Algorytm Genetyczny

zastosowanie do procesów rozmieszczenia stacji raportujących w sieciach komórkowych

Dlaczego Algorytmy Inspirowane Naturą?

Rozwój nowych technologii: złożone problemy obliczeniowe w nauce i technice XX i XXI wieku:

- duże przestrzenie potencjalnych rozwiązań
- rozwiązania suboptymalne są zadowalające dla wielu zastosowań
- jak odnaleźć w rozsądnym czasie dobre (suboptymalne) rozwiązanie

Tradycyjne metody poszukiwania rozwiązań realnych problemów były mało efektywne

Konieczność opracowania nowych algorytmów przeszukiwania przestrzeni rozwiązań:

mechanizmy Natury i biologii są bardzo obiecujące

Złożoność Problemów

- **Problem klasy P** (ang. *deterministic polynomial* deterministycznie wielomianowy) to problem decyzyjny, dla którego rozwiązanie można znaleźć w czasie wielomianowym.
- **Problem klasy NP** (niedeterministycznie wielomianowy, ang. nondeterministic polynomial) to problem decyzyjny, dla którego rozwiązanie można zweryfikować w czasie wielomianowym.
- Różnica pomiędzy problemami **P** i **NP** polega na tym, że w przypadku **P znalezienie** rozwiązania ma mieć złożoność wielomianową, podczas gdy dla **NP sprawdzenie** podanego z zewnątrz rozwiązania ma mieć taką złożoność.
- W teorii złożoności obliczeniowej **problem NP-trudny (NPH)** to taki problem obliczeniowy, którego rozwiązanie jest co najmniej tak trudne jak rozwiązanie każdego problemu z klasy **NP**.

Literatura nt. algorytmów inspirowanych Naturą

- 1. Z. Michalewicz, Algorytmy genetyczne + struktury danych = programy ewolucyjne, WNT, 2003
- 2. L. Rutkowski, Metody i techniki sztucznej inteligencji, PWN, 2009
- 3. Z. Michalewicz, D. B. Fogel, Jak to rozwiązać czyli nowoczesna heurystyka, WNT, 2006
- 4. David A. Goldberg, Algorytmy genetyczne i ich zastosowania, WNT, 2003
- 5. J. Arabas, Wyklady z algorytmow ewolucyjnych, WNT, 2001
- 6. F. Seredyński, Evolutionary Paradigms
- 7. Materiały z dorocznych międzynarodowych konferencji: GECCO, CEC, PPSN

Ewolucja Darwinowska

- Dzisiaj najbardziej znane algorytmy ewolucyjne są oparte na symulowanej ewolucji darwinowskiej
- Darwinowska teoria ewolucji naturalnej wskazuje dwa główne czynniki: naturalną selekcję i genetyczne zmiany
- Naturalna selekcja zakłada, że osobniki które są lepiej przystosowane do środowiska posiadają większe prawdopodobieństwo przeżycia

Tylko te osobniki, które przeżyły mogą wydać potomstwo na zasadach, którymi rządzi genetyka

Algorytm genetyczny

Twórcą algorytmów genetycznych (zaliczanych do grupy algorytmów ewolucyjnych) jest John Henry Holland, który z biologii czerpał inspiracje do swoich prac, dlatego sposób działania algorytmów genetycznych przypomina zjawisko ewolucji biologicznej.

Algorytmy genetyczne powstały z latach '60 na Uniwersytecie Michigan w USA, a obecnie rozwijane są przez: De Yong'a, Goldberg'a, Michalewicza i wielu innych.

Terminologia algorytmów genetycznych

- Populacja to zbiór osobników o wspólnych cechach genetycznych.
- Osobnikami populacji w algorytmach genetycznych są zakodowane w postaci chromosomów zbiory parametrów zadania, czyli rozwiązania, określane też jako punkty przestrzeni poszukiwań. Osobniki nazywane są też organizmami.
- Chromosomy to inaczej łańcuchy lub ciągi kodowe, uporządkowane ciągi genów.
- Gen jest nazywany cechą, znakiem, detektorem i stanowi pojedynczy element genotypu, w szczególności chromosomu.
- Genotyp, czyli *struktura* to zespół chromosomów danego osobnika. Zatem osobnikami populacji mogą być *genotypy* albo pojedyncze chromosomy (jeśli genotyp składa się tylko z jednego chromosomu, tak się często przyjmuje).
- Fenotyp jest zestawem wartości odpowiadających danemu genotypowi, czyli zdekodowaną strukturą, a więc zbiorem parametrów zadania (rozwiązaniem, punktem przestrzeni poszukiwań).
- Allel to wartość danego genu, określona też jako wartość cechy lub wariant cechy.
- Locus to *pozycja* wskazująca miejsce położenia danego genu w *łańcuchu*, czyli chromosomie.

Klasyczny algorytm genetyczny -Hollanda

- Binarne kodowanie (chromosom, łańcuch) rozwiązania problemu – osobnik populacji
- Populacja osobników potencjalnych rozwiązań problemu
- Symulowana ewolucja z użyciem 3 operatorów stosowanych w kolejności:
 - selekcja proporcjonalna
 - krzyżowanie jednopunktowe wykonywane z prawdopodobieństwem $\mathbf{p_k}$
 - mutacja bitów wykonywana z prawdopodobieństwem p_m

Klasyczny algorytm genetyczny

```
Kodowanie rozwiązania problemu w postać osobnika
populacji
t = 0
Losowa inicjalizacja populacji P(t)
Ocena dopasowania osobników P(t)
WHILE warunek stopu NOT TRUE
   t = t + 1
   Selekcja osobników z P(t-1) do P(t)
   Krzyżowanie w P(t)
   Mutacja w P(t)
   Ocena dopasowania osobników w P(t)
DO
```

Rozwiązanie problemu = najlepszy osobnik w P(t)

Operator selekcji proporcjonalnej

To metoda stochastycznej selekcji (symuluje naturalną selekcję), która dokonuje selekcji osobnika *i* (aby przeżył i miał szansę wydania potomstwa z prawdopodobieństwem:

$$p_i = \frac{f_i}{\sum_{j=1}^n f_j}$$

Selekcja ruletkowa dla funkcji dopasowania $f(x) = 2(x^2 + 1)$

Chromosom	Dopasowar	nie Proce	entowy udział	Rozkład na kole ru	ıletki
1111110 (126)	31754	25,61%	·a·	75 ^{-0,23}	
1110100 (116)	26914	21,70%	13,55	25.61	□ 1111110
1001110 (78)	12170	9,81%			1110100
1001111 (79)	12484	10,6%			■ 1001110 ■ 1001111
1101000 (104)	21634	17,44%	17,44		■ 1101000
1011011 (91)	16564	13,35%			■ 1011011 ■ 0100001
0100001 (33)	2180	1,75%	10,6	21,7	0001100
0001100 (12)	290	0,23%	9,8	1	

Operatory genetyczne

Rodzaje selekcji

- Proporcjonalna (koło ruletki)
- Rankingowa (rangowa)
- Turniejowa:
 - Twarda
 - Miękka
- Elitarna
- Progowa
- Stłoczenia
- ...

Rodzaje krzyżowania

- Jednopunktowe
- Wielopunktowe
- Uśredniające
- Wg wzorca
- Jednorodne
- **...**

Rodzaje mutacji

Algorytm genetyczny – Przykład 1

Znaleźć maximum funkcji $f(x) = -(x - 31)^2 + 1024$ w zakresie [0, 63] liczb całkowitych.

Kodowanie problemu

- ightharpoonup zmienna x [0, 1, 2, ..., 63] (x-liczba całkowita)
- ► Kodowanie binarne: $x_{(10)} \rightarrow x_{(2)}$, np. jeżeli $x_{(10)} = 20$, to $20_{(10)} \rightarrow (010100)_{(2)}$
- Natural Aby zakodować 64 wartości zmiennej x potrzebujemy łańcucha binarnego o długości l = 6
- przestrzeń rozwiązań

```
0 \rightarrow 000000
```

 $1 \rightarrow 000001$

•

 $63 \rightarrow 111111$

Generowanie populacji początkowej

- Losowo generujemy populację składającą się z m osobników
- ▶ Jeżeli, np. m=6, P(0) może być następująca:

```
15, 35, 6, 20, 57, 0
```

W binarnej formie:

Realizacja operatora selekcji

W tym celu należy obliczyć wartość funkcji dopasowania (fitness function) każdego osobnika w populacji

individual	V alue of fitness function	% of total	
100011	1008	28.89	
010100	903	25.88	
001111	768	22.01	
000110	399	11.44	
111001	348	9.97	
000000	63	1.81	
total	3489	100	

- Tworzymy koło ruletki
- Operatory genetyczne (krzyżowanie i mutacja)

Symulacja komputerowa

Zastosowanie AG do rozmieszczenia stacji raportujących w sieciach mobilnych

Schemat kodowania:

Ilość genów w chromosomie L = N, liczbie komórek w sieci, gdzie $N = n \times n$, n oznacza rozmiar sieci.

komórka I komórka 2	komórka 3	•••	komórka N
---------------------	-----------	-----	-----------

Przestrzeń rozwiązań:

 $S = 2^{N}$, czyli w przypadku sieci 10×10 komórek, $S = 2^{100}$.

Przykład:

$$n = 4$$
, $N = 16$

$$S = 2^{16} = 65536$$

0 0 1 0 0 1 0 0 1 0 0 0 1 1 1 0 0 0 1

Chromosom algorytmu genetycznego

Rozkład stacji raportujących w sieci