Jednovýběrový test hypotézy o střední hodnotě, σ^2 neznámý

Dle v minulosti provedené studie byla průměrná délka hovoru v call-centru 540 s. Zaměstnanci call-centra absolvovali školení, jehož cílem bylo délku hovorů zkrátit. Management chce nyní zjistit, zdali bylo školení přínosné, náhodně bylo vybráno 16 hovorů a byla zjištěna průměrná délka 510 s a směrodatná odchylka 45 s. Rozdělení délky hovorů lze považovat za normální, $\alpha=0,01$.

$$\begin{split} &\mu_0 = 540 \qquad \overline{x} = 510 \qquad s = 45 \qquad n = 16 \qquad \alpha = 0,01 \\ &H_0: \mu = 540 \\ &H_1: \mu < 540 \\ &t = \frac{\overline{x} - \mu_0}{s} \sqrt{n} = \frac{510 - 540}{45} \sqrt{16} = -\frac{8}{3} = -2,\overline{6} \\ &t_{\alpha;n-1} = t_{0,01;15} = -2,602 \qquad W_{0,01} = \{t: t < t_{0,01;15}\} \qquad t \in W_{0,01} \\ &p = 0,0088 < \alpha \end{split}$$

 H_0 se na hladině významnosti 0,01 zamítá

Jednovýběrový test hypotézy o podílu

Kurz je zakončen závěrečným testem, který je koncipován tak, aby jej zvládlo alespoň 70 % studentů. Ze 100 náhodně vybraných studentů kurzu úspěšně splnilo test 63. Je test navržen vzhledem k záměru správně? $\alpha=0,05$

$$\pi_0 = 0,7$$
 $m = 63$ $n = 100$ $\alpha = 0,05$ $p = \frac{m}{n} = \frac{63}{100} = 0,63$

 $H_0: \pi = 0, 7$

 $H_1: \pi < 0, 7$

předpoklady použití LV jsou splněny

$$u = \frac{p - \pi_0}{\sqrt{\pi_0(1 - \pi_0)}} \sqrt{n} = \frac{0.63 - 0.7}{\sqrt{0.7(1 - 0.7)}} \sqrt{100} = -1.528$$

$$u_{\alpha} = u_{0,05} = -1,645$$
 $W_{0,05} = \{u : u < u_{0,05}\}$ $u \notin W_{0,05}$

$$p = 0,063 > \alpha$$

 ${\cal H}_0$ se na hladině významnosti 0,05 nezamítá

Dvouvýběrový test hypotézy o středních hodnotách, nezávislé výběry, σ_1^2 a σ_2^2 neznámé

$$(\sigma_1^2 \text{ a } \sigma_2^2 \text{ shodné})$$

Nezávislá testovací společnost chce porovnat kvalitu originálních cartridgů známých značek výrobců tiskáren a alternativních cartridgů jiných výrobců. Pro testování bylo náhodně vybráno 10 uživatelů, kteří používají originální cartridge, a 8 uživatelů používajících alternativní cartridge. Výsledky testování ukázaly, že při využití originálních cartridgů uživatelé vytiskli průměrně 322,5 stran se směrodatnou odchylkou 48,3 a v případě alternativních cartridgů vytiskli průměrně 298,3 stran se směrodatnou odchylkou 53,3 stran. Je kvalita originálních cartridgů vyšší? (tj. Je možné s pomocí originálních cartridgů vytisknout průměrně větší počet stran než s cartridgy alternativními?) Rozdělení počtu vytistěných stran lze považovat za normální, $\alpha=0,05$.

$$\overline{x}_1 = 322, 5$$
 $\overline{x}_2 = 298, 3$ $s_1 = 48, 3$ $s_2 = 53, 3$ $n_1 = 10$ $n_2 = 8$ $\alpha = 0, 05$

test shody rozptylů

$$\begin{split} H_0: \sigma_1^2 &= \sigma_2^2 \\ H_1: \sigma_1^2 \neq \sigma_2^2 \\ F &= \frac{s_2^2}{s_1^2} = \frac{53, 3^2}{48, 3^2} = 1,218 \\ F_{1-\frac{\alpha}{2}; n_2-1; n_1-1} &= F_{0,975;7;9} = 4,197 \qquad W_{0,05} = \{F: F > F_{0,975;7;9}\} \qquad F \notin W_{0,05} \end{split}$$

 H_0 se nezamítá, rozptyly lze považovat za shodné

$$H_0: \mu_1 = \mu_2 \qquad \mu_1 - \mu_2 = 0$$

$$H_1: \mu_1 > \mu_2 \qquad \mu_1 - \mu_2 > 0$$

$$t = \frac{\overline{x}_1 - \overline{x}_2}{s\sqrt{\frac{1}{n_1} + \frac{1}{n_2}}} = \frac{322, 5 - 298, 3}{\sqrt{2555, 14}\sqrt{\frac{1}{10} + \frac{1}{8}}} = 1,009$$

$$s^2 = \frac{(n_1 - 1)s_1^2 + (n_2 - 1)s_2^2}{n_1 + n_2 - 2} = \frac{(10 - 1)48, 3^2 + (8 - 1)53, 3^2}{10 + 8 - 2} = 2555, 14$$

$$t_{1-\alpha; n_1 + n_2 - 2} = t_{0,95; 16} = 1,746 \qquad W_{0,05} = \{t : t > t_{0,95; 16}\} \qquad t \notin W_{0,05}$$

$$p = 0, 164 > \alpha$$

 H_0 se na hladině významnosti 0,05 nezamítá

Dvouvýběrový test hypotézy o středních hodnotách, nezávislé výběry, σ_1^2 a σ_2^2 neznámé

 $(\sigma_1^2 \text{ a } \sigma_2^2 \text{ neshodné})$

Studentský časopis se zabývá zkoumáním rozdílů v nástupních platech absolventů IT oborů a ekonomicko-managerských oborů vysokých škol. Pro účely testování bylo náhodně vybráno a dotázáno 110 absolventů IT oborů a 124 absolventů ekonomicko-managerských oborů, kteří ukončili studium v roce 2019 a nastoupili do zaměstnání. Výsledky šetření ukázaly, že průměrný nástupní plat vybraných absolventů IT oborů byl 38072 Kč se směrodatnou odchylkou 3519 Kč a průměrný nástupní plat vybraných absolventů ekonomicko-managerských oborů byl 36567 Kč se směrodatnou odchylkou 4495 Kč. Lze považovat průměrné nástupní platy v těchto oborech za statisticky významně odlišné? Budiž předpokládáno normální rozdělení nástupních platů, $\alpha=0,05$.

$$\overline{x}_1 = 38072$$
 $\overline{x}_2 = 36567$ $s_1 = 3519$ $s_2 = 4495$ $n_1 = 110$ $n_2 = 124$ $\alpha = 0,05$

test shody rozptylů

$$H_0: \sigma_1^2 = \sigma_2^2$$

 $H_1: \sigma_1^2 \neq \sigma_2^2$
 $F = \frac{s_2^2}{s_1^2} = \frac{4495^2}{3519^2} = 1,632$

$$F_{1-\frac{\alpha}{2};n_2-1;n_1-1} = F_{0,975;123;109} = 1,446 \quad W_{0,05} = \{F: F > F_{0,975;123;109}\} \quad F \in W_{0,05}$$

 H_0 se zamítá, rozptyly nelze považovat za shodné

$$H_0: \mu_1 = \mu_2 \qquad \mu_1 - \mu_2 = 0$$

$$H_1: \mu_1 \neq \mu_2 \qquad \mu_1 - \mu_2 \neq 0$$

$$t = \frac{\overline{x}_1 - \overline{x}_2}{\sqrt{\frac{s_1^2}{n_1} + \frac{s_2^2}{n_2}}} = \frac{38072 - 36567}{\sqrt{\frac{3519^2}{110} + \frac{4495^2}{124}}} = 2,867$$

$$df = \frac{\left(\frac{s_1^2}{n_1} + \frac{s_2^2}{n_2}\right)^2}{\frac{\left(\frac{s_1^2}{n_1}\right)^2}{n_1 - 1} + \frac{\left(\frac{s_2^2}{n_2}\right)^2}{n_2 - 1}} = \frac{\left(\frac{3519^2}{110} + \frac{4495^2}{124}\right)^2}{\frac{\left(\frac{3519^2}{110}\right)^2}{110 - 1} + \frac{\left(\frac{4495^2}{124}\right)^2}{124 - 1}} = 228$$

$$t_{1-\frac{\alpha}{2};d\!f}=t_{0,975;228}=1,97 \qquad W_{0,05}=\{t:|t|>t_{0,975;228}\} \qquad t\in W_{0,05}$$

$$p = 0,0045 < \alpha$$

 H_0 se na hladině významnosti 0.05 zamítá

Dvouvýběrový test hypotézy o středních hodnotách, závislé (párové) výběry

Měření krevního tlaku je doporučeno provádět opakovaně. U 15 náhodně vybraných osob byl změřen tlak (zde budiž uvažován pouze systolický tlak) a po uplynutí 1 minuty bylo měření opakováno. Výsledky měření jsou uvedeny níže. Má provádění druhého měření smysl? (tj. Poskytuje druhé měření průměrně nižší hodnotu?) Lze předpokládat normální rozdělení hodnot krevního tlaku, $\alpha=0,05$.

1. měření	2. měření
125	120
141	134
104	106
130	131
154	144
132	126
144	136
115	120
168	152
110	110
124	120
128	121
130	132
135	130
122	118

$$\begin{split} D &= X_1 - X_2 \qquad \overline{d} = 4, 1\overline{3} \qquad s_d = 5, 436 \qquad n = 15 \qquad \alpha = 0, 05 \\ H_0 &: \Delta = 0 \\ H_1 &: \Delta > 0 \\ t &= \frac{\overline{d} - \Delta_0}{s_d} \sqrt{n} = \frac{4, 133 - 0}{5, 436} \sqrt{15} = 2, 945 \\ t_{1-\alpha;n-1} &= t_{0,95;14} = 1, 761 \qquad W_{0,05} = \{t: t > t_{0,95;14}\} \qquad t \in W_{0,05} \\ p &= 0, 005 < \alpha \end{split}$$

 H_0 se na hladině významnosti 0,05 zamítá

Dvouvýběrový test hypotézy o podílech

Pizzerie připravuje marketingovou kampaň pro svou novou chilli pizzu. Vychází z domněnky, že preference pálivých jídel je stejná u mužů i žen. Aby si marketingový manager tento předpoklad ověřil, uspořádal šetření, při kterém bylo náhodně vybráno 280 mužů a 280 žen, každá osoba ochutnala tuto chilli pizzu a její nepálivou alternativu neobsahující chilli papričky. Dle výsledků preferovalo chilli pizzu 81 mužů a 74 žen. K jakému závěru by měl marketingový manager dojít? $\alpha=0,1$

$$m_1 = 81 m_2 = 74 n_1 = 280 n_2 = 280 \alpha = 0, 1$$

$$p_1 = \frac{m_1}{n_1} = \frac{81}{280} = 0, 289 p_2 = \frac{m_2}{n_2} = \frac{74}{280} = 0, 264$$

$$H_0: \pi_1 = \pi_2 \pi_1 - \pi_2 = 0$$

$$H_1: \pi_1 \neq \pi_2 \pi_1 - \pi_2 \neq 0$$

předpoklady použití LV jsou splněny

$$\begin{split} u &= \frac{p_1 - p_2}{\sqrt{p(1-p)}} \sqrt{\frac{n_1 n_2}{n_1 + n_2}} = \frac{0,289 - 0,264}{\sqrt{0,277(1-0,277)}} \sqrt{\frac{280 \cdot 280}{280 + 280}} = 0,661 \\ p &= \frac{m_1 + m_2}{n_1 + n_2} = \frac{81 + 74}{280 + 280} = 0,277 \\ u_{1-\frac{\alpha}{2}} &= u_{0,95} = 1,645 \qquad W_{0,1} = \{u : |u| > u_{0,95}\} \qquad u \notin W_{0,1} \\ p &= 0,509 > \alpha \end{split}$$

 H_0 se na hladině významnosti 0,1 nezamítá