Data Mining and Machine Learning

Assignment Project Exam Help

Statistical

https://eduassistpro.github.io/

Add WeChat edu_assist_pro

Peter Jančovič

Objectives

- In part 1 of this topic we
 - Reviewed univariate Gaussian PDF
 - Introduced ignitivarial of Sevensian and Fhelp
 - Introduced
 Gaussian P https://eduassistpro.github.io/

- In this part, we will
 - Introduce Gaussian Mixture Models (GMMs)
 - Introduce ML estimation of GMM parameters

Fitting a Gaussian PDF to Data

- Suppose $y = y_1, ..., y_t, ..., y_T$ is a set of T data values
- For a Gaussian PDF p with mean μ and variance σ, define: Assignment Project Exam Help

$$p(yhttps:/)ed$$
 $t=1$ $t=1$

- The 'best fitting' Gaussian s $p(y|\mu,\sigma)$
- Maximising $p(y|\mu,\sigma)$ with respect to μ,σ is called Maximum Likelihood (ML) estimation of μ,σ

$$\mu = \frac{1}{T} \sum_{t=1}^{T} y_t, \quad \sigma = \frac{1}{T} \sum_{t=1}^{T} (y_t - \mu)^2$$

UNIVERSITY^{OF} BIRMINGHAM

Multi-modal distributions

- In practice the distributions of many naturally occurring phenomena do not follow the simple bell-shaped Gassignment Project Exam Help
- These peaks are the <u>modes</u> of the distribution and the distribution is called <u>multi-modal</u>

Gaussian Mixture PDFs

- Gaussian Mixture PDFs, or Gaussian Mixture Models (GMMs) used to model multi-modal and other non Giangment Projections. Help
- A GMM is j https://eduassistpro.githfutc.w/ral Gaussian PD ent PDFs Add WeChat edu_assist_pro_
- For example, if p_1 and p_2 a n PDFs, then

$$p(y) = w_1 p_1(y) + w_2 p_2(y)$$

defines a 2 component Gaussian mixture PDF

Gaussian Mixture - Example

- 2 component mixture model
 - Component 1: μ =0, σ =0.1 -
 - Component 2: μ =2, σ =1
 - $w_1 = w_2 = Assignment Project Exam Help$

- 2 component mixture model
 - Component 1: μ =0, σ =0.1
 - Component 2: u=2, $\sigma=1$ $w_1 = 0.2$ $w_2 = 0.8$ Project Exam Help

- 2 component mixture model
 - Component 1: μ =0, σ =0.1
 - Component 2: μ =2, σ =1
 - $-w_1 = 0.2$ Assignment Project Exam Help

5 component Gaussian mixture PDF

Gaussian Mixture Model

• In general, an *M* component Gaussian mixture PDF is defined by:

Assignment Project Exam Help

Add WeChat edu_assist_pro

where each p_m is a Gaussian PDF and

$$0 \le w_m \le 1, \sum_{m=1}^{\infty} w_m$$

Relationship with Clustering

- Both model data using a set of centroids / means
- In clustering there is no parameter that specifies the 'spread' of a cluster. In a GMM component this is done by the https://eduassistpro.github.io/
- In clustering we assign a sedu_assist_procentroid. In a GMM a sa gned to all components with varying probability.

Estimating the parameters of a Gaussian mixture model

- A Gaussian Mixture Model with M components has
 - M means: $\mu_1, ..., \mu_M$ Assignment Project Exam Help M varianc

 - M mixtur https://eduassistpro.github.io/
- Given $y = y_1$, Add That edu_assisteptionse parameters?
- I.e. how do we find a maximum likelihood estimate of $\mu_1, ..., \mu_M, \sigma_1, ..., \sigma_M, w_1, ..., w_M$?

Parameter Estimation

- If we knew which component each sample y_t came from, then parameter estimation would be easy:
 - Set μ_m Assign the ntveraject with a most Halpsamples which bel - Set σ_m to https://eduassistpro.github.io/ samples which
 - belong to the downwell belong to the downwell
 - Set w_m to be the proportion of samples which belong to the m^{th} component
- But we don't know which component each sample belongs to

The E-M Algorithm

• <u>Step 1</u>:

Choose number of GMM components, M, and Assignment Project Exam Help initial GMM

https://eduassistpro.github.io/
$$\mu_1^{(0)},...,\mu_M^{(0)},\sigma_1^{(0)},...,\sigma_M^{(0)},w_1^{(0)},...,w_M^{(0)}$$
 Add WeChat edu_assist_pro

The E-M Algorithm

- Step 2: For each sample y_t and each GMM component m calculate $P(m|y_t)$ using Bayes theorem and current sign of epar Rootetes Hagen Plat slide)

• Step 3: Defi parameters, https://eduassistpro.github.io/
parameters,
$$m \in M$$

$$Add WeChat edu_assist_pro$$

$$\mu_m^{(1)} = \frac{1}{P_i} \sum_{t=1}^{T} P(m|y_t) y_t \quad \text{where} \quad P_i = \sum_{t=1}^{T} P(m|y_t)$$

$$\sigma_m^{(1)} = \frac{1}{P_i} \sum_{t=1}^{T} P(m|y_t) (y_t - \mu_m^{(1)})^2$$

REPEAT (**Step 2 and 3**)

E-M continued

Calculate from m^{th} Gaussian component

*m*th weight

From Bayes' theorem:

This is a measure of how much y_t 'belongs to' the m^{th} component

Sum over all components

Slide 16

 g_2

 $g_1(x) \approx 0$

Assignment Project Exam Help

 $0 \times 0.3 + 0.054$

https://eduassistpro.github(zio)/~1

Add WeChat edu_assist_pro

x = -3

 g_2

$$g_1(x) = 0.176$$

Assignment Project Exam Help

 $0.176 \times 0.3 + 0$

https://eduassistpro.github@io//~0

Add WeChat edu_assist_pro

Slide 18

x = 2

Example (continued)

So, given these initial estimates of g_1 and g_2 , and data points $X = \{x_1, x_2, x_3\} = \{-3, 2, 7\}$, the new values of \mathcal{A}_I is in the project Exam Help

$$\mu_1 = \frac{0 \times x_1 + 0.723 \text{ttps://eduasoistpsp+githusb.io/}_{1 \times 7}}{0 + 0.723 \text{tWeChat edu_assist_pro}} = \frac{4.9}{0 \times 2.723 \text{tWeChat edu_assist_pro}} = 4.9$$

$$\mu_2 = \frac{1 \times x_1 + 0.277 \times x_2 + 0 \times x_3}{1 + 0.277 + 0} = \frac{1 \times (-3) + 0.277 \times 2 + 0 \times 7}{1.277} = -1.92$$

 g_2

Original means

Assignment Project Exam Help

means

https://eduassistpro.github.io/

E-M and k-means clustering

- Consider:
 - Estimating GMM component means in E-M, and
 - Estimating centroids in k-means clustering
- Notation Assignment Project Exam Help
 - GMM compo
 - Cluster centrohttps://eduassistpro.github.io/
- Given a sample *y* E-M: Calculate $P(m \mid y)$ for each nent *m*

 - K-means: Calculate $d(c_m, y)$ for each centroid c_m
- Reestimation
 - E-M: For each m, allocate $P(m|y_t)y_t$ to reestimation of μ_m
 - K-means: Allocate all of y_t to the closest centroid (min $\{d(c_m, y_t)\}\)$

E-M and k-means clustering

- In some implementations of E-M, y is used <u>only</u> to reestimate the mean μ_m for the most probable GMM components ignment $\exp(\pi k_{\rm p})$ and $\exp(\pi k_{\rm p})$
- If the GMM https://eduassistpro.gateudliequal, and all of the co al, then the following are equivalent:
 - $-m = \operatorname{argmin} \{d(y, c_m)\}\ (c_m \text{ is closest centroid to } y)$
 - $-m = \operatorname{argmax} \{P(m|y)\}\ (\text{i.e. } m \text{ is the most probable} \ \text{GMM component})$

The E-M algorithm

Example – initial model

Assignment Project Exam Help $P(m_1/y_6)$ $=\lambda_1$ https://eduassistpro.github.io/
Add WeChat edu_assist_pro

Example – after 1st iteration of E-M

Assignment Project Exam Help

https://eduassistpro.github.io/

Example – after 2nd iteration of E-M

Assignment Project Exam Help

https://eduassistpro.github.io/

Example – after 4th iteration of E-M

Assignment Project Exam Help

https://eduassistpro.github.io/

Example – after 10th iteration of E-M

Assignment Project Exam Help

https://eduassistpro.github.io/

Summary

- Gaussian mixture PDFs (GMMs)
- Maximum Aikeighbor (MP) parameter estimation the E-M algorithm
 https://eduassistpro.github.io/
- Comparison of Add Wreching edu_assists plastering

