The group G is isomorphic to the group labelled by [72, 40] in the Small Groups library. Ordinary character table of $G \cong (S3 \times S3)$: C2:

	1a	3a	3b	2a	2b	6a	2c	6b	4a
χ_1	1	1	1	1	1	1	1	1	1
χ_2	1	1	1	1	1	1	-1	-1	-1
χ_3	1	1	1	1	-1	-1	1	1	-1
χ_4	1	1	1	1	-1	-1	-1	-1	1
χ_5	2	2	2	-2	0	0	0	0	0
χ_6	4	-2	1	0	0	0	2	-1	0
χ_7	4	-2	1	0	0	0	-2	1	0
χ_8	4	1	-2	0	2	-1	0	0	0
χ_9	4	1	-2	0	-2	1	0	0	0

Trivial source character table of $G \cong (S3 \times S3)$: C2 at p = 3:

Trivial source character table of $G \cong (S3 \times S3) : C2$ at $p = 3$:																		
Normalisers N_i			N_1			N_2			N_3				N_4					
p-subgroups of G up to conjugacy in G			P_1			P_2			P_3			P_4						
Representatives $n_j \in N_i$		2b	2a	2c	4a	1 <i>a</i>	2a	2b	2c	1a	2b	2a	2c	1a	4a	2b	2c	2a
$0 \cdot \chi_1 + 0 \cdot \chi_2 + 0 \cdot \chi_3 + 0 \cdot \chi_4 + 1 \cdot \chi_5 + 1 \cdot \chi_6 + 1 \cdot \chi_7 + 1 \cdot \chi_8 + 1 \cdot \chi_9$	18	0	-2	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
$1 \cdot \chi_1 + 0 \cdot \chi_2 + 0 \cdot \chi_3 + 0 \cdot \chi_4 + 0 \cdot \chi_5 + 1 \cdot \chi_6 + 0 \cdot \chi_7 + 1 \cdot \chi_8 + 0 \cdot \chi_9$	9	3	1	3	1	0	0	0	0	0	0	0	0	0	0	0	0	0
$0 \cdot \chi_1 + 0 \cdot \chi_2 + 0 \cdot \chi_3 + 1 \cdot \chi_4 + 0 \cdot \chi_5 + 0 \cdot \chi_6 + 1 \cdot \chi_7 + 0 \cdot \chi_8 + 1 \cdot \chi_9$	9	-3	1	-3	1	0	0	0	0	0	0	0	0	0	0	0	0	0
$0 \cdot \chi_1 + 0 \cdot \chi_2 + 1 \cdot \chi_3 + 0 \cdot \chi_4 + 0 \cdot \chi_5 + 1 \cdot \chi_6 + 0 \cdot \chi_7 + 0 \cdot \chi_8 + 1 \cdot \chi_9$	9	-3	1	3	-1	0	0	0	0	0	0	0	0	0	0	0	0	0
$0 \cdot \chi_1 + 1 \cdot \chi_2 + 0 \cdot \chi_3 + 0 \cdot \chi_4 + 0 \cdot \chi_5 + 0 \cdot \chi_6 + 1 \cdot \chi_7 + 1 \cdot \chi_8 + 0 \cdot \chi_9$	9	3	1	-3	-1	0	0	0	0	0	0	0	0	0	0	0	0	0
$0 \cdot \chi_1 + 0 \cdot \chi_2 + 0 \cdot \chi_3 + 0 \cdot \chi_4 + 1 \cdot \chi_5 + 0 \cdot \chi_6 + 1 \cdot \chi_7 + 0 \cdot \chi_8 + 0 \cdot \chi_9$	6	0	-2	-2	0	3	-1	1	-3	0	0	0	0	0	0	0	0	0
$1 \cdot \chi_1 + 0 \cdot \chi_2 + 1 \cdot \chi_3 + 0 \cdot \chi_4 + 0 \cdot \chi_5 + 1 \cdot \chi_6 + 0 \cdot \chi_7 + 0 \cdot \chi_8 + 0 \cdot \chi_9$	6	0	2	4	0	3	1	1	3	0	0	0	0	0	0	0	0	0
$0 \cdot \chi_1 + 0 \cdot \chi_2 + 0 \cdot \chi_3 + 0 \cdot \chi_4 + 1 \cdot \chi_5 + 1 \cdot \chi_6 + 0 \cdot \chi_7 + 0 \cdot \chi_8 + 0 \cdot \chi_9$	6	0	-2	2	0	3	-1	-1	3	0	0	0	0	0	0	0	0	0
$0 \cdot \chi_1 + 1 \cdot \chi_2 + 0 \cdot \chi_3 + 1 \cdot \chi_4 + 0 \cdot \chi_5 + 0 \cdot \chi_6 + 1 \cdot \chi_7 + 0 \cdot \chi_8 + 0 \cdot \chi_9$	6	0	2	-4	0	3	1	-1	-3	0	0	0	0	0	0	0	0	0
$0 \cdot \chi_1 + 0 \cdot \chi_2 + 0 \cdot \chi_3 + 0 \cdot \chi_4 + 1 \cdot \chi_5 + 0 \cdot \chi_6 + 0 \cdot \chi_7 + 0 \cdot \chi_8 + 1 \cdot \chi_9$	6	-2	-2	0	0	0	0	0	0	3	-3	1	-1	0	0	0	0	0
$1 \cdot \chi_1 + 1 \cdot \chi_2 + 0 \cdot \chi_3 + 0 \cdot \chi_4 + 0 \cdot \chi_5 + 0 \cdot \chi_6 + 0 \cdot \chi_7 + 1 \cdot \chi_8 + 0 \cdot \chi_9$	6	4	2	0	0	0	0	0	0	3	3	1	1	0	0	0	0	0
$0 \cdot \chi_1 + 0 \cdot \chi_2 + 0 \cdot \chi_3 + 0 \cdot \chi_4 + 1 \cdot \chi_5 + 0 \cdot \chi_6 + 0 \cdot \chi_7 + 1 \cdot \chi_8 + 0 \cdot \chi_9$	6	2	-2	0	0	0	0	0	0	3	3	-1	-1	0	0	0	0	0
$0 \cdot \chi_1 + 0 \cdot \chi_2 + 1 \cdot \chi_3 + 1 \cdot \chi_4 + 0 \cdot \chi_5 + 0 \cdot \chi_6 + 0 \cdot \chi_7 + 0 \cdot \chi_8 + 1 \cdot \chi_9$	6	-4	2	0	0	0	0	0	0	3	-3	-1	1	0	0	0	0	0
$1 \cdot \chi_1 + 0 \cdot \chi_2 + 0 \cdot \chi_3 + 0 \cdot \chi_4 + 0 \cdot \chi_5 + 0 \cdot \chi_6 + 0 \cdot \chi_7 + 0 \cdot \chi_8 + 0 \cdot \chi_9$	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1
$0 \cdot \chi_1 + 1 \cdot \chi_2 + 0 \cdot \chi_3 + 0 \cdot \chi_4 + 0 \cdot \chi_5 + 0 \cdot \chi_6 + 0 \cdot \chi_7 + 0 \cdot \chi_8 + 0 \cdot \chi_9$	1	1	1	-1	-1	1	1	-1	-1	1	1	1	1	1	-1	1	-1	1
$0 \cdot \chi_1 + 0 \cdot \chi_2 + 0 \cdot \chi_3 + 1 \cdot \chi_4 + 0 \cdot \chi_5 + 0 \cdot \chi_6 + 0 \cdot \chi_7 + 0 \cdot \chi_8 + 0 \cdot \chi_9$	1	-1	1	-1	1	1	1	-1	-1	1	-1	-1	1	1	1	-1	-1	1
$0 \cdot \chi_1 + 0 \cdot \chi_2 + 1 \cdot \chi_3 + 0 \cdot \chi_4 + 0 \cdot \chi_5 + 0 \cdot \chi_6 + 0 \cdot \chi_7 + 0 \cdot \chi_8 + 0 \cdot \chi_9$	1	-1	1	1	-1	1	1	1	1	1	-1	-1	1	1	-1	-1	1	1
$0 \cdot \chi_1 + 0 \cdot \chi_2 + 0 \cdot \chi_3 + 0 \cdot \chi_4 + 1 \cdot \chi_5 + 0 \cdot \chi_6 + 0 \cdot \chi_7 + 0 \cdot \chi_8 + 0 \cdot \chi_9$	2	0	-2	0	0	2	-2	0	0	2	0	0	-2	2	0	0	0	-2

```
P_1 = Group([()]) \cong 1
```

```
N_1 = Group([(3,5), (1,2)(3,4)(5,6), (3,5)(4,6), (1,3,5), (2,4,6)]) \cong (S3 \times S3) : C2
```

 $P_2 = Group([(1,3,5)(2,4,6)]) \cong C3$

 $P_3 = Group([(1, 3, 5)]) \cong C3$

 $P_4 = Group([(1,3,5)(2,4,6),(1,3,5)]) \cong C3 \times C3$

 $N_2 = Group([(1,3,5)(2,4,6),(2,4,6),(2,6)(3,5),(1,2,5,4,3,6)]) \cong \mathrm{S3} \times \mathrm{S3}$

 $N_3 = Group([(1,3,5),(4,6),(2,4,6),(3,5)(4,6)]) \cong S3 \times S3$

 $N_4 = Group([(2,6,4),(1,3,5)(2,4,6),(2,4),(2,6)(3,5),(1,2,5,6)(3,4)]) \cong (S3 \times S3) : C2$