Kernel Trick

He He¹

CDS, NYU

March 2, 2021

He He² (CDS, NYU)

¹Slides based on Lecture 4d from David Rosenberg's course material.

SVM with Explicit Feature Map

- Let $\psi: \mathfrak{X} \to \mathsf{R}^d$ be a feature map.
- The SVM objective (with explicit feature map):

$$\min_{w \in \mathbb{R}^d} \frac{1}{2} ||w||^2 + \frac{c}{n} \sum_{i=1}^n \max(0, 1 - y_i w^T \psi(x_i)).$$

- Computation is costly if d is large (e.g. with high-degree monomials)
- Last time we mentioned an equivalent optimization problem from Lagrangian duality.

He He³ (CDS, NYU)

SVM Dual Problem

• By Lagrangian duality, it is equivalent to solve the following dual problem:

maximize
$$\sum_{i=1}^{n} \alpha_{i} - \frac{1}{2} \sum_{i,j=1}^{n} \alpha_{i} \alpha_{j} y_{i} y_{j} \psi(x_{j})^{T} \psi(x_{i})$$
s.t.
$$\sum_{i=1}^{n} \alpha_{i} y_{i} = 0 \quad \text{and} \quad \alpha_{i} \in \left[0, \frac{c}{n}\right] \quad \forall i.$$

• If α^* is an optimal value, then

$$w^* = \sum_{i=1}^n \alpha_i^* y_i \psi(x_i)$$
 and $\hat{f}(x) = \sum_{i=1}^n \alpha_i^* y_i \psi(x_i)^T \psi(x)$.

• Key observation: $\psi(x)$ only shows up in inner products with another $\psi(x')$ for both training and inference.

Compute the Inner Products

Consider 2D data. Let's introduce degree-2 monomials using $\psi: \mathsf{R}^2 \to \mathsf{R}^3$.

$$(x_1, x_2) \mapsto (x_1^2, \sqrt{2}x_1x_2, x_2^2).$$

The inner product is

$$\psi(x)^{T}\psi(x') = x_{1}^{2}x_{1}'^{2} + (\sqrt{2}x_{1}x_{2})(\sqrt{2}x_{1}'x_{2}') + x_{2}^{2}x_{2}'^{2}$$

$$= (x_{1}x_{1}')^{2} + 2(x_{1}x_{1}')(x_{2}x_{2}') + (x_{2}x_{2}')^{2}$$

$$= (x_{1}x_{1}' + x_{2}x_{2}')^{2}$$

$$= (x^{T}x')^{2}$$

We can calculate the inner product $\psi(x)^T \psi(x')$ without accessing the features $\psi(x)$!

He He⁵ (CDS, NYU)

Compute the Inner Products

Now, consider monomials up to degree-2:

$$(x_1, x_2) \mapsto (1, \sqrt{2}x_1, \sqrt{2}x_2, x_1^2, \sqrt{2}x_1x_2, x_2^2).$$

The inner product can be computed by

$$\psi(x)^T \psi(x') = (1 + x^T x')^2$$
 (check).

More generally, for features maps producing monomials up to degree-p, we have

$$\psi(x)^T \psi(x') = (1 + x^T x')^p$$
.

(Note that the coefficients of each monomial in ψ may not be 1)

Kernel trick: we do not need explicit features to calculate inner products.

- Using explicit features: $O(d^p)$
- Using implicit computation: O(d)

Kernel Function

The Kernel Function

- $\bullet \ \, \textbf{Input space} \colon \, \mathfrak{X}$
- Feature space: \mathcal{H} (a Hilbert space, e.g. R^d)
- Feature map: $\psi: \mathfrak{X} \to \mathcal{H}$
- The kernel function corresponding to ψ is

$$k(x,x') = \langle \psi(x), \psi(x') \rangle$$
,

where $\langle \cdot, \cdot \rangle$ is the inner product associated with \mathcal{H} .

Why introduce this new notation k(x,x')?

• We can often evaluate k(x,x') without explicitly computing $\psi(x)$ and $\psi(x')$.

When can we use the kernel trick?

Some Methods Can Be "Kernelized"

Definition

A method is **kernelized** if every feature vector $\psi(x)$ only appears inside an inner product with another feature vector $\psi(x')$. This applies to both the optimization problem and the prediction function.

The SVM Dual is a kernelization of the original SVM formulation.

Optimization:

maximize
$$\sum_{i=1}^{n} \alpha_{i} - \frac{1}{2} \sum_{i,j=1}^{n} \alpha_{i} \alpha_{j} y_{i} y_{j} \psi(x_{j})^{T} \psi(x_{i})$$

s.t.
$$\sum_{i=1}^{n} \alpha_{i} y_{i} = 0 \quad \text{and} \quad \alpha_{i} \in \left[0, \frac{c}{n}\right] \quad \forall i.$$

Prediction:

$$\hat{f}(x) = \sum_{i=1}^{n} \alpha_i^* y_i \psi(x_i)^T \psi(x).$$
DS-GA 1003

The Kernel Matrix

Definition

The **kernel matrix** for a kernel k on $x_1, \ldots, x_n \in \mathcal{X}$ is

$$K = (k(x_i, x_j))_{i,j} = \begin{pmatrix} k(x_1, x_1) & \cdots & k(x_1, x_n) \\ \vdots & \ddots & \cdots \\ k(x_n, x_1) & \cdots & k(x_n, x_n) \end{pmatrix} \in \mathbb{R}^{n \times n}.$$

• In ML this is also called a **Gram matrix**, but traditionally (in linear algebra), Gram matrices are defined without reference to a kernel or feature map.

The Kernel Matrix

- The kernel matrix summarizes all the information we need about the training inputs x_1, \ldots, x_n to solve a kernelized optimization problem.
- In the kernelized SVM, we can replace $\psi(x_i)^T \psi(x_j)$ with K_{ij} :

$$\begin{aligned} \text{maximize}_{\alpha} & & \sum_{i=1}^{n} \alpha_{i} - \frac{1}{2} \sum_{i,j=1}^{n} \alpha_{i} \alpha_{j} y_{i} y_{j} K_{ij} \\ \text{s.t.} & & \sum_{i=1}^{n} \alpha_{i} y_{i} = 0 \quad \text{and} \quad \alpha_{i} \in \left[0, \frac{c}{n}\right] \ i = 1, \dots, n. \end{aligned}$$

Kernel Methods

Given a kernelized ML algorithm (i.e. all $\psi(x)$'s show up as $\langle \psi(x), \psi(x') \rangle$),

- Can swap out the inner product for a new kernel function.
- New kernel may correspond to a very high-dimensional feature space.
- Once the kernel matrix is computed, the computational cost depends on number of data points *n*, rather than the dimension of feature space *d*.
- Useful when d >> n.
- Computing the kernel matrix may still depend on d and the essence of the **trick** is getting around this O(d) dependence.

Example Kernels

Kernels as Similarity Scores

- Often useful to think of the k(x,x') as a similarity score for x and x'.
- We can design similarity functions without thinking about the explicit feature map, e.g. "string kernels", "graph kerners".
- How do we know that our kernel functions actually correspond to inner products in some feature space?

How to Get Kernels?

- Explicitly construct $\psi(x): \mathcal{X} \to \mathsf{R}^d$ (e.g. monomials) and define $k(x, x') = \psi(x)^T \psi(x')$.
- Directly define the kernel function k(x,x') ("similarity score"), and verify it corresponds to $\langle \psi(x), \psi(x') \rangle$ for some ψ .

There are many theorems to help us with the second approach.

Linear Algebra Review: Positive Semidefinite Matrices

Definition

A real, symmetric matrix $M \in \mathbb{R}^{n \times n}$ is **positive semidefinite (psd)** if for any $x \in \mathbb{R}^n$,

$$x^T M x \geqslant 0.$$

Theorem

The following conditions are each necessary and sufficient for a symmetric matrix M to be positive semidefinite:

- M can be factorized as $M = R^T R$, for some matrix R.
- All eigenvalues of M are greater than or equal to 0.

Positive Definite Kernel

Definition

A symmetric function $k: \mathcal{X} \times \mathcal{X} \to \mathbb{R}$ is a **positive definite (pd)** kernel on \mathcal{X} if for any finite set $\{x_1, \ldots, x_n\} \in \mathcal{X}$ ($n \in \mathbb{N}$), the kernel matrix on this set

$$K = (k(x_i, x_j))_{i,j} = \begin{pmatrix} k(x_1, x_1) & \cdots & k(x_1, x_n) \\ \vdots & \ddots & \cdots \\ k(x_n, x_1) & \cdots & k(x_n, x_n) \end{pmatrix}$$

is a positive semidefinite matrix.

- Symmetric: k(x,x') = k(x',x)
- The kernel matrix needs to be positive semidefinite for any finite set of points.
- Equivalent definition: $\sum_{i=1}^{n} \sum_{j=1}^{n} \alpha_i \alpha_j k(x_i, x_j) \ge 0$ given $\alpha_i \in \mathbb{R} \ \forall i$.

Mercer's Theorem

Theorem

A symmetric function k(x,x') can be expressed as an inner product

$$k(x,x') = \langle \psi(x), \psi(x') \rangle$$

for some ψ if and only if k(x,x') is **positive definite**.

- Proving a kernel function is positive definite is typically not easy.
- But we can construct new kernels from valid kernels.

Generating New Kernels from Old

• Suppose k, k_1 , $k_2 : \mathcal{X} \times \mathcal{X} \to \mathsf{R}$ are pd kernels. Then so are the following:

$$\begin{array}{lll} k_{\mathsf{new}}(x,x') &=& \alpha k(x,x') \quad \text{for } \alpha \geqslant 0 \quad \text{(non-negative scaling)} \\ k_{\mathsf{new}}(x,x') &=& k_1(x,x') + k_2(x,x') \quad \text{(sum)} \\ k_{\mathsf{new}}(x,x') &=& k_1(x,x')k_2(x,x') \quad \text{(product)} \\ k_{\mathsf{new}}(x,x') &=& k(\psi(x),\psi(x')) \quad \text{for any function } \psi(\cdot) \quad \text{(recursion)} \\ k_{\mathsf{new}}(x,x') &=& f(x)f(x') \quad \text{for any function } f(\cdot) \quad \text{(f as 1D feature map)} \end{array}$$

• Lots more theorems to help you construct new kernels from old.

Based on Mark Schmidt's slides:https://www.cs.ubc.ca/~schmidtm/Courses/540-W19/L12.5.pdf

Linear Kernel

- Input space: $\mathfrak{X} = \mathbb{R}^d$
- Feature space: $\mathcal{H} = \mathbb{R}^d$, with standard inner product
- Feature map

$$\psi(x) = x$$

• Kernel:

$$k(x,x') = x^T x'$$

Quadratic Kernel in R^d

- Input space $\mathfrak{X} = \mathbb{R}^d$
- Feature space: $\mathcal{H} = \mathbb{R}^D$, where $D = d + \binom{d}{2} \approx d^2/2$.
- Feature map:

$$\psi(x) = (x_1, \dots, x_d, x_1^2, \dots, x_d^2, \sqrt{2}x_1x_2, \dots, \sqrt{2}x_ix_j, \dots \sqrt{2}x_{d-1}x_d)^T$$

• Then for $\forall x, x' \in \mathbb{R}^d$

$$k(x,x') = \langle \psi(x), \psi(x') \rangle$$

= $\langle x, x' \rangle + \langle x, x' \rangle^2$

- Computation for inner product with explicit mapping: $O(d^2)$
- Computation for implicit kernel calculation: O(d).

Polynomial Kernel in R^d

- Input space $\mathfrak{X} = \mathbb{R}^d$
- Kernel function:

$$k(x,x') = (1 + \langle x,x' \rangle)^M$$

- \bullet Corresponds to a feature map with all monomials up to degree M.
- For any M, computing the kernel has same computational cost
- ullet Cost of explicit inner product computation grows rapidly in M.

Radial Basis Function (RBF) / Gaussian Kernel

Input space $\mathfrak{X} = \mathbb{R}^d$

$$k(x,x') = \exp\left(-\frac{\|x-x'\|^2}{2\sigma^2}\right),\,$$

where σ^2 is known as the bandwidth parameter.

- Probably the most common nonlinear kernel.
- Does it act like a similarity score?
- Why "radial"?
- Have we departed from our "inner product of feature vector" recipe?
 - Yes and no: corresponds to an infinite dimensional feature vector

Remaining Questions

Our current recipe:

- Recognize kernelized problem: $\psi(x)$ only occur in inner products $\psi(x)^T \psi(x')$
- Pick a kernel function ("similarity score")
- Compute the kernel matrix (n by n where n is the dataset size)
- Optimize the model and make predictions by accessing the kernel matrix

Next: When can we apply kernelization?