Contrôle 2: Géométrie Analytique

Cours de mathématiques spéciales (CMS)

10 janvier 2017 Semestre d'automne ID: -999

(écrire lisiblement s.v.p)
Nom:
Prénom:
Groupe:

Question	Pts max.	Pts
1	7	
2	6	
3	7	
Total	20	

Indications

- Durée de l'examen : 105 minutes.
- Posez votre carte d'étudiant sur la table.
- La réponse à chaque question doit être rédigée à l'encre sur la place réservée à cet effet à la suite de la question.
 - Si la place prévue ne suffit pas, vous pouvez demander des feuilles supplémentaires aux surveillants; chaque feuille supplémentaire doit porter nom, prénom, n° du contrôle, branche, groupe, ID et date. Elle ne peut être utilisée que pour une seule question.
- Les feuilles de brouillon ne sont pas à rendre : elles **ne seront pas** corrigées ; des feuilles de brouillon supplémentaires peuvent être demandées en cas de besoin auprès des surveillants.
- Les feuilles d'examen doivent être rendues agrafées.

Question 3 10 janvier 2017 ID: -999

Question 1 (à 7 points)

Points obtenus: (laisser vide)

Dans un repère orthonormé direct, on considère trois points M(2,2,-1), N(1,0,1) et P(1,-1,2).

- 1. Vérifier que M, N, et P ne sont pas alignés, et qu'ils définissent un plan α dont on donnera l'équation cartésienne.
- 2. On considère deux droites, données par

$$a: \begin{pmatrix} x \\ y \\ z \end{pmatrix} = \begin{pmatrix} 0 \\ -1 \\ -2 \end{pmatrix} + \lambda \begin{pmatrix} 1 \\ 2 \\ 1 \end{pmatrix}, \qquad b: \begin{pmatrix} x \\ y \\ z \end{pmatrix} = \begin{pmatrix} 2 \\ -2 \\ 0 \end{pmatrix} + \mu \begin{pmatrix} 1 \\ 1 \\ 2 \end{pmatrix}.$$

Donner une marche à suivre permettant de trouver une droite d qui intersecte à la fois a et b, et dont la projection orthogonale sur α passe par M et N. Ensuite, déterminer les équations paramétriques de d.

Solution: 1.

$$\alpha: y + z - 1 = 0$$

2.

$$d: \quad \begin{pmatrix} x \\ y \\ z \end{pmatrix} = \begin{pmatrix} 2 \\ 3 \\ 0 \end{pmatrix} + t \begin{pmatrix} -1 \\ -6 \\ -2 \end{pmatrix}.$$

Question 2 (à 6 points)

Dans le plan muni d'un repère orthonormé et d'une origine O, on considère un point A, et on pose $\vec{a} = \overrightarrow{OA}$. On donne, de plus, une droite d passant par O et dirigée par \vec{v} , ainsi qu'une droite g passant par A et de vecteur normal \vec{n} , tel que $\vec{n} \cdot \vec{v} \neq 0$. On considère le losange ABCD sachant que

- B est l'intersection de d avec g,
- $D \in d$.

À l'aide du calcul vectoriel uniquement, déterminer \overrightarrow{OB} , puis \overrightarrow{OC} et \overrightarrow{OD} , en fonction de \vec{a} , \vec{n} , \vec{v} .

Solution:

$$\overrightarrow{OB} = \frac{\vec{a} \cdot \vec{n}}{\vec{v} \cdot \vec{n}} \vec{v} \,, \quad \overrightarrow{OC} = 2 \frac{\vec{a} \cdot \vec{v}}{\vec{v} \cdot \vec{v}} \vec{v} - \vec{a} \,, \quad \overrightarrow{OD} = \left(2 \frac{\vec{a} \cdot \vec{v}}{\vec{v} \cdot \vec{v}} - \frac{\vec{a} \cdot \vec{n}}{\vec{v} \cdot \vec{n}} \right) \vec{v} \,.$$

Question 3 (à 7 points)

Points obtenus: (laisser vide)

L'espaçe est muni d'une origine O. On considère trois points A, B, M, tels que $\vec{a} = \overrightarrow{OA}$. $\vec{b} = O\vec{B}$ et $O\vec{M}$ soient linéairement indépendants. On note d la droite (O, \vec{a}) et q la droite $(O, \vec{b}).$

1. On considère un point P appartenant à d et situé à distance $\delta>0$ de g. À l'aide du calcul vectoriel uniquement, déterminer \overrightarrow{OP} en fonction de \vec{a} , \vec{b} et δ .

10 janvier 2017 ID: -999

2. Utiliser le calcul vectoriel pour déterminer (en fonction de $\overrightarrow{OM}, \vec{a}$ et \vec{b}) le rayon-vecteur d'un point C tel que le triangle OMC soit isocèle de base OM, et que la droite (MC) soit orthogonale au plan défini par d et g.

3. Calculer les coordonnées de C avec les données numériques suivantes (dans un repère orthonormé direct) : $\vec{a} = \begin{pmatrix} 1 \\ 0 \\ -1 \end{pmatrix}$, $\vec{b} = \begin{pmatrix} 0 \\ 2 \\ -1 \end{pmatrix}$, M(2,2,-4).

Solution: 1.

$$\overrightarrow{OP_{\pm}} = \pm \frac{\delta \| \vec{b} \times (\vec{a} \times \vec{b}) \|}{\vec{a} \cdot (\vec{b} \times (\vec{a} \times \vec{b}))} \vec{a}.$$

2.

$$\overrightarrow{OC} = \overrightarrow{OM} - \frac{\|\overrightarrow{OM}\|^2}{2\overrightarrow{OM} \cdot (\overrightarrow{a} \times \overrightarrow{b})} \overrightarrow{a} \times \overrightarrow{b} \,.$$

3. C(14, 8, 8).