

Método de regressão linear aplicado ao dataset *Students*Performance in Exams

João Cunha (202103227)

Roberto Pinto (202104006)

1. Introdução

O sucesso escolar no ensino secundário é um tema com bastante relevância nos dias de hoje. Sendo um requisito praticamente obrigatória nos países da Europa Ocidental, este ensino situa-se entre o ensino universitário e a escolaridade básica. Sendo que, os sistemas educativos atuais são muito importantes para os jovens de todo o mundo, tendo um impacto crucial na vida dos estudantes, através da qual são feitas escolhas importantíssimas para o seu futuro pessoal e profissional.

Embora o estudo das variáveis associadas ao desempenho escolar tenha sido, historicamente, uma preocupação mundial, como é referido na publicação de Coleman (1966) (1), o papel central das variáveis socioeconômicas e a relevância das práticas e políticas escolares, deu início a uma pesquisa linha cuja relevância se estende por mais de cinco décadas, sendo ainda muito relevante nos dias de hoje. Apesar de, existirem muitas fontes diferentes de dados para a realização deste tipo de estudos com variáveis relacionadas ao desempenho dos alunos, as avaliações em larga escala demonstraram ser uma fonte valiosa, devido ao grande volume de variáveis e observações que oferecem aos investigadores. (2)

Para a avaliação destes fatores condicionam os resultados de grande maioria dos estudantes é possível recorrer a vários tipos de análises. Neste trabalho recorremos à utilização da Regressão Linear, avaliando 8 variáveis características de todo o tipo de alunos, mais concretamente: Género, Etnicidade, Educação Parental, Almoço, Curso de preparação para o teste, Notas de matemática, Pontuação de leitura e Pontuação de escrita. Esta mesma análise permitiu-nos retirar conclusões muito relevantes em relação à dependência e efeito destas variáveis no valor das "Notas de Matemática", tomando-a como o *target* deste modelo estatístico.

2. Descrição do dataset Students Performance in Exams

Este conjunto de dados consiste numa amostra de 1000 alunos e pretende perceber o desempenho dos estudantes em várias disciplinas tendo em conta vários aspetos, como a preparação de cada aluno para um teste e a situação académica familiar.

As variáveis descritas neste dataset são:

• Género: Masculino ou feminino

• Etnicidade: 5 grupos (A, B, C, D, E)

Educação Parental: 6 grupos (Algum Secundário, Ensino Secundário,
 Diploma Associado, Alguma Faculdade, Licenciatura, Mestrado)

Almoço: 2 grupos (Grátis/Reduzido, Padrão)

Curso de preparação para o teste: 2 grupos (Completo, Nenhum)

• Notas de matemática: de 0 a 100

Pontuação de leitura: de 0 a 100

Pontuação de escrita: de 0 a 100

Assim sendo, este trabalho tem como finalidade perceber o impacto que todas as variáveis descritas têm nas notas de matemática e conseguir um modelo de regressão linear que demonstre a relação entre as várias variáveis.

^	Gender [‡]	Race	Parent_Education	‡ Lunch ‡	Test_Prep	Math_Score	Reading_Score	Writing_Score
1	female	group B	bachelor's degree	standard	none	72	72	74
2	female	group C	some college	standard	completed	69	90	88
3	female	group B	master's degree	standard	none	90	95	93
4	male	group A	associate's degree	free/reduced	none	47	57	44
5	male	group C	some college	standard	none	76	78	75
6	female	group B	associate's degree	standard	none	71	83	78
7	female	group B	some college	standard	completed	88	95	92
8	male	group B	some college	free/reduced	none	40	43	39
9	male	group D	high school	free/reduced	completed	64	64	67
10	female	group B	high school	free/reduced	none	38	60	50
11	male	group C	associate's degree	standard	none	58	54	52
12	male	group D	associate's degree	standard	none	40	52	43
13	female	group B	high school	standard	none	65	81	73
14	male	group A	some college	standard	completed	78	72	70
15	female	group A	master's degree	standard	none	50	53	58
16	female	group C	some high school	standard	none	69	75	78
17	male	group C	high school	standard	none	88	89	86
18	female	group B	some high school	free/reduced	none	18	32	28
19	male	group C	master's degree	free/reduced	completed	46	42	46
20	female	group C	associate's degree	free/reduced	none	54	58	61
21	male	group D	high school	standard	none	66	69	63
22	female	group B	some college	free/reduced	completed	65	75	70
23	male	group D	some college	standard	none	44	54	53
24	female	group C	some high school	standard	none	69	73	73
25	male	group D	bachelor's degree	free/reduced	completed	74	71	80
26	male	group A	master's degree	free/reduced	none	73	74	72

Figura 1:Dataset Students Performance in Exams

3. Descrição das variáveis explicativas

3.1. Género

Barplot: Género

Frequências absolutas e relativas			
Feminino	Masculino		
518 (52%)	482 (48 %)		

Tabela 1:Descrição do Género

3.2. Etnicidade

Barplot:Etnicidade

Frequências absolutas e relativas					
Α	В	С	D	E	
89 (9%)	190 (19%)	319 (32%)	262 (26%)	140 (14%)	

Tabela 2:Descrição da Etnicidade

3.3. Educação Parental

Barplot:Educação parental

Educação Parental

Frequências absolutas e relativas					
Diploma Associado	Licenciatura	Ensino Secundário	Mestrado	Alguma Faculdade	Algum Secundário
222 (22%)	118 (12%)	196 (20%)	59 (6%)	226 (22%)	179 (18%)

Tabela 3:Descrição da Educação Parental

3.4. Almoço

Barplot: Almoço

Frequências absolutas e relativas			
Grátis/Reduzido	Padrão		
355 (36%)	645 (64 %)		

Tabela 4:Descrição do Almoço

3.5. Curso de Preparação para o teste

Barplot: Curso de preparação para o teste

Frequências absolutas e relativas			
Completo	Nenhum		
358 (36%)	642 (64%)		

Tabela 5:Descrição do Curso de Preparação para o Teste

3.6. Notas de Matemática

 Mínimo:
 0.00

 Máximo:
 100.00

 Mediana:
 66.00

Média: 66.089

Desvio padrão: 15.16308

Tabela 6:Descrição das Notas de Matemática

3.7. Pontuação de Leitura

Mínimo: 0.00 Máximo: 100.00 Mediana: 70.00

Média: 69.169

Desvio padrão: 14.60019

Tabela 7:Descrição da Pontuação de Leitura

3.8. Pontuação de Escrita

 Mínimo:
 0.00

 Máximo:
 100.00

 Mediana:
 69.00

Média: 68.054

Desvio padrão: 15.19566

Tabela 8:Descrição da Pontuação de Escrita

4. Correlação entre variáveis

Para realizar a correlação entre todas as variáveis desta amostra, ou seja 8 variáveis (Género, Etnicidade, Educação Parental, Almoço, Curso de preparação para o teste, Notas de matemática, Pontuação de leitura, Pontuação de escrita), foi necessário transformar as 5 variáveis categóricas em variáveis numéricas, com o recurso à função as.numeric().

```
#Transformar variáveis categóricas em numéricas
#1:Rapariga, 2: Rapaz
data$gender1 <- as.numeric(factor(data$Gender))
# GroupA, GroupB, GroupC, GroupD =(1,2,3,4)
data$Race1<- as.numeric(factor(data$Race))
# parental level of education (1,2,3,4,5,6)
#('some high school','high school',"associate's degree",'some college',"bachelor's deg data$Parent_Education1 <- as.numeric(factor(data$Parent_Education,levels=c('some high s' lunch
data$Lunch1 <- as.numeric(factor(data$Lunch, levels=c("standard",'free/reduced')))
#preparation course
data$Test_Prep1 <- as.numeric(factor(data$Test_Prep, levels =c('none','completed')))
data1 <- data[,6:13]</pre>
```

Apenas após este passo foi possível realizar a correlação entre as variáveis.

Figura 2: Matriz de Correlação entre as variáveis

Lunch1

Através da observação da matriz de correlação é possível perceber que as variáveis com maior correlação entre si são: Notas de matemática, Pontuação da leitura e Pontuação da escrita.

4.1. Gráficos de dispersão entre as variáveis com maior correlação

Um gráfico de dispersão mostra a relação entre duas variáveis quantitativas medidas para os mesmos indivíduos. Os valores de uma variável aparecem no eixo

horizontal e os valores da outra variável aparecem no eixo vertical. Cada indivíduo nos dados aparece como um ponto no gráfico. (3)

Figura 3:Gráficos de Dispersão entre as 3 variáveis

Em ambos os casos as duas variáveis têm uma associação positiva visto que tanto os valores acima da média como os valores abaixo da média tendem a ocorrer "juntos", seguem uma tendência semelhante.

Além disso demonstram uma relação linear, devido à forma do gráfico. Isso significa que os pontos no gráfico de dispersão são semelhantes a uma linha reta. Uma relação é linear se uma variável aumenta aproximadamente na mesma taxa que as outras variáveis mudam gradualmente.

4.2. Gráficos de Densidade

Realizamos também os gráficos de densidade para estas três variáveis, evidenciando ainda mais a sua relação e linearidade.

Figura 4: Gráficos de Densidade entre as 3 variáveis

É possível perceber, através destes gráficos, que a densidade máxima de alunos fica entre 50 e 90 pontos.

5. Discussão do modelo final selecionado

O conjunto de dados selecionado para este trabalho contém 8 variáveis, sendo que o y são as notas de matemática (*Math_Score*). Assim, para iniciar a regressão linear múltipla construiu-se um primeiro modelo onde constavam todas as variáveis. Esse modelo foi denominado de *model a*.

Através das funções *print()* e *summary()* conseguiu-se obter algumas informações sobre o modelo inicial (*model_a*).

Através dos resultados apresentados anteriormente, consegue-se afirmar que o R quadrado (R²) para este modelo é de 0,8767. Ainda, é possível verificar o nível de significância de cada variável, através do *p-value* dado pela linha *Signif. Codes*, em que se esse valor for inferior a 0.05, significa que essa variável não é significativa para o modelo e assim pode-se remover essa variável. É importante realçar que nas variáveis categóricas que tenham mais de que uma categoria, basta uma categoria satisfazer a condição *p-value* < 0.05, que essa variável passa a ser significativa para o modelo (4).

Observando então as figuras anteriores é possível verificar que a variável *Parent_Education*, em todas das categorias, tem um *p-value* superior a 0.05, podendo se então remover essa variável.

Assim sendo, procedeu-se á elaboração de um novo modelo, o model_b, onde se removeu a variável *Parent_Education* e que consiste em 6 variáveis (*Reading_Score, Writing_Score, Gender, Race, Lunch, Test_Prep*).

De seguida, e como foi feito para o modelo inicial (model_a), utilizou-se a função print() e summary() para obter informações relevantes sobre o model_b

No output de ambas as funções é possível verificar que o valor de R quadrado desceu ligeiramente (0.8748). No entanto, olhando novamente para os níveis de significância das variáveis, isto é, o *p-value*, percebe-se que todas as variáveis têm um valor inferior a 0.05, podendo concluir, por isso, que este é o modelo final da regressão linear deste conjunto de dados.

Após escolher o modelo é necessário proceder á avaliação da sua qualidade. Isto é possível através da função *anova()* e *plot()*, obtendo-se, assim, uma tabela de análise da variância das variáveis e também 4 gráficos relativos ao *model_b*, que podem ser observados de seguida.

Figura 5:Gráficos do model_b

Observando os gráficos do *model_b* é possível verificar que a normalidade dos resíduos, visto que no gráfico normal Q-Q, estes coincidem todos com uma linha diagonal, que representa a distribuição normal teórica e os pontos a distribuição teórica dos resíduos. Através dos restantes gráficos consegue-se perceber a ausência de um padrão no comportamento dos resíduos em relação ao modelo. Assim, devido á normalidade dos resíduos e á ausência de um comportamento padronizado pode-se inferir que este modelo (model_b) é um modelo homocedástico (5).

6. Apresentação da equação matemática do modelo

G: Gender

G0: female (referência); G1: male

Esta variável será representada por 1 *Dummy*:

G1: 1 - male; 0 - otherwise

L: Lunch

L0: Free/Reduced (referência); L1: standard

Esta variável é representada por 1 Dummy:

L1: 1- standard; 0 - otherwise

TP: Test_Prep

TP0: completed (referência); TP1: none

Esta variável é representada por 1 Dummy:

TP1: 1 - none; 0 - otherwise

R: Race

R0: group A (referência); R1: group B; R2: group C;

R3: group D; R4: group E

Esta variável é representada por 4 Dummys:

R1: 1 - group B; 0 - otherwise

R2: 1 – group C; 0 - otherwise

R3: 1 - group D; 0 - otherwise

R4: 1 – group E; 0 - otherwise

Math_Score =
$$\beta_0 + \beta_1$$
Reading_Score + β_2 Writing_Score + $\beta_3G1 + \beta_4R1 + \beta_5R2 + \beta_6R3$
+ $\beta_7R4 + \beta_8L1 + \beta_9TP1 + \mu, \mu \sim N(0, \sigma^2)$

7. Para uma variável continua X1 e uma variável categórica com mais de 2 categorias X2 que constem do modelo final

Para esta parte do trabalho, vai se considerar uma variável contínua, X1, que será a variável *Writing_Score* e uma variável categórica X2, que será a variável *Race*.

7.1. Interpretação do efeito bruto de Writing_Score e o efeito ajustado de Race.

Para se interpretar o efeito bruto da variável *Writing_Score* e o efeito ajustado de *Race*, tem-se que fazer um modelo de regressão linear simples apenas com essas varáveis (*model1* e *model2*) de modo a obter os efeitos brutos. De seguida, com o modelo selecionado (*model_b*) obtêm-se os efeitos ajustados.

Através da função *print* foi possível obter os coeficientes dos 3 modelos e assim perceber o efeito bruto e o efeito ajustado de ambas as variáveis, demonstrado na tabela abaixo.

	Efeito Bruto	Efeito ajustado
Writing_Score	0.8009	0.6669
Racegroup B	1.823	0.8766
Racegroup C	2.835	0.1335
Racegroup D	5.733	0.1143
Racegroup E	12.192	5.0305

Interpretação - efeitos brutos:

Olhando primeiro para a variável contínua *Writing_Score*, é possível afirmar que as notas de matemática (*Math_Score*) aumentam 0.801 pontos.

No que respeita a variável categórica *Race*, caso um aluno seja de uma etnia do grupo B, existe um aumento das notas de matemática em 1,82 pontos. Esse aumento é verificado para todos os grupos étnicos, sendo que no grupo C as notas de matemática aumentam 2,84 pontos, no grupo D 5,73 e no grupo E existe um aumento mais

acentuado com 12,19 pontos na nota de matemática. Caso o aluno seja do grupo étnico A, a sua nota de matemática será 61,63 pontos.

Interpretação – efeitos ajustados:

No que concerne a variável *Writing_Score*, mantendo as restantes variáveis *Reading_Score*, *Gender*, *Test_Prep*, *Lunch* e *Race* constantes e após ajustamento dessas variáveis, as notas de matemática aumentam 0,67 pontos.

Na variável categórica *Race*, mantendo as restantes variáveis *Reading_Score*, *Gender*, *Test_Prep*, *Lunch* e *Writing_Score* constantes e após ajustamento dessas variáveis, as notas de matemática podem aumentar 0.88, 0.13, 0.11 ou 5.03, se o aluno pertencer ao grupo étnico B, C, D ou E, respetivamente.

7.2. Determinação gráfica das bandas de confiança e de predição em função dos valores de *Writing_Score*, fixando os restantes preditores contínuos nos seus valores medianos e os categorias nas respetivas modas.

Para proceder à determinação gráfica das bandas de confiança e de predição em função dos valores de Writing_Score, é necessário fixar os preditores contínuos na sua mediana e os preditores categóricos na sua moda criando um novo dataframe (data3), como é possível verificar na figura a seguir. No entanto, é importante realçar que se procedeu á elaboração de um novo modelo, igual ao modelo selecionado (model_b), de modo a não alterar nada desse modelo.

Criou De seguida, elaborou-se a predição, através da função *predict()* e de seguida fez-se um gráfico com o resultado desta função, utilizando, posteriormente, a função *ggplot()*.

```
#Predicāo
par(mfrow=c(1, 1))
predict(model_b2, data3, interval='prediction', level = 0.95)
predict(model_b2, data3, interval='confidence', level = 0.95)
#Grafico da predicāo
pred <- predict(model_b2, data=data3, interval='prediction', level = 0.95)
library("ggplot2")
data4 <- cbind(data3,pred)
p <- ggplot(data4, aes(writing_Score, Math_Score)) + geom_point() + stat_smooth(method = lm)
p + geom_line(aes(y = lwr), color = "red", linetype = "dashed")+ geom_line(aes(y = upr), color = "red", linetype = "dashed")</pre>
```


Figura 6:Gráfico da Previsão

7.3. Interpretação o efeito provocado na resposta por uma mudança da terceira categoria de X2 para a segunda, e indique um intervalo de confiança a 95% para esse efeito.

```
\begin{aligned} & \text{Math\_Score} \ (\text{R1}) = \ \beta_0 + \beta_1 \text{Reading\_Score} + \ \beta_2 \text{Writing\_Score} + \beta_3 G 1 + \beta_4 R 1 + \beta_8 L 1 + \beta_9 T P 1 \\ & \text{Math\_Score} \ (\text{R2}) = \ \beta_0 + \beta_1 \text{Reading\_Score} + \ \beta_2 \text{Writing\_Score} + \beta_3 G 1 + \beta_5 R 2 + \beta_8 L 1 + \beta_9 T P 1 + \ \mu, \mu \sim N(0, \sigma^2) \\ & \text{Math\_Score} \ (\text{R2} - \text{R1}) = \beta_5 \text{R2} - \ \beta_4 \text{R1} \end{aligned}
```

A mudança da terceira categoria de Race para segunda categoria tem um efeito de $\beta_5 - \beta_4$ na resposta. Para verificar a significância do efeito provocado, procedeu-se a um *T-test* para a diferença de médias.

Para um nível de significância de α =0.05, não se pode rejeitar a hipótese nula, visto que o *p-value* é superior a 0,05 (0.4695), podendo afirmar, assim, que a média das notas de matemática do grupo étnico B é igual ás médias das notas de matemática do grupo étnico C.

7.4. Interpretação do efeito provocado por um aumento em X1 correspondente a dois desvios padrão dos seus valores.

Para se conseguir verificar o efeito provocado por um aumento correspondente a dois desvios padrão de *Writing_Score*, tem-se que usar a função *lm.beta()*. Aplicando esta função ao *model_b* obtém-se o seguinte resultado.

O coeficiente estandardizado de *Writing_Score* é 0.6683, significando que, sempre que a Pontuação da Escrita (*Writing_Score*) aumenta 1 desvio padrão, o modelo prevê um aumento das notas de matemática (*Math_Score*) em, aproximadamente, 0.67 desvios padrão, ajustando para. Sendo assim, mantendo as restantes variáveis, sempre que a Pontuação da Escrita (*Writing_Score*) aumenta 2 desvios padrão o modelo prevê um aumento das notas de matemática (*Math_Score*) em, aproximadamente, 1.34 desvios padrão.

7.5. Averiguação da existência de uma interação significativa entre Writing_Score e Race e interpretação dos efeitos estimados nessa interação.

Para averiguar a existência de uma interação significativa entre *Writing_Score* e *Race* foi criado um novo modelo, o *model3*.

Após se criar o modelo, e como se tem feito para os outros modelos, tem se procedido á verificação do modelo através das funções *print()* e *summary()*.

Para estudar a possível interação entre as variáveis *Writing_Score* e *Race* foi feito um gráfico.

O gráfico apresentado acima, sugere que poderá haver uma interação entre as variáveis *Writing_Score* e Race. No entanto, os termos de interação do modelo não são significativos.

Interpretação:

A Pontuação na Escrita (Writing_Score) faz aumentar 0.601 pontos nas notas de matemática, dependendo do grupo étnico a que o aluno pertence.

8. Referências Bibliográficas

- 1. COLEMAN JS JAN. O. EQUALITY OF EDUCATIONAL OPPORTUNITY. 1966.
- Sing Chai C, Van Den Noortgate W, Leuven Kulak K, Bo Ning B, Martínez-Abad F, Gamazo A. Citation: Gamazo A and Martínez-Abad F (2020) An Exploration of Factors Linked to Academic Performance in PISA 2018 Through Data Mining Techniques. Front Psychol. 2020;11:575167.
- 3. Marshall E. Scatterplots and correlation in SPSS SPSS. 2018.
- 4. Long J, Teetor P. R Cookbook [Internet]. 2019. Available from: https://rc2e.com/index.html
- Helena M. Tutorial Ajuste e Interpretação de Regressão Linear com R
 [Internet]. 2019. Available from: https://medium.com/data-hackers/tutorial-ajuste-e-interpretação-de-regressão-linear-com-r-5b23c4ddb72