2/2

2/2

2/2

2/2

2/2

0/2

2/2

-1/2

2/2

2/2

2/2

+111/1/28+

THLR Contrôle (35 questions), Septembre 2016

Nom et prénom, lisibles :	Identifiant (de haut en bas):		
Gaudout Alice			
Q.1 Ne rien écrire sur les bords de la feuille, ni dans les éventuels cadres grisés « 🏖 ». Noircir les cases plutôt que cocher. Renseigner les champs d'identité. Les questions marquées par « 🍪 » peuvent avoir plusieurs réponses justes. Toutes les autres n'en ont qu'une; si plusieurs réponses sont valides, sélectionner la plus restrictive (par exemple s'il est demandé si 0 est nul, non nul, positif, ou négatif, cocher nul). Il n'est pas possible de corriger une erreur, mais vous pouvez utiliser un crayon. Les réponses justes créditent; les incorrectes pénalisent; les blanches et réponses multiples valent 0. I j'ai lu les instructions et mon sujet est complet: les 5 entêtes sont +111/1/xx+···+111/5/xx+.			
Q.2 La distance d'édition (avec les opérations lettrest de :	re à lettre insertion et suppression) entre les mots chat et chien		
□ 3 □ 2	□ 1 □ 0 2 5		
Q.3 Le langage $\{ \stackrel{\cdot}{\mathbf{b}}^n \stackrel{\cdot}{\mathbf{b}}^n \mid \forall n \in \mathbb{N} \}$ est			
infini [☐ fini ☐ vide		
Q.4 Que vaut $\{\varepsilon, a, b\} \cdot \{\varepsilon, a, b\}$?			
\square {aa, ab, ba, bb} \blacksquare { ε , a, b, aa, ab, ba,	$\{aa,b,aa,ab,ba,bb\}$ $\{aa,b,aa,ab,ba,bb\}$ $\{aa,ab,bb\}$		
Q.5 Que vaut $Pref(\{ab,c\})$:			
\Box $\{b, \varepsilon\}$ \Box $\{b, c, \varepsilon\}$ \Box	\emptyset $\{ab,a,c,\varepsilon\}$ $[a,b,c\}$		
Q.6 Que vaut $\overline{\{a\}\{b\}^*} \cap \{a\}^*$			
	\boxtimes $\{\varepsilon\} \cup \{a\}\{a\}\{a\}^*$ \square $\{a,b\}^*\{b\}\{a,b\}^*$ $a\}\{b\}^* \cup \{b\}^*$		
Q.7 Pour toute expression rationnelle e , on a $\varepsilon e \equiv$	$e\varepsilon \equiv e$.		
vrai	☐ faux		
Q.8 Pour toutes expressions rationnelles e, f , on a	$a(e+f)^* \equiv e^*(e+f)^*.$		
∨rai	faux		
Q.9 L'expression Perl '[-+]?[0-9]+, [0-9]*' n'en			
☐ '42,' ☐ '42,4'	☐ '42,42' 图 '42'		
Q.10 Soit Σ un alphabet. Pour tout $a \in \Sigma$, $L \subseteq \Sigma^*$,	on a $\{a\}.L = \{a\}.M \implies L = M$.		
wrai	☐ faux		
Q.11 L'expression Perl '[-+]?[0-9A-F]+([-+/*]	[-+]?[0-9A-F]+)*' n'engendre pas :		
• ***	☐ '-42-42' ■ '42+(42*42)'		

Combien d'états compte l'automate de Thompson d'une expression rationnelle composée de n opérations autres que la concaténation :

0/2

2
222.
n fois

 $\frac{n}{2}$

X	2n

 \square 2ⁿ

	n^2
--	-------

 \square n

Q.13

Un algorithme peut décider si un automate est déterministe en regardant sa structure.

2/2

☐ Faux

☐ Souvent

Q.14 Quel automate reconnaît le langage décrit par l'expression ((ba)*b)*

2/2

Q.15

Quel est le résultat d'une élimination arrière des transitions spontanées?

-1/2

Q.16 & Parmi les 3 automates suivants, lesquels sont équivalents?

-1/2

☐ Aucune de ces réponses n'est correcte.

Le langage $\{a^nb^n \mid \forall n \in \mathbb{N}\}$ est Q.17

2/2

2/2

non reconnaissable par automate

rationnel

☐ fini

□ vide

Q.18 Un langage quelconque

peut n'être inclus dans aucun langage dénoté par une expression rationnelle

est toujours inclus (⊆) dans un langage rationnel

2/2

2/2	☐ n'est pas nécessairement dénombrable ☐ peut avoir une intersection non vide avec son complémentaire Q.19 Si $L_1 \subseteq L \subseteq L_2$, alors L est rationnel si :
2/2	\square L_2 est rationnel \square L_1 est rationnel \square L_1, L_2 sont rationnels L_1, L_2 sont rationnels et $L_2 \subseteq L_1$
	Q.20 Combien d'états au moins a un automate déterministe émondé qui accepte les mots sur $\Sigma = \{a, b, c, d\}$ dont la n -ième lettre avant la fin est un a (i.e., $(a + b + c + d)^*a(a + b + c + d)^{n-1}$):
-1/2	
	Q.21 Déterminiser cet automate : $\xrightarrow{a,b} \xrightarrow{a,b} \xrightarrow{a,b} \xrightarrow{a,b}$
-1/2	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$
	Q.22 Quelle(s) opération(s) préserve(nt) la rationnalité?
1.2/2	 ☑ Différence ☑ Intersection ☑ Complémentaire ☑ Union ☑ Différence symétrique ☐ Aucune de ces réponses n'est correcte.
	Q.23 Soit <i>Rec</i> l'ensemble des langages reconnaissables par DFA, et <i>Rat</i> l'ensemble des langages définissables par expressions rationnelles.
2/2	\square $Rec \subseteq Rat$ \square $Rec = Rat$ \square $Rec \not\supseteq Rat$ \square $Rec \supseteq Rat$
	Q.24 Duelle(s) opération(s) préserve(nt) la rationnalité?
2/2	Fact Sous – mot Transpose Suff Pref Aucune de ces réponses n'est correcte.
	Q.25 On peut tester si un automate nondéterministe reconnaît un langage non vide.
2/2	🗌 jamais 🔲 souvent 🔲 rarement 🎆 oui, toujours
	Q.26 On peut tester si un automate déterministe reconnaît un langage non vide.
2/2	☐ Seulement si le langage n'est pas rationnel☐ Oui☐ Non☐ Cette question n'a pas de sens
	Q.27 Si L_1, L_2 sont rationnels, alors:
2/2	$(L_1 \cap \overline{L_2}) \cup (\overline{L_1} \cap L_2) \text{ aussi} \qquad \Box \qquad \overline{L_1 \cap L_2} = \overline{L_1} \cap \overline{L_2} \qquad \Box \qquad L_1 \subseteq L_2 \text{ ou } L_2 \subseteq L_1$ $\Box \qquad \bigcup_{n \in \mathbb{N}} L_1^n \cdot L_2^n \text{ aussi}$
	Q.28 Quel mot reconnait le produit de ces automates?
	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$
	$\begin{array}{cccccccccccccccccccccccccccccccccccc$

Q.29 Combien d'états a l'automate minimal qui accepte le langage $\{a,b,c,\cdots,y,z\}^+$?

2/2

_ 5		52	,
-----	--	----	---

□ Il en existe plusieurs!

Q.30 Si L et L' sont rationnels, quel langage ne l'est pas nécessairement?

2/2

 $\{u^nv^n \mid u \in L, v \in L', n \in \mathbb{N}\}$

Q.31

Si on élimine les transitions spontanées de cet automate, puis qu'on applique la déterminisation, alors l'application de BMC conduira à une expression rationnelle équivalente à :

2/2

$$\Box$$
 $a^* + b^* + c^*$

 \Box $(a+b+c)^*$

a*b*c*

Q.32 & Quels états peuvent être fusionnés sans changer le langage reconnu.

1 avec 2

☐ 1 avec 3

□ 0 avec 1 et avec 2

3 avec 4

☐ 2 avec 4

☐ Aucune de ces réponses n'est correcte.

Considérons \mathcal{P} l'ensemble des palindromes (mot u égal à son tranposé/image miroir u^R) de longueur paire sur Σ , i.e., $\mathcal{P} = \{v \cdot v^R \mid v \in \Sigma^*\}$.

0/2

	Il existe u	n DFA	qui reconi	naisse I
$\mathbf{I}\mathbf{I}$	existe un ε -	NFA o	qui reconn	aisse ${\cal P}$

 \square Il existe un NFA qui reconnaisse $\mathcal P$

P ne vérifie pas le lemme de pompage

Q.34 Sur $\{a,b\}$, quel est le complémentaire de

2/2

Q.35

Quel est le résultat de l'application de BMC en éliminant 1, puis 2, puis 3 et enfin 0?

 $\boxtimes (ab^+ + a + b^+)(a(a + b^+))^*$

 $\Box (ab^* + (a+b)^*)(a+b)^+$

 $\Box (ab^* + a + b^*)a(a + b)^*$

Q.36 Sur $\{a,b\}$, quel automate reconnaît le complémentaire du langage de

2/2

0/2

+111/5/24+

a, b

Fin de l'épreuve.

113

+111/6/23+