'Buy on rumor, sell on news'

the effect of news arrivals and investor sentiment on the distribution of excess returns

Maria Osipenko¹, Rui Ren²

13 September, 2022

¹Hochschule für Wirtschaft und Recht Berlin; osipenko@hwr-berlin.de

²Humboldt-Universität zu Berlin

Intro

- ► Good news? Bad news?! News!!!
- Sentiment matters, but not for the mean: evidence in Ma, Xiao, and Ma (2018) and Al-Nasseri, Menla Ali, and Tucker (2021)
- ➤ Simple versus complex: does it pay up to use machine learning sentiment measures with high complexity?
- \rightarrow estimate distributional effect of news arrivals and sentiment using expectile regression.

Data

- Excess returns for 100 NASDAQ stocks, time span 201501-201909
- sentiment:
 - "the rumor": use btm ratios as proxies of earnings expectations
 - "the news": consider the event of new arrival and the tone of the news text separately
 - "the sentiment": use LM and Harvard dictionaries (simple) and randomforest with FinBert (complex)
- other variables: size, alpha, turnover, nasdaq indicator.

Mean regression with random effects

▶ standard panel data model for the excess returns $(r_{i,t})$ of n stocks over t = 1, ..., T and i = 1, ..., n:

$$r_{i,t} = x_{i,t}^{\top} \beta + u_i + v_{i,t}$$

with

- r_{i,t} excess return of stock i at time t,
- x_{i,t} a vector of p predictors (including the constant term) known at time t,
- \triangleright u_i is unobserved random individual effect,
- \triangleright $v_{i,t}$ an error term uncorrelated with $x_{i,t}$ and $v_{i,t}$.

Expectile regression with random effects (ERRE)

Conditional expectile regression with random effects (Diogo Barry, Charpentier, and Oualkacha (2016)) aims to estimate the τ -expectile:

$$e(\tau, r_{i,t}, x_{i,t}) = x_{i,t}^{\top} \beta_{\tau}, i = 1, ..., n, t = 1, ..., T,$$

where $\tau \in (0,1)$ is the expectile level.

▶ The estimator minimizes the expectile loss function:

$$\arg\min_{\beta\in\mathbb{R}^p}\frac{1}{n}\sum_{i=1}^n\sum_{t=1}^I\rho_\tau\Big(r_{i,t}-x_{i,t}\beta(\tau)\Big)$$

with $\rho_{\tau}(y) = |\tau - \mathbf{1}(y < 0)|y^2$ is the expectile check function.

Expectile regression with random effects (ERRE)

► The resulting estimator has the form:

$$\hat{\beta}_{\tau} = \left(\sum_{i=1}^{n} \sum_{t=1}^{T} \hat{w}_{i,t}(\tau) x_{i,t} x_{i,t}^{\top}\right)^{-1} \left(\sum_{i=1}^{n} \sum_{t=1}^{T} \hat{w}_{i,t}(\tau) x_{i,t} r_{i,t}\right)$$

with $\hat{w}_{i,t}(\tau) = |\tau - \mathbf{1}(r_{i,t} \leq x_{i,t}\hat{\beta}(\tau))|$ and can be computed via iterative weighted asymmetric least squares.

ERRE with LM sentiment: the Model

Our first model specification is:

$$r_{i,t} = \beta_0 + \beta_{1,\tau} \cdot \log(size_{i,t}) + \beta_{2,\tau} \cdot btm_{i,t-1} + \beta_{3,\tau} \cdot turn_{i,t-1}$$

$$+ \beta_{4,\tau} \cdot alpha_{i,t} + \beta_{5,\tau} \cdot nq_{i,t} + \beta_{6,\tau} \cdot news_{i,t} + \beta_{7,\tau} \cdot lm_tone_{i,t}$$

$$(1)$$

- ightharpoonup news_{i,t} indicator whether a news report referred to company i has been released at t
- Im_tone_{i,t} is news sentiment computed as # of positive words—# of negative words # of positive words+# of negative words using the LM dictionary.

ERRE with LM sentiment: the Results

Table 1: Coefficients and ${\it R}^2$ of the ERRE models with LM sentiment and different $\tau {\rm s}$

	$\beta_{0.05}$	$\beta_{0.1}$	$\beta_{0.25}$	$\beta_{0.5}$	$\beta_{0.75}$	$\beta_{0.9}$	$\beta_{0.95}$
Constant	-0.09664***	-0.06397***	-0.02793***	-0.00081	0.02616***	0.06193***	0.09511***
$log(size_{i,t})$	0.00339***	0.00223***	0.00096***	0.00003	-0.0009***	-0.00215***	-0.00335***
$\alpha_{i,t}$	0.45594*	0.38957*	0.25476*	0.10379	-0.08922	-0.30887	-0.45446
turn _{i,t}	-0.00181***	-0.00137***	-0.00073***	-0.00004	0.00067***	0.00143***	0.00198***
nq _{i,t}	0.00031	0.0003	0.0003*	0.00031*	0.00034*	0.00029	0.00026
$btm_{i,t-1}$	0.00082***	0.00057***	0.00028***	0.00005	-0.00018***	-0.00045***	-0.0007***
news _{i,t}	-0.00888***	-0.00535***	-0.00195***	0.0003	0.0026***	0.00614***	0.00987***
Im_tone _{i,t}	0.00238*	0.00206**	0.00168***	0.00171***	0.00235***	0.00408***	0.00621***
R^2	0.11256	0.06886	0.02059	0.0008	0.0193	0.06881	0.11721

ERRE with LM sentiment: the Effects

Figure 1: Coefficient profiles of sentiment related variables for different au-levels

- we observe significant changes in effects across expectile levels (btm, news)
- ▶ LM dictionary seems to capture the facetts of sentiment important for the higher expectiles (for $\tau > 0.75$)
- \blacktriangleright news arrivals exhibit an effect with changing sign at aproximately $\tau=0.5$

- news arrivals have a strong negative effect on low return expectiles regardless of the news tone.
- For example, given the data, the maximum of scaled lm_tone over all days and stocks is 1, the respective coefficient for the 5%-expectile on news arrivals is -0.00888(-0.00892, -0.0088) and on net tone is 0.00238(0.00231, 0.00244), so the net effect of the "best" empirical tone would calculate:

$$-0.0065(-0.0066, -0.0064)$$

with an asymptotic 95%-confidence interval given in brackets.

- rightarrow in low return state also positive news can lead to a negative effect on the excess return.
- ▶ We explain this effect with the trading strategy 'Buy on rumor, sell on news' for low return states.
- investors buy equities with low returns when they expect their growth (btm, the 'rumor' part) and sell low return stocks to ride on the hype of (positive) news arrivals.
- ► This effect can be also connected to the 'market sidedness' of Sarkar and Schwarz (2009): disproportionally higher seller quote at news arrivals in case of low expectiles.
- ► The positive effect of btm ratio arises as a result of buyer 'sidedness' hunting the equities with low returns but promising expected performance (high btm).

ERRE with HV sentiment: the Model

Our second model specification is:

$$r_{i,t} = \beta_0 + \beta_{1,\tau} \cdot \log(size_{i,t}) + \beta_{2,\tau} \cdot btm_{i,t-1} + \beta_{3,\tau} \cdot turn_{i,t-1}$$

$$+ \beta_{4,\tau} \cdot alpha_{i,t} + \beta_{5,\tau} \cdot nq_{i,t} + \beta_{6,\tau} \cdot news_{i,t} + \beta_{7,\tau} \cdot lm_tone_{i,t}$$
(2)

- ightharpoonup news_{i,t} indicator whether a news report referred to company i has been released at t
- hv_tone_{i,t} is news sentiment computed as # of positive words—# of negative words # of positive words+# of negative words using the Harvard dictionary.

ERRE with HV sentiment: the Results

Table 2: Coefficients and ${\it R}^2$ of the ERRE models with LM sentiment and different $\tau {\rm s}$

	$\beta_{0.05}$	$\beta_{0.1}$	$\beta_{0.25}$	$\beta_{0.5}$	$\beta_{0.75}$	$\beta_{0.9}$	$\beta_{0.95}$
Constant	-0.09644***	-0.06377***	-0.0278***	-0.00071	0.02627***	0.06216***	0.09583***
$log(size_{i,t})$	0.00339***	0.00222***	0.00096***	0.00003	-0.0009***	-0.00216***	-0.00338***
$\alpha_{i,t}$	0.45381*	0.39254*	0.26276*	0.11706	-0.06638	-0.26797	-0.39089
turn _{i,t}	-0.00179***	-0.00136***	-0.00073***	-0.00004	0.00067***	0.00143***	0.00197***
nq _{i,t}	0.00033	0.00033	0.00032*	0.00033**	0.00036*	0.00033	0.0003
$btm_{i,t-1}$	0.00083***	0.00057***	0.00028***	0.00004	-0.00018***	-0.00046***	-0.00071***
news _{i,t}	-0.01325***	-0.00839***	-0.00357***	-0.00062*	0.00203***	0.00574***	0.0096***
Im_tone _{i,t}	0.01153***	0.00788***	0.0041***	0.0022***	0.00118	0.00045	-0.00017
R ²	0.11368	0.06974	0.02072	0.00046	0.01852	0.06709	0.11499

ERRE with HV sentiment: the Effects

Figure 2: Coefficient profiles of sentiment related variables for different au-levels

- the effects of news arrivals and btm ratio are similar to the previous model.
- explanatory power of HV dictionary is lower than that of LM dictionary (as mesured by R²)
- ▶ HV dictionary seems to capture the facetts of sentiment important for the lower expectiles (for $\tau < 0.5$)

ERRE with ML sentiment: the Model

Our next model specification is:

$$r_{i,t} = \beta_0 + \beta_{1,\tau} \cdot \log(\text{size}_{i,t}) + \beta_{2,\tau} \cdot \text{btm}_{i,t-1} + \beta_{3,\tau} \cdot \text{turn}_{i,t-1}$$

$$+ \beta_{4,\tau} \cdot \text{alpha}_{i,t} + \beta_{5,\tau} \cdot \text{nq}_{i,t} + \beta_{6,\tau} \cdot \text{news}_{i,t} + \beta_{7,\tau} \cdot \text{ml_tone}_{i,t}$$
(3)

ml_tone_{i,t} is news sentiment defined as an out-of-sample return forecast for stock i and time t produced by a random forest model based on the FinBert embeddings.

ERRE with ML sentiment: the Results

Table 3: Coefficients and ${\it R}^2$ of the ERRE models with LM sentiment and different $\tau {\rm s}$

$\beta_{0.05}$	$\beta_{0.1}$	$\beta_{0.25}$	$\beta_{0.5}$	$\beta_{0.75}$	$\beta_{0.9}$	$\beta_{0.95}$
-0.09655***	-0.06393***	-0.02792***	-0.00082	0.0262***	0.06203***	0.09573***
0.00339***	0.00223***	0.00096***	0.00003	-0.0009***	-0.00216***	-0.00337***
0.44256	0.38281*	0.25271*	0.10388	-0.0865	-0.30388	-0.43534
-0.00179***	-0.00136***	-0.00073***	-0.00003	0.00068***	0.00144***	0.00198***
0.00028	0.00029	0.00029*	0.00031*	0.00034*	0.00028	0.00023
0.00082***	0.00056***	0.00027***	0.00004	-0.00018***	-0.00046***	-0.00071***
-0.00908***	-0.00556***	-0.00213***	0.00013	0.00238***	0.00577***	0.00933***
0.0502***	0.04283***	0.03422***	0.03156***	0.0364***	0.04943***	0.0612***
0.11473	0.07134	0.02214	0.00202	0.0205	0.07009	0.11844
	-0.09655*** 0.00339*** 0.44256 -0.00179*** 0.00028 0.00082*** -0.00908***	-0.09655*** -0.06393*** 0.00233*** 0.00223*** 0.44256 0.38281* -0.00179*** -0.00136*** 0.00028 0.00029 0.00082*** -0.00556*** -0.00988*** -0.00556*** 0.04283***	-0.09655*** -0.06393*** -0.02792*** 0.00339*** 0.00223*** 0.0096*** 0.44256 0.38281* 0.25271* 0.00179*** -0.00136*** -0.00073*** 0.00028 0.00029 0.00029* 0.00082*** 0.00056*** -0.00213*** 0.0502*** 0.04283*** 0.03422***	-0.09655*** -0.06393*** -0.02792*** -0.00082 0.00339*** 0.00023*** 0.00096*** 0.00003 0.44256 0.38281* 0.25271* 0.10388 -0.00179*** -0.00136*** -0.00073*** -0.0003 0.00028 0.00029 0.00029* 0.00031* 0.00082*** 0.00056*** -0.00273** 0.00004 -0.0998*** -0.00556*** -0.00213** 0.00013** 0.0502*** 0.04283*** 0.03422*** 0.03156***	-0.09655*** -0.06393*** -0.0792*** -0.00082 0.0262*** 0.00339*** 0.00023*** 0.00096*** 0.00003 -0.0009** 0.44256 0.38281* 0.25271* 0.10388 -0.0865 -0.00179*** -0.00136*** -0.00073*** -0.00003 0.00068*** 0.00028 0.00029 0.00029* 0.00031* 0.00034* 0.00082*** 0.00056*** 0.0027*** 0.00004 -0.0018*** -0.0998*** -0.00556*** -0.00213*** 0.003156*** 0.0364***	$\begin{array}{llllllllllllllllllllllllllllllllllll$

ERRE with ML sentiment: the Effects

Figure 3: Coefficient profiles of sentiment related variables for different au-levels

- ▶ the effects of news arrivals and btm ratio are similar to the previous models.
- explanatory power of ML approach is higher than that of LM/HV dictionary (as mesured by R²)
- ► ML tone seems to capture the facetts of sentiment important for both lower and higher expectiles (U-shape).
- rightarrow can we achieve better performance of dictionary methods by mimicing the ML approach, i.e.by combining both sentiment tones, so that important features for lower and higher expectiles are captured?

ERRE with combined LM/HV sentiment: the Model

In this model specification we use $comb_tone_{i,t}$ set to $(1-\tau) \cdot hv_tone_{i,t} + \tau \cdot lm_tone_{i,t}$ in order to overweight $hv_tone_{i,t}$ for low and to overweight $lm_tone_{i,t}$ for high τ -values:

$$r_{i,t} = \beta_0 + \beta_{1,\tau} \cdot \log(size_{i,t}) + \beta_{2,\tau} \cdot btm_{i,t-1} + \beta_{3,\tau} \cdot turn_{i,t-1}$$

$$+ \beta_{4,\tau} \cdot alpha_{i,t} + \beta_{5,\tau} \cdot nq_{i,t} + \beta_{6,\tau} \cdot news_{i,t} + \beta_{7,\tau} \cdot comb_tone_{i,t}$$

$$(4)$$

ERRE with ML sentiment: the Results

Table 4: Coefficients and ${\it R}^2$ of the ERRE models with LM sentiment and different $\tau {\rm s}$

	$\beta_{0.05}$	$\beta_{0.1}$	$\beta_{0.25}$	$\beta_{0.5}$	$\beta_{0.75}$	$\beta_{0.9}$	$\beta_{0.95}$
Constant	-0.09649***	-0.06383***	-0.02786***	-0.00077	0.02619***	0.06195***	0.09513***
$log(size_{i,t})$	0.00339***	0.00222***	0.00096***	0.00003	-0.0009***	-0.00216***	-0.00335***
$\alpha_{i,t}$	0.44961*	0.38623*	0.25338*	0.10395	-0.08842	-0.3082	-0.45395
turn _{i,t}	-0.00179***	-0.00136***	-0.00073***	-0.00004	0.00067***	0.00143***	0.00198***
$nq_{i,t}$	0.00033	0.00032	0.00031*	0.00031**	0.00034*	0.00029	0.00026
$btm_{i,t-1}$	0.00083***	0.00057***	0.00028***	0.00005	-0.00018***	-0.00045***	-0.0007***
news _{i,t}	-0.01296***	-0.00802***	-0.00315***	-0.00022	0.00233***	0.00597***	0.00974***
Im_tone _{i,t}	0.01141***	0.00779***	0.00416***	0.00269***	0.00279***	0.00434***	0.0064***
R^2	0.11358	0.0698	0.02087	0.00081	0.01925	0.06871	0.11712

ERRE with ML sentiment: the Effects

Figure 4: Coefficient profiles of sentiment related variables for different au-levels

- ▶ The model fit is improved in terms of R^2 .
- ▶ the combined dictionary model still can not "beat" the machine learning approach to the sentiment tone extraction.
- ▶ it clearly replicates the U-shape coefficient profile and is to prefer in terms of complexity and transparency/ interpretability of the results to the ML approach.

Conclusions

- sign change in the coefficient profiles of btm ratios and new arrivals
- also good news can lead to over-all negative effect on return for low return states.
- ightharpoonup "buy on rumor sell on news" strategy for low expectiles?
- ▶ the news tone is best captured by the machine learning approach.
- sentiment assement via dictionaries can be improved using a combined expectile weighted tone based on both LM and HV dictionaries.

References

- Al-Nasseri, Alya, Faek Menla Ali, and Allan Tucker. 2021. "Investor Sentiment and the Dispersion of Stock Returns: Evidence Based on the Social Network of Investors." *International Review of Financial Analysis* 78: 101910.
 - https://doi.org/https://doi.org/10.1016/j.irfa.2021.101910.
- Diogo Barry, Amadou, Arthur Charpentier, and Karim Oualkacha. 2016. "Quantile and Expectile Regression for random effects model." https://hal.archives-ouvertes.fr/hal-01421752.
- Ma, Chaoqun, Shisong Xiao, and Zonggang Ma. 2018. "Investor Sentiment and the Prediction of Stock Returns: A Quantile Regression Approach." Applied Economics 50 (50): 5401–15. https://doi.org/10.1080/00036846.2018.1486993.
- Sarkar, Asani, and Robert A. Schwarz. 2009. "Market Sidedness: Insights into Motives for Trade Initiation." *The Journal of Finance* 64 (1): 375–423.
 - https://doi.org/https://doi.org/10.1111/j.1540-6261.2008.01437.x.