Negli esercizi deguenti facciamo riferimento alla forma normale per gli automai a pila presentata a lezione, in cui un automa a pila è, come sempre, una 7-tupla

$$M = \langle Q, \Sigma, \Gamma, \delta, q_0, Z_0, F \rangle$$

dove Q è l'insieme finito degli stati, Σ è l'alfabeto di input, Γ è l'alfabeto della pila, $q_0 \in Q$ è lo stato iniziale, $Z_0 \in \Gamma$ simbolo iniziale sulla pila, $F \subseteq Q$ è l'insieme degli stati finali. Nella forma normale l'automa opera come segue:

- all'inizio della computazione la pila contiene solo il simbolo Z_0 , che non può essere mai rimosso o caricato sulla pila;
- l'input è accettato se e solo se l'automa raggiunge una configurazione in cui tutto l'input è stato letto, lo stato appartiene all'insieme F, la pila contiene solo Z_0 ;
- in una mossa è possibile caricare un simbolo in cima alla pila, rimuovere il simbolo che si trova in cima alla pila, oppure lasciare la pila inalterata;
- nelle mosse in cui l'automa legge un simbolo dall'input la pila non viene modificata.

La funzione di transizione δ di un automa a pila M in questa forma può essere scritta come:

$$\delta: Q \times (\Sigma \cup \{\varepsilon\}) \times \Gamma \to 2^{Q \times (\{-, \text{pop}\} \cup \{\text{push}(Z) | Z \in \Gamma\})}$$

con il seguente significato, per $q, p \in Q, A, B \in \Gamma, a \in \Sigma$:

- $(p, -) \in \delta(q, a, A)$: se il simbolo in input è $a \in \Sigma$, l'automa M nello stato q, con A in cima alla pila, può leggere a, muovendo dunque la testina di input a destra di una posizione, e raggiungere lo stato p, senza modificare la pila;
- $(p, -) \in \delta(q, \varepsilon, A)$: l'automa M nello stato q, con A in cima alla pila, senza leggere alcun simbolo dall'input può raggiungere lo stato p, senza modificare la pila;
- $(p, push(B)) \in \delta(q, \varepsilon, A)$: l'automa M nello stato q, con A in cima alla pila, senza leggere alcun simbolo dall'input può raggiungere lo stato p, aggiungendo B in cima all apila (si noti che B non può essere Z_0);
- $(p, pop) \in \delta(q, \varepsilon, A)$: l'automa M nello stato q, con A in cima alla pila, senza leggere alcun simbolo dall'input può raggiungere lo stato p, rimuovendo il simbolo A dalla cima della pila (si noti che A non può essere Z_0).

Da un automa a pila M nella forma precedente, abbiamo costruito una grammatica context free

$$G = \langle V, \Sigma, P, S \rangle$$

dove l'insieme V delle variabili contiene tutte le triple della forma [qAp], con $q,p\in Q,\,A\in\Gamma$, più il simbolo iniziale S di G, dunque

$$V = \{ [qAp] \mid q, p \in Q, A \in \Gamma \} \cup \{S\}$$

le produzioni in P sono:

- a. $[qAp] \rightarrow [qAr][rAp]$, per ogni $q, p, r \in Q, A \in \Gamma$;
- b. $[qAp] \rightarrow [q'Bp']$, per ogni $q, q', p, p' \in Q$, $A, B \in \Gamma$ tali che $(q', \text{push}(B)) \in \delta(q, \varepsilon, A)$ e $(p, \text{pop}) \in \delta(p', \varepsilon, B)$;
- c. $[qAp] \to a$, per ogni $q, p \in Q$, $a \in \Sigma \cup \{\varepsilon\}$, $A \in \Gamma$ tali che $(p, -) \in \delta(q, a, A)$;
- d. $[qAq] \to \varepsilon$, per ogni $q \in Q$, $A \in \Gamma$;
- e. $S \to [q_0 Z_0 q]$, per ogni $q \in F$.
- 1. Studiate come trasformare un automa a pila nella forma classica, vista in lezioni precedenti, in un automa a pila equivalente nella forma normale presentata in questa lezione.

Solution: