# SINDy with control & parametric models

Filton workshop 2024

**Urban Fasel** 

Imperial College London

#### Literature

- Control
  - E Kaiser, JN Kutz, SL Brunton (2018) Sparse identification of nonlinear dynamics for model predictive control in the low-data limit.
  - U Fasel, E Kaiser, JN Kutz, BW Brunton, SL Brunton (2021) SINDy with Control: A Tutorial.
- Parametric
  - SL Brunton, JL Proctor, JN Kutz (2016) <u>Discovering governing equations from data by sparse identification of nonlinear dynamical systems</u>.
  - ZG Nicolaou, G Huo, Y Chen, SL Brunton, JN Kutz (2023) <u>Data-driven discovery and extrapolation of parameterized pattern-forming dynamics</u>.

# **Duffing Oscillator**

# **Duffing Oscillator**

#### 1a) Duffing oscillator







$$\dot{x}_1 = -\delta x_1 - \alpha x_2 - \beta x_2^3 + u$$





#### 1c) Initial conditions

$$x_1(t=0) = 0, \quad x_2(t=0) = 1$$









#### 4) SINDy model prediction



## MATLAB: Duffing Oscillator → <a href="https://github.com/urban-fasel">https://github.com/urban-fasel</a>

#### **Duffing oscillator**

$$\dot{x}_1 = -\delta x_1 - \alpha x_2 - \beta x_2^3 + u$$

$$\dot{x}_2 = x_1$$

$$u = \gamma \cos(\omega t)$$

#### Data: time series $x_1$ , $x_2$ , u



#### No MATLAB installed?

- → Run the tutorials on MATLAB online: <a href="https://matlab.mathworks.com/">https://matlab.mathworks.com/</a>
- → Or use PySINDy (next slide): <a href="https://github.com/dynamicslab/pysindy">https://github.com/dynamicslab/pysindy</a>
- → Or Julia SciML: <a href="https://docs.sciml.ai/DataDrivenDiffEq/stable/#Package-Overview">https://docs.sciml.ai/DataDrivenDiffEq/stable/#Package-Overview</a>



## Challenge

How to (safely) excite the system while maximizing information gain?





E Kaiser, JN Kutz, SL Brunton (2018) Sparse identification of nonlinear dynamics for model predictive control in the low-data limit

## **SINDy-MPC**

- Using SINDy models for nonlinear control
  - Control population dynamics
  - Stabilize fixed point of chaotic system
  - Optimize therapeutic strategies
  - Aircraft flight control

#### **Model Predictive Control**

- Use model to optimize control sequence
  - Reaching set point based on model predictions
  - Trade-off between control expenditure and reference tracking
  - Powerful because it can consider constraints



### **Predator prey population dynamics**

- Objective: stabilize population (fixed point)
- ODE:  $\dot{x}_1 = ax_1 bx_1x_2$  $\dot{x}_2 = -cx_2 + dx_1x_2 + u$
- Training: how to force system?
  - Schroeder sweep: phase-shifted sum of sines
  - Chirp: frequency increase with time





### **Comparisons DMD and NN**

- DMD performs surprisingly well
- NN needs more data than SINDy to train an accurate model for prediction

## **Control MATLAB tutorial**

## **IEEE CDC tutorial paper**

- MATLAB tutorial
- U Fasel, E Kaiser, JN Kutz, BW Brunton, SL Brunton (2021) SINDy with Control: A Tutorial.
- https://github.com/urban-fasel/SEIR\_SINDY\_MPC
  - Line 100: add control input to time series data array Line 107f: Build library and identify SINDy model



```
%% Initialize MPC
pMPC = MPCparams(); % define control parameters
x = x0; uopt = pMPC.uopt0;

%% Run nonlinear MPC with full-state feedback
for i = 1: (pMPC.Duration/pMPC.Ts)
% Cost and constraint function
COST = @(u) CostFCN(u,x,pMPC,uopt(1));
CONS = @(u) ConstraintFCN(u,x,pMPC);
% Optimization
uopt = fmincon(COST,uopt,pMPC,CONS);
% Apply control and step one timestep forward
x = rk4u(@SEIR,x,uopt(1),pMPC.Ts,1,[],params);
xHistory(i,:) = x;
uHistory(i) = uopt(1);
end
```

# **Bifurcation parameters**

## **Library – bifurcation parameters**



## **Chaotic logistic map**

- $x_{k+1} = \mu x_k (1 x_k) + \eta_k$ 
  - discrete time dynamics
  - $\mu$ : bifurcation parameter (chaotic for  $\mu > 3.6$ )
  - $\eta_k$ : stochastic forcing
- Considering bifurcation parameter μ
  - same as SINDy with control variables
  - collect noisy data for 10 different values μ
  - add µ to the library (same as u in SINDy-C)
- Identify true dynamics
  - ... to generate full logistics map
  - MATLAB tutorial (also in <u>PySINDy</u>)

## Additional examples / tutorials

#### MATLAB

- SINDy with control: run infectious disease dynamics MPC tutorial
- <u>Bifurcation parameters</u>: apply SINDy to identify Hopf normal form → example from 2016 paper
  - $\dot{x} = \mu x + \omega y Ax(x^2 + y^2)$
  - $\dot{y} = -\omega x + \mu y Ay(x^2 + y^2)$

### Python

- PySINDy control
  - 1 feature overview: SINDy with control (SINDYc)
- PySINDy MPC
  - https://github.com/CyrusLiu20/PySINDy-with-model-predictive-control/tree/main
- PySINDy parametric
  - 1\_feature\_overview: SINDy with control parameters (SINDyCP)
  - SINDyCP for discovery of parametrized pattern formation