Основни понятия

Дефиниция: (случаен експеримент): Експеримент, при който не можем предварително да определим кой от възможните изходи ще се сбъдне

Дефиниция: (елементарно събитие): Всеки възможен елементарен изход на случаен експеримент ще означаваме с ω и ще наричаме елементарно събитие

Дефиниция: С Ω ще означаваме множеството от всички елементарни събития на даден експеримент

Дефиниция: (събитие): Всяко подмножество $A\subseteq \Omega$ наричаме събитие. С |A| означаваме неговата кардиналност.

Дефиниция: (обединение): Нека $A,B\subseteq\Omega$. Тогава $A\cup B$ са всички $\omega\in\Omega$, такива, че $\omega\in A$ или $\omega\in B$

Дефиниция: (сечение): Нека $A,B\subseteq\Omega$. Тогава $A\cap B$ са всички $\omega\in\Omega$, такива, че $\omega\in A$ и $\omega\in B$

Дефиниция: (допълнение): Нека $A\subseteq \Omega$. Тогава A^C са всички $\omega\in \Omega$, такива, че $\omega\notin A$

Свойства: Нека $A,B,C\subseteq\Omega$. Тогава

- ullet комутативност: $A \cup B = B \cup A$
- асоциативност: $(A \cup B) \cup C = A \cup (B \cup C)$
- дистрибутивност: $A \cup (B \cap C) = (A \cap B) \cup (A \cap C)$
- ullet закони на Де Морган: $(A \cup B)^C = A^C \cap B^C$

Дефиниция: (сигма алгебра): Нека Ω е съвкупност от елементарни събития и $\mathcal A$ е колекция от подмножества. Тогава наричаме $\mathcal A$ σ -алгебра, ако

- $\emptyset \in \mathcal{A}$
- $A \in \mathcal{A} \Longrightarrow A^C \in \mathcal{A}$
- $orall i \geq 1$ $A_i \in \mathcal{A} \Longrightarrow igcup_{i=1}^{\infty} A_i \in \mathcal{A}$

Следствие:

• $\Omega \in \mathcal{A}$

$$ullet \ orall i \geq 1 \ \ A_i \in \mathcal{A} \Longrightarrow igcap_{i=1}^{\infty} A_i \in \mathcal{A}$$

• Доказателство:

$$\circ$$
 Тъй като $\emptyset \in \mathcal{A}$ и $\emptyset^C \in \mathcal{A} \Longrightarrow \Omega \in \mathcal{A}$

$$\circ \ \forall i \geq 1 \ \ A_i \in \mathcal{A} \Longrightarrow \forall i \geq 1 \ \ A_i^C \in \mathcal{A} \Longrightarrow \bigcup_{i=1}^{\infty} A_i^C \in \mathcal{A} \Longrightarrow (\bigcup_{i=1}^{\infty} A_i^C)^C \in \mathcal{A} \Longrightarrow \bigcap_{i=1}^{\infty} A_i \in \mathcal{A}$$

Дефиниция: Нека $\mathcal G$ е непразна колекция от подмножесва от Ω . $\sigma(\mathcal G)$ е най-малката σ -алгебра, съдържаша $\mathcal G$

Дефиниция: (борелова алгебра): $\mathcal{B}(\mathbb{R})$ е борелова алгебра - най-малката σ -алгебра, съдържаща всички отворени интервали \mathcal{I} , тоест $\sigma(\mathcal{I})=\mathcal{B}(\mathbb{R})$.

ullet Когато имаме $\Omega=\mathbb{R}$, не работим с $2^\mathbb{R}$, а с $\mathcal{B}(\mathbb{R})$

Дефиниция: (атом): Ако $\mathcal A$ е σ -алгебра, то $A\in\mathcal A$ се нарича атом, ако от $B\subseteq A, B\in\mathcal A$ следва, че $B=\emptyset$