Phase 1 & 2 – Adaptive Quantum Error Correction and **Topological Qubit Stability**

Sole Author: Rajvir Randhawa

Date: 22 july 2025

Phase 1: Dynamically Adaptive Quantum Error Correction (QEC)

Traditional QEC assumes:

- Fixed code distances
- Instant classical decoding
- Independent error models (Markovian)

But quantum hardware isn't ideal — noise fluctuates, classical pipelines have delay, and errors can be **correlated** across time.

This model **replaces those assumptions** with:

- 1. Real-time adaptive scaling of error correction.
- FPGA-ASIC hybrid correction for syndrome latency.
- 3. Non-Markovian noise modeling based on physical memory kernels.

Logical Error Suppression Equation (Core Framework):

ccorrected(t+1)=εphysical(t) e-deffectivedthreshold (1-e-τFPGAτsyndrome) (1-ηparallel decode)- λML -redundancy-pnon-Markovian correction\epsilon {\text{corrected}}(t+1) = \epsilon {\text{physical}}(t) \cdot e^{-\frac{d_{\text{effective}}}{d_{\text{threshold}}}} \cdot \left(1 - e^{-\frac{\tau_{\text{FPGA}}}}{\tau_{\text{syndrome}}}} \right) \cdot (1 - \eta_{\text{parallel decode}}) - \lambda_{\text{ML-redundancy}} - \rho_{\text{non-Markovian}} correction}}corrected(t+1)=cphysical(t) · e-dthresholddeffective · (1-e-тsyndromeтFPGA) · (1-nparallel decode)-λML-redundancy-pnon-Markovian correction

Meaning of Each Term:

- εphysical(t)\epsilon_{\text{physical}}(t)εphysical(t): Raw error rate at time ttt
- εcorrected(t+1)\epsilon_{\text{corrected}}(t+1)\epsilon_{\text{corrected}}(t+1)\epsilon_{\text{corrected}}
- deffectivedthreshold\frac{d_{\text{effective}}}{d_{\text{threshold}}}}dthresholddeffective: Dynamic suppression based on real-time code distance tuning
- **TFPGA/Tsyndrome\tau_{\text{FPGA}}** / \tau_{\text{syndrome}}TFPGA/Tsyndrome: Syndrome decoding latency relative to coherence time
- nparallel decode\eta_{\text{parallel decode}}nparallel decode: Diminishing efficiency of parallel decoders at scale
- λML-redundancy\lambda_{\text{ML-redundancy}}λML-redundancy: Redundancy gain from machine-learning-based noise forecasting
- pnon-Markovian correction\rho_{\text{non-Markovian correction}}pnon-Markovian correction: Memory correction from correlated errors (via integral kernel)

Fixes Over Traditional QEC:

1. Real-Time Adaptive Code Distance

Dynamic formula:

 $\label{lem:deffective} $$ deffective(t)=dse+\sum iWi(t)\cdot \delta di(t)d_{\text{text}\{effective\}}(t) = d_{\text{text}\{base\}} + \sum iWi(t)\cdot \delta di(t) deffective(t)=dse+i\sum Wi(t)\cdot \delta di(t) $$ d_{\text{text}\{base\}} + \sum iWi(t)\cdot \delta di(t) $$ d_{\text{text}\{base\}} + \delta d_{\text{text}\{$

- Wi(t)W i(t)Wi(t): Noise model weight at location iii
- δdi(t)\delta d_i(t)δdi(t): Local error correction needs
- Enables scaling correction strength with noise—not wasting resources when conditions are clean.

2. Latency-Aware FPGA-ASIC Correction

Models delay in classical decoding explicitly:

e-TFPGA/Tsyndromee^{-\tau_{\text{FPGA}}} / \tau_{\text{syndrome}}}e-TFPGA/Tsyndrome

- Ensures error syndromes are decoded before coherence is lost
- Enables **realistic fault-tolerance modeling** (vs. idealized assumptions)

3. Non-Markovian Memory Kernel

Noise isn't always random. It can correlate over time.

Correction term:

pnon-Markovian= $\int 0 t e^{(t-\tau)F(\tau)d\tau \cdot f(\tau)} = \int e^{-\log n} F(tau) = \int 0 t e^{-\log n} F(tau) = \int 0 t e^{(t-\tau)F(\tau)d\tau} F(tau) = \int 0 t e^{-t} F(\tau) d\tau$

- F(τ)F(\tau)F(τ): Empirical noise correlation function
- $e^{-\gamma(t-\tau)}e^{-\gamma(t-\tau)}$: Memory decay function

This captures **temporal dependencies** like cross-talk, hardware drift, and quantum memory effects.

implementation Requirements:

- **Hybrid FPGA-ASIC** decoders (e.g. Xilinx Versal ACAP + cryo ASIC)
- **ML-based error predictors** using quantum transformer architectures (QTA)
- Targeted to **XZZX surface codes** with rotating lattice configurations (d = 5–9)

Phase 2: Topological Qubit Stability via Anyon Corrections

Why It Matters:

Topological qubits (non-Abelian anyons) offer fault tolerance by geometry, but still face real-world destabilizers:

- 1. Floquet heating (time-periodic energy drift)
- 2. **Kerr nonlinearity** (phase instability)
- 3. **Decoherence models** too idealized for reality

This phase fixes those with a triple-layer correction strategy.

Core Braiding Fidelity Equation:

 θ braid= Π iUbraid, i·e- Ω tadecoherence(τ)d τ \theta_{\text{braid}} = \prod_i U_{\text{braid}}, i} \cdot e^{-\int_0^t} \alpha_{\text{decoherence}}(\tau) d\tau}\text{decoherence(τ)dτ

- Ubraid,iU_{\text{braid}, i}Ubraid,i: Unitary operations per anyon braid
- adecoherence(t)\alpha {\text{decoherence}}(t)adecoherence(t): Environmental decoherence suppression

Key Fixes and Innovations:

1. Floquet-Stabilized Hamiltonian

Adds dissipation into the time-periodic anyon Hamiltonian:

 $Hanyon(t) = Hstatic + \sum n V nein \omega Floquett + \{ \{anyon\}\}(t) = H_{\text{static}} + \sum n V_n e^{in \omega} Floquet + \{ \{anyon\}\}(t) = H_{\text{static}} + \sum n V_n e^{in \omega} Floquet + \{ \{anyon\}\}(t) = H_{\text{static}} + \{ \{anyon\}(t) = H_{\text{stat$ t}Hanyon(t)=Hstatic+nΣVneinωFloquett

- Removes unwanted periodic energy absorption
- Dynamically shapes system via parametric drives

2. Kerr Hybrid Feedback

Nonlinear correction applied via real-time feedback:

- χm\chi_mχm: Nonlinearity calibration
- TmT_mTm: Actual qubit temperature
- β\betaβ: Slope of correction function
- Prevents phase error by flattening Kerr shifts across chip

3. Realistic Decoherence Modeling

Derived from Lindblad master equation:

 $adecoherence(t) = \int 0^{\omega} d\omega \ J(\omega)(1-e-\omega t) \omega \\ -(1-e^{-\omega t}) \omega \\ -(1-e-\omega t)) \\ -(1-e-\omega t) \omega \\ -(1-e-\omega$

- $J(\omega)J(\omega)$: Measured spectral density
- First time anyon decoherence is modeled using **spectroscopy-based** kernel

implementation Requirements:

- Josephson junctions with active feedback circuits
- Floquet microwave drivers with modulated coupling
- **Quantum noise spectroscopy** to extract $J(\omega)J(\omega)$

Why This Surpasses All Existing Models

Feature

Traditional QEC

This Model

Adaptive Scaling

FPGA-ASIC Delay	X (ignored)	(modeled)
Markovian Assumption	V	(fully removed)
Kerr Correction	X	V
Floquet Heating Model	X	V
Spectral Decoherence Kernel	×	V

Rasvin

+91 99159 59924 / <u>iamrajvirsingh@gmail.com</u>

https://github.com/RajvirRandhawa/Phase-1-2-Adaptive-Quantum-Error-Correction-and-Topological-Qubit-Stability