Теория вероятностей. Лекция семнадцатая Виды сходимости случайных величин

Дмитрий Валерьевич Хлопин glukanat@mail.ru

Институт математики и механики им. Н.Н.Красовского

20.02.2019

Что разобрали:

- Неравенства концентрации меры
- Сходимости случайных величин
- Усиленный закон больших чисел
- Слабая сходимость
- Характеристические функции
- Центральная предельная теорема

Неравенства концентрации меры, неравенства вида

$$\mathbb{P}\left\{\omega:\left|\xi_n(\omega)-r\right|\geq\varepsilon\right\}\leq\delta,$$

говорят об оценках вероятности уклонения результата на заданную величину от некого эталона, фактически предела. Например, в законе больших чисел пределом функций оказалось матожидание. Но даже в этом случае предел можно понимать по-разному...

Сходимость по вероятности

Зафиксируем отсюда и до конца лекции вероятностное пространство $(\Omega, \mathcal{F}, \mathbb{P}).$

Будем говорить, что последовательность случайных величин ξ_n сходится к случайной величине ξ по вероятности, и записывать $\xi_n \xrightarrow{P} \xi$, если для каждого $\varepsilon > 0$

$$\mathbb{P}\left\{\omega: |\xi_n(\omega) - \xi(\omega)| \ge \varepsilon\right\} \to 0 \text{ при } n \to \infty.$$

Сходимость по вероятности генерирует метрику на линейном пространстве

Несколько почти очевидных свойств этой сходимости:

- если ξ_n сходятся к ξ по вероятности, и ζ_n сходятся к ζ по вероятности, то $\xi_n \zeta_n$ сходятся к $\xi \zeta$ по вероятности;
- ullet если ξ_n сходятся к ξ по вероятности, и $c\in\mathbb{R}$, то $c\xi_n$ сходятся к $c\xi$ по вероятности;
- ullet если ξ_n сходятся к ξ по вероятности, и ξ_n сходятся к ζ по вероятности, то $\xi=\zeta$ почти всюду.

Эта сходимость задает топологию на линейном пространстве всех случайных величин после отождествления \mathbb{P} -почти всюду совпадающих функций. Более того, ее можно ввести в терминах расстояния, которое можно задать

так $d(\xi,\eta)\stackrel{\triangle}{=} \mathbb{E}(1-\frac{1}{1+|\xi-\eta|})$, или так $d(\xi,\eta)\stackrel{\triangle}{=} \mathbb{E} \operatorname{arctg} |\xi-\eta|$.

Сходимость почти наверное

Будем говорить, что последовательность случайных величин ξ_n сходится к случайной величине ξ \mathbb{P} -почти наверное (синонимы: почти наверное, почти наверняка, с вероятностью 1, почти всюду), и записывать $\xi_n \stackrel{\text{п.в.}}{\longrightarrow} \xi$, если вероятность тех ω , для которых $\xi_n(\omega) \not\rightarrow \xi(\omega)$, равна 0, т.е.

$$\mathbb{P}\{\omega:\xi_n(\omega)\not\to\xi(\omega)\}=0.$$

Сходимость почти наверное. Вторая формулировка

Предложение 4. Сходимость случайных величин ξ_n к ξ почти наверное эквивалентна следующему условию: для всех $\varepsilon>0$

$$\mathbb{P}\left\{\omega: \sup_{k\geq n} |\xi_k(\omega) - \xi(\omega)| \geq \varepsilon\right\} o 0$$
 при $n o \infty$.

Доказательство будет на следующем слайде, а пока получим в силу

$$\{\omega: |\xi_n(\omega) - \xi(\omega)| \ge \varepsilon\} \subset \left\{\omega: \sup_{k \ge n} |\xi_k(\omega) - \xi(\omega)| \ge \varepsilon\right\}$$

Следствие 6. Сходимость почти наверное влечет сходимость по вероятности: $\xi_n \xrightarrow{\text{п.в.}} \xi \Rightarrow \xi_n \xrightarrow{P} \xi$

Сходимость почти наверное. Доказательство

Доказательство. Пусть
$$A_k^{\varepsilon} \triangleq \{\omega : |\xi_k(\omega) - \xi(\omega)| \ge \varepsilon\}, \quad A^{\varepsilon} \triangleq \bigcap_{n=1}^{\infty} \bigcup_{k=n}^{\infty} A_k^{\varepsilon}.$$

Заметим, что
$$\{\omega:\xi_n(\omega) \not\rightarrow \xi(\omega)\} = \bigcup_{\varepsilon>0} A^\varepsilon = \bigcup_{m=1}^\infty A^{1/m}$$
. Следовательно, $\mathbb{P}\{\omega:\xi_n(\omega) \not\rightarrow \xi(\omega)\} = 0 \iff \mathbb{P}\left(\bigcup_{i=1}^\infty A^{1/m}\right) = 0$. Последнее равенство

выполнено в том и только в том случае, когда для всех $m \ \mathbb{P}(A^{1/m}) = 0$, или, что эквивалентно, для всех $\varepsilon > 0$ $\mathbb{P}(A^{\varepsilon}) = 0$. Наконец, равенство

 $\mathbb{P}(A^{\varepsilon}) = 0$ эквивалентно тому, что

$$\lim_{n\to\infty}\mathbb{P}\left(\bigcup_{k=n}^\infty A_k^\varepsilon\right)=0.$$

$$\xi_n \xrightarrow{P} \xi \not \Rightarrow \xi_n \xrightarrow{\text{n.s.}} \xi$$
, HO $\xi_n \xrightarrow{P} \xi \Rightarrow \xi_{n_k} \xrightarrow{\text{n.s.}} \xi$

Пример 2.

Пусть $\Omega=[0,1)$, на нем рассматриваем борелевскую σ -алгебру и равномерную вероятность. Выберем $f_1=1,\ f_{2,1}$ положим равной 1 на [0,1/2) и 0 на $[1/2,1),\ f_{2,2}$ положим равной 0 на [0,1/2) и 1 на $[1/2,1),\$ далее примем $f_{i,j}=\mathbf{1}_{[(j-1)/i,j/i)}$ для всех натуральных i,j. Если мы последовательно занумеруем функции $f_{i,j}$, то полученная последовательность будет сходиться по вероятности к $\xi\equiv 0$, а последовательность $\xi_n(\omega)$ содержит бесконечно много 0 и 1 для всех ω .

Теорема Рисса. [0.7 балла] ξ_n сходятся по вероятности к ξ тогда и только тогда, когда из всякой ее подпоследовательности ξ_{n_k} (в том числе из нее самой) можно выделить подподпоследовательность $\xi_{n_{k_l}}$, которая сходится почти наверное к ξ .

Сходимость в среднем

Пусть $p \ge 1$. Будем говорить, что последовательность случайных величин ξ_n сходится к ξ в среднем порядка p, и записывать $\xi_n \stackrel{L^p}{\longrightarrow} \xi$, если

$$\mathbb{E}|\xi_n - \xi|^p \to 0.$$

При p = 2 говорят также "в среднеквадратичном".

Этот вид сходимости задает сходимость, метрику и норму в пространстве Лебега $L^p(\Omega,\mathcal{F},\mathbb{P})$ всех случайных величин, для которых $\mathbb{E}|\xi|^p<\infty$, после отождествления всех \mathbb{P} -почти всюду совпадающих случайных величин.

$$\xi_n \xrightarrow{L^p} \xi \Rightarrow \xi_n \xrightarrow{P} \xi \text{ in } \xi_n \xrightarrow{\text{\tiny \Pi.B.}} \xi \not \Rightarrow \xi_n \xrightarrow{L^p} \xi$$

Предложение 5. Сходимость в среднем порядка p влечет сходимость по вероятности.

Доказательство. По неравенству Маркова имеем

$$\mathbb{P}(|\xi_n - \xi| \ge \varepsilon) = \mathbb{P}(|\xi_n - \xi|^p \ge \varepsilon^p) \le \frac{\mathbb{E}|\xi_n - \xi|^p}{\varepsilon^p} \to 0, \quad n \to \infty.$$

При этом, сходимость почти наверное не влечет сходимость в среднем. Пример. $\Omega = [0,1], \ \mathbb{P}$ — мера Лебега.

$$\xi_n(\omega) = \begin{cases} 2^n, & \omega \in [0, 1/n], \\ 0, & \omega \notin [0, 1/n]. \end{cases}$$

Хотя $\xi_n \xrightarrow{\text{п.в.}} 0$, сами ξ_n не сходятся в среднем к 0.

При каких условиях $\xi_n \xrightarrow{\text{п.в.}} \xi \Rightarrow \xi_n \xrightarrow{L^p} \xi$

Предложение 6. Пусть ξ_n неотрицательны, $\xi_n \xrightarrow{\text{п.в.}} \xi$ и $\mathbb{E}\xi_n \to \mathbb{E}\xi$ (в частности, эти матожидания существуют, начиная с некоторого).

Тогда $\mathbb{E}|\xi_n-\xi|\to 0$, то есть $\xi_n\stackrel{L^1}{\longrightarrow}\xi$. Доказательство. Можно считать, что $\mathbb{E}\xi_n<\infty$. Имеем

$$\mathbb{E}|\xi_n - \xi| = \mathbb{E}(\xi - \xi_n)\mathbf{1}_{\xi \geq \xi_n} + \mathbb{E}(\xi_n - \xi)\mathbf{1}_{\xi_n > \xi} = 2\mathbb{E}(\xi - \xi_n)\mathbf{1}_{\xi \geq \xi_n} + \mathbb{E}(\xi_n - \xi).$$

Второе слагаемое сходится к 0 по условию. Также $(\xi - \xi_n) \mathbf{1}_{\xi \geq \xi_n}$ поточечно сходится к 0. Используя неотрицательность ξ_n , получаем, что $0 \leq (\xi - \xi_n) \mathbf{1}_{\xi \geq \xi_n} \leq \xi$. Отсюда, по теореме Лебега о мажорируемой сходимости получаем, что первое слагаемое тоже сходится к 0.

Подумать: можно ли сформулировать аналог этого предложения для p>1 (ну и доказать/опровергнуть этот аналог).

$$\xi_n \xrightarrow{L^p} \xi \not\Rightarrow \xi_n \xrightarrow{\text{п.в.}} \xi$$

Пример. Пусть ξ_n независимы, $\mathbb{P}(\xi_n=1)=p_n$, $\mathbb{P}(\xi_n=0)=1-p_n$; тогда

$$\xi_n \xrightarrow{P} 0 \iff p_n \to 0,$$

$$\xi_n \xrightarrow{L^p} 0 \iff p_n \to 0,$$

$$\xi_n \xrightarrow{\text{n.B.}} 0 \iff \sum_{n=1}^{\infty} p_n < \infty.$$

В частности, при p_n = 1/n получаем, что из $\xi_n \xrightarrow{L^p} \xi \not \Rightarrow \xi_n \xrightarrow{\text{п.в.}} \xi$.

Подумать: а откуда здесь взялось условие $\sum_{n=1}^{\infty} p_n < \infty$?

Первая лемма Бореля-Кантелли

Лемма 1. Пусть дана такая последовательность событий $A_n \in \mathcal{F}$, что

$$\sum_{n=1}^{\infty} \mathbb{P}(A_n) < \infty.$$

Положим

 $A \triangleq \{\omega : \text{ существует последовательность } n_k, \text{ что } \omega \in A_{n_k}\}.$

Тогда $\mathbb{P}(A) = 0$.

Доказательство.

Ясно, что

$$A = \bigcap_{l=1}^{\infty} \bigcup_{n=l}^{\infty} A_n.$$

Тогда,

$$\mathbb{P}(A) \leq \mathbb{P}\left(\bigcup_{n=l}^{\infty} A_n\right) \leq \sum_{n=l}^{\infty} \mathbb{P}(A_n) o 0$$
 при $l o \infty$.

Вторая лемма Бореля-Кантелли

Лемма 2. Пусть дана такая последовательность независимых в совокупности событий $A_n \in \mathcal{F}$, что

$$\sum_{n=1}^{\infty} \mathbb{P}(A_n) = \infty.$$

Положим

 $A \triangleq \{\omega : \text{ существует последовательность } n_k, \text{ что } \omega \in A_{n_k} \}.$

Тогда $\mathbb{P}(A) = 1$.

Доказательство.

 $\overline{\mathsf{N}}$ меем $\Omega \smallsetminus A = \cup_{l=1}^{\infty} \cap_{n=l}^{\infty} (\Omega \smallsetminus A_n)$ и

$$\mathbb{P}(\Omega \setminus A) = \lim_{l \to \infty} \mathbb{P}\left(\bigcap_{n=l}^{\infty} (\Omega \setminus A_n)\right) = \lim_{l \to \infty} \prod_{n=l}^{\infty} (1 - \mathbb{P}(A_n)).$$

Так как $\sum_{n=l}^{\infty} \mathbb{P}(A_n) = \infty$, логарифмируя $\prod_{n=l}^{\infty} (1 - \mathbb{P}(A_n))$, получаем требуемое.

Подумать: здесь условие независимости событий A_n существенно.

Снова закон больших чисел

Теорема 1. Пусть дана последовательность случайных величин ξ_n с математическим ожиданием $\mathbb{E}\xi_i = m_i$ и равномерно ограниченными дисперсиями. Предположим, что ξ_i попарно некоррелированы $(\mathbb{E}(\xi_i - m_i)(\xi_j - m_j) = 0$ для $i \neq j)$. Тогда

$$\mathbb{E}\left|\frac{(\xi_1-m_1)+\ldots+(\xi_n-m_n)}{n}\right|^2\to 0,$$

т.е. последовательность $(\xi_1-m_1+\ldots+\xi_n-m_n)/n$ сходится к 0 в среднем квадратическом. Отсюда следует сходимость по вероятности. Доказательство. Можно считать, что $m_i=0$. Тогда нам требуется доказать, что $D(\xi_1+\ldots+\xi_n)/n$ сходится к нулю. Но

$$\mathbb{E}\frac{(\xi_1 + \dots + \xi_n)^2}{n^2} = \frac{1}{n^2} D(\xi_1 + \dots + \xi_n) = \frac{D\xi_1 + \dots + D\xi_n}{n^2} \to 0$$

в силу равномерной ограниченности $D\xi_i$.

Усиленный закон больших чисел (в форме Колмогорова)

Теорема 2. Пусть $\{\xi_n\}$ — последовательность независимых одинаково распределенных случайных величин со средним m и конечной дисперсией. Тогда

$$\frac{\xi_1 + \ldots + \xi_n}{n} \xrightarrow{\text{п.в.}} m$$
 при $n \to \infty$.

Доказательство этой теоремы проведем в более сильном предположении: $\mathbb{E}|\xi_n|^4 = \mathbb{E}|\xi_1|^4 < \infty$. В принципе можно отказаться от требования одинаковой распределенности, предполагая лишь существование конечных

дисперсий и

$$\sum_{n=1}^{\infty} D\xi_n/n^2 < \infty.$$

Усиленный закон больших чисел. Доказательство

Без ограничения общности считаем, что m=0. Пользуясь независимостью ξ_i и предположением существования $\mathbb{E}|\xi_n|^4=\mathbb{E}|\xi_1|^4<\infty$, получаем

$$\mathbb{E}|\xi_1 + \ldots + \xi_n|^4 = n\mathbb{E}|\xi_1|^4 + C_4^2 C_n^2 (\mathbb{E}|\xi_1|^2)^2 \le Kn^2,$$

где K – константа, не зависящая от n.

Пусть $A_n^k \triangleq \{\omega : |\xi_1 + \ldots + \xi_n|/n \ge 1/k\}$. Теперь, по неравенству Маркова

$$\mathbb{P}(A_n^k) = \mathbb{P}\{\omega : |\xi_1 + \ldots + \xi_n|^4 \ge n^4/k^4\} \le \frac{\mathbb{E}|\xi_1 + \ldots + \xi_n|^4}{n^4/k^4} \le Ck^4/n^2.$$

Поскольку $\sum_{n=1}^{\infty}\mathbb{P}(A_n^k)<\infty$, по первой лемме Бореля-Кантелли имеем $\mathbb{P}(B_k)=0$, где B_k — множество тех ω , что $|\xi_1+\ldots+\xi_n|/n\geq 1/k$ для бесконечного количества чисел n.

Тогда, для $B \triangleq \bigcup_{k=1}^\infty B_k$ — множества тех точек ω , где $(\xi_1+\ldots+\xi_n)/n \not\to 0,$ — имеем $\mathbb{P}(B)=0.$

Закон повторного логарифма

Теорема 3. [без д-ва] Пусть дана последовательность независимых одинаково распределенных случайных величин ξ_n со средним 0 и дисперсией $\sigma^2 > 0$. Тогда

$$\sup_{n>k} \frac{\xi_1 + \ldots + \xi_n}{\sigma \sqrt{2n \ln \ln n}} \xrightarrow{\text{п.в.}} 0 \text{ при } k \uparrow \infty,$$

и для всех положительных ε

$$\mathbb{P}(\xi_1+\ldots+\xi_n>(1+arepsilon)\sigma\sqrt{2n\ln\ln n}$$
 бесконечно много раз) = 0 $\mathbb{P}(\xi_1+\ldots+\xi_n<(1-arepsilon)\sigma\sqrt{2n\ln\ln n}$ бесконечно много раз) = 1.

Что разобрали:

- Неравенства концентрации меры
- Сходимости случайных величин
- Усиленный закон больших чисел
- Слабая сходимость
- Характеристические функции
- Центральная предельная теорема

Различные виды сходимости отвечают за разные типы надежности: начиная с некоторого момента все будет хорошо, отклонения больше заданного достаточно редки, ущерб будет мал в среднем и т. п. Все эти сходимости имеют дело со случайной величиной, понимаемой с точностью почти всюду. Слабая сходимость ведет себя гораздо интереснее.

На пять минут...

1. ЗАПОЛНИТЕ ПРОПУСК

Предложение 1". Для случайной величины ξ , принимающей значения из промежутка [0,1], и любого числа a>0 имеет место неравенство

$$\mathbb{P}(\xi \le a) \le \mathsf{ПРОПУСК}.$$

2. ЗАПОЛНИТЕ ПРОПУСК

Следствие 5". Пусть дана последовательность независимых в совокупности, одинаково распределенных случайных величин X_i , принимающих значения из отрезка [-K,K]. Тогда, для всех натуральных n и $\delta \in (0,1)$ имеем

$$\mathbb{P}\Big(\Big|\frac{X_1+\cdots+X_n}{n}-\mathbb{E}X_1\Big|\geq \delta\mathbb{E}X_1\Big)\leq \mathsf{\PiPO\PiYCK}.$$

