INTEGRATED CIRCUITS

DATA SHEET

For a complete data sheet, please also download:

- The IC04 LOCMOS HE4000B Logic Family Specifications HEF, HEC
- The IC04 LOCMOS HE4000B Logic Package Outlines/Information HEF, HEC

HEF4528B MSI

Dual monostable multivibrator

Product specification
File under Integrated Circuits, IC04

January 1995

Dual monostable multivibrator

HEF4528B MSI

DESCRIPTION

The HEF4528B is a dual retriggerable-resettable monostable multivibrator. Each multivibrator has an active LOW input (\bar{l}_0), and active HIGH input (l_1), an active LOW clear direct input (\bar{C}_D), an output (O) and its complement (\bar{O}), and two pins for connecting the external timing components ($C_{TC}^{(1)}$, RC_{TC}).

An external timing capacitor (C_t) must be connected between C_{TC} and RC_{TC} and an external resistor (R_t) must be connected between RC_{TC} and V_{DD} . The duration of the

(1) Always connected to ground.

on \overline{C}_D forces O LOW, O HIGH and inhibits any further pulses until \overline{C}_D is HIGH.

output pulse is determined by the external timing components C_t and R_t.

A HIGH to LOW transition on \bar{I}_0 when I_1 is LOW or a LOW to HIGH transition on I_1 when \bar{I}_0 is HIGH produces a positive pulse (LOW-HIGH-LOW) and O and a negative pulse (HIGH-LOW-HIGH) on \bar{O} if the \bar{C}_D is HIGH. A LOW

HEF4528BP(N): 16-lead DIL; plastic (SOT38-1)

HEF4528BD(F): 16-lead DIL; ceramic (cerdip) (SOT74)

HEF4528BT(D): 16-lead SO; plastic (SOT109-1)

(): Package Designator North America

PINNING

 $\begin{array}{ll} \bar{I}_{0A}, \bar{I}_{0B} & \text{input (HIGH to LOW triggered)} \\ I_{1A}, I_{1B} & \text{input (LOW to HIGH triggered)} \\ \overline{C}_{DA}, \overline{C}_{DB} & \text{clear direct input (active LOW)} \end{array}$

 O_A , O_B output

 \overline{O}_A , \overline{O}_B complementary output (active LOW) $C_{TC\ A}$, $C_{TC\ B}$ external capacitor connections ⁽¹⁾

RC_{TC A},

external capacitor/ resistor connections

RC_{TC B}

FAMILY DATA, I_{DD} LIMITS category MSI

See Family Specifications

Dual monostable multivibrator

HEF4528B MSI

Dual monostable multivibrator

HEF4528B MSI

FUNCTION TABLE

	INPUTS		OUTI	PUTS
Ī ₀	I ₁	$\overline{\mathbf{C}}_{D}$	0	ō
\	L	Н	7	4
Н	<i></i>	Н	工	┰
X	Х	L	L	Н

Notes

- 1. H = HIGH state (the more positive voltage)
- 2. L = LOW state (the less positive voltage)
- 3. X = state is immaterial
- 5. γ = negative-going transition
- 6. $\Box \Box \Box \Box =$ positive or negative output pulse; width is determined by C_t and R_t

AC CHARACTERISTICS

 V_{SS} = 0 V; T_{amb} = 25 °C; C_L = 50 pF; input transition times \leq 20 ns

	V _{DD}	SYMBOL	MIN.	TYP.	MAX.			TRAPOLATION RMULA
Propagation delays								
$\overline{I}_0, I_1 \rightarrow \overline{O}$	5			140	280	ns	113 ns +	(0,55 ns/pF) C _L
HIGH to LOW	10	t _{PHL}		50	100	ns	39 ns +	(0,23 ns/pF) C _L
	15			35	70	ns	27 ns +	(0,16 ns/pF) C _L
$\bar{I}_0, I_1 \rightarrow O$	5			155	305	ns	128 ns +	(0,55 ns/pF) C _L
LOW to HIGH	10	t _{PLH}		60	115	ns	49 ns +	(0,23 ns/pF) C _L
	15			40	80	ns	32 ns +	(0,16 ns/pF) C _L
$\overline{C}_D \to O$	5			105	210	ns	78 ns +	(0,55 ns/pF) C _L
HIGH to LOW	10	t _{PHL}		40	85	ns	29 ns +	(0,23 ns/pF) C _L
	15			30	60	ns	22 ns +	(0,16 ns/pF) C _L
$\overline{C}_D \to \overline{O}$	5			120	240	ns	93 ns +	(0,55 ns/pF) C _L
LOW to HIGH	10	t _{PLH}		50	105	ns	39 ns +	(0,23 ns/pF) C _L
	15			35	70	ns	27 ns +	(0,16 ns/pF) C _L
Output transition	5			60	120	ns	10 ns +	(1,0 ns/pF) C _L
times	10	t _{THL}		30	60	ns	9 ns +	(0,42 ns/pF) C _L
HIGH to LOW	15			20	40	ns	6 ns +	(0,28 ns/pF) C _L
	5			60	120	ns	10 ns +	(1,0 ns/pF) C _L
LOW to HIGH	10	t _{TLH}		30	60	ns	9 ns +	(0,42 ns/pF) C _L
	15			20	40	ns	6 ns +	(0,28 ns/pF) C_L

Dual monostable multivibrator

HEF4528B MSI

AC CHARACTERISTICS

 $V_{SS} = 0 \text{ V; } T_{amb} = 25 \text{ °C; input transition times} \leq 20 \text{ ns; } R_t = 5 \text{ k}\Omega; C_t = 15 \text{ pF}$

	V _{DD}	TYPICAL FORMULA FOR P (μW)	
Dynamic power	5	4000 $f_i + \sum (f_o C_L) \times V_{DD}^2$	where
dissipation per	10	20 000 $f_i + \sum (f_o C_L) \times V_{DD}^2$	$f_i = input freq. (MHz)$
package (P)	15	59 000 $f_i + \sum (f_o C_L) \times V_{DD}^2$	f _o = output freq. (MHz)
			C _L = load capacitance (pF)
			$\sum (f_0C_L) = \text{sum of outputs}$
			V _{DD} = supply voltage (V)

AC CHARACTERISTICS

 V_{SS} = 0 V; T_{amb} = 25 °C; C_L = 50 pF; input transition times \leq 20 ns; see also waveforms Fig.5.

	V _{DD}	SYMBOL	MIN.	TYP.	MAX.	
Recovery time	5		0	-75	ns	
for \overline{C}_D	10	t _{RCD}	0	-30	ns	
	15		0	-25	ns	
Minimum Ī ₀	5		50	25	ns	
pulse width; LOW	10	t _{WIOL}	30	15	ns	
	15		20	10	ns	
Minimum I ₁	5		50	25	ns	
pulse width; HIGH	10	t _{WI1H}	30	15	ns	
	15		20	10	ns	
Minimum \overline{C}_D	5		60	30	ns	
pulse width; LOW	10	t _{WCDL}	35	15	ns	
	15		25	10	ns	
Set-up time	5		0	-105	ns	
$\overline{C}_D \rightarrow \overline{I}_0 \text{ or } I_1$	10	t _{su}	0	-40	ns	to avoid change in output
	15		0	-25	ns	πισαιραί
Output O pulse	5		_	235	ns	
width; HIGH	10	t _{WOH}	_	155	ns	note 1
	15		_	140	ns	
Output O pulse	5		_	5,45	μs	
width; HIGH	10	t _{WOH}	_	4,95	μs	note 2
	15		_	4,85	μs	
Change in output O	5		_	±3	%	
pulse width over	10	Δt_{WO}	_	±2	%	note 3
temperature	15		_	±2	%	
Change in output O	5		_	±2	%	
pulse width over	10	Δt_{WO}	_	±1	%	$V_{DD} \pm 5\%$
V _{DD}	15		_	±1	%	

Dual monostable multivibrator

HEF4528B MSI

	V _{DD}	SYMBOL	MIN.	TYP.	MA	AX.	
External timing	5		5	_	20	00	kΩ
resistor	10	R _t	5	_	20	00	$k\Omega$
	15		5	_	20	00	$k\Omega$
External timing	5			no limi	ts		
capacitor	10	Ct		no limi	ts		
	15			no limi	ts		

Notes

- 1. $R_t = 5 \text{ k}\Omega$; $C_t = 15 \text{ pF}$; for other R_t , C_t combinations and $C_t < 0.01 \text{ }\mu\text{F}$ see graph Fig.4.
- 2. R_t = 10 k Ω ; C_t = 1000 pF; for other R_t , C_t combinations and C_t > 0,01 μ F use formula t_{WO} = K. R_t . C_t .

where: t_{WO} = output pulse width (s)

 R_t = external timing resistor (Ω)

C_t = external timing capacitor (F)

K = 0.42 for $V_{DD} = 5 V$

K = 0.32 for $V_{DD} = 10 V$

 $K = 0.30 \text{ for } V_{DD} = 15 \text{ V}$

3. T_{amb} = -40 to +85 °C; Δt_{WO} is referenced to t_{WO} at T_{amb} = 25 °C.

Dual monostable multivibrator

HEF4528B MSI

Dual monostable multivibrator

HEF4528B MSI

Fig.5 Waveforms showing minimum \bar{l}_0 , l_1 and O pulse widths, set-up and recovery times. Set-up and recovery times are shown as positive values but may be specified as negative values.

APPLICATION INFORMATION

An example of an application for the HEF4528B is:

• Non-retriggerable monostable multivibrator

Fig.6 Two examples for a non-retriggerable monostable multivibrator using half of HEF4528B (LOW to HIGH and HIGH to LOW triggered).

This datasheet has been download from:

www.datasheetcatalog.com

Datasheets for electronics components.