

ViucheOwO

9 de noviembre de 2024

Índice general

1.	±	3
	1.1. Quiz 1	3
	1.2. Quiz 2	4
	1.3. Quiz 3	
	1.4. Ejercicios	
2.		9
	2.1. Ejercicios	9
3.		.0
	3.1. Ejercicios	١0
4.	Medida producto	. 1
	4.1. Ejercicios	1
5.	Espacios Lp	. 2
	5.1. Ejercicios	12
6.	Algunos tipos de convergencia	. 3
	6.1. Ejercicios	13
7.	Cargas 1	.4
	7.1. Ejercicios	14

Definiciones preliminares

1.1. Quiz 1

Determine si cada uno de los siguientes enunciados es verdadero o falso:

1. $\mathbb{Q} \in B$ donde Bes la σ - álgebra de Borel.

Verdadero:

Demostración. Note que para cada $r \in \mathbb{Q}, \{r\} \in B$ puesto que este es un cerrado en \mathbb{R} , i.e., es complemento de un abierto (véase $(-\infty,r) \cup (r,\infty)$), que está en B. La enumerabilidad de \mathbb{Q} nos garantiza que $\bigcup_{r \in \mathbb{Q}} \{r\} = \mathbb{Q} \in B$

2. $\mathbb{N} \in B$ donde B es la σ - álgebra de Borel.

Verdadero:

Demostración. La prueba es idéntica a la del punto anterior.

3. El conjunto $F = \{M : M \text{ es una } \sigma\text{- álgebra en } \mathbb{R}\}$ es enumerable. Falso:

Demostración. Considere la aplicación $\psi : \mathbb{R} \to F$ tal que $\psi(\alpha) := M_{\alpha}$ donde $M_{\alpha} = \{\mathbb{R}, \emptyset, (-\infty, \alpha), [\alpha, \infty)\}$. Considere $\mathcal{M} = Im\psi$, puesto que ψ es inyectiva entonces $|\mathcal{M}| \leq |F|$, por lo tanto F no puede ser contable.

4. La función $f:\mathbb{R}\to\mathbb{R}$ dada por $f(x)=x^3$ es medible, cuando tomamos en \mathbb{R} la σ -álgebra de Borel.

Verdadero:

Demostración. Probaremos primero por inducción que $f(x) = x^n$ es medible para cada $n \in \mathbb{N}$. Para n = 1 el resultado es obvio puesto que $f^{-1}(V) = V \in B$ para cada V abierto. Supongamos que el enunciado es cierto para $n \geq 1$, luego $f(x) = x^{n+1} = x^n \cdot x$ es medible por la proposición 1.1.18. ya que $f = h \circ \varphi$ donde $\varphi : \mathbb{R}^2 \to \mathbb{R}$ definida por $\varphi(y, z) = y \cdot z$ es contínua y $h : \mathbb{R} \to \mathbb{R}^2 := (x^n, x)$ es medible ya que cada una de sus componentes lo es. Por le principio de inducción matemática concluimos que f es medible y tomando el caso n = 3 tenemos el resultado inicialmente pedido.

5. La función $f: \mathbb{R} \to \mathbb{R}$ dada por f(x) = |x| es medible, cuando tomamos en \mathbb{R} la σ - álgebra de Borel.

Verdadero

Demostración. Note que $f(x) = |x| = (h \circ g)(x)$ es medible por la proposición 1.1.17, donde $g(x) = x^2$ es medible por el punto anterior y $h(x) = \sqrt{x}$ es contínua.

1.2. Quiz 2

Determine si cada uno de los siguientes enunciados es verdadero o falso:

1. Sean (X, M) espacio meible y $f: X \to \mathbb{R}$, si f es medible entonces |f| es medible. **Verdadero:**

Demostración. Note que $|f| = g \circ f$ donde $g : \mathbb{R} \to \mathbb{R}$ con g(x) = |x| es continua. La proposición 1.1.17 garantiza que |f| es medible.

2. Sean (X, M) espacio meible y $f: X \to \mathbb{R}$. si |f| es medible entonces f es medible. Falso:

Demostración. Sea E un conjunto no medible y considere f definida como la siguiente función simple: $\chi_E - \chi_{E^c}$, donde $E^c = X - E$ Es claro que |f| = 1 es medible pero f no lo es.

3. Sean (X, M) un espacio medible y $f: X \to \mathbb{R}$. Si f es medible entonces $f^+ = \sup\{f(x), 0\}$ y $f^- = \sup\{-f(x), 0\}$ son medibles.

Verdadero

Demostración. Basta probarlo para los abiertos básicos (α, β) con $\alpha < \beta$.

Si $\alpha, \beta < 0$ entonces $(f^+)^{-1}((\alpha, \beta)) = \emptyset$

Si $\alpha, \beta > 0$ entonces $(f^+)^{-1}(\alpha, \beta) = f^{-1}((\alpha, \beta)) \in M$.

Si $\alpha < 0, \beta > 0$ entonces $(f^+)^{-1}(\alpha, \beta) = (f^+)^{-1}[0, \beta) = f^{-1}((-\infty, 0]) \cup f^{-1}((0, \beta)) \in M$ Note que $f^{-1}((-\infty, 0]) \in M$ ya que $f^{-1}((-\infty, 0]) = f^{-1}((0, \infty)^c) = (f^{-1}((0, \infty)))^c \in M$ pues $f^{-1}((0, \infty)) \in M$.

4. $f^{+}=\frac{1}{2}\left(|f|+f\right), f^{+}$ como en el numeral anterior.

Verdadero:

Demostración. Si $f(x) \leq 0$ entonces $\frac{1}{2}(|f|+f)(x) = \frac{1}{2}(-f+f)(x) = 0$. Ahora, si f(x) > 0, entonces $\frac{1}{2}(|f|+f)(x) = \frac{1}{2}(f+f)(x) = \frac{1}{2}(2f)(x) = f(x)$, lo cual coincide con nuestra definición de f^+ .

5. $f^{-} = \frac{1}{2} (|f| - f), f^{+}$ como en el numeral anterior **Verdadero**:

verdadero.

Demostración. La prueba es análoga a la anterior.

1.3. QUIZ 3

1.3. Quiz 3

Determine si cada uno de los siguientes enunciados es verdadero o falso:

1. Sea (X, M) un espacio medible entonces toda función simple es medible. Falso:

Demostración. En virtud de la proposición 1.4.3 basta tomar cualquier conjunto no medible E e inmediatamente χ_E es una función simple no medible.

2. $\chi_{A \cup B} = \chi_A + \chi_B$ Falso:

Demostración. Tome $A, B \subset X$ no disyuntos y $x \in A \cap B$. Note que $\chi_{A \cup B}(x) = 1$, mientras que $\chi_A + \chi_B(x) = 2$.

3. $\chi_{A-B} = \chi_A(1 - \chi_B)$ Verdadero:

Demostración. Si $x \in A - B$, entonces $\chi_A(x) = 1, \chi_B(x) = 0$, luego $\chi_A(1 - \chi_B)(x) = 1(1 - 0) = 1$. Ahora si $x \notin A - B$ entonces $\chi_A(x) = 0$ o $\chi_B(x) = 1$, en ambos casos

 $\chi_A(1-\chi_B)(x)=0.$

4. $\chi_{A \cap B} = \chi_A \chi_B$

 ${\bf Verdadero}$

Demostración. Si $x \in A \cap B$, entonces $\chi_A(x) = 1$, $\chi_B(x) = 1$ y por ende $\chi_A \chi_B(x) = 1$. Ahora, si $x \notin A \cap B$, entonces $\chi_A(x) = 0$, o $\chi_B(x) = 0$ y en ambos casos $\chi_A \chi_B(x) = 0$. \square

5. Sean (X, M) espacio medible y $f \to [-\infty, \infty]$ una función medible entonces el conjunto $\{x \in X : f(x) = \infty\}$ es medible.

Verdadero:

Demostración. Note que

$$\{x \in X : f(x) = \infty\} = f^{-1} \{\infty\}$$

$$= f^{-1} \left(\bigcap_{n \in \mathbb{N}} [n, \infty]\right)$$

$$= \bigcap_{n \in \mathbb{N}} f^{-1}([n, \infty])$$

$$= \bigcap_{n \in \mathbb{N}} \left(f^{-1}([-\infty, n)^c)\right)$$

$$= \bigcap_{n \in \mathbb{N}} \left(f^{-1}([-\infty, n))\right)^c$$

$$= \left(\bigcup_{n \in \mathbb{N}} f^{-1}([-\infty, n))\right)^c$$

Donde $f^{-1}([-\infty, n)) \in M$ para cada $n \in \mathbb{N}$, luego la unión contable de estos conjuntos también está en M y por lo tanto su complemento lo está. Asi, $f^{-1}\{\infty\} \in M$.

1.4. Ejercicios

- 1. Sean $(A_n)_{n\in\mathbb{N}}$ una sucesión de conjuntos en X, muestre que
 - $\chi_{\bigcup_{i=1}^n A_i} = 1 \prod_{i=1}^n (1 \chi_{A_i})$

Demostración. Si $x \in \bigcup_{i=1}^n A_i$, entonces $\chi_{A_i} = 1$ para algún $1 \le i \le n$, de modo que el factor $(1 - \chi_{A_i}) = 0$ y por lo tanto todo el producto $\prod_{i=1}^n (1 - \chi_{A_i}) = 0$ y así $1 - \prod_{i=1}^n (1 - \chi_{A_i}) = 1 - 0 = 1$.

Por otro lado, si $x \notin \bigcup_{i=1}^n A_i$ es porque $x \notin A_i$ para todo $1 \le i \le n$, esto es, $\chi_{A_i} = 0$, y $\prod_{i=1}^n (1 - \chi_{A_i} = 1 - \prod_{i=1}^n (1) = 0$.

 $\quad \blacksquare \quad \chi_{\bigcap_{i=1}^n A_i} = \prod_{i=1}^n \chi_{A_i}.$

Demostración. Si $x \in \bigcap_{i=1}^n A_i$ entonces $\chi_{A_i}(x) = 1$ para todo $1 \le i \le n$, de modo que $\prod_{i=1}^n \chi_{A_i}(x) = \prod_{i=1}^n 1 = 1$.

Si $x \notin \bigcap_{i=1}^n A_i$ entonces el factor $\chi_{A_i}(x) = 0$ para algún i, luego $\prod_{i=1}^n \chi_{A_i}(x) = 0$. \square

• $\chi_{\limsup A_n} = \limsup \chi_{A_n}$.

Demostración.

$$\limsup \chi_{A_n}(x) = \limsup \{\chi_{A_n}(x)\}
= \inf \{\sup \{\chi_{A_k}(x)\} : k \ge n\}
= \begin{cases} 1 \text{ si } x \in \limsup A_n \\ 0 \text{ si } x \notin \limsup A_n \end{cases}
= \chi_{\limsup A_n}$$

• $\chi_{\liminf A_n} = \liminf \chi_{A_n}$.

Demostración. Indéntica al punto anterior.

2. Sean (X, M) un espacio medible y $\{f_n : X \to [-\infty, \infty]\}_{n \in \mathbb{N}}$ una sucesión de funciones medibles. Muestre que:

$$\{x \in X : \sup f_n(x) \le a, n \in \mathbb{N}\} = \bigcap_{n \in \mathbb{N}} \{x \in X : f_n(x) \le a\}$$

Demostración. Sea $x \in \{x \in X : \sup f_n(x) \le a, n \in \mathbb{N}\}$. Note que $f_n(x) \le \sup \{f_n(x)\} \le a$ para todo $n \in \mathbb{N}$, luego $x \in f_n^{-1}([-\infty, a])$ para todo n, esto es $x \in \bigcap_{n \in \mathbb{N}} \{x \in X : f_n(x) \le a\}$.

Reciprocamente, si $x \in \bigcap_{n \in \mathbb{N}} \{x \in X : f_n(x) \leq a\}$ entonces $f_n(x) \leq a$ para todo $n \in \mathbb{N}$. Esto significa que a es una cota superior del conjunto $\{f_n(x)\}_{n \in \mathbb{N}}$, por lo que $\sup \{f_n(x)\}_{n \in \mathbb{N}} = \sup f_n(x) \leq a$, y en consecuencia $x \in \sup f_n^{-1}([-\infty, a]), n \in \mathbb{N} = \{x \in X : \sup \{f_n(x)\} \leq a, n \in \mathbb{N}\}$.

1.4. EJERCICIOS 7

•
$$\{x \in X : \inf f_n(x) < a, n \in \mathbb{N}\} = \bigcup_{n \in \mathbb{N}} \{x \in X : f_n(x) < a\}.$$

Demostración. Sea x tal que inf $f_n(x) < a$, entonces para algún $k \in \mathbb{N}$ se cumple que $f_k(x) < a$ (de lo contrario tendríamos que a es una cota inferior del conjunto $\{f_n(x)\}$ mayor que el inf), luego $x \in \bigcup \{x \in X : f_n(x) < a\}$.

Ahora, si $f_k(x) < a$ para algún k, es claro que inf $f_n(x) \le f_k(x) < a$, esto es $x \in \inf f_n^{-1}([-\infty, a))$.

- 3. Sea $(A_n)_n \in \mathbb{N}$ un sucesión de conjuntos en X. Tomando $E_0 = \emptyset$ y $E_n = \bigcup_{k=1^n} A_k$, $F_n = A_n - E_{n-1}$ para cada $n \in \mathbb{N}$. Muestre que
 - $E_{n-1} \subseteq E_n$ para todo $n \in \mathbb{N}$

Demostración. Si $x \in E_{n-1}$, entonces $x \in A_k$ para algún k entre 1 y n-1, luego $x \in A_k \cup A_n$ de modo que $x \in E_n$.

• $F_i \cap F_j = \emptyset$ si $i \neq j$.

Demostración. Supongamos que i < j. Si $x \in F_i$ y $x \in F_j$ entonces $x \in A_j$ y $x \notin A_k$ para todo k < j, lo que contradice $x \in A_i$.

Demostración. Es evidente que $\bigcup_{n=1}^{\infty} E_n = \bigcup_{n=1}^{\infty} A_n$ por como están definidos los E_n . Otro hecho que salta a la vista es que $\bigcup_{n=1}^{\infty} F_n \subset \bigcup_{n=1}^{\infty} A_n$ por la definición de los F_n . Lo único que queda por notar es que $\bigcup_{k=1}^n F_k = \bigcup_{k=1}^n A_k$ para cada $n \geq 1$, donde nuevamente tenemos una inclusión gratis. Ahora, considere el mayor $k \leq n$ tal que $x \in A_k$. Como $A_k = (A_k \cap E_{k-1}) \cup (A_k - E_{k-1}) = (A_k \cap E_{k-1}) \cup F_n$. Si $x \in F_n$ hemos terminado. Si $x \in A_k \cap E_{k-1} = \bigcup_{j=1}^{k-1} (A_k \cap A_j)$, basta con tomar el mínimo j tal que $x \in A_k \cap A_j$. Por lo tanto $x \in A_j - E_{j-1} = F_j$. (Si x perteneciera a E_{j-1} , pertenecería a algún A_i con i < j). Luego $x \in \bigcup_{k=1}^{\infty} F_k$ y concluimos $\bigcup_{k=1}^{\infty} F_k = \bigcup_{k=1}^{\infty} A_k$

4. Sea $(A_n)_n \in \mathbb{N}$ un sucesión de conjuntos en X.

Defina:

$$\limsup A_n = \bigcap_{m=1}^{\infty} (\bigcup_{n=m}^{\infty} A_n).$$

$$\liminf A_n = \bigcup_{m=1}^{\infty} (\bigcap_{n=m}^{\infty} A_n).$$

Muestre que:

 $\emptyset \subseteq \liminf A_n \subseteq \limsup A_n \subseteq X$.

Demostración. La única inclusión no trivial es lím inf $A_n \subseteq lím \sup A_n$.

Primero note que $\{\bigcup_{n=k}^{\infty} A_n\}_{k\in\mathbb{N}}$ es una secuencia decreciente.

Sea $x \in \liminf A_n$. Existe $p \in \mathbb{N}$ tal que para todo entero $k \geq p, x \in A_k$ y por ende $x \in \bigcup_{n=k}^{\infty} A_n$, por lo dicho en la línea de arriba, $\bigcup_{n=k}^{\infty} A_n \supseteq \bigcup_{n=p}^{\infty} A_n$, para todo $1 \leq k \leq p$, luego $x \in \bigcup_{n=1}^{\infty} A_n$ para todo entero $n \geq 1$, ergo, $x \in \bigcap_{m=1}^{\infty} (\bigcup_{n=m}^{\infty} A_n) = \limsup A_n$.

5. Sea $(A_n)_n \in \mathbb{N}$ un sucesión de conjuntos en X tal que $A_i \subseteq A_{i+1}$ para todo $i \in \mathbb{N}$. Muestre que:

$$\limsup A_n = \bigcup_{n=1}^{\infty} A_n = \liminf A_n.$$

Demostración. Note que $\cup_{k=m}^n A_k=\cup_{k=1}^n A_k=A_n$ y $\cap_{k=m}^n A_k=A_m$, $m\in\mathbb{N}, m\leq n$ cualquiera sea $n\in\mathbb{N}.$ Luego $\cap_{k=m}^\infty A_k=A_m.$

Ahora, $\liminf A_n = \bigcup_{m=1}^{\infty} (\bigcap_{n=m}^{\infty} A_n) = \bigcup_{m=1}^{\infty} A_m$.

Por su parte, lím sup
$$A_n = \bigcap_{m=1}^{\infty} (\bigcup_{n=m}^{\infty} A_n) = \bigcap_{m=1}^{\infty} (\bigcup_{n=1}^{\infty} A_n) = \bigcup_{n=1}^{\infty} A_n$$
.

6. Sea $(A_n)_n \in \mathbb{N}$ un sucesión de conjuntos en X tal que $A_i \supseteq A_{i+1}$ para todo $i \in \mathbb{N}$. Muestre que:

$$\limsup A_n = \bigcap_{n=1}^{\infty} A_n = \liminf A_n.$$

Demostraci'on. La prueba es análoga a la del punto anterior y se deja como ejercicio al lector.

- 7. Sean (X, M, μ) un espacio de medida y $(A_n)_{n \in \mathbb{N}}$ una sucesión de conjuntos medibles, Muestre que:
 - $\mu(\liminf A_n) \leq \liminf \mu(A_n)$

$$\square$$

• $\limsup \mu(A_n) \leq \mu(\limsup A_n)$, si $\mu(\bigcup_{n \in \mathbb{N}} A_n) < \infty$.

Demostración.

$$\limsup \mu(A_n) = \inf \left\{ \sup \left\{ \mu(A_k) : k \ge n \right\} \right\}$$

La medida de Lebesgue

La integral

Medida producto

Espacios Lp

Algunos tipos de convergencia

Cargas