Lecture 2: Functions

Table of contents

Last lecture

2 Basics of Functions

3 Inverse Functions and Composition of Functions

Sets

• The **difference** of A and B is

$$A - B = \{x : x \in A, x \notin B\}.$$

ullet The **complement** of A in U is

$$\bar{A} = \{x \in U : x \not\in A\}.$$

• De Morgan's law:

$$\overline{A \cup B} = \overline{A} \cap \overline{B}$$

$$\overline{A \cap B} = \overline{A} \cup \overline{B}$$

A - B is shaded.

 \overline{A} is shaded.

Power set

• $\mathcal{P}(S) = \text{all subsets of } S$. If |S| = n, then S has 2^n subsets

$$|\mathcal{P}(S)| = 2^n$$

- Exercise 1: Let $A = \{1\}$ and $B = \{2\}$ be two sets.
 - (a) Find $\mathcal{P}(A), \mathcal{P}(B), \mathcal{P}(A \times B)$.

(b) Do $\mathcal{P}(A) \times \mathcal{P}(B)$ and $\mathcal{P}(A \times B)$ have same size?

4 / 38

Inclusion-exclusion principle

$$|A_1 \cup \dots \cup A_n| = \sum_{k=1}^n (-1)^{k-1} \sum_{1 \le i_1 < \dots < i_k \le n} |A_{i_1} \cap \dots \cap A_{i_k}|$$

Inclusion-exclusion principle

$$|A_1 \cup \dots \cup A_n| = \sum_{k=1}^n (-1)^{k-1} \sum_{1 \le i_1 < \dots < i_k \le n} |A_{i_1} \cap \dots \cap A_{i_k}|$$

•
$$n=2$$

$$|A_1 \cup A_2| = |A_1| + |A_2| - |A_1 \cap A_2|$$

• n = 3

$$|A_1 \cup A_2 \cup A_3| = |A_1| + |A_2| + |A_3| - |A_1 \cap A_2| - -|A_1 \cap A_3| - |A_2 \cap A_3| + |A_1 \cap A_2 \cap A_3|.$$

5/38

Dr. Tai Do Fun

Functions

Functions (definition)

- ullet Let A and B be nonempty sets.
- $f:A \to B$ is a function if it assigns each element $a \in A$ to a **unique element** $b \in B$. Write f(a) = b.

Functions (definition)

- Let A and B be nonempty sets.
- $f:A \to B$ is a function if it assigns each element $a \in A$ to a unique element $b \in B$. Write f(a) = b.

- A is called the domain of f (or the input set).
 B is called the codomain of f (or the output set).
- If f(a) = b, we call b the image of a and call a preimage of b.

The following is an assignment of grades in a discrete mathematics class. This assignment corresponds to a function $f:S\to T$.

(a) Write out the domain S of f.

(b) Write out the codomain T of f.

(c) Write out the values of f(s) for all elements $s \in S$.

Let f be the function that assigns the last two bits of a bit string of length 3 to that string. For example, f(010)=10.

- (a) Write out the domain A of f.
- (b) Write out the codomain B of f.
- (c) Write out the values of f(a) for all elements $a \in A$.

Is $f:\{a,b,c\} \rightarrow \{1,2,3,4\}$ given by the following rule a function?

Let $f:A\to B$ be a function. Is it always true that for any $b\in B$, there exists a unique element $a\in A$ such that f(a)=b?

Answer: No. There can be 2 situations.

1 There can be $b \in B$ s.t. there is no $a \in A$ with f(a) = b.

② There can be $b \in B$ such that there are more than one element $a \in A$ with f(a) = b.

Summary on functions

A function $f:A\to B$ is a rule (or an assignment) that assigns each value $a\in A$ to a unique value $b\in B$, that is,

$$f(a) = b$$

- Given $a \in A$, there is a unique $b \in B$ such that f(a) = b.
- Given $b \in B$, there can be more than one $a \in A$ such that f(a) = b.

One-to-one, onto, bijective

• A function $f:A\to B$ is **one-to-one** (also write **1-1**), or **injective**, if for any $a,b\in A$

$$f(a) = f(b) \Leftrightarrow a = b$$

- f is **onto**, or **surjective**, if for any $b \in B$ there exists $a \in A$ such that f(a) = b.
- f is **bijective** (or a **bijection**) if it is both 1-1 and onto.

14 / 38

Dr. Tai Do

Which of the following functions is 1-1, onto, or bijective?

(a) f given by the rule

(b) $f : \{a, b, c, d\} \to \{1, 2, 3\}$ given by the rule

(c)
$$f:\{a,b,c,d\} \rightarrow \{1,2,3,4\}$$
 given by the rule

(d)
$$f: \mathbb{N} \to \mathbb{N}$$
 defined by $f(x) = x^2$.

(e)
$$f: \mathbb{R} \to \mathbb{R}$$
 defined by $f(x) = 2x + 5$.

Sums and products of functions

• $f:A\to B$ is called **real-valued** if its codomain is $B=\mathbb{R}$, and it is called **integer-valued** if its codomain is $B=\mathbb{Z}$.

Sums and products of functions

- $f:A \to B$ is called **real-valued** if its codomain is $B=\mathbb{R}$, and it is called **integer-valued** if its codomain is $B=\mathbb{Z}$.
- Let $f_1, f_2: A \to B$ be real-valued (or integer-valued) functions. Then $f_1 + f_2$ and $f_1 f_2$ are functions from A to B defined by

$$(f_1 + f_2)(x) = f_1(x) + f_2(x)$$

 $f_1 f_2(x) = f_1(x) f_2(x)$

Increasing and decreasing functions

Let $f: A \to B$ be a function

• f is called **increasing** if

$$f(x) \le f(y)$$
 whenver $x < y$

• f is called **strictly increasing** if

$$f(x) < f(y)$$
 whenver $x < y$

Dr. Tai Do

Increasing and decreasing functions

Let $f: A \to B$ be a function

 \bullet f is called **decreasing** if

$$f(x) \ge f(y)$$
 whenver $x < y$

• f is called **strictly decreasing** if

$$f(x) > f(y)$$
 whenver $x < y$

(a) Is $f: \mathbb{R} \to \mathbb{R}$ defined by f(x) = x increasing or decreasing?

(b) Is $f: \mathbb{R} \to \mathbb{R}$ defined by $f(x) = x^2$ increasing or decreasing?

Inverse Functions and Composition of Functions

Graphs of increasing and decreasing functions

Derivative test

Theorem 1

Assume that $f: A \to B$ is a differentiable function.

- (a) If $f'(x) \ge 0$ for all $x \in A$, then f is increasing. Further if $f'(x) \ge 0$ for all $x \in A$, f is strictly increasing.
- (b) If $f'(x) \leq 0$ for all $x \in A$, then f is decreasing. Further if f'(x) < 0 for all $x \in A$, f is strictly decreasing.

Dr. Tai Do

Functions

Determine whether following functions are increasing or decreasing. Support your claim by drawing graphs of these functions.

(a)
$$f:[0,\pi/2]\to [0,1]$$
 given by $f(x)=\sin x$.

(b)
$$f : [0, \pi/2] \to [0, 1]$$
 given by $f(x) = \cos x$.

Determine the intervals on which $f(x)=x^2$ is increasing and decreasing. Support your claim by drawing the graph of f(x).

• A function $f:A\to B$ is a rule which assigns each $\bullet\in A$ to $\bullet\in B$, that is, f(a)=b.

• Can this assignment be reverse, i.e. each element $b \in B$ is assigned to $a \in A$ if f(a) = b?

Question 1 answer

• The reverse assignment doesn't always work. Consider examples

Question 1 answer

• The reverse assignment doesn't always work. Consider examples

• For the reverse assignment to work, f needs to be both 1-1 and onto, that is, f is a bijection.

Inverse function - definition

- Let $f: A \to B$ be 1-1 and onto.
- The inverse function of f is $f^{-1}: B \to A$ that assigns $b \in B$ to $a \in A$ if f(a) = b:

$$f^{-1}(b) = a \Leftrightarrow f(a) = b.$$

Inverse function - definition

- Let $f: A \to B$ be 1-1 and onto.
- The inverse function of f is $f^{-1}: B \to A$ that assigns $b \in B$ to $a \in A$ if f(a) = b:

$$f^{-1}(b) = a \Leftrightarrow f(a) = b.$$

• We call f invertible if its inverse exists, that is,

$$f$$
 is both $1-1$ and onto.

Remarks

- f^{-1} and $\frac{1}{f}$ are different functions.
- 2 Difference in notation
 - When writing f, we usually use x to denote its input: f(x).
 - When writing f^{-1} , we usually use y to denote input: $f^{-1}(y)$.

Given $f:\{a,b,c\}\to\{1,2,5\}$ defined by f(a)=1,f(b)=2,f(c)=5. Find f^{-1} if it exists.

How to find f^{-1} ?

Assume that $f: A \to B$ is given by a formula.

To find $f^{-1}: B \to A$, we follow 3 steps

- 2 Solve for y (in terms of x) based on the equation

$$f(y) = x$$
.

Give conclusion.

In the following cases, determine whether f is invertible and find its inverse if it exists.

- (a) $f: \mathbb{Z} \to \mathbb{Z}$ defined by f(x) = x + 1.
 - ① Note that $f^{-1}: \mathbb{Z} \to \mathbb{Z}$. Let $x \in \mathbb{Z}$ and put $y = f^{-1}(x)$.
 - We have

$$f(y) = x \Rightarrow y + 1 = x \Rightarrow y = x - 1.$$

Conclusion

$$f^{-1}(x) = x - 1.$$

Dr. Tai Do

Functions

(b)
$$f: \mathbb{R} \to \mathbb{R}$$
 defined by $f(x) = x^2$.

(c)
$$f: \mathbb{R}^+ \to \mathbb{R}^+$$
 defined by $f(x) = x^2$.

(d) $f: \mathbb{R} \to \mathbb{R}^+$ defined by $f(x) = x^3$. Further, find the preimages of 1, 27, 64 using f^{-1} .

Composition of functions

- Let $g:A\to B$ and let $f:B\to C$ be functions.
- The **composition** of f and g, denoted by $f \circ g$, is the function $f \circ g : A \to C$ defined by

$$(f \circ g)(a) = f(g(a))$$

Composition of functions

- Let $q:A\to B$ and let $f:B\to C$ be functions.
- The **composition** of f and g, denoted by $f \circ g$, is the function $f \circ g : A \to C$ defined by

$$(f \circ g)(a) = f(g(a))$$

• Remark: $f \circ q \neq fq$

$$f \circ g(x) = f(g(x))$$
 and $fg(x) = f(x)g(x)$

Find $f \circ g$ and $g \circ f$ in following cases

(a)
$$f,g:\mathbb{Z}\to\mathbb{Z}$$
 defined by $f(x)=2x+1$ and $g(x)=3x+2$.

(b)
$$f:\mathbb{R}\to\mathbb{R}^+\cup\{0\}$$
 with $f(x)=x^2$, $g:\mathbb{R}^+\cup\{0\}\to\mathbb{R}$ with $g(x)=\sqrt{x}$.

Dr. Tai Do F

Find
$$f^{-1},g^{-1},g\circ f,(g\circ f)^{-1}$$
 for

$$f,g:\mathbb{R}\to\mathbb{R}$$
 defined by $f(x)=2x+1$ and $g(x)=3x+2$.

Exercise 2

Let $f:A\to B$ be both 1-1 and onto. Show that

$$f^{-1}\circ f(x)=x \text{ for any } x\in A \text{ and } f\circ f^{-1}(y)=y \text{ for any } y\in B.$$