Identificación dinámica y control por modelo de referencia usando redes neuronales

Sinopsis

- Modelo del proceso
- Identificación usando una red de propagación hacia adelante
- Identificación usando una red Elman
- Control por modelo de referencia usando enfoque directo
- Conclusiones

Modelo del Proceso de Evaporación Forzada

Modelo del proceso

$$\bullet \frac{MdX2}{dt} = F1X1 - F2X2$$

$$C\frac{dP2}{dt} = F4 - F5$$

•
$$T2 = 0.5616P2 + 0.3126X2 + 48.43$$

•
$$T3 = 0.507P2 + 55$$

•
$$F4 = \frac{Q100 - F1 C_p (T2 - T1)}{\lambda}$$

•
$$T100 = 0.1538 P100 + 90$$

•
$$Q100 = UA1 (T100 - T2)$$

•
$$A1 = 0.16(F1 + F3)$$

•
$$F100 = \frac{Q100}{\lambda_s}$$

•
$$T201 = T200 + \frac{Q200}{F200 C_p}$$

•
$$X = [L2^N X2^N P2^N]^T$$

•
$$U_1 = [F2^N P100^N F200^N]^T$$

•
$$U_2 = [F3^N F1^N X1^N T1^N T200^N]^T$$

Modelo del proceso

- 3 Estados
- 3 entradas manipulables
- 5 entradas de perturbación
- 3 Ecuaciones diferenciales
- 9 ecuaciones algebraicas

Matriz de funciones de transferencia

	F2	P100	F200
12	$0.1s^2 - 0.02539s - 0.000727$	-0.3727s - 0.006395	0.002855
L2	$(s^2 + 0.1547s + 0.005474)s$	${(s+0.05474)s}$	$-\frac{1}{s(s+0.05474)}$
X2	$-\frac{0.1}{s+0.1}$	0	0
P2	0.001034	0.03691	0.007527
	$\overline{s^2 + 0.1547s + 0.005474}$	s + 0.05474	$-\frac{1}{s+0.05474}$

Es necesario implementar un sistema de control previo

Variable controlada	Variable Manipulada	Кс	Ti
L2	F200	-0.601	92.671

Identificación

Datos para el entrenamiento (P2 vs P100)

Datos de entrenamiento

Datos de validación

Resultados del entrenamiento para red propagación hacia adelante

Datos de entrenamiento

Datos de validación

Resultados del entrenamiento red Elman

Datos del entrenamiento

Datos de validación

Comparación de los modelos

	Red de adelanto	Red Elman	
datos de	0.0507	0.0782	
entrenamiento	0.0597		
datos de validación	0.0482	0.0767	

Alguna información importante

- Red propagación hacia adelante
 - Quince neuronas capa oculta
 - 500 épocas maximo

- Red Elman
- 18 neuronas capa oculta
- 500 épocas

Modelo de referencia por enfoque directo

Resultados de entrenamiento

Modelo de referencia	$\frac{1}{10s+1}$	$\frac{1}{100s^2 + 10s + 1}$	
Neuronas capa oculta	20	15	20
Épocas utilizadas	400	400	200
Error Inicial	121.98	27.31	57.82
Error Final	9.664e-4	2.3778e-04	0.0012

Modelo 1: $\frac{1}{10s+1}$

Modelo 2: $\frac{1}{100s^2 + 10s + 1}$

Conclusiones

- El esquema de identificación en paralelo permite una fácil implementación.
- El modelo neuronal del proceso de evaporación permite representar en un sistema de múltiples entradas, una salida (MISO).
- El entrenamiento realizado es rápido, y el número de neuronas utilizadas es pequeño considerando el número de entradas de la red neuronal para un sistema no lineal.
- Es más sencillo el proceso de entrenamiento y la convergencia de la red de propagación hacia adelante que el correspondiente de la red dinámica.

Conclusiones

- Los experimentos muestran que el controlador neuronal depende del número de neuronas a utilizar y del tipo de control de referencia implementado, pero también de las expectativas esperadas del sistema en lazo cerrado.
- Para el modelo descrito, un sistema de control de primer orden es muy difícil de conseguir, mientras que un sistema de control con alguna medida de sobrepaso es posible de alcanzarse con distintas arquitecturas neuronales y distintos acercamientos de entrenamiento.
- Los controladores diseñados parecen asimilar referencias para los que no fueron entrenados.