Okrąg 9 punktów

Łukasz Próchniak

2021

Czym jest okrąg 9 punktów?

Inaczej nazywany okrągiem Eulera. Jest to okrąg, na którym leżą następująco:

- i. 3 spodki wysokości trójkąta(czerwone punkty)
- ii. 3 środki boków trójkąta(niebieskie punkty)
- iii. 3 środki odcników od wierzchołków trójkąta do ortocentrum(zielone punkty)

Ale skąd rzeczywiście wiemy, że te 9 punktów leży na jednym okręgu? Postaram się to wam szybko przedstawić.

Dlaczego te 9 punktów leży na jednym okręgu?

2.1 Wykażmy najpierw, że ortocentrum odbite względem kolejnych boków trójkąta leży na okręgu opisanym na tym trójkącie.

Dla krótkości nazwijmy go $\triangle ABC$, a H ortocentrum tego trójkąta. Niech H_1, H_2, H_3 będą kolejnymi spodkami wysokości, a X_1, X_2, X_3 kolejnymi odbiciami H względem boków.

$$\triangle BX_1C = \triangle BHC \Rightarrow \angle BX_1C = \angle BHC$$
z symetrii

 $\angle BHC = \angle H_2HH_3 = 360^\circ - \angle AH_2H - \angle AH_3H - \angle H_2AH_3 = 360^\circ - 2 \cdot 90^\circ - \angle H_2AH_3 = 180^\circ - \angle H_2AH_3 \Rightarrow \angle BX_1C + \angle H_2AH_3 = 180^\circ \Rightarrow ACX_1B$ jest cykliczny, powołując się na lemat: jeśli suma kątów przeciwległych w czworokącie równa jest 180° to na tym czworokącie da się odpisać okrąg.

Dowód tego lematu jest bardzo prosty.

$$2\alpha + 2\beta = 360^{\circ} \Rightarrow \alpha + \beta = 180^{\circ}$$

Skoro wiemy, że X_1 leży na okręgu opisansym na $\triangle ABC$ to analogiczną sytuację można przedstawić dla X_2 oraz X_3 , zatem dowiedliśmy naszej tezy.

2.2 Wykażemy, że punkty odbicia H względem kolejnych środków boków będą leżeć na tym okręgu.

Niech M będzie środkiem boku BC, a D_1, D_2, D_3 kolejnymi odbiciami H.

Zauważmy, że skoro jest to punkt odbicia względem środka to $HM = MD_1$, ale przecież M jest środkiem BC, więc $BHCD_1$ jest równoległobokiem. Z czego wynika, że $\triangle BD_1C = \triangle BHC = \triangle BX_1C \Rightarrow \angle BX_1C = \angle BD_1C \Rightarrow D_1$ leży na tym okręgu. Analogicznie dla odbić kolejnych dwóch środków.

2.3 I gdzie ten nasz okrąg 9 punktów?

Niech S_1, S_2, S_3 będą kolejnymi środkami odcinków od H do wierzchołków trójkata.

Zauważmy, że jednokładność w skali $k=\frac{1}{2}$ o środku w H przekształci kolejno punkty:

- i. A, B, C na S_1, S_3, S_2
- ii. X_1, X_2, X_3 na H_1, H_2, H_3
- iii. D_1, D_2, D_3 na M_1, M_2, M_3

Takim sposobem otrzymaliśmy nasz okrąg 9 punktów.

Prosta Eulera

To, że 9 punktów leży na jednym okręgu dla dowolnego trójkąta nie jest jedyną piękną właściwością. Albowiem okazuje się, że:

- i. środek okręgu Eulera(E)
- ii. środek ciężkości trójkąta(G)
- iii. środek okręgu opisanego(O)
- iv. $\operatorname{ortocentrum}(H)$

leżą na jednej prostej.

3.1 Wykażemy, że E, H, O są współliniowe

Spróbujmy pokazać, że E leży na odcinku HO i co ciekawe połowi HO.

Wiemy już, że M_1, M_2, M_3 oraz H_1, H_2, H_3 leżą na okręgu.

Skoro E jest środkiem okręgu to odcinki EH_1 i EM_1 powinny być takie same, więc E leży gdzieś na symetralnej H_1M_1 . Analogicznie E leży na symetralnej H_2M_2 i H_3M_3 . Zatem E jest punktem przecięcia się tych symetralnych.

Zauważmy, że $HH_1 \parallel OM_1$, ponieważ $HH_1 \perp BC$ i $O_1M \perp BC$, gdyż O, M_1 leżą na symetralnej BC. Z otrzymanej równoległości dowiadujemy się, że symetralna H_1M_1 jest również linią środkową HOM_1H_1 , więc połowi HO. Analogicznie symetralne H_2M_2 i H_3M_3 także dzielą HO na połowy(wszystkie te symetralne przecinają się na środku HO), więc właśnie środke HO jest środkiem okręgu 9 punktów(E).

3.2 Wykażemy, że G, H, O są współliniowe

Niech H_1 będzie spodkiem wysokości z wierzchołka A, a H_2 spodkiem wsyokości z wierzchołka M_1

Pokażemy, że $\triangle GOM_1 \sim \triangle GHA$.

Po pierwsze $\angle OM_1A = \angle HAM_1$, ponieważ wiemy z 3.1 że $HH_1 \parallel OM_1$.

Po drugie AM_1 jest środkową, więc $\frac{AG}{GM_1}=2:1$

Po trzecie O jest ortocentrum w $\triangle M_1 M_2 M_3$, ponieważ jest to punkt przecięcia symetralnych $\triangle ABC$, które są także wysokościami w $\triangle M_1 M_2 M_3$. Wynika to z faktu, że boki $\triangle M_1 M_2 M_3$ są liniami środkowymi $\triangle ABC$, więc są równoległe do boków $\triangle ABC$.

są równoległe do boków
$$\triangle ABC$$
.
$$\frac{\triangle ABC}{\triangle M_1 M_2 M_3} = 2:1 \Rightarrow \frac{OM_1}{AH} = 2:1$$

Zatem obrazem $\triangle GHA$ w skali $k=-\frac{1}{2}$ i środku jednokładności w G jest GOM_1 . Z właściwości jednokładności dowiadujemy się, że $HG \parallel GO \Rightarrow H,G,O$ są współniowe co kończy dowód, że E,G,H,O leżą na prostej Eulera.

Punkt Feuerbacha

Okazuje się, że okrąg opisany na punktach styczności okręgów dopisanych do trójkąta(czerwony okrąg) jest styczny wewnętrznie do okręgu 9 punktów(zielony okrąg). Punkt styczności tych dwóch okręgów zwany jest punktem Feuerbacha.

Dowód tego twierdzenia korzysta z inwersji, więc pozostaniemy tylko przy takim fakcie bez dowodu.

 E_1,E_2,E_3 kolejno punkty styczności okręgów dopisanych do $\triangle ABC$ M_1,M_2,M_3 kolejno środki boków $\triangle ABC$ ponieważ wyznaczają one okrąg 9 punktów.

