Unsupervised Learning

By Andrew Ng

Reference	•
-----------	---

Bay Area Vision Meeting: Unsupervised Feature Learning and Deep Learning

https://www.youtube.com/watch?v=ZmNOAtZlglk&t=1833s

Neural networks [8.1]: Sparse coding - definition

https://www.youtube.com/watch?v=7a0_iEruGoM&t=5s

Feature extraction

"알고리즘이 세상을 보는 렌즈"

Low level feature

There are some issues...

14 x 14 image patch

can represent it using

196
real numbers

Can we find a learn a better feature vector to represent this?

Unsupervised Learning

UnSupervised Learning (Self-thought learning)

What is this?

SPARSE CODING

Topics: sparse coding

- For each $\mathbf{x}^{(t)}$ find a latent representation $\mathbf{h}^{(t)}$ such that:
 - ightharpoonup it is sparse: the vector $\mathbf{h}^{(t)}$ has many zeros
 - ullet we can reconstruct the original input $\mathbf{x}^{(t)}$ as well as possible
- More formally: reconstruction error

$$\min_{\mathbf{D}} \frac{1}{T} \sum_{t=1}^{T} \min_{\mathbf{h}^{(t)}} \frac{1}{2} ||\mathbf{x}^{(t)} - \mathbf{D} \mathbf{h}^{(t)}||_2^2 + \lambda ||\mathbf{h}^{(t)}||_1$$
reconstruction $\widehat{\mathbf{x}}^{(t)}$ reconstruction vs. sparsity control

- we also constrain the columns of D to be of norm I
 - otherwise, ${f D}$ could grow big while ${f h}^{(t)}$ becomes small to satisfy the prior
- sometimes the columns are constrained to be no greater than I

SPARSE CODING

Topics: dictionary

· Can also write $\widehat{\mathbf{x}}^{(t)} = \mathbf{D} \ \mathbf{h}(\mathbf{x}^{(t)}) = \sum_{\substack{k \text{ s.t.} \\ h(\mathbf{x}^{(t)})_k \neq 0}} \mathbf{D}_{\cdot,k} \ h(\mathbf{x}^{(t)})_k$

- we also refer to **D** as the dictionary
 - in certain applications, we know what dictionary matrix to use
 - often however, we have to learn it

Sparse DBN(Deep Learning Network)

Training on face images

Scaling up, Accuracy up

- 효율적인 Sparse coding algorithms
- GPUs for 딥러닝
- Convolutional network

-

learn to follow 'natural hierarchy' of English

Learning recursive representation

