CODE

COMMENTARY $h_1 \downarrow h_2 \downarrow h_1 \downarrow h_1 \downarrow h_1 \downarrow h_1 \downarrow h_1 \downarrow h_2 \downarrow h_2 \downarrow h_1 \downarrow h_2 \downarrow h_2 \downarrow h_2 \downarrow h_1 \downarrow h_2 \downarrow$

(a) Geometric discontinuities

(b) Loading and geometric discontinuities

Fig. R23.1—D-regions and discontinuities.

23.2—General

23.2.1 Strut-and-tie models shall consist of struts and ties connected at nodes to form an idealized truss in two or three dimensions.

R23.2—General

R23.2.1 For the idealized truss, struts are the compression members, ties are the tension members, and nodes are the joints. Uniformly distributed loads are usually idealized as a series of concentrated loads applied at nodes. Similarly, distributed reinforcement is usually modeled as discrete ties representing groups of individual bars or wires. Details of the use of the strut-and-tie method are given in Schlaich et al. (1987), Collins and Mitchell (1991), MacGregor (1997), FIP (1999), Menn (1986), Muttoni et al. (1997), and ACI 445R.

