CPP Problem Design

Subject: Complex

Contributor: 林承達, 陳俊儒, 廖宣瑋

Main testing concept: Operator overloading

Basics	Functions
■ C++ BASICS	☐ SEPARATE COMPILATION AND NAMESPACES
□ FLOW OF CONTROL	□ STREAMS AND FILE I/O
■ FUNCTION BASICS	□ RECURSION
□ PARAMETERS AND OVERLOADING	□ INHERITANCE
□ ARRAYS	□ POLYMORPHISM AND VIRTUAL FUNCTIONS
■ STRUCTURES AND CLASSES	□ TEMPLATES
■ CONSTRUCTORS AND OTHER TOOLS	□ LINKED DATA STRUCTURES
■ OPERATOR OVERLOADING, FRIENDS, AND	□ EXCEPTION HANDLING
REFERENCES	□ STANDARD TEMPLATE LIBRARY
□ STRINGS	□ PATTERNS AND UML
□ POINTERS AND DYNAMIC ARRAYS	

Description:

Define a class for complex numbers named **Complex**. A complex number is a number formed as $\mathbf{a} + \mathbf{b} * \mathbf{i}$, where \mathbf{a} and \mathbf{b} are numbers of type double, and \mathbf{i} is a number that represents the quantity $\sqrt{(-1)}$.

- The class Complex represent a complex number with two values: realValue (double), imaginaryValue(double)
- The class Complex has three constructors:
 - Complex(): construct a complex number where both realValue and imaginaryValue are 0.
 - ➤ Complex(double r): construct a complex number where the realValue is r and the imaginary Value is 0.
 - ➤ Complex(double r, double i): construct a complex number where the realValue is r and the imaginaryValue is i.
- You should implement the following functions:
 - **double real()**: return the realValue.
 - **double imag()**: return the imaginary Value.
 - **double norm**(): return the value of $\sqrt{(realValue^2 + imaginaryValue^2)}$.
 - **double real(Complex c)**: return the realValue of a complex number c.
 - **double imag(Complex c)**: return the imaginary Value of a complex number c
 - **double norm(Complex c)**: return the value of $\sqrt{(realValue^2 + imaginaryValue^2)}$ of a complex number c.
- And you are required to Overload all the following operators:
 - > ==: Judge if the real and imaginary parts of two complex numbers are equal.
 - +: Add another complex number or a double type number.
 - > -: Minus another complex number or a double type number.
 - *: Multiply with another complex number or a double type number.
 - /: Divide with another complex number or a double type number.
 - >>: Get the value of a complex number from the input stream with the format "x = realValue + imaginaryValue*i".
 - <<: Send complex numbers to the output stream with the format "realValue + imaginaryValue*i".</p>

Input:

The input is a complex number in the format "x = realValue + imaginaryValue*i", where x is the variable name of the complex number.

- **The main() function in your submission will be replaced when judging.
- **You can use the main() function in "Other Notes" to test your program.

Output:

The result of executing your program with the given main function.

Sample Input / Output:

Sample Input	Sample Output
x = 3 + 4*i y = 5 + 6*i	x = 0 + 0*i y = 3 + 0*i
y = 3 + 0·1	y = 3 + 0.1 z = -3.2 + 2.1*i
	testing members and support functions
	as well as output operator:
	complex number $x = 3 + -4*i$
	real part: 3
	real part from friend real(x): 3
	imaginary part: -4 imaginary part from friend imag(x): -4
	norm: 5
	test operator ==:
	x!=y
	test complex arithmetic and output
	routines:
	x = 3 + -4*i
	y = 1 + -1*i
	z = -3.2 + 2.1*i
	z = x + y = 4 + -5*i
	z = x * y = -1 + -7*i
	z = x - y = 2 + -3*i
	z = x / y = 3.5 + -0.5*i
	d: 2 x: 3 + -4*i
	x+d: 5 + -4*i
	x-d: 1 + -4*i
	x*d: 6 + -8*i
	x/d: 1.5 + -2*i
	d+x: 5 + -4*i

```
d-x: -1 + 4*i
d*x: 6 + -8*i
d/x: 0.24 + 0.32*i
two/x: 0.24 + 0.32*i
Getting data from standard input: data read is: x = 3 + 4*i
y = 5 + 6*i
```

- □ Eazy,Only basic programming syntax and structure are required.
- Medium, Multiple programming grammars and structures are required.
- ☐ Hard, Need to use multiple program structures or more complex data types.

Expected solving time:

```
30 minutes
Other notes:
#include"complex.h"
int main()
          // test constructors
          Complex x, y(3), z(-3.2, 2.1);
          cout << "x = " << x << "y = " << y << "z = " << z << endl << endl;
          x = Complex(3, -4);
          cout << "testing members and support functions as well as"
                     << " output operator:\n"
                     << "complex number x = " << x << endl
                     << "real part: " << x.real() << endl
                     << "real part from friend real(x): " << real(x) << endl
                     << "imaginary part: " << x.imag() << endl
                     << "imaginary part from friend imag(x): " << imag(x) << endl
                     << "norm: " << norm(x) << endl << endl;
          cout << "test operator ==:" << endl << endl;</pre>
          if (x == y)
                     cout << "x = y" << endl << endl;
          else
                     cout << "x!=y" << endl << endl;
          cout << "test complex arithmetic and output routines: \n\n";
          y = Complex(1, -1);
          cout << "x = " << x << "y = " << y << "z = " << z << endl << endl;
          cout << "z = x + y = " << z << endl;
          z = x * y;
          cout << "z = x * y = " << z << endl;
          z = x - y;
          cout << "z = x - y = " << z << endl;
          z = x / y;
          cout << "z = x / y = " << z << endl << endl;
          //test of automatic conversion double -> complex by the constructor.
```

```
double d(2.0);
cout << "d:" << d << " \ x:" << x << endl;
cout << "x+d: ";
z = x + d;
cout << z << endl;
z = x - d;
cout << "x-d: ";
cout \ll z \ll endl;
z = x * d;
cout << "x*d: ";
cout \ll z \ll endl;
z = x / d;
cout << "x/d: ";
cout \ll z \ll endl;
z = d + x;
cout << "d+x:";
cout << z << endl;
z = d - x;
cout << "d-x: ";
cout << z << endl;
z = d * x;
cout << "d*x: ";;
cout << z << endl;
z = d / x;
cout << "d/x: ";;
cout << z << endl;
//test whether double/complex and complex/complex give same result:
Complex two(2, 0);
cout << "two/x: ";
cout \ll two / x \ll endl;
cout << "\nGetting data from standard input: \n";</pre>
cin >> x >> y;
cout << "data read is: x = " << x << " y = " << y << endl << endl;
return 0;
```