UC Berkeley Department of Statistics

STAT 210A: Introduction to Mathematical Statistics

Problem Set 5

Fall 2014

Issued: Friday, October 3 Due: Thursday, October 9 (beginning of class)

Problem 5.1

Consider a Bayesian model in which the prior distribution for θ is uniform on (0,1) and, given θ , the observations X_1, \ldots, X_n are i.i.d. Bernoulli with success probability θ . Find

$$P(X_{n+1} = 1 | X_1, \dots, X_n).$$

Problem 5.2

Let $X_1, X_2, ..., X_n$ be sampled conditionally independently from $N(\mu, \sigma^2)$, where μ and σ^2 are considered random. In class we presented a conjugate prior for μ when σ^2 is treated as fixed and a conjugate prior for σ^2 when μ is treated as fixed. Show that the prior obtained by assuming μ and σ^2 are independent and taking the product of the priors presented in class is not conjugate for the joint parameter (μ, σ^2) . Provide a conjugate prior. Discuss a practical data analysis situation in which the conjugate prior seems appropriate and a data analysis situation in which the non-conjugate product prior seems appropriate.

Problem 5.3

Find a transform of θ , $\eta = h(\theta)$, such that the Fisher information $I(\eta)$ is constant (and therefore the Jeffreys prior is constant) for:

- the binomial distribution, $Bin(n, \theta)$;
- the gamma distribution, $Ga(a, \theta)$, with a = 1, 2, 3; and
- the Maxwell distribution, $Max(\theta): p(x|\theta) \propto \theta^{3/2} x^2 e^{-\theta x/2}, x > 0, \theta > 0.$

Problem 5.4

In a linear regression model the *n*-vector of responses y has distribution $(y \mid \beta) \sim N(X\beta, I_n)$, with mean response vector $\mu = E(y \mid \beta) = X\beta$ and identity variance matrix, where X is the $n \times p$ design matrix of rank p and β is the p-vector of regression coefficients. Suppose that the prior for β is $\beta \sim N(0, g^{-1}(X'X)^{-1})$ for some number g > 0.

- 1. What is the posterior distribution of $(\beta \mid y)$?
- 2. Show that posterior mean $E(\beta \mid y)$ can be expressed as a function of $\hat{\beta}$, the usual MLE of β .
- 3. What is the posterior mean $E(\mu \mid y)$?

- 4. What is the posterior variance matrix of μ ?
- 5. Consider the special case of an orthogonal design, so that $X'X = I_p$. Denote by μ_i the *i*th element of μ . Under the posterior $p(\mu \mid y)$ are μ_j and μ_k independent for $j \neq k$?

Problem 5.5

Consider a Bayesian model in which given θ the observations X_1, \ldots, X_n are i.i.d. Bernoulli with success probability θ .

1. Let $(\pi(1), \ldots, \pi(n))$ be a permutation of $(1, \ldots, n)$. Show that

$$(X_{\pi(1)}, \dots, X_{\pi(n)})$$
 and (X_1, \dots, X_n)

have the same distribution. When this holds the variables are said to be exchangeable.

2. Show that $Cov(X_i, X_j) \ge 0$. When will this covariance be zero?