CS F364 Design & Analysis of Algorithms

PROBLEM DOMAIN - NUMBER THEORY

Modular Arithmetic:

Groups Z_{n} , Z_{n}^{*}

Size of Z*n

Computing the size of Z_n*

- "congruence modulo n":
 - if a mod n = b mod nothen a and b are congruent modulo n
 - This is an equivalence relation.
 - oWhy?
- o $(Z_n = \{ 0, 1, ... n-1 \}, +_n)$ is a group owhere $+_n$ refers to addition modulo n.
 - Exercise: Verify the following properties:
 - Closure
 - Associativity
 - Existence of Identity (0)
 - Existence of Inverse (a⁻¹ is n-a)

- \circ (Z*_n = { x | 1 <= x <= n and gcd(x,n) = 1}, *_n) is a group.
 - Exercise:
 - Verify Closure and Associativity
 - Identity Element exists (a * 1 = a)
 - Existence of Inverse:
 - ols there an x such that $a*x = 1 \pmod{n}$, for a in $Z*_n$?
 - i.e. Is there an x such that a*x = 1 + b*n for some+ve integer b?
 - The answer is yes, by extended Euclid's Theorem since gcd(a,n)=1
 - Furthermore, by Aryabhatia's algorithm:
 - the inverse of any element in $(Z^*_n, *n)$ can be computed in polynomial time.

- \circ What is the size of Z_n^* ?
 - Let $\phi(n)$ known as Euler's phi function denote the size of Z_n^*
- \circ Properties of $\phi(n)$
 - φ(p) = p-1 for prime p
 Proof: for any m < p, gcd(m,p) = 1 for prime p.
 - φ(p^m) = p^m p^{m-1}
 Proof:
 - All multiples of p (and only them) have common factors with p^m
 - Multiples of p (less than p^m) are p,2*p,3*p,...,($p^{m-1}-1$) * p
 - So, $\phi(p^m) = (p^m 1) (p^{m-1} 1)$ for prime p.

- Properties of $\phi(n)$ [continued]
 - φ(p*q) = (p-1)(q-1) for primes p and q
 Proof:
 - Only multiples of p or q or both have common factors with p*q
 - i.e. p, 2*p, ..., q*p, and q, 2*q, ...,p*q
 - And they are all distinct except for p*q
 - So $\phi(p*q) = (p*q) p q + 1$
 - φ(m*n) is multiplicative i.e. φ(m*n) = φ(m)* φ(n) if gcd(m,n) = 1
 Proof: Left as an exercise.
 - Note: We only need to prove $\phi(p^{k1} * q^{k2}) = \phi(p^{k1}) * \phi(q^{k2})$ for primes p and q. **End of Note.**

- \circ Value of $\phi(n)$
 - If $n = p_1^{k1} * p_2^{k2} * ... * p_m^{km}$ for primes p_i and +ve integers ki then $\phi(n) = \prod_i (p_i^{ki} p_i^{ki-1})$
- \circ Computing $\phi(n)$
 - If the prime factors of n are known then $\phi(n)$ can be computed in polynomial time
 - But computing factors is known to be "difficult".
 - Is there an alternative?
 - Consider n = p * q
 - Given n and $\phi(n)$, one can compute p and q in polynomial time . (How?)
 - \circ i.e. Computing ϕ (n) is at least as difficult as factoring n.