МИНИСТЕРСТВО ОБРАЗОВАНИЯ И НАУКИ РОССИЙСКОЙ ФЕДЕРАЦИИ

федеральное государственное автономное образовательное учреждение высшего профессионального образования «НАЦИОНАЛЬНЫЙ ИССЛЕДОВАТЕЛЬСКИЙ ТЕХНОЛОГИЧЕСКИЙ УНИВЕРСИТЕТ «МИСиС»

ИНСТИТУТ	ИТКН
КАФЕДРА	ИНЖЕНЕРНОЙ КИБЕРНЕТИКИ
НАПРАВЛЕНИЕ	09.04.03 «ПРИКЛАДНАЯ ИНФОРМАТИКА»

Лабораторная работа № 4

по нейронным сетям «Сверточные нейронные сети»

Группа: МПИ-20-4-2

Студент: Добрынин Владислав

Проверил: Курочкин И.И.

Задание:

- 1. Выбрать/разработать архитектуру сверточной нейронной сети(CNN) для классификации цветных изображений.
- 2. Решить задачу классификации изображений на эталонном датасете CIFAR-10. Настройку архитектуры CNN и параметров обучения проводить для получения наилучших результатов.
- 3. Полученные результаты (см. раздел "Результаты") сравнить с опубликованными результатами для аналогичных/похожих архитектур и дать на них ссылку.
- 4. Используя ту же CNN и полученный набор весов провести дообучить CNN на классах из одного суперкласса эталонного датасета CIFAR-100. Задача классификации решается на классах CIFAR-10 + классы из одного суперкласса CIFAR-100.
- 5. Провести сравнительный анализ результатов с полученными результатами из п.3

Суперкласс из датасета CIFAR-100: large omnivores and herbivores — camel, cattle, chimpanzee, elephant, kangaroo

Ход выполнения лабораторной работы:

Работа выполнялась на основе исследования Jason Brownlee от 28.08.2020 (https://machinelearningmastery.com/how-to-develop-a-cnn-from-scratch-for-cifar-10-photo-classification/).

В качестве основного инструмента была выбрана библиотека Keras с использованием backend tensorflow. Полученные нейронные сети для ускорения хода работы обучались при помощи вычислений на графической карте (GPU).

Для каждой сети подсчитывались следующие метрики:

- 1. Accuracy
- 2. Loss
- 3. F1
- 4. Precision
- 5. Recall

Результаты

Сеть 1:

В качестве первой сети было решено использовать аналог архитектуры VGG — несколько сверточных слоев с последующим выбором максимального значения.

Output	Shape	Param #
(None,	32, 32, 32)	896
(None,	32, 32, 32)	9248
(None,	16, 16, 32)	0
(None,	8192)	0
(None,	128)	1048704
(None,	10)	1290
	(None, (None, (None, (None,	Output Shape (None, 32, 32, 32) (None, 32, 32, 32) (None, 16, 16, 32) (None, 8192) (None, 128) (None, 10)

Модель обучалась на датасете CIFAR-10 в течение 40 эпох. Результат представлен в Lab4_Dobrynin_v1.ipynb.

accuracy > 66.700 loss > 202.247 f1 > 66.917 precision > 67.700 recall > 66.174

Анализ результатов сети 1:

Как можно видеть, после 15 эпох сеть начинает переобучаться, в итоге падает качество результата. Такая сеть не подходит.

Сеть 2:

Для модернизации сети из предыдущего пункта было принято решение добавить еще 2 блока архитектуры VGG, а также добавить регуляризацию методом dropout— сеть во время обучения будет случайным образом выключать 20% нейронов. Данный метод должен предотвратить переобучение сети.

Output Shape	Param #
(None, 32, 32, 32)	896
(None, 32, 32, 32)	9248
(None, 16, 16, 32)	0
(None, 16, 16, 32)	0
(None, 16, 16, 64)	18496
(None, 16, 16, 64)	36928
(None, 8, 8, 64)	0
(None, 8, 8, 64)	0
(None, 8, 8, 128)	73856
(None, 8, 8, 128)	147584
(None, 4, 4, 128)	0
(None, 4, 4, 128)	0
(None, 2048)	0
(None, 128)	262272
(None, 128)	0
(None, 10)	1290
	(None, 32, 32, 32) (None, 32, 32, 32) (None, 16, 16, 32) (None, 16, 16, 32) (None, 16, 16, 64) (None, 16, 16, 64) (None, 8, 8, 64) (None, 8, 8, 64) (None, 8, 8, 128) (None, 8, 8, 128) (None, 4, 4, 128) (None, 4, 4, 128) (None, 4, 4, 128) (None, 2048) (None, 128)

Total params: 550,570 Trainable params: 550,570 Non-trainable params: 0

Модель обучалась на датасете CIFAR-10 в течение 40 эпох. Результат представлен в Lab4_Dobrynin_v2.ipynb.

Анализ результатов сети 2:

accuracy > 79.080 loss > 60.956 f1 > 78.932 precision > 84.809 recall > 74.012

Как можно видеть, сеть работает адекватно и не переобучается. Такая сеть подходит для дальнейшей работы.

Дальнейшее обучение сети:

Для дальнейшего обучения был выбран суперкласс из библиотеки CIFAR-100 в соответствии с вариантом. Сеть обучалась 10 эпох.

Анализ дальнейшего обучения:

accuracy > 76.522 loss > 68.662 f1 > 75.288 precision > 80.831 recall > 70.640

Дообученная сеть показывает хорошие варианты на дополненном наборе данных.

Анализ:

	Сеть 1	Сеть 2	Сеть 2 с доп.
		CIFAR10	обучением
Accuracy	66.7	79.08	76.5
Loss	202.6	60.9	68.6
F1	66.9	78.9	75.2
Precision	67.7	84.8	80.8
Recall	66.1	74.0	70.6

Сравнение с исходным исследованием

	Сеть 1	Сеть 2	Сеть 2 с доп.	Исходное
		CIFAR10	обучением	исследование
				CIFAR10
Accuracy	66.7	79.08	76.5	83.5
Loss	202.6	60.9	68.6	~40
F1	66.9	78.9	75.2	No data
Precision	67.7	84.8	80.8	No data
Recall	66.1	74.0	70.6	No data

Несмотря на то, что в исходном исследовании модель обучалась 100 эпох, а в данном исследовании 40 эпох, результат получился схожим.

Вывод:

В результате работы были изучены сверточные нейронные сети. За основу работы было взято исследование Jason Brownlee. Обучение датасета происходило на датасете CIFAR-10. В ходе работы были реализованы две архитектуры нейронных сетей, одна из которых с регуляризацией методом dropout, что помогло избежать переобучения сети. Результат работы можно считать успешным, т.к. были получены результаты, схожие с результатами опорного исследование.