

激光测距模组(NV7)

数据手册

注意:

除非特别说明,本文档中提供的技术参数都是典型值。

本文档中的技术文件、尺寸的典型属性可以作为结构设计基础,但在结构定型前,请联系大津瞭望光电科技有限公司提供设计协助和建议。

文档中提供的内容和 LRF 模块规格如有变更恕不另行通知。插图,描述和技术数据是不 具约束力的,可能会随着产品升级而改动。此数据表的所有其他以前的版本都是无效的。

未经天津瞭望光电科技有限公司事先书面许可,本文件不得部分或全部复制,包含但不限于摄影,纸质,电子或任何其他手段(包括转换到任何机器可读的形式)的信息,均不得提供给未经过何许可的第三方使用。

目录

_	产品概述	4
	·····································	
	机械尺寸	
四、	接口定义	7
	使用方式	

一 产品概述

本产品可以快速、准确地实现为主系统提供距离测量的功能。

本产品采用了 905nm 激光半导体激光器,是为便携类设备专门设计的一款集成度高,微功耗,重量低的标准化产品。产品具有一个串行通信接口,提供指令集和调试软件进行相关调试和操作,当用户的主系统需要其他通信协议的技术支持,可以和天津瞭望光电科技有限公司联系获取。

本产品的是以 GJB1324-1991 和 GJB 2241A-2008 为参考标准进行检定和测试, 所有设计严格遵循 IEC 60825 和 ANSI Z136.1 (2007)标准, 使用时装配调试人员需要遵守光学装配质量标准。

本产品必须稳定的固定,根据能见度和测量目标属性,本产品可以支持最大 1200 米量程。

全金属化骨架设计确保了机械结构的标准化。

二、特征指标

三、

激光波长:	900-908 nm人眼安全
激光器类型:	LD
距离测距范围(起测-最大量程):	3-1200 m
距离测量分辨率:	0. 1 m
距离测量精度:	1 m
镜筒材料:	铝制
供电电压:	3. 3 V±500 mV
静态功耗:	120nw
运行功耗:	181. 5n ₩@ 00m
控制方式:	指令集(标配)/定制
光学口径:	16 mm
	-10C°~+50C°精度+/-1m
工作温度:	-20C°~-10C°精度+/-2m
	-30C°~-20C°精度+/-5m
激光光束发散角:	4 mrad
重量:	42g
通信类型	TTL 串口
接插件型号	GD125-04
线缆长度:	100 mm (标配) /定制

备注①:

典型值测量条件:被测目标尺寸 1.5mx1.5m; 被测目标反射率不大于 0.3

(905nm 激光); 户外能见度大于5公里。

备注②:除非特别注明,货物的典型值是指标准配置。

三、机械尺寸

1 产品外部尺寸(单位 mm)

四、接口定义

接口类型为GD125-04,接口电平为TTL,线缆颜色符合如下定义:

序号	颜色	性能	备注
1	红色	电源正极	
2	黑色	电源负极	
3	黄色	内部发送数据 TX	
4	绿色	内部接收数据 RX	

激光测距仪通信是以数据包进行命令传输的,具体格式如下:

1 数据包格式: (8 位数据位, 1 位停止位, 无校验, 默认速率 9600)

(字节内容均以十六进制表示,下同)

包头1	包头 2	数据长度	地址码	命令字	数据域	校验和	包尾1	包尾 2
(1byte)	(1byte)	(1byte)	(1byte)	(1byte)		(1byte)	(1byte)	(1byte)
AE	A7						ВС	BE

包头1: 固定为AE

包头2: 固定为A7

数据长度: 从数据长度到校验和 (包括校验和) 的长度

地址码: 采集模块的地址, 出厂时为 00

数据域:根据命令字不同内容和长度相应变化。

校验和:数据长度、地址码、命令字和数据域的和(不考虑进位)。注意:当命令字或者数据域变化时,

检校和会变化。当您改变数据域时请相应改变检校和。

包尾1: 固定为BC

包头2: 固定为BE

2 命令格式

2.1 读设备版本号

发送命令: AE A7 04 00 01 05 BC BE

包头1	包头 2	数据长度	地址码	命令字	数据域	校验和	包尾1	包尾 2	
(1byte)	(1byte)	(1byte)	(1byte)	(1byte)	(0byte)	(1byte)	(1byte)	(1byte)	

. –		0.4	0.0	0.4	0.5	5.0	5-
AL	A7	04	00	01	05	BC	BE

应答命令:

包头1	包头 2	数据长度	地址码	命令字	数据域	校验和	包尾1	包尾 2
(1byte)	(1byte)	(1byte)	(1byte)	(1byte)	(长度-4)	(1byte)	(1byte)	(1byte)
					byte			
AE	A7		00	81	VERSION*		ВС	BE

*VERSION 为设备的版本号,以 ASCII 码格式传输,查询时需转换为字符串。

2.2 读设备唯一 ID

发送命令: AE A7 04 00 03 07 BC BE

包头1	包头 2	数据长度	地址码	命令字	数据域	校验和	包尾1	包尾 2
(1byte)	(1byte)	(1byte)	(1byte)	(1byte)	(0byte)	(1byte)	(1byte)	(1byte)
AE	A7	04	00	03		07	ВС	BE

包头1	包头 2	数据长度	地址码	命令字	数据域	校验和	包尾1	包尾 2
(1byte)	(1byte)	(1byte)	(1byte)	(1byte)	(16byte)	(1byte)	(1byte)	(1byte)
AE	A7	14	00	83	UUID*		ВС	BE

应答命令:

*UUID 为共 16 字节,是设备的唯一 ID。

2.3 单一测距控制

发送命令: AE A7 04 00 05 09 BC BE

包头1	包头 2	数据长度	地址码	命令字	数据域	校验和	包尾1	包尾 2
(1byte)	(1byte)	(1byte)	(1byte)	(1byte)	(0byte)	(1byte)	(1byte)	(1byte)
AE	A7	04	00	05		09	ВС	BE

成功时应答命令:

包头1	包头 2	数据长度	地址码	命令字	数据域	校验和	包尾1	包尾 2
(1byte)	(1byte)	(1byte)	(1byte)	(1byte)	(19byte)	(1byte)	(1byte)	(1byte)
AE	A7	17	00	85	MMSG*		ВС	BE

* MMSG 为测量后的返回结果, 定义如下:

仰角	直线距	正弦高	水平距	两点高	方位角	水平夹	跨距	速度	距离单
(2byte)	离	(2byte)	离	(2byte)	(2byte)	角	(2byte)	(2byte)	位
	(2byte)		(2byte)			(2byte)			(1byte)

测量项的值占用两个字节,以高8位在前低8位在后的有符号short类型传输。角度单位:0.1度;速度单位:0.1KM/H;距离单位:当距离单位字节为01表示0.1M(米),02表示0.1Y(码),03表示0.1F(英尺)。注意:工业模块设备仅支持仰角,直线距离,正弦高,水平距离四个测量项,其他项正常测量时结果为0。

失败时应答命令: AE A7 04 00 05 09 BC BE

2.4 波特率设置

发送命令

包头1	包头 2	数据长度	地址码	命令字	数据域	校验和	包尾1	包尾 2
(1byte)								
AE	A7		00	0A	BAUD*		ВС	BE

^{*} BAUD 为设备的波特率: 00 表示 2400, 01 表示 4800, 02 表示 9600 (默认), 03 表示 19200, 04 表示 38400, 05 表示 57600, 06 表示 115200

应答命令

包头1	包头 2	数据长度	地址码	命令字	数据域	校验和	包尾1	包尾 2
(1byte)	(1byte)	(1byte)	(1byte)	(1byte)	(0byte)	(1byte)	(1byte)	(1byte)
AE	A7	04	00	8A		8E	ВС	BE

注意:<mark>接收到修改波特率应答说明设置命令已经设置</mark>,但模块的波特率不会立即更改,需要重新上电以后, 才会生效。

2.5 设备地址码设置

发送命令

包头1	包头 2	数据长度	地址码	命令字	数据域	校验和	包尾1	包尾 2
(1byte)								
AE	A7	05	00	ОВ	ADDR*		ВС	BE

应答命令

包头 1	包头 2	数据长度	地址码	命令字	数据域	校验和	包尾1	包尾 2
(1byte)	(1byte)	(1byte)	(1byte)	(1byte)	(0byte)	(1byte)	(1byte)	(1byte)
AE	A7	04	ADDR*	8B			ВС	BE

*ADDR为需要设置的地址码,设置范围**01~EF**。注:该产品有一个统一地址:**00**,如在操作过程中忘记所设过的地址,可以用**00**地址操作该产品,仍能正常回应。

五、使用方式

- 1. 正确安装测距模块
- 2. 根据接口定义接入需要测距的控制系统
- 3. 在产品的测距范围内,将模块的测距正对被测物体
- 4. 通过控制系统发送命令进行控制测距模块,测距模块返回结果(具体控制定义请详看命令格式定义)

六、调试和测试

产品附件的光盘中提供了测试软件天津瞭望光电科技有限公司.exe,作为用户的调试软件,将附带的电缆、USB-TTL 通信转换器正确连接后,按照以下步骤操作:

- 1 打开天津瞭望光电科技有限公司软件
- 2 设置正确的端口
- 3 设置正确的波特率
- 4 打开串口
- 5 单次测量时点击单次测量
- 6 连续测量时,设置测量间隔,点击连续测量

在发送记录框、接收记录框中可以看到实时发送的数据,在数据记录框中,看到已经被解析出来的哦距离记录。

注:当打开调试软件后没有找到端口,请检查 USB-TTL 通信转换器是否已经插入到计算

机中和 USB-TTL 通信转换器是否已经正确安装