

# <u>REDES DE INFORMACIÓN</u>



# SEGURIDAD EN REDES DE DATOS

Ingeniero ALEJANDRO ECHAZÚ

# <u>ALGUNOS MÉTODOS</u>

CLAVES DE ACCESO: AL SISTEMA O LOS **RECURSOS** 

**ENCRIPTADO DE DATOS** 

SEGURIDAD FÍSICA DE DISPOSITIVOS

FIRMA DIGITAL

FIREWALL

CAPACITACIÓN DE USUARIOS Y **ADMINISTRADORES** 

PROTOCOLOS DE SEGURIDAD (IPSEC POR **EJEMPLO**)

RED PRIVADA VIRTUAL (VPN)

# **CONCEPTOS GENERALES**

CONFIDENCIALIDAD O PRIVACIDAD

**AUTENTICIDAD** 

INTEGRIDAD DE LOS DATOS

**ATAQUES INFORMÁTICOS** 



**INTERCEPTACIÓN** 

**FABRICACIÓN** 

**MODIFICACIÓN** 

DESTRUCCIÓN

#### ANÁLISIS DE RIESGOS DE SEGURIDAD

Riesgos en base al comportamiento humano

Errores humanos o acciones accidentales

Fugas de información por exceso de confianza

Ataques de virus

Priorizar beneficios sobre los riesgos





http://www.tendencias21.net/Fujitsu-identifica-a-usuarios-vulnerables-a-ataques-ciberneticos-por-su-comportamiento\_a39484.html

#### SEGURIDAD POR NIVELES

(libro de Alejandro Corletti)

CONSIDERA PROCEDIMIENTOS PARAAUDITAR REDES BASADAS EN 802.3 Y TCP/IP.



#### **FIREWALL**

ES UN SISTEMA QUE CREA UNA BARRERA SEGURA ENTRE DOS REDES. SE COMPONE DE HARDWARE Y SOFTWARE.



#### SEGURIDAD POR NIVELES



## **BENEFICIOS DE UN FIREWALL**

- •CONCENTRA SEGURIDAD EN UN ÚNICO PUNTO.
- •CONTROLAACCESO.
- •REGULA EL USO DE LA RED EXTERIOR.
- •REGISTRA EL EMPLEO DE LA RED INTERNA Y LA EXTERNA.
- •PROTEGE DE ATAQUES EXTERNOS.
- •LIMITA EL TRÁFICO DE SERVICIOS VULNERABLES.
- •MEJORA LA PRIVACIDAD DEL SISTEMA. POR EJEMPLO OCULTAR DIRECCIONES IPINTERNAS O BLOQUEAR SERVICIOS.

#### **DECISIONES AL IMPLEMENTAR UN FIREWALL**

1RO POLÍTICA DE SEGURIDAD DE LA ORGANIZACIÓN.

- •NEGACIÓN DE TODOS LOS SERVICIOS, EXCEPTO ALGUNOS AUTORIZADOS.
- •PERMITIR LIBRE USO DE TODO, EXCEPTO LO EXPRESAMENTE PROHIBIDO.
- •MEDIR YAUDITAR EL USO DE LA RED.

#### 2DO NIVEL DE SEGURIDAD DESEADO.

- •ANÁLISIS DE NECESIDADES CON NIVELES DE RIESGO ACEPTABLES.
- •NIVEL DE SEGURIDAD QUE SATISFACE. SOLUCIÓN DE COMPROMISO.

#### 3RO EVALUACIÓN DE COSTOS.

•MEJOR RELACIÓN COSTO – BENEFICIO.

# **FIRMA DIGITAL**

ES LA TÉCNICA DE SEGURIDAD INFORMÁTICA APLICADA SOBRE LA INFORMACIÓN DIGITAL QUE SE INTERCAMBIA EN UNA RED, BASADA EN:

CRIPTOSISTEMA ASIMÉTRICO

CLAVE PÚBLICA

**CLAVE PRIVADA** 

- FUNCIÓN MATEMÁTICA (HASH). Salida long fija (DIGEST)
- **AUTORIDAD CERTIFICANTE**

PROVEE AUTENTICIDAD, INTEGRIDAD Y NO REPUDIO.

PUEDE ADICIONARSE EL ENCRIPTADO COMPLETO DE UN MENSAJE CON LO QUE SE PROVEE CONFIDENCIALIDAD (PRIVACIDAD)

# **FIREWALL**

ES UN COMPONENTE DE LA SEGURIDAD DE UNA RED. HAY QUE COMPLEMENTARLO CON OTRAS ACCIONES.

#### **NIVEL DE RED**

DIRECCIONES IPY NÚMEROS DE PUERTO.

**EJEMPLO = ROUTER.** 

TIPOS DE

FIREWALL

NIVEL DE APLICACIÓN

NO PERMITEN TRÁFICO DIRECTO ENTRE LAS REDES.

**EJEMPLO = SERVIDOR PROXY.** 

# **FUNCIÓN HASH**



Firma Digital | Argentina.gob.ar

# AUTORIDAD CERTIFICANTE REGISTRA LAS CLAYES PÚBLICAS Y LAS DISTRIBUYE EN FORMA SEGURA RED DE TELECOMUNICACIONES USUARIO A USUARIO B REGISTRA LAS CLAYES PÚBLICAS Y LAS DISTRIBUYE EN FORMA SEGURA USUARIO B RED DE TELECOMUNICACIONES



# IP SECURITY IP SEC

ES UN CONJUNTO DE PROTOCOLOS DE SEGURIDAD QUE PERMITEN AGREGAR ENCRIPTADO Y AUTENTICACIÓN A LA COMUNICACIÓN.

ES DE CAPA 3 RESULTANDO TOTALMENTE TRANSPARENTE PARA LAS APLICACIONES.

USO FRECUENTE EN VPN.

MODOS DE APLICACIÓN:

**TRANSPORTE** 

TÚNEL



# SEGURIDAD EN REDES INALÁMBRICAS

- WPS (WiFi Protected Setup) son mecanismos para facilitar la conexión de dispositivos a una red inalámbrica. El más usado es el intercambio de PIN.
- WEP (Wired Equivalent Privacy) ofrece seguridad similar a la red cableada mediante una encriptación.
- WPA (Wi-Fi Protected Access) agrega seguridad mediante el uso de claves dinámicas proporcionadas a cada usuario.
- **WPA2** usa algoritmo de encriptación AES (Advanced Encryption Standard).
- WPA2 PSK (Pre-Shared Key) es para uso doméstico o de oficinas pequeñas donde se comparte la clave.
- WPA2 TKIP usa un protocolo de integridad de clave temporal que cambia dinámicamente las claves de un sistema a medida que se utiliza.
- Otros recursos de seguridad:
  - nombre de la red (SSID)
  - filtrado de direcciones MAC

#### WEP vs WPA vs WPA2

|                     | <u>WEP</u>                        | <u>WPA</u>                             | WPA2                                   |
|---------------------|-----------------------------------|----------------------------------------|----------------------------------------|
| ENCRYPTION          | RC4                               | RC4                                    | AES                                    |
| KEY ROTATION        | NONE                              | Dynamic<br>Session Keys                | Dynamic Session<br>Keys                |
| KEY<br>DISTRIBUTION | Manually typed into each device   | Automatic<br>distribution<br>available | Automatic<br>distribution<br>available |
| AUTHENTICATION      | Uses WEP key as<br>Authentication | Can use 802.1x<br>& EAP                | Can use 802.1x &<br>EAP                |

# SEGURIDAD EN REDES INALÁMBRICAS

