Министерство науки и высшего образования Российской Федерации Федеральное государственное автономное образовательное учреждение высшего образования «КАЗАНСКИЙ (ПРИВОЛЖСКИЙ) ФЕДЕРАЛЬНЫЙ УНИВЕРСИТЕТ»

ИНСТИТУТ ВЫЧИСЛИТЕЛЬНОЙ МАТЕМАТИКИ И ИНФОРМАЦИОННЫХ ТЕХНОЛОГИЙ

Кафедра прикладной математики и искусственого интеллекта

Направление подготовки: 01.03.04 – Прикладная математика

ОТЧЁТ

По дисциплине «Численные методы» на тему:
«Система линейных алгебраических уравнений»

Выполнил: студент группы 09-222 Фаррахова. Л.Ф. Проверил: ассистент Глазырина О.В.

Содержание

1	Постановка задачи	3
2	Ход работы 2.1 Метод прогонки 2.2 Метод Якоби 2.3 Метод нижней релаксации 2.4 Метод наискорейшего спуска	
3	Выводы	11
4	Листинг программы	12

1 Постановка задачи

Решить систему линейных алгебраических уравнений:

$$\begin{cases}
(a_1 + a_2 + h^2 g_1) y_1 - a_2 y_2 = f_1 h^2, \\
\dots \dots \dots \dots \\
-a_i y_{i-1} + (a_i + a_{i+1} + h^2 g_i) y_i - a_{i+1} y_{i+1} = f_i h^2, \\
\dots \dots \dots \dots \dots \\
(a_{n-1} + a_n + h^2 g_{n-1}) y_{n-1} - a_{n-1} y_{n-2} = f_{n-1} h^2.
\end{cases} \tag{1}$$

Здесь $a_i=p(ih),\ g_i=q(ih),\ f_i=f(ih),\ f(x)=-(p(x)u'(x))'+q(x)u(x),$ $h=1/n,\ p,\ q,\ u$ — заданные функции.

Для этого использовать метод прогонки и итерационные методы:

- 1. метод Зейделя.
- 2. метод нижней релаксации.
- 3. метод наискорейшего спуска.

Продолжать вычисления в итерационных методах, пока не выполнится условие:

$$\max_{1 \le i \le n-1} \left| r_i^k \right| \le \varepsilon,$$

r — вектор невязки, ε — заданное число.

Исходные данные:
$$n=10,\ n=50,\ \varepsilon=h^3,\ u(x)=x^\alpha(1-x)^\beta,$$
 $p(x)=1+x^\gamma,\ g(x)=x+1,\ \alpha=4,\ \beta=1,\ \gamma=1.$

Сравнить результаты вычислений, составив соответсвтенные таблицы и найти наилучший из методов решения.

2 Ход работы

2.1 Метод прогонки

Метод прогонки состоит из двух этапов: прямой ход (определение прогоночных коэффициентов), обратных ход (вычисление неизвестных y_i).

Основным преимуществом является экономичность, ведь метод максимально использует структуру исходной системы.

К недостаткам же можно отнести то, что с каждой итерацией накапливается ошибка округления.

Прямой ход метода заключается в нахождении прогоночных коэффициентов:

$$\begin{cases}
\alpha_1 = \frac{a_1}{a_0 + a_1 + h^2 g_1}, \\
\alpha_{i+1} = \frac{a_{i+1}}{a_i + a_{i+1} + h^2 g_i - \alpha_i a_i}, \quad i = \overline{2, n-1};
\end{cases}$$
(2)

$$\begin{cases} \beta_1 = \frac{f_0 h^2}{a_0 + a_1 + h^2 g_1}, \\ \beta_{i+1} = \frac{f_i h^2 + \beta_i a_i}{a_i + a_{i+1} + h^2 g_i - \alpha_i a_i}, & i = \overline{2, n-1}; \end{cases}$$
(3)

Обратный ход метода - вычисление формул для нахождения неизвестных:

$$\begin{cases} y_n = \beta_{n+1}; \\ y_i = \alpha_{i+1}y_{i+1} + \beta_{i+1}, \quad i = \overline{n-1,0}; \end{cases}$$
 (4)

Формулы (2-4) являются методом Гаусса, записанным применительно трёхдиагональной системы уравнений. Метод может быть реализован только в случае, когда в формулах (3) и (4) все знаменатели отличны от нуля, то есть условие выполняется, когда матрица системы (2) имеет диагональное препобладание.

Проделаем вычисления и составим таблицу для n=10 (Таблица 1), для n=50 (Таблица 2):

ih	y_i	u(ih)	$ y_i - u(ih) $
0,0	0,000000	0,000000	0,000000
0,1	0,014011	0,000090	0,013921
0,2	0,027929	0,001280	0,026649
0,3	0,044160	0,005670	0,038490
0,4	0,065086	0,015360	0,049726
0,5	0,091907	0,031250	0,060657
0,6	0,123480	0,051840	0,071640
0,7	0,155141	0,072030	0,083111
0,8	$0,\!177525$	0,081920	0,095605
0,9	$0,\!175383$	0,065610	0,109773
1,0	0,126400	0,000000	0,126400

Таблица 1 - значения метода прогонки для n=10

ih	y_i	u(ih)	$ y_i - u(ih) $
0.1	0.002538	0.000090	0.002448
0.2	0.005974	0.001280	0.004694
0.3	0.012450	0.005670	0.006780
0.4	0.024101	0.015360	0.008741
0.5	0.041867	0.031250	0.010617
0.6	0.064297	0.051840	0.012457
0.7	0.086357	0.072030	0.014327
0.8	0.098232	0.081920	0.016312
0.9	0.084129	0.065610	0.018519
1.0	0.021080	0.000000	0.021080

Таблица 2 - значения метода прогонки для n=50

2.2 Метод Якоби

Для больших систем вида Ax=b предпочтительнее оказываются итерационные методы. Основная идея данных методов состоит в построении последовательности векторов $x^k,\ k=1,2,\ldots$, сходящейся к решению исходной системы. За приближенное решение принимается вектор x^k при достаточно большом k.

Будем считать, что все диагональные элементы матрицы из полной системы Ax=b отличны от нуля. Представим эту систему, разрешая каждое уравнение относительно переменной, стоящей на главной диагонали:

$$x_{i} = -\sum_{j=1}^{i-1} \frac{a_{ij}}{a_{ii}} x_{j} - \sum_{j=i+1}^{n} \frac{a_{ij}}{a_{ii}} x_{j} + \frac{b_{i}}{a_{ii}}, \quad i = \overline{1, n}.$$

$$(5)$$

Выберем некоторое начальное приближение $x^0 = (x_1^0, x_2^0, \dots, x_n^0)^T$. Построим последовательность векторов x^1, x^2, \dots , определяя вектор x^{k+1} по уже найденному вектору x^k при помощи соотношения:

$$x_i^{k+1} = -\sum_{j=1}^{i-1} \frac{a_{ij}}{a_{ii}} x_j^k - \sum_{j=i+1}^n \frac{a_{ij}}{a_{ii}} x_j^k + \frac{b_i}{a_{ii}}, \quad i = \overline{1, n}.$$
 (6)

Формула (6) определяют итерационный метод решения системы (5), называемый методом Якоби или методом простой итерации.

Запишем этот метод для нашей системы:

$$y_i^{k+1} = -\sum_{j=1}^{i-1} \frac{a_j}{a_i + a_{i+1} + h^2 g_i} y_j^k - \sum_{j=i+1}^n \frac{a_j}{a_i + a_{i+1} + h^2 g_i} y_j^k + \frac{f_i h^2}{a_i + a_{i+1} + h^2 g_i},$$

$$i = \overline{1, n-1};$$
(7)

Вычисления продолжаем, пока не выполнится условие:

$$\max |r_i^k| \le \varepsilon,$$

где r^k — вектор невязки для k-той итерации $r^k = Ay^k - f, \quad \varepsilon = h^3.$

Составим таблицы вычисленных результатов для n=10, для n=50, в которых будем сравнивать значения метода прогонки и метода Якоби для точки $i,\ i=\overline{0,n-1}$, найдём модуль их разности и значение k, при котором была достигнута необходимая точность.

i	y_i	y_i^k	$ y_i - y_i^k $	k
0	0,014011	0,011380	0,002631	36
1	$0,\!027929$	0,023304	0,004625	36
2	0,044160	0,038220	0,005940	36
3	0,065086	0,058498	0,006587	36
4	0,091907	0,085288	0,006619	36
5	$0,\!123480$	0,117355	0,006125	36
6	$0,\!155141$	$0,\!149921$	0,005219	36
7	$0,\!177525$	0,173497	0,004027	36
8	$0,\!175383$	0,172703	0,002680	36
9	0,126400	0,125099	0,001301	36

Таблица 3 - значения метода Якоби для n=10

i	y_i	y_i^k	$ y_i - y_i^k $	k
0	0,000509	0,000408	0,000100	955
4	0,002538	0,002067	0,000471	955
8	0,005120	0,004337	0,000783	955
12	0,009344	0,008320	0,001024	955
16	0,016397	0,015209	0,001188	955
20	0,027169	0,025898	0,001271	955
24	0,041867	0,040593	0,001274	955
28	0,059618	0,058415	0,001203	955
32	0,078085	0,077019	$0,\!001066$	955
36	0,093067	0,092191	0,000876	955
40	0,098113	0,097467	0,000646	955
45	0,076309	0,075983	0,000327	955
49	0,021080	0,021016	0,000064	955

Таблица 4 - значения метода Якоби для n=50

2.3 Метод нижней релаксации

Во многих ситуациях существенного ускорения сходимости можно добиться за счет введения так называемого итерационного параметра. Рассмотрим итерационный процесс:

$$x_i^{k+1} = (1 - \omega)x_i^k + \omega \left(-\sum_{j=1}^{i-1} \frac{a_{ij}}{a_{ii}} x_j^{k+1} - \sum_{j=i+1}^n \frac{a_{ij}}{a_{ii}} x_j^k + \frac{b_i}{a_{ii}} \right),$$

$$i = 1, 2, \dots, n, \quad k = 0, 1, \dots$$
(8)

Этот метод называется методом релаксации – одним из наиболее эффективных и широко используемых итерационных методов для решения систем линейных алгебраических уравнений. Значение ω – называется релаксационным параметром. При $\omega=1$ метод переходит в метод Зейделя. При $\omega\in(0,1)$ – метод нижней релаксации, при $\omega\in(1,2)$ – это метод верхней релаксации.

Преобразуем формулу (9) относительно нашей системы:

$$y_i^{k+1} = (1 - \omega)y_i^k + \omega \left(-\sum_{j=1}^{i-1} \frac{a_j}{a_i + a_{i+1} + h^2 g_i} y_j^k - \sum_{j=i+1}^n \frac{a_j}{a_i + a_{i+1} + h^2 g_i} y_j^k + \frac{f_i h^2}{a_i + a_{i+1} + h^2 g_i} \right),$$

$$i = \overline{1, n-1}; \tag{9}$$

Параметр ω следует выбирать так, чтобы метод релаксации сходился наиболее быстро. Нужно отметить, что оптимальный параметр для метода верхней релаксации лежит вблизи 0.8. Заполним таблицы, в которых приведём значения параметра ω и количство итераций k:

ω	k
0.1	63
0.2	49
0.3	56
0.4	40
0.5	32
0.6	26
0.7	24
0.8	27
0.9	34

Таблица 5 - значения ω и соответствующие значения k для n=10

ω	k
0.02	892
0.14	721
0.30	452
0.38	228
0.54	190
0.62	141
0.78	125
0.84	117
0.90	144
0.94	159

Таблица 6 - значения ω и соответствующие значения k для n=50

Для вычислений выберем $\omega=0,84$. Составим таблицы результатов для n=10, n=50, в которых будем сравнивать значения метода прогонки и метода верхней релаксации для точки $i,\ i=\overline{0,n-1},$ найдём модуль их разности и значение k:

i	y_i	y_i^k	$y_i - y_i^k$	k
0	0,014011	0,013805	0,000207	27
1	$0,\!027929$	0,027484	0,000444	27
2	0,044160	0,043500	0,000660	27
3	0,065086	0,064323	0,000762	27
4	0,091907	0,091294	0,000613	27
5	$0,\!123480$	$0,\!123466$	0,000014	27
6	$0,\!155141$	$0,\!155153$	0,000012	27
7	$0,\!177525$	$0,\!177554$	0,000029	27
8	$0,\!175383$	0,175418	0,000034	27
9	$0,\!126400$	$0,\!126425$	0,000025	27

Таблица 7 - значения метода нижней релаксации для n=10

i	y_i	y_i^k	$ y_i - y_i^k $	k
0	0,000509	0,000387	0,000122	117
4	0,002538	0,002007	0,000531	117
8	0,005120	0,004300	0,000820	117
12	0,009344	0,008347	0,000997	117
16	0,016397	0,015323	0,001073	117
20	0,027169	0,026103	0,001066	117
24	0,041867	0,040874	0,000993	117
28	0,059618	0,058747	0,000871	117
32	0,078085	0,077368	0,000717	117
36	0,093067	0,092520	0,000547	117
40	0,098113	0,097739	0,000375	117
45	0,076309	0,076137	0,000173	117
49	0,021080	0,021049	0,000032	117

Таблица 8 - значения метода нижней релаксации для n=50

2.4 Метод наискорейшего спуска

Метод наискорейшего спуска для решений систем линейных алгебраических уравнений заключается в итерационном процессе, направленном на минимизацию квадратичной функции ошибки.

 x_k - вычислено, тогда

$$x^{k+1} = x^k - \tau r_i^k, i = \overline{1, n}, k = 0, 1, \dots$$
(10)

$$r^{k} = Ax^{k} - b, \tau = \frac{(r^{k}, r^{k})}{(Ar^{k}, r^{k})}, (r^{k}, t^{k}) = \sum_{i=1}^{n-1} (r_{i}^{k})^{2}, (Ar^{k})_{i} = -a_{i}r_{i-1}^{k} + (a_{i} + a_{i+1} + h^{2}g_{i})r_{i}^{k} - a_{i+1}r_{i+1}^{k}$$

 r_i^k - вектор невязки для конкретного уравненения:

$$r_i^k = -a_i x_{i-1}^k + (a_i + a_{i+1} + h^2 g_i - a_{i+1}^k - f_i h^2)$$
(11)

По сравнению с методом Якоби этот метод требует на каждом шаге итераций проведения дополнительной работы по вычислению параметра τ . Вследствие этого происходит адаптация к оптимальной скорости сходимости.

Составим таблицы результатов для $n=10,\ n=50,$ в которых будем сравнивать значения метода прогонки и метода верхней релаксации для точки $i,\ i=\overline{0,n-1},$ найдём модуль их разности и значение k:

i	y_i	y_i^k	$ y_i - y_i^k $	k
0	0,014011	0,012035	0,001977	38
1	0,027929	0,024447	0,003482	38
2	0,044160	0,039702	0,004458	38
3	0,065086	0,060300	0,004785	38
4	0,091907	0,087169	0,004738	38
5	0,123480	0,119300	0,004180	38
6	0,155141	0,151830	0,003310	38
7	0,177525	$0,\!175069$	0,002455	38
8	$0,\!175383$	$0,\!174025$	0,001358	38
9	$0,\!126400$	$0,\!125790$	0,000609	38

Таблица 9 - значения метода наискорейшего спуска для n=10

i	y_i	y_i^k	$ y_i - y_i^k $	k
0	0,000509	0,000487	0,000022	2549
4	$0,\!002538$	$0,\!002435$	0,000103	2549
8	0,005120	0,004951	0,000168	2549
12	0,009344	0,009128	0,000215	2549
16	0,016397	$0,\!016153$	0,000243	2549
20	0,027169	$0,\!026916$	0,000253	2549
24	0,041867	0,041620	0,000247	2549
32	0,078085	0,077889	0,000196	2549
36	0,093067	0,092909	0,000157	2549
40	0,098113	0,097999	0,000114	2549
44	0,084129	0,084060	0,000069	2549
49	0,021080	0,021067	0,000013	2549

Таблица 10 - значения метода наискорейшего спуска для n=50

3 Выводы

В процессе выполнения работы были изучены методы решения заданной системы линейных алгебраических уравнений метод прогонки, итерационными методами: Якоби, нижней релаксации, наискорейшего спуска.

В результате наилучшим способом показал себя метод верхней релаксации при итерационном параметре $\omega=1,84$. Данный метод показывается наилучшие результаты вычисления корней системы за наименьшее количество итераций.

4 Листинг программы

```
2 using namespace std;
4 #include <algorithm>
5 #include <cmath>
6 #include <iostream>
 #include <vector>
9 double f_x(double x) {
    return -pow(x, 6) + 26 * pow(x, 4) + 4 * pow(x, 3) - 12 * pow(x, 2);
11 }
12
double u_x(double x) {
    return pow(x, 4) * (1 - x);
 }
15
16
double p_x(double x) {
    return 1 + x;
18
 }
19
20
21 double q_x(double x) {
    return 1 + x;
22
 }
23
vector < double > func(int n) {
     double h = 1. / n;
26
      vector < double > b(n,0);
27
      for (int i = 1; i <= n; ++i) {</pre>
          b[i - 1] = f_x(i * h) * pow(h, 2);
29
30
     return b;
31
32
33
  double calculate_error(vector<double> &x, vector<vector<double>> &A,
     vector <double > &b) {
35
      vector < double > r = calculate_r(A, b, x);
36
      double max_err = 0.0;
37
      for (int i = 0; i < r.size(); ++i) {</pre>
38
          if (abs(r[i]) > max_err)
39
               max_err = abs(r[i]);
40
```

```
}
41
42
43
      return max_err;
  }
44
^{45}
  void progonka_method(vector<vector<double>> &A, vector<double> &x, int n,
      vector < double > &b) {
47
      vector < double > alpha(n + 1), betta(n + 1);
48
      double h = 1.0 / n;
49
50
      // прямойход
51
      alpha[0] = A[0][1] / A[0][0];
52
      betta[0] = (b[0]) / A[0][0];
53
54
      for (int i = 1; i < n; ++i) {</pre>
55
           double del = 1.0 / (A[i][i] - alpha[i - 1] * A[i][i - 1]);
56
           alpha[i] = A[i][i + 1] * del;
57
           betta[i] = (-A[i][i - 1] * betta[i - 1] + b[i]) * del;
58
      }
59
60
      // обратныйход
61
      x[n-1] = betta[n-1];
62
      for (int i = n - 2; i >= 0; --i) {
63
           x[i] = -alpha[i] * x[i + 1] + betta[i];
64
65
      for (int i = 1; i <= n; ++i) {
66
           printf("ih = %4.21f | y_i = %9.61f | u(ih) = %8.61f | | y_i - u(ih)
67
              | = %8.61f n'', i * h, x[i - 1], u_x(i * h), abs(x[i - 1] - 1]
              u_x(i * h)));
      }
68
  }
69
70
  int Jacobi_method(int n, vector < double > &x, vector < vector < double >> &A,
71
     vector < double > &b) {
      double h = 1.0 / n;
72
      int k = 0;
73
      vector < double > new_x(n, 0.);
74
      double error = 1.0;
75
76
      while (error > 1.0 / pow(n, 3)) {
77
           vector < double > curr_x = x;
78
           for (int i = 0; i < n; ++i) {</pre>
79
```

```
new_x[i] = Jacobi_calculate_new_x(i, new_x, n, A, b);
80
            }
81
           x = new_x;
82
            error = calculate_error(new_x, A, b);
83
           k++;
84
       }
85
       return k;
86
87
  }
88
  double Jacobi_calculate_new_x(int i, vector<double>& x, int n, vector<</pre>
      vector < double >> &A, vector < double > &b) {
       double h = 1.0 / n;
90
       double sum = 0.0;
91
92
93
       if (i > 0) {
94
            for (int j = 0; j \le i - 1; ++j) {
95
                sum += A[i][j] * x[j];
96
            }
97
       }
98
       for (int j = i + 1; j < n + 1; ++j) {
99
            sum += A[i][j] * x[j];
100
       }
101
102
       return (b[i] - sum) * (1.0 / A[i][i]);
103
104
105
106
  int relax_bottom(int n, vector<double>& x, vector<vector<double>>& A,
107
      vector < double > & b) {
       double h = 1.0 / n;
108
       double omega = 0.8;
109
       double error = 1.0;
110
       int k = 0;
111
       vector < double > new_x(n, 0.);
112
113
       while (error > 1.0 / pow(n, 3)) {
114
            for (int i = 0; i < n; ++i) {</pre>
115
                new_x[i] = Relax_calculate_new_x(i, new_x, n, A, omega, b);
116
117
            x = new_x;
118
            error = calculate_error(new_x, A, b);
119
            k++;
120
```

```
121
       return k;
122
123 }
124
  double Relax_calculate_new_x(int i, vector<double>& x, int n, vector<</pre>
      vector < double >> &A, double omega, vector < double > &b) {
126
       double sum = 0.0;
127
       if (i > 0) {
128
            for (int j = 0; j \le i - 1; ++j) {
129
                sum += A[i][j] * x[j];
130
            }
131
132
       for (int j = i + 1; j < n + 1; ++j) {
133
            sum += A[i][j] * x[j];
134
135
       double new_x = (b[i] - sum) * (1.0 / A[i][i]);
136
       return x[i] + omega * (new_x - x[i]);
137
138
139
140
  int spusk(int n, vector<double>& x, vector<vector<double>>& A,
141
      double > & b) {
       double h = 1.0 / n;
142
       int k = 1;
143
       vector < double > new_x(n, 0.);
144
       double error = 1.0;
145
146
       while (error > 1.0 / pow(n, 3)) {
147
            for (int i = 0; i < n; ++i) {</pre>
148
                new_x[i] = spusk_calculate_new_x(i, new_x, n, A, b);
149
            }
150
            x = new_x;
151
            error = calculate_error(new_x, A, b);
152
           k++;
153
       }
154
155
156
  double spusk_calculate_new_x(int i, vector < double > & x, int n, vector <
157
      vector < double >> & A, vector < double > & b) {
       vector < double > r = calculate_r(A, b, x);
158
       vector < double > Ar = spusk_calculate_matrix_vector_multiplication(A, r
159
          );
```

```
160
       return x[i] - spusk_calculate_tau(r, Ar) * r[i];
161
  }
162
163
  vector < double > calculate_r( vector < vector < double >> & A, vector < double > & b
      , vector < double > &x) {
       vector < double > Ax = spusk_calculate_matrix_vector_multiplication(A, x
165
          );
       vector < double > r(Ax.size());
166
167
       for (size_t i = 0; i < r.size(); ++i) {</pre>
168
            r[i] = Ax[i] - b[i];
169
170
171
       return r;
172
173
174
  vector < double > spusk_calculate_matrix_vector_multiplication(vector < vector
175
      <double>>& A, vector<double> &x) {
       int n = A.size();
176
       int m = x.size();
177
       vector < double > result(n, 0.0);
178
179
       for (int i = 0; i < n; ++i) {</pre>
180
            for (int j = 0; j < m; ++j) {
181
                result[i] += A[i][j] * x[j];
182
            }
183
184
       return result;
185
186
187
   double spusk_calculate_tau( vector < double > & r, vector < double > & Ar) {
188
       double a = 0.;
189
       double b = 0.;
190
       for (size_t i = 0; i < r.size(); ++i) {</pre>
191
            a += r[i] * r[i];
192
            b += Ar[i] * r[i];
193
194
       if (abs(b) < 1e-10) {
195
            return 0.0;
196
197
       return a * (1.0 / b);
198
199 }
```

```
200
201
  vector < vector < double >> create_matrix(int n){
202
       double h = 1. / n;
203
204
       vector < vector < double >> matrix_res(n + 1, vector < double > (n + 1,0.0));
205
206
       for (int i = 0; i < n; ++i) {</pre>
207
            if (i == 0) {
208
                double b = (p_x((i + 1) * h) + p_x((i + 2) * h) + (pow(h, 2) * h)
209
                     q_x((i + 1) * h));
                double c = -p_x((i + 2) * h);
210
                matrix_res[i][i] = b;
211
                matrix_res[i][i + 1] = c;
212
                continue;
213
           }
214
           if (i == (n - 1)) {
215
                double b = (p_x((i + 1) * h) + p_x((i + 2) * h) + (pow(h, 2) * h)
216
                     q_x((i + 1) * h));
                double a = -p_x((i + 1) * h);
217
                matrix_res[i][i] = b;
218
                matrix_res[i][i - 1] = a;
219
                continue;
220
           }
221
           double a = -p_x((i + 1) * h);
222
            double b = (p_x((i + 1) * h) + p_x((i + 2) * h) + (pow(h,2) * q_x)
223
               ((i + 1) * h));
           double c = -p_x((i + 2) * h);
224
225
           matrix_res[i][i] = b;
226
           matrix_res[i][i + 1] = c;
227
           matrix_res[i][i - 1] = a;
228
       }
229
230
       return matrix_res;
231
232
233
  void m_print(int k, vector<double> &y_i, vector<double> &y_ik) {
234
       for (int i = 0; i < y_i.size() - 1; ++i) {</pre>
235
           printf("ih = %3d | y_i = %9.6lf | y_ik = %9.6lf | |y_i - y_ik| =
236
               %9.61f \mid k = %d \mid n", i, y_i[i], y_ik[i], abs(y_i[i] - y_ik[i]),
                k);
       }
237
```

```
238
239
240
  int main() {
241
242
       int n = 10.0;
243
244
       std::vector < double > y_i_p(n + 1), y_i_s(n + 1), y_i_r(n + 1), y_i_sp(n + 1)
245
          n + 1), b(n);
       vector < vector < double >> A = create_matrix(n);
246
       b = func(n);
247
       printf("Прогонка\n");
248
       progonka_method(A, y_i_p, n, b);
249
       int k_s = Jacobi_method(n, y_i_s, A, b);
250
       int k_r = relax_bottom(n, y_i_r, A, b);
251
       int k_dec = spusk(n, y_i_sp, A, b);
252
       printf("Прогонка - Якоби\n");
253
       m_print(k_s, y_i_p, y_i_s);
254
       printf("Прогонка - Нижняярелаксация \n");
255
       m_print(k_r, y_i_p, y_i_r);
256
       printf("Прогонка - Наискорейшийспуск \n");
257
       m_print(k_dec, y_i_p, y_i_sp);
258
       return 0;
259
260 }
```