Test EDP -varianta B

Disciplina: Ecuatii cu derivate partiale
Tipul examinarii: lucrare partiala
Nume student:
Grupele 321, 322
Timp de lucru: 90 minute

Nu uitati sa va scrieti numele si prenumele in rubrica Nume student.

Acest test contine 3 probleme (toate obligatorii).

Testul este individual. In cazul fraudarii (redactare identica cu a altui coleg) se anuleaza punctajul tuturor partilor implicate.

Pentru redactarea solutiilor incercati sa aplicati urmatoarele reguli:

- Daca folositi o teorema fundamentala, rezultat cunoscut, etc **trebuie sa indicati** acest lucru si sa explicati de ce rezultatul respectiv se poate aplica.
- Pe cat posibil, **organizati-va munca** astfel incat la sfarsitului timpului de lucru sa returnati rezolvarile in ordinea de pe subiecte.
- Va sugerez sa rezolvati mai intai ce stiti sa faceti la prima vedere pentru a nu intra in criza de timp la finalul timpului de lucru!
- Raspunsurile corecte dar argumentate incomplet (din punct de vedere al calculelor/explicatiilor) vor primi punctaj partial.

Punctaj: Problema 1 (3 p), Problema 2 (3.5 p), Problema 3 (2.5 p). Un punct este din oficiu, deci se **pleaca din nota 10**.

Problema 1. (3p)

(a). Fie

$$f: \mathbb{R}^4 \to \mathbb{R}, \quad f(x) = \ln\left(\frac{1}{1+|x|^2}\right), \quad x = (x_1, x_2, x_3, x_4) \in \mathbb{R}^4,$$

Folosind eventual formula Laplacianului pentru functii radiale calculati Δf .

(b). Calculati (pe domeniul maxim de definitie) $\frac{\partial f}{\partial u}$ pentru functia

$$f(x,y) = x^{y\cos(xy)}$$

(c). Integrati problema Cauchy

(1)
$$\begin{cases} x^2 u_x(x,y) - 2u_y(x,y) = 2u, & (x,y) \in \mathbb{R} \times \mathbb{R} \\ u(x,0) = \sin(x), & x \in \mathbb{R}. \end{cases}$$

Problema 2. (3.5p) Fie $\Omega := \{(x,y) \in \mathbb{R}^2; x^2 + y^2 < 4\}$ si $\partial \Omega$ frontiera lui Ω . Fie problema

(2)
$$\begin{cases} -\Delta u(x,y) = \frac{3}{1+y^2}, & (x,y) \in \Omega \\ u(x,y) = 0, & (x,y) \in \partial\Omega. \end{cases}$$

- (a). Aratati ca problema (2) are cel mult o solutie $u \in C^2(\Omega) \cap C(\overline{\Omega})$.
- (b). Aratati ca u este functie para in raport cu variabila y. Calculati $u_{y}(0,0)$.
- (c). Gasiti constanta C astfel incat functia $v(x,y) = C(x^2 + y^2)$ sa verifice $-\Delta v = 3$ in Ω .
- (d). Folosind (eventual) principiul de maxim pentru functii armonice sa se determine solutia problemei

(3)
$$\begin{cases} -\Delta u(x,y) = 3, & (x,y) \in \Omega, \\ u(x,y) = 0, & (x,y) \in \partial \Omega \end{cases}$$

(e). Folosind (eventual) principiul de maxim pentru functii sub/super armonice sa se arate ca solutia problemei (2) verifica

$$|u(x,y)| \le 3, \quad \forall (x,y) \in \overline{\Omega}.$$

Problema 3. (2.5p)

- (a). Fie functia $g(x) := |x|^{\frac{5}{3}} x_1x_2$, $x = (x_1, x_2, x_3, x_4) \in \mathbb{R}^4 \setminus \{0\}$. Calculati $x \cdot \nabla g$ intr-un punct oarecare din domeniul de definitie si apoi in punctul (1, 1, 0, 0).
- (b). Calculati $\operatorname{div}(x|x|^4)$, $x \in \mathbb{R}^5 \setminus \{0\}$.
- (c). Dati exemplu de o functie u strict super-armonica in \mathbb{R}^2 ($-\Delta u > 0$ in \mathbb{R}^2) care se anuleaza pe dreapta x + 2y = 0.
- (d). Determinati p numar real astfel incat functia $f: \mathbb{R}^3 \setminus \{0\} \to \mathbb{R}$ definita prin

$$f(x) := \frac{1}{1+|x|}|x|^p, \quad x = (x_1, x_2, x_3),$$

sa fie local integrabila.

(e). Fie E solutia fundamentala a Laplacianului in \mathbb{R}^3 . Aratati ca $\frac{\partial E}{\partial x_2}$ este local integrabila.