

PROCESSAMENTO DIGITAL DE SINAIS

Prof. Claudio Coutinho

Aula 07

Amostragem (Cont.)

• A partir do exemplo da aula passada:

- A necessidade de que $f_s/_2>B$ ou $f_s>2B$ é chamada de **critério de Nyquist**
- Na imagem, por exemplo, foi considerado $f_{\rm S}=1.5B~Hz$

• Consideremos agora um sinal de banda B com ruído

- Se amostrarmos o sinal com o critério de Nyquist, todo o espectro do sinal será compreendido
- Mas a energia do ruído acaba entrando na banda de interesse do espectro

• Apesar de $f_s/_2 > B$, ainda temos que lidar com o ruído

- Para solucionar esse problemas, utilizamos um filtro **passa-baixas** chamado anti-aliasing antes da entrada do conversor A/D.
- O filtro atenua quaisquer ruídos de entrada para que não influencie no espectro

Teorema da Amostragem

• **Teorema da amostragem**: Se um sinal $x_a(t)$ no tempo contínuo tem largura de faixa limitada, isto é, sua transformada de Fourier é tal que $X_a(f) = 0$, $\forall |f| > f_c$, então $x_a(t)$ pode sem completamente recuperado a partir do sinal no tempo discreto $x[n] = x_a(nt_s)$, se a frequência de amostragem f_s satisfaz $f_s > 2f_c$

- Exercício 1: Suponha que temos um relógio mecânico somente com o ponteiro dos minutos. Então, tira-se uma foto do relógio com o ponteiro em 12:00 e demais fotos são tiradas a cada 55 minutos. Ao mostrar essas fotos para alguém:
- A) O que a pessoa poderia pensar sobre a direção do movimento do ponteiro com o passar do tempo?
- B) Com a ideia de *amostragem passa-baixas* em mente, com que frequência precisaríamos tirar fotos (em fotos/hora), de forma que a sucessão de fotos mostre uma ideia de movimento em sentido horário?

• Exercício 2: Assuma que amostramos um sinal contínuo x(t) e obtivemos 100 amostras no tempo x[n]. Que informação importante (um parâmetro que precisamos saber para analisar x(t)) está faltando na seqûencia x[n] para sabermos a duração total de x(t)?

- Exercício 3: Uma empresa produz um conversor A/D capaz de amostrar um sinal analógico com uma taxa de amostragem de $f_s = 2.0 \ GHz$.
- A) Qual o período $t_{\scriptscriptstyle S}$ da saída do conversor
- B) A capacidade total do conversor é de 256 milhões de amostras armazenadas. Qual o intervalo de tempo máximo que o conversor pode ficar amostrando um sinal contínuo?

• Exercício 4: Considere uma senoide no domínio do tempo:

$$x(t) = \cos\left(1000\pi t + \frac{\pi}{7}\right)$$

- Qual a frequência f_0 da senoide?
- Para $f_s = 4kHz$, o critério de *Nyquist* foi observado?
- Escreva a equação para a senoide discreta x[n] que é o resultado da amostragem de x(t) a uma taxa f_s .

• Exercício 5: Se amostrássemos uma senoide contínua, cuja frequência é f_0 Hz, em qual intervalo deve estar t_s para que se satisfaça o critério de Nyquist?

• Exercício 6: Considere uma senoide em tempo discreto definida por:

$$x[n] = sen(n\pi/4)$$

• A sequência foi obtida ao se amostrar uma senoide analógica $x(t) = sen(2\pi f_0 t)$ de frequência f_0 Hz. Se a taxa de amostragem de x[n] é $f_s = 160$ Hz, quais outros 3 possíveis valores positivos de frequência, em Hz, de f_0 que poderiam ter resultado em x[n]?

• Exercício 7: Considere a senoide:

$$x(t) = \cos(4000\pi t)$$

• Que foi amostrada para gerar a sequência discreta:

$$x[n] = \cos(n\pi/2)$$

• Qual a taxa de amostragem f_s , medida em Hz, que resultaria nessa sequência?