

Преподаватель:

Министерство науки и высшего образования Российской Федерации Федеральное государственное бюджетное образовательное учреждение высшего образования

«Московский государственный технический университет имени Н.Э. Баумана

(национальный исследовательский университет)» (МГТУ им. Н.Э. Баумана)

		•	<u> </u>		
ФАКУЛЬТЕТ		«Информатика и системы управления»			
КАФЕДРА		«Компьютерные системы и сети (ИУ6)»			
НАПРАВЛЕНИЕ	Е ПОДГОТОВКИ _	«09.03.04 Программна	ія инженері	«RK	
	Py	бежный контрол	Ь		
	по курс	су «Архитектура	ЭВМ»		
«O	бщие принциі	пы построения совр	еменных	: ЭВМ»	
	1	1			
Студент:	ИУ7-53Б			М. Д. Маслова	
отудони.	<u>ггу 7 33 Б</u> (группа)	(подп	ись, дата)	(И. О. Фамилия)	

А. Ю. Попов

(И. О. Фамилия)

(подпись, дата)

В основе построения современных ЭВМ лежат принципы Фон-Неймана: Двоичное кодирование информации

Этот принцип заключается в том, что данные и команды кодируются двоичными цифрами 0 и 1. Информация представляется в двоичном виде и имеет свой формат. Последовательность битов в формате, имеющая определенный смысл называют полем. Так, в формате числа обычно выделяют поле знака и поле значащих разрядов, в формате команды -два поля: поле кода операции (какая операция должна быть выполнена) и поле адресов (в зависимости от типа команды).

Программное управление

Все выполняемые действия должны быть представлены в виде программы, состоящей из команд - последовательности управляющих слов. Команда представляет собой операцию из набора операций, реализуемых вычислительной машиной. Команды программы хранятся в последовательных ячейках памяти и выполняются в порядке их расположения в программе.

Адресность памяти

Структура основной памяти состоит из пронумерованных ячеек, причем в любой момент процессор имеет доступ к любой ячейке. Двоичные коды команд и данных разделяются на единицы информации, которые называют словами. Они хранятся в ячейках памяти. Доступ к командам и данным осуществляется при помощи номеров соответствующих ячеек — адресов.

Однородность памяти

Суть данного принципа заключается в том, что команды и данные хранятся в одной и той же памяти и внешне в памяти неразличимы. Распознать их можно только по способу использования. Это позволяет производить над командами операции, которые производятся над числами. Концепция единой памяти для хранения команд и данных принята для вычислительных машин в Принстонском университете и названа принстонской архитектурой, в то время как в Гарвардском университете реализовывалась идея отдельной памяти команд и отдельной памяти данных, такой вид архитектуры назвали гарвардской.

Базовая схема работы вычислительной машины (ВМ): информация поступает из подсоединенных к ВМ устройств ввода, результаты вычислений выводятся на устройства вывода. Чтобы программа могла выполняться, команды и данные должны располагаться в основной памяти. Устройство управле-

ния отвечает за извлечение и исполнение команд и координацию устройств ВМ. Обрабатывающее устройство обеспечивает арифметическую и логическую обработку двух входных переменных (операндов), в итоге которой формируется выходная переменная (результат).

Рисунок 1

Принципы микропрограммного управления.

Рисунок 2

Принцип заключается в разделении устройства на операционные устройства и управляющие устройства.

Управляющее устройство (УУ) управляет всем процессом обработки. На него поступают операнды, УУ анализирует состояние операционного устройства. По состоянию линий управления в каждом такте УУ выдает микрокоманды. Их совокупность называется микропрограммой.

Принцип конвейерной обработки

Конвейерная обработка представляет собой процесс, при котором сложные действия разделяются на более короткие стадии.

Характеристики конвейера:

- Пропускная способность количество команд в единицу времени, которое он может выполнить;
- Латентность обработки время, которое каждая команда тратит на выполнение.

Преимущества:

- Увеличение пропускной способности;
- Можно запустить большее количество команд на исполнение;
- Более полное использование аппаратных ресурсов.

Использование: в памяти - 3 стадии конвейера, в процессоре - от 3 до 20.