1、經過 FFT, N(f) = 接收訊號 R(f) - 傳送訊號 S(f) 。將實驗結果中的 N(f)的實數部分 Re(N(f)) 及虛數部分 Im(N(f)) 其分別的期望值及變異數統計出來。

	Re(N(f))	Im(N(f))
期望值	0.002	-0.0015
變異數	0.03	0.0282

2、 將 Re(N(f)) 的機率分布(probability density)模擬出來,並與有相同期望值及 變異數的 Gaussian distribution 比較。

3、 將 Im(N(f)) 的機率分布(probability density)模擬出來,並與有相同期望值及 變異數的 Gaussian distribution 比較。

- 4、 算出子載波的平均 E_s/N_0 。此 E_s/N_0 與 Homework 3 訂的 SNR 的差值為多少,為何會出現此差值。
 - i. 子載波的平均 $E_s/N_0 = 34.0892 = 15.3262$ (dB) Ideal SNR = 10.0065 (dB) E_s/N_0 Ideal SNR = 5.3197 (dB)
 - ii. 出現差值原因:

Ideal SNR = $10\log(P_{signal}/P_{noise})$

$$E_s/N_0 = 10\log\left(\frac{E_s}{\sigma^2_{real} + \sigma^2_{imagin}}\right) = 10\log\left(\frac{P_{signal}}{P_{noise}} \times \frac{T_{system}}{T_{sample}}\right) \text{ (dB)}$$

- :一個 OFDM 符號的總能量是所有子載波能量的和 $E_{total} = 600E_s$
- :: E_{total}分布在 N = 2048 個時域取樣點

$$\therefore P_{signal} = \frac{E_{total}}{N} = \frac{600}{2048} E_s \implies E_s = \frac{2048}{600} P_{signal}$$

$$\therefore E_s/N_0 = SNR + 10 \log \left(\frac{2048}{600}\right)$$

- \therefore 因為 SNR 是以時域整體平均功率與噪聲功率的比值來衡量,而 E_s/N_0 則是以每個符號的能量對噪聲譜密度的比值來定義,二者因子 不同(如 OFDM 子載波數與 IFFT 點數的能量分散)而產生差異。
- 5、 模擬 BER vs E_b/N_0 (至少三點) 並與上課投影片(或是上網找到的圖)中的結果比較。請說明如何得到 E_b/N_0 ,如何計算 BER。BER 與 Mapping 有關, Mapping 為 Gray mapping 如下。

SNR(dB)	$E_b/N_0(dB)$	BER	Variance of Re(N(f))
2	4.32	9.9817e-03	0.1847
4	6.33	1.6433e-03	0.1165
6	8.32	1.0417e-04	0.0736
8	10.32	1.6667e-06	0.0465
10	12.33	0.0000e+00	0.0293
12	14.32	0.0000e+00	0.0185
14	16.32	0.0000e+00	0.0117

- I. $求E_h/N_0$
 - i. 生成 SNR。構造 X,調變得到時域信號 s_m,計算 s_m 功率,加 上時域噪聲得到 r_m,解調變後進行頻域分析,經計算得 Variance of noise real and imaginary part(var_{Re} + var_{Im})
 - ii. 依據求得 E_s/N_0 ,再求 E_b/N_0 $E_s/N_0 = 2/(var_{Re} + var_{Im})$ $E_b/N_0 = 10log_{10}(\frac{1}{2} \times E_s/N_0)$ (dB)

II. 計算 BER

- i. 理論 BER = $0.5 * erfc (sqrt (E_b/N_0))$
- ii. 計算 BER = (error bits / total bits)
 - 1. 隨機生成 01 組成的 bit 序列
 - 2. 2 bits 為一組,映射到 QPSK 星座圖四象限(Mapping)
 - 3. 加入 AWGN 在 I-Q 分量上 =>接收符號
 - 4. 根據接收符號所在象限對應到最接近的 bit 組合
 - 5. 比較還原後與原始 bits 序列,計算 BER(error bits 數/total bits 數)

