CSCI 5454: PS1

Robert Werthman

1.

Let's say these algorithms solve an array sorting problem.

- Let algorithm A be bubblesort with a worst-case runtime of n^2 .
- Let algorithm B be mergesort with a worst-case runtime of n * log(n).
- Let C be the newly designed sorting algorithm with a worst-case runtime of h(n).

In this case, O(min(f(n), g(n))) will become O(n * log(n)) because it is the smaller of the two runtimes.

If h(n) is log(n) then h(n) achieves the running time O(min(f(n), g(n))) because log(n) does not grow faster than n * log(n) and is therefore bounded above by it.

Yes, you can achieve a running time exactly min(f(n), g(n)). Algorithm C would need to be designed in such a way that its running was equal to min(f(n), g(n)).

2.

Proposition/Claim: For any real constants a and b, where b > 0, the asymptotic relation $(n + a)^b = \Theta(n^b)$ is true.

Theorem: The asymptotic relation $(n+a)^b = \Theta(n^b)$ is true iff:

• There exists positive constants c_1, c_2, n_0 s uch that $0 \le c_1(n^b) \le (n + a)^b \le c_2(n^b)$ for all $n \ge n_0$.

In order to prove the proposition above we must find some constants c_1, c_2, n_0 to satisfy the above bulleted sentence.

Proof:

First we want to find the floor and ceiling of n + a so we can create an inequality similar to the one in the theorem above.

- 1. If $|a| \le n$ then we can say that $n + a \le n + |a| \le 2n$ (Ceiling of n + a).
- 2. If $|a| \leq \frac{1}{2}n$ then we can say that $n + a \geq n |a| \geq \frac{1}{2}n$ (Floor of n + a).

Now if $2|a| \leq n$ then we can combine the floor and ceilings into an compound inequality that holds true:

$$0 \le \frac{1}{2}n \le n + a \le 2n$$

The only thing missing from this new equation is a power of b. Raising the new equation to a power of b gives:

$$0 \le (\frac{1}{2}n)^b \le (n+a)^b \le (2n)^b \Rightarrow 0 \le (\frac{1}{2})^b n^b \le (n+a)^b \le (2)^b n^b$$

Extracting the constants c_1, c_2, n_0 from this equation yields $c_1 = (\frac{1}{2})^b, c_2 = 2^b$, and $n_0 = 2|a|$ since $n \geq 2|a|$. These represent one solution.

3.

 $f(n) = \Omega g(n)$ means that for all values to the right of some n_0 the value of f(n) is on or above cg(n).

n!	e^n	$\left(\frac{3}{2}\right)^n$	(lg n)!	n^2	$n \lg n$	lg(n!)	n	$(\sqrt{2})^{\lg n}$	2^{lg*n}	$n^{1/lgn}$	1	
----	-------	------------------------------	---------	-------	-----------	--------	---	----------------------	------------	-------------	---	--

Equivalence Classes

$$\begin{aligned} & lg(n!) = \Theta(n \, lg \, n) \\ & n^{1/lg \, n} = \Theta(1) \end{aligned}$$

4.

a.

$$T(n) = T(n-1) + n, T(1) = 1$$

I will a recurrence tree to solve this recurrence relation.

The height of the tree is n and the cost at the root starts at n and decreases by 1 each level in the tree.

This means that the total cost of the tree is n.

So
$$T(n) = O(cost * depth) = O(n^2)$$
.

b.

$$T(n) = 2T(n/2) + n^3$$
, $T(1) = 1$

I will use the master method to solve this recurrence relation.

$$a=2,b=2,f(n)=n^3$$
 so $n^{\log_b a}=n^{\log_2 2}=n$

so
$$n^{\log_b a} = n^{\log_2 2} = n$$

This tells us that the first 2 rules of the master theorem do not apply.

1.
$$f(n) \neq O(n^{1-\epsilon})$$

2.
$$f(n) \neq \Theta(n)$$

This leaves the 3rd rule of the master theorem as the solution.

3.
$$f(n)=n^3=\Omega(n^{1+\epsilon})$$
 if $\epsilon=1$. And $2f(n/2)\leq cf(n)\Rightarrow 2(n/2)^3\leq cn^3$ if $c=\frac{1}{2}$ and $n\geq 1$.

Therefore, $T(n) = \Theta(n^3)$.

5.