

HOW TO PERFORM LC-MS ANNOTATIONS?

W4M Core Team

« LC-MS ANNOTATION » MODULES IN W4N

The « LCMS Annotation » modules allow you to perform:

- « Adducts » annotation
- « Chemical » annotation:
 - ✓ Meta-engine (Chemspider)
 - ✓ General banks (Kegg, ChEBI,

PubChem...)

- ✓ Spectral banks (MassBank)
- Specialized banks (HMDB, Lipidmaps, ...)
- ✓ « De novo » tools (HR2 for chemical composition)
- Automatic probabilistic lcms-based metabolome annotation (ProbMetab)

« LCMS ANNOTATION » MODULES IN W4M

Selection of the modules:

- LCMS annotation modules are accessible via the left panel:
- > LC-MS
 - > 6-Annotation

CHAINING THE « ANNOTATION » MODULES

The « LCMS Annotation » modules can be chained with « statistical » modules and the Filters module. ProbMetab can be directly connected with XCMS outputs modules.

Query modules can be run sequentially or in parallel.

-> Sequential mode

YOUR INPUT DATA

« Chemical Annotation » modules take as input either:

• a list of masses entered m HMDB MS (Parch (Version 2014-05-07) Would you use a file: Or NO ‡ if 'NO' is selected then one or more mass(es) must be entered manually an input file mass to submit: You should use dot (.) like decimal separator HMDB MS search (version 2014-05-07) Would you use a file: if 'NO' is selected then one or more mass(es) must be entered manually File of masses : 🗅 🕘 1: sacuri_variableMetadata_annotated.tsv \$ Please note: HMDB allows maximum 150 query masses per request

YOUR INPUT DATA

« ProbMetab » module take as input either:

- output file from annotatediffreportand
- xcmsSet xcms object after missing data replacement, to retrieve SNR to isotopic peaks.

PREPARING YOUR INPUT FILE (1/3)

The input file format is TSV (tabulation separated values) or TABULAR. It is simple text file that can be prepared by using Excel and saved using the tabulated type format.

You can then rename your file with the .tsv extension (instead of .txt) by right-clicking on the file (and ignoring the warning):

PREPARING YOUR INPUT FILE (3/3)

Such « .tsv » files (i.e. tabular separated; e.g. variableMetadata.tsv) can be handled correctly both by Excel and Galaxy.

The input file structure must contain:

- column with ID of the ion example : M(mz)T(rt)
- column with masses of ions
- Decimal separator must be "."

•			% [7 ~ ~	\(\bar{Z} \rightarrow \frac{A}{Z} \rightarrow \)	· 🖫 · [fx 🖺 🗓	100%	?	
	🛕 A cueil Mise en page		page	Tableaux	Graphiqu	ues Sm	artArt Formules		Données	Révis	ion
	\$ \$ \& \& \& \ \ \ \ \ \ \ \ \ \ \ \ \ \										
_	1	В		D	E	F	G	Н		J	K
1	'	mz.rt	mzmed	mzmin	mzmax	rtmed	rtmin	rtmax	npeaks	bio	blank
2	M97T61	47	96.9598931	96.9544608	96.960558	60.6606373	47.5833024	72.9145719	84	30	0
3	M99T61	52	98.9555651	98.9554026	98.9556915	60.6500262	47.5833024	68.1660899	85	30	0
4	M135T54	179	135.029634	135.029555	135.029737	54.0958649	52.0061208	64.6722116	35	30	4
5	M136T54	183	136.032918	136.032849	136.032995	54.2654942	52.0061208	54.8630407	23	23	0
6	M187T53	487	187.037387	187.037305	187.037491	53.1931049	51.5001856	53.9712255	29	29	0
7	M189T53	504	189.03447	189.034367	189.034578	53.2949033	51.5001856	54.2175746	30	30	0
8	M256T55	1076	256.058855	256.058759	256.058988	54.5664543	53.0638469	55.5597785	19	19	0
9	M111T64	83	111.008572	111.008475	111.008646	63.7899207	60.7182195	65.0207406	30	30	0
10	M99T318	53	99.0449297	99.0448311	99.0450516	318.002223	311.950338	322.420986	34	30	0
11	M145T349	223	145.061651	145.061519	145.061749	349.072656	342.984425	365.437733	34	30	2

LOADING YOUR FILES INTO GALAXY (1/2)

Upload your file (variableMetadata.tsv)

either by using the icon
 and « drag & drop » the file:

LOADING YOUR FILES INTO **GALAXY (2/2)**

or with the Get Data / Upload File

CHECK THAT YOUR DATA HAVE STREET UPLOADED CORRECTLY

💳 Galaxy / 4 / Metab	olomics A	nalyze Data	Workflow S	Shared Data 🕶	Visualization -	Help → User →		:::	Using 1.7 GB
Tools		"mz.rt"	"mzmed"	"mzmin"	"mzmax"	"rtmed"	"rtm	History	€ \$
search tools	"M97T61"	47	96.95989309	96.9544608	96.96055802	60.66063731	47.583302	Unnamed history	
search tools	"M99T61"	52	98.9555651	98.9554026	98.95569154	60.65002621	47.583302	•	
Get Data	"M135T54"	179	135.0296344	135.0295548	135.0297374	54.09586485	52.00612	263.6 KB	Q 🗹 🗞 🗩
Upload File from your computer	"M136T54"	183	136.0329175	136.0328493	136.0329949	54.26549421	52.00612	2: Galaxy1-	0 0 4
	"M187T53"	487	187.0373874	187.0373051	187.037491	53.19310488	51.50018		◎ / X
WORKFLOW 4 METABOLOMICS	"M189T53"	504	189.0344696	189.0343673	189.0345776	53.29490329	51.50018	[sacuri variableMet sv].tabular	adata innotated.t
1-Format Conversion	"M256T55"	1076	256.0588553	256.0587585	256.0589882	54.5664543	53.063846	2.346 lines	_
2-Preprocessing	"M111T64"	83	111.0085715	111.0084745	111.0086463	63.7899207	60.718219	format: tabular, database: ?	
3-Normalisation	"M99T318"	53	99.04492968	99.04483112	99.04505157	318.0022226	311.95033	Tormat. tabular, date	1543C. <u>1</u>
4-Quality Control	"M145T349"	223	145.0616508	145.0615194	145.061749	349.0726556	342.98442	uploaded tabular file	e
5-Statistical Analysis	"M405T464"	2027	405.1910066	405.1902768	405.1915084	463.9998039	462.4033	80211	> ●
6-Annotation	"M132T56"	168	132.0300721	132.0299974	132.0301813	55.93629944	53.977446		
	"M263T349"	1138	263.1031444	263.1030089	263.1032901	348.9179671	348.01836	1 2 3	
COMMON TOOLS	"M289T65"	1335	288.9865308	288.9863773	288.9868076	64.78969478	61.541278		nzmed" "mzmin"
Text Manipulation	"M264T349"	1143	264.106299	264.1061244	264.1064523	348.9415214	347.45344		5.95989309 96.95446
Filter and Sort	"M167T64"	358	167.0207709	167.020477	167.0208833	63.67500027	60.718219		8.9555651 98.95540
Join, Subtract and Group	"M85T64"	29	85.02943231	85.02936548	85.02948246	63.79149641	60.718219		35.0296344 135.0295
<u>Statistics</u>			288.8159429	288.8157194	288.8161154	51.11847144	49.704977		36.0329175 136.0328
Graph/Display Data	"M195T66"	549	194.9269118	194.921922	194.9271839	66.16606849	48.1399	"M187T53" 487 18	37.0373874 187.0373
Multiple regression	"M285T57"	1312	285.0822653	285.0818636	285.0826499	57.38433388	55.653269		

USE « LCMS ANNOTATION » MODULE:

Each module proposes the same input and output formats, and the same type of parameters :

- The common input and output formats allow you to run multiple annotation tools sequentially or in parallel.
- Commons outputs :
 - ➤ HTML view: includes hyperlinks; multiple annotation results for the same variable are split into consecutive rows; next releases will provide more interactivity with the results.
 - .tsv format :

USE « LCMS ANNOTATION » MODULES

Open the module of your choice and select your input file. Select position of your id and mass columns.

Indicate if your file contains header lines.

You are now ready to configure your annotation tool!

f Please cite If you use this tool, please cite

LCMS ANNOTATION TOOLS

Example of HMDB input and configuration:

НМ	1DB MS search (version 2014-05-07)								
YE	Would you use a file : YES ▼ if 'NO' is selected then one or more mass(es) must be entered manually								
43	le of masses : 3: Compute on data 37 case note : HMDB allows maximum 15	50 query masses per request							
c1	olumn of Id :	Data input: a variableMetadata file with mandatory id and mz columns							
	mber of lines not containing values	mandatory id and mz columns							
	olecular Weight Tolerance +/- :								
De	05 fault value is 0.05 for HMDB (Da)	Search parameters: tolerance and							
0	Positif Mode Negatif Mode	molecular species							
•	Neutral Mass								
E	Execute								
0	1 Authors Marion Landi marion.landi@clermont.inra.fr and Franck Giacomoni franck.qiacomoni@clermont.inra.fr								

Wishart DS, Jewison T, Guo AC, Wilson M, Knox C, et al., HMDB 3.0-The Human Metabolome Database in 2013. Nucleic Acids Res. 2013.

1 2 3 4 <u>Next</u>

OUTPUT FORMATS

Annotation tool results – HTML view

Results of HMDB queries - Search params : Molecular specie = negative / delta = 0.001

Metadata of your query

ID from input	Mass (m/z)	Compound_ID	Formula	Compound MW (Da)	Adduct	Adduct_Type	Adduct MW (Da)	Delta
M99T318	99.04492968							
		HMDB41792	C4H6	54.04695	M+FA-H	-	99.045151	0.00022132
		HMDB01470	C5H8O2	100.05243	M-H	-	99.045154	0.00022432
		HMDB32351	C5H8O2	100.05243	M-H	-	99.045154	0.00022432
		HMDB01862	C5H8O2	100.05243	M-H	-	99.045154	0.00022432
		HMDB32459	C5H8O2	100.05243	M-H	-	99.045154	0.00022432
		HMDB30989	C10H16O4	200.104859	M-2H	-	99.045154	0.00022432
M145T349	145.0616508							
		HMDB33952	C4H8N2O	100.063663	M+FA-H	-	145.061864	0.0002132
		HMDB31642	C4H8N2O	100.063663	M+FA-H	-	145.061864	0.0002132
		HMDB02031	C5H10N2O3	146.069142	M-H	-	145.061866	0.0002152
		HMDB00641	C5H10N2O3	146.069142	M-H	-	145.061866	0.0002152
		HMDB06899	C5H10N2O3	146.069142	M-H	-	145.061866	0.0002152
		HMDB28687	C5H10N2O3	146.069142	M-H	-	145.061866	0.0002152
		HMDB03423	C5H10N2O3	146.069142	M-H	-	145.061866	0.0002152
		HMDB40613	C26H30O6	438.204239	M-3H	-	145.060804	0.0008468
		HMDB36597	C26H30O6	438.204239	M-3H	-	145.060804	0.0008468
M405T464	405.1910066							
		HMDB39013	C22H32O8	424.209718	M-H20-H	-	405.191328	0.0003214
		HMDB34492	C22H32O8	424.209718	M-H20-H	-	405.191328	0.0003214
		HMDB40795	C20H26O5	346.178024	M+Hac-H	-	405.191875	0.0008684
		HMDB12613	C21H28O5	360.193674	M+FA-H	-	405.191875	0.0008684
		HMDB41795	C20H26O5	346.178024	M+Hac-H	-	405.191875	0.0008684
		HMDB36901	C20H26O5	346.178024	M+Hac-H	-	405.191875	0.0008684

OUTPUT FORMATS

Annotation tool results – HTML links

OUTPUT FORMATS

.tsv output format: multiple annotations for the same variable are concatenated within the same cell using "::" as separator (Metlin format like)

	mz.rt	mzmed	rtmed	npeaks	bio	blank	isotopes	adduct	pcgroup	hmdb
M97T61	47	96.95989309	60.66063731	84	30	0		NA	57	"No_result_found_on HMDB"
M99T61	52	98.9555651	60.65002621	85	30	0		NA	57	"No_result_found_on HMDB"
M135T54	179	135.0296344	54.09586485	35	30	4	[13][M]+	NA	81	0.0002606::(C3H6O3)::HMDB01882 0.0002606::(C3H6O3
M136T54	183	136.0329175	54.26549421	23	23	0	[13][M+1]+	NA	81	0.0001435::(C10H14N2O7)::HMDB28818
M187T53	487	187.0373874	53.19310488	29	29	0		NA	138	0.0002726::(C9H10O3)::HMDB32030 0.0002726::(C9H10
M189T53	504	189.0344696	53.29490329	30	30	0		NA	413	"No_result_found_on HMDB"
M256T55	1076	256.0588553	54.5664543	19	19	0		NA	81	0.0002297::(C10H9N)::HMDB33115 0.0002297::(C10H9N)
M111T64	83	111.0085715	63.7899207	30	30	0	[6][M]+	NA	4	0.0001965::(C5H4O3)::HMDB00617 0.0001965::(C5H4O3
M99T318	53	99.04492968	318.0022226	34	30	0	[3][M]+	NA	164	0.00022132::(C4H6)::HMDB41792 0.00022432::(C5H8O2]
M145T349	223	145.0616508	349.0726556	34	30	2		NA	5	0.0002132::(C4H8N2O)::HMDB33952 0.0002132::(C4H8N
M405T464	2027	405.1910066	463.9998039	29	29	0	[219][M]+	NA	175	0.0003214::(C22H32O8)::HMDB39013 0.0003214::(C22H
M132T56	168	132.0300721	55.93629944	30	30	0		NA	109	0.0001569::(C3H5NO2)::HMDB39426 0.0001569::(C3H5N
M263T349	1138	263.1031444	348.9179671	35	30	5	[121][M]+	NA	5	0.0000376::(C13H18N2O5)::HMDB61146 0.0000376::(C1
M289T65	1335	288.9865308	64.78969478	30	30	0		NA	167	"No_result_found_on HMDB"
M264T349	1143	264.106299	348.9415214	34	30	4	[121][M+1]+	NA	5	0.000072::(C13H17NS)::HMDB40032

"No_result_found_on HMDB"

0.0002606::(C3H6O3)::HMDB01882|0.0002606::(C3H6O3

« METLIN FORMAT LIKE»

0.003604744502::(Clitocine)::HMDB33718

0.003605255498::(Citrusinine II)::HMDB30373

« COMPARE » ANNOTATION

positive / negative ionization modes:

- Some tools are not mass spectrometry oriented (ex: KEGG)
- It is therefore necessary to format your mz values with COMMON TOOLS / Compute prior to using them
 - positive mode: C3 1.007825 (Proton) + 0.0005486 (electron)
 - negative mode: C3 + 1.007825 (Proton) 0.0005486 (electron)

Mzmed [M+H]	М
132.0300721	131.0227957
263.1031444	262.095868
288.9865308	287.9792544
264.106299	263.0990226

ANNOTATION WORKFLOW BUILDING

Example of a sequential « Chemical » annotation workflow:

Chain a specific bank query and a formula elucidator

HMDB MS search search on HMDB by file selection

 Lipidmaps: search on LM online with masses

 HR2 formula find a formula for the masses

 Find a mol file with a kegg id

 Keqq Compounds a Kyoto Encyclopedia of Genes and Genomes small molecules database.

 Chemspider Search and share chemistry.

 MassBank: High Quality Mass Spectral Database.

 CAMERA.annotateDiffreport Wrapper function for the xcms diffreport and the annotate function. Returns a diffreport within the annotation results.

« CHEMICAL » ANNOTATION WORKFLOW FEATURES

Human Metabolome DataBase:

- Bank containing small molecule metabolites found in the human body.
- V3.6 with 41,815 entries + 5,688 proteins.

HR2:

- Molecular formula generator: HiRes ("High Resolution") MS by Joerg Hau.
- Generate random chemical formula and filter them with "the seven golden rules"

ANNOTATION WORKFLOW BUILDING

Example of a parallel annotation workflow:

Combine chemical compound libraries and a spectral repository.

6-Annotation

- <u>HMDB MS search</u> search on HMDB by file selection
- <u>Lipidmaps</u>: search on LM online with masses
- HR2 formula find a formula for the masses
- Find a mol file with a kegg id
- Kegg Compounds a Kyoto Encyclopedia of Genes and Genomes small molecules database.
- Chemspider Search and share chemistry.
- MassBank : High Quality Mass Spectral Database.
- <u>CAMERA.annotateDiffreport</u> Wrapper function for the xcms diffreport and the annotate function. Returns a diffreport within the annotation results.

« CHEMICAL » ANNOTATIONS

KEGG Compounds:

Sub-bank of KEGG containing small molecules, biopolymers, and other chemical substances, relevant to biological systems. <u>V2014-05</u> with 17,254 entries.

MassBank:

- Public repository of mass spectra of small chemical compounds for life sciences.
- V2014-03 with 40,889 spectra for 15,775 compounds

ChemSpider

 Meta engine providing text and structure search to over 30 millions structures from ~500 data sources.

REFERENCES

- Wishart DS, Jewison T, Guo AC, Wilson M, Knox C, et al., HMDB 3.0—The Human Metabolome Database in 2013. Nucleic Acids Res. 2013.
- Silva, R. R. and Jourdan, F. and Salvanha, D. M. and Letisse, F. and Jamin, E. L. and Guidetti-Gonzalez, S. and Labate, C. A. and Vencio, R. Z. N. (2014). ProbMetab: an R package for Bayesian probabilistic annotation of LC-MS-based metabolomics. In Bioinformatics, 30 (9), pp. 1336–1337.
- Sud M., Fahy E., Cotter D., Brown A., Dennis E., Glass C., Murphy R., Raetz C., Russell D., and Subramaniam S. LMSD: LIPID MAPS structure database. Nucleic Acids Research 35, D527-32 (2006).
- Tobias Kind and Oliver Fiehn. (2007). "Seven Golden Rules for heuristic filtering of molecular formulas obtained by accurate mass spectrometry." BMC Bioinformatics p8:105
- Kanehisa, M., S. Goto, et al. (2012). "KEGG for integration and interpretation of large-scale molecular data sets." Nucleic Acids Research 40(D1): D109-D114
- Pence, H.E. and A.J. Williams, (2010). "ChemSpider: An Online Chemical Information Resource." J.Chem. Educ., 87(11): p. 1123-1124.
- H. Horai, M. Arita, S. Kanaya, Y. Nihei, T. Ikeda, K. Suwa. Y. Ojima, K. Tanaka, S. Tanaka, K. Aoshima, Y. Oda, Y. Kakazu, M. Kusano, T. Tohge, F. Matsuda, Y. Sawada, M. Yokota Hirai, H. Nakanishi, K. Ikeda, N. Akimoto, T. Maoka, H. Takahashi, T. Ara, N. Sakurai, H. Suzuki, D. Shibata, S. Neumann, T. Iida, K. Tanaka, K. Funatsu, F. Matsuura, T. Soga, R. Taguchi, K. Saito and T. Nishioka, (2010). "MassBank: A public repository for sharing mass spectral data for life sciences." J. Mass Spectrom., 45, 703-714.

END!