Rainbow Version of Dirac's Theorem: An Algorithmic Approach

Nathan Luiz Bezerra Martins Willian Miura Mori

Orientadora: Yoshiko Wakabayashi

Departamento de Ciência da Computação, Instituto de Matemática e Estatística, Universidade de São Paulo

Resumo

Dada uma coleção $\mathcal{G} = \{G_1, G_2, \dots, G_n\}$ de grafos de ordem $n \geq 3$, definidos sobre o mesmo conjunto de vértices e que satisfazem a condição de Dirac para cada G_i , existe um G-transversal que forma um circuito hamiltoniano, também conhecido como Circuito Hamiltoniano Rainbow. Neste trabalho, desenvolvemos um algoritmo eficiente que encontra um Circuito Hamiltoniano Rainbow. Fizemos implementações tanto em C++ quanto em Python e realizamos testes de desempenho para comparar as duas versões. Utilizamos a biblioteca manim para fazer uma animação gráfica do algoritmo.

Conceitos básicos

Definições principais:

Um grafo simples é um grafo não direcionado sem laços e sem arestas múltiplas. Um **circuito hamiltoniano** de G é um circuito que visita cada vértice de G exatamente uma vez.

 $\delta(G)$ é o grau mínimo de um vértice em G.

Teorema de Dirac (1952): Se um grafo simples G com $n \ge 3$ vértices tem grau mínimo $\delta(G) \ge \frac{n}{2}$, então G contém um circuito hamiltoniano.

Versões Rainbow de problemas clássicos

Definição:

A versão rainbow de um problema na teoria dos grafos é uma variação que adiciona a restrição de cores à solução desejada. Nesse contexto, o termo rainbow (arco-íris) refere-se a estruturas em um grafo que utilizam elementos provenientes de diferentes subconjuntos, ou arestas com diferentes rótulos ou cores, garantindo que não haja repetições.

Teorema de Dirac (Versão Rainbow):

Dada uma coleção $G = G_1, G_2, \ldots, G_n$ de grafos de ordem $n \geq 3$, definidos sobre o mesmo conjunto de vértices e que satisfazem a condição de Dirac para cada G_i , existe um G-transversal que forma um circuito hamiltoniano, também conhecido como Circuito Hamiltoniano Rainbow. Cada grafo G_i pode ser enxergado como se suas arestas fossem coloridas com a cor i.

Figura 1: Exemplo de um Circuito Hamiltoniano Rainbow para uma coleção de grafos com 8 vértices.

Mais exemplos clássicos:

Floresta Geradora Mínima Rainbow: Dado um grafo G e uma coleção de cores, encontre uma floresta geradora mínima que utilize exatamente uma aresta de cada cor.

Emparelhamento Perfeito Rainbow: Dado um grafo bipartido G e uma coleção de cores, encontre um emparelhamento perfeito que utilize exatamente uma aresta de cada cor.

Conjunto Independente Rainbow: Dado um grafo G onde os vértices estão coloridos, encontre o maior conjunto independente de vértices (conjunto de vértices não adjacentes) tal que todas as cores nos vértices do conjunto sejam distintas.

Fluxograma do algoritmo

A Figura 2 mostra o fluxograma do algoritmo desenvolvido. A ideia principal é, dado um objeto, que pode ser um caminho ou um circuito, incrementar esse objeto para um objeto maior.

Figura 2: Fluxograma do algoritmo.

Técnicas utilizadas

Todas as técnicas utilizam fortemente a condição de Dirac para cada grafo.

Cruzamento:

Figura 3: Dado um caminho de tamanho sz, esta técnica cria um circuito de tamanho sz + 1.

Aresta fora do circuito:

Figura 4: Dado um circuito de tamanho $sz \geq \left[\frac{n}{2}\right]$, esta técnica cria um caminho de tamanho sz + 1.

Desafios enfrentados

Criação de uma prova construtiva:

A prova original de **Joos**, **Kim (2020)** é de natureza não construtiva. Em diversos momentos, o autor solicita que se considere o maior caminho ou circuito rainbow e, a partir disso, faz-se uma demonstração. No entanto, ele não explica como encontrar efetivamente esse caminho ou circuito.

Implementação do caso n - 1:

Esta é a parte mais difícil do algoritmo. Quase metade do código serve para lidar com esse caso, são muitos detalhes a serem considerados.

Implementação eficiente:

A complexidade do algoritmo é da ordem de $O(n^3)$, em que n é a ordem de G. Essa é complexidade é ótima, pois existem $O(n^3)$ arestas que devem ser consideradas no input.

Animação

Animação demonstrando o algoritmo foram feitas com a biblioteca manim (do canal de Youtube 3Blue1Brown) em Python. Um exemplo está disponível no QR Code ao lado.

Referências

As referências estão na página da monografia em: https://linux.ime.usp.br/~nathanluiz