

1.8~3.3V

Low-Power Precision CMOS Oscillator

www.discera.com

General Description

The DSC1001 is a silicon MEMS based CMOS oscillator offering excellent jitter and stability performance over a wide range of supply voltages and temperatures. The device operates from 1 to 150MHz with supply voltages between 1.8 to 3.3 Volts and temperature ranges up to -40°C to 105°C.

The DSC1001 incorporates an all silicon resonator that is extremely robust and nearly immune to stress related fractures, crystal based oscillators. common to Without sacrificing the performance and stability required of today's systems, a crystal-less design allows for a higher level of reliability, making the DSC1001 ideal for industrial, portable rugged, and applications where stress, shock, and vibration can damage quartz crystal based systems.

Available in industry standard packages, the DSC1001 can be "dropped-in" to the same PCB footprint as standard crystal oscillators.

Block Diagram

Features

- Frequency Range: 1 to 150MHz
- Exceptional Stability over Temperature
 - ±10 PPM, ±25 PPM, ±50 PPM
- Operating voltage
 - o 1.7 to 3.6V
- Operating Temperature Range
 - Ext. Industrial -40°C to 105°C
 - Industrial -40°C to 85°C
 - o Ext. Commercial -20°C to 70°C
 - Commercial 0°C to 70°C
- Low Operating and Standby Current
 - 5mA Operating (40MHz)
 - o 15uA Standby
- Ultra Miniature Footprint
 - o 2.5 x 2.0 x 0.85 mm
 - o 3.2 x 2.5 x 0.85 mm
 - o 5.0 x 3.2 x 0.85 mm
 - o 7.0 x 5.0 x 0.85 mm
- MIL-STD 883 Shock and Vibration Resistant
- Pb Free, RoHS, Reach SVHC Compliant
- AEC-Q100 Reliability Qualified

Benefits

- Pin for pin "drop in" replacement for industry standard oscillators
- Semiconductor level reliability, significantly higher than quartz
- Short mass production lead-times
- Longer Battery Life / Reduced Power
- Compact Plastic package
- Cost Effective

Applications

- Mobile Applications
- Consumer Electronics
- Portable Electronics
- DVR, CCTV, Surveillance Cameras
- Low Profile Applications
- Industrial Applications

Absolute Maximum Ratings¹

Item	Min	Max	Unit	Condition		
Input Voltage	-0.3	VDD+0.3	V			
Junction Temp	-	+150	°C			
Storage Temp	-55	+150	°C			
Soldering Temp	-	+260	°C	40 sec max.		
ESD	-		V			
нвм		4000				
MM		200				
CDM		1500				

Ordering Code

^{*} See Ordering Information for details

Recommended Operating Conditions

Parameter	Symbol	Range
Supply Voltage	V_{DD}	1.7 - 3.6V
Output Load	Z_L	R>10KΩ, C≤15pF
Operating Temperature Option 1 Option 2 Option 3 Option 4	Т	-40 to +105 °C -40 to +85 °C -20 to +70 °C 0 to +70 °C

Specifications (VDD = 1.8 to 3.3 v) $T_A = 85^{\circ}\text{C}$ unless otherwise specified

Parameter	Symbol	Condition	Min	Тур	Max	Unit
Frequency	uency f ₀ Single Fr		1		150	MHz
Frequency Tolerance ∆f		Includes frequency variations due to initial tolerance, temperature and power supply voltage			±10,±25,±50	ppm
Aging	Δf				±5	ppm
Supply Current, standby	I_{DD}	T=25°C			15	uA
Output Logic Levels Output logic high Output logic low V _{OL}		-4mA 4mA	0.8*V _{DD}		- 0.2*V _{DD}	Volts
Output Startup Time ²	t _{su}	T=25°C		1.0	1.3	ms
Output Disable Time	t _{DA}			20	100	ns
Output Duty Cycle	SYM		45		55	%
Input Logic Levels Input logic high Input logic low	V _{IH} V _{IL}		0.75*V _{DD}		- 0.25* V _{DD}	Volts

DSC1001 Page 2 MK-Q-B-P-D-050610-01-9

VDD = 1.8v

Parameter	Symbol	Condition		Min	Тур	Max	Unit
		C _L =0p	1MHz		6.0	6.3	
Summly Current no load	Ŧ	$R_1 = \infty$	27MHz		6.5	6.9	
Supply Current, no load	I_{DD}	T=25°C	70MHz		7.2	7.5	A
		1=25°C	150MHz		8.3	9.1	mA
Output Transition time							
Rise Time	t_R	$C_L=1$	5pF; T=25°C		1.8	3	20
Fall Time	$t_{\scriptscriptstyle{F}}$	20%/80%*V _{DD}			1.0	3	ns
Jitter, Max Cycle to Cycle	J _{cc}	$F = 100MHz^3$			60		Ps

VDD = 2.5v

Parameter	Symbol	Condition		Min	Тур	Max	Unit
		C _L =0p	1MHz		6.0	6.3	
Supply Current, no load	т	R _L =∞	27MHz		6.7	7.0	
Supply Current, no load	I_{DD}	T=25°C	70MHz		7.7	8.1	mA
		1-23 C	150MHz		9.6	10.6	IIIA
Output Transition time							
Rise Time	t_R	$C_L=1$	5pF; T=25°C		1.0	2	no
Fall Time	$t_{\scriptscriptstyle{F}}$	209	%/80%*V _{DD}		0.9	2	ns
Jitter, Max Cycle to Cycle	J_{CC}	$F = 100MHz^3$			50		ps

VDD = 3.3v

Parameter	Symbol	Condition		Min	Тур	Max	Unit
Supply Current, no load	${ m I}_{ m DD}$	$C_L=0p$ $R_L=\infty$ $T=25$ °C	1MHz 27MHz 70MHz 150MHz		6.0 6.8 8.2 10.8	6.3 7.2 8.7 12.2	mA
Output Transition time Rise Time Fall Time	t _R t _F	C _L =15pF; T=25°C 20%/80%*V _{DD}			1.0 0.9	2 2	ns
Jitter, Max Cycle to Cycle	J_{CC}	F =	$F = 100MHz^3$		50		ps

Notes:

- Absolute maximum ratings are those values beyond which the safety of the device cannot be guaranteed. The device should not be operated beyond these limits.
- t_{SU} is time to stable output frequency after V_{DD} is applied. t_{SU} and t_{EN} (after EN is asserted) are identical values. Measured over 50k clock cycles.

Nominal Performance Characteristics

Output Waveform

Standby Function

Standby# (pin 1)	Output (pin 3)
Hi Level	Output ON
Open (no connect)	Output ON
Low Level	High Impedance

Test Circuit

Board Layout (recommended)

Solder Reflow Profile

MSL 1 @ 260°C refer to JSTD-020C						
Ramp-Up Rate (200°C to Peak Temp)	3°C/Sec Max.					
Preheat Time 150°C to 200°C	60-180 Sec					
Time maintained above 217°C	60-150 Sec					
Peak Temperature	255-260°C					
Time within 5°C of actual Peak	20-40 Sec					
Ramp-Down Rate	6°C/Sec Max.					
Time 25°C to Peak Temperature	8 min Max.					

DSC1001 Page 6 MK-Q-B-P-D-050610-01-9

Package Dimensions

7.0 x 5.0 mm Plastic Package

5.0 x 3.2 mm Plastic Package

1.8~3.3V

3.2 x 2.5 mm Plastic Package

2.5 x 2.0 mm Plastic Package

Ordering Information

DSC1001

DSC1001 PTS - xxx.xxxx T

PART NUMBERING GUIDE						
Package (Plastic QFN) Temperature Stability Frequency Packing Option						
P=A: 7.0x5.0mm P=B: 5.0x3.2mm P=C: 3.2x2.5mm P=D: 2.5x2.0mm	T=C: $0^{\circ} \sim +70^{\circ} \text{ C}$ T=E: $-20^{\circ} \sim +70^{\circ} \text{ C}$ T=I: $-40^{\circ} \sim +85^{\circ} \text{ C}$ T=L: $-40^{\circ} \sim +105^{\circ} \text{ C}$	S=1: ±50ppm S=2: ±25ppm S=5: ±10ppm	xxx.xxx	Blank: Tubes T: Tape & Reel		

Example: DSC1001CE1-123.0000T

The example part number above is a 123.0000MHz oscillator in Plastic 3.2x2.5mm package, with ± 50 ppm stability over an operating temperature of -20 to +70°C, shipped in Tape and Reel.

Disclaimer:

Discera makes no warranty of any kind, express or implied, with regard to this material, including, but not limited to, the implied warranties of merchantability and fitness for a particular purpose. Discera reserves the right to make changes without further notice to materials described herein. Discera does not assume any liability arising from the application or use of any product or circuit described herein. Discera does not authorize its products for use a critical components in life-support systems where a malfunction or failure may reasonably be expected to result in significant injury to the user. The inclusion of Discera's product in a life-support systems application implies that the manufacturer assumes all risk of such use and in doing so indemnifies Discera against all charges.

DISCERA, Inc.

• 1961 Concourse Drive, San Jose, California 95131 • USA
Phone: +1 (408) 432-8600 • Fax: +1 (408) 432-8609 • Email: sales@discera.com • <u>www.discera.com</u>

• • •

Mouser Electronics

Authorized Distributor

Click to View Pricing, Inventory, Delivery & Lifecycle Information:

Micrel:

DSC1001AL1-026.0000T DSC1001BI5-100.0000T DSC1001BI1-001.8432T DSC1001BI1-060.0000T DSC1001CI2-073.7280T DSC1001CL1-008.0000T DSC1001DL5-012.2880T DSC1001DL5-048.0000T DSC1001DL5-020.0000T DSC1001DL5-100.0000T DSC1001DL5-133.3330T DSC1001DI5-012.2880T DSC1001DI5-020.0000T DSC1001DL5-010.0000T DSC1001DL5-050.0000T DSC1001DL5-125.0000T DSC1001DI5-050.0000T DSC1001DI2-029.5000T DSC1001DI2-038.4000 DSC1001DI5-029.4912T DSC1001DI2-108.0000T DSC1001DI2-125.0000T DSC1001DI5-010.0000T DSC1001DI1-009.8304T DSC1001DI1-024.5760T DSC1001DI1-026.0000T DSC1001DI1-060.0000 DSC1001DI1-100.0000T DSC1001DI2-018.0000 DSC1001CL2-033.3000T DSC1001CL5-012.0000T DSC1001CL5-024.5760T DSC1001CL5-125.0000T DSC1001DE1-054.0000T DSC1001DI1-008.0000T DSC1001Cl5-016.0000T DSC1001CI5-018.4320T DSC1001CI5-019.2000T DSC1001CI5-125.0000T DSC1001CL2-012.0000 DSC1001CL2-027.0000T DSC1001CI1-024.0000 DSC1001CI1-024.0000T DSC1001CI2-038.8800T DSC1001CI2-054.0000T DSC1001CI2-065.5500T DSC1001CI2-083.2500T DSC1001CE1-004.8000T DSC1001CE1-012.2880T DSC1001CE1-020.8300T DSC1001CE2-024.0000T DSC1001CE2-033.0000T DSC1001CE2-037.1250T DSC1001Al5-048.0000T DSC1001Dl2-048.0000T DSC1001Dl5-002.4576 DSC1001Dl5-004.0000T DSC1001Dl5-008.1920T DSC1001DL2-030.0000T DSC1001AI2-013.5000T DSC1001AI2-015.0000T DSC1001AI2-027.1200T DSC1001AI2-032.7680T DSC1001AI2-098.3040T DSC1001AI5-025.0000T DSC1001BL5-012.0000T DSC1001AC2-025.0000T DSC1001AE2-024.0000T DSC1001AE2-054.0000T DSC1001AI1-025.0000T DSC1001AI2-006.0000T DSC1001BI2-001.8432T DSC1001BI2-020.0000T DSC1001BI2-040.0000T DSC1001BI2-044.0000T DSC1001BI2-054.0000T DSC1001BI5-040.0000T DSC1001BE1-048.0000T DSC1001BE2-012.0000 DSC1001BI1-010.0000T DSC1001BI1-014.7456T DSC1001BI1-025.0000T DSC1001BI1-030.0000T DSC1001AI5-100.0000T DSC1001AI5-125.0060T DSC1001AL2-050.0000T DSC1001AL5-008.0000T DSC1001AL5-024.0000T DSC1001BE1-016.0000T DSC1001DI5-026.0000T DSC1001CI2-024.5760 DSC1001CI2-026.0000T DSC1001CI2-027.0000T DSC1001CI2-033.3333T DSC1001Al5-080.0000T DSC1001Dl1-032.0000T DSC1001Dl2-064.5000 DSC1001Dl2-074.2500T DSC1001DI5-006.0000T DSC1001DI5-008.0174T