INTRODUCERE ÎN TEORIA GRAFURILOR

CÂTEVA CONSIDERAȚII ASUPRA CONCEPTELOR ESENȚIALE CARE STAU LA BAZA TEORIEI GRAFURILOR ȘI ALGORITMILOR FUNDAMENTALI UTILIZAȚI ÎN REZOLVAREA PROBLEMELOR COMPUTAȚIONALE

Un graf Cayley pentru $C_3 * C_5$.

SÎRBU MATEI-DAN hello@msirbu.eu

BRAŞOV, DECEMBRIE 2020

Capitolul 1

Despre conceptul de graf

1.1 Terminologie

Definim în mod informal un graf ca fiind o colecție de "noduri" unite prin "muchii", ca în exemplul următor:

Figura 1.1: Un graf neorientat oarecare.

Definiția 1. Un graf este o pereche (V, E), unde V este o mulțime finită de elemente, numite noduri (Vertices), iar E este o mulțime finită de perechi de noduri, numite muchii (Edges).

Dacă perechile din mulțimea E sunt ordonate, atunci spunem că graful este **orientat**, sau **digraf**; în caz contrar, graful este **neorientat**. De asemenea, două noduri unite de o muchie se numesc **adiacente**. Conceptul analog muchiilor aplicabil grafurilor orientate este **arcul**.

1.2 Dimensiunile unui graf

De obicei, notăm cu n numărul de noduri ale unui graf; mai precis, n = |V|. Cu m vom nota numărul de muchii, adică m = |E|. În graful din figura 1.1, n este 6, iar m este 10.

Teorema 1. Dacă un graf neorientat are n noduri, atunci numărul total de grafuri neorientate^[2] care se pot forma cu aceste noduri este $g = 2^{C_n^2}$.

Teorema 2. Graful **complet**, graful care are toate muchiile posibile, conține $m = \frac{n(n-1)}{2}$ muchii, dacă este neorientat.

Spunem despre un nod că este *izolat* dacă nu aparține niciunei muchii. Întrucât nodurile izolate sunt inutile în majoritatea aplicațiilor, presupunem că nu există astfel de noduri; în acest caz, știm despre numărul de muchii că este $m \geq \frac{n}{2}$.

Astfel, deducem, utilizând simbolul O al lui Landau (notația big-O), că în general, $m = O(n^2)$, iar în majoritatea aplicațiilor, $m = \Omega(n)$, limite care sunt aplicabile și digrafurilor. Din punct de vedere terminologic, grafurile cu $m = \Theta(n)$ se numesc rare, iar cele cu $m = \Theta(n^2)$ sunt $dense^{[1]}$.

1.3 Conexitate

Definiția 2. Un subgraf G'=(V',E') este un subgraf al lui G=(V,E) dacă $V'\subseteq V$ și $E'\subseteq E$.

Definiția 3. Un lanț este o succesiune de noduri v_0, v_1, \ldots, v_l , $l \geq 0$, cu $(v_i, v_{i+1}) \in E$ pentru $i = \overline{0, l-1}$. Analog, în cazul grafurilor orientate, această succesiune de noduri se numește **drum**.

Un lanț este **simplu** dacă nu trece de două ori prin aceeași muchie. În caz contrar, se numește lanț **compus**. Este de remarcat faptul că un lanț poate avea lungime nulă.

Definiția 4. Un ciclu este un drum cu $l \geq 3$, $v_0 = v_l$ cu toate nodurile și muchiile distincte.

Definiția 5. Gradul unui nod v_k al grafului G este egal cu numărul muchiilor incidente cu nodul și se notează cu $d(v_k)$.

În funcție de gradul nodurilor putem distinge câteva cazuri particulare^[2]. Un **nod** terminal este incident cu o singură muchie, adică $d(v_k) = 1$. Un **nod** izolat nu este adiacent cu nici un alt nod al grafului, adică nu se găsește în extremitatea niciunei muchii; altfel spus, $d(v_k) = 0$. Un exemplu^[2]:

Graful G = (V, E) din figură este definit astfel:

•
$$E = \{(1,2), (1,4), (2,3), (2,5), (3,4), (3,5), (5,6), (5,7), (5,8), (7,9)\}$$

1 2 6 10 4 3 5 7 9 8 11

Despre graful G putem spune că:

- $d(v_5) = 5$, deoarece 5 are 5 muchii incidente: (2,5), (3,5), (5,6), (5,7) și (5,8).
- $d(v_9) = 1$, adică (9) este nod terminal, deoarece are o singură muchie incidentă: (7,9).
- $d(v_{10}) = 0$, adică (10) este nod izolat, deoarece nu are muchii incidente.

Bibliografie

- [1] Harold N. Gabow. *Graph Theory Definitions*. The Department of Computer Science at the University of Colorado Boulder, 2008.
- [2] Mariana Miloșescu. Informatică intensiv: C++: manual pentru clasa a XI-a, ed. a 3-a. Editura Didactică și Pedagogică, 2012.