Parsers

What is a parser

- A parser has two jobs:
 - I) Determine whether a string (program) is *valid* (think: grammatically correct)
 - 2) Determine the structure of a program (think: diagramming a sentence)

Agenda

- How do we define a language?
 - How do we define the set of strings that are grammatically correct
 - Context free grammars
- How do we recognize strings in the language?
 - How can we tell (easily) whether a program is a valid string in the language
 - How can we determine the structure of a program?
 - LL parsers and LR parsers

Languages

• A language is a (possibly infinite) set of strings

- Regular expressions describe regular languages
 - Fundamental drawback: can only use finite state to recognize whether a string is in the language
 - Consider this valid piece of C code:
 - { { { int x; } } }
 - Need to make sure that there are the same number of '{' as '}'
 - How would you write a regular expression to capture that?

Languages

- Key problem: programming language syntax is recursive
 - If statements can be nested inside while loops which can themselves be nested inside if statements which can be nested inside for loops which can be nested inside switch statements ...
- Nesting can be arbitrarily deep
- New formalism for specifying these kinds of recursive languages: Context-free Grammars

Terminology

- Grammar $G = (V_t, V_n, S, P)$
 - V_t is the set of terminals
 - V_n is the set of non-terminals
 - S is the start symbol
 - P is the set of productions
 - Each production takes the form: $V_n \rightarrow \lambda \mid (V_n \mid V_t) +$
 - Grammar is context-free (why?)
- A simple grammar:

$$G = (\{a, b\}, \{S, A, B\}, \{S \rightarrow A B, A \rightarrow A a, A \rightarrow a, B \rightarrow B b, B \rightarrow b\}, S)$$

Simple grammar

Backus Naur Form (BNF)

Generating strings

$$S \rightarrow A B$$

$$A \rightarrow A$$
 a

$$A \rightarrow a$$

$$B \rightarrow B b$$

$$B \rightarrow b$$

- Given a start rule, productions tell us how to rewrite a non-terminal into a different set of symbols
- Some productions may rewrite to λ . That just removes the non-terminal

To derive the string "a a b b b" we can do the following rewrites:

$$S \Rightarrow A B \Rightarrow A a B \Rightarrow a a B b \Rightarrow a a B b b \Rightarrow a a B b b \Rightarrow a a b b b$$

Terminology

- Strings are composed of symbols
 - AAaaBbbAaisastring
 - We will use Greek letters to represent strings composed of both terminals and non-terminals
- L(G) is the language produced by the grammar G
 - All strings consisting of only terminals that can be produced by G
 - In our example, L(G) = a+b+
 - The language of a context-free grammar is a context-free language
 - All regular languages are context-free, but not vice versa

Why is this useful?

```
statement → statement; statement
statement \rightarrow if stmt;
statement \rightarrow while loop;
statement \rightarrow id = lit;
statement \rightarrow id = id + id;
if_stmt → if (cond_expr) then statement
while loop → while (cond expr) statment
cond expr \rightarrow id < lit
```

Programming language syntax

- Programming language syntax is defined with CFGs
- Constructs in language become non-terminals
 - May use auxiliary non-terminals to make it easier to define constructs

```
if_stmt \rightarrow if ( cond_expr ) then statement else_part else_part \rightarrow else statement else_part \rightarrow \lambda
```

Tokens in language become terminals

Parse trees

- Tree which shows how a string was produced by a language
 - Interior nodes of tree: nonterminals
 - Children: the terminals and non-terminals generated by applying a production rule
 - Leaf nodes: terminals

Leftmost derivation

- Rewriting of a given string starts with the leftmost symbol
- Exercise: do a leftmost derivation of the input program

$$F(V + V)$$

using the following grammar:

Е	\rightarrow	Prefix (E)
E	\rightarrow	V Tail
Prefix	\rightarrow	F
Prefix	\rightarrow	λ
Tail	→	+ E
Tail	\rightarrow	λ

• What does the parse tree look like?

Rightmost derivation

- Rewrite using the rightmost non-terminal, instead of the left
- What is the rightmost derivation of this string?

$$F(V + V)$$

E	\rightarrow	Prefix (E)
Е	\rightarrow	V Tail
Prefix	\rightarrow	F
Prefix	\rightarrow	λ
Tail	→	+ E
Tail	\rightarrow	λ

Simple conversions

$$A \rightarrow B \mid C$$

$$D \rightarrow E \mid F$$

$$D \rightarrow E \mid F$$

$$D \rightarrow A$$

$$D \rightarrow A$$

Top-down vs. Bottom-up parsers

- Top-down parsers expand the parse tree in pre-order
 - Identify parent nodes before the children
- Bottom-up parsers expand the parse tree in post-order
 - Identify children before the parents
- Notation:
 - LL(I):Top-down derivation with I symbol lookahead
 - LL(k):Top-down derivation with k symbols lookahead
 - LR(I): Bottom-up derivation with I symbol lookahead

What is parsing

- Parsing is recognizing members in a language specified/ defined/generated by a grammar
- When a construct (corresponding to a production in a grammar) is recognized, a typical parser will take some action
 - In a compiler, this action generates an intermediate representation of the program construct
 - In an interpreter, this action might be to perform the action specified by the construct. Thus, if *a+b* is recognized, the value of *a* and *b* would be added and placed in a temporary variable

Top-down parsing

Top-down parsing

- Idea: we know sentence has to start with initial symbol
- Build up partial derivations by <u>predicting</u> what rules are used to expand non-terminals
 - Often called predictive parsers
- If partial derivation has terminal characters, match them from the input stream

$$S \rightarrow A B c$$
\$

$$A \rightarrow x a A$$

$$A \rightarrow y a A$$

$$A \rightarrow c$$

$$B \rightarrow b$$

 $B \rightarrow b$ • A sentence in the grammar:

$$\mathsf{B} o \lambda$$

$$B \rightarrow \lambda$$
 x a c c \$

 $B \rightarrow \lambda$

$$S \rightarrow A B c$$
 $A \rightarrow x a A$

special "end of input" symbol

 $A \rightarrow y a A$
 $A \rightarrow c$
 $B \rightarrow b$

• A sentence in the grammar:

xacc\$

$$S \rightarrow A B c$$
\$
$$A \rightarrow x a A$$

$$A \rightarrow y a A$$

$$A \rightarrow c$$

$$B \rightarrow b$$

• A sentence in the grammar:

$$B \rightarrow \lambda$$
 x a c c \$

Current derivation: S

$$S \rightarrow A B c$$
\$

$$A \rightarrow x a A$$

$$A \rightarrow y a A$$

$$A \rightarrow c$$

$$B \rightarrow b$$

 $B \rightarrow b$ • A sentence in the grammar:

$$B \rightarrow \lambda$$

 $B \rightarrow \lambda$ xacc\$

Current derivation: A B c \$

Predict rule

$$S \rightarrow A B c$$
\$

Choose based on first set of rules

$$A \rightarrow x a A$$

$$A \rightarrow y a A$$

$$A \rightarrow c$$

- $B \rightarrow b$ A sentence in the grammar:
- $B \rightarrow \lambda$ xacc\$

Current derivation: x a A B c \$

Predict rule based on next token

$$S \rightarrow A B c$$
\$

$$A \rightarrow x a A$$

$$A \rightarrow y a A$$

$$A \rightarrow c$$

$$B \rightarrow b$$

 $B \rightarrow b$ • A sentence in the grammar:

$$B \rightarrow \lambda$$
 x a c c \$

Current derivation: x a A B c \$

Match token

$$S \rightarrow A B c$$
\$

$$A \rightarrow x a A$$

$$A \rightarrow y a A$$

$$A \rightarrow c$$

$$B \rightarrow b$$

 $B \rightarrow b$ • A sentence in the grammar:

$$B \rightarrow \lambda$$
 x a c c \$

Current derivation: x a A B c \$

Match token

$$S \rightarrow A B c$$
\$

Choose based on first set of rules

$$A \rightarrow x a A$$

$$A \rightarrow y a A$$

$$A \rightarrow c$$

- $B \rightarrow b$ A sentence in the grammar:
- $B \rightarrow \lambda$ xacc\$

Current derivation: x a c B c \$

Predict rule based on next token

$$S \rightarrow A B c$$
\$

$$A \rightarrow x a A$$

$$A \rightarrow y a A$$

$$A \rightarrow c$$

$$B \rightarrow b$$

 $B \rightarrow b$ • A sentence in the grammar:

$$B \rightarrow \lambda$$
 x a c c \$

Current derivation: x a c B c \$

Match token

Choose based on follow set

$$A \rightarrow x a A$$

$$A \rightarrow y a A$$

$$A \rightarrow c$$

$$B \rightarrow b$$

$$A \rightarrow c$$

Current derivation: \times a c λ c \$

Predict rule based on next token

$$S \rightarrow A B c$$
\$

$$A \rightarrow x a A$$

$$A \rightarrow y a A$$

$$A \rightarrow c$$

$$B \rightarrow b$$

 $B \rightarrow b$ • A sentence in the grammar:

$$B \rightarrow \lambda$$
 x a c c \$

Current derivation: x a c c \$

Match token

$$S \rightarrow A B c$$
\$

$$A \rightarrow x a A$$

$$A \rightarrow y a A$$

$$A \rightarrow c$$

$$B \rightarrow b$$

 $B \rightarrow b$ • A sentence in the grammar:

$$B \rightarrow \lambda$$

 $B \rightarrow \lambda$ xacc\$

Current derivation: x a c c \$

Match token

First and follow sets

- First(α): the set of terminals (and/or λ) that begin all strings that can be derived from α
 - First(A) = $\{x, y, \lambda\}$
 - First(xaA) = $\{x\}$
 - First (AB) = $\{x, y, b\}$
- Follow(A): the set of terminals (and/ or \$, but no λs) that can appear immediately after A in some partial derivation
 - $Follow(A) = \{b\}$

$$S \rightarrow A B$$
\$

$$A \rightarrow x a A$$

$$A \rightarrow y a A$$

$$A \rightarrow \lambda$$

$$B \rightarrow b$$

First and follow sets

- First(α) = { $a \in V_t \mid \alpha \Rightarrow^* a\beta$ } $\cup \{\lambda \mid \text{if } \alpha \Rightarrow^* \lambda\}$
- Follow(A) = $\{a \in V_t \mid S \Rightarrow^+ ... Aa ...\} \cup \{\$ \mid \text{if } S \Rightarrow^+ ... A \$\}$

S: start symbol

a: a terminal symbol

A: a non-terminal symbol

 α,β : a string composed of terminals and

non-terminals (typically, α is the

RHS of a production

derived in 1 step

⇒*: derived in 0 or more steps

⇒⁺: derived in I or more steps

Computing first sets

- Terminal: $First(a) = \{a\}$
- Non-terminal: First(A)
 - Look at all productions for A

$$A \rightarrow X_1 X_2 ... X_k$$

- First(A) \supseteq (First(X₁) λ)
- If $\lambda \in First(X_1)$, $First(A) \supseteq (First(X_2) \lambda)$
- If λ is in First(X_i) for all i, then $\lambda \in First(A)$
- Computing First(α): similar procedure to computing First(A)

Exercise

 What are the first sets for all the non-terminals in following grammar:

$$S \rightarrow A B$$
\$

$$A \rightarrow x a A$$

$$A \rightarrow y a A$$

$$A \rightarrow \lambda$$

$$B \rightarrow b$$

$$B \rightarrow A$$

Computing follow sets

- Follow(S) = {}
- To compute Follow(A):
 - Find productions which have A on rhs. Three rules:
 - 1. $X \rightarrow \alpha A \beta$: Follow(A) \supseteq (First(β) λ)
 - 2. $X \rightarrow \alpha A \beta$: If $\lambda \in First(\beta)$, $Follow(A) \supseteq Follow(X)$
 - 3. $X \rightarrow \alpha A$: Follow(A) \supseteq Follow(X)
- Note: Follow(X) never has λ in it.

Exercise

What are the follow sets for

$$S \rightarrow A B$$
\$

$$A \rightarrow x a A$$

$$A \rightarrow y a A$$

$$A \rightarrow \lambda$$

$$B \rightarrow b$$

$$B \rightarrow A$$

Towards parser generators

- Key problem: as we read the source program, we need to decide what productions to use
- Step I: find the tokens that can tell which production P (of the form $A \rightarrow X_1X_2 ... X_m$) applies

$$\begin{cases}
\operatorname{First}(X_1 \dots X_m) & \text{if } \lambda \not\in \operatorname{First}(X_1 \dots X_m) \\
(\operatorname{First}(X_1 \dots X_m) - \lambda) \cup \operatorname{Follow}(A) & \text{otherwise}
\end{cases}$$

 If next token is in Predict(P), then we should choose this production

Parse tables

- Step 2: build a parse table
 - Given some non-terminal V_n (the non-terminal we are currently processing) and a terminal V_t (the lookahead symbol), the parse table tells us which production P to use (or that we have an error
 - More formally:

$$T:V_n \times V_t \rightarrow P \cup \{Error\}$$

Building the parse table

• Start:T[A][t] = //initialize all fields to "error"

foreach A:

foreach P with A on its Ihs:

foreach t in Predict(P):

$$T[A][t] = P$$

Exercise: build parse table for our toy grammar

$$I.S \rightarrow AB$$
\$

$$2.A \rightarrow x a A$$

$$3.A \rightarrow yaA$$

$$4.A \rightarrow \lambda$$

$$5.B \rightarrow b$$

Stack-based parser for LL(I)

- Given the parse table, a stack-based algorithm is much simpler to generate than a recursive descent parser
- Basic algorithm:
 - I. Push the RHS of a production onto the stack
 - 2. Pop a symbol, if it is a terminal, match it
 - 3. If it is a non-terminal, take its production according to the parse table and go to I
- Note: always start with start state

An example

I. $S \rightarrow A B$ \$

2. $A \rightarrow x a A$

3. $A \rightarrow y a A$

4. $A \rightarrow \lambda$

5. $B \rightarrow b$

How would a stack-based parser parse:

xayab

Parse stack	Remaining input	Parser action
S	xayab\$	predict l
A B \$	xayab\$	predict 2
xaAB\$	xayab\$	match(x)
a A B \$	ayab\$	match(a)
A B \$	y a b \$	predict 3
y a A B \$	y a b \$	match(y)
a A B \$	a b \$	match(a)
A B \$	b \$	predict 4
В\$	b \$	predict 5
b \$	b \$	match(b)
\$	\$	Done!

Dealing with semantic actions

- When a construct (corresponding to a production in a grammar) is recognized, a typical parser will invoke a semantic action
 - In a compiler, this action generates an intermediate representation of the program construct
 - In an interpreter, this action might be to perform the action specified by the construct. Thus, if *a+b* is recognized, the value of *a* and *b* would be added and placed in a temporary variable

Dealing with semantic actions

- We can annotate a grammar with action symbols
 - Tell the parser to invoke a semantic action routine
- Can simply push action symbols onto stack as well
- When popped, the semantic action routine is called
 - Routine manipulates semantic records on a stack
 - Can generate new records (e.g., to store variable info)
 - Can generate code using existing records
- Example: semantic actions for x = a + 3

```
statement ::= ID = expr #assign
expr ::= term + term #addop
term ::= ID | LITERAL
```

Non-LL(I) grammars

- Not all grammars are LL(I)!
- Consider

```
<stmt> → if <expr> then <stmt list> endif
<stmt> → if <expr> then <stmt list> else <stmt list> endif
```

- This is not LL(I) (why?)
- We can turn this in to

```
<stmt> → if <expr> then <stmt list> <if suffix> <if suffix> → endif
<if suffix> → else <stmt list> endif
```

Left recursion

- Left recursion is a problem for LL(I) parsers
 - LHS is also the first symbol of the RHS
- Consider:

$$E \rightarrow E + T$$

• What would happen with the stack-based algorithm?

Removing left recursion

LL(k) parsers

- Can look ahead more than one symbol at a time
 - k-symbol lookahead requires extending first and follow sets
 - 2-symbol lookahead can distinguish between more rules:

$$A \rightarrow ax \mid ay$$

- More lookahead leads to more powerful parsers
- What are the downsides?

Are all grammars LL(k)?

No! Consider the following grammar:

$$S \rightarrow E$$
 $E \rightarrow (E + E)$
 $E \rightarrow (E - E)$
 $E \rightarrow x$

- When parsing E, how do we know whether to use rule 2 or 3?
 - Potentially unbounded number of characters before the distinguishing '+' or '-' is found
 - No amount of lookahead will help!

In real languages?

- Consider the if-then-else problem
- if x then y else z
- Problem: else is optional
- if a then if b then c else d
 - Which if does the else belong to?
- This is analogous to a "bracket language": $[i]^j$ ($i \ge j$)

Solving the if-then-else problem

- The ambiguity exists at the language level. To fix, we need to define the semantics properly
 - "] matches nearest unmatched ["
 - This is the rule C uses for if-then-else
 - What if we try this?

```
S \rightarrow [S \\ S \rightarrow SI \\ SI \rightarrow [SI] \\ SI \rightarrow \lambda
```

This grammar is still not LL(I) (or LL(k) for any k!)

Two possible fixes

- If there is an ambiguity, prioritize one production over another
 - e.g., if C is on the stack, always match "]" before matching " λ "

$$S \rightarrow [SC]$$

$$S \rightarrow \lambda$$

$$C \rightarrow J$$

$$C \rightarrow \lambda$$

- Another option: change the language!
 - e.g., all if-statements need to be closed with an endif

```
S \rightarrow if S E
S \rightarrow other
E \rightarrow else S endif
E \rightarrow endif
```

Parsing if-then-else

- What if we don't want to change the language?
 - C does not require { } to delimit single-statement blocks
- To parse if-then-else, we need to be able to look ahead at the entire rhs of a production before deciding which production to use
 - In other words, we need to determine how many "]" to match before we start matching "["s
- LR parsers can do this!

LR Parsers

- Parser which does a Left-to-right, Right-most derivation
 - Rather than parse top-down, like LL parsers do, parse bottom-up, starting from leaves
- Basic idea: put tokens on a stack until an entire production is found
- Issues:
 - Recognizing the endpoint of a production
 - Finding the length of a production (RHS)
 - Finding the corresponding nonterminal (the LHS of the production)

LR Parsers

Basic idea:

- shift tokens onto the stack. At any step, keep the set of productions that could generate the read-in tokens
- reduce the RHS of recognized productions to the corresponding non-terminal on the LHS of the production. Replace the RHS tokens on the stack with the LHS non-terminal.

Data structures

- At each state, given the next token,
 - A goto table defines the successor state
 - An action table defines whether to
 - shift put the next state and token on the stack
 - reduce an RHS is found; process the production
 - terminate parsing is complete

Simple example

I.
$$P \rightarrow S$$

2.
$$S \rightarrow x$$
; S

3.
$$S \rightarrow e$$

		Symbol				
		X	•	ω	Р	S
State	0	1		3		5
			2			
	2			3		4
	3					
	4					
	5					

Action
Shift
Shift
Shift
Reduce 3
Reduce 2
Accept

Parsing using an LR(0) parser

- Basic idea: parser keeps track, simultaneously, of all possible productions that could be matched given what it's seen so far. When it sees a full production, match it.
- Maintain a parse stack that tells you what state you're in
 - Start in state 0
- In each state, look up in action table whether to:
 - shift: consume a token off the input; look for next state in goto table; push next state onto stack
 - reduce: match a production; pop off as many symbols from state stack as seen in production; look up where to go according to non-terminal we just matched; push next state onto stack
 - accept: terminate parse

Example

• Parse "x;x;e"

Step	Parse Stack	Remaining Input	Parser Action
I	0	x;x;e	Shift I
2	0 1	;x;e	Shift 2
3	0 1 2	x ; e	Shift I
4	0 1 2 1	; e	Shift 2
5	0 1 2 1 2	е	Shift 3
6	0 1 2 1 2 3		Reduce 3 (goto 4)
7	012124		Reduce 2 (goto 4)
8	0 1 2 4		Reduce 2 (goto 5)
9	0 5		Accept

LR(k) parsers

- LR(0) parsers
 - No lookahead
 - Predict which action to take by looking only at the symbols currently on the stack
- LR(k) parsers
 - Can look ahead k symbols
 - Most powerful class of deterministic bottom-up parsers
 - LR(I) and variants are the most common parsers

Terminology for LR parsers

Configuration: a production augmented with a "•"

$$A \rightarrow X_1 \dots X_i \bullet X_{i+1} \dots X_i$$

- The "•" marks the point to which the production has been recognized. In this case, we have recognized X₁ ... X_i
- Configuration set: all the configurations that can apply at a given point during the parse:

$$A \rightarrow B \cdot CD$$

 $A \rightarrow B \cdot GH$

$$T \rightarrow B \cdot Z$$

 Idea: every configuration in a configuration set is a production that we could be in the process of matching

Configuration closure set

- Include all the configurations necessary to recognize the next symbol after the •
- For each configuration in set:
 - If next symbol is terminal, no new configuration added
 - If next symbol is non-terminal X, for each production of the form $X \to \alpha$, add configuration $X \to \bullet \alpha$

```
S \rightarrow E \$

E \rightarrow E + T \mid T

T \rightarrow ID \mid (E)
```

```
closure0({S → • E $}) = {
    S → • E $
    E → • E + T
    E → • T
    T → • ID
    T → • (E)
}
```

Successor configuration set

• Starting with the initial configuration set

```
s0 = closure0({S \rightarrow • \alpha $}) an LR(0) parser will find the successor given the next symbol X
```

- X can be either a terminal (the next token from the scanner) or a non-terminal (the result of applying a reduction)
- Determining the successor s' = go_to0(s, X):
 - For each configuration in s of the form $A \to \beta \cdot X \gamma$ add $A \to \beta X \cdot \gamma$ to t
 - s' = closure0(t)

CFSM

- CFSM = Characteristic Finite State Machine
- Nodes are configuration sets (starting from s0)
- Arcs are go_to relationships

Building the goto table

• We can just read this off from the CFSM

		Symbol		
		₽	\$	S
State	0	Ι		2
	Ι			
	2		3	
	3			

Building the action table

- Given the configuration set s:
 - We shift if the next token matches a terminal after the in some configuration
 - $A \rightarrow \alpha \cdot a \beta \in s$ and $a \in V_t$, else error
 - We reduce production P if the is at the end of a production
 - $B \rightarrow \alpha \cdot \in s$ where production P is $B \rightarrow \alpha$
 - Extra actions:
 - shift if goto table transitions between states on a nonterminal
 - accept if we have matched the goal production

Action table

State	0	Shift	
	I	Reduce 2	
	2	Shift	
	3	Accept	

Conflicts in action table

- For LR(0) grammars, the action table entries are unique: from each state, can only shift or reduce
- But other grammars may have conflicts
 - Reduce/reduce conflicts: multiple reductions possible from the given configuration
 - Shift/reduce conflicts: we can either shift or reduce from the given configuration

Shift/reduce conflict

Consider the following grammar:

$$S \rightarrow A y$$

 $A \rightarrow x \mid xx$

 This leads to the following configuration set (after shifting one "x":

$$A \rightarrow x \bullet x$$

Can shift or reduce here

Shift/reduce example (2)

Consider the following grammar:

$$S \rightarrow Ay$$

 $A \rightarrow \lambda \mid x$

• This leads to the following initial configuration set:

$$S \rightarrow A y$$

$$A \rightarrow x$$

$$A \rightarrow \lambda \bullet$$

Can shift or reduce here

Lookahead

- Can resolve reduce/reduce conflicts and shift/reduce conflicts by employing lookahead
 - Looking ahead one (or more) tokens allows us to determine whether to shift or reduce
 - (cf how we resolved ambiguity in LL(1) parsers by looking ahead one token)

Semantic actions

- Recall: in LL parsers, we could integrate the semantic actions with the parser
 - Why? Because the parser was predictive
- Why doesn't that work for LR parsers?
 - Don't know which production is matched until parser reduces
- For LR parsers, we put semantic actions at the end of productions
 - May have to rewrite grammar to support all necessary semantic actions

Parsers with lookahead

- Adding lookahead creates an LR(I) parser
 - Built using similar techniques as LR(0) parsers, but uses lookahead to distinguish states
 - LR(I) machines can be much larger than LR(0) machines, but resolve many shift/reduce and reduce/reduce conflicts
 - Other types of LR parsers are SLR(I) and LALR(I)
 - Differ in how they resolve ambiguities
 - yacc and bison produce LALR(I) parsers

LR(I) parsing

 Configurations in LR(I) look similar to LR(0), but they are extended to include a lookahead symbol

$$A \rightarrow X_1 \dots X_i \cdot X_{i+1} \dots X_j$$
, I (where $I \in V_t \cup \lambda$)

 If two configurations differ only in their lookahead component, we combine them

$$A \to X_1 ... X_i \bullet X_{i+1} ... X_j , \{I_1 ... I_m\}$$

Building configuration sets

To close a configuration

$$B \rightarrow \alpha \cdot A \beta, I$$

- Add all configurations of the form $A \rightarrow \bullet \gamma$, u where $u \in First(\beta I)$
- Intuition: the lookahead symbol for any configuration is the terminal we expect to see after the configuration has been matched
 - The parse could apply the production for A, and the lookahead after we apply the production should match the next token that would be produced by B

Example

```
S \rightarrow E 

E \rightarrow E + T | T

T \rightarrow ID | (E)
```

closure I ($\{S \rightarrow \bullet E \$, \{\lambda\}\}\) =$
$S \rightarrow \bullet E \$, \{\lambda\}$
E → • E + T, {\$}
E → • T, {\$}
$T \rightarrow \bullet ID, \{\$\}$
$T \rightarrow \bullet (E), \{\$\}$
E → • E + T, {+}
E → • T, {+}
T → • ID, {+}
$T \rightarrow \bullet (E), \{+\}$

Building goto and action tables

- The function goto I (configuration-set, symbol) is analogous to goto 0 (configuration-set, symbol) for LR(0)
 - Build goto table in the same way as for LR(0)
- Key difference: the action table.

$$action[s][x] =$$

• reduce when • is at end of configuration and $x \in$ lookahead set of configuration

$$A \rightarrow \alpha \bullet, \{... \times ...\} \in s$$

shift when • is before x

$$A \rightarrow \beta \cdot x \gamma \in s$$

Example

• Consider the simple grammar:

Action and goto tables

	begin	end	;	SimpleStmt	\$	<pre><pre><pre><pre><pre><pre><pre><pre></pre></pre></pre></pre></pre></pre></pre></pre>	<stmts></stmts>
0	S / I						
1	S / 4	R4		S / 5			S / 2
2		S / 3					
3					Α		
4	S / 4	R4		S / 5			S/7
5			S / 6				
6	S / 4	R4		S / 5			S / 10
7		S / 8					
8			S / 9				
9	S / 4	R4		S / 6			S/II
10		R2					
П		R3					

Parse: begin SimpleStmt; SimpleStmt; end \$

Step	Parse Stack	Remaining Input	Parser Action
1	0	begin S;S;end\$	Shift I
2	0 1	S;S;end\$	Shift 5
3	0 1 5	; S ; end \$	Shift 6
4	0 5 6	S ; end \$	Shift 5
5	0 5 6 5	; end \$	Shift 6
6	015656	end \$	Reduce 4 (goto 10)
7	0 1 5 6 5 6 10	end \$	Reduce 2 (goto 10)
8	0 1 5 6 10	end \$	Reduce 2 (goto 2)
9	0 1 2	end \$	Shift 3
10	0 1 2 3	\$	Accept

Problems with LR(I) parsers

- LR(I) parsers are very powerful ...
 - But the table size is much larger than LR(0) as much as a factor of $|V_t|$ (why?)
 - Example: Algol 60 (a simple language) includes several thousand states!
- Storage efficient representations of tables are an important issue

Solutions to the size problem

- Different parser schemes
 - SLR (simple LR): build an CFSM for a language, then add lookahead wherever necessary (i.e., add lookahead to resolve shift/reduce conflicts)
 - What should the lookahead symbol be?
 - To decide whether to reduce using production $A \rightarrow \alpha$, use Follow(A)
 - LALR: merge LR states when they only differ by lookahead symbols