约定与记号(回顾教材)

Definition 1.1 We say U is a **linear space** over the ground field \mathbb{F} , whenever...

Definition 1.2 Let V and W be \mathbb{F} -linear spaces. We say $f:W\to V$ is an \mathbb{F} -linear map whenever...

Notation 1.3 Let $\operatorname{Hom}_{\mathbb{F}}(W,V)$ denotes the space of \mathbb{F} -linear functions from W to V. This notation can be simplified as $\operatorname{Hom}(W,V)$ when the ground field is fixed.

Definition 1.4 Cartesian product is defined on a finite family of sets, i.e.,

$$\prod_{i \in I_0} A_i = \{(a_i)_{i \in I_0} \mid a_i \in A_i\}, \quad |I_0| < \infty.$$

Remark $(1,2) \neq (2,1)$.

Definition 1.5 When there are infinitely many \mathbb{F} -linear spaces, i.e., $\{V_{\lambda}\}_{{\lambda}\in\Lambda}$ $(|\Lambda|=\infty)$. Define the **direct sum** as

$$\bigoplus_{\lambda\in\Lambda}V_\lambda:=\{(v_\lambda)_{\lambda\in\Lambda}\mid v_\lambda\in V_\lambda, \text{ only finite many }v_\lambda\text{'s is non-zero.}\}.$$

Definition 1.6 When there are infinitely many \mathbb{F} -linear spaces, i.e., $\{V_{\lambda}\}_{{\lambda}\in\Lambda}$ $(|\Lambda|=\infty)$. Define the **direct product** as

$$\prod_{\lambda \in \Lambda} V_{\lambda} := \{ (v_{\lambda})_{\lambda \in \Lambda} \mid v_{\lambda} \in V_{\lambda} \}.$$

Remark Let $V_{\lambda}=\mathbb{F}=\mathbb{R}$, then $(1,1,1,\dots)\in\prod_{\lambda}V_{\lambda}$, yet $(1,1,1,\dots)
otin \mathcal{V}_{\lambda}$.

Definition 1.7 Subspace...

Remark A subspace requires the same ground field as the original space!

Fact 1.8 $\bigoplus_{\lambda} V_{\lambda}$ is a subspace of $\prod_{\lambda} V_{\lambda}$. Such subspace is not proper whenever $|\Lambda| = \infty$.

若干习题 (约定以下线性空间都是 F-线性的, 即不出现第二个基域)

Ex.1 Prove Fact 1.8.

Ex.2 Prove that Hom(U, V) is \mathbb{F} -linear.

Ex.3 For a finite index set $|I_0| < \infty$, prove that

$$\prod_{i\in I_0}\operatorname{Hom}(U_i,V)\cong\operatorname{Hom}(\prod_{i\in I_0}U_i,V).$$

And provide a natrual isomorphism.

Ex.4 For a finite index set $|I_0| < \infty$, prove that

$$\prod_{i\in I_0}\operatorname{Hom}(U,V_i)\cong\operatorname{Hom}(U,\prod_{i\in I_0}V_i).$$

And provide a natrual isomorphism.

Ex.5 For an infinite index set $|\Lambda| \geq |\mathbb{N}|$, prove that

$$\prod_{\lambda \in \Lambda} \operatorname{Hom}(U,V_{\lambda}) \cong \operatorname{Hom}(U,\prod_{\lambda \in \Lambda} V_{\lambda}).$$

And provide a natrual isomorphism.

Ex.6 For an infinite index set $|\Lambda| \geq |\mathbb{N}|$, prove that

$$\prod_{\lambda \in \Lambda} \operatorname{Hom}(U_{\lambda}, V) \cong \operatorname{Hom}(igoplus_{\lambda \in \Lambda} U_{\lambda}, V).$$

And provide a natrual isomorphism.

Ex.7 For an infinite index set $|\Lambda| \geq |\mathbb{N}|$, prove that

$$\prod_{\lambda \in \Lambda} \operatorname{Hom}(U_{\lambda}, V) \hookleftarrow \operatorname{Hom}(\prod_{\lambda \in \Lambda} U_{\lambda}, V).$$

Here $A \hookrightarrow B$ means there exists a natrual isomorphism between A and a subspace of B. And provide such natrual isomorphism. Moreover, provide an example to verify \hookrightarrow cannot be replaced by \cong .

Ex.8 For an infinite index set $|\Lambda| \ge |\mathbb{N}|$, prove that

$$igoplus_{\lambda \in \Lambda} \operatorname{Hom}(U_{\lambda}, V) \hookrightarrow \operatorname{Hom}(\prod_{\lambda \in \Lambda} U_{\lambda}, V).$$

Here $A \hookrightarrow B$ means there exists a natrual isomorphism between A and a subspace of B. And provide such natrual isomorphism. Moreover, provide an example to verify \hookrightarrow cannot be replaced by \cong .

Ex.9 For an infinite index set $|\Lambda| \ge |\mathbb{N}|$, prove that

$$igoplus_{\lambda\in\Lambda}\operatorname{Hom}(U_\lambda,V)\hookrightarrow\operatorname{Hom}(igoplus_{\lambda\in\Lambda}U_\lambda,V).$$

Here $A \hookrightarrow B$ means there exists a natrual isomorphism between A and a subspace of B. And provide such natrual isomorphism. Moreover, provide an example to verify \hookrightarrow cannot be replaced by \cong .

Ex.10 For an infinite index set $|\Lambda| \geq |\mathbb{N}|$, prove that

$$igoplus_{\lambda\in\Lambda}\operatorname{Hom}(U,V_\lambda)\hookrightarrow\operatorname{Hom}(U,\prod_{\lambda\in\Lambda}V_\lambda).$$

Here $A \hookrightarrow B$ means there exists a natrual isomorphism between A and a subspace of B. And provide such natrual isomorphism. Moreover, provide an example to verify \hookrightarrow cannot be replaced by \cong .

Ex.11 For an infinite index set $|\Lambda| \geq |\mathbb{N}|$, prove that

$$\prod_{\lambda \in \Lambda} \operatorname{Hom}(U, V_{\lambda}) \hookleftarrow \operatorname{Hom}(U, igoplus_{\lambda \in \Lambda} V_{\lambda}).$$

Here $A \hookrightarrow B$ means there exists a natrual isomorphism between A and a subspace of B. And provide such natrual isomorphism. Moreover, provide an example to verify \hookrightarrow cannot be replaced by \cong .

Ex.12 For an infinite index set $|\Lambda| \geq |\mathbb{N}|$, prove that

$$igoplus_{\lambda\in\Lambda}\operatorname{Hom}(U,V_\lambda)\hookrightarrow\operatorname{Hom}(U,igoplus_{\lambda\in\Lambda}V_\lambda).$$

Here $A \hookrightarrow B$ means there exists a natrual isomorphism between A and a subspace of B. And provide such natrual isomorphism. Moreover, provide an example to verify \hookrightarrow cannot be replaced by \cong .

Ex.13 We say the \mathbb{F} -linear space U is finitely generated, whenever there exists finitely many $\{u_i\}_{1\leq i\leq n}\subseteq U$ such that

$$U = iggl\{ \sum_{1 \leq i \leq n} c_i u_i \mid c_i \in \mathbb{F} iggr\}.$$

Prove that in **Ex.12**, if *U* is finitely generated, then the isomorphism holds.