

THE PROJECT

From the sales data in King County, I will do the data analysis and select influence factors for making a prediction model. Then, the following questions will be answered:

- How does the location affect the price?
- 2. Do built and renovated times affect the price?
- 3. Does selling time affect the price?
- Can we predict the price from a condition?

LOCATION EFFECT

BUILT AND RENOVATED TIMES

Mean prices for yr_built_cat 1900-1939 639911.185238 1940-1979 503076.052348 1980-2019 538176.536572 Name: price, dtype: float64

Median prices for yr_built_cat

1900-1939 597000.0 1940-1979 459975.0 1980-2019 475000.0

Name: price, dtype: float64

Mean prices for renovated original 532330.073109 renovated 731288.941176 Name: price, dtype: float64

Median prices for renovated original 484000.0 renovated 721000.0

Name: price, dtype: float64

SELLING TIME

Mean prices for year 2014 538130.161706 2015 544165.609507

Name: price, dtype: float64

Median prices for year

2014 489000.0 2015 499000.0

Name: price, dtype: float64

Mean prices for day_cat weekday 540430.406543 weekend 525963.441860 Name: price, dtype: float64

Median prices for day_cat

weekday 490000.0 weekend 484000.0

Name: price, dtype: float64

PRICE PREDICTION

Est.Price = 0.2729x sqft_living + 0.4687x grade + 0.2516x condition +0.0877x floors

OLS Regression Results

R-squared (uncentered): Dep. Variable: Adj. R-squared (uncentered): Model: 0.961 Least Squares F-statistic: Method: 3.402e+04 Date: Thu, 27 May 2021 Prob (F-statistic): 0.00 Time: 12:51:06 Log-Likelihood: 3864.7 No. Observations: 5590 AIC: -7721. Df Residuals: 5586 BIC: -7695. Df Model:

Covariance Type: nonrobust

21							
	coef	std err	t	P> t	[0.025	0.975]	
sqft_living	0.2729	0.012	23.421	0.000	0.250	0.296	
grade	0.4687	0.015	30.641	0.000	0.439	0.499	
condition	0.2516	0.008	33.200	0.000	0.237	0.266	
floors	0.0877	0.006	13.693	0.000	0.075	0.100	
Omnibus: 37.982			32 Durbin-	Durbin-Watson:		2.000	
Prob(Omnibus):		0.00	0 Jarque-	Bera (JB):	36.015		
Skew:		-0.16	7 Prob(JE	Prob(JB):		1.51e-08	
Kurtosis:		2.79	1 Cond. N	Cond. No.		12.0	

Notes:

- [1] R² is computed without centering (uncentered) since the model does not contain a constant.
- [2] Standard Errors assume that the covariance matrix of the errors is correctly specified.

Train Mean Squarred Error: 0.014690038703237523 Test Mean Squarred Error: 0.014832862439659537

FUTURE PLAN

For the future, I should include more detail about location, such as downtown, shopping mall, supermarket or public transportation, to increase the accuracy of prediction.

THANK YOU