Math 210 (Modern Algebra I), HW# 1,

Fall 2024; Instructor: Sam Hopkins; Due: Wednesday, August 28th

In all of these problems, G denotes a group.

- 1. Prove that G is abelian if and only if $(ab)^2 = a^2b^2$ for all $a, b \in G$. Give an example of a group G and elements $a, b \in G$ with $(ab)^2 \neq a^2b^2$.
- 2. Prove that if $a^2 = e$ for all $a \in G$, then G is abelian. **Hint**: You can use the previous problem.
- 3. Let $x \in G$. Prove that the cyclic subgroup $\langle x \rangle \subseteq G$ generated by x is infinite if and only if $x^i \neq x^j$ for all $i \neq j \in \mathbb{Z}$.
- 4. Prove that if G is finite and has even order, it contains an element of order 2. **Hint**: Consider the set $t(G) = \{g \in G : g \neq g^{-1}\}$; show that t(G) has an even number of elements and any non-identity element of $G \setminus t(G)$ has order 2.
- 5. Let $\sigma = (1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12) \in S_{12}$ be a 12-cycle in the symmetric group S_{12} . Write the cycle decomposition of σ^i for each i = 0, 1, ..., 11. What pattern do you notice? In particular, which powers of σ are also 12-cycles?