Determinação de árvores abragentes de custo mínimo

Determinação de árvores abragentes de custo mínimo

Algoritmos de Kruskal e Prim

Universidade de Aveiro 2019/2020

Determinação de árvores abragentes de custo mínimo

Árvores abrangentes de custo mínimo Algoritmo de Kruskal Algoritmo de Prim

Exemplos e exercícios

Referências e bibliografia

Árvores abrangentes de custo mínimo

Algoritmo de Kruskal

Algoritmo de Kruskal

Algoritmo de Kruskal

- **Entrada**: grafo G = (V, E, W);
- Saída: T árvore abrangente de custo mínimo;
- Ordenar as arestas de G, a₁,..., a_m, por ordem não decrescente do seu custo;
- **2.** $E' \leftarrow \emptyset$ e $i \leftarrow 1$;
- 3. Enquanto T = (V, E') não é conexo faz
 - ▶ Se $E' \cup \{a_i\}$ não contém um ciclo então $E' \leftarrow E' \cup \{a_i\}$;
 - $i \leftarrow i + 1$;
 - Fim faz;
- ▶ Devolver T = (V, E').

Árvores abrangentes de custo mínimo

Algoritmo de Prim

Algoritmo de Prim

Algoritmo de Prim

- **Entrada**: grafo G = (V, E, W);
- Saída: T árvore abrangente de custo mínimo;
- **1.** Escolher um vértice $v \in V$;
- **2.** Fazer $V' \leftarrow \{v\}$; $E' \leftarrow \emptyset$;
- 3. Enquanto $V' \neq V$ fazer
 - ▶ De todas as arestas $e = (v_i, v_j)$, tais que $v_i \in V'$, $v_j \in V \setminus V'$ determinar a de menor custo $e^* = (v_i^*, v_i^*)$
 - ▶ Fazer $V' \leftarrow V' \cup \{v_i^*\}; E' \leftarrow E' \cup \{e'\}.$
- ▶ Devolver T = (V', E').

Exemplo de aplicação do algoritmo de Kruskal Ordenar as arestas:

Exemplo de aplicação do algoritmo de Kruskal Ordenar as arestas:

Exemplo de aplicação do algoritmo de Kruskal Ordenar as arestas:

Exemplo de aplicação do algoritmo de Kruskal Ordenar as arestas:

Exemplo de aplicação do algoritmo de Kruskal Ordenar as arestas:

Exemplo de aplicação do algoritmo de Kruskal Ordenar as arestas:

Exemplo de aplicação do algoritmo de Kruskal Ordenar as arestas:

Exemplo de aplicação do algoritmo de Kruskal Ordenar as arestas:

Exemplo de aplicação do algoritmo de Kruskal Ordenar as arestas:

Exemplo de aplicação do algoritmo de Kruskal Ordenar as arestas:

Exemplo de aplicação do algoritmo de Kruskal Ordenar as arestas:

Exemplo de aplicação do algoritmo de Prim

Escolhemos o vértice d.

Exemplo de aplicação do algoritmo de Prim

Escolhemos o vértice d.

Exemplo de aplicação do algoritmo de Prim

Escolhemos o vértice d.

Exemplo de aplicação do algoritmo de Prim

Exemplo de aplicação do algoritmo de Prim Escolhemos o vértice d.

Exemplo de aplicação do algoritmo de Prim Escolhemos o vértice d.

Exemplo de aplicação do algoritmo de Prim Escolhemos o vértice d.

Exercício

Determinar a árvore abrangente de custo mínimo do grafo *G* com custos nas arestas, definido pela seguinte matriz de custos:

$$W = \begin{pmatrix} 0 & 1 & \infty & 10 & 8 & 3 \\ 1 & 0 & 13 & 10 & 6 & 4 \\ \infty & 13 & 0 & 15 & \infty & 4 \\ 10 & 10 & 15 & 0 & 9 & \infty \\ 8 & 6 & \infty & 9 & 0 & 7 \\ 3 & 4 & 4 & \infty & 7 & 0 \end{pmatrix}$$

Referências e bibliografia I

D. M. Cardoso, J. Szymanski e M. Rostami, *Matemática Discreta: combinatória, teoria dos grafos e algoritmos*, Escolar Editora, 2008.