

Steganography Based on Pattern Languages

Sebastian Berndt Rüdiger Reischuk

Institut für Theoretische Informatik, Universität zu Lübeck

IM FOCUS DAS LEBEN

And now for something completely different!

■ Cryptography: Hide the content of a message

And now for something completely different!

- Cryptography: Hide the content of a message
- Steganography: Hide that a message is transferred

Sometimes, cryptography is not enough

Overview

Steganography

Pattern Languages

The stegosystem

Conclusion

■ Warden should not be able to distinguish d_i from d_i^* (Security)

- Warden should not be able to distinguish d_i from d_i^* (Security)
- Bob should be able to reconstruct the message (*Reliability*)

- Warden should not be able to distinguish d_i from d_i^* (Security)
- Bob should be able to reconstruct the message (*Reliability*)
- Alice and Bob should be computational feasible (Efficiency)

- Warden should not be able to distinguish d_i from d_i^* (Security)
- Bob should be able to reconstruct the message (*Reliability*)
- Alice and Bob should be computational feasible (Efficiency)
- Alice should get high transmission rate (Rate-efficiency)

- Warden should not be able to distinguish d_i from d_i^* (Security)
- Bob should be able to reconstruct the message (*Reliability*)
- Alice and Bob should be computational feasible (Efficiency)
- Alice should get high transmission rate (Rate-efficiency)
 (Bounded by the channel-entropy n)

- Warden should not be able to distinguish d_i from d_i^* (Security)
- Bob should be able to reconstruct the message (*Reliability*)
- Alice and Bob should be computational feasible (Efficiency)
- Alice should get high transmission rate (Rate-efficiency)
 (Bounded by the channel-entropy n)
- Should work for as much channels as possible (Applicability)

Universal

■ Stegosystem is *universal* if it works for *every* channel.

Universal

- Stegosystem is universal if it works for every channel.
- \blacksquare Such secure systems can embed only $\log n$ bits.

Universal

- Stegosystem is universal if it works for every channel.
- Such secure systems can embed only $\log n$ bits. Practical systems embed \sqrt{n} .

Universal

- Stegosystem is universal if it works for every channel.
- Such secure systems can embed only log n bits. Practical systems embed \sqrt{n} .
- To embed HELLO WORLD, we need length $\geq 2^{88} \approx 3 \cdot 10^{12} PB \approx 10^{10} \cdot Space$ (Facebook).

Universal

- Stegosystem is universal if it works for every channel.
- Such secure systems can embed only log n bits. Practical systems embed \sqrt{n} .
- To embed HELLO WORLD, we need length $\geq 2^{88} \approx 3 \cdot 10^{12} PB \approx 10^{10} \cdot Space$ (Facebook).

Task

Be more specific: Develop stegosystem for large channel-family \mathcal{F} !

LB on Rate	UB on Rate	Channels	Authors
$\log(n)$	X	universal	Hopper et al. (2002)

LB on Rate	UB on Rate	Channels	Authors
log(n)	X	universal	Hopper et al. (2002)
$\log(n)$	log(n)	universal	Dedić et al. (2005)

LB on Rate	UB on Rate	Channels	Authors
log(n)	X	universal	Hopper et al. (2002)
log(n)	log(n)	universal	Dedić et al. (2005)
\sqrt{n}	X	Monomials	Liśkiewicz et al.
			(2011)

LB on Rate	UB on Rate	Channels	Authors
log(n)	×	universal	Hopper et al. (2002)
$\log(n)$	$\log(n)$	universal	Dedić et al. (2005)
\sqrt{n}	Х	Monomials	Liśkiewicz et al. (2011)
\sqrt{n}	×	Pattern Languages	this work

LB on Rate	UB on Rate	Channels	Authors
log(n)	X	universal	Hopper et al. (2002)
log(n)	log(n)	universal	Dedić et al. (2005)
\sqrt{n}	Х	Monomials	Liśkiewicz et al. (2011)
\sqrt{n}	X	Pattern Languages	this work

Much more systems exist, but none are provable secure!

<i>X</i> = ?01?1?
001010
001011
001110
001111
101010
101011
10111 <mark>0</mark>
10111 <mark>1</mark>

X = ?01?1?	
001010)
001011	
001110	
001111	$\bigcap_{\mathcal{D}(\mathcal{C})}$
101010	D(C)
101011	
101110	
10111 <mark>1</mark>	J

X = ?01?1?
001010
001011
001110
001111
101010
101011
101110
101111

The system

- 1. Partition the positions of *X* into blocks
- B_1, \dots, B_b via PRP

 2. Replace the different ?'s such that $\sum_{x \in B_i} x = m_i$

X = ?01?1?	
001010)
001011	
001110	
001111	DIC
101010	D(C)
101011	
101110	
101111	

The system

- 1. Partition the positions of X into blocks B_1, \ldots, B_b via PRP
- 2. Replace the different ?'s such that $\sum_{x \in B_i} x = m_i$

Restrictions

Simplest non-trivial language

X = ?01?1?	
001010)
001011	
001110	
001111	Dic
101010	D(C)
101011	
101110	
101111	J

The system

- 1. Partition the positions of X into blocks B_1, \ldots, B_b via PRP
- 2. Replace the different ?'s such that $\sum_{x \in B_i} x = m_i$

Restrictions

- Simplest non-trivial language
- Simple cross product

Patterns

$\pi = x_1 01 x_2 1 x_1$
011
<mark>0</mark> 011 <mark>0</mark>
0101
001010
11110100111111

Patterns

$\pi = x_1 0 1 x_2 1 x_1$				
011				
00110				
0101				
001010				
11110100111111				

Advantages

■ More realistic (forms, websites etc.)

Patterns

$\pi = x_1 01 x_2 1 x_1$			
011			
00110			
0101			
001010			
1111010011111			

Advantages

- More realistic (forms, websites etc.)
- Much larger class of languages

$$\square$$
 $D(C) \subseteq Lang(\pi)$

$$d_1 \ d_2 \cdots d_i \cdots d_\ell \sim \mathsf{Lang}(\pi)$$

- \blacksquare $D(C) \subseteq \text{Lang}(\pi)$
- The pattern π is known (or can be learned)

$$d_1 \ d_2 \cdots d_i \cdots d_\ell \sim \mathsf{Lang}(\pi)$$

- \square $D(C) \subseteq \text{Lang}(\pi)$
- The pattern π is known (or can be learned)
- The documents are of approximately same size

$$d_1 \ d_2 \cdots \ d_i \cdots \ d_\ell \sim \mathsf{Lang}(\pi)$$

 $u_1 \ u_2 \cdots \ u_i \cdots \ u_\ell \sim \mathsf{Lang}(n)$

- \square $D(C) \subseteq \text{Lang}(\pi)$
- The pattern π is known (or can be learned)
- The documents are of approximately same size
- Substitutions of variables are independent

$$d_1 \ d_2 \cdots d_i \cdots d_\ell \sim \mathsf{Lang}(\pi)$$

■ Expand $\pi = x_1 01x_2 1x_1$ into $[\pi] = y_1 y_2 y_3 01y_4 1y_1 y_2 y_3$.

- Expand $\pi = x_1 01x_2 1x_1$ into $[\pi] = y_1y_2y_3 01y_4 1y_1y_2y_3$.
- Use pseudo-random function F_K to partition $[\pi]$ in b Blocks

<i>y</i> ₁		
<i>y</i> ₂		
<i>y</i> ₃		
0		
<i>y</i> ₄		
1		
<i>y</i> ₁		
<i>y</i> ₂		
<i>y</i> ₃		

- Expand $\pi = x_1 01x_2 1x_1$ into $[\pi] = y_1 y_2 y_3 01y_4 1y_1 y_2 y_3$.
- Use pseudo-random function F_K to partition $[\pi]$ in b Blocks

- Expand $\pi = x_1 01x_2 1x_1$ into $[\pi] = y_1 y_2 y_3 01y_4 1y_1 y_2 y_3$.
- Use pseudo-random function F_K to partition $[\pi]$ in b Blocks

- Expand $\pi = x_1 01x_2 1x_1$ into $[\pi] = y_1 y_2 y_3 01y_4 1y_1 y_2 y_3$.
- Use pseudo-random function F_K to partition $[\pi]$ in b Blocks

- Expand $\pi = x_1 01x_2 1x_1$ into $[\pi] = y_1 y_2 y_3 01y_4 1y_1 y_2 y_3$.
- Use pseudo-random function F_K to partition $[\pi]$ in b Blocks

- Expand $\pi = x_1 01x_2 1x_1$ into $[\pi] = y_1 y_2 y_3 01y_4 1y_1 y_2 y_3$.
- Use pseudo-random function F_K to partition $[\pi]$ in b Blocks

■ Columns are independent

- Columns are independent
- Rows are *not* independent

- Columns are independent
- Rows are not independent

Theorem (Generalization of Poisson Approximation)

W.h.p. there are many colours such that the corresponding rows behave independently!

Some Useful Lemmata

Lemma

Let C be the coloured-balls-into-bin matrix with μ bins, where each colour appears at most ξ times and let X be a matrix of pairwise independent Poisson-distributed RVs.

For every predicate Q of arity I, let $\mathcal{E}_Q(X)$ be the probability that X has a subset of I columns X_{z_1}, \ldots, X_{z_l} such that $Q(X_{z_1}, \ldots, X_{z_l})$ holds. Then:

$$\Pr[\mathcal{E}_Q(C)] \, \leq \, \frac{\Pr[\mathcal{E}_Q(X)]}{1 - 2\exp\left(-2\,\eta(\textit{l, n, \xi})\right)} \, .$$

Some Useful Lemmata

Lemma

Let C be the coloured-balls-into-bin matrix with μ bins, where each colour appears at most ξ times and let X be a matrix of pairwise independent Poisson-distributed RVs.

For every predicate Q of arity I, let $\mathcal{E}_Q(X)$ be the probability that X has a subset of I columns X_{z_1}, \ldots, X_{z_l} such that $Q(X_{z_1}, \ldots, X_{z_l})$ holds. Then:

$$\Pr[\mathcal{E}_Q(C)] \leq \frac{\Pr[\mathcal{E}_Q(X)]}{1 - 2\exp(-2\eta(l, n, \xi))}.$$

Lemma

The matrix M with $m_{i,j} = x_{i,j} \mod 2$ has full rank over \mathbb{F}_2 with probability at least $1 - \mu \cdot (4/5)^{\mu}$.

Some Useful Lemmata

Lemma

Let C be the coloured-balls-into-bin matrix with μ bins, where each colour appears at most ξ times and let X be a matrix of pairwise independent Poisson-distributed RVs.

For every predicate Q of arity I, let $\mathcal{E}_Q(X)$ be the probability that X has a subset of I columns X_{z_1}, \ldots, X_{z_l} such that $Q(X_{z_1}, \ldots, X_{z_l})$ holds. Then:

$$\Pr[\mathcal{E}_Q(C)] \, \leq \, \frac{\Pr[\mathcal{E}_Q(X)]}{1 - 2\exp\left(-2\,\eta(\textit{l, n, \xi})\right)} \, .$$

Lemma

The matrix M with $m_{i,j} = x_{i,j} \mod 2$ has full rank over \mathbb{F}_2 with probability at least $1 - \mu \cdot (4/5)^{\mu}$.

Corollary

If
$$n \geq b^2$$
, it holds that: $|\Pr[\mathcal{E}_Q(C)] - \Pr[\mathcal{E}_Q(X)]| \leq \exp(-n)$.

Open Questions

■ Public-Key Scenario?

Open Questions

- Public-Key Scenario?
- Steganography for other families of languages (D(C)) described by automata, grammars, logics, . . .)?

Conclusion

Secure, rate-efficient steganography is possible on realistic channels!

