P8106 Midterm - Code

Kate Colvin (KAC2301), Jeong Yun (Lizy) Choi (JC6452), and Flora Pang (FP2513)

Exploratory Analysis

Loading in Data

```
load("dat1.RData")
load("dat2.RData")

dat1 <- dat1 %>% janitor::clean_names()
dat2 <- dat2 %>%janitor::clean_names()
```

Producing Summary Table

Training and test data have the same distribution of demographic characteristics; there is a difference in time since vaccination and log-transformed antibody levels between training and test data

```
# Combining data for summary table, data cleaning
dat1_com <- dat1 %>% mutate(set = "Training Data")
dat2_com <- dat2 %>% mutate(set = "Testing Data")
dat <- dat1_com %>%
  rbind(dat2 com) %>%
  rename(days_vaccinated = time) %>%
  mutate(race = as.character(race), smoking = as.character(smoking)) %>%
  mutate(race = case_match(
        race, "1" ~ "White", "2" ~ "Asian", "3" ~ "Black", "4" ~ "Hispanic"),
         gender = case_match(gender, 1 ~ "Male", 0 ~ "Female"),
         smoking = case_match(
           smoking, "0" ~ "Never", "1" ~ "Former", "2" ~ "Current"))
# Summary table
dat %>% select(!id) %>%
  tbl_summary(
   by = set,
   label = list(age = "Age", gender = "Gender", race = "Race", smoking = "Smoking",
                 height = "Height (cm)", weight = "Weight (kg)", bmi = "BMI",
                 diabetes = "Diabetes", hypertension = "Hypertension",
                 sbp = "Systolic Blood Pressure (mmHg)", ldl = "LDL Cholesterol (mg/dL)",
                 days vaccinated = "Time Since Vaccinated (days)",
                 log_antibody = "Log-Transformed Antibody Level")) %>%
  add_overall() %>% add_p() %>%
  modify_caption("Summary of Patient Testing and Training Data (N=6000)") %>%
  as_gt() %>% tab_options(table.font.size = 10)
```

Table 1: Summary of Patient Testing and Training Data (N=6000)

Characteristic	Overall $N = 6,000^{1}$	Testing Data $N = 1,000^{1}$	Training Data $N = 5{,}000^{1}$	$\mathbf{p} ext{-}\mathbf{value}^2$
Age	60.0 (57.0, 63.0)	60.0 (57.0, 63.0)	60.0 (57.0, 63.0)	0.9
Gender				0.7
Female	3,082 (51%)	509 (51%)	2,573 (51%)	
Male	2,918 (49%)	491 (49%)	2,427 (49%)	
Race				0.6
Asian	333 (5.6%)	55 (5.5%)	278 (5.6%)	
Black	1,235 (21%)	199 (20%)	1,036 (21%)	
Hispanic	548 (9.1%)	83 (8.3%)	465 (9.3%)	
White	3,884 (65%)	663 (66%)	3,221 (64%)	
Smoking				0.8
Current	589 (9.8%)	103 (10%)	486 (9.7%)	
Former	1,800 (30%)	296 (30%)	1,504 (30%)	
Never	3,611 (60%)	601 (60%)	3,010 (60%)	
Height (cm)	170.1 (166.1, 174.2)	170.2 (166.1, 174.2)	170.1 (166.1, 174.3)	0.7
Weight (kg)	80 (75, 85)	80 (75, 84)	80 (75, 85)	0.8
BMI	27.60 (25.80, 29.50)	27.60 (25.80, 29.60)	27.60 (25.80, 29.50)	0.9
Diabetes	929 (15%)	157 (16%)	772 (15%)	0.8
Hypertension	2,754 (46%)	456 (46%)	2,298 (46%)	0.8
Systolic Blood Pressure (mmHg)	130 (124, 135)	130 (124, 135)	130 (124, 135)	0.3
LDL Cholesterol (mg/dL)	110 (96, 124)	112 (96, 124)	110 (96, 124)	0.4
Time Since Vaccinated (days)	116 (82, 152)	171 (140, 205)	106 (76, 138)	< 0.001
Log-Transformed Antibody Level	10.06 (9.65, 10.45)	9.93 (9.50, 10.32)	10.09 (9.68, 10.48)	< 0.001

¹ Median (Q1, Q3); n (%)

Histograms of Differing Variables by Training and Test Set

```
# Antibody level
plot_sets <- dat %>%
  ggplot(aes(x = log_antibody,
             fill = set,
             color = set)) +
  geom_density(alpha = 0.3, linewidth = 1) +
  labs(x = "Log-Transformed Antibody Level",
       y = "Density",
       title = "Figure 1: Distribution of Log-Transformed Antibody Level, by Data Set") +
  theme_minimal()
# Time since vaccination (days)
plot_days <- dat %>%
  ggplot(aes(x = days_vaccinated,
            fill = set,
            color = set)) +
  geom_density(alpha = 0.3, linewidth = 1) +
  labs(x = "Time Since Vaccinated (days)",
       y = "Density",
       title = "Figure 2: Distribution of Days Since Vaccination, by Data Set") +
  theme minimal()
plot_sets
```

²Wilcoxon rank sum test; Pearson's Chi-squared test

Figure 1: Distribution of Log-Transformed Antibody Level, by Data Set

Figure 2: Distribution of Days Since Vaccination, by Data Set

Plots of Log-Transformed Antibody Level, by Categorical Variables

Figure 3: Distribution of Log-Transformed Antibody Level, by Gender


```
strip_markdown <- function(x) {gsub("\\*\\*", "", x)}

dat %>% select(gender, log_antibody) %>%
   tbl_summary(by = gender) %>% add_p() %>%
   modify_caption("Log-Transformed Antibody Level, by Gender") %>%
   as_kable() %>%
   footnote(general_title = "", general = "Median (Q1, Q3), Wilcoxon Rank Sum Test") %>%
   strip_markdown()
```

Table 2: Log-Transformed Antibody Level, by Gender

Characteristic	Female $N = 3,082$	$\mathrm{Male\ N} = 2{,}918$	p-value
log_antibody	$10.20\ (9.79,\ 10.58)$	9.93 (9.51, 10.30)	< 0.001

Median (Q1, Q3), Wilcoxon Rank Sum Test

Figure 4: Distribution of Log-Transformed Antibody Level, by Race

Table 3: Log-Transformed Antibody Level, by Race

Characteristic	Asian $N = 333$	Black $N = 1,235$	Hispanic $N = 548$	White $N = 3,884$	p-value
log_antibody	10.06 (9.62, 10.44)	10.08 (9.65, 10.44)	10.03 (9.61, 10.42)	10.06 (9.65, 10.46)	0.4

Median (Q1, Q3), Kruskal-Wallis Rank Sum Test

Figure 5: Distribution of Log-Transformed Antibody Level, by Smoking

Table 4: Log-Transformed Antibody Level, by Smoking Status

Characteristic	Current $N = 589$	Former $N = 1,800$	Never $N = 3,611$	p-value
log_antibody	9.91 (9.46, 10.28)	10.10 (9.66, 10.48)	10.07 (9.68, 10.46)	< 0.001

Median (Q1, Q3), Kruskal-Wallis Rank Sum Test

Correlation Matrix of Numerical Variables

```
cor matrix <- dat %>%
  select(age, height, weight, bmi, sbp, ldl, days_vaccinated, log_antibody) %>%
  rename("Age" = age,
         "Height" = height,
         "Weight" = weight,
         "BMI" = bmi,
         "SBP" = sbp,
         "LDL" = 1d1,
         "Days Vaccinated" = days_vaccinated,
         "Log(Antibody)" = log_antibody) %>%
  cor()
cor_plot <- corrplot(cor_matrix,</pre>
                     main = "Figure 6: Correlation Matrix of Numerical Variables",
                     mar=c(0,0,1,0), cex.main = 1,
                     method = "color",
                     addCoef.col = "black",
                     tl.col = "black",
                     number.cex = 0.8,
                     tl.srt = 45,
                     order = 'original',
                     diag = F)
```


Plots of Log-Transformed Antibody Level vs. Selected Numerical Variables

```
# Antibody level vs. BMI
plot_bmi <- dat %>% ggplot(aes(x = bmi, y = log_antibody, fill = set, color = set)) +
  geom_point(alpha = 0.3, size = 2) +
  geom_smooth(method = "lm") +
  labs(y = "Log-Transformed Antibody Level", x = "BMI",
       title = "Figure 7: Log-Transformed Antibody Level vs. BMI") +
  theme minimal()
# Antibody level vs. Weight
plot_weight <- dat %>%
  ggplot(aes(x = weight, y = log_antibody, fill = set, color = set)) +
  geom_point(alpha = 0.3, size = 2) +
  geom smooth(method = "lm") +
  labs(y = "Log-Transformed Antibody Level", x = "Weight",
       title = "Figure 8: Log-Transformed Antibody Level vs. Weight") +
  theme minimal()
# Antibody level vs. Age
plot_age <- dat %>% ggplot(aes(x = age, y = log_antibody, fill = set, color = set)) +
  geom_point(alpha = 0.3, size = 2) + geom_smooth(method = "lm") +
  labs(y = "Log-Transformed Antibody Level", x = "Age",
       title = "Figure 9: Log-Transformed Antibody Level vs. Age") +
  theme_minimal()
plot_bmi
```


Figure 8: Log-Transformed Antibody Level vs. Weight

plot_age

Figure 9: Log-Transformed Antibody Level vs. Age

Model Selection and Training

Since the response variable (log_antibody) is continuous, this project will consider the following models:

- Multiple Linear Regression (MLR) as a baseline.
- LASSO Regression to improve predictive performance by selecting important predictors.
- MARS model allow remain in regression but also capture nonlinear effects

After comparing model performance, the best model will be based on cross-validation results.

Data Pre-processing

```
# Converting categorical variables into factors
dat1 <- dat1 %>%
  mutate(
    gender = factor(gender, levels = c(0, 1), labels = c("Female", "Male")),
   race = factor(race, levels = c(1, 2, 3, 4), labels = c("White", "Asian", "Black", "Hispanic")),
   smoking = factor(smoking, levels = c(0, 1, 2), labels = c("Never", "Former", "Current")),
   diabetes = factor(diabetes),
   hypertension = factor(hypertension)
dat2 <- dat2 %>%
  mutate(
   gender = factor(gender, levels = c(0, 1), labels = c("Female", "Male")),
   race = factor(race, levels = c(1, 2, 3, 4), labels = c("White", "Asian", "Black", "Hispanic")),
   smoking = factor(smoking, levels = c(0, 1, 2), labels = c("Never", "Former", "Current")),
   diabetes = factor(diabetes),
   hypertension = factor(hypertension)
sum(is.na(dat1))
## [1] 0
sum(is.na(dat2))
## [1] 0
dat1 <- dat1 %>% select(-id)
dat2 <- dat2 %>% select(-id)
```

Training multiple linear regression model

```
mlr_model <- lm(log_antibody ~ ., data = dat1)
summary(mlr_model)

##
## Call:
## lm(formula = log_antibody ~ ., data = dat1)
##
## Residuals:
## Min    1Q Median    3Q Max
## -2.14396 -0.35840    0.02944    0.37802    1.65090
##
## Coefficients:</pre>
```

```
##
                  Estimate Std. Error t value Pr(>|t|)
## (Intercept) 26.6751961 2.3149812 11.523 < 2e-16 ***
## age
                -0.0205979 0.0019385 -10.626 < 2e-16 ***
## genderMale -0.2974929 0.0155977 -19.073 < 2e-16 ***
## raceAsian -0.0060422 0.0344613 -0.175 0.8608
## raceBlack -0.0075295 0.0196815 -0.383 0.7021
## raceHispanic -0.0417571 0.0273309 -1.528
                                             0.1266
## smokingFormer 0.0219907 0.0173992 1.264 0.2063
## smokingCurrent -0.1934834  0.0269576  -7.177  8.15e-13 ***
## height
           ## weight
                0.0859034 0.0143481 5.987 2.29e-09 ***
                ## bmi
## diabetes1
                 0.0112795 0.0215643 0.523 0.6010
## hypertension1 -0.0179106 0.0260931 -0.686 0.4925
                0.0015181 0.0017049 0.890 0.3733
## sbp
## ldl
                -0.0001645 0.0004028 -0.409
                                              0.6829
                -0.0003011 0.0001795 -1.677 0.0936 .
## time
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.05 '.' 0.1 ' ' 1
## Residual standard error: 0.5503 on 4984 degrees of freedom
## Multiple R-squared: 0.1513, Adjusted R-squared: 0.1488
## F-statistic: 59.25 on 15 and 4984 DF, p-value: < 2.2e-16
# Evaluating model performance on validation data
mlr_pred <- predict(mlr_model, newdata = dat2)</pre>
mlr_rmse <- sqrt(mean((mlr_pred - dat2$log_antibody)^2))</pre>
mlr_adj_r2 <- summary(mlr_model)$adj.r.squared</pre>
mlr_rmse
## [1] 0.568318
mlr_adj_r2
## [1] 0.1487817
```

Training LASSO regression model

Standardizing numerical variables for LASSO

```
num_vars <- c("age", "height", "weight", "bmi", "sbp", "ldl", "time") #only continuous variable
preprocess_params <- preProcess(dat1[, num_vars], method = c("center", "scale"))
dat1[, num_vars] <- predict(preprocess_params, dat1[, num_vars])
dat2[, num_vars] <- predict(preprocess_params, dat2[, num_vars])

# Preparing the data matrices for glmnet
x_train <- model.matrix(log_antibody ~ ., dat1)[, -1] # Removing the intercept
y_train <- dat1$log_antibody

x_valid <- model.matrix(log_antibody ~ ., dat2)[, -1]
y_valid <- dat2$log_antibody

set.seed(123)
lasso_model <- cv.glmnet(x_train, y_train, alpha = 1) # LASSO with cross validation
best_lambda <- lasso_model$lambda.min</pre>
```

```
lasso_final <- glmnet(x_train, y_train, alpha = 1, lambda = best_lambda) # final model is based on opti
# predicting with LASSO on validation data
lasso_pred <- predict(lasso_final, newx = x_valid)</pre>
lasso_rmse <- sqrt(mean((lasso_pred - y_valid)^2))</pre>
lasso rmse
## [1] 0.5683693
ss_total_lasso <- sum((y_valid - mean(y_valid))^2)
ss_res_lasso <- sum((lasso_pred - y_valid)^2)</pre>
r_squared_lasso <- 1 - ss_res_lasso / ss_total_lasso
n <- length(y_valid)</pre>
p <- length(coef(lasso_final)) - 1</pre>
lasso_adj_r2 \leftarrow 1 - ((1 - r_squared_lasso) * (n - 1) / (n - p - 1))
system.time(glmnet(x_train, y_train, alpha = 1, lambda = best_lambda))
##
      user system elapsed
           0.000 0.001
##
     0.002
Training MARS model
mars_model <- earth(log_antibody ~ ., data = dat1)</pre>
summary(mars_model)
## Call: earth(formula=log_antibody~., data=dat1)
##
##
                     coefficients
## (Intercept)
                      10.8474469
                       -0.2962905
## genderMale
## smokingCurrent
                       -0.2051269
## h(-0.215005-age)
                        0.0726888
## h(age- -0.215005) -0.1034029
## h(bmi- -1.46481)
                     -0.2327459
## h(0.0216075-bmi)
                       -0.1710074
## h(-1.19454-time)
                       -1.4557278
## h(time- -1.19454) -0.0978688
## Selected 9 of 10 terms, and 5 of 15 predictors
## Termination condition: RSq changed by less than 0.001 at 10 terms
## Importance: bmi, genderMale, time, age, smokingCurrent, raceAsian-unused, ...
## Number of terms at each degree of interaction: 1 8 (additive model)
## GCV 0.2787787
                    RSS 1384.431
                                     GRSq 0.2166152
                                                       RSq 0.2216218
# predicting with MARS on validation data
mars_pred <- predict(mars_model, newdata = dat2)</pre>
mars_rmse <- sqrt(mean((mars_pred - dat2$log_antibody)^2))</pre>
mars_rmse
```

[1] 0.5327718

• The MARS model achieves the lowest RMSE. Therefore MARS will be used as the preferred model for

predicting log_antibody. Although further fine-tuning and additional feature exploration could further enhance the model's predictive power.

MARS model tuning

```
tune_grid <- expand.grid(degree = 1:3, nprune = seq(5, 50, by = 5))
train_control <- trainControl(method = "cv", number = 10)</pre>
mars_tune <- train(log_antibody ~ ., data = dat1, method = "earth",</pre>
                   trControl = train_control, tuneGrid = tune_grid)
mars tune$bestTune
##
     nprune degree
## 2
         10
train_control <- trainControl(method = "cv", number = 10)</pre>
# Train the MARS model with best tuning parameters
mars_model_tune <- train(log_antibody ~ .,</pre>
                         data = dat1,
                         method = "earth",
                         trControl = train_control,
                         tuneGrid = data.frame(nprune = 10, degree = 1))
summary(mars_model_tune)
## Call: earth(x=matrix[5000,15], y=c(10.65,9.889,1...), keepxy=TRUE, degree=1,
##
               nprune=10)
##
                     coefficients
##
## (Intercept)
                      10.8474469
## genderMale
                       -0.2962905
## smokingCurrent
                       -0.2051269
## h(-0.215005-age)
                        0.0726888
## h(age- -0.215005) -0.1034029
## h(bmi- -1.46481)
                     -0.2327459
## h(0.0216075-bmi)
                       -0.1710074
## h(-1.19454-time)
                       -1.4557278
## h(time- -1.19454) -0.0978688
## Selected 9 of 10 terms, and 5 of 15 predictors (nprune=10)
## Termination condition: RSq changed by less than 0.001 at 10 terms
## Importance: bmi, genderMale, time, age, smokingCurrent, raceAsian-unused, ...
## Number of terms at each degree of interaction: 1 8 (additive model)
## GCV 0.2787787
                    RSS 1384.431
                                     GRSq 0.2166152
                                                       RSq 0.2216218
mars_tune_pred <- predict(mars_model_tune, newdata = dat2)</pre>
mars_tune_rmse <- sqrt(mean((mars_tune_pred - dat2$log_antibody)^2))</pre>
# Compute R-squared
ss_total_mars <- sum((dat2$log_antibody - mean(dat2$log_antibody))^2)
ss_res_mars <- sum((mars_tune_pred - dat2$log_antibody)^2)</pre>
r_squared_mars <- 1 - ss_res_mars / ss_total_mars
```

```
\# Get n and number of selected terms (p)
n <- nrow(dat2)</pre>
p <- length(mars_model_tune$finalModel$selected.terms)</pre>
# Adjusted R-squared for MARS
mars_adj_r2 <- 1 - ((1 - r_squared_mars) * (n - 1) / (n - p - 1))
# Print result
mars_adj_r2
## [1] 0.1689031
mars_tune_rmse
## [1] 0.5327718
plot(mars_model)
                                       log_antibody
                                                         earth(log...
                                                 Number of used predictors
                                                                         Cumulative Distribution
                 Model Selection
GRSq RSq
                                                        Proportion
                              selected model
                              GRSq
                              RSq
nbr preds
                                                                           0.5
        0
               2
                             6
                                   8
                                          10
                                                               0.0
                                                                                       1.0
                                                                                                  1.5
                 Number of terms
                                                                              abs(Residuals)
                                                                               Residual QQ
                    Residuals vs Fitted
   ^{\circ}
                                                                     Residual Quantiles
Residuals
                                                                        0
   0
   7
            9.0
                      9.5
                                10.0
                                           10.5
                                                                                     0
                                                                                         2
                                                                            Normal Quantiles
                           Fitted
```

plot(mars_model, which = 1)

Model Selection

Table: Model Performance on Independent Test Set (dat2)

Model	$\mathrm{RMSE}\downarrow$	Adjusted R-squared↑	Notes
Multiple Linear Regression (MLR)	0.568	0.149	Baseline model; assumes linear relationships
LASSO Regression	0.568	0.048	Performs variable selection via L1 regularization
MARS (Final, Tuned)	0.533	0.169	Best performance; captures non-linear effects

Results

```
# Summary table
model_perf <- tibble(</pre>
 Model = c("Multiple Linear Regression (MLR)",
            "LASSO Regression",
            "MARS (Final, Tuned)"),
 RMSE = c(mlr_rmse, lasso_rmse, mars_tune_rmse),
  `Adjusted R-squared` = c(mlr_adj_r2, lasso_adj_r2, mars_adj_r2),
 Notes = c("Baseline model; assumes linear relationships",
            "Performs variable selection via L1 regularization",
            "Best performance; captures non-linear effects")
)
model_perf %>%
 gt() %>%
  tab_header(
   title = "Table: Model Performance on Independent Test Set (dat2)"
  ) %>%
  cols_label(
   Model = "Model",
   RMSE = "RMSE ↓",
   `Adjusted R-squared` = "Adjusted R-squared1",
   Notes = "Notes"
 ) %>%
  fmt_number(columns = c(RMSE, `Adjusted R-squared`), decimals = 3) %>%
 tab_options(table.font.size = "small")
```