<u>Theorem</u> 7.4. Let $T = (T(t))_{t \in \mathbb{R}}$ be a strongly continuous group on some Banach space E such that $||T(t)|| \le p(t)$ for some polynomial p and all $t \in \mathbb{R}$. Then the Weak Spectral Mapping Theorem holds, i.e.,

(7.2)
$$\sigma(T(t)) = \overline{\exp(t \cdot \sigma(A))} \quad \text{for all } t \in \mathbb{R}.$$

From the proof we isolate a series of lemmas for which we always assume the hypothesis made in Thm.7.4. Moreover we recall from Fourier analysis that the Fourier transformation $\phi + \vec{\phi}$,

 $\phi(\alpha) := \int_{-\infty}^{\infty} \phi(x) e^{-i\alpha x} dx$, and its inverse $\Psi \to \Psi$,

 Ψ (x) := $1/2\pi \cdot \int_{-\infty}^{\infty} \Psi(\alpha) \cdot e^{i\alpha x} d\alpha$ are topological isomorphisms of the Schwartz space S (= $S(\mathbb{R})$). Since the subspace \mathcal{D} of all functions having compact support is dense in S it follows that $\{\phi \in S : \hat{\phi} \in \mathcal{D}\}$ is dense in S.

<u>Lemma</u> 7.5. For every function $\phi \in S$ we obtain an operator $T(\phi) \in L(E)$ by

$$T(\phi) f := \int_{-\infty}^{\infty} \phi(s) T(s) f ds$$
, $f \in E$.

This operator can be represented as

$$T(\phi)f = \lim_{\epsilon \to 0} 1/2\pi \cdot \int_{-\infty}^{\infty} \phi(\alpha) [R(\epsilon - i\alpha, A)f - R(-\epsilon - i\alpha, A)f] d\alpha , f \in E .$$

<u>Proof.</u> That $T(\phi)$ is well-defined follows from the polynomial boundedness of $(T(t))_{t \in \mathbb{R}}$. In fact, $\phi \to T(\phi)$ is continuous from S into $(L(E), \|\cdot\|)$.

We obtain

$$\begin{split} T(\phi) &f = \lim_{\varepsilon \to 0} \int_{-\infty}^{\infty} \phi(s) e^{-\varepsilon |s|} T(s) f ds \\ &= \lim_{\varepsilon \to 0} \int_{-\infty}^{\infty} 1/2\pi \int_{-\infty}^{\infty} \dot{\phi}(\alpha) e^{i\alpha s} e^{-\varepsilon |s|} T(s) f d\alpha ds \\ &= \lim_{\varepsilon \to 0} 1/2\pi \int_{-\infty}^{\infty} \dot{\phi}(\alpha) \int_{-\infty}^{\infty} e^{i\alpha s} e^{-\varepsilon |s|} T(s) f ds d\alpha \\ &= \lim_{\varepsilon \to 0} 1/2\pi \int_{-\infty}^{\infty} \dot{\phi}(\alpha) [R(\varepsilon - i\alpha, A) f - R(-\varepsilon - i\alpha, A) f] d\alpha . \end{split}$$

Here we used that polynomially bounded semigroups have growth bound 0 , hence $\omega(A) = \omega(-A) = 0$. Hence the integral representation of $R(\varepsilon-i\alpha,A)$ (cf. A-I,Prop.1.11) exists for $\varepsilon \neq 0$.

Lemma 7.6. If $E \neq \{0\}$, then $\sigma(A) \neq \emptyset$.

<u>Proof.</u> If $\sigma(A) = \emptyset$ then (7.3) implies $T(\phi) = 0$ whenever ϕ has compact support. Since these functions form a dense subspace of S we conclude that $T(\phi) = 0$ for all $\phi \in S$.