Rank-76389 over GF(8)

January 15, 2021

The equation

The equation of the surface is:

$$X_1^3 + X_0^2 X_2 + X_0^2 X_3 + X_1^2 X_3 + X_1 X_2^2 + X_0 X_3^2 + X_0 X_1 X_2 = 0$$

 $(\ 0,\ 1,\ 0,\ 0,\ 1,\ 1,\ 0,\ 0,\ 1,\ 0,\ 1,\ 0,\ 1,\ 0,\ 0,\ 1,\ 0,\ 0,\ 0)$

The point rank of the equation over GF(8) is 1361646165

General information

Number of lines	2
Number of points	57
Number of singular points	0
Number of Eckardt points	0
Number of double points	1
Number of single points	16
Number of points off lines	40
Number of Hesse planes	0
Number of axes	0
Type of points on lines	92
Type of lines on points	$2, 1^{16}, 0^{40}$

Singular Points

The surface has 0 singular points:

The 2 Lines

The lines and their Pluecker coordinates are:

$$\begin{split} \ell_0 &= \left[\begin{array}{cccc} 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \end{array} \right]_{4744} = \left[\begin{array}{cccc} 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \end{array} \right]_{4744} = \mathbf{Pl}(0,1,0,0,0,0)_1 \\ \ell_1 &= \left[\begin{array}{ccccc} 1 & 1 & 0 & 1 \\ 0 & 0 & 1 & 1 \end{array} \right]_{722} = \left[\begin{array}{ccccc} 1 & 1 & 0 & 1 \\ 0 & 0 & 1 & 1 \end{array} \right]_{722} = \mathbf{Pl}(0,1,1,1,1,1)_{1330} \end{split}$$

Rank of lines: (4744, 722)

Rank of points on Klein quadric: (1, 1330)

Eckardt Points

The surface has 0 Eckardt points:

Double Points

The surface has 1 Double points: The double points on the surface are:

$$P_{138} = (0, 0, 1, 1) = \ell_0 \cap \ell_1$$

Single Points

The surface has 16 single points: The single points on the surface are:

 $\begin{array}{l} 0: \ P_2 = (0,0,1,0) \ \text{lies on line} \ \ell_0 \\ 1: \ P_3 = (0,0,0,1) \ \text{lies on line} \ \ell_0 \\ 2: \ P_{20} = (1,1,1,0) \ \text{lies on line} \ \ell_1 \\ 3: \ P_{83} = (1,1,0,1) \ \text{lies on line} \ \ell_1 \\ 4: \ P_{201} = (0,0,2,1) \ \text{lies on line} \ \ell_0 \\ 5: \ P_{228} = (3,3,2,1) \ \text{lies on line} \ \ell_1 \\ 6: \ P_{265} = (0,0,3,1) \ \text{lies on line} \ \ell_0 \\ 7: \ P_{283} = (2,2,3,1) \ \text{lies on line} \ \ell_1 \\ 8: \ P_{329} = (0,0,4,1) \ \text{lies on line} \ \ell_0 \end{array}$

The single points on the surface are:

Points on surface but on no line

The surface has 40 points not on any line: The points on the surface but not on lines are:

 $0: P_0 = (1, 0, 0, 0)$ $1: P_{19} = (0, 1, 1, 0)$ $2: P_{75} = (1, 0, 0, 1)$ $3: P_{82} = (0, 1, 0, 1)$ $4: P_{154} = (1, 2, 1, 1)$ $5: P_{163} = (2, 3, 1, 1)$ $6: P_{170} = (1, 4, 1, 1)$ $7: P_{181} = (4, 5, 1, 1)$ $8: P_{192} = (7, 6, 1, 1)$ $9: P_{194} = (1, 7, 1, 1)$ $10: P_{205} = (4, 0, 2, 1)$ $11: P_{230} = (5, 3, 2, 1)$ $12: P_{256} = (7, 6, 2, 1)$

 $\begin{array}{l} 10: \ P_{393} = (0,0,5,1) \ \text{lies on line} \ \ell_0 \\ 11: \ P_{429} = (4,4,5,1) \ \text{lies on line} \ \ell_1 \\ 12: \ P_{457} = (0,0,6,1) \ \text{lies on line} \ \ell_0 \\ 13: \ P_{520} = (7,7,6,1) \ \text{lies on line} \ \ell_1 \\ 14: \ P_{521} = (0,0,7,1) \ \text{lies on line} \ \ell_0 \\ 15: \ P_{575} = (6,6,7,1) \ \text{lies on line} \ \ell_1 \end{array}$

9: $P_{374} = (5, 5, 4, 1)$ lies on line ℓ_1

13: $P_{271} = (6, 0, 3, 1)$ 14: $P_{288} = (7, 2, 3, 1)$

 $15: P_{298} = (1, 4, 3, 1)$ $16: P_{313} = (0, 6, 3, 1)$

 $17: P_{316} = (3, 6, 3, 1)$

18: $P_{321} = (0,7,3,1)$ 19: $P_{325} = (4,7,3,1)$

20: $P_{336} = (7, 0, 4, 1)$ 21: $P_{355} = (2, 3, 4, 1)$

 $22: P_{375} = (6, 5, 4, 1)$

23: $P_{396} = (3, 0, 5, 1)$ 24: $P_{409} = (0, 2, 5, 1)$

 $25: P_{416} = (7, 2, 5, 1)$

```
\begin{array}{lll} 26: \ P_{417} = (0,3,5,1) & 34: \ P_{497} = (0,5,6,1) \\ 27: \ P_{422} = (5,3,5,1) & 35: \ P_{503} = (6,5,6,1) \\ 28: \ P_{427} = (2,4,5,1) & 36: \ P_{517} = (4,7,6,1) \\ 29: \ P_{450} = (1,7,5,1) & 37: \ P_{523} = (2,0,7,1) \\ 30: \ P_{462} = (5,0,6,1) & 38: \ P_{565} = (4,5,7,1) \\ 31: \ P_{474} = (1,2,6,1) & 39: \ P_{572} = (3,6,7,1) \\ 32: \ P_{489} = (0,4,6,1) & 39: \ P_{572} = (3,6,7,1) \end{array}
```

Line Intersection Graph

 $\begin{array}{c|c} & 0 \ 1 \\ \hline 0 & 0 \ 1 \\ 1 & 1 \ 0 \end{array}$

Neighbor sets in the line intersection graph:

Line 0 intersects

Line	ℓ_1
in point	P_{138}

Line 1 intersects

Line	ℓ_0
in point	P_{138}

The surface has 57 points:

The points on the surface are:

$0: P_0 = (1, 0, 0, 0)$	$20: P_{265} = (0, 0, 3, 1)$	$40: P_{427} = (2,4,5,1)$
$1: P_2 = (0, 0, 1, 0)$	$21: P_{271} = (6,0,3,1)$	$41: P_{429} = (4,4,5,1)$
$2: P_3 = (0,0,0,1)$	$22: P_{283} = (2, 2, 3, 1)$	$42: P_{450} = (1,7,5,1)$
$3: P_{19} = (0, 1, 1, 0)$	$23: P_{288} = (7, 2, 3, 1)$	43: $P_{457} = (0,0,6,1)$
$4: P_{20} = (1, 1, 1, 0)$	$24: P_{298} = (1,4,3,1)$	$44: P_{462} = (5,0,6,1)$
$5: P_{75} = (1,0,0,1)$	$25: P_{313} = (0,6,3,1)$	$45: P_{474} = (1, 2, 6, 1)$
$6: P_{82} = (0, 1, 0, 1)$	$26: P_{316} = (3, 6, 3, 1)$	$46: P_{489} = (0, 4, 6, 1)$
7: $P_{83} = (1, 1, 0, 1)$	$27: P_{321} = (0,7,3,1)$	$47: P_{491} = (2,4,6,1)$
$8: P_{138} = (0,0,1,1)$	$28: P_{325} = (4, 7, 3, 1)$	$48: P_{497} = (0, 5, 6, 1)$
$9: P_{154} = (1, 2, 1, 1)$	$29: P_{329} = (0, 0, 4, 1)$	$49: P_{503} = (6, 5, 6, 1)$
$10: P_{163} = (2, 3, 1, 1)$	$30: P_{336} = (7,0,4,1)$	$50: P_{517} = (4,7,6,1)$
$11: P_{170} = (1, 4, 1, 1)$	$31: P_{355} = (2, 3, 4, 1)$	$51: P_{520} = (7,7,6,1)$
$12: P_{181} = (4, 5, 1, 1)$	$32: P_{374} = (5, 5, 4, 1)$	$52: P_{521} = (0,0,7,1)$
$13: P_{192} = (7, 6, 1, 1)$	$33: P_{375} = (6, 5, 4, 1)$	$53: P_{523} = (2,0,7,1)$
$14: P_{194} = (1,7,1,1)$	$34: P_{393} = (0,0,5,1)$	$54: P_{565} = (4, 5, 7, 1)$
$15: P_{201} = (0,0,2,1)$	$35: P_{396} = (3,0,5,1)$	$55: P_{572} = (3, 6, 7, 1)$
$16: P_{205} = (4, 0, 2, 1)$	$36: P_{409} = (0, 2, 5, 1)$	$56: P_{575} = (6, 6, 7, 1)$
$17: P_{228} = (3, 3, 2, 1)$	$37: P_{416} = (7, 2, 5, 1)$	
$18: P_{230} = (5, 3, 2, 1)$	$38: P_{417} = (0, 3, 5, 1)$	
$19: P_{256} = (7, 6, 2, 1)$	$39: P_{422} = (5, 3, 5, 1)$	