Lecture 11: Semantically Secure Public-Key Encryption I

Instructor: Shafi Goldwasser Scribes: Vahid Fazel-Rezai, Daniel Richman, Connor Sell

1 RSA preprocessing

2 Random Oracle Model Methodology

3 Types of Attacks

- Lunchtime attack
- Timing attack
- Power attack
- Fault attack
- Cache attack

4 Public key crypto based on squaring

- 5 Nondeterministic public key crypto with trapdoor functions
- 6 Trapdoor predicates
- 7 Using single-bit encryption for arbitrary length encryption

8 Homomorphic encryption

Definition 1. An encryption scheme is **homomorphic** if computations on the ciphertexts are reflected as computations on the messages when decrypted.

Symbollically, given an encryption function E and messages m_1 and m_2 , this means

$$E(m_1) \circ E(m_2) = E(m_1 \diamond m_2).$$

Note that the operation on the cyphertexts and the messages can be different operations. Example applications of homomorphic encryption schemes:

- E-voting: all votes could be encrypted and include a 0 or 1 indicating the vote. The ciphertexts of the votes could be added and then decrypted, yielding the vote count without revealing individual votes.
- Secure cloud computing: data could be encrypted and have ciphertexts operated on (both + and \times) without revealing the data itself. The result would then be decrypted and used.

Specifically with the quadratic residuosity encryption scheme, we have the following homomorphic properties:

- $E(m_1 \oplus m_2) = E(m_1) \cdot E(m_2)$ (can be checked with truth table)
- $E(1 \oplus m) = E(1) E(m)$
- $E(m) = E(0) \cdot E(b)$ (effectively re-randomizing)

9 Probabilistic encryption scheme and examples

9.1 Main Idea

Given a trapdoor permutation collection F, we define an encryption scheme as follows:

- The key generation function $Gen(1^k)$ simply chooses a $f \in F$ and its corresponding trapdoor t, and outputs (f,t).
- The encryption function Enc(f, m) chooses a seed r in the domain of f and a PSRG g based on f. It returns $c = (c_1, c_2) = (g(r) \oplus m, f^{|m|+1}(r))$.
- The decryption function $\text{Dec}(t,(c_1,c_2))$ has access to the trapdoor. It first finds $r=f^{-(|m|+1)}(c_2)$ (by inverting over and over) then returns $m=c_1\oplus g(r)$.

The security of this scheme follows from the assumption of a PSRG.

9.2 Example: RSA

The probabilistic approach can be applied to RSA as follows:

- $Gen(1^k)$ is defined as choosing (n, e) just as in RSA.
- $\mathsf{Enc}(n,m)$ is defined by choosing $r \in \mathbb{Z}_n^*$ and concatenating |m| bits computed by

$$pad = lsb(r \bmod n) \quad lsb(r^e \bmod n) \quad lsb(r^{e^2} \bmod n) \quad \cdots \quad lsb(r^{e^{|m|-1}} \bmod n).$$

We then set $c = (\text{pad} \oplus m, r^{|m|})$.

• $\mathsf{Dec}((p,q),(c_1,c_2))$ decrypts by finding r as the $|c_1|$ th root of c_2 modulo n (using the factorization n=pq). Then, it can recompute pad as above and find $m=c_1\oplus \mathsf{pad}$.

9.3 Example: El Gamal

The El Gamal Cryptosystem is based on the discrete log problem and takes advantage of probabilistic encryption, defined as follows:

- Gen(1^k) chooses a random k-bit prime p such that p = 2q + 1, where q is also prime. Let g be a generator of QR_p , x be a number with 1 < x < q, and $y = g^x \mod p$. Publish (p, g, y) as the public key and keep the x that was used secret.
- $\mathsf{Enc}((p,g,y),m)$ (where $m \in QR_p$) is defined by choosing randomly $1 \le r \le q$, computing $\mathsf{pad} = y^r = g^{xr} \mod p$, and yielding $c = (\mathsf{pad} \cdot m \mod p, g^r)$.
- $\operatorname{Dec}(x,(c_1,c_2))$ is able to decrypt the cipher by recomputing the pad as $\operatorname{pad} = c_2^x = g^{rx} \mod p$ and finding $m = c_1 \cdot \operatorname{pad}^{-1} \mod P$. by finding r as the $|c_1|$ th root of c_2 modulo n (using the factorization n = pq). Then, it can recompute pad as above and find $m = c_1 \oplus \operatorname{pad}$.

Note that g and p can be shared across all the users as long as x and therefore y are chosen differently for each key generation.

This scheme has, for message size |m| = k, public key of size O(k), bandwidth of O(k), and both encryption and decryption running time of $O(k^3)$. We also have security:

Theorem 2. Under DDH, El Gamal is computationally indistinguishable.

El Gamal also has multiplicative homomorphism. That is, if $\mathsf{Enc}(m) = (c_1, c_2)$ and $\mathsf{Enc}(m') = (c'_1, c'_2)$, we have $\mathsf{Enc}(m \cdot m') = (c_1 c'_1 \mod p, c_2 c'_2 \mod p)$.

Furthermore, we can modify the scheme to also have additive homomorphism as follows. In encrypting, instead of returning $c_1 = \text{pad} \cdot m \mod p$, we set $c_1 = \text{pad} \cdot g^m \mod p$. With this modification, multiplying $g^m \cdot g^{m'} = g^{m+m'}$ effectively adds m+m'. To decrypt, as long as m is a member of a polynomial size known set, can try all possibilities for g^m and choose the one that matches.

9.4 Example: Paillier

Another example of an encryption scheme that uses randomness is as follows:

- $Gen(1^k)$ chooses a n = pq, where p and q are primes. It publishes n and keeps $\phi(n)$ secret.
- \bullet $\mathsf{Enc}(n,m)$ (assuimg $m \in Z_n^*)$ chooses a random $r \in Z_n^*$ and computes

$$c = (1+n)^m r^n \mod n^2.$$

• Dec((p,q),c) first computes

$$c' = c^{\phi(n)} \mod n^2$$

$$= (1+n)^{m\phi(n)} r^{n\phi(n)} \mod n^2$$

$$= (1+n)^{m\phi(n)} \mod n^2$$

$$= 1 + nm\phi(n) \mod n^2,$$

from which we can find $m = \frac{c'-1}{n\phi n}$.

Note that the last step of decryption follows from the fact $(1+n)^t = 1 + tn + n^2(\cdots) = 1 + tn \mod n^2$ for any t.

The Paillier encryption scheme is used in applications such as auctions and voting due to its homomorphic properties: if $\operatorname{Enc}(n,m)=c$ and $\operatorname{Enc}(n,m')=c'$, then $\operatorname{Enc}(n,m+m' \mod n)=c\cdot c'$ and $\operatorname{Enc}(n,m-m' \mod n)=c/c'$.

The security of the scheme is guaranteed under the Decisional Composite Residuosity (DCR) assumption.

Definition 3. The Decisional Composite Residuosity (DCR) assumption states that it is hard to distinguish between (n, R^n) and (n, S) for random $R \in \mathbb{Z}_n$ and $S \in \mathbb{Z}_{n^2}$.

With DCR, Paillier is computationally indistinguishable against a passive adversary.

References