DATE:31-5-23_____RELATIONSHIP B/W SALINITY & WATER TEMP.(ML)

```
import numpy as np
import pandas as pd
import seaborn as sns
import matplotlib.pyplot as plt
from sklearn import preprocessing,svm
from sklearn.model_selection import train_test_split
from sklearn.linear_model import LinearRegression
->READ THE DATA SET
```

df=pd.read_csv("/content/bottle.csv")

df.isna().any() Sal Temp

dtype: bool

True

True

df

	Sal	Temp	
0	33.440	10.50	
1	33.440	10.46	
2	33.437	10.46	
3	33.420	10.45	
4	33.421	10.45	
7975	33.609	11.92	
7976	33.600	11.04	
7977	33.647	10.71	
7978	33.930	9.42	
7979	33.964	9.22	
7980 rows × 2 columns			

df1=df.dropna()

df1

df.describe()

	Sal	Temp
count	7980.000000	7980.000000
mean	33.812703	8.869087
std	0.512919	3.915512
min	32.300000	2.700000
25%	33.492000	5.350000
50%	33.880000	8.420000
75%	34.251000	11.920000
max	34.700000	19.760000

df.fillna(method='ffill',inplace=True)

df500=df[:][:500]

sns.lmplot(x="Sal",y="Temp",data=df500,order=1,ci=None)

from sklearn.linear_model import LinearRegression
from sklearn.metrics import r2_score

model=LinearRegression()
model.fit(x_train,y_train)

* LinearRegression
LinearRegression()