EP 1108 Assignment 2

Deadline 1 Feb 2022 before 17:00 hrs

- 1. Calculate the surface temperature of the Sun (in Kelvin) by assuming that it is a spherical black body with a radius of 7×10^8 m. The intensity of solar radiation at the surface of the Earth is $1.4\times10^3W/m^2$ and the distance between the Earth and the Sun is 1.5×10^{11} m. [3 pts]
- 2. Obtain the Rayleigh-Jeans spectral distribution law as the long-wavelength limit of the Planck spectral distribution law. [2 pts]
- 3. Using the Planck spectral distribution law for $\rho(\lambda, T)$ prove Wien's displacement law. [3 pts] [Hint: Set $x=hc/\lambda kT$ and show that x must satisfy the equation $x=5(1-e^{-x})$ for which the solution x=4.965 can be assumed]
- 4. The Barnard star has a temperature of 3000 K. Calculate its total emissive power and the wavelength at which its spectral emittance $R(\lambda, T)$ peaks. [4 pts]