Guida Geometria e Algebra Lineare

DOMANDE E METODI SOLUTIVI

MATRICI

- Tipi di matrice
 - o Identica: diagonale composta da tutti 1 mentre gli altri elementi sono 0
 - Triangolare: sopra o sotto la diagonale ha tutti 0
 - o Diagonale: solo gli elementi sulla diagonale sono diversi da 0
 - Simmetrica: simmetrica rispetto alla diagonale
 - Singolare: ha determinante nullo
- Matrice aggiunta A*:
 - Si trova la matrice formata dai complementi algebrici di A
 - Ogni elemento si sostituisce con il numero ottenuto così: si elimina la sua riga e la sua colonna dalla matrice, si calcola il determinante poi e si moltiplica per (-1)^{n+k} con n e k rispettivamente il numero di riga e colonna
 - Si scrive la trasposta di quella appena trovata
- ➤ Matrice inversa A⁻¹:
 - o Esiste solo se la matrice non è singolare
 - A⁻¹=A*/detA
 - Det(A⁻¹)=1/det(A)

SISTEMI

- Rouche-Capelli
 - Trovare matrice dei coefficienti A e dei termini noti B
 - Trovare il rank di A
 - Trovare il rank di (A|B)
 - Se rank(A)!=rank(A|B) il sistema non ha soluzioni
 - Se rank(A)=rank(A|B) il sistema ha infinito^(n-r) soluzioni, dove n è il numero delle incognite e r è il rank di A
- Interpretazione geometrica:
 - o Piani:
 - Infinito^0 soluzioni: i piani si intersecano in un punto
 - Infinito^1 soluzioni: i piani si intersecano tutti in una retta
 - Infinito^2 soluzioni: i piani si intersecano in un piano
 - No soluzioni: piani paralleli
 - o Rette:
 - Infinito^0 soluzioni: rette secanti
 - Infinito^1 soluzioni: rette coincidenti
 - No soluzioni: le rette non si intersecano mai

Per scoprire se sono sghembe o parallele si studia il sistema omogeneo Ax=0.

Quindi si studia la posizione delle rette traslate in modo che passino per l'origine:

- Infinito^0 soluzioni: sono secanti nell'origine quindi altrove sghembe
- Infinito^1 soluzioni: sono coincidenti nell'origine quindi altrove parallele

SPAZI VETTORIALI

- Verificare che un insieme sia un sottospazio
 - Scrivere due vettori generici appartenenti al sottospazio
 - Scrivere una loro combinazione lineare
 - o Calcolarne il risultato e verificare che rispetti la definizione del sottospazio considerato
- Trovare equazioni conoscendo i generatori
 - o ridurre l'insieme dei generatori ad una base: scrivere la matrice formata dai vettori generatori e calcolarne il rank; i vettori appartenenti al minore di ordine massimo utilizzato per calcolare il rank sono appartenenti alla base

- o scrivere la matrice formata dai vettori appartenenti alla base e dal generico vettore [x,y,...]^t; imporre il rank di questa matrice uguale al rank della matrice formata dai vettori base, quindi imporre determinante=0. Calcolando il determinante si ottiene l'equazione dello spazio vettoriale.
- Trovare una base conoscendo le equazioni:
 - o Scrivere la matrice del sistema e calcolarne il rank (se si ha più di una equazione, altrimenti il rank=1)
 - o Spostare al secondo membro le n-r incognite che saranno ora considerate parametri
 - o Risolvere il sistema equivalente ottenuto
 - o Scrivere il generico vettore dello spazio utilizzando le soluzioni del sistema
 - Raccogliere i parametri
 - o I vettori che moltiplicano i parametri sono i vettori appartenenti alla base
- Trovare una base dell'intersezione:
 - o Conoscendo le equazioni degli spazi:
 - Mettere a sistema tutte le equazioni
 - Trovare una base a partire da questo sistema
 - Conoscendo le basi degli spazi:
 - Porre il generico vettore di uno spazio uguale al generico vettore di un altro, scrivendoli come combinazione lineare delle basi dei due spazi: aV₁+bV₂+...=cW₁+dW₂+...
 - Scrivere il sistema che deriva da questa uguaglianza tra combinazioni lineari e la matrice dei coefficienti (dopo aver portato tutte le incognite al primo membro)
 - Calcolare il rank della matrice per scoprire quali sono le equazioni indipendenti
 - Risolvere il sistema formato dalle equazioni indipendenti (spostando ora la secondo membro le n-r incognite ora parametri)
 - La soluzione del sistema è il vettore contenente i coefficienti che vanno assegnati ai vettori nella combinazione lineare per formare una nuova base dell'intersezione.
- > Trovare una base dello spazio somma
 - A partire dalle basi: Si cercano le colonne indipendenti della matrice formata dai vettori della base del primo spazio e dai vettori della base del secondo spazio
- Trovare la equazione di uno spazio somma a partire dalla base
 - o si crea la matrice formata da i vettori della base dello spazio somma
 - o si aggiunge alla matrice il generico vettore dello spazio somma [x,y,...]^t
 - o si impone det=0 e nel calcolarlo si trova l'equazione
- > Trovare la dimensione di uno spazio:
 - a) Contare il numero di vettori appartenenti ad una base dello spazio
 - b) Utlizzare la formula di Grassman: $\dim(U) + \dim(V) = \dim(U \cap V) + \dim(U+V)$
- Determinare se una somma U + V è somma diretta:
 - Verificare se $U \cap V = \{0\}$: se la dimensione di $U \cap V \stackrel{.}{e} 0$, $U + V \stackrel{.}{e}$ somma diretta, altrimenti no

APPLICAZIONI LINEARI

- Verificare che una funzione sia una applicazione lineare:
 - \circ Verificare se f(au + bv) = af(u) + bf(v) con u e v generici vettori dello spazio di partenza
- Definizioni:
 - Omomorfismo: generica applicazione lineare
 - Isomorfismo: applicazione lineare biunivoca
 - Endomorfismo: applicazione lineare che opera nello stesso spazio, cioè il cui dominio coincide con il codominio
 - o Automorfismo: endomorfismo biunivoco
 - Applicazione lineare singolare: applicazione lineare il cui nucleo è diverso da {0}, quindi non iniettiva
- Verificare l'iniettività
 - Una applicazione lineare è iniettiva se ker(f)={0}, quindi dim(Kerf)=0
- Verificare suriettività
 - Una applicazione lineare è suriettiva se Im(f)=V, quindi dim(Imf)=dim(spazio di arrivo)
- Verificare buinivocità

- 1. Verificare sia che è iniettiva sia che è suriettiva
- 2. Una applicazione è biunivoca se la matrice associata delle immagini è invertibile, quindi non è singolare:
 - Si trova la matrice associata formata dai coefficienti delle equazioni della funzione
 - Si controlla che il suo determinante sia diverso da 0
- 3. Se si sta lavorando con un endomorfismo una funzione può essere solo suriettiva e iniettiva allo stesso tempo o nessuna delle due, quindi è sufficiente verificare una delle due condizioni
- Teorema dimensionale:
 - o n = dim(kerf) + dim(Imf) con n = dim(spazio di partenza)
- Matrice associata:
 - a) Matrice che ha come colonne i coefficienti che consentono di esprimere le immagini dei vettori di una base di V (spazio di partenza) come combinazione lineare dei vettori di una base di W (spazio di arrivo)
 - b) Se non vengono fornite basi diverse, la matrice associata come elementi i coefficienti delle variabili delle equazioni di uno spazio
- Trovare equazioni di ker(f)
 - O Si deve porre Mx=0 e si scrivono le equazioni
- Trovare basi di Ker(f)
 - o Trovare le basi a partire dalle equazioni di Ker(f)
- Trovare dimensione di Ker(f) o di Im(f)
 - o E' il numero di vettori di una base di Ker(f)
 - O Dim(Imf) è il rank di una matrice che rapresenta f
 - Utilizzare l'equazione dimensionale
- Equazioni di Im(f)
 - Trovare le equazioni a partire dalla matrice M|X con M matrice formata dalle basi di Im(f) e X vettore delle incognite, dunque porre il det=0
- Basi di Im(f)
 - Sono le colonne della matrice associata che permettono di trovare un minore non nullo
 - o Calcolare il rank e prendere come vettori della base quelli utilizzati per il suo calcolo
- Stabilire se un vettore appartiene all'immagine
 - Verificare che soddisfi la sua equazione
- ➤ Trovare f⁻¹(v)
 - o f-1(v) è l'insieme dei vettori dello spazio di partenza tali che la loro immagine sia v
 - Mx=v con M matrice associata
 - Trovare soluzioni di Mx=v a partire dall'insieme delle soluzioni di Mx=0
 - Soluzioni(Mx=v) = Soluzioni(Mx=0) + una soluzione particolare qualsiasi di Mx=v
 - Questa soluzione particolare ha la sola condizione di non far parte delle soluzioni di Mx=0
 - Se il nucleo è tale che Ker(f)={0}, allora Soluzioni(Mx=0) = Ker(f), quindi le soluzioni di Mx=v sono Ker(f) + soluzione particolare
 - Svolgere questa somma di vettori
- Isomorfismo canonico
 - Ogni vettore dello spazio di partenza e dello spazio di arrivo si può scrivere come combinazione lineare delle rispettive basi
 - o I coefficienti di questa combinazione lineare si riportano in un vettore appartenente ad Rⁿ
- Cambio base
 - \circ $M_{c}^{c}(f)=[B] M_{b}^{b}(f) [B^{-1}]$
 - Si applica f a ogni vettore della base dello spazio partenza e si pone uno a uno il vettore ottenuto uguale alla combinazione lineare dei vettori della base dello spazio di arrivo. Si risolvono i sistemi ottenuti trovando come soluzioni i coefficienti da utilizzare nella combinazione lineare appena citata.
 Ogni vettore di coefficienti ottenuto è una colonna della matrice del cambio base.
 - Scrivere l'immagine di un vettore di una base Bv rispetto ad una base diversa B
 - Si scrive con il prodotto Mv dove v è il vettore e M è la matrice del cambio base da Bv a B
 - \circ $M_{b1}^{b2}=[B2]^{-1}M_{C}^{C}(f)[B1]$

SIMILITUDINE, DIAGONALIZZABILITA', AUTOVALORI

- Determinare polinomio caratteristico:
 - a) Se si conosce la matrice associata A: det[A- λI] con I matrice identica
 - b) Conoscendo due forme del tipo det(A-λI)=a o det(λI-A)=a
 - Si scrivono nella forma $\lambda^2 + \lambda p + q = a$ e si mettono a sistema
 - Risolvendo il sistema si trovano p e q che sono coefficienti di λ nella forma del polinomio caratteristico $\lambda^2 + \lambda p + q$
- > Determinare Spettro (insieme degli autovalori):
 - sono le radici dell'equazione x(λ)=0
 - o se matrice è triangolare, gli autovalori sono i termini principali
- \triangleright In un endomorfismo: $f(v) = \lambda v$ con v autovettore (condizione sufficiente per dire che v è autovettore)
- Determinare autovettori: (in alternativa a questo metodo, sono vettori della base dell'autospazio)

Per ogni autovalore:

- Si sostituisce l'autovalore nella matrice [A- λI]
- Si risolve l'equazione [A- λI]X=λX con X vettore contenente le incognite
- o Il vettore ottenuto è quello corrispondente all'autovalore utilizzato
- Determinare autospazio:

Per ogni autovalore:

- O Si sostituisce l'autovalore nella matrice M=[A- λI]
- Si risolve MX=0
- Si scrive l'autospazio $E_{\lambda}=\{[...], x,... \text{ in R}\}=<[...],...>$
- Molteplicità algebrica Ma: numero di volte che un autovalore compare nello spettro
- Molteplicità geometrica Mg:
 - Mg(λ)=n-rank[A- λI] con n dimensione dello spazio
 - Dimensione di E_{λ} associato all'autovalore λ
- Stabilire se un endomorfismo è diagonalizzabile:
 - a) Se tutti gli autovalori sono distinti (non ci sono autovalori doppi) è diagonalizzabile
 - b) Verificare che per ogni autovalore Ma=Mg
 - c) La matrice che lo descrive è reale simmetrica
- Stabilire se due matrici sono simili
 - a) Due matrici sono simili se hanno stessi autovalori e sono entrambe diagonalizzabili (quindi simili ad una stessa matrice diagonale, con gli autovalori sulla diagonale).
 - b) A è simile a B se esiste P invertibile tale che P-1AP=B
 - Si costruisce la matrice di passaggio generica con elementi a,b,c,d,...
 - Si pone PA=BP e si trovano i valori di a,b,c,d,...
 - Si verifica che P sian invertibile, quindi che detP sia doverso da 0
 - c) Matrici simili hanno uguali:
 - Determinante
 - Rango
 - Polinomio caratteristico (quindi autovalori)
 - Traccia
- Determinare una matrice B diagonale simile ad A diagonale e la relativa matrice di passaggio (se endomorfismo simmetrico la matrice di passaggio deve essere ortogonale)
 - Trovare gli autovettori di A (o autospazi se ci sono autovalori multipli)
 - o La matrice di passaggio ha come colonne gli autovettori (o i vettori delle basi degli autospazi)
 - o Se endomorfismo procedere all'ortonormalizzazione
 - O P-1AP=B
- Trovare una matrice dati i suoi autovalori e autovettori
 - Utilizzare per ogni coppia autovalore-autovettore la relazione MX=λX mettendo come vettore X
 l'autovettore stesso, e scrivendo M come una generica matrice
 - o Risolvere il sistema formato e trovare i valori interni alla matrice
- Matrice ortogonale:

- o Matrice di passaggio le cui colonne sono ortogonali tra loro e hanno lunghezza unitaria
- Matrice tale che: MM^t=I_n o M^tM=I_n
- o L'inversa della matrice ortogonale corrisponde con la sua trasposta
- Matrice ortogonale (o base ortonormale) speciale che diagonalizza f
 - E' una matrice ortogonale il cui determinante è 1, esprime una rotazione antioraria rispetto all'origine
 - Scrivere una base di autovettori (trovare matrice di passaggio)
 - Calcolare le basi degli autospazi
 - Scrivere la matrice formata dai vettori di tutte le basi degli autospazi
 - Verificare che i vettori siano a due a due ortogonali (assicurarsi che sia ortogonale)
 - In caso affermativo normalizzare la base
 - In caso negativo procedere all'ortonormalizzazione
 - Disporre le colonne in modo che il determinante della matrice sia uguale a 1 (assicurarsi che sia speciale)
- Normalizzazione
 - o Rende il vettore di norma unitaria
 - o w=v/||v||
- Ortonormalizzazione
 - o Rende i vettori di norma unitaria e ortogonali tra loro
 - \circ W₁=v₁/||v₁||
 - $\bigcirc W_2 = (v_2 \langle v_2, w_1 \rangle w_1) / (||v_2 \langle v_2, w_1 \rangle w_1||)$

 - $\bigcirc W_n = [v_n (\langle v_n, w_1 \rangle w_1 + \langle v_n, w_2 \rangle w_2 + ... + \langle v_n, w_{n-1} \rangle w_{n-1})] / (\|v_n (\langle v_n, w_1 \rangle w_1 + \langle v_n, w_2 \rangle w_2 + ... + \langle v_n, w_{n-1} \rangle w_{n-1})\|)$
- > Stabilire se un endomorfismo f (matrice associata M) è rappresentato anche da un'altra matrice A rispetto ad una base cercata
 - o Si verifica che M sia simile ad A, altrimenti non esisterebbe la base cercata
 - Si calcolano le matrici di passaggio P e Q per le quali P⁻¹AP=D e Q⁻¹AQ=D
 - La base si trova facendo PQ⁻¹
- Una matrice diagonalizzabile si può esprimere come somma di sottospazi

RETTE E PIANI

- > Un vettore v=[a, b, c]^t esprime una retta passante per l'origine e per il punto P=(a, b, c)
- Un sottospazio generato da due vettori è un piano passante per l'origine
- Proiettare su un sottospazio un vettore v
 - o Trovare la matrice A che ha come colonne i vettori che generano il sottospazio
 - o Trovare la matrice pseudo inversa di Moore-Penrose: R=(A^tA)⁻¹A^t
 - Trovare la matrice di proiezione P=AR
 - o Moltiplicare P per il vettore che si vuole proiettare: v₁=Pv
 - \circ Se si vuole trovare la proiezione sul sottospazio ortogonale a quello dato utilizzare la matrice di proiezione data da Q=(I-P) e quindi calcolare v_2 =Qv
- Prodotto scalare
 - <v,w>= ||v|| ||w|| cos(a) con a angolo tra i due vettori
 - $\bigcirc \quad <\!\! \mathsf{v},\!\mathsf{w}\!\!>=\; \mathsf{x}_{\mathsf{v}}\mathsf{x}_{\mathsf{w}}+\mathsf{y}_{\mathsf{v}}\mathsf{y}_{\mathsf{w}}+\mathsf{z}_{\mathsf{v}}\mathsf{z}_{\mathsf{w}}+...$
 - Il prodotto scalare tra due vettori ortogonali è nullo
- > Angolo tra due vettori
 - \circ Cos(a)=<x,y,>/(||x|| ||y||)
- Prodotto vettoriale
 - v κ w ha direzione ortogonale al piano formato dai due vettori e verso dato osservando la sovrapposizione di v a w in senso antiorario secondo l'angolo inferiore tra loro
 - \circ $\|v \wedge w\| = \|v\| \|w\| \operatorname{sen}(a)$
 - Ο V Λ W = -W Λ V

- o il prodotto vettoriale tra due vettori paralleli è nullo
- o $v \wedge w = det [i j k/x_v y_v z_v/x_w y_w z_w]$; ciò che risulta moltiplicato per i è coordinata riferita al primo asse, per J sul secondo e per K sul terzo
- ||v ∧ w|| è il modulo dell'area del parallelogramma descritto da v e w
- Prodotto misto
 - o <a, b Λ c> = det della matrice che come righe orizzontali ha i vettori delle componenti dei vettori
 - o Il valore assoluto del prodotto misto è il volume del parallelepipedo obliquo da essi descritto
- > Trovare vettore parallelo a segmento AB conoscendo le coordinate dei punti A e B
 - \circ v=[x_b-x_a, y_b-y_a, ...]
- Lunghezza della proiezione di un vettore a su una retta contenente un altro vettore b
 - $Proj_b(a) = ||a|| |cos(a)|$ con a angolo tra i due vettori
- Rette
 - o Si esprimono con

Equazioni parametriche x=x_P+λa y=y_P+λb z=z_P+λc
 Equazioni normali (x-x_P)/a=(y-y_P)/b=(z-z_P)/c

- Intersezione tra due piani
- o a,b,c sono i parametri direttori e sono i componenti di un vettore avente stessa direzione della retta
- Posizione reciproca di due rette
 - o Parallele: hanno parametri direttori proporzionali
 - \circ Secanti: il sistema formato dalle equazioni parametriche di entrambe le rette (con incognite $λ_1$ e $λ_2$ delle due rette) ammette soluzioni
 - o Sghembe: né parallele né secanti
- Piano
 - o ax+by+cz+d=0
 - o a,b,c sono i parametri direttori del piano: sono le coordinate del punto di intersezione tra il piano e la retta passante per O e ortogonale al piano
 - due piani sono paralleli se perpendicolari alla stessa retta, quindi se hanno paramentri direttori proporzionali
 - \circ piano per tre punti A,B,C non allineati: imporre uguale a 0 il determinante della matrice avente come colonne [x x_a x_b x_c] [y y_a y_b y_c] [z z_a ...] [1 1 1 1] così che il sistema abbia soluzioni non banali
- retta perpendicolare ad un piano
 - o ha parametri direttori proporzionali ai parametri direttori del piano
- rette perpendicolari
 - o l'angolo tra loro è retto, quindi il suo coseno è 0
 - o dalla precedente osservazione e dalla formula per l'angolo tra due rette si ricava che due rette r e s sono perpendicolari se $x_Rx_S+y_Ry_S+z_Rz_S=0$
- parallelismo tra due piani
 - \circ aa¹+bb¹+cc¹=0
- parallelismo tra retta e piano
 - \circ ax_R+by_R+cz_R=0
- distanza punto piano
 - $o d(P,\pi)=|ax_p+by_p+cz_p+d|/(a^2+b^2+c^2)^{1/2}$
- distanza punto retta
 - o d(P,r)= PRsen(α)= $\|PR_{\Lambda V}\|/\|v\|$ con R punto scelto arbitrariamente sulla retta, \mathbf{v} vettore geometrico associato alla retta
- retta per due punti: $(x-x_A)/(x_B-x_A)=(y-y_A)/(y_B-y_A)=(z-z_A)/(z_B-z_A)$
- Fascio di piani di sostegno s
 - Scrivere la retta s come intersezione di due piani p₁ e p₂
 - o F: $p_1 + \lambda p_2$

CONICHE

- Ellisse: luogo dei punti per cui è costante la somma delle distanze da due punti fissi detti fuochi
 - \circ $x^2/a^2+y^2/b^2=1$

- \circ $b^2x^2+a^2y^2-a^2b^2=0$
- Fuochi sull'asse maggiore con coordinate $F(\pm c,0)$ o $F(0,\pm c)$ con $c=(a^2-b^2)^{1/2}$
- Se a=b circonferenza
 - $x^2+y^2=a^2$ R=a
 - $x^2+y^2+ax+by+c=0$ R=[(a/2)²+(b/2)²-c]^{1/2}
- O Se $x^2/a^2+y^2/b^2=-1$ ellisse immaginario

> Iperbole

- \circ $x^2/a^2+y^2/b^2=1$
- o $b^2x^2-a^2y^2-a^2b^2=0$ o $x^2/a^2-y^2/b^2=1$ se x è asse principale
- o $-b^2x^2+a^2y^2-a^2b^2=0$ o $x^2/a^2-y^2/b^2=-1$ se y è asse principale
- Asintoti: rette di equazione y=±(b/a)x
- Se a=b iperbole equilatera
- o F(c,0) o F(0,c) con $c=(a^2+b^2)^{1/2}$
- o Vertici: intersezione della conica con asse principale

Parabola

- o y²=2px con p distanza tra fuoco e direttrice
- \circ F(P/2,0)
- Direttrice
 - Ellisse o iperbole: x=±a²/c
 - o Parabola: x=-p/2
- > Equazione di una generica conica
 - $o f(x,y) = a_{11}x^2 + 2a_{12}xy + a_{22}y^2 + 2a_{13}x + 2a_{23}y + a_{33}$
- Matrice simmetrica associata alla conica
- Invarianti
 - I₃= detA
 - \circ I₂= detQ con Q matrice associata alla parte quadratica Q=[a₁₁ a₂₁]^t | [a₁₂ a₂₂]^t
 - \circ I₁= TrQ = a₁₁+a₂₂
- Classificazione metrica
 - o I₃=0 conica degenere
 - Il polinomio che rappresenta la conica si può scomporre in due fattori di primo grado
 - I₂<0 fattori reali e distinti (rette distinte)
 - I₂=0 fattori reali e coincidenti (rette parallele)
 - I₃ diverso da 0: conica non degenere
 - I₂>0 Ellisse
 - I₁I₃<0 Ellisse reale
 - I₁I₃>0 Ellisse immaginario
 - I₂=0 Parabola
 - I₂<0 Iperbole
 - Se I₁=0 iperbole equilatera
- Riduzione a forma canonica
 - Parabola
 - La forma canonica è data da $y^2=2px$ con $p=\pm (-l_3/(l_1)^3)^{1/2}$
 - o Iperbole o ellisse
 - Calcolare invarianti e gli autovalori associati alla parte quadratica
 - Riportarli nell'equazione
 - $\lambda_1 x^2 + \lambda_2 y^2 + \lambda_3 = 0$ se ellisse o iperbole con $\lambda_3 = I_3/I_2$
 - $\lambda_1 y^2 + \lambda_3 x = 0$ o $\lambda_1 x^2 + \lambda_3 y = 0$ se parabola con λ_1 l'autovalore tra λ_1 e λ_2 non nullo e $\lambda_3 = \pm 2\lambda_2 (-I_3/(I_1)^3)^{1/2}$
 - Riscrivere questa equazione nella forma canonica
- > Fasci di coniche
 - \circ f(x,y)+ λ g(x,y)=0

- o punti base: punti in cui le coniche generatrici di un fascio si intersecano
- Studio di un fascio di coniche
 - o Scrivere il fascio come combinazione lineare di due coniche
 - Raccogliere il parametro per dividere ciò che lo moltiplica da ciò che non lo fa riconducendosi all'equazione generale di un fascio
 - Studiare gli invarianti al variare del parametro
- > Trovare il centro C di una ellisse o iperbole
 - Sistema delle derivate parziali uguale a 0
 - Risolvere il sistema Q[x y]^t=-[a₁₃ a₂₃]^t con Q matrice associata alla parte quadratica
- > Trovare il vertice V di una parabola
 - a) Intersezione tra asse di simmetria e parabola
 - Trovare l'autospazio associato all'autovalore nullo
 - Scrivere la generica retta ad esso perpendicolare
 - Intersecare questa retta con la parabola per trovare due suoi generici punti con stessa quota
 - Trovare il punto medio tra i due
 - Scrivere la retta passante per il punto medio e parallela all'autospazio E₀
 - Intersezione tra questa retta e la parabola
 - b) Intersezione tra la parabola e la generica retta ortogonale all'asse di simmetria
 - Imporre il determinante 0 perché siano tangenti
- > Determinare gli assi di simmetria
 - o Trovare autovalori di parte quadratica
 - o Le direzioni sono fornite dagli autospazi associati (assi sono rette parallele agli autovettori)
 - Se parabola: l'asse principale di una parabola ha direzione fornita dall'autospazio corrispondente all'autovalore nullo
 - O Per ogni m=y/x dell'autovettore ottenuto utilizzare la formula y-y_P=m(x-x_P) prendendo come punto P il centro di simmetria (vertice per una parabola)
- Determinare gli asintoti di un'iperbole
 - \circ L'equazione della conica è data da una parte quadrica Q(x,y) e da una lineare L(x,y): Q(x,y)+L(x,y)=0
 - Si elimina la parte lineare
 - Si risolve l'equazione Q(x,y)=0 ottenuta rispetto a y
 - o Si ottengono rette nella forma y=mx che rappresentano l'andamento della conica all'infinito
 - \circ Si utilizza la formula y-y_P=m(x-x_P) prendendo come punto P il centro di simmetria e come m i valori appena ottenuti per trovare gli asintoti
- > Rappresentare graficamente coniche
 - o Ellisse
 - Centro
 - Assi di simmetria
 - Intersezione con assi cartesiani
 - o **Iperbole**
 - Vertice
 - Asse principale
 - Intersezione con assi cartesiani
 - o Iperbole
 - Centro
 - Intersezione con assi cartesiani
 - Assi di simmetria
 - Asintoti
- Determinare il cambio di riferimento che porta in forma canonica una conica
 - Trovare matrice M che ha come colonne gli autovettori normalizzati di Q (Q è matrice della parte quadratica).
 - Trovare autovalori
 - Trovare autovettori associati
 - normalizzare

- o Deve essere detM=1, in caso non lo sia si modificano i segni dei vettori per ottenerlo
- o Da M si può ottenere l'angolo di rotazione in quanto M=[cosa −sena]^t | [sena cosa]^t
- o La componente rotatoria del cambio di riferimento è quindi data da X=MX¹
- o Trovare il centro C (o il vertice V in caso di parabola)
- \circ II cambio di riferimento è dato da $[x \ y]^t = M[x^1 \ y^1]^t + [x^c \ y^c]^t$

QUADRICHE

- \rightarrow Ax²+Bxy+Cy²+Dxz+Eyz+Fz²+Gx+Hy+Iz+L=0
- $F(x,y,z) = a_{11}x^2 + 2a_{12}xy + a_{22}y^2 + 2a_{13}xz + 2a_{23}yz + a_{33}z^2 + 2a_{14}x + 2a_{24}y + 2a_{34}z + a_{44} = 0$
- \blacktriangleright Matrice simmetrica associata A=[a_{11} a_{21} a_{31} a_{41}]^t|[a_{12} a_{22} a_{32} a_{42}]^t|[a_{13} a_{23} a_{33} a_{43}]^t|[a_{14} a_{24} a_{34} a_{44}]^t
- > Invarianti
 - I₄=detA
 - o l₃=detQ con Q matrice 3x3 associata alla parte quadratica
 - $\hspace{0.5cm} \circ \hspace{0.5cm} I_{2} = det([a_{11} \ a_{21}]^{t} | [a_{12} \ a_{22}]^{t}) + det([a_{11} \ a_{31}]^{t} | [a_{13} \ a_{33}]^{t}) + det([a_{22} \ a_{32}]^{t} | [a_{23} \ a_{33}]^{t}) \\$
 - \circ $I_1=a_{11}+a_{22}+a_{33}$

Classificazione

Invarianti	Denominazione	Forma canonica	
$\begin{array}{l} \textit{I}_{3} \neq 0 \\ \textit{I}_{4} > 0 \left\{ \begin{array}{l} \textit{I}_{2} > 0, \textit{I}_{1}\textit{I}_{3} > 0 \\ \textrm{altrimenti} \end{array} \right. \end{array}$	ellissoide immaginario iperboloide ad una falda	$\frac{x^2}{a^2} + \frac{y^2}{b^2} + \frac{z^2}{c^2} + 1 = 0$ $\frac{x^2}{a^2} + \frac{y^2}{b^2} - \frac{z^2}{c^2} - 1 = 0$	
$\begin{array}{l} \textit{l}_3 \neq 0 \\ \textit{l}_4 < 0 \left\{ \begin{array}{l} \textit{l}_2 > 0, \textit{l}_1 \textit{l}_3 > 0 \\ \text{altrimenti} \end{array} \right. \end{array}$	ellissoide reale iperboloide a due falde	$\frac{x^2}{a^2} + \frac{y^2}{b^2} + \frac{z^2}{c^2} - 1 = 0$ $\frac{x^2}{a^2} - \frac{y^2}{b^2} - \frac{z^2}{c^2} - 1 = 0$	
$I_3 = 0 \begin{cases} I_4 > 0 \\ I_4 < 0 \end{cases}$	paraboloide iperbolico paraboloide ellittico	$\frac{x^2}{a^2} - \frac{y^2}{b^2} - 2z = 0$ $\frac{x^2}{a^2} + \frac{y^2}{b^2} - 2z = 0$	

Quadriche degeneri non spezzate (Rango $\mathbf{A}=\mathbf{r}=\mathbf{3}$)

r		Invarianti	Denominazione	Forma canonica
3	$l_3 \neq 0$ $\begin{cases} l_2 > 0, l_1 l_3 > 0 \\ \text{altrimenti} \end{cases}$		cono immaginario cono reale	$\frac{x^2}{a^2} + \frac{y^2}{b^2} + \frac{z^2}{c^2} = 0$ $\frac{x^2}{a^2} + \frac{y^2}{b^2} - \frac{z^2}{c^2} = 0$
3		$ \left\{ \begin{array}{l} l_2 > 0 \\ \text{no punti reali} \end{array} \right. $ $ \left\{ \begin{array}{l} l_2 > 0 \\ \text{si punti reali} \end{array} \right. $	cilindro immaginario	$\frac{x^2}{a^2} + \frac{y^2}{b^2} + 1 = 0$ $\frac{x^2}{a^2} + \frac{y^2}{b^2} - 1 = 0$
		$I_2 < 0$	cilindro iperbolico	$\frac{x^2}{a^2} - \frac{y^2}{b^2} - 1 = 0$
		$I_2=0$	cilindro parabolico	$\frac{x^2}{a^2} - 2z = 0$

Quadriche degeneri spezzate (Rango A = r < 3)

r	Invarianti	Denominazione	Forma canonica
2	$\begin{cases} \text{ rango } Q = 2 \\ \lambda_1 \lambda_2 > 0 \end{cases}$	coppia di piani complessi coniugati e secanti	$\frac{x^2}{a^2} + \frac{y^2}{b^2} = 0$
	$\left\{ \begin{array}{l} \text{rango } Q = 2 \\ \lambda_1 \lambda_2 < 0 \end{array} \right.$	coppia di piani reali secanti	$\frac{x^2}{a^2} - \frac{y^2}{b^2} = 0$
	$\left\{ \begin{array}{l} \text{rango } Q = 1 \\ \text{senza punti reali} \end{array} \right.$	coppia di piani complessi coniugati e paralleli	$\frac{x^2}{a^2} + 1 = 0$
	$\begin{cases} \text{ rango } Q = 1 \\ \text{ con punti reali} \end{cases}$		$\frac{x^2}{x^2} - 1 = 0$
	con punti reali	coppia di piani reali paralleli	a ^z
1	\Rightarrow rango $Q = 1$	piano doppio	$x^2 = 0$

- > Classificazione con la natura dei punti
 - o Quadriche a punti ellittici (nessuna retta per P contenuta nella quadrica)
 - Iperbole a due falde
 - Elissoide reale
 - Paraboloide ellittico
 - Quadriche a punti parabolici (una retta per P contenuta nella quadrica)
 - Cono
 - Cilindro

- Quadriche a punti iperbolici o rigate(due rette per P contenute nella quadrica)
 - Iperbolide ad una falda
 - Paraboloide iperbolico
- Centro di una quadrica
 - o Se I₃=0 (almeno un autovalore è nullo) non esiste centro di simmetria
 - o Risolvere il sistema composto dalle equazioni
 - Df/dx=0
 - Df/dy=0
 - Df/dz=0
- Sfera
 - \circ Equazione canonica del tipo $(x-x_c)^2+(y-y_c)^2+(z-z_c)^2=r^2$ che equivale a $x^2+y^2+z^2+a+by+cz+d=0$
 - Centro ha coordinate (-a/2, -b/2, -c/2)
 - O Raggio ha lunghezza $r^2=(-a/2)+(-b/2)+(-c/2)-d$
- Vertice di un cono
 - O Risolvere il sistema $Df/dx_1 = Df/dx_2 = Df/dx_3 = Df/dx_4 = 0$
- Quadriche di rotazione
 - Una quadrica è di rotazione se e solo se la matrice Q associata alla sua parte quadratica ammette almeno due autovalori non nulli uguali
 - O Si sostituisce, nell'equazione della conica si piano xy che si fa girare intorno ad un asse y [o x], il valore di x con $\pm (x^2+z^2)^{1/2}$ [o il valore di y con $\pm (y^2+z^2)^{1/2}$].
- > Trovare asse di rotazione
 - Il piano contenente l'asse di rotazione è perpendicolare al piano corrispondente all'autospazio associato all'autovalore doppio, quindi l'asse di rotazione è parallelo all'autovalore semplice, che dà la sua direzione
 - o Inoltre l'asse di rotazione passa per il centro
 - o Trovare il centro e scrivere la generica retta passante per esso e parallela all'autovalore semplice
- Piano tangente alla quadrica in P:
 - $(x-x_p)(a_{11}x_p+a_{12}y_p+a_{13}z_p)+(y-y_p)(a_{12}x_p+a_{22}y_p+a_{23}z_p)+(z-z_p))(a_{13}x_p+a_{23}y_p+a_{33}z_p)=0$
 - o Se la quadrica è rigata l'intersezione tra questo piano e la quadrica da come risultato due rette
- Trovare le rette appartenenti alla quadrica passanti per un punto P della quadrica
 - o Trovare piano tangente in P alla quadrica
 - o Intersecare il piano con la quadrica
- Riduzione a forma canonica
 - O $Ax^2+By^2+Cz^2+D=0$ per elissoidi e iperboloidi ($I_3 != 0$) con $D=I_4/I_3$
 - O Ax²+By²+2Cz=0 per paraboloidi (I_3 =0) con C=($-I_4/I_2$)^{1/2}
 - o A, B, C nella prima e A, B nella seconda sono gli autovalori non nulli della matrice Q associata alla parte quadratica
- Asse di simmetria di un paraboloide
 - I piani di simmetria sono due aventi come parametri direttori le componenti degli autovettori associati agli autovalori non nulli
 - L'intersezione di tali piani costituisce l'asse di simmetria
 - L'autovettore associato all'autovalore nullo indica la direzione dell'asse di simmetria del paraboloide
- Vertice di un paraboliode
 - a) Intersezione tra asse di simmetria e quadrica
 - b) Considerare il generico piano perpendicolare all'autovettore associato all'autovalore nullo e imporre la sua intersezione con la quadrica ridotta ad un solo punto
- Costruzione di un cono o un cilindro date quadrica e piano che la interseca
 - Se cono con generatrici parallele ad un asse x, basta ricavare incognita x da equazione del piano e sostituire in quadrica
 - Scrivere il sistema
 - Retta in forma parametrica: del tipo $x=x_v+\lambda(x_0-x_v)$ in cono o $x=x_0+aq$ in cilindro con a,b,c parametri direttori
 - Quadrica in (x_0,y_0,z_0)

- Piano in (x_0,y_0,z_0) che interseca la quadrica
- \circ Esplicitare x_0 , y_0 , z_0 da equazioni parametriche della retta
- O Sostituire nell'equazione del piano per trovare λ o q
- \circ Calcolare quindi i valori di (x₀,y₀,z₀) e sostituirli nell'equazione della quadrica
- > Costruzione di una quadrica di rotazione data una conica nel piano xy che ruota intorno ad un asse
 - O Sostituire nell'equazione della conica $x=(x^2+z^2)^{1/2}$ se si ruota intorno a y, $y=(y^2+z^2)^{1/2}$ se si ruota intorno a x