Сборник заметок по линейной алгебре и сопряженным вопросам

Подвойский А.О.

Содержание

1 Система m линейных алгебраических уравнений с n неизвестными 1 Теорема (правило) Крамера $\mathbf{2}$ 3 Условие совместности системы линейных уравнений. Теорема Кронекера-Капелли 2 Общее решение системы линейных алгебраических уравнений 3 5 Решение систем уравнений с помощью полуобратных матриц 3 Псевдорешения системы линейных уравнений 5 7 Свойства решений однородной системы 5 Функциональные матрицы скалярного аргумента 6 9 Производные скалярной функции по векторному аргументу 6 Список литературы 8

1. Система m линейных алгебраических уравнений с n неизвестными

Матричная запись неоднородной системы уравнений имеет вид

$$Ax = b$$
.

а однородной

$$Ax = 0$$
.

где o в правой части обозначает нулевой столбец размеров $m \times 1$.

Эту матричную запись неоднородной системы уравнений можно представить в эквивалентной форме

$$\begin{pmatrix} a_{11} \\ \vdots \\ a_{m1} \end{pmatrix} x_1 + \begin{pmatrix} a_{12} \\ \vdots \\ a_{m2} \end{pmatrix} x_2 + \ldots + \begin{pmatrix} a_{1n} \\ \vdots \\ a_{mn} \end{pmatrix} x_n = \begin{pmatrix} b_1 \\ \vdots \\ b_m . \end{pmatrix}$$

Тогда решение системы представляется столбцом

$$x = \begin{pmatrix} \alpha_1 \\ \vdots \\ \alpha_n \end{pmatrix}$$

и удовлетворяте равенству

$$\begin{pmatrix} a_{11} \\ \vdots \\ a_{m1} \end{pmatrix} \alpha_1 + \begin{pmatrix} a_{12} \\ \vdots \\ a_{m2} \end{pmatrix} \alpha_2 + \ldots + \begin{pmatrix} a_{1n} \\ \vdots \\ a_{mn} \end{pmatrix} \alpha_n = \begin{pmatrix} b_1 \\ \vdots \\ b_m, \end{pmatrix}$$

т.е. столбец свободных членов b является линейной комбинацией столбцов матрицы системы.

2. Теорема (правило) Крамера

Система называется **совместной**, если она имеет *хотя бы одно решение*. Система называется **несовместной**, если она *не имеет ни одного решения*.

Если определитель $\Delta = \det A$ матрицы системы n линейный независимых уравнений с n неизвестными отличен от нуля $(\det A \neq 0)$, то система имеет $e\partial uncmeenhoe$ решение, которое находится по формулам

$$x_i = \frac{\Delta_i}{\Lambda}, \ i = 1, \dots, n, \quad (\Delta = \det A \neq 0),$$

где Δ_i — определитель матрицы, полученной из матрицы системы $A=[a_{ij}]_{i,j=1}^n$ заменой i-ого столбца столбцом свободных членов.

ЗАМЕЧАНИЕ: на практике при больших n правило Крамера не применяется!

Если $\Delta = 0$ (матрица коэффициентов системы вырождена) и хотя бы один определитель $\Delta_i \neq 0$, то система несовместна, т.е. не имеет ни одного решения. Если же $\Delta = \Delta_1 = \Delta_2 = \dots, \Delta_n = 0$, то возможны два случая: либо система несовместна (не имеет ни одного решения), либо система имеет бесконечно много решений [1, стр. 188].

3. Условие совместности системы линейных уравнений. Теорема Кронекера-Капелли

Рассмотрим систему m линейных уравнений с n неизвестными. Составим блочную матрицу, приписав к матрице A справа столбец свободных членов b. Получим pacuupehnyo матрицу <math>cucmembo

$$(A \mid b) = \begin{pmatrix} a_{11} & \dots & a_{1n} & b_1 \\ a_{21} & \dots & a_{2n} & b_2 \\ \vdots & \ddots & \vdots & \vdots \\ a_{m1} & \dots & a_{mn} & b_m \end{pmatrix}$$

Эта матрица содержит всю информацию о системе уравнений, за исключением обозначений неизвестных.

 $Teopema\ Kponekepa-Kanennu.$ Система $Ax=b\ coemecmna$ (т.е. имеет хотя бы одно решение) тогда и только тогда, когда ранг матрицы системы равен рангу расширенной матрицы $\operatorname{rg} A=\operatorname{rg}(A\mid b).$

Если $\operatorname{rg} A \neq \operatorname{rg}(A \mid b)$, то система несовместна – не имеет решений.

Если система имеет решение, то столбец свободных членов есть линейная комбинация столбцов матрицы системы. Поэтому при вычеркивании столбца b из расширенной матрицы $(A \mid b)$ ее ранг не изменяется. Следовательно, $\operatorname{rg}(A \mid b) = \operatorname{rg} A$.

ЗАМЕЧАНИЕ: теорема Кронекера-Капелли дает лишь критерий существования решения системы, но не указывает способа отыскать этого решения.

4. Общее решение системы линейных алгебраических уравнений

Неизвестные, которым соответствуют столбцы, входящие в базисный минор, называются *базисными переменными*, остальные неизвестные – *свободными переменными*.

Общее решение системы, выржающее базисные переменные через свободные, имеет вид [1, стр. 192]

$$\begin{cases} x_1 = b'_1 - a'_{1,r+1}x_{r+1} - \dots - a'_{1,n}x_n, \\ \dots \\ x_r = b'_r - a'_{r,r+1}x_{r+1} - \dots - a'_{r,n}x_n, \end{cases}$$

где x_1, x_2, \ldots, x_r – базисные переменные; $x_{r+1}, x_{r+2}, \ldots, x_n$ – свободные переменные.

Частное решение системы – решение системы, получающееся из общего решения, заданием конкретных значений свободными переменным.

Пусть x – решение неоднородной системы. Тогда любое решение x неоднородной системы можно представить в виде $x = x^{\rm H} + x^{\rm o}$, где $x^{\rm o}$ – решение однородной системы.

Говорят, что *общее решение* неоднородной системы есть сумма *частного решения* неоднородной системы и *общего решения* соответствующей однородной системы [1, стр. 200]

$$x = x^{\mathrm{H}} + C_1 \varphi_1 + C_2 \varphi_2 + \ldots + C_{n-r} \varphi_{n-r}.$$

5. Решение систем уравнений с помощью полуобратных матриц

Требуется решить систему линейных уравнений

$$Ax = b$$
,

где A – произвольная матрица размера $m \times n$.

Если матрица системы нулевая A = O, то система либо несовместна (при b = o), либо имеет бесконечное множество решений (при b = o любой подходящий по размерам столбец x является решением). Далее рассматривается случай ненулевой матрицы A.

Пусть $A^{\neg 1}$ – матрица, полуобратная к матрице системы A. Используя определение полуобратной матрицы, неоднородную систему Ax=b можно переписать так

$$AA^{\neg 1}Ax = b.$$

Если x – решение системы, то подставляя Ax = b в левую часть последнего соотношения

$$AA^{\neg 1}Ax = b$$
, \rightarrow $AA^{\neg 1}b = b$.

Тогда

$$(E_m - AA^{\neg 1}) b = o.$$

Это необходимое и достаточное условие совместности системы.

Решением системы будет $x = A^{-1}b$. Но поскольку *полуобратная матрица* определена *неоднозначно*, то эта формула фактически задает множество решений системы. Преобразуем так, чтобы была видна структура этого множества, в частности, выявим количество независимых параметров

$$A_0^{-1} = T\Lambda^T S = T \left(\begin{array}{c|c} E_r & O \\ \hline O & O \end{array} \right) S,$$

где S и T – элементарные матрицы порядков n и m соответственно, Λ – матрица простейшего вида, эквивалентная матрице A ($\Lambda \sim A$), rg A.

Теорема о совместности неоднородной системы и о структуре ее общего решения. Неоднородная система Ax=b совместна тогда и только тогда, когда столбец свободных членов является решением однородной системы $\Psi b=o$. Если система Ax=b совместна, то ее общее решение имеет вид [1, стр. 205]

$$x = x^{\mathrm{H}} + x^{\mathrm{o}} = A_0^{-1} b + \Psi c = T \left(\begin{array}{c|c} E_r & O \\ \hline O & O \end{array} \right) S \, b + T \left(\begin{array}{c|c} O \\ \hline E_{n-r} \end{array} \right) c, \quad \Psi = \left(\begin{array}{c|c} O & E_{m-r} S \end{array} \right),$$

где T, S – элементарные преобразующие матрицы, $c = (C_1 \dots C_{n-r})^T$ – столбец произвольных постоянных.

Алгоритм применения полуобратной матрицы:

- 1. Привести матрицу A системы Ax = b к простейшему виду: $\Lambda = SAT$. При этом находятся элементраные преобразующие матрицы S и T, а также ранг $r = \operatorname{rg} A \geqslant 1$.
- 2. Проверить условие совместности системы $\Psi b = o$. При r = m система совместна. Если r < m, то составить матрицу $\Psi = (O \mid E_{m-r}) S$ и проверить условие $\Psi b = o$. Если условие выполняется, то система совместна. В противном случае система несовместна и процесс решения заканчивается.
- 3. Найти частное решение неоднородной системы по формуле

$$x^{\mathrm{H}} = A_o^{-1} b = T \left(\begin{array}{c|c} E_r & O \\ \hline O & O \end{array} \right) S b$$

4. Составить фундаментальную матрицу

$$\Phi = T\left(\frac{O}{E_{n-r}}\right)$$

5. Записать общее решение системы в виде

$$x = x^{\mathrm{H}} + \Phi c,$$

где $c = (C_1 \dots C_{n-r})^T$ – столбец произвольных постоянных.

6. Псевдорешения системы линейных уравнений

Система m линейных алгебраических уравнений с n неизвестными Ax = b может иметь единственное решение, бесконечно много решений или вообще не иметь решений. Нужно изменить понятие решения так, чтобы любая система линейных уравнений имела бы единственное в некотором смысле «решение».

Поставим каждому столбцу в соответсвие неотрицательное действительное число, а именно норму (модуль)

$$|x| = \left(\sum_{i=1}^{n} x_i^2\right)^{1/2}.$$

 $\Pi ceedope menuem$ системы линейных уравнений называется наименьший по норме столбец \tilde{x} среди всех столбцов, минимизирующих величину |Ax-b|.

ЗАМЕЧАНИЕ: любая система имеет единственное псевдорешение [1, стр. 209]

$$\tilde{x} = A^{\sim 1}b$$
,

где $A^{\sim 1}$ — псевдообратная матрица для матрицы системы.

Понятие псевдорешения позволяет обойти не только факт неединственности, но и факт несуществования решений.

Если система несовместна, то псевдорешение \tilde{x} обеспечивает наименьшую величину погрешности $\varepsilon(x)=|Ax-b|.$

Если система совместна, то псевдорешение \tilde{x} является ее решением, т.е. $\varepsilon(\tilde{x})=0$, причем наименьшим по норме.

Алгоритм нахождения псевдорешения неоднородной системы:

- 1. Найти псевдообратную матрицу $A^{\sim 1}$.
- 2. Найти псевдорешение $\tilde{x} = A^{\sim 1}b$.

ЗАМЕЧАНИЕ: *полуобратная* матрица определена <u>неоднозначно</u> и потому задает не конкретное решение, а *множество решений* системы. *Псевдорешение*, полученное с помощью псевдообратной матрицы, всегда вычисляется в *конкретное решение*.

7. Свойства решений однородной системы

Общее решение однородной системы Ax = o имеет вид [1, стр. 194]

$$\begin{cases} x_1 = -a'_{1,r+1}x_{r+1} - \dots - a'_{1,n}x_n, \\ \dots \\ x_r = -a'_{r,r+1}x_{r+1} - \dots - a'_{r,n}x_n. \end{cases}$$

Некоторые свойства:

- \circ Если столбцы $\varphi_1, \varphi_2, \dots, \varphi_k$ решения однородной системы уравнений, то любая их линейная комбинация $\alpha_1 \varphi_1 + \alpha_2 \varphi_2 + \dots + \alpha_k \varphi_k$ также является решением однородной системы,
- \circ Если ранг матрицы однородной системы равен r, то система имеет (n-r) линейно независимых решений.

Любая совокупность (n-r) линейно независимых решений $\varphi_1, \varphi_2, \dots, \varphi_{n-r}$ однородной системы называется фундаментальной системой решений.

Теорема об общем решении однородной системы. Если $\varphi_1, \varphi_2, \dots, \varphi_{n-r}$ – фундаментальная система решений однородной системы уравнений, то столбец

$$x = C_1 \varphi_1 + C_2 \varphi_2 + \ldots + C_{n-r} \varphi_{n-r} \tag{1}$$

при любых значениях произвольных постоянных $C_1, C_2, \ldots, C_{n-r}$ также является решением системы Ax = o, и, наоборот, для каждого решения x этой системы найдутся такие значения произвольных постоянных $C_1, C_2, \ldots, C_{n-r}$, при которых это решение x удовлетворяет равенству (1).

8. Функциональные матрицы скалярного аргумента

 Φ ункциональной матрицей скалярного аргумента t называется матрица, элементы которой являются функциями независимой переменной t

$$A(t) = [a_{ij}(t)]_{i,j=1}^{m,n}$$
_{m×n}

Производная функциональной матрицы

$$\frac{dA(t)}{dt} = \left[\frac{da_{ij}(t)}{dt}\right]_{i,j=1}^{m,n}.$$

Производная обратной матрицы (если она существует)

$$\frac{dA^{-1}(t)}{dt} = -A^{-1}(t) \frac{dA(t)}{dt} A^{-1}(t).$$

Производная определителя квадратной матрицы A(t) n-ого порядка

$$\frac{d}{dt}\det A(t) = \sum_{i=1}^{n} \sum_{j=1}^{n} A_{ij}(t) \frac{da_{ij}(t)}{dt} = \operatorname{tr}\left[A^{+}(t) \frac{dA(t)}{dt}\right],$$

где $A_{ij}(t)$ – алгебраическое дополнение элемента $a_{ij}(t)$ матрицы A(t); $A^+(t)$ – присоединенная матрица.

9. Производные скалярной функции по векторному аргументу

Рассмотрим скалярную (числовую) функцию нескольких переменных $f(x_1, x_2, ..., x_n)$. Упорядоченный набор переменных $x_1, x_2, ..., x_n$ будем называть векторным аргументом этой функции.

 Π ервый дифференциал функции $f(x)=f(x_1,x_2,\ldots,x_n)$ имеет вид

$$df(x) = \frac{\partial f(x)}{\partial x_1} dx_1 + \frac{\partial f(x)}{\partial x_2} dx_2 + \ldots + \frac{\partial f(x)}{\partial x_n} dx_n.$$

Сумму в правой части можно представить как произведение строки $\frac{df(x)}{dx} = \left(\frac{\partial f(x)}{\partial x_1} \dots \frac{\partial f(x)}{\partial x_n}\right)$ на столбец $dx = (dx_1 \dots dx_n)^T$, либо как произведение строки dx^T на столбец $dx = \frac{df(x)}{dx^T} = \left(\frac{df(x)}{dx}\right)^T$. Так как первый дифференциал df(x) – это одноэлементная матрица (а одноэлементая матрица совпадает со своей транспонированной), то $df(x) = \left(df(x)\right)^T$

$$df(x) = \frac{df(x)}{dx} dx \atop 1 \times n dx = \left(\frac{df(x)}{dx} dx\right)^T = dx^T \left(\frac{df(x)}{dx}\right)^T = dx^T \frac{df(x)}{dx}.$$

Второй дифференциал функции имеет вид

$$d^{2}f(x) = \sum_{i=1}^{n} \sum_{j=1}^{n} \frac{\partial^{2} f(x)}{\partial x_{i} \partial x_{j}} dx_{i} dx_{j}.$$

Обозначим через $\frac{d^2f(x)}{dx^Tdx} = \left[\frac{\partial^2f(x)}{\partial x_i^2\partial x_j^2}\right]_{i,j=1}^n$ квадратную матрицу частных производных второго порядка (матрицу Гессе). Определитель матрицы Гессе называется гессианом.

Тогда можно переписать

$$d^{2}f(x) = dx \operatorname{T}_{1 \times 1} \frac{d^{2}f(x)}{dx^{T}dx} dx \cdot 1.$$

Для скалярной функции скалярного аргумента второй дифференциал будет иметь вид

$$d^2f(x) = \frac{d^2f(x)}{dx^2}dx^2.$$

Для записи производных можно использовать символические векторы (столбцы или строки)

$$\nabla = \frac{d}{dx} = \left(\frac{\partial}{\partial x_1} \dots \frac{\partial}{\partial x_n}\right), \quad \nabla^T = \frac{d}{dx^T} = \begin{pmatrix} \frac{\partial}{\partial x_1} \\ \vdots \\ \frac{\partial}{\partial x_n} \end{pmatrix}.$$

При этом дифференциирование функции формально записывается как как умножение функции на символический вектор производных. Например, градиент функции есть произведение

вектора ∇ на функцию f(x)

$$\nabla f(x_1, \dots, x_n) = \left(\frac{\partial f}{\partial x_1} \dots \frac{\partial f}{\partial x_n}\right),$$

$$\nabla^T \nabla_{n \times 1} \nabla_{1 \times n} = \begin{pmatrix} \frac{\partial}{\partial x_1} \\ \dots \\ \frac{\partial}{\partial x_n} \end{pmatrix} \left(\frac{\partial}{\partial x_1} \dots \frac{\partial}{\partial x_n}\right) = \left[\frac{\partial^2}{\partial x_i \partial x_j}\right]_{i,j=1}^n.$$

Найти первую и вторую производные сложной функции $g(t) = f(x_1(t), \dots, x_n(t))$, применяя матричные обозначения.

Находим производные функции, заменяя суммирование операциями умножения соответствующих матриц. Первая производная

$$\frac{dg(t)}{dt} = \frac{d}{dt} \Big(f(x_1(t), \dots, x_n(t)) \Big) = \sum_{i=1}^n \frac{\partial f(x(t))}{\partial x_i} \cdot \frac{dx_i(t)}{dt} = \frac{df(x(t))}{dx} \cdot \frac{dx(t)}{dt}$$

В случае скалярной функции скалярного аргумента первая производная от функции g(x) будет выглядеть так же.

Вторая производная скалярной функции векторного аргумента

$$\frac{d^2g(t)}{dt^2} = \sum_{j=1}^n \sum_{i=1}^n \frac{\partial^2 f(x(t))}{\partial x_j \partial x_i} \cdot \frac{dx_i(t)}{dt} \cdot \frac{dx_j(t)}{dt} + \sum_{i=1}^n \frac{\partial f(x(t))}{\partial x_i} \cdot \frac{dx_i^2}{dt^2} = \dots$$

$$\dots = \left(\frac{dx(t)}{dt}\right)^T \frac{d^2 f(x(t))}{dx^T dx} \cdot \frac{dx(t)}{dt} + \frac{df(x(t))}{dx} \cdot \frac{d^2 x(t)}{dt^2}.$$

В случае скалярной функции скалярного аргумента вторая производная будет выглядеть так

$$\frac{d^2g(t)}{dt^2} = \frac{d^2f(x(t))}{dx^2} \left(\frac{dx(t)}{dt}\right)^2 + \frac{df(x(t))}{dx} \cdot \frac{d^2x(t)}{dt^2}.$$

Список литературы

- 1. Бортаковский А.С. Линейная алгебра в примерах и задачах. М.: Высш. шк., 2005. 591 с.
- 2. Гмурман В.Е. Теория вероятностей и математическая статистика. М.: Высшая школа, 1972. 368 с.
- 3. Лагутин М.Б. Наглядная математическая статистика. М.: БИНОМ, 2009. 472 с.
- 4. *Кобзаръ А.И.* Прикладная математическая статистика. Для инженеров и научных работников. М.: ФИЗМАТЛИТ, 2012.-816 с.