

作业提交要求重申

- 上交的作业
 - 程序必须自己编译通过,可运行(若需读数据文件,附上数据文件),并且自己已做测试
 - 附相应说明文档
 - 压缩打包成一个文件
 - 文件命名规范:"007_刘利刚_Homework_#1.rar"
- 相关文档
 - 说明程序的大致结构, 功能及数据测试
 - 参照课程主页说明

Announcement

Tuesday, Oct. 11

- pp. 65: 2, 5
- 要求
 - 文档
 - FTP上载
- deadline
 - Monday, Oct. 17

1. 公平的席位分配

三个系学生共200名(甲系100,乙系60,丙系40),代表会议共20席,按比例分配,三个系分别为10,6,4席。

现因学生转系,三系人数为103,63,34,问20席如何分配。

若增加为21席,又如何分配。

比例加惯例

系别	学生	比例	20席的	り分配	21席的分配		
	人数	(%)	比例 结果		比例	结果	
甲	103	51.5	10.3	10	10.815	11	
Z	63	31.5	6.3	6	6.615	7	
丙	34	17.0	3.4	4	3.570	3	
总和	200	100.0	20.0	20	21.000	21	

对丙系公平吗

"公平"分配方法

	人数		当 $p_1/n_1=p_2/n_2$ 时,分配公平
\mathbf{A}	p_1	n_1	
B方	p_2	n_2	若 $p_1/n_1 > p_2/n_2$,对A不公平

$p_1/n_1-p_2/n_2 \sim 对A的绝对不公平度$

$$p_1=150, n_1=10, p_1/n_1=15$$
 $p_1=1050, n_1=10, p_1/n_1=105$ $p_2=100, n_2=10, p_2/n_2=10$ $p_2=1000, n_2=10, p_2/n_2=10$ $p_1/n_1-p_2/n_2=5$ $p_1/n_1-p_2/n_2=5$

虽二者的绝对 不公平度相同

但后者对A的不公平 程度已大大降低!

"公平"分配方法

将绝对度量改为相对度量

若 $p_1/n_1>p_2/n_2$,定义

$$\frac{p_1/n_1 - p_2/n_2}{p_2/n_2} = r_A(n_1, n_2)$$
 ~ 对A的相对不公平度

类似地定义 $r_B(n_1,n_2)$

公平分配方案应 使 r_A , r_B 尽量小

将一次性的席位分配转化为动态的席位分配,即

设A, B已分别有 n_1, n_2 席,若增加1席,问应分给A, 还是B

不妨设分配开始时 $p_1/n_1 > p_2/n_2$,即对A不公平

应讨论以下几种情况

初始 $p_1/n_1 > p_2/n_2$

- 1) 若 $p_1/(n_1+1)>p_2/n_2$,则这席应给A
- 2) 若 $p_1/(n_1+1) < p_2/n_2$,应计算 $r_B(n_1+1, n_2)$
- 3) 若 $p_1/n_1 > p_2/(n_2+1)$, 应计算 $r_A(n_1, n_2+1)$

问: $p_1/n_1 < p_2/(n_2+1)$ 是否会出现? 否!

若 $r_B(n_1+1, n_2) < r_A(n_1, n_2+1)$,则这席应给 A

若 $r_B(n_1+1,n_2) > r_A(n_1,n_2+1)$,则这席应给 B

当
$$r_B(n_1+1, n_2) < r_A(n_1, n_2+1)$$
, 该席给A

 $\int _{\cdot} r_{A}, r_{B}$ 的定义

$$\frac{p_2^2}{n_2(n_2+1)} < \frac{p_1^2}{n_1(n_1+1)}$$

该席给A 否则,该席给B

定义
$$Q_i = \frac{p_i^2}{n_i(n_i+1)}$$
, $i = 1,2$, 该席给 Q 值较大的一方

推广到
$$m$$
方
分配席位

计算
$$Q_i = \frac{p_i^2}{n_i(n_i+1)}, i = 1,2,\cdots, m$$

该席给Q值最大的一方 Q 值方法

三系用Q值方法重新分配 21个席位

按人数比例的整数部分已将19席分配完毕

甲系: $p_1=103, n_1=10$

乙系: p_2 = 63, n_2 = 6

丙系: $p_3 = 34$, $n_3 = 3$

用*Q*值方法分配 第20席和第21席

第20席
$$Q_1 = \frac{103^2}{10 \times 11} = 96.4$$
, $Q_2 = \frac{63^2}{6 \times 7} = 94.5$, $Q_3 = \frac{34^2}{3 \times 4} = 96.3$

 Q_1 最大,第20席给甲系

第21席
$$Q_1 = \frac{103^2}{11 \times 12} = 80.4$$
, Q_2 , Q_3 同上

 Q_3 最大,第21席给丙系

*Q*值方法 分配结果

甲系11席,乙系6席,丙系4席

公平吗?

进一步的讨论

Q值方法比"比例加惯例"方法更公平吗?

席位分配的理想化准则

已知: m方人数分别为 $p_1, p_2, ..., p_m$, 记总人数为 $P = p_1 + p_2 + ... + p_m$, 待分配的总席位为N。

设理想情况下m方分配的席位分别为 n_1,n_2,\ldots,n_m (自然应有 $n_1+n_2+\ldots+n_m=N$),

 n_i 应是 N和 p_1, \ldots, p_m 的函数,即 $n_i = n_i(N, p_1, \ldots, p_m)$

 $ilq_i=Np_i/P,\ i=1,2,\ldots,m,$ 若 q_i 均为整数,显然应 $n_i=q_i$

$q_i = Np_i/P$ 不全为整数时, n_i 应满足的准则:

- 1) $[q_i]_- \le n_i \le [q_i]_+$ $(i=1,2,\ldots,m)$, 即 n_i 必取 $[q_i]_-$, $[q_i]_+$ 之一
- 2) $n_i(N, p_1, ..., p_m) \le n_i(N+1, p_1, ..., p_m) (i=1,2, ..., m)$ 即当总席位增加时, n_i 不应减少
 - "比例加惯例"方法满足1),但不满足2)

Q值方法满足 2),但不满足 1)。令人遗憾!

2. 汽车刹车距离

美国的某些司机培训课程中的驾驶规则:

- 正常驾驶条件下,车速每增10英里/小时, 后面与前车的距离应增一个车身的长度。
- •实现这个规则的简便办法是 "2秒准则":
- 6 后车司机从前车经过某一标志开始默数2秒钟后到达同一标志,而不管车速如何

判断 "2秒准则" 与 "车身"规则是否一样;

建立数学模型,寻求更好的驾驶规则。

常识:刹车距离与车速有关

问题分析

10英里/小时(≈16公里/小时)车速下2秒钟行驶

29英尺(≈ 9米) >>车身的平均长度15英尺(=4.6米)

"2秒准则"与"10英里/小时加一车身"规则不同

反应距离

制

动

离

反应时间

车速

司机状况

制动系统灵活性

常数

刹车距离

制动器作用力、车重、车速、道路、气候.....

最大制动力与车质量成正 比,使汽车作匀减速运动。

常数

假设与建模

$$d = d_1 + d_2$$

2. 反应距离 d_1 与车速 v成正比 t₁为反应时间

$$d_1 = t_1 v$$

3. 刹车时使用最大制动力F, F作功等于汽车动能的改变; 且F与车的质量m成正比

$$F d_2 = m v^2/2$$
 $F \propto m$

$$d_2 = kv^2$$

$$d = t_1 v + k v^2$$

模型 $d = t_1 v + k v^2$

- 反应时间 t_1 的经验估计值为0.75秒
- •利用交通部门提供的一组实际数据拟合 k

车 (英里/小时)	速) (英尺/秒)	实际刹车距离 (英尺)	计算刹车距离 (英尺)	刹车时间 (秒)
20	29.3	42 (44)	39.0	1.5
30	44.0	73.5 (78)	76.6	1.8
40	58.7	116 (124)	126.2	2.1
50	73.3	173 (186)	187.8	2.5
60	88.0	248 (268)	261.4	3.0
70	102.7	343 (372)	347.1	3.6
80	117.3	464 (506)	444.8	4.3

最小二乘法 $\Rightarrow k=0.06$

计算刹车距离、刹车时间

模型

$$d = t_1 v + k v^2 = 0.75 v + 0.06 v^2$$

车速 (英里/小时)	刹车时间 (秒)
20	1.5
30	1.8
40	2.1
50	2.5
60	3.0
70	3.6
80	4.3

"2秒准则"应修正为"t秒准则"

车速(英里/小时)	0~10	10~40	40~60	60~80
t(秒)	1	2	3	4

3. 划艇比赛的成绩

题

对四种赛艇(单人、双人、四人、八人)4次国际大赛冠 军的成绩进行比较,发现与浆手数有某种关系。试建立 数学模型揭示这种关系。

赛艇		2000米成绩 t (分)					艇宽b		空艇重w ₀ (kg)
种类	1	2	3	4	平均	(米)	(米)	<i>l/b</i>	集手数 n
单人	7.16	7.25	7.28	7.17	7.21	7.93	0.293	27.0	16.3
双人	6.87	6.92	6.95	6.77	6.88	9.76	0.356	27.4	13.6
四人	6.33	6.42	6.48	6.13	6.32	11.75	0.574	21.0	18.1
八人	5.87	5.92	5.82	5.73	5.84	18.28	0.610	30.0	14.7

调查赛艇的尺寸和重量 \square l/b, w_0/n 基本不变

问题分析

- 前进动力~浆手的划浆功率
- 前进阻力~浸没部分与水的摩擦力

划浆↑功率Ⅰ

赛艇↑速度

艇↑重

前进↑ 阻力

赛艇 | 速度↓

- 对浆手体重、功率、阻力与艇速的关系等作出假定
- 运用合适的物理定律建立模型

模型假设

符号:艇速v,浸没面积s,浸没体积A,空艇重 w_0 , 阻力 f, 浆手数 n, 浆手功率 p, 浆手体重 w, 艇重 W

- 1) 艇形状相同(l/b)为常数), w_0 与n成正比
- 2) v是常数,阻力f与 sv²成正比
- 3) w相同, p不变, p与w成正比

艇的静态特性

艇的动态特性

浆手的特征

模型

$$np \propto fv \quad f \propto sv^2 \quad p \propto w$$

$$p \propto w$$

$$s^{1/2} \propto A^{1/3} \quad A \propto W(=w_0+nw) \propto n \quad \Longrightarrow \quad s \propto n^{2/3}$$

$$s \propto n^{2/3}$$

$$> v \propto n^{1/9}$$

上》 比赛成绩 $t \propto n^{-1/9}$

模型检验

利用4次国际大赛冠军的平均 成绩对模型 $t \propto n^{-1/9}$ 进行检验

n	t		<i>t</i> 7.21					
1	7.21		6.88					
2	6.88		6.32					
4	6.32	——————————————————————————————————————	5.84					
8	5.84							
'				1	2	4	8	\overline{n}

$$t = an^b \quad \Rightarrow \log t = a' + b \log n$$

最小二乘法

 $t = 7.21n^{-0.11}$

与模型巧合!

