Cours TalENS 2024-2025 Malédiction, *My Little Pony* et Égypte

Clément Allard & Matthieu Boyer

16 novembre 2024

Plan

Faire briller un chameau?

La lumière, kézako?

Mille feux et mille couleurs

Comment un écran voit-il?

Propagation de la lumière

Principe du Ray Tracing

Implémentation pratique

Prédire la lumière?

La pouissance

Le Chameau et l'Espace

Plan

Faire briller un chameau?

La lumière, kézako?

Mille feux et mille couleur

Comment un écran voit-il?

Implémentation pratique

Un exemple: Doom

Figure - Jeu vidéo Doom

Rayons lumineux

Définition 1.1: Onde

Une onde est la propagation d'une perturbation de proche en proche avec transfert d'énergie

Rayons lumineux

Définition 1.1: Onde

Une onde est la propagation d'une perturbation de proche en proche avec transfert d'énergie

Définition 1.2: Rayon Lumineux

On définit un rayon lumineux comme une courbe de l'espace selon laquelle se propage l'énergie lumineuse (véhiculée par l'onde électromagnétique).

Limites expérimentales

On représentera donc la lumière par des courbes fléchées, dont on ne connait pas la forme *a priori*.

Limites expérimentales

On représentera donc la lumière par des courbes fléchées, dont on ne connait pas la forme *a priori*.

Remarque 1.1

D'un point de vue expérimental, la modélisation de la lumière par des rayons lumineux fonctionne bien (dans la limite d'objets assez grands devant la longueur d'onde de l'onde, pour ne pas avoir de diffraction). Il n'y a diffraction que dans le cas où la taille de l'objet est de l'ordre de grandeur de la longueur d'onde du rayon lumineux ($< 1~\mu\mathrm{m}$ pour les rayons visibles).

Limites expérimentales

On représentera donc la lumière par des courbes fléchées, dont on ne connait pas la forme *a priori*.

Figure – Illustration du phénomène de diffraction

Mille feux et mille couleurs

Plan

Faire briller un chameau?

La lumière, kézako?

Mille feux et mille couleurs

Comment un écran voit-il !

Implémentation pratique

Couleurs!

Définition 1.3: Longueur d'onde

On appelle longueur d'onde d'une onde sa période spatiale λ , c'est à dire le plus petit réel non nul qui vérifie

$$\forall x, s(x) = s(x + \lambda)$$

Faire briller un chameau?

Couleurs!

0000

Remarque 1.1: Couleur

En pratique, on peut associer à chaque longueur d'onde une couleur, comme le montre le spectre ci-dessous :

Figure – Spectre électromagnétique du visible

Plan

Faire briller un chameau?

Comment un écran voit-il?

Propagation de la lumière

Principe du Ray Tracing

Implémentation pratique

MTHI et interface

Définition 2.1: MTHI - Milieux Transparents Homogènes Isotropes

On s'intéresse à des milieux qui sont :

Transparents : l'énergie lumineuse n'est pas absorbée par le milieu :

Homogènes : les propriétés du milieu ne dépendent pas du point choisi ;

Isotropes : les propriétés du milieu ne dépendent pas de la direction du rayon lumineux.

MTHI et interface

Définition 2.1: Dioptre

On appelle dioptre l'interface entre deux milieux

Indice optique

Définition 2.2: Indice optique

On définit l'indice optique n de la manière suivante

$$n = \frac{c}{v_{\varphi}}$$

où $c=299~792~458~\mathrm{m\cdot s^{-1}}$ est la vitesse de la lumière dans le vide et v_{φ} est la vitesse de propagation de la lumière dans notre milieu.

L'indice optique du vide vaut 1, celui de l'air 1.0003, celui de l'eau 1.33 et le verre autour de 1.5.

Périodes

Remarque 2.1: Lien période - longueur d'onde

On a ici

$$v_{\varphi} = \frac{\lambda}{T}$$

où T est la période temporelle de l'onde

Lumière dans un MTHI (1)

Théorème 2.1: Propagation de la lumière dans les MTHI

- Les rayons lumineux sont des droites.
- Les rayons lumineux se propagent indépendamment entre eux.

Démonstration.

On prouvera un de ces points ultérieurement.

Lumière dans un MTHI (2)

Proposition 2.1: Droite Paramétrée

Une droite de l'espace euclidien \mathbb{R}^n peut être vue comme un vecteur de norme 1 $v \in \mathbb{R}^n$ appelé vecteur directeur associé à un point $p \in \mathbb{R}^n$ par lequel elle passe.

Lumière dans un MTHI (3) : Retour inverse

Théorème 2.2: Principe du retour inverse de la lumière

Dans un MTHI, le trajet de la lumière ne dépend pas du sens de parcours

Démonstration.

Ceci s'illustre car le milieu est homogène et isotrope.

Principe du Ray Tracing

Plan

Faire briller un chameau

Comment un écran voit-il?

Propagation de la lumière

Principe du Ray Tracing

Implémentation pratique

Règles du jeu

- Considérons une lampe qui éclaire notre chameau. On va s'intéresser à la manière dont un observateur extérieur peut voir le chameau.
- Un observateur extérieur ne voit une surface que si celle-ci réfléchit la lumière vers son œil.

Idée naïve

L'idée naïve est de choisir un pixel de l'écran, et de déduire la marche des rayons lumineux qui l'atteignent.

Figure – Principe du Ray Tracing : trouver les rayons qui atteignent un point précis.

Principe du Ray Tracing

Problème

Le problème ici est qu'on doit tracer la marche d'un grand nombre de rayons pour avoir une image de bonne résolution, sachant que la plupart des rayons n'atteindront jamais l'observateur!

Figure - Rayons Passant par un Point

Solution!

Figure – PRIL : La source est l'écran, l'écran est la source.

Principe du Ray Tracing

Morale

L'avantage : on peut se restreindre à un nombre de rayons plus limité, en ne prenant que ceux qui vont entrer dans le champ de vision de l'observateur et économisant énormément de puissance de calcul (ce qui est nécessaire pour la fluidité d'un jeu vidéo par exemple).

Enjeux et objectifs

Donc, pour calculer la répartition de lumière sur l'écran (et donc la couleur de chaque pixel), il nous reste à :

- 1. Trouver comment la trajectoire d'un rayon est modifiée en rencontrant un objet.
- Trouver comment la couleur d'un rayon est modifiée en rencontrant un objet.
- Trouver comment modéliser un objet et calculer son intersection avec des rayons lumineux.

Plan

Faire briller un chameau?

Comment un écran voit-il?

Implémentation pratique Prédire la lumière?

La pouissance Le Chameau et l'Espace

Règle fondamentale

Théorème 3.1: Principe de Fermat

La lumière se propage en minimisant son temps de parcours.

Règle fondamentale

Théorème 3.1: Principe de Fermat

La lumière se propage en minimisant son temps de parcours.

Remarque 3.1

Ce principe n'est pas exclusif à la lumière, et par exemple est aussi vrai pour le son (et généralement tout comportement ondulatoire) : on peut donc faire des équivalents de ray tracing sur du son ou autres.

Rayons lumineux et droites

On note (AB)=nAB le chemin optique. Le principe de Fermat s'écrit de manière équivalente en la minimisation du chemin optique.

Remarque 3.2

Dans un milieu d'indice constant, la minimisation du chemin optique est équivalente à celle de la distance entre deux points. On sait que le chemin le plus court entre deux points est la ligne droite : on retrouve que dans un MTHI, les rayons lumineux sont des droites.

Snell-Descartes (1)

À l'interface entre deux milieux d'indice optique n_1 et n_2 , la propagation d'un rayon lumineux en provenance du milieu 1 se fait selon les lois suivantes :

Plan d'incidence : Il existe un rayon réfléchi (qui reste dans le milieu 1) et un rayon réfracté (qui se propage dans le milieu 2) qui sont tous les deux situés dans le plan formé par le rayon incident et la normale au dioptre.

Snell-Descartes (2)

$$n_1 \sin\left(i_1\right) = n_2 \sin\left(i_2\right)$$

Snell-Descartes (3)

Loi de la Réflexion :

$$i_1 = -i_1'$$

Normale

Remarque 3.3

Pour un objet suffisamment agréable (donc modélisable par une fonction mathématique simple z=f(x,y)), la normale au point (x,y,z) est définie par $(-\frac{\partial f}{\partial x},-\frac{\partial f}{\partial y},1)$

Produit vectoriel

Définition 3.1: Produit Vectoriel

Si $u,v\in\mathbb{R}^3$, on définit le produit vectoriel $u\times v$ de u et v comme le vecteur orthogonal à u et v, de norme $\|u\|\ \|v\|\ \sin(u\hat{\,},v)$ et orienté selon la règle de la main droite :

$$u \times v = \begin{pmatrix} u_2 v_3 - u_3 v_2 \\ u_3 v_1 - u_1 v_3 \\ u_1 v_2 - u_2 v_1 \end{pmatrix}$$

Prédire la lumière?

Produit vectoriel

Remarque 3.4

Il est impossible de définir des opérateurs similaires aux produits vectoriels en dimensions supérieures. Sauf en dimension 7.

Triangle

Dans le cas d'un triangle dont on connaît les trois côtés, on peut aisément trouver la normale en tout point appartenant à la face :

Proposition 3.1: Normale à un Triangle

Si T=(i,j,k) est une face d'une triangulation de sommets x_i,x_j,x_k , alors la normale à l'objet en tout point de la face T est définie par :

$$(x_j - x_i) \times (x_k - x_i)$$

Prédire la lumière?

Snell-Descartes Vecteurs Édition

Proposition 3.2: Lois de Snell-Descartes Vectorielles

On se donne \overrightarrow{l} un vecteur directeur de rayon de lumière, \overrightarrow{n} la normale à la surface au point où elle est atteinte. On garde les notations précédentes :

Réfraction On a :

$$\vec{v}_{\text{réfract\'e}} = \frac{n_1}{n_2} \vec{l} + \left(\frac{n_1}{n_2} \cos i_1 - \cos i_2\right) \vec{n} \quad (1)$$

Réflexion On a :
$$\vec{v}_{\text{réfléchi}} = \vec{l} + 2\cos i_1 \vec{n}$$
 (2)

Plan

Faire briller un chameau?

Comment un écran voit-il?

Implémentation pratique

Prédire la lumière?

La pouissance

Le Chameau et l'Espace

La pouissance

Coefficients

Définition 3.1: Coefficients de puissance

Coefficient en réflexion On définit le coefficient de réflexion en puissance R comme le rapport de la puissance véhiculée par l'onde réfléchie sur celle de l'onde incidente.

Coefficients

Définition 3.1: Coefficients de puissance

Coefficient en réflexion On définit le coefficient de réflexion en puissance R comme le rapport de la puissance véhiculée par l'onde réfléchie sur celle de l'onde incidente.

On définit de même les coefficients de transmission (pour l'onde réfractée) et d'absorption (pour l'onde absorbée)

Conservation de la puissance (1)

Remarque 3.5: Conservation de la puissance?

Un objet opaque a un coefficient de transmission nul. Dans un MTHI, il n'y pas d'absorption de la lumière donc A=0 et R+T=1 (ce qui traduit la conservation de la puissance). Dans le cas contraire, par exemple pour un objet opaque, on a R+T<1.

Conservation de la puissance (2)

Figure – Bilan radiatif

La puissance au service de la couleur

En pratique, on peut relier les coefficients d'absorption et de transmission aux longueurs d'ondes et donc aux couleurs. Dans le cadre d'un dioptre, on a :

$$R = \left(\frac{n_1 - n_2}{n_1 + n_2}\right)^2 \quad T = \frac{4n_1 n_2}{(n_1 + n_2)^2}$$

La loi de Cauchy donne $n(\lambda)=A+\frac{B}{\lambda^2}$: on a donc un lien entre la connaissance des coefficients de réflexion/réfraction et la couleur du rayon.

La pouissance

Tout est bien qui finit bien

Il suffit donc de savoir la direction initiale d'un rayon et les représentations de tous les objets dans l'environnement pour pouvoir calculer la trajectoire complète d'un rayon.

Le Chameau et l'Espace

Plan

Faire briller un chameau?

Comment un écran voit-il?

Implémentation pratique

Prédire la lumière?

La pouissance

Le Chameau et l'Espace

Le Chameau et l'Espace

Chameau triangulé

Figure - Triangulation d'un Chameau

Triangulation: tutoriel

Définition 3.2: Triangulation 3D

Une triangulation d'un objet est un ensemble $\mathcal{V}=\llbracket 1,n \rrbracket$ de sommets $(x_i \in \mathbb{R}^3 \text{ pour } i \in \mathcal{V})$, et un ensemble $\mathcal{F} \subseteq \mathcal{V}^{3*m}$ de triangles appelés faces.

Ceci nous permet de définir un objet en ne connaissant qu'un nombre fini de point. Ceci ne change rien en réalité puisqu'on reste limité par la précision des calculs sur les nombres flottants (à virgule).

Triangulation pour les nerds

Remarque 3.6

Formellement (plus ou moins), une triangulation est un complexe simplicial (ensemble de triangles) homéomorphe (qui peut être déformé sans créer de trous ni fermer de trous) à la variété (l'objet).

Triangle et rayon :...

On suppose donne un rayon (paramétré par t) $P(t) = O + t \cdot D$ et on cherche un t_i tel que $P(t_i) \in F = (P_0, P_1, P_2)$. On note N la normale du triangle F. On calcule d'abord le point d'intersection entre le rayon et le plan qui contient le triangle :

$$t_{intersect} = \frac{(d - N \cdot O)}{N \cdot D}$$

...ils ne furent plus qu'un...

On vérifie alors si le point $I=P(t_i)$ obtenu appartient au triangle. Pour cela on calcule les coordonnées dites barycentrique β_i du point (i.e. $I=\beta_0P_0+\beta_1P_1+\beta_2P_2$) :

$$\beta_i = \|(P_{i+2} - P_{i+1}) \times (I - P_{i+1})\| / \|N\|$$

Alors I est dans le triangle si et seulement si les trois β_i sont entre 0 et 1.

... vécurent heureux...

Algorithm Ray Tracing

... et eurent beaucoup d'enfants

Dans la vraie vie, pour se faciliter la vie, on ne va pas tester tous les points d'intersection : si on en a trouvé un on s'arrête, et on va séparer l'espace en plusieurs parties pour restreindre les objets qui pourraient potentiellement être atteints. Toutefois, les algorithmes qui effectuent ces répartitions sont un peu trop complexes pour être détaillés ici. Vous pouvez vous renseigner en cherchant les constructions de *BVH* et des *USS*, *Quadtree/Octree*, *kd-trees*, *BSP-trees*.