Pandas

Reading the csv or xls/xlsx

```
pd.read_csv() -> returns DataFrame
pd.read_excel("excel file") install package #pip3 install xlrd
```

Exporting to csv or xls

```
df.to_csv('file.csv', index=False)
df.to_excel('excel.xlsx') install package #pip3 install openpyxl
xldf = pd.read_excel("excel.xlsx")
xldf = pd.read_excel("excel.xlsx", index_col=0, sheet_name='Sheet1')
```

Create DataFrame

- df = pd.DataFrame(data={array of tuples}, columns=['','',''])
- df = pd.DataFrame({"col1":["val1", "val2", "val3"], "col2":[val1,val2,val3], "col3":
 [val1, val2, val3]})

DataFrame's Attributes & Functions

- df.shape returns the shape in the tuple
- df.columns returns the columns array
- df.index returns the index
- df.head() or df.head(5) -> returns the top rows
- df.tail() or df.tail(5) -> returns the bottom rows
- df.describe() returns the statistical variables (mean/std/median & so on) of the numerical columns
- df.iloc[] indexing similar to the array indexinng
- df.loc[] indexing done based on the custom index passed
- g = df.group by('col1') returns the iterable col1 and it's df
- g.max(), g.mean(), g.describe() operations on the numerical columns

Functions on DataFrame's Column

- df['col'].mean() find the average of that column
- df['col'].max() max value of that column

Filtering

• df[df[col1] == df[col1].max()]['col2'] - fetch the col2 data where col1 has the max value

Operations

pd.concat([df1, df2], ignore_index=True) - concate 2 dataframes

- pd.concat([df1, df2], ignore_index=True, axis=1) concate 2 dataframes horizontally
- pd.merge(df1, df2, on="col") inner join performed on 2 dataframes
- pd.merge(df1, df2, on="col", how="right/left/outer/inner") other join options

Prepopulate

```
[ ] \hookrightarrow 2 cells hidden
```

→ import

```
import pandas as pd

df = pd.read_csv("nyc_weather.csv")
df.head()
```

	EST	Temperature	DewPoint	Humidity	Sea Level PressureIn	VisibilityMiles	WindSpeedMPH	Pro
0	1/1/2016	38	23	52	30.03	10	8.0	
1	1/2/2016	36	18	46	30.02	10	7.0	
2	1/3/2016	40	21	47	29.86	10	8.0	
3	1/4/2016	25	9	44	30.05	10	9.0	
4	1/5/2016	20	-3	41	30.57	10	5.0	

```
#get max temp of the month
df['Temperature'].max()
```

50

```
#to know which day it rains
df[df['Events'] == 'Rain']['EST']
```

```
8 1/9/2016
9 1/10/2016
```

15 1/16/2016 26 1/27/2016

Name: EST, dtype: object

```
#average wind speed
df['WindSpeedMPH'].mean()
```

6.892857142857143

▼ Data Frame

Like a data table (sheet)

```
#preloading
data="""day,temperature,windspeed,event
1/1/2017,32,6,Rain
1/2/2017,35,7,Sunny
1/3/2017,28,2,Snow
1/4/2017,24,7,Snow
1/5/2017,32,4,Rain
1/6/2017,31,2,Sunny"""
f = open("weather_data.csv", "w")
f.write(data)
f.close()

df = pd.read_csv("weather_data.csv")
#df = pd.read_excel("excel file") #pip3 install xlrd
df
```

	day	temperature	windspeed	event
0	1/1/2017	32	6	Rain
1	1/2/2017	35	7	Sunny
2	1/3/2017	28	2	Snow
3	1/4/2017	24	7	Snow
4	1/5/2017	32	4	Rain
5	1/6/2017	31	2	Sunny

```
#construct using list of tuples
tuples = [("1/1/2017",32,6,"Rain"),
   ("1/2/2017",35,7,"Sunny"),
   ("1/3/2017",28,2,"Snow"),
   ("1/4/2017",24,7,"Snow"),
   ("1/5/2017",32,4,"Rain"),
   ("1/6/2017",31,2,"Sunny")]
df = pd.DataFrame(data=tuples, columns=['day', 'temperature', 'windspeed', 'event'])
df
```

event	windspeed	temperature	day	
Rain	6	32	1/1/2017	0
Sunny	7	35	1/2/2017	1
Snow	2	28	1/3/2017	2
Snow	7	24	1/4/2017	3
Rain	4	32	1/5/2017	4
Sunny	2	31	1/6/2017	5

df abono

dr.snape

(6, 4)

df.head(5)

	day	temperature	windspeed	event
0	1/1/2017	32	6	Rain
1	1/2/2017	35	7	Sunny
2	1/3/2017	28	2	Snow
3	1/4/2017	24	7	Snow
4	1/5/2017	32	4	Rain

df.tail(2)

event	windspeed	temperature	day	
Rain	4	32	1/5/2017	4
Sunny	2	31	1/6/2017	5

df.describe()

	temperature	windspeed
count	6.000000	6.000000
mean	30.333333	4.666667
std	3.829708	2.338090
min	24.000000	2.000000
25%	28.750000	2.500000
50%	31.500000	5.000000
75%	32.000000	6.750000
max	35.000000	7.000000

df[1:4]

event	windspeed	temperature	day	
Sunny	7	35	1/2/2017	1
Snow	2	28	1/3/2017	2
Snow	7	24	1/4/2017	3

```
df.index
    RangeIndex(start=0, stop=6, step=1)
df[1:4][['day', 'temperature']]
            day temperature
       1/2/2017
                          35
       1/3/2017
                          28
     3 1/4/2017
                          24
df['temperature'].max()
    35
# Get the data with max temperature
df[df['temperature'] == df['temperature'].max()]
            day temperature windspeed event
       1/2/2017
                          35
                                         Sunny
df[df['temperature'] == df['temperature'].max()]['day'] == '1/2/2017'
     1
         True
    Name: day, dtype: bool
df.to csv('new csv.csv', index=False)
!cat new_csv.csv
    day, temperature, windspeed, event
    1/1/2017,32,6,Rain
     1/2/2017,35,7,Sunny
     1/3/2017,28,2,Snow
     1/4/2017,24,7,Snow
    1/5/2017,32,4,Rain
    1/6/2017,31,2,Sunny
df.to_excel('excel.xlsx') #pip3 install openpyxl
xldf = pd.read excel("excel.xlsx")
print(xldf)
xldf = pd.read_excel("excel.xlsx", index_col=0, sheet_name='Sheet1')
print(xldf)
        Unnamed: 0
                         day temperature windspeed
                                                       event
    0
                   1/1/2017
                                        32
                                                        Rain
```

Index(['day', 'temperature', 'windspeed', 'event'], dtype='object')

```
1
           1 1/2/2017
                                          7 Sunny
                               35
2
           2 1/3/2017
                               28
                                          2
                                              Snow
3
          3 1/4/2017
                               24
                                              Snow
4
          4 1/5/2017
                               32
                                          4 Rain
           5 1/6/2017
                                          2 Sunny
5
                               31
       day temperature windspeed event
0 1/1/2017
                    32
                                  Rain
1 1/2/2017
                    35
                               7 Sunny
2 1/3/2017
                    28
                               2 Snow
3 1/4/2017
                    24
                                 Snow
4 1/5/2017
                    32
                               4 Rain
                               2 Sunny
5 1/6/2017
                    31
```

▼ GroupBy

```
data = """day,city,temperature,windspeed,event
1/1/2017, new york, 32, 6, Rain
1/2/2017, new york, 36, 7, Sunny
1/3/2017, new york, 28, 12, Snow
1/4/2017, new york, 33, 7, Sunny
1/1/2017, mumbai, 90, 5, Sunny
1/2/2017, mumbai, 85, 12, Fog
1/3/2017, mumbai, 87, 15, Fog
1/4/2017, mumbai, 92, 5, Rain
1/1/2017, paris, 45, 20, Sunny
1/2/2017, paris, 50, 13, Cloudy
1/3/2017, paris, 54, 8, Cloudy
1/4/2017, paris, 42, 10, Cloudy"""
f = open("weather_data_cities.csv", "w")
f.write(data)
f.close()
df = pd.read csv("weather data cities.csv")
df
```

```
city temperature windspeed event
        day
    0 1/1/2017 new york
                        32
                                    Rain
group = df.groupby("city")
group
   <pandas.core.groupby.generic.DataFrameGroupBy object at 0x7ff5aa30e7d0>
                           E Cunny
    1/1/2017 mumbai
                  00
for g, df in group:
 print(g)
 print(df)
 print("-----")
   mumbai
        day city temperature windspeed event
                  90 5 Sunny
85 12 Fog
   4 1/1/2017 mumbai
   5 1/2/2017 mumbai
                       87
                                   Fog
   6 1/3/2017 mumbai
                               15
   7 1/4/2017 mumbai
                              5 Rain
                       92
   _____
   new york
   day city temperature windspeed event 0 1/1/2017 new york 32 6 Rain
                     32 6 Rain
                        36
28
                                 7 Sunny
   1 1/2/2017 new york
                                 12
   2 1/3/2017 new york
                                    Snow
   3 1/4/2017 new york
                      33
                               7 Sunny
   _____
   paris
        day city temperature windspeed event
                            20 Sunny
    1/1/2017 paris
                   45
                     50
                            13 Cloudy
   9 1/2/2017 paris
   10 1/3/2017 paris
11 1/4/2017 paris
                       54
                                8 Cloudy
                       42 10 Cloudy
```

group.get_group('new york')

	day	city	temperature	windspeed	event
0	1/1/2017	new york	32	6	Rain
1	1/2/2017	new york	36	7	Sunny
2	1/3/2017	new york	28	12	Snow
3	1/4/2017	new york	33	7	Sunny

```
group.max()
```

day temperature windspeed event

~i+v

group.mean()

temperature	windspeed

city		
mumbai	88.50	9.25
new york	32.25	8.00
paris	47.75	12.75

group.describe()

	temperature					windspeed							
	count	mean	std	min	25%	50%	75%	max	count	mean	std	min	25%
city													
mumbai	4.0	88.50	3.109126	85.0	86.50	88.5	90.50	92.0	4.0	9.25	5.057997	5.0	5.00
new york	4.0	32.25	3.304038	28.0	31.00	32.5	33.75	36.0	4.0	8.00	2.708013	6.0	6.75
paris	4.0	47.75	5.315073	42.0	44.25	47.5	51.00	54.0	4.0	12.75	5.251984	8.0	9.50

Concatenate dataframes

india_weather = pd.DataFrame({"city":["Mumbai", "Delhi", "Bangalore"], "temperature":[32,45,30]
india_weather

	city	temperature	humidity
0	Mumbai	32	80
1	Delhi	45	60
2	Bangalore	30	78

us_weather_tuples = [("new york", 68, 21), ("chicago", 65, 14), ("orlando", 75, 35)]
us_weather = pd.DataFrame(data=us_weather_tuples, columns=["city", "temperature", "humidity"])
us_weather

	city	temperature	humidity
0	new york	68	21
1	chicago	65	14
2	orlando	75	35

```
df = pd.concat([india_weather, us_weather], ignore_index=True)
df
```

	city	temperature	humidity
0	Mumbai	32	80
1	Delhi	45	60
2	Bangalore	30	78
3	new york	68	21
4	chicago	65	14
5	orlando	75	35

```
df = pd.concat([india_weather, us_weather], axis=1)
df
```

	city	temperature	humidity	city	temperature	humidity
0	Mumbai	32	80	new york	68	21
1	Delhi	45	60	chicago	65	14
2	Bangalore	30	78	orlando	75	35

Merging

```
temperature_df = pd.DataFrame({"city":["Mumbai", "Delhi", "Bangalore", "Hyderabad"], 'temperat
print(temperature_df)
humidity_df = pd.DataFrame({"city":["Mumbai", "Delhi", "Bangalore", "Chennai"], 'humidity':[68
print(humidity_df)
```

```
city temperature
0
     Mumbai
                      32
1
      Delhi
                      45
2 Bangalore
                      30
3 Hyderabad
                      40
       city humidity
0
     Mumbai
1
     Delhi
                   65
2 Bangalore
                   75
3
    Chennai
                   80
```

```
df = pd.merge(temperature_df, humidity_df, on="city")
df
```

city temperature humidity

```
df = pd.merge(temperature_df, humidity_df, on="city", how="outer")
df
```

	city	temperature	humidity
0	Mumbai	32.0	68.0
1	Delhi	45.0	65.0
2	Bangalore	30.0	75.0
3	Hyderabad	40.0	NaN
4	Chennai	NaN	80.0

```
df = pd.merge(temperature_df, humidity_df, on="city", how="left")
df
```

	city	temperature	humidity
0	Mumbai	32	68.0
1	Delhi	45	65.0
2	Bangalore	30	75.0
3	Hyderabad	40	NaN

```
df = pd.merge(temperature_df, humidity_df, on="city", how="right")
df
```

	city	temperature	humidity
0	Mumbai	32.0	68
1	Delhi	45.0	65
2	Bangalore	30.0	75
3	Chennai	NaN	80

Numerical Indexing

```
df = pd.DataFrame(data=[1,2,3,4,5,6,7,8,9,10], index=[50,49,48,47,46,45,44,43,42,41], columns=df
```

```
3
     48
     47
          4
     46
          5
     45
          6
     44
          7
df.loc[44] #by our given index
    num
          7
    Name: 44, dtype: int64
df.iloc[3] #by the row
    num
    Name: 47, dtype: int64
df.iloc[:3] #row 0, 1, 2 excluding 3
         num
     50
          1
     49
         2
     48
           3
df.loc[:44] #all rows till index 44, iterating from top to bottom
         num
     50
     49
         2
     48
          3
     47
          4
           5
     46
           6
     45
```

num

df.loc[44:42] #from index '44' to '42'

43 8

df.iloc[:2] #all rows till row no 2 (exclusive)

num

num

44

7

df.iloc[1:4] #from 1st to excluding 4th row