幾何学 I 5. 接ベクトル束

M を n 次元可微分多様体とする . $TM = \cup_{x \in M} T_x M$ (共通部分を持たない和集合)とおいて , TM に以下のように可微分多様体の構造を入れる .

まず , $\pi:TM\to M$ を自然な射影とする.また , (U,φ) を M の局所座標系とする.U の点 p をとる.接空間 T_pM の要素

$$v = \sum_{i=1}^{n} \alpha_i \left(\frac{\partial}{\partial x_i} \right)_p$$

に対して, $\widetilde{\varphi}(v)=(p,(\alpha_1,\cdots,\alpha_n))$ とおいて,写像

$$\widetilde{\varphi}: \pi^{-1}(U) \to U \times \mathbf{R}^n$$

を定義する.別の局所座標 $(V, \psi), p \in V$ について,

$$v = \sum_{i=1}^{n} \beta_i \left(\frac{\partial}{\partial y_i} \right)_p$$

と表すと,座標変換 $\,\widetilde{\psi}\circ\widetilde{\varphi}^{-1}(p,(\alpha_1,\cdots,\alpha_n))=(p,(\beta_1,\cdots,\beta_n))$ は

$$\beta_i = \sum_{j=1}^n \alpha_j \left(\frac{\partial y_i}{\partial x_j} \right) (p)$$

で与えられる. TM の部分集合 O が開集合であるとは , 局所座標系 (U,φ) に対して , $\widetilde{\varphi}(O\cap\pi^{-1}(U))$ が $U\times\mathbf{R}^n$ の開集合であることと定義する . このようにして , TM は位相空間となり , 上の $(\pi^{-1}(U),\widetilde{\varphi})$ を局所座標系とする 2n 次元可微分多様体の構造をもつ . TM を M の接べクトル束 $(\mathrm{tangent})$ vector bundle) とよぶ .

M,N を可微分多様体, $f:M\to N$ を C^∞ 写像とする. C^∞ 写像 $df:TM\to TN$ が, $df(v)=(df)_p(v),v\in T_pM$ として定義される.このように,多様体の間の写像の大域的な微分は,接ベクトル束の間の写像として定式化される.

可微分多様体 M が向き付け可能であるとは , 局所座標系で $U_{\alpha}\cap U_{\beta}\neq\emptyset$ のとき , 座標変換 $\varphi_{\beta}\circ\varphi_{\alpha}^{-1}$ のヤコビ行列式が常に正となるものがとれることをいう . これは , 接ベクトル束において , $T_{p}M$ の向きを p について連続的に与えられることを意味する .