

Metodos Numéricos: Tarea 1

Thomas Muñoz, Diego Vilches, Javiera Araya, Ignacio Yanjari.

1. Usando los métodos de bisección, falsa posición, y secante, encuentre la raíz aproximada de las siguientes ecuaciones no lineales en los intervalos indicados:

a)
$$x^3 - 3sen(x) + 1 = 0$$
, sobre [0,2].

Métodos	Secante	Biseccion	Falsa Posicion
Cero Obtenido	-1,5873	0,3558	-1,5873
Iteraciones	6	15	7

b)
$$e^{-t/2}cos(4t) = 0$$
, sobre [0,1].

Métodos	Secante	Bisection	Falsa Posicion
Cero Obtenido	1,9635	0,3927	0,3927
Iteraciones	3	12	4

c)
$$x + 40 - x \cosh(\frac{60}{x}) = 0$$
, sobre [40,60].

Métodos	Secante	Biseccion	Falsa Posicion
Cero Obtenido	50,5399	50,5399	50,5399
Iteraciones	5	15	9

d)
$$e^{0.5x}\cos(0.05\sqrt{200-\frac{x^2}{10}})-1=0$$
, sobre [0,4].

Métodos	Secante	Bisection	Falsa Posicion
Cero Obtenido	50,5481	50,5481	50,5481
Iteraciones	5	13	18

e)
$$f(\theta) = \frac{0.6 \sin \theta}{\sqrt{(\cos(\theta) - 0.6)^2 + \sin(\theta)^2}} - \frac{0.6 \sin \theta}{\sqrt{(\cos(\theta) + 0.6)^2 + \sin(\theta)^2}} = 0, \theta \in [1, 2].$$
 (sol. exacta $\theta^* = \frac{\pi}{2}$)

Métodos	Secante	Biseccion	Falsa Posicion
Cero Obtenido	1,5708	1,5708	1,5708
Iteraciones	3	10	2

Con una tolerancia de 10^{-5} . Haga una comparación de los métodos en cuanto a la cantidad de iteraciones, el error cometido. Cuál de ellos fue más eficiente?

2.

- 3. Considere la ecuación no lineal $f(x) = -x^3 \cos(x) = 0$
 - a) Usando el método de Newton encontrar la raiz próxima al valor $x_0 = -1$, con una precisión de 10^{-5} .

Cero Obtenido	-0.8655
Iteraciones	4

Metodos Numéricos 2

b) Repetir el proceso con el método de Newton modificado, esto es, con la iteración

$$x_{n+1} = x_n - \frac{f(x_n)}{f'(x_0)}$$

Cero Obtenido	-0.8655
Iteraciones	7

 $\ensuremath{\mathbb{k}}$ Qué método converge más rápido? El método de Newton usual converge más rápido, ya que solo tomó 4 iteraciones