МОСКОВСКИЙ ГОСУДАРСТВЕННЫЙ УНИВЕРСИТЕТ

имени М.В. Ломоносова

Факультет вычислительной математики и кибернетики

Компьютерный практикум по учебному курсу «ВВЕДЕНИЕ В ЧИСЛЕННЫЕ МЕТОДЫ»

ЗАДАНИЕ № 1

ОТЧЕТ о выполненном задании

студента 214 учебной группы факультета ВМК МГУ **Исмурзенова Абая Ерденовича**

Оглавление

1			2
	1.1	Постановка задачи	2
	1.2	Цели и задачи	2
	1.3	Описание метода трапеций	2

Глава 1

1.1 Постановка задачи

Найдите приближенное значение интеграла методом трапеций, разбив интервал интегрирования на n равных частей, где n=16,32,64.

Интеграл:
$$\int_{a}^{b} \frac{1}{(25x^2+1)\sqrt{3x-x^2}} \, dx$$

Рассмотрите два отрезка интегрирования:

1.
$$a = 1, b = 2$$

2.
$$a = 0, b = 3$$

Сравните результаты с аналитическим значением интеграла. Подберите более эффективный численный метод вычисления интеграла для второй задачи

1.2 Цели и задачи

- 1. Найти приблеженние значение данного интеграла методом трапеций
- 2. Подобрать более эффективный метод вычисления интеграла для второй подзадачи

1.3 Описание метода трапеций

Нам нужно приблеженно вычислить определенный интеграл $\int_a^b f(x)dx$, подынтегральная функция которого y=f(x) непрерывна на отрезке [a,b]. Для этого разделим отрезок [a,b] на несколько равных интервалов длины $a=x_0< x_2< ...< x_{n-1}< x_n=b$. Количество полученных интервалов обозначим за $a=x_0$