# 计算机网络实验七 TCP 协议的拥塞控制机制观察

邱梓豪

141130077

## 一、实验目的

本实验的主要目的是通过利用 wireshark 抓包,进一步了解 TCP 拥塞控制算法的相关细节。

### 二、实验过程

1. 利用 wireshark 记录 TCP 短流,我这里以 www.baidu.com 为例。用 wireshark 抓取的该 TCP 流中的前若干个包如下:

| 192.168.1.101 | 119.75.216.20 | TCP     | 66 54846→443 [SYN] Seq=0 Win=8192 Len=0 N  |
|---------------|---------------|---------|--------------------------------------------|
| 119.75.216.20 | 192.168.1.101 | TCP     | 66 443→54846 [SYN, ACK] Seq=0 Ack=1 Win=8  |
| 192.168.1.101 | 119.75.216.20 | TCP     | 54 54846→443 [ACK] Seq=1 Ack=1 Win=66560   |
| 192.168.1.101 | 119.75.216.20 | TLSv1.2 | 571 Client Hello                           |
| 119.75.216.20 | 192.168.1.101 | TCP     | 60 443→54846 [ACK] Seq=1 Ack=518 Win=2598  |
| 119.75.216.20 | 192.168.1.101 | TLSv1.2 | 206 Server Hello, Change Cipher Spec, Enci |
| 192.168.1.101 | 119.75.216.20 | TLSv1.2 | 105 Change Cipher Spec, Hello Request, Hel |
| 192.168.1.101 | 119.75.216.20 | TLSv1.2 | 639 Application Data                       |
| 119.75.216.20 | 192.168.1.101 | TCP     | 60 443→54846 [ACK] Seq=153 Ack=569 Win=2!  |
| 119.75.216.20 | 192.168.1.101 | TCP     | 60 443→54846 [ACK] Seq=153 Ack=1154 Win=2  |
| 119.75.216.20 | 192.168.1.101 | TCP     | 1514 [TCP segment of a reassembled PDU]    |
| 119.75.216.20 | 192.168.1.101 | TCP     | 1514 [TCP segment of a reassembled PDU]    |
| 119.75.216.20 | 192.168.1.101 | TLSv1.2 | 1259 Application Data                      |

其 congestion window 的时间曲线如下:



### 该 TCP 流的瞬时吞吐量如下:



#### TCP 短流的平均吞吐量: 11kB/s

| 统计        |       |               |     |
|-----------|-------|---------------|-----|
| <u>测量</u> | 已捕茲   | 己显示           | 标记  |
| 分组        | 64    | 53 (82.8%)    | N/A |
| 时间跨度, s   | 6.088 | 3. 462        | N/A |
| 平均 pps    | 10.5  | 15.3          | N/A |
| 平均分组大小,B  | 667.5 | 753. 5        | N/A |
| 字节        | 42704 | 39943 (93.5%) | 0   |
| 平均 字节/秒   | 7014  | 11 k          | N/A |
| 平均 比特/秒   | 56 k  | 92 k          | N/A |

### 由下图可见,该TCP流无重传,故TCP丢包率 = 0

| 严.               | 重程度     |    | 摘要                                               | 组        | 协议   | 计数 |
|------------------|---------|----|--------------------------------------------------|----------|------|----|
| Δ                | Warning |    | Connection reset (RST)                           | Sequence | TCP  | 2  |
|                  |         | 63 | 54834→80 [RST, ACK] Seq=1 Ack=1 Win=0 Len=0      |          |      |    |
|                  |         | 64 | 54832→80 [RST, ACK] Seq=1 Ack=1 Win=0 Len=0      |          |      |    |
| Δ                | Note    |    | This session reuses previously negotiated keys ( | Sequence | SSL  | 1  |
|                  |         | 15 | Server Hello, Change Cipher Spec, Encrypted Ha   |          |      |    |
| Δ                | Chat    |    | Connection establish request (SYN): server port  | Sequence | TCP  | 1  |
|                  |         | 8  | 54846→443 [SYN] Seq=0 Win=8192 Len=0 MSS         |          |      |    |
| $\triangleright$ | Chat    |    | GET /fcgi-bin/mailreport?gjguid=7dd72ac3224b     | Sequence | HTTP | 1  |
|                  |         |    |                                                  |          |      |    |

2. 利用 wireshark 记录 TCP 长流,我这里以 www.bilibili.com 为例。用 wireshark 得到的拥塞窗口曲线如下:



该 TCP 流的瞬时吞吐量如下:



TCP 短流的平均吞吐量: 463kB/s

TCP 长流丢包率: (1385+95+856) / 37499 = 6.23%

| 统计                                                                   |                                                                                                                                |                                                                                          |                                                   |                   |
|----------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------|---------------------------------------------------|-------------------|
| 测量<br>分组<br>时间跨度,s<br>平均 pps<br>平均分组大小,B<br>字节<br>字均 字节/秒<br>平均 比特/秒 | 37599<br>77. 744<br>483. 6<br>958. 5<br>36052919<br>463 k                                                                      | 已显示<br>37499 (99.7%)<br>77.744<br>482.3<br>960.5<br>36034979 (100.0%)<br>463 k<br>3708 k | 标记<br>N/A<br>N/A<br>N/A<br>N/A<br>O<br>N/A<br>N/A |                   |
| 严重程度                                                                 | 摘要                                                                                                                             | 组                                                                                        | 协议                                                | 计数                |
| <ul><li>Note</li><li>Note</li><li>Note</li></ul>                     | This frame is a (suspected) retransmiss<br>This frame is a (suspected) spurious re<br>This frame is a (suspected) fast retrans | transmiss Sequence                                                                       | TCP<br>TCP<br>TCP                                 | 1385<br>95<br>856 |

### 三、数据分析

- 1. TCP 的拥塞控制机制在拥塞窗口及吞吐量曲线中都有较为明显的体现。
- 2. TCP 长流的吞吐量相对短流来说较高,同时丢包率也较高,这与我们的直觉相符。