CS F351 Theory of Computation Tutorial-10

Problem 1 Show that the following languages are not context-free.

1. $L = \{a^i b^j c^k \mid 0 \le i \le j \le k\}$

For a solution, please refer Michael Sipser, Theory of Computation.

2. $L = \{ww \mid w \in \{0, 1\}^*\}$

For a solution, please refer Michael Sipser, Theory of Computation.

3. $L = \{a^{n!} \mid n \ge 0\}$

Solution: Suppose L is context free. Pick m as pumping length and $s = a^{m!} = uvxyz$, whatever the decomposition it must be of the form $v = a^k, y = a^l$. Then for i = 0, |uxz| = m! - (k+l). In order to $uxz \in L$, m! - (k+l) = j! for some j. Since $k+l \le m$, m! - (k+l) > (m-1)!. Therefore it is impossible to find such a j.

4. $L = \{wtw^R \mid w, t \in \{0, 1\}^*, |w| = |t|\}$

Solution: Suppose L is context free. Pick p, and let $s = 0^{2p} 1^p 0^p 0^{2p} \in L$. Now, $uvxyz = 0^{2p} 1^p 0^p 0^{2p}$. With the condition $|vxy| \le p$ we have three cases to see.

Case 1: vy contains only 0's and it is choosen from 0^{2p} . Let i be a number with $7p > |vy| \times (i+1) \ge 6p$. Then either the length of $uv^i x y^i z$ is not multiple of 3, or this string is of the form wtw' such that |w| = |t| = |w'| with w' is all 0's and w is not all 0's $(w' \ne w)$.

Case 2: vy does not contain any 0's in the last 0^{2p} of s. Then either the length of uv^2xy^2z is not multiple of 3, or this string is of the form wtw' such that |w| = |t| = |w'| with w' is all 0's and w is not all 0's $(w' \neq w)$.

Case 3: vy is not all 0's and some 0s are form the last 0^{2p} of s. As $|vxy| \le p$, vxy is in the case must be substring of 1^p0^p . Then either the length of uv^2xy^2z is not multiple of 3, or this string is of the form wtw' such that |w| = |t| = |w'| with w' is all 0's and w is not all 0's $(w' \ne w)$.

There is no way s can satisfy pumping lemma.

Problem 2 Use CYK-algorithm to show that string (()()) can be generated by the grammar with the productions:

$$S \to SS \mid OS_1 \mid OC$$

$$S_1 \to SC$$

$$O \to ($$

$$C \to)$$

