from google.colab import files

upload=files.upload()

Choose Files TATA POWER 10D.xlsx

 TATA POWER 10D.xlsx(application/vnd.openxmlformats-officedocument.spreadsheetml.sheet) -9006 bytes, last modified: 2/10/2022 - 100% done

Saving TATA POWER 100 ylsy to TATA POWER 100 ylsy

import pandas as pd
import matplotlib.pyplot as plt
import seaborn as sns
tatapower=pd.read_excel('TATA POWER 10D.xlsx')
tatapower.head()

	Date	0pen	High	Low	Close	Adj Close	Volume
0	2022-01-28	244.699997	250.000000	242.850006	244.050003	244.050003	34523855
1	2022-01-31	247.949997	249.550003	245.300003	246.050003	246.050003	24939671
2	2022-02-01	249.500000	256.399994	244.800003	249.850006	249.850006	74185275
3	2022-02-02	251.899994	255.000000	249.250000	250.600006	250.600006	25162901
4	2022-02-03	250.550003	254.399994	249.300003	252.850006	252.850006	27724870

tatapower.shape

(10, 7)

tatapower.isnull

```
<bound method DataFrame.isnull of</pre>
                                          Date
                                                      0pen
                                                                  High ...
                                                                                  Close
0 2022-01-28 244.699997
                         250.000000
                                                                  34523855
                                           244.050003
                                                      244.050003
1 2022-01-31 247.949997
                          249.550003
                                           246.050003
                                                      246.050003 24939671
2 2022-02-01 249.500000
                         256.399994
                                           249.850006
                                                      249.850006 74185275
3 2022-02-02 251.899994
                         255.000000
                                      . . .
                                           250.600006
                                                      250.600006 25162901
4 2022-02-03 250.550003
                          254.399994
                                           252.850006
                                                      252.850006
                                                                  27724870
5 2022-02-04 253.800003
                         257.899994
                                           254.350006
                                                      254.350006
                                                                 39309420
6 2022-02-07 255.500000
                          256.700012
                                                       251.800003
                                                                   32770930
                                           251.800003
7 2022-02-08 252.500000
                         253.600006
                                           234.850006
                                                      234.850006 82053977
8 2022-02-09 236.699997
                          238.899994
                                           238.000000
                                                       238.000000
                                                                   35604075
9 2022-02-10 238.500000
                          244.500000
                                           241.300003
                                                      241.300003
                                                                   55131292
[10 rows x 7 columns]>
```

https://colab.research.google.com/drive/1WMqp6BWdLSp9uMrQM3u7nRC2UeGOOvzv#scrollTo=xgIFITB3nH-g&printMode=true

sns.set_style('dark')
sns.countplot(x='Low',data=tatapower)

<matplotlib.axes._subplots.AxesSubplot at 0x7f88b7b73990>

sns.set_style('dark')
sns.countplot(x='Close',data=tatapower)

<matplotlib.axes._subplots.AxesSubplot at 0x7f88b7b73a50>

tatapower['Volume'].hist(color='red', bins=20, figsize=(8,4))

<matplotlib.axes. subplots.AxesSubplot at 0x7f88b7471c10>


```
sns.countplot(tatapower['Close'])
plt.title('previous close', fontsize=5)
plt.xlabel('Date')
plt.ylabel('Open')
plt.show()
```

/usr/local/lib/python3.7/dist-packages/seaborn/_decorators.py:43: FutureWarning: P FutureWarning

tatapower.info()

```
<class 'pandas.core.frame.DataFrame'>
RangeIndex: 10 entries, 0 to 9
Data columns (total 7 columns):
     Column
                Non-Null Count
                                Dtype
 0
     Date
                10 non-null
                                datetime64[ns]
 1
     0pen
                10 non-null
                                float64
 2
                10 non-null
                                float64
    High
                                float64
 3
                10 non-null
    Low
 4
    Close
                10 non-null
                                float64
     Adj Close 10 non-null
 5
                                float64
     Volume
                10 non-null
                                int64
```

dtypes: datetime64[ns](1), float64(5), int64(1) memory usage: 688.0 bytes

tatapower.drop duplicates(inplace = True)

tatapower.corr()

#Note: The corr() method ignores "not numeric" columns.

	0pen	High	Low	Close	Adj Close	Volume
Open	1.000000	0.946157	0.707985	0.588307	0.588307	0.011000
High	0.946157	1.000000	0.755624	0.690590	0.690590	0.096080
Low	0.707985	0.755624	1.000000	0.962347	0.962347	-0.522498
Close	0.588307	0.690590	0.962347	1.000000	1.000000	-0.468903
Adj Close	0.588307	0.690590	0.962347	1.000000	1.000000	-0.468903
Volume	0.011000	0.096080	-0.522498	-0.468903	-0.468903	1.000000

sns.countplot(x='Date',data=tatapower)

sns.kdeplot(x = 'Date' , data = tatapower , color = 'black')

<matplotlib.axes._subplots.AxesSubplot at 0x7f88b4db9850>

sns.kdeplot(x = 'Volume' , data = tatapower , color = 'red')

<matplotlib.axes._subplots.AxesSubplot at 0x7f88b2cbeb50>

sns.displot(x = 'Volume',kde=True,bins = 5 , data =tatapower)

<seaborn.axisgrid.FacetGrid at 0x7f88b2d16c10>

sns.displot(x = 'Close', kde=True,bins = 5 , data =tatapower)

sns.displot(y = 'Date', kde=True,bins = 5 , data =tatapower)

#kde - It is set to False by default. However, if you wish to plot a KDE graph on top of the

#bins - The number of bins/bars. The lower the number, wider the bars and wider the intervals

<seaborn.axisgrid.FacetGrid at 0x7f88aa9f09d0>

sns.displot(x = 'Close', kde=False,bins = 5 , data =tatapower)

<seaborn.axisgrid.FacetGrid at 0x7f88b4e3ea10>

sns.scatterplot(x='High', y ='Date' ,
data = tatapower , hue = 'Volume')

<matplotlib.axes._subplots.AxesSubplot at 0x7f88aa8c2cd0>

corr = tatapower.corr()
sns.heatmap(corr)

<matplotlib.axes._subplots.AxesSubplot at 0x7f88aa83cfd0>

<matplotlib.axes._subplots.AxesSubplot at 0x7f88aa1fa290>

C→

✓ 1s completed at 10:41 PM

Could not connect to the reCAPTCHA service. Please check your internet connection and reload to get a reCAPTCHA challenge.

×