OPERATIONS RESEARCH FINAL PROJECT

台北市公車發車頻率規劃

施驊軒 B08303012 沈昱廷 B08703015 王乙庭 B08701233 胡濬涵 B09201002 陳鵬仁 B09201013 李婷穎 B07502057 林峻佑 B07703049 吳孟諺 B07703079 翁如萱 B07703093 黃郁庭 B07703118

Liberty Times Net 汽車 時尚 體商 3 C 評論 玩咖 食譜 地產 專區 TAIPEI TIMES 求職

查北市 26-31 °C

788公車脫班嚴重 乘客貼「監督日誌」

基隆客運七八八路線公車被投訴脫班嚴重,基隆市城隍廟前候車亭貼滿「監 督日誌」。 (記者盧賢秀攝)

背景發想

COVID-19 疫情,司機人力不足

減班造成民眾等待時間拉長

規劃公車業者減少班次的安排

如何挑選目標路線

目標路線

藍 10、204、紅 50、棕 1、民生幹線

挑選方式

- 同一個客運公司:首都客運
- 同一個調度站: 首都客運內湖站
- 路線的發車班次多:班次過少的公車路線代表可能有非常特定的需求,不能規劃減班

路線圖

問題的困難點

同一站點有多條路線經過

- 選定的五條路線有重疊的部分,不同公車路線可能會行駛相同路段
- 可能的影響:
 - 減去某個班次,仍然可能有其他替代路線
 - 同時砍了兩條公車路線的不同班次,導致短期內沒有任何替代方案,造成等待時間過長

需考慮公車路線交會的路段、哪個班次會經過哪些站,那些站還有多少公車多少班次會經過、 經過的時間間隔、搭車人數

對公車路線交會情形、班次密集度、搭車人數取平衡

問題設計

問題內容

針對「204、民生幹線、紅 50、棕 1、藍 10 」共五條路線,如何透過刪減現有公車班次, 能最小化「乘客不滿意度」

名詞定義

乘客不滿意度:因額外等待時間所造成的不滿意程度

- 額外等待時間:原先搭乘的班次被減班後,為等到下一班可搭乘的公車,所付出的額外時間
- 不滿意程度:額外等待時間 (t) 經函數 Q(t) 計算得出的數值

前提假設

- 每日發車頻率、乘客分配與資料內容相同
- 各班次搭乘需求為每小時需求量均分值
- 需求量發生的時間點為未減班前的班次到站的那刻
- 同時間搭車,且起訖站相同者會有相同的決策行為
- 減少的班次數不能多於原有班次數的一半

資料介紹

每小時搭乘人數

	TPE18266	TPE18268	TPE18270
TPE18266	0	10	0
TPE18268	0	0	0
TPE18270	0	0	0

公車發車頻率

204	民生幹線	紅 50	棕 1	藍 10
5:40	5:50	9:30	5:40	5:40
6:20	6:10	11:00	6:40	6:20
7:00	6:30	13:00	7:10	7:00
7:15	6:50	14:30	7:30	7:15
7:30	7:00	16:00	8:00	7:30

兩站間行駛時間

RouteUID	FromStopUID	ToStopUID	Runtime(s)
TPE10132	TPE33210	TPE33211	48
TPE10132	TPE33211	TPE33212	30
TPE10132	TPE33212	TPE33213	120
TPE10132	TPE33213	TPE33214	120
TPE10132	TPE33214	TPE33214	120

3 BENCHMARK 比較

4

減班結果討論

SETS

- / 為該發車站的所有路線集合
- $D_i = \{1, 2, ..., n\}$ 為路線 $j \in J$ 所有班次的編號集合
- ullet $W_j = \{0,1,2,...,m-2,-1\}$, W_j 為路線 $j \in J$ 的所有站點編號集合, $W_j = m$
- $I = \{[0:00,6:00), [6:00,8:00), [8:00,15:30), [15:30,17:30), [17:30,24:00)\}$, 為所有時段區間的集合

PARAMETERS

- X 為一給定倍率, $0.5 \le X \le 1$ (新班次總數 / 原班次總數 $\le X$)
- T_{jdk} 為所有公車路線 $j \in J$ 的班次 $d \in D_j$ 經過站點 $k \in K_j$ 的時刻
- $Q_i(t)$ 為公車路線 $j \in J$ 上的乘客對於需要等待 t 分鐘所產生的不滿意値
- F_i 為公車路線 $j \in J$ 相鄰兩班次被允許的最長間隔(分鐘)
- L_i 為時段區間 $i \in I$ 最低的發車數要求
- M 為一足夠大之常數, 取 M=1440

$Q_i(t)$ 函數設定

- 假設所有公車路線都是使用相同的不滿意函數
- 不滿意度會隨著等待時間增加而持續上升
- 乘客對等待時間的不滿意反應會有臨界值:前期等待時間的增加會使乘客的不滿意度成長較快,但超過臨界點後則會趨緩
- 沒有等待時間時,不滿意程度為 0

PARAMETERS

- y_{ijd} 為如果公車路線 $j \in J$ 班次 $d \in D_j$ 的發車時間屬於 $i \in I$ 時段,則 $y_{ijd}=1$; 否則, $y_{ijd}=0$
- z_{jkq} 為如果公車路線 $j \in J$ 會經過站點 $k \in K$ 以及站點 $q \in K$, 則 $z_{jkq} = 1$; 否則 $z_{jkq} = 0$
- s_{jdkq} 為預計在站點 $k \in K$ 搭乘公車路線 $j \in J$ 的班次 $d \in D_j$ 以到達站點 $q \in K$ 的人數

DECISION VARIABLES

- x_{jd} 為如果公車路線 $j \in J$ 班次 $d \in D_j$ 有在新規劃的班次裡 則 $x_{jd}=1$; 否則, $x_{jd}=0$
- a_{jdkqmn} 為如果原先預計在站點 $k \in K$ 搭乘公車路線 $j \in J$ 的班次 $d \in D_j$ 以到達站點 $q \in K$ 的乘客,最後搭乘的是公車路線 $m \in J$ 的班次 $n \in D_m$,則 $a_{jdkqmn} = 1$;
 - 否則, $a_{jdkqmn} = 0$
- t_{jdkq} 為原先預計在站點 $k \in K$ 搭乘公車路線 $j \in J$ 班次 $d \in D_j$ 以到達站點 $q \in K$ 的乘客所等待的時長(分鐘)。若乘客有成功搭上原本預計搭乘的班次,則 $t_{jdkq} = 0$

Objective Function

最小化所有乘客的不滿意度

預計在站點 $k \in K$ 搭乘公車路線 $j \in J$ 的班次 $d \in D_i$ 以到達站點 $q \in K$ 的人數

公車路線 $j \in I$ 的乘客對於需要等待t分鐘所產生的不滿意値

規劃式/限制式

CONSTR1/等待時間要不少於該班次的新到站時間和原到站時間的時間差

• $t_{jdkq} \ge (T_{mnk} - T_{jdk})a_{jdkqmn} \quad \forall j, m \in J, d \in D_j, n \in D_m, k, q \in K, q > k$

$CONSTR2/確保 \ a_{jdkqmn}=1$ 的前提是公車路線 m 會經過站點 k 和站點 q

• $a_{jdkqmn} \le z_{mkq} \quad \forall j, m \in J, d \in D_j, n \in D_m, k, q \in K, q > k$

CONSTR3/乘客只能在新規劃的班次中進行轉乘

• $a_{jdkqmn} \leq x_{mn} \quad \forall j, m \in J, \ d \in D_j, \ n \in D_m, \ k, q \in K, \ q > k$

CONSTR4/乘客只能選擇搭乘一條路線的一個班次

• $\sum_{\substack{m \in J, \ n \in D_m}} a_{jdkqmn} = 1 \quad \forall j \in J, \ d \in D_j, \ k, q \in K, \ q > k$

規劃式/限制式

CONSTR5/乘客最後搭乘公車的時間不能比預計搭乘的時間還要早

• $T_{mnk} - a_{jdkqmn}T_{jdk} \ge 0 \quad \forall j, m \in J, d \in D_j, n \in D_m, k, q \in K, q > k$

CONSTR6/確保同一路線上任兩班有發出去班次的時間間隔在合理的範圍內

•
$$x_{j,d_2}T_{j,d_{2,0}} - x_{j,d_1}T_{j,d_{1,0}} \le M(2 - x_{j,d_1} - x_{j,d_2}) + F_j \sum_{d=d_1+1}^{d_2} x_{jd} \quad \forall j \in J, d_1, d_2 \in D_j, d_2 > d_1$$

CONSTR7/新規劃的總發車數不超過原本總班次的一定比例

規劃式/限制式

CONSTR8/每個時段的發車數要滿足最低發車數要求

 $\bullet \quad \sum_{j \in J} \sum_{d \in D_j} x_{jd} y_{ijd} \ge L_i \quad \forall i \in I$

CONSTR9/首班車、末班車一定要發

• $x_{j,0} = 1, x_{j,-1} = 1 \quad \forall j \in J$

Other CONSTRS

- $x_{jd} \in \{0, 1\} \quad \forall j \in J, \ d \in D_j$
- $t_{jdkq} \ge 0 \quad \forall j \in J, \ d \in D_j, \ k, q \in K, \ q > k$
- $a_{jdkqmn} \in \{0,1\} \ \forall j, m \in J, d \in D_j, n \in D_m, k, q \in K, q > k$

演算法

定義

乘客組 s_{jdkq} 為搭乘 j 路線 d 班次從 k 站到 q 站的一組乘客

核心概念

當剩餘班次數仍大於目標班次數時,在不連續刪減兩班的情況下,每輪挑選會使目標數值 $Q_i(t)\cdot s$ 增加最少的班次刪減

演算法/概念示意

抵達時間	t1	t2	t3
增加的不滿意程度	Θ		

演算法/概念示意

抵達時間	t1	t2	t3
增加的不滿意程度		Q(t2-t1)	

演算法/概念示意

抵達時間	t1	t2	t3
增加的不滿意程度			Q(t3-t1)-Q(t2-t1)

演算法/虛擬碼

當剩餘班次數仍大於目標班次數

對於每一個還未被刪除的班次

如果刪除這個班次會使前後兩班次靠站時間間隔大於限制

跳過這個班次

如果前一班或後一班班次被刪減過了

跳過這個班次

對於這個班次載的乘客組

計算分別由(同路線或不同路線)其他班次的公車載,最少會增加多少目標數值

對於這台公車幫忙載的乘客組

計算分別由其他班次的公車載,最少會「額外」增加多少目標數值

加總自己的乘客組和幫忙載的乘客組,最少提供的目標數值,即為刪除此班次公車增加的目標數值

和其他班次比較,紀錄目前「增加目標數值最少」的班次

將「增加目標數值最少」的班次刪除

記錄被刪除的班次的乘客組分別被哪些公車幫忙載走

BENCHMARK

概念

刪除所有公車路線中,乘客需求量最少的班次

減班結果討論/上班尖峰時間

204

民生幹線

藍10

減班結果討論/上班尖峰時間

Instance 1

三條公車路線互相獨立,沒有站點重疊

Instance 2

兩條公車路線有站點重疊,一條路線獨立

Instance 3

三條公車路線有站點重疊

減班結果討論/Instance 特性

減班結果討論/Instance 表現差異

	real-world	instance 1	instance 2	instance 3
b e n c h m a r k	82.09	63054.08	252495.29	113192.45
heuristic	58.42	43951.65	107244.06	38920.30
diff	-28.83%	-30.30%	- 57.53 %	-65.62%

減班結果討論/Instance 表現差異

現象一 | 無論是實際資料 \ instance, Heuristic 都表現較佳

- Heuristic 同時考慮需求、等待時間的增加所帶來的代價
- Benchmark 只考慮需求

現象二 | 路網重疊性越高, Heuristic 表現越佳

Heuristic 在重疊性高的路網,能考量替代路線,找出對乘客影響較少的減班方式。

未來展望

不同時段、不同路線應該有不同的 Q(t)

- 上下班時間通勤時期對等待時間的不滿意度較高
- 有些路線是假日休閒路線,急迫性很低

未來展望

- Q(t) 只考慮等待時間,未將公車乘坐上限納入考量
 - 將其他面向(擁擠程度)納入不滿意函數,提升乘客對公車路網滿意度的多元考量
 - 會導致同時間搭車,且起訖站相同者會有一樣的決策行為
 - 若能將載客量納入考量,將使同一群乘客做出不同的決策行為,更加表現班次調動的重要性

資料準確性

• 若能獲得更精細的資料,將能更有效規劃駕駛員發車時刻

