mai

Role:

Developed and integrated machine learning models to predict:

- Energy Usage
- Solar Generation
- Wind Generation

6 What We Did in ML

1. Q Dataset Collection

Energy Usage: energydata_complete.csv from UCI ML RepositorySolar Generation: Simulated using panel specs + irradiance (Excel-based)Wind Generation: Estimated using wind turbine specs + wind speed CSV All datasets cleaned and preprocessed in Google Colab.

(27 features total)

Dataset for Energy Usage Prediction

Dataset Name:

energydata_complete.csv

Source:

<u>UCI Machine Learning Repository - Appliance Energy Prediction Dataset</u>

- Real smart home data collected over several weeks
- · Contains:
 - Appliance energy usage (in Wh)

- Temperature values from multiple rooms (T1–T9)
- Humidity levels (RH_1-RH_9)
- (27 features total)Outside temperature (T_out) & outside humidity (RH_out)
- Light usage
- Date & Time

Model	Dataset Source	Notes
Energy Usage	energydata_complete.csv (UCI ML Repo)	Real home energy data
Solar Generation	Simulated (Panel specs + Irradiance)	Used estimated solar panel output
Wind Generation	Simulated (Turbine specs + Wind speed)	Based on wind turbine model EN600

How Models Were Built

- Used Python + Scikit-learn in Google Colab
- · Trained on processed CSV data
- Models saved as .pkl (Pickle) files
- Flask API created to send prediction on app request

Integration with App

App sends current weather + sensor data to local Flask server

Server returns predicted energy usage, solar, and wind Predictions shown in **Prediction Page** and used in logi

Viva Questions She May Get:

? Where did you get the dataset?

 UCI ML Repo for usage, simulated solar/wind via realistic parameters

mai 2

? Why Random Forest for usage?

 Handles many features, gives better accuracy than linear, avoids overfitting

? What features were used for prediction?

 Time, weather data, indoor/outdoor temp, previous usage, etc.

? How did you evaluate model accuracy?

- R² Score, Mean Absolute Error (MAE)

? What models did you try first?

 Linear, Decision Tree, XGBoost, Random Forest (we picked best)

Why Random Forest for All?

- A Handles non-linear patterns and many input features
- Gives high accuracy even with simulated data
- X Robust against overfitting
- Easy to explain in viva: "It's a collection of decision trees working together"

Workflow Summary

- 1. Preprocessed CSV data in Google Colab
- 2. Trained 3 different Random Forest models
- 3. A Saved models as .pkl files
- 4.

 Created Flask server to return predictions
- 5. Integrated with Android app using Retrofit API

Possible Viva Questions

mai 3

Q1. Why all 3 models are Random Forest?

High accuracy, consistent output, less sensitive to noise.

Q2. How is solar/wind dataset created?

Based on solar irradiance and wind speed estimation for 1–2kWh/day generation using realistic formulas.

Q3. What are the input features?

For usage: time (hour, day), weather, past usage

For solar: irradiance, panel area, efficiency

For wind: wind speed, turbine specs

Q4. How did you validate models?

Using train-test split and R² score, MAE

Weather Data - Source & Usage

Source: OpenWeatherMap

- API Key: Used 883db8814c2c7b01360efe32ccbfd23b (Free Tier)
- API Type: Current weather API (/weather?q=Sathyamangalam&appid=...)
- **City**: We hardcoded Sathyamangalam for simulation.