DEPARTMENT OF COMPUTER SCIENCE & ENGINEERING, FACULTY OF ENGINEERING

CSC2100B/S: Data Structures

Spring 2011

Written Assignment 1 Due: 18 Feb, 2011

Name:

SID.	
Section I: Revision Questions (10 points) Put down your answers to the following simple revision questions.	
1. Name the course lecturer: <u>Tang Wai Chung, Matthew</u>	1 pt
2. Visit the course newsgroup and find your answer:	1 pt
3. The maximum subsequence sum for the following sequence is $\phantom{aaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaa$	1 pt
1,2, 1,0,1, 0,0,0	
4. $O(N \lg N) + O(N^2) + O(N) = \underline{O(N^2)}$	1 pt
5. Name the best algorithm for the $maximum\ subsequence\ sum\ problem,$ in terms of running time complexity: $\underline{mss-online}$.	1 pt
6. Before you can use binary search on a set of data, you have to first sort the data.	1 pt
7. <u>Internal</u> sorting occurs entirely inside the main memory of the computer.	1 pt
8. If the exchange of items are costly, we use try to use <u>selection</u> sort.	1 pt
9. <u>Bubble/Insertion/Merge</u> sort is an example of <i>stable</i> sorting algorithms.	1 pt
10. The worse case time complexity (in O -notation) of $quicksort$ is $Q(N^2)$.	1 pt

Section II: Short Questions (39 points)

Unless otherwise stated, you should answer the following questions in plain English or math expressions instead of code snippets.

1. Calculate the asymptotic expression for T(N):

$$T(N) = (N^2 + O(N) + O(1))(\log N^2 + O(N\log N) + O(1))$$

4 pts

Solution:

$$\begin{split} T(N) &= (N^2 + O(N) + O(1))(\log N^2 + O(N\log N) + O(1)) \\ &= O(N^2\log N) + O(N^3\log N) + O(N^2) + O(N\log N) + O(N^2\log N) + O(N) \\ &+ O(\log N) + O(N\log N) + O(1) \\ &= O(N^3\log N) + O(N^2\log N) + O(N^2) + O(N\log N) + O(N) + O(\log N) + O(1) \\ &= O(N^3\log N) \end{split}$$

2. Show that

$$O(f(N)g(N)) = f(N)O(g(N))$$

4 pts

Solution: Let h(N) = O(f(N)g(N)), then for some $N \geq N_0$, we have

$$h(N) \le cf(N)g(N)$$

$$\le f(N) \cdot c \cdot g(N)$$

$$h(N)/f(N) \le c \cdot g(N)$$

$$h(N)/f(N) = O(g(N))$$

$$h(N) = f(N)O(g(N))$$

assume that $f(N) \neq 0$.

3. Consider the following integer sequence S:

11 pts

(a) (3 pts) Show your steps in using selection sort to sort S. (Lecture 03: p. 11) Solution:

3	10	5	6	13	4	9	8	(2)	16
<u>2</u>	10	5	6	13	4	9	8	(3)	16
2	3	5	6	13	(4)	9	8	10	16
2	<u>3</u>	4	6	13	(5)	9	8	10	16
$\frac{2}{2}$	<u>3</u>	4	<u>5</u>	13	(6)	9	8	10	16
<u>2</u>	<u>3</u>	4	<u>5</u>	<u>6</u>	13	9	(8)	10	16
<u>2</u>	<u>3</u>	<u>4</u>	<u>5</u>	<u>6</u>	<u>8</u>	(9)	13	10	16
<u>2</u>	<u>3</u>	<u>4</u>	<u>5</u>	<u>6</u>	<u>8</u>	<u>9</u>	13	(10)	16
$\frac{2}{2}$	<u>3</u>	<u>4</u>	<u>5</u>	<u>6</u>	<u>8</u>	<u>9</u>	<u>10</u>	(13)	16
<u>2</u>	3	4	<u>5</u>	<u>6</u>	<u>8</u>	9	<u>10</u>	<u>13</u>	16

(b) (3 pts) Show your steps in using insertion sort to sort S. (Lecture 03: p. 17) Solution:

3	(10)	5	6	13	4	9	8	2	16
3	10	(5)	6	13	4	9	8	2	16
3	5	<u>10</u>	(6)	13	4	9	8	2	16
3	5	6	<u>10</u>	(13)	4	9	8	2	16
3	5	6	10	13	(4)	9	8	2	16
3	4	<u>5</u>	<u>6</u>	<u>10</u>	<u>13</u>	(9)	8	2	16
3	4	5	6	9	<u>10</u>	<u>13</u>	(8)	2	16
3	4	5	6	8	<u>9</u>	<u>10</u>	<u>13</u>	(2)	16
2	<u>3</u>	<u>4</u>	<u>5</u>	<u>6</u>	<u>8</u>	9	<u>10</u>	<u>13</u>	(16)
2	3	4	5	6	8	9	10	13	16

(c) (3 pts) Show your steps in using $bubble\ sort$ to sort S. (Lecture 03: p. 26) Solution:

3	10	5	6	13	4	9	8	2	16
3	<u>5</u>	<u>6</u>	(10)	<u>4</u>	9	8	<u>2</u>	(13)	16
3	5	6	$\underline{4}$	9	8	<u>2</u>	(10)	13	16
3	5	<u>4</u>	(6)	<u>8</u>	<u>2</u>	(9)	10	13	16
3	<u>4</u>	(5)	6	<u>2</u>	(8)	9	10	13	16
3	4	5	<u>2</u>	(6)	8	9	10	13	16
3	4	<u>2</u>	(5)	6	8	9	10	13	16
3	<u>2</u>	(4)	5	6	8	9	10	13	16
<u>2</u>	(3)	4	5	6	8	9	10	13	16

(d) (2 pts) Which of the sorting algorithms above uses the most number of exchanges in sorting S? What is the number?

Solution: Bubble sort and insertion sort both use 19 exchanges.

4. Consider the following list of common playing cards which is originally sorted by suit:

 $5 \diamondsuit 8 \diamondsuit K \clubsuit 8 \clubsuit A \heartsuit 5 \heartsuit K \heartsuit 10 \heartsuit 10 \spadesuit A \spadesuit 5 \spadesuit$

5 pts

Use merge sort to sort the list in ascending order using rank as the key. (Lecture 03: p. 45) (Note: You should end with the list sorted in rank then suit.)

Solution:

$5\diamondsuit$ $5\diamondsuit$	8♦ 8♦	$K \clubsuit$	8♣	$A\heartsuit$	5♡	$K\heartsuit$	10♡	10♠	$A \spadesuit$	5 ♠
	0 V	8♣	$K \clubsuit$	۲M	400					
				$5\heartsuit$	$A\heartsuit$	10♡	$K \heartsuit$			
								10 🖍	$A \spadesuit$	
										5 ♠
$5\diamondsuit$	8\$	8♣	$K \clubsuit$	5♡	10♡	$K \heartsuit$	$A \heartsuit$			
								5♠	10♠	$A \spadesuit$
$5\diamondsuit$	5 %	8\$	8 ♣	10♡	$K \clubsuit$	$K\heartsuit$	$A\heartsuit$			
$5\diamondsuit$	5 %	5 ♠	8\$	8♣	10♡	10♠	$K \clubsuit$	$K\heartsuit$	$A\heartsuit$	$A \spadesuit$

5. Illustrate quicksort with median-of-three pivot selection (underline your pivot) in sorting the following list of alphabets (Lecture 03: p.60):

5 pts

QUICKSORT

Solution:

Q	U	Ι	С	K	S	Ο	\mathbf{R}	\mathbf{T}
K	О	Ι	С	Q	S	U	R	Т
С	Ι	<u>K</u>	О					
С	Ι							
					S	R	$\underline{\mathrm{T}}$	U
					R	S		
С	Ι	K	О	Q	R	S	Т	U

6. Suppose that you are given a file of N records whose keys can only be 0 or 1. Describe an algorithm to sort the file and satisfies the following: (i) runs in O(N) time, (ii) sorts in place, and (iii) use a constant amount of extra memory.

5 pts

Solution: The sorting algorithm for 0's and 1's resembles the partitioning procedure in quicksort (linear execution time):

- Keep two pointers i and j that points the beginning of the list and the end of the list respectively (constant memory).
- Then move i to right until a[i] = 1 and move j to the left until a[j] = 0.
- Exchange the elements (sort in place).
- Repeat until i and j cross each other.
- 7. (Bonus) Show that

$$N(\sqrt[N]{N} - 1) = O(\ln N)$$

5 pts

Solution: First consider that

$$\sqrt[N]{N} = e^{\ln N/N} = 1 + (\ln N/N) + O((\ln N/N)^2)$$

Thus

$$N(\sqrt[N]{N} - 1) = N(\ln N/N + O((\ln N/N)^{2}))$$

$$= \ln N + O((\ln N)^{2}/N)$$

$$= O(\ln N)$$

as $(\ln N)^k/N$ tends to 0 as N tends to ∞ for constant k.

Section III: Long Question / Code Study (36 points)

Unless otherwise stated, you should answer the following questions in plain English instead of code snippets.

1. Study the following C function f that implements a useful algorithm with a mistake.

 $12\,\mathrm{pts}$

- (a) (2 pts) If the given array of integers is $\{5, 2, 4, 1, 6\}$, what value will be returned by the function? Solution: 6
- (b) (2 pts) Explain briefly what this algorithm is trying to do.

Solution: Find the maximum value among all elements in the array a.

(c) (3 pts) What is the mistake made in the implementation? Give a *perverse* input that reveals the mistake.

Solution: The coder assumes the maximum value is always greater than or equal to 0, and initialize m (the maximum value) to 0.

Any array containing all negative integers reveals the mistake.

(d) (3 pts) Put down a correct implementation in C (show code).

Solution: Modify line 2: initialize m to a[0].

Modify line 3: begin looping with i = 1.

```
int f(int a[], int n){
   int i, m = a[0];

for (i = 1; i < n; i++)
   if (a[i] > m)
        m = a[i];

return m;
}
```

(e) (2 pts) Use O-notation to express the running time T(N) of this algorithm.

 $Solution: \ T(N) = O(1) + O(N) \times O(1) + O(1) = O(N)$

N	ame:	
. ч	ame.	

2. The following C function implements another sorting algorithm that is not covered in our lecture, yet it is easy to understand.

```
14 pts
```

```
void gsort(int n, int a[]) {
2
        int i = 1, tmp;
3
        while (i < n){
4
            if (i == 0 || a[i] >= a[i - 1])
5
                 ++i:
6
            else {
                 tmp = a[i];
7
                 a[i] = a[i - 1];
8
9
                 a[i - 1] = tmp;
10
                 --i;
            }
11
12
        }
13
   }
```

(a) (4 pts) Suppose the function is called with an array $a[] = \{5, 3, 2, 4, 1\}$, trace the code and show the contents of the array a[] whenever line 10 has finished.

Solution:

3 5 2 4 1

3 2 5 4 1

2 3 5 4 1

2 3 4 5 1

2 3 4 1 5

2 3 1 4 5

2 1 3 4 5

1 2 3 4 5

(b) (3 pts) What is the **best case** time complexity of this algorithm in sorting N items? Express and discuss your answer in O-notation.

Solution: The best case occurs when an array in the sorted order (e.g. $\{1, 2, 3, 4, 5\}$) is given. Then the algorithm compares N-1 times through the array without any exchanges. Thus the best case time complexity = O(N).

(c) (5 pts) What is the **worse case** time complexity of this algorithm in sorting N items? Express and discuss your answer in O-notation.

Solution: The worse case is an array with items in reversed order (e.g. $\{5,4,3,2,1\}$). Then the algorithm procedes as follows: exchanges the first and the second items, giving a sorted [0,1] subarray, then exchanges twice to give a sorted [0,2] subarray, and so on. In total there will be $1+2+\ldots+(N-1)=O(N^2)$ exchanges. Worse case time complexity =O(N).

(d) (2 pts) Do you think this algorithm is better than the bubble sort? Give a reason.

Solution: Yes. The best case complexity is better than that of bubble sort.

TA T			
	am	Δ	•
Τ.	CULL	u	

3. Merge sort can be written without recursion. The following is the *bottom-up* version of merge sort based on the same merging routine merge() introduced in the lecture notes.

10 pts

```
void msort_bu(int *a, int *tmpa, int 1, int r){
   int i, m;

for (m = 1; m <= r - 1; m = m + m)
   for (i = 1; i <= r - m; i += m + m)
        merge(a, tmpa, i, i + m, MIN(i + m + m - 1, r));
}</pre>
```

You can assume MIN(A, B) is a function that finds the smaller number among A and B.

- (a) (2 pts) If l = 0 and r = 10, how many times will the loop on line 3 be executed? Solution: m = 1, 2, 4, 8, 4 times.
- (b) (3 pts) List the calls to merge() when l=0, r=10, m=2. (For example, merge(a, tmpa, 0, 2, 3))

Solution:

```
merge(a, tmpa, 0, 2, 3)
merge(a, tmpa, 4, 6, 7)
merge(a, tmpa, 8, 10, 10)
```

(c) (5 pts) What is the time complexity of this algorithm in sorting N items? Present your detailed analysis in O-notation.

Solution: The for-loop on line 3 executes for $O(\lg N)$ times.

For each fixed m, the for-loop on line 4 examines each element on the array through merge(): O(N) execution time (for line 4 + 5).

Hence the total time complexity is $O(N \lg N)$.