

CS5228: Knowledge Discovery and Data Mining

Lecture 9 — Graph Mining

Course Logistics

Quick Recap

Recommender Systems

- Problem: information overload (too many items: products, songs, movies, news articles, restaurants, etc.)
- Goal: identify relevant items matching a user's preferences

Basic setup

- Set of users *U*, set of items *V*
- Rating matrix R with|U| rows and |V| columns
- Matrix element Ruv: *u*'s rating of *v* (e.g., 1-5 starts, binary 0/1)
- If available: information (features) about each item

Quick Recap

Outline

- Graph Mining
 - **■** Application Examples
 - Basic definitions
- Community Detection
 - Basic definition & goals
 - Overview to different algorithms
- Centrality
 - Basic definition & goals
 - Overview to different algorithms
- Summary

Transportation Networks

Nodes: MRT stations

Edges: Direct train connections

between stations

Applications:

- Find shortest travels
- Find busy stations
- Plan bus routes

Protein-Protein Interactions

Nodes: Proteins

Edges: Physical interactions

between two proteins

Applications:

- Understanding of diseases (disease prognosis, disease susceptibility)
- Drug discovery

Web Graph

Nodes: Web pages

Edges: Hyperlinks

Applications:

Identify authoritative sites

Effective Web search

Social Networks

Nodes: People, users

Edges: friendship relationships

Applications:

- Identify communities
- Find influential people
- Friendship recommendations
- Effective Information diffusion (e.g., advertising, political campaigns)

Outline

Graph Mining

- Application Examples
- Basic definitions

• Community Detection

- Basic definition & goals
- Overview to different algorithms

Centrality

- Basic definition & goals
- Overview to different algorithms
- Summary

Graphs — Mathematical Definition

- Graph: Formalism for representing relationships between items
- A graph is a tuple G = (V, E)
 - Set of vertices (or nodes) V

$$V = \{v_1, v_2, ..., v_n\}$$

Set of edges E

$$E = \{e_1, e_2, ..., e_m\}$$

where an edge is a pair of vertices

$$e_i = (v_j, v_k)$$

$$V = \{A, B, C, D\}$$

$$E = \{(A, B), (A, C), (C, D), (B, A), (C, B)\}$$

Types of Graphs

Types of Graphs

Cyclic Graph

VS.

Acyclic Graph

(Simple) Graph

VS.

Multigraph

Sparse Graph

VS.

Dense Graph

Types of Graphs

(Strongly) Connected Graph

There exists a path from each node to every other node

Weakly Connected Graph

A directed graph where the underlying undirected graph is (strongly) connected

Disconnected Graph

A graph that is not connected

Representing Graphs — Adjacency Matrix

$$A = \begin{bmatrix} 0 & 1 & 1 & 0 \\ 1 & 0 & 1 & 0 \\ 1 & 1 & 0 & 1 \\ 0 & 0 & 1 & 0 \end{bmatrix}$$

$$A = \begin{bmatrix} 0 & 2 & 3 & 0 \\ 3 & 0 & 0 & 0 \\ 0 & 5 & 0 & 10 \\ 0 & 0 & 0 & 0 \end{bmatrix}$$

Quick Quiz

Quick Quiz

Overview

- Graph Mining
 - Application Examples
 - Basic definitions
- Community Detection
 - Basic definition & goals
 - Overview to different algorithms
- Centrality
 - Basic definition & goals
 - Overview to different algorithms
- Summary

Community Detection

- No formal definition of a community
 - From "Networks: An Introduction" (Mark Newman):

"Loosely stated, [community detection] is the problem of finding the natural divisions of a network into groups of vertices such that there are many edges within groups and few edges between groups. What exactly we mean by "many" or "few," however, is debatable, [...]"

- Wide range of application
 - Identifying groups in social networks
 - Recommendation systems
 - Market segmentation
 - Outlier/anomaly detection

Community Detection — Modularity

- Modularity Q∈ [-1/2, 1] of an undirected graph G with adjacency matrix A
 - Measures the relative density of edges inside communities with respect to edges outside communities
 - Optimizing modularity is NP-hard → Practical algorithms based on heuristics

Community Detection — Louvain Algorithm

Method for the optimization of modularity

Initialization: Each node is a community

Repeat until no further change

Phase 1: Modularity Optimization

- For each node v, check if moving it to an adjacent community improves modularity
- Move v to community that maximizes modularity

Phase 2: Graph Aggregation

- Represent each community as a new node
- Update weights between new nodes

Louvain Algorithm — Modularity Optimization

Input: Each node a community

Moving community 0 to community 1

Moving community 2 to community 3

→ Move community 0 to community 1 as it maximizes modularity

Output after all iterations

Note: Moving a node may not be permanent but can change again in later iteration before convergence.

Louvain Algorithm — Graph Aggregation

- 2 main steps
 - Merge all nodes of a community into a new single node
 - Aggregate edge weights accordingly

Louvain Algorithm — Full Example

Louvain Algorithm — Remarks

Heuristic

- Optimizes modularity locally on all nodes
- No guarantees for optimal modularity globally (in practice often superior to other methods)

Performance optimization

- Phase 1 (Modularity Optimization) requires to calculate change in modularity ΔQ (difference between modularity of G before and after moving communities)
- Calculating ΔQ can be done based on local changes in community assignments (does not require the recalculate the modularity G after each change)

Community Detection — Girvan-Newman Algorithm

- Divisive hierarchical approach
 - Start with whole graph representing a community
 - Iteratively remove edges until community is split into 2 sub-communities (continue splitting sub-communities recursively if needed)
- Criteria for removing edges: Edge Betweenness Centrality
 - Sum of fraction of all-pairs shortest paths that pass through an edge e

$$c_B(e) = \sum_{v,w \in V} \frac{\sigma(v,w|e)}{\sigma(v,w)}$$
 number of shortest paths from v to w going through edge e

Girvan-Newman Algorithm — Edge Betweenness Centrality

Input community

Betweenness Centrality for all edges

е	c _B (e)
(0, 1)	0.067
(0, 2)	0.267
(1, 2)	0.267
(2, 3)	0.600
(3, 4)	0.267
(3, 5)	0.267
(4, 5)	0.067

Output communities

Remove edge e with max. $c_{p}(e)$

Continue recursively until community is plit (not needed in this simple example)

Girvan-Newman Algorithm

Algorithm splits a graph G(V, E) into 2 disconnected components

Repeat

Calculate $c_{R}(e)$ for all $e \in E$

Remove edge from with max. $c_R(e)$

Until G is split into 2 components

Recursive step

- Apply algorithm to each new component
- Stops if a component contains only single node (or early stop based on user specifications)

Girvan-Newman Algorithm — Full Example

Girvan-Newman Algorithm — Remarks

- Complexity Analysis
 - Core concept of algorithm: Edge Betweenness Centrality
 - Requires to solve the All-Pairs Shortest Path (APSP) problem
 - Various algorithms and complexities depending on type of graph (directed vs. undirected, cyclic vs. acyclic, with or without negative weights, etc.)

Time Complexity	
n^3	
$n^3(loglogn)/logn^{1/3}$	
$n^3 (log log n/log n)^{1/2}$	
$n^3/(log n)^{1/2}$	
$n^3 (log log n/log n)^{5/7}$	
$n^3 log log n/log n$	
$n^3(loglogn)^{1/2}/logn$	
$n^3/logn)$	
$n^3 (log log n/log n)^{5/4}$	
$n^3(loglogn)^3/(logn)^2$	
$n^3(loglogn)/(logn)^2$	

Table taken from: A Survey of Shortest-Path Algorithms (Madkour et al., 2017) — n = |V|, number of nodes

Karger's Algorithm for Min-Cut

- Min-Cut Problem
 - Given a graph G, cut G into 2 components such that the number of edges between both components is minimal

■ Fundamental problem in graph theory → many existing algorithms (with varying focus and support for different graph types — e.g., directed vs. undirected)

Karger's Algorithm for Min-Cut

- Karger's algorithm
 - Randomized method to find Min-Cut
 - Applicable to undirected graphs with positive weights (this includes unweighted graphs where the weight can be considered 1)

While |V| > 2

Randomly pick a remaining edge e = (v, u)

Merge/contract *v* and *u* into a new node

- Update edges to neighbors of v and u
- Remove self-loops

Return edges between the final 2 nodes as Min-Cut

Intuition: Edges that are in the Min-Cut have a lower probability to get picked!

Basic runtime: $O(|V|^2)$

(but further optimizations exists)

Karger's Algorithm for Min-Cut — Example

Pick
$$e = (G, H)$$
 with $P(e) = 1/13$

Pick
$$e = (D, GH)$$
 with $P(e) = 1/6$

Karger's Algorithm for Min-Cut — Example

Number of edges: 10

Pick e = (A, E) with P(e) = 1/10

Number of edges: 9

Pick e = (AE, BF) with P(e) = 4/9

Number of edges: 5

Pick e = (C, DGH) with P(e) = 3/5

2 node left → Done, with |Min-Cut| = 2

Karger's Algorithm for Min-Cut — Analysis

- What is the probability that the algorithm finds the "correct" Min-Cut?
- For an undirected graph G = (V, E), with n = |V| and m = |E|

The average degree of a node is
$$\frac{1}{n} \sum_{v \in V} degree(v) = \frac{2m}{n}$$

The size of the Min-Cut is limited to
$$|Min-Cut| \leq \frac{2m}{n}$$
 since $\forall v \in V : |Min-Cut| \leq degree(v)$

→
$$P(\text{randomly selected edge is in Min-Cut}) \le \frac{\frac{2m}{n}}{m} = \frac{2}{n}$$

Karger's Algorithm for Min-Cut — Analysis

Let P(success) = P(final cut is Min-Cut)

$$P(\text{success}) = P(\text{1st selected edge not in Min-Cut}) \times$$

 $P(\text{2nd selected edge not in Min-Cut}) \times ...$

$$P(\text{success}) \ge \left(1 - \frac{2}{n}\right) \left(1 - \frac{2}{n-1}\right) \left(1 - \frac{2}{n-2}\right) \dots \left(1 - \frac{2}{4}\right) \left(1 - \frac{2}{3}\right)$$

$$= \frac{n-2}{n} \cdot \frac{n-3}{n-1} \cdot \frac{n-4}{n-3} \cdot \dots \cdot \frac{2}{4} \cdot \frac{1}{3}$$
That's a rather low pro-

$$=\frac{2}{n(n-1)} = \binom{n}{2}^{-1}$$

That's a rather low probability:(

→ Run algorithm multiple times!

But how often?

Karger's Algorithm for Min-Cut — Analysis

- If the algorithm is run k times and take the smallest cut found
 - What is the probability P(failure) that it is not a Min-Cut?

$$P(\text{failure}) = \left[1 - \binom{n}{2}^{-1}\right]^k$$

with
$$k = \binom{n}{2} \ln n$$
 \rightarrow $P(\text{failure}) \le \left(\frac{1}{e}\right)^{\ln n} = \frac{1}{n}$

Note: For any $x \ge 1$:

$$\frac{1}{4} \le \left(1 - \frac{1}{x}\right)^{cx} \le \left(\frac{1}{e}\right)^c$$

With $k \in O(n^2 \log n) \rightarrow Total$ runtime of Karger's Algorithm is in $O(n^4 \log n)$

(with a Min-Cut with a high probability)

Karger's Algorithm for Min-Cut — Remarks

In general, a graph has multiple possible Min-Cuts

- Choice of Min-Cut often application-specific, e.g.,
 - Favor Min-Cuts where the 2 components are of similar size (e.g., similar number of nodes)
 - Ignore Min-Cuts where the size of a component is below a threshold


```
|Min-Cut| = 5 -- Components: A,B ### C,D,E,F,G,H
         = 4 -- Components: A,C,D,E,F,G,H ### B
|Min-Cut|
         = 3 -- Components: A,B,C,D,E,F,G ### H
|Min-Cut|
|Min-Cut| = 3 -- Components: A,B,C,D,E,F,G ### H
|Min-Cut| = 5 -- Components: A,B,C,D,E,F ### G,H
         = 2 -- Components: A,B,E,F ### C,D,G,H
IMin-Cutl
         = 2 -- Components: A,B,E,F ### C,D,G,H
|Min-Cut|
|Min-Cut| = 3 -- Components: A,B,C,D,E,F,G ### H
|Min-Cut| = 4 -- Components: A,B,D,E,F,G,H ### C
         = 5 -- Components: A,F ### B,C,D,E,G,H
|Min-Cut|
|Min-Cut| = 4 -- Components: A,B,C,E,F,G ### D,H
IMin-Cut| = 5 -- Components: A,B,C,D,E,F ### G,H
|Min-Cut| = 4 -- Components: A,B,C,E,F ### D,G,H
IMin-Cutl
         = 3 -- Components: A,B,C,E,F,G,H ### D
         = 3 -- Components: A,B,C,D,E,F,G ### H
|Min-Cut|
|Min-Cut| = 4 -- Components: A,B,C,E,F,G ### D,H
|Min-Cut| = 4 -- Components: A,B,C,D,E,G,H ### F
|Min-Cut| = 2 -- Components: A,B,E,F ### C,D,G,H
|Min-Cut| = 2 -- Components: A,B,E,F ### C,D,G,H
|Min-Cut| = 2 -- Components: A,B,E,F ### C,D,G,H
```



```
|Min-Cut| = 2 -- Components: A,B,C,E,F,G,H ### D
|Min-Cut| = 2 -- Components: A,B,C,E,F,G,H ### D
|Min-Cut| = 2 -- Components: A,B,E,F ### C,D,G,H
|Min-Cut| = 2 -- Components: A,B,C,E,F,G,H ### D
|Min-Cut| = 2 -- Components: A ### B,C,D,E,F,G,H
IMin-Cutl = 3 -- Components: A,B,C,D,E,F,G ### H
IMin-Cut| = 2 -- Components: A,E ### B,C,D,F,G,H
|Min-Cut| = 3 -- Components: A,B,C,D,E,F,H ### G
|Min-Cut| = 3 -- Components: A,B,C,E,F,G ### D,H
|Min-Cut| = 2 -- Components: A,B,C,E,F,G,H ### D
|Min-Cut| = 3 -- Components: A,B,C,D,E,F,H ### G
|Min-Cut| = 3 -- Components: A,B,C,D,E,F,G ### H
|Min-Cut| = 2 -- Components: A ### B,C,D,E,F,G,H
|Min-Cut| = 2 -- Components: A,B,C,E,F,G,H ### D
|Min-Cut| = 2 -- Components: A,B,E,F ### C,D,G,H
|Min-Cut| = 2 -- Components: A,B,C,D,F,G,H ### E
|Min-Cut| = 2 -- Components: A,B,E,F ### C,D,G,H
|Min-Cut| = 2 -- Components: A,B,C,E,F,G,H ### D
|Min-Cut| = 2 -- Components: A,B,E,F ### C,D,G,H
|Min-Cut| = 2 -- Components: A,B,E,F ### C,D,G,H
```

Overview

- Graph Mining
 - Application Examples
 - Basic definitions
- Community Detection
 - Basic definition & goals
 - Overview to different algorithms
- Centrality
 - Basic definition & goals
 - Overview to different algorithms
- Summary

Centrality

- Centrality Centrality measures
 - Quantify the importance of a node given its topological position in a graph (centrality is commonly assigned to nodes but can be extended to edges, cf. Edge Betweenness Centrality)
 - Different measures favor different "flavours" of importance
- → What makes a node important?

(or more important compared to other nodes)

- Wide range of applications
 - Identify influential social network users
 - Identify superspreader of diseases
 - Identify key infrastructure nodes in infrastructure networks

Degree Centrality

Centrality of a node only dependent on direct neighborhood edges

Undirected graph

Sum of weights of connected edges

$$c_d(v_i) = \sum_{v_j \in V} A[i, j]$$

Directed graph

Sum of weights of incoming edges

$$c_{d_in}(v_i) = \sum_{v_j \in V} A[j, i] \qquad c_{d_out}(v_i) = \sum_{v_j \in V} A[i, j]$$

Sum of weights of outgoing edges

$$c_{d_out}(v_i) = \sum_{v_j \in V} A[i, j]$$

$$c_{din}(v) = 8$$

$$c_{d_out}(v) = 14$$

Degree Centrality — **Pros & Cons**

Pros

- Simple measure → easy and fast to calculate
- For many applications "good enough"

Cons

- Local measure does not take any extended topological information of a node into account
- Treats all connected edges of a node equally (i.e., neighboring source or target node does not matter)
- Depending on application, easy to manipulate

Examples of manipulation attacks

- Create fake pages with links to a target page to bump up its search result rank
- Create fake followers on social media to increase reputation and attract sponsors
- Create fake feedback to create on e-commerce sites to increase reputation

Eigenvector Centrality

- Idea: Centrality of a node depends on the centrality of its neighbors
 - Basic definition applicable to undirected graph
 - Recursive definition How to calculate it? (well, it's in the name)

$$c_{ev}(v_i) = \frac{1}{\lambda} \sum_{v_j \in V} \left[A[i,j] \cdot c_{ev}(v_j) \right]$$

$$\frac{\lambda - \text{some normalization}}{\text{constant}}$$

In matrix form:
$$\lambda c_{ev} = A c_{ev}$$

Common Eigenvector equation:

$$A\vec{x} = \lambda \vec{x}$$

All \vec{x} solving this equation are the eigenvectors of A and λ are their corresponding eigenvalues:

$$(A - \lambda I)\vec{x} = 0$$

 c_{ev} is the largest eigenvector of adjacency matrix A!

Eigenvector Centrality — Power Iteration / Power Method

- Power Iteration numerical method to find largest eigenvector of a matrix
 - Solving eigenvector equation analytically not tractable for large matrices

```
Input: matrix M, error threshold \varepsilon, #max. iterations T
Initialization: t = 0, x_0 = [1/|V|, 1/|V|, ..., 1|V|]
Repeat
       t = t+1
       X_{t} = AX_{t-1}
       X_t = X_t / ||X_t||
                                  # Normalize vector
       \delta = ||x_t - x_{t-1}||
                                  # Calculate difference
Until \delta < \varepsilon or t > T
Return X,
```

Degree vs. Eigenvector Centrality (size of nodes reflect centrality scores)

 Low-degree nodes benefit from connections to high-degree nodes

PageRank

- Goal: Find important pages in the web graph
 - lacktriangle The set of vertices V is set of all (indexed) web pages
 - lacktriangle An edge $e_{ij} \in E$ indicates that there is a hyperlink for page \emph{i} to page \emph{j}
- ullet PageRank a page v_i has a high PageRank if
 - lacktriangle Many other pages link to v_i
 - $\ \ \,$ Those pages linking to v_j have
 - (a) a high PageRank themselves
 - (b) not many other outgoing links

PageRank — Transition Matrix M

Adjacency matrix A

$$\begin{bmatrix} 0 & 1 & 1 & 0 & 0 \\ 0 & 0 & 1 & 1 & 1 \\ 0 & 0 & 0 & 0 & 1 \\ 1 & 0 & 0 & 0 & 0 \\ 1 & 0 & 1 & 0 & 0 \end{bmatrix}$$

- Transpose A
- Normalize columns (column entries sum up to 1)

Transition matrix M

Note: M is a so-called column-stochastic matrix.

Computing PageRank Scores

- PageRank is an Eigenvector problem
 - Solvable with Power Iteration Method

$$\lambda PR(v) = M \cdot PR(v)$$
 Since M is column-stochastic, the largest eigenvalue λ = 1.
$$PR(v) = M \cdot PR(v)$$

Common Eigenvector equation:

$$A\vec{x} = \lambda \vec{x}$$

All solving this equation are the eigenvectors of A and are their corresponding eigenvalues:

$$\vec{x}$$
 $\lambda (A - \lambda I) \vec{x} = 0$

Computing PageRank Scores — Challenge

- Requirement: Graph must be strongly connected
 - Each node can be reached from any other node
 - Requirement does not hold for the web graph → dangling nodes
 - Computing PageRank scores using Power Method not working

Adjacency matrix A

[0	1	1	0	0
$\begin{bmatrix} 0 \\ 0 \\ 0 \\ 1 \end{bmatrix}$	0	1	0	1
0	0	0	0	1
1	0	0	0	0
				0_

- Transpose A
- Normalize columns
 (column entries sum up to 1?)

$$\longrightarrow$$
 M

Transition matrix M

Computing PageRank Scores — Handling Dangling Nodes

- PageRank implements Random Surfer model
 - lacktriangle probability of following a link on a page to the next
 - \blacksquare $(1-\alpha)$ probability of jumping to a random page (i.e., not following a link)
 - → Any page can be reached, whether linked or not!

$$PR(v) = M \cdot PR(v) \implies PR(v) = \alpha \cdot M \cdot PR(v) + (1 - \alpha) \cdot E$$

with
$$E = \begin{bmatrix} 1/|V|\\1/|V|\\ \vdots\\1/|V| \end{bmatrix}$$

Random Surfer Model — Effects on Transition Matrix

- Random Surfer model introduces "virtual edges"
 - Each node can be reached from any other → virtual links → fully connected graph
 - PageRank scores can be calculated using Power Iteratio Method without problems

*Note: Matrix M is not materialized, but this is the matrix that reflects the PageRank formula!

InDegree vs. PageRank (size of nodes reflect centrality scores)

- Nodes 1 and 4 very similar centrality scores
- Node 2 with only a low centrality score
- Scores of 0 for nodes with no incoming edges

- Clear difference between Nodes 1 and 4
- Node 2 with a high centrality score since linked to from Node 1 with a very high score
- Non-zero scores for nodes with no incoming edges

Eigenvector-Based Measures — Remarks

- Measuring centrality by solving an Eigenvector problem
 - Recursive definition of centrality very intuitive
 - Many other similar measures (e.g., HITS, SALSA, Katz)
 - Many application-specific extensions to basic measures
 (e.g., personalization of PageRank where random jumps are no longer uniform)
 - More complex calculation than for local measures but calculation of largest Eigenvectors very scalable through parallelization

Closeness Centrality

- Intuition: A node t is central if the distance to all other nodes is small
 - Small distance to node t = short paths from all other nodes to t
 - For directed paths, the closeness of node *t* can differ greatly when considering incoming or outcoming edges for calculating distances
 - Basic definition applicable to unweighted graph (generalized definitions for weighted graphs have been proposed)

 $c_{cl}(v) = \frac{N}{\sum_{w \in V} \underline{d(v, w)}}$

Note: For directed graphs, this definition calculates closeness using the nodes' incoming edges — more common case. To consider outgoing edges, d(v,w) becomes d(w,v), and N becomes the number of nodes from which v can be reached.

d(v,w) — length of shortest path from v to w

N — number of nodes reachable from v

Betweenness Centrality

- Intuition: A node t is central if many shortest paths between all other nodes pass through node t
 - Removing such nodes would cause the most "disruption" in a graph
 - Directly applicable to directed/undirected and weighted/unweighted graphs (since the the notion of shortest path is well-defined for all graph types)

Closeness vs. Betweenness (size of nodes reflect centrality scores)

Closeness vs. Betweenness (size of nodes reflect centrality scores)

Closeness & Betweenness — Remarks

- Distance-based measures
 - Both measures rely on the notion of shortest paths between nodes
 - Requires to solve the All-Pairs Shortest Path (APSP) problem
 - Various algorithms and complexities depending on type of graph (directed vs. undirected, cyclic vs. acyclic, with or without negative weights, etc.)

Time Complexity
n^3
$n^3(loglogn)/logn^{1/3}$
$n^3(loglogn/logn)^{1/2}$
$n^3/(log n)^{1/2}$
$n^3 (log log n/log n)^{5/7}$
$n^3 log log n/log n$
$n^3(loglogn)^{1/2}/logn$
$n^3/logn)$
$n^3 (log log n/log n)^{5/4}$
$n^3(loglogn)^3/(logn)^2$
$n^3(loglogn)/(logn)^2$

Table taken from: A Survey of Shortest-Path Algorithms (Madkour et al., 2017) — n = |V|, number of nodes

Centrality — **Discussion**

- Centrality = importance of nodes on a graph
 - Important concept of graph mining with many applications
 - Wide range of proposed measures that differ in their definition of a node's importance
 - Not all measures are applicable (or suitable) to all types of graphs
- Overview to a selected set of popular measures
 - Local measures Degree, InDegree, OutDegree
 - Eigenvector-based measures Eigenvector Centrality, PageRank
 - Distance-based measures Closeness, Betweenness

Overview

- Graph Mining
 - Application Examples
 - Basic definitions
- Community Detection
 - Basic definition & goals
 - Overview to different algorithms
- Centrality
 - Basic definition & goals
 - Overview to different algorithms
- Summary

Summary

Graph Mining

- Data often comes in form of graphs incl. very large dataset (traffic network, social networks, relationship networks, interaction networks, etc.)
- Goal: find interesting patterns based on graph structure
 (number of nodes, number of edges, distribution of edges/connections, substructures, etc.)
- In this lecture: 2 types of patterns
 - Community subgraph with nodes more connected among each other than the rest
 - Centrality importance of a node depending its embedding in the graph

Both allow for different definitions → wide range of algorithms

Solutions to Quick Quizzes

