Student No:

(25)1-Assume that the following system of equations is given. Find x_1 , x_2 , \mathbf{x}_3 , and \mathbf{x}_4 .

$$\begin{bmatrix} 3 & 6 & 1 & 2 \\ 0 & 6 & 3 & 5 \\ 0 & 0 & 4 & 1 \\ 0 & 0 & 0 & 3 \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \\ x_3 \\ x_4 \end{bmatrix} = \begin{bmatrix} 1 \\ -1 \\ 9 \\ 3 \end{bmatrix}$$

of $p(x)=2z^5-13z^4+26z^3-32z^2+28z-10$ (Let z_i be zero of p(x). You must find ρ_1 and ρ_2 such that $\rho_1 < z_i < \rho_2$ for $1 \le i \le 5$)

(25)3-Find a ring on the complex plane that contains all nonzero zeros

(25)2-Basic Gauss elimination method will fail for the following system of equations. Why does it fail? How do you rearrange the equations to solve it using basic Gauss elimination method?

$$\begin{bmatrix} 0 & 1 \\ 1 & 1 \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \end{bmatrix} = \begin{bmatrix} 1 \\ 2 \end{bmatrix}$$

(25)4-Find the Lagrange interpolating polynomial for the data given

III tile table.				
X	2	-1	1	0
f(x)	-2	-8	2	2