Valuation Field

wu

2023年2月25日

目录

1	环与理想		
	1.1	介绍	1
	1.2	分式化	1
	1.3	多项式环	2
2	局部	环	3
3	亨泽	尔局部环	12
	3.1	亨泽尔局部环(Henselian)	12
	3.2	剩余域的提升	13
	3.3	域的扩张理论	14
	3.4	提升定理	18
4	超积与 Ax-Kochen 原理		
	4.1	环的一阶语言	19
	4.2	Łoś 超积定理	19
	4.3	局部 Ax-Kochen 原理	19

1 环与理想

1.1 介绍

Definition 1.1. 称 A 为 **局部环**,如果 A 只有一个极大理想 I,称 k = A/I 为 A 的 **剩余域** (residue field)

Proposition 1.2. 1. 设 A 为环, $I \subseteq A$ 为理想,若每个 $x \in A \setminus I$ 均是单位元则 A 是局部环,I 是极大理想

2. 若 A 为环, $I\subseteq A$ 为极大理想,若 $\forall a\in I$,有 1+a 均是单位元,则 A 是局部环

1.2 分式化

Definition 1.3. 设 A 是一个整环,令 $A^{\times} = A \setminus \{0\}$,在 $A \times A^{\times}$ 上定义关系 ~ 为

$$(a,s)\sim (b,t) \Leftrightarrow at-bs=0$$

Definition 1.4. 称 $S \subseteq A$ 为 **乘法子集**,如果 $1 \in S$ 且 $a, b \in S \Rightarrow ab \in S$

Definition 1.5. 设 $S \subseteq A$ 是乘法子集,定义 $A \times S$ 上的等价关系 \sim 为

$$(a,s) \sim (b,t) \Leftrightarrow \exists u \in S(u(at-bs)=0)$$

将 (a,s) 的等价类记作 $\frac{a}{s}$, 定义

$$\frac{a}{s} + \frac{b}{t} = \frac{at + bs}{st}, \quad \frac{a}{s}\frac{b}{t} = \frac{ab}{st}$$

则 $A \times S / \sim$ 是一个环,记作 $S^{-1}A$

Remark. • $\forall x \in A$, $\frac{xa}{xs} = \frac{a}{s}$

- 若S有零因子,则 $S^{-1}A=0$ 平凡
- $A \to S^{-1}A$, $a \mapsto \frac{a}{1}$ 是同态
- 若 A 是整环, $S = A^{\times}$,则 $S^{-1} = \operatorname{Frac}(A)$

Example 1.1. 若 \mathfrak{p} 是素理想, $S = A \setminus \mathfrak{p}$ 是乘法子集

- $\bullet \ \ \diamondsuit \ A_{\mathfrak{p}} = S^{-1}A$
- 令 $\mathfrak{m} = \{\frac{a}{s} \mid a \in \mathfrak{p}, s \notin \mathfrak{p}\} = pA_{\mathfrak{p}} = \mathfrak{p}S^{-1}$,则 $A_{\mathfrak{p}}$ 是局部环, \mathfrak{m} 是 $A_{\mathfrak{p}}$ 的极大理想

1.3 多项式环

设 A 是一个环,则多项式环 A[X] 的元素都形如

$$\sum_{i=0}^n a_i x^i, \quad a_i \in A, i \in \mathbb{N}$$

Definition 1.6. 设 A 是环, $a \in A$ 不可约如果 $a \neq 0$ 不是单位元且 $\forall b, c \in A (a = bc \Rightarrow) b$ 或 c 为单位元

一个整环 A 是 **唯一因子分解环**,如果 $\forall a \in A$,存在不可约元 $b_1, \ldots, b_n \in A$ 使得 $a = b_1 \cdots_n$ 并且若存在不可约元 c_1, \ldots, c_m 使得 $a = c_1 \ldots c_m$ 则 m = n,则 $\forall i < n \exists j < n (b_i = u_{ij} c_j)$,其中 u_{ij} 是单位元

Corollary 1.8. 若 k 是域,则 $k[X_1,...,X_n]$ 是唯一因子分解环

Corollary 1.9. k 是域, $f \in k[X_1, ..., X_n]$, 则 (f) 是素理想 $\Leftrightarrow f$ 不可约

证明. ⇒: $k[X_1, ..., X_n]/(f)$ 是整环,如果 f 可约,则 f=gh,其中 $g,h \in k[X_1, ..., X_n]$ 且不是单位元,于是 g+(f),h+(f) 非零,而 (g+(f))(h+(f))=0+(f),矛盾

 \Leftarrow : 对于任意 $g,h,p\in k[X_1,\ldots,X_n]$,若 gh=fp,因为 $k[X_1,\ldots,X_n]$ 是 唯一因子分解环,于是 f 整除 g 或者 f 整除 h

2 局部环

一个环是局部环当且仅当所有非单位元构成一个理想。等价地,一个环 是局部环当且仅当所有非单位元构成一个理想。

在环的语言 $\mathcal{L}_{ring} = \{+, \times, 0, 1\}$ 中局部环可以公理为

- 1. R 是环。
- 2. 所有的非单位元构成一个集合 m 是理想,即 m 关于 "+" 封闭,关于 "×" 吸收。

但是非单位元关于"×"总是吸收的,故而(2)可以改为

2. 所有非单位元关于"+"封闭,即 m 是一个群。

Remark. • 0 ∈ \mathbb{R} 出解析函数的函数芽的环 A 是局部环

- 一个函数 f 在 $0 \in \mathbb{R}$ 处解析 \Leftrightarrow 存在开邻域 $U \ni 0$ 使得 f 在 U 上是个幂级数,即 $f \upharpoonright_U = \sum_{n=0}^\infty a_n x^n$,其中 $a_n \in \mathbb{R}$ 。
- 显然, $\sum a_n x^n \sim \sum b_n x^n \Leftrightarrow \forall n(a_n = b_n)$, 故而

 $A = \{f \mid f$ 是幂级数且收敛半径 > 0\

• $\mathfrak{m} = xA = \{xf \mid f \in A\}$ 是唯一的极大理想,其中极大是因为 $A/\mathfrak{m} \cong \mathbb{R}$ 。

Example 2.1. 设 R 是一个环,称 $\sum_{n=0}^{\infty} r_n x^n \ (r_n \in R)$ 的元素为 R 上的形式 幂级数,令 R[[x]] 为 R 上所有形式幂级数构成的集合,定义

1.
$$\sum r_n x^n + \sum s_n x^n = \sum (r_n + s_n) x^n$$

2.
$$\sum r_n x^n \sum s_n x^n = \sum_n (\sum_{i+j=n} r_i s_j) x^n$$

则 $(R[[x]], +, \times, 0_R, 1_R)$ 是一个环。

Definition 2.1. 设 R 是一个环,称 R[[x]] 为 R 的 **形式幂级数环**,若 $g = \sum r_n x^n \in R[[x]]$,则 g 的 **度数**记作 $\deg(g)$,定义为

$$\deg(g) = \min(n \in \mathbb{N} \mid r_n \neq 0)$$

定义 $\deg(0) = \infty$ 。(因此 $\deg(g) \ge 0$)

Lemma 2.2. 假设R

1. 若 $f \in R[[x]]$,且 $\deg(f) = n$,则

$$f=x^n(\sum r_k x^k)$$

其中 $r_0 \neq 0$, 即 $f = x^n g$ 其中 $\deg(g) = 0$

- 2. 若 $f, g \in R[[x]]$,则 $\deg(fg) = \deg(f) + \deg(g)$
- 3. 若 $f = \sum r_n x^n$, $g = \sum s_n x^n$, 则 $fg = 1 \Rightarrow r_0 s_0 = 1$
- 4. 若 $f = \sum r_n x^n$, 则 f 是单位 $\Rightarrow r_0$ 是单位 $(r_0 \neq 0)$
- 证明. 1. 由定义,若 $f = \sum s_k x^k$ 且 $\deg(f) = n$,则 $s_0 = \dots = s_{n-1} = 0$ 且 $s_n \neq 0$,因此 $f = x^n (\sum_{k=n}^{\infty} s_k x^k)$,对任意 $i \in \mathbb{N}$,令 $r_i = s_{i+n}$,则 $f = x^n (\sum r_k x^k)$,其中 $r_0 \neq 0$ 。
 - 2. 假设 $\deg(f) = n$, $\deg(g) = m$, 则由(1), $f = x^n(\sum r_k x^k)$, $g = x^m(\sum s_k x^k)$, 其中 $r_0, s_0 \neq 0$, 因此 $fg = x^{n+m} \sum_{n=0}^{\infty} (\sum_{i+j=n} r_i s_j) x^n$, 因为 $r_0, s_0 \neq 0$, R 是整环,因此 $r_0 s_0 \neq 0$,因此 $\deg(fg) = n + m = \deg(f) + \deg(g)$ 。
 - 3. 由定义, $fg = \sum_{n=0}^{\infty} (\sum_{i+j=n} r_i s_j) x^n = 1$,因此 $r_0 s_0 = 1$
 - 4. 如果 f 是单位,则存在 $g \in R[[x]]$ 使得 fg = 1,由(3), r_0 是单位。

Proposition 2.3. 若 R 是局部环,则 R[[x]] 也是局部环。

证明. • 只需验证非单位元关于加法封闭。

- 设 $f \in R[[x]]$ 是单位元,则 $f = r_0 + g$,其中 r_0 是 R 的单位, $\deg(g) \ge 1$ 。
- 令一方面,若 $f = r_0 + g$ 且 $r_0 \in R$ 是单位, $\deg(g) \ge 1$,取 $s_0 \in R$ 使 得 $s_0 r_0 = 1_R$,则 $s_0 f = 1 + s_0 g$,令 $h = -s_0 g$ 。

Claim: $h + h^2 + h^3 + \dots \in R[[x]]$

证明. 设 $h=\sum s_k x^k$,其中 $s_0=0$,令 $g=\sum_{n=1}^\infty h^n=\sum r_k x^k$,于是 $r_0\in R$,若 $r_0,\dots,r_n\in R$,则 $r_{n+1}=s_{n+1}+\sum_{i=1}^{n-1}s_ir_{n-i}\in R$,因此对于任意 $k\in\mathbb{N}$, $r_k\in R$,因此 $g\in R[[x]]$ 。

- 考虑等式 $(1-h)(1+h+h^2+...)=1$,则 $s_0f(1+h+h^2+...)=1$,故 f 是单位,因此,
- $f \in R[[x]]$ 是单位 $\Leftrightarrow f = r_0 + g$,其中 r_0 是单位且 $\deg(g) \ge 1$ 。
- $f \in R[[x]]$ 不是单位 \Leftrightarrow $\deg(f) \ge 1$ 或 f = r + g,其中 r 不是单位且 $\deg(g) \ge 1$ 。
- f 不是单位 $\Leftrightarrow f \in \mathfrak{m}_0 + xR[[x]] = \{r+g \mid r \in \mathfrak{m}_0, g \in xR[x]\}$, 其中 \mathfrak{m}_0 是 R 的极大理想。
- 显然 $\mathfrak{m}_0 + xR[[x]]$ 是"+"封闭的,故 R[[x]] 是局部环。

Corollary 2.4. 若 R 是局部环, \mathfrak{m}_0 为 R 的极大理想, 则

1. R[[x]] 是局部环, 其极大理想为

$$\mathfrak{m}_0 + (x)$$

2. 若 k 是域,则 k[[x]] 中的理想排成一个降链

$$I_0 = \mathfrak{m}_0 + (x) \supseteq I_1 = (x) \supseteq \cdots \supseteq I_n = (x^n) \supseteq \cdots$$

证明. 1. 已证。

2. 设 $J \neq k[[x]]$ 的理想,令 $n = \min\{\deg(f) \mid f \in J\}$,若 $n = \infty$,则 J = (0)。

若 $n < \infty$ 且 $f = x^n g \in J$ 其中 $\deg(g) = 0$,由于 g 的首项是单位,因此 g 是单位,令 $h \in R[[x]]$ 使得 hg = 1,则 $x^n = hf = hgx^n \in J$,因此 $(x^n) \subseteq J$,又由 n 的定义, $J \subseteq (x^n)$,所以 $J = (x^n)$ 。

Corollary 2.5. 若 k 是域,则 k[[x]] 是局部环,其极大理想为 (x) = xk[[x]],剩余域为 k。

Corollary 2.6. 定义 $k[[X_1,\ldots,X_{n+1}]]=k[[X_1,\ldots,X_n]][[X_{n+1}]]$,则 $k[[X_1,\ldots,X_{n+1}]]$ 为局部环,其极大理想 \mathfrak{m} 为 (X_1,\ldots,X_{n+1}) ,剩余域为k。

Example 2.2. $\Diamond p \in \mathbb{Z}$ 是一个素数,

1. $\mathbb{Z}/p\mathbb{Z}$ 是一个域,这是因为若 0 < r < p,则 (r,p) = 1,故存在 m,n 使得

$$mr + np = 1 \Rightarrow mr \equiv_p 1$$

故 $\mathbb{Z}/p\mathbb{Z}$ 是一个局部环

- 2. 对每个 $n \in \mathbb{N}^+$, $\mathbb{Z}/p^n\mathbb{Z}$ 是局部环
 - \mathbb{Z} 中包含 (p^n) 的理想与 $\mathbb{Z}/p^n\mathbb{Z}$ 中的理想——对应
 - ▼ 中的理想均形如(k)
 - $(p^n) \subseteq (k) \Leftrightarrow k \mid p^n \Rightarrow k = p^m$, $\not \equiv p \mid m \leq n$
 - 故 $\mathbb{Z}/p^n\mathbb{Z}$ 中的理想为

$$p^n \mathbb{Z}/p^n \mathbb{Z} = (0) \subseteq p^{n-1} \mathbb{Z}/p^n \mathbb{Z} \subseteq \cdots \subseteq p \mathbb{Z}/p^n \mathbb{Z}$$

- 故 $p\mathbb{Z}/p^n\mathbb{Z}$ 为 $\mathbb{Z}/p^n\mathbb{Z}$ 的唯一极大理想,显然 $\mathbb{Z}/p^n\mathbb{Z}$ 中有 p^n 个元素。
- $\mathbb{Z}/p^n\mathbb{Z}$ 的元素可唯一表示为

$$a_0+a_1p+\cdots+a_{n-1}p^{n-1}$$

其中 $a_i \in \{0, \dots, p-1\}$ 。

3. 若 m > n, 则 $\mathbb{Z} \to \mathbb{Z}/p^m\mathbb{Z}$ 和 $\mathbb{Z} \to \mathbb{Z}/p^n\mathbb{Z}$ 诱导了

• $\forall m > n$, $\Diamond \pi_{mn}$ 为 $\mathbb{Z}/(p^m)$ 到 $\mathbb{Z}/(p^n)$ 的自然同态,即

$$\pi_{mn}(a_0+a_1p+\cdots+a_{m-1}p^{m-1})=a_0+\cdots+a_{n-1}p^{n-1}$$

- $\diamondsuit \mathbb{Z}^* = \prod_{n=1}^{\infty} \mathbb{Z}/(p^n) = \{(x_1, x_2, \dots) \mid x_n \in \mathbb{Z}/(p^n)\},\$
- 将 x_n 看作 $a_0 + \cdots + a_{n-1}p^{n-1}$ 或序列 (a_0, \dots, a_{n-1})
- 定义 $\mathbb{Z}_n \subseteq \mathbb{Z}^*$ 为

$$\{(x_1, x_2, \dots,) \mid \pi_{mn}(x_m) = x_n, m > n\}$$

- 将 (x_1, x_2, \dots) 中的每个 x_n 看作 $a_0 + \dots + a_{n-1} p^{n-1}$,则 $(x_1, x_2, \dots) \in \mathbb{Z}_p \Leftrightarrow \forall m > n, x_m \in \mathbb{Z}_n$ 的延长
- 故而 $(x_1, x_2, \dots) \in \mathbb{Z}_p$ 唯一对应一个幂级数 $a_0 + a_1 p + a_2 p^2 + \dots$
- 定义 Z* 中的 + 为

$$(x_1, x_2, \dots) + (y_1, y_2, \dots) = (x_1 + y_1, x_2 + y_2, \dots)$$

● 定义 Z* 中的 "×" 为

$$(x_1, x_2, \dots) \cdot (y_1, y_2, \dots) = (x_1 y_1, x_2 y_2, \dots)$$

- 定义零为 (0,0,...,), 幺为 (1,1,...), 则 ℤ* 为环。
- 由于每个 π_{mn} 是同态,故 \mathbb{Z}_p 对"+"与"×"封闭:对任意 $(x_1,x_2,\dots),(y_1,y_2,\dots)\in \mathbb{Z}_p$,对任意 m>n,因为 π_{mn} 是同态,有 $\pi_{mn}(x_m+y_m)=\pi_{mn}(x_m)+\pi_{mn}(y_m)=x_n+y_n$, $\pi_{mn}(x_m\cdot y_m)=\pi_{mn}(x_m)\cdot \pi_{mn}(y_m)=x_n\cdot y_n$,故 $(x_1,x_2,\dots)+(y_1,y_2,\dots),(x_1,x_2,\dots)\cdot (y_1,y_2,\dots)\in \mathbb{Z}_p$ 。
- 故 \mathbb{Z}_p 是一个环,称其为 p-进整数环。
- \mathbb{Z}_p 也称为 $\mathbb{Z}/(p^n)$ 的逆极限,即 $\mathbb{Z}_p = \underline{\lim} \mathbb{Z}/(p^n)$

Remark. 设 $x=(x_1,x_2,\dots)\in\mathbb{Z}_p$,则 x 可以记作 $a_0+a_1p+a_2p^2+\dots$,其中每个 $a_i\in\{0,\dots,p-1\}$,因此 $x_1=a_0$, $x_2=a_0+a_1p$,…, $x_n=\sum_{k=0}^{n-1}a_kp^k$ 。设 $y=(y_1,y_2,\dots)\in\mathbb{Z}_p$,设它可写作 $b_0+b_1p+\dots$,令 $z=x+y=(x_1+y_1,x_2+y_2,\dots)$,将 z 写作 $\sum_{k=0}^{\infty}c_kp^k$,则

$$z_n = x_n + y_n = (\sum_{k=0}^{n-1} a_k p^k + \sum_{k=0}^{n-1} b_k p^k) (\mod p^k)$$

即 z_n 是 $x_n + y_n$ 的 p-进制展开的前 n 项。

同理若 z = xy,则 z_n 是 x_ny_n 的 p-进制展开的前 n 项。故 \mathbb{Z}_p 中的运算是"p-进制"运算。

Lemma 2.7. label:6 若 A,B 是局部环,则 $f:A\to B$ 是满同态,则 $a\in A$ 是单位 $\Leftrightarrow f(a)\in B$ 是单位

证明. \bullet 令 m 是 B 的极大理想,

- 则 $\bar{f}: A/f^{-1}(\mathfrak{m}) \to B/\mathfrak{m}$ 是同构,
- 而 B/\mathfrak{m} 是域,故 $A/f^{-1}(\mathfrak{m})$ 是域,故 $f^{-1}(\mathfrak{m})$ 是极大理想,
- 故 $a \in A$ 是单位 $\Leftrightarrow a \notin f^{-1}(\mathfrak{m}) \Leftrightarrow f(a) \notin \mathfrak{m}$ 是B的单位。

Proposition 2.8. 1. \mathbb{Z}_p 是局部环

2. \mathbb{Z}_p 的理想排成降链

$$p\mathbb{Z}_p\supseteq p^2\mathbb{Z}_p\supseteq\dots$$

3. $\mathbb{Z}_p/p^n\mathbb{Z}_p \cong \mathbb{Z}/p^n\mathbb{Z}$

Claim: x 是单位 $\Leftrightarrow a_0 \neq 0$

证明. ⇐:

- 故存在 $b_0 \in \mathbb{Z}/p\mathbb{Z}$ 使得 $a_0b_0 \equiv 1 \mod p$.
- 由于 π_{21} 是同态,而 $a_0 = \pi_{21}(a_0 + a_1 p)$ 是单位,由引理**??**, $a_0 + a_1 p \in \mathbb{Z}/p^2 \mathbb{Z}$ 也是单位,
- 同理, $\forall b_1 \in \{0, \dots, p-1\}$, $b_0 + b_1 p \in \mathbb{Z}/p^2 \mathbb{Z}$ 是单位,

• $\diamondsuit c_0 + c_1 p \in \mathbb{Z}/p^2 \mathbb{Z}$ 使得

$$(a_0 + a_1 p)(c_0 + c_1 p) = 1 \in \mathbb{Z}/p^2 \mathbb{Z}$$

- 故 $a_0c_0-a_0b_0\equiv 0\mod p$,因此 $c_0\equiv b_0\mod p$,所以 $c_0=b_0$ 。
- 一般地,设 $b_0+b_1x+\cdots+b_{n-1}x^{n-1}\in \mathbb{Z}/(p^n)$ 使得 $(a_0+\cdots+a_{n-1}x^{n-1})(b_0+\cdots+b_{n-1}x^{n-1})=1\in \mathbb{Z}/p^n\mathbb{Z}$,
- 则存在 $b_n \in \{0, \dots, p-1\}$ 使得在 $\mathbb{Z}/(p^{n+1})$ 中有 $(a_0+\dots+a_nx^n)(b_0+\dots+b_nx^n)=1$ 。
- \diamondsuit $y = b_0 + b_1 + \dots = (y_1, y_2, \dots)$, 则 xy = 1, 故 x 是单位。

$$\Rightarrow$$
: 若 $a_0=0$, 则 $x=(0,x_2,\dots)$ 显然不是单位。

以上断言表明,所有非单位元形如 $x=(0,x_2,x_3,\dots)$ 是一个加法群,故而是极大理想,恰好是 $p\mathbb{Z}_p$

2. 设 $J \subseteq \mathbb{Z}_p$ 是一个非平凡理想

- $\diamondsuit k = \min\{n \in \mathbb{N} \mid p^n \in J\}, \quad \text{and} \quad k > 0, \quad p^k \mathbb{Z}_p \subseteq J$
- 断言 $p^k\mathbb{Z}_p=J$ 。
- 设 $x=a_0+a_1p+\cdots\in J$,令 a_m 是第一个非零系数
- 因为 $a_m \neq 0$, $a_m + a_{m+1}p + \dots$ 是单位,故存在 $y \in \mathbb{Z}_p$ 使得 $xy = p^m \in J$
- 由定义, $k \leq m \Rightarrow p^m \in p^k \mathbb{Z}_p \Rightarrow x \in p^k \mathbb{Z}_p$,
- 即 \mathbb{Z}_p 的每个非平反理想都形如 $p^k\mathbb{Z}_p$ 。
- 3. 投射函数诱导了一个同态

其中
$$\pi_n: \mathbb{Z}_p \to \mathbb{Z}/(p^n), \ x=(x_1,\ldots,x_n,\ldots) \mapsto x_n$$
,于是
$$x \in \ker(\pi_n) \Leftrightarrow x_n = 0$$

$$\Leftrightarrow x=(0,\ldots,0,x_{n+1},\ldots)$$

$$\Leftrightarrow x=a_np^n+a_{n+1}p^{n+1}\ldots$$

$$\Leftrightarrow x \in p^n\mathbb{Z}_p$$

Remark. 证明 \mathbb{Z}_p 是局部环的关键是验证

$$x = a_0 + a_1 p + \dots$$
 是单位 $\Leftrightarrow a_0 \neq 0$

以下证明更简洁:

- $\ \, \mbox{if } x=(x_1,x_2,\dots)\in \mathbb{Z}_p\subseteq \prod \mathbb{Z}/(p^n)\,, \ x_1=a_0,\dots,x_n=a_0+a_1p+\dots+a_{n-1}p^{n-1},\dots$
- 由于每个 $\mathbb{Z}/(p^n)$ 都是局部环且 $p\mathbb{Z}/(p^n)$ 是其极大理想,
- 故每个 x_n 在 $\mathbb{Z}/(p^n)$ 中可逆, 令 y_n 是 x_n 在 $\mathbb{Z}/(p^n)$ 的逆
- $\bullet \ \pi_{mn}(x_m y_m) = \pi_{mn}(x_m) \pi_{mn}(y_m) = x_n \pi_{mn}(y_m) = 1 \,,$
- 故 $\forall n < m$, $\pi_{mn}(y_m)$ 都是 x_n 的逆
- 断言: $\pi_{mn}(y_m) = y_n$
- $\bullet \ x_n(y_n-\pi_{mn}(y_m))=0 \Rightarrow y_nx_n(y_n-\pi_{mn}(y_m))=0\,,$
- 故 $y=(y_1,y_2,\dots)$ 是 x 的逆

更加简洁的方法:

- $\mathfrak{p} \ b \in \{0, \dots, p-1\}$ 使得 $a_0 \cdot b \equiv 1 \mod p$,
- $\bullet \ \ \text{ } \ \, \mathbb{M} \ bx = 1 + p(b_0 + b_1 p + \dots) = 1 py \,,$
- $\bullet \ \ \diamondsuit \ c = 1 + py + p^2y^2 + \cdots \in \mathbb{Z}_p \,,$

• $\mbox{ } \mbox{ }$

Remark. • $\mathbb{Z} \mapsto \mathbb{Z}_p$, $x \mapsto x$ 的 p-进制展开是一个单同态。

- \mathbb{Z} 中不能被 p 整除的元素都是 \mathbb{Z}_p 的单位。
- 令 $S = \mathbb{Z} (p)$,则 S 是乘法集, \mathbb{Z} 关于 (p) 的局部化 $\mathbb{Z}_{(p)} = S^{-1}\mathbb{Z} \subseteq \mathbb{Q}$ 是局部环,且 $pS^{-1}\mathbb{Z}$ 是极大理想
- $\mathbb{Z}_{(p)} = \{ \frac{a}{b} : a, b \in \mathbb{Z}, b \nmid b \} \subseteq \mathbb{Q}$
- \mathbb{Z} 到 \mathbb{Z}_p 的嵌入自然地扩张为 $\mathbb{Z}_{(p)}$ 到 \mathbb{Z}_p 的嵌入

$$\begin{split} f: \mathbb{Z} \to \mathbb{Z}_p \\ \downarrow \\ \tilde{f}: S^{-1}\mathbb{Z} \to \mathbb{Z}_p \\ \frac{a}{b} \mapsto (f(b))^{-1} a \end{split}$$

- $\bullet \ \mathbb{Z}_p \cap \mathbb{Q} = \mathbb{Z}_{(p)}$
- 在形式上, \mathbb{Z}_p 与 $\mathbb{F}_p[[X]]$ 有相似之处,然而 $\mathrm{Char}(\mathbb{Z}_p)=0$,而 $\mathrm{Char}(\mathbb{F}_p[[X]])=p$

3 亨泽尔局部环

3.1 亨泽尔局部环 (Henselian)

Definition 3.1. R 局部环, m 极大理想, R 是 **亨泽尔环**如果对每个多项式 $f(x) \in R[x], \ a \in R, \ 有$

$$f(a)\in\mathfrak{m}\wedge f'(a)\notin\mathfrak{m}$$

则存在 $b \in R$ 使得 f(b) = 0 且 $a \equiv b \mod \mathfrak{m}$

Remark. 1. 我们可以把 m 中的元素看作 R 中的"无穷小量",则 $f(a) \in m$ 且 $f'(a) \notin m$ 可理解为 f(a) 在"0"点附近,而 f(x) 在"a"处的斜率不为 "0",此时 f(x) = 0 在 a 点附近可能有解

2. 设 $k = R/\mathfrak{m}$ 是 R 的剩余域,设 $f(x) = \sum_{k=1}^n c_k x^k \in R[x]$,定义,定义 $\bar{f}(x) \in k[x]$ 为 $\sum_{k=1}^n \bar{c}_k x^k$,其中

$$\bar{c}_k = c_k + \mathfrak{m}$$

则 $f(a) \in \mathfrak{m}$ 且 $f'(a) \notin \mathfrak{m} \Leftrightarrow \overline{f}(\overline{a}) = 0$ 且 $\overline{f}'(\overline{a}) \neq 0 \Leftrightarrow \overline{a}$ 是 $\overline{f}(x)$ 的非奇异零点(不是重根)

Lemma 3.2. 设 R 是一个局部环, $f(x) \in R[x]$, $a \in R$, 若 $f(a) \in \mathfrak{m}$ 且 $f'(a) \notin \mathfrak{m}$,则至多有一个 $b \in R$ 使得 f(b) = 0 且 $a \equiv b \mod \mathfrak{m}$

证明. 设 $b \in R$ 使得 f(b) = 0 且 $a \equiv b \mod \mathfrak{m}$,则 $\bar{a} = \bar{b}$,故 $\bar{f}'(\bar{a}) = \bar{f}'(\bar{b}) \neq 0$,故 $f'(b) \notin \mathfrak{m}$ 是一个单位,考虑 f(x) 在 b 点的泰勒展开

$$f(x+b) = f(b) + f'(b)x + cx^2$$

若 $x_0 \in \mathfrak{m}$,则

$$f(x_0+b)=f'(b)x_0+cx_0^2=x_0(f'(b)+cx_0)$$

因为 f'(b) 是单位,因此 $f'(b)+cx_0$ 是单位,故 $f(x_0+b)=0 \Leftrightarrow x_0=0$ 口

3.2 剩余域的提升

Example 3.1. 设 k 是一个域,R=k[[x]],则 R 是一个局部环, $\mathfrak{m}=(x)$ 是 极大理想

 $a\in k\mapsto \bar{a}=a+(x)$ 是 k 到 R/\mathfrak{m} 的同构,即 R 中存在一个子域 k 使得自然投射 $x\mapsto \bar{x}$ 在 k 上是同构

称 k 是 R 的剩余域的提升

Example 3.2. 设 $R=\mathbb{Z}/p^2\mathbb{Z}$,其中 p 是素数, $\mathfrak{m}=p\mathbb{Z}/p^2\mathbb{Z}$, $R/\mathfrak{m}\cong\mathbb{F}_p$,而 R 中没有子域,故 R/\mathfrak{m} 在 R 中没有提升

若有子域,一定有1,但是1可以生成整个R

Example 3.3. 考虑局部环 \mathbb{Z}_p , $\mathfrak{m}=p\mathbb{Z}_p$, $k=\mathbb{Z}_p/\mathfrak{m}\cong \mathbb{F}_p$, $\mathrm{Char}\, \mathbb{Z}_p=0\Rightarrow \mathbb{F}_p\nsubseteq \mathbb{Z}_p$, 故 $\mathbb{Z}_p/\mathfrak{m}$ 在 \mathbb{Z}_p 中没有提升

Definition 3.3. 设 R 是一个局部环, \mathfrak{m} 和 k 分别为其极大理想和剩余域,若存在 R 的子域 E 使得 $\overline{E} = \{\overline{x} = x + \mathfrak{m} \mid x \in E\} = k$,则称 E 是 k 的提升

Remark. • 若 $E \neq k$ 的提升,则 $\pi: E \to \overline{E}$ 是同构, $x \in \ker \pi \Leftrightarrow x \in \mathfrak{m} \Leftrightarrow x$ 不可逆即 x = 0

• 故而若 k 有提升,则提升唯一

Theorem 3.4 (提升定理). 设 R, \mathfrak{m}, k 如上,若 R 是亨泽尔的,且 Char k=0,则 k 在 R 中有提升

3.3 域的扩张理论

Definition 3.5. 设 K, L 是两个域,若 K 是 L 的子域,则称 L 是 K 的一个扩张,记作 L/K

Definition 3.6. 设 L/K 是一个域扩张, $X \subseteq L$,则

1. K[X] 表示由 $K[\]X$ 生成的 L 的子环,

$$K[X] = \langle K \cup X \rangle_L$$

- 2. K(X) 表示 K[X] 的分式域
- 3. 若 $X=\{a_1,\dots,a_n\}$ 有穷,则 K[X] 记作 $K[a_1,\dots,a_n]$, K(X) 记作 $K(a_1,\dots,a_n)$

Proposition 3.7. 若 L/K 是域扩张, $a_1,\ldots,a_n\in L$,则

$$\begin{split} K[a_1,\dots,a_n] &= \{f(a_1,\dots,a_n): f \in K[X_1,\dots,X_n]\} \\ K(a_1,\dots,a_n) &= \{\frac{f(a_1,\dots,a_n)}{g(a_1,\dots,a_n)} \mid f,g \in K[X_1,\dots,X_n], g(a_1,\dots,a_n) \neq 0\} \end{split}$$

Definition 3.8. 设 L/K 是一个域扩张, $a \in L$,称 a 在 K 上是代数的,如果存在一个非零多项式 $f(x) \in K[X]$ 使得 f(a) = 0,如果 a 不是代数的,则 a 在 K 上是超越的

Definition 3.9. 设 L/K 是域扩张, $a \in L$ 在 K 上代数,若 $p(x) \in K[x]$ 是 使得 p(a) = 0 的次数最小的首一多项式,则称 p(x) 是 a 在 K 上的极小多项式,记作 $\min(K,a)$

Remark. • 显然 $I = \{f(x) \in K[X] \mid f(a) = 0\}$ 是 k[x] 的一个理想

- 由于 K[x] 是主理想整环,即每个理想都形如 (g(x)),故 I = (p(x)), $p \in I$ 且 $\deg(p)$ 最小,若要求 p(x) 首项为 1,则 p(x) 唯一
- 显然 p(x) 在 K[X] 中不可约
- 将 $K[a] = \{f(a) \mid f \in K[x]\}$ 视作 K 上的向量空间
- 由于 p 是使得 p(a) = 0 的次数最小的多项式
- 故 $1, a, a^2, ..., a^{n-1}$ 在 K 上线性无关
- $a^n \not\in \{1, ..., a^{n-1}\}$ 的线性组合
- aⁿ⁺¹ 也类似
- $\text{th} \{1, a, \dots, a^{n-1}\} \not\equiv k[a] \text{ in } -44$
- 现在 K[a] 是一个环,同时是 K 上的 n 维向量空间,基为 $\{1, ..., a^{n-1}\}$
- $\forall f(x) \in K[x], f(x) \ni p(x) \subseteq \bar{x}$
- 故存在 $s(x), t(x) \in K[x]$ 使得 s(x)f(x) + t(x)p(x) = 1,故每个 $f(a) \in K[a]$ 都可逆,K[a] 是一个域

Definition 3.10. 设 L/K 是一个域扩张,则 L 是 K 上的向量空间,[L:K] 表示 L 作为 K 空间的维数,称 L/K 是一个有穷扩张如果 [L:K] $< \infty$

Proposition 3.11. 设 L/K 是一个域扩张,且 $a \in L$,在 K 上代数

1. min(K,a) 是 K 上的不可约多项式

- 2. $\forall g(x) \in K[x], \ g(a) = 0 \Leftrightarrow \min(K, a) \mid g(x)$
- 3. 若 min(K,a) 的次数为 n, 则 $\{1,...,a^{n-1}\}$ 是 K[a] 在 K 上的一组基
- 4. K[a] = K(a) 是域, [K(a):K] = n
- 5. $K[a] \cong K[x]/\min(K, a)$

Proposition 3.12. 设 $F \subseteq K \subseteq L$ 是域扩张,则

$$[L:F] = [L:K][K:F]$$

证明. 设 $\{a_i \mid i \in I\}$ 是 K/F 的一组基, $\{b_j \mid j \in J\}$ 是 L/K 的一组基证明 $\{a_ib_j \mid i \in I, j \in J\}$ 是 L/F 的基

Definition 3.13. 设 L/K 是域扩张,若每个 $a \in L$ 都在 K 上代数,则称 L 是 K 的代数扩张

Lemma 3.14. 若 L/K 是有穷扩张,则 L 是 K 的代数扩张且存在 a_1,\ldots,a_n 使得

$$L = K(a_1, \dots, a_n)$$

证明. 对 [L:K] 归纳

若 L = K, 则证明结束

否则,取 $a \in L \setminus K$,则 $1 < [K(a):K] \le [L:K] < \infty$

故存在 n 使得 $\{1,a,\dots,a^{n-1}\}$ 线性无关,a 在 K 上是代数,故 L/K 是代数扩张,

Remark. L 可以由"更少"的元素生成,取 $b_1,\dots,b_m\in L$ 使得 $b_1\notin K,b_2\notin K(b_1)$,…, $b_m\notin K(b_1,\dots,b_{m-1})$,则 $[K[b_1]:K]\geq 2$,故 $[K(b_1,\dots,b_m):K]\geq 2^M$

Lemma 3.15. 若 L/K 是域扩张, $a_1,\ldots,a_n\in L$,若每个 a_i 都在 K 上代数,则 $E=K[a_1,\ldots,a_n]$ 是域且 $[K[a_1,\ldots,a_n]:K]\leq\prod_{i=1}^n[K(a_i):K]$

证明. a_2 在 K 上代数推出 a_2 在 $K[a_1]$ 代数 若 m 时满足,令 $E = K[a_1, ..., a_m]$,则

$$[E[a_{m+1}]:K] = [E[a_{m+1}]:E][E:K] \leq \prod_{i=1}^{m} [K[a_i]:K][E[a_{m+1}]:E]$$

令 p(x) 为 $\min(E, a_{m+1}), q(x)$ 为 $\min(K, a_{m+1})$, 当然 $\deg(p) \leq \deg(q)$ 于是 $[E[a_{m+1}]: E] \leq [K[a_{m+1}]: K]$ 从而 $[E[a_{m+1}]: K] \leq \prod_{i=1}^{m+1} [K[a_i]: K]$

Corollary 3.16. • 设 L/K 是域扩张, $a \in L$,则 a 在 K 上代数当且仅当 $[K(a):K]<\infty$

- L 在 K 上代数当且仅当对每个有穷的 $X \subseteq L$,都有 $[K(X):X] < \infty$
- $X \subseteq L$ 使得每个 $a \in X$ 都在 K 上代数,则 K(X)/K 是代数扩张

Remark. 设 $a \in L$ 在 K 上超越,则映射 $\operatorname{ev}_a : F[X] \to F[a]$ 是同构

Proposition 3.17. 设 $F \subseteq K \subseteq L$ 是域扩张,若 K/F 和 L/K 均是代数扩张,则 L/F 也是代数扩张

证明. 设 $a \in L$, 令 $f(x) = k_0 + \dots + x^n$ 是 a 在 K 的极小多项式,显然 $f(x) \in F[k_0, \dots, k_n]$,故 a 在 $F[k_0, \dots, k_n]$ 上代数,从而 $[F[k_0, \dots, k_n][a]: F[k_0, \dots, k_n]] < \infty$,故 $[F[k_0, \dots, k_n, a]: F] < \infty$,故 $F[k_0, \dots, k_n, a]/F$ 是代数扩张,故 a 在 F 上代数。

Corollary 3.19. 设 L/K 是一个域扩张,令 E 为 K 在 L 中的代数闭包,则 E 是一个域,从而是 K 在 L 中最大的代数扩张

证明. 只需验证 E 中的元素关于加法乘法封闭

设 $a,b \in E$,则 $[K[a]:K],[K[b]:K]<\infty$,故 $[K[a,b]:K]<\infty$, $[K[a,b],K] \leq [K[a]:K][K[b]:K]<\infty$

Definition 3.20. 设 K 是一个域,K 是 **代数闭域**,如果 K 的任何真扩张都不是代数扩张

 $E \supseteq K$ 是 K 的 **代数闭包**如果 E 是代数闭的,且 E 的包含 K 的真子域都不是代数闭的

Remark. 1. K 是代数闭域 \Leftrightarrow 任何非常数 $f(x) \in K[x]$ 在 K 中有根 \Leftrightarrow 只有 $\deg \leq 1$ 的 $f(x) \in K[x]$ 不可约

2. 若 L 是代数闭的且 $K \subseteq L$,则 $E = \{a \in L \mid a$ 在 K 上代数 }是 K 的代数闭包

下面给出代数闭包的构造

设 K 是一个域且 $\lambda=|K|+\omega$,令 $\{f_i(x)\mid i<\lambda\}$ 是 K[x] 的一个枚举 (选择公理),令 $K_0=K$

若 $f_0(x)$ 在 K_0 上可约,则 $K_1 = K_0$

若不可约,则 $K_1 = K_0[x]/(f_0(x))$,于是 $f_0(x)$ 在 K_1 中有根 $(x+(f_0(x)))$

一般地,若 $\{K_i \mid i < \alpha\}$ 已构造,若 $\alpha = \beta + 1$,则 $K_\alpha = K_\beta$ 或 $K_\alpha = K_\beta[x]/(f_\beta(x))$

若 α 是极限序数,则 $K_{\alpha} = \bigcup_{\beta < \alpha} K_{\beta}$

于是每个 K_{i+1}/K_i 是代数扩张,每个 $f_i(x) \in K[X]$ 在 K_{i+1} 中可约

令 $E = \bigcup_{\alpha < \lambda} K_{\alpha}$,断言 E/K 是代数的

设 $a \in E$,则 $\exists \alpha < \lambda$ 使得 $a \in K_{\alpha}$

则存在 $c_0, \dots, c_{n-1} \in K_{\beta_0}$ 使得 $\sum c_i a^i = 0$,

若 $\beta_0 \neq 0$,则 $\exists \alpha_0 < \beta_0$ 使得 c_0,\ldots,c_{n-1} 在 K_{α_0} 上代数,从而 a 在 $K_{\alpha_0}[c_0,\ldots,c_{n-1}]$ 上代数,由传递性(index),a 在 K_{α_0} 上代数,与 β_0 的极小性矛盾,故 $\beta_0=0$

同理 E 是代数闭的,因为每个代数扩张对应一个极小多项式,但是在构造过程中多项式已经被用完了

 $E \in K$ 的代数闭包

Proposition 3.21. 任何域 K 都有代数闭包,且其代数闭包相互同构,记作 K^{alg}

若 E' 是 K 的代数闭包,考虑 $E \to E'$ 的部分同构,back-and-forth 一 步一步抓每个元素,极大同构就是真的同构

3.4 提升定理

设 R 是亨泽尔局部环, $\mathfrak{m} \subseteq R$ 是极大理想, $k = R/\mathfrak{m}$ 是剩余域,若 Char k = 0,则 k 可以被提升,即存在子域 $E \subseteq R$ 使得

$$k = \overline{E} = \{a + \mathfrak{m} \mid a \in E\}$$

证明. 令 $n_R = \underbrace{1_R + \dots + 1_R}_n$, 令 n_k 表示 $\underbrace{1_k + \dots + 1_k}_n$, 则 $n_k = \bar{n}_R = n_R + \mathfrak{m}$, 由于 Char k = 0,故 $n_k \neq 0$,从而 $n_R \notin \mathfrak{m}$,故 R 的特征为 0

不妨假设 $\mathbb{Z} \subseteq R$, $\forall n \in \mathbb{Z}$, $n \notin \mathfrak{m}$, 由于 R 是局部环每个 $n \neq 0$ 均可逆, 故 $\mathbb{Q} \subseteq R$

注意到每个 $E \in \mathcal{F}$ 中的非零元素都可逆,故而 E 到 k 都是单同态, $\ker(\pi) \subseteq \mathfrak{m}$,令 E^* 是 \mathcal{F} 在 \subseteq 下的极大元,证明 E^* 就是 k 的提升

断言 1: E^* 在 R 中代数闭

否则, $a \in R \setminus E^*$ 在 E^* 上代数,则 $E^*[a]$ 是 E^* 的真域扩张

下面证明 $\overline{E}^* = \{a + \mathfrak{m} \mid a \in E^*\}$ 是 $k = R/\mathfrak{m}$

否则,设 $\bar{b} = b + \mathfrak{m} \in k \setminus \bar{E}^*$,则 \bar{b} 在 \bar{E}^* 上代数或超越

若 \bar{b} 在 \bar{E}^* 上代数,则存在 f(x) 使得 $\bar{f}(x)$ 是 \bar{b} 在 \bar{E}^* 上的极小多项式,即 $\bar{f}(\bar{b}) = 0$ 且 $\bar{f}'(\bar{b}) \neq 0$,即 $f(b) \in \mathfrak{m}$ 且 $f'(b) \notin \mathfrak{m}$,由亨泽尔性,存在 $\epsilon \in \mathfrak{m}$ 使得 $f(b+\epsilon) = 0$,即 $b+\epsilon$ 在 E^* 上代数,而 $\overline{b+\epsilon} = \bar{b} \notin \bar{E}^*$,于是 \bar{E}^* 不是代数闭,矛盾

若 $\bar{b} \in k \setminus \bar{E}^*$ 是超越的,于是 $\forall f(x) \in E^*[X], f(b) \notin \mathfrak{m}$,即 $E^*[b]$ 中每个非零元都不属于 \mathfrak{m} ,从而可逆,故 $E^*(b)$ 是 R 的一个子域,是 E^* 的真扩张,矛盾

故
$$\overline{E}^* = k = R/\mathfrak{m}$$

4 超积与 Ax-Kochen 原理

4.1 环的一阶语言

考虑环的一阶语言 $\mathcal{L}_{ring} = \{+, \times, 0, 1\}$

4.2 Loś 超积定理

4.3 局部 Ax-Kochen 原理

观察: $\mathbb{Z}_p = \{\sum_{n=0}^\infty a_n p^n \mid a_n \in \{0,\dots,p-1\}\}$ 与 $\mathbb{F}_p[[t]] = \{\sum_{n=0}^\infty a_n t^n \mid a_n \in \{0,\dots,p-1\}\}$ 的相似之处:

- 1. $\mathbb{Z}_p/(p) = \mathbb{F}_p = \mathbb{F}_p[[t]]/(t)$
- 2. (局部) \mathbb{Z}_p 是 $\{\mathbb{Z}/(p^n) \mid n \in \mathbb{N}^+\}$ 的逆向极限
- 3. (局部) $\mathbb{F}_p[[t]]$ 是 $\{\mathbb{F}_p[t]/(t^n) \mid n \in \mathbb{N}^+\}$ 的逆向极限
- 4. \mathbb{Z} 在 \mathbb{Z}_p 稠密, $\mathbb{F}_p[t]$ 在 $\mathbb{F}_p[[t]]$ 中稠密

差异:

- 1. Char $\mathbb{Z}_p = 0$, Char $(\mathbb{F}_p[[t]]) = p$
- 2. $\operatorname{Char}(\mathbb{Z}/p^n) = p^n$, $\operatorname{Char}(\mathbb{F}_p[t]/(t^n)) = p$

Theorem 4.1 (局部 Ax-Kochen 同构定理). 令 \mathcal{U} 是素数集上的一个非主超滤,则对每个 $n \in \mathbb{N}^+$,有

$$\prod_{\mathcal{U}}(\mathbb{Z}/(p^n))\cong \prod_{\mathcal{U}}(\mathbb{F}_p[t]/(t^n))$$

Lemma 4.2. 设 $\{A_i \mid i \in I\}$ 是一组亨泽尔局部环, A_i 的极大理想为 \mathfrak{m}_i ,剩余域为 k_i ,令 $\mathcal U$ 是 I 上的一个超滤,则

- $1. \prod_{\mathcal{U}} A_i$ 是一个亨泽尔局部环
- 2. $\prod_{\mathcal{U}} \mathfrak{m}_i = \{[(a_i)_{i \in I}] \mid a_i \in \mathfrak{m}_i\}$ 是极大理想

- 3. $\prod_{\mathcal{U}} k_i$ 同构于 $\prod_{\mathcal{U}} A_i / \prod_{\mathcal{U}} \mathfrak{m}_i$
- 证明. 1. 亨泽尔局部环是一阶句子
 - 2. 设 $[a] \in \prod_{\mathcal{U}} A_i$,则

若 $[a] \notin \prod_{\mathcal{U}} \mathfrak{m}_i$,则显然 $\{i \in I \mid a_i \notin \mathfrak{m}_i\} \in \mathcal{U}$,故 $\pi(\prod_{i \in I} \mathfrak{m}_i) = \prod_{\mathcal{U}} \mathfrak{m}_i$ 是其极大理想

3. 设 $k_i = A_i/\mathfrak{m}_i$,令 $R_i: A_i \to k_i$ 为自然投射,令 $\prod_{\mathcal{U}} R_i: \prod_{\mathcal{U}} A_i \to \prod_{\mathcal{U}} (A_i/\mathfrak{m}_i)$, $[(a_i)_{i \in I}] \mapsto [(R_i(a_i))_{i \in I}]$,则 $\prod_{\mathcal{U}} R_i$ 是良定义的满同态,且 $\ker(\prod_{\mathcal{U}} R_i) = \prod_{\mathcal{U}} \mathfrak{m}_i$

Lemma 4.3. 若 $f(x) \in \mathbb{Z}[x]$, n>0, $a \in \mathbb{Z}$ 使得 $f(a) \equiv 0 \mod p^n$, $f'(a) \not\equiv 0 \mod p$, 则存在 $b \in \mathbb{Z}$ 使得 $a \equiv b \mod p^n$ 且 $f(b) \equiv 0 \mod p^{n+1}$

证明. 对n 归纳证明:

1. 若 n=1, 考虑同态 $\pi:\mathbb{Z}\to\mathbb{Z}/(p^2)$, $f'(a)\not\equiv 0 \mod p$, 于是 $\pi(f'(a))$ 是 $\mathbb{Z}/(p^2)$ 的单位,令 $c\in\mathbb{Z}/(p^2)$ 是 $\pi(f'(a))$ 的逆

任取 $\tilde{c} \in \mathbb{Z}$ 为 c 的提升,令 $\epsilon_1 = -\tilde{c}f(a)$,令 $b = a + \epsilon_1$,则

 $f(a) \equiv 0 \mod p \Rightarrow \epsilon_1 \equiv 0 \mod p \Rightarrow a \equiv b \mod p$

$$\begin{split} f(b) &= f(a+\epsilon_1) = f(a) + f'(a)\epsilon_1 + \epsilon_1^2 r \,, \\ \pi(f(b)) &= \pi(f(a)) + \pi(f'(a)\epsilon_1) + \pi(\epsilon_1^2 r) = \pi(\epsilon_1^2 r) \end{split}$$

 $\epsilon_1 \equiv 0 \mod p, \; 因此 \, \epsilon_1^2 \equiv 0 \mod p^2$

2. $f(a) \equiv 0 \mod p^n$, $f'(a) \not\equiv 0 \mod p$, $令 \pi_{n+1} : \mathbb{Z} \to \mathbb{Z}/(p^{n+1})$, 令 $c \in \mathbb{Z}/(p^{n+1})$ 为 $\pi_{n+1}(f'(a))$ 的逆,令 \tilde{c} 为 c 在 \mathbb{Z} 的一个提升,令 $\epsilon_n = -\tilde{c} \cdot f(a)$,则 $\epsilon_n \equiv 0 \mod p^n$,令 $b = a + \epsilon_n$,则 $a \equiv b \mod p^n$,且 $f(a + \epsilon_n) = f(a) + f'(a)\epsilon_n + \epsilon_n^2 \cdot r$,

$$\begin{split} \pi_{n+1}(f(b)) &= \pi_{n+1}(f(a)) + \pi_{n+1}(f'(a))\pi_{n+1}(\epsilon_n) + 0 \\ &= 0 \end{split}$$

Corollary 4.4. 设 $f(x)\in\mathbb{Z}[x]$, $a\in\mathbb{Z}$ 使得 $f(a)\equiv 0\mod p$, $f'(a)\not\equiv 0\mod p$, 则对任意 n>0,存在整数序列 $b_1=a,b_2,\ldots,b_n$ 使得 $b_k\equiv b_{k+1}\mod p^k$ 且 $f(b_k)\equiv 0\mod p^k$

若要求 $b_k < p^k$, 则序列唯一

Corollary 4.5. 对每个n > 0, $\mathbb{Z}/(p^n)$ 都是亨泽尔局部环

证明. 已知 $\mathbb{Z}/(p^n)$ 是局部环,下面证明 $\mathbb{Z}/(p^n)$ 的亨泽尔性。 同态 $\pi_n: \mathbb{Z} \to \mathbb{Z}/(p^n)$ 可以自然扩张为

$$\mathbb{Z}[x] \to \mathbb{Z}/(p^n)[x]$$

记作 π_n ,用 \tilde{f} 表示 $f(x) \in \mathbb{Z}/(p^n)[x]$ 在 $\mathbb{Z}[x]$ 中的提升,用 \tilde{a} 表示 $a \in \mathbb{Z}/(p^n)$ 在 \mathbb{Z} 的一个提升,显然对任意 $f(x) \in \mathbb{Z}/(p^n)[x]$ 以及 $a \in \mathbb{Z}/(p^n)$ 有

- $1.\ f(a)\in \mathfrak{m} \Leftrightarrow \tilde{f}(\tilde{a})\equiv \mod p$
- 2. $f'(a) \notin \mathfrak{m} \Leftrightarrow \tilde{f}'(\tilde{a}) \not\equiv 0 \mod p$

设 f,a 满足条件 1, 2, 则由引理 4.3 存在 $* \in \mathbb{Z}$ 使得

Theorem 4.6. 若 R 是一个局部环,如果存在 $t \in R$ 使得 $\mathfrak{m} = tR$ 是极大理想,则存在 n > 0 使得 $t^n = 0$,则 R 是一个亨泽尔环

Remark. 设 R 是局部环, \mathfrak{m} 是极大理想, $t \in R$ 使得 $\mathfrak{m}=(t)$, $t^{n-1} \neq 0$, $t^n=0$, 则

$$R = (t^0) \supseteq (t) \supseteq \cdots \supseteq (t^n) \supseteq (t^{n+1} = \emptyset)$$

是一个严格降链

对每个 $r \in R$,存在 $m \le n$ 使得

$$r \in (t^m) \smallsetminus (t^{m+1})$$

定义r的**范数**|r|为

$$r \neq 0 \Rightarrow |r| = 2^{-m}$$

 $r = 0 \Rightarrow |r| = 0$

则(R,||)是一个完备的(超度量)空间

- 1. $r = 0 \Leftrightarrow |r| = 0, |1| = 1$
- 2. $|r_1 + r_2| \le \max\{|r_1|, |r_2|\}$
- 3. $|r_1r_2| \leq |r_1||r_2|$

这种范数称为超范数,对应的度量称为超度量。

 $\mathbb{Z}/(p^n)$ 和 $k[t]/t^n$ 都是完备的超度量空间

Remark. 若 R 是一个局部整环, $t \in R$ 使得 $\mathfrak{m} = (t)$ 且 $(t^n) \neq 0$

$$\bigcap_{n=0}^{\infty} (t^n) = \{0\}$$

则 (t^0) $\supsetneq \cdots \supsetneq (t^n)$ $\supsetneq \ldots$ 是一个严格降链,设 $r \in R$,定义

$$|r| = \begin{cases} 2^{-m} & r \in (t^m) \setminus (t^{m-1}) \\ 0^r = 0 \end{cases}$$

则(R,||)是一个超度量空间

1.

2.

3. $|r_1r_2| = |r_1||r_2|$

但 R 不一定完备

Lemma 4.7. 设 R 是一个亨泽尔局部环, m 是极大理想, k 是剩余域, 若 $t \in R$ 使得 $\mathbf{m} = (t)$ 且

Char(k) =
$$0, t^{n-1} \neq 0, t^n = 0$$

则 $R \cong k[X]/(x^n)$

证明. 由提升定理, k 在 R 中有提升 E, 则 R 是 E 上的向量空间。 **断言 1**: $\{1, t, ..., t^{n-1}\}$ 是 R 在 E 上的一组基。

- 1. 线性无关: 设 $e_0+\cdots+e_{n-1}t^{n-1}=0$,若 $e_0,\ldots,e_{n-1}\in E$ 不全为 0,令 $i=\min\{k\mid e_k\neq 0\},\ \ \, \text{则 }e^it^i=-(e_{i+1}t^{i+1}+\cdots+e_{n-1}t^{n-1}),\ \ \, \text{两边乘}$ $t^{n-i-1},\ \ \, \text{则 }e_it^{n-1}=0\Rightarrow t^{n-1}=0,\ \ \, \text{矛盾}$
- 2. 设 $r \in R$, 我们找出

断言 2: 若 $s \in (t^k)$,则存在 $e \in E$ 使得

$$s - et^k \in (t^{k+1})$$

若 $s \in (t^{k+1})$,则 e = 0;若 $s \notin (t^{k+1})$,则 $s = at^k$, $a \notin (t)$,由于 $E/\mathfrak{m} = R/\mathfrak{m}$,故存在 $e \in E$ 使得 $e/\mathfrak{m} = a/\mathfrak{m}$,故 $et^k - s = et^k - at^k = (e-a)t^k \in (t^{k+1})$

由以上断言,可递归构造 $e_0, e_1, \ldots, e_{n-1}$ 如下

- 取 $e_0 \in E$ 使得 $r e_0 \in (t)$
- 取 $e_1 \in E$ 使得 $r e_0 e_1 t \in (t^2)$
- 取 $e_{n-1} \in E$ 使得 $r-e_0-\cdots-e_{n-1}t \in (t^n)=\{0\}$

$$\exists \mathbb{I} \ r=e_0+e_1+\cdots+e_{n-1}t^{n-1}$$

定义 $\pi: E[X] \to R$, $f(x) \mapsto f(t)$ 。 则断言 1 保证 π 是满同态且 $\ker(\pi) = (x^n)$, 即

$$R \cong E[X]/(x^n) \cong k[X]/(x^n)$$

若 $k \subseteq R$, $a_1, \ldots, a_n \in R$, $R = k[a_1, \ldots, a_n]$, 则

Theorem 4.8 (局部 Ax-Kochen 同构定理). 令 \mathcal{U} 是素数集上的一个非主超滤,则对每个 $n \in \mathbb{N}^+$,有

$$\prod_{\mathcal{U}}(\mathbb{Z}/(p^n))\cong \prod_{\mathcal{U}}(\mathbb{F}_p[t]/(t^n))$$

证明. 令 $\mathcal U$ 是素数集 $\mathcal P$ 上的一个非主超滤,则 $\prod_{\mathcal U} \mathbb F_p$ 是 $\prod_{\mathcal U} \mathbb Z/(p^n)$ 与 $\prod_{\mathcal U} \mathbb F_p[t_p]/(t_p^n)$ 的剩余域

对每个 n>0, p>n 能推出 $\mathbb{F}_p \vDash n \neq 0$, 故 $\{p\in \mathcal{P} \mid \mathbb{F}_p \vDash n \neq 0\}$ 是 \mathcal{P} 的余有穷集,故 $\forall n>0$,有 $\prod_{\mathcal{U}} \mathbb{F}_p \vDash n \neq 0$,故

- 1. Char $\prod_{\mathcal{U}} \mathbb{F}_p = 0$
- 2. 同理 $a=[(p)_{p\in\mathcal{P}}]$ 满足 a 是 $\prod_{\mathcal{U}}\mathbb{Z}/(p^n)$ 的极大理想,且 $a^{n-1}\neq 0$, $a^n=0$

3.

Theorem 4.9 (局部 Ax-Kochen 转移原理). 给定 n>0 以及一个 \mathcal{L}_{ring} -句子 σ 存在有限的素数集 E_{σ} 使得对每个 $p\notin E_{\sigma}$ 有

$$\mathbb{Z}/p^n \vDash \sigma \Leftrightarrow (\mathbb{F}_p[t]/t^n) \vDash \sigma$$

证明. 否则,

$$X_{\sigma} = \{ p \in \mathcal{P} \mid \mathbb{Z}/p^n \vDash \sigma \Leftrightarrow (\mathbb{F}_p[t]/t^n) \vDash \sigma \}$$

的补集 $Y_{\sigma} = \mathcal{P} \setminus X_{\sigma}$ 是无穷集。