Data Science Lab 1 – Titanic Dataset Analysis

U23AI114 B.Tech AI (SEM V)

Objective

The purpose of this lab is to:

- 1. Create and analyze frequency tables for categorical variables.
- 2. Calculate joint, marginal, and conditional probabilities from contingency tables.
- 3. Understand and compute correlation between numerical variables.

Dataset

We used the Titanic dataset available from Seaborn: https://raw.githubusercontent.com/mwaskom/seaborn-data/master/titanic.csv

This dataset contains demographic and survival information of passengers aboard the Titanic.

Part I: Frequency Table

Passenger Class Distribution:

Class	Absolute Freq	Relative Freq	Cumulative Freq	Cumulative Rel. Freq
First	216	0.2424	216	0.2424
Second	184	0.2065	400	0.4489
Third	491	0.5511	891	1.0000

Observation: More than half of the passengers (55.11%) were traveling in Third Class, making it the largest group. First and Second Class accounted for 24.24% and 20.65% respectively.

Part II: Probability Analysis

Contingency Table (Sex vs Survived)

	Survived=0	Survived=1	Total
Female	81	233	314
Male	468	109	577
Total	549	342	891

Observation: The majority of male passengers did not survive (468 out of 577), while a high proportion of female passengers survived (233 out of 314).

Joint Probability:

P(female, survived=1) = 0.2615 Interpretation: Around 26.15% of all passengers were females who survived.

Marginal Probabilities:

$$P(\text{Sex=female}) = 0.3524, \quad P(\text{Survived}=1) = 0.3838$$

Interpretation: About 35.24% of passengers were female, and 38.38% of all passengers survived.

Conditional Probabilities:

$$P(Survived=1 \mid Sex=female) = 0.7420$$

$$P(\text{Sex=female} \mid \text{Survived=1}) = 0.6813$$

Interpretation: Females had a survival rate of 74.20%, while 68.13% of all survivors were female. This clearly shows that being female greatly increased the chances of survival.

Part III: Correlation Analysis

We selected Age and Fare as numerical variables. Pearson Correlation Coefficient: $\rho = 0.0961$

Observation: The correlation is weak and positive, meaning there is a slight tendency for older passengers to have paid higher fares, but the relationship is not strong.

Bonus Task: Survival by Class

A stacked bar chart was created (not shown here) which indicated that **First Class** passengers had the highest survival rate, followed by Second Class, with Third Class passengers having the lowest.

Conclusion

From this analysis:

- Third Class passengers were the majority, but they had the lowest survival rates.
- Female passengers had a significantly higher chance of survival than males.
- Age and fare showed only a weak positive correlation.
- Passenger class strongly influenced survival rates, with First Class being the safest.