Высшая математика

Лисид Лаконский

November 2022

Содержание

1	Высшая математика - 11.11.2022			2
	1.1	Некоторые теоремы о дифференцируемых функциях		
		1.1.1	Теорема Ролля	2
		1.1.2	Теорема Лагранжа о конечных приращениях	2
		1.1.3	Теорема Коши об отношении приращений двух функций	2
		1.1.4	Теорема Ферма	3
	1.2	Геоме	трические приложения производной	3
		1.2.1	Уравнение касательной к кривой	3
		1.2.2	Уравнение нормали к кривой	3
	1.3	Прави	ило Лопиталя	3
		1.3.1	Раскрытие неопределенностей вида $\frac{0}{0}$	3
		1.3.2	Раскрытие неопределенностей вида $\frac{\infty}{\infty}$	3
	1.4	Форм	ула Тейлора	3

1 Высшая математика - 11.11.2022

1.1 Некоторые теоремы о дифференцируемых функциях

1.1.1 Теорема Ролля

Пусть f(x) непрерывна на [a;b]; дифференцируема во внутренних точках (a,b); f(a)=f(b)=0, тогда внутри отрезка [a;b] существует по крайней мере одна точка c, в которой производная обращается в ноль: $\exists c: a < c < b$, такая что f'(c)=0

Доказательство смотреть в Лакерник А. Р. "Краткий курс высшей математики Пискунов.

Первое замечение Эта теорема останется справедливой, если $f(a) = f(b) \neq 0$

Примеры Например, имеется функция: $f(x) = x^2$, рассмотрим ее на отрезке [-2;2]. Для нее выполняются все условия, следовательно, существует такая точка, в которой производная обращается в ноль. Можно найти, что это точка x=0

1.1.2 Теорема Лагранжа о конечных приращениях

Пусть f(x) непрерывна на [a;b]; дифференцируема во внутренних точках (a,b), тогда $\exists c: a < c < b$, что f(b) - f(a) = f'(c)(b-a)

Доказательство $Q=\frac{f(b)-f(a)}{b-a}$ - число, введем вспомогательную функцию F(x)=f(x)-f(a)-(x-a)Q Уравнение прямой, проходящей через (a;f(a)): $y-f(a)=\operatorname{tg}\alpha(x-a)\Longleftrightarrow y=f(a)+\frac{f(b)-f(a)}{b-a}(x-a)$ F(x)=f(x)-y, то есть мы получили, что F(x) для каждого значения x является разностью ординаты кривой и хорды.

Функция
$$F(x)$$
 удовлетворяет всем условиям теоремы Ролля, $F'(c)=0, F'(x)=f'(x)-Q, F'(c)=f'(c)-Q=0, Q=f'(c).$

Геометрический смысл Геометрический смысл теоремы Лагранжа в том, что при выполнении требуемых условий на кривой найдется точка между a и b, что касательная в которой параллельна хорде ab.

1.1.3 Теорема Коши об отношении приращений двух функций

Пусть есть f(x) и g(x), непрерывные на [a;b] и дифференцируемы во внутренних точках $(a;b), g'(x) \neq 0$ внутри (a;b), **тогда** $\exists c: a < c < b$, что $\frac{f(b)-f(a)}{g(b)-g(a)} = \frac{f'(c)}{g'(c)}$

1.1.4 Теорема Ферма

Пусть f(x) определена на [a;b] и принимает во внутренней точке c наибольшее или наименьшее значение.

Тогда f'(c) = 0, если в этой точке существует конечная производная.

1.2 Геометрические приложения производной

1.2.1 Уравнение касательной к кривой

Касательной y=y(x) в точке A(x;y(x)) называется прямая, к которой стремится секущая, проходящая через точку A и точку $B(x+\Delta x,y(x+\Delta x))$ при условии, что $\Delta x\to 0$

Уравнение касательной Уравнение касательной в точке $(x_0; y_0)$: $y - y_0 = y'(x_0)(x - x_0)$

1.2.2 Уравнение нормали к кривой

Уравнение нормали: $y-y_0=-\frac{1}{y'(x_0)}(x-x_0)$

1.3 Правило Лопиталя

1.3.1 Раскрытие неопределенностей вида $\frac{0}{0}$

Пусть f(x) и g(x) удовлетворяют условию теоремы Коши на интервале [a;b] и выполняется условие f(a)=g(a)=0 Тогда если $\exists \lim_{x \to a} \frac{f'(x)}{g'(x)}$, то $\exists \lim_{x \to a} \frac{f(x)}{g(x)}$, и они равны между собой.

Замечание Если f'(a) = g'(a) = 0, то можно рассматривать собственно производные в качестве функций и дальше применять правило Лопиталя .

1.3.2 Раскрытие неопределенностей вида $\frac{\infty}{\infty}$

Пусть f(x) и g(x) непрерывны и дифференцируемы на всех точках кроме, может, самой точки a, и $g'(x)\neq 0$, и $\lim_{x\to a}f(x)=\infty$, $\lim_{x\to a}g(x)=\infty$ Если $\exists\lim_{x\to a}\frac{f'(x)}{g'(x)}=A\implies \exists\lim_{x\to a}\frac{f(x)}{g(x)}=A$

1.4 Формула Тейлора

Пусть f(x) имеет непр. произв. до (n+1) пор. $P_n(x)$ многочлен степени не выше n: $P_n(a)=f(a),P_n'(a)=f'(a)$ $P_n(x)=f(a)+\frac{f'(a)(x-a)}{1!}+\frac{f''(a)(x-a)^2}{2!}+\ldots+\frac{f^{(n)}(a)(x-a)^n}{n!},R_n(x)=\frac{(x-a)^{n+1}}{(n+1)!}f^{(n+1)}(\xi),a<\xi< x$

Формула Маклорена
$$P_n(x)=f(0)+rac{f'(0)}{1!}x+rac{f''(0)}{2!}x^2+\ldots+rac{f^{(n)}(0)}{n!}x^n$$

Примеры вывода формулы

$$\begin{array}{lll} \hline y=\sin x,y(0)=0 & y=\cos x,y(0)=1 & y=e^x,y(0)=1 \\ y'(0)=1 & y'(0)= & y'(0)=1 \\ y''(0)=0 & y''(0)= & y''(0)=1 \\ y'''(0)=-1 & y'''(0)= & y'''(0)=1 \\ y''''(0)=0 & y''''(0)= & y''''(0)=1 \\ y''''(0)=1 & y''''(0)= & y''''(0)=1 \\ \hline Otcoda \sin x=0+x+0x^2-\frac{1}{3!}x^3+0x^4+\frac{1}{5!}x^5+\ldots=x-\frac{x^3}{3!}+\frac{x^5}{5!}-\ldots, \\ \cos x=1-\frac{x^2}{2!}+\frac{x^4}{4!}-\ldots,e^x=1+x+\frac{x^2}{2!}+\frac{x^3}{3!}+\ldots \\ \hline \\ Muterpecho packmotrpete hattype is hely increpated with $\ln(1+x)=x-\frac{x^2}{2}+\frac{x^3}{2}-\frac{x^4}{2!}$$$

Отсюда
$$\sin x = 0 + x + 0x^2 - \frac{1}{3!}x^3 + 0x^4 + \frac{1}{5!}x^5 + \dots = x - \frac{x^3}{3!} + \frac{x^5}{5!} - \dots,$$

 $\cos x = 1 - \frac{x^2}{2!} + \frac{x^4}{4!} - \dots, e^x = 1 + x + \frac{x^2}{2!} + \frac{x^3}{3!} + \dots$

Интересно рассмотреть натуральный логарифм: $\ln(1+x) = x - \frac{x^2}{2} + \frac{x^3}{3} - \frac{x^4}{4}$ Также $(1+x)^m = 1 + mX + \frac{m(m-1)}{2!}x^2 + \frac{m(m-1)(m-2)}{3!}x^3 + \dots$, $\sqrt{1+x} = 1 + \frac{x}{2} - \frac{1}{2^2}\frac{x^2}{2!} + \frac{1*3*x^3}{2^3*3!} - \frac{1*3*5*x^4}{2^4*4!}$ $\cos^2 x = \frac{1}{2}(\cos 2x + 1) = \frac{1}{2}(1+1-\frac{(2x)^2}{2!} + \frac{(2x)^4}{4!} - \frac{(2x)^6}{6!} + \dots$

$$\sqrt{1+x} = 1 + \frac{x}{2} - \frac{1}{2^2} \frac{x^2}{2!} + \frac{1*3*x^3}{2^3*3!} - \frac{1*3*5*x^4}{2^4*4!}$$
$$\cos^2 x = \frac{1}{2} (\cos 2x + 1) = \frac{1}{2} (1 + 1 - \frac{(2x)^2}{2!} + \frac{(2x)^4}{4!} - \frac{(2x)^6}{6!} + \dots$$

Применение данных формул к вычислению пределов Допустим, имеем $\lim_{x \to 0} \frac{x - \sin x}{x - \lg x} = \dots$

Распишем разложение в Тейлора: ... = $\lim_{x\to 0} \frac{x-x+\frac{x^3}{3!}+o(x^3)}{x-x-\frac{x^3}{3}+o(x^3)} = -\frac{1}{2}$