CS 302.1 - Automata Theory

Lecture 06

Shantanav Chakraborty

Center for Quantum Science and Technology (CQST)
Center for Security, Theory and Algorithms (CSTAR)
IIIT Hyderabad

Quick Recap

Context-Free Grammars: If the *rules* of the underlying grammar G are of the form $V \to (V \cup T)^*$

then such a grammar is called **Context-Free**.

Parse trees: These are ordered trees that provide alternative representations of the derivation of a grammar.

Ambiguous grammars: There exists $\omega \in L(G)$, such that there are **two or more leftmost derivations for** ω (or equivalently two or more rightmost derivations) or equivalently **two or more parse trees for** ω **. Ambiguity** may not be desirable

Quick Recap

Chomsky Normal Form: If every *rule* of the CFG is of the form

 $A \rightarrow BC$ [B, C are not start variables]

 $A \rightarrow a$ [a is a terminal]

 $S \rightarrow \epsilon$ [S is the Start Variable]

- Any CFG can be converted to a grammar in CNF that generates the same language.
- The number of steps required to derive a string w = 2|w| 1.
- Is crucial in deciding whether w is generated by a CFG
 G.

- Automata that recognizes CFLs
- FSM + memory device
- FSM transitions by reading an input symbol and by interacting with the device

The memory device

Simple memory device with unbounded memory.

The memory device

- Simple memory device with unbounded memory.
- Consider a STACK
- At any stage, new elements can be added to the Stack (PUSH).
- At any stage, the element at the **top** of the STACK can be read by removing it from the stack (**POP**).

The memory device

- Simple memory device with unbounded memory.
- Consider a STACK
- At any stage, elements can be pushed or popped.

PUSH

• New symbols can be **pushed** in to the STACK.

E.g: PUSH 1

• The Top of the STACK now covers the old stack top, i.e.

$$TOP = TOP + 1$$

• The size of the stack keeps growing.

The memory device

- Simple memory device with unbounded memory.
- Consider a STACK
- At any stage, elements can be pushed or popped.

PUSH

• New symbols can be **pushed** in to the STACK.

E.g: PUSH 1

• The Top of the STACK now covers the old stack top, i.e.

$$TOP = TOP + 1$$

• The size of the stack keeps growing.

The memory device

- Simple memory device with unbounded memory.
- Consider a STACK
- At any stage, elements can be pushed or popped.

PUSH

New symbols can be pushed in to the STACK.

E.g: PUSH 0

• The Top of the STACK now covers the old stack top, i.e.

$$TOP = TOP + 1$$

The size of the stack keeps growing.

The memory device

- Simple memory device with unbounded memory.
- Consider a STACK
- At any stage, elements can be pushed or popped.

PUSH

- New symbols can be pushed in to the STACK.
- The Top of the STACK now covers the old stack top, i.e.

$$TOP = TOP + 1$$

The size of the stack keeps growing.

The memory device

- Simple memory device with unbounded memory.
- Consider a **STACK**
- At any stage, elements can be pushed or popped.

Memory device

POP

• The element from the TOP of the stack can be **popped** out

E.g.: **POP 0**

The Top of the STACK moves to the element below.

$$TOP = TOP - 1$$

- Successive POP operations shrink the stack size. Elements can be popped until EMPTY.
- Last In First Out (LIFO): The last element that was pushed is the first to be popped out

The memory device

- Simple memory device with unbounded memory.
- Consider a **STACK**
- At any stage, elements can be pushed or popped.

Memory device

POP

• The element from the TOP of the stack can be **popped** out

E.g.: **POP 0**

The Top of the STACK moves to the element below.

$$TOP = TOP - 1$$

- Successive POP operations shrink the stack size. Elements can be popped until EMPTY.
- Last In First Out (LIFO): The last element that was pushed is the first to be popped out

The memory device

- Simple memory device with unbounded memory.
- Consider a STACK
- At any stage, elements can be pushed or popped.

POP

• The element from the TOP of the stack can be **popped** out

E.g.: **POP 1**

• The Top of the STACK moves to the element below.

$$TOP = TOP - 1$$

- Successive POP operations shrink the stack size. Elements can be popped until EMPTY.
- Last In First Out (LIFO): The last element that was pushed is the first to be popped out

The memory device

- Simple memory device with unbounded memory.
- Consider a STACK
- At any stage, elements can be pushed or popped.

POP

• The element from the TOP of the stack can be **popped** out

E.g.: **POP 1**

• The Top of the STACK moves to the element below.

$$TOP = TOP - 1$$

- Successive POP operations shrink the stack size. Elements can be popped until EMPTY.
- Last In First Out (LIFO): The last element that was pushed is the first to be popped out

The memory device

- Simple memory device with unbounded memory.
- Consider a STACK
- Last In First Out (LIFO)

POP

- The element from the TOP of the stack can be **popped** out.
- TOP = TOP 1
- Elements can be popped until STACK is EMPTY.
- How would you know that the STACK is EMPTY?

The memory device

- Simple memory device with unbounded memory.
- Consider a STACK
- Last In First Out (LIFO)

POP

- The element from the TOP of the stack can be **popped** out.
- TOP = TOP 1
- Elements can be popped until STACK is EMPTY.
- How would you know that the STACK is EMPTY?
- There is generally some special symbol (say \$) that demarcates the bottom of the STACK.
- This element is Pushed at the very beginning. Whenever TOP = \$, the STACK is EMPTY.

Memory device of PDA: STACK

- STACK is a **LIFO** data structure of unbounded memory
- Only the TOP element can be read from the STACK.
- The bottom of the STACK contains a special symbol (\$)
- Characterized by two operations:

PUSH

- New symbols can be pushed in to the STACK.
- TOP = TOP + 1

POP

- The element from the TOP of the stack can be popped out.
- TOP = TOP 1
- Elements can be popped until STACK is EMPTY.

- A Pushdown Automata (PDA) is a finite automaton that has access to a stack.
- The FSM:

- A Pushdown Automata (PDA) is a finite automaton that has access to a stack.
- The FSM:
 - Transitions based on the Input symbol and the element at the top of the stack (e.g.: If I/P symbol = 0 & TOP = 0, transition from i to j)

- A Pushdown Automata (PDA) is a finite automaton that has access to a stack.
- The FSM:
 - Transitions based on the Input symbol and the element at the top of the stack (e.g.: If I/P symbol = 0 & TOP = 0, transition from i to j).
 - How can we read the TOP? By popping

- A Pushdown Automata (PDA) is a finite automaton that has access to a stack.
- The FSM:
 - Transitions based on the Input symbol and the element at the top of the stack (e.g.: If I/P symbol = 0 & TOP = 0, transition from i to j) **Pop 0**
 - Pushes new elements into the Stack (e.g.: If I/P symbol = 0, PUSH 0, transition from i to j).

- A Pushdown Automata (PDA) is a finite automaton that has access to a stack.
- The FSM:
 - Transitions based on the Input symbol and the element at the top of the stack
 - Pops the element at the top of the Stack.
 - Pushes new elements into the Stack.

PDAs are non-deterministic.

- ϵ -transitions
- Multiple transitions/input symbol possible

How to represent a transition in a PDA?

If input symbol = a, Stack top = b (if b is popped) and Push c onto the Stack

How to represent a transition in a PDA?

If input symbol = a, then Pop b

(If the symbol read is a and the stack TOP = b, then remain in S)

How to represent a transition in a PDA?

If input symbol = a, then Push c

How to represent a transition in a PDA?

If input symbol = a, then Pop a and Push aa.

So effectively, the PDA pushes a onto the stack if it reads a on the input tape and the stack top = a.

This is a "shorthand" for describing two operations:

How to represent a transition in a PDA?

If input symbol = a, then Pop a and Push aa.

So effectively, the PDA pushes a onto the stack if it reads a on the input tape and the stack top = a.

How to represent a transition in a PDA?

If input symbol = 0, Push 0 onto the Stack irrespective of the element at the top of the stack

How to represent a transition in a PDA?

Without reading the input symbol and the Stack top, Push 0 onto the Stack

How to represent a transition in a PDA?

If the input symbol is 1, and the element at the top of the stack is 0 (Pop 0), then transition from S to T

How to represent a transition in a PDA?

If the input symbol is 1, transition to T by ignoring the stack top completely.

If this happens at every step of the execution of the PDA, then it is as powerful as an NFA.

How to represent a transition in a PDA?

If the Stack is empty, i.e. TOP = \$, transition to F from T, without reading the input

How to represent a transition in a PDA?

If the Stack is empty, i.e. TOP = \$, transition to F from T, without reading the input

How to represent a transition in a PDA?

What is the language accepted by this PDA?

How to represent a transition in a PDA?

What is the language recognized by this PDA?

Verify that it is $L = \{0^n 1^n, n \ge 1\}$

What is the language recognized by this PDA?

What is the language recognized by this PDA?

In some references (such as Sipser):

• The transitions of the PDA are labelled as " $a, b \to c$ ", implying: If the input symbol read is a, the element at the top of the stack is b (pop b) and push c on to the Stack.

What is the language recognized by this PDA?

In some references (such as Sipser):

- The transitions of the PDA are labelled as " $a, b \to c$ ", implying: If the input symbol read is a, the element at the top of the stack is b, then pop b and push c on to the Stack.
- The label " $a,b \to \epsilon$ " implies that if the input symbol is a then pop b.

What is the language recognized by this PDA?

In some references (such as Sipser):

- The transitions of the PDA are labelled as " $a, b \to c$ ", implying: If the input symbol read is a, the element at the top of the stack is b, then pop b and push c on to the Stack.
- The label " $a, b \rightarrow \epsilon$ " implies that if the input symbol is a and b is popped.
- The symbol signifying the bottom of the Stack \$ is pushed at the very beginning.

Formally, a PDA M is a 6-tuple $(Q, \Sigma, \Gamma, \delta, q_0, F)$ where

- *Q* is a finite set called the *states*.
- Σ is the set of input *alphabets*.
- Γ is the set of **Stack alphabets**
- $\delta: Q \times \Sigma_{\epsilon} \times \Gamma_{\epsilon} \mapsto \mathcal{P}(Q \times \Gamma_{\epsilon})$ is the **transition function**

[
$$\Sigma_{\epsilon} = \Sigma \cup \{\epsilon\}$$
 and $\Gamma_{\epsilon} = \Gamma \cup \{\epsilon\}$]

- $q_0 \in Q$ is the **start state**.
- $F \subseteq Q$ is the set of *accepting states*.

Formally, a PDA M is a 6-tuple $(Q, \Sigma, \Gamma, \delta, q_0, F)$ where

- *Q* is a finite set called the *states*.
- Σ is the set of input *alphabets*.
- Γ is the set of **Stack alphabets**
- $\delta: Q \times \Sigma_{\epsilon} \times \Gamma_{\epsilon} \mapsto \mathcal{P}(Q \times \Gamma_{\epsilon})$ is the **transition function**
- $q_0 \in Q$ is the **start state**.
- $F \subseteq Q$ is the set of *accepting states*.

[
$$\Sigma_{\epsilon} = \Sigma \cup \{\epsilon\}$$
 and $\Gamma_{\epsilon} = \Gamma \cup \{\epsilon\}$]

A PDA accepts a string $w \in L$, if there exists a run such that

• It **reaches a final state** when the entire string is read.

OR

The stack is empty when the entire string is read.

Formally, a PDA M is a 6-tuple $(Q, \Sigma, \Gamma, \delta, q_0, F)$ where

- Q is a finite set called the states.
- Σ is the set of input *alphabets*.
- Γ is the set of **Stack alphabets**
- $\delta: Q \times \Sigma_{\epsilon} \times \Gamma_{\epsilon} \mapsto \mathcal{P}(Q \times \Gamma_{\epsilon})$ is the **transition function**
- $q_0 \in Q$ is the **start state**.
- $F \subseteq Q$ is the set of *accepting states*.

[
$$\Sigma_{\epsilon} = \Sigma \cup \{\epsilon\}$$
 and $\Gamma_{\epsilon} = \Gamma \cup \{\epsilon\}$]

A PDA accepts a string $w \in L$, if there exists a run such that

• It reaches a final state when the entire string is read.

OR

The stack is empty when the entire string is read.

These two notions of acceptance are equivalent

Formally, a PDA M is a 6-tuple $(Q, \Sigma, \Gamma, \delta, q_0, F)$ where

- *Q* is a finite set called the *states*.
- Σ is the set of input *alphabets*.
- Γ is the set of **Stack alphabets**
- $\delta: Q \times \Sigma_{\epsilon} \times \Gamma_{\epsilon} \mapsto \mathcal{P}(Q \times \Gamma_{\epsilon})$ is the **transition function**

[
$$\Sigma_{\epsilon} = \Sigma \cup \{\epsilon\}$$
 and $\Gamma_{\epsilon} = \Gamma \cup \{\epsilon\}$]

- $q_0 \in Q$ is the **start state**.
- $F \subseteq Q$ is the set of *accepting states*.

Transition function:

• $\delta(q_i, a, b) = (q_j, c)$: If the input symbol read is a and b is popped, then push c onto the stack and transition from q_i to q_j

Formally, a PDA M is a 6-tuple $(Q, \Sigma, \Gamma, \delta, q_0, F)$ where

- *Q* is a finite set called the *states*.
- Σ is the set of input *alphabets*.
- Γ is the set of **Stack alphabets**
- $\delta: Q \times \Sigma_{\epsilon} \times \Gamma_{\epsilon} \mapsto \mathcal{P}(Q \times \Gamma_{\epsilon})$ is the **transition function**

$$[\Sigma_{\epsilon} = \Sigma \cup \{\epsilon\} \text{ and } \Gamma_{\epsilon} = \Gamma \cup \{\epsilon\}]$$

- $q_0 \in Q$ is the **start state**.
- $F \subseteq Q$ is the set of *accepting states*.

- $\delta(q_i, a, b) = (q_j, c)$: If the input symbol read is a and b is popped, then push c onto the stack and transition from q_i to q_j
- $\delta(q_i, a, \epsilon) = (q_j, c)$:

Formally, a PDA M is a 6-tuple $(Q, \Sigma, \Gamma, \delta, q_0, F)$ where

- *Q* is a finite set called the *states*.
- Σ is the set of input *alphabets*.
- Γ is the set of **Stack alphabets**
- $\delta: Q \times \Sigma_{\epsilon} \times \Gamma_{\epsilon} \mapsto \mathcal{P}(Q \times \Gamma_{\epsilon})$ is the **transition function**

[
$$\Sigma_{\epsilon} = \Sigma \cup \{\epsilon\}$$
 and $\Gamma_{\epsilon} = \Gamma \cup \{\epsilon\}$]

- $q_0 \in Q$ is the **start state**.
- $F \subseteq Q$ is the set of *accepting states*.

- $\delta(q_i, a, b) = (q_j, c)$: If the input symbol read is a and b is popped, then push c onto the stack and transition from q_i to q_j
- $\delta(q_i, a, \epsilon) = (q_j, c)$: If the input symbol read is a, then push c onto the stack and transition from q_i to q_j

Formally, a PDA M is a 6-tuple $(Q, \Sigma, \Gamma, \delta, q_0, F)$ where

- *Q* is a finite set called the *states*.
- Σ is the set of input *alphabets*.
- Γ is the set of **Stack alphabets**
- $\delta: Q \times \Sigma_{\epsilon} \times \Gamma_{\epsilon} \mapsto \mathcal{P}(Q \times \Gamma_{\epsilon})$ is the *transition function*

[
$$\Sigma_{\epsilon} = \Sigma \cup \{\epsilon\}$$
 and $\Gamma_{\epsilon} = \Gamma \cup \{\epsilon\}$]

- $q_0 \in Q$ is the **start state**.
- $F \subseteq Q$ is the set of *accepting states*.

- $\delta(q_i, a, b) = (q_j, c)$: If the input symbol read is a and b is popped, then push c onto the stack and transition from q_i to q_j
- $\delta(q_i, a, \epsilon) = (q_j, c)$: If the input symbol read is a, then push c onto the stack and transition from q_i to q_j
- $\delta(q_i, a, b) = (q_i, \epsilon)$:

Formally, a PDA M is a 6-tuple $(Q, \Sigma, \Gamma, \delta, q_0, F)$ where

- *Q* is a finite set called the *states*.
- Σ is the set of input *alphabets*.
- Γ is the set of **Stack alphabets**
- $\delta: Q \times \Sigma_{\epsilon} \times \Gamma_{\epsilon} \mapsto \mathcal{P}(Q \times \Gamma_{\epsilon})$ is the **transition function**

 $[\Sigma_{\epsilon} = \Sigma \cup \{\epsilon\} \text{ and } \Gamma_{\epsilon} = \Gamma \cup \{\epsilon\}]$

- $q_0 \in Q$ is the **start state**.
- $F \subseteq Q$ is the set of *accepting states*.

- $\delta(q_i, a, b) = (q_j, c)$: If the input symbol read is a and b is popped, then push c onto the stack and transition from q_i to q_j
- $\delta(q_i, a, \epsilon) = (q_j, c)$: If the input symbol read is a, then push c onto the stack and transition from q_i to q_j
- $\delta(q_i, a, b) = (q_j, \epsilon)$: If the input symbol read is a, and the stack top = b (b is popped) then transition from q_i to q_j
- $\delta(q_i, \epsilon, \$) = (q_i, \$)$:

Formally, a PDA M is a 6-tuple $(Q, \Sigma, \Gamma, \delta, q_0, F)$ where

- *Q* is a finite set called the *states*.
- Σ is the set of input *alphabets*.
- Γ is the set of **Stack alphabets**
- $\delta: Q \times \Sigma_{\epsilon} \times \Gamma_{\epsilon} \mapsto \mathcal{P}(Q \times \Gamma_{\epsilon})$ is the **transition function**

[$\Sigma_{\epsilon} = \Sigma \cup \{\epsilon\}$ and $\Gamma_{\epsilon} = \Gamma \cup \{\epsilon\}$]

- $q_0 \in Q$ is the **start state**.
- $F \subseteq Q$ is the set of *accepting states*.

- $\delta(q_i, a, b) = (q_j, c)$: If the input symbol read is a and b is popped, then push c onto the stack and transition from q_i to q_j
- $\delta(q_i, a, \epsilon) = (q_j, c)$: If the input symbol read is a, then push c onto the stack and transition from q_i to q_j
- $\delta(q_i, a, b) = (q_j, \epsilon)$: If the input symbol read is a, and the stack top = b, then pop b and transition from q_i to q_j
- $\delta(q_i, \epsilon, \$) = (q_i, \$)$: Transition from q_i to q_i if the stack is empty.

Formally, a PDA M is a 6-tuple $(Q, \Sigma, \Gamma, \delta, q_0, F)$ where

- *Q* is a finite set called the *states*.
- Σ is the set of input *alphabets*.
- Γ is the set of **Stack alphabets**
- $\delta: Q \times \Sigma_{\epsilon} \times \Gamma_{\epsilon} \mapsto \mathcal{P}(Q \times \Gamma_{\epsilon})$ is the **transition function**

$$[\Sigma_{\epsilon} = \Sigma \cup \{\epsilon\} \text{ and } \Gamma_{\epsilon} = \Gamma \cup \{\epsilon\}]$$

- $q_0 \in Q$ is the **start state**.
- $F \subseteq Q$ is the set of *accepting states*.

- $\delta(q_i, a, b) = (q_j, c)$: If the input symbol read is a and b is popped, then push c onto the stack and transition from q_i to q_j
- If the input symbol read is a and a is popped, then Push a and remain at q_i : $\ref{eq:continuous}$

Formally, a PDA M is a 6-tuple $(Q, \Sigma, \Gamma, \delta, q_0, F)$ where

- *Q* is a finite set called the *states*.
- Σ is the set of input *alphabets*.
- Γ is the set of **Stack alphabets**
- $\delta: Q \times \Sigma_{\epsilon} \times \Gamma_{\epsilon} \mapsto \mathcal{P}(Q \times \Gamma_{\epsilon})$ is the **transition function**

[
$$\Sigma_{\epsilon} = \Sigma \cup \{\epsilon\}$$
 and $\Gamma_{\epsilon} = \Gamma \cup \{\epsilon\}$]

- $q_0 \in Q$ is the **start state**.
- $F \subseteq Q$ is the set of *accepting states*.

- $\delta(q_i, a, b) = (q_j, c)$: If the input symbol read is a and b is popped, then push c onto the stack and transition from q_i to q_j
- If the input symbol read is a and a is popped, then Push a and remain at $q_i: \delta(q_i, a, a) = (q_i, a)$

Formally, a PDA M is a 6-tuple $(Q, \Sigma, \Gamma, \delta, q_0, F)$ where

- *Q* is a finite set called the *states*.
- Σ is the set of input *alphabets*.
- Γ is the set of **Stack alphabets**
- $\delta: Q \times \Sigma_{\epsilon} \times \Gamma_{\epsilon} \mapsto \mathcal{P}(Q \times \Gamma_{\epsilon})$ is the **transition function**
- [$\Sigma_{\epsilon} = \Sigma \cup \{\epsilon\}$ and $\Gamma_{\epsilon} = \Gamma \cup \{\epsilon\}$]

- $q_0 \in Q$ is the **start state**.
- $F \subseteq Q$ is the set of *accepting states*.
- The Language of the PDA P is the set of strings the PDA accepts, i.e.

$$L = \{w | P \text{ accepts } w\}$$

There exists an accepting run for w on P

• If $\mathcal{L}(P) = L$, then the PDA P recognizes L

Formally, a PDA M is a 6-tuple $(Q, \Sigma, \Gamma, \delta, q_0, F)$ where

- *Q* is a finite set called the **states.**
- Σ is the set of input *alphabets*.
- Γ is the set of **Stack alphabets**
- $\delta: Q \times \Sigma_{\epsilon} \times \Gamma_{\epsilon} \mapsto \mathcal{P}(Q \times \Gamma_{\epsilon})$ is the **transition function**
- $q_0 \in Q$ is the **start state**.
- $F \subseteq Q$ is the set of *accepting states*.

$$[\Sigma_{\epsilon} = \Sigma \cup \{\epsilon\} \text{ and } \Gamma_{\epsilon} = \Gamma \cup \{\epsilon\}]$$

The Language of the PDA P is the set of strings the PDA accepts, i.e.

$$L = \{w | P \text{ accepts } w\}$$

- If $\mathcal{L}(P) = L$, then the PDA P recognizes L
- Stack alphabet can be different from the input alphabet

Formally, a PDA M is a 6-tuple $(Q, \Sigma, \Gamma, \delta, q_0, F)$ where

- *Q* is a finite set called the **states.**
- Σ is the set of input *alphabets*.
- Γ is the set of **Stack alphabets**
- $\delta: Q \times \Sigma_{\epsilon} \times \Gamma_{\epsilon} \mapsto \mathcal{P}(Q \times \Gamma_{\epsilon})$ is the *transition function*
- $q_0 \in Q$ is the **start state**.
- $F \subseteq Q$ is the set of *accepting states*.
- The Language of the PDA P is the set of strings the PDA accepts, i.e.

$$L = \{w | P \text{ accepts } w\}$$

- If $\mathcal{L}(P) = L$, then the PDA P recognizes L
- Stack alphabet can be different from the input alphabet

Formally, a PDA M is a 6-tuple $(Q, \Sigma, \Gamma, \delta, q_0, F)$ where

- *Q* is a finite set called the **states.**
- Σ is the set of input *alphabets*.
- Γ is the set of **Stack alphabets**
- $\delta: Q \times \Sigma_{\epsilon} \times \Gamma_{\epsilon} \mapsto \mathcal{P}(Q \times \Gamma_{\epsilon})$ is the *transition function*
- $q_0 \in Q$ is the **start state**.
- $F \subseteq Q$ is the set of *accepting states*.

The Language of the PDA P is the set of strings the PDA accepts, i.e.

$$L = \{w | P \text{ accepts } w\}$$

- If $\mathcal{L}(P) = L$, then the PDA P recognizes L
- Stack alphabet can be different from the input alphabet

$$\delta(S, 0, \epsilon) = (S, X)$$

$$\delta(S, 1, X) = (T, \epsilon)$$

Formally, a PDA M is a 6-tuple $(Q, \Sigma, \Gamma, \delta, q_0, F)$ where

- *Q* is a finite set called the **states.**
- Σ is the set of input *alphabets*.
- Γ is the set of **Stack alphabets**
- $\delta: Q \times \Sigma_{\epsilon} \times \Gamma_{\epsilon} \mapsto \mathcal{P}(Q \times \Gamma_{\epsilon})$ is the *transition function*
- $q_0 \in Q$ is the **start state**.
- $F \subseteq Q$ is the set of *accepting states*.
- The Language of the PDA P is the set of strings the PDA accepts, i.e.

$$L = \{w | P \text{ accepts } w\}$$

- If $\mathcal{L}(P) = L$, then the PDA P recognizes L
- Stack alphabet can be different from the input alphabet

[
$$\Sigma_{\epsilon} = \Sigma \cup \{\epsilon\}$$
 and $\Gamma_{\epsilon} = \Gamma \cup \{\epsilon\}$]

$$\delta(S, 0, \epsilon) = (S, X)$$

$$\delta(S, 1, X) = (T, \epsilon)$$

$$\delta(T, 1, X) = (T, \epsilon)$$

$$\delta(T, \epsilon, \$) = (F, \$)$$

Let $\Sigma = \{0,1\}$ consider the language $L = \{w \in \Sigma^* \mid w \text{ is a Palindrome}\}$. Design a PDA P that recognizes L.

Let $\Sigma = \{0,1\}$ consider the language $L = \{w \in \Sigma^* \mid w \text{ is a Palindrome}\}$. Design a PDA P that recognizes L.

- Push first half of the input string onto the stack.
- Verify that the second half of the symbols match the first half: Keep Popping the stack until the end of the input.

Let $\Sigma = \{0,1\}$ consider the language $L = \{w \in \Sigma^* \mid w \text{ is a Palindrome}\}$. Design a PDA P that recognizes L.

- Push first half of the input string onto the stack.
- Verify that the second half of the symbols match the first half: Keep Popping the stack until the end of the input.
- How can the PDA know that the middle of the input has been reached.
 - The PDA does this non-deterministically (by taking ϵ transitions).

Let $\Sigma = \{0,1\}$ consider the language $L = \{w \in \Sigma^* \mid w \text{ is a Palindrome}\}$. Design a PDA P that recognizes L.

- Push first half of the input string onto the stack.
- Verify that the second half of the symbols match the first half: Keep Popping the stack until the end of the input.
- How can the PDA know that the middle of the input has been reached.
 - The PDA does this non-deterministically (by taking ϵ transitions).
- The above intuition is applicable for even length palindromes of the form ww^R .
- What about odd length palindromes?
 - Non-determinism to the rescue once again

Let $\Sigma = \{0,1\}$ consider the language $L = \{w \in \Sigma^* \mid w \text{ is a Palindrome}\}$. Design a PDA P that recognizes L.

- Push first half of the input string onto the stack.
- Verify that the second half of the symbols match the first half: Keep Popping the stack until the end of the input.
- How can the PDA know that the middle of the input has been reached.
 - The PDA does this non-deterministically (by taking ϵ transitions).

Let $\Sigma = \{0,1\}$ consider the language $L = \{w \in \Sigma^* \mid w \text{ is a Palindrome}\}$. Design a PDA P that recognizes L.

- Push first half of the input string onto the stack.
- Verify that the second half of the symbols match the first half: Keep Popping the stack until the end of the input.
- How can the PDA know that the middle of the input has been reached.
 - The PDA does this non-deterministically (by taking ϵ transitions).

Let $\Sigma = \{0,1\}$ consider the language $L = \{w \in \Sigma^* \mid w \text{ is a Palindrome}\}$. Design a PDA P that recognizes L.

- Push first half of the input string onto the stack.
- Verify that the second half of the symbols match the first half: Keep Popping the stack until the end of the input.
- How can the PDA know that the middle of the input has been reached.
 - The PDA does this non-deterministically (by taking ϵ transitions).

Let $\Sigma = \{0,1\}$ consider the language $L = \{w \in \Sigma^* \mid w \text{ is a Palindrome}\}$. Design a PDA P that recognizes L.

- Push first half of the input string onto the stack.
- Verify that the second half of the symbols match the first half: Keep Popping the stack until the end of the input.
- How can the PDA know that the middle of the input has been reached.
 - The PDA does this non-deterministically (by taking ϵ transitions).

Let $\Sigma = \{0,1\}$ consider the language $L = \{w \in \Sigma^* \mid w \text{ is a Palindrome}\}$. Design a PDA P that recognizes L.

- Push first half of the input string onto the stack.
- Verify that the second half of the symbols match the first half: Keep Popping the stack until the end of the input.
- How can the PDA know that the middle of the input has been reached.
 - The PDA does this non-deterministically (by taking ϵ transitions).

Let $\Sigma = \{0,1\}$ consider the language $L = \{w \in \Sigma^* \mid w \text{ is a Palindrome}\}$. Design a PDA P that recognizes L.

- Push first half of the input string onto the stack.
- Verify that the second half of the symbols match the first half: Keep Popping the stack until the end of the input.
- How can the PDA know that the middle of the input has been reached.
 - The PDA does this non-deterministically (by taking ϵ transitions).

Let $\Sigma = \{0,1\}$ consider the language $L = \{w \in \Sigma^* \mid w \text{ is a Palindrome}\}$. Design a PDA P that recognizes L.

- Push first half of the input string onto the stack.
- Verify that the second half of the symbols match the first half: Keep Popping the stack until the end of the input.
- How can the PDA know that the middle of the input has been reached.
 - The PDA does this non-deterministically (by taking ϵ transitions).

Let $\Sigma = \{0,1\}$ consider the language $L = \{w \in \Sigma^* \mid w \text{ is a Palindrome}\}$. Design a PDA P that recognizes L.

Intuition

- Push first half of the input string onto the stack.
- Verify that the second half of the symbols match the first half: Keep Popping the stack until the end of the input.
- How can the PDA know that the middle of the input has been reached.
 - The PDA does this non-deterministically (by taking ϵ transitions).
- What about odd length palindromes?

Recognizes even length palindromes of the form: ww^R

Let $\Sigma = \{0,1\}$ consider the language $L = \{w \in \Sigma^* \mid w \text{ is a Palindrome}\}$. Design a PDA P that recognizes L.

Intuition

- Push first half of the input string onto the stack.
- Verify that the second half of the symbols match the first half: Keep Popping the stack until the end of the input.
- How can the PDA know that the middle of the input has been reached.
 - The PDA does this non-deterministically (by taking ϵ transitions).
- What about odd length palindromes?

Odd length palindromes are of the form wcw^R , such that $c\in \Sigma$

Let $\Sigma = \{0,1\}$ consider the language $L = \{w \in \Sigma^* \mid w \text{ is a Palindrome}\}$. Design a PDA P that recognizes L.

Intuition

- Push first half of the input string onto the stack.
- Verify that the second half of the symbols match the first half: Keep Popping the stack until the end of the input.
- How can the PDA know that the middle of the input has been reached.
 - The PDA does this non-deterministically (by taking ϵ transitions).
- What about odd length palindromes?

Odd length palindromes are of the form wcw^R , such that $c\in \Sigma$

Let $\Sigma = \{0,1\}$ consider the language $L = \{w \in \Sigma^* \mid w \text{ is a Palindrome}\}$. Design a PDA P that recognizes L.

Intuition

- Push first half of the input string onto the stack.
- Verify that the second half of the symbols match the first half: Keep Popping the stack until the end of the input.
- How can the PDA know that the middle of the input has been reached.
 - The PDA does this non-deterministically (by taking ϵ transitions).
- What about odd length palindromes?

The transitions $0, \epsilon, \epsilon$ and $1, \epsilon, \epsilon$ allow the PDA to consume one symbol and then begin matching what it has encountered thus far.

Let $\Sigma = \{0,1\}$ consider the language $L = \{w \in \Sigma^* \mid w \text{ is a Palindrome}\}$. Design a PDA P that recognizes L.

Intuition

- Push first half of the input string onto the stack.
- Verify that the second half of the symbols match the first half: Keep Popping the stack until the end of the input.
- How can the PDA know that the middle of the input has been reached.
 - The PDA does this non-deterministically (by taking ϵ transitions).
- What about odd length palindromes?

The transitions $0, \epsilon, \epsilon$ and $1, \epsilon, \epsilon$ allow the PDA to consume one symbol and then begin matching what it has encountered thus far.

This allows the PDA to recognize strings of the form: $\omega c w^R$, where the aforementioned transitions non-deterministically guessed $c \in \{0,1\}$

Thank You!