Housing Price Prediction: Statistical approach

Розбір позначень в інформативному повідомленні про регресійну модель.

Залишок (residual) u_i: $y_i = \hat{y}_i + \hat{u}_i$.

Оцінка дисперсії похибок (residual standard error, підправлена оцінка ММП) [Woolridge ст. 33]:

$$SSR = \frac{1}{n-p} \sum_{i=1}^{N} \hat{u}_{i}^{2}$$
, де $p-$ кількість коефіцієнтів регресійної моделі.

Зазвичай p = n_features + 1, оскільки враховується вільний член (intercept). Тому треба звертати увагу на формули, які ми використовуємо – там за р може братись кількість признаків, тоді потрібно відняти ще одиницю (в нас кількість признаків позначена k). Можна використовувати таку формулу [Woolridge ст. 88]:

$$SSR = \frac{1}{n-k-1} \sum_{i=1}^{N} \hat{u}_i^2$$
, де $k-$ кількість признаків.

Оцінка коефіцієнту детермінації (multiple R-squared):

$$R^2 = 1 - \frac{SSR}{SST}$$
, де $SSR-$ оцінка дисперсії похибок , $SST-$ дисперсія цільового признака у .

Підправлений коефіцієнт детермінації (adjusted R-squared):

$$R_{adj}^2 = 1 - \left[\frac{(1-R^2)(n-1)}{n-k-1} \right]$$

F-статистика в загальному випадку [Woolridge ст. 129]:

$$F \equiv \frac{(SSR_r - SSR_{ur})/q}{SSR_{ur}/(n-k-1)},$$

F-статистика для перевірки рівності нулю усього вектора коефіцієнтів, за виключенням вільного члена. Це перевірка регресійної моделі на значимість [Woolridge ст. 135]:

$$F = \frac{\|X \hat{\alpha}\|}{k \cdot SSR} = \frac{\|X \hat{\alpha}\|}{\frac{k}{n-k-1} \sum_{i=1}^{N} \hat{u}_{i}^{2}}.$$

Довірчі інтервали

Хай дане спостереження x_h . Потрібно дати інтервальну оцінку для $M(y|x=x_h)$ та $y|x=x_h$.

Для задання довіри прогнозування в регресійній моделі використовується два типи довірчих інтервалів: ДІ умовного матсподівання $M(y|x=x_h)$ та прогнозувальний інтервал, що встановлює межі для майбутніх можливих значень у.

- а) Довірчий інтервал (confidence interval) для середнього значення відклику за даним спостереженням x_h . Відповідає на запитання: "Яким є матсподівання умовного розподілу y за даним значенням $x = x_h$?". Він будується на основі лише $standard\ error\ of\ fit$.
- b) Прогнозувальний інтервал (prediction interval) інтервал, який із заданим рівнем довіри буде містити значення відклику y для заданого значення спостереження $x = x_h$. Це також вид довірчого інтервалу. Питання, на яке він відповідає: "Яким може бути відклик $y|x=x_h$ із заданим рівнем довіри?". Він будується на основі $standart\ error\ of\ fit$ та $standard\ error\ of\ prediction$.

Якщо ДІ дає оцінку якомусь параметру популяції, то ПІ дає оцінку області, в яку значення у потрапляє з деякою ймовірністю.

Різниця між описаними довірчим інтервалом і прогнозувальним інтервалом, з формулами:

https://online.stat.psu.edu/stat501/lesson/3/3.3

Обрахунок в R: https://rpubs.com/aaronsc32/regression-confidence-prediction-intervals

Популярне пояснення довірчого та прогнозувального інтервалу в perpeciï: https://towardsdatascience.com/how-confidence-and-prediction-intervals-work-4592019576d8

Довірчі інтервали для коефіцієнтів лінійної регресії

Обчислюються згідно формул.

Обрахунок в R: https://rpubs.com/aaronsc32/regression-confidence-prediction-intervals

Довірчі інтервали для справжньої лінії регресії

Плотинг в R:

https://rpubs.com/Bio-Geek/71339

https://www.r-graph-gallery.com/line-plot.html

Вибір структури регресійної моделі

http://www.sthda.com/english/articles/37-model-selection-essentials-in-r/154-stepwise-regression-essentials-in-r/

1. Крокова регресія (Stepwise regression). Її недоліки описані <u>тут</u>. План: вибираємо структуру моделі на половині train набору. На іншій половині фітимо модель.

The essential **problems with stepwise methods** have been admirably summarized by Frank Harrell (2001) in Regression Modeling

Strategies, and can be paraphrased as follows:

- 1. R^2 values are biased high
- 2. The F statistics do not have the claimed distribution.
- 3. The standard errors of the parameter estimates are too small.
- 4. Consequently, the confidence intervals around the parameter estimates are too narrow.
- 5. p-values are too low, due to multiple comparisons, and are difficult to correct.
- 6. Parameter estimates are biased away from 0.
- 7. Collinearity problems are exacerbated.