2017-2018 学年第二学期《高等数学 BII》试卷 (A)

授课斑号 年級士 !!	N .	r.i. for
年级专业	学号	

题型 填空题				
题型 填空题	计算题	综合题	总分	审核
导分				

- 一、填空题(每小题 4 分, 共 20 分)
- 2. 设函数 z = f(x, y) 在点 (x_0, y_0) 处可微,则点 (x_0, y_0) 是函数 z 的极值点的必要条件为
- 3. 设级数 $\sum_{n=1}^{\infty} u_n$ 为正项级数,其部分和为 S_n , $v_n = \frac{1}{S_n}$,且 $\sum_{n=1}^{\infty} v_n$ 收敛,则 $\sum_{n=1}^{\infty} u_n = _____.$
- 4. 差分方程 $Y_{x+1} + Y_x = 1$ 的通解为_____
- 5. 若方程 y''+py'+qy=0 (p,q 均为实常数) 有特解 $y_1=e^x\cos x, y_2=e^x\sin x,$ 则 p 等于______, q 等于______.
- 二、计算题(每小题7分,共35分)
- 1. 设 z = z(x, y) 由方程 $\frac{x}{z} = \varphi\left(\frac{y}{z}\right)$ 所确定,其中 φ 二阶可微,且 $x y\varphi \neq 0$,求 $\frac{\partial^2 z}{\partial x^2}$.

2. 计算二次积分
$$\int_0^1 dx \int_{x^2}^1 \frac{xy}{\sqrt{1+y^3}} dy$$
.

3. 求过直线
$$\frac{x-1}{2} = \frac{y+2}{-3} = \frac{z-2}{2}$$
, 且垂直于平面 $x+2y-z-5=0$ 的平面方程.

4. 试判别级数 $\sum_{n=1}^{\infty} (-1)^n (\sqrt{n+1} - \sqrt{n})$ 的敛散性, 对收敛情况说明是绝对收敛还是条件收敛.

5. 设 Ω 是由 $z=x^2+y^2$ 及 $z=\sqrt{x^2+y^2}$ 所围的有界闭区域. 试计算

$$I = \iiint\limits_{\Omega} \frac{e^{\sqrt{x^2 + y^2}}}{x^2 + y^2} \, \mathrm{d}v.$$

三、综合题(满分45分)

1. (12 分) 设生产某种产品需要A、B、C三种原料,该产品的产量Q与三种原料A、B、C的用量 x, y, z之间有如下关系:

$$Q = 0.005x^2yz$$

已知三种原料的单价分别为1元、2元和3元。现在用2400元购买原料,问三种原料各购进多少单位,可以使该产品产量最大?

2. $(9 \, f)$ 求圆柱面 $y^2 + z^2 = a^2$ 在第一卦限中位于 $x + y \le 2a$, $x \le y$ 部分的面积 (a > 0).

4. (12 分) 求微分方程 $y'' + 3y' + 2y = 2e^{-3x}$ 的通解.