Generated on 2015-01-08 17:53:03 by gEcon version 0.8.3 (2015-01-08) Model name: home_prod_templ

Index sets

$$IND = \{H, M\}$$

1 CONSUMER

1.1 Optimisation problem

$$\max_{\left(K_{t}^{\langle i\rangle}\right)_{i\in IND}, \left(C_{t}^{\langle i\rangle}\right)_{i\in IND}, \left(N_{t}^{\langle i\rangle}\right)_{i\in IND}, \left(I_{t}^{\langle i\rangle}\right)_{i\in IND}} U_{t} = \beta \operatorname{E}_{t}\left[U_{t+1}\right] + \log\left(1 - \sum_{i\in IND} N_{t}^{\langle i\rangle}\right) (1-b) + be^{-1}\log\left(aC_{t}^{\langle \mathrm{M}\rangle^{e}} + (1-a)C_{t}^{\langle \mathrm{H}\rangle^{e}}\right)$$

$$(1.1)$$

s.t.:

$$C_t^{\langle M \rangle} + \sum_{i \in IND} I_t^{\langle i \rangle} = \pi_t + r_t K_{t-1}^{\langle M \rangle} + W_t N_t^{\langle M \rangle} \quad \left(\lambda_t^{\text{CONSUMER}^1} \right)$$
(1.2)

$$i \in \mathit{IND}: \quad K_t^{\langle i \rangle} = I_t^{\langle i \rangle} + K_{t-1}^{\langle i \rangle} (1 - \delta) \quad \left(\lambda^{\mathrm{CONSUMER}^2 \langle i \rangle}_t\right)$$
 (1.3)

$$C_t^{\langle H \rangle} = \Gamma Z_t^{\langle H \rangle} K_{t-1}^{\langle H \rangle} N_t^{\langle H \rangle^{1-\theta}} \quad \left(\lambda_t^{\text{CONSUMER}^3} \right)$$
(1.4)

1.2 Identities

$$K_t = \sum_{i \in IND} K_t^{\langle i \rangle} \tag{1.5}$$

$$I_t = \sum_{i \in IND} I_t^{\langle i \rangle} \tag{1.6}$$

$$N_t = \sum_{i \in IND} N_t^{\langle i \rangle} \tag{1.7}$$

1.3 First order conditions

$$i \in IND: \quad -\lambda^{\text{CONSUMER}^{2\langle i \rangle}} + \beta \left(\delta^{\langle \mathbf{M}, i \rangle} \mathbf{E}_{t} \left[\lambda^{\text{CONSUMER}^{1}}_{t+1} r_{t+1} \right] + (1 - \delta) \mathbf{E}_{t} \left[\lambda^{\text{CONSUMER}^{2\langle i \rangle}}_{t+1} \right] + \delta^{\langle \mathbf{H}, i \rangle} \theta \Gamma K_{t}^{\langle \mathbf{H} \rangle}^{-1 + \theta} \mathbf{E}_{t} \left[\lambda^{\text{CONSUMER}^{3}}_{t+1} Z_{t+1}^{\langle \mathbf{H} \rangle} N_{t+1}^{\langle \mathbf{H} \rangle}^{1 - \theta} \right] \right) = 0 \quad \left(K_{t}^{\langle i \rangle} \right)$$

$$(1.8)$$

$$i \in IND: -\delta^{\langle \mathbf{M}, i \rangle} \lambda_t^{\text{CONSUMER}^1} - \delta^{\langle \mathbf{H}, i \rangle} \lambda_t^{\text{CONSUMER}^3} + be^{-1} \left(aC_t^{\langle \mathbf{M} \rangle^e} + (1-a)C_t^{\langle \mathbf{H} \rangle^e} \right)^{-1} \left(\delta^{\langle \mathbf{M}, i \rangle} aeC_t^{\langle \mathbf{M} \rangle^{-1+e}} + \delta^{\langle \mathbf{H}, i \rangle} e\left(1-a\right)C_t^{\langle \mathbf{H} \rangle^{-1+e}} \right) = 0 \quad \left(C_t^{\langle i \rangle} \right) \quad (1.9)$$

$$i \in IND: -(1-b)\left(1 - \sum_{i \in IND} N_t^{\langle i \rangle}\right)^{-1} + \delta^{\langle \mathbf{M}, i \rangle} \lambda_t^{\text{CONSUMER}^1} W_t + \delta^{\langle \mathbf{H}, i \rangle} \Gamma \lambda_t^{\text{CONSUMER}^3} Z_t^{\langle \mathbf{H} \rangle} \left(1 - \theta\right) K_{t-1}^{\langle \mathbf{H} \rangle} N_t^{\langle \mathbf{H} \rangle} = 0 \quad \left(N_t^{\langle i \rangle}\right)$$

$$(1.10)$$

$$i \in IND: -\lambda_t^{\text{CONSUMER}^1} + \lambda_t^{\text{CONSUMER}^2 \langle i \rangle} = 0 \quad \left(I_t^{\langle i \rangle}\right)$$
 (1.11)

2 FIRM

2

2.1 Optimisation problem

$$\max_{K_t^{\mathrm{md}}, N_t^{\mathrm{md}}, Y_t, \pi_t} \Pi_t = \pi_t \tag{2.1}$$

s.t.

$$\pi_t = Y_t - N_t^{\mathrm{m}^{\mathrm{d}}} W_t - r_t K_t^{\mathrm{m}^{\mathrm{d}}} \quad \left(\lambda_t^{\mathrm{FIRM}^1}\right) \tag{2.2}$$

$$Y_t = \Gamma Z_t^{\langle M \rangle} K_t^{m^d} N_t^{m^d} \left(\lambda_t^{FIRM^2} \right)$$
 (2.3)

2.2 First order conditions

$$-\lambda_t^{\text{FIRM}^1} r_t + \alpha \Gamma \lambda_t^{\text{FIRM}^2} Z_t^{\langle \text{M} \rangle} K_t^{\text{m}^{\text{d}} - 1 + \alpha} N_t^{\text{m}^{\text{d}} 1 - \alpha} = 0 \quad \left(K_t^{\text{m}^{\text{d}}} \right)$$
(2.4)

$$-\lambda_t^{\text{FIRM}^1} W_t + \Gamma \lambda_t^{\text{FIRM}^2} Z_t^{\langle \text{M} \rangle} (1 - \alpha) K_t^{\text{m}^{\text{d}}} N_t^{\text{m}^{\text{d}}} = 0 \quad \left(N_t^{\text{m}^{\text{d}}} \right)$$

$$(2.5)$$

$$\lambda_t^{\text{FIRM}^1} - \lambda_t^{\text{FIRM}^2} = 0 \quad (Y_t) \tag{2.6}$$

$$1 - \lambda_t^{\text{FIRM}^1} = 0 \quad (\pi_t) \tag{2.7}$$

2.3 First order conditions after reduction

$$-r_t + \alpha \Gamma Z_t^{\langle \mathbf{M} \rangle} K_t^{\mathbf{m}^{\mathbf{d}} - 1 + \alpha} N_t^{\mathbf{m}^{\mathbf{d}} 1 - \alpha} = 0 \quad \left(K_t^{\mathbf{m}^{\mathbf{d}}} \right)$$
 (2.8)

$$-W_t + \Gamma Z_t^{\langle M \rangle} (1 - \alpha) K_t^{m^d} N_t^{m^{d-\alpha}} = 0 \quad \left(N_t^{m^d} \right)$$
 (2.9)

3 EQUILIBRIUM

3.1 Identities

$$K_t^{\mathrm{m^d}} = K_{t-1}^{\langle \mathrm{M} \rangle} \tag{3.1}$$

$$N_t^{\rm m^d} = N_t^{\langle \rm M \rangle} \tag{3.2}$$

4 EXOG

4.1 Identities

$$i \in \mathit{IND}: \quad Z_t^{\langle i \rangle} = e^{\epsilon_t^{\langle i \rangle} + \psi^{\langle i \rangle} \log Z_{t-1}^{\langle i \rangle}}$$
 (4.1)

5 Equilibrium relationships (before expansion and reduction)

$$-\pi_t + \Pi_t = 0 \tag{5.1}$$

$$-r_t + \alpha \Gamma Z_t^{\langle M \rangle} K_t^{m^d} N_t^{m^d} = 0$$

$$(5.2)$$

$$I_t - \sum_{i \in IND} I_t^{\langle i \rangle} = 0 \tag{5.3}$$

$$K_t - \sum_{i \in IND} K_t^{\langle i \rangle} = 0 \tag{5.4}$$

$$K_t^{\mathrm{m^d}} - K_{t-1}^{\langle \mathrm{M} \rangle} = 0 \tag{5.5}$$

$$N_t - \sum_{i \in IND} N_t^{\langle i \rangle} = 0 \tag{5.6}$$

$$N_t^{\mathrm{m^d}} - N_t^{\langle \mathrm{M} \rangle} = 0 \tag{5.7}$$

$$-W_t + \Gamma Z_t^{\langle M \rangle} (1 - \alpha) K_t^{m^d} N_t^{m^d - \alpha} = 0$$

$$(5.8)$$

$$-Y_t + \Gamma Z_t^{\langle \mathcal{M} \rangle} K_t^{\mathbf{m}^{\mathbf{d}}} N_t^{\mathbf{m}^{\mathbf{d}}} = 0$$

$$(5.9)$$

ಬ

$$-C_t^{\langle \mathrm{H} \rangle} + \Gamma Z_t^{\langle \mathrm{H} \rangle} K_{t-1}^{\langle \mathrm{H} \rangle} {}^{\theta} N_t^{\langle \mathrm{H} \rangle} {}^{1-\theta} = 0 \tag{5.10}$$

$$-\pi_t + Y_t - r_t K_t^{m^d} - N_t^{m^d} W_t = 0 (5.11)$$

$$U_{t} - \beta E_{t} [U_{t+1}] - \log \left(1 - \sum_{i \in IND} N_{t}^{\langle i \rangle} \right) (1 - b) - be^{-1} \log \left(a C_{t}^{\langle M \rangle^{e}} + (1 - a) C_{t}^{\langle H \rangle^{e}} \right) = 0$$
 (5.12)

$$\pi_t - C_t^{\langle \mathcal{M} \rangle} + r_t K_{t-1}^{\langle \mathcal{M} \rangle} + W_t N_t^{\langle \mathcal{M} \rangle} - \sum_{i \in IND} I_t^{\langle i \rangle} = 0$$

$$(5.13)$$

$$i \in IND: -\lambda_t^{\text{CONSUMER}^1} + \lambda_t^{\text{CONSUMER}^2 \langle i \rangle} = 0$$
 (5.14)

$$i \in \mathit{IND}: \quad -\lambda^{\mathrm{CONSUMER}^{2} \langle i \rangle}_{t} + \beta \left(\delta^{\langle \mathbf{M}, i \rangle} \mathbf{E}_{t} \left[\lambda^{\mathrm{CONSUMER}^{1}}_{t+1} r_{t+1} \right] + (1 - \delta) \, \mathbf{E}_{t} \left[\lambda^{\mathrm{CONSUMER}^{2} \langle i \rangle}_{t+1} \right] + \delta^{\langle \mathbf{H}, i \rangle} \theta \Gamma K_{t}^{\langle \mathbf{H} \rangle^{-1+\theta}} \mathbf{E}_{t} \left[\lambda^{\mathrm{CONSUMER}^{3}}_{t+1} Z_{t+1}^{\langle \mathbf{H} \rangle} N_{t+1}^{\langle \mathbf{H} \rangle^{1-\theta}} \right] \right) = 0 \quad (5.15)$$

$$i \in IND: \quad Z_t^{\langle i \rangle} - e^{\epsilon_t^{\langle i \rangle} + \psi^{\langle i \rangle} \log Z_{t-1}^{\langle i \rangle}} = 0$$
 (5.16)

$$i \in IND: \quad I_t^{\langle i \rangle} - K_t^{\langle i \rangle} + K_{t-1}^{\langle i \rangle} (1 - \delta) = 0$$
 (5.17)

$$i \in IND: -\delta^{\langle \mathbf{M}, i \rangle} \lambda_t^{\text{CONSUMER}^1} - \delta^{\langle \mathbf{H}, i \rangle} \lambda_t^{\text{CONSUMER}^3} + be^{-1} \left(aC_t^{\langle \mathbf{M} \rangle^e} + (1-a)C_t^{\langle \mathbf{H} \rangle^e} \right)^{-1} \left(\delta^{\langle \mathbf{M}, i \rangle} aeC_t^{\langle \mathbf{M} \rangle^{-1+e}} + \delta^{\langle \mathbf{H}, i \rangle} e\left(1-a\right)C_t^{\langle \mathbf{H} \rangle^{-1+e}} \right) = 0$$
 (5.18)

$$i \in IND: -(1-b)\left(1 - \sum_{i \in IND} N_t^{\langle i \rangle}\right)^{-1} + \delta^{\langle \mathbf{M}, i \rangle} \lambda_t^{\text{CONSUMER}^1} W_t + \delta^{\langle \mathbf{H}, i \rangle} \Gamma \lambda_t^{\text{CONSUMER}^3} Z_t^{\langle \mathbf{H} \rangle} \left(1 - \theta\right) K_{t-1}^{\langle \mathbf{H} \rangle} N_t^{\langle \mathbf{H} \rangle} = 0$$

$$(5.19)$$

6 Equilibrium relationships (after expansion and reduction)

$$-r_t + \alpha \Gamma Z_t^{\langle M \rangle} K_{t-1}^{\langle M \rangle} N_t^{\langle M \rangle}^{1-\alpha} = 0$$

$$(6.1)$$

$$-W_t + \Gamma Z_t^{\langle M \rangle} (1 - \alpha) K_{t-1}^{\langle M \rangle} {}^{\alpha} N_t^{\langle M \rangle} {}^{-\alpha} = 0$$

$$(6.2)$$

$$-Y_t + \Gamma Z_t^{\langle \mathbf{M} \rangle} K_{t-1}^{\langle \mathbf{M} \rangle} N_t^{\langle \mathbf{M} \rangle^{1-\alpha}} = 0 \tag{6.3}$$

$$-C_t^{\langle H \rangle} + \Gamma Z_t^{\langle H \rangle} K_{t-1}^{\langle H \rangle} N_t^{\langle H \rangle^{1-\theta}} = 0 \tag{6.4}$$

$$Z_t^{\langle H \rangle} - e^{\epsilon_t^{\langle H \rangle} + \psi^{\langle H \rangle} \log Z_{t-1}^{\langle H \rangle}} = 0 \tag{6.5}$$

$$Z_t^{\langle \mathcal{M} \rangle} - e^{\epsilon_t^{\langle \mathcal{M} \rangle} + \psi^{\langle \mathcal{M} \rangle} \log Z_{t-1}^{\langle \mathcal{M} \rangle}} = 0 \tag{6.6}$$

$$\beta \left(ab \mathcal{E}_{t} \left[r_{t+1} \left(a C_{t+1}^{\langle \mathbf{M} \rangle^{e}} + (1-a) C_{t+1}^{\langle \mathbf{H} \rangle^{e}} \right)^{-1} C_{t+1}^{\langle \mathbf{M} \rangle^{-1+e}} \right] + ab \left(1-\delta \right) \mathcal{E}_{t} \left[\left(a C_{t+1}^{\langle \mathbf{M} \rangle^{e}} + (1-a) C_{t+1}^{\langle \mathbf{H} \rangle^{e}} \right)^{-1} C_{t+1}^{\langle \mathbf{M} \rangle^{-1+e}} \right] \right) - ab \left(a C_{t}^{\langle \mathbf{M} \rangle^{e}} + (1-a) C_{t}^{\langle \mathbf{M} \rangle^{e}} \right)^{-1} C_{t}^{\langle \mathbf{M} \rangle^{-1+e}} = 0$$

$$(6.7)$$

$$\beta \left(ab\left(1-\delta\right) \mathcal{E}_{t} \left[\left(aC_{t+1}^{\langle\mathcal{M}\rangle^{e}}+\left(1-a\right) C_{t+1}^{\langle\mathcal{H}\rangle^{e}}\right)^{-1} C_{t+1}^{\langle\mathcal{H}\rangle^{e}}\right] + b\theta \Gamma \left(1-a\right) K_{t}^{\langle\mathcal{H}\rangle^{-1+\theta}} \mathcal{E}_{t} \left[Z_{t+1}^{\langle\mathcal{H}\rangle} \left(aC_{t+1}^{\langle\mathcal{M}\rangle^{e}}+\left(1-a\right) C_{t+1}^{\langle\mathcal{H}\rangle^{e}}\right)^{-1} C_{t+1}^{\langle\mathcal{H}\rangle^{-1+e}} N_{t+1}^{\langle\mathcal{H}\rangle^{1-\theta}}\right]\right) - ab \left(aC_{t}^{\langle\mathcal{M}\rangle^{e}}+\left(1-a\right) C_{t}^{\langle\mathcal{H}\rangle^{e}}\right)^{-1} C_{t}^{\langle\mathcal{M}\rangle^{e}}$$

$$(6.8)$$

$$-(1-b)\left(1-N_t^{\langle \mathrm{H}\rangle}-N_t^{\langle \mathrm{M}\rangle}\right)^{-1}+abW_t\left(aC_t^{\langle \mathrm{M}\rangle^e}+(1-a)C_t^{\langle \mathrm{H}\rangle^e}\right)^{-1}C_t^{\langle \mathrm{M}\rangle^{-1+e}}=0$$
(6.9)

$$-\left(1-b\right)\left(1-N_{t}^{\langle\mathrm{H}\rangle}-N_{t}^{\langle\mathrm{M}\rangle}\right)^{-1}+b\Gamma Z_{t}^{\langle\mathrm{H}\rangle}\left(1-a\right)\left(1-\theta\right)\left(aC_{t}^{\langle\mathrm{M}\rangle^{e}}+\left(1-a\right)C_{t}^{\langle\mathrm{H}\rangle^{e}}\right)^{-1}K_{t-1}^{\langle\mathrm{H}\rangle^{\theta}}C_{t}^{\langle\mathrm{H}\rangle^{-1+e}}N_{t}^{\langle\mathrm{H}\rangle^{-\theta}}=0\tag{6.10}$$

$$I_t - I_t^{\langle H \rangle} - I_t^{\langle M \rangle} = 0 \tag{6.11}$$

$$K_t - K_t^{\langle H \rangle} - K_t^{\langle M \rangle} = 0 \tag{6.12}$$

$$N_t - N_t^{\langle H \rangle} - N_t^{\langle M \rangle} = 0 \tag{6.13}$$

$$I_t^{\langle H \rangle} - K_t^{\langle H \rangle} + K_{t-1}^{\langle H \rangle} (1 - \delta) = 0 \tag{6.14}$$

$$I_t^{\langle \mathcal{M} \rangle} - K_t^{\langle \mathcal{M} \rangle} + K_{t-1}^{\langle \mathcal{M} \rangle} (1 - \delta) = 0 \tag{6.15}$$

$$U_{t} - \beta \operatorname{E}_{t} \left[U_{t+1} \right] - \log \left(1 - N_{t}^{\langle H \rangle} - N_{t}^{\langle M \rangle} \right) (1 - b) - be^{-1} \log \left(a C_{t}^{\langle M \rangle}^{e} + (1 - a) C_{t}^{\langle H \rangle}^{e} \right) = 0$$

$$(6.16)$$

$$Y_t - C_t^{\langle \mathcal{M} \rangle} - I_t^{\langle \mathcal{H} \rangle} - I_t^{\langle \mathcal{M} \rangle} = 0 \tag{6.17}$$

7 Steady state relationships (before expansion and reduction)

$$-\pi_{\rm ss} + \Pi_{\rm ss} = 0 \tag{7.1}$$

$$-r_{\rm ss} + \alpha \Gamma Z_{\rm ss}^{\langle M \rangle} K_{\rm ss}^{\rm m^d-1+\alpha} N_{\rm ss}^{\rm m^d-1-\alpha} = 0 \tag{7.2}$$

$$I_{\rm ss} - \sum_{i \in IND} I_{\rm ss}^{\langle i \rangle} = 0 \tag{7.3}$$

$$K_{\rm ss} - \sum_{i \in IND} K_{\rm ss}^{\langle i \rangle} = 0 \tag{7.4}$$

$$K_{\rm ss}^{\rm m^d} - K_{\rm ss}^{\langle \rm M \rangle} = 0 \tag{7.5}$$

$$N_{\rm ss} - \sum_{i \in IND} N_{\rm ss}^{\langle i \rangle} = 0 \tag{7.6}$$

$$N_{\rm ss}^{\rm m^d} - N_{\rm ss}^{\langle \rm M \rangle} = 0 \tag{7.7}$$

$$-W_{\rm ss} + \Gamma Z_{\rm ss}^{\langle M \rangle} (1 - \alpha) K_{\rm ss}^{\rm m^d} N_{\rm ss}^{\rm m^d} = 0$$

$$(7.8)$$

$$-Y_{\rm ss} + \Gamma Z_{\rm ss}^{\langle M \rangle} K_{\rm ss}^{\rm m^d} N_{\rm ss}^{\rm m^d}^{1-\alpha} = 0 \tag{7.9}$$

$$-C_{\rm ss}^{\langle {\rm H} \rangle} + \Gamma Z_{\rm ss}^{\langle {\rm H} \rangle} K_{\rm ss}^{\langle {\rm H} \rangle^{\theta}} N_{\rm ss}^{\langle {\rm H} \rangle^{1-\theta}} = 0 \tag{7.10}$$

$$-\pi_{\rm ss} + Y_{\rm ss} - r_{\rm ss}K_{\rm ss}^{\rm m^d} - N_{\rm ss}^{\rm m^d}W_{\rm ss} = 0$$
(7.11)

$$U_{\rm ss} - \beta U_{\rm ss} - \log \left(1 - \sum_{i \in IND} N_{\rm ss}^{\langle i \rangle} \right) (1 - b) - be^{-1} \log \left(a C_{\rm ss}^{\langle M \rangle^e} + (1 - a) C_{\rm ss}^{\langle H \rangle^e} \right) = 0$$
 (7.12)

$$\pi_{\rm ss} - C_{\rm ss}^{\langle \rm M \rangle} + r_{\rm ss} K_{\rm ss}^{\langle \rm M \rangle} + W_{\rm ss} N_{\rm ss}^{\langle \rm M \rangle} - \sum_{i \in IND} I_{\rm ss}^{\langle i \rangle} = 0 \tag{7.13}$$

$$i \in IND: -\lambda_{ss}^{CONSUMER^1} + \lambda_{ss}^{CONSUMER_{ss}^2 \langle i \rangle} = 0$$
 (7.14)

$$i \in IND: -\lambda^{\text{CONSUMER}^{2\langle i \rangle}}_{\text{ss}} + \beta \left(\lambda^{\text{CONSUMER}^{2\langle i \rangle}}_{\text{ss}} (1 - \delta) + \delta^{\langle \mathbf{M}, i \rangle} \lambda^{\text{CONSUMER}^{1}}_{\text{ss}} r_{\text{ss}} + \delta^{\langle \mathbf{H}, i \rangle} \theta \Gamma \lambda^{\text{CONSUMER}^{3}}_{\text{ss}} Z^{\langle \mathbf{H} \rangle}_{\text{ss}} K^{\langle \mathbf{H} \rangle}_{\text{ss}}^{-1 + \theta} N^{\langle \mathbf{H} \rangle}_{\text{ss}}^{1 - \theta} \right) = 0$$
 (7.15)

6

$$i \in IND: \quad Z_{ss}^{\langle i \rangle} - e^{\epsilon_{ss}^{\langle i \rangle} + \psi^{\langle i \rangle} \log Z_{ss}^{\langle i \rangle}} = 0$$
 (7.16)

$$i \in IND: \quad I_{ss}^{\langle i \rangle} - K_{ss}^{\langle i \rangle} + K_{ss}^{\langle i \rangle} (1 - \delta) = 0$$
 (7.17)

$$i \in IND: -\delta^{\langle \mathbf{M}, i \rangle} \lambda_{ss}^{CONSUMER^{1}} - \delta^{\langle \mathbf{H}, i \rangle} \lambda_{ss}^{CONSUMER^{3}} + be^{-1} \left(aC_{ss}^{\langle \mathbf{M} \rangle}{}^{e} + (1-a)C_{ss}^{\langle \mathbf{H} \rangle}{}^{e} \right)^{-1} \left(\delta^{\langle \mathbf{M}, i \rangle} aeC_{ss}^{\langle \mathbf{M} \rangle}{}^{-1+e} + \delta^{\langle \mathbf{H}, i \rangle} e\left(1-a\right)C_{ss}^{\langle \mathbf{H} \rangle}{}^{-1+e} \right) = 0$$
 (7.18)

$$i \in IND: -(1-b)\left(1 - \sum_{i \in IND} N_{ss}^{\langle i \rangle}\right)^{-1} + \delta^{\langle M, i \rangle} \lambda_{ss}^{CONSUMER^{1}} W_{ss} + \delta^{\langle H, i \rangle} \Gamma \lambda_{ss}^{CONSUMER^{3}} Z_{ss}^{\langle H \rangle} \left(1 - \theta\right) K_{ss}^{\langle H \rangle} N_{ss}^{\langle H \rangle - \theta} = 0$$

$$(7.19)$$

8 Steady state relationships (after expansion and reduction)

$$-r_{\rm ss} + \alpha \Gamma Z_{\rm ss}^{\langle M \rangle} K_{\rm ss}^{\langle M \rangle^{-1+\alpha}} N_{\rm ss}^{\langle M \rangle^{1-\alpha}} = 0 \tag{8.1}$$

$$-W_{\rm ss} + \Gamma Z_{\rm ss}^{\langle M \rangle} (1 - \alpha) K_{\rm ss}^{\langle M \rangle^{\alpha}} N_{\rm ss}^{\langle M \rangle^{-\alpha}} = 0$$

$$(8.2)$$

$$-Y_{\rm ss} + \Gamma Z_{\rm ss}^{\langle M \rangle} K_{\rm ss}^{\langle M \rangle^{\alpha}} N_{\rm ss}^{\langle M \rangle^{1-\alpha}} = 0 \tag{8.3}$$

$$-C_{\rm ss}^{\langle {\rm H} \rangle} + \Gamma Z_{\rm ss}^{\langle {\rm H} \rangle} K_{\rm ss}^{\langle {\rm H} \rangle}{}^{\theta} N_{\rm ss}^{\langle {\rm H} \rangle}{}^{1-\theta} = 0 \tag{8.4}$$

$$Z_{\rm ss}^{\langle \rm H \rangle} - e^{\psi^{\langle \rm H \rangle} \log Z_{\rm ss}^{\langle \rm H \rangle}} = 0 \tag{8.5}$$

$$Z_{\rm ss}^{\langle M \rangle} - e^{\psi^{\langle M \rangle} \log Z_{\rm ss}^{\langle M \rangle}} = 0 \tag{8.6}$$

$$\beta \left(abr_{\rm ss} \left(aC_{\rm ss}^{\langle {\rm M} \rangle^e} + (1-a)C_{\rm ss}^{\langle {\rm H} \rangle^e} \right)^{-1}C_{\rm ss}^{\langle {\rm M} \rangle^{-1+e}} + ab\left(1-\delta\right) \left(aC_{\rm ss}^{\langle {\rm M} \rangle^e} + (1-a)C_{\rm ss}^{\langle {\rm H} \rangle^e} \right)^{-1}C_{\rm ss}^{\langle {\rm M} \rangle^{-1+e}} \right) - ab\left(aC_{\rm ss}^{\langle {\rm M} \rangle^e} + (1-a)C_{\rm ss}^{\langle {\rm H} \rangle^e} \right)^{-1}C_{\rm ss}^{\langle {\rm M} \rangle^{-1+e}} = 0$$
 (8.7)

$$\beta \left(ab\left(1-\delta\right)\left(aC_{\rm ss}^{\langle {\rm M}\rangle^e}+\left(1-a\right)C_{\rm ss}^{\langle {\rm H}\rangle^e}\right)^{-1}C_{\rm ss}^{\langle {\rm H}\rangle^e}+b\theta\Gamma Z_{\rm ss}^{\langle {\rm H}\rangle}\left(1-a\right)\left(aC_{\rm ss}^{\langle {\rm M}\rangle^e}+\left(1-a\right)C_{\rm ss}^{\langle {\rm H}\rangle^e}\right)^{-1}C_{\rm ss}^{\langle {\rm H}\rangle^e-1+e}K_{\rm ss}^{\langle {\rm H}\rangle^{-1+e}}K_{\rm ss}^{\langle {\rm H}\rangle^{-1+e}}N_{\rm ss}^{\langle {\rm H}\rangle^{-1+e}}\right)-ab\left(aC_{\rm ss}^{\langle {\rm M}\rangle^e}+\left(1-a\right)C_{\rm ss}^{\langle {\rm H}\rangle^e}\right)^{-1}C_{\rm ss}^{\langle {\rm M}\rangle^{-1+e}}=0$$

$$(8.8)$$

$$-(1-b)\left(1-N_{\rm ss}^{\langle {\rm H}\rangle}-N_{\rm ss}^{\langle {\rm M}\rangle}\right)^{-1}+abW_{\rm ss}\left(aC_{\rm ss}^{\langle {\rm M}\rangle^e}+(1-a)C_{\rm ss}^{\langle {\rm H}\rangle^e}\right)^{-1}C_{\rm ss}^{\langle {\rm M}\rangle^{-1+e}}=0 \tag{8.9}$$

$$-(1-b)\left(1-N_{\rm ss}^{\langle \rm H\rangle}-N_{\rm ss}^{\langle \rm H\rangle}\right)^{-1}+b\Gamma Z_{\rm ss}^{\langle \rm H\rangle}\left(1-a\right)\left(1-\theta\right)\left(aC_{\rm ss}^{\langle \rm M\rangle}{}^{e}+\left(1-a\right)C_{\rm ss}^{\langle \rm H\rangle}\right)^{-1}C_{\rm ss}^{\langle \rm H\rangle}{}^{-1+e}K_{\rm ss}^{\langle \rm H\rangle}{}^{\theta}N_{\rm ss}^{\langle \rm H\rangle}{}^{-\theta}=0$$

$$(8.10)$$

$$I_{\rm ss} - I_{\rm ss}^{\langle \rm H \rangle} - I_{\rm ss}^{\langle \rm M \rangle} = 0 \tag{8.11}$$

$$K_{\rm ss} - K_{\rm ss}^{\langle \rm H \rangle} - K_{\rm ss}^{\langle \rm M \rangle} = 0 \tag{8.12}$$

$$N_{\rm ss} - N_{\rm ss}^{\langle \rm H \rangle} - N_{\rm ss}^{\langle \rm M \rangle} = 0 \tag{8.13}$$

$$I_{\rm ss}^{\langle \rm H \rangle} - K_{\rm ss}^{\langle \rm H \rangle} + K_{\rm ss}^{\langle \rm H \rangle} (1 - \delta) = 0 \tag{8.14}$$

$$I_{\rm ss}^{\langle \rm M \rangle} - K_{\rm ss}^{\langle \rm M \rangle} + K_{\rm ss}^{\langle \rm M \rangle} (1 - \delta) = 0 \tag{8.15}$$

$$U_{\rm ss} - \beta U_{\rm ss} - \log\left(1 - N_{\rm ss}^{\langle \rm H \rangle} - N_{\rm ss}^{\langle \rm M \rangle}\right) (1 - b) - be^{-1} \log\left(aC_{\rm ss}^{\langle \rm M \rangle^e} + (1 - a)C_{\rm ss}^{\langle \rm H \rangle^e}\right) = 0 \tag{8.16}$$

$$Y_{\rm ss} - C_{\rm ss}^{\langle M \rangle} - I_{\rm ss}^{\langle H \rangle} - I_{\rm ss}^{\langle M \rangle} = 0 \tag{8.17}$$

9 Parameter settings

 ∞

a = 0.337 (9.1)

$$\alpha = 0.36 \tag{9.2}$$

$$b = 0.63 \tag{9.3}$$

$$\beta = 0.99 \tag{9.4}$$

$$\delta = 0.025 \tag{9.5}$$

$$e = 0.8 \tag{9.6}$$

$$\theta = 0.08 \tag{9.7}$$

$$\Gamma = 1 \tag{9.8}$$

$$\psi^{\langle H \rangle} = 0.95 \tag{9.9}$$

$$\psi^{\langle M \rangle} = 0.95 \tag{9.10}$$

10 Steady-state values

	Steady-state values
r	0.0351
I	0.3143
K	12.5726
N	0.6102
U	-79.6929
W	2.3706
Y	1.0367
C^{H}	0.3805
C^{M}	0.7224
I^{H}	0.0485
I^{M}	0.2658
K^{H}	1.9397
K^{M}	10.6329
N^{H}	0.3303
N^{M}	0.2799
Z^{H}	1
Z^{M}	1

11 The solution of the perturbation

11.1 P

11.2 Q

$$\begin{array}{ccc} \epsilon^{\rm H} & \epsilon^{\rm M} \\ K^{\rm H} \\ K^{\rm M} \\ Z^{\rm H} \\ Z^{\rm M} \end{array} \left(\begin{array}{ccc} 2.1393 & -2.7792 \\ -0.3926 & 0.6584 \\ 1 & 0 \\ 0 & 1 \end{array} \right)$$

11.3 R

11.4 S

12 Statistics of the model

12.1 Moments

	Steady-state value	Std. dev.	Variance	Loglinear
r	0.0351	1.5572	2.4248	Y
I	0.3143	4.828	23.3092	Y
K	12.5726	0.4326	0.1871	Y
N	0.6102	0.2513	0.0632	Y
W	2.3706	0.6601	0.4358	Y
Y	1.0367	1.7868	3.1926	Y
C^{M}	0.7224	0.9767	0.954	Y
I^{H}	0.0485	57.2629	3279.0405	Y
I^{M}	0.2658	12.888	166.0993	Y
N^{H}	0.3303	0.9286	0.8623	Y
N^{M}	0.2799	1.3761	1.8936	Y

12.2 Correlation matrix

		_					~M	-11	-M		M
	r	I	K	N	W	Y	C^{M}	$I^{ m H}$	$I^{ m M}$	N^{H}	$N^{ m M}$
r	1	0.9644	0.1003	0.9227	0.7172	0.9373	0.3865	-0.3461	0.7077	-0.635	0.873
I	0.9644	1	0.228	0.9793	0.8717	0.9314	0.2945	-0.2045	0.6087	-0.5039	0.7912
K	0.1003	0.228	1	0.118	0.4488	0.4021	0.5653	0.1935	-0.0558	-0.3263	0.3068
N	0.9227	0.9793	0.118	1	0.8964	0.8384	0.0949	-0.2173	0.6099	-0.327	0.6585
U	-0.7291	-0.8795	-0.4398	-0.9038	-0.9998	-0.7428	-0.0588	0.0451	-0.4261	0.157	-0.4849
W	0.7172	0.8717	0.4488	0.8964	1	0.7353	0.0558	-0.028	0.4088	-0.1484	0.4751
Y	0.9373	0.9314	0.4021	0.8384	0.7353	1	0.6222	-0.1597	0.542	-0.7684	0.9457
C^{H}	-0.1576	0.0411	-0.0964	0.2217	0.4206	-0.2875	-0.8433	0.0844	-0.0502	0.8331	-0.5751
C^{M}	0.3865	0.2945	0.5653	0.0949	0.0558	0.6222	1	0.0207	0.1137	-0.9335	0.7811
I^{H}	-0.3461	-0.2045	0.1935	-0.2173	-0.028	-0.1597	0.0207	1	-0.9011	0.1348	-0.1939
I^{M}	0.7077	0.6087	-0.0558	0.6099	0.4088	0.542	0.1137	-0.9011	1	-0.3325	0.5076
K^{H}	-0.8383	-0.6843	-0.0538	-0.5635	-0.2714	-0.8286	-0.7036	0.4086	-0.6343	0.9058	-0.9457
K^{M}	0.5408	0.5593	0.8367	0.4043	0.5111	0.779	0.8422	-0.0679	0.3028	-0.7602	0.7663
N^{H}	-0.635	-0.5039	-0.3263	-0.327	-0.1484	-0.7684	-0.9335	0.1348	-0.3325	1	-0.9265
N^{M}	0.873	0.7912	0.3068	0.6585	0.4751	0.9457	0.7811	-0.1939	0.5076	-0.9265	1
Z^{H}	0.431	0.6312	0.1791	0.7441	0.8825	0.3619	-0.4075	0.0732	0.2203	0.3136	0.0465
Z^{M}	0.9465	0.9962	0.2694	0.982	0.9037	0.9164	0.2633	-0.2256	0.6241	-0.4588	0.7563

12.3 Autocorrelations

	t-1	t-2	t-3	t-4	t-5
r	0.7052	0.4611	0.2605	0.0998	-0.025
I	0.7333	0.4818	0.2747	0.1084	-0.0212
K	0.9604	0.8629	0.7274	0.5705	0.4053
N	0.7125	0.466	0.2634	0.1011	-0.025
W	0.7395	0.5114	0.3175	0.1563	0.026
Y	0.7874	0.5333	0.3205	0.1464	0.0079
C^{M}	0.8516	0.6216	0.4176	0.2412	0.0924
$I^{ m H}$	-0.078	-0.0735	-0.0678	-0.0612	-0.0543
I^{M}	0.0756	0.0316	-0.0029	-0.0291	-0.048
N^{H}	0.8197	0.555	0.3334	0.1522	0.0083
N^{M}	0.8032	0.5369	0.3157	0.1364	-0.0048

12.4 Variance decomposition

	$\epsilon^{ m H}$	$\epsilon^{ m M}$
r	0.1955	0.8045
I	0.3999	0.6001
K	0.3874	0.6126
N	0.563	0.437
W	0.796	0.204
Y	0.1361	0.8639
C^{M}	0.2383	0.7617
$I^{ m H}$	0.0146	0.9854
I^{M}	0.0535	0.9465
N^{H}	0.1058	0.8942
N^{M}	0.0032	0.9968

13 Statistics of the model

13.1 Moments relative to moments of the reference variable

	Steady-state value relative to Y	Std. dev. relative to Y	Variance relative to Y	Loglinear
r	0.0339	0.8715	0.7595	Y
I	0.3032	2.7021	7.3011	Y
K	12.1271	0.2421	0.0586	Y
N	0.5886	0.1407	0.0198	Y
U	-76.8688	0.0761	0.0058	Y
W	2.2866	0.3695	0.1365	Y
Y	1	1	1	Y
C^{H}	0.3671	0.8507	0.7237	Y
C^{M}	0.6968	0.5466	0.2988	Y
I^{H}	0.0468	32.0482	1027.0892	Y
I^{M}	0.2564	7.213	52.027	Y
K^{H}	1.8709	1.0662	1.1369	Y
K^{M}	10.2561	0.3547	0.1258	Y
N^{H}	0.3186	0.5197	0.2701	Y
N^{M}	0.27	0.7702	0.5931	Y
Z^{H}	0.9646	0.5106	0.2608	Y
Z^{M}	0.9646	0.5106	0.2608	Y

13.2 Correlations with the reference variable

	Y_{t-5}	Y_{t-4}	Y_{t-3}	Y_{t-2}	Y_{t-1}	Y_t	Y_{t+1}	Y_{t+2}	Y_{t+3}	Y_{t+4}	Y_{t+5}
r	0.1526	0.278	0.4282	0.6043	0.8064	0.9373	0.5864	0.3062	0.0862	-0.0805	-0.2011
I	0.0997	0.2242	0.3758	0.556	0.7659	0.9314	0.6451	0.3796	0.1665	0.0006	-0.1238
K	-0.4168	-0.3439	-0.2304	-0.0695	0.1459	0.4021	0.5721	0.6637	0.6935	0.6763	0.6249
N	0.1448	0.2541	0.3843	0.5358	0.7088	0.8384	0.5281	0.2718	0.0712	-0.0804	-0.1896
U	0.0268	-0.0751	-0.2046	-0.3643	-0.5562	-0.7428	-0.5653	-0.4095	-0.274	-0.1588	-0.0632
W	-0.0324	0.0684	0.1969	0.3556	0.5466	0.7353	0.5683	0.4149	0.2809	0.1664	0.071
Y	0.0079	0.1464	0.3205	0.5333	0.7874	1	0.7874	0.5333	0.3205	0.1464	0.0079
C^{H}	0.0441	-0.0009	-0.0602	-0.1357	-0.229	-0.2875	-0.318	-0.238	-0.1678	-0.1076	-0.057
C^{M}	-0.1938	-0.0979	0.0332	0.2043	0.4199	0.6222	0.6796	0.5837	0.4832	0.383	0.2869
I^{H}	-0.1238	-0.1565	-0.1921	-0.2303	-0.2702	-0.1597	0.3725	0.3066	0.2462	0.1919	0.144
I^{M}	0.1445	0.2261	0.3222	0.433	0.5582	0.542	-0.0161	-0.0804	-0.1258	-0.1553	-0.1716
K^{H}	-0.1204	-0.2349	-0.3735	-0.5372	-0.7268	-0.8286	-0.528	-0.2844	-0.0923	0.0542	0.1611
K^{M}	-0.2704	-0.1487	0.0188	0.2385	0.5164	0.779	0.7513	0.6917	0.6104	0.5162	0.4161
N^{H}	0.04	-0.0704	-0.2118	-0.3875	-0.6001	-0.7684	-0.6774	-0.4837	-0.3177	-0.1786	-0.0648
N^{M}	0.0258	0.1572	0.3216	0.5219	0.7601	0.9457	0.7497	0.4934	0.2814	0.1102	-0.0239
Z^{H}	0.0406	0.0846	0.1373	0.1992	0.2702	0.3619	0.243	0.1447	0.0655	0.0035	-0.0434
Z^{M}	0.0787	0.2025	0.3543	0.5359	0.7486	0.9164	0.6234	0.3802	0.183	0.0276	-0.0906

14 Impulse response functions

14.1 Shock ϵ^{H}

Figure 1: Impulse response function for ϵ^{H} shock

Figure 2: Impulse response function for ϵ^{H} shock

14.2 Shock $\epsilon^{ ext{M}}$

Figure 3: Impulse response function for ϵ^{M} shock

Figure 4: Impulse response function for ϵ^{M} shock