ISLAMIC UNIVERSITY OF TECHNOLOGY (IUT) ORGANISATION OF ISLAMIC COOPERATION (OIC)

Department of Computer Science and Engineering (CSE)

SEMESTER FINAL EXAMINATION

SUMMER SEMESTER, 2017-2018

DURATION: 3 Hours

FULL MARKS: 200

Math 4241: Integral Calculus and Differential Equations

	1	Programmable calculators are not allowed. Do not write anything on the question pay There are 8 (eight) questions. Answer any 6 (six) of them. Give figure(s) where necessary. Figures in the right margin indicate marks.	oer.
1.	a)	Write the fundamental theorem of Calculus. Find dy/dx of $y = \int_0^{\sin x} \frac{dt}{\sqrt{1-t^2}}$ i. by using	5+16.33
	b)	Fundamental theorem, ii. by evaluating the integral and then differentiating the result. Find the total area between the region and the x-axis formed by the curve $y = 3x^2 - 3$,	12
		$-2 \le x \le 2$	3×5
2.	a)b)	Evaluate the followings: i. $\int_{-4}^{4} x-2 dx$, ii. $\int_{1}^{e^{\pi/4}} \frac{4}{x(1+\ln^2 x)} dx$, iii. $\int_{-1}^{-1/2} x^{-2} \sin^2(1+\frac{1}{x}) dx$ Find the area of the regions enclosed by the lines and the curves as follows:	9÷9.33
		i. $y = 7-x^2$ and $y = x^2 + 4$ ii. $x - y^2 = 0$ and $x + 2y^2 = 3$	
3.	a)	The solid lies between the planes perpendicular to the x-axis at $x = -1$ and $x = 1$. The cross-sections perpendicular to the x-axis are circular disks whose diameter run from the parabola $y = x^2$ to the parabola $y = 2 - x^2$. Find the volume of the solid.	18.33
	b)	Find the volume of the solid generated by revolving the regions curve and the lines $y = 2\sqrt{x}$, $y = 2$, $x = 0$ about x-axis.	15
4.	a) b)	Define length of curve. Find the length of the curve $y = (x/2)^{2/3}$ from $x=0$ to $x=2$. Find the surface area generated by revolving the curve $x = \left(\frac{1}{3}\right)y^{3/2} - y^{1/2}$, $1 \le y \le 3$,	5.33+7 10
	c)	about y- axis. Find the lateral surface area of the cone generated by revolving the line segment $y = x/2$, $0 \le x \le 4$, about y-axis. Check your answer with the following formula: Lateral surface area = $(1/2) \times$ base circumference \times slant height.	7+4
		Heiner Transgoidal and Simpson's rules with n = 4 and 8, find the approximate value of	10+5.33

- Using Trapezoidal and Simpson's rules with n = 4 and 8, find the approximate value of 5. a) $\int_0^3 \sqrt{x+1} \, dx$. Finally compare your results with true value and comments on it. 4+2×7
 - b) Define proper and improper integrals with examples. Evaluate the following integrals and then state whether they are convergent or not:

ii. $\int_0^{\ln 2} x^{-2} e^{-1/x} dx$

- 6. a) Define ordinary and partial differential equations with examples. Form an ordinary differential equation corresponding to the family of curves $y = k(x k)^2$, where k is an arbitrary constant. Finally, identify it.
- 4+10+3
- b) Define is exact differential equation and write its necessary condition. Test whether the following differential equations are exact or not.
 - 4.33+4×3

- i. $(2y \sin x \cos x + y^2 \sin x) dx + (\sin^2 x + 2y \cos x) dy = 0$,
- ii. $(y^2 + 2xy)dx x^2 dy = 0$

iii. $(4x + 3y^2)dx + 2xy dy = 0$,

- iv. $\left(\frac{x}{y^2} + x\right) dx + \left(\frac{x^2}{y^3} + y\right) dy = 0$
- 7. a) Determine the constant A such that the given equation is an exact differential equation (DE) and then solve it.
- 5.33+12

2×8

3×9

- $\left(\frac{Ay}{x^3} + \frac{y}{x^2}\right)dx + \left(\frac{1}{x^2} \frac{1}{x}\right)dy = 0$
- b) Solve the following DEs:
 - i. $4xy dx + (x^2 + 1)dy = 0$,
- ii. $(x^2 + 3y^2)dx 2xydy = 0$
- 8. a) What is first order linear differential equation? Explain with examples, when 4.33+2 Bernoulli's DE becomes a first order linear DE.
 - b) Solve the following initial value problems:
 - i. $x \frac{dy}{dx} 2y = 2x^4$, y(2)=8, ii. $\frac{dy}{dx} y = \sin 2x$, y(0)=0 iii. $\frac{dy}{dx} + y = xy^3$, y(0)=1