Calcul Différentiel III

STEP, MINES ParisTech

5 janvier 2021 (#9ddc57e)

Question 1 (réponses multiples) Soit $f:(x_1,x_2)\in\mathbb{R}^2\mapsto x_1x_2\in\mathbb{R}$. On a

 \square A:

$$H_f(x) = \left[\begin{array}{cc} 0 & 1 \\ 1 & 0 \end{array} \right]$$

 \square B: Si $h_1 = (h_{11}, h_{12}) \in \mathbb{R}^2$ et $h_2 = (h_{21}, h_{22}) \in \mathbb{R}^2$,

$$d^2 f(x_1, x_2) \cdot h_1 \cdot h_2 = h_{11} h_{22} - h_{21} h_{12}$$

 \square C: Pour tout $x \in \mathbb{R}^2$

$$\nabla f(x+h) = \nabla f(x) + \frac{1}{2} \langle h, H_f(x) \cdot h \rangle + \varepsilon(h) ||h||^2$$

où $\varepsilon(h) \to 0$ quand $h \to 0$.

Question 2 Si $f: \mathbb{R}^n \to \mathbb{R}$ est deux fois différentiable en $x \in U$ et que $df(x) \cdot h \cdot h$ est connu pour tout $h \in \mathbb{R}^n$, peut-on déterminer $df(x) \cdot h_1 \cdot h_2$ pour tout $h_1, h_2 \in \mathbb{R}^n$?

- \square A : oui,
- \square B : non.

Question 3 La différentielle d^3f d'ordre 3 d'une fonction $f:U\subset\mathbb{R}^2\to\mathbb{R}^3$

- \square A : associe linéairement à tout vecteur h de \mathbb{R}^2 une application qui associe linéairement à tout vecteur h de \mathbb{R}^2 une application qui associe linéairement à tout vecteur h de \mathbb{R}^2 un vecteur de \mathbb{R}^3 .
- \square B : associe linéairement à tout point $x \in U$ une application qui associe linéairement à tout vecteur h de \mathbb{R}^2 une application qui associe linéairement à tout vecteur h de \mathbb{R}^2 un vecteur de \mathbb{R}^3 .
- \square C : associe à tout point $x \in U$ une application qui associe linéairement à tout vecteur h de \mathbb{R}^2 une application qui associe linéairement à tout vecteur h de \mathbb{R}^2 une application qui associe linéairement à tout vecteur h de \mathbb{R}^2 un vecteur de \mathbb{R}^3 .

Question 4 (reponses multiples) Le tenseur de type $(1,1,1)$ defini par $t_{ijk} = 1.0$:
□ A : est d'ordre 1, □ B : est décrit en NumPy par le tableau np.array([1.0]), □ C : représente l'application linéaire $x \in \mathbb{R} \to y \in \mathbb{R} \to xy \in \mathbb{R}$.
Question 5 La contraction du tenseur $[t_{ijk}]_{ijk}$ de type (m,n,p) et du tenseur de type (p,p) défini par $\delta_{lm}=1$ si $l=m$ et $\delta_{lm}=0$ sinon
\square A : n'est pas définie en général, \square B : est le tenseur $[t_{ijk}]_{ijk}$, \square C : est le tenseur $[\sum_k t_{ijk}]_{ij}$.
Question 6 Si $f: \mathbb{R}^2 \to \mathbb{R}^4$ est trois fois différentiable, quel est le type du tenseur représentant $d^3f(x)$?
\Box A: $(4, 2, 2, 2)$, \Box B: $(3, 4, 2)$, \Box C: $(4, 2, 1)$.
Question 7 (réponses multiples) Si f est k fois différentiable en x ,
\square A : les dérivées partielles d'ordre k de f en x existent, \square B : on a $\partial_{i_ki_1}^k f(x) = d^k f(x) \cdot e_{i_1} \cdot \cdot e_{i_k}$, \square C : ces dérivées partielles déterminent $d^k f(x)$ de façon unique.
Question 8 Si $f: \mathbb{R}^3 \to \mathbb{R}^3$ est deux fois différentiable, combien y'a-t'il au plus de coefficients différents dans le tenseur représentant $d^2f(x)$?
\Box A : 9, \Box B : 18, \Box C : 27.