Inteligencia Artificial Técnicas Incompletas de Búsqueda de Soluciones

Nicolás Rojas-Morales

Departamento de Informática Universidad Técnica Federico Santa María

Introducción

- Algoritmos que realizan Búsqueda Exhaustiva garantizan obtener el óptimo global
- Para problemas de la vida real o de mayor complejidad (NP-Completos), no pueden encontrar solución
- Sacrificamos el óptimo global por obtener soluciones de buena calidad en un tiempo reducido

Clasificación de Técnicas de Resolución

Búsqueda Local/Incompleta/Alternativa

¿Qué es Heurística?

 Criterios, principios o métodos que permiten determinar entre un conjunto de posibilidades, aquella que promete ser la más eficaz para resolver un problema.

Búsqueda Local/Incompleta/Alternativa

¿Qué es Heurística?

- Criterios, principios o métodos que permiten determinar entre un conjunto de posibilidades, aquella que promete ser la más eficaz para resolver un problema.
- Representan el compromiso entre:
 - Necesidad de utilizar criterios simples
 - Distinguir entre buenas y malas elecciones

Búsqueda Local/Incompleta/Alternativa

¿ Qué es Heurística?

- Criterios, principios o métodos que permiten determinar entre un conjunto de posibilidades, aquella que promete ser la más eficaz para resolver un problema.
- Representan el compromiso entre:
 - Necesidad de utilizar criterios simples
 - Distinguir entre buenas y malas elecciones
- Un método heurístico puede ser un método empírico utilizado para guiar acciones.
- Su objetivo es encontrar soluciones (c) aceptables.
- Se utilizan porque son, en general, eficientes computacionalmente y/o fáciles de implementar.
- No son muy precisas ni predecibles.

Problema

- ullet Grandes espacios de búsqueda o Explosión combinatoria
- Soluciones factibles e infactibles

Problema

- ullet Grandes espacios de búsqueda o Explosión combinatoria
- Soluciones factibles e infactibles

Problema

- ullet Grandes espacios de búsqueda o Explosión combinatoria
- Soluciones factibles e infactibles

Búsqueda Local

(problema de maximización)

- Un algoritmo que realiza búsqueda local visita diferentes regiones del espacio de búsqueda
- El objetivo de estos algoritmos es encontrar el mejor óptimo local buscando un balance entre dos aspectos:
 - Diversificación: el algoritmo visita diferentes regiones para identificar secciones del espacio de búsqueda que son interesantes
 - Intensificación: el algoritmo se enfoca en encontrar soluciones de la mejor calidad posible en la región actual del espacio de búsqueda.

Clasificación de Técnicas de Resolución

- solución candidata (c) Se refiere a una instanciación completa (global) para el problema.
 - En estricto rigor no se debería hablar de soluciones puesto que éstas pueden ser factibles o infactibles.

- solución candidata (c) Se refiere a una instanciación completa (global) para el problema.
 - En estricto rigor no se debería hablar de soluciones puesto que éstas pueden ser factibles o infactibles.
- función de evaluación: Es capaz de representar cero, uno ó varios objetivos.
 - Informativa

- solución candidata (c) Se refiere a una instanciación completa (global) para el problema.
 - En estricto rigor no se debería hablar de soluciones puesto que éstas pueden ser factibles o infactibles.
- función de evaluación: Es capaz de representar cero, uno ó varios objetivos.
 - Informativa

- solución candidata (c) Se refiere a una instanciación completa (global) para el problema.
 - En estricto rigor no se debería hablar de soluciones puesto que éstas pueden ser factibles o infactibles.
- función de evaluación: Es capaz de representar cero, uno ó varios objetivos.
 - Informativa
- representación: Corresponde a la estructura de la/s solución/es (c).
 - Coloreo: (V, A, V, V, A, R) (Lista Entera/Simbólica)
 - Mochila: (1, 0, 1, 0) (Lista Binaria)
 - TTP: E vs 2*(E-1) (Matriz Entera/Simbólica)

	1	2	3	4	5	6
	С			-C		
В	D	-A	- <i>С</i>	-D		С
	-A					
D	-B	- <i>C</i>	-A	В	С	Α

Modelado versus Representación

- ¿Para qué modelar?
- ¿Siempre debo representar las soluciones (c) según la forma que se especificó en el modelo?

Ejemplo: Vendedor viajero

Modelo

$$\mathbf{x}_{ij} = \left\{ egin{array}{ll} 1 & \mathsf{Si} \; \mathsf{el} \; \mathsf{vendedor} \; \mathsf{pasa} \; \mathsf{desde} \; \mathsf{la} \; \mathsf{ciudad} \; i \; \mathsf{a} \; \mathsf{la} \; \mathsf{ciudad} \; j \ 0 & \mathsf{si} \; \mathsf{no} \end{array}
ight.$$

versus

Representación
 x_i: Visita la ciudad x_i en el i-ésimo paso.

Inteligencia Artificial Técnicas Incompletas de Búsqueda de Soluciones

Nicolás Rojas-Morales

Departamento de Informática Universidad Técnica Federico Santa María

Algoritmos Constructivos

Algoritmos Constructivos

Características Algoritmos Constructivos

- Generan soluciones comenzando desde una solución parcial inicialmente vacía
- Se agregan componentes a la solución parcial hasta que esté completa
- Requieren además de una definición previa de:
 - Punto de Partida: desde donde comienza a construir la solución
 - Función Miope: toma decisiones localmente óptimas guiada por la función de evaluación

Clasificación de Técnicas de Resolución

- Algoritmo constructivo que decide de manera localmente óptima qué componentes agregar en la solución candidata
- Para el problema del vendedor viajero:
 - Representación: Tour factible
 - Función Miope: Agregar la siguiente ciudad más cercana no visitada
 - Punto de Partida: Ciudad inicial A
 - Función de Evaluación: Largo del Tour

• Tour: A

• Tour: A - D

• Tour: A - D - B

• Tour: A - D - B - C

- Tour: A D B C E
- Costo Tour = 440

• Tour: A - D - B - C - E

• Costo Tour = 440

• Tour: **D** - **B** - C - A - E

• Costo Tour = 230

- Tour: A D B C F
- Costo Tour = 440
- Tour: **D B** C A E
- Costo Tour = 230
- Tour: A D F B C
- Costo Tour = 160

Algoritmos basados en construcción: Mochila

$$\begin{aligned} \text{máx } 18 \cdot x_1 + 25 \cdot x_2 + 11 \cdot x_3 + 14 \cdot x_4 \\ \text{s.a. } 2 \cdot x_1 + 2 \cdot x_2 + x_3 + x_4 &\leq 3 \\ x_1, x_2, x_3, x_4 &\in \{0, 1\} \end{aligned}$$

- Representación: Lista binaria
- Función objetivo: Ganancia total
 - Función de evaluación?
- Punto de partida: Objeto 3
- Función miope: Agregar el siguiente objeto de mayor ganancia [factible?]

Inteligencia Artificial Técnicas Incompletas de Búsqueda de Soluciones

Nicolás Rojas-Morales

Departamento de Informática Universidad Técnica Federico Santa María

Algoritmos Reparadores

Algoritmos basados en reparación

- Se mueven en el espacio de soluciones (c)
- Procesos iterativos que empiezan en una solución (c) y a través de modificaciones locales la va mejorando.
- Generalmente los algoritmos que construyen soluciones son más rápidos, pero sus resultados no siempre son buenos.

- Los algoritmos reparadores parten desde una solución inicial (x en la imagen)
- Para buscar otras soluciones, podemos aplicar un movimiento a x
- Todas las soluciones cercanas a x, respecto a un movimiento, forman el vecindario de x
- Si el algoritmo se enfoca en mejorar la calidad de las soluciones, podemos decir que está intensificando la búsqueda
- Si el algoritmo intenta visitar otras regiones del espacio de búsqueda, podemos decir que está diversificando la búsqueda

(problema de maximización)

- Los algoritmos reparadores parten desde una solución inicial (x en la imagen)
- Para buscar otras soluciones, podemos aplicar un movimiento a x
- Todas las soluciones cercanas a x, respecto a un movimiento, forman el vecindario de x
- Si el algoritmo se enfoca en mejorar la calidad de las soluciones, podemos decir que está intensificando la búsqueda
- Si el algoritmo intenta visitar otras regiones del espacio de búsqueda, podemos decir que está diversificando la búsqueda

(problema de maximización)

- Los algoritmos reparadores parten desde una solución inicial (x en la imagen)
- Para buscar otras soluciones, podemos aplicar un movimiento a x
- Todas las soluciones cercanas a x, respecto a un movimiento, forman el vecindario de x
- Si el algoritmo se enfoca en mejorar la calidad de las soluciones, podemos decir que está intensificando la búsqueda
- Si el algoritmo intenta visitar otras regiones del espacio de búsqueda, podemos decir que está diversificando la búsqueda

(problema de maximización)

- Los algoritmos reparadores parten desde una solución inicial (x en la imagen)
- Para buscar otras soluciones, podemos aplicar un movimiento a x
- Todas las soluciones cercanas a x, respecto a un movimiento, forman el vecindario de x
- Si el algoritmo se enfoca en mejorar la calidad de las soluciones, podemos decir que está intensificando la búsqueda
- Si el algoritmo intenta visitar otras regiones del espacio de búsqueda, podemos decir que está diversificando la búsqueda

(problema de maximización)

Definiciones

Movimiento

Transformación aplicada a una solución candidata. Altera los valores asignados a algunas variables

• Bitflip: $1111 \rightarrow 0111$

Vecindario

El vecindario de una solución es el conjunto de soluciones generado por la aplicación del movimiento a dicha solución

- $\mathcal N$ define para cada solución candidata $x \in \mathcal S$ un conjunto $\mathcal N(x) \subseteq \mathcal S$
- $\mathcal{N}(x)$ son en algún sentido "cercanas" a x.
- Ejemplo con Bitflip aplicado a x = 1111
 - $\mathcal{N}(x) = [0111, 1011, 1101, 1110]$

Definiciones

Óptimo local

Sea (\mathcal{S}, f) un problema de optimización y \mathcal{N} la función vecindario. Una solución $\hat{x} \in \mathcal{S}$ es un Óptimo Local con respecto a \mathcal{N} si

$$f(\hat{x}) \ge f(x), \forall x \in \mathcal{N}(\hat{x}).$$

• Un algoritmo que realiza búsqueda local, puede estancarse en algún óptimo local sin conocer otras soluciones

- Algoritmo que busca ir mejorando el valor de la función de evaluación de una solución candidata, al aplicar iterativamente un movimiento
- Generalmente, comienza con una solución candidata generada de manera aleatoria
- En cada iteración genera un vecindario aplicando el movimiento a la solución actual
- Si algún vecino mejora la calidad de la solución actual, éste reemplaza la solución actual
- En caso contrario, termina la ejecución

- Podemos identificar dos versiones de HC:
 - Alguna Mejora (en inglés First Improvement): Seleccionar el primer vecino que mejora la solución candidata actual
 - Mejor Mejora (en inglés Best Improvement): Selecciona el mejor vecino de todos, que mejora la solución candidata actual

Pseudo-código (Best Improvement)

```
Procedure hill-climbing \begin{array}{l} \textit{local} \leftarrow \textit{FALSE} \\ s_c \leftarrow \textit{select a point at random} \\ \textbf{Repeat} \\ s_n \leftarrow \textit{select the best quality point in } \mathcal{N}(s_c) \\ \textbf{If } f(s_n) \textit{ is better than } f(s_c) \textbf{ Then} \\ s_c \leftarrow s_n \\ \textbf{Else} \\ \textit{local} \leftarrow \textit{TRUE} \\ \textbf{Until local} \\ \textbf{End} \end{array}
```

Pseudo-código (First-Improvement Rule)

```
Procedure hill-climbing
       local ← FALSE
       s_c \leftarrow \text{select a point at random}
       neighbor \leftarrow 0
      Repeat
             s'_n \leftarrow generate a neighbor point in \mathcal{N}(s_c)
             neighbor + +
             If f(s'_n) is better than f(s_n) Then
                    s_c \leftarrow s'_n
                    neighbor \leftarrow 0
             If neighbor == max_neighbors Then
                    local ← TRUE
      Until local
End
```


Tomando como solución inicial aleatoria A-E-D-B-C con costo 230 y utilizando Mejor Mejora, su vecindario usando un intercambio entre ciudades contiguas en el tour, sería:

1 E - A - D - B - C = 440

- **1** E A D B C = 440
- 2 A D E B C = 160

- **1** E − A − D − B − C = 440
- 2 A D E B C = 160
- **3** A E B D C = 220

- **1** E − A − D − B − C = 440
- 2 A D E B C = 160
- **3** A E B D C = 220
- A E D C B = 210

- **1** E − A − D − B − C = 440
- 2 A D E B C = 160
- **3** A E B D C = 220
- 4 A E D C B = 210
- **6** C E D B A = 460

Tomando como solución inicial aleatoria A-E-D-B-C con costo 230 y utilizando Mejor Mejora, su vecindario usando un intercambio entre ciudades contiguas en el tour, sería:

- **1** E A D B C = 440
- 2 A D E B C = 160
- **3** A E B D C = 220
- 4 A E D C B = 210
- **6** C E D B A = 460

Si consideramos un algoritmo Alguna Mejora, para este caso, el primer vecino que mejora la solución es la número 2.

- Cuando HC encuentra la mejor solución candidata de la región, termina su ejecución
- Hill Climbing no define ninguna estrategia para escapar de óptimos locales

• Considerando el problema de la mochila

$$\begin{aligned} \text{máx } 18 \cdot x_1 + 25 \cdot x_2 + 11 \cdot x_3 + 14 \cdot x_4 \\ \text{s.a. } 2 \cdot x_1 + 2 \cdot x_2 + x_3 + x_4 &\leq 3 \\ x_1, x_2, x_3, x_4 &\in \{0, 1\} \end{aligned}$$

- Proponga una representación acorde al problema
- Proponga un movimiento acorde al problema
- Describa el proceso de búsqueda realizado por hill-climbing¹

¹1000, 0000

Ejemplo: Hill Climbing

Máx
$$18 \cdot x1 + 25 \cdot x2 + 11 \cdot x3 + 14 \cdot x4$$

s.a. $2 \cdot x1 + 2 \cdot x2 + x3 + x4 \le 3$
 $x1, x2, x3, x4 \in \{0, 1\}$

Ejemplo: Hill Climbing

Máx
$$18 \cdot x1 + 25 \cdot x2 + 11 \cdot x3 + 14 \cdot x4$$

s.a. $2 \cdot x1 + 2 \cdot x2 + x3 + x4 \le 3$
 $x1, x2, x3, x4 \in \{0, 1\}$

- Representación: Lista binaria de tamaño = número de objetos.
- Función de evaluación: Ganancia total.
 - Trabajaré solo sobre soluciones factibles, descartaré las soluciones infactibles.
- Movimiento: Bit-flip.
- Solución inicial: Aleatoria factible.

iteracion	S _C	$\mathcal{N}(s_c)$	S _n	local
1	1000 (18)			FALSE

iteracion	S _C	$\mathcal{N}(s_c)$	S _n	local
1	1000 (18)			FALSE
		0000 (0)		

iteracion	s _c	$\mathcal{N}(s_c)$	S _n	local
1	1000 (18)			FALSE
		0000 (0)		
		1100(43)		

iteracion	S _C	$\mathcal{N}(s_c)$	S _n	local
1	1000 (18)			FALSE
		0000 (0)		
		1100(43)		
		1010(29)		

iteracion	S _C	$\mathcal{N}(s_c)$	S _n	local
1	1000 (18)			FALSE
		0000 (0)		
		1100(43)		
		1010(29)		
		1001(32)		

iteracion	S _C	$\mathcal{N}(s_c)$	S _n	local
1	1000 (18)			FALSE
		0000 (0)		
		1100(43)		
		1010(29)		
		1001(32)		
		, ,	1001(32)	

		1.57		
iteracion	s_c	$\mathcal{N}(s_c)$	Sn	local
1	1000 (18)			FALSE
		0000 (0)		
		1100(43)		
		1010(29)		
		1001(32)		
		, ,	1001(32)	
2	1001 (32)			

iteracion	s _c	$\mathcal{N}(s_c)$	Sn	local
1	1000 (18)			FALSE
		0000 (0)		
		1100(43)		
		1010(29)		
		1001(32)		
		(/	1001(32)	
2	1001 (32)			
	, ,	0001 (14)		

iteracion	S _C	$\mathcal{N}(s_c)$	S _n	local
1	1000 (18)			FALSE
		0000 (0)		
		1100(43)		
		1010(29)		
		1001(32)		
		, ,	1001(32)	
2	1001 (32)			
		0001 (14) 1101(57)		

iteracion	S _C	$\mathcal{N}(s_c)$	S _n	local
1	1000 (18)			FALSE
		0000 (0)		
		1100(43)		
		1010(29)		
		1001(32)		
		, ,	1001(32)	
2	1001 (32)			
		0001 (14)		
		1101(57)		
		1011(43)		

iteracion	S _C	$\mathcal{N}(s_c)$	S _n	local
1	1000 (18)	(- /		FALSE
	, ,	0000 (0)		
		1100(43)		
		1010(29)		
		1001(32)		
			1001(32)	
2	1001 (32)			
		0001 (14)		
		1101(57)		
		1011(43)		
		1000(18)		

local
FALSE
)
) TRUE
)

- Cuando HC encuentra la mejor solución candidata de la región, termina su ejecución
- Hill Climbing no define ninguna estrategia para escapar de óptimos locales
- Una solución a este problema es Hill Climbing + Restart

Hill-Climbing + Restart

• La idea es re-comenzar el algoritmo con una solución nueva cuando éste se ha quedado estancado.

Pseudo-código

```
Procedure hill-climbing
      t \leftarrow 0
      initialize Shest
      Repeat
             local ← FALSE
             s_c \leftarrow \text{select a point at random}
             Repeat
                      s_n \leftarrow select the best quality point in \mathcal{N}(s_c)
                      If f(s_n) is better than f(s_c) Then
                             s_c \leftarrow s_n
                      Else
                             local ← TRUF
             Until local
             t \leftarrow t + 1
             if f(s_c) is better than f(s_{best}) then
                    s_{best} \leftarrow s_c
      Until t = MAX
```

Ejemplo: Hill Climbing + Restart

Máx
$$18 \cdot x1 + 25 \cdot x2 + 11 \cdot x3 + 14 \cdot x4$$

s.a. $2 \cdot x1 + 2 \cdot x2 + x3 + x4 \le 3$
 $x1, x2, x3, x4 \in \{0, 1\}$

Ejemplo: Hill Climbing + Restart

Máx
$$18 \cdot x1 + 25 \cdot x2 + 11 \cdot x3 + 14 \cdot x4$$

s.a. $2 \cdot x1 + 2 \cdot x2 + x3 + x4 \le 3$
 $x1, x2, x3, x4 \in \{0, 1\}$

- Representación: Lista binaria de tamaño = número de objetos.
- Función de evaluación: Ganancia total.
 - Trabajaré solo sobre soluciones factibles, descartaré las soluciones infactibles.
- Movimiento: Bit-flip.
- Solución inicial: Aleatoria factible.

restart	it	S _C	$\mathcal{N}(s_c)$	Sn	local	S _{best}
1	1	1000 (18)			FALSE	(0)

restart	it	S _C	$\mathcal{N}(s_c)$	s _n	local	S _{best}
1	1	1000 (18)			FALSE	(0)
			0000 (0)			

restart	it	S _C	$\mathcal{N}(s_c)$	Sn	local	S _{best}
1	1	1000 (18)	0000 (0)		FALSE	(0)
			1100(43)			

restart	it	s_c	$\mathcal{N}(s_c)$	Sn	local	S _{best}
1	1	1000 (18)			FALSE	(0)
			0000 (0)			
			1100(43)			
			1010(29)			
			(/			

restart	it	s_c	$\mathcal{N}(s_c)$	s _n	local	s _{best}
1	1	1000 (18)			FALSE	(0)
			0000 (0)			
			1100(43)			
			1010(29)			
			1001(32)			
			()			

restart	it	s _c	$\mathcal{N}(s_c)$	s _n	local	s _{best}
1	1	1000 (18)			FALSE	(0)
			0000 (0)			
			1100(43)			
			1010(29)			
			1001(32)			
			` ,	1001(32)		
	2	1001 (32)		, ,		
		` ,				

restart	it	s _c	$\mathcal{N}(s_c)$	s _n	local	s _{best}
1	1	1000 (18)			FALSE	(0)
			0000 (0)			
			1100(43)			
			1010(29)			
			1001(32)			
			()	1001(32)		
	2	1001 (32)				
			0001 (14)			

restart	it	s _c	$\mathcal{N}(s_c)$	s _n	local	s _{best}
1	1	1000 (18)			FALSE	(0)
			0000 (0)			
			1100(43)			
			1010(29)			
			1001(32)			
			()	1001(32)		
	2	1001 (32)				
			0001 (14)			
			1101(57)			

restart	it	S _C	$\mathcal{N}(s_c)$	s _n	local	s _{best}
1	1	1000 (18)			FALSE	(0)
			0000 (0)			
			1100(43)			
			1010(29)			
			1001(32)			
			` ,	1001(32)		
	2	1001 (32)				
			0001 (14)			
			1101(57)			
			1011(43)			
			, ,			

restart	it	S _C	$\mathcal{N}(s_c)$	s _n	local	s _{best}
1	1	1000 (18)			FALSE	(0)
			0000 (0)			
			1100(43)			
			1010(29)			
			1001(32)			
			()	1001(32)		
	2	1001 (32)				
			0001 (14)			
			1101(57)			
			1011(43)			
			1000(18)			
			` ,			

restart	it	s_c	$\mathcal{N}(s_c)$	Sn	local	s_{best}
1	1	1000 (18)			FALSE	(0)
		` ,	0000 (0)			. ,
			1100(43)			
			1010(29)			
			1001(32)			
				1001(32)		
	2	1001 (32)				
			0001 (14)			
			1101(57)			
			1011(43)			
			1000(18)			
				1000(18)	TRUE	

restart	it	s_c	$\mathcal{N}(s_c)$	Sn	local	s_{best}
1	1	1000 (18)			FALSE	(0)
		, ,	0000 (0)			, ,
			1100(43)			
			1010(29)			
			1001(32)			
			1001(02)	1001(32)		
	2	1001 (32)		1001(32)		
	2	1001 (32)				
			0001 (14)			
			1101(57)			
			` ,			
			1011(43)			
			1000(18)			
			()	1000(18)	TRUE	
						1001 (32)

restart	it	s_c	$\mathcal{N}(s_c)$	s _n	local	s_{best}
1	1	1000 (18)			FALSE	(0)
			0000 (0)			
			1100(43)			
			1010(29)			
			1001(32)			
			` ,	1001(32)		
	2	1001 (32)				
			0001 (14)			
			1101(57)			
			1011(43)			
			1000(18)			
			` ,	1000(18)	TRUE	
						1001 (32)
2	1	0000(0)			FALSE	

restart	it	s_c	$\mathcal{N}(s_c)$	Sn	local	s_{best}
1	1	1000 (18)			FALSE	(0)
			0000 (0)			
			1100(43)			
			1010(29)			
			1001(32)			
			()	1001(32)		
	2	1001 (32)				
			0001 (14)			
			1101(57)			
			1011(43)			
			1000(18)			
			` ,	1000(18)	TRUE	
						1001 (32)
2	1	0000(0)			FALSE	
			1000(18)			

restart	it	s_c	$\mathcal{N}(s_c)$	s _n	local	s_{best}
1	1	1000 (18)			FALSE	(0)
		` '	0000 (0)			, ,
			1100(43)			
			1010(29)			
			1001(32)			
			()	1001(32)		
	2	1001 (32)				
			0001 (14)			
			1101(57)			
			1011(43)			
			1000(18)			
			()	1000(18)	TRUE	
,						1001 (32)
2	1	0000(0)			FALSE	
			1000(18)			
			0100(25)			
			` '			

restart	it	s _c	$\mathcal{N}(s_c)$	s _n	local	S _{best}
1	1	1000 (18)			FALSE	(0)
			0000 (0)			
			1100(43)			
			1010(29)			
			1001(32)			
			` ,	1001(32)		
	2	1001 (32)				
			0001 (14)			
			1101(57)			
			1011(43)			
			1000(18)			
			` ,	1000(18)	TRUE	
						1001 (32)
2	1	0000(0)			FALSE	
			1000(18)			
			0100(25)			
			0010(11)			
			()			

restart	it	s _c	$\mathcal{N}(s_c)$	s _n	local	s _{best}
1	1	1000 (18)			FALSE	(0)
			0000 (0)			
			1100(43)			
			1010(29)			
			1001(32)			
			(-)	1001(32)		
	2	1001 (32)				
			0001 (14)			
			1101(57)			
			1011(43)			
			1000(18)			
			` '	1000(18)	TRUE	
						1001 (32)
2	1	0000(0)			FALSE	
			1000(18)			
			0100(25)			
			0010(11)			
			0001(14)			
			()			

restart	it	s_c	$\mathcal{N}(s_c)$	Sn	local	s_{best}
1	1	1000 (18)			FALSE	(0)
			0000 (0)			
			1100(43)			
			1010(29)			
			1001(32)			
				1001(32)		
	2	1001 (32)				
			0001 (14)			
			1101(57)			
			1011(43)			
			1000(18)			
			, ,	1000(18)	TRUE	
						1001 (32)
2	1	0000(0)			FALSE	
			1000(18)			
			0100(25)			
			0010(11)			
			0001(14)			
				0100(25)		
	2	0100 (25)				

restart	it	s_c	$\mathcal{N}(s_c)$	s _n	local	S _{best}
1	1	1000 (18)			FALSE	(0)
			0000 (0)			
			1100(43)			
			1010(29)			
			1001(32)			
			` ,	1001(32)		
	2	1001 (32)				
			0001 (14)			
			1101(57)			
			1011(43)			
			1000(18)			
				1000(18)	TRUE	
						1001 (32)
2	1	0000(0)			FALSE	
			1000(18)			
			0100(25)			
			0010(11)			
			0001(14)			
				0100(25)		
	2	0100 (25)				
			1100 (43)			

$Hill\ Climbing\ +\ Restart$

restart	it	S _C	$\mathcal{N}(s_c)$	Sn	local	S _{best}
2	2	0100 (25)				

restart	it	s _c	$\mathcal{N}(s_c)$	s _n	local	s _{best}
2	2	0100 (25)				
			1100 (43)			

restart	it	S _C	$\mathcal{N}(s_c)$	s _n	local	S _{best}
2	2	0100 (25)	· · · · ·			
		, ,	1100 (43) 0000(0)			

restart	it	s _c	$\mathcal{N}(s_c)$	Sn	local	S _{best}
2	2	0100 (25)				
			1100 (43)			
			0000(0)			
			0110(36)			

restart	it	s _c	$\mathcal{N}(s_c)$	s _n	local	S _{best}
2	2	0100 (25)				
			1100 (43)			
			0000(0)			
			0110(36)			
			0101(39)			

Hill Climbing + Restart

restart	it	s _c	$\mathcal{N}(s_c)$	Sn	local	S _{best}
2	2	0100 (25)				
			1100 (43)			
			0000(0)			
			0110(36)			
			0101(39)			
			()	0101(39)		
2	3	0101 (39)				
			1101 (57)			

restart	it	s _c	$\mathcal{N}(s_c)$	Sn	local	S _{best}
2	2	0100 (25)				
			1100 (43)			
			0000(0)			
			0110(36)			
			0101(39)			
			` ,	0101(39)		
2	3	0101 (39)				
			1101 (57)			
			0001(14)			

restart	it	s _c	$\mathcal{N}(s_c)$	Sn	local	S _{best}
2	2	0100 (25)				
			1100 (43)			
			0000(0)			
			0110(36)			
			0101(39)			
			` ,	0101(39)		
2	3	0101 (39)				
			1101 (57)			
			0001(14)			
			0111(50)			

restart	it	S _C	$\mathcal{N}(s_c)$	Sn	local	S _{best}
2	2	0100 (25)				
			1100 (43)			
			0000(0)			
			0110(36)			
			0101(39)			
			` ,	0101(39)		
2	3	0101 (39)				
			1101 (57)			
			0001(14)			
			0111(50)			
			0100(25)		TRUE	
						0101 (39)

Hill-Climbing + Restart

- Desventaja de H-C W/ Restart: Pérdida de información valiosa del proceso de búsqueda actual.
- Una alternativa es aceptar movimientos que empeoran la calidad de la solución actual.
- La desventaja de aceptar soluciones de peor calidad es que se pueden producir ciclos en la búsqueda.