

Lógica de Predicados

Disciplina: Lógica para Computação
Prof. Larissa Freitas, Renata Reiser, André DuBois
{larissa,reiser,dubois}@inf.ufpel.edu.br

Lógica de Predicados

- Regras de Inferência para o ∀
- Regras de Inferência para o ∃

Regras de Inferência para o
 Regras de Inferência para o

• <u>Eliminação Universal (EU):</u> Dada uma wff quantificada universalmente $\forall \beta \phi$, podemos inferir uma wff, da forma $\phi^{\alpha/\beta}$ a qual resulta substituindo-se cada ocorrência da variável β em ϕ por uma letra nominal α .

Exemplo:

Todos os homens são mortais.

Sócrates é um homem.

∴Sócrates é mortal.

H – 'é homem'

M – 'é mortal'

s – 'Sócrates'

$$\forall x (H(x)->M(x)), H(s) \vdash M(s)$$

• Exemplo:

$$\forall x (H(x)->M(x)), H(s) \vdash M(s)$$

1. $\forall x (H(x)->M(x))$

P

2. H(s)

P

3. H(s) -> M(s)

1 EU

4. M(s)

2,3 MP

• Introdução Universal (IU): Para uma wff ϕ contendo uma letra nominal α que não ocorre em qualquer uma das premissas ou em qualquer hipótese vigente na linha em que ϕ ocorre, podemos inferir uma wff da forma $\forall \beta \phi^{\beta/\alpha}$ onde $\phi^{\beta/\alpha}$ é o resultado de se substituir todas as ocorrências de α em ϕ por uma variável que não ocorre em ϕ .

Exemplo:

Todos os peixes são ciprinídeos.

Todos os ciprinídeos são vistosos.

∴Todos os peixes são vistosos.

H – 'é ciprinídeo'

 $M - \text{'\'e vistoso'} \quad \forall x(P(x)->C(x)), \ \forall x(C(x)->V(x)) \vdash \ \forall x(P(x)->V(x))$

s – 'é peixe'

Exemplo:

$$\forall x(P(x)->C(x)), \forall x(C(x)->V(x)) \vdash \forall x(P(x)->V(x))$$

1.
$$\forall x(P(x)->C(x))$$

2.
$$\forall x(C(x)->V(x))$$

3.
$$P(a) -> C(a)$$

4.
$$C(a) -> V(a)$$

5.
$$P(a) -> V(a)$$

6.
$$\forall x(P(x)->V(x))$$

Derivações Inválidas:

1. P(a)

P

2. $\forall x P(x)$

1 IU

Incorreta, pois a letra nominal "a" substituída por x ocorre em uma <u>premissa</u>

Derivações Inválidas:

1.
$$\forall x (P(x) -> C(x))$$

P

2.
$$P(a) -> C(a)$$

1 EU

H (PC)

2,3 MP

5.
$$\mid \forall x C(x)$$

4 IU

6.
$$P(a) \rightarrow \forall x C(x)$$

3-5 PC

Incorreta, pois a letra nominal "a" substituída por x ocorre em uma hipótese

Eliminação universal (EU)	$\frac{\forall x \varphi}{\varphi \{a \mid x\}}$	Introdução universal (IU)	$\frac{\varphi}{\forall x \varphi\{x/a\}} \varphi \operatorname{cont\acute{e}m} a$
φ{a/x} é o resultado da substituição de todas as ocorrências da variável "x" em φ por uma letra nominal "a".		 φ{x/a} é o resultado da substituição de todas as ocorrências da letra nominal "a" em φ por uma variável "x". "a" não pode ocorrer em premissa ou hipótese vigente "x" não pode ocorrer em φ 	

• Introdução Existencial (IE): Dada uma wff ϕ contendo uma letra nominal α , podemos inferir uma wff da forma $\exists \beta \ \phi^{\beta/\alpha}$, onde $\phi^{\beta/\alpha}$ é o resultado de se substituir uma ou mais ocorrências de α em ϕ por uma variável β , que não ocorra em ϕ .

• Exemplo:

$$\forall x(F(x) \lor G(x)) \vdash \exists x(F(x) \lor G(x))$$

1. $\forall x(F(x) \lor G(x))$

2. F(a) V G(a) 1 EU

3. $\exists x(F(x) \lor G(x))$ 2 IE

- <u>Eliminação Existencial (EE):</u> Dada uma wff quantificada existencialmente $\exists \beta \phi$ e uma derivação de alguma conclusão ψ de uma hipótese da forma $\phi^{\alpha/\beta}$, podemos descartar $\phi^{\alpha/\beta}$ e reafirmar ψ .
- Restrição: A letra nominal α não pode ocorrer em ψ , nem em qualquer premissa, nem em qualquer hipótese vigente na linha em que EE é aplicada.

• Exemplo:

$$\forall x(F(x) \rightarrow G(x)), \exists xF(x) \vdash \exists xG(x)$$

1.
$$\forall x(F(x) \rightarrow G(x))$$

$$2. \exists x F(x)$$

4.
$$| F(a) -> G(a)$$

6.
$$\exists xG(x)$$

7.
$$\exists xG(x)$$

P

P

H (EE)

1 EU

3, 4 MP

5 IE

2, 3-6 EE

Derivações Inválidas:

1. $\forall x \exists y F(y, x)$

P

2. ∃y F(y, a)

1 EU

3. | F(a,a)

H (EE)

4. $|\exists x F(x, x)|$

3 IE

5. $\exists x F(x, x)$

2, 3-4 EE

Incorreta, pois a letra nominal "a" introduzida na hipótese já ocorria em ∃y F(y, a)

Derivações Inválidas:

1. $\exists y H(x, x)$

P

2. | H(a, a)

H (EE)

3. $|\exists x H(a, x)|$

3 IE

4. $\exists x \; H(a, x)$

2, 3-4 EE

Incorreta, pois a letra nominal "a" introduzida na hipótese ocorre em ∃x H(a, x)

Derivações Inválidas:

1. $\exists x G(x)$

P

2. F(a)

P

3. | G(a)

H (EE)

4. $| F(a) \wedge G(a) |$

 $2,31\Lambda$

5. $\mid \exists x (F(x) \land G(x))$

4 IE

6. $\exists x (F(x) \land G(x))$

1, 3-5 EE

Incorreta, pois a letra nominal "a" introduzida na hipótese ocorre na premissa F(a)

Derivações Inválidas:

5.
$$| | \exists x (F(x) \land G(x))$$

6.
$$\mid \exists x (F(x) \land G(x))$$

7.
$$F(a) -> \exists x (F(x) \land G(x))$$
 2-6 PC

Incorreta, pois a letra nominal "a" introduzida na hipótese G(a) ocorre na hipótese F(a) vigente

Introdução existencial (IE)	$\frac{\varphi}{\exists x \varphi\{x/a\}} \varphi \operatorname{cont\acute{e}m} a$	Eliminação existencial (EE)	$\exists x \varphi$ $\begin{bmatrix} \varphi\{a/x\} & H(EE) \\ \vdots \\ \psi & \end{bmatrix}$ ψ
φ{x/a} é o resultado da substituição de uma ou mais ocorrências da letra nominal "a" em φ por uma variável "x". "x" não pode ocorrer em φ		 φ{a/x} é o resultado da substituição de todas as ocorrências da variável "x" em φ por uma letra nominal "a". "a" não pode ocorrer em premissa ou hipótese vigente "a" não pode ocorrer em φ "a" não pode ocorrer em ψ 	

Lógica de Predicados

E-mail para dúvidas:

larissa@inf.ufpel.edu.br

Resolvam os exercícios!

Exercícios

- 1) $\forall x (F(x)->G(x)), \forall xF(x) \vdash G(a)$
- 2) \sim F(a) $\vdash \sim \forall x$ F(x)
- 3) $\forall x \forall y F(x,y) \vdash F(a,a)$
- 4) $\forall x(F(x) \land G(x)) \vdash \forall xF(x) \land \forall xG(x)$
- 5) $\forall x(F(x) -> (G(x) \lor H(x))), \forall x \sim G(x) \vdash \forall xF(x) -> \forall xH(x)$
- 6) $\forall x(F(x) -> (G(x) \lor H(x))), \forall x \sim G(x) \vdash \forall x(F(x) -> H(x))$
- 7) $\forall x F(a,x), \forall x \forall y (F(x,y) \rightarrow G(y,x)) \vdash \forall x G(x,a)$
- 8) $\forall x F(x) \rightarrow \forall x G(x)$, $\sim G(a) \vdash \sim \forall x F(x)$

Exercícios

- 9) $\forall x(F(x) \lor G(x)) \vdash \exists xF(x) \lor \exists xG(x)$
- 10) $\sim \exists x F(x) \vdash \forall x \sim F(x)$
- 11) $\sim \exists x (F(x) \land \sim G(x)) \vdash \forall x (F(x) \rightarrow G(x))$
- 12) $\exists x(F(x) \lor G(x)) \vdash \exists xF(x) \lor \exists xG(x)$
- 13) $\exists x F(x) \lor \exists x G(x) \vdash \exists x (F(x) \lor G(x))$
- 14) $\exists x \ \forall y \ L(x,y) \vdash \ \forall x \exists y \ L(y,x)$
- 15) $\forall x(F(x) \rightarrow \exists yL(x,y)), \exists x(F(x) \land G(x)) \vdash \exists x \exists y(G(x) \land L(x,y))$
- 16) $\forall x(F(x) \rightarrow G(x)) \vdash \exists x(F(x) \land G(x))$

