Lab 3 Data Basics

Installations

- Install Python 3
- Install Jupyter Notebooks
- Install modules you need, such as pandas and numpy

```
In [6]: # import modules you need
        import pandas as pd
         import numpy as np
         import os
```

Part A: Python Review

```
# Create a string called string1 that contains your first and last name
 In [1]:
          string1 = 'JN'
          # Print the string
          print(string1)
         JN
         # Use list comprehension to divide each number in "mylist" by 2
 In [8]:
         mylist = [8,1,2,4,1,29]
          answer = [x/2 \text{ for } x \text{ in mylist}]
          print(answer)
         [4.0, 0.5, 1.0, 2.0, 0.5, 14.5]
 In [9]: # Create a dictionary to map names of the days of the week (e.g. Sunday, Monday, Tueso
          # to numbers, where Sunday = 0, Monday = 1, Tuesday = 2, etc.
          d = {'Sunday': 0, 'Monday': 1, 'Tuesday': 2, 'Wednesday': 3, 'Thursday': 4, 'Friday':
          # Print the dictionary
          for key,value in d.items():
              print(key, ':', value)
         Sunday: 0
         Monday: 1
         Tuesday: 2
         Wednesday: 3
         Thursday: 4
         Friday : 5
         Saturday: 6
In [10]: # Create a Lambda function to multiply a number by 100. Name this function "mult by 100"
         mult_by_100 = lambda x: x*100
In [11]: # Use your lambda function, mult by 100, to multiply the number 50 by 100
         mult_by_100(50)
         5000
Out[11]:
```

Part B: Introduction Data Frames

Read in weather data

```
In [12]: # read in the weather data from csv (WeatherData.csv)
          f = pd.read csv('WeatherData.csv')
In [13]:
          # print the first few rows of the weather data
          f.head()
Out[13]:
                 STATION
                                 NAME DATE AWND AWND_ATTRIBUTES PRCP PRCP_ATTRIBUTES SNOW
                          WASHINGTON
                               REAGAN
                                        2017-
                                                                    ,,W
          0 USW00013743
                             NATIONAL
                                                 4.25
                                                                          0.00
                                                                                        ,,W,2400
                                                                                                   0.0
                                        01-01
                            AIRPORT, VA
                                    US
                          WASHINGTON
                               REAGAN
                                        2017-
          1 USW00013743
                             NATIONAL
                                                 7.83
                                                                         0.35
                                                                                                   0.0
                                                                    "W
                                                                                        ,,W,2400
                                        01-02
                            AIRPORT, VA
                                    US
                          WASHINGTON
                               REAGAN
                                        2017-
          2 USW00013743
                             NATIONAL
                                                 5.82
                                                                    ,,W
                                                                          0.86
                                                                                        ,,W,2400
                                                                                                   0.0
                                        01-03
                            AIRPORT, VA
                                    US
                          WASHINGTON
                               REAGAN
                                        2017-
          3 USW00013743
                             NATIONAL
                                                 9.84
                                                                          0.00
                                                                                       T,,W,2400
                                                                                                   0.0
                                                                    "W
                                        01-04
                            AIRPORT, VA
                                    US
                          WASHINGTON
                               REAGAN
                                        2017-
          4 USW00013743
                             NATIONAL
                                                 6.49
                                                                    "W
                                                                          0.00
                                                                                       T,,W,2400
                                                                                                   0.0
                                        01-05
                            AIRPORT, VA
                                    US
         5 rows × 41 columns
          # print column and row dimensions for the weather data
In [14]:
          f.shape
          (90, 41)
Out[14]:
          # practice slicing weather data
In [15]:
          # create a new data frame that has only the date (DATE) and the amount of precipitation
          # make sure you save this slice to a new object (e.g. ndf)
          ndf = f[['DATE', 'PRCP']]
          ndf
```

Out[15]:		DATE	PRCP
	0	2017-01-01	0.00
	1	2017-01-02	0.35
	2	2017-01-03	0.86
	3	2017-01-04	0.00
	4	2017-01-05	0.00
	•••		
	85	2017-03-27	0.01
	86	2017-03-28	0.02
	87	2017-03-29	0.00
	88	2017-03-30	0.00
	89	2017-03-31	0.96

90 rows × 2 columns

export the slice of your weather data frame with only date and precipitation (from t In [16]: ndf.to_csv('WeatherCols.csv')

Read in trip data

```
In [17]: # read in trip data (TripData.csv)
         t = pd.read_csv('TripData.csv')
In [18]: # print the first few rows of the trip data
         t.head()
```

Out[18]:

	Duration	Start date	End date	Start station number	Start station	End station number	End station	Bike number	Member Type
0	1048876	3/31/2017 23:59	4/1/2017 0:17	31213	17th & K St NW	31606	Potomac & Pennsylvania Ave SE	W20784	Registered
1	223449	3/31/2017 23:59	4/1/2017 0:03	31104	Adams Mill & Columbia Rd NW	31103	16th & Harvard St NW	W20825	Registered
2	423494	3/31/2017 23:58	4/1/2017 0:05	31627	M St & Delaware Ave NE	31614	11th & H St NE	W20773	Registered
3	687015	3/31/2017 23:57	4/1/2017 0:08	31404	9th & Upshur St NW	31281	8th & O St NW	W01307	Registered
4	257919	3/31/2017 23:57	4/1/2017 0:02	31602	Park Rd & Holmead Pl NW	31400	Georgia & New Hampshire Ave NW	W21760	Registered

In [19]: # print the dimensions of the trip data t.shape

(646508, 9) Out[19]:

In [20]: # practice slicing the trip data # create a new data frame with only the start date (Start date) and the duration (Durc sl = t[['Start date', 'Duration']]

Out[20]:

	Start date	Duration
0	3/31/2017 23:59	1048876
1	3/31/2017 23:59	223449
2	3/31/2017 23:58	423494
3	3/31/2017 23:57	687015
4	3/31/2017 23:57	257919
•••		
646503	1/1/2017 0:07	1356956
646504	1/1/2017 0:07	1327901
646505	1/1/2017 0:07	1636768
646506	1/1/2017 0:06	1676854
646507	1/1/2017 0:00	221834

646508 rows × 2 columns

write the new trip data frame with only the start date and duration to a csv file co In [21]: sl.to csv('TripsCol.csv')

Create day of the week data frame

```
In [22]:
        # you can create a new data frame using dictionaries and lists
          # create a dictionary with two keys "date" and "dayofweek"
          # the date value should be a list of 7 dates from 2017-01-01 to 2017-01-07"
          # the dayofweek value should a list of 7 days of the week starting with Sunday in orde
          # the dictionary should be of the format:
          # mydict = {'colname1':['list','of','values','in','order'],'colname2':['list','of','va
          mydict = {'date':['2017-01-01', '2017-01-02', '2017-01-03', '2017-01-04', '2017-01-05'
In [23]: # turn this dictionary into a data frame
          datedict = pd.DataFrame(mydict)
In [24]: # print the first few rows of the data frame
          datedict.head()
Out[24]:
                 date dayofweek
          0 2017-01-01
                          Sunday
          1 2017-01-02
                         Monday
          2 2017-01-03
                         Tuesday
          3 2017-01-04 Wednesday
          4 2017-01-05
                         Thursday
In [25]: # print the dimensions of the data frame
          datedict.shape
Out[25]: (7, 2)
In [26]: # write this data frame to csv file
          datedict.to_csv('DateDictionary.csv')
```

Part C: Summarizing Data

Summarize weather data (from Part B)

```
# get the frequency distribution for the name column (NAME) using the value counts met
In [27]:
         w = pd.read_csv('WeatherData.csv', encoding = 'unicode_escape')
         w["NAME"].value_counts()
         WASHINGTON REAGAN NATIONAL AIRPORT, VA US
Out[27]:
         Name: NAME, dtype: int64
In [28]:
         # get descriptive statistics for all numeric columns in the weather data set
         w.describe()
```

Out[28]:		AWND	PRCP	SNOW	SNWD	TAVG	TMAX	TMIN	WDF2	
mear sto mir 25% 50% 75%	count	90.000000	90.000000	90.000000	90.000000	90.000000	90.000000	90.000000	90.000000	90.0
	mean	10.165111	0.073556	0.037778	0.055556	45.122222	54.111111	37.122222	235.777778	238.6
	std	4.222339	0.190046	0.185168	0.274828	10.125979	12.386514	9.478335	98.630827	97.3
	min	3.580000	0.000000	0.000000	0.000000	20.000000	25.000000	15.000000	10.000000	10.0
	25%	6.765000	0.000000	0.000000	0.000000	39.000000	46.000000	30.000000	190.000000	190.(
	50%	9.510000	0.000000	0.000000	0.000000	44.500000	53.500000	36.500000	270.000000	270.0
	75%	12.472500	0.020000	0.000000	0.000000	51.750000	61.750000	45.000000	320.000000	320.0
	max	21.920000	0.960000	1.100000	2.000000	65.000000	80.000000	57.000000	360.000000	350.0

8 rows × 21 columns

```
In [29]: # get the sum of "total precipitation" (PRCP) using the sum function
         w["PRCP"].sum()
         6.62
Out[29]:
```

Summarize trip/rideshare data (from Part B)

```
In [30]: # get frequency distribution for "Start station" using the value_counts method
         tr = pd.read csv('TripData.csv', encoding = 'unicode escape')
In [31]: # get descriptive statistics for all numeric columns in the trip/rideshare data set
          tr.describe()
                    Duration Start station number End station number
Out[31]:
```

count	6.465080e+05	646508.000000	646508.000000
mean	1.010939e+06	31317.412205	31320.159981
std	2.087019e+06	218.034575	216.394488
min	6.000400e+04	31000.000000	31000.000000
25%	3.732280e+05	31202.000000	31207.000000
50%	6.263670e+05	31251.000000	31250.000000
75%	1.064398e+06	31505.000000	31505.000000
max	8.606654e+07	32223.000000	32223.000000

```
In [32]: # get the mode of "End station" using the mode method
         tr['End station'].mode()
```

Columbus Circle / Union Station Out[32]: Name: End station, dtype: object

Part D: Visualizing Data

```
In [33]: # import module for plotting & use jupyter magic to display pictures in cells
import matplotlib.pyplot as plt
%matplotlib inline

In [34]: # read in the combined weather and trip data (WeatherTrips.csv)
wt = pd.read_csv('WeatherTrips.csv', encoding = 'unicode_escape')
```

Create histograms for each numeric variable. Each histogram must have axis labels AND a title

```
In [35]: # histogram of number of trips (NumTrips)
wt["NumTrips"].hist()
Out[35]:

20.0
17.5
15.0
```



```
In [36]: # histogram of precipitation (PRCP)
wt["PRCP"].hist()
```

Out[36]: <AxesSubplot:>


```
In [37]: # histogram of average temperature (TAVG)
wt["TAVG"].hist()
```

<AxesSubplot:> Out[37]:


```
# histogram of wind speed (AWND)
In [38]:
         wt["AWND"].hist()
```

Out[38]:

<AxesSubplot:>

Create barcharts that display each numeric variable over time

```
# Do NOT DELETE -- these options will make your chart easier to read!
In [50]:
         plt.figure(figsize=(30,5))
         plt.xticks(rotation=90)
         # barchart of date (DATE) vs number of trips (NumTrips)
         plt.bar(wt["DATE"], wt["NumTrips"])
         plt.show()
```



```
# Do NOT DELETE -- these options will make your chart easier to read!
In [49]:
         plt.figure(figsize=(30,5))
         plt.xticks(rotation=90)
         # barchart of date (DATE) vs precipitation (PRCP)
         plt.bar(wt["DATE"],wt["PRCP"])
         plt.show()
```



```
In [51]: # Do NOT DELETE -- these options will make your chart easier to read!
         plt.figure(figsize=(30,5))
         plt.xticks(rotation=90)
         # barchart of date (DATE) vs average temparature (TAVG)
         plt.bar(wt["DATE"],wt["TAVG"])
         plt.show()
```



```
In [52]: # Do NOT DELETE -- these options will make your chart easier to read!
         plt.figure(figsize=(30,5))
         plt.xticks(rotation=90)
         # barchart of date (DATE) vs wind speed (AWND)
          plt.bar(wt["DATE"],wt["AWND"])
         plt.show()
```


Create scatterplots of each numeric variable with number of trips

```
# scatterplot of precipitation (PRCP) vs number of trips (NumTrips)
In [43]:
          wt.plot.scatter(x = 'PRCP', y = 'NumTrips')
          <AxesSubplot:xlabel='PRCP', ylabel='NumTrips'>
Out[43]:
            16000
            14000
            12000
            10000
             8000
             6000
             4000
             2000
                             0.2
                                      0.4
                                                          0.8
                                         PRCP
          # scatterplot of average temperature (TAVG) vs number of trips (NumTrips)
In [44]:
          wt.plot.scatter(x = 'TAVG', y = 'NumTrips')
          <AxesSubplot:xlabel='TAVG', ylabel='NumTrips'>
Out[44]:
            16000
            14000
            12000
          Num rips
8000
             6000
             4000
             2000
                                                  50
                                                            60
                    20
                              30
                                         TAVG
          # scatterplot of average wind speed (AWND) vs number of trips (NumTrips)
In [45]:
          wt.plot.scatter(x = 'AWND', y = 'NumTrips')
          <AxesSubplot:xlabel='AWND', ylabel='NumTrips'>
Out[45]:
```

