Induction		
Principle 1	of induction.	
Let f	(n) be a predicate if	
	P(0) is true, and	
. 8	or all n EIN, p(n) implies P(nt 1)
ther	(e(n) is true for all n EM	
Theorem	Forall n E IN	
	1+2+3+ +n = n(n+1)	
	党での一気での一気で	
	15151	

Proof: P(n) be the predicate 1+2+3+ ... + n = n(n+1) · Base are: P(0) is true 0 = 0 , both sides of the equation are zero. · inductive step: assume that p(n) is true, P(nti) is also true, 1t2t3 + - - + n + n tl = n(n+1) + n tl = u (U+1) + 5 (U+1) = ntl (n+2) 1+2+3+-..+n:n(n+1) $n+1 \Rightarrow (n+1)(n+2) = n+1(n+2)$

therefore, p(n) is true for all natural n by induction

4 n E N 3 1 cn3-n) predicate "31 cm3-n). P(0) = true Note: 0 is 2 multiple of 3 3103-0 3/1 - Trul. specifically 3.0=0 Fouly Induction Proof e-9 to proof with induction, not 4 n & IN, n 30 but n > 1, the Endudon , proof P(1) = True , p(n) implies p(n+1) for n31

False Theor	rem 14.	all hor	Set 046	the some	colour.
boot.	P(n):	n house	position i	that in eve	eny set Of 2 colour
. Base case	P(L)	s true,	become must be	the some	n a set of 1 colour
inductive &	ep; , c	omader	a set 8	f m1 1	asa.
	\h_\h	14, h2,		hn. hm	4.
6(V): 6	very set ?	of w you	sos, all	are the so	ma colour.
				n horses	
Therela	se, h ₂ ,	h2, -	-hm+1:	must be t	he some color
Nole: h	P(nt1) is the hn	\$ ove	e(n) imple	es p(nt1). .hn,hnt1.
n=1 P(1)	the s	econd set	the sto	showing tement is	do not balq.

For all n30 there exists a tiling of 2 2"x2" courtyard W/Bill in 2 controll square.

furity logic: truth of 0/1 but represented by

dread value between 0 k 4.