BM20A8800 Discrete Models and Methods 3op

Exercise 1 / Week 3

1. Formulate truth tables for following expressions. (At least in b and c, please use also some midterm columns.)

a)
$$\neg p \land q$$

b)
$$p \lor q \Rightarrow p \land q$$
 c) $p \lor (q \Rightarrow r)$

c)
$$p \lor (q \Rightarrow r)$$

2. Peirce's arrow (also known as Nicod's function) ↓ is defined as "not _ nor _", and its truth table is presented on the right. Come up with a proposition that uses ONLY Peirce's arrows as connectives (one or several arrows, but nothing else – not even negations!) and produces the same truth values as the original proposition.

p	q	$p \downarrow q$
0	0	1
0	1	0
1	0	0
1	1	0

- a) $\neg p$
- b) $p \wedge q$ c) $p \vee q$
- 3. Is the proposition $\neg(\neg(p\Rightarrow \neg q) \lor \neg(q\Rightarrow \neg p))$ true, if p and q are true? Examine by
- a) simplifying the expression by using known tautologies (syntactic method)
- b) using a truth table (semantic method).

4. Danish philosopher Søren Kierkegaard presented the following reasoning in the 19th century:

Marry, and you will regret it; don't marry, you will also regret it;

therefore, marry or don't marry, you will regret it either way.

Formalize this reasoning by the means of proportional logic and examine whether it is correct or not.

- 5. Formalize the following reasonings by the means of proportional logic and find out whether they are correct or not. Use either a truth table (semantic method) or simplification by using known tautologies (syntactic method).
 - a) If there is fuel in the car, I go to the store. If I go to the store, I buy cookies. There is fuel in the car. Therefore, I buy cookies.
 - b) If I study hard or get rich, I get good grades. I get good grades. Therefore, if I don't study hard, I get rich.
- 6. Are the following expressions true or false?

a)
$$\forall x \in \mathbb{Z}_+: (1+x)^2 > 1+2x$$
 b) $\forall x \in \mathbb{R}: (1+x)^2 > 1+2x$

b)
$$\forall x \in \mathbb{R}: (1+x)^2 > 1+2x$$

c)
$$\forall x \in \mathbb{Z} : \exists y \in \mathbb{Z} : x + y = 2x - y$$

Answers/hints to selected problems:

- 1c) There's only one 0 in the final column
- 3) No, it isn't
- 4) Correct
- 5a) Correct 5b) Not correct