Step-1

Let $A^{-1}b = x$ and further suppose that x satisfies Cx = d.

Thus, we get

$$P_{C/\min} = P_{\min} + \frac{1}{2} y^{\mathsf{T}} \left(C A^{-1} b - d \right)$$

$$= P_{\min} + \frac{1}{2} y^{\mathsf{T}} \left(C x - d \right)$$

$$= P_{\min} + \frac{1}{2} y^{\mathsf{T}} \left(0 \right)$$

$$= P_{\min}$$

Step-2

Thus, whenever $A^{-1}b = x_{\text{Satisfies}} Cx = d$, we get $P_{C/\min} = P_{\min}$.