MONDAY(4/22/2019)

MECHANICS OF CCD(CHARGED COUPLED DEVICE)

-next week, taking data with CCD

FITS IMAGES

- Scattered light area
- Flat area?
- Investigating the flatness
 - Colourmap
 - Statistic, histogram
 - Number of pixels
- Poisson Distribution
 - How many times does the event occur
 - Exp: How many I will encounter a penny
 - Gaussian distribution ~ Histogram
 - If an average of xxx and STD yyy, what is the probability of man >xxx
- Looking at the data
 - Large area, a large Gaussian distribution

_

- Photon is governed by Poisson
- Probability of their arrival
- Lots of photons, flats area = approaching gaussian distribution
- Overscan may look like a Gaussian even though is a small area.
- Bias region, can read it out and removed it
 - Zero second image
 - The imaginary region, just reading the readout.

CCD

- Charge transfer => Bucket brigade
- Transfer charge from pixel to pixel on the amplifier.
- Complication
 - Use electricity to confined the electron from pixel to pixel
 - Losing charge as part of transferring
 - You have to know how charge is handled in this process
- Readout
 - Down in a column and out in a row
 - In a special readout cell

- QE(quantum efficiency)
 - How high or low efficiency is
 - Thinner CCD is more responsive towards the BLUE and RED.
 - Hard aspect:
 - Old or new CCD
 - Mirrors
 - Code
- HEADER
 - QE
 - Gives info on how big image or area in the sky
 - Orientation of ccd
- CCD
 - They are linear
 - Pixel can saturate
 - Due to photons
 - Gain is intrinsic
 - Responsive in optical
 - CCD is commercially viable(CHEAP)
- CMOS technology
 - Photon to electron conversion is happening at the same time as a charge to voltage conversion
- MICROCHANNEL PLAT
 - Can do the time of arrival of photons
 - CCD can only know the length of exposure
- Signal to Noise (SN)
 - Shot noise
 - Comes from the Poisson statistic
 - You get variation at every window
 - Underlying photon norse, their arrival

- Thermal noise/dark current
 - Cool CCD to improve their efficiency
 - But, noise is generated
 - You get more dark current on your image, so we can remove then
 - Dark have to be the same length as your the data that you're working
- Read noise
 - Variation in the CCD readout electronics
 - Can cause normal distribution around bias level
- Bias
- How to remove this bias?

WEDNESDAY (4/24/2019)

- Continuation from Monday
- Submit homework

FRIDAY (4/26/2019)

- 'Workshop with meredith'
- Python in reading csv or tsv data
- By using panda
 - Df command
 - Astype

NOTE: CODE UPLOADED TO GITHUB