

vv214_SU2020_Assignment 3

due to June 16, 2020

Part A

Problem 1

a. Find a matrix A that does the following transformations in \mathbb{R}^2

$$\bar{x}_1 = (2,1) \rightarrow \bar{y}_1 = (-1,1) \text{ and } \bar{x}_2 = (-1,\frac{3}{2}) \rightarrow \bar{y}_2 = (-2,1)$$

b. Is A invertible? Find A^{-1} .

Problem 2

Find matrices of the following linear transformations:

- 1. $T: \mathbb{R}^2 \rightarrow \mathbb{R}^2$
- a. The reflection about the line y = x combined with the counterclockwise rotation through $\pi/6$.
- b. The orthogonal projection onto the line y = -x combined with the scaling by 2.
- **2**. $T: \mathbb{R}^3 \rightarrow \mathbb{R}^3$
 - a. The orthogonal projection onto the line x = z on the xz-plane.
 - b. The rotation about the y-axis through an angle of $\frac{\pi}{2}$, counterclockwise as viewed from the positive y-axis combined with the reflection about the xz-plane.

Problem 3

Bretscher 2.2.27, 2.2.28, 2.2.34, pp.66-67.

Problem 4

a. A matrix E obtained from I_n by one of the elementary row operations is called elementary.

Find the matrix products E_1A , E_2A , E_3A , where

$$E_1 = \begin{pmatrix} 0 & 1 & 0 \\ 1 & 0 & 0 \\ 0 & 0 & 1 \end{pmatrix} \qquad E_2 = \begin{pmatrix} 1 & -2 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{pmatrix} \qquad E_3 = \begin{pmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & \frac{1}{2} \end{pmatrix} \qquad A = \begin{pmatrix} a & b & c \\ d & e & f \\ g & h & k \end{pmatrix} \qquad A = \begin{pmatrix} a & b & c \\ d & e & f \\ g & h & k \end{pmatrix}$$

and explain the relation between E_1, E_2, E_3 and A in terms of elementary row operations.

- b. For the matrix $A = \begin{pmatrix} 0 & 1 \\ 2 & 3 \end{pmatrix}$, represent its rref(A) in the form $rref(A) = E_r \dots E_2 E_1 A$, where E_i are elementary matrices, write A as a product of elementary matrices, and show that A cannot be represented as a product of a lower matrix L and an upper triangular matrix U.
- c. Let the coefficient matrix of a linear system $A\bar{x} = \bar{b}$ be represented the form A = LU. How does it help you to solve the system? (Read Bretscher p.93, exercises 2.4.90-2.4.91)

Problem 5

Bretscher 2.4.108, parts a. and b., p. 96

Problem 6

Determine whether the given vectors are linearly independent

$$\bar{x}_1 = (1, 2, 0, 1)$$
 , $\bar{x}_2 = (0, 1, 1, 2)$, $\bar{x}_3 = (1, -1, -2, 1)$, $\bar{x}_4 = (2, 2, -1, 4)$.

What is the dimension of $V = span(\bar{x}_1, \bar{x}_2, \bar{x}_3, \bar{x}_4)$?

Problem 7

Find the reduced row-echelon form, bases of the image and the kernel for each for the following matrices

Dr. Olga Danilkina 中国 上海闵行区东川路 800 号 邮编 200240

a.
$$\begin{pmatrix} 4 & 8 & 1 & 1 & 6 \\ 3 & 6 & 1 & 2 & 5 \\ 2 & 4 & 1 & 9 & 10 \\ 1 & 2 & 3 & 2 & 0 \end{pmatrix} \qquad b. \begin{pmatrix} 1 & 0 & 2 & 4 \\ 0 & 1 & -2 & -1 \\ 2 & 4 & -4 & 4 \\ 0 & -1 & 2 & 1 \end{pmatrix}$$

Problem 8

Bretscher Exercise 3.3.84, page 136

Problem 9

Bretscher Exercise 3.1.53-3.154, page 112

Problem 10

Check if the matrices

$$A = \begin{pmatrix} 1 & 1 & 1 \\ 2 & 3 & 2 \\ 3 & 9 & 4 \end{pmatrix}, \qquad B = \begin{pmatrix} 4 & 0 & -1 \\ -1 & 4 & -1 \\ 3 & 3 & -1 \end{pmatrix}$$

are invertible. If they are, find the inverse matrices using elementary row operations.

Part B

Type the following commands in MATLAB/MATLAB Online and save the inputs and outputs/m. files/graphs as a .pdf file

Operation	Туре	Comments	
To enter matrices row by row	A= [8 2 9; 4 9 4; 6 7 9]		
	B= [1 2 3; 4 5 6; 7 8 9]		
To find the inverses of A and B	AI=inv(A)	Explain the obtained	
	BI=inv(B)	results.	
	8	What is $rref(A)$?	
To get the entries in fractional	format		
format	rat AI = inv(A)		
To form the augmented matrix	A1= [A eye(3)]		
(A I)			
To find $rref(A I)$	A2=rref(A1)		
To extract the inverse of A	AI=A2(:, [4 5 6])		
III footonigation with MATIAD			

LU factorization with MATLAB

To see LU factorization of A	[L U] = lu(A)	Read the exercise 2.4.90
		for details
To see LU factorization of A with	[L U P] = lu(A)	
the permutation matrix P		
To solve $L\bar{c} = \bar{a}$	c = L\a	Define your own vector
		$ar{a}$
To solve $U\bar{x} = \bar{c}$	x = U\c	
To see LU factorization of B and	[L U P]=lu(B)	$B\bar{x}=LU\bar{x}=L\bar{c}=\bar{a},$
extract L and U		where $\bar{c} = U\bar{x}$

Dr. Olga Danilkina

中国 上海闵行区东川路 800 号

邮编 200240

To solve $L\bar{c} = \bar{a}$	c = L\a	Define your own vector		
		\bar{a}		
To solve $U\bar{x} = \bar{c}$	x = U\c	Explain the obtained		
		result.		
Plotting with MATLAB				
To plot the line segment with the	x = [1 -1]; y = [2 -5];	Type plot(x,y,'g') for		
end-points $(1, -1)$, $(2, -5)$	plot(x, y)	green color plot(x,y,'r		
		') for red dashed line		
To rescale the axes	axis ([-5 5 -3 3])			
To add labels	<pre>xlabel('x axis') ylabel('y</pre>			
	axis')			
To add a title	title('The line segment')			
To add another graph to the	hold on : hold off	Enter commands for		
same plot		new plots after hold on		
		and before hold off hold		
		on		
	y= [-2 5]			
	plot(x, y, 'k')			
	x=-x			
	plot(x, y, 'b')			
	hold off			
To create the .m file with the	function	Save the file as ltr2d.m		
following content	lt2d(obj, M)	Add whitebg('w') for		
	plot(obj(1,:), obj(2,:),	white background		
	'b') hold on $y = M * obj;$			
mile!	<pre>display(y) plot(y(1,:),</pre>			
	1/2 1) n hold off			

Dr. Olga Danilkina 中国 上海闵行区东川路 800 号 邮编 200240

Tel: +86-21-34206765 Ext. 4372 http://umji.sjtu.edu.cn