1 Decision Tree Classification

Choose a variable at each step that best split the sets of items. To build the tree, calculate Information Gain of each step. The best split is one that provides the **MOST** Information Gain

1. Entropy:

$$H(T) = I_E(p_1, p_2, \dots, p_J) = -\sum_{i=1}^{J} p_i \log_2 p_i$$

2. Information Gain: used to decide which feature to split on at each step in building the tree

1.1 Regression Tree

If the target is continuous, use Regression Decision Tree To build the tree, choose a split, then calculate weighted variance at each step, then caculate the variance reduction. The root split will be the node with the ${f MOST}$ Variance Reduction

1. Variance:

$$Var(X) = \frac{1}{n} \sum_{i=1}^{n} (x_i - \mu)^2$$

2. Variance reduction: Used as a criterion to determine the quality of a split