Tutorato 2

Metodi Matematici della Meccanica Classica - 17 marzo 2025

1. Dati $a,b \in \mathbb{R}, \mathbf{v}, \mathbf{w}, \mathbf{u} \in \mathbb{R}^3, A,B,C$ le matrici associate nella base canonica a due applicazioni lineari $\mathbb{R}^3 \to \mathbb{R}^3$, g, h le matrici associate nella base canonica a due forme bilineari $\mathbb{R}^3 \times \mathbb{R}^3 \to \mathbb{R}$ e I la matrice identità, scrivere in notazione di Einstein le seguenti operazioni:

(a)
$$\mathbf{v} + \mathbf{w} = \mathbf{u}$$

(d)
$$C = AB$$

(g)
$$\mathbf{w} = A\mathbf{v}$$

(b)
$$\mathbb{I}\mathbf{v} = \mathbf{v}$$

(e)
$$h = A^{\mathbf{T}} q A$$

(b)
$$\mathbb{I}\mathbf{v} = \mathbf{v}$$
 (e) $h = A^{\mathbf{T}}gA$ (h) $h(\mathbf{v}, \mathbf{w}) = \frac{1}{2}g(\mathbf{w}, \mathbf{v})$

(c)
$$\mathbf{v}^{\mathbf{T}}g\mathbf{w} = c$$

(f)
$$C = B^{-1}AB$$

(c)
$$\mathbf{v}^{\mathbf{T}} g \mathbf{w} = a$$
 (f) $C = B^{-1} A B$ (i) $a \mathbf{v} + b \mathbf{w} = C \mathbf{u}$

- 2. Un punto materiale \mathbf{P} di massa m scivola senza attrito, soggetto alla forza peso, all'interno di un cono di semiapertura angolare α , con asse verticale e vertice verso il basso.
 - (a) Dopo aver scelto opportune coordinate, scrivere la Lagrangiana del sistema.
 - (b) Scrivere le equazioni del moto.
 - (c) Caratterizzare i moti ad altezza costante.
- 3. Si considerino, in un piano orizzontale, due rette incidenti che formano un angolo $0 < \alpha < \frac{\pi}{2}$. Due punti materiali **P** e **Q** di ugual massa m sono vincolati a muoversi lungo le rette, rispettivamente, e sono collegati da una molla di costante elastica ke lunghezza a riposo nulla. P, inoltre, è collegato al punto di intersezione delle rette tramite una molla di costante elastica 2k e lunghezza a riposo nulla.
 - (a) Dopo aver scelto opportune coordinate, scrivere la Lagrangiana del sistema.
 - (b) Scrivere le equazioni del moto.