Testo dell'esercizio

Si consideri la Hamiltoniana

$$\mathcal{H} = -\frac{1}{2}\frac{d^2}{dx^2} - V(x)$$

con potenziale assegnato da

$$V(x) = \begin{cases} 0 & \text{se } x < -b \\ 4/b^2 & \text{se } -b \le x \le b \\ 0 & \text{se } x > b \end{cases}$$

Sia $V0 = 4/b^2$. Siano:

$$\begin{cases} \text{ZonaI} &= \{x < -b\} \\ \text{ZonaII} &= \{-b \le x \le b\} \\ \text{ZonaIII} &= \{x > b\} \end{cases}$$

- 1. Diagonalizzare un'opportuna versione discreta di H con eig. Quindi cercare di estrarre il coefficiente di trasmissione dagli autovalore/vettori in funzione dell'energia o del numero d'onda, confrontando con il risultato analitico esatto.
- 2. Ripetere la procedura con un potenziale smooth come la barriera gaussiana e confrontare con il coefficiente di trasmissione calcolato come in classe (con il metodo dei pacchetti d'onda).

Come mai questo metodo non funziona con V(x)?

Primo punto

Introduzione teorica

Si vuole studiare il problema agli autovalori,
dove si è posto $\hbar=1$ e m=1:

$$\mathcal{H}\psi = E\psi$$

Siano $k^2=2E$ e $q^2=2(E-V0)$. La soluzione analitica più generale è data da:

$$\psi_k(x) = \begin{cases} Ae^{ikx} + Be^{-ikx} & \text{in ZonaI} \\ \phi(x) & \text{in ZonaII} \\ Ce^{ikx} + De^{-ikx} & \text{in ZonaIII} \end{cases}$$

Non siamo per il momento interessati alla ZonaII, quindi indichiamo con $\phi(x)$

la $\psi_k(x)$ in tale zona, che a rigore sarebbe

$$\phi(x) = Ee^{iqx} + Fe^{-iqx}$$

Le costanti A, B, C, D sono determinate dalle condizioni di raccordo di continuità della funzione d'onda e della sua derivata nei punti $x = \pm b$.

Si osserverà che dalla diagonalizzazione della versione discreta della Hamiltoniana (vedi sezione apposita) risultano autofunzioni a parità definita (pari o dispari). Allora, senza perdita di generalità, si pone la ulteriore condizione di simmetria alle ψ_k , che porta:

$$\begin{cases} A=D, & B=C=(\tau+\rho)A & \text{per funzioni pari} \\ A=-D, & B=-C=-(\tau+\rho)A & \text{per funzioni dispari} \end{cases}$$

Per la conservazione del flusso di probabilità, si possono riscrivere nella seguente forma:

$$\begin{pmatrix} C \\ B \end{pmatrix} = \begin{pmatrix} \tau & \rho \\ \rho & \tau \end{pmatrix} \cdot \begin{pmatrix} A \\ D \end{pmatrix} = \quad (S) \cdot \begin{pmatrix} A \\ D \end{pmatrix}$$

Ove la matrice S è una matrice unitaria, ossia che verifica le condizioni:

$$\tau \rho^* + \tau^* \rho = 0$$
 , $|\tau|^2 + |\rho|^2 = 1$

(Si è indicato con z^* il numero complesso coniugato di z). Segue immediatamente che:

$$|\tau \pm \rho|^2 = |\tau|^2 + |\rho|^2 + \tau \rho^* + \tau^* \rho = |\tau|^2 + |\rho|^2 + 0 = 1$$

Cioè $\tau \pm \rho$ differiscono per una fase:

$$|\tau \pm \rho|^2 = 1 \Rightarrow (\tau \pm \rho) = e^{2i\theta^{\pm}}$$

Si osservi che poichè A,B,C,D dipendono dagli autostati ψ_k , anche le fasi θ^{\pm} dipenderanno dall'autovalore k.

Si vuole quindi cercare una stima numerica di $\theta\pm$ per determinare τ da:

$$(\tau \pm \rho) = e^{2i\theta^{\pm}} \Rightarrow \tau = 1/2(e^{2i\theta^{+}} + e^{-2i\theta^{-}})$$
$$\Rightarrow \tau^{2} = \sin^{2}(\theta^{+} - \theta^{-})$$

(due conti per dimostrarlo plis)

Il coefficiente di trasmissione sarà qundi dato da:

$$T=\tau^2$$

Stima delle Fasi

Si vuole stimare numericamente le fasi θ^{\pm} , a partire dagli autovettori calcolati dalla \mathcal{H} discretizzata. Gli autovettori sono combinazioni pari e dispari di onde piane con la stessa frequenza, quindi corrispondono rispettivamente a coseni e seni.

$$\psi_k^{odd} = \begin{cases} A \sin(kx + \theta_k^-) & \text{in ZonaI} \\ A \sin(kx + \theta_k^+) & \text{in ZonaIII} \end{cases} \quad \psi_k^{even} = \begin{cases} A \cos(kx + \theta_k^-) & \text{in ZonaII} \\ A \cos(kx + \theta_k^+) & \text{in ZonaIII} \end{cases}$$

Primo Metodo Si vuole fittare i dati con seni e coseni di opportuna frequenza k e fase da determinare (parametro di fit). Si definiscono allora: In ZonaI = $\{x < -b\}$, sia

$$f_k^{even}(y) = \int_{-\infty}^{-b} |A\cos(kx+y) - \psi_k^{even}(x)| dx$$

$$f_k^{odd}(y) = \int_{-\infty}^{-b} |A\sin(kx+y) - \psi_k^{odd}(x)| dx$$

In ZonaIII = $\{x < -b\}$, sia

$$g_k^{even}(y) = \int_h^{+\infty} |A\cos(kx+y) - \psi_k^{even}(x)| \mathrm{d}x$$

$$g_k^{odd}(y) = \int_b^{+\infty} |A\sin(kx+y) - \psi_k^{odd}(x)| dx$$

Si ha immediatamente che:

$$\theta_{k}^{-} = y \text{ t.c. } f_{k}(\theta_{k}^{-}) = 0$$

$$\theta_{k}^{+} = y \text{ t.c. } g_{k}(\theta_{k}^{+}) = 0$$

Si troverà che:

$$\theta_k^+ = -\theta_k^- = \theta_k$$

Quindi:

$$\psi_k^{odd} = \begin{cases} A\sin(kx - \theta_k) & \text{in ZonaI} \\ A\sin(kx + \theta_k) & \text{in ZonaIII} \end{cases} \quad \psi_k^{even} = \begin{cases} A\cos(kx - \theta_k) & \text{in ZonaII} \\ A\cos(kx + \theta_k) & \text{in ZonaIII} \end{cases}$$

Appendice: Discretizzazione numerica

Si vuole anzitutto discretizzare lo spazio si lavoro. Dall'intera retta reale \mathbb{R} si passa a un segmento chiuso [-L,L] per un opportuno parametro L>0, dopodichè scelto opportunamente un numero di punti N in cui suddividere l'intervallo in un reticolo di passo 1/N, si definisce la griglia:

$$\mathcal{G} = \{x_i \in [-L, L] : x_i = -L + 2j/N, \quad j = 0, ..., N\}$$

Fissato b > 0 parametro del potenziale, siano nb e mb gli indici per cui

$$x_{mb} = -b$$
 , $x_{nb} = b$

Si è scelto di lavorare in condizioni di periodicità, quindi un'approssimazione

numerica del laplaciano $-\frac{d^2}{dx^2}$ sarà data da (come visto a lezione):

$$T = \begin{pmatrix} 2 & -1 & 0 & \cdots & 0 & -1 \\ -1 & 2 & -1 & 0 & \cdots & 0 \\ \vdots & \vdots & \vdots & \vdots & \vdots & \vdots \\ -1 & 0 & \cdots & 0 & 2 & -1 \end{pmatrix}$$

Un'approssimazione del potenziale sarà invece data da una matrice diagonale con i valori che la funzione V(x) assume sui punti della griglia:

$$V = \operatorname{diag}(V(x_1), \cdots, V(x_N))$$

Allora l'approssimazione discreta della Hamiltoniana ${\mathcal H}$ sarà data dalla matrice:

$$H = T + V \approx \mathcal{H}$$

Sia ora M0 la matrice degli autovettori di H e E0 il vettore degli autovalori di H

Degenerazione spezzata dalla discretizzazione

Gli sbatti dei teta fuori dalla griglia Gg -> fittare perchè i teta sono fuori dalla griglia Phil dice: autovalori leggermente diversi fanno due griglie leggermente diverse (scattering phase-shift)

Secondo punto

- 1. descrivere metodo pacchetti
- 2. IMPLEMENTAZIONE: minimalwms con integrazione funzione d'onda destra e sinistra dopo tempo T0 -> Occhio che non progava il pacchetto ma si scioglie (risolvere)
- 3. plot frame interazione pacchetto
- 4. plot coeff trasmissione metodo punto 1 vs pacchetti (qualche punto)

CONCLUSIONI

- 1. plot pacchetto onda con barriera quadrata
- 2. per dire che c'è il residuo dovuto a discontinuità