguinte forma: $a_{ij} = \frac{1}{i+j-1}$ que é denominada MATRIZ DE HILBERT de ordem $n \times n$. Escreva a MATRIZ DE HILBERT para n = 4.
- 2. Seja o conjunto $I = \{1, 2, 3, \dots, n\} \subset \mathbb{N}$. Vamos definir uma matriz real $A: I \times I \to \mathbb{R}$ da seguinte forma: $a_{ij} = \frac{(i+j-2)!}{(i-1)!.(j-1)!}$ que é denominada MATRIZ DE PASCAL de ordem $n \times n$. Escreva a MATRIZ DE PASCAL para n = 5.
- 3. Classifique, se possível, as matrizes abaixo em Simétricas, anti-Simétricas:

(a)
$$A = \begin{bmatrix} 4i & 3+2i & 7+i \\ 3+2i & 4+i & 8+2i \\ 7+i & 8+2i & 3-i \end{bmatrix}$$

(b)
$$B = \begin{bmatrix} 0 & 2-i & -3 \\ -2+i & 0 & i \\ 3 & -i & 0 \end{bmatrix}$$

(c)
$$C = \begin{bmatrix} 3i & -i & -3+6i \\ -i & 20i & 1+\sqrt{5}i \\ 3+6i & -1+\sqrt{5}i & \frac{1}{3}i \end{bmatrix}$$

(d)
$$D = \begin{bmatrix} 1 & 1-i & 2 \\ 1+i & 10 & 5i \\ 2 & -5i & 8 \end{bmatrix}$$

(e)
$$E = \begin{bmatrix} 2 & 1 & 4 \\ 1 & 5 & 8 \\ 4 & 8 & 8 \end{bmatrix}$$

(f)
$$F = \begin{bmatrix} 0 & 2 & -3 \\ -2 & 0 & 1 \\ 3 & -1 & 0 \end{bmatrix}$$

- 4. Seja A uma matriz de ordem n. Mostre que, a matriz $B = A + A^t$ é simétrica e a matriz $C = A - A^t$ é anti-simétrica.
- 5. Dizemos que uma matriz A de ordem n é uma matriz NORMAL se, e somente se, $\overline{A}^t.A = A.\overline{A}^t$, isto é, as matrizes $A \in \overline{A}^t$ são comutativas.

Mostre que: se A é uma matriz real e simétrica (ou anti-simétrica) então A é uma matriz normal.

- 6. Dizemos que uma matriz A de ordem n é uma matriz HERMITIANA se, e somente se, $A=\overline{A}^t;$ e dizemos que A é uma matriz anti-hermitiana se, e somente se, $A=-\overline{A}^t.$ Mostre que: se A é uma matriz complexa Hermitiana (ou Anti-Hermitiana) então A é uma Matriz Normal.
- 7. Seja A uma matriz complexa de ordem n. Mostre que: as matrizes $C = A + \overline{A}^t$ e $D = A.\overline{A}^t$, são matrizes hermitianas.
- 8. Classifique, se possível, as matrizes abaixo Hermitianas, anti-Hermitianas, Normal:

(a)
$$A = \begin{bmatrix} 4i & 3+2i & 7+i \\ 3+2i & 4+i & 8+2i \\ 7+i & 8+2i & 3-i \end{bmatrix}$$

(b) $B = \begin{bmatrix} 0 & 2-i & -3 \\ -2+i & 0 & i \\ 3 & -i & 0 \end{bmatrix}$

$$\begin{bmatrix} 3i & -i & -3+6i \end{bmatrix}$$

(b)
$$B = \begin{bmatrix} 0 & 2-i & -3 \\ -2+i & 0 & i \\ 3 & -i & 0 \end{bmatrix}$$

(c)
$$C = \begin{bmatrix} 3i & -i & -3+6i \\ -i & 20i & 1+\sqrt{5}i \\ 3+6i & -1+\sqrt{5}i & \frac{1}{3}i \end{bmatrix}$$

(d)
$$D = \begin{bmatrix} 1 & 1-i & 2 \\ 1+i & 10 & 5i \\ 2 & -5i & 8 \end{bmatrix}$$

(e)
$$E = \begin{bmatrix} 2 & 1 & 4 \\ 1 & 5 & 8 \\ 4 & 8 & 8 \end{bmatrix}$$

(f)
$$F = \begin{bmatrix} 0 & 2 & -3 \\ -2 & 0 & 1 \\ 3 & -1 & 0 \end{bmatrix}$$

- 9. Seja A uma matriz complexa de ordem n. Mostre que: $tr(\overline{A}^t) = \overline{tr(A)}$.
- 10. Seja A uma matriz complexa de ordem n e invertível, e seja \overline{A} a sua matriz conjugada. Mostre que: $(\overline{A})^{-1} = \overline{(A^{-1})}$.
- 11. Uma matriz A complexa de ordem n é dita ser ORTOGONAL se, e somente se, A é invertível e $A^{-1}=A^t$.

Mostre que: O produto de duas matrizes ortogonais é também uma matriz ortogonal.

- 12. Determine, se possível, os valores de $x; y \in \mathbb{R}$ para que a matriz $A = \begin{bmatrix} \sqrt{2} & \mathbf{x} \\ \mathbf{y} & \sqrt{2} \end{bmatrix}$ seja uma matriz ortogonal.
- 13. Seja A uma matriz de ordem n. Define-se potenciação para expoentes naturais da seguinte forma: $A^0 = I_n$; $A^1 = A$; $A^2 = A$. A e $A^{k+1} = A$.

Dizemos que A é uma matriz IDEMPOTENTE se, e somente se, $A^2 = A$.

Mostre que: se A é uma matriz IDEMPOTENTE então $B=I_n-A$ é uma matriz IDEMPOTENTE; e, além disso, temos que $AB=BA=0_n$.

14. Verifique se as matrizes abaixo são IDEMPOTENTES:

(a)
$$A = \frac{1}{2} \cdot \begin{bmatrix} 1 & 1 \\ 1 & 1 \end{bmatrix}$$

(b)
$$B = \begin{bmatrix} 2 & -2 & -4 \\ -1 & 3 & 4 \\ 1 & -2 & -3 \end{bmatrix}$$

(c)
$$C = \begin{bmatrix} 1 & 1 & 3 \\ 5 & 2 & 6 \\ -2 & -1 & -3 \end{bmatrix}$$

15. Seja A uma matriz de ordem n. Dizemos que A é uma matriz AUTOREFLEXIVA se, e somente se, $A^2 = I_n$.

Verifique se as matrizes abaixo são Autoreflexivas:

(a)
$$A = \begin{bmatrix} 1 & 0 \\ 0 & -1 \end{bmatrix}$$

(b)
$$B = \begin{bmatrix} -1 & 0 & 0 \\ 0 & 1 & 1 \\ 0 & 0 & -1 \end{bmatrix}$$

(c)
$$C = \begin{bmatrix} -1 & 0 & 1 \\ 0 & 1 & 1 \\ 0 & -1 & -1 \end{bmatrix}$$

- 16. Verifique se as afirmações abaixo são verdadeiras ou falsas. (Justifique suas respostas)
 - () Toda matriz complexa SIMÉTRICA é uma matriz NORMAL.
 - () Se A é uma matriz real simétrica então A é também uma matriz normal.
 - () O conjugado da soma de duas matrizes simétricas é uma matriz normal.
 - () O produto de matrizes SIMÉTRICAS é uma matriz SIMÉTRICA.
 - () A soma de matrizes reais HERMITIANAS é uma matriz SIMÉTRICA.
 - () Sejam A e B matrizes reais anti-simétricas então a matriz $C = A + \alpha B$; $\alpha \in \mathbb{R}$ é também uma matriz anti-simétrica.
 - () O produto de matrizes reais ORTOGONAIS é uma matriz ORTOGONAL.
 - () Sejam A e B matrizes complexas ortogonais então a matriz C = A.B é também uma matriz ortogonal.
 - () A transposta do produto de matrizes ortogonais é o produto das suas inversas.
 - () O produto de matrizes complexas ORTOGONAIS é uma matriz ORTOGONAL.
 - () A soma de matrizes complexas idempotentes é uma matriz idempotente.

()	O produto de matrizes IDEMPOTENTES é uma matriz idempotente.
()	A transposta do produto de duas matrizes anti-hermitianas é igual ao conjugado do
		produto destas matrizes.
()	A soma de duas matrizes hermitianas é uma matriz normal.
()	Se A é uma matriz complexa de ordem n então as matrizes $C = A + \overline{(A)}^t$ e $D = A.\overline{(A)}^t$
		são hermitianas.
()	O traço de uma matriz complexa A é igual ao traço da sua transconjugada, $\overline{A}^t.$
()	O traço de uma matriz ortogonal é igual ao traço da sua inversa.
()	O traço de uma matriz quadrada é igual ao traço da sua transposta.
()	O traço de uma matriz real simétrica é igual ao traço da sua transposta conjugada.
()	O conjugado do traço de uma matriz hermitiana é igual ao traço da matriz.
()	Sejam A e B matrizes complexas de ordem n então $tr(A^t + \alpha(B^{-1}AB)) = 2\alpha tr(A); \alpha \in$