Lecture 6: 数据降维之主成分分析

2024.3.12

Lecturer: 丁虎 Scribe: 王运韬

对于高维数据集,数据经常是非常稀疏的,一个合理的操作是将这些高维数据降为低纬数据。

从几何的角度来说,对于集合 $P = \{p_1, \cdots, p_n\} \subset R^d$,我们期望找到一个 k 维的子空间 $E, k \ll d$,最小化 $\sum_{i=1}^n \|p_i - \pi(p_i)\|_2^2$,其中 π 是 R^d 到 E 的投影。当然,此处的目标函数也可以替换为其他的度量。

从线性代数的角度讲,对于矩阵 $A\in R^{n\times d}$ 找到一个秩为 k 的矩阵 A_k 使得 $\|A-A_k\|_F$ 最小。其中 $\|X\|_F=\sqrt{\sum_{i,j}X_{ij}^2}$ 。

由重心的定义,可知不等号只能相等,即 $\nu(P) \in E$.

1 奇异值分解 (Singular Value Decomposition)

根据上边的表述,我们可以把 PCA 的核心思想表述为:能否找到更小的一组基底,使之能尽可能好地重新代表原数据?为了严格地解决这个问题,我们引入奇异值分解技术。X为 $n \times m$ 矩阵, X^TX 秩为r,接下来我们定义相关的量:

• $\{\hat{\mathbf{v}}_1, \hat{\mathbf{v}}_2, \dots, \hat{\mathbf{v}}_r\}$ 是 $\mathbf{X}^T\mathbf{X}$ 一族正交的 $m \times 1$ 特征向量,对应特征值 $\{\lambda_1, \lambda_2, \dots, \lambda_r\}$. 即

$$(\mathbf{X}^T \mathbf{X})\widehat{\mathbf{v}}_i = \lambda_i \widehat{\mathbf{v}}_i.$$

- $\sigma_i \equiv \sqrt{\lambda_i}$ 正实数特征值.
- $\{\widehat{\mathbf{u}}_1, \widehat{\mathbf{u}}_2, \dots, \widehat{\mathbf{u}}_r\}$ 是一族 $n \times 1$ 向量,满足 $\widehat{\mathbf{u}}_i \equiv \frac{1}{\sigma_i} \mathbf{X} \widehat{\mathbf{v}}_i$.
- $\widehat{\mathbf{u}}_{\mathbf{i}} \cdot \widehat{\mathbf{u}}_{\mathbf{j}} = \begin{cases} 1 & \text{如果 } i = j \\ 0 & \text{otherwise} \end{cases}$
- $\|X\widehat{\mathbf{v}}_{\mathbf{i}}\| = \sigma_i$

我们的目标是构造如下的对角矩阵 Σ.

$$\Sigma \equiv \left[\begin{array}{cccc} \sigma_{\tilde{1}} & & & & & \\ & \ddots & & & & \\ & & \sigma_{\tilde{r}} & & & \\ & & & 0 & & \\ & & & & \ddots & \\ & & & & & 0 \end{array} \right]$$

其中 $\sigma_1 \geq \sigma_2 \geq \ldots \geq \sigma_r$ 是由大到小排列的奇异值. 我们需要构造正交矩阵

$$\begin{array}{rcl} V & = & \left[\widehat{v}_1 \; \widehat{v}_2 \; \dots \; \widehat{v}_m \right] \\ \\ U & = & \left[\widehat{u}_1 \; \widehat{u}_2 \; \dots \; \widehat{u}_n \right] \end{array}$$

此处增补了 (m-r) 和 (n-r) 个正交基来使 V 和 U 为方阵。满足

$$X = U\Sigma V^T \tag{1}$$

根据需求,可以发现如下奇异值分解矩阵 X 的算法:

- 1. 计算 XX^{T} 的特征值和特征向量,用单位化的特征向量构成 U.
- 2. 计算 $X^{T}X$ 的特征值和特征向量,用单位化的特征向量构成 V.
- 3. 将 XX^{T} 的特征值开方,得到 Σ .

当然,因为计算 XX^{T} 的开销可能很大,这个算法不是实践中使用的算法。此外,在固定了 Σ 对角元的排序后,奇异值分解是唯一的。

2 主成分分析

回顾我们的设定,原始数据可以写成 $X \in \mathbb{R}^{n \times d}$,n 是样本个数,d 是特征维数。假设我们之前假设的 k 维子空间 E 有一组标准正交基 v_1, v_2, \cdots, v_k ,并将它扩展到 d 维全空间,那么对于任意的向量 a,

$$\|a-\mathbf{proj}_E(a)\|^2 = \|\sum_1^d v_j\langle a,v_j\rangle - \sum_1^k v_j\langle a,v_j\rangle\|^2 = \sum_{k+1}^d \langle a,v_j\rangle^2$$

我们希望子空间 E 对全部数据 X 带来最小的均方损失,由上式可知:损失函数为 $\sum_{i=1}^{n} \|p_i - \pi(p_i)\|_2^2 = \|XV - XV_k\|_F^2 = \|XW\|_F^2$, 其中 V_k 是一个后 d - k 列均为 0 的列正交矩阵, W 是一个 $d \times k$ 的列正交矩阵。实际上, $(V_k[1:k], W) = (v_1, \dots, v_d) =: V$. 所以问题转化为:

$$\min_{V_k \in \mathbb{R}^{d \times k}} - \|XV_k\|_F^2$$

$$s.t. \quad V_k^\top V_k = \mathbf{I}_k$$

直接使用拉格朗日乘子法,可得

$$X^{\top}Xv_i = \sigma_i^2 v_i.$$

即 v_1, \dots, v_k 对应奇异值分解的右乘方阵 V 的前 k 列。 主成分分析的缺点包括:

- 1. 复杂度高。基于 QR 分解的奇异值分解有复杂度 $O(nd^2)$.
- 2. 作用于矩阵,数值稳定性在维度高时难以保障。
- 3. 对数据多次读取,不适合流数据和分布式计算,还有隐私泄露的问题。

3 相关研究

3.1 低秩近似

Theorem 3.1 (Eckart–Young–Mirsky). 对 $X \in \mathbb{R}^{n \times d}$, $\min_{\text{rank}(X_k) \leq k} ||X - X_k||$ 仅在 $X_k = \sum_{1}^{k} \sigma_i \hat{u}_i \hat{v}_i \top$ 时取到。此处的范数可以为谱范数或 *Frobenius* 范数, $\sigma_1, \dots, \sigma_d$ 是 X 从大到小排列的奇异值, \hat{u}_i, \hat{v}_j 分别代表 U, V 的第 i 和第 j 列。

此外,一些基于采样的随机算法也被开发出来,参考[1].

3.2 非负矩阵分解

对非负矩阵 $M \in \mathbb{R}^{n \times m}$, 求解

$$\min_{A,W \ge 0} \quad ||AW - M||_F$$

$$s.t. \quad A \in \mathbb{R}^{n \times r}, W \in \mathbb{R}^{r \times m}.$$

Example 3.2. M 可以表示 $m \land n$ 维数据,A 表示 r 个基向量,W 表示这些基向量的凸组合。

推荐系统曾经广泛采用这种算法。求精确解的复杂度为 $O(mn^{O(r^2)})$,同样是 NP 完全问题。

References

[1] D. P. Woodruff. Sketching as a tool for numerical linear algebra. *Foundations and Trendső in Theoretical Computer Science*, 10(1–2):1–157, 2014.