Analisi Funzionale

Spazi normati e spazi di Banach

Prof. Alessio Martini

Politecnico di Torino a.a. 2023/2024

Spazi normati

Notazione: $\mathbb F$ denota il campo dei numeri reali $\mathbb R$ o dei numeri complessi $\mathbb C.$

Def. Sia X uno spazio vettoriale su \mathbb{F} . Si dice *norma* su X una funzione $\|\cdot\|:X\to [0,\infty)$ tale che, per ogni $x,y\in X$ e $\alpha\in \mathbb{F}$:

(a) $\|x\| = 0$ se e solo se x = 0 (proprietà di separazione); (b) $\|\alpha x\| = |\alpha| \|x\|$ (1-omogeneità);

(c) $||x + y|| \le ||x|| + ||y||$ (disuguaglianza triangolare). Uno spazio vettoriale $(X, ||\cdot||)$ dotato di una norma si dice *spazio normato*.

Def. Se $(X, \|\cdot\|)$ è uno spazio normato, definiamo la *distanza*

$$d: X \times X \to [0, \infty)$$
 indotta dalla norma $\|\cdot\|$ ponendo $d(x, y) = \|x - y\| \qquad \forall x, y \in X.$

Prop. Sia $(X, \| \cdot \|)$ uno spazio normato. La distanza d indotta dalla norma $\| \cdot \|$ è una distanza sull'insieme X.

Dunque ogni spazio normato $(X, \|\cdot\|)$ è anche uno spazio metrico, con la distanza indotta dalla norma.

Def. Si dice *spazio di Banach* uno spazio normato completo.

Esempi di spazi normati

(a) Siano $n\in\mathbb{N}_+$ e $p\in[1,\infty].$ Allora $(\mathbb{F}^n,\|\cdot\|_p)$ è uno spazio normato, ove

$$||x||_p = \begin{cases} \left(\sum_{j=1}^n |x_j|^p\right)^{1/p} & \text{se } p < \infty, \\ \max\{|x_j| : j = 1, \dots, n\} & \text{se } p = \infty \end{cases}$$

per ogni $x \in \mathbb{F}^n$. La distanza indotta è la distanza d_p già discussa. Per p = 2, sappiamo che (\mathbb{F}^n, d_2) è uno spazio metrico completo e separabile, dunque $(\mathbb{F}^n, \|\cdot\|_2)$ è uno spazio di Banach separabile.

(b) Se M è uno spazio metrico compatto, allora $(C_{\mathbb{F}}(M), \|\cdot\|_{\infty})$ è uno spazio normato, ove $\|\cdot\|_{\infty}$ è la *norma dell'estremo superiore*:

$$||f||_{\infty} = \sup_{x \in M} |f(x)| \quad \forall f \in C_{\mathbb{F}}(M).$$

La distanza indotta è la distanza d_{∞} . Sappiamo che $(C_{\mathbb{F}}(M), d_{\infty})$ è uno sp. metrico completo, dunque $(C_{\mathbb{F}}(M), \|\cdot\|_{\infty})$ è uno spazio di Banach.

- (c) Se $(X, \|\cdot\|)$ è uno spazio normato e Y è un sottospazio vettoriale di X, allora la restrizione a Y della norma $\|\cdot\|$ è una norma su Y (detta *norma indotta*), che denotiamo ancora con $\|\cdot\|$.
- (d) Siano $(X, \|\cdot\|_X)$ e $(Y, \|\cdot\|_Y)$ spazi normati. Allora il prodotto diretto $X \times Y$ è uno spazio normato con la *norma prodotto*:

$$\|(x,y)\|_{X\times Y}=\max\{\|x\|_X,\|y\|_Y\} \qquad \forall (x,y)\in X\times Y.$$
 Se X e Y sono spazi di Banach, anche $X\times Y$ è uno spazio di Banach.

Proprietà degli spazi normati

Prop. Sia $(X, \|\cdot\|)$ uno spazio normato.

(i) La norma $\|\cdot\|: X \to [0,\infty)$ è 1-lipschitziana:

$$|||x|| - ||y||| \le ||x - y|| \quad \forall x, y \in X.$$

- (ii) Le operazioni di somma e prodotto scalare-vettore sono continue:
 - (a) se $x_n \to x$ e $y_n \to y$ in X, allora $x_n + y_n \to x + y$ in X;
 - (b) se $x_n \to x$ in X e $\alpha_n \to \alpha$ in \mathbb{F} , allora $\alpha_n x_n \to \alpha x$ in X.
- (iii) Per ogni $x \in X$ e r > 0, le palle B(x, r) e $\overline{B}(x, r)$ sono convesse.
- (iv) Un sottoinsieme E di X è limitato se e solo se

$$\sup_{x\in E}\|x\|<\infty.$$

Dunque, una successione $(x_n)_{n\in\mathbb{N}}$ a valori in X è limitata se e solo se

$$\sup_{n\in\mathbb{N}}\|x_n\|<\infty.$$

Norme equivalenti

Def. Sia X uno spazio vettoriale su \mathbb{F} . Due norme $\|\cdot\|$ e $\|\cdot\|'$ su X si dicono *equivalenti* se esistono costanti $A,B\in(0,\infty)$ tali che

$$||x|| \le A||x||'$$
 e $||x||' \le B||x||$ per ogni $x \in X$.

Oss. La relazione di equivalenza fra norme è riflessiva, simmetrica e

transitiva (cioè, è una "relazione di equivalenza"). **Prop.** Due norme $\|\cdot\|$ e $\|\cdot\|'$ sullo spazio X sono equivalenti se e solo se

 $\operatorname{id}_X:(X,\|\cdot\|) o (X,\|\cdot\|')$ è *bilipschitziana* (lipschitziana con inversa lipschitziana).

Coroll. Siano $\|\cdot\|$ e $\|\cdot\|'$ norme equivalenti sullo spazio X.

- (i) Le norme $\|\cdot\|$ e $\|\cdot\|'$ inducono la stessa topologia su X. Dunque
 - convergenza di successioni,
 - continuità di funzioni,sottoinsiemi aperti, chiusi, compatti, densi

rimangono invariati se si rimpiazza $\|\cdot\|$ con $\|\cdot\|'$.

- (ii) $E \subseteq X$ è limitato in $(X, \|\cdot\|)$ se e solo se E è limitato in $(X, \|\cdot\|')$.
- (iii) Una succ. $(x_n)_n$ è di Cauchy in $(X, \|\cdot\|)$ se e solo se lo è in $(X, \|\cdot\|')$. (iv) $(X, \|\cdot\|)$ è di Banach se e solo se $(X, \|\cdot\|')$ è di Banach.

Equivalenza delle norme, completezza e chiusura

Teor. Sia X uno spazio vettoriale su \mathbb{F} . Siano $\|\cdot\|$ e $\|\cdot\|'$ norme su X. Se dim $X < \infty$, allora $\|\cdot\|$ e $\|\cdot\|'$ sono equivalenti.

Coroll. Sia X uno spazio vettoriale di dimensione finita. Ogni norma $\|\cdot\|$ su X induce la stessa topologia, e rispetto a tale norma:

- (i) $(X, \|\cdot\|)$ è uno spazio di Banach separabile;
- (ii) ogni sottoinsieme chiuso e limitato di X è compatto.

Prop. Siano $(X, \|\cdot\|)$ uno spazio normato e Y un sottospazio vettoriale di X.

- (i) Se $(Y, \|\cdot\|)$ è completo, allora Y è chiuso in X.
- (ii) Se dim $Y < \infty$, allora Y è chiuso in X.
- (iii) Se $(X, \|\cdot\|)$ è uno spazio di Banach, allora Y è chiuso in X se e solo se $(Y, \|\cdot\|)$ è completo.

Serie convergenti e assolutamente convergenti

Def. Siano $(X, \|\cdot\|)$ uno spazio normato, $(x_n)_{n\in\mathbb{N}}$ una successione a valori in X, e $x\in X$. Diciamo che:

- (a) la serie $\sum_{n=0}^{\infty} x_n$ converge a x se $\lim_{N\to\infty} \sum_{n=0}^{N} x_n = x$ (in tal caso scriviamo anche $\sum_{n=0}^{\infty} x_n = x$ e chiamiamo x la somma della serie);
- (b) la serie $\sum_{n=0}^{\infty} x_n$ converge assolutamente se $\sum_{n=0}^{\infty} \|x_n\| < \infty$.

Prop. Siano X uno spazio di Banach e $(x_n)_{n\in\mathbb{N}}$ una succ. a valori in X. Se la serie $\sum_{n=0}^{\infty} x_n$ converge assolutamente, allora converge a qualche $x\in X$.

Prop. Siano $(X, \|\cdot\|)$ uno spazio normato e $(x_n)_n$ una successione a valori in X. Se $\sum_{n=0}^{\infty} x_n = x$ e la convergenza è assoluta, allora la convergenza è incondizionata, cioè $\sum_{n=0}^{\infty} x_{\sigma(n)} = x$ per ogni bilezione $\sigma: \mathbb{N} \to \mathbb{N}$.

Oss.

- Diciamo che una serie *converge incondizionatamente* se la serie converge e il valore della somma non dipende dall'ordine degli addendi.
- ▶ Per serie a valori reali, la convergenza incondizionata è equivalente alla convergenza assoluta.
- ▶ Vedremo che, in spazi normati di dimensione infinita, possono esistere serie che convergono incondizionatamente senza convergere assolutamente.

Compattezza in spazi normati

Lemma (Riesz). Siano $(X, \| \cdot \|)$ uno spazio normato e $Y \subseteq X$ un sottospazio chiuso *proprio* (cioè $Y \neq X$). Allora esiste $w \in X$ tale che $\|w\| = 1$ e $d(w, Y) \geq 1/2$.

Oss. Una variante della dimostrazione permette, per ogni $\epsilon > 0$, di trovare un $w \in X$ con ||w|| = 1 e $d(w, Y) \ge 1/(1 + \epsilon)$.

Teor. Sia $(X, \|\cdot\|)$ uno spazio normato di dimensione infinita. Allora $\overline{B}(0,1)$ e $S(0,1):=\{x\in X: \|x\|=1\}$ non sono compatti.

Coroll. Sia $(X, \|\cdot\|)$ uno spazio normato. Sono equivalenti:

- (i) ogni successione limitata in *X* ha una sottosuccessione convergente;
- (ii) tutti i sottoinsiemi chiusi e limitati di X sono compatti in X;
- (iii) $\overline{B}(0,1)$ è compatta in X; (iv) dim $X < \infty$.

Oss. Vedremo che in dimensione infinita si può recuperare un analogo della proprietà (i) del corollario utilizzando opportune nozioni di "convergenze deboli".

Separabilità in spazi normati

Prop. Sia $(X, \|\cdot\|)$ uno spazio normato. Sono fatti equivalenti:

- (i) X è separabile;
- (ii) esiste un sottoinsieme $E \subseteq X$ al più numerabile tale che $X = \overline{\operatorname{span} E}$.

Teor. (Stone–Weierstrass) Sia [a, b] un intervallo chiuso e limitato in \mathbb{R} . Se $f \in C[a, b]$, allora esiste una successione di polinomi $(p_n)_{n \in \mathbb{N}}$ in \mathcal{P} tale che $p_n|_{[a,b]} \rightrightarrows f$.

Coroll. Sia [a,b] un intervallo chiuso e limitato in \mathbb{R} . Lo spazio normato $(C[a,b],\|\cdot\|_{\infty})$ è separabile.