Vorkurs für Wirtschaftsingenieure WS 2004/2005

Technische Universität Darmstadt Fachbereich Mathematik

Lea Poeplau, Richard Lindner, Rafael Dahmen 08. Oktober 2004

1. Übungsblatt - Lösungen

GRUPPENÜBUNGEN

G1 (Rechnen mit Vektoren im \mathbb{R}^3)

(a)
$$\vec{m}_{Jan} = \begin{pmatrix} 140 \\ 700 \\ 35 \end{pmatrix} \qquad \vec{m}_{Feb} = \begin{pmatrix} 134 \\ 670 \\ 46 \end{pmatrix} \qquad \vec{m}_{Mar} = \begin{pmatrix} 137 \\ 685 \\ 40^{1/2} \end{pmatrix}$$

(b)
$$|\vec{m}_{Jan}| = 714.72$$
 $|\vec{m}_{Feb}| = 684.815$ $|\vec{m}_{Mar}| = 699.739$

(c)
$$\det \begin{pmatrix} 140 & 700 & 35 \\ 134 & 670 & 46 \\ 137 & 685 & 40^{1/2} \end{pmatrix} = 0$$

(d) Da die Determinante der Matrix aus c) 0 ergibt hat das von den 3 Vektoren aufgespannte Gebilde kein Volumen. Die Drei sind also linear abhängig und spannen nur eine Fläche oder eine Gerade auf.

G2 (Lineare Gleichungssysteme)

(a)
$$\begin{pmatrix} 1 & 4 & 0 & 0 & 11 \\ 0 & 0 & 3 & 2 & 1 \\ 2 & 0 & 0 & 0 & 0 \end{pmatrix} \cdot \begin{pmatrix} 1 \\ 1 \\ 0 \\ 2 \\ 2 \end{pmatrix} = \begin{pmatrix} 27 \\ 6 \\ 2 \end{pmatrix}$$

(b)
$$x = 40$$
 $y = 30$ $z = 20$ $w = 10$

G3 (Würfelvolumen)

Die Matrix der Vektoren, die einen Würfel mit Kantenlänge 2 im Raum aufspannen kann folgende Form haben:

$$A = \begin{pmatrix} 2 & 0 & 0 \\ 0 & 2 & 0 \\ 0 & 0 & 2 \end{pmatrix} \qquad \det A = 8$$

G4 (Rechnen in \mathbb{C})

(c)

(a)
$$a+b=2+16i$$
 $a+d=5+18i$ $b+c=-1+3i$ $a+d+e=-3+18i$

(b)
$$b-a=-8+2i$$
 $a-c=3+13i$ $e-b-c=-7-3i$

$$a \cdot b = -78 + 24i$$
 $c \cdot d = 66 + 22i$ $b \cdot e = 24 - 72i$ $a \cdot c \cdot e = (52 - 16i) \cdot (-8) = -416 + 128i$

(d)
$$\frac{b}{a} = \frac{1}{a \cdot \bar{a}} (b \cdot \bar{a}) = \frac{1}{37} (24 + 33i) \qquad \frac{d}{c} = \frac{1}{20} (-33 + 11i)$$

(e)
$$|a| = 8.602$$
 $|b| = 9.487$ $|c| = 6.325$

(f)
$$\bar{a} = 5 - 7i \quad \bar{c} = 2 + 6i \quad \bar{d} = -11i \quad \bar{e} = -8 \quad \overline{a+c} = 7 - i \quad \overline{b \cdot d} = -99 + 33i \quad \overline{c-b} = 5 + 15i$$

G5 (Kartesische- und Polardarstellung)

(a) Eine komplexe Zahl z mit der Polardarstellung (r, φ) hat die folgende kartesische Darstellung $z = r \cdot (\cos \varphi + i \sin \varphi)$ oder $(r \cdot \cos \varphi, r \cdot \sin \varphi)$.

(b) (i)
$$1 + i \triangleright (\sqrt{2}, \pi/4)$$

(ii)
$$-1 + i \triangleright (\sqrt{2}, 3\pi/4)$$

(iii)
$$i \triangleright (1, \pi/2)$$

(iv)
$$(\sqrt{2}, \pi/4) > 1 + i$$

(v)
$$(3,\pi) \triangleright -3$$

(vi)
$$(1, \pi/3) > 1/2 + \sqrt{3}/2 i$$

G6 (Multiplikation mit i)

Die Multiplikation mit i entspricht geometrisch in der komplexen Zahlenebene einer Drehung um $\pi/2$ nach links.

G7 (Komplexe Determinante)

$$\det \begin{pmatrix} i & 0 & i \\ 2 & i & 1+i \\ 0 & 2+2i & 1 \end{pmatrix} = -1+0+(-4+4i)-0-0-(-1+i)(2+2i) = -1+4i$$

G8 (Unterschiede zwischen \mathbb{R}^2 und \mathbb{C})

Auf den komplexen Zahlen haben wir eine Multiplikation definiert, die es so zwischen Vektoren der reelen Ebene nicht gibt.