Chapter 1. Vector Spaces

Linear Algebra Done Right 4th ed., by Sheldon Axler

1A. \mathbb{R}^n and \mathbb{C}^n

Problem 2

Show that

$$(\alpha + \beta) + \lambda = \alpha + (\beta + \lambda)$$

for all $\alpha, \beta, \lambda \in \mathbb{C}$.

Proof. Suppose we have

$$\alpha = a + bi \quad \beta = c + di \quad \lambda = e + fi$$

where $a, b, c, d, e, f \in \mathbb{R}$. Then by the addition of complex numbers we have

$$\begin{split} (\alpha + \beta) + \lambda &= \left[(a + bi) + (c + di) \right] + (e + fi) \\ &= \left[(a + c) + (b + d)i \right] + (e + fi) \\ &= \left[(a + c) + e \right] + \left[(b + d) + f \right]i \\ &= \left[a + (c + e) \right] + \left[b + (d + f) \right]i \\ &= (a + bi) + \left[(c + e) + (d + f)i \right] \\ &= (a + bi) + \left[(c + di) + (e + fi) \right] \\ &= \alpha + (\beta + \lambda), \end{split}$$

as desired.

1B. Definition of Vector Space

1C. Subspaces