Zusammenfassung Gew. Diff'gleichungen

© Fin Baumann, http://timbaumann.info/uni-spicker

Bsp. Gesucht: Funktion $y: \mathbb{R} \to \mathbb{R}$ mit $\forall t \in \mathbb{R} : \dot{y}(t) = y(t)$

Lsg. $y(t) = c \cdot e^t$ für $c \in \mathbb{R}$ beliebig. Wenn man als Anfangsbedingung y(0) = 1 fordert, erhält man eine eindeutige Lösung (c = 1).

Bsp. Gesucht: Lösung von $(\dot{y}(t))^2 + (y(t))^2 = a$ für $a \in \mathbb{R}$

Lsg. Anzahl der Lösungen hängt von a ab:

- Falls a < 0: keine reelle Lsg Falls a = 0: Einzige Lsg y(t) = 0
- Falls a > 0: Lsgn: $y(t) = \sqrt{a}\cos(t+\phi)$ für $\phi \in \mathbb{R}$ bel., $y(t) = \pm \sqrt{a}$

Bsp. Sei p(t) ist Populationsgröße zur Zeit t. Angenommen, $\frac{\dot{p}(t)}{p(t)} = a$ ist konstant, also $\dot{p}(t) = p(t)$. Sei $p(t_0) = p_0$.

Lsg.
$$p(t) = p_0 e^{(t-t_0)a}$$

Bsp (Verhulst-Modell). Gesucht: Lösung zu

$$\dot{p}(t) = a_0 p(t) - a_1 (p(t))^2$$

Lsg.
$$p(t) = \frac{a_0}{a_1(1 - ce^{-a_0 t})}$$

Bsp.

Unterscheidung zwischen gewöhnliche DGL und partielle DGLn Beispiele für gewöhnliche DGL $\dot{y}(t) = hy(t) \ (\dot{y}(t))^2 + (y(t))^2 = a$ Beispiele für partielle DGLn:

 $y_t = \alpha y_{xx} + y$, wobei $y_t(t,x) = \frac{\partial}{\partial t} y(t,x)$, $y_{xx}(t,x) = \frac{\partial^2}{\partial x^2} y(t,x)$ Unterscheidung zwischen DGLn 1. Ordnung, DGLn 2. Ordnung und DGLn k-ter Ordnung

Beispiel für DGL 1. Ordnung: $\dot{y} = \alpha y(t)$

Beispiel für DGL 2. Ordnung: $\ddot{\phi}(t) = -\frac{\delta}{a}\sin(\phi(t))$

Beispiel für DGL k-ter Ordnung: $F(t,y(t),\dot{y}(t),...,y^{(k)}(t))=0$ Unterscheidung zischen expliziten und impliziten DGLn Beispiel für explizite DGLn: $\dot{y}(t)=\alpha y(t)$ $\ddot{\phi}(t)=-\frac{g}{e}\sin(\phi(t))$ $y^{(k)}(t)=f(t,y,\dot{y},...,y^{(k-1)})$

Beispiele für implizite DGLn: $(\dot{y}(t))^2 + (y(t))^2 = a$ $F(t, y, \dot{y}, ..., y^{(k)}(t))$

Oder (Gleichungen gehören zusammen) $\dot{y}_2(t) + y_1(t) = f_1(t)$ $y_2(t) = f_2(t)$ (differentiell-algebraische Gleichung)

Unterscheidung zwischen Skalaren DGL
n und $n\text{-}\mathrm{dimensionalen}$ DGLn (Systeme von DGLn)

Beispiel für Skalare DGL: $\dot{y}(t)=f(t,y(t)),$ wobei $f:\mathbb{R}\times\mathbb{R}\to\mathbb{R}$ gegeben ist.

Beispiel für ein System von DGLn: $\dot{y}(t) = f(t, y(t))$, wobei $f: \mathbb{R} \times \mathbb{R}^n \to \mathbb{R}^n$ gegeben und $y: \mathbb{R} \to \mathbb{R}^n$ gesucht Unterscheidung zwischen linearen und nicht linearen DGLn Beispiele für lineare DGLn: $\dot{y}(t) = \alpha y(t) \ \dot{y}(t) = Ay(t) + g(t)$,

$$a_k(t)y^{(k)}(t) + a_{(k-1)}(t)y^{k-1}(t) + \dots + a_1(t)\dot{y}(t) + a_0(t)y(t) = 0$$

Beispiele für nicht lineare DGLn: $\ddot{\phi}(t) = -\frac{g}{e}\sin(\phi(t))$

$$(\dot{y}(t))^2 + (y(t))^2 = a$$

Unterscheidung zwischen autonomen und nicht autonomen DGLn Beispiele für autonome DGLn:

- $\dot{y} = \alpha y(t)$
- $(\dot{y}(t))^2 + (y(t))^2 = a$
- $\dot{y}(t) = f(y(t))$
- $F(y(t), \dot{y}(t), ..., y^{(k)}(t)) = 0$

Beispiele für nicht autonome DGLn:

- $\dot{y} = \alpha y(t) + e^t$
- $(\dot{y}(t))^2 + (y(t))^2 0 = a + t^2$
- $\dot{y}(t) = f(t, y(t))$
- $F(t, y(t), \dot{y})(t), ..., y^{(k)}(t)) = 0$

Unterschied: Autonome DGLn hängen nicht explizit von der Zeit \boldsymbol{t} ab

Def. Es sei $\mathcal{D} \subset \mathbb{R} \times \mathbb{R}^n$ offen, $f : \mathcal{D} \to \mathbb{R}^n$ und $(t_0, y_0) \in \mathcal{D}$. Das System von Gleichungen

$$\dot{y}(t) = f(t, y(t))$$
$$y(t_0) = y_0$$

heißt Anfangswertproblem (AWP).

Notation. Sei im Folgenden I stets ein Intervall in \mathbb{R} .

Def. • Es sei $\mathcal{D} \subset \mathbb{R} \times \mathbb{R}^n$, $f: \mathcal{D} \to \mathbb{R}^n$. Eine differenzierbare Funktion $y: I \to \mathbb{R}^n$ heißt **Lösung** von $\dot{y} = f(t, y)$, falls für alle $t \in I$ gilt: $\dot{y}(t) = f(t, y(t))$.

• Es sei $\mathcal{D}\subset\mathbb{R}\times\underbrace{\mathbb{R}^n\times...\mathbb{R}^n}_{k\text{ mal}},\,f:\mathcal{D}\to\mathbb{R}^n.$ Eine k-mal

differenzierbare Funktion $y: I \to \mathbb{R}^n$ heißt Lösung von $y^{(k)} = f(t, y, \dot{y}, ..., y^{(k-1)})$, falls für alle $t \in I$ gilt:

$$y^{(k)} = f(t, y(t), \dot{y}(t), ..., y^{(k-1)}(t))$$

Satz. • Ist $y:I \to \mathbb{R}^n$ eine Lösung von $y^{(k)}=f(t,y,\dot{y},...,y^{(k-1)})$ (1.2), dann ist

$$(y_1, ..., y_k) : I \to \mathbb{R}^{kn}$$

 $t \mapsto (y_1(t), ..., y_k(t)) = (y(t), \dot{y}(t), ..., y^{(k-1)}(t))$

eine Lösung von System (1.3)

• Ist $(y_1,...,y_k):I\to\mathbb{R}^n$ eine Lösung von (1.3), dann ist $y=y_1:I\to\mathbb{R}^n$ eine Lösung von (1.2).

Satz. • Ist $y: I \to \mathbb{R}^n$ eine Lösung von AWP (1.1), dann ist

$$(y_1, y_2): I \to \mathbb{R}^{n+1}$$

 $t \mapsto (y_1(t), y_2(t)) = (t, y(t))$

eine Lösung des AWP (1.4)

$$\dot{y}_1(t) = 1, y_1(t_0) = t_0 \dot{y}_2(t) = f(y_1(t), y_2(t)), \quad y_2(t_0) = y_0$$

• Ist $(y_1, y_2): I \to \mathbb{R}^{n+1}$ eine Lösung von (1.4), dann ist $y = y_2: I \to \mathbb{R}^n$ eine Lösung von (1.1).