

Solar vs. Fission Surface Power for Mars

Michelle A. Rucker
National Aeronautics and Space Administration
September, 2016

Background

- 2009: NASA's Design Reference Architecture 5.0 baselined fission surface power for a crewed Mars mission
 - Two landers to one site, then two more landers to a different site
 - Solar power did not trade as well as fission power for mass
 - ✓ Fission development costs would be shared with the Constellation Program's lunar surface mission, making fission more attractive
- 2016: NASA revisited the solar vs. fission trade based on new information
 - Paradigm shift to Evolvable Mars Campaign
 - ✓ Multiple landers to the same site, allowing infrastructure build-up
 - Technology advances since the original studies were performed
 - ✓ Kilopower fission system, higher density batteries, more efficient solar arrays

COMPASS Team

The new study was performed by the NASA Glenn Research Center's Collaborative Modelling for Parametric Assessment of Space Systems (COMPASS) Team

NASA Glenn Research Center

- Steve Oleson
- Pat George
- Geoffrey Landis
- James Fincannon
- Aimee Bogner
- Robert Jones
- Elizabeth Turnbull
- Jeremiah McNatt

Zin Technologies

- Mike Martini
- John Gyekenyesi

Vantage Partners, LLC

- Tony Colozza
- Paul Schmitz
- Tom Packard

Additional Expertise

Lee Mason, Dianne Linne, Jerry Sanders

Making Mars More Affordable Utilize Martian Resources

4

- Mars Ascent Vehicle arrives on Mars with empty Liquid Oxygen propellant tanks
- Fission- or solar-powered In Situ Resource Utilization extracts carbon dioxide from the Martian atmosphere
 - ISRU processes the CO₂ into LOX propellant
 - Paired with Methane brought from Earth
- Once LOX tanks are confirmed full, the crew lands on Mars
 - ISRU production is suspended, and the power system is switched over to crew life support functions
 - Some power needed for cryogenic propellant conditioning
- For solar-power system, dust storm disruption up to 120 sols is assumed

Acronyms

MAV

Mars Ascent Vehicle

LOX

Liquid Oxygen

ISRU

In Situ Resource Utilization

CO_2

Carbon Dioxide

Study Approach

Pre-cursor demonstration mission

- Primarily an Entry-Descent-Landing demonstrator near the equator
- ISRU payload to demonstrate LOX production from atmosphere, at 1/5 scale of crewed mission
- Compare 10 kilowatt electric (kWe) Kilopower fission system to 3 solar options:
 - A. Daylight-only ISRU operation
 - B. Around-the-clock ISRU production (battery reserves for night)
 - C. Daylight-only, but 2x production rate to make up for night period

Crewed Surface Mission

- Cargo Phase: Around-the-clock production 23 t of LOX in 420 Earth days
- Crew Phase: Crew support functions + MAV keep alive and propellant conditioning (no ISRU)
- Evaluated the same crewed mission to two different landing sites
 - ✓ Jezero Crater, located 18.9° North
 - ✓ Columbus Crater, located 29.5° South
- Kilopower fission vs. [solar + batteries] vs. [solar + fuel cell]

ISRU Demonstrator

Assumptions Demonstrator Mission

- Land at Opportunity rover site at Meridiani (~2° south)
 - Benefit of Opportunity's 12 years of actual solar array performance data, favorable night durations, and minimal seasonal variations
- Mars environment based on Opportunity data
 - Assumed one dust storm, 120 days in duration, maximum wind 20 m/s
 - Optical depth varies from 1.0 (clear skies) to 5.0 (dust storm)
 - Opportunity data: dust scatters light, so diffuse light during a storm is ~30-40% of direct light on a clear day
- Average of 12 hours sunlight per sol
 - But assume 10 hours/sol ISRU operation to allow for system warm-up

Dust storm time lapse as viewed by Opportunity

Fission Power Concept Demonstrator Mission

- ISRU system sized for 0.45 kg/hr LOX production with a goal of 4,500 kg
 - LOX tank only sized for 1,500 kg, with the balance vented overboard
- 10 kWe Kilopower unit providing 6.45 kWe (6.52 kWe at night)
 - Fixed, conical upper radiator requiring no deployment
 - 1,754 kg including 15% mass growth allowance and radiation shield sized to reduce crew exposure to <3 mR/hr within 500 m
- 6 m diameter landed footprint x 5.14 m dia. height
 - 2.61 m center of gravity height
 - 106 W keep-live power after landing
- 2,751 kg total payload mass
 - Including growth allowance

Kilopower is oversized for this application
But it's an opportunity to demo crew mission technology

Solar Power Concepts Demonstrator Mission

- Same ISRU assumptions as for fission power case
- 120V Orbital ATK UltraFlex[™] arrays or equivalent
 - Inverted Metamorphic Multi-junction solar cells of 33% conversion efficiency
 - Measured at Earth distance solar flux, 28°C, beginning of life
 - 45° Gimbal for sun tracking and dust removal
- Panasonic cell type Lithium-ion batteries
 - 60% depth of discharge, 165 Watt-hours per kilogram

Solar vs. Fission Comparison Demonstrator Mission

Closest	"app	les to
apples"	comp	arisor

Option	Solar 1A: 1/5 rate Daytime Only	Solar 1C: 2/5 Rate Daytime Only		Fission: 1/5 Rate Around the Clock Fission Power	
Total Payload Mass (including growth)	1,128 kg	2,425 kg	1,531 kg	2,751 kg	
Electrical System Mass	455 kg	1,733 kg	639 kg	1,804 kg	
ISRU Subsystem Mass	192 kg	192 kg	335 kg	192 kg	
Power	~8 kW Daylight	~8 kW Continuous (with 16 kW of arrays)	~16 kW Daylight	~7 kW Continuous	
Solar Arrays	4 each x 5.6 m diameter	4 each x 7.5 m dia.	4 each x 7.5 m diameter	None	
Night Production?	No	Yes	No	Yes	
LOX Production	roduction 4.5 kg/sol		9.0 kg/sol	10.8 kg/sol	
Time to Produce 4,400 kg LOX, including 120-Day Dust Storm Outage	1,098 sols	527 sols	609 sols	407 sols	
ISRU On/Off Cycles	1,098	<5	609	<5	

Observations Demonstrator Mission

- Daytime-only solar power concept offers lowest landed mass
 - High number of ISRU on/off cycles could pose reliability issues
- Fission power was at a mass disadvantage in this trade
 - 10 kW Kilopower was oversized for 7 kW application, plus mass included crew protection shield that wasn't necessary for demo
 - Equatorial site represents minimum solar power mass
 - ✓ Expect higher mass at other latitudes
- All options fit comfortably within allowable payload limits
 - So mass alone is unlikely to drive a decision for an equatorial mission
 - Power system selection probably depends on other factors
 - ✓ Technology investment strategies, program budgets, and risk mitigation needs for later crewed missions
- Demonstrator mission solar power hardware costs are ~\$100M less than comparable fission power hardware costs
 - Does not include technology development through Technology Readiness Level 6

Crewed Mission

Mission Concept of Operations Crewed Mission

Expedition 1 Four Landers		Expedition 2+ Three Landers per Expedition		
	1. Power System + Cargo	1. MAV + ISRU		
Cargo Phase	2. MAV + ISRU	2. Cargo and Consumables		
	3. Mixed Cargo and Consumables			
Crew Phase	4. Habitat Module + Crew	3. Habitat Module + Crew		

- Landers located no more than 1 km from each other
- Fission: Kilopower units remain together on/near the first lander
 - Robotic connections to subsequent landers
 - Power can be disconnected when a lander is no longer in use
- Solar: arrays on every lander, at least through Exp 3
 - All landers connected into a power grid
 - Remain connected even if lander is no longer active

Surface Power Needs Crewed Mission

14

ISRU: Produce 22,728 kg of LOX in 420 Earth days

	Peak I Neede		Keep-Alive Power Needed (W)		
Element	Cargo Phase	Crew Phase	Cargo Phase	Crew Phase	
ISRU	19,700	0	19,700	0	
MAV	6,655	6,655	6,655	6,655	
Surface Habitat	0	14,900	0	8,000	
Science Laboratory	0	9,544	0	174	
Total	26,355	31,099	26,355	14,829	

*Optional element shown with all systems running. Assume power can be phased to stay below cargo ops total peak

Note that eliminating ISRU doesn't reduce overall surface power need

Michelle.a.rucker@nasa.gov/AIAA Space 2016

Fission-Powered Option Crewed Mission

15

- Four each 10-kWe Kilopower units would provide up to 35 kWe continuous power for all mission phases at either hypothetical landing site
- Fission power generation mass is 9,154 kg
 - Includes one spare Kilopower and mass growth allowance
 - Not including power farm-to-lander Power Management and Distribution
- Up to 1,038 kg PMAD could be needed on the Lander 1, depending on whether Kilopowers are relocated and whether any other cargo requires 1,000 - 120 VDC conversion
 - Landers 2, 3 and 4 would each require 1 km spool of high voltage cabling, connectors, and voltage converters

Lander	Lander	
1	2, 3, 4	Expedition
		1 Fission
8,769	0	Power
		<u>Generation</u>
62.4	0	Total
322.4	0	
9,154	0	9,154 kg
	8,769 62.4 322.4	1 2, 3, 4 8,769 0 62.4 0 322.4 0

PMAD

Power
Management
and
Distribution

Solar-Powered Option Jezero Crater Crewed Mission

- Study team estimated that all four Expedition 1 landers would require four each 12 m diameter UltraFlex™ arrays or equivalent
 - Deployed on a 9.1 m diameter lander would extend the overall footprint to ~33 m
 - With arrays in neutral position on a 2.66 high lander deck, overall height was ~9.69
 - · Deploying arrays high minimizes interactions with surface or payloads
 - Gimbals help shed dust
 - Lander deck provides stable operating platform
 - ✓ Allows arrays to be brought on-line quickly
- Under nominal Jezero Crater conditions, around-theclock propellant production with the first two landers requires 34.2 kW during the day and 35 kW at night
 - During dust storm, power would be reduced to 10,985 W during the day and 11,728 W at night.
 - Once crew arrived, combined loads of the first four Expedition 1 landers were 31,915 W during nominal daytime operation and 26,790 W at night
 - Loads drop to 22,945 W during the day, and 24,060 W at night during a dust storm

Solar-Powered Option *Jezero Crater- Expedition 1*

17

Description	Lander 1	Lander 2	Lander 3	Lander 4	
Electrical Power Subsystem	4,890	1,512	1,512	1,512	
Power Generation	1,321	1,321	1,321	1,321	Jezero
Lander Internal Power Management and Distribution	401	192	192	192	Crater Expedition
Energy Storage	3,168	0	0	0	1
Structures and Mechanisms	660	476	476	476	
Secondary Structure	416	418	418	418	Power Generation
Mechanisms	244	59	59	59	and
Thermal Control (Non-Propellant)	61	45	45	45	<u>Storage</u>
Active Thermal Control	2.4	3.4	3.4	3.4	Total
Passive Thermal Control	41.8	42	42	42	
Semi-Passive Thermal Control	16.8	0	0	0	
SOLAR POWER SYSTEM	5,611	2,034	2,034	2,034	11,713 kg

Does *not* include lander-to-lander PMAD Mass grows to 12,679 kg at Columbus Crater

Solar vs. Fission Comparison Crewed Mission

- Mass: Expedition 1 comparison doesn't tell the whole story
 - All fission power arrives with Expedition 1, but solar power performance doesn't catch up until Expedition 3
 - Extrapolate through 3 expeditions for apples-to-apples comparison
- Performance: comparable by Exp 3
- Robustness: fission power is more tolerant of dust, but the distributed solar power network is more tolerant to cable damage
 - Allows quick post-landing power, but arrays on MAV lander will have to be removed before MAV departs
 - ✓ Additional risk for crew/robotics to handle large arrays close to the MAV
- Service Life: 12-year Kilopower service life is probably about the same as solar power's rechargeable battery life

Observations Crewed Surface Mission

- 50 kWe of fission power is ~20% less landed mass than 35 kW of solar power generation and storage for the 1st Expedition to Jezero Crater
 - Not including lander-to-lander PMAD for either option, which could add a metric ton per lander
 - All solar powered landers become part of an integrated network, so they have to remain cabled together, even after cargo has been unloaded
 - ✓ Fission system only needs to be cabled to landers with active surface payloads
 - Assumptions will alter the analysis: landing site, propellant production rate, time available to make propellant, dust storm duration, transmission voltage
- By the 3rd Crew Expedition, cumulative solar array mass is more than 2x fission power mass
 - But enough solar array area will have been accumulated to accommodate a 120-sol dust storm with little disruption
- Mass differential is greater at Columbus Crater landing site

Conclusions Solar vs. Fission Mars Surface Power

- Solar-powered crew surface mission is more feasible under EMC than previous mission concepts
- Solar-powered crew surface mission is certainly possible, at least for some latitudes
 - Forward work to evaluate all landing sites of interest (up to 40° N)
- Advantages and Disadvantages
- Solar: High technology readiness, lower cost, and quick to switch from on-board stored energy to surface power; but high mass penalty may limit landing site options, and higher risk during a storm
- Fission: Reliable, lower mass for most landing sites, same mass regardless of site, season, day/night, or weather; but lower technology readiness and higher development cost
 - Either power system will require substantial technology development and flight hardware investment

NASA Johnson Space Center XM/Michelle Rucker Michelle.a.rucker@nasa.gov

Acknowledgements

Dr. Roger Meyer, Dr. Steve Hoffman, and Kevin Watts

Questions?