

JBR Interns 2020

Поиск путей в графе с КС ограничениями через произведение Кронекера

Егор Орачев, **Илья Эпельбаум** Ментор: Семен Григорьев

JetBrains Research, Лаборатория языковых инструментов Санкт-Петербургский Государственный университет

31 Августа 2020

Context-Free Path Querying

Навигация в графе

- Находятся ли вершины A и B на одном уровне иерархии?
- Существует ли путь вида $Up^n Down^n$?
- Найти все такие пути
 Upⁿ Downⁿ, которые
 начинаются в вершине А

Семантика запросов

- ullet $\mathbb{G}=(\Sigma,N,P)$ контекстно-свободная грамматика
 - ▶ Σ конечное множество терминалов
 - N конечное множество нетерминалов
 - Р конечное множество правил вывода
 - $L(\mathbb{G}, A) = \{\omega \mid A \Rightarrow^* \omega\}, A \in N$
- ullet G = (V, E, L) ориентированный граф с метками
 - $v \stackrel{l}{\rightarrow} u \in E$
 - L ⊆ Σ
- $\omega(\pi) = \omega(v_0 \xrightarrow{l_0} v_1 \xrightarrow{l_1} \cdots \xrightarrow{l_{n-2}} v_{n-1} \xrightarrow{l_{n-1}} v_n) = l_0 l_1 \cdots l_{n-1}$
- ullet $R_A=\{(n,m)\mid \exists n\pi m$, такой что $\omega(\pi)\in L(\mathbb{G},A)\}, A\in N$

Существующие решения

- Решения, основанные на различных техниках парсинга (СҮК, LL, LR, etc.)
- Решения, основанные на матричных операция
- Существующие решения слишком *тяжеловесны* для запросов, выраженных регулярными ограничениями¹
- Все существующие решения работают только с КС грамматикой в нормальной форме (Нормальная форма Хомского)
- Трансформация требует дополнительного времени на обработку и приводит к разрастанию грамматики

 $^{^{-1}}$ Reqular path quering (RPQ) - поиск путей с регулярными ограничениями

Мотивация разработки нового алгоритма

- Работает с достаточно хорошим представлением входной грамматики, которое не требует дополнительной трансформации в нормальную форму и не приводит к увеличению числа продукций
- Реализуется в терминах операций линейной алгебры
- Приемлем для запросов, выраженных регулярными ограничениями
- Позволяет получать информацию не только о достижимости вершин, но и о путях, соединяющих эти вершины

Задачи Егора

- Формализация алгоритма, описание *наивной* реализации в категории операций линейной алгебры с использованием булевой матричной декомпозиции
- Оформление текста статьи для конференции 2020 ACM SIGMOD
- Подготовка **LUBM** датасета для тестирования регулярных запросов

Задачи Ильи

- Реализация наивной версии алгоритма на основе библиотеки PyGraphBLAS²
- Реализация на основе PyGraphBLAS извлечения путей из индекса, построенного в ходе выполнения основного алгоритма
- Проведение CFPQ и RPQ замеров работы алгоритма построения индекса и алгоритма извлечения путей

 $^{^2}$ PyGraphBLAS — python-обертка для SuiteSparse C — реализации GraphBLAS API для работы с графами в терминах операций линейной алгебры

Заключение

- Выполнены задачи по разработке и реализации алгоритма
- Получены *оптимистичные* и воодушевляющие результаты работы алгоритма относительно *классического* матричного аналога
- Подготовлена статья для конференции 2020 ACM SIGMOD

Дальнейшие задачи

- Исследование проблемы извлечения всех путей
- Детальное сравнение с классическим матричным алгоритмом
- Реализация алгоритма на GPGPU с использованием разреженных булевых матриц
- Модификация алгоритма для распределенного вычисления
- Интеграция алгоритма с графовой базой данных (RedisGraph)

Контакты

- Семен Григорьев:
 - s.v.grigoriev@spbu.ru
 - ► Semen Grigorev@jetbrains.com
- Рустам Азимов:
 - rustam.azimov19021995@gmail.com
 - Rustam Azimov@jetbrains.com
- Екатерина Шеметова: katyacyfra@gmail.com
- Егор Орачев: egor.orachev@gmail.com
- Илья Эпельбаум: iliyepelbaun@gmail.com
- Датасет: https://github.com/JetBrains-Research/CFPQ_Data
- Реализация: https://github.com/YaccConstructor/RedisGraph