Econometrics March 4, 2023

# Topic 11: Lasso And Beyond: Convex Learning

by Sai Zhang

**Key points:** 

Disclaimer:

### 11.1 **Lasso**

Lasso (Least absolute Shrinkage and Selection Operator), proposed by Tibshirani (1996), aims to minimize the SSR (sum of residual squares) subject to the L1-norm (sum of the absolute value) of the coefficients being less than a constant.

# 11.1.1 Set up

For data  $(\mathbf{x}_i, y_i)_{i=1}^n$ , where

- $y_i$  is the outcome for individual i
- $\mathbf{x}_i = (x_{i1}, \dots, x_{ip})'$  is the  $p \times 1$  vector of predictors

Then the Lasso estimator  $(\hat{\alpha}, \hat{\beta})$  is defined as

$$\left(\hat{\alpha}, \hat{\boldsymbol{\beta}}\right) = \arg\min_{\alpha, \boldsymbol{\beta}} \left\{ \sum_{i=1}^{n} \left( y_i - \alpha - \sum_{j=1}^{p} \beta_j x_{ij} \right)^2 \right\}$$
 s.t. 
$$\sum_{j=1}^{p} |\beta_j| \le t$$

for the  $n \times 1$  response vector  $\mathbf{y} = (y_1, \dots, y_n)'$ , the  $n \times p$  design matrix  $\mathbf{X} = (\mathbf{x}_1, \dots, \mathbf{x}_n)'$  where  $\mathbf{x}_i = (x_{i1}, \dots, x_{ip})'$  is a  $p \times 1$  vector. Here  $\hat{\alpha} = \overline{y}$ , w.l.o.g., let  $\overline{y} = 0$  and omit  $\alpha$  for simplicity.

In matrix form, we have

• constrained form:

$$\hat{\boldsymbol{\beta}} = \arg\min_{\boldsymbol{\beta} \in \mathbb{R}^p} \left\{ \frac{1}{2n} \|\mathbf{y} - \mathbf{X}\boldsymbol{\beta}\|_2^2 \right\}$$
 s.t.  $\|\boldsymbol{\beta}\|_1 \le t$ 

• unconstrained form:

$$\hat{\boldsymbol{\beta}}(\lambda) = \arg\min_{\boldsymbol{\beta} \in \mathbb{R}^p} \left\{ \frac{1}{2n} \|\mathbf{y} - \mathbf{X}\boldsymbol{\beta}\|_2^2 + \lambda \|\boldsymbol{\beta}\|_1 \right\}$$

where the regularization parameter  $\lambda \geq 0$ :

- 
$$\lambda \to \infty$$
:  $\hat{\beta}_{lasso} = \mathbf{0}$   
-  $\lambda = 0$ :  $\hat{\beta}_{lasso} \to \hat{\beta}_{OLS}$ 

# 11.1.2 Solving Lasso

Lasso is essentially a quadratic optimization problem. Hence, the solution is given by taking the derivative (of the unconstrainted question) and set it equal to 0

$$\frac{\mathrm{d}}{\mathrm{d}\boldsymbol{\beta}} \left( \frac{1}{2n} \|\mathbf{y} - \mathbf{X}\boldsymbol{\beta}\|_{2}^{2} + \lambda \|\boldsymbol{\beta}\|_{1} \right) = 0$$

$$\frac{1}{n} \underbrace{\mathbf{X}'}_{p \times n} \underbrace{\left(\mathbf{y} - \mathbf{X}\boldsymbol{\beta}\right)}_{=\boldsymbol{\epsilon}, n \times 1} = \lambda \begin{cases} \mathrm{sign}\left(\beta_{j}\right), & \beta_{j} \neq 0 \\ [-1, 1], & \beta_{j} = 0 \end{cases}$$

this result follows the fact the L-1 norm  $\|\beta\|$  is piecewise linear (convex)<sup>1</sup>:



L1-norm (1-dimension)

For each component of the vector of the L-1 norm  $f(\beta_i) = |\beta_i|$ , we have:

- $-\beta_{i} > 0$ :  $f'(\beta_{i}) = 1$
- $\beta_i < 0$ :  $f'(\beta_i) = -1$
- $\beta_j = 0$ : d $f \in [-1, 1]$  (shaded area) which gives the results stated above.

Take another look at this result

## **Proposition 11.1.1: Lasso Parameter Selection Rule**

$$\frac{1}{n}\mathbf{X}'\left(\mathbf{y} - \mathbf{X}\boldsymbol{\beta}\right) = \frac{1}{n}\mathbf{X}'\boldsymbol{\epsilon} = \lambda \begin{cases} \operatorname{sign}\left(\beta_{j}\right), & \beta_{j} \neq 0 \\ \left[-1, 1\right], & \beta_{j} = 0 \end{cases}$$

which gives a parameter selection criterion: for  $\beta_j \neq 0$ ,  $\operatorname{sign}(\beta_j)$  must agree with  $\operatorname{Corr}(\mathbf{x}_j, \boldsymbol{\epsilon})$ , the correlation between the j-th variable  $\mathbf{x}_j$  and (full-model) residuals  $\boldsymbol{\epsilon} = \mathbf{y} - \mathbf{X}\boldsymbol{\beta}$ .

# 11.1.3 Algorithm: LARS

Mathematically, Lasso is quite intuitive, but computationally, it can be quite consuming. Efron et al. (2004) propose an algorithm that takes steps from a all-0 model to the biggest model (OLS), that is, **Least Angle Regression (LARS)**.

### Intuition

The basic intuition of LARS is quite straight-forward: covariates are considered from the *highest* correlation with **y** (*smallest* angle from **y**) to the *least* correlated one (*largest* angle from **y**) (illustrated below).

And the steps of the LARS algorithm are

<sup>&</sup>lt;sup>1</sup>KKT condition gives the analytical optimization rule for **convex** function.





- 1 start with the null model  $\hat{\beta} = 0$ :  $\hat{\mu} = X'0 = 0$
- 2 calculate residual vector  $\mathbf{r} = \mathbf{y} \hat{\boldsymbol{\mu}}$
- 3 determine the correlation vector between **r** and each parameter  $\mathbf{x}_j$ ,  $\forall j = 1, \dots, p$ :  $\mathbf{X}'\mathbf{r}$
- 4 pick the largest correlation  $\mathbf{x}^*_{\text{step1,1'}}$  increase its  $\hat{\beta}$  to the point where its correlation with  $\mathbf{r}$  will be **equal** with that of another parameter  $\mathbf{x}^*_{\text{step1,2}}$
- 5 next, increase the  $\hat{\beta}$  for both  $\mathbf{x}^*_{\text{step1,1}}$ ,  $\mathbf{x}^*_{\text{step1,2}}$  in an **equiangular** direction between these two, until a third parameter becomes equally important

And keep looping this way, until all the predictors enter the model and eventually X'r = 0

#### **Properties of LARS**

LARS has several properties:

- geometrically travels in the direction of equal angle to all active covariates
- assume all covariates are independent
- computationally quick: only take m steps, where m is the number of parameters being considered

And it is in between 2 classic model-selection methods: Forward Selection and Stagewise Selection:

### Forward Selection

- for y, select the most correlated  $x_{i_1}$
- regress  $\mathbf{x}_{i_1}$  on  $\mathbf{y}$ , get the residuals
- select the most correlated  $x_{i_2}$  with the redisual of y net of  $x_{i_1}$

looping this, for a k-parameter linear model, it takes k steps. Forward Selection is an aggressive fitting technique, can be overly greedy (some important predictors may be eliminated due to correlation with already selected variables).

#### • Forward Stagewise

- also begin with  $\hat{\mu} = 0$
- for a current Stagewise estimate  $\hat{\mu}$ , the current residual vector is then  $\mathbf{y} \hat{\mu}$ , its correlation with  $\mathbf{X}$  is then  $\mathbf{X}'(\mathbf{y} \hat{\mu}) \equiv \hat{\mathbf{c}}$

 next, heavily computational, go in the direction of the greatest current correlation, but by only a small step

$$\hat{j} = \arg \max |\hat{c}_j|, \ \hat{\mu} \to \hat{\mu} + \epsilon \cdot \operatorname{sign}(\hat{c}_{\hat{i}}) \cdot \mathbf{x}_{\hat{i}}$$

here,  $\epsilon$  is a **small** constant, hence avoiding the greediness of Forward Selection, at a cost of computational efficiency<sup>2</sup>.

LARS avoids the over-greediness of Forward Selection and computational heaviness of Forward Stagewise.

#### 11.1.4 From LARS to Lasso

The Lasso algorithm is built upon LARS, with the constraint from the mathematical condition of Proposition 11.1.1:  $sign(\beta_i)$  must agree with  $Corr(\mathbf{x}_i, \epsilon)$ .

## Theorem 11.1.2: Lasso Modification Condition

If  $\tilde{\gamma} < \hat{\gamma}$ , stop the onging LARS step at  $\gamma = \tilde{\gamma}$  and remove j from the calculation of the next equiangular direction, where

• the path at any LARS step is

$$\beta(\gamma)$$
,  $\beta_j(\gamma) = \hat{\beta}_j + \gamma \hat{d}_j$ 

 $\hat{d}_j$  specifies the **direction** to take the *j*-th component,  $\gamma$  is **how far** to travel in the direction of  $\hat{d}_j$  before adding in a new covariate

- $\hat{\gamma}$  represents the smallest **positive** value of  $\gamma$  s.t. some new covariate joins the active set (the set of covariates used on path)
- $\tilde{\gamma}$  represents the first time  $\beta_i(\gamma)$  changes signs.

The key point of 11.1.2 is that Lasso does **NOT** allow the  $\hat{\beta}_j$  to change signs, if it changes sign, it will be substracted from the active set. Now, from this point of view, we can compare the 3 algorithms:

| LARS      | no sign restrictions                                                                                                                                |
|-----------|-----------------------------------------------------------------------------------------------------------------------------------------------------|
|           | $\hat{\beta}_i$ agrees in sign with $\hat{c}_i$                                                                                                     |
| Stagewise | successive differences of $\hat{\beta}_j$ agree in sign with the current correlation $\hat{c} = \mathbf{x}_i'(\mathbf{y} - \hat{\boldsymbol{\mu}})$ |

Again, LARS requires the least steps but is most greedy, Stagewise is computationally consuming but robust. Lasso is in between.

# 11.2 Consistency of Lasso

Next, we want to establish the consistency of Lasso, by showing that Lasso selects exactly the relevant covariates asymptotically. We do this in 2 steps:

- show that Lasso at least captures all the relevant covariates
- asymptotically, under some conditions, Lasso selects exactly all the relevant covariates, not more

 $<sup>^2</sup>$ Forward Selection is essentially choosing  $\epsilon = |\hat{c}_{\,\hat{i}}|$ 

#### 11.2.1 Overestimation

First, Lasso tends to select a superset of the relevant covariates.

Define the true relevant set Lasso selection estimation  $\hat{S}_0$  aim to select as

$$S_0 = \left\{ j : \beta_j^0 \neq 0, j \neq 1, \cdots, p \right\}$$

and for some C > 0, define the relevant set w.r.t. C as

$$S_0^{\text{relevant}(C)} = \left\{ j : |\beta_j^0| \ge C, j = 1, \dots, p \right\}$$

then we have

#### Theorem 11.2.1: Lasso Overestimation Condition

 $\forall 0 < C < \infty$ 

$$\mathbb{P}\left[\hat{S}_0(\lambda) \supset S_0^{\text{relevant}(C)}\right] \xrightarrow{n \to \infty} 1$$

# Consistency

The consistency of Lasso is established by Meinshausen and Bühlmann (2006) as

### Theorem 11.2.2: Consistency of Lasso

For a suitable  $\lambda = \lambda_n \gg \sqrt{s_0 \log(p)/n}$ , Lasso is consistent, i.e.

$$\mathbb{P}\left[\hat{S}(\lambda) = S_0\right] \xrightarrow{n \to \infty} 1$$

if and only if it satisfies the 2 properties:

- $\beta$ -min condition (unselected coefficients non-trivial):  $\inf_{j \in S_0^c} |\beta_j^0| \gg \sqrt{s_0 \log(p)/n}$
- **irrepresentable** condition: **X** should **NOT** exhibit too strong a degree of linear dependence w.r.t. the selected covariates, that is, for some  $0 < \theta < 1$

$$\left\|\hat{\Sigma}_{2,1}\hat{\Sigma}_{1,1}^{-1}\operatorname{sign}\left(\beta_{1}^{0},\cdots,\beta_{s_{0}}^{0}\right)\right\|_{\infty} \leq \theta$$

**discussion on the irrepresentable condition** denote  $\hat{\Sigma} = n^{-1}XX'$ , and let the active set  $S_0 = \{j : \beta_j^0 \neq 0\} = \{1, \dots, s_0\}$  consists of the first  $s_0$  variables, let

$$\hat{\Sigma} = \begin{pmatrix} \hat{\Sigma}_{1,1} & \hat{\Sigma}_{1,2} \\ \hat{\Sigma}_{2,1} & \hat{\Sigma}_{2,2} \end{pmatrix}$$

where  $\hat{\Sigma}_{1,1}$  is a  $s_0 \times s_0$  var-cov matrix of the active variables  $\mathbf{X}_1$ ,  $\hat{\Sigma}_{2,2}$  is a  $(p - s_0) \times (p - s_0)$  cov-var matrix of the other variables  $\mathbf{X}_2$ , then for a Lasso estimation  $\hat{\boldsymbol{\beta}}$  that assign non-zero coefficients **only** to  $\mathbf{X}_1$ , we can,

<sup>&</sup>lt;sup>3</sup>Here,  $\mathbf{X}_1$  is  $n \times s_0$ ,  $\mathbf{X}_2$  is  $n \times p - s_0$ 

following the Lasso result in Proposition 11.1.1, have

$$\frac{1}{n}\mathbf{X}'\left(\mathbf{y} - \mathbf{X}\hat{\boldsymbol{\beta}}\right) = \lambda \cdot \operatorname{sign}(\hat{\boldsymbol{\beta}}_{1}) \qquad \Rightarrow \frac{1}{n}\mathbf{X}'_{1}\left(\mathbf{y} - \mathbf{X}_{1}\hat{\boldsymbol{\beta}}_{1}\right) = \lambda \cdot \operatorname{sign}(\hat{\boldsymbol{\beta}}_{1})$$

$$\|\frac{1}{n}\mathbf{X}'_{2}\left(\mathbf{y} - \mathbf{X}\hat{\boldsymbol{\beta}}\right)\|_{\infty} \leq \lambda \qquad \Rightarrow \|\frac{1}{n}\mathbf{X}'_{2}\left(\mathbf{y} - \mathbf{X}_{1}\hat{\boldsymbol{\beta}}_{1}\right)\|_{\infty} \leq \lambda$$
(11.1)

Now, let's assume supp( $\hat{\beta}$ ) = supp( $\beta$ ) =  $S_0$ , then the true model is

$$\mathbf{y} = \mathbf{X}\boldsymbol{\beta} + \boldsymbol{\epsilon} = \begin{bmatrix} \mathbf{X}_1 & \mathbf{X}_2 \end{bmatrix} \cdot \begin{bmatrix} \boldsymbol{\beta}_1 \\ \mathbf{0} \end{bmatrix} + \boldsymbol{\epsilon} = \mathbf{X}_1 \boldsymbol{\beta}_1 + \boldsymbol{\epsilon}$$

Put this back to the results in Equation 11.1, we have

• for the selected covariates  $X_1$ 

$$\frac{1}{n}X_{1}'\left(\mathbf{y}-\mathbf{X}_{1}\hat{\boldsymbol{\beta}}_{1}\right) = \lambda \cdot \operatorname{sign}(\hat{\boldsymbol{\beta}}_{1})$$

$$\Rightarrow \frac{1}{n}X_{1}'\left(\mathbf{X}_{1}\boldsymbol{\beta}_{1}+\boldsymbol{\epsilon}-\mathbf{X}_{1}\hat{\boldsymbol{\beta}}_{1}\right) = \lambda \cdot \operatorname{sign}(\hat{\boldsymbol{\beta}}_{1})$$

$$\Rightarrow \frac{1}{n}X_{1}'\mathbf{X}_{1}\left(\hat{\boldsymbol{\beta}}_{1}-\boldsymbol{\beta}_{1}\right) = \frac{1}{n}X_{1}'\boldsymbol{\epsilon}-\lambda \cdot \operatorname{sign}(\hat{\boldsymbol{\beta}}_{1})$$

$$\Rightarrow \hat{\boldsymbol{\beta}}_{1}-\boldsymbol{\beta}_{1} = \left(\frac{1}{n}X_{1}'\mathbf{X}_{1}\right)^{-1}\left[\frac{1}{n}X_{1}'\boldsymbol{\epsilon}-\lambda \cdot \operatorname{sign}(\hat{\boldsymbol{\beta}}_{1})\right]$$

$$\Rightarrow \hat{\boldsymbol{\beta}}_{1} = \boldsymbol{\beta}_{1} + \left(\frac{1}{n}X_{1}'\mathbf{X}_{1}\right)^{-1}\frac{1}{n}X_{1}'\boldsymbol{\epsilon} - \left(\frac{1}{n}X_{1}'\mathbf{X}_{1}\right)^{-1}\lambda \cdot \operatorname{sign}(\hat{\boldsymbol{\beta}}_{1})$$

• for the non-selected covariates  $X_2^4$ 

$$\begin{aligned} & \left\| \frac{1}{n} \mathbf{X}_{2}' \left( \mathbf{y} - \mathbf{X}_{1} \hat{\boldsymbol{\beta}}_{1} \right) \right\|_{\infty} \leq \lambda \\ \Rightarrow & \left\| \frac{1}{n} \mathbf{X}_{2}' \left[ \mathbf{X}_{1} \left( \hat{\boldsymbol{\beta}}_{1} - \boldsymbol{\beta}_{1} \right) - \boldsymbol{\epsilon} \right] \right\|_{\infty} \leq \lambda \\ \Rightarrow & \left\| \frac{1}{n} \mathbf{X}_{2}' \left\{ \mathbf{X}_{1} \left[ \left( \frac{1}{n} \mathbf{X}_{1}' \mathbf{X}_{1} \right)^{-1} \frac{1}{n} \mathbf{X}_{1}' \boldsymbol{\epsilon} - \left( \frac{1}{n} \mathbf{X}_{1}' \mathbf{X}_{1} \right)^{-1} \lambda \cdot \operatorname{sign}(\hat{\boldsymbol{\beta}}_{1}) \right] - \boldsymbol{\epsilon} \right\} \right\|_{\infty} \leq \lambda \end{aligned}$$

$$\xrightarrow{\text{assume sign consistency}} \left\| \frac{1}{n} \mathbf{X}_{2}' \mathbf{X}_{1} \left[ \left( \frac{1}{n} \mathbf{X}_{1}' \mathbf{X}_{1} \right)^{-1} \frac{1}{n} \mathbf{X}_{1}' \boldsymbol{\epsilon} - \left( \frac{1}{n} \mathbf{X}_{1}' \mathbf{X}_{1} \right)^{-1} \lambda \cdot \operatorname{sign}(\boldsymbol{\beta}_{1}) \right] - \frac{1}{n} \mathbf{X}_{2}' \boldsymbol{\epsilon} \right\|_{\infty} \leq \lambda$$

if we assume  $\epsilon \sim \mathcal{N}(\mathbf{0}, \sigma^2 \mathbf{I}_n)$ , i.e.,  $\epsilon_i$  i.i.d.  $\sim \mathcal{N}(\mathbf{0}, \sigma^2)$ , and for each variable in the design matrix, we also assume standard normal  $\mathbf{x}_i \sim \mathcal{N}(\mathbf{0}, \mathbf{I}_n)$  (think this as normalizing each variable), then we have

$$\frac{1}{n}\mathbf{x}_{j}^{\prime}\boldsymbol{\epsilon} \sim \mathcal{N}\left(0, \frac{\sigma^{2}}{n}\right), \forall j = 1, \cdots, p$$

$$\operatorname{sign}(\hat{\beta}_j) = \beta_j \neq 0, \forall j \in S_0$$
  
$$\operatorname{sign}(\hat{\beta}_j) = \beta_j = 0, \forall j \in S_0^C$$

selected coviates

non-selected coviates

<sup>&</sup>lt;sup>4</sup>Here, additionally assume sign consistency:

and also  $\max_{1 \le j \le p} \mathbf{x}_j \sim \sqrt{2 \log p}$ . This gives

$$\left\| \frac{1}{n} \mathbf{X}' \boldsymbol{\epsilon} \right\|_{\infty} \sim \sqrt{2 \log p} \cdot \frac{\sigma}{\sqrt{n}} = \sqrt{\frac{2 \log p}{n}} \sigma$$

hence, it can be bounded by  $\lambda = \sqrt{\frac{C \log p}{n}} \sigma$ , where the constant  $C \ge 2$ , then with large probability

$$\left\| \frac{1}{n} \mathbf{X}' \boldsymbol{\epsilon} \right\|_{\infty} \le \frac{1}{3} \lambda \Rightarrow \left\| \frac{1}{n} \mathbf{X}'_{1} \boldsymbol{\epsilon} \right\|_{\infty} \le \frac{1}{3} \lambda$$
$$\left\| \frac{1}{n} \mathbf{X}'_{2} \boldsymbol{\epsilon} \right\|_{\infty} \le \frac{1}{3} \lambda$$

now go back to the condition of non-selected covariates  $X_2$ 

$$\left\| \frac{1}{n} \mathbf{X}_{2}^{\prime} \mathbf{X}_{1} \left[ \left( \frac{1}{n} \mathbf{X}_{1}^{\prime} \mathbf{X}_{1} \right)^{-1} \frac{1}{n} \mathbf{X}_{1}^{\prime} \boldsymbol{\epsilon} - \left( \frac{1}{n} \mathbf{X}_{1}^{\prime} \mathbf{X}_{1} \right)^{-1} \boldsymbol{\lambda} \cdot \operatorname{sign}(\boldsymbol{\beta}_{1}) \right] - \frac{1}{n} \mathbf{X}_{2}^{\prime} \boldsymbol{\epsilon} \right\|_{\infty}$$

$$\leq \left\| \frac{1}{n} \mathbf{X}_{2}^{\prime} \mathbf{X}_{1} \left( \frac{1}{n} \mathbf{X}_{1}^{\prime} \mathbf{X}_{1} \right)^{-1} \frac{1}{n} \mathbf{X}_{1}^{\prime} \boldsymbol{\epsilon} \right\|_{\infty} + \left\| \frac{1}{n} \mathbf{X}_{2}^{\prime} \mathbf{X}_{1} \left( \frac{1}{n} \mathbf{X}_{1}^{\prime} \mathbf{X}_{1} \right)^{-1} \operatorname{sign}(\boldsymbol{\beta}_{1}) \right\|_{\infty} \cdot \boldsymbol{\lambda} + \left\| \frac{1}{n} \mathbf{X}_{2}^{\prime} \boldsymbol{\epsilon} \right\|_{\infty}$$

$$\leq \left\| \frac{1}{n} \mathbf{X}_{2}^{\prime} \mathbf{X}_{1} \left( \frac{1}{n} \mathbf{X}_{1}^{\prime} \mathbf{X}_{1} \right)^{-1} \right\|_{\infty} \cdot \underbrace{\left\| \frac{1}{n} \mathbf{X}_{1}^{\prime} \boldsymbol{\epsilon} \right\|_{\infty}}_{\leq \frac{1}{3} \boldsymbol{\lambda}} + \frac{1}{3} \boldsymbol{\lambda} \leq \boldsymbol{\lambda}$$

$$\leq \left\| \frac{1}{n} \mathbf{X}_{2}^{\prime} \mathbf{X}_{1} \left( \frac{1}{n} \mathbf{X}_{1}^{\prime} \mathbf{X}_{1} \right)^{-1} \right\|_{\infty} \cdot \frac{4}{3} \boldsymbol{\lambda} + \frac{1}{3} \boldsymbol{\lambda} \leq \boldsymbol{\lambda}$$

for the last part ( $\leq \lambda$ ) to stand, a necessary condition is  $\left\| \mathbf{X}_2' \mathbf{X}_1 \left( \mathbf{X}_1' \mathbf{X}_1 \right)^{-1} \right\|_{\infty} \leq \frac{1}{2}$ , or more generally, the **irrepresentable condition**:

$$\left\| \mathbf{X}_{2}^{\prime}\mathbf{X}_{1}\left(\mathbf{X}_{1}^{\prime}\mathbf{X}_{1}\right)^{-1} \cdot \operatorname{sign}(\boldsymbol{\beta}_{1}) \right\| \leq \left\| \mathbf{X}_{2}^{\prime}\mathbf{X}_{1}\left(\mathbf{X}_{1}^{\prime}\mathbf{X}_{1}\right)^{-1} \right\|_{\infty} \cdot \left\| \operatorname{sign}(\boldsymbol{\beta}_{1}) \right\| = \left\| \hat{\boldsymbol{\Sigma}}_{2,1}\hat{\boldsymbol{\Sigma}}_{1,1}^{-1} \operatorname{sign}\left(\boldsymbol{\beta}_{1}^{0}, \cdots, \boldsymbol{\beta}_{s_{0}}^{0}\right) \right\|_{\infty} \leq \boldsymbol{\theta}_{1}^{0} \cdot \left\| \mathbf{X}_{1}^{\prime}\mathbf{X}_{1}\right\|_{\infty}^{-1} \cdot \left\| \mathbf{X}_{1}^{\prime}\mathbf{X}_{1}\right\|_{\infty}^{-1}$$

The idea of *irrepresentable* is that the **maximum** correlation between <u>noise features</u> and important variables needs to be **bounded**.

### 11.2.2 Oracle

Consistency is part of the requirements of an oracle procedure

#### **Definition 11.2.3: Oracle Property**

For a fitting procedure  $\delta$ , and the estimation  $\hat{\beta}(\delta)$ , then if  $\delta$  is an oracle procedure if  $\hat{\beta}(\delta)$  asymptotically has the following properties

- **consistency** (identifying right subset model):  $\{j : \hat{\beta}_j \neq 0\} = S_0$
- **optimal estimation rate** (asymptotically normal):  $\sqrt{n} \left( \beta(\delta)_{S_0} \beta_{S_0}^0 \right) \xrightarrow{d} \mathcal{N}(0, \Sigma_0)$ , where  $\Sigma_0$  is the *true* subset covariance matrix

The oracle property gives consistency, and asymptotic normality. Ideally, this is what you need.

## 11.3 Variants of Lasso

Lasso is great, but there is still space for improvement

- for high dimension p > n cases, lasso selects **at most** n variables
- for a group of variables with large pairwise correlation, then the lasso tends to select only one
- for n > p cases, if there are high correlations between predictors, lasso is dominated by ridge regression

Here are some popular variants people came up with to tackle these issues.

# 11.3.1 Adaptive Lasso

Adaptive Lasso replaces the  $L_1$ -penalty for a **re-weighted** version:

$$\hat{\boldsymbol{\beta}}(\lambda) = \arg\min_{\boldsymbol{\beta}} \left( \frac{1}{n} \left\| \mathbf{y} - \mathbf{X}\boldsymbol{\beta} \right\|_{2}^{2} + \lambda_{n} \sum_{j=1}^{p} \frac{|\beta_{j}|}{|\hat{\beta}_{init,j}|^{\gamma}} \right)$$

this is a 2-step procedure:

- Step 1: run an initial estimation (could be OLS or Lasso) as  $\hat{\beta}_{init,j}$  if  $\hat{\beta}_{init,j} = 0$ , then  $\hat{\beta}_{adapt,j} = 0$
- Step 2: run the reweighted estimation, which is still an *L*1–penalization, still a **convex** optimization problem (allowing the same Lasso algorithm to solve)

## Theorem 11.3.1: Properties of Adaptive Lasso

The adaptive Lasso has the following properties

- If  $|\hat{\beta}_{init,j}|$  is large (*important* features), then the adaptive Lasso uses a small penalty
- The adaptive lasso enjoys the oracle properties
  - **consistency**:  $\lim_n \mathbb{P}(\hat{S}(\lambda) = S_0) = 1$
  - asymptotic normality:  $\sqrt{n} \left( \beta_{S_0} \beta_{S_0}^* \right) \xrightarrow{d} \mathcal{N}(0, \sigma^2 \times C_{1,1}^{-1})$

if  $\lambda_n$  is chosen properly, i.e.,  $\frac{\lambda_n}{\sqrt{n}} \to 0$  and  $\lambda_n n^{(\gamma-1)/2} \to \infty$ . Notice: the adaptive lasso's consistency **DOES NOT** require the irrepresentable condition.

### 11.3.2 Naive Elastic Net

The idea is to do a convex combination of Lasso and Ridge:  $\forall \lambda_1, \lambda_2 \geq 0$ , the naive elastic net criterion is

$$\mathcal{L}(\lambda_1, \lambda_2, \boldsymbol{\beta}) = \|\mathbf{y} - \mathbf{X}\boldsymbol{\beta}\|_2^2 + \lambda_1 \underbrace{\|\boldsymbol{\beta}\|_1}_{= \sum_{j=1}^p |\beta_j|} + \lambda_2 \underbrace{\|\boldsymbol{\beta}\|_2^2}_{= \sum_{j=1}^p \beta_j^2}$$

Now, notice that both  $\|\mathbf{y} - \mathbf{X}\boldsymbol{\beta}\|_2^2$  and  $\|\boldsymbol{\beta}\|_2^2$  are both **quadratic**, hence, we can reframe the quustion as a lasso-type optimization, with an augmented data  $(\mathbf{X}^*, \mathbf{y}^*)$  where

$$\mathbf{X}_{(n+p)\times p}^* = \frac{1}{\sqrt{1+\lambda_2}} \begin{pmatrix} \mathbf{X} \\ \sqrt{\lambda_2} \mathbf{I} \end{pmatrix} \qquad \qquad \mathbf{y}_{n+p}^* = \begin{pmatrix} \mathbf{y} \\ \mathbf{0} \end{pmatrix}$$

then we have

#### Definition 11.3.2: Naive elastic net solution

Let  $\gamma = \frac{\lambda_1}{\sqrt{1+\lambda_2}}$ , then the naive elastic net criterion can be rewritten as

$$\mathcal{L}(\gamma, \boldsymbol{\beta}) = \mathcal{L}(\gamma, \boldsymbol{\beta}^*) = \|\mathbf{y}^* - \mathbf{X}^* \boldsymbol{\beta}^*\|_2^2 + \gamma \|\boldsymbol{\beta}^*\|_1$$

which gives use the estimation for the augmented data

$$\hat{\boldsymbol{\beta}}^* = \arg\min_{\boldsymbol{\beta}^*} \mathcal{L}(\boldsymbol{\gamma}, \boldsymbol{\beta}^*)$$

and the estimation for the true model of the original data  $(\boldsymbol{X},\boldsymbol{y})$  is

$$\hat{\boldsymbol{\beta}} = \frac{1}{\sqrt{1+\lambda_2}} \hat{\boldsymbol{\beta}}^*$$

Naive elastic net enjoys 2 advantages:

- The estimation is done on the augemented data  $(X^*, y^*)$ , and now  $X^*$  is  $(n + p) \times p$ , therefore, rank $(X^*) = p$ , hence all p predictors **can** be selected, instead of just n, like in Lasso.
- Computationally, it is similarly efficient as Lasso

If we further assume an orthogonal design ( $X'X = I_p$ ), we can easily compare the 3 estimations

$$\begin{split} \hat{\beta}_{j} \text{ (naive elastic net)} &= \frac{\left(\left|\hat{\beta}_{j}^{OLS}\right| - \frac{\lambda_{1}}{2}\right)_{+}}{1 + \lambda_{2}} \cdot \operatorname{sign}\left[\hat{\beta}_{j}^{OLS}\right] \\ \hat{\beta}_{j} \text{ (ridge)} &= \frac{\hat{\beta}_{j}^{OLS}}{1 + \lambda_{2}} \\ \hat{\beta}_{j} \text{ (lasso)} &= \left(\left|\hat{\beta}_{j}^{OLS}\right| - \frac{\lambda_{1}}{2}\right)_{+} \cdot \operatorname{sign}\left[\hat{\beta}_{j}^{OLS}\right] \end{split}$$

This comparison is illustrated graphically below.



Now consider another problem: grouping effect, that is, for a generic penalization method

$$\hat{\boldsymbol{\beta}} = \arg\min_{\boldsymbol{\beta}} \|\mathbf{y} - \mathbf{X}\boldsymbol{\beta}\|_{2}^{2} + \lambda J(\boldsymbol{\beta})$$

where  $J(\cdot)$  is positive valued for  $\beta \neq 0$ , then for a group of highly correlated variables, the regression coeffeicients tend to be **equal**.

# Lemma 11.3.3: Grouping effect

Assume  $\mathbf{x}_i = \mathbf{x}_j, i, j \in \{1, \dots, p\}$ , then

- If  $J(\cdot)$  is **strictly convex**, then  $\hat{\beta}_i = \hat{\beta}_i, \forall \lambda > 0$
- If  $J(\beta) = |\beta|_1$ , then  $\hat{\beta}_1, \hat{\beta}_2 \ge 0$  and  $\hat{\beta}^*$  is another minimizer of the generic penalization function, where

$$\hat{\beta}_k^* = \begin{cases} \hat{\beta}_k & \text{if } k \neq i \text{ and } k \neq j \\ (\hat{\beta}_i + \hat{\beta}_j) \cdot s & \text{if } k = i \\ (\hat{\beta}_i + \hat{\beta}_j) \cdot (1 - s) & \text{if } k = j \end{cases}$$

for any  $s \in [0, 1]$ 

As shown in Lemma 11.3.3, there is a clear distinction between *strictly convex* penalty functions and the Lasso penalty (not strictly convex). For the naive elastic net penalty,  $\lambda_2 > 0$  gives strict convexity.

And now, to take this grouping effect into consideration, we want: for two variables  $x_i$ ,  $x_j$  that are closely correlated, we should expect the coefficient paths of them to converge, that is

## Theorem 11.3.4: Grouping effect requirement

For the naive elastic net estimate  $\hat{\beta}(\lambda_1, \lambda_2)$ , WLOG, suppose that  $\hat{\beta}_j(\lambda_1, \lambda_2)$ ,  $\hat{\beta}(\lambda_1, \lambda_2) > 0$ , then define the *difference* between the coefficient paths of predictors i and j as

$$D_{\lambda_1,\lambda_2}(i,j) = \frac{1}{\|\mathbf{y}\|_1} |\hat{\beta}_i(\lambda_1,\lambda_2) - \hat{\beta}_j(\lambda_1,\lambda_2)|$$

then the grouping effect requires

$$D_{\lambda_1,\lambda_2}(i,j) \le \frac{1}{\lambda_2} \sqrt{2(1-\rho)}$$

where  $\rho = \mathbf{x}_{i}'\mathbf{x}_{j}$  is the sample correlation.

#### 11.3.3 Elastic Net

One downfall of naive elastic net estimation is that it incurs **double** shrinkage (2-stage procedure, with each stage having a regularizer). To address this issue, we can rescale the naive elastic net estimation to get the **elastic net estimate**:

### Definition 11.3.5: Elastic net solution

Again for 
$$\gamma = \frac{\lambda_1}{\sqrt{1+\lambda_2}}$$
, we have

$$\hat{\boldsymbol{\beta}}^* = \arg\min_{\boldsymbol{\beta}^*} \mathcal{L}(\gamma, \boldsymbol{\beta}^*) = \arg\min_{\boldsymbol{\beta}^*} ||\mathbf{y}^* - \mathbf{X}^* \boldsymbol{\beta}^*||_2^2 + \gamma ||\boldsymbol{\beta}^*||_1$$

and the elastic estimate of  $\beta$  is

$$\hat{\boldsymbol{\beta}}_{\text{elastic net}} = \sqrt{1 + \lambda_2} \hat{\boldsymbol{\beta}}^* = (1 + \lambda_2) \hat{\boldsymbol{\beta}}_{\text{naive elastic net}}$$

The rescaling from  $\hat{\beta}_{\text{naive elastic net}}$  to  $\hat{\beta}_{\text{elastic net}}$  preseves the variable selection property (able to select all p variables), while solve the double-regularization shrinkage problem.

But how do we make sense of the scaler  $1 + \lambda_2$ ? Remember the ridge estimator is

$$\hat{\boldsymbol{\beta}}_{\text{ridge}} = (\mathbf{X}'\mathbf{X} + \lambda_2 \mathbf{I})^{-1} \mathbf{X}' \mathbf{y}$$

which leads to a Lasso-looking rewritting of the elastic net estimation

### Theorem 11.3.6: Elastic net solution: A modified version of Lasso

Given data  $(\mathbf{y}, \mathbf{X})$  and regularization parameters  $(\lambda_1, \lambda_2)$ , then the elastic net estimation is

$$\hat{\boldsymbol{\beta}}_{\text{elastic net}} = \arg\min_{\boldsymbol{\beta}} \boldsymbol{\beta}' \left( \frac{\mathbf{X}'\mathbf{X} + \lambda_2 \mathbf{I}}{1 + \lambda_2} \right) \boldsymbol{\beta} - 2\mathbf{y}'\mathbf{X}\boldsymbol{\beta} + \lambda_1 \|\boldsymbol{\beta}\|_1$$

comparing to Lasso estimation

$$\hat{\boldsymbol{\beta}}_{\text{Lasso}} = \arg\min_{\boldsymbol{\beta}} \boldsymbol{\beta}' (\mathbf{X}'\mathbf{X}) \boldsymbol{\beta} - 2\mathbf{y}'\mathbf{X}\boldsymbol{\beta} + \lambda_1 \|\boldsymbol{\beta}\|_1$$

hence, elastic net is a stabilized version of Lasso.

## 11.3.4 Other Variants

There are also some other useful variants of Lasso

• <u>Positive Lasso</u>: Constrains the  $\hat{\beta}_j$  to enter the prediction equation in their **defined** directions, non-negative here

$$\hat{\boldsymbol{\beta}} = \arg\min_{\boldsymbol{\beta} \in \mathbb{R}^p} \left\{ \frac{1}{2n} \|\mathbf{y} - \mathbf{X}\boldsymbol{\beta}\|_2^2 \right\}$$
 s.t.  $\|\boldsymbol{\beta}\|_1 \le t$  and  $\beta_j > 0, \forall j$ 

- ullet LARS-OLS hybrid: Use the covariates selected by LARS, but use  $\hat{\pmb{\beta}}$  from the OLS model
- Main effects first:
  - Step 1: run LARS for a model, considering **only** main effects
  - Step 2: run LARS again, with the chosen main effects, and all possible interactions between them
- <u>Backward Lasso</u>: start from the **full** OLS model, and eliminate covariates **backwards** (by the order of correlation going 0 the earliest)

# 11.4 Penalized Least Square Estimation

Lasso is one special class of Penalized Least Square (PLS) Estimation. For the linear regression model  $\mathbf{y} = \mathbf{X}\boldsymbol{\beta} + \boldsymbol{\epsilon}$ , if  $\boldsymbol{\epsilon} \sim \mathcal{N}(\mathbf{0}, \sigma^2 \mathbf{I}_n)$ , we have PLS as

$$\min_{\boldsymbol{\beta} \in \mathbb{R}^p} \left\{ \frac{1}{2n} \|\mathbf{y} - \mathbf{X}\boldsymbol{\beta}\|_2^2 + \sum_{j=1}^p p_{\lambda} \left( |\beta_j| \right) \right\}$$

where  $p_{\lambda}(\cdot)$  is a penalty function indexed by the regularization parameter  $\lambda \geq 0$ . Antoniadis and Fan (2001) showed that the PLS estimator  $\hat{\beta}$  has the following properties:

- **sparsity**: if  $\min_{t\geq 0} \{t + p'_{\lambda}(t)\} > 0$
- approximate unbiasedness: if  $p'_{\lambda}(t) = 0$  for t large enough
- **continuity**: iff  $\arg \min_{t\geq 0} \{t + p'_{\lambda}(t)\} = 0$

In general

- the **sigularity** of penalty function at the origin,  $p'_{\lambda}(0_{+}) > 0$  is needed for generating **sparsity** in variable selection
- the **concavity** is needed to reduce the bias



# References

Anestis Antoniadis and Jianqing Fan. Regularization of wavelet approximations. *Journal of the American Statistical Association*, 96(455):939–967, 2001.

Bradley Efron, Trevor Hastie, Iain Johnstone, and Robert Tibshirani. Least angle regression. *The Annals of Statistics*, 32(2):407 – 499, 2004. doi: 10.1214/009053604000000067. URL https://doi.org/10.1214/009053604000000067.

Nicolai Meinshausen and Peter Bühlmann. Variable selection and high-dimensional graphs with the lasso. *Ann Stat*, 34:1436–1462, 2006.

Robert Tibshirani. Regression shrinkage and selection via the lasso. *Journal of the Royal Statistical Society: Series B (Methodological)*, 58(1):267–288, 1996.