Szintaxis

Egy elsőrendű logikai nyelv ábécéje logikai és logikán kívüli szimbólumokat, továbbá elválasztójeleket tartalmaz. A logikán kívüli szimbólumhalmaz megadható a $\langle Srt, Pr, Fn, Cnst \rangle$ alakban, ahol Srt nemüres halmaz, elemi **fajtákat** szimbolizálnak, Pr nemüres halmaz, elemi **predikátumszimbólumok**, Fn halmaz elemei **függvényszimbólumok**, Cnst pedig a **konstansszimbólumok** halmaza.

Az $\langle Srt, Pr, Fn, Cnst \rangle$ ábécé **szignatúrája** egy ν_1, ν_2, ν_3 hármas, ahol

- 1. minden $P \in Pr$ predikátumszimbólumhoz ν_1 a predikátumszimbólum alakját, azaz a $(\pi_1, \pi_2, \dots, \pi_k)$ fajtasorozatot,
- 2. minden $f \in Fn$ függvényszimbólumhoz ν_2 a függvényszombúlum alakját, azaz a $(\pi_1, \pi_2, \dots, \pi_k, \pi)$ fajtasorozatot,
- 3. minden $c \in Cnst$ konstanszimbólumhoz ν_3 a konstanszimbólum fajtáját, azaz a (π) -t

rendel $(k > 0 \text{ és } \pi_1, \pi_2, \dots, \pi_k, \pi \in Srt).$

Példa: logika fólia 55. oldal.

1. Definíció. Az elsőrendű nyelv termjei:

- 1. Minden $\pi \in Srt$ fajtájú változó és konstans π fajtájú term.
- 2. Ha az $f \in Fn$ függvényszimbólum $(\pi_1, \pi_2, \ldots, \pi_k, \pi)$ alakú és t_1, t_2, \ldots, t_k rendre $\pi_1, \pi_2, \ldots, \pi_k$ fajtájú term, akkor az $f(t_1, t_2, \ldots, t_k)$ szó egy π fajtájú term.
- 3. Minden term az első és második szabály véges sokszori alkalmazásával áll elő.

2. Definíció. Az elsőrendű nyelv formulái:

- 1. Ha a $P \in Pr$ predikátumszimbólum $(\pi_1, \pi_2, ..., \pi_k, \pi)$ alakú és $t_1, t_2, ..., t_k$ rendre $\pi_1, \pi_2, ..., \pi_k$ fajtájú term, akkor a $P(t_1, t_2, ..., t_k)$ szó egy elsőrendű formula. Az így nyert formulákat atomi formuláknak nevezzük.
- 2. Ha A elsőrendű formula, akkor $\neg A$ is az.
- 3. Ha A és B elsőrendű formulák és $\circ \in \{ \lor, \land, \supset \}$, akkor $(A \circ B)$ is elsőrendű formula.
- 4. Ha A elsőrendű formula, Q kvantor és x tetszőleges változó, akkor a QxA is elsőrendű formula. Az így nyert formulákat kvantált formuláknak nevezzük.
- 5. Minden elsőrendű formula az előbbi szabályok véges sokszori alkalmazásával áll elő.

Interpretáció

- 3. Definíció. $\mathcal{L}[V_{\nu}]$ interpretációja egy \mathcal{I} -vel jelölt $\langle \mathcal{I}_{Srt}, \mathcal{I}_{Pr}, \mathcal{I}_{Fn}, \mathcal{I}_{Cnst} \rangle$ függvénynégyes
 - $az \mathcal{I}_{Srt} : \pi \to \mathcal{U}_{\pi}$ függvény megad minden egyes $\pi \in Srt$ fajtához egy \mathcal{U}_{π} nemüres halmazt, a π fajtűjű individuumok halmazát (a különböző fajtájű individuumok halmazainak uniója az interpretáció univerzuma),
 - $az \mathcal{I}_{Pr}: P \to P^{\mathcal{I}}$ függvény megad minden $(\pi_1, \pi_2, \dots, \pi_k)$ alakú $P \in Pr$ predikátumszimbólumhoz egy $P^{\mathcal{I}}: \mathcal{U}_{\pi_1} \times \dots \times \mathcal{U}_{\pi_k} \to \{i, h\}$ logikai függvényt,
 - $az \mathcal{I}_{Fn}: f \to f^{\mathcal{I}}$ függvény hozzárendel minden $(\pi_1, \pi_2, \dots, \pi_k, \pi)$ alakú $f \in Fn$ függvényszimbólumhoz egy $f^{\mathcal{I}}: \mathcal{U}_{\pi_1} \times \dots \times \mathcal{U}_{\pi_k} \to \mathcal{U}_{\pi}$ matematikai függvényt (művéletet),
 - $az \ \mathcal{I}_{Cnst} : c \to c^{\mathcal{I}} \ f\ddot{u}ggv\acute{e}nyt \ pedig \ minden \ \pi \ fajt\acute{a}j\acute{u} \ c \in Cnst \ konstanszimb\'{o}lumhoz$ $az \ \mathcal{U}_{\pi} \ individuum tartom\'{a}ny\'{a}nak \ egy \ individuum \acute{a}t \ rendeli, \ azaz \ c^{\mathcal{I}} \in \mathcal{U}_{\pi}.$

Példa: logika fólia 84. oldal.

- **4. Definíció.** Legyen az $\mathcal{L}[V_{\nu}]$ nyelvnek \mathcal{I} egy interpretációja, az interpretáció univerzuma legyen \mathcal{U} és jelölje V a nyelv változóinak halmazát. Egy olyan $\kappa: V \to \mathcal{U}$ leképezést, ahol ha $x \pi$ fajtűjú változó, akkor $\kappa(x) \in \mathcal{U}_{\pi}$, \mathcal{I} -beli **változókiértékelésnek** nevezünk.
- **5. Definíció.** Legyen x egy változó. A κ^* változókiértékelés a κ változókiértékelés x-variánsa, ha $\kappa^*(y) = \kappa(y)$ minden x-től különböző y változó esetén.
- **6. Definíció.** $Az \mathcal{L}[V_{\nu}]$ nyelv egy π fajtájú t termjének értéke \mathcal{I} -ben a κ változókiértékelés mellett az alábbi $|t|^{\mathcal{I},\kappa}$ -val jelölt \mathcal{U}_{π} -beli individuum:
 - 1. ha $c \in Cnst \pi$ fajtájú konstansszimbúlum, akkor $|c|^{\mathcal{I},\kappa}$ a \mathcal{U}_{π} -beli $c^{\mathcal{I}}$ individuum,
 - 2. ha $x \pi$ fajátjú változó, akkor $|x|^{\mathcal{I},\kappa}$ az \mathcal{U}_{π} -beli $\kappa(x)$ individuum,
 - 3. ha t_1, t_2, \ldots, t_k rendre $\pi_1, \pi_2, \ldots, \pi_k$ fajtájú term és ezek értékei a κ változókiértékelés mellett \mathcal{I} -ben rendre az \mathcal{U}_{π_1} -beli $|t_1|^{\mathcal{I},\kappa}, \ldots, \mathcal{U}_{\pi_k}$ -beli $|t_k|^{\mathcal{I},\kappa}$ -beli individuumok, akkor egy $(\pi_1, \pi_2, \ldots, \pi_k, \pi)$ alakú $f \in Fn$ függvényszimbólum esetén $|f(t_1, \ldots, t_k)|^{\mathcal{I},\kappa}$ az \mathcal{U}_{π} -beli $f^{\mathcal{I}}(|t_1|^{\mathcal{I},\kappa}, \ldots, |t_k|^{\mathcal{I},\kappa})$ individuum.

Példa: logika fólia 88. oldal.

7. **Definíció.** Egy $\mathcal{L}[V_{\nu}]$ nyelvben egy C formulához \mathcal{I} -ben a κ változókiértékelés mellett az alábbi $|C|^{\mathcal{I},\kappa}$ -vel jelölt igazságértéket rendeljük:

1.
$$|P(t_1,\ldots,t_k)|^{\mathcal{I},\kappa} \rightleftharpoons \begin{cases} i & ha \ P(|t_1|^{\mathcal{I},\kappa},\ldots,|t_k|^{\mathcal{I},\kappa}) = i \\ h & egyébként \end{cases}$$

- 2. $|\neg A|^{\mathcal{I},\kappa}$ legyen $\neg |A|^{\mathcal{I},\kappa}$
- 3. $|A \vee B|^{\mathcal{I},\kappa}$ legyen $|A|^{\mathcal{I},\kappa} \vee |B|^{\mathcal{I},\kappa}$
- 4. $|A \wedge B|^{\mathcal{I},\kappa}$ legyen $|A|^{\mathcal{I},\kappa} \wedge |B|^{\mathcal{I},\kappa}$

5.
$$|A \supset B|^{\mathcal{I},\kappa}$$
 legyen $|A|^{\mathcal{I},\kappa} \supset |B|^{\mathcal{I},\kappa}$

6.
$$|\forall xA|^{\mathcal{I},\kappa} \rightleftharpoons \begin{cases} i & ha \ |A|^{\mathcal{I},\kappa^*} = i \kappa \ minden \ \kappa^* \ x - variánsára \\ h & egyébként \end{cases}$$

7.
$$|\exists x A|^{\mathcal{I},\kappa} \rightleftharpoons \begin{cases} i & ha \ |A|^{\mathcal{I},\kappa^*} = i \ \kappa \ valamely \ \kappa^* \ x - variánsára \\ h & egyébként \end{cases}$$

Példa: logika fólia 92. oldal.

- 8. Definíció. Az $\mathcal{L}[V_{\nu}]$ nyelv egy A formulája **kielégíthető**, ha van $\mathcal{L}[V_{\nu}]$ -nek olyan \mathcal{I} interpretációja és \mathcal{I} -ben van olyan κ változókiértékelés, amelyre $|A|^{\mathcal{I},\kappa} = i$, egyébként kielégíthetetlen.
- 9. Definíció. $Az \mathcal{L}[V_{\nu}]$ nyelv egy A formulája logikailag igaz (másképp **logika törvény**), $ha \mathcal{L}[V_{\nu}]$ minden \mathcal{I} interpretációjában és \mathcal{I} minden κ változókiértékelése mellett $|A|^{\mathcal{I},\kappa} = i$.
- 10. Definíció. $Az \mathcal{L}[V_{\nu}]$ nyelv egy A formulája **tautologikusan igaz**, ha a formula Quine-táblázatában A oszlopában csupa i igazságérték szerepel.
- 11. Definíció. Azt mondjuk, hogy az A és B elsőrendű formulák **logikailag ekvivalensek**, ha minden \mathcal{I} interpretációban és κ változókiértékelés mellett $|A|^{\mathcal{I},\kappa} = |B|^{\mathcal{I},\kappa}$.
- 12. Definíció. Azt mondjuk, hogy a B formula logikai következménye a Γ formulahalmaznak (vagy a Γ -beli formuláknak), ha minden olyan $\mathcal{L}[V_{\nu}]$ -beli interpretáció és változókiértékelés, amely kielégít minden Γ -beli formulát, az kielégíti a B formulát is.

Normálformák

Egy atomi formulát vagy negáltját literálnak nevezzük. Elemi konjunkció: egy literál vagy egy elemi konjukció és egy literál konjunkciója. Elemi diszjunkció: egy literál vagy egy elemi diszjunkció és egy literál diszjunkciója.

Konjunktív normálforma

- egy elemi diszjunkció
- egy konjunktív normálforma és egy elemi diszjunkció konjunkció ja

Diszjunktív normálforma

- egy elemi konjunkció
- egy diszjunktív normálforma és egy elemi konjunkció diszjunkciója

Minden ítéletlogikai fomulához konstruálható vele logikailag ekvivalens konjunktív és diszjunktív normálforma.

Lépések: implikációk eltüntetése, De Morgan törvények alkalmazása, hogy negáció csak atomokra vonatkozzon, disztributivitás alkalmazása, esetleges egyszerűsítés.

$$P\'elda: (X \supset Y) \lor \neg(\neg Y \supset X \lor \neg Z) \longmapsto \neg X \lor Y$$
 P\'elda: logika fólia 44. oldal.

Prenex alak

Egy $Q_1x_1Q_2x_{2n}x_nA$ $(n \geq 0)$ alakú formulát, ahol A kvantormentes formula, **prenex** alakú formulának nevezünk. Egy elsőrendű logika nyelv tetszőleges formulájához konstruálható vele logikailag ekvivalens prenex alakú formula.

A konstrukció lépései: 1) változó-tiszta alakra hozás, 2) De Morgan kvantoros és az egyoldali kvantorkiemelésre vonatkozó logikai törvények használata.

 $P\'{e}lda: \forall x P(x) \supset \neg x Q(x) \longmapsto \exists x \forall y (P(x) \supset Q(y))$

Példa: logika fólia 120. oldal.

Gentzen-kalkulus

Legyenek $A_1, \ldots, A_n, B_1, \ldots, B_m$ egy elsőrendű nyelv formulái. Ekkor a

$$\top \wedge A_1 \wedge \ldots \wedge A_n \supset B_1 \vee \ldots \vee B_m \vee \bot$$

formulát **szekventnek** nevezzük. Jelölés: $A_1, \ldots, A_n \to B_1, \ldots, B_m$ vagy $\Gamma \to \Delta$, ahol $\Gamma \rightleftharpoons \{A_1, \ldots, A_n\}$ és $\Delta \rightleftharpoons \{B_1, \ldots, B_m\}$. A kalkulus axiómasémái: $A\Gamma \to \Delta A, \bot\Gamma \to \Delta$, $\Gamma \to \Delta \top$.

Egy szekventet a kalkulusban **levezethető**nek nevzünk, ha axiómaséma vagy van olyan levezetési szabály melyben ez a vonal alatti szekvent és a vonal feletti szekvent vagy szekventek pedig levezethetőek.

- A kalkulus helyes, mert ha az $A_1, \ldots, A_n \to B_1, \ldots, B_m$ szekvent levezethető a kalkulusban, akkor a $\top \wedge A_1 \wedge \ldots \wedge A_n \supset B_1 \vee \ldots \vee B_m \vee \bot$ formula logikai törvény.
- A kalkulus teljes mert, ha az A formula logikai törvény akkor a $\to A$ szekvent levezethető a kalkulusban.