AZWS - Lösung 4

Peter von Rohr 2018-05-15

Aufgabe 1: Konfidenzintervalle für geschätzte Zuchtwerte

In der Milchrinderzucht werden die Produktionszuchtwerte oft auf einen Mittelwert von 1000 und eine Standardabweichung von 120 standardisiert. Nehmen wir eine Irrtumswahrscheinlichkeit $\alpha=0.01$ an. Wie lauten dann die Grenzen der Konfidenzintervalle für die geschätzten Zuchtwerte.

Ihre Aufgabe

Füllen Sie die folgende Tabelle mit den Intervallgrenzen für die vorgegebenen Sicherheiten aus.

Sicherheit	Untere Grenze	Obere Grenze
0.60		
0.65		
0.70		
0.75		
0.80		
0.85		
0.90		
0.95		
0.99		

Lösung

Sicherheit	Untere Grenze	Obere Grenze
0.60	804.5	1195.5
0.65	817.1	1182.9
0.70	830.7	1169.3
0.75	845.5	1154.5
0.80	861.8	1138.2
0.85	880.3	1119.7
0.90	902.3	1097.7
0.95	930.9	1069.1
0.99	969.1	1030.9

Aufgabe 2: Mehrmerkmalsselektion

In einer Schweinzuchtpopulation wollen wir die Merkmale Anzahl lebend geborene Ferkel (LGF) und die Ferkelaufzuchtrate (FAR) verbessern. Wir haben Daten der beiden Merkmale für 20 Muttersauen.

Sau	Lebend Geborene Ferkel	Ferkelaufzuchtrate
1	14	94.1
2	8	83.5
3	12	58.9
4	10	59.1
5	9	48.9
6	8	52.0
7	11	89.0
8	12	67.2
9	14	67.9
10	10	56.2
11	15	74.0
12	6	80.7
13	10	81.1
14	7	57.1
15	13	64.8
16	13	80.9
17	13	80.2
18	5	70.0
19	9	63.5
20	10	85.8

Ihre Aufgabe

Vergleichen Sie die Selektion nach unabhängigen Grenzen mit Grenzen LGF > 12 und FAR > 65 mit der Indexselektion. Erstellen Sie eine Rangliste gemäss der Selektionskandidaten gemäss der Werte der Selektionskriterien.

Für die Konstruktion des Indexes können sie die folgenden Parameter verwenden.

Parameter	LGF	FAR
Phänotypische Standardabweichung σ_P	1.8	8.1
wirtschaftliches Gewicht a	15	2.5
Heritabilität h^2	0.12	0.06

Die phänotypische Korrelation zwischen den Merkmalen beträgt -0.1 und die genetische Korrelation beträgt -0.13.

Lösung

1. Selektion nach unabhängigen Grenzen. Bei der Selektion nach unabhängigen Grenzen umfasst die Rangliste der Kandidaten einfach die Tiere, deren Leistung über beiden Grenzen liegen. Innerhalb der Rangliste gibt es keine definierte Reihenfolge der Tiere. Die Rangliste für die Selektion nach unabhängigen Grenzen sieht somit wie folgt aus

Sau	Lebend Geborene Ferkel	Ferkelaufzuchtrate
1	14	94.1

Sau	Lebend Geborene Ferkel	Ferkelaufzuchtrate
9	14	67.9
11	15	74.0
16	13	80.9
17	13	80.2

2. **Indexselektion**. Als ersten Schritt bei der Indexselektion konstruieren wir die Index-Normalgleichungen. Diese lauten gemäss Skript (Seite 48)

$$\left[\begin{array}{cc}\sigma_{pLGF}^2 & \sigma_{pLGF,FAR} \\ \sigma_{pLGF,FAR} & \sigma_{pFAR}^2\end{array}\right]\left[\begin{array}{c}b_{LGF} \\ b_{FAR}\end{array}\right] = \left[\begin{array}{cc}\sigma_{gLGF}^2 & \sigma_{gLGF,FAR} \\ \sigma_{gLGF,FAR} & \sigma_{gFAR}^2\end{array}\right]\left[\begin{array}{c}a_{LGF} \\ a_{FAR}\end{array}\right]$$

Durch Einsetzen der Parameter erhalten wir die numerischen Gleichungen für die Unbekannten b_{LGF} und b_{FAR} .

$$\left[\begin{array}{cc} 3.24 & -1.46 \\ -1.46 & 65.61 \end{array}\right] \left[\begin{array}{c} b_{LGF} \\ b_{FAR} \end{array}\right] = \left[\begin{array}{cc} 0.39 & -0.16 \\ -0.16 & 3.94 \end{array}\right] \left[\begin{array}{c} 15.00 \\ 2.50 \end{array}\right]$$

Als Lösung ergibt sich

$$\left[\begin{array}{c}b_{LGF}\\b_{FAR}\end{array}\right] = \left[\begin{array}{c}1.74\\0.15\end{array}\right]$$

Mit den Indexgewichten aus dem Lösungsvektor b können wir nun für jede Sau einen Indexwert berechnen. Dazu rechnen wir die phänotypischen Leistungen korrigiert um die mittleren Leistungswerte und multiplizieren diese mit den Indexgewichten.

Sau	Lebend Geborene Ferkel	Ferkelaufzuchtrate	korrigierte LGF	korrigierte FAR	Indexwert
1	14	94.1	3.55	23.355	9.7420516
2	8	83.5	-2.45	12.755	-2.3348673
3	12	58.9	1.55	-11.845	0.9033111
4	10	59.1	-0.45	-11.645	-2.5548893
5	9	48.9	-1.45	-21.845	-5.8495138
6	8	52.0	-2.45	-18.745	-7.1226360
7	11	89.0	0.55	18.255	3.7339907
8	12	67.2	1.55	-3.545	2.1648502
9	14	67.9	3.55	-2.845	5.7598440
10	10	56.2	-0.45	-14.545	-2.9956680
11	15	74.0	4.55	3.255	8.4312986
12	6	80.7	-4.45	9.955	-6.2490457
13	10	81.1	-0.45	10.355	0.7889492
14	7	57.1	-3.45	-13.645	-8.0917729
15	13	64.8	2.55	-5.945	3.5443673
16	13	80.9	2.55	10.155	5.9914490
17	13	80.2	2.55	9.455	5.8850542
18	5	70.0	-5.45	-0.745	-9.6196666
19	9	63.5	-1.45	-7.245	-3.6304210
20	10	85.8	-0.45	15.055	1.5033147

Die Rangreihenfolge der Mutterschweine nach den Indexwerten lautet dann

Sau	Lebend Geborene Ferkel	Ferkelaufzuchtrate	korrigierte LGF	korrigierte FAR	Indexwert
1	14	94.1	3.55	23.355	9.7420516
11	15	74.0	4.55	3.255	8.4312986
16	13	80.9	2.55	10.155	5.9914490
17	13	80.2	2.55	9.455	5.8850542
9	14	67.9	3.55	-2.845	5.7598440
7	11	89.0	0.55	18.255	3.7339907
15	13	64.8	2.55	-5.945	3.5443673
8	12	67.2	1.55	-3.545	2.1648502
20	10	85.8	-0.45	15.055	1.5033147
3	12	58.9	1.55	-11.845	0.9033111
13	10	81.1	-0.45	10.355	0.7889492
2	8	83.5	-2.45	12.755	-2.3348673
4	10	59.1	-0.45	-11.645	-2.5548893
10	10	56.2	-0.45	-14.545	-2.9956680
19	9	63.5	-1.45	-7.245	-3.6304210
5	9	48.9	-1.45	-21.845	-5.8495138
12	6	80.7	-4.45	9.955	-6.2490457
6	8	52.0	-2.45	-18.745	-7.1226360
14	7	57.1	-3.45	-13.645	-8.0917729
18	5	70.0	-5.45	-0.745	-9.6196666

Der Vergleich der beiden Ranglisten zeigt, dass die ausgewählten Tiere bei der Selektion nach unabhängigen Grenzen auch in der Indexselektion an der Spitze der Rangliste auftauchen. Der Vorteil der Rangliste der Indexselektion ist, dass wir alle Tiere in der Liste haben. So können wir je nach Selektionsintensität die benötigte Anzahl an Elterntieren auswählen. Bei der Selektion nach unabhängigen Grenzen ist die Anzahl der ausgwählten Tieren aufgrund der gewählten Grenzen fix gegeben.