Eric French

University of Cambridge and Institute for Fiscal Studies

2021

What are we trying to understand?

The saving of the elderly:

- Many elderly individuals keep lots of assets.
- High income individuals deplete their assets more slowly than low income individuals.
- Low-income singles, no retirement savings

• Elderly hold lots of wealth-key driver of aggregate savings.

- Elderly hold lots of wealth-key driver of aggregate savings.
- Understanding financial well being of the elderly.

- Elderly hold lots of wealth–key driver of aggregate savings.
- Understanding financial well being of the elderly.
- Understanding intergenerational altruism (key for understanding the implications of Social Security/pension reform (Fuster et al., 2007)).

AHEAD data (a subset of the HRS)

- Household heads aged 70 or older in 1993/4
- Consider only the retired singles
- Follow-up interviews in 1995/6, 1998, 2000, 2002, 2004, 2006
- Asset data begins in 1996 (1994 asset data faulty), uses 2,688 individuals
- Use full, unbalanced panel

Median assets by age and income, by birth cohort

AHEAD data (unbalanced panel, singles only)

Median assets by age and income, by birth cohort

AHEAD data (unbalanced panel, singles only)

Potential drivers of retirement savings

Precautionary motive: medical expense risk/uncertain lifetimes.

Potential drivers of retirement savings

- Precautionary motive: medical expense risk/uncertain lifetimes.
- Bequest motives.
- Housing/home ownership.

Potential drivers of retirement savings

- Precautionary motive: medical expense risk/uncertain lifetimes.
- Bequest motives.
- Housing/home ownership.

Key issue: many of the above motives affect savings patterns in similar ways, so it is difficult to disentangle the importance of the them.

Plan

Introduction

Survival risk

Medical spending risk

Bequest motives

Model

Experiments

Housing

Experiments

A model of savings

Preferences

$$\max_{\{c_{it}\}_{t=0}^{T}} E \sum_{t=1}^{T} \beta^{t} S_{it-1}(s_{it} u(c_{it}) + (1 - s_{it}) b(a_{it}))$$

where $c_{it} = \text{consumption } s_{it} = \text{probability alive at time } t$ given alive at time t-1, $S_{it-1} = \prod_{i=0}^{t-1} s_{ii}$.

Budget constraint

$$a_{it+1} = (1+r)a_{it} - c_{it} + Y_{it} + b_{it} - m_{it}$$

 and equations for income Y_{it}, gov't benefits b_{it}, medical spending m_{it}

Experiments

Drivers of Savings

$$\max_{\{c_{it}\}_{t=0}^{T}} E \sum_{t=1}^{T} \beta^{t} S_{it-1}(s_{it} u(c_{it}) + (1 - s_{it}) b(a_{it}))$$

$$a_{it+1} = (1 + r) a_{it} - c_{it} + Y_{it} + b_{it} - m_{it}$$

- 1. Survival (a): $s_{it} = s(t, Y_{it}, gender, health_{it-1})$,
- 2.
- 3.
- 4.

Drivers of Savings

$$\max_{\{c_{it}\}_{t=0}^{T}} E \sum_{t=1}^{T} \beta^{t} S_{it-1}(s_{it} u(c_{it}) + (1 - s_{it}) b(a_{it}))$$

$$a_{it+1} = (1 + r) a_{it} - c_{it} + Y_{it} + b_{it} - m_{it}$$

- 2. Medical spending risk $m_{it} = m(t, Y_{it}, gender, health_{it-1})$.
- 3.

1.

4.

Drivers of Savings

$$\max_{\{c_{it}\}_{t=0}^{T}} E \sum_{t=1}^{T} \beta^{t} S_{it-1}(s_{it} u(c_{it}) + (1 - s_{it}) b(a_{it}))$$

$$a_{it+1} = (1 + r) a_{it} - c_{it} + Y_{it} + b_{it} - m_{it}$$

- 1.
- 2.
- 3. Bequest motives $b(a_{it})$
- 4.

Drivers of Savings

$$\max_{\{c_{it}\}_{t=0}^{T}} E \sum_{t=1}^{T} \beta^{t} S_{it-1}(s_{it} u(c_{it}, H_{it}) + (1 - s_{it}) b(a_{it}, H_{it}))$$

$$a_{it+1} = (1+r)a_{it} - c_{it} + Y_{it} + b_{it} - m_{it} - h_{it}$$

 $H_{it+1} = f(H_{it}, h_{it})$

- 1.
- 2.
- 3.
- 4. Housing H_{it} with housing investments h_{it}

Plan

Survival risk

Lifespan uncertainty/heterogeneity

- Early models:
 - Hurd (1989)
 - De Nardi, French, and Jones (2009)

Lifespan uncertainty/heterogeneity

- Early models:
 - Hurd (1989)
 - De Nardi, French, and Jones (2009)
- Empirical work:
 - Hurd, McFadden, Merrill (2001)
 - Attanasio and Emmerson (2005)

Lifespan uncertainty/heterogeneity

- Early models:
 - Hurd (1989)
 - De Nardi, French, and Jones (2009)
- Empirical work:
 - Hurd, McFadden, Merrill (2001)
 - Attanasio and Emmerson (2005)
- Findings: Heterogeneity in mortality is large and is important to understand savings. So is lifespan uncertainty.

Life expectancy facts in the US

There is a lot of heterogeneity in life expectancy

- Rich people live longer
- Women live longer
- Healthy people live longer

This might have an important effect on retirement savings.

Income	Healthy	Unhealthy	Healthy	Unhealthy	
Quintile	Male	Male	Female	Female	All
bottom	7.6	5.9	12.8	10.9	11.1
second	8.4	6.6	13.8	12.0	12.4
third	9.3	7.4	14.7	13.2	13.1
fourth	10.5	8.4	15.7	14.2	14.4
top	11.3	9.3	16.7	15.1	14.7
Men					9.7
Women					14.3
Healthy					14.4
Unhealthy					11.6

Source: De Nardi, French, and Jones (2010)

- For saving behavior
 - Differential mortality ⇒ heterogenous saving rates, with high PI people and women saving more.

- For observed sample: mortality bias
 - Sample changes: High PI people + women live longer

Heterogeneity implications: continued

- For observed sample: mortality bias
 - Sample changes: High PI people + women live longer

 In an unbalanced panel, this causes observed assets to increase with age

Figure: Median assets by birth cohort, AHEAD data

Introduction

Survival risk

Medical spending risk

Bequest motives

Model

Experiments

Housing

Research on Medical Spending

Papers:

- Kotlikoff (1988)
- Feenberg and Skinner (1994)
- Hubbard, Skinner, and Zeldes (1994)
- Palumbo (1999)
- French and Jones (2004)
- De Nardi, French, and Jones (2009, 2010, 2016)
- De Nardi, French, and Jones, McCauley (2016), De Nardi, French, Jones, McGee (2019, 2021)
- Previous structural work: Small effects of medical expenses.
- Our work: Large effects of medical expenses (rich data set).

Medical expenses facts in the US

• Out-of-pocket medical costs rise with age and permanent income

Average medical expenses, AHEAD data

• In particular, means tested social insurance (SSI, Medicaid)

- In particular, means tested social insurance (SSI, Medicaid)
- Papers:
 - Hubbard, Skinner, Zeldes (1995)
 - Scholz, Seshadri, and Khitatrakun (2006)
 - De Nardi, French, and Jones (2010)

- In particular, means tested social insurance (SSI, Medicaid)
- Papers:
 - Hubbard, Skinner, Zeldes (1995)
 - Scholz, Seshadri, and Khitatrakun (2006)
 - De Nardi, French, and Jones (2010)
- Previous work: Means-tested insurance programs provide strong incentives for low-income individuals not to save, but have little effect on college graduates.
- Our work: OOP medical expenses rise with age and income. Hence government insurance also affects the savings of initially well-off individuals.

Average medical expenses, AHEAD data, including Medicaid

Figure: Mean medical spending. Panel (a): out of pocket+Medicaid. Panel (b): out of pocket.

Plan

Introduction

Survival risk

Medical spending risk

Bequest motives

Model

Experiments

Housing

Bequests

- Papers:
 - Hurd (1989)
 - Kopczuk and Lupton (2007)
 - Ameriks et al. (2018)
 - De Nardi (2004)
 - De Nardi, French, and Jones (2010)
 - Lockwood (2018)
- Conclusion: Mixed evidence, more work is needed. Both precautionary motives and bequest motives have similar implications.

Plan

Introduction

Survival risk

Medical spending risk

Bequest motives

Model

Experiments

Housing

A Model with longevity risk, medical spending, bequest motives

De Nardi, French, Jones (2010): DFJ

How do we address these questions?

We write down a structural model, which we estimate in two steps:

• First step: estimate mortality and medical expenses as a function of age, gender, health and permanent income.

How do we address these questions?

We write down a structural model, which we estimate in two steps:

- First step: estimate mortality and medical expenses as a function of age, gender, health and permanent income.
- Second step: use first step results to estimate our model with method of simulated moments.

• Singles only, abstract from spousal survival.

- Singles only, abstract from spousal survival.
- Households maximize total expected lifetime utility.

- Singles only, abstract from spousal survival.
- Households maximize total expected lifetime utility.
- Flow utility from consumption (CRRA). Utility can vary with health.

Model

- **Singles only,** abstract from spousal survival.
- Households maximize total expected lifetime utility.
- Flow utility from consumption (CRRA). Utility can vary with health.
- Rational expectations. Beliefs about mortality rates, health cost distribution, etc., are estimated from the data.

Model

- Singles only, abstract from spousal survival.
- Households maximize total expected lifetime utility.
- Flow utility from consumption (CRRA). Utility can vary with health.
- Rational expectations. Beliefs about mortality rates, health cost distribution, etc., are estimated from the data.
- Bequest motive. Functional form follows De Nardi (2004): bequests are a luxury good.

Experiments

$$y_t = y(g, h, I, t),$$

 $g = \text{gender},$
 $h = \text{health},$
 $I = \text{permanent income}.$

Uncertainty

• **Health status:** age-, gender- and permanent-income-specific Markov chain.

- Health status: age-, gender- and permanent-income-specific Markov chain.
- **Survival:** function of gender, age, health status, and permanent income.

Uncertainty

- Health status: age-, gender- and permanent-income-specific Markov chain.
- Survival: function of gender, age, health status, and permanent income.
- Medical expenses:

$$\begin{array}{rcl} \ln(m_t) & = & m(g,h_t,I,t) + \sigma(g,h_t,I,t)\psi_t, \\ \psi_t & = & \zeta_t + \xi_t, \\ \zeta_t & = & \mathsf{AR}(1) \; \mathsf{shock}, \\ \xi_t & = & \mathsf{white} \; \mathsf{noise} \; \mathsf{shock}. \end{array}$$

Experiments

Budget constraint:

$$a_{t+1} = a_t + y_n(ra_t + y_t, \tau) + b_t - m_t - c_t.$$

 $y_n(.) = \text{post-tax income}; \ y_t = \text{"non-interest" income}; \ \tau = \text{tax parameters}; \ b_t = \text{government transfers}; \ m_t = \text{medical expenses}.$

Constraints

Budget constraint:

$$a_{t+1} = a_t + y_n(ra_t + y_t, \tau) + b_t - m_t - c_t.$$

 $y_n(.) = \text{post-tax income}; \ y_t = \text{"non-interest" income}; \ \tau = \text{tax parameters}; \ b_t = \text{government transfers}; \ m_t = \text{medical expenses}.$

Transfers support a consumption floor:

$$b_t = \max\{0, c_{min} + m_t - [a_t + y_n(ra_t + y_t), \tau)]\}.$$

Constraints

Budget constraint:

$$a_{t+1} = a_t + y_n(ra_t + y_t, \tau) + b_t - m_t - c_t.$$

 $y_n(.) = \text{post-tax income}; \ y_t = \text{"non-interest" income}; \ \tau = \text{tax parameters}; \ b_t = \text{government transfers}; \ m_t = \text{medical expenses}.$

Transfers support a consumption floor:

$$b_t = \max\{0, c_{min} + m_t - [a_t + y_n(ra_t + y_t), \tau)]\}.$$

Borrowing constraint:

$$a_{t+1} \ge 0$$
.

Method of simulated moments

- Match median assets by permanent income quintile, cohort and age.
- Correct for cohort effects by using cohort-specific moments and initial conditions.
- Correct for mortality bias (rich people live longer) by allowing mortality rates to depend on permanent income and gender.

Estimated Structural Parameters

Utility from consumption if alive: $\frac{1}{1-\nu}c_t^{1-\nu}$ Utility bequests if dead: $\frac{\theta}{1-\nu}a_t^{1-\nu}$

Parameter	Benchmark (1)	Health (2)	Bequests (3)	All (4)
u: coeff. relative risk aversion	3. <mark>81</mark>	3.75	3.84	3.66
	(0.50)	(0.47)	(0.55)	(0.55)
β : discount factor	0.97	0.97	0.97	0.97
	(0.04)	(0.05)	(0.05)	(0.04)
δ : pref. shifter, good health	0.0	-0.21	0.0	-0.36
	NA	(0.18)	NA	(0.14)
c _{min} : consumption floor	2, <mark>663</mark>	2,653	2,665	2,653
	(346)	(337)	(353)	(337)
θ : bequest intensity	0.0	0.0	2,360	2,419
	NA	NA	(8,122)	(1,886)
k: bequest curvature (in 000s)	NA	NA	273	215
	NA	NA	(446)	(150)
Overidentification statistic P-value	82.3	80.6	81.5	77.5
	87.4%	88.5%	85.4%	90.5%

Median assets by cohort and PI quintile: data and benchmark model

Mortality bias

Figure: Left panel \rightarrow AHEAD data; right panel \rightarrow benchmark model

Bequests

- Bequest motives are very imprecisely estimated.
 - They do not improve the model's fit.
 - They do not not change other parameters.

Bequests

- Bequest motives are very imprecisely estimated.
 - They do not improve the model's fit.
 - They do not not change other parameters.
- But note: difficult to identify ≠ small or unimportant

Distribution of bequests: data and model

Figure: Cumulative distribution function of assets held 1 period before death. Left, model with bequest motives. Right: model without. Solid line: model, lighter line: data.

Bequest Parameters: Interpretation

In the last period of life, the individual solves

$$\max_{c} \frac{1}{1-\nu} c^{1-\nu} + \beta \theta \frac{1}{1-\nu} \left(R(a-c) + \kappa \right)^{1-\nu},$$

Bequest Parameters: Interpretation

In the last period of life, the individual solves

$$\max_{c} \frac{1}{1-\nu} c^{1-\nu} + \beta \theta \frac{1}{1-\nu} \left(R(a-c) + \kappa \right)^{1-\nu},$$

where bequests = R(a - c). Optimal bequests:

$$\max\{\frac{R}{R+\varphi}(\varphi a - \kappa), 0\}, \varphi = [\beta \theta R]^{1/\nu}.$$

Experiments

In the last period of life, the individual solves

$$\max_{c} \frac{1}{1-\nu} c^{1-\nu} + \beta \theta \frac{1}{1-\nu} \left(R(a-c) + \kappa \right)^{1-\nu},$$

where bequests = R(a - c). Optimal bequests:

$$\max\{\frac{R}{R+\varphi}(\varphi a - \kappa), 0\}, \varphi = [\beta \theta R]^{1/\nu}.$$

Summary of Estimates in Literature, Source: De Nardi, French, Jones, McGee

34/57

Introduction

Survival risk

Medical spending risk

Bequest motives

Mode

Experiments

Housing

Experiments

- Fix preference parameters at baseline estimates, vary other parameters.
- Eliminating out-of-pocket medical expenditures has a big effect on savings.
- Lowering the consumption floor by 20% has a big effect on savings, even for the rich.

Median Assets: Experiment (Solid) vs. Baseline (Dashed)

Benchmark and model with the consumption floor reduced

Making medical expenditures endogenous

- Retirees receive utility from medical goods.
- Medical expenses do not affect health and/or survival: RAND experiment (Brook et al., 1983); Fisher et al. (2003); Finkelstein and McKnight (2005); Khwaja (2009).

Introduction Survival risk Medical spending risk Bequest motives Model Experiments Housing

Nursing home quality varies a lot

Endogenous medical expenditure model

Flow utility:

$$u(c_t, m_t, h_t, \zeta_t, \xi_t, t) = \frac{1}{1 - \nu} c_t^{1 - \nu} + \mu(t, h_t, \zeta_t, \xi_t) \frac{1}{1 - \nu} m_t^{1 - \omega},$$

 $\mu(\cdot)$: medical "preference shifter"

 m_t : **total** medical expenditures

 $q(t, h_t)m_t$: out-of-pocket medical expenditures

Endogenous medical expenditure model

Flow utility:

$$u(c_t, m_t, h_t, \zeta_t, \xi_t, t) = \frac{1}{1 - \nu} c_t^{1 - \nu} + \mu(t, h_t, \zeta_t, \xi_t) \frac{1}{1 - \nu} m_t^{1 - \omega},$$

 $\mu(\cdot)$: medical "preference shifter"

 m_t : **total** medical expenditures

 $q(t, h_t)m_t$: out-of-pocket medical expenditures

 Transfers: set to guarantee a minimum level of utility, and thus depend on $\mu(\cdot)$:

$$b(t, a_t, g, h_t, I, \zeta_t, \xi_t) = \max\{0, b^*(t, a_t, g, h_t, I, \zeta_t, \xi_t)\}.$$

Expanded estimation

- In addition to matching asset profiles, we now match:
 - mean and 90th percentile of medical spending, conditional on age and permanent income
 - 1st and 2nd autocorrelations of logged medical spending

Results for endogenous expenditure model

- Estimated parameters: $\nu = 2.15$; $\omega = 3.19$; $\beta = 0.99$
- Model does a reasonable job of fitting the asset data.
- Model fits the medical expenditure data well.

Results for endogenous expenditure model

- Estimated parameters: $\nu = 2.15$; $\omega = 3.19$; $\beta = 0.99$
- Model does a reasonable job of fitting the asset data.
- Model fits the medical expenditure data well.
- Medical spending is still important: Eliminating out-of-pocket medical expenditures still has a big effect on savings.
- The effect of reducing the consumption floor is smaller than before, but still important at all income levels.

Housing

Median Assets: Experiment (Solid) vs. Baseline (Dashed)

Effects of reducing the consumption floor

Figure: Median assets: baseline and model with 50% of the consumption floor for the exogenous (left panel) and endogenous (right panel) medical expense models.

Conclusions from DFJ (2010)

- Medical spending that rises fast with income and age goes a long way to explaining savings of single retirees
- Social insurance (from Medicaid) affects savings even of the high income
- Above results robust to allowing for
 - Endogenous medical spending
 - Bequest motives

Life expectancy and old age savings, AER 2009

How much of the asset accumulation of old rich people is due to longer life expectancy and lifespan risk?

Median net worth, various mortalities

Notes: —-: baseline. $-\cdot$ -: everyone in bad health. -: everyone male and in bad health. -+—+-: everyone low permanent income, male, and in bad health.

Median net worth: eliminating lifespan risk

Notes: -+--+-: everyone low permanent income, male, and in bad health. $-\bigcirc-$: everyone low permanent income, male, in bad health, and with a certain lifespan.

Conclusions about life expectancy and savings

- Differences in life expectancy related to health, gender, and permanent income are important to understanding savings patterns across groups
- The effect of each factor is of a similar order of magnitude
- At realistic levels of annuitization the risk of living beyond one's expected lifespan has huge effects on saving

- Focus on groups where we think might have a stronger bequest motive
 - Hurd (1987, 1989): those with and without children have similar asset decumulation rates

Distinguishing precautionary motives versus bequest motives

- Focus on groups where we think might have a stronger bequest motive
 - Hurd (1987, 1989): those with and without children have similar asset decumulation rates
- Discipline the importance of precautionary motives using insurance choices
 - Idea: strong precautionary motives ⇒ strong demand for insurance
 - Examples: De Nardi, French, Jones (2016), Lockwood (2018).
 - But lots of reasons people do not purchase insurance (Braun et al. (2019)).

Distinguishing precautionary motives versus bequest motives

- Focus on groups where we think might have a stronger bequest motive
 - Hurd (1987, 1989): those with and without children have similar asset decumulation rates
- Discipline the importance of precautionary motives using insurance choices
 - Idea: strong precautionary motives ⇒ strong demand for insurance
 - Examples: De Nardi, French, Jones (2016), Lockwood (2018).
 - But lots of reasons people do not purchase insurance (Braun et al. (2019)).
- Use stated preferences: answers to hypotheticals
 - Ameriks et al. (2018), Knoef and van Ooijen (2019)

Distinguishing precautionary motives versus bequest motives

- Focus on groups where we think might have a stronger bequest motive
 - Hurd (1987, 1989): those with and without children have similar asset decumulation rates
- Discipline the importance of precautionary motives using insurance choices
 - Idea: strong precautionary motives ⇒ strong demand for insurance
 - Examples: De Nardi, French, Jones (2016), Lockwood (2018).
 - But lots of reasons people do not purchase insurance (Braun et al. (2019)).
- Use stated preferences: answers to hypotheticals
 - Ameriks et al. (2018), Knoef and van Ooijen (2019)
- Use transfer data prior to death
 - De Nardi, French, Jones, McGee (2021)

Distinguishing precautionary motives versus bequest motives

- Focus on groups where we think might have a stronger bequest motive
 - Hurd (1987, 1989): those with and without children have similar asset decumulation rates
- Discipline the importance of precautionary motives using insurance choices
 - Idea: strong precautionary motives ⇒ strong demand for insurance
 - Examples: De Nardi, French, Jones (2016), Lockwood (2018).
 - But lots of reasons people do not purchase insurance (Braun et al. (2019)).
- Use stated preferences: answers to hypotheticals
 - Ameriks et al. (2018), Knoef and van Ooijen (2019)
- Use transfer data prior to death
 - De Nardi, French, Jones, McGee (2021)
- Focus on countries where precautionary motives unlikely to be important (Scandanavia)

Plan

Introduction

Survival risk

Medical spending risk

Bequest motives

Model

Experiments

Housing

Housing

Housing/home ownership

- Papers:
 - Yang (2009)
 - Nakajima and Telyuokova (2018)
 - McGee (2021)
 - Chang and Ko (2021)
- Findings: Housing/homeownership play a potentially important role that needs to be more fully understood.
- Key channels: (1) People like living in their own homes (2) it is expensive to sell/downsize (3) It is tax advantaged/shielded from means tested insurance programs

Median (normalized) housing, US

Housing Wealth

Figure: Blundell et al. (2016), 2002-2012, in thousands of 2014 dollars.

Estimating Adjustment Costs

- Adjustment costs are key for understanding why people hold onto their homes
- But they are very difficult to measure (utility versus monetary costs)

Identifying Adjustment Costs Using Price Changes

Using stamp duties to identify adjustment costs (McGee 2021)

Experiments

- Retirement:
 - Blau and Gilleskie (2008)
 - Casanova (2012)
 - Gallipoli and Turner (2010)
- Savings:
 - De Nardi, French, Jones, McGee (2021).

- Evaluating more the role of the family and savings in various contexts. How should we model the family? How does the family affects risks and insurance?
- Do children help parents? Do they do it for money? Are bequests for altruism or exchange?
- Cross-country comparisons.