同济大学课程考核试卷(A卷) 2011-2012 学年第一学期

命题教师签名:

审核教师签名:

课号:

课名:线性代数 B

考试考查:考试

此卷选为:期中考试(√)、期终考试()、重考()试卷

年级	专业_	学号			姓名		任课教师		
题号	_		Ξ	四	五	六	七	八	总分
得分									

(注意:本试卷共八大题,三大张,满分100分.考试时间为100钟.要求写出解题过程,否则不予计分)

一、填空题与选择题(每空3分,共24分,选择题为单选)

1、行列式
$$\begin{vmatrix} 1 & 0 & 1 \\ 0 & 1 & 0 \\ 1 & 1 & 1 \end{vmatrix}$$
 中 a_{21} 的代数余子式 $A_{21} = \underline{\qquad 1 \qquad}$

3. 设 A, B, C 均为 n 阶矩阵(n>1), 下列命题正确的是

(A).
$$\left(A - A^T\right)^T = A - A^T$$

(B).
$$|AB| = |B^T A|$$
,

(C).
$$(A-B)(A+B) = A^2 - B^2$$

(D).
$$AB = AC$$
 且 $A \neq 0$ 则 $B = C$

4、设n阶方阵A,B,C满足等式 ABC = E (E 为单位矩阵),则等式 A 成立.

- (A). BCA = E
- (B). BAC = E
- (C). ACB = E
- (D). CBA = E

5、设矩阵

$$A = \begin{pmatrix} a_1 & a_2 & a_3 \\ b_1 & b_2 & b_3 \\ c_1 & c_2 & c_3 \end{pmatrix}, B = \begin{pmatrix} b_1 & b_2 & b_3 \\ a_1 + 3c_1 & a_2 + 3c_2 & a_3 + 3c_3 \\ c_1 & c_2 & c_3 \end{pmatrix}, P_1 = \begin{pmatrix} 0 & 1 & 0 \\ 1 & 0 & 0 \\ 0 & 0 & 1 \end{pmatrix}, P_2 = \begin{pmatrix} 1 & 0 & 0 \\ 0 & 1 & 3 \\ 0 & 0 & 1 \end{pmatrix}$$

(A). $P_2AP_1 = B$ (B). $P_1AP_2 = B$ (C). $P_2P_1A = B$ (D). $AP_1P_2 = B$

6、设3阶矩阵 A的伴随矩阵为 A^* , $|A| = \frac{1}{2}$,则 $|(3A)^{-1} - 2A^*| = -\frac{16}{27}$.

7、 已知方阵 A 满足 $A^3 - A - E = O$, 则 $(A - E)^{-1} = A^2 + A$.

8、设 $A \neq m \times n (m < n)$.矩阵, $C \neq n$ 阶可逆矩阵,秩R(A) = r ,秩R(AC) = r ,则 C .

(A). $n > r_1 > r$, (B). $r_1 > r > n$, (C). $r = r_1$, (D). $r_1 = n$

二、
$$(12 分)$$
行列式 $D = \begin{vmatrix} 1 & 3 & 5 & 7 \\ 2 & 4 & 6 & 8 \\ 1 & 3 & -3 & 0 \\ 1 & 1 & 1 & 1 \end{vmatrix}$ 求 $2 A_{11} + 4 A_{12} - 2 A_{13} + A_{14}$.

$$\widehat{\mathbf{H}}: 2A_{11} + 4A_{12} - 2A_{13} + A_{14} = D' = \begin{vmatrix} 2 & 4 & -2 & 1 \\ 2 & 4 & 6 & 8 \\ 1 & 3 & -3 & 0 \\ 1 & 1 & 1 & 1 \end{vmatrix} \\
D' = \begin{vmatrix} 2 & 4 & -2 & 1 \\ 2 & 4 & 6 & 8 \\ 1 & 3 & -3 & 0 \end{vmatrix} = \begin{vmatrix} 0 & 0 & 0 & 0 \\ 2 & 4 & 6 & 8 \\ 1 & 3 & -3 & 0 \end{vmatrix} = 0$$

三、(6 分)已知A为 3 阶方阵,P为 3 阶可逆阵,且满足 $PAP^{-1} = \begin{pmatrix} 1 & 0 & 0 \\ 0 & -1 & 0 \\ 0 & 0 & 1 \end{pmatrix}$,求 A^{100} .

解: 由
$$PAP^{-1} = \begin{pmatrix} 1 & 0 & 0 \\ 0 & -1 & 0 \\ 0 & 0 & 1 \end{pmatrix}$$
知

$$PA^{100}P^{-1} = \begin{pmatrix} 1 & 0 & 0 \\ 0 & -1 & 0 \\ 0 & 0 & 1 \end{pmatrix}^{100} = E_3,$$

故
$$A^{100} = P^{-1}E_3P = E_3$$

四、(6 分) 设矩阵
$$A = \begin{pmatrix} 0 & 1 & 2 \\ 1 & 1 & 4 \\ 2 & -1 & 0 \end{pmatrix}$$
, 求 A^{-1} .

解:方法 1:
$$B = \begin{pmatrix} 0 & 1 & 2 & 1 & 0 & 0 \\ 1 & 1 & 4 & 0 & 1 & 0 \\ 2 & -1 & 0 & 0 & 0 & 1 \end{pmatrix}$$
 \xrightarrow{r} $\begin{pmatrix} 1 & 0 & 0 & 2 & -1 & 1 \\ 0 & 1 & 0 & 4 & -2 & 1 \\ 0 & 0 & 1 & -\frac{3}{2} & 1 & -\frac{1}{2} \end{pmatrix}$

方法 2:
$$|A| = 2$$
 , $A^* = \begin{pmatrix} 4 & -2 & 2 \\ 8 & -4 & 2 \\ -3 & 2 & -1 \end{pmatrix}$

$$A^{-1} = \frac{1}{|A|}A^* = \begin{pmatrix} 2 & -1 & 1\\ 4 & -2 & 1\\ -\frac{3}{2} & 1 & -\frac{1}{2} \end{pmatrix}$$

五、(12 分)设
$$\begin{cases} -2x_1+x_2+x_3=a_1\\ x_1-2x_2+x_3=a_2\\ x_1+x_2-2x_3=a_3 \end{cases}$$
,证明这个方程组有解的充分必要条件是 $\sum_{i=1}^3 a_i=0$

证: 方程组增广矩阵
$$B \xrightarrow{r} \begin{pmatrix} -2 & 1 & 1 & a_1 \\ 0 & -3 & 3 & a_1 + 2a_2 \\ 0 & 0 & a_1 + a_2 + a_3 \end{pmatrix}$$
,

则
$$R(A) = 2$$
,

而 R(B) = 2 当且仅当 $a_1 + a_2 + a_3 = 0$,\因方程组有解当且仅当 R(A) = R(B),

故这个方程组有解的充分必要条件是
$$\sum_{i=1}^{3} a_i = 0$$

六、
$$(10 分)$$
设 $A = \begin{pmatrix} a_1 & a_2 \\ b_1 & b_2 \\ c_1 & c_2 \end{pmatrix}$, $B = \begin{pmatrix} x_1 & y_1 & z_1 \\ x_2 & y_2 & z_2 \end{pmatrix}$,

(1). 求 AB;

(2). 求行列式 | AB | .

解(1).

$$AB = \begin{pmatrix} a_1 x_1 + a_2 x_2 & a_1 y_1 + a_2 y_2 & a_1 z_1 + a_2 z_2 \\ b_1 x_1 + b_2 x_2 & b_1 y_1 + b_2 y_2 & b_1 z_1 + b_2 z_2 \\ c_1 x_1 + c_2 x_2 & c_1 y_1 + c_2 y_2 & c_1 z_1 + c_2 z_2 \end{pmatrix}$$

(2). $\pm R(AB) \le \min\{R(A), R(B)\} \le R(A) \le 2$.

故 AB 不是满秩的, 故 |AB| = 0

七、(本题 15 分)设 n 阶方阵 A, B 满足 A + B = AB

(1). 证明 A-E 可逆且其逆阵为 B-E.

- (3). 等式 AB = BA 是否成立? 为什么?
- (1) 证: 由 A + B = AB 及 (A E)(B E) = AB A B + E 知 (A E)(B E) = E

故A-E可逆且其逆阵为B-E.

故 $A = B(B-E)^{-1}$

$$= \begin{pmatrix} 2 & 0 & 0 \\ 0 & 3 & 0 \\ 0 & 0 & 4 \end{pmatrix} \begin{pmatrix} 1 & 0 & 0 \\ 0 & \frac{1}{2} & 0 \\ 0 & 0 & \frac{1}{3} \end{pmatrix} = \begin{pmatrix} 2 & 0 & 0 \\ 0 & \frac{3}{2} & 0 \\ 0 & 0 & \frac{4}{3} \end{pmatrix}$$

(3). 等式 AB = BA 成立.

$$\boxplus (A-E)(B-E) = (A-E)(B-E) = E,$$

故
$$AB - A - B + E = BA - B - A + E$$

故 $AB = BA$

八、(15分)设线性方程组
$$\begin{cases} x_1 - x_2 + 2x_3 = -1 \\ -x_1 + x_2 + \lambda x_3 = -\lambda^2 + 2 \end{cases}$$
 问当 λ 取何值时,
$$\lambda x_1 + x_2 + x_3 = 1$$

- (1). 此方程组有唯一解?
- (2). 此方程组无解?
- (3). 此方程组有无穷多解?

$$\mathfrak{M}: B = (A,b) = \begin{pmatrix} 1 & -1 & 2 & -1 \\ -1 & 1 & \lambda & -\lambda^2 + 2 \\ \lambda & 1 & 1 & 1 \end{pmatrix}$$

$$|A| = \begin{vmatrix} 1 & -1 & 2 \\ -1 & 1 & \lambda \\ \lambda & 1 & 1 \end{vmatrix} = -(\lambda + 2)(1 + \lambda)$$

(1) 当 λ ≠-2 且 λ ≠-1时, A可逆, 此方程组有唯一解.

(2)

当 $\lambda = -2$ 时,

$$B = \begin{pmatrix} 1 & -1 & 2 & -1 \\ -1 & 1 & -2 & -2 \\ -2 & 1 & 1 & 1 \end{pmatrix} \xrightarrow{r} \begin{pmatrix} 1 & 0 & -3 & 0 \\ 0 & 1 & -5 & 0 \\ 0 & 0 & 0 & 1 \end{pmatrix}$$

此时 R(A) = 2, R(B) = 3, 方程组无解

(3).

当 $\lambda = -1$ 时,

$$B = \begin{pmatrix} 1 & -1 & 2 & -1 \\ -1 & 1 & -1 & 1 \\ -1 & 1 & 1 & 1 \end{pmatrix} \xrightarrow{r} \begin{pmatrix} 1 & -1 & 0 & -1 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 0 \end{pmatrix}$$

此时 R(A) = R(B) = 2 < 3, 方程组有无穷多解.