

CLAIMS

1 1. A method comprising:

2 analyzing characteristics of signals passing along a first plurality of conductive paths arranged

3 in a first orientation; and

4 determining a second orientation for a second plurality of conductive paths based on said

5 analyzed characteristics.

1 2. The method of claim 1, wherein said characteristics comprise timing relationships of

2 signals across said first plurality of conductive paths.

1 3. The method of claim 2, wherein said timing relationships relate to one of push-out and

2 pull-in of signal timings.

1 4. The method of claim 1, wherein said first plurality of conductive paths are on a first

2 plane and arranged in said first orientation and said second plurality of conductive paths are on a

3 second plane and arranged in said second orientation.

1 5. The method of claim 1, wherein said first plurality of conductive paths comprise a first

2 plurality of traces on a first layer of a printed circuit board and said second plurality of conductive paths

3 comprise a second plurality of traces on a second layer of said printed circuit board.

1 6. The method of claim 5, wherein said first plurality of traces are arranged on said first

2 layer in a first ordered arrangement and said second plurality of traces are arranged on said second

3 layer in a second ordered arrangement, and determining said second orientation comprises
4 determining said second ordered arrangement based on the analyzed characteristics.

1 7. The method of claim 1, wherein said first plurality of conductive paths comprise a first
2 plurality of vias coupling a first layer of a printed circuit board to a second layer of said printed circuit
3 board, and said second plurality of conductive paths comprise a second plurality of vias coupling said
4 first layer of said printed circuit board to said second layer of said printed circuit board.

5 8. A method of designing a printed circuit board comprising:
6 analyzing at least one characteristic of a first plurality of relatively parallel conductive paths on
7 said printed circuit board, said first plurality of relatively parallel conductive paths being arranged in a
8 pattern in a first area of said printed circuit board; and
9 rearranging said pattern of conductive paths such that a second plurality of relatively parallel
10 conductive paths in a second area of said printed circuit board have a different geometry with respect
11 to one another as compared to a geometry of said first plurality of relatively parallel conductive paths in
12 said first area.

1 9. The method of claim 8, wherein said rearranging is based on said analyzed at least
2 one characteristic.

1 10. The method of claim 8, wherein said at least one characteristic comprises a timing
2 relationship of signals along said first plurality of relatively parallel conductive paths.

1 11. The method of claim 10, wherein said timing relationship relates to one of push-out
2 and pull-in of signal timings.

1 12. The method of claim 8, wherein said first plurality of relatively parallel conductive paths
2 are on a first layer of said printed circuit board and said second plurality of relatively parallel conductive
3 paths are on a second plane of said printed circuit board.

1 13. The method of claim 8, wherein said first plurality of relatively parallel conductive paths
2 comprise a first plurality of traces on a first layer of said printed circuit board and said second plurality
3 of relatively parallel conductive paths comprise a second plurality of traces on a second layer of said
4 printed circuit board.

1 14. The method of claim 13, wherein said first plurality of traces are arranged on said first
2 layer in a first ordered arrangement and said second plurality of traces are arranged on said second
3 layer in a second ordered arrangement, and rearranging said pattern comprises determining said
4 second ordered arrangement based on said analyzed at least one characteristic.

1 15. The method of claim 8, wherein said first plurality of relatively parallel conductive paths
2 comprise a first plurality of vias coupling a first layer of said printed circuit board to a second layer of
3 said printed circuit board, and said second plurality of conductive paths comprise a second plurality of
4 vias coupling said first layer of said printed circuit board to said second layer of said printed circuit
5 board.

1 16. A method comprising:

2 analyzing a characteristic of a first plurality of conductive paths arranged in a first pattern; and
3 altering said characteristic by rearranging said pattern.

1 17. The method of claim 16, wherein said characteristic comprises a timing relationship of
2 signals across said first plurality of conductive paths.

1 18. The method of claim 17, wherein said timing relationship relates to one of push-out
2 and pull-out of signal timings.

1 19. The method of claim 16, wherein altering said characteristic comprises determining a
2 second pattern for a second plurality of conductive paths based on said analyzed characteristic.

1 20. The method of claim 19, wherein said first plurality of conductive paths are on a first
2 plane and arranged in said first pattern and said second plurality of conductive paths are on a second
3 plane and arranged in said second pattern.

1 21. The method of claim 19, wherein said first plurality of conductive paths comprise a first
2 plurality of traces on a first layer of a printed circuit board and said second plurality of conductive paths
3 comprise a second plurality of traces on a second layer of said printed circuit board.

1 22. The method of claim 21, wherein said first plurality of traces are arranged on said first
2 layer in a first ordered arrangement and said second plurality of traces are arranged on said second
3 layer in a second ordered arrangement, and altering said characteristic comprises determining said
4 second ordered arrangement based on said analyzed characteristics.

1 23. The method of claim 19, wherein said first plurality of conductive paths comprise a first
2 plurality of vias coupling a first layer of a printed circuit board to a second layer of said printed circuit
3 board, and said second plurality of conductive paths comprise a second plurality of vias coupling said
4 first layer of said printed circuit board to said second layer of said printed circuit board.

TAKUO TSUCHIDA