Mirar los apuntes de Lorencio

Teorema de Wald

Consistencia

Sea $X \sim F(\cdot, \theta), \ \theta \in \Theta, \hat{\theta}_n$ es estimador de θ , definimos las siguientes operaciones:

$$P_{\theta_0}(\hat{\theta}_n \in A) := P(\hat{\theta}_n \in A | \theta = \theta_0)$$

$$E[\hat{\theta}_n] = \int \cdots \int_{\psi} \hat{\theta}_n(x) L(x, \theta_0) dx$$

Se dice que $\hat{\theta}_n$ es consistente para $\theta \in \Theta$ si $\hat{\theta}_n \xrightarrow{P_{\theta_0}} \theta_0$ (convergencia en probabilidad), $\forall \theta_0 \in \Theta$

Observación

Si Θ es finito y $\hat{\theta}_n$ es estimador de θ entonces se da la consistencia del estadístico si y solo si:

$$\lim_{n \to \infty} P_{\theta_0}(\hat{\theta}_n = \theta_0) = 1, \ \forall \theta_0 \in \Theta$$

Teorema 1. Sea X variable aleatoria con función de distribución $F(\cdot, \theta)$ para $\theta \in \Theta$, siendo Θ un conjunto infinito. Supongamos que se verifica:

1. (A1) El soporte de $F(\cdot, \theta)$