Aalborg Tekniske Gymnasium

STUDIEOMRÅDE-PROJEKT

Fysik A & el-teknik A

En fjernstyret kanon & det skrå kast

Forfatter:
Nikolai Bonderup
Sebastian Lassen
Lucas Rasmussen

Vejleder:
Pia Thomsen
Tom Berthelsen

December 19, 2018

Ind holds for tegnelse

1	Indledning	2
2	Kravspecifikationer	3
3	Projektanalyse	4
4	Projektformulering	5
5	Projektafgrænsning	6
6	Tidsplan	8
7	Systembeskrivelse 7.1 Fysik teori 7.2 Forsøg 7.2.1 Apparaturliste 7.2.2 Fremgangsmåde	9 10 10 11
	7.3 Elektriske kredsløb	12

1 Indledning

Projektet ligger under studieområdet, hvilket her betyder at vi skal kombinere vores teknikfag med et af vores studieretningsfag. Vi har i gruppen valgt at bruge Fysik A, da dette virkede som det mest oplagte valg ift. bidragelse med projektrelevant teori. Projektet skal derfor også overholde forskellige krav fra SO, el-tek og fysik A, som bliver yderligere fremhævet i kravspecifikationen.

Vi har i gruppen besluttet os for at bygge en fjernstyret airsoft kanon, da dette produkt vil tilfredsstille alle de givne el-tek krav, samt at fysikteorien omkring det skrå kast kan bruges til at bestemme, hvor dets projektil vil ramme og hvor hurtigt det bevæger sig. Det kan gøres ved at måle, hvor langt kanonen skyder og hvilken vinkel løbet er peget op med, for så derefter at beregne mundingshastigheden vha. formler for det skrå kast. Dette kan så krydstjekkes med en målt projektilhastighed for, at opnå et fysikeksperiment udført med hjælp af elektriske komponenter.

2 Kravspecifikationer

De opstillede krav fra el-tek:

Der skal bruges en "interrupt" (HW - Kontakt, SW - Timer).

• Der skal altså i projektet bruges enten en kontakt eller timer i vores kredsløb. Det er påkrævet at denne har en relevant betydning for selve kredsløbet og ikke har en meningsløs funktion.

Der skal være et sensor input: analog til digital konvertering.

• Dette forstås som at der skal bruges en type sensor, som måler noget analogt, der derefter kan oversættes til noget digitalt vha. en mikroprocessor. Dette kunne for eksempel være en afstandssensor.

Digital til Analog konvertering.

• Dette vil ved brug af Arduino i de fleste tilfælde være at bruge et PWM signal til kontrol af et elektronisk element.

Der skal bruges datakommunikation (til pc, viserinstrument eller trådløst element).

• Dette ville være en form for input/output type af kontrol i forhold til vores produkt. Her skal gruppen kunne give en eller anden form for ordre til produktet og produktet skal så udføre en bestemt handling. Dette kunne opfyldes ved at styre kanonens vinkel med en controller vha. bluetooth.

Et print til en mikrocontroller.

• Der skal til produktet bruges et selvproduceret mikrocontrollerprint. Denne microcontroller skal kunne styre en af hovedelementerne i selve produktet for at opfylde kravet om at have en relevant funktion.

Udover de specifikke krav skal der også indrages relevant fysikteoretisk arbejde, som udmunder i afleveringen af videnskabelig dokumentation vedrørende det valgte fysikteori og el-tek produkt.

3 Projektanalyse

I dette projekt skal vi kombinere Fysik A og el-tek til et SO forløb. I projektet er der flere faglige mål som skal opfyldes indenfor området el-tek og fysik. Selve opgaven lyder på at gøre brug af de elementer som er at finde under kravspecifikationer. I problemanalysen skal disse elementer altså gennemgås og der skal vurderes, hvilket et af dem bliver det største "problem" at arbejde med.

Det mest udfordrende bliver at få skabt kommunikation mellem selve kanonen og et kontrolelement. Der skal være en modtager og afsender, måske endda en af hver på både kontrolmodul og kanon-modulet alt efter hvor avanceret arbejdet med denne del af projektet skal være.

Et andet udfordrende problem bliver, hvordan selve lade- og affyringsmekanismen skal hænge sammen så den kan virke ved fjernstyring. Her skal flere forskellige typer motorer styres præcist gennem bluetooth.

4 Projektformulering

Hvordan kan vi bygge et produkt som opfylder de faglige mål for projektet og som bygger på fysikteoretiske koncepter?

Til problemformuleringen kan flere underspørgsmål udformes:

- Hvordan kan et mikrocontroller print fabrikeres?
- Hvordan vil man integrere datakommunikation i produktet?
- Hvilke former for sensorer kan bruges i løsningen og til den videnskabelige dokumentation?
- Hvordan kan produktet bruges til at vise noget relevant fysikteori?

5 Projektafgrænsning

Vi har planlagt at arbejde med en kanon som skal kunne rotere 360 grader, samt have et vinkelinterval til affyring af kanonen på mindst 100 grader. Den fjernstyrede kanon skal være i stand til at modtage information fra et kontrolmodul. Dette skal ske ved brug af en bluetooth enhed eller et andet trådløst kommunikationsmodul. Der skal altså laves en mikrocontroller som kan styre kanonen gennem disse trådløse moduler ved at få kommandoer fra et kontrolmodul.

Fig. 1: Koncept af kanon.

Selve kanons affyringsmekanisme laves enten med en "airsoft" pneumatisk gearkasse, hvor en DC motor bruges til at trække en fjeder op. Denne fjeder laver et lufttryk i gearkassens trykkammer som kan bruges til at skyde et projektil afsted. Selve robottens krop laves vha. 3D print af de enkelte komponenter, der sættes sammen med enten lim eller skruer.

Til udarbejdningen af det fysikvidenskabelige dokumentation kan der påmonteres forskellige afstandssensorer, som bruges til at måle projektilets hastighed. Derudover kan der alternativt måles, hvor langt projektilet bliver affyret for så, at kunne beregne dets hastighed, hvis affyringsvinklen er kendt.

Fig. 2: Fysik relevant til kanonen.

6 Tidsplan

Uge			47		49+50	51	2	3	4+5+6
Timer			10		21	8	5	11	14
Dato		19/11	23/11	25/11	Teknik Uge	ė	- 3	ė	ż
Aktivitet	Ansvarlig								
Gruppemappe	Lucas	n/d							
Logbøger	Sebastian	n/d	n/d		р	р	р	р	р
Tidsplan	Lucas	P/u	n/d		р	р	р	р	р
Forside	خ				р			b	þ
Titelblad	?				р			р	р
Indholdsfortegnelse	٤				b			d	d
Projektbeskrivelse	Alle	n/d	n/d	А	р				
Idegenereing	Alle	P/n	n/d						
Systemsbeskrivelse	5				р	р	р	р	р
Hardware design	خ				р	d	р	d	р
Software design	5				р	۵	р	ď	р
Flowchart	5				р	р	р	Ф	р
Konstruktion af produkt	?				р		р	р	р
test og løsningsvurdering	خ							р	р
Konklusion	5								р
literaturliste	5				р	ď	р	р	р
Aflervering af produkt og rapport	٤								a

Fig. 3: Første udkast af en tidsplan.

7 Systembeskrivelse

7.1 Fysik teori

Teoretisk udledning af formler til det skrå kast

Begyndelseshastigheden for et kast er givet ud fra vektoren v_0 og vinklen a, det betyder altså at hastighedsvektorens komposanter kan findes ved:

$$v_x = v_0 \cdot cos(a)$$
 og $v_y = v_0 \cdot sin(a)$

Samtidigt vides det at x- og y-slut kan skrives som to bevægelsesligninger:

$$y = -\frac{1}{2} \cdot g \cdot t^2 + v_y \cdot t + y_0$$

Hvor dette er formlen for strækning inden for faget kinematik, omskrevet til at passe på y-aksen i det skrå kast. Her skiftes strækningen ud med y og accelerationen med g, da det er tyngdeaccelerationen som kastet arbejder imod:

$$s = -\frac{1}{2} \cdot g \cdot t^2 + v_0 \cdot t + s_0$$

x er derved givet ved konstant hastighed, denne får altså ligningen:

$$x = v_x \cdot t$$

Hvor denne er omskrevet fra formlen for konstant hastighed:

$$v = \frac{\Delta s}{\Delta t}$$

Hvor der isoleres for strækningen:

$$v = \frac{\Delta s}{\Delta t} \longrightarrow \Delta s = v \cdot \delta t$$

Dette giver altså to ligninger for x- og y-slut nr komposanterne indsættes:

$$x_{slut} = v_0 \cdot cos(a) \cdot t$$

og

$$y_{slut} = -\frac{1}{2} \cdot g \cdot t^2 + v_0 \cdot sin(a) \cdot t + y_0$$

Bestemmelse af x_{slut}

I vores forsøg kender vi hverken tiden eller x_{slut} . Tiden kan dog bestemmes.

Det vides at y_{slut} er lig y_0 , da planet forsøget er udført på er ensartet, dette vil altså sige, at både y_o og y_{slut} er lig 0. Dette kan altså sættes ind i ligningen for y_{slut} og der kan isoleres for t:

$$0 = -\frac{1}{2} \cdot g \cdot t^2 + v_y \cdot t + y_0 \longrightarrow t = \frac{v_y + \sqrt{2 \cdot g \cdot y_0 + y_y^2}}{g}$$

Den tidligere bestemte y komposant kan indsættes så alle variabler kendes:

$$t = \frac{v_0 \cdot \sin(a) + \sqrt{2 \cdot g \cdot y_0 + y_y^2}}{q}$$

Opsat som vektorfunktion

Vektorfunktioner er givet ud fra en ligning for bevægelsen på x-aksen og bevægelsen på y-aksen:

$$\overrightarrow{r}(t) = \begin{pmatrix} x(t) \\ y(t) \end{pmatrix}$$

Da bevægelser er beskrevet ved brug af vektorere opsættes skuddet som en vektorfunktion:

$$\overrightarrow{r}(t) = \begin{pmatrix} v_0 \cdot \cos(a) \cdot t \\ -\frac{1}{2} \cdot g \cdot t^2 + v_0 \cdot \sin(a) \cdot t + y_0 \end{pmatrix}$$

7.2 Forsøg

7.2.1 Apparaturliste

- 2x opsætnings stativer
- 1x BT5 A5 Elektrisk Airsoft Gevær
- 1x LiDAR af typen Leica "Disto D5"
- 1x Tomstok

7.2.2 Fremgangsmåde

Fig. 4: Forsogsopstilling.

- 1. Først opsættes det elektriske airsoft gevær på en sådan måde at vinklen er let at ændre, denne opsætning ses på figur 4.
- 2. Der indstilles en vinkel.
 - (a) Højden mellem de to monteringspunkter og jorden måles.
 - (b) Der måles en afstand mellem de to monteringspunkter, dette er en hypotenuse mellem de to monteringspunkter.
 - (c) det lave monteringspunkt trækkes fra det høje, og nu er en modstående katete til den ønskede vinkel fundet.
 - (d) Bestem brugt vinkel ud fra sinus beregning.
- 3. Skud affyres.
- 4. Afstanden fra skuddets første kontaktpunkt med jorden hen til gevær-opstillingen ved hjælp af LiDAR.
- 5. Der tages tre målinger for hver vinkel.

7.3 Elektriske kredsløb

I dette projekt er der i alt 2 forskellige elektriske kredsløb (hvis man ignorere de isoleret kredsløb, som bliver skabt pga. Brugen af H-broer og hardball pistol). Kredsløb #1 er kredsløbet som kan findes på selve kanon. Dette kredsløb styrer kanonens bevægelse vha. Motorer og sensorer. Kredsløb #2 er kredsløbet som findes på kontrolleren. Dette kredsløb bruges til at styrer kanonen gennem et bluetooth signal fra kredsløb #2 til kredsløb #1.

Kredsløb #1

Fig. 5: Blokdiagram af kredsløb #1.

Fig. 6: Flowdiagram af kredsløb#1.

Systemdele

- Arduino UNO
 - På blokdiagrammet (Fig. 5) kan det ses, at Arduinonen er forbundet til næsten alle elektroniske elementer i robotten.
- 9V batteri
 - Dette 9 volts batteri fungere som Arduinoens strømforsyning.
- 12V batteripakke #1
 - Denne batteripakke fungere som stepper motor #1's strømforsyning.
- 12V batteripakke #2
 - Denne batteripakke fungere som stepper motor #2's strømforsyning.
- H-bro (LN298) #1
 - H-bro #1 er forbundet til stepper motor #1 og 12V batteripakke #1. Derudover bliver H-broen kontrolleret af en Arduino, som ikke er i kredsløb med batteripakke #1.
- H-bro (LN298) #2
 - H-bro #2 er forbundet til stepper motor #2 og 12V batteripakke #2. Derudover bliver H-broen kontrolleret af en Arduino, som ikke er i kredsløb med batteripakke #2.
- Stepper Motor #1
 - Stepper #1 er forbundet til 12V batteripakke #1 via. H-bro #1. Derudover er stepper motoren kontrolleret af H-bro #1.
- Stepper Motor #2
 - Stepper #2 er forbundet til 12V batteripakke #2 via. H-bro #2. Derudover er stepper motoren kontrolleret af H-bro #2
- Accelerometer
 - Accelerometeret er forbundet til Arduinoen, som den desuden også modtager strøm fra.
- Hardball pistol

– Hardball pistolen indgår også i det elektriske kredsløb. Hardball pistolens skyde mekanism bliver kontrolleret af Arduinoen. I selve hardball pistolen findes der også et elektrisk kredsløb, dog er delene til dette kredsløb ikke beskrevet i blokdiagrammet, da det ikke er et selv fabrikeret elektrisk komponent.

• BlueSmirf

 BlueSmirf modulet modtager strøm fra Arduinoen. Derudover kommunikere BlueSmirf modulet med Arduinoen.

Kredsløb #2

Fig. 7: Blokdiagram af kredsløb #2.

Fig. 8: Flowdiagram af kredsløb #2.

Systemdele

• Arduino UNO

 På blokdiagrammet (Fig. 7) kan det ses, at Arduinonen er forbundet til alle elektroniske elementer.

• 9V batteri

- Dette 9 volts batteri fungere som Arduinoens strømforsyning.

Joystick

 Joysticket er forbundet til Arduinoen, som måler strømmen der løber gennem joysticket.

• Knap

 Knappen er forbundet til Arduinoen, som måler strømmen der løber gennem knappen.

• BlueSmirf

 BlueSmirf modulet modtager strøm fra Arduinoen. Derudover kommunikere BlueSmirf modulet med Arduinoen.

• LCD Display

 LCD Display modulet er forbundet til Arduinoen og modtager også strøm fra Arduinoen.

Bilag

Måldata

	.y0	x slut	h0	vinkel	hypotenuse	y0-h0
	cm	ш	cm	grader	cm	cm
Skud 1	53	9.23	23	00.00	45	0
Skud 2	23	9:36	23	0.00	45	0
Skud 3	23	9.40	23	0.00	45	0
Skud 4	26.93	13.71	23	5.02	45	3.93
Skud 5	26.93	13.92	23	5.02	45	3.93
Skud 6	26.93	13.62	23	5.02	45	3.93
Skud 7	86.08	18.19	23	10.15	45	7.93
Skud 8	30.93	17.28	23	10.15	45	7.93
Skud 9	86.08	16.99	23	10.15	45	7.93
Skud 10	30'98	19.20	23	15.53	45	12.05
Skud 11	30.38	20.06	23	15.53	45	12.05
Skud 12	30.35	19.37	23	15.53	45	12.05
Skud 13	26.95	22.51	23	21.33	45	16.37
Skud 14	39.37	21.48	23	21.33	45	16.37
Skud 15	39.37	22.47	23	21.33	45	16.37
Skud 16	43.97	23.41	23	27.78	45	20.97
Skud 17	43.97	23.15	23	27.78	45	20.97
Skud 18	43.97	22.79	23	27.78	45	20.97

Fig. 9: Maldata.