ECON 2007: Quant Econ and Econometrics Censored, Truncated and Count Data

Dr. Áureo de Paula

Department of Economics University College London

The censored regression model focusses on a classical linear regression model where outcome observations are censored. For a certain range of values of the outcome, the econometrician does not know the exact value but only that the variable is within a certain interval.

Usually censoring occurs because of survey limitations such as top coding, cost considerations or attrition.

Censored regression models are mathematically very similar to the Tobit model. Whereas there were no observability issues there, here data on the censoring region are "incomplete".

Adopting the notation in the Tobit model, the model is

$$\mathbf{y}^* = \beta^{\top} \mathbf{x} + \mathbf{u} \quad \mathbf{u} | \mathbf{x}, \mathbf{c} \sim \mathcal{N}(\mathbf{0}, \sigma^2)$$

 $\mathbf{y} = \min(\mathbf{c}, \mathbf{y}^*)$

where now c is possibly random and instead of a max operator, we focus on the min.

The max case is analogous and relates to censoring from below, i.e. left-censoring, instead of from above, i.e. right-censoring.

As in the Tobit case,

$$Pr(\mathbf{y} = c|\mathbf{x}) = Pr(\mathbf{y}^* \ge 0|\mathbf{x}) = Pr(\mathbf{u} \ge c - \beta^\top \mathbf{x}|\mathbf{x})$$

= $1 - \Phi[(c - \beta^\top \mathbf{x})/\sigma]$

And the density of y conditional on $\mathbf{x} = \mathbf{x}_i$ and $c = c_i$ is given by

$$(1/\sigma)\phi[(y-\beta^{\top}\mathbf{x}_i)/\sigma], y < c_i \qquad 1-\Phi[(c_i-\beta^{\top}\mathbf{x}_i)/\sigma], y = c_i$$

which is then used to construct a MLE much as in the Tobit case.

Censoring is typical in duration analysis (i.e., time-to-event).

Notice that in this case the marginal effects are given by β (as opposed to Tobit)!

For example, Costa and Kahn (2003) use data on soldiers in the American Civil War to study how individual and community level variables affected group loyalty as measured by time until desertion, arrest or AWOL.

They use a more sophisticated statistical model (e.g., competing risks hazard model), but we could also analyze the data using a regression model where duration is censored.

VARIABLE MEANS FOR ALL MEN, FOR DESERTED, ARRESTED, AND AWOL COMBINED AND FOR DESERTED, ARRESTED, AND AWOL SEPARATELY

	Combined	Std dev	All outcomes	Deserted	Arrested	AWOL
Days from muster until			237.181	190.644	385.175	356.181

committed soldiers, and because of censoring—some men may have died, been discharged, changed company, become prisoners of war, or be missing in action before they could desert. We treat these men as censored in our estimation strategy. When we

Source: Costa and Kahn, (2003): "Cowards and Heroes: Group Loyalty in the American Civil War", QJE, V.118(2)

In a truncated regression model, certain observations are not selected into the sample. This can arise, for instance, in surveys where for cost considerations only a subset of the population is targeted.

The model relies on a regression model:

$$\mathbf{y} = \beta^{\mathsf{T}} \mathbf{x} + \mathbf{u}, \quad \mathbf{E}(\mathbf{u}|\mathbf{x}) = 0.$$
 (1)

Using a random sample with n observations, we could simply use OLS and obtain an unbiased estimator for β .

Let's assume instead that certain observations are fully observed whereas others are not observed at all. Mark the selection *into* the observed sample by the indicator variable s_i . This variable is = 1 if unit i is observed and = 0 otherwise.

Instead of estimating equation (1), we instead focus on

$$\mathbf{s}_i \mathbf{y}_i = \boldsymbol{\beta}^\top \mathbf{s}_i \mathbf{x}_i + \mathbf{s}_i \mathbf{u}_i \tag{2}$$

When $s_i = 1$, we have (1) for the random draw i. Otherwise, when $s_i = 0$, we obtain 0 = 0 + 0 which is vacuous and adds nothing to the estimation. In the end, running OLS on (2) is equivalent to running OLS *only* on those observations selected out of the n initial draws.

When and how does truncation affect the estimation properties?

For consistency remember that we require that

$$E(su) = 0 \qquad E[(sx_j)(su)] = E[sx_ju] = 0.$$

These are implied by the stronger condition:

$$E(su|sx) = 0$$

which would also imply that OLS is unbiased.

Now we can lay out a few scenarios:

- If the selection rule s depends only on the explanatory variables x, then sx_j depends only on x and there is nothing in sx that is not known beyond x.Consequently E(u|sx) = 0 since E(u|x) = 0 by (1). Then, E(su|sx) = sE(u|sx) = 0 and the estimator is unbiased and consistent.
- ▶ If the selection is completly independent of (\mathbf{x}, \mathbf{u}) , then $E(sx_j\mathbf{u}) = E(s)E(x_j\mathbf{u}) = 0$ and OLS is consistent. It can also be shown that OLS is unbiased.

- ▶ If the selection depends on the explanatory variables and randomness that is independent of u, again one obtain unbiasedness since $E(u|\mathbf{x},s) = E(u|\mathbf{x})$. This follows because, conditional on \mathbf{x} , s is independent of u.
- ▶ If the selection rule relies on the regressand y, OLS will typically be inconsistent. For example, let s = 1 if $y \le c$ where c is a random variable and s = 0 otherwise. Then

$$s = 1$$
 if and only if $u \le c - \beta^{\top} \mathbf{x}$

Since s depends on u, they will not be uncorrelated even as we condition on x. In this case, typically $E(sx_ju) \neq 0$ and OLS will be inconsistent.

Consider for example a linear regression model where:

$$y = \beta_0 + \beta_1 x + u$$

with $\beta_0 = 0$ and $\beta_1 = 1$.

Assuming distributions for \mathbf{x} and \mathbf{u} , we can simulate a sample for the model above and examine the regression line obtained in the sample.

Take a sample with 30 observations:

The slope is close (though not quite equal) to $\beta_1 = 1$. In fact, $\hat{\beta}_1 = 1.08$.

Consider now only the observations where $\mathbf{x} \leq 0.6$:

The slope is (still!) close (though not quite equal) to $\beta_1 = 1$. Here $\hat{\beta}_1 = 1.01$.

Consider now only the observations where $y \ge 0.5$:

In this case, the slope is much flatter than before: $\hat{\beta}_1 = 0.27!$

To address the last scenario, we expand the model to:

$$\mathbf{y} = \beta^{\top} \mathbf{x} + \mathbf{u}, \quad \mathbf{u} | \mathbf{x}, \mathbf{c} \sim \mathcal{N}(\mathbf{0}, \sigma^2).$$

Remember that the selection rule is that a random draw $(\mathbf{x}_i, \mathbf{y}_i)$ is observed only if $\mathbf{y}_i \leq c_i$.

(In contrast, in a censored model the realizations of \mathbf{x}_i would be known for $\mathbf{y}_i > c_i$.)

The density of y given $\mathbf{x} = \mathbf{x}_i$ and $c = c_i$ is then given by

$$\frac{f(y|\mathbf{x}_i, \beta, \sigma)}{F(c_i|\mathbf{x}_i, \beta, \sigma)} \quad \text{if } y < c_i$$

where $f(y|\mathbf{x}, \beta, \sigma)$ is the normal density with mean $\beta^{\top}\mathbf{x}$ and variance σ^2 and $F(y|\mathbf{x}_i, \beta, \sigma)$ is the corresponding cumulative distribution function.

This is then used to compute the MLE for the truncated regression.

An important type of truncation in Economics is (what Wooldridge calls "incidental truncation"), more commonly referred to simply as sample selection.

We only observe y for a subset of the population and the selection rule depends indirectly on the outcome.

The canonical example relates wages $y = \log(\text{wage})$ to variables such as experience. This variable is nevertheless only observed for those who *choose* to participate in the labor force, a decision that may depend on variables such as non-labor income.

The model here is

$$\mathbf{y} = \beta^{\mathsf{T}} \mathbf{x} + \mathbf{u}, \quad E(\mathbf{u}|\mathbf{x},\mathbf{z}) = 0$$
 (3)

$$s = 1[\gamma^{\top} \mathbf{z} + \nu \ge 0] \tag{4}$$

where s=1 if we observe y and zero otherwise. The variables x and z are *always* observed. We will assume that x is a strict sub-vector of z and z is independent of (u, ν) .

Taking the expectation of (3) conditional on z and ν we have

$$E[y|z, \nu] = \beta^{\mathsf{T}}x + E[u|z, \nu] = \beta^{\mathsf{T}}x + E[u|\nu]$$

It follows that, if (u, ν) are jointly normal with mean zero, $E[u|\nu] = \rho \nu$ for some constant ρ . So,

$$E[\mathbf{y}|\mathbf{z}, \mathbf{\nu}] = \beta^{\mathsf{T}}\mathbf{x} + \rho\mathbf{\nu}.$$

We do not observe ν , but know whether s=1. Using the formula above, it can be shown that

$$E[\mathbf{y}|\mathbf{z},\mathbf{s}=1] = \beta^{\mathsf{T}}\mathbf{x} + \rho E[\mathbf{v}|\mathbf{s}=1] = \beta^{\mathsf{T}}\mathbf{x} + \rho \lambda(\gamma^{\mathsf{T}}\mathbf{z}).$$

The last equality derives from normality of ν and (4) in a similar way as in our analysis of censored regressions.

The parameter ρ will be zero when u and v are independent. In this case, the selection is based on explanatory variables and a random component that is independent of u. As we saw before, OLS on the truncated sample will be consistent.

If $\rho \neq 0$, OLS will not be consistent: the inverse Mills' ratio would be an ommited variable. We cannot immediately include that variable though, since it depends on γ , which is an unknown parameter. It can nevertheless be estimated on the *whole* sample since

$$Pr(s = 1|\mathbf{z}) = \Phi(\gamma^{\top}\mathbf{z}).$$

Once γ is estimated we can plug in $\lambda(\hat{\gamma}^{\top}\mathbf{z}_i)$ as an additional explanatory variable for each observation in the truncated sample and run OLS.

This procedure, originally due to Heckman (1976), turns out to provide a consistent estimator for β .

Some caveats apply.

- 1. Standard errors need to be corrected to account for the first step estimation of γ .
- 2. Strictly speaking we can have $\mathbf{x} = \mathbf{z}$ as $\lambda(\cdot)$ is a nonlinear function. Depending on the range of \mathbf{x} though, $\lambda(\cdot)$ behaves very much like a linear function and multicollinearity issues may arise. If there are excluded variables appearing in the selection equation, this is less of an issue.

educ	inlf	Coef. Std. Err	'. z	P> z	[95% Conf	. Interval]
age 0528527 .0084772 -6.23 0.0000694678 kidslt6 8683285 .1185223 -7.33 0.000 -1.100628 kidsge6 .036005 .0434768 0.83 0.408049208	educ exper expersq age kidslt6 kidsge6	.1309047 .0252542 .1233476 .0187164 0018871 .0006 0528527 .0084772 8683285 .1185223 .036005 .0434768	5.18 6.59 6.3.15 6.23 7.33 0.83	0.000 0.000 0.002 0.000 0.000 0.408	0215096 .0814074 .0866641 003063 0694678 -1.100628 049208	0025378 .180402 .1600311 0007111 0362376 636029 .1212179

Source	SS	df	MS		Number of obs = $F(4, 423) =$	428 19.69
Model Residual	35.0479487 188.279492		8.76198719 .445105182		Prob > F = R-squared = Adi R-squared =	0.0000 0.1569 0.1490
Total	223.327441	427	.523015084		Root MSE =	.66716
lwage						
					195% Cont In	tervall
	Coef.	Std. E	rr. t 	P> t	[95% Conf. In	terval]
educ	.1090655	.01560	96 6.99	0.000	.0783835 .	<u></u>
educ exper	.1090655	.01560	96 6.99 34 2.68	0.000	.0783835 . .0117434 .	1397476 0760313
educ exper expersq	.1090655 .0438873 0008591	.01560 .01635 .00044	96 6.99 34 2.68 14 -1.95	0.000 0.008 0.052	.0783835 . .0117434 . 0017267 8	1397476 0760313 .49e-06
educ exper	.1090655	.01560	96 6.99 34 2.68 14 -1.95 77 0.24	0.000	.0783835 . .0117434 . 0017267 8 2318889 .	1397476 0760313

Heckman selec (regression m	tion model odel with sam	Censore	ot obs ed obs ored obs	=	753 325 428		
				Wald ch Prob >		=	51.53 0.0000
lwage	Coef.	Std. Err.	z	P> Z	[95% Conf	F.	Interval]
lwage educ exper expersq _cons	.1090655 .0438873 0008591 5781032	.015523 .0162611 .0004389 .3050062	7.03 2.70 -1.96 -1.90	0.000 0.007 0.050 0.058	.0786411 .0120163 0017194 -1.175904		.13949 .0757584 1.15e-06 .019698
select nwifeinc educ exper expersq age kidslt6 kidsge6 _cons	0120237 .1309047 .1233476 0018871 0528527 8683285 .036005 .2700768	.0048398 .0252542 .0187164 .0006 .0084772 .1185223 .0434768 .508593	-2.48 5.18 6.59 -3.15 -6.23 -7.33 0.83 0.53	0.013 0.000 0.000 0.002 0.000 0.000 0.408 0.595	0215096 .0814074 .0866641 003063 0694678 -1.100628 049208 7267473		0025378 .180402 .1600311 0007111 0362376 636029 .1212179 1.266901
mills lambda rho sigma	.0322619 0.04861 .66362875	.1336246	0.24	0.809	2296376		.2941613

A count variable is a random variable that takes on non-negative integer values: $\{0, 1, 2, \dots\}$.

One of the most commons distributions for such variables is the Poisson distribution which postulates the probability mass function:

$$Pr(y) = \frac{\exp(-\lambda)\lambda^y}{y!}, \quad y \in \{0, 1, 2, \dots\}$$

where $\lambda > 0$ characterizes the distribution and $y! = 1 \times 2 \times \cdots \times y$. It can be shown that

$$E(y) = \lambda$$
 $var(y) = \lambda$.

In modelling the dependence of a count variable y on x, the Poisson regression simply assumes that λ is a function of x. Because $\lambda > 0$, it is generally imposed that

$$\lambda = \exp(\beta^{\top} \mathbf{x})$$

so that

$$Pr(y|\mathbf{x}) = \frac{\exp(-\exp(\beta^{\top}\mathbf{x}))\exp(\beta^{\top}\mathbf{x})^{y}}{y!}, \quad y \in \{0, 1, 2, \dots\}$$
 (5)

and

$$E(\mathbf{y}|\mathbf{x}) = \exp(\beta^{\top}\mathbf{x}).$$

The conditional probability mass function (5) can be used to form the log-likelihood to obtain a MLE:

$$\mathcal{L}(\beta) = \sum_{i=1}^{n} l_i(\beta) = \sum_{i=1}^{n} \{ y_i \beta^{\top} \mathbf{x}_i - \exp(\beta^{\top} \mathbf{x}_i) \}$$

where terms that do not depend on β are dropped without loss.

Noting that $\partial E(\mathbf{y}|\mathbf{x})/\partial x_j = \exp(\beta^\top \mathbf{x})\beta_j$ we can also form APE or PEA estimators for the marginal effect of x_j .

Some caveats:

- 1. The model imposes the restriction $var(y|\mathbf{x}) = E(y|\mathbf{x})$.
- 2. Even if this is not the case, the estimator for β is still consistent! (In which case we refer to it as **quasi-maximum likelihood estimator**.)
- 3. In this case, we can allow $var(\mathbf{y}|\mathbf{x}) = \sigma^2 E(\mathbf{y}|\mathbf{x})$ where sigma is consistently estimated by $(n-k-1)^{-1} \sum_{i=1}^n \hat{u}_i^2/\hat{y}_i$ where $\hat{u}_i = y_i \hat{y}_i$.
- 4. ... other solutions still allow for robust standard errors.

narr86	 Coef.	Robust Std. Err.	z	P> z	[95% Conf	. Interval]
pcnv avgsen tottime ptime86 qemp86 inc86 black hispan _cons	4052683 0236308 .0243395 098591 0361079 0081463 .6603471 .4995934 617177	.1011874 .0235749 .0205298 .0223129 .0341832 .0012306 .0995567 .0924134 .083212	-4.01 -1.00 1.19 -4.42 -1.06 -6.62 6.63 5.41	0.000 0.316 0.236 0.000 0.291 0.000 0.000 0.000	6035919 0698367 015882 1423235 1031058 0105582 .4652195 .3184665 7802696	2069447 .0225752 .0645771 0548584 .03089 0057345 .8554747 .6807204 4540844

Variable	0bs	Mean	Std. Dev.	Min	Max
sigma	2725	1.23272	0	1.23272	1.23272

Variable	Obs	Mean
t_tottime t_qemp86 t_inc86 t_black t_hispan	2725 2725 2725 2725 2725 2725	.9617503 8568887 -5.370232 5.380681 4.385482

These slides covered:

Wooldridge 17

