Ejercicio en clase: Análisis Exploratorio de los Datos -Visualización de Datos

Introducción

En este documento se tratan dos conceptos muy importantes a considerar un proyecto de Ciencia de Datos: Visualización de Datos y Análisis Exploratorio de los Datos (EDA).

Análisis Exploratorio de los Datos

El Análisis Exploratorio de Datos tiene como objetivo, examinar los datos para conseguir un entendimiento básico con respecto al comportamiento de los datos y algunas relaciones existentes entre ellos. Además, este análisis nos permite encontrar problemas de calidad no detectados con anterioridad, como datos ausentes, casos atípicos, etc. [1]

Para enriquecer el Análisis Exploratorio de los Datos, se utilizan medidas estadísticas básicas, tablas y gráficas, sin embargo, su cálculo no es suficiente; es necesario plasmar los resultados y la información construida, lo más claro y sencillo posible, es por eso, que se siguen los principios básicos del concepto de visualización de datos.

Visualización de los Datos

Personas importantes:

John Wilder Tukey: Fundador del Análisis Exploratorio de Datos o EDA (Exploratory Data Analysis). Su libro Exploratory Data Analysis (1977) es el clásico sobre este tema. EDA es una filosofía básicamente gráfica de exploración de datos estadísticos. [2]

Edward Tufte: (Estadístico y Artista) De acuerdo al New York Times, Edward Tufte es el Leonardo da Vinci de los datos". [3]

Charles Joseph Minard: Ingeniero civil francés reconocido por su importante aportación en el terreno de los gráficos. [4]

Principios del Diseño Analítico - Edward Tufte [5]

- 1. Muestra comparaciones.
- 2. Muestra causalidad.
- 3. Utiliza datos multivariados.
- 4. Modos de Integración completos (palabras, números, imágenes y diagramas).
- 5. Establecer credibilidad.
- 6. Se centra en el contenido.

Chartjunk

El *chartjunk* son aquellos elementos gráficos que no corresponden a variación de datos, o que entorpecen la interpretación de una gráfica.[6] * Todo lo que quita atención de los datos.

Charles Joseph Minard - Marcha de Napoleón sobre Moscú [6]

"Bien podría ser el mejor gráfico estadístico jamás dibujado."

"Cuenta una historia rica y coherente con sus datos multivariados, mucho más esclarecedora que un solo número que rebota en el tiempo."

- $Edward\ Tufte.$

Variables: tropas de Napoleón, distancia, temperatura, latitud y longitud, dirección en que viajaban las tropas y la localización relativa a fechas específicas.

Figure 1: Charles Joseph Minard - Marcha de Napoleón sobre Moscú.

Ejercicio en Clase

```
#Libreria base
library(tidyverse)

#install.packages("ggplot2")
library(ggplot2)
```

ggplot2

```
Tips para manejar ggplot2: https://rstudio.com/wp-content/uploads/2015/04/ggplot2-spanish.pdf Notación básica: ggplot(dataframe,\ aes(x=,\ y=,\ fill=)+\\geom\_bar()\\geom\_point()
```

```
geom\_boxplot()
geom\_line()
```

MPG - MILLES PER GALLON

```
ejercicio_2 <- mpg
head(ejercicio_2)

## # A tibble: 6 x 11

## manufacturer model displayeer cyl trans dry cty buy flagger</pre>
```

##		manufacturer	model	displ	year	cyl	trans	drv	cty	hwy	fl	class
##		<chr></chr>	<chr></chr>	<dbl></dbl>	<int></int>	<int></int>	<chr></chr>	<chr></chr>	<int></int>	<int></int>	<chr>></chr>	<chr></chr>
##	1	audi	a4	1.8	1999	4	auto(~	f	18	29	p	comp~
##	2	audi	a4	1.8	1999	4	manua~	f	21	29	p	comp~
##	3	audi	a4	2	2008	4	manua~	f	20	31	p	comp~
##	4	audi	a4	2	2008	4	auto(~	f	21	30	p	comp~
##	5	audi	a4	2.8	1999	6	auto(~	f	16	26	p	comp~
##	6	audi	a4	2.8	1999	6	manua~	f	18	26	p	comp~

#?mpg

Variables

Manufacturer: Empresa manufacturera.

Model: Modelo

Displ: Desplazamiento del motor (en litros)

Year: Año de creaciónCyl: Número de cilindrosTrans: Tipo de transmisión

Drv: f = front-wheel drive, r = rear wheel drive, 4 = 4wd **City:** City miles per gallon (Millas en ciudad por galón).

Hwy: Highway miles per gallon (Millas en carretera por galón).

Fl: Tipo de combustibleClass: Tipo de coche

summary(ejercicio_2)

##	manufacturer	model	displ	year		
##	Length:234	Length: 234	Min. :1.600	Min. :1999		
##	Class :character	Class :character	1st Qu.:2.400	1st Qu.:1999		
##	Mode :character	Mode :character	Median :3.300	Median:2004		
##			Mean :3.472	Mean :2004		
##			3rd Qu.:4.600	3rd Qu.:2008		
##			Max. :7.000	Max. :2008		
##	cyl	trans	drv	cty		

```
## Min.
          :4.000
                   Length:234
                                     Length: 234
                                                        Min. : 9.00
##
  1st Qu.:4.000
                   Class :character
                                     Class : character
                                                        1st Qu.:14.00
## Median :6.000
                   Mode :character
                                     Mode :character
                                                        Median :17.00
## Mean
         :5.889
                                                               :16.86
                                                        Mean
##
   3rd Qu.:8.000
                                                        3rd Qu.:19.00
##
  Max.
          :8.000
                                                        Max.
                                                               :35.00
##
        hwy
                        fl
                                        class
## Min. :12.00
                   Length:234
                                     Length: 234
##
  1st Qu.:18.00
                   Class :character
                                     Class :character
## Median :24.00
                   Mode :character
                                     Mode :character
## Mean
         :23.44
## 3rd Qu.:27.00
## Max.
         :44.00
```

Preguntas

1. ¿Cuántos años tenemos de registros?

```
pregunta_1 <- ejercicio_2 %>%
    select(year) %>%
    arrange(year) %>%
    unique()

pregunta_1

## # A tibble: 2 x 1

## year

## <int>
## 1 1999

## 2 2008
```

2. ¿Cuántas marcas tenemos?

```
pregunta_2 <- ejercicio_2 %>%
  select(manufacturer) %>%
  arrange(manufacturer) %>%
  unique()

pregunta_2
```

```
## # A tibble: 15 x 1
## manufacturer
## <chr>
## 1 audi
## 2 chevrolet
## 3 dodge
## 4 ford
## 5 honda
## 6 hyundai
## 7 jeep
## 8 land rover
```

```
## 9 lincoln
## 10 mercury
## 11 nissan
## 12 pontiac
## 13 subaru
## 14 toyota
## 15 volkswagen
  3. ¿Cuántos modelos distintos hay?
pregunta_3 <- ejercicio_2 %>%
  select(model) %>%
  arrange(model) %>%
  unique()
pregunta_3
## # A tibble: 38 x 1
##
      model
      <chr>
##
## 1 4runner 4wd
## 2 a4
## 3 a4 quattro
## 4 a6 quattro
## 5 altima
## 6 c1500 suburban 2wd
## 7 camry
## 8 camry solara
## 9 caravan 2wd
## 10 civic
## # ... with 28 more rows
  4. ¿Cuántos tipos de transmición hay?
pregunta_4 <- ejercicio_2 %>%
  select(trans) %>%
  arrange(trans) %>%
  unique()
pregunta_4
## # A tibble: 10 x 1
##
      trans
##
      <chr>
## 1 auto(av)
## 2 auto(13)
## 3 auto(14)
## 4 auto(15)
## 5 auto(16)
## 6 auto(s4)
## 7 auto(s5)
## 8 auto(s6)
## 9 manual(m5)
## 10 manual(m6)
```

5. ¿Cuántos tipos de combustuble hay?

5 r

```
pregunta_5 <- ejercicio_2 %>%
    select(f1) %>%
    arrange(f1) %>%
    unique()

pregunta_5

## # A tibble: 5 x 1
## f1
## <chr>
## 1 c
## 2 d
## 3 e
## 4 p
```

6. Con relación a las marcas manufactureras, ¿Cómo se comportan los registros? - ¿Qué marca manufacturera tiene más registros?

```
im_pg6 <- ggplot(ejercicio_2, aes(x = manufacturer)) +
  geom_bar()
im_pg6</pre>
```



```
# fct_infreq: Reorder factors levels by first appearance, frequency, or numeric order.
im_pg6 <- ggplot(ejercicio_2, aes(x = forcats::fct_infreq(manufacturer))) +
    geom_bar()
im_pg6</pre>
```



```
im_pg6 <- ggplot(ejercicio_2, aes(x = forcats::fct_infreq(manufacturer), fill = manufacturer)) +
    geom_bar()
im_pg6</pre>
```



```
im_pg6 <- ggplot(ejercicio_2, aes(x = forcats::fct_infreq(manufacturer), fill = manufacturer)) +
    geom_bar() +
    theme_classic()+
    xlab("Empresa manufacturera") +
    ylab("Frecuencia")

im_pg6</pre>
```


Colores: http://applied-r.com/wp-content/uploads/2019/01/rcolors byname.png

```
im_pg6 <- ggplot(ejercicio_2, aes(x = forcats::fct_infreq(manufacturer), fill = manufacturer)) +</pre>
  geom_bar() +
  theme_classic()+
 xlab("Empresa manufacturera") +
  ylab("Frecuencia")+
  scale_fill_manual(values=c("gray91","gray91","darkblue","skyblue","gray91","gray91","gray91","gray91"
  theme(axis.text=element_text(size=14),
        axis.title=element_text(size=14,face="italic"),
        title = element_text(size=20,face="italic"))+
 labs(title="Frecuencia de empresas manufactureras en dataset")
im_pg6
```


7. ¿Cómo se comportan las diferentes empresas manunfactureras con respecto a las millas por galón en autopista?

```
im_pg7 <- ggplot(ejercicio_2, aes(x = manufacturer, y = hwy)) +</pre>
  geom_point()
im_pg7
```



```
im_pg7 <- ggplot(ejercicio_2, aes(x = manufacturer, y = hwy, fill=manufacturer)) +
   geom_boxplot(outlier.colour="red", outlier.shape=8, outlier.size=8)+
   theme_classic()

im_pg7</pre>
```


8. ¿Cómo se comportan las diferentes empresas manunfactureras con respecto a las millas por galón en

ciudad?

```
im_pg8<- ggplot(ejercicio_2, aes(x = reorder(manufacturer,-cty), y = cty, fill=manufacturer)) +
   geom_boxplot(outlier.colour="red", outlier.shape=8, outlier.size=8)+
   theme_classic()
im_pg8</pre>
```


9. Comportamiento anterior, haciendo un análisis por número de cilindros

```
im_pg9 <- ggplot(ejercicio_2, aes(x = manufacturer, y = cty, fill=manufacturer)) +
   geom_boxplot() +
   facet_wrap(~ cyl) +
   theme_classic() +
   stat_summary(fun.y=mean, geom="point", shape=23, size=4)

im_pg9</pre>
```


BABY NAMES

2

1880 F

3 1880 F

4 1880 F

5 1880 F

6 1880 F

Anna

Emma

Minnie

Margaret

```
#install.packages("babynames")
library(babynames)
ejercicio_3 <- babynames
glimpse(ejercicio_3)
## Observations: 1,924,665
## Variables: 5
## $ year <dbl> 1880, 1880, 1880, 1880, 1880, 1880, 1880, 1880, 1880, 1880...
## $ name <chr> "Mary", "Anna", "Emma", "Elizabeth", "Minnie", "Margaret"...
        <int> 7065, 2604, 2003, 1939, 1746, 1578, 1472, 1414, 1320, 128...
## $ prop <dbl> 0.07238359, 0.02667896, 0.02052149, 0.01986579, 0.0178884...
head(ejercicio_3)
## # A tibble: 6 x 5
##
     year sex
               name
                              prop
                           n
##
    <dbl> <chr> <chr>
                        <int> <dbl>
## 1 1880 F
               Marv
                         7065 0.0724
```

2604 0.0267

2003 0.0205

1746 0.0179

1578 0.0162

Elizabeth 1939 0.0199

1. ¿Cuántos años hay de registro?

Registros desde 1880 hasta 2017.

```
ejercicio_3 %>% select(year)%>%unique()
```

```
## # A tibble: 138 x 1
##
      year
##
      <dbl>
   1 1880
##
##
   2 1881
##
   3 1882
   4 1883
##
##
   5 1884
   6 1885
##
##
   7 1886
##
   8 1887
##
  9
      1888
## 10 1889
## # ... with 128 more rows
```

2. ¿Cuántos nombres distintos hay?

```
ejercicio_3 %>% select(name)%>%unique()
```

```
## # A tibble: 97,310 \times 1
##
      name
##
      <chr>
##
   1 Mary
##
    2 Anna
##
    3 Emma
   4 Elizabeth
  5 Minnie
##
##
    6 Margaret
## 7 Ida
## 8 Alice
## 9 Bertha
## 10 Sarah
## # ... with 97,300 more rows
```

3. Comportamiento de nombre_____ a lo largo de los años

Caso 1: Alex

```
caso1 <- ejercicio_3%>%filter(name=="Alex")
```

```
ggplot(caso1, aes(x = year, y = n)) +
  geom_point()
```



```
ggplot(caso1, aes(x = year, y = n, color=sex)) +
  geom_point()+
  geom_line() +
  theme_classic()
```


Caso 2: Thor

```
caso2 <- ejercicio_3%>%filter(name=="Thor")
```

```
ggplot(caso2, aes(x = year, y = n)) +
geom_point(color="blue")+
geom_line(color="blue") +
```

```
theme_classic() +
geom_smooth(method = "lm")
```


Caso 3: Bella

```
caso3 <- ejercicio_3 %>% filter(name=="Bella")
```

```
ggplot(caso3, aes(x = year, y = n, color=sex)) +
  geom_point()+
  geom_line() +
  theme_classic()
```


Referencias

- [1] Salvador Figueras, M y Gargallo, P. (2003). "Análisis Exploratorio de Datos". 03 de septiembre de 2020, de 5campus.com Sitio web: https://ciberconta.unizar.es/leccion/aed/ead.pdf
- [2] Smyers, K. "John Wilder Tukey: The Pioneer of Big Data and Visualization". (2013). 03 de septiembre de 2020, de Control Trends Sitio web: https://controltrends.org/controltalk-now-2/control-talk/05/john-wilder-tukey-the-pioneer-of-big-data-and-visualization/
- [3] Graphics Press. "The work of Edward Tufte and Graphics Press". (s.f). 03 de septiembre de 2020, de EdwardTufte Sitio web: https://www.edwardtufte.com/tufte/
- [4] INE. "Tercera etapa: 1851-1900 / Charles Joseph Minard (1781-1870)". (s.f). 03 de septiembre de 2020, de INE Sitio web: https://www.ine.es/expo_graficos2010/expogra_autor3.htm

- [6] Ortiz, T. "Estadística Computacional". (2018). 03 de septiembre de 2020, de Github Sitio web: https://github.com/tereom/est-computacional-2018