基于 MLP-MDP 的多种动态规划算法比较实验 报告

1 神经网络表示 MDP (MLP-MDP)

1.1 实现思路

• 输入/输出

○ 输入向量 = one-hot(s) | one-hot(a)

 \circ 输出 1: P(s' | s,a) — softmax $\Rightarrow \sum_{s'} P = 1$

○ 输出 2: R(s,a) — 线性层直接给出标量奖励

• 网络结构

○ 基础深度: 2层×64单元 (hidden=(64, 64)), ReLU

o 其他深度: (32)和 (128, 128, 128)用于对比

• 随机种子

o set_global_seed(seed) 同步 Python / NumPy / Torch,确保可复现

• 提取 P, R

○ 枚举 (s,a) 于 torch.no_grad() 中前向推理,保存 NumPy 数组

示例

○ 构建 5 状态 × 3 动作 MDP, 网络结构示意图:

• 测试

- o 15 个转移向量和均为 1 (见 results/legality.csv)
- 。 不同深度对转移分布 KL 距离 ≤ 2 × 10⁻³ 深度差异可忽略

1.2 结果分析

- MLP 能在一次前向同时给出 P 与 R, 便于端到端学习
- 隐藏层增多使概率分布更平滑, 但对后续 DP 收敛影响极小

2 同步策略评估 (Iterative Policy Evaluation)

2.1 实现思路

随机策略 π(a | s)=1/3 迭代公式

 $V_{k+1}(s) = \sum_{a} \pi(a \mid s)[R(s,a) + \gamma \sum_{s}' P(s' \mid s,a) V_k(s')]$

收敛判据: $\|V_{k+1} - V_k\| \infty < \epsilon$, $\epsilon = 1 \text{ e-5}$

2.2 收敛测试

γ	迭代次数	末步最大差值 δ	结论
0.90	66	9.7 e-6	较快收敛
0.95	72	8.5 e-6	默认设置
0.99	119	9.1 e-6	γ高收敛慢

偏向策略 (ε-greedy, ε = 0.2) 平均减少迭代 \approx 30 %。

3 策略迭代 (Policy Iteration)

3.1 实现思路

1. 策略评估: §2 同步备份直到收敛

2. 策略改进: π_new(s)=arg max_a Q^{π}(s,a)

3. 终止: 策略不再变化

3.2 结果分析

仅2轮策略改进即收敛;

4 同步值迭代 (Value Iteration)

4.1 实现思路

 $V_{k+1}(s) = \max_{a} [R(s,a) + \gamma \sum_{s'} P(s' \mid s,a) V_k(s')]$

4.2 结果分析

- 106 次备份达 ε
- 与 PI 达到同一最优 V 与策略 π*

5 异步就地值迭代 (In-Place VI)

5.1 实现思路

按固定/随机顺序遍历状态,实时覆盖 V(s)

5.2 结果分析

顺序与随机均需 106 次全表扫描收敛;随机顺序 δ 波动更大但总迭代数一致

6 优先扫描值迭代 (Prioritized Sweeping)

6.1 实现思路

队列按 Bellman error 排序,误差阈值 θ 逐轮减半

6.2 结果分析

100次 V 更新收敛, 比同步 VI 少 6%; 多耗 100 KB 内存存堆结构

7 随机采样值迭代 (Sample-Based VI)

7.1 实现思路

- ValueNet 逼近 V(s)
- 批采样 (s,a,s',r) 计算 TD-Target
- Adam 优化 4 000 步

7.2 结果分析

损失由 0.23 降至 7.8 e-4; 迭代远多于精确 DP, 但可扩展至大规模问题

8 综合对比

8.1 收敛速度

8.2 计算复杂度

8.3 内存占用

算法	峰值 KB
Policy Iteration	2.4
Value Iteration	3.8
In-Place VI	3.8
Prioritized Sweep	101.7
Sample-Based VI	149.3

8.4 策略质量

所有算法最终平均折扣回报 -0.84227, 与暴力枚举最优值一致。

8.5 超参数敏感性

参数	变化范围	主要影响
γ	0.90→0.99	γ↑→ 收敛迭代数↑、回报↑
3	1e-4→1e-6	ε↓→迭代数×1.6、回报几乎不变
θ (PS)	1e-2→1e-4	θ ↓ → 队列↑、备份↓、总耗时先降后升
隐藏层深度	(32)→(128×3)	对收敛与回报基本无影响

9 结论

- 策略迭代以最少迭代数实现最优,适合小规模模型;
- Prioritized Sweeping 在收敛速度与运算量间取得折中;
- Sample-Based VI 为大状态空间提供可扩展方案;
- γ与θ可用作收敛速度-精度的调节旋钮。