11月6日上机实习安排

使用MS软件CASTEP模块完成:

Graphene的DFT计算

- 1. 结构优化→
- 2. 电荷密度计算(高精度单点能) →
- 3. 能带结构计算(FBZ高对称K点) \rightarrow
- 4. 态密度计算(DOS & PDOS)

PPT展示:

董家豪(+10): Graphene DFT计算的结果可靠性测试

Graphene DFT计算的结果可靠性测试

1. 截断能(cutoff energy)

截断能与总能量的关系

截断能与计算时间的关系

Graphene DFT计算的结果可靠性测试

2. K points

K点设置与总能量的关系

K点设置与计算时间的关系

Graphene DFT计算的参考文献

- 1. A. G. Marinopoulos et al. Ab Initio Study of the Optical Absorption and Wave-Vector-Dependent Dielectric Response of Graphite. *Phys. Rev. B* **2004**, 69, 245419.
- 2. N. Ooi, A. Rairkar, and J. B. Adams. Density Functional Study of Graphite Bulk and Surface Properties. *Carbon* **2006**, 44, 231-242.

1. Geometry Optimization of Graphene

Setting:

- Quality: fine (for optimization)
- ➤ Mark "Optimize cell"
- ➤ Method: BFGS
- ➤ Cutoff energy: 400 eV
- \triangleright K points: $6 \times 6 \times 1$
- > Pseudopotential: ultrasoft

Before

$$a = b = 2.460 \text{ Å}$$

 $c = 20.0 \text{ Å}$
 $\alpha = \beta = 90.0^{\circ}$
 $\gamma = 120.0^{\circ}$

After

$$a = b = 2.463 \text{ Å}$$
 $c = 20.0 \text{ Å}$
 $\alpha = \beta = 90.0^{\circ}$
 $\gamma = 120.0^{\circ}$

1. Geometry Optimization of Graphene

Task: Geometry Optimization → More.....

1. Geometry Optimization of Graphene

Task: Electronic → More.....

Geometry Optimization: No properties!!!

2. Single-Point Energy Calculation for Charge Density

Setting for changed (higher computational accuracy):

➤ Task: Energy

 \triangleright *K*-point set: $8 \times 8 \times 1$

➤ SCF tolerance: 10e-6 eV/atom

Visualize charge density (Analysis):

- ➤ Select "Electron density"
- **≻**Import

2. Single-Point Energy Calculation for Charge Density

Change "Display Style"

匡亚明学院

3. Band Structure

Setting:

- ➤ Task: Properties
- ➤ Properties: Mark "Band structure"
- \triangleright Set high-symmetry *K* points: "Tools \rightarrow Brillouin Zone path"

Visualize band structure (Analysis): ×

- ➤ Select "Band structure"
- **View**

Band gap is 0.019 eV

4. Density of States (DOS & PDOS)

Setting:

Task: Properties

➤ Properties: Mark "Density of states and a state of states and a

➤ Mark "Calculate PDOS"

Visualize DOS (Analysis):

- ➤ Select "Density of states"
- ➤ Select "Full DOS" or "Partial"
- > View

More. Help 0

Help

Atom Selection..

4. Density of States (DOS & PDOS)

11月9日上机实习安排

使用MS软件CASTEP模块完成:

Spin-polarized calculation for magnetic Fe membranes:

- 1. 建模(triangular vs square membranes)
- 2. Geometry optimizations for 2 model systems
- 3. Spin-polarized calculations for different magnetic states

PPT展示:

?(+10): Graphene DFT计算的VASP设置