

60 GHz mmWave Multimedia Wireless Systems: Issues and Solutions

Joongheon Kim (CS, joonghek@usc.du) [Advisor: Andreas F. Molisch (EE-Systems, molisch@usc.edu)]
Wireless Devices and Systems (WiDeS) Group (http://wides.usc.edu)

Introduction to 60 GHz Wireless Systems

Why 60 GHz Millimeter Wave (mmWave) is attractive?

- Enabling Wireless *Gigabit* Networking!
- Enabling *Uncompressed HD Video Wireless* Transmission!
 - Around 7GHz bands are available.
 - Low latency wireless transmission
 - No data loss due to compression
- *Unlicensed* Band, i.e., free to use
- Sharing same band for all countries
 - Do not need to design customized antennas for each country

Frequency Plan

• 1080p HD uncompressed video stream can be transmitted if more than 1.5 Gbps is guaranteed. In the 60 GHz mmWave band, each sub-channel can guarantee 2.16Gpbs, hence uncompressed 1080p HD video transmission is possible.

Current IEEE Standards and Industrial Solutions

- IEEE: 802.15.3c WPAN, 802.11ad Very High Throughput (VHT)
- Industry: WirelessHD Consortium, Wireless Gigabit Alliance (WiGig)

Wireless HDTV Applications

Mobile Applications

802.11ad VHT

802.15.3c

Participants

- Chip Vendors
 - Intel
 - SiBEAM
 - Broadcom
 - Qualcomm
 - AMD
 - MediaTek, and so forth
- Consumer Electronics Companies
 - Apple
 - Dell
 - LG Electronics
 - Samsung Electronics
 - Sony
 - Toshiba
 - Panasonic, and so forth
- Research Institute
 - ETRI
 - IBM, and so forth

Challenges and General Solutions

Research Challenges

- High Path Loss due to high frequency
 - Friis Path Loss Model

Communication range is limited according to this property of 60 GHz.

Parameters

- P_{TX} : transmitted power (unit: W)
- P_{RX} : received power (unit: W)
- G_{TX} : transmitter antenna gain
- G_{RX} : receiver antenna gain
- d: distance (unit: meter)
- f_c : center frequency (unit: Hz)
- c: speed of light in a vacuum

General Solutions

• Directional Data Transmission via Beamforming

- Relaying
- Extending wireless networking coverage with additional relay nodes.
- Can achieve capacity gain if one relay node is added in the networks.
- However, multiple relays can extend the coverage but cannot increase the capacity significantly compared to the capacity of one-relay case.

Current Relaying Theories for 60 GHz mmWave: IEEE 802.11ad VHT Relaying

Basic mmWave Relay Operation

• Details are in Ref. #5.

Relay Link (s-r)

Relay Link (r-d)

Direct Link (s-d)

• Two types of relays: (1) Link Switching Type, (2) Link Cooperating Type

Link Switching Type

- If the *s-d* direct PHY link is disrupted, the source (*s*) redirects the transmission of frames addressed to the destination (*d*) via the relay (*r*).
- Direct link between the source (s) and destination (d) can resume after the direct link between them is recovered.

Link Cooperating Type

- The relay (*r*) is actively involved in the direct link communication between *s-d*.
- At the same time, a frame transmission from the source (s) to the destination (d) is repeated by the relay (r).
- It can possibly increase the signal quality received at the destination (d). [cooperative diversity]

Future Research Directions

- Customized relaying scheme for 60 GHz mmWave is required, i.e.,
 - Considering Uncompressed HD Video Stream Factors
 - Considering Cooperative Diversity Impacts

Considering Problems

- Relay Selection
- Multi-Hop vs. Single-Hop
- Cooperation Mode, i.e.,
 Amplify-and-Forward vs.
 Decode-and-Forward
- Optimizing HD Video Coding Rate
- And so forth.

References

- 1. WirelessHD Consortium: http://wirelesshd.org
- 2. Wireless Gigabit Alliance: http://wirelessgigabitalliance.org
- 3. IEEE P802.11 TGad: Very High Throughput in 60 GHz: http://www.ieee802.org/11/Reports/tgad_update.htm
- 4. IEEE 802.15 WPAN TG3c Millimeter Wave Alternative PHY: http://www.ieee802.org/15/pub/TG3c.html
- 5. C. Cordeiro, et al., "Relay Operation in IEEE 802.11ad," IEEE 802.11-10/0494r1, May 2010.