

Thiết kế (6)

Nguyễn Thanh Bình Khoa Công nghệ Thông tin Trường Đại học Bách khoa Đại học Đà Nẵng

• • •

Thiết kế?

- o phân tích bài toán/vấn đề
 - xuất phát từ yêu cầu
- o mô tả một hoặc nhiều giải pháp
 - đánh giá các giải pháp, chọn giải pháp tốt nhất
- o ở một mức trừu tượng nhất định
 - sử dụng các mô hình
- 3 tính chất
 - trả lời câu hỏi "như thế nào"
 - mô tả chủ yếu là cấu trúc
 - bỏ qua các chi tiết cài đặt
 - giải pháp trừu tượng ≠ giải pháp cụ thể

Các giai đoạn thiết kế

- Hoạt động thiết kế xuất hiện trong các mô hình phát triển khác nhau
- o Hai giai đoạn thiết kế chính
 - Thiết kế kiến trúc
 - phân tích giải pháp thành các thành phần
 - định nghĩa giao diện giữa các thành phần
 - định nghĩa phần vấn đề được giải quyết bởi mỗi thành phần
 - có thể được thực hiện bởi nhiều mức trừu tượng
 - Thiết kế chi tiết
 - thiết kế thuật toán, cấu trúc dữ liệu...

3

• • Các giai đoạn thiết kế

Các giai đoạn thiết kế

- o Architectural design
 - xác định các hệ thống con
- Abstract specification
 - đặc tả các hệ thống con
- Interface design
 - mô tả giao diện các hệ thống con
- Component design
 - phân tích hệ thống con thành các thành phần
- o Data structure design
 - các cấu trúc dữ liệu lưu trữ dữ liệu của bài toán
- Algorithm design
 - thiết kế thuật toán cho các hàm/mô-đun

5

• • •

Tại sao phải thiết kế?

- o có một kiến trúc tốt
 - làm chủ được cấu trúc hệ thống
 - "chia để tri"
- o đạt được các tiêu chuẩn chất lượng
 - tái sử dụng / dễ keiem thử / dễ bảo trì...
- thiết kế hướng đến sự thay đổi (design for change)

Thiết kế và sự thay đổi

- Thay đổi = tích chất đặc trưng của phần mềm
- Dự báo thay đổi là cần thiết
 - giảm chi phí bảo trì
- Dự báo thay đổi là khó khăn
 - sự thay đổi thường không được xác định trước
 - nhiều yếu tố thay đổi cùng lúc
 - thời điểm thay đổi là khó có thể biết trước

7

■ Thiết kế và sự thay đổi

- o Các yếu tố có thế thay đổi
 - thuật toán
 - cấu trúc dữ liệu
 - biểu diễn dữ liệu bên ngoài
 - thiết bị ngoại vi
 - môi trường xã hội
 - yêu cầu khách hàng

Thiết kế hướng mô-đun

- Phần mềm là tập hợp gồm các mô-đun tương tác với nhau
- Mô-đun hóa đóng vai trò quan trọng để có được phần mềm chất lượng với chi phí thấp
- o Mục đích thiết kế hệ thống
 - xác đinh các mô-đun có thể
 - xác định tương tác giữa các mô-đun

9

Các tiêu chuẩn của một phương pháp thiết kế

- Các tiêu chuẩn để đánh giá một phương pháp thiết kế hướng mô-đun
 - tính phân rã (modular decomposability)
 - tính tổng hợp (modular composability)
 - tính dễ hiểu (modular understandability)
 - tính liên tục (modular continuity)
 - tính bảo vệ (modular protection)

Các tiêu chuẩn của một phương pháp thiết kế

- o tính phân rã (modular decomposability)
 - phân rã vấn đề thành các vấn đề con nhỏ hơn
 - có thể giải quyết các vấn đề con một cách độc lập
 - các phương pháp thiết kế từ trên xuống (todown design) thỏa mãn tiêu chuẩn này

11

Các tiêu chuẩn của một phương pháp thiết kế

- o tính tổng hợp (modular composability)
 - các mô-đun dễ dàng được kết hợp với nhau để tạo nên các hệ thống mới
 - có mối quan hệ chặt chẽ với tính tái sử dụng
 - tính tổng hợp có thể xung đột với tính phân rã
 - phân rã thành các mô-đun chuyên biệt thay vì các mô-đun tổng quát

Các tiêu chuẩn của một phương pháp thiết kế

- o tính dễ hiểu (modular understandability)
 - thiết kế các mô-đun môt cách dễ hiểu
 - tính chất mỗi mô-đun
 - mỗi mô-đun có dễ hiểu ?
 - các tên sử dụng có ý nghĩa ?
 - cso sử dụng thuật toán phức tạp ?
 - Ví du
 - 🖰 sử dụng "goto"
 - chương trình vài nghìn dòng lệnh, nhưng không sử dụng hàm/thủ tục

13

Các tiêu chuẩn của một phương pháp thiết kế

- o tính liên tục (modular continuity)
 - một sự thay đổi trong đặc tả yêu cầu chỉ dẫn đến sự thay đổi trong một (hoặc một số ít) mô-đun
 - Ví du
 - không sử dụng số hoặc chuỗi ký tự trong chương trình, chỉ được sử dụng các hằng đã định nghĩa
 - 8 sử dụng mảng

Các tiêu chuẩn của một phương pháp thiết kế

- o tính bảo vệ (modular protection)
 - kiến trúc được thiết kế sao cho nếu một điều kiện bất thường xảy ra, chỉ một (hoặc một số ít) mô-đun bị ảnh hưởng

15

• • •

Thiết kế kiến trúc

- Kiến trúc = tập hợp các thành phần/mô-đun và quan hệ giữa chúng
 - các thành phần/mô-đun
 - hàm / nhóm các hàm / lớp ...
 - quan hệ
 - sử dụng / gọi / thừa kế ...

Chất lượng của kiến trúc

- mỗi mô-đun có tính kết cố cao (high cohesion)
 - một mô-đun là một đơn vị lô-gíc
 - toàn bộ mô-đun cùng đóng góp thực hiện một mục tiêu
- liên kết lỏng lẽo (low coupling) giữa các môđun
 - ít ràng buộc, phụ thuộc lẫn nhau
- o dễ hiểu
- o định nghĩa rỏ ràng
 - các mô-đun và quan hệ giữa chúng

17

• • •

Các loại kiến trúc

- Ba loại mô hình kiến trúc thường được sử dụng
 - chia sẽ dữ liệu: mô hình "Repository"
 - chia sẽ dịch vụ, servers: mô hình "Client-Server"
 - mô hình lớp (layered model)

Mô hình "Repository"

- Nguyên tắc
 - dữ liệu chia sẽ được tập trung trong một CSDL
 - các hệ thống con đều truy cập vào CSDL chung
- Khi một lượng dữ liệu lớn cần chia sẽ giữa các hệ thống con
 - mô hình "Repository" thường được sử dụng

19

• • •

Mô hình "Repository"

o Ví dụ kiến trúc một công cụ CASE

Mô hình "Repository"

- o Ưu diểm
 - đơn giản
 - hiệu quả khi chia sẽ lượng dữ liệu lớn
 - sự độc lập của các hệ thống con
- o Han chế
 - các hệ thống con phải thống nhất trên mô hình dữ liệu "repository"
 - khó khăn khi phân tán dữ liệu

21

• • •

Mô hình "Client-Server"

- Nguyên tắc
 - mô hình phân tán: dữ liệu và xử lý được phân tán trên nhiều thành phần khác nhau
- Hệ thống bao gồm
 - các servers cung cấp các dịch vụ
 - có thể có nhiều servers
 - các clients yêu cầu các dịch vụ
 - phương thức trao đổi
 - mạng hay trên một máy tính

• • • Mô hình "Client-Server"

• • • Mô hình "Client-Server"

- o Ưu điểm
 - sử dụng hiệu quả mạng
 - dễ dàng thêm server mới hoặc nâng cấp server hiện tai
 - phân tán dữ liệu dễ dàng
- Han chế
 - mỗi hệ thống con quan lý dữ liệu riêng của nó
 - có thể dẫn đến dư thừa
 - không có kiến trúc tập trung ghi nhận các dịch vụ
 - khó khăn để xác định dữ liệu hay dịch vụ sử dụng

Mô hình lớp

- Nguyên tắc
 - tổ chức hệ thống thành tập hợp các lớp
 - mỗi lớp cung cấp tập hợp các dịch vụ
- được sử dụng để mô tả quan hệ giữa các hệ thống con
- khi giao diện của một lớp thay đổi, chỉ lớp kế cận bị ảnh hưởng
- o hỗ trợ mô hình phát triển tăng trưởng

25

• • Mô hình lớp

Ví dụ: hệ thống quản lý phiên bản

Configuration management system layer

Object management system layer

Database system layer

Operating system layer