Computabilità e Algoritmi (Computabilità) Prova Intermedia - 20 Aprile 2014

Esercizio 1

Dare la definizione dell'insieme \mathcal{PR} delle funzioni primitive ricorsive e dimostrare che è primitiva ricorsiva la funzione $cpr : \mathbb{N}^2 \to \mathbb{N}$ definita come

$$cpr(x, y) = |\{p \mid x \le p < y \land p \text{ primo}\}|,$$

ovvero cpr(x,y) è il numero di primi nell'intervallo [x,y) (si può assumere che somma + e differenza $\dot{}$ tra numeri naturali, nonché la funzione caratteristica dell'insieme dei numeri primi χ_{Pr} siano primitive ricorsive, senza provarlo). [Suggerimento: Può essere conveniente considerare inizialmente la funzione $cpr'(x,k) = |\{p \mid x \leq p < x + k \land p \text{ primo}\}|]$

Soluzione: Si definisce $cpr': \mathbb{N}^2 \to \mathbb{N}$, tale che $cpr'(x, k) = |\{p \mid x \le p < x + k \land p \text{ primo}\}|$, per ricorsione primitiva, utilizzando solo funzioni primitive e loro composizioni:

$$\begin{cases} cpr(x,0) = 0\\ cpr(x,k+1) = cpr(x,k) + \chi_{Pr}(x+k) \end{cases}$$

quindi si osserva che cpr(x,y) = cpr'(x,y-x), composizione di funzioni primitive ricorsive è ancora primitiva ricorsiva.

Esercizio 2

Enunciare il teorema s-m-n e utilizzarlo per dimostrare che esiste una funzione calcolabile totale $s: \mathbb{N} \to \mathbb{N}$ tale che per ogni $x \in \mathbb{N}$ vale $W_{s(x)} = \{(k+x)^2 \mid k \in \mathbb{N}\}.$

Soluzione: Si definisce una funzione $g: \mathbb{N}^2 \to \mathbb{N}$ tale che g(x,y) vista come funzione di y abbia le proprietà desiderate

$$g(x,y) = \begin{cases} k & \text{se esiste } k \text{ tale che } y = (x+k)^2 \\ \uparrow & \text{altrimenti} \end{cases}$$

ovvero $g(x,y)=\mu k.|(x+k)^2-y|.$ Tale funzione è calcolabile, quindi utilizzando il teorema s-m-n si conclude.

Esercizio 3

Può esistere una funzione non calcolabile $f: \mathbb{N} \to \mathbb{N}$ tale che $dom(f) \cap cod(f) = \emptyset$? Motivare adeguatamente la risposta (fornendo un esempio di tale f, se esiste, oppure dimostrando che non può esistere).

Soluzione: Si esiste. Ad esempio, basta considerare:

$$f(x) = \begin{cases} 2\varphi_{\frac{x}{2}}(x) + 1 & \text{se } x \text{ pari e } x \in W_{\frac{x}{2}} \\ 1 & \text{se } x \text{ pari e } x \notin W_{\frac{x}{2}} \\ \uparrow & \text{altrimenti} \end{cases}$$

La funzione f ha dominio coincidente con i numeri pari, codominio che è sottoinsieme dei dispari (pertanto disgiunto dal dominio) e per ogni n si ha che $f \neq \varphi_n$ (dato che $f(2n) \neq \varphi_n(2n)$). Quindi f è la funzione desiderata.