MATH1103 FALL 2022 PROBLEM SET 5

This problem set is due on Wednesday, October 5 at 11:59 pm. Each problem part is worth 3 points. Collaboration is encouraged. In all cases, you must write your own solutions, and and you must cite collaborators and resources used.

Problem 1. Some exercises.

- (a) (Strang 8.1.50) Rotate $y = x^3$ around the y-axis from y = 0 to y = 8. Write down the volume integral by shells and disks and compute both ways.
- (b) (Strang 8.2.12) What integral gives the length of Archimedes' spiral $x = t \cos t$, $y = t \sin t$?
- (c) (Strang 8.3.1) Find the surface area when the curve $y = \sqrt{x}$, $2 \le x \le 6$ is revolved around the x-axis.
- (d) (Strang 8.3.19 and 8.3.20) A lamp shade is constructed by rotating y = 1/x around the y-axis, and keeping the part from y = 1 to y = 2. What is the surface area of the lamp shade?
 - *Hint:* The integral computation is surprisingly tricky. See the third page for a guide.
- (e) (Strang 8.4.7) If you choose x completely at random between 0 and π , what is the density p(x) and the cumulative density F(x)?

Problem 2 (Strang 8.2.33).

- (a) Write down the integral for the length L of $y = x^2$ from (0,0) to (1,1).
- (b) Show (without computing the integrals) that $y = \frac{1}{2}x^2$ from (0,0) to (2,2) is exactly twice as long.

Problem 3. You toss a coin repeatedly and stop when you get heads. Let X be a random variable representing the number of coins tossed. (So the minimum X can be is 1, which happens if your first flip lands heads. But there is no maximum.)

- (a) For each n let $p_n = \Pr[X = n]$, the probability that X equals n. Show that $p_n = 1/2^n$ for every positive integer n.
- (b) (Strang 8.4.2) What is the probability that X is odd?

(c) (Strang 8.4.4) Show that the probability P that X is a prime number satisfies

$$\frac{6}{16} \le P \le \frac{7}{16}.$$

(d) (Strang 8.4.20) Find the average number μ of coin tosses by writing $p_1 + 2p_2 + 3p_3 + \dots$ as $(p_1 + p_2 + p_3 + \dots) + (p_2 + p_3 + p_4 + \dots) + (p_3 + p_4 + p_5 + \dots) + \dots$

Guide on how to compute the integral for 1(d)

For this guide I will walk through a computation of the indefinite integral

$$\int \frac{\sqrt{y^4 + 1}}{y^3} \, dy.$$

First make the substitution $u = y^2$, du = 2y dy. Then $\sqrt{y^4 + 1}$ can be written as $\sqrt{u^2 + 1}$, while $1/y^3 dy$ can be written as $1/(2u^2) du$. So our integral is now

$$\int \frac{\sqrt{u^2 + 1}}{2u^2} \, du = \frac{1}{2} \int \frac{\sqrt{u^2 + 1}}{u^2} \, du.$$

There are two choices now and they both work.

Choice 1. Make the substitution $u = \tan \theta$, $du = \sec^2 \theta d\theta$. This takes advantage of the fact that $\sqrt{\tan^2 \theta + 1} = \sec \theta$. We now have

$$\frac{1}{2} \int \frac{\sec \theta}{\tan^2 \theta} \sec^2 \theta \, d\theta.$$

The integrand simplifies (using $\tan \theta = \sin \theta / \cos \theta$) to $\csc^2 \theta \sec \theta$. Finally, using $\csc^2 \theta = 1 + \cot^2 \theta$ the integrand simplifies to $\sec \theta + \cot \theta \csc \theta$. The rest, as they say, is history. You can integrate both terms easily by a lookup table. Finally don't forget that a definite integral awaits after you find your antiderivative.

Choice 2. If you like hyperbolic functions, you can make the substitution $u = \sinh \theta$, $du = \cosh \theta \, d\theta$. I won't walk through this beyond this point because I haven't talked about hyperbolic functions at all.