Departamento de Matemáticas	Nombre:					Nota
	Curso:	Grupo:	Fecha:	Examen VI		
	2º ESO		13 de febrero de 2023	Examen de Álgebr	ra	

Calcula paso a paso las siguientes operaciones combinadas con números enteros, fracciones y potencias.

1. - Expresa en lenguaje algebraico: (2 puntos)

El triple de un número más cuatro unidades	
En un gallinero hay xgallinas, entre picos y patas hay	
La diferencia entre el triple de un número y su mitad	
El doble de un número aumentado en 10 unidades	
El área de un rectángulo de base 3 cm y altura desconocida	
El número de patas de una granja con x vacas e y gallinas	
La suma de un número al cuadrado con su número consecutivo	
La edad de Pepe es x, dentro de nueve años será	

2. - Completa la siguiente tabla de monomios: (1 punto)

Monomio	Coeficiente	Parte literal	Grado	Monomio Semejante
3z ⁶				
192t				
-17				
	-3			7 x ³ y ⁵
-8 t ⁴ xz ²				

3.- Completa la siguiente tabla de polinomios: (1 punto)

Polinomio	Grado	¿Completo?	Término Independiente	P(0)=	P(-1)=
$7x^3 + 5x^4 - 3x^2 + 7$					
5+3x-9x ⁴ +5x ³					
$3x-3x^2-3+3x^3$					
3y ³ +4y ² +6y					

4. Dados los polinomios
$$\begin{cases} \rho(x) = 3x^5 - x^4 + 8x^2 - 5x - 2 \\ q(x) = -5x^3 - 2x^2 + 3x \\ r(x) = x^2 - x + 1 \end{cases}$$
 calcula:
$$\begin{cases} a) \rho(x) + q(x) - 2r(x) = b \\ b) \left[\rho(x) \right]^2 = c \\ c) 3 \cdot \rho(x) \cdot r(x) = c \end{cases}$$

a)

b)

c)

5. - Completa los términos que faltan con la ayuda de las identidades notables: (1,5 puntos)

a)
$$(2x+4)^2 = ___ + 16x + ____$$

c)
$$(_{-}+5) \cdot (3x -_{-}) = 9x^2 -_{-}$$

6. - Expresa algebraicamente el perímetro y el área de la siguiente figura y calcula su valor para x=2. (1,5 puntos)

BONUS.- Raquel es profesora de 3° ESO y mientras corregía un examen se encontró con la siguiente expresión:

$$\left(x+3\right)^2 = x^2 + 9$$

Razona por qué se trata de un grave error e indica cuál sería la respuesta correcta.

Nombre:	SOLUCIONES 2ª Evaluación					
Curso:	Grupo:	Fecha: Examen VI				
2º ESO		13 de febrero de 2023	Examen de Álgebra			

Calcula paso a paso las siguientes operaciones combinadas con números enteros, fracciones y potencias.

1. - Expresa en lenguaje algebraico: (2 puntos)

El triple de un número más cuatro unidades	3x + 4		
En un gallinero hay xgallinas, entre picos y patas hay	4x + 2x = 6x		
La diferencia entre el triple de un número y su mitad	3x - x/2		
El doble de un número aumentado en 10 unidades	2x + 10		
El área de un rectángulo de base 3 cm y altura desconocida	3x		
El número de patas de una granja con x vacas e y gallinas	4x + 2y		
La suma de un número al cuadrado con su número consecutivo	$x^2 + (x+1)$		
La edad de Pepe es x, dentro de nueve años será	x + 9		

2. - Completa la siguiente tabla de monomios: (1 ponto)

Monomio	Coeficiente	Parte literal	Grado	Monomio Semejante
3z ⁶	3	z ⁶	6	4z ⁶
19zt	19	zt	2	7 z t
-17	-17	No tiene	0	45
-3 x³y ⁵	-3	x³y⁵	8	7 x³y⁵
-8 t ⁴ xz ²	-8	t ⁴ xz ²	7	6 t ⁴ xz ²

3. - Completa la siguiente tabla de polinomios: (1 punto)

Polinomio	Grado	¿Completo?	Término Independiente	P(0)=	P(-1)=
$7x^3 + 5x^4 - 3x^2 + 7$	4	No (x)	7	7	2
5+3x-9x ⁴ +5x ³	4	No (x²)	5	5	-12
$3x-3x^2-3+3x^3$	3	Si	-3	-3	-12
3y³+4y²+6y	3	No (Τ. indep)	No tiene	0	-5

4. – Dados los polinomios
$$\begin{cases} \rho(x) = 3x^5 - x^4 + 8x^2 - 5x - 2 \\ q(x) = -5x^3 - 2x^2 + 3x \\ r(x) = x^2 - x + 1 \end{cases} \quad \text{calcula:} \quad \begin{cases} a) \ \rho(x) + q(x) - 2r(x) = \\ b) \ [\rho(x)]^2 = \\ c) \ 3 \cdot \rho(x) \cdot r(x) = \end{cases}$$

a)
$$\rho(x) + q(x) - 2r(x) = (3x^5 - x^4 + 8x^2 - 5x - 2) + (-5x^3 - 2x^2 + 3x) - 2\cdot(x^2 - x + 1) = 3x^5 - x^4 + 8x^2 - 5x - 2 - 5x^3 - 2x^2 + 3x - 2x^2 + 2x - 2 = 3x^5 - x^4 - 5x^3 + 4x^2 + 0x - 4$$

b)
$$\left[\rho(x)\right]^2 = \left(3x^5 - x^4 + 8x^2 - 5x - 2\right)^2 = \left(3x^5 - x^4 + 8x^2 - 5x - 2\right) \cdot \left(3x^5 - x^4 + 8x^2 - 5x - 2\right) =$$

 $= 9x^{10} - 3x^9 + 24x^7 - 15x^6 - 6x^5 - 3x^9 + x^8 - 8x^6 + 5x^5 + 2x^4 + 24x^7 - 8x^6 + 64x^4 + 26x^3 - 16x^2 - 15x^6 + 5x^5 - 40x^3 + 25x^2 + 10x - 6x^5 + 2x^4 - 16x^2 + 10x + 4 =$
 $= 9x^{10} - 6x^9 + x^8 + 48x^7 - 46x^6 - 2x^5 + 68x^4 - 80x^3 - 7x^2 + 20x + 4$

c)
$$3 \cdot \rho(x) \cdot r(x) = 3 \cdot (3x^5 - x^4 + 8x^2 - 5x - 2) \cdot (x^2 - x + 1) = 3 \left[(3x^5 - x^4 + 8x^2 - 5x - 2) \cdot (x^2 - x + 1) \right] =$$

$$= 3 \left[3x^7 - 3x^6 + 3x^5 - x^6 + x^5 - x^4 + 8x^4 - 8x^3 + 8x^2 - 5x^3 + 5x^2 - 5x - 2x^2 + 2x - 2 \right] =$$

$$= 3 \left[3x^7 - 4x^6 + 4x^5 + 7x^4 - 12x^3 + 11x^2 - 3x - 2 \right] = 9x^7 - 12x^6 + 12x^5 + 21x^4 - 39x^3 + 33x^2 - 9x - 6$$

5.- Completa los términos que faltan con la ayuda de las identidades notables: (1,5 puntos)

a)
$$(2x+4)^2 = 4x^2 + 16x + 16$$

b)
$$(3x^2-2)^2 = 9x^4-12x^2+4$$

c)
$$(3x+5) \cdot (3x-5) = 9x^2 - 25$$

6.- Expresa algebraicamente el perímetro y el área de la siguiente figura y calcula su valor para x=2. (1,5 puntos)

$$P(x) = x + 7 + x + 3 + 3x + 3 + x + 7 = 6x + 20$$

$$P(2) = 6.2 + 20 = 12 + 20 = 32$$

$$A(x) = 3.3x + 7.x = 9x + 7x = 15x$$

$$A(2) = 15.2 = 30$$

BONUS. - Raquel es profesora de 3° ESO y mientras corregía un examen se encontró con la siguiente expresión:

$$\left(x+3\right)^2 = x^2 + 9$$

Razona por qué se trata de un grave error e indica cuál sería la respuesta correcta.

Se trata de un error porque el cuadrado de una suma no se calcula sumando el cuadrado del primero y el cuadrado del segundo, nos faltaría el producto cruzado de $x\cdot 3$ y de $3\cdot x$, o lo que es lo mismo, el doble del producto del primero por el segundo.

Así que la respuesta correcta es: $(x+3)^2 = x^2 + 6x + 9$

