Structure of linear algebraic groups

Theorem 1. Let G be a linear algebraic group of dimension 1 over an algebraically closed field \mathbb{k} . Then G is isomorphic to either \mathbb{G}_m or \mathbb{G}_a .

Lemma 2. Let G be a linear algebraic group over an algebraically closed field k. Then G has a one-dimensional algebraic subgroup.

1 Jordan-Chevalley Decomposition

Theorem 3. Let $G \subset \operatorname{GL}_n(\mathbb{k})$ be a linear algebraic group over a field \mathbb{k} . Then for every element $g \in G(\mathbb{k})$, there exist unique commuting elements $g_s, g_u \in G(\mathbb{k})$ such that $g = g_s g_u$, where g_s is semisimple and g_u is unipotent. Moreover, this decomposition is functorial in the sense that for any morphism of linear algebraic groups $\varphi : G \to H$, we have $\varphi(g_s) = \varphi(g)_s$ and $\varphi(g_u) = \varphi(g)_u$. Yang: To be checked

2 Solvable part

Definition 4. A group G is said to be *solvable* if there exists a finite sequence of subgroups

$$G = G_0 \triangleright G_1 \triangleright G_2 \triangleright \cdots \triangleright G_n = \{e\}$$

such that each G_{i+1} is normal in G_i and the quotient group G_i/G_{i+1} is abelian for all $0 \le i < n$. Yang: to be checked.

Definition 5. Let G be a linear algebraic group over a field k. The radical of G, denoted by rad(G), is defined to be the unique maximal connected normal solvable subgroup of G.

Theorem 6. Let $G \subset GL_n(\mathbb{k})$ be a solvable linear algebraic group over an algebraically closed field \mathbb{k} . Then there exists a basis of \mathbb{k}^n such that G is contained in the group of upper triangular matrices with respect to this basis.

3 Semisimple

Definition 7. Let G be a linear algebraic group over a field k.

- (a) We say that G is simple if G is non-abelian and has no non-trivial proper connected normal algebraic subgroups.
- (b) We say that G is semisimple if rad(G) is trivial.

Yang: To be checked.

Date: October 27, 2025, Author: Tianle Yang, My Homepage

Definition 8. Let G be a linear algebraic group over a field k. We say that G is *reductive* if the unipotent radical of G is trivial. Yang: To be checked.

Appendix

