Chaos Theory (Math 145)

Teaching Assitant

Joseph Immel <jhimmel@ucsc.edu>

Office hours:

Mondays 11am-12pm - ARC 116 Thursdays 2:30-3:30pm - ARC 116

Website: jhi3.github.io

Mathematical Vocabulary

Analysis

Field Archimedean Property

Monotone Convergence Triangle Inequality

Metric Space

Limits Continuity

Cⁿ Functions

Critical Points

Partition

Dynamics

Chaos

(Discrete/Continuous) Dynamics Orbit

Fixed Point

(Prime) Period

Cvcle **Eventually Periodic** Cobwebbing

Asymptotic Behavior

Stable Set

Topological Transitivity Sensitivity to Initial Conditions

(Semi-)conjugacy

Multiplier

Structural Stability Logistic Family

Chebyshev Polynomials (1st Kind)

Bifrucation

Attracting Cycle

Topology

(Partial/Total) Ordering Subset

Continuous Function Limit Point

Density

Open Sets (Neighborhood)

 $\label{thm:constraints} \mbox{Tips about proof-writing and approaching.}$

Let J be an interval. Show that if $f: J \to J$ is a strictly increasing bijection, then for every a,b such that $(a,b) \in J$, $f^{-1}((a,b)) = (f^{-1}(a),f^{-1}(b))$.

Let J be an interval. Show that if $f: J \to J$ is a strictly increasing bijection, then for every a,b such that $(a,b) \in J$, $f^{-1}((a,b)) = (f^{-1}(a),f^{-1}(b))$.

- Can a bijection $f: J \to J$ be non-strictly increasing? Non-monotonic?
- What does the graph of f^{-1} look like?

Consider the function $f(x) = x^2 + 2x + 2$. Show that for any nonempty open interval (a,b) with $-\infty \le a < b \le \infty$, $f^{-1}((a,b))$ is open (first partition the real line into intervals where f is one-to-one and onto). This will provde that f is continuous on \mathbb{R} .

Consider the function $f(x) = x^2 + 2x + 2$. Show that for any nonempty open interval (a,b) with $-\infty \le a < b \le \infty$, $f^{-1}((a,b))$ is open (first partition the real line into intervals where f is one-to-one and onto). This will provde that f is continuous on \mathbb{R} .

- What are the critical points of f?
- What is our partition?
- What does the graph of f^{-1} look like?

Fix I,J two intervals. Suppose that $f:I\to I$ and $g:J\to J$ are semi-conjugate via a C^1 -map $h:I\to J$, i.e. $h\circ f=g\circ h$.

- (a) Show that if p is a fixed point of f, then h(p) is a fixed point of g, and both have the same multiplier.
- (b) Can you generalize this to 2-cycles and up? In order words, topological semi-conjugacies also propagate stable dynamics.

Problem :

Fix I, J two intervals. Suppose that $f: I \to I$ and $g: J \to J$ are semi-conjugate via a C^1 -map $h: I \to J$, i.e. $h \circ f = g \circ h$.

Show that if p is a fixed point of f, then h(p) is a fixed point of g, and both have the same multiplier.

- What does it mean to be a fixed point of f?
- What is the multiplier of h(f(p)), for p a fixed point?

Can you generalize this to 2-cycles and up?

Fix I, J two intervals. Suppose that $f: I \to I$ and $g: J \to J$ are semi-conjugate via a C^1 -map $h: I \to J$, i.e. $h \circ f = g \circ h$.

Show that if p is a fixed point of f, then h(p) is a fixed point of g, and both have the same multiplier.

- What does it mean to be a fixed point of f?
- What is the multiplier of h(f(p)), for p a fixed point?

Can you generalize this to 2-cycles and up?

- Observe that the fixed points of f^n are the n-cycles of f.
- Then the multiplier of the cycles must be the multiplier of f^n .

Attendance

