121

基于 Arduino 的智能避障机器人设计

常丽媛

(山东现代学院,山东 济南 250104)

摘 要:如今,伴随着现代化计算机技术的不断普及,机器人进入各行业,使人们的生活方式更加便捷。机器人要实现避障以 及引导功能,必须具有感知功能,红外传感器能为机器人提供视觉感知的功能。文章以Arduino单片机为控制核心,设计了一款 智能避障机器人,合理利用超声波传感器检测相应的障碍物,通过单片机的程序控制直行或偏转一定的角度继续运行,发挥其不 断探测以及实施控制等作用。

关键词: Arduino; 智能; 避障机器人

中图分类号: TP242 文献标志码: A

目前我国经济持续发展,促进了我国科学技术水平的不 断提高,从而出现了智能机器人,然而针对这种智能型的机 器人而言,是根据车型作为基础的避障装置,也是根据红外 传感器对其进行一定的监控,以 Arduino 作为处理器进行相 应的处理, 然而其核心主要是根据红外传感器以及电机好额 轮胎等作为外部的构件, 对其智能避障机器人躲避相应的障 碍物,对这种机器人来说,主要可以更好的完成智能躲避障 碍物的功能, 在很多的领域之中都是具有相对较为广泛的应 用。在此之外,对这种避障机器人来说,是可以根据编程对 一些软件的参数作出相应修改,从而实现机器人的避障灵敏 度提高和 PWM 波进行相应控制。

系统的总体设计

1.1 系统的硬件组成

对本次的设计来说,主要是包括电源模块、Arduino 处理 器的模块、传感器模块、外部驱动模块四个方面。其中,电 源模块主要包括电池以及稳压模块等所组成的内容。然而对 Arduino 处理器模块来说,则是包括了硬件(Arduino NUO 处 理器)以及软件(Arduino IDE)等相关的内容,但是在传感 器模块上最为主要的一项内容是存在感应上的功能,也是根 据红外现场传感器所完成的。然而外部驱动的模块在工作中, 是通过 Arduino 处理模块中对 PWM 波进行控制, 能保证对电 机作出准确控制,使其小车的转向功能得以实现,最终才能 在一定程度上更好地去保证避障任务得到实现。

1.2 工作原理

针对这种避障机器人而言,通过应用红外传感器,可以 对附近的环境信息作出及时的采集和获取,并且将所获得到 的信息通过 Arduino 模块进行处理后,可以根据 PWM 的调速 波以 L299D 的驱动芯片作为核心,对其小车的实际异动情况 作出相应的控制,让小车的智能避障任务在一定程度上得到 更好的实现。

硬件的设计以及实现

2.1 电路设计

针对 Arduino 模块以及传感器模块和驱动模块供电而言, 主要是包括了电池模块所组成的一种电源模式。在 Arduino 模块之中主要是应用 ATMega8p 为控制的芯片,同时通过应用 一些软件进行编程对驱动模块作出相应的控制。然而针对传 感器模块而言, 其主要组成内容为红外传感器, 可以将所识 别的一些信息能直接的反馈给 Arduino 模块, 但是在外部传 感器上, Arduino 模块对其数据进行相应的控制, 并且可以将 其传递到根据 L200D 驱动芯片作为核心的电机。

作者简介: 常丽媛(1985-), 女, 山东济南人, 讲师, 研究方向: 过程控制。

2.2 硬件的实现

1) 主控制芯片。该设备主控制的芯片主要是选择使用 AMTega8p,其中在工作的时候电压为5V,在性能方面比较高, 同时功耗比较低,在数据进行处理的过程中速度比较快,能 实现数据处理等多个方面的功能,其价格也是相对来说是比 较低廉的,能对其成本做出合理节约[1]。

文章编号: 1672-3872 (2019) 20-0121-02

2) 电机驱动模块。该模块可以通过使用支持 PWM 波调度, 并且根据 L299D 的驱动芯片作为核心内容,保证小车自身可 以存在十分充足的驱动力。在设计的时候,其传感器模块可 以将自身所识别的相关信息直接反馈给 Arduion 模块,通过 软件进行相应的处理, 主控芯片所控制的 PWM 波控制直流电 机进行运行,进一步保证机器人可以进行相应的异动 [2]。

3) 红外传感器。该传感器主要是通过采用红外线作为介 质,对其进行相应测量的一种系统,目前这种测量的方式在 我国具有良好的应用。针对本次的设计工作来说,也是采用 红外测距传感器进行, 其选择根据是这种传感器测距远, 自 身也是存在比较好的稳定性。

4) Arduino。Arduino 是一种应用相对灵活和方便的工具, 同时上手十分简单,在本次设计的过程中,Arduino 处理器主 要是包括了硬件(Arduino NUO 处理器)以及软件(Arduino IDE) 在编程的过程中是比较方便和灵活的,这项技术也是可 以支持 C 语言进行相应的编程,在设计的过程中比较容易, 在目前得到了相对比较广泛的应用,通过合理的应用到智能 避障机器人中,可以保证机器人得到更好的运动[3-5]。

软件的设计以及实现

软件设计分为以下方面: 1) 为参数进行调整; 2) 输出 PWM 波。然而针对参数调整这项内容而言,是根据红外传感器 对距离进行测量,同时所测量的数据数据是可以直接传输到 Arduion NUO 处理器作出相应的裁决,并且也是可以根据所返 回来的数据,对相关的控制参数进行及时的调整。二是对输 出 PWM 波部分而言,主要是进行了相应参数的相应调整之后, 根据其之前的数据进行相应的编程,使其 I/0 口可以输出相 应的 PWM 波,这样可以对其机电模块做出相应的控制,同时 也是可以使其小车能实现移动, 最终实现自动避障的功能, 在一定程度上能保证为工作提供出相应的便利。

结束语

智能机器人是可以实现更加准确的操作,并且对问题解 决的效率进行去那面的提高,根据 Arduino 智能机器人可以 更好地实现调节偏离以及自动避障等方面的功能,并且也是 可以进行远程的监测以及自动化的报警更好地实现人机之间 的相互交换, 从而实现对机器人外部的环境和远程指令作出 相应的前进和后退以及转向等方面的操作。对(下转第130页) 公称压力 16MPa, 单缸最大升力 10380kgf, 举升采用中顶双缸直顶方式, 液压系统稳定可靠, 方便维修, 车辆采用通过液压缸装置采用双缸直顶方式实现货箱后倾自卸, 同时车厢采用仿漏斗型设设计, 方便粮食的卸载时直接倾倒到烘干机组的地坑中。同时在车厢前端设计自动输送装置(气吸式输送或螺旋输送装置),满足将车厢内粮食输送到高处进行运输。

转运车轮胎配置中花胎,整车离地间隙大于30cm,后轮同时采用液压马达驱动、行星齿轮装置和气刹制动装置,既满足田间潮湿疏松土质和翻越田埂的需求,又避免转弯时车轮摩擦力的互相牵制,同时可以自身制动避免对拖拉机的冲击。 3.7 装粮货箱

装粮式货箱,货箱内空尺寸 4000cm×2050cm×800cm, 可运粮食 6m³, 固定式边板结构, 边板带斜板导向结构, 后门为门中门机构, 卸货更方便和彻底, 加高式前板结构, 更适用。粮食与别的货物不同, 它不能遭到雨淋, 货箱还配备有专用的防雨设施。

4 结束语

该车辆的开发应用符合成都市情况和粮食运输特点,对

粮食散装运输车的开发研究,其结构、性能设计必须符合粮食散装运输本身独有的特点和规范要求。设计研制的适宜于成都平原粮油规模化种植的农用牵引运输车,在粮油规模化种植运输中可以节省大量人力、物力、财力,有显著的经济效果,并且对促进成都市粮食生产、加工、贮运、销售业的发展,使之达到先进水平具有特别重要的意义。

目前成都市粮食行业的特点和规模化种植的发展,中型农用牵引运输车的大面积全面普及使用目前存在一些问题。可以由部分地区或某些部门小范围内开始进行车辆生产、田间运输、销售等的配套工作,这样以点到面,逐步实现大面积的粮食高效散装运输。

参考文献:

- [1] 高焕文. 农业机械化生产学 [M]. 北京:中国农业出版社,2002.
- [2] 刘玉荣, 胶轮式轨道矿车牵引车的设计研究 [J]. 煤炭工程, 2018, 51(5): 24-27.
- [3] 余志生,夏群生. 汽车理论 [M]. 北京: 机械工业出版社,2000.
- [4] 余小红, 陈志忠. 旧手扶底盘改作农用拖车的设计 [J]. 福建农机, 2000 (3):11-12.

(收稿日期: 2019-8-22)

(上接第81页) 大赛的考核评价办法,对学生(学徒)采用多元化考评。校内实践环节,重点考核学生的专业知识以及实践操作能力,注重过程考评。其中过程考评比重为60%,期末考评比重为40%。评价方式又分为学生自我评价、小组师傅评价、小组成员互评、教师评价等。企业实践环节,重点考核学生的职业水平与综合职业素养,考核方式分为学徒自我评价、企业师傅评价、企业主管评价、学校教师评价等。积极开展各种校内实训大赛,鼓励班级学生积极参与其中,并将其纳入第二课堂内容。学生通过参与这些大赛,也可以获取相应实践环节的学分。对校赛获奖者,优先推荐参加各类省级、国家级比赛。

5 完善质量保障体系

依据现代学徒制专业发展方向和人才培养方案,完善原有的质量保障体系。1)学校、企业共同对教学环节各个方面进行动态监督,并建立相应专业质量评价体系。2)对实践环节采用"实践"一"检验"一"反思"一"实践"闭环模式,不断提高实践教学体系质量水平。3)通过行业企业、历届毕业生、技能比赛反馈学生的综合职业能力和职业水平。4)引入第三方面评价机构,对教学质量中的各个环节进行监督与评价,并将结果反馈给学校,以便对教学过程进行改

进和完善[3-4]。

6 结束语

将创新大赛融入现代学徒制实践教学环节,对培养创新型人才、提高人才培养质量大有帮助。需要学校、企业拓展思路,改革现有教学方式。从教学内涵、师资队伍、教学模式、评价体系等各个方面进行调整,才能不断完善现代学徒制人才培养模式,提高人才培养质量。

参考文献:

- [1] 李祥. 高职院校试行现代学徒制的现状及其对策研究 [J]. 常州大学学报,2015(1):5.
- [2] 吴玉平.以"校中企"为载体,创新高职会计专业"现代学徒制"人才培养模式:以辽宁理工职业学院会计电算化专业为例 [J].财会学习,2016(3):164.
- [3] 余伟兵. 基于职业技能竞赛的高职教学改革 [J]. 教育研究,2014 (4):88.
- [4] 刘大鹏. 现代学徒制背景下高职院校"双创"人才培养路径探究 [J]. 教育现代化, 2018, 5(41):34-35.

(收稿日期: 2019-8-12)

(上接第 121 页)这种避障机器人而言,其自身的应用环境是相对比较多的,通过将其应用到一些危险的环境之中,能减少工作人员自身的工作危险系数,与此同时还能在一定程度上有效的解决了恶劣环境下的工作需求,存在一定的价值,这种机器人指的大面积的推广和应用。

参考文献:

- [1] 李海. 基于 STM32 的智能扫地机器人避障系统的设计 [J]. 电子测 试,2018,99(23):198-199.
- [2] 李梦, 刘洋, 刘梓杨. 基于 Arduino 的智能机器人玩具的设计与

应用 [J]. 科学技术创新, 2018, 99 (27):198-199.

- [3] 刘灵敏, 胡婧, 谢倩. 基于计算机视觉的采摘机器人智能避障系统研究[J]. 农机化研究, 2018, 40(9): 213-217+222.
- [4] 王泽昊. 云计算环境下用于智能机器人避障的研究综述 [J]. 数字通信世界, 2017, 99 (12):126-127.
- [5] 马小雨. 云计算环境下用于智能机器人避障的激光测距仪设计 [J]. 科技通报, 2017, 33(8):110-113.

(收稿日期: 2019-7-30)