Módulo 3 – Espectroscopia de Ressonância Magnética Nuclear (RMN)

Parte 3 – Espectroscopia de RMN de ¹³C

Lucas Raposo Carvalho

Instituto de Física e Química (IFQ) Universidade Federal de Itajubá (UNIFEI)

QUI070 - Métodos Físicos de Análise, 2025.1

Sumário

- 1. O núcleo de ¹³C: abundância isotópica e sensibilidade
 - 2. Deslocamentos químicos de ¹³C
- 3. Acoplamento spin-spin ¹³C-¹H e espectros desacoplados
 - 4. Intensificação por efeito nuclear Overhauser (NOE)
- 5. Distortionless Enhancement by Polarization Transfer (DEPT)
 - 6. ¹³C e solventes deuterados
 - 7. Acoplamentos spin-spin ¹³C-¹⁹F e ¹³C-³¹P

1. O núcleo de ¹³C: abundância isotópica e sensibilidade

Análises de RMN de carbono possuem um grande problema devido à abundância isotópica do isótopo sensível à técnica.

Isótopo	p	n	I	Abundância isotópica (%)	$\gamma_{ m N}$ (10 ⁶ rad T ⁻¹ s ⁻¹)
¹² C	6	6	0	98,93	0
¹³ C	6	7	1/2	1,07	67,2828
¹⁴ C	6	8	0	Traço	0

Como a abundância isotópica do nuclídeo sensível é baixa, a **probabilidade** de existir em uma molécula também será baixa.

Espectros de RMN de ¹³C **não** serão oriundos de **uma única** molécula, pois a probabilidade de se encontrar um **segundo** ¹³C é desprezível.

1. O núcleo de ¹³C: abundância isotópica e sensibilidade

A intensidade de sinais de ¹³C é aproximadamente 6000 vezes menor que os observados para ¹H:

- 1. Abundância isotópica do 1 H (99,9885 %) é maior que do 13 C (1,07 %);
- 2. $\gamma_N(^1H) > \gamma_N(^{13}C)$. Então, o **excesso** de população para o ^{13}C é menor que para o 1 H, diminuindo a intensidade de M.

Solução: Aquisição de um número consideravelmente maior de espectros para ¹³C, o que é mais trivial atualmente com a transformada de Fourier.

Importante:
$$\gamma$$
 (¹H) $\sim 4 \times \gamma$ (¹³C)

300 MHz para ¹H: 75 MHz para ¹³C

$$\omega_0 = \frac{\gamma B_0}{2\pi}$$
 $\omega_0 (^1\text{H}) = \frac{\gamma (^1\text{H}) B_0}{2\pi} = \frac{(4 \times \gamma (^{13}\text{C})) B_0}{2\pi} = 4 \times \omega_0 (^{13}\text{C})$

1. O núcleo de ¹³C: abundância isotópica e sensibilidade

A **intensidade** de sinais é normalmente medida pela **razão sinal/ruído**, comumente chamada de SINO (*signal to noise ratio*):

$$\sin o = NT_2 \gamma_{\text{exc}} \left(\frac{\sqrt[3]{B_0 \times \gamma_{\text{det}}} \sqrt{ns}}{T} \right)$$

N: Número de spin (concentração da amostra);

 T_2 : Tempo de relaxação transversal (tamanho);

 $\gamma_{\rm exc}$: Razão magnetogírica do núcleo **excitado**;

 B_0 : Campo magnético do aparelho;

 $\gamma_{\rm exc}$: Razão magnetogírica do núcleo **detectado**;

ns: Número de scans (análises);

T: Temperatura da sonda;

2. Deslocamentos químicos de ¹³C

Para o 13 H, as diferenças entre deslocamentos químicos de diferentes nuclídeos pode ser observada em uma **janela espectral** de ~ 220 ppm.

2. Deslocamentos químicos de ¹³C

Para compostos carbonílicos, em específico, a faixa de 100 a 220 ppm pode ser subdividida em grupos funcionais específicos.

Como a abundância isotópica do 13 C é baixa (1,07 %), a probabilidade de se encontrar **dois** nuclídeos de 13 C **adjacentes** é excessivamente baixa.

Porém, como o ¹³C possui I=1/2, ele apresenta acoplamento spin-spin (J) heteronuclear com o ¹H e segue a regra do $\mathbf{n}+\mathbf{1}$.

$$n + 1 = 3$$
 (metilênico)

Espectros de ¹³C que mostram acoplamento spin-spin ¹³C–¹H são chamados de **acoplados** ou **não-desacoplados**.

Espectros de ¹³C com desacoplamento de ¹H (**desacoplados**) são muito mais comuns e reproduzem todos os sinais de ¹³C como **simpletos**.

A complexidade de espectros **desacoplados** em comparação com **acoplados** fica mais significativa quanto maior a complexidade da amostra.

O espectro **desacoplado** de ¹³C do benzoato de etila possui sinais na região de carbono aromático com intensidades diferentes.

A intensidade do sinal é proporcional ao número de hidrogênios ligados ao átomo de ¹³C.

Esse efeito é conhecimento como a intensificação do sinal pelo efeito nuclear Overhauser (NOE) que, nesse caso, é heteronuclear.

$$NOE_{max} = \frac{1}{2} \left(\frac{\gamma_{irr}}{\gamma_{obs}} \right)$$

NOE_{max}: Intensificação máxima observável

 $\mathrm{NOE_{max}} = rac{1}{2} \left(rac{\gamma_{irr}}{\gamma_{obs}}
ight) \left| egin{array}{ll} \gamma_{irr} : & Razão magnetogírica do nuclídeo irradiado \end{array}
ight|$

γ_{obs}: Razão magnetogírica do nuclídeo observado

A intensificação do sinal por NOE ocorre devido ao modo de **desacoplamento** do 13 C (rotina de desacoplamento do tipo *power gated decoupling*, ou **pg**).

Sequência de pulso:

Pulso duro

Desacoplamento

Delay de relaxação (D1)

Aquisição (FID, t₂)

Os núcleos de 1 H são **irradiados** (γ_{irr}) por uma frequência de desacoplamento durante **toda a sequência de pulso** e **aquisição**, fazendo com que os acoplamentos $^1J_{CH}$ sejam eliminados e intensificando os sinais de 13 C (γ_{obs}) pelo NOE.

A intensidade máxima do sinal (S_{\max}) será:

$$S_{\text{max}} = 1 + \text{NOE}_{\text{max}}$$

A intensificação de um sinal por NOE pode ocorrer para **qualquer par** de núcleos, desde que possuam γ diferentes.

É importante observar que o **sinal** de γ determina que um sinal pode ser **intensificado** ou **atenuado** (intensificação negativa).

Nuclídeo	$\gamma_{ m N}$ (10 6 rad T $^{-1}$ s $^{-1}$)	Abundância isotópica (%)
¹ H	267,522 187	99,98
¹³ C	67,2828	1,11
^{14}N	19,331	99,632
15 N	- 27,116	0,368
¹⁹ F	40,078	100
³¹ P	108,291	100

Embora o sinal de ¹³C seja **intensificado** pela irradiação do ¹H, ele seria **atenuado** caso núcleos de ¹⁵N fossem irradiados.

NOEs **homonucleares**, embora não produzam diferenças de **sinal**, são importantes para outros fenômenos.

Ao contrário de sinais de ¹H, os de ¹³C não costumam ser **integrados** por dois motivos:

1. A intensificação dos sinais por NOE reflete em uma intensidade de sinal e, portanto, um **área sob a curva** que não reflete, **apenas**, a quantidade de átomos com um determinado δ ;

$$S(CH_3) > S(CH_2) > S(CH) > S(C)$$

2. O **tempo de relaxação longitudinal** (T_1) de átomos de carbono é **variado** e experimentos não costumam usar o *delay* necessário para que **todos** os núcleos voltem ao estado fundamental. Isso reflete em uma quantidade imprecisa de núcleos pela integração.

$$T_1(1) = T_1(6) = T_1(7) = 9.3$$
 s Mecanismo principal de relaxação **longitudinal** (T_1) : dipolar (\mathbf{DD})

$$T_1(5) = T_1(8) = 9.8 \text{ s}$$

$$T_1(3) = 13 \text{ s}$$

$$T_1(4) = 23 \text{ s}$$

$$T_1(2) = 68 \text{ s}$$

$$\begin{array}{ccc} & & & & & \\ & & & \\ & & & \\ ^{13}\text{C} & ^{1}\text{H} & & & \\ & & & & \\ &$$

Quantidades e **distâncias** variadas de hidrogênios próximos a carbonos produzem T_1 s diferentes.

Embora os espectros de ¹³C **desacoplados** de ¹H forneçam uma <u>clareza</u> durante a análise, a informação da **multiplicidade** é perdida.

Muitas técnicas já foram desenvolvidas para manter a simplicidade do espectro e informar a multiplicidade dos sinais (SFORD, APT e INEPT).

Todavia, a técnica mais utilizada em análises estruturais corriqueiras é o DEPT (*Distortionless Enhancement by Polarization Transfer*), que envolve uma **intensificação** do sinal por **transferência de polarização** do ¹H para o ¹³C sem distorção da multiplicidade.

Como essa análise é costumeiramente feita com **desacoplamento**, o termo "distortionless" não é tão preciso, embora tenha sido mantido por usuários e espectroscopistas.

A técnica funciona com uma complexa **sequência de pulsos** que realiza os seguintes processos:

- 1. Promove a **irradiação** do 1H e a **transferência** da polarização (magnetização macroscópica, \mathbf{M}) para o ^{13}C ;
- 2. "Codifica" a multiplicidade do 13 C (metílico CH₃, metilênico CH₂, metínico CH, ou quaternário C) de acordo com o $J_{\rm CH}$.

A etapa crucial é a **codificação**, pois permite selecionar as **fases** de determinados tipos de carbono de acordo com suas multiplicidades e seus respectivos Js.

Pode-se pensar que cada tipo de carbono possui um valor de J específico e um tempo Δ pode ser utilizado em função desse J.

Parâmetro: ângulo θ baseado no J e no tempo de espera, Δ .

CH: $I \propto \sin \theta$

θ	45°	90°	135°
I	~ 0,71	1	~ 0,71

CH₂: $I \propto 2 \sin \theta \cos \theta$

θ	45°	90°	135°
I	1	0	-1

 $CH_3: I \propto 3\sin\theta\cos^2\theta$

θ	45°	90°	135°
I	~ 1	0	~ 1

Andrografolídeo

19 sinais de ¹³C

$$2 \times CH_3$$

$$7 \times CH_2$$

$$5 \times CH$$

DEPT-135

DEPT-90

DEPT-45

6. ¹³C e solventes deuterados

Espectros de RMN são adquiridos utilizando solventes deuterados (²H, D) na sua maioria por alguns motivos específicos:

1. Solventes estão presentes em maior **concentração** que o soluto. Logo, o conteúdo de ²H deve ser alto para que os sinais de ¹H da amostra não sejam **sobrepujados** pelos do solvente;

$$\gamma(^{1}H) = \underline{267,522\,187} \times 10^{6} \text{ rad } T^{-1} \text{ s}^{-1} \qquad \gamma(^{2}H) = \underline{41,065} \times 10^{6} \text{ rad } T^{-1} \text{ s}^{-1}$$

$$\gamma \text{ \'e diferente, } \omega_{0} \text{ ν_{rf} tamb\'em ser\~ao!}$$

2. A definição de **0 ppm** é mais precisa utilizando a frequência do ²H. Espectrômetros modernos podem fazer análises sem TMS, por exemplo.

6. ¹³C e solventes deuterados

3. A absorção do ${}^2\text{H}$ é usada como parâmetro para **estabilizar** (lock) a força do campo magnético.

6. ¹³C e solventes deuterados

Espectros de ¹³C apresentam padrões de **multiplicidade** específicos para determinados solventes, mesmo **desacoplado** de ¹H.

Como o ²H (D) **não** possui I = 1/2 (I = 1), DMSO- d_6 a regra do ${f n}$ + ${f 1}$ ${f n}{f a}{f o}$ se aplica, sendo necessário usar a regra genérica:

$$Multiplicidade = (2 \times n \times I) + 1$$

Onde n é o número de núcleos equivalentes ligados ao de interesse e I é o número quântico de spin deles.

$$D_3CS(O)CD_3 \rightarrow (2 \times 3 \times 1) + 1 = 7 \text{ (sept)}$$
 $CDCl_3 \rightarrow (2 \times 1 \times 1) + 1 = 3 \text{ (t)}$

7. Acoplamentos spin-spin ¹³C-¹⁹F e ¹³C-³¹P

Núcleos de 13 C podem mostrar acoplamento escalar (spin-spin), J, com dois nuclídeos principais — 19 F e 31 P.

Esses nuclídeos possuem características importantes para a RMN:

Nuclídeo	I	$\gamma_{ m N}$ (10 6 rad T $^{-1}$ s $^{-1}$)	Abundância isotópica (%)
¹ H	1/2	267,522 187	99,98
^{2}H	1	41,065	0,0115
¹³ C	1/2	67,2828	1,11
¹⁹ F	1/2	40,078	100
³¹ P	1/2	108,291	100

Além disso, são nuclídeos comumente encontrados em moléculas orgânicas simples e biomoléculas, como fosfolipídeos de membrana (^{31}P).

7. Acoplamentos spin-spin ¹³C-¹⁹F e ¹³C-³¹P

Os acoplamentos $^{13}\text{C-}^{19}\text{F}$ resultam em multiplicidades iguais aos observados para $^{1}\text{H-}^{1}\text{H}$ e $^{1}\text{H-}^{19}\text{F}$, seguindo a regra $\mathbf{n}+\mathbf{1}$ (I=1/2).

7. Acoplamentos spin-spin ¹³C-¹⁹F e ¹³C-³¹P

Os acoplamentos $^{13}\text{C-}^{31}\text{P}$ resultam em multiplicidades iguais aos observados para $^{1}\text{H-}^{1}\text{H}$, seguindo a regra $\mathbf{n}+\mathbf{1}$ (I=1/2).

As constantes de acoplamento J_{CP} variam bruscamente com o estado de oxidação do fósforo, número de ligações e ambiente eletrônico.