Succinctness of Cosafety Fragments of LTL via Combinatorial Proof Systems

Luca Geatti¹ Alessio Mansutti² Angelo Montanari¹

¹ University of Udine, Udine, Italy

² IMDEA Software Institute, Madrid, Spain

Linear-time Temporal Logics

LTL:

F(pLTL) – Eventually Past LTL:

Set of formulae of the form $F(\varphi)$ with φ only using past temporal operators.

F(pLTL): comparison with coSafety LTL

Expressive power:		Complexity	:
$F(\mathrm{pLTL})$ is equivalent to the cosafety fragment of LTL.		coSafety LTL	F(pLTL)
Cosafety language:	Realizability	2EXPTIME	EXPTIME
$\mathcal{L} = K \cdot \Sigma^{\omega} ext{ for some } K \subseteq \Sigma^*.$		without the Until/Since operators:	
"something good will eventually happen"	Realizability	EXPTIME	EXPTIME

F(pLTL): comparison with coSafety LTL

Expressive power:			Complexity	:
$F(\mathrm{pLTL})$ is equivalent to the cosafety fragment of LTL.	_		coSafety LTL	F(pLTL)
Cosafety language:		Realizability	2EXPTIME	EXPTIME
$\mathcal{L} = K \cdot \Sigma^{\omega} \; ext{for some} \; K \subseteq \Sigma^*.$		without the Until/Since operators:		
"something good will eventually happen"		Realizability	EXPTIME	EXPTIME

Question: What is the cost of translating coSafety LTL into F(pLTL)?

- In triply-exponential time [De Giacomo et al., IJCAl'21].
- \blacksquare and in time $2^{O(n)}$ when Until/Since are removed [Artale et al., KR'23].
- Before our work, only trivial lower bounds were known.

- In triply-exponential time [De Giacomo et al., IJCAI'21].
- \blacksquare and in time $2^{O(n)}$ when Until/Since are removed [Artale et al., KR'23].
- Before our work, only trivial lower bounds were known.

Theorem

There is a family of cosafety languages $(\mathcal{L}_n)_{n\geq 1}$ such that, for every $n\geq 1$,

- \mathcal{L}_n is expressible with a formula φ_n of LTL[F] having size polynomial in n. The formula φ_n is in negation normal from.
- Every formula of F(pLTL), without Since operator, expressing \mathcal{L}_n has size $2^{\Omega(n)}$.

- $ightharpoonup 2^{\Theta(n)}$
- In triply-exponential time [De Giacomo et al., IJCAI'21].
- and in time when Until/Since are removed [Artale et al., KR'23].
- Before our work, only trivial lower bounds were known.

Theorem

There is a family of cosafety languages $(\mathcal{L}_n)_{n\geq 1}$ such that, for every $n\geq 1$,

- \mathcal{L}_n is expressible with a formula φ_n of LTL[F] having size polynomial in n. The formula φ_n is in negation normal from.
- Every formula of F(pLTL), without Since operator, expressing \mathcal{L}_n has size $2^{\Omega(n)}$.

- $2^{\Theta(n)}$
- In triply-exponential time [De Giacomo et al., IJCAI'21].
- and in time when Until/Since are removed [Artale et al., KR'23].
- Before our work, only trivial lower bounds were known.

Theorem

There is a family of cosafety languages $(\mathcal{L}_n)_{n\geq 1}$ such that, for every $n\geq 1$,

- \mathcal{L}_n is expressible with a formula φ_n of F(pLTL[O]) having size polynomial in n. The formula φ_n is in negation normal from.
- **E**very formula of LTL, without Until operator, expressing \mathcal{L}_n has size $2^{\Omega(n)}$.

 $2^{\circ(n)}$

■ In triply-exponential time [De Giacomo et al., IJCAI'21].

Proof technique: combinatorial proof systems (1-player games).

No proofs of size < k for a property $P \implies P$ requires formulae of size $\ge k$.

Theorem

There is a family of cosafety languages $(\mathcal{L}_n)_{n\geq 1}$ such that, for every $n\geq 1$,

- \mathcal{L}_n is expressible with a formula φ_n of F(pLTL[O]) having size polynomial in n. The formula φ_n is in negation normal from.
- **E**very formula of LTL, without Until operator, expressing \mathcal{L}_n has size $2^{\Omega(n)}$.

LTL on finite traces, without the Until operator

Structure: non-empty finite words over a (possibly infinite) alphabet $\Sigma := 2^{\mathcal{AP}}$, where \mathcal{AP} is a set of atomic propositions.

Semantics: Let $w = w_0 \dots w_n$ be a finite word in Σ^+ . Then,

$$\begin{array}{llll} \boldsymbol{w} \models p & \iff & p \in w_0 \\ \boldsymbol{w} \models \neg p & \iff & p \not\in w_0 \\ \boldsymbol{w} \models \varphi \lor \psi & \iff & \boldsymbol{w} \models \varphi \text{ or } \boldsymbol{w} \models \psi \\ \boldsymbol{w} \models \varphi \land \psi & \iff & \boldsymbol{w} \models \varphi \text{ and } \boldsymbol{w} \models \psi \\ \boldsymbol{w} \models X\varphi & \iff & n \geq 1 \text{ and } w_1 \dots w_n \models \varphi \\ \boldsymbol{w} \models \widetilde{X}\varphi & \iff & n = 0 \text{ or } w_1 \dots w_n \models \varphi \\ \boldsymbol{w} \models F\varphi & \iff & w_j \dots w_n \models \varphi \text{ for some } j \in [0, n] \\ \boldsymbol{w} \models G\varphi & \iff & w_j \dots w_n \models \varphi \text{ for every } j \in [0, n] \end{array}$$

Lower bounds via combinatorial proof systems

Let $A, B \subseteq \Sigma^+$. We write $\langle A, B \rangle$ whenever A and B are separable, i.e., there is a formula φ (a separator) such that

- lacksquare $m{A} \models arphi$: for every $m{w} \in m{A}$, $m{w} \models arphi$, and
- lacksquare lacksquare

Lower bounds via combinatorial proof systems

Let $A, B \subseteq \Sigma^+$. We write $\langle A, B \rangle$ whenever A and B are separable, i.e., there is a formula φ (a separator) such that

- lacksquare $m{A} \models arphi$: for every $m{w} \in m{A}$, $m{w} \models arphi$, and
- $\blacksquare \ B \! \perp \!\!\! \perp \varphi$: for every $m{w} \in m{B}$, $m{w} \not\models \varphi$.

Combinatorial proof system: Set of proof rules to establish whether $\langle A, B \rangle$.

$$\frac{\text{AXIOM}}{\text{RULE2}} \frac{\overline{\langle \boldsymbol{A}_1, \boldsymbol{B}_1 \rangle}}{\overline{\langle \boldsymbol{A}_2, \boldsymbol{B}_2 \rangle}} \frac{\overline{\langle \boldsymbol{A}_3, \boldsymbol{B}_3 \rangle}}{\overline{\langle \boldsymbol{A}, \boldsymbol{B} \rangle}} \text{AXIOM}$$

Desired property (for lower bounds): If there is a separator for A and B having size k, then $\langle A, B \rangle$ has a proof of size k. (in fact, we get an if-and-only-if)

Consider the alphabet $2^{\{p\}} = \{\emptyset, \{p\}\}$. For simplicity, let $a := \{p\}$ and $b := \emptyset$.

 $\langle \{abaa, aaaa\}, \{aaab\} \rangle$

$$OR = \frac{\langle \{abaa\}, \{aaab\}\rangle}{\langle \{abaa, aaaa\}, \{aaab\}\rangle}$$

OR
$$\frac{\langle m{A}_1, m{B}
angle \quad \langle m{A}_2, m{B}
angle}{\langle m{A}_1 \cup m{A}_2, m{B}
angle}$$

Consider the alphabet $2^{\{p\}} = \{\varnothing, \{p\}\}$. For simplicity, let $a := \{p\}$ and $b := \varnothing$.

$$\frac{\langle \{baa\}, \{aab\} \rangle}{\langle \{abaa\}, \{aaab\} \rangle} \frac{\langle \{aaaa\}, \{aaab\} \rangle}{\langle \{abaa, aaaa\}, \{aaab\} \rangle}$$

NEXT
$$\frac{\langle \boldsymbol{A}^X, \boldsymbol{B}^X \rangle \qquad \boldsymbol{A} \subseteq \Sigma \cdot \Sigma^+}{\langle \boldsymbol{A}, \boldsymbol{B} \rangle}$$

$$\boldsymbol{A}^X \coloneqq \{ \boldsymbol{w} \in \Sigma^+ : w_0 \cdot \boldsymbol{w} \in \boldsymbol{A} \text{ for some } w_0 \in \Sigma \}$$

$$\frac{\text{Atomic}}{\text{Next}} \frac{\{baa\} \models \neg p \quad \{aab\} \perp \perp \neg p}{\langle \{baa\}, \{aab\} \rangle} \\
\text{Or} \frac{\langle \{baa\}, \{aaab\} \rangle}{\langle \{abaa\}, \{aaab\} \rangle} \langle \{abaa\}, \{aaab\} \rangle}{\langle \{abaa, aaaa\}, \{aaab\} \rangle}$$

Atomic
$$\frac{A \models \alpha \quad B \perp \!\!\! \perp \alpha}{\langle A, B \rangle} \alpha$$
 literal

ATOMIC
$$\frac{\{baa\} \models \neg p \quad \{aab\} \perp \neg p}{\langle \{baa\}, \{aab\} \rangle} \qquad \frac{\langle \{aaaa, aaa, aa, aa\}, \{b\} \rangle}{\langle \{aaaa\}, \{aaab\} \rangle} \qquad \text{Globally}$$

$$OR \qquad \frac{\langle \{abaa\}, \{aaab\} \rangle}{\langle \{abaa, aaaa\}, \{aaab\} \rangle} \qquad OR$$

GLOBALLY
$$\frac{\langle A^G, B^f \rangle}{\langle A, B \rangle} f \in F_B$$

$$F_{m{B}}$$
 is the set of all functions $f\colon \{m{w}\in B\} o \{m{w}': m{w}' ext{ suffix of } m{w}\}$ $m{B}^f \coloneqq \{f(m{w}): m{w}\in m{B}\}$ $m{A}^G \coloneqq \{m{w}': m{w}' ext{ suffix of some } m{w}\in m{A}\}$

Atomic
$$\frac{A \models \alpha \quad B \perp \!\!\! \perp \alpha}{\langle A, B \rangle} \alpha$$
 literal

Consider the alphabet $2^{\{p\}} = \{\emptyset, \{p\}\}$. For simplicity, let $a := \{p\}$ and $b := \emptyset$.

 $\{abaa, aaaa\}$ and $\{aaab\}$ are separated by the formula $(X\neg p)\vee (Gp)$

The combinatorial proof system

Theorem

Consider $A, B \subseteq \Sigma^+$. The term $\langle A, B \rangle$ has a proof of size k if and only if A and B are separated by a formula φ of LTL without the Until operator satisfying $\operatorname{size}(\varphi) = k$.

The combinatorial proof system

$$\text{Atomic} \ \frac{\pmb{A} \models \alpha \quad \pmb{B} \perp \!\!\! \perp \alpha}{\langle \pmb{A}, \pmb{B} \rangle} \ \alpha \ \text{literal} \qquad \text{Or} \ \frac{\langle \pmb{A}_1, \pmb{B} \rangle \quad \langle \pmb{A}_2, \pmb{B} \rangle}{\langle \pmb{A}_1 \cup \pmb{A}_2, \pmb{B} \rangle} \qquad \text{And} \ \frac{\langle \pmb{A}, \pmb{B}_1 \rangle \quad \langle \pmb{A}, \pmb{B}_2 \rangle}{\langle \pmb{A}, \pmb{B}_1 \cup \pmb{B}_2 \rangle}$$

/AX RX $A \subset \nabla \nabla^{+}$ /AX RX $R \subset \nabla \nabla^{+}$

Observation: For propositional logic, the proof system with rules Atomic , OR and And correspond to the communication games by Karchmer and Wigderson.

- originally introduced for both (i) size lower bounds of formulae and (ii) depth of Boolean circuits (STOC'88)
- still actively studied in circuit complexity (see the KRW conjecture).

Consider $A, B \subseteq \Sigma^+$. The term $\langle A, B \rangle$ has a proof of size k if and only if A and B are separated by a formula φ of LTL without the Until operator satisfying $\operatorname{size}(\varphi) = k$.

Using the combinatorial proof system

Goal

Find a family of formulae $\{\varphi_n\}_{n\geq 1}$ in F(pLTL[O]) and a family of pairs of sets of words $\{(\boldsymbol{A}_n,\boldsymbol{B}_n)\}_{n\geq 1}$ such that, for every $n\geq 1$,

- \blacksquare φ_n has size polynomial in n,
- $lacksquare A_n \subseteq \mathcal{L}_n$ and $B_n \cap \mathcal{L}_n = \varnothing$, and $\langle A_n, B_n \rangle$ requires a proof of size $2^{\Omega(n)}$.

Ad Break: LTL formula learning tools are great!

Finding simple definitions for φ_n and $(\boldsymbol{A}_n, \boldsymbol{B}_n)$ was not a fun endeavour.

Tools for LTL formula learning helped us a lot!

Ad Break: LTL formula learning tools are great!

Finding simple definitions for φ_n and $(\boldsymbol{A}_n, \boldsymbol{B}_n)$ was not a fun endeavour.

Tools for LTL formula learning helped us a lot!

Samples2LTL (Neider and Gavran): Given in input two finite sets A and B of words, finds a (minimal) separator.

```
 \frac{\text{ATOMIC}}{\text{NEXT}} \underbrace{ \frac{\{baa\} \models \neg p \quad \{aab\} \perp \neg p}{\langle \{baa\}, \{aab\} \rangle} }_{\text{OR}} \underbrace{ \frac{\{aaaa, aaa, aa, aa\} \models p \quad \{b\} \perp p}{\langle \{aaaa\}, \{aaab\} \rangle} }_{\{\{abaa, aaaa\}, \{aaab\} \rangle} \underbrace{ \frac{\{aaaa, aaa, aa, a, a\}, \{b\} \rangle}{\langle \{aaaa\}, \{aaab\} \rangle}}_{\text{ATOMIC}}
```

 $\{abaa, aaaa\}$ and $\{aaab\}$ are separated by $(X \neg p) \lor (Gp)$, but also by XXXp

Learn

Inferred LTL Formulas

```
• X((Fb)>b)
• X(X(Xa))
• (Fb)>X(b)
• (F(Xb))>X(b)
• X(a->(X(Xa)))
```

Using the combinatorial proof system

Goal

Find a family of formulae $\{\varphi_n\}_{n\geq 1}$ in F(pLTL[O]) and a family of pairs of sets of words $\{(\boldsymbol{A}_n,\boldsymbol{B}_n)\}_{n\geq 1}$ such that, for every $n\geq 1$,

- lacksquare φ_n has size polynomial in n,
- $lacksquare A_n \subseteq \mathcal{L}_n$ and $B_n \cap \mathcal{L}_n = \varnothing$, and $\langle A_n, B_n
 angle$ requires a proof of size $2^{\Omega(n)}$.

Using the combinatorial proof system

Goal

Find a family of formulae $\{\varphi_n\}_{n\geq 1}$ in F(pLTL[O]) and a family of pairs of sets of words $\{(\boldsymbol{A}_n,\boldsymbol{B}_n)\}_{n\geq 1}$ such that, for every $n\geq 1$,

- $\blacksquare \varphi_n$ has size polynomial in n,
- $lacksquare A_n \subseteq \mathcal{L}_n$ and $B_n \cap \mathcal{L}_n = \varnothing$, and $\langle A_n, B_n
 angle$ requires a proof of size $2^{\Omega(n)}$.

Given $n \geq 1$, we consider atomic propositions $\widetilde{p}, \widetilde{q}, p_1, \dots, p_n, q_1, \dots, q_n$. Then,

$$\varphi_n := F\left(\widetilde{q} \wedge \bigwedge_{i=1}^n \left(\left(q_i \wedge O(\widetilde{p} \wedge p_i) \right) \vee \left(\neg q_i \wedge O(\widetilde{p} \wedge \neg p_i) \right) \right) \right)$$

\widetilde{p}	\widetilde{p}	\widetilde{p}	\widetilde{q}
$p_1: \mathbf{x}$	Х	<u> </u>	$\checkmark(q_1)$
$p_2: \checkmark$	<u>x</u>	/	$m{\chi}\left(q_{2} ight)$
$p_3: \underline{\checkmark}$	<u> </u>	X	$\checkmark (q_3)$

Finding \boldsymbol{A}_n and \boldsymbol{B}_n

$$\varphi_n := F\left(\widetilde{q} \wedge \bigwedge_{i=1}^n \left(\left(q_i \wedge O(\widetilde{p} \wedge p_i) \right) \vee \left(\neg q_i \wedge O(\widetilde{p} \wedge \neg p_i) \right) \right) \right)$$

- Let $\mathcal E$ be a word enumerating $Q\coloneqq\{S\subseteq\{\widetilde q,q_1,\ldots,q_n\}:\widetilde q\in S\}$ (for technical reason, in $\mathcal E$ after every element of Q we add exponentially many \varnothing)
- Let $\mathcal{E}|_{- au}$ be the word obtained from \mathcal{E} by removing $au \in Q$
- Let $\overline{\tau} \subseteq \{\widetilde{p}, p_1, \dots, p_n\}$ be the set obtained from $\tau \in Q$ by "replacing q with p".

Finding \boldsymbol{A}_n and \boldsymbol{B}_n

$$\varphi_n \coloneqq F\left(\widetilde{q} \wedge \bigwedge\nolimits_{i=1}^n \left(\left(q_i \wedge O(\widetilde{p} \wedge p_i)\right) \vee \left(\neg q_i \wedge O(\widetilde{p} \wedge \neg p_i)\right)\right)\right)$$

- Let $\mathcal E$ be a word enumerating $Q\coloneqq\{S\subseteq\{\widetilde q,q_1,\ldots,q_n\}:\widetilde q\in S\}$ (for technical reason, in $\mathcal E$ after every element of Q we add exponentially many \varnothing)
- lacksquare Let $\mathcal{E}|_{- au}$ be the word obtained from \mathcal{E} by removing $au\in Q$
- Let $\overline{\tau} \subseteq \{\widetilde{p}, p_1, \dots, p_n\}$ be the set obtained from $\tau \in Q$ by "replacing q with p".

$$\boldsymbol{A}_n \coloneqq \{ \varnothing^j \cdot \overline{\tau} \cdot \mathcal{E} : j \in \mathbb{N}, \tau \in T \} \qquad \boldsymbol{B}_n \coloneqq \{ \varnothing^j \cdot \overline{\tau} \cdot (\mathcal{E}|_{-\tau}) : j \in \mathbb{N}, \tau \in T \}$$

Proposition

$$A_n\subseteq \mathcal{L}_n$$
 and $B_n\cap \mathcal{L}_n=arnothing$, and $\langle A_n,B_n
angle$ requires a proof of size $2^{\Omega(n)}$.

Conclusion

- translating \cos afety LTL into F(pLTL), without Until/Since, requires $2^{\Theta(n)}$ time.
- The automata technique used by Markey (Bull. EATCS, 2003) to show that pLTL can be more succinct than LTL cannot be used to show the $2^{\Omega(n)}$ lower bound.

Conclusion

- \blacksquare translating \cos afety LTL into F(pLTL), without Until/Since, requires $2^{\Theta(n)}$ time.
- The automata technique used by Markey (Bull. EATCS, 2003) to show that pLTL can be more succinct than LTL cannot be used to show the $2^{\Omega(n)}$ lower bound.

Combinatorial proof system for LTL:

- extension of Karchmer and Wigderson's communication games to LTL
- connected to recent games for bounding the number of quantifiers in first-order logic (see LICS'23 workshop Combinatorial Games in Finite Model Theory)
- LTL formula learning tools are very useful for exploring lower bounds.