

ACIT4830 – Special Robotics and Control Subject **Topic6 – Neural Networks**

Evi Zouganeli OsloMet – Oslo Metropolitan University (evizou@oslomet.no)

Content

(Chapter 7 Lantz book – Neural Networks + check Chapters 11 and 12 Alpaydin book (for reference see front page in Canvas))

- Intro
- Perceptron
- Multilayer perceptron
- Backpropagation, Gradient descent
- Neural Network
- Recurrent Neural Network
- Convolutional Neural Network
- Hands-on exercises NN, RNN
- Homework, CNN

neuron

Perceptron

Activation functions f(x)

OSLO METROPOLITAN UNIVERSITY STORBYUNIVERSITETET

Activation function

$$F(x) = \frac{1}{1 + e^{-x}}$$

Visualisation

Artificial Neural Network

Neural Networks – example applications

- Speech and handwriting recognition programs like those used by voicemail transcription services and postal mail sorting machines
- The automation of smart devices like an office building's environmental controls or self-driving cars and self-piloting drones
- Sophisticated models of weather and climate patterns, tensile strength, fluid dynamics, and many other scientific, social, or economic phenomena

How do neural networks learn?

Optimisation – backpropagation of errors

STORBYUNIVERSITETET

OSLO METROPOLITAN UNIVER STORBYUNIVERSITETET

Gradient descent

Multilayer Neural Network w/ backpropagation

Strengths	Weaknesses
Can be adapted to classification or numeric prediction problems	 Reputation of being computationally intensive and
 Among the most accurate modeling approaches 	slow to train, particularly if the network topology is complex
 Makes few assumptions about the data's underlying relationships 	 Easy to overfit or underfit training data
	 Results in a complex black box model that is difficult if not impossible to interpret

Recurrent Neural Network

Recurrent Neural Network

- Remember previous events and output(s)
- Used for processing sequential data

Recurrent Neural Network

Long-Short Term Memory RNN – LSTM

"Alice is allergic to nuts. She can't eat peanut butter."

two types of memory - short- and long-term

Convolutional Neural Network

Convolution

1	1	1	0	0
0	1	1	1	0
0	0	1	1	1
0	0	1	1	0
0	1	1	0	0

1	0	1
0	1	0
1	0	1

Image

4	3	4
2	4	3
2	3	

Convolved Feature

Convolution

Pooling

Convolutional Neural Network

Deep Learning learns layers of features

STORBYUNIVERSITETET

Content

(Chapter 7 Lantz book – Neural Networks + check Chapters 11 and 12 Alpaydin book (for reference see front page in Canvas))

- Intro
- Perceptron
- Multilayer perceptron
- Backpropagation, Gradient descent
- Neural Network
- Recurrent Neural Network
- Convolutional Neural Network
- Hands-on exercises NN, RNN
- Homework, CNN