Wiskundige bewijstechnieken

Prof. Dr. Olga De Troyer

Stellingen van het type p ⇒ q (als ... dan ...)

Rechtstreeks

- We trachten te bewijzen dat als p waar is dan ook q waar is
 - $p \Rightarrow q$ correspondeert met de logische implicatie ($p \rightarrow q$)
 - Om de implicatie te bewijzen schakelen we het enige geval waarbij de implicatie onwaar is (p waar en q onwaar) uit

```
Bijv. door p \rightarrow p1 p1 \rightarrow p2 ... pn \rightarrow q Daaruit volgt p \rightarrow q
```


Stellingen van het type p ⇒ q (als ... dan ...)

- Onrechtstreeks
 - Bewijs door contrapositie

Bewijs door contrapositie

```
p \rightarrow q is logisch equivalent met \neg q \rightarrow \neg p
   Dus i.p.v. p \rightarrow q te bewijzen kunnen we
   \neg q \rightarrow \neg p bewijzen
Bijvoorbeeld: a en b positieve reële getallen
Als a^2 < b^2 dan a < b
Te bewijzen door contrapositie, nl
   als \neg(a < b) dan \neg(a<sup>2</sup> < b<sup>2</sup>)
of nog TB: als a \ge b dan a^2 \ge b^2
Bewijs: als a \ge b dan a.a \ge a.b en a.b \ge b.b
Dus a.a \geq b.b of nog a<sup>2</sup> \geq b<sup>2</sup>
```


Bewijs uit het ongerijmde

Ook genoemd: door contradictie

Voor eender welk type van stelling!

Stel p is te bewijzen

We gaan nu ¬p aannemen en dan hieruit proberen een eigenschap q af te leiden die in strijd is met axioma's of met gekende eigenschappen.

Omdat $\neg p \rightarrow q$ dan waar is

En q onwaar

Volgt hieruit dat ¬p onwaar moet zijn, of dus p waar.

Bewijs uit het ongerijmde toegepast op stellingen van het type p ⇒ q

We veronderstellen nu $\neg(p \rightarrow q)$ waar

Dit is logisch equivalent met (p $\land \neg q$)

En hieruit proberen we dan een onware bewering t af te leiden

Dus $(p \land \neg q) \rightarrow t$ waar

En t onwaar

Hieruit volgt dat (p $\land \neg q$) onwaar moet zijn, en dus $\neg (p \rightarrow q)$ onwaar, en dus (p $\rightarrow q$) waar.

Stellingen van het type p ⇔ q

 $p \Leftrightarrow q$ correspondeert in logica met $(p \leftrightarrow q)$ Aangezien

(p \leftrightarrow q) logisch equivalent is met (p \rightarrow q) \land (q \rightarrow p) kunnen we het bewijs van de equivalentie geven door elke implicatie afzonderlijk te bewijzen, dus p \Rightarrow q en p \Leftarrow q bewijzen.

Een veel voorkomend geval is: $(p \Rightarrow q)$ rechtstreeks bewijzen en $(q \Leftarrow p)$ via contrapositie, dus

 $\neg p \Rightarrow \neg q$ bewijzen

Bewijs per inductie

 Te gebruiken wanneer we iets moeten bewijzen voor een oneindig aantal

Gebaseerd op de volgende stelling:

Zij $\{p_n \mid n \in IN\}$ een verzameling uitspraken zodat

- (a) p_0 waar is
- (b) $\forall k \in IN$: als p_k waar is, dan is p_{k+1} waar

Dan is p_n waar voor alle $n \in IN$

Principe bewijs per inductie

Bewijs is gebaseerd op de volgende stelling **Stelling**

Zij S een deelverzameling van IN zodat

- (i) $0 \in S$
- (ii) $\forall k \in IN$: als $k \in S$ dan $k + 1 \in S$

Dan is S = IN

(Bewijs van deze stelling uit het ongerijmde)

Principe bewijs per inductie

Stelling

Zij $\{p_n \mid n \in IN\}$ een verzameling uitspraken zodat

- (a) p_0 waar is
- (b) $\forall k \in IN$: als p_k waar is, dan is p_{k+1} waar

Dan is p_n waar voor alle $n \in IN$

Bewijs

Veronderstel dat p_0 , p_1 , p_2 ,... voldoen aan (a) en (b)

Zij S = $\{ n \in IN \mid p_n \text{ is waar} \}$

Uit (a) volgt dat 0 ∈ S en uit (b) volgt dat

 $\forall k \in IN$: als $k \in S$ dan $k + 1 \in S$

Dus is S = IN (vorige stelling), en d.w.z.: p_n waar voor alle $n \in IN$

Bewijs per inductie

Voorbeeld Stelling

$$1 + 3 + 5 + ... + (2n+1) = (n + 1)^2$$
, $\forall n \in IN$

Bewijs

Zij p_n de bewering $1 + 3 + 5 + ... + (2n+1) = (n + 1)^2$ Voldoet die aan (a) en (b) uit de vorige stelling?

- (a) p_0 is waar, nl. 1 = 1²
- (b) Zij $k \in IN$ willekeurig. Onderstel dat p_k waar is, dus $1 + 3 + 5 + ... + (2k+1) = (k + 1)^2$

dan is
$$1 + 3 + 5 + ... + (2k+1) + (2(k+1) + 1) = (k + 1)^2 + 2(k + 1) + 1 = ((k + 1) + 1)^2$$

Zo is bewezen dat $\forall k \in IN$: als p_k dan p_{k+1}

Dus dan is p_n waar voor alle $n \in IN$ (vorige stelling)

EINDE BEWIJZEN