Sistemas Digitais Portas Lógicas

Aula 03

Prof. Leandro Nogueira Couto UFU – Monte Carmelo 05/2013

Funções e Portas Lógicas

- George Boole, 1854
 Investigation on the Laws of Thought
- Fundamentos da álgebra Booleana
- Podemos representar essa álgebra com componentes eletrônicos
- Usamos os 2 estados possíveis, 0 e 1, no lugar de verdadeiro e falso

Funções e Portas Lógicas

- Com a invenção dos relays e transistors no século XX, foi possível reproduzir o comportamento dessas funções Booleanas em circuitos digitais
- Antes, era tudo analógico!
- Tamanho de um transistor no Xbox ONE: 28 nm
- Número de transistores no Xbox ONE: 5 bilhões

Funções e Portas Lógicas

 Por exemplo, dado 2 entradas diferentes A e B que podem ser 0 ou 1 será possível replicar a função lógica A B usando transistores? (simplificado!)

Porta E ou AND

2-input AND gate

A	В	Output
0	0	0
0	1	0
1	0	0
1	1	1

- A função AND equivale à multiplicação
- Podemos escrever como A and B, ou A.B
- Output será 1 apenas quando todas as entradas (no caso A e B) forem 1

Porta E ou AND

 Podemos representar AND como switches em série

 O número de entradas pode variar. Podemos ter uma AND de 3 entradas, por exemplo:

Porta OU ou OR

Α	В	Х
0	0	0
0	1	1
1	0	1
1	1	1

- A função OU equivale à adição
- Podemos escrever como A or B, ou A+B
- Output será 0 apenas quando todas as entradas (no caso A e B) forem 0

Porta OU ou OR

 Podemos representar OR como switches em paralelo

 Como na AND, o número de entradas pode variar

Porta NÃO ou NOT

NOT (Inverter)

- Também chamamos a função NOT de inversor
- Note que a negação é representada pela "bolinha"
- O triângulo representa apenas um "buffer"
 - (Se tivermos só o triângulo chamamos de buffer não-inversor)
- Output será sempre invertido

Porta NÃO ou NOT

NOT (Inverter)

Α	В
0	1
1	0

 A notação para o NOT nos Sistemas Digitais é uma barra sobre a variável de entrada ou um til (~):

Ā ou ~A

Porta OU ou OR

O circuito para uma porta NOT, por curiosidade:

Porta NE ou NAND

- Como podemos implementar a expressão ¬(A∧B) ?
- Já sabemos fazer o AND e sabemos fazer o NOT!
- Podemos desenhar a porta NÃO-AND, ou NAND, como na figura da esquerda
- Na notação de SD: A . B

Д	В	Output
0	0	1
0	1	1
1	0	1
1	1	0

Porta NOU ou NOR

 O mesmo é válido pra porta NÃO OR, ou NOR

Α	В	Out
0	0	1
0	1	0
1	0	0
1	1	0

Porta NOU ou NOR

- Note que a bolinha significa negação, ou NOT
- Podemos colocá-la até mesmo logo antes de uma porta lógica, como no exemplo ao lado
- Como fica a tabela verdade ao lado? Note que não é a mesma coisa que NAND!
- Exemplo (circuito FSM)

PORTA	Simbologia	Tabela da Verdade	Função Lógica	Expressão
E AND		A B S 0 0 0 0 1 0 1 0 0 1 1 1	Função E: Assume 1 quando todas as variáveis forem 1 e 0 nos outros casos.	S=A.B
OU OR		A B S 0 0 0 0 1 1 1 0 1 1 1 1	Função OU: Assume 0 quando todas as variáveis forem 0 e 1 nos outros casos.	S=A+B
NÃO NOT	->>-	A S 0 1 1 0	Função NÃO: Inverte a variável aplicada à sua entrada.	S=A
NE NAND		A B S 0 0 1 0 1 1 1 0 1 1 1 0	Função NE: Inverso da função E.	S=(A.B)
NOU NOR		A B S 0 0 1 0 1 0 1 0 0 1 1 0	Função NOU: Inverso da função OU.	S=(A+B)

- Vimos antes que podemos combinar portas lógicas.
- Como saber qual a fórmula que determinado circuito implementa?
- Resolvamos os exemplos:

Α	В	C	AB	AC	AB + AC
0	0	0	0	0	O
o	0	-	0	0	O
0	1	0	0	0	O
0	1	1	0	0	0
1	0	0	0	0	0
1	0	1	0	1	1
1	1	0	1	0	1
1	1	1	1	1	1

Α	В	C	A	B+C	A(B + C)
0	0	0	0	0	О
О	0	-	0	1	О
0	•	O	0	1	0
0	1	1	0	1	0
1	0	0	1	0	0
1	0	1	Ψ	1	1
1	1	0	1	1	1
1	1	1	1	1	1

 Pelo mesmo raciocínio extraímos a tabela-verdade a partir do circuito (esse é conhecido como Circuito da Maioria):

• Mais dois exemplos (tente resolver):

• Um circuito na prática (bem simplificado)

Porta ou-exclusivo ou XOR

- No ou-exclusivo ou XOR, a diferença é que "queremos um ou outro, mas não os 2"
- Diferente do OR
- Note a tabela-verdade, α bloco de circuito lógico ε o símbolo lógico usado para representar o XOR

Α	В	Out
0	0	0
0	1	1
1	0	1
1	1	0

Porta ou-exclusivo ou XOR

• Problema:

- Como fica o XOR para muitas entradas
- Simples:

XOR é 1 se e somente se o número de 1s na entrada é **ímpar**

Α	В	Out
0	0	0
0	1	1
1	0	1
1	1	0

Porta Coincidência ou NOUexclusivo

- Simplesmente a negação do XOR (inclusive na notação do bloco lógico)
- A tabela verdade é o XOR invertido
- Porque se chama coincidência (e às vezes se chama equivalência?)?
- Como fica para mais de 2 variáveis?

Α	В	Out
0	0	1
0	1	0
1	0	0
1	1	1

Exemplo

Dados os sinais de entrada, desenhe o sinal de saída

E AND		A B S 0 0 0 0 1 0 1 0 0 1 1 1	Função E: Assume 1 quando todas as variáveis forem 1 e 0 nos outros casos.	S=A.B
OU OR		A B S 0 0 0 0 1 1 1 0 1 1 1 1	Função OU: Assume 0 quando todas as variáveis forem 0 e 1 nos outros casos.	S=A+B
NÃO NOT	->>-	A S 0 1 1 0	Função NÃO: Inverte a variável aplicada à sua entrada.	S=A
NE NAND		A B S 0 0 1 0 1 1 1 0 1 1 1 0	Função NE: Inverso da função E.	S=(A.B)
NOU NOR	→	A B S 0 0 1 0 1 0 1 0 0 1 1 0	Função NOU: Inverso da função OU.	S=(A+B)
OU EXCLUSIVO	#>-	A B S 0 0 0 0 1 1 1 0 1 1 1 0	Função OU Exclusivo: Assume 1 quando as variáveis assumirem valorem diferentes entre si.	$S = A \oplus B$ $S = \overline{A}.B + A.\overline{B}$
COINCIDÊN CIA	#>>-	A B S 0 0 1 0 1 0 1 0 0 1 1 1	Função Coincidência: Assume 1 quando houver coincidência entre os valores das	$S = A_{\odot}B$ $S = \overline{A}.\overline{B} + A.B$

Na prática

Na prática