Solving the Least-Squares Problem Using Geometry Proofs: Invertibility of Full Rank and Positive Definite Matrices

©Barry Van Veen 2019

Background: A matrix is rank P if there are P linearly independent columns (or rows). Vectors v_1, v_2, \dots, v_P are linearly independent if and only if

$$\sum_{i=1}^P oldsymbol{v}_i c_i = oldsymbol{0}$$

implies $c_i = 0, i = 1, 2, \dots, c_P$. For convenience we may write this condition in matrix vector form as Vc = 0 if and only if c = 0 where

$$oldsymbol{V} = \left[egin{array}{cccc} oldsymbol{v}_1 & oldsymbol{v}_2 & \dots & oldsymbol{v}_P \end{array}
ight]$$

and $\mathbf{c} = \begin{bmatrix} c_1 & c_2 & \dots & c_P \end{bmatrix}^T$. The columns of a rank P, N-by-P matrix span a P-dimensional subspace of \mathbb{R}^N .

1. $A^T A$ is full rank. If A is N-by-P with $P \leq N$ and rank $\{A\} = P$, then $B = A^T A$ (P-by-P) has rank P.

We will prove this result by contradiction. Suppose B has rank less than P. This implies there is a vector $\mathbf{v} \neq \mathbf{0}$ such that $\mathbf{B}\mathbf{v} = \mathbf{0}$. Since $\mathbf{B}\mathbf{v} = \mathbf{0}$, we have $\mathbf{v}^T \mathbf{B} \mathbf{v} = 0$ for some $v \neq 0$. Note that $v^T B v = v^T A^T A v = (Av)^T A v = y^T y$ where we define y = Av. But rank $\{A\} = P$, so there is no $v \neq 0$ for which Av = 0. Thus, if $v \neq 0$, then $y \neq 0$. If $y \neq 0$, then $y^T y = v^T B v > 0$. Hence there is a contradiction and $rank\{\boldsymbol{B}\} = P.$

2. Positive Definite Matrices are Full Rank. If a P-by P matrix Q is positive definite, that is, $\mathbf{v}^T \mathbf{Q} \mathbf{v} > 0$ for all $\mathbf{v} \neq \mathbf{0}$, then rank $\{\mathbf{Q}\} = P$.

The proof is similar to the previous one. Suppose rank $\{Q\}$ < P. This implies there is a vector $\mathbf{v} \neq \mathbf{0}$ such that $\mathbf{Q}\mathbf{v} = \mathbf{0}$. If $\mathbf{Q}\mathbf{v} = \mathbf{0}$, then $\mathbf{v}^T\mathbf{Q}\mathbf{v} = \mathbf{v}^T\mathbf{0} = 0$, which contradicts the assumption that Q is positive definite. Thus rank $\{Q\} = P$.

3. Full Rank Square Matrices Are Invertible. If B is P-by-P and rank $\{B\} = P$, then B is invertible. That is, there exists B^{-1} satisfying $BB^{-1} = I$.

Since rank $\{B\} = P$, the columns of B span \mathbb{R}^P and any vector $z \in \mathbb{R}^P$ can be written as a weighted combination of the columns of B, that is, z = Bv.

Now, let $e_i \in \mathbb{R}^P$ be the vector of all zeros except for a one in the i^{th} row, e.g., $e_2 = \begin{bmatrix} 0 & 1 & 0 & \cdots & 0 \end{bmatrix}^T$. Since the columns of \boldsymbol{B} span \mathbb{R}^P , there is a vector \boldsymbol{v}_i so that $e_i = Bv_i, i = 1, 2, ..., P$. Concatenating these relationships for i = 1, 2, ..., P gives

$$\left[egin{array}{cccc} oldsymbol{e}_1 & oldsymbol{e}_2 & \cdots & oldsymbol{e}_P \end{array}
ight] = oldsymbol{B} \left[egin{array}{cccc} oldsymbol{v}_1 & oldsymbol{v}_2 & \cdots & oldsymbol{v}_P \end{array}
ight]$$

But $[\begin{array}{cccc} \boldsymbol{e}_1 & \boldsymbol{e}_2 & \cdots & \boldsymbol{e}_P \end{array}] = \boldsymbol{I}$, so thus by definition $[\begin{array}{ccccc} \boldsymbol{v}_1 & \boldsymbol{v}_2 & \cdots & \boldsymbol{v}_P \end{array}] = \boldsymbol{B}^{-1}$.