TEL 311E – Homework 7

Due 11.01.2011

1. Consider the system given by,

$$y(n) = x(2n) + 1$$

where x(n) is the input and y(n) is the output. Specify whether the system is

- (a) Memoriless, (b) Linear, (c) Time-invariant, (d) Causal, (e) Stable in the BIBO sense. Please explain your answers.
- 2. Let T_1 be an LTI system with impulse response $h_1(n) = a^n u(n)$.
 - (a) For which values of 'a' is T_1 stable in the BIBO sense?
 - (b) Assume that T_1 is BIBO stable. Suppose we input some x(n) to T_1 and obtain y(n), as shown below. Let T_2 be another LTI system with impulse response $h_2(n) = \delta(n) a^{-1} \delta(n+1)$ and

$$x(n) \longrightarrow T_1 \longrightarrow y(n) \longrightarrow T_2 \longrightarrow z(n)$$

suppose we input y(n) to this system to obtain z(n). Express z(n) in terms of x(n).

3. Suppose that the z-transform of the step response (i.e. the response when a unit step function u(n), is input to the system) of an LTI system is given by

$$X(z) = \frac{1}{1 + \frac{1}{4} z^{-1}} + \frac{1}{1 - z^{-1}}.$$

Let us denote the z-transform of the impulse response as H(z).

- (a) If we know that the system is stable, what should be the region of convergence for H(z)?
- (b) Determine the impulse response h(n) of this stable system.
- 4. Consider the system below which maps x(n) to y(n).

$$x(n) \longrightarrow \boxed{D/C}$$
 $x_c(t)$
 $T_1 = 1$
 $T_2 = 3$

- (a) Express y(n) in terms of x(n).
- (b) Express $Y(e^{j\omega})$ in terms of $X(e^{j\omega})$.
- 5. Let x(n) be an N-point signal whose N-point DFT is denoted by X(k). Suppose we circularly shift X(k) by one sample to obtain $\tilde{X}(k)$, i.e.,

$$\tilde{X}(0) = X(N-1),$$
 $\tilde{X}(k) = X(k-1)$ for $1 < k < N-1.$

Express $\tilde{x}(n)$, the IDFT of $\tilde{X}(k)$, in terms of x(n).

6. Let x(n) be a 10-point signal with 10-point DFT

$$X(k) = k^2$$
 for $0 \le k \le 9$.

Compute

$$s = \sum_{n=0}^{N} x(n) \left[\cos \left(\frac{\pi}{N} n \right) + 2 \sin \left(\frac{6\pi}{N} n \right) \right].$$