

PONTIFICIA UNIVERSIDAD CATÓLICA DE CHILE

FACULTAD DE MATEMÁTICAS

DEPARTAMENTO DE MATEMÁTICA

Profesor: Gregorio Moreno – Estudiante: Benjamín Mateluna

Teoría de Integración - MAT2534 Tarea 1 02 de Abril de 2025

Problema 1

Por definición de ínfimo, dado $\varepsilon > 0$, existe una partición Π_{ε} de [a,b] tal que $U(f,\Pi_{\varepsilon}) < \mathcal{U} + \varepsilon$. Consideremos la colección $(\Pi_n^*)_n$ de particiones de [a,b] tales que

$$U(f, \Pi_n^*) < \mathcal{U} + \frac{1}{n}$$

Definimos la partición

$$\Pi_n := \bigcup_{i=1}^n \Pi_i^*$$

Notemos que Π_n es un refinamiento de Π_n^* , luego $U(f,\Pi_n) \leq U(f,\Pi_n^*)$, por teorema del sandwich vemos que

$$\lim_{n\to\infty} U(f,\Pi_n) = \mathcal{U}$$

Además, por construcción, Π_{n+1} es un refinamiento de Π_n y por lo tanto $U(f,\Pi_{n+1}) \leq U(f,\Pi_n)$.

Problema 2

a) Sea $\varepsilon > 0$, como f es integrable, existe una partición Π del intervalo [a, b] tal que

$$U(f,\Pi) - L(f,\Pi) < \varepsilon$$

Veamos que

$$U(|f|,\Pi) - L(|f|,\Pi) = \sum \left(\sup_{x \in I_i} |f(x)| - \inf_{x \in I_i} |f(x)| \right) |I_i| = \sum \left(\sup_{x,y \in I_i} ||f(x)| - |f(y)|| \right) |I_i|$$

$$\leq \sum \left(\sup_{x,y \in I_i} |f(x) - f(y)| \right) |I_i| = \sum \left(\sup_{x \in I_i} f(x) - \inf_{x \in I_i} f(x) \right) |I_i|$$

$$= U(f,\Pi) - L(f,\Pi) < \varepsilon$$

Por lo tanto |f| es Riemann-integrable. Por otro lado, sabemos que $f \leq |f|$ y $-f \leq |f|$, luego, dada una partición Π de [a,b] se sigue que

$$U(f,\Pi) < U(|f|,\Pi)$$
 y $L(-f,\Pi) < L(|f|,\Pi)$

Aplicando ínfimo a la izquierda, supremo a la derecha y usando que - ínf $x = \sup -x$ tenemos lo siguiente

$$\int_a^b f(x)dx \le \int_a^b |f(x)| dx \quad y \quad -\int_a^b f(x)dx \le \int_a^b |f(x)| dx$$

Concluimos que

$$\left| \int_{a}^{b} f(x) dx \right| \le \int_{a}^{b} |f(x)| \, dx$$

b) En primer lugar, demostraremos que dado un conjunto $E \subseteq [a, b]$ de medida nula, entonces E^c es denso en [a, b]. En efecto, sea $x \in E$ y U una vecindad conexa de x de largo $\varepsilon > 0$. Supongamos, por contradicción, que $U \subseteq E$. Como E es de medida nula, existe $(I_i)_{i \in \mathbb{N}}$ una colección de intervalos tales que

$$E \subseteq \bigcup_{i \in \mathbb{N}} I_i \quad \mathbf{y} \quad \sum_{i \in \mathbb{N}} |I_i| < \varepsilon$$

por otro lado tenemos que

$$\varepsilon = |U| = \lambda^*(U) \le \lambda^* \left(\bigcup_{i \in \mathbb{N}} I_i\right) \le \sum_{i \in \mathbb{N}} \lambda^*(I_i) = \sum_{i \in \mathbb{N}} |I_i|$$

Lo anterior es una contradicción, lo que prueba la afirmación.

Sea Π una partición de [a,b], por lo probado anteriormente, para todo i se tiene que existe $\overline{x_i} \in E^c$ tal que $\overline{x_i} \in [x_{i-1},x_i]$. De este modo, para cada partición Π de [a,b], escojemos el conjunto de representantes $C = \{\overline{x_i}\}_i$, entonces

$$S(f,\Pi,C) = \sum_{i} f(\overline{x_i})(x_i - x_{i-1}) = 0$$

Como f es Riemann integrable, se sigue que

$$\int_{a}^{b} f(x)dx = \lim_{|\Pi| \to 0} S(f, \Pi, C) = \lim_{|\Pi| \to 0} 0 = 0$$

Problema 3

Denotaremos por $\overline{x_i}$ a los puntos en C y $L:=\frac{b-a}{n}$. Por TFC tenemos lo siguiente

$$f(x) - f(\overline{x_i}) = \int_{\overline{x_i}}^x f'(t) - f'(\overline{x_i})dt + f'(\overline{x_i})(x - \overline{x_i})$$

Por TVM existe $\alpha(t) \in (\overline{x_i}, t)$ tal que

$$f''(\alpha(t)) = \frac{f'(t) - f'(\overline{x_i})}{t - \overline{x_i}}$$

para $t = \overline{x_i}$ diremos que $f''(\alpha(\overline{x_i})) = f''(\overline{x_i})$. Luego

$$f(x) - f(\overline{x_i}) = \int_{\overline{x_i}}^x f''(\alpha(t))(t - \overline{x_i})dt + f'(\overline{x_i})(x - \overline{x_i})$$

Afirmamos que la función $f''(\alpha(t))$ es continua, en efecto

$$\lim_{t \to t_0} f''(\alpha(t)) = \lim_{t \to t_0} \frac{f'(t) - f'(\overline{x_i})}{t - \overline{x_i}} = \frac{f'(t_0) - f'(\overline{x_i})}{t_0 - \overline{x_i}} = f''(\alpha(t_0))$$

Para el caso $t_0 = \overline{x_i}$ en la segunda expresión nos queda exactamente la definición de la segunda derivada de f'' en el punto $\overline{x_i}$, por lo tanto $f(\alpha)$ es continua en $[\overline{x_i}, x]$. Como $x \ge \overline{x_i}$, por TVM para integrales existe $\alpha(t_0)$ tal que

$$f(x) - f(\overline{x_i}) = f''(\alpha(t_0)) \int_{\overline{x_i}}^x t - \overline{x_i} dt + f'(\overline{x_i})(x - \overline{x_i}) = f''(\alpha(t_0)) \frac{(x - \overline{x_i})^2}{2} + f'(\overline{x_i})(x - \overline{x_i})$$

De este modo

$$\left| \int_{a}^{b} f(x) \, dx - S_{n} \right| = \left| \sum_{i=1}^{n} \int_{x_{i-1}}^{x_{i}} f(x) \, dx - \sum_{i=1}^{n} f(\overline{x_{i}}) L \right| = \left| \sum_{i=1}^{n} \int_{x_{i-1}}^{x_{i}} f(x) - f(\overline{x_{i}}) \, dx \right|$$

$$= \left| \sum_{i=1}^{n} \int_{x_{i-1}}^{x_{i}} f''(\alpha(t_{0})) \frac{(x - \overline{x_{i}})^{2}}{2} + f'(\overline{x_{i}})(x - \overline{x_{i}}) \, dx \right|$$

$$= \left| \sum_{i=1}^{n} f''(\alpha(t_{0})) \frac{(x - \overline{x_{i}})^{3}}{6} \right|_{x_{i-1}}^{x_{i}} = \left| \sum_{i=1}^{n} f''(\alpha(t_{0})) \frac{L^{3}}{24} \right| \le \frac{M(b - a)^{3}}{24n^{2}}$$

Problema 4

En primer lugar demostraremos que si $x_0 < a$ entonces $F(x_0) \le F(a^-)$ donde $F(a^-) = \lim_{x \to a^-} f(x)$. En efecto, dado $\varepsilon > 0$, existe $\delta > 0$ tal que

$$F(x_0) \le F(a - \delta/2) < F(a^-) + \varepsilon$$

esto implica que $F(x_0) \leq F(a^-)$.

a) Sea $\varepsilon > 0$, existe $\delta > 0$ tal que $-F(a - \delta/2) < -F(a^-) + \varepsilon$. Consideremos el cubrimiento $(a - \delta/2, a]$ de $\{a\}$, luego

$$\mu_F^*(\{a\}) \le F(a) - F(a - \delta/2) < F(a) - F(a^-) + \varepsilon$$

es decir,

$$\mu_F^*(\{a\}) < F(a) - F(a^-) + \varepsilon$$

como ε es arbitrario, se sigue que $\mu_F^*(\{a\}) \leq F(a) - F(a^-)$. Sea $(I_n)_{n \in \mathbb{N}}$ un cubrimiento de $\{a\}$, donde $I_n = (a_n, b_n]$. Existe n_0 tal que $a \in I_{n_0}$, así

$$\sum_{n \in \mathbb{N}} \tau(I_n) = \sum_{n \in \mathbb{N}, \ n \neq n_0} \tau(I_n) + \tau(I_{n_0}) \ge \tau(I_{n_0}) = F(b_{n_0}) - F(a_{n_0}) \ge F(a) - F(a^-)$$

concluimos que $\mu_F^*(\{a\}) = F(a) - F(a^-)$.

b) Dado $\varepsilon > 0$, existe $\delta > 0$ tal que $-F(a - \delta/2) < -F(a^-) + \varepsilon$. Consideramos el cubrimiento $(a - \delta/2, b]$ de [a, b], entonces

$$\mu_F^*([a,b]) \le \tau((a-\delta/2,b]) = F(b) - F(a-\delta/2) < F(b) - F(a^-) + \varepsilon$$

como ε es arbitrario, vemos que $\mu_F^*([a,b]) \leq F(b) - F(a^-)$.

Sea $(I_n)_n$ un cubrimiento de [a, b], diremos que $I_n = (a_n, b_n]$. Sea $\varepsilon > 0$, dado $n \in \mathbb{N}$ existe $\delta_n > 0$ tal que

$$F(b_n + \delta_n/2) - F(b_n) < \frac{\varepsilon}{2^n}$$

Consideramos $(I_n^*)_n$ un cubrimiento de [a,b] donde $I_n^* := (a_n,b_n+\delta_n/2]$. Como F es creciente notemos que $\tau(A) \leq \tau(B)$ para todo $A \subseteq B$ con $A,B \in \mathcal{C}$, luego

$$\sum_{n\in\mathbb{N}} \tau(I_n) \le \sum_{n\in\mathbb{N}} \tau(I_n^*)$$

por otro lado

$$0 \le \sum_{n \in \mathbb{N}} \tau(I_n^*) - \tau(I_n) = \sum_{n \in \mathbb{N}} F(b_n + \delta_n/2) - F(b_n) < \sum_{n \in \mathbb{N}} \frac{\varepsilon}{2^n} = \varepsilon$$

nuevamente, como ε es arbitrario, se tiene que

$$\sum_{n\in\mathbb{N}} \tau(I_n) = \sum_{n\in\mathbb{N}} \tau(I_n^*)$$

Definimos un cubrimiento abierto de [a,b] dado por $(U_n)_{n\in\mathbb{N}}$ donde $U_n:=int(I_n^*)$, por compacidad existe $N\in\mathbb{N}$ tal que $(U_n)_{n=1}^N$ cubre [a,b], sin perdidad de generalidad podemos suponer que

- $a \in U_1 \text{ y } b \in U_N.$
- $a_{n+1} < b_n + \delta_n/2$ para todo $1 \le n \le N-1$.

Entonces, como F es creciente y $U_n \subseteq I_n^*$ para todo $n \in \mathbb{N}$, vemos que

$$\sum_{n \in \mathbb{N}} \tau(I_n) = \sum_{n \in \mathbb{N}} \tau(I_n^*) \ge \sum_{n=1}^N \tau(I_n^*) = \sum_{n=1}^N F(b_n + \delta_n/2) - F(a_n)$$

$$= \sum_{n=1}^{N-1} F(b_n + \delta_n/2) - F(a_{n+1}) + F(b_N + \delta_N/2) - F(a_1)$$

$$\ge F(b_N + \delta_N/2) - F(a_1) \ge F(b) - F(a^-)$$

es decir, $\mu_F^*([a,b]) \ge F(b) - F(a^-)$. Por lo tanto $\mu_F^*([a,b]) = F(b) - F(a^-)$.

c) Consideremos el cubrimiento (a,b] de (a,b], luego

$$\mu_F^*((a,b]) \le \tau((a,b]) = F(b) - F(a)$$

Por otro lado, por subaditividad de la medida exterior vemos que

$$\mu_F^*([a,b]) \le \mu_F^*(\{a\}) + \mu_F^*((a,b])$$

entonces

$$F(b) - F(a^{-}) \le F(a) - F(a^{-}) + \mu_F^*((a, b])$$

es decir, $F(b) - F(a) \le \mu_F^*((a, b])$. Concluimos que $\mu_F^*((a, b]) = F(b) - F(a)$.