P10

June 6, 2019

1 Reporte de práctica 10: Clasificación de datos con sklearn

Para esta práctica solamente trabajamos con los datos del año 2017 para clasificar la categoría a la que pertenecen los cortos tomando como base la edad y sexo del concursante y el género del corto. Utilizaremos los clasificadores de scikit-learn y la distribución de los datos que vamos a usar serán 60% para entrenar y 40% para validar.

1.1 Objetivos

- Utiliza por lo menos tres distintos métodos de clasificación
- Por lo menos una división de interés en tus datos

1.2 Preparación de los datos

Primero tomamos los archivos originales y los procesamos fuera de la nube, producto de esta limpieza se generó el archivo "clasificacion2017.csv"

Para poder trabajar importaremos la librería necesaria y cargaremos el documento .csv

```
In [7]: import pandas as pd
        from sklearn.decomposition import PCA
        from matplotlib.colors import ListedColormap
        from numpy import isnan, nan
        from sklearn import metrics
        from sklearn.model_selection import train_test_split
        from sklearn.preprocessing import StandardScaler
        from sklearn.datasets import make_moons, make_circles, make_classification
        from sklearn.neural_network import MLPClassifier
        from sklearn.neighbors import KNeighborsClassifier
        from sklearn.svm import SVC
        from sklearn.gaussian_process import GaussianProcessClassifier
        from sklearn.gaussian_process.kernels import RBF
        from sklearn.tree import DecisionTreeClassifier
        from sklearn.ensemble import RandomForestClassifier, AdaBoostClassifier
        from sklearn.naive_bayes import GaussianNB
        from sklearn.discriminant_analysis import QuadraticDiscriminantAnalysis
        df = pd.read_csv("https://raw.githubusercontent.com/SamatarouKami/CIENCIA_DE_DATOS/mas
```

```
df = df.dropna()
print(len(df))
```

1.3 Categorización de los campos

Como tenemos campos con cadenas de caracteres utilizaremos la Categorización por defecto de pandas, y generaremos una columna con la etiqueta que utilizaremos para la clasificación.

```
In [8]: gen = pd.Categorical(df.Genero)
        df.Genero = gen.codes
        pai = pd.Categorical(df.Pais)
        df.Pais = pai.codes
        sex = pd.Categorical(df.Sexo)
        df.Sexo = pai.codes
        \#cat = pd.Categorical(df.Categoria)
        #df['CategoriaCat'] = cat.codes
        df['etiquetas1'] = [1 if df['Categoria'][i] == 'Aficionado' else 0 for i in df['Categoria']
        df['etiquetas2'] = [1 if df['Categoria'][i] == 'Juvenil' else 0 for i in df['Categoria
        df['etiquetas3'] = [1 if df['Categoria'][i] == 'Profesional' else 0 for i in df['Categoria']
        df['etiquetas4'] = [1 if df['Categoria'][i] == 'SmarTIC' else 0 for i in df['Categoria
        #df['etiquetas'] = df.CategoriaCat
        print(df.etiquetas1.value_counts())
        print(df.etiquetas2.value_counts())
        print(df.etiquetas3.value_counts())
        print(df.etiquetas4.value_counts())
1
     362
     287
Name: etiquetas1, dtype: int64
0
     521
     128
1
Name: etiquetas2, dtype: int64
     573
      76
Name: etiquetas3, dtype: int64
     566
1
      83
Name: etiquetas4, dtype: int64
```

1.4 Procedimiento

Se preparan las variables que necesitamos para preparar el clasificador y además aplicamos un PCA. Se separan los datos y se pone el 60% para entrenamiento del clasificador y el 40% para pruebas. Se busca clasificar la categoría de participación del filme, donde cada categoría es clasificada individualmente, y no en grupo, para buscar particularidades en los datos.

Después se muestran las tablas de confusión para entender mejor porque les otorgaron esas precisiones a los diferentes métodos de clasificación.

```
In [12]: for indexEtiqueta in range(1,5):
            print("-----Iniciando Proceso con Etiqueta {:d}-----
             y = df['etiquetas'+str(indexEtiqueta)]
             xVars = ['Edad', 'Sexo', 'Genero']
             x = df.loc[:, xVars].values
             \#x = StandardScaler().fit_transform(x)
             pca = PCA(n_components = 2) # pedimos uno bidimensional
             X = pca.fit_transform(x)
             from math import ceil, sqrt
             from numpy import isnan, nan, arange, meshgrid, c_
             import matplotlib.pyplot as plt
            h=0.2
             # código de https://scikit-learn.org/stable/auto_examples/classification/plot_cla
            names = ["Nearest Neighbors", "Linear SVM", "RBF SVM", "Gaussian Process", \
                      "Decision Tree", "Random Forest", "AdaBoost", "Naive Bayes"]
             classifiers = [KNeighborsClassifier(3), SVC(kernel="linear", C=0.025), \
                 SVC(gamma=2, C=1), GaussianProcessClassifier(1.0 * RBF(1.0)), \
                 DecisionTreeClassifier(max_depth=5), RandomForestClassifier(max_depth=5, n_es
                 AdaBoostClassifier(), GaussianNB()]
             k = int(ceil(sqrt(len(classifiers) + 1)))
             X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=.4, random_st
             x_{\min}, x_{\max} = X[:, 0].min() - .5, X[:, 0].max() + .5
             y_{min}, y_{max} = X[:, 1].min() - .5, X[:, 1].max() + .5
             xx, yy = meshgrid(arange(x_min, x_max, h), arange(y_min, y_max, 0.02))
             cm = plt.cm.RdBu
             cm_bright = ListedColormap(['#FF0000', '#0000FF'])
             plt.rcParams["figure.figsize"] = [16, 16]
             figure = plt.figure()
             ax = plt.subplot(k, k, 1)
             ax.set_title("Datos de entrada")
             ax.scatter(X_train[:, 0], X_train[:, 1], c=y_train, cmap=cm_bright, alpha=0.2, ed;
             ax.scatter(X_test[:, 0], X_test[:, 1], c=y_test, cmap=cm_bright, alpha=0.2, edgec
             ax.set_xlim(xx.min(), xx.max())
             ax.set_ylim(yy.min(), yy.max())
             ax.set_xticks(())
             ax.set_yticks(())
```

i = 2

```
for name, clf in zip(names, classifiers):
   ax = plt.subplot(k, k, i)
    clf.fit(X_train, y_train)
    score = clf.score(X_test, y_test)
    if hasattr(clf, "decision_function"):
       Z = clf.decision_function(c_[xx.ravel(), yy.ravel()])
    else:
       Z = clf.predict_proba(c_[xx.ravel(), yy.ravel()])[:, 1]
   Z = Z.reshape(xx.shape)
   ax.contourf(xx, yy, Z, cmap=cm, alpha=.8)
   ax.scatter(X_train[:, 0], X_train[:, 1], c=y_train, cmap=cm_bright, edgecolor
   ax.scatter(X_test[:, 0], X_test[:, 1], c=y_test, cmap=cm_bright, edgecolors='
   ax.set_xlim(xx.min(), xx.max())
   ax.set_ylim(yy.min(), yy.max())
   ax.set_xticks(())
   ax.set_yticks(())
   ax.set_title(name)
   ax.text(xx.max() - .3, yy.min() + .3, ('%.3f' % score).lstrip('0'), size=40, 1
    i += 1
plt.tight_layout()
plt.show()
print("Ahora calcularemos las matrices de confusión para la etiqueta{:d}.".format
# código de https://scikit-learn.org/stable/auto_examples/classification/plot_cla
names = ["Nearest Neighbors", "Linear SVM", "RBF SVM", "Gaussian Process", \
         "Decision Tree", "Random Forest", "AdaBoost", "Naive Bayes"]
classifiers = [KNeighborsClassifier(3), SVC(kernel="linear", C=0.025), \
    SVC(gamma=2, C=1), GaussianProcessClassifier(1.0 * RBF(1.0)), \
   DecisionTreeClassifier(max_depth=5), RandomForestClassifier(max_depth=5, n_es
    AdaBoostClassifier(), GaussianNB()]
X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=.4, random_st
for name, clf in zip(names, classifiers):
    clf.fit(X_train, y_train)
   print(name, clf.score(X_test, y_test))
    expected, predicted = y_test, clf.predict(X_test)
   print(metrics.classification_report(expected, predicted))
   print(metrics.confusion_matrix(expected, predicted))
   print('-' * 60)
```

----- Contract of the contract

Ahora calcularemos las matrices de confusión para la etiqueta1. ('Nearest Neighbors', 0.7576923076923077)

	precision	recall	f1-score	support	
0 1	0.68 0.80	0.66 0.82	0.67 0.81	96 164	
avg / total	0.76	0.76	0.76	260	
[[63 33] [30 134]]					

('Linear SVM', 0.5269230769230769)

	precision	recall	f1-score	support	
0	0.41	0.61	0.49	96	
1	0.68	0.48	0.56	164	
avg / total	0.58	0.53	0.53	260	
[[59 37] [86 78]]					
('RBF SVM',	0.742307692	23076923)			
(1021 5011 ,			f1-score	support	
	1			11	
0	0.67	0.60	0.63	96	
1	0.78	0.82	0.80	164	
avg / total	0.74	0.74	0.74	260	
[[58 38] [29 135]]					
		7064500464			
('Gaussian F				gunnort	
	precision	recarr	f1-score	support	
0	0.80	0.59	0.68	96	
1	0.79	0.91	0.85	164	
avg / total	0.80	0.80	0.79	260	
[[57 39] [14 150]]					
('Decision 7	 Гree'. 0.734	-6153846153	847)		
, 	precision	recall		support	
	·				
0	0.64	0.65	0.64	96	
1	0.79	0.79	0.79	164	
avg / total	0.74	0.73	0.73	260	
[[62 34] [35 129]]					
('Random For	rest', 0.780	7692307692	308)		
			f1-score	support	
0	0.76	0.59	0.67	96	
1	0.79	0.89	0.84	164	

avg / total	0.78	0.78	0.77	260	
[[57 39] [18 146]]					
('AdaBoost',	0.780769230	7692308)			
	precision	recall	f1-score	support	
0	0.75	0.61	0.67	96	
1	0.80	0.88	0.83	164	
avg / total	0.78	0.78	0.78	260	
[[59 37] [20 144]]					
('Naive Bayes	s', 0.65)				
	precision	recall	f1-score	support	
0	0.52	0.60	0.56	96	
1	0.74	0.68	0.71	164	
avg / total	0.66	0.65	0.65	260	
[[58 38] [53 111]]					

Ahora calcularemos las matrices de confusión para la etiqueta2. ('Nearest Neighbors', 0.9692307692307692)

	precision	recall	f1-score	support	
0 1	1.00 0.82	0.96 1.00	0.98 0.90	223 37	
avg / total	0.97	0.97	0.97	260	
[[215 8] [0 37]]					

('Linear SVM', 0.9192307692307692)

	precision	recall	f1-score	support	
0	1.00	0.91	0.95	223	
1			0.78		
avg / total	0.95	0.92	0.93	260	
[[202 21]					
[0 37]]					
('RRE SVM'	 0.973076923				
(ILDI SVII ,	precision		f1-score	support	
	F				
0			0.98		
1	0.88	0.95	0.91	37	
avg / total	0.97	0.97	0.97	260	
[[218 5]					
[2 35]]					
('Gaussian H	Process', 0.				
	precision	recall	II-score	support	
0	0.99	0.97	0.98	223	
1	0.85	0.95	0.90	37	
avg / total	0.97	0.97	0.97	260	
[[047 6]					
[[217 6] [2 35]]					
('Decision 7	Tree', 0.969				
	precision	recall	f1-score	support	
0	0.99	0.97	0.98	223	
1	0.85	0.95	0.90	37	
a / +a+a1	0.07	0.07	0.07	260	
avg / total	0.97	0.97	0.97	260	
[[217 6] [2 35]]					
('Random For	rest', 0.969	2307692307	 (692)		
,	precision		f1-score	support	
0	0.99 0.85	0.97 0.95	0.98 0.90	223 37	
1	0.05	0.95	0.90	31	

avg / tota	1 0.97	0.97	0.97	260	
[[217 6] [2 35]					
('AdaBoost	', 0.96923076	92307692)			
	precision	recall	f1-score	support	
	0 0.99	0.97	0.98	223	
	1 0.85	0.95	0.90	37	
avg / tota	1 0.97	0.97	0.97	260	
[[217 6] [2 35]]				
('Naive Ba	 yes', 0.97692	 :3076923076	9)		
	precision	recall	f1-score	support	
	0 1.00	0.97	0.99	223	
	1 0.86	1.00	0.92	37	
avg / tota	1 0.98	0.98	0.98	260	
[[217 6] [0 37]					

Ahora calcularemos las matrices de confusión para la etiqueta3. ('Nearest Neighbors', 0.8615384615384616)

	precision	recall	f1-score	support	
0 1	0.91 0.21	0.94 0.16	0.92 0.18	235 25	
avg / total	0.85	0.86	0.85	260	
[[220 15] [21 4]]					

('Linear SVM', 0.9038461538461539)

	precision	recall	f1-score	support	
0	0.90	1.00	0.95	235	
1			0.00		
avg / total	0.82	0.90	0.86	260	
[[235 0] [25 0]]					
('DDE CVM'	0.857692307	 (6023076)			
(RDF SVFF ,			f1-score	support	
	precibion	ICCUII	II DOOLG	buppor	
0	0.90	0.94	0.92	235	
1	0.07	0.04	0.05	25	
avg / total	0.82	0.86	0.84	260	
[[222 13]					
[24 1]]					
('Gaussian 1	Process', 0.	9038461538	3461539)		
	precision	recall	f1-score	support	
_					
0					
1	0.00	0.00	0.00	25	
avg / total	0.82	0.90	0.86	260	
55000 03					
[[235 0]					
[25 0]]					
('Decision'	Гree', 0.896	31538461538	3462)		
(200121011 .	precision	recall		support	
	1			11	
0	0.91	0.98	0.94	235	
1	0.33	0.08	0.13	25	
avg / total	0.85	0.90	0.87	260	
[[024 4]					
[[231 4] [23 2]]					
[23 2]]					
('Random For	rest', 0.873	0769230769	231)		
			f1-score	support	
	-				
0	0.91	0.95	0.93	235	
1	0.21	0.12	0.15	25	

avg /	total	0.84	0.87	0.86	260	
[[224	11] 3]]					
('AdaH	Boost',	0.9)				
		precision	recall	f1-score	support	
	0	0.90	1.00	0.95	235	
	1	0.00	0.00	0.00	25	
avg /	total	0.82	0.90	0.86	260	
[[234 [25	1] 0]]					
('Naiv	re Baye:	s', 0.903846	 153846153	9)		
		precision	recall	f1-score	support	
	0	0.90	1.00	0.95	235	
	1	0.00	0.00	0.00	25	
avg /	total	0.82	0.90	0.86	260	
[[235						
L 25	0]] 					

Ahora calcularemos las matrices de confusión para la etiqueta4. ('Nearest Neighbors', 0.8461538461538461)

	precision	recall	f1-score	support	
0 1	0.89 0.36	0.94 0.24	0.91 0.29	226 34	
avg / total	0.82	0.85	0.83	260	
[[212 14] [26 8]]					

('Linear SVM', 0.8692307692307693)

	precision	recall	f1-score	support	
0	0.87	1.00	0.93	226	
1			0.00		
avg / total	0.76	0.87	0.81	260	
[[226 0] [34 0]]					
('RBF SVM'	0.834615384	.6153846)			
(1021 2011)			f1-score	support	
	1			11	
0	0.87	0.95	0.91	226	
1	0.20	0.09	0.12	34	
avg / total	0.79	0.83	0.81	260	
[[214 12]					
[31 3]]					
('Gaussian	Process', 0.				
	precision	recall	f1-score	support	
0	0.89	1.00	0.94	226	
1	1.00				
_					
avg / total	0.90	0.89	0.86	260	
[[226 0]					
[28 6]]					
('Decision'	Tree', 0.861	.5384615384	616)		
	precision	recall	f1-score	support	
0	0.90	0.95	0.92	226	
1	0.45	0.29	0.36	34	
avg / total	0.84	0.86	0.85	260	
C					
[[214 12]					
[24 10]]					
(!Random Eo:	 rest', 0.861		 (616)		
(Italiaom Po.			f1-score	support	
	Proceedion	100011	11 50010	zappor o	
0	0.89	0.96	0.92	226	
1	0.43	0.18	0.25	34	

avg / t	otal	0.83	0.86	0.84	260	
[[218 [28	_					
('AdaBo	ost',	0.8769230769	9230769)			
		precision	recall	f1-score	support	
	0	0.90	0.97	0.93	226	
	1	0.56	0.26	0.36	34	
avg / t	otal	0.85	0.88	0.86	260	
[[219 [25						
('Naive	Baye	s', 0.857692	 307692307	6)		
		precision	recall	f1-score	support	
	0	0.87	0.98	0.92	226	
	1	0.20	0.03	0.05	34	
avg / t	otal	0.78	0.86	0.81	260	
[[222	_					
[33	1]]					

1.5 Conclusión

Después de probar los diferentes métodos y buscar clasificar todas las categorías de participación individualmente, se obtuvieron los siguientes resultados.

Método de Clasificación

Etiqueta1

Etiqueta2

Etiqueta3

Etiqueta4

Nearest Neighbors

.758

.969

.862

.846

Linear SVM

.527

.919

```
.904
.869
RBF SVM
.742
.973
.858
.835
Gaussian Process
.796
.969
.904
.892
Decision Tree
.735
.969
.896
.862
Random Forest
.8
.954
.892
.865
AdaBoost
.781
.969
.9
.877
Naive Bayes
.650
.977
.904
.858
```

Se puede concluir que con los datos de edad y sexo del participante y el género del Filme, se puede precisar si la participación del concursante es en la categoría Juvenil. En cambio, para identificar las otras categorías, los datos proporcionados otorgaron al clasificador una precisión a lo más del 79.6% para las demás categorías.

--05 de junio 2019-- Luis Angel Gutiérrez Rodríguez 1484412