Лекция 3. Нелинейные операторы.

Корпусов Максим Олегович

Курс лекций по нелинейному функциональному анализу

12 сентября 2012 г.

Обозначения.

Пусть \mathbb{B}_1 и \mathbb{B}_2 — это два банаховых пространства относительно норм $\| \ \|_1$ и $\| \ \|_2$ соответственно. Пусть, кроме того, $\langle \cdot, \cdot \rangle_1$ и $\langle \cdot, \cdot \rangle_2$ есть соответствующие скобки двойственности. Рассмотрим некоторый, вообще говоря, нелинейный оператор

$$\mathbb{F}: \mathbb{B}_1 \to \mathbb{B}_2$$
.

Производная Гато.

Определение 1. Оператор $\mathbb F$ называется дифференцируемым по Гато в точке $u\in \mathbb B_1$, если для любого $h\in \mathbb B_1$ имеет место предельное равенство

$$\lim_{\lambda \to 0} \left\| \frac{\mathbb{F}(u + \lambda h) - \mathbb{F}(u)}{\lambda} - \mathbb{F}'_g(u)h \right\|_2 = 0, \tag{1}$$

где $\mathbb{F}_g'(u)$ при каждом фиксированном $u\in\mathbb{B}_1$ есть линейный оператор из \mathbb{B}_1 в \mathbb{B}_2 . При этом, вообще говоря, нелинейный по $u\in\mathbb{B}_1$ оператор $\mathbb{F}_g'(u)$ называется производной Гато оператора \mathbb{F} .

Пример 1.

ПРИМЕР 1. Введем \mathbb{B}_2 -значную функцию

$$\varphi(\lambda) \equiv \mathbb{F}(u + \lambda h),$$

для всех $u,h\in\mathbb{B}_1$ и $\lambda\in\mathbb{R}^1$. Тогда, как нетрудно видеть, согласно определению 1 имеет место равенство

$$\mathbb{F}_g'(u)h = \frac{d\varphi(\lambda)}{d\lambda}\Big|_{\lambda=0}.$$

Пример 2.

ПРИМЕР 2. Рассмотрим теперь случай линейного оператора

$$\mathbb{F}: \mathbb{B}_1 \to \mathbb{B}_2.$$

Тогда, очевидно, в силу линейности этого отображения имеет место следующее равенство:

$$\frac{\mathbb{F}(u+\lambda h) - \mathbb{F}(u)}{\lambda} = \mathbb{F}h,$$

т. е.

$$\mathbb{F}_{g}^{'}(u) = \mathbb{F}.$$

Тем самым, приходим к выводу о том, что линейный оператор из \mathbb{B}_1 в \mathbb{B}_2 является бесконечное число раз дифференцируемым по Гато, причем всякий раз соответствующая производная Гато совпадает с самим оператором.

Пример 3.

ПРИМЕР 3. Рассмотрим теперь следующее отображение:

$$\mathbb{F} = (\mathbb{F}_1, ..., \mathbb{F}_n) : \mathbb{R}_m \to \mathbb{R}_n,$$

Возьмем в этом предельном равенстве в качестве h вектор $e_j \in \mathbb{R}_m$:

$$e_j = (0, ..0, 1, 0, ..., 0),$$

где 1 стоит на j-ом месте. Согласно определению 1 при фиксированном $u\in\mathbb{R}_m$

$$\mathbb{F}_{g}^{'}(u)$$

есть линейный оператор из \mathbb{R}_m в \mathbb{R}_n . Поэтому

$$\mathbb{F}_g'(u)e_j = \mathbb{A}e_j$$

$$\left(\mathbb{A}e_{j}\right)_{k}=a_{kj}\quad j\in\overline{1,m}\quad \text{if}\quad k\in\overline{1,n}.$$

Пример 3.

$$\lim_{\lambda \to 0} \left| \frac{\mathbb{F}_k(u + \lambda e_j) - \mathbb{F}_k(u)}{\lambda} - a_{kj} \right| = 0.$$

$$\lim_{\lambda \to 0} \frac{\mathbb{F}_k(u + \lambda e_j) - \mathbb{F}_k(u)}{\lambda} = \frac{\partial \mathbb{F}_k}{\partial u_j}(u).$$

$$a_{kj} = \frac{\partial \mathbb{F}_k}{\partial u_j}(u).$$

Пример 4.

ПРИМЕР 4. Рассмотрим оператор Гаммерштейна

$$\mathbb{G}(u)=\int\limits_0^1 k(x,y)g(u(y),y)\,dy$$
 для всех $y\in[0,1].$

В качестве банаховых пространств \mathbb{B}_1 и \mathbb{B}_2 возьмем $\mathbb{C}[0,1]$ и потребуем, чтобы

$$k(x,y) \in \mathbb{C}([0,1] \times [0,1]), \quad \frac{\partial g}{\partial u}(u,x) \in \mathbb{C}(\mathbb{R}^1 \times [0,1]).$$

В силу этих предположений имеет место предельное равенство

$$\lim_{\lambda \to 0} \frac{g(u + \lambda h, x) - g(u, x)}{\lambda} = \frac{\partial g}{\partial u}(u, x)h(x).$$

Поэтому производная Гато оператора Гаммерштейна имеет вид

$$\mathbb{G}_g^{'}(u)h=\int\limits_0^1 k(x,y)rac{\partial g}{\partial u}(u(y),y)h(y)\,dy$$
 для всех $h(x)\in\mathbb{C}[0,1].$

Производная Фреше.

Определение 2. Оператор $\mathbb F$ называется дифференцируемым по Фреше в точке $u \in \mathbb B_1$, если в окрестности этой точки для любого $h \in \mathbb B_1$ имеет место следующее представление:

$$\mathbb{F}(u+h) = \mathbb{F}(u) + \mathbb{F}_f'(u)h + \omega(u,h), \tag{2}$$

причем

$$\lim_{\|h\|_1 \to 0} \frac{\|\omega(u,h)\|_2}{\|h\|_1} = 0.$$
 (3)

Линейный при фиксированном $u \in \mathbb{B}_1$ оператор

$$\mathbb{F}_f'(u): \mathbb{B}_1 \to \mathbb{B}_2$$

называется производной Фреше оператора \mathbb{F} .

ПРИМЕР 5. Рассмотрим отображение, определенное формулой

$$\mathbb{F}: \mathbb{R}^2 \to \mathbb{R}^1,$$

$$\mathbb{F}(x) = \begin{cases} \frac{x_1^3 x_2}{x_1^4 + x_2^2}, & \text{при} \quad x = (x_1, x_2) \neq 0; \\ 0, & \text{при} \quad x = (x_1, x_2) = (0, 0). \end{cases}$$

Докажем, что оно дифференцируемо по Гато, но не дифференцируемо по Фреше.

Действительно, имеет место следующая цепочка выражений:

$$\begin{split} \frac{\mathbb{F}(x+\lambda h)-\mathbb{F}(x)}{\lambda} &= \frac{1}{\lambda} \frac{\lambda^4 h_1^3 h_2}{\lambda^4 h_1^4 + \lambda^2 h_2^2} = \\ &= \lambda \frac{h_1^3 h_2}{\lambda^2 h_1^4 + h_2^2} \to 0 \quad \text{при} \quad \lambda \to 0 \end{split}$$

в точке x = (0,0).

Предположим, что производная Фреше этого отображения существует в точке (0,0) и равна нулевому отображению Θ . Действительно, согласно определению 2 производной Фреше и явному виду отображения $\mathbb F$ имеет место следующее равенство:

$$\mathbb{F}(h) = \omega(\theta,h), \quad \lim_{\|h\| \to 0} \frac{\|\omega(\theta,h)\|}{\|h\|} = 0 \quad \text{при} \quad \|h\| \to +0.$$

Значит, с необходимостью получаем, что

$$\frac{\|\mathbb{F}(h)\|}{\|h\|} \to 0.$$

Рассмотрим стремление к точке (0,0) вектора $h\in\mathbb{R}^2$ по кривой $h_2=h_1^2.$ Действительно, имеет место равенство

$$\begin{split} &\frac{\|\mathbb{F}(h)\|}{\|h\|} = \frac{|h_1|^3|h_2|}{h_1^4 + h_2^2} \frac{1}{\sqrt{h_1^2 + h_2^2}} = \\ &= \frac{|h_1|h_1^4}{h_1^4 + h_1^4} \frac{1}{\sqrt{h_1^2 + h_1^4}} = \frac{1}{2} \frac{1}{\sqrt{1 + h_1^2}} \to \frac{1}{2} \neq 0 \quad \text{при} \quad \|h\| \to 0. \end{split}$$

Полученное предельное равенство означает, что производной Фреше в точке (0,0) не существует. Тем самым, из существования производной Гато в какой-то точке не следует существование производной Фреше в этой же точке.

Какая связь между производной Гато и производной Фреше?

Возникает естественный вопрос: при каких дополнительных условиях вытекает существование производной Фреше в некоторой точке при условии существования производной Гато в той же точке. Для ответа на этот вопрос нам необходимо доказать следующие два утверждения о среднем значении. Во-первых, справедлив следующий результат.

Вспомогательная теорема 1.

Теорема

Пусть $\mathbb{F}:\mathbb{B}\to\mathbb{R}^1$. Тогда для каждой пары $u,h\in\mathbb{B}$ найдется такое число $\lambda=\lambda(u,h)\in(0,1),$ что имеет место формула

$$\mathbb{F}(u+h) - \mathbb{F}(u) = \left\langle \mathbb{F}'_g(u+\lambda h), h \right\rangle, \tag{4}$$

где $\langle \cdot, \cdot \rangle$ есть скобки двойственности между банаховыми пространствами $\mathbb B$ и $\mathbb B^*$.

Доказательство теоремы 1.

Введем вещественно-значную функцию

$$\varphi(\lambda) = \mathbb{F}(u + \lambda h).$$

В силу замечания 1 имеем

$$\varphi'(\lambda) = \left\langle \mathbb{F}'_g(u + \lambda h), h \right\rangle.$$

Заметим теперь, что в силу теоремы Лагранжа для вещественных функций имеет место равенство

$$\varphi(1)-\varphi(0)=\varphi^{'}(\lambda)\quad\text{при некотором}\quad\lambda\in(0,1).$$

Значит, справедливо равенство (4).

Вспомогательная теорема 2.

Только что доказанная теорема позволит нам доказать следующий результат.

Теорема

Пусть $\mathbb{F}: \mathbb{B}_1 \to \mathbb{B}_2$, тогда для каждой пары $u,h \in \mathbb{B}_1$ и $f^* \in \mathbb{B}_2^*$ найдется такое вещественное число $\lambda = \lambda(u,h,f^*) \in (0,1)$, что имеют место следующие выражения:

$$\langle f^*, \mathbb{F}(u+h) - \mathbb{F}(u) \rangle_2 = \left\langle f^*, \mathbb{F}'_g(u+\lambda h)h \right\rangle_2$$
 (5)

И

$$\|\mathbb{F}(u+h) - \mathbb{F}(u)\|_2 \le \|\mathbb{F}'_g(u+\lambda h)\|_{1\to 2} \|h\|_1$$
 (6)

Доказательство теоремы 2.

Рассмотрим вещественнозначную функцию:

$$\varphi(u) \equiv \langle f^*, \mathbb{F}(u) \rangle_2 : \mathbb{B}_1 \to \mathbb{R}^1.$$

Из дифференцируемости по Гато оператора $\mathbb{F}(u)$ вытекает дифференцируемость по Гато функции

$$\varphi(u): \mathbb{B}_1 \to \mathbb{R}^1.$$

Причем имеет место равенство

$$\left\langle \varphi_g^{'}(u), h \right\rangle_1 = \left\langle f^*, \mathbb{F}_g^{'}(u)h \right\rangle_2.$$

В силу теоремы 1 имеет место равенство

$$\varphi(u+h)-\varphi(u)=\left\langle \varphi_g^{'}(u+\lambda h),h\right\rangle_1$$

при некотором числе $\lambda=\lambda(u,h,f^*)\in(0,1)$

Доказательство теоремы 2.

Значит, имеет место равенство

$$\langle f^*, \mathbb{F}(u+h) - \mathbb{F}(u) \rangle_2 = \left\langle f^*, \mathbb{F}'_g(u+\lambda h)h \right\rangle_2.$$

В силу следствия из теоремы Хана–Банаха при фиксированных $u,h\in\mathbb{B}_1$ найдется такое $f^*\in\mathbb{B}_2^*$ с $\|f^*\|_{2*}=1,$ что

$$\langle f^*, \mathbb{F}(u+h) - \mathbb{F}(u) \rangle_2 = \|\mathbb{F}(u+h) - \mathbb{F}(u)\|_2.$$

Непрерывная производная Гато \Leftrightarrow производная Фреше.

Наконец, мы в состоянии доказать следующий результат.

Теорема

Пусть оператор $\mathbb{F}:\mathbb{B}_1\to\mathbb{B}_2$ является дифференцируемым по Гато в некоторой окрестности точки $u\in\mathbb{B}_1$ и производная Гато $\mathbb{F}_g'(\cdot)$ непрерывна в точке $u\in\mathbb{B}_1$. Тогда оператор \mathbb{F} дифференцируем по Фреше в этой же точке $u\in\mathbb{B}_1$ и

$$\mathbb{F}_{g}^{'}(u) = \mathbb{F}_{f}^{'}(u).$$

Доказательство теоремы 3.

Введем обозначение:

$$\omega(u,h) \equiv \mathbb{F}(u+h) - \mathbb{F}(u) - \mathbb{F}_g^{'}(u)h.$$

Пусть $f^* \in \mathbb{B}_2^*$, тогда имеем

$$\left\langle f^*,\omega(u,h)\right\rangle_2 = \left\langle f^*,\mathbb{F}(u+h)-\mathbb{F}(u)\right\rangle_2 - \left\langle f^*,\mathbb{F}_g^{'}(u)h\right\rangle_2.$$

По теореме 2 найдется такое число $\lambda=\lambda(u,h,f^*)\in(0,1)$, что

$$\langle f^*, \mathbb{F}(u+h) - \mathbb{F}(u) \rangle_2 = \left\langle f^*, \mathbb{F}_g^{'}(u+\lambda h) h \right\rangle_2.$$

Следовательно,

$$\left\langle f^*, \omega(u,h) \right\rangle_2 = \left\langle f^*, \mathbb{F}_g^{'}(u+\lambda h)h - \mathbb{F}_g^{'}(u)h \right\rangle_2.$$

Доказательство теоремы 3.

По следствию из теоремы Хана–Банаха при фиксированных $u,h\in\mathbb{B}_1$ найдется такое $f^*\in\mathbb{B}_2^*$ с $\|f^*\|_{*2}=1,$ что

$$\|\omega(u,h)\|_2 = \langle f^*, \omega(u,h) \rangle_2$$
.

Значит, имеет место неравенство

$$\|\omega(u,h)\|_{2} \leqslant \left\|\mathbb{F}_{g}^{'}(u+\lambda h) - \mathbb{F}_{g}^{'}(u)\right\|_{1\to 2} \|h\|_{1}.$$

Следовательно, в силу непрерывности $\mathbb{F}_g^{'}(\cdot)$ в точке $u\in\mathbb{B}_1$ имеет место неравенство

$$\lim_{\|h\|_1 \to 0} \frac{\|\omega(u,h)\|_2}{\|h\|_1} \leqslant \lim_{\|h\|_1 \to 0} \left\| \mathbb{F}_g^{'}(u+\lambda h) - \mathbb{F}_g^{'}(u) \right\|_{1 \to 2} = 0.$$

Непрерывность производной Фреше.

Теорема

Пусть $\mathbb{F}: \mathbb{B}_1 \to \mathbb{B}_2$ — это отображение, дифференцируемое по Фреше в некоторой точке $u \in \mathbb{B}_1$, тогда отображение \mathbb{F} непрерывно в этой точке.

Доказательство теоремы 4.

Действительно, в силу дифференцируемости по Фреше в точке $u \in \mathbb{B}_1$ имеет место следующее представление:

$$\left\|\mathbb{F}(u+h)-\mathbb{F}(u)-\mathbb{F}_{f}^{'}(u)h\right\|_{2}\leqslant\|h\|_{1}$$

при достаточно малом $h \in \mathbb{B}_1$. Но тогда имеет место следующее неравенство:

$$\begin{split} \|\mathbb{F}(u+h) - \mathbb{F}(u)\|_2 &\leqslant \left\|\mathbb{F}(u+h) - \mathbb{F}(u) - \mathbb{F}_f^{'}(u)h\right\|_2 + \\ &+ \left\|\mathbb{F}_f^{'}(u)h\right\|_2 \leqslant \left(1 + \left\|\mathbb{F}_f^{'}(u)\right\|_{1 \to 2}\right) \|h\|_1. \end{split}$$

Пример 6.

ПРИМЕР 6. Приведем пример отображения, дифференцируемого по Гато в некоторой точке, но не непрерывной в этой точке. Пусть

$$\mathbb{F}:\mathbb{R}^2\to\mathbb{R}^1,$$

$$\mathbb{F}(x)=\begin{cases} \frac{x_1^4x_2}{x_1^6+x_2^3}, & \text{при}\quad (x_1,x_2)\neq (0,0);\\ 0, & \text{при}\quad (x_1,x_2)=(0,0). \end{cases}$$

Пример 6.

Действительно, выражение

$$\frac{\mathbb{F}(x+\lambda h) - \mathbb{F}(x)}{\lambda}$$

в точке x=(0,0) имеет вид

$$\frac{\lambda^5 h_1^4 h_2}{\lambda \left(\lambda^6 h_1^6 + \lambda^3 h_2^3\right)} = \lambda \frac{h_1^4 h_2}{\lambda^3 h_1^6 + h_2^3} \to 0 \quad \text{при} \quad \lambda \to 0.$$

Значит, производная Гато указанного отображения существует в точке x=(0,0) и равна нулевому отображению

$$\mathbb{F}_{g}^{'}(\theta) = \Theta.$$

Пример 6.

Докажем, что тем не менее отображение $\mathbb F$ не непрерывно в нуле. Действительно, рассмотрим кривую в $\mathbb R^2$ $x_2=\lambda x_1^2$ при $\lambda>0$. И устремим точку (x_1,x_2) к (0,0) вдоль этой кривой. Тогда получим

$$\mathbb{F}(x)\Big|_{x_2=\lambda x_1^2} = \frac{\lambda}{1+\lambda^3}.$$

Таким образом, предел при $x \to (0,0)$ вдоль кривой $x_2 = \lambda x_1^2$ зависит от параметра $\lambda > 0$. Следовательно, указанное отображение $\mathbb F$ не является непрерывным в точке (0,0).

Частичная непрерывность производной Гато.

Однако, в случае дифференцируемости по Гато есть некоторый ослабленный вариант непрерывности. Справедлива следующая лемма.

Лемма

Пусть отображение $\mathbb F$ дифференцируемо по Гато в некоторой точке $u\in\mathbb B_1$. Тогда имеет место следующее неравенство:

$$\|\mathbb{F}(u+\lambda h) - \mathbb{F}(u)\|_2 \leqslant c|\lambda|,\tag{7}$$

где
$$c = c(u,h) > 0$$
.

Доказательство леммы.

В силу дифференцируемости по Гато в точке $u \in \mathbb{B}_1$ имеет место следующая цепочка неравенств:

$$\left\| \frac{\mathbb{F}(u+\lambda h) - \mathbb{F}(u)}{\lambda} \right\|_{2} \leq \left\| \frac{\mathbb{F}(u+\lambda h) - \mathbb{F}(u)}{\lambda} - \mathbb{F}'_{g}(u)h \right\|_{2} + \left\| \mathbb{F}'_{g}(u)h \right\|_{2} \leq c_{1} + c_{2} = c_{3},$$

где c_3 не зависит от λ . Отсюда вытекает неравенство (7).

Цепное правило для производных Фреше.

Теорема

Пусть $\mathbb{F}: \mathbb{B}_1 \to \mathbb{B}_2$ и $\mathbb{G}: \mathbb{B}_2 \to \mathbb{B}_3$, причем оператор \mathbb{F} дифференцируем по Фреше в некоторой точке $u \in \mathbb{B}_1$, а оператор \mathbb{G} дифференцируем по Фреше в точке $\mathbb{F}(u)$. Тогда их композиция

$$\mathbb{K} \equiv \mathbb{G} \circ \mathbb{F}$$

дифференцируема по Фреше в точке $u \in \mathbb{B}_1,$ причем имеет место следующее равенство:

$$\mathbb{K}_{f}^{'}(u) = \mathbb{G}_{f}^{'}(\mathbb{F}(u))\mathbb{F}_{f}^{'}(u). \tag{8}$$

Доказательство теоремы 5.

$$\begin{split} & \left\| \mathbb{K}(u+h) - \mathbb{K}(u) - \mathbb{G}'_f(\mathbb{F}(u))\mathbb{F}'_f(u) \right\|_3 \leqslant \\ & \leqslant \left\| \mathbb{G}(\mathbb{F}(u+h)) - \mathbb{G}(\mathbb{F}(u)) - \mathbb{G}'_f(\mathbb{F}(u)) \left[\mathbb{F}(u+h) - \mathbb{F}(u) \right] \right\|_3 + \\ & + \left\| \mathbb{G}'_f(\mathbb{F}(u)) \left[\mathbb{F}(u+h) - \mathbb{F}(u) - \mathbb{F}'_f(u)h \right] \right\|_3 \leqslant \\ & \leqslant \left\| \omega_1(\mathbb{F}(u), \mathbb{F}(u+h) - \mathbb{F}(u)) \right\|_3 + \left\| \mathbb{G}'_f(\mathbb{F}(u)) \right\|_{2 \to 3} \|\omega_2(u,h)\|_3. \end{split}$$

Доказательство теоремы 5.

Теперь заметим, что в силу дифференцируемости по Фреше оператора $\mathbb F$ имеет место оценка

$$\|\mathbb{F}(u+h) - \mathbb{F}(u)\|_2 \leqslant c\|h\|_1.$$

Поэтому имеет место следующее предельное равенство:

$$\begin{split} & \lim_{\|h\|_1 \to 0} \frac{\|\omega_1(\mathbb{F}(u), \mathbb{F}(u+h) - \mathbb{F}(u))\|_3}{\|h\|_1} = \\ & = \lim_{\|h\|_1 \to 0} \frac{\|\omega_1(\mathbb{F}(u), \mathbb{F}(u+h) - \mathbb{F}(u))\|_3}{\|\mathbb{F}(u+h) - \mathbb{F}(u)\|_2} \frac{\|\mathbb{F}(u+h) - \mathbb{F}(u)\|_2}{\|h\|_1} = 0. \end{split}$$

Кроме этого, имеет место предельное равенство

$$\lim_{\|h\|_1 \to 0} \frac{\|\omega_2(u,h)\|_3}{\|h\|_1} = 0.$$

Оператор Немыцкого.

Пусть (Ω,\mathcal{M},μ) — это есть полное измеримое $\sigma-$ конечное пространство. Дадим определения.

Определение 3. Функция

$$f(x,u): \Omega \times \mathbb{R}^N \to \mathbb{R}^1$$

называется Каратеодориевой, если она для всех $u\in\mathbb{R}^N$ $\mu-$ измерима на Ω и для $\mu-$ почти всех $x\in\Omega$ непрерывна по $u\in\mathbb{R}^N$.

Определение 4. Оператор $N_f(u) \equiv f(x,u(x))$ называется оператором Немыцкого.

Теорема М. А. Красносельского об операторе Немыцкого.

Теорема

Оператор Немыцкого $N_f(u)$ является ограниченным и непрерывным, действующим из

$$\prod_{k=1}^N \mathbb{L}^{p_k}(\Omega,\mu)$$
 в $\mathbb{L}^q(\Omega,\mu)$ при $p_k,q\in [1,+\infty)$

тогда и только тогда, когда для соответствующей Каратеодориевой функции f(x,u) справедлива оценка

$$|f(x,u)| \le a(x) + c \sum_{k=1}^{N} |u_k|^{p_k/q}, \quad a(x) \in \mathbb{L}^q(\Omega,\mu),$$

для всех $u=(u_1,...,u_N)\in\mathbb{R}^N$ и $\mu-$ почти всех $x\in\Omega$.

Один важный пример.

Пусть

$$f(x,u): \Omega \times \mathbb{R}^N \to \mathbb{R}^1$$

является Каратеодориевой функцией. Введем так называемую потенциальную функцию

$$F(x,z) = \int_{0}^{z} f(x,\xi) d\xi,$$
 (9)

а также функционал

$$\psi(u) = \int_{\Omega} F(x, u(x)) dx.$$
 (10)

Предположим также, что

$$|f(x,u)|\leqslant a(x)+c|u|^{p/p^{'}}\quad \text{при}\quad p^{'}=\frac{p}{p-1}\quad \text{и}\quad p\in(1,+\infty),$$

где $a(x) \in \mathbb{L}_{+}^{p'}(\Omega)$ и c>0.

Один важный пример.

Тогда для потенциальной функции F(x,u), определенной формулой (9), имеет место следующее неравенство:

$$|F(x,u)| \leqslant \left| \int_{0}^{u(x)} f(x,\xi) \, d\xi \right| \leqslant a(x)|u| + \frac{c}{p}|u|^{p} \leqslant$$

$$\leqslant \frac{|a(x)|^{p'}}{p'} + \frac{|u|^{p}}{p} + \frac{c}{p}|u|^{p} = a_{1}(x) + c_{1}|u|^{p}, \quad (11)$$

где $a_1(x)\in\mathbb{L}^1(\Omega)$ и $c_1>0$. Очевидно, что по своему определению потенциальная функция F(x,u) является Каратеодориевой и поэтому в силу теоремы М. А. Красносельского и (11) приходим к выводу, что соответствующий оператор Немыцкого

$$N_F(u): \mathbb{L}^p(\Omega) \to \mathbb{L}^1(\Omega)$$

Следовательно, функционал $\psi(u)$, определенный формулой (10) является ограниченным и непрерывным из $\mathbb{L}^p(\Omega)$ в \mathbb{R}^1 . Действительно, в силу оценки (11) имеет место цепочка неравенств:

$$|\psi(u)| \leqslant \int_{\Omega} |F(x, u(x))| dx \leqslant \int_{\Omega} a_1(x) dx + c_1 \int_{\Omega} |u|^p dx \leqslant c_2 + c_1 ||u||_p^p.$$

Ограниченность доказана.

Докажем непрерывность. Пусть $u_n o u$ сильно в $\mathbb{L}^p(\Omega)$. Тогда

$$|\psi(u_n)-\psi(u)|\leqslant \|N_F(u_n)-N_F(u)\|_1\to 0$$
 при $n\to +\infty.$

Итак, непрерывность и ограниченность функционала $\psi(u)$ доказана. Докажем теперь его дифференцируемость по Фреше. Рассмотрим следующее выражение:

$$\omega(u,v) \equiv \psi(u+v) - \psi(u) - \langle N_f(u),v \rangle \quad \text{ для} \quad u,v \in \mathbb{L}^p(\Omega).$$

$$|\omega(u,v)| \le \left| \int_{\Omega} \left[F(x,u(x) + v(x)) - F(x,u(x)) \right] dx - \int_{\Omega} N_f(u)(x)v(x) dx \right|.$$

Заметим, что имеет место цепочка равенств

$$\begin{split} F(x, u(x) + v(x)) - F(x, u(x)) &= \\ &= \int_{0}^{1} \frac{d}{dt} F(x, u(x) + tv(x)) \, dt = \int_{0}^{1} f(x, u(x) + tv(x)) v(x) \, dt. \end{split}$$

Поэтому справедлива оценка

$$|\omega(u,v)| \leq \int_{0}^{1} dt \int_{\Omega} dx |N_{f}(u+tv)(x) - N_{f}(u)(x)| |v(x)| \leq$$

$$\leq \int_{0}^{1} dt ||N_{f}(u+tv) - N_{f}(u)||_{p'} ||v||_{p}.$$

Следовательно, в силу непрерывности оператора Немыцкого $N_f(\cdot)$ имеет место предельное неравенство

$$\lim_{\|v\|_p \to 0} \frac{|\omega(u,v)|}{\|v\|_p} \leqslant \lim_{\|v\|_p \to 0} \int_0^1 dt \, \|N_f(u+tv) - N_f(u)\|_{p'} = 0.$$

Лемма.

Тем самым, справедлива следующая лемма.

Лемма

При сформулированных условиях функционал $\psi(u)$, определенный формулой

$$\psi(u) = \int_{\Omega} F(x, u(x)) dx, \quad F(x, s) = \int_{0}^{\sigma} f(x, \sigma) d\sigma,$$

является дифференцируемым по Фреше, причем имеет место следующее равенство:

$$\psi_f^{'}(u)=N_f(u)$$
 для всех $u\in\mathbb{L}^p(\Omega)$ при $p\in(1,+\infty).$ (12)

Компактные и вполне непрерывные операторы. Определения

Определение 5. Оператор $\mathbb F$ называется компактным, если для каждого ограниченного множества $B\subset \mathbb B_1$ замыкание множества $\mathbb F(B)\subset \mathbb B_2$ компактно в $\mathbb B_2$.

Определение 6. Оператор \mathbb{F} называется вполне непрерывным, если он непрерывен и компактен.

Определение 7. Оператор $\mathbb F$ называется полностью непрерывным, если из условия

$$u_n \rightharpoonup u$$
 слабо в \mathbb{B}_1

вытекает, что

$$\mathbb{F}(u_n) \to \mathbb{F}(u)$$
 сильно в \mathbb{B}_2 .

Связь вполне непрерывных и полностью непрерывных операторов.

Теорема

Пусть $\mathbb{L}\in\mathcal{L}(\mathbb{B}_1,\mathbb{B}_2)$ — это вполне непрерывный оператор, тогда он является полностью непрерывным.

Итак, пусть

$$u_n \rightharpoonup u$$
 слабо в \mathbb{B}_1 ,

тогда эта последовательность сильно ограничена в \mathbb{B}_1 . Тогда в силу компактности \mathbb{L} из последовательности $\{u_n\}$ можно извлечь подпоследовательность $\{u_{n_k}\}$ такую, что

$$\mathbb{L}u_{n_k} o v$$
 сильно в $\mathbb{B}_2.$

Рассмотрим транспонированный к $\mathbb L$ оператор

$$\mathbb{L}^t: \mathbb{B}_2^* \to \mathbb{B}_1^*.$$

Поскольку $\mathbb{L} \in \mathcal{L}(\mathbb{B}_1,\mathbb{B}_2)$, т. е. является линейным и непрерывным, то и $\mathbb{L}^t \in \mathcal{L}(\mathbb{B}_2^*,\mathbb{B}_1^*)$, причем по определению транспонированного оператора справедливо следующее равенство:

$$\langle f^*, \mathbb{L} u
angle_2 = \left\langle \mathbb{L}^t f^*, u
ight
angle_1$$
 для всех $f^* \in \mathbb{B}_2^*, u \in \mathbb{B}_1.$

Докажем, что

$$\mathbb{L}u_n \rightharpoonup \mathbb{L}u$$
 слабо в \mathbb{B}_2 .

Действительно, имеет место следующее выражение:

$$\langle f^*, \mathbb{L} u_n - \mathbb{L} u \rangle_2 = \langle \mathbb{L}^t f^*, u_n - u \rangle_1 \to 0 \quad \text{при} \quad n \to +\infty,$$

поскольку

$$u_n \rightharpoonup u$$
 слабо в \mathbb{B}_1 .

Таким образом, приходим к выводу, что

$$\mathbb{L}u_n \rightharpoonup \mathbb{L}u$$
 слабо в \mathbb{B}_2 . (13)

Докажем теперь, что на самом деле

$$\mathbb{L}u_n \to \mathbb{L}u$$
 сильно в \mathbb{B}_2 .

По доказанному,

$$\mathbb{L}u_{n_k} \to v$$
 сильно в \mathbb{B}_2 ,

значит,

$$\mathbb{L}u_{n_k} \rightharpoonup v$$
 слабо в \mathbb{B}_2 .

Следовательно, в силу (13) приходим к равенству

$$v = \mathbb{L}u$$
.

Теперь предположим, что найдется такая подпоследовательность $\{u_{n_k}\}\subset\{u_n\},$ что имеет место неравенство

$$\|\mathbb{L}u_{n_k} - \mathbb{L}u\|_2 \geqslant c > 0$$
 для всех $n_k \in \mathbb{N}.$

С другой стороны, по доказанному, у этой подпоследовательности найдется такая подпоследовательность

$$\left\{u_{n_{k_l}}\right\} \subset \left\{u_{n_k}\right\}$$

такая, что

$$\left\| \mathbb{L} u_{n_{k_l}} - \mathbb{L} u \right\|_2 \to 0$$
 при $l \to +\infty$.

Справедлива цепочка неравенств

$$0 < c \leqslant \|\mathbb{L}u_{n_k} - \mathbb{L}u\|_2 \leqslant \|\mathbb{L}u_{n_k} - \mathbb{L}u_{n_{k_l}}\|_2 + \|\mathbb{L}u_{n_{k_l}} - \mathbb{L}u\|_2.$$

Выберем теперь $l\in\mathbb{N}$ настолько большим, чтобы имело место неравенство

$$\left\| \mathbb{L}u_{n_{k_l}} - \mathbb{L}u \right\|_2 \leqslant \frac{c}{2}.$$

C другой стороны, для каждого $l \in \mathbb{N}$ найдется такое $n_k \in \mathbb{N},$ что

$$n_k = n_{k_l} \Rightarrow u_{n_k} = u_{n_{k_l}} \Rightarrow \mathbb{L}u_{n_{k_l}} = \mathbb{L}u_{n_k}$$

и тогда

$$\left\| \mathbb{L}u_{n_k} - \mathbb{L}u_{n_{k_l}} \right\|_2 = 0$$

и мы приходим к противоречивому неравенству

$$0 < c \leqslant \frac{c}{2}.$$

Полученное противоречие доказывает теорему.

Важный результат.

Важный результат без доказательства.

Теорема

Пусть $\mathbb{L} \in \mathcal{L}(\mathbb{B}_1,\mathbb{B}_2)$ и \mathbb{B}_1 рефлексивно. Тогда для полной непрерывности оператора \mathbb{L} , необходима и достаточна, вполне непрерывность оператора \mathbb{L} .

Нелинейный случай.

Пока мы рассмотрели связь полной непрерывности и вполне непрерывности линейных операторов. Однако, есть некоторые результаты и для нелинейных операторов. Справедлива следующая лемма.

Лемма

Пусть

$$\mathbb{K}: \mathbb{B}_1 \to \mathbb{B}_2$$

— это полностью непрерывный оператор. Тогда при условии рефлексивности банахова пространства \mathbb{B}_1 оператор \mathbb{K} является вполне непрерывным.

Пример 7.

Заметим, что обратное утверждение, вообще говоря, неверно. ПРИМЕР 7. Пусть $\mathbb{B}_1=\mathbb{L}^2(0,1)$ и $\mathbb{B}_2=\mathbb{R}_1$. Рассмотрим следующий нелинейный оператор

$$\mathbb{K}(u) = \int_{0}^{1} u^{2}(s) \, ds = ||u||_{2}^{2}.$$

Докажем, что он является вполне непрерывным. Сначала докажем непрерывность. Пусть

$$u_n \to u$$
 сильно в $\mathbb{L}^2(0,1)$,

но тогда в силу очевидного неравенства

$$|||u_n||_2 - ||u||_2| \leqslant ||u_n - u||_2$$

приходим к выводу о том, что

$$\|u_n\|_2 o \|u\|_2$$
 при $n o +\infty$,

Пример 7.

поэтому

$$\mathbb{K}(u_n) \to \mathbb{K}(u)$$
 при $n \to +\infty$.

Докажем теперь компактность оператора \mathbb{K} . Пусть $D\subset \mathbb{L}^2(0,1)$ — это произвольное ограниченное множество. Докажем, что

$$\overline{\mathbb{K}(\mathrm{D})}$$
 компактно в $\mathbb{R}^1.$

Но для этого достаточно доказать, что $\mathbb{K}(D)$ — это ограниченное множество. В силу ограниченности D в $\mathbb{L}^2(0,1)$ имеем следующее неравенство:

$$||u||_2 \leqslant c$$
 для всех $u \in D$

при некотором c > 0, не зависящем от u. Тогда

$$0 < \mathbb{K}(u) \leqslant c^2 < +\infty.$$

Тем самым, компактность оператора $\mathbb K$ доказана,

Пример 7.

Теперь докажем, что, тем не менее, оператор $\mathbb K$ не является полностью непрерывным. Действительно, рассмотрим последовательность $\{u_n\}\subset \mathbb L^2(0,1),$ где

$$u_n(s) = \sin(\pi n s), \quad s \in (0, 1), \quad n \in \mathbb{N}.$$

Тогда для любой фиксированной функции $v(s) \in \mathbb{L}^2(0,1)$ в силу теоремы Римана–Лебега имеет место выражение

$$\int\limits_0^1 v(s)\sin(\pi ns)\,ds\to 0\quad \text{при}\quad n\to +\infty,$$

т. е. в силу теоремы представления Рисса

$$u_n \rightharpoonup 0$$
 слабо в $\mathbb{L}^2(0,1)$.

$$\mathbb{K}(u_n)=\int\limits_0^1 u_n^2(s)\,ds=rac{1}{2}
eq 0=\mathbb{K}(0)$$
 при $n
ightarrow+\infty.$