System Model (Sequence Diagram) Document

1 조

201502023 김민기 201502093 이익수 201502101 임승민

Document Revision History

REV#	DATE	AFFECTED SECTION	AUTHOR
1	2019/11/13	Introduction, Sequece Diagram	김민기
2	2019/11/15	Sequece Diagram	임승민
3	2019/11/19	Sequece Diagram	이익수
4	2019/11/20	Sequece Diagram	임승민
5	2019/11/21	Sequece Diagram	이익수
6	2019/11/22	Sequece Diagram	김민기

Table of Contents

1. INT	RODUCTION	5
1 1	Operative	_
	OBJECTIVE	
2. USF	E CASE DIAGRAM	.5
3. SEC	QUENCE DIAGRAM	.6
3.1.	AMSM REO MONITORING NO01 (SUBSCRIBEESESTATUS)	. 6

List of Figure

Figure 1 – Use Case Diagram	5
FIGURE 2 – ESE STARTUP SEQUENCE DIAGRAM	6

1. Introduction

1.1. Objective

이 문서는 시간표 자동 작성 프로그램의 시스템 모델(시퀀스 다이어그램)에 대한 내용을 기술하고 있다. 요구사항 명세 단계에서 작성한 유스케이스 다이어그램을 기반으로 각 유스케이스의 상세한 내부 동작 흐름을 시퀀스 다이어그램으로 모델링한다

2. Use Case Diagram

Figure 1 – Use Case Diagram

3. Sequence Diagram

3.1. Automatic Scheduler Assistant (A.S.A)

Automatic Scheduler Assitant (A.S.A)는 사용자의 동작에 따라 명시된 다양한 기능을 수행하며 수행한 결과를 사용자에게 알려준다. 크게 다음과 같이 2가지 시퀀스 다이어그램으로 표현할 수 있다.

Figure 2 - Sequence Diagram A

위에서 표시된 기능 4개 중 3개는 시간표를 작성하면서 동시에 진행되게 된다. 즉, 자동으로 시간표를 작성하면서 추가적으로 공강을 설정할 것인지, 설정을 한다면 언제로 할 것인지 그리고 이러한 과정으로 생성된 시간표를 몇 개까지 출력할 것인지와 같은 기능을 동시에 실행하게 된다. 그리고 나머지 한 개는 다른 Sequence Diagram을 표현하여 설명한다.

- 1. 사용자는 AppController에 시간표작성을 요청한다. 이 때 시간표 작성을 위해 탐색할 학과 이름도 같이 입력한다. 이후의 모든 과정은 AppController에서 다 처리된다.
 - 1.1 AppController에서 DataBase에 접속한다. DataBase에서는 해당 학과와 일치하는 모든 과목의 정보들을 가져오게 된다.
 - 1.1.1 DataBase에서 가져온 날 것의 정보들을 ReceivedDataBase로 전달한다. ReceivedDataBase에서는 해당 정보 중 시간표 작성을 할 때 필요한 정보들을 정리 및 가공한다.
 - 1.1.2 정리된 데이터들을 DataBase 클래스에 리턴해준다.

- 1.2 가공된 데이터들을 AppController에 리턴해준다.
- 1.3 Chocie 클래스를 호출하여 우선순위 및 출력개수를 요청한다.
 - 1.3.1 Choice 클래스에서 사용자에게 해당 정보의 입력을 요청한다.
 - 1.3.2 사용자가 해당 정보를 입력한다.
- 1.4 입력받은 우선순위 및 출력개수의 정보를 AppController에 임시로 저장한다.
- 1.5 ChocieOfExtra를 호출하여 공강여부 및 해당 정보를 요청한다.
 - 1.5.1 해당 클래스에서 사용자에게 해당 정보의 입력을 요청한다.
 - 1.5.2 사용자가 해당 정보를 입력한다.
- 1.6 입력받은 공강 정보도 AppController에 저장한다.
- 1.7 MakeTheNodeList를 호출하여 가공된 DB 데이터 및 사용자의 입력정보를 전달한다. 이 때 MakdTheNodeList는 입력받은 정보를 토대로 과목별, 분반별의 우선순위별로 정리한 리스트를 생성한다.
 - 1.7.1 만들어진 리스트를 TimeTableTree에 전달한다.
 - 1.7.1.1 TimeTableTree는 입력받은 List를 해석하여 사용자의 우선순위를 만족할 수 있는 시간표들을 생성한다. 그리고 시간표가 작성될 때마다 Schedule을 호출하여 저장한다. 만들어질 수 있는 시간표가 1개 이상일 경우가 대부분이므로 이를 Schedule에 차례대로 저장한다.
 - 1.7.1.2 만들어진 리스트를 리턴한다.
 - 1.7.1.3. 완성된 시간표 리스트를 AppController에 전달한다.
- 1.8 AppView를 호출하여 결과를 전달한다.
 - 1.8.1 AppView에서 사용자에게 결과를 전달한다.

Figure 3 – Sequence Diagram B

- 1. 사용자가 교양과목의 추가를 AppControleIr에 요청한다.
 - 1.1 AppController에서 DataBase에 접속한다. 이 때 DB에서 교양으로 분류된 과목들의 정보를 요청한다.
 - 1.1.1 DataBase에서 RecievedDataBase로 정보를 보내서 데이터 가공을 요청한다. 해당 클래스는 시간표 작성에 필요한 정보들을 가공하고 정리한다.
 - 1.1.2 정리된 데이터를 Return 한다.
 - 1.2 가공된 데이터베이스 정보를 Return 한다.
 - 1.3 해당 교양과목의 데이터들을 Recommand 클래스로 전달한다.
 - 1.3.1 Schedule에 저장되어 있는 이미 작성된 시간표들의 리스트를 호출한다.
 - 1.3.2 해당 List를 Return 한다.
 - 1.3.3 가져온 시간표들을 바탕으로 작성 가능한 시간표를 TimeTableTree에서 만든다.
 - 1.3.4 이런 과정을 통해 만들어진 시간표들을 Return 한다. 이 시간표들의 List는 AppController에 일시적으로 저장되게 된다.
 - 1.4 Recommand에 저장된 교양이 포함된 시간표들의 List를 AppController에 전달한다.
 - 1.5 AppView를 호출하여 결과를 전달한다.
 - 1.5.1 해당 결과를 사용자에게 출력해준다.