1.Importar librerías requeridas

```
import pandas as pd
import numpy as np
import sklearn as skl
```

2. Lee el archivo CSV llamado empleadosRETO.csv y coloca los datos en un frame de Pandas llamado EmpleadosAttrition.

EmpleadosAttrition=pd.read_csv('/content/drive/MyDrive/Colab Notebooks/ingeniería de características/empleadosRETO.csv')
EmpleadosAttrition

→	Age BusinessTravel Depart		Department	DistanceFromHome	Education	EducationField	EmployeeCount	EmployeeNumber	
	0	50	Travel_Rarely	Research & Development	1 km	2	Medical	1	997
	1	36	Travel_Rarely	Research & Development	6 km	2	Medical	1	178
	2	21	Travel_Rarely	Sales	7 km	1	Marketing	1	1780
	3	52	Travel_Rarely	Research & Development	7 km	4	Life Sciences	1	1118
	4	33	Travel_Rarely	Research & Development	15 km	1	Medical	1	582
	395	33	Travel_Rarely	Research & Development	14 km	3	Medical	1	325
	396	31	Travel_Rarely	Sales	20 km	3	Life Sciences	1	175
	397	37	Travel_Frequently	Research & Development	11 km	3	Other	1	306
	398	38	Travel_Rarely	Research & Development	4 km	2	Medical	1	1687
	399	33	Travel_Rarely	Research & Development	14 km	3	Medical	1	252

400 rows × 30 columns

3. Elimina las columnas que, con alta probabilidad (estimada por ti), no tienen relación alguna con la salida.

Hay algunas columnas que contienen información que no ayuda a definir el desgaste de un empleado, tal es caso de las siguientes:

- a. EmployeeCount: número de empleados, todos tienen un 1
- b. EmployeeNumber: ID del empleado, el cual es único para cada empleado
- c. Over18: mayores de edad, todos dicen "Y"
- d. StandardHours: horas de trabajo, todos tienen "80"

EmpleadosAttrition= EmpleadosAttrition.drop(columns=['EmployeeCount', 'EmployeeNumber','Over18', 'StandardHours'])
EmpleadosAttrition

	_	_
•	•	_
-	→	$\overline{}$
	·	_

•	Age	BusinessTravel	Department	DistanceFromHome	Education	EducationField	EnvironmentSatisfaction	Gende
(0 50	Travel_Rarely	Research & Development	1 km	2	Medical	4	Mal
	1 36	Travel_Rarely	Research & Development	6 km	2	Medical	2	Mal
:	2 21	Travel_Rarely	Sales	7 km	1	Marketing	2	Mal
;	3 52	Travel_Rarely	Research & Development	7 km	4	Life Sciences	2	Mal
4	4 33	Travel_Rarely	Research & Development	15 km	1	Medical	2	Mal
39	95 33	Travel_Rarely	Research & Development	14 km	3	Medical	3	Mal
39	96 31	Travel_Rarely	Sales	20 km	3	Life Sciences	2	Femal
39	97 37	Travel_Frequently	Research & Development	11 km	3	Other	2	Mal
39	98 38	Travel_Rarely	Research & Development	4 km	2	Medical	4	Femal

^{4.} Analizando la información proporcionada, detectaste que no se cuenta con los años que el empelado lleva en la compañía y parece ser un buen dato. Dicha cantidad se puede calcular con la fecha de contratación 'HiringDate':

EmpleadosAttrition['year'] = EmpleadosAttrition['HiringDate'].str.split(pat='/').str[2].astype(int)
EmpleadosAttrition['YearsAtCompany'] = 2018 - EmpleadosAttrition['year']
EmpleadosAttrition

₹		Age	BusinessTravel	Department	DistanceFromHome	Education	EducationField	EnvironmentSatisfaction	Gende
	0	50	Travel_Rarely	Research & Development	1 km	2	Medical	4	Mal
	1	36	Travel_Rarely	Research & Development	6 km	2	Medical	2	Mal
	2	21	Travel_Rarely	Sales	7 km	1	Marketing	2	Mal
	3	52	Travel_Rarely	Research & Development	7 km	4	Life Sciences	2	Mal
	4	33	Travel_Rarely	Research & Development	15 km	1	Medical	2	Mal
	395	33	Travel_Rarely	Research & Development	14 km	3	Medical	3	Mal
	396	31	Travel_Rarely	Sales	20 km	3	Life Sciences	2	Femal
	397	37	Travel_Frequently	Research & Development	11 km	3	Other	2	Mal
	398	38	Travel_Rarely	Research & Development	4 km	2	Medical	4	Femal
	399	33	Travel_Rarely	Research & Development	14 km	3	Medical	4	Femal

400 rows × 28 columns

a. Crea una columna llamada Year y obtén el año de contratación del empleado a partir de su fecha 'HiringDate'. No se te olvide que debe ser un entero.

b. Crea una columna llamada YearsAtCompany que contenga los años que el empleado lleva en la compañía hasta el año 2018. Para su cálculo, usa la variable Year que acabas de crear.

400 rows × 29 columns

- 5. La DistanceFromHome está dada en kilómetros, pero tiene las letras "km" al final y así no puede ser entera:
- a. Renombra la variable DistanceFromHome a DistanceFromHome_km.
- b. Crea una nueva variable DistanceFromHome que sea entera, es decir, solo con números.

EmpleadosAttrition.rename(columns={'DistanceFromHome': 'DistanceFromHome_km'}, inplace =
True)
EmpleadosAttrition['DistanceFromHome'] = EmpleadosAttrition['DistanceFromHome_km'].str.split().str[0].astype(int)
EmpleadosAttrition

₹		Age	BusinessTravel	Department	DistanceFromHome_km	Education	EducationField	EnvironmentSatisfaction	Ge
	0	50	Travel_Rarely	Research & Development	1 km	2	Medical	4	
	1	36	Travel_Rarely	Research & Development	6 km	2	Medical	2	
	2	21	Travel_Rarely	Sales	7 km	1	Marketing	2	
	3	52	Travel_Rarely	Research & Development	7 km	4	Life Sciences	2	
	4		Travel_Rarely	Research & Development	15 km	1	Medical	2	
	395	33	Travel_Rarely	Research & Development	14 km	3	Medical	3	
	396	31	Travel_Rarely	Sales	20 km	3	Life Sciences	2	Fe
	397	37	Travel_Frequently	Research & Development	11 km	3	Other	2	
	398	38	Travel_Rarely	Research & Development	4 km	2	Medical	4	Fe
	399	33	Travel_Rarely	Research & Development	14 km	3	Medical	4	Fe

6. Borra las columnas Year, HiringDate y DistanceFromHome_km debido a que ya no son útiles.

EmpleadosAttrition= EmpleadosAttrition.drop(columns=['year', 'HiringDate','DistanceFromHome_km'])
EmpleadosAttrition

→		Age	BusinessTravel	Department	Education	EducationField	EnvironmentSatisfaction	Gender	JobInvolvement
	0	50	Travel_Rarely	Research & Development	2	Medical	4	Male	3
	1	36	Travel_Rarely	Research & Development	2	Medical	2	Male	3
	2	21	Travel_Rarely	Sales	1	Marketing	2	Male	3
	3	52	Travel_Rarely	Research & Development	4	Life Sciences	2	Male	3
	4	33	Travel_Rarely	Research &	1	Medical	2	Male	3

7. Aprovechando los ajustes que se están haciendo, la empresa desea saber si todos los departamentos tienen un ingreso promedio similar. Genera una nuevo frame llamado SueldoPromedioDepto que contenga el MonthlyIncome promedio por departamento de los empleados y colócalo en una variable llamada SueldoPromedio. Esta tabla solo es informativa, no la vas a utilizar en el set de datos que estás construyendo.

8. La variable MonthlyIncome tiene un valor numérico muy grande comparada con las otras variables. Escala dicha variable para que tenga un valor entre 0 y 1.

*		MonthlyIncome
	0	0.864269

- 9. Todo parece indicar que las variables categóricas que quedan sí son importantes para obtener la variable de salida. Convierte todas las variables categóricas que quedan a numéricas:
- a. BusinessTravel
- b. Department
- c. EducationField
- d. Gender
- e. JobRole
- f. MaritalStatus
- g. Attrition

adicional: OverTime

Próximos pasos:

dtuna: float64

from sklearn.preprocessing import OneHotEncoder
#-Aplicar-OneHotEncoder-a-la-columna-'BusinessTravel'encoder = OneHotEncoder(sparse_output=False, handle_unknown='ignore') # por si hay salidas NaN
BusinessTravel_encoded = encoder.fit_transform(EmpleadosAttrition[['BusinessTravel']])

Para obtener los nombres del encoder
feature_names = encoder.get_feature_names_out(['BusinessTravel'])

Crear un DataFrame en donde los nombres de la columnas sean los del encoder
BusinessTravel = pd.DataFrame(BusinessTravel_encoded, columns=feature_names)
BusinessTravel

_	BusinessTravel_Non- Travel	BusinessTravel_Travel_Frequently	BusinessTravel_Travel_Rarely	businessii avei_nan	
0	0.0	0.0	1.0	0.0	ılı
1	0.0	0.0	1.0	0.0	
2	0.0	0.0	1.0	0.0	
3	0.0	0.0	1.0	0.0	
4	0.0	0.0	1.0	0.0	
••					
39	0.0	0.0	1.0	0.0	
39	0.0	0.0	1.0	0.0	
39	0.0	1.0	0.0	0.0	
39	0.0	0.0	1.0	0.0	
39	0.0	0.0	1.0	0.0	
4					•

Ver gráficos recomendados

New interactive sheet

```
# Aplicar OneHotEncoder a la columna 'Department'
Department_encoded = encoder.fit_transform(EmpleadosAttrition[['Department']])
# Para obtener los nombres del encoder
feature_names = encoder.get_feature_names_out(['Department'])
```

Generar código con BusinessTravel

Crear un DataFrame en donde los nombres de la columnas sean los del encoder Department = pd.DataFrame(Department_encoded, columns=feature_names) Department

→	Department_Human Resources	Department_Research & Development	Department_Sales	
	0.0	1.0	0.0	ıl.
	0.0	1.0	0.0	+/
	2 0.0	0.0	1.0	
	0.0	1.0	0.0	
	4 0.0	1.0	0.0	
3	95 0.0	1.0	0.0	
3	96 0.0	0.0	1.0	
3	97 0.0	1.0	0.0	
3	98 0.0	1.0	0.0	
3	99 0.0	1.0	0.0	
40	0 rows × 3 columns			

Próximos pasos: Generar código con Department Ver gráficos recomendados

New interactive sheet

Aplicar OneHotEncoder a la columna 'EducationField' EducationField = encoder.fit_transform(EmpleadosAttrition[['EducationField']])

Para obtener los nombres del encoder feature_names = encoder.get_feature_names_out(['EducationField'])

Crear un DataFrame en donde los nombres de la columnas sean los del encoder EducationField = pd.DataFrame(EducationField, columns=feature_names) ${\tt EducationField}$

→	EducationField_Human Resources	EducationField_Life Sciences	EducationField_Marketing	EducationField_Medical	EducationField_0
0	0.0	0.0	0.0	1.0	
1	0.0	0.0	0.0	1.0	
2	0.0	0.0	1.0	0.0	
3	0.0	1.0	0.0	0.0	
4	0.0	0.0	0.0	1.0	
395	0.0	0.0	0.0	1.0	
396	0.0	1.0	0.0	0.0	
397	0.0	0.0	0.0	0.0	
398	0.0	0.0	0.0	1.0	
399	0.0	0.0	0.0	1.0	
400 r	rows × 6 columns				

Generar código con EducationField Próximos pasos:

Ver gráficos recomendados

New interactive sheet

Aplicar OneHotEncoder a la columna 'Gender'

Condon ancoded - ancoden fit thenceform/[mn] andocAttnition[['Condon']]\

Genuer_encoded = encoder.fit_transform(empleadosAttrition[[Genuer]])

Para obtener los nombres del encoder
feature_names = encoder.get_feature_names_out(['Gender'])

Crear un DataFrame en donde los nombres de la columnas sean los del encoder
Gender = pd.DataFrame(Gender_encoded, columns=feature_names)
Gender

	<pre>Gender_Female</pre>	<pre>Gender_Male</pre>
0	0.0	1.0
1	0.0	1.0
2	0.0	1.0
3	0.0	1.0
4	0.0	1.0
395	0.0	1.0
396	1.0	0.0
397	0.0	1.0
398	1.0	0.0
399	1.0	0.0
400 r	ows × 2 columns	

Próximos pasos: Generar código con Gender

Ver gráficos recomendados

New interactive sheet

Aplicar OneHotEncoder a la columna 'JobRole'

JobRole_encoded = encoder.fit_transform(EmpleadosAttrition[['JobRole']])

Para obtener los nombres del encoder
feature_names = encoder.get_feature_names_out(['JobRole'])

Crear un DataFrame en donde los nombres de la columnas sean los del encoder
JobRole = pd.DataFrame(JobRole_encoded, columns=feature_names)
JobRole

→	JobRole_Healthcare Representative	JobRole_Human Resources	JobRole_Laboratory Technician	JobRole_Manager	JobRole_Manufacturing Director	JobRole_Resear Direct
0	0.0	0.0	0.0	0.0	0.0	1
1	0.0	0.0	0.0	0.0	1.0	(
2	0.0	0.0	0.0	0.0	0.0	(
3	1.0	0.0	0.0	0.0	0.0	(
4	0.0	0.0	0.0	1.0	0.0	(
395	0.0	0.0	1.0	0.0	0.0	(
396	0.0	0.0	0.0	0.0	0.0	(
397	0.0	0.0	0.0	0.0	0.0	1
398	0.0	0.0	1.0	0.0	0.0	(
399	0.0	0.0	0.0	0.0	0.0	(

400 rows × 9 columns

```
# Aplicar OneHotEncoder a la columna 'MaritalStatus'
MaritalStatus_encoded = encoder.fit_transform(EmpleadosAttrition[['MaritalStatus']])
```

Para obtener los nombres del encoder
feature_names = encoder.get_feature_names_out(['MaritalStatus'])

Crear un DataFrame en donde los nombres de la columnas sean los del encoder MaritalStatus = pd.DataFrame(MaritalStatus_encoded, columns=feature_names) MaritalStatus

<u>-</u>	MaritalStatus_Divorced	MaritalStatus_Married	MaritalStatus_Single	MaritalStatus_nan	
0	1.0	0.0	0.0	0.0	ılı
1	1.0	0.0	0.0	0.0	+/
2	0.0	0.0	1.0	0.0	
3	0.0	0.0	1.0	0.0	
4	0.0	1.0	0.0	0.0	
395	0.0	1.0	0.0	0.0	
396	0.0	1.0	0.0	0.0	
397	1.0	0.0	0.0	0.0	
398	0.0	1.0	0.0	0.0	
399	0.0	1.0	0.0	0.0	
400 r	rows × 4 columns				

Próximos pasos: Generar código con MaritalStatus

Ver gráficos recomendados

New interactive sheet

Aplicar OneHotEncoder a la columna 'Attrition'
Attrition_encoded = encoder.fit_transform(EmpleadosAttrition[['Attrition']])

Para obtener los nombres del encoder
feature_names = encoder.get_feature_names_out(['Attrition'])

Crear un DataFrame en donde los nombres de la columnas sean los del encoder
Attrition = pd.DataFrame(Attrition_encoded, columns=feature_names)
Attrition

	Attrition_No	Attrition_Yes				
0	1.0	0.0	11.			
1	1.0	0.0	+/			
2	0.0	1.0	_			
3	1.0	0.0				
4	0.0	1.0				
395	0.0	1.0				
396	0.0	1.0				
397	1.0	0.0				
398	1.0	0.0				
399	1.0	0.0				
400 rd	400 rows × 2 columns					

Próximos pasos: Generar código con Attrition

Ver gráficos recomendados

New interactive sheet

[#] Aplicar OneHotEncoder a la columna 'OverTime'

Over:Ime_encoded = encoder.+it_trans+orm(EmpleadosAttrition[['Over:Ime']])

Para obtener los nombres del encoder
feature_names = encoder.get_feature_names_out(['OverTime'])

Crear un DataFrame en donde los nombres de la columnas sean los del encoder
OverTime = pd.DataFrame(OverTime_encoded, columns=feature_names)
OverTime

•	OverTime_No	OverTime_Yes
0	1.0	0.0
1	1.0	0.0
2	1.0	0.0
3	1.0	0.0
4	0.0	1.0
395	0.0	1.0
396	0.0	1.0
397	0.0	1.0
398	1.0	0.0
399	1.0	0.0
400 rc	ows × 2 columns	

Próximos pasos:

Generar código con OverTime

Ver gráficos recomendados

New interactive sheet

EmpleadosAttrition=pd.concat([EmpleadosAttrition, BusinessTravel, Department, EducationField, Gender, JobRole, MaritalSt EmpleadosAttrition=EmpleadosAttrition.drop(columns=['BusinessTravel', 'Department', 'EducationField', 'Gender', 'JobRole EmpleadosAttrition

}	Age	Education	EnvironmentSatisfaction	JobInvolvement	JobLevel	JobSatisfaction	MonthlyIncome	NumCompanie
0	50	2	4	3	4	4	0.864269	
1	36	2	2	3	2	2	0.207340	
2	21	1	2	3	1	2	0.088062	
3	52	4	2	3	3	2	0.497574	
4	33	1	2	3	3	3	0.664470	
395	33	3	3	3	1	4	0.075248	
396	31	3	2	1	2	3	0.187197	
397	37	3	2	3	3	4	0.589327	
398	38	2	4	3	1	3	0.121124	
399	33	3	4	3	1	2	0.092122	
400 r	ows ×	50 columns						

400 rows × 50 columns

10. Ahora debes hacer la evaluación de las variables para quedarte con las mejores. Calcula la correlación lineal de cada una de las variables con respecto al Attrition.

```
correlation_matrix=EmpleadosAttrition.corr()
Attrition_yes_corr=correlation_matrix['Attrition_Yes']
Attrition_yes_corr
```


	Attrition_Yes
Age	-0,212121
Education	-0.055531
EnvironmentSatisfaction	-0.124327
Jobinvolvement	-0.166785
JobLevel	-0.214266
JobSatisfaction	- 0.164957
MonthlyIncome	-0.194936
NumCompaniesWorked	-0.009082
PercentSalaryHike	-0.060880
PerformanceRating	-0.006471
RelationshipSatisfaction	-0.030945
TotalWorkingYears	-0.213329
TrainingTimesLastYear	-0.070884
WorkLifeBalance	-0.021723
YearsInCurrentRole	-0.203918
YearsSinceLastPromotion	-0.069000
YearsAtCompany	-0.176001
DistanceFromHome	0.052732
BusinessTravel_Non-Travel	-0.100698
BusinessTravel_Travel_Frequently	0.035387
BusinessTravel_Travel_Rarely	0.042755
BusinessTravel_nan	-0.044677
Department_Human Resources	0.023389
Department_Research & Development	-0.072269
Department_Sales	0.066116
EducationField_Human Resources	0.043404
EducationField_Life Sciences	-0.027457
EducationField_Marketing	0.016768
EducationField_Medical	-0.054144
EducationField_Other	-0.004275
EducationField_Technical Degree	0.129104
Gender_Female	0.028839
Gender_Male	-0.028839
JobRole_Healthcare Representative	-0.103274
JobRole_Human Resources	0.032714
JobRole_Laboratory Technician	0.125264
JobRole_Manager	-0.089885
JobRole_Manufacturing Director	-0.042404
JobRole_Research Director	-0.116263
JobRole_Research Scientist	0.007977
JobRole_Sales Executive	-0.003115
JobRole_Sales Representative	0.191294
MaritalStatus Divorced	-0.107869 RnCDL-pg4oEWE0

	0.101.000	
MaritalStatus_Married	-0.094734	
MaritalStatus_Single	0.205849	
MaritalStatus_nan	0.010609	
Attrition_No	-1.000000	
Attrition_Yes	1.000000	
OverTime_No	-0.324777	
OverTime_Yes	0.324777	

dtype: float64

EmpleadosAttritionFinal

11. Selecciona solo aquellas variables que tengan una correlación mayor o igual a 0.1, dejándolas en otro frame llamado EmpleadosAttritionFinal. No olvides mantener la variable de salida Attrition; esto es equivalente a borrar las que no cumplen con el límite.

```
#Buscando los valores de corr mayores a 0.1. Nota, se usa siempre el valor absoluto
print(Attrition_yes_corr[abs(Attrition_yes_corr)>=0.1])

#seleccionar la tabla con las columnas. Nótese que como con el encoder se generó
#Attrition_Yes, Attrition_No, OverTime_Yes y OverTime No, solo se seleccionaron las columnas con Yes y se renombraron
EmpleadosAttritionFinal=EmpleadosAttrition[['Age', 'EnvironmentSatisfaction', 'JobInvolvement', 'JobLevel', 'JobSatisfac
EmpleadosAttritionFinal.rename(columns={'Attrition_Yes': 'Attrition'}, inplace =
True)
EmpleadosAttritionFinal.rename(columns={'OverTime_Yes': 'Overtime'}, inplace =
True)
```

```
-0.212121
→ Age
     EnvironmentSatisfaction
                                              -0.124327
    JobInvolvement
                                              -0.166785
     JobLevel
                                              -0.214266
    JobSatisfaction
                                              -0.164957
    MonthlyIncome
                                              -0.194936
    TotalWorkingYears
                                              -0.213329
     YearsInCurrentRole
                                              -0.203918
     YearsAtCompany
                                              -0.176001
    BusinessTravel_Non-Travel
                                              -0.100698
    EducationField_Technical Degree
                                               0.129104
    JobRole_Healthcare Representative
                                              -0.103274
     JobRole_Laboratory Technician
                                               0.125264
    JobRole_Research Director
                                              -0.116263
     JobRole_Sales Representative
                                               0.191294
    MaritalStatus_Divorced
                                              -0.107869
    MaritalStatus_Single
                                               0.205849
    Attrition No
                                              -1.000000
    Attrition_Yes
                                               1,000000
    OverTime_No
                                              -0.324777
    OverTime_Yes
                                               0.324777
    Name: Attrition_Yes, dtype: float64
     <ipython-input-112-de0885161d5e>:7: SettingWithCopyWarning:
    A value is trying to be set on a copy of a slice from a DataFrame
    See the caveats in the documentation: <a href="https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#retu">https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#retu</a>
       EmpleadosAttritionFinal.rename(columns={'Attrition_Yes': 'Attrition'}, inplace =
     <ipython-input-112-de0885161d5e>:9: SettingWithCopyWarning:
    A value is trying to be set on a copy of a slice from a DataFrame
    See the caveats in the documentation: <a href="https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#retu">https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#retu</a>
       EmpleadosAttritionFinal.rename(columns={'OverTime_Yes': 'Overtime'}, inplace =
           Age EnvironmentSatisfaction JobInvolvement JobLevel JobSatisfaction MonthlyIncome TotalWorkingYears
       0
                                          4
                                                                        4
                                                                                            4
                                                                                                     0.864269
            50
                                                                                                                                 32
            36
                                                                                            2
                                                                                                     0.207340
       1
                                          2
                                                             3
                                                                        2
                                                                                                                                  7
       2
            21
                                          2
                                                             3
                                                                                            2
                                                                                                     0.088062
                                                                                                                                  1
                                                                        1
       3
            52
                                          2
                                                             3
                                                                        3
                                                                                            2
                                                                                                     0.497574
                                                                                                                                 18
       4
            33
                                          2
                                                             3
                                                                        3
                                                                                            3
                                                                                                     0.664470
                                                                                                                                 15
      ...
             ...
                                          ...
                                                                                           ...
                                                                                                                                  ...
      395
                                                             3
                                                                                            4
                                                                                                     0.075248
            33
                                          3
                                                                        1
                                                                                                                                  8
      396
            31
                                          2
                                                             1
                                                                        2
                                                                                            3
                                                                                                     0.187197
                                                                                                                                  4
      397
            37
                                          2
                                                             3
                                                                        3
                                                                                                     0.589327
                                                                                                                                 10
```

400 rows × 19 columns

38

33

398

399

Generar código con EmpleadosAttritionFinal Próximos pasos:

4 4

Ver gráficos recomendados

3

2

0.121124

0.092122

New interactive sheet

7

8

12. Crea una nueva variable llamada EmpleadosAttritionPCA formada por los componentes principales del frame EmpleadosAttritionFinal. Recuerda que el resultado del proceso PCA es un numpy array, por lo que, para hacer referencia a una columna, por ejemplo, la 0, puedes usar la instrucción EmpleadosAttritionPCA[:,0]).

3

3

```
#importar y aplicar la transformación
from sklearn.decomposition import PCA
pca = PCA(19) #son 19 porque son 19 columnas
EmpleadosAttritionPCA = pca.fit_transform(EmpleadosAttritionFinal)
EmpleadosAttritionPCA=pd.DataFrame(EmpleadosAttritionPCA)
print(EmpleadosAttritionPCA)
```

```
2
                   1
    20.252734 -4.207118 10.721005 1.868202 0.322578 2.050336 0.097166
    -6.382336 -3.690989 -0.156199 -0.215953 -0.069780 -0.917947
1
                                                            0.474261
                        3.225836 -0.987670 -0.081283 -0.970779
   -21.513871 1.744893
    13.827285 -5.843714 -2.224650 0.987369 -0.175956 -0.992844 0.290588
    -1.434535 4.144322
                      3.924502 1.673850 0.592946 -0.383056
395
    -6.977475 0.384383
                        0.195720 0.605111
                                          0.767822 0.993200 -0.825433
396 -12.043090 -2.043794
                        0.205287 0.260124
                                          0.752201 -0.430748 0.325027
397
   -0.642749 3.420290 -3.347864 1.449444 1.409517 0.125163 1.085773
398
    -6.313785 -7.697475
                      0.860586 -0.338977 -0.475273 1.312528 -0.452975
399
    -5.589425 3.527690 -2.061372 1.531561 -1.438211 0.634778 -0.536651
                           9
                  8
                                    10
                                             11
                                                      12
                                                               13
0
    0.443771 -0.695972 0.163452 0.307199 0.409713 0.499497 -0.204595
    0.228920 -0.837801 0.044091 -0.101315
                                        0.415987
                                                0.139596 -0.061672
1
2
             0.662161 -0.318825 -0.122170
                                        0.344002
                                                0.666507
    0.177851 0.553020 -0.501046 -0.289485 0.410621 -0.345118
3
                                                          0.727763
    4
395
    0.472170
             0.428193
                     0.909087 0.642571 -0.553890
                                                0.199659
                                                          0.293151
396 -1.808071 0.235075
                     0.887290 -0.133881 -0.493664
                                                 0.189130
                                                          0.036277
    0.146913 -0.345588 0.984529 0.152730 0.361801 0.007553 -0.394461
398 0.422710 -0.256279 -0.273526 0.522307 -0.524359 -0.030094 0.097632
399 0.445293 -0.121545 -0.332054 -0.329148 -0.253162 0.094242 -0.162347
         14
                           16
                                    17
                  15
                                             18
0
   -0.082915   0.534587   -0.188034   -0.107405   0.049467
   -0.124457 -0.189321 0.011874 -0.078071 -0.050903
1
    -0.114979 0.106768 0.001121 0.054099 0.054121
3
    0.289076 -0.269640 -0.200723 0.024050
395
    0.106587
            0.047221 -0.186131
                               0.087843
                                        0.009168
396
    0.054348 -0.188413 -0.230552
                              0.003983 -0.082337
397 -0.405937 0.555391 -0.210787 -0.015977 0.025234
0.051315
   0.008860 -0.054734 -0.161082 -0.123484
[400 rows x 19 columns]
```

13. Agrega el mínimo número de Componentes Principales en columnas del frame EmpleadosAttritionPCA que logren explicar el 80% de la varianza, al frame EmpleadosAttritionFinal. Puedes usar la instrucción assign, columna por columna, llamando a cada una C0, C1, etc., hasta las que vayas a agregar

```
Es posible que el código generado esté sujeto a una licencia |
#cálculo de porcentaje
print(pca.explained_variance_ratio_)
#el siguiente código es para visualizar valores de manera más clara sin exponentes
ratio=pd.DataFrame(pca.explained_variance_ratio_)
ratio
```

#La columna donde con mayor porcentaje de la varianza es la primer columna con 63.4%, # por lo cual al ser menor que el 80%, no se agrega nada al Data Frame EmpleadosAttritionFinal