- 4. Dadas las gráficas de las funciones f y g
- a) ¿Cuál es mayor, f(0) o g(0)?
- b) ¿Cuál es mayor, f(-3) o g(-3)?
- c) ¿Para cuáles valores de x, es f(x) = g(x)?

- 5. Dada la gráfica de la función f
- a) Estime f(0.5) usando una cifra de-
- b) Estime f(3) aproximando a una cifra decimal
- c) Encuentre todos los números x en el dominio de f para los cuales f(x) =

Para los ejercicios siguientes (6-11), dada la función f

- Use geogebra para hacer la gráfica de ___
- \blacksquare Encuentre el dominio y el rango de f a partir de su gráfica

6.
$$f(x) = 2(x+1)$$

9.
$$f(x) = -\sqrt{25 - x^2}$$

7.
$$f(x) = -x^2$$

10.
$$\sqrt{x+2}$$

8.
$$f(x) = x^2 + 4$$

10.
$$\sqrt{x+2}$$

Para los ejercicios siguientes (12-17), haga la gráfica de la función definida a trozos.

12.
$$f(x) = \begin{cases} 1 & \text{si } x \le 1 \\ x+1 & \text{si } x > 1 \end{cases}$$

15.
$$f(x) = \begin{cases} -1 & \text{si } x < -1 \\ x & \text{si } -1 \le x \le 1 \\ 1 & \text{si } x > 1 \end{cases}$$

13.
$$f(x) = \begin{cases} 1-x & \text{si } x < -2\\ 5 & \text{si } x \ge -2 \end{cases}$$

$$f(x) = \begin{cases} 1 - x^2 & \text{si } x \le 2 \\ x & \text{si } x > 2 \end{cases}$$

16. $f(x) = \langle$

14.
$$f(x) = \begin{cases} 2x+3 & \text{si } x < -1\\ 3-x & \text{si } x \ge -1 \end{cases}$$

17.
$$f(x) = \begin{cases} x^2 & \text{si} \quad |x| \le 1\\ 1 & \text{si} \quad |x| > 1 \end{cases}$$

Taller Funciones Cálculo 11°

Germán Avendaño Ramírez

No raye ni dañe esta copia, para que pueda ser utilizada por otro compañero

1. Gráficas de funciones

Si una función f tiene dominio A, entonces la gráfica de f es el conjunto de las parejas ordenadas

$$\{(x, f(x))|x \in A\}$$

Es decir, la gráfica de f es el conjunto de todos los puntos (x,y) tal que y=f(x); esto es, la gráfica de f es la gráfica de la ecuación y=f(x)

Las gráficas de las funciones se pueden predecir de alguna manera, teniendo en cuenta las siguientes pautas:

1.1. Función constante

Toda función de la forma f(x) = c, donde c es una constante, tiene como gráfica una recta horizontal. Por ejemplo la función f(x) = 3, es una recta horizontal, ya que la imagen todo número real x es 3.

1.2. Rectas

Toda función de la forma f(x) = mx + b, es una recta, donde m es la pendiente de la recta y b determina el punto de corte con el eje y.

^{*}Lic. Mat. U.D., M.Sc. U.N.

1.2.1. Ejemplo:

es 2 y tiene pendiente negativa -3, lo este caso, el punto de corte con el eje \boldsymbol{y} cual indica que la recta es descendente. Grafique la función y = -3x + 2. En haciendo una pequeña tabla así: La gráfica se puede obtener facilmente

၁	0	-2	x
	2	8	f(x)

hacer la gráfica, la cual queda así: Con estos tres puntos es suficiente para

1.3. Graficando otras funciones

su gráfica, primero haremos una tabla así: ca de la función $g(x)=x^3$. Para hacer $y = \sqrt{x}$. Ahora observaremos la gráfilas gráficas de las funciones $y = x^2$ y En clases anteriores ya hemos hecho

2	<u> </u>	211	0	$-\frac{1}{2}$	-1	-2	x
∞	1	∞ ⊢	0	- 8 1	-1	-8	$g(x) = x^3$

9

1. Haga una tabla de valores para hacer la gráfica de las siguientes funciones

$$a) \ f(x) = 2$$

$$b) \ f(x) = 2x - 4$$

$$c) \ f(x) = -3$$

 $n) \ F(x) = \frac{1}{x+4}$

 \tilde{n}) H(x) = |2x|o) H(x) = |x+1|

 $p) \ \ G(x) = |x| + x$

 $m) \ F(x) = \frac{1}{x}$

$$d) f(x) = 6 - 3x$$

$$d) \ f(x) = 6 - 3x$$

e)
$$f(x) = -x + 3$$
 $-3 \le x \le 3$

f)
$$f(x) = \frac{x-3}{2}$$
,
g) $f(x) = -x^2$

h)
$$f(x) = x^2 - 4$$

i)
$$g(x) = x^3 - 8$$

$$j) g(x) = 4x^2 - x^4$$

$$k) \ g(x) = \sqrt{x+4}$$

$$l) g(x) = \sqrt{-x}$$

$$0 \le x \le 5$$

$$q) G(x) - |x| + x$$

$$r) f(x) = |x| - x$$

$$r) f(x) = \frac{x}{|x|}$$

$$s) f(x) = \frac{x}{|x|}$$

$$t) g(x) =$$

$$s) f(x) = \frac{x}{|x|}$$

$$t) g(x) = \frac{2}{x^2}$$

$$u) g(x) = \frac{|x|}{x^2}$$

ada la gráfica de la función
$$h$$

a) Encuentre $h(-2)$, $h(0)$, $h(2)$, y $h(3)$

b) Encuentre el dominio y el rango de h

Dada la gráfica de la función h

b) Encuentre el dominio y rango de g

a) Encuentre g(-4), g(-2), g(0), g(2) y

g(4)