Computer Organization and Design

Course objectives:

To provide the organization, architecture and designing concept of computer system including processor architecture, computer arithmetic, memory system, I/O organization and multiprocessors.

1.Introduction (3 hours)

- a. Computer organization and architecture
- b.Structure and function
- c.Designing for performance
- d.Computer components
- e.Computer Function
- f.Interconnection structures
- g.Bus interconnection
- h.PCI

•

- 2. Central processing Unit (10 hours)
 - a.CPU Structure and Function
 - b. Arithmetic and logic Unit
 - c.Instruction formats
 - d. Addressing modes
 - e.Data transfer and manipulation
 - f.RISC and CISC
 - g.64-Bit Processor

•

- 3. Control Unit (6 hours)
 - a.Control Memory
 - b. Addressing sequencing
 - c.Computer configuration
 - d.Microinstruction Format
 - e.Symbolic Microinstructions
 - f.Symbolic Micro program
 - g.Control Unit Operation
 - h.Design of control unit

,

- 4. Pipeline and Vector processing (5 hours)
 - a.Pipelining
 - b. Parallel processing
 - c. Arithmetic Pipeline
 - d.Instruction Pipeline
 - e.RISC pipeline
 - f. Vector processing
 - g. Array processing

_

- 5. Computer Arithmetic (8 hours)
 - a. Addition algorithm
 - b. Subtraction algorithm
 - c.Multiplication algorithm
 - d. Division algorithms
 - e.Logical operation

- 6. Memory system (5 hours)
 - a.Microcomputer Memory
 - b.Characteristics of memory systems
 - c.The Memory Hierarchy
 - d.Internal and External memory
 - e.Cache memory principles
 - f.Elements of Cache design
 - i.Cache size
 - ii. Mapping function
 - iii.Replacement algorithm
 - iv. Write policy
 - v. Number of caches
- 7. Input-Output organization (6 hours)
 - a. Peripheral devices
 - b.I/O modules
 - c.Input-output interface
 - d.Modes of transfer
 - i.Programmed I/O
 - ii.Interrupt-driven I/O
 - iii. Direct Memory access
 - e.I/O processor
 - f.Data Communication processor
- 8. Multiprocessors (2 hours)
 - a.Characteristics of multiprocessors
 - b.Interconnection Structures
 - c.Interprocessor Communication and synchronization

Practical:

- 1. Add of two unsigned Integer binary number
- 2. Multiplication of two unsigned Integer Binary numbers by Partial-Product Method
- 3. Subtraction of two unsigned integer binary number
- 4. Division using Restoring
- 5. Division using non-restoring methods
- 6.To simulate a direct mapping cache

References:

- 1.M. Morris Mano: Computer System Architecture, Latest Edition
- 2. William Stalling: Computer organization and architecture, Latest Edition
- 3. John P. Hayes: Computer Architecture and Organization, Latest Edition
- 4. V.P. Heuring, H.F. Jordan: Computer System design and architecture, Latest Edition
- 5.S. Shakya: Lab Manual on Computer Architecture and design

Evaluation Scheme:

The question will cover all the chapters of the syllabus. The evaluation scheme will be as indicated in the table below:

Chapters	Hours	Marks Distribution*
1	3	6
2	10	18
3	6	10
4	5	10
5	8	14
6	5	8
7	6	10
8	2	4
Total	45	80

^{*}Note: There may be minor deviation in marks distribution.