B.Tech. DEGREE EXAMINATION, JULY 2022

Fourth Semester

18ECC201J - ANALOG ELECTRONIC CIRCUITS

		(For the candidates admitted from	n the	academic year 2020-2021 to 2021-2022)				
Note:			t with	in first 40 minutes and OMR sheet should t	oe har	nded	over	to
(ii)		nvigilator at the end of $40^{ ext{th}}$ minute. • B should be answered in answer boo	oklet.					
Time: 2	1/2 Hor	ırs		Max. I	Mark Marks			PO
		PART - A (25 × 1		Marks)	nais	BL		
		Answer ALL Q			1	2	1	2
1.	What is the condition of I_C and V_{CE} to determine the cutoff and saturation point of DC load line?							
	(A)	$I_C = 5mA, \ V_{CE} = 0$	(B)	$I_C = 0, \ V_{CE} = 0$				
	(C)	$I_C = 0, \ V_{CE} = 10V$	(D)	$I_C = Infinity, V_{CE} = 0$				
2.	The t	wo stage CC-CC amplifier is also ca	alled a	as	1	1	1	1
	(A)	Oscillator Darlington pair	(B)	Current buffer Phase shifter				•
3.	Find $R_2 =$		r circ	uit having $V_{CC} = 18V$, $R_1 = 33K$ and	1	2	1	2
	-	$V_{th} = 4.8V, R_{th} = 8.8K\Omega$	(B)	$V_{th} = 5.8V, R_{th} = 9.8 K\Omega$				
		$V_{th} = 5.8V, R_{th} = 0.0 \text{K}\Omega$		$V_{th} = 6.8V, R_{th} = 7.8K\Omega$				
					1	2	1	2
4.				as the following voltage gains $A_{v_1} = 10$,				
	A_{V2} :	=15, A_{V3} = 20. What is the overall	voltag	ge gain and voltage gain in dB?				
	(A)	3000, 69.5 dB	(B)	2000, 59.5 dB				
	(C)	1000, 79.5 dB	(D)		1	1	1	1
5.		ransconductance g_m of a BJT hyb						
	(A)	V_T	(B)	I_{cQ}				
		r_0		βf				
	(C)	V_T	(D)	$I_{c\varrho}$				
		$\frac{\dot{I}_{co}}{I_{co}}$		$\overline{V_T}$				
6	T: 1	V_{gsQ} if $I_{DQ} = 1mA$, $K_n = 1mA/V$	2 V	=1V.	1	2	2	2
		이 교육은 프라이트 이 경우를 가게 하는데 그리게 하는데 이번 이 아니라 되었다.	(B)	2V				
	(A) (C)	1 V 3 V	(D)	4V				
7		ce follower can be used as			1	1	2	1
	(A)	Phase shifter	(B)	Attenuator Oscillator				
	(C)	Buffer	(D)		1	2	2	3
8	. Whe	n a common source amplifier is	s ana	lysed using hybrid π model for high				
		nency response, the miller capacita	(B)	$C_m = C_{ds} \left(1 + g_m R_L \right)$				
	(A)	$C_m = 1 + g_m R_L$						
	(C)	$C_m = C_{gs} \left(1 + g_m R_L \right)$	(D)	m gu (- m - z)	1		2	2
	9. Whi	. Which of the following small signal equivalent circuit parameter of FET amplified takes channel length modulation effect into consideration?						
	(A)	g_m	(D)	r_{π}				
	(C)	r.	(D)	V_{gsQ}	1	1	2	1
1	0. Wh	at is the phase difference between amon gate amplifier?		input signal and the output signal of a				
	(A) (C)	0° 45°	(B) (D)	90° 180°				

11.	Calc	ulate the feedback transfer functio	nβ, i	if $A = 10^5$ and $A_{\ell} = 50$.	1		2	3 2
	(A)	0.09	(B)	0.019				
	(C)	0.9	(D)					
12.	In a	voltage series feedback amplifier, i	nput	impedanceand output impedance	1	4	2	3 3
	-	by the factor of $(1+\beta A)$.						
	(A) (C)	decreases, decreases decreases, increases		increases, increases				
13			(D)					
-0.	Leg.	olpitt oscillator if $C_1 = 0.2 \mu f$ and	$C_2 = 0$	$0.02 \mu f$, $f_{osc} = 10 KHz$, find the value of	1	2	3	3 2
	(A)	15.9 mH						
	(C)	14.9 mH	(B) (D)	13.932 mH 12.93 mH				
14.	Whic	ch one of the following is used as at	ıdio f	requency oscillator?	1	1	3	1
		oridge oscillator	(B)	Hartley oscillator				
	(C)	Colpitt oscillator	(D)	Crystal oscillator				
15.	Curr	ent series feedback amplifier is a _			1	1	3	3
	(11)	Transresistance amplifier		Current amplifier				
16		Voltage amplifier	(D)	Transconductance amplifier				
16.	(A)	efficiency of Class B amplifier is	la sant		1	1	4	3
	(C)	50% 90%	(B)	100%				
17.			(D)	78.5%				
	m a	transformer coupled Class A pow	ver ar	mplifier if $V_{CE(\text{max})} = 15V$, $V_{CE(\text{min})} = 1V$,	1	2	4	2
		its overall efficiency. 43.75%		()				
	(C)		(B)					
18.	Cros	s over distortion occurs in	(D)	73.75%				
	(A)	Push-pull	ampii (B)	Class A	1	1	4	3
	(C)	Class C	(D)	Class D				
19.	Calc	ulate the effective resistance look	ing ir	nto the primary of a 15:1 transformer	1	2		•
		output load of My - 02	2.	. January Change		2	4	2
		$R_L' = 2.8\Omega$	(B)	$R_L'=1.8\Omega$				
		$R_L' = 0.8\Omega$	(D)	$R_{i}'=2.8k\Omega$				
20.	Wha	t is the advantage of a Complement	ary S	vmmetry Push-Pull amplifican				
	1-1	The freed of the register	(B)	Use of transformer	1	1	4	3
21.	(C)	Use of dual power supply	(D)	No need of transformer				
21.	(A)	current mirror is used as a curr PMOS	-		1	1	5	1
	(C)	CMOS	(B)	NMOS BiCMOS				
22.	If ou	tput is measured between two colle	ctore	of PIT town it.				
			be co	onfigured as	1	1	5	3
	(A) (C)	Duai input, Balanced output	(B)	Dual input, Unbalanced output				
23.	The second second	Single input, Balanced output	(D)	Dual innit Unbalanced				
20.	Give	the relationship between the outp	out cu	arrent (I_0) and the reference current	1	2	5	3
	(Iref) of a BJT two transistor current m	irror	()				-
	(A)							
		$I_0 = \frac{I_{ref}}{\left(\beta + \frac{2}{\beta}\right)}$	(B)	$I_{\cdot} = \frac{I_{ref}}{I_{\cdot}}$				
		$\left \beta+\frac{2}{3}\right $		$I_0 = \frac{I_{ref}}{\left(1 + \frac{2}{\beta}\right)}$				
	101	(P)		$\begin{pmatrix} 1+\overline{\beta} \end{pmatrix}$				
	(C)	$I_0 = \frac{I_{ref}}{I_0 \left(1 + \frac{2}{\alpha}\right)}$	(D)	(2)				
		7 (1, 2)		$I_0 = \frac{\left(1 + \frac{2}{\beta}\right)}{1 + \frac{2}{\beta}}$				
		$I_0(1+\frac{\pi}{\beta})$		$I_0 = \frac{\beta}{\beta}$				
				I_{ref}				

- 24. Mention the significance of the design of differential amplifier configuration.

 (A) To increase the bias current
 - (C) To minimize the effect of common (D) To it mode input signal
 - (B) To reduce the power consumption
 (D) To increase the speed of operation
- 25. Active loads are essentially used in the place of resistive loads.

 (A) voltage amplifiers (B) translations.
 - (C) Capacitors

(B) transistor current sources

(D) Transformers

PART - B (5 × 10 = 50 Marks)

Answer ALL Questions

Marks BL CO PO

26. a.i. In the emitter bias circuit shown, determine the Q point for $\beta=85$ and $V_{BE}=0.7V$

ii. Draw the hybrid π model for a common collector amplifier and derive the expression 6 3 1 for output impedance.

(OR)

b.i. Consider a BJT common emitter amplifier given is the figure having $R_1 = 56k\Omega$, 8 4 1 2 $R_2 = 12.2k\Omega$, $R_c = 2k\Omega$, $R_E = 0.4k\Omega$, $V_{cc} = 10V$, $V_{BE(ON)} = 0.7V$, $\beta = 100$, $V_A = \infty$, $R_s = 0.5k$. Calculate r_π , g_m , r_o , R_{ib} , R_i and voltage gain A_V .

- ii. Calculate the cutoff frequency of a bipolar common emitter amplifier with a coupling capacitor having $R_{\rm l}=51.2\,k\Omega$, $R_{\rm 2}=9.6\,k\Omega$, $r_{\pi}=1.44k\Omega$, $\beta=100$, $R_{\rm E}=0.4k\Omega$, $R_{\rm E}=0.4k\Omega$, $R_{\rm S}=0.1k\Omega$, coupling capacitor $C_{\rm C}=1\mu f$.
- 27. a.i. Using small signal circuit of common gate amplifier, derive the voltage gain A_{ν} .

 5 3 2

 ii. Calculate the small signal voltage gain of the source follower circuit given below. The 5 3 2
 - circuit parameters are $V_{DD} = 12V$, $R_1 = 162k\Omega$, $R_2 = 463k\Omega$, $R_s = 0.75k\Omega$, $V_{Tn} = 1.5V$, $K_n = 4mA/V^2$, $\lambda = 0.01V^{-1}$ and $R_{si} = 4k\Omega$.

- b.i. Derive the voltage gain of a common source amplifier with source resistance.
 - ii. Determine the value of the coupling capacitor in the circuit given if $f_L = 20 \text{KHz}$

- 28. a.i. With necessary expressions, discuss the effect of negative feedback on gain, gain 4 3 3 sensitivity, bandwidth and noise of an amplifier.
 - ii. A voltage series negative feedback amplifier has a voltage gain without feedback of A=500, input resistance $R_i=3k\Omega$, output resistance $R_0=20k\Omega$ and feedback ratio $\beta=0.01$. Calculate the voltage gain A_f , input resistance R_{if} , and output resistance R_{of} of the amplifier with feedback.

OR

- b.i. Define Bharkausen criteria and explain the operation of a wein bridge oscillator and 8 3 3 derive its frequency of oscillation.
 - ii. Determine the frequency of oscillation of BJT RC phase shift oscillator if $R_1=25k\Omega$, 2 3 $R_2=60k\Omega$, $R_c=40k\Omega$, $R=7.1k\Omega$, $h_{ie}=1.8k\Omega$ and C=0.41nf.
- 29. a.i. Compare the operating characteristics of Class A, Class B, Class AB and Class C 4 3 4 power amplifier.
 - ii. Calculate the input power, output power and efficiency of the Class -A power 6 3 4 amplifier given below.

- b.i. Discuss briefly on the operation of class C power amplifier and write its efficiency expression.
 - ii. Derive the efficiency of class B power amplifier and explain its push-pull 7 3 4 configuration.
- a.i. Write short notes on BJT multi transistor current mirror and give its output current 4 3 5 expression.
 - Discuss the operation of FET two transistor current source and derive its output 6 3 current.

(OR)

- b.i. With neat diagrams and necessary expressions, explain the operation of basic BJT 8 differential amplifier and its small signal equivalent circuit.
- ii. Draw the circuit diagram of BJT differential amplifier with active load and write its 2 3 5 differential gain expression.

* * * * *

3

5