Data science for business

Sebastian Sauer

2019-05-14

Five Questions

on the use of data science for business

- 1. What's the meaning of *data science*, *machine learning*, and all these fancy terms?
- 2. What's the best model out there?
- 3. How do I know my model is doing good or bad?
- 4. Can you give me a cook book for data science?
- 5. What are all the core concepts of the field?

1. What's the meaning of data science, machine learning, and all these fancy terms?

statistical models:

probability theory

machine learning:

algorithmic models

Source: Wikipedia by en:User:RolandH

'data science' is a popular term

Google Trends (2019-04-32) of data analysis jargon

What's data science?

Depends on whom you ask.

Common theme

Art and science of learning from data

$$Y = f(X) + \epsilon$$
 $\hat{Y} = \hat{f}(X)$

Machine learning: Feed the computer data, not rules

Source: Molnar, C. (2019). Interpretable Machine Learning [ePub Book]. Morrisville, NC: Christoph Molnar.

2. What's the best model out there?

A lot of models out there

package caret

```
getModelInfo() %>%
  names() %>%
  length()
## [1] 238
```


Wait, tell me which model is best

There is no single best model

Black box models

- Random forests
- Support vector machines
- Neural networks
- ...

less interpretable
more accurate (at times)
less robust

"White box" models

- Linear regression
- k-nearest neighbours
- Decision trees
- ...

more interpretable

less accurate (at times)

more robust

Blackbox models do not explain

Source: Molnar, C. (2019). Interpretable Machine Learning [ePub Book]. Morrisville, NC: Christoph Molnar.

Ensemble learners show a good track record

Source: Sauer, S. (2018). Moderne Datenanalyse mit R: Daten einlesen, aufbereiten, visualisieren und modellieren. Wiesbaden: Springer.

The fit of a model depends on eg the linearity of associations

3. How do I know my model is doing good or bad?

Short answer: The less error, the better the model

Wait ...

Which model do you prefer?

4. Can you give me a cook book for data science?

Step 1: Choose your model(s)

Classify stuff

Estimate stuff

Step 2: Build model fed on historical data

Overfitting

Underfitting

Step 3: Predict the future

Run the model on new data

Step 4: Evaluate the model

Here's one way how to get going

Some literature explaining core concepts of data science

Grolemund, G., & Wickham, H. (2016). R for Data Science. Retrieved from https://books.google.de/books?id=aZRYrgEACAAJ

James, G., Witten, D., Hastie, T., & Tibshirani, R. (2013). An introduction to statistical learning (Vol. 6). New York City, NY: Springer.

Sauer, S. (2019). Moderne Datenanalyse mit R: Daten einlesen, aufbereiten, visualisieren und modellieren (1. Auflage 2019). Wiesbaden: Springer.

Sebastian Sauer

- **?** sebastiansauer
- ≥ sebastian.sauer@data-divers.com
 - **y** sauer_sebastian
- Get slides here: https://data-se.netlify.com/slides/afd_ecda2019/afd-modeling-ECDA-2019.pdf

CC-BY

Reproducibility

- Versions of employed software as of 2019-05-02, running this OS: macOS Mojave 10.14.4.
- Built with R, R version 3.5.3 (2019-03-11), RStudio 1.2.1335, xaringan, on the shoulders of giants
- Source Code: XXX
- Icons are from FontAwesome, licenced under CC-BY-4 (details)
- R-Packages used: assertthat_0.2.1, backports_1.1.4, broom_0.5.2, Cairo_1.5-10, caret_6.0-82, cellranger_1.1.0, class_7.3-15, cli_1.1.0, codetools_0.2-16, colorspace_1.4-1, crayon_1.3.4, crosstalk_1.0.0, data.table_1.12.2, digest_0.6.18, dplyr_0.8.0.1, DT_0.5, evaluate_0.13, forcats_0.4.0, foreach_1.4.4, generics_0.0.2, ggplot2_3.1.1, ggrepel_0.8.0, glue_1.3.1.9000, gower_0.2.0, gridExtra_2.3, gtable_0.3.0, gtrendsR_1.4.2, haven_2.1.0, hms_0.4.2, htmltools_0.3.6, htmlwidgets_1.3, httpuv_1.5.1, httr_1.4.0, icon_0.1.0, ipred_0.9-8, iterators_1.0.10, jsonlite_1.6, knitr_1.22, labeling_0.3, later_0.8.0, lattice_0.20-38, lava_1.6.5, lazyeval_0.2.2, lubridate_1.7.4, magrittr_1.5, MASS_7.3-51.1, Matrix_1.2-15, mime_0.6, ModelMetrics_1.2.2, modelr_0.1.4, munsell_0.5.0, nlme_3.1-137, nnet_7.3-12, pillar_1.3.1, pkgconfig_2.0.2, plotly_4.9.0, plyr_1.8.4, prodlim_2018.04.18, promises_1.0.1, purrr_0.3.2, R6_2.4.0, Rcpp_1.0.1, readr_1.3.1, readxl_1.3.1, recipes_0.1.5, reshape2_1.4.3, rlang_0.3.4, rmarkdown_1.12.6, rpart_4.1-13, rprojroot_1.3-2, rstudioapi_0.10, rvest_0.3.3, scales_1.0.0, sessioninfo_1.1.1.9000, shiny_1.3.1, stringi_1.4.3, stringr_1.4.0, survival_2.43-3, tibble_2.1.1, tidyr_0.8.3, tidyselect_0.2.5, tidyverse_1.2.1, timeDate_3043.102, viridisLite_0.3.0, withr_2.1.2, xaringan_0.9, xaringanthemer_0.2.0, xfun_0.6, xml2_1.2.0, xtable_1.8-3, yaml_2.2.0