Augmenting the Connectivity of Planar and Geometric Graphs

Ignaz Rutter

Alexander Wolff

Universität Karlsruhe

TU Eindhoven

Augmentation Problems

2-Vertex Connectivity Augmentation (VCA):

Given a graph G = (V, E), find a set of vertex pairs E' of minimal cardinality such that

 $G' = (V, E \cup E')$ is biconnected.

Augmentation Problems

Planar 2-Vertex Connectivity Augmentation (PVCA):

Given a planar graph G = (V, E), find a set of vertex pairs E' of minimal cardinality such that

 $G' = (V, E \cup E')$ is biconnected and planar.

Augmentation Problems

Planar 2-Vertex Connectivity Augmentation (geometric PVCA):

Given a plane geometric graph G = (V, E), find a set of vertex pairs E' of minimal cardinality such that

 $G' = (V, E \cup E')$ is biconnected and plane geometric.

Graph Type	2-Vertex Connectivity
------------	-----------------------

general VCA

planar PVCA

plane geometric **geometric PVCA**

Graph Type	2-Vertex Connectivity	2-Edge Connectivity
٠٠٠ مام٠٠٠		

general VCA

planar PVCA

plane geometric **geometric PVCA**

Graph Type	2-Vertex Connectivity	2-Edge Connectivity
general	VCA	ECA
planar	PVCA	PECA
plane geometric	geometric PVCA	geometric PECA

Applications

Network design:

Applications

Network design:

Applications

Network design:

Graph drawing

- Without planarity constraint solvable in O(n) time
- PVCA is NP-hard

[Eswaran, Tarjan '76]

[Bodlaender, Kant '91]

- Without planarity constraint solvable in O(n) time
- PVCA is NP-hard
- 2-approximations for PVCA and PECA
- 5/3-approximation for PVCA

[Eswaran, Tarjan '76]

[Bodlaender, Kant '91]

[Bodlaender, Kant '91]

[Fialko, Mutzel '98]

- Without planarity constraint solvable in O(n) time
- PVCA is NP-hard

- 2-approximations for PVCA and PECA
- 5/3-approximation for PVCA

Open problem: Is PECA NP-hard?

[Eswaran, Tarjan '76]

[Bodlaender, Kant '91]

[Bodlaender, Kant '91]

[Fialko, Mutzel '98]

Problem CONNECTSIMPLEPOLYGON:

Given a set of non-crossing line segments in the plane.

Can we connect them to a simple polygon?

Problem CONNECTSIMPLEPOLYGON:

Given a set of non-crossing line segments in the plane.

Can we connect them to a simple polygon?

Problem CONNECTSIMPLEPOLYGON:

Given a set of non-crossing line segments in the plane.

Can we connect them to a simple polygon?

Problem CONNECTSIMPLEPOLYGON:
Given a set of non-crossing line segments in the plane.
Can we connect them to a simple polygon?

CONNECTSIMPLEPOLYGON is NP-hard

- [Rappaport '89]

Problem CONNECTSIMPLEPOLYGON:
Given a set of non-crossing line segments in the plane.
Can we connect them to a simple polygon?

CONNECTSIMPLEPOLYGON is NP-hard

[Rappaport '89]

- ⇒ geometric PVCA and geometric PECA are NP-hard
- Abellanas et al.:

[Abellanas, García, Hurtado, Tejel, Urrutia '08]

- geometric PECA needs at most 5n/6 edges
- for trees 2n/3 edges suffice

Problem CONNECTSIMPLEPOLYGON:

Given a set of non-crossing line segments in the plane.

Can we connect them to a simple polygon?

CONNECTSIMPLEPOLYGON is NP-hard

[Rappaport '89]

- ⇒ geometric PVCA and geometric PECA are NP-hard
- Abellanas et al.:

[Abellanas, García, Hurtado, Tejel, Urrutia '08]

- geometric PECA needs at most 5n/6 edges
- for trees 2n/3 edges suffice

Conjecture: in general 2n/3 edges suffice, for trees n/2.

Problem CONNECTSIMPLEPOLYGON:

Given a set of non-crossing line segments in the plane.

Can we connect them to a simple polygon?

CONNECTSIMPLEPOLYGON is NP-hard

[Rappaport '89]

⇒ geometric PVCA and geometric PECA are NP-hard

Abellanas et al.:

[Abellanas, García, Hurtado, Tejel, Urrutia '08]

- geometric PECA needs at most 5n/6 edges
- for trees 2n/3 edges suffice

Fact:

Conjecture: in general 2n/3 edges suffice, for trees n/2.

Overview

Convex geometric graphs

Complexity

3 s-t path augmentation

Theorem

Geometric PVCA and geometric PECA can be solved in linear time for connected convex geometric graphs.

Theorem

Geometric PVCA and geometric PECA can be solved in linear time for connected convex geometric graphs.

PVCA:

Theorem

Geometric PVCA and geometric PECA can be solved in linear time for connected convex geometric graphs.

PVCA:

Theorem

Geometric PVCA and geometric PECA can be solved in linear time for connected convex geometric graphs.

Theorem

Geometric PVCA and geometric PECA can be solved in linear time for connected convex geometric graphs.

Theorem

Geometric PVCA and geometric PECA can be solved in linear time for connected convex geometric graphs.

Theorem

Geometric PVCA and geometric PECA can be solved in linear time for connected convex geometric graphs.

Theorem

Geometric PVCA and geometric PECA can be solved in linear time for connected convex geometric graphs.

Theorem

Geometric PVCA and geometric PECA can be solved in linear time for connected convex geometric graphs.

Theorem

Geometric PVCA and geometric PECA can be solved in linear time for connected convex geometric graphs.

Theorem

Geometric PVCA and geometric PECA can be solved in linear time for connected convex geometric graphs.

Theorem

Geometric PVCA and geometric PECA can be solved in linear time for connected convex geometric graphs.

Theorem

Geometric PVCA and geometric PECA can be solved in linear time for connected convex geometric graphs.

Theorem

Geometric PVCA and geometric PECA can be solved in linear time for connected convex geometric graphs.

Theorem

Geometric PVCA and geometric PECA can be solved in linear time for connected convex geometric graphs.

Overview

Convex geometric graphs

2 Complexity

3 s-t path augmentation

Complexity of PECA

Theorem

PECA is NP-hard.

Complexity of PECA

Theorem

PECA is NP-hard.

Proof:

- gadget proof
- reduction from PLANAR3SAT

Literals

Complexity of geometric PVCA / geometric PECA

We conclude:

Theorem

PECA is NP-hard.

Complexity of geometric PVCA / geometric PECA

We conclude:

Theorem

PECA is NP-hard.

Theorem

Geometric PVCA and geometric PECA are NP-complete.

Complexity of geometric PVCA / geometric PECA

We conclude:

Theorem

PECA is NP-hard.

Theorem

Geometric PVCA and geometric PECA are NP-complete.

yet another gadget proof ;-)

Theorem

Geometric PVCA and geometric PECA are NP-complete.

Theorem

Geometric PVCA and geometric PECA are NP-complete.

Corollary

... even in the case of trees.

Theorem

Geometric PVCA and geometric PECA are NP-complete.

Corollary

... even in the case of trees.

Proof:

Theorem

Geometric PVCA and geometric PECA are NP-complete.

Corollary

... even in the case of trees.

Proof:

Overview

Convex geometric graphs

Complexity

s-t path augmentation

Geometric path augmentation

Problem: s-t k-CONNAUG

Given: connected plane geometric graph G = (V, E)

and two vertices s and t in G.

Find: Minimal set of vertex pairs E', such that

• $G' = (V, E \cup E')$ is plane and

• *G'* contains *k* edge-disjoint *s*–*t* paths.

Geometric path augmentation

Problem: s-t k-CONNAUG

Given: connected plane geometric graph G = (V, E)

and two vertices s and t in G.

Find: Minimal set of vertex pairs E', such that

• $G' = (V, E \cup E')$ is plane and

• *G'* contains *k* edge-disjoint *s*–*t* paths.

example for k = 2:

Geometric path augmentation

Problem: s-t k-CONNAUG

Given: connected plane geometric graph G = (V, E)

and two vertices s and t in G.

Find: Minimal set of vertex pairs E', such that

• $G' = (V, E \cup E')$ is plane and

• *G'* contains *k* edge-disjoint *s*–*t* paths.

example for k = 2:

Worst-Case analysis for *s*–*t* 2-Aug

Theorem

G = (V, E) a plane connected geometric graph, $s, t \in V$, n = |V|. Then

- G has an s-t 2-Aug of size n/2.
- Such an s-t 2-Aug can be computed in O(n) time.

Worst-Case analysis for *s*–*t* 2-Aug

Theorem

G = (V, E) a plane connected geometric graph, $s, t \in V$, n = |V|. Then

- G has an s-t 2-Aug of size n/2.
- Such an s-t 2-Aug can be computed in O(n) time.

Proof:

- Compute any triangulation T of G.
- ② Find an s-t path π with $|\pi| \le n/2$ in T.
- **3** Compute an augmentation from π with $\leq |\pi|$ edges.

$$N^k(s) \cap N^k(t) \neq \emptyset \quad \Rightarrow \quad \exists \ s - t \ \text{path} \ \pi \ \text{with} \ |\pi| \leq 2k.$$

Consider growing neighborhoods $N^{i}(s)$, $N^{i}(t)$.

$$N^k(s) \cap N^k(t) \neq \emptyset \quad \Rightarrow \quad \exists \ s-t \ \text{path} \ \pi \ \text{with} \ |\pi| \leq 2k.$$

 $|N^{i}(v)| \ge 2i + 1$ for every vertex v of a triangulation.

Consider growing neighborhoods $N^{i}(s)$, $N^{i}(t)$.

$$N^k(s) \cap N^k(t) \neq \emptyset \quad \Rightarrow \quad \exists \ s-t \ \text{path} \ \pi \ \text{with} \ |\pi| \leq 2k.$$

 $|N^i(v)| \ge 2i + 1$ for every vertex v of a triangulation. $\Rightarrow \text{ If } N^i(s) \cap N^i(t) = \emptyset \text{ then } |N^i(s) \cup N^i(t)| \ge 2 + 4i.$

Consider growing neighborhoods $N^{i}(s)$, $N^{i}(t)$.

$$N^k(s) \cap N^k(t) \neq \emptyset \quad \Rightarrow \quad \exists \ s - t \ \text{path} \ \pi \ \text{with} \ |\pi| \leq 2k.$$

 $|N^{i}(v)| \ge 2i + 1$ for every vertex v of a triangulation.

$$\Rightarrow$$
 If $N^i(s) \cap N^i(t) = \emptyset$ then $|N^i(s) \cup N^i(t)| \ge 2 + 4i$.

 \Rightarrow after $k \lesssim n/4$ steps the whole graph is covered by $N^k(s) \cup N^k(t)$.

Consider each edge e of π

 \bullet e is not in $G \Rightarrow \text{add } e \text{ to } G$.

- \bullet e is not in $G \Rightarrow \text{add } e \text{ to } G$.
- 2 e belongs to G, e is no bridge \Rightarrow nothing to do

- \bullet e is not in $G \Rightarrow \text{add } e \text{ to } G$.
- **2** e belongs to G, e is no bridge \Rightarrow nothing to do
- e belongs to G, e is a bridge ...

- \bullet e is not in $G \Rightarrow \text{add } e \text{ to } G$.
- **2** e belongs to G, e is no bridge \Rightarrow nothing to do
- e belongs to G, e is a bridge ...

- \bullet e is not in $G \Rightarrow \text{add } e \text{ to } G$.
- **2** e belongs to G, e is no bridge \Rightarrow nothing to do
- e belongs to G, e is a bridge ...

- \bullet e is not in $G \Rightarrow \text{add } e \text{ to } G$.
- **2** e belongs to G, e is no bridge \Rightarrow nothing to do
- e belongs to G, e is a bridge ...

Consider each edge e of π

- \bullet e is not in $G \Rightarrow \text{add } e \text{ to } G$.
- **2** *e* belongs to G, e is no bridge \Rightarrow nothing to do
- e belongs to G, e is a bridge ...

 \Rightarrow add edge e'.

Worst-Case analysis for *s*–*t* 2-Aug

Theorem

G = (V, E) a plane connected geometric graph, $s, t \in V$, n = |V|. Then

- G has an s-t 2-Aug of size n/2.
- Such an s-t 2-Aug can be computed in O(n) time.

Worst-Case analysis for *s*–*t* 2-Aug

Theorem

G = (V, E) a plane connected geometric graph, $s, t \in V$, n = |V|. Then

- G has an s-t 2-Aug of size n/2.
- Such an s-t 2-Aug can be computed in O(n) time.
- is worst-case optimal:

[Abellanas et al. '08]

− 3 edge-disjoint s−t paths

- 3 edge-disjoint s–t paths
 - $\Leftrightarrow \exists$ augmentation such that *s* and *t* have degree ≥ 3 .

- 3 edge-disjoint s-t paths
 - $\Leftrightarrow \exists$ augmentation such that *s* and *t* have degree ≥ 3 .
- 3 vertex-disjoint s-t paths
 - \Leftrightarrow graph contains no *s*–*t* separating chord.

- 3 edge-disjoint s-t paths
 - $\Leftrightarrow \exists$ augmentation such that *s* and *t* have degree ≥ 3 .
- 3 vertex-disjoint s-t paths
 - \Leftrightarrow graph contains no *s-t separating chord*.

Open Questions

- Can we approximate geometric PVCA and geometric PECA?
- Is geometric s-t 2-Aug NP-hard?
- Necessary+sufficient conditions for augmentation to k edge-disjoint paths (k > 3)?

Complexity of geometric PVCA and PECA

Theorem

Geometric PVCA and geometric PECA are NP-complete.

Variable

Variable

Literals

Literals

Clause

Clause

Open Questions

- Can we approximate geometric PVCA and geometric PECA?
- Is geometric s-t 2-Aug NP-hard?
- Necessary+sufficient conditions for augmentation to k edge-disjoint paths (k > 3)?