VE401 Mid RC Pt.2

Wang Yangyang

UM-SJTU JI

2022 Spring

Continuous Random Variables

- Basics
- Exponential, Gamma, Chi-Squared Distribution
- Normal Distribution
- Transformation of R.V.
- Standardizing and Normal Approximation
- Chebyshev's Inequality

Multivariate Random Variables

- Discrete, Continuous Multivariate R.V.
- Covariance and Correlation
- Hypergeometric Distribution
- Transformation of R.V. and Application

3 Reliability

- Reliability and Hazard
- Distribution and System

Continuous Random Variables

- Basics
- Exponential, Gamma, Chi-Squared Distribution
- Normal Distribution
- Transformation of R.V.
- Standardizing and Normal Approximation
- Chebyshev's Inequality

2 Multivariate Random Variables

- Discrete, Continuous Multivariate R.V.
- Covariance and Correlation
- Hypergeometric Distribution
- Transformation of R.V. and Application

3 Reliability

- Reliability and Hazard
- Distribution and System

Continuous Random Variable: Def. and PDF

Definition

Let S be a sample space. A *continuous random variable* is a map $X:S\to\mathbb{R}$ together with a function $f_X:\mathbb{R}\to\mathbb{R}$ with the properties that

- ① $f_X(x) \geqslant 0$ for all $x \in \mathbb{R}$ and

The integral of f_X is interpreted as the probability that X assumes values X in a given range, i.e.,

$$P[a \leqslant X \leqslant b] = \int_{a}^{b} f_{X}(x) dx$$

The function f_X is called the *probability density function* of random variable X.

Continuous Random Variable: CDF and Location

Definition

Let (X, f_X) be a continuous random variable. The *cumulative* distribution function for X is defined by $F_X : \mathbb{R} \to \mathbb{R}$,

$$F_X(x) := P[X \leqslant x] = \int_{-\infty}^x f_X(y) dy$$

By the fundamental theorem of calculus, we can obtain the density function from F_X by

$$f_X(x) = F_X'(x)$$

Definition

- The *median* M_X is defined by $P[X \leq M_X] = 0.5$.
- The *mean* is given by E[X].
- The *mode* x_0 , is the location of the maximum of f_X .

Expectation, Variance and Moments

Expectation.

$$E[X] := \int_{\mathbb{R}} x \cdot f_X(x) dx$$

Variance.

$$Var[X] := E[(X - E[X])^2] = E[X^2] - E[X]^2$$

M.G.F.

$$m_X(t) = E[e^{tX}] = \int_{-\infty}^{\infty} e^{tx} f_X(x) dx$$

Note: All previous properties about expectation, variance and M.G.F. hold for continuous random variables.

- Continuous Random Variables
 - Basics
 - Exponential, Gamma, Chi-Squared Distribution
 - Normal Distribution
 - Transformation of R.V.
 - Standardizing and Normal Approximation
 - Chebyshev's Inequality
- 2 Multivariate Random Variables
 - Discrete, Continuous Multivariate R.V.
 - Covariance and Correlation
 - Hypergeometric Distribution
 - Transformation of R.V. and Application
- 3 Reliability
 - Reliability and Hazard
 - Distribution and System

Connections

Exponential Distribution

Definition

A continuous random variable (X, f_{β}) follows *exponential distribution* with parameter β if the probability density function is defined by

$$f_{\beta}(X) = \begin{cases} \beta e^{-\beta x}, & x > 0\\ 0, & x \leq 0 \end{cases}$$

Interpretation

The time between successive arrivals of a Poisson process with rate λ follows exponential distribution with parameter $\beta=\lambda$. (Recall $P[T>t]=e^{-\beta\,t}$.) *Note.* Memoryless property:

$$P[X > x + s \mid X > x] = P[X > s]$$

Exponential Distribution

Properties

Mean.

$$E[X] = \frac{1}{\beta}$$

Variance.

$$Var[X] = \frac{1}{\beta^2}$$

M.G.F.

$$m_X: (-\infty, \beta) \to \mathbb{R}, \quad m_X(t) = \frac{1}{1 - t/\beta}$$

Exponential Distribution

Plot

```
Plot[Table[PDF[ExponentialDistribution[\lambda], x], {\lambda, {1/2, 1, 2}}] // Evaluate, {x, 0, 3}, PlotRange -> All, PlotLegends -> {"\lambda=1/2", "\lambda=1", "\lambda=2"}]
```


Definition

Let $\alpha, \beta \in \mathbb{R}, \alpha, \beta > 0$. A continuous random variable $(X, f_{\alpha,\beta})$ follows a gamma distribution with parameters α and β if the probability density function is given by

$$f_{\alpha,\beta}(x) = \begin{cases} \frac{\beta^{\alpha}}{\Gamma(\alpha)} x^{\alpha-1} e^{-\beta x}, & x > 0\\ 0, & x \le 0 \end{cases}$$

where $\Gamma(\alpha)=\int_0^\infty z^{\alpha-1}e^{-z}\ dz$, $\alpha>0$ is the Euler gamma function. Interpretation.

Interpretation

The time needed for the next r arrivals in a Poisson process with rate λ follows a Gamma distribution with parameters $\alpha = r$, $\beta = \lambda$.

Properties

Mean.

$$E[X] = \frac{\alpha}{\beta}$$

Variance.

$$\mathsf{Var}[X] = \frac{\alpha}{\beta^2}$$

M.G.F.

$$m_X: (-\infty, \beta) \to \mathbb{R}, \quad m_X(t) = \frac{1}{(1 - t/\beta)^{\alpha}}$$

Plot

```
Plot[Table[PDF[GammaDistribution[\alpha,4], \times], {\alpha, {1, 2, 3}}] // Evaluate, {\times, 0, 20}, PlotRange -> All, PlotLegends -> {"\alpha=1", "\alpha=2", "\alpha=3"}]
```


Plot

What's Wrong? – FOR β , MMA IS DIFFERENT FROM THE LECTURE! It's (1/2,1/4,1/6) for the lecture version.

```
Plot[Table[PDF[GammaDistribution[2,\beta], x], {\beta, {2, 4, 6}}] // Evaluate, {x, 0, 20}, PlotRange -> All, PlotLegends -> {"\beta=2", "\beta=4", "\beta=6"}]
```


Chi-Squared Distribution

Definition

Definition. Let $\gamma \in \mathbb{N}$. A continuous random variable $\left(X_{\gamma}^2, f_X\right)$ follows a chi-squared distribution with γ degrees of freedom if the probability density function is given by

$$f_{\gamma}(x) = \begin{cases} \frac{1}{2^{\gamma/2}\Gamma(\gamma/2)} x^{\gamma/2-1} e^{-x/2}, & x > 0\\ 0, & x \leqslant 0 \end{cases}$$

It is a gamma distribution with $\alpha = \gamma/2$, $\beta = 1/2$. Therefore,

$$\mathrm{E}\left[X_{\gamma}^{2}\right]=\gamma,\quad \mathsf{Var}\left[X_{\gamma}^{2}\right]=2\gamma$$

Chi-Squared Distribution

Plot

```
Plot[Table[PDF[ChiSquareDistribution[\gamma], x], {\gamma, {2, 4, 6}}] // Evaluate, {x, 0, 20}, PlotRange -> All, PlotLegends -> {"\gamma=2", "\gamma=4", "\gamma=6"}]
```


990

Continuous Random Variables

- Basics
- Exponential, Gamma, Chi-Squared Distribution
- Normal Distribution
- Transformation of R.V.
- Standardizing and Normal Approximation
- Chebyshev's Inequality

2 Multivariate Random Variables

- Discrete, Continuous Multivariate R.V.
- Covariance and Correlation
- Hypergeometric Distribution
- Transformation of R.V. and Application

3 Reliability

- Reliability and Hazard
- Distribution and System

Normal Distribution

Definition

A continuous random variable $\left(X,f_{\mu,\sigma^2}\right)$ has the *normal distribution* with mean $\mu\in\mathbb{R}$ and variance $\sigma^2,\sigma>0$ if the probability density function is given by

$$f_{\mu,\sigma^2} = \frac{1}{\sqrt{2\pi\sigma^2}} \exp\left[-\frac{1}{2} \left(\frac{x-\mu}{\sigma}\right)^2\right], \quad x \in \mathbb{R}$$

Useful Formula

Normal.

$$\int_{-\infty}^{\infty} e^{-\frac{(x-\mu)^2}{2\sigma^2}} dx = \sqrt{2\pi}\sigma$$

Gamma.

$$\int_0^\infty x^{\alpha-1} e^{-\beta x} dx = \frac{\Gamma(\alpha)}{\beta^{\alpha}}$$

Normal Distribution

Properties

Mean.

$$E[X] = \mu$$

Variance.

$$Var[X] = \sigma^2$$

M.G.F.

$$m_X: \mathbb{R} \to \mathbb{R}, \quad m_X(t) = \exp\left(\mu t + \frac{1}{2}\sigma^2 t^2\right)$$

Continuous Random Variables

- Basics
- Exponential, Gamma, Chi-Squared Distribution
- Normal Distribution
- Transformation of R.V.
- Standardizing and Normal Approximation
- Chebyshev's Inequality

2 Multivariate Random Variables

- Discrete, Continuous Multivariate R.V.
- Covariance and Correlation
- Hypergeometric Distribution
- Transformation of R.V. and Application

3 Reliability

- Reliability and Hazard
- Distribution and System

Transformation of Random Variables

Theorem

Let X be a continuous random variable with density f_X . Let $Y = \varphi \circ X$, where $\varphi : \mathbb{R} \to \mathbb{R}$ is strictly *monotonic and differentiable*. The density for Y is then given by

$$f_Y(y) = f_X\left(\varphi^{-1}(y)\right) \cdot \left| \frac{\mathrm{d}\varphi^{-1}(y)}{\mathrm{d}y} \right|,$$

for $y \in \operatorname{ran} \varphi$ and

$$f_Y(y) = 0$$
,

for $y \notin \operatorname{ran} \varphi$.

What if not monotonic and differentiable? Consider CDF.

Transformation of Random Variables

What if not monotonic and differentiable? Consider CDF.

Example

Consider the continuous random variable X with density

$$f_X(x) = \frac{2/\pi}{e^{-x} + e^x}$$

for $x \in \mathbb{R}$

Find the density of the random variable X^2 .

Things become easier using the observation that f_X is an even function.

Transformation of Random Variables

Solution

Note that the function $\varphi: \mathbb{R} \to \mathbb{R}_+ \cup \{0\}, \varphi(x) = x^2$ is not bijective, so we can't simply apply the theorem for transforming random variables from the lecture. Let y > 0. Then, using the fact that f_X is even,

$$F_Y(y) = P[Y \leqslant y] = P\left[X^2 \leqslant y\right] = P[-\sqrt{y} \leqslant X \leqslant \sqrt{y}] = \int_{-\sqrt{y}}^{\sqrt{y}} f_X(x) dx$$

$$F_Y(y) = P[Y \le y] = P[X^2 \le y] = 2 \int_0^{\sqrt{y}} f_X(x) dx$$

$$f_Y(y) = F_Y'(y) = 2f_X(\sqrt{y}) \cdot \frac{1}{2\sqrt{y}} = \frac{2}{\pi\sqrt{y}} \frac{1}{e^{-\sqrt{y}} + e^{\sqrt{y}}} \quad y > 0$$

For $y \leq 0$ we have $F_Y(y) = P[Y \leq y] = P[X^2 \leq y] = 0$, so

$$f_{\mathbf{Y}}(\mathbf{y}) = 0 \quad \mathbf{y} \leqslant 0.$$

Continuous Random Variables

- Basics
- Exponential, Gamma, Chi-Squared Distribution
- Normal Distribution
- Transformation of R.V.
- Standardizing and Normal Approximation
- Chebyshev's Inequality

2 Multivariate Random Variables

- Discrete, Continuous Multivariate R.V.
- Covariance and Correlation
- Hypergeometric Distribution
- Transformation of R.V. and Application

3 Reliability

- Reliability and Hazard
- Distribution and System

Standardizing Normal Distribution

Suppose $X \sim \text{Normal}(\mu, \sigma^2)$. Then

$$Z = \frac{X - \mu}{\sigma} \sim \text{Normal}(0, 1)$$

where the normal distribution with mean μ and variance σ^2 is the standard normal distribution.

 $\boldsymbol{\Phi}$ is the cumulative distribution function for the standard normal distribution function.

$$\Phi(z) := \frac{1}{\sqrt{2\pi}} \int_{-\infty}^{z} e^{-t^2/2} dt$$

Calculate P[X < a] by

$$P[X < a] = P\left[\frac{X - \mu}{\sigma} < \frac{a - \mu}{\sigma}\right] = P\left[Z < \frac{a - \mu}{\sigma}\right] = \Phi\left(\frac{a - \mu}{\sigma}\right)$$

26 / 61

Theorem of De Moivre-Laplace

Theorem

Suppose S_n is the number of successes in a sequence of n i.i.d. Bernoulli trials with probability of success 0 . Then

$$\lim_{n \to \infty} P \left[a < \frac{X - np}{\sqrt{np(1 - p)}} \le b \right] = \frac{1}{2\pi} \int_a^b e^{-x^2/2} dx$$

Normal Approximation of Binomial Distribution

For $y = 0, \ldots, n$

$$P[X \leqslant y] = \sum_{x=0}^{y} \binom{n}{x} p^{x} (1-p)^{n-x} \approx \Phi\left(\frac{y+1/2-np}{\sqrt{np(1-p)}}\right)$$

where we require that

$$np > 5$$
 if $p \le \frac{1}{2}$ or $n(1-p) > 5$ if $p > \frac{1}{2}$

This additional term 1/2 is known as the *half-unit correction* for the normal approximation to the *cumulative* binomial distribution function.

Continuous Random Variables

- Basics
- Exponential, Gamma, Chi-Squared Distribution
- Normal Distribution
- Transformation of R.V.
- Standardizing and Normal Approximation
- Chebyshev's Inequality

2 Multivariate Random Variables

- Discrete, Continuous Multivariate R.V.
- Covariance and Correlation
- Hypergeometric Distribution
- Transformation of R.V. and Application

3 Reliability

- Reliability and Hazard
- Distribution and System

Chebyshev's Inequality and Law of Large Number

Theorem

Let X be a random variable, then for $k \in \mathbb{N} \setminus \{0\}$ and c > 0,

$$P[|X| \geqslant c] \leqslant \frac{\mathrm{E}\left[|X|^k\right]}{c^k}$$

As another version of this inequality, suppose X has mean μ and standard deviation σ , and let m > 0,

$$P[|X - \mu| \geqslant m\sigma] \leqslant \frac{1}{m^2}$$

Weak Law of Large Number

Let X_1, X_2, \ldots be a sequence of i.i.d. random variables with mean μ and variance σ^2 . Then for any $\varepsilon > 0$,

$$P\left[\left|\frac{X_1+\ldots+X_n}{n}-\mu\right|\geqslant \varepsilon\right]\stackrel{n\to\infty}{\longrightarrow} 0$$

Central Limit Theorem

Theorem

Central Limit Theorem. Let (X_i) be a sequence of independent, but not necessarily identical random variables whose third moments exist and satisfy a certain technical condition. Let

$$Y_n = X_1 + \cdots + X_n$$

Then for any $z \in \mathbb{R}$

$$P\left[\frac{Y_n - \operatorname{E}[Y_n]}{\sqrt{\operatorname{Var}[Y_n]}} \leqslant z\right] \stackrel{n \to \infty}{\longrightarrow} \frac{1}{\sqrt{2\pi}} \int_{-\infty}^z e^{-x^2/2} dx$$

Interpretation

Lyapunov's Central Limit theorem is at the core of the belief by experimentalists that "random error" may be described by the normal distribution.

- 1 Continuous Random Variables
 - Basics
 - Exponential, Gamma, Chi-Squared Distribution
 - Normal Distribution
 - Transformation of R.V.
 - Standardizing and Normal Approximation
 - Chebyshev's Inequality
- 2 Multivariate Random Variables
 - Discrete, Continuous Multivariate R.V.
 - Covariance and Correlation
 - Hypergeometric Distribution
 - Transformation of R.V. and Application
- 3 Reliability
 - Reliability and Hazard
 - Distribution and System

Discrete Multivariate Random Variable

Definition

Let S be a sample space and Ω a countable subset of \mathbb{R}^n . A discrete multivariate random variable is a map

$$X: S \to \Omega$$

together with a function $f_X : \Omega \to \mathbb{R}$ with the properties that

- ① $f_X(x) \ge 0$ for all $x = (x_1, ..., x_n) \in \Omega$ and
- **2** $\sum_{x \in \Omega} f_X(x) = 1$,

where f_X is the *joint density function* of the random variable X.

Continuous Multivariate Random Variable

Definition

Let S be a sample space. A continuous multivariate random variable is a map

$$X: S \to \mathbb{R}^n$$

together with a function $f_X : \mathbb{R}^n \to \mathbb{R}$ with the properties that

- ① $f_X(x) \ge 0$ for all $x = (x_1, ..., x_n) \in \mathbb{R}^n$ and
- 2 $\int_{\mathbb{R}^n} f_X(x) = 1$,

where f_X is the *joint density function* of the random variable X.

Multivariate Random Variable

• Marginal density f_{X_k} for X_k , k = 1, ..., n:

$$f_{X_k}(x_k) = \int_{\mathbb{R}^{n-1}} f_X(x_1, \dots, x_n) dx_1 \dots dx_{k-1} dx_{k+1} \dots dx_n.$$

• Independent multivariate random variables:

$$f_X(x_1,\ldots,x_n)=f_{X_1}(x_1)\cdots f_{X_n}(x_n)$$
.

• Conditional density of X_1 conditioned on X_2 :

$$f_{X_1|X_2}(x_1) := \frac{f_{X_1X_2}(x_1, x_2)}{f_{X_2}(x_2)}$$
 whenever $f_{X_2}(x_2) > 0$.

• Joint cumulative distribution function (CDF) is then given by

$$P[X_1 \leqslant a_1, \dots, X_n \leqslant a_n] = \int_{-\infty}^{a_1} \dots \int_{-\infty}^{a_n} f_X(x) dx_1 \dots dx_n$$

2022 Spring

35 / 61

Continuous Multivariate Random Variable

Visualization

Joint probability density function $f_{XY}(x, y)$ (left) conditional density function $f_{X|Y}(x \mid y_0)$ (right).

Outline

- 1 Continuous Random Variables
 - Basics
 - Exponential, Gamma, Chi-Squared Distribution
 - Normal Distribution
 - Transformation of R.V.
 - Standardizing and Normal Approximation
 - Chebyshev's Inequality
- 2 Multivariate Random Variables
 - Discrete, Continuous Multivariate R.V.
 - Covariance and Correlation
 - Hypergeometric Distribution
 - Transformation of R.V. and Application
- 3 Reliability
 - Reliability and Hazard
 - Distribution and System

Expectation

Discrete.

$$\mathrm{E}\left[X_{k}\right] = \sum_{x_{k}} x_{k} f_{X_{k}}\left(x_{k}\right) = \sum_{x \in \Omega} x_{k} f_{X}(x)$$

and for continuous function $\varphi: \mathbb{R}^n \to \mathbb{R}$,

$$E[\phi \circ X] = \sum_{x \in \Omega} \phi(x) f_X(x)$$

Continuous.

$$E[X_k] = \int_{\mathbb{R}} x_k f_{X_k}(x_k) dx_k = \int_{\mathbb{R}^n} x_k f_X(x) dx$$

and for continuous function $\varphi : \mathbb{R}^n \to \mathbb{R}$,

$$E[\varphi \circ X] = \int_{\mathbb{R}^n} \varphi(x) f_X(x) dx.$$

38 / 61

Covariance

Definition

Definition. For a multivariate random variable X, the *covariance matrix* Var[X] is given by

$$\begin{pmatrix} \operatorname{Var}\left[X_{1}\right] & \operatorname{Cov}\left[X_{1}, X_{2}\right] & \cdots & \operatorname{Cov}\left[X_{1}, X_{n}\right] \\ \operatorname{Cov}\left[X_{1}, X_{2}\right] & \operatorname{Var}\left[X_{2}\right] & \ddots & \vdots \\ \vdots & \ddots & \ddots & \operatorname{Cov}\left[X_{n-1}, X_{n}\right] \\ \operatorname{Cov}\left[X_{1}, X_{n}\right] & \cdots & \operatorname{Cov}\left[X_{n-1}, X_{n}\right] & \operatorname{Var}\left[X_{n}\right] \end{pmatrix}$$

where the *covariance* of (X_i, X_j) is given by

$$\mathsf{Cov}\left[X_{i},X_{j}\right] = \mathrm{E}\left[\left(X_{i} - \mu_{X_{i}}\right)\left(X_{j} - \mu_{X_{j}}\right)\right] = \mathrm{E}\left[X_{i}X_{j}\right] - \mathrm{E}\left[X_{i}\right]\mathrm{E}\left[X_{j}\right]$$

and

$$Var[CX] = CVar[X]C^T$$
, $C \in Mat(n \times n; \mathbb{R})$

Covariance

Properties

Let X, X_1, \ldots, X_n, Y and Z be random variables.

- X and Y are independent $\Rightarrow \text{Cov}[X, Y] = 0$. The Converse is not True!
- Var[X + Y] = Var[X] + Var[Y] + 2 Cov[X, Y], and more generally,

$$\operatorname{Var}\left[X_{1}+\cdots+X_{n}\right]=\operatorname{Var}\left[X_{1}\right]+\cdots+\operatorname{Var}\left[X_{n}\right]+2\sum_{i< j}\operatorname{Cov}\left[X_{i},X_{j}\right]$$

if
$$Var[X_i] < \infty$$
 for $i = 1, ..., n$

- Cov[X, Y + Z] = Cov[X, Y] + Cov[X, Z]Cov[X, Y - Z] = Cov[X, Y] - Cov[X, Z]
- Cov[X, X] = Var[X]

Correlation

Definition

The *Pearson coefficient of correlation* of random variables X and Y is given by

$$\rho_{XY} := \frac{\mathsf{Cov}[X,Y]}{\sqrt{\mathsf{Var}[X]\,\mathsf{Var}[Y]}}$$

Instead of independence, the correlation coefficient actually measures the the extent to which X and Y are *linearly* dependent, which is not the only way of being dependent.

Properties

- \bullet $-1 \leqslant \rho_{XY} \leqslant 1$,
- $|\rho_{XY}|=1$ iff there exist $\beta_0,\,\beta_1\in\mathbb{R}$ such that

$$Y = \beta_0 + \beta_1 X$$

Correlation

Note

- Uncorrelated does not mean independent,
- Correlation coefficient only measures linear relationships.

Example

Two random variables X and Y.X follows a uniform distribution U(-1,1) and $Y=X^2$. Find Cov(X,Y).

$$\begin{aligned} \mathsf{Cov}(X,Y) &= \mathsf{Cov}\left(X,X^2\right) \\ &= \mathsf{E}\left((X - \mathsf{E}(X))\left(X^2 - \mathsf{E}\left(X^2\right)\right)\right) \\ &= \mathsf{E}\left(X^3 - X^2\mathsf{E}(X) - X\mathsf{E}\left(X^2\right) + \mathsf{E}(X)\mathsf{E}\left(X^2\right)\right) \\ &= \mathsf{E}\left(X^3\right) - \mathsf{E}\left(X^2\right)\mathsf{E}(X) - \mathsf{E}(X)\mathsf{E}\left(X^2\right) + \mathsf{E}(X)\mathsf{E}\left(X^2\right) \\ &= \int_{-1}^1 \frac{1}{2} x^3 \; \mathrm{d}x - \int_{-1}^1 \frac{1}{2} x^2 \; \mathrm{d}x \cdot \int_{-1}^1 \frac{1}{2} x \; \mathrm{d}x = 0 \end{aligned}$$

2022 Spring

The Fisher Transformation

Definition

Let \widetilde{X} and \widetilde{Y} be standardized random variables of X and Y, then the *Fisher transformation* of ρ_{XY} is given by

$$\text{In}\left(\sqrt{\frac{\text{Var}[\widetilde{X}+\widetilde{Y}]}{\text{Var}[\widetilde{X}-\widetilde{Y}]}}\right) = \frac{1}{2}\,\text{In}\left(\frac{1+\rho_{XY}}{1-\rho_{XY}}\right) = \text{Arctanh}\left(\rho_{XY}\right) \in \mathbb{R}$$

We say that X and Y are

- positively correlated if $\rho_{XY} > 0$, and
- negatively correlated if $\rho_{XY} < 0$.

The Bivariate Normal Distribution

The density function of Bivariate Normal Distribution:

$$f_{XY}(x,y) = \frac{1}{2\pi\sigma_X\sigma_Y\sqrt{1-\rho^2}}e^{-\frac{1}{2(1-\rho^2)}\left[\left(\frac{x-\mu_X}{\sigma_X}\right)^2 - 2\rho\left(\frac{x-\mu_X}{\sigma_X}\right)\left(\frac{y-\mu_Y}{\sigma_Y}\right) + \left(\frac{y-\mu_Y}{\sigma_Y}\right)^2\right]}$$

- \circ -1 < ρ < 1
- $\mu_X = E[X]$, $\sigma_X^2 = \text{Var } X$ (and similarly for Y).
- $\rho = \rho_{XY}$ is indeed the correlation coefficient of X and Y.
- X and Y are independent $\iff \rho = 0$

Outline

- 1 Continuous Random Variables
 - Basics
 - Exponential, Gamma, Chi-Squared Distribution
 - Normal Distribution
 - Transformation of R.V.
 - Standardizing and Normal Approximation
 - Chebyshev's Inequality

2 Multivariate Random Variables

- Discrete, Continuous Multivariate R.V.
- Covariance and Correlation
- Hypergeometric Distribution
- Transformation of R.V. and Application
- 3 Reliability
 - Reliability and Hazard
 - Distribution and System

Hypergeometric Distribution

Definition

A random variable (X, f_X) with parameters $N, n, r \in \mathbb{N} \setminus \{0\}$ where $r, n \leq N$ and $n < \min\{r, N - r\}$ has a *hypergeometric distribution* if the density function is given by

$$f_X(x) = \frac{\binom{r}{x} \binom{N-r}{n-x}}{\binom{N}{n}}$$

Interpretation

- $f_X(x)$ is the probability of getting x red balls in drawing n balls from a box containing N balls, where r of them are red.
- This can be formulated as obtaining x successes in n identical but not independent Bernoulli trials, each with probability of success r

Hypergeometric Distribution

Property

Expectation

$$E[X] = E[X_1 + \dots + X_n] = n \frac{r}{N}$$

Variance

$$Var[X] = Var[X_1 + \dots + X_n]$$

$$= Var[X_1] + \dots + Var[X_n] + 2 \sum_{i < j} Cov[X_i, X_j]$$

$$= n \frac{r}{N} \frac{N - r}{N} \frac{N - n}{N - 1}$$

The *binomial distribution* may be used to approximate the hypergeometric distribution if n/N is small (less than 0.05).

Outline

- 1 Continuous Random Variables
 - Basics
 - Exponential, Gamma, Chi-Squared Distribution
 - Normal Distribution
 - Transformation of R.V.
 - Standardizing and Normal Approximation
 - Chebyshev's Inequality

2 Multivariate Random Variables

- Discrete, Continuous Multivariate R.V.
- Covariance and Correlation
- Hypergeometric Distribution
- Transformation of R.V. and Application
- 3 Reliability
 - Reliability and Hazard
 - Distribution and System

Transformation of Random Variables

Theorem

Let $(\boldsymbol{X}, f_{\boldsymbol{X}})$ be a continuous multivariate random variable and let $\varphi: \mathbb{R}^n \to \mathbb{R}^n$ be a differentiable, bijective map with inverse φ^{-1} . Then $\boldsymbol{Y} = \varphi \circ \boldsymbol{X}$ is a continuous multivariate random variable with density

$$f_Y(y) = f_X \circ \varphi^{-1}(y) \cdot \left| \det D \varphi^{-1}(y) \right|,$$

where $D\phi^{-1}$ is the Jacobian of ϕ^{-1} .

•
$$f_Y(y) = 0$$
 for $y \notin \operatorname{ran} \varphi$.

Quotient of Normal: Cauchy

Lemma

Let $((X, Y), f_{XY})$ be a continuous bivariate random variable. Let U = X/Y. Then the density f_U of U is given by

$$f_U(u) = \int_{-\infty}^{\infty} f_{XY}(uv, v) \cdot |v| dv.$$

Theorem

Suppose that random variables X and Y are independent and that each follows the *standard normal distribution*. Then U = X/Y has the *Cauchy distribution* with probability density function given by

$$f_U(u) = \frac{1}{\pi (1 + u^2)}, \quad u \in \mathbb{R}.$$

Quotient of Normal: Cauchy

Proof

Let V = Y, excluding Y = 0, the transformation from (X, Y) to (U, V) is one-to-one. Then X = UV, Y = V and

$$J = \det \left(\begin{array}{cc} \frac{\partial x}{\partial u} & \frac{\partial x}{\partial v} \\ \frac{\partial y}{\partial u} & \frac{\partial y}{\partial v} \end{array} \right) = v$$

Then the joint density function is given by

$$f_{UV}(u, v) = f_{XY}(uv, v)|v| = \frac{|v|}{2\pi} \exp\left(-\frac{1}{2}(u^2 + 1)v^2\right)$$

Then the marginal of U is calculated as

$$f_U(u) = \int_{-\infty}^{\infty} f_{Uv}(u, v) dv = \frac{1}{\pi (u^2 + 1)}, \quad u \in \mathbb{R}.$$

Root Sum of Normal Square: Chi

Definition

 χ_n is a chi random variable with n degrees of freedom,

$$\chi_n = \sqrt{\sum_{i=1}^n Z_i^2}$$

where Z_1, \ldots, Z_n are *independent standard normal* random variables.

$$f_{\chi_n}(y) = \frac{1}{2^{n/2}\Gamma(\frac{n}{2})}y^{n-1}e^{-y^2/2} \quad (y > 0)$$

Interpretation

A chi random variable represents the sum of the root squares (distance) of independent standard normal variables.

Sum of Normal Square: Chi-Squared

Definition

 χ_n^2 is a chi-squared random variable with n degrees of freedom,

$$\chi_n^2 = \sum_{i=1}^n Z_i^2$$

where Z_1, \ldots, Z_n are *independent standard normal* random variables.

$$f_{\chi_n^2}(y) = \frac{1}{2^{n/2} \Gamma(\frac{n}{2})} y^{n/2-1} e^{-y/2} \quad (y > 0)$$

Interpretation

A chi-squared random variable represents the sum of the squares of independent standard normal variables.

Sum of Normal: Normal

Theorem

If the random variables X_1, \ldots, X_k are independent and if X_i follows **normal distribution** with mean μ_i and variance σ_i^2 , where $i=1,\ldots,k$, then $X=X_1+\cdots+X_k$ follows normal distribution with

$$\mu = \mu_1 + \dots + \mu_k$$
, $\sigma^2 = \sigma_1^2 + \dots + \sigma_k^2$.

Theorem

Let $\chi^2_{\gamma_1}, \ldots, \chi^2_{\gamma_n}$ be *n* independent random variables following *chi-squared distributions* with $\gamma_1, \ldots, \gamma_n$ degrees of freedom, respectively. Then

$$\chi^2_{\alpha} := \sum_{k=1}^n \chi^2_{\gamma_k}$$

is a *chi-squared random variable* with $\alpha = \sum_{k=1}^{n} \gamma_k$ degrees of freedom.

Outline

- 1 Continuous Random Variables
 - Basics
 - Exponential, Gamma, Chi-Squared Distribution
 - Normal Distribution
 - Transformation of R.V.
 - Standardizing and Normal Approximation
 - Chebyshev's Inequality
- 2 Multivariate Random Variables
 - Discrete, Continuous Multivariate R.V.
 - Covariance and Correlation
 - Hypergeometric Distribution
 - Transformation of R.V. and Application
- 3 Reliability
 - Reliability and Hazard
 - Distribution and System

Reliability

Definition

Suppose a unit A fails randomly, and we describe the time it fails by the continuous random variable T_A .

The density of T_A is called the *failure density* f_A . The cumulative distribution function of T_A is denoted by F_A . We note that

$$f_A(t) = \lim_{\Delta t \to 0} \frac{P[t \leqslant T \leqslant t + \Delta t]}{\Delta t}$$
$$= \lim_{\Delta t \to 0} \frac{F_A(t + \Delta t) - F_A(t)}{\Delta t}$$

The *reliability function* R_A gives the probability that A is working at time $t \ge 0$

$$R_{A}(0) = 1$$
 $R_{A}(t) = 1 - P[$ component A fails before time $t]$
 $= 1 - F_{A}(t)$

Hazard

Definition

Hazard rate ρ_A defined by

$$\rho_{A}(t) = \lim_{\Delta t \to 0} \frac{P[t \leqslant T \leqslant t + \Delta t \mid t \leqslant T]}{\Delta t}$$
$$= \lim_{\Delta t \to 0} \frac{P[t \leqslant T \leqslant t + \Delta t]}{P[T \geqslant t] \cdot \Delta t} = \frac{f_{A}(t)}{R_{A}(t)}$$

Interpretation

- If ρ is decreasing, then as time goes by a failure is more likely to occur earlier in the time interval.
- If ρ is steady, a failure tends to occur during this period due mainly to random factors.
- \bullet If ρ is increasing, then as time goes by a failure is more likely to occur.

Outline

- 1 Continuous Random Variables
 - Basics
 - Exponential, Gamma, Chi-Squared Distribution
 - Normal Distribution
 - Transformation of R.V.
 - Standardizing and Normal Approximation
 - Chebyshev's Inequality
- 2 Multivariate Random Variables
 - Discrete, Continuous Multivariate R.V.
 - Covariance and Correlation
 - Hypergeometric Distribution
 - Transformation of R.V. and Application
- 3 Reliability
 - Reliability and Hazard
 - Distribution and System

Exponential Distribution

• Density function. $\beta > 0$ is a parameter,

$$f(x) = \begin{cases} \beta e^{-\beta x}, & x > 0 \\ 0, & \text{otherwise.} \end{cases}$$

Mean.

$$\mu = \frac{1}{\beta}$$

Variance.

$$\sigma^2 = \frac{1}{\beta^2}$$

Reliability features.

$$\rho(t) = \beta$$

$$R(t) = e^{-\beta t}$$
, $f(t) = \rho(t)R(t) = \beta e^{-\beta t}$.

Weibull Distribution

• Density function. α , $\beta > 0$ are parameters,

$$f(x) = \begin{cases} \alpha \beta x^{\beta-1} e^{-\alpha x^{\beta}}, & x > 0 \\ 0, & \text{otherwise} \end{cases}$$

Mean.

$$\mu = \alpha^{-1/\beta} \Gamma(1 + 1/\beta)$$

Variance.

$$\sigma^2 = \alpha^{-2/\beta} \Gamma(1+2/\beta) - \mu^2$$

Reliability features.

$$ho(t) = lpha eta t^{eta-1}$$
 $R(t) = e^{-lpha t^{eta}}, f(t) =
ho(t) R(t) = lpha eta t^{eta-1} e^{-lpha t^{eta}}$

System

 R_i is the reliability of the ith component, then

 $oldsymbol{1}$ reliability of a series system with k components

$$R_{s}(t) = \prod_{i=1}^{k} R_{i}(t)$$

② reliability of a parallel system with k components

$$R_p(t) = 1 - P[\text{all components fail before t}] = 1 - \prod_{i=1}^k (1 - R_i(t))$$

End

```
Credit to Zhanpeng Zhou (TA of SP21)
Credit to Fan Zhang (TA of SU21)
Credit to Jiawen Fan (TA of SP21)
Credit to Zhenghao Gu (TA of SP20)
https://www.johndcook.com/blog/distribution_chart/
```