

Figure 1 shows inverted images of the wells of a microtiter plate.

EuMac - +	Abbreviation	% EtOH	% H₂O	Integrated Lumines- cence
	A TTFA-25EtOH	25	75	10,667
- Was	B TTFA-50EtOH	50	50	8,881
## 11 € 1	C TTFA-75EtOH	75	25	7,306
•	D TTFA-100EtOH	100	0	596
	E Gd(III)-TTFA-25EtOH	25	75	27,526
	F Gd(III)-TTFA-50EtOH	50	50	31,258
	G Gd(III)-TTFA-75EtOH	75	25	27,534
es estado Estados No.	H Gd(III)-TTFA-100EtOH	100	0	11,943
*	I Gd(TTFA) ₃ -28EtOH	28	72	24,409
	J Gd(TTFA) ₃ -58EtOH	58	42	33,409
6	K Gd(TTFA) ₃ -75EtOH	75	25	32,588
	L Gd(TTFA) ₃ -100EtOH	100	0	31,055
· <u>·</u>	M TTFA 1.45 mM EtOH			*Old solution
	N Gd(TTFA) ₃ 1.2 mM EtOH			*Old solution
	O LEL Emulsion			36,497
起	P LEL Emulsion			36,845

Figure 2 shows inverted images of the wells of a microtiter plate.

^{*}These solutions had been kept at room temperature, which resulted in their producing questionable results.

B Gd(III)-H ₂ O Gd(III) H ₂ O C Gd(III)-MeOH Gd(III) MeOH D Gd(III)-Isopropanol Gd(III) Isopropanol E TTFA-H ₂ O TTFA H ₂ O 1 F TTFA-MeOH TTFA MeOH 1 G TTFA-Isopropanol TTFA Isopropanol 1 H Gd(III)-TTFA-H ₂ O Gd(III) + TTFA MeOH J Gd(III)-TTFA-MeOH Gd(III) + TTFA Isopropanol K Gd(TTFA) ₃ -H ₂ O Gd(TTFA) ₃ H ₂ O	uMac - +	Well	Abbreviation	Material	Solvent	Mean EuMac -Mean Neg. Cntrl.
C Gd(III)-MeOH Gd(III) MeOH D Gd(III)-Isopropanol Gd(III) Isopropanol E TTFA-H ₂ O TTFA H ₂ O 1 F TTFA-MeOH TTFA MeOH 1 G TTFA-Isopropanol TTFA Isopropanol 1 H Gd(III)-TTFA-H ₂ O Gd(III) + TTFA MeOH 1 J Gd(III)-TTFA-MeOH Gd(III) + TTFA Isopropanol I K Gd(TTFA) ₃ -H ₂ O Gd(TTFA) ₃ H ₂ O L Gd(TTFA) ₃ -MeOH Gd(TTFA) ₃ MeOH		A	LEL emulsion	LEL emulsion	H ₂ O	190
D Gd(III)-Isopropanol Gd(III) Isopropanol E TTFA-H ₂ O TTFA H ₂ O 1 F TTFA-MeOH TTFA MeOH 1 G TTFA-Isopropanol TTFA Isopropanol 1 H Gd(III)-TTFA-H ₂ O Gd(III) + TTFA H ₂ O I Gd(III)-TTFA-MeOH Gd(III) + TTFA MeOH J Gd(III)-TTFA-Isopropanol Gd(III) + TTFA Isopropanol K Gd(TTFA) ₃ -H ₂ O Gd(TTFA) ₃ H ₂ O L Gd(TTFA) ₃ -MeOH Gd(TTFA) ₃ MeOH	T AY	В	Gd(III)-H ₂ O	Gd(III)	H ₂ O	7.6
E TTFA-H ₂ O TTFA H ₂ O 1 F TTFA-MeOH TTFA MeOH 1 G TTFA-Isopropanol TTFA Isopropanol 1 H Gd(III)-TTFA-H ₂ O Gd(III) + TTFA H ₂ O I Gd(III)-TTFA-MeOH Gd(III) + TTFA MeOH J Gd(III)-TTFA-Isopropanol Gd(III) + TTFA Isopropanol K Gd(TTFA) ₃ -H ₂ O Gd(TTFA) ₃ H ₂ O L Gd(TTFA) ₃ -MeOH Gd(TTFA) ₃ MeOH		С	Gd(III)-MeOH	Gd(III)	MeOH	0.6
F TTFA-MeOH TTFA MeOH 1 G TTFA-Isopropanol TTFA Isopropanol 1 H Gd(III)-TTFA-H ₂ O Gd(III) + TTFA H ₂ O I Gd(III)-TTFA-MeOH Gd(III) + TTFA MeOH J Gd(III)-TTFA-Isopropanol Gd(III) + TTFA Isopropanol K Gd(TTFA) ₃ -H ₂ O Gd(TTFA) ₃ H ₂ O L Gd(TTFA) ₃ -MeOH Gd(TTFA) ₃ MeOH		D	Gd(III)-Isopropanol	Gd(III)	Isopropanol	1.3
G TTFA-Isopropanol TTFA Isopropanol H Gd(III)-TTFA-H ₂ O Gd(III) + TTFA H ₂ O I Gd(III)-TTFA-MeOH Gd(III) + TTFA MeOH J Gd(III)-TTFA-Isopropanol Gd(III) + TTFA Isopropanol K Gd(TTFA) ₃ -H ₂ O Gd(TTFA) ₃ H ₂ O L Gd(TTFA) ₃ -MeOH Gd(TTFA) ₃ MeOH	:	E	TTFA-H₂O	TTFA	H ₂ O	14.8
H Gd(III)-TTFA-H ₂ O Gd(III) + TTFA H ₂ O I Gd(III)-TTFA-MeOH Gd(III) + TTFA MeOH J Gd(III)-TTFA-Isopropanol Gd(III) + TTFA Isopropanol K Gd(TTFA) ₃ -H ₂ O Gd(TTFA) ₃ H ₂ O L Gd(TTFA) ₃ -MeOH Gd(TTFA) ₃ MeOH		F	TTFA-MeOH	TTFA	МеОН	16.8
I Gd(III)-TTFA-MeOH Gd(III) + TTFA MeOH J Gd(III)-TTFA-Isopropanol Gd(III) + TTFA Isopropanol K Gd(TTFA) ₃ -H ₂ O Gd(TTFA) ₃ H ₂ O L Gd(TTFA) ₃ -MeOH Gd(TTFA) ₃ MeOH		G	TTFA-Isopropanol	TTFA	Isopropanol	11.7
J Gd(III)-TTFA-Isopropanol Gd(III) + TTFA Isopropanol K Gd(TTFA) ₃ -H ₂ O Gd(TTFA) ₃ H ₂ O L Gd(TTFA) ₃ -MeOH Gd(TTFA) ₃ MeOH		Н	Gd(III)-TTFA-H ₂ O	Gd(III) + TTFA	H ₂ O	91
K Gd(TTFA) ₃ -H ₂ O Gd(TTFA) ₃ H ₂ O L Gd(TTFA) ₃ -MeOH Gd(TTFA) ₃ MeOH		I	Gd(III)-TTFA-MeOH	Gd(III) + TTFA	МеОН	126
L Gd(TTFA) ₃ -MeOH Gd(TTFA) ₃ MeOH	4.	J	Gd(III)-TTFA-Isopropanol	Gd(III) + TTFA	Isopropanol	8.5
		K	Gd(TTFA) ₃ -H ₂ O	Gd(TTFA)₃	H ₂ O	67
M Gd(TTFA) ₃ -Isopropanol Gd(TTFA) ₃ Isopropanol		L	Gd(TTFA) ₃ -MeOH	Gd(TTFA) ₃	МеОН	152
		M	Gd(TTFA) ₃ -Isopropanol	Gd(TTFA) ₃	Isopropanol	25

Figure 3 shows inverted images of the wells of a microtiter plate.

Figure 4 is a graphical presentation of the ultraviolet absorption spectra of the EuMacmono-NCS, the EuMac coupled to streptavidin, and streptavidin.

Figure 5 is a graph of the relative emission intensity versus the concentration of streptavidin added to the biotinylated well.

Figure 6 is a plot the concentrations of Gd(TTFA)₃ and HTTFA vs. relative luminescence.

Figure 7 is a plot of the concentrations of Gd(TTFA)₃, Na(TTFA), and their one-to-one mixture vs. relative luminescence.

Figure 8 is a plot of the concentrations of Gd(TTFA)₃, Na(TTFA), HTTFA, and their mixtures vs. relative luminescence.

Figure 9a is a graph showing the effect of differing concentrations of $Na_2(PDCA)$ on the luminescence of two different lanthanide macrocycles.

Figure 9b is a graph showing the effect of differing concentrations of Na₃Gd(PDCA)₃ on the luminescence of two different lanthanide macrocycles.

Figure 10 is a graphical presentation of the ultraviolet absorption spectra of the EuMacmono-NCS, the EuMac coupled to anti-5-BrdU, and anti-5-BrdU.

Figure 11 is a pair of inverted images of EuMac-di-NCS stained cells. A is a 5 second exposure; B is the summation of 1000 time-gated images, each exposed for 2 msec.

Figure 12 shows four images of a single preparation of nonapoptotic cells stained with both EuMac and DAPI.

Figure 13 shows two inverted images of cells stained with SmMac-di-NCS and DAPI.

Figure 14 is an inverted image of directly stained apoptotic cells.

Figure 15 is an inverted image of EuMac-anti-5-BrdU stained cells in S phase.

Figure 16 is an inverted image of EuMac-Streptavidin stained apoptotic cells.

Figure 17 is an inverted image of EuMac-Streptavidin stained cells in S phase.

Figure 18 is an inverted image of two photon excited EuMac-di-NCS stained cells.

This Page is Inserted by IFW Indexing and Scanning Operations and is not part of the Official Record

BEST AVAILABLE IMAGES

Defective images within this document are accurate representations of the original documents submitted by the applicant.

Defects in the images include but are not limited to the items checked:

□ BLACK BORDERS
□ IMAGE CUT OFF AT TOP, BOTTOM OR SIDES
□ FADED TEXT OR DRAWING
□ BLURRED OR ILLEGIBLE TEXT OR DRAWING
□ SKEWED/SLANTED IMAGES
□ COLOR OR BLACK AND WHITE PHOTOGRAPHS
□ GRAY SCALE DOCUMENTS
□ LINES OR MARKS ON ORIGINAL DOCUMENT

IMAGES ARE BEST AVAILABLE COPY.

OTHER:

As rescanning these documents will not correct the image problems checked, please do not report these problems to the IFW Image Problem Mailbox.

☐ REFERENCE(S) OR EXHIBIT(S) SUBMITTED ARE POOR QUALITY