# Compilation of Query-Rewriting Problems into Tractable Fragments of Propositional Logic

Yolifé Arvelo Blai Bonet María Esther Vidal
Departamento de Computación
Universidad Simón Bolívar
Caracas, Venezuela

#### Introduction

- We consider the problem of rewriting a query using materialized views
- This problem appears frequently in the context of Data Integration, Web Infrastructures and Query Optimization:
  - [Duschka & Genesereth 1997; Kwok & Weld 1996; Lambrecht, Kambhampati & Gnanaprakasam 1999]
  - [Levy, Rajaraman & Ordille 1996; Zaharioudakis et al. 2000; Mitra 2001]
- The problem is in general intractable and existing algorithms do not scale well even in simple cases

#### **Data Integration**

- OBJECTIVE: Given a query Q, retrieve all tuples obtainable from the data sources that satisfy Q
- Data sources are assumed to be:
  - Independent (i.e. maintained in a distributed manner)
  - ◆ Described as views (i.e. the Local As View model)
  - Incomplete

#### **Data Integration: Example**

QUERY: Find round-trip flights that start in the US



#### **Query Rewriting Problem: Example**

#### QUERY: Find round-trip flights that start in the US

$$Q(x,y) := flight(x,y), flight(y,x), uscity(x)$$

#### Data sources modelled as views:

```
\begin{aligned} \text{national}(x_1,y_1) &:= \text{flight}(x_1,y_1), \text{uscity}(x_1), \text{uscity}(y_1) \\ \text{oneway}(x_2,y_2) &:= \text{flight}(x_2,y_2) \\ \text{onestop}(x_3,z_3) &:= \text{flight}(x_3,y_3), \text{flight}(y_3,z_3) \end{aligned}
```

## **Query Rewriting Problem: Solution**

- **ASSUMPTION:** Views may be incomplete
- Then, the solution is the **collection** of rewritings:

```
R_1(x,y) := \operatorname{oneway}(x,y), \operatorname{oneway}(y,x), \operatorname{national}(x,w)
R_2(x,y) := \operatorname{oneway}(x,y), \operatorname{oneway}(y,x), \operatorname{national}(w,x)
R_3(x,y) := \operatorname{national}(x,y), \operatorname{national}(y,x)
R_4(x,y) := \operatorname{oneway}(x,y), \operatorname{national}(y,x)
R_5(x,y) := \operatorname{national}(x,y), \operatorname{oneway}(y,x)
```

■ Observe that there is no rewriting using onestop(x, y)

## **Query Rewriting Problem: Formal**

- INPUT: A query Q and set of views  $\mathcal{V} = \{V_1, V_2, \dots, V_n\}$
- TASK: Find a maximal-contained set of rewritings of Q using the views
- A rewriting is a query-like expression that refers only to the views
- **ASSUMPTION:** Q and  $V_i$  are **conjunctive** queries without arithmetic predicates

#### **Related Work: Algorithms**

- Bucket algorithm [Levy & Rajaraman & Ullman 1996]
- Inverse rules algorithm [Duscka & Genesereth 1997]
- MiniCon algorithm [Pottinger & Halevy 2001]

# The MiniCon Algorithm [Pottinger & Halevy 2001]

- Exploit independences to decompose into smaller subproblems and then combine solutions
- Solutions to subproblems are called MCDs

| MCD              | View     | Mapping                      | Covered subgoals |
|------------------|----------|------------------------------|------------------|
| $M_1$            | national | $\{X \to X_1, \ Y \to Y_1\}$ | {0}              |
| $M_2$            | national | $\{X \to Y_1, \ Y \to X_1\}$ | {1}              |
| $M_3$            | national | $\{X \to X_1\}$              | {2}              |
| $M_4$            | national | $\{X \to Y_1\}$              | {2}              |
| $M_5$            | oneway   | $\{X \to X_2, \ Y \to Y_2\}$ | {0}              |
| $\overline{M_6}$ | oneway   | $\{X \to Y_2, \ Y \to X_2\}$ | {1}              |

## The MiniCon Algorithm: How does it work?

- Generate all MCDs (very expensive since performs blind search)
- Rewritings generated **greedily** as combination of MCDs such that:
  - Cover disjoint subsets of subgoals in the query
  - Cover all subgoals in the query
- In the example, combining  $M_3, M_5, M_6$  produces the rewriting:

$$R_1(x,y) := \text{oneway}(x,y), \text{oneway}(y,x), \text{national}(x,w)$$

#### Our Approach: MCDSAT

- Given a query Q and a set of views V
- Build a propositional theory such that its models are in correspondence with the MCDs
- Generating MCDs is now a problem of model enumeration
- Model enumeration can be done with modern SAT techniques that implement:
  - Non-chronological backtracking via clause learning
  - Caching of common subproblems
  - Heuristics
- We also extend propositional theory such that its models are in correspondence with the rewritings
- We call our approach McdSat!!

## **Negation Normal Forms (NNF)**

- A formula is in Negation Normal Form (NNF) if constructed from literals using only conjunctions and disjunctions [Barwise 1977]
- It can be represented as a rooted DAG whose leaves are literals and internal nodes are labeled with conjunction or disjunction



## **Deterministic and Decomposable NNFs (d-DNNFs)**

- Introduced by [Darwiche 2001]
- A NNF is decomposable if each variable appears at most once below each conjunct
- A NNF is **deterministic** if disjuncts are pairwise logically inconsistent
- A d-DNNF supports a number of operations in **linear time**:
  - satisfiability
  - clause entailment
  - model counting
  - model enumeration (output linear time)
  - **•** ...
- Transformation into d-DNNF is intractable in the worst case, but not necessarily so on average

#### **Implementation**

- McdSat translates QRP into a propositional theory T
- T is compiled into d-DNNF using Darwiche's c2d compiler
- Models are obtained from the d-DNNF and transformed into MCDs or rewritings



- c2d and models are off-the-shelf components
- McdSat written in scripting language

#### **Experimental Study**

**OBJECTIVE:** To study the effect of the query sizes and number of views in the performance of MCDSAT and MiniCon

- Large benchmark with problems of different sizes and structures
- Comparison metric: **time**
- For lack of space, we only report few instances

#### **Experimental Results**

- MCD Theory: time to generate MCDs (no combination)
- **■** Extended Theory: time to generate rewritings
- Structure: Chain and Star
- Half distinguished variables
- Queries of different length
- Different number of views
- Each point is average over 10 instances
- Random instances created with generator of [Afrati, Li & Ullman 2001]

#### **Experimental Results: MCD Theories**









#### **Experimental Results: Extended Theories**









#### **Conclusions**

- Proposed a novel method for QRPs using propositional logic which:
  - Uses off-the-shelf propositional components
  - It's easy to implement
  - Shows improved performance over other methods
- Thus, the logical approach is **not only of scientific interest** but **practical too!**
- Similar ideas can be applied to other problems!