Algebra Lineare

Stefano Piccoli

 $2~\mathrm{marzo}~2022$

Indice

In	\mathbf{trod}	uzione	3			
	0.1	Equazioni a 3 variabili	3			
	0.2	Caso generale	4			
		0.2.1 Sistema omogeneo	4			
		0.2.2 Sistema omogeneo associato	4			
		0.2.3 Soluzione di un sistema	4			
		0.2.4 Trovare soluzioni comuni	5			
1	Mat	trici	6			
		1.0.1 Operazioni	6			
	1.1	Matrice a scalini	6			
	1.2	Algoritmo di Gauss	7			
		1.2.1 Casi possibili	8			
	1.3	Matrice ridotta a scalini	9			
	1.4	Algoritmo di Gauss-Jordan	9			
2	Spazi vettoriali 11					
		2.0.1 Somma	11			
		2.0.2 Moltiplicazione	11			
	2.1	Spazi vettoriali di dimensione n	11			
		2.1.1 Somma	12			
		2.1.2 Moltiplicazione	12			
	2.2		13			
	2.3	Combinazioni lineari	14			
	2.4	Span	14			
		2.4.1 Esercizi	15			
	2.5	Dipendenza lineare	16			
	2.6	Basi	18			
			18			
	2.7	Dimensione	19			
		2.7.1 Proprietà	19			

		2.7.2 Sottospazi	21
		Intersezioni di sottospazi	21
		Formula di Grassmann	21
	2.8	Rango	23
		2.8.1 Trovare il rango	23
3	App	licazioni lineari 2	4
	3.1	Kernel	25
		3.1.1 Trovare il Kernel utilizzando la matrice 2	25
	3.2	Immagine	26
		3.2.1 Trovare l'immagine utilizzando la matrice 2	26
		3.2.2 Trovare la dimensione	26
	3.3	Dimensione	27
	3.4	Prodotto	27
	3.5	Matrice associata all'applicazione lineare	28

Introduzione

L'Algebra Lineare si occupa di trovare soluzioni ad equazioni e sistemi lineari.

$$\begin{cases} E1: x + y = 3 \\ E2: x + 2y = 5 \end{cases}$$

E2 - E1 : y = 5-3 = 2Sostituzione: x=1

 $\begin{cases} E1: x + y = 3 \\ E2: 2x + 2y = 6 \end{cases}$

E2 - E1 : 0 = 0

Hanno le stesse soluzioni (infinità)

$$\begin{cases} E1: x+y=3\\ E2: 2x+2y=5 \end{cases}$$

E2 - E1 : 0 = -1

Nessuna soluzione comune

Quindi abbiamo 1, ∞ o 0 soluzioni comuni. Così sarà in generale.

0.1 Equazioni a 3 variabili

Le soluzioni comuni di 3 equazioni lineari a 3 variabili corrispondono all'intersezione di 3 piani nello spazio tridimensionale. L'intersezione può essere di 3 tipi:

- Un punto (unica soluzione)
- Una retta o un piano
- $0 \ (\infty \ soluzioni)$

0.2 Caso generale

Un sistema di n equazioni lineari a m variabili.

$$\begin{cases} a_{11}x_1 + a_{12}x_2 + \dots + a_{1m}x_m = b_1 \\ a_{12}x_1 + a_{22}x_2 + \dots + a_{2m}x_m = b_2 \\ \vdots \\ a_{n1}x_1 + a_{n2}x_2 + \dots + a_{nm}x_m = b_m \end{cases}$$
$$a_{ij}, b_i \in \Re$$
$$n, m > 0$$

0.2.1 Sistema omogeneo

Il sistema (E) è **omogeneo** se $b_1 = b_2 = \ldots = b_n = 0$

$$\begin{cases} a_{11}x_1 + a_{12}x_2 + \dots + a_{1m}x_m = 0 \\ a_{12}x_1 + a_{22}x_2 + \dots + a_{2m}x_m = 0 \\ \vdots \\ a_{n1}x_1 + a_{n2}x_2 + \dots + a_{nm}x_m = 0 \end{cases}$$

0.2.2 Sistema omogeneo associato

Un sistema omogeneo associato è un sistema dove la parte prima parte è uguale ad un altro e i coefficienti dopo l'uguale sono $\mathbf{0}$.

0.2.3 Soluzione di un sistema

Soluzione di un sistema = soluzione di un caso particolare + soluzione dell'omogenea associata.

Esempio
$$2x + 3y = 5, n = 1, m = 2$$

Soluzione particolare

$$2x + 3y = 5$$
$$x = y = 1$$

Soluzione omogenea

$$2x + 3y = 0$$
$$x = -\frac{3}{2}y$$

Soluzione generale Definiamo s parametro nel ruolo di y.

$$x = 1 + \left(-\frac{3}{2}\right)s$$
$$y = 1 + s$$

0.2.4 Trovare soluzioni comuni

Per trovare soluzioni comuni di E è necessario semplificare. Le 3 operazioni utili per semplificare sono:

- A) Moltiplicare un'equazione E_i per una costante. $\lambda \neq 0$. $E_i \Rightarrow \lambda E_i$
- B) Moltiplicare un'equazione E_i per $\lambda \neq 0$ e fare la somma con E_j . $E_j \Rightarrow E_j + \lambda E_i$.
- C) Scambiare due equazioni.

Capitolo 1

Matrici

Per semplificare inseriamo i coefficienti delle equazioni in una **matrice** $n \cdot m$.

$$\begin{bmatrix} a_{11} & a_{12} & \dots & a_{1m} \\ a_{21} & a_{22} & \dots & a_{2m} \\ \vdots & & & & \\ a_{n1} & a_{n2} & \dots & a_{nm} \end{bmatrix}$$

1.0.1 Operazioni

Le operazioni che potevamo usare per semplificare il sistema possiamo utilizzarle anche sulle matrici:

- A) Moltiplicare una riga per $\lambda \neq 0$. $R_i \Rightarrow \lambda \cdot R_i$.
- B) Sostituire la riga R_j con una somma. $R_j \Rightarrow R_j + \lambda \cdot R_i$.
- C) Scambiare due righe.

1.1 Matrice a scalini

Una matrice $n \cdot m$ è detta a **a scalini** se:

- 1. Le righe sono **in fondo**.
- 2. Il primo elemento di ogni riga, se esiste, è **a destra** del primo elemento ≠ 0 della riga precedente. Un tale elemento è detti **Pivot**.

$$\begin{bmatrix} 1 & 1 & 1 \\ 1 & 0 & 0 \\ 0 & 0 & 1 \end{bmatrix} NO \begin{bmatrix} 1 & 1 & 1 \\ 0 & 1 & 1 \\ 0 & 0 & 1 \end{bmatrix} SI \begin{bmatrix} 0 & 1 & 1 \\ 1 & 1 & 0 \\ 0 & 0 & 1 \end{bmatrix} NO$$

1.2 Algoritmo di Gauss

- 1. Se la matrice è gia in forma a scalini si termina. END.
- 2. Si cerca il primo elemento $\neq 0$ della prima colonna $\neq 0$.
- 3. Scambiando le righe possiamo supporre che questo elemento è il **pivot** della prima riga. Lo segniamo con p.
- 4. Se siamo in forma a scalini si **termina**. **END**.
- 5. Si annullano tutti gli elementi della colonna di p con operazioni di tipo $R_j \Rightarrow R_j + \lambda \cdot R_i$.
- 6. Se siamo in forma a scalini si **termina**. **END**.
- 7. Si ricomincia con la matrice ottenuta **escludendo** la prima riga.

Esempio

$$\begin{bmatrix} 1 & -1 & 0 & 3 \\ 3 & -1 & 1 & 10 \\ 1 & 5 & 2 & 1 \end{bmatrix}$$

Il **pivot** della prima riga è 1, ora devo annullare tutti gli elementi della colonna del pivot.

$$\xrightarrow{R_2 - 3R_1} \begin{bmatrix} 1 & -1 & 0 & 3 \\ 0 & 2 & 1 & 1 \\ 1 & 5 & 2 & 1 \end{bmatrix} \xrightarrow{R_3 - R_1} \begin{bmatrix} 1 & -1 & 0 & 3 \\ 0 & 2 & 1 & 1 \\ 0 & 6 & 2 & -2 \end{bmatrix}$$

La prima riga è **completata**, si ripete l'algoritmo escludendola.

$$\begin{bmatrix}
1 & -1 & 0 & 3 \\
0 & 2 & 1 & 1 \\
0 & 6 & 2 & -2
\end{bmatrix}$$

Nella seconda riga il **pivot** è 2, si procede annullando le colonne sotto il pivot.

La seconda riga è **completata**, si ripete l'algoritmo escludendola.

$$\begin{bmatrix} 1 & -1 & 0 & 3 \\ 0 & 2 & 1 & 1 \\ 0 & 0 & -1 & 5 \end{bmatrix}$$

L'algoritmo termina poiché -1 è un **pivot** e non ci sono colonne da annullare.

Conclusioni La matrice ritrasformata in sistema di equazioni è la seguente:

$$\begin{cases} x_1 - x_2 + 3x_4 = 0 \\ 2x_2 + x_3 + x_4 = 0 \\ -x_3 - 5x_4 = 0 \end{cases}$$

La colonna di x_4 è senza pivot quindi x_4 è detta variabile libera, e può assumere qualsiasi valore nel sistema. Sostituiamo la variabile libera x_4 con il parametro t.

$$\begin{cases} x_1 - x_2 + 3t = 0 \\ 2x_2 + x_3 + t = 0 \\ -x_3 - 5t = 0 \end{cases} \begin{cases} x_1 - x_2 + 3t = 0 \\ 2x_2 + x_3 + t = 0 \\ x_3 = -5t \end{cases} \begin{cases} x_1 - x_2 + 3t = 0 \\ 2x_2 - 5t + t = 0 \\ x_3 = -5t \end{cases}$$

$$\begin{cases} x_1 - x_2 + 3t = 0 \\ x_2 = 2t \\ x_3 = -5t \end{cases} \begin{cases} x_1 - 2t + 3t = 0 \\ x_2 = 2t \\ x_3 = -5t \end{cases} \begin{cases} x_1 = -t \\ x_2 = 2t \\ x_3 = -5t \end{cases}$$

L'equazione ha infinite soluzioni che possono essere parametrizzate in t.

1.2.1 Casi possibili

Se nella forma a scalini:

- 1. Ogni colonna "non aggiunta" ha un pivot $\Leftrightarrow \exists$ unica soluzione
- 2. C'è un pivot nell'ultima colonna ⇔ ∄ soluzione
- 3. C'è una colonna "non aggiunta" senza pivot e l'ultima colonna non ne ha $\Leftrightarrow \exists \infty$ soluzioni

1.3 Matrice ridotta a scalini

Una matrice è in forma ridotta a scalini se:

- È in forma a scalini
- Ogni **pivot** $\grave{e} = 1$
- Ogni **pivot** è l'unico elemento $\neq 0$ nella sua colonna

Esempi

$$\begin{bmatrix} 1 & 2 & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \end{bmatrix} \text{SI} \quad \begin{bmatrix} 1 & 2 & 3 & 4 \\ 0 & 0 & 1 & 2 \\ 0 & 0 & 0 & 1 \end{bmatrix} \text{NO (A scalini ma non ridotta)}$$

1.4 Algoritmo di Gauss-Jordan

L'algoritmo produce una matrice in forma **ridotta** a scalini attraverso operazioni del tipo A, B, C.

- 1. Con l'algoritmo di Gauss si riduce a scalini la matrice.
- 2. Nelle colonne dei pivot gli elementi della colonna superiore e a sinistra nella riga sono già = 0. Annullare gli elementi sopra il pivot nella colonna con **operazioni del tipo B** $(R_j \Rightarrow R_j + \lambda \cdot R_i)$.
- 3. In ogni riga si **cerca il pivot** (se esiste). Se il pivot $\lambda \neq 1$, si moltiplica la riga per $\frac{1}{\lambda}$.

Esempio Partiamo da una matrice già ridotta a scalini dall'algoritmo di Gauss.

$$\begin{bmatrix} 2 & 1 & -1 & | & -1 \ 3 & 2 & -1 & | & 0 \ 4 & -3 & 1 & | & -1 \ 5 & -2 & 2 & | & 2 \end{bmatrix} \xrightarrow{\text{Algoritmo di Gauss}} \begin{bmatrix} 2 & 1 & -1 & | & -1 \ 0 & 1 & 1 & | & 3 \ 0 & 0 & 1 & | & 2 \ 0 & 0 & 0 & | & 0 \end{bmatrix}$$

Ora applichiamo l'algoritmo di Gauss-Jordan alla matrice a scalini per trasformarla in matrice ridotta a scalini.

$$\begin{bmatrix} 2 & 1 & -1 & | & -1 \\ 0 & 1 & 1 & | & 3 \\ 0 & 0 & 1 & | & 2 \\ 0 & 0 & 0 & | & 0 \end{bmatrix}$$

Si azzerano gli elementi nelle colonne dei pivot che sono $\neq 0$.

$$\begin{bmatrix} 2 & 1 & -1 & & -1 \\ 0 & 1 & 1 & & 3 \\ 0 & 0 & 1 & & 2 \\ 0 & 0 & 0 & & 0 \end{bmatrix} \xrightarrow{R_1 - R_2} \begin{bmatrix} 2 & 0 & -2 & & -4 \\ 0 & 1 & 1 & & 3 \\ 0 & 0 & 1 & & 2 \\ 0 & 0 & 0 & & 0 \end{bmatrix} \xrightarrow{R_1 + 2R_3} \begin{bmatrix} 2 & 0 & 0 & & 0 \\ 0 & 1 & 0 & & 1 \\ 0 & 0 & 1 & & 2 \\ 0 & 0 & 0 & & 0 \end{bmatrix}$$

Ora nelle colonne dei pivot tutti gli elementi sono = 0 eccetto il pivot. Si individuano i pivot $\neq 1$ e si procede con la loro trasformazione a 1. Si moltiplicano le righe con i pivot $\neq 1$ per il loro reciproco.

$$\begin{bmatrix} 2 & 0 & 0 & 0 & 0 \\ 0 & 1 & 0 & 1 \\ 0 & 0 & 1 & 2 \\ 0 & 0 & 0 & 0 \end{bmatrix} \xrightarrow{R_1 \to \frac{1}{2}R_1} \begin{bmatrix} 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 1 \\ 0 & 0 & 1 & 2 \\ 0 & 0 & 0 & 0 \end{bmatrix}$$

Conclusioni

$$\begin{cases} x_1 = 0 \\ x_2 = 1 \\ x_3 = 2 \end{cases}$$

Capitolo 2

Spazi vettoriali

Si parla di **spazi vettoriali** quando definiamo punti e vettori nel piano \mathbb{R}^2 . Un **punto** di \mathbb{R}^2 si può descrivere con **due coordinate** (x_1, x_2) , ma anche con un **vettore** (una freccia) dall'**origine** (0,0) a (x_1, x_2)

2.0.1 Somma

Si può fare la **somma** di due vettori:

- Sulle coordinate: $(x_1, x_2) + (x'_1 + x'_2) := (x_1 + x'_1, x_2 + x'_2)$
- Geometricamente: Legge del parallelogramma dove la diagonale del parallelogramma è la somma dei due vettori.

2.0.2 Moltiplicazione

Un vettore può essere moltiplicato con uno scalare $\lambda \in \mathbb{R}$.

- Sulle coordinate: $\lambda(x_1, x_2) := (\lambda x_1, \lambda x_2)$
- \bullet Geometricamente: La lunghezza è moltiplicata da λ ma l'angolo non cambia.

2.1 Spazi vettoriali di dimensione n

Si definisce
$$\mathbb{R}^n := \left\{ \begin{bmatrix} x_1 \\ x_2 \\ \vdots \\ x_n \end{bmatrix} : x_i \in \mathbb{R} \right\}$$
 uno **spazio n-dim standard** o spazio dei vettori colonna.

Un spazio vettoriale di dimensione 2 corrisponde ad un piano, di dimensione 3 ad uno spazio euclideiano.

Definizione Uno spazio vettoriale su \mathbb{R} è un insieme V che ammette due tipi di operazioni:

• Somma: $v_1, v_2 \in V \to v_1 + v_2 \in V$.

• Prodotto con $\lambda \in \mathbb{R}$: $v \in V \to \lambda \cdot v \in V$.

Le operazioni devono soddisfare:

1.
$$(v_1 + v_2) + v_3 = v_1 + (v_2 + v_3)$$
 5. $(\lambda_1 + \lambda_2) \cdot v = \lambda_1 \cdot v + \lambda_2 \cdot v$

5.
$$(\lambda_1 + \lambda_2) \cdot v = \lambda_1 \cdot v + \lambda_2 \cdot v$$

2.
$$v_1 + v_2 = v_2 + v_1$$

6.
$$\lambda \cdot (v_1 + v_2) = \lambda \cdot v_1 + \lambda \cdot v_2$$

3.
$${}^{1}\exists ! 0 \in V : 0 + v = v + 0 = v \ \forall v$$

7.
$$(\lambda_1 \cdot \lambda_2) \cdot v = \lambda_1 \cdot (\lambda_2 \cdot v)$$

4.
$$\forall v \ \exists ! - v \in V : v + (-v) = (-v) + v = 0$$

8.
$$1 \cdot v = v$$

2.1.1Somma

$$\begin{bmatrix} x_1 \\ x_2 \\ \vdots \\ x_n \end{bmatrix} + \begin{bmatrix} x_1' \\ x_2' \\ \vdots \\ x_n' \end{bmatrix} := \begin{bmatrix} x_1 + x_1' \\ x_2 + x_2' \\ \vdots \\ x_n + x_n' \end{bmatrix}$$

Moltiplicazione 2.1.2

$$\lambda \cdot \begin{bmatrix} x_1 \\ x_2 \\ \vdots \\ x_n \end{bmatrix} := \begin{bmatrix} \lambda \cdot x_1 \\ \lambda \cdot x_2 \\ \vdots \\ \lambda \cdot x_n \end{bmatrix} \lambda \in \mathbb{R}.$$

 $^{^{1}\}exists !=$ Esiste un unico

2.2 Sottospazi vettoriali

Sia V uno spazio vettoriale. Un sottospazio $W \subset V$ è un sottoinsieme tale che

• Dati due vettori nel sottospazio, la loro somma sarà nel sottospazio.

$$v_1, v_2 \in W \Rightarrow v_1 + v_2 \in W$$

• Dato un vettore nel sottospazio, il prodotto con un qualsiasi scalare è contenuto nel sottospazio.

$$v \in W \Rightarrow \lambda v \in W \ \forall \lambda$$

Un sottospazio $W \subset V$ è uno spazio vettoriale.

Esempio

1.
$$\left\{\begin{bmatrix}t_1\\t_2\end{bmatrix}\in\mathbb{R}^2:t_1+t_2=0\right\}\subset\mathbb{R}^2$$
 è un sottospazio. In generale

$$\left\{ \begin{bmatrix} t_1 \\ t_2 \\ \vdots \\ t_m \end{bmatrix} \in \mathbb{R}^m : \begin{cases} a_{11}t_1 + a_{12}t_2 + \dots + a_{1m}t_m = 0 \\ a_{21}t_1 + a_{22}t_2 + \dots + a_{2m}t_m = 0 \\ \vdots \\ a_{n1}t_1 + a_{n2}t_2 + \dots + a_{nm}t_m = 0 \end{cases} \right\} \subset \mathbb{R}^m$$

è sottospazio.

Quindi le soluzioni di un sistema di equazioni lineari omogenei a n variabili definiscono un sottospazio di \mathbb{R}^m .

Non definiscono un sottospazio di \mathbb{R}^m le soluzioni di equazioni lineari non omogenee (coefficiente $\neq 0$).

2.3 Combinazioni lineari

Sia V uno spazio vettoriale, $v_1, v_2, \ldots, v_m \in V$. Una combinazione lineare di v_1, \ldots, v_m è una somma $\lambda_1 v_1 + \lambda_2 v_2 + \cdots + \lambda_m v_m \in V$, dove $\lambda_1, \lambda_2, \ldots, \lambda_m \in \mathbb{R}$.

La combinazione lineare è detta **banale** se $\lambda_1 = \cdots = \lambda_m = 0$.

Esempio

$$V = \mathbb{R}^2, \ v_1 = \begin{bmatrix} 1 \\ 1 \end{bmatrix}, \ v_2 = \begin{bmatrix} 2 \\ 2 \end{bmatrix}$$

Allora $-2v_1 + 1v_2 = 0$ è combinazione lineare non banale.

2.4 Span

Siano $v_1, \ldots, v_m \in V$ m vettori. Il **sottospazio generato** da v_1, \ldots, v_m è:

$$Span(v_1, v_2, ..., v_m) := \{\lambda_1 v_1 + \lambda_2 v_2 + \cdots + \lambda_m v_m : \lambda_1, ..., \lambda_m \in \mathbb{R}\}$$

Quindi Span è l'insieme di tutte le combinazioni lineari. $Span(v_1, v_2, \dots, v_m) \subset V$ è un sottospazio.

Esempi

1.

$$\mathbb{R}^2 = Span\left\{ \begin{bmatrix} 0 \\ 1 \end{bmatrix}, \begin{bmatrix} 1 \\ 0 \end{bmatrix} \right\}$$

 $Span\left\{\begin{bmatrix}0\\1\end{bmatrix}\right\}, Span\left\{\begin{bmatrix}1\\0\end{bmatrix}\right\} \subset \mathbb{R}^2$ sono due rette, rispettivamente dell'asse x e y.

2.

$$W := \left\{ \begin{bmatrix} t_1 \\ t_2 \\ t_3 \end{bmatrix} \in \mathbb{R}^3 : t_1 = 0 \right\}$$

$$\left\{ \begin{bmatrix} 0 \end{bmatrix} \begin{bmatrix} 0 \end{bmatrix} \right\} \qquad \left\{ \begin{bmatrix} 0 \end{bmatrix} \begin{bmatrix} 0 \end{bmatrix} \right\}$$

Allora
$$W = Span \left\{ \begin{bmatrix} 0\\1\\0 \end{bmatrix}, \begin{bmatrix} 0\\0\\1 \end{bmatrix} \right\} = Span \left\{ \begin{bmatrix} 0\\1\\1 \end{bmatrix}, \begin{bmatrix} 0\\0\\-1 \end{bmatrix} \right\}.$$

Quindi un sottospazio può essere lo span di vettori diversi.

2.4.1 Esercizi

Verificare che $Span(v_1,v_2,v_3)=Span(v_1,v_2,v_3,v_4)=\mathbb{R}^3$

$$v_1 = \begin{bmatrix} 1 \\ 2 \\ 3 \end{bmatrix}, v_2 = \begin{bmatrix} 1 \\ 0 \\ 1 \end{bmatrix}, v_3 = \begin{bmatrix} 0 \\ 0 \\ 1 \end{bmatrix}, v_4 = \begin{bmatrix} 2 \\ 2 \\ 4 \end{bmatrix}$$

Se $v = \begin{bmatrix} b_1 \\ b_2 \\ b_3 \end{bmatrix} \in \mathbb{R}^3$ applicando l'**Algoritmo di Gauss** si ottiene:

$$\begin{bmatrix} 1 & 1 & 0 & b_1 \\ 2 & 0 & 0 & b_2 \\ 3 & 1 & 1 & b_3 \end{bmatrix} \xrightarrow[R_3 - 3R_1]{R_2 - 2R_1} \begin{bmatrix} 1 & 1 & 0 & b_1 \\ 0 & -2 & 0 & b_2 - 2b_1 \\ 0 & -2 & 1 & b_3 - 3b_1 \end{bmatrix}$$

3 pivots nelle 3 colonne a sinistra (non ci interessa a destra) quindi

$$\begin{cases} x_1 + x_2 = b_1 \\ 2x_1 = b_2 \\ 3x_1 + x_2 + x_3 = b_3 \end{cases}$$

ammette un' **unica soluzione** $\lambda_1, \lambda_2, \lambda_3$:

$$\lambda_1 \begin{bmatrix} 1 \\ 2 \\ 3 \end{bmatrix} + \lambda_2 \begin{bmatrix} 1 \\ 0 \\ 1 \end{bmatrix} + \lambda_3 \begin{bmatrix} 0 \\ 0 \\ 1 \end{bmatrix} = \begin{bmatrix} b_1 \\ b_2 \\ b_3 \end{bmatrix}.$$

Il vettore generale v è contenuto in $Span(v_1, v_2, v_3)$.

In generale Se $v_1, v_2, \ldots, v_n \in V$ sono vettori tali che v_n è combinazione lineare di $v_1, v_2, \ldots, v_{n-1} \Rightarrow Span(v_1, v_1, \ldots, v_n) = Span(v_1, v_1, \ldots, v_{n-1})$.

Trovare sistema di equazioni lineari omogenee tale che il sottospazio di \mathbb{R}^n associato sia $Span(v_1, \ldots, v_m)$

1. Si sceglie una base di $Span(v_1, v_2, ..., v_m)$. Possiamo supporre la base $(v_1, ..., v_r)$ con $r \leq m$.

2. Siano
$$v_1 = \begin{bmatrix} a_{11} \\ \vdots \\ a_{n1} \end{bmatrix}, \dots, v_r = \begin{bmatrix} a_{1r} \\ \vdots \\ a_{nr} \end{bmatrix} \Rightarrow A = \begin{bmatrix} a_{11} & \dots & a_{1r} \\ \vdots & \vdots & \vdots \\ a_{n1} & \dots & a_{nr} \end{bmatrix}$$

 v_1, \ldots, v_n linearmente indipendenti \Leftrightarrow nella forma a scalini di A c'è un pivot in ogni colonna.

3. Sia
$$v = \begin{bmatrix} b_1 \\ \vdots \\ b_n \end{bmatrix}$$
 qualsiasi.

 $v \in Span(v_1, ..., v_r) \Leftrightarrow \boldsymbol{v}, v_1, ..., v_r$ sono linearmente dipendenti \Leftrightarrow

nella forma a scalini della matrice $\begin{bmatrix} a_{11} & \dots & a_{1r} & b_1 \\ \vdots & \vdots & \vdots & \vdots \\ a_{n1} & \dots & a_{nr} & b_n \end{bmatrix}$ ci sono sempre \mathbf{r}

pivot nelle prime r colonne ovvero l'ultima colonna non contiene pivots.

Questo dà equazioni lineari per b_1, \ldots, b_n .

Esempio

 $v_1 = \begin{bmatrix} 1 \\ 1 \\ 1 \end{bmatrix}, v_2 = \begin{bmatrix} 1 \\ 3 \\ 1 \end{bmatrix}$ sono vettori **linearmente indipendenti** perché non sono multipli tra loro.

$$\begin{bmatrix} 1 & 1 & b_1 \\ 1 & 3 & b_2 \\ 1 & 1 & b_3 \end{bmatrix} \xrightarrow[R_3 - R_1]{R_2 - R_1} \begin{bmatrix} 1 & 1 & b_1 \\ 0 & 2 & b_2 - b_1 \\ 0 & 0 & b_3 - b_1 \end{bmatrix}$$

Il **pivot** da controllare è nell'ultima colonna quindi se $b_3 - b_1 = 0 \Leftrightarrow$ **non** è un pivot della terza colonna.

Quindi $Span(v_1, v_2) = \{\text{soluzioni di } x_3 - x_1 = 0\}$

2.5 Dipendenza lineare

I vettori $v_1, v_2, \dots, v_m \in V$ sono linearmente indipendenti se

$$\lambda v_1 + \lambda_2 v_2 + \dots + \lambda_m V_m = 0$$

vale solo per $\lambda_1 = \cdots = \lambda_m = 0$. Altrimenti sono linearmente dipendenti.

Geometricamente Vettori linearmente dipendenti hanno la stessa retta.

Proposizione v_1, v_2, \dots, v_m sono **linearmente dipendenti** $\Leftrightarrow \exists i : v_i$ è combinazione lineare dei $v_i \forall j \neq i$.

Verificare se m vettori sono linearmente indipendenti

$$v_{1} = \begin{bmatrix} a_{11} \\ a_{21} \\ \vdots \\ a_{n1} \end{bmatrix}, v_{2} = \begin{bmatrix} a_{12} \\ a_{22} \\ \vdots \\ a_{n2} \end{bmatrix}, \dots, v_{m} = \begin{bmatrix} a_{1m} \\ a_{2m} \\ \vdots \\ a_{nm} \end{bmatrix}$$

L'equazione $\lambda_1 v_1 + \lambda_2 v_2 + \cdots + \lambda_m v_m = 0$ vale se e solo se $(\lambda_1, \dots, \lambda_m)$ è soluzione del sistema

$$\begin{cases} a_{11}x_1 + a_{12}x_2 + \dots + a_{1m}x_m = 0 \\ a_{21}x_1 + a_{22}x_2 + \dots + a_{1m}x_m = 0 \\ \vdots \\ a_{n1}x_1 + a_{n2}x_2 + \dots + a_{nm}x_m = 0 \end{cases}$$

dove **x** sostituisce λ e lo 0 dell'equazione corrisponde al vettore $\begin{bmatrix} 0 \\ \vdots \\ 0 \end{bmatrix}$.

Quindi v_1, \ldots, v_m sono **linearmente indipendenti** \Leftrightarrow il sistema ammette solo la soluzione banale, cioè $x = (0, \ldots, 0)$.

Esempio Verificare che i seguenti vettori di \mathbb{R}^3 siano linearmente indipendenti.

$$v_1 = \begin{bmatrix} 1 \\ 2 \\ 3 \end{bmatrix}, v_2 = \begin{bmatrix} 1 \\ 0 \\ 1 \end{bmatrix}, v_3 = \begin{bmatrix} 0 \\ 0 \\ 1 \end{bmatrix}, v_4 = \begin{bmatrix} 2 \\ 2 \\ 4 \end{bmatrix}$$

Dobbiamo cercare le soluzioni del sistema lineare omogeneo con la matrice dei coefficienti associata.

$$\begin{bmatrix} 1 & 1 & 0 & 2 \\ 2 & 0 & 0 & 2 \\ 3 & 1 & 1 & 4 \end{bmatrix}$$

Algoritmo di Gauss:

$$\frac{R_2 - 2R_1}{R_3 - 3R_1} \left[\begin{array}{cccc}
1 & 1 & 0 & 2 \\
0 & -2 & 0 & -2 \\
0 & -2 & 1 & -2
\end{array} \right] \xrightarrow{R_3 - R_2} \left[\begin{array}{cccc}
1 & 1 & 0 & 2 \\
0 & -2 & 0 & -2 \\
0 & 0 & 1 & 0
\end{array} \right]$$

Ci sono 3 pivots e una variabile libera $\Rightarrow \infty$ soluzioni. Il sistema ammette soluzioni non banali \Rightarrow i vettori sono linearmente dipendenti.

2.6 Basi

Un sistema v_1, \ldots, v_n di vettori è una **base** di V se:

- i vettori v_1, \ldots, v_n sono linearmente indipendenti
- $Span(v_1,\ldots,v_n)=V$

Esempio Base standard di \mathbb{R}^n :

$$e_1 = \begin{bmatrix} 1 \\ 0 \\ \vdots \\ 0 \end{bmatrix}, e_2 = \begin{bmatrix} 0 \\ 1 \\ \vdots \\ 0 \end{bmatrix}, \dots, e_n = \begin{bmatrix} 0 \\ 0 \\ \vdots \\ 1 \end{bmatrix}$$

Si osserva
$$\begin{bmatrix} \lambda_1 \\ \lambda_2 \\ \vdots \\ \lambda_n \end{bmatrix} = \lambda_1 e_1 + \lambda_2 e_2 + \dots + \lambda_n e_n.$$

Dunque $Span(e_1, ..., e_n) = \mathbb{R}^n$ e $\lambda_1 e_1 + \cdots + \lambda_n e_n = 0$ se e solo se $\lambda_1 = \cdots = \lambda_n = 0$.

2.6.1 Coordinate

Sia v_1, \ldots, v_n una base di V e $v \in V$ un vettore. Allora

$$\exists ! \alpha_1, \ldots, \alpha_n : v = \alpha_1 v_1 + \alpha_2 v_2 + \cdots + \alpha_n v_n$$

ovvero **ogni vettore** si scrive in un modo **unico** come **combinazione lineare** degli **elementi della base**.

Gli α_i sono le **coordinate** di v rispetto alla **base**.

Trovare le coordinate di un vettore rispetto alla base

Sappiamo da esercizi precedenti che
$$v_1 = \begin{bmatrix} 1 \\ 2 \\ 3 \end{bmatrix}, v_2 = \begin{bmatrix} 1 \\ 0 \\ 1 \end{bmatrix}, v_3 = \begin{bmatrix} 0 \\ 0 \\ 1 \end{bmatrix}$$
 sono

una **base** di \mathbb{R}^3 . Trovare le coordinate di $\begin{bmatrix} 0 \\ 2 \\ 1 \end{bmatrix}$ rispetto a questa base.

$$\alpha_1 \begin{bmatrix} 1 \\ 2 \\ 3 \end{bmatrix} + \alpha_2 \begin{bmatrix} 1 \\ 0 \\ 1 \end{bmatrix} + \alpha_3 \begin{bmatrix} 0 \\ 0 \\ 1 \end{bmatrix} = \begin{bmatrix} 0 \\ 2 \\ 1 \end{bmatrix}$$

Applichiamo l'algoritmo di Gauss-Jordan.

$$\begin{bmatrix} 1 & 1 & 0 & | & 0 \\ 2 & 0 & 0 & | & 2 \\ 3 & 1 & 1 & | & 1 \end{bmatrix} \xrightarrow{R_2 - 2R_1} \begin{bmatrix} 1 & 1 & 0 & | & 0 \\ 0 & -2 & 0 & | & 2 \\ 0 & -2 & 1 & | & 1 \end{bmatrix} \xrightarrow{R_3 - R_2} \begin{bmatrix} 1 & 1 & 0 & | & 1 \\ 0 & 1 & 0 & | & -1 \\ 0 & 0 & 1 & | & -1 \end{bmatrix}$$

$$\xrightarrow{R_1 - R_2} \begin{bmatrix} 1 & 0 & 0 & | & 1 \\ 0 & 1 & 0 & | & -1 \\ 0 & 0 & 1 & | & -1 \end{bmatrix}$$

Quindi
$$\begin{cases} \alpha_1 = 1 \\ \alpha_2 = -1 \\ \alpha_3 = -1 \end{cases} \quad \text{e 1} \begin{bmatrix} 1 \\ 2 \\ 3 \end{bmatrix} + -1 \begin{bmatrix} 1 \\ 0 \\ 1 \end{bmatrix} + -1 \begin{bmatrix} 0 \\ 0 \\ 1 \end{bmatrix} = \begin{bmatrix} 0 \\ 2 \\ 1 \end{bmatrix}$$

2.7 Dimensione

La dimensione di uno spazio V sarà definita come il numero degli elementi di una base. Questo numero è lo stesso per ogni base.

2.7.1 Proprietà

Se dim V = n e $v_1, \ldots, v_r \in V$ i casi sono:

- $r > n \Leftrightarrow v_1, \ldots, v_r$ sono linearmente dipendenti
- r = n e v_1, \ldots, v_n linearmente indipendenti \Leftrightarrow è una base
- r < n e v_1, \ldots, v_n linearmente indipendenti \Leftrightarrow si completa³ in una base

²Dimostrazione a fine lezione 06.

³Posso aggiungere vettori affinché diventi una base

Esempio

Decidiamo se
$$\begin{bmatrix} 1 \\ -1 \\ 1 \end{bmatrix}$$
, $\begin{bmatrix} -1 \\ 1 \\ -1 \end{bmatrix}$, $\begin{bmatrix} 1 \\ -1 \\ 1 \end{bmatrix}$ è una base di \mathbb{R}^3

 $dim \mathbb{R}^3 = 3 \Rightarrow$ se sono indipendenti formano una base. Verifichiamo con Gauss:

$$\begin{bmatrix} 1 & -1 & -1 \\ -1 & 1 & -1 \\ 1 & -1 & 1 \end{bmatrix} \xrightarrow{R_2 + R_1} \begin{bmatrix} 1 & -1 & -1 \\ 0 & 0 & -2 \\ 0 & 0 & 2 \end{bmatrix} \xrightarrow{R_3 + R_2} \begin{bmatrix} 1 & -1 & -1 \\ 0 & 0 & -2 \\ 0 & 0 & 0 \end{bmatrix}$$

 $2 \text{ pivots} \Rightarrow i \text{ vettori sono linearmente dipendenti}.$

Però i **pivots** sono nelle colonne 1,3 quindi escludendo la colonna 2:

$$v_1 = \begin{bmatrix} 1 \\ -1 \\ 1 \end{bmatrix}, v_2 = \begin{bmatrix} -1 \\ -1 \\ 1 \end{bmatrix}$$
 sono linearmente indipendenti.⁴

Ora $dim\ Span(v_1, v_2) = 2, dim\ \mathbb{R}^3 = 3.$

Troviamo ora un vettore di \mathbb{R}^3 non contenuto nello $Span(v_1, v_2)$.

Una strategia può essere partire dalla **base standard**: $\begin{bmatrix} 1 \\ 0 \\ 0 \end{bmatrix}$, $\begin{bmatrix} 0 \\ 1 \\ 0 \end{bmatrix}$, $\begin{bmatrix} 0 \\ 0 \\ 1 \end{bmatrix}$ Una

delle 3 basi standard non è sicuramente contenuta nello $Span(v_1, v_2)$ altrimenti esso sarebbe una base.

Cerchiamo quindi il vettore della base standard che è linearmente indipendente agli altri 2 vettori. Proviamo con e_3 :

$$\begin{bmatrix} 1 & -1 & 0 \\ -1 & -1 & 0 \\ 1 & 1 & 1 \end{bmatrix} \xrightarrow{R_2 + R_1} \begin{bmatrix} 1 & -1 & 0 \\ 0 & -2 & 0 \\ 0 & 2 & 1 \end{bmatrix} \xrightarrow{R_3 + R_2} \begin{bmatrix} 1 & -1 & 0 \\ 0 & -2 & 0 \\ 0 & 0 & 1 \end{bmatrix}$$

3 pivots $\Rightarrow e_3$ completa la nostra base. e_1 invece non la completa.

Proposizione Sia $W \subset V$ un sottospazio. Allora

- 1. $dim W \leq dim V$
- 2. Se $W \neq V$, allora $\dim W < \dim V$

Questa proposizione è utile per calcolare le dimensioni dei sottospazi.

 $^{^4}$ Il vettore v_2 è il vecchio vettore v_3 , cambio di notazione per proseguire l'esercizio

Esempio

Sia
$$V = \left\{ \begin{bmatrix} a & b \\ c & d \end{bmatrix} \in M_{2x2}\left(\mathbb{R}\right) : b = c \right\}$$
 (Matrici simmetriche)

 $dim \ M_{2x2} (\mathbb{R}) = 4$ (base standard).

$$V \neq M_{2x2}(\mathbb{R}) \Rightarrow dim \ V \leq 3.$$

$$\operatorname{Ma}\begin{bmatrix}1 & 0 \\ 0 & 0\end{bmatrix}, \begin{bmatrix}0 & 0 \\ 0 & 1\end{bmatrix}, \begin{bmatrix}0 & 1 \\ 1 & 0\end{bmatrix} \text{ sono linearmente indipendenti} \Rightarrow \dim V = 3$$

2.7.2 Sottospazi

Intersezioni di sottospazi

Se $W_1, W_2 \subset V$ sottospazi $\Rightarrow W_1 \cap W_2$ è sottospazio.

Formula di Grassmann

Siano $V_1, V_2 \subset V$ due sottospazi allora

$$V_1 + V_2 := \{v_1 + v_2 : v_1 \in V_1, v_2 \in V_2\}$$

Osservazione $V_1 + V_2$ è un sottospazio.

Esempio

$$V_{1} = \left\{ \begin{bmatrix} 0 \\ a_{2} \\ a_{3} \end{bmatrix} : a_{2}, a_{3} \in \mathbb{R}^{3} \right\}, V_{2} = \left\{ \begin{bmatrix} a_{1} \\ a_{2} \\ 0 \end{bmatrix} : a_{1}, a_{2} \in \mathbb{R}^{3} \right\} \subset \mathbb{R}^{3}$$

$$V_1+V_2=\mathbb{R}^3$$
, ma anche $V_1\cap V_2=\left\{egin{bmatrix}0\\a_2\\0\end{bmatrix}:a_2\in\mathbb{R}^3\right\}$

Formula di Grassmann Se $dim < \infty, V_1, V_2 \subset V$ sottospazi allora

$$dim(V_1 + V_2) = dim \ V_1 + dim \ V_2 - dim(V_1 \cap V_2)$$

Esempio In \mathbb{R}^4 consideriamo i sottospazi

$$V = \left\{ \text{soluzioni di} \left\{ \begin{aligned} x_1 + 2x_2 + x_3 &= 0 \\ -x_1 - x_2 + 3x_4 &= 0 \end{aligned} \right. \right\}$$

$$W = Span \left(v_1 = \begin{bmatrix} 2 \\ 0 \\ 1 \\ 1 \end{bmatrix}, v_2 = \begin{bmatrix} 3 \\ -2 \\ -2 \\ 0 \end{bmatrix} \right)$$

Calcoliamo $dim(V \cap W), dim(V + W)$

Soluzione

 $\operatorname{dim} W = 2$ perché ovviamente $W_1 \neq \lambda W_2$.

Calcoliamo dim V

$$\begin{bmatrix} 1 & 2 & 1 & 0 \\ -1 & -1 & 0 & 3 \end{bmatrix} \rightarrow \begin{bmatrix} 1 & 2 & 1 & 0 \\ 0 & 1 & 1 & 3 \end{bmatrix} \rightarrow \begin{cases} x_1 + 2x_2 + x_3 = 0 \\ x_2 + x_3 + 3x_4 = 0 \end{cases}$$

Soluzione generale
$$\begin{bmatrix} x_3 + 6x_4 \\ -x_3 - 3x_4 \\ x_3 \\ x_4 \end{bmatrix}$$

Posso scrivere in forma parametrizzata $x_3 \begin{bmatrix} 1 \\ -1 \\ 1 \\ 0 \end{bmatrix} + x_4 \begin{bmatrix} 6 \\ -3 \\ 0 \\ 1 \end{bmatrix}$ e ora sappiamo

che $\dim V = 2 e v_1, v_2$ è una base.

Cerchiamo ora dim(V+W).

 $V + W = Span(v_1, v_2, w_1, w_2)$

Troviamo una base con Gauss:

$$\begin{bmatrix} 1 & 6 & 2 & 3 \\ -1 & -3 & 0 & -2 \\ 1 & 0 & 1 & -2 \\ 0 & 1 & 1 & 0 \end{bmatrix} \xrightarrow{R_2 + R_1} \begin{bmatrix} 1 & 6 & 2 & 3 \\ 0 & 3 & 2 & 1 \\ 0 & -6 & -1 & -5 \\ 0 & 1 & 1 & 0 \end{bmatrix} \xrightarrow{R_3 - 2R_1} \begin{bmatrix} 1 & 6 & 2 & 3 \\ 0 & 3 & 2 & 1 \\ 0 & 0 & 3 & -3 \\ 0 & 1 & 1 & 0 \end{bmatrix}$$

$$\xrightarrow{R_2 \cup R_4} \begin{bmatrix} 1 & 6 & 2 & 3 \\ 0 & 1 & 1 & 0 \\ 0 & 0 & 3 & -3 \\ 0 & 3 & 2 & 1 \end{bmatrix} \xrightarrow{R_4 - 3R_2} \begin{bmatrix} 1 & 6 & 2 & 3 \\ 0 & 1 & 1 & 0 \\ 0 & 0 & 3 & -3 \\ 0 & 0 & -1 & 1 \end{bmatrix} \xrightarrow{R_4 + \frac{1}{3}R_3} \begin{bmatrix} 1 & 6 & 2 & 3 \\ 0 & 1 & 1 & 0 \\ 0 & 0 & 3 & -3 \\ 0 & 0 & 0 & 0 \end{bmatrix}$$

3 pivots quindi le prime 3 colonne sono indipendenti.

Quindi $dim \ Span(v_1, v_2, w_1, w_2) = dim(V + W) = 3.$

Grassmann: $dim(V \cap W) = dim \stackrel{\cdot}{V} + dim \stackrel{\cdot}{W} - dim(\stackrel{\cdot}{V} + W) = 2 + 2 - 3 = 1$

Potevamo anche calcolare direttamente $dim(V \cap W)$:

$$Y \cap W = \left\{ \lambda_1 \begin{bmatrix} 2 \\ 0 \\ 1 \\ 1 \end{bmatrix} + \lambda_2 \begin{bmatrix} 3 \\ -2 \\ -2 \\ 0 \end{bmatrix} \text{ che soddisfano } \begin{cases} x_1 + 2x_2 + x_3 = 0 \\ -x_1 - x_2 + 3x_4 = 0 \end{cases} \right\}$$

Sostituiamo e otteniamo:

$$\begin{cases} (2\lambda_1 + 3\lambda_2) + 2(-2\lambda_2) + (\lambda_1 - 2\lambda_2) = 0 \\ -(2\lambda_1 + 3\lambda_2) + (-2\lambda_2) + 3\lambda_1 = 0 \end{cases}$$

$$\begin{cases} 3\lambda_1 - 3\lambda_2 = 0\\ \lambda_1 - \lambda_2 = 0 \end{cases}$$

$$\lambda_1 = \lambda_2 \Rightarrow dim(V \cap W) = 1$$
 perché $V \cap W = \{\lambda(w_1 + w_2) : \lambda \in \mathbb{R}\}$

2.8 Rango

Se
$$A = \begin{bmatrix} a_{11} & \dots & a_{1n} \\ \vdots & & \\ a_{n1} & \dots & a_{mn} \end{bmatrix}$$
, il **rango** di A è

$$rg(A) := dim \ Span \left(\begin{bmatrix} a_{11} \\ \vdots \\ a_{m1} \end{bmatrix}, ..., \begin{bmatrix} a_{1n} \\ \vdots \\ a_{mn} \end{bmatrix} \right)$$

2.8.1 Trovare il rango

Per calcolare rg(A) bisogna:

- estrarre una base di *Span*(colonne).
- usare l'algoritmo di Gauss sulla matrice A

Se numero colonne linearmente indipendenti = numero dei pivots della forma a scalini $\Rightarrow rg(A)$ = numero di pivot nella forma a scalini.

Capitolo 3

Applicazioni lineari

Definizione Siano V_1, V_2 spazi vettoriali su \mathbb{R} . Un'applicazione lineare è una funzione $\varphi: V_1 \to V_2$ che soddisfa:

- $\varphi(v_1 + v_2) = \varphi(v_1) + \varphi(v_2) \ \forall v_1, v_2 \in V_1$
- $\lambda \varphi(v) = \varphi(\lambda v) \ \forall \lambda \in \mathbb{R}, \forall v \in V_1$

3.1 Kernel

Il **Kernel o nucleo** è un sottospazio:

$$Ker(\varphi) := \{ v \in V_1 : \varphi(v) = 0 \}$$

Proposizione $Ker(\varphi_1) \subset V_1$ è un sottospazio.

3.1.1Trovare il Kernel utilizzando la matrice

Se
$$A = \begin{bmatrix} a_{11} & \dots & a_{1n} \\ \vdots & & & \\ a_{n1} & \dots & a_{mn} \end{bmatrix}, v = \begin{bmatrix} x_1 \\ \vdots \\ x_n \end{bmatrix}$$

$$v \in Ker(\varphi) \Leftrightarrow Av = 0 \Leftrightarrow \begin{bmatrix} x_1 \\ \vdots \\ x_n \end{bmatrix}$$
è soluzione di
$$\begin{cases} a_{11}x_1 + \dots + a_{1n}x_n = 0 \\ \vdots \\ a_{m1}x_1 + \dots + a_{mn}x_n = 0 \end{cases}$$

Quindi per trovare $Ker(\varphi)$ bisogna **risolvere il sistema omogeneo** (ad esempio con Gauss).

Esempio Sia $\varphi : \mathbb{R}^4 \to \mathbb{R}^3$ della matrice $\begin{bmatrix} 1 & 2 & -1 & -2 \\ 1 & 1 & 1 & 1 \\ 1 & 0 & 3 & 4 \end{bmatrix}$ Trovare $Ker(\varphi)$.

Applichiamo Gauss alla matrice di φ .

$$\rightarrow \begin{bmatrix} 1 & 2 & -1 & -2 \\ 0 & -1 & 2 & 3 \\ 0 & -2 & 4 & 6 \end{bmatrix} \rightarrow \begin{bmatrix} 1 & 2 & -1 & -2 \\ 0 & -1 & 2 & 3 \\ 0 & 0 & 0 & 0 \end{bmatrix}$$

$$Ker(\varphi) \Leftrightarrow \text{soluzioni di} \begin{cases} x_1 + 2x_2 - 3x_3 - 2x_4 = 0 \\ -x_2 + 2x_3 + 3x_4 = 0 \end{cases}$$

$$Ker(\varphi) \Leftrightarrow \text{soluzioni di} \begin{cases} x_1 + 2x_2 - 3x_3 - 2x_4 = 0 \\ -x_2 + 2x_3 + 3x_4 = 0 \end{cases}$$

$$\Rightarrow \begin{cases} x_2 = 2x_3 + 3x_4 \\ x_1 = -3x_3 - 4x_4 \end{cases} \Rightarrow \begin{bmatrix} -3 \\ 2 \\ 1 \\ 0 \end{bmatrix} x_3 \begin{bmatrix} -4 \\ 3 \\ 0 \\ 1 \end{bmatrix} x_4 \text{ soluzione generale del sistema.}$$

Quindi
$$\begin{bmatrix} -3\\2\\1\\0 \end{bmatrix} x_3 \begin{bmatrix} -4\\3\\0\\1 \end{bmatrix} x_4$$
 è la **base** di $Ker(\varphi)$.

3.2 Immagine

L'immagine è un sottospazio:

$$Im(\varphi) := \{ w \in V_2 : \exists v \in V_1 \text{ tale che } w = \varphi(v) \}$$

Proposizione $Ker(\varphi) \subset V_2$ è un sottospazio.

3.2.1 Trovare l'immagine utilizzando la matrice

Sappiamo che se e_1, \ldots, e_n è la base standard,

$$\varphi(e_1) = \begin{bmatrix} a_{11} \\ \vdots \\ a_{m1} \end{bmatrix}, \dots, \varphi(e_n) = \begin{bmatrix} a_{1n} \\ \vdots \\ a_{mn} \end{bmatrix}$$

Ma $Im(\varphi) = Span(\varphi(e_1), \dots, \varphi(e_n))$

Quindi $Im(\varphi)$ è lo span delle colonne di A in \mathbb{R}^m

3.2.2 Trovare la dimensione

Per trovare la $\dim Im(\varphi)$ bisogna determinare la dimensione dello span, ovvero il rango.

Se φ ha matrice A allora $dim\ Im(\varphi) = rg\ (A)$

Esempio Sia $\varphi : \mathbb{R}^4 \to \mathbb{R}^3$ della matrice $\begin{bmatrix} 1 & 2 & -1 & -2 \\ 1 & 1 & 1 & 1 \\ 1 & 0 & 3 & 4 \end{bmatrix}$ Trovare $Im(\varphi)$.

Applichiamo Gauss alla matrice di φ .

$$\rightarrow \begin{bmatrix} 1 & 2 & -1 & -2 \\ 0 & -1 & 2 & 3 \\ 0 & -2 & 4 & 6 \end{bmatrix} \rightarrow \begin{bmatrix} 1 & 2 & -1 & -2 \\ 0 & -1 & 2 & 3 \\ 0 & 0 & 0 & 0 \end{bmatrix}$$

Ci sono **pivots** nelle prime due colonne $\Rightarrow \begin{bmatrix} 1\\1\\1 \end{bmatrix}, \begin{bmatrix} 2\\1\\0 \end{bmatrix}$ è la base di $Im(\varphi)$ e il **rango** è 2.

3.3 Dimensione

Teorema Se $dim V_1 < \infty$ allora

$$dim Ker(\varphi) + dim Im(\varphi) = dim V_1$$

in $\varphi:V_1\to V_2$. La dimensione di V_2 non riguarda questo teorema.

3.4 Prodotto

Se $A \in M_{mxn}(\mathbb{R}), v \in \mathbb{R}^n$, il loro **prodotto** è il vettore in \mathbb{R}^m :

$$A = \begin{bmatrix} a_{11} & \dots & a_{1n} \\ \vdots & \vdots & \vdots \\ a_{m1} & \dots & a_{mn} \end{bmatrix} \cdot \begin{bmatrix} b_1 \\ \vdots \\ b_n \end{bmatrix} := \begin{bmatrix} a_{11}b_1 + a_{12}b_2 + \dots + a_{1n}b_n \\ a_{21}b_1 + a_{22}b_2 + \dots + a_{2n}b_n \\ \vdots \\ a_{m1}b_1 + a_{m2}b_2 + \dots + a_{mn}b_n \end{bmatrix} \in \mathbb{R}^m$$

Il vettore moltiplicato deve avere lo stesso numero di colonne della matrice.

Proposizione Se $v = \begin{bmatrix} b_1 \\ \vdots \\ b_n \end{bmatrix}$ è un vettore generale, allora $\varphi(v) = A \cdot v$.

Esempio 1 Sia $\varphi : \mathbb{R}^3 \to R$, $\varphi \left(\begin{bmatrix} x \\ y \\ z \end{bmatrix} \right) = x + 2y + 3z$. Trovare $\varphi \left(\begin{bmatrix} 1 \\ -1 \\ 1 \end{bmatrix} \right)$.

Naturalmente $1 \cdot 1 + -2 \cdot 1 + 1 \cdot 3 = 2$. Ma anche:

$$\varphi\left(\begin{bmatrix}1\\0\\0\end{bmatrix}\right) = 1, \ \varphi\left(\begin{bmatrix}0\\1\\0\end{bmatrix}\right) = 2, \ \varphi\left(\begin{bmatrix}0\\0\\1\end{bmatrix}\right) = 3.$$

$$\varphi\left(\begin{bmatrix}1\\-1\\1\end{bmatrix}\right) = \begin{bmatrix}1 & 2 & 3\end{bmatrix} \cdot \begin{bmatrix}1\\-1\\1\end{bmatrix} = 1 \cdot 1 + 2 \cdot -1 + 1 \cdot 3 = 2$$

Esempio 2
$$\varphi : \mathbb{R}^2 \to \mathbb{R}^2$$
, $\varphi \left(\begin{bmatrix} x \\ y \end{bmatrix} \right) = \left(\begin{bmatrix} x+y \\ x-y \end{bmatrix} \right)$

$$\varphi \left(\begin{bmatrix} 1 \\ 0 \end{bmatrix} \right) = \begin{bmatrix} 1 \\ 1 \end{bmatrix}, \ \varphi \left(\begin{bmatrix} 0 \\ 1 \end{bmatrix} \right) = \begin{bmatrix} 1 \\ -1 \end{bmatrix}.$$

$$\begin{bmatrix} 1 & 1 \\ 1 & -1 \end{bmatrix} \cdot \begin{bmatrix} b_1 \\ b_2 \end{bmatrix} = \begin{bmatrix} b_1 + b_2 \\ b_1 - b_2 \end{bmatrix} \text{ Vettore generico}$$

Conclusione Se $\varphi : \mathbb{R}^n \to \mathbb{R}^m$ lineare, $\varphi(e_1), ..., \varphi(e_n)$ base standard allora:

- $\varphi(e_1), \ldots, \varphi(e_n)$ determina φ in maniera unica
- $\forall v$ possiamo calcolare $\varphi(v) = A \cdot v$ dove $A \in M_{mxn}(\mathbb{R})$ è la matrice definita nel punto precedente.

3.5 Matrice associata all'applicazione lineare

Sia $\varphi: V \to W$ lineare.

Sia $B = \{e_1, \dots, e_n\}$ una base di V [dim V = n]

Sia $B' = \{e'_1, \dots, e'_m\}$ una base di W $[\dim \mathbf{W} = \mathbf{m}]$ Scriviamo

 $\varphi(e_1) = a_{11}e'_1 + a_{21}e'_2 + \dots + a_{m1}e'_m$ $\varphi(e_2) = a_{12}e'_1 + a_{22}e'_2 + \dots + a_{m2}e'_m$

$$\varphi(e_n) = a_{1n}e'_1 + a_{2n}e'_2 + \dots + a_{mn}e'_m$$

La matrice di φ rispetto alla base B, B' è:

$$A = \begin{bmatrix} a_{11} & a_{12} & \dots & a_{1n} \\ a_{21} & a_{22} & \dots & a_{2n} \\ \vdots & & & & \\ a_{m1} & a_{m2} & \dots & a_{mn} \end{bmatrix} \in M_{mxn}(\mathbb{R})$$

Quindi

$$A = \left[\varphi(e_1) \mid \varphi(e_2) \mid \dots \mid \varphi(e_n) \right]$$

dove le colonne sono le coordinate di $\varphi(e_i)$ rispetto a e'_1, \ldots, e'_m .

Teorema Se $v = b_1 e_1 + \cdots + b_n e_n$ è un vettore di V consideriamo il vettore

colonna in \mathbb{R}^n : $\begin{bmatrix} b_1 \\ \vdots \\ b_n \end{bmatrix}$.

Allora le coordinate di $\varphi(v)$ rispetto a $B' = \{e'_1, \dots, e'_m\}$ sono date dal vettore colonna

 $A \cdot \begin{bmatrix} b_1 \\ \vdots \\ b_n \end{bmatrix} \in \mathbb{R}^m$

Importante La matrice A è sempre definita con due basi B, B'.

Esempio
$$\varphi: \mathbb{R}^2 \to \mathbb{R}^2, \ \varphi\left(\begin{bmatrix} x \\ y \end{bmatrix}\right) = \begin{pmatrix} x+2y \\ x+2y \end{pmatrix}$$

Matrice rispetto alla base standard:

$$\varphi\left(\begin{bmatrix}1\\0\end{bmatrix}\right) = \begin{bmatrix}1\\1\end{bmatrix}, \varphi\left(\begin{bmatrix}0\\1\end{bmatrix}\right) = \begin{bmatrix}2\\2\end{bmatrix} \Rightarrow A = \begin{bmatrix}1 & 2\\1 & 2\end{bmatrix}$$

Matrice rispetto alla base $\begin{bmatrix} 1 \\ 0 \end{bmatrix}, \begin{bmatrix} 1 \\ 1 \end{bmatrix}$ di \mathbb{R}^2

$$\varphi\left(\begin{bmatrix}1\\0\end{bmatrix}\right) = \begin{bmatrix}1\\1\end{bmatrix} = \mathbf{0} \cdot \begin{bmatrix}1\\0\end{bmatrix} + \mathbf{1} \cdot \begin{bmatrix}1\\1\end{bmatrix}$$

$$\varphi\left(\begin{bmatrix}1\\1\end{bmatrix}\right) = \begin{bmatrix}3\\3\end{bmatrix} = 0 \cdot \begin{bmatrix}1\\0\end{bmatrix} + 3 \cdot \begin{bmatrix}1\\1\end{bmatrix}$$
$$A = \begin{bmatrix}0 & 0\\1 & 3\end{bmatrix}$$

Matrice rispetto alla base $\begin{bmatrix}1\\1\end{bmatrix},\begin{bmatrix}2\\-1\end{bmatrix}$ di \mathbb{R}^2

$$\varphi\left(\begin{bmatrix}1\\1\end{bmatrix}\right) = \begin{bmatrix}3\\3\end{bmatrix} = 3 \cdot \begin{bmatrix}1\\1\end{bmatrix} + \mathbf{0} \cdot \begin{bmatrix}2\\-1\end{bmatrix}$$

$$\varphi\left(\begin{bmatrix}2\\-1\end{bmatrix}\right) = \begin{bmatrix}0\\0\end{bmatrix} = 0 \cdot \begin{bmatrix}1\\1\end{bmatrix} + \frac{0}{0} \cdot \begin{bmatrix}2\\-1\end{bmatrix}$$
$$A = \begin{bmatrix}3 & 0\\0 & 0\end{bmatrix}$$

Quindi scrivendo le coordinate **non** rispetto alla base standard ma ad **altre** basi, φ può diventare molto più semplice. Per trovare basi ottimali si utilizzeranno gli autovettori.