HO CHI MINH CITY INTERNATIONAL UNIVERSITY

MIDTERM TEST (Group 1)

Semester 2, Academic year 2019-2020 Duration: 90 minutes

SUBJECT: Calculus 2	
Chair of Department of Mathematics	Lecturer:
Signature:	Signature:
Full name: Prof. P.H.A. Ngoc	Full name: Assoc.Prof. M.D. Thanh

Instructions:

- Open-book exam.
- Each question carries 20 marks.

Question 1. Find the limit if it exists, or show that the limit does not exist

a)
$$\lim_{n \to \infty} \left(\ln(3n^3 + n^2 + 1) - \ln(n^3 + n + 2) \right)$$
 b) $\lim_{n \to \infty} \sin(n\pi/2)$

Question 2. Determine whether the given series is convergent or divergent:

a)
$$\sum_{n=1}^{\infty} \sin \frac{1}{n^2}$$
 b)
$$\sum_{n=1}^{\infty} \frac{n^n}{3^n n!}$$

Question 3. Find the radius of convergence and interval of convergence of the power series

$$\sum_{n=1}^{\infty} \frac{(2x-1)^n}{n}$$

Question 4. Determine whether the following two lines are parallel, intersecting, or skew. If they are skew, find the distance between them

$$L_1: x = 3 + 2t, y = 4 - 3t, z = -1 - 4t$$

and

$$L_2:$$
 $1+2s, y=2+s, z=3+2s$

Question 5. (a) Find parametric equations for the tangent line to the curve $\mathbf{r}(t) = (t+1)e^t\mathbf{i} + (t^2+2t+2)\mathbf{j} + (t^3-1)\mathbf{k}, t > -1$ at the point (1,2,-1).

(b) Find the length of the curve $\mathbf{r}(t) = 2t^{3/2}\mathbf{i} - \cos 2t\mathbf{j} + \sin 2t\mathbf{k}, 0 \le t \le 1$

CALCULUS 2

Solutions for Mid-term Test

Question 1. a)

$$\lim_{n \to \infty} \left(\ln(3n^3 + n^2 + 1) - \ln(n^3 + n + 2) \right) = \lim_{n \to \infty} \ln \frac{3n^3 + n^2 + 1}{n^3 + n + 2} = \ln \left(\lim_{n \to \infty} \frac{3 + 1/n + 1/n^3}{1 + 1/n^2 + 2/n^3} \right) = \ln 3$$

b) $a_n = \sin(n\pi/2)$. If $n = 2m, m \in \mathbb{N}$, then $a_n = \sin(m\pi) = 0$.

If $n = 4m + 1, m \in \mathbb{N}$, then $a_n = \sin(\pi/2 + 2m\pi) = 1$.

So, limit does not exist.

Question 2. a)

$$\lim_{n \to \infty} \frac{\sin 1/n^2}{1/n^2} = \lim_{x \to 0} \frac{\sin x}{x} = 1$$

The series $\sum_{n=1}^{\infty} 1/n^2$ is convergent, so the given series is also convergent, by Limit Comparison Test.

b)
$$a_n = \frac{n^n}{3^n n!}$$

$$L = \lim_{n \to \infty} \left| \frac{a_{n+1}}{a_n} \right| = L = \lim_{n \to \infty} \frac{(n+1)^{n+1}/3^{n+1}(n+1)!}{n^n/3^n n!} = \frac{1}{3} \lim_{n \to \infty} (1+1/n)^n = e/3 < 1$$

The series is convergent, by Ratio Test.

Question 3. Set $a_n = \frac{(2x-1)^n}{n}$. It holds that

$$L = \lim_{n \to \infty} \left| \frac{a_{n+1}}{a_n} \right| = \lim_{n \to \infty} |2x - 1| \frac{n}{(n+1)}$$
$$= \lim_{n \to \infty} |2x - 1| \frac{1}{(1+1/n)} = |2x - 1|.$$

By Ratio Test, the series is convergent if L < 1 or |x - 1/2| < 1/2, and divergent if L > 1 or |x - 1/2| > 1/2. Thus R = 1/2, and the series is convergent in (0, 1).

At x = 0, the series becomes $\sum_{n=1}^{\infty} \frac{(-1)^n}{n}$ which is convergent, by Alternating series Test.

At x = 1, the series becomes $\sum_{n=1}^{\infty} \frac{1}{n}$ which is divergent.

So the interval of convergence: $0 \le x < 1$.

Question 4. $L_1///u_1 = <2, -3, -4>, L_2//u_2 = <2, 1, 2>$, since $2/2 \neq -3/1$, u_1 is not parallel to u_2 and so L_1 is not parallel to L_2 .

Let (α) be the plane containing (L_1) and parallel to (L_2) . Then the distance between the lines (L_1) and (L_2) is equal to the distance from M(1,2,3) on (L_2) to (α) .

The normal vector n of (α) can be chosen as

$$n = (-1/2)u_1 \times u_2 = (-1/2) < -2, -12, 8 > = < 1, 6, -4 > .$$

Hence, the plane (α) has an equation of the form

$$(x-3) + 6(y-4) - 4(z+1) = 0$$

or

$$x + 6y - 4z - 31 = 0.$$

Therefore, the distance from M(1,2,3) to (α) is given by

$$d = \frac{|1 + 6(2) - 4(3) - 31|}{\sqrt{1 + 6^2 + 4^2}} = \frac{30}{\sqrt{53}}.$$

d > 0 means the two lines do not cut. Since they are not parallel, they are skew.

Question 5. (a) $\mathbf{r}(t) = \langle (t+1)e^t, t^2+2t+2, t^3-1 \rangle, t > -1$. The point (1, 2, -1) corresponds to t = 0.

It holds that

$$\mathbf{r}'(t) = \langle (t+2)e^t, 2t+2, 3t^2 \rangle, \quad \mathbf{r}'(0) = \langle 2, 2, 0 \rangle.$$

Thus the tangent line has equations

$$x = 1 + 2t, y = 2 + 2t, z = -1.$$

(b) Find the length of the curve $\mathbf{r}(t) = 2t^{3/2}\mathbf{i} - \cos 2t\mathbf{j} + \sin 2t\mathbf{k}, 0 \le t \le 1$ $\mathbf{r}'(t) = 3t^{1/2}\mathbf{i} + 2\sin 2t\mathbf{j} + 2\cos 2t\mathbf{k}, 0 \le t \le 1$

$$||\mathbf{r}'(t)|| = \sqrt{9t + 4}$$

So

$$s = \int_0^1 ||\mathbf{r}'(t)|| dt = \int_0^1 \sqrt{9t + 4} dt = (2/27)(9t + 4)^{3/2} \Big|_0^1 = (2/27)(13^{3/2} - 8)$$