Fitness

Chapter 14

Fitness

- Dependent on minimum amount of physical activity/exercise:
 - Body movement, muscle contraction, increased energy expenditure
- 20% of US adults meet physical activity guidelines
- Regular physical activity
 - Promotes health (even 10 minutes/day)
 - Reduces chronic disease risk
 - Benefits: dose-response

Benefits of Fitness

- Restful sleep
- Improved body composition
- Improved bone density
- Resistance to infectious diseases
- Lower incidence of anxiety and depression

- Lower chronic disease risk
- Strong circulation and lung function
- Strong self image
- Longevity
- Higher quality of life in old age
- Increased strength, endurance, flexibility

Levels of Physical Activity

TABLE 14-1 Levels of Physical Activity Intensity Compared

Level of Intensity	Breathing and/or Heart Rate	Perceived Exertion (on a Scale of 0 to 10)	Talk Test	Energ y E x penditure	Walking Pace
Light	Little to no increase	<5	Able to sing	<3.5 kcal/min	<3 mph
Moderate	Some increase	5 or 6	Able to have a conversation	3.5 to 7 kcal/min	3 to 4.5 mph
Vigorous	Large increase	7 or 8	Conversation is difficult or "broken"	>7 kcal/min	>4.5 mph

SOURCE: Centers for Disease Control and Prevention, www.cdc.gov/physicalactivity/everyone; updated March 30, 2011.

TABLE 14-2 ACSM Guidelines for Physical Fitness

	Cardiorespiratory	Strength	Flexibility
	Steve Cole/PhotoDisc/Getty Images		David Hanover Photography
Type of Activity	Aerobic activity that uses large- muscle groups and can be maintained continuously	Resistance activity that is performed at a controlled speed and through a full range of motion	Stretching activity that uses the major muscle groups
Frequency	5 to 7 days per week	2 to 3 nonconsecutive days per week	2 to 7 days per week
Intensity	Moderate (equivalent to walking at a pace of 3 to 4 miles per hour) ^a	Enough to enhance muscle strength and improve body composition	Enough to feel tightness or slight discomfort
Duration	At least 30 minutes per day	2 to 4 sets of 8 to 12 repetitions involving each major muscle group	2 to 4 repetitions of 15 to 30 seconds per muscle group
Examples	Running, cycling, dancing, swimming, inline skating, rowing, power walking, cross-country skiing, kickboxing, water aerobics, jumping rope; sports activities such as basketball, soccer, racquetball, tennis, volleyball	Pull-ups, push-ups, sit-ups, weightlifting, pilates	Yoga

For those who prefer vigorous-intensity aerobic activity such as walking at a very brisk pace (>4.5 mph) or running (≥5 mph), a minimum of 20 minutes per day, 3 days per week is recommended. SOURCE: American College of Sports Medicine position stand: Quantity and quality of exercise for developing and maintaining cardiorespiratory, musculoskeletal, and neuromotor fitness in apparently healthy adults—Guidance for prescribing exercise, Medicine and Science in Sports and Exercise 43 (2011): 1334–1359; W. L. Haskell and coauthors, Physical activity and public health: Updated recommendation for adults from the American College of Sports Medicine and the American Heart Association, Medicine & Science in Sports & Exercise 39 (2007): 1423–1434.

Developing Fitness

- Body adaptation: better performance with repetition
- Overload principle = incremental increases:
 - Frequency
 - Intensity
 - Time
 - Lead to body system improvements
 - O Hypertrophy: protein synthesis → gain muscle tissue
 - Be cautious not to overuse/cause injury

Components of Fitness

- Daily activity requirements
- Healthy body weight and body composition
- o Components:
 - Flexibility
 - Muscle strength and endurance
 - Cardiorespiratory endurance (heart and lungs)
 - Body composition (build lean tissue, reduce adipose tissue)

Cardiorespiratory Endurance

- Time a person can remain active with elevated heart rate
- Aerobic activity enhances capacity of heart, lungs, and blood
 - Deliver oxygen to cells (fuels brain and body functions!)
 - Remove waste from cells

• Process:

- Heart becomes stronger → pumps more blood per beat → fewer beats necessary to move blood (heart rate slows)
 - Lower blood pressure, improved circulation, etc.
 - Avg resting heartrate = 70 beats/minute; conditioned resting heartrate = 50

Balanced Fitness Program

- Varied level of intensity
- Varied types of activity:
 - Aerobic
 - Resistance
 - Stretching
- Activities you enjoy doing

Energy Systems

- Adenosine triphosphate (ATP)
 - Energy to powers cell activities (instant)
 - Small amounts in all body tissues, all the time
 - ATP molecule splits, energy is released:
 - Heat
 - Muscle contractions
 - Major energy systems enable muscle cells to regenerate ATP during activity:
 - Phosphagen system
 - Lactic acid system
 - Aerobic system

Phosphagen System

- Creatine Phosphate (CP)
 - Stored in muscles
 - Immediately released
 - Splits anaerobically
 - Releases phosphate
 - Replenishes ATP supplies
 - Quick energy: supplies last for ~10 seconds
 - Produced during rest
 - Reversal of process that occurs during activity

Lactic Acid System

- Anaerobic glycolysis
 - Primary glucose source: glycogen stores in muscle cells
- Produced after CP is used up
 - Supplies last up to 3 minutes
 - Fuels high-intensity, short duration activity

Aerobic System

- Prolonged demands (sustained activity)
- Carbohydrates, fats and some amino acids broken down
 - Produce uninterrupted supply of ATP
 - Factors influencing type/proportions of fuel used:
 - Dietary availability (storage)
 - Conditioning (conditioned muscles use less glycogen and more fat)
 - Intensity and duration of activity:
 - Anaerobic activities (high intensity, short duration) rely more on glucose
 - Endurance activities (low-moderate intensity, long duration) rely more on fats

Energy Systems & Fuels

ABLE 14-4 Primary Fuels Used for Activities of Different Intensities and Durations						
Activity Intensity	Activity Duration	Energy System	Preferred Fuel Source	Oxygen Needed?	Activity Example	
Extreme	5 to 10 sec	Phosphagen system	ATP-CP (immediate availability)	No	100-meter sprint, shot put, golf or baseball bat swing, tennis or volleyball serve	
Very high	20 sec to 2 min	Lactic acid system	ATP from carbohydrate (anaerobic glycolysis)	No	400-meter run, 100-meter swim, gymnastic routine	
High	2 min to 20 min	Aerobic system	ATP from carbohydrate (glycolysis and TCA cycle)	Yes	Cycling, swimming, running	
Moderate	> 20 min	Aerobic system	ATP from fat (fatty acid- oxidation and TCA cycle)	Yes	Hiking	

NOTE: All energy systems function at all times, but depending on the intensity of the activity and the conditioning of the athlete, one system will predominate at any given time.

- o Glucose: stored in liver and muscles as *glycogen*
- During exertion
 - Liver breaks down glycogen → glucose released into bloodstream
 - Muscles use blood glucose and muscle stores of glycogen
 - Muscles fatigue when glycogen is depleted (~2000 kcalories of energy = 20 mile run)
- Glycogen storage depends on:
 - Dietary carbohydrate intake
 - High-carbohydrate diets = more glycogen stores = enhanced endurance
 - Intensity of activity
 - Moderate = slow glycogen use (muscles also draw from fatty acid stores)
 - Intense = rapid glycogen use

Lactate

- Glycolysis produces pyruvate rapidly
 → exceeds capacity of mitochondria to accept H and electrons
- O Accumulating pyruvate "picks up" H
 → becomes lactate
- Lactate accumulates in muscles
 - Intense activity can only be maintained for 1-3 minutes
 - o Feel the burn!

Cori cycle:

- Accumulated lactate leaves muscle, travels to liver
- Liver enzymes convert lactate back into glucose to return to the muscles
- Fuels additional activity

- Duration and glycogen use
 - First ~20 minutes moderate activity = glycogen is main fuel
 - Muscles use glycogen stores, then liver empties glycogen stores
 - After 20 minutes, more fat is used for fuel
 - Glycogen use continues
 - Prolonged activity = blood glucose declines, muscle and liver glycogen stores = depleted
- Glucose depletion
 - Nervous system function nearly halts
 - To prevent depletion, athletes need carbohydrate-rich diets

- Glucose before activity
 - Glucose consumed ~3-4 hours before activity to "top off" stores
- Glucose during activity
 - 30-60 grams of carbohydrate/hour during endurance activities
 - Augment body glycogen stores and forestall exhaustion
- Glucose after activity (within 2 hours)
 - Replenish and enlarge glycogen stores

Fat Use During Physical Activity

- Recommendations for athletes: 20-35% of energy from fat
 - Same as Average Joe
- Body fat stores = important during physical activity
 - Provide 70,000+ kcalories of energy
 - Fatty acids from internal fat stores and under the skin
 - Areas with most fat to spare donate the most
 - May not appear "fattiest" on the body
 - Spot reducing doesn't work: fat cells release fatty acids into blood, not into nearby muscles
 - Blood delivers amount of fat each muscle needs

Fat Use During Physical Activity

- Duration of activity
 - Epinephrine signals fat cells to break down stored triglycerides
 - Sustained, moderate activity:
 - Blood fatty acid concentration surpasses resting concentration → fat stores become major fuel source
- Intensity of activity
 - As intensity increases, less fat is used
 - Fat broken down by aerobic metabolism (oxygen needed to burn fat)

Protein Use During After Physical Activity

- Not a major fuel for physical activity
- Protein for muscle building
 - Synthesis of body proteins suppressed during activity
 - Recovery time after activity: accelerated protein synthesis
 - O High-quality protein consumption → enhances muscle protein synthesis
 - Repeated anaerobic activity with slight overload triggers muscle protein synthesis → increased muscle mass/strength

InstaPoll

- What is the most important energy-yielding nutrient for athletes to consume?
 - Water
 - Protein
 - Fat
 - Carbohydrate

Nutrients to Support Activity

- Vitamins and minerals
 - Release energy (from foods)
 - Transport oxygen
 - Especially: Vitamin E; iron
- Supplements
 - Do not enhance performance of well-nourished people
- Deficiencies impede performance
- Water: necessary to avoid dehydration (loss of >2% body weight reduces muscles' capacity)
- Electrolytes

Electrolytes

- Electrolyte losses occur with sweat
 - Greatest in beginners
 - Training improves electrolyte retention
 - Replacement: regular foods or sports drinks (endurance activities)
- Hyponatremia
 - Loss of sodium + excessive liquid consumption
 - Blood sodium concentration becomes extremely low
 - Do not restrict salt in days before endurance activity

Hydration

- Hydrate before activity: prepare for losses
 - Drink extra fluid in the days before major event
 - Rehydrate during and after activity: replenish losses
- For most of us
 - Water
- For endurance athletes
 - Carbohydrate-containing beverages...

...A Note about Sports Drinks

- Marketing (multi-billion dollar industry)
- Sports drinks offer:
 - Fluid
 - Sodium (+ other electrolytes)
 - Good taste
 - Glucose
- o Math practice!
 - Sugar: 4 grams = 1 tsp
 - How many tsp of added sugar in this?
 - \circ 8 ½ tsp! (WHO daily limit = 6 tsp)

Serving Size 20 fl oz (5	91 mL
Amount Per Serving Calories	140
% 1	Daily Value
Total Fat 0g	0%
Sodium 270mg	12%
Total Carbohydrate 36g	13%
Total Sugars 34g	
Includes 34g Added Sugars	69%
Protein 0g	
Potassium 80mg	0%
Not a significant source of saturated fat, trans cholesterol, dietary fiber, vitamin D, calcium, a	
*The % Daily Value (DV) tells you how much a serving of food contributes to a daily diet. 2, a day is used for general nutrition advice.	a nutrient in 000 calories

Other Fluids (Incompatible with Physical Activity)

- Enhanced water
 - Neither healthy nor natural
 - Added sugar
 - Negligible vitamin and mineral content
- Caffeine
 - Stimulant
 - Excesses can hinder performance
- Alcohol
 - Negative effects: dehydration, loss of coordination, slow reaction time

Recommendations for Physical Activity

- Water
 - Depleted most rapidly
 - Crucial to performance
- Nutrient-dense foods
- Carbohydrates
 - High carbohydrate intake = high availability
 - Intensive training: may need concentrated carbohydrates in addition to regular meals (dried fruit, nectars, etc.)
- Healthy fats
- Lean protein

Before and After

- No single food improves skill, speed, or strength
- Pregame meal
 - Several hours before activity; light, digestible, carb-based, lots of fluids
- Recovery meal
 - Carbohydrate-rich food or beverages to enhance glycogen storage
 - High quality protein foods to stimulate protein synthesis