Package 'graphkernels'

October 13, 2022

Type Package	
Title Graph Kernels	
Version 1.6.1	
Date 2021-12-20	
Description A fast C++ implementation for computing various graph kernels including (1) simple half nels between vertex and/or edge label histograms, (2) graphlet kernels, (3) random walk kernels (popular baselines), and (4) the Weisfeiler-Lehman graph kernel (state-of-the-art).	ter-
License GPL (>= 2)	
Imports Rcpp (>= 0.12.9)	
Depends igraph (>= 1.1.2)	
LinkingTo Rcpp, RcppEigen	
NeedsCompilation yes	
Author Mahito Sugiyama [aut, cre], The development of the graphkernels open access software package was financially supported by the Horizon 2020/CDS-QUAMRI/634541 project. This support is gratefully acknowledged. [fnd]	
Maintainer Mahito Sugiyama <mahito@nii.ac.jp></mahito@nii.ac.jp>	
Repository CRAN	
Date/Publication 2021-12-20 09:00:02 UTC	
R topics documented:	
graphkernels-package CalculateConnectedGraphletKernel CalculateEdgeHistGaussKernel CalculateEdgeHistKernel CalculateExponentialRandomWalkKernel CalculateGeometricRandomWalkKernel CalculateGraphletKernel CalculateGraphletKernel CalculateGraphletKernelCpp CalculateKernelCpp	22 33 44 55 66 77 88 99

graphkernels-package Graph Kernels				
Index		20		
	GetGraphInfo	18 18		
	CalculateVertexVertexEdgeHistKernel			
	CalculateVertexHistGaussKernel			
	CalculateVertexEdgeHistGaussKernel			
	CalculateShortestPathKernel	12		
	CalculateKStepRandomWalkKernel	-11		

Description

A fast C++ implementation for computing various graph kernels including (1) simple kernels between vertex and/or edge label histograms, (2) graphlet kernels, (3) random walk kernels (popular baselines), and (4) the Weisfeiler-Lehman graph kernel (state-of-the-art).

Details

This library provides the following graph kernels:

- the linear kernel between vertex label histograms
- the linear kernel between edge label histograms
- the linear kernel between vertex-edge label histograms
- the linear kernel combination vertex label histograms and vertex-edge label histograms
- the Gaussian RBF kernel between vertex label histograms
- the Gaussian RBF kernel between edge label histograms
- the Gaussian RBF kernel between vertex-edge label histograms
- the graphlet kernel
- the k-step random walk kernel
- the geometric random walk kernel
- the exponential random walk kernel
- the shortest-path kernel
- the Weisfeiler-Lehman subtree kernel

Given a list of **igraph** graphs, each function calculates the corresponding kernel (Gram) matrix.

Author(s)

Mahito Sugiyama

Maintainer: Mahito Sugiyama <mahito@nii.ac.jp>

References

Borgwardt, K. M., Kriegel, H.-P.: **Shortest-Path Kernels on Graphs**, *Proceedings of the 5th IEEE International Conference on Data Mining (ICDM'05)*, 74-81 (2005) https://ieeexplore.ieee.org/document/1565664/.

Debnath, A. K., Lopez de Compadre, R. L., Debnath, G., Shusterman, A. J., Hansch, C.: Structure-activity relationship of mutagenic aromatic and heteroaromatic nitro compounds. correlation with molecular orbital energies and hydrophobicity, *Journal of Medicinal Chemistry*, 34(2), 786-797 (1991) https://pubs.acs.org/doi/abs/10.1021/jm00106a046.

Gartner, T., Flach, P., Wrobel, S.: **On graph kernels: Hardness results and efficient alternatives**, *Learning Theory and Kernel Machines (LNCS 2777)*, 129-143 (2003) https://link.springer.com/chapter/10.1007/978-3-540-45167-9_11.

Shervashidze, N., Schweitzer, P., van Leeuwen, E. J., Mehlhorn, K., Borgwardt, K. M.: **Weisfeiler-Lehman Graph Kernels**, *Journal of Machine Learning Research*, 12, 2359-2561 (2011) https://www.jmlr.org/papers/volume12/shervashidze11a/shervashidze11a.pdf.

Shervashidze, N., Vishwanathan, S. V. N., Petri, T., Mehlhorn, K., Borgwardt, K. M.: **Efficient Graphlet Kernels for Large Graph Comparison**, *Proceedings of the 12th International Conference on Artificial Intelligence and Statistics (AISTATS)*, 5, 488-495 (2009) https://proceedings.mlr.press/v5/shervashidze09a.html.

Sugiyama, M., Borgwardt, K. M.: **Halting in Random Walk Kernels**, *Advances in Neural Information Processing Systems (NIPS 2015)*, 28, 1630-1638 (2015) https://papers.nips.cc/paper/5688-halting-in-random-walk-kernels.pdf.

Examples

```
data(mutag)
KEH <- CalculateEdgeHistKernel(mutag)
  ## compute linear kernel between edge histograms
KWL <- CalculateWLKernel(mutag, 5)
  ## compute Weisfeiler-Lehman subtree kernel</pre>
```

CalculateConnectedGraphletKernel

Connected graphlet kernel

Description

This function calculates a kernel matrix of the graphlet kernel with connected graphlets K_{CGL} between unlabeled graphs.

Usage

CalculateConnectedGraphletKernel(G, par)

Arguments

G a list of igraph graphs

par the number k of graphlet nodes (k = 3, 4, or 5 is supported)

Value

a kernel matrix of the connected graphlet kernel K_{CGL}

Author(s)

Mahito Sugiyama

References

Shervashidze, N., Vishwanathan, S. V. N., Petri, T., Mehlhorn, K., Borgwardt, K. M.: **Efficient Graphlet Kernels for Large Graph Comparison**, *Proceedings of the 12th International Conference on Artificial Intelligence and Statistics (AISTATS)*, 5, 488-495 (2009) https://proceedings.mlr.press/v5/shervashidze09a.html.

Examples

```
data(mutag)
K <- CalculateConnectedGraphletKernel(mutag, 4)</pre>
```

CalculateEdgeHistGaussKernel

Gaussian RBF kernel between edge label histograms

Description

This function calculates a kernel matrix of the Gaussian RBF kernel $K_{EH,G}$ between edge label histograms.

Usage

```
CalculateEdgeHistGaussKernel(G, par)
```

Arguments

G a list of igraph graphs

par σ in the Gaussian RBF kernel

Value

a kernel matrix of the Gaussian RBF kernel $K_{EH,G}$ between edge label histograms

Author(s)

Mahito Sugiyama

References

Sugiyama, M., Borgwardt, K. M.: **Halting in Random Walk Kernels**, *Advances in Neural Information Processing Systems (NIPS 2015)*, 28, 1630-1638 (2015) https://papers.nips.cc/paper/5688-halting-in-random-walk-kernels.pdf.

Examples

```
data(mutag)
K <- CalculateEdgeHistGaussKernel(mutag, .1)</pre>
```

CalculateEdgeHistKernel

Linear kernel between edge label histograms

Description

This function calculates a kernel matrix of the linear kernel K_{EH} between edge label histograms.

Usage

```
CalculateEdgeHistKernel(G)
```

Arguments

G

a list of igraph graphs

Value

a kernel matrix of the linear kernel K_{EH} between edge label histograms

Author(s)

Mahito Sugiyama

References

Sugiyama, M., Borgwardt, K. M.: **Halting in Random Walk Kernels**, *Advances in Neural Information Processing Systems (NIPS 2015)*, 28, 1630-1638 (2015) https://papers.nips.cc/paper/5688-halting-in-random-walk-kernels.pdf.

Examples

```
data(mutag)
K <- CalculateEdgeHistKernel(mutag)</pre>
```

CalculateExponentialRandomWalkKernel

Exponential random walk kernel

Description

This function calculates a kernel matrix of the exponential random walk kernel K_{ER} .

Usage

```
CalculateExponentialRandomWalkKernel(G, par)
```

Arguments

G a list of igraph graphs

par a coefficient β , with which the weight λ_k for each step k is given as $\lambda_k = \beta^k/k!$

Value

a kernel matrix of the exponential random walk kernel K_{ER}

Author(s)

Mahito Sugiyama

References

```
Gartner, T., Flach, P., Wrobel, S.: On graph kernels: Hardness results and efficient alternatives, Learning Theory and Kernel Machines (LNCS 2777), 129-143 (2003) https://link.springer.com/chapter/10.1007/978-3-540-45167-9_11.
```

```
data(mutag)
K <- CalculateExponentialRandomWalkKernel(mutag[1:5], .1)</pre>
```

CalculateGeometricRandomWalkKernel

Geometric random walk kernel

Description

This function calculates a kernel matrix of the geometric random walk kernel K_{GR} .

Usage

```
CalculateGeometricRandomWalkKernel(G, par)
```

Arguments

```
G a list of igraph graphs  \text{a coefficient } \lambda, \text{ with which the weight } \lambda_k \text{ for each step } k \text{ is given as } \lambda_k = \lambda^k
```

Value

a kernel matrix of the geometric random walk kernel K_{GR}

Author(s)

Mahito Sugiyama

References

Gartner, T., Flach, P., Wrobel, S.: **On graph kernels: Hardness results and efficient alternatives**, *Learning Theory and Kernel Machines (LNCS 2777)*, 129-143 (2003) https://link.springer.com/chapter/10.1007/978-3-540-45167-9_11.

Sugiyama, M., Borgwardt, K. M.: **Halting in Random Walk Kernels**, *Advances in Neural Information Processing Systems (NIPS 2015)*, 28, 1630-1638 (2015) https://papers.nips.cc/paper/5688-halting-in-random-walk-kernels.pdf.

```
data(mutag)
K <- CalculateGeometricRandomWalkKernel(mutag, .1)</pre>
```

CalculateGraphletKernel

Graphlet kernel

Description

This function calculates a kernel matrix of the graphlet kernel K_{GL} between unlabeled graphs.

Usage

```
CalculateGraphletKernel(G, par)
```

Arguments

G a list of igraph graphs

par the number k of graphlet nodes (k = 3 or 4 is supported)

Value

a kernel matrix of the graphlet kernel K_{GL}

Author(s)

Mahito Sugiyama

References

Shervashidze, N., Vishwanathan, S. V. N., Petri, T., Mehlhorn, K., Borgwardt, K. M.: **Efficient Graphlet Kernels for Large Graph Comparison**, *Proceedings of the 12th International Conference on Artificial Intelligence and Statistics (AISTATS)*, 5, 488-495 (2009) https://proceedings.mlr.press/v5/shervashidze09a.html.

```
data(mutag)
K <- CalculateGraphletKernel(mutag, 4)</pre>
```

```
CalculateGraphletKernelCpp
```

An C++ implementation of graphlet kernels

Description

This function calculates a graphlet kernel matrix.

Usage

```
CalculateGraphletKernelCpp(graph_adj_all, graph_adjlist_all, k, connected)
```

Arguments

```
\begin{tabular}{ll} $ graph\_adj\_all $ a list of adjacency matrices $ graph\_adjlist\_all $ a list of adjacency lists $ k $ the number $k$ of graphlet nodes $ connected $ whether or not graphlets are connected $ \end{tabular}
```

Value

a kernel matrix of the respective graphlet kernel

Author(s)

Mahito Sugiyama

References

Shervashidze, N., Vishwanathan, S. V. N., Petri, T., Mehlhorn, K., Borgwardt, K. M.: **Efficient Graphlet Kernels for Large Graph Comparison**, *Proceedings of the 12th International Conference on Artificial Intelligence and Statistics (AISTATS)*, 5, 488-495 (2009) https://proceedings.mlr.press/v5/shervashidze09a.html.

```
data(mutag)
al.list <- as.list(rep(NA, length(mutag)))
for (i in 1:length(mutag)) { al.list[[i]] <- as_adj_list(mutag[[i]]) }
K <- CalculateGraphletKernelCpp(list(), al.list, 4, 0)</pre>
```

CalculateKernelCpp

An C++ implementation of graph kernels

Description

This function calculates a kernel matrix.

Usage

```
CalculateKernelCpp(graph_info_list, par_r, kernel_type)
```

Arguments

Value

a kernel matrix of the respective kernel

Author(s)

Mahito Sugiyama

References

Sugiyama, M., Borgwardt, K. M.: **Halting in Random Walk Kernels**, *Advances in Neural Information Processing Systems (NIPS 2015)*, 28, 1630-1638 (2015) https://papers.nips.cc/paper/5688-halting-in-random-walk-kernels.pdf.

```
data(mutag)
graph.info.list <- vector("list", length(mutag))
for (i in 1:length(mutag)) { graph.info.list[[i]] <- GetGraphInfo(mutag[[i]]) }
K <- CalculateKernelCpp(graph.info.list, 5, 11)</pre>
```

CalculateKStepRandomWalkKernel

k-step random walk kernel

Description

This function calculates a kernel matrix of the k-step random walk kernel K_{\times}^{k} .

Usage

```
CalculateKStepRandomWalkKernel(G, par)
```

Arguments

G a list of igraph graphs

par a vector of coefficients $\lambda_0, \lambda_1, \dots, \lambda_k$

Value

a kernel matrix of the k-step random walk kernel K_{\times}^{k}

Author(s)

Mahito Sugiyama

References

Gartner, T., Flach, P., Wrobel, S.: **On graph kernels: Hardness results and efficient alternatives**, *Learning Theory and Kernel Machines (LNCS 2777)*, 129-143 (2003) https://link.springer.com/chapter/10.1007/978-3-540-45167-9_11.

Sugiyama, M., Borgwardt, K. M.: **Halting in Random Walk Kernels**, *Advances in Neural Information Processing Systems (NIPS 2015)*, 28, 1630-1638 (2015) https://papers.nips.cc/paper/5688-halting-in-random-walk-kernels.pdf.

```
data(mutag)
K <- CalculateKStepRandomWalkKernel(mutag, rep(1, 2))</pre>
```

CalculateShortestPathKernel

Shortest-path kernel

Description

This function calculates a kernel matrix of the shortest-path kernel K_{SP} .

Usage

CalculateShortestPathKernel(G)

Arguments

G

a list of igraph graphs

Value

a kernel matrix of the shortest-path kernel K_{SP}

Author(s)

Mahito Sugiyama

References

Borgwardt, K. M., Kriegel, H.-P.: **Shortest-Path Kernels on Graphs**, *Proceedings of the 5th IEEE International Conference on Data Mining (ICDM'05)*, 74-81 (2005) https://ieeexplore.ieee.org/document/1565664/.

Examples

```
data(mutag)
K <- CalculateShortestPathKernel(mutag)</pre>
```

CalculateVertexEdgeHistGaussKernel

Gaussian RBF kernel between vertex-edge label histograms

Description

This function calculates a kernel matrix of the Gaussian RBF kernel $K_{VEH,G}$ between vertex-edge label histograms.

Usage

CalculateVertexEdgeHistGaussKernel(G, par)

Arguments

G a list of igraph graphs

par σ in the Gaussian RBF kernel

Value

a kernel matrix of the Gaussian RBF kernel $K_{VEH,G}$ between vertex-edge label histograms

Author(s)

Mahito Sugiyama

References

Sugiyama, M., Borgwardt, K. M.: **Halting in Random Walk Kernels**, *Advances in Neural Information Processing Systems (NIPS 2015)*, 28, 1630-1638 (2015) https://papers.nips.cc/paper/5688-halting-in-random-walk-kernels.pdf.

Examples

```
data(mutag)
K <- CalculateVertexEdgeHistGaussKernel(mutag, .1)</pre>
```

 ${\tt CalculateVertexEdgeHistKernel}$

Linear kernel between vertex-edge label histograms

Description

This function calculates a kernel matrix of the linear kernel K_{VEH} between vertex-edge label histograms.

Usage

CalculateVertexEdgeHistKernel(G)

Arguments

G a list of igraph graphs

Value

a kernel matrix of the linear kernel K_{VEH} between vertex-edge label histograms

Author(s)

Mahito Sugiyama

References

Sugiyama, M., Borgwardt, K. M.: **Halting in Random Walk Kernels**, *Advances in Neural Information Processing Systems (NIPS 2015)*, 28, 1630-1638 (2015) https://papers.nips.cc/paper/5688-halting-in-random-walk-kernels.pdf.

Examples

```
data(mutag)
K <- CalculateVertexEdgeHistKernel(mutag)</pre>
```

CalculateVertexHistGaussKernel

Gaussian RBF kernel between vertex label histograms

Description

This function calculates a kernel matrix of the Gaussian RBF kernel $K_{VH,G}$ between vertex label histograms.

Usage

```
CalculateVertexHistGaussKernel(G, par)
```

Arguments

G a list of igraph graphs

par σ in the Gaussian RBF kernel

Value

a kernel matrix of the Gaussian RBF kernel $K_{VH,G}$ between vertex label histograms

Author(s)

Mahito Sugiyama

References

Sugiyama, M., Borgwardt, K. M.: **Halting in Random Walk Kernels**, *Advances in Neural Information Processing Systems (NIPS 2015)*, 28, 1630-1638 (2015) https://papers.nips.cc/paper/5688-halting-in-random-walk-kernels.pdf.

```
data(mutag)
K <- CalculateVertexHistGaussKernel(mutag, .1)</pre>
```

Calculate Vertex Hist Kernel 15

CalculateVertexHistKernel

Linear kernel between vertex label histograms

Description

This function calculates a kernel matrix of the linear kernel K_{VH} between vertex label histograms.

Usage

CalculateVertexHistKernel(G)

Arguments

G

a list of igraph graphs

Value

a kernel matrix of the linear kernel K_{VH} between vertex label histograms

Author(s)

Mahito Sugiyama

References

Sugiyama, M., Borgwardt, K. M.: **Halting in Random Walk Kernels**, *Advances in Neural Information Processing Systems (NIPS 2015)*, 28, 1630-1638 (2015) https://papers.nips.cc/paper/5688-halting-in-random-walk-kernels.pdf.

Examples

```
data(mutag)
K <- CalculateVertexHistKernel(mutag)</pre>
```

 ${\tt CalculateVertexVertexEdgeHistKernel}$

Linear kernel combination of vertex label histograms and vertex-edge label histograms

Description

This function calculates a kernel matrix of the linear kernel combination K_H of vertex label histograms K_{VH} and vertex-edge label histograms K_{VEH} .

16 CalculateWLKernel

Usage

CalculateVertexVertexEdgeHistKernel(G, par)

Arguments

G a list of igraph graphs

par a coefficient λ , with which the resulting kernel is given as $K_{VH} + \lambda K_{VEH}$

Value

a kernel matrix that is equivalent to $K_{VH} + \lambda K_{VEH}$

Author(s)

Mahito Sugiyama

References

Sugiyama, M., Borgwardt, K. M.: **Halting in Random Walk Kernels**, *Advances in Neural Information Processing Systems (NIPS 2015)*, 28, 1630-1638 (2015) https://papers.nips.cc/paper/5688-halting-in-random-walk-kernels.pdf.

Examples

```
data(mutag)
K <- CalculateVertexVertexEdgeHistKernel(mutag, .1)</pre>
```

CalculateWLKernel

Weisfeiler-Lehman subtree kernel

Description

This function calculates a kernel matrix of the Weisfeiler-Lehman subtree kernel K_{WL} .

Usage

```
CalculateWLKernel(G, par)
```

Arguments

Value

a kernel matrix of the Weisfeiler-Lehman subtree kernel K_{WL}

GetGraphInfo 17

Author(s)

Mahito Sugiyama

References

Shervashidze, N., Schweitzer, P., van Leeuwen, E. J., Mehlhorn, K., Borgwardt, K. M.: **Weisfeiler-Lehman Graph Kernels**, *Journal of Machine Learning Research*, 12, 2359-2561 (2011) https://www.jmlr.org/papers/volume12/shervashidze11a/shervashidze11a.pdf.

Examples

```
data(mutag)
K <- CalculateWLKernel(mutag, 5)</pre>
```

GetGraphInfo

Necessary information of graphs for kernel computation

Description

This function extracts necessary information of graphs for kernel computation.

Usage

```
GetGraphInfo(g)
```

Arguments

g an igraph graph

Value

a list of graph information with the following elements:

edge a matrix of edges with their labels vlabel a vector of vertex labels

vsize the number of vertices esize the number of edges maxdegree the maximum degree

Author(s)

Mahito Sugiyama

```
data(mutag)
ginfo <- GetGraphInfo(mutag[[1]])</pre>
```

18 mutag

Description

This is a supplement for symbol registration.

Author(s)

Mahito Sugiyama

Description

This is a supplement for symbol registration.

Author(s)

Mahito Sugiyama

mutag

The mutag dataset

Description

This is the mutag dataset, a well known benchmark dataset for graph processing algorithms.

Usage

data(mutag)

Author(s)

Mahito Sugiyama

References

Debnath, A. K., Lopez de Compadre, R. L., Debnath, G., Shusterman, A. J., Hansch, C.: Structure-activity relationship of mutagenic aromatic and heteroaromatic nitro compounds. correlation with molecular orbital energies and hydrophobicity, *Journal of Medicinal Chemistry*, 34(2), 786-797 (1991) https://pubs.acs.org/doi/abs/10.1021/jm00106a046.

mutag 19

```
data(mutag)
K <- CalculateWLKernel(mutag, 5)</pre>
```

Index

* Gaussian kernel	CalculateVertexHistKernel, 15	
CalculateEdgeHistGaussKernel,4	CalculateVertexVertexEdgeHistKernel,	
CalculateVertexEdgeHistGaussKernel,	15	
12	CalculateWLKernel, 16	
CalculateVertexHistGaussKernel, 14	graphkernels-package, 2	
* RBF kernel	* graphlet	
CalculateEdgeHistGaussKernel,4	${\tt CalculateConnectedGraphletKernel},$	
CalculateVertexEdgeHistGaussKernel,	3	
12	CalculateGraphletKernel, $f 8$	
CalculateVertexHistGaussKernel, 14	${\sf CalculateGraphletKernelCpp}, 9$	
* Weisfeiler-Lehman subtree kernel	* graph	
CalculateWLKernel, 16	GetGraphInfo, 17	
* edge label histogram	mutag, 18	
CalculateEdgeHistGaussKernel,4	* k-step walk kernel	
CalculateEdgeHistKernel, 5	CalculateKStepRandomWalkKernel, 11	
* exponential	* linear combination	
CalculateExponentialRandomWalkKernel, 6	CalculateVertexVertexEdgeHistKernel, 15	
* geometric	* mutag	
CalculateGeometricRandomWalkKernel,	mutag, 18	
7	* random walk kernel	
* graph kernel	CalculateExponentialRandomWalkKernel	
CalculateConnectedGraphletKernel,	6	
3	CalculateGeometricRandomWalkKernel,	
CalculateEdgeHistGaussKernel, 4	7	
CalculateEdgeHistKernel, 5	* shortest path CalculateShortestPathKernel, 12	
CalculateExponentialRandomWalkKernel,	* vertex label histogram	
6	CalculateVertexHistGaussKernel, 14	
CalculateGeometricRandomWalkKernel,	CalculateVertexHistKernel, 15	
7	CalculateVertexVertexEdgeHistKernel,	
CalculateGraphletKernel, 8	15	
CalculateGraphletKernelCpp,9	* vertex-edge label histogram	
CalculateKernelCpp, 10	CalculateVertexEdgeHistGaussKernel,	
CalculateKStepRandomWalkKernel, 11	12	
CalculateShortestPathKernel, 12	CalculateVertexEdgeHistKernel, 13	
CalculateVertexEdgeHistGaussKernel, 12	CalculateVertexVertexEdgeHistKernel,	
CalculateVertexEdgeHistKernel, 13		
CalculateVertexHistGaussKernel, 14	CalculateConnectedGraphletKernel, 3	

INDEX 21

```
CalculateEdgeHistGaussKernel, 4
CalculateEdgeHistKernel, 5
CalculateExponentialRandomWalkKernel,
{\tt CalculateGeometricRandomWalkKernel, 7}
CalculateGraphletKernel, 8
CalculateGraphletKernelCpp, 9
CalculateKernelCpp, 10
CalculateKStepRandomWalkKernel, 11
CalculateShortestPathKernel, 12
CalculateVertexEdgeHistGaussKernel, 12
CalculateVertexEdgeHistKernel, 13
CalculateVertexHistGaussKernel, 14
CalculateVertexHistKernel, 15
CalculateVertexVertexEdgeHistKernel,
CalculateWLKernel, 16
GetGraphInfo, 17
graphkernels (graphkernels-package), 2
graphkernels-package, 2
graphkernels_CalculateGraphletKernelCpp,
{\tt graphkernels\_CalculateKernelCpp}, 18
mutag, 18
```