Package 'pip'

November 3, 2021

Title Platelet Inventory Prediction
Version 0.3-8
VignetteBuilder knitr
<pre>URL https://github.com/okadak126/pip</pre>
<pre>BugReports https://github.com/okadak126/pip</pre>
Description Forecast inventory of platelet or any other item based on past history and projected usage. Facilities are provided for indicating forecast window and length of past history to use. A combination of time series analysis together with linear programming is used to optimize a criterion.
Depends R (>= $3.4.2$)
License GPL (>= 2)
Encoding UTF-8
LazyData true
Suggests knitr, rmarkdown, testthat, shiny
RoxygenNote 7.1.1.9001
Imports dplyr, lpSolveAPI, utils
Author Leying Guan [aut], Robert J. Tibshirani [aut], Saurabh Gombar [aut], Xiaoying Tian [ctb], Robert Scott [ctb], Alison J. Zemek [ctb], Tho Duc Pham [aut], Balasubramanian Narasimhan [aut, cre], Gomathi Krishnan [ctb]
Maintainer Balasubramanian Narasimhan <naras@stat.stanford.edu></naras@stat.stanford.edu>
R topics documented:
pip-package

2 build_model

	compute_loss
	compute_prediction_statistics
	create_folds
	cross_validate
	evaluate_model
	pos
	predict_three_day_sum
	single_lpSolve
	single_lpSolve_wasteOnly
Index	11

pip-package

pip: Platelet Inventory Prediction using Linear Programming

Description

Forecast inventory of platelet or any other item based on past history and projected usage. Facilities are provided for indicating forecast window and length of past history to use. A combination of time series analysis together with linear programming is used to optimize a criterion.

Author(s)

Leying Guan, Robert J. Tibshirani, Balasubramanian Narasimhan, Alison Zemek, Xiaoying Tian, Robert Scott, Saurabh Gombar, Tho Duc Pham, Gomathi Krishnan

Maintainer: Robert J. Tibshirani<tibs@stanford.edu>

build_model

Run a fit on a given dataset

Description

The dataset should have one more column than the predictors and response. This additional column, which is typically a date or day number, has to be named "date" or "day"

```
build_model(
  data,
  c0 = 15,
  history_window = 200,
  penalty_factor = 5,
  rss_bias = 30,
  start = 10,
  l1_bounds = seq(from = 200, to = 0, by = -2),
  lag_bounds = -1,
  date_column = "day|date",
  response_column = "plt_used",
  show_progress = TRUE,
  plot_losses = TRUE
)
```

compute_loss 3

Arguments

data	the dataset	
с0	the lower bound on remaining "fresh" inventory (used in optimization)	
history_window	number of days to look back	
penalty_factor	penalty for shortage specified by doctors	
rss_bias	amount by which we should bias the RSS calculation upward for the loss	
start	the first day in the dataset that the model's predictions are evaluated	
11_bounds	vector containing the possible values of the 11 bound on coefs aside from days of the week and seven day moving average	
lag_bounds	vector containing possible values of the bound on the seven day moving average (lag) coefficient	
date_column	the name of the date or day number column as a regex, default is "dayldate" i.e. day or date	
response_column		
	the name of the response column, default is "plt_used"	
show_progress	a TRUE/FALSE flag for showing progress, default TRUE	
plot_losses	a TRUE/FALSE flag for whether we plot loss values by hyperparameter (helpful for model diagnostics). Default true.	

Examples

 $compute_loss$

Compute the Cross-Validation Loss for each hyperparameter

Description

Each column of preds, w, r1, r2, s, represent a single hyperparameter value. These inputs should be generated from the cross_validate function

```
compute_loss(preds, y, w, r1, r2, s, penalty_factor, rss_bias)
```

Arguments

preds	a vector of 3 day usage predictions
У	a vector of actual daily usage
W	a vector of waste determined by pip::compute_prediction_statistics
r1	a vector of remaining inventory determined by pip::compute_prediction_statistics
r2	a vector of remaining inventory determined by pip::compute_prediction_statistics
S	a vector of inventory shortage as determined by pip::compute_prediction_statistics
penalty_factor	factor to additionally penalize shortage terms over waste
rss_bias	amount by which we bias the RSS term upward to prevent shortage

Value

a vector of losses computed for each hyperparameter

```
{\it compute\_prediction\_statistics} \\ {\it Compute the prediction statistics}
```

Description

Compute three-day predicted usage, waste, remaining and shortage using the actual usage and predicted usage.

Usage

```
compute_prediction_statistics(
   y,
   t_pred,
   initial_expiry_data = c(0, 0),
   initial_collection_data = c(60, 60, 60),
   start = 10,
   c = 30
)
```

Arguments

	У	is the number of units used at the current day i		
	t_pred	is the sum of the predicted number of units for days i+1, i+2, i+3		
	<pre>initial_expiry_</pre>	tial_expiry_data		
		the number of units that can be used the current day and the next (2-length vector)		
initial_collection_data				
		is the number of units to collect for days i, i+1, i+2		
	start	is when we start the clock. So for example, in this default invocation the shelf storage (initial_collection_data) was 60, 60, 60, on days 10, 11, and 12. So the evaluation of the model begins at day 11 but the decision to order collection starts on day 13.		
	С	the ideal minimum number of fresh units remaining at the end of the day. this is also the minimum number that should be collected (let's remove)		

create_folds 5

Value

a list with four components, x is the number of units to collect, r is a matrix of two columns indicating remaining units usable on day i+1 and day i+2, w is waste, and s is shortage.

create_folds

Create folds for time series cross validation. Folds are continguous and sequential.

Description

Create folds for time series cross validation. Folds are continguous and sequential.

Usage

```
create_folds(n, fold_len)
```

Arguments

n number of rows of a matrix/data_frame to which ids are assigned

fold_len length of a fold

Value

a vector of integers assigning values in 1 - nfold to each row.

cross_validate

Run cross-validation method

Description

Run cross-validation method

```
cross_validate(
  data,
  pred_var_indices,
  resp_var_index,
  11_bounds,
  lag_bounds,
  c0,
  start,
  penalty_factor,
  seed_prop,
  fold_size,
  cv_type = "loo",
  show_progress = FALSE
)
```

6 evaluate_model

Arguments

data the full dataset (data.frame) used as input to the model pred_var_indices the column indices corresponding to the features in "data" resp_var_index the (single) column index corresponding to the response in "data 11_bounds vector containing the possible values of the 11 bound on coefs aside from days of the week and seven day moving average lag_bounds vector containing possible values of the bound on the seven day moving average (lag) coefficient c0 the lower bound on remaining "fresh" inventory (used in optimization) start the first day in the dataset that the model's predictions are evaluated penalty_factor how much we penalize shortage over waste seed_prop the proportion of seed data (treated as fold 1 for training) fold_size the desired size of each fold (aside from the seed fold 1) the variety of cross_validation used. The model can either train on all previous cv_type folds (exp for exanding) or on all other folds besides the left-out fold (loo for leave-one-out, default) show_progress a TRUE/FALSE flag for showing progress, default FALSE

Value

a list containing matrices for waste, r1, r2, shortage, and predictions from cross-validation

evaluate_model	Evaluate the model on a held out validation set within the original
	training set

Description

The dataset should have one more column than the predictors and response. This additional column, which is typically a date or day number, has to be named "date" or "day"

```
evaluate_model(
   data,
   c0 = 15,
   train_window = 200,
   test_window = 7,
   penalty_factor = 5,
   rss_bias = 30,
   start = 10,
   l1_bounds = seq(from = 200, to = 0, by = -2),
   lag_bounds = c(NA),
   date_column = "day|date",
   response_column = "plt_used"
)
```

pos 7

Arguments

 $\begin{array}{ll} \text{data} & \text{the dataset} \\ \text{c0} & \text{the c0 value} \end{array}$

train_window number of days to look back

test_window number of days on which to evaluate model penalty_factor penalty for shortage specified by doctors

rss_bias amount by which we bias the RSS term of the loss upward

start the day you start evaluating the model (for CV)

11_bounds vector containing the possible values of the 11 bound on coefs aside from days

of the week and seven day moving average

lag_bounds vector containing possible values of the bound on the seven day moving average

(lag) coefficient

date_column the name of the date or day number column as a regex, default is "dayldate" i.e.

day or date

response_column

the name of the response column, default is "plt_used"

Value

the lowest CV loss obtained on the validation set

Examples

pos

Return the positive part of a value

Description

Return the positive part of a value

Usage

pos(x)

Arguments

x the vector

Value

the maximum of x and 0

8 single_lpSolve

predict_three_day_sum Predict the next three day sum and units to order if available

Description

Predict the next three day sum and units to order if available

Usage

```
predict_three_day_sum(model, new_data)
```

Arguments

model the trained model

new_data a new data frame with the same predictor names as in the training data, even if

one row

Value

the predicted three day total of how many units to collect

Examples

 $single_lpSolve$

Solve the LP problem for platelet usage prediction

Description

Solve the LP problem for platelet usage prediction

```
single_lpSolve(
   d,
   l1_bounds,
   lag_bounds,
   num_vars,
   start = 10,
   c = 10,
```

```
shortage_factor = 15,
buffer = 10,
ind = NULL,
reset_basis = FALSE
)
```

Arguments

d the data frame. We assume that the first column contains a date and the response

is the last column.

11_bounds the upper bound on the 11 norm of coefficient vector (aside from lag and days of

week)

lag_bounds the upper bound on the seven day moving average of usage coefficient (lag)

num_vars the number of features/covariates in the dataset.

start the 0th index of the date when we begin evaluating the model

c the value for c_0

shortage_factor

the amount by which we multiply shortage over waste (ratio)

buffer a value to be added to account for training in the initial stages, default 10

ind the indices for cross validation used only if non-null. (Should be sorted!!)

reset_basis TRUE or FALSE for whether we reset the LP basis before each solve (for non-

uniqueness)

Examples

```
# Note that SBCpip::create_dataset() produces data of the form lpdata from source files
load("data/sample_data.Rdata")
sol <- single_lpSolve(lpdata, l1_bounds, lag_bounds, num_vars)

# Add the coefficient names to the resulting coefficients. Each
# column represents a pairing of hyperparameter values from l1_bounds
# and lag_bounds. The effects of the L1 penalty should be apparent.
rownames(sol) <- c("Intercept", colnames(lpdata[2:(ncol(lpdata) - 1)]))</pre>
```

```
single_lpSolve_wasteOnly
```

Solve the LP problem for platelet usage prediction (ignoring shortage in the optimization)

Description

Solve the LP problem for platelet usage prediction (ignoring shortage in the optimization)

Usage

```
single_lpSolve_wasteOnly(
    d,
    l1_bounds,
    lag_bounds,
    num_vars,
    start = 10,
    c = 10,
    shortage_factor = 15,
    buffer = 10,
    ind = NULL,
    reset_basis = FALSE
)
```

Arguments

d the data frame

11_bounds the upper bound on the 11 norm of coefficient vector (aside from lag and days of

week)

lag_bounds the upper bound on the seven day moving average of usage coefficient (lag)

num_vars the number of features/covariates in the dataset.

start the 0th index of the date when we begin evaluating the model

c the value for c_0

shortage_factor

the amount by which we multiply shortage over waste (ratio)

buffer a value to be added to account for training in the initial stages, default 10 the indices for cross validation used only if non-null. (Should be sorted!!)

reset_basis TRUE or FALSE for whether we reset the LP basis before each solve (for non-

uniqueness)

Index

```
* package
        pip-package, 2

build_model, 2

compute_loss, 3
    compute_prediction_statistics, 4
create_folds, 5
    cross_validate, 5

evaluate_model, 6

pip-package, 2
platelet (pip-package), 2
pos, 7
predict_three_day_sum, 8

single_lpSolve, 8
single_lpSolve_wasteOnly, 9
```