Vertex Reordering for Real-World Graphs and Applications: An Empirical Evaluation

2020 IEEE International Symposium on Workload Characterization

Reet Barik ¹, Marco Minutoli ², Mahantesh Halappanavar ^{2,1}, Nathan R. Tallent ², Ananth Kalyanaraman ^{1,2}

¹School of Electrical Engineering and Computer Science, Washington State University

²Pacific Northwest National Laboratory

October 27 - October 29, 2020

Outline

Vertex Reordering

Motivation and Problem Background 'Gap' Measures Classification

Comparative Evaluation

Effect of reordering on Gap Measures Results

Gap Distribution

Real-World Application Study

Effect of reordering on performance Community Detection Results Influence Maximization Results

Conclusions

- Acknowledgments
- Backup Slides

Vertex Reordering Motivation and Problem Background

Let G = (V, E) denote an input graph, where V is the set of (n) vertices and E is the set of (m) edges.

We use identifiers in the interval [1, n] to identify the vertice:

A vertex reordering Π of V is a 1-1 mapping (bijection or permutation) of V onto a sequence or linear order.

Candidate Ordering

- Let G = (V, E) denote an input graph, where V is the set of (n) vertices and E is the set of (m) edges.
- lacksquare We use identifiers in the interval [1,n] to identify the vertices.

A $vertex\ reordering\ \Pi$ of V is a 1-1 mapping (bijection or permutation) of V onto a sequence ollinear order.

Input Ordering

Candidate Ordering

- Let G = (V, E) denote an input graph, where V is the set of (n) vertices and E is the set of (m) edges.
- We use identifiers in the interval [1, n] to identify the vertices.

A vertex reordering Π of V is a 1-1 mapping (bijection or permutation) of V onto a sequence or linear order.

- Let G = (V, E) denote an input graph, where V is the set of (n) vertices and E is the set of (m) edges.
- We use identifiers in the interval [1, n] to identify the vertices.

A vertex reordering Π of V is a 1-1 mapping (bijection or permutation) of V onto a sequence or linear order.

1 3 6

Candidate Ordering

- Let G = (V, E) denote an input graph, where V is the set of (n) vertices and E is the set of (m) edges.
- We use identifiers in the interval [1, n] to identify the vertices.

A vertex reordering Π of V is a 1-1 mapping (bijection or permutation) of V onto a sequence or linear order.

Candidate Ordering

Vertex Reordering 'Gap' Measures

'Gap' Measures

Given an ordering Π of V, the linear arrangement gap (or simply gap) between any two vertices i and j connected by an edge, is the absolute difference between their ranks in Π .

average gap profile (or the average linear arrangement gap)

$$Avg.Gap(G,\Pi) = \frac{1}{|E|} \sum_{(i,j) \in E} Gap(i,j)$$

A good ordering **minimizes** the Average Linear Gap.

'Gap' Measures

Given an ordering Π of V, the linear arrangement gap (or simply gap) between any two vertices i and j connected by an edge, is the absolute difference between their ranks in Π .

average gap profile (or the average linear arrangement gap):

$$Avg.Gap(G,\Pi) = \frac{1}{|E|} \sum_{(i,j) \in E} Gap(i,j)$$

A good ordering **minimizes** the Average Linear Gap.

'Gap' Measures

graph bandwidth (or the maximum linear arrangement gap):

$$Bandwidth(G,\Pi) = \max\{Gap(i,j)|\forall (i,j) \in E\}$$

A good ordering **minimizes** the Graph Bandwidth.

An Example

Natural Ordering

Avg.Gap = 3.3Bandwidth = 5

Candidate Ordering

Avg.Gap = 1.7Bandwidth = 3

Vertex Reordering Classification

Classification of Different Reordering Schemes

Our objective is to compare these reordering schemes from different classes based on their ability to minimize gap-based measures and their impact on real-world graph applications.

Comparative Evaluation Effect of reordering on Gap Measures

Effect of reordering on Gap Measures

Inputs

Input	#Vertices		Δ	Std Dev
Small Ins	tances for Q	ualitative	Analysi	s
Chicago Road	1,467	1,298	12	2.539
Euroroad		1,417		1.189
Facebook (NIPS)	2,888	2,981		22.888
U. Rovira i Virgili	1,133	5,451		9.340
delaunay_n11	2,048	6,128		1.392
Figeys	2,239	6,452		17.013
US power grid	4,941	6,594		1.791
delaunay_n12	4,096	12,265		1.367
Hamster small	1,858	12,534		20.731
Hamster full	2,426	16,631		19.873
PGP	10,680	24,316	205	8.077
delaunay_n13	8,192	24,548		1.343
OpenFlights	2,939	30,501		43.216
fe_4elt2	11,143	32,819		0.890
Twitter lists	23,370	33,101		10.143
Google+	23,628	39,242	2,771	35.285
CS4	22,499	43,859		0.302
cti	16,840	48,233		0.501
delaunay_n14	16,384	49,123		1.348
CAIDA	26,475	53,381	2,628	33.374
Vsp	10,498	53,869		16.199
wing_nodal		75,489		2.862
Cora citation	23,166	91,500	379	11.314
Gnutella	62,586	147,892		5.701
arXiv astro-ph	18,771	198,050		30.565

Reordering Schemes

- Natural
- **METIS**
- Degree Sort
- **RCM**
- Gorder
- Grappolo
- Random
- Grappolo-RCM
- Rabbit-Order
- SlashBurn
- ND

Reordering Quality

- Average Linear Gap
 - Graph Bandwidth

Comparative Evaluation Results

Average Gap Profile

The X-axis represents the factor by which a given scheme fares relative to the best performing scheme over that fraction of inputs.

Average Gap Profile

Takeaway: Partition based schemes (METIS, Grappolo, Rabbit-Order) do better in minimizing the Average Gap Profile.

Graph Bandwidth

Takeaway: RCM (Reverse Cuthill-McKee) outperforms other schemes in reducing the graph bandwidth.

Comparative Evaluation Gap Distribution

Gap Distribution

Violin plots of the gap distribution and gap metrics for different methods (green is best, and yellow is worst) for **Chicago** (top-left), **Fe_4elt2** (top-right), and **vsp** (bottom).

10.386.00

10,456.00 10,433.00 10,288.00

A Bottom-Heavy Distribution indicates good reordering scheme.

Real-World Application Study

Real-World Application Study

Community Detection

Influence Maximization

Real-World Application Study Effect of reordering on performance

Effect of reordering on performance

Inputs

Input	#Vertices	#Edges	Δ	Std Dev
Large Instances	for Applicati		ance Ana	alysis
Livemocha	1.04E+05	2.19E+06	2,980	1.10E+02
California Roadnet		2.77E+06	12	9.95E-01
Hyves	1.40E+06	2.78E+06	31,883	4.53E+01
arXiv hep-ph	2.81E+04	4.60E+06	11,134	5.91E+02
		9.38E+06	91,751	1.28E+02
Skitter	1.70E+06	1.11E+07	35,455	1.37E+02
Actor collaborations	3.82E+05	3.31E+07	16,764	4.22E+02
LiveJournal links	5.20E+06	4.87E+07	15,016	5.06E+01
Orkut	3.07E+06	1.17E+08	33,313	1.55E+02

Reordering Schemes

- Natural
- METIS
- Degree Sort
- RCM
- Grappolo

Impact on

- Community Detection: Grappolo
- Influence Maximization: Ripples

Test Platform

Shared memory server with 8 Intel Xeon Platinum 8276 (Cascade Lake) CPUs & 6 TB DDR4-2933 of memory (L1 cache of 32KB; per-core L2 cache of 1 MB, & (socket-wide) L3 cache of 38.5 MB)

Real-World Application Study Community Detection Results

		Phas	e (c)			Iterati	ion (s)		1+	eratio	n Cou	nt		Aodulari	ty (final		10/4	ork% (C	DIITin	201	Wo	rk/eds	re (lo:	nds)
		riida	e (3)			iterati	ion (s)			ciatio	Cou	ш.		viodulari	ty (IIIIai			JIK 70 (C	FO IIII	10)	****	. K/ Eug	je (loa	lusj
Graph	Grappolo	RCM	Natural	Degree	Grplo	RCM	Ntrl	Degr	Grplo	RCM	Ntrl	Degr	Grplo	RCM	Ntrl	Degr	Grplo	RCM	Ntrl	Degr	Grplo	RCM	Ntrl	Degr
LiveMocha	1.4	1.0	1.5	1.5	0.20	0.26	0.37	0.51	7	4	4	3	0.040	0.047	0.027	0.019	28%	24%	20%	19%	3.1	3.2	3.8	2.8
CA RoadNet	0.9	1.5	0.9	1.9	0.13	0.38	0.23	0.65	7	4	4	3	0.992	0.992	0.992	0.992	9%	12%	9%	16%	0.5	1.5	0.8	2.5
Hyves	1.6	1.5	1.7	2.4	0.39	0.39	0.44	0.60	4	4	4	4	0.608	0.731	0.722	0.715	22%	19%	18%	17%	2.5	2.5	2.1	2.1
arXiv hep-ph	3.3	3.8	4.2	5.8	0.09	0.10	0.12	0.14	36	37	36	42	0.516	0.530	0.531	0.535	50%	45%	39%	36%	0.9	1.0	0.9	0.9
YouTube	4.2	3.4	9.5	7.3	0.28	0.85	0.48	1.82	15	4	20	4	0.644	0.636	0.644	0.633	21%	12%	19%	13%	6.4	7.1	6.0	7.7
Skitter	6.3	2.9	8.1	5.8	0.14	0.95	0.21	1.45	44	3	39	4	0.842	0.833	0.840	0.827	20%	11%	15%	12%	3.2	7.0	3.4	7.3
Actor collab	7.7	12.4	8.5	29.2	0.16	0.26	0.21	0.58	49	48	41	50	0.708	0.715	0.714	0.717	32%	24%	27%	20%	2.3	2.3	2.4	2.5
LiveJournal	24.0	49.5	52.3	90.6	0.25	0.92	0.66	1.41	96	54	79	64	0.746	0.751	0.749	0.741	35%	29%	27%	30%	9.9	10.9	10.4	11.7
Orkut	70.1	131.7	52.9	131.1	0.55	1.25	0.62	2.11	128	105	85	62	0.623	0.622	0.635	0.623	38%	44%	38%	41%	8.8	10.9	9.4	11.9
	lower (redder) better				low	er (red	der) bet	ter	lowe	er (red	der) b	etter	hig	gher (red	der) bett	er	higi	ner (red	der) be	tter	lowe	er (redo	ter) be	etter:

Takeaways:

Phase and Iteration times: Grappolo usually outperforms Degree Sort, at times by factors $2 \times -4 \times$ or more.

Parallel Efficiency (Work%): The Grappolo ordering usually has the highest It also has the lowest work per edge. This tends to result in a better load balance.

		Phas	e (s)			Iterati	ion (s)		It	eratior	n Cou	nt	N	√lodulari	ity (final)		Wo	ork% (C	PU Tin	ne)	Wo	rk/edg	ge (loa	ads)
Graph	Grappolo	RCM	Natural	Degree	Grplo	RCM	Ntrl	Degr	Grplo	RCM	Ntrl	Degr	Grplo	RCM	Ntrl	Degr	Grplo	RCM	Ntrl	Degr	Grplo	RCM	Ntrl	Degr
LiveMocha	1.4	1.0	1.5	1.5	0.20	0.26	0.37	0.51	7	4	4	3	0.040	0.047	0.027	0.019	28%	24%	20%	19%	3.1	3.2	3.8	2.8
CA RoadNet	0.9	1.5	0.9	1.9	0.13	0.38	0.23	0.65	7	4	4	3	0.992	0.992	0.992	0.992	9%	12%	9%	16%	0.5	1.5	0.8	2.5
Hyves	1.6	1.5	1.7	2.4	0.39	0.39	0.44	0.60	4	4	4	4	0.608	0.731	0.722	0.715	22%	19%	18%	17%	2.5	2.5	2.1	2.1
arXiv hep-ph	3.3	3.8	4.2	5.8	0.09	0.10	0.12	0.14	36	37	36	42	0.516	0.530	0.531	0.535	50%	45%	39%	36%	0.9	1.0	0.9	0.9
YouTube	4.2	3.4	9.5	7.3	0.28	0.85	0.48	1.82	15	4	20	4	0.644	0.636	0.644	0.633	21%	12%	19%	13%	6.4	7.1	6.0	7.7
Skitter	6.3	2.9	8.1	5.8	0.14	0.95	0.21	1.45	44	3	39	4	0.842	0.833	0.840	0.827	20%	11%	15%	12%	3.2	7.0	3.4	7.3
Actor collab	7.7	12.4	8.5	29.2	0.16	0.26	0.21	0.58	49	48	41	50	0.708	0.715	0.714	0.717	32%	24%	27%	20%	2.3	2.3	2.4	2.5
LiveJournal	24.0	49.5	52.3	90.6	0.25	0.92	0.66	1.41	96	54	79	64	0.746	0.751	0.749	0.741	35%	29%	27%	30%	9.9	10.9	10.4	11.7
Orkut	70.1	131.7	52.9	131.1	0.55	1.25	0.62	2.11	128	105	85	62	0.623	0.622	0.635	0.623	38%	44%	38%	41%	8.8	10.9	9.4	11.9
	low	er	low	er (redo	der) beti	ter	lowe	er (reda	ter) be	etter	hig	gher (red	der) bett	er	high	her (red	der) be	etter	lowe	er (reda	ler) be	tter		

Takeaways:

Phase and Iteration times: Grappolo usually outperforms Degree Sort, at times by factors $2 \times - 4 \times$ or more.

Parallel Efficiency (Work%): The Grappolo ordering usually has the highest It also has the lowest work per edge. This tends to result in a better load balance.

		Phas	e (s)			Iterati	on (s)		lt	eratio	n Cou	nt	N	√lodulari	ty (final)	Wo	ork% (C	PU Tin	ne)	Wo	rk/edg	ge (loa	ıds)
Graph	Grappolo	RCM	Natural	Degree	Grplo	RCM	Ntrl	Degr	Grplo	RCM	Ntrl	Degr	Grplo	RCM	Ntrl	Degr	Grplo	RCM	Ntrl	Degr	Grplo	RCM	Ntrl	Degr
LiveMocha	1.4	1.0	1.5	1.5	0.20	0.26	0.37	0.51	7	4	4	3	0.040	0.047	0.027	0.019	28%	24%	20%	19%	3.1	3.2	3.8	2.8
CA RoadNet	0.9	1.5	0.9	1.9	0.13	0.38	0.23	0.65	7	4	4	3	0.992	0.992	0.992	0.992	9%	12%	9%	16%	0.5	1.5	0.8	2.5
Hyves	1.6	1.5	1.7	2.4	0.39	0.39	0.44	0.60	4	4	4	4	0.608	0.731	0.722	0.715	22%	19%	18%	17%	2.5	2.5	2.1	2.1
arXiv hep-ph	3.3	3.8	4.2	5.8	0.09	0.10	0.12	0.14	36	37	36	42	0.516	0.530	0.531	0.535	50%	45%	39%	36%	0.9	1.0	0.9	0.9
YouTube	4.2	3.4	9.5	7.3	0.28	0.85	0.48	1.82	15	4	20	4	0.644	0.636	0.644	0.633	21%	12%	19%	13%	6.4	7.1	6.0	7.7
Skitter	6.3	2.9	8.1	5.8	0.14	0.95	0.21	1.45	44	3	39	4	0.842	0.833	0.840	0.827	20%	11%	15%	12%	3.2	7.0	3.4	7.3
Actor collab	7.7	12.4	8.5	29.2	0.16	0.26	0.21	0.58	49	48	41	50	0.708	0.715	0.714	0.717	32%	24%	27%	20%	2.3	2.3	2.4	2.5
LiveJournal	24.0	49.5	52.3	90.6	0.25	0.92	0.66	1.41	96	54	79	64	0.746	0.751	0.749	0.741	35%	29%	27%	30%	9.9	10.9	10.4	11.7
Orkut	70.1	131.7	52.9	131.1	0.55	1.25	0.62	2.11	128	105	85	62	0.623	0.622	0.635	0.623	38%	44%	38%	41%	8.8	10.9	9.4	11.9
	low	er (redo	der) betti	er	low	er (redo	der) bet	ter	lowe	er (reda	der) b	etter	hig	gher (red	der) bett	er	high	er (red	der) be	tter	lowe	er (reda	ter) be	tter:
4																								

Takeaways:

- **Phase and Iteration times**: Grappolo usually outperforms Degree Sort, at times by factors $2 \times 4 \times$ or more.
- **Parallel Efficiency (Work%)**: The Grappolo ordering usually has the highest It also has the lowest work per edge. This tends to result in a better load balance.

		У	YouTube	e				Skitter				Ac	ctor coll	lab			Liv	veJourn	nal				Orkut		
Order	Lat	L1	L2	L3	DRAM	Lat	L1	L2	L3	DRAM	Lat	L1	L2	L3	DRAM	Lat	L1	L2	L3	DRAM	Lat	L1	L2	L3	DRAM
Grappolo	13	9%	16%	26%	65%	9	14%	21%	15%	53%	11	13%	49%	15%	16%	19	5%	11%	15%	31%	14	8%	14%	21%	8%
RCM	34	14%	14%	26%	62%	8	25%	11%	22%	39%	12	13%	48%	17%	15%	21	8%	8%	19%	29%	23	10%	11%	26%	15%
Natural	11	10%	7%	19%	78%	11	13%	21%	12%	52%	9	15%	49%	11%	16%	25	7%	8%	14%	37%	16	8%	13%	20%	14%
Degree	16	14%	13%	18%	60%	13	18%	12%	28%	34%	13	10%	51%	18%	11%	31	8%	7%	19%	35%	20	10%	12%	24%	14%

Expectation:

- lower memory latency to correspond to memory boundedness at lower memory levels
- lower iteration time to correlate to lower memory latency

Reality:

Neither holds in all cases. For example: Grappolo tends to be more DRAM bound than Degree, even though average memory latency is lower

		\	YouTube	e				Skitter				Ac	ctor coll	ab			Liv	veJourn	nal				Orkut		
Order	Lat	L1	L2	L3	DRAM	Lat	L1	L2	L3	DRAM	Lat	L1	L2	L3	DRAM	Lat	L1	L2	L3	DRAM	Lat	L1	L2	L3	DRAM
Grappolo	13	9%	16%	26%	65%	9	14%	21%	15%	53%	11	13%	49%	15%	16%	19	5%	11%	15%	31%	14	8%	14%	21%	8%
RCM	34	14%	14%	26%	62%	8	25%	11%	22%	39%	12	13%	48%	17%	15%	21	8%	8%	19%	29%	23	10%	11%	26%	15%
Natural	11	10%	7%	19%	78%	11	13%	21%	12%	52%	9	15%	49%	11%	16%	25	7%	8%	14%	37%	16	8%	13%	20%	14%
Degree	16	14%	13%	18%	60%	13	18%	12%	28%	34%	13	10%	51%	18%	11%	31	8%	7%	19%	35%	20	10%	12%	24%	14%

Expectation:

- lower memory latency to correspond to memory boundedness at lower memory levels.
- lower iteration time to correlate to lower memory latency.

Reality

 Neither holds in all cases. For example: Grappolo tends to be more DRAM bound than Degree, even though average memory latency is lower

		Y	/ouTub	e				Skitter				Ac	ctor coll	ab			Liv	veJourn	ıal				Orkut		
Order	Lat	L1	L2	L3	DRAM	Lat	L1	L2	L3	DRAM	Lat	L1	L2	L3	DRAM	Lat	L1	L2	L3	DRAM	Lat	L1	L2	L3	DRAM
Grappolo	13	9%	16%	26%	65%	9	14%	21%	15%	53%	11	13%	49%	15%	16%	19	5%	11%	15%	31%	14	8%	14%	21%	8%
RCM	34	14%	14%	26%	62%	8	25%	11%	22%	39%	12	13%	48%	17%	15%	21	8%	8%	19%	29%	23	10%	11%	26%	15%
Natural	11	10%	7%	19%	78%	11	13%	21%	12%	52%	9	15%	49%	11%	16%	25	7%	8%	14%	37%	16	8%	13%	20%	14%
Degree	16	14%	13%	18%	60%	13	18%	12%	28%	34%	13	10%	51%	18%	11%	31	8%	7%	19%	35%	20	10%	12%	24%	14%

Expectation:

- lower memory latency to correspond to memory boundedness at lower memory levels.
- lower iteration time to correlate to lower memory latency.

Reality:

Neither holds in all cases. For example: Grappolo tends to be more DRAM bound than Degree, even though average memory latency is lower

		Y	YouTube	.e				Skitter				A	ctor coll	ab			Liv	veJourn	nal				Orkut		
Order	Lat	L1	L2	L3	DRAM	Lat	L1	L2	L3	DRAM	Lat	L1	L2	L3	DRAM	Lat	L1	L2	L3	DRAM	Lat	L1	L2	L3	DRAM
Grappolo	13	9%	16%	26%	65%	9	14%	21%	15%	53%	11	13%	49%	15%	16%	19	5%	11%	15%	31%	14	8%	14%	21%	8%
RCM	34	14%	14%	26%	62%	8	25%	11%	22%	39%	12	13%	48%	17%	15%	21	8%	8%	19%	29%	23	10%	11%	26%	15%
Natural	11	10%	7%	19%	78%	11	13%	21%	12%	52%	9	15%	49%	11%	16%	25	7%	8%	14%	37%	16	8%	13%	20%	14%
Degree	16	14%	13%	18%	60%	13	18%	12%	28%	34%	13	10%	51%	18%	11%	31	8%	7%	19%	35%	20	10%	12%	24%	14%

Expectation:

- lower memory latency to correspond to memory boundedness at lower memory levels.
- lower iteration time to correlate to lower memory latency.

Reality:

Neither holds in all cases. For example: Grappolo tends to be more DRAM bound than Degree, even though average memory latency is lower

Possible Explanation

- Graph traversal costs **may not** be the dominant fraction of an algorithm's execution time.
 - An algorithm's use of auxiliary data structures can result in additional memory access patterns that negate the benefits of vertex orderings in graph traversals.

Possible Explanation

- Graph traversal costs may not be the dominant fraction of an algorithm's execution time.
- An algorithm's use of auxiliary data structures can result in additional memory access patterns that negate the benefits of vertex orderings in graph traversals.

Real-World Application Study Influence Maximization Results

Impact on Influence Maximization

Memory performance counters for the hotspot function in Ripples for the input graph 'Skitter'. We report how often the machine was stalled at all the layers of the memory hierarchy (L1/L2/L3/DRAM).

Takeaways

Expectation:

Reordering schemes should shift the runtime profile to be more cache bound rather than memory bound and a consequent performance improvement.

Reality

Overall improvements on Ripples are marginal, with no particular reordering scheme standing out.

Takeaways

Expectation:

Reordering schemes should shift the runtime profile to be more cache bound rather than memory bound and a consequent performance improvement.

Reality:

 Overall improvements on Ripples are marginal, with no particular reordering scheme standing out.

Example

Degree Sort and Grappolo based orderings show a significant improvement on the percentage of memory operation bound by the L1 cache.

Example

Expectation:

 Observing corresponding good performance (Sampling Throughput and Execution Time) for both Degree Sort and Grappolo ordering.

Reality

 Degree Sort and Grappolo are at the opposite of the execution time and sampling throughput spectrum.

Example

Expectation:

Observing corresponding good performance (Sampling Throughput and Execution Time) for both Degree Sort and Grappolo ordering.

Reality:

 Degree Sort and Grappolo are at the opposite of the execution time and sampling throughput spectrum.

Possible Explanation

Parallel threads competing for memory bandwidth and cache space.

Solution

If the underlying implementation can be made locality-aware such applications can also benefit from ordering schemes.

Possible Explanation

Parallel threads competing for memory bandwidth and cache space.

Solution

If the underlying implementation can be made locality-aware such applications can also benefit from ordering schemes.

- Partition based reordering schemes generally tend to do better than others in optimizing for Average Gap profiles.
 - RCM does best in terms of reducing the Graph Bandwidth
 - Reordering has more benefits when it comes to Community Detection as an end application than Influence Maximization.

- Partition based reordering schemes generally tend to do better than others in optimizing for Average Gap profiles.
- RCM does best in terms of reducing the Graph Bandwidth.
 - Reordering has more benefits when it comes to Community Detection as an end application than Influence Maximization.

- Partition based reordering schemes generally tend to do better than others in optimizing for Average Gap profiles.
- RCM does best in terms of reducing the Graph Bandwidth.
- Reordering has more benefits when it comes to Community Detection as an end application than Influence Maximization.

Does reordering matter?

- Idea about memory hierarchy usage by the end application
- Is reordering worth it? Depends...
- Cost amortization by repeated use of the input graph in graph analytic applications

Does reordering matter? YES!!

- Idea about memory hierarchy usage by the end application
- Is reordering worth it? Depends...
- Cost amortization by repeated use of the input graph in graph analytic applications.

Does reordering matter? YES!!

Idea about memory hierarchy usage by the end application.

Is reordering worth it? Depends...

Cost amortization by repeated use of the input graph in graph analytic applications

Does reordering matter? YES!!

Idea about memory hierarchy usage by the end application.

Is reordering worth it? Depends...

Cost amortization by repeated use of the input graph in graph analytic applications

Does reordering matter? YES!!

Idea about memory hierarchy usage by the end application.

Is reordering worth it? Depends...

Cost amortization by repeated use of the input graph in graph analytic applications

Does reordering matter? YES!!

Idea about memory hierarchy usage by the end application.

Is reordering worth it? Depends...

Cost amortization by repeated use of the input graph in graph analytic applications.

Acknowledgments

This research is in parts supported by the Exascale Computing Project (17-SC-20-SC), a collaborative effort of the U.S. Department of Energy Office of Science and the National Nuclear Security Administration, through the ExaGraph project at the Pacific Northwest National Laboratory (PNNL); by the U.S. National Science Foundation (NSF) grants CCF 1815467, OAC 1910213, and CCF 1919122 to Washington State University. PNNL is operated by Battelle Memorial Institute under Contract DE-AC06-76RL01830.

Thank You

Backup Slides

Average Graph Bandwidth

Figure: Profile of relative performance of the average graph bandwidth (right). The Y-axis represents the fraction of problems with a total of 25 inputs. The X-axis represents the factor by which a given scheme fares relative to the best performing scheme over that fraction of inputs

METIS: Performance for different partition sizes

Figure Profile of relative performance of the average gap profile $(\widehat{\xi}(G,\Pi))$ for different number of partitions (from 8 to 256; 32 is the best) in the METIS-based ordering.

METIS: Performance for different partition sizes

Figure Performance profile of compute time for four representative ordering techniques: RCM, Degree Sort, Grappolo and METIS.