CSC384 Assignment#4

Question 3

BY MENGQING DENG

Claim.

We cannot enforce **Sufficiency** and **Separation** at the same time.

Proof. We define below abbreviation here:

$$\begin{aligned} & \text{Hyperlipidemia} = YES & \rightarrow & H = h \\ & \text{Prediction} = YES & \rightarrow & P = p \\ & \text{Gender} = Female & \rightarrow & G = g \end{aligned}$$

Hence, by the handout,

$$\begin{array}{lll} \mathbf{Separation} & := \\ P(P=p|H=h) & = & P(P=p|H=h,G=g) \end{array}$$

$$\begin{array}{lll} \textbf{Sufficiency} & := \\ P(H=h \, | P=p) & = & P(H=h \, | P=p, G=g) \end{array}$$

$$\begin{split} P(P=p,H=h,G=g) &= P(P=p|H=h,G=g)P(H=h,G=g) \\ &= P(P=p|H=h,G=g)P(H=h|G=g)P(G=g) \end{split} \tag{1}$$

$$P(P=p, H=h, G=g) = P(P=p|H=h)P(H=h)P(G=g|P=p, H=h)$$
 (2)

$$P(P = p, H = h, G = g) = P(H = h | P = p, G = g)P(P = p, G = g)$$

= $P(H = h | P = p, G = g)P(P = p | G = g)P(G = g)$ (3)

$$P(P = p, H = h, G = g) = P(H = h|P = p)P(P = p)P(G = g|P = p, H = h)$$
(4)

So, by **Separation** and equations (1), (2), we can cancel the terms and get

$$P(H = h | G = g)P(G = g) = P(H = h)P(G = g | P = p, H = h)$$

$$\frac{P(H = h | G = g)}{P(H = h)} = \frac{P(G = g | P = p, H = h)}{P(G = g)}$$

$$= \frac{P(G = g | H = h)}{P(G = g)}$$
(6)

By (5) and (6),

$$P(G = g | P = p, H = h) = P(G = g | H = h).$$
 (7)

Pluging (7) into (4) and (3) we have

$$P(H=h|P=p)P(P=p)P(G=g|H=h) = P(H=h|P=p,G=g)P(P=p|G=g)P(G=g)$$

$$\frac{P(H=h|P=p)}{P(H=h|P=p,G=g)} = \frac{P(P=p|G=g)}{P(P=p)} \times \frac{P(G=g)}{P(G=g|H=h)}$$

$$= \frac{P(G=g|P=p)}{P(G=g)} \times \frac{P(G=g)}{P(G=g|H=h)}$$

$$= \frac{P(G=g|P=p)}{P(G=g|H=h)}$$
(8)

Thus we can conclude from equation (8), konwn **Separation**, whether **Sufficiency** also holds, i.e.

$$P(H = h | P = p) = P(H = h | P = p, G = g),$$

depends on whether

$$P(G = g|P = p) = P(G = g|H = h).$$
 (9)

Here the claim "We cannot enforce **Sufficiency** and **Separation** at the same time." is proved - it holds unless in the particular and lucky case described in (9).

Note. According to handout, we are supposed to provide the examples as the form of joint probability distribution of (A, C, Y) where A is the "protected attribute", C is a classification, and Y is a label representing "ground truth" and

$$P(A=a,C=c,Y=y) > 0$$
 for all $a \in A$.domain, $c \in C$.domain, $y \in Y$.domain.

And Sufficiency means P(Y|C) = P(Y|C, A) while Separation means P(C|Y) = P(C|Y, A).

Also in accordance with piazza question @564, Professor Allin said "You do not need to directly relate these two joints to the medicalDiagnosis network; it's fine to make up your own joints in order to illustrate the point."

Suppose A, C, Y respectively represents Gender, Prediction, Hyperlipidemia. Therefore we can fabricate two data examples to demonstrate the claim and our proof.

Example 1. where suficiency holds but not separation

That is P(Y|C) = P(Y|C, A) and $P(C|Y) \neq P(C|Y, A)$

Suppose we have the tables

#	C	P(c)
1	YES	0.3
2	NO	0.7

	#	Y	P(y)
Ī	1	YES	0.375
Ī	2	NO	0.625

#	A	\mathbf{C}	P(a c)
1	Female	YES	0.3
2	Female	NO	0.5
3	Male	YES	0.7
4	Male	NO	0.5

#	A	Y	P(a y)
1	Female	YES	0.356
2	Female	NO	0.4904
3	Male	YES	0.644
4	Male	NO	0.5096

#	A	\mathbf{C}	Y	P(y c)=P(y c,a)
1	Female	YES	YES	0.9
2	Female	YES	NO	0.1
3	Female	NO	YES	0.15
4	Female	NO	NO	0.85
5	Male	YES	YES	0.9
6	Male	YES	NO	0.1
7	Male	NO	YES	0.15
8	Male	NO	NO	0.85

Hence, the joint probability distribution P(a, c, y) is illustrated in the table below:

#	A	\mathbf{C}	\mathbf{Y}	$P(a,c,y)=P(y c)\times P(a c)\times P(c)$
1	Female	YES	YES	$0.9 \times 0.3 \times 0.3 = 0.081$
2	Female	YES	NO	$0.1 \times 0.3 \times 0.3 = 0.009$
3	Female	NO	YES	$0.15 \times 0.5 \times 0.7 = 0.0525$
4	Female	NO	NO	$0.85 \times 0.5 \times 0.7 = 0.2975$
5	Male	YES	YES	$0.9 \times 0.7 \times 0.3 = 0.189$
6	Male	YES	NO	$0.1 \times 0.7 \times 0.3 = 0.021$
7	Male	NO	YES	$0.15 \times 0.5 \times 0.7 = 0.0525$
8	Male	NO	NO	$0.85 \times 0.5 \times 0.7 = 0.2975$

Now to check if **Separation** holds, there are many ways to compute P(c|y):

$$\begin{split} P(c|y) &= \frac{P(c,y)}{P(y)} = \frac{\sum_{a \in A} P(c,y|a) P(a)}{P(y)} = \frac{P(a,c,y) + P(\neg a,c,y)}{P(y)} \\ &= \frac{P(a,c,y)}{P(a|c) P(y)} \\ &= \frac{P(y|c) P(c)}{P(y)} \end{split}$$

Take the first one of this, and compute P(c|y, a) by:

$$P(c|y,a) = \frac{P(a,c,y)}{P(y)P(a|y)}$$

#	A	C	Y	P(c y)	P(c y,a)
1	Female	YES	YES	$\frac{0.081 + 0.189}{0.375} = 0.72$	$\frac{0.081}{0.375 \times 0.356} = 0.606741573$
2	Female	YES	NO	$\frac{0.009 + 0.021}{0.625} = 0.048$	$\frac{0.009}{0.625 \times 0.4904} = 0.029363785$
3	Female	NO	YES	$\frac{0.025}{0.0525 + 0.0525} = 0.28$	$\frac{0.0525}{0.375 \times 0.356} = 0.393258427$
4	Female	NO	NO	$\frac{0.2975 + 0.2975}{0.625} = 0.952$	$\frac{0.2975}{0.625 \times 0.4904} = 0.970636215$
5	Male	YES	YES	$\frac{0.081 + 0.189}{0.375} = 0.72$	$\frac{0.189}{0.375 \times 0.644} = 0.782608696$
6	Male	YES	NO	$\frac{0.009 + 0.021}{0.625} = 0.048$	$\frac{0.021}{0.625 \times 0.5096} = 0.065934066$
7	Male	NO	YES	$\frac{0.0525 + 0.0525}{0.375} = 0.28$	$\frac{0.0525}{0.375 \times 0.644} = 0.217391304$
8	Male	NO	NO	$\frac{0.2975 + 0.2975}{0.625} = 0.952$	$\frac{0.2975}{0.625 \times 0.5096} = 0.934065934$

And we can see from the table that $P(C|Y) \neq P(C|Y, A)$ which means **Separation** doesn't hold.

Example 2. where separation holds but not sufficiency

That is
$$P(C|Y) = P(C|Y, A)$$
 and $P(Y|C) \neq P(Y|C, A)$

Suppose we have the tables

#	\mathbf{C}	P(c)
1	YES	0.375
2	NO	0.625

#	\mathbf{Y}	P(y)
1	YES	0.3
2	NO	0.7

#	A	C	P(a c)
1	Female	YES	0.356
2	Female	NO	0.4904
3	Male	YES	0.644
1,	Male	NO	0.5096

#	A	Y	P(a y)
1	Female	YES	0.3
2	Female	NO	0.5
3	Male	YES	0.7
4	Male	NO	0.5

#	A	\mathbf{C}	Y	P(c y)=P(c y,a)
1	Female	YES	YES	0.9
2	Female	YES	NO	0.15
3	Female	NO	YES	0.1
4	Female	NO	NO	0.85
5	Male	YES	YES	0.9
6	Male	YES	NO	0.15
7	Male	NO	YES	0.1
8	Male	NO	NO	0.85

Hence, the joint probability distribution P(a, c, y) is illustrated in the table below:

#	A	C	Y	$P(a,c,y)=P(c y)\times P(a y)\times P(y)$
1	Female	YES	YES	$0.9 \times 0.3 \times 0.3 = 0.081$
2	Female	YES	NO	$0.15 \times 0.5 \times 0.7 = 0.0525$
3	Female	NO	YES	$0.1 \times 0.3 \times 0.3 = 0.009$
4	Female	NO	NO	$0.85 \times 0.5 \times 0.7 = 0.2975$
5	Male	YES	YES	$0.9 \times 0.7 \times 0.3 = 0.189$
6	Male	YES	NO	$0.15 \times 0.5 \times 0.7 = 0.0525$
7	Male	NO	YES	$0.1 \times 0.7 \times 0.3 = 0.021$
8	Male	NO	NO	$0.85 \times 0.5 \times 0.7 = 0.2975$

Now to check if **Sufficiency** holds, there are many ways to compute P(y|c):

who check it **Sufficiency** noids, there are many ways to compute
$$P(y|c) = \frac{P(c,y)}{P(c)} = \frac{\sum_{a \in A} P(c,y|a)P(a)}{P(c)} = \frac{P(a,c,y) + P(\neg a,c,y)}{P(c)}$$

$$= \frac{P(a,c,y)}{P(a|y)P(c)}$$

$$= \frac{P(c|y)P(y)}{P(c)}$$

Take the first one of this, and compute P(y|c,a) by:

$$P(y|c,a) = \frac{P(a,c,y)}{P(c)P(a|c)}$$

#	A	C	Y	P(y c)	P(y c,a)
1	Female	YES	YES	$\frac{0.081 + 0.189}{0.375} = 0.72$	$\frac{0.081}{0.375 \times 0.356} = 0.606741573$
2	Female	YES	NO	$\frac{0.0525 + 0.0525}{0.375} = 0.28$	$\frac{0.0525}{0.375 \times 0.356} = 0.393258427$
3	Female	NO	YES	$\frac{0.009 + 0.021}{0.625} = 0.048$	$\frac{0.009}{0.625 \times 0.4904} = 0.029363785$
4	Female	NO	NO	$\frac{0.2975 + 0.2975}{0.625} = 0.952$	$\frac{0.2975}{0.625 \times 0.4904} = 0.970636215$
5	Male	YES	YES	$\frac{0.081 + 0.189}{0.375} = 0.72$	$\frac{0.189}{0.375 \times 0.644} = 0.782608696$
6	Male	YES	NO	$\frac{0.0525 + 0.0525}{0.375} = 0.28$	$\frac{0.0525}{0.375 \times 0.644} = 0.217391304$
7	Male	NO	YES	$\frac{0.009 + 0.021}{0.625} = 0.048$	$\frac{0.021}{0.625 \times 0.5096} = 0.065934066$
8	Male	NO	NO	$\frac{0.2975 + 0.2975}{0.625} = 0.952$	$\frac{0.2975}{0.625 \times 0.5096} = 0.934065934$

And we can see from the table that $P(Y|C) \neq P(Y|C,A)$ which means **Sufficiency** doesn't hold.