Cross-lingual Knowledge Projection Using Machine Translation and Target-side Knowledge Base Completion

Naoki Otani¹ Hirokazu Kiyomaru² Daisuke Kawahara² Sadao Kurohashi² ¹Carnegie Mellon University, ²Kyoto University

Translated 18,747 facts (tuples) of commonsense knowledge with high precision. Addressed the problem of projection ambiguity by combining MT and KBC.

Existing Japanese facts 69,902

Background - Commonsense Knowledge

Things that every person should know. Important to understand human languages.

ConceptNet (Speer et al., 2017)

The largest multi-lingual knowledge base of commonsense

- Tuples (facts) of commonsense (bat, CapableOf, fly)
- Nodes are represented in undisambiguated words/phrases

Problem – Large gap between English and other languages Unique English facts: 2,828,394 Unique Japanese facts: 69,902 (~2:5%)

Task

Projecting English facts into other languages. **Challenge:** projection of commonsense is ambiguous.

Problem Setting f^s : fact in English, f_1^t , ..., f_n^t : projection candidates in a target language Goal: find the most appropriate fact by $\hat{f}^t = \operatorname{argmax}_i h(f_i^t | f^s)$

Our Approach – Combining Machine Translation and Target-side Knowledge Base Completion

Machine Translation (MT)

Calculating trans. probs. with an off-the-shelf neural MT model Implementation: lamtram (Graham, 2015) + BPE (Sennrich et al., 2016)

Converting facts into sentences based on rules

Relation	e_1, e_2	English	Japanese	Chinese
AtLocation	NP, NP	You are likely to find e_1	\boldsymbol{e}_2 de \boldsymbol{e}_1 wo miru koto ga	Ni keyi zai e_2 zhaodao e_1
		in e_2 .	dekiru .	
CapableOf 5 4 1	NP, VP	$e_1 \operatorname{can} e_2$.	e_1 wa e_2 koto ga dekiru .	e_1 hui e_2
MadeOf	NP, NP	e_1 is made of e_2 .	e_1 wa e_2 kara tsukurareru .	e_1 ke yi yong e_2 zhi cheng .

Knowledge Base Completion (KBC)

Evaluate the plausibility of a target-side fact based on existing information in a knowledge base.

Bilinear model (Li et al., 2017)

 $x_{KBC}((\text{koumori}, CapableOf, tobu)) = \sigma(u_{\text{koumori}}^T W_{CapableOf} u_{\text{tobu}})$ Node vector: $\mathbf{u} = \tanh(W\mathbf{v} + \mathbf{b}) \in \mathbb{R}^d$, $v \in \mathbb{R}^{d'}$: word vector, W, b: parameters

Relation matrix: $W^{d \times d}$

The model parameters (W, \mathbf{b}) are learned to minimize a crossentropy loss on training facts.

Combination – Two Simple Methods

1. Linear transformation (LIN)

$$h(x) = w_r^T x + b_r, w_r \in \mathbb{R}^2, b_r \in \mathbb{R}$$

($x = (x_{MT}, x_{KBC})$: scores, r : relation)

2. Multi-layer Perceptron (MLP)

$$h(x) = w_r^{(2)^T} z(x) + b_r^{(2)}$$

$$z(x) = \tanh(W^{(1)^T} x + b^{(1)})$$

Experiments

Data source: ConceptNet 5.5.0 (Speer et al., 2017) Two evaluation sets:

- AUTO: large, automatically collected fact alignments
- MANUAL: small, manually verified fact alignments

Evaluation metrics:

Mean reciprocal rank (MRR), top-k accuracy (Acc@k)

PPMI / MT / KBC / MTransE (Chen et al., 2017)

Our methods: LIN / MLP

Rapidly Acquiring Japanese Commonsense with the Proposed Method + Crowdsourcing

- 1. We projected 10k English facts covering 20 relation types into Japanese
- 2. To further improve the quality, we verified the top-10 predictions of MLP using crowdsourcing • Screening top-10 is fast. – 838 workers and 25 hours
- Obtained 18,747 facts.
- Equivalent or larger amount of knowledge for 12 relation types.
- Chen et al. 2017. Multi-lingual Knowledge Graph Embeddings for Cross-lingual Knowledge
 Alignment. In IJCAI.
 Graham. 2015. lamtram: A Toolkit for Language and Translation Modeling using Neural Natworks.
 E Li et al. 2016. Commonsense Knowledge Base Completion. In ACL
 Sennrich et al. 2016. Improving Neural Machine Translation Models with Monolingual Data. In ACL
 Sepere tal. 2017. ConceptNet 5.5: An Open Multilingual Graph of General Knowledge. In AAAI.
 Code&Data: https://github.com/notani/CLKP-MTKBC