LAB 6

Name: ARAVINDHAN.K

ROLL NO: CH.EN.U4CYS22001

Hard Disk Forensics

1. Define Hard Disk Forensics

Answer: The process of analyzing digital data stored on a hard drive to uncover evidence related to cybercrimes or data breaches.

2. What is an Image File?

Answer: An exact copy of the original data stored on a disk, capturing all files, partitions, and metadata.

3. What is Allocated and Unallocated Space?

### Answer:

- Allocated Space: Areas of the disk currently being used to store data
- Unallocated Space: Free or deleted areas that may still contain recoverable data

- 4. What is Disk Cache and Disk Mirroring?
  Answer:
- Disk Cache: Temporary storage area holding frequently accessed data to speed up retrieval
- Disk Mirroring: Process of duplicating data across two or more disks for redundancy
  - 5. What is a Forensic Image?

Answer: An exact replica of a storage device captured for forensic examination without altering the original data.

6. What is Meant by Hash Value of a Hard Disk?

Answer: A unique cryptographic fingerprint generated using algorithms like MD5 or SHA to ensure data integrity.

7. What is Shadow Volume, Shadow Copy, and Swap Disk?

### Answer:

- Shadow Volume/Copy: Snapshot of a disk taken at a specific time to recover previous file versions

- Swap Disk: Used to temporarily store data when RAM is full
  - 8. Tools for Hard Disk Forensics

### Answer:

- Autopsy
- EnCase
- FTK (Forensic Toolkit)
- X-Ways Forensics
- Sleuth Kit
  - 9. EXIF Metadata

Answer: Contains information about an image file, such as camera model, date/time, and GPS coordinates.

### 10. Common Disk Image Formats

### Answer:

- E01 (EnCase)
- DD (raw image)
- AFF (Advanced Forensics Format)
  - 11. What is Bit-by-Bit Copying?

Answer: A forensic method of duplicating every sector of a storage device exactly as it is.

### 12. What is Cloning a Disk?

Answer: Creating an identical copy of an entire disk, including OS and files, for backup or forensic analysis.

# 13. Types of Latest Storage Devices Answer:

- SSDs
- NVMe drives
- Hybrid drives
- Cloud-based storage solutions
  - 14. What is BitLocker Encryption?

Answer: A Windows security feature that encrypts entire drives to prevent unauthorized access.

## Email Forensics

1. Define Email Forensics

Answer: Investigation of email content, metadata, and headers to detect fraudulent activities, phishing, and other cybercrimes.

### 2. What is X-Received?

Answer: An email header field indicating each hop the email took through servers.

### 3. What is Received SPF?

Answer: Sender Policy Framework (SPF) is an authentication mechanism verifying if the sending server is authorized for the domain.

### 4. What is DKIM Signature?

Answer: DomainKeys Identified Mail Signature is an email security protocol that validates email authenticity using cryptographic signatures.

### 5. What is ARC Seal?

Answer: Authenticated Received Chain (ARC) seal ensures email forwarding integrity across intermediaries.

### 6. MIME-Version

Answer: Specifies the version of the Multipurpose Internet Mail Extensions (MIME) standard used in the email.

### 7. X-Originating IP

Answer: Reveals the original sender's IP address before email routing.

8. Email Backup File Formats

### Answer:

- PST (Outlook)
- MBOX
- EML
- 0ST

### 9. Email-Related Acronyms

### Answer:

- FQDN: Fully Qualified Domain Name
- MUA: Mail User Agent
- MTA: Mail Transfer Agent
- TNEF: Transport Neutral Encapsulation

**Format** 

 MIME: Multipurpose Internet Mail Extensions

- MD5: Message-Digest Algorithm 5

- SHA1: Secure Hash Algorithm 1

- CC: Carbon Copy

- BCC: Blind Carbon Copy

**Network Forensics** 

1. Define Network Forensics

Answer: The process of capturing, analyzing, and investigating network traffic to detect and respond to security incidents.

2. What is Packet Capture (PCAP)?

Answer: The process of recording network packets for analysis and troubleshooting.

3. What is Libpcap?

Answer: A C library that provides an interface for capturing network packets.

4. What is Promiscuous Mode?

Answer: A network setting where a device captures all traffic on a network segment, not just traffic addressed to it.

### 5. 10 Features of Wireshark

### Answer:

- 1. Live traffic capture
- 2. Protocol analysis
- 3. Filtering
- 4. Packet decoding
- 5. Statistics generation
- 6. Coloring rules
- 7. Export capabilities
- 8. Decryption support
- 9. Customizable reports
- 10. Expert analysis tools
  - 6. Use of Hex Editor

Answer: Used to view and edit raw binary data of files and network packets.

7. What is Malware?

Answer: Malicious software designed to harm or exploit computer systems and networks.

8. What is Address Spoofing?

Answer: The act of falsifying source addresses in packets to disguise the true origin.

- 9. "Catch it as you can" Method Answer: A network forensic method where all traffic is continuously captured and stored for later analysis.
- 10. "Stop, Look, and Listen" Method Answer: A method where traffic is analyzed in real time, and only relevant data is logged.

### Advanced Network Forensics Lab 6

Prerequisites for lab

Downloading the scenario files from github screenshot



### List of files under that repo



### Overview

This lab document provides a comprehensive guide to network forensics investigation techniques using Wireshark for analyzing malware and network attacks.

### Required Tools

- Wireshark (latest version)
- Hex Editor (recommended: HxD or010
  Editor)
- Virtual Machine for Safe Analysis
- Online Malware Analysis Platform
  (VirusTotal)

### Safety Precautions

- ALWAYS analyze malware in an isolated, sandboxed environment
- Use snapshots or disposable virtual machines
- Never analyze malware on a production system

# Scenario 1: Malware Infection Investigation

# A system is infested with malware Triggering Events: >User reporting malware activity >Current AV solution does not have a signature for the virus; nor is the virus recoverable from the infected host What We Know: >Full network packet capture for the day of the incident >Host of interest: 12.183.1.55

# Step 1: Opening the file in wireshark And starting the investigation



### Preliminary Investigation Steps

- 1. Initial Packet Capture Examination
- Identifing the infected host IP address
- just configure Wireshark and add two custom columns
- Stream ID and filter is tcp.stream
- Host and filter is http.host
   Then save it

### -like below



Goals To find

Document investigation goals and findings

Answer for 1)

Lets start with pattern matching using the victim ip give in scenario description

VICTIM IP:12.183.1.55

Command "ip.addr==12.183.1.55"



### We can find the



Follow TCP stream for a suspicious website of .ru domain



### Answer:

The user contracted the malware from puskovayaustanovka.ru/pusk.exe

No USER-AGENT found

### 2. Malware file if possible ?

# Analyze download request characteristics





## Two malware files FOUND PUSK.EXE AND SER.EXE

# Check for unusual request patterns MZ patterns



### - Verify file signature

```
(cyberbot® kali)-[~/Advanced-Wireshark-Network-Forensics]
$ md5sum dump
f2e199d3f2ef983474c2b4c132de7638 dump

(cyberbot® kali)-[~/Advanced-Wireshark-Network-Forensics]
$ md5sum dump2
3dbef8b067644d0608be85163e01a5f3 dump2

(cyberbot® kali)-[~/Advanced-Wireshark-Network-Forensics]
$ sha256sum dump2
83ace50a90b6bd0c27b38a6c0efd8d2b69a17a2c4717681b6e1a3fe4e28305e5 dump2

(cyberbot® kali)-[~/Advanced-Wireshark-Network-Forensics]
$ sha256sum dump
f619ff4840b4d491ca0e3fcadb17d10e854e5bce65f1459ff3503a6794b76a1d dump

(cyberbot® kali)-[~/Advanced-Wireshark-Network-Forensics]
$ (cyberbot® kali)-[~/Advanced-Wireshark-Network-Forensics]
```

### - Extract executable file



FOUND THE EXE MALWARE FILE

# 3) What kind of calls to the internet does it take?

```
GET /pusk.exe HTTP/1.1
Host: puskovayaustanovka.ru
Cache-Control: no-cache

HTTP/1.1 200 OK
Server: nginx/0.8.54
Date: Sun, 03 Apr 2011 02:02:26 GMT
Content-Type: application/octet-stream
Content-Length: 331776
Last-Modified: Sun, 03 Apr 2011 02:00:04 GMT
Connection: keep-alive
Accept-Ranges: bytes
```

```
GET /ser.exe HTTP/1.1
Accept: */*
Connection: Close
User-Agent: Mozilla/4.0 (compatible; MSIE 6.0; Windows NT 5.1; SV1)
Host: www.hostme.name
Pragma: no-cache

HTTP/1.1 200 OK
Date: Fri, 26 Feb 2010 14:58:02 GMT
Server: Apache/2.2.14 (Unix) mod_ssl/2.2.14 OpenSSL/0.9.8e-fips-rhel5 mod_auth_passthrough/2.1 mod_bwlimited/1.4 FrontPage/5.0.2.2635
Last-Modified: Thu, 25 Feb 2010 10:18:13 GMT
ETag: "142084f-90e63-4806a19b4a340"
Accept-Ranges: bytes
Content-Length: 593507
Connection: close
Content-Type: anDication/x-msdownload
```

# 4) Does it try to self propagate through the internal network?

Answer: No

### 5) Possible Traffic signatures

```
| Fig. | Set | Set
```

### VIRUS TOTAL REPORT ABOUT MALWARE



# Scenario 2: FTP Server Attack Investigation



### Scenario 2

### A little more abstract

- ➤ What caused the spike in FTP traffic
- ➤ What events took place prior to the FTP server being taken offline?

(E.g. Were any files transferred to/from the FTP server or were any user accounts compromised)

### **Objective**

Investigate a potential Denial of Service (DoS) attack targeting an FTP server.

### GOALS

=== Goals ===

- What events led up to the attack on the FTP server?
- 2. What types of attacks did the attacker perform on the FTP server?
- What were the results of those attacks? (e.g. Did they login, what did they find, were files stolen, etc.?)

# 1. What events led to the attack on the FTP server?



# 2. What types of attacks did the attacker perform the FTP server?



### Investigation Results

Attacker first initiated a ARP scan of the subnet 192.168.56.0/24

The following hosts were discovered: 192.168.56.1 and 192.168.56.100

Attacker then began a port scan of host 192.168.56.1

The following ports were found open: 21, 445, 139, 135, 49152, 49153, 49154, 49155, 49156

23

3. were the results of those attacks?
(e.g. Did they

login, did they find, files stolen, etc.



### Investigation Results

Attacker followed up with an FTP brute force attack against FTP server

> The credentials anon/anon were compromised

Attacker successfully logged in as user anon with stolen credentials

- ➤ File "Whywecanthavenicecat.png" was downloaded
- MD5 sum of the file: 12039fd05bc2fcd3902247124edcea06

### CAT.PNG FOUND



- 1. What events led up to the attack on the FTP server?
  - ARP scan; devices located:
    - \* 192,168,56,1
    - \* 192.168.56.100
    - \* 192.168.56.101
  - SYN scan:
    - \* 21
    - \* 445
    - \* 139
    - \* 135
    - \* 49154
    - \* 49152
    - \* 49156
    - \* 49153
    - \* 49155
- 2. What types of attacks did the attacker perform on the FTP server?
- What were the results of those attacks? (e.g. Did they login, what did they find, were files stolen, etc.?)
  - Attacker logged in with "Anon/anon"
- They listed the directories and downloaded Whywecanthavenicecat.png (176510 bytes)
  - MD5SUM: 12039fd05bc2fcd3902247124edcea06 \*cat.png

### Conclusion

Network forensics requires systematic, methodical investigation combining technical skills, analytical thinking, and comprehensive documentation.