E E PYLIII

Course: Electrodynamics Minor-2

Total marks=20

Time=1 hour

Answer all the questions:

1. Evaluate the following integrals

(a)
$$\int_{-\infty}^{\infty} \ln(x+3)\delta(x+2) dx$$

(b)
$$\int_0^5 \cos x \delta(x-\pi) dx$$

(c)
$$\int_{0}^{3} x^{3} \delta(x+1) dx$$

(d)
$$\int_{-\infty}^{\infty} \ln(x+3)\delta(x+2)dx$$

(e)
$$\int_{-\infty}^{a} \delta(x-b) dx$$

5x1=5

2. If \vec{B} is uniform, show that $\vec{A}(r) = \frac{1}{2}\vec{r} \times \vec{B}$. What current density would produce the vector potential $\vec{A}(r) = k\hat{\phi}$.

3+2=5

5

3. Show that $\vec{E}(\vec{r},t) = -\frac{1}{4\pi\epsilon_0} \frac{q}{r^2} \theta(vt - r)\hat{r}; \vec{B}(\vec{r},t) = 0$ satisfy Maxwell's equation and

determine ρ and \vec{J} ; where $\theta(x) = \{ \begin{cases} 1, & x > 0 \\ 0, & x \le 0 \end{cases}$.

4. Find the fields and the charge and current distribution corresponding to V(r,t) = 0; $A(r,t) = -\frac{1}{4\pi\epsilon_0} \frac{qt}{r^2} \hat{r}$. Use the gauge function $\lambda = -\frac{1}{4\pi\epsilon_0} \frac{qt}{r}$ to transform

the potentials and comment on the results. Find the Liénard-wiechert potential of a point charge moving with constant velocity.

2+3=5