Curve Tracing:

- 1. The curve represented by the equation $a^2x^2=y^3(2a-y)$ is
 - a) symmetrical about x axis and passing through (2a, 0)
 - b) symmetrical about both x-axis and y-axis and passing through origin
 - c) symmetrical about y-axis and passing through (0,2a)
 - d) symmetrical about both x-axis and y-axis and passing through (2a,0)
- 2. The equation of tangents to the curve parallel to x-axis represented by the equation

$$y = \frac{8a^3}{x^2 + 4a^2}$$
 is

- a) y = 0
- b) y = -1
- c) y = 2a
- d) y = a
- 3. The region of absence for the curve represented by the equation $xy^2 = a^2(a-x)$ is
 - a) x > 0 and x < a
 - b) x < 0 and x < a
 - c) x < 0 and x > a
 - d) x > 0 and x > a

Question 4	The equation $y^2(2a-x)=x^3$ represents the curve
Option A	Y O X

Question 5.	The equation of asymptotes parallel to y axis to the curve represented by the
	equation $(x^2 - a^2)(y^2 - b^2) = a^2b^2$
Option A	x = a, x = -a
Option B	y = b, y = -b
Option C	x = b, x = -b
Option D	x = a, y = b

Question 6.	Which of the following curve represent the equation $r = a\cos 4\theta$

Question 7	The Three leaved rose $r = a \cos 3\theta$ has			
Option A	Horizontal asymptote			
Option B	Vertical asymptote			
Option C	No asymptote since r is infinite for any $ heta$			
Option D	No horizontal or vertical asymptote			

Question 8	The curve	e represented by the equation $r = \frac{2a}{1 + \cos \theta}$ is		
Option A	symmetri	etrical about initial line and passing through pole		
Option B	symmetri	metrical about initial line and not passing through pole		
Option C	symmetri	metrical about $ heta=rac{\pi}{2}$ and passing through pole		
Option D	symmetrical about $\theta = \frac{\pi}{4}$ and passing through pole			
Question 9		The number of loops in the Folium of Descartes $x^3 + y^3 = 3axy$ are		
Option A 2		2		
Option B		1		

Option C	3
Option D	5

O	The fall and a firm and a supplied to
Question 10	The following figure represents the curve whose equation is
	$\theta = \frac{3\pi}{4}$ $\theta = \frac{\pi}{4}$ $\theta = \frac{\pi}{4}$ $\theta = \frac{\pi}{4}$ $\theta = \frac{\pi}{4}$
Option A	I
	$r = a\cos 3\theta$
Option B	
option b	$r = a \sin 2\theta$
Option C	
	$r = a \sin 3\theta$
Ontion D	
Option D	$r = a(1 + \cos \theta)$
	(2.2000)

Answers:

1-c	2-c	3-c	4-c	5-b
6-c	7-d	8-b	9-b	10-b

Double and Triple integral:

- 3. Value of $\int_0^1 \int_0^{\sqrt{1-x^2}} \int_0^{\sqrt{1-x^2-y^2}} xyz dx dy dz$ is 1. $\frac{1}{24}$ 2. $\frac{1}{48}$ 3. 1 4. 0

- 4. Match the following

1. Jacobian of the transformation $x = rcos\theta$, $y = rsin\theta$	• r ²
• To change Cartesian coordinates (x, y, z) to spherical coordinates (r, θ, \emptyset) : $dxdydz$ is replaced by	• rdrdθ
• To change Cartesian coordinates (x, y, z) to cylindrical coordinates (r, θ, z) : $dxdydz$ is replaced by	• r
• Jacobian of the transformation $x = rsin\theta$, $y = rcos\theta$	 rdrdθdφ
	$ullet$ $r^2 sin heta dr d heta d \phi$
	ullet $rdrd heta dz$
	-r
	• $r^2 sin\theta dr d\theta dz$

- 5. The range of azimuthal angle ϕ in the spherical polar coordinates is
 - a. $[0,2\pi]$
- b. [0,π]
- c. $[0,\pi/2]$
- d. $[-\pi, +\pi]$
- 6. The equation to a surface in spherical coordinates is given by $\theta = \pi/3$. The surface is
 - a. A sector of a circle b. A cone making an angle of $\pi/3$ with the z-axis c. A vertical plane making an angle of $\pi/3$ with the z-axis d. A vertical plane making an angle of $\pi/3$ with the x-axis.
- 7. Expressed in spherical coordinate system the equation $x^2 + y^2 + z^2 = 4z$ becomes

 $a.r = 4\cos\theta\sin\theta$ $b.r = 4\sin\theta\cos\theta$ $c.r = 4\cos\theta$ $d.r = 4\sin\theta$

- 8. The value of the integral $\int_0^a \int_{\underline{y^2}}^{2a-y} xy dx dy$ is......
- 9. The integral $\int_0^a \int_0^{\sqrt{a^2-y^2}} (x^2+y^2) dx dy$ after changing into polar coordinates is......
- 10. The integral $\int_0^1 \int_x^{\sqrt{x}} xy dx dy$ after changing the order of integration is.....

Answers:

- 1. The value of $\int_0^4 \int_{\sqrt{x}}^2 \frac{1}{(1+y^3)} dy dx$ is..... $\frac{1}{3} log 5$...
- 2. The integral $\int_{-2}^{1} \int_{x^2+4x}^{3x+2} dy dx$ after changing the order of integration

is 1. $\int_0^5 \int_{\frac{y-2}{3}}^{\sqrt{y+4}-2} dx dy$ 2. $\int_{-4}^5 \int_{\frac{y-2}{3}}^{\sqrt{y+4}-2} dx dy$ 3. $\int_0^5 \int_0^{\sqrt{y+4}-2} dx dy$ 4. none of these

- 3. Value of $\int_0^1 \int_0^{\sqrt{1-x^2}} \int_0^{\sqrt{1-x^2-y^2}} xyz dx dy dz$ is
 - 2. $\frac{1}{24}$ 2. $\frac{1}{48}$ 3. 1 4. 0

4. Match the following

2.	Jacobian of the transformation $x = rcos\theta$, $y = rsin\theta$	•	r^2
•	To change Cartesian coordinates (x, y, z) to spherical coordinates (r, θ, \emptyset) : $dxdydz$ is replaced by	•	rdrdθ
•	To change Cartesian coordinates (x, y, z) to cylindrical coordinates $(r, \theta, z) : dxdydz$ is replaced by	•	r
•	Jacobian of the transformation $x = rsin\theta$, $y = rcos\theta$	•	$rdrd\theta d\phi$ $r^2sin\theta drd\theta d\phi$
		•	rdrdθdz -r
		•	$r^2 sin heta dr d heta dz$

- 5. The range of azimuthal angle ϕ in the spherical polar coordinates is
 - b. $[0,2\pi]$
- b. $[0,\pi]$
- c. $[0,\pi/2]$
- d. $[-\pi, +\pi]$
- 6. The equation to a surface in spherical coordinates is given by $\theta=\pi/3$. The surface is
 - b. A sector of a circle b. A cone making an angle of $\pi/3$ with the z-axis c. A vertical plane making an angle of $\pi/3$ with the z-axis d. A vertical plane making an angle of $\pi/3$ with the x-axis.
- 7. Expressed in spherical coordinate system the equation $x^2 + y^2 + z^2 = 4z$ becomes
 - $a.r = 4\cos\theta\sin\phi$ $b.r = 4\sin\theta\cos\phi$ $c.r = 4\cos\theta$ $d.r = 4\sin\theta$
- 8. The value of the integral $\int_0^a \int_{\frac{y^2}{a}}^{2a-y} xy dx dy$ is....... $\frac{19}{24}a^4$
- 9. The integral $\int_0^a \int_0^{\sqrt{a^2-y^2}} (x^2+y^2) dx dy$ after changing into polar coordinates is... $\int_0^a \int_0^{\frac{\pi}{2}} r^3 d\theta dr$
- 10. The integral $\int_0^1 \int_x^{\sqrt{x}} xy dx dy$ after changing the order of integration is..... $\int_0^1 \int_{y^2}^y xy dy dx$

Application of Double and Triple Integral:

- 1. To change cartesian co-ordinates (x, y, x) to spherical polar co-ordinates (r, θ, \emptyset) ; dxdydz is replaced by
 - a) $x = rsin\theta cos\emptyset; y = rsin\theta sin\emptyset; z = rcos\theta$
 - b) $x = rsin\theta cos\emptyset$; $y = rsin\theta cos\emptyset$; $z = rcos\theta$
 - c) $x = r \sin\theta \sin\theta$; $y = r \sin\theta \sin\theta$; $z = r \cos\theta$
 - d) $x = rsin\theta cos\emptyset$; $y = rsin\theta sin\emptyset$; $z = rsin\theta$
- 2. $\iint (x+y)^2 dxdy$ over the area bounded by the ellipse is
 - a) $\pi ab(a^2 + b^2)$ b) $\frac{1}{4}\pi ab(a^2 + b^2)$ c) $\frac{1}{4}\pi ab(a^3 + b^3)$ d) None
- 3. $\iint x^2 y^3 dx dy$ taken over the rectangle $0 \le x \le 1$; $0 \le y \le 3$ is

a) 27/2 b)25/7

a) 3/356

c)27/4

d)None

4. $\iint xy(x+y)dxdy$ over the area between $y+x^2$; y=x is

b) 3/240

c) 3/256

d)None

5. Area of the ellipse by using double integrals is

b) πab^2

c) $\pi a^2 b$ d)None

6. $\iint dxdy \text{ over the area bounded by } x = 0; y = 0; x^2 + y^2 = 1; 5y - 3 \text{ is}$

7. $\iint y dx dy$ over the region bounded by the parabolas $y^2 = 4x$; $x^2 = 4y$ is

a) $\frac{6}{25} + \frac{1}{2} \sin \frac{3}{5}$ b) 25/2

d) None c)25

a) 48/5

b) 47/2

c) 40/3

d)None

8. $\iint (x^2 + y^2) dx dy$ in the positive quadrant for which $x + y \le 1$ is

a) $\frac{1}{2}$

b) 1/3

c) 1/6

d) None

9. The area between the parabola $y^2 = 4x$; $x^2 = 4y$ is

a) 16/3 b) 15/2 c) 14/3 d) None

10. The value of $\int_{0}^{2} \int_{0}^{x^{2}} e^{\frac{y}{x}} dy dx$ is a) $e^{2} - 1$ b) $e^{2} + 1$ c) $e^{2} - 2$ d) None

Answers:

1	a
2	b
3	c
4	c
5	a
6	a
7	a
8	c
9	a
10	a

Differential Equations:

Pointers:

If M(x,y) and N(x,y) are homogeneous functions of the same degree then (Mx+Ny)⁻¹ is an I.F of Mdx+Ndy=0, Provided Mx+Ny not equal to zero. In case Mx+Ny =0 then $1/x^2$ or $1/y^2$ Or 1/xy are Integrating factors.

- For the DE f(xy)ydx + g(xy)xdy=0 ,(Mx-Ny)⁻¹ is an I.F , Provided Mx-Ny not equal to zero. In case Mx-Ny=0, then $\frac{M}{N} = \frac{y}{x}$ and the given diff equation reduces to xdy+ydx=0 with **xy=C** as its solution.
- 1. The integrating factor of the differential equation $x \log x \frac{dy}{dx} + y = \log x^2$ is
 - A) logx² B) logx C)xlogx D)xlogx²
- 2. ydx-xdy=0 can be reduced to exact, if divided by
 - a) x^2+y^2 b) y^2 c)xy d)All of these
- 3. For the differential equation $\left(\frac{d^3y}{dx^3}\right)^2 + \left(\frac{d^2y}{dx^2}\right)^6 + y = x^4$, the order and degree respectively are
 - a)2,6 b)3,2 c)2,4 d) None of these
- 4. The general solution of the differential equation (x-y)dx+(y-x)dy=0 is
 - a) $\frac{x^2}{2} y \frac{y^2}{2} = c$ b) $\frac{x^2}{2} y + \frac{y^2}{2} = c$ c) $\frac{x^2}{2} xy + \frac{y^2}{2} = c$ d) None of these
- 5. Integrating factor for the differential equation $\frac{dy}{dx} + \frac{2x}{y} = y^2$
 - a) y^2 b) e^{x^2} c) e^{2y} d) e^{y^2}
- 6. The integrating factor of the differential equation $(1+x^2)\frac{dy}{dx} + xy = \sinh^{-1} x$
 - a) $\frac{1}{\sqrt{1-x^2}}$ b) $\sqrt{1-x^2}$ c) $\sqrt{1+x^2}$ d) $\frac{x}{\sqrt{1+x^2}}$
- 7. If M(x,y)dx+N(x,y)dy=0 is said to be exact then the condition is
 - a) $\frac{\partial M}{\partial y} \neq \frac{\partial N}{\partial x}$ b) $\frac{\partial M}{\partial y} = \frac{\partial N}{\partial x}$ c) $\frac{\partial M}{\partial y} \rangle \frac{\partial N}{\partial x}$ d)M=N
- 8. The integrating factor for $(x+2y^3)\frac{dy}{dx} = y$
 - a)logy b) e^y c)1/y d)y+1
- 9. The differential equation of the form Mdx+Ndy=0, for which $\frac{1}{N} \left(\frac{\partial M}{\partial y} \frac{\partial N}{\partial x} \right) = \frac{2}{x}$ then the integrating factor is
- a)2x b) x^2 c)2logx d) e^{x^2}
- 10. The family of straight lines passing through the origin is represented by the differential equation:
- a) ydx+xdy=0 b)xdy-ydx=0 c)xdx+ydy=0 d)ydy-xdx=0

Answers:

1-b	2-b	3-b	4-c	5-a
6-c	7-b	8-c	9-b	10-b

Misc.Questions:

1) A thin plate covers the triangular region bounded by the x-axis and the lines x = 1 and y = 2x in the first quadrant. The plate's density at the point (x, y) is $\delta(x, y) = 6x + 6y + 6$. Find the plate's moments of inertia about the coordinates axes and the origin.

Ans: $I_x=12$, $I_y=39/5$, $I_0=99/5$.

2) Evaluate $\int_{-1}^{1} \int_{0}^{\sqrt{1-x^2}} (x^2 + y^2)^{3/2} dy dx$ by changing into polar coordinates

Ans:π/5

3) Using the triple integral find the volume of the solid within the cylinder $x^2+y^2=9$ and between the planes z=1 and x+z=5

Ans: 36π

4) Find the centroid of the semicircular region in the xy plane bounded by the x-axis and the curve

$$y = \sqrt{a^2 - x^2}$$

Ans: Centroid(0, 4a/3π)

- 5) The integrating factor of the differential equation $y^2 dx+(3xy-1)dy=0$ is
 - a) y^2
- b)2y
- c)y³
- 4)3x

Ans: y³