Toy model simulation

Generating:

$$\frac{dN}{d\phi} = 1 + 2v_2\cos(2\phi) + 2a_{\pm}\sin(2\phi)$$

Input:

$$v_2 = 0.05$$

 $a_+ = \pm 0.02$

500 particles / event

Positive: eta<0 125 eta>0 125

Negative : eta<0 125 eta>0 125

Expectation:

$$\gamma_{+-} = 0.0004$$

$$\gamma_{++} = \gamma_{--} = -0.0004 = -\left(\frac{\pi}{4}\right)^2 * \Delta < A^2 >$$

Positive Eta<0

Positive Eta>0

Negative Eta<0

Negative Eta>0

Eta<0

$$\gamma_{++_east} = -0.0003994$$

Eta>0

$$\gamma_{++_west} = -0.0004028$$

Eta>0
$$\gamma_{--west} = -0.0004042$$

$$\gamma_{+-east} = -0.0004046$$

$$\gamma_{+-_west} = -0.0004019$$

 η_{sub} Event $Resolution = 0.5579 \pm 0.000256$

 $\delta < A_{UD}^2 >$ has a weakly linear dependence of v_2 $\delta < A_{UD}^2 >$ is consistent with 0

Compared with data, We can't find $\delta < A^2 >$ have a linear dependence of v_2^{obs}

 $\delta < A_+ A_- >_{UD}$ has a weakly linear dependence of v_2 $\delta < A_+ A_- >_{LR}$ is consistent with 0

Compared with data, We can't find $\delta < A_+A_- >$ have a linear dependence of v_2^{obs}

$$\left(\frac{\pi}{4}\right)^2 * \Delta < A^2 >= 0.0003931$$
 is consistent with γ_{++} and γ_{--} $\left(\frac{\pi}{4}\right)^2 * \Delta < A_+A_- >= -0.00045463931$

 Δ have no linear dependence of v_2^{obs} .

If we should add some other terms in our generating function???