Теорія інформації та кодування

Лекція 7. Коди Боуза-Чоудхурі-Хоквінгема (БЧХ коди)

БЧХ коди є різновидом циклічних кодів з кодовою відстанню $d_{\min} \ge 3$.

Вони дають змогу виявляти та виправляти будь-яку кількість помилок.

Визначальними параметрами для побудови кодів Боуза–Чоудхурі–Хоквінгема (БЧХ) є:

кількість помилок, яку треба виправити;

мінімальна кодова відстань та загальна кількість елементів n у кодовій комбінації.

Кількість інформаційних k і перевірних r елементів визначають у ході побудови коду (БЧХ).

Правила побудови БЧХ кодів:

1. Довжину кодових комбінацій кодів БЧХ *п* визначають так:

$$n = 2^h - 1$$
; $n = (2^h - 1) / g$,

де h — ціле додатне число, а g — додатне непарне число, при діленні на яке, n стає цілим непарним числом.

Легко бачити, що довжина кодових комбінацій n може бути тільки непарною.

Розкладемо $2^h - 1$ на множники:

$$7 = 2^3 - 1$$
; $15 = 2^4 - 1 = 5 \cdot 3$; $31 = 2^4 - 1$; $63 = 2^6 - 1 = 7 \cdot 3 \cdot 3$; $127 = 2^7 - 1$;

$$255 = 2^8 - 1 = 17 \cdot 5 \cdot 3$$
; $511 = 2^9 - 1 = 73 \cdot 7$; $1023 = 2^{10} - 1 = 31 \cdot 11 \cdot 3$; $2047 = 2^{11} - 1 = 89 \cdot 23$;

$$4095 = 2^{12} - 1 = 13 \cdot 7 \cdot 5 \cdot 3 \cdot 3 \dots$$

2. Кількість перевірних елементів коду визначають з виразу

$$r \le \frac{h(d_{\min} - 1)}{2} = \left[\log_2(n+1)\right] \frac{d_{\min} - 1}{2}$$

Кількість інформаційних елементів – з виразу

$$k \ge \left(2^h - 1\right) - \frac{h(d_{\min} - 1)}{2}$$

Означення. Примітивним кодом БЧХ, який виправляє помилки кратності l_2 , називають код довжиною $n=2^h-1$ над полем GF(2) для якого елементи $\alpha, \alpha^2, \alpha^3, \ldots, \alpha^{2l_2}$ є коренями твірного полінома. Тут α – примітивний елемент поля $GF(2^h)$.

Отже, твірний поліном коду БЧХ ϵ добутком мінімальних поліномів $M_i(x)$, $i=1, 3, 5, \ldots 2l_2-1$

$$g(x) = M_1(x) M_3(x) M_5(x) \cdot \dots \cdot M_{2l_2-1}(x)$$

- За заданою довжиною коду n та кратністю помилок, які потрібно виправити, визначають:
- з виразу $s = 2l_2 1$ максимальний номер мінімального полінома, який входить до співмножників у виразі для твірного полінома g(x). Отже, кількість L мінімальних поліномів визначена кратністю помилок l_2 , які виправляють кодом $L = l_2$;

- з виразу $n=2^v-1$ або $ng=2^v-1$ значення параметра v, який буде максимальним степенем мінімального полінома у виразі для твірного полінома g(x). Звідси випливає, що v=h;

— користуючись таблицею мінімальних поліномів, визначають твірний поліном залежно від параметрів v та s. Для цього зі стовпця, який відповідає параметру v вибирають поліноми з номерами від 1 до s, які унаслідок множення дають твірний поліном g(x). Степінь q твірного полінома не перевищує добутку vl_2 .

Номер	Мінімальні поліноми степеня ν								
мінімального полінома	2	3	4	5	6	7	8	9	
$M_1(x)$	7	64	62	51	604	442	561	4204	
$M_3(x)$		54	76	57	724	742	735	4644	
$M_5(x)$			7	73	714	562	637	4314	
$M_7(x)$			46	75	444	736	455	4624	
$M_9(x)$				67	54	772	573	6214	
$M_{11}(x)$					554	526	717	5504	
$M_{13}(x)$						602	651	7344	
$M_{15}(x)$							727	4154	

Приклад. Визначимо твірний поліном для побудови примітивного коду БЧХ над GF(2) завдовжки n=15, що виправляє помилки кратності $l_2=2$.

Визначаємо значення параметрів v та s

$$v = \log_2(n+1) = \log_2 2^4 = 4$$
;
 $s = 2 \cdot l_2 - 1 = 2 \cdot 2 - 1 = 3$.

Твірний поліном визначаємо:

$$g^{8}(x) = M_{1}^{4}(x)M_{3}^{4}(x)$$

або

$$g^{8}(x) = 62 \cdot 76 = (1 + x + x^{4})(1 + x + x^{2} + x^{3} + x^{4}) =$$
$$= 1 + x^{4} + x^{6} + x^{7} + x^{8} \rightarrow 100010111.$$

У разі потреби твірну матрицю коду БЧХ можна побудувати за правилами побудови такої матриці для циклічного коду:

Оскільки степінь твірного полінома дорівнює 8, то ми отримали (7, 15)-код, що виправляє помилки кратності $l_2 = 2$.

У разі потреби твірну матрицю коду БЧХ можна побудувати за правилами побудови такої матриці для циклічного коду:

Оскільки степінь твірного полінома дорівнює 8, то ми отримали (7, 15)-код, що виправляє помилки кратності $l_2 = 2$.

n	k	r	d_{min}	Твірний поліном $g^r(x)$	
7	4	3	3	64	
15	11	4	3	62	
	7	8	5	427	
	5	10	7	7312	
31	26	5	3	51	
	21	10	5	4556	
	16	15	7	753704	
	11	20	9	5266215	
	6	25	11	710536646	
63	57	6	3	604	
	51	12	5	47124	
	45	18	7	7464074	
	39	24	9	735623334	
	36	27	11	6210056604	
	30	33	13	7153534131754	
	24	39	15	41110103262674	
	18	45	17	5274562453206364	
127	120	7	3	442	
	113	14	5	73541	
	106	21	7	61715544	
	99	28	9	4726207116	
	92	35	11	726220067123	
	85	42	13	672226371107064	
	78	49	15	54406433420006232	
	71	56	17	6577246526470405523	
	64	63	19	5100046770755201653024	
255	247	8	3	561	
	239	16	5	615732	
	231	24	7	533027354	
	223	32	9	57641332357	
	215	40	11	42132713575462	
	207	48	13	72236373503537434	
	199	56	15	4162270210724606637	
	191	64	17	7351476665443740716332	
	187	68	19	45636222640001564655725	

Закономірності для кодів БЧХ:

- співвідношення між мінімальною кодовою відстанню та числом h можна записати як

$$d_{\min} = 2^{h-1} - 1$$

і кількість інформаційних розрядів, яку можна використати за цих значень дорівнює h+1;

- кількість кодів, що відрізняються коригувальною здатністю і мають однакову довжину кодової комбінації на дві одиниці менша від кількості всіх незвідних поліномів, на які розкладається двочлен $x^{2^h-1}+1$

Приклад. Знайдемо параметри коду, який виправляє помилки кратності $l_2=2$, якщо довжина інформаційної частини коду k=40.

Оскільки k = 40, то найближча (але більша) довжина коду дорівнює 63, звідки отримуємо, h = 6.

Тому матимемо:

$$r = hl_2 = 12$$
, $k = 63 - r = 51$.

Означення. Непримітивним кодом БЧХ, який виправляє помилки кратності l_2 , називають код довжиною n над полем GF(2) для якого елементи

$$(\beta^i)^1, (\beta^i)^2, (\beta^i)^3, ..., (\beta^i)^{2 \cdot l_2}$$

 ϵ коренями твірного полінома. Тут β^i — непримітивний елемент поля GF(2), а довжина коду дорівнює порядку елемента β^i .

Нагадування. Порядком елемента β називають найменше n для якого $\beta^n = 1$.

Твірний поліном непримітивного коду БЧХ, за аналогією з примітивним кодом, визначають виразом

$$g(x) = M_{1 \cdot i}(x) M_{3 \cdot i}(x) M_{5 \cdot i}(x) ... M_{(2l_2 - 1) \cdot i}(x)$$

де $M_{ii}(x)$ — мінімальні поліноми елементів

$$(\beta^{i})^{1}, (\beta^{i})^{3}, ..., (\beta^{i})^{j}$$

поля $GF(2^h)$, які є коренями g(x), i – степінь непримітивного елемента β .

	Непримітивні елементи поля					
h	$GF(2^h)$	eta^i	Порядок елемента (n)			
4	$GF(2^4)$	β^3 β^5	5			
		eta^5	3			
6	$GF(2^6)$	β^3	21			
		β^7	9			
		eta^9	7			
8	$GF(2^8)$	β^3	85			
		eta^5	51			
		β^{15}	17			
		β^{17}	15			
9	$GF(2^9)$	β^7	73			
10	$GF(2^{10})$	β^3	341			
		eta^{11}	93			
		β^{31}	33			
		β^{33}	31			

Приклад. Побудуємо твірний поліном непримітивного коду БЧХ над полем GF(2) довжини n=40, який виправляє помилки кратності $l_2=3$.

3 попередньої таблиці вибираємо поле, непримітивний елемент β якого має порядок більший (найближчий) ніж задана довжина n=40. Таким полем є поле $GF(2^8)$ та елемент β^5 , порядок якого дорівнює 51.

Маємо:

$$h = 8$$
, $s = 2l_2 - 1 = 5$, $i = 5$

Тому

$$g(x) = M_5^8(x)M_{15}^8(x)M_{25}^8(x) = 637 \cdot 727 \cdot 661 = 110011111 \cdot 111010111 \cdot 110110001 = (1 + x + x^4 + x^5 + x^6 + x^7 + x^8)(1 + x + x^2 + x^4 + x^6 + x^7 + x^8)(1 + x + x^3 + x^4 + x^8) = \dots$$

Приклад. Побудуємо твірний поліном непримітивного коду БЧХ над полем GF(2) довжини k=40, який виправляє помилки кратності $l_2=4$.

З попередньої таблиці вибираємо поле, непримітивний елемент β якого має порядок більший (найближчий) ніж задана довжина інформаційної послідовності k=40. Таким полем є поле $GF(2^8)$ та елемент β^5 , порядок якого дорівнює 51.

Маємо:

$$h = 8$$
, $s = 2l_2 - 1 = 7$, $i = 5$

Проте, у цьому випадку кількість перевірних елементів дорівнює

$$r = 32$$

Звідки отримуємо n = r + k = 32 + 40 = 72 > 51.

Отже, не підходить.

На наступному кроці, з попередньої таблиці вибираємо поле, непримітивний елемент β якого має порядок більший (найближчий) ніж 51. Таким полем є поле $GF(2^9)$ та елемент β^7 , порядок якого дорівнює 73.

Маємо:

$$h = 9$$
, $s = 2l_2 - 1 = 7$, $i = 7$

Проте, у цьому випадку кількість перевірних елементів дорівнює

$$r = 36$$

Звідки отримуємо n = r + k = 36 + 40 = 76 > 73.

Отже, не підходить.

На наступному кроці, з попередньої таблиці вибираємо поле, непримітивний елемент β якого має порядок більший (найближчий) ніж 73. Таким полем є поле $GF(2^8)$ та елемент β^3 , порядок якого дорівнює 85.

Маємо:

$$h = 8$$
, $s = 2l_2 - 1 = 7$, $i = 3$

У цьому випадку кількість перевірних елементів дорівнює

$$r = 32$$

Звідки отримуємо n = r + k = 32 + 40 = 72 < 85. Отже, $g(x) = M_3^8(x) M_9^8(x) M_{15}^8(x) M_{21}^8(x) = 735 \cdot 573 \cdot 727 \cdot 643 = 111011101 \cdot 101111011 \cdot 111010111 \cdot 1110010011 = (1 + x + x^2 + x^4 + x^5 + x^6 + x^8)(1 + x^2 + x^3 + x^4 + x^5 + x^7 + x^8) \cdot (1 + x + x^2 + x^4 + x^6 + x^7 + x^8)(1 + x + x^4 + x^7 + x^8) = \dots$