

Universidade Tecnológica Federal do Paraná Câmpus Cornélio Procópio Departamento Acadêmico de Matemática

Lista 01

Dados de Identificação		
Professor:	Matheus Pimenta	
Disciplina:	Estatística - AS32E	
Aluno:		

- 1. Uma carta é extraída ao acaso de um baralho comum de 52 cartas. Descreva o espaço amostral se a diferença de naipes:
 - (a) não é levada em consideração;
 - (b) é levada em consideração.

DICA: No segundo item, faça através de um gráfico.

- 2. Referindo-nos ao experimento do exercício 01, seja A o evento { extração de um rei} ou simplesmente {rei} e B o evento {extração de uma carta de paus} ou simplesmente {paus}. Descreva os eventos:
 - (a) $A \cup B$
 - (b) $A \cap B$
 - (c) $A \cup B^C$
 - (d) $A^C \cap B^C$
 - (e) A B
- 3. ma carta é extraída ao acaso de um baralho comum de 52 cartas. Encontre a probabilidade de ela ser:
 - (a) um ás;
 - **R**: $\frac{1}{13}$
 - (b) um valete de copas;
 - **R**: $\frac{1}{52}$
 - (c) um 3 de paus ou um 6 de ouros;
 - **R**: $\frac{1}{26}$
 - (d) uma carta de copas;
 - **R**: $\frac{1}{4}$
 - (e) qualquer naipe, exceto copas;
 - \mathbf{R} : $\frac{3}{4}$
 - (f) um 10 ou uma carta de espadas;
 - **R**: $\frac{4}{13}$

4. Uma bola é extraída ao acaso de uma caixa contendo 6 bolas vermelhas, 4 bolas brancas e 5 bolas azuis. Determine a probabilidade de que ela seja:
(a) vermelha \mathbf{R} : $\frac{2}{5}$
(b) branca
$\mathbf{R:} \frac{4}{15}$

- (e) vermelha ou branca \mathbf{R} : $\frac{2}{3}$
- 5. Um dado honesto é lançado duas vezes. Encontre a probabilidade de obter 4, 5 ou 6 no primeiro lançamento e 1, 2,3 ou 4 no segundo lançamento.
 R: ¹/₃
- 6. Encontre a probabilidade de não obter um total de 7 ou 11 em dois lançamentos de um par de dados honestos. R: $\frac{7}{9}$
- 7. Duas cartas são extraídas de um baralho comum de 52 cartas bem misturadas. Encontre a probabilidade de obter dois ases se a primeira carta:
 - (a) é recolocada;
 R: ¹/₁₆₉
 (b) não é recolocada no baralho;
 R: ¹/₂₂₁
- 8. Três bolas são retiradas sucessivamente da caixa do exercício 04. Encontre a probabilidade de elas serem retiradas na ordem vermelha, branca e azul se cada bola:
 - (a) é recolocada;
 R: 8/225
 (b) não é recolocada na caixa.
 R: 9/91
- 9. Uma caixa contém 5 bolas de gude vermelhas e 4 brancas. Duas bolas de gude são retiradas sucessivamente da caixa, sem reposição e é constatado que a segunda é branca. Qual é a probabilidade da primeira também ser branca?
 R: 3/8
- 10. As probabilidades de que um marido e sua esposa estejam vivos daqui a 20 anos são dadas por 0,8 e 0,9, respectivamente. Encontre a probabilidade de que em 20 anos:
 - (a) ambos estejam vivos;R: 0,72(b) nenhum esteja vivo;

R: 0,02

(c) pelo menos um esteja vivo;

R: 0,98

11. Vinte e cinco residências de um certo bairro foram sorteadas e visitadas por um entrevistador que, entre outras questões, perguntou sobre o número de televisores. Os dados foram os seguintes:

Organize os dados numa tabela de frequência e determine as diversas medidas de posição.

12. Num experimento, 15 coelhos foram alimentados com uma nova ração e seu peso avaliado ao fim de um mês. Os dados referentes ao ganho de peso (em quilogramas) foram os seguintes:

- (a) Utilizando os dados brutos, determine a média, moda e mediana desse conjunto.
- (b) Organize uma tabela de frequência com faixas de amplitude 0, 2 a partir de 1, 5.
- (c) Calcule, a partir da tabela de frequência e com o ponto médio como representante de cada faixa, a média, a moda e a mediana. Discuta as diferenças com o item a.
- 13. Um certo cruzamento tem alto índice de acidentes de trânsito, conforme pode ser constatado em uma amostra dos últimos doze meses: 5, 4, 7, 8, 5, 6, 4, 7, 9, 7, 6 e 8. Determine a média e a variância do número de acidentes mensais neste cruzamento.
- 14. Estudando uma nova técnica de sutura, foram contados os dias necessários para a completa cicatrização de determinada cirurgia. Os resultados, de 25 pacientes foram os seguintes: 6, 8, 9, 7, 8, 6, 6, 7, 8, 9, 10, 7, 8, 10, 9, 9, 9, 7, 6, 5, 7, 7, 8, 10 e 11. Organize os dados numa tabela de frequência e calcula a média, a variância e o coeficiente de variação.
- 15. Uma amostra de vinte empresas, de porte médio, foi escolhida para um estudo sobre o nível educacional dos funcionários do setor de vendas. Os dados coletados, quanto ao número de empregados com o curso superior completo, são apresentados abaixo:
 - (a) Organize uma tabela de frequência e calcule a média, moda e mediana.
 - (b) Determine o desvio padrão.
- 16. As notas finais de estatística para alunos de um curso de Administração foram as seguintes:

- (a) Determine a mediana e a média;
- (b) Separe o conjunto de dados em dois grupos denominados aprovados, com nota pelo menos igual a 5, e reprovados para os demais. Compare a variância desses dois grupos.
- 17. Um hospital maternidade planeja ampliar os leitos para recém-nascidos. Para tal, fez um levantamento dos últimos 50 nascimentos, obtendo a informação sobre o número de dias que os bebês permaneceram no hospital, antes de terem alta. Os dados, já ordenados, são apresentados a seguir: 1, 1, 1, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 3, 3, 3, 3, 3, 3, 3, 3,

$$3, 3, 3, 3, 3, 3, 3, 3, 3, 4, 4, 4, 4, 4, 4, 4, 4, 4, 5, 5, 5, 5, 5, 5, 5, 6, 7, 7, 8, 15$$

Empresa	Nº Funcionário
1	1
$\frac{1}{2}$	0
3	0
4	3
5	0
6	1
7	1
8	2
9	2
10	2
11	0
12	2
13	0
14	2
15	0
16	1
17	1
18	2
19	3
20	2

Tabela 1: Tabela do exercício 15.

- (a) Organize uma tabela de frequência.
- (b) Calcule a média, mediana e moda.
- (c) Determine o desvio padrão.
- (d) Dentre as medidas de posição do item b, discuta quais delas seriam mais adequadas para resumir esse conjunto de dados.
- (e) Você identifica algum valor *outlier*? Se sim, remova-o obtendo uma nova tabela de frequência e refaça os itens b e c. Comente as diferenças encontradas.
- 18. Foram anotados os níveis de colesterol (em mg/100ml) para trinta pacientes de uma clínica cardíaca. As medidas se referem a homens entre 40 e 60 anos de idade que foram à clínica fazer um *check-up*.
 - (a) Calcule a média, a moda, a mediana e a variância a partir da tabela de dados brutos;
 - (b) Organize os dados em uma tabela de frequência com faixas de tamanho de 10 a partir de 160.
 - (c) Refaça o item a usando a tabela de frequência obtida em b.
 - (d) Comenta as diferenças encontradas entre os valores das medidas calculadas em a e c.
- 19. A média da amostra sempre corresponderá a uma das observações na amostra?
- 20. Exatamente metade das observações em uma amostra cairá abaixo da média?
- 21. A média da amostra sempre será o valor que ocorre com mais frequência na amostra?
- 22. O desvio padrão pode ser igual a zero? Se sim, dê um exemplo.

Paciente	Colesterol
1	160
2	160
3	161
4	163
5	167
6	170
7	172
8	172
9	173
10	177
11	178
12	181
13	181
14	182
15	185
16	186
17	194
18	197
19	199
20	203
21	203
22	205
23	206
24	206
25	208
26	209
27	211
28	214
29	218
30	225

Tabela 2: Tabela do exercício 18.

23. O tempo de ignição fria de um motor de carro está sendo investigado por um fabricante de gasolina. Os seguintes tempos (em segundos) foram obtidos em um veículo de teste:

$$1, 75; 1, 92; 2, 62; 2, 35; 3, 09; 3, 15; 2, 53; 1, 91$$

- (a) Calcule a média, a variância e o desvio-padrão da amostra.
- (b) Construa um box-plot dos dados.
- 24. Um *outlier* é um ponto além da linha, porém a menos de 3 faixas interquartis da extremidade do *box-plot*, no caso de ser acima de 3 faixas interquartis, é chamado de *outlier* extremo. Faça um *box-plot* do exercício 17 e escreva uma interpretação do que você vê nesse diagrama.
- 25. Suponha que um par de dados honestos está para ser lançado e seja X a variável aleatória representando a soma dos pontos.
 - (a) Obtenha a distribuição de probabilidade de X.
 - (b) Encontre a função de distribuição F(x) da variável aleatória X do problema anterior.

(c) Determine o gráfico da função de distribuição.