Exercise II.15 (Tile setting $\star\star$):

A tile setter employs a modern technique for tile installation, involving preheating the tile and glue before affixing them to the concrete. The tile and glue are heated until they reach a steady-state condition, achieving a uniform heating temperature $T_{\rm H}$ and a constant heat flux \dot{q}_0'' . Once these conditions are met, the tile setter places the heated tile and glue on the concrete, maintaining a constant temperature $T_{\rm S}$ throughout the process. After reaching a critical temperature $T_{\rm crit}$ at a distance $\delta_{\rm crit}$ within the concrete, the heater is removed. Initially, the concrete used to be at a homogeneous temperature T_0

Given parameters:

arveir parameters.	
• Steady-state heat flux:	$\dot{q}_0'' = 7.5 \text{ kW/m}^2$
• Thickness of the pile:	$\delta_{\rm p}$ = 10 mm
• Thickness of the glue:	δ_{g} = 2 mm
• Conductivity of the pile:	$\lambda_{\rm p}$ = 1.0 W/mK
• Conductivity of the glue:	$\lambda_{\rm g}$ = 0.35 W/mK
• Conductivity of the concrete:	$\lambda_{\rm c}$ = 2.3 W/mK
• Heat capacity of the concrete:	$c_{\rm c}$ = 1,000 J/kgK
• Density of the concrete:	$\rho_{\rm c} = 2,400 \ {\rm kg/m^3}$
• Initial temperature of the concrete:	T_0 = 20 °C
• Heating temperature of the tile heater:	$T_{ m H}$ = 200 $^{ m o}{ m C}$
• Critical temperature:	$T_{ m crit}$ = 35 °C
• Critical distance:	δ_{crit} = 10 mm

Hints:

- Heat will never penetrate entirely through the concrete.

Tasks

- a) Derive the differential equation and establish the boundary and/or initial conditions to determine the temperature profile of the concrete. Based on your findings, identify the method that can be employed to determine the temperature at a particular position and time.
- b) Determine the time t_{crit} at which the heater can be removed.
- c) Illustrate the concrete's temperature profile that depicts both temporal and spatial variations.

Exercise II.16 (Heating and quenching of a sphere $\star \star \star$):

A sphere, initially at a homogeneous temperature of T_0 , is put into an oven. The oven temperature remains constant at a homogeneous temperature of T_0 .

Given parameters:

•	Initial temperature of the sphere:	$T_0 = 25 {}^{6}\mathrm{C}$

• Intermediate temperature of the sphere:
$$T_{\rm h} = 150~{\rm ^{o}C}$$

• Oven temperature:
$$T_{\rm o} = 200~{\rm ^{o}C}$$

• Quenching temperature:
$$T_{\rm q} = 30 \, {\rm ^{o}C}$$

• Heat transfer coefficient:
$$\alpha = 110 \text{ W/m}^2 \text{K}$$

• Radius of the sphere:
$$r_1 = 1.5 \text{ cm}$$

• Thermal conductivity of the sphere:
$$\lambda = 1.52 \text{ W/mK}$$

• Density the sphere:
$$\rho = 1.45 \cdot 10^3 \text{ kg/m}^3$$

• Specific heat capacity the sphere:
$$c_{\rm p} = 0.88 \text{ kJ/kg} \cdot \text{K}$$

Hints:

- Heat radiation can be neglected.
- It always remains that Fo > 0.2

Tasks:

- a) Derive the differential equation and establish the boundary and/or initial conditions to determine the temperature profile of the sphere. Based on your findings, identify the method that can be employed to determine the temperature at a particular position and time.
- b) Determine the temperature of the center of the sphere after 3 minutes.

After some time the sphere has a hot homogeneous temperature $T_{\rm h}$ and is being quenched. During this process, the quenching temperature is constant at $T_{\rm q}$. Further, in time, the center of the sphere has a temperature of 54 °C and the surface has a temperature of 44.4 °C.

- c) Determine the time instant when the center of the sphere has a temperature of 54 $^{\circ}$ C and the surface has a temperature of 44.4 $^{\circ}$ C.
- d) Determine the amount of heat dissipated at this time instant.