Ядро и образ на линейно изображение, теорема за ранга и дефекта. Обратим линеен оператор.

Определение 1. Ако $\varphi: U \to V$ е линейно изображение, то множеството

$$\ker(\varphi) = \{ u \in U \,|\, \varphi(u) = \overrightarrow{\mathcal{O}}_V \}$$

се нарича ядро на φ , а множеството

$$\operatorname{im}(\varphi) = \{ \varphi(u) \, | \, u \in U \}$$

ce нарича образ на φ .

Твърдение 2. Ако $\varphi: U \to V$ е линейно изображение, то ядрото $\ker(\varphi)$ на φ е подпространство на U, а образът $\operatorname{im}(\varphi)$ на φ е подпространство на V.

Доказателство. Ако $a_1, \ldots, a_n \in \ker(\varphi)$, то от

$$\varphi(x_1a_1 + \ldots + x_na_n) = x_1\varphi(a_1) + \ldots + x_n\varphi(a_n) = x_1\overrightarrow{\mathcal{O}}_V + \ldots + x_n\overrightarrow{\mathcal{O}}_V = \overrightarrow{\mathcal{O}}_V$$

за произволни $x_1, \ldots, x_n \in F$ следва $x_1a_1 + \ldots + x_na_n \in \ker(\varphi)$. Това доказва, че $\ker(\varphi)$ е подпространство на U.

За произволни $u_1, \ldots, u_n \in U$ и $x_1, \ldots, x_n \in F$ е изпълнено

$$x_1\varphi(u_1) + \ldots + x_n\varphi(u_n) = \varphi(x_1u_1 + \ldots + x_nu_n) \in \operatorname{im}(\varphi).$$

С това установяваме, че $\operatorname{im}(\varphi)$ е подпространство на V.

Определение 3. Ако $\varphi: U \to V$ е линейно изображение, то размерността $d(\varphi) = \dim \ker(\varphi)$ на ядрото $\ker(\varphi)$ на φ се нарича дефект на φ , а размерността $\operatorname{rk}(\varphi) = \dim \operatorname{im}(\varphi)$ на образа $\operatorname{im}(\varphi)$ на φ се нарича ранг на φ .

Твърдение 4. Нека $\varphi: U \to V$ е линейно изображение и $e = (e_1, \dots, e_n)$ е базис на U. Тогава образът $\operatorname{im}(\varphi) = l(\varphi(e_1), \dots, \varphi(e_n))$ на φ се поражда от образите $\varphi(e_i)$ на базисните вектори на U.

Още повече, ако V е крайномерно пространство, $f = (f_1, \ldots, f_m)$ е базис на V и A е матрицата на φ спрямо базисите е и f, то рангот $\mathrm{rk}(\varphi) = \mathrm{rk}(A)$ на φ совпада с ранга на A.

Доказателство. Произволен вектор от $\operatorname{im}(\varphi)$ има вида $\varphi(u)$ за някакъв вектор $u \in U$. Изразяваме

$$u = ex = (e_1, \dots, e_n) \begin{pmatrix} x_1 \\ \dots \\ x_n \end{pmatrix} = \sum_{i=1}^n x_i e_i$$

като линейна комбинация на базисните вектори e_1, \ldots, e_n на U. Тогава

$$\varphi(u) = \varphi(ex) = \varphi(e)x = (\varphi(e_1), \dots, \varphi(e_n)) \begin{pmatrix} x_1 \\ \dots \\ x_n \end{pmatrix} \in l(\varphi(e_1), \dots, \varphi(e_n))$$

е линейна комбинация на $\varphi(e_1), \ldots, \varphi(e_n)$ и $\operatorname{im}(\varphi) \subseteq l(\varphi(e_1), \ldots, \varphi(e_n))$. Обратното включване $l(\varphi(e_1), \ldots, \varphi(e_n)) \subseteq \operatorname{im}(\varphi)$ се дължи на $\varphi(e_1), \ldots, \varphi(e_n) \in \operatorname{im}(\varphi)$ и на това, че $\operatorname{im}(\varphi)$ е подпространство на V. Това доказва

$$\operatorname{im}(\varphi) = l(\varphi(e_1), \dots, \varphi(e_n)).$$

Рангът на φ е

$$rk(\varphi) = \dim \operatorname{im}(\varphi) = \dim l(\varphi(e_1), \dots, \varphi(e_n)) = rk(\varphi(e_1), \dots, \varphi(e_n)).$$

Ако V е крайномерно, то по определение, вектор-стълбовете на матрицата A са съставени от координатите на $\varphi(e_1), \ldots, \varphi(e_n)$ спрямо базиса f_1, \ldots, f_m , така че

$$\operatorname{rk}(\varphi(e_1), \dots, \varphi(e_n)) = \operatorname{rk}(A)$$
 и $\operatorname{rk}(\varphi) = \operatorname{rk}(A)$.

Твърдение 5. (Теорема за ранга и дефекта на линейно изображение на крайномерно пространство:) $Heka\ \varphi: U \to V$ е линейно изображение на n-мерно пространство U в произволно линейно пространство V. Тогава рангът $\mathrm{rk}(\varphi)$ и дефектът $d(\varphi)$ на φ изпълняват равекството

$$rk(\varphi) + d(\varphi) = n.$$

Доказателство. Нека $k=d(\varphi)$ и e_1,\ldots,e_k е базис на ядрото $\ker(\varphi)$ на φ . Продължаваме до базис $e_1,\ldots,e_k,e_{k+1},\ldots,e_n$ на U. Достатъчно е да проверим, че $\varphi(e_{k+1}),\ldots,\varphi(e_n)$ е базис на образа $\operatorname{im}(\varphi)$ на φ , за да получим, че

$$\operatorname{rk}(\varphi) := \dim \operatorname{im}(\varphi) = n - k = \dim(U) - d(\varphi)$$

и да докажем твърдението.

По предишното твърдение, $\operatorname{im}(\varphi) = l(\varphi(e_1), \dots, \varphi(e_k), \varphi(e_{k+1}), \dots, \varphi(e_n))$. Вземайки предвид $\varphi(e_1) = \dots = \varphi(e_n) = \overrightarrow{\mathcal{O}}$ за векторите $e_1, \dots, e_k \in \ker(\varphi)$, получаваме

$$\operatorname{im}(\varphi) = l(\varphi(e_{k+1}), \dots, \varphi(e_n)).$$

Ако
$$\sum_{i=k+1}^{n} x_i \varphi(e_i) = \overrightarrow{\mathcal{O}}_V$$
, то

$$\varphi\left(\sum_{i=k+1}^n x_i e_i\right) = \overrightarrow{\mathcal{O}}_V.$$

Следователно $\sum_{i=k+1}^n x_i e_i \in \ker(\varphi)$ и съществуват $x_1, \dots, x_k \in F$ с

$$\sum_{i=k+1}^{n} x_i e_i = \sum_{j=1}^{k} x_j e_j.$$

В резултат,

$$\sum_{i=1}^{k} x_i e_i + \sum_{i=k+1}^{n} (-x_i) e_i = \overrightarrow{\mathcal{O}}_U,$$

откъдето $x_i=0$ за всички $1\leq i\leq n$, съгласно линейната независимост на базиса e_1,\ldots,e_n на U. Това доказва, че $\varphi(e_{k+1}),\ldots,\varphi(e_n)$ са линейно независими, а оттам и базис на $\operatorname{im}(\varphi)$.

Определение 6. Линейните изоморфизми $\varphi: U \to U$ на пространство U със себе си се наричат обратими линейни оператори.

Знаем, че ако $\varphi: U \to U$ е обратим линеен оператор, то $\varphi^{-1}: U \to U$ е линейно изображение, а оттам и обратим линеен оператор.

Твърдение 7. Следните условия са еквивалентни за линеен оператор $\varphi: U \to U$ в n-мерно пространство U:

- $(i) \ \varphi \ e \ oбратим линеен onepamop;$
- (ii) ядрото $\ker(\varphi) = \{ \overrightarrow{\mathcal{O}}_U \}$ на φ е нулевото пространство;
- (iii) дефектът на φ е $d(\varphi) = 0$;
- (iv) рангът на φ е $\operatorname{rk}(\varphi) = n$;
- (v) образът $\operatorname{im}(\varphi) = U$ на φ съвпада с цялото пространство U;
- $(vi)\ \varphi$ трансформира базис e_1,\ldots,e_n на U в базис $\varphi(e_1),\ldots\varphi(e_n)$ на U.

 \mathcal{A} оказателство. $(i) \Rightarrow (ii)$ Произволен линеен оператор $\varphi: U \to U$ оставя на място нулевия вектор $\varphi(\overrightarrow{\mathcal{O}}_U) = \overrightarrow{\mathcal{O}}_U$, така че $\overrightarrow{\mathcal{O}}_U \in \ker(\varphi)$. Поради взаимната еднозначност на φ , за всеки ненулев вектор $u \in U$, $u \neq \overrightarrow{\mathcal{O}}_U$ е в сила $\varphi(u) \neq \varphi(\overrightarrow{\mathcal{O}}_U) = \overrightarrow{\mathcal{O}}_U$, така че $\ker(\varphi) = \{\overrightarrow{\mathcal{O}}_U\}$ се състои само от нулевия вектор $\overrightarrow{\mathcal{O}}_U$ на U.

- $(ii) \Rightarrow (iii)$ Ако ядрото $\ker(\varphi) = \{\overrightarrow{\mathcal{O}}_U\}$, то дефектът $d(\varphi) := \dim \ker(\varphi) = 0$.
- $(iii)\Rightarrow (iv)$ По Теоремата за ранга и дефекта на линейно изображение $\varphi:U\to U$ на n-мерно пространство U, $\mathrm{rk}(\varphi)=n-d(\varphi)=n-0=n.$
- $(iv) \Rightarrow (v)$ Ако подпространството $\operatorname{im}(\varphi)$ на U е с размерност $\dim \operatorname{im}(\varphi) = \operatorname{rk}(\varphi) = n = \dim(U)$, то $\operatorname{im}(\varphi)$ съвпада с U, $\operatorname{im}(\varphi) = U$.
- $(v) \Rightarrow (vi)$ Ако e_1, \ldots, e_n е базис на U и $\operatorname{im}(\varphi) = l(\varphi(e_1), \ldots, \varphi(e_n)) = U$, то $n = \dim(U) = \dim l(\varphi(e_1), \ldots, \varphi(e_n)) = \operatorname{rk}(\varphi(e_1), \ldots, \varphi(e_n))$, така че $\varphi(e_1), \ldots, \varphi(e_n)$ са линейно независими, а оттам и базис на n-мерното пространство U.
- $(vi)\Rightarrow (i)$ Ако линеен оператор $\varphi:U\to U$ изобразява базис e_1,\ldots,e_n на U в базис $\varphi(e_1),\ldots,\varphi(e_n)$ на U, то еднозначно определеният линеен оператор $\psi:U\to U$ с $\psi(\varphi(e_i))=e_i$ за всички $1\leq i\leq n$ е обратен на φ съгласно

$$(\psi\varphi)\left(\sum_{i=1}^{n} x_i e_i\right) = \psi\left(\varphi\left(\sum_{i=1}^{n} x_i e_i\right)\right) = \psi\left(\sum_{i=1}^{n} x_i \varphi(e_i)\right) =$$
$$= \sum_{i=1}^{n} x_i \psi(\varphi(e_i)) = \sum_{i=1}^{n} x_i e_i = \operatorname{Id}_U\left(\sum_{i=1}^{n} x_i e_i\right)$$

за произволни $x_i \in F$ и

$$(\varphi\psi)\left(\sum_{i=1}^{n}y_{i}\varphi(e_{i})\right) = \varphi\left(\psi\left(\sum_{i=1}^{n}y_{i}\varphi(e_{i})\right)\right) = \varphi\left(\sum_{i=1}^{n}y_{i}\psi(\varphi(e_{i}))\right) =$$

$$= \varphi\left(\sum_{i=1}^{n}y_{i}e_{i}\right) = \sum_{i=1}^{n}y_{i}\varphi(e_{i}) = \operatorname{Id}_{U}\left(\sum_{i=1}^{n}y_{i}\varphi(e_{i})\right)$$

за всички $y_i \in F$.

Твърдение 8. Линеен оператор $\varphi: U \to U$ в n-меро пространство U е обратим тогава и само тогава, когато матрицата $A \in M_{n \times n}(F)$ на φ спрямо произволен базис $e = (e_1, \ldots, e_n)$ на U е обратима.

Доказателство. Нека $\varphi: U \to U$ е обратим линеен оператор с обратен $\varphi^{-1}: U \to U$. Ако φ има матрица $A \in M_{n \times n}(F)$ спрямо базис $e = (e_1, \dots, e_n)$ на U, а φ^{-1} има матрица $B \in M_{n \times n}(F)$ спрямо същия базис, то съгласно Твърдение 6 от темата за действия с линейни изображения, матрицата на тъждественото изображение $\varphi \varphi^{-1} = \mathrm{Id}_U = \varphi^{-1} \varphi$ е $AB = E_n = BA$. Следователно A е обратима и $A^{-1} = B$.

Обратно, нека матрицата $A \in M_{n \times n}(F)$ на $\varphi: U \to U$ спрямо някакъв базис $e = (e_1, \dots, e_n)$ на U е обратима. Разглеждаме линейния оператор $\psi: U \to U$ с матрица $A^{-1} \in M_{n \times n}(F)$ спрямо базиса e. Съгласно Твърдение 6 от темата за действия с линейни изображения, операторът $\psi \varphi$ има матрица $A^{-1}A = E_n$ спрямо базиса e. Следователно $\psi \varphi = \mathrm{Id}_U$ е тъждественото изображение на U. Аналогично, произведението $\varphi \psi$ има матрица $AA^{-1} = E_n$ спрямо базиса e и $\varphi \psi = \mathrm{Id}_U$. Следователно операторът φ е обратим и обратият му е $\varphi^{-1} = \psi$.

Задача 9. Нека e_1, e_2, e_3 е базис на линейно пространство V над полето $\mathbb R$ на реалните числа, а $f: V \to V$ е линейният оператор, действащ по правилото

$$f(x_1e_1 + x_2e_2 + x_3e_3) = (x_1 - x_2)e_1 + (x_1 + x_2)e_2$$

за произволни $x_1, x_2, x_3 \in \mathbb{R}$. Да се намерят ядрото $\ker(\varphi)$ и образът $\operatorname{im}(\varphi)$ на φ .

Доказателство. По определение, ядрото $\ker(f)$ на f се състои от векторите $v = x_1e_1 + x_2e_2 + x_3e_3 \in V$, за които $f(v) = (x_1 - x_2)e_1 + (x_1 + x_2)e_2 = \overrightarrow{\mathcal{O}}$. Координатите на тези вектори са решенията на хомогенната система линейни уравнения

$$\begin{vmatrix} x_1 & -x_2 & = 0 \\ x_1 & +x_2 & = 0 \end{vmatrix}$$

С други думи,

$$\ker(f) = \{x_1e_1 + x_2e_2 + x_3e_3 \mid x_1 = x_2 = 0\} = \{x_3e_3 \mid x_3 \in \mathbb{R}\} = l(e_3)$$

е правата, породена от e_3 . В частност, дефектът на f е $d(f) = \dim \ker(f) = 1$. Образът

$$\operatorname{im}(f) = \{ f(x_1e_1 + x_2e_2 + x_3e_3) \mid x_i \in \mathbb{R} \} = \{ (x_1 - x_2)e_1 + (x_1 + x_2)e_2 \mid x_1, x_2 \in \mathbb{R} \} \subseteq l(e_1, e_2)$$

се съдържа в линейната обвивка на e_1 и e_2 . По Теоремата за ранга и дефекта на линейно изображение, $\dim \operatorname{im}(f) = \operatorname{rk}(f) = \dim(V) - d(f) = 3 - 1 = 2$, така че $\operatorname{im}(f) = l(e_1, e_2)$.