01RMHNG-03RMHPF-01RMING Network Dynamics Week 3

Connectivity and Network Flows

Giacomo Como and Fabio Fagnani DISMA, Politecnico di Torino {giacomo.como,fabio.fagnani}@polito.it Torino, October 7–14, 2024

Prologue: multigraphs

▶ A (weighted, directed) multigraph is a triple $\mathcal{G} = (\mathcal{V}, \mathcal{E}, h)$, where \mathcal{V} is the set of nodes, \mathcal{E} is the set of links, $h \in \mathbb{R}^{\mathcal{E}}$, h > 0, is the weight vector, equipped with two maps $\theta, \kappa : \mathcal{E} \to \mathcal{V}$ such that

$$\theta(e)=$$
 tail node of link e $\kappa(e)=$ head node of link e

$$h_e > 0$$
 is the weight of link e

- lacktriangle when $h=\mathbb{1}$, we simply denote multi-graph by $\mathcal{G}=(\mathcal{V},\mathcal{E})$
- lacktriangleright multi-graphs allow for parallel links: $e_1,e_2\in\mathcal{E}$ such that

$$\theta(e_1) = \theta(e_2)$$
 $\kappa(e_1) = \kappa(e_2)$

Prologue: multigraphs

▶ A (weighted, directed) multigraph is a triple $\mathcal{G} = (\mathcal{V}, \mathcal{E}, h)$, where \mathcal{V} is the set of nodes, \mathcal{E} is the set of links, $h \in \mathbb{R}^{\mathcal{E}}$, h > 0, is the weight vector, equipped with two maps $\theta, \kappa : \mathcal{E} \to \mathcal{V}$ such that

$$heta(e)=$$
 tail node of link e $\kappa(e)=$ head node of link e

 $h_e > 0$ is the weight of link e

▶ to every graph $\mathcal{G} = (\mathcal{V}, \mathcal{E}, W)$ we can associate multigraph (without parallel links) $\overline{\mathcal{G}} = (\mathcal{V}, \mathcal{E}, h)$ such that $\forall e = (i, j) \in \mathcal{E}$

$$\theta(e) = i$$
 $\kappa(e) = j$ $h_e = W_{ij}$

- ▶ length-I walk $\gamma = (e_1, e_2, \dots, e_I)$: $\theta(e_k) = \kappa(e_{k-1}) \ \forall 1 \leq k \leq I$
- ▶ path = walk $\gamma = (e_1, \dots, e_l)$ s.t. $\theta(e_h) \neq \theta(e_k) \ \forall 1 \leq h < k \leq l$

Prologue: node-link incidence matrix

▶ For (multi-)graph $\mathcal{G} = (\mathcal{V}, \mathcal{E}, h)$, node-link incidence matrix

$$B \in \{-1, 0, +1\}^{\mathcal{V} \times \mathcal{E}}$$

$$B_{ie} = \begin{cases} +1 & \text{if} \quad \theta(e) = i \neq \kappa(e) \\ -1 & \text{if} \quad \theta(e) \neq i = \kappa(e) \\ 0 & \text{if} \quad \theta(e) \neq i \neq \kappa(e) \text{ or } \theta(e) = i = \kappa(e) \end{cases}$$

► Example:

▶ Note: unweighted (multi-)graphs without self-loops are completely characterized by their node-link incidence matrix

Prologue: node-link incidence matrix

► For (multi-)graph *G*, node-link incidence matrix

$$B \in \{-1, 0, +1\}^{\mathcal{V} \times \mathcal{E}}$$

$$B_{ie} = \begin{cases} +1 & \text{if} \quad \theta(e) = i \neq \kappa(e) \\ -1 & \text{if} \quad \theta(e) \neq i = \kappa(e) \\ 0 & \text{if} \quad \theta(e) \neq i \neq \kappa(e) \text{ or } \theta(e) = i = \kappa(e) \end{cases}$$

▶ Proposition: $\mathcal{G} = (\mathcal{V}, \mathcal{E}, W)$ unweighted:

$$BB' = \operatorname{diag}(w) - W + \operatorname{diag}(w^{-}) - W'$$

- L = diag(w) W Laplacian of the graph
- $L^* = \text{diag}(w^-) W'$ Laplacian of the graph $\mathcal{G}^* = (\mathcal{V}, \mathcal{E}^*, W')$ obtained from \mathcal{G} by reversing the direction of all its links
- ▶ \mathcal{G} simple (undirected+unweighted+ no self-loops) $\Longrightarrow BB' = 2L$

From Reachability and Connectedness to Connectivity

In a (multi-)graph $\mathcal{G} = (\mathcal{V}, \mathcal{E})$

▶ Reachability: node $d \in \mathcal{V}$ is reachable from node $o \in \mathcal{V}$ if there exists at least an o-d path

$$\gamma = (e_1, e_2, \ldots, e_l)$$

- ▶ Connectedness: $\mathcal{G} = (\mathcal{V}, \mathcal{E}, W)$ (strongly) connected if every $d \in \mathcal{V}$ is reachable from every $o \in \mathcal{V}$, i.e., if
- qualitative properties: connected or not, reachable or not

From Reachability and Connectedness to Connectivity

In a (multi-)graph $\mathcal{G} = (\mathcal{V}, \mathcal{E})$

▶ Reachability: node $d \in \mathcal{V}$ is reachable from node $o \in \mathcal{V}$ if there exists at least an o-d path

$$\gamma = (e_1, e_2, \ldots, e_l)$$

- ▶ Connectedness: $\mathcal{G} = (\mathcal{V}, \mathcal{E}, W)$ (strongly) connected if every $d \in \mathcal{V}$ is reachable from every $o \in \mathcal{V}$, i.e., if
- qualitative properties: connected or not, reachable or not
- ► Connectivity: There might be several *o-d* paths Maximum number of "independent" *o-d* paths
- quantitative property: how well connected a graph is

Example

Directed graph
$$\mathcal{G} = (\mathcal{V}, \mathcal{E})$$
 $\mathcal{V} = \{o, a, b, d\}$ $\mathcal{E} = \{e_1, e_2, e_3, e_4, e_5\}$

Three distinct *o-d* paths:

$$\gamma_1 = (e_1, e_4)$$
 $\gamma_2 = (e_1, e_3, e_5)$
 $\gamma_3 = (e_2, e_5)$

Node-connectivity and link-connectivity

Different o-d paths may share intermediate nodes or links

$$\gamma_1 = (e_1, e_2, \dots, e_l)$$
 $\tilde{\gamma}_2 = (\tilde{e}_1, \tilde{e}_2, \dots, \tilde{e}_{\tilde{l}})$

 $ightharpoonup \gamma$, $\tilde{\gamma}$ node-independent if they share no intermediate node

$$\kappa(e_h) \neq \kappa(\tilde{e}_k)$$
 for all $1 \leq h < l$ and $1 \leq k < \tilde{l}$

 $ightharpoonup \gamma$, $\tilde{\gamma}$ link-independent if they share no link

$$e_h \neq \tilde{e}_k$$
 for all $1 \leq h \leq I$ and $1 \leq k \leq \tilde{I}$

Node-connectivity and link-connectivity

Different o-d paths may share intermediate nodes or links

$$\gamma_1 = (e_1, e_2, \dots, e_l)$$
 $\tilde{\gamma}_2 = (\tilde{e}_1, \tilde{e}_2, \dots, \tilde{e}_{\tilde{l}})$

 $\triangleright \gamma$, $\tilde{\gamma}$ node-independent if they share no intermediate node

$$\kappa(e_h) \neq \kappa(\tilde{e}_k)$$
 for all $1 \leq h < l$ and $1 \leq k < \tilde{l}$

 $ightharpoonup \gamma$, $\tilde{\gamma}$ link-independent if they share no link

$$e_h \neq \tilde{e}_k$$
 for all $1 \leq h \leq l$ and $1 \leq k \leq \tilde{l}$

Node-connectivity: $c_{\text{node}}(o, d)$: # node-independent o-d paths Link-connectivity: $c_{\text{link}}(o, d)$ # link-independent o-d paths

$$c_{\mathsf{node}}(\mathcal{G}) = \min_{o \neq d \in \mathcal{V}} c_{\mathsf{node}}(o, d), \quad c_{\mathsf{link}}(\mathcal{G}) = \min_{o \neq d \in \mathcal{V}} c_{\mathsf{link}}(o, d)$$

Example: node-connectivity and link-connectivity

 γ_1 and γ_3 are both node- and link-independent γ_2 is neither node- nor link-independent from either γ_1 or γ_3 $c_{\mathsf{node}}(o,d) = c_{\mathsf{link}}(o,d) = 2$ $c_{\mathsf{node}}(\mathcal{G}) = c_{\mathsf{link}}(\mathcal{G}) = 0$ because \mathcal{G} is not connected

Menger's Theorem

How many nodes and links must we remove from a (multi-)graph to disconnect two nodes?

Theorem (Menger) $\mathcal{G} = (\mathcal{V}, \mathcal{E})$, $i \neq j \in \mathcal{G}$. Then,

- $ightharpoonup \min \#\{ ext{nodes to remove for } j ext{ not to be reachable from } i \} = c_{ ext{node}}(i,j)$
- $ightharpoonup \min \#\{\text{links to remove for } j \text{ not to be reachable from } i\} = c_{\text{link}}(i,j)$
- $ightharpoonup \min \#\{ ext{nodes to remove for } \mathcal{G} \text{ not to be connected} \} = c_{ ext{node}}(\mathcal{G})$
- ▶ min $\#\{\text{links to remove for } \mathcal{G} \text{ not to be connected}\} = c_{\text{link}}(\mathcal{G})$

Proof: \geq can be seen directly.

≤ is special case of more general result: max-flow min-cut theorem.

Link-path incidence matrices

In a (multi-)graph $\mathcal{G} = (\mathcal{V}, \mathcal{E})$, fix $o \neq d \in \mathcal{V}$

- ▶ Γ_{od} : set of all o-d paths in \mathcal{G}
- ▶ Link-path incidence matrix $A \in \{0, 1\}^{\mathcal{E} \times \Gamma_{od}}$:

$$A_{\mathrm{e}\gamma} = \left\{ \begin{array}{ll} 1 & \text{if} & \text{link e is along path γ} \\ 0 & \text{if} & \text{link e is not along path γ} \, . \end{array} \right.$$

$$A \in \{0,1\}^{\mathcal{E} \times \Gamma_{od}}$$

Link-path incidence matrices

In a (multi-)graph $\mathcal{G} = (\mathcal{V}, \mathcal{E})$, fix $o \neq d \in \mathcal{V}$

- ightharpoonup Γ_{od} : set of all o-d paths in \mathcal{G}
- ▶ Link-path incidence matrix $A \in \{0, 1\}^{\mathcal{E} \times \Gamma_{od}}$:

$$A_{\mathrm{e}\gamma} = \left\{ \begin{array}{ll} 1 & \text{if} & \mathrm{link}\; \mathrm{e}\; \mathrm{is}\; \mathrm{along}\; \mathrm{path}\; \gamma \\ 0 & \mathrm{if} & \mathrm{link}\; \mathrm{e}\; \mathrm{is}\; \mathrm{not}\; \mathrm{along}\; \mathrm{path}\; \gamma \,. \end{array} \right.$$

$$\textit{A} \in \{0,1\}^{\mathcal{E} \times \Gamma_{\textit{od}}}$$

 $lackbox{ Observe that, for every } i \in \mathcal{V} \text{ and } \gamma = (e_1, \ldots, e_l) \in \Gamma_{od}$

$$(BA)_{i\gamma} = \sum_{e \in \mathcal{E}} B_{ie} A_{e\gamma} = \sum_{h=1}^{l} B_{ie_h} = \begin{cases} +1 & \text{if } i = o \\ -1 & \text{if } i = d \\ 0 & \text{if } i \neq o, d \end{cases}$$

so that

$$BA = \delta^{(o)} \mathbb{1}' - \delta^{(d)} \mathbb{1}'$$

Example

$$A = \begin{bmatrix} 1 & 1 & 0 \\ 0 & 0 & 1 \\ 0 & 1 & 0 \\ 1 & 0 & 0 \\ 0 & 1 & 1 \end{bmatrix} \begin{bmatrix} e_1 \\ e_2 \\ e_3 \\ e_4 \\ e_5 \end{bmatrix} \qquad B = \begin{bmatrix} e_1 & e_2 & e_3 & e_4 & e_5 \\ +1 & +1 & 0 & 0 & 0 \\ -1 & 0 & +1 & +1 & 0 \\ 0 & -1 & -1 & 0 & +1 \\ 0 & 0 & 0 & -1 & -1 \end{bmatrix} \begin{bmatrix} o \\ a \\ b \\ d \end{bmatrix}$$

$$BA = \begin{bmatrix} \gamma_1 & \gamma_2 & \gamma_3 \\ +1 & +1 & +1 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \\ -1 & -1 & -1 \end{bmatrix} \begin{array}{c} o \\ a \\ b \\ d \end{bmatrix}$$

Network flows - inflows and outflows

(Multi-)graph
$$\mathcal{G} = (\mathcal{V}, \mathcal{E})$$

 $\nu \in \mathbb{R}^{\mathcal{V}}$ exogenous net flows in the nodes

$$\nu_i^+ = \max\{\nu_i, 0\}$$
 ex. inflow, $\nu_i^- = \max\{-\nu_i, 0\}$ ex. outflow for i

► Mass conservation

$$\sum_{i\in\mathcal{V}}\nu_i=0$$

total exogenous inflow $\sum_{i \in \mathcal{V}} \nu_i^+ = \text{total external outflow } \sum_{i \in \mathcal{V}} \nu_i^-$

throughput
$$\tau = \sum_{i \in \mathcal{V}} \nu_i^+ = \sum_{i \in \mathcal{V}} \nu_i^- = \frac{1}{2} ||\nu||_1$$

Nodes i such that $\nu_i = \nu_i^+ > 0$: sources, origins, generators Nodes i such that $\nu_i = -\nu_i^- < 0$: sinks, destinations, loads

Network flows - flow vectors

Flow vectors: $f \in \mathbb{R}_+^{\mathcal{E}}$, satisfying balance constraints

$$u_i + \sum_{e:\kappa(e)=i} f_e = \sum_{e:\theta(e)=i} f_e, \qquad i \in \mathcal{V}$$

- $ightharpoonup f_e = ext{flow on link } e \in \mathcal{E}$
- ► Compact form using node-link incidence matrix:

$$Bf = \nu$$

▶ Flows from a single origin o to a single destination d: o-d flows

$$Bf = \tau(\delta^{(o)} - \delta^{(d)})$$

▶ Unitary o-d flows

$$Bf = \delta^{(o)} - \delta^{(d)}$$

 $\delta^{(i)} = \text{vector with a 1 entry in the } i\text{-th position and 0 everywhere else}$

Example: network flows

o-d flow: nonnegative vector $f = (f_1, f_2, f_3, f_4, f_5)$ satisfying the flow balance:

$$\tau = f_1 + f_2 f_1 = f_3 + f_4 f_2 + f_3 = f_5 f_4 + f_5 = \tau$$

Two of the possible *o-d* flows:

lower throughput $\tau = 3$

higher throughput $\tau = 4$

Unitary o-d flows

 \forall o-d paths $\gamma \in \Gamma_{od}$, $A\delta^{(\gamma)} \in \mathbb{R}^{\mathcal{E}}$:

- $ightharpoonup \gamma$ -th column of the link-path incidence matrix
- \blacktriangleright has entries 1 for links along the path γ and 0 otherwise
- ▶ is a unitary o-d flow

$$BA\delta^{(\gamma)} = \delta^{(o)} - \delta^{(d)}$$

 γ_2 -th column of the link-path incidence matrix A for the graph is a unitary o-d flow

Network Flow Assignment (and Decomposition)

 $ightharpoonup z \in \mathbb{R}_+^{\Gamma_{od}}$, where z_{γ} aggregate flow on o-d path γ .

$$f = \sum_{\gamma \in \Gamma_{od}} z_{\gamma} A \delta^{(\gamma)} = Az$$

is an o-d flow of throughput $au = \sum_{\gamma} z_{\gamma}$

$$f \geq 0 \,, \qquad Bf = BAz = au(\delta^{(o)} - \delta^{(d)}) \,, \qquad au = \sum_{\gamma} z_{\gamma}$$

- ▶ Assign flows z to o-d paths (and cycles) in the graph \rightarrow unique o-d flow f = Az on the links (useful to construct feasible flows)
- ▶ Given o-d flow $f \in \mathbb{R}_+^{\mathcal{E}}$, there is a possibly (and typically) non-unique assignment of flows to both o-d paths and directed cycles in the graph that induces f (Flow Decomposition Theorem)

Example

▶ $\Gamma_{od} = \{(\gamma_1, \gamma_2, \gamma_3, \gamma_4)\}$ where $\gamma_1 = (e_1, e_6)$, $\gamma_2 = (e_2, e_3, e_6)$, $\gamma_3 = (e_1, e_4, e_7)$, and $\gamma_4 = (e_2e_3, e_4, e_7)$, so that

$$A = \left(\begin{array}{cccccccc} 1 & 0 & 0 & 0 & 0 & 1 & 0 \\ 0 & 1 & 1 & 0 & 0 & 1 & 0 \\ 1 & 0 & 0 & 1 & 0 & 0 & 1 \\ 0 & 1 & 1 & 1 & 0 & 0 & 1 \end{array}\right)'$$

▶ directed cycle $\overline{\gamma} = (e_3, e_4, e_5)$, $C = (0 \ 0 \ 1 \ 1 \ 1 \ 0 \ 0)'$

Example

▶ $\Gamma_{od} = \{(\gamma_1, \gamma_2, \gamma_3, \gamma_4)\}$ where $\gamma_1 = (e_1, e_6)$, $\gamma_2 = (e_2, e_3, e_6)$, $\gamma_3 = (e_1, e_4, e_7)$, and $\gamma_4 = (e_2e_3, e_4, e_7)$, so that

$$A = \left(\begin{array}{ccccccc} 1 & 0 & 0 & 0 & 0 & 1 & 0 \\ 0 & 1 & 1 & 0 & 0 & 1 & 0 \\ 1 & 0 & 0 & 1 & 0 & 0 & 1 \\ 0 & 1 & 1 & 1 & 0 & 0 & 1 \end{array}\right)'$$

- ▶ directed cycle $\overline{\gamma} = (e_3, e_4, e_5)$, $C = (0 \ 0 \ 1 \ 1 \ 1 \ 0 \ 0)'$
- ▶ $z \in \mathbb{R}_+^{\Gamma_{od}}$ and $w \in \mathbb{R}_+ \Rightarrow f = Az + Cw$ is an o-d flow. E.g., z = (1, 2, 3, 1) w = 1 $\Rightarrow f = (4, 3, 4, 5, 1, 3, 4)$
- ▶ $f \in \mathbb{R}_+^{\mathcal{E}}$ o-d flow $\Rightarrow f = Az + Cw$ where

$$z^{(\alpha)} = (\alpha, f_6 - \alpha, f_1 - \alpha, f_2 + \alpha - f_6) \qquad w = f_5$$

for every $0 \le \alpha \le \min\{f_1, f_6\}$.

Capacity

- ▶ Link $e \in \mathcal{E}$ has capacity $c_e > 0$: maximum flow allowable through the link.
- ▶ Vector of all link capacities: $c \in \mathbb{R}^{\mathcal{E}}$, c > 0.

Maximum throughput τ from node o to node d that can be achieved by a flow f without violating the link capacity constraints?

Example: maximum throughput with capacity constraints

Maximize τ over link flows f_1, f_2, f_3, f_4, f_5 and throughput τ s.t.

$$au = f_1 + f_2, \quad f_1 = f_3 + f_4, \quad f_2 + f_3 = f_5, \quad f_4 + f_5 = \tau,$$

$$au \ge 0, \qquad 0 \le f \le c$$

Max flow problem

(Multi-)graph
$$\mathcal{G} = (\mathcal{V}, \mathcal{E})$$
.

- ▶ Link capacity vector $c \in \mathbb{R}^{\mathcal{E}}$, c > 0
- ▶ Link flows vector $f \in \mathbb{R}_+^{\mathcal{E}}$
- ▶ Throughput $\tau \ge 0$, total flow through the network from node o to node d, associated with f
- ► Consider two distinct nodes o and d. Maximum flow problem:

$$\begin{array}{ll} \tau_{od}^* &=& \max \tau \\ \text{s.t.} & \tau \geq 0 & \text{throughput nonnegativity} \\ & 0 \leq f \leq c & \text{nonnegativity and capacity constraints} \\ & Bf = \tau (\delta^{(o)} - \delta^{(d)}) & \text{mass conservation} \end{array}$$

Linear program: objective function and constraints are linear functions of the variables

▶ Flow satisfying the constraints: feasible flow. Set of feasible flows nonempty: always contains flow f = 0 with throughput $\tau = 0$

Min cut capacity

- ▶ o-d cut: partition of the node set $\mathcal V$ in two subsets, $\mathcal U$ and $\mathcal V\setminus\mathcal U$, with $o\in\mathcal U$ and $d\in\mathcal V\setminus\mathcal U$
- ▶ (out-)boundary of \mathcal{U} is set of links from \mathcal{U} to $\mathcal{V} \setminus \mathcal{U}$:

$$\partial_{\mathcal{U}} = \{ e \in \mathcal{E} : \theta(e) \in \mathcal{U}, \kappa(e) \in \mathcal{V} \setminus \mathcal{U} \}$$

ightharpoonup Capacity of an o-d cut $\mathcal U$ is the aggregate capacity of its boundary:

$$c_{\mathcal{U}} := \sum_{e \in \partial_{\mathcal{U}}} c_e$$

▶ Min-cut capacity: minimum capacity among all o-d cuts

$$c_{od}^* = \min_{\mathcal{U} \subseteq \mathcal{V}} c_{\mathcal{U}}$$
 $o \in \mathcal{U}, d \notin \mathcal{U}$

 $lackbox{\sf Minimal}$ (capacity) cut: cut ${\cal U}$ with $c_{\cal U}=c_{od}^*$

Example: cut capacity

Four o-d cuts $U_1 = \{o\}$, $U_2 = \{o, a\}$, $U_3 = \{o, b\}$, $U_4 = \{o, a, b\}$

with capacities

$$c_{\mathcal{U}_1} = c_{e_1} + c_{e_2} = 4,$$
 $c_{\mathcal{U}_2} = c_{e_2} + c_{e_3} + c_{e_4} = 7,$
 $c_{\mathcal{U}_3} = c_{e_1} + c_{e_5} = 4,$
 $c_{\mathcal{U}_4} = c_{e_4} + c_{e_5} = 6$

Minimal capacity cuts: l_d

Minimal capacity cuts: \mathcal{U}_1 and \mathcal{U}_3

Max-flow min-cut theorem

- ▶ How do we guarantee that a flow vector achieves the maximum throughput τ_{od}^* from an origin node o to a destination node d?
- lacktriangle Relate au_{od}^* to geometrical properties of the graph ${\mathcal G}$
- ▶ Max-Flow Min-Cut theorem: maximum throughput τ_{od}^* from o to d (solution of the linear program) coincides with the minimum cut capacity c_{od}^* among all o-d cuts:
- ▶ Theorem: $\mathcal{G} = (\mathcal{V}, \mathcal{E}, c)$ (capacited) multigraph. For $o \neq d \in \mathcal{V}$,

$$au_{od}^* = c_{od}^*$$

Capacities all integer-valued ⇒ integer-valued max throughput flow

Max-flow min-cut theorem (cont'd)

- Network resilience interpretation of max-flow min-cut: minimum total capacity to be removed from the network to make d not reachable from o coincides with the min-cut capacity c_{od}^*
- ▶ if $c_e \in \{0,1\}$ (keep or remove links) $\forall e \in \mathcal{E}$, then integer-valued feasible flows satisfy $f_e \in \{0,1\}$. Set $\{e \in \mathcal{E} : f_e = 1\}$ is union of link-disjoint o-d paths. Hence max-flow min-cut reduces to Menger
- ▶ Proof of Max-flow min-cut Theorem: $\tau_{od}^* = c_{od}^*$. Two steps:
- (i) $\tau_{od}^* \le c_{od}^*$: no feasible flow can have throughput larger than the min-cut capacity (easier)
- (ii) $au_{od}^* \geq c_{od}^*$: \exists feasible flow with throughput equal to min-cut capacity (harder)

Max-flow min-cut theorem: proof $au_{od}^* \leq c_{od}^*$ (1)

- ▶ let $\partial_A^- = \{e : \theta(e) \notin \mathcal{A}, \kappa(e) \in \mathcal{A}\}$ be the in-boundary of $\mathcal{A} \subseteq \mathcal{V}$
- ▶ Summing for all $i \in \mathcal{U}$ node-wise mass conservation

$$u_i + \sum_{e:\kappa(e)=i} f_e = \sum_{e:\theta(e)=i} f_e$$

we get

$$\tau = \sum_{i \in \mathcal{U}} \nu_i = \sum_{i \in \mathcal{U}} \left(\sum_{e \in \partial_i} f_e - \sum_{e \in \partial_i^-} f_e \right) = \sum_{e \in \partial_{\mathcal{U}}} f_e - \sum_{e \in \partial_{\mathcal{U}}^-} f_e$$

Since $0 \le f_e \le c_e$ for the flow on every link e,

$$\sum_{e \in \partial_{\mathcal{U}}} c_e \ge \sum_{e \in \partial_{\mathcal{U}}} f_e = \tau + \sum_{e \in \partial_{\tau}^-} f_e \ge \tau$$

If we choose minimal capacity cut ${\cal U}$

$$c_{od}^* = \sum_{e \in \partial_{\mathcal{U}}} c_e \ge au_{od}^*$$

Max-flow min-cut theorem: proof $au_{od}^* \geq c_{od}^*$

- ▶ need to construct a feasible flow f from o to d with throughput τ equal to the min-cut capacity c_{od}^* .
- ▶ iterative algorithm due to Ford and Fulkerson does this in a finite number of steps, by starting with a trivial flow $f^{(0)} = 0$ with throughput $\tau^{(0)} = 0$ and capacity vector $c^{(0)} = c$ and then constructing a feasible flow for which $\tau_{od}^* = c_{od}^*$.

Ford and Fulkerson's algorithm

Start with $f^{(0)} = 0$. Then, for $t \ge 0$

- residual capacity: $c^{(t)} = c f^{(t)}$
- ▶ residual graph: $\mathcal{G}_t = (\mathcal{V}, \mathcal{E}_t)$

$$e \in \mathcal{E}_t \quad \Leftrightarrow \quad e \in \mathcal{E} \text{ and } c_e^{(t)} > 0 \quad \text{or} \quad \overline{e} \in \mathcal{E} \text{ and } f_{\overline{e}}^{(t)} > 0$$

where \overline{e} reverse link with $\theta(\overline{e}) = \kappa(e)$ and $\kappa(\overline{e}) = \theta(e)$

- ▶ reachable set: $\mathcal{U}_t = \{i \in \mathcal{V} : i \text{ reachable from } o \text{ in } \mathcal{G}_t\}$
- $ightharpoonup d \notin \mathcal{U}_t \implies \text{algorithm halts}$
- $lackbox{} d \in \mathcal{U}_t \implies \text{ choose one } o\text{-}d \text{ path in } \mathcal{G}_t$

$$\gamma^{(t)} = (e_1, e_2, \dots, e_l)$$
 $\varepsilon_t := \min_{1 \le h \le l} \max \left\{ c_{e_h}^{(t)}, f_{\overline{e}_h}^{(t)} \right\}$

$$f^{(t+1)} = f^{(t)} + \varepsilon_t \sum_{1 \le h \le I} \chi^{(h)}, \qquad \chi^{(h)} = \begin{cases} \delta^{(e_h)} & \text{if } \varepsilon_t > f_{\overline{e}_h}^{(t)} \\ -\delta^{(\overline{e}_h)} & \text{if } \varepsilon_t \le f_{\overline{e}_h}^{(t)} \end{cases}$$

Ford and Fulkerson's algorithm (cont'd)

- ▶ if algorithm halts with o-d flow $f^{(t^*)}$, then throughput equal to capacity of some cut
- ▶ if link capacities are all positive integers, then algorithm halts in at most c_{od}^* steps and constructed flow vector has integer entries
- ightharpoonup for rational capacities $c_e=rac{n_e}{m}$, it halts in at most $c_{od}^*\cdot m$ steps
- ightharpoonup approximating irrational capacities by rational ones ightarrow proof
- ► Attention: naïve implementation of the Ford-Fulkerson algorithm can fail to converge for irrational capacities
- ▶ From computational viewpoint, choice of "augmenting path" in residual graph \mathcal{G}_t is crucial. Effective choice is to select the shortest (i.e., minimal length) o-d path in \mathcal{G}_t : Edmonds-Karp algorithm with strongly polynomial complexity $O(|\mathcal{V}||\mathcal{E}|^2)$.
- ▶ With further refinements, complexity can be reduced to $O(|\mathcal{V}|^2|\mathcal{E}|)$ (Dinic algorithm): using dynamic trees, the complexity of the Dinic algorithm can be further reduced to $O(|\mathcal{V}||\mathcal{E}|\log |\mathcal{V}|)$.

Ford and Fulkerson's algorithm: example

Ford and Fulkerson's algorithm: example

$$\begin{split} f^{(0)} &= (0,0,0,0,0) & c^{(0)} &= (2,2,3,4,2) \\ \mathcal{E}_0 &= \mathcal{E} &= \{e_1,e_2,e_3,e_4,e_5\} & \mathcal{U}_0 &= \mathcal{V} &= \{o,a,b,d\} \end{split}$$

Ford and Fulkerson's algorithm: example

$$\begin{split} f^{(0)} &= (0,0,0,0,0) & c^{(0)} &= (2,2,3,4,2) \\ \mathcal{E}_0 &= \mathcal{E} &= \{e_1,e_2,e_3,e_4,e_5\} & \mathcal{U}_0 &= \mathcal{V} \end{split}$$

ightharpoonup choose $\gamma^{(0)}=(e_1,e_4)$, then

$$\varepsilon_0 = \min\{c_{e_1}, c_{e_4}\} = 2$$
 $f^{(1)} = f^{(0)} + 2(\delta^{(e_1)} + \delta^{(e_4)}) = (2, 0, 0, 2, 0)$

$$f^{(1)} = (2,0,0,2,0)$$
 $c^{(1)} = (0,2,3,2,2)$ $\mathcal{E}_1 = \{e_2, e_3, e_4, e_5, e_6, e_9\}$ $\mathcal{U}_1 = \mathcal{V}$

$$f^{(1)} = (2,0,0,2,0)$$
 $c^{(1)} = (0,2,3,2,2)$ $\mathcal{E}_1 = \{e_2, e_3, e_4, e_5, e_6, e_9\}$ $\mathcal{U}_1 = \mathcal{V}$

ightharpoonup choose $\gamma_1=(e_2,e_5)$, then

$$\varepsilon_1 = \min\{c_{e_2}^{(1)}, c_{e_5}^{(1)}\} = 2$$
 $f^{(2)} = f^{(1)} + 2(\delta^{(e_2)} + \delta^{(e_5)}) = (2, 2, 0, 2, 2)$

$$f^{(2)} = (2, 2, 0, 2, 2)$$
 $c^{(1)} = (0, 0, 3, 2, 0)$ $\mathcal{E}_2 = \{e_3, e_4, e_6, e_7, e_9, e_{10}\}, \quad \mathcal{U}_2 = \{o\}$

▶ halt: found (o, d)-flow $f^{(2)}$ of throughput 4

$$f^{(0)} = (0,0,0,0,0)$$
 $c^{(0)} = (2,2,3,4,2)$ $\mathcal{E}_0 = \mathcal{E} = \{e_1, e_2, e_3, e_4, e_5\}$ $\mathcal{U}_0 = \mathcal{V}$

$$f^{(0)} = (0,0,0,0,0) \qquad c^{(0)} = (2,2,3,4,2)$$

$$\mathcal{E}_0 = \mathcal{E} = \{e_1, e_2, e_3, e_4, e_5\} \qquad \mathcal{U}_0 = \mathcal{V} = \{o, a, b, d\}$$

$$\blacktriangleright \text{ choose } \gamma^{(0)} = (e_1, e_3, e_5), \text{ then}$$

$$\varepsilon_0 = \min\{c_{e_1}, c_{e_2}, c_{e_3}\} = 2 \qquad f^{(1)} = (2,0,2,0,2)$$

$$f^{(1)} = (2,0,2,0,2)$$
 $c^{(1)} = (0,2,1,4,0)$ $\mathcal{E}_1 = \{e_2,e_3,e_4,e_6,e_8,e_{10}\}, \quad \mathcal{U}_1 = \mathcal{V}$

$$f^{(1)} = (2,0,2,0,2)$$
 $c^{(1)} = (0,2,1,4,0)$ $\mathcal{E}_1 = \{e_2,e_3,e_4,e_6,e_8,e_{10}\}, \quad \mathcal{U}_1 = \mathcal{V}$

ightharpoonup choose $\gamma_1=(e_2,e_8,e_4)$, then

$$\varepsilon_1 = \min\{c_{e_2}^{(1)}, f_{e_3}^{(1)}, c_{e_4}^{(1)}\} = 2$$
 $f^{(2)} = (2, 2, 0, 2, 2)$

$$f^{(2)} = (2, 2, 0, 2, 2)$$
 $c^{(1)} = (0, 0, 3, 2, 0)$ $\mathcal{E}_2 = \{e_3, e_4, e_6, e_7, e_9, e_{10}\}, \quad \mathcal{U}_2 = \{o\}$

▶ halt: found (o, d)-flow $f^{(2)}$ of throughput 4

Multiple origin-destination (still single commodity)

▶ Corollary: Let $\mathcal{G}=(\mathcal{V},\mathcal{E},c)$ be a capacitated multigraph and let ν in $\mathbb{R}^{\mathcal{V}}$ be such that $\mathbb{1}'\nu=0$. Then, a feasible flow vector f with exogenous net-flow vector ν exists if and only if

$$\sum_{i\in\mathcal{U}}\nu_i\leq c_{\mathcal{U}}\,,\qquad\forall\mathcal{U}\subseteq\mathcal{V}$$

Matchings

In an undirected graph $\mathcal{G}=(\mathcal{V},\mathcal{E},W)$, $\overline{\mathcal{E}}=$ set of undirected links

- ightharpoonup matching: $\mathcal{M}\subseteq\overline{\mathcal{E}}$ s.t. no self-loops and no adjacent links
- maximum matching: matching of maximal cardinality
- maximum weight matching: matching of maximal weight
- ▶ perfect matching: $|\mathcal{M}| = n/2$

Hall's Theorem

Bipartite undirected graph $\mathcal{G}=(\mathcal{V},\mathcal{E},W)$, $\mathcal{V}=\mathcal{V}_0\cup\mathcal{V}_1$

▶ complete matching from V_0 to V_1 :

matching ${\mathcal M}$ of cardinality $|{\mathcal V}_0|$

▶ Theorem: \exists complete matching from \mathcal{V}_0 to \mathcal{V}_1 if and only if

$$|\mathcal{N}_{\mathcal{S}}| \ge |\mathcal{S}| \qquad \forall \mathcal{S} \subseteq \mathcal{V}_0$$

▶ Proof: Necessity is clear

For sufficiency, use max-flow min-cut

Hall's Theorem: Proof Idea

- ▶ from undirected bipartite $\mathcal{G} = (\mathcal{V}, \mathcal{E})$ build directed graph \mathcal{G}' with node set $\mathcal{V} \cup \{s, d\}$, all existing links directed from \mathcal{V}_1 to \mathcal{V}_2 with capacity n+1, and with new capacity-1 links (s, i) for every $i \in \mathcal{V}_1$ and (j, d) for every $j \in \mathcal{V}_d$.
- ightharpoonup prove that min-cut capacity between s and d is equal to n under Hall's Theorem conditions

Hall's Theorem: Proof Idea

 \blacktriangleright minimal o-d cuts $\mathcal S$ are necessarily in the form

$$\mathcal{S} = \{o\} \cup \mathcal{U} \cup \mathcal{N}_{\mathcal{U}}^+$$
 for some $\mathcal{U} \subseteq \mathcal{V}_0$

then

$$c_{\mathit{od}}^* = \min_{\substack{\mathcal{S} \\ \mathit{o}-\mathit{d} \text{ cut}}} c_{\mathcal{S}} = \min_{\mathcal{U} \subseteq \mathcal{V}_0} \{|\mathcal{V}_0| - |\mathcal{U}| + |\mathcal{N}_{\mathcal{U}}^+|\} = |\mathcal{V}_0| + \min_{\mathcal{U} \subseteq \mathcal{V}_0} \{|\mathcal{N}_{\mathcal{U}}^+| - |\mathcal{U}|\}$$

- $ightharpoonup c_{od}^* \leq |\mathcal{V}_0|$ with equality \iff Hall's conditions met
- ightharpoonup matchings in $\mathcal G$ are in one-to-one correspondence with feasible integer o-d flows in the capacitated multigraph $\overline{\mathcal G}$

Hall's Theorem: Proof Idea

- ▶ it follows that Ford-Fullkerson (FF) algorithm compute complete matching from V_0 to V_1 when this exists
- ▶ in general FF algorithm computes maximal (weight) matching