

Ministério da Educação Universidade Tecnológica Federal do Paraná Campus Pato Branco Disciplina de Fundamentos de Programação Professora Mariza Miola Dosciatti Curso de Engenharia de Computação

Lista 2 - Estruturas Homogêneas

Vetores de caracteres, funções e arquivos de cabeçalho

Exercícios de sala de aula

Observações:

- ✓ Vetores precisam ter tamanho definido quando são declarados.
- ✓ Cuidado para não ultrapassar o tamanho de um vetor, ou seja, percorrer índices (ler) ou armazenar valores além do tamanho definido para o vetor.
- ✓ Para gerar números aleatório utilizar a função rand() que está na biblioteca stdlib.h e necessário incluir a biblioteca time.h para usar time(NULL). Inicialmente declarar srand(time(NULL)); para que seja gerado um início (semente) aleatória para a função rand(); depois utilizar rand(), que pode ser rand() / dividido por alguma constante ou variável ou rand() % resto de alguma constante ou variável para obter números em uma determinada faixa.
- ✓ A constante RAND_MAX tem valor 32767. As funções srand() e rand() e a constante RAND_MAX requerem a biblioteca stdlib.h e a função time() requer a biblioteca time.h.
- 1) Criar uma função para gerar valores aleatórios em um vetor com o seguinte protótipo:

void gerarVetorInteiroComFaixa(int vet[], int tam, int limInf, int
limSup);

Sendo que limInf e limSup são os limites da faixa de valores sorteados.

<u>Dica:</u> Use vetor[i] = (rand() % ((limSup - limInf) + 1)) + limInf; para gerar valores aleatórios entre os limites informados.

Usando a função gerarVetorInteiroComFaixa(), gerar aleatoriamente um vetor com 20 elementos entre 5 e 20. Em seguida ordenar o vetor. Percorrer o vetor ordenado e mostrar os divisores e a quantidade de divisores de cada um dos valores armazenados. Caso existam elementos repetidos, considerar apenas um deles.

<u>Atenção:</u> Neste exercício, além de utilizar a função gerarVetorInteiroComFaixa(), usar também a função mostrarVetorInteiro(), para exibir os elementos de um vetor, a função ordenarVetorInteiro(), para ordenar os

elementos de um vetor, e as funções mostrarDivisores() e qtdeDivisores(), que criadas em listas de exercícios anteriores e estão armazenadas em uma biblioteca chamada "divisores.h".

Exemplo:

2) Gerar um vetor com 20 elementos aleatórios entre 5 e 20. Ordenar o vetor. Percorrer o vetor ordenado e mostrar os pares e a soma dos pares de cada um dos valores armazenados. Caso existam elementos repetidos, considerar apenas um deles.

Neste exercício, além de utilizar a função gerarVetorInteiroComFaixa(), a função mostrarVetorInteiro() e a função ordenarVetorInteiro(), criar também função mostrarPares(), que recebe um número e mostra todos os números pares positivos até esse número, e função somarPares(), que recebe um número e retorna a soma de todos os números pares positivos até esse número. As funções mostrarPares() e somarPares()devem ser criadas ema biblioteca chamada "pares.h".

Exemplo:

```
==== VETOR ORIGINAL ====
15 6 16 20 12 5 9 18 11 7 12 15 19 16 11 5 10 19 13 13
==== VETOR ORDENADO ====
5 5 6 7 9 10 11 11 12 12 13 13 15 15 16 16 18 19 19 20
==== PARES ====
 5 \Rightarrow 2 \quad 4 \quad Soma = 6
         4 6 Soma = 12
4 6 Soma = 12
 6 => 2
        4
 7 => 2
9 => 2 4 6 8 Soma = 20
10 => 2 4 6 8 10 Soma = 30
11 => 2 4 6 8 10 Soma = 30
12 => 2 4 6 8 10 12 Soma = 42
13 \Rightarrow 2 \quad 4 \quad 6 \quad 8 \quad 10 \quad 12 \quad Soma = 42
15 => 2
         4 6 8 10 12 14 Soma = 56
             6
6
                8
8
16 =>
      2
          4
                     10 12 14 16 Soma = 72
         4
18 =>
      2
                     10
                         12
                            14
                                    18 Soma = 90
                                16
         4 6 8
                     10 12 14 16 18 Soma = 90
19 =>
      2
20 => 2
         4 6 8 10 12 14 16 18 20 Soma = 110
Deseja repetir o programa (S/s)?
```

- 3) Na biblioteca "vetores.h" criar função:
- a) Com o protótipo void gerarVetorFloat0a1(float vetor[], int tam) para gerar
 valores float aleatórios entre 0 e 1 em um vetor. Use vetor[i] = (float)(rand()) /
 RAND MAX; para gerar valores aleatórios entre 0 e 1.
- b) Com o protótipo void gerarVetorFloat0a100 (float vetor[], int tam) para gerar
 valores float aleatórios entre 0 e 100 em um vetor. Use vetor[i] = ((float) (rand()) /
 RAND MAX) *100; para gerar valores aleatórios entre 0 e 100.
- c) Com o protótipo void mostrarVetorFloat(float vetor[], int tam) para mostrar os elementos de um vetor float.
- d) Com o protótipo float somarVetorFloat(float vetor[], int tam) para somar os elementos de um vetor float.

Usando essas funções:

- a) Gerar um vetor float com 10 elementos aleatórios entre 0 e 1, exibir o vetor e mostrar a soma de todos os elementos do vetor.
- b) Gerar um vetor float com 50 elementos aleatórios entre 0 e 100 e exibir o vetor. Criar outros dois vetores numéricos do tipo float, em um deles armazenar os valores menores que 50 e em outro os maiores que 50. Mostrar os vetores gerados.

Exemplo:

	/ETOR 1 =																
	0.5	0.5	0.4	0.1	0.1	0.3	0.7	0.0	0.2								
0.8		0.5	0.4	0.1	0.1	0.5	0.7	0.0	0.2								
Soma:	3.07																
==== VETOR 2 ====																	
76.6	53.3	53.0	44.2	11.0	6.6	31.4	72.5	0.8	17.1	45.2	39.4	43.1	57.2	37.6	83.9	65.6	57.3
25.4	80.9	18.4	94.7	45.6	63.7	16.8	26.5	68.0	50.4	76.6	46.0	38.3	74.4	32.9	90.4	69.6	75.4
81.9	76.3	45.3	51.1	37.1	94.2	51.1	23.9	40.8	36.8	0.9	27.0	20.6	91.4				
==== V	==== VETOR 3 ====																
44.2	11.0	6.6	31.4	0.8	17.1	45.2	39.4	43.1	37.6	25.4	18.4	45.6	16.8	26.5	46.0	38.3	32.9
45.3	37.1	23.9	40.8	36.8	0.9	27.0	20.6										
43.3	37.11	23.3	40.0	30.0	0.5	27.0	20.0										
V	/ETOR 4 =																
			72 5	F7 3	02.0	CF C	F7 3	00.0	04.7	62.7	co. o	FO 4	76.6	74.4	00.4	CO C	75.4
76.6	53.3	53.0	72.5	57.2	83.9	65.6	57.3	80.9	94.7	63.7	68.0	50.4	76.6	74.4	90.4	69.6	75.4
81.9	76.3	51.1	94.2	51.1	91.4												
Deseja	repetir	o progr	ama (S/s) ?													

- 4) Na biblioteca "vetores.h" criar função:
- a) Com o protótipo void gerarVetorCharMinuscula(char vetor[], int tam) para gerar caracteres alfabéticos minúsculos em um vetor. Use vetor[i] = rand() % 26 + 97; <u>Explicando:</u> A função rand() % 26 gera um número aleatório entre 0 e 25, que somado com 97 equivale a um valor entre 97 a 122, que se refere aos caracteres alfabéticos minúsculos da tabela ASCII.

b) Com o protótipo void gerarVetorCharMaiuscula(char vetor[], int tam) para caracteres alfabéticos maiúsculos. Use vetor[i] = rand() % 26 + 65;

Explicando: A função rand() % 26 gera um número aleatório entre 0 e 25, que somado com 65 equivale a um valor entre 65 a 90, que se refere aos caracteres alfabéticos maiúsculos da tabela ASCII.

c) Com o protótipo void mostrarVetorChar(char vetor[], int tam, int n) para mostrar o vetor gerado em colunas com n caracteres por linha, separados por um espaço.

Usando essas funções:

- a) Gerar um vetor com 100 caracteres alfabéticos minúsculos.
- b) Gerar um vetor com 200 caracteres alfabéticos maiúsculos.
- c) Mostrar ambos os vetores gerados em colunas com 10 caracteres por linha, sendo cada caractere deve ser separado por um espaço.

Exemplo:

```
Quantos caracteres deseja mostrar por linha? 20
=== VETOR DE MINUSCULAS ===
kquvcnckdqdxgtuycuho
mxiozqyehislyqzjzcda
pbekddpwncpbxlahzdcf
rpthlpbpimxehkbiahlo
hatgiubsfqtqpssvonlk
=== VETOR DE MAIUSCULAS ===
KQUVCNCKDQDXGTUYCUHO
MXIOZQYEHISLYQZJZCDA
P B E K D D P W N C P B X L A H Z D C F
RPTHLPBPIMXEHKBIAHLO
HATGIUBSFQTQPSSVONLK
F H I Q F Y E P D R Y K W T V X T R K H
H D F F J H W Z J D G M Y Y C W K J O C
UBDFCZOAISPWZYHVRFNK
DAZCNROBWAJTLNBSBBXD
J D D G G Y U X J S Q I U C N H W I W I
Deseja repetir o programa (S/s)?
```

5) Na biblioteca "vetores.h" criar uma função com o protótipo void gerarVetorPositivoNegativo(int vetor[], int tam, int limNegativo, int limPositivo) para gerar números positivos e negativos em um intervalo de valores. Use vetor[i] = rand() % (limPositivo + limNegativo + 1) - limNegativo; Usando essa função:

Gerar um vetor A de inteiros com 100 elementos, com valores entre -50 e +50. Armazenar em um vetor B somente os valores positivos do vetor A.

Exemplo:

==== VETOR A ====												
30	-4	4	-41	-11	-43	-44	-32	-21	-25	-23		
40	10	-10	5	46	-12	-20	-5	48	-3	-41		
35	-31	-33	-26	-30	-8	-20	5	34	23	-20		
-36	-20	3	-15	-50	22	-26	-44	28	-15	-40		
25	35	25	40	-40	-14	42	19	18	48	-20		
37	24	-4	49	-7	-50	-4	38	23	-36			
==== VETOR B ====												
30	4	49	26	40	10	5	46	48	28	48		
9	31	13	43	32	3	22	28	16	38	17		
42	19	18	48	4	44	37	24	49	38	23		
Desej	ja repeti	r o prog	rama (S/	s)?								

6) Uma locadora de vídeos armazena em um vetor A de 300 posições a quantidade de filmes retirados por seus clientes durante o ano. A locadora está fazendo uma promoção e para cada 10 filmes retirados, o cliente tem direito a uma locação grátis. Faça um programa que crie um vetor B contendo a quantidade de locações gratuitas a que cada cliente tem direito. Declare ambos os vetores com valores inteiros.

Exemplo:

===	= VETOR A	====															
52	50	4	94	13	81	7	78	1	36	21	35	91	51	62	31	96	96
87	66	48	94	6	66	90	9	5	55	52	26	5	84	95	47	44	74
34	18	40	90	36	31	5	12	70	68	89	76	77	96	31	86	89	94
14	66	75	71	58	42	93	2	59	30	88	36	49	52	1	100	48	84
18	27	46	78	90	91	21	63	23	52	17	60	64	15	65	76	84	87
8	40	30	29	15	46	26	17	49	3	70	13	64	45	56	60	58	67
63	72	98	97	79	59	76	43	6	96	98	18	53	72	29	47	96	31
60	54	33	84	19	97	10	88	58	56	49	27	46	40	76	39	60	89
77	77	30	77	15	25	79	10	77	70	47	81	98	74	49	15	86	27
83	80	25	30	95	79	18	19	91	37	25	65	76	14	40	27	74	20
66	99	43	45	73	22	36	43	21	40	36	93	57	29	80	57	94	97
12	36	42	24	92	22	11	69	84	87	84	20	91	89	43	25	54	50
80	95	54	24	53	84	76	20	70	35	68	20	38	48	3	24	94	23
60	47	46	47	54	61	46	100	79	84	71	91	12	91	66	17	35	34
89	75	85	63	75	20	86	45	84	63	1	11	98	59	29	43	45	40
52	88	58	39	17	56	46	93	45	34	53	45	37	35	33	28	83	32
83	48	86	95	33	27	71	97	73	36	10	3						
===		====															
5	5	0	9	1	8	0	7	0	3	2	3	9	5	6	3	9	9
8	6	4	9	0	6	9	0	0	5	5	2	0	8	9	4	4	7
3	1	4	9	3	3	0	1	7	6	8	7	7	9	3	8	8	9
1	6	7	7	5	1	Q	a	5	3	Ω	3	Λ	5	a	10	Λ	Q