Math 453 Abstract Algebra sample

- 1. Find gcd(123,745)
- 2. Find the inverse of 23 in \mathbb{Z}_{71}
- 3. Find the last two digits of 15^{100} .
- 4. Prove that the set of all 2×2 matrices with entries from \mathbb{R} and determinant 1 is a group under matrix multiplication.
- 5. Prove that a group G is Abelian if and only if $(ab)^{-1} = a^{-1}b^{-1}$ for any $a, b \in G$.
- 6. Prove that in any group, an element and its inverse have the same order.
- 7. Suppose that H is a proper subgroup of \mathbb{Z} under addition and H contains 18, 30 and 40, Determine H.
- 8. Suppose a and b are elements in a group such that |a| = 4, |b| = 2, and $a^3b = ba$. Find |ab|.
- 9. Determine the subgroup lattice of \mathbb{Z}_{48} .
- 10. let G be a group and let a be an element of G.
 - (1) if $a^{12} = e$, what can we say about the order of a?
 - (2) if $a^m = e$, what can we say about the order of a?
 - (3) suppose that |G| = 24 and that G is cyclic. If $a^8 \neq e$ and $a^{12} \neq e$, show that $G = \langle a \rangle$.
- 11. Consider $\sigma = (13256)(23)(46512)$.
 - (a) Express σ as a product of disjoint cycles.
 - (b) Find its order.
- 12. (a) Let $\alpha = (1,3,5,7,9,8,6)(2,4,10)$. What is the smallest positive integer n such that $\alpha^n = \alpha^{-5}$?
 - (b) Let $\beta = (1, 3, 5, 7, 9)(2, 4, 6)(8, 10)$ If β^m is a 5-cycle, what can you say about m?
- 13. In S_7 show that $x^2 = (1, 2, 3, 4)$ has no solutions, but $x^3 = (1, 2, 3, 4)$ has at least two.
- 14. Let G be a group. Show that $\phi: G \to G$ defined by $\phi(g) = g^{-1}$ is an isomorphism if and only if G is Abelian.
- 15. Show that $\phi: (\mathbb{Z}/16\mathbb{Z})^* \to (\mathbb{Z}/16\mathbb{Z})^*$ defined by $\phi(x) = x^3$ is an isomorphism (automorphism). What about the maps $x \mapsto x^5$ and $x \mapsto x^7$?
- 16. Suppose x is an element of a cyclic group of order 15 and $x^3 = x^5 \neq x^9$. Determine $|x^{13}|$.
- 17. Find all generators for $\mathbb{Z}/49\mathbb{Z}$.

18. Find the number of generators for $\mathbb{Z}/49000\mathbb{Z}$. The generators are the positive integers relatively prime to 49000, and which relatively prime to 49000. Its number is

$$\phi(49000) = \phi(7^2 \cdot 5^4 \cdot 2^4) = \phi(7^2)\phi(5^4)\phi(2^4) = (7^2 - 7)(5^4 - 5^3)(2^4 - 2^3) = \dots$$

Finish...

- 19. Prove that the following groups are not cyclic:
 - (a) $\mathbb{Z}_2 \times \mathbb{Z}_2$
 - (b) $\mathbb{Z}_2 \times \mathbb{Z}$
 - (c) $\mathbb{Z} \times \mathbb{Z}$
 - (d) $\mathbb{Q} \times \mathbb{Q}$

Solution: (c) Suppose (a, b) is a generator of $\mathbb{Z} \times \mathbb{Z}$. Then, in particular,

$$(1,0) \in \mathbb{Z} \times \mathbb{Z} = \langle (a,b) \rangle,$$

and (1,0)=c(a,b) for some integer c , with $ca=1,\,cb=0.$ By the above $c\neq 0$ $a\neq 0$ and b=0.

Similarly (0,1)=d(a,b) for some integer d, with da=0, db=1. By the above $d\neq 0$ $b\neq 0$ and a=0, a contradiction.

20. Assume |x| = n and |y| = m. Suppose that x and y commute: xy = yx. Prove that |xy| divides the least common multiple of m and n.

Solution: Since |x| = n and |y| = m we have $x^m = e$, and $y^n = e$. If l := lcm(m, n) then l = kn, and l = sm for some k, s. Thus $x^l = (x^n)^k = e$ and similarly $y^l = e$.

Thus $(xy)^l = xyxy \dots xy = x^ly^l = e$, which implies that |xy| divides l.

21. Let G be a cyclic group of order n, and let k be an integer relatively prime to n. Prove that the map $\phi: x \to x^k$ is an isomomorphism.

Solution: ϕ is a homorphism: $\phi(xy) = (xy)^k = xyxy \dots xy = x^ky^k = \phi(x)\phi(y)$.

Note that $x^n = e$ for any $x \in G$. Let l be an integer such that $lk \equiv 1 \pmod{n}$. Then for any $x \in G$ we have $x^{kl} = x$. Thus for ψ such that $\psi(x) = x^l$, we have $\phi\psi(x) = \psi\phi(x) = x^{kl} = x$. This means that ϕ has its inverse $\phi^{-1} = \psi$, and is bijective. Since ϕ is a homorphism which is bijective it is an isomorphism.

2

22. Let G be an abelian group. Prove that the map $\phi: x \to x^k$ is a homomorphism.

Solution:

$$\phi(xy) = (xy)^k = xyxy \dots xy = x^k y^k = \phi(x)\phi(y)$$

23. Prove that $\phi: \mathbb{Z} \oplus \mathbb{Z} \to \mathbb{Z}$ by $\phi(a,b) = a - b$ is a homomorphism.

- 24. Determine all homomorphisms and isomorphisms from \mathbb{Z}_n to itself
- 25. Find the center of D_{12} , and $Gl_2(F_2)$.

Solution (for D_{12}):

$$D_{12} = \{e, r, r^2, r^3, r^4, r^5, s, sr, sr^2, sr^3, sr^4, sr^5, \}.$$

The center $Z(D_{12})$ consists of elements commuting with all the elements in D_{12} .

Commutativity of r^i with s. Since $r^i s = s r^{-i}$, and $r^i \neq r^{-i}$ for i = 1, 2, 4, 5 then these elements are not in $Z(D_{12})$.

Commutativity of sr^i with r. $r(sr^i) = sr^{-1}r^i = sr^{i-1}$. But $(sr^i)r = sr^{i+1}$. Since $r^2 \neq e$ we get that $sr^{i-1} \neq sr^{i+1}$ and $r(sr^i) \neq (sr^i)r$. This implies that none of the elments sr^i $i = 0, \ldots, 5$ is in $Z(D_{12})$.

It suffices to show commutativity with r^3 .

It commutes with s: $sr^3 = r^3s$ and with r: $r^3r = rr^3 = r^4$. Since r, s generate $Z(D_12)$. Thus r^3 commutes with all the elements $Z(D_{12})$.

26. Find the centralizers of the elements r, r^3, sr in D_{12} . Find the normalizer of $\{r, r^5\}$ in D_{12} .

Solution: (The centralizer for sr): We check commutativity of sr with all kinds of elements.

Commutativity of r^i with sr:

Since $r^i s r = s r^{-i+1}$, and $s r^i r = s r^{i+1}$ $r^i \neq r^{-i}$ for i = 1, 2, 4, 5 then these elements are not in $C_{sr}(D_{12})$. If i = 0, 3 then $r^i = r^{-i}$ and e, r^3 are in $C_{sr}(D_{12})$.

Commutativity of sr^i with sr:

 $sr(sr^i) = ssr^{-1}r^i = r^{i-1}$. But $(sr^i)sr = ssr^{-i+1} = r^{-i+1}$. The elemnts sr and sr^4 are in $C_{sr}(D_{12})$,

Finally
$$C_{sr}(D_{12}) = \{e, r^3, sr, sr^4\}.$$

Normalizer of $\{r, r^5\}$.

Normalization by r:

$$rrr^{-1} = r$$

$$rr^5r^{-1} = r^5$$
.

Thus $r\{r, r^5\}r^{-1} = \{r, r^5\}$ and $r \in N_{\{r, r^5\}}$.

Normalization by s:

$$srs^{-1} = r^{-1}ss^{-1} = r^{-1} = r^5$$

$$sr^5s^{-1} = r^{-5}ss^{-1} = r^{-5} = r$$

Thus
$$s\{r, r^5\}s^{-1} = \{r, r^5\}.$$

 $s\in N_\{r,r^5\}.$

Since $r,s\in N_\{r,r^5\}$ the element generated by r,s are in $N_{\{r,r^5\}}$, and consequently $G=N_{\{r,r^5\}}$.