Model Evaluation

Boston University CS 506 - Lance Galletti

Confusion Matrix

	Predicted Class		
		Class = Yes	Class = No
Actual Class	Class = Yes	a (TP)	b (FN)
	Class = No	c (FP)	d (TN)

Accuracy =
$$(a + d) / (a + b + c + d)$$

Accuracy can be misleading

Binary classification problem where:

Number of Class 0 examples: 9990

Number of Class 1 examples: 10

A model that predicts everything to be class 0 will have an accuracy of 99.9%

Cost Matrix

		Predicted Class	
		Class = Yes	Class = No
Actual Class	Class = Yes	C(Yes Yes)	C(No Yes)
	Class = No	C(Yes No)	C(No No)

Cost of Classification

COST	Predicted Class		
		Yes	No
Actual Class	Yes	-1	100
	No	1	0

Model 1	Predicted Class		
		Yes	No
Actual Class	Yes	150	40
	No	60	250

Model 2	Predicted Class		
		Yes	No
Actual Class	Yes	250	45
	No	5	200

FORM

Other metrics

COST	Predicted Class		
		Yes	No
Actual Class	Yes	а	b
	No	С	d

- Precision = a / (a + c)
- Recall = a / (a + b)
- F-measure = 2RP / (R + P)

Methods of Estimation

Goal: get a reliable estimate of the performance of the model on unseen data

Methods of Estimation

- Holdout:
 - Ex: reserve ¼ of the dataset for testing and use ¾ for training

train

test

Methods of Estimation

- Holdout:
 - Ex: reserve ¼ of the dataset for testing and use ¾ for training
- Cross Validation:
 - Partition into K disjoint subsets
 - K-fold: train on K-1 partitions, test on the remaining on
 - o K = n : leave-one-out

train	
train	
train	
train	
train	
test	

train
train
train
train
test
train

train
train
train
test
train
train

train
train
test
train
train
train

train
test
train
train
train
train

test
train

train

test

Validation Set

For tuning parameters

training

validation

testing

Ensemble Methods

Boston University CS 506 - Lance Galletti

Suppose you have trained 17 different classifiers on a dataset.

Suppose you have trained 17 different classifiers on a dataset.

- Every classifier has error rate $\varepsilon = .20$
- Assume all classifiers are independent

Suppose you have trained 17 different classifiers on a dataset.

- Every classifier has error rate $\varepsilon = .20$
- Assume all classifiers are independent

In order to classify a new record we poll all 17 classifiers and take the class that the majority agrees on.

What is the probability that this ensemble classifier makes a wrong prediction?

The majority needs to make a mistake (i.e. at least 9 out of 17 make mistakes)

$$P(X \ge 9) = \sum_{k=9}^{17} {17 \choose k} (.2)^k (1 - .2)^{17-k} = 0.002581463$$

How to generate independent classifiers?

By generating samples of the data to train on

- Bagging
- Boosting

Bagging

Original data	1	2	3	4	5	6	7	8	9	10
Bootstrap sample 1	7	8	10	10	3	6	1	1	4	5
Bootstrap sample 2	6	2	7	9	3	5	7	7	1	8
Bootstrap sample 3	2	5	6	1	4	1	8	9	4	3

Build a classifier on each bootstrapped sample

An adaptive sampling process to change the sampling distribution based on difficult-to-classify examples.

Start with all samples having equal probability of being selected. Next boosting round, increase the weights of those samples that were misclassified, decrease the weights of those samples that were correctly classified.

Original data	1	2	3	4	5	6	7	8	9	10
Bootstrap sample 1	7	8	10	10	3	6	1	1	4	5
Bootstrap sample 2	6	4	7	9	3	5	7	4	1	8
Bootstrap sample 3	2	5	4	1	4	1	4	4	2	3

Here, sample 4 is hard to classify.

Original data	1	2	3	4	5	6	7	8	9	10
Bootstrap sample 1	7	8	10	10	3	6	1	1	4	5
Bootstrap sample 2	6	4	7	9	3	5	7	4	1	8
Bootstrap sample 3	2	5	4	1	4	1	4	4	2	3

Classifiers trained on each sample and are given a weight that is a function of their error rate.

Example: 5 classifiers

C₁ predicts 1

C₂ predicts 0

C₃ predicts 0

C₄ predicts 1

C₅ predicts 0

Example: 5 classifiers

C₁ predicts 1 has a weight of .25

C₂ predicts 0 has a weight of .1

C₃ predicts 0 has a weight of .5

C₄ predicts 1 has a weight of .05

C₅ predicts 0 has a weight of .1