MCQ: Choose Only One Answer.

1. A function f(x) has a ZERO in the interval [a, b] if

A. f(a)f(b) < 0. **B.** f(a)f(b) = 0. **C.** f(a)f(b) > 0. None of these.

1. ____**A**

2. A function f(x) has two ZEROs in the interval [a, b] at $x = x_1$ and at $x = x_2$. How do you find the roots of f(x) by using the Interval Bisection method?

A. By diving the interval as $[a, b] = [a, x_1] \cup [x_1, b]$.

B. By diving the interval as $[a,b] = [a,x_1] \cup [x_1,x_2] \cup [x_2,b]$.

C. By diving the interval as $[a, b] = [a, x_2] \cup [x_2, b]$.

D. The Interval Bisection method can not be applied in this case.

2. **B**

3. ____**C**_

3. A function f(x) has roots at -1.5 and 3.0. Let g(x) is the converging fixed point function derived from f(x). The iteration starts from $x_0 = 0.5$, the iteration will converge to

4. Which of the following is/are propertie(s) of Newton's method to find the roots of f(x)?

A. It is a superlinear method. **B.** The first derivative of f(x) must not be zero.

C. There should not be any turning points in between two successive iterations. D. All of these.

D. It can not be determined..

4. ____**D**

5. The Aitken acceleration can only be applied when

B. 0.5. **C.** -1.5.

A. the convergence is linear. **B.** the convergence is superlinear

C. Both of the above. **D.** None of the above.

5. ____**C**___

Problems: Marks are as indicated

6. (5 marks) Consider a fixed-point function $g(x) = (9x - 1)^{1/3}$. The corresponding nonlinear function f(x) has a solution $x_{\star} \in \mathbb{R}$. Show that g(x) would lead to linear convergence if $x_{\star} > \frac{1}{9} \left(1 + \sqrt{27}\right)$. Hint: Use the condition for linear convergence.

Solution: Here, we have,

$$g'(x) = \frac{1}{3} \frac{9}{(9x-1)^{2/3}} = \frac{3}{(9x-1)^{2/3}}$$
.

Therefore, for linear convergence, we must have,

$$\begin{array}{rcl} g'(x_{\star}) & < & 1 \\ \\ \Longrightarrow \frac{3}{(9x_{\star} - 1)^{2/3}} & < & 1 \\ \\ \Longrightarrow \sqrt{27} & < & 9x_{\star} - 1 \\ \\ \Longrightarrow x_{\star} & > & \frac{1}{9} \left(1 + \sqrt{27} \right) . \checkmark \end{array}$$