

FCT – Faculdade de Ciências e Tecnologia Bacharelado em Ciência da Computação

Inteligência Artificial

Relatório do trabalho prático

Gabriel Oya Nozawa

Introdução

Neste trabalho foram implementadas as heurísticas de busca gulosa em um nível, dois níveis, e uma heurística pessoal proposta pelo aluno, a fim de resolver um quebra-cabeça de peças deslizantes. Para a análise, considerou-se que um tabuleiro resolvido fosse representado por:

1	2	3
4	5	6
7	8	9

Nesse caso, a peça de valor 9 corresponde ao espaço vazio do quebra-cabeça. Logo, um tabuleiro resolvido seria aquele cujos valores de cada peça corresponderia a sua respectiva posição. Assim, os valores de distância considerados nas análises de busca gulosa foram obtidos pela seguinte fórmula:

$$d = \sum_{i=1}^{9} |p_i - v_i|$$

Sendo p_i o valor correto da tabela, e v_i o valor correspondente ao valor da peça atual na posição i.

Para a heurística pessoal, utilizou-se uma análise de um nível, porém com um valor de distância calculado pela seguinte equação:

$$d = \sum_{i=1}^{9} f(i)$$

$$f(i) = 27 * |p_i - v_i|, se i = 1$$

$$f(i) = 9 * |p_i - v_i|, se i mod 3 = 0$$

$$f(i) = |p_i - v_i|, se i mod 3 \neq 0$$

Nessa equação, prioriza-se resolver a peça mais distante do espaço vazio (peça 1) e, em seguida, montar a coluna esquerda do tabuleiro, uma vez que as 6 peças restantes, localizadas nas colunas centrais e direita, oferecem liberdade de movimento suficiente para organizar o restante das peças.

Resultados

Para analisar o desempenho de cada método implementado, testaram-se 6 tabuleiros diferentes e coletou-se o número de movimentos necessários para resolvê-los segundo cada heurística.

Os tabuleiros iniciais utilizados foram:

Tabuleiro 1					
4	1	3			
2	9	5			
7	8	6			

Tabuleiro 2					
1	6	7			
3	8	2			
4	5	9			

Tabuleiro 3					
6	5	3			
7	9	8			
4	2	1			

Movimentos embaralhar: 50 Movimentos embaralhar: 200 Movimentos embaralhar: 100

Tabuleiro 4					
4	1	2			
7	9	3			
8	5	6			

5	2	3
7	9	8
6	1	4
•	r · .	-

Tabuleiro 6					
7	3				
5	9	6			
4	2	8			

Movimentos embaralhar: 30

Movimentos embaralhar:1000 Movimentos embaralhar:40

Tabela 1: Análise em um nível.

	Teste 1	Teste 2	Teste 3	Teste 4	Teste 5	Média
Tabuleiro 1	24	24	24	24	24	24
Tabuleiro 2	206	298	206	206	208	224,8
Tabuleiro 3	410	850	674	540	662	627,2
Tabuleiro 4	562	392	364	364	858	508
Tabuleiro 5	202	128	202	214	202	189,6
Tabuleiro 6	780	950	456	492	232	582
Média final						359,27

Tabela 2: Análise em dois níveis.

	Teste 1	Teste 2	Teste 3	Teste 4	Teste 5	Média
Tabuleiro 1	10	10	10	10	10	10
Tabuleiro 2	192	192	194	166	192	187,2
Tabuleiro 3	52	52	52	52	52	52
Tabuleiro 4	196	196	170	198	196	191,2
Tabuleiro 5	220	220	220	220	220	220
Tabuleiro 6	24	24	24	24	24	24
Média final						114,07

Tabela 3: Heurística pessoal.

	Teste 1	Teste 2	Teste 3	Teste 4	Teste 5	Média
Tabuleiro 1	6	6	6	6	6	6
Tabuleiro 2	164	482	164	472	164	289,2
Tabuleiro 3	534	514	192	710	192	428,4
Tabuleiro 4	76	76	76	76	76	76
Tabuleiro 5	96	96	96	96	96	96
Tabuleiro 6	40	40	40	40	40	40
Média final						155,93

Testaram-se múltiplas vezes um mesmo tabuleiro inicial na mesma heurística, pois é possível que o número de movimentos varie, mesmo que seja utilizada a mesma heurística num mesmo problema inicial. Esta variação no número de movimentos ocorre devido a solução adotada para evitar a repetição de movimentos já jogados.

A fim de evitar a formação de laços infinitos, criou-se uma lista na qual armazena todas as posições já jogadas a fim de evitar que uma mesma posição seja alcançada novamente. Contudo, caso todas as posições já tenham sido testadas, o método não consegue escolher nenhuma posição, então um movimento aleatório é selecionado. Desse modo, a seleção do movimento aleatório pode gerar variações no número de movimentos, mesmo quando uma mesma heurística é utilizada.

Conclusões

Pela análise da tabela, verifica-se que a análise de dois níveis possui maior eficiência média em comparação a análise de um nível, uma vez que a análise em dois níveis diminui a escolha de mínimos locais durante a solução do problema.

Ademais, pela análise da heurística pessoal, é possível verificar que o método de calcular a distância do tabuleiro pode causar grandes diferenças na quantidade de movimentos necessários para solucionar o problema. Desse modo, infere-se que um bom método de estimativa poderia aumentar a eficiência do método sem necessitar da análise de níveis mais profundos.