

MILCON Prioritization and Allocation Tool (MPAT)

J8, Strategic Studies U.S. Special Operations Command

Military Construction (MILCON) Example

MILCON is an example of a resourcing problem that needs automation more than it needs AI/ML:

- Resource constrained.
- Extremely large number of potential solutions (e.g. 50 variables $\sim 1.13 \times 10^{15}$ solutions).
- Existing process is human resource (time & money) intensive.
- Problem can be constructed in an objective framework.
- Complex problem; optimal solution requires mathematical modeling.
 - Framed as a multi-knapsack problem (strongly NP-complete; unary NP-hard).
 - Can potentially be expanded for multiple objectives using metaheuristics.

UNCLASSIFIED USSOCOM

In the most basic format, the MILCON example is a multi-knapsack problem.

MILCON Projects

MILCON

Method:

Mathematical

USSOCOM

MILCON Optimization

Integer Programming

Variables

SPECIAL OFF RATIONS

Key Variables

 $i = \text{Project number } \{1, 2, \dots, n\}.$

 $j = Fiscal Year \{18, 19, \dots, 24\}$

 $x_{i,j} = \begin{cases} 0, & \text{Project } i \text{ is programmed in year } j \\ 1, & \text{Project } i \text{ is not programmed in year } j \end{cases}$

 $u_i = POM$ sponsor of project i.

 $c_i = \text{Cost of project } i \text{ per year.}$

 $v_{i,j}$ = Value of project i in year j.

 $CBPL_i =$ Capabilities Based Program List score for project.

 $r_{i,p}$ = Rank assigned to project i by POM sponsor (p).

 w_r = Weight applied to Rank Score in the value function.

 w_c = Weight applied to CPBL Score in the value function.

 MF_i = Must fund Fiscal Year project i must be funded.

 NET_i = No earlier Fiscal Year that project i can be funded.

 PDS_i = Prospectus development study cost of project i.

 $PND1_i$ = First planning and design cost of project i.

 $PND2_i$ = Second planning and design cost of project i.

 $CEQOM_i$ = Collateral equipment operations and maintenance cost of project i.

 $CEQPROC_i$ = Collateral equipment procurement cost of project i.

 $C4IOM_i$ = Command, control, communications, computing and information (C4I) cost of project i.

 $C4IPROC_i = C4I$ procurement cost of project *i*.

Each cost has an associated lead or lag time.

MILCON Optimization

Integer Programming

Value Score

SPECIAL ORFRATIONS

How are value scores calculated?

Stability Function

$$s(x_{i,j}) = \begin{cases} 5 - |k - j|, & k > 0 \ \forall k \in \{1,2,3,4\} \\ 1, & k = 0 \end{cases}$$

$v_{i,j} = s(x_{i,j}) * \left[w_c(f(CBPL_i)) + w_r(f(R(r_{i,p}))) \right]$

- The stability function accounts for the relationship between the current program and the previous program. This function provides a reward for minimizing the number of year-to-year project shifts between POM cycles.
- Regardless of when a project was programmed in the previous POM, it has a higher likelihood of being included in the current solution, and it is more likely to be programmed in the same FY as in the previous POM.
- Example: If a project was programmed for FY22 in POM19, it will receive and increase to its entire value based on its location in POM20.

Rank Score (Normalized and Weighted by TOA)

$$R(r_{i,p}) = \begin{cases} 99 * \left(\frac{r_{i,p} - 1}{n_p - 1}\right) + 1, & r_{i,p} \ge 1\\ 0, & r_{i,p} < 1 \end{cases}$$

$$f(R(r_{i,p})) = \begin{cases} R(r_{i,p}) * \left(\frac{TOA_p/TOA}{n_p/N}\right) + 1, & R(r_{i,p}) \ge 1\\ 1, & R(r_{i,p}) < 1 \end{cases}$$

CBPL Score (Normalized)

$$f(CBPL_i) = 100 * \left(\frac{CBPL_i^{-1} - min(CBPL^{-1})}{max(CBPL^{-1}) - min(CBPL^{-1})}\right)$$

- The rank score for each project is calculated by normalizing the ranks and weighting the normalized ranks based on the proportion of projects submitted compared the historical TOA percentage for each POM Sponsor.
- n_p = number of projects submitted by POM Sponsor p
- N = number of projects by all POM Sponsors
- The normalized rank $R(x_i)$ all POM Sponsor ranks to a scale of 1 to 100
- The weighted rank score $f(R(x_i))$ adjusts the ranks to account for POM sponsors that submit a number of projects that is not proportional to historical TOA percentages.
- The CBPL score for each project is calculated by normalizing the CBPL values on a scale of 0 to 100 using the maximum and minimum CBPL values.

USSOCOM

MILCON Optimization

Integer Programming

Objective & Constraints

SPECIAL OF STATES

Multi-Knapsack Problem: Strongly NP-Complete

Objective Function

maximize
$$Z = \sum_{i=1}^{n} \sum_{j=1}^{5} v_{i,j}$$

Value function

$$v_{i,j} = s(x_{i,j}) * \left[w_c(f(CBPL_i)) + w_r(f(R(r_{i,p}))) \right]$$

Constraints

s.t.

$$\sum_{i=1}^{n} c_i x_{i,j} + \sum_{i=1}^{n} C_i x_{i,(j-L_i)} \le TOA_j, \forall j, k \ne j$$

$$x_{i,MF_i} = 1$$
;

$$x_{i,j} = 0, \forall j < NET_i;$$

$$\sum_{j=1}^5 x_{i,j} \le 1;$$

$$\sum_{j=1}^{5} x_{i,j} \ge BR;$$

$$x_{i,j} = binary$$

$C_i \ni \left\{PDS_i, PND_i, CEQ_i, C4I_i, \dots\right\} \ L_i \ni \left\{l_{PDS,i}, l_{PND,i}, l_{CEQ,i}, \dots\right\}$

<u>Budget Constraints</u> The sum of the costs for all projects programmed in each FY cannot exceed the TOA for that FY.

<u>Must Fund Constraints</u> A project cannot be programmed prior to the must fund FY (if a must fund FY exists).*

No Earlier Than Constraint A project cannot programmed prior to its NET FY.

<u>Limiting Constraints</u> A project cannot programmed in more than one FY.

<u>Business Rule Constraint</u> A project programmed in prior POM must be included in the current solution. (Removed for POM21)

Whole Projects Constraint A project cannot be partially programmed.

USSOCOM

MILCON Optimization

Integer Programming

Input Data

The model requires one input file of requested MILCON projects.

Project	POM Sponsor	Cost	CBPL Score	Rank Score	NET	Must Fund	Previous POM	PDS Lead	PDS Cost	PND Lead	PND Cost	CEQ Lag	CEQ Cost	C4I Lag	C4I Cost
Project 1	USASOC	\$108,000	192.44	54	FY21		0	-3	125	-1	\$4,320	2	\$795	2	\$135
Project 2	NSW	\$100,000	192.44	0		FY22	20	-3	125	-1	\$4,000	2	\$,4800	2	\$368
Project 3	HQ	\$97,000	108.28	50		FY21	0	0	125	-1	\$3,880	2	\$0	2	\$398
Project 4	MARSOC	\$80,000	192.44	44	FY22		0	-3	125	-1	\$3,200	2	\$9,000	2	900
			~		シ/屋								~	_	_
			~							1	~				

					\sim									~
Project 223	NSW	\$77,000	104.86	373		23	-3	125	-1	\$3,080	2	\$4,786	1	\$1,436
Project 224	AFSOC	\$75,000	136.73	373		20	-3	125	-1	\$3,000	2	\$1,870	2	\$368

The input data is used to construct a integer program in matrix format. For POM20, there were 1,170 decision variables for an analysis of 234 projects.

MILCON Optimization

Integer Programming

R Shiny

UNCLASSIFIED

MPAT is uses R programming and is hosted with an R Shiny Server for a internet browser user interface.

MILCON Prioritization and Allocation Tool

Instructions

Optimization

Project Statistics

Table: MPAT Solution

Table: Capability Sponsor Costs

Chart: Capability Sponsors

Chart: MIS Programs

Chart: Project Counts

Chart: Cost-Value

Summary Statistics

Glossary of Input Data Fields

SOCOM MILCON Prioritization and Allocation Tool (MPAT) Overview

MPAT is a tool designed to inform budget resource allocation decisions. The tool incorporates optimization to maximize the total value of Military Construction (MILCON) projects subject to numerous constraints. MPAT is built using R and Shiny. The imbedded optimization component uses a linear programming API called IpSolveAPI to solve integer programs.

Optimization Instructions

- 1. Download the CSV template (Input_Data_Template.csv) for required fields and formatting. See Glossary in the sidebar menu for data field descriptions. Do not delete any template columns!
- 2. Import the MILCON raw data (CSV file) using the Import button.
- 3. Adjust parameters and budget constraints. Use the slider bars to set the budget constraints for each Fiscal Year (FY). Use the numeric input boxes to set the CBPL and Rank weights (0 to 1) for the value function. The sum of the weights must equal 1. The run time determines how long the optimization will search for a most optimal solution. It is recommended to use 60 seconds or less for demonstations and ~1,000 seconds for decision-making with the current data.
- 4. Click the Load Parameters button to set the contraints and parameters for solving. The Solve button will appear when complete. Click the Reset Model button before subsequent parameter loads.
- 5. Click the Solve button to begin solving the optimization. When finished, a green message box with the number of projects funded will appear in the Status Report box.
- 6. View reports and summary statistics from the sidebar menu

MILCON Optimization

Integer Programming

R Shiny

UNCLASSIFIED

Users import data, adjust parameters, and solve the integer programming model to produce an optimal solution.

MILCON Optimization

Integer Programming

R Shiny

UNCLASSIFIED

The solution table displays the recommended funding year for each project. The example below is sorted by cost.

MILCON Prioritization and	d Allo	cation Tool ≡								
1 Instructions	Show 2	Search:	Search:							
• Optimization	MILCON	Projects								
		Project Title	MIS Program	♦ Location	♦ POM Sponsor	♦ Must Fund	♦ No Earlier	♦ POM 19	♦ Current ♦	Cost _▼
Ⅲ Table: MPAT Solution	P090	Operations Facility	PG0022	Location 8	POM Sponsor C	FY 22	FY 20	FY 20	FY 22	\$100,000
Ⅲ Table: POM Sponsor Costs	P158	Headquarters	PG0027	Location 9	POM Sponsor E		FY 23	FY 23	FY 23	\$77,000
Table. FOM Sponsor Costs	P109	AMU & Weapons Hangar	PG0006	Location 28	POM Sponsor A		FY 20	FY 20	FY 20	\$75,000
III Chart: POM Sponsors	P023	Battalion Complex	PG0020	Location 8	POM Sponsor C		FY 20	FY 20	FY 20	\$72,400
	P091	Command and Control Facility	PG0034	Location 19	POM Sponsor F	FY 22	FY 20	FY 22	FY 22	\$58,811
Lill Chart: MIS Programs	P092	Joint Intelligence Center	PG0034	Location 19	POM Sponsor F	FY 22	FY 20	FY 22	FY 22	\$56,100
Lil Chart: Project Counts	P073	USASOC HQ Secure Operations	PG0042	Location 19	POM Sponsor F		FY 21	FY 22	FY 22	\$49,000
iii Chart Froject Courts	P143	Undersea Operational Training Facility	PG0026	Location 43	POM Sponsor E	FY 20	FY 20	FY 20	FY 20	\$48,009
Summary Statistics	P051	Group Headquarters	PG0010	Location 19	POM Sponsor F		FY 20	FY 20	FY 22	\$48,000
	P175	Combat Service & Support Facility	PG0031	Location 32	POM Sponsor E	FY 21	FY 20	FY 21	FY 21	\$48,000
∂ Glossary of Input Data Fields	P038	Military Free Fall Advanced Training Complex	PG0041	Location 46	POM Sponsor F		FY 20	FY 20	FY 20	\$44,800
	P178	Operations Facility	PG0007	Location 31	POM Sponsor A	FY 20	FY 20	FY 20	FY 20	\$44,523
	P105	Special Tactics Operations Facility	PG0007	Location 28	POM Sponsor A		FY 21	FY 21	FY 22	\$43,000
	P022	Battalion Operations Facility	PG0010	Location 19	POM Sponsor F		FY 21	FY 21	FY 21	\$41,000
	P050	Battalion Operations Facility	PG0005	Location 31	POM Sponsor F		FY 21	FY 22	FY 23	\$41,000
	P062	Operations Faciltiy	PG0019	Location 19	POM Sponsor C		FY 21	FY 21	FY 21	\$40,000
	P111	Combat Aircraft Parking Apron-North	PG0006	Location 28	POM Sponsor A		FY 21	FY 21	FY 21	\$37,038
	P095	Operations and Maintenance Facilities	PG0018	Location 11	POM Sponsor A	FY 22	FY 20	FY 22	FY 22	\$36,748
	P166	Operations Facility & Command Center	PG0032	Location 32	POM Sponsor E		FY 21	FY 21	FY 21	\$36,700
	P135	Training Facility	PG0026	Location 16	POM Sponsor E		FY 20	FY 21	FY 21	\$35,700
J8	Showing	g 1 to 20 of 234 entries					Previous	1 2 3	4 5	12 Next

USSOCOM

MILCON Optimization

Integer Programming

R Shiny

MILCON Optimization

Integer Programming

R Shiny

UNCLASSIFIED

MILCON Optimization

Integer Programming

R Shiny

UNCLASSIFIED

MILCON Prioritization and Allocation Tool

SOCOM J8-S Version 2.6.3

Value.Score

USSOCOM

MILCON Optimization

Integer Programming

R Shiny

SOCOM J8-S Version 2.6.3

MILCON Prioritization an	ad Allocation Tool ≡	
Instructions		
Optimization	Number of iterations to reach solution: 32,141,698	
Project Statistics	Number of projects funded: 116	
Table: MPAT Solution	Number of new projects added: 13	
Table: Capability Sponsor Costs		
Chart: Capability Sponsors	Number of POM 19 projects dropped: 5	
Chart: MIS Programs	Number of POM 19 projects moved: 39	
Chart: Project Counts	Objective value of solution: 84,701.16	
Chart: Cost-Value		
Summary Statistics		
Glossary of Input Data Fields		
	We can add any type of visualization th	nat is helpful to analyze the output.
J8		

MILCON Optimization

Integer Programming

Value Score

UNCLASSIFIED

How do we make a composite ranking of mutually exclusive ranks?

	•	8	•	,				
Sponsor A ranks 3 projects Sponsor B ranks 10 projects		Step 1: Put rakings on the s	same scale.	Step 2 Merge to a con	nbined indexed list.		Step 3 Scale based on TO	OA proportions.
<u>A</u> <u>B</u>		<u>A</u> <u>B</u>		AB			<u>AB</u>	1 to n Rank
		1 1		1			0.6	1
2 2		5.5 2		1	Assume		1.2	2
3 3		10 3		2	TOA _A % :	for A is 3/8 for B is 5/8	2.5	3
				3	Б	,	3.4	4
4		4		4			3.7	5
5		5	line -		/		4.9	6
6		6		5.5	<u>-</u>		6.2	7
7		7		6				8
8		8		7	<u>Example</u>		7.4	9
9		9		8	$R(r_{i,p})*($	$\left(\frac{n_p/N}{n_p/N}\right)$	8.9	10
10		10		9	55*(3	$\frac{1}{13} = 6.2$	9.8	11
				10	3.5 * (3/	13) = 0.2	11.1	12
Number of projects (N) = 1 Number of A projects (n_A) =	= 3						12.3	13
Number of B projects (n_B) =	= 10			10			12.3	13