COMP3420: Advanced Databases and Data Mining

Introduction to association mining

r

Lecture outline

- What is association mining?
- Market basket analysis and association rules examples
- Basic concepts and formalism
- Basic rule measurements
- The Apriori algorithm
- Performance bottlenecks in Apriori
- Improve *Apriori's* efficiency

v

What is association mining?

- Association mining is the task of finding frequent rules / associations / patterns / correlations / causal structures within (large) sets of items in transactional (relational) databases
- *Unsupervised* learning techniques (*descriptive* data mining, not *predictive* data mining)
- The main applications are
 - Market basket analysis (customers who buys X also buys Y)
 - Web log analysis (click-stream)
 - Cross-marketing
 - Sale campaign analysis
 - DNS sequence analysis

Market basket analysis

Source: Han and Kamber, DM Book, 2nd Ed. (Copyright © 2006 Elsevier Inc.)

M

Association rules examples

- Rules form: body ⇒ head [support, confidence]
- Market basket:

$$buys(X, `beer') \Rightarrow buys(X, `snacks') [s=1\%, c=60\%]$$

- If a customer X purchased `beer', in 60% she or he also purchased `snacks'
- 1% of all transactions contain the items `beer' and `snacks'
- Student grades:

major(X, `BIT') and takes(X, `COMP3420')
$$\Rightarrow$$
 grade(X, `D') [s=3%, c=70%] *

- If a student X, who's major is `BIT', took the course `COMP3420' she or he in 70% achieved a grade `D'
- The combination `BIT', `COMP3420' and `D' appears in 3% of all transactions (records) in the database
- * Disclaimer: This is only an example, it does not mean that 70% of COMP3420 students in the past achieved a 'D' grade.

Basic concepts

- Given:
 - A (large) database of transactions
 - Each transaction contains a list of one or more items (e.g. purchased by a customer in a visit)
- Find the rules that correlate the presence of one set of items with that of another set of items

- Normally one is only interested in rules that are frequent
 - For example, 70% of customers who buy tires and car accessories also get their car service done
 - Question: How can this be improved to 80%? Possibly offer special deals like a 15% reduction of tire costs when the service is done

W

Formalism

- Set of items $X = \{x_1, x_2, ..., x_k\}$
- Database D containing transactions
- Each transaction T is a set of items, such that T is a subset of X
- Each transaction is associated with a unique identifier, called *TID* (for example, a unique number)
- Let A be a set of items (a subset of X)
- An association rule is an implication of the form $A \Rightarrow B$, where A is a subset of X and B is a subset of X, and the intersection of A and B is empty
 - No item in A can be in B, and vice versa
 - No rule of the form: {`beer', `chips'} ⇒ {`chips', `peanuts'}

۳

Basic rule measurements

A rule A ⇒ B holds in a database D with support s,
 with s being the percentage of transactions in D that contain A and B

$$support(A \Rightarrow B) = P(A \cup B)$$

• The rule $A \Rightarrow B$ has a *confidence* c in a database D if c is the percentage of transactions in D containing A that also contain B

confidence
$$(A \Rightarrow B) = P(B|A) = P(A \cup B) / P(A)$$

confidence $(A \Rightarrow B) = \text{support}(A \Rightarrow B) / \text{support}(A)$

Rule measurements example

Transaction ID	Items Bought
2000	a, b, c
1000	a, c
4000	a, d
5000	b, e, f

Itemset	Support
a	75.00%
b	50.00%
С	50.00%
a, c	50.00%

- Minimum support = 50% and confidence = 50%
- Rule $a \Rightarrow c$
 - support (a \Rightarrow c): 50%
 - confidence (a \Rightarrow c) = support(a \Rightarrow c) / support(a) = 50% / 75% = 66.67%

M

Mining frequent item sets

- Key step: Find the frequent sets of items that have minimum support (appear in at least xx% of all transactions in a database)
- Basic principle (Apriori principle): A sub-set of a frequent item set must also be a frequent item set
 - For example, if {a,b} is frequent, both {a} and {b} have to be frequent (if `beer' and 'chips' are purchased frequently together, then `beer' is purchased frequently and `chips' are also purchased frequently)
- Basic approach: Iteratively find frequent item sets with cardinality from 1 to k (k-item sets), k > 1
- Use the frequent item sets to generate association rules
 - For example, frequent 3-item set $\{a,b,c\}$ contains rules: $a \Rightarrow c, b \Rightarrow c, a \Rightarrow b, \{a,b\} \Rightarrow c, \{a,c\} \Rightarrow b, \{b,c\} \Rightarrow a, etc.$
- We are normally only interested in longer rules

The Apriori algorithm (Agrawal & Srikant, VLDB'94)

• C_k : Candidate item set of size k

 L_k : Frequent item set of size k

Pseudo-code:

```
L_1 = {frequent items};

for (k = 1; L_k != \{\}; k++) do begin

C_{k+1} = candidates generated from L_k;

for each transaction t in database do

increment the count of all candidates in C_{k+1}

that are contained in t

L_{k+1} = candidates in C_{k+1} with min_support

end do

return L = U_k L_k;
```

The *Apriori* algorithm – An example (sup=50%)

The *Apriori* algorithm – An example (2)

Database D

TID	Items
100	a,c,d
200	b,c,e
300	a,b,c,e
400	b,e

$$L_3$$
 | itemset | sup | $\{b, c, e\}$ | 2

- Minimum support = 50% and minimum confidence = 50%
- Rules:

• b
$$\Rightarrow$$
 c [s=50%, c=66.67%]

• b
$$\Rightarrow$$
 e [s=75%, c=100%]

•
$$c \Rightarrow e [s=50\%, c=66.67\%]$$

•
$$\{b, c\} \Rightarrow e [s=50\%, c=100\%]$$

•
$$\{b, e\} \Rightarrow c [s=50\%, c=66.67\%]$$

•
$$\{c, e\} \Rightarrow b [s=50\%, c=100\%]$$

M

Important details of the Apriori algorithm

- How to generate candidate sets?
 - Step 1: Self-joining L_k (C_k is generated by joining L_{k-1} with itself)
 - Step 2: Pruning (any (k-1)-item set that is not frequent cannot be a subset of a frequent k-item set)
- Example of candidate generation:
 - $L_3 = \{\{a,b,c\}, \{a,b,d\}, \{a,c,d\}, \{a,c,e\}, \{b,c,d\}\}\}$
 - Self-joining: $L_3 * L_3 (\{a,b,\boldsymbol{c},\boldsymbol{d}\} \text{ from } \{a,b,\boldsymbol{c}\} \text{ and } \{a,b,\boldsymbol{d}\}, \text{ and } \{a,c,\boldsymbol{d},\boldsymbol{e}\} \text{ from } \{a,c,\boldsymbol{d}\} \text{ and } \{a,c,\boldsymbol{e}\})$
 - Pruning: {a,c,d,e} is removed because {a,d,e} is not in L₃
 - $C_{A} = \{\{a,b,c,d\}\}$
- How to count supports for candidates?

7

How to generate candidate item-sets?

- Suppose the items in L_{k-1} are listed in an order (e.g. a < b)
- Step 1: Self-joining L_{k-1}

```
\begin{split} &\textbf{insert into } C_k \\ &\textbf{select } p.item_1, \, p.item_2, \, ..., \, p.item_{k\text{-}1}, \, q.item_{k\text{-}1} \\ &\textbf{from } L_{k\text{-}1} \; \; p, \, L_{k\text{-}1} \; \; q \\ &\textbf{where } p.item_1 = q.item_1, \, ..., \, p.item_{k\text{-}2} = q.item_{k\text{-}2}, \, p.item_{k\text{-}1} < q.item_{k\text{-}1} \end{split}
```

Step 2: Pruning

forall item sets c in C_k do forall (k-1)-sub-sets s of c do if (s is not in L_{k-1}) then delete c from C_k

Apriori performance bottlenecks

- The core of the Apriori algorithm is to
 - Use frequent (k-1) item sets to generate candidate frequent k item sets
 - Use database scan and pattern matching to collect counts for candidate item sets
- Candidate generation is the main bottleneck
 - 10⁴ frequent 1-item sets (sets of length 1) will generate 10⁷ candidate 2-item sets!
 - To discover a frequent pattern of size 100 (for example $\{a_1, a_2, ..., a_{100}\}$) one needs to generate $2^{100} = 10^{30}$ candidates
 - Multiple scans of the database are needed (n+1 scans if the longest pattern is n items long)

Methods to improve *Apriori's* efficiency

Reduce the number of scans of the database

- Any item set that is potentially frequent in the database must be frequent in at least one of the partitions of the database
- Scan 1: Partition database and find local frequent patterns
- Scan 2: Consolidate global frequent patterns

Shrink number of candidates

- Select a sample of the database, mine frequent patterns within sample using *Apriori*
- Scan database once to verify frequent item sets found in sample
- Scan database again to find missed frequent patterns

Facilitate support of counting candidates

• For example, use special data structures like Frequent-Pattern tree (FP-tree)