Homework 5: Linear Independence

- 1. $\S 4.3$, # 3(a), 4(a), 15(b), 16(a)(c).
 - Try to solve # 15(b) and 16(a) with as few computations as possible, and try to be fairly rigorous for 16(c).
- 2. Let $\{\mathbf{v}_1, \mathbf{v}_2, \mathbf{v}_3, \mathbf{v}_4\}$ be a linearly independent set of vectors in a vector space V. Using only the definition of linear independence, prove that $\{\mathbf{v}_1, \mathbf{v}_2, \mathbf{v}_3\}$ is linearly independent as well.

Hint. Begin the proof as follows:

"Suppose
$$k_1\mathbf{v}_1 + k_2\mathbf{v}_2 + k_3\mathbf{v}_3 = \mathbf{0}$$
. I must show that $k_1 = k_2 = k_3 = 0$."

- 3. Let $\mathbf{v}_1, \dots, \mathbf{v}_p$ be vectors in a vector space V. Prove the following:
 - (a) Let $\mathbf{v}_1, \dots, \mathbf{v}_p$ span V, and let \mathbf{u} be any vector in V. Then $\{\mathbf{u}, \mathbf{v}_1, \dots, \mathbf{v}_p\}$ is linearly dependent.
 - (b) Let $\{\mathbf{v}_1, \mathbf{v}_2, \dots, \mathbf{v}_p\}$ be linearly independent. Then $\mathbf{v}_2, \dots, \mathbf{v}_p$ cannot span V. Hint. Use Theorem 4 from class for both parts.
- 4. Using only the definition of linear independence, prove that if $\{\mathbf{u}, \mathbf{v}, \mathbf{w}\}$ is linearly independent, then so is $\{\mathbf{u} + \mathbf{v}, \mathbf{u} + 2\mathbf{w}, \mathbf{v} + 3\mathbf{w}\}$.

Hint. Begin the proof as follows:

"Suppose
$$c(\mathbf{u} + \mathbf{v}) + d(\mathbf{u} + 2\mathbf{w}) + e(\mathbf{v} + 3\mathbf{w}) = \mathbf{0}$$
. I must show that $c = d = e = 0$."