Name_____ No Calculators. Present neatly. Score_____.
1.

Find y' if
$$y = \ln(x^2 + y^2)$$

Your work:

Find y' if
$$y = \ln(x^2 + y^2)$$

$$\frac{dy}{dx} = \frac{1}{x^2 + y^2} \left(2x + 2y \frac{dy}{dx} \right)$$

$$\frac{dy}{dx} - \frac{2y}{x^2 + y^2} \frac{dy}{dx} = \frac{2x}{x^2 + y^2}$$

$$\frac{dy}{dx} \left(1 - \frac{2y}{x^2 + y^2} \right) = \frac{2x}{x^2 + y^2}$$

$$\frac{dy}{dx} \left(\frac{x^2 + y^2 - 2y}{x^2 + y^2} \right) = \frac{2x}{x^2 + y^2}$$

$$\frac{dy}{dx} = \frac{2x}{x^2 + y^2 - 2y}$$

Name_____ No Calculators. Present neatly. Score_____.

1.

Find y' if $\ln xy = y \sin x$

Your work:

Find y' if $\ln xy = y \sin x$

$$\frac{1}{xy}\left(y + x\frac{dy}{dx}\right) = y\cos x + \frac{dy}{dx}\sin x$$

$$\frac{1}{x} + \frac{1}{y} \frac{dy}{dx} - \frac{dy}{dx} \sin x = y \cos x$$

$$\frac{dy}{dx} \left(\frac{1}{y} - \sin x \right) = y \cos x - \frac{1}{x}$$

$$\frac{dy}{dx} \left(\frac{1 - y \sin x}{y} \right) = \frac{xy \cos x - 1}{x}$$

$$\frac{dy}{dx} = \frac{y(xy\cos x - 1)}{x(1 - y\sin x)}$$