Siddharth Mishra-Sharma (MIT/IAIFI) | IAIFI Summer School

Simple flow transformations

Example: Affine coupling flow

 $z_{d+1:D}$ transform conditioned on

 $z_{1:d}$

$z_{1:d}$ don't change

Transformation **V**

Transformation
$$x_{d+1:D} = z_{d+1:D} \odot \exp\left(s\left(x_{1:d}\right)\right) + t\left(x_{1:d}\right)$$

Inverse 🔽

$$z_{d+1:D} = \left(x_{d+1:D} - t(x_{1:d})\right) \odot \exp\left(-s(x_{1:d})\right)$$

Jacobian determinant V

Jacobian determinant
$$\det(\nabla f) = \prod_{j=1}^{D-d} \exp\left(s\left(z_{1:d}\right)\right)_{j} = \exp\left(\sum_{j=1}^{D-d} s\left(z_{1:d}\right)_{j}\right)$$

+ Switch up order of transformed variables at every transformation

[RealNVP; Dinh et al 2016]

Simple flow transformations

Example: Affine coupling flow [RealNVP; Dinh et al 2016]

Transformation **V**

$$x_{d+1:D} = z_{d+1:D} \odot \exp \left(s \left(x_{1:d} \right) \right) + t \left(x_{1:d} \right)$$

Inverse 🔽

$$z_{d+1:D} = \left(x_{d+1:D} - t(x_{1:d})\right) \odot \exp\left(-s(x_{1:d})\right)$$

Jacobian determinant 🔽

$$\det(\nabla f) = \prod_{j=1}^{D-d} \exp\left(s\left(z_{1:d}\right)\right)_{j} = \exp\left(\sum_{j=1}^{D-d} s\left(z_{1:d}\right)_{j}\right)$$

+ Switch up order of transformed variables at every transformation

Continuous-time normalizing flows

Parameterize the transformation by a neural ODE

ODE with reversible dynamics

$$\frac{\mathrm{d}x}{\mathrm{d}t} = f\left(x(t)\right)$$

