(19) World Intellectual Property Organization International Bureau

(43) International Publication Date 2 May 2002 (02.05.2002)

PCT

(10) International Publication Number WO 02/34711 A1

- (51) International Patent Classification7: C07C 229/38, 317/22, 63/04, 257/00, C07D 333/22, 307/02, 277/30, 207/30, 207/08, 211/70, 311/78, 239/02, 265/30, 277/62, 211/70, 317/44, 231/56, A61K 31/24, 31/69, 31/38, 31/34, 31/38, 31/34, 31/255, 31/425, 31/40, 31/55, 31/495, 31/505, 31/535, 31/425, 31/415, 31/44, 31/27, 31/155
- (21) International Application Number: PCT/US01/32582
- (22) International Filing Date: 22 October 2001 (22.10.2001)
- (25) Filing Language:

English

(26) Publication Language:

English

(30) Priority Data:

60/241,848 60/281,735 20 October 2000 (20.10.2000) US 6 April 2001 (06.04.2001)

- (71) Applicant (for all designated States except US): BIOCRYST PHARMACEUTICALS, INC. [US/US]; 2910 Parkway Lake Drive, Birmingham, AL 35244 (US).
- (72) Inventors; and
- (75) Inventors/Applicants (for US only): BABU, Yarlagadda, S. [IN/US]; 3441 Strollway Drive, Birmingham, AL 35226 (US). ROWLAND, Scott. R. [US/US]; 3436 Tamasee Lane, Hoover, AL 35226 (US). CHAND, Pooran [US/US]; 509 Creekwood Place, Birmingham, AL 35226 (US). KOTIAN, Pravin, L. [IN/US]; 1313 Atkins Trimm Blvd., Birmingham, AL 35226 (US). EL-KATTAN, Yahya [LB/US]; 5023 Rime Village, Hoover, AL 35216

(US). NIWAS, Shri [US/US]; 3348 Castle Crest Drive, Birmingham, AL 35244 (US).

- (74) Agents: AMERNICK, Burton, A. et al.; Connolly Bove Lodge & Hutz LLP, P.O. Box 19088, Washington, DC 20036 (US).
- (81) Designated States (national): AE, AG, AL, AM, AT, AU, AZ, BA, BB, BG, BR, BY, BZ, CA, CH, CN, CO, CR, CU, CZ, DE, DK, DM, DZ, EC, EE, ES, FI, GB, GD, GE, GH, GM, HR, HU, ID, IL, IN, IS, JP, KE, KG, KP, KR, KZ, LC, LK, LR, LS, LT, LU, LV, MA, MD, MG, MK, MN, MW, MX, MZ, NO, NZ, PH, PL, PT, RO, RU, SD, SE, SG, SI, SK, SL, TJ, TM, TR, TT, TZ, UA, UG, US, UZ, VN, YU, ZA, ZW.
- (84) Designated States (regional): ARIPO patent (GH, GM, KE, LS, MW, MZ, SD, SL, SZ, TZ, UG, ZW), Eurasian patent (AM, AZ, BY, KG, KZ, MD, RU, TJ, TM), European patent (AT, BE, CH, CY, DE, DK, ES, FI, FR, GB, GR, IE, IT, LU, MC, NL, PT, SE, TR), OAPI patent (BF, BJ, CF, CG, CI, CM, GA, GN, GQ, GW, ML, MR, NE, SN, TD, TG).

Published:

- with international search report
- before the expiration of the time limit for amending the claims and to be republished in the event of receipt of amendments

For two-letter codes and other abbreviations, refer to the "Guidance Notes on Codes and Abbreviations" appearing at the beginning of each regular issue of the PCT Gazette.

(54) Title: BIARYL COMPOUNDS AS SERINE PROTEASE INHIBITORS

(57) Abstract: Compounds of formula (I) are useful as inhibitors of trypsin like serine protease enzymes such as thrombin, factor VIIa, factor Xa, TF/FVIIa, and trypsin. These compounds could be useful to treat and/or prevent clotting disorders, and as anticoagulating agents.

WO 02/34711 PCT/US01/32582

BIARYL COMPOUNDS AS SERINE PROTEASE INHIBITORS DESCRIPTION

Cross-Reference to Related Applications

This application is a continuation-in-part of copending U. S. applications S.N. 60/241,848 filed October 20, 2000 and entitled "Inhibitors for Activated Blood Coagulation Factor VIIa (FVIIa)" and S.N. 60/281,735 filed April 6, 2001 and entitled "Biaryl Compounds as Serine Protease Inhibitors"

Technical Field

The present invention relates to the identification, through synthesis and testing, of heretofore unreported compounds which, in appropriate pharmaceutical compositions, exert a therapeutic effect through reversible inhibition of serine proteases.

Background of Invention

Serine proteases make up the largest and most extensively studied group of proteolytic enzymes. Their critical roles in physiological processes extend over such diverse areas as blood coagulation, fibrinolysis, complement activation, reproduction, digestion, and the release of physiologically active peptides. Many of these vital processes begin with cleavage of a single peptide bond or a few peptide bonds in precursor protein or peptides. Sequential limited proteolytic reactions or cascades are involved in blood clotting, fibrinolysis, and complement activation. The biological signals to start these cascades can be controlled and amplified as well. Similarly, controlled proteolysis can shut down or inactivate proteins or peptides through single bond cleavages.

While serine proteases are physiologically vital, they also can be hazardous. Their proteolytic action, if uncontrolled, can destroy cells and tissues through degradation of proteins. As a natural safeguard in normal plasma, 10% of the protein matter is composed of protease inhibitors. The major natural plasma inhibitors are specific for serine proteinases. Diseases (associated protease given in the parentheses) such as pulmonary emphysema (cathepsin G), adult respiratory distress syndrome (chymases), and pancreatitis (trypsin, chymotrypsin, and others) are characterized by uncontrolled serine proteases. Other proteases appear to be involved in tumor invasion (plasmin, plasminogen activator), viral transformation, and inflammation (kallikrein). Thus the design and synthesis of specific inhibitors for this class of proteinases could offer major therapeutic benefits.

Thrombus formation, that is blood coagulation, is normally initiated by tissue injury; its normal purpose is to slow or prevent blood loss and facilitate wound healing. There are other conditions, however, not directly connected with tissue injury that may promote the coagulation process and lead instead to harmful consequences; examples of such conditions are atherosclerosis and inflammation.

The complex pathways of blood coagulation involve a series of enzyme reactions in which plasma coagulation factors, actually enzyme precursors or zymogens, are sequentially activated by limited proteolysis. Blood coagulation, or the coagulation cascade, is viewed mechanistically as two pathways, the extrinsic and the intrinsic (Fig. 1). Each pathway proceeds through a sequence of the Roman-numeral-designated factors until they converge at the activation of factor X after merger of the pathways. Thrombin generation proceeds stepwise through a common pathway. Thrombin then acts on the solution plasma protein, fibrinogen, to convert it to stable insoluble fibrin clots, thus completing the coagulation cascade.

5

10

15

20

10

15

20

25

The extrinsic pathway is vital to the initiation phase of blood coagulation while the intrinsic pathway provides necessary factors in the maintenance and growth of fibrin. The initiation of the coagulation cascade involves the release of tissue factor (TF) from injured vessel endothelial cells and subendothelium. TF then acts upon factor VII to form the TF/FVIIa complex (where VIIa designates the activated factor rather than the zymogen form). This complex initiates coagulation by activating factors IX and X. The resulting factor Xa forms a prothrombinase complex that activates prothrombin to produce the thrombin that converts fibrinogen to insoluble fibrin. In contrast, the intrinsic system is activated *in vivo* when certain coagulation proteins contact subendothelial connective tissue. In the sequence that follows, contact factors XII and XI are activated. The resulting factor XIa activates factor IX; then factor IXa activates factor X thereby intersecting with the extrinsic pathway.

With time, the TF/FVIIIa complex (of the extrinsic pathway) loses activity due to the action of tissue factor pathway inhibitor (TFPI), a Kunitz-type protease inhibitor protein which, when complexed with factor Xa, can inhibit the proteolytic activity of TF/FVIIa. If the extrinsic system is inhibited, additional factor Xa is produced through the thrombin-mediated action in the intrinsic pathway. Thrombin, therefore, exerts a dual catalytic role in (a) the conversion of fibrinogen to fibrin and (b) mediating its own production. The autocatalytic aspect of thrombin production affords an important safeguard against excessive blood loss, and, assuming presence of a threshold level of prothrombinase, ensures that the blood coagulation process will go to completion.

While the ability to form blood clots is vital to survival, there are disease states wherein the formation of blood clots within the circulatory system can cause death. When patients are afflicted with such disease states, it is not desirable to completely inhibit the clotting system because life-threatening hemorrhage would follow. Thus, it is highly desirable to develop agents that inhibit coagulation by inhibition of factor VIIa without directly inhibiting thrombin.

10

15

20

25

Need for the prevention of intravascular blood clots or for anti-coagulant treatment in many clinical situations is well known. Drugs in use today are often not satisfactory. A high percentage of patients who suffer internal injuries or undergo certain surgical procedures develop intravascular blood clots which, if unchecked, cause death. In total hip replacement surgery, for example, it is reported that 50% of the patients develop deep vein thrombosis (DVT). Current approved therapies involve administration of heparin in various forms, but results are not entirely satisfactory; 10-20% of patients suffer DVT and 5-10% have bleeding complications. Along these lines, see International Publication No. WO 00/15658.

Other examples of clinical situations for which better anticoagulants would be of great value are when patients undergo transluminal coronary angioplasty and treatment for myocardial infarction or crescendo angina. The present therapy for these conditions is administration of heparin and aspirin, but this treatment is associated with a 6-8% abrupt vessel closure rate within 24 hours of the procedure. Transfusion therapy due to bleeding complications is required in approximately 7% of cases following the use of heparin. Occurrences of delayed vessel closures are also significant, but administration of heparin after termination of the procedure affords little beneficial effect and can be detrimental.

Heparin and certain derivatives thereof are the most commonly used anti-clotting agents. These substances exert their effects mainly through inactivation of thrombin, which is inactivated 100 times faster than factor Xa. Two other thrombin-specific anticoagulants, hirudin and hirulog, are in clinical trials (as of September 1999). However, bleeding complications are associated with these agents.

In preclinical studies in baboons and dogs, the targeting of enzymes involved in earlier stages of the coagulation cascade, such as factor VIIa or factor Xa, prevents clot

10

15

formation and does not produce bleeding side effects observed with direct thrombin inhibitors.

Several preclinical studies reveal that inhibition of TF/FVIIa offers the widest window of therapeutic effectiveness and safety with respect to bleeding risk of any anticoagulant approach tested including thrombin, platelet, and factor Xa inhibition.

A specific inhibitor of factor VIIa would provide clinicians with a valuable and needed agent that would be safe and effective in situations where the present drugs of choice, heparin and related sulfated polysaccharides, are no better than marginally effective.

There exists a need for a low molecular weight specific serine protease inhibitors specific toward various enzymes, particularly for factor VIIa that does not cause unwanted side effects.

Figure 1. Pathways of Coagulation

The figure illustrates the extrinsic and intrinsic pathways of blood coagulation.

Summary of Invention

An aspect of the present invention relates to compounds represented by the formula:

Each E¹ and L individually is a 5 to 7 membered saturated or unsaturated carbon ring, 5 to 7 membered saturated or unsaturated hetero ring, bicyclic saturated or unsaturated carbon ring, bicyclic saturated or unsaturated hetero ring, or 1-8 hydrocarbon chain which may be substituted with one or more hetero groups selected from N, O, S, S(O), and S(O₂) which may be saturated or unsaturated. The bicyclic rings typically contain 7-13 atoms in the ring.

R is -CH=CH-R², -C=C-R², -C(R²)=CH₂, -C(R²)=C(R³), -CH=NR², -C(R²)=N-R³, 4-7 membered saturated or unsaturated carbon ring system with or without substitution, 4-7 membered saturated or unsaturated hetero ring system with or without substitution, or chain of 2 to 8 carbon atoms having 1 to 5 double or triple bonds with substitutions selected from R¹, R², or R³.

35

 R^1 is H, -R, -NO₂, -CN, -halo, -N₃, -C ₁₋₈ alkyl, -(CH₂)_nCO₂R², -C₂₋₈ alkenyl-CO₂R², -O(CH₂)_nCO₂R², -C(O)NR²R³, -P(O)(OR²)₂, alkyl substituted tetrazol-5-yl, -(CH₂)_nO(CH₂)_n aryl, -NR²R³, -(CH₂)_n OR², -(CH₂)_n SR², -N(R²)C(O)R³, -S(O₂)NR²R³, -N(R²)S(O₂)R³, -(CHR²)_n NR²R³, -C(O)R³, (CH₂)_n N(R³)C(O)R³, -N(R²)CR²R³ substituted or unsubstituted (CH₂)_n-cycloalkyl, substituted or unsubstituted (CH₂)_n-phenyl, or substituted or unsubstituted (CH₂)_n-heterocycle which may be saturated or unsaturated.

m is 1 except that when E¹ is a cyclic ring of more than 5 atoms, then m is 1 or higher, depending upon the size of the ring.

R² is H, -halo, -alkyl, -haloalkyl, -(CH₂)_n-phenyl, -(CH₂)₁₋₃-biphenyl, -(CH₂)₁₋₄-Ph-N(SO₂-C₁₋₂-alkyl)₂, -CO(CHR¹)_n-OR¹, -(CHR¹)_n-heterocycle, -(CHR¹)_n-NH-CO-R¹, -(CHR¹)_n-NH-SO₂R¹, -(CHR¹)_n-Ph-N(SO₂-C₁₋₂-alkyl)₂, -(CHR¹)_n-C(O)(CHR¹)-NHR¹, -(CH₂)_nO(CH₂)_nCH₃, -CF₃, -C₂₋₅ acyl, -(CHR¹)_nOH, -(CHR¹)_nCO₂R¹, -(CHR¹)_n-O-alkyl, -(CHR¹)_n-O-(CH₂)_n-O-alkyl, -(CHR¹)_n-S-alkyl, -(CHR¹)_n-S(O)-alkyl, -(CHR¹)_n-S(O₂)-NHR³, -(CHR³)_n-N₃, -(CHR³)_nNHR⁴, 2 to 8 carbon atom alkene chain having 1 to 5 double bonds, 2 to 8 carbon atom alkyne chain having 1 to 5 triple bonds, substituted or unsubstituted
(CHR³)_n heterocycle, or substituted or unsubstituted-(CHR³)_n cycloalkyl which may be saturated or unsaturated.

When n is more than 1, the substitutions R^1 and R^3 may be same or different.

 R^3 is H, -OH, -CN, substituted alkyl, -C₂₋₈ alkenyl, substituted or unsubstituted cycloalkyl, -N(R^1) R^2 , or 5-6 membered saturated substituted or unsubstituted hetero ring.

-NR²R³ may form a ring system having 4 to 7 atoms or may be bicyclic ring. The ring system may be of carbon or hetero atoms and further it may saturated or unsaturated and also may be substituted or unsubstituted.

25

W is a direct bond, -CHR²-, -CH=CR²-, -CR²=CH-, -CR²=CR²-, -C=C-, -O-CHR²-, -CHR²-O-, -N(R²)-C(O)-, -C(O)-N(R²)-, -N(R²)-CH-(R³)-, -CH₂-N(R²)-, -CH(R¹)-N(R²)-, -S-CHR²-, -CHR²-S-, -S(O₂)-N(R²)-, -C(O)N(R²)-(CHR²)n-, -C(R¹R²)n-NR²-, -N(R²)-S(O₂)-, -R²C(O)NR²-, -R²NC(O)NR²-, -CONR²CO-, -C(=NR²)NR²-, -NR²C(=NR²)NR²-, -NR²O-, -N=NCHR²-, or -C(O)NR²SO₂-.

E² is 5 to 7 membered saturated or unsaturated carbon ring, 5 to 7 membered saturated or unsaturated hetero ring, bicyclic ring system, C₁₋₈ alkyl, C₂₋₈ alkenyl, C₂₋₈ alkynyl, alkylaryl, aralkyl, aralkynyl, alkoxy, alkylthio, or alkylamino.

each X individually is a direct bond, substituted or unsubstituted $C_{1:4}$ methylene chain; O, S, NR², S(O), S(O₂), or N(O) containing one or two $C_{1:4}$ substituted or unsubstituted methylene chains. X at different places may be same or different.

B is H, -halo, -CN, -NH₂, -(CH₂)_n-C(=NR⁴)NHR⁵, -(CH₂)_n-NHR⁴,
(CH₂)_nNHC(=NR⁴)NR⁵, -(CH₂)_n-OR⁴, C₁₋₈ substituted or unsubstituted alkyl, substituted or unsubstituted ring system having 4 to 7 carbon or hetero atoms which may be saturated or unsaturated.

 B^1 is selected from B; B^1 and B may be same or different. There may be more than one similar or different R^2 groups present on E^2 , when E^2 is a cyclic group of more than 5 atoms. In particular, p is 1 except that when E^2 is a cyclic ring of more than 5 atoms, p is 1 or higher depending upon the size of the ring.

n is 0-4

.10

20

25

A is selected from R¹.

o is 1 except that when L is a cyclic ring of more than 5 atoms, o is 1 or higher depending upon the size of the ring.

Each V and V¹ individually is selected from R¹ and N-alkyl substituted carboxamidyl (-CONHR) where the alkyl group may be straight, branched, cyclic, or bicyclic; N,N-disubstituted carboxamidyl (-CONR₁R₂ where R₁ and R₂ may be substituted or unsubstituted alkyl or aryl and may be the same or different); mono- or disubstituted sulfonamides (SO₂NHR or -SO₂NR₁R₂); and methylene- or polymethylene chain-extended variants thereof.

10

5

Each R^4 and R^5 individually is H, -(CH₂)_nOH, -C(O)OR⁶, -C(O)SR⁶, -(CH₂)_n C(O)NR⁷R⁸, -O-C(O)-O-R⁷, an amino acid or a dipeptide,

Each R⁷, R⁸ and R⁹ individually is H, alkyl, substituted alkyl, aryl, substituted aryl, alkenyl, substituted alkynyl, substituted alkynyl, heterocycle, substituted heterocycle, alkylaryl, substituted alkylaryl, cycloalkyl, substituted cycloalkyl, or CH₂CO₂alkyl.

The present invention also relates to pharmaceutical compositions containing at least one of the above disclosed compounds and their prodrugs.

25

20

A further aspect of the present invention relates to a method for inhibiting trypsinlike serine protease enzymes, such as thrombin, factor Xa, factor VIIa, TF/VIIa, and trypsin in a patient which comprises administering to the patient an effective serine protease inhibiting amount of at least one of the above disclosed compounds.

10

Still other objects and advantages of the present invention will become readily apparent by those skilled in the art from the following detailed description, wherein it is shown and described preferred embodiments of the invention, simply by way of illustration of the best mode contemplated of carrying out the invention. As will be realized the invention is capable of other and different embodiments, and its several details are capable of modifications in various obvious respects, without departing from the invention. Accordingly, the description is to be regarded as illustrative in nature and not as restrictive.

Best and Various Modes for Carrying Out Invention

An aspect of the present invention relates to compounds represented by the

Each E^1 and L individually is a 5 to 7 membered saturated or unsaturated carbon ring, 5 to 7 membered saturated or unsaturated hetero ring, bicyclic saturated or unsaturated carbon ring, bicyclic saturated or unsaturated hetero ring, or 1-8 hydrocarbon chain which may be substituted with one or more hetero groups selected from N, O, S, S(O), and $S(O_2)$ which may be saturated or unsaturated.

R is -CH=CH-R², -C=C-R², -C(R²)=CH₂, -C(R²)=C(R³), -CH=NR², -C(R²)=N-R³, 4-7 membered saturated or unsaturated carbon ring system with or without substitution, 4-7 membered saturated or unsaturated hetero ring system with or without substitution, or chain of 2 to 8 carbon atoms having 1 to 5 double or triple bonds with substitutions selected from R¹, R², or R³. Preferably, these R, R¹, R², or R³ do not include –(C₂₋₄ alkenyl)-CO₂-C₁₋₈ alkyl-Phenyl, and –(C₂₋₄ alkenyl)-CO₂-C₁₋₈ alkyl-O-C₁₋₄ alkyl.

R¹ is H, -R, -NO₂, -CN, -halo, -N₃, -C ₁₋₈ alkyl, -(CH₂)_nCO₂R², -C₂₋₈ alkenyl-CO₂R²,

-O(CH₂)_nCO₂R², -C(O)NR²R³, -P(O)(OR²)₂, alkyl substituted tetrazol-5-yl,

-(CH₂)_nO(CH₂)_n aryl, -NR²R³, -(CH₂)_n OR², -(CH₂)_n SR², -N(R²)C(O)R³, -S(O₂)NR²R³,

-N(R²)S(O₂)R³, -(CHR²)_n NR²R³, -C(O)R³, (CH₂)_n N(R³)C(O)R³, -N(R²)CR²R³

substituted or unsubstituted (CH₂)_n-cycloalkyl, substituted or unsubstituted (CH₂)_n
phenyl, or substituted or unsubstituted (CH₂)_n-heterocycle which may be saturated or

unsaturated.

m is 1 except that when E¹ is a cyclic ring of more than 5 atoms, then m is 1 or higher, depending upon the size of the ring. For instance if the ring is 6 atoms, m can be 1 or 2.

R² is H, -halo, -alkyl, -haloalkyl, -(CH₂)_n -phenyl, -(CH₂)₁₋₃-biphenyl, -(CH₂)₁₋₄-Ph-N(SO₂-C₁₋₂-alkyl)₂, -CO(CHR¹)_n-OR¹, -(CHR¹)_n-heterocycle, -(CHR¹)_n-NH-CO-R¹, -(CHR¹)_n-NH-SO₂R¹, -(CHR¹)_n-Ph-N(SO₂-C₁₋₂-alkyl)₂, -(CHR¹)_n-C(O)(CHR¹)-NHR¹, -(CHR¹)_n-C(S)(CHR¹)-NHR¹, -(CH₂)_nO(CH₂)_nCH₃, -CF₃, -C₂₋₅ acyl, -(CHR¹)_nOH, -(CHR¹)_nCO₂R¹, -(CHR¹)_n-O-alkyl, -(CHR¹)_n-O-(CH₂)_n-O-alkyl, -(CHR¹)_n-S-alkyl, -(CHR¹)_n-S(O)-alkyl, -(CHR¹)_n-S(O₂)-alkyl, -(CHR¹)_n-S(O₂)-NHR³, -(CHR³)_n-N₃, -(CHR³)_nNHR⁴, 2 to 8 carbon atom alkene chain having 1 to 5 double bonds, 2 to 8 carbon atom alkyne chain having 1 to 5 triple bonds, substituted or unsubstituted-(CHR³)_n heterocycle, or substituted or unsubstituted-(CHR³)_n cycloalkyl which may be saturated or unsaturated.

15

When n is more than 1, the substitutions R¹ and R³ may be same or different.

 R^3 is H, -OH, -CN, substituted alkyl, -C₂₋₈ alkenyl, substituted or unsubstituted cycloalkyl, -N(R^1) R^2 , or 5-6 membered saturated substituted or unsubstituted hetero ring.

-NR²R³ may form a ring system having 4 to 7 atoms or may be bicyclic ring. The ring system may be of carbon or hetero atoms and further it may saturated or unsaturated and also may be substituted or unsubstituted.

W is a direct bond, -CHR²-, -CH=CR²-, -CR²=CH-, -CR²=CR²-, -C=C-, -O-CHR²-, -CHR²-O-, -N(R²)-C(O)-, -C(O)-N(R²)-, -N(R²)-CH-(R³)-, -CH₂-N(R²)-, -CH(R¹)-N(R²)-, -S-CHR²-, -CHR²-S-, -S(O₂)-N(R²)-, -C(O)N(R²)-(CHR²)n-, -C(R¹R²)n-NR²-, -N(R²)-S(O₂)-, -R²C(O)NR²-, -R²NC(O)NR²-, -CONR²CO-, -C(=NR²)NR²-, -NR²C(=NR²)NR²-, -NR²O-, -N=NCHR²-, or -C(O)NR²SO₂-.

E² is 5 to 7 membered saturated or unsaturated carbon ring, 5 to 7 membered saturated or unsaturated hetero ring, bicyclic ring system, C₁₋₈ alkyl, C₂₋₈ alkenyl, C₂₋₈ alkynyl, alkylaryl, aralkyl, aralkynyl, aralkynyl, alkoxy, alkylthio, or alkylamino.

each X individually is a direct bond, substituted or unsubstituted C₁₋₄ methylene chain; O, S, NR², S(O), S(O₂), or N(O) containing one or two C₁₋₄ substituted or unsubstituted methylene chains. X at different places may be same or different.

B is H, -halo, -CN, -NH₂, -(CH₂)_n-C(=NR⁴)NHR⁵, -(CH₂)_n-NHR⁴,
(CH₂)_nNHC(=NR⁴)NR⁵, -(CH₂)_n-OR⁴, C₁₋₈ substituted or unsubstituted alkyl, substituted or unsubstituted ring system having 4 to 7 carbon or hetero atoms which may be saturated or unsaturated.

B¹ is selected from B; B¹ and B may be same or different.

There may be more than one similar or different R^2 groups present on E^2 , when E^2 is a cyclic system of more than 5 atoms. p is 1 or higher if E^2 is a cyclic ring of more than 5 atoms. For example, if the ring is 6 atoms, p can be 1 or 2.

5 n is 0-4

10

15

20

25

A is selected from R¹.

o is 1 except that when L is a cyclic ring of more than 5 atoms, o is 1 or higher depending upon the size of the ring. For instance, if the ring is 6 atoms, o can be 1 or 2.

Each V and V¹ individually is selected from R¹ and N-alkyl substituted carboxamidyl (-CONHR) where the alkyl group may be straight, branched, cyclic, or bicyclic; N, N-disubstituted carboxamidyl (-CONR₁R₂ where R₁ and R₂ may be substituted or unsubstituted alkyl or aryl and may be the same or different); mono- or disubstituted sulfonamides (SO₂NHR or -SO₂NR₁R₂); and methylene- or polymethylene chain-extended variants thereof.

Each R^4 and R^5 individually is H, -(CH₂)_nOH, -C(O)OR⁶, -C(O)SR⁶, -(CH₂)_n C(O)NR⁷R⁸, -O-C(O)-O-R⁷, an amino acid or a dipeptide,

Each R⁶ is H, R⁷, $-C(R^7)(R^8)-(CH_2)_n-O-C(O)-R^9$, $-(CH_2)_n-C(R^7)(R^8)-O-C(O)R^9$, $-(CH_2)_n-C(R^7)(R^8)-O-C(O)-O-R^9$, or $-C(R^7)(R^8)-(CH_2)_n-O-C(O)-O-R^9$,

Each R⁷, R⁸ and R⁹ individually is H, alkyl, substituted alkyl, aryl, substituted aryl, alkenyl, substituted alkynyl, substituted alkynyl, heterocycle, substituted heterocycle, alkylaryl, substituted alkylaryl, cycloalkyl, substituted cycloalkyl, or CH₂CO₂alkyl.

10

15

20

25

R substituent groups employed pursuant to the present invention contribute to significantly enhanced activity of the compounds of the present invention.

Listed below are definitions of various terms used to describe this invention. These definitions apply to the terms as they are used throughout this specification, unless otherwise limited in specific instances, either individually or as part of a larger group.

The term "alkyl" refers to straight or branched chain unsubstituted hydrocarbon groups of 1 to 20 carbon atoms, preferably 1 to 8 carbon atoms. The expression "lower alkyl" refers to unsubstituted alkyl groups of 1 to 4 carbon atoms.

The terms "alkenyl" and "alkynyl" refer to straight or branched chain unsubstituted hydrocarbon groups typically having 2 to 8 carbon atoms.

The terms "substituted alkyl", "substituted alkenyl" or substituted alkynyl" refer to an alkyl, alkenyl or alkynyl group substituted by, for example, one to four substituents, such as halo, trifluoromethyl, trifluoromethoxy, hydroxy, alkoxy, cycloalkyloxy, heterocyclooxy, oxo, alkanoyl, aryloxy, alkanoyloxy, amino, alkylamino, arylamino, aralkylamino, cycloalkylamino, heterocycloamino, disubstituted amines in which the 2 amino substituents are selected from alkyl, aryl or aralkyl, alkanoylamine, aroylamino, aralkanoylamino, substituted alkanolamino, substituted arylamino, substituted aralkanoylamino, thiol, alkylthio, arylthio, aralkylthio, cycloalkylthio, heterocyclothio, alkylthiono, arylthiono, aralkylthiono, alkylsulfonyl, arylsulfonyl, aralkylsulfonyl, sulfonamido (e.g. SO₂NH₂), substituted sulfonamido, nitro, cyano, carboxy, carbamyl (e.g. CONH₂), substituted carbamyl (e.g. CONH alkyl, CONH aryl, CONH aralkyl or cases where there are two substituents on the nitrogen selected from alkyl, aryl or aralkyl), alkoxycarbonyl, aryl, substituted aryl, guanidino and heterocyclos, such as indolyl, imidazolyl, furyl, thienyl, thiazolyl, pyrrolidyl, pyridyl, pyrimidyl and the like.

Where noted above where the substituent is further substituted it will be with halogen, alkyl, alkoxy, aryl or aralkyl.

The term "halogen" or "halo" refers to fluorine, chlorine, bromine and iodine.

5

10

15

20

The term "aryl" refers to monocyclic or bicyclic aromatic hydrocarbon groups having 6 to 12 carbon atoms in the ring portion, such as phenyl, naphthyl, biphenyl and diphenyl groups, each of which may be substituted.

The term "aralkyl" or "alkylaryl" refers to an aryl group bonded directly through an alkyl group, such as benzyl or phenethyl.

The term "substituted aryl" or "substituted alkylaryl" refers to an aryl group or alkylaryl group substituted by, for example, one to four substituents such as alkyl; substituted alkyl, halo, trifluoromethoxy, trifluoromethyl, hydroxy, alkoxy, azido, cycloalkyloxy, heterocyclooxy, alkanoyl, alkanoyloxy, amino, alkylamino, aralkylamino, hydroxyalkyl, aminoalkyl, azidoalkyl, alkenyl, alkynyl, allenyl, cycloalkylamino, heterocycloamino, dialkylamino, alkanoylamino, thiol, alkylthio, cycloalkylthio, heterocyclothio, ureido, nitro, cyano, carboxy, carboxyalkyl, carbamyl, alkoxycarbonyl, alkylthiono, arylthiono, alkysulfonyl, sulfonamido, aryloxy and the like. The substituent may be further substituted by halo, hydroxy, alkyl, alkoxy, aryl, substituted aryl, substituted alkyl or aralkyl. "Substituted benzyl" refers to a benzyl group substituted by, for example, any of the groups listed above for substituted aryl.

25

The term "cycloalkyl" refers to optionally substituted, saturated cyclic hydrocarbon ring systems, preferably containing 1 to 3 rings and 3 to 7 carbons per ring which may be further fused with an unsaturated C₃-C₇ carbocyclic ring. Exemplary groups include cyclopropyl, cyclobutyl, cyclopentyl, cyclohexyl, cycloheptyl, cyclooctyl, cyclodecyl, cycloddecyl and adamantyl. Exemplary substituents include one or more

10

15

20

alkyl groups as described above, or one or more groups described above as alkyl substituents.

The term "cycloalkenyl" refers to optionally substituted, unsaturated cyclic hydrocarbon ring systems, preferably containing 1 to 3 rings and 3-7 carbons per ring. Exemplary groups include cyclopentenyl and cyclohexenyl.

The terms "heterocycle", "heterocyclic" and "heterocyclo" refer to an optionally substituted, fully saturated or unsaturated, aromatic or nonaromatic cyclic group, for example, which is 4 to 7 membered monocyclic, 7 to 11 membered bicyclic, or 10 to 15 membered tricyclic ring system, which has at least one heteroatom in at least one carbon atom-containing ring. Each ring of the heterocyclic group containing a heteroatom may have 1, 2 or 3 heteroatoms selected from nitrogen atoms, oxygen atoms and sulfur atoms, where the nitrogen and sulfur heteroatoms may also optionally be oxidized and the nitrogen heteroatoms may also optionally be quaternized. The heterocyclic group may be attached at any heteroatom or carbon atoms.

Exemplary monocyclic heterocyclic groups include pyrrolidinyl, pyrrolyl, indolyl, pyrazolyl, oxetanyl, pyrazolinyl, imidazolyl, imidazolinyl, imidazolidinyl, oxazolyl, oxazolidinyl, isoxazolyl, thiazolyl, thiadiazolyl, thiazolidinyl, isothiazolyl, isothiazolyl, thiazolidinyl, furyl, tetrahydrofuryl, thienyl, thiophenyl, oxadiazolyl, piperidinyl, piperazinyl, 2-oxopiperazinyl, 2-oxopiperidinyl, 2-oxopyrrolidinyl, 2-oxazepinyl, azepinyl, 4-piperidonyl, pyridyl, dihydropyridyl, N-oxo-pyridyl, pyrazinyl, pyrimidinyl, pyridazinyl, tetrahydropyranyl, tetrahydrothiopyranyl, tetrahydrothiopyranyl sulfone, morpholinyl, thiomorpholinyl, thiomorpholinyl sulfoxide, thiomorpholinyl sulfone, 1,3-dixolane and tetrahydro-1, 1-dioxothienyl, dioxanyl, isothiazolidinyl, thietanyl, thiiranyl, triazinyl and triazolyl and the like.

Exemplary bicyclic heterocyclic groups include benzothiazolyl, benzoxazolyl, benzothienyl, quinuclidinyl, quinolinyl, quinolinyl-N-oxide, tetrahydroisoquinolinyl, isoquinolinyl, benzimidazolyl, benzopyranyl, indolizinyl, benzofuryl, chromonyl, cournarinyl, cinnolinyl, quinoxalinyl, indazolyl, pyrrolapridyl, furopyridinyl (such as furo[2,3-c]pyridinyl, furo[3,1-b]pyridinyl, or furo[2,3-b]pyridinyl), dihydroisoindolyl, dihydroquinazolinyl (such as 3,4-dihydro-4-oxo-quinazolinyl), benzisothiazolyl, benzisoxazolyl, benzodiazinyl, benzofurazanyl, benzothiopyranyl, benzothrasolyl, benzpyrasolyl, dihydrobenzofuryl, dihydrobenzothiopyranyl, dihydrobenzothiopyranyl, indolinyl, isochromanyl, isoindolinyl, naphthyridinyl, phthalazinyl, piperonyl, purinyl, pyridopyridyl, quinazolinyl, tetrahydroquinolinyl, theinofuryl, thienopyridyl, thienothienyl, and the like.

Exemplary substituents include one or more alkyl groups as described above or one or more groups described above as alkyl substituents.

15

10

5

Within the above-described definitions, certain embodiments are preferred. Preferred alkyl groups are lower alkyl groups containing 1 to about 8 carbon, and more preferably 1 to about 5 carbon atoms, and can be straight, branched-chain or cyclic saturated aliphatic hydrocarbon groups.

20

25

Examples of suitable alkyl groups include methyl, ethyl and propyl. Examples of branched alkyl groups include isopropyl and t-butyl. An example of a suitable alkylaryl group is phenethyl. Examples of suitable cycloalkyl groups typically contain 3-8 carbon atoms and include cyclopropyl, cyclobutyl, cyclopentyl and cyclohexyl. The aromatic or aryl groups are preferably phenyl or alkyl substituted aromatic groups (aralkyl) such as phenyl C₁₋₃ alkyl such as benzyl.

The N-heterocyclic rings preferably contain 3-7 atoms in the ring and a heteroatom such as N, S or O in the ring. Examples of suitable preferred heterocyclic

10

15

25

groups are pyrrolidino, azetidino, piperidino, 3,4-didehydropiperidino, 2-methylpiperidino and 2-ethylpiperidino. In addition, the above substitutions can include halo such as F, Cl, Br, lower alkyl, lower alkoxy and halo substituted lower alkoxy.

Examples of some preferred B groups include –NHC(=NH)NH₂, -C(=NH)NH₂, NH₂, various N-substituted variants, and assorted prodrug derivatives.

Prodrug forms of the compounds bearing various nitrogen functions (amino, hydroxyamino, hydrazino, guanidino, amidino, amide, etc.) may include the following types of derivatives where each R group individually may be hydrogen, substituted or unsubstituted alkyl, aryl, alkenyl, alkynyl, heterocycle, alkylaryl, aralkyl, aralkenyl, aralkynyl, cycloalkyl, or cycloalkenyl groups as defined beginning on page 7.

- (a) Carboxamides, -NHC(O)R
- (b) Carbamates, -NHC(O)OR
 - (c) (Acyloxy)alkyl carbamates, -NHC(0)OROC(0)R
- 20 (d) Enamines, -NHCR(=CHCRO₂R) or -NHCR(=CHCRONR₂)
 - (e) Schiff bases, -N=CR₂
 - (f) Mannich bases (from carboximide compounds), RCONHCH₂NR₂

Preparations of such prodrug derivatives are discussed in various literature sources (examples are: Alexander et al., J. Med. Chem. 1988, 31, 318; Aligas-Martin et al., PCT WO pp/41531, p. 30). The nitrogen function converted in preparing these derivatives is one (or more) of the nitrogen atoms of a compound of the invention.

Prodrug forms of carboxyl-bearing compounds of the invention include esters (-CO₂R) where the R group corresponds to any alcohol whose release in the body through enzymatic or hydrolytic processes would be at pharmaceutically acceptable levels.

Another prodrug derived from a carboxylic acid form of the invention may be a

Another prodrug derived from a carboxylic acid form of the invention may be a quaternary salt type

10

5

of structure described by Boder et al., J. Med. Chem. 1980, 23, 469.

Examples of some preferred groups for W are -CH₂CH₂-, -CH=CH-, -C≡C-, -CH₂CH₂CH₂-, -CH₂CH=CH-, -CH₂C≡C-, -CONH, -CH₂CONH-, -NHCONH-, -CONHCO-, -CONHCH₂-, -C(=NH)NH-, -CH₂C(=NH)NH-, -NHC(=NH)NH-, -NHNH-, -NHO-, -CONHSO₂-, -SO₂NH-, -NHSO₂CH₂-, -SO₂NHCH₂-, -CH₂O-, -CH₂OCH₂-, -OCH₂CH₂-, -CH₂NH-, -CH₂NHCH₂-, -CH₂S-, -SCH₂CH₂, -CH₂SCH₂-, -CH₂SO₂CH₂-, -CH₂SOCH₂-, -CH(CO₂H)O and -CH(CO₂H)OCH₂.

Examples of some preferred groups for V and V¹ are N-alkyl substituted carboxamidyl (-CONHR) where the alkyl group may be straight, branched, cyclic, or bicyclic, and typically containing up to ten carbons; N,N-disubstituted carboxamidyl (-CONR₁R₂ where R₁ and R₂ may be substituted or unsubstituted alkyl or aryl and may be the same or different); mono- or disubstituted sulfonamides (SO₂NHR or -SO₂NR₁R₂); methylene- or polymethylene chain- extended variants thereof such as -(CH₂)_nCONHR₁, -(CH₂)_nSO₂NHR₁, -(CH₂)_nSO₂NR₁R₂ (where n = 1-4), -NHC(O)R, N(R₁)C(O)R₂, NHSO₂R, CH₂NHR, CH₂NR₁R₂.

30

Pharmaceutically acceptable salts of the compounds of the present invention include those derived from pharmaceutically acceptable, inorganic and organic acids and bases. Examples of suitable acids include hydrochloric, hydrobromic, sulphuric, nitric, perchloric, fumaric, maleic, phosphoric, glycollic, lactic, salicyclic, succinic, toluene-psulphonic, tartaric, acetic, citric, methanesulphonic, formic, benzoic, malonic, naphthalene-2-sulphonic, trifluoroacetic and benzenesulphonic acids.

Salts derived from appropriate bases include alkali such as sodium and ammonia.

It is of course understood that the compounds of the present invention relate to all optical isomers and stereo-isomers at the various possible atoms of the molecule.

The synthetic routes leading to the compounds in formula (I) are described in the following schemes.

24, R = (continued)

27, R = (continued)

x, CH₃

y, OH

ac, CH₂

aa, N

ab, OH

ah, OH

ah, OH

Ah, OH

COnversion of

$$\begin{array}{c}
24ab \xrightarrow{K, I-1} 25ab \\
24ac \xrightarrow{K, I-1} 25ac \\
24ad \xrightarrow{K, I-1} 25ac \\
24ad \xrightarrow{K, I-1} 25ac \\
24ad \xrightarrow{K, I-1} 25ac
\end{array}$$

The reduction of the formyl group of 24ab, 24ac, 24ae, and 24ad was accomplished with NaBH₄ to give corresponding alcohols 24ab-i, 24ac-i, 24ae-i, and 24ad-i, respectively. Later, the MEM group was removed under acidic conditions to give 25ab, 25ac, 25ae, and 25af, respectively.

The aldehyde 24ad was oxidized to acid 24ad-i which was protected as benzyl ester to give 24ad-ii. MEM deprotection under acidic conditions produced 25ad.

The vinyl compound 24ah was oxidized with OsO₄ to give diol 24ah-i, followed by acidic hydrolysis of the MEM group to produce 25ah.

25

The vinyl compound 24ah on dihydroxylation with OsO₄ gave diol 24ah-i. Oxidative cleavage of the diol with NalO₄ produced aldehyde 24ah-ii. The aldehyde on reduction gave alcohol 24ah-iii, which on further reaction with methane sulfonyl chloride yielded mesylate 24ah-iv. The mesylate on further reaction with sodium azide gave the corresponding azide 24ah-v, which on acidic hydrolysis produced 25ai.

Conversion of
$$24w = \frac{I-1, Q}{25w} = 25w$$

Aldehyde 29g was converted to alcohol 29g-i by reduction with NaBH₄, followed by the reaction of methanesulfonyl chloride to give mesylate 29g-ii. The mesyl group was displaced with azide to give 29g-iii and finally, the MEM group was removed under acidic conditions to give 30g.

Conversion of
$$29h \xrightarrow{K, I-1} 30h$$

$$29i \xrightarrow{K, I-1} 30i$$

The reduction of the formyl group of 29h and 29i was accomplished with NaBH₄ to give corresponding alcohols 29h-i and 29i-i, respectively. Later, the MEM group was removed under acidic conditions to give 30h and 30i, respectively.

Compounds of the type 23 and 28, where $X = -Sn(Bu)_3$, are prepared using the methods AG-1 or AG-2

. . 5

15

40

Scheme 8D

Scheme 8E

26n
$$\xrightarrow{G}$$
 27aj (R = $\xrightarrow{CH_3}$)

32f \xrightarrow{G} 27ak (R = $\xrightarrow{CH_3}$)

26ai \xrightarrow{G} 27al (R = $\xrightarrow{NH_2}$)

26u \xrightarrow{G} 27am (R = $\xrightarrow{OH^2}$

36

ae, NHR = -- N

$$11, R =$$

40

BNSDOCID: <WO_____0234711A1_I_>

77a, 78a, 79a, 80a,
$$R = \frac{C}{H} = CH_2$$
; $R' = CH_3$

78b, 79b,
$$R = OSO_2CF_3$$
; $R' = Bn$; 80b, $R = OH$

77b, 78c, 79c,
$$R = -O-CH_2CO_2C_2H_5$$
; $R' = Bn$; 80c, $R = -O-CH_2CO_2H$

77c, 78d, 79d, 80d, $R = -O-CH_2CONH_2$; R' = Bn

$$74 \xrightarrow{E} 78g \xrightarrow{J} 79g \xrightarrow{I-2} 80g$$

78g, 79g, 80g,
$$R = OCH_3$$
, $R' = CH_3$

77g, 78i, 79i, 80i,
$$R = {}^{O} {}^{CH_3}$$
; $R' = Br$

77h, 78j, 79j, 80j,
$$R = O$$
 CH_3 ; $R' = B_1$

77i, 78k, 79k, $R = OCH_2$ - CH_2 -OAc; R' = Bn; 80k, $R = -O-CH_2$ - CH_2 -OH

86a, R = CH(OH)CH₂OH 86b, R = CH₂OH 86c, R = CO₂H

15
$$CH_3$$
 126, 127, $R = C_2H_5$; $R' = CH_3$

Scheme 16b

20

128, R = CH₃; R' = CH₃

Scheme 17a

135, 136, R =

15

$$CO_2H$$
 CO_2CH_3
 C

HO,

B-2

146c -- 149c, R = -CH=CH₂

154

Scheme 19a

~ 日本社会

160b, 161b,
$$R = -C_2H_5$$

160c, 161c,
$$R = -CH_2C_6H_5$$

160d, 161d,
$$R = -C(CH_3)_3$$

162b,
$$R = -C_2H_5$$

162c,
$$R = -CH_2C_6H_5$$

162d,
$$R = -C(CH_3)_3$$

3a, 184a, 185a, 186a, 187a, 188a, R =

3f, 184b, 185b, 186b, 187b, 188b, $R = CH_2CF_3$

3i, 184c, 185c, 186c, 187c, 188c, R = CH₂CH₃

3j, 184d, 185d, 186d, 187d, 188d, R = CH₃

189a,
$$X = H, Y = OCH_3$$

189b,
$$X = OCH_2C_6H_5$$
, $Y = H$

189c,
$$X = OH, Y = H$$

189d,
$$X = Y = H$$

190a, 192a - 195a, R = H

190b, 192b - 195b, R = CH,

$$A-7$$
 H_3CO_2C
 $I32,30f$
 $I32,30f$

209a, R = H

209b - 211b, R =

231a, 232a, 233a, 234a, 235a, R = H

231b, $R \approx CO_2CH_3$

232b, 233b, 234b, R = CO₂H

General Methods of Preparation

The following abbreviations have been used:

5 THF: Tetrahydrofuran; DMF: Dimethylformamide

DME: 1,2-Dimethoxyethane; DMAP: 4-(Dimethylamino)pyridine

Boc anhydride: Di-tert-butyl dicarbonate; TIPS: Triisopropylsilyl

MEM: Methoxyethoxymethyl; Bn: Phenylmethyl or Benzyl

10 The organic extracts were dried over sodium sulfate or magnesium sulfate.

The general methods for the preparation of the compounds of formula (I) are given below:

15 A-1: Conversion of acid to amide

To derivative (1 mmol), was added thionyl chloride (12.6 mmol) and a few drops of DMF. The reaction mixture was refluxed for 2 h and concentrated in vacuo to obtain an oily residue. The residue was dissolved in dichloromethane (3 mL); cooled with ice water and amine (5 mmol) was added. The reaction mixture was stirred at room temperature overnight, washed with 1N HCl, saturated sodium hydrogen carbonate, water, brine, dried and concentrated in vacuo. The product obtained was purified by crystallization or flash column chromatography to furnish the desired amide.

25 A-2: Conversion of acid to amide

To a solution of acid derivative (1 mmol) in dichloromethane (10 mL) at 0 °C was added triethylamine (3 mmol) and ethyl chloroformate (3 mmol). The reaction mixture was stirred at the same temperature for 30 min and the corresponding amine (6

mmol) was added. The reaction mixture was stirred at room temperature overnight and quenched with 1N HCl. The organic layer was separated, washed with water, brine, dried and concentrated in vacuo. The product obtained was purified by crystallization or flash column chromatography to furnish the desired amide.

5

10

15

20

25

A-3: Conversion of acid to amide

To a solution of acid (1 mmol) in dichloromethane (5 mL) was added 2M oxalyl chloride in dichloromethane (2.5 mmol), followed by a drop of DMF. The reaction mixture was stirred for 2h at room temperature and concentrated in vacuo. The residue was co-evaporated once with dichloromethane (5 mL) and then dried in vacuo. To the residue in dichloromethane (10 mL) were further added triethylamine (3 mmol) and the corresponding amine (1.2 mmol). The reaction mixture was stirred for 16 h and washed with water, brine, dried and concentrated in vacuo. The product obtained was purified by crystallization or flash column chromatography to furnish the desired amide.

A-4: Conversion of acid to amide

To a solution of acid (1 mmol) in dichloromethane or THF (10 mL) cooled with an ice bath was added triethylamine (1.2 mmol) and ethyl chloroformate or isobutyl chloroformate (1.2 mmol). The reaction mixture was stirred at 0°C for 30 min and the corresponding amine (2.5 mmol) was added. The reaction mixture was stirred at room temperature overnight and quenched with 1N HCl. The organic layer was separated, washed with water, brine, dried and concentrated in vacuo. The product obtained was purified by crystallization or flash column chromatography to furnish the desired amide.

A-5: Conversion of acid to amide

A mixture of carboxylic acid (1 mmol), amine (1.1 mmol), 1-hydroxybenzotriazole (1 mmol) and 1-(3-dimethylaminopropyl)-3-ethylcarbodiimide methiodide (1.1 mmol) in pyridine (10 mL) was stirred overnight at room temperature and was concentrated *in vacuo* to dryness. The residue obtained was purified by column chromatography or used as such for the next step.

A-6: Reduction of acid to alcohol

10

15

25

To a solution of acid (1 mmol) in dichloromethane or THF (10 mL) at 0 °C was added triethylamine (1.2 mmol) and ethyl chloroformate or isobutyl chloroformate (1.2 mmol). The reaction mixture was stirred at 0 °C for 30 min and sodium borohydride (1.25 mmol) was added. The reaction mixture was stirred at room temperature overnight and quenched with 1N HCl. The reaction mixture was extracted with ethyl acetate. The organic layers were combined, washed with water, brine, dried and concentrated in vacuo to furnish the desired alcohol. This can be purified further, if needed, by crystallization or column chromatography.

20 A-7: Conversion of acid to amide

A mixture of carboxylic acid (1 mmol), amine (1 mmol), and 4-dimethylaminopyridie (0.12 mmol) in xylene (10 mL) was stirred at 80 °C for 10 min. Phosphorus trichloride (1 mmol) was added and the reaction mixture was heated with stirring at 150 °C for 2 hr. After cooling, the product was extracted with EtOAc. The organic layers were combined, washed with water, brine, dried and concentrated in vacuo. The product obtained was purified by flash column chromatography to furnish the desired amide.

B-1: Conversion of phenolic hydroxyl to triflate

To a phenol (1 mmol) in dichloromethane (2.5 mL) was added pyridine (5 mmol) under a nitrogen atmosphere and cooled to -10 C. To the cold reaction mixture was added dropwise triflic anhydride (2 mmol) in dichloromethane (2.5 mL) over a period of 10 mins and allowed to warm to room temperature and stirred for 16 h. The reaction mixture was quenched with saturated aqueous sodium hydrogen carbonate solution and the organic layer was separated. The organic layer was washed with 1N HCl, saturated sodium hydrogen carbonate, water, brine, dried and concentrated in vacuo. The product obtained was purified by crystallization or flash column chromatography to furnish the desired triflate.

B-2: Conversion of phenolic hydroxyl to triflate

To a solution of substituted phenol (1 mmol) in DMF (10 mL) was added N-phenylbis(trifluoromethanesulphonimide) (1.1 mmol), and triethylamine (2 mmol) and stirred at room temperature overnight. The reaction mixture was quenched with ice water and extracted twice with ether. The organic layers were combined, washed with brine, dried and concentrated *in vacuo* to furnish the desired triflate.

20

25

5

10

15

C: Conversion of acid to MEM ester

To a solution of acid derivative (1 mmol) in DMF (10 mL) was added sodium bicarbonate (1.05 mmol), and MEM-Cl (1.05 mmol) and was stirred at room temperature for 24 h. The reaction mixture was quenched with ice water and extracted twice with ether. The organic layers were combined, washed with brine, dried and concentrated *in vacuo* to furnish crude product. Purification by flash column chromatography or crystallization gave the desired MEM ester.

D-1: Coupling of boronic acid with triflate

A mixture of triflate (1 mmol), aryl boronic acid (1.5 mmol), potassium phosphate (3 mmol), potassium bromide (2.4 mmol) and tetrakis(triphenylphosphine)palladium (0.05 mmol) in dioxane (10 mL) was heated at reflux overnight under an argon atmosphere. The reaction mixture was cooled, quenched with water and was extracted with ethyl acetate. The organic layers were combined, dried and concentrated *in vacuo*. Purification by flash column chromatography or crystallization gave the coupled product.

D-2: Coupling of boronic acid with triflate

A mixture of triflate (1 mmol), aryl boronic acid (2 mmol), sodium hydrogen carbonate (3 mmol) and tetrakis(triphenylphosphine)palladium (0.05 mmol) or bis(triphenylphosphine)palladium(II)chloride (0.05 mmol) in DME/water (9:1, 10 mL) was heated at reflux overnight. The reaction mixture was cooled, quenched with water and extracted with ethyl acetate. The organic layer was dried and concentrated in vacuo. Purification by flash column chromatography or crystallization gave the coupled product.

D-3: Coupling of tributyltin derivative with triflate

20

25

5

10

15

A mixture of triflate (1 mmol), tributyltin derivative (3 mmol), tetraethylammonium chloride (6 mmol), and bis(triphenylphosphine)palladium(II)-chloride (0.05 mmol) in DMF (10 mL) was heated at 70 °C overnight under an argon atmosphere. The reaction mixture was cooled, quenched with water (20 mL) and extracted with ethyl acetate (2 X 10 mL). The organic layers were combined, dried and concentrated *in vacuo*. Purification by flash column chromatography or crystallization gave the coupled product.

WO 02/34711

D-4: Coupling of trimethyltin derivative with triflate

A mixture of triflate (1 mmol), trimethyltin derivative (3 mmol), and bis(triphenylphosphine)palladium(II)chloride (0.05 mmol) in THF (10 mL) was heated at 70 °C overnight under an argon atmosphere. The reaction mixture was cooled, quenched with water and extracted with ethyl acetate (2 X 10 mL). The organic layers were combined, dried and concentrated *in vacuo*. Purification by flash column chromatography or crystallization gave the coupled product.

D-5: Coupling of alkyne with triflate

A mixture of triflate (1 mmol), triethylamine (4.5 mmol), substituted alkyne (3.5 mmol), and bis(triphenylphosphine)palladium(II)chloride (0.05 mmol) in DMF (10 mL) was heated at 70 °C overnight under an argon atmosphere. The reaction mixture was cooled, quenched with water (20 mL) and extracted with ethyl acetate (2 X 10 mL). The organic layers were combined, dried and concentrated *in vacuo*. Purification by flash column chromatography or crystallization gave the coupled product.

D-6: Coupling of boronate ester with aryl bromides

20

25

5

10

15

A mixture of boronate ester (2 mmol), aryl bromide (1 mmol), potassium phosphate (3 mmol) and bis(diphenylphosphinoferrocene)palladium(II)chloride (0.05 mmol) in DMF (10 mL) was heated at 100 °C for overnight under an argon atmosphere. The reaction mixture was cooled, quenched with water (20 mL) and extracted with ethyl acetate (2 X 10 mL). The organic layers were combined, dried and concentrated *in vacuo*. Purification by flash column chromatography or crystallization gave the desired product.

D-7: Coupling of boronate ester with aryl bromides

A mixture of boronate ester (2 mmol), aryl bromide (1 mmol), sodium hydrogen carbonate (3 mmol) and bis(diphenylphosphinoferrocene)palladium(Π)chloride (0.05 mmol) in DME/water (9:1, 10 mL) was heated at 50-70 °C for overnight under an argon atmosphere. The reaction mixture was cooled, quenched with water (20 mL) and was extracted with ethyl acetate (2 X 10 mL). The organic layers were combined, dried and concentrated *in vacuo*. Purification by flash column chromatography or crystallization gave the coupled product.

10

15

20

25

5

D-8: Coupling of phenol with boronic acid

A mixture of phenol (1 mmol), aryl boronic acid (3 mmol), molecular sieves (4A°), pyridine (5 mmol), copper(II)acetate (1 mmol) and bis(triphenylphosphine)-palladium(II)chloride (0.05 mmol) in dichloromethane (10 mL) was stirred at room temperature overnight under an argon atmosphere. The reaction mixture was cooled, filtered through a pad of Celite and concentrated *in vacuo*. Purification of the crude by flash column chromatography gave the coupled aryl ether.

D-9: Coupling of trimethyltin derivative with triflate

To a solution of triflate (1 mmol), LiCl (4 mmol), PPh₃ (0.15 mmol), CuBr (0.2 mmol), and bis(triphenylphosphine)palladium(II)chloride (0.07 g) in DMF (10 mL) under an atmosphere of argon was added trimethylstannyl compound (0.8 mmol) and a crystal of 2,6-di-t-butyl-4-methylphenol. After the mixture was stirred at 90 °C for 3 h, a second portion of aryl-trimethylstannyl compound (0.5 mmol) was added. The reaction mixture was stirred at 90 °C overnight. Water was added and extracted with ethyl acetate. The organic layer was dried (MgSO₄), concentrated and purified by flash column chromatography or crystallization to furnish the desired coupled product.

5

15

25

D-10: Coupling of amine with triflate

A mixture of triflate (0.75 mmol), amine (0.9 mmol), potassium phosphate (1.1 mmol), 2-(di-t-butylphosphino)biphenyl (0.015 mmol) and tris(dibenzylideneacetone) dipalladium(0) (10 mg) in DME (10 mL) was heated at reflux overnight under an argon atmosphere. The reaction mixture was concentrated *in vacuo* and the residue was purified by flash column chromatography to furnish the desired coupled product.

10 D-11: Conversion of triflate to cyano compound

To a solution of triflate (0.84 mmol), zinc cyanide (0.54 mmol), Palladium acetate (0.016 mmol), 2-(di-tert-butylphosphine)biphenyl (0.016 mmol) and N-methyl pyrrolidine (10 mL) was heated under argon at 160 °C for 48 h. The reaction mixture was cooled to room temperature and quenched with water (50 mL). The reaction mixture was extracted with ethyl acetate (2 X 25 mL). The organic layers were combined, dried, filtered and concentrated in vacuo. The residue obtained was purified by flash column chromatography to furnish the desired cyano compound.

20 D-12: Coupling of tetravinyltin with triflate or halide

To a solution of aryl triflate or bromide (1 mmol) in DMF (5 mL) were added LiCl (5 mmol), tetravinyltin (2 mol), and dichlorbis(triphenylphosphine)palladium (II) (0.01 mmol). The reaction mixture was stirred at 70 °C under nitrogen for 5 h and then diluted with ethyl acetate and filtered. The organic layer was washed with water and brine and dried (MgSO₄). After evaporating the solvent *in vacuo*, the compound was purified by flash-column chromatography to give the desired product.

E: Oxidation of aryl aldehyde to acid

5

10

20

A mixture of aldehyde (1 mmol), tert-butanol (5 mL), water (2 mL) and acetonitrile (1 mL, additional amount may be added until the reaction mixture was homogenous) was stirred at room temperature. The solution was cooled in ice-bath and 2-methyl-2-butene (1 mL), sodium chlorite (6 mmol) and sodium dihydrogenphosphate (1.6 mmol) were added. The reaction mixture was stirred at room temperature for 2 h. If the solid separated out, the mixture was filtered to collect the solid, the desired product. If no solid separated out, then the reaction mixture was concentrated in vacuo to remove acetonitrile, diluted with water (10 mL) and extracted with ethyl acetate (2 X 10 mL). The organic layers were combined, washed with water, brine, dried and concentrated in vacuo to furnish crude acid. Purification was achieved, if needed, by crystallization or using flash column chromatography to obtain pure acid.

15 E-2: Oxidation of vinyl compound to acid

To a solution of vinyl compound (1 mmol) in acetone (5 mL) was added KMnO₄ (4 mmol). The reaction mixture was stirred for 3 h (the reaction is exothermic, and refluxed on its own during the addition of KMnO₄). The reaction mixture was diluted with methanol and water and filtered. The organic solvents were evaporated *in vacuo* and the aqueous layer was acidified to pH 1 and extracted several times with ethyl acetate/DME. The combined organic layers were dried (MgSO₄) to furnish the desired acid.

25 F: Conversion of aromatic acid to MEM ester

To a solution of aromatic acid (1 mmol) in THF (10 mL) was added disopropylethylamine (2 mmol) and 2-methoxyethoxymethylchloride (1.1 mmol). The reaction mixture was stirred a room temperature for 3 h and diluted with ether (25 mL).

The reaction mixture was washed with water (10 mL), brine (10 mL), dried and concentrated *in vacuo* to obtain product as colorless oil. The product was purified by flash column chromatography to furnish desired product.

G: Conversion of aromatic benzyl ether to aromatic phenol, benzyl ester to acid, benzyl carbamate to amine, alkene to alkane, azide to amine, nitro to amine, and oxime to amine

To a solution of appropriate substrate (1 mmol) in ethanol (10 mL) was added 10% palladium on carbon (10-wt%). The reaction mixture was hydrogenated at 50 psi for 2 to 24 h (until all starting material disappeared as confirmed by MS and TLC analysis). The catalyst was removed by filtration through a pad of Celite under nitrogen. The filtrate was concentrated *in vacuo* to furnish the product, which was purified by flash column chromatography or crystallization.

15

20

10

H: Conversion of aromatic acid to benzyl ester

To a solution of aromatic acid (1 mmol) in DMF (10 mL) was added sodium bicarbonate (1.05 mmol), and benzyl bromide (1.05 mmol) and stirred at room temperature for 24 h. The reaction mixture was quenched with ice water and extracted twice with ethyl acetate. The organic layers were combined, washed with water and brine, dried and concentrated *in vacuo* to furnish crude product. Purification by crystallization or flash column chromatography gave the desired ester.

25 I-1: Hydrolysis of MEM ester to acid

To a solution of MEM ester (1 mmol) in DME (8 mL) was added 6 N HCl (2 mL) and stirred at room temperature overnight. The reaction mixture was neutralized with solid sodium hydrogen carbonate (18 mmol) and concentrated in vacuo. The reaction

mixture was acidified with 0.5 N HCl (20 mL) and extracted with ethyl acetate (2 X 20 mL). The organic layers were combined, washed with brine (20 mL), dried and concentrated in vacuo to furnish crude product. Purification of the crude by flash column chromatography gave the product. Alternatively the crude reaction mixture was diluted with water (10 mL) and concentrated in vacuo to remove DME. The solid obtained was collected by filtration and dried in vacuo to furnish pure acid.

I-2: Hydrolysis of ester to acid

To a solution of ester (1 mmol) in MeOH (10 mL) was added 1 N NaOH (10 mmol). The reaction mixture was stirred at room temperature for 2-3 h, filtered through a plug of cotton, and concentrated *in vacuo* to remove MeOH. The pH of the aqueous layer was adjusted to below 7. The solid that separated, was collected by filtration, washed with water and dried *in vacuo* to furnish the desired acid.

15

20

25

10

J: Coupling of acid with amino compounds

To a solution of acid (1 mmol) in DMF (5 mL) was added corresponding amine (1.1 mmol) and stirred at room temperature until homogenous. Pyridine (5 mL) was added to the reaction mixture followed by 1,3-dicyclohexylcarbodiimide (1.2 mmol) and stirred overnight at room temperature. The mixture was quenched with 6 N HCl (10 mL), diluted with ice cold water (10 mL) and extracted with chloroform (2 X 10 mL). The organic layers were combined washed with brine (10 mL), dried and filtered. Purification of the crude by flash column chromatography gave the product as a solid. If the product was soluble in water, then the reaction mixture was concentrated in vacuo to remove pyridine and DMF and purified by flash column chromatography.

5

15

20

25

K: Reduction of aldehyde to alcohol

To a solution of aldehyde (1 mmol) in THF (10 mL) was added sodium borohydride (0.4 mmol). The reaction mixture was stirred for 30 mins and quenched with glacial acetic acid (0.3 mL). The reaction mixture was diluted with water (10 mL) and extracted with ethyl acetate (2 X 10 mL). The organic layers were combined and washed with brine (10 mL), dried, filtered and concentrated in vacuo to obtain crude product which was purified by flash column chromatography.

10 L: Conversion of vinyl group to diol

To a solution of vinyl compound (1 mmol) in THF/tert-butanol (1:1, 10 mL) and water (2 mL) was added 4-methylmorpholine N-oxide (2.5 mmol) and osmium tetraoxide (1 mL, 2.5 wt% in tert-butanol, 0.1 mmol). The reaction mixture was stirred at room temperature for 2 h and quenched with saturated aqueous solution of sodium sulfite (5 mL). The reaction was stirred at room temperature for 30 mins and diluted with brine (10 mL) and ethyl acetate (10 mL). The organic layer was separated and the aqueous layer was extracted with ethyl acetate (10 mL). The organic layers were combined and washed with brine (10 mL), dried, filtered and concentrated in vacuo. The crude product was purified by flash column chromatography to furnish the desired diol.

M: Conversion of diol to aldehyde

To a solution of diol (1 mmol) in DME/water (9:1, 10 mL) was added sodium metaperiodate (3 mmol) and stirred at room temperature for 30 min. The reaction mixture was quenched with water (10 mL) and extracted with ethyl acetate (2 X 10 mL). The organic layers were combined and washed with brine (10 mL), dried, filtered and concentrated in vacuo. The crude product was purified by flash column chromatography to furnish the desired aldehyde.

N: Conversion of alcohol to mesylate

To a solution of alcohol (1 mmol) in DME (10 mL) was added dimethylaminopyridine (0.1 mmol), methane sulfonyl chloride (3 mmol) and diisopropylethylamine or triethylamine (5 mmol). The reaction mixture was stirred at room temperature overnight. The reaction mixture was diluted with water (10 mL) and extracted with ethyl acetate (2 X 10 mL). The combined organic layers were washed with brine, dried, filtered and concentrated *in vacuo*. The residue obtained, was purified by column chromatography to furnish the desired mesylate.

O: Conversion of mesylate to azide

To a solution of mesylate (1 mmol) in DMSO (10 mL) was added sodium azide (25 mmol) and heated at 100 °C overnight. The reaction mixture was cooled and diluted with cold water (25 mL). The reaction mixture was extracted with ethyl acetate (2 X 15 mL). The combined organic layers were washed with water (10 mL), brine (10 mL), dried, filtered and concentrated *in vacuo* The residue obtained was purified by column chromatography to furnish the desired azido compound.

20

25

5

10

15

P: Protection of amine as benzyl carbamate

A mixture of amino compound (1 mmol), benzyl chloroformate (2 mmol) and triethylamine (10 mL) in pyridine (10 mL) was stirred at room temperature overnight. The reaction mixture was concentrated *in vacuo* to remove organic solvents and diluted with 0.1 N HCl (10 mL). The product was extracted with chloroform (2 X 10 mL), dried, filtered and concentrated *in vacuo*. The residue obtained was purified by column chromatography to furnish the desired carbamate.

Q: Conversion of silyl protected amine to amine

A mixture of silyl protected amine (1 mmol), tetrabutylammonium fluoride (1.0 M in THF, 2 mmol) in THF (10 mL) was stirred at room temperature for 1.5 h. The reaction mixture was concentrated in vacuo and purified by column chromatography to obtain the desired product.

R: Protection of amine as tert-butyl carbamate

To a solution of amino compound (1 mmol) in acetonitrile (5 mL) was added triethylamine (2 mmol) and BOC anhydride (1.2 mmol). The reaction mixture was stirred for 2 h and concentrated in vacuo. Water was added to the residue and extracted with ethyl acetate. The organic layer was washed with brine, dried (MgSO₄), and the solvent was evaporated in vacuo to furnish tert-butyl carbamate. If needed, the product was purified by crystallization or column chromatography.

S: Conversion of tert-butyl carbamate to amine

To a solution of *tert*-butyl carbamate (1 mmol) in dichloromethane (10 mL) was added trifluoroacetic acid (2 mL). The solution was stirred at room temperature for 4 h and concentrated *in vacuo*. The residue was purified by column chromatography or crystallization to give the desired amine.

S-2: Conversion of tert-butyl carbamate to amine

25

10

15

20

To a solution of *tert*-butyl carbamate (1 mmol) in methanol (13 mL) was added 6 N HCl (8.75 mL, 52 mmol) and water (4.25 mL). The reaction mixture was stirred at room temperature for 2 days. The pH was adjusted to 7 using conc. ammonium hydroxide and the solid that separated out, was collected by filtration, washed with ether,

dried in vacuo to furnish the desired product. If no solid separated out, the product was isolated by extraction with chloroform and evaporating the organic layer.

T: Protection of aldehyde as acetal

5

10

15

20

25

To a solution of aldehyde (1 mmol) in ethanol (5 mL) was added triethyl orthoformate (1.4 mmol), ammonium nitrate (0.2 mmol) and stirred at room temperature overnight (if reaction was not complete by TLC and NMR analysis of an aliquot, the reaction mixture was heated at 50 °C until complete). After completion of the reaction, the mixture was quenched with triethylamine (0.2 mmol) and concentrated *in vacuo* to remove ethanol. The residue was dissolved in ether, filtered to remove any insoluble inorganic impurities, and evaporated to dryness. The product obtained was used as such without further purification.

U-1: Conversion of bromide to boronic acid

To a mixture of bromo compound (1 mmol) in ether (10 mL), cooled to -78 °C, n-butyl lithium (1.2 mmol) was added dropwise and the reaction mixture was stirred for 30 mins after the addition was completed. Tributyl borate (1.3 mmol) in ether (10 mL) was added to the reaction and stirred at -78 °C for 2 h. The reaction mixture was allowed to warm to 0 °C and quenched with 2 M HCl (10 mL). The reaction mixture was stirred at room temperature for 1h and cooled with ice. The aqueous layer was separated and the organic layer was extracted twice with 1N NaOH (2 X 10 mL). The basic extracts were combined and washed with ether (10 mL). The basic layer was acidified to pH 4 using 6 N HCl and the solid that separated out was collected by filtration, washed with water and hexane and dried *in vacuo* to furnish boronic acid as a solid. If no solid product is obtained then the basic layer was extracted with ether (2 X 10 mL). The organic layers were combined, dried and concentrated *in vacuo* to furnish boronic acid.

U-2: Synthesis of boronic acid by ortho lithiation of aryl aldehyde

To a solution of N,N,N'-trimethylethylenediamine (1 mmol) in THF/ether (10 mL, 1:1) cooled to -20 °C was added dropwise, over a period of 15 mins, n-butyl lithium (1 mmol) and stirred at -20 °C for 15 mins. Aldehyde (1 mmol) at -20 °C was added dropwise over a period of 10 mins to this mixture. The reaction mixture was further stirred for 15 mins at -20 °C followed by the addition of n-butyl lithium (2.8 mmol) dropwise over a period of 15 mins and stirred at 4 °C overnight. The reaction mixture was cooled to -40 °C and tributyl borate (5.6 mmol) in ether (20 mL) was added to the reaction and stirred at 4 °C for 12 h. The reaction mixture was allowed to warm to 0 °C and quenched with 2 M HCl (3 mmol) and heated at reflux for 2 h and added to ice water (25 mL). The aqueous layer was separated and the organic layer extracted twice with 1N NaOH (2 X 10 mL). The basic extracts were combined and washed with ether (10 mL). The basic layer was acidified to pH 3 using 6 N HCl and the solid that separated out was collected by filtration, washed with water and hexane and dried in vacuo to furnish boronic acid as a solid. If no solid product was obtained, then the basic layer was extracted with ether (2 X 10 mL). The organic layers were combined, dried and concentrated in vacuo to furnish boronic acid.

20 U-3: Synthesis of boronic acid by ortho lithiation of aryl acetal

To a solution of aryl acetal compound (1 mmol) in ether (10 mL) at -78 °C, tert-butyl lithium (1.1 mmol) was added dropwise and the reaction mixture was stirred for 3 h at -20 °C after the addition was completed. Tributyl borate (1.2 mmol) in ether (10 mL) was added to the reaction and stirred at -20 °C for 1 h. The reaction mixture was allowed to warm to 0 °C and quenched with 2 M HCl (10 mL). The reaction mixture was stirred at room temperature for 1h. The aqueous layer was separated and the organic layer was extracted twice with 1N NaOH (2 X 10 mL). The basic extracts were combined and washed with ether (10 mL). The basic layer was acidified to pH 4 using 6 N HCl and the

5

10

15

25

solid that separated out was collected by filtration, washed with water and hexane and dried *in vacuo* to furnish boronic acid as a solid. If no solid product was obtained then the mixture was extracted with ether (2 X 10 mL). The organic layers were combined, dried and concentrated *in vacuo* to furnish boronic acid.

5

10

V-1: Demethylation of aryl methyl ether to phenol

In a round bottom flask (50 mL), pyridine hydrochloride (10g) was heated in an oil bath at 180 °C. After the entire solid had melted, the corresponding aryl methyl ether (1 mmol) was added in small portions over a period of 20 min. The reaction mixture was heated at 180 °C for 4 h, cooled and quenched with water (100 mL). The reaction mixture was extracted with ethyl acetate (3 X 10mL). The combined organic layers were washed with brine, dried over MgSO₄, concentrated to give phenol. This can be further purified if needed by crystallization or column chromatography.

15

20

25

V-2: Demethylation of aryl methyl ether to phenol

To a solution of aryl ether (1 mmol) in dichloromethane (10 mL) cooled to -78 °C was added boron tribromide (3 mmol). The reaction mixture was allowed to warm to room temperature overnight and quenched with water (10 mL). The solid obtained was collected by filtration to give the desired product. More product was obtained after evaporation of the organic layer and washing the residue with water. Alternatively, if a homogenous biphasic mixture was obtained on addition of water, the organic layer was separated, washed with brine, dried over MgSO₄, and concentrated to give the desired phenol. This can be further purified if needed by crystallization or column chromatography.

V-3: Demethylation of aryl methyl ether to phenol

To a solution of aryl methyl ether (1 mmol) in dichloromethane (5 mL) was added AlCl₃ (8.5 mmol). The reaction mixture was heated to reflux for 12 h under nitrogen. To this mixture was added 12 mL of 1 N HCl slowly and the organic layer was separated. The aqueous layer was re-extracted several times with ethyl acetate/DME. The combined organic layers were washed with brine, dried (MgSO₄), and evaporated *in vacuo* to furnish the desired phenol, which was purified by column chromatography.

V-4: Demethylation of aryl methyl ether to phenol

To a stirred slurry of NaH (2 mmol) in anhydrous toluene (5 mL) under nitrogen atmosphere was added para-thiocresol (2 mmol) dissolved in toluene (40 mL). The mixture was stirred at room temperature for 30 min and hexamethylphosphoric triamide (2 mmol) in toluene (5 mL) was added dropwise over a period of 30 min. A solution of aryl ether (1 mmol) in toluene (5 mL) was added in one portion. The reaction mixture was stirred at reflux for 9.5 h, cooled to room temperature and diluted with ethyl acetate (40 mL). The organic layer was extracted with 1 N aqueous NaOH solution (2 X 20 mL). The basic layer was acidified to pH 5 and extracted with ethyl acetate (2 X 20 mL). The organic layers were combined, washed with water, dried (MgSO₄) and concentrated in vacuo. The residue obtained was purified by flash column chromatography to afford the desired phenol compound.

W: Conversion of acid to methyl ester

25

5

10

15

20

A mixture of acid (1 mmol), conc. H₂SO₄ or conc HCl (0.5 mL) and methanol (10 mL) was heated at reflux for 16 h. The mixture was concentrated to half of its volume and the residue poured into a saturated sodium bicarbonate solution. The precipitate was collected by filtration, washed with water and dried to give the desired ester. If the ester

did not come as solid, it was extracted with ethyl acetate. The organic layer was dried, filtered and concentrated to give the desired ester.

W-2: Conversion of acid to ester

5

10

15

20

A solution of methanolic HCl or ethanolic HCl was prepared by the addition of acetyl chloride (1 mL) to methanol/ethanol (9 mL) at 0 °C and stirred for 30 mins. To the solution of anhydrous methanolic HCl was added acid (1 mmol) and stirred at room temperature (or reflux if needed) overnight. The reaction mixture was concentrated to dryness *in vacuo* and the residue was purified by column chromatography or crystallization to furnish the desired ester.

X: Conversion of phenol to alkyl aryl ethers or alkylation of amines

To a solution phenol or amine (1 mmol) in DMF (10 mL) was added cesium carbonate (1.25 mmol) and corresponding bromide (1.1 mmol). The reaction mixture was stirred at room temperature overnight and quenched with water (25 mL). The product was extracted with ether (2 X 25 mL), the organic layers were combined and washed with water (25 mL), brine (25 mL), dried and concentrated *in vacuo* to furnish crude product. The crude was purified by crystallization or flash column chromatography.

Y: Conversion of nitrile to hydroxycarbamimidoyl

25

To a solution of nitrile compound (1 mmol) in ethyl alcohol (10 mL) was added hydroxylamine (50% aqueous solution, 5 mmol). The mixture was stirred at reflux for 2-5 h. The reaction mixture was concentrated in vacuo to furnish the desired hydroxycarbamimidoyl compound.

Z: Opening of aromatic methylene dioxy compound with alcohol

A solution of potassium tert-butoxide (2.25 mmol) in DMSO (1.25 mL) was heated at 50 °C for 30 min. Methanol (1.25 mL) was added to it and continued heating at 50 °C for 30 min. To the reaction mixture was added 1,2-methylenedioxy aromatic compound (1 mmol) and continued heating at 50 °C for 30 min. The reaction mixture was cooled to room temperature and quenched with water (10 mL) and 1 N sodium hydroxide (16 mL). The reaction m mixture was washed with ether (2 X 10 mL) and acidified to pH 4 using conc HCl. The solid obtained was collected by filtration to furnish the desired product.

Z-1: Opening of aromatic methylene dioxy compound with alcohol

To a mixture of methylene dioxy compound (1 mmol) in HMPA (2.5 mL) were added sodium methoxide (2.5 mmol) and heated with stirring at 150 °C for 12 min. The mixture was cooled and poured into ice water (20 mL), NaOH (30 mg) and stirred for 10 min. It was then extracted with ether and the aqueous layer was acidified to pH 4 with HCl and extracted with ether. The later ethereal extracts were combined, dried and concentrated. The residue was purified by crystallization or column chromatography.

20

25

5

10

15

AA: Conversion of amine to amide in the presence of a phenol

To a solution of amino compound (1 mmol) in pyridine (5 mL) was added, dropwise, acid chloride (2 mmol) at 0 °C under N₂. The mixture was stirred for 45 min and was then poured into ice water and acidified with 1 N HCl. The precipitated solid was collected by filtration, washed with 1N HCl, hexane, and then dried *in vacuo* to give crude product. The crude product was added to freshly prepared sodium methoxide solution (0.1 M, 10 mL) and stirred for 30 min at room temperature. The reaction mixture was quenched with acetic acid (1 mmol) and concentrated *in vacuo*. The residue

was dissolved in ethyl acetate and washed with water. The water layer was extracted with ethyl acetate, and the combined organic layers were washed with brine, dried (MgSO₄) and evaporated to yield a solid. The solid was washed with hexane and dried *in vacuo* to furnish the desired amide.

5

10

15

20

25

AB-1: Conversion of amino of amidine to amino carbamate

To amidine compound (1 mmol) was added 0.1N NaOH (10 mL) and stirred at room temperature for 5 min. The reaction mixture was concentrated *in vacuo* and to the residue was added alkyl or aryl 4-nitrophenyl carbonate (2 mmol) in 20 mL of hexamethylphosphoramide and stirred at 45 °C for 24 h. The reaction was quenched with water (100 mL) and extracted with ethyl acetate (2 X 100 mL). The combined extracts were washed with water (100 mL) and brine (100 mL), dried over anhydrous magnesium sulfate, filtered and concentrated *in vacuo*. The residue obtained was purified by flash column chromatography to furnish the desired product.

AB-2: Conversion of amino of amidine to amino carbamate

To a solution of amidine compound (1 mmol) in acetonitrile (25 mL) was added triethylamine (5 mL) and aryl/alkyl chloroformate (2 mmol) or dialkyl/aryl carbonate. The reaction mixture was stirred at room temperature for 16 h and quenched with water (100 mL). The reaction mixture was extracted with ethyl acetate (2 X 100 mL). The combined extracts were washed with brine (100 mL), dried over anhydrous magnesium sulfate, filtered and concentrated *in vacuo*. The residue obtained was purified by flash column chromatography to furnish the desired product.

5

15

20

AC: Conversion of aldehyde to oxime

To a stirred solution of aldehyde (1 mmol) in ethanol (10 mL) was added pyridine (10 mL) and hydroxylamine hydrochloride (1.25 mmol). The reaction mixture was stirred overnight at room temperature under nitrogen and then concentrated *in vacuo* to one third of its original volume. Water (10 mL) was added and the precipitated solid was collected by filtration and dried *in vacuo*. The product was used as such for next step without further purification.

10 AD: Debenzylation in the presence of aldehyde

To a solution of phenyl methoxyaryl aldehyde (1 mmol) in dichloromethane (10 mL) cooled to -78 °C was added dropwise under a nitrogen atmosphere boron tribromide (1M solution in dichloromethane, 1.2 mmol). The reaction mixture was allowed to warm to room temperature and stirred at room temperature overnight. The reaction mixture was quenched with water (10 mL) and the layers were separated. The aqueous layer was extracted with chloroform (10 mL). The organic layers were combined, washed with brine (10 mL), dried, filtered and concentrated in vacuo to furnish crude product. Purification of the crude by flash column chromatography furnished the desired phenolic aldehyde

AE-1: Reductive amination of aldehyde

To a stirred solution of aldehyde (1 mmol) in methanol (40 mL) was added amine (3.3 mmol) followed by the addition of glacial acetic acid (0.3 mL). The reaction mixture was stirred for 30 min under nitrogen at room temperature, and then sodium cyanoborohydride (1.5 mmol) was added. After stirring for 20 min, the solvent was evaporated *in vacuo*, and the residue was taken in ethyl acetate. The organic layer was washed with water, and the insoluble material was removed from the organic layer by

filtration. The pH of the aqueous phase was adjusted to 7 with 1N NaOH and was extracted twice with ethyl acetate. The combined organic layers were washed with brine and dried (MgSO₄). The solvent was evaporated *in vacuo* to furnish crude product. The crude product was purified by crystallization or flash column chromatography.

5

10

15

25

AE-2: Reductive amination of aldehyde

To a mixture of aminoarylamidine (1.2 mmol), 4A° molecular sieves, and sodium hydroxide (1 N solution in anhydrous methanol, 1.2 mL, 1.2 mmol) in methanol (10 mL) was added a solution of aldehyde (1 mmol) in THF (10 mL). The reaction mixture was heated for 15 mins at reflux temperature and was cooled to room temperature. Acetic acid (1%) and sodium cyanoborohydride (1 M solution in THF, 5 mmol) was added to the reaction mixture and stirred at room temperature overnight. The reaction mixture was quenched with 1 N NaOH (30 mmol) and stirred for additional 2 h and concentrated in vacuo to remove methanol. The mixture was diluted with water (15 mL) and washed with ether (2 x 10 mL). The aqueous layer was acidified to pH 2 using 6 N HCl and the solid that separated out was collected by filtration, washed with ether, dried in vacuo to furnish product, which was purified by flash column chromatography, if needed.

20 AE-3: Reductive amination of aldehyde

A mixture of aminoarylamidine (2 mmol), 4A° molecular sieves, pyridine (6 mL) in methanol (9 mL) was heated at 50 °C for one hour. A solution of aldehyde (1 mmol) in methanol (7.5 mL) containing acetic acid (1 %) was added and continued heating for 4 h to 12 h. The reaction mixture was cooled and sodium cyanoborohydride (1 M solution in THF, 5 mmol) was added to the reaction mixture and stirred at room temperature overnight. The reaction mixture was quenched with 5 N NaOH (30 mmol) and stirred for additional 2 h. The reaction mixture was filtered through Celite (to remove molecular sieves) and concentrated to remove methanol. The mixture was diluted with water (15

mL) and washed with ether (2 X 10 mL). The aqueous layer was filtered and solid obtained was kept aside (mainly product). The aqueous layer was acidified to pH 2 using 6 N HCl and the solid that separated out was collected by filtration. The combined solid materials were purified, if needed, by flash column chromatography.

5

15

20

25

AE-4: Reductive amination of aldehyde

To a mixture of aldehyde (1 mmol) and aminoarylamidine (1.1 mmol) in MeOH at room temperature was added triethyl amine (2.75 mmol), sodium cyanoborohydride (0.83 mmol) and zinc chloride (0.9 mmol). The reaction mixture was stirred at room temperature overnight and concentrated to remove methanol. The reaction mixture was quenched with 1 N NaOH (10 mL), diluted with water (10 mL), and extracted with EtOAc (5 X 20 mL). The combined organic extracts were washed with brine (15 mL), dried (MgSO4), filtered through Celite and concentrated to give the product. Purification of the crude by flash column chromatography gave the desired product.

AE-5: Reductive amination of aldehyde

To a solution of amine (1.2 mmol) in MeOH (10 mL) was added aldehyde (1 mmol) in THF (10 mL) containing acetic acid (0.1 mL) drop-wise. The mixture was stirred at 50 °C for 4-12 h and then cooled to room temperature. Sodium cyanoborohydride (1.5 mmol) was added to the reaction mixture and stirred at room temperature overnight. Water was added and pH of the solution was adjusted to 7. The solution was extracted with ethyl acetate. The organic layer was dried (MgSO₄) and evaporated *in vacuo*. The residue was purified by flash column chromatography to furnish the desired amine.

AF-1: Synthesis of amidine from nitrile

Acetyl chloride (5 mL) was added to methanol (5 mL) at 0 °C drop-wise and stirred at room temperature for 15 mins. To this solution of methanolic HCl was added nitrile compound (1 mmol) and stirred at room temperature overnight. The reaction mixture was concentrated in vacuo and dried. The residue obtained of the resulting methyl imidate was dissolved in methanol (10 mL). Dry ammonia gas was bubbled into the reaction mixture at reflux temperature for 5 h. The reaction mixture was concentrated to furnish the required amidine.

10

15

AG: Addition of Grignard reagent to aryl aldehyde

To a solution of aryl aldehyde (1 mmol) in THF (15 mL) cooled to -78 °C was added drop wise under a nitrogen atmosphere, vinyl magnesium bromide (1 M solution in THF, 5 mmol). The reaction mixture was allowed to warm to room temperature and stirred for 48 h. The reaction was quenched carefully with saturated aqueous ammonium chloride solution (10 mL) and extracted with ethyl acetate (2 X 10 mL). The organic layers were combined, washed with brine (10 mL), dried and concentrated *in vacuo*. The residue obtained was purified by flash column chromatography to obtain the desired addition product.

AG-1: Synthesis of tributylvinyltin compounds from vinyl bromide containing hydroxyl

25

20

To a solution of vinyl bromide with hydroxyl (1 mmol) in dichloromethane (20 mL) was added *tert*-butyldimethylsilyl chloride (1.5 mmol) and DMAP (1.5 mmol) and stirred at room temperature overnight. The reaction mixture was quenched with water (20 mL) and the aqueous layer separated. The organic layer was washed with 0.1 N aqueous HCl (10 mL), brine (20 mL), dried and concentrated in vacuo to furnish

corresponding tert-butyldimethylsilyloxy compound as an oil which was used as such for the next step.

To a solution of the above oily residue (1 mmol) in diethyl ether (20 mL) cooled to -78 °C was added dropwise tert-butyllithium (1.7 M in pentane, 2 mmol) over a period of 15 mins. The reaction mixture was stirred at -78 °C for 3 h and quenched at -78 °C with 2 N aqueous sulfuric acid (2 mL) and water (18 mL). The reaction mixture was neutralized using 2 N NaOH and the organic layer was separated. The organic layer was washed with water (20 mL), brine (20 mL), dried and concentrated in vacuo. Purification of the crude residue obtained by flash column chromatography furnished the desired tributyltin compound.

AG-2: Synthesis of tributylmethyltin compounds from arylmethyl bromides or allyl bromides

15

20

25

5

10

To lithium clippings (10 mmol) in THF (10 mL) cooled to -40 °C was added dropwise tributyltin chloride (0.27 mL, 1 mmol) in THF (5 mL) over a period of 15 min. The reaction mixture was allowed to warm to room temperature and stirred for 16 h. The reaction mixture was filtered through glass wool to remove insoluble impurities and cooled to -40 °C. A freshly prepared solution of arylmethyl bromide or allyl bromide (1 mmol) was added dropwise over a period of 10 mins and stirred at room temperature overnight. The reaction mixture was quenched with saturated aqueous ammonium chloride solution (10 mL) and extracted with ether (2 X 10 mL). The organic layers were combined, washed with brine (10 mL), dried, filtered and concentrated in vacuo to furnish desired tributyltinalkyl and was used as such without further purification.

5

10

15

25

AG-3: 4-Bromo-5-formyl-benzo[1,3]dioxole-2-carboxylic acid methyl ester

To a mixture of 2-bromo-3,4-dihydroxy-benzaldehyde (2.17 g, 10.0 mmol) and K₂CO₃ (5.56 g, 40.2 mmol) in n-propanol (25 mL) was added dibromoacetic acid (2.18, 10.0 mmol) and the mixture was heated at reflux temperature for 24 h. After cooling to room temperature, another portion of dibromoacetic acid (1.75 g, 8.0 mmol) was added. The mixture was stirred at reflux for 46 h. n-Propanol was evaporated and water (30 mL) was added. The resulting aqueous solution was acidified to pH 2 by adding 1 N HCl and extracted with ethyl acetate (3 X 100 mL). The combined organic layers were dried (MgSO₄) and evaporated in vacuo to afford crude 4-bromo-5-formyl-benzo[1,3]dioxole-2-carboxylic acid (1.34 g) as a brownish solid. This crude product was dissolved in anhydrous methanol (50 mL) and conc. H₂SO₄ (5 mL) was added drop by drop. The resulting mixture was refluxed overnight and cooled to room temperature. Water (50 mL) was added and the resulting aqueous solution was extracted with ethyl acetate (100 mL X 3). The combined organic layers were dried (MgSO₄) and evaporated in vacuo. The residue was purified by flash column chromatography (ethyl acetate:hexane = 5:95) to furnish 4-bromo-5-formyl-benzo[1,3]dioxole-2-carboxylic acid methyl ester as a white solid.

20 AH: Synthesis of tert-butyl ester of phenol

To a solution of phenol (1 mmol) in pyridine (10 mL) was added 2,2-dimethyl-propionyl chloride (1.2 mmol) dropwise. The mixture was stirred at room temperature for overnight and diluted with water (100 mL). The reaction mixture was extracted with ethyl acetate (3 X 50 mL). The organic layers were combined and washed with aqueous 0.5 N HCl (100 mL), water, brine, dried (MgSO₄) and concentrated *in vacuo*. The crude residue was purified by flash column chromatography to furnish the desired ester.

AI: Preparation of 2-bromo-5-hydroxy benzaldehyde

To a solution 3-hydroxybenzaldehyde (Aldrich, 101.39 g, 805 mmol) in chloroform (1000 mL), was added bromine (45 mL, 845 mmol) in chloroform (200 mL) drop wise over a period of 2 h at room temperature. The reaction mixture was stirred at room temperature overnight and filtered to collect crude 2-bromo-5-hydroxy benzaldehyde (32 g) as a dark brown solid. The filtrate was concentrated to 200 mL, filtered through a pad of Celite and silica gel (40 g) and washed with ether (1000 mL). The filtrate was concentrated in vacuo to give a second crop of the crude desired aldehyde (60 g) as a dark brown solid. The above solids were combined and dissolved in glacial acetic acid (360 mL) by heating. Water (840 mL) was added and the solution was filtered hot. The solution was allowed to attain room temperature and kept in a refrigerator overnight. The crystals obtained were collected by filtration and washed with water, dried overnight in vacuo to furnish (60 g, 37%) of the desired product as a purplish brown crystalline solid, mp: 135 °C.

AJ-1: Amidine from nitrile

A mixture of nitrile (1 mmol) and hydroxylamine (aqueous 50%, 1.8 mL) in EtOH (15 mL) was refluxed for 3 h and concentrated *in vacuo*. To the residue obtained was added EtOH (20 mL), acetic acid (2 mL) and a small amount of Raney nickel. The reaction mixture was hydrogenated (50 psi) for 14-24 h, filtered and concentrated *in vacuo*. The residue obtained, was purified by flash column chromatography to obtain the corresponding amidine.

25

5

10

15

20

AJ-2: Amidine from nitrile

A mixture of nitrile (1 mmol) and saturated methanolic HCl solution (freshly prepared by bubbling HCl gas or prepared in-situ by premixing methanol and acetyl

chloride at ice cold temperature) was stirred at room temperature overnight. The reaction mixture was concentrated *in vacuo* to furnish methyl imidate. To the residue of methyl imidate was added MeOH (40 mL) and ammonia gas was bubbled at reflux temperature for 16 h or till the reaction was complete. The reaction mixture was concentrated *in vacuo* and dried to furnish the desired amidine. Alternatively, the methyl imidate was dissolved in methanol and ammonium acetate (10 mmol) was added. The reaction mixture was concentrated in vacuo and purified by flash column chromatography to obtain the corresponding amidine.

PCT/US01/32582

10 AJ-3: Amidine from nitrile

5

15

20

25

To a solution of nitrile (1 mmol) dissolved in methanol (5 mL) was added N-acetyl cystein (0.1 or 1 mmol) and ammonium acetate (5 mmol) and heated at reflux till the reaction was complete. The reaction mixture was concentrated in vacuo and purified by flash column chromatography to obtain the corresponding amidine.

AK: Conversion of aryl triflates or halides to boronate ester

To dichloro[1,1'-bis(diphenylphosphino)ferrocene]palladium (II) dichloromethane adduct (0.75 mmol) under argon in dioxane (100 mL) was added aryl triflate (25 mmol), pinacolborane (31.5 mmol) and triethylamine (75 mmol). The reaction mixture was heated under argon at 100 °C for 3h or until complete as evidenced from TLC analysis. The reaction mixture was concentrated *in vacuo*. The residue obtained was purified by flash column chromatography to furnish the desired boronate ester. Alternatively, the following method can be used.

To dichloro[1,1'-bis(diphenylphosphino)ferrocene]palladium (II) dichloromethane adduct (0.03 mmol), 1,1'-bis(diphenylphosphino)ferrocene (0.03 mmol) under argon in dioxane (100 mL) was added aryl triflate (1 mmol), bis(pinacolata)diboron (1.1

mmol) and potassium acetate (3 mmol). The reaction mixture was heated under argon at 100 °C for 3h or until complete as evidenced from TLC analysis. The reaction mixture was concentrated *in vacuo*. The residue obtained was purified by flash column chromatography to furnish the desired boronate ester.

5

The examples of the compounds prepared are given in the following tables. The tables describe the compounds, their method of preparation, the starting material, and the analytical data. In some cases, where analytical data have not been given, those compounds were characterized at the later step in the synthesis.

10

	Γ		T		
CO ₂ CH ₃	Analytical Data	¹ H NMR (DMSO-d ₆): δ 10.26 (s, 1 H), 9.84 (s, 1 H), 8.15 (d, J = 3.0 Hz, 1 H), 7.64 (dd, J = 2.0 Hz and 8.9 Hz, 1 H), 6.94 (d, J = 8.9 Hz, 1 H), 3.90 (s, 3 H), 2.15 (d, J = 6.9 Hz, 2 H), 2.06 (m, J = 6.9 Hz, 1 H), 0.93 (d, J = 6.9 Hz, 1 H), 0.93 (d, J = 6.9 Hz, 1 H), 0.93 (d, J = 6 Hz, 6Hz, 6H); MS (ES [†]): 252.12	Characterized in the next step	A-1 or A-2 MS (ES ⁺): 294.54	MS (ES ⁺): 288.49 (M+Na) ⁺
8	Method Used	A-1 or A-2	A-1 or A-2	A-1 or A-2	A-1 or A-2
	Starting From	-	1	П	-
	-R'	O CH ₃	H N O CH ₃	H N CH ₃	H CH ₃
	.	НО-		НО-	Н0-
	Cpd.	2a	2b	2c	2d

101

r	u
C	>
٠.	4

			T	T		
Analytical Data	Characterized in the next step	MS (ES ⁺): 300.40 (M+Na) ⁺	MS (ES ⁺): 272.48 (M+Na) ⁺ ; MS (ES ⁻): 248.66	MS (ES ⁺): 286.48 (M+Na) ⁺	MS (ES ⁺): 224.54	Characterized in the next step
Method	A-1 or A-2	A-1 or A-2	A-1 or A-2	A-1 or A-2	A-1 or A-2	A-1 or A-2
Starting From	-	-	-		-	-
-R'	O CH,	O CF.	HZ O	HZ O	H CH,	H CH,
-R	но-	-ОН	но-	но-	но-	НО-
Cpd.	2e	2f	28	2h	21	2.j

	۰	
(
Ŧ		

200	-			L	
No.	-R	-R'	Starting From	Method Used	Analytical Data
3a	-OSO ₂ CF ₃	H CH,	2a	B-1 or B-2	MS (ES ⁺): 384.37
3b	-OSO ₂ CF ₃	O CH ₃	2b	B-1 or B-2	B-1 or B-2 MS (ES ⁺): 370.36
3c	-OSO ₂ CF ₃	H N CH ₃	2c	B-1 or B-2	MS (ES ⁺): 426.37
3d	-OSO ₂ CF ₃	N. N. C.H.	2d	B-1 or B-2	Characterized in the next step
3e	-OSO ₂ CF ₃	N. O.	2e	B-1 or B-2	¹ H NMR (CDCl ₃): 8 8.41 (d, <i>J</i> = 2.3 Hz, 1 H), 8.10 (dd, <i>J</i> = 8.5, 2.4 Hz, 1 H), 7.37 (d, <i>J</i> = 8.5 Hz, 1 H), 6.48 (broad, 1 H), 3.98 (s, 3 H), 3.46 (q, <i>J</i> = 7.2 Hz, 2 H), 1.62 (m, 2 H), 1.42 (m, 2H), 0.96 (t, <i>J</i> = 7.2 Hz, 3 H); MS (ES [†]): 384.1
3£	-OSO ₂ CF ₃	N CF,	2f	B-1 or B-2	¹ H NMR (CDC ₁₃): δ 8.45 (d, J = 2.4 Hz, 1 H), 8.14 (dd, J = 8.7, 2.4 Hz, 1 H), 7.42 (d, J = 8.7 Hz, 1 H), 6.52 (broad, 1 H), 4.14 (m, 2 H), 4.00 (s, 3 H); MS (ES ⁺): 410.2

•	•
¢	>
	4

Cpd.	Ä	-R'	Starting	Method	Anslytical Data
38	-OSO ₂ CF ₃	HZ.	rrom 2g	Used B-1 or B-2	¹ H NMR (CDCl ₃): 8 8.42 (d, <i>J</i> = 2.3 Hz, 1 H), 8.12 (dd, <i>J</i> = 8.5, 2.3 Hz, 1 H), 7.39 (d, <i>J</i> = 8.7 Hz, 1 H), 6.31 (broad, 1 H), 4.00 (s, 3 H), 3.34 (dd, <i>J</i> = 7.2, 5.5 Hz, 2 H), 1.07 (m, 1 H), 0.59 (m, 2 H), 0.30 (m, 2 H); MS (ES'): 382.2
3ћ	-OSO ₂ CF ₃	HX O	2h	B-1 or B-2	MS (ES ⁺): 396.36
3i	-OSO ₂ CF ₃	H N CH,	. 21	B-1 or B-2	¹ H NMR (DMSO- d_6): δ 8.85 (t, J = 5.5 Hz, 1 H), 8.49 (d, J = 2.3 Hz, 1 H), 8.23 (dd, J = 8.7, 2.3 Hz, 1 H), 7.70 (d, J = 8.7 Hz, 1 H), 3.92 (s, 3 H), 3.31 (m, 2 H), 1.14 (t, J = 7.2 Hz, 3 H); MS (ES ⁺): 356.1
3.	-OSO ₂ CF ₃	H CH,	2.5	B-1 or B-2	¹ H NMR (DMSO-d ₆): δ 8.81 (t, J = 6.0 Hz, 1 H), 8.49 (d, J = 2.3 Hz, 1 H), 8.24 (dd, J = 8.7, 2.4 Hz, 1 H), 7.71 (d, J = 8.7 Hz, 1 H), 3.92 (s, 3 H), 3.15 (m, 2 H), 1.64 (m, 1 H), 1.41 (m, 1 H), 1.12 (m, 1 H), 0.88 (m, 6 H); MS (FS ¹): 398.
w	-OSO ₂ CF ₃	-CO ₂ MEM	4	B-2	¹ H NMR (DMSO-d ₆): δ 8.52 (d, J = 2.0 Hz, 1 H), 8.32 (dd, J = 2.0 and 8.9 Hz, 1 H), 7.72 (d, J = 7.9 Hz, 1 H), 5.50 (s, 2 H), 3.88 (s, 3 H), 3.78 (t, J = 4.9 Hz, 2 H), 3.44 (d, J = 4.9 Hz, 2 H), 3.17 (s, 3 H); MS (ES ⁺): 439.1 (M+Na) ⁺
6a	—B, O——	H CH,	3a	AK	¹ HNMR (CDCl ₃): \$ 8.29 (d, J = 1.6 Hz, 1 H), 7.96 (dd, J = 7.5 & 1.6 Hz, 1 H), 7.58 (d, J = 7.5 Hz, 1 H), 6.24 (bs, 1 H), 3.94 (s, 3 H), 3.30 (t, J = 6.5 Hz, 2 H), 1.92 (m, 1 H), 1.43 (s, 12 H), 0.99 (d, J = 6.5 Hz, 6 H); MS (ES+) 362.2

Cpd. No.	-R	-R'	Starting From	Method Used	Analytical Data
139	но-	O CH ₃	138	Ą	¹ H NMR (DMSO-d ₆): \$ 10.26 (s, 1 H), 9.84 (s, 1 H), 8.15 (d, <i>J</i> = 3.0 Hz, 1 H), 7.64 (dd, <i>J</i> = 2.0 Hz and 8.9 Hz, 1 H), 6.94 (d, <i>J</i> = 8.9 Hz, 1 H), 3.90 (s, 3 H), 2.15 (d, <i>J</i> = 6.9 Hz, 2 H), 2.06 (m, <i>J</i> = 6.9 Hz, 1 H), 0.93 (d, <i>J</i> = 6.9 Hz, 6 H); MS (ES ⁺): 252.12
140	-OSO ₂ CF ₃	N CH ₃	139	B-2	¹ H NMR (DMSO-d ₆): 5 10.38 (s, 1 H), 8.36 (d, <i>J</i> = 2.8 Hz, 1 H), 7.99 (dd, <i>J</i> = 2.6 and 8.9 Hz, 1 H), 7.52 (d, <i>J</i> = 9.0 Hz, 1 H), 3.89 (s, 3 H), 2.23 (d, <i>J</i> = 7.0 Hz, 2 H), 2.09 (m, <i>J</i> = 6.6 Hz, 1 H), 0.94 (d, <i>J</i> = 6.6 Hz, 6 H); MS (ES ⁺): 384.0
169	но-	HON	168	AC	¹ H NMR (CDCl ₃): \$ 8.08 (s, 1 H), 8.00 (d, J = 2.3 Hz, 1 H), 7.75 (dd, J = 2.3 and 8.7 Hz, 1 H), 7.01 (d, J = 8.7 Hz, 1 H), 3.97 (s, 3 H), 3.50 (s, 1 H); MS (ES ²): 196.1
170	но-	-CH ₂ NH ₂	169	Ð	¹ H NMR (DMSO- <i>d</i> ₆): 8 7.79 (d, <i>J</i> = 2.0 Hz, 1 H), 7.51 (dd, <i>J</i> = 2.3 and 8.5 Hz, 1 H), 6.95 (d, <i>J</i> = 8.5 Hz, 1 H), 7.01 (d, <i>J</i> = 8.7 Hz, 1 H), 3.90 (s, 3 H), 3.72 (s, 2 H), 3.50 (bs, 2H); MS (ES ⁺): 182.12
171	НО-	H N O CH ₃	170	AA	MS (ES'): 250.50; MS (ES ⁺): 274.50 (M+Na) ⁺

0.5

¥
c
_

CH ₃ CH	Osed
1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	H (d. J=2.3 and 8.
(d, J = 2.3 and 8.3 Hz, 1 H), 7.26 (d, J = 8.3 Hz, 1 Hz) $(H), 5.90 (br s, 1 H), 4.50 (d, J = 4.1 Hz, 2 H), 3.97$ $(S, 3, H), 2.44 (sen. I = 7.0 Hz, 1 H), 1.20 (d, I = 7.0 Hz, 1 Hz), 1.20 (d, I = 7.0 Hz, I Hz), 1.20 (d, I = 7.0 Hz, I Hz), 1.20 (d, I = 7.0 Hz, I Hz, I Hz), 1.20 (d, I = 7.0 Hz, I Hz, I Hz), 1.20 (d, I = 7.0 Hz, I Hz, I Hz), 1.20 (d, I = 7.0 Hz, I Hz, I Hz), 1.20 (d, I = 7.0 Hz, I Hz, I Hz), 1.20 (d, I = 7.0 Hz, I Hz, I Hz), 1.20 (d, I = 7.0 Hz, I Hz, I Hz), 1.20 (d, I = 7.0 Hz, I Hz, I Hz), 1.20 (d, I = 7.0 Hz), 1.$	B-2
(s, 5 m), 2.44 (sep, 5 – 7.0 Hz, 6 H); MS (ES ⁺): 384.1	(s, 7 III, 2.44) Hz, 6 H); MS (
CH. (H NMR (DMSO-d ₆): \$ 10.62 (s, 1 H), 8.88 (m, 2	CH,
H N N N 168 AE-1 (H), 7.99 (d, J = 2.3 Hz, 1 H), 7.70 (dd, J = 2.3 and N = 1.3	AE-1
CH ₃ (H), 3.91 (s, 3 H), 2.70 (m, 2 H), 1.98 (m, 1 H, <i>J</i> =	CH ₃ (G, 3 H), 2.7
$(3.3 \text{ Hz}), 0.93 \text{ (d, } J = 6.8 \text{ Hz, } 6.4); \text{ MS (ES}^{+}): 238.1$	(5, 3 H, 3.91 (8, 3 H), 0.93 (6, 8 Hz), 0.93 (
(A, A, B,	6.8 HZ), CH
177 B-2	177 B-2
	177
N CH ₃ N CH ₃ CH ₃ CH ₃ CH ₄ CH ₃	NH CH ₃
	/ / /
-OSO ₂ CF ₃	

	\prec
īz (HZ O
	Н,СО2С

Cpd.	-R	-R'	Starting From	Method Used	Analytical Data
7	-OBn	-сно	6+3a	D-2	¹ H NMR (DMSO-d6): §9.78 (s, 1H), 8.85 (t, J = 5.7 Hz, 1H), 8.50 (d, J = 2.0 Hz, 1H), 8.20 (dd, J = 8.2, 1.9 Hz, 1H), 7.55 (m, 9H), 5.35 (s, 2H), 3.69 (s, 3H), 3.23 (t, J = 6.5 Hz, 2H), 1.98 (m, 1H), 1.02 (d, J = 6.8 Hz, 6H); MS (ES+): 446.3
8	-OBn	-СО2Н	7	Э	MS (ES ⁺): 484.33 (M+Na) ⁺
6	-OBn	-CO ₂ MEM	8	ഥ	MS (ES ⁺): 572.2 (M+Na) ⁺
10	НО-	-CO ₂ MEM	6	ß	MS (ES ⁺): 482.33 [(M-MEM) + Na] ⁺
11	-OSO ₂ CF3	-СО2МЕМ	10	B-2	¹ H NMR (DMSO-d6): §8.75 (t, J = 5.6 Hz, 1H), 8.44 (d, J = 1.6 Hz, 1H), 8.11 (dd, J = 8.0, 1.9 Hz, 1H), 8.01 (d, J = 2.9 Hz, 1H), 7.84 (dd, J = 8.4, 2.6 Hz, 1H), 7.47 (d, J = 8.5 Hz, 1H), 7.41 (d, J = 8.0 Hz, 1H), 5.23 (q, AB system, 2H), 3.59 (s, 3H), 3.44 (m, 2H), 3.30 (m, 2H), 3.18 (s, 3H), 3.13(t, J = 6.6 Hz, 2H), 1.88 (m, 1H), 0.91 (d, J = 6.7 Hz, 6H); MS (ES+): 614.3 (M+Na) ⁺
29a	CH,	-соъмем	11	D-3	Characterized in the next step

101

-R	-R'	Starting From	Method Used	Analytical Data
СН	-СО2МЕМ	11	D-3	MS (ES ⁺): 520.2 (M+Na) ⁺
CH ₂	-CO ₂ MEM	11	D-3	MS (ES ⁺): 482.3
S	-СО2МЕМ	11	D-3	MS (ES ⁺): 562.3 (M+Na) ⁺
	-со2мем	Ξ	D-3	MS (ES ⁺): 556.4 (M+Na) ⁺
СН,	-СО2МЕМ	=	D-3	¹ H NMR (DMSO-d6): §8.50 (t, J = 5.6 Hz, 1H), 8.18 (d, Hz, 1H), 7.86 (dd, J = 7.9, 1.9 Hz, 1H), 7.78 (d, J = 1.7 Hz, 7.56 (dd, J = 8.0, 1.8 Hz, 1H), 7.13 (d, J = 8.0 Hz, 1H), 7.13 (d, J = 8.0 Hz, 1H), 7.9 Hz, 1H), 6.67 (dd, J = 17.6, 11.1 Hz, 1H), 5.76 (d, J = 1H), 5.19 (d, J = 11.1 Hz, 1H), 4.99 (q, AB system, 2H), 3.10 (m, 2H), 3.11 (m, 2H), 2.97 (s, 3H), 2.91 (t, J = 2H), 1.67 (m, 1H), 0.70 (d, J = 6.6 Hz, 6H); MS (ES+): 4* (M+Na)
OHC	-СО2МЕМ	11	D-2	MS (ES ⁺): 576.2 (M+Na) ⁺ ; MS (ES ⁻): 552.2

29f

29b

29c

29d

1				1	
	-R	-R'	Starting From	Method Used	Analytical Data
29h	СНО	-СО2МЕМ	11	. D-2	MS (ES ⁺): 538.2
29i	ОНС	-со ₂ мем	11	D-2	MS (ES ⁺): 560.4 (M+Na) ⁺
30a	CH,	-СО2Н	29a	[-]	MS (ES ⁺): 398.3; MS (ES ⁻): 396.3
30b	CH,	-СО2Н	29b	I-1	Characterized in the next step
30c	CH,	н'оэ-	29c	J-1	MS (ES'): 392.1
30d	S	-СО2Н	29d	1-1	MS (ES ⁺): 452.1
30e		-соън	29e	I-1	MS (ES ⁺): 446.2
				1	_

r	٠
_	
•	7
г	7

Cpd. No.	-R	-R'	Starting From	Method Used	Analytical Data
30£	√≫сн,	-со ² н	29f	I-1	MS (ES'): 380.1
30g	N ₃ H ₂ C	н²оо-	29g	K, N, O, I-1	MS (ES ⁺): 515.3 (M+Na) ⁺ ; MS (ES ⁻): 491.2
30h	СН,ОН	ноо-	29h	K, F-1	MS (ES'): 450.!
30i	нон,с	н'оጋ-	29i	K, I-1	MS (ES'): 450.3
33	-OSO ₂ CF ₃	-CO ₂ H	11	I-1	Characterized in the next step
41	0-	-СО2МЕМ	10	D-8	MS (ES'): 534.30
42		-соъ	41	I-1	MS (ES'): 446.30
- 48	-ОСН3	-СНО	47 + 3a	D-2	MS (ES ⁺): 392.2 (M+Na) ⁺
49	-OCH ₃	-СО2Н	48	Ħ	MS (ES ⁺): 386.1; 408.1 (M+Na) ⁺

:O ₂ Bn	
8	
~	-

R'	Analytical Data	Characterized in the next step	MS (ES7): 403.58	¹ HNMR (DMSO-d ₆): § 8.83 (t, J = 6 Hz, 1 H), 8.49 (d, J = 7 Hz, 1 H), 8.23 (dd, J = 8.6 Hz, 1 H), 7.72 (d, J = 8.6 Hz, 1 H), 7.49 (m, 2 H), 7.41 (m, 3 H), 5.43 (s, 2 H), 3.1 (t, J = 6.9 Hz H), 2.29 (m, 1 H), 0.89 (d, J = 6.9 Hz, 6 H).
	Starting Method From Used	B-2	B	A-3 or A-4
	Starting From	13	14	15
	-R'	-СНО	-СО ₂ Н	H CH,
	-R	-OSO ₂ CF ₃	-OSO ₂ CF ₃	-OSO ₂ CF ₃
	Cpd. No.		15	16

BNSDOCID: <WO____0234711A1_I_>

-	\prec
ž (HZ
R. C.	BnO ₂ C

Starting
From
16+6
17
18

Cpd. No.	-R	-R'	Starting From	Method Used	Analytical Data
21	но-	-СО2МЕМ	19	С, н	¹ HNMR (DMSO-d ₆): δ 0.88 (d, J = 6 Hz, 6 H), 1.85 (m, 1 H) 3.10 (t, J = 6 Hz, 2 H) 3.16 (s, 3 H), 3.28 (m 2 H), 3.35 (m, 2 H), 5.04 (d, J = 3.5 Hz, 2 H) 5.11 (d, J = 14 Hz, 2 H), 6.98 (m, 2 H), 7.11 m, 2 H), 7.29 (m, 5 H), 8.03 (dd, J = 8 and 2 Hz, 1 H), 8.32 (d, J = 2 Hz, 1 H), 8.67 (t, J = 6 Hz, 1 H), 9.9 (s, 1 H); MS (ES+) 536.30 (100%: M ⁺¹)
22	-OSO ₂ CF ₃	-СО2МЕМ	21	B-2	¹ HNMR (DMSO-d ₆): δ 0.89 (d, J = 6.8 Hz, 6 H), 1.86 (m, 1 H), 3.12 (t, J = 6.5 Hz, 2 H), 3.16 (s, 3 H), 3.29 (m, 2 H), 3.40 (m, 2 H), 5.04 (s, 2 H), 5.16 (dd, J = 18 and 6 Hz, 2 H), 7.15 (m, 2 H), 7.31 (m, 3 H), 7.36 (d, J = 8.5 Hz, 1 H), 7.41 (d, J = 8.5 Hz, 1 H), 7.43 (dd, J = 8.6 and 2.6 Hz, 1 H), 7.85 (d, J = 2.6 Hz, 1 H), 8.07 (dd, J = 7.7 and 1.7 Hz, 1 H), 8.45 (d, J = 1.7 Hz, 1 H), 8.73 (t, J = 6 Hz, 1 H); MS (ES+) 668.15
24a	S	-СО2МЕМ	22 + 23	D-1	¹ HNMR (DMSO-d ₆): δ 0.89 (d, J = 6.8 Hz, 6 H), 1.87 (m, 1 H), 3.12 (t, J = 6 Hz, 2 H), 3.16 (s, 3 H), 3.29 (m, 2 H), 3.39 (m, 2 H), 5.05 (d, J = 2.6 Hz, 2 H), 5.16 (d, J = 17 Hz, 2 H), 7.08 (m, 2 H), 7.21 (m, 4 H), 7.24 (d, J = 7.7 Hz, 1 H), 7.35 (d, J = 7.7 Hz, 1 H), 7.62 (d, J = 3.5 Hz, 1 H), 7.64 (d, J = 5 Hz, 1 H), 7.86 (d, J = 8.6 Hz, 1 H), 8.06 (m, 2 H), 8.42 (s, 1 H), 8.73 (t, J = 6 Hz, 1 H); MS (ES+) 602.52

Ξ

Cpd. No.	-R	-R'	Starting From	Method Used	Analytical Data
24b	S	-CO ₂ MEM	22 + 23	D-1	¹ HNMR (DMSO-d ₆): δ 0.89 (d, J = 6.8 Hz, 6 H), 1.87 (m, 1 H), 3.12 (t, J = 6 and 6.8 Hz, 2 H), 3.16 (s, 3 H), 3.30 (m, 2 H), 3.39 (dd, J = 5.2 and 3.4 Hz, 2 H), 5.04 (d, J = 4.3 Hz, 2 H), 5.16 (d, J = 16 Hz, 2 H), 7.08 (m, 2 H), 7.20 (m, 3 H), 7.24 (d, J = 8.6 Hz, 1 H), 7.35 (d, J = 8.6 Hz, 1 H), 7.61 (d, J = 5 Hz, 1 H), 7.71 (dd, J = 4.8 and 3 Hz, 1 H), 7.91 (dd, J = 1.7 and 7.7 Hz, 1 H), 8.00 (m, 1 H), 8.06 (dd, J = 2 and 8 Hz, 1 H), 8.14 (d, J = 1.7 Hz, 1 H), 8.68 (t, J = 6 Hz, 1 H); MS (ES+) 602.27
. 24c		-CO ₂ MEM	22 + 23	D-1	¹ HNMR (DMSO-d ₆): δ 0.89 (d, J = 6.8 Hz, 6 H), 1.87 (m, 1 H), 3.12 (t, J = 6 and 6.8 Hz, 2 H), 3.16 (s, 3 H), 3.30 (m, 2 H), 3.40 (m, 2 H), 5.05 (d, J = 5 Hz, 2 H), 5.17 (d, J = 17 Hz, 2 H), 7.09 (m, 2 H), 7.21 (m, 3 H), 7.30 (d, J = 7.7 Hz, 1 H), 7.37 (d, J = 7.7 Hz, 1 H), 7.44 (m, 1 H), 7.54 (t, J = 7.7 Hz, 2 H), 7.73 (d, J = 6.8 Hz, 2 H), 7.88 (dd, J = 1.7 and 7.7 Hz, 1 H), 8.07 (dd, J = 7.7 and 1.7 Hz, 1 H), 8.11 (d, J = 1.7 Hz, 1 H), 8.42 (d, J = 1.7 Hz, 1 H), 8.72 (t, J = 6 Hz, 1 H); MS (ES+) 596.45
24d	H ₁ C	-СО2МЕМ	22 + 23	D-1	MS (ES+) 616
.24e		-созмем	22 + 23	D-1	MS (ES+) 586.4

Ľ	
-	1
-	

		Τ	ı ————————————————————————————————————			
Analytical Data	MS (ES ⁺): 586.39	MS (ES ⁺): 616.63	MS (ES ⁺): 597.25	MS (ES ⁺): 597.4	MS (ES ⁺): 597.4	MS (ES ⁺): 644.3
Method Used	D-1	D-1	D-1	D-1	D-1	D-1
Starting From	22 + 23	22 + 23	22 + 23	22 + 23	22 + 23	22 + 23
-R'	-со2мем	-CO2MEM	-со,мем	-со,мем	-СО ₂ МЕМ	-со,мем
-R		H,C	Z	z	z	H ₃ C
Cpd.	24f	24g	24h	24i	24j	24k

·	٥
-	4
-	i

Cpd. No.	-R	-R'	Starting From	Method Used	Analytical Data
241	CH ₃	-со ₂ мем	22 + 23	D-3	Characterized at the next step
24m	Z-	-со,мем	22 + 23	D-10	Characterized at the next step
24n	CH ₂	-СО2МЕМ	22 + 23	D-3	MS (ES ⁺): 560.74
240	S N	-соумем	22 + 23	D-4	MS (ES ⁺): 603.72
24p	CH,	-СО2МЕМ	22 + 23	D-5	MS (ES ⁺): 558.3
24q	H _j C OH	-СО2МЕМ	22 + 23	D-5	Characterized in the next step
. 24r	НО	-со₂мем	22 + 23	D-5	MS (ES ⁺): 610.4 (M+Na) ⁺

Analytical Data	Characterized in the next step	Characterized in the next step	MS (ES ⁺): 598.4 (M+Na) ⁺	MS (ES'): 500.4 [(M-MEM)-1] ⁻	Characterized in the next step	MS (ES ⁺): 610.5 (M+Na) ⁺	MS (ES ⁺): 596.4 (M+Na) ⁺	MS (ES ⁺): 576.3 (M+Na) ⁺	Characterized in the next step
Method Used	D-3	D-3	D-3	D-3	D-5	D-3	D-5	D-3	D-11
Starting From	22 + 23	22 + 23	22 + 23	22 + 23	22 + 23	22 + 23	22 + 23	22 + 23	22 +.23
-R'	-со,мем	-СО2МЕМ	-со2мем	-со2мем	-СО2МЕМ	-СО2МЕМ	-СО2МЕМ	-СО2МЕМ	-СО2МЕМ
-R	CH ₁	CH ₁	OH	CH ₂	TMS	CH,	— 0H	GH ₂ .	N==N

24aa

24z

24x

24v

24t

α	
-	
-	

Cpd. No.	-R	-R'	Starting From	Method Used	Analytical Data
24ab	СНО	-СО2МЕМ	22 + 23	D-2	MS (ES [†]): 630.55
24ac	СНО	-СО2МЕМ	22 + 23	D-2	MS (ES ⁺): 630.74
24ad	ОНС	-со ₂ мем	22 + 23	D-2	MS (ES [†]): 652.3
24ae	онс	-СО2МЕМ	22 + 23	D-2	Characterized in the next step
24ag	Boc	-соъмем	22 + 23	D-1	MS (ES ⁺): 685.01
24ah	CH,	-СО2МЕМ	22 + 23	D-3	MS (ES ⁺): 546.49

Cpd. No.	-18	-R'	Starting From	Method Used	Analytical Data
25a		СО2Н	2 4a	I-1	¹ HNMR (DMSO-d ₆): δ 0.91 (d, J = 6.9 Hz, 6 H), 1.88 (m, 1 H), 3.13 (t, J = 6.9 and 6 Hz, 2 H), 5.07 (d, J = 11.2 Hz, 2 H), 7.09 (m, 2 H), 7.22 (m, 5 H), 7.35 (d, 7.7 Hz, 1 H), 7.63 (d, 2.6 Hz, 1 H), 7.65 (d, J = 5.2 Hz, 1 H), 7.82 (dd, J = 7.7 and 1.7 Hz, 1 H), 8.05 (d, J = 1.7 Hz, 1 H), 8.07 (s, 1 H), 8.40 (s, 1 H), 8.72 (t, J = 6 Hz, 1 H), 12.77 (brs, 1 H); MS (ES+) 514.19
25b	S	СО2Н	24b	I-1	¹ HNMR (DMSO-d ₆): δ 0.92 (d, J = 6.9 Hz, 6 H), 1.88 (m, 1 H), 3.12 (t, J = 6.9 and 6 Hz, 2 H), 5.07 (d, J = 13 Hz, 2 H), 7.09 (m, 2 H), 7.22 (m, 4 H), 7.35 (d, J = 8.6 Hz, 1 H), 7.63 (d, J = 5.2 Hz, 1 H), 7.70 (dd, J = 2.6 and 4.3 Hz, 1 H), 7.88 (dd, J = 7.2 and 1.7 Hz, 1 H), 8.02 (d, J = 1.7 Hz, 1 H), 8.07 (dd, J = 1.7 and 7.7 Hz, 1 H), 8.15 (m, 1 H), 8.39 (d, J = 1.7 Hz, 1 H), 8.72 (t, J = 6 Hz, 1 H), 12.70 (brs, 1 H); MS (ES+) 514.06
25c		СО2Н	24c	EI	¹ HNMR (DMSO-d ₆): δ 12.73 (bs, 1 H), 8.73 (t, J = 6 Hz, 1 H), 8.41 (d, J = 1.7 Hz, 1 H), 8.12 (d, J = 1.7 Hz, 1 H), 8.07 (dd, J = 7.7 & 1.7 Hz, 1 H), 7.83 (dd, J = 7.7 & 1.7 Hz, 1 H), 7.72 (d, J = 6.9 Hz, 2 H), 7.54 (t, J = 7.7, 2 H), 7.44 (t, J = 7.7 Hz, 1 H), 7.37 (d, J = 7.7 Hz, 1 H), 7.28 (d, J = 7.7 Hz, 1 H), 7.21 (m, 3 H), 7.09 (m, 2 H), 5.08 (d, J = 14 Hz, 2 H), 3.13 (t, J = 6.5 Hz, 2 H), 1.88 (m, 1 H), 0.91 (d, 6.8 Hz, 6 H); MS (ES+) 507.93
25d	H ₃ C	СО2Н	24d	I-1	¹ HNMR (DMSO-d ₆): δ 12.75 (bs, 1 H), 8.71 (t, J = 6 Hz, 1 H), 8.39 (d, J = 1.7 Hz, 1 H), 8.05 (dd, J = 1.7 & 7.7 Hz, 1 H), 8.01 (d, J = 2.5 Hz, 1 H), 7.75 (dd, J = 2.5 & 7.7 Hz, 1 H), 7.42 (d, 3.4 Hz, 1 H), 7.34 (d, J = 7.7 Hz, 1 H), 7.22 (m, 3 H), 7.19 (d, J = 8.6 Hz, 1 H), 7.09 (m, 2 H), 6.95 (d, J = 3.4 Hz, 1 H), 5.06 (d, J = 11 Hz, 2 H), 3.12 (t, J = 6.5 Hz, 2 H), 2.52 (s, 3 H), 1.89 (m, 1 H), 0.81 (d, 6.8 Hz, 6 H); MS (ES+) 528.51

6	0
¢	V
r	4

Cpd.	, a	-R'	Starting	Method	Analytical Data
25e		H²OO	24e	I-1	¹ HNMR (DMSO-d ₆): δ 0.89 (d, J = 6 Hz, 6 H), 1.86 (m, 1 H), 3.12 (t, J = 6.8 and 6.0 Hz, 2 H), 5.03 (d, J = 10 Hz, 2 H), 7.02 (s, 1 H), 7.06 (m, 2 H), 7.16 (d, J = 8.6 Hz, 1 H), 7.21 (m, 3 H), 7.31 (d, J = 7.7 Hz, 1 H), 7.75 (dd, J = 8.5 and 1.7 Hz, 1 H), 7.78 (t, J = 1.7 Hz, 1 H), 8.04 (m, 2 H), 8.29 (s, 1 H), 8.36 (d, J = 1.7 Hz, 1 H), 8.66 (t, J = 6 and 5.2 Hz, 1 H), 12.58 (bs, 1 H); MS (ES+) 498.49
25f		СО2Н	24f	I-1	MS (ES ⁺): 498.36
25g	H ₃ C	СО2Н	24g	I-1	¹ HNMR (DMSO-d ₆): δ 12.72 (bs, 1 H), δ 69 (t, δ 6 Hz, 1 H), δ 8.39 (d, δ 1 = 1.7 Hz, 1 H), δ 8.06 (m, 2 H), 7.79 (dd, δ 1 = 1.7 & 7.77 Hz, 1 H), 7.45 (s, 1 H), 7.35 (d, δ 1 = 7.7 Hz, 1 H), 7.21 (m, δ H), 7.11 (m, 2 H), 5.07 (d, δ 1 = 8.6 Hz, 2 H), 3.12 (t, δ 1 = 6.5 Hz, 2 H), 2.29 (s, 3 H), 1.89 (m, 1 H), 0.91 (d, δ 8 Hz, δ H); MS (ES+)
25h	Z Z	СО2Н	24h	1-1	¹ HNMR (DMSO-d ₆): δ 12.74 (bs, 1 H), δ .73 (m, 2 H), δ .63 (d, J=1.7 Hz, 1 H), δ .03 (dd, J=1.7 Hz, 1 H), δ .03 (dd, J=1.7 and 7.7 Hz, 1 H), δ .05 (dd, J=7.7 Hz, 1 H), δ .05 (dd, J=7.7 Hz, 1 H), 7.43 (dd, J=6.7 Hz, 1 H), 7.43 (dd, J=6.8 7 Hz, 1 H), 7.37 (d, J=7.7 Hz, 1 H), 7.29 (d, J=8.6 Hz, 1 H), 7.18 (m, 3 H), 7.08 (m, 2 H), 5.01 (q, J=10 & 25 Hz, 2 H), 3.13 (t, J=6.9 and 6 Hz, 2 H), 1.89 (m, 1 H), 0.92 (d, J=6.9 Hz, 6 H); MS (ES+)

Cpd.	≅ -	-R'	Starting From	Method Used	Analytical Data
25i	Z	СО2Н	24i	I-1	¹ HNMR (DMSO-d ₆): δ 12.70 (bs, 1 H), 8.91 (d, $J = 2.6$ Hz, 1 H), 8.68 (t, $J = 6$ & Hz, 1 H), 8.62 (d, $J = 2$ Hz, 1 H), 8.4 (d, $J = 1.7$ Hz, 1 H), 8.12 (m, 2 H), 8.05 (dd, $J = 8.6$ & 1.7 Hz, 1 H), 7.53 (dd, $J = 8.6$ & 5.2 Hz, 1 H), 7.34 (d, $J = 7.7$ Hz, 1 H), 7.28 (d, $J = 8.6$ Hz, 1 H), 7.18 (m, 3 H), 7.08 (m, 2 H), 5.04 (d, $J = 12$ Hz, 2 H), 3.11 (t, $J = 6.5$ Hz, 2 H), 1.87 (m, 1 H), 0.9 (d, 6.8 Hz, 6 H); MS (ES+) 509.11
25j	Z	СО2Н	. 24j	I-1	¹ HNMR (DMSO-d ₆): 5 0.90 (d, J = 6.9 Hz, 6 H), 1.88 (m, 1 H), 3.11 (t, J = 6.9 and 6 Hz, 2 H), 5.03 (s, 2 H), 7.06 (m, 2 H), 7.18 (m, 3 H), 7.33 (d, 8.4 Hz, 1 H), 7.30 (d, J = 8.4 Hz, 1 H), 7.75 (d, J = 6.2 Hz, 2 H), 7.85 (m, 1 H), 8.05 (dd, J = 7.6 and 1.7 Hz, 1 H), 8.18 (s, 1 H), 8.40 (d, J = 2 Hz, 1 H), 8.71 (m, 4 H); MS (ES+) 509.49
25k	H,C	СО2Н	24K	1-1	Characterized in the next step
251	CH ₃	H ^z OO	241	I-1	MS (ES ⁺): 511.54
.25m	Z-	СО2Н	24m	1-1	MS (ES ⁺): 501.66

C	•	ì	
ż		,	

	T		T	1	T	T	T	
Analytical Data	MS (ES ⁺): 472.4	MS (ES ⁺): 515.65	Characterized in the next step	MS (ES ⁺): 536.3 (M+Na) ⁺	MS (ES'): 500.4	Characterized in the next step	Characterized in the next step	MS (ES); 486.4
Method Used	I-1	E	1:1	F1	-12	I-1	1:1	I-1
Starting From	24n	240	24p	24q	24r	24s	24t	24n
-R'	СО2Н	Н200	СО2Н	СО2Н	СО2Н	СО2Н	СО2Н	СО2Н
-R	CH ₁	∑ _N	CH,	H ₃ C OH	но	CH,	CH ₂	но
Cpd.	25n	250	. 25р	25q	25r	25s	25t	. 25u

•	3
(V
•	4

Cpd.	#-	i¥.	Starting	=	A market and the second
9			From	Used	Analytical Data
25v	CH ₂	СО2Н	. 24v	I-1	MS (ES ⁺): 524.3 (M+Na) ⁺
25w	· ==CH	СО2Н	24w	F-1, Q	Characterized in the next step
25x	CH,	СО2Н	24x	I-1	MS (EST): 498.3
25y	OH OH	СО,Н	24y	I-1	MS (ES'): 484.3
252	СН1	СО,Н	24z	I-1	MS (ES ⁺): 488.3
25aa	N	СО2Н	24aa	F-1	Characterized in the next step
25ab	но	H ^z OO	24ab	K, F-1	MS (ES ⁺): 544.27

_
4
\sim

				Τ			
Analytical Data	MS (ES ⁺): 544.2	MS (ES ⁺): 670.3 (M+Na) ⁺	¹ HNMR (DMSO-d ₆): 8 9.1 (bs, 2 H), 8.8 (bs, 2 H), 8.5 (t, J = 6 Hz, 1 H), 8.02 (s, 1 H), 7.68 (s, 1 H), 7.62 (m, 6 H), 7.53 (d, J = 5.8 Hz, 1 H), 7.15 (d, J = 6 Hz, 1 H), 7.13 (m, 1 H), 7.15 (g, J = 6 Hz, 1 H), 7.13 (m, 1 H), 7.01 (s, 1 H), 6.5 (t, J = 5 Hz, 1 H), 4.7 (d, J = 5 Hz, 2 H), 3.01 (m, 2 H), 1.8 (m, 1 H), 0.85 (d, J = 6.8 Hz, 6 H)	MS (ES ⁺): 566.2 (M+Na) ⁺	MS (ES ⁺): 597.7	MS (ES ⁺): 492.54	Characterized in the next step
Method Used	K, I-1	E, H, I-1	K, I.1	K, I-1	1-1	L, I-1	L, M, K, N, O, I-1
Starting From	24ac	24ad	24ae	24ad	24ag	24ah	24ai
-R'	СО2Н	СО2Н	СО2Н	СО2Н	СО2Н	СО2Н	СО2Н
-R	но	BnO ₂ C	нон,с В	нон, с	Boc	ОН	Ž.
Cpd. No.	25ac	25ad	25ae	25af	25ag	25ah	25ai

Cpd.	"R	Starting From	Method Used	Analytical Data
26a	S	25a	J	¹ HNMR (DMSO-d ₆): \$ 0.88 (d, J = 6.9 Hz, 6 H), 1.84 (m, 1 H), 3.07 (t, J = 6.9 and 6.0 Hz, 2 H), 5.05 (s, 2 H), 7.04 (d, J = 6.9 Hz, 2 H), 7.20 (m, 4 H), 7.35 (d, J = 7.7 Hz, 1 H), 7.43 (d, J = 7.7 Hz, 1 H), 7.66 (d, J = 5.2 Hz, 1 H), 7.70 (d, J = 4.3 Hz, 1 H), 7.75 (m, 4 H), 7.82 (dd, J = 7.7 and 1.7 Hz, 1 H), 7.94 (d, J = 1.7 Hz, 1 H), 8.03 (dd, J = 7.7 and 1.7 Hz, 1 H), 8.03 (dd, J = 7.7 and 1.7 Hz, 1 H), 8.69 (t, J = 6 Hz, 1 H), 8.80 (s, 2 H), 9.17 (s, 2 H), 10.76 (s, 1 H); MS (ES+) 631.05
26b	S	25b	ſ	¹ HNMR (DMSO-d ₆): δ 0.88 (d, J = 6.9 Hz, 6 H), 1.84 (m, 1 H), 3.07 (t, J = 6.8 and 6.0 Hz, 2 H), 5.04 (s, 2 H), 7.02 (d, J = 6.8 Hz, 2 H), 7.20 (m, 3 H), 7.34 (d, J = 7.7 Hz, 1 H), 7.43 (d, J = 8.6 Hz, 1 H), 7.72 (m, 6 H), 7.90 (dd, J = 1.7 and 7.7 Hz, 1 H), 8.05 (m, 3 H), 8.23 (d, J = 1.7 Hz, 1 H), 8.68 (t, J = 6 and 5.2 Hz, 1 H), 8.82 (s, 2 H), 9.17 (s, 2 H), 10.73 (s, 1 H); MS (ES+) 631.82
260		25c	r	¹ HNMR (DMSO-d ₆): § 10.75 (s, 1 H), 9.19 (s, 2 H), 8.89 (s, 2 H), 8.69 (t, J = 6 Hz, 1 H), 8.29 (d, J = 1.7 Hz, 1 H), 8.07 (dd, J = 7.7 & 1.7 Hz, 1 H), 7.99 (d, J = 1.7 Hz, 1 H), 7.87 (dd, J = 7.7 & 1.7 Hz, 1 H), 7.83 (d, J = 7.7 Hz, 2 H), 7.77 (m S H), 7.54 (t, J = 7.7, 2 H), 7.43 (m, 3 H), 7.19 (m, 3 H), 7.03 (d, J = 6.9 Hz, 2 H); 5.04 (bs, 2 H), 3.09 (t, J = 6.5 Hz, 2 H), 1.84 (m, 1 H), 0.89 (d, 6.8 Hz, 6 H); MS (ES+) 625.81

φ	
$^{\circ}$	
Ц	

Cpd.	-R	Starting From	Method	Analytical Data
26d	H ₃ C S	25d	-	¹ HNMR (DMSO-d ₆): δ 10.7 (s, 1 H), 9.14 (s, 2 H), 8.82 (s, 2 H), 8.64 (t, J = 6 Hz, 1 H), 8.21 (s, 1 H), 7.98 (dd, J = 7.8 & 2 Hz, 1 H), 7.8 (d, J = 2 Hz, 1 H), 7.7 (m, 4 H), 7.68 (dd, J = 2 & 7.8 Hz, 1 H), 7.44 (d, J = 3 Hz, 1 H), 7.37 (d, 7.8 Hz, 1 H), 7.16 (m, 3 H), 7.0 (s, 1 H), 6.99 (s, 1 H), 6.86 (d, J = 3 Hz, 1 H), 5.0 (s, 2 H), 3.03 (t, J = 6.5 Hz, 2 H), 2.46 (s, 3 H), 1.78 (m, 1 H), 0.83 (d, 6.8 Hz, 6 H); MS (ES+) 645.77
26e		25e	7	¹ HNMR (DMSO-d ₆): δ 0.87 (d, J = 6.2 Hz, 6 H), 1.73 (m, 1 H), 3.07 (t, J = 6.7 and 6.2 Hz, 2 H), 5.05 (s, 2 H), 7.03 (dd, J = 1.7 and 8 Hz, 2 H), 7.11 (d, J 1.7 Hz, 1 H), 7.21 (m, 3 H), 7.31 (d, J = 8 Hz, 1 H), 7.42 (d, J = 8 Hz, 1 H), 7.78 (m, 5 H), 7.92 (d, J = 1.7 Hz, 1 H), 8.02 (dd, J = 8 and 1.7 Hz, 1 H), 8.25 (d, J = 1.9 Hz, 1 H), 8.33 (s, I H), 8.63 (t, J = 6 and 5 Hz, 1 H), 8.80 (bs, 2 H), 9.14 (bs, 2 H), 10.67 (s, I H); MS (ES+) 615.75
26 f		25f	Į	¹ HNMR (DMSO-d ₆): \$ 0.87 (d, J = 6.7 Hz, 6 H), 1.83 (m, 1 H), 3.06 (t, J = 6.7 and 6.2 Hz, 2 H), 5.04 (s, 2 H), 6.67 (m, 1 H), 7.03 (m, 2 H), 7.16 (m, 3 H), 7.35 (d, J = 8.6 Hz, 1 H), 7.42 (d, J = 8 Hz, 1 H), 7.74 (m, 4 H), 7.85 (m, 2 H), 7.98 (d, J = 1.2 Hz, 1 H), 8.03 (dd, J = 1.7 and 8 Hz, 1 H), 8.25 (d, J = 1.8 Hz, 1 H), 8.67 (t, J = 6.2 and 5.5 Hz, 1 H), 8.88 (bs, 2 H), 9.12 (bs, 2 H), 10.772 (bs, 1 H); MS (ES+) 615.75
26g	H,C	25g	Pro.	¹ HNMR (DMSO-d ₆): 5 10.67 (s, 1 H), 9.12 (s, 2 H), 8.78 (s, 2 H), 8.61 (t, J = 6 Hz, 1 H), 8.21 (s, 1 H), 7.98 (dd, J = 7.8 & 2 Hz, 1 H), 7.84 (d, J = 2 Hz, 1 H), 7.7 (m, 5 H), 7.46 (s, 1 H), 7.39 (d, 7.8 Hz, 1 H), 7.29(d, J = 7.7 Hz, 1 H), 7.16 (m, 4H), 7.01(s, 1 H), 6.99 (s, 1 H), 5.0 (s, 2 H), 3.03 (t, J = 6.5 Hz, 2 H), 2.23 (s, 3 H), 1.79 (m, 1 H), 0.83 (d, 6.8 Hz, 6 H); MS (ES+) 645.77

·R	Starting From	Method Used	Analytical Data
	25h	ь.	¹ HNMR (DMSO-d ₆): δ 10.77 (bs, 1 H), 8.95 (bs, 4 H), 8.76 (d, J = 4.3 Hz, 1 H), 8.69 (t, J = 6 Hz, 1 H), 8.4 (s, 1 H), 8.29 (m, 2 H), 8.15 (d, J = 7.7 Hz, 1 H), 8.07 (dd, J = 1.7 and 7.7 Hz, 1 H), 7.99 (dt, J = 1.7 & 7.7 Hz, 1 H), 7.76 (m, 4 H), 7.46 (m, 2 H), 7.18 (m, 3 H), 7.05 (s, 1 H), 7.03 (s, 1 H), 5.06 (s, 2 H), 3.10 (t, J = 6.9 and 6 Hz, 2 H), 1.86 (m, 1 H), 0.89 (d, J = 6.9 Hz, 6 H); MS (ES+) 626.69
	25i	.	¹ HNMR (DMSO-d ₆): δ 10.73 (bs, 1 H), 9.16 (bs, 2 H), 9.05 (d, J = 1.9 Hz, 1 H), 8.79 (s, 2 H), 8.69 (t, J = 6 & Hz, 1 H), 8.64 (dd, J = 1.2 & 5 Hz, 1 H), 8.29 (d, J = 1.7 Hz, 1 H), 8.24 (d, J = 8 Hz, 1 H), 8.05 (m, 2 H), 7.93 (dd, 8 & 1.8 Hz, 1 H), 7.76 (m, 5 H), 7.56 (dd, J = 8 & 4.3 Hz, 1 H), 7.44 (d, J = 7.4 Hz, 2 H), 7.18 (m, 3 H), 7.0 (m, 2 H), 5.0 (s, 2 H), 3.08 (t, J = 6.5 Hz, 2 H), 1.82 (m, 1 H), 0.88 (d, 6.8 Hz, 6 H);; MS (ES+) 626.44
	25j	ŀſ	¹ HNMR (DMSO-d ₆): δ 0.87 (d, J = 6.9 Hz, 6 H), 1.75 (m, 1 H), 3.08 (t, J = 6.9 and 6.0 Hz, 2 H), 5.03 (s, 2 H), 7.03 (m, 1 H), 7.18 (m, 3 H), 7.45 (t, J = 7.8 and 7 Hz, 2 H), 7.76 (s, 4 H), 7.87 (d, J = 6 Hz, 2 H), 7.94 (dd, J = 8 and 2 Hz, 1 H), 8.05 (dd, J = 8 and 2 Hz, 1 H), 8.08 (d, J = 2 Hz, 1 H), 8.29 (d, J = 2 Hz, 1 H), 8.20 (m, 3 H), 8.84 (s, 2 H), 9.11 (s, 2 H), 10.76 (s, 1 H); MS (ES+) 626.76
S	25k	'n	¹ HNMR (DMSO-d ₆): δ 10.72 (bs, 1 H), 9.15 (bs, 2 H), 8.81 (bs, 2 H), 8.86 (t, J = 6 Hz, 1 H), 8.28 (s, 1 H), 8.03 (m, 3 H), 7.91 (d, J = 7.9 Hz, 1 H), 7.81 (d, J = 4 Hz, 1 H), 7.74 (s, 4 H), 7.42 (d, J = 7.9 Hz, 1 H), 7.38 (d, J = 7.9 Hz, 1 H), 7.18 (m, 3 H), 7.04 (m, 2 H), 5.04 (bs, 2 H), 3.07 (t, J = 6 Hz, 2 H), 2.57 (s, 3 H), 1.83 (m, 1 H), 0.87 (d, J = 6.8 Hz, 6 H); MS (ES+) 673.7

26k

26j

26i

Cpd. No.

26h

α
2
_

Cpd. No.	-R	Starting From	Method Used	Analytical Data
261	CH ₃	251	J	¹ HNMR (DMSO-d ₆): 5 10.66 (s, 1 H), 9.20 (s, 2 H), 8.86 (s, 2 H), 8.66 (t, J = 6 Hz, 1 H), 8.24 (d, J = 2 Hz, 1 H), 8.15 (dd, J = 7.8 & 2 Hz, 1 H), 7.69 (m, 4 H), 7.68 (d, J = Hz, 1 H), 7.63 (d, J = 7.9 Hz, 1 H), 7.43 (d, J = 7.9 Hz, 1 H), 7.24 (m, 3 H), 7.09 (m, 2 H), 6.92 (s, 1 H), 6.40 (s, 1 H), 6.17 (t, J = 4 Hz, 1 H), 5.10 (bs, 2 H), 3.74 (s, 3 H), 3.09 (t, J = 6 Hz, 2 H), 1.83 (m, 1 H), 0.88 (d, J = 6.8 Hz, 6 H); MS (ES+) 628.65
26m		25m	Ţ	MS (ES+): 618.91
26u	СН,	25n	J	¹ HNMR (DMSO-d ₆): \$ 10.56 (s, 1 H), 9.15 (bs, 2 H), 8.84 (bs, 2 H), 8.64 (t, J = 6 Hz, 1 H), 8.19 (d, J = 2 Hz, 1 H), 7.99 (d, J = 7 Hz, 1 H), 7.70 (m, 4 H), 7.46 (s, 1 H), 7.36 (m, 2 H), 7.24 (m, 3 H), 7.05 (s, 1 H), 7.00 (s, 1 H), 6.0 (m, 1 H), 5.18 (d, J = 16 Hz, 1 H), 5.10 (d, J = 11 Hz, 1 H), 5.0 (s, 2 H), 3.47 (d, J = 6 Hz, 1 H), 3.03 (t, J = 6 Hz, 2 H), 1.79 (m, 1 H), 0.83 (d, J = 6.8 Hz, 6 H); MS (ES+) 589.5
260	Z S	250	J	¹ HNMR (DMSO-d ₆): \$ 10.84 (s, 1 H), 9.16 (s, 2 H), 8.78 (s, 2 H), 8.69 (t, J = 6 Hz, 1 H), 8.27 (d, J = 2 Hz, 1 H), 8.19 (s, 1 H), 8.09 (dd, J = 2 & 7.7 Hz, 1 H), 8.01 (d, J = 4 Hz, 1 H), 7.89 (d, J = 3 Hz, 1 H), 7.73 (m, 4 H), 7.44 (dd, J = 3 & 7.8 Hz, 2 H), 7.16 (m, 3 H), 7.30 (s, 1 H), 7.05 (s, 1 H), 5.03 (bs, 2 H), 3.06 (t, J = 6.5 Hz, 2 H), 1.82 (m, 1 H), 0.86 (d, 6.8 Hz, 6 H); MS (ES+) 632.4
.26p	CH,	25p	ſ	MS (ES ⁺): 609.3 (M+Na) ⁺

Cpd.	-R	Starting From	Method Used	Analytical Data	
26q	—————————————————————————————————————	25q	<u>, </u>	MS (ES+) 631.5	
26r	но	25r	ſ	¹ HNMR (DMSO-d ₆): 5 10.71 (s, 1 H), 9.16 (s, 2 H), 8.81 (s, 2 H), 8.68 (t, J = 6 Hz, 1 H), 8.25 (s, 1 H), 8.03 (d, J = 7.8 Hz, 1 H), 7.73 (m, 5 H), 7.69 (s, 1 H), 7.55 (d, J = 7.8 Hz, 1 H), 7.39 (d, J = 8.9 Hz, 1 H), 7.26 (m, 3 H), 7.03 (m, 2 H), 5.02 (bs, 2 H), 4.95 (t, J = 5 Hz, 1 H), 3.62 (q, J = 6 & 12.8 Hz, 2 H), 3.07 (t, J = 6 Hz, 2 H), 2.62 (t, J = 6 Hz, 2 H), 1.83 (m, 1 H), 0.88 (d, J = 6.8 Hz, 6 H); MS (ES+) 617.4	
26s	CH ₂	25s	T	¹ HNMR (DMSO-d ₆): δ 0.89 (d, J = 6.8 Hz, 6 H), 1.84 (m, 1 H), 1.99 (s, 3 H), 3.09 (t, J = 6 Hz, 2 H), 5.04 (s, 2 H), 5.18 (s, 1 H), 5.28 (s, 1 H), 6.73 (d, J = 16 Hz, 1 H), 7.04 (d, J = 6 Hz, 2 H), 7.23 (m, 5 H), 7.42 (d, J = 9 Hz, 1 H), 7.73 (m, 5 H), 7.85 (s, 1 H), 8.03 (dd, J = 9 and 2 Hz, 1 H), 8.26 (d, J = 2 Hz, 1 H), 8.87 (bs, 4 H), 10.91 (s, 1 H); MS (ES+) 615.4	·
26t	CH,	25t	ſ	¹ HNMR (DMSO-d ₆): 8 10.8 (br s, 1 H), 9.1 and 8.9 (2 br s, 4 H), 8.6 (m, 1 H), 8.2 (s, 1 H), 8.0 (m, 1 H), 7.8-7.6 (m, 6 H), 7.40 (, J = 6.9 Hz, 1 H), 7.3 (m, 4 H), 7.0 (d, 1 H), 5.6 (m, 1 H), 5.2 (m, 1 H), 5.0 (br s, 1 H), 3.1 (t, J = 6.8 Hz, 2 H), 2.2 (s, 3 H), 1.8 (m, 1 H), 0.95 (d, 6 H); MS (ES+) 589.4, MS (ES-) 587.5	
26u	но)	¹ HNMR (DMSO-d ₆): δ 0.88 (d, J = 6.8 Hz, δ H), 1.84 (m, 1 H), 3.09 (t, J = 6 Hz, 2 H), 4.33 (t, J = 5.5 Hz, 2 H), 5.02 (s, 2 H), 5.01 (t, J = 5.5 Hz, 1 H), 5.95 (m, J H), 6.57 (d, J = 11.5 Hz, 1 H), 7.04 (d, J = 6.7 Hz, 2 H), 7.25 (m, J H), 7.31 (d, J = 7.8 Hz, 1 H), 7.43 (m, J H), 7.54 (s, J H), 7.74 (s, J H), 8.05 (dd, J = 7.8 and 2 Hz, 1 H), 8.23 (d, J = 2 Hz, J H), 8.69 (t, J = 6 Hz, J H), 8.83 (bs, J H), 9.18 (bs, J H), 10.66 (s, J H); MS (ES+) 605.3	

ζ	=)
1	٧	1
t	-	١

\$ 0.88 (d, J 6 Hz, 2 H), 3 2, 2 H), 7.29 (m, 6 Mz, 2 H), 7.29 (m, 6 Mz, 2 H), 7.75 (m, 6 Mz, 6 M	HNMR (DMSO-d ₆): δ 0.88 (d, J = 6.8 Hz, 6 H), 1.84 (m, 1 H), 2.75 (t, J = 7	HNMR (DMSO-62) BO 88 (A 1	
s, 1 H), 8.	Hz, 2 H), 3.09 (t, J = 6 Hz, 2 H), 3.60 (m, 2 H), 4.65 (t, J = 5 Hz, 1 H), 5.05 (s, 2 H), 7.05 (d, J = 7 Hz, 2 H), 7.29 (m, 5 H), 7.42 (d, J = 7.8 Hz, 1 H), 7.66 (dd, J = 7.8 and 2 Hz, 1 H), 7.75 (m, 6 H), 8.03 (dd, J = 7.8 and 2 Hz, 1 H), 8.25 (s, 1 H), 8.68 (t, J = 6 Hz, 1 H), 8.82 (bs, 2 H), 9.18 (bs, 2 H), 10.68 (s, 1 H); MS (ES+) 619.4	25v J 2 H, 7.05 (t, J = 6 Hz, 2 H), 3.60 (m, 2 H), 4.65 (t, J = 5 Hz, 1 H), 5.05 (s, J = 7 Hz, 2 H), 7.29 (m, 5 H), 7.42 (d, J = 7 Hz, 1 H), 7.66 (dd, J = 7.8 and 2 Hz, 1 H), 7.75 (m, 6 H), 8.03 (dd, J = 7.8 and 2 Hz, 1 H), 7.66 (dd, J = 7.8 and 2 Hz, 1 H), 8.85 (s, I H), 8.	ſ
8 0.88 (d), 5.04 (d 8 Hz, 1 F), 7.79 (s,	¹ HNMR (DMSO-d ₆): \$ 0.88 (d, J = 6.8 Hz, 6 H), 1.84 (m, 1 H), 3.09 (t, J = 6 Hz, 2 H), 4.41 (s, 1 H), 5.04 (d, J = 11 Hz, 2 H), 7.05 (d, J = 5.5 Hz, 2 H), 7.29 (m, 3 H), 7.34 (d, J = 8 Hz, 1 H), 7.40 (d, J = 8 Hz, 1 H), 7.65 (dd, J = 8 and 2 Hz, 1 H), 7.75 (s, 4 H), 7.79 (s, 1 H), 8.05 (dd, J = 8 and 2 Hz, 1 H), 8.28 (d, J = 2 Hz, 1 H), 8.71 (t, J = 6 Hz, 1 H), 8.82 (bs, 2 H), 9.17 (bs, 2 H), 10.73 (s, 1 H); MS (ES+) 573.3	¹ HNMR (DMSO-d ₆): \$ 0.88 (d Hz, 2 H), 4.41 (s, 1 H), 5.04 (d (m, 3 H), 7.34 (d, J = 8 Hz, 1 F Hz, 1 H), 7.75 (s, 4 H), 7.79 (s, = 2 Hz, 1 H), 8.71 (t, J = 6 Hz, H); MS (ES+) 573.3	
\$ 0.86 (d, J = 6 Hz, 1, 2 H), 7.2 J, 8.66 (t, J SS+) 617.6	¹ HNMR (DMSO-d ₆): δ 0.86 (d, J = 6.8 Hz, 6 H), 1.47 (s, 3 H), 1.74 (s, 3 H), 1.85 (m, 1 H), 3.06 (t, J = 6 Hz, 2 H), 3.43 (d, J = 8 Hz, 1 H), 5.04 (s, 2 H), 5.11 (m, 1 H), 7.03 (m, 2 H), 7.23 (m, 5 H), 7.52 (m, 2 H), 7.72 (m, 5 H), 8.02 (m, 1 H), 8.21 (s, 1 H), 8.66 (t, J = 6 Hz, 1 H), 8.81 (bs, 2 H), 9.23 (bs, 2 H), 10.52 (s, 1 H); MS (ES+) 617.6	¹ HNMR (DMSO-d ₆): 8 0.86 (d, 1.85 (m, 1 H), 3.06 (t, J = 6 Hz, 5.11 (m, 1 H), 7.03 (m, 2 H), 7.7 (m, 1 H), 8.21 (s, 1 H), 8.66 (t, J 10.52 (s, 1 H); MS (ES+) 617.6	ſ
6 0.87 (d, 6 Hz, 2 H) n, 3 H), 7. 7.73 (m, 1 H), 8.7	¹ HNMR (DMSO-d ₆): \$ 0.87 (d, J = 6.8 Hz, 6 H), 1.72 (m, 1 H), 3.07 (t, J = 6 Hz, 2 H), 4.36 (d, J = 6 Hz, 2 H), 5.0 (m, 2 H), 5.42 (t, J = 6 Hz, 1 H), 7.03 (d, J = 7 Hz, 2 H), 7.25 (m, 3 H), 7.31 (d, J = 8 Hz, 1 H), 7.39 (d, J = 8 Hz, 1 H), 7.58 (d, J = 8 Hz, 1 H), 7.73 (m, 5 H), 8.02 (dd, J = 10 and 2 Hz, 1 H), 8.23 (s, 1 H), 8.68 (t, J = 6 Hz, 1 H), 8.76 (bs, 2 H), 9.15 (bs, 2 H), 10.71 (s, 1 H); MS (ES+) 603.4	¹ HNMR (DMSO-d ₆): \$ 0.87 (d, Hz, 2 H), 4.36 (d, J = 6 Hz, 2 H) J = 7 Hz, 2 H), 7.25 (m, 3 H), 7.58 (d, J = 8 Hz, 1 H), 7.73 (m, 1 H), 8.68 (t, J = 6 Hz, 1 H), 8.7 (ES+) 603.4	ſ

Cpd. No.	-R	Starting From	Method Used	Analytical Data
262	CH ₂	25z	٦	¹ HNMR (DMSO-d ₆): § 10.6 (s, 1 H), 9.17 (s, 1 H), 8.85 (s, 1 H), 8.68 (d, J = 5.9 Hz, 2 H), 8.25 (d, 1.98 Hz, 1 H), 8.05 (d, J = 1.96 Hz, 1 H), 8.03 (d, J = 1.9 Hz, 1 H), 7.75 (m, 4 H), 7.65 (m, 4 H), 7.41 (d, J = 7.87 Hz, 4 H), 7.25 (m, 1 H) 5.4 (s, 1 H), 5.2 (d, J = 5.9 Hz, 2 H), 4.44 (d, J = 5.9 Hz, 1 H), 3.09 (d, J = 6.89 Hz, 2 H), 0.88 (d, J = 5.9 Hz, 6 H); MS (ES+) 605.69
26aa	N==	25aa	J	Characterized in the next step
26ab	но	25ab	פיייל	¹ HNMR (DMSO-d ₆): \$ 10.70 (s, 1 H) 9.15 (bs, 2 H), 8.77 (bs, 2 H), 8.67 (t, J = 6 Hz, 1 H), 8,25 (s, 1 H), 8.04 (d, J = 7 Hz, 1 H), 7.77 (d, J = 2 Hz, 1 H), 7.71 (m 4 H), 7.70 (d, J = 2 Hz, 1 H), 7.59 (d, J = 6 Hz, 1 H), 7.46 (d, J = 8 Hz, 1 H), 7.22 (m, 3 H), 7.05 (s, 1 H), 7.03 (d, J = 2 Hz, 1 H), 7.22 (m, 3 H), 7.05 (s, 1 H), 7.03 (d, J = 2 Hz, 1 H), 5.04 (bs, 2 H), 4.51 (d, J = 6 Hz, 2 H), 3.07 (t, J = 6 Hz, 2 H), 1.82 (m, 1 H), 0.86 (d, J = 6.8 Hz, 6 H); MS (ES+) 661.74
26ac	но	25ac	-	¹ HNMR (DMSO-d ₆): \$ 0.87 (d, J = 6.8 Hz, 6 H), 1.83 (m, 1 H), 3.07 (t, J = 6 Hz, 2 H), 4.71 (d, J = 5 Hz, 2 H), 5.04 (bs, 2 H), 5.69 (t, J = 5 Hz, 1 H), 7.03 (d, J = 5.8 Hz, 2 H), 7.21 (m, 3 H), 7.35 (d, J = 5 Hz, 1 H), 7.38 (d, J = 8 Hz, 1 H), 7.44 (m, d, J = 8 Hz, 1 H), 7.58 (d, J = 5 Hz, 1 H), 7.74 (m, 6 H), 8.03 (d, J = 8 Hz, 1 H), 8.24 (s, 1 H), 8.67 (t, J = 6 Hz, 1 H), 8.79 (bs, 2 H), 9.14 (bs, 2 H), 10.64 (s, 1 H); MS (ES+) 661.74
26ad	BnCO ₂	25ad	ſ	¹ HNMR (DMSO-d ₆): δ 9.65 (s, 1 H), 8.71 (t, J = 5.15 Hz, 1 H) 8.39 (d, J = 2.57 Hz, 4 H), 8.09 (d, J = 1.79 Hz, 4 H), 8.05 (d, J = 1.79 Hz, 4 H), 7.43 (d, J = 7.77 Hz, 2 H), 7.29 (s, 2 H), 7.19 (m, 2 H), 7.08 (m, 2 H), 5.03 (d, J = 2.58 Hz, 2 H) 3.29 (m, 2 H), 3.12 (s, 4 H), 2.49 (m, 2 H), 1.87 (m, 2 H), 0.90 (d, J = 6.87 Hz, 6 H); MS (ES+) 765.4

c	٧
C	7
•	ď

No.	-R	Starting From	Method Used	Analytical Data
26ae	нон,с	25ae	ſ	¹ HNMR (DMSO-d ₆): 5 9.1 (bs, 2 H), 8.8 (bs, 2 H), 8.5 (t, J = 6 Hz, 1 H), 8.02 (s, 1 H), 7.62 (m, 6 H), 7.53 (d, J = 5.8 Hz, 1 H), 7.15 (d, J = 6 Hz, 1 H), 7.13 (m, 1 H), 7.01 (s, 1 H), 5.5 (t, J = 5 Hz, 1 H), 4.7 (d, J = 5 Hz, 2 H), 3.01 (m, 2 H), 1.8 (m, 1 H), 0.85 (d, J = 6.8 Hz, 6 H); MS (ES+) 571.2
26af	нон,с	25af	J	¹ HNMR (DMSO-d ₆): δ 10.6 (s, 1 H), 9.17 (s, 1 H), 8.85 (s, 1 H), 8.68 (d, J = 5.9 Hz, 2 H), 8.25 (d, 1.98 Hz, 1 H), 7.75 (m, 4 H), 7.65 (m, 4 H), 7.41 (d, J = 7.87 Hz, 4 H), 7.25 (m, 4 H), 5.4 (s, 1 H), 5.2 (d, J = 5.9 Hz, 2 H), 4.44 (d, J = 5.9 Hz, 1 H), 3.09 (d, J = 6.89 Hz, 2 H), 1.89 (d, J = 6.89 Hz, 2 H), 0.88 (d, J = 5.9 Hz, 6 H).
26ag	Boc	25ag	r.	¹ HNMR (DMSO-d ₆): \$ 0.90 (d, J = 6.9 Hz, 6 H), 1.41 (s, 9 H), 1.87 (m, 1 H), 3.11 (t, J = 6.9 and 6 Hz, 2 H), 5.07 (s, 2 H), 6.37 (t, J = 3.4 Hz, 1 H), 6.51 (s, 1 H), 7.11 (m, 2 H), 7.26 (m, 3 H), 7.33 (d, 7.7 Hz, 1 H), 7.41 (d, J = 8.6 Hz, 1 H), 7.45 (d, J = 1.7 Hz, 1 H), 7.61 (dd, J = 1.7 and 7.7, 1 H), 7.74 (m, 5 H), 8.05 (dd, J = 8.6 and 1.7 Hz, 1 H), 8.26 (d, J = 1.7 Hz, 1 H), 8.66 (t, J = 5 and 6 Hz, 1 H), 8.77 (bs, 2 H), 9.15 (bs, 2 H), 10.58 (s, 1 H); MS (ES+) 714.78
26ah	ОН	25ah	n	MS (ES ⁺): 609.6
26ai	z ^r	25ai	ſ	¹ HNMR (DMSO-d ₆): \$ 10.8 (s, 1 H), 6.2 and 8.9 (2 br s, 2 H each, 4H), 8.7 (t, 1 H), 8.2 (s, 1 H), 8.0 (d, J = 6 Hz, 1 H), 7.7 (m, 5 H), 7.6 (d, J = 5 Hz, 1 H), 7.4 (d, J = 5.8 Hz, 1 H), 7.35 (d, J = 6.9 Hz, 1 H), 7.29 (m, 3 H), 7.0 (m, 2 H), 5.0 (m, 2 H), 4.6 (s, 2 H), 3.01 (t, J = 6.8 Hz, 2 H), 1.81 (m, 1 H), 0.95 (d, J = 6.8 Hz, 6 H); MS (ES+) 604.3

NHR'	Analytical Data	¹ H NMR (DMSO-d ₆): δ 14.95 (s, 1 H), 8.97 (s, 4 H), 8.5 (t, J = 6 Hz, 1 H), 7.97 (d, J = 2 Hz, 1 H), 7.80 (d, J = 2 Hz, 1 H), 7.73 (dd, J = 7.9 and 2 Hz, 1 H), 7.61 (m, 7 H), 7.18 (t, J = 3.9 Hz, 1 H), 7.05 (d, J = 7.9 Hz, 1 H), 6.93 (d, J = 7.9 Hz, 1 H), 3.01 (t, J = 6.9 and 6.0 Hz, 2 H), 1.81 (m, 1 H), 0.84 (d, J = 6.9 Hz, 6 H); MS (ES [†]): 541.17	¹ H NMR (DMSO-d ₆): \$ 13.24 (s, 1 H), 9.05 (s, 2 H), 8.9 (s, 2 H), 8.49 (t, J = 6 and 5.2 Hz, 1 H), 7.97 (s, 1 H), 7.99 (s, 1 H), 7.87 (s, 1 H), 7.75 (d, J = 7.7 Hz, 1 H), 7.65 (m, 1 H), 7.62 (m, 6 H), 7.05 (d, J = 7.7 Hz, 1 H), 6.93 (d, J = 7.7 Hz, 1 H), 6.93 (d, J = 7.7 Hz, 1 H), 8.91 (t, J = 6.9 and 6.0 Hz, 2 H), 1.81 (m, 1 H), 0.85 (d, J = 6.9 Hz, 6 H); MS (ES ⁺): 541.42	¹ H NMR (DMSO-4 ₆): 5 13.28 (s, 1 H), 9.04 (s, 4 H), 8.5 (t, J = 6 Hz, 1 H), 7.97 (s, 1 H), 7.82 (s, 1 H), 7.74 (m, 3 H), 7.62 (m, 5 H), 7.5 (t, J = 7.7 Hz, 2 H), 7.4 (t, J = 7.7, 1 H), 7.1 (d, J = 7.7 Hz, 2 H), 6.97 (d, J = 7.7. Hz, 1 H), 3.01 (t, J = 6.5 Hz, 2 H), 1.8 (m, 1 H), 0.85 (d, 6.8 Hz, 6 H), MS (ES ⁺): 535.48
HO2C	Method Used	1-2	1-2	1-2
E E	Starting From	26a	26b	26c
	-R'	CH, CH, CH,	CH,	CH,
·	٣-	S	S	
	. Cpd.	27a	27b	27c

4	
3	
~	

	T	· · · · · · · · · · · · · · · · · · ·		
Analytical Data	¹ H NMR (DMSO-d ₆): 8 9.03 (s, 2 H), 8.89 (s, 2 H), 8.49 (t, J = 6 Hz, 1 H), 7.99 (s, 1 H), 7.65 (m, 8 H), 7.37 (d, J = 3 Hz, 1 H), 7.04 (d, J = 7.7 Hz, 1 H), 6.98 (s, 1 H), 6.82 (d, J = 3 Hz, 1 H), 2.98 (t, J = 6.5 Hz, 2 H), 2.46 (s, 3 H), 1.76 (m, 1 H), 0.81 (d, 6.8 Hz, 6 H); MS (ES ⁺):555.61	¹ H NMR (DMSO-d ₆): δ 14.10 (s, 1 H), 9.05 (bs, 2 H), 8.79 (bs, 2 H), 8.47 (t, J = 5.6 Hz, 1 H), 8.3 (s, 1 H), 7.96 (d, J = 2 Hz, 1 H), 7.78 (m, 1 H), 7.63 (m, 7 H), 7.05 (m, 1 H), 7.01 (d, J = 7.7 Hz, 1 H), 6.92 (d, J = 7.7 Hz, 1 H), 3.02 (t, J = 4.9 Hz, 2 H), 1.81 (m, 1 H), 0.85 (d, J = 6.3 Hz, 6 H); MS (ES [†]): 525.36	¹ H NMR (DMSO-d ₆): 8 9.07 (s, 2 H), 8.86 (s, 2 H), 8.53 (t, J = 5 Hz, 1 H), 8.03 (s, 1 H), 7.89 (d, J = 1.4 Hz, 1 H); 7.78 (m, 2 H), 7.65 (m, 6 H), 7.1 (m, 2 H), 7.08 (d, J = 7 Hz, 1 H), 6.64 (dd, J = 3.5 and 2 Hz, 1 H), 3.03 (t, J = 6.9 and 6.0 Hz, 2 H), 1.81 (m, 1 H), 0.86 (d, J = 6.9 Hz, 6 H); MS (ES ⁺): 525.43	¹ H NMR (DMSO-d ₆): \(\delta \) 13.81 (s, 1 H), 8.74 (bs, 4 H), 8.43 (t, J = 6 Hz, 1 H), 7.92 (d, J = 2 Hz, 1 H), 7.69 (d, J = 2 Hz, 1 H), 7.62 (dd, J = 7.7 & 2 Hz, 1 H), 7.54 (m, 5 H), 7.38 (s, 1 H), 7.15 (s, 1 H), 6.99 (d, J = 7.8 Hz, 1 H), 6.89 (d, J = 6.8 Hz, 1 H), 2.97 (t, J = 6.5 Hz, 2 H), 2.20 (s, 3 H), 1.76 (m, 1 H), 0.8 (d, 6.8 Hz, 6 H); MS (ES ⁺): 555.67
Method Used	1-2	I-2	1-2	F-2
Starting From	26d	26e	26f	26g
R'	CH ₃	CH,	CH,	CH, CH,
-R	H ₃ C			H ₃ C
Cpd.	. 27d	27e	27f	27g

u
~
_

Cpd.	4	À	Starting	Method	
Š.		\Y.	From	Used	Analytical Data
27h	z	E, CH,	26h	I-2	¹ H NMR (DMSO-d ₆): \$ 13.95 (bs, 1 H), 8.99 (bs, 2 H), 8.79 (bs, 2 H), 8.65 (d, J = 5 Hz, 1 H), 8.43 (t, J = 6 Hz, 1 H), 8.25 (s, 1 H), 8.09 (d, J = 7.8 Hz, 1 H), 8.00 (d, J = 7.8 Hz, 1 H), 8.00 (d, J = 7.8 Hz, 1 H), 7.94 (s, 1 H), 7.87 (t, J = 7.8 Hz, 1 H), 7.58 (m, 5 H), 7.34 (dd, J = 7.8 & 5 Hz, 1 H), 7.09 (dd, J = 7.7 Hz, 1 H), 6.90 (d, J = 7.8 Hz, 1 H), 2.97 (t, J = 5 Hz, 2 H), 1.76 (m, 1 H), 0.81 (d, 6.8 Hz, 6 H); MS (ES ⁺): 268.64 (m/2)
27i	z	CH, CH,	26i	F-2	¹ H NMR (DMSO-d ₆): δ 9.05 (bs, 2 H), 8.95 (d, J = 2.1 Hz, 1 H), 8.75 (s, 2 H), 8.65 (dd, J = 5 & 1.4 Hz, 1 H), 8.5 (t, J = 5.6 Hz, 1 H), 8.2 (dt, J = 1.8 & 7.7 Hz, 1 H), 7.99 (d, J = 2.1 Hz, 1 H), 7.9 (d, J = 2.1 Hz, 1 H), 7.85 (dd, J = 7.7 & 2.2 Hz, 2 H), 7.65 (m, 5 H), 7.55 (dd, J = 7.7 & 4.5 Hz, 1 H), 7.15 (d, J = 7.7 Hz, 1 H), 6.95 (d, J = 7.7 Hz, 1 H), 3.08 (t, J = 5 Hz, 2 H), 1.82 (m, 1 H), 0.9 (d, 6.8 Hz, 6 H); MS (ES ⁺): 268.85 (m ²)
27j	Z	CH, CH,	26j	1-2	¹ H NMR (DMSO-d ₆): δ 14.19 (s, 1 H), 9.06 (bs, 2 H), 8.67 (bs, 2 H), 8.67 (d, J = 6 Hz, 2 H), 8.50 (t, J = 6 Hz, 1 H), 7.97 (m, 2 H), 7.91 (dd, J = 7.7 and 2 Hz, 1 H), 7.80 (d, J = 6 Hz, 2 H), 7.64 (m, 6 H), 7.18 (d, J = 7.7 Hz, 1 H), 6.95 (d, J = 7.7 Hz, 1 H), 3.02 (t, J = 5.0 Hz, 2 H), 1.82 (m, 1 H), 0.80 (d, J = 6.9 Hz, 6 H); MS (ES ⁺): 536.43
27k	H ₃ C	CH ₃	26k	1-2	¹ H NMR (DMSO-d ₆): δ 9.04 (bs, 2 H), 8.78 (bs, 2 H), 8.55 (t, J = 6 Hz, 1 H), 8.1 (s, 1 H), 7.98 (d, J = 4 Hz, 1 H), 7.95 (s, 1 H), 7.87 (d, J = 7.9 Hz, 1 H), 7.75 (d, J = 6.9 Hz, 1 H), 7.66 (m, 4 H), 7.2 (m, 2 H), 7.09 (s, 1 H), 3.03 (t, J = 6 Hz, 2 H), 2.55 (s, 3 H), 1.81 (m, 1 H), 0.85 (d, J = 6.8 Hz, 6 H); MS (ES [†]): 583.59

ч	•
7	7
_	4

Analytical Data	¹ H NMR (DMSO-d ₆): δ 9.1 (s, 2 H), 8.84 (s, 2 H), 8.56 (t, J = 6 Hz, 1 H), 8.08 (bs, 1 H), 7.67 (m, J = 7 H), 7.58 (d, J = 7.9 Hz, 1 H), 7.11 (m, 2 H), 6.91 (bs, 1 H), 6.31 (bs, 1 H), 6.11 (t, J = 3 Hz, 1 H), 3.74 (s, 3 H), 3.05 (t, J = 6 Hz, 2 H), 1.83 (m, 1 H), 0.88 (d, J = 6.8 Hz, 6 H); MS (ES ⁺): 538.64	¹ H NMR (DMSO-d ₆): § 9.04 (s, 2 H), 8.94 (s, 2 H), 8.46 (t, J = 6 Hz, 1 H), 7.96 (s, 1 H), 7.63 (m, 6 H), 6.94 (s, 1 H), 6.83 (d, J = 7.7 Hz, 1 H), 6.7 (d, J = 2, 1 H), 6.62 (dd, J = 7.7 and 2 Hz, 1 H), 3.28 (m, 4 H), 3.02 (t, J = 6.5 Hz, 2 H), 1.98 (m, 4 H), 1.82 (m, 1H), 0.82 (d, 6.8 Hz, 6 H); MS (ES ⁺): 528.76	¹ H NMR (DMSO-d ₆): δ 13.96 (s, 1 H), 9.02 (s, 2 H), 8.85 (s, 2 H), 8.46 (t, J = 6 Hz, 1 H), 7.91 (s, 1 H), 7.58 (m, 4 H), 7.39 (s, 1 H), 7.25 (d, J = 7.8 Hz, 1 H), 6.92 (d, J = 7.7, 1 H), 6.87 (d, J = 7.7 Hz, 1 H), 6.01 (m, 1 H), 5.17 (d, J = 16.7 Hz, 1 H), 5.08 (d, J = 10 Hz, 1 H), 3.45 (d, J = 6 Hz, 2 H), 1.78 (m, 1 H), 0.83 (d, J = 6.8 Hz, 6 H); MS (ES ⁺): 499.3	¹ H NMR (DMSO-d ₆): δ 14.08 (bs, 1 H), 9.06 (s, 2 H), 8.79 (s, 2 H), 8.51 (t, $J = 6$ Hz, 1 H), 8.11 (d, $J = 2$ Hz, 1 H), 8.01 (m, 3 H), 7.85 (d, $J = 3$ Hz, 1 H), 7.63 (m, 6 H), 7.17 (d, $J = 7.8$ Hz, 1 H), 6.97 (d, $J = 7.8$ Hz, 1 H), 3.02 (t, $J = 6.5$ Hz, 2 H), 1.81 (m, 1 H), 0.86 (d, 6.8 Hz, 6 H); MS (ES ⁺): 542.2)
Method Used	1-2	1-2	1-2	1-2
Starting From	261	26т		260
-R'	CH,	CH ₃	CH,	· CH3
-R	N-N-N-N-N-N-N-N-N-N-N-N-N-N-N-N-N-N-N-		CH,	Z _N
Cpd.	172	27m	. 27n	270

,
•
_

-R -I	7	-R'	Starting From	Method Used	Analytical Data
CH,		CH,	26p		¹ H NMR (DMSO-d ₆): 5 9.1 and 9.2 (2 br s, 4 H, NH proton), 8.6 (m, 1 H), 8.3 (m, 1 H), 8.0-7.6 (m, 8 H, aromatic proton), 7.3 (m, 2 H), 3.1 (t, 2 H), 2.2 (s, 3 H), 1.8 (m, 1 H), 0.9 (2s, 6 H); IR (KBr Pellets) 2957, 1676, 1480, 1324, 844 cm ⁻¹ . MS (ES+) : 497
CH ₃ CH ₃		CH,	26q	. I-2	¹ H NMR (DMSO-d ₆): δ 9.06 (s, 2 H), 8.77 (s, 2 H), 8.53 (t, J = 6 Hz, 1 H), 8.03 (m, 1 H), 7.64 (m, 6 H), 7.46 (d, J = 6.9 Hz, 1 H), 7.05 (s, 2 H), 6.96 (s, 1 H), 5.52 (s, 1 H), 3.02 (t, J = 6.8 Hz, 2 H), 1.81 (m, 1 H), 1.48 (s, 6 H),0.85 (d, J = 6.8 Hz, 6 H); MS (ES): 539.4
OH CH ₃	HD—C	1 ³ 3	26r	1-2	¹ H NMR (DMSO-d ₆): δ 9.06 (s, 2 H), 8.78 (s, 2 H), 8.52 (t, J = 6 Hz, 1 H), 8.01 (d, J = 6.8 Hz, 1 H), 7.62 (m, 7 H), 7.46 (d, J = 6.8 Hz, 1 H), 7.0 (m, 2 H), 4.94 (t, J = 6 Hz, 1 H), 3.60 (q, J = 6 & 12.8 Hz, 2 H), 3.01 (t, J = 6 Hz, 2 H), 2.58 (t, J = 6 Hz, 2 H), 1.82 (m, 1 H), 0.85 (d, J = 6.8 Hz, 6 H); MS (ES): 525.4
CH ₂ CH ₃	CH, CH,		26s	1.2	¹ H NMR (DMSO-d ₆): δ 9.01 (s, 2 H), 8.88 (s, 2 H), 8.5 (t, J = 6 Hz, 1 H), 8.07 (m, 1 H), 7.73 (m, 1 H), 7.63 (m, 7 H), 7.11 (d, J = 17 Hz, 1 H), 7.01 (d, J = 17 Hz, 1 H), 6.97 (m, 1 H), 6.69 (d, J = 17 Hz, 1 H), 5.24 (s, 1H), 5.14 (s, 1H), 3.03 (t, J = 6.9 and 6.0 Hz, 2 H), 1.92 (s, 3 H), 1.81 (m, 1 H), 0.84 (d, J = 6.9 Hz, 6 H); MS (ES ⁺): 525.4
CH, CH, CH,	THO CH'		26t	1-2	¹ H NMR (DMSO-d ₆): δ 9.08 (s, 2 H), 8.82 (s, 2 H), 8.53 (t, J = 6 Hz, 1 H), 8.04 (m, 1 H), 7.67 (m, 7 H), 7.04 (m, 2 H), 5.55 (s, 1H), 5.20 (s, 1H), 3.04 (t, J = 6.9 and 6.0 Hz, 2 H), 2.19 (s, 3 H), 1.81 (m, 1 H), 0.87 (d, J = 6.9 Hz, 6 H); MS (ES ⁺): 499.4

1	œ
1	n
	_

(t, J = 0 Hz, 1 H), 8.13 (m, 1 H), 7.33 (m, 2 H), 7.4 (m, 6 H), 7.37 (d, J = 7 Hz, 1 H), 7.17 (m, 2 H), 6.54 (d, J = 12 Hz, 1 H), 5.91 (m, 1 H), 4.99 (m, 1 H), 4.31 (m, 2 H), 3.06 (t, J = 6.9 and 6.0 Hz, 2 H), 1.83 (m, 1 H), 0.87 (d, J = 6.9 Hz, 6 H); MS (ES ⁺): 515.4	(m, 2 H), 7.74 (m, 6) (m, 2 H), (m, 2 H), (s, 2 H), 8.54 (s, 2 H), 8.54 (s, 2 H), 3.56 (s, 1 H), 3.56 (s, 2 H), MS	H, 7.74 (m, 6 1.54 (d, J = 12 1 (m, 2 H), H), 0.87 (d, J H), 7.06 (m, 2 Hz, 1 H), 3.56 Hz, 1 H), 3.56 Hz, 1 H), 3.56 Hz, 1 H), 3.56 H, 7.08 (d, J H, 7.08 (d, J 3.03 (t, J = 1, 1.82 (m, 1) 3.33
5 HJ, 1.83 (m, 1 H) 115.4	8 (s, 2 H), 8.82 (s, 7 H), 7.63 (m, 8 H), 7.63 (m, 8 H), 9, 4.63 (t, J = 5 Hz, 16.0 Hz, 2 H), 2.71	8 (s, 2 H), 8.82 (s, 2 H), 4.63 (m, 1 H), 7.63 (m, 8 H), 9, 4.63 (t, 1 = 5 Hz, 1 + 6.9 Hz, 6], 7 (d, 1 = 6.9 Hz, 6], 8 (s, 2 H), 8.86 (s, 2 H), 7.62 (m, 7 H), 7.63 (m, 7 H), 7.63 (m, 7 H), 7.64 (m, 7 H), 7.65 (m, 7 H
11 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	¹ H NMR (DMSO-d ₆): δ 9.08 (s, 2 H), 8.82 (s, 2 H), 8.54 (t, J = 6 Hz, 1 H), 8.05 (m, 1 H), 7.63 (m, 8 H), 7.06 (m, 2 H), 5.52 (s, 1 H), 5.2 (s, 1 H), 4.63 (t, J = 5 Hz, 1 H), 3.56 (m, 2 H), 3.05 (t, J = 6.9 and 6.0 Hz, 2 H), 2.71 (t, J = 7 Hz, 2 H), 1.82 (m, 1 H), 0.87 (d, J = 6.9 Hz, 6 H); MS (ES ⁺): 529.4	¹ H NMR (DMSO-d ₆): δ 9.08 (s, 2 H), 8.82 (s, 2 H), 8.54 (t, 1 = 6 Hz, 1 H), 8.05 (m, 1 H), 7.63 (m, 8 H), 7.06 (m, 7 H), 5.52 (s, 1 H), 5.2 (s, 1 H), 4.63 (t, 1 = 5 Hz, 1 H), 3.56 (m, 2 H), 3.05 (t, 1 = 6.9 and 6.0 Hz, 2 H), 2.71 (t, 1 = 7 Hz, 2 H), 1.82 (m, 1 H), 0.87 (d, 1 = 6.9 Hz, 6 H); MS (ES ⁺): 529.4 (t, 1 = 6 Hz, 1 H), 8.03 (m, 1 H), 7.62 (m, 7 H), 7.08 (d, 1 = 7.5 Hz, 1 H), 6.99 (m, 1 H), 4.32 (s, 1 H), 3.03 (t, 1 = 6.9 and 6.0 Hz, 2 H), 2.71 (t, 1 = 7 Hz, 2 H), 1.82 (m, 1 H), 0.87 (d, 1 = 6.9 Hz, 6 H); MS (ES ⁺): 483.3
1-	1-2 1-2 1-3 1-4 1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1	
	26v	26v 26w
	CH, CH,	CH, CH,
	CH ₂	(H)
_	27v	27v 27w

σ	١
۳	١
_	

Cpd. No.	-R	-R'	Starting From	Method Used	Analytical Data
27y	HO	CH, CH, CH,	26y	I-2	¹ H NMR (DMSO-d ₆): 8 8.99 (s, 2 H), 8.86 (s, 2 H), 8.52 (t, J = 6 Hz, 1 H), 8.03 (m, 1 H), 7.63 (m, 6 H), 7.50 (d, J = 7 Hz, 1 H), 7.07 (d, J = 7 Hz, 1 H), 7.12 (m, 1 H), 5.40 (t, J = 6 Hz, 1 H), 4.33 (d, J = 6.0 Hz, 2 H), 3.01 (t, J = 7 Hz, 2 H), 1.80 (m, 1 H), 0.84 (d, J = 6.9 Hz, 6 H); MS (ES ⁺): 513.4
272	. CH2	CH,	262	I-2	¹ H NMR (DMSO-d ₆): δ 9.50 (bs, 1 H), 8.77 (bs, 2 H), 8.49 (t, J = 6 Hz, 1 H), 7.98 (m, 1 H), 7.63 (m, 6 H), 7.55 (d, J = 6.9 Hz, 1 H), 7.01 (d, J = 7.9 Hz, 1 H), 6.99 (m, 1 H), 5.55 (s, 1 H), 5.38 (s, 1 H), 5.13 (t, J = 5 Hz, 1 H), 4.39 (d, J = 5 Hz, 2 H), 3.02 (t, J = 6.9 and 6.0 Hz, 2 H), 1.81 (m, 1 H), 0.86 (d, J = 6.9 Hz, 6 H); MS (ES [†]): 515.4
27aa	Z	CH, CH,	26aa	1-2	¹ H NMR (DMSO-d ₆): \$ 9.08 (s, 2 H), 8.73 (s, 2 H), 8.53 (t, J = 6 Hz, 1 H), 8.06 (s, 1 H), 8.02 (bs, 1 H), 7.94 (d, J = 7.8 Hz, 1 H), 7.62 (m, 6 H), 7.24 (d, J = 7.8 Hz, 1 H), 6.95 (d, J = 7.8 Hz, 1 H), 3.03 (t, J = 6 Hz, 2 H), 1.82 (m, 1 H), 0.87 (d, J = 6.8 Hz, 6 H); MS (ES ⁺): 484.3
27ab	НО	CH,	26ab	1-2	¹ H NMR (DMSO-d ₆): 8 9.05 (bs, 2 H), 8.81 (bs, 2 H), 8.49 (t, J = 6 Hz, 1 H), 8.02 (s, 1 H), 7.68 (s, 1 H), 7.62 (m, 6 H), 7.53 (d, J = 6 Hz, 1 H), 7.21 (d, J = 6 Hz, 1 H), 7.13 (d, J = 7 Hz, 1 H), 7.01 (s, 1 H), 5.25 (t, J = 5 Hz, 1 H), 4.51 (d, J = 5 Hz, 2 H), 3.01 (t, J = 6 Hz, 2 H), 1.81 (m, 1 H), 0.85 (d, J = 6.8 Hz, 6 H); MS (ES ⁺): 571.64

C)
4	۲
_	1

Cpd. No.	-R	-R'	Starting From	Method	Analytical Data
27ac	но	CH ₃	26ac	1-2	¹ H NMR (DMSO-d ₆): δ 9.05 (bs, 2 H), 8.78 (s, 2 H), 8.52 (t, J = 6 Hz, 1 H), 8.02 (bs, 1 H), 7.65 (m, 6 H), 7.53 (d, J = 5 Hz, 1 H), 7.24 (d, J = 5 Hz, 1 H), 7.26 (d, J = 5 Hz, 1 H), 7.10 (m, 1 H), 6.99 (m, 1 H), 5.64 (t, J = 5 Hz, 1 H), 4.71 (d, J = 5 Hz, 2 H), 3.07 (t, J = 6.9 and 6.0 Hz, 2 H), 1.73 (m, 1 H), 0.84 (d, J = 6.9 Hz, 6 H); MS (ES ⁺): 571.56
27ad	но,с	CH,	26ad	1-2	MS (ES [†]): 585.4
27ae	нон,с / з	H, A,	26ae	F-2	¹ H NMR (DMSO-d ₆): δ 14.11 (bs, 1 H), 9.05 (bs, 2 H), 8.75 (bs, 2 H), 8.5 (m, 1 H), 8.0 (s, 1 H), 7.8-7.6 (m, 8 H), 7.49 (d, J = 3 Hz, 1 H), 7.1 (d, J = 6.9 Hz, 1 H), 7.0 (m, 1 H), 5.5 (m, 1 H), 4.7 (m, 2 H), 3.09 (m, 2 H), 1.74 (m, 1 H) 0.86 (d, J = 6.9 Hz, 6 H); MS (ES+) 571.2
27af	нон,с	CH ₃	26af	I-2	¹ H NMR (DMSO-d ₆): δ 14.11 (bs, 1 H), 9.05 (bs, 2 H), 8.75 (bs, 2 H), 8.49 (t, J = 6 Hz, 1 H), 7.97 (s, 1 H), 7.67 (d, J = 3 Hz, 1 H), 7.61 (m, 7 H), 7.54 (d, J = 3 Hz, 1 H), 7.06 (d, J = 6.9 Hz, 1 H), 6.89 (d, J = 6.9 Hz, 1 H), 5.23 (t, J = 5 Hz, 1 H), 5.42 (d, J = 5 Hz, 2 H), 3.09 (t, J = 6.9 and 6.0 Hz, 2 H), 1.74 (m, 1 H) 0.86 (d, J = 6.9 Hz, 6 H); MS (ES [†]): 571.3

Analytical Data	¹ H NMR (DMSO-d ₆): δ 11.45 (s, 1 H), 9.08 (bs, 2 H), 8.88 (bs, 2 H), 8.75 (t, 1 = 6 Hz, 1 H), 8.04 (bs, 1 H), 7.88 (m, 1 H), 7.7 (m, 7 H), 7.03 (m, 2 H), 6.9 (m, 1 H), 6.62 (m, 1 H), 6.17 (m, 1 H), 3.07 (t, 1 = 6.9 and 6.0 Hz, 2 H), 1.84 (m, 1 H), 0.86 (d, 1 = 6.9 Hz, 6 H); MS (ES ⁺): 524.65	¹ H NMR (DMSO-d ₆): § 13.83 (s, 1 H), 8.9 (bs, 4 H), 8.47 (t, J = 6 Hz, 1 H), 7.95 (s, 1 H), 5.3 (s, 1 H), 7.61 (m, 6 H), 7.4 (m, 1 H), 6.95 (d, J = 7.7 Hz, 1 H), 6.85 (d, J = 7.7 Hz, 1 H), 6.64 (d, J = 9 Hz, 1 H), 6.22 (s, 1 H), 4.6 (t, J = 5.1 Hz, 1 H), 3.51 (d, J = 5.6 Hz, 2 H), 3.01 (t, J = 7 Hz, 2 H), 1.8 (m, 1 H), 0.85 (d, J = 6.9 Hz, 6 H); MS (ES [†]): 519.52	MS (ES+) 514.25	¹ H NMR (DMSO-d ₆): 8 9.05 (s, 2 H), 8.67 (s, 2 H), 8.47 (t, J = 6 and 5 Hz, 1 H), 7.95 (m, 1 H), 7.95 (m, 1 H), 7.63 (m, 5H), 7.40 (s, 1 H), 7.38 (d, J = 7.7 Hz, 1 H), 6.92 (m, 2 H), 3.02 (t, J = 6.8 Hz, 2 H), 2.64 (m, 2 H), 1.80 (m, 1 H), 1.66 (m, 2 H), 0.96 (t, J = 8 and 6.5 Hz, 3 H), 0.85 (d, J = 6.8 Hz, 6 H); MS (ES-) 499.31
Method Used	I-2	1-2	. I-2	ט
Starting From	26ag	26ah	26ai	26u
-R'	CH,	CH,	CH,	GH,
-R	ZH	но	z.	. CH,
Cpd.	27ag.	27ah	27ai	27aj

Cpd.	-R	-R'	Starting	Method	Analytical Data
27ak	CH,	CH, CH,	32ľ	D	¹ H NMR (DMSO-d ₆): \(\delta\) 14.3 (bs, 1 H), 9.05 (bs, 2 H), 8.75 (bs, 2 H), 8.5 (m, 1 H), 8.0 (s, 1 H), 7.8-7.6 (m, 8 H), 7.49 (d, J = 3 Hz, 1 H), 7.1 (d, J = 6.9 Hz, 1 H), 7.0 (m, 1 H), 5.5 (m, 1 H), 4.7 (m, 2 H), 3.09 (m, 2 H), 1.74 (m, 1 H), 0.86 (d, J = 6.9 Hz, 6 H); MS (ES+) 487.2
27al	NH,	CH,	26ai	Ð	MS (ES+) 488.3 (100%: M ⁺¹)
27am	но	CH,	26u	Ŋ	¹ H NMR (DMSO-d ₆): \$ 13.9 (bs, 1 H), 9.05 (2 bs, 4 H), 8.5 (m, 1 H), 7.9 (s, 1 H), 7.7-7.5 (m, 8 H), 7.3 (d, J = 3 Hz, 1 H), 6.9 (m, 2 H), 4.6 (m, 1 H), 3.5 (m, 2 H), 3.09 (m, 2 H), 2.6 (m, 2 H), 1.8 (m, 1 H) 0.85 (d, J = 6.9 Hz, 6 H); MS (ES+) 517.3
32a	CH ₃	CH ₃ CH ₃	31a	F-2	¹ H NMR (DMSO-d ₆): δ 9.84 (bs, 1 H), 9.07 (bs, 2 H), 8.87 (bs, 2 H), 8.51 (t, J = 6 and 5 Hz, 1 H), 8.13 (m, 1 H), 8.03 (m, 2 H), 7.65 (m, 5 H), 7.20 (d, J = 7.7 Hz, 1 H), 6.94 (d, J = 7.7 Hz, 1 H), 3.04 (t, J = 6.8 Hz, 2 H), 2.66 (s, 3 H), 1.83 (m, 1 H), 0.86 (d, J = 6.8 Hz, 6 H); MS (ES-) 499.4, (ES+) 501.4
32b	CH,	GH,	31b	I-2	Characterized in the next step

~
4
_

		-R'	Starting From	Method	Analytical Data
CH	Н	CH,	31c	1-2	¹ H NMR (DMSO-d ₆): δ 14.24 (s, 1 H), 9.29 (bs, 2 H), 9.01 (bs, 2 H), 8.73 (t, J = 6 Hz, 1 H), 8.2 (d, J = 2 Hz, 1 H), 7.85 (m, 5 H), 7.74 (d, 2 Hz, 1 H), 7.4 (d, J = 8 Hz, 1 H), 7.22 (d, J = 7.4 Hz, 1 H), 7.13 (d, J = 7.5, 1 H), 6.73 (t, J = 6.8 Hz, 1 H), 5.59 (d, J = 6.8 Hz, 2 H), 3.25 (t, J = 6.8 Hz, 2 H), 2.04 (m, 1 H), 1.08 (d, J = 6.8 Hz, 6 H); MS (ES-) 495.1, (ES+) : 497.2
S		CH, CH,	31d	I-2	MS (ES'): 553.3
		CH,	31e	1-2	¹ H NMR (DMSO-d ₆): δ 13.642 (bs, 1 H), 9.06 (s, 2 H), 8.89 (s, 2 H), 8.50 (t, J = 6 and 5 Hz, 1 H), 7.98 (s, 1 H), 7.62 (m, 7 H), 7.43 (s, 1 H), 7.33 (m, 4 H), 6.95 (m, 2 H), 4.04 (s, 2 H), 3.02 (t, J = 6.8 Hz, 2 H), 1.80 (m, 1 H), 0.86 (d, J = 6.8 Hz, 6 H); MS (ES): 547.4
CH,	_2_	CH ₃	31f	I-2 .	¹ H NMR (DMSO-d ₆): δ 0.85 (d, J = 6.9 Hz, 6 H), 1.81 (m, 1 H), 3.03 (t, J = 7 Hz, 2 H), 5.35 (d, J = 11 Hz, 1 H), 5.94 (d, J = 17 Hz, 1 H), 6.84 (dd, J = 17 and 11 Hz, 2 H), 7.0 (m, 2 H), 7.64 (m, 8 H), 8.01 (s, 1 H), 8.54 (t, J = 6 Hz, 1 H), 8.77 (s, 2 H), 9.06 (s, 2 H); MS (ES+) :485.57
S		CH,	31g	1-2	MS (ES+) 5962

4
4
_

Cpd.	-R	-R'	Starting From	Method	Analytical Data
32h	СН2ОН	CH, CH,	31h	I-2	¹ H NMR (DMSO-d ₆): δ 14.2 (bs, 1 H), 9.1 (bs, 4 H), 8.6 (m, 1 H), 8.15 (s, 1 H), 7.9-7.6 (m, 8 H), 7.2 (m, 2 H), 6.7 (s, 1 H), 5.3 (br s, 1 H), 4.6 (m, 2 H), 3.1 (m, 2 H), 1.9 (m, 1 H), 0.9 (d, J = 6.7 Hz, 6 H); MS (ES+) 555.1
32i	нон,с	CH, CH,	31i	1-2	¹ H NMR (DMSO-d ₆): δ 13.84 (bs, 1 H), 9.01 (bs, 2 H), 8.80 (bs, 2 H), 8.46 (t, J = 6 and 5 Hz, 1 H), 8.03 (s, 1 H), 7.95 (s, 1 H), 7.77 (s, 1 H), 7.67 (m, 2 H), 7.61 (m, 5 H), 7.02 (d, J = 7.7 Hz, 1 H), 6.94 (m, 1 H), 5.13 (t, J = 5 Hz, 1 H), 4.47 (m, 2 H), 2.97 (t, J = 6.8 Hz, 2 H), 1.78 (m, 1 H), 0.80 (d, J = 6.8 Hz, 6 H); MS (ES-) 553.3, (ES+) 555.3
40	NH	CH,	39	1-2	MS (ES+) 524.3
44		CH ₃	43	I-2	¹ H NMR (DMSO-d ₆): δ 13.82 (s, 1 H), 9.20 (bs, 1 H), 9.10 (bs, 1 H), 8.51 (t, J = 6 Hz, 1 H), 7.97 (s, 1 H), 7.73-7.45 (m, 5 H), 7.43-7.39 (m, 2 H), 7.20 (t, J = 8 Hz, 1 H), 7.10 (m, 6 H), 6.96 (d, J = 8 Hz, 1 H), 3.0 (t, J = 6 Hz, 2 H), 1.80 (m, 1 H), 0.68 (d, J = 6.8 Hz, 6 H); MS (ES ⁺) 551.30
46		CH,	45	1-2	¹ H NMR (DMSO-d ₆): δ 9.21 (2 bs, 2 H each, 4 H), 8.61 (m, 1 H), 8.1 (s, 1H), 7.8-7.4 (m, 10 H), 7.3 (s, 1 H), 7.2 (d, J = 7 Hz, 1 H), 7.1 (m, 2 H), 5.2 (s, 2 H), 3.1 (m, 2 H), 1.8 (m, 1 H), 0.91 (d, J = 6.8 Hz, 6 H); MS (ES ⁺) 565.27

u
4
_

Cpd. No.	-R	-R'	Starting From	Method Used	Analytical Data
51	. —— OCH,	CH, CH,	20	I-2	¹ H NMR (CF ₃ CO ₂ D): δ 8.43 (s, 1 H), 8.01 (d, J = 7.5 Hz, 1 H), 7.67 (q, J = 24 and 8.4 Hz, 4 H), 7.56 (d, J = 7.7 Hz, 1 H), 7.38 (s, 1 H), 7.23 (s, 2 H), 3.98 (s, 3 H), 3.43 (d, J = 7 Hz, 2 H), 2.01 (m, 1 H), 1.01 (d, J = 6.8 Hz, 6 H); MS (ES-) 487., (ES+) 489.3
53	S THIN	CH,	52	I-2	¹ H NMR (DMSO-d ₆): δ 14.00 (bs, 1 H), 8.52 (t, J = 6 and 5 Hz, 1 H), 7.98 (s, 1 H), 7.63 (m, 8 H), 7.07 (d, J = 7.7 Hz, 1 H), 6.96 (d, J = 7.7 Hz, 1 H), 3.83 (s, 2 H), 3.02 (t, J = 6.8 Hz, 2 H), 1.81 (m, 1 H), 0.86 (d, J = 6.8 Hz, 6 H); MS (ES-) 568.1
70a	₽ <u>-</u>	CH,	68a	I-2, S	¹ H NMR (DMSO-d ₆): § 13.84 (br s, 1 H), 9.05 (s, 2 H), 8.94 (s, 2 H), 8.48 (t, <i>J</i> = 5.7 Hz, 1 H), 7.97 (d, <i>J</i> = 1.9 Hz, 1 H), 7.70 (m, 7 H), 7.00 (d, <i>J</i> = 7.9 Hz, 1 H), 6.92 (d, <i>J</i> = 7.9 Hz, 1 H), 6.84 (dd, <i>J</i> = 10.9 and 17.7 Hz, 1 H), 5.93 (d, <i>J</i> = 17.7 Hz, 1 H), 5.34 (d, <i>J</i> = 10.9 Hz, 1 H), 3.19 (m, 2 H), 1.46 (qui, <i>J</i> = 7.0 Hz, 2 H), 1.29 (sex, <i>J</i> = 7.0 Hz, 2 H), 0.87 (t, <i>J</i> = 7.3 Hz, 3 H); MS (ES ⁺): 485.2
70b	£	CH ₃	089	I-2, S	¹ H NMR (DMSO-d ₆): δ 12.71 (br s, 1 H), 9.12 (s, 2 H), 8.93 (s, 2 H), 8.20 (m, 2 H), 7.86 (m, 1 H), 7.70 (m, 6 H), 7.20 (m, 2 H), 6.87 (dd, $J = 10.9$ and 17.7 Hz, 1 H), 5.99 (d, $J = 17.7$ Hz, 1 H), 5.40 (d, $J = 10.9$ Hz, 1 H), 3.97 (m, 1 H), 1.50-1.20 (m, 8 H) 0.86 (t, $J = 7.2$ Hz, 6 H); MS (ES ⁺): 527.3

v
4
~

Analytical Data		"H NMR (DMSO-d ₆): \(\delta 12.84 \) (br s, 1 H), 9.08 (m, 3 H), 8.36 (d, \(J = 7.7 \) Hz, 1 H), 8.18 (s, 1 H), 7.83 (m, 1 H), 7.67 (m, 6 H), 7.15 (m, 3 H), 6.86 (dd, \(J = 10.9 \) and 17.7 Hz, 1 H), 5.98 (d, \(J = 17.7 \) Hz, 1 H), 5.39 (d, \(J = 10.9 \) Hz, 1 H), 3.74 (m, 1 H), 1.84-1.55 (m, 5 H), 1.38-1.04 (m, 5 H); MS (ES [†]): 511.3	'H NMR (DMSO-d ₆): \(\delta \) 12.84 (br s, 1 H), 9.08 (m, 3 H), 8.36 (d, \(J = 7.7 \) Hz, 1 H), 8.18 (s, 1 H), 7.83 (m, 1 H), 7.67 (m, 6 H), 7.15 (m, 3 H), 6.86 (dd, \(J = 10.9 \) and 17.7 Hz, 1 H), 5.98 (d, \(J = 17.7 \) Hz, 1 H), 5.39 (d, \(J = 10.9 \) Hz, 1 H), 3.74 (m, 1 H), 1.84-1.55 (m, 5 H), 1.38-1.04 (m, 5 H); MS (ES [†]): 511.3 14); MS (ES [†]): 511.3 15) 16) 17) 17) 18) 18) 18) 19) 19) 19) 19) 19	'H NMR (DMSO-d ₆): \(\delta \) 12.84 (br s, 1 H), 9.08 (m, 3 H), 8.36 (d, \(J = 7.7 \) Hz, 1 H), 8.18 (s, 1 H), 7.83 (m, 1 H), 7.67 (m, 6 H), 7.15 (m, 3 H), 6.86 (dd, \(J = 10.9 \) and 17.7 Hz, 1 H), 5.98 (d, \(J = 17.7 \) Hz, 1 H), 5.39 (d, \(J = 10.9 \) Hz, 1 H), 3.74 (m, 1 H), 1.84-1.55 (m, 5 H), 1.38-1.04 (m, 5 H); MS (ES [†]): 511.3 1 H), MS (ES [†]): 511.3 1 H) NMR (DMSO-d ₆): \(\delta \) 9.11 (s, 2 H), 8.89 (s, 2 H), 8.81 (t, \(J = 5.7 \) Hz, 1 H), 8.21 (s, 1 H), 7.85 (m, 1 H), 7.68 (m, 7 H), 7.17 (m, 3 H), 6.87 (dd, \(J = 10.9 \) and 17.7 Hz, 1 H), 5.99 (d, \(J = 17.7 \) Hz, 1 H), 5.88 (m, 1 H), 5.39 (d, \(J = 10.9 \) Hz, 1 H), 5.12 (m, 2 H), 3.88 (t, \(J = 5.0 \) Hz, 1 H); MS (ES [†]): 469.2 1 H NMR (DMSO-d ₆): \(\delta \) 9.11 (s, 2 H), 9.01 (s, 2 H), 8.38 (d, \(J = 7.5 \) Hz, 1 H), 8.18 (s, 1 H), 7.83 (m, 1 H), 7.67 (m, 6 H), 7.16 (m, 3 H), 6.86 (dd, \(J = 10.9 \) and 17.7 Hz, 1 H), 5.98 (d, \(J = 17.7 \) Hz, 1 H), 5.39 (d, \(J = 10.9 \) Hz, 1 H), 6.98 (d, \(J = 17.7 \) Hz, 1 H), 5.39 (d, \(J = 10.9 \) Hz, 1 H), 1.15 (d, \(J = 6.6 \) Hz, 6 H); MS (ES [†]): 471.3
	s, 1 H), 9.08 (m, 3 H 1 H), 7.83 (m, 1 H), 5 (dd, J = 10.9 and 17 H), 5.39 (d, J = 10.9 I 5 (H), 1.38-1.04 (m,		(H), 8.89 (s, 2 H), 8.8 7.85 (m, 1 H), 7.68 (i 10.9 and 17.7 Hz, 1 H n, 1 H), 5.39 (d, J= 1 = 5.0 Hz, 1 H); MS	H), 8.89 (s, 2 H), 8.8 (10.9 and 17.7 Hz, 1 H), 7.68 (10.9 and 17.7 Hz, 1 H), 1 H), 5.39 (d, J= 1 = 5.0 Hz, 1 H); MS H), 9.01 (s, 2 H), 8.3 7.83 (m, 1 H), 7.67 (10.9 and 17.7 Hz, 1 H), 1.9.9 hz, 1 H), 6 H); MS (ES ¹): 471
t (br s, 1 H), 9	8 (s, 1 H), 7.83 6.86 (dd, J = 1 7, 1 H), 5.39 (d (m, 5 H), 1.38		(s, 2 H), 8.89 (H), 7.85 (m, 1) J= 10.9 and 1 8 (m, 1 H), 5 (t, J= 5.0 Hz,	(s, 2 H), 8.89 (H), 7.85 (m, 1) J= 10.9 and 1 8 (m, 1 H), 5.3 (m, 1 J= 5.0 Hz, (t, J= 5.0 Hz, 2.8, 2 H), 9.01 (H), 7.83 (m, 1 J= 10.9 and 1 9 (d, J= 10.9 Hz, 6 H); MS
1.) 8 17.84	(m, 3 H), 6.18 (m, 3 H), 6. = 17.7 Hz, 1.84-1.55	n	6): 8 9.11 (s 8.21 (s, 1 F 6.87 (dd, J 7, 1 H), 5.88 2 H), 3.88 (t	(a) (b) (c) (c) (c) (c) (c) (c) (c) (c) (c) (c
MSO-d	5.98 (d, J. 4 (m, 1 H), essh; 511.		(DMSO-de Hz, 1 H), (m, 3 H), = 17.7 Hz, 5.12 (m, 2	(DMSO-de Hz, 1 H), (m, 3 H), (m, 2 Hz, 1 H), (m, 3 H), (m, 3 H), (m, 3 H), 1.15 (H), 1.15 (H), 1.15 (H)
י מאוא וזי	8.36 (d, <i>J</i> = 7.7 Hz, 1 7.67 (m, 6 H), 7.15 (Hz, 1 H), 5.98 (d, <i>J</i> = 1 H), 3.74 (m, 1 H), H); MS (ES [†]): 511.3		¹ H NMR (D (t, J = 5.7 H; 7 H), 7.17 (n 5.99 (d, J = Hz, 1 H), 5.1 (ES ⁺): 469.2	1, H NMR ((1, J = 5.7) (1, J = 5.7) (1, J = 5.7) (1, J = 5.7) (1, J = 5.9) (1, J = 1.8); (ES [†]): 469 (ES [†]): 469 (4, J = 7.5) (6, H), 7.16 (6, J = 7.5) (6, H), 7.16 (5.98 (d, J = 4.09 (m, 1) + 4.09 (m, 1)
Osea	I-2, S		I-2, S	
			p89	
		-	39	36 36
			CH ₂	CH, CH,
			>	
				T ^r /
	GH CH		£/	£_/
	70c		70d	70d

Cpd. No.	-R	-R'	Starting From	Method Used	Analytical Data
70g	£	$\left\langle \mathbf{c}_{\mathbf{f}_{j}}\right\rangle$	3 89	I-2, S	¹ H NMR (DMSO-d ₆): \$ 12.82 (br s, 1 H), 9.25 (m, 1 H), 9.12 (s, 2 H), 8.91 (s, 2 H), 8.23 (s, 1 H), 7.87 (m, 1 H), 7.68 (m, 7 H), 7.18 (m, 3 H), 6.87 (dd, J = 10.9 and 17.7 Hz, 1 H), 5.99 (d, J = 17.7 Hz, 1 H), 5.40 (d, J = 10.9 Hz, 1 H), 4.07 (m, 2 H); MS (ES ⁺): 511.2
70h	ĞH,		68h	I-2, S	¹ H NMR (DMSO-d ₆): δ 10.34 (s, 1 H), 9.05 (m, 4 H) 8.18 (s, 1 H), 7.71 (m, 11 H), 7.34 (t, J = 7.8 Hz, 2 H), 7.09 (m, 3 H), 6.86 (dd, J = 10.9 and 17.7 Hz, 1 H), 5.98 (d, J = 17.7 Hz, 1 H), 5.39 (d, J = 10.9 Hz, 1 H); MS (ES ⁺): 505.3
70i	HD CH	НО	68i	I-2, S	¹ H NMR (DMSO-d ₆): δ 12.64 (br s, 1 H), 9.09 (m, 4 H), 8.56 (m, 1 H), 8.09 (s, 1 H), 7.66 (m, 9 H), 7.08 (m, 3 H), 6.86 (dd, <i>J</i> = 10.9 and 17.7 Hz, 1 H), 5.96 (d, <i>J</i> = 17.7 Hz, 1 H), 5.37 (d, <i>J</i> = 10.9 Hz, 1 H), 4.40 (m, 2 H) 3.39 (m, 2 H), 3.22 (m, 2 H), 1.48 (m, 4 H); MS (ES ⁺): 501.3 (100%: M ⁺¹)
70j	CH ₂		68j	I-2, S	¹ H NMR (DMSO-d ₆): δ 9.08 (m, 4 H), 8.69 (t, <i>J</i> = 6.0 Hz, 1 H), 8.16 (s, 1 H), 7.69 (m, 5 H), 7.13 (d, <i>J</i> = 7.7 Hz, 2 H), 7.09 (m, 3 H), 6.86 (dd, <i>J</i> = 10.9 and 17.7 Hz, 1 H), 5.97 (d, <i>J</i> = 17.7 Hz, 1 H), 5.38 (d, <i>J</i> = 10.9 Hz, 1 H), 3.11 (t, <i>J</i> = 6.0 Hz, 2 H), 1.01 (m, 1 H), 0.41 (m, 2 H), 0.21 (m, 2 H); MS (ES ⁺): 483.3
70k	CH,	_ ⊂H ₃	68k	I-2, S	¹ H NMR (DMSO-d ₆): δ 9.11 (s, 2 H), 8.97 (s, 2 H), 8.54 (m, 1 H), 8.12 (s, 1 H), 7.68 (m, 7 H), 7.17 (m, 4 H), 6.86 (dd, J = 10.9 and 17.7 Hz, 1 H), 5.97 (d, J = 17.7 Hz, 1 H), 5.38 (d, J = 10.9 Hz, 1 H), 2.75 (d, J = 4.3 Hz, 1 H); MS (ES ⁺): 443.26

œ
4
ч

Cpd. No.	-R	-R'	Starting From	Method	Analytical Data
701	<u> </u>	CH _j	189	I-2, S	¹ H NMR (DMSO-d ₆): δ 9.07 (s, 2 H), 8.92 (s, 2 H), 8.53 (t, J = 5.5 Hz, 1 H), 8.02 (s, 1 H), 7.62 (m, 7 H), 7.01 (m, 2 H), 6.85 (dd, J = 10.9 and 17.7 Hz, 1 H), 5.95 (d, J = 17.7 Hz, 1 H), 5.36 (d, J = 10.9 Hz, 1 H), 3.24 (qui, J = 6.7 Hz, 2 H), 1.08 (t, J = 7.2 Hz, 3 H); MS (ES [†]): 457.2
70m	£—∕		68m	I-2, S	¹ H NMR (DMSO-d ₆): δ 12.53 (br s, 1 H), 9.10 (m, 3 H), 8.38 (d, <i>J</i> = 7.9 Hz, 1 H), 8.11 (s, 1 H), 7.68 (m, 7 H), 7.12 (m, 3 H), 6.86 (dd, <i>J</i> = 10.9 and 17.7 Hz, 1 H), 5.96 (d, <i>J</i> = 17.7 Hz, 1 H), 5.37 (d, <i>J</i> = 10.9 Hz, 1 H), 3.94 (m, 1 H), 1.88-1.33 (m, 12 H); MS (ES ⁺): 525.3
70n	Ē/	CH,		I-2, S	¹ H NMR (DMSO-d ₆): 8 9.09 (m, 4 H), 8.59 (t, <i>J</i> = 5.2 Hz, 1 H), 8.17 (s, 1 H), 7.70 (m, 7 H), 7.16 (m, 4 H), 6.87 (dd, <i>J</i> = 10.9 and 17.7 Hz, 1 H), 5.98 (d, <i>J</i> = 17.7 Hz, 1 H), 5.98 (d, <i>J</i> = 6.7 Hz, 2 H), 1.52 (sex, <i>J</i> = 7.2 Hz, 2 H), 0.87 (t, <i>J</i> = 7.3 Hz, 3 H); MS (ES ⁺): 471.3
. 700	£ <u> </u>	CH,	089	I-2, S	¹ H NMR (DMSO-d ₆): δ 12.97 (br s, 1 H), 9.08 (s, 2 H), 8.99 (s, 2 H), 8.53 (t, J = 5.1 Hz, 1 H), 8.06 (s, 1 H), 7.64 (m, 7 H), 7.06 (m, 2 H), 6.85 (dd, J = 10.9 and 17.7 Hz, 1 H), 5.96 (d, J = 17.7 Hz, 1 H), 5.36 (d, J = 10.9 Hz, 1 H), 3.20 (q, J = 6.5 Hz, 2 H), 1.49 (qui, J = 6.6 Hz, 2 H), 1.27 (m, 4 H), 0.86 (t, J = 6.6 Hz, 3 H); MS (ES ⁺): 499.3
70р	ĞH,	CH,	d89	1-2, S	¹ H NMR (DMSO-d ₆): δ 9.10 (s, 2 H), 8.91 (s, 2 H), 8.55 (t, J = 5.5 Hz, 1 H), 8.13 (s, 1 H), 7.68 (m, 7 H), 7.12 (m, 2 H), 6.86 (dd, J = 10.9 and 17.7 Hz, 1 H), 5.98 (d, J = 17.7 Hz, 1 H), 5.38 (d, J = 10.9 Hz, 1 H), 3.10 (m, 2 H), 1.62 (m, 1 H), 1.39 (m, 1 H), 1.10 (m, 1 H), 0.86 (m, 6 H); MS (ES [*]): 499.3

Cpd.	-R	R'	Starting From	Method Used	Analytical Data
709	£_/	CH, CH,	Ь89	I-2, S	¹ H NMR (DMSO-d ₆): δ 9.06 (s, 2 H), 8.82 (s, 2 H), 8.11 (t, $J = 7.9$ Hz, 1 H), 8.00 (s, 1 H), 7.62 (m, 7 H), 6.99 (m, 2 H), 6.85 (dd, $J = 10.9$ and 17.7 Hz, 1 H), 5.95 (d, $J = 17.7$ Hz, 1 H), 5.35 (d, $J = 10.9$ Hz, 1 H), 3.81 (q, $J = 7.5$ Hz, 1 H), 1.45 (m, 4 H), 1.24 (m, 4 H), 0.82 (m, 6 H); MS (ES ⁺): 527.3
70r	CH ₂	ZHIN NH2	68r	I-2, S	¹ H NMR (DMSO-d ₆): δ 13.81 (s, 1 H), 8.44 (m, 4 H), 7.97 (s, 1 H), 7.61 (m, 7 H), 6.90 (m, 3 H), 5.93 (d, J = 17.7 Hz, 1.H), 5.34 (d, J = 10.9 Hz, 1 H), 3.22 (m, 5 H), 2.73 (m, 2 H), 1.52 (m, 4 H); MS (ES ⁺): 500.3
70s	B		889	I-2, S	¹ H NMR (DMSO-d ₆): δ 9.09 (s, 2 H), 8.86 (s, 2 H), 8.42 (d, <i>J</i> = 7.5 Hz, 1 H), 8.11 (s, 1 H), 7.68 (m, 8 H), 7.10 (m, 2 H), 6.86 (dd, <i>J</i> = 10.9 and 17.7 Hz, 1 H), 5.97 (d, <i>J</i> = 17.7 Hz, 1 H), 5.38 (d, <i>J</i> = 10.9 Hz, 1 H), 4.20 (q, <i>J</i> = 7.2 Hz, 1 H), 1.93-1.44 (m, 8 H); MS (ES ⁺): 497.2
70t	CH,	но	68t	I-2, S	¹ H NMR (DMSO-d ₆): δ 13.78 (br s, 1 H), 9.07 (s, 2 H), 8.87 (s, 2 H), 8.25 (d, J = 8.1 Hz, 1 H), 8.00 (s, 1 H), 7.62 (m, 7 H), 6.98 (m, 2 H), 6.85 (dd, J = 10.9 and 17.7 Hz, 1 H), 5.94 (d, J = 17.7 Hz, 1 H), 5.35 (d, J = 10.9 Hz, 1 H), 4.55 (d, J = 4.1 Hz, 1 H), 3.68 (m, 1 H), 3.39 (m, 1 H), 1.79 (m, 4 H), 1.28 (m, 4 H); MS (ES ⁺): 527.2
70u	H——		n89	I-2, S	¹ H NMR (DMSO-d ₆): \(\delta\) 13.36 (br s, 1 H), 9.05 (m, 3 H), 8.49 (s, 1 H), 7.98 (s, 1 H), 7.61 (m, 8 H), 6.92 (m, 3 H), 5.94 (d, J = 17.7 Hz, 1 H), 5.35 (d, J = 10.9 Hz, 1 H), 2.81 (m, 1 H), 0.69-0.48 (m, 4 H); MS (ES ⁺): 469.3

	¢		>
١	ι	S	٦
			٠

	1z,), .03 .7 .4S	000 m,
Analytical Data	¹ H NMR (DMSO-d ₆): δ 9.05 (m, 4 H), 8.75 (d, J = 7.5 Hz, 1 H), 8.15 (s, 1 H), 7.70 (m, 7 H), 7.14 (d, J = 7.9 Hz, 2 H), 6.86 (dd, J = 10.9 and 17.7 Hz, 1 H), 5.97 (d, J = 17.7 Hz, 1 H), 5.39 (d, J = 10.9 Hz, 1 H), 4.40 (q, J = 8.2 Hz, 1 H), 2.12 (m, 4 H) 1.65 (m, 2 H); MS (ES [†]): 483.3	¹ H NMR (DMSO-d ₆): 8 13.17 (br s, 1 H), 9.05 (m, 4 H), 8.51 (t, <i>J</i> = 5.8 Hz, 1 H), 8.06 (s, 1 H), 7.64 (m, 7 H), 7.03 (m, 2 H), 6.85 (dd, <i>J</i> = 10.9 and 17.7 Hz, 1 H), 5.95 (d, <i>J</i> = 17.7 Hz, 1 H), 5.36 (d, <i>J</i> = 10.9 Hz, 1 H), 4.72 (t, <i>J</i> = 5.4 Hz, 1 H) 3.47 (q, <i>J</i> = 5.7 Hz, 2 H), 3.28 (m, 2 H); MS (ES ⁴): 473.2	¹ H NMR (DMSO-d ₆): δ 9.07 (s, 2 H), 8.90 (s, 2 H), 8.50 (t, J = 5.5 Hz, 1 H), 8.04 (s, 1 H), 7.63 (m, 7 H), 7.03 (m, 2 H), 6.85 (dd, J = 10.9 and 17.7 Hz, 1 H), 5.96 (d, J = 17.7 Hz, 1 H), 5.36 (d, J = 10.9 Hz, 1 H), 3.23 (q, J = 6.5 Hz, 2 H), 1.59 (m, J = 7.0 Hz, 1 H), 1.39 (q, J = 6.8 Hz, 2 H), 0.88 (d, J = 6.6 Hz, 6 H).
Method Used	I-2, S	I-2, S	I-2, S
Starting From	A89	w89	×89
-R'		HO	CH,
-R	€ <u></u> /	H	CH
Cpd.	70v	70w	70x

_	4
ц	١.
_	ż

H,CO ₂ C	Analytical Data	¹ HNMR (DMSO-d ₆): § 10.85 (s, 1 H), 9.21(s, 2 H), 8.91 (s, 2 H), 8.71 (t, J = 5.9 Hz, 1 H), 8.21 (d, J = 1.96 Hz, 1 H), 8.23 (d, J = 1.96 Hz, 1 H), 8.19 (d, J = 2.19 Hz, 1 H), 8.17 (d, J = 1.97 Hz, 1 H), 8.09 (d, J = 1.91 Hz, 1 H), 7.77 (s, 4 H), 7.53 (d, J = 7.53 Hz, 1 H), 3.57 (s, 3 H), 3.11 (q, J = 6.89 Hz, 1 H), 2.71 (s, 3 H), 1.86 (m, 1 H), 3.88 (d, 6.87 Hz, 6H); MS (ES+) 515.3	MS (ES ⁺): 527.2	Characterized in the next step	¹ HNMR (DMSO-d ₆): δ 10.59 (bs, 1 H), 9.16 (s, 2 H), 8.85 (s, 2 H), 8.69 (t, J = 6 and 5 Hz, 1 H), 8.21 (s, 1 H), 8.04 (d, J = 1.5 Hz, 1 H), 7.73 (m, 4 H), 7.58 (s, 1 H), 7.50-7.38 (m, 3 H), 7.32 (m, 1 H), 7.03 (d, J = 7.5 Hz, 2 H), 4.31 (s, 2 H), 3.55 (s, 2 H), 3.07 (t, J = 6.8 Hz, 2 H), 1.85 (m, 1 H), 0.87 (d, J = 6.8 Hz, 6 H);; MS (ES-) 567.3, (ES+) 569.3	MS (ES'): 561.4; MS (ES ⁺): 563.4
	Method Used	· m	ŗ	-	ŕ	ı
	Starting From	30а	30b	30c	30d	30e
	-R	О СН,	CH,	CH ₂	S	
	Cpd. No.	31a	31b	31c	31d	31e

-R	Starting From	Method Used	Analytical Data
// CH ₂	30f	ſ	¹ H NMR (DMSO-d6): \$ 10.73 (s, 1H), 9.24 (s, 2H), 9.00 (s, 2H), 8.71 (t, J = 5.7 Hz, 1H), 8.24 (d, J = 1.9 Hz, 1H), 8.05 (dd, J = 8.0, 1.9 Hz, 1H), 7.77 (m, 5H), 7.71 (dd, J = 7.9, 1.5 Hz, 1H), 7.42 (d, J = 7.9 Hz, 1H), 7.31 (d, J = 7.9 Hz, 1H), 6.89 (dd, J = 17.6, 11.0 Hz, 1H), 6.04 (d, J = 17.6 Hz, 1H), 5.42 (d, J = 11.0 Hz, 1H), 3.56 (s, 3H), 3.10 (t, J = 6.4 Hz, 2H), 1.85 (m, 1H), 0.89 (d, J = 6.7 Hz, 6H); MS (ES+): 499.3
N ₃ H ₂ C	30g	-	¹ HNMR (DMSO-d ₆): δ 10.73 (s, 1 H), 9.19 (bs, 2 H), 8.88 (bs, 2 H), 8.71 (t, J = 6 Hz, 1 H), 8.27 (d, J = 2 Hz, 1 H), 8.07 (dd, J = 7.7 and 2 Hz, 1 H), 7.88 (d, 2 Hz, 1 H), 7.8 (d, J = 2 Hz, 1 H), 7.83 (m, 4 H), 7.72 (dd, J = 2 and 7.7 Hz, 1 H), 7.46 (d, J = 7.7, 1 H), 7.41 (d, J = 7.7 Hz, 1 H), 4.56 (s, 2 H), 3.56 (s, 3 H), 3.11 (t, J = 6.8 Hz, 2 H), 1.87 (m, 1 H), 0.92 (d, J = 6.8 Hz, 6 H); MS (ES-) 608.2, (ES+) 610.3
СН2ОН	30h	ſ	Characterized at the next step
нон,с	30i		¹ HNMR (DMSO-d ₆): δ 10.68 (s, 1 H), 9.17 (bs, 2 H), 8.82 (bs, 2 H), 8.68 (t, J = 6 Hz, 1 H), 8.25 (d, J = 2 Hz, 1 H), 8.16 (d, J = 2 Hz, 1 H), 8.05 (dd, J = 8 and 2 Hz, 1 H), 7.87 (m, 1 H), 7.89 (dd, J = 8 and 2 Hz, 1 H), 7.75 (m, 5 H), 7.44 (d, J = 9 Hz, 1 H), 7.36 (d, J = 8 Hz, 1 H), 5.22 (t, J = 5 Hz, 1 H), 4.54 (d, J = 5 Hz, 2 H), 3.57 (s, 3 H), 3.10 (t, J = 6.8 Hz, 2 H), 1.84 (m, 1 H), 0.88 (d, J = 6.8 Hz, 6.8 Hz, 1 H), 1.84 (m, 1 H), 0.88 (d, J = 6.8 Hz, 6
-0	42	ſ	MS (ES'): 563.4
ndO-	∞	ſ	Characterized in the next step
-OCH ₃	49	f	MS (ES ⁺): 503.1

31h

311

43

50

Cpd. No.

m	
S	

Analytical Data	Characterized in the next step
Method Used	Ð
Starting Method From Used	31g
-R	SHA
Cpd. No.	. 22

₹	
U	١
_	١

HZ HZ	Analytical Data	MS (ES ⁺): 621.2	MS (ES ⁺): 755.2; (ES') 753.3	MS (ES ⁺): 828.5	MS (ES ⁺): 694.4; (ES') 692.4	Characterized in the next step
H,CO ₂ C	Method Used	ſ	ď	D-2	Ð	ð
ж	Starting From	33	34	35 + 36	37	38
	"R	H-	OOBn	OBn	Н-	H.
	-R	-OSO ₂ CF ₃	-OSO ₂ CF ₃	TIPS	TIPS	HN.
,	Cpd. No.	34	35	37	38	39

	T		
Analytical Data	¹ H NMR (DMSO-d ₆): δ 9.69 (s, 1 H), 8.49 (d, $J = 2.0$ Hz, 1 H), 8.22 (d, $J = 6.9$ Hz, 1 H), 7.53 (m, 4 H), 7.43 (m, 2 H), 7.37 (m, 2 H), 7.24 (d, $J = 8.9$ Hz, 1 H), 5.57 (s, 2 H), 5.26 (s, 2 H), 3.85 (t, $J = 4.9$ Hz, 2 H), 3.60 (s, 3 H), 3.51 (t, $J = 4.9$ Hz 2 H), 3.32 (s, 3 H); MS (ES ⁺): 501.02 (M+Na) ⁺	¹ H NMR (DMSO-d ₀): \(\delta\) 12.65 (s, 1 H), 8.41 (d, J = 2.0 Hz 1 H), 8.14 (dd, J = 2.0 and 7.9 Hz, 1 H), 7.38 (m, 4 H), 7.24 (dd, J = 3.0 and 8.9 Hz, 1 H), 7.11 (d, J = 8.9 Hz, 1 H), 5.54 (s, 2 H), 5.20 (s, 2 H), 3.82 (t, J = 4.9 Hz, 2 H), 3.57 (s, 3 H), 3.49 (t, J = 4.9 Hz, 2 H), 3.53 (s, 3 H); MS (ES): 493.2	H NMR (DMSO-d ₆): δ 10.2 (s, 1 H), 9.65 (s, 1 H), 8.25 (d, <i>J</i> = 2.0 Hz, 1 H), 7.85 (dd, <i>J</i> = 2.0 and 8.9 Hz, 1 H), 7.51 (d, <i>J</i> = 7.9 Hz, 2 H), 7.45 (m, 2 H), 7.35 (m, 3 H),7.29 (d, <i>J</i> = 7.9 Hz, 1 H) 7.2 (d, <i>J</i> = 7.9 Hz, 1 H), 5.24 (s, 2 H), 3.55 (s, 3 H), 2.3 (d, <i>J</i> = 6.9 Hz, 2 H) 2.1 (m, <i>J</i> = 6.9 Hz, 1 H), 1.0 (d, <i>J</i> = 6.9 Hz, 6 H); MS (ES ⁺): 446.31
Method Used	D-2	Ħ	D-2
H ₃ CO ₂ C Starting From	5+6	54	140 + 6
-R"	-СО2МЕМ	-СО2МЕМ	O CH,
-R'	СНО-	-со,н	-сно
-R	-OBn	-OBn	-OBn
Cpd.	52		141

ι	c	
L	ľ	
•	•	

Cpd. No.	-R	-R'	-R"	Starting From	Method Used	Analytical Data
142	-OBn	ноо-	O CH,	141	īπ	¹ H NMR (DMSO-d ₆): \$ 12.38 (s, 1 H), 10.01 (s, 1 H), 8.05 (s, 1 H), 7.68 (d, J = 7.9 Hz, 1 H), 7.41 (d, J = 7.9 Hz, 2 H), 7.35 (m, 5 H), 7.27 (m, 1 H), 7.11 (d, J = 8.9 Hz, 1 H), 7.04 (d, J = 8.9 Hz, 1 H), 6.99 (d, J = 8.9 Hz, 1 H), 5.11 (s, 2 H), 2.13 (d, J = 6.9 Hz, 2 H), 2.02 (m, J = 6.9 Hz, 1 H), 0.852 (d, J = 6.9 Hz, 6 H); MS (ES): 460.2
143	-OBn	-СО₂МЕМ	O CH,	142	[14	¹ H NMR (DMSO-d ₆): 8 10.12 (s, 1 H), 8.16 (d, <i>J</i> = 1.9 Hz, 1 H), 7.80 (dd, <i>J</i> = 1.9 and 8.3 Hz, 1 H), 7.42 (m, 6 H), 7.26 (dd, <i>J</i> = 2.8 and 8.3 Hz, 1 H), 7.13 (m, 2 H), 5.21 (s, 2 H), 5.17 (s, 2 H), 3.54 (s, 3 H), 3.40 (m, 2 H), 3.32 (m, 2 H), 2.22 (d, <i>J</i> = 7.0 Hz, 2 H), 2.10 (m, 4H), 0.95 (d, <i>J</i> = 6.4 Hz, 6H); MS (ES ⁺): 572.3 (M+Na) ⁺
144	НО-	-СО2МЕМ	O CH,	143	Ð	¹ H NMR (DMSO-d ₆): 5 12.7 (br s, 1 H), 9.09 (s, 2 H), 8.91 (s, 2 H), 8.57 (m, 1 H), 8.11 (s, 1 H), 7.92 (d, <i>J</i> = 1.9 Hz, 1 H), 7.81 (m, 3 H), 7.67 (m, 5 H), 7.14 (m, 3 H), 6.66 (m, 1 H), 4.40 (t, <i>J</i> = 5.3 Hz, 1 H), 3.39 (m, 2 H), 3.22 (m, 2 H), 1.48 (m, 4 H); MS (ES): 592.2.
145	-OSO ₂ CF ₃	-со₂мем	O CH,	144	B-2	MS (ES ⁺): 592.2
146a		-со₂мем	O CH,	145	D-2	MS (ES ⁺): 532.5 (M+Na) ⁺

v	
_	

	ي -	-R'	-R"	Starting From	Method	Analytical Data
	S	-со ₂ мем	O CH ₃	145	D-2	¹ H NMR (DMSO-d ₆): δ 10.1 (s, 1 H), 8.21 (d, J = 2.0 Hz, 1 H), 8.10 (d, J = 2.0 Hz, 1 H), 7.89 (dd, J = 2.0 and 7.9 Hz, 1 H), 7.84 (d, J = 3.0 and 8.9 Hz, 1 H), 7.63 (m, 2 H), 7.25 (d, J = 14.8 Hz, 2 H), 7.19 (m, 2 H), 5.22 (d, J = 14.8 Hz, 2 H), 3.57 (s, 3 H), 3.43 (t, J = 4.9 Hz, 2 H), 3.34 (t, J = 4.9 Hz, 2 H), 3.20 (s, 3H), 2.23 (d, J = 6.9 Hz, 2 H), 2.11 (m, J = 6.9 Hz, 1 H), 0.96 (d, J = 5.9 Hz, 6 H). MS (ES [†]): 576 48
ļ	-CH=CH2	-СО2МЕМ	O CH ₃	145	D-3	MS (ES ⁺): 470.2 (M+Na) ⁺
		-соън	O CH,	146a	F1	MS (ES): 420.29
	S	-СО2Н	O CH,	146b	Ξ.	¹ H NMR (DMSO-d ₆): \$ 12.65 (s, 1 H), 10.12 (s, 1 H), 8.18 (d, J = 1.9 Hz, 1 H), 8.07 (d, J = 3.0 Hz, 1 H), 7.83 (m, 2 H), 7.61 (m, 2 H), 7.19 (m, 3 H), 3.56 (s, 3 H), 2.22 (d, J = 6.9 Hz, 2 H), 2.11 (m, J = 6.9 Hz, 1 H), 0.96 (d, J = 6.9 Hz, 2 Hz, 6 H); MS (FS ²), 438 5.9
	-СН=СН2	-СО2Н	O CH,	146c	I-1	MS (ES): 380.32

	¢	3	3
	٠		
	L	4	į
	_		
			•

7						
S. C.	-R	-R'	-R"	Starting From	Method. Used	Analytical Data
173	#	-сно	H CH,	172 + 130	D-2	¹ H NMR (DMSO-d ₆): δ 9.70 (s, 1 H), 8.42 (t, $J = 6.2$ Hz, 1 H), 7.90 (dd, $J = 1.1$ & 6.6 Hz, 1 H), 7.82 (d, $J = 1.9$ Hz, 1 H), 7.72-7.50 (m, 3 H), 7.34 (d, $J = 7.7$ Hz, 1 H), 7.27 (dd, $J = 1.3$ & 6.2 Hz, 1 H), 4.38 (d, $J = 6.0$ Hz, 2 H), 3.53 (s, 3 H), 2.47 (m, 1 H), 1.07 (d, $J = 7.0$ Hz, 6 H· Ms (Fe ²), 340.05
174	Ħ.	ноо-	H N CH,	173	Щ	(t, J = 7.5 Hz, 1 H), 7.80-7.31 (m, 5 H), 8.31 (m, 2 H), 4.25 (d, J = 6.0 Hz, 2 H), 3.41 (s, 3 H), 2.37 (m, 1 H), 0.97 (d, J = 7.0 Hz, 6 H); MS (ES): 353.83
180	뚜	-СНО	Boc CH,	179 +	D-2	¹ H NMR (DMSO-d ₆): δ 9.70 (s, 1 H), 7.87 (m, 2 H), 7.69 (m, 1 H), 7.55 (m, 2 H), 7.35 (d, J = 7.9 Hz, 1 H), 7.27 (d, J = 7.5 Hz, 1 H), 4.51 (s, 2 H), 3.52 (s, 3 H), 3.05 (m, 2 H), 1.92 (m, 1 H), 1.40 (m, 9 H), 0.85 (d, J = 6.8 Hz, 6 H); MS (ES ⁺): 448.3 (M+Na) ⁺
181	, #	-со,н	Boc CH ₃	180	п	¹ H NMR (DMSO-d ₆): δ 7.81 (m, 2 H), 7.56 (m, 1 H), 7.44 (m, 2 H), 7.16 (m, 2 H), 4.47 (s, 2 H), 3.51 (s, 3 H), 3.02 (m, 2 H), 1.92 (m, J = 7.0 Hz, 1 H), 1.41 (m, 9 H), 0.85 (d, J = 6 Hz, 6 H); MS (ES): 440.2
184a	-OBn	-CHO	N CH,	3a+6	D-2	¹ H NMR (DMSO-d6): 59.78 (s, 1H), 8.85 (t, J = 5.7 Hz, 1H), 8.50 (d, J = 2.0 Hz, 1H), 8.20 (dd, J = 8.2, 1.9 Hz, 1H), 7.55 (m, 9H), 5.35 (s, 2H), 3.69 (s, 3H), 3.23 (t, J = 6.5 Hz, 2H), 1.98 (m, 1H), 1.02 (d, J = 6.8 Hz, 6H); MS (ES+): 446.3

_
u
_
,

Cpd. No.	-R	-R'	-R"	Starting From	Method	Analytical Data
184b	-OBn	-сно	HN O	3f + 6	D-2	MS (ES'): 470.2
184c	-OBn	-СНО	, H CH,	31+6	D-2	MS (ES): 418.3
184d	-OBn	-СНО	, CH, CH,	3j+6	D-2	MS (ES ⁺): 460.3
185a	НО-	-СНО	, H CH,	184a	AD	¹ HNMR (DMSO-d ₆): § 10.06 (s, 1 H), 9.63 (s, 1 H), 8.73 (t, J = 6.5 Hz, 1 H), 8.36 (d, J = 2 Hz, 1 H), 8.09 (dd, J = 2 and 8 Hz, 1 H), 7.45 (d, J = 8 Hz, 1 H), 7.28 (s, 1 H), 7.11 (s, 2 H), 3.58 (s, 3 H), 3.13 (d, J = 7 Hz, 2 H), 1.87 (m, 1 H), 0.91 (d, J = 6.8 Hz, 6 H); MS (ES-): 354.2 and (ES ⁺) 378.2 (M+Na) ⁺
185b	Н0-	-СНО	N CF,	184b	AD	MS (ES'): 380.1
185c	НО-	-СНО	N CH ₃	184c	AD.	¹ HNMR (DMSO-d ₆): \$ 10.21 (s, 1 H), 9.78 (s, 1 H), 8.87 (t, J = 5.80 Hz, 1.H), 8.51 (s, 1 H), 8.23 (d, J = 7.92 Hz, 1 H), 7.60 (d, J = 7.9 Hz, 1 H), 7.43 (s, 1 H), 7.25 (s, 2 H), 3.74 (s, 3 H), 3.46 (q, J = 5.65, 2 H), 1.32(t, J = 7.8 Hz, 3 H)

	_
•	,
u	n
-	٠.

Cpd.	4	-R'	-R"	Starting	Method	Analytical Data
185d	НО-	-СНО	O CH ₃	184d	AD	¹ HNMR (DMSO-d ₆): δ 10.06 (s, 1 H), 9.62 (s, 1 H), 8.69 (t, J = 5.90 Hz, 1 H), 8.36 (s, 1 H), 8.08 (d, J = 7.92 Hz, 1 H), 7.45 (d, J = 8.1 Hz, 1 H), 7.28 (s, 1 H), 7.10 (s, 2 H), 3.58 (s, 3 H), 3.22 (m, 1 H), 3.11 (m, 1 H), 1.66 (m, 1 H), 1.44 (m, 1 H), 1.18 (m, 1 H), 0.89(t, J = 6.4 Hz, 6.4)
186a	-OSO ₂ CF ₃	-сно	CH,	185a	B-2	MS (ES ⁺): 488.24
186b	-OSO ₂ CF ₃	-СНО	N CF,	185b	B-2	¹ HNMR (DMSO-d ₆): δ 9.74 (s, 1 H), 9.44 (t, J = 5.90 Hz, 1 H), 8.51 (s, 1 H), 8.11 (d, J = 7.91 Hz, 1 H), 7.54 (m, 4 H), 4.18 (m, 2 H), 3.59 (s, 3 H).
186c	-OSO ₂ CF ₃	-сно	N CH,	185c	B-2	¹ HNMR (DMSO-d6): 5 9.45 (s, 1 H), 8.59 (t, 1 = 5.90 Hz, 1 H), 8.28 (s, 1 H), 7.94 (d, J = 8.10 Hz, 1 H), 7.79 (d, J = 2.8 Hz, 1 H), 7.67 (d, J = 7.9 Hz, 1 H), 7.32 (d, J = 7.9 Hz, 2 H), 3.40 (s, J = 7.1 Hz, 2 H), 0.97 (t, J = 7.16 Hz, 3 H).
186d	-OSO2CF3	-СНО	NH CH,	185d	B-2	¹ HNMR (DMSO-d ₆): 5 9.71 (s, 1 H), 8.78 (t, 1 = 5.90 Hz, 1 H), 8.49 (s, 1 H), 8.18 (d, 1 = 7.92 Hz, 1 H), 8.00 (s, 1 H), 7.88 (d, 1 = 8.51 Hz, 1 H), 7.52 (q, 1 = 8.1 Hz, 2 H), 3.67 (s, 3 H), 3.22 (m, 1 H), 3.16 (m, 1 H), 1.68 (m, 1 H), 1.44 (m, 1 H), 1.18 (m, 1 H), 0.89(t, 1 = 6.4 Hz, 6 H)

H
٥
4

	-R'	-R"	Starting	Method	Analytical Data
-СНО		O CH ₃	186a	D-3	¹ HNMR (DMSO-d ₆): δ 9.74 (s, 1 H), 8.76 (t, J = 6.5 Hz, 1 H), 8.42 (d, J = 2 Hz, 1 H), 8.11 (dd, J = 2 and 8 Hz, 1 H), 8.00 (d, J = 1.7 Hz, 1 H), 7.84 (dd, J = 8 and 2 Hz, 1 H), 7.47 (d, J = 8 Hz, 1 H), 7.47 (d, J = 1 and 1.7.7 Hz, 1 H), 6.01 (d, J = 1.7.7 Hz, 1 H), 5.42 (d, J = 11 Hz, 1 H), 3.59 (s, 3 H), 3.14 (d, J = 7 Hz, 2 H), 1.88 (m, 1 H), 0.92 (d, J = 6.8 Hz, 6 H); MS (ES-): 364.2 and (ES ⁺) 388.2 (M+Na) ⁺
-СНО		N CF ₃	186b	D-3	MS (ES): 390.1
-СНО		N CH ₃	186c	D-3	MS (ES'): 336.2
-СНО		N CH,	186d	D-3	MS (ES): 378.2

NHR'	Analytical Data	¹ H NMR (DMSO-4 ₆): \$ 10.67 (s, 1 H), 9.2 (s, 2 H), 8.87 (s, 2 H), 8.33 (d, <i>J</i> = 2.0 Hz, 1 H), 8.17 (dd, <i>J</i> = 2.0 and 7.9 Hz, 1 H), 7.77 (s, 4 H), 7.49 (m, 4 H), 7.39 (m, 2 H), 7.30 (s, 2 H), 5.54 (s, 2 H), 5.27 (s, 2 H), 3.83 (t, <i>J</i> = 4.9 Hz, 2 H), 3.57 (s, 3 H), 3.49 (t, <i>J</i> = 4.9 Hz, 2 H), 3.23 (s, 3 H); MS (ES ¹): 612 4	MS (ES ⁺): 712.4	¹ H NMR (DMSO-d ₆): 5 10.4 (s, 1 H), 10.0 (s, 1 H), 8.9 (s, 1 H), 8.28 (d, J = 2.0 Hz, 1 H), 8.12 (dd, J = 2.1 and 7.7 Hz, 1 H), 7.89 (d, J = 8.4 Hz, 2 H), 7.61 (d, J = 8.4 Hz, 1 H), 7.45 (d, J = 7.7 Hz, 1 H), 7.13 (d, J = 8.4 Hz, 1 H), 7.06 (s, 1 H), 6.98 (dd, J = 2.8 and 8.4 Hz, 1 H), 5.52 (s, 2 H), 3.81 (t, J = 4.9 Hz, 2 H), 3.56 (s, 3 H), 3.46 (t, J = 4.9 Hz, 2 H), 3.20 (s, 3 H), 1.43 (s, 9 H); MS (ES): 620.5
H,CO ₂ C	Method Used	ſ	×	Ö
H, C	Starting From	55	99	57
	-R"	-СО2МЕМ	-CO ₂ MEM	-со ₂ мем
	-R'	H-	-Boc	-Boc
	-R	-OBn	-OBn	НО-
	Cpd.	56	57	58

	٠,
Ł	n
•	۳.
•	4

-						
No.	-R	-R'	-R"	Starting From	Method	Analytical Data
. 59	-OSO ₂ CF ₃	-Boc	-СО2МЕМ	28	B-2	¹ H NMR (DMSO-d ₆): δ 10.55 (s, 1 H), 8.38 (d, <i>J</i> = 2.0 Hz, 1 H), 8.18 (dd, <i>J</i> = 2.0 and 7.9 Hz, 1 H), 7.86 (m, 4 H), 7.75 (dd, <i>J</i> = 2.0 and 8.9 Hz, 1 H), 7.54 (m, 5 H), 5.51 (s, 2 H), 3.77 (t, <i>J</i> = 4.9 Hz, 2 H), 3.55 (s, 3 H), 3.46 (t, <i>J</i> = 4.9 Hz, 2 H), 3.18 (s, 3 H) 1.41 (s, 9 H); MS (ES ¹): 754.3
99		-Boc	-СО2МЕМ	59	D-2	H NMR (DMSO-d ₆): δ 10.61 (s, 1 H), 8.94 (s, 1 H), 8.37 (s, 1 H), 8.19 (dd, $J = 2.0$ and 7.9 Hz, 1 H), 8.02 (s, 1 H), 7.89 (m, 5 H), 7.65 (d, $J = 8.9$ Hz, 2 H), 7.54 (d, $J = 7.9$ Hz, 1 H), 7.39 (d, $J = 7.9$ Hz, 1 H), 7.17 (d, $J = 3.9$ Hz, 1 H), 6.68 (m, 1 H), 5.54 (s, 2 H), 3.82 (t, $J = 4.9$ Hz, 2 H), 3.58 (s, 3 H), 3.49 (t, $J = 4.9$ Hz, 2 H), 3.58 (s, 3 H), 3.65 (s, $J = 4.9$ Hz, 2 H), 3.65 (s, 3 H), 3.65 (s,
61	S.	-Boc	-со,н	09	17	11, 117 (3, 7 11), 103 (E3): 0/2.3 14 NMR (DMSO-d ₀): \(\delta\) 10.50 (s, 1 H), \(8.96 (s, 1 H), \\ 8.32 (s, 1 H), \(8.07 (d, J = 7.9 Hz, 1 H), 7.98 (s, 1 H), \\ 7.87 (m, 5 H), 7.63 (d, J = 8.9 Hz, 2 H), 7.38 (m, 2 H), \\ 7.15 (d, J = 3.0 Hz, 1 H), 6.67 (m, 1 H), 3.57 (s, 3 H), \\ 145 (s, 9 H): \(MS \) 6.65 (m, 1 H), 6.67 (m, 1 H), 3.57 (s, 3 H), \\ 145 (s, 9 H): \(MS \) 6.65 (m, 1 H), 6.67 (m, 1 H), 6.6
99	-СН=СН2	-Boc	-СО2МЕМ	59	D-3 H 6 6	1. NMR (DMSO-d ₆): δ 10.56 (s, 1 H), 9.02 (br s, 1 H), 8.35 (d, $J = 1.7$ Hz, 1 H), 8.18 (dd, $J = 1.9$ and 6.0 Hz, 1 H), 7.88 (d, $J = 9.0$ Hz, 2 H), 7.80 (d, $J = 1.3$ Hz, 1 H), 7.71 (dd, $J = 1.7$ and 6.2 Hz, 1 H), 7.63 (d, $J = 8.9$ Hz, 2 H), 7.50 (d, $J = 8.3$ Hz, 1 H), 7.32 (d, $J = 8.1$ Hz, 1 H), 6.89 (dd, $J = 10.7$ and 17.7 Hz, 1 H), 6.04 (d, $J = 17.4$ Hz, 1 H), 5.54 (s, 2 H), 5.43 (d, $J = 11.7$ Hz, 1 H), 3.82 (t, $J = 4.5$ Hz, 2 H), 3.57 (s, 3 H), 3.48 (t, $J = 4.5$ Hz, 2
					1	H), 3.22 (s, 3 H), 1.44 (s, 9 H); MS (FS ⁺)· 632 1

•	ė	9	٠	
	٦	•		
۱	3	ľ		

0.	-R	-R'	-R"	Starting From	Starting Method From Used	Analytical Data
	-CH=CH2	-Boc	-соън	99	ĿΙ	¹ H NMR (DMSO-d ₆): δ 10.49 (s, 1 H), 8.99 (br s, 1 H), 8.31 (s, 1 H), 8.07 (d, J = 8.3 Hz, 1 H), 7.87 (d, J = 9.0 Hz, 2 H), 7.77 (m, 2 H), 7.66 (m, 3 H), 7.38 (d, J = 7.7 Hz, 1 H), 6.03 (d, J = 7.7 Hz, 1 H), 6.88 (dd, J = 10.7 and 17.7 Hz, 1 H), 6.03 (d, J = 17.4 Hz, 1 H), 5.41 (d, J = 10.9 Hz, 1 H), 3.56 (s, 3 H), 1.43 (s, 9 H); MS (ES):
						745.1

NHBoc	Z.H	RO ₂ C NHR'
	\ <u></u>	

	t (t, J = nd 7.9 d, J = d, J = f, 1 H), 5 (m, 2 d, Hz,			
Analytical Data	¹ H NMR (DMSO-d ₆): δ 10.57 (s, 1 H), 8.92 (s, 1 H), 8.64 (t, J = 5.4 Hz, 1 H), 8.24 (d, J = 2.0 Hz, 1 H), 8.02 (dd, J = 2.0 and 7.9 Hz, 1 H), 7.98 (s, 1 H), 7.88 (m, 3 H) 7.84 (s, 1 H), 7.64 (d, J = 8.9 Hz, 2 H), 7.42 (d, J = 7.9 Hz, 1 H), 7.36 (d, J = 7.9 Hz, 1 H), 7.14 (d, J = 3.0 Hz, 1 H), 6.67 (m, 1 H), 3.55 (s, 3 H), 3.26 (m, 2 H), 1.50 (m, J = 7.4 Hz, 2 H), 1.43 (s, 9 H), 1.32 (m, J = 7.4 Hz, 2 H), 0.89 (t, 3 H); MS (ES): 639.5	MS (ES ⁺): 625.5	MS (ES ⁺): 623.4	MS (ES ⁺): 687.4
Method Used	A-4	A-4	A-4	A-4
Starting From	61	61	61	61
-R'	CH ₃	CH3	CH ₂	
-R	-CH ₃	-CH3	-СН3	-CH3
Cpd.	62a	62b	62с	62d

,

Ó
ā

Cpd.	٦ .	-R'	Starting From	Method Used	Analytical Data
62е	-СН3	CH,	61	A-4	MS (ES ⁺): 625.4
62f	-СН3	CH ₃	61	A-4	MS (ES ⁺): 653.5
62g	-СН3	CH ₃	61	A-4	MS (ES ⁺): 653.5
62ћ	-СН3		61	A-4	MS (ES ⁺): 667.3
62i	-СН3	CH,	61	A-4	MS (ES ⁺): 681.5
62j	-СН3	>	61	A-4	MS (ES ⁺): 637.3
62k	-CH3	OH CH,	61	A-4	MS (ES [†]): 640.3
621	-СН3	\Diamond	61	A-4	MS (ES ⁺): 665.4

-
in
•

Cpd. No.	-R	-R'	Starting From	Method Used	Analytical Data
62т	-CH3	СН	61	A-4	MS (ES ⁺): 597.3
62n	-CH3	CH,	61	A-4	MS (ES ⁺): 639.4
620	-СН3		19	A-4	MS (ES ⁺): 695.4 (M+Na) ⁺
62р	-СН3	CF,	. 19	A-4	MS (ES'): 665.4
62а	-СН3	CH ₃	61	A-4	MS (ES [†]): 653.4
62r	-СН3	CH, CH,	19	A-4	MS (ES ⁺): 567.3
62s	-СН3	CH,	61	A-4	MS (ES ⁺): 667.5
62t	-CH3	НО	19	A-4	MS (ES ⁺): 641.3
62u	-CH ₃	HO	61	A-4	MS (ES ⁺): 655.3

•
•
١

			·					
Analytical Data	MS (ES [†]): 663.1	MS (EST): 577.2	MS (ES ⁺): 679.2	MS (ES ⁺): 621.1	MS (ES ⁺): 611.1	MS (ES ⁺): 657.1	MS (ES ⁺): 659.1	MS (ES ⁺): 679.3
Method Used	A-4	A-4	A-4	A-4	A-4	A-4	A-4	A-4
Starting From	61	61	61	61	61	61	61	19
-R'		Z Z		. но	CH,	но		
-k	-СН3	-СН3	-СН3	-CH ₃	-СН3	-СН3	-СН3	-CH ₃
Cpd.	62v	62w	62x	62y	622	62аа	62ab	62ас

:	7	
١	ú	٥

Cpd.	-R	-R'	Starting Method From Used	Method Used	Analytical Data
62ad	62ad -CH ₃	НО	61	1	MS (ES'): 695.3
62ae	-CH3	NHR's ——N	19	A-4	MS (ES [†]): 651.3
62af	62af -CH ₃	NHR' = -N CH ₃	61	A-4	A-4 MS (ES ⁺): 679.4

NHR' NHR'	Analytical Data	¹ H NMR (DMSO-d ₆): δ 12.80 (s, 1 H), 9.09 (s, 2 H), 8.91 (s, 2 H), 8.57 (m, 1 H), 8.15 (s, 1 H), 7.91 (s, 1 H), 7.80 (m, 3 H), 7.67 (m, 4 H), 7.20 (m, 2 H), 7.07 (s, 1 H), 6.63 (s, 1 H) 3.21 (m, J = 5.9 Hz, 2 H), 1.46 (m, J = 7.4 Hz, 2 H), 1.28 (m, J = 7.4 Hz, 2 H) 0.86 (t, J = 7.4 Hz, 3 H); MS (ES ⁵): 525.3	¹ H NMR (DMSO-d ₆): δ 12.76 (s, 1 H), 9.10 (s, 2 H), 8.82 (s, 2 H), 8.59 (m, 1 H), 8.20 (s, 1 H), 7.95 (s, 1 H), 7.83 (m, 3 H), 7.70 (s, 4 H), 7.25 (m, 2 H), 7.10 (s, 1 H), 6.65 (s, 1 H), 3.20 (q, J = 6.0 Hz, 2 H), 1.51 (m, J = 7.4 Hz, 2 H); MS (ES ⁺): 511.2	¹ H NMR (DMSO-d ₆): δ 12.84 (s, 1 H), 9.11 (s, 2 H), 8.84 (m, 2 H), 8.26 (m, 1 H), 7.94 (m, 2 H), 7.83 (m, 3 H), 7.71 (s, 4 H), 7.28 (m, 2 H), 7.12 (s, 1 H), 6.65 (s, 1 H), 5.87 (m, 1 H), 5.15 (d, J=17.2 Hz, 1 H), 5.07 (d, J 10.3 Hz, 1 H) 3.88 (t, J=5.2 Hz, 2 H); MS (ES [†]): 509.3
HO ₂ C	Method Used	I-2, S	I-2, S	I-2, S
H H	Starting From	62а	62b	62с
	-R'	СН,	CH	Сн ₂
· .	-R			
•	i. 1	ì		· I

64a

64b

. 64c

г	
•	
	_
_	
	٠,

-R	-R'	Starting From	Method Used	Analytical Data
	CH ₃	62d	I-2, S	¹ H NMR (DMSO-d ₆): 6 12.78 (s, 1 H), 9.11 (m, 2 H), 8.85 (s, 2 H), 8.22 (s, 1 H), 7.93 (s, 1 H), 7.83 (m, 3 H), 7.68 (s, 4 H), 7.19 (m, 3 H), 7.10 (m, 5 H), 6.65 (s, 1 H), 4.41 (s, 2 H), 2.27 (s, 3 H); MS (ES ⁺): 573.3
	CH ₃	62e	I-2, S	¹ H NMR (DMSO-d ₆): \(\delta\) 12.82 (s, 1 H), 9.11 (s, 2 H), 8.86 (s, 2 H), 8.39 (d, \(J = 7.7 \text{ Hz}, 1 \text{ H}), 8.24 (s, 1 H), 7.90 (m, 1 H), 7.84 (m, 2 H), 7.71 (s, 4 H), 7.28 (m, 2 H), 7.11 (m, 1 H), 6.65 (s, 1 H), 4.08 (m, J = 6.9 Hz, 1 H), 1.14 (d, \(J = 6.9 \text{ Hz}, 6 H); \text{ MS (ES\$^+): 511.3}\)
	CH,	62f	I-2, S	¹ H NMR (DMSO-d ₆): δ 13.28 (br s, 1 H), 9.05 (m, 2 H), 8.84 (s, 2 H), 8.46 (m, 1 H), 7.99 (s, 1 H), 7.88 (s, 1 H), 7.77 (m, 2 H), 7.63 (m, 5 H), 7.07 (m, 2 H), 6.96 (m, 1 H), 6.63 (s, 1 H), 3.16–2.96 (m, 2 H), 1.65-1.03 (m, 3 H), 0.85 (m, 6 H); MS (ES ⁺): 539.3
	CH,	62g	I-2, S	¹ H NMR (DMSO-d ₆): \(\delta\) 13.37 (s, 1 H), 9.06 (s, 2 H), 8.84 (s, 2 H), 8.47 (m, 1 H), 8.00 (s, 1 H), 7.88 (s, 1 H), 7.78 (m, 2 H), 7.70 (m, 5 H), 7.08 (m, 2 H), 6.97 (s, 1 H), 6.63 (s, 1 H), 3.22 (m, 2 H), 1.58 (m, J = 6.0 Hz, 1 H), 1.38 (m, J = 6.9 Hz, 2 H), 0.87 (d, J = 6.9 Hz, 6 H); MS (ES ⁺): 539.3
		62h	I-2, S	¹ H NMR (DMSO-d ₆): 6 12.71 (br s, 1 H), 9.13 (s, 1 H), 8.75 (m, 3 H), 8.31 (m, 1 H), 7.97 (m, 2 H), 7.86 (m, 2 H), 7.73 (m, 4 H), 7.64 (m, 2 H), 7.33 (m, 2 H), 7.13 (m, 1 H), 6.67 (m, 1 H), 3.98 (m, 1 H), 3.77 (q, <i>J</i> = 6.9 Hz, 1 H), 3.29 (m, 2 H), 1.86 (m, 3 H), 1.59 (m, 1 H); MS (ES ⁺): 553.3

2	
~	
٦	

	-R'	Starting	Method	Analytical Data
	CH,	62i	I-2, S	¹ H NMR (DMSO-d ₆): δ 12.81 (br s, 1 H), 9.13 (s, 2 H), 8.85 (s, 2 H), 8.26 (m, 2 H), 7.96 (m, 2 H), 7.86 (m, 2 H), 7.74 (m, 5 H), 7.32 (m, 1 H), 7.13 (m, 1 H), 6.67 (m, 1 H), 3.99 (m, 1 H), 1.5-0.85 (m, 14 H); MS (ES ⁺): 567.3
	∇	62j	I-2, S	¹ H NMR (DMSO-d ₆): \(\delta\) 13.74 (br s, 1 H), 9.07 (s, 2 H), 8.92 (s, 2 H), 8.62 (t, J = 5.6 Hz, 1 H), 8.03 (s, 1 H), 7.89 (d, J = 1.7 Hz, 1 H), 7.79 (m, 2 H), 7.64 (m, 4 H), 7.10 (m, 3 H), 6.99 (d, J = 8.5 Hz, 1 H), 6.64 (m, 1 H), 3.08 (t, J = 6.0 Hz, 2 H), 1.00 (m, 1 H), 0.40 (m, 2 H), 0.20 (m, 2 H); MS (ES [†]): 523.4
#	CH,	62k	I-2, S	¹ H NMR (DMSO-d ₆): 8 9.12 (s, 2 H), 8.88 (s, 2 H), 8.52 (m, 1 H), 8.12 (m, 1 H), 7.92 (m, 2 H), 7.81 (m, 3 H), 7.67 (m, 4 H), 7.14 (m, 3 H), 6.66 (m, 1 H), 4.75 (d, <i>J</i> = 4.5 Hz, 1 H), 3.77 (m, 1 H), 3.17 (m, 1 H), 1.04 (d, <i>J</i> = 6.0 Hz, 3 H); MS (ES ⁺): 527.2
		621	I-2, S	¹ H NMR (DMSO-d ₆): δ 13.91 (br s, 1 H), 9.07 (s, 2 H), 8.90 (s, 2 H), 8.29 (d, <i>J</i> = 8.1 Hz, 1 H), 8.00 (s, 1 H), 7.89 (m, 1 H), 7.78 (m, 2 H), 7.64 (m, 5 H), 7.08 (m, 2 H), 6.96 (d, <i>J</i> = 7.7 Hz 1 H), 6.64 (m, 1 H), 3.71 (m, 1 H), 1.82-1.03 (m, 10 H)p; MS (ES ⁺): 551.33
e, e		62m	I-2, S	¹ H NMR (DMSO-d ₆): \(\delta\) 13.87 (br s, 1 H), 9.07 (s, 2 H), 8.90 (s, 2 H), 8.48 (m, 1 H), 7.99 (s, 1 H), 7.89 (m, 1 H), 7.79 (m, 2 H), 7.62 (m, 5 H), 7.10 (m, 2 H), 6.97 (d, J = 7.9 Hz 1 H), 6.64 (m, 1 H), 2.73 (d, J = 4.5 Hz, 3 H); MS (ES ⁺): 483.2

7
•
4

Cpd. No.	-R	-R'	Starting From	Method	Analytical Data
64n		CH, CH,	62n	I-2, S	¹ H NMR (DMSO-d ₆): δ 9.08 (s, 2 H), 8.85 (s, 2 H), 8.26 (d, $J = 8.7$ Hz, 1 H), 8.07 (s, 1 H), 7.91 (s, 1 H), 7.80 (m, 2 H), 7.67 (m, 5 H), 7.09 (m, 3 H), 6.65 (m, 1 H), 3.89 (m, $J = 7.0$ Hz, 1 H), 1.49 (m, $J = 6.9$ Hz, 2 H), 1.10 (d, $J = 6.6$ Hz, 3 H), 0.85 (t, $J = 7.2$ Hz, 3 H); MS (ES ⁺): 525.2
640			620	I-2, S	¹ H NMR (DMSO-d ₆): δ 9.19 (m, 2 H), 9.10 (s, 2 H), 8.82 (s, 2 H), 8.19 (m, 1 H), 7.94 (s, 1 H), 7.83 (m, 2 H), 7.68 (m, 4 H), 7.33-7.10 (m, 8 H), 6.66 (m, 1 H), 4.45 (d, J = 5.7 Hz, 2 Hz); MS (ES ⁺): 559.2
64p		ĊF,	62р	I-2, S	¹ H NMR (DMSO-d ₆): 8 9.22 (m, 2 H), 9.09 (s, 2 H), 8.81 (s, 2 H), 8.17 (m, 1 H), 7.95 (s, 1 H), 7.82 (m, 2 H), 7.68 (m, 4 H), 7.16 (m, 4 H), 6.66 (m, 1 H), 4.06 (m, 2 H); MS (ES ⁺): 551.22
649		CH,	62q	I-2, S	¹ H NMR (DMSO-d ₆): 8 9.10 (s, 2 H), 8.86 (s, 2 H), 8.56 (m, 1 H), 8.13 (m, 1 H), 7.93 (s, 1 H), 7.82 (m, 2 H), 7.67 (m, 5 H), 7.15 (m, 3 H), 6.66 (m, 1 H), 3.19 (m, 2 H), 1.50 (m, 2 H), 1.28 (m, 4 H), 0.87 (j, <i>J</i> = 7.0 Hz, 3 H); MS (ES ⁺): 539.3
. 64r		CH,	62r	I-2, S	¹ H NMR (DMSO-d ₆): \$ 9.09 (s, 2 H), 8.90 (m, 2 H), 8.15 (m, 2 H), 7.93 (s, 1 H), 7.81 (m, 3 H), 7.68 (m, 4 H), 7.13 (m, 3 H), 6.66 (m, 1 H), 3.83 (m, 1 H), 1.47 (m, 4 H), 1.25 (m, 4 H), 0.83 (m, 6 H); MS (ES [†]): 567.3

₹	ı
r	ı
_	į

Cpd. No.	-R	-R'	Starting From	Method	Analytical Data
64s		CH, CH, CH,	628	I-2, S	¹ H NMR (DMSO-d ₆): δ 9.08 (s, 2 H), 8.86 (s, 2 H), 8.48 (m, 1 H), 8.03 (m, 1 H), 7.90 (s, 1 H), 7.79 (m, 2 H), 7.65 (m, 5 H), 7.12 (m, 2 H), 7.02 (m, 1 H), 6.65 (m, 1 H), 3.22 (m, 2 H), 1.42 (t, J = δ.2 Hz, 2 H), 0.91 (s, 9 H); MS (ES ⁺): 553.4
		НО	62t	I-2, S	¹ H NMR (DMSO-d ₆): δ 13.61 (br s, 1 H), 9.07 (s, 2 H), 9.00 (s, 2 H), 8.52 (t, <i>J</i> = 5.5 Hz, 1 H), 8.02 (s, 1 H), 7.90 (d, <i>J</i> = 1.9 Hz, 1 H), 7.79 (m, 2 H), 7.64 (m, 5 H), 7.10 (m, 2 H), 7.00 (d, <i>J</i> = 7.7 Hz, 1 H), 6.64 (m, 1 H), 4.47 (t, <i>J</i> = 5.3 Hz, 1 H), 3.43 (m, 2 H), 3.27 (m, 2 H), 1.64 (qui, <i>J</i> = 6.8 Hz, 2 H); MS (ES ⁺): 527.23
		НО	62u	I-2, S	¹ H NMR (DMSO-d ₆): δ 12.7 (br s, 1 H), 9.09 (s, 2 H), 8.91 (s, 2 H), 8.57 (m, 1 H), 8.11 (s, 1 H), 7.92 (d, J = 1.9 Hz, 1 H), 7.81 (m, 3 H), 7.67 (m, 5 H), 7.14 (m, 2 H), 6.66 (m, 1 H), 4.40 (t, J = 5.3 Hz, 1 H), 3.39 (m, 2 H), 3.22 (m, 2 H), 1.48 (m, 4 H); MS (ES): 541.34
·			62v	I-2, S	¹ H NMR (DMSO-d ₆): δ 9.16-8.89 (m, 4 H), 8.16 (m, 1 H), 7.93 (s, 1 H), 7.81 (m, 3 H), 7.67 (m, 4 H), 7.56 (s, 1 H), 7.15 (m, 5 H), 6.65 (m, 1 H), 6.38 (m, 1 H), 6.26 (m, 1 H), 4.42 (d, <i>J</i> = 4.9 Hz, 2 H); MS (ES ⁺): 549.27
		Z	62w	I-2, S	¹ H NMR (DMSO-d ₆): δ 11.59 (br s, 1 H), 9.14 (s, 2 H), 8.98 (s, 2 H), 8.70 (t, J = 5.7 Hz, 1 H), 8.24 (s, 1 H), 7.99 (m, 2 H), 7.87 (m, 3 H), 7.71 (m, 3 H), 7.36 (s, 1 H), 7.27 (m, 2 H), 7.10 (m, 2 H), 6.67 (m, 1 H), 4.07 (t, J = 6.9 Hz, 2 H), 3.24 (q, J = 6.5 Hz, 2 H), 1.98 (qui, J = 6.7 Hz, 2 H); MS (ES ⁺): 577.17

u	١
¢	•
-	1

Cpd.	a-	ia	Starting	Method	
Š.		V-	From	Used	Analytical Data
64x			62x	I-2, S	¹ H NMR (DMSO-d ₆): 6 13.72 (br s, 1 H), 9.13 (s, 2 H), 9.06 (s, 2 H), 8.50 (t, <i>J</i> = 5.7 Hz, 1 H), 8.00 (d, <i>J</i> = 1.3 Hz, 1 H), 7.89 (d, <i>J</i> = 1.9 Hz, 1 H), 7.78 (m, 2 H), 7.62 (m, 4 H), 7.08 (m, 2 H), 6.96 (d, <i>J</i> = 7.9 Hz, 1 H), 6.64 (m, 1 H), 3.04 (t, <i>J</i> = 6.5 Hz, 2 H), 1.72-1.43 (m, 6 H), 1.25-1.08 (m, 3 H), 0.88 (m, 2 H); MS (ES ⁺): 565.25
64y		НЭЖСН	62y	I-2, S	¹ H NMR (DMSO-d ₆): δ 9.16-8.87 (m, 4 H), 8.09 (s, 1 H), 7.91 (s, 1 H), 7.80 (m, 2 H), 7.65 (m, 5 H), 7.12 (m, 5 H), 6.65 (m, 1 H), 4.01 (m, 2 H), 3.10 (m, 1 H); MS (ES ⁴): 507.2
642		CH ₃	622	I-2, S	¹ H NMR (DMSO-d ₆): \$ 9.10 (s, 2 H), 8.97 (s, 2 H), 8.59 (t, <i>J</i> = 5.7 Hz, 1 H), 8.13 (s, 1 H), 7.93 (s, 1 H), 7.80 (m, 3 H), 7.68 (m, 4 H), 7.16 (m, 4 H), 6.65 (m, 1 H), 3.26 (qui, <i>J</i> = 6.0 Hz, 2 H), 1.10 (t, <i>J</i> = 7.2 Hz, 3 H); MS (ES ⁺): 497.2
64aa		но	62aa	I-2, S	¹ H NMR (DMSO-d ₆): δ 14.1 (br s, 1 H), 9.08 (s, 2 H), 8.79 (s, 2 H), 8.45 (m, 1 H), 8.01 (s, 1 H), 7.90 (s, 1 H), 7.79 (m, 3 H), 7.63 (m, 5 H), 7.09 (m, 2 H), 6.98 (m, 1 H), 6.65 (m, 1 H), 4.80 (d, <i>J</i> = 4.7 Hz, 1 H), 4.56 (t, <i>J</i> = 6.8 Hz, 1 H), 3.60 (m, 1 H), 3.32-2.90 (m, 3 H); MS (ES [†]): 543.2
64ab			62ab	I-2, S	¹ H NMR (DMSO-d ₆): 8 10.34 (s, 1 H), 9.07 (s, 2 H), 8.85 (s, 2 H), 8.18 (s, 1 H), 7.93 (s, 1 H), 7.80 (m, 6 H), 7.66 (m, 4 H), 7.34 (m, 2 H), 7.11 (m, 4 H), 6.65 (m, 1 H); MS (ES ⁺): 545.2

u	٥
-	
_	
•	

Cpd.	4	R'	Starting From	Method	Analytical Data
64ac			62ac	I-2, S	¹ H NMR (DMSO-d ₆): δ 9.07 (m, 4 H), 8.38 (d, <i>J</i> = 8.5 Hz, 1 H), 8.10 (s, 1 H), 7.92 (s, 1 H), 7.84-7.62 (m, 7 H), 7.11 (m, 3 H), 6.66 (m, 1 H), 3.94 (m, 1 H), 1.88-1.35 (m, 12 H); MS (ES ⁺): 565.3
64ad		НО	62ad	I-2, S	¹ H NMR (DMSO-4 ₆): 513.71 (m, 2 H), 9.36-8.57 (m, 4 H), 8.50 (m, 1 H), 7.98 (s, 1 H), 7.89 (s, 1 H), 7.78 (2 H), 7.61 (m, 5 H), 7.08 (m, 2 H), 6.95 (d, <i>J</i> = 7.9 Hz, 1 H), 6.63 (m, 1 H), 3.19 (m, 2 H), 2.16 (t, <i>J</i> = 7.2 Hz, 2 H), 1.48 (m, 4 H), 1.28 (m, 2 H); MS (ES): 581.2
64ae		NHR = —N	62ae	I-2, S	¹ H NMR (DMSO-d ₆): δ 9.12 (s, 2 H), 8.89 (s, 2 H), 7.91 (m, 1 H), 7.81 (m, 2 H), 7.70 (d, J = 8.7 Hz, 2 H), 7.62 (d, J = 8.9 Hz, 2 H), 7.48 (m, 1 H), 7.22 (m, 2 H), 7.11 (d, J = 3.4 Hz, 1 H), 7.05 (d, J = 7.2 Hz, 1 H), 6.65 (m, 1 H), 3.53 (m, 2 H), 3.08 (m, 2 H), 1.62-1.21 (m, 6 H); MS (ES ⁺): 537.20
64af		NHR = -N CH	62af	I-2, S	¹ H NMR (DMSO-d ₆): δ 12.81 (br s, 1 H), 9.13 (s, 2 H), 8.82 (s, 2 H), 7.95 (s, 1 H), 7.85 (m, 2 H), 7.71 (m, 5 H), 7.43 (m, 1 H), 7.29 (m, 2 H), 7.13 (m, 1 H), 6.67 (m, 1 H), 3.49-2.97 (m, 4 H), 1.67-1.37 (m, 2 H), 1.08 (m, 1 H), 0.90 (m, 3 H), 0.61-0.26 (m, 4 H); MS (ES ⁺): 565.3

NHR NHR	Analytical Data	¹ H NMR (DMSO-d ₆ , D ₂ O): § 13.87 (br s, 1 H), 9.56 (m, 2 H) 9.21 (s, 1 H), 8.74 (s, 1 H), 8.47 (m, 1 H), 7.97 (m, 1 H), 7.88 (s, 1 H), 7.78 (m, 3 H), 7.58 (m, 7 H), 7.09 (m, 3 H), 6.96 (m, 1 H), 6.95 (m, 1 H), 3.14 (m, 4 H), 1.77-0.80 (m, 18 H); MS (ES ⁺): 609.4	¹ H NMR (DMSO-d ₆): \(\delta\) 13.80 (br s, 1 H), 9.91 (s, 1 H), 9.41 (s, 1 H), 8.63 (m, 2 H), 8.07 (s, 1 H), 7.98 (s, 1 H), 7.60 (m, 8 H), 6.90 (m, 3 H), 5.94 (d, J=17.7 Hz, 1 H), 4.37 (m, 1 H), 4.16 (m, 1 H), 2.41-1.58 (m, 12 H); MS (ES ⁺): 537.4	¹ H NMR (DMSO-d ₆): 59.76 (s, 1 H), 9.41 (s, 1 H), 8.95 (s, 1 H), 8.53 (m, 1 H), 8.07 (s, 1 H), 7.65 (m, 8 H), 7.08 (m, 2 H), 6.85 (dd, J = 10.9 and 17.7 Hz, 1 H), 6.92 (m, 3 H), 5.97 (d, J = 17.7 Hz, 1 H), 5.37 (d, J = 10.9 Hz, 1 H), 2.84 (m, 1 H), 2.70 (m, 1 H), 0.98-0.51 (m, 8H); MS (ES [†]): 509.4
HO ₂ C	Method Used	A-4, I-2, S	A-4, I-2, S	A-4, 1-2, S
	Starting From	61	29	<i>L</i> 9
	-R'	CH,	\Rightarrow	>
	-R		-CH≕CH₂	-СН=СН2
	Cpd.	9	71a	71b

10 20

m	
_	
~	

Analytical Data	¹ H NMR (DMSO-d ₆): \$ 12.51 (br s, 1 H), 9.59 (s, 1 H), 9.22 (s, 1 H), 8.79 (s, 1 H), 8.58 (t, J=5.5 Hz, 1 H), 8.17 (s, 1 H), 7.67 (m, 4 H), 7.12 (m, 2 H), 6.86 (dd, J=10.9 and 17.7 Hz, 1 H), 5.98 (d, J=17.7 Hz, 1 H), 5.38 (d, J=10.9 Hz, 1 H), 3.27 (m, 4 H), 1.20 (t, J=7.2 Hz, 1 H), 1.09 (t, J=7.2 Hz, 1 H); MS (ES ⁺): 485.3
Starting Method From Used	A-4, I-2, S
Starting From	<i>L</i> 9
-R'	CH,
-R	-СН=СН2
Cpd.	71c

σ
5
H

NHBoc NHR'	Analytical Data	MS (ES ⁺): 599.4	MS (ES ⁺): 641.4	MS (ES [†]): 625.3	MS (ES ⁺): 583.3	MS (ES ⁺): 585.3	MS (ES ⁺): 599.4
RO ₂ C	Method Used	A-4	A-4	- A-4	A-4	A-4	A-4
= /	Starting From	<i>L</i> 9	29	19	<i>L</i> 9	29	19
	-R'	CH ₃	CH,		CH ₂	CH,	CH ₃
	-R	-CH ₃	-СН3	-СН3	-CH3	-СН3	-СН3
•	Cpd. No.	68a	989	989	98d	989	189

	0	20
	•	4

-CH ₃ -C	-R'	Starting From	Method Used	Analytical Data
-CH ₃ -C	CF₃	29	A-4	MS (ES ⁺): 625.2
-CH, -CH, -CH, -CH, -CH, -CH, -CH, -CH,		29	A-4	MS (ES ⁺): 619.2
-CH ₃ CH ₃ -CH ₃ CH ₃ -CH ₃	но	29	A-4	MS (ES ⁺): 615.3
-CH ₃ CH ₃	7	29	A-4	MS (ES ⁺): 597.3
-CH, CH, -CH, -CH,	СН	29	A-4	MS (ES ⁺): 557.3
-CH ₃	CH,	19	A-4	MS (ES ⁺): 571.4
-CH ₃		29	A-4	MS (ES ⁺): 639.4
	CH ₃	29	A-4	Characterized in the next step
680 -CH ₃	CH,	29	A-4	MS (ES ⁺): 613.5

_
α
_

Cpd. No.	-R	-R'	Starting From	Method Used	Analytical Data
68р	-СН3	CH,	29	A-4	MS (ES ⁺): 613.5
ъ89	-СН3	CH,	19	A-4	MS (ES ⁺): 641.5
68r	-СН3	NHBoc	1.9	A-4	MS (ES ⁺): 714.5
688	-CH3		29	A-4	MS (ES ⁺): 611.4
68t	-СН3	но	29	A-4	MS (ES ⁺): 641.4
n89	-СН3		29	A-4	MS (ES ⁺): 583.3
v89	-СН3	\Diamond	29	A-4	MS (ES ⁺): 597.4
w89	-СН3	НО	29	A-4	MS (ES ⁺): 587.4
88x	-СН3	CH,	29	A-4	MS (ES ⁺): 613.5

	\prec
	TZ C
S E	2 . R"O ₂ C'

		1	Т	$\overline{}$	Τ-	T-	$\overline{}$				Т.
	Analytical Data	MS (EST): 368.2	MS (ES'): 354.1	MS (ES): 430.2	MS (ES ⁺): 488.1	MS (ES7): 562.3; MS (ES ⁺): 586.3 (M+Na) ⁺	MS (ES ⁺): 366.38	Characterized in the next step	MS (ES'): 487.3; MS (ES'): 511.35 (M+Na) [†]	Characterized in the next step	MS (ES ⁺): 530.3 (M+Na) ⁺); MS (ES'): 506.3
	Method Used	D-2	V-2,W	V-1, H	B-2	B-2	D-3	×	×	D-2	D-8
0	Starting From	73 + 3a	74	74	75a	75b	76a	75b	75b	76b	75b
	"	-CH3	-CH3	-Bn	-СН3	-Bn	-CH3	-Bn	-Bn	-Bn	-Bn
	-R'	OHO-	-СНО	-СНО	-СНО	СНО-	-СНО	-СНО	-СНО	СНО-	-СНО
	-R (Position with Respect to Phenyl Ring)	-OCH ₃ (3)	-OH (3)	-OH (3)	-OSO ₂ CF ₃ (3)	-0SO ₂ CF ₃ (3)	-CH=CH ₂ (3)	-OCH ₂ CO ₂ C ₂ H ₅ (3)	-OCH ₂ CONH ₂ (3)		$-0 \longrightarrow (3)$
	Cpd. No.	74	75a	75b	76a	76b	77a	77b	77c	P//	77e

ſ	۲	1
¢	X)
	_	4
۰		ľ

	D (B. 121					
Cpd.	Respect to Phenyl Ring)	-R'	-R"	Starting From	Method Used	Analytical Data
77f	> ₀ CH,	ОНО-	-Bn	75b	×	MS (ES ⁺): 496.3 (M+Na) ⁺
77g	\o_CH, (3)	-СНО	-Bn	75b	×	MS (ES+): 482.4 (M+Na) ⁺
77h	$\begin{array}{c} \begin{array}{c} CH_1 \\ CH_1 \end{array}$	-СНО	-Bn	75b	×	MS (ES ⁺): 510.4 (M+Na) ⁺
177	OAc (3)	-СНО	-Вл	75b	× .	¹ HNMR (CDCl ₃): 5 9.59 (s, 1 H), 8.39 (d, J = 2 Hz, 1 H), 8.03 (m, 2 H), 7.84 (d, J = 8.9 Hz, 1 H), 7.35 (d, J = 8 Hz, 1 H), 7.28 (m, 2 H), 7.12 (m, 2 H), 6.93 (dd, J = 2.5 and 8.8 Hz, 1 H), 6.64 (d, J = 2.5 Hz, 1 H), 6.31 (t, J = 6 and 5 Hz, 1 H), 5.06 (m, 2 H), 4.42 (t, J = 4.5 Hz, 2 H), 4.13 (m, 2 H), 3.34 (t, J = 6.8 Hz, 2 H), 2.11 (s, 3 H), 1.94 (m, 1 H), 1.01 (d, J = 6.8 Hz, 6 H)
78a	-CH=CH ₂ (3)	-CO ₂ H	-CH3	77a	Ħ	MS (ES'): 380.1
78b	-OSO _s CF ₃ (3)	-СО ₂ Н	-Bn	76b	m	Characterized in the next step
78c	-OCH ₂ CO ₂ C ₂ H ₅ (3)	Н2ОЭ-	-Bn	77b	时	Characterized in the next step
78d	-OCH ₂ CONH ₂ (3)	-CO ₂ H	-Bn	77c	ш	MS (ES ⁺): 527.35 (M+Na) ⁺

,		1	
(0	ĺ)
•	•		1

P (Pocition with	on with					
Respect to Phen Ring)	Phenyl g)	-R'	-R"	Starting From	Method Used	Analytical Data
S	(3)	н'оо-	-Bn	<i>77</i> d	щ	MS (ES ⁺): 536.4 (M+Na) ⁺
0-0	(3)	-CO ₂ H	-Bn	77e	ਸ਼	MS (ES'): 522.3
-0CH ₃ (3)	3 (3)	Н2ОЭ-	-СН3	74	E	MS (ES'): 384.1
	CH, (3)	-СО ₂ Н	-Bn	J/L	E	MS (ES): 488.3
	`СН, (3)	нсол-	-Bn	77g	田	MS (ES): 474.4
0	СН, СН,	-СО2Н	-Bn	77h	ŒĴ	MS (ES): 502.4
	OAc (3)	-со,н	-Bn	77i	H	Characterized in the next step
-OBn (5)	(5)	-СНО	-СН3	89 + 3a	D-2	¹ HNMR (CDC! ₃): δ 10.47 (s, 1) H), 8.36 (d, J = 2 Hz, 1 H), 7.96 (dd, J = 2.2 and 7.7 Hz, 1 H), 7.68 (m, 2 H), 7.46 (m, 5 H), 7.23 (d, J = 8 Hz, 1 H), 7.12 (d, J = 8.7 Hz, 1 H), 6.73 (d, J = 7.2 Hz, 1 H), 5.23 (q, J = 11 and 15 Hz, 2 H), 3.67 (s, 3 H), 3.31 (t, J = 6.8 Hz, 2 H), 1.94 (m, 1 H), 1.01 (d, J = 6.8 Hz, 6 H), MS (ES+) 468.2

a	

Cpd.	-R (Position with Respect to Phenyl	-R'	-R	Starting	Method	Analytical Data
	-OBn (5)	-сол	-CH3	06	щ	HNMR (CDCl ₃): \$ 8.22 (s, 1 H), 7.83 (d, J = 7.2 Hz, 1 H), 7.34 (m, 8 H), 7.02 (d, J = 8.1 Hz, 1 H), 6.75 (d, J = 7.4 Hz, 1 H), 5.16 (s, 2 H), 3.66 (s, 3 H), 3.21 (t, J = 6.8 Hz, 1 H), 5.15 (s, 1 Hz, 1 H), 5.15 (s, 1 Hz, 1 H), 5.16 (s, 1 Hz, 1 H), 5.16 (s, 1 Hz,
92	-0Bn (5)	-CO ₂ MEM	-CH ₃	91	14	= 6.8 Hz, 6 H), MS (ES+) 484.1 (M+Na) ⁺ MS (ES ⁺): 572.2 (M+Na) ⁺
	-ОН (5)	-СО2МЕМ	-СН3	92	Ð	MS (ES ⁺): 482. (M+Na) ⁺
	-OSO ₂ CF ₃ (5)	-СО2МЕМ	-CH3	93	B-2	MS (ES ⁺): 614.3 (M+Na) ⁺
95a	$\left\langle \right\rangle$ (5)	-CO ₂ MEM	-СН3	94	D-3	MS (ES+) 562.3 (M+Na) ⁺
96a	(5)	-СО ₂ Н	-CH3	95a	J-1	MS (ES+) 452.1 (M+Na) ⁺
101	-OCH ₃ (2)	CHO-	-CH3	100 + 3a	D-2	MS (ES+) 370.1
102	-OCH ₃ (2)	Н²ОЭ-	-СН3	101	田	MS (ES) 384.2; MS (ES ⁺) 386.2
108	-OBn (2)	CHO-	-CH3	107 + 3a	D-2	MS (ES ⁺): 446.2
109	-OBn (2)	-СО ₂ Н	-CH3	108	ы	MS (ES7): 460.1

u
a
Ξ

Cpd.	-R (Position with	ia		Starting	Method	
So.	Ring)	-K	K	From	Used	Analytical Data
131	平	СНО	-СН,	130 + 3a	D-2	¹ HNMR (CDCl ₃ -d ₁): 8 9.79 (s, 1 H), 8.39 (d, J = 1.88 Hz, 1 H), 8.02 (t, J = 6.0 Hz, 2 H), 7.59 (m, 2 H), 7.38 (d, J = 7.9 Hz, 1 H), 7.22 (d, J = 8.1 Hz, 1 H), 6.30 (b, 1 H), 3.72 (s, 3 H), 3.36 (t, J = 6.6 Hz, 2 H), 1.96 (m, 1 H), 1.02 (d, J = 6.8 Hz, 6 H), MS (ES+): 340.1
132	н -	-со,н	-СН,	131	防	¹ HNMR (DMSO-d ₆): δ 12.28 (b, 1 H), 8.52 (d, J = 6.03 Hz, 1 H), 8.12 (s, 1 H), 7.86 (d, J = 8.1 Hz, 1 H), 7.74 (d, J = 7.74 Hz, 1 H), 7.31 (t, J = 7.9 Hz, 1 H), 7.12 (d, J = 8.1 Hz, 1 H), 7.12 (d, J = 8.1 Hz, 1 H), 6.97 (d, J = 7.5 Hz, 1 H), 3.39 (s, 3 H), 2.92 (t, J = 6.0 Hz, 2 H), 1.66 (m, 1 H), 0.78 (d, J = 7.4 Hz, 6 H), MS (ES-): 354.1
193a	. म	NH	-СН3	192a + 6a	D-7	MS (ES ⁺): 560.5
193b	H	CH, NHBoc	-СН,	192b + 6a	D-7	MS (ES ⁺): 574.5)

r	
a	٥
•	4

1		***************************************				
	-R (Position with Respect to Phenyl Ring)	-R'	-R"	Starting From	Method Used	Analytical Data
1	H-	NH NH2	-СН,	193a	S-2	MS (ES ⁺): 460.3
	H-	CH ₃ NH ₂	-СН,	193b	S-2	MS (ES ⁺): 474.3
	Н-	NH NH2	H-	194a	1-2	¹ HNMR (DMSO-d ₆): 8 8.79 (bs, 4 H), 8.63 (t, J = 6.5 Hz, 1 H), 8.35 (s, 1 H), 7.85 (d, J = 6 Hz, 1 H), 7.62 (d, J = 8.2 Hz, 2 H), 7.26 (m, 5 H), 7.06 (m, 1 H), 5.0 (m, 2 H), 3.09 (t, J = 6.2 Hz, 2 H), 1.86 (m, 1 H), 0.89 (d, J = 6.6 Hz, 6 H); MS (ES-): 444.3 and (ES ⁺) 446.3

~	
4	
α	3
_	

Cpd. No.	-K (Position with Respect to Phenyl Ring)	-R'	-R"	Starting From	Method Used	Analytical Data	
195b	Н-	CH ₃ NH ₂	H-	194b	I-2	¹ HNMR (DMSO-d ₆ /DCI): \$ 8.24 (d, J = 1.6 Hz, 1 H), 7.91 (dd, J = 7.7 and 1.6 Hz, 1 H), 7.56 (d, J = 8.7 Hz, 1 H), 7.32 (d, J = 8.7 Hz, 1 H), 7.32 (t, J = 8 Hz, 1 H), 7.16 (m, 3 H), 6.91 (t, J = 7.5 Hz, 1 H), 6.76 (d, J = 8.5 Hz, 1 H), 6.66 (d, J = 8.5 Hz, 1 H), 6.65 (d, J = 8.5 Hz, 1 H), 6.65 (d, J = 8.5 Hz, 1 H), 6.65 (d, J = 6.9 Hz, 2 H), 1.84 (d, J = 6.5 Hz, 1.2 H), 1.37 (d, J = 6 Hz, 1.8 H), 0.71 (d, J = 6.5 Hz, 6 H); MS (ES-): 458.2 and (ES ⁺) 460.3	
200	Н-	CH ₃ NHBoc	-СН3	NHBoc -CH ₃ 199 + 6a	D-7	MS (ES ⁺): 573.5	

σ
α
=

Cpd.	-R (Position with Respect to Phenyl Ring)	-R'	-R"	Starting From	Method Used	Analytical Data
201	Ħ.	CH ₃ NHBoc	н-	200	1-2	'HNMR (DMSO-d ₆ /DCI): 8 8.49 (t, J = 5.6 Hz, 1 H), 8.18 (d, J = 6.9 Hz, 1 H), 7.84 (t, J = 7.8 Hz, 1 H), 7.23 (m, 4 H), 7.01 (m, 2 H), 6.82 (d, J = 7 Hz, 1 H), 6.12 (d, J = 8.5 Hz, 1 H), 6.15 (d, J = 8.5 Hz, 1 H), 6.15 (m, 1 H), 2.85 (t, J = 5.8 Hz, 1 H), 1.62 (m, 1 H), 1.23 (s, 9 H), 1.1 (d, J = 6.7 Hz, 1.24), 1.05 (d, J = 6.7 Hz, 1.8 H), 0.67 (d, J = 6.6 Hz, 6 H); MS (ES+): 559.4
202	н-	CH ₃ NH ₂	Н-	201	S	MS (ES ⁺): 459.3
203	-OBn (4)	NHBoc HH	-СН3	45	æ	MS (ES ⁺): 679.4
204	-OBn (4)	O NHBoc	Ħ.	203	I-2	MS (ES): 663.4

Cpd.	-R (Position with Respect to Phenyl	-R'	-R"	Starting	Method	Analytical Data
209a	Ring) -H	Z Z Z Z H	-СН3	132	A-7	MS (ES'): 454.3
209b	-CH=CH ₂ (4)	O H	-CH3	30f	A-7	¹ HNMR (DMSO-d ₆): δ 10.72 (s, 1 H), 8.65 (d, J = 6.03 Hz, 1 H), 8.24 (s, 1 H), 8.03 (d, J = 8.1 Hz, 1 H), 7.75 (m, 6 H), 7.40 (d, J = 7.90 Hz, 1 H), 7.34 (d, J = 8.1 Hz, 1 H), 6.88 (q, J = 11.2 Hz, 1 H), 6.04 (d, J = 7.5 Hz, 1 H), 5.41 (d, J = 11.1 Hz, 1 H), 3.55 (s, 3 H), 3.10 (t, J = 6.6 Hz, 2 H), 1.86 (m, 1 H), 0.88 (d, J = 6.6 Hz, 6 H); MS (ES): 480.3
210b	-CH=CH2 (4)	HO—NH	-СН3	209b	¥	¹ HNMR (DMSO-d ₆): 5 10.12 (s, 1 H), 9.37 (b, 1 H), 8.48 (t, 1=6.1 Hz, 1 H), 8.05 (d, 1=1.9 Hz, 1 H), 7.85 (d, 1=7.9 Hz, 1 H), 7.56 (d, 1=7.8 Hz, 1 H), 7.49 (d, 1=7.9 Hz, 1 H), 7.36 (s, 4 H), 7.21 (d, 1=7.9 Hz, 1 H), 7.36 (s, 4 H), 7.21 (d, 1=7.9 Hz, 1 H), 7.36 (s, 4 H), 7.21 (d, 1=7.9 Hz, 1 H), 5.84 (d, 1=15.5 Hz, 1 H), 5.60 (m, 1 H), 5.84 (d, 1=15.5 Hz, 1 H), 5.60 (b, 1 H), 5.22 (d, 1=11.4 Hz, 1 H), 3.38 (s, 3 H), 2.91 (t, 1 = 6 Hz, 2 H), 1.66 (m, 1 H), 0.71 (d, 1 = 6.8 Hz, 6 H); MS (ES+) 515.40

_	٠
	ľ
v	١
-	

	_
-K (Position with Respect to Phenyl Ring)	7
-CH=CH ₂ (4) 0	O=ZH
-CH=CH ₂ (4)	, Z=

~
σ
_

	7	
Analytical Data	¹ H NMR (DMSO): 8 9.23 (s, 1) H), 8.71 (t, J = 6.2 Hz, 1 H), 8.36 (d, J = 1.9 Hz, 1 H), 8.09 (dd, J = 7.9, 1.7 Hz, 1 H), 7.49 (d, J = 7.9 Hz, 2 H), 7.40 (d, J = 8.3 Hz, 1 H), 7.32 (d, J = 8.8 Hz, 2 H), 7.04 (d, J = 7.9 Hz, 1 H), 6.73 (dd, J = 17.7, 11.1 Hz, 1 H), 6.73 (dd, J = 17.7, 11.1 Hz, 1 H), 6.40 (d, J = 8.5 Hz, 2 H), 5.78 (d, J = 17.7 Hz, 1 H), 5.58 (b, 1 H), 5.26 (d, J = 11.1 Hz, 1 H), 3.96 (m. 2 H), 3.64 (s, 3 Hz, 1 H), 3.96 (m. 2 H), 3.64 (s, 3 Hz, 6 Hz	HNMR (DMSO): 8 8.76 (t, J = 5.8 Hz, 1 H), 8.37 (s, 1 H), 8.04 (d, J = 8.7 Hz, 1 H), 7.39 (m, 5 H), 7.06 (d, J = 8.3 Hz, 1 H), 6.72 (dd, J = 17.9, 11.3 Hz, 1 H), 6.43 (d, J = 8.5 Hz, 3 H), 5.76 (d, J = 17.9 Hz, 1 H), 5.24 (d, J = 11.1 Hz, 1 H), 3.98 (m. 2 H), 3.11 (t, J = 6.6 Hz, 2 H), 1.86 (h, J = 6.8 Hz, 1 H), 0.90 (d, J = 6.8, 6 H);
Method Used	≯	1-2
Starting From	212	213
-R"	-СН3	н-
-R'	HO — N H	HO—NH
-R (Position with Respect to Phenyl Ring)	-CH=CH2 (4)	-CH=CH2 (4)
Cpd.	213	214

ŧ	۰	1
¢	3	١
r		ı

 -R (Position with Respect to Phenyl Ring)	-R'	-R"	Starting From	Method Used	Analytical Data
 -CH=CH₂ (4)	NH NH2	H-	237 + 187a	AE-2	1HNMR (DMSO-d ₆): § 8.68-8.60 (m, 1 H), 8.50 (d, J = 2.4 Hz, 1 H), 7.90-7.80 (m, 1 H), 7.76-7.70 (m, 1 H), 7.56-7.50 (m, 1 H), 7.48-7.42 (d, J = 7.7 Hz, 1 H), 7.30-7.22 (d, J = 7.9 Hz, 1 H), 7.10-7.02 (d, J = 7.7 Hz, 1 H), 6.90-6.75 (dd, J = 17, 11 Hz, 1 H), 6.90-6.75 (dd, J = 17, 11 Hz, 1 H), 6.5 (bs, 1 H), 5.92-5.80 (d, J = 17 Hz, 1 H), 6.5 (bs, 1 H), 5.92-5.80 (d, 11 Hz, 1 H), 4.50-4.20 (m, 2 H), 3.20-3.10 (t, J = 6.6 Hz, 2 H), 2.10-1.88 (m, 1 H), 1.2-0.94 (d, J = 6.6 Hz, 6 H); MS (ES ⁺) 471.3
 H-	NHBoc	-CH3	255 + 6a	D-6	MS (ES ⁺): 573.3
 -H	NH ₂	H-	256	I-2, S	MS (ES ⁺): 459.1

E	Z V	•	<
			z c
C	ZE	\\\	R'O ₂ C
	4	<u>-</u> /_	24

Cpd. No.	R	'Ä'	Starting	Method	Analytical Data
79a	-CH=CH ₂ (3)	-CH3	78a		MS (ES ⁺): 499.2
79Ъ	-OSO ₂ CF ₃ (3)	-CH ₂ C ₆ H ₅	78b	ſ	Characterized in the next step
79c	-OCH2CO2C2H5 (3)	-CH ₂ C ₆ H ₅	78c	r	Characterized in the next step
p6/	-OCH ₂ CONH ₂ (3)	-CH2C6H5	78d	'n	MS (ES ⁺): 622.4; (ES) 620.4
79e		-CH2C6H5	78e	'n	Characterized in the next step
J62 -	\rightarrow \rightarrow \rightarrow \rightarrow \rightarrow	-CH ₂ C ₆ H ₅	78f	J.	Characterized in the next step

BNSDOCID: <WO____0234711A1_I_>

94

ñ
19

Cpd.	-R	-R'	Starting From	Method Used	Analytical Data
79g	-OCH3 (3)	-CH3	78g	۳	¹ HNMR (DMSO-d ₆): δ 10.6 (bs, 1 H), 9.29-9.32 (bs, 1 H), 9.06 (bs, 1 H), 8.82-8.75 (t, J = 5.84 Hz, 1 H), 8.32 (d, J = 1.88 Hz, 1 H), 8.13 (d, J = 1.7 Hz, 1 H), 7.83 (s, 4 H), 7.78 (d, J = 8.67 Hz, 1 H), 7.50 (d, J = 7.9 Hz, 1 H), 7.20-7.15 (dd, J = 8.67, 2.3 Hz, 1 H), 6.92 (d, J = 2.4 Hz, 1 H), 3.94 (s, 3 H), 3.64 (s, 3 H), 3.21-3.14 (t, J = 6 Hz, 2 H), 2.0-1.86 (m, 1 H), 1.0-0.94 (d, J = 6.5 Hz, 6 H); MS (ES ⁺) 503.3
79h	\sim CH ₃ (3)	-Bn	78h		MS (ES ⁺): 607.3
79i	~o~cH, (3)	-Bn	78i	ſ	MS (ES ⁺): 593.4
79.j	$\begin{array}{c} \begin{array}{c} CH_{j} \\ CH_{j} \end{array} (3)$	-Bn	78j	Ĭ.	MS (ES ⁺): 621.4
79k	-O-CH ₂ -CH ₂ -OAc (3)	-Bn	78k	J	MS (ES ⁺): 651.4
80a	-CH=CH ₂ (3)	. Н-	79a	I-2	¹ HNMR (DMSO-d ₆): δ 9.1 (s, 2 H), 8.87 (s, 2 H), 8.53 (t, J = 6 Hz, 1 H), 8.02 (s, 1 H), 7.64 (m, 7 H), 7.1 (s, 1 H), 6.98 (d, 7.4 Hz, 1 H), 6.80 (dd, J = 11 Hz, J = 17.6 Hz, 1 H), 5.90 (d, J = 17.6 Hz, 1 H), 5.35 (d, J = 12 Hz, 1 H), 3.03 (t, 6 Hz, 2 H), 1.83 (m, 1 H), 0.86 (d, J = 6.7 Hz, 6 H); MS (ES ⁺) 485.2
80b	-ОН (3)	Ŧ	79b	1-2	¹ HNMR (DMSO-d ₆): δ 10.37 (s, 1 H), 9.20 (m, 3 H), 8.72 (t, J = 6 Hz, 1 H), 8.2 (s, 1 H), 8.85 (m, 6 H), 7.65 (d, J = 8 Hz, 1 H), 7.12 (d, 8 Hz, 1 H), 7.02 (dd, J = 2.5 Hz, J = 8 Hz, 1 H), 6.60 (d, J = 2.5 Hz, 1 H), 3.25 (t, J = 6.5 Hz, 2 H), 2.0 (m, 1 H), 1.07 (d, J = 6.8 Hz, 6 H); MS (ES ⁺) 475.2

٧	0
C	h
-	4

Cpd. No.	-R	-R'	Starting From	Method Used	Analytical Data
80с	-ОСН ₂ СО ₂ Н (3)	H-	79c	I-2	¹ H NMR (DMSO-d ₆): δ 12.7 (2H, bs, 1 H), 9.01, 8.87 (2 bs, 4 H), 8.36 (m, 1H), 7.83 (s, 1H), 7.44 (m, 6 H), 6.75 (m, 2H), 6.31 (d, J=2.2 Hz, 1H), 4.42 (s, 2H), 2.84 (m, 2H), 1.63 (m, 1H), 0.67 (d, J=6.5 Hz, 6H); MS(ES+): 533.4
P08	-OCH2CONH2 (3)	н-	79d	ڻ.	¹ H NMR (DMSO-d ₀): δ 9.13 (bs, 5H), 8.59 (t, J=6.28 Hz, 1H), 8.14 (d, J = 1.7 Hz, 1H), 7.63 (m, 9H), 7.42 (s, 1H), 7.09 (d, J = 7.5 Hz, 1H), 7.03 (dd, J = 2.5, 12.7 Hz, 1H), 6.70 (d, J = 2.5 Hz, 1H), 4.48 (s, 2H), 3.05 (t, J=6.6 Hz, 2H), 1.83 (m, 1H), 0.87 (d, J=6.8 Hz, 6H); MS(ES+): 532.4
80e	$(S) \qquad (3)$	Н-	79e	I-2	¹ H NMR (DMSO-d ₆): 5 12.6 (1H, bs, COOH), 8.98, 8.67 (2 bs, 4H), 8.46 (m, 1H), 8.08 (m, 1H), 7.76 (m, 1H), 7.53 (m, 6 H), 7.39 (m, 2H), 7.06 (m; 1H), 7.04 (m, 1H), 2.89 (m, 2H), 1.66 (m, 1H), 0.69 (d, J=6.5 Hz, 6H); MS(ES+): 541.4
80f	(3)	Н-	79f	1-2	¹ HNMR (DMSO-d ₆): δ 9.14 (d, J = 10 Hz, 4 H), 8.60 (t, J = 6 Hz, 1 H), 8.22 (bs, 1 H), 7.87-7.62 (m, 7 H), 7.47 (t, J = 8 Hz, 2 H), 7.26 (t, 7 Hz, 1 H), 7.22 (m, 4 H), 6.70 (bs, 1 H), 3.09 (t, J = 6 Hz, 2 H), 1.83 (m, 1 H), 0.91 (d, J = 6.8 Hz, 6 H); MS (ES ⁺) 551.4
80g	-OCH3 (3)	Н-	79g	1.2	¹ HNMR (DMSO-d ₆): δ 9.13 (bs, 2 H), 8.78 (bs, 2H), 8.65 (t, J = 6 Hz, 1 H), 8.25 (bs, 1 H), 7.78 (m, 1 H), 7.76 (m, 5 H), 7.25 (s, 1 H), 7.17 (m, 1 H), 6.73 (bs, 1 H), 3.83 (s, 3 H), 3.10 (t, J = 6 Hz, 2 H), 1.80 (m, 1 H), 0.88 (d, J = 6.8 Hz, 6 H); MS (ES ⁺) 489.3

7
m
٠:

Cpd.	-R	-R'	Starting From	Method Used	Analytical Data
80h	CH, (3)	Н-	79h	I-2	MS (ES ⁺): 517.7
80i	\o_CH ₃ (3)	Н-	19i	I-2	MS (ES ⁺): 503.4; MS (ES ⁻): 501.4
80j	O CH, (3)	H-	79j	1-2	MS (ES ⁺): 531.4; MS (ES ⁻): 529.4
80k	-О-СН2-СН2-ОН (3)	H-	79k	1-2	¹ HNMR (DMSO-d ₆): § 13.52 (bs, 1 H), 9.16 (bs, 2 H), 9.03 (bs, 2 H), 8.50 (t, J = 6 Hz, 1 H), 7.96 (d, J = 1.7 Hz, 1 H), 7.56 (m, 6 H), 7.00 (dd, J = 2.5 and 8.5 Hz, 1 H), 6.90 (d, J = 8 Hz, 1 H), 6.48 (d, J = 2.5 Hz, 1 H), 4.91 (t, J = 5.5 Hz, 1 H), 4.00 (t, J = 4.5 Hz, 2 H), 3.69 (q, J = 5.5 and 10 Hz, 2 H), 3.05 (t, J = 6.8 Hz, 2 H), 1.80 (m, 1 H), 0.84 (d, J = 6.8 Hz, 6 H); MS (ES ⁺): 519.3, (ES-) 517.3
86a	-СН(ОН)СН2ОН (3)	Н-	82	S, I-2	¹ HNMR (DMSO-d ₆): 8 9.15 (bs, 3 H), 8.65 (t, J = 6 Hz, 1 H), 8.12 (s, 2 H), 7.82-7.56 (m, 7 H), 7.55-6.96 (m, 4 H), 5.5 (bs, 1 H), 4.90 (bs, 1 H), 4.65 (bs, 1 H), 3.10 (t, J = 6 Hz, 2 H), 1.90 (m, 1 H), 0.92 (d, J = 6.8 Hz, 6 H); MS (ES ⁺) 519.3
86b	-СН,ОН (3)	H-	. 84	S, I-2	¹ HNMR (DMSO-d ₆): 5 8.82 (bs, 2 H), 8.68 (bs, 2 H), 8.40 (t, J = 6 Hz, 1 H), 7.88 (bs, 1 H), 7.53 (m, 5 H), 7.45 (d, 8 Hz, 1 · H), 7.25 (d, J = 8 Hz, 1 H), 6.81 (m, 2 H), 5.22 (d, J = 5.5 Hz, 1 H), 4.41 (d, J = 5.5 Hz, 2 H), 2.88 (t, J = 6 Hz, 2 H), 1.65 (m, 1 H), 0.71 (d, J = 6.8 Hz, 6 H); MS (ES ⁺) 489.2

α)
σ	١
	ł

Cpd.	-R	-k	Starting	Method	Analytical Data
86c	-CO ₂ H (3)	H-	85	S, F-2	¹ HNMR (DMSO-d ₆ .D ₂ O): § 13.7 (bs, 1 H), 8.32 (t, J = 6 Hz, 1 H), 7.63-7.17 (m, 7 H), 6.72 (d, 7.0 Hz, 1 H), 2.81 (t, J = 6 Hz, 2 H), 1.53 (m, 1 H), 0.64 (d, J = 6.8 Hz, 6 H); MS (ES ⁺) 503.2
97a	(5)	-CH ₃	96a	ſ	MS (ES ⁺): 569.2
97b	-OBn (5)	-СН3	91	-	¹ HNMR (DMSO-d ₆): δ 10.62 (s, 1 H), 9.15 (bs, 2 H), 8.82 (bs, 2 H), 8.67 (t, J = 6 Hz, 1 H), 8.25 (d, J = 2 Hz, 1 H), 7.99 (dd, J = 8.1 and 2 Hz, 1 H), 7.69 (q, 8.8 and 16.2 Hz, 4 H), 7.44 (m, 3 H), 7.28 (m, 3 H), 6.89 (d, J = 7.7 Hz, 1 H), 5.5 (s, 2 H), 3.6 (s, 3 H), 3.08 (t, J = 5.8 and 6.8 Hz, 2 H), 1.83 (m, 1 H), 0.87 (d, J = 6.8 Hz, 6 H); MS (ES-) 577.2, (ES+) 579.3
98a	(5)	H-	97a	1-2	¹ HNMR (DMSO-d ₆): δ 13.45 (bs, 1 H), 9.06 (s, 2 H), 8.99 (s, 2 H), 8.51 (t, J = 6 and 5 Hz, 1 H), 7.99 (s, 1 H), 7.62 (m, 5 H), 7.47 (s, 1 H), 7.36 (m, 2 H), 6.99 (m, 4 H), 4.26 (s, 2 H), 3.02 (t, J = 6.8 Hz, 2 H), 1.80 (m, 1 H), 0.86 (d, J = 6.8 Hz, 6 H), MS (ES-) 553.2, (ES+) 555.2
986	-OBn (5)	Н-	97b	I-2	¹ HNMR (DMSO-d ₆): δ 13.52 (bs, 1 H), 9.09 (bs, 2 H), 9.04 (bs, 2 H), 8.48 (t, J = 6 Hz, 1 H), 7.94 (s, 1 H), 7.61 (m, 4 H), 7.49 (s, 1 H), 7.46 (s, 1 H), 7.34 (m, 5 H), 7.15 (d, J = 8.2 Hz, 1 H), 7.00 (d, J = 8.2, 1 H), 6.02 (d, J = 7.4 Hz, 1 H), 5.21 (s, 2 H), 3.01 (t, J = 6.8 Hz, 2 H), 1.80 (m, 1 H), 0.85 (d, J = 6.8 Hz, 6 H), MS (ES-) 563.2, (ES+) 565.2

Cpd.	-R	-R'	Starting From	Method Used	Analytical Data
986	-ОН (5)	Н-	q 86	g	¹ HNMR (DMSO-d ₆): 5 9.85 (s, 1 H), 9.07 (s, 2 H), 8.98 (s, 2 H), 8.50 (t, J = 6 and 5 Hz, 1 H), 7.99 (d, J = 1.7 Hz, 1 H), 7.63 (m, 5 H), 7.20 (t, J = 8 Hz, 2 H), 6.90 (d, J = 7.9 Hz, 1 H), 6.49 (d, J = 7.2 Hz, 1 H), 3.21 (t, J = 6.8 Hz, 2 H), 1.80 (m, 1 H), 0.85 (d, J = 6.8 Hz, 6 H); MS (ES+) 475.2; (ES-) 473.2
103	-0CH ₃ (2)	-CH3	102	J	MS (ES+) 503.1
104	-OCH3 (2)	н-	103	I-2	¹ HNMR (DMSO-d ₆): 5 9.08 (bs, 2 H), 8.80 (bs, 2 H), 8.52 (t, J = 6 Hz, 1 H), 8.02 (s, 1 H), 7.64 (m, 5 H), 7.16 (m, 2 H), 7.03 (m, 2 H), 3.84 (s, 3 H), 3.03 (t, J = 6.8 Hz, 2 H), 1.81 (m, J H), 0.86 (d, J = 6.8 Hz, 6 H); MS (ES-) 487.3, (ES+) 489.3
110	-OBn (2)	-CH3	109	J	MS (ES ⁺): 579.3
111	-ОН (2)	-CH ₃	110	Ð	MS (ES ⁺): 489.3
126	$-OC_2H_5(3)$ both $-OBn(4)$	-CH3	118b	ſ	Characterized in the next step
127	-OC2H5 (3) $-OB1 (4)$	н-	126	F-2	¹ H NMR (DMSO-d6): 8 9.06-9.09 (m, 3H), 8.56-8.50 (m, 1H), 8.05 (s, 1H), 7.71-7.58 (m, 6H), 7.55-7.28 (m, 6H), 7.10-7.01 (m, 1H), 6.63 (s, 1H), 5.19 (s, 2H), 4.05-3.97 (m, 2H), 3.05-3.01 (m, 2H), 1.86-1.77 (m, 1H), 1.29 (t, <i>J</i> =6.7 Hz, 3H), 0.87 (d, <i>J</i> =6.8 Hz, 6H)
129	-OCH ₃ (3)	Н-	128	I-2, S	¹ H NMR (DMSO- d_0): 13.64 (br s, 1 H), 8.99 (br s, 2 H), 8.49 (t, $J = 5.1$ Hz, 1 H), 7.99 (s, 1 H), 7.73-7.56 (m, 5 H), 7.32-6.83 (m, 5 H), 6.50 (s, 1 H), 5.17 (d, $J = 4.3$ Hz, 1 H), 5.01 (m, 1 H), 3.75 (s, 3 H), 3.03 (t, $J = 6.0$ Hz, 1 H), 1.81 (m, 1 H), 1.32 (d, $J = 6.2$ Hz, 3 H), 0.86 (d, $J = 6.6$ Hz, 6 H); MS (ES ⁺): 533.4 (100% M ⁺¹)

NHBoc	Analytical Data						
H,CO ₂ C		MS (EST): 597.2	MS (ES ⁻¹): 631.3	MS (ES ⁺): 601.3	MS (ES ⁻¹): 601.4	MS (ES ⁻¹): 615.3	MS (ES ⁺): 629.4
3 H	Method Used	R	L	M	K	ធ	R
	Starting From	79a	81	82	83	83	124a
	-R (With Respect to Phenyl Ring)	-CH=CH ₂ (3)	-СH(OH)CH ₂ OH (3)	-CH=0 (3)	-CH ₂ OH (3)	-CO ₂ H (3)	$-OCH_3(3)$ $-CH=CH_2(4)$ both
	Cpd.	81	82	83	84	85	128

				d 7.42 d 7.4 701,	7.65 9 and 1, J = , 2	H), H),	E)						
			Analytical Data	¹ HNMR (CDC ₁₃): δ 10.48 (s, 1 H), 7.42 –7.25 (m, 7 H), 7.00 (dd, J = 2 and 7.4 Hz, 1 H), 5.19 (s, 2 H); IR (KBr) 1701, 1585, 1452, 1262, 1009 cm ⁻¹ ; MS (ES+) 313.0, 315.0 (M+Na) ⁺	HNMR (CDCl ₃): \(\delta\) 10.61 (s, 1 H), 7.65 (d, J = 7.2 Hz, 1 H), 7.60 (t, J = 7.9 and 7.2 Hz, 1 H), 7.41 (m, 5 H), 7.19 (d, J = 7.9 Hz, 1 H), 6.81 bs, 2 H), 5.20 (s, 2 H)	¹ HNMR (DMSO-d ₆): δ 10.2 (s, 1 H), 8.34 (s, 2 H), 7.92 (d, J = 9.4 Hz, 1 H), 7.13 (m, 2 H), 3.92 (s, 3 H); MS (ES) 179.0	¹ HNMR (DMSO-d6): 8 10.1 (s, 1 H), 7.3-7.6 (m, 8 H), 5.3 (m, 2 H)	MS (ES ⁻): 229.0 and 231.0)	MS (ES'): 242.9 and 244.9	MS (EST): 257.0 and 259.0	MS (ES ¹): 321.0 and 323.0	MS (ES ⁺): 335.0 and 337.0	MS (ES ⁺): 349.0 and 351.0
	.R4	СНО	Method	×	T, U-1	T, U-3	T, U-1	2	Z-1	Z-1	×	×	×
2-		$=\langle$	Starting From	87	88	66	106	113	113	113	114a	114b	114c
	RZ	Ri	-R4	-OBn	-OBn	H	Ä	H-	H-	H-	H-	Ŧ-	H-
			-R3	H-	H-	H-	Н-	HO-	но-	-ОН	-OBn	-OBn	-OBn
			-R2	H-	. Н-	H-	H-	-OCH ₃	-0C ₂ H ₅	-OCH(CH ₃) ₂	-0CH ₃	-0C ₂ H ₅	-0CH(CH ₃) ₂
			-R1	H-	H-	-OCH3	-OBn	뚜	Ŧ.	Ŧ	Ŧ	H-	Ŧ
			-R	-Br	-B(OH)2	-B(OH)2	-B(OH) ₂	-Br	-Br	-Br	-Br	-Br	-Br

88

88

Cpd. No.

100

107

114a 114b 114c

115a 115b 115c

C	ч	
ζ	>	

-								
Cpd. No.	-R	-RI	-R2	-83	-R4	Starting From	Method	Analytical Data
115d	-Br	H-	O C(CH ₃),	-OBn	H-		X, V-4, AH	Characterized in the next step
116a	-B(OH)2	H-	-OCH3	-OBn	H-	115a	T 11-1	Characterized in the next sten
116b	-B(OH) ₂	Ŧ	-0C ₂ H ₅	-OBn	H	-		Characterized in the next sten
116c	-B(OH)2	H-	-0CH(CH ₃) ₂	-OBn			•	Characterized in the next sten

	Analytical Data	¹ HNMR (DMSO-d ₆): § 11.28 (s, 1 H), 9.31 (s, 2 H), 9.0 (s, 2 H), 8.88 (d, J = 11.30 Hz.	1 H), 8.82 (d, J = 1.88 Hz, 1 H), 8.25 (d, J = 1.88 Hz, 1 H), 8.18 (d, J = 1.88 Hz, 1 H)	8.04 (d, J = 8.47 Hz, 1H), 7.92 (m, J = 24.48 Hz, 2 H), 7.75 (m, J = 15.82, 1 H), 7.75	(m, J = 8.28 Hz, 1 H), 7.55 (m, J = 8.66 Hz, 1 H), 3.10 (m, J = 12.6 Hz, 1 H), 2.5 (m, J = 12.6 Hz, 1 H)	= 3.5 Hz, 1 H, $1.8 (m, J = 19.9 Hz, 2 H$), $0.88 (m, J = 6.6 Hz, 6 H$),
Method	Used			1-2		
Cpd. Starting Method	No. From			111		
Cpd.	No.			112		

20,

•	t
	1
•	

					
	Analytical Data	MS (ES'): 474.2	MS (ES7): 488.2	MS (ES7): 502.3	HNMR (CDCl ₃): 8 9.56 (s, 1) H), 8.34 (d, J = 1.7 Hz, 1 H), 8.5 (s, 1 H), 8.01 (dd, J = 7.9 and 1.9 Hz, 1 H), 7.40 (m, 7 H), 6.9 (s, 1 H), 5.24 (m, 2 H), 4.2 (m, 1 H), 3.80 (s, 3 H), 3.52 (s, 3 H), 1.02 (d, J = 7 Hz, 6 H); MS (ES+): 484.3 (M+Na) ⁺
NHR"	Method Used	D-2	D-2	D-2	D-2
	Starting From	3a + 116a	3a + 116b	3a + 116c	3b + 116a
RO RO R."	n,co,c	CH, CH,	CH,	CH ₃	CH,
	-R"	ОНЭ-	-сно	СНО-	-СНО
	-R'	-ОВп	-OBn	-OBn	-OBn
	-R	-CH ₃	-C ₂ H ₅	-CH(CH ₃) ₂	-CH ₃
	Cpd.	117a	117b	117c	117d

L	n
(٥
C	V

Cpd. No.	-R	-R'	-R"	-R"	Starting From	Method Used	Analytical Data
117e	-CH3	-OBn	-СНО	CH ₃	3c+ 116a	D-2	"HNMR (DMSO-d ₆): 8 8.43 (d, J = 1.65 Hz, 1 H), 8.31 (d, J = 8.66 Hz, 1), 8.12 (dd, J = 1.69 Hz, 1H), 7.98 (s, 1H), 7.41 (d, J = 8.11 Hz, 1H), 5.20 (dd, J = 6.2 Hz, 1H), 3.98 (dd, J = 7.75 Hz, 3H), 3.94 (s, 3H), 3.42 (m, 3H), 3.20 (m, 3H), 2.0 (s, 4H), 1.5 (m, 2H), 1.5 (m, 2H), 1.5 (m, 3H), 3.84 (m, 3H), 1.88 (d, J = 6.59 Hz, 3H), 0.88 (d, J = 6.59 Hz, 3H), MS (ES+): 664.3
117f	-CH ₃	-OBn	-СНО	CH ₃	3d + 116a	D-2	¹ HNMR (CDCl ₃): δ 9.50 (s, 1) H), 8.40 (d, J = 2.1 Hz, 1 H), 8.04 (dd, J = 8.1, 2.1 Hz, 1 H), 7.57 (s, 1 H), 7.48 (m, 5 H), 7.38 (m, 5 H), 6.67 (s, 1 H), 6.50 (broad, 1 H), 5.27 (d, J = 11.9 Hz, 1 H), 5.22 (dd, J = 11.7, 1 H), 4.63 (m, 3H) 4.17 (m, 4 H), 3.92 (s, 3 H), 3.66 (s, 3 H); MS (EST): 488.3
117g	-CH ₃	-OBn	-СНО	CF ₃	3f+ 116a	D-2	¹ H NMR (CDCl ₃): 8 9.50 (s, 1) H), 8.40 (d, J = 2.1 Hz, 1 H), 8.04 (dd, J = 8.1, 2.1 Hz, 1 H), 7.57 (s, 1 H), 7.48 (m, 2 H), 7.38 (m, 3 H), 5.67 (s, 1 H), 6.50 (broad, 1 H), 5.27 (d, J = 11.9 Hz, 1 H), 5.22 (dd, J = 11.7, 2 H), 4.17 (m, 2 H), 3.92 (s, 3 H), 3.66 (s, 3 H); MS (ES): 500

V
c
r

Cpd. No.	-R	-R'	-R"	-R"1	Starting From	Method Used	Analytical Data
117b	-СН3	-OBn	ОНО-	, CH ₁	3e+ 116a	D-2	¹ H NMR (CDCl ₃): δ 9.56 (s, 1 H), 8.34 (d, <i>J</i> = 1.7 Hz, 1 H), 8.01 (dd, <i>J</i> = 7.9, 1.9 Hz, 1 H), 7.57 (s, 1 H), 7.50 (dd, <i>J</i> = 7.2, 1.5, 2 H), 7.40 (m, 4 H), 6.67 (s, 1 H), 6.21 (broad, 1 H), 5.24 (d, <i>J</i> = 2.8 Hz, 2 H), 3.92 (s, 3 H), 3.65 (s, 3 H), 3.52 (m, 2 H), 1.46 (m, 2 H), 0.99 (t, J = 7.3 Hz, 3 H).
117i	-CH ₃	-OBn	-сно		3g + 116a	D-2	14, NMR (CDC ₁₃): δ 9.57 (s, 1) H), 8.37 (d, J = 1.9 Hz, 1 H), 8.03 (dd, J = 7.9, 1.9 Hz, 1 H), 7.58 (s, 1 H), 7.50 (d, J = 7.2 Hz, 2 H), 7.38 (m, 3 H), 6.68 (s, 1 H), 6.33 (broad, 1 H), 5.26 (d, J = 11.5 Hz, 1 H), 5.21 (d, J = 11.9 Hz, 1 H), 3.92 (s, 3 H), 3.65 (s, 3 H), 3.37 (dd, J = 7.2, 5.3 Hz, 2 H), 1.09 (m, 1 H), 0.60 (m, 2 H), 0.32 (m, 2 H), MS (ES ⁺); 474.2
1173	-CH ₃	-OBn	-СНО	\Diamond	3h + 116a	D-2	¹ H NMR (CDC ₁₃): 6 9.55 (s, 1) H), 8.32 (d, <i>J</i> = 1.9 Hz, 1 H), 8.00 (dd, <i>J</i> = 1.9 and 7.9 Hz, 1 H), 7.59-7.30 (m, 7 H), 6.67 (s, 1 H), 5.23 (m, 2 H), 4.45 (q, <i>J</i> = 7.0 Hz, 1 H), 3.91 (s, 3 H), 3.64 (s, 3 ° H), 2.21-1.46 (m, 8 H); MS (ES [↑]): 510.3 (M + Na) ⁺

		_	
0		0	
2	4	?	

Cpd.						L	
No.	- K	-R'	-R"	-R"'	From	Used	Analytical Data
117k	-CH ₃	-OBn	-СНО	CH,	3i + 116a	D-2	¹ H NMR (CDC ₁₃): \$ 9.56 (s, 1) H), 8.35 (d, <i>J</i> = 1.9 Hz, 1 H), 8.02 (dd, <i>J</i> = 1.9 and 7.9 Hz, 1 H), 7.58-7.33 (m, 7 H), 6.68 (s, 1) H), 5.24 (m, 2 H), 3.92 (s, 3 H), 3.65 (s, 3 H), 3.56 (m, 2 H), 1.30 (t, <i>J</i> = 7.2 Hz, 3 H); MS (ES ⁺):
1171	-CH ₃	-OBn	-СНО	CH, CH,	3j + 116a	D-2	¹ H NMR (CDC ₁₃): 59.56 (s, 1) H), 8.35 (d, <i>J</i> = 1.9 Hz, 1 H), 8.02 (dd, <i>J</i> = 1.9 and 7.9 Hz, 1 H), 7.58-7.33 (m, 7 H), 6.68 (s, 1 H), 5.24 (m, 2 H), 3.92 (s, 3 H), 3.65 (s, 3 H), 3.40 (m, 2 H), 1.80- 0.94 (m, 9 H); MS (ES [†]): 512.2 (M+ Na) ⁺
117m	Ö Č(CH ₃)3	-OBn	-СНО	CH, CH,	6a + . 115d	D-6	HNMR (DMSO-d ₆): δ 9.73 (s, 1 H), 8.86 (t, J = 5.7 Hz, 1 H), 8.52 (d, J = 1.5 Hz, 1 H), 8.22 (dd, J = 8 and 2 Hz, 1 H), 7.79 (s, 1 H), 7.60 (d, J = 8 Hz, 1 H), 7.5 (m, 5 H), 7.22 (s, 1 H), 5.35 (q, J = 11 and 17 Hz, 1 H), 3.70 (s, 3 H), 3.23 (t, J = 6.5 Hz, 2 H), 1.98 (m, 1 H), 1.3 (s, 9 H), 1.01 (d, J = 6.8 Hz, 6 H); MS (ES ⁺): 546.4
118a	-CH3	-OBn	-CO ₂ H	CH,	117a	缸	MS (ES'): 490.2
						-	

α
c
Š

Cpd.	₩.	R'	-R"	-R"''	Starting From	Method Used	Analytical Data
118b	-C ₂ H ₅	-OBn	-СО2Н	CH, CH, CH,	117b	ъ	MS (ES'): 504.2
118c	-CH(CH ₃) ₂	-OBn	-СО2Н	CH,	117c	īD	MS (ES'): 518.2
118d	-CH ₃	-ОВп	-СО2Н	CH ₃	117d	Щ	Characterized in the next step
118e	-СН3	-OBn	-СО2Н	CH ₃	117e	ក	MS (ES ⁺): 534.3
118f	-CH ₃	-ОВп	-СО ₂ Н	CH ₃	117f	Э	MS (BS ⁺): 506.3
118g	-CH ₃	-OBn	-со ₂ н	\ CF,	117g	田	Characterized in the next step
118h	-CH3	-ОВп	-СО ₂ Н	CH ₃	117b	田	MS (ES ⁻¹): 490.2
118i	-СН3	-OBn	-соън	7	1171	п	MS (ES ⁻¹): 488.3

υ
c

·	1 1 4 E	· 	3,2 88,5		Ţ .	<u> </u>
Analytical Data	¹ H NMR (DMSO- <i>d_b</i>): § 12.19 (br s, 1 H), 8.50 (d, <i>J</i> = 7.4 Hz, 1 H), 8.31 (d, <i>J</i> = 1.9 Hz, 1 H), 8.02 (dd, <i>J</i> = 1.7 and 7.9 Hz, 1 H), 7.58-7.29 (m, 7 H), 6.71 (s, 1 H), 5.17 (s, 2 H), 4.27 (q, <i>J</i> = 6.4 Hz, 1 H), 3.80 (s, 3 H), 3.57 (s, 3 H), 1.97-1.51 (m, 8 H)	MS (ES'): 462.3	¹ H NMR (CDCl ₃): 6 8.30 (d, <i>J</i> = 1.9 Hz, 1 H), 7.95 (dd, <i>J</i> = 1.7 and 7.9 Hz, 1 H), 7.66 (s, 1 H), 7.52-7.27 (m, 6 H), 6.62 (s, 1 H), 6.49 (m, 1 H), 5.21 (s, 2 H), 3.88 (s, 3 H), 3.61 (s, 3 H), 3.38 (m, 2 H), 1.79-0.94 (m, 9 H); MS (ES'); 504.4	Characterized in the next step	MS (ES'): 578.3	MS (ES'): 592.3
Method Used	ជ	田	凹	ਸ਼	ŢŦţ	ĹĻ
Starting From	117j	117k	1171	117m	118a	118b
-R"'		CH,	CH ₃	CH,	CH,	CH, CH,
-R"	-СО2Н	Н ² ОЭ-	-соя	-CO ₂ H	-СО2МЕМ	-СО2МЕМ
-R'	-OBn	-OBn	-OBn	-OBn	-OBn	-OBn
-R	-CH3	-CH ₃	-CH3	C(CH ₃),	-CH3	-C ₂ H ₅
Cpd.	118j	118k	1181	118m	119a	1196

c	2
_	_
Ä	

Cpd. No.	-R	-R'	-R"	-R"'	Starting From	Method Used	Analytical Data
119с	-СН(СН ₃)2	-OBn	-со ₂ мем	CH ₃	118c	ĬŦ	MS (ES): 606.3
119d	-СН3	-OBn	-СО2МЕМ	CH,	118d	ĮT,	MS (ES): 564.2
119e	-СН3	-OBn	-CO ₂ MEM	CH,	118e	ټر	MS (ES'): 620.1
119f	-CH3	-OBn	-СО2МЕМ	CH ₃	118f	F	MS (ES): 592.3
119g	-CH ₃	-OBn	-СО2МЕМ	CF,	118g	I.	Characterized in the next step
119h	-CH ₃	-ОВп	-СО2МЕМ	CH,	118h	і т.	¹ HNMR (CDCl ₃): 8 8.32 (d, <i>J</i> = 1.9 Hz, 1 H), 7.96 (dd, <i>J</i> = 7.9, 1.9 Hz, 1 H), 7.68 (s, 1 H), 7.50 (m, 2 H), 7.35 (m, 4 H), 6.62 (s, 1 H), 6.33 (t, <i>J</i> = 5.4 Hz, 1 H), 5.24 (m, 4 H), 3.88 (s, 3 H), 3.63 (s, 3 H), 3.46 (m, 6 H), 3.34 (s, 3 H), 1.63 (m, 2 H), 1.44 (m, 2 H), 0.98 (t, <i>J</i> = 7.3 Hz, 3 H)

7	
	_
٠	
C	٧

Cpd.	*	- k	-R"	-R":	Starting	Method	Analytical Data
119;	-CH ₃	-OBn			1181	F	¹ H NMR (CDCl ₃): δ 8.34 (d, J = 1.9 Hz, 1 H), 8.00 (dd, J = 7.9, 2.1 Hz, 1 H), 7.68 (s, 1 H), 7.50 (m, 2 H), 7.36 (m, 4 H), 6.63 (s, 1 H), 6.42 (broad, 1 H), 5.24 (m, 4 H), 3.89 (s, 3 H), 3.64 (s, 3 H), 3.45 (s, 3 H), 3.35 (m, 5 H), 1.07 (m, 1 H), 0.58 (m, 2 H), 0.30 (m, 2 H)
119j	-СН3	-OBn	-СО2МЕМ		118j	Ľ	¹ H NMR (DMSO- <i>d_θ</i>): δ 8.55 (d, <i>J</i> = 7.4 Hz, 1 H), 8.39 (d, <i>J</i> = 1.9 Hz, 1 H), 8.10 (dd, <i>J</i> = 1.7 and 7.9 Hz, 1 H), 7.63-7.35 (m, 7 H), 6.81 (s, 1 H), 5.25-5.12 (m, 4 H), 4.31 (q, <i>J</i> = 6.4 Hz, 1 H), 3.86 (s, 3 H), 3.62 (s, 3 H), 3.3 (s, 3 H), 3.23 (s, 3 H) 1.99-1.53 (m, 8 H); MS (ES ⁺): 614.3 (M+ Na) ⁺
119k	-СН3	-OBn	-со ₂ мем	CH ₃	118k	īŦ	¹ H NMR (DMSO- <i>d_o</i>): 5 8.70 (t, <i>J</i> = 5.5 Hz, 1 H), 8.35 (d, <i>J</i> = 1.9 Hz, 1 H), 8.05 (dd, <i>J</i> = 1.7 and 7.9 Hz, 1 H), 7.59-7.30 (m, 7 H), 6.77 (s, 1 H), 5.21-5.08 (m, 4 H), 3.82 (s, 3 H), 3.58 (s, 3 H), 3.40-3.29 (m, 6 H), 3.18 (s, 3 H), 1.14 (t, <i>J</i> = 7.2 Hz, 3 H); MS (ES [†]): 574.3 (M+Na) [†]

٢	٧
	4
ζ	٧

Cpd. No.	-R	-R.	-R"	-R":	Starting	Method	Analytical Data
. 1191	-CH ₃	-OBn	-СО2МЕМ	G, GH,	1181	נבי	¹ H NMR (DMSO- <i>d</i> ₆): \$ 8.68 (t, <i>J</i> = 5.8 Hz, 1 H), 8.35 (d, <i>J</i> = 1.9 Hz, 1 H), 8.05 (dd, <i>J</i> = 1.7 and 7.9 Hz, 1 H), 7.63-7.33 (m, 7 H), 6.77 (s, 1 H), 5.22-5.08 (m, 4 H), 3.82 (s, 3 H), 3.58 (s, 3 H), 3.39-3.22 (m, 6 H), 3.18 (s, 3 H), 1.56 (qui, <i>J</i> = 7.0 Hz, 2 H), 1.27 (m, 1 H), 0.94-0.75 (m, 6 H); MS (ES ⁺): 616.3 (M+ Na) ⁺
119т	O C(CH ₃) ₃	-OBn	-СО ₂ МЕМ	CH,	118m	<u>t</u> t.	HNMR (DMSO-d ₆): δ 8.72 (t, J = 5.6 Hz, 1 H), 8.38 (d, J = 1.8 Hz, 1 H), 8.70 (dd, J = 1.8 and 8.1 Hz, 1 H), 7.71 (s, 1 H), 7.40 (m, 6 H), 7.02 (s, 1 H), 5.20 (m, 4 H), 3.59 (s, 3 H), 3.37 (m, 2 H), 3.31 (m, 2 H), 3.17 (s, 3 H), 3.12 (t, J = 6.5 Hz, 2 H), 1.87 (m, 1 H), 1.21 (s, 9 H), 0.91 (d, J = 6.8 Hz, 6 H), MS (ES+): 650.4 and 672.3 (M+ Na) ⁺
120a	-СН3	Н0-	-СО2МЕМ	CH,	119a	Ŋ	MS (ES'): 488.1
120b	-C2H5	Н0-	-СО2МЕМ	CH,	119b	G	MS (ES'): 502.2

r	ŋ
۲	4
¢	٧

Method Analytical Data	G MS (ES'): 516.3	G MS (ES'): 474.3	G MS (ES'): 530.4	G MS (ES'): 502.3	G Characterized in the next step	G Characterized in the next step	G MS (ES): 486.3	G MS (ES ⁺): 524.3 (M+ Na) ⁺	**************************************
Starting From	119c	119d	119e	119f	119g	119h	119i	119j	119k
-R"1	CH, CH,	СН,	CH,	СН	G,	CH,	7		CH.
-R"	-СО2МЕМ	-СО2МЕМ	-СО2МЕМ	-СО2МЕМ	-СО2МЕМ	-СО2МЕМ	-СО2МЕМ	-со,мем	-CO,MEM
-R'	но-	НО-	но-	но-	НО-	но-	но-	ĤO-	HO-
-R	-CH(CH ₃) ₂	-CH ₃	-CH3	-CH3	-CH ₃	-СН3	-CH ₃	-СН3	-CH,
Cpd. No.	120c	120d	120e	120f	120g	120h	120i	120j	120k

4
-

Cpd. No.	-R	-R'	-R"	-R"'	Starting From	Method Used	Analytical Data
1201	-CH3	но-	-СО2МЕМ	CH,	1191	Ð	MS (ES): 502.3
120ш	C(CH ₃),	НО-	-СО2МЕМ	CH,	119m	Ö	¹ HNMR (DMSO-d ₆): § 10.83 (bs, 1 H), 8.77 (t, J = 5.6 Hz, 1 H), 8.42 (d, J = 1.8 Hz, 1 H), 8.12 (dd, J = 1.8 and 8.1 Hz, 1 H), 7.68 (s, 1 H), 7.41 (d, J = 8.1 Hz, 1 H), 6.73 (s, 1 H), 5.21 (q, J = 21 and 6 Hz, 2 H), 3.65 (s, 3 H), 3.48 (m, 2 H), 3.37 (m, 2 H), 3.24 (s, 3 H), 3.18 (t, J = 6.5 Hz, 2 H), 1.94 (m, 1 H), 1.39 (s, 9 H), 0.97 (d, J = 6.8 Hz, 6 H); MS (ES+): 560.5 and 582.4 (M+ Na) ⁺ (ES)
121a	-CH ₃	-0SO ₂ CF ₃	-со,мем	CH,	120а	B-2	MS (ES ⁺): 644.1 (M+ Na) ⁺
121b	-C2H5	-0SO ₂ CF ₃	-OSO ₂ CF ₃ -CO ₂ MEM	CH,	120b	B-2	MS (ES ⁺): 658.2 (M+ Na) ⁺
121c	-СН(СН3)2	-OSO ₂ CF ₃	-со₂мем	CH,	120c	B-2	MS (ES ⁺): 672.2 (M+ Na) ⁺

u
-
c

<u>`</u>
-OSO ₂ CF ₃ -CO ₂ MEM
-OSO ₂ CF ₃ -CO ₂ MEM
-OSO ₂ CF ₃ -CO ₂ MEM

¥
_
c

	-R'	-R"	-R"	Starting	Method	Analytical Data
OSO,	CF3	-0SO ₂ CF ₃ -CO ₂ MEM	CF ₃	120g	B-2	¹ H NMR (CDC! ₃): δ 8.43 (d, J = 1.9 Hz, 1 H), 8.03 (dd, J = 7.9 Hz, 2.1 Hz, 1 H), 8.00 (s, 1 H), 7.35 (d, J = 7.9 Hz, 1 H), 6.79 (m, 2 H), 5.29 (d, J = 6.2 Hz, 1 H), 5.26 (d, J = 6.2 Hz, 1 H), 4.16 (m, 2 H), 3.94 (s, 3 H), 3.67 (s, 3 H), 3.48 (m, 4 H), 3.36 (s, 3 H); MS (ES): 646.3
0802	CF ₃	-OSO ₂ CF ₃ -CO ₂ MEM	. CH,	120 h	B-2	¹ H NMR (CDC ₁): 8 8.41 (s, 1) H), 7.96 (d, J = 8.3 Hz, 2 H), 7.8 (m, 1 H), 6.80 (s, 1 H), 6.34 (m, 1 H), 5.32 (m, 2 H), 3.90 (s, 3 H), 3.66 (s, 3 H), 3.55 (m, 6 H), 3.46 (s, 3 H), 1.7 (m, 2 H), 1.45 (m, 2 H), 0.98 (t, J = 7.3 Hz, 3 H), MS (ES): 620
-0S0 ₂ CF ₃		-со,мем		120i	B-2	¹ H NMR (CDC ₁₃): δ 8.41 (d, <i>J</i> = 2.1 Hz, 1 H), 8.03 (dd, <i>J</i> = 7.9, 1.9 Hz, 1 H), 8.00 (s, 1 H), 7.32 (d, <i>J</i> = 7.9 Hz, 1 H), 6.43 (t, <i>J</i> = 4.9 Hz, 1 H), 5.30 (q, <i>J</i> = 6.0 Hz, 2 H), 3.94 (s, 3 H), 3.67 (s, 3 H), 3.55 (m, 2 H), 3.48 (m, 2 H), 3.35 (m, 5 H), 1.09 (m, 1 H), 0.59 (m, 2 H), 0.31 (m, 2 H); MS (ES'): 618.4

7	
_	
2	

	1						
Cpd. No.	-R	-R'	-R"	-R"'	Starting From	Method Used	Analytical Data
121	-CH3	-OSO ₂ CF ₃	OSO ₂ CF ₃ -CO ₂ MEM		120j	B-2	¹ H NMR (CDCl ₃): 8 8.35 (d, <i>J</i> = 1.9 Hz, 1 H), 8.00 (m, 2 H), 7.31 (d, <i>J</i> = 7.9 Hz, 1 H), 6.77 (s, 1 H), 6.27 (m, 1 H), 5.28 (m, 2 H), 4.44 (q, <i>J</i> = 7.0 Hz, 1 H), 3.94 (s, 3 H), 3.66 (s, 3 H), 3.57-3.45 (m, 4 H), 3.35 (s, 3 H), 2.19-1.45 (m, 8 H);
121k	-СН3	-OSO ₂ CF ₃	-OSO ₂ CF ₃ -CO ₂ MEM	CH	120k	B-2	MS (ES.): 626.3 (M+ Na) "H NMR (CDCl ₃): 8 8.38 (s, 1) H), 8.00 (m, 2 H), 7.31 (d, <i>J</i> = 7.9 Hz, 1 H), 6.78 (s, 1 H), 6.37 (m, 1 H), 5.27 (m, 2 H), 3.94 (s, 3 H), 3.66 (s, 3 H), 3.59-3.43 (m, 6 H), 3.35 (s, 3 H), 1.28 (t, <i>J</i> = 7.2 Hz, 3 H); MS (ES ⁺): 616.3 (M+ Na) ⁺
1211	-СН ₃	-OSO ₂ CF ₃	-OSO ₂ CF ₃ -CO ₂ MEM	CH ₃	1201	B-2	¹ H NMR (CDCl ₃): δ 8.38 (s, 1 H), 8.00 (m, 2 H), 7.31 (d, J = 7.9 Hz, 1 H), 6.78 (s, 1 H), 6.37 (m, 1 H), 5.27 (m, 2 H), 3.94 (s, 3 H), 3.66 (s, 3 H), 3.57-3.25 (m, 9 H), 1.78-0.92 (m, 9 H); MS (ES ⁺): 658.4 (M+ Na) ⁺

¢	Ì,	
٠		
C	٧	

Cpd.	-R	-R'	-R"	-R"	Starting From	Method Used	Analytical Data
121m	C(CH ₃),	-OSO2CF3	-СО2МЕМ	CH,	121m	B-2	¹ HNMR (DMSO-d ₆): 8 8.75 (t, J = 5.6 Hz, 1 H), 8.45 (d, J = 1.8 Hz, 1 H), 8.11 (dd, J = 1.8 and 8.1 Hz, 1 H), 8.04 (s, 1 H), 7.57 (s, 1 H), 7.42 (d, J = 8.1 Hz, 1 H), 5.23 (q, J = 21 and 6 Hz, 2 H), 3.60 (s, 3 H), 3.41 (m, 2 H), 3.32 (m, 2 H), 3.17 (s, 3 H), 3.13 (t, J = 6.5 Hz, 2 H), 1.87 (m, 1 H), 1.37 (s, 9 H), 0.91 (d, J = 6.8 Hz, 6 H); MS (ES-): 690.4
122a	-СН3	-CH=CH2	-со ₂ мем	CH,	121a	D-3	Characterized in the next step
122b	-C2H5	-CH=CH2	-СО2МЕМ	CH,	121b	D-3	MS (ES ⁺): 536.3 (M+ Na) ⁺
122c	-СН(СН3)2	-CH=CH2	-СО2МЕМ	CH,	121c	D-3	MS (ES ⁺): 550.3 (M+ Na) ⁺
122d	-СН3	-CH=CH2	-СО2МЕМ	CH,	121d	D-3	MS (ES ⁺): 486.2
122e	-СН3	-CH=CH2	-СО2МЕМ	CH,	121e	D-3	MS (ES ⁺): 564.5 (M+ Na) ⁺

σ	
_	
0	

			<u> </u>		1	<u> </u>	<u> </u>
Analytical Data	MS (ES ⁺): 514.4 (M+ Na) ⁺	Characterized in the next step	Characterized in the next step	Characterized in the next step	MS (ES'): 422.3 [(M-MeM)-1]	MS (ES ⁺): 494.2 (M+ Na) ⁺	MS (ES ⁺): 536.42 (M+ Na) ⁺
Method Used	D-3	D-3	D-3	D-3	D-3	D-3	D-3
Starting From	121f	121g	121h	121i	121j	121K	1211
-R"'	CH,	CF ₃	CH,			CH ₃	CH ₃ CH ₃
-R"	-СО2МЕМ	-со ₂ мем	-СО2МЕМ	-со,мем	-СО2МЕМ	-со,мем	-со,мем
-R'	-CH=CH2	-CH=CH2	-CH=CH2	-CH=CH2	-CH=CH2	-CH=CH2	-СН=СН2
-R	-CH3	-CH ₃	-CH ₃	-CH ₃	-CH³	-СН3	-СН3
Cpd. No.	122f	122g	122h	122i	122j	122k	1221

_
•
•
0
٠.

-R Starting Method Analytical Data	CH ₃ (CH ₃ (CH ₃ (CH ₄ (CH ₃ (CH ₄ (CH ₃ (CH ₄	CH ₃ 122a I-1 MS (ES'): 410.2	CH ₃ 122b I-1 MS (ES'): 424.2	CH ₃ 122c I-1 MS (ES): 438.2	^{7H} ₃ 122d I-1 MS (ES): 396.2
-R"	-со,мем	Ноо	Н2ОО	Н ² ОО	CO ₂ H
-R'	-CH=CH2	-CH=CH2	-CH=CH2	-CH=CH2	-СН=СН2
-R	C(CH ₃),	-CH3	-C ₂ H ₅	-CH(CH ₃) ₂	-CH3
Cpd.	122m	123a	123b	123c	123d

_	4
-	
	V
^	ú

			11 12 13 13, 14, 16, 17, 16, 17, 18, 18, 18, 19, 19, 19, 19, 19, 19, 19, 19	= =
Analytical Data	MS (ES ⁺): 454.3	MS (ES ⁺): 426.3	¹ HNMR (DMSO): \$12.37 (s, 1) H), 9.35 (t, J=6.0 Hz, 1 H), 8.42 (d, J=1.7 Hz, 1 H), 8.10 (dd, J= 8.1 Hz, 1.9 Hz, 1 H), 8.06 (s, 1) H), 7.40 (d, J=7.9 Hz, 1 H), 6.98 (dd, J=17.9, 11.5 Hz, 1 H), 6.77 (s, 1 H), 5.89 (dd, J=17.7, 1.3 Hz, 1 H), 5.37 (dd, J=11.1, 1.3 Hz, 1 H), 4.14 (m, 2 H), 3.84 (s, 3 H), 3.61 (s, 3 H); MS (ES): 436.3	¹ HNMR (DMSO): δ 8.66 (t, J = 5.5 Hz, 1 H), 8.35 (d, J = 1.7 Hz, 1 H), 8.05 (s, 1 H), 8.03 (dd, J = 8.1, 1.9 Hz, 1 H), 7.34 (d, J = 7.9 Hz, 1 H), 6.98 (dd, J = 17.9, 11.3 Hz, 1 H), 6.75 (s, 1 H), 5.86 (dd, J = 17.7, 1.3, 1H), 5.36 (dd, J = 11.3, 1.3 Hz, 1 H), 3.84 (s, 3 H), 3.60 (s, 3 H), 3.30 (q, J = 5.6 Hz, 2 H), 1.52 (m, 2 H), 1.33 (m, 2 H), 0.96 (t, J = 7.3 Hz, 3 H); MS (FS ²). 410.4
Method Used	I-1	I-1	Ξ	1-1
Starting From	122e	122f	122g	122h
-R"'	CH,	CH,	CF₃	CH ₃
-R"	СОЪН	СО2Н	CO ₂ H	СО2Н
-R'	-CH=CH2	-CH=CH2	-CH=CH2	-CH=CH2
-R	-CH3	-CH ₃	-СН3	-CH3
Cpd.	123e	123f	123g	123h

2
3
~

Cpd. No.	-R	-R'	-R"	-R"	Starting	Method	Analytical Data
123i	-CH ₃	-CH=CH2	СО2Н		1221	I-1	'HNMR (DMSO): δ 12.34 (s, 1 H), 8.80 (t, J = 6.1 Hz, 1 H), 8.37 (d, J = 1.9 Hz, 1 H), 8.06 (dd, J = 9.8, 7.9 Hz, 1 H), 8.05 (s, 1 H), 7.36 (d, J = 7.9 Hz, 1 H), 6.98 (dd, J = 17.9, 11.3 Hz, 1 H), 6.76 (s, 1 H), 5.89 (dd, J = 17.9, 1.5 Hz, 1 H), 5.89 (dd, J = 10.9, 1.5 Hz, 1 H), 5.36 (dd, J = 10.9, 1.5 Hz, 1 H), 3.84 (s, 3 H), 3.60 (s, 3 H), 3.18 (t, 6.2, 2 H), 1.06 (m, 1 H), 0.45 (m, 2 H), 0.25 (m, 2 H); MS (ES): 408.4
123j	-CH ₃	-CH=CH2	СО2Н		122j	1-1	¹ H NMR (DMSO-d ₆): \$12.31 (br s, 1 H), 8.52 (d, J = 7.3 Hz, 1 H), 8.34 (d, J = 1.7 Hz, 1 H), 8.05 (m, 2 H), 7.34 (d, J = 7.9 Hz, 1 H), 6.97 (dd, J = 11.5 and 17.9 Hz, 1 H), 6.74 (s, 1 H), 5.89 (d, J = 17.9 Hz, 1 H), 5.37 (d, J = 11.5 Hz, 1 H), 4.27 (q, J = 7.3 Hz, 1 H), 3.84 (s, 3 H), 3.60 (s, 3 Hz, 1 H), 3.84 (s, 3 H); MS (ES):
123k	-CH ₃	-СН=СН2	СО2Н	CH,	122k	I-1	¹ H NMR (DMSO- <i>d</i> ₀): 8 12.27 (br s, 1 H), 8.58 (m, 1 H), 8.23 (s, 1 H), 7.92 (m, 2 H), 7.47 (m, 1 H), 7.22 (m, 1 H), 6.84 (m, 1 H), 6.63 (s, 1 H), 5.76 (d, <i>J</i> = 17.9 Hz, 1 H), 5.24 (d, <i>J</i> = 11.5 Hz, 1 H), 3.71 (s, 3 H), 3.47 (s, 3 H), 1.02 (m, 3 H); MS (ES): 382.2

	•
c	١
C	١

	٦	č	Ē		Starting	Method	
	-K	-¥-	K	K"	From	Used	Analytical Data
							¹ H NMR (DMSO-d ₆): δ 12.30
							(br s, 1 H), 8.52 (d, $J = 6.0$ Hz, 1
					••		H), 8.33 (d, $J = 1.7$ Hz, 1 H),
		·		E.			8.02 (m, 2 H), 7.31 (d, $J = 7.9$
	į		(Hz, 1 H), 6.95 (dd, $J = 11.5$ and
	-CH3	-CH=CH2	CO2H	CH,	1221	Ξ.	17.9 Hz, 1 H), 6.73 (s, 1 H), 5.86
							(d, J = 17.9 Hz, 1 H), 5.33 (d, J =
							11.5 Hz, 1 H), 3.81 (s, 3 H), 3.57
							(s, 3 H), 3.14 (m, 2 H), 1.65 (m, 1
							H), 1.39 (m, 1 H), 1.11 (m, 1 H),
\downarrow							0.87 (m, 6 H)
							¹ HNMR (DMSO-d ₆): δ 12.81 (bs,
							1 H), 8.72 (t, $J = 5.6$ Hz, 1 H),
		_					8.38 (d, J = 1.8 Hz, 1 H), 8.08
							(dd, J = 1.8 and 8.1 Hz, 1 H),
				ĊĦ			7.61 (s, 1 H), 7.57 (s, 1 H), 7.39.
	(-CH=CH,	-СО,Н		122m	7	(d, J = 8 Hz, 1 H), 6.72 (dd, J =
)=	1	1	\frac{\tau}{2}		-	11 and 17.5 Hz, 1 H), 5.99 (d, J =
	_ = <						17.5 Hz, 1 H), 5.49 (d, J = 11 Hz,
<u>\</u>	C(CH ₁),			,	-		1 H), 3.57 (s, 3 H), 3.13 (t, $J =$
	1	-					6.5 Hz, 2 H), 1.87 (m, 1 H), 1.37
		•				_	(s, 9 H), 0.91 (d, $J = 6.8 \text{ Hz}$, 6 H);
_							MS (ES-): 480.3

•	1
ı	ľ
•	١

				T	· ₁	
NHR"	Analytical Data	MS (ES ⁺): 529.3	MS (ES ⁺): 543.3	MS (ES ⁺): 557.3	Characterized in the next step	MS (ES ⁺): 571.6
ZI	Method Used	-	ſ	-	·	ŗ
OS.	Starting From	123a	123b	123c	123d	123e
RO.	R"	CH, CH,	CH,	CH,	CH,	CH,
	-R'	-СН3	-СН3	-СН3	-СН3	-CH3
	-R	-CH ₃	-C ₂ H ₅	-CH(CH ₃) ₂	-CH ₃	-CH3
·	Cpd.	124a	124b	124c	124d	124e

u	î
c	۷
^	v
٠	c

CH, 123g CH, 123g CH, 123h CH, 123i CH, 123i	,				Ctarting	Mothers	
CH, 123f J J J CH, 123h J CH, 123i J N CH, 1	-R -R'	-R'		R"	From	Used	Analytical Data
CF, 123g J CH, 123h J CH, 123h J N CH, 123K J N CH, 123l J N N CH,	-СН3 -СН3	-СН3		СН	123f	J	MS (ES [†]): 543.6
CH, 123h J 123i J CH, 123K J I CH, 123K J I	-CH ₃ -CH ₃	-СН3		∕ CF₃	123g	-	¹ H NMR (DMSO): \$10.62 (s, 1 H), 9.35 (t, $J = 6.6$ Hz, 1 H), 9.20 (s, 2 H), 8.90 (s, 2 H), 8.30 (d, $J = 1.9$ Hz, 1 H), 8.11 (dd, $J = 8.1$, 1.9 Hz, 1 H), 7.86 (s, 4 H), 7.50 (d, $J = 8.1$ Hz, 1 H), 7.04 (dd, $J = 17.9$, 11.5 Hz, 1 H), 6.94 (s, 1 H), 6.01 (dd, $J = 17.7$, 1.3, 1 H), 5.42 (dd, $J = 11.3$, 1.3 Hz, 1 H), 4.11 (m, 2 H), 3.89 (s, 3 H), 3.57 (s, 3 H)
CH, 1231 J CH, 123K J CH, 123K J	CH ₃ -CH ₃	-CH ₃		CH ₃	123h	Ţ	¹ H NMR (DMSO): 5 9.03 (broad, 3 H), 8.49 (broad, 1 H), 8.04 (s, 1 H), 7.65 (m, 6 H), 6.99 (m, 2 H), 6.61 (s, 1 H), 5.90 (d, <i>J</i> = 17.5 Hz, 1 H), 5.35 (d, <i>J</i> = 11.5 Hz, 1 H), 3.78 (s, 3 H), 3.20 (m, 2 H), 1.46 (m, 2 H), 1.28 (m, 2 H), 0.87 (t, <i>J</i> = 7.3 Hz, 3 H)
CH, 1231 J CH, 123K J CH, 1231 J	-СН3 -СН3	-CH ₃		>	123i	ſ	MS (ES ⁺): 527.4
СН, 123K J СН, 123I J	-СН3 -СН3	-СН3	1	\Diamond	123j	i-,	MS (ES ⁺): 541.4
СН, 1231 Ј	-CH ₃ -CH ₃	-CH ₃		CH,	123K	-	MS (ES ⁺): 501.3
	-CH ₃ -CH ₃	-CH ₃	/		1231	-	MS (ES ⁺): 543.3

١	o
•	٧
•	٧

Cpd.	-R	-R'	R"	Starting From	Method	Analytical Data
124m	C(CH ₃),	-CH ₃	CH, CH,	123m	5	¹ HNMR (DMSO-d ₆): δ 10.67 (s, 1H), 9.19 (bs, 2 H), 8.88 (bs, 2 H), 8.71 (t, J = 5.6 Hz, 1 H), 8.25 (d, J = 1.8 Hz, 1 H), 8.07 (dd, J = 1.8 and 8.1 Hz, 1 H), 7.73 (m, 4 H), 7.65 (s, 1 H), 7.50 (d, J = 8 Hz, 1 H), 7.45 (s, 1 H), 6.73 (dd, J = 11 and 17.5 Hz, 1 H), 6.03 (d, J = 17.5 Hz, 1 H), 5.49 (d, J = 11 Hz, 1 Hz, 1 H), 3.56 (s, 3 H), 3.09 (t, J = 6.5 Hz, 2 H), 1.85 (m, 1 H), 1.37 (s, 9 H), 0.89 (d, J = 6.8 Hz, 6 H); MS (ES-): 597.3 and (ES ⁺) 599.5
125a	-СН3	н	CH,	. 124a	1-2	¹ HNMR (DMSO): 8 13.40 (bs, 1H), 9.26 and 9.03 (2s, 4H), 8.53-8.49 (t, J = 6 Hz, 1H), 8.02 (d, J=1.28 Hz, 1H), 7.71-7.53 (m, 6H), 7.0-6.9 (m, 2H), 6.5 (s, 1H), 5.89 (d, J=17.6 Hz, 1H), 5.33 (d, J=12.4 Hz, 1H), 3.77 (s, 3H), 3.04-2.99 (m, 2H), 1.85-1.75 (m, 1H), 0.86-0.84 (d, J=76.8 Hz, 6H); MS (ES ⁺): 515.3
125b	-С,Н,	Ŧ	CH, CH,	124b	1-2	¹ HNMR (DMSO): 6 9.17 and 8.92 (s, 3H), 8.67-8.63 (m, 1H), 8.28 (s, 1H), 7.95-7.93 (m, 1H), 7.83 (s, 1H), 7.29 (d, J=8.1 Hz, 1H), 7.02 (dd, J=17.7 Hz, 11.3 Hz, 1H), 6.82 (s, 1H), 6.00 (d, 17.7 Hz, 1H), 5.38 (d, 11.3 Hz, 1H), 4.14-4.06 (m, 2H), 3.11-3.04 (q, J=6.8 Hz, 2H), 1.89-1.80 (m, 1H), 1.35 (t, J=6.8 Hz, 3H), 0.88 (d, J=6.8 Hz, 6H); MS (ES ⁺): 529.2
125c	-CH(CH ₃) ₂	Ħ,	CH,	124c	1-2	¹ HNMR (DMSO): δ 13.74 (s, 1H), 8.99 (s, 3H), 8.59-8.41 (m, 1H), 7.95 (s, 1H), 7.69 (s, 1H), 7.65-7.53 (m, 6H), 7.06-6.91 (m, 2H), 6.53 (s, 1H), 5.89 (d, <i>J</i> =17.7 Hz, 1H), 5.32 (d, <i>J</i> =11.5 Hz, 1H), 4.62-4.54 (m, 1H), 3.03-2.99 (m, 2H), 1.87-1.71 (m, 1H), 1.25 (d, <i>J</i> =6.1 Hz, 6H), 0.85 (d, <i>J</i> =6.8 Hz, 6H); MS (ES): 541.2

Ľ
٢
e

Cpd. No.	-R	'n,	R"	Starting	Method	Analytical Data
125d	-СН3	Н-	CH,	124d	1-2	¹ HNMR (DMSO-d ₆): δ 8.9 (d, J = 33.74, 4 H), 8.08 (d, J = 7.91, 1 H), 7.81 (s, 1 H), 7.51 (s, 1 H), 7.41(s, 4 H), 6.78 (s, 1 H), 6.3 (s, 2 H), 5.70 (d, J = 7.78 Hz, 1 H), 5.15 (d, J = 11.8 Hz, 2 H), 3.82 (m, J = 20.34 Hz, 2 H), 3.56 (bs, 3 H) 0.92 (d, 6H); MS (ES+) 501.3
125e	-СН3	Н	CH,	124e	1-2	¹ HNMR (DMSO-4 ₆): 8 9.05 (s, 2 H), 8.85 (s, 2 H), 7.96 (d, J = 9.04 Hz, 1 H), 7.88 (s, 1 H), 6,86 (m, J = 17.8 Hz, 3 H), 7.62 (m, 1 H), 7.24 (d, J = 7.8 Hz, 1 H), 6.95 (d, J = 7.8 Hz, 1 H), 7.45 (m, J = 28.63 Hz, 5 H), 7.55 (s, 1 H), 5.75 (d, J = 17.5 Hz, 1 H); 5.61 (d, J = 11.11, 1 H) 3.61(s, 3H) 1.30 (bs, 3 H) 1.05 (s, 4 H) 0.66 (m, 6 H); MS (ES+) 555.3(100% M ⁺¹)
125f	-CH ₃	H-	CH,	124f	1-2	¹ H NMR (DMSO-d ₆): 5 12.7 (bs, 1H), 9.01 (bs, 2H), 8.87 (bs, 2H), 8.36 (t, J = 6 Hz, 1H), 7.83 (s, 1H), 7.44 (m, 6H), 6.75 (m, 2H), 6.31 (d, J = 2.2 Hz, 1H), 5.7 (d, J = 17 Hz, 1H), 5.1 (d, J = 11 Hz, 1H), 3.5 (s, 3H), 2.84 (m, 2H), 1.3 (m, 2H), 1.1 (m, 4H), 0.7 (m, 3H); MS (ES+): 529.4
125g	-CH ₃	H-	\ G,	124g	1-2	¹ H NMR (DMSO): 8 9.22 (broad, 1 H), 9.09 (s, 2 H), 8.18 (s, 1 H), 7.80 (m, 2 H), 7.66 (m, 4 H), 7.16 (s, 1 H), 7.00 (dd, <i>J</i> = 17.7, 11.1 Hz, 1 H), 6.70 (s, 1 H), 5.94 (d, <i>J</i> = 17.7 Hz, 1 H), 5.37 (d, <i>J</i> = 10.9 Hz, 1 H), 4.07 (m, 2 H), 3.81 (s, 3 H); MS (ES') 539.3

С	ţ
٢	١
٢	

-R -R' R" -CH ₃ -H \rightarrow CH ₃ -CH ₃ -H \rightarrow CH ₃	Starting	Method	
-CH ₃ -H -CH ₃ -H -CH ₃ -H -CH ₃ -H	From	Used	Analytical Data
-CH ₃	CH, 124h	I-2	¹ H NMR (DMSO): δ 9.03 (bs, 4 H), 8.49 (bs, 1 H), 8.04 (s, 1 H), 7.65 (m, 6 H), 6.99 (m, 2 H), 6.61 (s, 1 H), 5.90 (d, J = 17.5 Hz, 1 H), 5.35 (d, J = 11.5 Hz, 1 H), 3.78 (s, 3 H), 3.20 (m, 2 H), 1.28 (m, 2 H), 0.87 (t, J = 7.3 Hz, 3 H); MS (FS ⁺), 515.4
-CH3	124i	I-2	11.3 Hz, 1 H), 7.89 (s, 2 H), 8.78 (s, 2 H), 8.44 (broad, 1 H), 7.89 (s, 1 H), 7.53 (m, 2 H), 7.43 (m, 4 H), 6.86 (s, 1 H), 6.78 (dd, <i>J</i> = 17.5, 11.3 Hz, 1 H), 6.44 (s, 1 H), 5.71 (d, <i>J</i> = 17.5 Hz, 1 H), 5.14 (d, <i>J</i> = 11.1 Hz, 1 H), 3.59 (s, 3 H), 2.89 (m, 2 H), 0.79 (m, 1 H), 0.20 (m, 2 H), 0.01 (m, 2 H); MS (ES') 513.4
	124j	1-2	¹ H NMR (DMSO): δ 13.14 (br s, 1 H), 8.84 (m, 3 H), 8.12 (d, J = 7.3 Hz, 1 H), 7.79 (s, 1 H), 7.40 (m, 8 H), 6.74 (m, 2 H), 6.33 (s, 1 H), 5.66 (d, J = 19.2 Hz, 1 H), 5.10 (d, J = 11.7 Hz, 1 H), 3.94 (m, 1 H), 3.54 (s, 3 H), 1.66-0.93 (m, 8 H); MS (ES ⁺) 527.4
125kCH ₃ H	124k	I-2	¹ H NMR (DMSO): 6 9.25 (m, 4 H), 8.73 (t, <i>J</i> = 5.7 Hz, 1 H), 8.28 (s, 1 H), 7.86 (m, 7 H), 6.84 (s, 1 H), 6.10 (d, <i>J</i> = 17.7 Hz, 1 H), 5.55 (d, <i>J</i> = 11.3 Hz, 1 H), 3.99 (s, 3 H), 3.43 (qui, <i>J</i> = 6.2 Hz, 2 H), 1.28 (t, <i>J</i> = 7.2 Hz, 3 H); MS (ES ¹): 487.
1251 -CH ₃ -H	CH, 1241	F-2	¹ H NMR (DMSO): 6 8.91 (m, 4 H), 8.38 (t, <i>J</i> = 5.5 Hz, 1 H), 7.96 (s, 1 H), 7.53 (m, 5 H), 6.86 (m, 2 H), 6.52 (s, 1 H), 5.77 (d, <i>J</i> = 17.7 Hz, 1 H), 5.21 (d, <i>J</i> = 11.5 Hz, 1 H), 3.65 (s, 3 H), 2.94 (m, 1 H), 1.57-0.56 (m, 11 H); MS (ES ²): 529.3

	_
ž	١
١	4

Cpd.	-R	<u>ب</u> خ	".a	Starting Method	Method	A Ludino I Duda
INO.				From	Used	Allalylical Dala
						¹ HNMR (DMSO-d _δ): δ 10.07 (bs, 1H), 9.05 (bs, 2
						H), 8.98 (bs, 2 H), 8.49 (t, J = 5.6 Hz, 1 H), 7.96 (s,
105	1	,	E			1 H), 7.62 (m, 5 H), 7.06 (s, 1 H), 7.03 (s, 1 H),
IIIC71	Ę.	Ţ	→	124m	I-2	6.94 (dd, J = 11 and 18 Hz, 1 H), 5.78 (d, J = 18
) H			Hz, 1 H), 5.26 (d, $J = 11 \text{ Hz}$, 1 H), 3.02 (t, $J = 5.7$
			1			Hz, 2 H), 1.81 (m, 1 H), 0.85 (d, J = 6.8 Hz, 6 H);
						MS (ES-): 499.2 and (ES ⁺) 501.3

HZ,	Analytical Data	MS (ES ⁺): 506.4	MS (ES ⁺): 499.3	Characterized in the next step	Characterized in the next step	Characterized in the next step
× /	Method Used	A-5	—	A-5	A-5	A-5
R"O ₂ C	Starting From	132	132	132	132	132
, w	-R"	-СН3	-СН3	-СН3	-CH3	-CH3
	-R'	Н-	H-	Н-	H-	H-
	-R	IZ Z	Z Z Z Z Z Z Z Z Z Z Z Z Z Z Z Z Z Z Z	H CF3	, H	TH. CF.
	Cpd.	133a	133b	133c	133d	133e

23(

_
٣
C

[_			
Analytical Data	Characterized in the next step	MS (ES [†]): 502.3				
Method Used	A-5	A-5	A-5	A-5	A-5	5
Starting From	132	132	132	132	132	132
'Ä"	-CH3	-СН3	-СН3	-CH3	-CH3	-СН3
-R'	平	H-	Н-	Н-	Ħ.	Н-
-R	LA CF3	. NH CF3	H.V.	0	HN.	Z Z
Cpd.	133f	133g	133h	133i	133j	133k

C
~
\sim

Cpd.	-R	-R'	-R"	Starting From	Method Used	Analytical Data
1331	HN	Ŧ	-СН3	132	ь.	MS (ES ⁺): 470.2
133т	ZH_	H-	-СН3	132	l l	MS (ES ⁺): 437.3
133п	S	H-	-CH3	132	ſ	MS (ES ⁺): 518.2
1330		H-	-СН3	132		MS (ES ⁺): 501.3
133р	N ZH	ŗ.	-CH3	132	r	MS (ES): 469.1
133q	HZ	Н-	-СН3	132	r	MS (ES): 469.1; MS (ES ⁺): 471.2
133r	, NH ₂	H	-CH3	132	A-5	Characterized in the next step

	d Analytical Data	MS (ES ⁺): 483.2 (M+Na)	MS (ES ⁺): 432.2	MS (ES ⁺): 432.2	MS (ES ⁺): 447.2	Characterized in the next step	MS (ES ⁺): 446.3	MS (ES ⁺): 446.2
,	Method Used	A-5	A-5	A-5	A-5	A-5	A-5	A-5
	Starting From	132	132	132	132	132	132	132
	-R"	-СН3	-СН3	-CH,	-СН3	-СН3	-СН3	-CH3
	-R'	H-	H-	H.	H-	Н-	H-	H-
	-R	HO			но	Z		Z

133x

133y

133z

Cpd.

133s

133u

133v

•	4
r	٧)
•	٠,

		T		Т —	-,	
Analytical Data	MS (ES ⁺): 475.3	MS (ES ⁺): 499.3 (M+Na)	MS (ES ⁻): 483.2; MS (ES ⁺): 485.2	MS (ES ⁺): 497.2; MS (ES ⁻): 495.2	MS (ES'): 483.2; MS (ES ⁺): 485.2	MS (ES ⁺): 511.3 (M ⁺ Na) ⁺ ; MS (ES ⁻): 487.3
Method Used	A-4	-	A-4	A-4	A-4	-
Starting From	132	132	132	132	132	132
-R"	-CH3	-CH ₃	-СН,	-СН3	-CH3	-CH3
-R'	H-	H-	н-	н-	H-	H-
-R	HO	HO	NH N NH	Z N N N N N N N N N N N N N N N N N N N	HZ Z	N-O-O-O-O-O-O-O-O-O-O-O-O-O-O-O-O-O-O-O
Cpd. No.	133aa	133ab	133ac	133ad	133ae	133af

ч	
r	n
c	

Cpd.	-R	'Ř	-R"	Starting From	Method	Analytical Data
133ag	, H———OH	Н-	-СН3	132	۳-,	MS (ES'): 451.3
133ai	II————————————————————————————————————	H-	-СН3	. 132	ı	MS (ES): 584.4
134a	HZ Z	Н-	. F	133a	1-2	¹ HNMR (DMSO-d ₆): 6 13.13 (bs, 1 H), 8.76 (t, J = 6 and 5 Hz, 1 H), 8.32 (m, 2 H), 8.02 (dd, J = 1.9 and 8.1 Hz, 1 H), 7.42 (m, 4 H), 7.25 (m, 1 H), 3.62-3.19 (m, 12 H), 3.11 (t, J = 6.8 Hz, 2 H), 1.87 (m, 1 H), 1.76 (m, 2 H), 0.90 (d, J = 6.8 Hz, 6 H); MS (ES-) 490.3; (ES+) 492.3
134b	ZH	Ħ.	Ŧ.	133b	1-2	¹ HNMR (DMSO-d ₆): 613.82 (bs, 1 H), 10.57 (bs, 2 H), 8.50 (t, J = 6 and 5 Hz, 1 H), 7.99 (d, J = 1.5 Hz, 1 H), 7.83 (s, 1 H), 7.8 (s, 1 H), 7.59 (m, 4 H), 7.46 (m, 2 H), 7.03 (m, 1 H), 6.92 (d, J = 7.9 Hz, 1 H), 3.89 (s, 4 H), 3.02 (t, J = 6.8 Hz, 2 H), 1.81 (m, 1 H), 0.8 (d, J = 6.8 Hz, 6 H);MS (ES): 483.3: MS (ES ⁺): 485.4
134c	ZI OF	H-	H-	133c	. 1-2	¹ HNMR (DMSO-d ₆): δ 8.71 (t, 1=5.5 Hz, 1 H), 8.40 (t, 1=5.3 Hz, 1H), 8.30 (s, 1 H), 8.00(d, 1=7.8 Hz, 1 H), 7.63 (d, 1=4.3 Hz, 2 H), 7.40 (d, 1=7.4 Hz, 4 H), 7.27(d, 1=8.1 Hz, 1 H), 7.18 (s, 1 H), 6.91 (d, 1=7.1 Hz, 1 H), 4.42 (b, 2 H), 3.13 (t, 1 = 6.5 Hz, 2 H), 1.93 (m, 1 H), 0.91 (d, 1 = 6.8 Hz, 6 H); MS (ES-) 497.3

V
r
C

Cpd.			-	Starting	Mathod	
No.)I-	-R'	<u></u>	From	Used	Analytical Data
134d	H CF ₃	H-	Ŧ.	133d	I-2	¹ HNMR (DMSO-d ₆): δ 10.45 (s, 1 H), 8.63 (s, 1 H), 8.27 (s, 1 H), 7.93 (d, J=8.1Hz, 1 H), 7.67 (t, J=6.8 Hz, 2 H), 7.55 (m, 2 H), 7.27 (m 3 H), 7.12 (m, 2 H), 3.06 (t, J=6 Hz, 2 H), 1.82 (m, 1 H), 0.86 (d, J=6.8 Hz, 6.41; MSGES) (482.3 d)
134e	H CF3	H-	Ħ.	. 133e	1-2	HNMR (DMSO-d ₆): \(\delta \) 12.92 (bs. 1 H), \(8.71 \) (t, \(\delta \) 12.92 (bs. 1 H), \(8.71 \) (t, \(\delta \) 12.92 (bs. 1 H), \(8.32 \) (s, \(1 \) 14), \(8.01 \) (d, \(\delta \) 17.8 Hz, \(1 \) H), \(7.52 \) (m, \(5 \) H), \(7.27 \) (d, \(\delta \) 17.9 Hz, \(1 \) H), \(7.18 \) (m, \(1 \) H), \(7.08 \) (d, \(\delta \) 18.2 Hz, \(2 \) H), \(4.32 \) (d, \(\delta \) 14.2 Hz, \(2 \) H), \(3.12 \) (t, \(\delta \) 16.5 Hz, \(6 \) H); \(MS(ES-) \) 498.2
134f	HN H	Н-	H-	133f	I-2	¹ HNMR (DMSO-d ₆): δ 8.66 (t, J=5.7 Hz, 1 H), 8.27 (s, 1 H), 7.92 (d, J=8.1 Hz, 1 H), 7.45 (m, 7 H), 7.18 (m, 3 H), 4.32 (d, J=5.9 Hz, 2 H), 3.12 (t, J = 6 Hz, 2 H), 1.89 (m, 1 H), 0.91 (d, J = 6.8 Hz, 6 H); MS(ES-) 497.2
134g	ZH.	H-	H-	133g	1-2	¹ HNMR (DMSO-d ₆): 6 13.1 (s, 1 H), 9.58 (s, 1 H), 8.65 (s, 1 H), 8.29 (s, 1 H), 7.98 (d, J=5.9Hz, 1 H), 7.75 (d, J=5.2 Hz, 2 H), 7.30 (d, J=8 Hz, 2 H), 7.12 (d, J=12.0 Hz, 1 H), 7.12 (m, 4 H), 3.06 (t, J = 6 Hz, 2 H), 1.85 (m, 1 H), 0.86 (d, J = 6.8 Hz, 6 H); MS (ES-) 483.2
134h	HZ.	#	Ħ,	133h	1.2	¹ HNMR (DMSO-d ₆): 8 10.31 (s, 1 H), 8.65 (t, J=6.2 Hz, 1 H), 8.31 (s, 1 H), 7.98 (d, J=7.9 Hz, 1 H), 7.66 (m, 1 H), 7.53 (m, 3 H), 7.27 (m, 4 H), 6.85 (m, 1 H), 3.09 (t, J=6.5 Hz, 2 H), 1.86 (m, 1 H), 0.89 (d, J=6.8 Hz, 6 H); MS (ES-)

ŧ	`
ſ	7
(V

Cpd.	-R	-k	"A-	Starting	Method	
NO.				From	Used	Analytical Data
134i		Ħ.	H-	133i	1-2	HNMR (DMSO-d ₆): 6 8.71 (t, J=5.7 Hz, 1 H), 8.31 (s, 1 H), 8.01 (d, J= 7.9 Hz, 1 H), 7.46 (m, 2 H), 7.39 (m, 2 H), 7.24 (s, 1 H), 3.38 (b, 8 H), 3.11 (t, J = 6.5 Hz, 2 H), 1.86 (m, 1 H), 0.91 (d, J
134j	EZ.	H-	H-	133j	1-2	HNMR (DMSO-d ₆): 5 9.61 (s, 1 H), 8.67 (t, 1=5.5 Hz, 1 H), 8.32 (s, 1 H), 7.98 (d, 1=7.9 Hz, 1 H), 7.71 (m, 2 H), 7.54 (m, 2 H), 7.29 (d, 1=7.9 Hz, 1 H), 7.04 (m, 4 H), 3.10 (t, 1=6.5 Hz, 2 H), 1.86 (m, 1 H), 0.89 (d, 1=6.8 Hz, 6 H); MS (ES-4333)
134k	Z Z	н-	H-	133k	1.2	HNMR (DMSO-d ₆): δ 8.59 (t, J = δ and 5 Hz, 1 H), 8.3 (d, J = 5 Hz, 2 H), 8.18 (s, 1 H), 7.86 (d, J = 8 Hz, 1 H), 7.36 (m, 5 H), 6.6 (t, J = 4.7 Hz, 1 H), 4.0 (m, 1 H), 3.75 (m, 2 H), 3.37 (m, 5 H), 3.07 (t, J = δ 8 Hz, 2 H), 1.81 (m, 1 H), 0.85 (d, J = δ 8 Hz, δ H)
1341	HN	Ħ.	Ħ.	1331	1-2	¹ HNMR (DMSO-d ₆): δ 10.92 (bs, 1 H), 8.55 (t, J = 6 and 5 Hz, 1 H), 8.14 (s, 1 H), 7.76 (d, J = 7 Hz, 1 H), 7.68 (m, 1 H), 7.62 (m, 1 H), 7.45 (m, 2 H), 7.24 (t, J = 2.6 Hz, 1 H), 7.19 (s, 1 H), 7.15 (s, 1 H), 7.10 (m, 2 H), 6.95 (dd, J = 1.5 and 8.7 Hz, 1 H), 6.28 (s, 1 H), 3.04 (t, J = 6.8 Hz, 2 H), 1.82 (m, 1 H), 0.86 (d, J = 6.8 Hz, 6 H); MS (ES-954.3; FS+) 456.3
.134m	TZ.	#-	. Н-	133m	I-2 I	¹ HNMR (DMSO-d ₀): 513.30 (bs, 1 H), 8.62 (t, J = 6 and 5 Hz, 1 H), 8.18 (s, 1 H), 7.87 (d, J = 7.9 Hz, 1 H), 7.42 (m, 3 H), 7.09 (m, 2 H), 3.03 (m, 1 H), 3.1 (t, J = 6.8 Hz, 2 H), 1.86 (m, 1 H), 1.4 (m, 4 H), 1.09 (m, 1 H), 0.89 (d, J = 6.8 Hz, 6 H); MS (ES-) 421.2; (ES+) 423.2

- (1	3
	1	1
(٦	٥

Cpd. No.	-R	'R'	-k	Starting	Method	Analytical Data
134n	NHZ NHZ	H,	H-	133n	1-2	HNMR (DMSO-d ₆): § 15.89 (bs, 1 H), 8.56 (t, J = 6 and 5 Hz, 1 H), 8.06 (s, 1 H), 7.67 (m, 2 H), 7.54 (d, J = 8.8 Hz, 1 H), 7.48 (m, 4 H), 7.05 (m, 1 H), 6.96 (m, 2 H), 3.77 (s, 3 H), 3.03 (t, J = 6.8 Hz, 2 H), 1.81 (m, 1 H), 0.84 (d, J = 6.8 Hz, 6.8 Hz, 6.9 Hz, 6.9 3.45 (s, 1.85), 6.03 3.45 (s, 1.85), 6.04 3.45 (s, 1.85)
1340	Z Z	н-	H-	1330	1.2	HNMR (DMSO-d ₆): 5 13.07 (bs, 1 H), 8.63 (t, J = 6 and 5 Hz, 1 H), 8.26 (s, 1 H), 8.05 (d, J = 4 Hz, 1 H), 7.94 (d, J = 8 Hz, 1 H), 7.43 (m, 5 H), 7.28 (m, 1 H), 6.72 (d, J = 8.12, 1 H), 6.62 (dd, J = 5.5 and 6.5 Hz, 1 H), 3.34 (m, 8 H), 3.07 (t, J = 6.8 Hz, 2 H), 1.82 (m, 1 H), 0.85 (d, J = 6.8 Hz, 2 H), 1.82 (m, 1 H), 0.85 (d, J = 6.8 Hz, 6 H); MS (ES-) 486.3; (ES+) 488.3
134р	HZ ZH	Н-	н-	133р	F-2	¹ HNMR (DMSO-d ₆): δ 12.94 (bs, 1 H), 10.20 (bs, 1 H), 8.63 (t, J = 6 and 5 Hz, 1 H), 8.28 (d, J = 1.5 Hz, 1 H), 7.96 (m, 2 H), 7.92 (d, J = 8.3 Hz, 1 H), 7.68 (m, 1 H), 7.52 (m, 2 H), 7.4 (m, 1 H), 7.3 (m, 2 H), 7.24 (m, 1 H), 3.08 (t, J = 6.8 Hz, 2 H); MS (ES-) 455.2. (ES+) 479.2 (M+N ₃)
134q	TZ-Z	Ŧ	H-	1339	. 1-2	HNMR (DMSO-d ₆): § 12.84 (bs, 1 H), 10.45 (bs, 1 H), 8.62 (t, J = 6 and 5 Hz, 1 H), 8.27 (d, J = ,1.5 Hz, 1 H), 8.01 (s, 1 H), 7.93 (s, 2 H), 7.9 (d, J = 1.5 Hz, 1 H), 7.69 (m, 1 H), 7.57 (d, J = 8.7 Hz, 1 H), 7.52 (m, 2 H), 7.29 (d, J = 8 Hz, 1 H), 7.23 (m, 1 H), 7.02 (dd, J = 1.5 and 8.7 Hz, 1 H), 3.07 (t, J = 6.8 Hz, 2 H), 1.83 (m, 1 H), 0.87 (d, J = 6.8 Hz, 6 H), MS (ES-) 455.2; (ES+)

ø
ß
2

Cpd.	-R	-R'	-k	Starting	Method	Analytical Data
134r	HN H	H-	H-	133r	I-2	¹ HNMR (DMSO-d ₆): δ 8.64 (t, J=5.5 Hz, 1 H), 8.16 (s, 1 H), 7.87 (d, J=7.1 Hz, 1H), 7.50 (m, 1 H), 7.40 (d, J=4.1 Hz, 2 H), 7.19 (b, 3 H), 7.07 (m, 2 H), 6.51 (m, 2 H), 6.35 (d, J=7.8 Hz, 2 H), 3.97 (d, J=5.6 Hz, 2 H), 3.13 (t, J = 6.5 Hz, 2 H), 1.90 (m, 1 H), 0.91 (d, J = 6.8 Hz, 6 H)
134s	HO	-Н	H-	133s	1-2	¹ HNMR (DMSO-46): 8 9.53 (bs, 1 H), 8.67 (t, 1=4.7 Hz, 1 H), 8.32 (s, 1 H), 7.99 d, 1=8.1 Hz, 1 H), 7.70 (d, 1=7.6 Hz, 1 H), 7.52 (m, 2 H), 7.46 (d, 1=11.5 Hz, 1 H), 7.32 (m, 3 H), 7.18 (m, 3 H), 4.33 (s, 2 H), 3.10 (t, 1 = 6.5 Hz, 2 H), 1.86 (m, 1 H), 0.89 (d, 1 = 6.8 Hz, 6 H); MS (ES-) 445.2
134t	НО	H-	H-	132	1-2	¹ HNMR (DMSO-d ₆): δ 12.57 (b, 1 H), 8.69 (t, 1=5.6 Hz, 1 H), 8.36 (s, 1 H), 7.99 (d, 1=7.9 Hz, 1 H), 7.92 (d, 1=7.7 Hz, 1 H), 7.57(t, 1=7.5 Hz, 1 H), 7.46 (t, 1=7.7 Hz, 1 H), 7.23 (d, 1=5.2 Hz, 1 H), 7.17 (d, 1=7.5 Hz, 1 H), 3.12 (t, 1=6.5 Hz, 2 H), 1.88 (m, 1 H), 0.91 (d, 1=6.8 Hz, 6 H); MS (ES-) 340.2
134u	Z	Н-	Ħ.	133u	1-2	¹ HNMR (DMSO-d ₆): 8 8.56 (t, J=5.0 Hz, 1 H), 8.16 (d, J=7.0 Hz, 2 H), 7.94 (d, J=8.4 Hz, 1 H), 7.75 (d, J=7.4 Hz, 1 H), 7.63 (m, 2 H), 7.46 (m, 2 H), 7.21 (b, 1 H), 7.07 (s, 2 H), 6.99 (t, J=5.1 Hz, 1 H), 3.05 (t, J = 6.5 Hz, 2 H), 1.83 (m, 1 H), 0.86(d, J = 6.8 Hz, 6 H); MS (ES-) 416.3
134v	TZ TZ	. Н-	Ħ.	133v	1-2	¹ HNMR (DMSO-d ₆): δ 8.60 (t, J=5.6 Hz, 1 H), 8.32 (d, J=5.3 Hz, 2 H), 8.11(s, 1 H), 7.78 (d, J=7.7 Hz, 1 H), 7.65 (d, J=5.5 Hz, 1 H), 7.55 (m, 2 H), 7.43 (d, J=4.5 Hz, 2 H), 7.14 (m, 3 H), 3.06 (t, J = 6.5 Hz, 2 H), 1.83 (m, 1 H), 0.86 (d, J = 6.8 Hz, 6 H); MS (ES.) 416.2

	_
	-
	~1
•	

Cpd.	-R	-R.	-R"	Starting From	Method	Analytical Data
134w	HO	Ŧ.	Ħ,	133w	1-2	¹ HNMR (DMSO-d ₆): \$ 10.10 (bs, 1 H), 9.31 (s, 1 H), 8.65 (t, J=5.7 Hz, 1 H), 8.27 (s, 1 H), 7.93 (d, J=8.1 Hz, 1 H), 7.62 (d, J=5.3 Hz, 1 H), 7.48 (m, 2 H), 7.28(s, 1 H), 7.20 (d, J=12.0 Hz, 1 H), 7.09 (s, 1 H), 6.98 (d, J=7.0 Hz, 1 H), 6.81 (d, J=7.3 Hz, 1 H), 6.37 (t, J=7.6 Hz, 1 H), 3.09 (t, J=6.5 Hz, 2 H), 1.85 (m, 1 H), 0.90(d, J=6.8 Hz, 6 H), MS (ES-) 431.1
134x	NH H	Н-	н-	133х	1-2	¹ HNMR (DMSO-d ₆): \$ 10.28 (bs, 1 H), 8.63 (t, 1=5.3 Hz, 1 H), 8.34 (d, 1=4.7 Hz, 1 H), 8.06 (s, 1 H), 7.82 (d, 1=6.6 Hz, 1 H), 7.53 (m, 1 H), 7.42 (m, 2 H), 7.34 (t, 1=8.6 Hz, 1 H), 7.18 (s, 1 H), 7.07 (d, 1=2.7 Hz, 2 H), 6.10 (b; 1 H), 4.43 (b; 1 H), 4.12 (b, 1 H), 3.12 (t, 1 = 6.5 Hz, 2 H), 1.89 (m, 1 H), 0.90(d, 1 = 6.8 Hz, 6 H); MS (ES+) 432.3, (ES-) 430.2
134y	Z	H-	н-	133y	1-2	¹ HNMR (DMSO-4 ₆): 5 9.79 (bs, 1 H), 8.62 (t, J=6.0 Hz, 1 H), 8.31 (d, J=4.5 Hz, 1 H), 8.20 (s, 1 H), 8.08 (s, 1 H), 7.78 (d, J=2.1 Hz, 1 H), 7.51 (m, 1 H), 7.42 (m, 2 H), 7.06 (m, 3 H), 6.88 (m, 1 H), 4.02 (b, 2 H), 3.13 (t, J=6.5 Hz, 2 H), 1.90 (m, 1 H), 0.93 (d, J=6.8 Hz, 6 H); MS (ES+) 432.3, (ES-) 430.3
134z	Z	Ħ.	Ę.	133z	I-2	¹ HNMR (DMSO-d ₆): 8 10.71 (bs, 1 H), 8.64 (t, J=5.9 Hz, 1 H), 8.21 (d, J=5.2 Hz, 2 H), 8.05 (s, 1 H), 7.81 (d, J=7.7 Hz, 1 H), 7.51 (m, 1 H), 7.42 (m, 2 H), 7.18 (s, 1 H), 7.04 (t, J=1.4Hz, 2 H), 6.51 (b, 2H), 4.41 (b, 1 H), 4.01 (b, 1 H), 3.13 (t, J=6.5 Hz, 2 H), 1.91 (m, 1 H), 0.91 (d, J=6.8 Hz, 6 H); MS (ES+) 432.2, (ES-) 430.2

۳	
<	۲
c	Ġ

No.			_			
	-R	-ĸ'	-R"	Starting From	Method Used	Analytical Data
134aa	HO	H-	Н-	133аа	1-2	¹ HNMR (DMSO-d ₆): 5 10.02 (bs, 1 H), 8.65 (t, J = 5.7 Hz, 1 H), 8.26(s, 1 H), 7.94(d, J= 7.7 Hz, 1 H), 7.66(d, J=5.8 Hz, 1 H), 7.51(m, 2 H), 7.36 (d, J=8.4 Hz, 2 H), 7.29 (d, J=7.9 Hz, 1 H), 7.22 (d, J=5.5 Hz, 1 H), 7.07(d, J=8.3 Hz, 2 H), 4.57 (t, J=9.0 Hz, 1 H), 3.51 (m, 2 H), 3.09 (t, J=6.5 Hz, 2 H), 2.62 (t, J=6.6 Hz, 2 H), 1.85 (m, 1 H), 9.04 (1 = 6.8 Hz, 6 Hz, 2 H), MSGRS 2.462
134ab	но	H-	H-	133ab	1.2	HNMR (DMSO-d ₀): 6 9.05 (s, 1 H), 8.70 (t, 1=5.7 Hz, 1 H), 8.56 (s, 1 H), 8.36 (s, 1 H), 8.36 (s, 1 H), 8.35 (s, 1 H), 7.09 (m, 2 H), 7.09 (m, 2 H), 7.60 (m, 1 H), 7.44 (s, 2 H), 7.09 (m, 2 H), 6.56 (d, 1=8.9 Hz, 1 H), 4.89 (t, 1=4.4 Hz, 1 H), 4.38 (d, 1=5.6 Hz, 2 H), 3.11 (t, 1 = 6.5 Hz, 2 H), 1.84 (m, 1 H), 0.90 (d, 1 = 6.8 Hz, 6 H), MS(FS-) 461.1
134ac	Z Z Z Z H	H-	H-	133ac	1.2	¹ HNMR (DMSO-d ₆): δ 8.60 (t, J = δ and 5 Hz, 1 H), 8.13 (s, 2 H), 7.85 (d, J = 2 Hz, 1 H), 7.46 (m, 4 H), 7.36 (d, J = 7.7 Hz, 1 H), 7.16 (m, 4 H), 7.10 (m, 1 H), 3.17 (s, 3 H), 3.08 (t, J = δ .8 Hz, 2 H), 1.85 (m, 1 H), 0.89 (d, J = δ .8 Hz, 6 H), MS (ES-) 469.2; (ES+) 471.3
134ad H	Z	井	H-	133ad	1-2	HNMR (DMSO-d ₆): 6 8.55 (t, J = 6 and 5 Hz, 1 H), 8.10 (s, 2 H), 7.73 (d, J = 7.2 Hz, 1 H), 7.54 (m, 4 H), 7.46 (m, 5 H), 7.08 (m, 3 H), 3.04 (t, J = 6.8 Hz, 2 H), 1.82 (m, 1 H), 0.86 (d, J = 6.8 Hz, 6 H), MS (ES-) 481.1; (ES+) 483.3

(١	į
4	į	١
ŧ	١	ı

Cpd. No.	-R	'Ä'	-R"	Starting From	Method	Analytical Data
134ae	TZ Z	Ħ.	平	133ае	1-2	¹ HNMR (DMSO-d ₆): 8 9.66 (bs, 1H), 8.54 (t, J = 6 and 5 Hz, 1 H), 8.12 (s, 2 H), 7.77 (dd, J = 8 and 2 Hz, 1 H), 7.6 (dd, J = 7 and 2 Hz, 1 H), 7.6 (dd, J = 7 and 2 Hz, 1 H), 7.45 (m, 5 H), 7.10 (m, 4 H), 4.36 (bs, 2 H), 3.09 (t, J = 6.8 Hz, 2 H), 1.86 (m, 1 H), 0.89 (d, J = 6.8 Hz, 6 H). MS (ES-) 469.2: (ES+) 471.3
134af	но——	Н-	н-	133af	1-2	¹ HNMR (DMSO-d ₆): 5 9.76 (s, 1 H), 9.17 (s, 1 H), 8.63 (t, 1=5.0 Hz, 1 H), 8.29 (s, 1 H), 7.90 (d, 1=1.6 Hz, 1 H), 7.60 (s, 1 H), 7.51 (d, 1=8 Hz, 1 H), 7.30 (d, 1=3.6 Hz, 2 H), 7.28 (d, 1=8.2Hz, 1 H), 7.22 (t, 3 H), 6.60 (d, 1=8.9 Hz, 1 H), 3.06 (t, 1=6 Hz, 2 H), 1.85 (m, 1 H), 0.86 (d, 1=6.8 Hz, 6 H); MS (ES-) 431.2
134ag	H——OH	Ħ-	Н	133ag	I-2	¹ HNMR (DMSO-d ₆): 5 9.64 (s, 1 H), 9.06 (s, 1 H), 8.66 (t, J=5.6 Hz, 1 H), 8.29 (s, 1 H), 7.95 (d, J=7.9 Hz, 1 H), 7.63 (m, 1 H), 7.50 (m, 2 H), 7.29 (d, J=3.1 Hz, 1 H), 7.20 (d, J=8.9 Hz, 1 H), 7.11 (m, 1 H), 7.03 (m, 1 H), 6.60 (d, J=8.9 Hz, 1 H), 3.08 (t, J=6 Hz, 2 H), 2.05 (s, 3 H), 1.85 (m, 1 H), 0.86 (d, J=6.8 Hz, 6 H); MS (ES-) 445.2, MS (ES+) 469.3 (M+Na)
134ai	H-H	Н-	平	133ai	I-2, S	MS (ES ⁺): 472.2; MS (ES ⁻): 470.2
135a	Z	-CH=CH2	-СН3	30f	A-4	MS (ES ⁺): 489.3

	•
7	1
	٧

			<u></u>		T	T	T
Analytical Data	MS (ES ⁺): 475.3; MS (ES ⁻): 473.3	MS (ES ⁺): 573.5; MS (ES ⁻): 571.3	MS (EST): 472.2	MS (ES'): 489.1	MS (ES): 498.1	MS (ES): 494.3	MS (ES'): 584.2
Method Used	A-4	-	A-4	ſ	-	ь.	ſ
Starting From	30f	30£	30f	30f	30f	30f	30£
-R"	-СН3	-СН3	-СН3	-СН3	-СН3	-СН3	-CH3
-R'	-СН=СН2	-CH=CH2	-CH=CH2	-CH=CH2	-CH=CH2	-CH=CH2	-CH=CH2
-R	TZ Z	N-N-NHBoc,	H-N-NH	D HN	H-N-NH ₂	H————CH ₂ CN	H—————————————————————————————————————
Cpd. No.	13Sb	135c	135d	135e	135f	135g	135h

4	
4	
2	

	'n	-R'	-R"	Starting	Method	Analytical Data
Z#		-СН=СН2	H-	135a	1-2	¹ HNMR (DMSO-d ₆): δ 8.66 (t, J = .55 Hz, I H), 8.35 (t, J = 4 and 6.4 Hz, I H), 8.28 (d, J = 2 Hz, I H), 7.95 (dd, J = 7.9 and 2 Hz, I H), 7.69 (s, I H), 7.59 (m, 2 H), 7.25 (d, J = 8.1 Hz, 2 H), 7.15 (m, 2 H), 6.93 (s, I H), 6.88 (dd, J = 17.7 and 11.5 Hz, I H), 5.95 (d, J = 17.7 Hz, I H), 5.37 (d, J = 11.5 Hz, I H), 3.76 (t, J = 6.8 Hz, 2 H), 3.10 (t, J = 6.4 Hz, 2 H), 2.96 (m, 2 H), 1.86 (m, I H), 1.67 (m, 2 H), 0.89 (d, J = 6.8 Hz, 6 H); MS
ĺ	TZ Z	-СН=СН2	Ŧ	135b	1.2	HNMR (DMSO-d ₆): δ 8.64 (t, 1 H), 8.51 (s, 1 H), 8.21(s, 1 H), 7.88 (d, 1=7.8 Hz, 1 H), 7.74 (s, 1 H), 7.56 (s, 2 H), 7.15 (m, 2 H), 6.80 (t, 2 H), 5.90 (d, 1=17 Hz, 1 H), 5.36 (d, 1=11.0Hz, 1 H), 3.18 (m, 2 H), 3.06 (t, 1 = 6 Hz, 2 H), 2.43 (m, 2 H), 1.85 (m, 1 H), 0.86 (d, 1 = 6.8 Hz, 6 H); MS (ES+) 461.2, MS (ES-) 459.2
	N——NH2	-CH=CH2 -H	н-	135c	I-2, S	¹ HNMR (DMSO-d ₆ /D ₂ O): 5 8.71 (t, 1 H), 8.27 (d, J= 3 Hz, 1 H), 8.21(d, J=3 Hz, 1 H), 7.96 (q, 1 H), 7.79 (q, 1 H), 7.72 (s, 1 H), 7.63 (d, J=8 Hz, 1 H), 7.30 (d, J=6 Hz, 1 H), 7.24 (d, J=7 Hz, 1 H), 6.87 (q, 2 H), 6.00 (d, J=8 Hz, 1 H), 5.41 (d, J=8 Hz, 1 H), 3.06 (t, J=6 Hz, 2 H), 1.85 (m, 1 H), 0.86 (d, J=6.8 Hz, 6 H); MS (ES+) 459.2

ц
7
^

Cpd.	f	 - -		Starting	Method	
No.	-K	-¥-	-R	From		Analytical Data
-						¹ HNMR (DMSO-d ₆): δ 12.86 (bs, 1 H), 9.17 (s, 1 H), 8.65 (t, J = 6 Hz, 1 H), 8.29 (d, J = 2 Hz, 1
	Z.					H), 8.26 (s, 2 H), 7.97 (dd, J = 8 and 2 Hz, 1 H), 7.76 (s, 1 H), 7.63 (d, 8 Hz, 1 H), 7.31 (d, J = 8
136d	H_N_N,	-CH=-CH2	Ħ.	135d	1-2	Hz, 1 H), 7.24 (d, J = 8 Hz, 1 H), 6.86 (dd, J =
						10.7 and 17.5 Hz, 1 H), 6.49 (s, 1 H), 5.99 (d, J =
	•				-	17.5, 1 H), 5.40 (d, J = 10.7 Hz, 1 H), 3.10 (t, J =
						6.8 Hz, 2 H), 1.86 (m, 1 H), 0.89 (d, J = 6.8 Hz, 6 Hz, MS (BS) 468 2 (BS) 468
						11), MD (ED-) 400.2, (ED+) 400.3
					_	HNMR (DMSO-d ₆): 8 12.72 (s, broad, 1 H),
	5					8.65(t, J=5.7 Hz, 1 H), 8.29 (s, 1 H), 7.93 (d,
						J=7.9 Hz, 1 H), 7.74 (m, 2 H), 7.65 (d, J=6 Hz 1
136e	H	-CH=CH2	H-	135e	I-2	H), 7.42 (d, J=7.9 Hz, 1 H), 7.24 (m, 3 H), 7.11
-	\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\					(m, 1 H), 6.84 (q, J=11.1, 17.8 Hz, 1 H), 5.97 (d,
						J=18 Hz, 1 H), 5.58 (d, 1 H), 5.41 (d, 1 H), 3.08
						(t, $J = 6 \text{ Hz}$, 2 H), 1.85 (m, 1 H), 0.86 (d, $J = 6.8$
						Hz, 6 H); MS (ES-) 475.1
						HNMR (DMSO-d ₆): 8 8.67 (t, J=6.06 Hz, 1 H),
		-		-		8.28 (s, 1 H), 7.90 (d, J=7.7Hz, 1 H), 7.67 (m, 4
1366	Н // Н		;	1	-	H), 7.32 (m, 5 H), 7.09 (d, J=7.9 Hz 1 H), 6.89
1001	\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\	-CH=CH2 -H	Ţ.	135f	I-2	(q, J=10.9 & 18.0 Hz, 1 H), 5.99 (d, J=17.5Hz, 1
	NH,					H), 5.42 (d, J=11 Hz, 1 H), 3.08 (t, J=6.3 Hz, 2
					· ·	H), 1.88 (m, 1 H), 0.87 (d, J = 6.8 Hz, 6 H); MS
						(ES-) 484.2

v
4
~

-R	R	-R'	-R"	Starting Method From Used	Method	Analytical Data
HZ	CH,CN	-CH=CH2	H-	135g	1-2	¹ HNMR (DMSO-d ₆): 5 10.38 (s, 1 H), 8.66 (t, 1=6.06 Hz, 1 H), 8.29 (s, 1 H), 7.95 (d, 1=6.1 Hz, 1 H), 7.75 (s, 1 H), 7.63 (d, 2 H), 7.43 (d, 2 H), 7.26 (m, 3 H), 7.00 (d, 1=7.7 Hz, 1 H), 6.85 (q, 1=10.9 & 18.0 Hz, 1 H), 5.98 (d, 1=17.5 Hz, 1 H), 6.65 (d, 1=11.5 Hz, 1 H
						J=6.3 Hz, 2 H), 1.86 (s, 2 H), 3.08 (t, 1=6.3 Hz, 2 H), 1.86 (m, 1 H), 0.88 (d, 1 = 6.8 Hz, 6 H); MS (ES-) 480.2
· ·						¹ HNMR (DMSO-d ₆): 8 8.55 (t, J=6.06 Hz, 1 H), 8.02 (s, 1 H), 7.60(m, 4H), 7.21 (t, J=7.1. 2 H).
HZ	CH ₂ NH ₂	-CH=CH2	Н-	13Sh	S, I-2	6.99(m, 2 H), 6.83 (d, J=6.8 Hz, 1H), 6.81 (q, J=10.9 & 18.0 Hz, 1H), 5.92 (d, J=17.5Hz, 1 H).
			•			5.35 (d, J=11 Hz, 1 H), 3.89 (s, 2H), 3.03 (t,
					-	J=6.3 Hz, 2 H), 1.36 (m, 1 H), 0.86 (d, $J=6.8$
						Hz, 6 H)

					O ZH O	ÄH, WH,
Cpd.	4 -	1 4	-R"	Starting From	Method Used	Analytical Data
148a		-СН3	O CH,	147a	ſ	¹ H NMR (DMSO-d ₆): § 10.65 (s, 1 H), 10.15 (s, 1 H), 9.19 (s, 2 H), 8.88 (s, 2 H), 8.10 (d, <i>J</i> = 2.1 Hz, 1 H), 7.92 (s, 1 H), 7.93-7.75 (m, 6 H), 7.31 (dd, <i>J</i> = 8.4 and 23.9 Hz, 1 H), 7.12 (d, <i>J</i> = 3.5 Hz, 1 H), 6.67 (m, 1 H), 3.53 (s, 3 H), 2.20 (d, <i>J</i> = 7.0 Hz, 2 H), 2.07 (m, 1 H), 0.94 (d, <i>J</i> = 6.3 Hz, 6 H).
148b	S	-CH3	O CH,	147b	٦	¹ H NMR (DMSO-d ₀): δ 10.65 (s, 1 H), 10.09 (s, 1 H), 9.17 (s, 1 H), 8.83 (s, 1 H), 8.10 (d, J = 2.0 Hz, 1 H), 7.85 (d, J = 2.0 Hz, 2 H), 7.81 (d, J = 2.0 and 7.9 Hz, 2 H), 7.76 (m, 5 H), 7.66 (d, J = 3.9 Hz, 1 H), 7.62 (d, J = 4.9 Hz, 1 H), 7.31 (d, J = 7.9 Hz, 1 H), 7.26 (d, J = 7.9 Hz, 1 H), 7.19 (t, J = 3.9 Hz, 1 H), 3.53 (s, 1 H), 2.19 (d, J = 6.9 Hz, 2 H), 2.06 (m, J = 6.9 Hz, 1 H), 0.92 (d, J = 6.9 Hz, 6 H); MS (ES ⁴): 555.67
148c	-CH=CH2	-СН3	O CH,	147c	ſ	Characterized in the next step

10

œ
4
2

	-		.,		
<u>ن</u> ېز	j	-R"	Starting From	Method Used	Analytical Data
	ZI	O CH,	148a	1-2	MS (ES ⁺): 525.3
<u>,</u>	ZI	OH, OH,	148b	1-2	¹ H NMR (DMSO-d ₆): \(\delta\) 13.95 (s, 1 H), 9.79 (s, 1 H), 8.87 (s, 4 H), 7.76 (s, 1 H), 7.65 (m, 8 H), 7.46 (dd, J = 2.1 and 8.4 Hz, 1 H), 7.16 (t, J = 4.2 Hz, 1 H), 7.04 (d, J = 7.7 Hz, 1 H), 6.76 (d, J = 8.4 Hz, 1 H), 2.13 (d, J = 7.0 Hz, 2 H), 2.03 (m, J = 6.3 and 7.0 Hz, 1 H), 0.90 (d, J = 6.3 Hz, 6 H); MS (ES\ [†]): 541.62
<u> </u>	ZE	CH,	148c	1-2	MS (ES ⁺): 485.6
-CH ₃	· (HN CH,	174	ſ	¹ H NMR (DMSO-d ₆): δ 8.81 (m, 4 H), 8.37 (t, J = 6.0 Hz, 1 H), 7.74-7.23 (m, 11 H), 4.31 (d, J = 6.2 Hz, 2 H), 3.51 (s, 3 H), 2.44 (m, 1 H), 1.04 (d, J = 7.0 Hz, 6 H); MS (ES [†]): 473.3
H.	(H CH,	175	I-2	¹ H NMR (DMSO-d ₆): \(\delta\) 13.79 (br s, 1 H), 9.03 (m, 3 H), 8.25 (m, 1 H), 7.78-7.35 (m, 7 H), 6.99 (m, 2 H), 6.79 (m, 1 H), 4.20 (br s, 2 H), 3.51 (s, 3 H), 2.39 (m, 1 H), 1.00 (d, J = 6.8 Hz, 6 H); MS (ES ⁺): 459.3
-ĆH3		N CH, Boc CH,	178	-	¹ H NMR (DMSO-d ₆): δ 8.96 (m, 2 H), 7.79-7.38 (m, 9 H), 7.29 (dd, <i>J</i> = 7.5 and 1.7 Hz, 2 H), 4.42 (s, 2 H), 3.50 (s, 3 H), 2.97 (s, 2 H), 1.87 (m, 1 H), 1.36 (m, 9 H), 0.81 (d, <i>J</i> = 6.8 Hz, 6 H): MS (ES ⁺): 559 5

σ	١	
₹	۲	

Cpd. No.	-R	-R'	-R"	Starting Method From Used	Method Used	Analytical Data
183	H-	H-	N CH,	182	I-2, S	¹ H NMR (DMSO-d ₆): 8 9.11 (m, 4 H), 7.86 (s, 1 H), 7.66 (m, 5 H), 7.49 (m, 2 H), 7.38 (m, 1 H), 7.08 (m, 2 H), 4.12 (s, 2 H), 2.59 (m, 2 H), 1.87 (m, 1 H), 0.81 (d, 1 = 6.6 Hz. 6 H); MS (FS ⁴): 445 37

•				
EN.	Analytical Data	MS (ES'): 339.3	¹ H NMR (CDCl ₃): δ 8.69 (t, $J = 5.8$ Hz, 1 H), 8.50 (d, $J = 4.9$ Hz, 1 H), 8.33 (d, $J = 1.7$ Hz, 1 H), 8.24 (s, 1 H), 8.01 (dd, $J = 7.9$, 1.9 Hz, 1 H), 7.53 (d, $J = 5.1$ Hz, 1 H), 7.34 (d, $J = 8.1$ Hz, 1 H), 3.56 (s, 3 H), 3.12 (m, 2 H), 1.87 (m, 1 H), 0.91 (d, $J = 6.6$ Hz, 6 H)	¹ H NMR (CD ₃ OD): δ 8.75 (d, J = 4.7 Hz, 2 H), 8.55 (s, 1 H), 8.42 (d, J = 1.9 Hz, 1 H), 8.07 (dd, J = 8.1, 1.9, 1 H), 7.74 (s, 3 H), 7.70 (d, J = 5.1 Hz, 1 H), 7.51 (d, J = 8.1 Hz, 1 H), 3.69 (s, 3 H), 3.21 (m, 2 H), 1.94 (m, 1 H), 0.98 (d, J = 6.6 Hz, 6 H); MS (ES ⁺): 474
α	Method Used	D-9	臼	J
3 2 2 RO ₂ C	Starting From	150 + 3a	151	152
	,¥	-CH3	-СН3	-CH ₃
	-R	-СНО	СО2Н	HZ ZI
	N (in Ring With Respect to Phenyl)	3	33	
	Cpd. No.	151	152	153

_	١
Ц	1
7	3

	N (in Ring					
Cpd. No.	With Respect to Phenyl)	-R	-R'	Starting From	Method	Analytical Data
154	3	HN NHN	H-	153	1-2	¹ H NMR (DMSO): 8 11.18 (s, 1 H), 9.31 (s, 2 H), 9.10 (s, 2 H), 8.92 (d, <i>J</i> = 5.1 Hz, 1 H), 8.78 (m, 2 H), 8.43 (d, <i>J</i> = 1.5 Hz, 1 H), 8.07 (dd, <i>J</i> = 7.9, 1.3 Hz, 1 H), 7.97 (d, <i>J</i> = 5.3 Hz, 1 H), 7.82 (d, <i>J</i> = 8.7 Hz, 2 H), 7.72 (d, <i>J</i> = 8.8 Hz, 2 H), 7.50 (d, <i>J</i> = 8.9 Hz, 2 H), 7.50 (d, <i>J</i> = 7.0 Hz, 2 Hz
						H), 1.86 (m, 1 H), 0.89 (d, J=6.6 Hz, 6 H); MS (ES ⁺) 460
156	4	-СНО	-CH3	155+3a	D-9	MS (ES ⁺): 341.4
157	4	-СО,Н	-CH;	156	ĹĽ.	¹ H NMR (CDCl ₃): \$ 8.80 (s, 1 H), 8.46 (d, <i>J</i> = 5.1 Hz, 1 H), 8.29 (s, 1 H), 7.85 (d, <i>J</i> = 7.9 Hz, 1 H), 7.13 (d, <i>J</i> = 7.9 Hz, 1 H), 7.00 (d, <i>J</i> = 5.1 Hz,
_		•	}	}	1	1 H), 6.83 (bs, 2 H), 3.45 (s, 3 H), 3.15 (m, 2 H), 1.84 (m, 1 H), 0.90 (d, J = 6.6 Hz, 6 H), MS (ES); 355.2
158	4	O NH,	-СН3	157	5	¹ H NMR (CD ₃ OD): 8 8.85 (s, 1 H), 8.75 (d, <i>J</i> = 5.3 Hz, 1 H), 8.41 (d, <i>J</i> = 1.9 Hz, 1 H), 8.07 (dd, <i>J</i> = 8.1, 2.1, 1 H), 7.74 (s, 4 H), 7.48 (d, <i>J</i> = 8.1 Hz, 1 H), 7.45 (d, <i>J</i> = 5.1 Hz, 1 H), 3.69 (s, 3 H), 3.21 (m, 2 H), 1.94 (m, 1 H), 0.97 (d, <i>J</i> = 6.8 Hz, 6 H); MS (ES): 472.4
159	4	O NH,	н-	158	1.2	¹ H NMR (DMSO): \$ 10.97 (s, 1 H), 9.24 (s, 2 H), 8.96 (s, 3 H), 8.79 (m, 2 H), 8.40 (d, <i>J</i> = 1.8 Hz, 1 H), 8.06 (d, <i>J</i> = 7.7 Hz, 1 H), 7.77 (s, 4 H), 7.52 (m, 1 H), 7.38 (d, <i>J</i> = 7.5 Hz, 1 H), 3.10 (m, 2 H), 1.85 (m, 1 H), 0.89 (d, <i>J</i> = 5.3, 6 H); MS (ES) 460.2

RO ₂ C H H H H H H H H H H H H H H H H H H H	-R -R' Starting Method Analytical Data	-CH ₃ -CH ₃ -CH ₃ 31f AB-2 (H, H ₂ , 1H), 5.4 (d, J = 1.9 Hz, 1H), 6.00 (bs, 2H), 8.68 (t, J = 5.8 Hz, 1H), 8.24 (d, J = 1.9 Hz, 1H), 8.04 (d, J = 8.1 Hz, 1H), 7.91 (d, J = 8.8 Hz, 1H), 7.77 (d, J = 1.3 Hz, 1H), 7.67 (m, 3H), 7.40 (d, J = 7.9 Hz, 1H), 7.29 (d, J = 7.9 Hz, 1H), 6.90 (dd, J = 17.7, 11.0 Hz, 1H), 6.03 (d, J = 17.7 Hz, 1H), 5.42 (d, J = 11.0 Hz, 1H), 3.61 (s, 3H), 3.56 (s, 3H), 3.10 (t, J = 6.4 Hz, 2H), 1.85 (m, 1H), 0.90 (d, J = 6.5 Hz, 6H); MS (ES+): 557.3	-C ₂ H ₅ -CH ₃ 31f AB-2 (1H), 8.02 (1H), 7.91 (2H), 7.77 (1H), 7.66 (m, 3H), 7.40 (1H), 5.42 (14), 6.88 (dd, J = 17.3, 10.7 Hz, 1H), 6.03 (d, J = 17.3 Hz, 1H), 5.42 (d, J = 10.7 Hz, 1H), 3.56 (s, 3H), 3.59 (2H), 1.85 (m, 1H), 0.89 (6H); MS (ES+): 571.3	-CH ₂ C ₆ H ₅ -CH ₃ 31f AB-2
	Cpd.	161a	161b	161c

۰		
•	• •	
	v	

Cpd. No.	-R	-ķ	Starting From	Method Used	Analytical Data
161d	-C(CH ₃)3	-СН,	31f	AB-2	MS (ES ⁺): 599.3 and 499.3
161e	-CH ₂ -CCl ₃	-СН,	31f	AB-2	¹ H NMR (DMSO-d6): § 10.59 (s, 1H), 9.24(s, 2H), 8.68 (t, J = 5.6 Hz, 1H), 8.24 (d, J = 1.8 Hz, 1H), 8.03 (dd, J = 8.9, 1.9 Hz, 1H), 7.96 (d, J = 8.9 Hz, 2H), 7.79 (d, J = 1.5 Hz, 1H), 7.69 (m, 3H), 7.41 (d, J = 8.1 Hz, 1H), 7.29 (d, J = 8.0 Hz, 1H), 6.89 (dd, J = 17.7, 11.1 Hz, 1H), 6.03. (d, J = 17.7 Hz, 1H), 5.42 (d, J = 11.1 Hz, 1H), 4.88 (s, 2H), 3.56 (s, 3H), 3.10 (t, J = 6.6 Hz, 2H), 1.85 (m, 1H), 0.89 (d, J = 6.6 Hz, 6H);
161f	OMe	-CH3	31f	AB-2	¹ H NMR (DMSO-d6): § 10.58 (s, 1H), 9.15 (s, 2H), 8.69 (t, J = 5.4 Hz, 1H), 8.25 (d, J = 1.8 Hz, 1H), 8.04 (dd, J = 8.1, 1.9 Hz, 1H), 7.95 (d, J = 8.9 Hz, 2H), 7.78 (s, 1H), 7.68 (m, 3H), 7.40 (d, J = 8.0 Hz, 1H), 7.29 (d, J = 8.0 Hz, 1H), 7.07 (d, J = 8.8 Hz, 2H), 6.93 (d, J = 8.8 Hz, 2H), 6.93 (d, J = 17.7 Hz, 1H), 5.42 (d, J = 11.1 Hz, 1H), 3.75 (s, 3H), 3.57 (s, 3H), 3.10 (t, J = 6.6 Hz, 2H), 1.85 (m, 1H), 0.89 (d, J = 6.6 Hz, 6H); MS (ES+): 649.3
161g	F	-СН3	31f	AB-2	¹ H NMR (DMSO-d6): \$ 10.59 (s, 1H), 9.19 (s, 2H), 8.68 (t, J = 5.7 Hz, 1H), 8.25 (d, J = 1.8 Hz, 1H), 8.03 (dd, J = 8.1, 1.9 Hz, 1H), 7.95 (d, J = 8.9 Hz, 2H), 7.78 (d, J = 1.7 Hz, 1H), 7.70 (m, 3H), 7.41 (d, J = 8.1 Hz, 1H), 7.29 (d, J = 7.9 Hz, 1H), 7.20 (m, 4H), 6.90 (dd, J = 17.9, 11.1 Hz, 1H), 6.03 (d, J = 17.9 Hz, 1H), 5.42 (d, J = 11.1 Hz, 1H), 3.57 (s, 3H), 3.10 (t, J = 6.8 Hz, 2H), 1.85 (m, 1H), 0.89 (d, J = 6.6 Hz, 6H); MS (ES+): 637.5

4
S
2

Cpd.	¥-	. #.	Starting From	Method	Analytical Data
161 h	CH ₃	-CH3	31f	AB-1	¹ H NMR (DMSO-d6): § 10.58 (s, 1H), 9.00 (bs, 2H), 8.68 (t, J = 5.9 Hz, 1H), 8.24 (d, J = 1.9 Hz, 1H), 8.03 (d, J = 8.1 Hz, 1H), 7.94 (d, J = 8.9 Hz, 2H), 7.78 (d, J = 1.5 Hz, 1H), 7.68 (m, 3H), 7.40 (d, J = 8.1 Hz, 1H), 7.29 (d, J = 8.1 Hz, 1H), 6.89 (dd, J = 17.5, 11.0 Hz, 1H), 6.03 (d, J = 17.5 Hz, 1H), 5.71 (s, 2H), 5.42 (d, J = 11.0 Hz, 1H), 3.56 (s, 3H), 3.10 (t, J = 6.2 Hz, 2H), 2.07 (s, 3H), 1.85 (m, 1H), 0.89 (d, J = 6.6 Hz, 6H); MS (ES+): 615.3
161i	O CH, CH,	-CH3	31£	AB-1	¹ H NMR (DMSO-d6): \$ 10.57 (s, 1H), 9.22 (s, 2H), 8.67 (t, J = 5.9 Hz, 1H), 8.24 (d, J = 1.9 Hz, 1H), 8.03 (dd, J = 8.1, 1.9 Hz, 1H), 7.94 (d, J = 8.9 Hz, 2H), 7.78 (d, J = 1.5 Hz, 1H), 7.69 (m, 3H), 7.41 (d, J = 7.9 Hz, 1H), 7.29 (d, J = 7.9 Hz, 1H), 6.89 (dd, J = 17.7, 11.1 Hz, 1H), 6.03 (d, J = 17.7 Hz, 1H), 5.73 (s, 2H), 5.42 (d, J = 11.1 Hz, 1H), 3.56 (s, 3H), 3.09 (t, J = 6.6 Hz, 2H), 1.85 (m, 1H), 1.14 (s, 9H), 0.89 (d, J = 6.7 Hz, 6H); MS (ES+): 657.52
161j	CH, O CH,	-СН3	31f	AB-1	¹ H NMR (DMSO-d6): § 10.57 (s, 1H), 9.24 (s, 1 H), 9.17 (s, 1H), 8.68 (t, J = 6.2 Hz, 1H), 8.25 (s, 1H), 8.04 (d, J = 8.2Hz, 1H), 7.94 (d, J = 7.5 Hz, 2H), 7.67 (s, 1H), 7.67 (m, 3H), 7.40 (d, J = 7.9 Hz, 1H), 7.29 (d, J = 7.9 Hz, 1H), 6.90 (dd, J = 17.8, 11.1 Hz, 1H), 6.71 (q, J = 5.5 Hz, 1H), 6.03 (d, J = 17.7 Hz, 1H), 5.42 (d, J = 11.1 Hz, 1H), 3.56 (s, 3.14), 3.10 (t, J = 6.6 Hz, 2.14), 2.00 (s, 3.14), 1.85 (m, 1H), 1.43 (d, J = 5.5 Hz, 3.14), 0.89 (d, J = 6.7 Hz, 6.14), MS (ES+): 629.4

-R	-R'	Starting From	Method Used	Analytical Data
-CH3	H-	161a	· · .	¹ H NMR (DMSO-d6): δ 9.04 (bs, 3H), 8.57 (t, J = 5.4 Hz, 1H), 8.16 (s, 1H), 7.86 (d, J = 8.5 Hz, 2H), 7.79 (d, J = 7.9 Hz, 1H), 7.72 (s, 1H), 7.58 (m, 3H), 7.12 (d, J = 8.0 Hz, 2H), 6.87 (dd, J = 17.7, 11.0 Hz, 1H), 5.97 (d, J = 17.7 Hz, 1H), 5.37 (d, J = 11.0 Hz, 1H), 3.59 (s, 3H), 3.05 (t, J = 6.6 Hz, 2H), 1.83 (m, 1H), 0.87 (d, J = 6.6 Hz, 6H); MS (ES+): 543.38
С2Н5	H-	161b	1-2	¹ H NMR (DMSO-d6): 6 12.8 (bs, 1H), 10.8 (bs, 1H), 9.20 (bs, 2H), 8.68 (t, J = 5.9 Hz, 1H), 8.24 (d, J = 1.9 Hz, 1H), 7.91 (m, 3H), 7.77 (d, J = 1.5 Hz, 1H), 7.64 (m, 3H), 7.28 (d, J = 8.1 Hz, 1H), 7.22 (d, J = 8.1 Hz, 1H), 6.87 (dd, J = 17.7, 11.4 Hz, 1H), 6.01 (d, J = 17.7 Hz, 1H), 5.42 (d, J = 11.4 Hz, 1H), 4.05 (q, J = 7.2 Hz, 2H), 3.08 (t, J = 6.4 Hz, 2H), 1.84 (m, 1H), 1.21 (t, J = 7.2 Hz, 3H), 0.88 (d, J = 6.6 Hz, 6H); MS (ES): 555.2
-CH ₂ C ₆ H ₅	-Н	161c	I-2	¹ H NMR (DMSO-46): \$ 12.7 (bs, 1H), 10.75 (bs, 1H), 9.15 (b, 2H), 8.63 (t, J = 5.8 Hz, 1H), 8.27 (bs, 1H), 7.90 (d, J = 8.3 Hz, 2H), 7.77 (s, 1H), 7.43-7.15 (m, 8H), 7.40 (d, J = 8.1 Hz, 1H), 7.29 (d, J = 8.1 Hz, 1H), 6.87 (dd, J = 17.4, 11.0 Hz, 1H), 6.03 (d, J = 17.5 Hz, 1H), 5.71 (s, 2H), 5.42 (d, J = 11.0 Hz, 1H), 5.09 (s, 2H), 3.08 (t, J = 6.4 Hz, 2H), 1.85 (m, 1H), 0.88 (d, J = 6.6 Hz, 6H); MS (ES+1): 619.2
-С(СНз)3	平 .	161d	1-2	¹ H NMR (DMSO-d6): \$12.6 (bs, 1H), 11.0 (bs, 1H), 9.04 (b, 2H), 8.62 (t, J = 5.4 Hz, 1H), 8.24 (s, 1H), 7.86 (m, 3H), 7.77 (s, 1H), 7.62 (m, 3H), 7.24 (d, J = 8.2 Hz, 1H), 7.20 (d, J = 8.0 Hz, 1H), 6.87 (dd, J = 17.2, 11.0 Hz, 1H), 6.00 (d, J = 17.7 Hz, 1H), 5.40 (d, J = 11.0 Hz, 1H), 3.07 (t, J = 6.3 Hz, 2H), 1.84 (m, 1H), 1.44 (s, 9H), 0.88 (d, J = 6.6 Hz, 6H); MS (ES+1): 585.4

162c

162d

162b

Cpd.

162a

a A	—\ —\

Cpd. No.	-R	-R¹	Starting From	Method	Analytical Data
164	-СНО	-CH ₃	163 + 130	D-2	¹ HNMR (DMSO-46): § 9.58 (s, 1 H), 7.91 (dd, J = 1.2, 8.0 Hz, 1 H), 7.71 (dt, J = 1.2 and 7.4 Hz, 1 H), 7.58 (t, J = 7.4 Hz, 1 H), 7.41 (m, 2 H), 7.38 (m, 1 H), 7.32 (d, J = 8 Hz, 1 H), 7.24 (d, J = 7.4 Hz, 1 H), 3.52 (q, J = 16 and 26 Hz, 2 H), 3.35 (s, 3 H); MS (ES+); 255.32
165	-СО ₂ Н	-CH3	164	Э	Characterized in the next step
166	NH NH	-СН3	165	ſ	¹ HNMR (DMSO-d ₆): δ 10.34 (s, 1 H), 9.18 (s, 2 H), 8.92 (s, 2 H), 7.72-7.5 (m, 7 H), 7.34-7.14 (m, 5 H), 3.60 (q, J = 17 & 40 Hz, 2 H), 3.48 (s, 3 H); MS (ES+) 388.67
167	O NH	-Н	166	I-2	¹ HNMR (DMSO-d ₆): δ 11.74 (bs, 1 H), 9.90 (s, 1 H), 8.79 (bs, 2 H), 7.64 (m, 1 H), 7.50 (m, 7 H), 7.33 (d, J = 8.6 Hz, 1 H), 7.26 (d, J = 7.4 Hz, 1 H), 7.12 (t, J = 7.4 Hz, 1 H), 7.02 (t, J = 7.4 Hz, 1 H), 6.89 (d, J = 6.8 Hz, 1 H), 3.83 (d, J = 15 Hz, 2 H); MS (ES+) 374.79

	î		
L	ſ	١	
•	١	i	

		· · · · · · · · · · · · · · · · · · ·	
	Analytical Data	MS (ES [†]): 485.4 (100% M ⁺¹)	¹ HNMR (DMSO-d ₆ /D ₂ O): 5 8.5 (d, J = 2 Hz, 1 H), 8.17 (dd, J = 8 Hz, 2 H), 7.63 (s, 1 H), 7.54 (d, J = 8 Hz, 1 H), 7.63 (s, 1 H), 7.54 (d, J = 8 Hz, 1 H), 7.49 (bs, 2 H), 7.14 (d, J = 7.7 Hz, 1 H), 6.78 (dd, J = 11 and 17 Hz, 1 H), 6.62 (d, J = 9 hz, 1 H), 5.83 (d, J = 17 hz, 1 H), 5.33 (d, J = 11 hz, 1 H), 4.17 (d, J = 9 hz, 1 H), 4.12 (s, 2 H); MS (ES+) : 497.3
NHR."	Method Used	AE-3	AE-3
NHH NHH	Starting From	187a	187b
2 1 2 1 1 2 C 1 2	-R",	Ħ.	H-
R 3	-R"	CH,	CF,
•	-R'	NH ₂	H.HN
·	-R	-CH=CH ₂ (4)	-CH=CH2 (4)
	Cpd.	188a	188b

Ľ,
2

	58.6 d, J = 8 Hz, 1 H), 7.0 , J = 6 8.8 Hz, 5.15 12.4),	(m, 2 1), 8.1 m, 3 0), 6.8 m, 1 n, 1 m, 1 h, 1 0, 3.31	(t, J = 28 (bs, 1 H), 2 H), 6.51 (m, 1 6 Hz, 6 Hz,
Analytical Data	d ₀ (D ₂ O): {3 H}, 7.9 ((d, J = 8.7.1 (m, 1 H)), 6.6 (dd) = 0.4 (d, J = 7.4 (d, J = 8.4 (d, J = 9.4 (45.3 d6): 5 8.8 (d6): 5 8.8 (d7): 7.5 (d7): 7.	16): 6 8:60 16): 6 8:60 16, 7.56 (m. 2, 3.8 Hz, 7.56 (m. 3 H), 11, 3.8 Hz, 11,
Analyti	¹ HNMR (DMSO-d ₆ /D ₂ O): 5 8.6 (m, 3 H), 8.3 (m, 3 H), 7.9 (d, J = 7.9 Hz, 1 H), 7.45 (d, J = 8.8 Hz, 1 H), 7.3 (m, 3 H), 7.1 (m, 1 H), 7.0 (d, J = 8.1 Hz, 1 H), 6.6 (dd, J = 6 and 28 Hz, 1 H), 6.4 (d, J = 8.8 Hz, 2 H), 5.7 (d, J = 17 Hz, 1 H), 5.15 (d, J = 11 Hz, 1 H), 3.9 (m, 2 H), 3.25 (m, 2 H), 1.1 (t, J = & Hz, 3 3.25 (m, 2 H), 1.1 (t, J = & Hz, 3)	H), M3 (E3+): 443.3 HNMR (DMSO-d ₀): 6 8.8 (m, 2 H), 8.7 (m, 1 H), 8.4 (m, 2 H), 8.1 (m, 1 H), 7.6 (m, 2 H), 7.5 (m, 3 H), 7.3 (m, 1 H), 7.2 (m, 1 H), 6.8 (m, 1 H), 6.6 (m, 2 H), 5.8 (m, 1 H), 5.3 (m, 1 H), 4.1 (m, 2 H), 3.31 (m, 1 H), 3.2 (m, 1 H), 1.7 (m, 1 H), 1.6 (m, 1 H), 1.3 (m, 1 H), 1.6 (m, 6 H): MS (FS+) - 485	HNMR (DMSO-d ₆): 8 8.60 (t, J = 6 Hz, 1 H), 8.39 (bs, 2 H), 8.28 (bs, 1 H), 7.78 (m, 1 H), 7.56 (m, 1 H), 7.43 (dd, J = 5.8 Hz, 3.8 Hz, 2 H), 7.18 (m, 2 H), 6.80 (m, 3 H), 6.51 (bs, 1 H), 4.10 (m, 1 H), 3.85 (m, 1 H), 3.70 (s, 3 H), 3.17 (t, J = 6 Hz, 2 H), 9.90 (s, 1 H), 9.90 (s, 1 Hz, 9.
	1 HNM (m, 3 Hz, 7.9 Hz, 7.9 Hz, H), 7.3 Hz, H), 7.3 Hz, H), 7.3 Hz, H), 7.3 Hz, 5 Hz	HIND HIND H), 8.7 H), 7.3 H), 7.3 H), 5.3 H), 5.3 H), 1.6 H), 1.6 H), 1.6	HNMI 6 Hz, 1 1 H), 7. 7.43 (dd. 7.18 (m. (bs, 1 H H), 3.70
Method Used	AE-3	AE-3	AE-4,
Starting From	187c	187d	47
-R"	Ÿ.	Ħ	Ħ
-R"	СН3	CH,	CH,
	NH NH1	NH NH ₂	NH NH ₂
-R			
-R	-CH=CH ₂ (4)	-CH=CH ₂ (4)	-ОСН ₃ (3)
Cpd.	1880	1884	189a

σ	١
ц	
•	١

-R'	-R"	-R"	Starting From	Method Used	Analytical Data
NH NH2	CH, CH,	H-	184a	AE-3	¹ HNMR (DMSO-d ₆ /D ₂ O): § 8.24 (d, J = 1.5 Hz, 1 H), 7.86 (d, J = 7 Hz, 1 H), 7.49 (m, 2 H), 7.36 (m, 4 H), 7.26 (d, J = 8.3 Hz, 1 H), 6.94 (m, 3 H), 6.66 (d, J = 8.7 Hz, 2 Hz, 2 H), 5.03 (s, 2 H), 4.06 (q, J = 16 and 21 Hz, 2 H), 3.02 (d, J = 7 Hz, 2 H), 1.86 (m, 1 H), 0.89 (d, J = 6.8 Hz, 6 H); MS (ES-): 549.2 and (ES ⁺) 551.4
HZ.	CH,	Н-	189b	Ö	¹ HNMR (DMSO-d ₆): δ 11.3 (bs, 1 H), 9.07 (s, 1 H), 8.46 (t, J = 6 Hz, 1 H), 8.27 (bs, 2 H), 8.15 (bs, 2 H), 7.66 (d, J = 7.7 Hz, 1 H), 7.36 (d, J = 8.5 Hz, 2 H), 7.03 (d, J = 8.1 Hz, 1 H), 6.77 (m, 2 H), 6.68 (d, J = 8.3 Hz, 2 Hz, 2 H), 6.68 (d, J = 8.3 Hz, 2 Hz, 2 H), 6.6 (s, 1 H), 6.47 9d, J = 8.2 Hz, 1 H), 4.05 (d, J = 14 Hz, 1 H), 3.09 (d, J = 14 Hz, 1 H), 3.01 (t, J = 7 Hz, 2 H), 1.79 (m, 1 H), 0.82 (d, J = 6.8 Hz, 6 H); MS (ES-): 459.2 and (ES ⁺) 461.4
NH ₂	CH ₃	Ä	131	AE-3	MS (ES ⁺): 445.4; MS (ES'): 443.3

0
ū

Analytical Data	MS (ES ⁺): 446.46; MS (ES'): 444.45
-R.", Starting Method From Used	AE-3
Starting From	131
÷*	н-
-R"	CH,
-R'	NH ₂
-R	坪 ·
Cpd. No.	189e

NHR, NHR,	HZ
BnO	

Cpd. -R From Used Innimal Data Innimal Data Innimal Data -R						D D
O NH ₂ -Boc 204 A-4 -CH ₂ OH -Boc 204 A-6 -CH ₂ OH -H 206 S-2	Cpd.	杵	.¥	Starting From	Method	Analytical Data
-CH ₂ OH -Boc 204 A-4 -CH ₂ OH -Boc 204 A-6 -CH ₂ OH -H 206 S-2				LIOIN	Osca	
-CH ₂ OH -Boc 204 A-4 -CH ₂ OH -Boc 204 A-6 -CH ₂ OH -H 206 S-2		0=				HNMR (DMSO-d ₆): 5 11.04 (s, 0.6 H), 10.97 (bs, 0.4 H), 8.66 (t, J = 5.6 Hz, 0.6 H), 8.56 (t, J = 5.6 Hz, 0.4 H), 8.22 (s, J H), 8.11 (d, J = 2 Hz, 0.6 H) 8.03
-CH ₂ OH -Boc 204 A-6 -CH ₂ OH -H 206 S-2	205	<u> </u>	-Boc	204	A-4	(d, J = 2 Hz, 0.4 H), 7.94 (dd, J = 2 and 8 Hz, 1 H), 7.82 (m, 4 H), 7.40 (m, 8
-CH ₂ OH -Boc 204 A-6		HN				H), 7.18 (m, 2 H), 7.04 (m, 2 H), 5.21 (s, 0.8 H), 5.11 (s, 1.2 H), 3.11 (t, J = 6.2
-CH ₂ OH -Boc 204 A-6		7				Hz, 1.2 H), 3.06 (t, $J = 6.2$ Hz, 0.8 H), 1.84 (m, 1 H), 1.43 (s, 5.4 H), 1.42 (s,
-CH ₂ OH -Boc 204 A-6						3.6 H), 0.91 (d, $J = 6.8$ Hz, 3.6 H), 0.88 (d, $J = 6.8$ Hz, 2.4 H); MS (ES+): 665.5
-CH ₂ OH -Boc 204 A-6 -CH ₂ OH -H 206 S-2						'HNMR (DMSO-d ₆): § 12.15 (bs, 1 H), 11.07 (bs, 1 H), 10.69 (s, 1 H), 10.38
-CH ₂ OH -Boc 204 A-6 -CH ₂ OH -H 206 S-2						(bs, 1 H), 8.68 (t, J = 5.6 Hz, 1 H), 8.12 (d, J = 1.7 Hz, 1 H), 8.00 (dd, 1.8, 8 Hz.
-СН ₂ ОН -Н 206 S-2	206	-СН2ОН	-Boc	204	9-Y	1 H), 7.68 (m, 4 H), 7.46-7.30 (m, 6 H), 7.16 (d, J = 2.8 Hz, 1 H), 7.01 (d, J =
-СН ₂ ОН -Н 206 S-2		l		1		8.5 Hz, 1 H), 6.86 (dd, $J = 8.5$ and 2.8 Hz, 1 H), 5.07 (s, 2 H), 4.30 (d, $J = 7.4$
-СН ₂ ОН -Н 206 S-2						Hz, 2 H), 3.15 (t, J = 6.2 Hz, 2 H), 1.86 (m, 1 H), 1.53 (s, 9 H), 0.89 (d, J = 6.8
-СН ₂ ОН -Н 206 S-2						Hz, 6 H); MS (ES-): 649.4
-СН ₂ ОН -Н 206 S-2						HNMR (DMSO-d ₆ /D ₂ O): § 10.66 (s, 1 H), 9.19 (bs, 2 H), 8.86 (bs. 2 H), 8.69
-CH ₂ OH -H 206 S-2						(t, J = 5.5 Hz, 1 H), 8.13 (d, J = 2 Hz, 1 H), 8.02 (dd, J = 8 and 2 Hz, 1 H), 7.72
	207	-СН2ОН	H-	700	S-2	(m, 4 H), 7.38 (m, 6 H), 7.17 (d, J = 2.6 Hz, 1 H), 7.03 (d, J = 8.5 Hz, 1 H),
(m, 2 H), 3.13 (t, $J = 6.5$ Hz, 2 H), 1.87 (m, 1 H) (ES ⁺) 551.4)	6.87 (dd, J = 8.5 and 2.5 Hz, 1 H), 5.39 (t, J = 4.7 Hz, 1 H), 5.08 (s, 2 H), 4.30
(ES') 551.4						(m, 2 H), 3.13 (t, $J = 6.5 \text{ Hz}$, 2 H), 1.87 (m, 1 H), 0.91 (d, $J = 6.5 \text{ Hz}$, 6 H); MS
						(EST) 551.4

c	٧
٠.	ď
u	3

r	٦
u	٥
č	V

						
`&	Analytical Data	¹ H NMR (DMSO- <i>d</i> ₆): δ 8.48 (t, J = 6.2 Hz, 1 H), 8.06 (d, J = 8.3 Hz, 1 H), 7.69 (d, J = 8.5 Hz, 1 H), 4.01 (s, 3 H), 3.15 (t, J = 6.5 Hz, 2 H), 1.91 (m, 1 H), 0.91 (d, J = 6.6 Hz, 6 H); MS (ES ⁺): 287.1	¹ H NMR (CDCl ₃): δ 8.08 (m, 2 H), 7.20 (m, 2 H), 6.39 (dd, J = 2.0 and 17.3 Hz, 1 H), 5.53 (dd, J = 2.0 and 10.9 Hz, 1 H), 4.01 (s, 3 H), 3.15 (t, J = 6.5 Hz, 2 H), 1.91 (m, 1 H), 0.91 (d, J = 6.6 Hz, 6 H)	¹ H NMR (DMSO- <i>d</i> ₆): δ 11.05 (s, 1 H), 8.48 (t, <i>J</i> = 6.2 Hz, 1 H), 8.06 (d, <i>J</i> = 8.7 Hz, 1 H), 7.53 (d, <i>J</i> = 8.5 Hz, 1 H), 3.90 (s, 3 H), 3.12 (t, <i>J</i> = 6.6 Hz, 2 H), 1.85 (m, 1 H), 0.86 (d, <i>J</i> = 6.6 Hz, 6 H); MS (ES ⁺): 253.2	MS (ES ⁺): 407.2 (M+Na) ⁺	MS (ES ⁺): 137.1
z	Method Used	A-3	D-12	E-2, V- 3, W-2	B-2	AF-1
R R"	Starting From	216	217	218	219	236
	-R"	-Br	-CH=CH2	-CO ₂ CH ₃	-CO2CH3	H-
	-R'	H CH ₃	H N CH ₃	H N CH ₃	H CH ₃	-NH ₂
	-R	-ОСН3	-OCH3	НО-	-OSO ₂ CF ₃	NH NH
	Cpd. No.	217	218	219	220	237

c

	Γ	T	1	Τ-	т	_	_	
	Analytical Data	¹ H NMR (CDC! ₃): δ 9.77 (s, 1 H), 8.40 (d, J = 7.9 Hz, 1 H), 8.13 (d, J = 6.8 Hz, 1 H), 7.83 (d, J = 7.9 Hz, 1 H), 7.61 (d, J = 2.60 Hz, 1 H), 7.20 (m, 5 H), 7.21 (m, 1 H), 7.18 (d, J = 8.3 Hz, 1 H), 5.18 (s, 2 H), 3.72 (s, 3 H), 3.35 (q, J = 5.8 Hz, 2 H), 1.96 (m, 1 H), 1.01 (d, J = 6.8 Hz, 6 H); MS (ES ⁺): 447.4	MS (ES'): 461.3	MS (ES ⁺): 573.33 (M+Na) ⁺	MS (ES ⁺): 461.36	MS (ES ⁺): 615.58 (M+Na) ⁺	MS (ES): 381.35 [(M-MEM)-11	MS (ES): 381.35
HZ	Method	D-2	B	Ţ	G	B-2	D-3 or D-12	
× × ×	Starting From	220+6	221	222	223	224	225	226
R"O,C	-R"	-CH ₃	-CH ₃	-ĊH,	ÇH	ĊĦ,	-ĆH3	-CH,
<u>z</u>	-R'	-OBn	-OBn	-OBn	но-	-OSO ₂ CF ₃	-CH=CH2	-CH=CH2
	-R	-СНО	-СО2Н	-CO ₂ MEM	-CO ₂ MEM	-CO ₂ MEM	-CO ₂ MEM	-СО ₂ Н
	Cpd. No.	221	222	223	224	225	226	227

ď
V
c

9		ı		
ø	١	1	2	
	8	i	٠	
		۰		

Analytical Data	MS (ES ⁺): 566.4 MS (ES ⁻): 564.3	MS (ES ⁺): 476.3 MS (ES ⁻): 474.2	MS (ES ⁺): 473.44 MS (ES ⁻): 471.43	
Method Used	1-2	g	AE-3	
Starting From	249	250	247	
-R"	H-	# #		
-R'	-OBn	НО-	-CH=CH2	
-R	NH,	HAN ON THE	H NH	
Cpd. No.	250	251	252	

7		
	7	
ø	9	1

OHO OHO	Analytical Data	¹ H NMR (CDCl ₃): δ 10.17 (d, J = 0.75 Hz, 1 H), 7.62 (d, J = 8.3 Hz, 1 H), 6.94 (dd, J = 8.3, 0.75 Hz, 1 H), 6.51 (s, 1 H), 3.90 (s, 3 H)
,0\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\	Method Used	AG-3
	Starting From	230
	-R	-CO ₂ CH ₃
	Cpd. No.	231b

			·	
TZ.	Analytical Data	¹ HNMR (CDCl ₃): 5 9.64 (s, 1 H), 8.44 (d, J = 2 Hz, 1 H), 8.02 (dd, J = 8 and 2 Hz, 1 H), 7.60 (d, J = 8 Hz, 1 H), 6.96 (d, J = 8 Hz, 1 H), 6.32 (t, J = 6 and 5 Hz, 1 H), 6.96 (d, J = 8 Hz, 1 H), 6.32 (t, J = 6 and 5 Hz, 1 H), 6.01 (s, 2 H), 3.72 (s, 3 H), 3.33 (t, J = 6.5 Hz, 2 H), 1.93 (m, 1 H), 1.00 (d, J = 6.8 Hz, 6 H). MS (FS ⁴): 384 3 and 406.3 (M.2No) ⁴	HNMR (DMSO-46): 8 9.87 (s, 1 H), 9.49 (s, 1 H), 8.64 (d, J = 2 Hz, 1 H), 8.3 (s, 1 H), 7.97 (d, J = 8 Hz, 1 H), 7.43 (dd, J = 8 and 2.6 Hz, 1 H), 7.35 (m, 2 H), 6.94 (m, 1 H), 6.05 (s, 0.4 H), 5.98 (s, 0.6 H), 3.55 (s, 1.8 H), 3.52 (s, 1.2 H), 3.02 (t, J = 6.5 Hz, 2 H), 1.78 (m, 1 H), 0.81 (d, J = 6.6 Hz, 6 H), MS (FS), 4.26 (g, 1.2 H), 4.26 (g	HNMR (DMSO-d ₆): \$ 12.29 (b ₅ , 1 H), 8.69 (t, 1 = 5.5 Hz, 1 H), 8.38 (d, 1 = 2 Hz, 1 H), 8.03 (dd, J = 8 and 2 Hz, 1 H), 7.58 (d, J = 8.5 Hz, 1 H), 7.36 (d, J = 8 Hz, 1 H), 7.00 (d, J = 8.5 Hz, 1 H), 6.02 (s, 2 H), 3.64 (s, 3 H), 3.12 (t, J = 6.5 Hz, 2 H), 1.87 (m, 1 H), 0.91 (d, J = 6.8 Hz, 6 H); MS (ES): 398.2
, S.	Method	D-6 or D-7	D-6 or D-7	н
	Starting From	7	231b + 6a	232а
	Å.	-CH ₃	-СН3	-СН3
	-R'	ОНО-	-СНО	-СО ₂ Н
į	r.	Ħ,	-соън	Ħ.
	Cpd.	232a	232b	233a

σ	
9	
N	

<u></u>	T .	T		T
Analytical Data	¹ HNMR (DMSO-d ₆): δ 8.64 (i, J = 5.5 Hz, 1 H), 8.38 (d, J = 4 Hz, 1 H), 8.00 (dd, J = 8.5 and 4 Hz, 1 H), 7.59 (dd, J = 8.5 and 4 Hz, 1 H), 7.30 (dd, J = 8 and 2.5 Hz, 1 H), 6.52 (s, 0.5 H), 6.48 (s, 0.5 H), 3.60 (s, 1.5 H), 3.58 (s, 1.5 H), 3.08 (t, J = 6.5 Hz, 2 H), 1.84 (m, 1 H), 0.88 (d, J = 6.8 Hz, 6 H)	MS (ES ⁺): 517.4	¹ HNMR (DMSO-d ₆): 6 12.41 (bs, 1 H), 11.09 (s, 1 H), 10.96 (s, 1 H), 9.22 (bs. 2 H), 8.96 (bs, 2 H), 8.04 (m, 1 H), 8.38 (dd, J = 2 and 13 Hz, 1 H), 8.04 (d, J = 8 Hz, 1 H), 7.82 (m, 4 H), 7.65 (dd, J = 8 and 5 Hz, 1 H), 7.39 (dd, J = 8 and 2.5 Hz, 1 H), 7.11 (dd, J = 8.5 and 1.7 Hz, 1 H), 6.05 (s, 1 H), 3.67 (s, 1.5 H), 3.50 (s, 1.5 H), 3.10 (t, J = 6.5 Hz, 2 H), 1.88 (m, 1 H), 0.90 (d, J = 6.8 Hz, 6 H)	¹ HNMR (DMSO-d ₆ +DCl one drop): 5 8.34 (d, J = 2 Hz, 1 H), 7.97 (dd, J = 8 and 2 Hz, 1 H), 7.75 (m, 4 H), 7.33 (dd, J = 3.8 and 8.1 Hz, 2 H), 7.04 (d, J = 8.1 Hz, 1 H), 6.01 (d, J = 6 Hz, 2 H), 3.07 (t, J = 6.5 Hz, 2 H), 1.83 (m, 1 H), 0.86 (d, J = 6.8 Hz, 6 H); MS (ES-) 501.3; (ES+) 503.3
Method Used	. Б	ſ	-	I-2
Starting From	232b	233а	233b	234a
-R"	-СН3	-СН3	-СН3	Ŧ.
-R'	н'00-	NH ₂	HZ NH O	OH NH
-R	-соън	H-	-СО2Н	. н.
Cpd.	233b	234a	234b	235a

HN NHR'	Analytical Data	¹ H NMR (DMSO-d6): \$ 10.47 (s, 1H), 9.07 (s, 2H), 8.72 (t, J = 5.7 Hz, 1H), 8.29 (d, J = 2 Hz, 1H), 8.08 (dd, J = 8.0, 2 Hz, 1H), 7.95 (s, 1H), 7.92 (s, 1 H), 7.67 (m, 2 H), 7.62 (d, J = 6.5 Hz, 1 H), 7.46 (d, J = 8 Hz, 1H), 7.31 (d, J = 8 Hz, 1H), 5.50 (d, J = 4.5 Hz, 1H), 4.91 (t, J = 5.7 Hz, 1H), 4.74 (m, 1 H), 4.25 (s, 1 H), 3.63 (s, 3H), 3.15 (t, J = 6.4 Hz, 2H), 1.91 (m, 1H), 1.50 (s, 9 H), 0.95 (d, J = 6.7 Hz, 6H)	H NMR (DMSO-d6): \$ 10.69 (s, 1H), 10.17 (s, 1 H), 9.10 (bs, 2 H), 8.72 (t, J = 5.7 Hz, 1H), 8.30 (d, J = 1.5 Hz, 1H), 8.22 (d, J = 1.5 Hz, 1H), 8.22 (dd, J = 1.5 and 8 Hz, 1 H), 8.07 (dd, J = 1.5 and 8 Hz, 1 H), 7.86 (s, 1 H), 7.65 (s, 1 H), 7.62 (s, 1 H), 7.57 (d, J = 8 Hz, 1H), 7.44 (d, J = 8 Hz, 1H), 3.57 (s, 3 H), 3.11 (t, J = 6.4 Hz, 2 H), 1.85 (m, 1 H), 3.57 (s, 3 H), 3.11 (t, J = 6.4 Hz, 2 H), 1.85 (m, 1 H), 3.57 (s, 3 H), 3.11 (t, J = 6.4 Hz, 2 H), 1.85 (m, 1 H), 3.57 (s, 3 H), 3.11 (t, J = 6.4 Hz, 2 H), 1.85 (m, 1 H), 3.57 (s, 3 H), 3.51 (s, J = 6.7 Hz, 2 H), 1.85 (m, 1 H), 3.57 (s, 3 H), 3.51 (s, J = 6.7 Hz, 2 H), 1.85 (m, 1 H), 3.57 (s, 3 H), 3.51 (s, J = 6.7 Hz, 2 H), 1.85 (m, 1 H), 3.57 (s, 3 H), 3.51 (s, J = 6.7 Hz, 2 H), 1.85 (m, 1 H), 3.57 (s, 3 H), 3.51 (s, J = 6.7 Hz, 2	MS (EST), 679 39	MS (ES ⁺): 529.38	MS (ES7): 515.35
ZE	Method Used	1	×	AG	S	1-2
R"0,0	Starting From	161d	240	241	242	243
æ.	-R"	-СН,	-CH ₃	-CH ₃	-CH3	Į.
	-R'	-Boc	-Boc	-Boc	Ŧ	H-
	-R	-СН(ОН)-СН2ОН	ОНЭ-	-CH(OH)-CH=CH2	-СН(ОН)-СН=СН,	-CH(OH)-CH=CH2
	Cpd. No.	. 240	241	242		244

_	4
7	•
-	¥
	-

	·		
W To the second	Analytical Data	AE-3 MS (ES ⁺): 318.2, 320.2	MS (ES ⁺): 418
	Method Used	AE-3	R
	Starting Method From Used	253	254
	-R	NH NH,	H NH NHBoc
	Cpd. No.	254	255

The following non-limiting examples are presented to further illustrate the present invention.

```
2'-[({4-[Amino(imino)methyl]phenyl}amino)carbonyl]-4-
[(isobutylamino)carbonyl]-4'-thien-2-yl-1,1'-biphenyl-2-carboxylic acid
```

```
2'-[({4-[Amino(imino)methyl]phenyl}amino)carbonyl]-4-
[(isobutylamino)carbonyl]-4'-thien-3-yl-1,1'-biphenyl-2-carboxylic acid
```

```
2'-[({4-[Amino(imino)methyl]phenyl}amino)carbonyl]-4-
[(isobutylamino)carbonyl]-1,1':4',1"-terphenyl-2-carboxylic acid
```

2'-[({4-[Amino(imino)methyl]phenyl}amino)carbonyl]-4'-(3-furyl)-4-[(isobutylamino)carbonyl]-1,1'-biphenyl-2-carboxylic acid

2'-[({4-[Amino(imino)methyl]phenyl}amino)carbonyl]-4-[(isobutylamino)carbonyl]-4'-pyridin-4-yl-1,1'-biphenyl-2-carboxylic acid

2'-[({4-[Amino(imino)methyl]phenyl}amino)carbonyl]-4-[(isobutylamino)carbonyl]-4'-(1H-pyrrol-2-yl)-1,1'-biphenyl-2-carboxylic acid

 $2'-[(\{4-[Amino(imino)methyl]phenyl\}amino)carbonyl]-4'-[2-(hydroxymethyl)thien-3-yl]-4-[(isobutylamino)carbonyl]-1,1'-biphenyl-2-carboxylic acid$

2'-[({4-[Amino(imino)methyl]phenyl}amino)carbonyl]-4'-[3-(hydroxymethyl)thien-2-yl]-4-[(isobutylamino)carbonyl]-1,1'-biphenyl-2-carboxylic acid

2'-[({4-[Amino(imino)methyl]phenyl}amino)carbonyl]-4-[(isobutylamino)carbonyl]-4'-vinyl-1,1'-biphenyl-2-carboxylic acid

```
4'-Allyl-2'-[({4-[amino(imino)methyl]phenyl}amino)carbonyl]-4-[(isobutylamino)carbonyl]-1,1'-biphenyl-2-carboxylate
```

```
2'-[({4-[Amino(imino)methyl]phenyl}amino)carbonyl]-4-
[(isobutylamino)carbonyl]-4'-(1,3-thiazol-2-yl)-1,1'-biphenyl-2-carboxylic acid
```

2'-[({4-[Amino(imino)methyl]phenyl}amino)carbonyl]-4'-[3-(hydroxymethyl)-2-furyl]-4-[(isobutylamino)carbonyl]-1,1'-biphenyl-2-carboxylic acid

2'-[({4-[Amino(imino)methyl]phenyl}amino)carbonyl]-4-[(isobutylamino)carbonyl]-4'-prop-1-ynyl-1,1'-biphenyl-2-carboxylic acid

2'-[({4-[Amino(imino)methyl]phenyl}amino)carbonyl]-4'-(3-hydroxy-3-methylbut-1-ynyl)-4-[(isobutylamino)carbonyl]-1,1'-biphenyl-2-carboxylic acid

2'-[({4-[Amino(imino)methyl]phenyl}amino)carbonyl]-4-[(3-methylbutanoyl)amino]-4'-vinyl-1,1'-biphenyl-2-carboxylic acid

2'-[({4-[Amino(imino)methyl]phenyl}amino)carbonyl]-4'-(4-hydroxybut-1-ynyl)-4-[(isobutylamino)carbonyl]-1,1'-biphenyl-2-carboxylic acid

2'-[({4-[Amino(imino)methyl]phenyl}amino)carbonyl]-4-[(isobutylamino)carbonyl]-4'-[(1E)-3-methylbuta-1,3-dienyl]-1,1'-biphenyl-2-carboxylic acid

2'-[({4-[Amino(imino)methyl]phenyl}amino)carbonyl]-4'-(3-hydroxyprop-1-ynyl)-4-[(isobutylamino)carbonyl]-1,1'-biphenyl-2-carboxylic acid

- 2'-[({4-[Amino(imino)methyl]phenyl}amino)carbonyl]-4'-(2-furyl)-4-[(propylamino)carbonyl]-1,1'-biphenyl-2-carboxylic acid
- 2'-[({4-[Amino(imino)methyl]phenyl}amino)carbonyl]-4-[(secbutylamino)carbonyl]-4'-(2-furyl)-1,1'-biphenyl-2-carboxylic acid

- 2'-[({4-[Amino(imino)methyl]phenyl}amino)carbonyl]-4-[(ethylamino)carbonyl]-4'-(2-furyl)-1,1'-biphenyl-2-carboxylic acid
- 2'-[({4-[Amino(imino)methyl]phenyl}amino)carbonyl]-4-[(isobutylamino)carbonyl]-5'-methoxy-4'-vinyl-1,1'-biphenyl-2-carboxylic acid
- 2'-[({4-[Amino(imino)methyl]phenyl}amino)carbonyl]-4-[(isobutylamino)carbonyl]-4'-(thien-2-ylmethyl)-1,1'-biphenyl-2-carboxylic acid
- $2-\{3-[(\{4-[Amino(imino)methyl]phenyl\}amino)carbonyl]pyridin-4-yl\}-5-[(isobutylamino)carbonyl]benzoic acid \\$
- 2'-[({4-[Amino(imino)methyl]phenyl}amino)carbonyl]-4-[(cyclopentylamino)carbonyl]-4'-vinyl-1,1'-biphenyl-2-carboxylic acid

2'-[({4-[Amino(imino)methyl]phenyl}amino)carbonyl]-5'-ethoxy-4-[(isobutylamino)carbonyl]-4'-vinyl-1,1'-biphenyl-2-carboxylic acid

Methyl 2'-[({4-[({[(acetyloxy)methoxy]carbonyl}amino)(imino)methyl]phenyl} amino)carbonyl]-4-[(isobutylamino)carbonyl]-4'-vinyl-1,1'-biphenyl-2-carboxylate

Methyl 2'-[({4-[{[(benzyloxy)carbonyl]amino}(imino)methyl]phenyl}amino) carbonyl]-4-[(isobutylamino)carbonyl]-4'-vinyl-1,1'-biphenyl-2-carboxylate

 $\label{eq:Nloss} N^l-\{4-[Amino(imino)methyl]phenyl\}-N8-isobutyl-6-oxo-6H-benzo[c]chromene-1,8-dicarboxamide$

2'-[({4-[Amino(imino)methyl]phenyl}amino)methyl]-4-[(isobutylamino)carbonyl]-4'-vinyl-1,1'-biphenyl-2-carboxylic acid

2'-({[4-(4,5-Dihydro-1H-imidazol-2-yl)phenyl]amino}carbonyl)-4-[(isobutylamino)carbonyl]-1,1'-biphenyl-2-carboxylic acid

2'-[({4-[Amino(imino)methyl]phenyl}amino)carbonyl]-4-[(isobutylamino)carbonyl]-5'-thien-2-yl-1,1'-biphenyl-2-carboxylic acid

2'-[({4-[Amino(imino)methyl]phenyl}amino)carbonyl]-4'-ethoxy-4-[(isobutylamino)carbonyl]-1,1'-biphenyl-2-carboxylic acid

- 2-{5-[({4-[Amino(imino)methyl]phenyl}amino)carbonyl]-1,3-benzodioxol-4-yl}-5-[(isobutylamino)carbonyl]benzoic acid
- $2'-[1-(\{4-[Amino(imino)methyl]phenyl\}amino)ethyl]-4-[(isobutylamino)carbonyl]-1,1'-biphenyl-2-carboxylic acid$
- 3-[2-[({4-[Amino(imino)methyl]phenyl}amino)carbonyl]-4-(benzyloxy)phenyl]-6-[(isobutylamino)carbonyl]pyridine-2-carboxylic acid
- 3-[2-(4-Carbamimidoyl-phenylcarbamoyl)-4-vinyl-phenyl]-6-isobutylcarbamoyl-pyridine-2-carboxylic acid
- 2'-[(5-Carbamimidoyl-pyridin-2-ylamino)-methyl]-4-isobutylcarbamoyl-4'-vinyl-biphenyl-2-carboxylic acid
- 2'-{[4-(N-Hydroxycarbamimidoyl)-phenylamino]-methyl}-4-isobutylcarbamoyl-4'-vinyl-biphenyl-2-carboxylic acid
- 3-{2-[(4-Carbamimidoyl-phenylamino)-methyl]-4-vinyl-phenyl}-6-isobutylcarbamoyl-pyridine-2-carboxylic acid

Biological Assay Methods

In Vitro Assay for Inhibition of TF/FVIIa

To assess the inhibition of the test compounds against the target enzyme, TF/FVIIa, an amidolytic assay based upon the absorbance of p-Nitroanalide (pNA) at OD_{405} was utilized. The IC₅₀ of the test compounds was determined by using KC4A data reduction software (Bio-Tek Instruments) to interpolate percent inhibition from observed Vmax values.

10

15

5

TF/FVIIa assay reactions were performed in a 200 μ L mixture containing 4 nM FVIIa, 10 nM lipidated tissue factor, in an assay buffer containing 100 mM Tris, pH 7.2, 150 mM NaCl, 5 mM calcium chloride, 0.1 % bovine serum albumin (BSA), and 10% dimethyl sulfoxide (DMSO). TF and FVIIa were allowed to equilibrate at room temperature for 15 minutes. Test compounds dissolved in DMSO were incubated at varied concentrations with TF/FVIIa for 10 minutes, followed by addition of 500 \Box M substrate Spectrozyme-FVIIa. Reactions were incubated for 5 minutes at room temperature prior to measuring the change in OD₄₀₅ nm for 10 minutes at 21 second intervals with a Powerwave $_X$ (Bio-Tek Instruments) microplate reader.

20

25

In Vitro Assay for Human Thrombin

This colorimetric assay was used to assess the ability of the test compounds to inhibit the human thrombin enzyme. IC_{50} of the test compounds was determined by using KC4A data reduction software (Bio-Tek Instruments) to interpolate percent inhibition from observed Vmax values.

Thrombin assay reactions were performed in a 200 µL mixture containing human thrombin at (1 U/mL) in an assay buffer containing 100 mM HEPES, 10 mM calcium

chloride, and 10 % DMSO, pH 7.5. Test compounds dissolved in DMSO were added to thrombin enzyme reactions at varied concentrations, followed by the addition of substrate N α -Benzoyl-Phe-Val-Arg p-Nitroanilide at a final concentration of 1 mM. Reactions were incubated for 5 minutes at room temperature prior to measuring the change in OD₄₀₅ nm for 10 minutes at 21 second intervals with a Powerwave χ (Bio-Tek Instruments) microplate reader.

In Vitro Assay for Human Trypsin

This enzymatic assay was employed to evaluate the ability of the test compounds to inhibit human pancreatic trypsin. IC₅₀ of the test compounds was determined by using KC4A data reduction software (Bio-Tek Instruments) to interpolate percent inhibition from observed Vmax values.

Trypsin assay reactions were performed in a 200 μL mixture containing human pancreatic trypsin at 1 μg/mL in an assay buffer containing 200 mM triethanolamine (TEA), 10 mM calcium chloride, 10 % DMSO, pH 7.8. Test compounds dissolved in DMSO were added to trypsin enzyme reactions at varied concentrations, followed by the addition of substrate Nα-Benzoyl-L-Arginine p-Nitroanilide (L-BAPNA) at a final concentration of (0.25 mg/mL). Reactions were incubated for 5 minutes at room temperature prior to measuring the change in OD₄₀₅ nm for 10 minutes at 21 second intervals with a Powerwave x (Bio-Tek Instruments) microplate reader.

Biological Data

IC₅₀ Values of Some Selected Compounds on Different Serine Protease Enzymes

25

15

	()		
R (With Respect to Phenyl Ring	R'	TF/FVIIa	Trypsin	Thrombin
N (4)	СН,	++	+	+
OH (4)	CH ₃	++	+	+
S (4)	CH3	++	+	+
CH ₃ OH (4)	CH ₃	++	-	-
(3)	CH ₃	+	-	-
S (3)	CH ₃	++	-	
O (4)	СН	+++	++	+

CH ₂ (4)	CH ₃	+++	++	+
(4)	CO ₂ H	+++	++	+
CH ₂ (4)	CH ₃	+++	++	+

IC50 values: + means >1 μ M; ++ means >100 nM; +++ means <100 nM

A comparison of Examples with R group and without R group illustrates the greatly-enhanced activity achieved pursuant to the present invention.

Compounds of the present invention are useful as inhibitors of trypsin-like serine protease enzymes such as thrombin, factor VIIa, TF/FVIIa, and trypsin.

These compounds may be employed to inhibit the coagulation cascade and prevent or limit coagulation.

These compounds may be used to inhibit the formation of emboli or thromboli in blood vessels.

These compounds may be used to treat thrombolymphangitis, thrombosinusitis, thromboendocarditis, thromboangitis, and thromboarteritis.

15

10

These compounds may be used to inhibit thrombus formation following angioplasty. These may be used in combination with other antithrombolytic agents such as tissue plasminogen activators and their derivatives, streptokinase and its derivatives, or urokinase and its derivatives to prevent arterial occlusion following thrombolytic therapy.

20

These compounds may also be used in matastatic diseases, or for any disease where inhibition of coagulation is indicated.

These compounds may be used as diagnostic reagents in vitro for inhibiting clotting of blood in the tubes.

These compounds may be used alone or in combination with other compounds such as heparin, aspirin, or warfarin and any other anticoagulant agents.

These compounds may be used as anti-inflammatory agents.

According to a further aspect of the invention, compounds may be employed in preventing ex vivo coagulation such as that encountered in the extracorporeal perfusion of blood through for example artificial valves, prothesis, stents or catheters. According to this aspect of the invention the extracorporeal device may be coated with the compositions of the invention resulting in a lower risk of clot formation due to extrinsic pathway activation.

10

15

20

25

Dosage and Formulation

The compounds of this invention can be administered by any means that produces contact of the active agent's site of action with factor VIIa and other serine proteases in the body of a human, mammal, bird, or other animal. They can be administered by any conventional means, such as oral, topical, transdermal, parenteral, subcutaneous, intraperitoneal, intrapulmonary, and intranasal, available for use in conjunction with pharmaceuticals, either as individual therapeutic agents or in a combination of therapeutic agents. Parenteral infusion includes intramuscular, intravenous, and intraarterial. They can be administered alone, but generally administered with a pharmaceutical carrier elected on the basis of the chosen route of administration and standard pharmaceutical practice.

The dosage administered will, or course, vary depending upon known factors, such as the pharmacodynamic characteristics of the particular agent and its mode and route of administration; the age, health and weight of the recipient; the nature and extent of the symptoms, the kind of concurrent treatment; the frequency of treatment; and the effect desired. A daily dosage of active ingredient can be expected to be about 0.0001 to 1000 milligram (mg) per kilogram (kg) of body weight, with the preferred dose being 0.1 to about 30 mg/kg.

10

15

Dosage forms (compositions suitable for administration) contain from about mg to about 500 mg of compound per unit. In these pharmaceutical compositions, the compound of the present invention will ordinarily be present in an amount of about 0.5-95% by weight based on the total weight of the composition.

The daily dose of the compounds of the invention that is to be administered can be a single daily dose or can be divided into several, for example, two, three or four, part administrations. The pharmaceutical compositions or medicaments of the invention can be administered orally, for example in the form of pills, tablets, lacquered tablets, coated tablets, granules, hard and soft gelatin capsules, solutions, syrups, emulsions, suspensions or aerosol mixtures. Administration, however, can also be carried out rectally, for example in the form of suppositories, or parenterally, for example intravenously, intramuscularly or subcutaneously, in the form of injection solutions or infusion solutions, microcapsules, implants or rods, or percutaneously or topically, for example in the form of ointments, solutions or tinctures, or in other ways, for example in the form of aerosols or nasal sprays.

Gelatin capsules contain a compound of the present invention and powdered

carriers, such as lactose, starch, cellulose derivatives, biocompatible polymers,
magnesium stearate, stearic acid, and the like. Similar diluents can be used to make
compressed tablets. Both tablets and capsules can be manufactured as sustained release
products to provide for continuous release of medication over a period of hours.

Compressed tablets can be sugar coated to mask by unpleasant taste and protect the tablet

from the atmosphere, or enteric coated for selective disintegration in the gastrointestinal
tract.

Liquid dosage forms for oral administration can contain coloring and flavoring to increase patient acceptance. They may also contain buffering agents, surfactants and

preservatives. Liquid oral products can be developed to have sustained-release properties. They may also contain cyclodextrin derivatives to enhance the solubility of the active ingredient and to promote its oral uptake.

In general, water, a suitable oil, saline, aqueous dextrose (glucose), and related sugar solutions and glycols such as propylene glycol or polyethylene glycols are suitable carriers for parenteral solutions. Solutions for parenteral administration preferably contain a water-soluble salt of the active ingredient, suitable stabilizing agents, and, if necessary, buffering agents. Antioxidizing agents such as sodium bisulfite, sodium sulfite, or ascorbic acid, either alone or combined, are suitable stabilizing agents. Also used are citric acid and its salts and sodium EDTA. In addition, parenteral solutions can contain preservatives, such as benzalkonium chloride, methyl- or propylparaben, and chlorobutanol.

Suitable pharmaceutical carriers are described in Remington's Pharmaceutical Sciences, Mack Publishing Company and in the Handbook of Pharmaceuticals Excipients, American Pharmaceutical Association, both standard reference texts in this field.

Useful pharmaceutical dosage forms for administration of the compounds according to the present invention can be illustrated as follows:

Hard Shell Capsules

A large number of unit capsules are prepared by filling standard two-piece hard gelatin capsules each with 100 mg of powdered 1500 mg of lactose, 50 mg of cellulose, and 6 mg of magnesium stearate.

Soft Gelatin Capsules

A mixture of active ingredient in a digestible oil such as soybean oil, cottonseed oil, or olive oil is prepared and injected by means of a positive displacement pump into molten gelatin to form soft gelatin capsules containing 100 mg of the active ingredient. The capsules are washed and dried. The prodrug can be dissolved in a mixture of polyethylene glycol, glycerin and sorbitol to prepare a water miscible medicine mix.

Tablets

10

15

20

5

A large number of tablets are prepared by conventional procedures so that the dosage unit was 100 mg of active ingredient, 0.2 mg of colloidal silicon dioxide, 5 mg of magnesium stearate, 275 mg of microcystalline cellulose, 11 mg of starch, and 9.98 mg of lactose. Appropriate aqueous and non-aqueous coatings may be applied to increase palatability improve elegance and stability or delay absorption.

Immediate Release Tablets/Capsules

These are solid oral dosage forms made by conventional and novel processes. These units are taken orally without water for immediate dissolution and delivery of the medication. The drug is mixed containing ingredient such as sugar, gelatin, pectin, and sweeteners. These liquids are solidified into solid tablets or caplets by freeze drying and solid thermoelastic sugars and polymers or effervescent components to produce porous matrices intended for immediate release, without the need of water.

25

Moreover, the compounds of the present invention can be administered in the form of nose drops, metered dose nasal or buccal inhalers. The drug is delivered from a nasal solution as a fine mist or from a powder as an aerosól.

15

20

25

In another embodiment of the invention, a compound of the invention can be used in an assay to identify the presence of factor VIIa and other serine protease or to isolate factor VIIa and other serine protease in a substantially purified form. For example, the compound of the invention can be labeled with, for example, a radioisotope, and the labeled compound is detected using a routine method useful for detecting the particular label. In addition, a compound the invention can be used advantageously as a probe to detect the location or amount of factor VIIa and other serine protease activity in vivo, in vitro or ex vivo.

Various modifications of the invention in addition to those shown and described herein will be apparent to those skilled in the art from the foregoing description. Such modifications are also intended to fall within the scope of the appended claims.

The foregoing disclosure includes all the information deemed essential to enable those skilled in the art to practice the claimed invention. The foregoing description of the invention illustrates and describes the present invention. Additionally, the disclosure shows and describes only the preferred embodiments of the invention but, as mentioned above, it is to be understood that the invention is capable of use in various other combinations, modifications, and environments and is capable of changes or modifications within the scope of the inventive concept as expressed herein, commensurate with the above teachings and/or the skill or knowledge of the relevant art. The embodiments described hereinabove are further intended to explain best modes known of practicing the invention and to enable others skilled in the art to utilize the invention in such, or other, embodiments and with the various modifications required by the particular applications or uses of the invention. Accordingly, the description is not intended to limit the invention to the form disclosed herein. Also, it is intended that the appended claims be construed to include alternative embodiments.

10

20

What is claimed is

1. Compound having the structure (I) shown below:

Each E¹ and L individually is a 5 to 7 membered saturated or unsaturated carbon ring, 5 to 7 membered saturated or unsaturated hetero ring, bicyclic saturated or unsaturated carbon ring, bicyclic saturated or unsaturated hetero ring, or 1-8 hydrocarbon chain which may be substituted with one or more hetero groups selected from N, O, S, S(O), and S(O₂) which may be saturated or unsaturated;

R is -CH=CH-R², -C=C-R², -C(R²)=CH₂, -C(R²)=C(R³), -CH=NR², -C(R²)=N-R³, 4-7 membered saturated or unsaturated carbon ring system with or without substitution, 4-7 membered saturated or unsaturated hetero ring system with or without substitution, or chain of 2 to 8 carbon atoms having 1 to 5 double or triple bonds with substitutions selected from R¹, R², or R³. Preferably, these R, R¹, R², or R³ do not include $-(C_{2-4}$ alkenyl)-CO₂-C₁₋₈ alkyl, $-(C_{2-4}$ alkenyl)-CO₂-C₁₋₈ alkyl-phenyl, and $-(C_{2-4}$ alkenyl)-CO₂-C₁₋₈ alkyl;

 R^1 is H, -R, -NO₂, -CN, -halo, -N₃, -C ₁₋₈ alkyl, -(CH₂)_nCO₂R², -C₂₋₈ alkenyl-CO₂R², -O(CH₂)_nCO₂R², -C(O)NR²R³, -P(O)(OR²)₂, alkyl substituted tetrazol-5-yl,

-(CH₂)_nO(CH₂)_n aryl, -NR²R³, -(CH₂)_n OR², -(CH₂)_n SR², -N(R²)C(O)R³, -S(O₂)NR²R³, -N(R²)S(O₂)R³, -(CHR²)_n NR²R³, -C(O)R³, (CH₂)_n N(R³)C(O)R³, -N(R²)CR²R³ substituted or unsubstituted (CH₂)_n-cycloalkyl, substituted or unsubstituted (CH₂)_n-phenyl, or substituted or unsubstituted (CH₂)_n-heterocycle which may be saturated or unsaturated;

m is 1 except that when E¹ is a cyclic ring of more than 5 atoms, then m is 1 or higher, depending upon the size of the ring;

- $\begin{array}{lll} & R^2 \ \text{is H, -halo, -alkyl, -haloalkyl, -}(CH_2)_n \text{-phenyl, -}(CH_2)_{1-3} \text{-biphenyl, -}(CH_2)_{1-4} \text{-Ph-N}(SO_2-C_{1-2}-\text{alkyl})_2, -CO(CHR^1)_n \text{-OR}^1, -(CHR^1)_n \text{-heterocycle, -}(CHR^1)_n \text{-NH-CO-R}^1, \\ & -(CHR^1)n \text{-NH-SO}_2R^1, -(CHR^1)_n \text{-Ph-N}(SO_2-C_{1-2}-\text{alkyl})_2, -(CHR^1)_n \text{-C}(O)(CHR^1) \text{-NHR}^1, \\ & -(CHR^1)_n \text{-C}(S)(CHR^1) \text{-NHR}^1, -(CH_2)_n O(CH_2)_n CH_3, -CF_3, -C_{2-5} \ \text{acyl, -}(CHR^1)_n OH, \\ & -(CHR^1)_n CO_2R^1, -(CHR^1)_n \text{-O-alkyl, -}(CHR^1)_n \text{-O-alkyl, -}(CHR^1)_n -S \text{-alkyl, -}(CHR^1)_n -S \text{-alk$
- -(CHR¹)_n-S(O)-alkyl, -(CHR¹)_n-S(O₂)-alkyl, -(CHR¹)_n-S(O₂)-NHR³, -(CHR³)_n-N₃,
 -(CHR³)_nNHR⁴, 2 to 8 carbon atom alkene chain having 1 to 5 double bonds, 2 to 8
 carbon atom alkyne chain having 1 to 5 triple bonds, substituted or unsubstituted(CHR³)_n heterocycle, or substituted or unsubstituted-(CHR³)_n cycloalkyl which may be saturated or unsaturated;
- When n is more than 1, the substitutions R¹ and R³ may be same or different;
 - R^3 is H, -OH, -CN, substituted alkyl, -C₂₋₈ alkenyl, substituted or unsubstituted cycloalkyl, -N(R^1) R^2 , or 5-6 membered saturated substituted or unsubstituted hetero ring;
- 25 -NR²R³ may form a ring system having 4 to 7 atoms or may be bicyclic ring; wherein said ring system comprises carbon or hetero atoms and further it may saturated or unsaturated and also may be substituted or unsubstituted;

```
W is a direct bond, -CHR<sup>2</sup>-, -CH=CR<sup>2</sup>-, -CR<sup>2</sup>=CH-, -CR<sup>2</sup>=CR<sup>2</sup>-, -C=C-, -O-CHR<sup>2</sup>-, -CHR<sup>2</sup>-O-, -N(R<sup>2</sup>)-C(O)-, -C(O)-N(R<sup>2</sup>)-, -N(R<sup>2</sup>)-CH-(R<sup>3</sup>)-, -CH<sub>2</sub>-N(R<sup>2</sup>)-, -CH(R<sup>1</sup>)-N(R<sup>2</sup>)-, -S-CHR<sup>2</sup>-, -CHR<sup>2</sup>-S-, -S(O<sub>2</sub>)-N(R<sup>2</sup>)-, -C(O)N(R<sup>2</sup>)-(CHR<sup>2</sup>)n-, -C(R<sup>1</sup>R<sup>2</sup>)n-NR<sup>2</sup>-, -N(R<sup>2</sup>)-S(O<sub>2</sub>)-, -R<sup>2</sup>C(O)NR<sup>2</sup>-, -R<sup>2</sup>NC(O)NR<sup>2</sup>-, -CONR<sup>2</sup>CO-, -C(=NR<sup>2</sup>)NR<sup>2</sup>-, -NR<sup>2</sup>C(=NR<sup>2</sup>)NR<sup>2</sup>-, -NR<sup>2</sup>O-, -N=NCHR<sup>2</sup>-, or -C(O)NR<sup>2</sup>SO<sub>2</sub>-;
```

 E^2 is 5 to 7 membered saturated or unsaturated carbon ring, 5 to 7 membered saturated or unsaturated hetero ring, bicyclic ring system, C_{1-8} alkyl, C_{2-8} alkenyl, C_{2-8} alkynyl, alkylaryl, aralkyl, aralkynyl, aralkynyl, alkoxy, alkylthio, or alkylamino;

10

each X individually is a direct bond, substituted or unsubstituted C_{1-4} methylene chain, O, S, NR², S(O), S(O₂), or N(O) containing one or two C_{1-4} substituted or unsubstituted methylene chains; X at different places may be same or different;

15

B is H, -halo, -CN, -NH₂, -(CH₂)_n-C(=NR⁴)NHR⁵, -(CH₂)_n-NHR⁴, - (CH₂)_nNHC(=NR⁴)NR⁵, -(CH₂)_n-OR⁴, C₁₋₈ substituted or unsubstituted alkyl, substituted or unsubstituted ring system having 4 to 7 carbon or hetero atoms which may be saturated or unsaturated;

20

B¹ is selected from B; B¹ and B may be same or different; There may be more than one similar or different R² groups present on E², when E² is a cyclic group of more than 5 atoms; p is 1 except that when E² is a cyclic ring of more than 5 atoms, p is 1 or higher depending upon the size of the ring;

25

n is 0-4;

A is selected from R¹;

o is 1 except that when L is a cyclic ring of more than 5 atoms, o is 1 or higher depending upon the size of the ring;

Each V and V¹ individually is selected from R¹ and N-alkyl substituted carboxamidyl (-CONHR) where the alkyl group may be straight, branched, cyclic, or bicyclic; N,N-disubstituted carboxamidyl of the formula -CONR₁R₂ where R₁ and R₂ may be substituted or unsubstituted alkyl or aryl and may be the same or different; mono- or disubstituted sulfonamides of the formula SO₂NHR or -SO₂NR₁R₂; and methylene- or polymethylene chain-extended variants thereof;

Each R^4 and R^5 individually is H, -(CH₂)_nOH, -C(O)OR⁶, -C(O)SR⁶, -(CH₂)_n

C(O)NR⁷R⁸, -O-C(O)-O-R⁷, an amino acid or a dipeptide;

Each R^6 is H, R^7 , $-C(R^7)(R^8)$ - $(CH_2)_n$ -O-C(O)- R^9 , $-(CH_2)_n$ - $C(R^7)(R^8)$ -O-C(O)R 9 , $-(CH_2)_n$ - $C(R^7)(R^8)$ -O-C(O)-O- R^9 , or $-C(R^7)(R^8)$ - $(CH_2)_n$ - (CH_2)

Each R⁷, R⁸ and R⁹ individually is H, alkyl, substituted alkyl, aryl, substituted aryl, alkenyl, substituted alkenyl, alkynyl, substituted alkynyl, heterocycle, substituted heterocycle, alkylaryl, substituted alkylaryl, cycloalkyl, substituted cycloalkyl, or CH₂CO₂alkyl.

10

15

2. The compound of claim 1 represented by the structure

wherein R is selected from the group consisting of

-OH, -OSO₂CF₃, and
$$\longrightarrow$$
 $O \longrightarrow CH_3$ CH_3 CH_3

and R' is selected from the group consisting of

pharmaceutically acceptable salts thereof; and prodrugs thereof.

15

20

-

3. The compound of claim 1 represented by the structure

wherein R is selected from the group consisting of

N_3H_2C
, CH_2OH HOH_2C , OCH_3 , and

and R' is selected from the group consisting of -CHO, -CO₂H, and -CO₂MEM; and pharmaceutically acceptable salts thereof; and prodrugs thereof.

10

4. The compound of claim 1 represented by the structure

wherein R is -OSO₂CF₃; and R' is selected from the group consisting of

-CHO, -CO₂H,
$$\stackrel{H}{\underset{O}{\bigvee}}$$
 $\stackrel{CH_3}{\underset{CH_3}{\bigvee}}$; and pharmaceutically acceptable salts thereof;

and prodrugs thereof.

5. The compound of claim 1 represented by the structure

wherein R is selected from the group consisting of

25
 H_3C CH_2 , CH_2 , CH_2 , CH_2 , CH_2 , CH_2

$$CH_3$$
, CH_3 , CH_3 , CH_3 , CH_3

OH,
$$CH_2$$
 OH , CHO OH , CHO OH , CHO OH

and R' is selected from the group consisting of -CHO, -CO₂H, and -CO₂MEM; and pharmaceutically acceptable salts thereof; and prodrugs thereof.

6. The compound of claim 1 represented by the structure

and N₃; and pharmaceutically acceptable salts thereof; and prodrugs thereof.

The compound of claim 1 represented by the structure 7.

10

wherein R is selected from the group consisting of

15

$$A_{S}$$
, A_{S} , A_{S} , A_{S} , A_{S}

20

30

25

$$CH_2$$
, CH_2 , CH_3 , CH_3 , CH_3 , CH_3 ,

$$_{\rm H_3C}$$
 $_{\rm OH}$, $_{\rm CH_3}$ $_{\rm CH_3}$ $_{\rm CH_3}$

$$CH_2$$
 OH, CH_3 OH, CH_2 OH

and R' is selected from the group consisting of

$$CH_3$$
 , CH_3 , CH_3 , CH_3 , CH_3 , CH_3 , CF_3 ,

$$CH_2$$
, CH_3 , CH_3 , CH_3 , CH_3 , CH_3

,
$$CH_3$$
, CH_3 , CH_3 , CH_3 , CH_3 , CH_3 ,

$$CH_3$$
, CH_3 , NH_2 , NH_2

20 OH , and
$$CH_3$$
; CH_3 ;

and pharmaceutically acceptable salts thereof; and prodrugs thereof.

10

15

20

30

8. The compound of claim 1 represented by the structure

$$\begin{array}{c|c} & & & & \\ & & \\ & & & \\ & & & \\ & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\$$

wherein R is selected from the group consisting of

$$CH_3$$
, CH_2 , CCH_2 , CCH

$$CH_2$$
, N_3H_2C CH_2OH HOH_2C O , O

-OBn, -OCH
$$_3$$
, and sign of solution is an approximately acceptable salts thereof; and prodrugs thereof. CH $_2$ NH $_2$

9. The compound of claim 1 represented by the structure

10

wherein R is selected from the group consisting of

15

20

and R' is -H or OBn; and pharmaceutically acceptable salts thereof; and prodrugs thereof.

10

30

35

10. The compound of claim 1 represented by the structure

wherein R is selected from the group consisting of

-OBn, -OH, -OSO₂CF₃,
$$\bigcirc$$
 , \bigcirc , -CH=CH₂, and -H;

15 R' is selected from the group consisting of -CHO, -CO₂H, and -CO₂MEM;

and R" is selected from the group consisting of

-CO₂MEM,
$$\stackrel{O}{\underset{H}{\bigvee}}$$
 $\stackrel{CH_3}{\underset{CH_3}{\bigvee}}$ $\stackrel{H}{\underset{CH_3}{\bigvee}}$ $\stackrel{CH_3}{\underset{CH_3}{\bigvee}}$ $\stackrel{Boc}{\underset{CH_3}{\bigvee}}$ $\stackrel{CH_3}{\underset{CH_3}{\bigvee}}$

and pharmaceutically acceptable salts thereof; and prodrugs thereof.

11. The compound of claim 1 represented by the structure

H₃CO₂C

wherein R is selected from the group consisting of

-OBn, -OH, -OSO₂CF₃,
$$\bigcirc$$
 , -CH=CH₂;

R' is -H or -Boc; and R'' is -CO₂MEM or -CO₂H; and pharmaceutically acceptable salts thereof; and prodrugs thereof.

12. The compound of claim 1 represented by the structure

wherein R is -CH3 and R' is selected from the group consisting of

$$CH_3$$
, CH_3 , CH_3 , CH_3 , CH_3 , CH_3

$$_{\text{CH}_{3}}^{\text{CH}_{3}}$$
, $_{\text{CH}_{3}}^{\text{OH}}$, $_{\text{CH}_{3}}^{\text{CH}_{3}}$, $_{\text{CH}_{3}}^{\text{CH}_{3}}$

$$CH_3$$
 CH_3 OH OH OH

or
$$NHR' = -N$$
, or $NHR' = -N$ CH_3 ;

and pharmaceutically acceptable salts thereof; and prodrugs thereof.

The compound of claim 1 represented by the structure 13.

$$CF_3$$
, CH_3

40 ,
$$CH_3$$
, OH_4 , OH_5 ,

OH, NHR =
$$-N$$
,

$$NHR = -N \underbrace{CH_3};$$

10

and pharmaceutically acceptable salts thereof; and prodrugs thereof.

10

15

14. The compound of claim 1 represented by the structure .

wherein R is and -CH=CH₂ and R' is selected from the group consisting of

$$_{20}$$
 $_{\text{CH}_{3}}^{\text{CH}_{3}}$, and $_{\text{CH}_{3}}^{\text{CH}_{3}}$

and pharmaceutically acceptable salts thereof; and prodrugs thereof.

20

25

30

15. The compound of claim 1 represented by the structure

wherein R is -CH $_3$ and R' is selected from the group consisting of

$$CH_3$$
, CH_3 , CF_3

$$CH_3$$
, CH_3

,
$$CH_3$$
, CH_3 , CCH_3

$$CH_3$$
, CH_3 , CH_3 , CH_3 , CH_3

and pharmaceutically acceptable salts thereof; and prodrugs thereof.

16. The compound of claim 1 represented by the structure

wherein at least one R is selected from the group consisting of -OCH₃, -OH, -OSO₂CF₃, -CH=CH₂, -OCH₂CO₂C₂H₅,

15 -OCH₂CONH₂,
$$S$$

R' is selected from the group consisting of

$$\begin{array}{c|c} & & & & & \\ & & & & \\ & & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & \\ & & & \\ & &$$

35 NH NHBoc
$$_{40}$$
 , $_{H}$, and

and R" is selected from the group consisting of -H, -CH₃ and -Bn; and pharmaceutically acceptable salts thereof; and prodrugs thereof.

17. The compound of claim 1 represented by the structure

10

15

5

wherein at least one R is selected from the group consisting of

-CH=CH₂, -OSO₂CF₃, -OCH₂CO₂C₂H₅, -OCH₂CONH₂,

O CH₃

25

20

-OCH₂CO₂H, -O-CH₂-CH₂-OH, -CH(OH)CH₂OH, -CH₂OH, -CO₂H,

30 , -OBn, -OH, -OCH₃, -OBn, -OH, -OC₂H₅,

-OBn, -OCH₃, and -CH(OH)CH₃; and R' is selected from the group consisting of -CH₃, -CH₂C₆H₅, -Bn, -H; and pharmaceutically acceptable salts thereof; and prodrugs thereof.

10

18. The compound of claim 1 represented by the structure

wherein at least one R is selected from the group consisting of -CH=CH₂,

-CH(OH)CH₂OH, -CH=O, -CH₂OH, -CO₂H, -OCH₃, -CH=CH₂; and pharmaceutically acceptable salts thereof; and prodrugs thereof.

15

19. The compound of claim 1 represented by the structure

wherein R is selected from the group consisting of halo and -B(OH)₂; R1 is selected from the group consisting of -H, -OCH₃, -OBn; R2 is selected from the group consisting of

-H, -OCH₃, -OC₂H₅, -OCH(CH₃)₂, and
$$C(CH_3)_3$$
;

R3 is selected from the group consisting of -H, -OH, -OBn; and R4 is -OBn or -H; and pharmaceutically acceptable salts thereof; and prodrugs thereof.

20 20. The compound of claim 19 wherein said halo is -Br.

21. The compound of claim 1 represented by the structure

10

and pharmaceutically acceptable salts thereof; and prodrugs thereof.

15

20

22. The compound of claim 1 represented by the structure

wherein R is selected from the group consisting of

R' is selected from the group consisting of -OBn, -OH, -OSO₂CF₃, and -CH=CH₂;

R" is selected from the group consisting of -CO₂H, -CO₂MEM, or -CHO;

and R" is selected from the group consisting of

$$CH_3$$
 , CH_3 , CH_3 , CH_3 , CH_3 , CH_3 , CH_3 ,

30
 $^{\text{CF}_3}$, $^{\text{CH}_3}$, $^{\text{CH}_4}$,

and prodrugs thereof.

23. The compound of claim 1 represented by the structure

5 RO NHR"

15 wherein R is selected from the group consisting of

R' is -H or alkyl; and R" is selected from the group consisting of

- 35 thereof; and prodrugs thereof.
 - 24. The compound of claim 23 wherein said alkyl is -CH₃.

25. The compound of claim 1 represented by the structure

wherein R is selected from the group consisting of

$$H \longrightarrow K$$

40
$$\stackrel{H}{\underset{N}{\longrightarrow}} \stackrel{N}{\underset{OMe}{\longrightarrow}}$$
, $\stackrel{H}{\underset{N}{\longrightarrow}} \stackrel{N}{\underset{N}{\longrightarrow}}$,

$$H \longrightarrow O$$
 NH_2
 NH_2
 NH_2
 NH_2
 NH_2
 NH_2
 NH_2
 NH_2

10

R' is -H, -CH=CH₂; and R" is -H or alkyl; and pharmaceutically acceptable salts thereof; and prodrugs thereof.

26. The compound of claim 25 wherein said alkyl is -CH₃.

20

25

30

27. The compound of claim 1 represented by the structure

wherein R is selected from the group consisting of

from the group consisting of

$$CH_3$$
, CH_3

and
$$N \to CH_3$$
; and pharmaceutically acceptable salts thereof; and prodrugs thereof.

28. The compound of claim 27 wherein said alkyl is -CH₃.

10

29. The compound of claim 1 represented by the structure

$$\begin{array}{c|c}
4 & N & 6 \\
\hline
 & N & 6 \\
\hline
 & RO_2C & H \\
\hline
 & N & N \\
\hline
 &$$

wherein N is located at position 3 or 4 in the phenyl ring; R is selected from the group consisting of -CHO, -CO₂H, and

- 20 and R' is -H or alkyl; and pharmaceutically acceptable salts thereof; and prodrugs thereof.
 - 30. The compound of claim 29 wherein said alkyl is -CH₃.

10

15

30

31. The compound of claim 1 represented by the structure

wherein R is selected from the group consisting of

20
$$CH_3$$
, OCH_3 , and CH_3 CCH_3 CCH_3 CCH_3

and R' is -H or alkyl; and pharmaceutically acceptable salts thereof; and prodrugs thereof.

32. The compound of claim 31 wherein alkyl is CH₃.

.

10

33. The compound of claim 1 represented by the structure

wherein R is selected from the group consisting of

-CHO, -CO₂H, and
$$\stackrel{\text{NH}}{\underset{\text{H}}{\bigvee}}$$
 ; and R' is -H or alkyl; and

pharmaceutically acceptable salts thereof; and prodrugs thereof.

20 34. The compound of claim 33 wherein said alkyl is -CH₃.

35. The compound of claim 1 represented by the structure

wherein at least one R is selected from the group consisting of -CH=CH₂, -OCH₃, -OBn, -OH, and -H; R' is

$$^{\rm NH}_{\rm NH_2}$$
 , or $^{\rm NH}_{\rm NH_2}$;

R" is selected from the group consisting of

acceptable salts thereof; and prodrugs thereof.

30

10

36. The compound of claim 1 represented by the structure

15 wherein R is -CH₂OH or NH₂;

and R' is -Boc, or -H; and pharmaceutically acceptable salts thereof; and prodrugs thereof.

37. The compound of claim 1 represented by the structure

wherein R is -OCH₃, -OH, -OSO₂CF₃, -C(=NH)NH₂, and -H;

and R" is halo, -CH=CH₂, -CO₂CH₃, and
$$\stackrel{\text{NH}}{\longrightarrow}$$
;

and pharmaceutically acceptable salts thereof; and prodrugs thereof.

38. The compound of claim 37 wherein said halo is -Br.

39. The compound of claim 1 represented by the structure

$$R'$$
 $R''O_2C$
 N
 N
 N

wherein R is selected from the group consisting of -CHO, -CO₂H, -CO₂MEM,

15
$$NH$$
 NH_2
 NH_2
 NH_2

R' is selected from the group consisting of -OBn, -OH, -OSO₂CF₃, and -CH=CH₂;
and R" is -H or alkyl; and pharmaceutically acceptable salts thereof; and prodrugs thereof.

25 40. The compound of claim 39 wherein said alkyl is -CH₃.

41. The compound of claim 1 represented by the structure

wherein R is $-CO_2CH_3$; and pharmaceutically acceptable salts thereof; and prodrugs thereof.

42. The compound of claim 1 represented by the structure

wherein R is -H or -CO₂H;

R' is selected from the group consisting of -CHO, -CO₂H, and

and R" is -H or alkyl; and pharmaceutically acceptable salts thereof; and prodrugs thereof.

43. The compound of claim 42 wherein said alkyl is -CH₃.

10

15

20

44. The compound of claim 1 represented by the structure

wherein R is selected from the group consisting of -CH(OH)-CH₂OH, -CHO, and -CH(OH)-CH=CH₂;

R' is -Boc or -H; and R" is -H or alkyl; and pharmaceutically acceptable salts thereof; and prodrugs thereof.

45. The compound of claim 44 wherein said alkyl is -CH₃.

46. The compound of claim 1 represented by the structure

5

wherein R is

10
 $^{\text{NH}}_{\text{NH}_{2}}$ or $^{\text{H}}_{\text{NHBoc}}$;

and pharmaceutically acceptable salts thereof; and prodrugs thereof.

15

- 47. A pharmaceutical composition containing at least one compound according to claim 1.
- 48. A method for inhibiting serine protease in a patient which comprises
 20 administering to the patient an effective serine protease inhibiting amount of at least one compound according to claim 1.
 - 49. A method for inhibiting the coagulation cascade and preventing or limiting coagulation by administering to a patient an effective amount of at least one compound according to claim 1.
 - 50. A method for inhibiting the formation of emboli or thromboli in blood vessels by administering to a patient an effective amount of at least one compound according to claim 1.

30

25

51. A method for treating at least one condition selected from the group consisting of thrombolymphangitis, thrombosinusitis, thromboendocarditis, thromboangitis, and thromboarteritis which comprises administering to a patient an effective amount of at least one compound according to claim 1.

52. A method for inhibiting thrombus formation following angioplasty which comprises administering to a patient an effective amount of at least one compound according to claim 1.

5

- 53. A method for preventing arteria occlusion following thrombolytic therapy which comprises administering to a patient an effective amount of at least one compound according to claim 1 and an effective amount of at least another antithrombolytic agent.
- 10 54. The method of claim 53 wherein said other antithrombolytic agent is selected from the group consisting of tissue plasminogen activators, streptokinase and urokinase, and functional derivatives thereof.
- 55. A method for treating metastatic diseases which comprises administering to a patient an effective amount of at least one compound according to claim 1.
 - 56. A method of claim 49 which further comprises administering a further anticoagulant agent to said patient.
- 57. The method of claim 56 wherein said further anticoagulant agent is selected from the group consisting of heparin, aspirin, and warfarin.
 - 58. A methof for treating a patient in need of an anti-inflammatory agent which comprises administering to said patient an effective amount of at least one of the compounds according to claim 1.
 - 59. A method for inhibiting *in vitro* clotting of blood which comprises contacting said blood with at least one compound according to claim 1.

- 60. The method of claim 59 which comprises inhibiting said blood in tubes.
- 61. An extraarpereal device having a coating therein which comprises a compound according to claim 1.
- 62. A method for detecting future presence of a serine protease which comprises contacting a sample with a compound according to claim 1.
- 63. The compound of claim 1 represented by the structure

15 NHBoc NHR'

wherein R is alkyl and R' is selected from the group consisting of

30
 $^{\text{CH}_3}$, $^{\text{CH}_3}$, $^{\text{CH}_3}$, $^{\text{CH}_3}$, $^{\text{CH}_3}$,

$$\begin{array}{c} \text{CH}_3 \\ \text{CH}_3 \end{array}, \\ \begin{array}{c} \text{CH}_3 \\ \text{CH}_3 \end{array}, \\ \begin{array}{c} \text{CH}_3 \\ \text{CH}_3 \end{array}, \\ \end{array}$$

25 and pharmaceutically acceptable salts thereof; and prodrugs thereof.

INTERNATIONAL SEARCH REPORT

Intel mal application No.
PCT/US01/32582

A. CLASSIFICATION OF SUBJECT MATTER				
IPC(7) :Please See Extra Sheet.				
US CL :Please See Extra Sheet.				
According to International Patent Classification (IPC) or to both national classification and IPC				
B. FIELDS SEARCHED				
Minimum documentation searched (classification system followed by classification symbols)				
U.S. :	Please See Extra Sheet.	•		
Documentation searched other than minimum documentation to the extent that such documents are included in the fields				
searchede			in the fields	
			•	
CASONL	data base consulted during the international search (name of data base	and, where practicab	ic. search terms used)	
C. DOC	CUMENTS CONSIDERED TO BE RELEVANT			
Category*	Citation of document, with indication, where appropriate, of the	relevant naces		
			Relevant to claim No.	
Y	US 4,551,279 A (MUELLER et al) 05 November 19 examples in column 5-29.	985, see various	1, 2, 47-62	
			" <u>-</u>	
Y	WO 99/41231 A1 (ONO PHARMACEUTICAL (August 1999, page 21-51, pages 97-610.	CO. LTD.) 19	1-63	
Y	PRYOR K.E. et al. The activated Core Approach to Combinatorial chemistry: A selection of new Core Molecules. Tetrahedron. 1998, Vol. 54, pages 4107-4124, especially page 4111.		1, 10-18, 22-26, 31, 32, 35, 44, 45	
Furth	er dommouse are limited in the control of the contr			
Further documents are listed in the continuation of Box C. See patent family annex.				
"A" doonment defining the general state of the art which is not considered to be of particular relevance "A" doonment defining the general state of the art which is not considered to be of particular relevance "B later document published after the international filing date or priority date and not in conflict with the application but cited to understand the principle or theory underlying the invention				
"E" earlier document unhished on or after the international filling data. "X" document of particular relevance the chained invanish			claimed invention cannot be	
"L" doeu.	meant which may throw doubts on priority claim(s) or which is when the d	councul is taken alone	d to involve an inventive step	
speci	ial reason (as specified) "Y" document of considered in	O 170 A 0176 WD 170 A 60 11/A 2/10 A 60	claimed invention causet be hen the document is combined	
[Dead	Dis obvious to	r more other such docume person skilled in the art	nts, such combination being	
"F" document published prior to the international filing date but later "A" document member of the same patent fa		emily		
Date of the actual completion of the international search Date of mailing of the international search			rch report	
07 MARCH 2002 2 0 MAF		2002/		
O7 MARCH 2002 Same and mailing address of the ISA/US Commissioner of Patents and Trademarks Box PCT Authorized officer Brudgers A				
Washington, D.C. 20231 SHAILENDRA KUMAR Cacsimile No. (708) 805-8280 Telephone No. (708) 808 1885				
Thephone No. (703) 305-3230 Thephone No. (703) 308-1235				

Form PCT/ISA/210 (second sheet) (July 1998)*

INTERNATIONAL SEARCH REPORT

Intel nal application No. PCT/US01/32552

Box 1 Observations where certain claims were found unsearchable (Continuation of item 1 of first sheet)				
This international report has not been established in respect of certain claims under Article 17(2)(a) for the following reasons:				
1. Claims Nos.: because they relate to subject matter not required to be searched by this Authority, namely:				
Claims Nos.: because they relate to parts of the international application that do not comply with the prescribed requirements to such an extent that no meaningful international search can be carried out, specifically:				
3. Claims Nos.: because they are dependent claims and are not drafted in accordance with the second and third sentences of Rule 6.4(a).				
Box II Observations where unity of invention is lacking (Continuation of item 2 of first sheet)				
This International Searching Authority found multiple inventions in this international application, as follows:				
Please See Extra Sheet.				
1. X As all required additional search fees were timely paid by the applicant, this international search report covers all searchable claims.	11			
2. As all searchable claims could be searched without effort justifying an additional fee, this Authority did not invite paymen of any additional fee.	, 1			
3. As only some of the required additional search fees were timely paid by the applicant, this international search report covers only those claims for which fees were paid, specifically claims Nos.:	ı			
4. No required additional search fees were timely paid by the applicant. Consequently, this international search report is restricted to the invention first mentioned in the claims; it is covered by claims Nos.:	3			
Remark on Protest The additional search fees were accompanied by the applicant's protest. X No protest accompanied the payment of additional search fees.				
	- 1			

Form PCT/ISA/210 (continuation of first sheet(1)) (July 1998)*

INTERNATIONAL SEARCH REPORT

Into mal application No. PCT/US01/32582

A. CLASSIFICATION OF SUBJECT MATTER: IPC (7):

C07C 229/38, 317/22, 63/04, 257/00; C07D 333/22, 307/02, 277/30, 207/30, 207/08, 211/70, 311/78, 239/02, 265/30, 277/62, 211/70, 317/44, 231/56; A61K 31/24, 31/69, 31/38, 31/34, 31/255, 31/425, 31/40, 31/55, 31/495, 31/505, 31/535, 31/425, 31/415

A. CLASSIFICATION OF SUBJECT MATTER:

US CL :

514/6+, 538, 438, 472, 517, 365, 427, 428, 568, 455, 255, 256, 231.2, 367, 403, 357, 465, 657; 560/35, 39, 11, 12, 14, 36;

5+9/213, 76, 496, 280, 436; 5+8/204, 561, 567, 152, 961.1; 5+6/835, 387; 5+4/835, 106; 562/469; 564/246

B. FIELDS SEARCHED

Minimum documentation searched

Classification System: U.S.

514/64, 538, 438, 472, 517, 365, 427, 428, 568, 455, 255, 256, 251.2, 367, 403, 357, 485, 637; 560/35, 39, 11, 12, 14, 38;

549/213, 76, 496, 280,436; 548/204, 561, 567, 152, 361.1; 546/335, 397; 544/335, 106; 562/469; 564/246

BOX II. OBSERVATIONS WHERE UNITY OF INVENTION WAS LACKING

This ISA found multiple inventions as follows:

This application contains the following inventions or groups of inventions which are not so linked as to form a single inventive concept under PCT Rule 13.1. In order for all inventions to be searched, the appropriate additional search fees must be paid.

Group I, claim(s)1-3(in part), 4, 5-7(in part), 8-11, 13-1+(in part), 15, 16-17(in part), 18-20, 22-24, 25-28(in part)29-30, 31-3+, 35(in part), 36, 44-45 and 47-62(in part), drawn to compounds which are non heterocyclic, and are ester or acids.

Group II, claim(s) 1-2(in part), 47-62(in part)drawn to boron containing compounds.

Group III. claim(s) 1(in part), 3, 5-7, 8, 10, 11-1+, 16-17(in part), 21, 27-28(in part), 41-43, 47-63(in part) drawn to oxygen or sulfur containing five membered heterocyclic ring compounds.

Group IV. claims 1(in part), 5-7(in part), 9(in part), 12-13(in part), 25-26(in part), 47-63(in part), drawn to five membered nitrogen containing heterocyclic compounds.

Group V. claim 1(in part), 5-7(in part), 12-13(in part), 25-26(in part) 35(in part), 37-40, +7-65(in part), drawn to six membered nitrogen containing heterocyclic compounds.

Group VI, claims 1, +6(in part) and +7-62(in part), drawn to non heterocyclic amidino containing compounds. Group VII, claim 1(in part), +6(in part), +7-62(in part), drawn to non heterocyclic carbamates.

The inventions listed as Groups I to VII do not relate to a single inventive concept under PCT Rule 13.1 because, under PCT Rule 13.2, they lack the same or corresponding special technical features for the following reasons. The various chemical compounds claimed in the various groups are chemically divergent and have functionally different entity. Thus there tacks the same or corresponding special technical features.

Form PCT/ISA/210 (extra sheet) (July 1998)*

THIS PAGE BLANK (USPTO)

This Page is Inserted by IFW Indexing and Scanning Operations and is not part of the Official Record

BEST AVAILABLE IMAGES

Defective images within this document are accurate representations of the original documents submitted by the applicant.

Defects in the images include but are not limited to the items checked:

| BLACK BORDERS
| IMAGE CUT OFF AT TOP, BOTTOM OR SIDES
| FADED TEXT OR DRAWING
| BLURRED OR ILLEGIBLE TEXT OR DRAWING
| SKEWED/SLANTED IMAGES
| COLOR OR BLACK AND WHITE PHOTOGRAPHS
| GRAY SCALE DOCUMENTS
| LINES OR MARKS ON ORIGINAL DOCUMENT
| REFERENCE(S) OR EXHIBIT(S) SUBMITTED ARE POOR QUALITY

IMAGES ARE BEST AVAILABLE COPY.

 \square other: $_$

As rescanning these documents will not correct the image problems checked, please do not report these problems to the IFW Image Problem Mailbox.

THIS PAGE BLANK (USPTO)