# From Theory to Practice







# Lab 5: Voice Transmission using USRP

主讲人: 吴光 博士

Email: wug@sustech.edu.cn





Demo: Voice Transmission using USRP

# System Model



# USRP: Universal Software Radio Peripheral













| Daughter board | Frequency range |
|----------------|-----------------|
| SBX            | 400 - 4400MHz   |
| WBX            | 50 - 2200MHz    |
| XCVR2450       | 2400 - 2500MHz  |
| Basic          | 1 - 250MHz      |





Demo: Transmit a signal

### Find USRP





Host computer's IP:

192.168.10.1



# Programming for Transmitter

## Block Diagram of the Transmitter



## Configuration Parameters in Front Panel

**Actual value** 

| Parameters          | Value        |
|---------------------|--------------|
| Device names        | 192.168.10.2 |
| Carrier frequency   | 2.40001GHz   |
| IQ rate (samples/s) | 200k         |
| Gain (dB)           | 0            |
| Waveform size       | 10000        |
| Data                | 1+0i         |
| Active antenna      | Tx1          |









# Block Diagram of the Receiver



# Configuration Parameters in Front Panel



# Complex Baseband

$$s(t) = a(t)cos[2\pi f_c t + \varphi] \qquad \longrightarrow \qquad s_l(t) = s_l(t) + js_Q(t)$$

$$s_l(t) = a(t)cos(\varphi)$$

$$s_l(t) = a(t)cos(\varphi)$$

$$s_l(t) = a(t)sin(\varphi)$$

# How to Interpret the Results?



## Most-used USRP functions







Close









niUSRP Abort.vi

**USRP** Receiver









Demo: Voice Transmission using USRP

# Complex Baseband

$$s(t) = a(t)cos[2\pi f_c t + \varphi]$$

$$s_I(t) = a(t)cos(\varphi)$$

$$s_Q(t) = a(t) sin(\varphi)$$

$$s_l(t) = s_I(t) + js_Q(t)$$

#### Baseband

$$s(nT_S) = cos[2\pi f_C t + 2\pi \int k_f m(nT_S)dt]$$

$$s_I(nT_S) = A_C cos(2\pi \int k_f m(nT_S)dt)$$

$$s_Q(nT_S) = A_C sin(2\pi \int k_f m(nT_S)dt)$$

$$s_l(nT_s) = s_I(nT_s) + js_Q(nT_s)$$





# Complex Baseband

### Baseband

$$s(nT_s) = cos[2\pi f_c t + 2\pi \int k_f m(nT_s) dt]$$

$$s_I(nT_s) = A_c cos(2\pi \int k_f m(nT_s) dt)$$

$$s_Q(nT_s) = A_c sin(2\pi \int k_f m(nT_s) dt)$$

$$s_l(nT_s) = s_I(nT_s) + js_Q(nT_s)$$

$$2\pi \int k_f m(nT_S)dt = atan\left(\frac{s_Q(nT_S)}{s_I(nT_S)}\right)$$

$$m(nT_S) = \frac{1}{2\pi k_f} \frac{d}{dt} \left[ atan \left( \frac{s_Q(nT_S)}{s_I(nT_S)} \right) \right]$$

FM Complex Baseband



### **FM Transmitter**









### **FM** Receiver













Demo: Multi Channel System





$$s_m(nT_s) = A_c (1 + k_{a1} m_1(nT_s)) \cos(2\pi f_{c1} nT_s) + A_c (1 + k_{a2} m_2(nT_s)) \cos(2\pi f_{c2} nT_s)$$





### Discussion and Research

- 1. Implementation of the FM Receiver with the Pre-recorded signal.
- 2. How to design the multi-channel system?
- 3. How to implement the FM receiver by DLL?
- 4. Design a User Interface (UI).
- 5. Implementation with Producer-Consumer Design Pattern.
- 6. 2-3 Students work as a group, Presentation and Report.

## Summary



# Question ?

