- 4. 1 Introducción
- 4.2 Circuitos virtuales y redes de datagramas
- 4.3 ¿Qué hay dentro de un router?
- 4.4 IP: Internet Protocol

Formato de Datagrama Direccionamiento IPv4 ICMP IPv6 4.5 Algoritmo de ruteo
Estado de enlace
Vector de Distancias
Ruteo Jerárquico

4.6 Ruteo en la Internet

RIP

OSPF

BGP

Capa de red en Internet

Funciones de la capa de red de host y router :

- 4. 1 Introducción
- 4.2 Circuitos virtuales y redes de datagramas
- 4.3 ¿Qué hay dentro de un router?
- 4.4 IP: Internet Protocol
 Formato de Datagrama
 Direccionamiento IPv4
 ICMP
 IPv6

```
4.5 Algoritmo de ruteo
Estado de enlace
Vector de Distancias
Ruteo Jerárquico
```

4.6 Ruteo en la Internet

OSPF

BGP

Formato del datagrama IP

Número de versión de protocolo IP

Longitud de la cabecera en bytes

Cantidad máxima de saltos restantes (decrementado en cada router)

A qué protocolo superior corresponden los datos

Ineficiencia con TCP

20 bytes de TCP

20 bytes de IP

= 40 bytes + encabezado de capa de Aplicación

Capa de Red 2 - 4

Fragmentación y re-ensamble IP

- 4. 1 Introducción
- 4.2 Circuitos virtuales y redes de datagramas
- 4.3 ¿Qué hay dentro de un router?
- 4.4 IP: Internet Protocol
 Formato de Datagrama
 Direccionamiento IPv4
 ICMP
 IPv6

```
4.5 Algoritmo de ruteo
Estado de enlace
Vector de Distancias
Ruteo Jerárquico
```

4.6 Ruteo en la Internet RIP OSPF BGP

Direccionamiento IP: introducción

Dirección IP

Identificador de 32-bit por host o *interfaz* en router

Interfaz: conexión entre host o router y enlace físico

Un router típicamente tiene múltiples interfaces

Un host puede tener múltiples interfaces

Las direcciones IP están asociadas a cada interfaz

Direccionamiento classful

200.23.16.0/24

Direccionamiento classless

CIDR (Classless InterDomain Routing)

- La parte de subred de la dirección se hace de tamaño arbitrario
- Formato de dirección a.b.c.d/x, donde x es la cantidad de bits de la dirección de subred
- La longitud de la parte de subred se expresa como una máscara de bits
- Dirección AND máscara = parte de subred

200.23.16.0/25

Cómo se obtiene una dirección IP

- Configurada por el administrador en un archivo
 - Windows
 - Control-panel → Network→ Configuration → TCP/IP → Properties
 - Debian Linux
 - /etc/network/interfaces
 - RedHat/CentOS/Fedora Linux
 - /etc/sysconfig/network-scripts/ifcfg-eth0

- DHCP
 - Dynamic Host Configuration Protocol
 - El host obtiene datos de configuración dinámicamente desde un servidor
 - Dirección IP, máscara, gateway default, DNS local, otros

Cómo se obtiene un bloque IP

Solicitando un bloque de direcciones al proveedor o ISP

```
Bloque del ISP
               11001000 00010111 00010000 00000000
                                                        200.23.16.0/20
Organización 0
             11001000 00010111 00010000 00000000
                                                         200.23.16.0/23
Organización 1
                         00010111 00010010 00000000
                                                         200.23.18.0/23
               11001000
Organización 2
                                                         200.23.20.0/23
               11001000 00010111 00010100 00000000
 . . .
                           . . . . .
 . . .
Organización 7
               11001000 00010111
                                   00011110 00000000
                                                         200.23.30.0/23
```

Direccionamiento IP: la última palabra...

- ¿Cómo obtiene un ISP un bloque de direcciones?
- ICANN: Internet Corporation for Assigned Names and Numbers
 - Asigna direcciones
 - Administra DNS
 - Asigna nombres de dominio
 - Resuelve disputas

NAT: Network Address Translation

- Motivación: usar sólo una dirección IP para ser vistos desde el mundo exterior
- No necesitamos asignación de un rango del ISP
- Sólo una dirección es usada por todos los dispositivos
 - Podemos cambiar la dirección de dispositivos en red local sin notificar al mundo exterior
 - Podemos cambiar de ISP sin cambiar las direcciones de los dispositivos en red local
 - Los dispositivos dentro de la red no son explícitamente direccionables o visibles desde afuera (ventaja de seguridad)

NAT: Network Address Translation

- Traducción de direcciones
- Datagramas salientes
 - Reemplazar (IP origen, número de puerto) de cada datagrama saliente por (IP NAT, nuevo número de puerto)
 - Clientes y servidores remotos responderán usando (IP
 NAT, nuevo número de puerto) como dirección destino
 - Recordar, en tabla de traducción NAT, cada par de traducción (IP origen, número de puerto) a (IP NAT, nuevo número de puerto)
- Datagramas entrantes
 - Reemplazar (IP NAT, nuevo número de puerto) en campo destino de cada datagrama entrante por el correspondiente (IP origen, número de puerto)
 almacenado en tabla NAT

NAT: Network Address Translation

- Campo de número de puerto es de 16 bits:
 - Alrededor de 60000 conexiones simultáneas con una única dirección dentro de la LAN
- NAT es discutible
 - Los routers deberían procesar sólo hasta capa 3
 - Viola el ideal de extremo-a-extremo
 - Posiblemente los dispositivos NAT deben ser tomados en cuenta por los diseñadores de aplicaciones, como aplicaciones P2P
 - En lugar de usar NAT, la escasez de direcciones debería ser resuelta por IPv6

- 4. 1 Introducción
- 4.2 Circuitos virtuales y redes de datagramas
- 4.3 ¿Qué hay dentro de un router?
- 4.4 IP: Internet Protocol

Formato de Datagrama Direccionamiento IPv4

ICMP

IPv6

4.5 Algoritmo de ruteo Estado de enlace

Vector de Distancias

Ruteo Jerárquico

4.6 Ruteo en la Internet

RIP

OSPF

BGP

ICMP: Internet Control Message Protocol

- Usado por hosts y routers para comunicar información a nivel de la red
- Reporte de errores
 - Host/red/puerto/protocolo inalcanzable
 - Echo request/reply
 - Usado por ping
- Funcionalidad de Capa de Red "sobre" IP
 - Mensajes ICMP
 - Son transportados por datagramas IP
 - Tipo y código de error, más primeros 8 bytes del datagrama que causó el error

ICMP: Internet Control Message Protocol

<u>Type</u>	Code	Description
Θ	0	echo reply (ping)
3	0	dest. network unreachable
3	1	dest host unreachable
3	2	dest protocol unreachable
3	3	dest port unreachable
3	6	dest network unknown
3	7	dest host unknown
4	0	source quench (cong. control - not used)
8	0	echo request (ping)
9	0	route advertisement
10	0	router discovery
11	0	TTL expired
12	Θ	bad IP header

Traceroute e ICMP

- El origen envía una serie de segmentos UDP al destino
 - Primero usa TTL =1
 - Luego usa TTL=2, etc.
 - Número de puerto no probablemente usado
- Cuando el n-ésimo datagrama llega al n-ésimo router:
 - El router descarta el datagrama
 - Envía al origen un mensaje ICMP "TTL expirado" (tipo 11, código 0)
 - El mensaje incluye nombre del router y dirección IP

Traceroute e ICMP

- Cuando llega el mensaje ICMP, el origen calcula el RTT
 - Traceroute hace esto 3 veces
- Criterio de parada
 - El segmento UDP eventualmente llega al host destino
 - El host destino devuelve paquete ICMP "puerto inalcanzable" (tipo 3, código 3)
 - Cuando el origen recibe este ICMP, detiene el algoritmo.