张量分解

彭毅

- ▶ 张量 (tensor)
 - · 多<mark>维</mark>数组

一阶张量(向量)

二阶张量(矩阵)

三阶张量

- ▶ 秩一张量/可合张量
 - 。 N阶张量 $X ∈ \Box^{I_1 \times I_2 \times \cdots \times I_N}$ 是一个秩一张量,如果它能被写成N个向量的外积,即

$$\mathbf{X} = \mathbf{a}^{(1)} \circ \mathbf{a}^{(2)} \circ \cdots \circ \mathbf{a}^{(N)}$$

三阶秩一张量: $X = \mathbf{a} \circ \mathbf{b} \circ \mathbf{c}$

- ▶ 矩阵的Kronecker乘积
 - ${}^{\circ}$ $\mathbf{A} \in \square^{I \times J}, \mathbf{B} \in \square^{K \times L}$,则

$$\mathbf{A} \otimes \mathbf{B} = \begin{bmatrix} a_{11}\mathbf{B} & a_{12}\mathbf{B} & \cdots & a_{1J}\mathbf{B} \\ a_{21}\mathbf{B} & a_{22}\mathbf{B} & \cdots & a_{2J}\mathbf{B} \\ \vdots & \vdots & \ddots & \vdots \\ a_{I1}\mathbf{B} & a_{I2}\mathbf{B} & \cdots & a_{IJ}\mathbf{B} \end{bmatrix} \in \Box^{IK \times JL}$$

• 性质: $(\mathbf{A} \otimes \mathbf{B})(\mathbf{C} \otimes \mathbf{D}) = (\mathbf{AC}) \otimes (\mathbf{BD})$ $(\mathbf{A} \otimes \mathbf{B})^{+} = \mathbf{A}^{+} \otimes \mathbf{B}^{+}$

- ▶ 矩阵的Khatri-Rao乘积
 - $\mathbf{A} \in \square^{I \times K}, \mathbf{B} \in \square^{J \times K}$, \mathbb{N} • $\mathbf{A} \subseteq \mathbf{B} = [\mathbf{a}_1 \otimes \mathbf{b}_1 \ \mathbf{a}_2 \otimes \mathbf{b}_2 \ \cdots \ \mathbf{a}_K \otimes \mathbf{b}_K] \in \square^{IJ \times K}$
 - 性质: A□ B□ C=(A□ B)□ C=A□ (B□ C)

- ▶ CP分解的张量形式
 - 。将一个张量表示成有限个秩一张量之和,比如一个三阶张 量可以分解为

$$\mathcal{X} \approx \mathbf{A}, \mathbf{B}, \mathbf{C} = \sum_{r=1}^{R} \mathbf{a}_r \circ \mathbf{b}_r \circ \mathbf{c}_r$$

三阶张量的CP分解

- ▶ CP分解的矩阵形式
 - 。因子矩阵: 秩一张量中对应的向量组成的矩阵, 如

$$\mathbf{A} = \begin{bmatrix} \mathbf{a}_1 & \mathbf{a}_2 & \cdots & \mathbf{a}_R \end{bmatrix}$$

。利用因子矩阵,一个三阶张量的CP分解可以写成展开形式

$$\mathbf{X}_{(1)} \approx \mathbf{A} (\mathbf{C} \square \mathbf{B})^{\mathrm{T}}$$

$$\mathbf{X}_{(2)} \approx \mathbf{B} (\mathbf{C} \square \mathbf{A})^{\mathrm{T}}$$

$$\mathbf{X}_{(3)} \approx \mathbf{C} (\mathbf{B} \square \mathbf{A})^{\mathrm{T}}$$

- ▶ CP分解的切片形式
 - 。三阶张量的CP分解有时按(正面)切片写成如下形式:

$$\mathbf{X}_k \approx \mathbf{A} \mathbf{D}^{(k)} \mathbf{B}^{\mathrm{T}}$$

其中
$$\mathbf{D}^{(k)} \equiv \operatorname{diag}(\mathbf{c}_{k:})$$

三阶张量CP分解的正面切片形式

- ▶ CP分解的计算
 - 。分解成多少个秩一张量(成分)之和?
 - 通常的做法是从1开始尝试,知道碰到一个"好"的结果为止
 - 如果有较强的应用背景和先验信息,可以预先指定
 - 。对于给定的成分数目,怎么求解CP分解?
 - 目前仍然没有一个完美的解决方案
 - · 从效果来看,交替最小二乘(Alternating Least Square)是
 - 一类比较有效的算法

- ▶ CP分解的计算
 - ALS算法并不能保证收敛到一个极小点,甚至不一定能收敛到稳定点,它只能找到一个目标函数不再下降的点
 - 。算法的初始化可以是随机的,也可以将因子矩阵初始化为对应展开的奇异向量,如将 $\mathbf A$ 初始化为 $\boldsymbol \chi_{_{(1)}}$ 的前 $\mathbf R$ 个左奇异向量