λ³-Phosphinine mit einer funktionellen Gruppe an C-4

Karl Dimroth* und Hans Kaletsch

Fachbereich Chemie der Universität Marburg, Hans-Meerwein-Straße, D-3550 Marburg

Eingegangen am 9. Februar 1987

Bisher unbekannte Derivate des λ^3 -Phosphinins mit einer funktionellen Gruppe an C-4, wie CN (10), CO₂CH₃ (11) oder CH₂CN (5), sowie 4,4'-Methylenbis(2,6-diphenyl- λ^3 -phosphinin) (6) werden unter milden Bedingungen durch reduktive Abspaltung der beiden Methoxylgruppen vom Phosphoratom aus den 4-substituierten 1,1-Dimethoxy-2,6-diphenyl- λ^3 -phosphininen (2, 7) erhalten. Die neuen λ^3 -Phosphinine sind kristalline, mit Ausnahme von 6 luftbeständige Verbindungen, deren analytische und spektroskopische Daten in Tab. 1 und 2 angegeben sind.

λ³-Phosphinine mit einer funktionellen Gruppe sind bis vor kurzem weder durch eine unmittelbare Synthese, wie ihre Aryl- oder Alkyl-Derivate¹⁾, noch aus dem nicht substituierten λ^3 -Phosphinin²⁾ erhalten worden³⁾. Märkl und Mitarbb. konnten aber aus Derivaten des 1-tert-Butyl-1,2-dihydrophosphinins⁴⁾ oder des 1-tert-Butyl-1-chlor(oder -brom)-λ⁵-phosphinins⁵⁾ durch Thermolyse bei 200-270°C an C-3 durch OH, Cl oder Br substituierte 5-Phenylλ³-phosphinine erhalten. Mit Li-Dialkylamiden ließen sich Halogen-Derivate auch in 3-(Dialkylamino)-5-phenyl-λ³-phosphinine überführen⁶. 1-tert-Butyl-1-chlor-3-phenyl-4-pivaloyl-λ⁵-phosphinin ergibt beim Erhitzen auf 250-270°C 3-Phenyl-4-pivaloyl-λ³phosphinin, das durch sein NMR-Spektrum charakterisiert wurde 7). In letzter Zeit wurde auch über Diels-Alder-Reaktionen von Phosphoralkenen mit Butadien-Derivaten berichtet, die zu hydrierten Phosphininen mit funktionellen Gruppen führen. Diese gehen unter milden Bedingungen in funktionell substituierten λ³-Phosphinine über, die isoliert und durch ihre NMR- und Massenspektren nachgewiesen wurden 8).

Wir berichten hier über einige Versuche, bei denen durch reduktive Abspaltung der 1,1-Dimethoxy-Gruppen von λ^3 -Phosphinin-Derivaten unter milden Bedingungen λ³-Phosphinin-Derivate erhalten wurden. Vorversuche mit 1,1-Dimethoxy-2,4,6-triphenyl- und mit 2,4,6-Tri-tert-butyl-1,1dimethoxy-λ⁵-phosphinin, die sich fast quantitativ aus den λ³-Phosphinin-Derivaten über ihre Quecksilberdiacetat-Komplexe mit Methanol bilden⁹, hatten ergeben, daß sie sich – nach der Abspaltung einer Methylgruppe aus einer der beiden Methoxygruppen am Phosphoratom durch Salzsäure zu den 1,2- (und 1,4-)Dihydro-1-methoxy-1-oxo- λ^5 phosphininen – mit LiAlH₄ wieder zu den λ^3 -Phosphinin-Derivaten reduzieren lassen. Wie schon früher beschrieben 10), entsteht aus 1,1-Dimethoxy-4-methyl-2,6-diphenyl- λ^5 -phosphinin (1) durch Abspaltung eines Hydrid-Ions von der Methylgruppe an C-4 durch Triphenylcarbenium-tetrafluoroborat fast quantitativ das nicht radikalische, kristalline 4-Carbenium-tetrafluoroborat 2. Dieses addiert einerseits glatt Nucleophile wie H-, OCH-, CN-, PPh3 oder N,N-

λ3-Phosphinines with a Functional Group at C-4

Hitherto unknown derivatives of λ^3 -phosphinines with a functional substituent at C-4, such as CN (10), CO₂CH₃ (11), or CH₂CN (5), as well as 4,4'-methylenebis(2,6-diphenyl- λ^3 -phosphinine) (6) are prepared under mild conditions by reductive elimination of both methoxyl groups from the phosphorus atom of the 4-substituted 1,1-dimethoxy-2,6-diphenyl- λ^5 -phosphinines (2, 7). The new λ^3 -phosphinines are crystalline and except for 6 air-stable compounds, whose analytical and spectroscopic data are reported in the Tables 1 and 2.

Dimethylanilin an die CH_2^+ -Gruppe zu $3\mathbf{a} - \mathbf{e}$, von denen $3\mathbf{b}$ und \mathbf{e} bisher nicht dargestellt waren. Andererseits läßt sich 2 auch in wäßrigem Acetonitril oder 1,2-Dimethoxy-

ethan mit Elektrophilen, wie mit Aryldiazoniumsalzen oder dem Kation 2 selbst, umsetzen. Unter Abspaltung von Formaldehyd und Tetrafluoroborsäure erhält man 4-Arylazo-substituierte λ^3 -Phosphinin-Derivate, wie 4a-c, bzw. das interessante 4,4'-Methylenbis(1,1-dimethoxy-2,6-diphenyl- λ^3 -phosphinin) (4d)¹¹. Setzt man 3e mit Nitrophenyldiazonium-tetrafluoroborat um, erhält man auschließlich die Arylazoverbindung des λ^5 -Phosphinins (4b) und keine Arylazoverbindung des N,N-Dimethylanilins, ein Hinweis auf die starke Negativierung des C-4-Atoms des λ⁵-Phosphinins, wie dies auch aus der Ylid-Formulierung hervorgeht. Zur weiter unten beschriebenen reduktiven Abspaltung haben wir die Verbindungen 3c und 4d ausgewählt, aus denen wir die λ^3 -Phosphinine 5 und 6 erhalten haben. Von diesen war die Darstellung von 6 früher vergeblich aus dem methylenverbrückten zweifachen Pyryliumsalz versucht worden 12).

Ein anderer Weg zu in 4-Stellung funktionalisierten 1,1-Dimethoxy-2,6-diphenyl-λ⁵-phosphininen geht vom Aldehyd 7 aus¹⁵⁾, den wir jetzt unmittelbar aus der 4-Methyl-Verbindung 1 durch Oxidation mit Mangandioxid und einer Spur Wasser in fast quantitativer Ausbeute erhalten haben. 7 haben wir schon früher über sein Oxim und dessen Dehydratisierung mit Acetanhydrid in das Nitril 8 überführen können¹³⁾. Durch Oxidation von 7 mit KMnO₄ in Gegenwart von Dimethylsulfat erhält man den 4-Carbonsäuremethylester 9 in guter Ausbeute¹³⁾.

Zur reduktiven Abspaltung der beiden Methoxylgruppen vom Phosphor der λ^5 -Phosphinin-Derivate 8 und 9 haben wir zunächst nach einer Michaelis-Arbusov-Reaktion in 1,2-Dimethoxyethan mit entwässertem Lithiumiodid eine der Methylgruppen der Methoxylgruppen am Phosphoratom abgespalten.

Hierbei bildet sich eine stark fluoreszierende, grüne Lösung, vermutlich der P-O-Lithiumsalze der 1-Methoxy-1-oxy- λ^3 -phosphinin-Derivate. Durch Zusatz von Trichlorsilan und Triethylamin¹⁴⁾ entsteht ein weißer Brei, der zuerst bei 0°C und schließlich bei 80°C gerührt und durch Ausschütteln mit Dichlormethan und Chromatographie in Benzol an Kieselgel aufgearbeitet wird. Die vorwiegend auf diesem Wege erhaltenen und umkristallisierten λ^3 -Phosphinin-Derivate 5, 10 und 11 sowie das Bis- λ^3 -phosphinin-Derivate

6 sind bis auf 6 luftstabil. Die Tabellen 1 und 2 enthalten die analytischen und spektroskopischen Daten.

Nicht gelungen ist uns die Reduktion der 4-Azoverbindungen, die wir im Fall 4a eingehend untersucht haben. Es entstand ein nicht trennbares Gemisch vieler Verbindungen. Wir nehmen an, daß sich nach der Abspaltung einer Methylgruppe von der P-OCH₃-Gruppe das N-Lithiumsalz des 4-Arylhydrazons vom 1,4-Dihydro-1-methoxy-1-oxo-2,6-diphenyl- λ^5 -phosphinin gebildet hat ¹³, dessen Reduktion mit Trichlorsilan nicht einheitlich verläuft. Auch bei der Reduktion des Aldehyds 7 und der 4-Methoxymethyl-Verbindung 3b erhielten wir nicht trennbare Gemische. In beiden Fällen weist allerdings die starke ³¹P-Resonanz bei δ = 179 auf die Anwesenheit des λ^3 -Phosphinins 6 hin.

Dem Fonds der Chemischen Industrie danken wir für die Unterstützung der Arbeit durch Sachmittel.

Experimenteller Teil

Schmelzpunkte: Nicht korrigiert, Heizmikroskop der Firma C. Reichert, Wien. – MS: Atlas CH 7 (IE = 70 eV). – Hochaufgelöstes MS: Varian MAT-711. – IR: Beckman IR-33 – ³¹P-NMR: Varian T 60, CFT 30 und Bruker WH 400. – Quantitative Verbrennungsanalysen wurden von der Zentralen Routineanalytik des Fachbereichs Chemie, Marburg, ausgeführt. – Lösungsmittel wurden wie in früheren Arbeiten gereinigt und absolutiert ¹³⁾. – Sämtliche Umsetzungen erfolgten unter Argon.

λ⁵-Phosphinin-Derivate

1,1-Dimethoxy-4- (methoxymethyl) -2,6-diphenyl- λ^3 -phosphinin (3b): 330 mg (0.8 mmol) 2 in 10 ml Dichlormethan werden zu einer Suspension von 1.5 g fein gepulvertem und bei 100°C i. Hochvak. getrocknetem NaHCO₃ und 50 ml Methanol getropft. Man rührt noch 10 min, nimmt in 200 ml Benzol auf, wäscht mit Wasser und trocknet (Na₂SO₄). Nach dem Eindampfen hinterbleiben 260 mg (91%) sauberes Produkt (¹H-NMR), das sich aus *n*-Hexan unter Verlusten umkristallisieren läßt. Grüne Nadeln, Schmp. 103-104°C. – ³¹P-NMR (Benzol): δ = 64.7 – ¹H-NMR ([D₆]Aceton): δ = 7.63 (2H, d, $^3J_{P-H}$ = 36.9 Hz); 7.18 – 7.6 (10H, m); 4.2 (2H, s); 3.39 (6H, $^3J_{P-H}$ = 13.8 Hz); 3.24 (3H, s). – MS: m/z (%) = 354 (42, M[±]), 323 (100).

C₂₁H₂₃O₃P (354.4) Ber. C 71.17 H 6.54 Gef. C 71.25 H 6.72

4- [4- (Dimethylamino) benzyl]-1,1-dimethoxy-2,6-diphenyl- λ^5 -phosphinin (3e) ¹⁵⁾: 242 mg (2.0 mmol) N,N-Dimethylanilin in 25 ml Dichlormethan werden bei 0°C mit 410 mg (1.0 mmol) 2 versetzt. Das aus der orangefarbenen Lösung ausgefallene Tetrafluoroborat von nicht umgesetztem Dimethylanilin wird mit Cyclohexan ausgefällt und abfiltriert. Nach Zusatz von überschüssigem 2 N Na₂CO₃ zum Filtrat wäscht man bis zur Neutralität, trocknet mit Na₂SO₄ und chromatographiert an Kieselgel (Woelm) mit Cyclohexan/Essigester (3:1). Die grün fluoreszierende Zone liefert beim Eindampfen gelbe Kristalle, die aus Petrolether (40 – 60°C) umkristallisiert werden: 115 mg (26%), Schmp. 113 –114°C. – MS: m/z (%) = 443 (100 M†). – ¹H-NMR (C₆D₆): δ = 7.64 (2H, d, ³J_{P-H} = 36.5 Hz); 7.8-6.7 (14H, m); 3.83 (2H, s); 3.05 (6H, d, ³J_{P-H} = 14 Hz); 2.52 (6H, s). – UV (CH₃OH): λ_{max} (ε) = 408 nm (17100).

C₂₈H₃₀NO₂P (443.5) Ber. C 75.82 H 6.81 N 3.16 Gef. C 75.51 H 6.74 N 3.26

1,1-Dimethoxy-4- (4-nitrophenylazo)-2,6-diphenyl- λ^5 -phosphinin (4b) läßt sich sowohl nach Lit. 10 aus 2 wie auch aus 3e erhalten.

Hierzu werden 221 mg (0.5 mmol) 3e in 30 ml 1,2-Dimethoxyethan mit 130 mg (0.55 mmol) (4-Nitrophenyl)diazonium-tetrafluoroborat versetzt. Die tiefbraune Lösung wird noch 1 h bei Raumtemp. gerührt, dann über eine kurze Kieselgel-Säule gegeben und mit Benzol nachgewaschen. Eindampfen der Lösung liefert Kristalle, die aus Ethanol umgelöst werden: 130 mg (57%), Schmp. 189 – 190°C. – MS: m/z (%) = 459 (100 M $^{\pm}$), 309 (46). – 1 H-NMR ([D₆]Aceton): δ = 8.54 (2H, d, $^{3}J_{P-H}$ = 38.8 Hz); 7.89 – 7.35 (14H, m); 3.63 (6H, d, $^{3}J_{P-H}$ = 13.6 Hz). – 31 P-NMR ([D₃]Aceton): δ = 65.2.

C₂₅H₂₂N₃O₄P (459.6) Ber. C 65.32 H 4.83 N 9.15 Gef. C 65.22 H 4.85 N 9.14

1,1-Dimethoxy-2,6-diphenyl- λ^3 -phosphinin-4-carbaldehyd (7): Der bereits beschriebene Aldehyd (13) wird einfacher aus 300 mg (0.92 mmol) 1 in 250 ml Benzol durch 1.5 h Rühren mit 10 g Mangandioxid und einigen Tropfen Wasser erhalten. Man filtriert, wäscht gründlich mit Benzol nach, chromatographiert über Kieselgel mit Benzol/Essigester (5:1) und erhält nach dem Eindampfen 300 mg (96%) spektroskopisch reines 7.

1.1-Dimethoxy-2,6-diphenyl- λ^5 -phosphinin-4-carbonsäure-methylester (9) wird nach einer verbesserten Vorschrift ¹³⁾ dargestellt: 300 mg (0.89 mmol) 7 werden mit 347 mg (2.0 mmol) KMnO₄, 653 mg (2.2 mmol) (n-C₄H₉)₄NF·3H₂O, 175 mg (1,4 mmol) (CH₃O)₂SO₂ und 80 mg (0.75 mmol) Na₂CO₃ in 100 ml Benzol 2 h Raumtemp. gerührt. Danach gibt man erneut die gleichen Mengen KMnO₄, (nC₄H₉)₄NF·3H₂O, (CH₃O)₂SO₂ und Na₂CO₃ zu, rührt noch 1 h, danach nochmals 30 min nach Zusatz von 300 mg (n-C₄H₉)₄NF·3H₂O und 100 mg Na₂CO₃. Man nimmt in Benzol auf, reduziert überschüssiges Oxidationsmittel vorsichtig mit NaHSO₃ wäscht mit Wasser, trocknet über Na₂SO₄ und dampft i. Vak. ein.

Nach (40-60°C) Umkristallisieren aus Petrolether erhält man 200 mg (61%) 9, identisch mit der Lit. 13 beschriebenen Verbindung.

 λ^3 -Phosphinin-Derivate

2,4,6-Triphenyl-λ³-phosphinin aus 1,1-Dimethoxy-2,4,6-triphenyl-λ³-phosphinin: 760 mg (1.97 mmol) 1,1-Dimethoxy-2,4,6-triphenyl-λ³-phosphinin werden 2 h in 35 ml Methanol, dem 2 ml halbkonz. Salzsäure zugesetzt waren, unter Rückfluß gekocht. Die eingedampfte Lösung wird mit Benzol aufgenommen, mit NaHCO₃-Lösung und Wasser gewaschen, getrocknet (Na₂SO₄) und eingedampft. Den Rückstand kocht man in 50 ml Di-n-butylether mit 300 mg LiAlH₄ 2 h unter Rückfluß und gibt dann 300 ml Benzol zu. Durch vorsichtiges Zufügen gesättigter Ammoniumchloridlösung wird der Überschuß an LiAlH₄ zersetzt und die organische Phase nach Waschen mit 2 N H₂SO₄ und Wasser sowie Trocknen (Na₂SO₄) eingedampft. Der Rückstand ergibt nach dem Umkristallisieren aus Methanol 350 mg (55%) reines 2,4,6-Triphenyl-λ³-phosphinin.

In analoger Weise wird 2,4,6-Tri-tert-butyl-1,1-dimethoxy- λ^5 -phosphinin zu 2,4,6-Tri-tert-butyl- λ^3 -phosphinin reduziert.

4-(Cyanmethyl)-2,6-diphenyl-λ³-phosphinin (5): 750 mg (2.13 mmol) des Nitrils 3c werden 1.5 h mit 3 ml halbkonz. Salzsäure in 50 ml Methanol unter Rückfluß gekocht. Nach dem Abkühlen gibt man 250 ml Benzol zu, wäscht mit NaHCO₃-Lösung und Wasser, trocknet (Na₂SO₄) und dampft ein. Der Rückstand (600 mg, 83%) besteht nach dem ¹H-NMR-Spektrum aus einem Gemisch des 1,2- und 1,4-Dihydro-1-methoxy-1-oxo-λ³-phosphinin-Derivats. Es wird mit 10 ml Diphenylsilan 2 h auf 150–160°C erhitzt. Der Überschuß an Diphenylsilan wird i. Hochvak. bis 120°C abdestilliert und das zurückbleibende Öl in Benzol/Hexan (1:1) über Kieselgel chromatographiert. Der nach dem Abdampfen des Lösungs-

Tab. 1. Analytische und massenspektroskopische Daten der λ^3 -Phosphinine 5, 6, 10 und 11

Verb.	Schmp. [°C]	Ausb. a) (%)	Summenformel (Molmasse)	Analyse C H N	MS m/z (%)
5	159-160	32	C ₁₉ H ₁₄ NP (287.3)	Ber. 79.4 4.9 4.9 Gef. 79.6 4.8 4.8	M ⁺ 287 (100)
10	135 – 137	41	$C_{18}H_{12}NP$ (273.3)	Ber. 79.1 4.4 5.2 Gef. 79.2 4.4 5.2	M [±] 273 (100)
11	114-115	24	$C_{19}H_{15}O_{2}P$ (306.3)	Ber. 74.5 5.0 — Gef. 74.4 5.1 —	M± 306 (100)
6	133-135	10	C ₃₅ H ₂₆ P ₂ (508.5)	Ber. 82.7 5.2 — Gef. 81.7 5.3 —	M [±] 508 (38) M ²⁺ 254 (100) 246 (40)

a) Reine, umkristallisierte Verbindung, Ausbeute nicht optimiert.

Tab. 2. IR-, ³¹P-NMR- und ¹H-NMR-spektroskopische Daten der λ³-Phosphinine 5, 6, 10 und 11

Verb.	IR (KBr) [cm ⁻¹]	³¹ P-NMR [ppm]	3/5-H	¹ H-NMR ([D ₆]Aceton) H _{aromat.}	H an C-4'
5	2280 (m-st)	191 (CDCl ₃) 216	7.91 (d) ${}^{3}J_{P-H} = 5.7 \text{ Hz}$ (CDCl ₃)	7.4-7.7 (m) (CDCl ₃)	3.59 (2H, d) ${}^{5}J_{P-H} = 3.1 Hz$ (CDCl ₃)
10	2235 (st)	([D ₆] Aceton) 215	8.33 (d) ${}^{3}J_{P-H} = 5.8 \text{ Hz}$	7.49 - 7.8 (m)	(CDCI3)
11	1735 (st)	([D ₆]Aceton) 178	${}^{8.63}_{3}$ (d) ${}^{3}J_{P-H} = 6.1 \text{ Hz}$	7.46 – 7.78 (m)	OCH ₃ : 3.98 (s)
	(-)	([D ₆]Aceton)	8.18 (d) ${}^{3}J_{P-H} = 5.9 \text{ Hz}$	7.35 - 7.71 (m)	$^{4.57}$ (2H,t) $^{5}J_{P-H} = 2.0 \text{ Hz}$
6			- t - H		-1-11 2.0 11.

mittels verbleibende Rückstand ergibt 200 mg 5 (32%, bezogen auf 3c) vom Schmp. 159-160°C.

2,6-Diphenyl- λ^3 -phosphinin-4-carbonitril (10): 60 mg (0.18 mmol) des Nitrils 8 in 6 ml absol. 1,2-Dimethoxyethan werden mit 140 mg (0.77 mmol) LiI · 3 H₂O, das zuvor durch Erwärmen i. Hochvak. von Wasser befreit wurde, 1 h bei 80°C gerührt, bis im Dünnschichtchromatogramm kein λ⁵-Phosphinin-Derivat mehr gefunden wird. Nach Abkühlen gibt man im Eisbad 243 mg (1.8 mmol) Trichlorsilan zu, läßt 10 min rühren und fügt dann 90 mg Triethylamin zu. Der entstehende helle Brei wird 1.5 h bei 80-85°C gerührt. Zur Aufarbeitung gibt man die abgekühlte Suspension auf Eis und schüttelt mit Dichlormethan aus. Die organische Phase wird nach dem Trocknen (Na₂SO₄) eingedampft und der Rückstand über eine Kieselgel-Säule (Länge 2 cm) in Benzol chromatographiert. Der nach Abdampfen des Benzols verbleibende Rückstand wird aus Petrolether (40-60°C) umkristallisiert: Ausb. 20 mg. (41%), Schmp. 135-137°C.

2,6-Diphenyl- λ^3 -phosphinin-4-carbonsäure-methylester (11): 200 mg (0.54 mmol) 9 werden in 5 ml 1,2-Dimethoxyethan mit i. Hochvak. durch Erwärmen getrocknetem LiI · 3 H₂O (691 mg, 3.7 mmol) 1 h bei 80°C gerührt. Man kühlt auf 0°C, gibt 733 mg (5.4 mmol) Trichlorsilan zu und versetzt nach 30 min mit 540 mg (5.4 mmol) Triethylamin. Der farblose Brei wird 1.5 h bei 80°C gerührt und wie zuvor beschrieben aufgerabeitet. Der Rückstand wird aus Hexan umkristallisiert: Ausb. 40 mg (24%) schwach gelbe Kristalle, Schmp. 114-115°C.

4,4'-Methylenbis (2,6-diphenyl- λ^3 -phosphinin) (6): 316 mg (0.5) mmol) 4d werden, wie zuvor beschrieben in 6 ml 1,2-Dimethoxyethan mit i. Hochvak. getrocknetem LiI·3 H₂O (376 mg, 2.0 mmol) 12 h gerührt, wobei die Lösung tiefrot wird. Man gibt dann nochmals 400 mg getrocknetes LiI · 3 H₂O in 6 ml 1,2-Dimethoxyethan zu und erhitzt 3 h auf 80°C. Zur Reduktion versetzt man die Lösung bei 0°C mit 675 mg (5.0 mmol) SiCl₃H und nach 20 min mit 505 mg (5.0 mmol) Triethylamin und läßt über Nacht stehen. Nach der üblichen Aufarbeitung erhält man nach dem Umkristallisieren aus n-Hexan 25 mg (10%) 6 vom Schmp.- 133-135°C. Die geringe Ausbeute ist wahrscheinlich auf eine nicht vollständige Reduktion zurückzuführen.

CAS-Registry-Nummern

1: 36240-35-4 / 2: 36175-84-5 / 3b: 107914-43-2 / 3c: 36240-36-5 3e: 107939-85-5 / 4b: 107914-44-3 / 4d: 36264-62-7 / 5: 107914-45-4 / 6: 107914-50-1 / 7: 54181-93-0 / 8: 54182-08-0 / 9: 70530-04-0 / 10: 107914-48-7 / 11: 107914-49-8 / PhNMe₂: 121-69-7 / 4-O₂NC₆H₄N[®]₂ BF\$: 456-27-9 / Ph₂SiH₂: 775-12-2 / Cl₃SiH: 10025-78-2 / 1,1-Dimethoxy-2,4,6-triphenyl- λ^5 -phosphorin: 20995-2,4,6-Tri-tert-butyl-1,1-dimethoxy-λ⁵-phosphorin: 37912-Cyanmethyl-1,2-dihydro-1-methoxy-1-oxo-2,6-diphenyl-λ⁵phosphorin: 107914-46-5 / 4-Cyanmethyl-1,4-dihydro-1-methoxy- λ^3 -phosphorin: 13497-36-4 / 2,4,6-Tri-tert-butyl- λ^3 -phosphorin: 13497-36-4 / 2,4,6-Tri-tert-butyl- λ^3 -phosphorin: 17420-29-0

²⁾ A. J. Ashe III, J. Am. Chem. Soc. 93 (1971) 3293.

³⁾ A. J. Ashe III, Acc. Chem. Res. 11 (1978) 153.

⁵⁾ G. Märkl, K. Hock, Tetrahedron Lett. 24 (1983) 2645.

9) H. Kanter, K. Dimroth, Tetrahedron Lett. 1975, 541.
10) K. Dimroth, W. Schäfer, H. H. Pohl, Tetrahedron Lett. 1972, 839; W. Schäfer, K. Dimroth, Angew. Chem. 85 (1973) 815; Anjew. Chem. Int. Ed. Engl. **12** (1973) 753.

11) Übersicht: K. Dimroth, in Methoden der organischen Chemie (Houben-Weyl), Bd. E 1, S. 783; G. Thieme Verlag, Stuttgart, New York 1982; K. Dimroth, Acc. Chem. Res. 15 (1982) 58.

¹²⁾ G. Märkl, D. E. Fischer, H. Olbrich, Tetrahedron Lett. 1970, 645. ¹³⁾ H. H. Pohl, K. Dimroth, Angew. Chem. 87 (1975) 135; Angew. Chem. Int. Ed. Engl. 14 (1975) 169; K. Dimroth, H. H. Pohl, K.-H. Wichmann, Chem. Ber. 112 (1979) 1272

¹⁴⁾ H. Fritzsche, K. Hasserodt, F. Korte, Chem. Ber. 98 (1965) 171.

15) H. Pitz, Diplomarbeit, Univ. Marburg, 1972.

[34/87]

¹⁾ G. Märkl, Angew. Chem. **78** (1966) 907; Angew. Chem. Int. Ed. Engl. **5** (1966) 846; Übersicht: G. Märkl, in Methoden der organischen Chemie (Houben-Weyl), Bd. E 1, S. 72, G. Thieme Verlag, Stuttgart, New York 1982; G. Märkl, G. Yu. Jin, E. Silbereisen, Angew. Chem. 84 (1982) 383; Angew. Chem. Int. Ed. Engl. 21 (1982) 370; W. Rösch, M. Regitz, Z. Naturforsch., Teil B, 41 (1986) 931.

⁴⁾ G. Märkl, G. Adolin, F. Kees, G. Zander, Tetrahedron Lett. 1977,

⁶⁾ G. Märkl, K. Hock, Tetrahedron Lett. 24 (1983) 5055; G. Märkl, K. Hock, L. Merz, Chem. Ber. 117 (1984) 763.

⁷⁾ G. Märkl, K. Hock, Tetrahedron Lett. 24 (1983) 5051.
8) P. Pellon, Y. Y. C. Yeung Lam Ko, P. Cosquer, J. Hamelin, R. Carrié, Tetrahedron Lett. 27 (1986) 4299; P. Pellon, J. Hamelin, ibid. 27 (1986) 5611; siehe auch K. Blatter, W. Rösch, U.-J. Vogelbacher, J. Fink, M. Regitz, Angew. Chem. 99 (1987) 67; Angew. Chem. Int. Ed. Engl. 26 (1987) 85.