# Data Science Course

Lecture 15

# Decision Trees

### **Decision Trees**

- Classification and Regression Trees or CART.
- Nodes, edges, leafs.
- Sequence of splits.



### Training

- Optimal split: iterate over the predictors and their possible values.
- Target average of resulting sub-groups.
- Calculate MSE.
- Weighted average.



#### Evaluation - R<sup>2</sup>

$$egin{align} SS_{ ext{res}} &= \sum_i (y_i - f_i)^2 \ SS_{ ext{tot}} &= \sum_i (y_i - ar{y})^2, \ R^2 &\equiv 1 - rac{SS_{ ext{res}}}{SS_{ ext{tot}}}. \end{aligned}$$

#### Balance

#### Pros:

- Simple to understand, interpret, visualize.
- Can handle numerical and categorical data.
- Regression and classification.

#### Cons:

- Over-complex trees that do not generalize the data well.
- Biased trees if some classes dominate.

## Bagging

- Objective: reduce the variance (robustness and accuracy).
- Multiple models not correlated.

### Random Forest

Small tweak to decorrelate the trees.

