EPITA

Mathématiques

Partiel S1

durée: 3 heures

janvier 2022

Nom:
Prénom :
Classe:
NOTE:
Le barème indiqué est sur 30 points. La note sera ramenée à une note sur 20 par une règle de trois.
$\overline{ ext{Consignes}:}$
— Lire le sujet en entier avant de commencer. Il y a en tout 7 exercices.

- Documents et calculatrices interdits.
- Vous devez répondre directement sur les feuilles jointes. Prendre en compte la taille des cadresréponses avant de commencer votre rédaction!
- Aucune réponse au crayon de papier ne sera corrigée.

Exercice 1 (4 points)

On considère l'équation (E) $203x - 84y = 14$ d'inconnues $(x, y) \in \mathbb{Z}^2$.
1. À l'aide de l'algorithme d'Euclide, trouver une solution particulière de (E) .

Exercice 2 (2,5 points)

Soient $n \in \mathbb{N}$ et $A_n = 15^{4n+2} - 5^{2n+11}$. Montrer, sans récurrence, que $11 \mid A_n$.

Exercice 3 (3 points)

Soit $(a, b) \in (\mathbb{N}^*)^2$.

1. Énoncer avec soin le théorème de Bézout ainsi que son corollaire.

2. Soit $d \in \mathbb{N}^*$. Montrer que $d \mid a$ et $d \mid b \iff d \mid a \wedge b$.

Exercice 4 (5,5 points)

On considère la suite (u_n) définie pour tout $n \in \mathbb{N}^*$ par :

$$u_n = \sum_{k=1}^{n} \frac{(-1)^k}{k^2}$$

1. Rappeler la définition de : « Les suites (v_n) et (w_n) sont adjacentes »

Montrer que les deu	x suites extraites (v_n)	$-(u_{2n})$ et (w_n)	$-(u_{2n+1})$ some an	ujacentes.	
La suite (u_n) est-elle	e convergente? Justifi	ez votre réponse			

Exercice 5 (6 points)

Considérons la fonction $f: x \longmapsto \frac{-x^2 - x - 4}{4}$. On définit alors la suite (u_n) par $\begin{cases} u_{n+1} = f(u_n) \\ u_0 \in \mathbb{R} \end{cases}$ donné

1. Pour quelle(s) valeur(s) de u_0 cette suite est-elle constante?

3. Pour la suite de l'exercice, nous prendrons $u_0=-2$. Montrer que $\forall\,n\in\mathbb{N},\,u_n\in]-4,-1[$.

I a quita (a.) agt all	la convengenta ? Ci qui	lannan sa limita		
. La suite (u_n) est-en	le convergente? Si oui, c	ionner sa nimite.		
				/
$ m_{ercice~6~(4,5~poi}$	nts)			
	les suites (u_n) et (v_n) s	uivantes à l'aide des	comparateurs de Land	lan ov =
$= O(\cdot)$ en citant to	utes les comparaisons per (v_n) s	ossibles et en justifia	nt vos réponses.	
(a) $u_n = -2n^3 + n$	$+3 \text{ et } v_n = 1 - n^2.$			

- (b) $u_n = e^{-n} \ln(n) + n$ et $v_n = n + 1$.
- 2. On considère une suite (u_n) telle qu'au voisinage de $+\infty$, $u_n = \frac{1}{n} \frac{1}{2n^2} + o\left(\frac{1}{n^2}\right)$
 - (a) Comment peut-on réécrire $o\left(\frac{1}{n^2}\right)$?

(b) Montrer que $u_n \sim \frac{1}{n}$ en $+\infty$.

(c) Donner un équivalent en $+\infty$ de $v_n = u_n - \frac{1}{n}$.

Exercice 7 (4,5 points)

N.B.: Les questions de cet exercice sont interdépendantes. Si vous n'avez pas répondu à certaines d'entre elles, n'hésitez pas à admettre leurs résultats et à les réutiliser, si besoin, dans des questions ultérieures.

La question 1.(a) est une question bonus que vous pouvez admettre mais le résultat sera utile ensuite.

1. Soient a, b et c trois entiers naturels non nuls.

(a) **(Bonus)** Montrer que $(a \wedge b = 1, a \mid c \text{ et } b \mid c) \implies ab \mid c$.

(b) Montrer que si $a \mid b$ ou $a \mid c$ alors $a \mid bc$

(c) Considérons trois entiers consécutifs d, d+1 et d+2 avec $d \in \mathbb{N}^*$ fixé. En discutant sur le reste de la division euclidienne de d par 3, montrer que 3 divise l'un d'entre eux c'est-à-dire :

$$3 \mid d$$
 ou $3 \mid d+1$ ou $3 \mid d+2$

2. Soit p un nombre premier supérieur ou égal à 5.

(a) Expliquer pour quoi $2 \mid p-1$ et $2 \mid p+1$.

/1 \	T. 1/ 1	71 c NI / 1	1 0	17	0(1 + 1)	012 1
(α)	En deduire d	que $\exists k \in \mathbb{N} \text{ tel}$	que $p - 1 = 2$	$2\kappa \text{ et } p+1=1$	$Z(\kappa + 1)$ puis	que $8 p^2 - 1$.

(d) En déduire que $24 \mid p^2 - 1$.