From Prompt Injections to Protocol Exploits: Threats in LLM-Powered AI Agents Workflows (arxiv)

Key Highlights

問題

• 這篇論文旨在解決什麼問題?

- 本文探討由大型語言模型(LLM)驅動的人工智慧代理系統生態系統爆炸性增長的問題,這些系統具有功能調用接口,能力顯著擴展,但安全實踐滯後,導致系統整合脆弱,易受到多種威脅。
- 。 威脅研究分散,個別研究僅檢查孤立的利用行為,缺乏整體框架來理解跨通信 堆棧的威脅如何相互關聯。
- 。各種攻擊途徑(從提示注入到協議級利用)的攻擊成功率高達50-100%,令人震驚。

• 現有方法是什麼,它們有哪些局限性?

- 。現有的防禦措施依賴於靜態規則或特定模型的啟發式方法,在面對自適應攻擊 者時會失效。
- 。當前的解決方案通常只處理一般的LLM安全性、工具集成或單一模態下的安全性,缺乏全面分析。
- 。傳統的安全措施包括模型對齊和提示注入防禦,無法抵禦複雜攻擊,如毒性代理流(Toxic Agent Flow)。
- 大多數防禦評估依賴於有限的基準測試,無法捕捉真實世界輸入的全範疇。

解決方案

• 這篇論文提出什麼解決方案?

- 。提出首個統一的、端到端的大型語言模型代理生態系統的威脅模型,涵蓋從主 機到工具以及代理之間的通信。
- 。綜合分類法將威脅組織為四個領域:輸入操縱、模型妥協、系統與隱私攻擊和 協議漏洞。
- 。 系統化地編目超過三十種攻擊技術,並形式化了攻擊者的能力和目標。

• 這個想法的靈感來自於什麼?是否受到其他論文的影響?

○ 動機源於自動化AI代理快速發展與安全研究分散狀態之間的差距。

。基於現有的調查,但首次垂直深入探討跨多個通信層的漏洞(MCP, A2A)以 及攻擊面之間的水平相關性。

• 這個方法的理論基礎是什麼?

- 基於攻擊機制和目標表面的四域威脅分類法。
- 。形式化的威脅模型界定了攻擊者的能力、目標和可利用的接口,涵蓋每個協議 層。
- 系統化分類框架,突出關鍵漏洞並為防御策略設計提供指導。

實驗

• 實驗表現如何?

- 。這篇論文主要是調查/分類論文,而非實驗研究。
- 。展示了現有文獻中各類攻擊的成功率,顯示在不同攻擊類別下的成功率達到 50-100%。
- 。通過具體範例展示漏洞,如GitHub MCP伺服器上的毒性代理流攻擊以及各種協議級利用。

• 與這個方法相關的局限性或假設是什麼?

- 作為調查論文,依賴於現有研究,缺乏新穎的實驗驗證。
- 。 假設編目的攻擊技術全面代表當前的威脅景觀。
- 。受到LLM代理領域現有安全研究的成熟度和覆蓋範圍的限制。

創新

• 這篇論文有哪些重要或新穎的發現?

- 。 首個專門針對多代理LLM生態系統的綜合威脅分類法。
- ∘協議特定漏洞的新識別,例如MCP, A2A, ANP, 以及ACP通信。
- 系統地映射跨四個不同領域的攻擊途徑,對系統構建者具有實際意義。
- 。引入統一框架,連接之前分散的安全研究領域。
- 識別出動態信任管理,代理網頁界面安全和聯邦環境韌性等關鍵挑戰。

評論 / 評論

• 這篇論文是否有任何限制?

- 作為調查論文,缺乏新穎的實驗貢獻或提議分類法的經驗驗證。
- · LLM代理技術的快速演進可能很快會使某些攻擊途徑和防禦機制過時。
- 對於不同攻擊技術或防禦效果的定量比較指標討論有限。
- 一些未來研究方向廣泛陳述,缺乏具體實施指導。

• 論文是否有效支持其主張?

。是的,論文提供了廣泛的文獻回顧,包含70多個參考,涵蓋LLM代理安全的 最新發展。

- 攻擊成功率和具體範例(如毒性代理流)有效展示了所識別漏洞的嚴重性。
- 。 詳細的比較表明了這項工作與現有調查的區別,清楚地確立了其獨特貢獻。
- 。 結構良好的分類法包含詳細的技術描述,支持了所識別威脅的廣度和深度。

Comprehensive Analysis

Abstract

・摘要

- 。本篇文章提出了第一個全面的基於大規模語言模型(LLM)自主代理生態系統的威脅模型。
- °作者們針對AI代理快速擴展所引發的安全漏洞進行探討,特別是在具備函數調 用能力的情況下,插件和代理之間的協議增長速度超過了安全實踐。

• 主要貢獻

- 統一威脅模型
 - 涵蓋LLM代理生態系統中的端到端通信
- 攻擊分類
 - 將30多種攻擊技術分為四個主要領域:
 - 1. 輸入操控
 - 提示注入
 - 上下文劫持
 - 多模態攻撃
 - 2. 模型妥協
 - 後門
 - 污染策略
 - 3. 系統與隱私攻擊
 - 側信道攻撃
 - 會員推斷
 - 社交工程
 - 4. 協議漏洞
 - 在各種代理通信協議(MCP、ACP、ANP、A2A)中的漏洞利用

• 方法論

。對於每個攻擊類別,作者分析了其在現實世界中的可行性、審視攻擊場景並評 估現有的防禦機制。

・未來方向

- 。該文章確定了關鍵的研究需求,包括動態信任管理、加密來源追踪、加強代理 Web界面以及在多代理環境中建立韌性。
- 這項工作為設計健壯的LLM代理系統提供了一個基礎性的安全參考,並在這個快速 演變的領域中建立安全最佳實踐。

Introduction

簡要概述

• 本介紹部分概述了自主AI代理的發展及其當前挑戰,這些代理由大型語言模型 (LLM)提供動力。

• 主要進展:

- 。過去兩年中,由於LLM的能力,AI代理取得了快速進展。
- 。2023年引入的結構化函數調用,使API集成更為一致。
- 。開發了插件生態系統(ChatGPT插件、LangChain、LlamaIndex)和AI應 用商店。

• 當前問題:

- 。工具集成仍然分散且勞動密集。
- 。 開發人員必須為每項服務創建自定義適配代碼。
- 。 需要手動進行憑證和錯誤管理。
- 。硬編碼的工作流程限制了運行時的適應性。
- 。 缺乏標準化的發現機制,帶來安全風險。

• 新興解決方案:

- 。引入了通用協議,如模型上下文協議(MCP)。
- 。MCP提供了一個面向發現的框架,用於服務查詢和數據格式協商。
- 相關協議(ANP、A2A)啟用了多代理協作。
- 。不斷增長的開源MCP服務器生態系統展示了在不同應用中互操作性的能力。
- 該部分建立了制定標準化協議的動機,以解決目前AI代理工具集成中的分散問題。
- 未提供圖像摘要。

"Despite this progress, tool integration remains siloed and laborintensive. Developers must write bespoke adapter code for each new service, manually manage credentials and error handling, and learn platform-specific function-calling conventions."

儘管取得了這些進展,工具整合仍然孤立且耗費大量人力。開發人員必須為每個新服務編寫定制的適配器代碼,手動管理認證和錯誤處理,並學習平台特定的函數調用約定。

"The community has introduced general-purpose protocols that treat tool interfaces as first-class entities to address these challenges. The Model Context Protocol (MCP) adapts concepts from the Language Server Protocol to provide a discovery-oriented framework where agents can query available services, negotiate data formats, and request human approval for sensitive operations."

社群已引入通用協議,將工具介面視為主要實體來解決這些挑戰。模型上下文協議 (MCP) 借鑒了語言服務協議的概念,提供了一個以發現為導向的框架,代理可以查詢 可用服務、協商數據格式以及請求人類批准敏感操作。

"Building on MCP, related specifications such as the Agent Network Protocol (ANP) and Agent-to-Agent (A2A) protocol aim to support peerto-peer collaboration and multi-agent orchestration."

基於MCP,相關規範如代理網絡協議(ANP)和代理對代理(A2A)協議旨在支持點對點協作和多代理協同。

List of Abbreviations

這部分提供了機器學習和深度學習論文中使用的縮寫及其定義的全面列表。這些縮寫涵蓋 了廣泛的主題,包括:

核心 AI/ML 技術: - 大型語言模型(LLM, MLLM, VLM) - 聯邦學習(FL, FedML) - 檢索增強生成(RAG) - 情境學習(ICL)

安全性和攻擊方法: - 各種攻擊類型(CIA, AEIA, CBA, ICA, MIA 等) - 防禦機制(ICD, FedSecurity) - 對抗技術(advICL, PoisonedRAG)

系統架構: - 多代理系統(MAS, LLM-MAS) - 代理協議(A2A, ANP, MCP) - 邊緣智能(EI)

訓練和優化:-強化學習技術(RL, RLHF, DPO)-模型優化方法(QLoRA, HQQ, ATO)

這個術語表顯示該論文可能重點關注現代 AI 系統,特別是大型語言模型、多代理系統和 聯邦學習環境中的安全漏洞和防禦機制。

Open Challenges and Future Directions

這部分概述了保障基於LLM(大型語言模型)的代理系統的重要安全挑戰和研究方向,特別著重於MCP(模型上下文協議)部署。

作者指出了四個需要關注的關鍵領域:

- **1. 動態信任與適應性策略執行** 目前靜態的訪問控制對於流動的、語言驅動的AI工作流是不足夠的。 未來的研究應該開發宣告性策略語言,以便在運行時協商最小特權規則和分佈式信任協議,用於自動化、時間限制的工具許可。
- **2. 上下文和來源完整性** 由於MCP在多次交互中維持對話狀態,未被發現的篡改可能會破壞下游操作。 提出的解決方案包括安全隱匿區、硬件信任根模塊,以及基於區塊鏈的不可變審計日志,用於對上下文更新的加密驗證。

- **3. 勒索軟件抗性** MCP的客戶端-服務器架構易受勒索軟件攻擊,這些攻擊可能會加密數據源和工具端點。 這可能有效地切斷LLM與關鍵資源之間的連接。 單個受感染的服務器可能導致整個系統的連鎖故障。
- **4. 專業異常檢測和形式驗證** 傳統的入侵檢測系統無法有效處理自然語言的攜帶負載。 -該領域需要訓練ML模型來檢測提示和回應中的語義異常。 - 結合形式驗證方法以防止邏 輯缺陷漏洞。

作者總結說,將零信任原則、加密認證、上下文感知異常檢測和形式方法整合起來,對於 實現生產AI系統所需的靈活性和安全性至關重要。

"Traditional static access controls cannot keep pace with the fluid, language-driven workflows that modern agents require. Future research should explore declarative policy languages that allow hosts to negotiate and update least-privilege rules at runtime, as well as distributed trust-negotiation protocols capable of granting time-boxed permissions for specific tool invocations without human intervention."

傳統的靜態存取控制無法跟上現代代理所需的流暢語言驅動工作流程。未來的研究應該探討聲明性政策語言,使主機能夠在運行時協商和更新最小特權規則,以及能夠授予特定工 具調用時限許可的分佈式信任協商協議,無需人工干預。

"Ransomware can cripple an MCP deployment by encrypting or locking access to the very data sources and tool-endpoints that MCP servers expose, effectively severing the 'USB-C port' connections between LLMs and critical context (e.g., local files, databases, or APIs)."

勒索軟體可以通過加密或鎖定 MCP 服務器暴露的數據源和工具端點,重創 MCP 部署,有效地切斷 LLMs 和關鍵上下文(如當地文件、數據庫或 APIs)之間的"USB-C 端口"連接。

"By integrating zero-trust principles, cryptographic attestation of tool binaries, context-aware anomaly detection, and rigorous formal methods, the next generation of MCP implementations can combine the agility of modular AI workflows with the robust security guarantees required for production use."

通過整合零信任原則、工具二進制文件的加密證明、上下文感知的異常檢測和嚴格的形式 化方法,下一代 MCP 實現可以將模塊化 AI 工作流程的靈活性與生產使用所需的強大安 全保證相結合。

Conclusion

結論

- 本論文介紹了首個完整的端到端安全威脅模型,針對LLM驅動的AI代理生態系統。
- 作者系統性地分析了超過30種攻擊技術,分為四個主要類別:輸入操縱、模型妥協、系統與隱私攻擊以及協議漏洞。
- 他們研究了現實世界中的攻擊場景,評估了其可行性,並審查了現有的防禦機制。
- 此研究識別了數個需要關注的關鍵安全漏洞,包括動態信任管理、安全代理接口、 多代理系統中的對抗性魯棒性、防篡改架構以及可擴展的防禦框架。
- 作者將其全面的威脅分類法定位為開發可靠的安全措施和最佳實踐的基礎資源,目標是促進在實際部署中安全和可信的自主AI代理。

References

No references found.