Oscillateur amorti

■ Son	nmaire			
I Introduction				
${\rm I/A}$ Évolutions en régime libre, exemple Rl	LC			
${\rm I/B}$ Équation différentielle				
${\rm I/C}$ Équation caractéristique et régimes de	solutions			
II Oscillateur amorti électrique : circuit RLC série libre				
II/A Présentation				
II/B Bilan énergétique				
II/C Équation différentielle du circuit				
II/D Résolutions pour chaque cas				
III Exemple amorti mécanique : ressort $+$ frottements fluides $\dots \dots \dots$				
III/A Présentation				
III/B Équation différentielle				
III/C Bilan énergétique				
III/D Solutions				
$\rm III/E$ Résumé oscillateurs amortis				
Analyser, sur des relevés expérimentaux, l'évolution de la forme des régimes transitoires en fonction des paramètres caractéristiques.	Caractériser l'évolution en utilisant les notions d'amplitude, de phase, de période, de fréquence, de pulsation.			
	Réaliser un bilan énergétique.			
Prévoir l'évolution du système à partir de considérations énergétiques.	Déterminer la réponse détaillée dans le cas d'un régime libre ou d'un système soumis			
☐ Écrire sous forme canonique l'équation différentielle afin d'identifier la pulsation propre	à un échelon en recherchant les racines du polynôme caractéristique.			
et le facteur de qualité.	☐ Déterminer un ordre de grandeur de la du-			
Décrire la nature de la réponse en fonction de la valeur du facteur de qualité.	rée du régime transitoire selon la valeur du facteur de qualité.			

✓ L'essentiel						
Définitions						
\bigcirc E5.1 : Équation caractéristique amorti 4 \bigcirc E5.2 : Circuit RLC libre 5	E5.1 : Résultat pseudo-périodique 8 E5.2 : Espace des phases pseudo-pér 9					
E5.3 : Situation initiale et bilan des forces 12	\bigcirc E5.3 : Espace des phases critique 10					
Propriétés	\bigcirc E5.4 : Espace des phases apériodique . 11					
E5.1 : Équation différentielle amorti 4	☐ Démonstrations ☐ ☐ ☐ ☐ ☐ ☐ ☐ ☐ ☐ ☐ ☐ ☐ ☐ ☐ ☐ ☐ ☐ ☐ ☐					
 □ E5.2 : Bilan de puissance RLC libre 6 □ E5.3 : Équation différentielle RLC libre 6 	E5.1 : Bilan de puissance RLC libre 5 E5.2 : Équation différentielle RLC libre 6					
☐ E5.4 : Solution pseudo-périodique 7	E5.3 : Solution pseudo-périodique 7					
\bigcirc E5.5 : Régime transitoire $Q > 1/2$ 8 \bigcirc E5.6 : Solution critique 9	\bigcirc E5.4 : Régime transitoire pseudo-pér 8 \bigcirc E5.5 : Solution critique 9					
$\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ $	\bigcirc E5.6 : Régime transitoire critique 10					
 □ E5.8 : Solution apériodique	E5.7 : Solution apériodique					
☐ E5.10 : Équation ressort amorti 13	© E5.9 : Équation ressort amorti 13					
\bigcirc E5.11 : Bilan de puissance ressort 13 \bigcirc E5.12 : Solutions ressort 14						
>> Implications	E5.1 : Solutions oscillateur amorti 5					
E5.1 : Régimes de solutions	E5.2 : Évolution énergétique RLC série 6					
\bigcirc E5.2 : Résultat à grand Q 8 \bigcirc E5.3 : Résultat à faible Q 12	\bigcirc E5.3 : Analogie RLC-ressort amorti 13 \bigcirc E5.4 : Résumé – pas de par cœur! 14					
	ı					

I. Introduction 3

I | Introduction

I/A

Évolutions en régime libre, exemple RLC

En reprenant les résultats du LC libre, nous devrions en réalité observer que les oscillations dans le circuit s'atténuent. Soit le circuit RLC suivant 1 , avec $L=43\,\mathrm{mH}$ et $C=20\,\mathrm{nF}$:

FIGURE 5.1

♦ Lorsque la **résistance est petite** : on observe **plusieurs oscillations**.

On observe une série d'oscillations à la période $T\approx 184\,\mu\text{s}$. On observe environ 15 oscillations lorsque $R\approx 100\,\Omega$ (résistance interne du GBF + de la bobine), 9 oscillations lorsque $R\approx 180\,\Omega$, 3 oscillations lorsque $R\approx 500\,\Omega$.

♦ Lorsque la résistance est plus grande : les oscillations disparaissent.

Lorsque $R \approx 2.9 \,\mathrm{k}\Omega$, on observe un régime transitoire dont la durée est d'environ 250 µs (à 95%). Lorsque $R \approx 7.5 \,\mathrm{k}\Omega$, on observe un régime transitoire plus long, d'environ 420 µs.

Analyse

Lorsque l'on excite le système RLC, le système a deux principales réponses :

- 1) Système oscillantpour $R < R_c$, de pseudo-période ² supérieure à T_0 ;
- 2) Système non-oscillant pour $R > R_c$: le transitoire augmente avec R.
- 1. https://tinyurl.com/ypbwcwfs
- 2. On parle de pseudo-période car le signal est diminué.

Équation différentielle

Propriété E5.1 : Équation différentielle amorti

Un oscillateur amorti à un degré de liberté est un système dont l'évolution temporelle est décrite par une grandeur x(t) solution d'un équation différentielle du type :

- 1) $x_{\rm eq}$ la position d'équilibre 2) ω_0 la pulsation **propre**
- 3) Q le facteur de qualité

Remarque E5.1 : Analyse de l'équation

Par lecture de cette équation, Q est sans dimension pour qu'on retrouve que ω_0 s'exprime en s^{-1} car $\frac{dx}{dt}$ est de dimension $[x] \cdot s^{-1}$.

De plus, on remarque que plus Q est élevé, plus le terme d'ordre 1 est négligeable devant les autres, donc plus on se rapproche de l'harmonique. Le facteur de qualité traduit donc à quel point le système est idéal.

Équation caractéristique et régimes de solutions

Définition E5.1 : Équation caractéristique amorti

Pour résoudre une équation différentielle homogène, on suppose une solution de la forme $x(t) = A \exp(rt)$ avec $r \in \mathbb{C}$. En injectant cette expression dans l'équation différentielle, on obtient l'équation caractéristique :

C'est un trinôme du second degré, dont le discriminant Δ est

VImplication E5.1 : Régimes de solutions

Selon la valeur du discriminant, on aura différentes valeurs de r:

Q > 1/2:

Q = 1/2:

Q < 1/2:

Notation E5.1 : \pm et \mp

Il est courant de noter les racines r_{\pm} pour dénoter à la fois r_{+} et r_{-} . Dans ce cas, l'expression de la racine contient le signe \pm , ce qui signifie que r_{+} correspond à l'expression avec le +, et r_{-} correspond à l'expression avec le -.

Si l'expression contient le signe \mp , c'est l'opposé : r_+ correspond à l'expression avec -.

4	_ Important E5.1 : Solutions oscillateur amorti		
	Racines		Solution
Pseudo-pér.	$r_{\pm} = -\frac{\omega_0}{2Q} \pm j\Omega$ avec $\Omega = \frac{\omega_0}{2Q} \sqrt{4Q^2 - 1}$	x(t)	$= \exp\left(-\frac{\omega_0}{2Q}t\right) \times \underbrace{\left[A\cos(\Omega t) + B\sin(\Omega t)\right]}_{\text{partie décroissante}} \times \underbrace{\left[A\cos(\Omega t) + B\sin(\Omega t)\right]}_{\text{partie oscillante}}$
Critique	$r = -\frac{\omega_0}{2Q} = -\omega_0$		$x(t) = (At + B) \exp(-\omega_0 t)$
Apériodique	$r_{\pm} = \frac{\omega_0}{2Q} \left(-1 \pm \sqrt{1 - 4Q^2} \right)$		$x(t) = A \exp(r_+ t) + B \exp(r t)$

II | Oscillateur amorti électrique : circuit RLC série libre

II/A Présentation

♥ Définition E5.2 : Circuit RLC libre

- ♦ Il est constitué de l'association en série d'une résistance, d'une bobine et d'un condensateur idéaux.
- ♦ On suppose le condensateur initialement chargé.
- \diamondsuit À t=0, on coupe le générateur.

FIGURE 5.2

II/B Bilan énergétique

♥ Démonstration E5.1 : Bilan de puissance RLC libre

On fait un bilan de puissances :

♥ Propriété E5.2 : Bilan de puissance RLC libre

L'énergie emmagasinée dans le circuit est progressivement dissipée par effet JOULE dû à la résistance :

avec
$$\mathcal{E} = \mathcal{E}_C + \mathcal{E}_L = \frac{1}{2}Cu_C^2 + \frac{1}{2}Li^2$$
.

Important E5.2 : Évolution énergétique RLC série

On a donc bien une perte d'énergie à cause de la dissipation dans la résistance. Il y aura donc progressivement une perte de la tension de u_C , d'où l'amortissement.

II/C Équation différentielle du circuit

lacktriangle Démonstration ${ m E5.2: \'Equation\ diff\'erentielle\ RLC\ libre}$

Avec la loi des mailles,

On détermine l'expression de Q par identification :

♥ Propriété E5.3 : Équation différentielle RLC libre

L'équation différentielle de la tension $u_C(t)$ aux bornes d'un condensateur d'un circuit RLC en régime libre est

Les conditions initiales (continuité de u_C aux bornes de C et de i traversant L) sont

 \Diamond

 \Diamond

II/D Résolutions pour chaque cas

 $\overline{\mathrm{II/D}}$ Cas $\Delta < 0 \Leftrightarrow Q > 1/2$: régime pseudo-périodique

${ m II/D})$ 1.1 Solution de l'équation

♥ Démonstration E5.3 : Solution pseudo-périodique

On part de l'équation caractéristique :

donc

Ainsi,

d'où la définition de Ω :

$$\Omega = \frac{\omega_0}{2Q}\sqrt{4Q^2 - 1}$$

Ensuite, avec la forme générale de la solution on a

- \diamondsuit On trouve A avec la première condition initiale :
- \diamondsuit On trouve B avec la seconde CI :

♥ Propriété E5.4 : Solution pseudo-périodique

Pour un facteur de qualité $Q>1/2,\,u_C$ s'exprime par

avec

$$\Omega = \frac{\sqrt{-\Delta}}{2} \Leftrightarrow \Omega = \frac{\omega_0}{2Q} \sqrt{4Q^2 - 1}$$

La période des oscillations est alors

Les enveloppes sont

$$y(t) = \pm E \exp\left(-\frac{\omega_0}{2Q}t\right)$$

FIGURE 5.3

♥ Interprétation E5.1 : Résultat pseudo-périodique

La solution du polynôme caractéristique s'écrit donc comme la somme de la solution d'ordre 1 et de la solution d'ordre 2 harmonique :

Ceci n'est pas très étonnant puisque l'EDLHC d'ordre 2 amortie est la somme d'une EDLHC d'ordre 2 harmonique et d'une EDLHC d'ordre 1.

Avec les propriétés de l'exponentielle $(e^{a+b} = e^a e^b)$, il est donc naturel que la solution amortie soit le **produit** des solutions d'ordre 1 et d'ordre 2 :

II/D) 1.2 Régime transitoire

Démonstration E5.4 : Régime transitoire pseudo-pér.

L'amplitude varie selon $E \exp\left(-\frac{\omega_0}{2Q}t\right)$; on définit donc t_{95} tel que

lacklossim Propriété E5.5 : Régime transitoire Q>1/2

Le temps de réponse à 95% est atteint à partir de t_{95} tel que

Implication E5.2 : Résultat à grand ${\cal Q}$

Avec ces résultats on remarque en effet que quand $Q \to \infty$, on a à la fois

$$\Omega \approx \omega_0$$
 donc $T \approx T_0$

Mais aussi

$$\frac{\mathrm{d}^2 u_C}{\mathrm{d}t^2} + \omega_0^2 u_C = 0 \quad \text{donc} \quad u_C(t) = E \cos(\omega_0 t)$$

On retrouve toutes les caractéristiques de la situation harmonique.

Interprétation E5.2 : Espace des phases pseudo-pér.

Contrairement à la situation harmonique, le tracé de la solution dans l'espace (u_C,i) n'est **pas** symétrique par inversion du temps : la dissipation par effet JOULE diminue l'énergie du système, et la tension diminue progressivement.

On observera donc une **spirale décroissante** avec beaucoup d'oscillations quand les amortissements ne sont pas trop élevés, et de moins en moins quand Q diminue.

Figure 5.4 – Faible amortissement

FIGURE 5.5 – Moyen amortissement

(II/D) 2 Cas $\Delta = 0 \Leftrightarrow Q = 1/2$: régime critique

II/D) 2.1 Solution de l'équation

♥ Démonstration E5.5 : Solution critique

La seule racine de l'équation caractéristique est double, et vaut

soit

- \diamondsuit On trouve B avec la première condition initiale :
- \diamond On trouve A avec la seconde CI:

♥ Propriété E5.6 : Solution critique

Pour un facteur de qualité Q = 1/2, u_C s'exprime par

et on n'observe pas une oscillation.

Lycée Pothier 9/14 MPSI3 – 2024/2025

Interprétation E5.3 : Espace des phases critique

Au facteur de qualité critique, l'amortissement est suffisamment important pour empêcher u_C de passer sous 0.

II/D) 2.2 Régime transitoire

♥ Démonstration E5.6 : Régime transitoire critique

En négligeant le terme linéaire en t devant la décroissance exponentielle, on a

Propriété E5.7 : Régime transitoire critique

Le temps de réponse à 95% est atteint à partir de t_{95} tel que

(II/D) 3 Cas $\Delta > 0$: régime apériodique

II/D) 3.1 Solution de l'équation

💙 Démonstration E5.7 : Solution apériodique

Les racines de l'équation caractéristique sont réelles, et on a

♦ Avec la seconde CI :

En combinant, on trouve

et

Ensuite, avec la forme générale de la solution on a

Or,

 \diamondsuit Avec la première CI :

♥ Propriété E5.8 : Solution apériodique

Pour un facteur de qualité Q < 1/2, u_C s'exprime par

et on n'observe pas une oscillation. Le régime transitoire est plus long que pour Q=1/2.

Interprétation E5.4 : Espace des phases apériodique

Pendant le régime apériodique, l'amortissement est suffisamment important pour non seulement empêcher u_C d'osciller, mais également pour **ralentir sa diminution** vers 0. Son trajet se fait donc à une vitesse plus faible, c'est-à-dire $\frac{\mathrm{d}u_C}{\mathrm{d}t}$ plus petit donc i plus petit.

II/D) 3.2 Régime transitoire

Démonstration E5.8 : Régime transitoire apériodique

La décroissance sera guidée par l'exponentielle la « moins décroissante ». On cherche donc à savoir laquelle, on compare donc r_- et r_+ .

On remarque d'abord que les deux racines sont négatives (d'où la décroissance exponentielle) :

Or,

ce qui est vrai.

On estime alors la durée du régime transitoire à $\left\lceil \ln(20)/|r_+| \right\rceil$.

Pour $Q \ll 1$, on utilise $\sqrt{1+x} \sim 1+x/2$ pour simplifier r_+ :

Avec $ln(20) \approx \pi$:

Propriété E5.9 : Régime transitoire apériodique

Le temps de réponse à 95% est atteint à partir de t_{95} tel que

>>

Implication E5.3 : Résultat à faible Q

Quand $Q\longrightarrow 0$, on peut négliger le terme d'ordre 2 dans l'équation différentielle :

d'où la décroissance exponentielle. D'autre part, les valeurs de r_{\pm} tendent vers la même valeur $r = -\frac{\omega_0}{2Q}$: en supposant la solution comme la somme des deux racines, on aurait une décroissance:

$$r = -\frac{\omega_0}{Q} = -\frac{1}{\sqrt{LC}} R \sqrt{\frac{C}{L}} \Leftrightarrow r = -R \sqrt{\frac{\mathscr{L}}{L^2 \mathscr{L}}}$$

soit une décroissance exponentielle avec un temps caractéristique $\tau = \frac{L}{R}$.

$|\hspace{.08cm} \text{III}\hspace{.08cm}|\hspace{.08cm} ext{Exemple amorti mécanique}: ext{ressort} + ext{frottements fluides}$

III/A Présentation

Définition E5.3 : Situation initiale et bilan des forces

- ⋄ Référentiel :
- ♦ Repère :
- ⋄ Repérage :

FIGURE 5.10

♦ Bilan des forces :

- ♦ Position initiale :
- ♦ Vitesse initiale :

III/B Équation différentielle

♥ Démonstration E5.9 : Équation ressort amorti

Avec le PFD:

On identifie ω_0 et Q:

Sur l'axe $\overrightarrow{u_x}$ on trouve donc

Propriété E5.10 : Équation ressort amorti

La position x de la masse et la longueur ℓ du ressort sont régies par :

$$\frac{\mathrm{d}^2 \ell}{\mathrm{d}t^2} + \frac{\omega_0}{Q} \frac{\mathrm{d}\ell}{\mathrm{d}t} + \omega_0^2 \ell(t) = \omega_0^2 \ell_0$$

$$\Leftrightarrow \frac{\mathrm{d}^2 x}{\mathrm{d}t^2} + \frac{\omega_0}{Q} \frac{\mathrm{d}x}{\mathrm{d}t} + \omega_0^2 x(t) = 0$$

 \Diamond

 \Diamond

 ℓ_0 **reste** donc la longueur d'équilibre du système.

Important E5.3 : Analogie RLC-ressort amorti

Ici aussi, les deux systèmes sont **régis par la même équation différentielle**. On observe une **oscillation amortie** du ressort autour d'une position d'équilibre, ici $x_{\rm eq} = 0 \Leftrightarrow \ell_{\rm eq} = \ell_0$.

Ici, c'est le coefficient de frottements α qui dissipe : on l'associe à R.

Méca←→Élec
\longleftrightarrow

$\overline{\mathrm{III/C}}$

Bilan énergétique

Propriété E5.11 : \mathcal{P} ressort

Dans le système masse-ressort horizontal avec frottements fluides, l'énergie mécanique diminue progressivement proportionellement au coefficient de friction α :

Démonstration E5.10 : \mathcal{P} ressort

À partir du PFD $\times v$:

On a bien $\mathcal{E}_m = \mathcal{E}_C + \mathcal{E}_{p,el}$ qui diminue.

III/D Solutions

Propriété E5.12: Solutions ressort

On a les mêmes solutions en changeant u_C par x et E par x_0

III/E Résumé oscillateurs amortis

Important E5.4 : Résumé					
Pseudo-périodique	Critique	Apériodique			
$\Delta < 0 \Leftrightarrow Q > 1/2$	$\Delta = 0 \Leftrightarrow Q = 1/2$	$\Delta > 0 \Leftrightarrow Q < 1/2$			
$r_{\pm}=$ $\Omega=$	r =	$r_{\pm}=$			
$u_C(t) =$	$u_C(t) =$	$u_C(t) =$			
$t_{95} pprox$	$t_{95} pprox$	$t_{95} pprox$			
t	$\begin{array}{c} \uparrow u_C \\ \hline \\ \\ \hline \end{array}$	$\begin{array}{c} \uparrow u_C \\ \hline \\ \\ \hline \end{array}$			
u_C	u_{C}	u_{C}			