```
import pandas as pd
import numpy as np
import matplotlib.pyplot as plt
import seaborn as sns
from scipy.stats import skew, kurtosis, shapiro
import statsmodels.api as sm

# Load datasets
covidtotals = pd.read_csv('covidtotals.csv')
nls97_dummy_800 = pd.read_csv('nls97_dummy_800.csv')
```

covidtotals

₹		iso_code	lastdate	location	total_cases	total_deaths	total_cases_pm	total_deaths_pm	population	pop_density	median_age
	0	AFG	2024-02- 04	Afghanistan	231539.0	7982.0	5629.611	194.073	41128772	54.422	18.6
	1	ALB	2024-01- 28	Albania	334863.0	3605.0	117813.348	1268.331	2842318	104.871	38.0
	2	DZA	2023-12- 03	Algeria	272010.0	6881.0	6057.694	153.241	44903228	17.348	29.1
	3	ASM	2023-09- 17	American Samoa	8359.0	34.0	188712.044	767.581	44295	278.205	NaN
	4	AND	2023-05- 07	Andorra	48015.0	159.0	601367.684	1991.408	79843	163.755	NaN
	226	VNM	2023-10- 22	Vietnam	11624000.0	43206.0	118386.518	440.039	98186856	308.127	32.6
	227	WLF	2023-06- 04	Wallis and Futuna	3550.0	8.0	306140.048	689.893	11596	NaN	NaN
	228	YEM	2022-11- 06	Yemen	11945.0	2159.0	354.487	64.072	33696612	53.508	20.3
	229	ZMB	2023-12- 03	Zambia	349304.0	4069.0	17449.783	203.270	20017670	22.995	17.7
	230	ZWE	2024-01- 28	Zimbabwe	266265.0	5737.0	16314.719	351.520	16320539	42.729	19.6
2	231 rows × 17 columns										

Next steps: Generate code with covidtotals View recommended plots New interactive sheet

```
covidtotals.set_index('iso_code', inplace=True)
nls97_dummy_800.set_index('personid', inplace=True)
```

print(covidtotals[['total_cases', 'total_deaths']].describe())

```
total_cases total_deaths
count 2.310000e+02 2.310000e+02
mean 3.351599e+06 3.021420e+04
std 1.148321e+07 1.047789e+05
min 4.000000e+00 0.000000e+00
25% 2.567150e+04 1.775000e+02
50% 1.914960e+05 1.937000e+03
75% 1.294286e+06 1.415000e+04
max 1.034368e+08 1.127152e+06
```

print("Quantiles:\n", covidtotals[['total_cases', 'total_deaths', 'total_cases_pm', 'total_deaths_pm']].quantile([0.25, 0.5, 0.75]))

→ Quantiles:

```
total_cases total_deaths total_cases_pm total_deaths_pm
0.25
        25671.5
                       177.5
                               21821.863
                                                    141.177
0.50
        191496.0
                       1937.0
                                  133946.251
                                                    827.046
0.75
       1294286.0
                      14150.0
                                  345689.831
                                                   1997.513
```

print("Skewness:\n", covidtotals[['total_cases', 'total_deaths']].skew())
print("Kurtosis:\n", covidtotals[['total_cases', 'total_deaths']].kurt())

→ Skewness:

total_cases 6.307179
total_deaths 7.098945
dtype: float64

Kurtosis:

```
7/14/25, 1:07 PM
                                                                           Practical 3.ipynb - Colab
          total_cases
                           47.080248
         {\tt total\_deaths}
                          61.727944
         dtype: float64
    for col in ['total_cases', 'total_deaths']:
        stat, p = shapiro(covidtotals[col].dropna())
        print(f"{col}: Shapiro-Wilk stat={stat:.4f}, p-value={p:.4f}")
         total_cases: Shapiro-Wilk stat=0.3031, p-value=0.0000
         total_deaths: Shapiro-Wilk stat=0.2958, p-value=0.0000
    for col in ['total_cases', 'total_cases_pm']:
        sm.qqplot(covidtotals[col].dropna(), line='s')
        plt.title(f'Q-Q Plot: {col}')
        plt.show()
    ₹
                                          Q-Q Plot: total_cases
                    1e8
               1.0
               0.8
               0.6
          Sample Quantiles
               0.4
               0.2
               0.0
              -0.2
                                                     0
                                                                              2
                            -2
                                        -1
                                                                  1
                                           Theoretical Quantiles
                                           Q-Q Plot: total cases pm
               800000
               600000
               400000
          Sample Quantiles
               200000
                     0
              -200000
                                <u>-</u>2
                                             -1
                                                Theoretical Quantiles
    def iqr_outliers(series):
        Q1 = series.quantile(0.25)
        Q3 = series.quantile(0.75)
        IQR = Q3 - Q1
        outliers = series[(series < Q1 - 1.5*IQR) | (series > Q3 + 1.5*IQR)]
        return outliers
    outliers_cases = iqr_outliers(covidtotals['total_cases'])
```

```
https://colab.research.google.com/drive/1WIMgtSJbcAAhDpe_VUnALNAx5JPXo_nz#scrollTo=20dce2a7-cb85-4a4b-8c00-b20bc3f53098&printMo...
```

print("Outliers in total_cases:\n", outliers_cases)

→ Outliers in total_cases: iso_code ARG

AUS

AUT

10094643.0

11769858.0

6081287.0

```
RFI
              4855952 A
     BRA
             37519960.0
     CAN
              4774222.0
              5345008.0
     CHN
             99329249.0
             6393550.0
     COL
     CZE
              4756085.0
     DNK
             3433033.0
     FRA
             38997490.0
             38437756.0
     DEU
             5611832.0
     GRC
     IND
            45026139.0
     IDN
              6828268.0
     IRN
              7626527.0
     ISR
              4841558.0
     ITA
             26699442.0
     JPN
            33803572.0
     MYS
              5269967.0
              7702809.0
     MEX
     NI D
              8633769.0
              4536733.0
     PFR
     PHL
              4140383.0
     POL
              6653365.0
     PRT
              5641992.0
     ROU
              3519108.0
     RUS
            23774451.0
     ZAF
              4072636.0
     KOR
             34571873.0
             13980340.0
     ESP
     CHE
             4450977.0
             4765718.0
     THΔ
            17004677.0
     TUR
     UKR
             5521032.0
     GBR
             24892903.0
     USA
            103436829.0
     VNM
            11624000.0
     Name: total_cases, dtype: float64
def detect_outliers_iqr(df, columns):
    outliers_dict = {}
    for col in columns:
       outliers_dict[col] = iqr_outliers(df[col])
    return outliers dict
outliers = detect_outliers_iqr(covidtotals, ['total_cases', 'total_deaths', 'total_cases_pm', 'total_deaths_pm'])
outliers_deaths_pm = iqr_outliers(covidtotals['total_deaths_pm'])
print(covidtotals.loc[outliers_deaths_pm.index, ['total_deaths_pm', 'population', 'gdp_per_capita']])
               total_deaths_pm population gdp_per_capita
₹
     iso_code
     BIH
                      5066.290
                                   3233530
                                                 11713.895
     BGR
                      5703.518
                                   6781955
                                                 18563.307
                      4918.281
                                   9967304
                                                 26777.561
     HUN
     PER
                      6507.656
                                  34049588
                                                 12236.706
plt.hist(covidtotals['total_cases'].dropna(), bins=30)
plt.title('Histogram: total_cases')
plt.xlabel('Total Cases')
plt.ylabel('Frequency')
plt.show()
plt.hist(np.log1p(covidtotals['total_cases'].dropna()), bins=30)
plt.title('Histogram: log(total_cases + 1)')
plt.xlabel('Log Total Cases')
plt.ylabel('Frequency')
plt.show()
```


cols = ['total_cases', 'total_deaths', 'total_cases_pm', 'total_deaths_pm', 'population', 'median_age', 'gdp_per_capita']
cor_matrix = covidtotals[cols].corr()
sns.heatmap(cor_matrix, annot=True, cmap='coolwarm')
plt.title('Correlation Matrix')
plt.show()


```
covidtotals['cases_q'] = pd.qcut(covidtotals['total_cases'], q=4, labels=False)
covidtotals['deaths_q'] = pd.qcut(covidtotals['total_deaths'], q=4, labels=False)

crosstab = pd.crosstab(covidtotals['cases_q'], covidtotals['deaths_q'])
print("Cases vs Deaths Quantile Crosstab:\n", crosstab)
```

```
Cases vs Deaths Quantile Crosstab:

deaths_q 0 1 2 3

cases_q
0 47 10 1 0
1 11 37 10 0
2 0 11 36 10
```

```
unexpected = covidtotals[(covidtotals['cases_q'] == 3) & (covidtotals['deaths_q'] <= 1)]
print("Countries with high cases and low deaths:\n", unexpected[['total_cases', 'total_deaths']])</pre>
```

```
Countries with high cases and low deaths:
    Empty DataFrame
    Columns: [total_cases, total_deaths]
    Index: []

sns.scatterplot(data=covidtotals, x='total_cases', y='total_deaths')
plt.title('Total Cases vs Total Deaths')
plt.sepur()
```

```
sns.scatterplot(data=covidtotals, x='total_cases_pm', y='total_deaths_pm')
plt.title('Total Cases PM vs Total Deaths PM')
plt.show()
```


 $filter1 = nls97_dummy_800[(nls97_dummy_800['wageincome'] > 0) \& (nls97_dummy_800['weeksworked_2020'] == 0)] \\ print("Wage income but no work weeks:\n", filter1[['wageincome', 'weeksworked_2020']]) \\$

→ Wage income but no work weeks:

Mage Inco	iic bac no work	WCCR5.
	wageincome	weeksworked_2020
personid		
17	31748.27076	0
98	69027.31060	0
112	31995.99540	0
116	13785.45235	0
171	43365.09485	0
434	32075.54430	0
440	45696.51454	0
482	37055.79023	0
571	70229.12666	0
593	14662.25443	0
594	32931.04389	0
596	51266.49182	0
612	49499.90239	0
629	28282.65433	0
670	44458.66410	0
678	41697,10686	0

four_year_college = nls97_dummy_800[nls97_dummy_800['college_type'].str.contains('4-year', na=False)]
print("Individuals ever enrolled in a 4-year college:\n", four_year_college[['college_type']])

→ Individuals ever enrolled in a 4-year college:

```
785
                  4-year
    791
                  4-year
                  4-year
    794
                  4-year
    798
                  4-year
    [329 rows x 1 columns]
print("Graduate enrollment without bachelor's enrollment:\n", grad_no_bachelor[['enrolled_grad', 'enrolled_bachelors']])
Graduate enrollment without bachelor's enrollment:
              {\tt enrolled\_grad} \quad {\tt enrolled\_bachelors}
    personid
                        1
    4
                        1
                                           0
    14
                        1
                                           0
    27
                                           0
    38
                        1
                                           0
    767
                                           0
    771
    772
                                           0
                                           0
    777
                        1
                                           0
    785
    [112 rows x 2 columns]
bachelor_or_higher = nls97_dummy_800[nls97_dummy_800['highestdegree'].isin(['Bachelor', 'Master', 'PhD'])]
no\_four\_year\_enroll = bachelor\_or\_higher[\college\_type'].str.contains('4-year', na=False)]
print("Bachelor+ degree holders with no 4-year college enrollment: \\ ", no\_four\_year\_enroll[['highestdegree', 'college\_type']])
⇒ Bachelor+ degree holders with no 4-year college enrollment:
             highestdegree college_type
                   Master
                 Bachelor
                                  NaN
    11
                   Master
                                0ther
    12
                 Bachelor
                               2-year
    22
                   Master
                                  NaN
                     PhD
    786
                               2-year
    789
                 Bachelor
                               2-year
    790
                 Bachelor
                               2-year
    795
                 Bachelor
                               2-year
                               2-year
    [248 rows x 2 columns]
wage_mean = nls97_dummy_800['wageincome'].mean()
wage_std = nls97_dummy_800['wageincome'].std()
print("High wage earners (3\sigma above mean):\n", high_wage[['wageincome']])
→ High wage earners (3σ above mean):
               wageincome
    personid
    319
             88646.39454
nls97_dummy_800['week_change'] = nls97_dummy_800['weeksworked_2021'] - nls97_dummy_800['weeksworked_2020']
significant_change = nls97_dummy_800[abs(nls97_dummy_800['week_change']) > 20]
print("Significant change in weeks worked (>|20|):\n", significant_change[['weeksworked_2020', 'weeksworked_2021', 'week_change']])
⇒ Significant change in weeks worked (>|20|):
              weeksworked 2020 weeksworked 2021 week change
    personid
    4
                          51
                                                      -47
    9
                           4
                                           31
                                                      27
    13
                           5
                                           49
                                                       44
    16
                          32
                                           2
                                                      -30
    17
                           0
                                           25
                                                      25
    785
                          44
                                           20
                                                      -24
    797
                          51
                                           17
                                                      -34
    798
                                                      -26
                          36
                                           10
    799
                                           47
                                                       40
                                                      -42
    800
                          43
                                           1
    [305 rows x 3 columns]
```

crosstab_grade_degree = pd.crosstab(nls97_dummy_800['highestgradecompleted'], nls97_dummy_800['highestdegree'])
print("Crosstab: Highest Grade vs. Highest Degree:\n", crosstab_grade_degree)

Crosstab: Highest Grade vs. Highest Degree:
highestdegree Associate Bachelor High School Master PhD
highestgradecompleted
104-b 24 30 20 20 29 37