#### **3Preliminary**



**EsPiFF** is an ESP32 in a Raspberry Pi 4 form factor, capable of utilizing nearly every Pi 4 enclosure and HAT. EsPiFF packs an additional punch with wired and wireless Ethernet, an SD card socket, and a RP2040 co-processor.

EsPiff is particularly well suited to measurement, control, and automation projects where the current consumption and heat generation of a Pi—or the potential instability of its SD card—could be problematic.

# **Features & Specifications**

- ESP32-WROVER with 8 MB PSRAM and 16 MB Flash in a Raspberry Pi 4 form factor
- Wi-Fi connectivity (requires an external U.FL antenna)
- 10/100 wired Ethernet via IP101 PHY
- PoE header, to use Raspberry Pi PoE HATs. EsPiFF can be powered from a HAT or can power the HAT
- Micro SD card socket for storage
- Up to 3 UARTs
- USB Type-C connector on CH340 USB-UART for programming as well as power draw up to  $5\ V\ /\ 3\ A$  for power-hungry HATs

- 40-pin Rasperry Pi header, compatible with all Raspberry Pi HATs
- RP2040 co-processor to emulate the Pi on the 40 pin connector, with 8 MB Flash
- External realtime clock, watchdog, and supervisor for high-availability, 24/7 applications
- On-board supercap to keep the realtime clock running for days, even without power. The supercap has, in contrast to a battery, a practically infinite lifetime
- USB-Host on the USB Type-A connector
- BOOT button for the RP2040, to switch between USB-Programming and USB-Host/Device
- ESP32 reset button and three user LEDs



| Specifications Dimensions Power supply | Value 86 * 56mm 5V, up to 3A via USB 3 connector Optional 24V input via Pin Header | Remarks<br>RasPi 4 compatible            |
|----------------------------------------|------------------------------------------------------------------------------------|------------------------------------------|
| Connectivity                           |                                                                                    |                                          |
| Ethernet                               | RJ45                                                                               |                                          |
| Wifi                                   | External uFL antenna connector                                                     | PCB antenna not usable                   |
| Serial                                 | 2 DF11 connector with a total of 3 UART (TTL 3.3V)                                 | Cable assemblies available (Mouser etc.) |
| Programming ESP32                      | USB-C (CH340 USB to UART)                                                          | ,                                        |
| Programming RP2040                     | USB-A                                                                              |                                          |
| USB-Host/device                        | USB-A                                                                              |                                          |
| Raspberry Pi HAT                       | 40 pol pin header                                                                  |                                          |
| UART TFT display (HMI)                 | 6 pol JST                                                                          |                                          |
| ESP32-WROVER specs                     |                                                                                    |                                          |
| Dual core LX6 MCU                      | 240 MHz                                                                            |                                          |
| Flash                                  | 16 MByte (W25Q128JVSIQ)                                                            |                                          |

8 MByte

**PSRAM** 

| Ρi | Pico | RP2040 specs  |
|----|------|---------------|
| _  | -    | 3.60 . 3.6011 |

133 MHz Dual core M0+ MCU Flash 16 MByte

ESP32 – RP2040 connectivity SPI or UART

Current consumption

Wi-Fi Tx packet 13dBm~21dBm 170 to 295 mA **TBD** Wi-Fi/BT Tx packet 0dBm 140 mA **TBD** Wi-Fi/BT Rx and listening 85 to 115 mA **TBD** ESP32 modem sleep mode 3 to 28 mA **TBD** 

SPI mode Sdcard

**FRAM** FM25CL64B – 1 MByte

Supervisor APX823 Real time clock PCF8563T **Ethernet PHY** IP101

PoE header 4 pol header Identical to Pi 4

220mF Supercap for real time clock

**Buttons** 

PROG button for RP2040 On the position of the Pi audio Can be operated when inside a Pi 4 enclosure

connector

Reset button for the ESP32 On the position of the Pi USB

Operating temperature -20 to +70 degree Celsius Storage temperature -40 to +85 degree Celsius

Weight 37g

compliant CE/RoHS pending **FCC** 

Pin outs

#### J4 – DF11

| Pin number | Function  | Remark                       |
|------------|-----------|------------------------------|
| 1          | +5V       | Max. 2.7 A, when USB powered |
| 2          | +5V       | Max. 1.5A, when 24V powered  |
| 3          | GND       |                              |
| 4          | GND       |                              |
| 5          | UART0 RXD | Labled HF_MISO in schematic  |
| 6          | UART1 RXD | Labled TFT_MISO in schematic |
| 7          | UART0 TXD | Labled HF_MOSI in schematic  |
| 8          | UART1 TXD | Labled TFT_MOSI in schematic |

## J5 – DF11

| Pin number | Function   | Remark                        |
|------------|------------|-------------------------------|
| 1          | +5V        | Max. 2.7 A, when USB powered  |
| 2          | +5V        | Max. 1.5A, when 24V powered   |
| 3          | GND        |                               |
| 4          | GND        |                               |
| 5          | UART2 RXD  | Labled UHF_MISO in schematic  |
| 6          | Pico SWCLK | Debug clock pin for PicoProbe |
| 7          | UART2 TXD  | Labled UHF_MOSI in schematic  |
| 8          | Pico SWDIO | Debug data pin for PicoProbe  |

Cable assemblies for J4, J5: Hirose DF11-8DS-2C(17), Mouser No 798-DF11-8DS-2C17

#### J8 - SM06B-SURS-TF(LF)(SN)

| Pin number | Function  | Remark                       |
|------------|-----------|------------------------------|
| 1          | UART1 TXD | Labled TFT_MOSI in schematic |
| 2          | UART1 RXD | Labled TFT_MISO in schematic |
| 3          | GND       |                              |
| 4, 5       | nc        | Not connected                |
| 6          | +5V       |                              |

Cable assemblies for J8: A06SUR06SUR32Wxxx (replace xxx with the cable length in mm). For example, A06SUR06SUR32W305B, Digikey part number 455-2995-ND.

## Jumper JP1 - U0TXD

| 1-2<br>2-3         | CH340 to ESP32<br>DF11 connector to ESP | position to program To access the 3th UART |
|--------------------|-----------------------------------------|--------------------------------------------|
| Jumper JP4 - U0RXD |                                         |                                            |
| 1-2<br>2-3         | CH340 to ESP32<br>DF11 connector to ESP | position to program To access the 3th UART |

# **Pin mapping 40 pol Raspberry Pi HAT to RP2040 pins**HAT pin on 40. Pi HAT function RP2040

| HAT pin on 40 | Pi HAT function               | RP2040 | Remarks                   |
|---------------|-------------------------------|--------|---------------------------|
| pol header    |                               |        |                           |
| 1             | 3.3V (from EsPiFF to HAT)     | -      | HAT can take up to 150 mA |
| 2             | 5V (both directions possible) | -      | HAT can take up to 2.7 A  |
| 3             | Pi_GPIO2_SDA                  | IO10   |                           |
| 4             | 5V (both directions possible) | -      |                           |
| 5             | Pi_GPIO3_SCL                  | IO11   |                           |
| 6             | GND                           | -      |                           |
| 7             | Pi_GPIO4_CLK0                 | IO23   |                           |
| 8             | Pi_GPIO14_TXD                 | IO8    |                           |
| 9             | GND                           | -      |                           |
| 10            | Pi_GPIO15_RXD                 | IO9    |                           |
| 11            | Pi_GPIO17                     | IO6    |                           |
| 12            | Pi_GPIO18_PWM0                | IO0    |                           |
| 13            | Pi_GPIO27                     | IO22   |                           |
| 14            | GND                           | -      |                           |
| 15            | Pi_GPIO22                     | IO5    |                           |
| 16            | Pi_GPIO23                     | IO7    |                           |
| 17            | 3.3V (from EsPiFF to HAT)     | -      |                           |
| 18            | Pi_GPIO24                     | IO20   |                           |
| 19            | Pi_GPIO10_MOSI0               | IO16   |                           |
| 20            | GND                           | -      |                           |
|               |                               |        |                           |

| 21<br>22 | Pi_GPIO9_MISO0<br>Pi GPIO25 | IO19<br>IO3                                   |
|----------|-----------------------------|-----------------------------------------------|
| 23       | Pi_GPIO11_SCK0              | IO18                                          |
| 24       | Pi GPIO8 nCS0               | IO17                                          |
| 25       | GND                         | =                                             |
| 26       | Pi_GPIO7_nCS1               | IO13                                          |
| 27       | Pi_GPIO0_ID_SD              | Not connected to Connect to ESP32-I2C0 RP2040 |
| 28       | Pi_GPIO1_ID_SC              | Not connected to Connect to ESP32-I2C0 RP2040 |
| 29       | Pi_GPIO5_CLK1               | IO24                                          |
| 30       | GND                         | -                                             |
| 31       | Pi_GPIO6_CLK2               | IO25                                          |
| 32       | Pi_GPIO12_PWM0              | IO1                                           |
| 33       | Pi_GPIO13_PWM1              | IO2                                           |
| 34       | GND                         | -                                             |
| 35       | Pi_GPIO19_MISO1             | IO15                                          |
| 36       | Pi_GPIO16                   | IO4                                           |
| 37       | Pi_GPIO26                   | IO21                                          |
| 38       | Pi_GPIO20_MOSI1             | IO12                                          |
| 39       | GND                         | -                                             |
| 40       | Pi_GPIO21_SCK1              | IO14                                          |

The I2C lines to read out the HAT EEPROM is not connected to the RP2040, but instead to the ESP32-WROVER.

To expose the HAT to the ESP, a open source project called Configurable Firmata (https://github.com/firmata/ConfigurableFirmata) can be used. At the time of writing, Configurable Firmata just support UART as transport between the EsPiFF and the RP2040. In a future version, SPI will be supported as transport, additional to UART.

## ESP32 - RP2040 interconnection

To establish a SPI connection between the ESP32 and the RP2040, the IO expander PCA9557 need to set the line nSPI\_PICO to low, additional to the SPI\_nCS0 lines. While reading/writing to the RP2040, the ESP32 can not use the SDcard.

| ESP32-WROVER |          | RP2040 | Remarks |
|--------------|----------|--------|---------|
| GPIO14       | SPI_SCK  | IO26   |         |
| GPIO13       | SPI_nCS0 | IO29   |         |
| GPIO15       | SPI_MOSI | IO28   |         |
| GPIO2        | SPI_MISO | IO27   |         |

## ESP32 – FRAM

To establish a SPI connection between the ESP32 and the FRAM, the nSPI\_CS1 line (ESP32-GPIO12) is to use. The nSPI\_CS1 chip select line is exclusive for the FRAM.

### ESP32 – SDcard

To establish a SPI connection between the ESP32 and the RP2040, the IO expander PCA9557 need to set the line mSPI\_SDcard to low, additional to the SPI\_nCS0 lines. While reading/writing to the Sdcard, the ESP32 can not communicate with the RP2040.

# Software development

#### **ESP32-WROVER**

Important notice for Ubuntu/Linux users:

Ubuntu identify the CH340 USB to UART chip as braille device. To make the EsPiFF be recognized by Ubuntu need to disable the braille support.

systemctl stop brltty-udev.service sudo systemctl mask brltty-udev.service systemctl stop brltty.service systemctl disable brltty.service

## **Espressif IDF**

Please follow the instructions on https://docs.espressif.com/projects/esp-idf/en/latest/esp32/get-started/index.html

#### **Arduino**

Please follow the instructions on https://espressif-docs.readthedocs-hosted.com/projects/arduino-esp32/en/latest/getting\_started.html

## **uPython**

Please follow the instructions on https://docs.micropython.org/en/latest/esp32/tutorial/intro.html

# **Javascript**

For Espruino, please follow the instructions on <a href="https://www.espruino.com/ESP32">https://www.espruino.com/ESP32</a>. There are other Javascript interpreters for ESP32, you might check out:

- https://github.com/marcelkottmann/esp32-javascript
- https://github.com/Moddable-OpenSource/moddable

- <a href="https://www.neonious-iot.com/lowjs/">https://www.neonious-iot.com/lowjs/</a> to name a few.

#### Rust

Please follow the instructions on https://github.com/espressif/rust-esp32-example

### **RP2040**

## Raspberry Pi Pico SDK

Please follow the instructions on <a href="https://github.com/raspberrypi/pico-sdk">https://github.com/raspberrypi/pico-sdk</a>

#### Arduino - Pico

If you have the Arduino IDE installed, add the board support package for the Raspberry Pi Pico RP2040. At the time of writing, you have to add under settings, additional board URL,

https://github.com/earlephilhower/arduino-pico/releases/download/global/package\_rp2040\_index.json

Then in boards, boards manager, select "Raspberry Pi Pico". From here on, you can follow all tutorials from the Raspberry Pi Foundation for the Pi Pico and/or Arduino-Pico tutorials.

# **Version history**

| Document version | Author         | Date       |
|------------------|----------------|------------|
| 0.1              | Michael Schmid | 01.11.2022 |