POLITÉCNICO DO PORTO

PROVAS DE ACESSO E INGRESSO PARA OS MAIORES DE 23 ANOS

DC	PURIU				
Ano Letivo: 2012/2013 Data: 12/05/2012		Data: 12/05/2012	Prova: MATEMÁTI	(Δ	da Prova: <u>2h</u> cia: <u>15 min</u>
	Escola onde realiza est	a prova: ESEIG E	ESTGF ISCAP	☐ ISEP	Rubrica de Docente em Vigilância
candidato	Nome do Candidato:				
	Documento de Identificação apresentado: BI C.Cid. Pas. C.Cond. Outro				Classificação Final
er pelc	Número do Document	o de Identificação:			
A preencher pelo	Escola(s) a que se candidata: ESEIG ESTGF ISCAP ISEP			(0-200)	
	Curso(s) a que se cand	idata:			Rubrica de Docente (Júri de Prova)
	Número de <u>folhas extr</u>	a entregues pelo Candidato:			
É obrigatória a apresentação de documento de identificação com fotografia ao docente encarregado da vigilância					

Material admitido:

- Material de escrita.
- Máquina de calcular elementar ou máquina de calcular científica (não gráfica).

Utilize apenas caneta ou esferográfica de tinta indelével, azul ou preta, exceto nas respostas que impliquem a elaboração de construções, de desenhos ou de outras representações, que podem ser primeiramente elaborados a lápis, sendo, a seguir, passados a tinta.

Não é permitido o uso de corretor. Em caso de engano, deve riscar, de forma inequívoca, aquilo que pretende que não seja classificado.

A prova é constituída por dois grupos, I e II.

- O Grupo I inclui 7 questões de escolha múltipla.
 - Para cada uma delas, são indicadas quatro alternativas, das quais apenas uma está correta.
 - Responda na página fornecida para o efeito, respeitando as regras nela indicadas. Só serão consideradas as respostas dadas nessa página.
- O Grupo II inclui 9 questões de resposta aberta, algumas delas subdivididas em alíneas, num total de 13.
 - Nas questões deste grupo apresente de forma clara o seu raciocínio, indicando todos os cálculos que tiver de efetuar e todas as justificações necessárias.
 - Quando, para um resultado, não é pedida a aproximação, pretende-se sempre o valor exato.
 - Cada questão deve ser respondida na própria folha do enunciado.
 - Devem ser pedidas folhas adicionais caso a resposta à pergunta não caiba na folha respetiva.

A prova tem 16 páginas e termina com a palavra FIM.

Na página 15 é indicada a cotação de cada pergunta.

Na página 16 é disponibilizado um formulário.

POLITÉCNICO DO PORTO

PROVAS DE ACESSO E INGRESSO PARA OS MAIORES DE 23 ANOS

Nº Respostas CERTAS:

Classificação Grupo I:

Rubrica de Docente Corretor

FOLHA DE RESPOSTAS DO GRUPO I

Se apresentar mais do que uma resposta, a questão será anulada, o mesmo acontecendo se a resposta for ilegível. Não apresente cálculos, nem justificações.

Assinalar resposta correta:	(A) (% ©	D	
Anular a resposta:	(A)	o c	D	
Assinalar de novo resposta anulada:	(A)	(C)	D	
1	A	B	©	D
2	A	B	©	D
3	A	B	©	D
4	A	B	©	D
5	A	B	(C)	D
6	A	B	(C)	D

7

POLITÉCNICO DO PORTO

PROVAS DE ACESSO E INGRESSO PARA OS MAIORES DE 23 ANOS

A preencher pelo candidato

Número do Documento de Identificação:

Escola(s) a que se candidata:

ESEIG

ESTGF

ISCAP

ISEP

Curso(s) a que se candidata:

GRUPO I — RESPONDA NA PÁGINA FORNECIDA PARA O EFEITO

- 1. Uma equipa de futebol ganhou 8 jogos a mais do que os que perdeu e empatou 3 jogos a menos do que os que ganhou, em 31 jogos disputados. O número de jogos que esta equipa ganhou foi:
 - **(A)** 11

(C) 17

(B) 14

- **(D)** 23
- **2.** Considere a função real de variável real $p(x) = x^2 + kx + 4$, $k \in \mathbb{R}$. Sabendo que a parábola que representa geometricamente a função é tangente ao eixo das abcissas, então tem-se que:
 - **(A)** $k = -2 \lor k = 2$

(C) k = 2

(B) $k = -4 \lor k = 4$

- **(D)** k = 4
- **3.** Uma expressão equivalente a $sen(-x-90^{\circ})-cos(-x)$ é:
 - (A) $-2\cos(x)$

(c) $2\cos(x)$

(B) $\operatorname{sen}(x) + \cos(x)$

- **(D)** 0
- **4.** O domínio da função real de variável real f , definida por $f(x) = \frac{\log_2(1-2x)}{\sqrt{x+5}}$, é:
 - (A) $\left[-5, \frac{1}{2}\right]$

(c) $-5, \frac{1}{2}$

(B) $]-5,+\infty[$

(D) $\left]-\infty,\frac{1}{2}\right[$

- **5.** Se $\log_2(a) = 6$ e $\log_2(b) = 3$, então o valor exato de $\log_2\left(\frac{4a}{b}\right)$ é:
 - (A) 3

(C) 4

(B) 5

- **(D)** 8
- **6.** A reta de equação y = x é tangente ao gráfico de uma certa função g, no ponto de abcissa 0 (zero). Então a função g pode ser definida pela seguinte expressão:
 - (A) $g(x) = x^2 + x$

(C) $g(x) = x^2 + 2x$

(B) $g(x) = x^2 + x + 1$

- **(D)** $g(x) = x^2 + 2x + 1$
- 7. Na figura ao lado encontra-se parte da representação geométrica do gráfico de uma função real de variável real f. Então a representação gráfica da sua função derivada, f', poderá ser:

(A)

(C)

(B)

(D)

POLITÉCNICO DO PORTO		PROVAS DE ACESSO E INGRESSO PARA OS MAIORES DE	23 ANOS		
pelo	Nome do Candidato	o:	GII Q1.	GII Q2.	
ner dato	Número do Docume	ento de Identificação:	Clas. Parc	ial Q1+Q2	
preencl	Escola(s) a que se ca	ola(s) a que se candidata: ESEIG ESTGF ISCAP ISEP		Rubrica de Docente Corretor	
⋖	Curso(s) a que se ca	ndidata:			

GRUPO II

1. Para obter o sumo AZ, uma empresa mistura dois tipos de sumo. O sumo A, cujo custo é de €3,00 por litro, e o sumo Z a €2,00 o litro. Determine as quantidades que devem ser utilizadas de cada um dos sumos A e Z de modo a obter 600 litros de sumo AZ a um custo de €2,70 por litro.

2. Utilizando sempre que possível as regras das operações com potências, simplifique a expressão:

$$\frac{3^{3} \times \left(\frac{1}{3}\right)^{2} - 5^{0}}{\left(\frac{1}{2}\right)^{-2} \times \left(10^{2} : 5^{2}\right)}$$

POLITÉCNICO DO PORTO		PROVAS DE ACESSO E INGRESSO PARA OS MAIORES DE 2	23 ANOS	
pelo o	Nome do Candidato	D:	GII Q3.	GII Q4.
cher lidat	Número do Documo	ento de Identificação:	Clas. Parc	ial Q3+Q4
A preen cand	Escola(s) a que se ca	andidata: ESEIG ESTGF ISCAP ISEP		e Docente etor
٩	Curso(s) a que se ca	ndidata:		

3. Determine os valores do parâmetro real k para os quais $x^2 - 3x + k + 1 > 0$ é uma condição universal.

4. Determine o <u>menor número inteiro</u> que satisfaz a condição: $\frac{4(-3-x)}{2} < 4 - \frac{2(1+x)}{3}$

Número do Documento de Identificação:

GII Q6. GII Q7. Clas. P GII Q5+ Q6 + Q7

GII Q5.1

GII Q5.2

Curso(s) a que se candidata:

Nome do Candidato: __

ESTGF

☐ ISCAP ☐ ISEP Rubrica de Docente Corretor

5. Determine a expressão analítica mais simples da função derivada de cada uma das seguintes funções reais de variável real:

5.1.
$$h_1(x) = \frac{e^{2x}}{1-x}$$

5.2.
$$h_2(x) = 4x \cdot \text{sen}(x^2 - 1) + 3$$

6. Determine o declive da reta tangente ao gráfico da função f , definida por $f(x) = \ln(2x^3 + 1)$, no ponto de abcissa 1.

7. Considere a função real de variável real g, definida por $g(x) = (kx-2)^2$, $k \in \mathbb{R}$. Determine os valores de k para os quais se tem g'(1) = 16.

POLITÉCNICO DO PORTO PROVAS DE ACESSO E INGRESSO PARA OS MAIORES DE 23 ANOS Nome do Candidato: Número do Documento de Identificação: Escola(s) a que se candidata: ESEIG ESTGF ISCAP ISEP Clas. Parcial GII Q8 Rubrica de Docente Corretor

8. Para medir a altura de um penedo, fizeram-se, medições dos ângulos em dois pontos A e B, que distam 14 metros um do outro, focando o ponto mais alto do penedo. Sabe-se que o ponto mais alto do penedo é avistado de A segundo um ângulo de 45° e de B segundo um ângulo de 60° . Tendo em conta os dados apresentados na figura ao lado, esquema que não está representado à escala, calcule o valor da altura do penedo, h, apresentando o resultado final em metros arredondado a uma casa decimal.

Curso(s) a que se candidata:

POLITÉCNICO PROVAS DE ACESSO E INGRESSO PARA OS MAIORES DE 23 ANOS **DO PORTO** GII Q9.1 Nome do Candidato: _____ GII Q9.2 A preencher pelo GII Q9.3 candidato GII Q9.4 Número do Documento de Identificação: Clas. Parcial GII Q9 Rubrica de Docente Escola(s) a que se candidata: ESEIG ESTGF ISCAP ISEP Corretor Curso(s) a que se candidata: _

9. Uma rampa de desportos radicais foi construída entre duas paredes com a mesma altura e faz uma curva com a forma de uma parábola, conforme se representa na figura seguinte.

A altura, em metros, a que se encontra um *skate* do chão depende da sua distância, x, em metros, à parede de onde partiu, e é dada por $h(x) = 0.1x^2 - 1.4x + 5.9$.

- 9.1. Mostre que a medida da altura das paredes laterais é de 5,9 m.
- **9.2.** Calcule a profundidade máxima, p, da rampa.
- **9.3.** Determine a distância a que se encontram as paredes uma da outra.
- **9.4.** Sabendo que o *skate* está a uma altura superior a 2 m do chão, determine a que distância ele deve estar da parede de onde partiu, apresentando o resultado arredondado às décimas.

COTAÇÕES

Grupo I		84 pontos
Cada resposta certa	12 pontos	
Cada questão errada, não respondida ou anulada	0 pontos	
Grupo II		116 pontos
1	10 pontos	
2	10 pontos	
3	10 pontos	
4	10 pontos	
5	16 pontos	
5.1. 08 pontos		
5.2.		
6	10 pontos	
7	10 pontos	
8	10 pontos	
9	30 pontos	
9.1. 05 pontos		
9.2.		
9.3. 05 pontos		
9.4		
	-	

TOTAL 200 pontos

FORMULÁRIO

Relações trigonométricas de ângulos agudos

	$sen(\alpha)$	$\cos(\alpha)$	$\operatorname{tg}(lpha)$
α = 0°	0	1	0
$\alpha = 30^{\circ}$	$\frac{1}{2}$	$\frac{\sqrt{3}}{2}$	$\frac{\sqrt{3}}{3}$
$\alpha = 45^{\circ}$	$\frac{\sqrt{2}}{2}$	$\frac{\sqrt{2}}{2}$	1
$\alpha = 60^{\circ}$	$\frac{\sqrt{3}}{2}$	$\frac{1}{2}$	$\sqrt{3}$
α = 90°	1	0	-

Trigonometria

•
$$\operatorname{sen}^{2}(\alpha) + \cos^{2}(\alpha) = 1$$

•
$$\operatorname{sen}(\alpha + \beta) = \operatorname{sen}(\alpha) \cdot \cos(\beta) + \operatorname{sen}(\beta) \cdot \cos(\alpha)$$

•
$$\cos(\alpha + \beta) = \cos(\alpha) \cdot \cos(\beta) - \sin(\alpha) \cdot \sin(\beta)$$

•
$$\operatorname{tg}(\alpha) = \frac{\operatorname{sen}(\alpha)}{\operatorname{cos}(\alpha)}$$

Regras de derivação

$$(u \cdot v)' = u' \cdot v + u \cdot v'$$

$$(\cos(u))' = -u' \cdot \sin(u)$$

$$\bullet \quad \left(\mathbf{e}^{u}\right)' = u' \cdot \mathbf{e}^{u}$$

FIM