

ME6206

Low power consumption, Low ESR Cap.Compatible ME6206 Series

General Description

ME6206 series are highly precise, low power consumption, high voltage, positive voltage regulators manufactured using CMOS and laser trimming technologies .The series provides large currents with a significantly small dropout voltage.

The series is compatible with low ESR ceramic capacitors. The current limiter's foldback circuit also operates as a short protect for the output current limiter and the output pin.

Typical Application

- Mobile phones
- communication equipment
- Portable games
- Cameras, Video systems
- Reference voltage sources
- Battery powered equipment

Typical Application Circuit

Features

- Maximum Output Current: 300mA(V_{IN}=4.3V,V_{OUT}=3.3V)
- Dropout Voltage: 200mV@ I_{OUT} =100mA
- Input Voltage Range: up to 6.0V
- Highly Accuracy: ±2%
- Low Power Consumption: 8uA (TYP.)
- Excellent Input Stability
- Be available to regulator and reference voltage

Package

• 3-pin SOT89-3, SOT23-3, TO92, SOT23

V19 <u>www.microne.com.cn</u> Page 1 of 16

Selection Guide

product series	Output voltage	Supply Current	Package
ME6206A15PG	1.5V	8uA	SOT89-3
ME6206A15M3G	1.5V	8uA	SOT23-3
ME6206A15XG	1.5V	8uA	SOT23
ME6206A33TG	3.3V	8uA	TO92
ME6206A33M3G	3.3V	8uA	SOT23-3
ME6206K33M3G	3.3V	180uA	SOT23-3

NOTE: At present ,there are ten kinds of voltage value:

 $1.5V_{\times}$ $1.8V_{\times}$ $2.0V_{\times}$ $2.1V_{\times}$ $2.5V_{\times}$ $2.7V_{\times}$ $2.8V_{\times}$ $3.0V_{\times}$ $3.3V_{\times}$ $3.6V_{\circ}$ If you need other voltage and package, please contact our sales staff $_{\circ}$

V19 <u>www.microne.com.cn</u> Page 2 of 16

Pin Configuration

Pin Assignment

ME6206Axx/ ME6206Kxx

		Pin				
M3	Р	P1	Х	Т	Name	Function
SOT23-3	SOT89-3	SOT89-3	SOT23	TO-92		
1	1	2	1	1	VSS	Ground
2	3	1	2	3	VOUT	Output
3	2	3	3	2	VIN	Input

The difference of printing on the chip between P and P1 is : P: 6206A , P1: 6206A1

Block Diagram

V19 <u>www.microne.com.cn</u> Page 3 of 16

Absolute Maximum Ratings

Parame	Parameter		Description	Units
Input Volt	age	V _{IN}	6.5	V
Output Cu	rrent	l _{out}	500	mA
Output Vo	ltage	V_{out}	Vss-0.3 ~ Vout+0.3	V
	SOT23-3	Pd	300	mW
Dower Dissipation	SOT89-3	Pd	500	mW
Power Dissipation	SOT23	Pd	300	mW
	TO-92	Pd	500	mW
Operating Ambient Temperature		T _{Opr}	-25 ~ +125	${\mathbb C}$
Storage Temp	perature	T _{stg}	-40 ~ +125	${\mathbb C}$

ME6206A15

(VIN=Vout+1V,Cin=Cout=1uF,Ta=25°C Unless otherwise stated)

PARAMETER	SYMBOL	CONDITION	MIX	TYP	MAX	UNIT
Output Voltage	V _{OUT} (E) (Note 2)	I _{OUT} =10mA, V _{IN} =Vout+1V	X 0.98	V _{OUT} (T) (Note 1)	X 1.02	V
Input Voltage	V_{IN}				6	V
Maximum Output Current	I _{OUT} (max)	V _{IN} =Vout+1V		100	120	mA
Load Regulation	ΔV_OUT	V _{IN} =Vout+1V, 1mA≤I _{OUT} ≤80mA		10	20	mV
Dropout Voltage	V_{dif1}	I _{OUT} =20mA		180	200	mV
(Note 3)	V_{dif2}	I _{OUT} =50mA		360	380	mV
Supply Current	I _{SS}	V _{IN} =Vout+1V		7	15	μΑ
Line Regulations	$\frac{\Delta V_{OUT}}{\Delta V_{IN} \cdot V_{OUT}}$	I _{OUT} =10mA Vout+1V ≤V _{IN} ≤5V		0.1	0.2	%/V
Power Supply Ripple Rejection Ratio	PSRR	Vin= [Vout+1]V +1Vp-pAC I _{OUT} =10mA,f=1kHz		45	47	dB
Short Circuit Current	I _{short}	Vin=Vout(T)+1.5V Vout=Vss		20	50	mA
Over Current Protection	l _{limit}			300		mA

ME6206A18

(VIN=Vout+1V,Cin=Cout=1uF,Ta=25°C Unless otherwise stated)

PARAMETER	SYMBOL	CONDITION	MIX	TYP	MAX	UNIT
Output Voltage	V _{OUT} (E) (Note 2)	I _{OUT} =10mA, V _{IN} =Vout+1V	X 0.98	V _{OUT} (T) (Note 1)	X 1.02	V
Input Voltage	V_{IN}				6	V
Maximum Output Current	I _{OUT} (max)	V _{IN} =Vout+1V		120	150	mA
Load Regulation	ΔV_OUT	V _{IN} =Vout+1V, 1mA≤I _{OUT} ≤80mA		12	27	mV
Dropout Voltage	$V_{\rm dif1}$	I _{OUT} =20mA		180	200	mV
(Note 3)	V _{dif2}	I _{OUT} =50mA		360	380	mV
Supply Current	I _{SS}	V _{IN} =Vout+1V		7	15	μA
Line Regulations	$\frac{\Delta V_{OUT}}{\Delta V_{IN} \cdot V_{OUT}}$	I _{OUT} =10mA Vout+1V ≤V _{IN} ≤5V		0.1	0.2	%/V
Power Supply Ripple Rejection Ratio	PSRR	Vin= [Vout+1]V +1Vp-pAC I _{OUT} =10mA,f=1kHz		45	47	dB
Short Circuit Current	I _{short}	Vin=Vout(T)+1.5V Vout=Vss		25	50	mA
Over Current Protection	I _{limit}			400		mA

ME6206A21

(VIN=Vout+1V,Cin=Cout=1uF,Ta=25°C Unless otherwise stated)

PARAMETER	SYMBOL	CONDITION	MIX	TYP	MAX	UNIT
Output Voltage	V _{OUT} (E) (Note 2)	I _{OUT} =10mA, V _{IN} =Vout+1V	X 0.98	V _{OUT} (T) (Note 1)	X 1.02	V
Input Voltage	V_{IN}				6	V
Maximum Output Current	I _{OUT} (max)	V _{IN} =Vout+1V		200	250	mA
Load Regulation	ΔV_{OUT}	V _{IN} =Vout+1V, 1mA≤I _{OUT} ≤80mA		10	20	mV
Dropout Voltage	V_{dif1}	I _{OUT} =50mA		100	130	mV
(Note 3)	V_{dif2}	I _{OUT} =100mA		200	230	mV
Supply Current	I _{SS}	V _{IN} =Vout+1V		7	15	μA
Line Regulations	$\frac{\Delta V_{OUT}}{\Delta V_{IN} \cdot V_{OUT}}$	I _{OUT} =10mA Vout+1V ≤V _{IN} ≤5V		0.1	0.2	%/V
Power Supply Ripple Rejection Ratio	PSRR	Vin= [Vout+1]V +1Vp-pAC I _{OUT} =10mA,f=1kHz		45	47	dB
Short Circuit Current	I _{short}	Vin=Vout(T)+1.5V Vout=Vss		20	50	mA
Over Current Protection	l _{limit}			450		mA

www.microne.com.cn

ME6206A28

(VIN=Vout+1V,Cin=Cout=1uF,Ta=25°C Unless otherwise stated)

PARAMETER	SYMBOL	CONDITION	MIX	TYP	MAX	UNIT
Output Voltage	V _{OUT} (E) (Note 2)	I _{OUT} =10mA, V _{IN} =Vout+1V	X 0.98	V _{OUT} (T) (Note 1)	X 1.02	٧
Input Voltage	V_{IN}				6	V
Maximum Output Current	I _{OUT} (max)	V _{IN} =Vout+1V		300	350	mA
Load Regulation	ΔV_OUT	V _{IN} =Vout+1V 1mA≤I _{OUT} ≤100mA		14	28	mV
Dropout Voltage	V_{dif1}	I _{OUT} =80mA		180	200	mV
(Note 3)	V_{dif2}	I _{OUT} =200mA		380	400	mV
Supply Current	I _{SS}	V _{IN} =Vout+1V		8	15	μΑ
Line Regulations	$\frac{\Delta V_{OUT}}{\Delta V_{IN} \cdot V_{OUT}}$	I _{OUT} =10mA Vout+1V ≤V _{IN} ≤6V		0.03	0.2	%/V
Power Supply Ripple Rejection Ratio	PSRR	Vin= [Vout+1]V +1Vp-pAC I _{OUT} =10mA,f=1kHz		50	52	dB
Short Circuit Current	I _{short}	Vin=Vout(T)+1.5V Vout=Vss		30	60	mA
Over Current Protection	l _{limit}			500		mA

ME6206A30

(VIN=Vout+1V.Cin=Cout=1uF.Ta=25°C Unless otherwise stated)

PARAMETER	SYMBOL	CONDITION	MIX	TYP	MAX	UNIT
Output Voltage	V _{OUT} (E) (Note 2)	I _{OUT} =10mA, V _{IN} =Vout+1V	X 0.98	V _{OUT} (T) (Note 1)	X 1.02	V
Input Voltage	V_{IN}				6	V
Maximum Output Current	I _{OUT} (max)	V _{IN} =Vout+1V		300	350	mA
Load Regulation	ΔV_OUT	V _{IN} =Vout+1V 1mA≤I _{OUT} ≤100mA		14	28	mV
Dropout Voltage	V_{dif1}	I _{OUT} =80mA		180		mV
(Note 3)	V _{dif2}	I _{OUT} =200mA		380		mV
Supply Current	I _{SS}	V _{IN} =Vout+1V		8	15	μA
Line Regulations	$\frac{\Delta V_{OUT}}{\Delta V_{IN} \cdot V_{OUT}}$	I _{OUT} =10mA Vout+1V ≤V _{IN} ≤6V		0.03	0.2	%/V
Power Supply Ripple Rejection Ratio	PSRR	Vin= [Vout+1]V +1Vp-pAC I _{OUT} =10mA,f=1kHz		50	52	dB
Short Circuit Current	I _{short}	Vin=Vout(T)+1.5V Vout=Vss		30	60	mA
Over Current Protection	l _{limit}			500		mA

ME6206A33

(VIN=Vout+1V,Cin=Cout=1uF,Ta=25°C Unless otherwise stated)

PARAMETER	SYMBOL	CONDITION	MIX	TYP	MAX	UNIT
Output Voltage	V _{OUT} (E) (Note 2)	I _{OUT} =10mA, V _{IN} =Vout+1V	X 0.98	V _{OUT} (T) (Note 1)	X 1.02	V
Input Voltage	V _{IN}				6	V
Maximum Output Current	I _{OUT} (max)	V _{IN} =Vout+1V		300	350	mA
Load Regulation	ΔV_OUT	V _{IN} =Vout+1V 1mA≤I _{OUT} ≤100mA		14	28	mV
Dropout Voltage	V_{dif1}	I _{OUT} =80mA		180	200	mV
(Note 3)	V _{dif2}	I _{OUT} =200mA		380	400	mV
Supply Current	I _{SS}	V _{IN} =Vout+1V		9	15	μA
Line Regulations	$\frac{\Delta V_{OUT}}{\Delta V_{IN} \cdot V_{OUT}}$	I _{OUT} =10mA Vout+1V ≤V _{IN} ≤6V		0.03	0.2	%/V
Power Supply Ripple Rejection Ratio	PSRR	Vin= [Vout+1]V +1Vp-pAC I _{OUT} =10mA,f=1kHz		50	52	dB
Short Circuit Current	I _{short}	Vin=Vout(T)+1.5V Vout=Vss		30	60	mA
Over Current Protection	l _{limit}			500		mA

ME6206K33

(VIN=Vout+1V,Cin=Cout=1uF,Ta=25°C Unless otherwise stated)

PARAMETER	SYMBOL	CONDITION	MIX	TYP	MAX	UNIT
Output Voltage	V _{OUT} (E) (Note 2)	I _{OUT} =10mA, V _{IN} =Vout+1V	X 0.98	V _{OUT} (T) (Note 1)	X 1.02	V
Input Voltage	V_{IN}				6	V
Maximum Output Current	I _{OUT} (max)	V _{IN} =Vout+1V		300	350	mA
Load Regulation	ΔV_OUT	V _{IN} =Vout+1V 1mA≤I _{OUT} ≤100mA		14	28	mV
Dropout Voltage	V_{dif1}	I _{OUT} =80mA		180	200	mV
(Note 3)	V _{dif2}	I _{OUT} =200mA		380	400	mV
Supply Current	I _{SS}	V _{IN} =Vout+1V		180	500	μA
Line Regulations	$\frac{\Delta V_{OUT}}{\Delta V_{IN} \cdot V_{OUT}}$	I _{OUT} =10mA Vout+1V ≤V _{IN} ≤6V		0.03	0.2	%/V
Power Supply Ripple Rejection Ratio	PSRR	Vin= [Vout+1]V +1Vp-pAC I _{OUT} =10mA,f=1kHz		50	52	dB
Short Circuit Current	I _{short}	Vin=Vout(T)+1.5V Vout=Vss		30	60	mA
Over Current Protection	l _{limit}			500		mA

Note:

1. V_{OUT} (T): Specified Output Voltage

2.V_{OUT} (E): Effective Output Voltage (le. The output voltage when "V_{OUT} (T)+1.0V" is provided at the Vin pin while maintaining a certain lout value.)

 $3.V_{dif}:V_{IN1}-V_{OUT}(E)$

 V_{IN1} : The input voltage when $V_{OUT}(E)$ appears as input voltage is gradually decreased.

 V_{OUT} (E)'=A voltage equal to 98% of the output voltage whenever an amply stabilized lout $\{V_{OUT}(T)+1.0V\}$ is input.

Type Characteristics

(1) Output Current VS. Output Voltage (VIN=Vout+1, Ta = 25 °C)

ME6206A18PG

ME6206A21M3G

ME6206A28PG

ME6206A30PG

ME6206A33PG

(2) Input Voltage VS. Output Voltage (**Ta = 25** °**C**) ME6206A18PG

ME6206A21M3G

ME6206A28PG

ME6206A30PG

ME6206A33PG

(3) Output Current VS. Dropout Voltage (VIN=Vout+1V,**Ta = 25** °C) ME6206A18PG ME6206A21M3G

ME6206A28PG

ME6206A30PG

ME6206A33PG

V19 <u>www.microne.com.cn</u> Page 10 of 16

(4) Input Voltage VS. Supply Current (**Ta = 25** °**C**)

ME6206A18PG

Input Voltage VS. Supply Current 9 8 Supply Current(uA) 6 5 4 3 2 1.5 6 0 0.5 2.5 3.5 Input Voltage(V)

ME6206A21M3G

ME6206A28PG

ME6206A30PG

ME6206A33PG

V19 <u>www.microne.com.cn</u> Page 11 of 16

Packaging Information

• SOT23-3

DIM	Milli	meters	Incl	nes
DIM	Min	Max	Min	Max
Α	1	1.5	0.0394	0.0591
A1	0	0.15	0	0.0059
A2	0.9	1.3	0.0354	0.0512
A3	0.6	0.7	0.0236	0.0276
b	0.25	0.5	0.0098	0.0197
С	0.1	0.25	0.0039	0.0098
D	2.8	3.1	0.1102	0.122
Е	2.6	3.1	0.1023	0.122
E1	1.5	1.8	0.0591	0.0709
е	0.95	i(TYP)	0.0374	·(TYP)
L	0.25	0.6	0.0098	0.0236
L1	0.59	(TYP)	0.0232	(TYP)
θ	0	8°	0	8°
c1	0.2	(TYP)	0.0079	(TYP)

● SOT23

DIM	Millin	neters	Inch	es	
DIM	Min	Max	Min	Max	
А	0.9	1.15	0.0354	0.0453	
A1	0	0.14	0	0.0055	
A2	0.9	1.05	0.0354	0.0413	
b	0.28	0.52	0.011	0.0205	
С	0.07	0.23	0.0028	0.0091	
D	2.8	3	0.1102	0.1181	
e1	1.8	2	0.0709	0.0787	
Е	1.2	1.4	0.0472	0.0551	
E1	2.25	2.55	0.0886	0.1004	
е	0.95	(TYP)	0.0374(TYP)	
L	0.55	(TYP)	0.0217(TYP)	
L1	0.25	0.55	0.0098	0.0217	
θ	0	8°	0	8°	
c1	0.25	(TYP)	0.0098(TYP)		

• SOT89-3

DIM _	Millimeters		Inches			
DIIVI	Min	Max	Min	Max		
Α	1.4	1.6	0.0551	0.063		
b	0.32	0.52	0.0126	0.0205		
b1	0.4	0.58	0.0157	0.0228		
С	0.35	0.45	0.0138	0.01772		
D	4.4	4.6	0.1732	0.1811		
D1	1.55(TYP)		0.061(TYP)			
D2	1.75(TYP)		0.0689(TYP)			
e1	3(TYP)		0.1181(TYP)			
Е	2.3	2.6	0.0906	0.1023		
E1	3.94	4.4	0.1551	0.1732		
E2	1.9(TYP)		0.0748(TYP)			
е	1.5(TYP)		0.0591(TYP)			
L	0.8	1.2	0.0315	0.0472		
θ	45°		45°			

TO92

DIM	Millimeters		Inches	
	Min	Max	Min	Max
Α	3.3	3.7	0.1299	0.1457
A1	1.1	1.4	0.0433	0.0551
b	0.38	0.55	0.015	0.0217
С	0.36	0.51	0.0142	0.0201
D	4.3	4.7	0.1693	0.185
D1	3.43	_	0.135	_
E	4.3	4.7	0.1693	0.185
е	1.27		0.05	
e1	2.44	2.64	0.0961	0.1039
L	14.1	14.5	0.5551	0.5709
h	0	0.38	0	0.015
Ф	_	1.6	_	0.063

- The information described herein is subject to change without notice.
- Nanjing Micro One Electronics Inc is not responsible for any problems caused by circuits or diagrams
 described herein whose related industrial properties, patents, or other rights belong to third parties.
 The application circuit examples explain typical applications of the products, and do not guarantee the
 success of any specific mass-production design.
- Use of the information described herein for other purposes and/or reproduction or copying without the express permission of Nanjing Micro One Electronics Inc is strictly prohibited.
- The products described herein cannot be used as part of any device or equipment affecting the human body, such as exercise equipment, medical equipment, security systems, gas equipment, or any apparatus installed in airplanes and other vehicles, without prior written permission of Nanjing Micro One Electronics Inc.
- Although Nanjing Micro One Electronics Inc exerts the greatest possible effort to ensure high quality and reliability, the failure or malfunction of semiconductor products may occur. The user of these products should therefore give thorough consideration to safety design, including redundancy, fire-prevention measures, and malfunction prevention, to prevent any accidents, fires, or community damage that may ensue.

V19 <u>www.microne.com.cn</u> Page 16 of 16