04 Hardware Trojans

Engr 399/599: Hardware Security Grant Skipper, Ph.D. *Indiana University*

Adapted from: Mark Tehranipoor of University of Florida

Agenda

- Review some of last class.
- Deep(ish) Dive into DES mechanics
- Start HT Unit.
- Next week first project assigned (on HTs!)

SIDE QUEST: CWEs

- Common Weakness Enumeration (CWE)
 - produced and maintained by MITRE through public process (similar in vein to CVEs).
- Unlike CVEs, CWEs are not focused on identifying specific VULNERABILITIES - instead categorizes WEAKNESSES.
- Why do we care about the CWE system?
- What problems does the CWE system have?

https://cwe.mitre.org/data/definitions/1194.html

What is Hardware Trojan?

Hardware Trojan:

A malicious addition or modification to the existing circuit elements.

What hardware Trojans can do?

- Change the functionality
- Reduce the reliability
- Leak valuable information

ANYTHING To ACHIEVE AN OBJECTIVE

Applications that are likely to be targets for attackers

- Military applications
- Aerospace applications
- Civilian security-critical applications
- Financial applications
- Transportation security
- loT devices
- Commercial devices
- More

Threats

IC/IP Trust Problem

 Chip design and fabrication has become increasingly vulnerable to malicious activities and alterations with globalization.

IP Vendor and System Integrator:

- IP vendor may place a Trojan in the IP
- IP Trust problem

Designer and Foundry:

- Foundry may place a Trojan in the layout design.
- IC Trust problem

Hardware Trojan Threat

Any of these steps can be untrusted

Hardware Trojan Threat

Untrusted

Issues with Third IP Design

Issues with Third IP Design

Hardware Trojan Threat

Untrusted

Hardware Trojan Threat

ASIC Design Process – Untrusted Foundry

Untrusted Designer and Foundry

HW Trojan Examples / Models

Comb. Trojan Example

Seq. Trojan Example

Seq. Trojan Model

Comb. Trojan model

*Lin et al, ICCAD 2009

MOLES*: Info Leakage

Fishy Chips: Spies Want to Hack-Proof Circuits

Dy Aden, Karracky 06:34:31 52:00 FTE folio

ha zero, the US military had a problem. It had brought over years a smoothing depicted for military as every fitting from mouth factors systems to produce that the fitting firm in an all the state of the countries for the countries of the countries for the countries of t

Why is detection of hardware Trojans very difficult?

Bug vs. Malicious Change

Trojan Attacks → **BIGGER verification challenge!**

Silicon Back Door

- Adversary can send and receive secret information
- Adversary can disable the chip, blowup the chip, send wrong processing data, impact circuit information etc.
- Adversary can place an Antenna on the fabricated chip
- Such Trojan cannot be detected since it does not change the functionality of the circuit.

Silicon Time Bomb

Untrusted Hardware

Counter

Finite state machine (FSM)

Wires/transistors that violate design rules

- Such Trojan cannot be detected since it does not change the functionality of the circuit.
- ➤ In some cases, adversary has little control on the exact time of Trojan action
- Cause reliability issue

Applications and Threats

Thousands of chips are being fabricated in untrusted foundries

Comprehensive Attack Model

Model	Description	3PIP Vendor	SoC Developer	Foundry
A	Untrusted 3PIP vendor	Untrusted	Trusted	Trusted
В	Untrusted foundry	Trusted	Trusted	Untrusted
С	Untrusted EDA tool or rogue employee	Trusted	Untrusted	Trusted
D	Commercial-off-the-shelf component	Untrusted	Untrusted	Untrusted
Е	Untrusted design house	Untrusted	Untrusted	Trusted
F	Fabless SoC design house	Untrusted	Trusted	Untrusted
G	Untrusted SoC developer with trusted IPs	Trusted	Untrusted	Untrusted

What is a Taxonomy?

How are Taxonomies useful?

What is a Taxonomy?

A system of classification!

How are Taxonomies useful?

Provides structure for understanding and communicating ideas for complex (diverse) subject matter.

UF Model a.k.a Grandaddy of HTH Taxonomies

04 Hardware Trojans

Engr 399/599: Hardware Security Grant Skipper, Ph.D. *Indiana University*

Adapted from: Mark Tehranipoor of University of Florida

Iterating on previous models; balancing abstraction and specificity.

Hardware Trojan (Detection) Taxonomy

HT Detection methods can be roughly taxonomized via the general approach used to perform detection, the inputs used, and the output analysis provided.

