# 实验2 使用PMLKLDOEVM – 测量线性稳压器的效率

## PMLK LDO 实验板介绍



- PMLK LDO 实验板包括2个LDO,分别是PNP型的 TPS7A4901和NMOS型的TPS7A8300。
- PMLK LDO 实验板包括以下实验:
  - 实验1 输入输出条件对最小压差的影响(TPS7A4901)
  - 实验2 输入输出条件对效率的影响
  - 实验3 输入输出条件和输出电容对稳定性和暂态响应的影响
  - 实验4 电容对PSRR的影响
  - 实验5 输入输出条件对最小压差的影响(TPS7A8300)
  - 实验6 输出电容对负载暂态响应的影响

## TPS7A4901 PNP型LDO





#### Connectors

- J, input voltage screw drive connector
- J. output voltage screw drive connector

#### Jumpers

- J, connects grounds of TPS7A4901 and TPS7A8300 board sections
- $J_3$  connects  $C_1$  (4.7 $\mu$ F) and  $C_2$  (4.7 $\mu$ F) input capacitors
- J connects C (2.2µF) input capacitor
- $J_5$  connects  $C_4$  (4.7 $\mu$ F) and  $C_5$  (4.7 $\mu$ F) output capacitors
- J<sub>6</sub> connects C<sub>6</sub> (2.2µF) output capacitor
- J<sub>9</sub> connects Noise Reduction/Soft Start pin directly to ground and shorts across C<sub>7</sub> (12nF) noise reduction capacitor
- $J_{10}$  connects  $R_4$  (221k $\Omega$ ) resistor for 5V output voltage operation
- J<sub>11</sub> connects C<sub>8</sub> (100nF) phase lead capacitor
- J<sub>12</sub> enables LDO operation when top pin and center pin are shorted (ON), while it disables the LDO operation when center pin and bottom pin are shorted (OFF)
- J<sub>13</sub> connects C<sub>9</sub> (12nF) phase lead capacitor



## 注意事项

- 实验结束后所有实验板卡、线材、工具均需回收,请配合,谢谢!
- PMLK实验套件需回收,请勿在实验指导书上记录及涂写,数据请记录 在发放的数据记录表上。
- 电源实验如操作不当,有一定危险性,请严格按照实验步骤操作,避免 短路操作,数据测量完成后请立即关闭电源和电子负载输出。
- 离开实验台前请务必关闭仪器电源。

## PMLK LDO实验 观测LDO的效率和纹波

实验目的:测量LDO的效率和纹波,并研究输入电压和输出电流对效率的 影响。



实验使用TPS7A4901,分别测量输入电压变化和负载电流变化时LDO的效率,研究效率随输入电压和负载电流变化的趋势。另外用示波器测量LDO的输出电压纹波,以便与开关电源作对比。

# 仪器连接

实验所需仪器为:一台直流稳压电源,4个万用表(万用表数量不够可以使用直流稳压电源和电子负载的读数),负载。





1) 输入电压、输入电流、输出电压和输出电流不得超过实验板规定的范围。

TPS7A4901实验板输入电压范围: 6-36V, 最大输出电流150mA。

特别提醒: 当输入电压和输出电压相差很大时,即使没有超出36V,但考虑到散热也必须减小输出电流。

2) 如果使用电子负载,那么上电/下电顺序如下:

上电: 先打开输入电源输出, 再打开电子负载输出

下电: 先关掉电子负载输出, 再关掉输入电源输出

打开电源输出和电子负载输出前请检查设定的数值,防止超出实验板所能承受的范围。

- 3) 不得带电插拔跳线帽,在接线或插拔跳线帽之前必须关闭电源和电子负载!
- 4) 使用万用表和示波器测试时, 注意短路风险。

#### 对于TPS7A4901:

- 1) J5和J6不得同时开路, 电路不能在没有输出电容时工作。
- 2) 在测量负载暂态响应时,推荐使用高压摆率 (>1A/μs) 的动态模式电子负载。
- 3) 在测量输入暂态响应时,推荐使用高压摆率 (>1A/μs) 的动态模式电源。

## 实验步骤



#### 跳线设置(如图):

- J12接ON位置 → 使能LDO
- 短接J10 → 设置输出电压为5V
- 短接J13 → 连接C9
- 短接J5 → 连接输出电容C4和C5
- 短接J3 → 连接输入电容C1和C2
- **J4**开路 → 断开输入电容**C3**
- J6开路 → 断开输入电容C6
- J11开路 → 断开C8
- J9开路 → 断开C7

#### 实验步骤:

- 打开万用表,将万用表分别连接以测量输入电压、输入 电流、输出电压和输出电流。
- 2) 打开稳压电源(确保"OUT ON"按钮关闭),设置输出电 压为6V,电流限制为500mA
- 3) 打开电子负载(确保"LOAD ON"按钮关闭),设置为恒流模式,电流设为50mA。(泰克2460源表用作电子负载的设置请见之前的仪器使用说明)
- 4) 先打开稳压电源的"OUT ON"按钮,再打开电子负载 "LOAD ON"按钮,此时应看到输入电压6V,输入电流 50mA左右,输出电压5V左右,输出电流50mA。
- 5) 记录输入电压、输入电流、输出电压、输出电流的精确 值,填写在数据表格之中。
- 6) 将输入电压调整到8V和10V,之后重复步骤5),分别记录 输入电压8V和10V下的输入输出值。
- 7) 将输入电压重新调整为6V,将电子负载电流分别设置为 100mA和150mA,记录两种情况下的输入电压、输入电流、输出电压、输出电流。
- 8) 设置输入电压10V,负载电流150mA,将万用表电压探 头设置为交流耦合(打开带宽限制),测量输出电压纹 波。
- 9) 关闭电子负载的"LOAD ON"按钮,在关闭稳压电源的 "OUT ON"按钮,最后关闭所有仪器。



## 数据测量和计算

1) 在负载电流固定为50mA时,分别记录输入电压为6V、8V、10V时的输入电压、输入电流、输出电压、输出电流,并计算每个输入电压下LDO的效率。

负载电流lout=50mA时,不同输入电压下的LDO效率

|         | Vin (V) | Iin (mA) | Vout (V) | Iout (mA) | η (%) |
|---------|---------|----------|----------|-----------|-------|
| Vin=6V  |         |          |          |           |       |
| Vin=8V  |         |          |          |           |       |
| Vin=10V |         |          |          |           |       |

2) 在输入电压固定为6V时,分别记录负载电流为50mA、100mA、150mA时的输入电压、输入电流、输出电压、输出电流,并计算每个负载电流下LDO的效率。

输入电压Vin=6V时,不同负载电流下的LDO效率

|            | Vin (V) | Iin (mA) | Vout (V) | Iout (mA) | η (%) |
|------------|---------|----------|----------|-----------|-------|
| Iout=50mA  |         |          |          |           |       |
| Iout=100mA |         |          |          |           |       |
| Iout=150mA |         |          |          |           |       |

注: LDO功率耗散的计算公式为:  $P_d = P_{IN} - P_{OUT} = V_{IN}I_{IN} - V_{OUT}I_{OUT}$ 

3) 记录输入电压10V,负载电流150mA时的输出电压纹波峰-峰值  $\Delta V_{outpp}$ ?

#### Vin=10V, lout=150mA时TPS7A4901的输出电压纹波

80.0m

# 数据测量和计算

在负载电流固定为50mA时,分别记录输入电 、输出电流,并计算每个输入电压下LDO的效

负载电流lout=50mA

|         | Vin (V) | lin (mA) |
|---------|---------|----------|
| Vin=6V  | 6.0004  | 50.3874  |
| Vin=8V  | 8.0004  | 50.3896  |
| Vin=10V | 10.0003 | 50.3942  |

更多 2) 在输入电压固定为6V时,分别记录负载电流 1500 出电压、输出电流,并计算每个负载电流下LDO的效率。

输入电压Vin=6V时,不同负载电流下的LDO效率

|            | Vin (V) | Iin (mA) | Vout (V) | Iout (mA) | η (%)  |
|------------|---------|----------|----------|-----------|--------|
| Iout=50mA  | 6.0004  | 50.3877  | 4.9069   | 50.009    | 81.16% |
| Iout=100mA | 6.0004  | 100.6049 | 4.9059   | 100.014   | 81.28% |
| Iout=150mA | 6.0004  | 150.815  | 4.8995   | 150.12    | 81.28% |

注: LDO功率耗散的计算公式为:  $P_d = P_{IN} - P_{OUT} = V_{IN}I_{IN} - V_{OUT}I_{OUT}$ 

记录输入电压10V,负载电流150mA时的输出电压纹波峰-峰值  $\Delta V_{outpp}$  < 5mV3)

1.30 V 标准差 13.9m

## 实验结果分析

#### 1) 当输入电压增大时, LDO的效率如何变化?

从实验结果可以看出,输入电压对LDO的效率影响较大。根据理论背景中提到的分析,LDO效率计算 公式为

$$\eta = \frac{P_{OUT}}{P_{IN}} = \frac{V_{OUT}I_{OUT}}{V_{IN}I_{IN}}$$

其中, $I_{IN} = I_{OUT} + I_{GND} + I_{VD}$ 。由于 $I_{GND}$ 和 $I_{VD}$ 很小, $I_{OUT}$ 和 $I_{IN}$ 几乎可以看做相等。因此输出电压不变时,输入电压的增大会导致效率成比例的下降。

#### 2) 当负载电流增大时, LDO的效率如何变化?

从实验结果可以看出,当输入电压不变时,负载电流对LDO效率的影响并不十分明显。这是因为根据效率的计算公式,当 $V_{OUT}$ 和 $V_{IN}$ 都不变时,输入电流会随着负载电流同时增大。负载电流对效率的影响只体现在 $I_{GND}$ 和 $I_{VD}$ 上,而由于这二者并不是影响LDO效率的主要因素,因此LDO的效率变化不大。

## 更多实验请参考PMLK实验指导书

#### **LDO**

#### Exp 1

Impact of line and load conditions on steady-state operation

## Exp 2

Impact of line and load conditions on efficiency

#### Exp 3

Impact of operating conditions and output capacitor on stability

#### Exp 4

Impact of operating conditions on Power Supply Rejection Ratio

#### Exp 5

Impact of line and load conditions on dropout voltage

#### Exp 6

Impact of output capacitor characteristics on load-transient response

#### **Buck**

#### Exp 7

Impact of operating conditions on efficiency

#### Exp 8

Impact of passive devices and switching frequency on current and voltage ripples

#### Exp 9

Impact of cross-over frequency and passive devices on load transient response

#### Exp 10

Impact of the inductor saturation on current and voltage ripples

#### **Exp 11**

Impact of inductor characteristics on current limiting operation

#### Exp 12

Switching frequency, ripple, offset and line immunization capabilities of hysteretic control

#### **Boost**

#### **Exp 13**

Impact of operation mode on voltage conversion ratio and duty-cycle

#### Exp 14

Impact of operation mode on efficiency

#### **Exp 15**

Impact of operation conditions on the dynamic response

#### Exp 16

Impact of operating conditions and inductor characteristics on current limiting

#### **Exp 17**

Impact of current-mode control on Power Supply Rejection Ratio

#### Exp 18

Impact of feedback control and operating conditions on Output impedance and reverse Power Supply Rejection Ratio

#### **Buck-Boost**

#### **Exp 19**

Impact of operating conditions on Power Supply Rejection Ratio

#### Exp 20

Impact of the operating conditions on Input Admittance

## Exp 21

Impact of the inductor on operation mode and conversion ratio

#### Exp 22

Impact of silicon devices, passive devices and operating conditions on efficiency

#### Exp 23

Impact of the operating mode on the performances of dynamic compensation

#### Exp 24

Impact of cross-over frequency setup on soft start and current limiting

