Quiz 2.3: Model of an ion channel

Biological interpretation of parameters

0 points possible (ungraded)

Consider the following model for an ion channel which is going to be opened by depolarization: the electrical current I_{ion} through the channel is given by

$$I_{ion}=g_{ion}r^{n_1}s^{n_2}\left(u-u_{ion}
ight)$$

where u is the membrane potential of the neuron, g_{ion} and u_{ion} are two constants, and $n_1=2,n_2=1$. The quantities r and s obey the equations

$$\frac{dr}{dt} = -\frac{r - r_0(u)}{\tau_r(u)}$$

 $\frac{ds}{dt} = -\frac{s - s_0(u)}{\tau_s(u)}$

Fix n, 电压变大, 因为tau_r较小, 所以r_O迅速到峰值1。r迅速增加, 导电性增加, 电流增加。 随后, s开始变成0, s_0变成0, 导电性减少, 电流减少。

Fix s,t, n越大, 开的channel越多, 导电性也越大。

with r_0, s_0, au_r , and au_s as shown in the following figure.

1. Which of the followings are correct in terms of *biological* interpretation of the parameters introduces above?

 $|r^{n1}|$ is the fraction of open channels. ullet

ho $1-r^{n1}$ is the probability that a single channel is open.

我觉得是r,因为n1 = 1了啊

 $lap{1-s}$ is the fraction of inactivated channels. $lap{1-s}$

lacktriangledown The channel is activated before it is inactivated due to the fact that $au_r < au_s$. lacktriangledown

tau越小越快到达峰值,存在一个速度差。

 $ightharpoonup g_{ion}$ is the maximal conductance for the ion under consideration. ightharpoonup

 $\overline{} g_{ion}$ might be considered as conductance of a single channel times total number of channels. ullet

 $lap{u}_{ion}$ is the reversal potential. $lap{}$

Submit

You have used 1 of 1 attempt

1 Answers are displayed within the problem

Evolution of membrane potential 0 points possible (ungraded) 2. How does the channel react (in terms of partial or full opening/closing) to a step change in membrane potential? Suppose that for t < 0, the membrane potential is clamped at a value u_0 , and that at t = 0 it instantaneously jumps to a value $u' = u_2 \ (1 - \delta)$ with $\delta \ll 1$. See the figure above for the values of u_0, u', u_2 , and u_{ion} where it is maintained for all $t \geq 0$. If t = 1 ms, the channel is closed because t = 0. If t = 1 ms, the channel is partially open because t = 1 and t = 1 ms and so $t = 1 - e^{-1} \approx 0$. If t = 1 ms the channel is closed because t = 0. If t = 1 ms the channel is almost completely open because t = 1 but t = 1 due to its long time constant (15 ms). If t = 1 ms the channel is partially closed because t = 1 but t = 1 and t = 1 and t = 1 but t = 1 and t = 1 and t = 1 but t = 1 and t = 1 but t = 1

Discussion

Topic: Week 2 / Quiz 2.3: Model of an ion channel

1 Answers are displayed within the problem

© All Rights Reserved

Show Discussion