

#### PATENT ABSTRACTS OF JAPAN

(11) Publication number: 11064234 A

(43) Date of publication of application: 05 . 03 . 99

(51) Int. CI

### G01N 21/88

(21) Application number: 09223858

(22) Date of filing: 20 . 08 . 97

(71) Applicant:

**ADVANTEST CORP** 

(72) Inventor:

WADA KOICHI KUITANI TETSUYA TAKOJIMA TAKENAO

# (54) METHOD AND DEVICE FOR DETECTING FOREIGN MATTER

#### (57) Abstract:

PROBLEM TO BE SOLVED: To detect foreign matters adhering to the surface of a semiconductor wafer in distinction from crystal defects, etc., existing on the surface of the semiconductor wafer.

SOLUTION: A semiconductor wafer 2 is irradiated with a laser beam 4 from a laser light source 5, and scattered light from the wafer 2 irradiated with the laser beam 4 are detected by means of a plurality of photodetectors 6a, 6b, 6c, 6d, 6e, and 6f which are arranged so that the angles of elevation to the photodetectors 6a, 6b, 6c, 6d, 6e, and 6f from the irradiating point 4a of the laser beam 4 on the surface of the wafer 2 may become different from each other. Then, the intensity distribution of the scattered light is acquired by comparing the intensities of the scattered light detected by means of the detectors 6a, 6b, 6c, 6d, 6e, and 6f with each other.

COPYRIGHT: (C)1999,JPO



(19)日本国特許庁 (JP)

# (12) 公開特許公報(A)

(11)特許出願公開番号

# 特開平11-64234

(43)公開日 平成11年(1999)3月5日

(51) Int.Cl.<sup>6</sup> G 0 1 N 21/88 識別記号

G01N 21/88

FΙ

E.

審査請求 未請求 請求項の数20 OL (全 9 頁)

(21)出願番号

特願平9-223858

(22)出顧日

平成9年(1997)8月20日

(71)出顧人 390005175

株式会社アドパンテスト

東京都練馬区旭町1丁目32番1号

(72)発明者 和田 晃一

東京都練馬区旭町1丁目32番1号 株式会

社アドパンテスト内

(72)発明者 杭谷 哲也

東京都練馬区旭町1丁目32番1号 株式会

社アドバンテスト内

(72)発明者 蛸島 武尚

東京都練馬区旭町1丁目32番1号 株式会

社アドバンテスト内

(74)代理人 弁理士 若林 忠 (外4名)

## (54) 【発明の名称】 異物検出方法、および異物検出装置

### (57)【要約】

【課題】 半導体ウェーハの表面に付着した異物を半導体ウェーハの表面に存在する結晶欠陥等と区別して検出する。

【解決手段】 レーザ光源5から半導体ウェーハ2にレーザビーム4を照射する。次に、レーザビーム4が照射された半導体ウェーハ2からの散乱光 (不図示)を、半導体ウェーハ2の表面におけるレーザビーム4の照射点4 a からの仰角が互いに異なるように配置された複数の光検出器6 a, 6 b, 6 c, 6 d, 6 e, 6 f によって検出する。そして、各光検出器6 a, 6 b, 6 c, 6 d, 6 e, 6 f での散乱光の強度を互いに比較して、散乱光の強度分布を知得する。



#### 【特許請求の範囲】

【請求項1】 半導体ウェーハの表面にレーザビームを 照射するステップと、

前記半導体ウェーハの表面における前記レーザビームの 照射点からの仰角が互いに異なるように配置された複数 の光検出器によって、前記レーザビームが照射された前 記半導体ウェーハからの散乱光を検出するステップと、 各前記光検出器での前記散乱光の検出強度を互いに比較 して前記散乱光の強度分布を知得するステップとを有す る異物検出方法。

【請求項2】 前記散乱光の強度分布を知得するステップの後に、

前記知得された散乱光の強度分布が、前記レーザビームの照射点からの全仰角方向に対して実質的に等しい強度を有する場合には前記散乱光を生じさせた検出物を前記半導体ウェーハの表面に付着した異物と判断し、前記レーザビームの照射点からの垂直な仰角方向に偏った強度を有する場合には前記散乱光を生じさせた検出物を前記半導体ウェーハの表面に存在する結晶欠陥と判断し、前記レーザビームの照射点から特定方向への強度が強い場20合には前記散乱光を生じさせた検出物を前記半導体ウェーハの表面に形成されたパターン構造と判断するステップを有する請求項1に記載の異物検出方法。

【請求項3】 前記半導体ウェーハの表面にレーザビームを照射するステップは、前記レーザビームを前記半導体ウェーハの表面に対して走査させるステップを有する請求項1または2に記載の異物検出方法。

【請求項4】 半導体ウェーハが載置されるステージと、前記半導体ウェーハの表面にレーザビームを照射するレーザ光源と、前記レーザビームが照射された前記半 30 導体ウェーハからの散乱光を検出するための光検出器とを有する異物検出装置において、

前記光検出器は複数設置され、各前記光検出器は前記半 導体ウェーハの表面における前記レーザビームの照射点 からの仰角が互いに異なるように配置されていることを 特徴とする異物検出装置。

【請求項5】 前記半導体ウェーハの表面に対して前記 レーザビームを走査させるためのレーザビーム走査手段 が備えられている請求項4に記載の異物検出装置。

【請求項6】 前記レーザ光源は、レーザビームを連続 40 的に照射する連続発振型レーザ光源である請求項4または5に記載の異物検出装置。

【請求項7】 前記レーザ光源は、レーザビームを間欠的に照射するパルス発振型レーザ光源である請求項4または5に記載の異物検出装置。

【請求項8】 前記レーザビームは前記半導体ウェーハ の表面に垂直に前記半導体ウェーハに照射される請求項 4から7のいずれか1項に記載の異物検出装置。

【請求項9】 前記レーザビームは前記半導体ウェーハ の表面に対して斜め方向から前記半導体ウェーハに照射 50 される請求項4から7のいずれか1項に記載の異物検出 装置。

【請求項10】 前記レーザビームは特定方向の偏光成分のみを有する請求項4から9のいずれか1項に記載の異物検出装置。

【請求項11】 複数の前記光検出器の一部もしくは全部が特定の偏光成分のみを検出する光検出器である請求項4から10のいずれか1項に記載の異物検出装置。

【請求項12】 複数の前記光検出器の一部もしくは全 10 部がデテクタアレイ型光検出器である請求項4から11 のいずれか1項に記載の異物検出装置。

【請求項13】 前記異物検出装置で検出された検出物を観察するための異物観察手段、もしくは前記検出物の成分分析を行うための異物分析手段の少なくとも一方が備えられている請求項4から12のいずれか1項に記載の異物検出装置。

【請求項14】 前記異物観察手段は電子顕微鏡である 請求項13に記載の異物検出装置。

【請求項15】 前記異物観察手段はイオン顕微鏡である請求項13に記載の異物検出装置。

【請求項16】 前記異物観察手段は原子間力顕微鏡である請求項13に記載の異物検出装置。

【請求項17】 前記異物分析手段はX線検出装置である請求項13に記載の異物検出装置。

【請求項18】 前記異物分析手段はオージェ電子検出 装置である請求項13に記載の異物検出装置。

【請求項19】 前記異物分析手段は飛行時間型二次イオン質量分析計である請求項13に記載の異物検出装置。

【請求項20】 前記異物分析手段はレーザ・マイクロ プローブ質量分析装置である請求項13に記載の異物検 出装置。

#### 【発明の詳細な説明】

[0001]

【発明の属する技術分野】本発明は、半導体ウェーハの 表面に付着した異物を検出する異物検出装置、および異 物検出方法に関する。

[0002]

【従来の技術】半導体デバイスの不良発生原因は、半導体ウェーハの表面に付着した異物によるものがその大半を占めている。それに加えて、今後、デザインルールがさらに微細化されると、半導体ウェーハ上に形成されるパターン構造が一層微細化されるため、半導体デバイスの不良発生率の増加が予想されている。

【0003】そこで、従来から、半導体ウェーハの表面に付着した異物を検出するために、種々の異物検出装置が開発されている。図7に、従来の典型的な異物検出装置を示す。

【0004】図7は、従来の異物検出装置を示す斜視図である。図7に示すように、従来の異物検出装置101

は、半導体ウェーハ102を載置するステージ103 と、半導体ウェーハ102の表面に斜め方向からレーザ ビーム104を照射するレーザ光源105と、半導体ウ ェーハ102上の異物106にレーザビーム104が照 射されて生じる散乱光107を検出するための光検出器 108とを有する。

【0005】上記のように構成された異物検出装置10 1では、まず、レーザ光源105から出射されたレーザ ビーム104で半導体ウェーハ102の表面を照射しつ つ、ステージ駆動手段(不図示)によってステージ10 3を図示のX方向もしくはY方向に駆動させる。これに より、レーザビーム104が半導体ウェーハ102上を 走査する。

【0006】このとき、半導体ウェーハ102上に付着 している異物106にレーザビーム104が照射される と、通常の正反射光109の他に、異物106で反射さ れた散乱光107が生じる。そこで、光検出器108に よってその散乱光107を受光することにより、半導体 ウェーハ102の表面に付着した異物106を検出する ことができる。

#### [0007]

【発明が解決しようとする課題】ところで、現在では、 鏡面状に研磨された半導体ウェーハの表面に、COP (Crystal Originated Parti cle)と呼ばれる結晶欠陥が存在することが知られて いる。レーザビームがこの結晶欠陥に照射されると、異 物に照射された場合と同様に散乱光が生じる。異物検出 の際には異物と結晶欠陥とを区別することが必要である が、上記説明したような従来の異物検出装置では両者を 区別することは不可能である。

【0008】また、半導体デバイスの製造工程中に、半 導体ウェーハの表面にパターン構造が形成された段階 で、半導体ウェーハ表面での異物検出を行う必要があ る。しかし、微細なパターン構造にレーザビームが照射 されると、特定方向への回折光が発生する。そのため、 光検出器が回折光の回折方向に位置する場合には、回折 光が雑音となって異物からの散乱光と回折光とを区別で きないので、異物を検出することができない。

【0009】そこで本発明は、半導体ウェーハの表面に 付着した異物を半導体ウェーハの表面に存在する結晶欠 陥と区別して検出できる異物検出方法、および異物検出 装置を提供することを目的とする。さらに、半導体ウェ ーハの表面に形成されたパターン構造の上に付着した異 物を検出することができる異物検出方法、および異物検 出装置を提供することを目的とする。

#### [0010]

【課題を解決するための手段】本発明の異物検出方法お よび異物検出装置は、結晶欠陥によるレーザピームの散 乱光強度と異物によるレーザビームの散乱光強度とで、 仰角分布の特徴が大きく異なることに着目してなされた 50 ザビームを照射するステップは、前記レーザビームを前

ものである。

【0011】図8は、結晶欠陥による散乱光強度と異物 による散乱光強度とを示す模式図である。図8に示す半 導体ウェーハ201の表面には、図示右側に異物202 が付着されており、図示左側には結晶欠陥であるCOP 203が存在している。

【0012】異物202にレーザビーム204aが照射 されて生じた散乱光205aは、レーザビーム照射点2 0 4 a 'からの全仰角方向に対してほぼ等しい強度を有 する。一方、COP203にレーザビーム204 b が照 射されて生じた散乱光205bは、レーザビーム照射点 204b, からの垂直な仰角方向に強く偏った強度を有 する。

【0013】そこで、本発明の異物検出方法は、半導体 ウェーハの表面にレーザビームを照射するステップと、 前記半導体ウェーハの表面における前記レーザビームの 照射点からの仰角が互いに異なるように配置された複数 の光検出器によって、前記レーザビームが照射された前 記半導体ウェーハからの散乱光を検出するステップと、 20 各前記光検出器での前記散乱光の検出強度を互いに比較 して前記散乱光の強度分布を知得するステップとを有す る。

【0014】上記で説明したように、例えば、異物にレ ーザビームが照射されて生じた散乱光と、結晶欠陥にレ ーザビームが照射されて生じた散乱光とでは、レーザビ ームの照射点からの仰角方向における散乱光の強度分布 が異なる。しかし、上記のような異物検出方法によれ ば、半導体ウェーハ表面の検出物からの散乱光が様々な 仰角方向から検出されるため、検出物からの散乱光の強 度分布を知得することができる。そのため、半導体ウェ 一八の表面における異物や結晶欠陥等の存在が確認され る。

【0015】さらに、前記散乱光の強度分布を知得する ステップの後に、前記知得された散乱光の強度分布が、 前記レーザビームの照射点からの全仰角方向に対して実 質的に等しい強度を有する場合には前記散乱光を生じさ せた検出物を前記半導体ウェーハの表面に付着した異物 と判断し、前記レーザビームの照射点からの垂直な仰角 方向に偏った強度を有する場合には前記散乱光を生じさ せた検出物を前記半導体ウェーハの表面に存在する結晶 欠陥と判断し、前記レーザビームの照射点から特定方向 への強度が強い場合には前記散乱光を生じさせた検出物 を前記半導体ウェーハの表面に形成されたパターン構造 と判断するステップを有する構成とすることにより、半 導体ウェーハ表面の検出物が、半導体ウェーハ表面に付 着した異物と、半導体ウェーハの表面に存在する結晶欠 陥と、半導体ウェーハの表面に形成されたパターン構造 とに区別される。

【0016】加えて、前記半導体ウェーハの表面にレー

記半導体ウェーハの表面に対して走査させるステップを 有する構成とすることにより、レーザビームの照射点が 半導体ウェーハの表面に付着した異物等に自動的に合わ せられる。

【0017】また、本発明の異物検出装置は、半導体ウェーハが載置されるステージと、前記半導体ウェーハの表面にレーザビームを照射するレーザ光源と、前記レーザビームが照射された前記半導体ウェーハからの散乱光を検出するための光検出器とを有する異物検出装置において、前記光検出器は複数設置され、前記各光検出器は前記半導体ウェーハの表面におけるレーザビームの照射点からの仰角が互いに異なるように配置されていることにより、上記本発明の異物検出方法が最適に実施される。

【0018】さらに、前記半導体ウェーハの表面に対して前記レーザビームを走査させるためのレーザビーム走査手段が備えられている構成とすることにより、レーザビームの照射点が半導体ウェーハの表面に付着した異物等に自動的に合わせられる。

【0019】また、前記レーザ光源は、レーザビームを連続的に照射する連続発振型レーザ光源、もしくは、レーザビームを間欠的に照射するパルス発振型レーザ光源である構成としてもよい。

【0020】さらに、前記レーザビームは前記半導体ウェーハの表面に垂直に前記半導体ウェーハに照射される構成としてもよく、もしくは、前記レーザビームは前記半導体ウェーハの表面に対して斜め方向から前記半導体ウェーハに照射される構成としてもよい。

【0021】さらには、前記レーザビームは特定方向の 偏光成分のみを有する構成としてもよい。

【0022】加えて、複数の前記光検出器の一部もしくは全部が特定の偏光成分のみを検出する光検出器である構成としてもよく、複数の前記光検出器の一部もしくは全部がデテクタアレイ型光検出器である構成としてもよい。

【0023】また、前記異物検出装置で検出された検出物を観察するための異物観察手段、もしくは前記検出物の成分分析を行うための異物分析手段の少なくとも一方が備えられている構成とすることが望ましい。

【0024】さらに、前記異物観察手段は電子顕微鏡、 イオン顕微鏡、もしくは原子間力顕微鏡であることが好 ましい。

【0025】さらには、前記異物分析手段はX線検出装置、オージェ電子検出装置、飛行時間型二次イオン質量分析計、もしくはレーザ・マイクロプローブ質量分析装置であることが好ましい。

[0026]

#### 【発明の実施の形態】

(第1の実施形態)図1は、本発明の異物検出装置の第 1の実施形態を示す斜視図である。 【0027】図1に示すように、本実施形態の異物検出装置1は、半導体ウェーハ2を載置するステージ3と、半導体ウェーハ2の表面に鉛直上方からレーザビーム4を照射するレーザ光源5と、半導体ウェーハ2の表面に付着した異物等にレーザビーム4が照射されて生じる散乱光を検出するための光検出器6a,6b,6c,6d,6e,6fは、レーザビーム4の照射点4aを中心とする円弧上に等角度の間隔をおいて異物検出装置1に設置されている。すなわち、各光検出器6a,6b,6c,6d,6e,6fは、レーザビーム4の照射点4aからの仰角が互いに異なるように、異物検出装置1に設置されている。

【0028】上記のように構成された異物検出装置1では、まず、レーザ光源5から出射されたレーザビーム4で半導体ウェーハ2の表面を照射しつつ、レーザビーム 走査手段としてのステージ駆動装置(不図示)によってステージ3を図示のX方向もしくはY方向に駆動させる。これにより、レーザビーム4が半導体ウェーハ2上を走査し、レーザビーム4の照射点4aを半導体ウェーハ2の表面に付着した異物等に自動的に合わせることができる。

【0029】このとき、半導体ウェーハ2上の異物等にレーザビーム4が照射されると、異物等でレーザビーム4が反射され、散乱光が生じる。そこで、光検出器6a,6b,6c,6d,6e,6fによって様々な仰角方向から散乱光を検出し、各光検出器での検出強度を比較して散乱光の強度分布を知得することにより、半導体ウェーハ2の表面における異物等の存在を確認することができる。

【0030】図2は、図1に示した異物検出装置を、レーザビームの照射点に異物が存在する状態で示す斜視図である。

【0031】図2に示すように、異物7にレーザビーム4が照射されると、異物7でレーザビーム4が反射され、散乱光8a,8b,8c,8d,8e,8fが生じる。図8を用いて説明したように、異物7にレーザビーム4が照射されて生じた散乱光8a,8b,8c,8d,8e,8fは、異物7からの全仰角方向に対してほぼ等しい強度を有するので、全ての光検出器6a,6b,6c,6d,6e,6fによって検出され、その検出強度はほぼ一様となる。

【0032】図3は、図1に示した異物検出装置を、レーザビームの照射点に結晶欠陥が存在する状態で示す斜 視図である。

【0033】図3に示すように、結晶欠陥であるCOP 9にレーザビーム4が照射されると、COP9から散乱 光10a, 10b, 10c, 10d, 10e, 10fが 生じる。図8を用いて説明したように、COP9にレー 50 ザビーム4が照射されて生じた散乱光10a, 10b,

30

10c, 10d, 10e, 10fは、鉛直な仰角方向に 強く偏った強度を有するので、高角度に発生する散乱光 10 c, 10 dの強度が最も強く、低角度に発生する散 乱光10a, 10fの強度が最も弱い。これに対応し て、各光検出器で検出される散乱光の受光強度は、光検 出器6c, 6dが最も強く、光検出器6a, 6fが最も 弱い。

【0034】以上説明したように、半導体ウェーハ2に 付着した異物7からの散乱光は各光検出器での検出強度 が一様であるのに対し、COP9からの散乱光は各光検 出器で検出強度が異なる。従って、半導体ウェーハ2上 の検出物からの散乱光を光検出器で検出し、各光検出器 での散乱光の検出強度を互いに比較して検出物からの散 乱光の強度分布を知得した後に、その知得した検出物に よる強度分布を、半導体ウェーハ2の表面に付着した異 物7による散乱光の一般的な強度分布、および半導体ウ ェーハ2の表面に存在するCOP9による散乱光の一般 的な強度分布と対比させて評価することにより、半導体 ウェーハ2の表面に付着した異物7と半導体ウェーハ2 の表面に存在する結晶欠陥とを区別して検出することが 20

【0035】図4は、図1に示した異物検出装置を、レ ーザビームの照射点にパターン構造が存在する状態で示 す斜視図である。

【0036】パターン構造11は、微細配線等が微小な 間隔をおいて形成されているため、パターン構造11に レーザビーム4が照射されると、散乱光の一つである特 定方向への回折光12a, 12bが発生する。なお、レ ーザビーム4はその他の方向へ反射、散乱等することは ない。従って、光検出器6b, 6eで各回折光12a, 12 b が検出される他には、他の光検出器 6 a, 6 c, 6 d, 6 f では何れの反射光や散乱光等も検出されな い。

【0037】一方、図5は、図1に示した異物検出装置 を、レーザビームの照射点に異物およびパターン構造が 存在する状態で示す斜視図である。

【0038】図5に示すように、異物7およびパターン 構造11にレーザビーム4が照射されると、異物7でレ ーザビーム4が反射されて散乱光8a, 8b, 8c, 8 d, 8e, 8fが生じるとともに、パターン構造11に よって特定方向への強度が強い回折光12a, 12bが 発生する。すると、光検出器6a,6c,6d,6fで は散乱光8 a, 8 c, 8 d, 8 f が一様な強度で検出さ れる。一方で、光検出器6b,6eでは散乱光8b,8 eとともに回折光12a, 12bも検出されるため、光 検出器6b, 6eでの検出強度は光検出器6a, 6c. 6d, 6fでの検出強度よりも大きくなる。

【0039】従って、半導体ウェーハ2上の検出物から の散乱光等を光検出器で検出し、各光検出器での散乱光 の検出強度を互いに比較して検出物からの散乱光の強度

分布を知得した後に、その知得した検出物による強度分 布を、半導体ウェーハ2の表面に付着した異物7による 散乱光の一般的な強度分布、および半導体ウェーハ2の 表面に形成されたパターン構造11による回折光の一般 的な強度分布と対比させて評価することにより、たとえ 半導体ウェーハ2の表面に形成されたパターン構造11 の上に異物7が付着している場合でも、検出物を異物7 とパターン構造11とに区別して検出することができ る。

【0040】なお、本実施形態の異物検出装置1では六 つの光検出器 6 a, 6 b, 6 c, 6 d, 6 e, 6 f を用 いた例を示したが、設置される光検出器の個数は六つに 限られない。また、各光検出器の配置は、図1等に示し た配置に限られるものではない。

【0041】 (第2の実施形態) 図6は、本発明の異物 検出装置の第2の実施形態を示す斜視図である。

【0042】図1に示すように、本実施形態の異物検出 装置21は、半導体ウェーハ22を載置するステージ2 3と、半導体ウェーハ22の表面に斜め方向からレーザ ビーム24を照射するレーザ光源25と、半導体ウェー ハ22の表面に付着した異物等にレーザビーム24が照 射されて生じる散乱光等を検出するための光検出器26 a, 26b, 26c, 26d, 26e, 26f, 26g とを有する。各光検出器は、レーザビーム24の照射点 24aを中心とする円弧上に等角度の間隔をおいて異物 検出装置21に設置されている。すなわち、各光検出器 は、レーザビーム24の照射点24aからの仰角が互い に異なるように、異物検出装置21に設置されている。

【0043】上記のように構成された異物検出装置21 では、まず、レーザ光源25から出射されたレーザビー ム24で半導体ウェーハ22の表面を照射しつつ、ステ ージ駆動手段(不図示)によってステージ23を図示の X方向もしくはY方向に駆動させる。これにより、レー ザビーム24が半導体ウェーハ22上を走査する。

【0044】レーザビーム24の照射点24aに異物等 が存在しない場合には、半導体ウェーハ22の表面でレ ーザビーム24の正反射光24bが生じるだけであり、 何れの光検出器でも反射光や散乱光等は検出されない。 しかし、レーザビーム24の照射点24aに異物、結晶 欠陥、もしくはパターン構造 (いずれも不図示) が存在 する場合には、第1の実施形態での説明と同様に散乱光 や回折光が発生する。従って、半導体ウェーハ22上の 検出物からの散乱光を光検出器で検出した後に、各光検 出器の検出強度を互いに比較して検出物からの強度分布 を知得することにより、第1の実施形態と同様に、検出 物を異物と結晶欠陥とに区別して検出したり、検出物が パターン構造の上に付着した異物であっても、異物とパ ターン構造とを区別して検出することができる。

【0045】また、本実施形態の異物分析装置21で は、レーザ光源25が半導体ウェーハ22の鉛直上方で はなく斜め方向に設置されているため、半導体ウェーハ22の鉛直上方にも光検出器が設置されている。そのため、半導体ウェーハ22からの散乱光をより多くの角度から検出することができるので、散乱光の強度分布を一層正確に知得することができる。

【0046】なお、本実施形態の異物検出装置21では 七つの光検出器26a, 26b, 26c, 26d, 26 e, 26f, 26gを用いた例を示したが、設置される 光検出器の個数は七つに限られない。また、各光検出器 の配置は、図6に示した配置に限られるものではない。 【0047】また、第1の実施形態および本実施形態の 異物検出装置1,21では、レーザビーム走査手段とし て、ステージ駆動装置(不図示)によってステージ3, 23を駆動させることによりレーザビーム4,24が半 導体ウェーハ2, 22上を走査する方法を用いた例を示 したが、ステージ駆動装置を用いる代わりに、レーザ光 源駆動装置(不図示)によってレーザ光源 5, 25を駆 動させ、レーザビーム4,24を半導体ウェーハ2,2 2に対して走査させる構成としてもよい。さらに、レー. ザ光源 5, 25は、レーザビーム 4, 24を連続的に照 20 射する連続発振型レーザ光源、あるいはレーザビーム 4,24を間欠的に照射するパルス発振型レーザ光源の いずれでもよい。さらに、照射されるレーザビーム4、 24は特定方向の偏光成分のみを有するものであっても よい。また、複数の光検出器の一部もしくは全部は、特 定の偏光成分のみを検出するものであってもよく、デテ クタアレイ型光検出器であってもよい。

【0048】さらに、第1の実施形態および本実施形態の異物検出装置1,21に、他の異物観察手段や異物分析手段の少なくとも一つを組み合わせた構成としてもよい。異物観察手段には、電子顕微鏡、イオン顕微鏡、および原子間力顕微鏡等を用いることができ、異物分析手段には、X線検出装置、オージェ電子検出装置、飛行時間型二次イオン質量分析計、およびレーザ・マイクロプローブ質量分析装置等を用いることができる。

【0049】ここで、最初に、異物観察手段である電子 顕微鏡、イオン顕微鏡、および原子間力顕微鏡について 説明する。

【0050】電子顕微鏡は、レーザビーム4,24の散乱光によって異物や結晶欠陥等の検出物の位置を検出し40た後に、前記異物等に電子銃から電子ビームを照射し、前記検出物から発生する二次電子もしくは反射電子を検出することで、前記検出物の二次電子像もしくは反射電子像を観察するものである。

【0051】また、イオン顕微鏡は、上記と同様にして 異物や結晶欠陥等の検出物の位置を検出した後に、前記 検出物にイオン銃からイオンビームを照射し、前記検出 物から発生する二次イオンを検出することで、前記異物 等の二次イオン像を観察するものである。

【0052】また、原子間力顕微鏡は、上記と同様にし

て異物や結晶欠陥等の検出物の位置を検出した後に、前 記検出物に探針の先を接近させ、前記検出物と前記探針 とを相対的に移動させながら、前記探針と前記検出物と の間に働く原子間の相互作用を利用することで、前記検 出物の形状観測を行うものである。

【0053】次に、異物分析手段であるX線検出装置、オージェ電子検出装置、飛行時間型二次イオン質量分析計、およびレーザ・マイクロプローブ質量分析装置について説明する。

10 【0054】 X線検出装置は、上記と同様にして異物や結晶欠陥等の検出物の位置を検出した後に、前記検出物に電子銃から電子ビームを照射し、前記検出物から発生する X線を検出することで、前記検出物の成分分析を行うものである。

【0055】また、オージェ電子検出装置は、上記と同様にして異物や結晶欠陥等の検出物の位置を検出した後に、前記検出物に電子銃から電子ビームを照射し、前記検出物から発生するオージェ電子を検出することで、前記検出物の成分分析を行うものである。

【0056】また、飛行時間型二次イオン質量分析計は、上記と同様にして異物や結晶欠陥等の検出物の位置を検出した後に、前記検出物にイオン銃からイオンビームを照射し、前記検出物から発生する二次イオンの飛行時間を分析することで前記検出物の成分分析を行うものである。

【0057】また、レーザ・マイクロプローブ質量分析装置は、上記と同様にして異物や結晶欠陥等の検出物の位置を検出した後に、前記検出物にイオン銃からイオンビームを照射し、前記検出物から発生する二次イオンを質量分折器に導いて質量分析を行うことで、前記検出物の元素分析、および分子構造の解析を行うものである。

【0058】異物検出装置1,21に、上記のような異物観察手段や異物分析手段を備えることにより、異物等の検出だけでなく、異物等の形状観察や成分分析等をも行うことができる。

#### [0059]

30

【発明の効果】以上説明したように、本発明の異物検出方法は、半導体ウェーハの表面にレーザビームを照射するステップと、レーザビームの照射点からの仰角が互いに異なるように配置された複数の光検出器によって半導体ウェーハからの散乱光を検出するステップと、各光検出器での前記散乱光の検出強度を互いに比較して散乱光の強度分布を知得するステップとを有するので、半導体ウェーハの表面における異物や結晶欠陥等の存在を確認することができる。

【0060】さらに、知得された散乱光の強度分布が、 全仰角方向に対して実質的に等しい強度を有する場合に は検出物を異物と判断し、垂直な仰角方向に偏った強度 を有する場合には検出物を結晶欠陥と判断し、特定方向 への強度が強い場合には検出物をパターン構造と判断す るステップを有することにより、半導体ウェーハ表面の 検出物を、半導体ウェーハ表面に付着した異物と、半導 体ウェーハの表面に存在する結晶欠陥と、半導体ウェー ハの表面に形成されたパターン構造とに区別することが できる。

【0061】加えて、半導体ウェーハの表面にレーザビームを照射するステップは、レーザビームを半導体ウェーハの表面に対して走査させるステップを有することにより、レーザビームの照射点を半導体ウェーハの表面に付着した異物等に自動的に合わせることができる。

【0062】また、本発明の異物検出装置は、レーザビームが照射された半導体ウェーハからの散乱光を検出するための複数の光検出器が半導体ウェーハの表面におけるレーザビームの照射点からの仰角が互いに異なるように配置されているので、上記本発明の異物検出方法を最適に実施することができる。

#### 【図面の簡単な説明】

【図1】本発明の異物検出装置の第1の実施形態を示す 斜視図である。

【図2】図1に示した異物検出装置を、レーザビームの 20 照射点に異物が存在する状態で示す斜視図である。

【図3】図1に示した異物検出装置を、レーザビームの 照射点に結晶欠陥が存在する状態で示す斜視図である。

【図4】図1に示した異物検出装置を、レーザビームの 照射点にパターン構造が存在する状態で示す斜視図であ る。 \*【図5】図1に示した異物検出装置を、レーザビームの 照射点に異物およびパターン構造が存在する状態で示す 斜視図である。

【図6】本発明の異物検出装置の第2の実施形態を示す 斜視図である。

【図7】従来の異物検出装置を示す斜視図である。

【図8】結晶欠陥による散乱光強度と異物による散乱光 強度とを示す模式図である。

#### 【符号の説明】

10 1, 21 異物検出装置

2,22 半導体ウェーハ

3, 23 ステージ

4,24 レーザビーム

4a, 24a 照射点

5,25 レーザ光源

6a, 6b, 6c, 6d, 6e, 6f, 26a, 26b, 26c, 26d, 26e, 26f, 26g 光検 出器

#### 7 異物

8a, 8b, 8c, 8d, 8e, 8f, 10a, 10 b, 10c, 10d, 10e, 10f 散乱光

9 COP

11 パターン構造

12a, 12b 回折光

24b 正反射光

【図1】



## 【図2】



【図3】



[図4]



【図5】



【図6】



【図7】



【図8】

