AM1 - Zestaw 8

Wojciech Szlosek

April 2020

1 Zadanie 1, (b)

Aby oszacować dokładność podanego wzoru, wykorzystamy wzór Maclaurina dla funkcji $f(x)=\cos^2x$. $f^{'}(x)=-2sinxcosx;$ $f^{''}(x)=4sin^2x-2;$ $f^{'''}(x)=8sinxcosx;$ $f^{''''}(x)=16cos^2x-8$. Stad: f(0)=1; $f^{'}(0)=0;$ $f^{'''}(0)=-2;$ $f^{'''}(0)=0;$ $f^{''''}(0)=8.$ Zatem:

$$\cos^2 x \approx 1 + 0 + \frac{-2x^2}{2!} + 0 + \frac{8x^4}{4!} \approx 1 - x^2 + R_3$$

Skoro $|x| \leq \frac{1}{10}$,

$$|R_3| \le \frac{x^4}{3}$$

$$|R_3| \le \frac{(0.1)^4}{3} \approx 0.0000333...$$

(Odp.) Bład jest zatem mniejszy od $\frac{1}{30000}\approx 0.0000333...$

2 Zadanie 4, (e)

$$q(x) = \frac{(x+3)^3}{(x+1)^2}$$
$$q'(x) = \frac{x^3 + 3x^2 - 9x - 27}{x^3 + 3x^2 + 3x + 1}$$

Ponieważ badana funkcja ma pochodna w każdym punkcie, wiec może mieć ekstrema jedynie w punktach, gdzie $g^{'}(x)=0$, czyli w x = -3 lub x = 3. Teraz pora na zbadanie znaku pochodnej na konkretnych przedziałach. Łatwo sprawdzić, że funkcja zmienia znak z ujemnego na dodatni w punkcie 3. Dlaczego? Zauważmy, że w przedziałe (0,3) funkcja ma wartości ujemne, a w $(3,\infty)$ - dodatnie. Zatem w tymże punkcie 3, funkcja q ma minimum lokalne właściwe, który wynosi q(3)=13.5 (odp.)

Zadanie 6, (c) 3

$$h(x) = tgx, h''(x) = \frac{2sinx}{cos^3x}$$

Niech kbedzie liczba całkowita. Pochodna drugiego stopnia funkcji h jest wieksza od zera dla x należacego do przedziału $(k\pi, \frac{\pi}{2} + k\pi)$. Z kolei jest mniejsza od zera dla x należacego do: $(\frac{-\pi}{2}+k\pi,2k\pi)$. Latwo zauważyć, że punktem przegiecia tej funkcji jest $x=k\pi$ (odp.)