Poznámka

Do tohoto dokumentu pravděpodobně nebudou zanášeny opravy. Lepší verze poznámek je LogikaPlus.tex.

1 Úvod

Poznámka (Domluva)

 \mathbb{N} jsou přirozená čísla s 0. n značí přirozené číslo.

Dále se probírali základy značení a teorie množin.

Definice 1.1 (Základy)

Základem výrokové logiky je 5 symbolů (2 hodnoty + 3 logické spojky): $\top \bot \neg \land \lor = \text{pravda}$, lež, negace, a, nebo.

Dále jsou to výrokové atomy z nějaké abecedy. Libovolný výrok je pak konečným aplikováním logických spojek.

Definice 1.2 (Pravdivostní ohodnocení)

Pravděpodobnostní ohodnocení je zobrazení t z prvovýroků do $\{0,1\}$. Toto zobrazení lze jednoznačně rozšířit na t' na všechny výroky:

$$t'(\top) = 1, t'(\bot) = 0, t'(\neg a) = 1 - t'(a), t'(a \lor b) = \max\left\{t'(a), t'(b)\right\}, t'(a \land b) = \min\left\{t'(a), t'(b)\right\}$$

Definice 1.3

Pomocí pravdivostního ohodnocení můžeme zavést implikaci (spojka mezi premisou (antecedent) a závěrem (konsekvent)).

Definice 1.4 (Tautologie)

p je tautologie (notace $\models p) \equiv t(p) = 1$ pro všechna $t:A \to \{0,1\}.$ p je splnitelné \equiv existuje $t:A \to \{0,1\}$ takové, že t(p) = 1.

Lemma 11 (Zákony inempotence, komutativity, asociativity, distributivity, absorbce, DeMorganovy)

Viz skripta.

Definice 1.5 (Model)

Model (koho, čeho) Σ (výrokové teorie) je každé pravděpodobnostní ohodnocení t, které přiřazuje 1 všem výrokům ze Σ . Říkáme, že p je tautologický důsledek Σ (píšeme $\Sigma \models p$, říkáme p vyplývá ze Σ) $\equiv t(p) = 1$ pro všechny modely t (koho čeho) Σ .

Poznámka

 $\models p$ je totéž, co $\emptyset \models p$.

Lemma 1.2

 $Vlastnosti \models . Viz skripta.$

Definice 1.6 (Arita)

Mějme množinu symbolů F a zobrazení $a:F\to\mathbb{N}.$ Říkáme, že symbol $f\in F$ má aritu $n\equiv a(f)=n.$

Řekněme, že slovo je přijatelné \equiv TODO.

Definice 1.7 (Arita logických symbolů)

Aritu symbolů ar definujeme pro $F=A\cup\{\top,\bot,\neq,\vee,\wedge\}$ jako $ar(x)=0,x\in A\cup\{\top,\bot\},$ $ar(\neq)=1,$ $ar(\vee,\wedge)=2.$

Lemma 1.3

Buďte t_1, \ldots, t_m a u_1, \ldots, u_n jsou přijatelná slova a w libovolné slovo tak, že $t_1 \ldots t_m w = u_1 - u_n$. Potom $m \leq n$, $t_i = u_i$ pro $i \in [m]$ a $w = u_{m+1} \ldots u_n$.

 $D\mathring{u}kaz$

Indukcí podle velikosti $u_1 \dots u_n$.

Definice 1.8 (Modus Ponens (= MP = odvozovací pravidla))

 $Z p a p \implies q$, odvodíme q.

Definice 1.9 (Důkaz)

Formální důkaz (či důkaz) p z Σ je sekvence p_1, \ldots, p_n , kde $n \ge 1$ a $p_n = p$ tak, že $\forall k \in [n]$: buď $p_k \in \Sigma$, nebo p_k je výrokový axiom (viz skripta), nebo $\exists i, j \in [k-1]$ tak, že p_k lze odvodit pravidlem MP z p_i a p_j .

Říkáme, že p je dokazatelné ze Σ , a značíme $\Sigma \vdash p$

Tvrzení 1.4

Pokud $\Sigma \vdash p$, pak $\Sigma \models p$.

 $D\mathring{u}kaz$

Jednoduchý.

Věta 1.5 (O úplnosti (1. znění))

$$\Sigma \vdash p \Leftrightarrow \Sigma \models p$$
.

Věta 1.6 (Kompaktnost logiky)

Pokud $\Sigma \models p$, pak existuje konečná podmnožina $\Sigma_0 \subseteq \Sigma$ tak, že $\Sigma_0 \models p$.

Důkaz

Vyplývá z předchozí věty

Definice 1.10 (Konzistentnost)

Říkáme, že Σ je nekonzistentní, pokud $\Sigma \vdash \bot$, jinak (pokud $\Sigma \not\vdash \bot$) je konzistentní.

Věta 1.7 (O úplnosti (2. znění))

 Σ je konzistentní právě tehdy, když má model.

Dusledek

 Σ má model \Leftrightarrow každá konečná podmnožina Σ má model.

Lemma 1.8 (Dedukce)

 $P\check{r}edpokl\acute{a}dejme\ \Sigma \cup \{p\} \vdash q.\ Potom\ \Sigma \vdash p \implies q.$

Důkaz (Indukcí)

Pokud je q výrokový axiom, pak $\Sigma \vdash q$ a jelikož $q \Longrightarrow (p \Longrightarrow q)$ je výrokový axiom, MP říká $\Sigma \vdash p \Longrightarrow q$. Pokud $q \in \Sigma \cup \{p\}$, pak buď TODO

Důsledek

 $\Sigma \vdash p$ tehdy a pouze tehdy, když $\Sigma \cup \{\neg\}$ je nekonzistentní.

 $D\mathring{u}kaz$

 \Longrightarrow : Předpokládejme, že $\Sigma \vdash p$. Jelikož $p \implies (\neg p \implies \bot)$ je výrokový axiom, můžeme 2krát použít MP a získat $\Sigma \cup \{p\}$ TODO

Důsledek

Z druhého znění věty o úplnosti vyplývá první znění.

Definice 1.11

Říkáme, že Σ je kompletní (úplná, ale s větou o úplnosti nemá nic společného), pokud Σ je konzistentní a pro všechna p je buď $\Sigma \vdash p$ nebo $\Sigma \vdash \neg p$.

Lemma 1.9 (Lindenbaum)

Nechť Σ je konzistentní. Pak existuje kompletní Σ' tak, že $\Sigma \subseteq \Sigma'$.

 $D\mathring{u}kaz$

Zornovo lemma. TODO. Pokud je axiomů konečně, tak můžeme udělat důkaz bez Zornova lemmatu. $\hfill\Box$

Definice 1.12 (Pravdivostní ohodnocení v závislosti na Σ)

 $t_{\Sigma}: A \to \{0,1\}, t_{\Sigma}(a) = 1$, pokud $\Sigma \vdash a$, jinak $t_{\Sigma}(a) = 0$.

Lemma 1.10

 $P\check{r}edpokl\acute{a}dejme$, že Σ je kompletní, potom pro každé p máme

$$\Sigma \vdash p \Leftrightarrow t_{\Sigma}(p) = 1.$$

Nevoli t_{Σ} je model Σ .

 $D\mathring{u}kaz$

Indukcí podle počtu spojek. TODO.

2 Predikátorová logika

Definice 2.1 (Jazyk)

Jazyk (L) je disjoin sjednocení množiny relací (L^r) (každé relaci $R \in L^r$ přiřadíme aritu $a(R) \in \mathbb{N}$) a množiny funkčních symbolů (L^f) $(F \in L^f)$ má aritu $a(F) \in \mathbb{N}$).

Definice 2.2 (Struktura)

Struktura \mathcal{A} pro L je trojice $(A, (R^{\mathcal{A}})_{R \in L^r}, (F^{\mathcal{A}}_{F \in L^f}))$ sestávající z množiny A (tzv. nosič), pro každou m-ární relaci $R \in L^r$ máme její vyjádření $R_A \in A^m$.

Definice 2.3 (Podstruktura, zúžení)

 \mathcal{X} je podstruktura struktury \mathcal{Y} , značíme $\mathcal{X} \subseteq \mathcal{Y}$, pokud $X \subseteq Y$ a všechny operace jsou uzavřené na relace i funkce. Taktéž říkáme, že \mathcal{Y} je rozšíření \mathcal{A} .

Zúžení funkce F na podstrukturu \mathcal{X} , značené $F|_{\mathcal{X}}$ je, jak bychom čekali.

Definice 2.4 (Homomorfismus)

At \mathcal{A} a a \mathcal{B} jsou struktury (pro tentýž jazyk). Homomorfismus $h: \mathcal{A} \to \mathcal{B}$ je zobrazení $h: \mathcal{A} \to \mathcal{B}$ tak, že $\forall m$ -nární $R \in L^r$ a každé $(a_1, \ldots, a_m) \in A^m$ máme $(a_1, \ldots, a_m) \in R^{\mathcal{A}} \Longrightarrow (ha_1, \ldots, ha_m) \in R^{\mathcal{B}}$. $\forall n$ -nární $F \in L^f$ a každé $(a_1, \ldots, a_n) \in A^n$ je $h(F^{\mathcal{A}}(a_1, \ldots, a_n)) = F^{\mathcal{B}}(ha_1, \ldots, ha_n)$.

Definice 2.5 (Silný homomorfismus)

Pokud nahradíme implikaci v předchozí definici ekvivalencí, dostaneme tzv. silný homomorfismus. Speciálním případem je tzv. vnoření, TODO.

Definice 2.6 (Kongruence)

Kongruence je ekvivalence taková, že pokud jsou v relaci nějaké prvky, tak jsou v relaci i kongruentní prvky. Stejně tak obraz kongruentních prvků je kongruentní prvek k obrazu původních.

Definice 2.7 (Kvocient / faktorstruktura)

Nechť \mathcal{A} je struktura a ~ kongruence. Potom \mathcal{A}/\sim , tzv. faktostruktura, je struktura, kde nosná množina je A/\sim a relace a funkce jsou přepsané tak, aby nové prvky byly v relaci právě tehdy, pokud byly jim odpovídající původní prvky.

2.1 Proměnné a formule

Definice 2.8 (Proměnné)

Proměnné: $Var = \{v_0, v_1, v_2, \ldots\}$ je spočetná (nekonečná) množina.

Poznámka

Většinou by nevadila ani nespočetná. Naopak se spočetná by nám rozbíjela skládání výroků.

Definice 2.9 (Termy)

L-term je slovo na abecedě $L^f \cup Var$ získané jako: každá proměnná je L-term a kdykoliv je $F \in L^f$ n-nární relace a t_1, \ldots, t_n L-termy, pak je $Ft_1 \ldots t_n$ L-term.

Definice 2.10 (Uzavřený term)

Uzavřený term se nazývá ten term, který neobsahuje proměnné.

Definice 2.11 (Generátory)

Mějme strukturu a množinu (oindexovanou) prvků z ní. Pokud tuto množinu uzavřeme na relace a funkce, pak dostaneme podstrukturu, která se nazývá generovaná danou množinou prvků (a ty se nazývají generátory).

Definice 2.12 (Symboly)

V predikátorové logice máme: $\top, \bot, \neg, \land, \lor, =, \forall, \exists$.

Definice 2.13 (Atomická formule)

Atomická L-formule je slovo z abecedy $L \cup Var \cup \{\top, \bot, =\}$, které je tvaru buď \top, \bot , nebo termy jsou v relaci $(Rt_1 \dots t_m)$, kde $R \in L^r$ je m-nární relace a t_1, \dots, t_m jsou L-termy), nebo $= t_1t_2$ (kde t_1 a t_2 jsou L-termy).

Definice 2.14 (Formule)

L-formule je slovo na abecedě $L \cup Var \cup \{\top, \bot, \neg, \lor, \land, =, \exists, \forall\}$, které je buď atomická formule, nebo $\neg \varphi, \lor \varphi \psi, \land \varphi \psi$, kde φ a ψ jsou L-formule, nebo $\exists x \varphi, \forall x \varphi$, kde φ je formule a x je proměnná.

Definice 2.15 (Podformule)

Podformule je podslovo formule, které je také formule.

Definice 2.16 (Vázaný a volný výskyt)

Pokud se proměnná vyskytuje v podformuli tvaru $\exists x \varphi$ nebo $\forall x \varphi$, pak se nazývá vázaná (má na tomto místě vázaný výskyt), pokud se vyskytuje jinde, pak je volná (volný výskyt).

Definice 2.17 (Sentence (= uzavřená formule))

Sentence je formule, kde všechny výskyty proměnné jsou vázané.

Poznámka

Píšeme $\varphi(x_1,\ldots,x_n)$, abychom zvýraznili, že právě proměnné x_1,\ldots,x_n jsou volné v φ .

Do formule dosazujeme $(\varphi(t_1/x_1,\ldots,t_n/x_n))$ naráz a nahrazujeme všechny volné výskyty dané proměnné.

Místo $\varphi(t_1/x_1,\ldots,t_n/x_n)$ budeme psát $\varphi(t_1,\ldots,t_n)$.

Lemma 2.1

Nechť φ je L-formule, x_1, \ldots, x_n různé proměnné a t_1, \ldots, t_n jsou L-termy. Potom $\varphi(t_1/x_1, \ldots, t_n/x_n)$ je L-formule. Pokud t_1, \ldots, t_n nemají volné proměnné a $\varphi = \varphi(x_1, \ldots, x_n)$, potom $\varphi(t_1, \ldots, t_n)$ je L-sentence.

Definice 2.18

Jazyk rozšiřujeme o tzv. jména, tj. konstantní symboly reprezentující prvky, o kterých se chceme bavit. Tzv. expanze struktury.

Definice 2.19 (Pravdivost (Tarského definice splňování))

 L_A -sentence σ je pravdivá v L-struktuře A (píšeme $A \models \sigma$ a čteme σ je pravdivá / splněna v A) takto:

- $A \models \top a A \not\models \bot$,
- $A \models Rt_1 \dots t_m$ právě tehdy, pokud $(t_1^A, \dots, t_m^A) \in R^A$ pro m-nární relaci $R \in L^r$ a L_A termy bez volných proměnných t_1, \dots, t_m ,
- $A \models t_1 = t_2$ právě tehdy, když $t_1^A = t_2^A$ pro L_A -termy bez volných proměnných $t_1, t_2,$
- $\sigma = \neg \sigma_1$, potom $A \models \sigma$ právě tehdy, pokud $A \not\models \sigma_1$,
- $\sigma = \sigma_1 \vee \sigma_2$, potom $A \models \sigma$ právě tehdy, pokud $A \models \sigma_1$ nebo $A \models \sigma_2$,
- $\sigma = \sigma_1 \wedge \sigma_2$, potom $A \models \sigma$ právě tehdy, pokud $A \models \sigma_1$ a $A \models \sigma_2$,
- $\sigma = \exists x \varphi(x)$, potom $A \models \sigma$ tehdy a jen tehdy, když $A \models \varphi(\underline{a})$ pro nějaké $a \in A$,
- $\sigma = \forall x \varphi(x)$, potom $A \models \sigma$ tehdy a jen tehdy, když $A \models \varphi(a)$ pro všechna $a \in A$,

Definice 2.20

 $\varphi(x_1,\ldots,x_n)$ definuje množinu $\varphi^A = \{(a_1,\ldots,a_n): A \models \varphi(a_1,\ldots,a_n)\}.$

Pokud existuje L-formule definující $S\subseteq A^n$, potom říkáme, že formule je 0-definovatelná v A.

Definice 2.21

Formule se nazývá pozitivní, pokud neobsahuje negaci (¬).

Definice 2.22

Buďte \mathcal{A}, \mathcal{B} dvě L-struktury, $C \subseteq A$ a $h : C \to B$ zobrazení. Řekneme, že h je $(\mathcal{A}, \mathcal{B})$ podobnost, pokud pro každou L_C -sentenci σ platí $A \models \sigma \Leftrightarrow B \models \sigma_h$. Existuje-li nějaká $(\mathcal{A}, \mathcal{B})$ -podobnost (kde $C \neq \emptyset$), říkáme, že \mathcal{A} je elementárně ekvivalentní s \mathcal{B} , píšeme $\mathcal{A} \equiv \mathcal{B}$.

Je-li dokonce C = A, říkáme, že h je elementární vnoření \mathcal{A} do \mathcal{B} .

Tvrzení 2.2

Buďte A, B dvě L-struktury a $h:A\to B$ izomorfismus. Pak h je elementární vnoření.

 $D\mathring{u}kaz$

Již víme, že $h(t^{\mathcal{A}}) = t_h^{\mathcal{B}}$ pro každý uzavřený L_A -term t. Tvrzení dokážeme indukcí...

Definice 2.23

Říkáme, že \mathcal{A} je model Σ , když $\mathcal{A} \mapsto \sigma$ pro všechny $\sigma \in \Sigma$.

Definice 2.24

Říkáme, že σ vyplývá z Σ (píšeme $\Sigma \models \sigma),$ pokud σ je pravdivý v každém modelu (koho, čeho) $\Sigma.$

Definice 2.25

Formule σ je validní v \mathcal{A} , $\mathcal{A} \models \varphi$, jestliže všechny \mathcal{A} -instance jsou pravdivé v \mathcal{S} .

Definice 2.26 (Axiomy predikátorové logiky)

TODO

Definice 2.27 (Axiomy rovnítka)

TODO

Definice 2.28

t je substituovatelný za y v $\varphi,$ jestliže žádná proměnná (žádný její výskyt) v t se nestane vázanou.

Definice 2.29

Qvantifikátorové axiomy v L jsou formule $\varphi(t/y) \implies \exists y \varphi \text{ a } \forall y \varphi \implies \varphi(t/y).$

Věta 2.3 (O korektnosti predikátorového počtu)

Každý logický axiom v L je validní v každé L-struktuře.

Lemma 2.4

Mějme nějaké atomy $\alpha_1, \ldots, \alpha_n$, které nejsou v L, a buďte $\varphi_i = \varphi(x_1, \ldots, x_m)$, $\forall 1 \leq i \leq n$. Definujeme pravdivostní ohodnocení $t : \{\alpha_1, \ldots, \alpha\} \to \{0, 1\}$ tak, že $t(\alpha_i) = 1$ pokud $\mathcal{A} \models_i (a_1, \ldots, a_m)$. Potom $p(\varphi_1, \ldots, \varphi_n)$ je L-formule a TODO.

Definice 2.30 (*L*-tautologie)

L-tautologie je formule tvaru $p(\varphi_1, \ldots, \varphi_n)$ pro nějakou tautologii $p(\alpha_1, \ldots, \alpha_n) \in Prop\{\alpha_1, \ldots, \alpha_n\}$ a formule $\varphi_1, \ldots, \varphi_n$.

Definice 2.31 (Logická pravidla)

Modus Ponens (MP): z φ a $\varphi \implies \psi$ odvodíme ψ .

Generalizační pravidla (G): pokud se proměnná x nevyskytuje volně v φ , potom z $\varphi \implies \psi$ odvodíme $\varphi \implies x\psi$ a z $\psi \implies \varphi$ odvodíme $\exists x\psi \implies \varphi$.

Definice 2.32 (Důkaz)

Formální důkaz, nebo prostě důkaz φ z Σ je posloupnost $\varphi_1, \ldots, \varphi_n$ formulí, kde $n \geq 1$ a $\varphi_n = \varphi$, takových, že $\forall k \in [n]$: je buď $\varphi_k \in \Sigma$ nebo φ_k je logický axiom, nebo φ_k může být odvozen z φ_i a φ_j (φ_j) pomocí MP (G), pro nějaké i, j. Značíme $\Sigma \vdash \varphi$.

Věta 2.5 (Kompletnost predikátorové logiky)

$$\Sigma \vdash \varphi \Leftrightarrow \Sigma \models \varphi.$$

Věta 2.6 (Kompaktnost)

Pokud $\Sigma \models \sigma$, pak existuje konečná podmnožina Σ_0 (koho, čeho) Σ , že $\Sigma_0 \models \sigma$.

Definice 2.33

 Σ je konzistentní, pokud $\Sigma \nvdash \bot$, jinak (pokud $\Sigma \vdash \bot$) ji nazýváme nekonzistentní.

Lemma 2.7

 $At \Sigma \vdash \varphi. \ Potom \Sigma \vdash \forall x\varphi..$

Důkaz (Náznak)

Použijeme MP a G na konkrétní L-tautologie.

Lemma 2.8 (Dedukce)

Necht $\Sigma \cup \{\sigma\} \vdash \varphi$, potom $\Sigma \vdash \sigma \implies \varphi$.

 $D\mathring{u}kaz$

Indukcí.

Věta 2.9

Pokud každá konečná podmnožina (koho, čeho) Σ má model, pak i Σ má model.

Lemma 2.10

Předpokládejme $\Sigma \vdash \varphi$ a t je substituovatelné za x v φ . Potom $\Sigma \vdash \varphi(t/x)$.

 $D\mathring{u}kaz$

 $MP \Sigma \vdash \forall x \varphi \ s \ \forall x \varphi \implies \varphi(t/x).$

Lemma 2.11 (Důsledky axiomů rovnosti)

TODO.

Definice 2.34

Ať L_T je množina L-termů bez proměnných. Definujeme binární relaci \sim_{Σ} na T_L :

$$t_1 \sim_{\Sigma} t_2 \Leftrightarrow \Sigma \vdash t_1 = t_2.$$

Lemma 2.12

 \sim_{Σ} je relace ekvivalence.

Definice 2.35 (Kanonická struktura pro Σ)

 $A_\Sigma:=T_L/\sim_\Sigma.$ R^{A_Σ} nebo F^{A_Σ} je potom relace nebo funkce, přijímající bloky ekvivalence.

Definice 2.36

Kompletní teorie je konsistentní a pro každou σ lze v této teorii dokázat σ nebo $\neg \sigma$.

Lemma 2.13 (Lindenbaum)

At Σ je konzistentní. Potom $\Sigma \subseteq \Sigma'$ pro nějaké úplné Σ' .

Definice 2.37

 Σ (henkinovský) svědek sentence $\exists x \varphi(x)$ je konstantní term $t \in T_L$ tak, že $\Sigma \vdash \varphi(t)$. Říkáme, že Σ je henkinovská teorie (má svědky), jestliže existuje svědek pro každou sentenci $\exists x \varphi(x)$.

Věta 2.14

Nechť L má konstantní symbol a předpokládejme Σ je konzistentní. Potom následující podmínky jsou ekvivalentní: 1) $\forall \sigma$ máme $\Sigma \vdash \sigma \Leftrightarrow \mathcal{A}_{\Sigma} \models \sigma$ a 2) Σ je kompletní a má svědky.

Lemma 2.15

At Σ je množina L-sentencí a c je konstantní symbol, který není v jazyku L. Definujme $L_c = L \cup \{c\}$. Potom když $\varphi(y)$ je L-formule a $\Sigma \vdash_{L_c} \varphi(c)$, tak $\Sigma \vdash_L \varphi(y)$.

Lemma 2.16

Nechť Σ je konzistentní a $\Sigma \vdash \exists y \varphi(y)$. Ať c je konstanta, která není v L. Položme $L_c := L \cup \{c\}$. Potom $\Sigma \cup \{\varphi(c)\}$ je konzistentní množina L_c -sentencí. Obdobně pro více c_i .

Lemma 2.17 (Rozšíření teorie o svědky)

TODO!

Lemma 2.18

Pokud máme jazyky $L_0 \subseteq L_1 \subseteq \dots$ a konzistentní teorie $\Sigma_0 \subseteq \Sigma_1 \subseteq \dots$ Potom sjednocení Σ_{∞} je konzistentní množina L_{∞} -sentencí.

2.2 Prenexní tvar

TODO?

Definice 2.38 (Prenexní tvar)

Formule je v prenexním tvaru, pokud je tvaru $Q_1x_1...Q_nx_n\varphi$, kde $x_1,...,x_n$ jsou různé proměnné, $Q_i \in \{\exists, \forall\}$ a φ je bez kvantifikátorů.

3 Trochu teorie modelů

Věta 3.1 (Löwenheim-Skolem (spočetná verze))

Nechť L je spočetný jazyk a Σ má model. Potom Σ má spočetný model.

 $D\mathring{u}kaz$

Jelikož množina proměnných je spočetná a L je spočetný, tak i množina L-sentencí je spočetná. Tedy i

$$L \cup \{c_{\sigma} | \Sigma \vdash \sigma \land \sigma = \exists x \varphi(x)\}\$$

je spočetný, tedy přidání svědků nezvětší L nad spočetnost. To znamená, že množina L_{∞} -termů je spočetná, tj. $\mathcal{A}_{\Sigma_{\infty}}$ je spočetná a $\mathcal{A}_{\Sigma_{\infty}}|_{L}$ je spočetný model Σ .

Tvrzení 3.2 (Vaughtův test)

Nechť L je spočetné a Σ má model a všechny spočetné modely Σ jsou isomorfní. Pak Σ je kompletní.

 $D\mathring{u}kaz$

Kdyby nebyla kompletní, pak existuje σ tak, že $\Sigma \nvdash \sigma$ a $\Sigma \nvdash \neg \sigma$. Potom z Löwenheim-Skolemovy věty existují 2 spočetné modely, ve kterých je σ (v prvním) a $\neg \sigma$ (ve druhém), které z Σ dostaneme tak, že přihodíme $\neg \sigma$ a σ . Tedy máme 2 izomorfní modely, v nichž v jednom je $\neg \sigma$ a v druhém σ . Spor.

Věta 3.3 (Löwenheim-Skolem (obecná verze))

Nechť L je jazyk mohutnosti \varkappa a Σ má nekonečný model. Potom Σ má model mohutnosti \varkappa .

 $D\mathring{u}kaz$

Podobně jako předchozí, jen přidáme $c_{\lambda} \neq c_{\mu}$, abychom měli právě mohutnost \varkappa .

Tvrzení 3.4 (Vaughtův test)

Nechť L je mohutnosti nejvýše \varkappa , Σ má model, všechny modely jsou nekonečné, a všechny modely Σ mohutnosti \varkappa jsou isomorfní. Pak Σ je kompletní.

Definice 3.1

 Σ' se nazývá konzervativní nad Σ , pokud pro každou L-sentenci σ je

$$\Sigma' \vdash_{L'} \sigma \Leftrightarrow \Sigma \vdash_L \sigma.$$

Tvrzení 3.5

Pokud $\varphi(x_1,\ldots,x_n,y)$ je L-formule. f_{φ} je n-ární funkční symbol, který není v L a pro který položíme $L':=L\cup\{f_{\varphi}\}$ a

$$\Sigma' := \Sigma \cup \{ \forall x_1 \dots \forall x_n (\exists y \varphi(x_1, \dots, x_n, y) \implies \varphi(x_1, \dots, x_n, f_{\varphi(x_1, \dots, x_n)})) \}$$

TODO?

Definice 3.2 (Presburgerova aritmetika)

Uvažujme jazyk $K = \{0, S, +\}$, kde 0 je konstantní symbol, S je unární funkční a + binární funkční symbol. Presburgerova aritmetika je K-teorie obsahující právě následující axiomy:

- 1. $Sx \neq 0$;
- $2. Sx = Sy \implies x = y;$
- 3. $x \neq 0 \implies \exists y : x = Sy;$
- 4. x + 0 = x;
- $5. \ x + Sy = S(x+y);$

a navíc schéma axiomů indukce (pro každou K-formuli φ):

$$(\varphi(0/x) \land \forall x(\varphi(x) \implies \varphi(Sx/x))) \implies \forall x\varphi.$$

Věta 3.6

Presburgerova aritmetika je kompletní.

Definice 3.3 (Robinsonova a Peanova aritmetika (tj. včetně ·))

Rozšíříme K na $L=K\cup\{\cdot\}$, kde \cdot je binární funkční symbol, a přidejme k předchozím axiomům navíc $x\cdot 0=0$ a $x\cdot Sy=x\cdot y+x$. Navíc schéma indukce nyní uvažujme pro všechny L-formule. Výsledné L-teorii se říká Peanova aritmetika (P nebo PA). Její (konečnou) podteorii, která vznikne vypuštěním všech axiomů indukce, nazýváme Robinsonova aritmetika (Q či RA).

Poznámka

V RA nelze dokázat ani asociativitu, ani komutativitu + a \cdot , ani vztah $\forall x: x \neq Sx$.

Definice 3.4

Buďte x,y dvě různé proměnné a φ nějaká L-formule. Formuli $\forall x(x \leq y \implies \varphi)$ zkráceně zapisujeme jako $\forall x \leq y \varphi$. Formuli $\exists x(x \leq y \implies \varphi)$ zkráceně zapisujeme jako $\exists x \leq y \varphi$. Formuli nazveme omezenou, pokud se v rámci její rekurzivní definice v kvantivikačním

kroku používá místo $\forall v\varphi$, resp. $\exists v\varphi$, kde v je proměnná, pouze omezená kvantifikace $\forall v \leq z\varphi$ resp. $\exists v \leq z\varphi$, kde z je nějaká proměnná různá od v.

Formuli nazveme Σ_1 -formulí, je-li tvaru $\exists x \psi$, kde ψ je omezená.

Věta 3.7 (Σ_1 -úplnost RA)

je-li φ uzavřená Σ_1 -formule taková, že $\mathbb{N} \models \varphi$, pak $RA \vdash \varphi$.

3.1 Gödelovské kódování

Kóduje veškeré formule do přirozených čísel. (Např. v PA.)

Definice 3.5

Teorii T nazýváme Σ_1 -teorií, pokud existuje Σ_1 -formule $\tau(x)$ taková, že $\sigma \in T$ právě tehdy, když $N \models \tau(\sigma/x)$.

Věta 3.8 (Autoreferenční lemma)

Necht $\varphi(y)$ je L-formule. Pak existuje L-sentence psi taková, že $RA \vdash \psi \Leftrightarrow \varphi(\psi/y)$.

TODO Věty o neúplnosti.