Progetto di Reti Logiche

Martino Piaggi

2021-2022

Contents

1	Intr	Introduzione								
	1.1	roduzione Specifica	3							
	1.2	Interfaccia modulo	3							
2	Arc	chitettura	4							
	2.1	Stati e registri	1							
	2.2	Schematico finale								
3	Rist	ultati sperimentali:	6							
	3.1	ultati sperimentali: Sintesi	6							
	3.2	Simulazioni	6							
4	Con	nclusioni	7							

1 Introduzione

Il progetto proposto é una implementazione in linguaggio VHDL di un codificatore convoluzionale. Lo scopo del codificatore convoluzionale é di ottenere un trasferimento di dati affidabile. In questo caso si avvale di una codifica con un tasso di trasmissione $\frac{1}{2}$: ogni bit viene codificato con 2 bit. Il modulo riceve in ingresso una sequenza di parole di 8 bit, e restituisce in uscita una sequenza di lunghezza doppia di parole da 8 bit.

1.1 Specifica

Il flusso in uscita è ottenuto come concatenamento alternato dei due bit di uscita (in figura p1k e p2k). Il modulo legge la sequenza da codificare da una memoria con indirizzamento al byte. La lunghezza delle sequenze (compresa tra 0 e 255 bytes) é memorizzata all'indirizzo 0 della memoria e lo stream di uscita (in bytes) é invece memorizzato a partire dall'indirizzo 1000(mille). Il modulo partirà nella elaborazione quando un segnale START in ingresso al modulo verrà portato a 1. Il segnale di START rimarrà alto fino a che il segnale di DONE in uscita dal modulo non verrà portato alto, cioé al termine della computazione e scrittura della sequenza di bytes. Il modulo é in grado di codificare più flussi uno dopo l'altro.

1.2 Interfaccia modulo

Il modulo interagisce con la memoria nel seguente modo:

- i_clk è il segnale di CLOCK al quale il modulo si sincronizza
- i rst è il segnale di RESET che inizializza la macchina
- i_start è il segnale START descritto nella specifica
- i_data è il segnale he arriva dalla memoria in seguito ad una richiesta di lettura, necessario per leggere i bytes
- o address è il segnale di uscita con cui si specifica a quale indirizzo della memoria accedere
- o done è il segnale DONE descritto nella specifica
- o en è il segnale di ENABLE della memoria
- o we è il segnale di WRITE ENABLE:
 - 1 per scrivere
 - 0 per leggere
- o_data è il segnale di uscita dal componente verso la memoria, necessario per salvare i bytes

2 Architettura

Si é deciso di optare per una architettura Macchina a Stati Finiti + Datapath. La MSF si occupa di controllare lo stato e tutti i segnali d'interfaccia descritti in Interfaccia oltre a quelli interni necessari per controllare il Datapath. Quest'ultimo consiste nel vero e proprio convolutore e di tutti i registri di memoria necessari per svolgere correttamente la computazione, comprese le operazioni di contatori d'indirizzi.

- MSF implementata con:
 - un processo che descrive lo stato prossimo per ciascuno stato
 - un processo che coordina i segnali interni per il Datapath e d'interfaccia in base allo stato corrente del modulo
- DataPath implementato con:
 - un processo che svolge il calcolo del convolutore
 - registri di memoria a supporto del convolutore e dalla MSF

2.1 Stati e registri

- RESET: stato di reset della macchina
- START: stato che coordina i segnali per leggere l'indirizzo 0, cioé la lunghezza della sequenza.
- READ_ADDR: lettura e memorizzazione dimensione sequenza
- ENABLE_READ_UK: attivazione segnali per lettura byte n-esimo
- READ UK: lettura byte n-esimo
- COMPUTE: codifica convoluzionale vera e propria
- WAITING_COMPUTE: memorizzazione in registri di memoria delle informazioni appena calcolate e attivazione segnali per stati successivi
- ENABLE_WRITE_1: attivazione segnale per scrittura primo byte dello stream di uscita
- WRITE 1: scrittura byte in uscita
- WAITING: cambio di segnali e incremento dell'indirizzo di scrittura
- ENABLE_WRITE_2: attivazione segnale per scrittura secondo byte dello stream di uscita
- WRITE 2: scrittura byte in uscita
- MOVING: basandosi sul contatore della lunghezza della sequenza determina se concludere la computazione o continuare, leggendo un nuovo byte
- DONE: stato di DONE, segnale di DONE portato a 1 ed eventuale ritorno a stato di RESET in caso di nuova sequenza

Registri di memoria a supporto della computazione:

- counterBytesFF: contatore per il numero di bytes letti all'indirizzo 0
- uk2FF: penultimo bit del byte precedente al byte in ingresso nel modulo
- uk1FF: ultimo bit del byte precedente al byte in ingresso nel modulo
- output1FF: memorizzazione del primo byte in uscita
- output2FF: memorizzazione del secondo byte in uscita
- readAddressFF: memorizzazione e incremento del indirizzo di lettura
- writeAddressFF: memorizzazione e incremento del indirizzo di scrittura
- inputDataPathFF: memorizzazione del byte letto

2.2 Schematico finale

3 Risultati sperimentali:

3.1 Sintesi

Si é scelto di utilizzare la fpga consigliata, la Artix-7 FPGA xc7a200tfbg484-1. I vincoli di clock sono largamenti rispettati e le risorse della board minimamente sfruttate.

Resource	Utilization	Available	Utilization %
LUT	104	134600	0.08
FF	96	269200	0.04
IO	38	285	13.33

3.2 Simulazioni

Si sono effettuate 3 simulazioni:

• Sequenza nulla: primo caso limite che verifica che il progetto si comporti correttamente in caso di sequenza di lunghezza nulla.

• Sequenza massima: secondo caso limite che verifica che il progetto si comporti correttamente anche a fronte della lunghezza più lunga possibile, cioé una sequenza UK da 255 bytes.

	0 ns	200 ns	400 ns	600 ns	800 ns	1,000 ns	1,200 ns	1,400 ns	1,600 ns	1,800 ns	2,000 ns	2,200 ns
tb_done												
mem_address[15:0]		0		X	1 / 10	00 / 0 /	1000	0 (1001	X 0 X	2 / 10	02 (0)(1002 / 0
tb_rst												
tb_rst tb_start												
tb_dk												
mem_o_data[7:0]		U			255		χ 2	29	85	X	222	X 88
mem_i_data[7:0]	k		0				229	85		0		88
enable_wire												
mem_we												

• Piú segnali di i_start:

	0 ns	2,000 ns	4,000 ns	6,000 ns	8,000 ns	10,000 ns	12,000 ns 14,000 ns
tb_done							
mem_address[15:0]	0000 0 0	(\(\frac{1}{2}\)\(\fr	0000 0 0 0		0000 0 0 0 0		
tb_rst							
tb_start							
tb_dk							
mem_o_data[7:0]	UU 03 f8 (e5)	6c 70 39 b0 27 0d	f9 (03)(b2)(d2)(bd	a0 (11 c0 75 39)	84 (03)(b7)(d2)(89)(e5 (56)(f4)(c2)(9b)(0	d 03 60 3a c0 ac d1 2b 09 00 df
mem_i_data[7:0]	00 \(\(\begin{array}{c} \) \(\text{6c} \)	00 (b0) (00 (t9	00 (bd)	00 (0 (00) (00) (04) (00 (89) 00	00 (14) 00 (0d)	00 0 c0 00 2b 00 df 00
enable_wire							
mem_we							

4 Conclusioni

Il componente passa con successo tutti i test da me proposti. L'architettura scelta (MSF + Datapath) é notoriamente utilizzata per la flessibilitá che offre a fronte di eventuali espansioni e modifiche del progetto. L'implementazione attuata é naive e ho preferito scrivere codice semplice e lungo piuttosto che corto e stringato. Essendo le risorse della board cosí poco utilizzate non ho introdotto ottimizzazioni, le cui possibili individuate sono:

- la rimozione dei registri writeAddressFF e readAddressFF a fronte dell'introduzione di un secondo registro oltre a counterBytesFF come contatore della sequenza, scrittura e lettura (risparmiando un flipflop)
- la rimozione dei registri dei registri output1FF e output2FF, 'collegando' l'output del Datapath direttamente con l'uscita del modulo