Real Analysis Qualifying Exam Solutions

D. Zack Garza

Monday $6^{\rm th}$ July, 2020

Contents

1	Spri	ng 2020	3							
	1.1	1	3							
	1.2	2	4							
		1.2.1 a	5							
		1.2.2 b	6							
	1.3	3	6							
		1.3.1 a	6							
		1.3.2 b	7							
		1.3.3 c	10							
	1.4	4	10							
	1.5	5	11							
	1.6	6	13							
		1.6.1 a	13							
2	Fall 2019									
	2.1	1	14							
	2.2	a	14							
	2.3	b	15							
	2.4	2	16							
	2.5	3	18							
		2.5.1 a	19							
		2.5.2 b	19							
		2.5.3 c	19							
	2.6	4	20							
		2.6.1 a	20							
		2.6.2 b	21							
	2.7	5	21							
	2.8	a	22							
	2.9	b	22							
3	Spring 2019									
	3.1	1	23							
		3.1.1 a	23							
		3.1.2 b	24							

	3.2	2		25
	J	3.2.1 a		$\frac{25}{25}$
		3.2.2 b		26
	3.3	3		27
	3.4	4		28
	3.4			
		3.4.1 a		28
		3.4.2 b		28
	3.5	5		29
	5.5			
		3.5.1 a		29
		3.5.2 b		30
4	Fall	2018		31
•				
	4.1	1		
	4.2	2		32
	4.3	3		33
	4.4			
		4		
	4.5	5		34
5	Spri	ing 2018		34
	5.1	1		34
				-
	5.2	2		35
		5.2.1 a		35
		5.2.2 b		35
	F 0			
	5.3	3		
	5.4	4		36
	5.5	5		37
	0.0		 ·	٠.
6	Eall	2017		38
U				
	6.1	1		38
	6.2	2		38
		6.2.1 a		38
		6.2.2 b		
	6.3	3		39
	6.4	4		40
		6.4.1 a		40

		6.4.2 b		40
	6.5	5		40
		6.5.1 a		40
			 -	
		6.5.2 b	 ٠	42
	6.6	6		43
7	Spri	ng 2017		43
•	7.1	1		43
	•			
	7.2	2		44
		7.2.1 a		44
		7.2.2 b		44
		1.2.2 U		
	7.3	3		45

Contents 2

	7.3.2 b	45
	Fall 2016 8.1 1	46
9	Spring 2016 9.1 1	46
	Spring 2014 10.1 1	46

1 Spring 2020

1.1 1

Concepts used:

- DCT
- Weierstrass Approximation Theorem

Solution:

• Suppose p is a polynomial, then

$$\lim_{k \to \infty} \int_0^1 kx^{k-1} p(x) \, dx = \lim_{k \to \infty} \int_0^1 \left(\frac{\partial}{\partial x} x^k \right) p(x) \, dx$$

$$= \lim_{k \to \infty} \left[x^k p(x) \Big|_0^1 - \int_0^1 x^k \left(\frac{\partial}{\partial x} p(x) \right) \, dx \right] \quad \text{integrating by parts}$$

$$= p(1) - \lim_{k \to \infty} \int_0^1 x^k \left(\frac{\partial}{\partial x} p(x) \right) \, dx,$$

• Thus it suffices to show that

$$\lim_{k \to \infty} \int_0^1 x^k \left(\frac{\partial}{\partial x} p(x) \right) dx = 0.$$

• Integrating by parts a second time yields

$$\lim_{k \to \infty} \int_0^1 x^k \left(\frac{\partial}{\partial x} p(x) \right) dx = \lim_{k \to \infty} \frac{x^{k+1}}{k+1} p'(x) \Big|_0^1 - \int_0^1 \frac{x^{k+1}}{k+1} \left(\frac{\partial^2}{\partial x^2} p(x) \right) dx$$

$$= -\lim_{k \to \infty} \int_0^1 \frac{x^{k+1}}{k+1} \left(\frac{\partial^2}{\partial x^2} p(x) \right) dx$$

$$= -\int_0^1 \lim_{k \to \infty} \frac{x^{k+1}}{k+1} \left(\frac{\partial^2}{\partial x^2} p(x) \right) dx \quad \text{by DCT}$$

$$= -\int_0^1 0 \left(\frac{\partial^2}{\partial x^2} p(x) \right) dx$$

$$= 0$$

– The DCT can be applied here because f'' is continuous and [0,1] is compact, so f'' is bounded on [0,1] by a constant M and

$$\int_0^1 \left| x^k f''(x) \right| \le \int_0^1 1 \cdot M = M < \infty.$$

- Now use the Weierstrass approximation theorem:
 - If $f:[a,b] \longrightarrow \mathbb{R}$ is continuous, then for every $\varepsilon > 0$ there exists a polynomial $p_{\varepsilon}(x)$ such that $||f p_{\varepsilon}||_{\infty} < \varepsilon$.
- Thus

$$\left| \int_0^1 kx^{k-1} p_{\varepsilon}(x) \, dx - \int_0^1 kx^{k-1} f(x) \, dx \right| = \left| \int_0^1 kx^{k-1} (p_{\varepsilon}(x) - f(x)) \, dx \right|$$

$$\leq \left| \int_0^1 kx^{k-1} || p_{\varepsilon} - f ||_{\infty} \, dx \right|$$

$$= || p_{\varepsilon} - f ||_{\infty} \cdot \left| \int_0^1 kx^{k-1} \, dx \right|$$

$$= || p_{\varepsilon} - f ||_{\infty} \cdot x^k \right|_0^1$$

$$= || p_{\varepsilon} - f ||_{\infty} \stackrel{\varepsilon \longrightarrow 0}{\longrightarrow} 0$$

and the integrals are equal.

• By the first argument,

$$\int_0^1 kx^{k-1} p_{\varepsilon}(x) dx = p_{\varepsilon}(1) \text{ for each } \varepsilon$$

• Since uniform convergence implies pointwise convergence, $p_{\varepsilon}(1) \stackrel{\varepsilon \longrightarrow 0}{\longrightarrow} f(1)$.

1.2 2

Concepts used:

- Definition of outer measure: $m_*(E) = \inf_{\{Q_j\} \rightrightarrows E} \sum |Q_j|$ where $\{Q_j\}$ is a countable collection of closed cubes.
- Break $\mathbb R$ into $\coprod_{n\in\mathbb Z}[n,n+1),$ each with finite measure.
- Theorem: $m_*(Q) = |Q|$ for Q a closed cube (i.e. the outer measure equals the volume).

Proof (of Theorem).

Statement: if Q is a closed cube, then $m_*(Q) = |Q|$, the usual volume.

- $m_*(Q) \le |Q|$:
 - Since $Q \subseteq Q$, $Q \rightrightarrows Q$ and $m_*(Q) \leq |Q|$ since m_* is an infimum over such coverings.
- $|Q| < m_*(Q)$:
 - Fix $\varepsilon > 0$.

– Let $\{Q_i\}_{i=1}^{\infty} \rightrightarrows Q$ be arbitrary, it suffices to show that

$$|Q| \le \left(\sum_{i=1}^{\infty} |Q_i|\right) + \varepsilon.$$

- Pick open cubes S_i such that $Q_i \subseteq S_i$ and $|Q_i| \le |S_i| \le (1+\varepsilon)|Q_i|$.
- Then $\{S_i\} \rightrightarrows Q$, so by compactness of Q pick a finite subcover with N elements.
- Note

$$Q \subseteq \bigcup_{i=1}^{N} S_i \implies |Q| \le \sum_{i=1}^{N} |S_i| \le \sum_{i=1}^{N} (1+\varepsilon)|Q_j| \le (1+\varepsilon) \sum_{i=1}^{\infty} |Q_i|.$$

- Taking an infimum over coverings on the RHS preserves the inequality, so

$$|Q| \le (1+\varepsilon)m_*(Q)$$

- Take $\varepsilon \longrightarrow 0$ to obtain final inequality.

1.2.1 a

- If $m_*(E) = \infty$, then take $B = \mathbb{R}^n$ since $m(\mathbb{R}^n) = \infty$.
- Suppose $N := m_*(E) < \infty$.
- Since $m_*(E)$ is an infimum, by definition, for every $\varepsilon > 0$ there exists a covering by closed cubes $\{Q_i(\varepsilon)\}_{i=1}^{\infty} \rightrightarrows E$ depending on ε such that

$$\sum_{i=1}^{\infty} |Q_i(\varepsilon)| < N + \varepsilon.$$

- For each fixed n, set $\varepsilon_n = \frac{1}{n}$ to produce such a covering $\{Q_i(\varepsilon_n)\}_{i=1}^{\infty}$ and set $B_n := \bigcup_{i=1}^{\infty} Q_i(\varepsilon_n)$.
- The outer measure of cubes is equal to the sum of their volumes, so

$$m_*(B_n) = \sum_{i=1}^{\infty} |Q_i(\varepsilon_n)| < N + \varepsilon_n = N + \frac{1}{n}.$$

- Now set $B := \bigcap_{n=1}^{\infty} B_n$.
 - Since $E \subseteq B_n$ for every $n, E \subseteq B$
 - Since B is a countable intersection of countable unions of closed sets, B is Borel.
 - Since $B_n \subseteq B$ for every n, we can apply subadditivity to obtain the inequality

$$E \subseteq B \subseteq B_n \implies N \le m_*(B) \le m_*(B_n) < N + \frac{1}{n} \text{ for all } n \in \mathbb{Z}^{\ge 1}.$$

• This forces $m_*(E) = m_*(B)$.

1.2.2 b

Suppose $m_*(E) < \infty$.

- By (a), find a Borel set $B \supseteq E$ such that $m_*(B) = m_*(E)$
- Note that $E \subseteq B \implies B \cap E = E$ and $B \cap E^c = B \setminus E$.
- By assumption,

$$m_*(B) = m_*(B \cap E) + m_*(B \cap E^c)$$

$$m_*(E) = m_*(E) + m_*(B \setminus E)$$

$$m_*(E) - m_*(E) = m_*(B \setminus E) \quad \text{since } m_*(E) < \infty$$

$$\implies m_*(B \setminus E) = 0.$$

• So take $N = B \setminus E$; this shows $m_*(N) = 0$ and $E = B \setminus (B \setminus E) = B \setminus N$.

If $m_*(E) = \infty$:

- Apply result to E_R := E ∩ [R, R + 1)ⁿ ⊂ ℝⁿ for R ∈ ℤ, so E = ∐_RE_R
 Obtain B_R, N_R such that E_R = B_R \ N_R, m_{*}(E_R) = m_{*}(B_R), and m_{*}(N_R) = 0.
- - $-B := \bigcup B_R$ is a union of Borel sets and thus still Borel

$$-E = \bigcup_{R}^{R} E_{R}$$

- $-N \coloneqq \stackrel{\scriptscriptstyle{R}}{B} \setminus E$
- $-N' := \bigcup_{N} N_R$ is a union of null sets and thus still null
- Since $E_R \subset {}^R_B$ for every R, we have $E \subset B$
- We can compute

$$N = B \setminus E = \left(\bigcup_R B_R\right) \setminus \left(\bigcup_R E_R\right) \subseteq \bigcup_R \left(B_R \setminus E_R\right) = \bigcup_R N_R := N'$$

where $m_*(N') = 0$ since N' is null, and thus subadditivity forces $m_*(N) = 0$.

1.3 3

Concepts used:

- Limits
- Cauchy Criterion for Integrals: $\int_{-\infty}^{\infty} f(x) dx$ converges iff for every $\varepsilon > 0$ there exists an M_0 such that $A, B \ge M_0$ implies $\left| \int_A^B f \right| < \varepsilon$, i.e. $\left| \int_A^B f \right| \stackrel{A \longrightarrow \infty}{\longrightarrow} 0$.
- Integrals of L^1 functions have vanishing tails: $\int_{N}^{\infty} |f| \stackrel{N \longrightarrow \infty}{\longrightarrow} 0$.
- Mean Value Theorem for Integrals: $\int_a^b f(t) dt = (b-a)f(c)$ for some $c \in [a,b]$.

1.3.1 a

Stated integral equality:

- Let $\varepsilon > 0$
- $C_c(\mathbb{R}^n) \hookrightarrow L^1(\mathbb{R}^n)$ is dense so choose $\{f_n\} \longrightarrow f$ with $\|f_n f\|_1 \longrightarrow 0$.
- Since $\{f_n\}$ are compactly supported, choose $N_0 \gg 1$ such that f_n is zero outside of $B_{N_0}(\mathbf{0})$.
- Then

$$N \ge N_0 \implies \int_{|x|>N} |f| = \int_{|x|>N} |f - f_n + f_n|$$

$$\le \int_{|x|>N} |f - f_n| + \int_{|x|>N} |f_n|$$

$$= \int_{|x|>N} |f - f_n|$$

$$\le \int_{|x|>N} |f - f_n|$$

$$\le \int_{|x|>N} |f - f_n|$$

$$= ||f_n - f||_1 \left(\int_{|x|>N} 1 \right)$$

$$\stackrel{n \to \infty}{\longrightarrow} 0 \left(\int_{|x|>N} 1 \right)$$

$$= 0$$

$$\stackrel{N \to \infty}{\longrightarrow} 0.$$

To see that this doesn't force $f(x) \longrightarrow 0$ as $|x| \longrightarrow \infty$:

- Take f(x) to be a train of rectangles of height 1 and area $1/2^{j}$ centered on even integers.
- Then

$$\int_{|x|>N} |f| = \sum_{j=N}^{\infty} 1/2^j \stackrel{N \longrightarrow \infty}{\longrightarrow} 0$$

as the tail of a convergent sum.

• However f(x) = 1 for infinitely many even integers x > N, so $f(x) \not\longrightarrow 0$ as $|x| \longrightarrow \infty$.

1.3.2 b

Solution 1 ("Trick")

• Since f is decreasing on $[1, \infty)$, for any $t \in [x - n, x]$ we have

$$x - n \le t \le x \implies f(x) \le f(t) \le f(x - n).$$

• Integrate over [x, 2x], using monotonicity of the integral:

$$\int_{x}^{2x} f(x) dt \le \int_{x}^{2x} f(t) dt \le \int_{x}^{2x} f(x-n) dt$$

$$\implies f(x) \int_{x}^{2x} dt \le \int_{x}^{2x} f(t) dt \le f(x-n) \int_{x}^{2x} dt$$

$$\implies xf(x) \le \int_{x}^{2x} f(t) dt \le xf(x-n).$$

- By the Cauchy Criterion for integrals, $\lim_{x \to \infty} \int_{x}^{2x} f(t) dt = 0$.
- So the LHS term $xf(x) \xrightarrow{x \to \infty} 0$.
- Since x > 1, $|f(x)| \le |xf(x)|$
- Thus $f(x) \xrightarrow{x \to \infty} 0$ as well.

Solution 2 (Variation on the Trick)

• Use mean value theorem for integrals:

$$\int_{x}^{2x} f(t) dt = x f(c_x) \text{ for some } c_x \in [x, 2x] \text{ depending on } x.$$

• Since f is decreasing,

$$x \le c_x \le 2x \implies f(2x) \le f(c_x) \le f(x)$$

$$\implies 2xf(2x) \le 2xf(c_x) \le 2xf(x)$$

$$\implies 2xf(2x) \le 2x \int_x^{2x} f(t) dt \le 2xf(x)$$

.

- By Cauchy Criterion, $\int_x^{2x} f \longrightarrow 0$.
- So $2xf(2x) \longrightarrow 0$, which by a change of variables gives $uf(u) \longrightarrow 0$.
- Since $u \ge 1$, $f(u) \le u f(u)$ so $f(u) \longrightarrow 0$ as well.

Solution 3 (Contradiction)

Just showing $f(x) \xrightarrow{x \longrightarrow \infty} 0$:

- Toward a contradiction, suppose not.
- Since f is decreasing, it can not diverge to $+\infty$
- If $f(x) \longrightarrow -\infty$, then $f \notin L^1(\mathbb{R})$: choose $x_0 \gg 1$ so that $t \geq x_0 \implies f(t) < -1$, then
- Then $t \ge x_0 \implies |f(t)| \ge 1$, so

$$\int_{1}^{\infty} |f| \ge \int_{x_0}^{\infty} |f(t)| dt \ge \int_{x_0}^{\infty} 1 = \infty.$$

- Otherwise $f(x) \longrightarrow L \neq 0$, some finite limit.
- If L > 0:
 - Fix $\varepsilon > 0$, choose $x_0 \gg 1$ such that $t \geq x_0 \implies L \varepsilon \leq f(t) \leq L$
 - Then

$$\int_{1}^{\infty} f \ge \int_{x_0}^{\infty} f \ge \int_{x_0}^{\infty} (L - \varepsilon) dt = \infty$$

- If L < 0:
 - Fix $\varepsilon > 0$, choose $x_0 \gg 1$ such that $t \geq x_0 \implies L \leq f(t) \leq L + \varepsilon$.
 - Then

$$\int_{1}^{\infty} f \ge \int_{x_0}^{\infty} f \ge \int_{x_0}^{\infty} (L) dt = \infty$$

Showing $xf(x) \stackrel{x \longrightarrow \infty}{\longrightarrow} 0$.

- Toward a contradiction, suppose not.
- (How to show that $xf(x) \not\longrightarrow +\infty$?)
- If $xf(x) \longrightarrow -\infty$
 - Choose a sequence $\Gamma = \{\hat{x}_i\}$ such that $x_i \longrightarrow \infty$ and $x_i f(x_i) \longrightarrow -\infty$.
 - Choose a subsequence $\Gamma' = \{x_i\}$ such that $x_i f(x_i) \leq -1$ for all i and $x_i \leq x_{i+1}$.
 - Choose a further subsequence $S = \{x_i \in \Gamma' \mid 2x_i < x_{i+1}\}.$
 - Then since f is always decreasing, for $t \geq x_0$, |f| is increasing, and $|f(x_i)| \leq |f(2x_i)|$, so

$$\int_{1}^{\infty} |f| \ge \int_{x_0}^{\infty} |f| \ge \sum_{x_i \in S} \int_{x_i}^{2x_i} |f(t)| dt \ge \sum_{x_i \in S} \int_{x_i}^{2x_i} |f(x_i)| = \sum_{x_i \in S} x_i f(x_i) \longrightarrow \infty.$$

- If $xf(x) \longrightarrow L \neq 0$ for $0 < L < \infty$:
 - Fix $\varepsilon > 0$, choose an infinite sequence $\{x_i\}$ such that $L \varepsilon \leq x_i f(x_i) \leq L$ for all i.

$$\int_{1}^{\infty} |f| \ge \sum_{S} \int_{x_i}^{2x_i} |f(t)| dt \ge \sum_{S} \int_{x_i}^{2x_i} f(x_i) dt = \sum_{S} x_i f(x_i) \ge \sum_{S} (L - \varepsilon) \longrightarrow \infty.$$

- If $xf(x) \longrightarrow L \neq 0$ for $-\infty < L < 0$:
 - Fix $\varepsilon > 0$, choose an infinite sequence $\{x_i\}$ such that $L \leq x_i f(x_i) \leq L + \varepsilon$ for all i.

$$\int_{1}^{\infty} |f| \ge \sum_{S} \int_{x_i}^{2x_i} |f(t)| dt \ge \sum_{S} \int_{x_i}^{2x_i} f(x_i) dt = \sum_{S} x_i f(x_i) \ge \sum_{S} (L) \longrightarrow \infty.$$

Solution 4 (Akos's Suggestion) For $x \ge 1$,

$$|xf(x)| = \left| \int_{x}^{2x} f(x) \, dt \right| \le \int_{x}^{2x} |f(x)| \, dt \le \int_{x}^{2x} |f(t)| \, dt \le \int_{x}^{\infty} |f(t)| \, dt \xrightarrow{x \to \infty} 0$$

where we've used

- Since f is decreasing and $\lim_{x \to a} f(x) = 0$ from part (a), f is non-negative.
- Since f is positive and decreasing, for every $t \in [a, b]$ we have $|f(a)| \le |f(t)|$.
- By part (a), the last integral goes to zero.

Solution 5 (Peter's)

• Toward a contradiction, produce a sequence $x_i \longrightarrow \infty$ with $x_i f(x_i) \longrightarrow \infty$ and $x_i f(x_i) > \varepsilon > 0$,

$$\int f(x) dx \ge \sum_{i=1}^{\infty} \int_{x_i}^{x_{i+1}} f(x) dx$$

$$\ge \sum_{i=1}^{\infty} \int_{x_i}^{x_{i+1}} f(x_{i+1}) dx$$

$$= \sum_{i=1}^{\infty} f(x_{i+1}) \int_{x_i}^{x_{i+1}} dx$$

$$\ge \sum_{i=1}^{\infty} (x_{i+1} - x_i) f(x_{i+1})$$

$$\ge \sum_{i=1}^{\infty} (x_{i+1} - x_i) \frac{\varepsilon}{x_{i+1}}$$

$$= \varepsilon \sum_{i=1}^{\infty} \left(1 - \frac{x_{i-1}}{x_i} \right) \longrightarrow \infty$$

which can be ensured by passing to a subsequence where $\sum \frac{x_{i-1}}{x_i} < \infty$.

1.3.3 c

- No: take f(x) = 1/(x ln x)
 Then by a u-substitution,

$$\int_0^x f = \ln\left(\ln(x)\right) \xrightarrow{x \to \infty} \infty$$

is unbounded, so $f \notin L^1([1,\infty))$.

• But

$$xf(x) = \frac{1}{\ln(x)} \stackrel{x \longrightarrow \infty}{\longrightarrow} 0.$$

1.4 4

Relevant concepts:

- Tonelli: non-negative and measurable yields measurability of slices and equality of iterated
- Fubini: $f(x,y) \in L^1$ yields integrable slices and equality of iterated integrals
- F/T: apply Tonelli to |f|; if finite, $f \in L^1$ and apply Fubini to f

$$\begin{split} \|H(x)\|_1 &= \int_{\mathbb{R}} |H(x,y)| \, dx \\ &= \int_{\mathbb{R}} \left| \int_{\mathbb{R}} f(y) g(x-y) \, dy \right| \, dx \\ &\leq \int_{\mathbb{R}} \left(\int_{\mathbb{R}} |f(y) g(x-y)| \, dy \right) \, dx \\ &= \int_{\mathbb{R}} \left(\int_{\mathbb{R}} |f(y) g(x-y)| \, dx \right) \, dy \quad \text{by Tonelli} \\ &= \int_{\mathbb{R}} \left(\int_{\mathbb{R}} |f(y) g(t)| \, dt \right) \, dy \quad \text{setting } t = x - y, \, dt = -dx \\ &= \int_{\mathbb{R}} \left(\int_{\mathbb{R}} |f(y)| \cdot |g(t)| \, dt \right) \, dy \\ &= \int_{\mathbb{R}} |f(y)| \cdot \left(\int_{\mathbb{R}} |g(t)| \, dt \right) \, dy \\ &\coloneqq \int_{\mathbb{R}} |f(y)| \cdot \|g\|_1 \, dy \\ &= \|g\|_1 \int_{\mathbb{R}} |f(y)| \, dy \\ &\coloneqq \|g\|_1 \|f\|_1 \\ &< \infty \quad \text{by assumption} \quad . \end{split}$$

- H is measurable on \mathbb{R}^2 :
 - If we can show $\tilde{f}(x,y) := f(y)$ and $\tilde{g}(x,y) := g(x-y)$ are both measurable on \mathbb{R}^2 , then $H = \tilde{f} \cdot \tilde{g}$ is a product of measurable functions and thus measurable.
 - $-f \in L^1$, and L^1 functions are measurable by definition.
 - The function $(x,y) \mapsto g(x-y)$ is measurable on \mathbb{R}^2 :
 - * Let g be measurable on \mathbb{R} , then the cylinder function G(x,y)=g(x) on \mathbb{R}^2 is always measurable
 - * Define a linear transformation T := [1, -1; 0, 1] which sends $(x, y) \longrightarrow (x y, y)$, then $T \in GL(2, \mathbb{R})$ is linear and thus measurable.
 - * Then $(G \circ T)(x,y) = G(x-y,y) = \tilde{g}(x-y)$, so \tilde{g} is a composition of measurable functions and thus measurable.
- Apply **Tonelli** to |H|
 - -H measurable implies |H| is measurable
 - |H| is non-negative
 - So the iterated integrals are equal in the extended sense
 - The calculation shows the iterated integral is finite, to $\int |H|$ is finite and H is thus integrable on \mathbb{R}^2 .

Note: Fubini is not needed, since we're not calculating the actual integral, just showing H is integrable.

1.5 5

Concepts used:

• DCT

• Passing limits through products and quotients

Note that

$$\lim_{n} \left(1 + \frac{x^2}{n} \right)^{-(n+1)} = \frac{1}{\lim_{n} \left(1 + \frac{x^2}{n} \right)^1 \left(1 + \frac{x^2}{n} \right)^n}$$
$$= \frac{1}{1 \cdot e^{x^2}}$$
$$= e^{-x^2}.$$

If passing the limit through the integral is justified, we will have

$$\lim_{n \to \infty} \int_0^n \left(1 + \frac{x^2}{n} \right)^{-(n+1)} dx = \lim_{n \to \infty} \int_{\mathbb{R}} \chi_{[0,n]} \left(1 + \frac{x^2}{n} \right)^{-(n+1)} dx$$

$$= \int_{\mathbb{R}} \lim_{n \to \infty} \chi_{[0,n]} \left(1 + \frac{x^2}{n} \right)^{-(n+1)} dx \quad \text{by the DCT}$$

$$= \int_{\mathbb{R}} \lim_{n \to \infty} \left(1 + \frac{x^2}{n} \right)^{-(n+1)} dx$$

$$= \int_0^\infty e^{-x^2}$$

$$= \frac{\sqrt{\pi}}{2}.$$

Computing the last integral:

$$\left(\int_{\mathbb{R}} e^{-x^2} dx\right)^2 = \left(\int_{\mathbb{R}} e^{-x^2} dx\right) \left(\int_{\mathbb{R}} e^{-y^2} dx\right)$$

$$= \int_{\mathbb{R}} \int_{\mathbb{R}} e^{-(x+y)^2} dx$$

$$= \int_0^{2\pi} \int_0^{\infty} e^{-r^2} r dr d\theta \qquad u = r^2$$

$$= \frac{1}{2} \int_0^{2\pi} \int_0^{\infty} e^{-u} du d\theta$$

$$= \frac{1}{2} \int_0^{2\pi} 1$$

$$= \pi,$$

and now use the fact that the function is even so $\int_0^\infty f = \frac{1}{2} \int_{\mathbb{R}} f$. Justifying the DCT:

• Apply Bernoulli's inequality:

$$1 + \frac{x^2}{n}^{n+1} \ge 1 + \frac{x^2}{n} (1 + x^2) \ge 1 + x^2,$$

where the last inequality follows from the fact that $1 + \frac{x^2}{n} \ge 1$

Flesh out

1.6 6

Concepts used:

- For $e_n(x) := e^{2\pi i nx}$, the set $\{e_n\}$ is an orthonormal basis for $L^2([0,1])$.
- For any orthonormal sequence in a Hilbert space, we have Bessel's inequality:

$$\sum_{k=1}^{\infty} |\langle x, e_k \rangle|^2 \le ||x||^2.$$

- When $\{e_n\}$ is a basis, the above is an equality (Parseval)
- Arguing uniform convergence: since $\{\widehat{f}(n)\}\in \ell^1(\mathbb{Z})$, we should be able to apply the M test.

1.6.1 a

Claim: $\ell^1(\mathbb{Z}) \subseteq \ell^2(\mathbb{Z})$.

- Set $\mathbf{c} = \{c_k \mid k \in \mathbb{Z}\} \in \ell^1(\mathbb{Z}).$
- It suffices to show that if $\sum_{k \in \mathbb{Z}} |c_k| < \infty$ then $\sum_{k \in \mathbb{Z}} |c_k|^2 < \infty$.
- Let S = {c_k | |c_k| ≤ 1}, then c_k ∈ S ⇒ |c_k|² ≤ |c_k|
 Claim: S^c can only contain finitely many elements, all of which are finite.
 If not, either S^c := {c_j}_{j=1}[∞] is infinite with every |c_j| > 1, which forces

$$\sum_{c_k \in S^c} |c_k| = \sum_{j=1}^{\infty} |c_j| > \sum_{j=1}^{\infty} 1 = \infty.$$

- If any $c_j = \infty$, then $\sum_{k \in \mathbb{Z}} |c_k| \ge c_j = \infty$.
- So S^c is a finite set of finite integers, let $N = \max \left\{ |c_j|^2 \mid c_j \in S^c \right\} < \infty$.
- Rewrite the sum

$$\sum_{k \in \mathbb{Z}} |c_k|^2 = \sum_{c_k \in S} |c_k|^2 + \sum_{c_k \in S^c} |c_k|^2$$

$$\leq \sum_{c_k \in S} |c_k| + \sum_{c_k \in S^c} |c_k|^2$$

$$\leq \sum_{k \in \mathbb{Z}} |c_k| + \sum_{c_k \in S^c} |c_k|^2 \quad \text{since the } |c_k| \text{ are all positive}$$

$$= \|\mathbf{c}\|_{\ell^1} + \sum_{c_k \in S^c} |c_k|^2$$

$$\leq \|\mathbf{c}\|_{\ell^1} + |S^c| \cdot N$$

$$< \infty.$$

Claim: $L^2([0,1]) \subseteq L^1([0,1])$.

- It suffices to show that $\int |f|^2 < \infty \implies \int |f| < \infty$.
- Define $S = \{x \in [0,1] \mid |f(x)| \le 1\}$, then $x \in S^c \implies |f(x)|^2 \ge |f(x)|$.

• Break up the integral:

$$\begin{split} \int_{\mathbb{R}} |f| &= \int_{S} |f| + \int_{S^{c}} |f| \\ &\leq \int_{S} |f| + \int_{S^{c}} |f|^{2} \\ &\leq \int_{S} |f| + \|f\|_{2} \\ &\leq \sup_{x \in S} \{|f(x)|\} \cdot \mu(S) + \|f\|_{2} \\ &= 1 \cdot \mu(S) + \|f\|_{2} \quad \text{by definition of } S \\ &\leq 1 \cdot \mu([0,1]) + \|f\|_{2} \quad \text{since } S \subseteq [0,1] \\ &= 1 + \|f\|_{2} \\ &< \infty. \end{split}$$

Note: this proof shows $L^2(X) \subseteq L^1(X)$ whenever $\mu(X) < \infty$.

2 Fall 2019

2.1 1

Cesaro mean/summation. Break series apart into pieces that can be handled separately.

2.2 a

Prove a stronger result:

$$a_k \longrightarrow S \implies S_N \coloneqq \frac{1}{N} \sum_{k=1}^N a_k \longrightarrow S.$$

Idea: once N is large enough, $a_k \approx S$, and all smaller terms will die off as $N \longrightarrow \infty$. See this MSE answer.

• Use convergence $a_k \longrightarrow S$: choose M large enough such that

$$k \ge M + 1 \implies |a_k - S| < \varepsilon.$$

Then

$$\left| \left(\frac{1}{N} \sum_{k=1}^{N} a_k \right) - S \right| = \frac{1}{N} \left| \left(\sum_{k=1}^{N} a_k \right) - NS \right|$$

$$= \frac{1}{N} \left| \left(\sum_{k=1}^{N} a_k \right) - \sum_{k=1}^{N} S \right|$$

$$= \frac{1}{N} \left| \sum_{k=1}^{N} (a_k - S) \right|$$

$$\leq \frac{1}{N} \sum_{k=1}^{N} |a_k - S|$$

$$= \frac{1}{N} \sum_{k=1}^{M} |a_k - S| + \sum_{k=M+1}^{N} |a_k - S|$$

$$\leq \frac{1}{N} \sum_{k=1}^{M} |a_k - S| + \sum_{k=M+1}^{N} \frac{\varepsilon}{2}$$

$$= \frac{1}{N} \sum_{k=1}^{M} |a_k - S| + (N - M) \frac{\varepsilon}{2}$$

$$\stackrel{\varepsilon}{\Longrightarrow} \frac{1}{N} \sum_{k=1}^{M} |a_k - S| + 0$$

$$\stackrel{N \longrightarrow \infty}{\Longrightarrow} 0 + 0.$$

Note: M is fixed, so the last sum is some constant c, and $c/N \longrightarrow 0$ as $N \longrightarrow \infty$ for any constant. To be more careful, choose M first to get $\varepsilon/2$ for the tail, then choose N(M) > M for the remaining truncated part of the sum.

2.3 b

• Define

$$\Gamma_n \coloneqq \sum_{k=n}^{\infty} \frac{a_k}{k}.$$

- $\Gamma_1 = \sum_{k=1}^n \frac{a_k}{k}$ is the original series and each Γ_n is a tail of Γ_1 , so by assumption $\Gamma_n \stackrel{n \longrightarrow \infty}{\longrightarrow} 0$.
- Compute

$$\frac{1}{n}\sum_{k=1}^{n}a_k = \frac{1}{n}(\Gamma_1 + \Gamma_2 + \dots + \Gamma_n - \Gamma_{n+1})$$

• This comes from consider the following summation:

2.4 2

$$\Gamma_1: \qquad a_1 + \frac{a_2}{2} + \frac{a_3}{3} + \cdots$$

$$\Gamma_2: \qquad \frac{a_2}{2} + \frac{a_3}{3} + \cdots$$

$$\Gamma_3: \qquad \frac{a_3}{3} + \cdots$$

$$\sum_{i=1}^n \Gamma_i: \qquad a_1 + a_2 + a_3 + \cdots + a_n + \frac{a_{n+1}}{n+1} + \cdots$$

- Use part (a): since $\Gamma_n \stackrel{n \longrightarrow \infty}{\longrightarrow} 0$, we have $\frac{1}{n} \sum_{k=1}^n \Gamma_k \stackrel{n \longrightarrow \infty}{\longrightarrow} 0$.
- Also a minor check: $\Gamma_n \longrightarrow 0 \implies \frac{1}{n}\Gamma_n \longrightarrow 0$.
- Then

$$\frac{1}{n} \sum_{k=1}^{n} a_k = \frac{1}{n} (\Gamma_1 + \Gamma_2 + \dots + \Gamma_n - \mathbf{\Gamma_{n+1}})$$
$$= \left(\frac{1}{n} \sum_{k=0}^{n} \Gamma_k\right) - \left(\frac{1}{n} \Gamma_{n+1}\right)$$
$$\stackrel{n \to \infty}{\longrightarrow} 0.$$

2.4 2

DCT, and bounding in the right place. Don't evaluate the actual integral!

- By induction on the number of limits we can pass through the integral.
- For n=1 we first pass one derivative into the integral: let $x_n \longrightarrow x$ be any sequence converging

to x, then

$$\frac{\partial}{\partial x} \frac{\sin(x)}{x} = \frac{\partial}{\partial x} \int_0^1 \cos(tx) dt$$

$$= \lim_{x_n \to x} \frac{1}{x_n - x} \left(\int_0^1 \cos(tx_n) dt - \int_0^1 \cos(tx) dt \right)$$

$$= \lim_{x_n \to x} \left(\int_0^1 \frac{\cos(tx_n) - \cos(tx)}{x_n - x} dt \right)$$

$$= \lim_{x_n \to x} \left(\int_0^1 \left(t \sin(tx) \Big|_{x = \xi_n} \right) dt \right) \quad \text{where} \quad \xi_n \in [x_n, x] \text{ by MVT}, \xi_n \to x$$

$$= \lim_{\xi_n \to x} \left(\int_0^1 t \sin(t\xi_n) dt \right)$$

$$= \int_0^1 t \sin(tx) dt$$

$$= \int_0^1 t \sin(tx) dt$$

• Taking absolute values we obtain an upper bound

$$\left| \frac{\partial}{\partial x} \frac{\sin(x)}{x} \right| = \left| \int_0^1 t \sin(tx) \, dt \right|$$

$$\leq \int_0^1 |t \sin(tx)| \, dt$$

$$\leq \int_0^1 1 \, dt = 1,$$

since $t \in [0,1] \implies |t| < 1$, and $|\sin(xt)| \le 1$ for any x and t.

• Note that this bound also justifies the DCT, since the functions $f_n(t) = t \sin(t\xi_n)$ are uniformly dominated by g(t) = 1 on $L^1([0,1])$.

Note: integrating by parts here yields the actual formula:

$$\int_{0}^{1} t \sin(tx) dt =_{IBP} \left(\frac{-t \cos(tx)}{x} \right) \Big|_{t=0}^{t=1} - \int_{0}^{1} \frac{\cos(tx)}{x} dt$$
$$= \frac{-\cos(x)}{x} - \frac{\sin(x)}{x^{2}}$$
$$= \frac{x \cos(x) - \sin(x)}{x^{2}}.$$

• For the inductive step, we assume that we can pass n-1 limits through the integral and show we can pass the nth through as well.

$$\frac{\partial^n}{\partial x^n} \frac{\sin(x)}{x} = \frac{\partial^n}{\partial x^n} \int_0^1 \cos(tx) \, dt$$
$$= \frac{\partial}{\partial x} \int_0^1 \frac{\partial^{n-1}}{\partial x^{n-1}} \cos(tx) \, dt$$
$$= \frac{\partial}{\partial x} \int_0^1 t^{n-1} f_{n-1}(x,t) \, dt$$

2.5 - 3

- Note that $f_n(x,t) = \pm \sin(tx)$ when n is odd and $f_n(x,t) = \pm \cos(tx)$ when n is even, and a constant factor of t is multiplied when each derivative is taken.
- We continue as in the base case:

$$\frac{\partial}{\partial x} \int_{0}^{1} t^{n-1} f_{n-1}(x,t) dt = \lim_{x_{k} \to x} \int_{0}^{1} t^{n-1} \left(\frac{f_{n-1}(x_{n},t) - f_{n-1}(x,t)}{x_{n} - x} \right) dt$$

$$=_{\text{IVT}} \lim_{x_{k} \to x} \int_{0}^{1} t^{n-1} \frac{\partial f_{n-1}}{\partial x} \left(\xi_{k}, t \right) dt \quad \text{where } \xi_{k} \in [x_{k}, x], \, \xi_{k} \to x$$

$$=_{\text{DCT}} \int_{0}^{1} \lim_{x_{k} \to x} t^{n-1} \frac{\partial f_{n-1}}{\partial x} \left(\xi_{k}, t \right) dt$$

$$\coloneqq \int_{0}^{1} \lim_{x_{k} \to x} t^{n} f_{n}(\xi_{k}, t) dt$$

$$\coloneqq \int_{0}^{1} t^{n} f_{n}(x, t) dt.$$

- We've used the fact that $f_0(x) = \cos(tx)$ is smooth as a function of x, and in particular continuous
- The DCT is justified because the functions $h_{n,k}(x,t) = t^n f_n(\xi_k,t)$ are again uniformly (in k) bounded by 1 since $t \le 1 \implies t^n \le 1$ and each f_n is a sin or cosine.
- Now take absolute values

$$\left| \frac{\partial^n}{\partial x^n} \frac{\sin(x)}{x} \right| = \left| \int_0^1 -t^n f_n(x,t) \, dt \right|$$

$$\leq \int_0^1 |t^n f_n(x,t)| \, dt$$

$$\leq \int_0^1 |t^n| |f_n(x,t)| \, dt$$

$$\leq \int_0^1 |t^n| \cdot 1 \, dt$$

$$\leq \int_0^1 t^n \, dt \quad \text{since } t \text{ is positive}$$

$$= \frac{1}{n+1}$$

$$< \frac{1}{n}.$$

- We've again used the fact that $f_n(x,t)$ is of the form $\pm \cos(tx)$ or $\pm \sin(tx)$, both of which are bounded by 1.

2.5 3

Concepts used: - Borel-Cantelli: for a sequence of sets X_n ,

$$\limsup_{n} X_{n} = \left\{ x \mid x \in X_{n} \text{ for infinitely many } n \right\} = \bigcap_{m \in \mathbb{N}} \bigcup_{n \geq m} X_{n}$$

$$\liminf_{n} X_{n} = \left\{ x \mid x \in X_{n} \text{ for all but finitely many } n \right\} = \bigcup_{m \in \mathbb{N}} \bigcap_{n \geq m} X_{n}.$$

2 FALL 2019

• Properties of logs and exponentials:

$$\prod_{n} e^{x_n} = e^{\sum_{n} x_n} \quad \text{and} \quad \sum_{n} \log(x_n) = \log\left(\prod_{n} x_n\right).$$

- Tails of convergent sums vanish.
- Continuity of measure: $B_n \searrow B$ and $\mu(B_0) < \infty$ implies $\lim_n \mu(B_n) = \mu(B)$, and $B_n \nearrow B \Longrightarrow \lim_n \mu(B_n) = \mu(B)$.

2.5.1 a

- The Borel σ -algebra is closed under countable unions/intersections/complements,
- $B = \limsup_{n} B_n$ is an intersection of unions of measurable sets.

2.5.2 b

- Tails of convergent sums go to zero, so $\sum_{n>M} \mu(B_n) \xrightarrow{M \longrightarrow \infty} 0$,
- $B_M := \bigcap_{m=1}^M \bigcup_{n \ge m} B_n \searrow B$.

$$\mu(B_M) = \mu\left(\bigcap_{m \in \mathbb{N}} \bigcup_{n \ge m} B_n\right)$$

$$\leq \mu\left(\bigcup_{n \ge m} B_n\right) \quad \text{for all } m \in \mathbb{N} \text{ by countable subadditivity}$$

$$\longrightarrow 0,$$

• The result follows by continuity of measure.

2.5.3 c

• To show $\mu(B) = 1$, we'll show $\mu(B^c) = 0$.

• Let
$$B_k = \bigcap_{m=1}^{\infty} \bigcup_{n=m}^{K} B_n$$
. Then

$$\mu(B_K^c) = \mu\left(\bigcup_{m=1}^{\infty} \bigcap_{n=m}^K B_n^c\right)$$

$$\leq \sum_{m=1}^{\infty} \mu\left(\bigcap_{n=m}^K B_n^c\right) \quad \text{by subadditivity}$$

$$= \sum_{m=1}^{\infty} \prod_{n=m}^K \left(1 - \mu(B_n)\right) \quad \text{by assumption}$$

$$\leq \sum_{m=1}^{\infty} \prod_{n=m}^K e^{-\mu(B_n^c)} \quad \text{by hint}$$

$$= \sum_{m=1}^{\infty} \exp\left(-\sum_{n=m}^K \mu(B_n^c)\right)$$

$$\stackrel{K \longrightarrow \infty}{\longrightarrow} 0$$

since
$$\sum_{n=m}^{K} \mu(B_n^c) \stackrel{K \longrightarrow \infty}{\longrightarrow} \infty$$
 by assumption

• We can apply continuity of measure since $B_K^c \xrightarrow{K \longrightarrow \infty} B^c$.

Proving the hint: ?

2.6 4

Concepts used:

- Bessel's Inequality
- Pythagoras
- Surjectivity of the Riesz map
- Parseval's Identity
- Trick remember to write out finite sum S_N , and consider $||x S_N||$.

2.6.1 a

Claim:

$$0 \le \left\| x - \sum_{n=1}^{N} \langle x, u_n \rangle u_n \right\|^2 = \|x\|^2 - \sum_{n=1}^{N} |\langle x, u_n \rangle|^2$$
$$\implies \sum_{n=1}^{\infty} |\langle x, u_n \rangle|^2 \le \|x\|^2.$$

2.7 - 5

Proof: Let
$$S_N = \sum_{n=1}^N \langle x, u_n \rangle u_n$$
. Then

$$0 \le \|x - S_N\|^2$$

$$= \langle x - S_n, x - S_N \rangle$$

$$= \|x\|^2 - \sum_{n=1}^N |\langle x, u_n \rangle|^2$$

$$\xrightarrow{N \to \infty} \|x\|^2 - \sum_{n=1}^N |\langle x, u_n \rangle|^2.$$

2.6.2 b

1. Fix $\{a_n\} \in \ell^2$, then note that $\sum |a_n|^2 < \infty \implies$ the tails vanish.

2. Define

$$x := \lim_{N \to \infty} S_N = \lim_{N \to \infty} \sum_{k=1}^N a_k u_k$$

3. $\{S_N\}$ Cauchy (by 1) and H complete $\implies x \in H$.

4.

$$\langle x, u_n \rangle = \left\langle \sum_k a_k u_k, u_n \right\rangle = \sum_k a_k \langle u_k, u_n \rangle = a_n \quad \forall n \in \mathbb{N}$$

since the u_k are all orthogonal.

5.

$$||x||^2 = \left\| \sum_k a_k u_k \right\|^2 = \sum_k ||a_k u_k||^2 = \sum_k |a_k|^2$$

by Pythagoras since the u_k are normal.

Bonus: We didn't use completeness here, so the Fourier series may not actually converge to x. If $\{u_n\}$ is **complete** (so $x = 0 \iff \langle x, u_n \rangle = 0 \ \forall n$) then the Fourier series *does* converge to x and $\sum_{n=1}^{\infty} |\langle x, u_n \rangle|^2 = ||x||^2$ for all $x \in H$.

2.7 5

Continuity in L^1 (recall that DCT won't work! Notes 19.4, prove it for a dense subset first). Lebesgue differentiation in 1-dimensional case. See HW 5.6.

2.8 a

Choose $g \in C_c^0$ such that $||f - g||_1 \longrightarrow 0$.

By translation invariance, $\|\tau_h f - \tau_h g\|_1 \longrightarrow 0$.

Write

$$\|\tau f - f\|_{1} = \|\tau_{h} f - g + g - \tau_{h} g + \tau_{h} g - f\|_{1}$$

$$\leq \|\tau_{h} f - \tau_{h} g\| + \|g - f\| + \|\tau_{h} g - g\|$$

$$\longrightarrow \|\tau_{h} g - g\|,$$

so it suffices to show that $\|\tau_h g - g\| \longrightarrow 0$ for $g \in C_c^0$.

Fix $\varepsilon > 0$. Enlarge the support of g to K such that

$$|h| \le 1$$
 and $x \in K^c \implies |g(x-h) - g(x)| = 0$.

By uniform continuity of g, pick $\delta \leq 1$ small enough such that

$$x \in K, |h| \le \delta \implies |g(x-h) - g(x)| < \varepsilon,$$

then

$$\int_{K} |g(x-h) - g(x)| \le \int_{K} \varepsilon = \varepsilon \cdot m(K) \longrightarrow 0.$$

2.9 b

We have

$$\int_{\mathbb{R}} |A_h(f)(x)| \ dx = \int_{\mathbb{R}} \left| \frac{1}{2h} \int_{x-h}^{x+h} f(y) \ dy \right| \ dx$$

$$\leq \frac{1}{2h} \int_{\mathbb{R}} \int_{x-h}^{x+h} |f(y)| \ dy \ dx$$

$$=_{FT} \frac{1}{2h} \int_{\mathbb{R}} \int_{y-h}^{y+h} |f(y)| \ \mathbf{dx} \ \mathbf{dy}$$

$$= \int_{\mathbb{R}} |f(y)| \ dy$$

$$= ||f||_{1}.$$

and (rough sketch)

$$\int_{\mathbb{R}} |A_h(f)(x) - f(x)| \ dx = \int_{\mathbb{R}} \left| \left(\frac{1}{2h} \int_{B(h,x)} f(y) \ dy \right) - f(x) \right| \ dx$$

$$= \int_{\mathbb{R}} \left| \left(\frac{1}{2h} \int_{B(h,x)} f(y) \ dy \right) - \frac{1}{2h} \int_{B(h,x)} f(x) \ dy \right| \ dx$$

$$\leq_{FT} \frac{1}{2h} \int_{\mathbb{R}} \int_{B(h,x)} |f(y - x) - f(x)| \ \mathbf{dx} \ \mathbf{dy}$$

$$\leq \frac{1}{2h} \int_{\mathbb{R}} \|\tau_x f - f\|_1 \ dy$$

$$\longrightarrow 0 \quad \text{by (a)}.$$

3 Spring 2019

3.1 1

3.1.1 a

- Let $\{f_n\}$ be a Cauchy sequence in $C(I, \|\cdot\|_{\infty})$, so $\lim_{n} \lim_{m} \|f_m f_n\|_{\infty} = 0$, we will show it converges to some f in this space.
- For each fixed $x_0 \in [0,1]$, the sequence of real numbers $\{f_n(x_0)\}$ is Cauchy in \mathbb{R} since

$$x_0 \in I \implies |f_m(x_0) - f_n(x_0)| \le \sup_{x \in I} |f_m(x) - f_n(x)| := ||f_m - f_n||_{\infty} \xrightarrow{m > n \longrightarrow \infty} 0,$$

- Since \mathbb{R} is complete, this sequence converges and we can define $f(x) := \lim_{k \to \infty} f_n(x)$.
- Thus $f_n \longrightarrow f$ pointwise by construction
- Claim: $||f f_n|| \xrightarrow{n \to \infty} 0$, so f_n converges to f in $C([0, 1], ||\cdot||_{\infty})$.
 - Proof:
 - * Fix $\varepsilon > 0$; we will show there exists an N such that $n \geq N \implies ||f_n f|| < \varepsilon$
 - * Fix an $x_0 \in I$. Since $f_n \longrightarrow f$ pointwise, choose N_1 large enough so that

$$n \ge N_1 \implies |f_n(x_0) - f(x_0)| < \varepsilon/2.$$

* Since $||f_n - f_m||_{\infty} \longrightarrow 0$, choose and N_2 large enough so that

$$n, m \ge N_2 \implies ||f_n - f_m||_{\infty} < \varepsilon/2.$$

* Then for $n, m \ge \max(N_1, N_2)$, we have

$$|f_n(x_0) - f(x_0)| = |f_n(x_0) - f(x_0) + f_m(x_0) - f_m(x_0)|$$

$$= |f_n(x_0) - f_m(x_0) + f_m(x_0) - f(x_0)|$$

$$\leq |f_n(x_0) - f_m(x_0)| + |f_m(x_0) - f(x_0)|$$

$$< |f_n(x_0) - f_m(x_0)| + \frac{\varepsilon}{2}$$

$$\leq \sup_{x \in I} |f_n(x) - f_m(x)| + \frac{\varepsilon}{2}$$

$$< ||f_n - f_m||_{\infty} + \frac{\varepsilon}{2}$$

$$\leq \frac{\varepsilon}{2} + \frac{\varepsilon}{2}$$

$$\implies |f_n(x_0) - f(x_0)| < \varepsilon$$

$$\implies \sup_{x \in I} |f_n(x_0) - f(x_0)| \leq \sup_{x \in I} \varepsilon \text{ by order limit laws}$$

$$\implies ||f_n - f|| \leq \varepsilon$$

• f is the uniform limit of continuous functions and thus continuous, so $f \in C([0,1])$.

3.1.2 b

- It suffices to produce a Cauchy sequence that does not converge to a continuous function.
- Take the following sequence of functions:
 - f_1 increases linearly from 0 to 1 on [0, 1/2] and is 1 on [1/2, 1]
 - f_2 is 0 on [0,1/4] increases linearly from 0 to 1 on [1/4,1/2] and is 1 on [1/2,1]
 - f_3 is 0 on [0,3/8] increases linearly from 0 to 1 on [3/8,1/2] and is 1 on [1/2,1]
 - $-f_3$ is 0 on [0, (1/2 3/8)/2] increases linearly from 0 to 1 on [(1/2 3/8)/2, 1/2] and is 1 on [1/2, 1]

Idea: take sequence starting points for the triangles:
$$0, 0 + \frac{1}{4}, 0 + \frac{1}{4} + \frac{1}{8}, \cdots$$
 which converges to $1/2$ since $\sum_{k=1}^{\infty} \frac{1}{2^k} = -\frac{1}{2} + \sum_{k=0}^{\infty} \frac{1}{2^k}$.

- Then each f_n is clearly integrable, since its graph is contained in the unit square.
- $\{f_n\}$ is Cauchy: geometrically subtracting areas yields a single triangle whose area tends to 0.
- But f_n converges to $\chi_{\left[\frac{1}{n},1\right]}$ which is discontinuous.

Todo: show that $\int_0^1 |f_n(x) - f_m(x)| dx \longrightarrow 0$ rigorously, show that no $g \in L^1([0,1])$ can converge to this indicator function.

3.2 2

3.2.1 a

See Folland p.26

- Lemma 1: $\mu(\coprod_{k=1}^{\infty} E_k) = \lim_{N \to \infty} \sum_{k=1}^{N} \mu(E_k)$.
- Suppose $F_0 \supseteq F_1 \supseteq \cdots$.
- Let $A_k = F_k \setminus F_{k+1}$, since the F_k are nested the A_k are disjoint
- Set $A := \coprod_{k=1}^{\infty} A_k$ and $F := \bigcap_{k=1}^{\infty} F_k$.
- Note $X = X \setminus Y \coprod X \cap Y$ for any two sets (just write $X \setminus Y := X \cap Y^c$)
- Note that A contains anything that was removed from F_0 when passing from any F_j to F_{j+1} , while F contains everything that is never removed at any stage, and these are disjoint possibilities.

• Thus $F_0 = F \prod A$, so

$$\mu(F_0) = \mu(F) + \mu(A)$$

$$= \mu(F) + \mu(\coprod_{k=1}^{\infty} A_k)$$

$$= \mu(F) + \lim_{n \to \infty} \sum_{k=0}^{n} \mu(A_k) \text{ by countable additivity}$$

$$= \mu(F) + \lim_{n \to \infty} \sum_{k=0}^{n} \mu(F_k) - \mu(F_{k+1})$$

$$= \mu(F) + \lim_{n \to \infty} (\mu(F_1) - \mu(F_n)) \text{ (Telescoping)}$$

$$= \mu(F) + \mu(F_1) - \lim_{N \to \infty} \mu(F_n),$$

• Since μ is a finite measure, $\mu(F_1) < \infty$ and can be subtracted, yielding

$$\mu(F_1) = \mu(F) + \mu(F_1) - \lim_{n \to \infty} \mu(F_n)$$

$$\implies \mu(F) = \lim_{n \to \infty} \mu(F_n)$$

$$\implies \mu\left(\bigcap_{k=1}^{\infty} F_k\right) = \lim_{n \to \infty} \mu(F_n).$$

3.2.2 b

- Toward a contradiction, negate the implication: suppose there exists an $\varepsilon > 0$ such that for all δ , we have $m(E) < \delta$ but $\mu(E) > \varepsilon$.
- The sequence $\left\{\delta_n \coloneqq \frac{1}{2^n}\right\}_{n \in \mathbb{N}}$ and produce sets $A_n \in \mathcal{B}$ such $m(A_n) < \frac{1}{2^n}$ but $\mu(A_n) > \varepsilon$.
- Define

$$F_n := \bigcup_{j \ge n} A_j$$

$$C_m := \bigcap_{k=1}^m F_k$$

$$A := C_\infty := \bigcap_{k=1}^\infty F_k.$$

- Note that $F_1 \supseteq F_2 \supseteq \cdots$, since each increase in index unions fewer sets.
- By continuity for the Lebesgue measure,

$$m(A) = m\left(\bigcap_{k=1}^{\infty} F_k\right) = \lim_{k \to \infty} m(F_k) = \lim_{k \to \infty} m\left(\bigcup_{j \ge k} A_j\right) \le \lim_{k \to \infty} \sum_{j \ge k} m(A_j) = \lim_{k \to \infty} \sum_{j \ge k} \frac{1}{2^n} = 0,$$

which follows because this is the tail of a convergent sum

• Thus m(A) = 0 and by assumption, this implies $\mu(A) = 0$.

• However, by part (a),

$$\mu(A) = \lim_{n} \mu\left(\bigcup_{k=n}^{\infty} A_k\right) \ge \lim_{n} \mu(A_n) = \lim_{n} \varepsilon = \varepsilon > 0.$$

All messed u

3.3 3

Concepts used:

- Definition of L^+ : space of measurable function $X \longrightarrow [0, \infty]$.
- Fatou: For any sequence of L^+ functions, $\int \liminf f_n \leq \liminf \int f_n$.
- Egorov's Theorem: If $E \subseteq \mathbb{R}^n$ is measurable, m(E) > 0, $f_k : E \longrightarrow \mathbb{R}$ a sequence of measurable functions where $\lim_{n \to \infty} f_n(x)$ exists and is finite a.e., then $f_n \longrightarrow f$ almost uniformly: for every $\varepsilon > 0$ there exists a closed subset $F_{\varepsilon} \subseteq E$ with $m(E \setminus F) < \varepsilon$ and $f_n \longrightarrow f$ uniformly on F.

 L^2 bound:

- Since $f_k \longrightarrow f$ almost everywhere, $\liminf_n f_n(x) = f(x)$ a.e.
- $||f_n||_2 < \infty$ implies each f_n is measurable and thus $|f_n|^2 \in L^+$, so we can apply Fatou:

$$||f||_2^2 = \int |f(x)|^2$$

$$= \int \liminf_n |f_n(x)|^2$$

$$\leq \liminf_n \int |f_n(x)|^2$$

$$\leq \liminf_n M$$

$$= M$$

• Thus $||f||_2 \le \sqrt{M} < \infty$ implying $f \in L^2$.

Equality of Integrals: ____

What is the "right" proof here that uses the first part?

- Take the sequence $\varepsilon_n = \frac{1}{n}$
- Apply Egorov's theorem: obtain a set F_{ε} such that $f_n \longrightarrow f$ uniformly on F_{ε} and $m(I \setminus F_{\varepsilon}) < \varepsilon$.

$$\lim_{n \to \infty} \left| \int_0^1 f_n - f \right| \le \lim_{n \to \infty} \int_0^1 |f_n - f|$$

$$= \lim_{n \to \infty} \left(\int_{F_{\varepsilon}} |f_n - f| + \int_{I \setminus F_{\varepsilon}} |f_n - f| \right)$$

$$= \int_{F_{\varepsilon}} \lim_{n \to \infty} |f_n - f| + \lim_{n \to \infty} \int_{I \setminus F_{\varepsilon}} |f_n - f| \quad \text{by uniform convergence}$$

$$= 0 + \lim_{n \to \infty} \int_{I \setminus F_{\varepsilon}} |f_n - f|,$$

so it suffices to show $\int_{I\setminus F_{\varepsilon}} |f_n - f| \stackrel{n\longrightarrow\infty}{\longrightarrow} 0.$

• We can obtain a bound using Holder's inequality with p = q = 2:

$$\int_{I \setminus F_{\varepsilon}} |f_n - f| \leq \left(\int_{I \setminus F_{\varepsilon}} |f_n - f|^2 \right) \left(\int_{I \setminus F_{\varepsilon}} |1|^2 \right)
= \left(\int_{I \setminus F_{\varepsilon}} |f_n - f|^2 \right) \mu(F_{\varepsilon})
\leq \|f_n - f\|_2 \mu(F_{\varepsilon})
\leq (\|f_n\|_2 + \|f\|_2) \mu(F_{\varepsilon})
\leq 2M \cdot \mu(F_{\varepsilon})$$

where M is now a constant not depending on ε or n.

• Now take a nested sequence of sets F_{ε} with $\mu(F_{\varepsilon}) \longrightarrow 0$ and applying continuity of measure yields the desired statement.

3.4 4

See S&S p.82.

3.4.1 a

 \Longrightarrow :

- Suppose f is a measurable function.
- Note that $\mathcal{A} = \{f(x) t \ge 0\} \cap \{t \ge 0\}.$
- Define F(x,t) = f(x), G(x,t) = t, which are cylinders on measurable functions and thus measurable.
- Define H(x,y) = F(x,t) G(x,t), which are linear combinations of measurable functions and thus measurable.
- Then $A = \{H \ge 0\} \bigcap \{G \ge 0\}$ as a countable intersection of measurable sets, which is again measurable.

⇐=:

- Suppose A is a measurable set.
- Then FT on $\chi_{\mathcal{A}}$ implies that for almost every $x \in \mathbb{R}^n$, the x-slices \mathcal{A}_x are measurable and \$

$$\mathcal{A}_x := \left\{ t \in \mathbb{R} \mid (x, t) \in \mathcal{A} \right\} = [0, f(x)] \implies m(\mathcal{A}_x) = f(x) - 0 = f(x)$$

• But $x \mapsto m(A_x)$ is a measurable function, and is exactly the function $x \mapsto f(x)$, so f is measurable.

3.4.2 b

• Note

$$\mathcal{A} = \left\{ (x, t) \in \mathbb{R}^n \times \mathbb{R} \mid 0 \le t \le f(x) \right\}$$
$$\mathcal{A}_t = \left\{ x \in \mathbb{R}^n \mid t \le f(x) \right\}.$$

• Then

$$\int_{\mathbb{R}^n} f(x) \ dx = \int_{\mathbb{R}^n} \int_0^{f(x)} 1 \ dt \ dx$$

$$= \int_{\mathbb{R}^n} \int_0^{\infty} \chi_{\mathcal{A}} \ dt \ dx$$

$$\stackrel{F.T.}{=} \int_0^{\infty} \int_{\mathbb{R}^n} \chi_{\mathcal{A}} \ dx \ dt$$

$$= \int_0^{\infty} m(\mathcal{A}_t) \ dt,$$

where we just use that $\int \int \chi_{\mathcal{A}} = m(\mathcal{A})$

• By F.T., all of these integrals are equal.

Why is FT justi-

3.5 5

Concepts used:

- Holders' inequality: $\|fg\|_1 \leq \|f\|_p \|f\|_q$ Riesz Representation for L^2 : If $\Lambda \in (L^2)^\vee$ then there exists a unique $g \in L^2$ such that $\Lambda(f) = \int fg.$
- $\|f\|_{L^{\infty}(X)} := \inf \{ t \geq 0 \mid |f(x)| \leq t \text{ almost everywhere} \}.$ Lemma: $m(X) < \infty \implies L^p(X) \subset L^2(X).$

Proof: Write Holder's inequality as $||fg||_1 \le ||f||_a ||g||_b$ where $\frac{1}{a} + \frac{1}{b} = 1$, then

$$||f||_p^p = |||f|^p||_1 \le |||f|^p||_a ||1||_b.$$

Now take $a = \frac{2}{n}$ and this reduces to

$$\begin{split} & \|f\|_p^p \le \|f\|_2^p \ m(X)^{\frac{1}{b}} \\ \Longrightarrow & \|f\|_p \le \|f\|_2 \cdot O(m(X)) < \infty. \end{split}$$

3.5.1 a

- Note $X = [0, 1] \implies m(X) = 1$.
- By Holder's inequality with p = q = 2,

$$||f||_1 = ||f \cdot 1||_1 \le ||f||_2 \cdot ||1||_2 = ||f||_2 \cdot m(X)^{\frac{1}{2}} = ||f||_2,$$

- Thus $L^2(X) \subseteq L^1(X)$
- Since they share a common dense subset (simple functions) L^2 is dense in L^1

3.5.2 b

Let $\Lambda \in L^1(X)^{\vee}$ be arbitrary.

(i): Existence of g Representing Λ .

- Let $f \in L^2 \subseteq L^1$ be arbitrary
- Claim: $\Lambda \in L^1(X)^{\vee} \implies \Lambda \in L^2(X)^{\vee}$.
 - Suffices to show that $\|\Gamma\|_{L^2(X)^{\vee}} := \sup_{\|f\|_2=1} |\Gamma(f)| < \infty$, since bounded implies continuous.
 - By the lemma, $||f||_1 \le C||f||_2$ for some constant $C \approx m(X)$.
 - Note

$$\|\Lambda\|_{L^1(X)^\vee} \coloneqq \sup_{\|f\|_1 = 1} |\Lambda(f)|$$

- Define $\widehat{f} = \frac{f}{\|f\|_1}$ so $\|\widehat{f}\|_1 = 1$
- Since $\|\Lambda\|_{1^{\vee}}$ is a supremum over all $f \in L^1(X)$ with $\|f\|_1 = 1$,

$$\left|\Lambda(\widehat{f})\right| \leq \|\Lambda\|_{(L^1(X))^\vee},$$

- Then

$$\begin{split} \frac{|\Lambda(f)|}{\|f\|_1} &= \left|\Lambda(\widehat{f})\right| \leq \|\Lambda\|_{L^1(X)^\vee} \\ \Longrightarrow & |\Lambda(f)| \leq \|\Lambda\|_{1^\vee} \cdot \|f\|_1 \\ &\leq \|\Lambda\|_{1^\vee} \cdot C\|f\|_2 < \infty \quad \text{by assumption,} \end{split}$$

- So $\Lambda \in (L^2)^{\vee}$.
- Now apply Riesz Representation for L^2 : there is a $g \in L^2$ such that

$$f \in L^2 \implies \Lambda(f) = \langle f, \ g \rangle \coloneqq \int_0^1 f(x) \overline{g(x)} \, dx.$$

(ii): g is in L^{∞}

- It suffices to show $||g||_{L^{\infty}(X)} < \infty$.
- Since we're assuming $\|\Gamma\|_{L^1(X)^\vee} < \infty$, it suffices to show the stated equality.

Is this assumed..?
Or did we show

- Claim: $\|\Lambda\|_{L^1(X)^{\vee}} = \|g\|_{L^{\infty}(X)}$
 - The result follows because Λ was assumed to be in $L^1(X)^{\vee}$, so $\|\Lambda\|_{L^1(X)^{\vee}} < \infty$.

 $- \le$:

$$\begin{split} \|\Lambda\|_{L^1(X)^\vee} &= \sup_{\|f\|_1 = 1} |\Lambda(f)| \\ &= \sup_{\|f\|_1 = 1} \left| \int_X f \bar{g} \right| \quad \text{by (i)} \\ &= \sup_{\|f\|_1 = 1} \int_X |f \bar{g}| \\ &\coloneqq \sup_{\|f\|_1 = 1} \|fg\|_1 \\ &\leq \sup_{\|f\|_1 = 1} \|f\|_1 \|g\|_\infty \quad \text{by Holder with } p = 1, q = \infty \\ &= \|g\|_\infty, \end{split}$$

 $- \geq$:

- * Suppose toward a contradiction that $\|g\|_{\infty} > \|\Lambda\|_{1^{\vee}}$.
- * Then there exists some $E \subseteq X$ with m(E) > 0 such that

$$x \in E \implies |g(x)| > ||\Lambda||_{L^1(X)^{\vee}}.$$

* Define

$$h = \frac{1}{m(E)} \frac{\overline{g}}{|g|} \chi_E.$$

- * Note $||h||_{L^1(X)} = 1$.
- * Then

$$\begin{split} \Lambda(h) &= \int_X hg \\ &\coloneqq \int_X \frac{1}{m(E)} \frac{g\overline{g}}{|g|} \chi_E \\ &= \frac{1}{m(E)} \int_E |g| \\ &\ge \frac{1}{m(E)} \|g\|_\infty m(E) \\ &= \|g\|_\infty \\ &> \|\Lambda\|_{L^1(X)^\vee}, \end{split}$$

a contradiction since $\|\Lambda\|_{L^1(X)^{\vee}}$ is the supremum over all h_{α} with $\|h_{\alpha}\|_{L^1(X)} = 1$.

4 Fall 2018

4.1 1

Concepts used:

• Uniform continuity.

Show a stronger statement: $f(x) = \frac{1}{x}$ is uniformly continuous on any interval of the form (c, ∞) where c > 0.

- Use that fact that $x, y > c \implies xy > c^2 \implies \frac{1}{xy} < \frac{1}{c^2}$.
- Letting ε be arbitrary, choose $\delta < \varepsilon c^2$.
- Then

$$|f(x) - f(y)| = \left| \frac{1}{x} - \frac{1}{y} \right|$$

$$= \frac{|x - y|}{xy}$$

$$\leq \frac{\delta}{xy}$$

$$< \frac{\delta}{c^2}$$

$$< \varepsilon,$$

which shows uniform continuity since δ does not depend on x or y.

To see that f is not uniformly continuous when c = 0:

Note: negating uniform continuity says $\exists \varepsilon > 0$ such that $\forall \delta(\varepsilon)$ there exist x, y such that $|x-y| < \delta$ and $|f(x) - f(y)| > \varepsilon$.

- Let $\varepsilon < 1$. Let $x_n = \frac{1}{n}$ for $n \ge 1$.
- Choose n large enough such that $|x_n x_{n+1}| = \frac{1}{n} \frac{1}{n+1} < \delta$.
 - Why this can be done: by the archimedean property of \mathbb{R} , choose n such that $\frac{1}{n} < \varepsilon$.
 - Then

$$\frac{1}{n} - \frac{1}{n+1} = \frac{1}{n(n+1)} \le \frac{1}{n} < \varepsilon \quad \text{since } n+1 > 1.$$

• Note $f(x_n) = n$ and thus

$$|f(x_n) - f(x_{n+1})| = n - (n+1) = 1 > \varepsilon.$$

4.2 2

Concepts used:

- Definition of measurability: there exists an open $O \supset E$ such that $m_*(O \setminus E) < \varepsilon$ for all $\varepsilon > 0$.
- Theorem: E is Lebesgue measurable iff there exists a closed set $F \subseteq E$ such that $m_*(E \setminus F) < \varepsilon$ for all $\varepsilon > 0$.
- Every F_{σ}, G_{δ} is Borel.

First consider the bounded case where $m(E) < \infty$.

- Claim: E is measurable \iff for every ε there exist $F_{\varepsilon} \subset E \subset G_{\varepsilon}$ with F_{ε} closed and G_{ε} open and $m(G_{\varepsilon} \setminus E) < \varepsilon$ and $m(E \setminus F_{\varepsilon}) < \varepsilon$.

 Proof: ?
- Take the sequence $\varepsilon_n = \frac{1}{n} \longrightarrow 0$ to produce a sequence of closed sets F_n such that $m(E \setminus F_n) < \frac{1}{n}$ for all n
- Let $F := \bigcup_{n}$, which is a union of closed sets and thus F_{σ} , and thus a Borel.

Since $F_n \subseteq F_{n+1}$, we have $F_n \nearrow F$ and so by continuity of measure,

$$m(F) = \lim_{n} m(F_n) < \lim_{n} \left(\frac{1}{n}\right) \longrightarrow 0.$$

If E is not bounded, let $E_N = B_N(0) \cap E$ which is bounded. Then $E_N \nearrow E$, and for each N we can find an F_N by the previous case such that $m(E_N \setminus F_N) = 0$.

So take $F := \bigcup_{N} F_{N}$ so $F_{N} \nearrow F$. Then

$$E_N \setminus F_N \nearrow E \setminus F \implies m(E \setminus F) = \lim_N m(E_N \setminus F_N) = 0.$$

4.3 3

$$\frac{\partial}{\partial t} F(t) = \frac{\partial}{\partial t} \int_{\mathbb{R}} f(x) \cos(xt) dx$$

$$\stackrel{DCT}{=} \int_{\mathbb{R}} f(x) \frac{\partial}{\partial t} \cos(xt) dx$$

$$= \int_{\mathbb{R}} x f(x) \cos(xt) dx,$$

so it only remains to justify the DCT.

Fix t, then let $t_n \longrightarrow t$ be any sequence. Then

$$\frac{\partial}{\partial t} \cos(tx) := \lim_{t_n \to t} \frac{\cos(tx) - \cos(t_n x)}{t_n - t}$$

$$\stackrel{MVT}{=} \frac{\partial}{\partial t} \cos(tx) \Big|_{t = \xi_n} \quad \text{for some } \xi_n \in [t, t_n] \text{ or } [t_n, t]$$

$$= x \sin(\xi_n x).$$

So we can define

$$h_n(x,t) = f(x) \left(\frac{\cos(tx) - \cos(t_n x)}{t_n - t} \right)$$

and note that $h_n \longrightarrow \frac{\partial}{\partial t} [f(x)\cos(xt)]$ pointwise.

We then have $|h_n| = |f(x)x\sin(\xi_n x)| \le |xf(x)|$ for every n by the above argument, and since $g(x) := xf(x) \in L^1(\mathbb{R})$ by assumption, the DCT can be applied.

4.4 4

???

Apparently "easy" part: let $f(x) = \chi_{[0,\pi]}$, then $\int_{\mathbb{R}} f(x)|\sin(nx)| = \int_0^{\pi} |\sin(nx)| = 2$, and so $\int_0^1 |\sin(nx)| = \frac{2}{\pi}$, none of which depend on n.

Now approximate f by step functions.

4.5 5

???

5 Spring 2018

5.1 1

We'll show that $m(E) \cap [n, n+1] = 0$ for all $n \in \mathbb{Z}$; then the result will follow from that fact that

$$m(E) = m\left(\bigcup_{n \in \mathbb{Z}} E \bigcap [n, n+1]\right) \le \sum m(E \bigcap [n, n+1]) = 0$$

By translation invariance of measure, it suffices to show $m(E \cap [0,1]) = 0$.

Define

$$E_j := \left\{ x \in [0, 1] \mid \exists p \in \mathbb{Z}^{\geq 0} \text{ s.t. } \left| x - \frac{p}{j} \right| < \frac{1}{j^3} \right\}.$$

Note that we can write E_j is a union of intervals

$$E_{j} = (1, \frac{1}{j^{3}})$$

$$\coprod B_{\frac{1}{j^{3}}} \left(\frac{1}{j}\right) \coprod B_{\frac{1}{j^{3}}} \left(\frac{2}{j}\right) \coprod \cdots \coprod B_{\frac{1}{j^{3}}} \left(\frac{j-1}{j}\right)$$

$$\coprod (1 - \frac{1}{j^{3}}, 1),$$

from which we can conclude that E_j is Borel and thus Lebesgue measurable, and that for each j, there are exactly j+1 possible choices for a numerator (corresponding to the j+1 sets appearing above.)

The first and last intervals are length $\frac{1}{j^3}$ and the remaining (j+1)-2=j-1 intervals are length $\frac{2}{j^3}$, so we find that

$$m(E_j) = 2\left(\frac{1}{j^3}\right) + (j-1)\left(\frac{2}{j^3}\right) = \frac{2}{j^2}$$

We can then note that

$$\sum_{j \in \mathbb{N}} m(E_j) \le 2 \sum_{j \in \mathbb{N}} \frac{1}{j^2} < \infty,$$

which converges by the p-test for sums.

Since $\{E_j\}$ is a countable collection of measurable sets such that $\sum_j m(E_j) < \infty$, Borel-Cantelli applies and $m(\limsup_j E_j) = 0$, where we can just note that $\limsup_j E_j = E \bigcap [0,1]$.

5.2 2

5.2.1 a

Since $x < 1 \implies x^n \longrightarrow 0$ and $x > 1 \implies x^n \longrightarrow \infty$, we have

$$f_n(x) = \frac{x}{1+x^n} \xrightarrow{n \to \infty} f(x) = \begin{cases} 0, & x = 0 \\ x, & x < 1 \\ \frac{1}{2}, & x = 1 \\ 0, & x > 0 \end{cases}.$$

If $f_n \longrightarrow f$ uniformly on $[0, \infty)$, it would converge uniformly on every subset.

Butach $f_n(x)$ is clearly continuous on $(0, \infty)$, and if the convergence was uniform then f would be continuous. However f has a clear discontinuity at x = 1.

5.2.2 b

If the DCT applies, we can interchange the limit and integral, and the value would be the area under the graph of f which is $\int_0^1 x \, dx = \frac{1}{2}$.

To justify the DCT, write

$$\int_0^\infty f_n(x) = \int_0^1 f_n(x) + \int_1^\infty f_n(x).$$

Then

$$x \in [0,1] \implies \frac{x}{1+x^n} < \frac{1}{1+x^n} < 1$$

and
$$\int_0^1 1 \ dx = 1 < \infty$$
.

On the other hand,

$$x \in (1, \infty) \implies \frac{x}{1 + x^n} \approx O\left(\frac{1}{x^{n-1}}\right),$$

and so for n > 2 the integral will converge by the p-test.

5.3 3

Since $|f(x)| \leq ||f||_{\infty}$ almost everywhere, we have

$$||f||_p^p = \int_X |f(x)|^p dx \le \int_X ||f||_\infty^p dx = ||f||_\infty^p \cdot m(X) = ||f||_\infty^p,$$

so $||f||_p \le ||f||_{\infty}$ for all p and taking $\lim_{n \to \infty}$ preserves this inequality.

Conversely, let $\varepsilon > 0$. Define

$$S_{\varepsilon} := \left\{ x \in \mathbb{R} \mid |f(x)| \ge ||f||_{\infty} - \varepsilon \right\}.$$

Then

$$||f||_{p}^{p} = \int_{X} |f(x)|^{p} dx$$

$$\geq \int_{S_{\varepsilon}} |f(x)|^{p} dx$$

$$\geq \int_{S_{\varepsilon}} |||f||_{\infty} - \varepsilon|^{p} dx$$

$$= |||f||_{\infty} - \varepsilon|^{p} \cdot m(S_{\varepsilon})$$

$$\implies ||f||_{p} \geq |||f||_{\infty} - \varepsilon| \cdot m(S_{\varepsilon})^{\frac{1}{p}}$$

$$\stackrel{p \longrightarrow \infty}{\longrightarrow} |||f||_{\infty} - \varepsilon|$$

$$\stackrel{\varepsilon \longrightarrow 0}{\longrightarrow} ||f||_{\infty}.$$

So $||f||_p \ge ||f||_{\infty}$.

5.4 4

Fix $k \in \mathbb{Z}$. Since $e^{2\pi ikx}$ is continuous on the compact interval [0,1], it is uniformly continuous, and is thus there is a sequence of polynomials P_{ℓ} such that

$$P_{\ell,k} \stackrel{\ell \longrightarrow \infty}{\longrightarrow} e^{2\pi i k x}$$
 uniformly on [0, 1].

Note that by linearity,

$$\int f(x)x^n = 0 \ \forall n \implies \int f(x)P_{\ell,k}(x) = 0 \quad \forall \ell \in \mathbb{N}$$

5 SPRING 2018

36

5.5 5

But then the kth Fourier coefficient of f is given by

$$\langle f, e_k \rangle = \int_0^1 f(x) e^{-2\pi i k x} dx$$

$$= \int_0^1 f(x) \lim_{\ell \to \infty} P_{\ell}(x)$$

$$= \lim_{\ell \to \infty} \int_0^1 f(x) P_{\ell}(x) \quad \text{by uniform convergence}$$

$$= \lim_{\ell \to \infty} 0$$

$$= 0 \quad \forall k \in \mathbb{Z},$$

so \hat{f} is the zero function, and $\hat{f} = 0 \iff f = 0$ almost everywhere.

5.5 5

Moral:
$$\int |f_n - f| \longrightarrow \iff \int f_n = \int f$$
.

Since if $\int |f_n| \longrightarrow \int |f|$ then we can define

$$h_n = |f_n - f| \longrightarrow 0 \ a.e.$$

 $g_n = |f_n| + |f| \longrightarrow 2|f| \ a.e.$

$$\int 2|f| = \int \liminf (g_n - h_n)$$

$$= \int \liminf g_n - \int \liminf h_n$$

$$= \int 2|f| - \int \liminf h_n$$

$$\stackrel{Fatou}{\leq} \int 2|f| + \limsup \int h_n,$$

which forces $\int h_n = \int |f_n - f| \longrightarrow 0$.

But then

$$\left| \int f_n - \int f \right| = \left| \int f_n - f \right| \le \int |f_n - f| \longrightarrow 0,$$

so
$$\int f_n \longrightarrow \int f$$
.

6 Fall 2017

6.1 1

Note that $f(x) = e^x$ is entire and thus equal to its power series. So $f(x) = \sum_{i=0}^{\infty} \frac{1}{j!} x^j$.

Letting $f_N(x) = \sum_{j=1}^N \frac{1}{j!} x^j$, we have $f_N(x) \longrightarrow f(x)$ pointwise on $(-\infty, \infty)$.

For any compact interval [-M, M], we have

$$||f_N(x) - f(x)||_{\infty} = \sup_{-M \le x \le M} \left| \sum_{j=N+1}^{\infty} \frac{1}{j!} x^j \right|$$

$$\le \sup_{-M \le x \le M} \sum_{j=N+1}^{\infty} \frac{1}{j!} |x|^j$$

$$\le \sum_{j=N+1}^{\infty} \frac{1}{j!} M^j$$

$$\le \sum_{j=0}^{\infty} \frac{1}{j!} M^j$$

$$= e^M$$

$$< \infty,$$

so $f_N \longrightarrow f$ uniformly on [-M, M] by the M-test. Thus it converges on any bounded interval. It does not converge on \mathbb{R} , since x^N is unbounded.

6.2 2

6.2.1 a

It suffices to consider the bounded case, i.e. $E \subseteq B_M(0)$ for some M. Then write $E_n = B_n(0) \cap E$ and apply the theorem to E_n , and by subadditivity, $m^*(E) = m^*(\bigcup_n E_n) \le \sum_n m^*(E_n) = 0$.

Lemma: $f(x) = x^2, f^{-1}(x) = \sqrt{x}$ are Lipschitz on any compact subset of $[0, \infty)$.

Proof: Let g = f or f^{-1} . Then $g \in C^1([0, M])$ for any M, so g is differentiable and g' is continuous. Since g' is continuous on a compact interval, it is bounded, so $|g'(x)| \leq L$ for all x. Applying the MVT,

$$|f(x) - f(y)| = f'(c)|x - y| \le L|x - y|.$$

Lemma: If g is Lipschitz on \mathbb{R}^n , then $m(E) = 0 \implies m(g(E)) = 0$.

Proof: If g is Lipschitz, then

$$q(B_r(x)) \subseteq B_{Lr}(x)$$
,

which is a dilated ball/cube, and so

$$m^*(B_{Lr}(x)) \le L^n \cdot m^*(B_r(x)).$$

Now choose $\{Q_j\} \rightrightarrows E$; then $\{g(Q_j)\} \rightrightarrows g(E)$.

By the above observation,

$$|g(Q_i)| \le L^n |Q_i|,$$

and so

$$m^*(g(E)) \le \sum_j |g(Q_j)| \le \sum_j L^n |Q_j| = L^n \sum_j |Q_j| \longrightarrow 0.$$

Now just take $g(x) = x^2$ for one direction, and $g(x) = f^{-1}(x) = \sqrt{x}$ for the other.

6.2.2 b

Lemma: E is measurable iff $E = K \coprod N$ for some K compact, N null.

Write $E = K \coprod N$ where K is compact and N is null.

Then
$$\varphi^{-1}(E) = \varphi^{-1}(K \coprod N) = \varphi^{-1}(K) \coprod \varphi^{-1}(N)$$
.

Since $\varphi^{-1}(N)$ is null by part (a) and $\varphi^{-1}(K)$ is the preimage of a compact set under a continuous map and thus compact, $\varphi^{-1}(E) = K' \coprod N'$ where K' is compact and N' is null, so $\varphi^{-1}(E)$ is measurable.

So φ is a measurable function, and thus yields a well-defined map $\mathcal{L}(\mathbb{R}) \longrightarrow \mathcal{L}(\mathbb{R})$ since it preserves measurable sets. Restricting to $[0, \infty)$, f is bijection, and thus so is φ .

6.3 3

From homework: E is Lebesgue measurable iff there exists a finite union of closed cubes A such that $m(E\Delta A) < \varepsilon$.

It suffices to show that S is dense in simple functions, and since simple functions are *finite* linear combinations of characteristic functions, it suffices to show this for χ_A for A a measurable set.

Let $s = \chi_A$. By regularity of the Lebesgue measure, choose an open set $O \supseteq A$ such that $m(O \setminus A) < \varepsilon$.

O is an open subset of \mathbb{R} , and thus $O = \coprod_{j \in \mathbb{N}} I_j$ is a disjoint union of countably many open intervals.

Now choose N large enough such that $m(O\Delta I_{N,n}) < \varepsilon = \frac{1}{n}$ where we define $I_{N,n} := \coprod_{j=1}^{N} I_j$.

Now define $f_n = \chi_{I_{N,n}}$, then

$$||s - f_n||_1 = \int |\chi_A - \chi_{I_{N,n}}| = m(A\Delta I_{N,n}) \xrightarrow{n \to \infty} 0.$$

6 FALL 2017

39

Since any simple function is a finite linear combination of χ_{A_i} , we can do this for each i to extend this result to all simple functions. But simple functions are dense in L^1 , so S is dense in L^1 .

6.4 4

6.4.1 a

Let $G(x) = \sum_{n=1}^{\infty} nx(1-x)^n$. Applying the ratio test, we have

$$\left| \frac{(n+1)x(1-x)^{n+1}}{nx(1-x)^n} \right| = \frac{n+1}{n} |1-x| \xrightarrow{n \to \infty} |1-x| < 1 \iff 0 \le x \le 2,$$

and in particular, this series converges on [0,2]. Thus its terms go to zero, and $nx(1-x)^n \longrightarrow 0$ on $[0,1] \subset [0,2]$.

To see that the convergence is not uniform, let $x_n = \frac{1}{n}$ and $\varepsilon > \frac{1}{e}$, then

$$\sup_{x \in [0,1]} |nx(1-x)^n - 0| \ge |nx_n(1-x_n)^n| = \left| \left(1 - \frac{1}{n}\right)^n \right| \stackrel{n \longrightarrow \infty}{\longrightarrow} e^{-1} > \varepsilon.$$

6.4.2 b

Note: could use the first part with $\sin(x) \leq x$, but then integral ends up more complicated.

Noting that $sin(x) \leq 1$, we have We have

$$\left| \int_0^1 n(1-x)^n \sin(x) \right| \le \int_0^1 |n(1-x)^n \sin(x)|$$

$$\le \int_0^1 |n(1-x)^n|$$

$$= n \int_0^1 (1-x)^n$$

$$= -\frac{n(1-x)^{n+1}}{n+1}$$

$$\xrightarrow{n \to \infty} 0.$$

6.5 5

6.5.1 a

Lemma: If $\varphi \in C_c^1$, then $(f * \varphi)' = f * \varphi'$ almost everywhere.

Silly Proof:

$$\mathcal{F}((f * \varphi)') = 2\pi i \xi \ \mathcal{F}(f * \varphi)$$

$$= 2\pi i \xi \ \mathcal{F}(f) \ \mathcal{F}(\varphi)$$

$$= \mathcal{F}(f) \cdot (2\pi i \xi \ \mathcal{F}(\varphi))$$

$$= \mathcal{F}(f) \cdot \mathcal{F}(\varphi')$$

$$= \mathcal{F}(f * \varphi').$$

Actual proof:

$$(f * \varphi)'(x) = (\varphi * f)'(x)$$

$$= \lim_{h \to 0} \frac{(\varphi * f)'(x+h) - (\varphi * f)'(x)}{h}$$

$$= \lim_{h \to 0} \int \frac{\varphi(x+h-y) - \varphi(x-y)}{h} f(y)$$

$$\stackrel{DCT}{=} \int \lim_{h \to 0} \frac{\varphi(x+h-y) - \varphi(x-y)}{h} f(y)$$

$$= \int \varphi'(x-y) f(y)$$

$$= (\varphi' * f)(x)$$

$$= (f * \varphi')(x).$$

To see that the DCT is justified, we can apply the MVT on the interval [0, h] to f to obtain

$$\frac{\varphi(x+h-y)-\varphi(x-y)}{h}=\varphi'(c)\quad c\in[0,h],$$

and since φ' is continuous and compactly supported, φ' is bounded by some $M < \infty$ by the extreme value theorem and thus

$$\int \left| \frac{\varphi(x+h-y) - \varphi(x-y)}{h} f(y) \right| = \int \left| \varphi'(c) f(y) \right|$$

$$\leq \int |M| |f|$$

$$= |M| \int |f| < \infty,$$

since $f \in L^1$ by assumption, so we can take g := |M||f| as the dominating function.

Applying this theorem infinitely many times shows that $f * \varphi$ is smooth.

To see that $f * \varphi$ is compactly supported, approximate f by a *continuous* compactly supported function h, so $||h - f||_1 \xrightarrow{L^1} 0$.

Now let $g_x(y) = \varphi(x-y)$, and note that $\operatorname{supp}(g) = x - \operatorname{supp}(\varphi)$ which is still compact.

But since supp(h) is bounded, there is some N such that

$$|x| > N \implies A_x := \operatorname{supp}(h) \bigcap \operatorname{supp}(g_x) = \emptyset$$

and thus

$$(h * \varphi)(x) = \int_{\mathbb{R}} \varphi(x - y)h(y) \ dy$$
$$= \int_{A_x} g_x(y)h(y)$$
$$= 0,$$

so $\{x \mid f * g(x) = 0\}$ is open, and its complement is closed and bounded and thus compact.

6.5.2 b

$$||f * K_{j} - f||_{1} = \int \left| \int f(x - y)K_{j}(y) dy - f(x) \right| dx$$

$$= \int \left| \int f(x - y)K_{j}(y) dy - \int f(x)K_{j}(y) dy \right| dx$$

$$= \int \left| \int (f(x - y) - f(x))K_{j}(y) dy \right| dx$$

$$\leq \int \int \left| (f(x - y) - f(x)) \right| \cdot |K_{j}(y)| dy dx$$

$$\stackrel{FT}{=} \int \int \left| (f(x - y) - f(x)) \right| \cdot |K_{j}(y)| dx dy$$

$$= \int |K_{j}(y)| \left(\int \left| (f(x - y) - f(x)) \right| dx \right) dy$$

$$= \int |K_{j}(y)| \cdot ||f - \tau_{y}f||_{1} dy.$$

We now split the integral up into pieces.

- 1. Chose δ small enough such that $|y| < \delta \implies ||f \tau_y f||_1 < \varepsilon$ by continuity of translation in L^1 , and
- 2. Since φ is compactly supported, choose J large enough such that

$$j > J \implies \int_{|y| > \delta} |K_j(y)| \ dy = \int_{|y| > \delta} |j\varphi(jy)| = 0$$

Then

$$||f * K_{j} - f||_{1} \leq \int |K_{j}(y)| \cdot ||f - \tau_{y}f||_{1} dy$$

$$= \int_{|y| < \delta} |K_{j}(y)| \cdot ||f - \tau_{y}f||_{1} dy + \int_{|y| \ge \delta} |K_{j}(y)| \cdot ||f - \tau_{y}f||_{1} dy$$

$$= \varepsilon \int_{|y| \ge \delta} |K_{j}(y)| + 0$$

$$< \varepsilon(1) \longrightarrow 0.$$

6.6 6

Should be supremum maybe..?

Let $\{f_k\}$ be a Cauchy sequence, so $||f_k|| < \infty$ for all k. Then for a fixed x, the sequence $f_k(x)$ is Cauchy in \mathbb{R} and thus converges to some f(x), so define f by $f(x) := \lim_{k \to \infty} f_k(x)$.

Then $||f_k - f|| = \max_{x \in X} |f_k(x) - f(x)| \stackrel{k \to \infty}{\longrightarrow} 0$, and thus $f_k \to f$ uniformly and thus f is continuous. It just remains to show that f has bounded norm.

Choose N large enough so that $||f - f_N|| < \varepsilon$, and write $||f_N|| := M < \infty$

$$||f|| \le ||f - f_N|| + ||f_N|| < \varepsilon + M < \infty.$$

7 Spring 2017

7.1 1

A is nowhere dense \iff every interval I contains a subinterval $S \subseteq A^c$.

K is compact:

It suffices to show that $K^c := [0,1] \setminus K$ is open; then K will be a closed and bounded subset of \mathbb{R} and thus compact by Heine-Borel.

We can identify K^c as the set of real numbers in [0,1] whose decimal expansion **does** use a 4. Let $x \in K^c$, and suppose a 4 occurs as the kth digit and write

$$x = 0.d_1d_2 \cdots d_{k-1} \ 4 \ d_{k+1} \cdots = \sum_{j=1}^k d_j 10^{-j} + 4 \cdot 10^{-k} + \sum_{j=k+1}^{\infty} d_j 10^{-j}.$$

Then if we set $r < 10^{-k}$ and pick any $y \in [0,1]$ such that $y \in B_r(x)$, then $|x-y| < 10^{-k}$. If we write $y = \sum_{j=1}^{\infty} c_j 10^{-j}$, this means that for all $j \le k$ we have $d_j = c_j$, and in particular $d_k = 4 = c_k$, so y has a 4 in its decimal expansion.

But then $K^c = \bigcup_x B_r(x)$ is a union of open sets and thus open.

K is nowhere dense and m(K) = 0:

Since K is closed, we'll show that K can not properly contain any interval, so $(\overline{K})^{\circ} = \emptyset$.

As in the construction of the Cantor set, let

- K_1 denote [0,1] with 1 interval [0.4,0.5] of length $\frac{1}{10}$ deleted
- K_2 denote K_1 with 9 intervals [0.04, 0.05], [0.14, 0.15], $\cdots [0.94, 0.95]$ length $\frac{1}{100}$ deleted
- K_n denote K_{n-1} with 9^{n-1} such intervals of length 10^{-n} deleted.

Then $K = \bigcap K_n$, and

$$m(K) = 1 - m(K^c) = 1 - \sum_{i=0}^{\infty} \frac{9^n}{10^{n+1}} = 1 - \frac{1}{10} \left(\frac{1}{1 - \frac{9}{10}} \right) = 0,$$

and since any interval has strictly positive measure, K can not contain any interval.

K has no isolated points:

A point $x \in K$ is isolated iff there there is an open ball $B_r(x)$ containing x such that $B_r(x) \cap K = \emptyset$, so every point in this ball has a 4 in its decimal expansion.

Note that $m(K_n) = \left(\frac{9}{10}\right)^n \longrightarrow 0$ and that the endpoints of intervals are never removed and are thus elements of K. Then for every ε , we can choose n such that $\left(\frac{9}{10}\right)^n < \varepsilon$; then there is an endpoint of a removed interval e_n satisfying $|x - e_n| \le \left(\frac{9}{10}\right)^n < \varepsilon$.

So every ball containing x contains some endpoint of a removed interval, and thus an element of K.

7.2 2

$$\lambda \ll \mu \iff E \in \mathcal{M}, \mu(E) = 0 \implies \lambda(E) = 0.$$

7.2.1 a

By Radon-Nikodym, if $\lambda \ll \mu$ then $d\lambda = f d\mu$, which would yield

$$\int g \ d\lambda = \int g f \ d\mu.$$

So let E be measurable and suppose $\mu(E) = 0$. Then

$$\lambda(E) \coloneqq \int_E f \ d\mu = \lim_n \left\{ \varphi_n \coloneqq \sum_j c_j \mu(E_j) \right\},$$

where we take a sequence of simple functions increasing to f.

But since each $E_j \subseteq E$, we must have $\mu(E_j) = 0$ for any such E_j , so every such φ_n must be zero and thus $\lambda(E) = 0$.

7.2.2 b

By Radon-Nikodym, there exists a positive f such that

$$\int g \ dm = \int g f \ d\mu,$$

where we can take $g(x) = x^2$, then the LHS is zero by assumption and thus so is the RHS. Note that gf is positive.

Define $A_k = \left\{ x \in X \mid gf\chi_E > \frac{1}{k} \right\}$, then by Chebyshev

$$\mu(A_k) \le k \int_E gf \ d\mu = 0,$$

which holds for every k.

Then noting that $A_k \searrow A := \{x \in E \mid x^2 > 0\}$, and gf is positive, we have

$$x \in E \iff gf\chi_E(x) > 0 \iff x \in A,$$

so E = A and $\mu(E) = \mu(A)$.

But since $m \ll \mu$ by construction, we can conclude that m(E) = 0.

7.3 3

7.3.1 a

Letting $x_n := \frac{1}{n}$, we have

$$\sum_{k=1}^{\infty} |f_k(x)| \ge |f_n(x_n)| = \left| ae^{-ax} - be^{-bx} \right| := M.$$

In particular, $\sup_{x} |f_n(x)| \not\longrightarrow 0$, so the terms do not go to zero and the sum can not converge.

7.3.2 b

?

7.4 4

Switching to polar coordinates and integrating over a half-circle contained in I^2 , we have

$$\int_{I^2} f \ge \int_0^{\pi} \int_0^1 \frac{\cos(\theta)\sin(\theta)}{r^2} dr d\theta = \infty,$$

so f is not integrable.

7.5 5

See https://math.stackexchange.com/questions/507263/prove-that-c1a-b-with-the-c1-norm-is-a-banach-space

This is clearly a norm, which we'll write $\|\cdot\|_u$

Let f_n be a Cauchy sequence and define a candidate limit $f(x) = \lim_n f_n(x)$.

Then noting that $||f_n||_{\infty}$, $||f'_n||_{\infty} \le ||f_n||_u < \infty$, both f_n , f_n are Cauchy sequences in $C^0([a, b], ||\cdot||_{\infty})$, which is a Banach space.

So $f_n \longrightarrow f$ uniformly, and $f'_n \longrightarrow g$ uniformly for some g, and moreover $f, g \in C^0([a, b])$.

We thus have

$$f_n(x) - f_n(a) \xrightarrow{u} f(x) - f(a)$$

$$\int_a^x f'_n \xrightarrow{u} \int_a^x g,$$

and by the FTC, the left-hand sides are equal, and by uniqueness of limits so are the right-hand sides, so f' = g.

Since $f, f' \in C^0([a, b])$, they are bounded, and so $||f||_u < \infty$. This means that $||f_n - f||_u \longrightarrow 0$, so f_n converges to f, which is in the same space.

- 8 Fall 2016
- 8.1 1
- 9 Spring 2016
- 9.1 1
- 10 Spring 2014
- 10.1 1