데이터마이닝팀

4팀

황유나 문서영 김지현 위재성 이진모

CONTENTS

1. Tree-based Models

2. Ensemble Methods

1

Tree-based Models

Ensemble Methods

CART(Classification And Regression Trees)

- : 트리 생성 알고리즘 중 하나
- 이진 트리로만 이루어져 있다.
 - 기 터미널 노드에 적합하는 **상수 C**는 기 어떻게 도출할 수 있을까?

Ensemble Methods

CART(Classification And Regression Trees)

- : 트리 생성 알고리즘 중 하나
- 이진 트리로만 이루어져 있다.
 - 터미널 노드에 적합하는 상수 C는 어떻게 도축함 수 있을까?

$$f(X) = \sum_{m=1}^{M} c_m I(X \in R_m)$$

when
$$\bigcup_{m=1}^{M} R_m = \mathbb{R}^p$$
 and $R_m \cap R_p = \emptyset$ (non – overlapping, distinct)

and \mathbb{R}^p is a p – dimensional input space

Ensemble Methods

CART(Classification And Regression Trees)

- : 트리 생성 알고리즘 중 하나
- 이진 트리로만 이루어져 있다.

터미널 노드에 적합하는 상수 C는 어떻게 도출할 수 있을까?

$$f(X) = \sum_{m=1}^{M} c_m I (X \in R_m)$$
 회귀: y값들의 평균 분류: 최빈값

when $\bigcup R_m = \mathbb{R}^p$ and $R_m \cap R_p = \emptyset$ (non – overlapping, distinct)

and \mathbb{R}^p is a p – dimensional input space

- 회귀 문제
- 실제 값과 예측 값의 오차 사용
- RSS(잔차제곱합)을 줄여 나가는 방향으로 작동
- 탐욕적 알고리즘: 매 순간마다 최적의 선택

$$\min_{c_m} \sum_{i=1}^{N} \{y_i - f(x_i)\}^2 = \min_{c_m} \sum_{i=1}^{N} [y_i - \sum_{m=1}^{M} c_m I(X \in R_m)]^2$$

	Price (\$)	Review Scores Rating
0	10.0	10
1	11.0	10
2	12.0	10
3	13.0	10
4	14.0	13
5	15.0	20
6	17.5	35
7	18.0	44
8	18.5	52
9	19.0	55

독립변수가 한 개일 때

- 1. 독립변수에서 기준점을 랜덤 선택
- 2. 기준점을 바탕으로 RSS 계산
- 3. RSS값이 더 이상 줄어들지 않을 때까지 1-2 반복
- 4. 가장 작은 RSS값을 도출하는 독립변수를 기준으로 선택

종속변수

i

	Price (\$)	Review Scores Rating
0	10.0	10
1	11.0	10
2	12.0	10
3	13.0	10
4	14.0	13
5	15.0	20
6	17.5	35
7	18.0	44
8	18.5	52
9	19.0	55

랜덤 기준1 Price: 13

종속변수

1) Decision Tree Regressor

	Price (\$)	Review Scores Rating	
0	10.0	10	
1	11.0	10	
2	12.0	10	
3	13.0	10	
4	14.0	13	
5	15.0	20	
6	17.5	35	
7	18.0	44	
8	18.5	52	
9	19.0	55	

Price(\$) < 13

R1

R2

Average: 10

Average: 65

*종속변수의 평균

1) Decision Tree Regressor

	Price (\$)	Review Scores Rating
0	10.0	10
1	11.0	10
2	12.0	10
3	13.0	10
4	14.0	13
5	15.0	20
6	17.5	35
7	18.0	44
8	18.5	52
9	19.0	55

랜덤 기준1 Price: 13

Price(\$) < 13

R1

N R

Average: 10

Average: 65

*종속변수의 평균

RSS=
$$(10-10)^2 + (10-10)^2 + \cdots$$

+ $(100-65)^2 + (100-65)^2 = 15762.0$

1) Decision Tree Regressor

	Price (\$)	Review Scores Rating
0	10.0	10
1	11.0	10
2	12.0	10
3	13.0	10
4	14.0	13
5	15.0	20
6	17.5	35
7	18.0	44
8	18.5	52
9	19.0	55

랜덤 기준2 Price: 19

Price(\$) < 19

R1

R2

Average: 25.9

Average: 91.1

*종속변수의 평균

RSS=
$$(10 - 25.9)^2 + (10 - 25.9)^2 + \cdots$$

+ $(100 - 91.1)^2 + (100 - 91.1)^2 = 3873.79$

1) Decision Tree Regressor

	Price (\$) Review Scores Ratio	
0	10.0	10
1	11.0	10
2	12.0	10
3	13.0	10
4	14.0	13
5	15.0	20
6	17.5	35
7	18.0	44
8	18.5	52
9	19.0	55

랜덤 기준2 Price: 19

Price ≤19를 기준으로 삼았을 때 RSS가 가장 작다

종속변수

1) Decision Tree Regressor

독립변수가 추가된다면,,?

	Price (\$) Review Scores Ratin	
0	10.0	10
1	11.0	10
2	12.0	10
3	13.0	10
4	14.0	13
5	15.0	20
6	17.5	35
7	18.0	44
8	18.5	52
9	19.0	55

	Price (\$)	Cleaning fee(\$)	License	Review Scores Rating
0	10.0	0	0	10
1	11.0	1	0	10
2	12.0	2	1	10
3	13.0	3	0	10
4	14.0	4	1	13
5	15.0	5	0	20
6	17.5	7.5	1	35
7	18.0	8	1	44
8	18.5	8.5	1	52
9	19.0	9	0	55

	Price (\$)	Cleaning fee(\$)	License	Review Scores Rating
0	10.0	0	0	10
1	11.0	1	0	10
2	12.0	2	1	10
3	13.0	3	0	10
4	14.0	4	1	13
5	15.0	5	0	20
6	17.5	7.5	1	35
7	18.0	8	1	44
8	18.5	8.5	1	52
9	19.0	9	0	55

독립변수가 여러 개

- 1. 독립변수 별로 가장 작은 RSS 도출하는 최적 기준 선택
- 2. 선택된 최적 기준들 중에서 가장 작은 RSS를 갖는 기준을 선택

종속변수

i

	Price (\$)	Cleaning fee(\$)	License	Review Scores Rating
0	10.0	0	0	10
1	11.0	1	0	10
2	12.0	2	1	10
3	13.0	3	0	10
4	14.0	4	1	13
5	15.0	5	0	20
6	17.5	7.5	1	35
7	18.0	8	1	44
8	18.5	8.5	1	52
9	19.0	9	0	55

독립변수가 여러 개

Price 최적기준: 19 (RSS = 3873.79)

Cleaning_fee 최적기준: 9 (RSS = 64214.8)

License 최적기준: 0 (RSS = 11685.5)

1

Tree-based Models

1) Decision Tree Regressor

	Price (\$)	Cleaning fee(\$)	License	Review Scores Rating
0	10.0	0	0	10
1	11.0	1	0	10
2	12.0			10
3	13.0			10
4	14.0			13
5	15.0			20
6	17.5	7.5		35
7	18.0	8	1	44
8	18.5	8.5	1	52
9	19.0	9	0	55

독립변수가 여러 개

Price 최적기준: 19 (RSS = 3873.79)

Cleaning_fee 최적기준: 9 (RSS = 64214.8) 가장 최적!

License 최적기준: 0 (RSS = 11685.5)

종속변수

→ R1, R2로 나뉜 input space에서 각각 최소 RSS 산출조건 다시 찾음

→ RSS가 더 이상 작아지지 않을 때까지 반복

수식으로 요약하자면,,

Find j and s satisfying

$$min_{c_1} \sum_{x_i \in R_1(j,s)} (y_i - c_1)^2 + min_{c_2} \sum_{x_i \in R_2(j,s)} (y_i - c_2)^2$$

→ j: 특정 독립변수 s: 분기의 기준이 되는 관측치의 종속변수 값

 \Rightarrow c_1, c_2 : terminal node의 종속변수 평균값

분류모델에서 termial node의 적합값은 해당 분할에 포함된 범주들의 최빈값이다.

2) Decision Tree Classifier

비슷한 관측치들끼리 몰려 있는 형태가 이상적

회귀 모델

RSS가 줄어드는 방향으로 트리가 나뉘도록 한다

분류 모델

불순도가 줄어들도록 트리가 나뉘도록 하자

2) Decision Tree Classifier

비슷한 관측치들끼리 몰려 있는 형태가 이상적

회귀 모델

: 관측치들이 어떤 <mark>범주</mark>에 촉할 지에 대한 불확실성이 줄어드는 것

분류 모델

Н

불순도가 줄어들도록 트리가 나뉘도록 하자 관측치들이 각자의 범주에 따라 <mark>적절히 분류</mark> 되었음을 의미

예측값은 각 카테고리의 **최빈값**을 차지하는 범주를 선택해야 하므로 R1은 빨강, R2는 파랑

R2에는 빨간 구슬과 파란 구슬이 적절히 분류되었다고 볼 수 없음

즉, R2의 불순도 > R1의 불순도

분류가 잘 되었는지, 그러니까 **분할된 공간의 '순도'**는 어떻게 계산할 수 있을까?

물리학에서의 '엔트로피'의 개념을 차용해보자

Dr. Strange의 엔트로피가 증가하고 있다.

$$Entropy(X) = -\sum_{k=1}^{m} p_k \log_2(p_k)$$

$$Entropy(X) = -\sum_{k=1}^{m} p_k \log_2(p_k)$$

분할 전 Entropy:

$$-\frac{10}{16}\log_2(\frac{10}{16}) - \frac{6}{16}\log_2(\frac{6}{16}) \approx \mathbf{0.95}$$

분할 후 Entropy:

$$0.5 \times (-\frac{7}{8}\log_2(\frac{7}{8}) - \frac{1}{8}\log_2(\frac{1}{8})) + 0.5 \times (-\frac{3}{8}\log_2(\frac{3}{8}) - \frac{5}{8}\log_2(\frac{5}{8})) \approx \mathbf{0.75}$$

$$Entropy(X) = -\sum_{k=1}^{m} p_k \log_2(p_k)$$

트리를 분할한 후,

분할 전 Entropy: 엔트로피가 약 0.2정도 감소

$$-\frac{10}{16}\log_2(\frac{10}{16}) - \frac{6}{16}\log_2(\frac{6}{16}) \approx \mathbf{0.95}$$

분할 후 Entrope 불순도가 감소하는 방향으로 분류 진행

$$0.5 \times (-\frac{7}{8}\log_2(\frac{7}{8}) - \frac{1}{8}\log_2(\frac{1}{8})) + 0.5 \times (-\frac{3}{8}\log_2(\frac{3}{8}) - \frac{5}{8}\log_2(\frac{5}{8})) \approx \mathbf{0.75}$$

3) Tree-based Model에서 과적합 피하기

복잡도 (Complexity): 트리모델 > 선형회귀 모델

? Why

분류가 진행되며 관측치들이 나뉘는 과정

11

모델의 파라미터가 늘어나는 효과

Tree-based Models

3) Tree-based Model에서 과적합 피하기

복잡한 정도가 서로 다르다!

트리의 깊이를 의미하는 'max_depth' 파라미터에 다른 값을 준 경우

Tree-based Models

3) Tree-based Model에서 과적합 피하기

트리의 깊이를 의미하는 'max_depth' 파라미터에 다른 값을 준 경우

모델 간 분산이 크다

모델 간 분산이 큰 경우를 해결해주자

여러 개의 트리모델을 적합해 이들을 **종합적**으로 **평가**해보자!

Tree-based Models

3) Tree-based Model에서 과적합 피하기

모델 간 분산이 큰 경우를 해결해주자

Idea

여러 개의 트리모델을 적합해 이들을 **종합적**으로 **평가**해보자!

랜덤 포레스트 모델링 기법

관측치들이 매우 자세하게 분류 됨

관측치들이 매우 자세하게 분류 됨

Overfit할 가능성이 높음

Pruning

: 지나치게 자세히 분류된 가지들은 다시 적절히 합쳐 Overfit을 방지 & 새로운 Data에 탄력적으로 반응하는 모델로 만듦

2

Ensemble Model

앙상블 모델(Ensemble Model)

지금까진 단일한 트리 기반 모델에 관한 내용이었다!

앙상블 기법은 여러 모델을 독립적으로 학습시킨 후, 각 모델의 결과를 조합하여 최종 결과를 생성

앙상블 모델(Ensemble Model)

지금까진 단일한 트리 기반 모델에 관한 내용이었다!

여러 개의 약한 학습기를 결합하여 더 좋은 성능을 내는 강한 학습기를 만든다

앙상블 모델(Ensemble Model)

앙상블 기법은 아래와 같은 갈래로 분류

앙상블 모델(Ensemble Model)

앙상블 기법에서 가장 먼저 이루어져야 할 작업은 어떤 회귀/분류기를 사용할지 선택하는 것이다.

앙상블 모델(Ensemble Model)

앙상블 기법에서 가장 먼저 이루어져야 할 작업은 어떤 회귀/분류기를 사용할지 선택하는 것이다.

Homogeneous Ensemble

: 한종류의 model을 여러개결합(주로사용됨)

Heterogeneous Ensemble

: 동일한데이터셋에서로다른종류의 model을 결합

앙상블 모델(Ensemble Model)

앙상블을 위한 estimator를 선정할 때 주의해야 할 점

앙상블 모델(Ensemble Model)

앙상블을 위한 estimator를 선정할 때 주의해야 할 점

모델의 분산을 크게 줄여 더욱 강건한 모델을 설계해 성능 개선

앙상블 모델(Ensemble Model)

앙상블을 위한 estimator를 선정할 때 주의해야 할 점

모델의 편향을 크게 줄여 더욱 강건한 모델을 설계해 성능 개선

배깅(Bagging)

배깅(Bagging)은 Bootstrap+Aggregating의 의미

부<u>트스트랩 방법을 통해</u> 샘플링한 표본들을 바탕으로 모델링을 실시하는 기법

배깅(Bagging)

배깅(Bagging)은 Bootstrap+Aggregating의 의미

부<u>트스트</u>랩 방법을 통해 샘플링한 표본들을 바탕으로 모델링을 실시하는 기법

부트스트랩 방법이란?

배깅(Bagging)

Bootstrap Sampling은 복원 추출이 가능한 랜덤 샘플링

배깅(Bagging)

Bootstrap sampling을 하는 이유?

샘플 데이터셋을 각각 다르게 해 모델에 적합 시켰을 때 발생할 수 있는 모델 variance를 최소화

배깅(Bagging)

Bootstrap sampling을 하는 이유?

샘플 데이터셋이 각각 다르게 해 모델에 적합 시켰을 때 발생할 수 있는 모델 variance를 최소화

배깅(Bagging)

배깅을 통해 의사결정나무를 적합한 경우 더 작은 variance를 가짐

배깅(Bagging)

배깅을 통해 의사결정나무를 적합한 경우 더 작은 variance를 가짐

모집단에서 **여러 개의 표본을 추출**할 경우 표본평균의 분산인 $\frac{\sigma^2}{N}$ 의 값은 줄어들기 때문

배깅(Bagging)

배깅을 통해 의사결정나무를 적합한 경우 더 작은 variance를 가짐

모집단에서 여러 개의 표본을 추출할 경우 표본평균의 분산인 $\frac{\sigma^2}{N}$ 의 값은 줄어들기 때문

배깅(Bagging)

배깅을 통해 의사결정나무를 적합한 경우 더 작은 variance를 가짐

랜덤 포레스트(Random Forest)

랜덤 포레스트는 매 모델링마다 사용할 독립변수를 임의로 선택

랜덤 포레스트(Random Forest)

랜덤 포레스트는 매 모델링마다 사용할 독립변수를 임의로 선택

부트스트랩 샘플에 대한 배깅 실시

트리 적합 과정에서 일부 X변수만을 사용

랜덤 포레스트(Random Forest)

랜덤 포레스트는 매 모델링마다 사용할 독립변수를 임의로 선택

부트스트랩 샘플에 대한 배깅 실시

트리 적합 과정에서 일부 X변수만을 사용

변수의 종류가 다양해지면서 Decorrelation 달성

랜덤 포레스트(Random Forest)

랜덤 포레스트(Random Forest)

각각의 트리보다 이들을 함께 적합한 <mark>랜덤포레스트</mark> 모형이 더 Robust 하다.

Ensemble Methods

병렬적, 독립적인 학습

가중치를 활용한 순차적 학습

Ensemble Methods

Boosting

Bagging에 비해 좋은 성능

느린 속도 오버피팅이 될 가능성

Boosting

1) LGBM

Light Gradient Boosting Machine

- 경사하강법을 이용한 최적화 문제

손실함수가 **가장 낮은 지점**에 다다르는 것이 목표

* 손실함수? 예측값과 실제 값의 차이(잔차)를 표현한 함수

1) LGBM

Light Gradient Boosting Machine

- 경사하강법을 이용한 최적화 문제

Learning rate

- 너무 작게 설정 :
 지역 최솟값(local minimum)
 에 빠짐
- 너무 크게 설정 : 수렴하지 못할 위험이 존재

1) LGBM

Light Gradient Boosting Machine

- 경사하강법을 이용한 최적화 문제

Height (m)	Favorite Color	Gender	Weight (kg)
1.6	Blue	Male	88
1.6	Green	Female	76
1.5	Blue	Female	56
1.8	Red	Male	73
1.5	Green	Male	77
1.4	Blue	Female	57

1) LGBM

Light Gradient Boosting Machine

- 경사하강법을 이용한 최적화 문제

[키, 좋아하는 색, 성별을 통해 두고 몸무게를 예측]

Height (m)	Favorite Color	Gender	Weight (kg)
1.6	Blue	Male	88
1.6	Green	Female	76
1.5	Blue	Female	56
1.8	Red	Male	73
1.5	Green	Male	77
1.4	Blue	Female	57

평균

1) LGBM

Light Gradient Boosting Machine

- 경사하강법을 이용한 최적화 문제

Height (m)	Favorite Color	Gender	Weight (kg)	(pseudo) Residual
1.6		Male	88	16.8
(pseudo) F	Residual = 종속	변수 평균값	76	4.8
1.5			56	-15.2
모델이 석압	됨에 따라 먼와아	는 residual을 예	숙아는 과성	1.8
1.5		Male	77	5.8
1.4			57	-14.2

^{*} Residual 값은 각 단계 마다 새롭게 계산된다!

1) LGBM

Light Gradient Boosting Machine

- 경사하강법을 이용한 최적화 문제

1) LGBM

Light Gradient Boosting Machine

- 경사하강법을 이용한 최적화 문제

1) LGBM

Light Gradient Boosting Machine

- 경사하강법을 이용한 최적화 문제

[키, 좋아하는 색, 성별을 통해 두고 몸무게를 예측]

Height (m)	Favorite Color	Gender	Weight (kg)	\	71.2+16.8
1.6	Blue	Male	88		= 88

Gender = F

Average Weight

71.2

+

Height < 1.6

Color not Blue

-14.7

4.8

3.8

16.8

1) LGBM

Light Gradient Boosting Machine

- 경사하강법을 이용한 최적화 문제

[키, 좋아하는 색, 성별을 통해 두고 몸무게를 예측]

Height (m)	Favorite Color	Gender	Weight (kg)	71.2+16.8
1.6	Blue	Male	88	= 88

Gender = F

Average Weight

71.2

Height < 1.6

Color not Blue

-14.7

4.8

3.8

16.8

Overfitting

1) LGBM

Light Gradient Boosting Machine

- 경사하강법을 이용한 최적화 문제

1) LGBM

Light Gradient Boosting Machine - 경사하강법을 이용한 최적화 문제

Gender = F

Average Weight

71.2

٠

0.1

Height < 1.6

Color not Blue

V

4.8

3.8

16.8

Residual
16.8
4.8
-15.2
1.8
5.8
-14.2

Residual
15.1
4.3
-13.7
1.4
5.4
-12.7

1) LGBM

1) LGBM

1) LGBM

Light Gradient Boosting Machine

GOSS (Gradient Based One Side Sampling) : 큰 error를 보이는 관측치들의 error를 줄이는데 집중

1) LGBM

Light Gradient Boosting Machine

GOSS (Gradient Based One Side Sampling) : 큰 error를 보이는 관측치들의 error를 줄이는데 집중

1) LGBM

Light Gradient Boosting Machine

GOSS (Gradient Based One Side Sampling) : 큰 error를 보이는 관측치들의 error를 줄이는데 집중

2) XGBoost

a.k.a. GBM Killer

회귀, 분류 문제 모두 수행 가능

2) XGBoost

a.k.a. GBM Killer

THANK YOU