Definitions:

We use square brackets to denote vectors like $[a_1, ..., a_n]$ and round brackets to denote functions like $f(x_1, ..., x_n)$.

Boolean Function

Let GF(2) = $\langle \Sigma, \oplus, \bullet \rangle$ be two-element Galois field, where $\Sigma = \{0, 1\}$, \oplus and \bullet denotes the sum and multiplication mod 2, respectively. A function $f: \Sigma^n \to \Sigma$ is an n-argument Boolean function. Let $z = x_1 \cdot 2^{n-1} + x_2 \cdot 2^{n-2} + ... + x_n \cdot 2^0$ be the decimal representation of arguments $(x_1, x_2, ..., x_n)$ of the function f. Let us denote $f(x_1, x_2, ..., x_n)$ as y_z . Then $[y_0, y_1, ..., y_{2^n-1}]$ is called a truth table of the function f.

Linear and Nonlinear Boolean Functions

An n-argument Boolean function f is linear if it can be represented in the following form: $f(x_1, x_2,..., x_n) = a_1x_1 \oplus a_2x_2 \oplus ... \oplus a_nx_n$. Let L_n be a set of all n-argument linear Boolean functions. Let $M_n = \{g: \Sigma^n \to \Sigma \mid g(x_1, x_2, ..., x_n) = 1 \oplus f(x_1, x_2, ..., x_n) \text{ and } f \in L_n\}$. A set $A_n = L_n \cup M_n$ is called a set of n-argument affine Boolean functions. A Boolean function $f: \Sigma^n \to \Sigma$ that is not affine is called a nonlinear Boolean function.

Balance

Let $N_0[y_0, y_1, ..., y_{2^n-1}]$ be a number of zeros (0's) in the truth table $[y_0, y_1, ..., y_{2^n-1}]$ of function f, and $N_1[y_0, y_1, ..., y_{2^n-1}]$ be number of ones (1's). A Boolean function is balanced if $N_0[y_0, y_1, ..., y_{2^n-1}] = N_1[y_0, y_1, ..., y_{2^n-1}]$.

Algebraic Normal Form

A Boolean function can also be represented as a maximum of 2^n coefficients of the Algebraic Normal Form. These coefficients provide a formula for the evaluation of the function for any given input $x = [x_1, x_2, ..., x_n]$:

$$f(\mathbf{x}) = a_0 \oplus \sum_{i=1}^n a_i x_i \oplus \sum_{1 \le i < j \le n} a_{ij} x_i x_j \oplus \dots \oplus a_{12...n} x_1 x_2 \dots x_n$$

where \sum , \oplus denote the modulo 2 summations.

The order of nonlinearity of a Boolean function f(x) is a maximum number of variables in a product term with non-zero coefficient a_J , where J is a subset of $\{1, 2, 3, ..., n\}$. In the case where J is an empty set the coefficient is denoted as a_0 and is called a zero-order coefficient. Coefficients of order 1 are a_1 , a_2 , ..., a_n , coefficients of order 2 are a_{12} , a_{13} ,..., $a_{(n-1)n}$, coefficient of order n is $a_{12...n}$. The number of all ANF coefficients equals 2^n .

Let us denote the number of all (zero and non-zero) coefficients of order i of function f as $\sigma_i(f)$. For n-argument function f there are as many coefficients of a given order as there are i-element combinations in n-element set, i.e. $\sigma_i(f) = \binom{n}{i}$.

Hamming Distance

Hamming weight of a binary vector $x \in \Sigma^n$, denoted as hwt(x), is the number of ones in that vector.

Hamming distance between two Boolean functions $f, g: \Sigma^n \to \Sigma$ is denoted by d(f, g) and is defined as follows:

$$d(f,g) = \sum_{x \in \Sigma^n} f(x) \oplus g(x)$$

The distance of a Boolean function f from a set of n-argument Boolean functions X_n is defined as follows:

$$\delta(f) = \min_{g \in X_n} d(f, g)$$

where d(f, g) is the Hamming distance between functions f and g. The distance of a function f from a set of affine functions A_n is the distance of function f from the nearest function $g \in A_n$.

The distance of function f from a set of all affine functions is called the nonlinearity of function f and is denoted by N_f .

SAC

A Boolean function f satisfies SAC if complementing any single input bit changes the output bit with probability of 0,5.

A Boolean function $f(x_1, ..., x_n)$ satisfies SAC (the strict avalanche criterion) if $f(x) \oplus f(x \oplus \alpha)$ is balanced for any $\alpha \in \Sigma^n$ such that $hwt(\alpha) = 1$.

Exercise:

- 1. Open the file sbox.sbx in binary editor and read the functions written in it.
- 2. Check the balance of each function. Is this feature important from a cryptographic point of view? Explain why this is important.
- 3. Determine the nonlinearity of this functions. To do so, generate the set of all 8-argument affine functions. What is the size of this set?
- 4. Verify that the strict avalanche criterion (SAC) is satisfied for each function. What value of the probability of change in the output was obtained for the entire block?
- 5. Write a short report from the class. It should include the obtained results: nonlinearity of the block, yes/no balancing, SAC, description of the method of generating the set of affine functions, summary.