Wydział Elektroniki i Technik Informacyjnych Politechnika Warszawska

Projektowanie układów sterowania (projekt grupowy)

Sprawozdanie z projektu i ćwiczenia laboratoryjnego nr 1, zadanie nr 2

Kamil Gabryjelski, Paweł Rybak, Paweł Walczak

Spis treści

1.	Wstęp	2
2.	Test stanowiska	3
3.	Odpowiedź na skok zakłócenia	4
4.	Odpowiedź skokowa do DMC	5
5 .	DMC	7

1. Wstęp

Celem laboratorium była implementacja, weyfikacja poprawności działania i dobór parametrów algorytmów regulacji jednowymiarowego procesu laboratoryjnego z pomiarem zakłócenia. Obiekt na którym pracowaliśmy, składał się z grzałki G1, wentylatora W1 oraz czujnika temperatury T1. Sygnałem sterującym jest moc grzania (w zakresie 0 - 100) grzałki G1, sygnałem wyjściowym jest pomiar wskazywany przez czujnik temperatury T1. Moc wentylatora W1 musi wynosić 50% (w celu większej responsywności stanowiska). Dodatkowo, jako sygnał zakłócający Z zostanie wykorzystana także grzałka G1.

2. Test stanowiska

Celem pierwszego zadania było sprawdzenie możliwości sterowania i pomiaru w komunikacji ze stanowiskiem oraz określenie wartości pomiaru temperatury w punkcie pracy (gdzie zakłocenie Z=0). Test możliwości sterowania i sprawdzenia pomiarów dał wyniki pozytywne. Po wysterowaniu grzałki na wartość $U_{pp}=27$ (wartość zgodna z poprzednim laboratorium) i odczekując kilkaset sekund orzymaliśmy wartość na poziomie $Y_{pp}=32.20$. Należy w tym miejscu podkreślić, że nie jest to wartość dokładna, ponieważ ze względu na różne zakłócenia (cyrkulacja powietrza, ruch osób w sali itp.) wartość temperatury na wyjściu obiektu wahała się (w zakresie od 31,5 do 33,0).

3. Odpowiedź na skok zakłócenia

Celem zadania drugiego było wyznaczenie odpowiedzi skokowych torów zakłócenie-wyjście procesu dla trzech różnych zmian sygnału zakłócającego Z rozpoczynając z punktu pracy (w naszym przypadku $Y_{pp}=32.20$, $U_{pp}=27$, Z=0). Skoki zgodnie z poleceniem wykonaliśmy dla odpowiedniego przedziału wartości wybierając skoki o wartościach odpowiednio 10%, 20% oraz 30%. Dla pierwszego skoku zakłócenia (o 10%) temperatura podniosłla się o o około 0,75 stopnia, dla drugiego skoku (o 20%) o około 1,44 stopnia, zaś dla skoku trzeciego (o 30%) o około 2 stopnie. Zauważamy, że dla porównując otrzymane wartości, skoki zakłóceń dają w wyniku proporcjonalne (w przybliżeniu) do nich wzrosty temperatur. Oceniając otrzymane wyniki można z grubsza ocenić (z powodu zakłóceń nie da się dokładnie tego potwierdzić), że obiekt ma właściwości statyczne, a owe wzmocnienie wynosi 0,75/10 = 0,075.

Rys. 3.1. Odpowiedź na skoki zakłócenia.

4. Odpowiedź skokowa do DMC

Celem zadania trzeciego było przygotowanie odpowiedzi skokowych wykorzystywanych w algorytmie DMC. W naszym przypadku konieczne było zebranie odpowiedzi na skok sygnału sterującego oraz zakłócającego. Skok wykonujemy z obranego wcześniej punktu pracy $(Y_{pp} = 32, 20,$ $U_{pp}=27, Z=0$). Z powodu nieuniknionych zakłóceń w pomieszczeniu, szczególnie trudne było ustabilizowanie obiektu w punkcie pracy, po wykonaniu wcześniejszych eksperymentów. Z tego powodu otrzymane przez nas odpowiedzi były prawdopodbnie niedokładne. W naszych głowach zrodziła się z początku myśl, aby skorzystać z odpowiedzi skokowej (na skok sterowania) z poprzedniego laboratoium (pracowaliśmy również na tym stanowisku), jednakże jak się później okazało (problemy z algorytmem DMC) zdecydowaliśmy się na ponowne pozyskanie owej odpowiedzi skokowej. Wykonując skok sterowania, wartość zakłócenia ustawiliśmy na 0 i odpowiednio wykonując skok zakłócenia, wartość sterowania pozostawiliśmy na taką jak w punkcie pracy ($U_{pp}=27$). Z powodu zakłóceń i problemów ze stabilizacją obiektu uzyskane przez nas odpowiedzi skokowe nie były dla nas satysfakcjonujące, lecz z powodu braku czasu nie zdecydowaliśmy się na powtarzanie eksperymentu. Normalizacji dokonaliśmy poprzez przesunięcie wszystkich wartości wyjścia obiektu o wartość wyjścia w punkcie pracy oraz podzielenie przez wartość odpowiednio skoku sterowania lub zakłócenia. Aproksymacja ma postać członu inercyjnego drugiego rzędu z opóźnieniem. Aproksymacji dokonaliśmy przy użyciu opracowanego przez nas wcześniej skryptu. Użyliśmy do tego między innymi wbudowanej funkcji GA (Genetic Algorithm) w celu pozyskania aproksymacji minimalizującej funkcję błędu kwadratowego.

Rys. 4.1. Przybliżona odpowiedź obiektu na skok sterowania.

Rys. 4.2. Przybliżona odpowiedź obiektu na skok zakłócenia.

5. DMC

Celem zadania 4 była implementacja algorytmu DMC oraz doboru nastaw D, Λ , N oraz N_u . Po testach wybraliśmy nastawy $N=N_u=D=200$. Jako lambdę wybraliśmy wartość 1. Taka wartość sprawdziła się idealnie na poprzednim laboratorium. Jakość regulacji nie była na wysokim poziomie. W porównaniu do ostatniego laboratorium znacznie się pogorszyła, co uzasadniamy głównie zakłóceniami, które prawdopodobnie pogorszyły poprawność naszej odpowiedzi skokowej. Główną wadą były oscylacje w pobliżu wartośći zadanej. Prawdopodobnie wybranie większej wartości lambdy spowodowałoby mniejsze oscylacje w pobliżu wartości zadanej, jednakże równocześnie pogarszając szybkość regulacji.