PATENT ABSTRACTS OF JAPAN

(11)Publication number:

07-195826

(43)Date of publication of application: 01.08.1995

(51)Int.CI.

B41M 5/00 B32B 27/08 B32B 27/10 B32B 27/36 B32B 27/40 B41J 2/01

(21)Application number: 05-353397

(71)Applicant:

DAI ICHI KOGYO SEIYAKU CO LTD

(22)Date of filing:

28.12.1993

(72)Inventor:

FUJITA TAKESHI

(54) RECORDING SHEET

(57)Abstract:

PURPOSE: To obtain a sharp high density printing image generating no blur or stickiness by forming the recording layer on the base material of a recording sheet by using a water-soluble polymeric compd. constituted of a repeating unit represented by a specific general formula as a main component.

CONSTITUTION: A recording sheet is a transfer recording sheet used in printing or duplication due to an ink jet system and constituted by arranging a recording layer on the upper surface of a base material. In this case, the recording layer is formed using a water-soluble polymeric compd. constituted of a repeating unit represented by general formula as a main component. The water-soluble polymeric compd. is obtained by reacting a component (A) being a polyalkylene oxide compd. obtained by the addition polymerization of alkylene oxide based on exylene oxide with an org. compd. having two active hydrogen groups and a component (B) being at least one of a dicarboxylic acid compd. and an diisocyanate compd. and has a wt. average mol.wt. of 50000 or more.

(AKAR:)-

LEGAL STATUS

[Date of request for examination]

23.06.2000

[Date of sending the examiner's decision of rejection]

[Kind of final disposal of application other than the examiner's decision of rejection or application converted registration]

[Date of final disposal for application]

[Patent number]

[Date of registration]

[Number of appeal against examiner's decision of rejection

[Date of requesting appeal against examiner's decision of rejection]

[Date of extinction of right]

Copyright (C); 1998,2000 Japanese Patent Office

(19)日本国特許庁 (JP)

(12) 公開特許公報(A)

(11)特許出願公開番号

特開平7-195826

(43)公開日 平成7年(1995)8月1日

(51) Int.Cl. ⁴ B 4 1 M 5/00	識別記号 B	庁内整理番号	FI	技術表示簡
B32B 27/08		8413-4F		
27/10		8413-4F		
27/36		7421 - 4 F		
		審査請求		. J 3/04 101 Y
(21)出願番号	特顯平5-353397		(71)出題	· · · · · · · · · · · · · · · · · · ·
(22) 出穎日	平成5年(1993)12月28日		(70) 7	第一工業製業株式会社 京都府京都市下京区西七条東久保町55番5
				清 夢田 武志 京都府宇治市広野町小根尾114-9
			(74)代理)	人,并理士 西藤 征彦
	•			
	•			

(54)【発明の名称】 記録シート

(57)【要約】

【目的】 印刷画面が鮮明かつ高濃度で、高湿雰囲気下においても印刷画面が滲んだり、表面のべとつきが生じない記録シートを提供する。

【構成】 下記の一般式(1)で表される繰り返し単位から構成される水溶性高分子化合物を主成分とする記録 層を備えた記録シートである。

【化1】

-{AXAR₁}-

上記式(1)において、Aは

+CH₂ CH₂ O→ と +CH₂ CHO→ の繰り返しから構成される単位である(ただし、A中に上記 +CH₂ CH₂ O→ が70重量%以上存在し、 +CH₂ CH₂ O→ の繰り返し数が正数であり、

R1 (CH, CHO) の繰り返し数が0または正数である。またR1 は炭化水素基である。)。Xは活性水素基を2個有する有機化合物 の残基であり、R2はジカルボン酸類化合物残差またはジイソシア ネート化合物の残基である。

【特許請求の範囲】

【請求項1】 下記の一般式(1)で表される繰り返し 単位から構成される水溶性高分子化合物を主成分とする

【化1】

... (1) $-\{AXAR_1\}$

上記式(1)において、Aは

←CH, CH, O→ と←CH, CHO→ の繰り返しから構成さ れる単位である(ただし、A中に上記 +CH2 CH2 O)が70重 量米以上存在し、 ←CH, CH, O) の繰り返し数が正数であり、

 R_{i}

←CH, CHO→ の繰り返し数がりまたは正数である。またR1 は炭化水素基である。)。 X は活性水素基を2個有する有機化合物 の残基であり、R。はジカルボン酸類化合物残基またはジイソシア ネート化合物の残基である。

【請求項2】 水溶性高分子化合物が、下記の(A)お よび(B)を反応させてなる重量平均分子量5万以上の ものである請求項1記載の記録シート。

- (A) 活性水素基を2個有する有機化合物にエチレンオ キシドを主体とするアルキレンオキシドを付加重合させ てなるポリアルキレンオキシド化合物。
- (B) ジカルボン酸類化合物およびジイソシアネート化 合物の少なくとも一方。

【発明の詳細な説明】

[0001]

【産業上の利用分野】この発明は、インクジェット方式 用等の印字、複写に用いられる記録シートに関するもの である。

[0002]

【従来の技術】一般に、インクジェット方式による印 字、複写等に用いられる転写用の記録シートは、基材と 基材面上に設けられた記録層とから構成される。上記記 録層形成用材料としては、例えば、澱粉類、ポリビニル アルコール類、セルロース系の水溶性化合物、天然水溶 性ガム類、ポリアクリルアミド、ポリアクリル酸類、ポ リエチレンオキシド類、ポリビニルピロリドン等があげ

-{AXAR₂}-

られる。そして、上記記録層形成材料を用いて形成され た記録層に水溶性インクを吸収させることにより印字、 複写が行われる。

記録層を備えていることを特徴とする記録シート。

[0003]

【発明が解決しようとする課題】しかしながら、従来の 記録層形成材料により形成された記録層では、多色イン クの濡れ不良, 吸収性不良のために、異色インクの混色 や飛散、流れ出しによる汚れが発生することがある。ま た、高湿度下において、印刷画面が滲んだり、画面表面 がべとついたりするという問題が生じ、未だ満足のいく 記録シートが得られていないのが実情である。

【0004】この発明は、このような事情に鑑みなされ たもので、印刷画面が鮮明かつ高濃度で、高湿雰囲気下 においても印刷画面が滲んだり、表面のべとつきが生じ ない記録シートの提供をその目的とする。

【課題を解決するための手段】上記の目的を達成するた め、この発明の記録シートは、下記の一般式(1)で表 される繰り返し単位から構成される水溶性高分子化合物 を主成分とする記録層を備えているという構成をとる。 【化2】

... (1)

上記式(1)において、Aは

Rι

+CH2 CH2 O→ と+CH2 CHO→ の繰り返しから構成さ れる単位である(ただし、A中に上記 +CH2 CH2 Oナが70重 量%以上存在し、 ←CH。CH。O)の繰り返し数が正数であり、

+CH, CHO の繰り返し数が0または正数である。また R_1 は炭化水素基である。)。Xは活性水素基を2個有する有機化合物 の残基であり、R。はジカルボン酸類化合物残基またはジイソシア ネート化合物の残基である。

[0006]

【作用】すなわち、この発明者は、印刷画面が鮮明かつ 高濃度で、高湿雰囲気下においても印刷画面が滲んだ り、表面のべとつきが生じない記録シートを得るため に、シートの記録圏を形成する形成材料を中心に各種化 合物について研究を重ねた。その結果、前記一般式

(1) で表される構成の特殊な水溶性高分子化合物を記録層形成材料として用いると、所期の目的が達成されることを見出しこの発明に到達した。

【0007】つぎに、この発明を詳しく説明する。

【0008】この発明の記録シートは、基材と、上記基材表面に形成される記録層とから構成される。

【0009】上記基材としては、特に限定するものではなく従来公知のもの、例えば、記録紙等の基材となる紙製基材、OHP(オーバーヘッドプロジェクター)シート等の基材となる高分子材料製基材等があげられる。

【0010】上記紙製基材としては、針葉樹晒クラフトパルプ(NBKP)、針葉樹晒亜硫酸パルプ(NBSP)、広葉樹晒 亜硫酸パルプ(LBKP)、広葉樹晒 亜硫酸パルプ(LBSP)等の晒化学パルプに、必要に応じて機械パルプ、半機械パルプ、澱粉、ポリアクリルアミド樹脂およびこの誘導体、メラミンホルムアルデヒド樹脂、尿素ホルムアルデヒド樹脂等の紙力増強剤、強化ロジン合成ポリマー系またはアルキルケテンダイマー等のサイズ剤、硫酸パンドその他の定着剤、タルク、クレー、重質炭酸カルシウム、軽質炭酸カルシウム、水酸化アルミニウム、天然または合成珪酸塩、酸化チタン等の無機質充填剤、粉末状の尿素ホルムアルデヒド樹脂等

-{AXAR₂}-

の有機充填剤を添加し、公知の方法により抄造したもの 等があげられる。さらに、上記抄造したものに必要に応 じて酸化澱粉、その他の紙力増強剤を外添したものを使 用することもできる。なお、紙製基材自身の組成につい ては特に限定するものではない。

【0011】上記高分子材料製基材において、例えばベースフィルムとしては、ポリエチレンテレフタレート系等の通常のポリエステルフィルムを用いることができる。また、記録層形成材料となる特殊な水溶性高分子化合物との接着性を考慮して種々の他種ポリマーを混合したものからなるフィルムを用いてもよいし、他種ポリマーと共重合させたものからなるフィルムを用いてもよい。そして、上記フィルム表面を、化学薬品で表面処理したり、ガス火炎で酸化処理したり、コロナ放電で処理する等によって表面処理して、記録層との接着性を向上させたものも使用することができる。

【0012】さらに、他の透明性フィルム、例えばポリオレフィン、ポリアミド、ポリエステルアミド、ポリカーボネート等の一般的なものは全て用いることができる。

【0013】上記基材表面に形成される記録層形成材料は、特殊な水溶性高分子化合物を主成分とするものであり、その水溶性高分子化合物は下記の一般式(1)で表される繰り返し単位から構成される。なお、この発明において、主成分とするとは主成分のみからなる場合も含める趣旨である。

[0014] [化3]

... (1)

上記式(1)において、Aは

←CH, CH, O→ と ←CH, CHO → の繰り返しから構成される単位である(ただし、A中に上記 ←CH, CH, O→ が70重量%以上存在し、 ←CH, CH, O → の繰り返し数が正数であり、

R1 (CH: CHO) の繰り返し数が0または正数である。またR1 は炭化水素基である。)。Xは活性水素基を2個有する有機化合物 の残基であり、R: はジカルボン酸類化合物残基またはジイソシア ネート化合物の残基である。

【0015】上記式(1)中のR1において、特にメチル基、エチル基、フェニル基が好ましい。また、上記水溶性高分子化合物の重量平均分子量は5万以上が好ましい。より好ましくは重量平均分子量5~30万であり、特に好ましくは10万~20万である。このような特定の水溶性高分子化合物は、例えば下記に示す二成分、

- (A) および (B) を用いて得られる。
- (A) 活性水素基を2個有する有機化合物に、エチレン オキシドを主体とするアルキレンオキシドを付加重合さ

せてなる重量平均分子量1000以上のポリオキシアルキレンポリオール。

(B) ジカルボン酸類化合物およびジイソシアネート化合物の少なくとも一方。

【0016】上記(A)の活性水素基を2個有する有機化合物としては、主として、エチレングリコール、ジエチレングリコール、プロピレングリコール、ジプロピレングリコール、1、6-ヘキサンジオール、ネオペンチルグリコール、ビスフェノー

ルA、ポリテトラメチレングリコール、シクロヘキサン -1,4-ジメタノール等の脂環式ジオール、ブチルア ミン、オクチルアミン、ラウリルアミン、シクロヘキシ ルアミン、アニリン等のアミン類があげられる。これら は単独でもしくは併せて用いられる。

【0017】また、上記活性水素基を2個有する有機化合物に付加重合させるエチレンオキシドを含有するアルキレンオキシドとしては、エチレンオキシド単独、エチレンオキシドを主体とするプロピレンオキシド、ブチレンオキシド、スチレンオキシド等のアルキレンオキシド混合物があげられる。そして、上記エチレンオキシドの含有量は、アルキレンオキシド全体の50重量%(以下「%」と略す)以上に設定することが好ましい。すなわち、エチレンオキシドの含有量が50%未満では、得られる高分子化合物が水難溶性となり、また被膜形成性が劣りこの発明の製法において紙に含浸させたり、コーティング時において強度の低い被膜が形成され不都合となるからである。

【0018】そして、上記(A)は、上記各成分を用いて、例えば、水酸化ナトリウム、水酸化カリウム等の苛性アルカリを触媒として、約90~200℃の温度で2~30時間反応させて、活性水素基を2個有する有機化合物にエチレンオキシドを含有するアルキレンオキシドをブロックまたはランダムで付加重合させることにより得られる。

【0019】上記各成分を用いて得られる(A)のポリオキシアルキレンポリオールは、重量平均分子量が1000以上が好ましく、特に好ましくは5000~3000である。すなわち、重量平均分子量が1000未満では、対応する上記(B)のジカルボン酸類化合物、ジイソシアネート化合物の連結剤の添加割合が多くなるため水に対する溶解性が低下する傾向がみられるからである。

【0020】上記(A)と反応させる(B)のなかのジカルボン酸類化合物としては、ジカルボン酸,ジカルボン酸無水物,ジカルボン酸の低級アルキルエステルがあげられる。上記ジカルボン酸としては、フタル酸,イソフタル酸,テレフタル酸,マロン酸,コハク酸,セバシン酸,マレイン酸,フマル酸,アジピン酸,イタコン酸等があげられ、上記ジカルボン酸無水物としては、上記各種ジカルボン酸の低級アルキルエステルとしては、上記各種ジカルボン酸のメチルエステル,ジメチルエステル,エチルエステル,ジプロピルエステル,ジプロピルエステル,ジプロピルエステル等があげられる。これらは単独でもしくは併せて用いられる。

【0021】上記(B)のなかのジイソシアネート化合物としては、具体的には、トリレンジイソシアネート、ジフェニルメタンジイソシアネート、ヘキサメチレンジイソシアネート、イソホロンジイソシアネート、キシレ

ンジイソシアネート、4, 4ーメチレンービス (シクロ ヘキシールイソシアネート) 等があげられる。

【0022】この記録層形成材料の主成分となる水溶性高分子化合物は、上記(A)と(B)とを用い、つぎのように反応させることにより得られる。まず、(B)がジカルボン酸類化合物の場合について述べる。すなわち、上記(A)を準備し、これに上記(B)を添加した後、昇温させ、 $80\sim250$ Cの加熱下において0.01~20mmHgの減圧にして脱水または脱アルコールを行うことにより得られる。この間の反応時間としては、通常、30分~10時間である。

【0023】そして、上記(A)と(B)とを反応させる際の両者の配合割合(A/B)は、具体的には、当量比で、A/B=1/0. 5~1/3. 5の範囲に設定することが好ましい。

【0024】つぎに、上記(B)がジイソシアネート化合物の場合を述べる。すなわち、ジイソシアネート化合物の場合におけるウレタン化反応は、例えばポリオキシアルキレンポリオールとジイソシアネート化合物との配合割合を、NCO/OH当量比0.5~1.5の範囲内で混合させて、80~150℃、1~5時間反応させることにより行われる。なお、上記ウレタン化反応においては、ジブチルチンジラウレート等の公知の触媒を使用してもよい。

【0025】このようにして得られる水溶性高分子化合物の重量平均分子量は、前述のように、5万以上に設定することが好ましく、より好ましくは5万~30万であり、特に好ましくは10万~20万である。すなわち、重量平均分子量が5万未満では水に対する溶解速度は大きいが、形成される被膜の機械物性が悪く記録シートとしての性能が損なわれる。また、重量平均分子量が30万を超えると、水溶液粘度が上昇し、基材に対する塗工が容易ではなくなる傾向がみられるからである。しかも、この水溶性高分子化合物中には、エチレンオキシド鎖が50%以上含有されている。このようにエチレンオキシド鎖が50%以上含有されているため、水溶性または水分散性を有するものとなる。

【0026】上記記録層形成材料には、主成分となる特殊な水溶性高分子化合物以外に、必要に応じて他の添加剤、例えば酸化酸粉、ポリビニルアルコール、ポリアクリルアミド、メチルセルロース、ヒドロキシエチルセルロース、カルボキシメチルセルロース、ヒドロキシプロピルセルロース等の高分子水溶液、重質炭酸カルシウム、軽質炭酸カルシウム、タルク、カオリン、水酸化アルミニウム、合成珪酸塩等の顔料、グリセリン等の可塑剤を適宜配合することもできる。

【0027】この発明の記録シートは、例えばつぎのようにして製造することができる。すなわち、まず、特殊な水溶性高分子化合物および必要に応じて他の添加剤を適宜配合し、水に溶解させて水溶性高分子化合物を主成

分とする水溶液を作製する。ついで、基材に上記水溶性高分子化合物を主成分とする水溶液を塗布する。そして、乾燥させ基材表面に記録層を形成することにより目的とする記録シートを製造することができる。上記塗布厚みは $5\sim30\,\mu{\rm m}$ (固形分)に設定することが好ましい。なお、基材がOHPシート等透明性を考慮する必要を有する場合には、他の添加剤として顔料を用いることは、光の散乱が生じ好ましくない。したがって、上記顔料を除去した水溶性高分子化合物を主成分とする水溶液を用いて塗布が行われる。

【0028】上記水溶性高分子化合物を主成分とする水溶液の濃度は、1~20%の範囲に設定することが塗布工程の容易性等から好ましい。また、上記他の添加剤のみを下塗りして、水溶性高分子化合物の水溶液を上塗りするというように、2層に分けて塗工してもよい。そして、上記塗布方法としては、特に限定するものではなく従来公知の方法、例えばブレード、エアナイフ、ロールコーター等の塗工機を用いてよいし、サイズプレスを用いてもよい。

【0029】この発明の記録シートにおいて、記録層の 形成態様としては、基材表面に記録層が設けられた2層 構造の態様はもちろん、前述のように、記録層が下塗り 層と上塗り層の2層から構成される態様、基材表面に記 録層が設けられ、かつ基材中に記録層形成材料が含浸さ れた態様があげられる。

[0030]

【発明の効果】以上のように、この発明の記録シートには、前記一般式(1)で表される繰り返し単位から構成される水溶性高分子化合物を主成分とする記録層が設けられている。このため、上記特殊な記録層は、その層形成材料自身の有する特性から、インクの濡れ性に優れ、吸収性が向上した結果、異色インクの混色や飛散、流れ出しによる汚れが生じない。しかも、高湿度雰囲気下において、印刷画面が滲んだり、画面表面がべとつくことも無くなる。したがって、例えば、この発明の記録シートを用いてのインクジェット方式によるカラーコピー等では、従来の記録シートでは得られ難かった画像、すなわち、高画像濃度で、かつ鮮明な色調の画像が得られる

【0031】つぎに、実施例について比較例と併せて説明する。

[0032]

【実施例1】紙製基材としてLBKP90重量部(以下

「部」と略す)とNBKP10部を叩解し、これにタルク7部、ロジン0.6部、硫酸パンド2.2部を添加して長網抄紙機で抄紙して秤量65g/m²とした。ついで、これに酸化澱粉を用いてサイズプレスしてコート原紙を作製した。一方、エチレングリコールにエチレングリコールにエチレングリコールにエチレングリコール100部に、ジメチルテレフタレートを1.86部加えエステル交換反応を行い分子量1300の水溶性高分子化合物を作製した〔前記一般式(1)で表される繰り返し単位において、A、X、R2は下記のとおりである〕。この水溶性高分子化合物を用いた名がを用いたで20%水溶液とし、上記紙製基材表面に、厚み10μmとなるようエアーナイフコーターを用いて上記20%水溶液を塗布し乾燥させた(乾燥条件:100℃×

[0033]

【化4】

A : (CH; CH; O)

2時間)。このようにして目的とする記録シートを得

X : - OCH2 CH2 O-

[0034]

【実施例 2】上記実施例 1 と同様にしてコート原紙を作製した。一方、エチレングリコールにプロピレンオキシドおよびエチレンオキシドを付加重合させてポリエチレンポリプロピレングリコール(エチレンオキシド 8 5%,プロピレングリコール(エチレンオキシド 1 5%,分子量 2 0 0 0 0 0)を作製した。このポリエチレンポリプロピレングリコール 1 0 0 0 0 の に、ジフェニルメタンジイソシアネートを 1 . 0 9 部加え、8 5 $\mathbb C$ で 9 0 分間反応させて分子量 1 1 0 0 0 0 の の 水溶性高分子化合物を作製した〔前記一般式(1)で表される繰り返し単位において、A,X,R 2 は下記のとおりである〕。この水溶性高分子化合物を用い木で 2 0 % 水溶液とし、上記紙製基材表面に、厚み 1 0 μ mとなるようエアーナイフコーターを用いて上記 2 0 % 水溶液を塗布し乾燥させた(乾燥条件:1 0 0 $\mathbb C$ × 2 時間)。このようにして目的とする記録シートを得

[0035] [化5]

CH₂

A: +CH: CH: O)-と +CH2 CHO)-の繰り返しから

構成される単位である。

X :- OCH1 CH1 O-

R: :-NHCO-O-CH:-O-NHCO-

[0036]

【実施例3】上記実施例1と同様にしてコート原紙を作製した。一方、実施例2で得られたポリエチレンポリプロビレングリコール(エチレンオキシド85%、プロピレンオキシド15%、分子量20000)100部に、ジメチルセバシン酸1、33部を加え、エステル交換反応を行い分子量150000の水溶性高分子化合物を作製した〔前記一般式(1)で表される繰り返し単位にお

いて、A. X, R_2 は下記のとおりである)。この水溶性高分子化合物を用い水で20%水溶液とし、上記紙製基材表面に、厚み 10μ mとなるようエアーナイフコーターを用いて上記20%水溶液を塗布し乾燥させた(乾燥条件: $100\% \times 2$ 時間)。このようにして目的とする記録シートを得た。

[0037]

【化6】 CH3

A : (CH, CH, O)—と (CH, CHO)— の繰り返しから

構成される単位である。

X :- OCH2 CH2 O-

 $R_{1}:-OC(CH_{2}):CO-$

[0038]

【実施例 4】紙製基材に代えて厚み 100μ mのポリエステルフィルム [HSグレード (無処理品)]を用いた。一方、上記実施例1で作製した水溶性高分子化合物を用い、これを水に溶解して100水溶液として、パーコーターを用いて、上記ポリエステルフィルムに 100μ mの厚みで塗工し乾燥させ被膜(記録層)を形成した(乾燥条件:100 \times 2 時間)。このようにして厚み 10μ mの記録層が形成された記録シートを製造した。 [0039]

【実施例 5】実施例 1 で作製した水溶性高分子化合物に代えて上記実施例 2 で作製した水溶性高分子化合物を用いた。それ以外は実施例 4 と同様にして厚み 1 0 μmの被膜(記録層)を形成することにより目的とする記録シートを製造した。

[0040]

【実施例6】実施例1で作製した水溶性高分子化合物に 代えて上記実施例3で作製した水溶性高分子化合物を用 いた。それ以外は実施例4と同様にして厚み10μmの 被膜(記録層)を形成することにより目的とする記録シ ートを製造した。

[0041]

【比較例】実施例1で作製した水溶性高分子化合物に代えてポリビニルアルコール(重合度500、鹸化度82%)を用いた。それ以外は実施例4と同様にして厚み100μmの被膜を形成することによりシートを製造した。しかし、このシートのポリビニルアルコール製被膜(記録層)はすぐにポリエステルフィルムから剥離し

た。

【0042】上記実施例品および比較例品の記録シートを用いて、通常のインクジェット方式によるカラーコピーを行い、得られたシートについて、多色インクの吸収性、コピー画像の鮮明度、多色インクの流れ出し、高湿度雰囲気下での複写画面のべとつきの有無を観察・評価した。その結果を後記の表1および表2に示す。なお、上記各特性は下記の方法により評価した。

【0043】〔多色インクの吸収性〕ドットを同一部分に3回印字した時の画像の鮮明の度合いを目視により判定した。その結果、鮮明な画像が得られたものを○、不鮮明な画像のものを×として表示した。

【0044】〔コピー画像の鲜明度〕インクジェット方式による記録画像の色の鮮明の度合いを目視により判定した。その結果、鮮明な画像が得られたものを○、不鮮明な画像のものを×として表示した。

【0045】〔多色インクの流れ出し〕ドットを同一部分に3回印字し、その結果、目視により観察して、被記録材(記録シート)表面上にインクの流出が認められたものを×、認められなかったものを〇として表示した。【0046】〔高湿度雰囲気下での複写画面のべとつき〕インクジェット方式によるカラーコピーを行った記録シートを、30 \mathbb{C} ×95%相対湿度の雰囲気下で24時間放置した。その後、記録シート表面を触指した。その結果、タック感があったものを×、タック感の無かっ

[0047]

たものを○として表示した。

【表1】

	実		施		例	
	1	2	3	4	5	6
インク吸収性	0	0	0	0	0	0
鲜明度	0	0	0	0	0	0
流れ出しの有無	0	0	0	0	0	0
べとつきの有無	0	0	0	0	0	0

[0048] 【表2]

	実	LL ±icox	
	7	8	比較例
インク吸収性	0	0	×
鲜明度	0	0	×
流れ出しの有無	0	0	0
べとつきの有無	0	0	0

は、全てインク吸収性に優れ、鮮明度も高く、多色イン クの流れ出しおよびべとつきも発生しなかった。 これに 対して比較例品は、ポリエステルフィルムに対する接着 性が悪いため、記録シートとして使用することができ ず、また、記録シートとして使用するためには接着層が 必要となるだけではなく、インク吸収速度が遅いために 異色インクの混色や流れ出しが確認された。

【0049】上記表1および表2の結果から、実施例品

フロントページの続き

(51) Int.C1.6 B 3 2 B 27/40

B41J 2/01

識別記号 庁内整理番号

7421 - 4F

FΙ

技術表示箇所