Data Representation vs. Data Classification

- PCA finds the most accurate data representation in a lower dimensional space
 - Project data in the directions of maximum variance
- However the directions of maximum variance may be useless for classification

 Fisher Linear Discriminant project to a line which preserves direction useful for data classification

 Main idea: find projection to a line s.t. samples from different classes are well separated

Example in 2D

bad line to project to, classes are mixed up

good line to project to, classes are well separated

- Suppose we have 2 classes and d-dimensional samples x_1, \dots, x_n where
 - n_1 samples come from the first class
 - \mathbf{n}_2 samples come from the second class
- consider projection on a line
- Let the line direction be given by unit vector v

- Scalar $v^t x_i$ is the distance of projection of x_i from the origin
- Thus it $\mathbf{v}^t \mathbf{x}_i$ is the projection of \mathbf{x}_i into a one dimensional subspace

- Thus the projection of sample x_i onto a line in direction v is given by $v^t x_i$
- How to measure separation between projections of different classes?
- Let μ_1 and μ_2 be the means of projections of classes 1 and 2
- Let μ_1 and μ_2 be the means of classes 1 and 2
- $|\mu_1 \mu_2|$ seems like a good measure

$$\widetilde{\mu}_{1} = \frac{1}{n_{1}} \sum_{x_{i} \in C1}^{n_{1}} \mathbf{v}^{t} \mathbf{x}_{i} = \mathbf{v}^{t} \left(\frac{1}{n_{1}} \sum_{x_{i} \in C1}^{n_{1}} \mathbf{x}_{i} \right) = \mathbf{v}^{t} \mu_{1}$$

similarly,
$$\tilde{\mu}_2 = \mathbf{v}^t \mu_2$$

- How good is $|\mu_1 \mu_2|$ as a measure of separation?
 - The larger $|\mu_1 \mu_2|$, the better is the expected separation

- the vertical axes is a better line than the horizontal axes to project to for class separability
- however $|\hat{\mu}_1 \hat{\mu}_2| > |\mu_1 \mu_2|$

• The problem with $|\tilde{\mu}_1 - \tilde{\mu}_2|$ is that it does not consider the variance of the classes

- We need to normalize $|\mu_1 \mu_2|$ by a factor which is proportional to variance
- Have samples $z_1, ..., z_n$. Sample mean is $\mu_z = \frac{1}{n} \sum_{i=1}^{n} z_i$
- Define their *scatter* as

$$s = \sum_{i=1}^{n} (z_i - \mu_z)^2$$

- Thus scatter is just sample variance multiplied by *n*
 - scatter measures the same thing as variance, the spread of data around the mean
 - scatter is just on different scale than variance

- Fisher Solution: normalize $|\mu_1 \mu_2|$ by scatter
- Let $y_i = v^t x_i$, i.e. y_i 's are the projected samples
- Scatter for projected samples of class 1 is

$$\widetilde{\mathbf{S}}_{1}^{2} = \sum_{\mathbf{y}_{i} \in Class \ 1} (\mathbf{y}_{i} - \widetilde{\mu}_{1})^{2}$$

Scatter for projected samples of class 2 is

$$\widetilde{\mathbf{S}}_{2}^{2} = \sum_{\mathbf{y}_{i} \in Class \ 2} (\mathbf{y}_{i} - \widetilde{\boldsymbol{\mu}}_{2})^{2}$$

- We need to normalize by both scatter of class 1 and scatter of class 2
- Thus Fisher linear discriminant is to project on line in the direction v which maximizes

want projected means are far from each other

$$J(\mathbf{v}) = \frac{(\tilde{\mu}_1 - \tilde{\mu}_2)^2}{\tilde{\mathbf{S}}_1^2 + \tilde{\mathbf{S}}_2^2}$$

want scatter in class 1 is as small as possible, i.e. samples of class 1 cluster around the projected mean $\tilde{\mu}_1$

want scatter in class 2 is as small as possible, i.e. samples of class 2 cluster around the projected mean $\tilde{\mu}_2$

$$J(\mathbf{v}) = \frac{(\tilde{\mu}_1 - \tilde{\mu}_2)^2}{\tilde{\mathbf{S}}_1^2 + \tilde{\mathbf{S}}_2^2}$$

If we find \mathbf{v} which makes $\mathbf{J}(\mathbf{v})$ large, we are guaranteed that the classes are well separated

projected means are far from each other

small §₁ implies that projected samples of class 1 are clustered around projected mean

small \mathfrak{S}_2 implies that projected samples of class 2 are clustered around projected mean

$$J(\mathbf{v}) = \frac{(\tilde{\mu}_1 - \tilde{\mu}_2)^2}{\tilde{\mathbf{S}}_1^2 + \tilde{\mathbf{S}}_2^2}$$

- All we need to do now is to express J explicitly as a function of v and maximize it
 - straightforward but need linear algebra and Calculus
- Define the separate class scatter matrices S_1 and S_2 for classes 1 and 2. These measure the scatter of original samples x_i (before projection)

$$S_1 = \sum_{x_i \in Class\ 1} (x_i - \mu_1)(x_i - \mu_1)^t$$

$$S_2 = \sum_{x_i \in Class\ 2} (x_i - \mu_2)(x_i - \mu_2)^t$$

Now define the *within* the class scatter matrix $S_w = S_1 + S_2$

• Recall that
$$\tilde{\mathbf{s}}_1^2 = \sum_{\mathbf{y}_i \in Class\ 1} (\mathbf{y}_i - \tilde{\mu}_1)^2$$

• Using $\mathbf{y}_i = \mathbf{v}^t \mathbf{x}_i$ and $\tilde{\mu}_1 = \mathbf{v}^t \mu_1$

$$\widetilde{\mathbf{S}}_{1}^{2} = \sum_{\mathbf{y}_{i} \in Class \ 1} (\mathbf{v}^{t} \mathbf{x}_{i} - \mathbf{v}^{t} \boldsymbol{\mu}_{1})^{2}$$

$$= \sum_{\mathbf{y}_{i} \in Class \ 1} (\mathbf{v}^{t} (\mathbf{x}_{i} - \boldsymbol{\mu}_{1}))^{t} (\mathbf{v}^{t} (\mathbf{x}_{i} - \boldsymbol{\mu}_{1}))$$

$$= \sum_{\mathbf{y}_{i} \in Class \ 1} ((\mathbf{x}_{i} - \boldsymbol{\mu}_{1})^{t} \mathbf{v})^{t} ((\mathbf{x}_{i} - \boldsymbol{\mu}_{1})^{t} \mathbf{v})$$

$$= \sum_{\mathbf{y}_{i} \in Class \ 1} \mathbf{v}^{t} (\mathbf{x}_{i} - \boldsymbol{\mu}_{1}) (\mathbf{x}_{i} - \boldsymbol{\mu}_{1})^{t} \mathbf{v} = \mathbf{v}^{t} \mathbf{S}_{1} \mathbf{v}$$

- Similarly $\tilde{\mathbf{s}}_2^2 = \mathbf{v}^t \mathbf{S}_2 \mathbf{v}$
- Therefore $\tilde{\mathbf{S}}_1^2 + \tilde{\mathbf{S}}_2^2 = \mathbf{v}^t \mathbf{S}_1 \mathbf{v} + \mathbf{v}^t \mathbf{S}_2 \mathbf{v} = \mathbf{v}^t \mathbf{S}_W \mathbf{v}$
- Define between the class scatter matrix

$$S_B = (\mu_1 - \mu_2)(\mu_1 - \mu_2)^t$$

- S_B measures separation between the means of two classes (before projection)
- Let's rewrite the separations of the projected means

$$(\mu_1 - \mu_2)^2 = (\mathbf{v}^t \mu_1 - \mathbf{v}^t \mu_2)^2$$

$$= \mathbf{v}^t (\mu_1 - \mu_2)(\mu_1 - \mu_2)^t \mathbf{v}$$

$$= \mathbf{v}^t \mathbf{S}_B \mathbf{v}$$

Thus our objective function can be written:

$$J(\mathbf{v}) = \frac{(\widetilde{\mu}_1 - \widetilde{\mu}_2)^2}{\widetilde{\mathbf{s}}_1^2 + \widetilde{\mathbf{s}}_2^2} = \frac{\mathbf{v}^t \mathbf{S}_B \mathbf{v}}{\mathbf{v}^t \mathbf{S}_W \mathbf{v}}$$

Minimize J(v) by taking the derivative w.r.t. v and setting it to 0

$$\frac{d}{dv}J(v) = \frac{\left(\frac{d}{dv}v^{t}S_{B}v\right)v^{t}S_{W}v - \left(\frac{d}{dv}v^{t}S_{W}v\right)v^{t}S_{B}v}{\left(v^{t}S_{W}v\right)^{2}}$$

$$= \frac{\left(2S_{B}v\right)v^{t}S_{W}v - \left(2S_{W}v\right)v^{t}S_{B}v}{\left(v^{t}S_{W}v\right)^{2}} = 0$$

• Need to solve $\mathbf{v}^t \mathbf{S}_W \mathbf{v} (\mathbf{S}_B \mathbf{v}) - \mathbf{v}^t \mathbf{S}_B \mathbf{v} (\mathbf{S}_W \mathbf{v}) = \mathbf{0}$

$$\Rightarrow \frac{v^{t}S_{W}v(S_{B}v)}{v^{t}S_{W}v} - \frac{v^{t}S_{B}v(S_{W}v)}{v^{t}S_{W}v} = 0$$

$$\Rightarrow S_{B}v - \frac{v^{t}S_{B}v(S_{W}v)}{v^{t}S_{W}v} = 0$$

$$\Rightarrow S_{B}v = \lambda S_{W}v$$

generalized eigenvalue problem

$$S_B \mathbf{v} = \lambda S_W \mathbf{v}$$

• If S_W has full rank (the inverse exists), can convert this to a standard eigenvalue problem

$$S_W^{-1}S_BV=\lambda V$$

But $S_B x$ for any vector x, points in the same direction as μ_1 - μ_2

$$S_B x = (\mu_1 - \mu_2)(\mu_1 - \mu_2)^t x = (\mu_1 - \mu_2)(\mu_1 - \mu_2)^t x = \alpha(\mu_1 - \mu_2)^t x$$

Thus can solve the eigenvalue problem immediately

$$v = S_W^{-1}(\mu_1 - \mu_2)$$

$$S_{W}^{-1}S_{B}[S_{W}^{-1}(\mu_{1}-\mu_{2})] = S_{W}^{-1}[\alpha(\mu_{1}-\mu_{2})] = \alpha[S_{W}^{-1}(\mu_{1}-\mu_{2})]$$

Fisher Linear Discriminant Example

- Data
 - Class 1 has 5 samples $c_1 = [(1,2),(2,3),(3,3),(4,5),(5,5)]$
 - Class 2 has 6 samples $c_2 = [(1,0),(2,1),(3,1),(3,2),(5,3),(6,5)]$
- Arrange data in 2 separate matrices

$$\boldsymbol{c}_1 = \begin{bmatrix} 1 & 2 \\ \vdots & \vdots \\ 5 & 5 \end{bmatrix} \qquad \boldsymbol{c}_2 = \begin{bmatrix} 1 & 0 \\ \vdots & \vdots \\ 6 & 5 \end{bmatrix}$$

 Notice that PCA performs very poorly on this data because the direction of largest variance is not helpful for classification

Fisher Linear Discriminant Example

First compute the mean for each class

$$\mu_1 = mean(c_1) = [3 \ 3.6]$$
 $\mu_2 = mean(c_2) = [3.3 \ 2]$

• Compute scatter matrices S_1 and S_2 for each class

$$S_1 = 4 * cov(c_1) = \begin{bmatrix} 10 & 8.0 \\ 8.0 & 7.2 \end{bmatrix}$$
 $S_2 = 5 * cov(c_2) = \begin{bmatrix} 17.3 & 16 \\ 16 & 16 \end{bmatrix}$

Within the class scatter:

$$S_W = S_1 + S_2 = \begin{bmatrix} 27.3 & 24 \\ 24 & 23.2 \end{bmatrix}$$

- it has full rank, don't have to solve for eigenvalues
- The inverse of S_W is $S_W^{-1} = inv(S_W) = \begin{bmatrix} 0.39 & -0.41 \\ -0.41 & 0.47 \end{bmatrix}$
- Finally, the optimal line direction_v

$$\mathbf{v} = \mathbf{S}_{W}^{-1}(\mu_{1} - \mu_{2}) = \begin{bmatrix} -0.79 \\ 0.89 \end{bmatrix}$$

Fisher Linear Discriminant Example

- Notice, as long as the line has the right direction, its exact position does not matter
- Last step is to compute the actual 1D vector y.
 Let's do it separately for each class

$$Y_1 = v^t c_1^t = \begin{bmatrix} -0.65 & 0.73 \end{bmatrix} \begin{bmatrix} 1 & \cdots & 5 \\ 2 & \cdots & 5 \end{bmatrix} = \begin{bmatrix} 0.81 & \cdots & 0.4 \end{bmatrix}$$

$$Y_2 = v^t c_2^t = \begin{bmatrix} -0.65 & 0.73 \end{bmatrix} \begin{bmatrix} 1 & \cdots & 6 \\ 0 & \cdots & 5 \end{bmatrix} = \begin{bmatrix} -0.65 & \cdots & -0.25 \end{bmatrix}$$

Multiple Discriminant Analysis (MDA)

- Can generalize FLD to multiple classes
- In case of c classes, can reduce dimensionality to 1, 2, 3,..., c-1 dimensions
- Project sample x_i to a linear subspace $y_i = V^t x_i$
 - V is called projection matrix

Multiple Discriminant Analysis (MDA)

- Let n_i by the number of samples of class i
 - and μ_i be the sample mean of class i
 - μ be the total mean of all samples

$$\mu_i = \frac{1}{n_i} \sum_{x \in class \ i} \mathbf{X} \qquad \mu = \frac{1}{n} \sum_{x_i} \mathbf{X}_i$$

- Objective function: $J(V) = \frac{\det(V^t S_B V)}{\det(V^t S_W V)}$
 - within the class scatter matrix S_w is

$$S_W = \sum_{i=1}^{c} S_i = \sum_{i=1}^{c} \sum_{x_k \in class \ i} (x_k - \mu_i)(x_k - \mu_i)^t$$

• between the class scatter matrix S_B is

$$S_B = \sum_{i=1}^c n_i (\mu_i - \mu)(\mu_i - \mu)^t$$

maximum rank is c -1

Multiple Discriminant Analysis (MDA)

$$J(V) = \frac{\det(V^t S_B V)}{\det(V^t S_W V)}$$

First solve the generalized eigenvalue problem:

$$S_B V = \lambda S_W V$$

- At most c-1 distinct solution eigenvalues
- Let v_1, v_2, \dots, v_{c-1} be the corresponding eigenvectors
- The optimal projection matrix V to a subspace of dimension k is given by the eigenvectors corresponding to the largest k eigenvalues
- Thus can project to a subspace of dimension at most *c-1*

FDA and MDA Drawbacks

- Reduces dimension only to k = c-1 (unlike PCA)
 - For complex data, projection to even the best line may result in unseparable projected samples
- Will fail:
 - 1. J(v) is always 0: happens if $\mu_1 = \mu_2$

2. If J(v) is always large: classes have large overlap when projected to any line (PCA will also fail)