代数曲線と楕円・超楕円暗号

松尾和人

2005年4月24日

現代暗号と公開鍵暗号

- 現代暗号: E, D は公開、K は受信者の秘密
- ◆ 公開鍵暗号: K' ≠ K

公開鍵暗号の例: EIGamal 暗号

鍵生成

- 1. 素数pと $b \in \{1, \ldots, p-1\}$ 1. $r \in \{0, \ldots, p-2\}$ を選択 を適切に選択
- 2. $x \in \{0, ..., p-2\}$ を選択 3. $c_2 \equiv My^r \mod p$ を計算
- 3. $y \equiv b^x \mod p$ を計算
- 秘密鍵:x
- 公開鍵:(p, b, y)

● 暗号化

- 2. $c_1 \equiv b^r \mod p$ を計算
- 暗号文: $C = (c_1, c_2)$
- 復号
 - 平文: $M \equiv c_2/c_1^x \mod p$

公開鍵暗号に利用される一方向性関数

● 素因数分解(RSA等)

- 簡単: $p,q \mapsto n = pq$

- 困難: $n \mapsto \{p,q\}$

● 離散対数問題(ElGamal等)

- 簡単: $(x, b, p) \mapsto y \equiv b^x \mod p$ cf. 爽快! 2^{100} 三話

- 困難: $(y,b,p) \mapsto x$

離散対数問題の解読コスト

- 離散対数問題の解読コストは pのサイズに依存
- 2⁸⁰程度の手間はかけられないと考えられている
- $\Rightarrow 2^{80}$ 程度の手間が必要なpのサイズは?
 - Square-root 法: $\log_2 p \approx 160$
 - 指数計算法 : $\log_2 p \approx 1024$ (?)
- 将来は?(漸近的計算量):
 - Square-root 法: $\log_2 p$ の指数関数時間
 - 指数計算法 : $\log_2 p$ の準指数関数時間

何とかならないか? ⇒ 離散対数問題の一般化

有限体

• 有限集合で四則演算が定義されたもの

```
-\mathbb{F}_p := \{整数を素数pで割った余り\}
```

 $-\mathbb{F}_{p^d}:=\{\mathbb{F}_p$ 係数のd次多項式の根 $\}$

$$\mathbb{F}_5 = \{0, 1, 2, 3, 4\}$$

+	0	1	2	3	4
0	0	1	2	3	4
1	1	2	3	4	0
2	2 3	3	4	0	1
3	3	4	0	1	2
4	4	0	1	2	3

×	0	1	2	3	4
0	0	0	0	0	0
1	0	1	2	3	4
2	0	2	4	1	3
3	0	3	1	4	2
4	0	4	3	2	1

有限可換群

● 有限集合で可換な演算が一つ定義され、単位元、逆元有り

$$-+\Rightarrow \mathbb{F}_p, (\mathbb{Z}, \mathbb{Q}, \mathbb{R}, \mathbb{C})$$

- $-+ \not\Rightarrow (\mathbb{N})$
- $-\times \Rightarrow \mathbb{F}_p\setminus\{0\}, (\mathbb{Q}\setminus\{0\}, \mathbb{R}\setminus\{0\}, \mathbb{C}\setminus\{0\})$
- $\times \not\Rightarrow (\mathbb{Z})$
- $\bullet \ \mathbb{F}_p^* := \mathbb{F}_p \backslash \{0\}$
- 可換群の演算には+を用いる

離散対数問題の一般化

- 離散対数問題
 - p: 素数, $b \in \{1, \ldots, p-1\}$, $x \in \{0, \ldots, p-2\}$
 - $-y \equiv b^x \bmod p$

 $\downarrow \downarrow$

- (有限体の乗法群上の)離散対数問題
 - $-b \in \mathbb{F}_p^*, x \in \{0, \dots, \#\mathbb{F}_p^* 1\}$
 - $-y=b^x$

 $\downarrow \downarrow$

- 離散対数問題
 - G: 有限可換群, $b \in G$, $x \in \{0, \dots, \#G 1\}$
 - $-y = xb = \underbrace{b+b+\dots+b}_{x}$

楕円・超楕円暗号

- Square-root 法は一般に適用可: $\sqrt{\#G}$
- 有限可換群Gで指数計算法が適用できないものはあるか?
- ⇒ 代数曲線には可換群の構造を入れられる
- ⇒ 楕円・超楕円暗号 有限体の乗法群上の離散対数問題に基づく暗号アルゴリズムを(有限体上の)楕円曲線、超楕円曲線の群構造を利用して実現したもの
- : 暗号アルゴリズム自体の研究は行なわれない

代数曲線の例

 $C:Y^4+Y-XY^2-X^5+f_4X^4+f_3X^3+f_2X^2+f_1X^2+f_0=0$, $f_i\in\mathbb{F}_p$

楕円曲線

楕円曲線上の群構造

$$E:Y^2=X^3+a_4X+a_6,\ a_i\in\mathbb{F}_p$$

$$\downarrow$$

$$E(\mathbb{F}_p):=\{P=(x,y)\in\mathbb{F}_p^2\mid y^2=x^3+a_4x+a_6\}\cup\{P_\infty\}$$

$$\downarrow$$

$$E: Y^{2} = X^{3} + a_{4}X + a_{6}$$

$$P_{1} = (x_{1}, y_{1}), P_{2} = (x_{2}, y_{2})$$

$$P_{3} = (x_{3}, y_{3}) = P_{1} + P_{2}$$

$$\lambda = \begin{cases} \frac{y_{2} - y_{1}}{x_{2} - x_{1}} & \text{if } P_{1} \neq P_{2} \\ \frac{3x_{1}^{2} + a_{4}}{2x_{1}} & \text{if } P_{1} = P_{2} \end{cases}$$

$$x_{3} = \lambda^{2} - x_{1} - x_{2},$$

$$y_{3} = \lambda(x_{1} - x_{3}) - y_{1}$$

逆元計算	乗算
I	3M

楕円暗号の速度

- 楕円暗号の安全性
 - $\# E(\mathbb{F}_p) = O(p)$
 - Square-root 法のみ適用可

$$E$$
の適切な選択の下: $O\left(\sqrt{\#E(\mathbb{F}_p)}\right)$ $\Rightarrow p = O\left(2^{160}\right)$

- 群演算一回あたりのコスト
 - 有限体の乗法群: M_{1024}
 - 楕円曲線: $I_{160} + 3M_{160} = 23M_{160}$ if $I_{160} = 20M_{160}$
- $\Rightarrow M_{1024} > 23M_{160}$

楕円暗号の速度

	加算(c.)	2倍算(c.)	整数倍算	
Aoki et al.	2692	2528	573 μ s	Pentium II 450MHz
(ICICS02)	1524	1164	254 μ s	Alpha EV6 500MHz

種数gの超楕円曲線

 $C: Y^2 = X^{2g+1} + f_{2g}X^{2g} + \dots + f_1X + f_0, f_i \in \mathbb{F}_p$ 0 Χ

超楕円曲線上の群構造

$$C: Y^{2} = X^{2g+1} + f_{2g}X^{2g} + \dots + f_{1}X + f_{0}, \ f_{i} \in \mathbb{F}_{p}$$

$$\downarrow$$

$$C(\mathbb{F}_{p}) := \{P = (x, y) \in \mathbb{F}_{p}^{2} \mid y^{2} = x^{2g+1} + \dots + f_{0}\} \cup \{P_{\infty}\}$$

$$\downarrow$$

 $C(\mathbb{F}_p)$ は群構造を持たない

超楕円曲線上の群構造

$$C:Y^2=X^{2g+1}+f_{2g}X^{2g}+\cdots+f_1X+f_0$$
、 $f_i\in\mathbb{F}_p$

$$\downarrow J_C(\mathbb{F}_p):=\{D=\{P_1,\ldots,P_n\in C(\mathbb{F}_{p^g})\setminus\{P_\infty\}\}\mid n\leq g, D^p=D\}$$
 $C(\mathbb{F}_p)\subseteq J_C(\mathbb{F}_p)$

$$\downarrow J_C(\mathbb{F}_p)$$
 は有限可換群

Mumford表現

$$C:Y^2=F(X)$$
, $F\in\mathbb{F}_p[X]$, $\deg F=2g+1$ $D=\{P_1,\ldots,P_n\in C(\mathbb{F}_{p^g})\setminus\{P_\infty\}\}\mid n\leq g, D^p=D$, $P_i=(x_i,y_i)$ \Downarrow $U:=\prod_{1\leq i\leq n}(X-x_i),$ $U:=\prod_{1\leq i\leq n}(X-x_i),$ $U:=\prod_{1\leq i\leq n}(X-x_i),$ $U:=\prod_{1\leq i\leq n}(X-x_i).$

$$D_3 = D_1 + D_2$$
, $D_i = \{P_{i1}, P_{i2}\}$

$$D_3 = D_1 + D_2$$
, $D_i = \{P_{i1}, P_{i2}\}$

$$D_3 = D_1 + D_2$$
, $D_i = \{P_{i1}, P_{i2}\}$

Input	Weight two coprime reduced divisors $D_1=(U_1,V_1), D_2=(U_2,V_2)$	
Output	A weight two reduced divisor $D_3 = (U_3, V_3) = D_1 + D_2$	
Step	Procedure	Cost
1	Compute the resultant r of U_1 and U_2 .	4M
	$\overline{z_1 \leftarrow u_{21} - u_{11}}; \ z_2 \leftarrow u_{21}z_1; \ z_3 \leftarrow z_2 + u_{10} - u_{20};$	
	$r \leftarrow u_{10}(z_3 - u_{20}) + u_{20}(u_{20} - u_{11}z_1);$	
3	If $r = 0$ then call the sub procedure.	_
3	Compute $I_1 \equiv 1/U_1 \mod U_2$.	I + 2M
	$\overline{w_0 \leftarrow r^{-1}}; \ i_{11} \leftarrow w_1 z_1; \ i_{10} \leftarrow w_1 z_3;$	
4	Compute $S \equiv (V_2 - V_1)I_1 \mod U_2$. (Karatsuba)	5M
	$\overline{w_1 \leftarrow v_{20} - v_{10}; \ w_2 \leftarrow v_{21} - v_{11}; \ w_3 \leftarrow i_{10}} w_1; \ w_4 \leftarrow i_{11} w_2;$	
	$s_1 \leftarrow (i_{10} + i_{11})(w_1 + w_2) - w_3 - w_4(1 + u_{21});$	
	$s_0 \leftarrow w_3 - u_{20}w_4;$	
5	If $s_1 = 0$ then call the sub procedure.	_
6	Compute $U_3 = s_1^{-2}((S^2U_1 + 2SV_1)/U_2 - (F - V_1^2)/(U_1U_2))$.	I + 6M
	$\overline{w_1 \leftarrow s_1^{-1}};$	
	$u_{30} \leftarrow w_1(w_1(s_0^2 + u_{11} + u_{21} - f_4) + 2(v_{11} - s_0w_2)) + z_2 + u_{10} - u_{20};$	
	$u_{31} \leftarrow w_1(2s_0 - w_1) - w_2;$	
7	$u_{32} \leftarrow 1;$ Compute $V_{7} = (SU_{1} + V_{2}) \mod U_{7}$ (Karatsuba)	5M
'	Compute $V_3 \equiv -(SU_1 + V_1) \mod U_3$.(Karatsuba)	31/1
	$w_1 \leftarrow u_{30} - u_{10}; \ w_2 \leftarrow u_{31} - u_{11};$	
	$w_3 \leftarrow s_1 w_2; \ w_4 \leftarrow s_0 w_1; \ w_5 \leftarrow (s_1 + s_0)(w_1 + w_2) - w_3 - w_4$	
	$v_{30} \leftarrow w_4 - w_3 u_{30} - v_{10};$	
	$v_{31} \leftarrow w_5 - w_3 u_{31} - v_{11};$	
Total		2I + 21M

超楕円曲線上の加法公式 (g = 3)

In.	Genus 3 HEC $C: Y^2 = F(X)$, $F = X^7 + f_5 X^5 + f_4 X^4 + f_3 X^3 + f_2 X^2 + f_1 X + f_0$;	
	Reduced divisors $D_1=(U_1,V_1)$ and $D_2=(U_2,V_2)$,	
	$U_1 = X_0^3 + u_{12}X_0^2 + u_{11}X + u_{10}, V_1 = v_{12}X_0^2 + v_{11}X + v_{10},$	
	$\begin{array}{l} U_2 = X^3 + u_2 2 X^2 + u_{21} X + u_{20}, \ V_2 = v_{22} X^2 + v_{21} X + v_{20}; \\ \textbf{Reduced divisor} \ D_3 = (U_3, V_3) = D_1 + D_2, \end{array}$	
Out.	Reduced divisor $D_3 = (U_3, V_3) = D_1 + D_2$,	
	$U_3 = X^3 + u_{32}X^2 + u_{31}X + u_{30}, V_3 = v_{32}X^2 + v_{31}X + v_{30};$	
Step	Procedure	Cost
1	Compute the resultant r of U_1 and U_2	14M + 12A
	$t_1 = u_{11}u_{20} - u_{10}u_{21}; t_2 = u_{12}u_{20} - u_{10}u_{22}; t_3 = u_{20} - u_{10}; t_4 = u_{21} - u_{11}; t_5 = u_{22} - u_{12}; t_6 = t_4^2; t_7 = t_7 + t_$	
	$t_7 = t_3t_4; \ t_8 = u_{12}u_{21} - u_{11}u_{22} + t_3; \ t_9 = t_3^2 - t_1t_5; \ t_{10} = t_2t_5 - t_7; \ r = t_8t_9 + t_2(t_{10} - t_7) + t_1t_6;$	
2	If $r=0$ then call the Cantor algorithm	_
3	Compute the pseudo-inverse $I=i_2X^2+i_1X+i_0\equiv r/U_1 mod U_2$	4M + 4A
	$i_2 = t_5 t_8 - t_6; i_1 = u_{22} i_2 - t_{10}; i_0 = u_{21} i_2 - (u_{22} t_{10} + t_9);$	
4	Compute $S'=s_2'X^2+s_1'X+s_0'=rS\equiv (V_2-V_1)I mod U_2$ (Karatsuba, Toom)	10M + 31A
	$t_1 = v_{10} - v_{20}; \\ t_2 = v_{11} - v_{21}; \\ t_3 = v_{12} - v_{22}; \\ t_4 = t_2i_1; \\ t_5 = t_1i_0; \\ t_6 = t_3i_2; \\ t_7 = u_{22}t_6; \\ t_{10} = t_{10}t_{10} + t_{$	
	$t_8 = t_4 + t_6 + t_7 - (t_2 + t_3)(i_1 + i_2); t_9 = u_{20} + u_{22}; t_{10} = (t_9 + u_{21})(t_8 - t_6);$	
	$t_9 = (t_9 - u_{21})(t_8 + t_6); s_0' = -(u_{20}t_8 + t_5); s_2' = t_6 - (s_0' + t_4 + (t_1 + t_3)(i_0 + i_2) + (t_{10} + t_9)/2);$	
	$s'_1 = t_4 + t_5 + (t_9 - t_{10})/2 - (t_7 + (t_1 + t_2)(i_0 + i_1));$	
5	If $s_2'=0$ then call the Cantor algorithm	-
6	Compute S , w and $w_i = 1/w$ s.t. $wS = S'/r$ and S is monic	I + 7M
	$t_1 = (rs_2')^{-1}$; $t_2 = rt_1$; $w = t_1s_2'^2$; $w_i = rt_2$; $s_0 = t_2s_0'$; $s_1 = t_2s_1'$;	
7	Compute $Z = X^{\frac{5}{5}} + z_4 X^4 + z_3 X^3 + z_2 X^2 + z_1 X + z_0 = SU_1$ (Toom)	4M + 15A
	$t_6 = s_0 + s_1$; $t_1 = u_{10} + u_{12}$; $t_2 = t_6(t_1 + u_{11})$; $t_3 = (t_1 - u_{11})(s_0 - s_1)$; $t_4 = u_{12}s_1$;	
	$z_0 = u_{10}s_0$; $z_1 = (t_2 - t_3)/2 - t_4$; $z_2 = (t_2 + t_3)/2 - z_0 + u_{10}$; $z_3 = u_{11} + s_0 + t_4$; $z_4 = u_{12} + s_1$;	
8	Compute $U_t = X^4 + u_{t3}X^3 + u_{t2}X^2 + u_{t1}X + u_{t0} = 0$	13M + 26A
	$(S(Z+2w_{m i}V_1)-w_{m i}^2((F-V_1^2)/U_1))/U_2$ (Karatsuba)	
	$t_1 = s_0 z_3; \ t_2 = (u_{22} + u_{21})(u_{t3} + u_{t2}); \ t_3 = u_{21} u_{t2}; \ t_4 = t_1 - t_3; \ u_{t3} = z_4 + s_1 - u_{22};$	
	$t_5 = s_1 z_4 - u_{22} u_{t3};$ $u_{t2} = z_3 + s_0 + t_5 - u_{21};$ $u_{t1} = z_2 + t_6 (z_4 + z_3) + w_i (2v_{12} - w_i) - (t_5 + t_2 + t_4 + u_{20});$	
	$u_{t2} = z_3 + s_0 + t_5 - u_{21}, \ u_{t1} = z_2 + t_6(z_4 + z_3) + w_i(zv_{12} - w_i) - (t_5 + t_2 + t_4 + u_{20}), \\ u_{t0} = z_1 + t_4 + s_1 z_2 + w_i(2(v_{11} + s_1 v_{12}) + w_i u_{12}) - (u_{22} u_{t1} + u_{20} u_{t3});$	
9	Compute $V_t = v_{t2}X^2 + v_{t1}X + v_{t0} \equiv wZ + V_1 \bmod U_t$	8M + 11A
	t ₁ = $u_{t3} - z_{4}$; $v_{t0} = w(t_{1}u_{t0} + z_{0}) + v_{10}$; $v_{t1} = w(t_{1}u_{t1} + z_{1} - u_{t0}) + v_{11}$;	OM FIIA
	$v_{t2} = w(t_1u_{t2} + z_2 - u_{t1}) + v_{12}; v_{t3} = w(t_1u_{t3} + z_3 - u_{t2});$	
10	Compute $U_3 = X^3 + u_{32}X^2 + u_{31}X + u_{30} = (F - V_t^2)/U_t$	7M + 11A
	$t_1 = 2v_{t3}; u_{32} = -(u_{t3} + v_{t3}^2); u_{31} = f_5 - (u_{t2} + u_{32}u_{t3} + t_1v_{t2});$	
	$u_{30} = f_4 - (u_{t1} + v_{t2}^2 + u_{32}u_{t2} + u_{31}u_{t3} + t_1v_{t1});$	
11	Compute $V_3 = v_{32}X^2 + v_{31}X + v_{30} \equiv V_t \mod U_3$	3M + 3A
	$v_{32} = v_{t2} - u_{32}v_{t3}; v_{31} = v_{t1} - u_{31}v_{t3}; v_{30} = v_{t0} - u_{30}v_{t3};$	0 0
Total	07 07 00 01 t1 01 t0, 00 t0 00 t0.	I + 70M + 113A

超楕円暗号の速度

● 群演算一回あたりのコスト

- -g = 1: I + 3M = 23M if I = 20M
- -q = 2: I + 25M = 45M if I = 20M
- -g = 3: I + 70M = 90M if I = 20M

● 超楕円暗号の安全性

- $\#E(\mathbb{F}_p) = O(p) \to \#J_C(\mathbb{F}_p) = O(p^g)$
- Square-root 法のみ適用可 (?)

$$C$$
の適切な選択の下: $O\left(\sqrt{\#J_C(\mathbb{F}_p)}\right)$

超楕円暗号の速度

ullet 解読に 2^{80} 程度の手間がかかる $p=2^{160/g}$

$$-g=1:p\approx 2^{160}$$

$$-g=2:p\approx 2^{80}$$

$$-g = 3: p \approx 2^{54}$$

● 群演算一回あたりのコスト

$$-g = 1 : I_{160} + 3M_{160} = 23M_{160}$$

$$-g = 2$$
: $I_{80} + 25M_{80} = 45M_{80}$

$$-g = 3: I_{54} + 70M_{54} = 90M_{54}$$

$$\Rightarrow 23M_{160} > 45M_{80} > 90M_{54}$$
 ???

超楕円暗号の速度

	加算(c.)	2倍算(c.)	整数倍算	
g=1	2692	2528	573 μ s	Pentium II 450MHz
Aoki et al.	1524	1164	254 μ s	Alpha EV6 500MHz
(ICICS02)				
g=3	1110	1094	$172 \mu s$	Alpha EV68 1.25GHz
(SCIS04)				

超楕円暗号の安全性

指数計算法が効果を持ってしまう?

 $(C(\mathbb{F}_p) \subset J_C(\mathbb{F}_p)$ をFBとして用いる)

- 準指数時間計算量ではなく指数時間計算量
- gにより効果が異なる

安全な楕円・超楕円曲線の構成数学的に最も興味深い?

- ullet # $G(\#E(\mathbb{F}_p),\#J_C(\mathbb{F}_p))$ はCやEの選び方により変動する
- ullet Square-root 法の計算量は#Gの最大素因子に依存

 \Rightarrow

- #G の計算アルゴリズムが必要
- #Gを知れば、特殊な曲線に対する攻撃も(大体)回避可能

楕円・超楕円曲線の位数計算

Genus	Field	Size of $\#G$	Running Time
1	\mathbb{F}_{2^d}	50021	36h / EV6 750MHz
	$ig _{\mathbb{F}_p}$	1660	10h / Opteron 2.4GHz
	_	3322	8d / ↑
		4983	267d / ↑
2	\mathbb{F}_{2^d}	65540	8d / EV6 750MHz
3	$\mathbb{F}_{2^d}^-$	168	69s / Athlon 1.47GHz
	_	480	67m / ↑

超楕円曲線の位数計算

Genus	Field	Size of $\#G$	Running Time
2	\mathbb{F}_p	127	50d / EV6 500MHz
	$ig _{p^d}$	160	21d / Athlon 1.67GHz
	$oxedsymbol{\mathbb{F}}_p$	160	7d / EV67 667MHz
3	\mathbb{F}_p	?	

まとめ

研究課題	楕円暗号	超楕円暗号
高速化		
安全性		
位数計算		

まとめ

研究課題	楕円暗号	超楕円暗号
高速化		
安全性		
位数計算		

まとめ

研究課題	楕円暗号	超楕円暗号
高速化		
安全性		
位数計算		

超楕円暗号の研究は楽しい

参考文献

- [1] L. C. Washington. Elliptic Curves: Number Theory and Cryptography. CRC Pr., 2003.
- [2] H. Cohen, G. Frey, R. Avanzi, C. Doche, K. Nguyen, T. Lange. Elliptic and Hyperelliptic Curve Crytography. Chapman & Hall, June 2005.
- [3] 松尾 和人, 有田 正剛, 趙 晋輝. 代数曲線上の公開鍵暗号. 情報処理, 45(11):1114-1116, November 2004.
- [4] 松尾 和人, 有田 正剛, 趙 晋輝. 代数曲線暗号. 日本応用数理学会論文誌, 13(2):231-243, June 2003.
- [5] 本2冊