Estruturas de Dados II: Notação *O* e Classes de Complexidade*

Talles Brito Viana

Análise de uma classe de algoritmos

- Qual é o algoritmo de menor custo possível para resolver um problema particular?
 - Toda uma família de algoritmos é investigada.
 - Procura-se identificar um que seja o melhor possível.
 - Coloca-se limites para a complexidade computacional dos algoritmos pertencentes à classe.
 - Quando o custo de um algoritmo é igual ao menor custo possível, o algoritmo é ótimo para a medida de custo considerada.

f(n)

- Para medir o custo de execução de um algoritmo é comum definir uma função de custo ou função de complexidade f.
- f(n) é a medida do tempo necessário para executar um algoritmo para um problema de tamanho n.
 - A complexidade de tempo na realidade não representa tempo diretamente, mas o número de vezes que determinada operação considerada relevante é executada.

Notação O

- A complexidade de algoritmos analisa o comportamento do tempo *f* em função de uma entrada *n* que tende ao infinito.
- O comportamento assintótico (no infinito) de pior caso de um algoritmo é representado pela notação *O*.
 - Quando dizemos que f = O(g(n)), a função de tempo f é limitada superiormente pela função g(n).
 - O também chamado como Big O

Classes Assintóticas

- Constante: O(1)
 - Uso do algoritmo independe de n.
- Logarítmica: O(lg(n))
 - Típico em algoritmos que transformam um problema em outros menores.
- Linear: O(n)
 - Em geral, um pequeno trabalho é realizado sobre cada elemento de entrada.
 - É a melhor situação possível para um algoritmo que tem de processar/produzir n elementos de entrada/saída.
 - Cada vez que n dobra de tamanho, o tempo de execução dobra.
- Lê-se "O de n", "O de 1", "O de lg(n)"...

Classes Assintóticas

- Logaritmo-linear: $O(n \lg(n))$
 - Típico em algoritmos que quebram um problema em outros menores,resolvem cada um deles independentemente e ajuntando as soluções depois.
- Quadrática: $O(n^2)$
 - Ocorrem quando os itens de dados são processados aos pares, muitas vezes em um anel dentro de outro.
 - Sempre que n dobra, o tempo de execução é multiplicado por 4.
 - Úteis para resolver problemas de tamanhos relativamente pequenos.
- Cúbica: $O(n^3)$
 - Úteis apenas para resolver pequenos problemas.... porque?

Classes Assintóticas

- Exponencial: $O(c^n)$ onde c é uma constante
 - Geralmente não são úteis sob o ponto de vista prático.
 - Ocorrem na solução de problemas quando se usa força bruta para resolvê-los.
- Dizemos que:
 - $O(1) < O(lg(n)) < O(n) < O(n lg(n)) < O(n^2) < O(n^3) \dots$

Comportamento das Classes

Exemplo: Pilhas

- O elemento eliminado é o mais recentemente inserido.
 - Implementa a norma: último a entrar, primeiro a sair.
- Operações básicas de uma pilha:
 - PUSH (inserção)
 - POP (remoção)
 - · Alusão à pratos de restaurantes...

Pilhas

 Podemos implementar uma pilha de no máximo n elementos em um conjunto S de n posições de memória.

- Pilha de no máximo 7 elementos.
- A pilha tem 4 elementos.
- *top*[S] marca o topo da pilha.
- O elemento do topo é 9.

- PUSH(S,17)
- PUSH(S,3)

Pilhas

 Podemos implementar uma pilha de no máximo n elementos em um conjunto S de n posições de memória.

- POP(S) retorna 3
- Apesar de 3 não ter sido apagado do conjunto, não é mais possível acessar tal elemento em memória.

• Perceba que, as operações PUSH e POP têm tempo de execução constante = O(1)

Exemplo: Filas

- O elemento eliminado é sempre o que estiver pelo tempo mais longo.
 - Implementa a norma: primeiro a entrar, primeiro a sair.
- Operações básicas de uma fila:
 - ENQUEUE (ENFILEIRAR)
 - DEQUEUE (DESINFILEIRAR)
 - · Alusão à filas de bancos...

Filas

• Podemos implementar uma fila de no máximo *n-1* elementos em um conjunto *Q* de *n* posições de memória.

- início[Q] marca o início da fila
- fim[Q] marca o fim da fila
- Se início[Q] = fim[Q] a fila está vazia, inicialmente, temos que início[Q] = fim[Q] = 1.
- Se início[Q] = fim[Q] + 1, então a fila está cheia.
- ENFILEIRAR(Q,17)
- ENFILEIRAR(Q,3)
- ENFILEIRAR(Q,5)

Filas

• Podemos implementar uma fila de no máximo n-1 elementos em um conjunto Q de n posições de memória.

- DESINFILEIRAR(Q) retorna 15.
- Novo *início*[Q] marca 8.
- Apesar de 15 não ter sido apagado do conjunto, não é mais possível acessar tal elemento em memória.

• Perceba que, as operações ENFILEIRAR e DESINFILEIRAR têm tempo de execução constante = O(1)

Exemplo: Lista Ligada

- Estrutura de dados em que os objetos estão organizados em uma ordem linear.
 - A ordem de uma lista ligada é determinada por um ponteiro em cada objeto.
- Uma lista duplamente ligada *L* contém um campo *chave* que armazena um dado e dois ponteiros.
 - *próximo*[x] aponta para o elemento sucessor de x.
 - anterior[x] aponta para o elemento predecessor de x.
 - início[L] aponta para o primeiro elemento da lista L.

 Vale ressaltar que, filas e pilhas também poderiam ser implementadas utilizando listas.

Lista Ligada

- Operações básicas de uma lista:
 - PESQUISAR, INSERIR, REMOVER

- Se a inserção de um novo objeto é feita no início da lista, o tempo de inserção é constante = O(1).
- No pior caso, o tempo de pesquisa depende da quantidade n de objetos da lista = O(n).
- A operação de remoção (sem pesquisa) executa ajustes de ponteiros de um objeto, logo, tem tempo constante = O(1).