5

6

7

1

2

ij

CLAIMS

What is claimed is:

1	1	A system for fluid isolation in a biological mass having at least one upstream
2		channel and at least one downstream channel, comprising:
3		a delivery conduit for administering fluid to the biological mass, the
4		delivery conduit positioned adjacent to or into one of the unstream channels and

a collection conduit for acquiring the fluid, the collection conduit positioned adjacent to or one of the downstream channels and having a collection seal for occluding external fluid flow.

- 2. The system of claim 1, further including a driving force in communication with the delivery conduit for encouraging fluid through the delivery conduit.
- The system of claim 1, wherein the delivery conduit is for administering fluid
 during at least a substantial period of diastole.
- 1 4. The system of claim 1, wherein the delivery conduit is for administering fluid 2 during the period of diastole and the period of systole.
- 1 5. The system of claim 1 wherein the delivery conduit further includes a delivery seal for occluding external fluid flow.

1	6	he system of claim 5 wherein the delivery seal is an elastomeric balloon
1	U.	the system of claim 5 wherein the derivery sear is an elastometre barroom

- The system of claim 6, wherein the delivery seal is contractible to allow external
 fluid flow to resume.
- 1 8. The system of claim 7, further including a seal control mechanism for contracting 2 and expanding the delivery seal.
- 1 9. The system of claim 8, wherein the seal control mechanism is configured to expand
 2 the delivery seal during at least a substantial period of diastole and contract the
 3 delivery seal during at least a substantial period of systole.
- 1 10. The system of claim 1, wherein the biological mass is a human heart.
- 1 11. The system of claim 1, wherein the delivery conduit is positioned into the aorta and the collection conduit is positioned into the coronary sinus.
- 1 12. The system of claim 1, wherein the fluid includes an agent.
- 1 13. The system of claim 12, wherein the agent is selected from the group consisting of
- 2 natural and synthetic drugs, growth factors, gene therapy compositions,
- 3 chemotherapeutic chemicals, anti-bacterial chemicals, anti-angiogenic chemicals and any combination thereof.
- 1 14. The system of claim 1, further including a second delivery conduit for
- 2 administering fluid to the biological mass, wherein the second delivery conduit is
- 3 positioned in another of the upstream channels.

1

2

18.

003764.P002 <u>PATENT</u>

1	15.	The system of claim 14, wherein one delivery catheter is positioned in the left main
2		coronary artery and the second delivery conduit is positioned in the right coronary
3		artery.
1	16.	A system for fluid isolation in a biological mass having at least one upstream
2		channel and at least one downstream channel, comprising:
3		a first delivery conduit for administering fluid to the biological mass and
4		positioned adjacent to or into one of the upstream channels and a second delivery
5		conduit for administering fluid to the biological mass and positioned adjacent to
6		orinto another of the upstream channels and
7		a collection conduit for acquiring the fluid, the collection conduit positioned
8		adjacent to or into one of the downstream channel and having a collection seal for
9		occluding external fluid flow.
1	17.	The system of claim 16, wherein one delivery catheter is positioned in the left main
2	coron	ary artery and the second delivery conduit is positioned in the right coronary artery.

The system of claim 16 wherein the each of the delivery conduits further include a

delivery seal for occluding external fluid flow.

1	19.	The system of claim 18 wherein the delivery seals are an elastomeric balloon.
1 2	20.	The system of claim 19, wherein the delivery seals are contractible to allow external fluid flow to resume.
1 2	21.	The system of claim 20, further including a seal control mechanism for contracting and expanding the delivery seals.
1 2 3	22.	The system of claim 21, wherein the seal control mechanism is configured to expand the delivery seals during at least a substantial period of diastole and contract the delivery seals during at least a substantial period of systole.
1 2	23.	A method of delivering and isolating fluid in a biological mass having at least one upstream channel and at least one downstream channel, comprising the steps of:
3		inserting a delivery conduit adjacent to or into one of the upstream channels;
4 5		inserting a collection conduit adjacent to or into one of the downstream channels, the collection conduit having an external collection seal;
6 7		activating the collection seal to occlude fluid flow outside of the collection conduit;
8		administering fluid through the delivery conduit to the upstream channel;
10 11		allowing the fluid to flow into the downstream channel and into the collection conduit.
1	24.	The method of claim 23, wherein the biological mass is the heart.

1	25.	The method of claim 24, wherein the delivery conduit is inserted into the aorta and
2		the collection conduit is inserted into the coronary sinus.
1	26.	The method of claim 23, wherein the delivery conduit has a delivery seal and the
2		steps further include of expanding the delivery seal during at least a substantial
3		period of diastole and contracting the delivery seal during at least a substantial
4		period of systole.
1	27.	The method of claim 23, wherein the administering of fluid is during at least a
2		substantial period of diastole.
1	28.	The method of claim 23, wherein the fluid includes an agent.
1	29.	The method of claim 28, wherein the agent is selected from the group consisting of
2		natural and synthetic drugs, growth factors, gene therapy compositions,
3 -	-	-chemotherapeutic chemicals, anti-bacterial chemicals, and any combination thereof
1	30.	The method of claim 23, further including the step of applying a drainage force to
2		the collection conduit for drawing fluid into the collection conduit
1	31.	The method of claim 23, further including the step of inserting a second delivery
2		conduit adjacent to or into a second upstream channel of the biological mass and
3		administering fluid through the second delivery conduit to the second upstream
4		channel.
1	32.	The method of claim 31, wherein the administering of fluid to the first delivery
2		conduit and second delivery conduit is during the period of diastole and the period
3		of systole.

1	<i>33</i> .	A method of delivering and isolating fluid in a biological mass, comprising the
2		steps of:
3		inserting a first delivery conduit adjacent to or into a first upstream channel
4		of the biological mass and a second delivery conduit adjacent to or into a second
5		upstream channel of the biological mass;
6		inserting a collection conduit adjacent to or into a downstream channel of
7		the biological mass, the collection conduit having an external collection seal;
8		activating the external collection seal to occlude fluid flow outside of the
9		collection conduit;
10		administering fluid through the first delivery conduit to the first upstream
11		channel and through the second delivery conduit to the second upstream channel;
12		and
13		allowing the fluid to flow into the downstream channel and into the
14		collection conduit.
1	34.	The method of claim 33, wherein the biological mass is the heart.
1	35.	The method of claim 34, wherein the first delivery conduit is inserted in the left
2		main coronary artery, the second delivery conduit is positioned in the right coronary
3		artery and the collection conduit is inserted in the coronary sinus.
1	36.	The method of claim 33, further including the step of applying a drainage force to
2		the collection conduit for drawing fluid into the collection conduit.

I	37.	The method of claim 33, wherein the each of the delivery conduits have a delivery
2		seal and the steps further include of expanding the delivery seals during at least a
3		substantial period of diastole and contracting the delivery seals during at least a
4		substantial period of systole.
1	38.	A system for use in a method according to claim 23, comprising:
2		a fluid for flowing through an upstream channel and downstream channel of
3		a biological mass;
4		a delivery conduit for administering the fluid to the upstream channel; and
5		a collection conduit for acquiring the fluid from the downstream channel,
6		the collection conduit having a collection seal for occluding external fluid flow.
1	39.	The system of claim 38, wherein the fluid includes an agent.
1	40.	The system of claim 39, wherein the agent is selected from the group consisting of
2		natural and synthetic drugs, growth factors, gene therapy compositions,
3		chemotherapeutic chemicals, anti-bacterial chemicals, and any combination thereof
1	41.	The system of claim 38, further including a drainage force mechanism in
2		communication with the collection conduit for drawing fluid into the collection
3		conduit.

1	42.	A system for use in a method according to claim 33, comprising:
2		a fluid for flowing through at least two upstream channels and at least one
3		downstream channel of a biological mass;
4		a first delivery conduit for administering the fluid to a first upstream
5		channel;
6		a second delivery conduit for administering the fluid to a second upstream
7		channel; and
8		a collection conduit for acquiring the fluid from the downstream channel,
9		the collection conduit having a collection seal for occluding external fluid flow.
1	43.	The system of claim 42, wherein the fluid includes an agent.
1	44.	The system of claim 43, wherein the agent is selected from the group consisting of
2		natural and synthetic drugs, growth factors, gene therapy compositions,
3		chemotherapeutic chemicals, anti-bacterial chemicals, and any combination thereof
1	45.	The system of claim 42, wherein the delivery catheter includes a delivery seal for
2		occluding external fluid flow.
1	46.	The system of claim 45, further including a seal control mechanism for contracting
2		and expanding the delivery seal.
1	47.	A system for use in a method according to claim 23, comprising:
2		an agent for combination with a fluid and for travel through an upstream
3		channel and downstream channel of a biological mass;

4	a delivery conduit for administering the fluid to the upstream channel; and
5	a collection conduit for acquiring the fluid from the downstream channel,
6	the collection conduit having a collection seal for occluding external fluid flow.