學號: B04902089 系級: 資工三 姓名: 林政豪

A. PCA of colored faces

A.1. (.5%) 請畫出所有臉的平均。

A.2. (.5%) 請畫出前四個 Eigenfaces,也就是對應到前四大 Eigenvalues 的 Eigenvectors。

依序為前四大 eigenface(左至右、上至下)

A.3. (.5%) 請從數據集中挑出任意四個圖片,並用前四大 Eigenfaces 進行 reconstruction,並畫出結果。

依序為 index 0 25 129 333 重建之後的結果(左至右、上至下)

A.4. (.5%) 請寫出前四大 Eigenfaces 各自所佔的比重,請用百分比表示並四捨五入到 小數點後一位。

依序為 4.1%, 3.0%, 2.4%, 2.2%

B. Visualization of Chinese word embedding

B.1. (.5%) 請說明你用哪一個 word2vec 套件,並針對你有調整的參數說明那個參數的意義。

我使用了 gensim 套件,參數如下:

以下參數為在 final project 的 TV 中大致使用的參數,直接沿用於此小題。

vector_size = 96,每個詞的維度

window_size = 3,看到一句話時,每次會一次看三個詞,分析詞之間的關係

negative_size = 3,每個詞反義詞的數量

min_count = 4000, 出現次數不足 4000 次的詞會被去掉

iteration = 35,會執行35個 cycle

此外還有使用 jieba github 上的 stopwords.txt,將不重要的詞篩掉

B.2. (.5%) 請在 Report 上放上你 visualization 的結果。

B.3. (.5%) 請討論你從 visualization 的結果觀察到什麼。

可以看到他把相似的詞放在一起,如圖中中央偏左的部分有:(你、妳、我們、孩子、我、他、她、他們....)等等稱謂的詞都相距不遠,還有左上角有一些:(阿、嗎、吧)等語助詞,反義詞的部分也稍微看的出來,在圖中可以看出(是、不是)、(有、沒有)、(會、不會)等等大致上都是左上、右下的關係,但有的是正向的部分在左上、有的是負向的部分在左上,這部分看起來做得不太好,應該是因為我使用針對 final project 所 tune 好的參數對其訓練導致。

C. Image clustering

C.1. (.5%) 請比較至少兩種不同的 feature extraction 及其結果。(不同的降維方法或不同的 cluster 方法都可以算是不同的方法)

我使用了 autoencoder 降到 32 維,再使用 Kmeans 分成兩群。

Layer (type)	Output	Shape	Param #
input_1 (InputLayer)	(None,	784)	0
dense_1 (Dense)	(None,	392)	307720
dense_2 (Dense)	(None,	128)	50304
dense_3 (Dense)	(None,	64)	8256
dense_4 (Dense)	(None,	32)	2080
dense_5 (Dense)	(None,	64)	2112
dense_6 (Dense)	(None,	128)	8320
dense_7 (Dense)	(None,	392)	50568
dense_8 (Dense)	(None,	784)	308112
Total params: 737,472 Trainable params: 737,472 Non-trainable params: 0	iem)	ad('p3_cl	1

以及先使用 PCA 降到 64 維,TSNE 再降到 3 維,再使用 Kmeans 分成兩群。

方法	Autoencoder	PCA+TSNE
分群個數	70000,70000	72026,67974
Kaggle(Public +Private/2)	1	0.004302

C.2. (.5%) 預測 visualization.npy 中的 label,在二維平面上視覺化 label 的分佈。 我使用上小題的 autoencoder 降維之後使用 Kmeans 分類,且使用 TSNE 將降維後的結果再降成兩維,並畫圖。

C.3. (.5%) visualization.npy 中前 5000 個 images 跟後 5000 個 images 來自不同 dataset。請根據這個資訊,在二維平面上視覺化 label 的分佈,接著比較和自己 預測的 label 之間有何不同。

我的 autoencoder 在 Kaggle 上的表現非常好(Public 和 Private 分數皆為 1),在這次的分類上看起來也完全正確,我檢查結果時發現,他把前五千個分在一群,後五千個分在一群。