import modules

```
In [2]:
```

```
import pandas as pd
import numpy as np
import matplotlib.pyplot as plt
import seaborn as sns
import plotly.express as px
import sklearn as sl
from sklearn.metrics import confusion_matrix
```

importing dataset

```
In [3]:
```

```
data = pd.read_csv("C:/Users/Shilpi Rani/Downloads/heart.csv")
```

Description about dataset

```
In [4]:
```

data.shape

Out[4]:

(303, 14)

In [5]:

data.size

Out[5]:

4242

In [6]:

data.head()

Out[6]:

	age	sex	ср	rest bp	chol	fbs	restecg	max H.R	exng	oldpeak	slp	M.V no.	thall	output
0	63	1	3	145	233	1	0	150	0	2.3	0	0	1	1
1	37	1	2	130	250	0	1	187	0	3.5	0	0	2	1
2	41	0	1	130	204	0	0	172	0	1.4	2	0	2	1
3	56	1	1	120	236	0	1	178	0	8.0	2	0	2	1
4	57	0	0	120	354	0	1	163	1	0.6	2	0	2	1

In [7]:

data.tail()

Out[7]:

	age	sex	ср	rest bp	chol	fbs	restecg	max H.R	exng	oldpeak	slp	M.V no.	thall	output
298	57	0	0	140	241	0	1	123	1	0.2	1	0	3	0
299	45	1	3	110	264	0	1	132	0	1.2	1	0	3	0
300	68	1	0	144	193	1	1	141	0	3.4	1	2	3	0
301	57	1	0	130	131	0	1	115	1	1.2	1	1	3	0
302	57	0	1	130	236	0	0	174	0	0.0	1	1	2	0

```
In [8]:
```

```
data.info()
<class 'pandas.core.frame.DataFrame'>
RangeIndex: 303 entries, 0 to 302 \,
Data columns (total 14 columns):
    Column
             Non-Null Count Dtype
                             int64
             303 non-null
0
     age
1
     sex
             303 non-null
                             int64
                             int64
2
             303 non-null
3
     rest bp 303 non-null
                             int64
                             int64
4
     chol
             303 non-null
5
     fbs
             303 non-null
                             int64
 6
     restecg 303 non-null
                             int64
     max H.R
             303 non-null
                              int64
8
     exng
             303 non-null
                             int64
 9
    oldpeak 303 non-null
                             float64
 10 slp
             303 non-null
                             int64
 11 M.V no.
             303 non-null
                              int64
12 thall
             303 non-null
                             int64
13 output
             303 non-null
                             int64
dtypes: float64(1), int64(13)
memory usage: 33.3 KB
In [9]:
data.describe().T
```

Out[9]:

	count	mean	std	min	25%	50%	75%	max
age	303.0	54.366337	9.082101	29.0	47.5	55.0	61.0	77.0
sex	303.0	0.683168	0.466011	0.0	0.0	1.0	1.0	1.0
ср	303.0	0.966997	1.032052	0.0	0.0	1.0	2.0	3.0
rest bp	303.0	131.623762	17.538143	94.0	120.0	130.0	140.0	200.0
chol	303.0	246.264026	51.830751	126.0	211.0	240.0	274.5	564.0
fbs	303.0	0.148515	0.356198	0.0	0.0	0.0	0.0	1.0
restecg	303.0	0.528053	0.525860	0.0	0.0	1.0	1.0	2.0
max H.R	303.0	149.646865	22.905161	71.0	133.5	153.0	166.0	202.0
exng	303.0	0.326733	0.469794	0.0	0.0	0.0	1.0	1.0
oldpeak	303.0	1.039604	1.161075	0.0	0.0	0.8	1.6	6.2
slp	303.0	1.399340	0.616226	0.0	1.0	1.0	2.0	2.0
M.V no.	303.0	0.729373	1.022606	0.0	0.0	0.0	1.0	4.0
thall	303.0	2.313531	0.612277	0.0	2.0	2.0	3.0	3.0
output	303.0	0.544554	0.498835	0.0	0.0	1.0	1.0	1.0

In [10]:

```
data.columns
```

Out[10]:

checking missing values in dataset

In [11]:

```
data.isnull().sum()
```

Out[11]:

```
0
age
           0
sex
           0
ср
rest bp
           0
chol
           a
fbs
           0
           0
restecg
           0
max H.R
exng
oldpeak
           0
slp
           0
M.V no.
           0
thall
           0
output
           0
dtype: int64
```

```
In [12]:
```

data.isnull()

Out[12]:

	age	sex	ср	rest bp	chol	fbs	restecg	max H.R	exng	oldpeak	slp	M.V no.	thall	output
0	False	False	False	False	False	False	False	False	False	False	False	False	False	False
1	False	False	False	False	False	False	False	False	False	False	False	False	False	False
2	False	False	False	False	False	False	False	False	False	False	False	False	False	False
3	False	False	False	False	False	False	False	False	False	False	False	False	False	False
4	False	False	False	False	False	False	False	False	False	False	False	False	False	False
298	False	False	False	False	False	False	False	False	False	False	False	False	False	False
299	False	False	False	False	False	False	False	False	False	False	False	False	False	False
300	False	False	False	False	False	False	False	False	False	False	False	False	False	False
301	False	False	False	False	False	False	False	False	False	False	False	False	False	False
302	False	False	False	False	False	False	False	False	False	False	False	False	False	False

303 rows × 14 columns

Checking the duplicate values in dataset

```
In [13]:
```

```
data_dup = data.duplicated().any()
```

In [14]:

In [14]:

data_dup Out[14]:

True

In [15]:

```
data = data.drop_duplicates()
```

In [16]:

```
data_dup = data.duplicated().any()
```

In [17]:

data_dup

Out[17]:

False

Exploratory data analysis

Histogram graph

In [18]:

Correlation matrix

```
In [19]:
```

```
corr_matrix = data.corr()
```

In [20]:

```
corr_matrix['age'].sort_values(ascending=False)
```

Out[20]:

age M.V no. 0.302261 rest bp 0.283121 chol 0.207216 oldpeak 0.206040 fbs 0.119492 0.093216 exng thall 0.065317 -0.063107 ср -0.094962 sex restecg -0.111590 -0.164124 slp output -0.221476 -0.395235 max H.R Name: age, dtype: float64

1.000000

In [21]:

data.corr()

Out[21]:

	age	sex	ср	rest bp	chol	fbs	restecg	max H.R	exng	oldpeak	slp	M.V no.	thall	out
age	1.000000	-0.094962	-0.063107	0.283121	0.207216	0.119492	-0.111590	-0.395235	0.093216	0.206040	-0.164124	0.302261	0.065317	-0.221
sex	-0.094962	1.000000	-0.051740	-0.057647	-0.195571	0.046022	-0.060351	-0.046439	0.143460	0.098322	-0.032990	0.113060	0.211452	-0.283
ср	-0.063107	-0.051740	1.000000	0.046486	-0.072682	0.096018	0.041561	0.293367	-0.392937	-0.146692	0.116854	-0.195356	-0.160370	0.432
rest bp	0.283121	-0.057647	0.046486	1.000000	0.125256	0.178125	-0.115367	-0.048023	0.068526	0.194600	-0.122873	0.099248	0.062870	-0.146
chol	0.207216	-0.195571	-0.072682	0.125256	1.000000	0.011428	-0.147602	-0.005308	0.064099	0.050086	0.000417	0.086878	0.096810	-0.081
fbs	0.119492	0.046022	0.096018	0.178125	0.011428	1.000000	-0.083081	-0.007169	0.024729	0.004514	-0.058654	0.144935	-0.032752	-0.026
restecg	-0.111590	-0.060351	0.041561	-0.115367	-0.147602	-0.083081	1.000000	0.041210	-0.068807	-0.056251	0.090402	-0.083112	-0.010473	0.134
max H.R	-0.395235	-0.046439	0.293367	-0.048023	-0.005308	-0.007169	0.041210	1.000000	-0.377411	-0.342201	0.384754	-0.228311	-0.094910	0.419
exng	0.093216	0.143460	-0.392937	0.068526	0.064099	0.024729	-0.068807	-0.377411	1.000000	0.286766	-0.256106	0.125377	0.205826	-0.435
oldpeak	0.206040	0.098322	-0.146692	0.194600	0.050086	0.004514	-0.056251	-0.342201	0.286766	1.000000	-0.576314	0.236560	0.209090	-0.429
slp	-0.164124	-0.032990	0.116854	-0.122873	0.000417	-0.058654	0.090402	0.384754	-0.256106	-0.576314	1.000000	-0.092236	-0.103314	0.343
M.V no.	0.302261	0.113060	-0.195356	0.099248	0.086878	0.144935	-0.083112	-0.228311	0.125377	0.236560	-0.092236	1.000000	0.160085	-0.408
thall	0.065317	0.211452	-0.160370	0.062870	0.096810	-0.032752	-0.010473	-0.094910	0.205826	0.209090	-0.103314	0.160085	1.000000	-0.343
output	-0.221476	-0.283609	0.432080	-0.146269	-0.081437	-0.026826	0.134874	0.419955	-0.435601	-0.429146	0.343940	-0.408992	-0.343101	1.000
4														•

```
In [22]:
corr=data.corr()
plt.subplots(figsize=(9,6))
sns.heatmap(corr,annot=True)
Out[22]:
<AxesSubplot:>
     age - 1 -0.0950.063 0.28 0.21 0.12 -0.11 -0.4 0.093 0.21 -0.16 0.3 0.065 -0.22
      sex -0.095 1 0.0520.058 -0.2 0.046-0.06-0.046 0.14 0.098-0.033 0.11 0.21 -0.28
                                                                                             - 0.8
           0.0630.052 1 0.046-0.0730.0960.042 0.29 -0.39 -0.15 0.12 -0.2 -0.16 0.43
           0.28 -0.0580.046 1 0.13 0.18 -0.12-0.0480.069 0.19 -0.12 0.0990.063 -0.15
                                                                                             - 0.6
     chol - 0.21 -0.2 -0.073 0.13 1 0.011-0.150.00530.064 0.050.000420.0870.097-0.08
                                                                                             - 0.4
      fbs - 0.12 0.0460.096 0.18 0.011 1 0.0830.00720.0250.00450.059 0.14-0.0330.02
  restecg - 0.11 -0.06 0.042 -0.12 -0.15-0.083 1 0.041-0.0690.056 0.09 -0.083-0.01 0.13
                                                                                             - 0.2
 max H.R - -0.4 -0.046 0.29 -0.0480.0058.00720.041 1 -0.38 -0.34 0.38 -0.23-0.095 0.42
    exng -0.093 0.14 -0.39 0.069 0.064 0.025 0.069 -0.38 1 0.29 -0.26 0.13 0.21 -0.44
           0.21 0.098 0.15 0.19 0.050.00450.056 0.34 0.29 1 0.58 0.24 0.21 0.43
 oldpeak -
      slp -0.16-0.033 0.12 -0.120.000420.059 0.09 | 0.38 | -0.26 -0.58 | 1 | -0.092 -0.1 | 0.34
                                                                                              -0.2
           0.3 0.11 -0.2 0.099 0.087 0.14 -0.083 -0.23 0.13 0.24 -0.092 1 0.16 -0.41
           0.065 0.21 -0.16 0.063 0.097 -0.033 -0.01 -0.095 0.21 0.21 -0.1 0.16 1 -0.34
   output -0.22 -0.28 0.43 -0.15-0.0810.027 0.13 0.42 -0.44 -0.43 0.34 -0.41 -0.34
                                            restecg .
                                 lo4b
                                      Lps
                                                                      M.V no.
```

Data processing

```
In [23]:

cate_val = []
cont_val = []
for column in data.columns:
    if data[column].nunique() <=10:
        cate_val.append(column)
    else:
        cont_val.append(column)</pre>
```

```
In [24]:
cate_val
Out[24]:
['sex', 'cp', 'fbs', 'restecg', 'exng', 'slp', 'M.V no.', 'thall', 'output']
In [25]:
cont_val
Out[25]:
['age', 'rest bp', 'chol', 'max H.R', 'oldpeak']
```

Encoding categorical data

```
In [26]:
cate_val
Out[26]:
['sex', 'cp', 'fbs', 'restecg', 'exng', 'slp', 'M.V no.', 'thall', 'output']
In [27]:
data['cp'].unique()
Out[27]:
array([3, 2, 1, 0], dtype=int64)
In [28]:
cate_val.remove('sex')
cate_val.remove('output')
data = pd.get_dummies(data,columns = cate_val,drop_first = True)
```

In [29]:

data.head()

Out[29]:

	age	sex	rest bp	chol	max H.R	oldpeak	output	cp_1	cp_2	cp_3	 exng_1	slp_1	slp_2	M.V no1	M.V no2	M.V no3	M.V no4	thall_1	thall_2	thall_3
0	63	1	145	233	150	2.3	1	0	0	1	 0	0	0	0	0	0	0	1	0	0
1	37	1	130	250	187	3.5	1	0	1	0	 0	0	0	0	0	0	0	0	1	0
2	41	0	130	204	172	1.4	1	1	0	0	 0	0	1	0	0	0	0	0	1	0
3	56	1	120	236	178	0.8	1	1	0	0	 0	0	1	0	0	0	0	0	1	0
4	57	0	120	354	163	0.6	1	0	0	0	 1	0	1	0	0	0	0	0	1	0

5 rows × 23 columns

Feature scaling

In [30]:

data.head()

Out[30]:

	age	sex	rest bp	chol	max H.R	oldpeak	output	cp_1	cp_2	cp_3	 exng_1	slp_1	slp_2	M.V no1	M.V no2	M.V no3	M.V no4	thall_1	thall_2	thall_3
0	63	1	145	233	150	2.3	1	0	0	1	 0	0	0	0	0	0	0	1	0	0
1	37	1	130	250	187	3.5	1	0	1	0	 0	0	0	0	0	0	0	0	1	0
2	41	0	130	204	172	1.4	1	1	0	0	 0	0	1	0	0	0	0	0	1	0
3	56	1	120	236	178	8.0	1	1	0	0	 0	0	1	0	0	0	0	0	1	0
4	57	0	120	354	163	0.6	1	0	0	0	 1	0	1	0	0	0	0	0	1	0

5 rows × 23 columns

In [31]:

from sklearn.preprocessing import StandardScaler

In [32]:

st=StandardScaler()
data[cont_val]= st.fit_transform(data[cont_val])

In [33]:

data.head()

Out[33]:

	age	sex	rest bp	chol	max H.R	oldpeak	output	cp_1	cp_2	cp_3	 exng_1	slp_1	slp_2	M.V no1	M.V no2	M.V no3	M.V no4	thall_1	thal
0	0.949794	1	0.764066	-0.261285	0.018826	1.084022	1	0	0	1	 0	0	0	0	0	0	0	1	
1	-1.928548	1	-0.091401	0.067741	1.636979	2.118926	1	0	1	0	 0	0	0	0	0	0	0	0	
2	-1.485726	0	-0.091401	-0.822564	0.980971	0.307844	1	1	0	0	 0	0	1	0	0	0	0	0	
3	0.174856	1	-0.661712	-0.203222	1.243374	-0.209608	1	1	0	0	 0	0	1	0	0	0	0	0	
4	0.285561	0	-0.661712	2.080602	0.587366	-0.382092	1	0	0	0	 1	0	1	0	0	0	0	0	

5 rows × 23 columns

Splitting training and testing dataset

```
In [34]:
```

```
x = data.drop('output',axis=1)
```

In [35]:

y = data['output']

In [36]:

from sklearn.model_selection import train_test_split

```
In [45]:
```

 $\label{eq:control_control_control_control} \textbf{X_train}, \textbf{X_test}, \textbf{y_train}, \textbf{y_test} = \textbf{train_test_split}(\textbf{x}, \textbf{y}, \textbf{test_size=0.2}, \textbf{random_state=42})$

In [46]:

X_train

Out[46]:

	age	sex	rest bp	chol	max H.R	oldpeak	cp_1	cp_2	cp_3	fbs_1	 exng_1	slp_1	slp_2	M.V no1	M.V no2	M.V no3	M.V no4	thall_1	th
132	-1.375021	1	-0.661712	0.938690	0.543632	-0.899544	1	0	0	0	 0	0	1	0	0	0	0	0	
203	1.503322	1	2.760154	0.532247	0.018826	0.480328	0	1	0	1	 1	1	0	0	0	0	0	0	
197	1.392616	1	-0.376556	0.145158	0.587366	-0.727060	0	0	0	1	 0	1	0	0	1	0	0	0	
75	0.064151	0	0.193755	0.067741	0.499898	0.307844	1	0	0	0	 0	1	0	0	0	0	0	0	
177	1.060500	1	0.478910	1.712868	0.368697	-0.899544	0	1	0	0	 0	0	1	0	0	0	0	0	
189	-1.485726	1	-1.232023	-1.441906	0.368697	-0.899544	0	0	0	0	 0	0	1	0	0	0	0	0	
71	-0.378671	1	-2.144521	-0.377412	0.193761	-0.899544	0	1	0	0	 1	0	1	1	0	0	0	0	
106	1.614027	1	1.619532	-0.241930	-0.812118	-0.813302	0	0	1	1	 0	1	0	1	0	0	0	0	
271	0.728383	1	0.136724	-0.241930	-0.199843	1.342748	0	0	1	0	 0	1	0	0	1	0	0	0	
102	0.949794	0	0.478910	-0.996754	1.287108	-0.899544	1	0	0	0	 0	0	1	0	1	0	0	0	

241 rows × 22 columns

In [47]:

X_test

Out[47]:

	age	sex	rest bp	chol	max H.R	oldpeak	cp_1	cp_2	cp_3	fbs_1	 exng_1	slp_1	slp_2	M.V no1	M.V no2	M.V no3	M.V no4	thall_1	th
180	0.064151	1	0.022661	2.061248	-0.768384	0.135360	0	0	0	0	 1	1	0	1	0	0	0	0	
229	1.060500	1	-0.376556	1.209652	-0.812118	0.652812	0	1	0	0	 1	1	0	0	0	0	0	0	
111	0.285561	1	1.049221	-2.332210	1.024705	-0.727060	0	1	0	1	 0	0	1	1	0	0	0	0	
247	1.281911	1	1.619532	-0.009677	-1.293190	-0.899544	1	0	0	0	 1	1	0	0	0	1	0	1	
60	1.835438	0	-1.232023	0.358057	-0.855851	-0.899544	0	1	0	1	 0	0	1	1	0	0	0	0	
250	-0.378671	1	0.478910	0.996754	-1.205722	2.722620	0	0	0	0	 1	1	0	0	0	1	0	0	
104	-0.489377	1	-0.148432	-0.977399	0.587366	-0.899544	0	1	0	0	 0	0	1	0	0	0	0	0	
300	1.503322	1	0.707035	-1.035462	-0.374779	2.032684	0	0	0	1	 0	1	0	0	1	0	0	0	
194	0.617678	1	0.478910	-1.190298	0.237495	1.687716	0	1	0	0	 0	1	0	0	0	0	0	0	
185	-1.153610	1	-1.117961	0.841918	0.150027	-0.899544	0	0	0	0	 0	0	1	1	0	0	0	0	

61 rows × 22 columns

In [40]:

y_train

```
Out[40]:
```

132 203 197 1 0 0

75 177 1

.. 189

71 106 1

271 0

102

Name: output, Length: 241, dtype: int64

```
In [41]:
y_test
Out[41]:
180
229
       0
111
       1
247
       0
60
       1
       0
250
104
       1
300
       0
194
       a
185
Name: output, Length: 61, dtype: int64
Logistic regression
In [42]:
data.head()
Out[42]:
                                                                                                    M.V
                                                                                                         M.V
                                                                                                                M.V
                                                                                                                      M.V
                                                                                                                          thall_1 thal
                              chol max H.R
                                             oldpeak output cp_1 cp_2 cp_3 ... exng_1 slp_1 slp_2
        age sex
                  rest bp
0 0.949794
              1 0.764066 -0.261285 0.018826
                                            1.084022
                                                                    0
                                                                          1
                                                                                    0
                                                                                          0
                                                                                                0
                                                                                                      0
                                                                                                            0
                                                                                                                  0
                                                                                                                        0
                                                                                                                               1
             1 -0.091401 0.067741 1.636979
                                           2.118926
                                                                                                                               0
 1 -1.928548
                                                         1
                                                                                                            0
                                                                                                                  0
 2 -1.485726
              0 -0.091401 -0.822564 0.980971
                                            0.307844
                                                                    0
                                                                         0
                                                                                    0
                                                                                          0
                                                                                                      0
                                                                                                            0
                                                                                                                  0
                                                                                                                        0
                                                                                                                               0
             1 -0.661712 -0.203222 1.243374 -0.209608
                                                                         0 ...
                                                                                    Ω
                                                                                                            0
                                                                                                                        0
                                                                                                                               0
 3 0.174856
                                                         1
                                                               1
                                                                    O
                                                                                          0
                                                                                                1
                                                                                                      0
                                                                                                                  0
 4 0.285561
              0 -0.661712 2.080602 0.587366 -0.382092
                                                                         0 ...
5 rows × 23 columns
4
from sklearn.linear_model import LogisticRegression
In [48]:
log = LogisticRegression()
log.fit(X_train,y_train)
Out[48]:
LogisticRegression()
In [49]:
y_pred1 = log.predict(X_test)
In [50]:
from sklearn.metrics import accuracy_score
In [51]:
{\tt accuracy\_score}({\tt y\_test,y\_pred1})
Out[51]:
0.9016393442622951
SVC
In [52]:
from sklearn import svm
In [53]:
```

svm = svm.SVC()

```
In [54]:
svm.fit(x_train,y_train)
Out[54]:
SVC()
In [55]:
y_pred2 = svm.predict(x_test)
In [56]:
accuracy_score(y_test,y_pred2)
Out[56]:
0.8688524590163934
Non-linear ML Algorithms
In [57]:
data = pd.read_csv("C:/Users/Shilpi Rani/Downloads/heart.csv")
In [58]:
data.head()
Out[58]:
   age sex cp rest bp chol fbs restecg max H.R exng oldpeak slp M.V no. thall output
0
                                                            0
                                                                               1
    63
         1
            3
                  145
                      233
                                    0
                                          150
                                                 0
                                                       2.3
                                                                    0
                                                                         1
    37
         1
            2
                  130
                      250
                            0
                                    1
                                          187
                                                 0
                                                            0
                                                                    0
                                                                        2
                                                                               1
                                                       3.5
            1
                  130
                      204
                            0
                                   0
                                          172
                                                 0
                                                            2
                                                                        2
                                                                        2
3
    56
         1 1
                 120 236
                            0
                                   1
                                          178
                                                 0
                                                       8.0
                                                            2
                                                                    0
                                                                               1
    57
         0 0
                 120 354
                            0
                                          163
                                                       0.6
                                                            2
In [59]:
data = data.drop_duplicates()
In [60]:
data.shape
Out[60]:
(302, 14)
KNN
from sklearn.neighbors import KNeighborsClassifier
In [62]:
knn = KNeighborsClassifier()
In [63]:
knn.fit(X_train, y_train)
Out[63]:
KNeighborsClassifier()
In [64]:
y_pred3 = knn.predict(X_test)
In [65]:
accuracy_score(y_test, y_pred3)
Out[65]:
0.8688524590163934
```

```
12/22/22, 1:00 PM
                                                                   Heart disease dataset analysis - Jupyter Notebook
  In [66]:
  score = []
  In [67]:
  knn = KNeighborsClassifier(n_neighbors=4)
  knn.fit(X_train, y_train)
  y_pred = knn.predict(X_test)
  (accuracy_score(y_test, y_pred))
  Out[67]:
  0.8688524590163934
  Decision Tree Classifier
  In [68]:
  \label{from:continuous} \textbf{from} \  \, \textbf{sklearn.tree} \  \, \textbf{import} \  \, \textbf{DecisionTreeClassifier}
  In [69]:
  dt=DecisionTreeClassifier()
  In [70]:
  dt.fit(X_train, y_train)
  Out[70]:
  DecisionTreeClassifier()
  In [71]:
  y_pred4 = dt.predict(X_test)
  In [72]:
  accuracy_score(y_test, y_pred4)
  Out[72]:
  0.7704918032786885
  Comparison
```

```
In [73]:
final_data = pd.DataFrame({'Models':['LR','SVM','KNN','DT'], 'ACC':[accuracy_score(y_test, y_pred1),
                                                                                accuracy_score(y_test, y_pred2),
                                                                                 accuracy_score(y_test, y_pred3),
accuracy_score(y_test, y_pred4)]})
```

```
In [74]:
final_data
```

```
Out[74]:
```

Models

0	LR	0.901639
1	SVM	0.868852
2	KNN	0.868852
3	DT	0.770492

ACC

In [75]:

```
import seaborn as sns
```

```
In [76]:
sns.barplot(final_data['Models'], final_data['ACC'])
ut an explicit keyword will result in an error or misinterpretation.
  warnings.warn(
Out[76]:
<AxesSubplot:xlabel='Models', ylabel='ACC'>
  0.8
  0.6
ACC
  0.4
   0.2
   0.0
In [77]:
X = data.drop("output", axis=1)
y=data['output']
In [78]:
X.shape
Out[78]:
(302, 13)
In [83]:
from sklearn.tree import DecisionTreeClassifier
In [85]:
dt=DecisionTreeClassifier()
dt.fit(X,y)
Out[85]:
DecisionTreeClassifier()
Prediction on New Data
In [79]:
import pandas as pd
In [80]:
new_data = pd.DataFrame({
  'age': 52,
  'sex': 1,
  'cp': 0,
  'trestbps': 125,
  'chol': 212,
  'fbs': 0,
```

```
new_data = pd.DataFrame({
    'age': 52,
    'sex': 1,
    'cp': 0,
    'trestbps': 125,
    'chol': 212,
    'fbs': 0,
    'restecg': 1,
    'thalach': 168,
    'exang': 0,
    'oldpeak': 1.0,
    'slope': 2,
    'ca': 2,
    'thal': 3,
}, index=[0])
```

```
In [81]:
```

new_data

Out[81]:

	age	sex	ср	trestbps	chol	fbs	restecg	thalach	exang	oldpeak	slope	са	thal
^	52	1	Λ	125	212	n	1	168	0	1.0	2	2	3

```
In [86]:
p= dt.predict(new_data)
if p[0]==0:
   print("No Disease")
else:
    print("Yes, you have heart disease")
No Disease
C:\ProgramData\Anaconda3\lib\site-packages\sklearn\base.py:493: FutureWarning: The feature names should match those that we
re passed during fit. Starting version 1.2, an error will be raised.
Feature names unseen at fit time:
- exang
- slope
- thal
- thalach
Feature names seen at fit time, yet now missing:
- M.V no.
- exng
- max H.R
- rest bp
- slp
  warnings.warn(message, FutureWarning)
Save Model using Joblib
In [87]:
import joblib
In [88]:
joblib.dump(dt, 'model_joblib_heart')
Out[88]:
['model_joblib_heart']
In [89]:
model = joblib.load('model_joblib_heart')
In [90]:
model.predict(new_data)
C:\ProgramData\Anaconda3\lib\site-packages\sklearn\base.py:493: FutureWarning: The feature names should match those that we
re passed during fit. Starting version 1.2, an error will be raised.
Feature names unseen at fit time:
- ca
- exang
- slope
- thal
- thalach
Feature names seen at fit time, yet now missing:
- M.V no.
- exng
- max H.R
- rest bp
- slp
  warnings.warn(message, FutureWarning)
Out[90]:
array([0], dtype=int64)
```

THANKS!!