

目录

一、	概述	3
Ξ,	硬件介绍	
	2. 1 STEVAL-STLCS01V1	
	图一 Sensor Tile 主要部件及引脚	
	2. 2 LSD1EV-STMIOTBD 底板	
三、		
	3.1 硬件连接	
	3.2 板载接口说明	
	3.2.1 P1	
	3.2.2 P2	
	3.2.3 P3	
	3.2.4 P4	
	3.2.5 P5	
	3.3 电气参数	
四、	网络配置	
щ,	4.1 常用配置	
	4.2 服务器设置	
	4.2.1 设置配置参数	
	4.2.2 新建设备	
	··=·= 4/1 之 久 田 ·································	•••

一、概述

LSD1EV-STMIOTBD 开发板,集成了 ST STEVAL-STLCS01V1 Sensor 核心板与 LSD_NBxx_01 NB-IOT 模组。传感器板集成温湿度传感器、气压计、陀螺仪、加速度计、磁力计等。可通过 NB-IOT 模组,上报数据到云端。支持扩展蓝牙、麦克风、电池计量等功能,支持 USB 和电池供电。

LSD1EV-STMIOTBD 开发板主要应用于 NB-IOT 模组开发、测试,方便用户熟悉 ST 传感驱动及 NBxx-01 的特性,用户可以使用此开发板进行 NB-IOT 的学习和基本功能验证,以便完成自主产品的定制。

二、硬件介绍

2.1 STEVAL-STLCS01V1

steval-stlcs01v1 (sensortile) 有着高度集成的设计,13.5x13.5mm 尺寸集成 MCU STM32L476JGY6 及多种传感器设备。

图一 Sensor Tile 主要部件及引脚

编号	设备	描述
А	MP34DT04	MEMS audio sensor digital microphone
В	LD39115J18R	150 mA low quiescent current low noise LDO 1.8 V
С	STM32L476JGY6	ARM Cortex-M4 32-bit microcontroller
D	LSM6DSM	iNEMO inertial module: low-power 3D accelerometer and 3D gyroscope
E	LSM303AGR	Ultra-compact high-performance eCompass module: ultra-low power 3D accelerometer and 3D magnetometer

F	LPS22HB	MEMS nano pressure sensor: 260-1260 hPa absolute digital output barometer
G	BlueNRG-MS	Bluetooth low energy network processor
Н	BALF-NRG-01D3	50 Ω balun with integrated harmonic filter

Board pin	CONN pin	Pin name	MCU pin	Main functions ⁽¹⁾
1	2	MIC_CLK	PC2	DFSDM1_CKOUT,ADC
2	4	VDD_OUT	VDD/VBAT	1.8V from onboard LDO
3	6	VIN	1	Power supply for LDO [2V-5.5V]
4	8	VDDUSB	VDDIO2 VDDUSB	Power supply for USB peripheral and VDDIO2 [1.8V-3.3V]
5	10	GND	VSS	Ground
6	12	RXD/USB_DP	PD2/PA12	USART5 RX or USB_OTG_FS DP(2)
7	14	TXD/USB_DM	PC12/PA11	USART5 TX or USB_OTG_FS DM 1
8	16	SAI_CLK	PG9 ⁽³⁾	SAI2_SCK_A, SPI3_SCK
9	15	SAI_FS	PG10 ⁽³⁾	SAI2_FS_A, SPI3_MISO
10	13	SAI_MCLK	PG11 ⁽³⁾	SAI2_MCLK_A, SPI3_MOSI
11	11	SAI_SD	PG12 ⁽³⁾	SAI2_SD_A, SPI3_NSS
12	9	GPIO2	PB8/PB9/PC1	DFSDM_DATIN6,12C3_SDA
13	7	GPIO3	PC0	DFSDM_DATIN4, I2C3_SCL
14	5	NRST	NRST	STM32 Reset
15	3	SWD_CLK		SWD Programming interface clock
16	1	SWD_IO		SWD Programming interface IO
17	1	GND		Ground
18	- 1	GND		Ground

2.2 LSD1EV-STMIOTBD 底板

底板有电池接口和 USB 接口(注意使用 USB 供电时需要短接 R16)调试 NB 模组需短接 R19 供电。

三、使用说明

3.1 硬件连接

P5 为下载口。Batt1 电池接口供电。核心板和 NB 可分开调试,调试 NB 需电池供电,短接 P4 的 5、6/7、8 脚,同时短接 R19。

3.2 板载接口说明

3.2.1 P1

NB 除通讯外的预留功能接口引出,调试添加 NB 模组功能会使用。

3.2.2 P2

NB 模组预留固件升级接口

3.2.3 P3

SensorTile 接口,6、7 脚做串口或可复用为 USB 通讯接口,短接 P4 口的 5、6、7、8 脚可以与 NB 模组串口通讯。12、13 脚可做 IIC 接口可复用为串口,与底板温湿度传感器 HTS221 相连。

3.2.4 P4

串口通讯口使用 5、6/7、8,使用 NB 模组时,使用电池供电并断开 USB 接口。当使用 USB 供电时,可将 2、4 与 5、7 短接,同时将 R16 短接。此时通讯串口使用 P3 的 12/13 脚,需要与温湿度传感器分时复用。

3.2.5 P5

MCU 调试下载接口。

3.3 电气参数

工作环境				
序号	参数	最小值	典型值	最大值
1	USB 供电电压	4.75V	5.00V	5.20V
2	电池供电电压	3.10V	3.70V	4.20V
3	供电电流	/	1A	2A
4	工作湿度	10%	/	90%
5	工作温度	-30	/	125

四、网络配置

- 4.1 常用配置
- 4.1.1APN 配置

串口发送命令: AT+IOTCFG=IP,ctnet,185.4.11.106

若设置成功,串口输出:OK

其中: ctnet 为中国电信的 APN,

185.4.11.106 为 COAP 协议所使用,使用 UDP 协议时,不使用。

4.1.2UDP 协议服务器 IP 地址和端口设置与查询

串口发送命令: AT+SADDR=UDP,54.223.248.94,9502

若设置成功,串口输出:OK

其中: 54.223.248.94 为服务器地址, 9502 为端口号

查询命令: AT+SADDR

4.1.3 保存配置

串口发送命令: AT+SAVE

成功返回 OK

此命令保存参数到 FLASH

4.1.4 保存配置并重启

串口发送命令: AT+Z

成功返回 OK

此命令保存参数到 FLASH 后重启 MCU.

4.1.5 网络信号强度阀值和信噪比阀值设置

串口发送命令: AT+CLTH=-100,0

成功返回 OK

其中-100 为信号强度阀值, 0 为信噪比阀值(阀值用于 LED 状态指示)

查询命令为: AT+CLTH

4.2 服务器设置

登录 http://lierdanb.senthink.com,输入注册帐号密码后进入控制和显示界面。

4.2.1 设置配置参数

输入注册帐号密码后进入控制和显示界面。

配置名称:	上报周期:
配置名称	上报周期,单位为秒,>=20秒
心跳时间:	最大重传次数:
心跳时间,单位为秒,>=20秒	最大重传次数
填充字符:	
填充字符。该字节为预留字段,数据无效	

可配置参数:

上报周期:设置 EVK 上传数据的时间间隔心跳时间:在目前 UDP 协议中暂未使用。

最大重传次数:设置 EVK 上传失败后的最大尝试次数。

填充字符: 暂未使用

4.2.2 新建设备与连接

设备编号:	设备名称:
设备IMEI号,必填	设备名称,非必填项
设备类型:	
设备类型,非必填项	
设备描述:	
设备描述,非必填项	

设备 IMEI 号为 NB 模组上标注的序列号。命名后保存即可看到新建的设备。若成功联网,网页会显示设备在线,并定时上报传感器数据。

