LabVIEW™

Initiation à LabVIEW

Filiales francophones

National Instruments	National Instruments	National Instruments	National Instruments
France	Suisse	Belgium nv	Canada
2 rue Hennape	Sonnenbergstr. 53	Ikaroslaan 13	1 Holiday Street
92735 Nanterre Cedex	CH-5408 Ennetbaden	B-1930 Zaventem	East Tower, Suite 501
			Point-Claire,
			Ouébec H9R 5N3

Support

E-mail: france.support@ni.com

switzerland.support@ni.com
belgium.support@ni.com
canada.support@ni.com

Site FTP: ftp.ni.com
Adresse web: france.ni.com

ni.com/support suisse.ni.com belgique.ni.com canada.ni.com

Téléphone:

France Tél.: 01 57 66 24 24 Fax: 01 57 66 24 14 Suisse Tél.: 056 2005151 Fax: 056 200 51 55

Belgique Tél.: 02 757 0020 Fax: 02 757 03 11 Tél.: 405 120 (Luxembourg)

Canada (Québec) Tél.: 450 510 3055 Fax: 450 510 3056

Filiales internationales

Visitez ni.com/niglobal pour accéder aux sites Web des filiales. Vous y trouverez les informations les plus à jour pour contacter le support technique par téléphone ou e-mail, ainsi que le calendrier des événements.

Siège social de National Instruments

11500 North Mopac Expressway Austin, Texas 78759-3504 USA Tél.: 512 683 0100

Pour obtenir de plus amples informations, reportez-vous à l'annexe *Support technique et services*. Si vous souhaitez formuler des commentaires sur la documentation National Instruments, reportez-vous au site Web de National Instruments sur ni .com/frinfo et entrez l'info-code feedback.

Informations importantes

Garantie

Le support sur lequel vous recevez le logiciel National Instruments est garanti contre tout défaut d'exécution des instructions de programmation qui résulterait d'un défaut matériel ou de fabrication, pour une période de 90 jours à partir de la date d'expédition, telle qu'indiquée sur les reçus ou tout autre document. National Instruments réparera ou remplacera, au choix de National Instruments, le support n'exécutant pas les instructions de programmation sous réserve que National Instruments se soit vu notifier lesdits défauts au cours de la période de garantie. National Instruments ne garantit pas que le fonctionnement du logiciel sera ininterrompu ou exempt d'erreur.

Un produit ne pourra être accepté en retour dans le cadre de la garantie que si un numéro ARM (Autorisation de Retour Matériel) a été obtenu auprès de l'usine et a été clairement apposé sur l'extérieur de l'emballage. National Instruments supportera les frais de port liés au retour au propriétaire de pièces couvertes par la garantie.

National Instruments considère que les informations contenues dans le présent document sont correctes. Le document a été soigneusement revu afin de vérifier son exactitude sur le plan technique. Dans l'hypothèse où ce document contiendrait des inexactitudes techniques ou des erreurs typographiques, National Instruments se réserve le droit d'apporter des modifications aux futures éditions du présent document sans avoir besoin d'en informer au préalable les titulaires de la présente édition. Le lecteur est invité à consulter National Instruments s'il pense avoir relevé des erreurs. National Instruments ne pourra en aucun cas être tenu responsable des préjudices pouvant résulter ou pouvant être liés à ce document ou à l'information qu'il contient.

EN DEHORS DE CE OUI EST EXPRESSÉMENT PRÉVU AUX PRÉSENTES. NATIONAL INSTRUMENTS NE DONNE AUCUNE GARANTIE, EXPRESSE OU IMPLICITE, ET EXCLUT SPÉCIFIQUEMENT TOUTE GARANTIE QUANT À LA QUALITÉ MARCHANDE OU À L'APTITUDÉ À UNE UTILISATION PARTICULIÈRE. LE DROIT À INDEMNISATION DE L'UTILISATEUR DANS L'HYPOTHÈSE D'UNE FAUTE OU D'UNE NÉGLIGENCE DE NATIONAL INSTRUMENTS SERA LIMITÉ AU MONTANT PAYÉ PAR L'UTILISATEUR POUR LE PRODUIT EN CAUSE. NATIONAL INSTRUMENTS NE POURRA ÊTRE TENU RESPONSABLE DES DOMMAGES RÉSULTANT DE LA PERTE DE DONNÉES, DE PROFITS, D'UTILISATION DE PRODUITS OU POUR TOUT PRÉJUDICE INDIRECT OU INCIDENT, MÊME SI NATIONAL INSTRUMENTS A ÉTÉ AVISÉ DE LA POSSIBILITÉ DE LA SURVENANCE DE TELS DOMMAGES. Cette limitation de responsabilité de National Instruments s'appliquera quel que soit le fondement de la mise en cause de sa responsabilité, contractuelle ou délictuelle, y compris s'il s'agit de négligence. Toute action contre National Instruments devra être introduite dans le délai d'un an à compter de la survenance du fondement de cette action. National Instruments ne pourra en aucun cas être tenu responsable des retards d'exécution résultant de causes pouvant raisonnablement être considérées comme échappant à son contrôle. La garantie prévue aux présentes ne couvre pas les dommages, défauts, y compris de fonctionnement, résultant du non-respect des instructions d'installation, d'utilisation ou d'entretien données par National Instruments ; de la modification du produit par le propriétaire ; d'abus d'utilisation, de mauvaise utilisation ou de négligence de la part du propriétaire ; et de fluctuations dans l'alimentation électrique, d'incendies, d'inondations, d'accidents, d'actes de tiers ou de tout autre événement pouvant raisonnablement être considéré comme échappant au contrôle de National Instruments.

Copyright

Conformément à la réglementation applicable en matière de droits d'auteur, cette publication ne peut pas être reproduite ni transmise sous une forme quelconque, que ce soit par voie électronique ou mécanique, notamment par photocopie, enregistrement ou stockage dans un système permettant la récupération d'informations, ni traduite, en tout ou partie, sans le consentement préalable et écrit de National Instruments Corporation.

National Instruments respecte les droits de propriété intellectuelle appartenant à des tiers et nous demandons aux utilisateurs de nos produits de les respecter également. Les logiciels NI sont protégés par la réglementation applicable en matière de droits d'auteur et de propriété intellectuelle. Lorsque des logiciels NI peuvent être utilisés pour reproduire des logiciels ou autre matériel appartenant à des tiers, vous ne pouvez utiliser les logiciels NI à cette fin que pour autant que cette reproduction est permise par les termes du contrat de licence applicable auxdits logiciels ou matériel et par la réglementation en vigueur.

Pour les contrats de licence utilisateur final (CLUF) et les avis concernant les droits d'auteur, les conditions et les exclusions et limitations de garanties, y compris des informations concernant des composants de tierces parties utilisés dans LabVIEW, reportez-vous à la rubrique *Copyright* de l'*Aide LabVIEW*.

Margues

Veuillez consulter la rubrique NI Trademarks and Logo Guidelines sur ni.com/trademarks pour obtenir de plus amples informations sur les marques de National Instruments.

ARM, Keil, and µVision are trademarks or registered of ARM Ltd or its subsidiaries.

LEGO, the LEGO logo, WEDO, and MINDSTORMS are trademarks of the LEGO Group. ©2013 The LEGO Group. TETRIX by Pitsco is a trademark of Pitsco, Inc. ©2013

FIELDBUS FOUNDATION $^{\text{\tiny{TM}}}$ and FOUNDATION $^{\text{\tiny{TM}}}$ are trademarks of the Fieldbus Foundation.

EtherCAT® is a registered trademark of and licensed by Beckhoff Automation GmbH.

CANopen® is a registered Community Trademark of CAN in Automation e.V.

DeviceNet[™] and EtherNet/IP[™] are trademarks of ODVA.

Go!, SensorDAQ, and Vernier are registered trademarks of Vernier Software & Technology. Vernier Software & Technology and vernier.com are trademarks or trade dress.

Xilinx is the registered trademark of Xilinx, Inc.

Taptite and Trilobular are registered trademarks of Research Engineering & Manufacturing Inc.

FireWire® is the registered trademark of Apple Inc.

Linux® is the registered trademark of Linus Torvalds in the U.S. and other countries.

Handle Graphics®, MATLAB®, Real-Time Workshop®, Simulink®, Stateflow®, and xPC TargetBox® are registered trademarks, and TargetBox™ and Target Language Compiler™ are trademarks of The MathWorks, Inc.

Tektronix®, Tek, and Tektronix, Enabling Technology are registered trademarks of Tektronix, Inc.

The Bluetooth® word mark is a registered trademark owned by the Bluetooth SIG, Inc.

The ExpressCard™ word mark and logos are owned by PCMCIA and any use of such marks by National Instruments is under license

The mark LabWindows is used under a license from Microsoft Corporation. Windows is a registered trademark of Microsoft Corporation in the United States and other countries.

Les autres noms de produits et de sociétés mentionnés aux présentes sont les marques ou les noms de leurs propriétaires respectifs.

Les membres du programme "National Instruments Alliance Partner Program" sont des entités professionnelles indépendantes de National Instruments et aucune relation d'agence, de partenariat ou "joint-venture" n'existe entre ces entités et National Instruments.

Brevets

Pour la liste des brevets protégeant les produits/technologies National Instruments, veuillez vous référer, selon le cas : à la rubrique **Aide»Brevets** de votre logiciel, au fichier patents.txt sur votre média, ou à *National Instruments Patent Notice* sur ni.com/patents.

Informations sur la conformité à la réglementation en matière d'exportation

Reportez-vous à la page Export Compliance Information sur ni.com/legal/export-compliance pour consulter la politique de National Instruments en matière de conformité à la réglementation gouvernant le commerce international et pour savoir comment obtenir les codes de tarif douanier (HTS) et les numéros ECCN pertinents, ainsi que d'autres données relatives à l'import-export.

MISE EN GARDE CONCERNANT L'UTILISATION DES PRODUITS NATIONAL INSTRUMENTS (1) LES PRODUITS NATIONAL INSTRUMENTS NE SONT PAS CONÇUS AVEC DES COMPOSANTS NI SOUMIS A DES TESTS D'UN NIVEAU SUFFISANT POUR ASSURER LA FIABILITÉ DE LEUR UTILISATION DANS OU EN RAPPORT AVEC DES IMPLANTS CHIRURGICAUX OU EN TANT QUE COMPOSANTS ESSENTIELS DE SYSTÈMES DE MAINTIEN DE LA VIE DONT LE MAUVAIS FONCTIONNEMENT POURRAIT CAUSER DES DOMMAGES IMPORTANTS SUR UNE PERSONNE.

(2) DANS TOUTE APPLICATION, Y COMPRIS CELLE CI-DESSUS, LE FONCTIONNEMENT DE PRODUITS LÓGICIELS PEUT ÊTRE CONTRÁRIÉ PAR CERTAINS FACTEURS, Y COMPRIS, NOTAMMENT, LES FLUCTUATIONS D'ALIMENTATION ÉLECTRIQUE, LE MAUVAIS FONCTIONNEMENT DU MÁTÉRIEL INFORMATIQUE, LE MANQUE DE COMPATIBILITÉ AVEC LE SYSTÈME D'EXPLOITATION DE L'ORDINATEUR, LE MANQUE D'ADÉQUATION DES COMPILATEURS ET LOGICIELS UTILISÉS POUR DÉVELOPPER UNE APPLICATION, LES ERREURS D'INSTALLATION, LES PROBLÈMES DE COMPATIBILITÉ ENTRE LE LOGICIEL ET LE MATÉRIEL, LES DÉFAUTS DE FONCTIONNEMENT OU LES PANNES DES APPAREILS ÉLECTRONIQUES DE SURVEILLANCE OU DE CONTRÔLE, LES PANNES TEMPORAIRES DE SYSTÈMES ÉLECTRONIQUES (MATÉRIEL ET/OU LOGICIEL), UNE UTILISATION NON PRÉVUE OU UNE MAUVAISE UTILISATION OU ENCORE DES ERREURS DE LA PART DE L'UTILISATEUR OU DU CONCEPTEUR D'APPLICATION (DES FACTEURS TELS QUE CEUX PRÉCITÉS SONT CI-APRÈS DÉSIGNÉS ENSEMBLE DES "DÉFAILLANCÈS DE SYSTÈME"). TOUTE APPLICATION DANS LAQUELLE UNE DÉFAILLANCE DE SYSTÈME ENGENDRERAIT UN RISQUE D'ATTEINTE AUX BIENS OU AUX PERSONNES (Y COMPRIS UN RISQUE DE BLESSURES CORPORELLES OU DE DÉCÈS) NE DOIT PAS ÊTRE DÉPENDANTE D'UN SEUL SYSTÈMÈ ÉLECTRONIQUE EN RAISON DU RISQUE DE DÉFAILLANCE DE SYSTÈME. POUR ÉVITER TOUT DOMMAGE, BLESSURE OU DÉCÈS, L'UTILISATEUR OU LE CONCEPTEUR D'APPLICATION DOIT PRENDRE TOUTES LES PRÉCAUTIONS RAISONNABLEMENT NÉCESSAIRES À LA PROTECTION CONTRE LES DÉFAILLANCES DE SYSTÈME, Y COMPRIS NOTAMMENT EN PRÉVOYANT DES MÉCANISMES DE SAUVEGARDE OU DE MISE HORS TENSION. LE SYSTÈME INFORMATIQUE DE CHAQUE UTILISATEUR FINAL ÉTANT ADAPTÉ À SES BESOINS SPÉCIFIQUES ET DIFFÉRENT DES PLATES-FORMES DE TEST DE NATIONAL INSTRUMENTS ET UN UTILISATEUR OU UN CONCEPTEUR D'APPLICATION POUVANT UTILISER LES PRODUITS NATIONAL INSTRUMENTS EN COMBINAISON AVEC D'AUTRES PRODUITS D'UNE FAÇON NON PRÉVUE OU NON TESTÉE PAR NATIONAL INSTRUMENTS, L'UTILISATEUR OU LE CONCEPTEUR D'APPLICATION EST SEUL RESPONSABLE DE LA VÉRIFICATION ET DE LA VALIDATION DE L'ADÉQUATION ET DE LA COMPATIBILITÉ DES PRODUITS NATIONAL INSTRUMENTS DÈS LORS QUE DES PRODUITS NATIONAL INSTRUMENTS SONT INTÉGRÉS DANS UN SYSTÈME OU UNE APPLICATION, Y COMPRIS NOTAMMENT, DE L'ADÉQUATION DE LA CONCEPTION, DU FONCTIONNEMENT ET DU NIVEAU DE SÉCURITÉ DUDIT SYSTÈME OU APPLICATION.

Sommaire

Avant-propos Documentation associée	ix
Chapitre 1	
Initiation aux instruments virtuels de LabVIEW	
Construction d'un instrument virtuel	
Lancement de LabVIEW	
Ouverture d'un nouveau VI à partir d'un modèle	
Ajout d'une commande sur la face-avant	
Changement de type d'un signal	
Câblage d'objets sur le diagramme	
Exécution d'un VI	
Modification d'un signal	
Affichage de deux signaux sur un graphe	
Personnalisation d'une commande bouton rotatif	
Personnalisation d'un graphe	
Résumé	
Face-avant	1-18
Diagramme	
Outils des faces-avant et des diagrammes	
Exécution et arrêt d'un VI	1-19
VIs Express	
Ressources de documentation LabVIEW	
Boîtes de dialogue Propriétés	1-20
Raccourcis	1-20
Chapitre 2	
Personnalisation d'un VI	
Construction d'un VI à partir d'un VI vide	2-1
Ouverture d'un VI vide	2-2
Ajout d'un VI Express qui simule un signal	2-2
Recherche dans l'aide et modification d'un signal	2-3
Personnalisation d'une interface utilisateur à partir du diagramme	2-5
Configuration d'un VI pour qu'il s'exécute en continu jusqu'à ce que	
l'utilisateur l'arrête	2-6
Utilisation de la fenêtre Liste des erreurs	2-8
Contrôle de la vitesse d'exécution	2-9
Utilisation d'une table pour afficher les données	2-9
Recherche d'exemples	

Sommaire

Résumé	2-12
Utilisation des ressources d'aide LabVIEW	2-12
Personnalisation du code du diagramme	2-13
Création de commandes et d'indicateurs	
Contrôle de l'arrêt d'un VI	
Erreurs et fils de liaison brisés	2-14
Affichage des données dans une table	2-14
Utilisation de l'Outil de recherche d'exemples NI	2-15
Raccourcis	2-15
Chapitre 3	
Analyse et enregistrement d'un signal	
	2.1
Construction d'un VI d'analyse	
Modification d'un VI créé à partir d'un modèle	
Ajout d'un signal	
Ajout de deux signaux	
Filtrage d'un signal	
Modification de l'apparence des graphes	
Analyse de l'amplitude d'un signal	
Contrôle de la vitesse d'exécution	
Ajout d'un voyant de mise en garde	
Spécification du niveau de limite de mise en garde	
Mise en garde de l'utilisateur	
Configuration d'un VI pour qu'il enregistre les données dans un fichier	3-12
Enregistrement des données dans un fichier	
Ajout d'un bouton qui enregistre les données lorsqu'on clique dessus	
Enregistrement des données à la demande de l'utilisateur	
Affichage des données enregistrées	
Résumé.	
Commandes et indicateurs	
Filtrage de données	
Enregistrement de données	3-15
Chapitre 4	
. Matériel : acquisition de données et communication avec	c des
instruments (Windows)	0 400
,	
Spécifications logicielles et matérielles	
Acquisition d'un signal dans NI-DAQmx	
Création d'une tâche NI-DAQmx	
Affichage sur un graphe des données d'un périphérique DAQ	
Édition d'une tâche NI-DAQmx	
Comparaison visuelle des deux mesures de tension	4-6

Communication avec un instrument : utilisation de drivers d'instruments	
et de l'Assistant d'E/S instruments	4-6
Initiation à l'Assistant de recherche de drivers d'instruments	4-7
Recherche et installation de drivers d'instruments	4-7
Utilisation de drivers d'instruments	4-8
Sélection d'un instrument avec l'Assistant d'E/S instruments	4-9
Acquisition et analyse des informations d'un instrument	4-1
Câblage d'une commande à l'instrument	
Résumé	
VI Express Assistant DAQ	
Tâches dans NI-DAQmx	
Drivers d'instruments	4-1
VI Express Assistant d'E/S instruments	4-1
Chapitre 5	
Utilisation des autres fonctionnalités LabVIEW	
Toutes les commandes et tous les indicateurs	5-1
Tous les VIs et fonctions	
VIs	5-2
Fonctions	5-2
Types de données	5-3
Quand utiliser les autres fonctionnalités LabVIEW ?	
Annexe A	
Support technique et services	
ouppoit teorinique et services	

Glossaire

Index

Avant-propos

Utilisez ce manuel comme didacticiel pour vous familiariser avec l'environnement de programmation graphique LabVIEW et avec les fonctionnalités LabVIEW de base dont vous avez besoin pour construire des applications d'acquisition de données et de contrôle d'instruments.

Ce manuel contient des exercices que vous pouvez utiliser afin d'apprendre comment développer des applications de base dans LabVIEW. Ces exercices prennent peu de temps et vous permettent de vous initier à LabVIEW.

En fin de chapitre, un résumé récapitule les concepts clés enseignés dans le chapitre. Utilisez ces résumés pour réviser ce que vous avez appris.

Documentation associée

Les documents suivants contiennent des informations qui peuvent vous être utiles à la lecture de ce manuel:

- Guide d'installation de LabVIEW Reportez-vous à ce guide pour obtenir des informations d'installation pour LabVIEW, les modules et toolkits, les drivers et le matériel
- Aide LabVIEW Utilisez l'Aide LabVIEW pour obtenir des informations sur les concepts de programmation LabVIEW, des instructions détaillées sur l'utilisation de LabVIEW et des informations de référence sur les VIs, les fonctions, les palettes, les menus et les outils de LabVIEW, ainsi que ses propriétés, méthodes, événements, boîtes de dialogue, etc. L'Aide LabVIEW liste également les ressources de documentation disponibles chez National Instruments. Accédez à l'Aide LabVIEW en sélectionnant Aide» Aide LabVIEW.
- Guide de référence rapide LabVIEW Utilisez cette carte comme référence pour obtenir des informations sur les raccourcis clavier et les ressources d'aide.

Initiation aux instruments virtuels de LabVIEW

Les programmes LabVIEW sont appelés instruments virtuels, ou VIs, car leur apparence et leur fonctionnement s'apparentent à ceux des instruments réels, tels que les oscilloscopes et les multimètres. LabVIEW contient une grande gamme d'outils pour l'acquisition, l'analyse, l'affichage et l'enregistrement des données, ainsi que des outils pour vous aider à mettre au point votre programme.

Dans LabVIEW, vous construisez une interface utilisateur, ou face-avant, avec des commandes et des indicateurs. Les commandes sont des boutons rotatifs, des boutons-poussoirs, des cadrans et autres mécanismes d'entrée. Les indicateurs sont des graphes, des LED et d'autres afficheurs de sortie. Après avoir construit la face-avant, vous ajoutez du code en utilisant des VIs et des structures pour contrôler les objets de la face-avant. Le diagramme contient ce code.

Vous pouvez utiliser LabVIEW pour communiquer avec le matériel comme, par exemple, d'acquisition de données ou d'images, les périphériques de commande d'axes et les instruments GPIB, PXI, VXI, RS232 et RS485.

Construction d'un instrument virtuel

Dans les exercices suivants, vous allez construire un VI qui génère un signal et l'affiche dans un graphe. Quand vous aurez terminé les exercices, la face-avant du VI ressemblera à la face-avant de la figure suivante.

Vous pouvez effectuer les exercices de ce chapitre en 40 minutes environ.

Figure 1-1. Face-avant du VI Acquérir un signal

Lancement de LabVIEW

La fenêtre de démarrage s'ouvre lorsque vous lancez LabVIEW. Utilisez cette fenêtre pour créer de nouveaux projets et ouvrir des fichiers existants. Vous pouvez aussi accéder à des ressources permettant d'étendre la capacité de LabVIEW et à des informations vous aidant à vous familiariser avec LabVIEW.

La fenêtre de démarrage disparaît lorsque vous ouvrez un fichier existant ou que vous créez un nouveau fichier, et réapparaît lorsque vous fermez toutes les faces-avant et tous les diagrammes ouverts. Vous pouvez aussi afficher la fenêtre à partir de la face-avant ou du diagramme en sélectionnant Affichage»Fenêtre de démarrage.

Ouverture d'un nouveau VI à partir d'un modèle

LabVIEW fournit des VIs modèles prédéfinis qui comportent les sous-VIs, les fonctions, les structures et les objets de face-avant dont vous avez besoin pour commencer à construire des applications de mesure courantes.

Effectuez les étapes suivantes pour créer un VI qui génère un signal et l'affiche dans la fenêtre de la face-avant.

- 1 Lancez LabVIEW.
- 2. Sélectionnez Fichier»Nouveau pour afficher la boîte de dialogue Nouveau.
- Dans la liste Créer un nouvel objet, sélectionnez VI» À partir d'un modèle» Tutoriel (Initiation à LabVIEW)»Générer et afficher. Ce VI modèle génère et affiche un signal.

Un aperçu et une courte description du VI modèle apparaissent dans la section **Description**. La figure suivante représente la boîte de dialogue **Nouveau** avec l'aperçu du VI modèle Générer et afficher.

- Cliquez sur le bouton OK pour créer un VI à partir du modèle. Vous pouvez également double-cliquer sur le nom du VI modèle dans la liste de Créer un nouvel objet pour créer un VI à partir d'un modèle.
 - LabVIEW affiche deux fenêtres : la fenêtre de la face-avant et la fenêtre du diagramme.
- 5. Examinez la fenêtre de la face-avant.

L'interface utilisateur, ou face-avant, apparaît avec un arrière-plan gris et inclut les commandes et les indicateurs. La barre de titre de la face-avant indique que cette fenêtre est la face-avant du VI Générer et afficher

Remarque Si la face-avant n'est pas apparente, vous pouvez l'afficher en sélectionnant **Fenêtre**» **Afficher la face-avant**. Vous pouvez aussi passer à tout moment de la fenêtre de la face-avant à celle du diagramme et vice versa en appuyant sur les touches <Ctrl-E>. La touche <Ctrl> des raccourcis clavier correspond à la touche <Commande> des claviers **Mac OS X** et à la touche <Alt> de **Linux**.

- 6 Sélectionnez Fenêtre» Afficher le diagramme et étudiez le diagramme du VI. Le diagramme apparaît avec un arrière-plan blanc et inclut les VIs et les structures qui contrôlent les objets de la face-avant. La barre de titre du diagramme indique que cette fenêtre est le diagramme du VI Générer et afficher.
- Dans la barre d'outils de la face-avant, cliquez sur le bouton Exécuter, illustré ci-dessous. Vous pouvez également appuyer sur les touches <Ctrl-R> pour exécuter un VI.

Une sinusoïde apparaît sur le graphe de fenêtre de la face-avant.

8 Arrêtez le VI en cliquant sur le bouton **STOP** de la face-avant, illustré ci-dessous.

Ajout d'une commande sur la face-avant

Les commandes de la face-avant simulent les mécanismes d'entrée d'un instrument physique et fournissent des données au diagramme du VI. De nombreux instruments physiques ont des boutons rotatifs que vous pouvez tourner pour modifier une valeur d'entrée.

Effectuez les étapes suivantes pour ajouter un bouton rotatif sur la face-avant.

Astuce Quel que soit l'exercice, vous pouvez annuler les modifications récentes en sélectionnant **Édition**»**Annuler** ou en appuyant sur les touches <Ctrl-Z>.

Si la palette Commandes, représentée dans la figure 1-3, n'est pas visible sur la fenêtre de la face-avant, sélectionnez Affichage»Palette des commandes.

Astuce Vous pouvez cliquer avec le bouton droit sur une partie vide de la face-avant ou du diagramme pour faire apparaître une version temporaire de la palette Commandes ou Fonctions. La palette Commandes ou Fonctions apparaît avec l'icône d'une punaise dans le coin supérieur gauche. Cliquez sur la punaise pour fixer la palette à l'écran.

2. Si vous êtes un nouvel utilisateur de LabVIEW, la palette Commandes s'ouvre par défaut avec la palette **Moderne** visible, comme le montre la figure suivante. Si vous ne voyez pas la palette Moderne, vous pouvez l'afficher en cliquant sur Moderne sur la palette Commandes.

3. Faites passer le curseur sur les icônes de la palette **Moderne** pour trouver la palette Numérique.

Lorsque vous déplacez le curseur sur les icônes de la palette Commandes, le nom de la sous-palette, de la commande ou de l'indicateur apparaît dans une info-bulle en dessous de l'icône.

Remarque Certains objets de palettes affichent un nom court différent du nom qui apparaît dans l'info-bulle. Le nom court abrège le nom de l'objet pour qu'il tienne dans l'espace disponible sur la palette. Si vous avez du mal à trouver un objet sur une palette d'après son nom court, utilisez le bouton Rechercher qui se trouve sur la palette Commandes ou Fonctions pour trouver l'objet d'après son nom complet.

- 4 Cliquez sur l'icône Numérique pour afficher la palette Numérique.
- 5. Cliquez sur la commande **Bouton rotatif** de la palette **Numérique** pour attacher la commande au curseur, puis ajoutez le bouton rotatif sur la face-avant à gauche du graphe. Vous utiliserez ce bouton rotatif dans un exercice ultérieur pour contrôler l'amplitude d'un signal.

Sélectionnez Fichier» Enregistrer sous et enregistrez le VI sous le nom Acquérir un signal.vi dans un emplacement d'accès facile.

Changement de type d'un signal

Sur le diagramme se trouve une icône bleue nommée Simuler un Signal. Cette icône représente le VI Express Simuler un signal. Un VI Express est un composant du diagramme que vous pouvez configurer pour réaliser des mesures courantes. Par défaut, le VI Express Simuler un signal simule un signal sinusoïdal.

Effectuez les étapes suivantes pour changer ce signal en signal en dents de scie.

Affichez le diagramme en appuyant sur les touches <Ctrl-E> ou en cliquant sur le diagramme.

Recherchez le VI Express Simuler un signal, illustré ci-dessous. Le VI Express Simuler un signal simule un signal défini par la configuration que vous spécifiez.

Cliquez avec le bouton droit sur le VI Express Simuler un signal et sélectionnez **Propriétés** dans le menu local pour ouvrir la boîte de dialogue Configurer Simuler un signal. (Mac OS X) Cliquez avec le bouton de la souris tout en appuyant sur la touche <Commande> pour effectuer la même action qu'un clic droit.

Astuce Vous pouvez aussi double-cliquer sur le VI Express pour afficher la boîte de dialogue Configurer Simuler un signal.

3 Sélectionnez Dents de scie dans le menu déroulant de Type de signal.

Le signal du graphe de la section **Apercu du résultat** devient un signal en dents de scie. La boîte de dialogue Configurer Simuler un signal doit ressembler à la figure suivante.

Figure 1-4. Boîte de dialogue Configurer Simuler un signal

- Cliquez sur le bouton **OK** pour enregistrer la configuration actuelle et fermer la boîte de 4. dialogue Configurer Simuler un signal.
- Déplacez le curseur sur les flèches situées tout en bas du VI Express Simuler un signal. Les 5. flèches vers le bas indiquent que vous pouvez afficher les entrées et sorties masquées en étendant le cadre du VI Express.
- Quand votre curseur devient une double flèche, illustrée ci-dessous, cliquez sur le cadre du VI Express et faites-le glisser pour ajouter deux lignes. Lorsque vous relâchez le bouton de la souris, l'entrée **Amplitude** apparaît.

Dans la figure 1-4, remarquez qu'Amplitude est une option de la boîte de dialogue Configurer Simuler un signal. Les entrées, comme Amplitude, qui apparaissent à la fois dans le diagramme et dans la boîte de dialogue de configuration, peuvent être configurées depuis l'un ou l'autre de ces emplacements.

Câblage d'objets sur le diagramme

Pour modifier l'amplitude du signal avec la commande bouton rotatif, vous devez connecter deux objets sur le diagramme.

Effectuez les étapes suivantes pour câbler le bouton rotatif à l'entrée Amplitude du VI Express Simuler un signal.

Sur le diagramme, amenez le curseur sur le terminal **Bouton rotatif**, représenté ci-dessous.

Le curseur devient une flèche, l'outil Flèche, illustré ci-dessous. Utilisez l'outil Flèche pour sélectionner, positionner et redimensionner les objets.

Remarque Vous ne pouvez redimensionner que des boucles et des structures sur le diagramme. Allez sur la face-avant pour redimensionner des objets que vous avez ajouté à la face-avant.

Avec l'outil Flèche, sélectionnez le terminal **Bouton rotatif** et vérifiez qu'il se trouve bien à gauche du VI Express Simuler un signal et à l'intérieur de la boucle grise, représentée ci-dessous.

Les terminaux à l'intérieur de la boucle représentent les commandes et les indicateurs de la face-avant. Les terminaux sont les ports d'entrée et de sortie qui échangent des informations entre la face-avant et le diagramme.

- 3 Désélectionnez le terminal **Bouton rotatif** en cliquant sur un espace vide du diagramme. Si vous voulez utiliser un autre outil avec un objet, vous devez désélectionner l'objet pour changer d'outil.
- Placez le curseur sur la flèche du terminal **Bouton rotatif**, illustré ci-dessous. 4

Le curseur devient une bobine de câblage, l'outil Bobine, illustré ci-dessous. Utilisez l'outil Bobine pour câbler les objets les uns aux autres sur le diagramme.

5. Quand l'outil Bobine apparaît, cliquez sur la flèche du terminal Bouton rotatif, puis sur la flèche de l'entrée Amplitude du VI Express Simuler un signal, illustré ci-dessous, pour câbler les deux objets l'un à l'autre.

Un câble apparaît et connecte les deux objets. Les données circulent sur ce fil, du terminal Bouton rotatif au VI Express.

Sélectionnez Fichier»Enregistrer pour enregistrer le VI.

Exécution d'un VI

L'exécution d'un VI produit la solution.

Effectuez les opérations suivantes pour exécuter le VI Acquérir un signal.

- Affichez la face-avant en appuyant sur les touches <Ctrl-E> ou en cliquant sur la face-avant.
- 2. Cliquez sur le bouton **Exécuter** ou appuyez sur les touches <Ctrl-R> pour exécuter le VI. Pour indiquer que le VI est en cours d'exécution, le bouton Exécuter devient une flèche noire, illustrée ci-dessous. La seule modification possible à l'exécution d'un VI est celle de la valeur de la plupart des commandes.

- 3 Placez le curseur sur le bouton rotatif, maintenez le bouton de la souris appuyé et tournez le bouton rotatif pour changer l'amplitude du signal en dents de scie.
 - L'amplitude du signal en dents de scie change au fur et à mesure que vous tournez le bouton rotatif. Au fur et à mesure que vous changez l'amplitude, le curseur affiche une info-bulle qui indique la valeur numérique du bouton rotatif. L'axe des y du graphe se met automatiquement à l'échelle pour refléter le changement d'amplitude.
- 4 Cliquez sur le bouton **STOP**, illustré ci-dessous, pour arrêter le VI.

Le bouton STOP arrête le VI une fois l'itération en cours de la boucle terminée. Le bouton Abandonner l'exécution, représenté ci-dessous, arrête immédiatement le VI sans le laisser terminer l'itération en cours. L'abandon d'un VI qui fait appel à des ressources externes (du matériel externe, par exemple) risque de laisser les ressources dans un état indéterminé, du fait qu'elles ne sont pas correctement libérées ou réinitialisées. Pour éviter ce problème, utilisez un bouton STOP dans les VIs que vous créez.

Modification d'un signal

Effectuez les étapes suivantes pour appliquer un facteur d'échelle de 10 au signal et afficher les résultats dans le graphe de la face-avant.

Sur le diagramme, utilisez l'outil Flèche pour cliquer sur le fil qui connecte le VI Express Simuler un signal au terminal **Graphe**, illustré ci-dessous.

Appuyez sur la touche <Suppr> pour supprimer ce fil. 2.

3 Si la palette **Fonctions**, illustrée dans la figure suivante, n'est pas visible, affichez-la en sélectionnant Affichage» Palette des fonctions. Par défaut, la palette Fonctions s'ouvre en affichant la palette Programmation. Sélectionnez la palette Express en cliquant sur **Express** sur la palette **Fonctions**.

Sur la palette Arithmétique et comparaison, sélectionnez le VI Express Formule, 4. représenté ci-dessous, et placez-le sur le diagramme, entre le VI Express Simuler un signal et le terminal Graphe. Vous pouvez déplacer le terminal Graphe vers la droite pour avoir plus de place entre le VI Express et le terminal.

La boîte de dialogue Configurer Formule s'ouvre quand vous placez le VI Express sur le diagramme. Lorsque vous placez un VI Express sur le diagramme, la boîte de dialogue de configuration de ce VI apparaît toujours automatiquement.

Remarque Si vous placez un objet trop près d'un autre sur le diagramme, il se peut que le câblage automatique câble les deux objets l'un à l'autre. Supprimez les fils de liaison si le câblage automatique est incorrect. Pour configurer le câblage automatique, sélectionnez Outils» Options, puis Diagramme dans la liste Catégorie. Désélectionnez l'option Câblage automatique pour désactiver le câblage automatique.

Cliquez sur le bouton Aide, illustré ci-dessous, en bas à droite de la boîte de dialogue 5. Configurer Formule pour afficher la rubrique de l'Aide LabVIEW associée à ce VI Express.

La rubrique d'aide Formule décrit le VI Express, ses entrées et ses sorties, et les options de sa boîte de dialogue de configuration. Chaque VI Express a une rubrique d'aide associée accessible en cliquant sur le bouton Aide dans la boîte de dialogue de configuration, ou en cliquant avec le bouton droit sur le VI Express et en sélectionnant Aide dans le menu local.

- 6 Dans la rubrique Formule, recherchez l'option de boîte de dialogue dont la description indique qu'elle entre une variable dans la formule.
- 7. Minimisez l'*Aide LabVIEW* pour revenir à la boîte de dialogue **Configurer Formule**.
- 8. Remplacez le texte **x1** de la colonne Étiquette, illustré ci-dessous, de l'option de la boîte de dialogue dont vous avez lu la description, par Dents de scie pour indiquer la valeur en entrée du VI Express Formule. Lorsque vous cliquez sur le champ de formule en haut de la boîte de dialogue Configurer Formule, le texte est remplacé par le nom que vous avez entré pour l'étiquette.

Définissez la valeur du facteur d'échelle en entrant *10 après Dents de scie dans le champ 9. de formule.

Vous pouvez entrer le facteur d'échelle en utilisant les boutons d'**Entrée** de la boîte de dialogue de configuration ou les boutons *, 1 et 0 du pavé numérique. Si vous utilisez les boutons d'Entrée de la boîte de dialogue de configuration, LabVIEW place l'entrée de la formule après l'entrée **Dents de scie** dans le champ de **formule**. Si vous utilisez le clavier, cliquez sur le champ de formule après Dents de scie et entrez la formule qui doit apparaître dans le champ. La boîte de dialogue Configurer Formule doit ressembler à la figure suivante.

Figure 1-6. Boîte de dialogue Configurer Formule

Remarque Si vous entrez une formule non valide dans le champ Formule, la LED Erreurs, en haut à droite, passe de vert à gris et affiche le texte Formule non valide.

- 10. Cliquez sur le bouton **OK** pour enregistrer la configuration actuelle et fermer la boîte de dialogue Configurer Formule.
- 11. Déplacez le curseur sur la flèche située sur la sortie Dents de scie du VI Express Simuler un signal.
- 12. Quand l'outil Bobine apparaît, cliquez sur la flèche de la sortie **Dents de scie**, puis sur la flèche de l'entrée Dents de scie du VI Express Formule, illustré ci-dessous, pour câbler les deux objets l'un à l'autre.

13. Avec l'outil Bobine, connectez la sortie **Résultat** du VI Express Formule au terminal Waveform Graph.

Examinez les fils de liaison reliant les VIs Express aux terminaux. Les flèches des terminaux et des VIs Express indiquent la direction dans laquelle les données circulent sur ces fils. Le diagramme devrait être semblable à celui de la figure suivante. Utilisez les figures du diagramme comme référence. Il n'est pas nécessaire que la disposition des objets sur votre diagramme corresponde exactement à la figure.

Figure 1-7. Diagramme du VI Acquérir un signal

Astuce Vous pouvez cliquer avec le bouton droit sur n'importe quel fil de liaison et sélectionner Arranger le câblage dans le menu local pour que LabVIEW achemine automatiquement les fils de liaison en évitant les objets du diagramme. LabVIEW guide aussi le routage du fil de liaison de façon à réduire le nombre de coudes dans le câblage. Vous pouvez aussi cliquer sur le bouton Nettoyer le diagramme sur la barre d'outils du diagramme pour que LabVIEW redirige automatiquement tous les fils de liaison existants pour améliorer l'apparence du diagramme.

14. Appuyez sur les touches < Ctrl-S > ou sélectionnez Fichier» Enregistrer pour enregistrer le VI.

Affichage de deux signaux sur un graphe

Pour comparer sur un même graphe le signal généré par le VI Express Simuler un signal et le signal modifié par le VI Express Formule, utilisez la fonction Assembler des signaux.

Effectuez les étapes suivantes pour afficher deux signaux sur le même graphe.

- Sur le diagramme, déplacez le curseur sur la flèche de la sortie **Dents de scie** du VI Express Simuler un signal.
- Avec l'outil Bobine, câblez la sortie Dents de scie au terminal Waveform Graph. La fonction Assembler des signaux, représentée ci-dessous, apparaît quand les deux fils de liaison sont connectés

Une fonction est un élément d'exécution intégré, comparable aux opérateurs, aux fonctions et aux déclarations des langages de programmation textuels. La fonction Assembler des signaux prend les deux signaux et les combine pour pouvoir les afficher sur le même graphe.

Le diagramme devrait être semblable à celui de la figure suivante.

Figure 1-8. Diagramme représentant la fonction Assembler des signaux

- Appuyez sur les touches <Ctrl-S> ou sélectionnez Fichier»Enregistrer pour enregistrer 3. le VI.
- 4 Retournez à la face-avant, exécutez le VI et tournez le bouton rotatif. Le graphe trace le signal en dents de scie d'origine et le signal en dents de scie mis à l'échelle avec un facteur de 10 sur l'amplitude, comme vous l'avez spécifié dans le VI Express Formule. La valeur maximale sur l'axe y se met automatiquement à l'échelle lorsque vous tournez le bouton rotatif.
- Cliquez sur le bouton **STOP** pour arrêter le VI.

Personnalisation d'une commande bouton rotatif

La commande bouton rotatif modifie l'amplitude du signal en dents de scie. C'est pourquoi le nom Amplitude décrit bien son comportement.

Effectuez les étapes suivantes pour personnaliser l'apparence du bouton rotatif.

- Cliquez avec le bouton droit sur le bouton rotatif de la face-avant et sélectionnez Propriétés dans le menu local pour afficher la boîte de dialogue Propriétés du bouton rotatif. Cliquez sur l'onglet Apparence pour afficher la page Apparence.
- Dans la section **Étiquette** de l'onglet **Apparence**, supprimez le texte de l'étiquette, Bouton rotatif et remplacez-le par Amplitude.

La boîte de dialogue **Propriétés du bouton rotatif** doit ressembler à la figure suivante.

Figure 1-9. Boîte de dialogue Propriétés du bouton rotatif

 Cliquez sur l'onglet Échelle. Dans la section Style d'échelle, cochez l'option Afficher la rampe de couleur.

Le bouton rotatif sur la fenêtre de la face-avant est immédiatement mis à jour pour refléter ces modifications.

- Cliquez sur le bouton OK pour enregistrer la configuration actuelle et fermer la boîte de dialogue Propriétés du bouton rotatif.
- 5. Enregistrez le VI.
- 6. Ouvrez de nouveau la boîte de dialogue Propriétés du bouton rotatif et testez les autres propriétés du bouton rotatif. Vous pouvez, par exemple, changer la couleur de Couleur du texte des marqueurs en cliquant sur la boîte de couleur de cette option sur l'onglet Échelle.
- Cliquez sur le bouton Annuler pour ne pas appliquer les modifications tant que vous faites des essais. Pour conserver ces modifications, cliquez sur le bouton OK.

Personnalisation d'un graphe

L'indicateur graphe affiche les deux signaux. Pour savoir quel tracé correspond au signal mis à l'échelle ou au signal simulé, vous pouvez les personnaliser.

Effectuez les étapes suivantes pour personnaliser l'apparence de l'indicateur graphe.

- Sur la fenêtre de face-avant, déplacez le curseur le long du bord supérieur de la légende du graphe.
 - Bien que le graphe comporte deux tracés, la légende n'en affiche qu'un.
- Quand votre curseur devient une double flèche, représentée dans la figure suivante, cliquez 2. sur le cadre de la légende des tracés et faites-le glisser pour ajouter un élément à la légende. Lorsque vous relâchez le bouton de la souris, le nom du deuxième tracé apparaît.

Figure 1-10. Extension de la légende des tracés

- 3. Cliquez avec le bouton droit sur le graphe et sélectionnez **Propriétés** dans le menu local pour afficher la boîte de dialogue Propriétés du graphe.
- 4. Sur l'onglet Tracés, sélectionnez Dents de scie dans le menu déroulant. Dans la section Couleurs, cliquez sur la boîte de couleur de Ligne pour afficher le sélecteur de couleur. Choisissez une nouvelle couleur de ligne.
- 5. Sélectionnez Dents de scie (Résultat de la formule) dans le menu déroulant.
- 6. Cochez l'option Ne pas utiliser les noms de waveform pour les noms de tracés. Cette action vous permet d'éditer les étiquettes sur le graphe.
- 7. Dans la zone de texte Nom, supprimez le texte actuel et remplacez le nom de ce tracé par Dents de scie à l'échelle.
- 8. Cliquez sur le bouton **OK** pour enregistrer la configuration actuelle et fermer la boîte de dialogue Propriétés du graphe.
 - La couleur et la légende du tracé changent.

- 9. Ouvrez de nouveau la boîte de dialogue **Propriétés du graphe** et testez les autres propriétés du graphe. Vous pouvez, par exemple, désactiver la mise à l'échelle automatique et changer les valeurs maximale et minimale de l'axe des y sur l'onglet **Échelles**.
- 10. Cliquez sur le bouton **Annuler** pour ne pas appliquer les modifications tant que vous faites des essais. Pour conserver ces modifications, cliquez sur le bouton **OK**.
- 11. Enregistrez le VI et fermez-le.

Résumé

Les points suivants constituent un résumé des concepts clés qui ont été traités dans ce chapitre.

Face-avant

La face-avant est l'interface utilisateur d'un VI. Pour construire la face-avant, vous utilisez des commandes et des indicateurs qui sont respectivement les terminaux d'entrée et les terminaux de sortie interactifs du VI. Les commandes et les indicateurs sont situés sur la palette **Commandes**.

Les commandes sont des boutons rotatifs, des boutons-poussoirs, des cadrans et autres mécanismes d'entrée. Les commandes simulent les mécanismes d'entrée des instruments et fournissent des données au diagramme du VI.

Les indicateurs sont des graphes, des LED et autres types d'afficheurs. Les indicateurs simulent les mécanismes de sortie d'instruments et affichent les données que le diagramme acquiert ou génère.

Diagramme

Le diagramme contient le code source graphique, appelé aussi code G ou code du diagramme, qui détermine comment le VI s'exécute. Le code du diagramme utilise des représentations graphiques de fonctions pour contrôler les objets de la face-avant. Les objets de la face-avant apparaissent sous forme de terminaux d'icône sur le diagramme. Les fils de liaison connectent les terminaux des commandes et des indicateurs aux VI Express, aux VIs et aux fonctions. Les données circulent dans les fils de liaison des façons suivantes : des commandes aux VIs et aux fonctions, des VIs et des fonctions aux indicateur et des VIs et fonctions à d'autres VIs et fonctions. La direction dans laquelle les données passent par les nœuds du diagramme détermine l'ordre d'exécution des VIs et des fonctions. Ce mouvement de données est appelé programmation par flux de données.

Outils des faces-avant et des diagrammes

L'outil Flèche apparaît lorsque vous faites passer le curseur sur un objet de la face-avant ou du diagramme. Le curseur devient une flèche que vous pouvez utiliser pour sélectionner, positionner et redimensionner les objets. L'outil de câblage apparaît lorsque vous faites passer le curseur sur un terminal d'un objet du diagramme. Le curseur devient une bobine que vous pouvez utiliser pour connecter les objets du diagramme par lesquels les données doivent passer.

Exécution et arrêt d'un VI

L'exécution d'un VI produit la solution du VI. Cliquez sur le bouton **Exécuter** ou appuyez sur les touches < Ctrl-R > pour exécuter un VI. Le bouton Exécuter se transforme en flèche noire pour indiquer que le VI est en cours d'exécution. Vous pouvez arrêter immédiatement un VI en cliquant sur le bouton Abandonner l'exécution. Cependant, l'abandon d'un VI qui utilise des ressources externes risque de laisser les ressources dans un état inconnu. Pour éviter ce problème, utilisez un bouton STOP dans les VIs que vous créez. Un bouton STOP arrête un VI lorsque le VI termine l'itération en cours.

VIs Express

Utilisez les VIs Express situés sur la palette **Fonctions** pour les tâches de mesure courantes. Par défaut, quand vous placez un VI Express sur le diagramme, la boîte de dialogue que vous utilisez pour configurer le VI Express s'ouvre. Utilisez les options de cette boîte de dialogue de configuration pour définir le comportement du VI Express. Vous pouvez aussi afficher la boîte de dialogue de configuration en double-cliquant sur un VI Express, ou en cliquant avec le bouton droit sur un VI Express et en sélectionnant **Propriétés** dans le menu local. Si vous câblez des données à un VI Express et que vous l'exécutez, le VI Express affiche des données réelles dans la boîte de dialogue de configuration. Si vous fermez le VI Express et que vous le rouvrez, la boîte de dialogue de configuration du VI affiche des données fictives jusqu'à ce que vous relanciez l'exécution du VI.

Sur le diagramme, les VIs Express se présentent comme des nœuds extensibles avec des icônes à fond bleu. Vous pouvez redimensionner un VI Express pour afficher ses entrées et ses sorties. Les entrées et les sorties que vous pouvez afficher pour un VI Express dépendent de la manière dont vous avez configuré ce VI.

Ressources de documentation LabVIEW

L'Aide LabVIEW comporte des informations sur les concepts de programmation LabVIEW, des instructions détaillées sur l'utilisation de LabVIEW et des informations de référence sur les VIs, les fonctions, les palettes, les menus et les outils de LabVIEW, ainsi que ses propriétés, méthodes, événements, boîtes de dialogue, etc. L'Aide LabVIEW liste également les ressources de documentation disponibles chez National Instruments. Pour accéder à l'aide d'un VI Express, cliquez sur le bouton Aide de la boîte de dialogue de configuration lorsque vous configurez ce VI Express. Vous pouvez aussi accéder à l'Aide LabVIEW en cliquant avec le bouton droit sur un VI ou une fonction du diagramme ou sur une palette fixée et en sélectionnant Aide dans le menu local, ou encore en sélectionnant Aide» Aide LabVIEW.

Si vous avez installé des compléments logiciels LabVIEW comme, par exemple, un toolkit, un module ou un driver, la documentation de ce logiciel apparaît dans l'Aide LabVIEW ou dans un système d'aide indépendant accessible en sélectionnant Aide» Aide du complément logiciel, Aide du complément logiciel représentant le nom du système d'aide du complément logiciel.

Boîtes de dialogue Propriétés

Utilisez les boîtes de dialogue de propriétés ou les menus locaux pour configurer la manière dont les commandes et les indicateurs apparaissent ou se comportent sur la fenêtre de la face-avant. Cliquez avec le bouton droit sur une commande ou un indicateur de la face-avant et sélectionnez **Propriétés** dans le menu local pour ouvrir la boîte de dialogue de propriétés de cet objet. Vous ne pouvez pas accéder aux boîtes de dialogue de propriétés des commandes et des indicateurs quand le VI est en cours d'exécution.

Raccourcis

Ce chapitre présente les raccourcis clavier suivants.

Remarque La touche <Ctrl> des raccourcis clavier correspond à la touche <Commande> des claviers Mac OS X et à la touche <Alt> de Linux.

Raccourci	Fonction
<ctrl-r></ctrl-r>	Exécute un VI.
<ctrl-z></ctrl-z>	Annule la dernière action.
<ctrl-e></ctrl-e>	Passe de la fenêtre du diagramme à celle de la face-avant et vice versa.
<ctrl-s></ctrl-s>	Enregistre un VI.

Personnalisation d'un VI

Vous pouvez sélectionner un des nombreux VIs modèles de LabVIEW comme point de départ lorsque vous construisez des VIs. Toutefois, il se peut qu'aucun VI modèle ne soit disponible pour construire un VI particulier. Ce chapitre vous montre comment construire et personnaliser un VI sans utiliser de modèle.

Construction d'un VI à partir d'un VI vide

Dans les exercices suivants, vous allez ouvrir un VI vide, puis ajouter des VIs Express et des structures dans son diagramme pour construire un nouveau VI. Vous allez construire un VI qui génère un signal, réduit le nombre d'échantillons du signal et affiche les données résultantes dans une table sur la face-avant. Quand vous aurez terminé les exercices, la face-avant du VI ressemblera à la face-avant de la figure suivante.

Vous pouvez effectuer les exercices de ce chapitre en 45 minutes environ.

Figure 2-1. Face-avant du VI Réduire le nombre d'échantillons

Ouverture d'un VI vide

Si aucun modèle n'est disponible pour le VI que vous voulez construire, vous pouvez commencer avec un VI vide et ajouter les VIs Express dont vous avez besoin pour accomplir une tâche spécifique.

Effectuez les étapes suivantes pour ouvrir un VI vide.

- Dans la fenêtre de démarrage, cliquez sur le bouton Créer un projet pour afficher la boîte de dialogue Créer un projet.
 - La boîte de dialogue Créer un projet fournit des points de départ courants pour les projets LabVIEW.
- 2. Sélectionnez VI vide dans la liste d'éléments et cliquez sur Terminer. Une fenêtre de face-avant et une fenêtre de diagramme vides apparaissent.
- 3. Affichez le diagramme.
- 4. Si la palette **Fonctions** n'est pas visible, cliquez avec le bouton droit sur un espace vide du diagramme pour faire apparaître temporairement la palette **Fonctions**. Cliquez sur la punaise, illustrée ci-dessous, dans le coin supérieur gauche de la palette Fonctions pour fixer la palette à l'écran.

Ajout d'un VI Express qui simule un signal

Effectuez les étapes suivantes pour trouver le VI Express que vous voulez utiliser et l'ajouter sur le diagramme.

Sélectionnez Aide» Afficher l'aide contextuelle sur la face-avant ou le diagramme pour afficher la fenêtre d'Aide contextuelle, représentée dans la figure 2-2. Vous pouvez aussi cliquer sur le bouton Afficher la fenêtre d'aide contextuelle, illustré ci-dessous, de la barre d'outils de la face-avant ou du diagramme, pour afficher la fenêtre d'Aide contextuelle.

Figure 2-2. Fenêtre d'Aide contextuelle

Astuce Vous pouvez également appuyer sur les touches <Ctrl-H> pour afficher la fenêtre d'Aide contextuelle. (Mac OS X) Appuyez sur les touches <Commande-Shift-H>.

- Sur la palette Fonctions, sélectionnez la palette Express»Entrée, puis placez le curseur sur l'un des VIs Express de la palette Entrée.
 - Lorsque vous faites passer le curseur sur un VI, la fenêtre d'Aide contextuelle affiche des informations sur ce VI
- Utilisez les informations qui apparaissent dans la fenêtre d'Aide contextuelle pour trouver le VI Express qui peut simuler un signal sinusoïdal.
 - Laissez la fenêtre d'Aide contextuelle ouverte. L'aide contextuelle vous donne des informations qui vous seront utiles pour terminer cet exercice.
- 4. Sélectionnez le VI Express qui peut simuler un signal sinusoïdal et placez-le sur le diagramme. La boîte de dialogue Configurer Simuler un signal apparaît.
- 5. Placez le curseur sur les options de la boîte de dialogue Configurer Simuler un signal, comme Fréquence (Hz) et Amplitude. Lisez les informations qui apparaissent dans la fenêtre d'Aide contextuelle.
- Configurez le VI Express Simuler un signal pour qu'il génère un signal sinusoïdal d'amplitude 2 et de fréquence 10,7 Hz.
 - Le signal affiché dans la fenêtre Aperçu du résultat change pour représenter le signal sinusoïdal configuré.
- 7. Cliquez sur le bouton **OK** pour enregistrer la configuration actuelle et fermer la boîte de dialogue Configurer Simuler un signal.
- 8. Placez le curseur sur le VI Express Simuler un signal et lisez les informations qui apparaissent dans la fenêtre d'Aide contextuelle.
 - La fenêtre d'Aide contextuelle affiche des informations sur la façon dont vous avez configuré le VI Express Simuler un signal en plus de la description d'aide contextuelle standard.
- 9 Enregistrez le VI sous le nom Réduire le nombre d'échantillons.vi dans un emplacement facile d'accès.

Recherche dans l'aide et modification d'un signal

Suivez les étapes ci-après pour utiliser l'Aide LabVIEW afin de trouver le VI Express qui réduit le nombre d'échantillons dans un signal.

- Sur le diagramme, placez le curseur sur le VI Express Simuler un signal pour afficher la fenêtre d'Aide contextuelle et cliquez sur le lien Aide détaillée pour afficher la rubrique Simuler un signal (VI Express) de l'Aide LabVIEW. Vous devrez peut-être agrandir la fenêtre d'Aide contextuelle ou la faire défiler vers le bas pour voir le lien Aide détaillée.
 - Vous pouvez aussi accéder à l'Aide LabVIEW en cliquant avec le bouton droit sur un VI ou une fonction du diagramme ou sur une palette fixée et en sélectionnant Aide dans le menu local, ou encore en sélectionnant Aide» Aide LabVIEW.

- 2 Cliquez sur l'onglet Rechercher, entrez réduire le nb d'échantillons dans le champ Entrez le(s) mot(s) à rechercher et appuyez sur la touche <Entrée>. Pour rechercher la phrase exacte, mettez-la entre guillemets. Par exemple, vous pouvez entrer "réduire le nb d'échantillons" pour réduire le nombre de résultats de la recherche.
 - Ce choix de mots reflète parfaitement ce que vous attendez de votre VI Express : compresser, ou réduire, le nombre d'échantillons dans un signal.
 - Vous pouvez aussi cliquer sur l'onglet **Index** pour rechercher des mots-clés et des concepts.
- 3. Double-cliquez sur la rubrique Réduire le nb d'échantillons dans les résultats de la recherche pour afficher la rubrique qui décrit le VI Express Réduire le nb d'échantillons.
- 4. Lorsque vous avez terminé de lire la description du VI Express, repassez au diagramme.
- 5. Appuyez sur les touches < Ctrl-Espace > pour ouvrir la boîte de dialogue **Placement rapide**. (Mac OS X) Appuyez sur les touches < Commande-Shift-Espace>.

Ouand vous savez quel élément vous voulez ajouter au diagramme ou à la face-avant, vous pouvez utiliser la boîte de dialogue **Placement rapide** pour trouver l'élément rapidement et l'ajouter au diagramme ou à la face-avant.

Astuce Vous pouvez accélérer l'ouverture initiale de la boîte de dialogue Placement rapide en activant le bouton radio Charger les palettes au lancement sur la page Palettes des commandes ou fonctions de la boîte de dialogue Options. Sélectionner le chargement des palettes au lancement de LabVIEW risque de ralentir légèrement le démarrage de LabVIEW.

- Entrez. Réduire le nb d'échantillons dans la boîte de dialogue Placement 6. rapide, appuyez sur <Entrée> et placez le VI Express Réduire le nb d'échantillons sur le diagramme.
- 7. Configurez le VI Express Réduire le nb d'échantillons pour réduire le signal par un facteur de 25 et définissez la méthode de réduction à Movenne.
- 8. Cliquez sur le bouton **OK** pour enregistrer la configuration actuelle et fermer la boîte de dialogue Configurer Réduire le nb d'échantillons.
- 9 Avec l'outil Bobine, câblez la sortie Sinus du VI Express Simuler un signal à l'entrée Signaux du VI Express Réduire le nb d'échantillons.

Personnalisation d'une interface utilisateur à partir du diagramme

Dans les exercices précédents, vous avez ajouté des commandes et des indicateurs sur la face-avant en utilisant la palette Commandes. Vous pouvez aussi créer des commandes et des indicateurs à partir du diagramme.

Effectuez les étapes suivantes pour créer des commandes ou des indicateurs à partir du diagramme.

Sur le diagramme, cliquez avec le bouton droit sur la sortie Moyenne du VI Express Réduire le nb d'échantillons et sélectionnez Créer»Indicateur numérique dans le menu local pour créer un indicateur numérique. Un indicateur Movenne, illustré ci-dessous, apparaît sur le diagramme.

2. Cliquez avec le bouton droit sur la sortie Moyenne du VI Express Réduire le nb d'échantillons et choisissez Insérer une entrée ou sortie dans le menu local pour insérer l'entrée Activer

Dans les exercices précédents, vous avez appris à ajouter des entrées et des sorties en étirant le VI Express avec les flèches du bas. L'utilisation du menu local représente une autre façon d'afficher et de sélectionner les entrées et les sorties d'un VI Express.

Cliquez avec le bouton droit sur l'entrée Activer et sélectionnez Créer»Commande dans le menu local pour créer un commutateur. Une commande booléenne, illustrée ci-dessous, apparaît sur le diagramme.

Les terminaux des commandes possèdent un cadre plus épais que les terminaux des indicateurs. De plus, une flèche apparaît sur le bord droit du terminal s'il s'agit d'une commande, ou sur le bord gauche s'il s'agit d'un indicateur.

- Cliquez avec le bouton droit sur le fil reliant la sortie Sinus du VI Express Simuler un signal à l'entrée Signaux du VI Express Réduire le nb d'échantillons et sélectionnez Créer»Indicateur graphe dans le menu local.
- Avec l'outil Bobine, câblez la sortie Moyenne du VI Express Réduire le nb d'échantillons à l'indicateur graphe Sinus.

La fonction Assembler des signaux apparaît.

6 Disposez les objets sur le diagramme afin qu'ils apparaissent comme dans la figure suivante.

Figure 2-3. Diagramme du VI Réduire le nombre d'échantillons

7. Affichez la face-avant.

> Les commandes et les indicateurs que vous ajoutez apparaissent sur la face-avant avec des étiquettes qui correspondent aux entrées et aux sorties à partir desquelles vous les avez créés.

Remarque Vous devrez peut-être faire dérouler la face-avant ou la redimensionner pour voir toutes les commandes et tous les indicateurs.

Enregistrez le VI.

Configuration d'un VI pour qu'il s'exécute en continu jusqu'à ce que l'utilisateur l'arrête

Dans l'état actuel, le VI s'exécute une fois, génère un signal, puis s'arrête. Pour exécuter le VI jusqu'à ce qu'une condition survienne, vous pouvez utiliser une boucle While.

Effectuez les étapes suivantes pour ajouter une boucle While sur le diagramme.

- Revenez à la face-avant et exécutez le VI. Le VI s'exécute une fois, puis s'arrête. Il n'y a pas de bouton STOP sur la face-ayant.
- Affichez le diagramme.
- Cliquez sur le bouton Rechercher, représenté ci-dessous, sur la palette Fonctions et entrez 3 While dans le champ. LabVIEW recherche à mesure que vous tapez les premières lettres et affiche toutes les correspondances dans le champ de résultats de la recherche.

- S'il y a des objets de même nom, utilisez les informations entre crochets à droite de chaque nom d'objet pour choisir l'objet à sélectionner. Certains objets se trouvent sur plusieurs palettes car vous pouvez les utiliser pour plusieurs applications.
- Double-cliquez sur Boucle While <<Contrôle d'exécution>> pour afficher la sous-palette Contrôle d'exécution et mettre la boucle While en évidence pour un instant sur la sous-palette.
- 5. Sélectionnez la boucle While sur la palette **Contrôle d'exécution**.
- 6. Placez le curseur en haut à gauche du diagramme. Cliquez et faites glisser le curseur en diagonale de manière à inclure tous les VIs Express et les fils de liaison, comme l'illustre la figure suivante.

Figure 2-4. Placement de la boucle While autour des VIs Express

7. Relâchez la souris pour placer la boucle While autour des VIs Express et des fils de liaison. La boucle While, représentée ci-dessous, apparaît avec un bouton STOP câblé à son terminal de condition. Cette boucle While est configurée pour s'arrêter quand l'utilisateur clique sur le bouton STOP.

- 8. Revenez à la face-avant et exécutez le VI.
 - Maintenant, le VI s'exécute jusqu'à ce que vous cliquiez sur le bouton **STOP**. Une boucle While exécute les VIs et les fonctions qui se trouvent à l'intérieur de la boucle jusqu'à ce que l'utilisateur clique sur le bouton **STOP**.
- 9. Cliquez sur le bouton **STOP** et enregistrez le VI.

Utilisation de la fenêtre Liste des erreurs

Si un VI contient un indicateur que vous n'avez pas l'intention d'utiliser, vous pouvez supprimer cet indicateur.

Suivez les étapes ci-après pour supprimer l'indicateur Moyenne de la face-avant.

- Affichez la face-avant et placez le curseur sur l'indicateur Moyenne jusqu'à ce que l'outil Flèche apparaisse.
- 2. Cliquez sur l'indicateur **Moyenne**, illustré ci-dessous, pour le sélectionner, puis appuyez sur la touche <Suppr>.

3 Affichez le diagramme.

> Un fil de liaison apparaît sous forme d'un trait noir en pointillés avec un symbole x rouge au milieu, comme dans l'illustration suivante. La ligne noire en pointillés représente un fil de liaison brisé. Le bouton **Exécuter**, illustré ci-dessous, prend l'apparence d'une flèche brisée pour indiquer que le VI ne peut pas s'exécuter.

- Cliquez sur le bouton Exécuter brisé pour afficher la fenêtre Liste des erreurs. 4.
 - La fenêtre Liste des erreurs dresse la liste de toutes les erreurs du VI et fournit des informations sur chacune. Vous pouvez utiliser la fenêtre Liste des erreurs pour repérer les erreurs.
- Dans la liste erreurs et mises en garde, sélectionnez l'erreur Le fil de liaison a des segments non connectés et cliquez sur le bouton Aide pour afficher des informations plus détaillées sur l'erreur.

Astuce Vous pouvez aussi déplacez l'outil Bobine sur un fil de liaison brisé pour afficher une info-bulle qui décrit pourquoi le fil de liaison est brisé. Cette information apparaît aussi dans la fenêtre d'Aide contextuelle lorsque vous placez l'outil Bobine sur un fil de liaison brisé

- 6. Dans la liste erreurs et mises en garde, double-cliquez sur l'erreur Le fil de liaison a des segments non connectés pour sélectionner le fil brisé.
- Appuyez sur les touches <Ctrl-B> pour supprimer ce fil.
 - En appuyant sur les touches <Ctrl-B>, vous supprimez tous les fils de liaison brisés du diagramme. Pour ne supprimer que le fil de liaison sélectionné, appuyez sur la touche <Suppr>.

Sélectionnez Affichage» Liste des erreurs pour afficher la fenêtre Liste des erreurs. Il n'y 8 a pas d'erreurs dans le champ erreurs et mises en garde.

Astuce Vous pouvez également appuver sur les touches <Ctrl-L> pour ouvrir la fenêtre Liste des erreurs.

Cliquez sur le bouton Fermer pour fermer la fenêtre Liste des erreurs. Le bouton Exécuter n'est plus brisé.

Contrôle de la vitesse d'exécution

Pour que les points sur le graphe s'affichent plus lentement, vous pouvez ajouter un temps d'attente sur le diagramme.

Effectuez les étapes suivantes pour contrôler la vitesse à laquelle le VI s'exécute.

Dans le diagramme, recherchez le VI Express Temps d'attente, illustré ci-dessous, sur la palette **Fonctions** et placez-le à l'intérieur de la boucle While.

Vous pouvez utiliser le VI Express Temps d'attente pour contrôler la fréquence d'exécution du VI.

- 2. Entrez 0, 25 dans le champ Attente (secondes).
 - Cela détermine la vitesse d'exécution de la boucle. Avec un temps d'attente de 0,25 secondes, la boucle s'exécute quatre fois par seconde.
- Cliquez sur le bouton **OK** pour enregistrer la configuration actuelle et fermer la boîte de dialogue Configurer Temps d'attente.
- 4. Revenez à la face-avant et exécutez le VI.
- 5 Cliquez sur le commutateur **Activer** et notez le changement au niveau du graphe. Si le commutateur **Activer** est sur marche, le graphe affiche le signal compressé. Si le commutateur Activer est sur arrêt, le graphe n'affiche pas le signal compressé.
- Cliquez sur le bouton **STOP** pour arrêter le VI.

Utilisation d'une table pour afficher les données

Effectuez les étapes suivantes pour afficher une série de valeurs moyennes dans une table sur la face-avant.

- Affichez la face-avant. 1.
- 2. Sur la palette Commandes, recherchez l'indicateur Table Express et ajoutez-le à droite du graphe.

- 3. Affichez le diagramme.
 - LabVIEW a câblé le terminal Table au VI Express Construire une table.
- 4. Si le VI Express Construire une table et le terminal **Table** ne sont pas déjà sélectionnés, cliquez sur un espace vide du diagramme, à gauche du VI Express et du terminal **Table**. Faites glisser le curseur en diagonale jusqu'à ce que le rectangle de sélection englobe le VI Express Construire une table et le terminal **Table**, comme dans la figure suivante.

Un contour en pointillés défilants, appelé marquise de sélection, met en évidence le VI Express Construire une table, le terminal **Table** et le fil de liaison les reliant.

- Faites glisser les objets dans la boucle While à droite du VI Express Réduire le nb d'échantillons.
 - Si vous faites glisser des objets près de la bordure de la boucle While, la boucle se redimensionne pour inclure le VI Express Construire une table et le terminal **Table** lorsque vous relâchez le bouton de la souris.
- Avec l'outil Bobine, câblez la sortie Moyenne du VI Express Réduire le nb d'échantillons à l'entrée Signaux du VI Express Construire une table.
- 7. Le diagramme devrait être semblable à celui de la figure suivante.

Figure 2-5. Diagramme du VI Réduire le nombre d'échantillons

 Affichez la face-avant et disposez les commandes et les indicateurs comme dans la figure 2-1.

- 9 Exécutez le VI
- 10. Cliquez sur le commutateur Activer.

Si le commutateur Activer est sur marche, la table affiche les valeurs moyennes de chaque groupe de 25 échantillons dans le signal sinusoïdal. Si le commutateur **Activer** est sur arrêt, la table n'enregistre pas les valeurs moyennes.

- 11. Arrêtez le VI.
- 12. Essayez les autres propriétés de la table en utilisant la boîte de dialogue **Propriétés de la** table. Par exemple, essayez de faire en sorte qu'il n'y ait plus qu'une seule colonne.
- 13. Enregistrez le VI et fermez-le.

Recherche d'exemples

Pour en savoir plus sur l'utilisation d'un VI particulier, vous pouvez rechercher et afficher un exemple qui utilise ce VI.

Effectuez les étapes suivantes pour rechercher et ouvrir un exemple qui utilise le VI Express Mesures d'amplitudes et de niveaux.

- Sélectionnez Aide» Aide LabVIEW pour ouvrir l'Aide LabVIEW.
- 2. Cliquez sur l'onglet Rechercher. Dans le champ Entrez le ou les mots à rechercher, entrez VI express mesures d'amplitudes et de niveaux et appuvez sur la touche <Entrée>. (Mac OS X et Linux) Choisissez l'option Full Text dans la section Search Options de la boîte de dialogue Search the LabVIEW Help pour mieux cibler les résultats de la recherche.

Astuce (Windows) Avant de lancer la recherche, vous pouvez réduire le nombre de résultats en sélectionnant l'option Rechercher dans les titres uniquement en bas de la fenêtre d'aide. Vous pouvez aussi utiliser des opérateurs comme AND, OR et NEAR dans le champ de Entrez le(s) mot(s) à rechercher pour diminuer le nombre de résultats.

3. (Windows) Cliquez sur l'en-tête de la colonne Emplacement pour classer les résultats de la recherche d'après le type de leur contenu. Les rubriques de Référence comportent des informations de référence concernant les objets LabVIEW comme, par exemple, les VIs, les fonctions, les palettes, les menus et les outils. Les rubriques de Procédures contiennent des instructions détaillées sur l'utilisation de LabVIEW. Les rubriques de Concepts contiennent des informations sur les concepts de programmation de LabVIEW.

Astuce Vous pouvez utiliser l'onglet **Favoris** de l'*Aide LabVIEW* pour enregistrer et accéder rapidement aux rubriques d'aide que vous utilisez souvent. Lorsque vous affichez une rubrique d'aide à laquelle vous voulez accéder plus tard, passez à l'onglet Favoris et cliquez sur le bouton Ajouter.

- 4 Double-cliquez sur le résultat Mesures d'amplitudes et de niveaux (VI Express) de la recherche pour afficher la rubrique de référence qui décrit le VI Express Mesures d'amplitudes et de niveaux.
- Après avoir lu la description du VI Express, cliquez sur le bouton Ouvrir l'exemple dans 5. la section Exemple, en bas de la rubrique, pour ouvrir un exemple qui utilise le VI Express Mesures d'amplitudes et de niveaux.
- Exécutez le VI et déplacez les curseurs des glissières verticales. L'amplitude et la fréquence 6. du signal changent à mesure que vous déplacez les curseurs des glissières verticales.
- 7. Arrêtez le VI.
- 8. Sélectionnez Fenêtre» Afficher le diagramme et lisez les commentaires du diagramme.
- 9. Fermez le VI d'exemple et retournez à la rubrique Mesures d'amplitudes et de niveaux (VI Express) de l'Aide LabVIEW.
- 10. Cliquez sur le bouton **Rechercher les exemples pertinents** pour ouvrir l'Outil de recherche d'exemples NI et afficher la liste des autres exemples qui utilisent ce VI. L'Outil de recherche d'exemples NI effectue sa recherche parmi des centaines d'exemples, y compris tous les exemples installés et les exemples du site NI Developer Zone, à l'adresse ni.com/zone. Vous pouvez modifier un exemple pour qu'il s'adapte à votre application, ou vous pouvez copier et coller un ou plusieurs exemples dans le VI que vous créez.

Remarque Sélectionnez toujours Fichier» Enregistrer sous quand vous enregistrez un exemple modifié pour éviter d'écraser l'exemple de programme dans l'Outil de recherche d'exemples NI.

Vous pouvez aussi faire un clic droit sur une fonction ou un VI sur le diagramme ou sur une palette fixée et sélectionner Exemples dans le menu local pour afficher une rubrique d'aide contenant des liens vers des exemples concernant ce VI ou cette fonction. Pour lancer l'Outil de recherche d'exemples NI et parcourir ou rechercher des exemples, sélectionnez Aide»Recherche d'exemples.

Remarque Certains VIs n'ont pas d'exemple.

11. Lorsque vous avez terminé de faire des essais avec l'Outil de recherche d'exemples NI et les VIs d'exemple, fermez l'Outil de recherche d'exemples NI.

Résumé

Les points suivants constituent un résumé des concepts clés qui ont été traités dans ce chapitre.

Utilisation des ressources d'aide LabVIEW

Dans ce chapitre, vous avez appris à utiliser les ressources d'aide de plusieurs façons :

La fenêtre d'Aide contextuelle affiche des informations élémentaires sur les objets LabVIEW sur lesquels vous passez avec le curseur. Les objets pour lesquels des

- informations sont disponibles dans l'aide contextuelle sont les VIs, les fonctions, les structures, les palettes, les éléments des boîtes de dialogue, etc. Pour accéder à la fenêtre d'Aide contextuelle, sélectionnez Aide» Afficher l'aide contextuelle ou appuyez sur les touches <Ctrl-H>. (Mac OS X) Appuvez sur les touches <Commande-Shift-H>.
- Ouand vous placez le curseur sur un VI Express sur le diagramme, la fenêtre d'Aide contextuelle affiche une courte description du VI Express ainsi que des informations sur la manière dont il a été configuré.
- L'Aide LabVIEW contient des informations détaillées sur les objets LabVIEW. Pour accéder à une rubrique de l'Aide LabVIEW relative à un objet, placez le curseur sur l'objet et cliquez sur le lien Aide détaillée dans la fenêtre d'Aide contextuelle. Vous pouvez aussi cliquer avec le bouton droit sur un objet du diagramme ou d'une palette fixée, et sélectionner Aide dans le menu local.
- Pour naviguer dans l'Aide LabVIEW, utilisez les onglets Sommaire, Index et Rechercher. L'onglet Sommaire vous permet d'obtenir un apercu des rubriques et de la structure de l'aide. L'onglet **Index** vous permet de trouver un sujet grâce à un mot-clé. L'onglet **Rechercher** vous permet de trouver un mot ou une phrase dans l'aide.
- Si vous trouvez un objet que vous voulez utiliser dans l'Aide LabVIEW, vous pouvez cliquer sur le bouton Ajouter au diagramme pour placer cet objet sur le diagramme.
- Sur l'onglet **Rechercher** de l'*Aide LabVIEW*, vous pouvez réduire le nombre de résultats en utilisant les opérateurs AND, OR et NEAR. Pour rechercher une phrase exacte, mettez-la entre guillemets. Avant de lancer la recherche, vous pouvez réduire le nombre de résultats en sélectionnant l'option Rechercher uniquement dans les titres en bas de la fenêtre d'aide.
- Sur l'onglet **Rechercher** de l'Aide LabVIEW, vous pouvez cliquer sur l'en-tête de la colonne **Emplacement** de la liste de résultats pour classer les résultats d'après le type de leur contenu. Les rubriques de Références comportent des informations de référence concernant les objets LabVIEW comme, par exemple, les VIs, les fonctions, les palettes, les menus et les outils. Les rubriques de Procédures contiennent des instructions détaillées sur l'utilisation de LabVIEW. Les rubriques de Concepts contiennent des informations sur les concepts de programmation de LabVIEW.

Personnalisation du code du diagramme

Vous pouvez utiliser de nombreux VIs Express, structures, commandes et indicateurs pour personnaliser un VI. Les exemples suivants donnent quelques façons courantes de personnaliser des VIs, notamment en créant des commandes et des indicateurs, en configurant l'arrêt d'un VI, en corrigeant les fils de liaison brisés et en affichant des données dans un tableau.

Création de commandes et d'indicateurs

Pour créer des commandes et des indicateurs sur le diagramme, cliquez avec le bouton droit sur l'entrée ou la sortie d'un VI Express ou sur un fil de liaison, sélectionnez Créer dans le menu local et sélectionnez une des options disponibles. LabVIEW câble la commande ou l'indicateur que vous avez créé à l'entrée, à la sortie ou au fil de liaison sur lequel vous avez cliqué.

Les terminaux des commandes possèdent un cadre plus épais que les terminaux des indicateurs. De plus, une flèche apparaît sur le bord droit du terminal s'il s'agit d'une commande, ou sur le bord gauche s'il s'agit d'un indicateur.

Contrôle de l'arrêt d'un VI

Utilisez une boucle While pour exécuter en continu le code qui se trouve à l'intérieur de la boucle. La boucle While cesse de s'exécuter quand une condition d'arrêt est remplie. Une fois que vous avez placé ou déplacé un objet dans une boucle While à proximité du bord de la structure, la boucle se redimensionne pour faire de la place pour cet objet.

La palette **Contrôle d'exécution** contient des objets qui vous permettent de contrôler le nombre d'exécutions d'un VI ainsi que sa vitesse d'exécution.

Erreurs et fils de liaison brisés

Le bouton **Exécuter** apparaît brisé quand le VI que vous créez ou éditez contient des erreurs. Si le bouton **Exécuter** est toujours brisé lorsque le câblage du diagramme est terminé, le VI est brisé et ne peut pas s'exécuter.

Cliquez sur le bouton **Exécuter** brisé ou sélectionnez **Affichage»Liste des erreurs** pour déterminer pourquoi un VI est brisé. Vous pouvez utiliser la fenêtre **Liste des erreurs** pour repérer les erreurs. Cliquez sur le bouton **Aide** pour obtenir des informations plus détaillées sur l'erreur. Double-cliquez sur l'erreur dans le champ **erreurs et mises en garde** pour mettre en évidence le problème à l'origine de l'erreur.

Un fil de liaison brisé apparaît sous forme d'un trait noir en pointillés avec un symbole **x** rouge au milieu. Un fil de liaison peut apparaître brisé pour diverses raisons, comme la suppression d'objets. Le VI ne peut pas s'exécuter si le diagramme contient des fils de liaison brisés.

Déplacez l'outil Bobine sur un fil de liaison brisé pour afficher l'info-bulle qui décrit pourquoi le fil de liaison est brisé. Cette information apparaît aussi dans la fenêtre d'**Aide contextuelle** lorsque vous placez l'outil Bobine sur un fil de liaison brisé. Cliquez avec le bouton droit sur le fil de liaison et sélectionnez **Liste des erreurs** dans le menu local pour afficher la boîte de dialogue **Liste des erreurs**. Cliquez sur le bouton **Aide** pour obtenir plus d'informations sur la cause du fil de liaison brisé.

Affichage des données dans une table

L'indicateur table affiche les données générées. Utilisez le VI Express Construire une table pour construire une table des données générées.

Utilisation de l'Outil de recherche d'exemples NI

Utilisez l'Outil de recherche d'exemples NI pour rechercher des exemples installés sur votre ordinateur ou présents sur le site NI Developer Zone à l'adresse ni .com/zone. Ces exemples illustrent comment utiliser LabVIEW pour effectuer une grande variété de tâches de test, de mesure, de contrôle et de conception. Sélectionnez Aide»Recherche d'exemples pour lancer l'Outil de recherche d'exemples NI.

Les exemples peuvent indiquer comment utiliser des VIs ou des fonctions spécifiques. Vous pouvez cliquer avec le bouton droit sur une fonction ou un VI du diagramme ou d'une palette fixée et sélectionner Exemples dans le menu local pour afficher une rubrique d'aide contenant des liens vers des exemples concernant ce VI ou cette fonction. Vous pouvez modifier un VI d'exemple pour l'adapter à votre application, ou copier et coller un ou plusieurs exemples dans le VI que vous créez.

Sélectionnez toujours Fichier» Enregistrer sous quand vous enregistrez un exemple modifié pour éviter d'écraser accidentellement l'exemple de programme dans l'Outil de recherche d'exemples NI.

Raccourcis

Ce chapitre présente les raccourcis clavier suivants.

Remarque La touche <Ctrl> des raccourcis clavier correspond à la touche <Commande> des claviers Mac OS X et à la touche <Alt> de Linux

Raccourci	Fonction
<ctrl-n></ctrl-n>	Ouvre un nouveau VI vide.
<ctrl-h></ctrl-h>	Affiche ou masque la fenêtre d'Aide contextuelle.
	(Mac OS X) Appuyez sur les touches < Commande-Shift-H>.
<ctrl-espace></ctrl-espace>	Affiche la boîte de dialogue Placement rapide .
	(Mac OS X) Appuyez sur les touches < Commande-Shift-Espace>.
<ctrl-b></ctrl-b>	Supprime tous les fils de liaison brisés d'un VI.
<ctrl-l></ctrl-l>	Affiche la fenêtre Liste des erreurs.

Analyse et enregistrement d'un signal

LabVIEW contient un ensemble de VIs Express qui facilitent l'analyse de vos signaux. Ce chapitre vous montre comment utiliser LabVIEW pour effectuer une analyse élémentaire d'un signal et comment enregistrer les données analysées dans un fichier.

Remarque Les exercices de ce chapitre utilisent des VIs Express qui ne sont disponibles qu'avec les systèmes de développement complet et professionnel de LabVIEW

Construction d'un VI d'analyse

Dans les exercices suivants, vous allez construire un VI qui génère un signal, filtre le signal, indique s'il dépasse une certaine limite et enregistre les données. Quand vous aurez terminé les exercices, la face-avant du VI ressemblera à la face-avant de la figure suivante.

Vous pouvez effectuer les exercices de ce chapitre en 40 minutes environ.

Figure 3-1. Face-avant du VI Enregistrer les données

Modification d'un VI créé à partir d'un modèle

Effectuez les étapes suivantes pour créer un VI qui génère, analyse et affiche un signal.

- Sélectionnez Fichier» Nouveau pour afficher la boîte de dialogue Nouveau. 1.
- 2. Dans la liste Créer un nouvel objet, sélectionnez VI» à partir d'un modèle» Tutoriel (Initiation)»Générer, analyser et afficher. Ce VI modèle simule un signal et l'analyse pour calculer sa valeur efficace (Veff).
- 3. Cliquez sur le bouton **OK** ou double-cliquez sur le nom du modèle pour créer un VI à partir de ce modèle
- Si la fenêtre d'Aide contextuelle n'est pas visible, appuyez sur les touches <Ctrl-H> pour l'ouvrir. (Mac OS X) Appuyez sur les touches < Commande-Shift-H>.
- 5. Affichez le diagramme en appuyant sur les touches <Ctrl-E>.
- 6. Placez le curseur sur le VI Express Mesures d'amplitudes et de niveaux, illustré ci-dessous.

La fenêtre d'Aide contextuelle affiche des informations concernant le comportement du VI Express.

Laissez la fenêtre d'Aide contextuelle ouverte. Elle vous donnera des informations qui vous seront utiles pour terminer cet exercice.

7. Affichez la face-avant et supprimez l'indicateur **Valeur efficace** illustré ci-dessous.

Vous n'utiliserez pas la fonctionnalité Valeur efficace du VI Express Mesures d'amplitudes et de niveaux dans cet exercice. Cependant, vous pouvez utiliser le VI modèle Générer, analyser et afficher avec la fonctionnalité Valeur efficace dans le futur pour réduire le temps de développement.

- 8. Affichez le diagramme et supprimez les fils de liaison brisés par la suppression de l'indicateur Valeur efficace. Pour supprimer tous les fils de liaison brisés du diagramme, vous pouvez appuyer sur les touches <Ctrl-B>.
- Repassez ensuite à la fenêtre de la face-avant et cliquez avec le bouton droit sur l'indicateur graphe. Sélectionnez **Propriétés** dans le menu local. La boîte de dialogue **Propriétés du** graphe apparaît.
- 10. Sur la page **Apparence**, sélectionnez l'option **Visible** dans la section **Étiquette** et entrez Signal non filtré dans le champ.
- 11. Cliquez sur le bouton **OK** pour enregistrer la configuration actuelle et fermer la boîte de dialogue **Propriétés du graphe**.
- Exécutez le VI.
 Le signal apparaît dans le graphe.
- 13. Cliquez sur le bouton **STOP** pour arrêter le VI.

Ajout d'un signal

Par défaut, le VI Express Simuler un signal simule un signal sinusoïdal. Vous pouvez personnaliser le signal simulé en changeant les options de la boîte de dialogue **Configurer Simuler un signal**.

Effectuez les étapes suivantes pour créer un second signal simulé qui ajoute du bruit blanc uniforme au signal sinusoïdal.

- 1. Sur le diagramme, utilisez l'outil Flèche pour sélectionner le VI Express Simuler un signal. Maintenez la touche <Ctrl> enfoncée tout en cliquant sur le VI et en le faisant glisser pour créer un autre VI Express Simuler un signal sur le diagramme. (Mac OS X) Maintenez la touche <Option> enfoncée tout en faisant glisser le VI. (Linux) Vous pouvez aussi appuyer sur le bouton central de la souris tout en faisant glisser le VI.
- Relâchez le bouton de la souris pour placer la copie du VI Express Simuler un signal en dessous du VI d'origine. LabVIEW renomme la copie du VI Express Simuler un signal Simuler un signal2.
- Double-cliquez sur le VI Express Simuler un signal2 pour afficher la boîte de dialogue Configurer Simuler un signal.

- 4 Sélectionnez Sinus dans le menu déroulant de Type de signal.
- 5. Entrez 60 dans le champ de Fréquence (Hz).
- 6. Entrez 0, 1 dans le champ d'Amplitude.
- Cochez la case Ajouter un bruit pour ajouter du bruit au signal sinusoïdal. 7.
- 8. Sélectionnez Bruit blanc uniforme dans le menu déroulant de Type de bruit.
- 9. Entrez 0, 1 dans le champ d'Amplitude du bruit.
- 10. Entrez -1 dans le champ de Valeur de départ.
- 11. Dans la section Informations temporelles, sélectionnez l'option Vitesse d'exécution maximale.
- 12. Dans la section Nom du signal, désélectionnez l'option Utiliser le nom du type de signal.
- 13. Entrez 60 Hz et bruit dans le champ de Nom du signal.

Lorsque vous changez le nom d'un signal dans la boîte de dialogue Configurer Simuler un signal, LabVIEW change le nom de la sortie de signal sur le diagramme. Le changement du nom du signal facilite l'identification du type de signal lorsque vous regardez le VI Express sur le diagramme.

Un signal aléatoire apparaît dans la section **Aperçu du résultat**. La boîte de dialogue Configurer Simuler un signal doit ressembler à la figure suivante.

🛂 Configurer Simuler un signal [Simuler un signal2] Signal Apercu du résultat Type de signal 0,2 Sinus v Fréquence (Hz) Phase (deg) 0 Amplitude Offset Rapport cyclique (%) -0.1Ajouter un bruit Type de bruit 0.099 Bruit blanc uniforme ~ Temps Amplitude du bruit Valeur de départ Essais Horodatages -1 Relatifs au début de la mesure O Absolus (date et heure) Informations temporelles Échantillons par seconde (Hz) Réinitialisation du signal Simuler les temps d'acquisition 1000 Réinitialiser : phase, valeur de départ, horodatages Vitesse d'exécution maximale Nombre d'échantillons Utiliser une génération continue Automatique Nombre entier de périodes Nom du signal Nombre d'échantillons réel Utiliser le nom du type de signal Nom du signal Fréquence réelle 60 Hz et bruit Annuler

Figure 3-2. Boîte de dialogue Configurer Simuler un signal

14. Cliquez sur le bouton **OK** pour enregistrer la configuration actuelle et fermer la boîte de dialogue **Configurer Simuler un signal**.

Ajout de deux signaux

Pour ajouter deux signaux l'un à l'autre afin de créer un signal unique, vous pouvez utiliser le VI Express Formule. Plutôt que de présenter deux signaux sur un graphe, le VI Express Formule ajoute les deux signaux l'un à l'autre pour créer un signal unique sur le graphe. Vous pouvez utiliser ce VI Express pour ajouter du bruit à un signal.

Effectuez les étapes suivantes pour ajouter le signal 60 Hz et bruit au signal Sinus.

- Dans la fenêtre du diagramme, cliquez trois fois sur le fil de liaison qui connecte la sortie Sinus du VI Express Simuler un signal à l'entrée Signaux du VI Express Mesures d'amplitudes et de niveaux et à l'indicateur Signal non filtré. Supprimez le fil de liaison.
- 2. Sur la palette Fonctions, cliquez sur le bouton Rechercher pour rechercher le VI Express Formule, représenté dans l'illustration suivante, et ajoutez-le au diagramme entre les VI Express Simuler un signal et Mesures d'amplitudes et de niveaux. La boîte de dialogue Configurer Formule apparaît.

Remarque LabVIEW affiche un symbole de dossier à gauche des sous-palettes et un symbole bleu clair à gauche des VIs Express dans les résultats de recherche.

- 3. Dans la colonne **Étiquette**, remplacez l'étiquette de **X1** par Sinus et l'étiquette de **X2** par 60 Hz et bruit.
 - Le VI Express Formule entre automatiquement la première entrée, **Sinus**, dans le champ de **formule**.
- 4. Cliquez sur le bouton + puis sur le bouton **X2** pour ajouter **Sinus** et **60 Hz et bruit** dans le champ de **formule**.
- Cliquez sur le bouton OK pour enregistrer la configuration actuelle et fermer la boîte de dialogue Configurer Formule.
- Avec l'outil Bobine, câblez la sortie Sinus du VI Express Simuler un signal à l'entrée Sinus du VI Express Formule.
- Câblez la sortie 60 Hz et bruit du VI Express Simuler un signal2 à l'entrée 60 Hz et bruit du VI Express Formule.
- 8. Câblez la sortie **Résultat** du VI Express Formule à l'indicateur **Signal non filtré** et à l'entrée **Signaux** du VI Express Mesures d'amplitudes et de niveaux.
- 9. Affichez la face-avant en appuyant sur les touches <Ctrl-E>.

- Exécutez le VI.
 - Le signal avec l'ajout de bruit apparaît dans le graphe.
- 11. Cliquez sur le bouton **STOP** pour arrêter le VI.
- 12. Sélectionnez Fichier» Enregistrer sous et enregistrez le VI sous le nom Analyse.vi dans un emplacement d'accès facile.

Filtrage d'un signal

Vous pouvez utiliser le VI Express Filtre pour traiter des signaux avec des filtres et des fenêtres.

Effectuez les étapes suivantes pour configurer le VI Express Filtre afin de filtrer le signal avec un filtre à réponse impulsionnelle infinie (RII).

- Affichez la fenêtre du diagramme et supprimez le fil de liaison qui connecte la sortie Résultat du VI Express Formule à l'entrée Signaux du VI Express Mesures d'amplitudes et de niveaux
- Supprimez tous les fils de liaison brisés résultant de la suppression de ce fil. 2.
- 3. Recherchez le VI Express Filtre, représenté ci-dessous, et ajoutez-le sur le diagramme entre les VIs Express Simuler un signal2 et Mesures d'amplitudes et de niveaux. La boîte de dialogue Configurer un filtre apparaît.

- 4 Dans la section Caractéristiques du filtre, définissez la Fréquence de coupure (Hz) à 25.
- 5. Cliquez sur le bouton **OK** pour enregistrer la configuration actuelle et fermer la boîte de dialogue Configurer un filtre.
- 6 Affichez la face-avant.
- 7 Cliquez sur l'indicateur graphe **Signal non filtré** et appuyez sur la touche <Ctrl> tout en faisant glisser l'indicateur avec l'outil Flèche pour créer un indicateur graphe supplémentaire.
- 8 Changez l'étiquette de l'indicateur du nouveau graphe en cliquant trois fois sur l'étiquette Signal non filtré 2 et en entrant Signal filtré. Vous pouvez aussi modifier l'étiquette sur la page Apparence de la boîte de dialogue Propriétés du graphe.
- Sur le diagramme, câblez la sortie Résultat du VI Express Formule à l'entrée Signal du VI 9 Express Filtre.
- 10. Câblez la sortie **Signal filtré** du VI Express Filtre à l'entrée **Signaux** du VI Express Mesures d'amplitudes et de niveaux et à l'entrée de l'indicateur graphe Signal filtré.

 Sélectionnez Fichier»Enregistrer. Le diagramme du VI Analyse devrait ressembler à celui de la figure suivante.

1MV Filtre d'amplitudes et Signal de niveaux Simuler un signal Signal filtré Signaux Sinus Formule Sinus 60 Hz et bruit Résultat Signal non filtré Simuler un signal2 60 Hz et bruit stop STOP i.

Figure 3-3. Diagramme du VI Analyse

Modification de l'apparence des graphes

Vous pouvez utiliser l'onglet **Format d'affichage** de la boîte de dialogue **Propriétés du graphe** pour définir l'apparence de l'échelle des axes X et Y sur le graphe.

Effectuez les étapes suivantes pour changer le format de l'axe X et de l'axe Y sur les graphes **Signal non filtré** et **Signal filtré**.

- Sur la fenêtre de la face-avant, cliquez avec le bouton droit sur l'indicateur graphe Signal non filtré et sélectionnez Propriétés dans le menu local. La boîte de dialogue Propriétés du graphe apparaît.
- 2. Sur la page **Format d'affichage**, sélectionnez **Temps (axe X)** dans le menu déroulant du haut.
- 3. Sélectionnez l'option Mode d'édition par défaut.
- 4. Dans la liste **Type**, sélectionnez **Formatage automatique**.
- 5. Dans le champ **Chiffres**, entrez 6 et sélectionnez **Chiffres significatifs** dans le menu déroulant de **Type de précision**.
- 6. Cochez la case Masquer les zéros de fin.
- 7. Sélectionnez **Amplitude (axe Y)** dans le menu déroulant du haut et répétez les étapes 3 à 6 pour configurer l'axe Y comme l'axe X.
- 8. Sur la page Échelles, sélectionnez Amplitude (axe Y).
- 9. Désélectionnez l'option Échelle automatique.
- 10. Entrez -2, 5 dans le champ **Minimum** et 2, 5 dans le champ **Maximum**.

- 11. Cliquez sur le bouton **OK** pour enregistrer la configuration actuelle et fermer la boîte de dialogue Propriétés du graphe.
- 12. Répétez les étapes 1 à 11 pour configurer l'indicateur graphe **Signal filtré**. Les axes X et Y des indicateurs graphe Signal non filtré et Signal filtré changent pour refléter la nouvelle configuration.

Analyse de l'amplitude d'un signal

Vous pouvez utiliser le VI Express Mesures d'amplitudes et de niveaux pour analyser les caractéristiques de tension d'un signal.

Effectuez les étapes suivantes pour reconfigurer le VI Express afin de mesurer les valeurs d'amplitude pic à pic du signal.

- 1. Sur le diagramme, double-cliquez sur le VI Express Mesures d'amplitudes et de niveaux pour afficher la boîte de dialogue Configurer Mesures d'amplitudes et de niveaux.
- 2. Dans la section Mesures d'amplitudes, désélectionnez l'option Valeur efficace.
- Cochez l'option Pic à pic. Pic à pic apparaît dans la section Résultats avec la valeur 3. correspondante de la mesure.
- Cliquez sur le bouton **OK** pour enregistrer la configuration actuelle et fermer la boîte de 4. dialogue Configurer Mesures d'amplitudes et de niveaux.
 - La sortie Valeur efficace du VI Express Mesures d'amplitudes et de niveaux change pour tenir compte de la nouvelle sortie **Pic à pic**, représentée ci-dessous.

Vous utiliserez la sortie **Pic à pic** dans un exercice ultérieur.

Contrôle de la vitesse d'exécution

Pour tracer les points sur le graphe plus lentement, vous pouvez ajouter un temps d'attente sur le diagramme. Un temps d'attente ralentit la vitesse à laquelle le VI s'exécute.

Effectuez les étapes suivantes pour contrôler la vitesse à laquelle le VI s'exécute.

- 1. À partir du diagramme, recherchez le VI Express Temps d'attente sur la palette Fonctions.
- 2. Placez le VI Express Temps d'attente dans la boucle While. La boîte de dialogue de Configurer Temps d'attente apparaît.
- Entrez 1,000 dans le champ Attente (secondes) et cliquez sur le bouton OK. 3.
- 4 Revenez à la face-avant et exécutez le VI. Le VI s'exécute plus lentement. La boucle effectue une itération par seconde.

5 Arrêtez le VI

Une autre façon de contrôler la vitesse du VI est de modifier la vitesse d'acquisition des données. Sur le diagramme, double-cliquez sur le VI Express **Simuler un signal** pour afficher la boîte de dialogue **Configurer Simuler un signal**. Trouvez la section **Informations temporelles** dans la boîte de dialogue. La section **Informations temporelles** contient plusieurs options qui permettent de modifier la vitesse d'acquisition des données et la vitesse à laquelle un VI s'exécute.

Par exemple, un des paramètres par défaut du VI est **Simuler les temps d'acquisition**. Ceci signifie que le VI imite la vitesse d'acquisition d'un périphérique matériel. Vous pouvez sélectionner **Vitesse d'exécution maximale** pour afficher des données plus rapidement. Dans le champ **Échantillons par seconde (Hz)**, la valeur par défaut est 1000 alors que la valeur par défaut dans le champ **Nombre d'échantillons** est 100. Ceci signifie que le VI renverra 100 points de données en sortie sur 0,1 secondes. Vous pouvez changer ces valeurs pour changer le nombre de données que le VI affiche ainsi que la vitesse à laquelle le VI affiche les données.

Ajout d'un voyant de mise en garde

Si vous voulez qu'un signe visuel indique qu'une valeur dépasse une limite spécifiée, utilisez un voyant de mise en garde.

Effectuez les étapes suivantes pour ajouter un voyant de mise en garde au VI.

- Affichez la palette Commandes en cliquant avec le bouton droit sur un espace vide de la fenêtre de face-avant.
- 2. Sur la palette **Express**, sélectionnez la palette **LED**.
- 3. Sélectionnez l'indicateur LED circulaire et ajoutez-le à la face-avant à gauche des graphes.
- 4. Double-cliquez sur l'étiquette **Booléen** au-dessus de la LED et entrez Mise en garde pour modifier l'étiquette de la LED.
 - Vous utiliserez cette LED dans un exercice ultérieur pour indiquer qu'une valeur a dépassé sa limite.
- Sélectionnez Fichier» Enregistrer sous pour afficher la boîte de dialogue Enregistrer sous.
- Étudiez les différentes options de la boîte de dialogue. Sélectionnez les options Copier et Remplacer l'original par la copie pour créer une copie du VI d'origine et éditer immédiatement la copie.
- 7. Cliquez sur le bouton **Continuer** et enregistrez le VI sous le nom Voyant de mise en garde.vi dans un emplacement facile d'accès.

Spécification du niveau de limite de mise en garde

Pour spécifier la valeur qui doit déclencher l'allumage du voyant de mise en garde, utilisez le VI Express Comparaison.

Effectuez les étapes suivantes pour comparer la valeur pic à pic à une limite que vous avez définie.

- 1. Sur le diagramme, trouvez le VI Express Comparaison et placez-le à droite du VI Express Mesures d'amplitudes et de niveaux. La boîte de dialogue de Configurer Comparaison apparaît.
- 2. Dans la section Condition de comparaison, sélectionnez l'option > Supérieur.
- 3. Dans la section Entrées de comparaison, sélectionnez Valeur et entrez 2 dans la commande numérique Valeur pour assigner une valeur constante pour le déclenchement de la LED.
- Cliquez sur le bouton **OK** pour enregistrer la configuration actuelle et fermer la boîte de dialogue Configurer Comparaison.

Le nom du VI Express Comparaison a changé pour indiquer l'opération qu'il effectue, comme illustré ci-dessous. Supérieur indique que le VI Express fait une comparaison de type "supérieur à".

- Connectez la sortie Pic à pic du VI Express Mesures d'amplitudes et de niveaux à l'entrée 5. Opérande 1 du VI Express Supérieur.
- 6. Placez le curseur sur le fil de liaison qui relie la sortie Pic à pic à l'entrée Opérande 1.
- 7. Quand l'outil Flèche apparaît, cliquez avec le bouton droit sur le fil qui relie la sortie Pic à pic à l'entrée Opérande 1 et sélectionnez Créer»Indicateur numérique dans le menu local.

Un terminal Pic à pic, illustré ci-dessous, apparaît sur le diagramme. Si le terminal Pic à pic recouvre des fils de liaison qui relient les VIs Express, déplacez les VIs Express et le terminal Pic à pic sur le diagramme pour les espacer. Par exemple, déplacez le terminal Pic à pic sur l'espace vide en dessous des VI Express.

Astuce Vous pouvez aussi appuyer sur <Ctrl> et faire glisser un rectangle à l'aide de la souris pour agrandir la zone de travail sur la face-avant ou le diagramme.

Mise en garde de l'utilisateur

Après avoir spécifié les valeurs pour lesquelles vous voulez que la LED s'allume, vous devez câbler la LED au VI Express Supérieur.

Effectuez les étapes suivantes pour que le voyant s'allume quand la valeur de l'amplitude pic à pic du signal dépasse une limite spécifiée.

Sur la fenêtre du diagramme, déplacez le terminal **Mise en garde** à droite du VI Express Supérieur. Assurez-vous que le terminal Mise en garde se trouve dans la boucle While, comme l'illustre la figure suivante.

Figure 3-4. Diagramme du VI Voyant de mise en garde

Câblez la sortie Résultat du VI Express Supérieur au terminal Mise en garde. Le diagramme devrait ressembler à celui de la figure 3-4.

Remarque Des points de coercition rouges apparaissent automatiquement aux terminaux d'entrée Pic à pic et Mise en garde pour vous avertir que vous avez câblé deux types de données différents ensemble et que LabVIEW a converti la valeur transmise au nœud en une représentation différente. Le diagramme place les points de coercition sur le bord du terminal où la conversion a lieu. Pour cet exercice, la conversion n'affecte pas la façon dont le VI s'exécute. Reportez-vous à l'Aide LabVIEW pour obtenir de plus amples informations sur les points de coercition.

3. Affichez la face-avant.

> Un indicateur numérique portant l'étiquette Pic à pic apparaît sur la fenêtre de la face-avant. Cet indicateur affiche la valeur de l'amplitude pic à pic du signal.

- 4. Exécutez le VI.
 - Quand la valeur de pic à pic dépasse 2, 0, l'indicateur Mise en garde s'allume.
- 5. Cliquez sur le bouton **STOP** pour arrêter le VI.
- 6. Enregistrez le VI.

Configuration d'un VI pour qu'il enregistre les données dans un fichier

Pour enregistrer des informations sur les données générées par un VI, utilisez le VI Express Écrire dans un fichier de mesures.

Effectuez les étapes suivantes pour construire un VI qui enregistre les valeurs pic à pic et d'autres informations dans un fichier de données LabVIEW.

- Recherchez le VI Express Écrire dans un fichier de mesures et ajoutez-le au diagramme au-dessous et à droite du VI Express Mesures d'amplitudes et de niveaux.
 - La boîte de dialogue Configurer Écrire dans un fichier de mesures apparaît.
 - Le champ de **Nom de fichier** affiche le chemin complet du fichier de sortie, test.lvm. Un fichier .lvm est un fichier texte délimité par tabulations que vous pouvez ouvrir avec une application tableur ou un éditeur de texte. LabVIEW enregistre les données dans un fichier .lvm en utilisant jusqu'à six chiffres de précision. LabVIEW enregistre le fichier .lvm dans le répertoire LabVIEW Data par défaut. LabVIEW installe le répertoire LabVIEW Data dans le répertoire de fichiers par défaut du système d'exploitation.
 - Quand vous voulez afficher les données, utilisez le chemin du fichier affiché dans le champ **Nom de fichier** pour accéder au fichier test.lvm.
- 2. Dans la boîte de dialogue **Configurer Écrire dans un fichier de mesures**, trouvez la section **Si le fichier existe déjà** et sélectionnez l'option **Ajouter au fichier** pour écrire toutes les données dans le fichier test.lym sans effacer les données existantes du fichier.
- Dans la section En-têtes de segment, sélectionnez l'option Un seul en-tête pour ne créer qu'un en-tête dans le fichier dans lequel LabVIEW écrit les données.
- 4. Entrez le texte Exemples de valeurs pic à pic dans le champ **Description du fichier**. LabVIEW ajoute le texte que vous entrez dans ce champ à l'en-tête du fichier.
- 5. Cliquez sur le bouton **OK** pour enregistrer la configuration actuelle et fermer la boîte de dialogue **Configurer Écrire dans un fichier de mesures**.

Enregistrement des données dans un fichier

Quand vous exécutez le VI, LabVIEW enregistre les données dans le fichier test. lvm.

Effectuez les étapes suivantes pour générer le fichier test.lvm.

- Sur le diagramme, connectez la sortie Pic à pic du VI Express Mesures d'amplitudes et de niveaux à l'entrée Signaux du VI Express Écrire dans un fichier de mesures.
- 2. Sélectionnez **Fichier**»**Enregistrer sous** et enregistrez le VI sous le nom Enregistrer les données.vi dans un emplacement facile d'accès.

- 3 Revenez à la face-avant et exécutez le VI
- 4. Cliquez sur le bouton **STOP** de la face-avant.
- 5. Pour afficher les données que vous avez enregistrées, ouvrez le fichier test.lvm du répertoire LabVIEW Data avec une application tableur ou un éditeur de texte. Le fichier a un en-tête qui comporte des informations sur le VI Express.
- Fermez le fichier quand vous avez fini de le consulter et revenez au VI Enregistrer les données

Ajout d'un bouton qui enregistre les données lorsqu'on clique dessus

Si vous ne voulez enregistrer que certains points de données, vous pouvez configurer le VI Express Écrire dans un fichier de mesures pour n'enregistrer les valeurs pic à pic que si l'utilisateur appuie sur un bouton.

Effectuez les étapes suivantes pour ajouter un bouton au VI et configurer la manière dont il répond quand un utilisateur clique dessus.

- Affichez la face-avant et trouvez le bouton culbuteur sur la palette Commandes. Sélectionnez un des culbuteurs et placez-le à droite des graphes.
- 2. Cliquez avec le bouton droit sur le bouton culbuteur puis sélectionnez Propriétés dans le menu local pour afficher la boîte de dialogue **Propriétés du booléen**.
- 3. Renommez l'étiquette du bouton Écrire dans le fichier.
- 4 Sur la page **Opération** de la boîte de dialogue **Propriétés du booléen**, sélectionnez Armement à l'appui dans la liste de Comportement du bouton.
 - Utilisez la page **Opération** pour définir le comportement du bouton lorsqu'un utilisateur clique dessus. Pour voir comment le bouton réagit au clic, cliquez sur le bouton de la section Apercu du comportement sélectionné.
- Cliquez sur le bouton **OK** pour enregistrer la configuration actuelle et fermer la boîte de dialogue Propriétés du booléen.
- 6 Enregistrez le VI.

Enregistrement des données à la demande de l'utilisateur

Effectuez les étapes suivantes pour construire un VI qui enregistre les données dans un fichier quand un utilisateur clique sur un bouton de la face-avant.

- Sur la fenêtre du diagramme, double-cliquez sur le VI Express Écrire dans un fichier de mesures pour afficher la boîte de dialogue Configurer Écrire dans un fichier de mesures.
- 2. Remplacez le nom du fichier test.lvm par Échantillons choisis.lvm dans le champ Nom de fichier pour enregistrer les données dans un autre fichier.
- 3. Cliquez sur le bouton **OK** pour enregistrer la configuration actuelle et fermer la boîte de dialogue Configurer Écrire dans un fichier de mesures.

- Cliquez avec le bouton droit sur l'entrée Signaux du VI Express Écrire dans un fichier de mesures et sélectionnez Insérer une entrée ou sortie dans le menu local pour insérer l'entrée Activer.
- 5. Cliquez avec le bouton droit sur l'entrée Commentaire du VI Express Écrire dans un fichier de mesures et sélectionnez Sélectionner une entrée ou sortie» Activer dans le menu local pour remplacer l'entrée Commentaire par l'entrée Activer.
 - Lorsque vous ajoutez des entrées et des sorties à un VI Express, elles apparaissent dans un ordre prédéterminé. Pour sélectionner une entrée spécifique, vous devrez peut-être commencer par ajouter une entrée puis la remplacer par celle que vous voulez utiliser en cliquant avec le bouton droit sur l'entrée et en sélectionnant **Sélectionner une entrée ou sortie** dans le menu local.
- Déplacez le terminal Écrire dans le fichier pour le mettre à gauche du VI Express Écrire dans un fichier de mesures.
- Câblez le terminal Écrire dans le fichier à l'entrée Activer du VI Express Écrire dans un fichier de mesures.
 - Le diagramme devrait être semblable à celui de la figure suivante.

Figure 3-5. Diagramme du VI Enregistrer les données

Affichage des données enregistrées

Effectuez les étapes suivantes pour afficher les données que vous enregistrez dans le fichier Échantillons choisis.lvm.

- Revenez à la face-avant et exécutez le VI. Cliquez plusieurs fois sur le bouton Écrire dans le fichier.
- 2. Cliquez sur le bouton **STOP**.

- 3 Ouvrez le fichier Échantillons choisis.lvm avec une application tableur ou un éditeur de texte.
 - Le fichier Échantillons choisis.lvm est différent du fichier test.lvm. test.lvm a enregistré toutes les données générées par le VI Enregistrer les données, alors que Échantillons choisis.lvm n'a enregistré des données qu'au moment où vous avez appuyé sur le bouton Écrire dans le fichier.
- 4 Fermez le fichier lorsque vous avez fini de l'étudier.
- 5. Enregistrez le VI et fermez-le.

Résumé

Les points suivants constituent un résumé des concepts clés qui ont été traités dans ce chapitre.

Commandes et indicateurs

Vous pouvez configurer les commandes et les indicateurs de la face-avant pour qu'ils s'adaptent aux tâches qui doivent être réalisées par le VI. Dans ce chapitre, vous avez appris à utiliser les commandes et les indicateurs des façons suivantes :

- Vous pouvez construire des VIs qui effectuent une tâche quand certaines conditions sont remplies comme, par exemple, l'allumage d'un voyant de mise en garde quand une valeur dépasse une certaine limite.
- Vous pouvez construire des VIs qui permettent à l'utilisateur de décider à quel moment un VI Express s'exécute grâce à l'utilisation de boutons et de l'entrée **Activer**. Vous pouvez configurer le comportement des boutons de six manières sur l'onglet **Opération** de la boîte de dialogue Propriétés du booléen.

Filtrage de données

Le VI Express Filtre traite les signaux avec des filtres et des fenêtres. Vous pouvez utiliser le VI Express Filtre pour éliminer le bruit d'un signal.

Enregistrement de données

Le VI Écrire dans un fichier de mesures enregistre les données générées et analysées par un VI dans un fichier de mesures .lvm, .tdm ou .tdms. Le fichier de mesures textuel (.lvm) est un fichier texte délimité par tabulations que vous pouvez ouvrir avec une application de type tableur ou un éditeur de texte. LabVIEW enregistre les données dans un fichier . 1 vm en utilisant jusqu'à six chiffres de précision. En plus des données générées par un VI Express, le fichier .lvm contient des en-têtes qui comportent des informations relatives aux données, comme la date et l'heure auxquelles LabVIEW a généré les données. Le fichier de mesures binaire (.tdm) est un fichier binaire qui contient des données waveform. Les fichiers binaires .tdm offrent une plus grande précision pour les nombres à virgule flottante, prennent moins de place sur le disque et s'exécutent plus rapidement que les fichiers de mesures textuels LabVIEW (.1vm). Le fichier TDM en continu (. tdms) est un fichier binaire dont les performances en écriture sont meilleures

Chapitre 3 Analyse et enregistrement d'un signal

que celles du format de fichier . tdm et qui offre la possibilité d'une interface simplifiée pour la définition des propriétés.

LabVIEW installe le répertoire LabVIEW Data dans le répertoire de fichiers par défaut de votre système d'exploitation pour faciliter l'organisation et la recherche des fichiers de données générés par LabVIEW. Reportez-vous à l'*Aide LabVIEW* pour obtenir des informations plus détaillées sur l'écriture et la lecture des données des fichiers .lvm et .tdm.

Matériel : acquisition de données et communication avec des instruments (Windows)

LabVIEW a la capacité de se connecter à un grand nombre de périphériques matériels et d'interagir avec eux. Ce chapitre vous présente deux VIs Express qui simplifient l'acquisition de données et la communication avec des instruments traditionnels de tiers.

Spécifications logicielles et matérielles

Dans le premier exercice, vous utilisez le VI Express Assistant DAO pour acquérir des données avec un périphérique DAQ. Cet exercice nécessite du matériel d'acquisition de données et que NI-DAQmx soit installé sur votre ordinateur. Reportez-vous au fichier Readme NI-DAQ pour obtenir de plus amples informations sur les plates-formes prises en charge par le logiciel NI-DAQ.

Reportez-vous au livre **Prise de mesures** sur l'onglet **Sommaire** de l'*Aide LabVIEW* pour obtenir des informations supplémentaires sur l'acquisition de données et la communication avec des instruments sur toutes les plates-formes.

Remarque Avec NI-DAQmx 7.4 et les versions ultérieures, vous pouvez créer des périphériques simulés NI-DAQmx dans MAX. Un périphérique simulé NI-DAQmx est une réplique logicielle d'un périphérique DAQ. Reportez-vous à l'Aide Measurement & Automation Explorer pour NI-DAOmx pour obtenir des instructions détaillées sur la création d'un périphérique simulé NI-DAQmx qui vous permettra d'effectuer le premier exercice.

Dans le deuxième exercice, vous utilisez l'Assistant de recherche de drivers d'instruments pour trouver et installer des drivers d'instruments. Pour utiliser l'Assistant de recherche de drivers d'instruments, vous devez avoir accès à Internet. Dans le deuxième exercice, vous utilisez aussi le VI Express Assistant d'E/S instruments pour communiquer avec un instrument traditionnel de tiers. Cet exercice requiert un instrument et que l'Assistant d'E/S instruments soit installé sur votre ordinateur.

Reportez-vous au livre Contrôle d'instruments sur l'onglet Sommaire de l'Aide LabVIEW pour obtenir des informations plus détaillées sur la communication avec des instruments.

Remarque LabVIEW supporte l'Assistant d'E/S instruments et l'Assistant DAQ utilisés dans ce chapitre uniquement sous Windows. L'Assistant de recherche de drivers d'instruments est disponible sous Windows et Linux.

Acquisition d'un signal dans NI-DAQmx

Vous utiliserez le VI Express Assistant DAO pour créer une tâche dans NI-DAOmx. NI-DAQmx est une interface de programmation qui permet de communiquer avec les périphériques d'acquisition de données. Reportez-vous au livre Initiation à LabVIEW» Initiation à DAQ»Prendre une mesure NI-DAQmx dans LabVIEW sur l'onglet Sommaire de l'Aide LabVIEW pour obtenir des informations sur d'autres méthodes permettant de créer des tâches NI-DAQmx.

Dans les exercices suivants, vous créerez une tâche NI-DAQmx qui mesure une tension de façon continue et affiche les données dans un graphe.

Vous pouvez effectuer les exercices de ce chapitre en 30 minutes environ.

Création d'une tâche NI-DAQmx

Dans NI-DAQmx, une tâche est composée d'un ensemble d'une ou de plusieurs voies qui contiennent des propriétés de cadencement, de déclenchement et autres. Fondamentalement, une tâche représente la mesure ou la génération que vous voulez réaliser. Par exemple, vous pouvez créer une tâche pour mesurer la température sur une ou plusieurs voies d'un périphérique DAO.

Suivez les étapes ci-après pour créer et configurer une tâche qui lit une tension sur un périphérique DAQ.

- 1. Ouvrez un nouveau VI vide.
- Sur le diagramme, affichez la palette Fonctions et sélectionnez Express»Entrée pour afficher la palette Entrée.
- 3. Sélectionnez le VI Express Assistant DAO, illustré ci-dessous, sur la palette Entrée et placez-le sur le diagramme. L'Assistant DAQ se lance et la boîte de dialogue Créer un nouvel objet Tâche Express apparaît.

- 4. Cliquez sur Acquérir des signaux»Entrée analogique pour afficher les options d'Entrée analogique.
- 5. Sélectionnez **Tension** pour créer une nouvelle tâche d'acquisition analogique de tension. La boîte de dialogue affiche la liste des voies sur chaque périphérique DAO installé. Le nombre de voies affichées dépend du nombre de voies dont dispose votre périphérique DAQ.

6 Dans la liste de Voies physiques supportées, sélectionnez la voie physique à laquelle le périphérique connecte le signal comme, par exemple ai0, puis cliquez sur le bouton Terminer. L'Assistant DAQ ouvre une nouvelle boîte de dialogue, représentée dans la figure suivante, qui affiche les options de configuration pour la voie que vous avez sélectionnée pour la tâche.

Assistant DAO × Ю Annuler Rétablir Exécuter Ajouter des voies Supprimer des voies Afficher l'aide 🎪 Tâche Express 縫 Diagramme des connexions 500m n. -500m · -1 100 110 120 130 140 150 160 170 180 190 200 20 Temps Échelle automatique de l'axe Y Graphe ▼ Type d'affichage Configuration Déclenchement Cadencement avancé Enregistrement Détails >>> Configuration de la tension d'entrée Paramètres 🐔 Étalonnage Gamme du signal d'entrée Unités après échelle 5 Volts • -5 Configuration du terminal Différentielle Cliquez sur le bouton Ajouter des voies (+) pour ajouter Mise à l'échelle personnalisée des voies à la tâche. <Pas d'échelle> Paramètres de cadencement Mode d'acquisition Échantillons à lire Fréquence (Hz) N échantillons • 100 1k OK Annuler

Figure 4-1. Configuration d'une tâche avec l'Assistant DAQ

Dans la boîte de dialogue de l'Assistant DAQ, sélectionnez l'onglet Configuration et trouvez la section Configuration de la tension d'entrée.

- 8 Trouvez l'onglet Paramètres. Dans la section Gamme du signal d'entrée, entrez 10 comme valeur Max puis entrez -10 comme valeur Min.
- 9. Trouvez la section Paramètres de cadencement au bas de la page Configuration. Dans le menu déroulant Mode d'acquisition, sélectionnez N échantillons.
- 10. Entrez la valeur 1000 dans le champ **Échantillons à lire**.
- 11. Cliquez sur le bouton **OK** pour enregistrer la configuration actuelle et fermer l'Assistant DAQ. LabVIEW construit le VI.
- 12. Enregistrez le VI sous le nom Lire une tension.vi dans un emplacement facile d'accès.

Affichage sur un graphe des données d'un périphérique DAQ

Vous pouvez utiliser la tâche que vous avez créée dans l'exercice précédent pour afficher sur un graphe les données acquises par un périphérique DAQ.

Effectuez les étapes suivantes pour afficher les données d'une voie dans un graphe et changer le nom du signal.

- Sur le diagramme, cliquez avec le bouton droit sur la sortie données et sélectionnez Créer» Indicateur graphe dans le menu local.
- Revenez à la face-avant et exécutez le VI trois ou quatre fois. Observez le graphe. **Tension** apparaît dans la légende de tracé au-dessus du graphe.
- Sur le diagramme, cliquez avec le bouton droit sur le VI Express Assistant DAO et sélectionnez Propriétés dans le menu local pour ouvrir l'Assistant DAQ.
- Cliquez avec le bouton droit sur Tension dans la liste de voies et sélectionnez Renommer 4. dans le menu local pour afficher la boîte de dialogue Renommer une ou plusieurs voies.

Astuce Vous pouvez aussi afficher la boîte de dialogue **Renommer une ou plusieurs voies** en sélectionnant le nom de la voie et en appuyant sur la touche <F2>.

- Dans le champ Nouveau nom, entrez Première mesure de tension, puis cliquez sur le bouton OK.
- Dans la boîte de dialogue **Assistant DAQ**, cliquez sur le bouton **OK** pour enregistrer la configuration actuelle et fermer l'Assistant DAQ.
- 7. Revenez à la face-avant et exécutez le VI. Première mesure de tension apparaît dans la légende de tracé du graphe.
- 8. Enregistrez le VI.

Édition d'une tâche NI-DAQmx

Vous pouvez ajouter une voie à la tâche pour comparer deux mesures de tensions distinctes. Vous pouvez aussi configurer la tâche pour acquérir les mesures de tension en continu.

Suivez les étapes ci-après pour ajouter une nouvelle voie à la tâche et acquérir des données de façon continue.

- Sur la fenêtre du diagramme, double-cliquez sur le VI Express Assistant DAQ pour ouvrir l'Assistant DAQ.
- 2. Cliquez sur le bouton **Ajouter des voies**, représenté ci-dessous, et sélectionnez **Tension** pour afficher la boîte de dialogue **Ajouter des voies à la tâche**.

- 3. Sélectionnez une voie physique libre dans la liste de Voies physiques supportées et cliquez sur le bouton **OK** pour revenir à l'Assistant DAQ.
- 4. Renommez la voie Deuxième mesure de tension.
- 5. Dans la section **Paramètres de cadencement** de la page **Configuration**, sélectionnez **Échantillons continus** dans le menu déroulant de **Mode d'acquisition**.
 - Quand vous définissez les options de cadencement et de déclenchement dans l'Assistant DAQ, ces options s'appliquent à toutes les voies de la liste de voies.
- Cliquez sur le bouton OK pour enregistrer la configuration actuelle et fermer l'Assistant DAQ. La boîte de dialogue Confirmer la création automatique de la boucle apparaît.
- 7. Cliquez sur le bouton **Oui**. LabVIEW place une boucle While autour du VI Express Assistant DAQ et de l'indicateur graphe sur le diagramme. Un bouton Stop apparaît câblé à l'entrée **stop** du VI Express Assistant DAQ. La sortie **arrêtée** du VI Express est câblée au terminal de condition de la boucle While. Le diagramme devrait être semblable à celui de la figure suivante.

Figure 4-2. Diagramme du VI Lire une tension

Si une erreur se produit ou que vous cliquez sur le bouton **STOP** quand ce VI s'exécute, le VI Express Assistant DAQ arrête de lire les données, la sortie **arrêtée** renvoie la valeur VRAI et la boucle While s'arrête.

Comparaison visuelle des deux mesures de tension

En personnalisant les tracés, vous pouvez faire la distinction entre les deux mesures de tension affichées sur le graphe.

Effectuez les étapes suivantes pour personnaliser la couleur des tracés dans le graphe de la face-avant.

- 1 Développez la légende des tracés du graphe pour afficher deux tracés.
- Exécutez le VI.
 - Deux tracés apparaissent sur le graphe et la légende des tracés affiche le nom des deux tracés.
- Cliquez sur l'icône située à droite de la Première mesure de tension dans la légende des tracés et sélectionnez Couleur dans le menu local. Avec le sélecteur de couleur, choisissez la couleur du tracé, jaune par exemple, pour qu'il soit facile à lire.
- 4. Changez la couleur de tracé de Deuxième mesure de tension.
- Arrêtez le VI 5
- 6. Enregistrez le VI.
- 7. Fermez le VI. La fenêtre **Démarrage** s'ouvre.

Communication avec un instrument : utilisation de drivers d'instruments et de l'Assistant d'E/S instruments

Un driver d'instruments est un ensemble de sous-programmes logiciels permettant de contrôler un instrument programmable. Chaque routine correspond à une opération de programmation, telle que la configuration, la lecture, l'écriture et le déclenchement de l'instrument. Les drivers d'instruments LabVIEW simplifient le contrôle d'instruments et réduisent les temps d'élaboration des tests en rendant inutile l'apprentissage du protocole de programmation pour chaque instrument. Pour contrôler un instrument, utilisez systématiquement son driver quand c'est possible. National Instruments fournit des milliers de drivers d'instruments pour une grande gamme d'instruments.

Dans les exercices suivants, vous utiliserez des drivers d'instruments et l'Assistant d'E/S instruments pour communiquer avec un instrument. Vous devez avoir un instrument installé pour faire complètement les exercices suivants.

Remarque Ces exercices se réfèrent à des instruments traditionnels de tiers. Reportez-vous à ni.com/modularinstruments pour en savoir plus sur la communication avec des instruments modulaires NI

Initiation à l'Assistant de recherche de drivers d'instruments

Utilisez l'Assistant de recherche de drivers d'instruments NI pour rechercher et installer des drivers d'instruments LabVIEW Plug and Play sans quitter l'environnement de développement LabVIEW.

Astuce Vous pouvez aussi consulter la Base de drivers d'instruments NI sur ni.com/idnet pour trouver le driver d'un instrument, demander un driver pour un instrument et lire des articles utiles et des tutoriels sur l'utilisation de drivers d'instruments.

Effectuez les étapes suivantes pour lancer et configurer l'Assistant de recherche de drivers d'instruments NI.

- À partir de la fenêtre de démarrage, cliquez sur Rechercher drivers/compléments puis sur le lien Se connecter à des instruments. Vous pouvez aussi lancer l'Assistant de recherche de drivers d'instruments en sélectionnant Aide»Rechercher des drivers d'instruments ou Outils»Instrumentation»Rechercher des drivers d'instruments
- Cliquez sur le bouton **Ouvrir une session** pour ouvrir une session en utilisant votre profil 2. NI. Si vous n'avez pas de profil ni.com, passez à l'étape 4.
- 3. Si vous avez déjà un profil ni.com, entrez votre adresse e-mail et votre mot de passe et cliquez sur le bouton Ouvrir une session.
- Si vous n'avez pas de profil ni . com, sélectionnez l'option Non, j'ai besoin de créer un 4. profil et cliquez sur le bouton Créer un profil. Cette action lance une fenêtre de navigateur dans laquelle vous pouvez créer un profil ni . com. Une fois que vous avez créé un profil, repassez à la fenêtre de l'Assistant de recherche de drivers d'instruments et ouvrez une session avec vos nouvelles informations.

Vous êtes prêt à rechercher, installer et utiliser des drivers d'instruments avec l'Assistant de recherche de drivers d'instruments.

Recherche et installation de drivers d'instruments

Effectuez les étapes suivantes pour rechercher et installer un driver d'instruments en utilisant l'Assistant de recherche de drivers d'instruments.

- Sur la page Configurer la recherche, cliquez sur le bouton Rechercher les instruments. Cette action demande à l'Assistant de recherche de drivers d'instruments NI de rechercher des instruments connectés. Tous les résultats s'affichent sous le dossier Instruments connectés du panneau de gauche. Si aucun instrument n'est connecté, l'Assistant de recherche de drivers d'instruments renverra le message <aucun instrument connecté détecté>.
- Développez le dossier Instruments connectés pour afficher les résultats de la recherche et 2. sélectionner un instrument dans la liste.

3 Sélectionnez un fabricant dans le menu déroulant Fabricant et entrez n'importe quels mots-clés dans la section **Mots-clés supplémentaires**. Ensuite, cliquez sur le bouton Rechercher.

Une liste de drivers d'instruments disponibles apparaît sur la page **Résultats de la** recherche. Le résultat de driver pour la version de LabVIEW la plus récente apparaît en premier dans la liste.

Si votre recherche ne donne pas de résultat, une barre latérale avec des conseils de recherche apparaît. Reportez-vous au site Web IDNet, àni.com/idnet, pour en savoir plus sur la recherche de drivers d'instruments.

Remarque L'Assistant de recherche de drivers d'instruments NI n'affiche que les drivers pour LabVIEW 7.0 et versions ultérieures. Si vous devez télécharger une version plus ancienne d'un driver d'instruments, allez sur le site Web IDNet, à ni.com/idnet pour trouver et télécharger des drivers d'instruments compatibles avec les versions de LabVIEW plus anciennes.

- Sélectionnez le driver que vous voulez installer puis cliquez sur le bouton Installer. Une fois le driver installé, la fenêtre **Installation du driver d'instruments** apparaît. Cette fenêtre contient des options pour explorer et utiliser le nouveau driver. Une fois l'installation terminée, le nouveau driver apparaît sur la page Configurer la recherche dans le dossier Drivers d'instruments installés.
- 5. Cliquez sur le bouton Installer un autre driver et cliquez sur le bouton Précédent pour retourner à la fenêtre Configurer la recherche.

Remarque Vous pouvez aussi créer vos propres drivers d'instruments. Reportez-vous au livre Contrôle d'instruments» Utilisation de drivers d'instruments sur l'onglet Sommaire de l'Aide LabVIEW pour obtenir des informations plus détaillées sur la création de drivers d'instruments.

Utilisation de drivers d'instruments

Une fois le driver d'instruments installé, vous pouvez consulter des exemples de programmes pour en savoir plus sur l'utilisation du driver d'instruments.

- Double-cliquez sur le driver d'instruments que vous venez d'installer dans le dossier Drivers d'instruments installés pour afficher la page Commencer à utiliser le driver d'instruments.
- La page Commencer à utiliser le driver d'instruments vous permet d'explorer et de personnaliser le nouveau driver. Voici quelques recommandations pour vous aider à prendre en main le nouveau driver.
 - Pour voir le nouveau driver dans la fenêtre de l'Explorateur de projet, cliquez sur le bouton Ouvrir le projet. Dans la fenêtre de l'Explorateur de projet, vous pouvez explorer les VIs, les dossiers et les fichiers supplémentaires qui composent le driver.

Vous pouvez aussi accéder au fichier Readme du driver à partir de la fenêtre de l'Explorateur de projet.

- Pour voir la palette du driver, cliquez sur le bouton **Ouvrir la palette**. À partir de la palette, vous pouvez sélectionner et ajouter les VIs de drivers sur la face-avant et le diagramme.
- Pour voir un exemple de programme, double-cliquez sur les exemples de programmes listés dans la section Exemples de la page Commencer à utiliser le driver d'instruments.

Remarque Toutes les options ne sont pas disponibles pour tous les drivers. Par exemple, si un driver n'a pas de fichier de projet, le bouton **Ouvrir le projet** apparaît grisé. Reportez-vous au site Web IDNet, à ni.com/idnet, pour en savoir plus sur tous les drivers d'instruments.

Sélection d'un instrument avec l'Assistant d'E/S instruments

Si aucun driver n'est disponible pour un instrument, vous pouvez utiliser le VI Express Assistant d'E/S instruments pour communiquer avec l'instrument.

Remarque L'Assistant d'E/S instruments doit être installé pour utiliser le VI Express Assistant d'E/S instruments. Utilisez le CD de drivers de périphériques National Instruments pour installer l'Assistant d'E/S instruments.

Effectuez les étapes suivantes pour sélectionner un instrument avec le VI Express Assistant d'E/S instruments.

- Allumez l'instrument que vous voulez utiliser. Il doit être sous tension pour être utilisé avec le VI Express Assistant d'E/S instruments.
- 2. Ouvrez un nouveau VI et affichez la fenêtre du diagramme.
- 3 Dans la palette Entrée, sélectionnez le VI Express Assistant d'E/S instruments et ajoutez-le au diagramme. La boîte de dialogue Assistant d'E/S instruments apparaît.
- 4. Si l'aide n'est pas visible à droite de la boîte de dialogue, cliquez sur le bouton Afficher l'aide, illustré ci-dessous, dans l'angle supérieur droit de la boîte de dialogue de l'Assistant d'E/S instruments

L'aide apparaît à droite de la boîte de dialogue. La partie supérieure de la fenêtre d'aide contient des informations sur la procédure d'utilisation de l'Assistant d'E/S instruments. La partie inférieure de la fenêtre d'aide contient une aide contextuelle se rapportant aux éléments de la boîte de dialogue.

- 5 Cliquez sur le lien **Sélectionner l'instrument** dans la partie supérieure de la fenêtre d'aide et suivez les instructions de la fenêtre d'aide pour sélectionner l'instrument avec lequel vous désirez communiquer.
- Si nécessaire, configurez les propriétés de l'instrument. 6.
- Pour minimiser la fenêtre d'aide, cliquez sur le bouton Masquer l'aide, illustré ci-dessous, dans l'angle supérieur droit de la boîte de dialogue de l'Assistant d'E/S instruments.

Acquisition et analyse des informations d'un instrument

Après avoir sélectionné l'instrument, vous pouvez lui envoyer des commandes pour récupérer les données. Dans cet exercice, vous allez voir comment utiliser le VI Express Assistant d'E/S instruments pour acquérir, puis analyser les informations d'identification d'un instrument.

Suivez les étapes ci-après pour communiquer avec l'instrument.

- Dans la boîte de dialogue Assistant d'E/S instruments, cliquez sur le bouton Ajouter une étape, développez le menu déroulant, et cliquez sur l'étape Requérir et analyser.
- Entrez *IDN? dans le champ **Entrez une commande**.
 - *IDN? est une requête que la plupart des instruments connaissent. La réponse est une chaîne d'identification qui décrit l'instrument. Si l'instrument n'accepte pas cette commande, reportez-vous au manuel de référence de l'instrument pour obtenir la liste des commandes acceptées par l'instrument.
- 3. Cliquez sur le bouton **Exécuter cette étape**, représenté ci-dessous.

- L'Assistant d'E/S instruments envoie la commande à l'instrument et celui-ci renvoie les informations relatives à son identification
- Sélectionnez ASCII dans le menu déroulant sous la colonne Indice d'octet de la fenêtre de réponse pour analyser le nom de l'instrument comme une chaîne ASCII. Vous pouvez aussi utiliser l'Assistant d'E/S instruments pour analyser les nombres au format ASCII et les données binaires.
- Cliquez sur le bouton Aide pour l'analyse, représenté ci-dessous, dans la boîte de dialogue de l'Assistant d'E/S instruments pour afficher des informations concernant l'analyse des données.

Aide pour l'analyse

- 6 Dans la colonne **Représentation ASCII** de la fenêtre de réponse, cliquez sur la valeur que vous voulez analyser.
- 7. Entrez le nom de la valeur, ou la sélection de données, à analyser dans le champ Nom de la valeur analysée.

Le nom que vous avez entré dans le champ **Nom de la valeur analysée** est la sortie du VI Express Assistant d'E/S instruments, illustré ci-dessous.

Câblage d'une commande à l'instrument

Après avoir acquis des données de l'instrument, vous pouvez ajouter un paramètre d'entrée à une commande d'instrument. Ce paramètre devient alors une entrée de VI ou de fonction.

Effectuez les étapes suivantes pour ajouter un paramètre à une commande.

- Cliquez sur le bouton Ajouter une étape. développez le menu déroulant et cliquez sur l'étape Écrire.
- 2. Entrez *IDN? dans le champ **Entrez une commande**.
- 3 Mettez en évidence la commande dans le champ Entrez une commande et cliquez sur le bouton Ajouter un paramètre pour ajouter un paramètre à la commande.
- 4. Entrez une valeur par défaut pour le paramètre dans le champ Valeur de test.
- 5 Entrez un nom pour le paramètre dans le champ **Nom de paramètre**. Ce nom sert à référencer le paramètre dans l'application.
- 6. Cliquez sur le bouton **OK** pour enregistrer la configuration actuelle et fermer la boîte de dialogue de l'Assistant d'E/S instruments.

Résumé

Les points suivants constituent un résumé des concepts clés qui ont été traités dans ce chapitre.

VI Express Assistant DAQ

Vous pouvez utiliser le VI Express Assistant DAQ pour construire de manière interactive des voies et des tâches de mesure.

Ajoutez le VI Express Assistant DAO au diagramme pour configurer les voies et les tâches à utiliser avec NI-DAQmx pour une acquisition de données. NI-DAQmx est une interface de programmation qui permet de communiquer avec les périphériques d'acquisition de données. Vous pouvez utiliser le VI Express Assistant DAQ pour contrôler les périphériques supportés par NI-DAQmx.

Reportez-vous au livre Initiation à LabVIEW»Initiation à DAQ»Prendre une mesure NI-DAQmx dans LabVIEW sur l'onglet Sommaire de l'Aide LabVIEW pour obtenir des informations plus détaillées sur l'Assistant DAQ.

Reportez-vous au fichier Readme NI-DAQ pour obtenir des informations sur les périphériques pris en charge par NI-DAQmx. Si le périphérique que vous voulez utiliser n'est pas supporté par NI-DAOmx, reportez-vous au livre **Prise de mesures** sur l'onglet **Sommaire** de l'Aide LabVIEW pour obtenir des informations sur l'utilisation de NI-DAQ traditionnel (ancien driver) pour acquérir des données.

Tâches dans NI-DAQmx

Dans NI-DAQmx, une tâche est composée d'un ensemble d'une ou de plusieurs voies virtuelles avec des propriétés de cadencement, de déclenchement et autres. Fondamentalement, une tâche représente la mesure ou la génération que vous voulez réaliser.

Par exemple, vous pouvez configurer un ensemble de voies pour des opérations d'acquisition analogique. Une fois la tâche créée, vous pouvez accéder à la tâche plutôt que de configurer les voies séparément pour effectuer les acquisitions d'entrée analogiques. Une fois la tâche créée, vous pouvez y ajouter ou en supprimer des voies.

Reportez-vous au livre **Prise de mesures** sur l'onglet **Sommaire** de l'Aide LabVIEW pour obtenir des informations plus détaillées sur les voies et les tâches.

Drivers d'instruments

Utilisez l'Assistant de recherche de drivers d'instruments NI pour rechercher et installer des drivers d'instruments LabVIEW Plug and Play sans quitter l'environnement de développement LabVIEW.

Un driver d'instruments est un ensemble de sous-programmes logiciels permettant de contrôler un instrument programmable. Chaque routine correspond à une opération de programmation, telle que la configuration, la lecture, l'écriture et le déclenchement de l'instrument. Pour contrôler un instrument, utilisez systématiquement son driver quand c'est possible. National Instruments fournit des milliers de drivers d'instruments pour une grande gamme d'instruments.

Reportez-vous au livre Contrôle d'instruments» Utilisation de drivers d'instruments sur l'onglet **Sommaire** de l'*Aide LabVIEW* pour obtenir des informations plus détaillées sur l'Assistant de recherche de drivers d'instruments.

Vous pouvez aussi créer vos propres drivers d'instruments ou consulter la base de drivers d'instruments NI à ni.com/idnet pour trouver un driver pour un instrument. Reportez-vous au livre Contrôle d'instruments» Utilisation de drivers d'instruments sur l'onglet Sommaire de l'Aide LabVIEW pour obtenir des informations plus détaillées sur la création de drivers d'instruments.

VI Express Assistant d'E/S instruments

Si aucun driver n'est disponible pour un instrument, vous pouvez utiliser le VI Express Assistant d'E/S instruments pour communiquer avec l'instrument. Vous pouvez utiliser l'Assistant d'E/S instruments pour communiquer avec des instruments qui communiquent par messages et analyser leur réponse sous forme graphique. Lancez cet assistant en ajoutant le VI Express Assistant d'E/S instruments au diagramme ou en double-cliquant sur l'icône de ce VI Express s'il est déjà sur le diagramme.

Reportez-vous à l'Aide de l'Assistant d'E/S instruments pour obtenir de plus amples informations sur la communication avec un périphérique externe. Pour afficher l'Aide de l'Assistant d'E/S instruments, cliquez sur le bouton Afficher l'aide dans la boîte de dialogue Assistant d'E/S instruments.

Utilisation des autres fonctionnalités LabVIEW

Les chapitres précédents de ce manuel vous ont présenté la plupart des fonctionnalités LabVIEW dont vous avez besoin pour construire les applications de mesure les plus courantes. Au fur et à mesure que vous vous familiarisez avec l'environnement LabVIEW, vous voudrez peut-être améliorer certains VIs ou contrôler avec plus de précision les processus suivis par les VIs. Ce chapitre vous présente certains concepts qu'il est important de bien connaître pour utiliser les autres fonctionnalités de LabVIEW. Reportez-vous au livre Principes de base sur l'onglet **Sommaire** de l'*Aide LabVIEW* pour obtenir des informations complémentaires sur ces concepts. Les livres de Concepts contiennent des informations sur les concepts de programmation LabVIEW et les livres de **Procédures** contiennent des instructions très détaillées pour utiliser LabVIEW

Toutes les commandes et tous les indicateurs

Les commandes et les indicateurs situés sur la sous-palette Express de la palette Commandes ne représentent qu'une partie des commandes et des indicateurs intégrés disponibles dans LabVIEW. Sur d'autres sous-palettes, vous pouvez trouver toutes les commandes et tous les indicateurs disponibles pour créer la face-avant. Cependant, mis à part la palette Express, les sous-palettes classent les commandes et les indicateurs par fonctionnalité plutôt que de faire la distinction entre commandes et indicateurs.

Par exemple, le niveau supérieur de la sous-palette Express comporte une sous-palette Commandes numériques et une sous-palette Indicateurs numériques. Sur les sous-palettes Moderne, Classique et Système, ces commandes et indicateurs se trouvent sur la sous-palette Numérique car ce sont tous des objets numériques.

Cliquez sur le bouton Personnaliser de la palette Commandes fixée et sélectionnez Changer les palettes visibles dans le menu local pour afficher la boîte de dialogue Changer les palettes visibles. Vous pouvez alors cocher les cases des catégories que vous voulez afficher sur la palette Commandes.

Reportez-vous au livre Principes de base» Construction de la face-avant sur l'onglet Sommaire de l'Aide LabVIEW pour obtenir des informations plus détaillées sur l'utilisation de l'ensemble complet des commandes et indicateurs intégrés disponibles dans LabVIEW.

Tous les VIs et fonctions

Les VIs Express et les structures de la sous-palette Express de la palette Fonctions ne représentent qu'une petite partie des VIs, fonctions et structures intégrés disponibles dans LabVIEW

Cliquez sur le bouton Personnaliser de la palette Fonctions fixée et sélectionnez Changer les palettes visibles dans le menu local pour afficher la boîte de dialogue Changer les palettes visibles. Vous pouvez alors cocher les cases des catégories que vous voulez afficher sur la palette Fonctions.

LabVIEW utilise des icônes de différentes couleurs pour distinguer les fonctions, les VIs et les VIs Express. Les icônes des fonctions ont un arrière-plan jaune clair, celles de la plupart des VIs ont un arrière-plan blanc et celles des VIs Express ont un arrière-plan bleu clair.

Les VIs Express apparaissent sur le diagramme sous forme de nœuds extensibles avec des icônes sur fond bleu. Contrairement aux VIs Express, la plupart des fonctions et des VIs apparaissent sur le diagramme sous forme d'icônes que vous ne pouvez pas redimensionner.

VIs

Vous pouvez utiliser un VI existant ou un VI que vous créez comme sous-VI. Lorsque vous placez un VI sur le diagramme, ce VI est un sous-VI. Quand vous double-cliquez sur un sous-VI, sa face-avant apparaît, plutôt qu'une boîte de dialogue dans laquelle vous pourriez configurer des options.

L'icône d'un VI apparaît dans l'angle supérieur droit de la face-avant et du diagramme. L'icône est la même que celle qui apparaît quand vous placez le VI sur le diagramme. Vous pouvez utiliser l'icône par défaut ou créer une icône personnalisée en utilisant l'Éditeur d'icône.

Reportez-vous au livre Principes de base»Création de VIs et de sous-VIs sur l'onglet Sommaire de l'Aide LabVIEW pour obtenir des informations plus détaillées sur la création de VIs, leur configuration en tant que sous-VIs et la création d'icônes.

Vous pouvez aussi enregistrer la configuration d'un VI Express en tant que sous-VI. Reportez-vous au livre **Principes de base**»Construction du diagramme sur l'onglet Sommaire de l'*Aide LabVIEW* pour obtenir des informations plus détaillées sur la création de sous-VIs à partir de VI Express.

Fonctions

Les fonctions sont les éléments de fonctionnement fondamentaux de LabVIEW. Contrairement aux VIs, les fonctions n'ont ni diagramme, ni face-avant. Les fonctions sont les blocs de construction de base pour la programmation d'un VI. Elle sont l'interface avec le matériel et le logiciel et effectuent d'autres tâches essentielles dans LabVIEW. Reportez-vous au livre Principes de base» Construction du diagramme sur l'onglet Sommaire de l'Aide LabVIEW pour obtenir des informations plus détaillées sur les fonctions.

Types de données

Sur le diagramme d'un VI, les terminaux des objets de la face-avant ont différentes couleurs. La couleur et le symbole d'un terminal indiquent le type de données de la commande ou de l'indicateur qu'il représente. Les couleurs indiquent aussi le type de données des entrées, des sorties et des fils de liaison. La couleur des entrées et des sorties des VIs Express indique le type de données accepté par l'entrée ou renvoyé par la sortie.

Les types de données indiquent quels objets, entrées et sorties vous pouvez câbler ensemble. Par exemple, un commutateur a un bord vert, ce qui indique que vous pouvez le câbler à n'importe quelle entrée de VI Express dont l'étiquette est verte. Un bouton rotatif a un bord orange; vous pouvez donc le câbler à n'importe quelle entrée de VI Express dont l'étiquette est orange. En fait, il est impossible de câbler un bouton rotatif à une entrée dont l'étiquette est verte. Les fils de liaison que vous créez ont la même couleur que les terminaux qu'ils connectent.

Les VIs Express génèrent et acquièrent des données en utilisant le type de données dynamique. Le type de données dynamique apparaît sous forme d'un terminal bleu foncé, représenté ci-dessous. La plupart des VIs Express acceptent ou renvoient des données dynamiques. Vous pouvez câbler des données dynamiques à n'importe quel indicateur ou entrée qui accepte des données numériques, waveform ou booléennes. Câblez les données dynamiques à l'indicateur capable de présenter les données de la meilleure manière. Ces indicateurs peuvent être des graphes, des graphes déroulants et des indicateurs numériques.

La plupart des autres VIs et fonctions de LabVIEW n'acceptent pas les données dynamiques. Pour analyser ou traiter des données dynamiques avec une fonction ou un VI intégré, vous devez convertir ces données en données numériques, booléennes, waveform ou tableau.

Utilisez le VI Express Convertir des données dynamiques pour convertir des données dynamiques en données numériques, booléennes, waveform et tableau afin de les utiliser avec d'autres VIs et fonctions. Lorsque vous câblez des données dynamiques à un indicateur tableau, LabVIEW place automatiquement le VI Express Convertir des données dynamiques sur le diagramme.

Utilisez le VI Express Convertir en données dynamiques pour convertir des données numériques, booléennes, waveform et tableau en données dynamiques pour pouvoir les utiliser avec les VIs Express.

Reportez-vous au livre Principes de base»Construction du diagramme sur l'onglet Sommaire de l'Aide LabVIEW pour obtenir des informations plus détaillées sur les types de données.

Quand utiliser les autres fonctionnalités LabVIEW?

Les VIs Express, les structures, les commandes et les indicateurs qui se trouvent sur les sous-palettes Express des palettes Commandes et Fonctions fournissent les fonctionnalités dont vous avez besoin pour construire les applications de mesure les plus courantes. La liste suivante décrit les applications pour lesquelles vous devez utiliser des VIs, des fonctions, des structures, des commandes et des indicateurs qui ne se trouvent pas sur la sous-palette Express.

- Contrôle par programmation des propriétés et des méthodes de l'environnement LabVIEW, des VIs, des commandes et des indicateurs — Vous pouvez contrôler par programmation le comportement d'exécution d'un VI, définir l'apparence d'une commande ou d'un indicateur, ou contrôler le comportement de l'environnement LabVIEW. Reportez-vous au livre Principes de base»Contrôle des VIs par programmation sur l'onglet Sommaire de l'Aide LabVIEW pour obtenir des informations complémentaires sur ces fonctionnalités.
- Appel de code écrit dans des langages de programmation textuels Vous pouvez utiliser LabVIEW pour communiquer avec des applications créées dans un langage textuel comme C ou C++. Reportez-vous au livre Principes de base» Appel de bibliothèques partagées dans LabVIEW sur l'onglet Sommaire de l'Aide LabVIEW pour en savoir plus sur ces fonctionnalités.
- Communication avec d'autres VIs sur le réseau Vous pouvez appeler un VI se trouvant sur un autre ordinateur sur lequel LabVIEW s'exécute. Reportez-vous au livre Principes de base» Transfert de données via un réseau sur l'onglet Sommaire de l'Aide LabVIEW pour en savoir plus sur ces fonctionnalités.
- Partage de données dans une application ou sur un réseau Vous pouvez créer des éléments logiciels configurés appelés variables partagées pour partager des données entre des VIs ou entre plusieurs emplacements sur le diagramme que vous ne pouvez pas connecter avec des fils de liaison. Reportez-vous au livre Principes de base» Transfert de données via un réseau sur l'onglet Sommaire de l'Aide LabVIEW pour en savoir plus sur ces fonctionnalités.
- Publication de VIs sur le Web Vous pouvez publier la face-avant de n'importe quel VI sur le Web, où les utilisateurs pourront interagir avec la face-avant. Reportez-vous au livre Principes de base» Transfert de données via un réseau sur l'onglet Sommaire de l'Aide LabVIEW pour en savoir plus sur ces fonctionnalités.
- Enregistrement des données dans des fichiers de différents formats Outre les fichiers de mesure textuels, vous pouvez créer des fichiers texte et tableur qui peuvent être utilisés par d'autres applications. Reportez-vous au livre Principes de base»E/S sur fichiers sur l'onglet Sommaire de l'Aide LabVIEW pour obtenir des informations complémentaires sur ces fonctionnalités.

- Personnalisation des menus Vous pouvez configurer quels sont les éléments de menus qui apparaissent lorsque le VI s'exécute. Vous pouvez également créer des menus personnalisés. Reportez-vous au livre Principes de base» Création de VIs et de sous-VIs sur l'onglet **Sommaire** de l'*Aide LabVIEW* pour obtenir des informations complémentaires sur ces fonctionnalités.
- Utilisation de projets LabVIEW Vous pouvez créer des projets pour regrouper des fichiers LabVIEW et des fichiers qui ne sont pas spécifiques à LabVIEW, créer des spécifications de construction et déployer ou télécharger des fichiers sur plusieurs cibles à partir d'un seul emplacement. Utilisez la boîte de dialogue Créer un projet pour sélectionner des modèles et des exemples de projets qui vous aideront à démarrer vos projets LabVIEW.
 - Vous devez utiliser un projet pour construire des applications et des bibliothèques partagées. Vous devez également utiliser un projet pour travailler avec une cible RT, FPGA, PDA, Touch Panel, DSP ou une cible embarquée. Reportez-vous à la documentation de chaque module pour obtenir plus d'informations sur l'utilisation de projets avec ces cibles. Reportez-vous au livre Principes de base» Utilisation de projets et de cibles, sur l'onglet **Sommaire** de l'*Aide LabVIEW*, pour obtenir des informations plus détaillées sur l'utilisation de projets LabVIEW.
- Accès à d'autres applications Windows Vous pouvez utiliser LabVIEW comme client .NET ou ActiveX pour accéder aux objets, aux propriétés, aux méthodes et aux événements associés aux applications de serveur .NET et ActiveX. Reportez-vous au livre Principes de base»Connectivité Windows sur l'onglet Sommaire de l'Aide LabVIEW pour obtenir des informations plus détaillées sur ces fonctionnalités.
- Écriture de formules, d'équations et de scripts mathématiques Vous pouvez utiliser divers nœuds pour effectuer des opérations mathématiques sur le diagramme. Vous pouvez aussi utiliser le langage textuel de MathScript LabVIEW pour écrire des fonctions et des scripts mathématiques. Reportez-vous au livre Principes de base» Formules et équations sur l'onglet **Sommaire** de l'*Aide LabVIEW* pour obtenir des informations plus détaillées sur ces fonctionnalités

Support technique et services

Connectez-vous à votre profil utilisateur National Instruments sur ni. com pour obtenir un accès personnalisé à vos services. Reportez-vous aux sections suivantes sur ni. com pour obtenir une assistance technique et des services professionnels.

- **Support** Le support technique sur ni.com/support comprend les ressources suivantes:
 - Ressources d'auto-assistance technique Visitez ni.com/support pour vous procurer des drivers et des mises à jour de logiciels, faire des recherches dans la Base de connaissances, accéder aux manuels sur les produits et aux assistants de dépannage pas à pas, ou obtenir des milliers d'exemples de programmes, des tutoriels, des notes d'application, des drivers d'instruments et bien plus encore. Les utilisateurs enregistrés bénéficient également de l'accès à NI Discussion Forums, sur ni.com/ forums. Pour accéder au forum français, cliquez sur le menu déroulant "Select Community" (à droite) et sélectionnez "Français". Les ingénieurs d'applications de NI se font fort de répondre à toutes les questions qui leur sont adressées.
 - Abonnement SSP (Standard Service Program) Ce programme confère à ses membres un accès direct par téléphone et e-mail aux ingénieurs d'applications de NI et leur permet d'obtenir un support technique individuel, ainsi qu'un accès privilégié aux modules de formation sur ni.com/self-paced-training. Tous les clients reçoivent automatiquement un abonnement d'un an au Standard Service Program (SSP) à l'achat de la plupart des produits logiciels et des offres groupées, y compris NI Developer Suite. NI fournit également des options d'extension de contrat flexibles pour que vos avantages SSP soient disponibles sans interruption tant que vous en avez besoin. Pour plus d'informations, visitez ni .com/ssp.

Pour obtenir des informations sur d'autres options de support technique dans votre région, visitez ni.com/services ou contactez votre filiale locale en utilisant les coordonnées qui se trouvent sur ni.com/contact.

- Formations et certifications Visitez ni.com/training pour obtenir des informations sur les programmes de formation et de certification de National Instruments. Vous pouvez également vous inscrire à des cours de formation dispensés par des instructeurs un peu partout dans le monde.
- Partenaires intégrateurs Si vous devez concilier délais serrés, ressources techniques limitées et toute autre contrainte, nous vous invitons à faire appel aux intégrateurs du Programme National Instruments Alliance Partner. Pour en savoir plus, appelez votre filiale locale ou visitez le site ni.com/alliance.

Annexe A Support technique et services

Vous pouvez également visiter la page des filiales internationales sur ni.com/niglobal afin d'accéder au site Web de votre filiale. Vous y trouverez les informations les plus à jour pour contacter le support technique par téléphone ou e-mail, ainsi que le calendrier des événements.

Glossaire

acquisition de données

bouton Exécuter

brisé

Α

(DAQ)	analogiques en provenance de capteurs, de transducteurs d'acquisition, de sondes de tests ou autres équipements.
	2. Génération analogique ou numérique de signaux électriques.
Assistant d'E/S instruments	Complément logiciel, lancé par le VI Express Assistant d'E/S instruments, qui communique avec les instruments communiquant par messages et analyse graphiquement la réponse.
Assistant DAQ	Interface graphique permettant de configurer les tâches de mesure, les voies et les échelles.
В	
barre d'outils	Barre contenant les boutons de contrôle utilisés pour exécuter les VIs et les mettre au point.
barre de menus	Barre horizontale qui liste les noms des principaux menus d'une application. La barre de menus s'affiche sous la barre de titre d'une fenêtre. Chaque application est munie d'une barre de menus qui lui est propre, mais certains menus et certaines commandes sont communs à de nombreuses applications.
boîtes de dialogue Propriétés	Boîtes de dialogue qui s'ouvrent à partir du menu local d'une commande ou d'un indicateur que vous pouvez utiliser pour configurer l'apparence de cette commande ou de cet indicateur sur la fenêtre de la face-avant.
boucle For	Structure de boucle itérative qui exécute son sous-diagramme un nombre de fois défini. Équivalent en langage textuel au code : For $i = 0$ to $n - 1$, do
boucle While	Structure en boucle qui répète une section de code jusqu'à ce qu'une

condition ait lieu

1. Acquisition et mesure de signaux électriques numériques ou

Bouton qui remplace le bouton Exécuter lorsqu'un VI ne peut pas

s'exécuter parce que des erreurs se sont produites.

C

case à cocher Petite boîte carrée dans une boîte de dialogue que vous pouvez

> sélectionner ou effacer. Les cases à cocher sont généralement associées à de multiples options que vous pouvez définir. Vous

pouvez sélectionner plus d'une case à cocher.

chaîne Représentation d'une valeur sous forme de texte.

commande Objet de la face-avant permettant d'entrer interactivement les

> données dans un VI ou de les entrer par programmation dans un sous-VI, tel qu'un bouton rotatif, un bouton poussoir ou un cadran.

commandes et Objets de la face-avant utilisés pour manipuler et afficher des indicateurs booléens données booléennes (VRAI ou FAUX).

commandes et Objets de la face-avant utilisés pour manipuler et afficher des indicateurs numériques

données numériques.

D

DAQ Voir acquisition de données (DAQ).

diagramme Description en images ou représentation d'un programme ou d'un

> algorithme. Le diagramme est constitué d'icônes exécutables appelées nœuds et de fils de liaison qui véhiculent les données entre les nœuds. Le diagramme représente le code source du VI. Le diagramme se trouve dans la fenêtre de diagramme du VI.

driver Logiciel de commande d'un périphérique particulier, tel qu'un

périphérique DAQ.

driver d'instruments Un ensemble de fonctions de haut niveau qui contrôle et

communique avec un instrument de mesures.

F

E/S Entrée/Sortie. Le transfert des données vers ou à partir d'un système

informatique comportant des voies de communication, des

périphériques d'entrée opérateur et/ou des interfaces d'acquisition et

de contrôle de données

échantillon Point unique de données d'entrée ou de sortie analogique ou

numérique.

échelle Partie de graphe, de graphe déroulant et de certaines commandes et

> indicateurs numériques qui contient une série de repères ou de points situés à des intervalles connus pour représenter les unités de mesure.

étiquette Objet texte utilisé pour nommer ou décrire des objets ou des zones

sur la face-avant ou le diagramme.

F

face-avant Interface utilisateur interactive d'un VI. L'apparence de la face-avant

imite des instruments physiques, tels que des oscilloscopes et des

multimètres.

fenêtre d'Aide contextuelle

Fenêtre qui affiche des informations de base sur les objets de LabVIEW lorsque vous déplacez le curseur au-dessus de chaque objet. Les objets comportant des informations d'aide contextuelle comprennent les VIs, les fonctions, les constantes, les structures, les

palettes, les propriétés, les méthodes, les événements et les

composantes de boîtes de dialogue.

fenêtre Explorateur

de projet

Fenêtre dans laquelle vous pouvez créer et éditer des projets

LabVIEW

fenêtre Liste des

erreurs

Fenêtre qui affiche des erreurs et des mises en garde se produisant dans un VI, et, dans certains cas, donne des recommandations pour

corriger les erreurs.

fil de liaison Chemin de données entre des nœuds flux de données Système de programmation qui consiste en nœuds exécutables qui ne

> s'exécutent qu'une fois qu'ils ont reçu toutes les données en entrée requises. Ces nœuds produisent automatiquement des données en sortie lorsqu'ils s'exécutent. LabVIEW est un système de flux de données. La direction dans laquelle les données se déplacent à travers les nœuds détermine l'ordre d'exécution des VIs et des fonctions sur

le diagramme.

fonction Élément d'exécution intégré, comparable à un opérateur, une

fonction ou une déclaration en langage de programmation textuel.

G

General Purpose GPIB. Synonyme de HP-IB. Bus standard utilisé pour contrôler des Interface Bus

instruments électroniques par ordinateur. Appelé aussi bus IEEE 488

parce qu'il est défini par les normes ANSI/IEEE 488-1978.

488.1-1987 et 488.2-1992.

glisser Utilisation du curseur sur l'écran pour sélectionner, déplacer, copier

ou supprimer des objets.

graphe Affichage 2D d'au moins un tracé. Un graphe reçoit des données et

les trace en bloc.

graphe déroulant Indicateur qui trace les points de données à une certaine fréquence.

I

icône Représentation graphique d'un nœud du diagramme.

indicateur Objet de la face-avant affichant la sortie, tel qu'un graphe ou

une LED

info-bulle Petites bannières de texte jaunes qui identifient le nom du terminal et

facilitent l'identification des terminaux pour le câblage.

instrument virtuel (VI) Programme de LabVIEW modélisant l'apparence et le

fonctionnement d'un instrument réel.

L

LabVIEW Laboratory Virtual Instrument Engineering Workbench. LabVIEW

est un langage de programmation graphique qui utilise des icônes au

lieu de lignes de texte pour créer des programmes.

LED Diode électroluminescente.

légende Objet d'un graphe ou d'un graphe déroulant qui permet d'afficher les

noms et les styles de ses tracés.

M

MAX Voir Measurement & Automation Explorer.

Measurement & Environnement standard de configuration et de diagnostic du

Automation Explorer matériel de National Instruments pour Windows.

menu local Menu auquel vous accédez en cliquant sur l'objet avec le bouton

droit de la souris. Les éléments de menu sont spécifiques à l'objet.

menus déroulants Menus auxquels vous accédez à partir d'une barre de menus. Les

éléments des menus déroulants sont habituellement de nature

générale.

message d'erreur Indique un incident dans les logiciels ou dans le matériel, ou indique

une tentative d'entrée de données inacceptables.

mise à l'échelle

automatique

Capacité des échelles à s'ajuster à la gamme des valeurs tracées. Sur les échelles des graphes, la fonction Mise à l'échelle automatique

détermine les valeurs d'échelle minimale et maximale.

Ν

NI-DAQ Logiciel de driver inclus avec tous les périphériques et composants

de conditionnement de signal NI DAQ. NI-DAQ est une bibliothèque extensive de VIs et de fonctions ANSI C que vous pouvez appeler à partir d'un environnement de développement d'application (ADE), comme LabVIEW, pour programmer un périphérique de mesure NI, comme les périphériques d'E/S multifonctions (MIO) DAQ de la série M, les modules de conditionnement de signal et les modules

Switch.

NI-DAQ traditionnel (ancien driver)

Driver plus ancien, avec des API obsolètes, pour développer des applications d'acquisition de données, d'instrumentation et de contrôle pour les anciens périphériques DAQ National Instruments. Vous ne devriez utiliser NI-DAQ traditionnel (ancien driver) que dans certains cas. Reportez-vous au fichier NI-DAQ Readme pour obtenir des informations plus détaillées indiquant quand utiliser NI-DAQ traditionnel (ancien driver) et une liste complète des périphériques, systèmes d'exploitation et versions de logiciel d'application et de langue supportés.

NI-DAQmx

Le tout dernier driver NI-DAO, avec de nouveaux VIs, de nouvelles fonctions et de nouveaux outils de développement pour contrôler les périphériques de mesure. Les avantages de NI-DAQmx par rapport aux versions antérieures de NI-DAO comprennent entre autres : l'Assistant DAQ pour configurer les voies et les tâches de mesures de votre périphérique pour une utilisation avec LabVIEW. LabWindows[™]/CVI[™] et Measurement Studio, la simulation NI-DAQmx de la plupart des périphériques supportés pour tester et modifier des applications sans connecter de matériel, et une API plus simple et plus conviviale pour créer des applications DAO avec moins de fonctions et de VIs.

nœud

Élément d'exécution d'un programme. Les nœuds sont analogues aux déclarations, opérateurs, fonctions et sous-programmes des langages textuels. Dans un diagramme, les nœuds comprennent les fonctions, les structures et les sous-VIs.

O

objet Terme générique pour tout élément de la face-avant ou du

> diagramme, notamment les commandes, les indicateurs, les structures, les nœuds, les fils de liaison et les images importées.

outil Curseur utilisé pour effectuer des opérations particulières.

Outil servant à définir les chemins des données entre les terminaux outil Bobine

outil Doigt Outil utilisé pour entrer des données dans des commandes ou pour les

exploiter.

outil Flèche Outil utilisé pour déplacer et redimensionner des objets. P

palette Affiche les objets ou les outils que vous pouvez utiliser pour

construire la face-avant ou le diagramme.

palette Commandes Palette qui contient les commandes, les indicateurs et les objets

décoratifs de la face-avant.

palette Fonctions Palette qui contient les VIs, les fonctions, les structures du

diagramme et les constantes.

périphérique Instrument ou contrôleur qui est adressable en tant qu'entité unique

> et qui contrôle ou surveille les points réels d'E/S. Un périphérique est le plus souvent connecté à un ordinateur hôte par l'intermédiaire d'un

réseau de communication. Voir aussi périphérique DAO et

périphérique de mesure.

périphérique DAQ Périphérique qui acquiert ou génère des données et qui peut avoir

> plusieurs voies et périphériques de conversion. Les périphériques DAQ comprennent des cartes à enficher, des cartes PCMCIA et des périphériques DAQPad, qui se connectent à l'ordinateur via un port USB ou IEEE 1394. Les modules SCXI sont considérés comme des

périphériques DAQ.

périphérique de mesure Périphériques DAQ tels que les cartes d'E/S multifonctions de la

série E, les modules de conditionnement de signaux SCXI et les

modules de commutation.

Ensemble de fichiers LabVIEW et de fichiers non spécifiques à projet

> LabVIEW que vous pouvez utiliser pour créer des spécifications de construction et déployer ou télécharger des fichiers sur des cibles.

(PCI eXtensions for Instrumentation) Extensions PCI pour

l'instrumentation. Plate-forme d'instrumentation informatique

modulaire

S

PXI

sous-palette Palette à laquelle vous accédez à partir d'une autre palette située au

niveau supérieur de la hiérarchie.

sous-VI VI utilisé dans le diagramme d'un autre VI. Comparable à un

sous-programme.

Glossaire

Élément de contrôle de programme, tel qu'une structure Séquence structure

déroulée, Séquence empilée, Condition, ou une boucle For, While ou

cadencée.

Т

tâche Ensemble de propriétés qui inclut une ou plusieurs voies, l'horloge,

> le déclenchement et d'autres propriétés de NI-DAOmx. Une tâche représente la mesure ou la génération que vous voulez réaliser.

terminal Objet ou région sur un nœud à travers lequel les données transitent.

terminal de condition Terminal de boucle While contenant une valeur booléenne qui

détermine si le VI effectue une autre itération

tracé Représentation graphique d'un tableau de données sur un graphe ou

un graphe déroulant.

Format des informations. Dans LabVIEW, les types de données type de données

> acceptés par la plupart des VIs et des fonctions sont les suivants : numérique, tableau, chaîne, booléen, chemin, refnum, énumération,

waveform et cluster.

type de données

Type de données utilisé par les VIs Express qui inclut les données dynamique associées à un signal et les attributs qui fournissent des informations

sur le signal, comme le nom du signal ou l'heure et la date auxquelles LabVIEW a acquis les données. Les attributs spécifient de quelle manière le signal est représenté sur un graphe ou un graphe

déroulant

V

valeur par défaut Valeur prédéfinie. De nombreuses entrées du VI utilisent une valeur

par défaut si vous ne spécifiez pas de valeur.

VI Voir instrument virtuel (VI).

VI actuel VI dont la face-avant, le diagramme et l'éditeur d'icône constituent

la fenêtre active.

VI brisé VI qui ne peut pas s'exécuter en raison d'erreurs ; indiqué par une

flèche brisée dans le bouton Exécuter

VI Express

Sous-VI conçu pour assister l'utilisateur dans sa réalisation des tâches de mesures courantes. Vous configurez un VI Express en utilisant sa boîte de dialogue de configuration.

VI modèle

VI qui contient des commandes et des indicateurs courants à partir desquels vous pouvez construire plusieurs VIs qui effectuent des opérations similaires. Vous pouvez accéder aux VIs modèles à partir de la boîte de dialogue Nouveau.

voie

- 1. Physique Un terminal (ou une broche) à l'emplacement duquel vous pouvez mesurer ou générer un signal analogique ou numérique. Une voie physique unique peut comprendre plusieurs terminaux, comme dans le cas d'une voie d'entrée analogique différentielle ou d'un port numérique à huit lignes. Un compteur peut aussi être une voie physique, bien que le nom du compteur ne soit pas le nom du terminal où le compteur mesure ou génère le signal numérique.
- 2. Virtuelle Un ensemble de propriétés qui inclut un nom, une voie physique, les connexions aux terminaux d'entrée, le type de mesures (acquisition ou génération) et des informations de mise à l'échelle. Vous pouvez définir des voies virtuelles NI-DAQmx en dehors d'une tâche (globales) ou au sein d'une tâche (locales). La configuration de voies virtuelles est facultative dans NI-DAQ traditionnel (ancien driver) et ses versions antérieures, mais fait partie intégrante de toute mesure réalisée dans NI-DAOmx. Dans NI-DAO traditionnel (ancien driver), vous configurez des voies virtuelles dans MAX. Dans NI-DAQmx, vous pouvez configurer des voies virtuelles soit dans MAX, soit dans votre programme, et configurer ces voies dans le cadre d'une tâche ou séparément.
- 3. Commutation Une voie de commutation représente un point de connexion d'un commutateur. Elle peut se composer d'un ou plusieurs fils de liaison (normalement un, deux ou quatre), suivant la topologie du commutateur. Une voie virtuelle ne peut pas être créée avec une voie de commutateur. Les voies de commutateur peuvent être utilisées uniquement dans les fonctions et VIs Switch NI-DAOmx.

VXI

Extensions VME pour l'Instrumentation (bus).

W

waveform

Représente des lectures multiples effectuées sur un signal à une fréquence d'échantillonnage particulière.

Index

A	В
acquisition	Base de connaissances, A-1
informations pour des instruments, 4-10	Base de drivers d'instruments, 4-6
signaux, 4-2	Base de drivers d'instruments NI, 4-6
affichage	bibliothèques partagées, construction, 5-5
données d'un périphérique DAQ, 4-4 données dans la table, 2-9, 2-14 erreurs dans la fenêtre d'Aide	boîte de dialogue Nouveau, 1-2, 3-2 figure, 1-3 boîtes de dialogue de configuration, 1-19
contextuelle, 2-14	boîtes de dialogue Propriétés, 1-20
signaux dans un graphe, 1-14	boucle While, 2-7
aide	bouton Exécuter, 1-4
Aide LabVIEW, 1-19	brisés, 2-8, 2-14
recherche, 2-3, 2-11, 2-13	boutons
fenêtre Aide contextuelle, 2-2, 2-12, 3-2	ajout, 3-13
recherche, 2-4, 2-11, 2-13	Exécuter, 1-4
ressources LabVIEW, 1-19, 2-12	brisés
support technique, A-1	bouton Exécuter, 2-8
Aide LabVIEW, 1-19	fils de liaison, 2-8, 2-14
recherche, 2-3, 2-11, 2-13	
ajout	С
Voir aussi création commandes à partir du diagramme, 2-5 commandes sur la face-avant, 1-4 entrées aux VIs Express, 1-7, 2-5, 3-14 indicateurs graphe, 2-5 indicateurs numériques, 2-5 plusieurs signaux, 3-5 signaux, 3-3 signes visuels dans la face-avant, 3-9 voies à des tâches, 4-5 voyants de mise en garde, 3-9 analyse de signaux, 3-8 analyse des informations des instruments, 4-10 appel de code provenant de langages de programmation textuels, 5-4, 5-5	câblage objets sur le diagramme, 1-8 outil, 1-9 changement de type de signal, 1-6 commande bouton rotatif, personnalisation (figure), 1-16 commandes, 1-18, 3-15 ajout à partir du diagramme, 2-5 ajout sur la face-avant, 1-4 configuration, 1-20 création, 2-5, 2-13 numériques, 5-1 palette, 1-4 personnalisation, 1-15 types de données, 5-3 commandes numériques, 5-1
applications	communiquer
communication avec des applications sur réseaux, 5-4	avec des applications LabVIEW sur réseaux, 5-4
construction, 5-5	avec des instruments, 4-6
Assistant de recherche de drivers d'instruments NI, 4-12	,

configuration	enregistrement, 3-13
commandes, 1-20	à la demande de l'utilisateur, 3-13
indicateurs, 1-20	dans un fichier, 3-12
configuration système requise, ix	données dynamiques, conversion de et en, 5-3
construction	drivers
applications, 5-5	instrument, 4-6
bibliothèques partagées, 5-5	ressources NI, A-1
VIs, 1-1	drivers (ressources NI), A-1
contrôle	drivers d'instruments, 4-6
par programmation des VIs, 5-4	installation, 4-12
vitesse d'exécution, 2-9	recherche, 4-12
contrôle des VIs par programmation, 5-4	drivers d'instruments
création	ressources NI, A-1
Voir aussi ajout	
commandes, 2-5, 2-13	Е
indicateurs, 2-13	enregistrement des données
indicateurs graphe, 2-5	à la demande de l'utilisateur, 3-13, 3-14
tâches NI-DAQmx, 4-2	dans des fichiers, 3-12, 3-15
	diagramme du VI Enregistrer les
D	données (figure), 3-14
dépannage (ressources NI), A-1	différents formats de fichiers, 5-4
désélection des objets, 1-9	entrées, VIs Express, 1-19
diagramme, 1-4, 1-18	erreurs, 2-14
affichage, 1-6	affichage dans la fenêtre d'Aide
indicateurs, 3-15	contextuelle, 2-14
personnalisation, 2-13	fenêtre, 2-8, 2-14
placement d'objets à partir de	liste, 2-8, 2-14
l'aide, 2-13	exécution des VIs, 1-9
diagramme du VI Acquérir un signal	de façon continue, 2-6
(figure), 1-14	exemples (ressources NI), A-1
diagramme du VI Voyant de mise en garde	exemples de programmation
(figure), 3-11	(ressources NI), A-1
documentation	(**************************************
introduction à ce manuel, ix	F
ressources NI, A-1	•
documentation associée, ix	face-avant, 1-3, 1-18, 2-9
données	affichage, 1-9
affichage	ajout
dans des tables, 2-9, 2-14	commandes, 1-4
provenant de périphériques	signaux visuels, 3-9
DAQ, 4-4	commandes, 1-18, 3-15
affichage en provenance de	indicateurs, 1-18
périphériques DAQ, 4-4	modification, 2-8
dynamiques, conversion de et en, 5-3	personnalisation, 2-5
,,	VI Acquérir un signal (figure), 1-2
	VI Voyant de mise en garde (figure), 3-2

fenetre Aide contextuelle, 2-12	communiquer, 4-6
affichage, 2-2	sélection, 4-9
affichage de la configuration des VIs	instruments virtuels. Voir VIs
Express, 3-2	interface utilisateur. Voir face-avant
affichage des erreurs, 2-14	introduction à ce manuel, ix
bouton, 2-2, 3-2	
figure, 2-2	L
fenêtre de démarrage, 1-2, 3-2	 LabVIEW
fenêtre Liste des erreurs, 2-8, 2-14	autres fonctionnalités, 5-1
fichiers	projets, 5-5
enregistrement sous d'autres	ressources d'aide, 2-12
formats, 5-4	langages de programmation textuels, appel de
regroupement, 5-5	code, 5-4, 5-5
fichiers .tdms, 3-15	LED, palette, 3-9
fichiers .lvm, 3-12, 3-15	logiciels (ressources NI), A-1
fichiers .tdm, 3-15	LVM. Voir fichiers .lvm
fils de liaison	Evivi. Von Hemers .ivin
brisés, 2-8, 2-14	N A
suppression, 1-10	M
flux de données, 1-9, 1-14, 1-18	manuel. Voir documentation
fonction Assembler des signaux, 2-5	menus, personnalisation, 5-5
figure, 1-15	modification
fonctions, 5-2	faces-avant, 2-8
Assembler des signaux, 1-14, 2-5	signaux, 1-10, 2-3
formation et certification (ressources NI), A-1	
	N
G	Numérique, palette, 1-5
graphes	
deux signaux, 1-14	0
données d'un périphérique DAQ, 4-4	objets
acimies a amperipherique 2112, 1	câblage sur le diagramme, 1-8
I	désélection, 1-9
	Outil de recherche d'exemples, 2-12
indicateurs, 1-18, 3-15, 5-1	outil Doigt, 1-10
ajout d'un numérique, 2-5	outil Flèche, 1-8
configuration, 1-20	outils
création, 2-13	Câblage, 1-9
numériques, 5-1	Doigt, 1-10
personnalisation, 1-17	Flèche, 1-8
suppression, 2-8	outils de diagnostic (ressources NI), A-1
type de données, 5-3	outile de diagnostie (ressources ivi), A-1
indicateurs graphe, création, 2-5	
instruments	
acquisition d'informations, 4-10	
analyse des informations, 4-10	

P	S
palette Arithmétique et comparaison, 1-11	sélection
palette Contrôle d'exécution, 2-6	instruments, 4-9
palette des commandes, 1-4	objets, 1-8
affichage de toutes les catégories, 5-1	signaux
figure, 1-5	acquisition, 4-2
palette des fonctions	analyse, 3-8
affichage de toutes les catégories, 5-2	changement de type, 1-6
figure, 1-11	graphes, 1-14
palette Entrée, 2-3	modification, 1-10, 2-3
palettes	signaux simulés, personnalisation, 3-3
affichage de toutes les	sorties, VIs Express, 1-19
catégories, 5-1, 5-2	sous-VIs, 5-2
Arithmétique et comparaison, 1-11	support et services National Instruments, A-1
Commandes, 1-4	support technique, A-1
Contrôle d'exécution, 2-6, 2-14	suppression
Entrée, 2-3	d'indicateurs, 2-8
Fonctions, 1-11	de fils de liaison, 1-10
LED, 3-9	de mis de maison, 1-10
	-
recherche, 2-6	Т
périphériques DAQ, 4-2	tables, 2-9
personnalisation	affichage des données, 2-14
commandes, 1-15	tâches
diagrammes, 2-13	ajout de nouvelles voies, 4-5
faces-avant, 2-5	NI-DAQmx, 4-12
indicateurs, 1-17	tâches NI-DAQmx, 4-12
menus, 5-5	création, 4-2
signaux simulés, 3-3	TDM. Voir fichiers .tdm
placement d'objets sur le diagramme à partir	tension, analyse, 3-8
de l'aide, 2-13	types de données
projets, 5-5	dynamiques, 5-3
publication de VIs sur le Web, 5-4	présentation générale, 5-3
_	
R	V
recherche	VI Express Assistant d'E/S instruments, 4-8,
aide, 2-4, 2-11, 2-13	4-13
exemples, 2-12	VI Express Assistant DAQ, 4-2, 4-11
palettes, 2-6	•
rectangle de sélection, 2-10	VI Express Comparaison, 3-10 VI Express Construire une table, 2-10
regroupement de fichiers, 5-5	
ressources Web, A-1	VI Express Écrire dans un fichier de mesures, 3-13, 3-15
	enregistrement des données, 3-12
	VI Express Filtre, 3-6
	VI Express Formule, 1-11, 3-5

VI Express Mesures d'amplitudes et de	Comparaison, 3-10
niveaux, 3-2	Construire une table, 2-10
analyse de tension, 3-8	Convertir des/en données
VI Express Simuler un signal, 1-6	dynamiques, 5-3
VI Express Temps d'attente, 2-9	Écrire dans un fichier de
VIs, 1-1	mesures, 3-12, 3-15
construction, 1-1	entrées, 1-19
contrôle par programmation, 5-4	Filtre, 3-6
exécution, 1-9	Formule, 1-11
de façon continue, 2-6	Mesures d'amplitudes et de
icônes, 5-2	niveaux, 3-2, 3-8
modèle, 1-2	Mise à l'échelle et correspondance, 1-11
nouveau, 2-2	Simuler des signaux, 1-6
personnalisation des menus, 5-5	Temps d'attente, 2-9
publication sur le Web, 5-4	VIs Express Convertir des/en données
sous-VIs, 5-2	dynamiques, 5-3
vides, 2-2	VIs modèles, 1-2
VIs d'exemple	VIs vides, 2-2
Outil de recherche d'exemples, 2-12	vitesse d'exécution, contrôle, 2-9
VIs Express, 1-19	voies, 4-2
Assistant d'E/S instruments, 4-8, 4-13	ajout aux tâches, 4-5
Assistant DAQ, 4-2, 4-11	changement de nom, 4-4
boîtes de dialogue de configuration, 1-19	voyants de mise en garde, ajout, 3-9