

0 Números complejos:

Al conjunto de los números complejos se los denota como $\mathbb C$ y está definido por

$$\mathbb{C} = \{a + bi \mid a, b \in \mathbb{R}\}\$$

sea $z=a+b\cdot i$ un número complejo denotamos $parte\ real$ de z a a y parte imaginaria de z a b de la siguiente manera

$$\Re(z) = a$$
 y $\Im(z) = b$

Los números reales están contenidos en $\mathbb C$, son aquellos cuya parte imaginaria es nula, es decir

$$\mathbb{R} = \{ z \in \mathbb{C} \mid \Im(z) = 0 \}$$

Operaciones en los Complejos:

1 La suma de define de la siguiente manera:

$$(a+bi) + (c+di) = (a+c) + (b+d)i$$

- 2 El producto:
 - Recordamos que $i^2 = -1$

$$\begin{aligned} (a+bi)\cdot(c+di) &= ac + adi + bci + bdi^2 \\ &= ac + bd(-1) + (ad+bc)i \\ &= (ac-bd) + (ad+bc)i \end{aligned}$$

Cumple con los axiomas de cuerpo:

- La suma y el producto son asociativos y conmutativos.
- El producto es distributivo con respecto a la suma
- Existe un elemento neutro para la suma y otro para el producto
- ullet Todo número complejo z tiene un opuesto -z
- Todo número complejo z distinto de θ tiene un inverso z^{-1}

Inverso de un número complejo:

Dado un número complejo z=a+bi, se define su conjugado como $\overline{z}=a-bi$

Si $z, w \in \mathbb{C}$, se cumple que:

$$\overline{z+w} = \overline{z} + \overline{w} \qquad \qquad \overline{z \cdot w} = \overline{z} \cdot \overline{w}$$

Además notamos que si z = a + bi entonces:

$$z \cdot \overline{z} = (a+bi)(a-bi)$$
$$= a^2 + b^2$$

Por lo tanto $z \cdot \overline{z} \ge 0 \ \forall z \in \mathbb{C} \ \ \text{y es igual a } 0 \Leftrightarrow z = 0.$

Definición 1.0:

Si $z \in \mathbb{C}$, el *módulo* de z es el número real dado por

$$|z| = \sqrt{z \cdot \overline{z}}$$

si
$$z = a + bi$$
, $a, b \in \mathbb{R} \Rightarrow |z| = \sqrt{a^2 + b^2}$

si $z, w \in \mathbb{C}$ entonces:

$$|z \cdot w|^2 = (z \cdot w) \cdot \overline{(z \cdot w)}$$
$$= z \cdot w \cdot \overline{z} \cdot \overline{w}$$
$$= |z|^2 \cdot |w|^2$$

por lo tanto $|z \cdot w| = |z| \cdot |w|$

Definición 1.1:

Sea $z=a+bi\,\,,a,b\in\mathbb{C},z\neq0.$ El inverso de un número complejo z=a+bi es:

$$z^{-1} = \frac{\overline{z}}{|z|^2} = \frac{a}{a^2 + b^2} - \frac{b}{a^2 + b^2}i$$

Notación: Si $z,w\in\mathbb{C}\;$ y $w\neq 0$, $\frac{z}{w}=z\cdot w^{-1}$

Ejemplo 1.1 :

Calculamos el inverso de los números complejos 2-3i ,3i y $\frac{1}{2}+\frac{\sqrt{3}}{2}i$

$$(2-3i)^{-1} = \frac{2+3i}{2^2+3^2} = \frac{2}{13} + \frac{3}{13}i$$
$$(3i)^{-1} = -\frac{3i}{9} = -\frac{1}{3}i$$
$$\left(\frac{1}{2} + \frac{\sqrt{3}}{2}i\right)^{-1} = \frac{\frac{1}{2} - \frac{\sqrt{3}}{2}i}{1} = \frac{1}{2} - \frac{\sqrt{3}}{2}i$$

Coordenadas polares:

En lugar de describir un punto en e plano por sus coordenadas con respecto a dos ejees perpendiculares, podemos describirlo como sigue. Trazamos una recta entre el punto y un origen dado. El ángulo con el que esta recta corta la horizontal y la distancia entre el punto y el origen determinan nuestro punto.

Asi entonces el punto se describe por un par de números (r,θ) que constituyen sus coordenadas polares.

Si tenemos nuestros ejes usuales y $x \in y$ son las coordenadas ordinarias de nuestro punto, entonces vemos que:

$$\frac{x}{r} = \cos(\theta)$$
 y $\frac{y}{r} = \sin(\theta)$

de donde

$$x = r \cdot \cos(\theta)$$
 y $y = r \cdot \sin(\theta)$

Esto nos permite cambiar de coordenadas polares a coordenadas ordinarias.

Si trasladamos esto al mundo de los complejos, recordamos que si $z=a+bi,\ a,b\in\mathbb{R}$ entonces $|z|=\sqrt{a^2+b^2}$, ahora si consideramos z=a+bi con |z|=1, es decir:

$$a^2 + b^2 = 1$$

Sabemos por conceptos de trigonometría, especificamente las identidades pitagóricas, que:

$$\cos(\theta)^2 + \sin(\theta)^2 = 1$$

Entonces existe un número $\theta \in [0, 2\pi)$ tal que:

$$a = \cos(\theta), \ b = \sin(\theta)$$

Luego $z = \cos(\theta) + \sin(\theta)i$

Ahora si consideramos un número complejo z = a + bi cualquiera, no nulo, se cumple que:

$$z = |z| \cdot \frac{z}{|z|}$$

Dado que el número complejo $\frac{z}{|z|}$ tiene módulo 1, se sigue que es de la forma $\cos(\theta) + \sin(\theta)i$ Luego podemos representar a z como:

$$z = |z| \cdot (\cos(\theta) + \sin(\theta)i)$$

Por lo tanto, todo número complejo no nulo puede escribirse en su forma polar

$$z = r \cdot (\cos(\theta) + \sin(\theta)i)$$

donde estas expresiones están relacionadas por $a=r\cdot\cos(\theta)$ y $b=r\cdot\sin(\theta)$; geométricamente hablando, r=|z| representa la distancia del número complejo al origen de coordenadas, y θ es la medida <u>en redianes</u> del ángulo entre el eje real (\mathfrak{R}) y la semi recta con origen en 0, que pasa por z, tomando el sentido antihorario.

Representación polar

Ejemplo:

• El número complejo z=1-i tiene modulo $\sqrt{2}$, entonces:

$$1 - i = \sqrt{2} \cdot \left(\frac{1}{\sqrt{2}} - \frac{1}{\sqrt{2}}i\right)$$

$$1 - i = \underbrace{\left(\sqrt{2}\right)}_{r} \cdot \left(\underbrace{\frac{1}{\sqrt{2}}}_{\cos(\theta)} + \underbrace{\left(-\frac{1}{\sqrt{2}}\right)}_{\sin(\theta)}i\right)$$

Luego el argumento de z es $\theta = \frac{7}{4}\pi$ y podemos escribir:

$$z = 1 - i$$

$$= \sqrt{2} \cdot \left(\cos \left(\frac{7\pi}{4} \right) + \sin \left(\frac{7\pi}{4} \right) i \right)$$

1 Vectores en \mathbb{R}^2 y \mathbb{R}^3 :

Se puede utilizar una túpla (x,y) para representar un punto en el <u>plano</u>, asi también una tripla (x,y,z) para representar un punto en el espacio, tambíen suele usarse la notación (x_1,x_2,x_3)

Representación de puntos en el plano

Representación de puntos en el espacio

Definición:

Sea \mathbb{R} el cuerpo de los números reales,entonces

$$\mathbb{R}^n\coloneqq\{(x_1,x_2,...,x_n):x_i\in\mathbb{R}\land 1\leq i\leq n\}$$

Todo v en \mathbb{R}^n será llamado *punto* (vector en el origen o simplemente vector). La mayoría de nuestros ejemplos tendrán lugar cuanto n=2 o n=3; para ello usaremos el *sistemas de coordenadas cartesianas* para representar los elementos de \mathbb{R}^2 y \mathbb{R}^3 .

Suma en \mathbb{R}^n :

Si $(x_1,...,x_n)$, $(y_1,...,y_n)\in\mathbb{R}$, se define:

$$(x_1,...,x_n)+(y_1,...,y_n)\coloneqq (x_1+y_1,...,x_n+y_n)$$

En otras palabras, la suma es coordenada a coordenada

Propiedades:

La suma de vectores en \mathbb{R}^n satisface que:

- 1 Es asociativa
 - $u + (v + w) = (u + v) + w, \forall u, v, w \in \mathbb{R}^n$
- 2 Es conmutativa
 - $v + w = w + v, \forall v, w \in \mathbb{R}^n$

- **3** El vector 0 := (0, ..., 0), es el *elemento neutro*
 - $v+0=0+v=v, \forall v \in \mathbb{R}^n$
- 4 El vector $-v=(-x_1,\ldots-x_n)$ es el opuesto de $v=(x_1,\ldots x_n)$
 - v + (-v) = (-v) + v = 0

Ley del paralelogramo

Sea v=(2,3) y w=(-1,1), entonces v+w=(1,4)

