MA571 Problem Set 5

Carlos Salinas

September 23, 2015

Problem 5.1 (Munkres §23, Ex. 3)

Let $\{A_{\alpha}\}$ be a collection of connected subspaces of X; let A be a connected subspace of X. Show that if $A \cap A_{\alpha} \neq \emptyset$ for all α , then $A \cup (\bigcup A_{\alpha})$ is connected.

Proof. We shall aim to prove this result by using Theorem 23.3 from Munkres. Define the collection $\{B_{\alpha}\}$ by setting $B_{\alpha} = A \cup A_{\alpha}$. Note that by Theorem 23.3, B_{α} is connected for all α , since $A \cap A_{\alpha} \neq \emptyset$ and both A and A_{α} are connected. Next observe that the intersection $B_{\alpha} \cap B_{\beta} \neq \emptyset$ for all α and β , in particular, the subspace A is contained in the intersection since $A \subset B_{\alpha}$ and B_{β} for all α and β . Therefore, $\{B_{\alpha}\}$ is a collection of connected subspaces of X that have a point in common. Applying Theorem 23.3 one last time, we see that the union

$$\bigcup B_\alpha = \bigcup (A \cup A_\alpha) = A \cup \left(\bigcup A_\alpha\right)$$

is connected.

Problem 5.2 (Munkres §23, Ex. 6)

Let $A \subset X$. Show that if C is a connected subspace of X that intersects both A and $X \setminus A$, then C intersects ∂A .

Proof. We shall proceed by contradiction. Suppose that $C \cap \partial A = \emptyset$, then we shall show that the pair $C \cap A$ and $C \cap (X \setminus A)$ forms a separation of C. Recall that by definition (see Munkres §17, p. 102) the boundary $\partial A = \overline{A} \cap \overline{X} \setminus \overline{A}$. Then we claim that $\overline{A} = \partial A \cup \operatorname{int} A$:

Lemma 13. Let X be a topological space and $A \subset X$. Then ∂A and int A are disjoint and $\overline{A} = \partial A \cup \operatorname{int} A$.

Proof of lemma. The point $x \in \partial A$ if and only if $x \in \overline{A}$ and $x \in \overline{X \setminus A}$. Thus, for every neighborhood U of x, the intersection $U \cap X \setminus A \neq \emptyset$, in particular $U \not\subset A$ so x is not an interior point of A. Hence, we see that $\partial A \cap \operatorname{int} A = \emptyset$. To prove the last statement note that $\partial A \subset \overline{A}$ and $\operatorname{int} A \subset A \subset \overline{A}$ (cf. Munkres §17, p. 95), so that $\partial A \cup \operatorname{int} A \subset \overline{A}$ hence, it suffices to show the reverse inclusion, namely, $\overline{A} \subset \partial A \cup \operatorname{int} A$. Let $x \in \overline{A}$. If $x \in \operatorname{int} A$, then clearly $x \in \partial A \cup \operatorname{int} A$. Suppose $x \notin \operatorname{int} A$. Then, by Theorem 17.5(a), for every neighborhood U of x, the intersection $U \cap A \neq \emptyset$ and $U \not\subset A$. Thus, $U \cap (X \setminus A) \neq \emptyset$ so $x \in \overline{X \setminus A}$. It follows that $x \in \overline{A} \cap \overline{X \setminus A} = \partial A$.

Lemma 14. Let X be a topological space and $A \subset X$. Then $\partial A = \partial (X \setminus A)$.

Proof of lemma. Replace A by $X \setminus A$ in the definition of the boundary of A. Then we have:

$$\begin{split} \partial(X \setminus A) &= \overline{X \setminus A} \cap \overline{X \setminus (X \setminus A)} \\ &= \overline{X \setminus A} \cap \overline{A} \\ &= \overline{A} \cap \overline{X \setminus A} \\ &= \partial A. \end{split}$$

Now, by Theorem 17.4, we have that $\overline{C \cap A} = C \cap \overline{A}$ and $\overline{C \cap (X \setminus A)} = C \cap \overline{X \setminus A}$. But by Lemma 13 and Lemma 14, the latter sets are equivalent to $\overline{C \cap A} = C \cap (\partial A \cup \operatorname{int} A)$ and $\overline{C \cap (X \setminus A)} = C \cap (\partial A \cup \operatorname{int}(X \setminus A))$. But since $C \cap \partial A = \emptyset$ by assumption, we have

$$\overline{C \cap A} \cap (C \cap (X \setminus A)) = (C \cap (\partial A \cup \operatorname{int} A)) \cap (C \cap (X \setminus A))$$

$$= ((C \cap \partial A) \cup (C \cap \operatorname{int} A)) \cap (C \cap (X \setminus A))$$

$$= (C \cap \operatorname{int} A) \cap (C \cap (X \setminus A))$$

$$= \emptyset$$

since $C \cap \text{int } A \subset A$ and $C \cap (X \setminus A) \subset X \setminus A$. Similarly, we have that the intersection $\overline{C \cap (X \setminus A)} \cap (C \cap A) = \emptyset$. So by Lemma 23.1, $C \cap A$ and $C \cap (X \setminus A)$ form a separation of C. This contradicts the assumption that C is connected. Therefore, we conclude that $C \cap \partial A \neq \emptyset$.

Problem 5.3 (Munkres §23, Ex. 7)

Is the space \mathbf{R}_ℓ connected? Justify your answer.

Proof. No. The space \mathbf{R}_{ℓ} is not connected and we may exhibit an explicit separation. Namely, consider the basis elements $(-\infty,0)$ and $[0,\infty)$. Then $\mathbf{R}=(-\infty,0)\cup[0,\infty)$, hence $(-\infty,0)$ and $[0,\infty)$ form a separation of \mathbf{R} with the lower limit topology.

Alternatively, one may note that $\mathbf{R} \setminus (-\infty, 0) = [0, \infty)$ is open in \mathbf{R}_{ℓ} so $(-\infty, 0)$ is both open and closed. Hence, by Munkres's alternative formulation of connectedness (cf. Munkres §23, p. 148 the italicized paragraph), \mathbf{R}_{ℓ} is disconnected.

Problem 5.4 (Munkres §23, Ex. 9)

Let A be a proper subset of X, and let B be a proper subset of Y. If X and Y are connected, show that

$$(X \times Y) \setminus (A \times B)$$

is connected.

Proof. We shall proceed by contradiction. Let C and D form a separation of $(X \times Y) \setminus (A \times B)$. Now, consider the embedding $X \hookrightarrow X \times Y$ at a point $y_0 \in Y \setminus B$, i.e, the map $x \mapsto x \times y_0$. Its image in $X \times Y$ is the subspace $X \times y_0$. Note that $X \times y_0 \subset (X \times Y) \setminus (A \times B)$ since

$$(X \times Y) \setminus (A \times B) = \{ x \times y \in X \times Y \mid x \in X \setminus A \text{ and } y \in Y \setminus B \},$$

but $y_0 \notin B$ so $x \times y_0 \notin A \times B$ for all $x \in X$. By Problem 2.8 (Munkres §18, Ex. 4), the latter map is continuous. Moreover, by Theorem 18.2(e), the restriction of its codomain to $(X \times Y) \setminus (A \times B)$ yields a continuous injection $X \hookrightarrow (X \times Y) \setminus (A \times B)$. Then by Theorem 23.5, we have that $X \times y_0$ is a connected subspace of $(X \times Y) \setminus (A \times B)$. Thus, by Theorem 23.2, $X \times y_0 \subset C$ or $X \times y_0 \subset D$.

Problem 5.5 (Munkres §24, Ex. 1(ac))

- (a) Show that no two of the spaces (0,1), (0,1] and [0,1] are homeomorphic. [Hint: What happens if you remove a point from each of these spaces?]
- (c) Show \mathbf{R}^n and \mathbf{R} are not homeomorphic if n > 1.

Proof.

Problem 5.6 (Munkres $\S24$, Ex. 2)

Let $f: S^1 \to \mathbf{R}$ be a continuous map. Show there exists a point x of S^1 such that f(x) = f(-x).

Proof.

Problem 5.7 (Munkres §25, Ex.2(b))

(b) Consider \mathbf{R}^{ω} in the uniform topology. Show that \mathbf{x} and \mathbf{y} lie in the same component of \mathbf{R}^{ω} if and only if the sequence

$$\mathbf{x}-\mathbf{y}=(x_1-y_1,x_2-y_2,\ldots)$$

is bounded. [Hint: It suffices to consider the case where $\mathbf{y}=\mathbf{0}.$]

Proof.

Problem 5.8 (Munkres §25, Ex. 4)

Let X be locally path connected. Show that every connected open set in X is path connected.

Proof.

Problem 5.9 (Munkres §25, Ex. 6)

A space X is said to be weakly locally path connected at x if for every neighborhood U of x, there is a connected subspace of X contained in U that contains a neighborhood of x. Show that if X is weakly locally connected at each of its points, then X is locally connected. [Hint: H]

Proof.

CARLOS SALINAS PROBLEM 5.10(A)

Problem 5.10 (A)

Let X be a topological space. The quotient space $(X \times [0,1])/(X \times 0)$ is called the *cone* of X and denoted CX.

Prove that if X is homeomorphic to Y then CX is homeomorphic to CY (Hint: There are maps in both directions).

Proof.

Problem 5.11 (Extra problem)

Notation: for positive integers i, n, I, N, let us write $(i, n) \gg (I, N)$ if i > I and n > N.

Theorem 15. A sequence $\{\mathbf{x}_n\}$ in \mathbf{R}^{ω} converges to $\mathbf{0}$ in the box topology if and only if two conditions hold:

- $\begin{array}{l} \textit{(i) for each k, $\lim_{n\to\infty}x_n^{(k)}=0$, and}\\ \textit{(ii) there is a pair (I,N) with $x_n^{(k)}=0$ whenever $(i,n)\gg(I,N)$.} \end{array}$

Proof.