

O1 Streaming data challengesO2 Dataflow windowing

Streaming data challengesDataflow windowing

Streaming features of Dataflow

Qualities that Dataflow contributes to data engineering solutions:

Continuing from the Data Processing course

Unbounded PCollection

Pipeline

Streaming Jobs

There are challenges with processing streaming data

Scalability

Streaming data generally only grows larger and more frequent

Fault Tolerance

Maintain fault tolerance despite increasing volumes of data

Model

Is it streaming or repeated batch?

Timing

What if data arrives late?

How do you aggregate an unbounded set?

Divide the stream into a series of finite windows

Message ordering and late data: The timestamp matters ... and windowing

Modify the date-timestamp with a PTransform if needed

Code to modify date-timestamp

Python

```
unix_timestamp = extract_timestamp_from_log_entry(element)
    # Wrap and emit the current entry and new timestamp in a
TimestampedValue.
```

yield beam.window.TimestampedValue(element, unix_timestamp)

Java

c.outputWithTimestamp (element, timestamp);

Duplication will happen: Exactly-once processing with Pub/Sub and Dataflow

```
Pub/Sub publisher code
msg.publish(event_data, myid="34xwy57223cdg")
```

```
Dataflow pipeline code
p.apply(
    PubsubIO.readStrings().fromTopic(t).idLabel("myid") )
```

Streaming data challengesDataflow windowing

Three kinds of windows fit most circumstances

- Fixed
- Sliding
- Sessions

Three kinds of windows fit most circumstances

Windowing divides data into time-based finite chunks

Often required when doing aggregations over unbounded data

Setting time windows

Fixed-time windows

```
from apache_beam import window
fixed_windowed_items = (
   items | 'window' >> beam.WindowInto(window.FixedWindows(60)))
```

Sliding time windows

```
from apache_beam import window
sliding_windowed_items = (
   items | 'window' >> beam.WindowInto(window.SlidingWindows(30, 5)))
```

Session windows

```
from apache_beam import window
session_windowed_items = (
   items | 'window' >> beam.WindowInto(window.Sessions(10 * 60)))
```

Remember:

you can apply windows to batch data, although you may need to generate the metadata date-timestamp on which windows operate.

Windowing by time if there is no latency

Pipeline processing can introduce latency

How should Dataflow deal with this situation?

The data could be a little past the window or a lot. Data 2 is a little outside of Window 2. Data 1 is completely outside of Window 1.

The difference in time from when data was expected to when it actually arrived is called the lag time.

Watermarks provide flexibility for a little lag time

Custom triggers

Some example triggers

https://beam.apache.org/documentation/programming-guide/#composite-triggers

You can allow late data past the watermark

Allowing Late Data

Accumulation modes: What to do with additional events

Lab Intro

Streaming Data Processing: Streaming Data Pipelines

Lab objectives

- Dataflow and run a Dataflow job
- Understand how data elements flow through the transformations of a Dataflow pipeline
- Onnect Dataflow to Pub/Sub and BigQuery
- Observe and understand how Dataflow autoscaling adjusts compute resources to process input data optimally
- Learn where to find logging information created by Dataflow
- Explore metrics and create alerts and dashboards with Cloud Monitoring

