Processamento Digital de Imagens

Quantização de Imagens

Eduardo A. B. da Silva
Programa de Engenharia Elétrica - COPPE/UFRJ
Laboratório de Sinais, Multimídia e Telecomunicações
eduardo@smt.ufrj.br

Sergio L. Netto
Programa de Engenharia Elétrica - COPPE/UFRJ
Laboratório de Sinais, Multimídia e Telecomunicações
sergioln@smt.ufrj.br

Abril de 2017

(SMT – COPPE/UFRJ) UFRJ Abril de 2017

Sumário

- Quantização de Imagens
 - Quantização
 - Compandors
 - Entropia da Saída Vs. Distorção
 - Quantização Visual

Quantização

- $\bullet \ \ \mathsf{Representa} \\ \mathsf{ç}\\ \mathsf{ão} \ \ \mathsf{num} \ \ \mathsf{computador} \\ \Rightarrow \mathsf{valores} \ \mathsf{discretos}.$
- ullet Quantização: mapeia $u o u^{\cdot}$ u^{\cdot} toma valores em $\{r_1, \cdots, r_L\}$
- $\bullet \ u \in [t_k, t_{k+1}) \to u' = r_k$

Em geral: processo irreversível.

Exemplo: Quantizador uniforme entre 0.0 e 10.0, 256 níveis:

$$t_k=\frac{10(k-1)}{256}$$

$$r_k = t_k + \frac{5}{256}$$

$$\Rightarrow q \stackrel{\triangle}{=} t_k - t_{k-1} = r_k - r_{k-1}$$
: intervalo ou passo de quantização.

Quantizador Ótimo de Lloyd-Max

$$\varepsilon = E[(u-u^{\cdot})^{2}] = \int_{t_{1}}^{t_{L+1}} (u-u^{\cdot})^{2} p_{u}(u) du = \sum_{i=1}^{L} \int_{t_{i}}^{t_{i+1}} (u-r_{i})^{2} p_{u}(u) du$$

$$\varepsilon_{\text{mínimo}} \rightarrow \frac{d\varepsilon}{dt_k} = 0 \Rightarrow (t_k - r_{k-1})^2 p_u(t_k) - (t_k - r_k)^2 p_u(t_k) = 0 \qquad (1)$$

$$\frac{d\varepsilon}{dr_k} = 0 \Rightarrow \frac{d}{dr_k} \int_{t_k}^{t_{k+1}} (u - r_k)^2 p_u(u) du = 0 \qquad (2)$$

(SMT – COPPE/UFRJ) UFRJ Abril de 2017

$$(1) \Rightarrow (t_k - r_{k-1})^2 = (t_k - r_k)^2 \Rightarrow \text{ Se } t_1 < t_2 < \cdots t_{L+1}$$
 $\Rightarrow \boxed{t_k = rac{r_{k-1} + r_k}{2}}$

$$(2) \Rightarrow \int_{t_k}^{t_{k+1}} u p_u(u) du = r_k \int_{t_k}^{t_{k+1}} p_u(u) du$$

$$\Rightarrow r_k = \frac{\int_{t_k}^{t_{k+1}} u p_u(u) du}{\int_{t_k}^{t_{k+1}} p_u(u) du} = E[u | u \in \mathcal{I}_k]$$

(SMT - COPPE/UFRJ) UFRJ Abril de 2017 6

Soluções:

- 1) a. Inicializar $r_k^{(1)}, k=1,\cdots,L$ tal que $r_1^{(1)} < r_2^{(1)} < \cdots r_L^{(1)}, \quad r_{L+1}^{(1)}$ dependendo do problema.
 - b. Para cada $i, i = 1, \dots, N_{\text{max}}$:
 - lacksquare Para cada $k, \quad k=1,\cdots,L+1$:

$$t_k^{(i)} = \frac{r_{k-1}^{(i)} + r_k^{(i)}}{2}$$

$$r_k^{(i+1)} = \frac{\int_{t_k^{(i)}}^{t_{k+1}^{(i)}} u p_u(u) du}{\int_{t_k^{(i)}}^{t_{k+1}^{(i)}} p_u(u) du}$$

• A seguir são apresentadas tabelas para os quantizadores ótimos de números de níveis entre 2 e 36, 64 e 128, para uma densidade gaussiana de média zero e variância unitária.

(SMT – COPPE/UFRJ) Abril de 2017 7

TABLE 4.1 Optimum mean square quantizers for Gaussian density with zero mean and unity standard deviation; $t_{-k} = -t_k$, $t_{-k} = -r_k$, $t_{L/2} + 1 \stackrel{\triangle}{=} \infty$.

	IIICu	iii aiia ai	nty Starre	ala acvi	ation, t-	- Ck, I	k - /k,	$L/2 + 1 = \infty$	•							
Levels MSE SNR (dB)	2 .3634 4.3964		.3634 .19 4.3964 7.20		3 .1902 7.2085		.1902 .117. 7.2085 9.300		4 5 .1175 .0799 9.3003 10.972		6 .0580 12.367		7 .0440 13.565		8 .0345 14.616	
Entropy	1.0	1.0000 1.5358		1.9111		2.2029		2.4428		2.6469		2.8248				
k	t_k	r_k	t_k	r_k	t_k	r_k	t_k	r_k	l_k	r_k	t_k	r_k	l_k	r_k		
1 2 3	0.0000	.7979	.6120	0.0000 1.2240	0.0000 .9816	.4528 1.5104	.3823 1.2444	0.0000 .7646 1.7242	0.000 .6589 1.4469	.3177 1.0001 1.8936	.2803 .8744 1.6108	0.0000 .5606 1.1882	0.0000 .5006 1.0500	.245 .756 1.344		
4									11,102	110350	1.0100	2.0334	1.7480	2.152		
Levels MSE SNR (dB) Enthropy	15.5	1279	.(16.3	0 0229 195 1245	.(17.1	1 0192 163 2534). 17.8	2 0163 068 0716	.0 18.5	3 0141 519 1806	19.1	4 0122 125 5819	15 .01 19.69 3.67	07 01		
k	t_k	r_k	t_k	r_k	t_k	r_k	t_k	r_k	t_k	r_k	t_k	r_k	t_k	r_k		
1	.2218	0.0000	0.0000	.1996	.1838	0.0000	0.0000	.1685	.1569	0.0000	0.0000	.1457	.1370	0.000		
2	.6813	.4437	.4048	.6099	.5600	.3675	.3402	.5119	.4761	.3138	.2936	.4414	.4144	.273		
3	1.1977	.9189	.8339	1.0579	.9657	.7525	.6944	.8769	.8127	.6384	.5960	.7506	.7031	.55		
4	1.8656	1.4765	1.3247	1.5914	1.4359	1.1789	1.0814	1.2859	1.1843	.9871	.9182	1.0858	1.0132	.85		
5		2.2547	1.9683	2.3452	2.0593	1.6928	1.5345	1.7832	1.6231	1.3314	1.2768	1.4677	1.3607	1.17		
6 7						2.4259	2.1409	2.4986	2.2147	1.8647 2.5647	1.7033 2.2820	1.9388 - 2.6253	1.7765 2.3439	1.54 2.00		
8														2.68		

(SMT - COPPE/UFRJ) UFRJ Abril de 2017 8 / 39

Levels MSE SNR (dB) Entropy	3.7652 3.8486		.0095 .0085 20.222 20.723		18 .0076 21.196 3.9275		19 .0069 21.644 4.0023		20 .0062 22.071 4.0773		21 .0057 22.477 4.1410		22 .0052 22.865 4.2056	
k			r_k											
1	0.0000	.1284	.1215	0.0000	0.0000	.1148	.1093	0.0000	0.0000	r _k	t _k	r_k	t_k	r_k
2	.2583	.3882	.3671	.2431	.2306	.3465	.3295	.2185	.2084	.1038	.0992	0.0000	0.0000	.947
3	.5226	.6569	.6203	.4910	.4655	.5845	.5553	.4405	.4198	.3129	.2990	.1985	.1901	.285
4	.7998	.9426	.8877	.7495	.7093	.8341	.7910	.6700	.6378	.7488	.5029	.3996	.3824	.479
5	1.0995	1.2565	1.1785	1.0259	.9683	1.1024	1.0426	.9120	.8664		.7140	.6062	.5797	.679
6	1.4374	1.6183	1.5080	1.3312	1.2513	1.4002	1.3187	1.1732	1.1114	.9840	.9364	.8218	.7848	.889
7	1.8438	2.0693	1.9060	1.6848	1.5733	1.7464	1.6340	1.4642	1.3814	1.2389 1.5238	1.1756 1.4399	1.0510	1.0016	1.113
8	2.4011	2.7328	2,4542	2.1273	1.9638	2.1813	2.0177	1.8037	1.6906	1.8574		1.3002	1.2355	1.357
9	211011	217520	2.4.742	2.7810	2.5037	2.8261	2.5501	2.2317	2.0683		1.7437	1.5797	1.4949	1.632
10		1		2.7010	2.3037	2.0201	2.3301	2.8684	2.5937	2.2791	2.1158	1.9078	1.7937	1.955
11		,						2.0004	2.3937	2.9083	2.6349	2.3237	2.1606	2.365
	-											2.9460	2.6738	2.98
Levels	23			4		25		6	2		2	18	29	
MSE		0047	.0044		.0040		.0037		.0035		.0032		.0030	
SNR (dB)	23.2		23.593		23.935			24.264 24.581			24.8	387	25.18	12
Entropy	4.2	2675	4.3	3267	4	3837	4.4384		4.4911		4.5420		4.5911	
k	t_k	r_k	t_k	r_k	t_k	r_k	t_k	r_k	t_k	r_k	t_k	r_k	t_k	r_k
1	.0909	0.0000	0.0000	.0871	.0839	0.0000	0.0000	.0807	.0778	0.0000	0.0000	.0751	.0726	0.000
2	.2737	.1818	.1747	.2623	.2535	.1677	.1617	.2427	.2342	.1557	.1504	.2258	.2184	.14:
3	.4596	.3656	.3512	.4401	.4233	.3370	.3247	.4068	.3924	.3126	.3020	.3782	.3658	.29
4	.6510	.5536	.5314	.6227	.5985	.5096	.4908	.5747	.5540	.4722	.4560	.5337	.5158	.440
5	.8508	.7484	.7176	.8125	.7801	.6874	.6614	.7481	.7206	.6358	.6136	.6935	.6698	.59
6	1.0626	.9531	.9126	1.0126	.9707	.8727	.8388	.9294	.8941	.8054	.7765	.8594	.8293	.748
7	1.2918	1.1721	1.1199	1.2272	1.1739	1.0686	1.0254	1.1214	1.0772	.9829	.9465	1.0336	.9962	.91
8	1.5466	1.4116	1.3448	1.4624	1.3949	1.2792	1.2249	1.3283	1.2732	1.1715	1.1263	1.2189	1.1729	1.081
9	1.8408	1.6816	1.5954	1.7283	1.6416	1.5105	1.4423	1.5561	1.4872	1.3750	1.3191	1.4193	1.3628	1.26
10	2.2029	2.0001	1.8854	2.0426	1.9277	1.7725	1.6854	1.8146	1.7270	1.5995	1.5300	1.6407	1.5708	1.46
11	2.7107	2.4058	2.2431	2.4437	2.2813	2.0829	1.9679	2.1213	2.0062	1.8546	1.7668	1.8928	1.8047	1.680
12		3.0156	2.7458	3.0479	2.7792	2.4797	2.3177	2.5141	2.3524	2.1578	2.0428	2.1928	2.0778	1.929
13						3.0787	2.8111	3.1081	2.8416	2.5470	2.3856	2.5784	2.4174	2.220
												2.0707	4.71/7	4.44
14 15										3.1363	2.8709	3.1634	2.8989	2.608

(SMT - COPPE/UFRJ) UFRJ Abril de 2017

TABLE 4.1 Continued

Levels MSE SNR (dB) Entropy	30 .0028 25.468 4.6386		25.7	027	30 .0 26.0 4.7	025 12	26.2	024	34 .01 26.5: 4.8	022 25	26.7	021	36 .002 27.009 4.894	9
k	l_k	r_k	t_k	r_k	t_k	r_k	t_k	r_k	<i>t</i> _k	r _k	t _k	r _k	t _k	r _k
1	0.0000	.0702	.0681	0.0000	0.0000	.0660	.0641	0.0000	0.0000	.0622	.0605	0.0000	0.0000	.0588
2	.1407	.2111	.2047	.1362	.1321	.1983	.1926	.1281	.1246	.1869	.1818	.1210	.1178	.1768
3	.2823	.3535	.3425	.2732	.2650	.3318	.3221	.2570	.2497	.3126	.3040	.2426	.2361	.295
4	.4258	.4982	.4826	.4119	.3995	.4672	.4535	.3872	.3762	.4399	.4277	.3654	.3556	.415
5	.5723	.6465	.6259	.5533	.5364	.6056	.5874	.5197	.5048	.5696	.5536	.4900	.4768	.537
6	.7231	.7996	.7736	.6985	.6767	.7479	.7251	.6553	.6362	.7026	.6826	.6173	.6003	.662
7	.8794	.9593	.9271	.8487	.8217	.8954	.8675	.7950	.7713	.8399	.8154	.7479	.7269	.791
8	1.0434	1.1275	1.0884	1.0056	.9726	1.0497	1.0160	.9400	.9113	.9826	.9531	.8828	.8576	.924
9	1.2173	1.3071	1.2596	1.1711	1.1313	1.2128	1.1723	1.0919	1.0574	1.1323	1.0972	1.0234	.9933	1.062
10	1.4045	1.5019	1.4443	1.3481	1.3001	1.3874	1.3389	1.2527	1.2116	1.2909	1.2493	1.1710	1.1353	1.208
11	1.6098	1.7177	1.6471	1.5404	1.4824	1.5773	1.5189	1.4250	1.3760	1.4611	1.4117	1.3276	1.2855	1.362
12	1.8410	1.9642	1.8757	1.7538	1.6828	1.7883	1.7171	1.6127	1.5539	1.6467	1.5876	1.4958	1.4460	1.529
13	2.1113	2.2584	2.1434	1.9977	1.9091	2.0298	1.9411	1.8215	1.7501	1.8534	1.7818	1.6794	1.6201	1.711
14	2.4479	2.6375	2.4772	2.2892	2.1743	2.3188	2.2040	2.0607	1.9720	2.0905	2.0017	1.8842	1.8124	1.91
15	2.9259	3.2143	2.9518	2.6653	2.5054	2.6912	2.5326	2.3473	2.2326	2.3748	2.2602	2.1192	2.0303	2.14
	4.7437	3.2143	4.7510	3.2384	2.9768	3.2616	3.0010	2.7179	2.5588	2.7428	2.5841	2.4013	2.2869	2.42
16				3.2304	2.7700	5.2010	5.5010	3.2840	3.0242	3.3056	3.0468	2.7669	2,6086	2.79
17 18									5.0272	2.2020	2.3100	3.3265	3.0685	3.34

TABLE 4.1 Continued

Bit	(Bits	6				Bits	1	
Levels	64		12		Levels	64	1	12	8	Levels	12	8
MSE		006		002	MSE					MSE		
SNR (dB)	31.9		37.8		SNR (dB)					SNR (dB)		
Entropy	5.7	074	6.6	892	Entropy					Entropy		
k	t_k	\ r_k	t_k	r_k	k	t_k	r_k	t_k	r_k	k	I_k	r_k
1	.0000	.0336	0.0000	.0171	23	1.7173	1.7718	.7763	.7950	45	1.7472	1.774
2	.0671	.1007	.0343	.0514	24	1.8300	1.8882	.8140	.8329	46	1.8035	1.832
3	.1344	.1680	.0685	.0657	25	1.9510	2.0138	.8520	.8712	47	1.8618	1.891
4	.2018	2356	.1028	.1199	26	2.0824	2.1510	.8905	.9098	48	1.9223	1.953
5	.2696	.3035	.1371	.1543	27	2.2270	2.3030	.9293	.9489	49	1.9851	2.017
6	.3377	.3719	.1715	.1887	28	2.3892	2.4753	.9686	.9884	50	2.0507	2.034
7	.4064	.4408	.2059	.2231	29	2.5757	2.6761	1.0084	1.0284	51	2.1193	2.15
8	.4756	.5105	.2404	.2577	30	2.7986	2.9210	1.0487	1.0689	52	2.1913	2.22
9	.5457	.5809	.2770	.2923	31	3.0824	3.2438	1.0895	1.1100	53	2.2673	2.30
10	.6166	.6523	.3097	.3270	32	3.4955	3.7471	1.1309	1.1517	54	2.3479	2.36
11	.6885	.7248	.3445	.3619	33			1.1729	1.1941	55	2.4339	2.47
12	.7617	.7986	.3794	.3969	34			1.2156	1.2371	56	2.5264	2.57
13	.8362	.8737	.4147	.4320	35			1.2590	1.2609	57	2.6266	2.678
14	.9122	.9506	.4497	.4673	36			1.3032	1.3254	58	2.7366	2.79
15	.9900	1.0294	.4851	.5028	37			1.3481	1.3708	59	2.8588	2.92
16	1.0698	1.1103	.5207	.5387	38			1.3940	1.4172	60	2.9972	3.07
17	1.1519	1.1936	5564	.5744	39			1.4409	1.4645	61	3.1582	3.24
18	1.2367	1.2798	.5924	.6105	40			1.4887	1.5129	62	3.3528	3.46
19	1.3245	1.3692	.6285	.6468	41			1.5378	1.5625	63	3.6036	3.74
20	1.4159	1.4625	.6651	.6834	42			1.5880	1.6134	64	3.9738	4.20
21	1.5113	1.5601	.7019	.7203	43			1.6395	1.6657			
22	1.6115	1.6628	.7389	.7575	44			1.6926	1.7194			

(SMT - COPPE/UFRJ) UFRJ Abril de 2017

2) Número de níveis de quantização é grande:

- $ightharpoonup
 ightharpoonup
 ho_u(u)$ "constante" por partes (constante dentro do intervalo)
- $lack p_u(u) = p_u(\hat{t}_j), \quad \hat{t}_j = \frac{t_j + t_{j+1}}{2}, \quad t_j \leq u < t_{j+1}$

$$\blacksquare \Rightarrow \left| \quad \varepsilon = \frac{1}{12L^2} \left(\int_{t_1}^{t_{L+1}} [p_u(u)]^{\frac{1}{3}} du \right)^3 \quad \right| \Rightarrow \mathsf{distor} \tilde{\mathsf{cao}}$$

 $\blacksquare A = t_{L+1} - t_1, \quad z_k = \left(\frac{k}{L}\right)A, \quad k = 1, \cdots, L.$

Quantizador Ótimo para Densidades Uniformes

$$p_u(u) = \begin{cases} \frac{1}{t_{L+1}-t_1}, & t_1 \leq u < t_{L+1} \\ 0, & n.d.p. \end{cases}$$

$$r_k = \frac{t_{k+1}^2 - t_k^2}{2(t_{k+1} - t_k)} = \frac{t_{k+1} + t_k}{2}, \qquad t_k = \frac{r_k + r_{k-1}}{2}$$

$$t_k = \frac{t_{k+1} + t_k + t_k + t_{k-1}}{4} \Rightarrow t_k = \frac{t_{k+1} + t_{k-1}}{2}$$

$$\Rightarrow t_k - t_{k-1} = t_{k+1} - t_k = \text{constante} = q$$

$$\Rightarrow \qquad q = \frac{t_{L+1} - t_1}{L}, \quad t_k = t_{k-1} + q, \quad r_k = t_k + \frac{q}{2} \qquad \Rightarrow \begin{array}{l} \text{uniformemente} \\ \text{espaçado!} \end{array}$$

(SMT – COPPE/UFRJ) UFRJ

$$e = u - u^{\cdot} \Rightarrow$$
 uniformemente distribuído em $\left(-\frac{q}{2}, \frac{q}{2}\right)$

$$\varepsilon = \frac{1}{q} \int_{-\frac{q}{2}}^{\frac{q}{2}} u^2 du = \frac{q^2}{12}$$

$$\sigma_u^2 = \frac{A^2}{12} = \frac{(t_{L+1} - t_1)^2}{12} \Rightarrow SNR = \frac{\sigma_u^2}{\varepsilon} = \frac{A^2}{q^2} = \left(\frac{A}{q}\right)^2$$

$$B \text{ bits} \Rightarrow A = 2^B q \Rightarrow SNR = 2^{2B} \Rightarrow \boxed{SNR_{dB} = 6BdB}$$

Propriedades do Quantizador Ótimo

- $E[u] = E[u] \Rightarrow u'$ é "unbiased estimate" de u.
- **②** $E[(u-u^*)u^*] = 0$ ⇒ erro é ortogonal à saída do quantizador.
- $\sigma_{u'}^2 = [1 f(B)]\sigma_{u}^2$
- Basta projetar quantizadores para distribuições com média zero e variância unitária.

Abril de 2017

Provas

1. Se
$$p_k = \int_{r}^{t_{k+1}} p_u(u) du = P[r = r_k]$$

$$E[u'] = E[E[u|u \in \mathcal{I}_k]] = \sum_{k=1}^{L} \left(\frac{\int_{t_k}^{t_{k+1}} u p_u(u) du}{\int_{t_k}^{t_{k+1}} p_u(u) du} \right) p_k$$

$$= \sum_{k=1}^{L} \int_{t_k}^{t_{k+1}} u p_u(u) du = \int_{t_k}^{t_{k+1}} p_u(u) du = E[u]$$

2.
$$E[uu^{\cdot}] = \int_{t_1}^{t_{L+1}} uu^{\cdot} p_u(u) du = \sum_{k=1}^{L} \int_{t_k}^{t_{k+1}} uu^{\cdot} p_u(u) du = \sum_{k=1}^{L} \int_{t_k}^{t_{k+1}} ur_k p_u(u) du$$

$$=\sum_{k=1}^{L}r_{k}\int_{t_{k}}^{t_{k+1}}up_{u}(u)du=\sum_{k=1}^{L}r_{k}r_{k}p_{k}=\sum_{k=1}^{L}p_{k}r_{k}^{2}=E[u^{2}]$$

$$\Rightarrow E[uu'-u'^2] = 0 \Rightarrow E[(u-u')u'] = 0$$

$$\Rightarrow$$
 se $\eta = u - u' \Rightarrow u = u' + \eta$, η e u' são descorrelatados.

$$\sigma_{\eta}^2 = E[(u - u^2)^2] = E[u^2] - 2E[uu] + E[u^2] = E[u^2] - E[u^2]$$

$$\Rightarrow \sigma_{\eta}^2 = \sigma_{u}^2 - \sigma_{u}^2$$

$$\textbf{3.} \ \mathsf{Como} \ \sigma_\eta^2 \leq \sigma_u^2 \quad \Rightarrow \quad \sigma_\eta^2 = \sigma_u^2 f(B), \quad f(B) \leq 1 \quad \Rightarrow \quad \sigma_u^2 = \sigma_u^2 (1 - f(B)).$$

também:
$$E[u\eta] = E[u(u-u)] = E[u^2] - E[uu] = E[u^2] - E[u^2] = \sigma_{\eta}^2$$

- ⇒ Isto implica que a quantização equivale a "subtrair" um ruído (potência diminui).
 - Notar a diferença do caso usual, quando somamos um ruído (potência aumenta).

$$u = u + \eta$$

$$E[u \eta] = 0$$

$$E[u\eta] = E[\eta^2]$$

Compandors

Compressor:

$$f(x) = \frac{2a \int_{t_1}^{x} [p_u(u)]^{\frac{1}{3}} du}{\int_{t_1}^{t_{L+1}} [p_u(u)]^{\frac{1}{3}} du} - a, \qquad g(x) = f^{-1}(x)$$

 \Rightarrow [-a, a] é a faixa dinâmica do quantizador.

 $p_u(u)$ par:

$$f(x) = \frac{a \int_0^x [p_u(u)]^{\frac{1}{3}} du}{\int_0^{t_{L+1}} [p_u(u)]^{\frac{1}{3}} du}, \quad x \ge 0$$

$$f(x) = -f(-x), \quad x < 0$$

(SMT – COPPE/UFRJ)

Observações:

• A variável w(f(x)) não fica uniformemente distribuída.

- $\mathbf{0}$ t_1 e t_{L+1} não precisam ser finitos.
- Implementação usa dispositivos analógicos não-lineares e conversores A/D.
- 6 Equivalente a um quantizador uniforme com níveis:

$$\begin{cases} t_k = g(kq), & t_{-k} = -t_k, & k = 0, \dots, \frac{L}{2} \\ r_k = g((k - \frac{1}{2})q), & r_{-k} = -r_k, & k = 1, \dots, \frac{L}{2} \end{cases} \quad p_u(u) \text{ par.}$$

(SMT – COPPE/UFRJ) UFRJ Abril de 2017

Quantizador Uniforme Ótimo para Densidades Não Uniformes

L níveis, passo q.

Seja $p_{\mu}(u)$ par, 2a = Lq.

$$\varepsilon = \int_{-\infty}^{-a+q} (u-r_1)^2 p_u(u) du + \sum_{j=2}^{L-1} \int_{t_j}^{t_{j+1}} (u-r_j)^2 p_u(u) du + \int_{a-q}^{\infty} (u-r_L)^2 p_u(u) du$$

$$=\sum_{j=2}^{L-1}\int_{t_j}^{t_{j+1}}(u-r_j)^2p_u(u)du+2\int_{a-q}^{\infty}(u-r_L)^2p_u(u)du$$

como $t_i = -\frac{L}{2} + (i-1)q = -a + (i-1)q$. Então:

$$\varepsilon = 2 \sum_{i=1}^{\frac{L}{2}-1} \int_{(j-1)q}^{jq} \left(u - \frac{(2j-1)q}{2} \right)^2 p_u(u) du + 2 \int_{(\frac{L}{2}-1)q}^{\infty} \left(u - \frac{(L-1)q}{2} \right)^2 p_u(u) du$$

Projeto o quantizador fazendo $\frac{d\varepsilon}{da} = 0$

(SMT - COPPE/UFRJ)

UFRJ Abril de 2017

Comparações:

- Gaussiana: $B_s = \frac{1}{2} \log_2 \frac{\sigma^2}{D}$, ou $D = \sigma^2 2^{-2B_s}$ (Shannon Lower Bound)
 - Bloco infinito quantizado conjuntamente (Shannon Quantizer).
 - Limite superior na distorção obtido com o Shannon Quantizer.
- Quantizadores com memória zero (1D): Em geral, não conseguem distorção abaixo do Shannon Upper Bound.
- Quantizador uniforme ótimo para densidades uniformes: Possui distorção igual à do Shannon Upper Bound.
- A taxa do Shannon quantizer é, na prática, a menor taxa obtenível com um quantizador de memória zero para qualquer densidade de probabilidade
- A seguir é apresentada uma tabela com os quantizadores uniformes ótimos de números de níveis entre 2 e 36, 64, 128, 256 e 512, para densidades gaussiana e laplaciana de média zero e variância unitária.

TABLE 4.3 Optimum Uniform Quantizers for Zero Mean, Unity Variance Gaussian, and Laplacian Densities

No. of		Gaussian		Laplacian					
Output levels	Step size	M.S.E.	Entropy	Step size	M.S.E.	Entropy			
2	1.596	.363	1.00	1.414	.500	1.00			
3	1.224	.190	1.54	1.414	.264	1.32			
4 5	.996	.119	1.90	1.087	.196	1.75			
5	.843	.082	2.18	1.025	.133	1.86			
6	.733	.070	2.41	.871	.110	2.13			
7	.651	.049	2.60	.822	.083	2.21			
8	.586	.037	2.76	.731	.072	2.39			
9	.534	.031	2.90	.694	.058	2.46			
10	.491	.026	3.03	.633	.051	2.60			
11	.455	.022	3.15	.605	.043	2.66			
12	.424	.019	3.25	.561	.039	2.78			
13	.397	.016	3.35	.539	.034	2.83			
14	.374	.015	3.44	.506	.031	2.93			
15	.353	.013	3.52	.487	.027	2.98			
16	.335	.012	3.60	.461	.025	3.06			
17	.319	.010	3.68	.445	.023	3.11			
18	.304	.009	3.75	.424	.021	3.18			
19	.291	.009	3.81	.411	.019	3.22			
20	.279	.008	3.87	.394	.018	3.29			

(SMT – COPPE/UFRJ) UFRJ Abril de 2017

21	.268	.007	3.93	.383	.017	3.33
22	.258	.007	3.99	.368	.016	3.39
23	.248	.006	4.04	.358	.014	3.42
24	.240	.006	4.10	.346	.014	3.48
25	.232	.005	4.15	.337	.013	3.51
26	.224	.005	4.19	.326	.012	3.56
27	.217	.005	4.24	.318	.011	3.59
28	.211	.004	4.29	.309	.011	3.64
29	.204	.004	4.33	.302	.010	3.67
30	.199	.004	4.37	.294	.010	3.71
31	.193	.004	4.41	.287	.009	3.74
32	.188	.003	4.45	.280	.009	3.78
33	.183	.003	4.49	.274	.008	3.81
34	.179	.003	4.52	.268	.008	3.85
35	.174	.003	4.56	.263	.008	3.87
36	.170	.003	4.59	.257	.007	3.91
64	.104	.001	5.31	.166	.003	4.54
128	.057	.00030	6.18	.100	.001	5.32
256	.030	.00004	7.07	.055	.0003	6.15
512	.017	.00002	7.97	.031	.00009	6.96

Entropia da Saída Vs. Distorção

- Quantizador Otimo do ponto de vista de taxa × distorção: Quantizador que minimiza a distorção dada uma entropia.
- Quantizador Uniforme Ótimo com entropy coding: melhor que quantizador não uniforme ótimo sem entropy coding.
- Quantizador Uniforme: Bem próximo do ótimo segundo o critério Entropia X MSE (desde que o "stepsize" seja otimizado de acordo com este critério).
- ⇒ Na prática: Projeto de quantizadores uniformes consiste em achar L (número de níveis) e A (faixa dinâmica).

∅ ⋠

SMI

(SMT – COPPE/UFRJ) UFRJ Abril de 2017

Modelos Analíticos para Quantizadores Práticos

$$D = \sigma^2 f(B), \quad f(B) = a2^{-bB}$$

Exemplo: Shannon $D_1 = 2^{-2B_1}$

$$\Rightarrow D_2 = 2.26(2^{-1.963B_2})$$

$$\Rightarrow D_1 = D_2 \Rightarrow B_2 = B_1 + 0.5$$

Abril de 2017

(SMT – COPPE/UFRJ) UFRJ

(SMT - COPPE/UFRJ)

Quantização de Variáveis Aleatórias Gaussianas Complexas

$$z = x + jy$$
, x, y iid v.a. Gaussianas

 \Rightarrow não é ótimo quantizar x e y independentemente.

$$z = Ae^{j\theta}$$
 $A = \sqrt{x^2 + y^2}$ $\theta = \operatorname{arctg}\left(\frac{y}{x}\right)$,

$$A: \mathsf{Rayleigh} \qquad p_A(A) = egin{cases} rac{A}{\sigma^2} \mathrm{e}^{-rac{A^2}{2\sigma^2}}, & A > 0 \ 0, & A < 0 \end{cases}$$

 θ : uniforme

(SMT – COPPE/UFRJ) UFRJ Abril de 2017

Quantizando A independente de θ :

A: v_k níveis de decisão $\theta: L_1$ níveis w_k níveis de reconstrução $A: L_2$ níveis

Quantizando A e θ conjuntamente:

A:
$$t_k = v_k$$
 para L_2 grande, são iguais $r_k = w_k \mathrm{sinc}\left(\frac{1}{L}\right)$ $\left(\mathrm{sinc}\left(\frac{1}{L}\right) \to 1\right)$

Quantização Visual

- Abaixo de 5 a 6 bits/pixel, nota-se falsos contornos, bastante incomodativos à visão.
- 8 bits: indistinguível pelo olho humano (256 níveis são suficientes)
- Necessidade de um sistema de quantização visual que mantenha os contornos abaixo do limite de visibilidade.

1. Quantizar o Contraste

$$c = \alpha \ln(1 + \beta u) \qquad 0 \le u \le 1$$

$$c = \alpha u^{\beta}$$

- \Rightarrow Mudança de 2% no contrante é "just noticeable" \Rightarrow 50 níveis de contraste (6 bits)
- ⇒ Com quantizador ótimo, 4 a 5 bits seriam suficientes.

(SMT - COPPE/UFRJ) UFRJ Abril de 2017

2. Quantização com Ruído Pseudo-Aleatório (Dithering)

- \Rightarrow O ruído "quebra" os contornos.
- \Rightarrow Sem contornos com \approx 3 bits/pixel.
- ⇒ Posso não remover o ruído.

"Halftoning"

Abril de 2017

- O olho humano vê tons de cinza porque faz filtragem passa baixa.
- Ruído Aleatório × Padrões Periódicos (na prática)
- Padrões de Moiré ocorrem se a imagem e o padrão possuem periodicidades próximas.

Quantização de Cores

- Ideal: Quantização vetorial no espaço de cores.
- Na prática: transformação para espaço de cores mais uniforme perceptualmente.

(SMT - COPPE/UFRJ) UFRJ Abril de 2017