

《现代密码学》第四讲

分组密码 (三)

上讲内容回顾

- > DES算法的整体结构——Feistel结构
- > DES算法的轮函数
- > DES算法的密钥编排算法
- > DES算法的解密变换

本节主要内容

- ●AES算法的整体结构
- ●AES算法的轮函数
- ●AES算法的密钥编排算法
- ●AES算法的解密变换

本节主要内容

- ●AES算法的整体结构
- AES算法的轮函数
- AES算法的密钥编排算法
- ●AES算法的解密变换

AES算法的整体结构

设计者: Joan Baemen和Vincent Rijmen (Advanced Encryption Standard, AES)
Rijndael AES

版本	密钥长度	分组长度	迭代轮数
加义平	(Nk words)	(Nb words)	(Nr)
AES-128	4	4	10
AES-192	6	4	12
AES-256	8	4	14

北京郵電大学 BEIJING UNIVERSITY OF POSTS AND TELECOMMUNICATIONS

AES算法的整体结构

AES算法的整体结构

本节主要内容

- AES算法的整体结构
- ●AES算法的轮函数
- AES算法的密钥编排算法
- ●AES的解密变换

AES算法的轮函数

- 1) 字节代换(SubByte)
- 2) 行移位 (ShiftRow)
- 3) 列混合 (MixColumn)
- 4) 密钥加 (AddRoundKey)

轮密钥

1-字节代换(ByteSub)

a_{00}	a_{01}	a_{02}	a_{03}	代换 表	b_{00}	$ b_{01} $	b_{02}	b_{03}
a_{10}		2	a_{13} a_{23}		b_{10}	1 1	2	b_{13}
a_{20}	<i>C</i> 21	<i>ij</i>	a_{23}		b_{10} b_{20}	b_{21}	D_{22}	b_{23}
a_{30}	a_{31}	a_{32}	a_{33}		b_{30}			

1-字节代换(ByteSub)

	0	1	2	3	4	5	6	7	8	9	A	В	С	D	Е	F
0	63	7C	77	7 B	F2	6B	6F	C5	30	01	67	2B	FE	D 7	AB	76
1	CA	82	С9	7 D	FA	59	47	F0	AD	D4	A2	AF	9C	A4	72	C0
2	В7	FD	93	26	36	3F	F7	CC	34	A5	E5	F1	71	D8	31	15
3	04	C7	23	С3	18	96	05	9A	07	12	80	E2	EB	27	В2	75
4	09	83	2C	1A	1B	6E	5A	AO	52	3B	D6	В3	29	E3	2F	84
5	53	D1	00	ED	20	FC	B1	5B	6A	СВ	BE	39	4A	4C	58	CF
6	D0	EF	AA	FB	43	4D	33	85	45	F9	02	7 F	50	3C	9F	A8
7	51	A3	40	8F	92	9D	38	F5	BC	В6	DA	21	10	FF	F3	D2
8	CD	0C	13	EC	5F	97	44	17	C4	A7	7 E	3D	64	5D	19	73
9	60	81	4F	DC	22	2A	90	88	46	EE	В8	14	DE	5E	0B	DB
A	EO	32	3A	OA	49	06	24	5C	C2	D3	AC	62	91	95	E4	79
В	E7	C8	37	6D	8D	D5	4E	A9	6C	56	F4	EA	65	7A	AE	08
C	BA	78	25	2E	1C	A6	B4	C6	E8	DD	74	1F	4B	BD	8B	8A
D	70	3E	В5	66	48	03	F6	0E	61	35	57	В9	86	C1	1D	9E
Е	E1	F8	98	11	69	D9	8E	94	9B	1E	87	E9	CE	55	28	DF
F	8C	A1	89	OD	BF	Е6	42	68	41	99	2D	0F	В0	54	BB	16

2-行移位(ShiftRow)

a_{00}	a_{01}	a_{02}	a_{03}		a_{0j}
a_{10}	a_{11}	a_{12}	a_{13}	→	a_{1j}
a_{20}	a_{21}	a_{22}	a_{23}		a_{2j}
a_{30}	a_{31}	a_{32}	a_{33}		a_{3j}

$$\begin{pmatrix} b_0 \\ b_1 \\ b_2 \\ b_3 \end{pmatrix} = \begin{pmatrix} 02 & 03 & 01 & 01 \\ 01 & 02 & 03 & 01 \\ 01 & 01 & 02 & 03 \\ 03 & 01 & 01 & 02 \end{pmatrix} \begin{pmatrix} a_0 \\ a_1 \\ a_2 \\ a_3 \end{pmatrix}$$

> AES选择的既约多项式为

$$m(x)=x^8+x^4+x^3+x+1$$

➤ GF(28) 上的元素表示方法:

字节表示 Byte: $a_7a_6a_5a_4a_3a_2a_1a_0$

多项式表示 S(x):

$$\mathbf{s}(x) = a_7 x^7 + a_6 x^6 + a_5 x^5 + a_4 x^4 + a_3 x^3 + a_2 x^2 + a_1 x + a_0$$

m(x) 字节表示:00000001 00011011 (0x011B)

[5]:
$$0x57 + 0x83 = ?$$

 $(x^6+x^4+x^2+x+1) + (x^7+x+1)=x^7+x^6+x^4+x^2$
 $0x57 \oplus 0x83 = 0xD4$
[5]: $0x57 \times 0x83 = ?$
 $(x^6+x^4+x^2+x+1) \times (x^7+x+1)$
 $=(x^{13}+x^{11}+x^9+x^8+x^7)+(x^7+x^5+x^3+x^2+x)+(x^6+x^4+x^2+x+1)$
 $=x^{13}+x^{11}+x^9+x^8+x^6+x^5+x^4+x^3+1$
 $=x^7+x^6+1 \mod m(x)=x^8+x^4+x^3+x+1$

(A):
$$0x57 + 0x83 = ?$$

 $(x^6+x^4+x^2+x+1) + (x^7+x+1)=x^7+x^6+x^4+x^2$
 $0x57 \oplus 0x83 = 0xD4$
(A): $0x57 \times 0x83 = ?$
 $(x^6+x^4+x^2+x+1) \times (x^7+x+1)$
 $=(x^{13}+x^{11}+x^9+x^8+x^7)+(x^7+x^5+x^3+x^2+x)+(x^6+x^4+x^2+x+1)$
 $=x^{13}+x^{11}+x^9+x^8+x^6+x^5+x^4+x^3+1$
 $=x^7+x^6+1 \mod m(x)=x^8+x^4+x^3+x+1$

例:
$$0x41 \times 0x02 = ?$$

 $(x^{6}+1) \times x$
 $= x^{7}+x$

[A]:
$$0x01 \times 0x02 = ?$$

 $(x^7+x^6+1) \times x$
 $=x^8+x^7+x \mod m(x)$
 $=x^7+x^4+x^3+1$

GF(28) 上的快速乘法:

1) $a_7 a_6 a_5 a_4 a_3 a_2 a_1 a_0 \times 0x02$ / $a(x) \times x$

- 》当字节的最高位为0时(a(x)的7次项系数为0),左移补0;
- 》当字节的最高位为1时(a(x)的7次项系数为1),左移补0,再按位模0x011B

GF(28) 上的快速乘法:

2)
$$a_7 a_6 a_5 a_4 a_3 a_2 a_1 a_0 \times b_7 b_6 b_5 b_4 b_3 b_2 b_1 b_0$$

/ $\mathbf{a}(x) \times \mathbf{b}(x)$

$$[a(x) \times b(x)] \mod m(x) =$$

$$\{ [a(x) \mod m(x)] \times [b(x) \mod m(x)] \} \mod m(x)$$

$$\boldsymbol{a}(x) \times [\boldsymbol{b}(x) + \boldsymbol{c}(x)] = \boldsymbol{a}(x) \times \boldsymbol{b}(x) + \boldsymbol{c}(x) \times \boldsymbol{a}(x)$$

$$\mathbf{a}(x) \times \mathbf{b}(x) = [b_0 \times \mathbf{a}(x)]$$

$$[b_0 \times a(x)] \\ + [b_1x \times a(x)] \quad A^{(0)} = a(x) \bmod m(x) \\ + [b_2x^2 \times a(x)] \quad A^{(1)} = x \times a(x) = x \times A^{(0)} \bmod m(x) \\ + [b_3x^3 \times a(x)] \quad A^{(2)} = x^2 \times a(x) = x \times A^{(1)} \bmod m(x) \\ + [b_4x^4 \times a(x)] \quad A^{(3)} = x^3 \times a(x) = x \times A^{(2)} \bmod m(x) \\ + [b_5x^5 \times a(x)] \quad A^{(4)} = x^4 \times a(x) = x \times A^{(3)} \bmod m(x) \\ + [b_6x^6 \times a(x)] \quad A^{(5)} = x^5 \times a(x) = x \times A^{(4)} \bmod m(x) \\ + [b_7x^7 \times a(x)] \quad A^{(6)} = x^6 \times a(x) = x \times A^{(5)} \bmod m(x) \\ A^{(7)} = x^7 \times a(x) = x \times A^{(6)} \bmod m(x)$$

$$\mathbf{a}(x) \times \mathbf{b}(x) = b_0 A^{(0)} + b_1 A^{(1)} + b_2 A^{(2)} + b_3 A^{(3)} + b_4 A^{(4)} + b_5 A^{(5)} + b_6 x^6 A^{(6)} + b_7 A^{(7)}$$

课堂练习:列混合运算(128比特分组)

$$\begin{pmatrix} b_0 \\ b_1 \\ b_2 \\ b_3 \end{pmatrix} = \begin{pmatrix} 02 & 03 & 01 & 01 \\ 01 & 02 & 03 & 01 \\ 01 & 01 & 02 & 03 \\ 03 & 01 & 01 & 02 \end{pmatrix} \begin{pmatrix} CD \\ 00 \\ 00 \\ 00 \end{pmatrix}$$

b3: 4C b2: CD b1: CD b0: 81

4—密钥加(AddRoundKey)

a_{00}	a_{01}	a_{02}	a_{03}
a_{10}	a_{11}	a_{12}	a_{13}
a_{20}	a_{21}	a_{22}	a_{23}
a_{30}	a_{31}	a_{32}	a_{33}

k_{00}	k_{01}	k_{02}	k_{03}
k_{10}	k_{11}	k_{12}	k_{13}
k_{20}	k_{21}	k_{22}	k_{23}
k_{30}	k_{31}	k_{32}	k_{33}

本节主要内容

- AES算法的整体结构
- AES算法的轮函数
- ●AES算法的密钥编排算法
- ●AES算法的解密变换

密钥编排指从种子密钥得到轮密钥的过程, AES的 密钥编排由密钥扩展和轮密钥选取两部分组成, 其基本原则如下:

- 1)轮密钥的总比特数等于轮数加1再乘以分组长度;如128比特的明文经过10轮的加密,则总共需要(10+1)*128=1408比特的密钥.
 - 2) 种子密钥被扩展成为扩展密钥;
- 3) 轮密钥从扩展密钥中取,其中第1轮轮密钥取扩展密钥的前N_b个字,第2轮轮密钥取接下来的N_b个字,依次类推.

1) 扩展密钥

扩展密钥是以4字节字为元素的一维阵列,表示为 $W[Nb*(N_r+1)]$,其中前 N_k 个字取为种子密钥,以后每个字按递归方式定义. 扩展算法根据 N_k \leq 6和 N_k >6有所不同。


```
当Nk≤6时,扩展算法如下:
KeyExpansion (byteKey[4*Nk], W[Nb*(Nr+1)])
    for (i = 0; i < Nk; i ++)
    W[i] = (Key[4*i], Key[4*i+1], Key[4*i+2], Key[4*i+3]);
    for (i =Nk; i <Nb*(Nr+1); i ++)
    temp=W[i-1];
     if (i \% Nk= =0)
            temp=SubByte (RotByte (temp))^Rcon[i /Nk];
    W[i]=W[i-Nk]^{\hat{}} temp;
```


$$i=4$$
 $i\%4==0$

 $i=5 5\%4 \neq 0$

i%6 = = 0i=6

i=7 i%6 ≠0

- Key[4*Nk]为种子密钥,看作以字为元素的一维 阵列;
- 函数SubByte ()返回4字节字, 其中每一个字节都是用Rijndael的S盒作用到输入字对应的字节得到;
- 函数RotByte () 也返回4字节字,该字由输入的字循环移位得到,即当输入字为(a, b, c, d)时,输出字为(b, c, d, a).


```
当Nk>6时,扩展算法如下:
KeyExpansion (byte Key[4*Nk], W[Nb*(Nr+1)])
    for (i=0; i < Nk; i ++)
    W[i] = (Key[4*i], Key[4*i+1], Key[4*i+2], Key[4*i
+3]);
for (i =Nk; i <Nb*(Nr+1); i ++)
     temp=W[i -1];
     if (i \% Nk= =0)
         temp=SubByte (RotByte (temp))^Rcon[i /Nk];
       else if (i % Nk==4)
           temp=SubByte (temp);
W[i]=W[i - Nk]^{temp};
```


i%8 = = 0i=8

 $i=9 i\%8 \neq 0 \text{ or } 4$

i%8 = = 4i = 12

Rcon[i/Nk] 为轮常数,其值与Nk无关,定义为(字节用十六进制表示,同时理解为GF(28)上的元素):

```
Rcon [i]=(RC[i], 00, 00, 00)
其中RC[i] 是GF(2<sup>8</sup>) 中值为x<sup>i-1</sup>的元素,因此
RC[1] =1(即'01')
RC[2] = x(即'02')
RC[i]=x•RC[i-1]= x<sup>i-1</sup>
```


2) 轮密钥选取

轮密钥i(即第i 个轮密钥) 由轮密钥缓冲字 W[Nb* i]到W[Nb*(i+1)]给出:

Nb=4及Nk=4时的密钥扩展与轮密钥选取

Nb=4及Nk=6时的密钥扩展与轮密钥选取

Nb=4及Nk=8时的密钥扩展与轮密钥选取

本节主要内容

- AES算法的整体结构
- AES算法的轮函数
- AES算法的密钥编排算法
- ●AES算法的解密变换

AES 的解密变换

AES解密运算是加密运算的逆运算,其中轮函数的逆为:

- 1) ByteSub的逆变换由代换表的逆表做字节代换,也可通过如下两步实现:首先进行仿射变换的逆变换,再求每一字节在GF(28)上逆元.
- 2) 行移位运算的逆变换是循环右移,位移量与左移时相同.

AES的解密变换

3) 列混合运算的逆运算是类似的,即每列都用一个特定的多项式d(x)相乘,d(x)满足

$$(03x^3+01x^2+01x+02)*d(x)=01$$

由此可得

$$d(x) = 0Bx^3 + 0Dx^2 + 09x + 0E$$

4)密钥加运算的逆运算是其自身。

主要知识点小结

> AES算法的整体结构

> AES算法的轮函数

扩散与混淆

197 -	<u> </u>	, , ,			_			1			
0000000	1110	000000011	000000	1000000)	0 1001000	1	0 0000 0	11	1 1111 1	11
0000001100	0100	0000111	11111	1000000		000001	1	0 0000 1	11 1	100 (0
00001000	1101	000101	00111	1000000)	1 111101 0	1	0 0001 0	11 (000	00
00001110	0001	000011111	000000	1000100)	10100000	1	0 0001 1	100) ()() ()	10
000110000	0010	0001100011	111100	1000000)	11101101	1	010000	10	1000	$\overline{00}$
001010	1111	00011001111	000000	1000000)	0101010	1	010101	11 ()(IDC	01
0001111000	1011	00111011	11001	1001000)	00010010	1	010010	100	0000	01
0001111100	1000	00111111	000011	1001100		101011	1	010111	<u>10</u>	1 1011 1	11
010000	0011	010001	100100	1100000)	11111111	1	100000	10 2	010	01
Ø11000110	1010	0100111	00100	1100000)	11101000	1	100001	<u>1</u> 1() 11)	11
011011000	0110	010101	1110000	1100000)	100001	1	1 0101 0	100	000	11
011011100	1100	0101111	100111	1100100		0101111	1	101011	1 1 1	1010	1
01110000	0101	011100011	10001	1110000		0001011	1	11 000 0	110) 10 [0
01110110	1001	01110111	00001	1110000)	10110010	1	11 010 1	100	000	00
Ø11111000	0000	01111011	000111	1111000		0100101	1	111 01 0	10	100	10
01111110	0111	@111111	10000	1 11110 0		ommo	1	111111	11	1 110 1	0
	1 2										
医息安人	5 日 1										

 $Y_1 = X_1 X_2 X_3 X_4 X_5 X_6 \vee X_1 X_2 X_3 X_4 X_5 X_6$ $\vee \overline{X_1} \overline{X_2} \overline{X_3} \overline{X_4} \overline{X_5} \overline{X_6} \vee \overline{X_1} \overline{X_2} \overline{X_3} \overline{X_4} \overline{X_5} \overline{X_6}$ $\vee X_{1}X_{2}X_{3}X_{4}X_{5}X_{6} \vee X_{1}X_{2}X_{3}X_{4}X_{5}X_{6}$ $\vee X_1 X_2 X_3 X_4 X_5 X_6 \vee X_1 X_2 X_3 X_4 X_5 X_6$ $(\overline{X_1}, \overline{X_2}, \overline{X_3}, \overline{X_4}, \overline{X_5}, \overline{X_6}) \vee X_1 X_2 \overline{X_3} X_4 X_5 X_6$

THE END!

