

Efficient genetic K-Means clustering for health care knowledge discovery

A. Alsayat and H. El-Sayed, 2016, IEEE

- How can we improve clustering accuracy in healthcare data?
- Traditional K-Means struggles with selecting the right number of centroids. and may not give the best reults.

Methods

- K-Means Clustering
- Genetic Algorithm
- DBSCAN
- Self Organizing Map (SOM)

"We propose an **efficient K-Means** clustering algorithm which uses the **SOM** method to discover the optimal segments number in the data as a preprocessing step"

The Data

We used two datasets on liver disease and heart disease from UCI Machine Learning Repository.

Liver Disease Dataset		
Attribute Name	Description	
mcv	mean corpuscular volume	
alkphos	alkaline phosphotase	
sgpt	alamine aminotransferase	
sgot	aspartate aminotransferase	
gammagt	gamma-glutamyl transpeptidase	
drinks	alcoholic beverages drunk per day	
selector	class label for liver disease	

- 345 patients
- 7 blood test variables related to liver disease (e.g., alcohol-related)
- Class label: Presence of liver disease

Heart Disease Dataset			
Attribute Name	Description		
age	age in years		
sex	patient gender		
ср	chest pain type		
trestbps	resting blood pressure		
chol	serum cholestoral		
fbs	fasting blood sugar		
restecg	resting electrocardiographic results		
thalach	maximum heart rate		
exang	exercise induced angina		
oldpeak	ST depression		
slope	he slope of the peak exercise ST segment		
ca	number of major vessels		
thal	exercise test		
num	diagnosis of heart disease		

- 303 patients
- 14 variables related to heart disease diagnosis
- Class label: Presence of heart disease

The expected results

	Weighted Classification Accuracy (%)			
Dataset	SOM Genetic K-Means	K-Means	DBSCAN	
Liver Disease	73.84	69.15	67.66	
Heart Disease	69.90	66.27	61.45	

Key Findings

identified a more accurate K result tailored to the data, improves clustering, identifies patterns, and enhances behavior.

Parameter Optimization

Changing SOM neuron count, cluster numbers, distance measures, and noise sensitivity improves clustering and helps explore the data better.

Project Breakdown

Download and prepare the dataset

5%

Run K-Means and DBSCAN (baseline results)

25%

Implement SOM clustering and apply Genetic K-Means

25%

Evaluate performances

15%

Generate visualizations

10%

Compare results and Present conclusions

20%

Bibliography

THE ARTCLE:

https://ieeexplore.ieee.org/document/7516127

UCI Machine Learning Repository

Discover datasets around the world!

DATASET 2: heart disease

Cleveland Clinic Foundation Heart Disease

Kaggle is the world's largest data science community with powerful tools and resources to...

k kaggle.com

04

Published in: 2016 IEEE 14th International Conference on Software Engineering Research, Management and Applications (SERA)

Date of Conference: 08-10 June 2016 **DOI:** 10.1109/SERA.2016.7516127

Date Added to IEEE Xplore: 21 July 2016 Publisher: IEEE

▼ ISBN Information: Conference Location: Towson, MD, USA

Electronic ISBN:978-1-5090-0809-4

Print on Demand(PoD) ISBN:978-1-5090-0810-0

THANKYOU