5. Übungsblatt zu Software Qualität

Michel Meyer, Manuel Schwarz

23. November 2012

Aufgabe 5.1

(a)

Signatur

bResult = false if (...)

for (...)

for (...)

out_aiMatrix[i][j] = ...

bResult = true

return bResult

(b)

Kategorie	ID	Pfad
Ohne	A0	n_s, n_1, n_2, n_5, n_f
Schleife	В0	n_s, n_1, n_f
Boundary	A1a	$n_s, n_1, n_2, n_3, n_4, n_3, n_2, n_5, n_f$
Test	A1b	$n_s, n_1, n_2, n_3, n_2, n_5, n_f$
Interior	A2c	$n_s, n_1, n_2, n_3, n_2, n_3, n_2, (n_3, (n_4, n_3)^k n_2)^m, n_5, n_f$
Tests	A2d	$n_s, n_1, n_2, n_3, n_2, n_3, n_4, n_3, n_2, (n_3, (n_4, n_3)^k n_2)^m, n_5, n_f$
	A2e	$n_s, n_1, n_2, n_3, n_2, n_3, n_4, n_3, (n_4, n_3)^i, n_2, (n_3, (n_4, n_3)^k n_2)^m, n_5, n_f$
	A3c	$n_s, n_1, n_2, n_3, n_4, n_3, n_2, n_3, n_2, (n_3, (n_4, n_3)^k n_2)^m, n_5, n_f$
	A3d	$n_s, n_1, n_2, n_3, n_4, n_3, n_2, n_2, n_3, n_4, n_3, n_2, (n_3, (n_4, n_3)^k n_2)^m, n_5, n_f$
	A3e	$n_s, n_1, n_2, n_3, n_4, n_3, n_2, n_3, n_4, n_3, (n_4, n_3)^i, n_2, (n_3, (n_4, n_3)^k n_2)^m, n_5, n_f$
	A4c	$n_s, n_1, n_2, n_3, n_4, n_3, n_4, n_3, (n_4, n_3)^i, n_2, n_3, n_2, (n_3, (n_4, n_3)^k n_2)^m, n_5, n_f$
	A4d	$n_s, n_1, n_2, n_3, n_4, n_3, n_4, n_4, (n_4, n_3)^i, n_2, n_2, n_3, n_4, n_3, n_2, (n_3, (n_4, n_3)^k n_2)^m, n_5, n_f$
	A4e	$ n_s, n_1, n_2, n_3, n_4, n_3, n_4, n_3, (n_4, n_3)^i, n_2, n_3, n_4, n_3, (n_4, n_3)^j, n_2, (n_3, (n_4, n_3)^k n_2)^m, n_5, n_f $

Erläuterungen:

ID	1. Schleifendurchlauf äußere Schleife	2. Schleifendurchlauf äußere Schleife
A2c	0x innere Schleife	0x innere Schleife
A2d	0x innere Schleife	1x innere Schleife
A2e	0x innere Schleife	mindestens 2x innere Schleife
A3c	1x innere Schleife	0x innere Schleife
A3d	1x innere Schleife	1x innere Schleife
A3e	1x innere Schleife	mindestens 2x innere Schleife
A4c	mindestens 2x innere Schleife	0x innere Schleife
A4d	mindestens 2x innere Schleife	1x innere Schleife
A4e	mindestens 2x innere Schleife	mindestens 2x innere Schleife

Hinter jeder Kombination steht der Term $(n_3, (n_4, n_3)^k n_2)^m$, damit nach den ersten beiden Schleifendurchläufen der äußeren Schleife auch noch weitere Folgen können, deren innerer Ablauf beliebig ist.

(c)

Es sind mindestens 13 Testfälle notwendig (siehe oben).

(d)

Der Boundary-Interior-Test ist ein Spezialfall (k = 2) des allgemeinen strukturierten Pfadtests.

Aufgabe 5.2

Vollständige Evaluation

	A	В	С	D	A && B	C && D	(A && B) (C && D)
1	f	f	f	f	f	f	f
2	f	f	f	W	f	f	f
3	f	f	W	f	f	f	f
4	f	f	W	w	f	W	W
5	f	W	f	f	f	f	f
6	f	W	f	w	f	f	f
7	f	W	W	f	f	f	f
8	f	W	W	W	f	W	W
9	w	f	f	f	f	f	f
10	w	f	f	W	f	f	f
11	w	f	W	f	f	f	f
12	w	f	W	W	f	W	W
13	w	W	f	f	W	f	W
14	W	W	f	W	W	f	W
15	w	W	W	f	W	f	W
16	W	W	W	W	W	W	W

Unvollständige Evaluation

	A	В	С	D	A && B	C && D	(A && B) (C && D)
1	f		f		f	f	f
2	f		W	f	f	f	f
3	f		W	w	f	W	W
4	W	f	f		f	f	f
5	W	f	W	f	f	f	f
6	w	f	W	w	f	W	W
7	W	w			W		W

(a)

Einfache Bedingungsüberdeckung mit vollständiger Evaluation: Testfälle 4 und 13, da somit jede atomare Teilentscheidung ein Mal wahr und ein Mal falsch ist.

(b)

Einfache Bedingungeüberdeckung mit unvollständiger Evaluation: Testfälle 2, 3, 4 und 7, da somit jede atomare Teilentscheidung ein Mal wahr und ein Mal falsch ist.

(c)

Bedingungs-/Entscheidungsüberdeckung mit vollständiger Evaluation: Testfälle 1 und 16, da somit alle atomaren Teilentscheidungen sowie die Gesamtentscheidung jeweils ein Mal wahr bzw. falsch ist.

(d)

Bedingungs-/Entscheidungsüberdeckung mit unvollständiger Evaluation: Hier kann die Lösung aus Teil b) verwendet werden (Testfälle 2, 3, 4 und 7), da bei unvollständiger Evaluation der Zweigüberdeckungstest im einfachen Bedingungsüberdeckungstest enthalten ist.

(e)

Die Testfälle 4 und 13 erfüllen zwar die Bedingungen des einfachen Bedingungsüberdeckungstests, die Gesamtentscheidung ist aber in beiden Fällen wahr. Somit ist keine Zweigüberdeckung gegeben.

Aufgabe 5.3

(a)

Hier genügen die zwei Testfälle 1 und 16, da jede atomare, jede zusammengesetzte und jede Gesamtentscheidung jeweils ein Mal wahr und ein Mal falsch sind.

(b)

Testfällt 2, 3, 4 und 7, da jede atomare, jede zusammengesetzte und jede Gesamtentscheidung jeweils ein Mal wahr und ein Mal falsch sind.

(c)

Es verändert sich jeweils nur der Wert <u>einer</u> atomaren Entscheidung und mit ihr der Wert der Gesamtentscheidung.

A: Testfälle 5 und 13

B: Testfälle 9 und 13

C: Testfälle 2 und 4

D: Testfälle 3 und 4

(d)

Die nicht ausgefüllten Felder sind quasi Don't care-Terme und können deshalb ignoriert werden.

A: Testfälle 1 und 7

B: Testfälle 4 und 7

C: Testfälle 1 und 3

D: Testfälle 2 und 3

(e)

Testfälle 1 - 16. Der Mehrfach-Bedingungsüberdeckungstest fordert das Testen aller Kombinationen der atomaren Teilentscheidungen. Dies hat immer den Aufwand von 2^n , wobei n die Anzahl an atomaren Teilentscheidungen beschreibt (in unserem Fall ist n=4).

(f)

Testfälle 1 - 7, Grund: siehe oben.