High precision perturbative QCD predictions for LHC physics

Jesús Urtasun Elizari Milan, February 2021

This project has received funding from the European Union's Horizon 2020 research and innovation program under grant agreement No 740006.

Outline

- QCD factorization in a nutshell
 - QCD factorization
 - PDFs and partonic cross section
- The N3PDF project
 - Machine Learning for PDFs
- Fast predictions for resummed distributions
 - Higher order corrections
 - All order resummation
 - HTurbo numerical code
- Conclusions

QCD factorization in a nutshell

QCD factorization in a nutshell

Factorization theorem

Factorize process as PDFs and partonic (hard) interaction

$$\sigma^{F}(p_{1}, p_{2}) = \sum_{\alpha, \beta} \int_{0}^{1} dx_{1} dx_{2} f_{\alpha/h_{1}}(x_{1}, \mu_{F}^{2}) * f_{\beta/h_{2}}(x_{2}, \mu_{F}^{2}) * \hat{\sigma}_{\alpha\beta}^{F}(x_{1}p_{1}, x_{2}p_{2}, \alpha_{s}(\mu_{R}^{2}), \mu_{F}^{2})$$

QCD factorization in a nutshell

Perturbative QCD

Accurate QCD predictions require precise knowledge of PDFs and partonic cross section

- Born cross section is the leading-order (LO) term of the perturbative series
- $\sigma^{(1)}, \sigma^{(2)}, \sigma^{(3)}$ are the NLO, NNLO, N³LO corrections

$$\hat{\sigma} = \sigma^{\mathtt{Born}} \Big(1 + \alpha_{\mathtt{s}} \sigma^{(1)} + \alpha_{\mathtt{s}}^2 \sigma^{(2)} + \alpha_{\mathtt{s}}^3 \sigma^{(3)} + ... \Big)$$

LO predictions strongly depend on unphysical renormalization and factorization scales Need higher order corrections to increase theoretical accuracy!

General structure of n3fit

Parton Distribution Functions (PDFs) can not be predicted or measured PDFs need to be extracted from data!

- Use TensorFlow and Keras to determine the PDFs
- Use Stochastic Gradient Descent n3fit replacing primitive genetic algorithms
- See paper by S.Carraza J.Cruz-Martinez
 "Towards a new generation of parton densities with deep learning models", https://arxiv.org/abs/1907.05075

Operator implementation in TF

- Build a NN model to compute σ_{pred} observables from a grid x_i
- Perform χ^2 minimization comparing with data
- Update values of PDF → Fit

Operator implementation in TF

- $lue{f 0}$ TF relies in symbolic computation \longrightarrow High memory usage
- 2 Implement c++ operator replacing the convolution
- 3 Further details in Urtasun-Elizari et al.

"Towards hardware acceleration for parton densities estimation", https://arxiv.org/abs/1909.10547

HTurbo: Fast predictions for resummed distributions

HTurbo

All order q_{\perp} resummation

Study the differential
$$q_{\perp}$$
 distribution
$$h_1(p_1) + h_2(p_2) \longrightarrow F(M, q_{\perp}) + X$$

$$\int_0^{Q_\perp^2} dq_\perp^2 \frac{d\hat{\sigma}}{dq_\perp^2} \sim c_0 + \alpha_s (c_{12}L^2 + c_{11}L + c_{10}) + ..., \quad \text{being} \quad L = \ln(q_\perp/M^2)$$

$\alpha_{S}L^{2}$	$\alpha_{\mathcal{S}}$ L	 $\mathcal{O}(\alpha_{S})$
$\alpha_S^2 L^4$	$\alpha_S^2 L^3$	 $\mathcal{O}(\alpha_S^2)$
$\alpha_S^n L^{2n}$	$\alpha_S^n L^{2n-1}$	 $\mathcal{O}(\alpha_S^n)$
dominant logs		

Truncated fixed order predictions lead to logarithmic enhancement $\alpha_s^n \ln^m(M^2/q_\perp^2)$

All order resummation is needed

HTurbo

Starting point: DYTurbo

 q_{\perp} resummation implemented in numerical codes **HqT** and **HRes** [Catani et al.] Higher order accuracy require high computation times

Numerical code **DYTurbo** [Camarda et al. ATLAS collaboration, 1910.07049], fast and precise q_{\perp} resummation and several improvements for Drell-Yan $(h_1 + h_2 \rightarrow V + X \rightarrow I^+I^- + X)$

- Goal: set up a numerical code generalizing DYTurbo for Higgs boson production
- Goal: extend theoretical accuracy up to N³LL+N³LO and to other processes

Numerical code **HTurbo** [Ferrera, Urtasun-Elizari (in preparation)] Fast and precise q_{\perp} resummation and for Higgs boson production

- Old versions as HqT and HRes in Fortran
- c++ allows for optimization in the integration routines

Comparison with HRes and HqT - LL

- HTurbo q_{\perp} distribution vs HRes and HqT at LL
- ullet Excellent numerical agreement up to the 0.1% level \checkmark

Comparison with HTurbo and HqT - NLL

- HTurbo q_{\perp} distribution vs HRes and HqT at NLL
- ullet Excellent numerical agreement up to the 0.1% level \checkmark

Comparison with HRes and HqT - NNLL

- HTurbo q_{\perp} distribution vs HRes and HqT at NNLL
- ullet Excellent numerical agreement up to the 0.1% level \checkmark

Comparison HRes and HqT - all orders

- Higher orders lead to more accurate predictions √
- HRes needs 3 days to produce NNLL distribution \rightarrow 3 minutes with HTurbo! \checkmark
- Agreement up to NNLL \longrightarrow ready for N³LL

Summary & Conclusions

- Precise knowledge of PDFs and partonic cross sections are required towards the precision era of the LHC
- Machine Learning models provide a robust way for PDFs determination optimized through operator implementation in TF
- **③** We develop a numerical code **HTurbo**, implementing q_{\perp} resummation for Higgs boson production, which is faster than any of the existing codes
- Mext steps:
 - Validate results at NNLO
 - Include full N³LO prediction
 - Perform phenomenological studies comparing with LHC data

Thank you!

This project has received funding from the European Union's Horizon 2020 research and innovation program under grant agreement No 740006.