

5.1 时序电路的基本分析和设计方法

5.1.1 时序电路的基本分析方法

一、分析的一般步骤

$$Q_2^{n+1} = Q_1^n$$
 $Q_1^{n+1} = Q_0^n$ $Q_0^{n+1} = \overline{Q_2^n}$ $Y = \overline{Q_2^n} \overline{Q_1^n} \overline{Q_0^n}$

$$Q_1^{n+1} = Q_0^n$$

$$Q_0^{n+1} = Q_2^n$$

$$\underline{Y} = Q_2^n Q_1^n Q_0^n$$

计算,列状态转换表

CP	Q_2	Q_1	Q_0	Y	
0	0	0	0	1 -	
1	0	0	1	1	
2	0	1	1	1	
3	1	1	1	1	
4	1	1	0	1	
5	1	0	0	0 -	
0	0	1	0	1	<u> </u>
1	1	0	1	1	_
2	0	1	0	1	

能否自启动?

能自启动:存在无效状态,但没有 形成循环。

不能自启动: 无效状态形成循环。

利用卡诺图求状态图

- 5.1.2 时序电路的基本设计方法
- 1. 设计的一般步骤

2. 设计举例

按如下状态图设计时序电路。 [例 5.1.2]

$$000 \xrightarrow{/0} 001 \xrightarrow{/0} 010 \xrightarrow{/0} 101 \xrightarrow{/0} 100 \xrightarrow{/0} 101 \qquad Q_2^n Q_1^n Q_0^n$$

已给出最简状态图,若用同步方式:

输出方程
$$Q_{1}^{n}Q_{0}^{n}$$
 Q_{2}^{n} Q_{2}^{n+1} Q_{2}^{n} Q_{2}^{n+1} Q_{2}^{n} Q_{2}^{n+1} Q_{2}^{n} Q_{2}^{n+1} Q_{2}^{n} Q_{2}^{n} Q_{2}^{n+1} Q_{2}^{n} $Q_{$

检查能否自启动:

选用JK触发器

驱动方程

$$J_0 = \underline{K}_0 = 1$$

 $J_1 = Q_2Q_0$, $K_1 = Q_0$
 $J_2 = Q_1Q_0$, $K_2 = Q_0$

逻辑图

[例 5.1.3] 设计一个串行数据检测电路,要求输入 3或3个以上数据1时输出为1,否则为0。

逻辑抽象,建立原始状态图 「解〕

$$S_0$$
 — 原始状态(0) S_2 — 连续输入 2 个 1 S_1 — 输入1个1 S_3 — 连续输入 3 或 3 个以上 1

 S_1 — 输入1个1

X - 输入数据

Y — 输出入数据

$$0/0$$
 S_0
 $1/0$
 S_1
 $1/0$
 S_2
 $1/1$
 S_3
 $1/1$

状态化简

状态分配、状态编码、状态图

 $M=3, \ \ \mathbb{R} \ n=2$

$$S_0 = 00$$

$$S_0 = 01$$

$$S_0 = 11$$

选触发器、写方程式

选 $JK(\uparrow)$ 触发器, 同步方式

状态方程

$$Q_2$$
 X
 $Q_1^n Q_0^n$
 $00 \quad 01 \quad 11 \quad 10$
 $0 \quad 0 \quad 0 \quad \times$
 $1 \quad 1 \quad 1 \quad 1 \quad \times$

$$Q_1^{n+1} = XQ_0^n$$
$$Q_0^{n+1} = X$$

