Simplicial Complexes

Lecture 3 - CMSE 890

Prof. Elizabeth Munch

Michigan State University

Dept of Computational Mathematics, Science & Engineering

Tues, Sep 2, 2025

Goals

Goals for today: Ch 2.1

- Define geometric/abstract simplicial complexes
- Define simplicial maps

A simplicial complex is a generalizion of a graph

Independence

A set $\{a_0, \dots, a_n\} \subset \mathbb{R}^N$ is **geometrically independent** if for any collection $\{t_i\}_{i=0}^N \subset \mathbb{R}$, the equations

$$\sum_{i=0}^n t_i = 1 \text{ and } \sum_{i=0}^n t_i a_i = 0$$

imply $t_i = 0 \ \forall i$.

n-Plane

Given a geometrically independent set of points $\{a_0, \dots, a_n\}$, the *n*-plane *P* spanned by the points is

$$P = \left\{ \sum_{i=0}^n t_i a_i \in \mathbb{R}^N \mid \sum t_i = 1
ight\}.$$

n-simplex

Given a geometrically independent set of points $\{a_0, \dots, a_n\}$, the *n*-simplex σ spanned by the points is

$$P = \left\{ \sum_{i=0}^n t_i \mathsf{a}_i \in \mathbb{R}^{\mathsf{N}} \mid \sum t_i = 1
ight\}$$

such that $t_i \geq 0 \ \forall i$.

Barycentric coordinates

The numbers t_i are uniquely determined by x and are called **barycentric coordinates**.

More definitions

- $\{a_0, \dots, a_n\}$ are called the **vertices** of σ .
- The dimension of $\sigma = [a_0, \dots, a_n]$ is n.
- Any simplex spanned by a subset of $\{a_0, \dots, a_n\}$ is a **face** of σ .
- A face is proper if it isn't the simplex itself.

Even more definitions

- The union of the proper faces is the **boundary** of σ , $Bd(\sigma)$.
- The **interior** of σ is $\sigma Bd(\sigma)$. This is sometimes called the open simplex.

Geometric simplicial complex

A **simplicial complex** K in \mathbb{R}^N is a (finite) collection of simplices in \mathbb{R}^N such that

- Every face of a simplex of K is in K.
- $oldsymbol{0}$ The intersection of any two simplices of K is a face of each.

Dimension

The **dimension** of K is the maximum dimension of its simplices.

Abstract simplicial complexes

An abstract simplicial complex K is a (finite) collection of (finite) non-empty sets of V such that $\alpha \in K$ and $\beta \subseteq \alpha$ implies $\beta \in K$.

Two types

Geometric

Abstract

Geometric realization, underlying space

Subcomplex

If L is a subcollection of K that contains all faces of its elements, then L is called a **subcomplex**.

A subcomplex $L \subset K$ is **full** if it contains all simplices of K spanned by the vertices in L.

Skeleton

The subcomplex of K consisting of all simplices of dimension $\leq p$ is called the p-skeleton of K, usually denoted K^p .

Stars

• The star of a simplex $\sigma \in K$, $St(\sigma)$, is the union of the interiors of simplices in K which have σ as a face.

Warning: $St(\sigma) \subset |K|$ is not a simplicial complex!

• The closed star, $\overline{\mathrm{St}}(\sigma)$, is the closure of $\mathrm{St}(\sigma)$.

Links

The **link** of a simplex is $\overline{\mathrm{St}}(\sigma) - \mathrm{St}(\sigma)$.

Given a finite collection of sets \mathcal{F} , the **nerve** is

$$Nrv(\mathcal{U}) = \{X \subseteq \mathcal{F} \mid \bigcap_{U \in X} U \neq \emptyset\}.$$

Check: This is actually an abstract simplicial complex!

Recall: K is a simplicial complex if $\sigma \in K$ and $\tau \leq \sigma$ implies $\tau \in K$.

$$\operatorname{Nrv}(\mathcal{F}) = \{ X \subseteq \mathcal{F} \mid \bigcap_{U \in X} U \neq \emptyset \}.$$

Try it: What is the nerve of this collection of disks?

Try it: What is the nerve of this collection of sets?

The difference between the examples

Homework

Pick one

- Let K be a simplicial complex. Show that K is the nerve of the collection of stars of its vertices.
- A flag in a simplicial complex K is a nested sequence of proper faces σ₀ < σ₁ < ··· < σ_k.
 Show that the collection of flags in K forms a simplicial complex; this is called the **order complex** of K.

For either question, show the construction on the simplicial complex below.

