Herbst 12 Themennummer 1 Aufgabe 2 im Bayerischen Staatsexamen Analysis (vertieftes Lehramt)

Sei

$$A = \begin{pmatrix} 1 & -1 \\ 1 & 1 \end{pmatrix} \in M(2 \times 2, \mathbb{R}).$$

Geben Sie ein Fundamentalsystem reeller Lösungen des linearen Differentialgleichungssystems

$$\dot{y} = Ay$$

an und untersuchen Sie, ob es stabile Lösungen besitzt. Berechnen Sie auch die Lösung, die der Anfangsbedingung $y(0) = (2,0)^{T}$ genügt, und begründen Sie, warum diese Lösung eindeutig ist.

Lösungsvorschlag:

• Fundamentalsystem: Da es sich um eine 2×2 -Matrix handelt, genügt es zwei linear unabhängige Lösungen anzugeben. Die charakteristische Gleichung der Matrix A lautet $\lambda^2 - 2\lambda + 2 = 0$ und besitzt die Lösungen $\lambda_{\pm} = 1 \pm i$. Daher ist ein reelles Fundamentalsystem durch

$$y_1(t) = \begin{pmatrix} e^t \cos t \\ e^t \sin t \end{pmatrix}, \quad y_2(t) = \begin{pmatrix} -e^t \sin t \\ e^t \cos t \end{pmatrix}$$

gegeben.

- Stabilität: Nachdem es sich um ein lineares System handelt, dessen Strukturmatrix A Eigenwerte mit positivem Realteil besitzt, gibt es keine stabilen Lösungen.
- Anfangswertproblem: Durch geeignete Linearkombination der Lösungen y_1 und y_2 erhalten wir die Lösung, die $y(0) = (2,0)^{\mathrm{T}}$ erfüllt. Es ist $y_1(0) = (1,0)^{\mathrm{T}}, y_2(0) = (0,1)^{\mathrm{T}}$. Wegen $(2,0)^{\mathrm{T}} = 2 \cdot (1,0)^{\mathrm{T}} + 0 \cdot (0,1)^{\mathrm{T}}$ folgt aus dem Superpositionsprinzip, dass $y(t) = 2y_1(t) = \begin{pmatrix} 2e^t \cos t \\ 2e^t \sin t \end{pmatrix}$ die gesuchte Lösung ist.
- Eindeutigkeit: Die Eindeutigkeit der Lösung folgt aus der linearen Unabhängigkeit der Lösungen im Fundamentalsystem und der Linearstruktur des Lösungsraums. Man kann aber auch mit dem Satz von Picard-Lindelöf argumentieren. Dieser ist wegen $|Ay-Az|=|A(y-z)|\leq \|A\|\cdot |y-z|$ anwendbar, weil die Strukturfunktion lipschitzstetig ist. Die Lipschitzkonstante ist hier durch die Operatornorm $\|A\|$ gegeben.

 $\mathcal{J}.\mathcal{F}.\mathcal{B}.$