送你三道简单题

___debug

2018年1月7日

编译开关: -02 -std=c++11

1 送你一堆区间 (xmasinterval.cpp/in/out, 1s, 512MB)

1.1 Description

送你在数轴上的 n 个区间和 m 个关键点, 你可以决定每个区间选或不选, 问有多少种方案覆盖所有的关键点. 对 1000000009 取模.

1.2 Input Format

第一行两个整数 n, m, 分别表示区间个数和关键点个数. 接下来 n 行, 每行两个整数 l_i, r_i , 表示一个区间 $[l_i, r_i]$. 接下来 m 行, 每行一个整数, 第 i 行表示表示第 i 个关键点 x_i .

1.3 Output Format

输出一行一个整数,表示答案.

1.4 Sample

1.4.1 Input

4 4

3 8

1 6

3 8

2 7

8

4

6

3

1.4.2 Output

12

1.5 Constraints

对于前 20% 的数据, $n, m \le 20$;

对于前 40% 的数据, $n, m \le 10^4$;

对于另 10% 的数据, $n \le 10^4$, $x_i \le 10^4$;

对于 100% 的数据, $1 \le n, m \le 500000, 1 \le x_i \le 10^9, 1 \le l_i \le r_i \le 10^9$.

2 送你一个集合 (xmasset.cpp, 3s, 512MB)

2.1 Description

这是一道通信题.

C 手上有两个小于等于 n 的正整数 x, y, 它会把这两个数告诉 A, 然后在这两个数中随机取一个作为 q 告诉 B. 现在, A 需要告诉 B 一个**正整数** h, 以此给 B 提供足够的信息来确认 q = x 还是 q = y.

具体地, 你的程序需要实现两个功能:

- 1. 对于给定的 n, x, y, 你需要帮助 A 生成一个消息 h
- 2. 对于给定的 n,q,h, 你需要帮助 B 确认 q=x 还是 q=y

2.2 Input Format

从标准输入读入.

第一行包含一个整数 t, t = 1 表示帮助 A, t = 2 表示帮助 B. 第二行包含两个整数 n, T, 分别表示权值范围和数据组数.

- t=1: 接下来 T 行, 每行两个整数 x,y
- t=2: 接下来 T 行, 每行两个整数 q,h

2.3 Output Format

输出至标准输出.

- t=1: 输出 T 行, 每行一个整数表示用来帮助 B 的消息 h
- t=2: 输出 T 行, 每行一个字符串; 如果 q=x, 输出 "yes", 否则一定有 q=y, 输出 "no".

2.4 Testing

最终测试时的数据将会储存在一个文件中. 这个文件的第一行包含两个整数 n 和 T, 接下来 T 行每行三个整数 x,y,q.

首先,通过这个文件生成 t=1 的输入,并运行一次你的程序.接下来,通过这个文件和你的输出生成 t=2 的输入,再运行一次你的程序,将此时的输出与标准答案对比,若不一致得 0 分,否则按照后面的评分标准评分.注意此题的时空限制对于每次运行单独计算.

2.5 Sample								
2.5.1 Input for A								
1								
5 6								
1 2								
4 5								
1 2								
3 5								
4 5								
5 2								
2.5.2 Possible output for A								
6								
3								
6								
3								
3								
6								
2.5.3 Possible input for B								
2								
5 6								
1 6								
4 3								
2 6								
3 3								
5 3								
2 6								
2.5.4 Output for B								
yes								
yes								
no								
yes								
no								
no								
2.6 Constraints								

对于 100% 的数据, $1 \leq n \leq 920, 1 \leq T \leq 2000000, 1 \leq x, y \leq n, x \neq y, q \in \{x,y\}.$

2.7 Scoring

你的分数取决于 t=1 时的输出中最大的 h 的大小:

$\max h$	≥ 21	20	19	18	17	16	15	14	13	≤ 12
分值	1	27	30	33	37	42	50	60	75	100

3 送你一朵圣诞树 (xmastree2.cpp/in/out, 1s, 512MB)

3.1 Description

送你一朵 n 个点的树, 每个点上有一个正的权值 w_i .

你需要先选一个合法的点作为根 (允许作为根的点很少), 然后按照某种顺序 $p_1,...,p_n$ 依次选取 所有点, 满足每个点的父亲比自己先选, 在此基础上最大化 $w_{p_i} \times i$.

3.2 Input Format

第一行一个整数 n, 表示树的点数.

接下来 n-1 行, 每行两个整数 u_i, v_i , 表示一条 u_i 到 v_i 的边.

接下来 n 行, 每行两个整数 w_i 和 r_i , 分别表示 i 的权值和是否能作为根. $r_i=0$ 表示不能, $r_i=1$ 表示能.

3.3 Output Format

一行一个整数表示答案.

3.4 Sample

3.4.1 Input

5

1 2

1 3

2 4

3 5

4 1

3 0

4 0

3 0

1 0

3.4.2 Output

42

3.5 Constraints

对于前 10% 的数据, $n \le 10$;

对于前 40% 的数据, $n \le 1000$;

对于 100% 的数据, $1 \le n \le 30000, 1 \le w_i \le 300, 1 \le \sum r_i \le 10$.