ξ -Formeln-Tabelle der T0-Theorie

Vollständige Hierarchie mit berechnbarem Higgs-VEV

J. Pascher

14. September 2025

1 Einleitung: Grundlagen der T0-Theorie

1.1 Fundamentale Zeit-Masse-Dualität

Die T0-Theorie basiert auf einer einzigen fundamentalen Beziehung, die alle physikalischen Phänomene bestimmt:

$$T(x,t) \times m(x,t) = 1$$
(1)

Bedeutung: Zeit und Masse sind perfekte Komplementärgrößen. Wo mehr Masse vorhanden ist, fließt die Zeit langsamer - eine universelle Dualität, die von Quantenebene bis zur Kosmologie gültig ist.

1.2 Natürliche Einheiten und Energie-Masse-Äquivalenz

Die T0-Theorie arbeitet ausschließlich in natürlichen Einheiten:

Konsequenzen:

- Alle Teilchenmassen sind gleichzeitig Energien (gemessen in GeV)
- Längen und Zeiten haben Dimension [Energie⁻¹]
- Dimensionslose Kopplungskonstanten bleiben invariant
- Vereinfachung aller physikalischen Berechnungen

1.3 Der universelle geometrische Parameter

Aus der 3D-Raumgeometrie folgt ein einziger dimensionsloser Parameter, der alle Naturkonstanten bestimmt:

$$\xi = \frac{4}{3} \times 10^{-4} \tag{3}$$

Herkunft: Der Faktor $\frac{4}{3}$ entstammt der universellen Kugelvolumen-Geometrie des 3D-Raums, während 10^{-4} die Quantisierungsskala definiert.

Eigenschaft: ALLE Naturkonstanten $(c, \hbar, G, \alpha, v, \text{ alle Teilchenmassen})$ sind aus diesem einzigen geometrischen Parameter ξ vollständig berechenbar - ohne weitere freie Parameter!

2 Fundamentaler Parameter

Konstante	Formel	Wert	Herkunft
ξ	$\frac{4}{3} \times 10^{-4}$	1.333×10^{-4}	3D-Raumgeometrie

3 Erste Ableitungsstufe: Yukawa-Kopplungen aus ξ

Teilchen	Quantenzahlen	Yukawa-Kopplung	Bemerkung
Elektron	$(1,0,\frac{1}{2})$	$y_e = \frac{2}{3}\xi^{\frac{5}{2}}$	Geometrisch abgelei-
			tet
Myon	$(2,1,\frac{1}{2})$	$y_{\mu} = \frac{8}{5}\xi^2$	Geometrisch abgelei-
	2		tet
Tau	$(3,2,\frac{1}{2})$	$y_{\tau} = \frac{5}{4}\xi^{\frac{3}{2}}$	Geometrisch abgelei-
	2	•	tet

4 Higgs-VEV (BERECHENBAR aus ξ)

Parameter	Formel	Wert	Status
$v_{ m bare}$	$\frac{4}{3} \times \xi^{-\frac{1}{2}}$	115.5 (nat.) / 141.0 GeV	Aus ξ berechnet
$K_{ m quantum}$	$\frac{v_{\rm exp}}{v_{\rm bare}}$	1.747	Quantenkorrekturfaktor
v (physikalisch)	$v_{\rm bare} \times K_{\rm quantum}$	246.22 GeV	Vollständig berechen- bar

${\bf 4.1} \quad {\bf Quantenkorrekturfaktor\text{-}Aufschl\"{u}sselung}$

Komponente	Formel	Wert	Bedeutung
$K_{\text{geometric}}$	$\sqrt{3}$	1.732	3D-Geometrie
K_{loop}	Renormierung	~ 1.01	Loop-Korrekturen
$K_{ m vacuum}$	Vakuumfluktuationen	~ 1.00	Quantenfluktuationen
$K_{ m quantum}$	$\sqrt{3} \times K_{\text{loop}} \times K_{\text{vac}}$	1.747	Gesamtkorrektur

5 Teilchenmassen aus Yukawa \times v

Teilchen	Massenformel	Wert	Experimentell
Elektron	$m_e = y_e \times v$	$0.511~\mathrm{MeV}$	$0.511~\mathrm{MeV}$
Myon	$m_{\mu} = y_{\mu} \times v$	$105.66~\mathrm{MeV}$	$105.66~\mathrm{MeV}$
Tau	$m_{\tau} = y_{\tau} \times v$	1776.86 MeV	$1776.86~\mathrm{MeV}$

6 Charakteristische Energie E_0 aus Massen

Parameter	Formel	Wert	Bedeutung
E_0	$\sqrt{m_e \times m_\mu}$	7.35 MeV	EM-charakteristische
			Energie

7 Feinstrukturkonstante α aus ξ und E_0

Konstante	Formel	Wert	Korrektur
α (nackt)	$\xi \times E_0^2$	7.20×10^{-3}	Vor QFT
$K_{ m frak}$	Fraktale Korrektur	0.9862	Geometrische Korrektur
α (physikalisch)	$\alpha_{ m nackt} \times K_{ m frak}$	$\frac{1}{137.036}$	Mit QFT- Korrektur

8 Elektromagnetische Konstanten aus α

Konstante	Formel	Wert	Ableitung
ε_0	$\frac{1}{4\pi\alpha}$	$8.854 \times 10^{-12} \text{ F/m}$	Aus α
μ_0	$4\pi\alpha$	$1.257 \times 10^{-6} \text{ H/m}$	Aus α
e	$\sqrt{4\pi\alpha}$	$1.602 \times 10^{-19} \text{ C}$	Aus α

9 Gravitationskonstante G aus ξ und berechneter μ -Masse

Parameter	Formel	Wert	Beschreibung
m_{μ} (berechnet)	$y_{\mu} \times v = \frac{8}{5}\xi^2 \times v$	105.66 MeV	Aus ξ und v berechnet
G	$rac{\xi^2}{4m_{\mu}^{ m berechnet}}$	6.674×10^{-11} m ³ /(kg·s ²)	Verwendet berechnete Myon-Masse

10 Fundamentale Konstanten c und \hbar aus ξ -Geometrie

Konstante	Formel	Wert	Herkunft
C	Maximale Feldausbreitung $= \frac{1}{\xi^{\frac{1}{4}}}$	$2.998 \times 10^8 \text{ m/s}$	Geometrische Feldstruktur
\hbar	Energie-Frequenz- Verhältnis = $\xi \times E_0$	$1.055 \times 10^{-34} \text{ J} \cdot \text{s}$	Quantengeometrie

11 Planck-Einheiten aus G, \hbar , c (alle aus ξ berechenbar)

Konstante	Formel	Wert	Basis
$L_{ m Planck}$	$\sqrt{rac{\hbar G}{c^3}}$	$1.616 \times 10^{-35} \text{ m}$	Alle Komponenten aus ξ
$t_{ m Planck}$	$\sqrt{rac{\hbar G}{c^5}}$	$5.391 \times 10^{-44} \text{ s}$	Alle Komponenten aus ξ
$m_{ m Planck}$	$\sqrt{rac{\hbar c}{G}}$	$2.176 \times 10^{-8} \text{ kg}$	Alle Komponenten aus ξ
$E_{ m Planck}$	$\sqrt{rac{\hbar c^5}{G}}$	$1.22 \times 10^{19} \text{ GeV}$	Alle Komponenten aus ξ

12 Weitere Kopplungskonstanten aus ξ

Kopplung	Formel	Wert	Beschreibung
α_s (Stark)	$\xi^{-\frac{1}{3}}$	9.65	Starke Wechselwirkung
α_w (Schwach)	$\xi^{\frac{1}{2}}$	1.15×10^{-2}	Schwache Wechselwirkung
α_g (Gravitation)	ξ^2	1.78×10^{-8}	Gravitationskopplung

13 Higgs-Sektor-Parameter aus v und ξ

Parameter	Formel	Wert	Beschreibung
m_H	$v \times \xi^{\frac{1}{4}}$	125 GeV	Higgs-Masse
λ_H	$\frac{m_H^2}{2v^2}$	0.13	Higgs-Selbstkopplung
$\Lambda_{ m QCD}$	$v \times \xi^{\frac{1}{3}}$	$\sim 200~{\rm MeV}$	QCD-Skala

13.1 Alternative Higgs- ξ -Herleitung

Parameter	Formel	Wert	Vergleich
ξ (aus Higgs)	$\frac{\lambda_h^2 v^2}{16\pi^3 m_h^2}$	1.318×10^{-4}	99% Übereinstimmung
ξ (geometrisch)	$\frac{4}{3} \times 10^{-4}$	1.333×10^{-4}	Referenz

14 Magnetisches Moment-Anomaly aus Massen

Teilchen	Endformel	Т0-	Experimentell	Status
		Berechnung		
Myon	$\Delta a_{\mu} = 251 \times 10^{-11} \times$	251×10^{-11}	$251(59) \times 10^{-11}$	BESTÄTIGT
	$\left(rac{m_{\mu}}{m_{\mu}} ight)^2$			(0.10σ)
Elektron	$\Delta a_e = 251 \times 10^{-11} \times$	5.87×10^{-15}	~ 0 (zu klein)	BESTÄTIGT
	$\left(\frac{m_e}{m_\mu}\right)^2$			
Tau	$\Delta a_{\tau} = 251 \times 10^{-11} \times$	7.10×10^{-7}	Noch nicht	Vorhersage
	$\left(\frac{m_{ au}}{m_{\mu}}\right)^2$		messbar	testbar

15 Neutrino-Massen (mit doppelter ξ -Unterdrückung)

Teilchen	Formel	Vorhersage	Status
$ u_e $	$m_{\nu e} = y_{\nu e} \times v \times \xi$	$\sim \mathrm{meV}$	Testbar
$ u_{\mu}$	$m_{\nu\mu} = y_{\nu\mu} \times v \times \xi$	$\sim 10 \text{ meV}$	Testbar
$ u_{ au}$	$m_{\nu\tau} = y_{\nu\tau} \times v \times \xi$	$\sim 100 \text{ meV}$	Testbar

16 Quark-Massen aus Yukawa-Kopplungen

Teilchen	r_i Koeffizient	Exponent p_i	Masse-Formel
Up	$r_u = 6$	$p_u = \frac{3}{2}$	$m_u = 6\xi^{\frac{3}{2}} \times v$
Down	$r_d = \frac{25}{2}$	$p_d = \frac{3}{2}$	$m_d = \frac{25}{2}\xi^{\frac{3}{2}} \times v$
Charm	$r_c = 2$	$p_c = \frac{2}{3}$	$m_c = 2\xi^{\frac{2}{3}} \times v$
Strange	$r_s = \frac{26}{9}$	$p_s = 1$	$m_s = \frac{26}{9}\xi^1 \times v$
Top	$r_t = \frac{1}{28}$	$p_t = -\frac{1}{3}$	$m_t = \frac{1}{28} \xi^{-\frac{1}{3}} \times v$
Bottom	$r_b = \frac{3}{2}$	$p_b = \frac{1}{2}$	$m_b = \frac{3}{2}\xi^{\frac{1}{2}} \times v$

17 Längenskalen-Hierarchie

Skala	Formel	Wert	Bedeutung
L_0	$\xi \times L_{\rm Planck}$	$2.155 \times 10^{-39} \text{ m}$	Sub-Planck Minimum
L_{ξ}	ξ (nat.)	$1.333 \times 10^{-4} \text{ (nat.)}$	Charakteristische Länge
$L_{ m Casimir}$	$\sim 100~\mu\mathrm{m}$	10^{-4} m	Casimir- charakteristisch

18 Kosmologische Parameter aus ξ

Parameter	Formel	Wert	Beschreibung
$T_{ m CMB}$	$\frac{16}{9}\xi^2 \times E_{\xi}$	2.725 K	CMB-Temperatur
H_0	$\xi^2 \times E_{\rm typ}$	67.4 km/s/Mpc	Hubble-Parameter
$ ho_{ m vac}$	$\frac{\xi \hbar c}{L_{\xi}^4}$	$4.17 \times 10^{-14} \text{ J/m}^3$	Vakuumenergiedichte

19 Gravitationstheorie: Zeitfeld-Lagrangian

Term	Formel	Beschreibung
Intrinsisches Zeitfeld	$\mathcal{L}_{\text{grav}} = \frac{1}{2} \partial_{\mu} T \partial^{\mu} T - \frac{1}{2} T^2 - \frac{\rho}{T}$	Gravitations-Lagrangian
Gravitationspotential	$\Phi(r) = -\frac{GM}{r} + \kappa r$	Modifizierte Gravitation
κ -Parameter	$\kappa = \frac{\sqrt{2}}{4G^2m_{\mu}}$	Linearer Gravitationsterm

20 Experimentelle Verhältnisse (Renormierungsinvariant)

Verhältnis	Т0-	Experimentell	Übereinstimmung
	Vorhersage		
$\frac{m_{\mu}}{m_e}$	207.8	206.77	99.5%
$rac{m_ au}{m_\mu}$	16.8	16.82	99.9%
$\frac{\alpha_g}{\alpha}$	1.33×10^{-4}	1.24×10^{-4}	93%

21 VOLLSTÄNDIG KORRIGIERTE Ableitungskette

$$\xi$$
 (3D-Geometrie) $\to v_{\text{bare}} \to K_{\text{quantum}} \to v \to \text{Yukawa} \to \text{Teilchenmassen} \to E_0 \to \alpha \to \varepsilon_0, \mu_0, e \to c, \hbar \to G \to \text{Planck-Einheiten} \to \text{Weitere Physik}$

22 Revolutionäre Erkenntnis

ALLE Naturkonstanten $(c, \hbar, G, \alpha, \varepsilon_0, \mu_0, e)$ sind aus dem einzigen geometrischen Parameter $\xi = \frac{4}{3} \times 10^{-4}$ vollständig berechenbar!

22.1 Geometrischer Ursprung aller Konstanten

Konstante	T0-Ursprung	Experimenteller
		Status
c	Maximale Feldausbreitung	✓ Bestätigt
\hbar	Energie-Frequenz- Verhältnis	✓ Bestätigt
G	ξ^2 -Skalierungseffekt	✓ Bestätigt
α	Geometrische EM- Kopplung	✓ Bestätigt

Konstante	T0-Ursprung	Experimenteller Status
v	Quantengeometrie + Korrekturen	✓ Bestätigt

Das T0-Modell ist eine echte Theory of Everything mit NULL freien Parametern!

23 WICHTIGE HINWEISE ZU UMRECHNUNGEN UND KORREKTUREN

23.1 T0-Grundlage: Natürliche Einheiten

FUNDAMENTALE TO-GLEICHSETZUNG:

$$\hbar = c = 1 \rightarrow E = m \text{ (Energie = Masse)}$$

Bedeutung:

- Alle Teilchenmassen sind gleichzeitig Energien
- Längen und Zeiten haben Dimension $[E^{-1}]$
- ξ ist pure dimensionslose Geometrie
- Vereinfachung aller T0-Formeln durch E=m

23.2 Einheitenumrechnungen

ACHTUNG: Beim Umrechnen von natürlichen Einheiten ($\hbar = c = 1$) auf SI-Einheiten müssen folgende Faktoren beachtet werden:

Umrechnung	Faktor	Beispiel
Energie \rightarrow Mas-	$/c^2$	$E[J] = m[kg] \times c^2$
se		
Energie \rightarrow Fre-	$/\hbar$	$E[J] = \hbar \times \omega[Hz]$
quenz		
$L\ddot{a}nge \rightarrow Zeit$	$\times c$	$t[\mathbf{s}] = L[\mathbf{m}]/c$
Planck-	Spezifische Fak-	Siehe CODATA 2018
Einheiten \rightarrow	toren	
SI		

23.3 Fraktale Korrekturen

Die T0-Theorie verwendet fraktale Geometriekorrekturen für höchste Präzision:

Parameter	Fraktale Korrektur	Anwendung
α (Feinstruktur)	$K_{\rm frak} = 0.9862$	$\alpha_{\rm phys} = \alpha_{\rm nackt} \times K_{\rm frak}$
Teilchenmassen	$K_{\rm geom} \approx 1.00 - 1.05$	Geometrische Quantisie-
		rung

Parameter	Fraktale Korrektur	Anwendung
Kopplungskonstanten	$K_{ m topo}$	Topologische Korrekturen

23.4 Dimensionale Konsistenz

PRÜFEN SIE IMMER:

- Alle Formeln in natürlichen Einheiten: $[\xi] = [1], [E] = [m] = [L^{-1}] = [t^{-1}]$
- ullet SI-Umrechnungen: Korrekte Potenzen von c und \hbar
- Dimensionsanalyse: [Linke Seite] = [Rechte Seite]

23.5 Numerische Präzision

- ξ exakt: $\frac{4}{30000}$ (rationale Form für höchste Präzision)
- Rundungsfehler vermeiden: Vollständige Dezimalentwicklung verwenden
- Experimentelle Werte: Aktuelle PDG/CODATA-Referenzen nutzen

24 Vollständige Projektdokumentation

GitHub Repository:

https://github.com/jpascher/TO-Time-Mass-Duality

24.1 Verfügbare PDF-Dokumente

- ξ -Hierarchie Ableitung: hirachie De.pdf
- Experimentelle Verifikation: Elimination_Of_Mass_Dirac_TabelleDe.pdf
- Myon g-2 Analyse: CompleteMuon_g-2_AnalysisDe.pdf
- Gravitationskonstante: gravitationskonstante_De.pdf
- QFT-Grundlagen: QFT_De.pdf
- Mathematische Struktur: Mathematische_struktur_De.pdf
- Zeitfeld-Lagrangian: MathZeitMasseLagrangeDe.pdf
- Zusammenfassung: Zusammenfassung_De.pdf

24.2 Deutsche Dokumentation

• Deutsch (De): Vollständige Originalversion mit detaillierten Herleitungen

Diese Tabelle ist nur eine Übersicht - für vollständige mathematische Herleitungen, detaillierte Beweise und numerische Berechnungen siehe die PDF-Dokumente im GitHub-Repository! Referenzen: CODATA 2018, PDG 2022, Fermilab Myon g-2 Kollaboration