

HINT & SOLUTIONS : MOLE CONCEPT

EXERCISE # S-I

1. 10^{10} grains are distributed in 1 sec

$$\Rightarrow 6.023 \times 10^{23}$$
 grains are distributed in $\frac{6.023 \times 10^{23}}{10^{10}} sec$

- $= 6.023 \times 10^{13}$ seconds.
- 2. Mass of 6.023×10^{23} atom = 12 gm

⇒ Mass of 1 atom =
$$\frac{12}{6.023 \times 10^{23}}$$
 gm
= 1.99×10^{-23} gm

3. Weight of 6.023×10^{23} atoms = 12 gm

$$\Rightarrow$$
 Weight of 12.046×10^{23} atom = $\frac{12 \times 12.046 \times 10^{23}}{6.023 \times 10^{23}} = 24 \text{ gm}$

- 4. (i) Number of moles of Cu atom in 10^{20} atoms of Cu = $\left(\frac{10^{20}}{N_A}\right)$ moles (ii) Mass of 200 atoms of $\frac{16}{N_A}$
 - (ii) Mass of 200 atoms of ${}^{16}_{8}$ O in amu \rightarrow Mass of 1 atom = 16 amu \Rightarrow Mass of 200 atoms = 16×200 amu = 3200 amu
 - (iii) Mass of 100 atoms of ${}^{14}_{7}N$ in gm \to Mass of 1 atom of ${}^{14}_{7}N$ in gm = $14 \times 1.66 \times 10^{-24}$ gm \Rightarrow Mass of 100 atom of ${}^{14}_{7}N = 14 \times 100 \times 1.66 \times 10^{-24}$ gm i.e. $1400 \times 1.66 \times 10^{-24}$ gm
 - (iv) Number of molecules in 54 gm $H_2O = \left(\frac{54}{18} \times N_A\right) = 3N_A$

Number of atoms in 54 gm $H_2O = (3N_A) \times 3 = 9N_A$

- (v) Number of atoms in 88 gm $CO_2 = \left(\frac{88}{44}\right) \times 3N_A$ i.e. $6N_A$
- 5. Mass of O atoms in 6 gm CH₃COOH = $n_{CH_3COOH} = \frac{6}{60}$ i.e. $\frac{1}{10}$

In 1 mole of CH_3COOH , mass of O atom = 32 gm

$$\Rightarrow$$
 Mass of O atom in $\frac{1}{10}$ mole CH₃COOH = $\frac{32}{10}$ i.e. 3.2 gm

6.
$$n_{\text{CuSO}_4.5\text{H}_2\text{O}} = \frac{499}{249.5} = 2 \text{ mole}$$

1 mole of CuSO₄.5H₂O contains 90 gm H₂O

 \Rightarrow 2 mole of CuSO₄.5H₂O contains (90 × 2) i.e. 180 ;gm H₂O.

7. 1 mole of Na₂SO₄.7H₂O contains 11N_A'O' atoms

$$\Rightarrow 6.023 \times 10^{22} \text{ atom of 'O' are present in } \frac{6.023 \times 10^{22}}{11 \times N_A} = \frac{6.023 \times 10^{22}}{11 \times 6.022 \times 10^{23}} = \frac{1}{110} \text{ mole i.e. } 2.5 \text{ gm}$$

- Number of Nucleon present in 12 gm of $\,^{12}C$ atoms = 12 N_A = $12\times6.023\times10^{23}$ = 7.227×10^{24} 8.
- In 1 mole of ¹⁶O⁻² ions 9. Number of Electrons = $10N_A$ i.e. $10 \times 6.023 \times 10^{23}$ Number of Protons = $8N_A$ i.e. $8 \times 6.023 \times 10^{23}$ Number of Neutrons = $8N_A$ i.e. $8 \times 6.023 \times 10^{23}$
- 10. Mass of liquid mercury = 13.6 gm
 - Moles of liquid mercury = $\frac{13.6}{200}$ i.e. 0.068
 - Moles of liquid mercury in 1 lit of the metal = $0.068 \times 1000 = 68$ mole
- of C_2H_6 sample = $\left(\frac{10}{N_A}\right)$ moles of CH_4 i.e. $\left(\frac{16\times10^7}{N_A}\right)$ g

 Mole of C_2H_6 sample = $\left(\frac{16\times10^7}{N_A\times30}\right)$ Mass of C_2H_6 sample = $\left(\frac{10^7}{N_{\odot}}\right)$ moles of CH_4 11.

 - Number of C_2H_6 molecules in sample = $\left(\frac{16\times10^7}{N_{_A}\times30}\right)\times N_{_A}$ i.e. 5.34×10^6 \Rightarrow
- Number of H-atom removed = $(30N_A + 10N_A) = 40 N_A$ **12.** Number of H_2 molecules formed = (20 N_A)
- 13. $MnO_{2(s)} + 4HCl \longrightarrow Cl_{2(g)} + MnCl_{2(aq)} + 2H_2O(l)$ 1 mole Cl₂ is produced from 4 mole HCl 142 gm Cl₂ or 2 mole Cl₂ is produced from 8 mole HCl i.e. $(8 \times 36.5) = 292$ gm HCl
- $C + O_2 \longrightarrow CO_2$ 14. $n_C \rightarrow \frac{1.2 \times 10^3}{12}$ i.e. 100 mole.

Mole of O_2 needed for 1 mole C = 1 mole

- Mole of O_2 needed for 100 mole C = 100 mole
- Volume of O_2 needed = $100 \times 22.7 = 2270$ lits.
- $C_5H_{12}O + \frac{15}{2}O_2 \longrightarrow 5CO_2 + 6H_2O$ **15.**
 - Moles of O_2 required to burn 1 mole of this compound completely is 7.5 moles.

16.
$$Al_4C_3 + 12H_2O \longrightarrow 3CH_4 + 4Al(OH)_3$$

$$n_{CH_4} = \frac{11.35}{22.70} = \frac{1}{2}$$
 mole

3 mole CH₄ is produced from 1 mole Al₄C₃.

$$\Rightarrow \frac{1}{2}$$
 mole CH₄ is produced from 1 mole $\left(\frac{1}{3} \times \frac{1}{2}\right)$ mole Al₄C₃

i.e.
$$\frac{1}{6}$$
 mole Al₄C₃ or $\frac{1}{6} \times 144$

i.e. 24 gm Al₄C₃

17.
$$2H_3PO_4 \longrightarrow H_4P_2O_7 + H_2O$$

$$n_{H_4P_2O_7} \longrightarrow \frac{53.4}{178} = 0.3 \text{ mole}$$

1 mole H₄P₂O₇ is obtained from 2 mole H₃PO₄

$$\Rightarrow$$
 0.3 mole H₄P₂O₇ is obtained from (2 × 0.3) mole H₃PO₄

$$= 0.6 \text{ mole } H_3PO_4$$

i.e.
$$(0.6 \times 98) = 58.5 \text{ g H}_3\text{PO}_4$$

18.
$$3NO_2 + H_2O \longrightarrow 2HNO_3 + NO$$

$$n_{HNO_3} = \frac{25.2}{63} = 0.4$$

2 mole HNO₃ is produced from 3 mole NO₂

$$= 0.6 \text{ mole } H_3PO_4$$
i.e. $(0.6 \times 98) = 58.5 \text{ g } H_3PO_4$

$$3NO_2 + H_2O \longrightarrow 2HNO_3 + NO$$

$$n_{HNO_3} = \frac{25.2}{63} = 0.4$$

$$2 \text{ mole } HNO_3 \text{ is produced from } 3 \text{ mole } NO_2$$

$$\Rightarrow 0.4 \text{ mole } HNO_3 \text{ is produced from } \left(\frac{3}{2} \times 0.4\right) = 0.6 \text{ mole } NO_2$$

or
$$(0.6 \times 46)g \text{ NO}_2$$

i.e. $27.6g \text{ NO}_2$

19.
$$U + 3F_2 \longrightarrow UF_6$$

(Excess)

$$n_{UF_6} = \frac{2 \times 10^{-3}}{352}$$
 $\Rightarrow n_{UF_6} = 5.6 \times 10^{-6}$

1 mole UF₆ is obtained from 3 mole F₂

$$\Rightarrow$$
 5.6 × 10⁻⁶ mole UF₆ is obtained from \longrightarrow 5.6 × 10⁻⁶ × 3 × 6.023 × 10²³

$$= 101.1 \times 10^{17}$$
$$= 1 \times 10^{19}$$

20.
$$7XeF_6 + 3I_2 \longrightarrow 6IF_7 + 7Xe$$

7 mole XeF6 produces 6 mole IF₇

$$\Rightarrow 3.5 \times 10^{-3} \text{ mole XeF}_6 \text{ produces} \left(\frac{6}{7} \times 3.5 \times 10^{-3}\right)$$

i.e. 3 m mol IF₇

 $2NH_4NO_3$ \longrightarrow 2N₂ + O₂ + 4H₂O. 21.

mole initial
$$\frac{1}{5}$$

$$\frac{1}{5}$$
 $\frac{1}{10}$ $\frac{2}{5}$

$$\Rightarrow n_T = \left(\frac{1}{5} + \frac{1}{10} + \frac{2}{5}\right) = \left(\frac{7}{10}\right)$$

Apply = Pv = nRT
$$\Rightarrow$$
 v = $\frac{nRT}{P}$ = $\left(\frac{7}{10} \times 0.0821 \times 873\right)$ = 50.14 litre

22.
$$3CaCO_3 + 2H_3PO_4 \longrightarrow Ca_3(PO_4)_2 + 3H_2O + 3CO_2$$

Moles
$$\rightarrow \frac{50}{100}$$
 $\frac{73.5}{98}$

$$= \frac{1}{2} \qquad \frac{3}{4}$$

$$\frac{\text{moles}}{\text{S.C}} \rightarrow \frac{1}{6} \qquad \frac{3}{8}$$
 $\Rightarrow \quad \text{CaCO}_3 \text{ is L. R}$

- (i)
- Amount of unreacted reagent = $\left(\frac{3}{4} \frac{1}{3}\right) = \frac{9 4}{12} = \left(\frac{5}{12}\right)$ moles. $4A + 2B + 3C \longrightarrow 2$ (ii)

23.
$$4A + 2B + 3C \longrightarrow A_4 B_2 C_3$$

⇒ C is L.R
⇒ moles of product formed =
$$\frac{1.44}{3}$$
 = 0.48 moles.

24.
$$4KO_2 + 2H_2O \longrightarrow 4KOH + 3O_2$$

$$\frac{\text{Moles} \rightarrow}{\text{S.C}} \rightarrow \frac{0.158}{4} \frac{.10}{2}$$

$$\Rightarrow$$
 KO₂ is L.R.

$$\Rightarrow$$
 Moles of O₂ produced is $\frac{3 \times 0.158}{4}$ i.e. 0.1185 mole

25.
$$6 \operatorname{LiH} + 8BF_3 \longrightarrow 6 \operatorname{LiBF}_4 + B_2H_6$$

Moles: 2 2

$$\frac{\text{moles}}{\text{S.C}} \rightarrow \frac{2}{6} \frac{2}{8}$$

 $\Rightarrow BF_3 \text{ is L.R.}$

$$\Rightarrow$$
 Moles of B₂H₆ prepared $=\frac{1}{8}\times 2=\frac{1}{4}$ moles i.e. 0.25 mol

26.
$$3\text{TiO}_{2} + 4\text{C} + 6\text{Cl}_{2} \longrightarrow 3\text{TiCl}_{4} + 2\text{CO}_{2} + 2\text{CO}$$
moles
$$\frac{4.32}{80} \frac{5.76}{12} \frac{7.1}{71}$$
i.e.
$$0.054 \quad 0.48 \quad 0.1$$

$$\frac{\text{moles}}{\text{S.C}} \rightarrow \frac{0.054}{3} \frac{0.48}{4} \frac{0.1}{6}$$

$$\Rightarrow \text{Cl}_{2} \text{ is L.R.}$$

$$\Rightarrow \qquad \text{Amount of TiCl}_4 \text{ obtained} = \left(\frac{3}{6} \times 0.1\right) \times 190 = 9.5 \text{ g}$$

27.
$$C + 2Cl_2 \longrightarrow CCl_4$$

moles $\rightarrow \frac{36}{12} \quad \frac{142}{71}$

i.e. $3 \quad 2$
 $\frac{\text{moles}}{\text{S.C}} \rightarrow 3 \quad 1$
 $\Rightarrow \quad Cl_2 \text{ is L.R.}$

- $\Rightarrow Cl_2 \text{ is L.R.}$ (i) Mass of CCl_4 produced = 1×154 i.e. 154 gm
- (ii) Remaining mass of reactants = $(3-1) \times 12 = 24$ gm

28.
$$2SO_2 + O_2 + 2H_2O \longrightarrow 2H_2SO_4$$
moles \rightarrow 5.6 4.8 (excess)
$$\frac{\text{moles}}{S.C} \rightarrow \frac{5.6}{2} \frac{4.8}{1}$$
 \Rightarrow SO₂ is L.R.

 \Rightarrow maximum number of moles of H₂SO₄ that can be obtained = 5.6 mole.

29.
$$2Al + 6HCl \longrightarrow 2AlCl_3 + 3H_2$$

Moles $\frac{x}{27}$ (excess)

 \Rightarrow moles of H_2 obtained = $\left(\frac{3}{2} \times \frac{x}{27}\right)$ (1)

 $mg + 2HCl \longrightarrow MgCl_2 + H_2$

Moles
$$\rightarrow \frac{(1-x)}{24}$$
 (excess)

$$\Rightarrow$$
 moles of H₂ obtained = $\left(\frac{1-x}{24}\right)$ (2)

⇒ Total moles of H₂ obtained =
$$\left(\frac{3x}{54} + \frac{1-x}{24}\right)$$
(3)

Now,

$$\Rightarrow$$
 $n_{H_2} = \frac{1.12}{22.4}$ i.e. 0.05(4)

Now, equation (3) & (4)

$$\frac{3x}{54} + \frac{1-x}{24} = 0.05$$

$$\Rightarrow \frac{12x + 9 - 9x}{216} = 0.05$$

$$m = 10.8 - 9 = \frac{1.8}{3} = 60\%$$
$$3x + 9 = 10.8$$

$$\Rightarrow 3x + y = 10.6$$

$$\Rightarrow 3x = 1.8$$

$$\Rightarrow 3x = 1.8 \qquad \Rightarrow x = 0.6$$

$$\Rightarrow 3x = 1.8 \Rightarrow x = 0.6$$

\Rightarrow by mass Al \rightarrow 60\% & \cdot by mass mg \rightarrow 40\%

30.
$$CaCO3 \longrightarrow CaO + CO_2$$

$$moles \rightarrow a$$
 0 0

$$MgCO_3 \longrightarrow MgO + CO_4$$

$$moles \rightarrow b \qquad 0 \qquad 0$$

Now, According to question,

Mass of oxide produced is exactly half as much as the original sample.

$$\Rightarrow$$
 $a \times 56 + b \times 80 = \frac{1}{2} (100 \ a + 84 \ b)$

$$\Rightarrow$$
 b = 3a

$$\Rightarrow$$
 % weight of CaCO₃ = $\left(\frac{100a}{100a + 84b}\right) \times 100$

$$= \left(\frac{100a}{352a} \times 100\right) = 28.4 \%$$

% weight of
$$MgCO_3 = (100 - 28.4)$$

31. Na₂CO₃ $\xrightarrow{\Delta}$ x Let mass of Na₂CO₃ be x gm 2 mass of NaHCO₃ be (2–x) gm

$$2Na(HCO_3) \xrightarrow{\Delta} Na_2CO_3 + CO_2 + H_2O_3$$

$$mole \rightarrow \frac{2-x}{84} \qquad \frac{1.89-x}{406}$$

Now,
$$\frac{\text{moles of NaHCO}_3}{2} = \frac{\text{moles of Na}_2\text{CO}_3}{1}$$

$$\frac{(2-x)}{84\times2} = \frac{1.89-x}{106}$$

$$\Rightarrow$$
 212 – 106x = 84 × 2 (1.89 – x)

$$\Rightarrow$$
 212 - 106x = 317.52 - 168 x

$$\Rightarrow$$
 168x - 106x = 317.52 - 212

$$\Rightarrow$$
 62x = 105.52

$$\Rightarrow$$
 $x = \frac{105.52}{62} = 1.70 \text{ g}$

% by mass of Na₂CO₃ =
$$\frac{1.70}{2} \times 100 = 85.1$$
 %

- % by mass of $NaHCO_3 = 14.9\%$
- 32. let $CaCO_3$ be x gm

$$2 MgCo_3 be (92 - x) gm$$

$$colonize{1}{colonize{1}{0}} colonize{1}{0} colonize{1} colonize{1}{0} colonize{1} colonize{1}{0} colonize{1}{0} colonize{1} colonize{1}{0} colonize{1} colonize{1}{0} colonize{1}{0} colonize{1}{0} colonize{1} colonize{1}{0} colonize{1}{0} colonize{1}{0} colonize{1}{0} coloni$$

Mole:
$$\frac{x}{100}$$
 0

$$-\frac{x}{100} - \frac{x}{100}$$

$$MgCO_3 \longrightarrow MgO + CO_2$$

$$Mole \rightarrow \left(\frac{92 - x}{84}\right) -$$

$$- \qquad \left(\frac{92-x}{84}\right) \qquad \left(\frac{92-x}{84}\right)$$

Now, weight of residue = 48

$$\Rightarrow \frac{x}{100} \times 56 + \left(\frac{92 - x}{84}\right) \times 40 = 48$$

- \Rightarrow on solving we get x = 50
- \Rightarrow weight of MgCO₃ = 42 gm.

33. NaCl \longrightarrow x Let NaCl be x gm & NaHCO₃ be (4 - x) gm $2NaHCO_3 \longrightarrow Na_2CO_3 + CO_2 + H_2O$

Mole
$$\rightarrow \frac{4-x}{84}$$

0

0

$$\frac{(4-x)}{84\times2}$$

Now, According to question

$$44 \times \frac{(4-x)}{84 \times 2} = 0.66$$

$$\Rightarrow (4-x) = \frac{0.66 \times 84}{22 \times 100}$$

$$\Rightarrow$$
 x = 1.48 gm &

Weight of $NaHCO_3 = 2.52 \text{ gm}$

$$\Rightarrow$$
 % by mass of NaCl $\rightarrow \frac{1.48}{4} \times 100 = 37 \%$

& % by mass of NaHCO₃ is 63%

34. $CaCO_3 \longrightarrow CaO + CO_2$

$$n_{CO_2} = \frac{11.35}{22.70} \rightarrow \frac{1}{2}$$
 mole

$$n_{\text{\tiny CaCO}_3} {\:\longrightarrow\:} 2 \text{ mole}$$

$$\Rightarrow$$
 2 mole CaCO₃ produces 2 mole CO₂

But produced mole is $\frac{1}{2}$ mole

$$\Rightarrow$$
 % of Ca in lime stone sample = $\left(\frac{20}{200} \times 100\right)$ i.e. 10%

35. Sulphur present in 1.30 gm per 100g of coal.

$$S + O_2 \longrightarrow SO_2$$

Moles
$$\rightarrow \frac{1.30}{32}$$
 (excess)

$$\left(\frac{1.30}{32}\right)$$

$$\Rightarrow$$
 weight of SO₂ produced = $\left(\frac{1.30}{32} \times 64\right) = 2.60 \text{ gm}$

 $100~g~coal~sample~produced~2.60~gm~SO_2$

$$\Rightarrow$$
 474 tons will produced $\frac{2.60}{100} \times 474$ i.e. (12.3 tons)

36. $2KClO_3 \longrightarrow 2KCl + 3O_2$

The loss in weight of sample is because of O_2 gas produced.

- 2 mole KClO₃ is producing 3 mole O₂
- i.e. for 1 mole loss is $\left(\frac{3}{2} \times 32\right)$
- \Rightarrow % loss in weight = $\left(\frac{48}{122.5}\right) \times 100 = 39.18$ %
- **37.** $CaCO_3 + 2HCl \longrightarrow CaCl_2 + CO_2 + H_2O$

1 mole CaCO₃ will produce 1 mole CO₂

i.e.
$$\left(.8 \times \frac{1}{4}\right)$$
 mole will produce $\left(.8 \times \frac{1}{4}\right)$ mole CO_2

- Volume of CO_2 produced = $.2 \times 22.4$ litres = 4.48 litres.
- $C_6H_{12}O \xrightarrow{cons.H_2SO_4} C_6H_{10} + H_2O$ **38.**
 - .25 .75 .75
 - 1 mole C₆H₁₂O produces 0.75 mole C₆H₁₀. \Rightarrow
 - 100 gm $C_6H_{12}O$ produces $(.75 \times 82)g C_6H_{10}$ \Rightarrow
 - $61.5 \text{ g C}_6\text{H}_{10}$ is produced.
- xcelienc $2CH_3COCH_3 + 6CaOCl_2 \longrightarrow Ca(CH_3COO)_2 + 2CHCl_3 + 3CaCl_2 + 2Ca(OH)_2$ **39.**

$$\Rightarrow \qquad \mathbf{x} \times .75 = \frac{30}{119.5}$$

$$\Rightarrow x = \frac{30}{119.5 \times 0.75} \Rightarrow x = 0.334 \text{ mole}$$

- Mass of $CH_3COCH_3 = 0.334 \times 58$ i.e. 19.4 gm
- 40. $Br_2 + Cl_2 \longrightarrow 2BrCl$

mole. 0.025 0.025

$$(0.025 \times 2) \times .8 = 0.04$$

- (i) amount of BrCl formed = 0.04
- (ii) Br₂ left unchanged = 0.025 - 0.02 = 0.005
- 41. $S_8 + 8O_2 \longrightarrow 8SO_2$

$$2SO_2 + O_2 \longrightarrow 2SO_3$$

1 mole
$$S_8 = 8$$
 mole SO_2 (1)

$$\Rightarrow$$
 2 mole SO₂ = 2 mole SO₃

i.e.
$$8 \text{ mole } SO_2 = 8 \text{ mole } SO_3 \dots (2)$$

From (1) & (2)

 SO_3 obtained from 1 mol of $S_8 = (8 \times 80)g$ SO_3 i.e. 640g SO_3

42.
$$2Pbs + 3O_2 \longrightarrow 2PbO + 2SO_2$$

$$3SO_2 + 2HNO_3 + 2H_2O \longrightarrow 3H_2SO_4 + 2NO$$

$$n_{Pbs} = \frac{1075.5}{239.2} = 4.49$$

2 mole Pbs = 2 mole
$$SO_2$$
(1)

 $3 \text{ mole } SO_2 = 3 \text{ mole } H_2SO_4$

$$\Rightarrow$$
 2 mole SO₂ = 2 mole H₂SO₄(3)

From (1) & (3)

1 mole Pbs = 1 mole H_2SO_4

- $4.49 \text{ mole Pbs} = 4.49 \text{ mole H}_2SO_4 \text{ or } 4.50 \text{ mole H}_2SO_4$
- \Rightarrow mass of $H_2SO_4 = (4.50 \times 98) = 441$ g.m

43.
$$4KO_2 + 2H_2O \longrightarrow 3O_2 + 4KOH$$

$$KOH + CO_2 \longrightarrow KHCO_3$$

- 3 mole O₂ is produced by 4 mole KO₂ (a)
- 1 mole O_2 is produced by $\frac{4}{2}$ mole KO_2 \Rightarrow
- $\left(\frac{20}{32}\right) \text{ mole } O_2 \text{ is produced by } \left(\frac{4}{3} \times \frac{20}{22} \times 71\right) \text{g } KO_2 = 59.17 \text{ gm.}$ $1 \text{ mole } KO_2 = 1 \text{ mole } KOH$ $= 1 \text{ mole } CO_2$ $\left(\frac{100}{71}\right) \text{ mole } KO_2 = \left(\frac{100}{71} \times 44\right) \text{g } CO_2 = 61.97 \text{ g } CO_2$
- (b)

$$\Rightarrow \qquad \left(\frac{100}{71}\right) \text{ mole } \text{KO}_2 = \left(\frac{100}{71} \times 44\right) \text{g CO}_2 = 61.97 \text{ g CO}_2$$

44. NaH₂PO₄ + NH₄⁺ + Mg⁺²
$$\longrightarrow$$
 Mg(NH₄) PO₄.6H₂O

$$\int_{\Delta}$$

$$Mg_2P_2O_7$$

Applying P.O.A.C on 'P' atom

$$1 \times n_{\text{NaH}_2\text{PO}_4} = 2 \times n_{\text{Mg}_2\text{P}_2\text{O}_7}$$

$$1 \times \frac{\text{weight}}{120} = 2 \times \frac{1.054}{222}$$

Weight of NaH₂PO₄ =
$$\frac{2 \times 1.054 \times 120}{222}$$
 = 1.14 gm

45.
$$H_2O + SO_3 \longrightarrow H_2SO_4$$

$$n_{\rm H_2O} = \left(\frac{40 \times .9}{18}\right) = 2$$

$$n_{SO_3} = \left(\frac{1 \times 50}{0.0821 \times 300}\right) = 2.03 = 2$$

Weight of H_2SO_4 produced = $2 \times 98 = 196$ gm.

46.
$$A_2[H_2PtCl_6] \xrightarrow{\Delta} Pt$$

$$n_{Pt} = \frac{0.262}{195}$$

$$\Rightarrow$$
 moles of salt = $\frac{0.80}{2A + 410}$

$$\Rightarrow \frac{0.80}{2A+410} = \frac{0.262}{195}$$

$$\Rightarrow$$
 $A = \left(\frac{.80 \times 195}{0.262} - 410\right) \times \frac{1}{2}$

$$\Rightarrow$$
 A = 92.70 gm/mole.

47. Atomic mass of chlorine =
$$\frac{75.77 \times 34.9689 + 24.23 \times 36.9659}{100}$$

$$=\frac{2649.59355 + 895.683757}{100} = 35.4527$$

48.
$$24.31 = \frac{79 \times 24 + (21 - x) \times 25 + x \times 26}{100}$$

$$\Rightarrow$$
 2431 = 1896 + 525 - 25x + 26x

$$\Rightarrow$$
 $x = 10$

49.

0/6	Atomic mass	Relative number of $atom = \frac{\%}{At \text{ mass}}$	Simplest atomic ratio	Simplest whole number ratio
C → 49%	12	$\frac{49}{12} = 4.08$	3	3
H → 2.7%	1	$\frac{2.7}{1} = 2.70$	1.98 = 2	2
Cl <u>→</u> 48.3%	35.5	$\frac{48.3}{35.5} = 1.36$	1	1

$$\Rightarrow$$
 Emperica formula = C_3H_2Cl

$$\Rightarrow \qquad n = \frac{147}{73.5} = 2$$

$$\Rightarrow$$
 molecular formula = $(C_6H_4Cl_2)$

50.
$$.25 = \frac{x \times 56}{89600} \times 100$$

$$\Rightarrow \qquad x = \frac{.25 \times 89600}{56 \times 100} \qquad \Rightarrow x = 4$$

EXERCISE # S-II

1.
$$\frac{\text{mole of HCl}}{16} = \frac{\text{mole of Cl}_2}{5}$$
$$\frac{\text{mole of Cl}_2}{6} = \frac{\text{mole of Ca(ClO}_3)_2}{1}$$
$$\frac{\text{mole of Ca(ClO}_3)_2}{1} = \frac{\text{mole of NaClO}_3}{2}$$

Also, moles of HCl in 100 ml = 1.164

$$\Rightarrow$$
 moles of NaClO₃ = $\left(\frac{5 \times 1.164 \times 2}{16 \times 6}\right)$

$$\Rightarrow \text{ mass of NaClO}_3 \text{ produced} = \left(\frac{5 \times 1.164 \times 2}{16 \times 6}\right) \times 106.5 = 12.9 \text{ g}$$

2. (i)
$$P_4 + O_2 \longrightarrow P_4O_6 + P_4O_{10}$$

Let $n_{P_4O_6} \longrightarrow x$ & $n_{P_4O_{10}} \longrightarrow y$

$$\underbrace{P.O.A.C \text{ on } P:}_{4 \times n_{P_4}} = 4 \times n_{P_4O_6} + 4 \times n_{P_4O_{10}}$$

$$\Rightarrow 4 \times 1 = 4x + 4y$$

$$\Rightarrow 4 = 4x + 4y \text{ i.e. } x + y = 1 \text{(1)}$$

$$\underbrace{P.O.A.C \text{ on } O:}_{2 \times n_{O_2}} = 6x + 10y$$

<u>P.O.A.C on P :</u>

$$4\times\,n_{_{P_{_{\!4}}}}=4\times\,n_{_{P_{_{\!4}O_{_{\!6}}}}}\,+4\times\,n_{_{P_{_{\!4}O_{_{\!10}}}}}$$

$$\Rightarrow$$
 4 × 1 = 4x + 4y

$$\Rightarrow$$
 4 = 4x + 4y i.e. x + y = 1(1

P.O.A.C on O:

$$2 \times n_{O_2} = 6x + 10y$$
$$2 \times 4 = 6x + 10y$$

$$2 \times 4 = 6x + 10y$$

$$\begin{array}{rcl}
1.0.A.C & \text{on } O. \\
2 \times n_{O_2} &= 6x + 10y \\
2 \times 4 &= 6x + 10y \\
\Rightarrow & 3x + 5y = 4
\end{array}$$
.....(2)

Solving equation (1) & (2)

$$3x + 3y = 3$$

$$3x + 5y = 4$$

$$\frac{-}{y = \frac{1}{2}}$$
 & $x = \frac{1}{2}$

$$\Rightarrow$$
 moles of P₄O₆ obtained = 0.5 & moles of P₄O₁₀ obtained = 0.5

(ii)
$$P_4 + O_2 \longrightarrow P_4O_6 + P_4O_{10}$$

P.O.A.C on P:

$$3 \times 4 = 4x + 4y$$

$$\Rightarrow$$
 $x + y = 3$ (1)

P.O.A.C on O:

$$2 \times 11 = 6x + 10y$$

$$\Rightarrow 3x + 5y = 11 \qquad \dots (2)$$

Solving equation (1) & (2)

$$3x + 3y = 9$$

$$3x + 5y = 11$$

$$\frac{-}{-2y = -2}$$

$$\Rightarrow$$
 $y = 1$ & $x = 2$

$$\Rightarrow$$
 moles of $P_4O_6 = 2$ & moles of $P_4O_{10} = 1$

(iii)
$$P_4 + O_2 \longrightarrow P_4O_6 + P_4O_{10}$$

P.O.A.C on P :

$$4 \times 3 = 4x + 4y$$

$$\Rightarrow$$
 $x + y = 3$ (1)

P.O.A.C on O:

$$2 \times 13 = 6x + 10y$$

$$\Rightarrow 3x + 5y = 13 \qquad \dots (2)$$

Solving equation (1) & (2)

$$3x + 3y = 9$$

$$3x + 5y = 13$$

$$\frac{-}{-2y = -4}$$

$$\Rightarrow$$
 $y = 2$

$$3x + 5y = 13$$

$$\frac{-}{-2y = -4}$$

$$\Rightarrow y = 2$$

$$\Rightarrow \text{ moles of } P_4O_6 = 1 \quad \& \quad \text{moles of } P_4O_{10} = 1$$

$$C + O_2 \longrightarrow CO_2 + CO$$
Let moles of CO be x

$C + O_2 \longrightarrow CO_2 + CO$ **3.**

Let moles of CO be x

& moles of CO₂ ben y.

P.O.A.C on C :

$$\longrightarrow CO_2 + CO$$
les of CO be x
es of CO₂ ben y.
$$\underline{C \text{ on } C:}$$

$$1 = x + y \qquad \dots (1)$$

P.O.A.C on O:

$$2 \times \frac{20}{22} = x + 2y \qquad(2)$$

Solving equation (1) & (2), we get

$$x \to 0.75$$
 & $y = 0.25$

mass % of CO
$$\rightarrow \frac{.75 \times 28}{0.75 \times 28 + 0.25 \times 44} \times 100 = \frac{21}{32} \times 100 = 65.625\%$$

mass % of $CO_2 = 34.375$ %

4. N :
$$P_2O_5$$
 : K_2O mole: $\frac{30}{14}$: $\frac{10}{142}$: $\frac{10}{94}$

For N : P : K mole:
$$\frac{30}{14}$$
 : $\frac{10}{71}$: $\frac{10}{47}$

ratio

5. Let CaCl₂ be x gm & NaCl be (10 - x) gm

$$CaCl_2 \xrightarrow{Na_2CO_3} CaCO_3 \longrightarrow CaO$$

moles:
$$\frac{x}{111}$$
 $\frac{x}{111}$ $\frac{x}{111}$

$$\frac{\mathbf{x}}{111}$$

$$\frac{X}{111}$$

As,
$$\frac{x}{111} = \frac{1.12}{56}$$

$$\Rightarrow$$
 x = 2.22 gm

% NaCl =
$$\frac{7.78}{10} \times 100 = 77.8 \%$$

6. (a) $Fe_2O_3 + 2Al \longrightarrow Al_2O_3 + 2Fe$

> Fe₂O₃ & Al reacts in mole ratio 1:2 (b)

$$\Rightarrow$$
 ratio of mass = $\frac{100}{54}$ or 80:27

(c) $nFe_2O_3 \longrightarrow 100$

moles of Fe_2O_3 reacted = 50 moles

$$\Rightarrow$$
 energy released = $50 \times 200 = 10,000$ units

 $2KClO_3 \longrightarrow 2KCl + 3O_2$ 7.

mole:
$$\left(\frac{x}{122.5}\right)$$
 $\frac{x}{122.5} \left(\frac{3x}{2 \times 122.5}\right)$

$$n_{O_2} = \frac{112}{22400} = \frac{3x}{2 \times 122.5}$$

$$\Rightarrow$$
 x = 0.41 gm

mass of KCl obtained from 0.41 gm KClO₃

$$= \left(\frac{2 \times 74.5}{2 \times 122.5} \times 0.41\right) = 0.25 \text{ gm KCl}$$

$$4KClO3 \longrightarrow 3KClO_4 + KCl$$

$${}^{(0.59/_{122.5})}$$

& mass of KCl obtained from 0.59g KClO₃

$$= \frac{74.5 \times 0.59}{4 \times 122.5} = 0.089 \text{g KCl}$$

& mass of KClO₄ obtained from 0.59g KClO₃

$$= \frac{3 \times 138.5}{4 \times 122.5} \times 0.59 = 0.500 \text{ gm}$$

% by weight of KClO₄ in residue \Rightarrow

$$= \left(\frac{0.500}{.84}\right) \times 100 = 59.72 \%$$

i.e. 0.02 moles

 $\left[\text{Cr}(\text{H}_2\text{O})_5 \text{Cl} \right] \cdot \text{Cl}_2 \cdot \text{H}_2\text{O} + \underset{(\text{excess})}{\text{AgNO}_3} \longrightarrow 2 \text{AgCl} + \left[\text{cr}(\text{H}_2\text{O})_5 \text{Cl} \right] \cdot (\text{NO}_3)_2$ 8.

moles of $[Cr(H_2O)_5 Cl] \cdot Cl_2 \cdot H_2O$ is $\frac{5.33}{266.5}$

- moles of AgCl obtained = $2 \times 0.02 = 0.04$ mole mass of AgCl obtained = $0.04 \times 143.5 = 5.74$ gm
- 9. Let the metal carbonate be M₂CO₃

As, mass % of O = $48 = \frac{48}{2x + 60} \times 100$

x = 20 \Rightarrow

i.e. molar mass of metal = 20gm/mole

- moles of $M_2CO_3 = \frac{5 \times 10^{-3}}{(20 \times 2 + 60)} = 5 \times 10^{-5}$ mole. \Rightarrow
- moles of metal is 10⁻⁴ mole
- Number of atoms of metal present = $10^{-4} \times 6 \times 10^{23}$ \Rightarrow i.e. 6×10^{19} atoms
- $A_x B_y + O_2 \longrightarrow AO + oxide of B.$ 10. Apply P. O. A. C on A,

$$x \times \frac{2.5}{24x + 14y} = 1 \times \frac{3}{40}$$

- x : y = 3 : 2
- Emperical formula of compound is 3:2 \Rightarrow
- $Ca + Cl_2 \longrightarrow CaCl_2$ 11.

moles
$$\rightarrow \left(\frac{2.4 \times 10^{24}}{6 \times 10^{23}}\right) \left(\frac{380 \times 96}{760 \times 0.08 \times 300}\right)$$

- Cl₂ is L.R. \Rightarrow
- mass of $CaCl_2 = 2 \times 111 = 222 \text{ gm}$
- **12.** $P_4 S_3 + 8O_2 \longrightarrow P_2O_{10} + 3SO_2$

mole:
$$\left(\frac{1}{64} \times \frac{1}{3}\right)$$
 $\frac{1}{284}$ $\frac{1}{64}$

$$\frac{1}{284} \quad \frac{1}{64}$$

- mass of P₄S₃ required = $\frac{1}{64 \times 3} \times 220 = 1.1458 \text{ gm}$
- 13. $H_4P_2O_7 + 2NaOH \longrightarrow Na_2H_2P_2O_7 + 2H_2O$
 - moles: 3 NaOH is L.R.

 \Rightarrow

- number of molecules $Na_2H_2P_2O_7$ formed = (2.5) N_A & number of molecules H_2O formed = (5) N_A
- Total number of molecules formed in product is (7.5)N_A. \Rightarrow

EXERCISE # O-I

- 1. (A) 1 of - atom of c = 12 g
 - (B) $\frac{1}{2}$ mole CH₄ = 8 g

 - (C) $10 \text{ ml of H}_2\text{O} = 10 \text{ g}$ (D) $3.011 \times 10^{23} \text{ atoms of oxygen} = 8\text{g}$
 - option (A) is \Rightarrow
- $n_{CO_2} = \frac{44}{44} = 1$ mole 2.
 - \Rightarrow the molecules of $CO_2 = N_A$ i.e. 6×10^{23} .
 - \Rightarrow correct option is (A)
- $n_{NH_3} = \frac{4.25}{17}$ i.e. mole **3.**
 - \Rightarrow option (B) is correct.
- Charge on 1 gram ions of AI⁺³ is 3N_Ae Coulomb 4. \Rightarrow option (D) is correct.
- **5.** Atomic weight of A = 40 u& Atomic weight of B = 80 u

$$\frac{2x}{80} N_A \rightarrow ? \qquad \dots (2)$$

Comparing (1) and (2), we get 2xg of B = y

- \Rightarrow option (C) is correct
- $n_{Al} \longrightarrow \frac{54}{27} = 2$ mole. **6.**
 - mass of same number of magnesium atoms = 48 gm
 - \Rightarrow Correct option is (C).
- 7. Weight of molecule of compounds C₆₀H₂₂

$$= (60 \times 12 + 22 \times 1) \text{ amu}$$
 $= (720 + 22) \text{ amo}$
= $742 \times 1.66 \times 10^{-24} \text{ g}$ $= 1.24 \times 10^{-21} \text{ gm}$

- Option (B) is correct.
- $n_{NO_3^-} = \frac{3.1 \times 10^{-3}}{62 \times 10}$ 8. $=0.5\times10^{-4}$ $= 5 \times 10^{-5}$

Number of electron in 3.1 mg $NO_3^{\Theta} = 5 \times 10^{-5} \times 32 \times 6.022 \times 10^{23} = 9.6 \times 10^{20}$.

 \Rightarrow Correct option is (C)

Ratio of number of molecules of CO₂ & N₂O

$$=\frac{2x}{44}\times N_A \times \frac{44}{5x\times N_A} = 2:5$$

 \Rightarrow correct option is (B)

10. (A)
$$n_{C_2H_6} = \frac{15}{30} = \frac{1}{2}$$
 mole

$$\Rightarrow$$
 number of carbon atoms = $\frac{N_A}{2} \times 2$ i.e. N_A

(B)
$$n_{\text{Na}_2\text{C}_2\text{O}_4} = \frac{40.2}{134} = 0.3 \text{ mole}$$

$$\Rightarrow$$
 number of carbon atoms = $0.3 \times 2N_A = 0.6 N_A$

(C)
$$n_{glucose} = \frac{72}{180} = 0.4$$

$$\Rightarrow$$
 number of carbon atoms = $0.4 \times 6N_A = 2.4 N_A$

(D)
$$n_{C_5H_{10}} = \frac{35}{70} = 0.5$$

$$\Rightarrow$$
 number of carbon atoms = $0.5 \times 5N_A = 2.5 N_A$

$$\Rightarrow$$
 Correct option is (D)

⇒ number of carbon atoms =
$$0.5 \times 5N_A = 2.5 N_A$$

⇒ Correct option is (D)
11. number of H-atom in 0.9 gm glucose = $\frac{0.9}{180} \times 12N_A = 0.06 N_A$
(A) $nN_2H_4 = \frac{0.048}{32}$

(A)
$$nN_2H_4 = \frac{0.048}{32}$$

(A)
$$nN_2H_4 = \frac{0.048}{32}$$

 \Rightarrow number of H-atoms = $\frac{0.048}{32} \times 4 N_A = 0.006 N_A$

(B)
$$n_{NH_3} = \frac{0.17}{17}$$

$$\Rightarrow$$
 number of H-atom = $0.01 \times 3N_A = 0.03 N_A$

(C)
$$n_{C_2H_6} = \frac{0.30}{30} = 0.01$$

$$\Rightarrow$$
 number of H-atoms = 0.06 N_A.

(D)
$$n_{H_2} \longrightarrow \frac{0.03}{2} = \frac{0.03}{2}$$
 mole

$$\Rightarrow$$
 number of H-atoms = $\frac{0.03}{2} \times 2 \text{ N}_A = 0.03 \text{ N}_A$

$$\Rightarrow$$
 Correct option is (C)

12.
$$n_{\text{CuSO}_4.5\text{H}_2\text{O}} = \left(\frac{1 \times 10^{22}}{6.022 \times 10^{23}}\right) = 1.66 \times 10^{-2} \text{ mole}$$

$$\Rightarrow$$
 weight = $1.66 \times 10^{-2} \times 249.5 = 4.159 \text{ gm}$

$$\Rightarrow$$
 Correct option is (C)

13.
$$n_C \longrightarrow \frac{1.2 \times 10^{-3}}{12}$$
 mole

$$\Rightarrow \qquad \text{number of carbon atoms} = \frac{1.2 \times 10^{-3}}{12} \times N_A$$
$$= 6.02 \times 10^{19} \text{ atoms}$$

$$\Rightarrow$$
 Correct option is (B).

14. mass of 1.2 mole ethanol =
$$(1.2 \times 46)$$
 g

$$\Rightarrow$$
 Volume = $\frac{\text{mass}}{\text{density}} = \frac{1.2 \times 46}{0.8} = 69 \text{ ml}$

$$\Rightarrow$$
 Correct option is (C).

15.
$$n_{NO_2} = \frac{112}{22.4 \times 10^3}$$

$$\Rightarrow \text{ number of molecules} = \frac{112}{22.4 \times 10^3} \times 6.02 \times 10^{23} = 3.1 \times 10^{21}$$

Now, volume =
$$\frac{\text{mass}}{\text{density}} = \frac{5 \times 10^{-3} \times 46}{1.15}$$

= 200 × 10⁻³ = 0.20 ml

$$\Rightarrow$$
 Correct option is (B).

16. Let the molecule be
$$A_x B_y$$

⇒ number of molecules =
$$\frac{1}{22.4 \times 10^3} \times 6.02 \times 10^{23} = 3.1 \times 10^{23}$$

Now, volume = $\frac{1}{1.15} = \frac{5 \times 10^{-3} \times 46}{1.15} = 200 \times 10^{-3} = 0.20 \text{ ml}$
⇒ Correct option is (B).
Let the molecule be $A_x B_y$
Molecular weight of compounds formed = $\left(\frac{XN_A + MY}{5}\right)$
⇒ Correct option is (A).
By Avogadro's Hypothesis, for gas A, P.v_A = n_A· RT for gas B, P.v_B = n_B· RT

$$\Rightarrow$$
 Correct option is (A).

for gas A,
$$P.v_A = n_A \cdot RT$$

for gas B,
$$P.v_B = n_B \cdot RT$$

$$If \ n_A = n_B$$

$$\Rightarrow$$
 $v_A = v_B$

$$\Rightarrow$$
 Correction option is (B).

18. NaI
$$\longrightarrow$$
 Na⁺ + I⁻

As, 100 g salt contains 0.5 g NaI

$$\Rightarrow$$
 3g salt contains $\left(\frac{.5}{100} \times 3\right)$ g NaI.

$$= 0.015$$
 g NaI.

$$n_{NaI} \longrightarrow \frac{0.015}{150}$$
 mole

⇒ number of
$$\Gamma$$
 ions = $\frac{0.015}{150} \times 6.02 \times 10^{23}$
= 6.02×10^{19} .

$$\Rightarrow$$
 Correct option is (C).

19. By Avogadro's hypothesis

$$n_{O_2} = n_{unknown gas}$$

$$\Rightarrow \frac{1}{32} = \frac{2.375}{M} \quad (M \to \text{molar mass of unknown gas})$$

$$\Rightarrow$$
 M = 2.375 × 32 \Rightarrow M = 76

- \Rightarrow correct option is (C)
- **20.** Ratio of number of atoms = 2:1:2:3
 - \Rightarrow Correct option is (C).

21.
$$2P + Q \longrightarrow R$$

mole: 8 (Excess) 0
0 4

 \Rightarrow Correct option is (C).

22.
$$4 \text{ Al} + 3\text{O}_2 \longrightarrow 2\text{Al}_2\text{O}_3$$

(Excess) 1.5 0
0 1
 \Rightarrow weight of Al 54 gm.

23. $C_X H_Y O_Z + \left(X + \frac{Y}{4} - \frac{Z}{2}\right) O_2 \longrightarrow X CO_2 + \frac{Y}{2} H_2 O_2$

$$n_{CO_2} = \frac{132}{44} = 3$$

$$\Rightarrow$$
 $X = 3$

$$n_{H_2O} \longrightarrow \frac{54}{18} = 3$$

$$\Rightarrow$$
 Y = 6.

- \Rightarrow Correct option is (C).
- **24.** $C_2H_4O_2 + 2O_2 \longrightarrow 2CO_2 + 2H_2O$.

 $1 \ mole \ C_2H_4O_2 \ \& \ 2 \ mole \ O_2 \ produces \ 2 \ mole \ CO_2$

i.e. 124 g mixture produces 88 gm CO_2

$$\Rightarrow$$
 620g mixture will produces $\frac{88}{124} \times 620 = 440$ gm

- \Rightarrow Correct option is (C)
- **25.** $5A_2 + 2B_4 \longrightarrow 2AB_2 + 4A_2B$.

5 mole A₂ produce 2 mole AB₂

 \Rightarrow (2 × 250)g AB₂ is produced from 100g A₂

$$\Rightarrow 1000g \ AB_2 \text{ is produced from } \left(\frac{100}{2 \times 250}\right) \!\! \times \! 1000g \ \text{of } A_2$$

 $= 200 \text{ g of A}_2$

Also, 2 mole AB₂ is produced from 2 mole B₄

- \Rightarrow (2 × 250)g AB₂ is produced from (2 × 120 × 4) g of B₄
- \Rightarrow 1000 g AB₂ is produced from $\left(\frac{2 \times 120 \times 4}{2 \times 250}\right) \times 1000 = 1920$ gm.
- \Rightarrow Minimum mass of mixture of A₂ & B₂ is (1920 + 200) i.e. 2120 gm
- \Rightarrow Correct option is (A)

26.
$$3Mg + 2NH_3 \longrightarrow Mg_3N_2 + 3H_2$$

$$Mole : \frac{48}{24} \quad \frac{34}{17}$$

$$= 2 \qquad = 2$$

- \Rightarrow Mg is L. R.
- \Rightarrow mass of Mg₃N₂ produced is $\frac{2}{3} \times (100)$ g = $\frac{200}{3}$ g
- \Rightarrow Correct option is (A)

27.
$$P_4S_3 + 8O_2 \longrightarrow P_4O_{10} + 3SO_2$$
Mole: $\frac{440}{220} = \frac{384}{32}$
 $= 2 = 12$

- \Rightarrow O₂ is L.R
- \Rightarrow mass of P₄O₁₀ produced = $\frac{(12 \times 284)}{\circ}$ g = 426 gm.
- \Rightarrow Correct option is (B).

$$\Rightarrow \text{Correct option is (B)}.$$

$$28. \qquad 12C + 11 \text{ H}_2 + \frac{11}{2} \text{O}_2 \longrightarrow C_{12} \text{ H}_{22} \text{ O}_{11}$$

Mole:
$$\frac{84}{12}$$
 $\frac{12}{2}$ $\frac{56}{22.4}$ = 7 6 2.5

- \Rightarrow O₂ is L.R.
- \Rightarrow Mass of sucrose produced = $\left(\frac{2}{11} \times 2.5\right) \times 342 g = 155.5 g$
- \Rightarrow Correct option is (B).

29.
$$\begin{aligned} \text{H}_2\text{SO}_4 + \text{Ca}(\text{OH})_2 &\longrightarrow \text{CaSO}_4 + 2\text{H}_2\text{O}. \\ \text{Mole} \quad .5 \qquad 0.2 \\ \text{Ca}(\text{OH})_2 \text{ is L.R.} \end{aligned}$$

- \Rightarrow number of moles of CaSO₄ formed = 0.2
- \Rightarrow Correct option is (A)

30.
$$I_2 + 2Cl_2 \longrightarrow ICl + ICl_3$$

Mole:
$$\frac{25.4}{254}$$
 $\frac{14.2}{71}$

$$=$$
 0.1 0.2

No. L. R

 \Rightarrow moles of ICl produced = 0.1

& moles of ICl_3 produced = 0.1

 \Rightarrow Correct option is (A)

31.
$$2P_4 + 8O_2 \longrightarrow P_4O_6 + P_4O_{10}$$

Mole:
$$\frac{31}{124}$$
 $\frac{32}{32}$

$$=$$
 $\frac{1}{4}$

No. L. R

$$\Rightarrow$$
 Weights of P₄O₆ produced = $\frac{1}{2} \times \frac{1}{4} \times 220 = 27.5 \text{ g}$

& weight of
$$P_4O_{10}$$
 produced = $\frac{1}{8} \times 284 = 35.5 \text{ g}$

 \Rightarrow Correct option is (B)

32.
$$CaCO_3 \longrightarrow CaO + CO_2$$

$$Na_2CO_3 + CO_2 + H_2O \longrightarrow 2 NaHCO_3$$

$$n_{\text{Na}_2\text{CO}_3} = \frac{21.2 \times 10^3}{106} = 2 \times 10^2 \text{ moles.}$$

Moles of
$$CaCO_3$$
 = mole of CO_2 (1)

Moles of
$$CO_2$$
 = mole of Na_2CO_3 (2)

From (1) & (2)

Mole of $CaCO_3 = 2 \times 10^2$

$$\Rightarrow$$
 Mass of CaCO₃ = $2 \times 10^2 \times 100 = 20 \text{ kg}$

 \Rightarrow Correct option is (B).

33.
$$NaI + AgNO_3 \longrightarrow AgI + NaNO_3$$
.

$$2AgI + Fe \longrightarrow FeI_2 + 2Ag$$

$$2FeI_2 + 3Cl_2 {\longrightarrow} 2FeCl_3 + 2I_2.$$

$$n_{I_2} = (1 \times 10^3)$$

$$\frac{\text{mole of AgNO}_3}{1} = \frac{\text{mole of AgI}}{1} \qquad \dots (1)$$

$$\frac{\text{mole of AgI}}{2} = \frac{\text{mole of FeI}_2}{1} \qquad \dots (2)$$

$$\frac{\text{mole of FeI}_2}{2} = \frac{\text{mole of I}_2}{2} \qquad \dots (3)$$

From (1), (2) & (3)

$$\therefore \qquad \text{Mole of } \ I_2 = \text{mole of FeI}_2 = \frac{\text{mole of Ag I}}{2}$$

$$= \frac{\text{mole of AgNO}_3}{2}$$

$$\Rightarrow 10^3 = \frac{\text{wt of AgNO}_3}{170 \times 2}$$

$$\Rightarrow$$
 wt. of AgNO₃ = 340 kg

$$\Rightarrow$$
 Correct option is (A)

34. Let
$$CaCl_2$$
 be $x g$ & NaCl be $(10 - x) g$

$$CaCl_2 \longrightarrow CaCO_3 \longrightarrow CaO$$

Moles
$$\frac{x}{111}$$
 $\frac{x}{111}$ moles of CaO $\longrightarrow \frac{1.62}{56}$

$$\Rightarrow$$
 moles of CaCl₂ = $\frac{1.62}{56}$

$$\Rightarrow \frac{1.62}{56} = \frac{x}{111}$$

$$\Rightarrow x = \frac{111 \times 1.62}{56}$$

$$\Rightarrow$$
 x = 3.21

⇒ x = 3.21
⇒ % by mass of CaCl₂ =
$$\frac{3.21}{10} \times 100 = 32.1$$
 %
⇒ Correct option is (A)

$$\Rightarrow$$
 Correct option is (A)

$$M_2CO_3 + HCl \longrightarrow MCl + CO_2 + H_2O$$
(Excess)

For Alkaline Earth metal carbonate

$$MCO_3 + HCl \longrightarrow MCl_2 + CO_2 + H_2O$$

$$n_{_{\mathrm{CO}_2}} = \frac{1 \times 12.315}{0.0821 \times 300} = 0.5 \; \text{mole}$$

$$\text{Li}_2\text{CO}_3 + 2\text{HCl} \longrightarrow 2\text{LiCl} + \text{CO}_2 + \text{H}_2\text{O}$$

1 mole CO₂ is produced from 1 mole Li₂CO₃

- 0.5 mole CO₂ is produced from .5 mole Li₂CO₃ OR = $.5 \times (74)$ \Rightarrow = 37 gm. of Li₂CO₃ & mass of impurity = 3 gm
- Correct option is (B) \Rightarrow

$$\mathbf{36.} \quad \mathbf{M} = \frac{99 \times 20 + \frac{1}{2}}{10}$$

$$M = \frac{99 \times 20 + \frac{1}{2} \times (21 + 22)}{100} = 20.002$$

$$\Rightarrow$$
 Correct option is (A)

37.
$$PCl_5 \longrightarrow PCl_3 + Cl_2$$

$$M_{rr} = 208.5$$

$$M_{\text{Avg.}} = \frac{M_{\text{Theo.}}}{1 + (n - 1)\alpha} = \frac{208.5}{1 + 0.5} = 139$$

$$\Rightarrow$$
 % change in M_{Avg.} of the mixture = $\left(\frac{208.5 - 139}{208.5}\right) \times 100 = 33.33 \%$

$$\Rightarrow$$
 Correct option is (C)

38.
$$8 = \frac{1 \times 32}{M} \times 100$$

$$\Rightarrow$$
 M = 400

$$\Rightarrow$$
 Correct option is (B).

39.
$$n = \frac{\text{molecular formula mass}}{\text{Emperical formula mass}}$$

$$\Rightarrow$$
 n = $\frac{120}{30}$ = 4

$$\Rightarrow$$
 molecular formula = (CH₂O) × 4 i.e. (C₄H₈O₄)

$$\Rightarrow$$
 Correct option is (B)

40.

Element	%	Relative number of atoms	Simplest atomic Ratio	Simplest whole Number ratio
Ca	20	$\frac{20}{40} = \frac{1}{2}$	1	1
Br	80	$\frac{80}{80} = 1$	2	2

Empirical formula is CaBr₂ \Rightarrow

As,
$$n = \frac{200}{200} = 1$$

- Molecular formula is CaBr₂
- \Rightarrow correct option is (B).

41.
$$69.98 = \frac{21 \times 12}{M} \times 100$$

$$\Rightarrow M = \frac{21 \times 12}{69.98} \times 100 \qquad \Rightarrow M = 360.1$$

 \Rightarrow Correct option is (D)

42. Method-1

Let the compound be $C_xH_vO_z$

Now, weight % of $C = 8 \times (\text{weight \% of H})$

$$\Rightarrow \frac{x}{y} = \frac{2}{3}$$

Also, weight % of $C = \frac{1}{2} \times (\text{weight } \% \text{ of } O)$

$$\Rightarrow \qquad \frac{x}{z} = \frac{2}{3}$$

 \Rightarrow The correct option is (B)

Method-2

$$Ag_2A \longrightarrow Ag$$

P.O. A.C. on Ag

$$2 \times \frac{1}{216 + M_A} = \frac{0.5934}{108} \times \frac{1}{108}$$

$$\Rightarrow$$
 M_A \rightarrow 148

 \Rightarrow molar mass of Acid = 150

C H O weight % 8 1 16 mole % 2 3 3

 \Rightarrow Empirical formula = $C_2H_3O_3$

 \Rightarrow n = 2 \Rightarrow molecular formula is C₄H₆O₆

 \Rightarrow Correct option is (B)

43. Let % of NO_2 be x

NO % of number be (100 - x)

$$\Rightarrow 34 = \frac{x \times 46 + (100 - x) \times 30}{100} \qquad \Rightarrow \qquad x = 25 \%$$

 \Rightarrow Correct option is (A)

EXERCISE # O-II

1. For $(NH_4)_3PO_4$:

Ratio of number of O atoms to number of H atoms = $\frac{4}{12}$ i.e. (1:3)

Ratio of number of cations to number of anions = 3:1

Number of gm-atoms of nitrogen to atoms of oxygen = $\frac{3}{4}$

Total number of atoms in 1 mole of $(NH_4)_3 PO_4 = 20N_A$

- Correct options are (A), (B) \Rightarrow
- 2. $2 \text{ Mg} + \text{O}_2 \longrightarrow 2 \text{ MgO}$

moles: $\frac{12}{24}$ $\frac{32}{32}$

Mg is L.R, So is 100% consumed i.e. number MgO is left unburnt Amount of O_2 left unreacted = 0.75 gm molecule Amount of MgO formed = 0.5×40 i.e. 20 gm

> Correct option (A) The mixture at the end will weight 44 gm.

3.

$$3 \text{ CaCO}_3 + 2\text{H}_3\text{PO}_4 \longrightarrow \text{Ca}_3(\text{PO}_4)_2 + 3\text{H}_2\text{O} + 3\text{CO}_2$$

moles: $\frac{50}{100} = 0.5 \quad \frac{68.6}{98} = 0.7 \implies \text{CaCO}_3 \text{ is L.R.}$

Amount of salt formed = $\left(\frac{1}{3} \times 0.5 \times 310\right)$ = 35.93 gm

$$n_{CO_2} = 0.5$$

- Correct option are (A), (B), (C) \Rightarrow
- 4. $C_7H_8 + 3HNO_3 \longrightarrow C_7H_5N_3O_6 + 3H_2O$

As, C_7H_8 & HNO₃ reacts in 1 : 3 ratio

$$\Rightarrow$$
 $x \times 92 + 3x \times 62 = 140.5$ \Rightarrow $x = 0.5$

- Maximum weight of $C_7H_5N_3O_6$ which can be produced is 0.5×227 i.e 113.5 gm \Rightarrow Correct option is (B).
- $A + N \xrightarrow{I} B + L$ 5.

$$A + N \xrightarrow{\Pi} \frac{1}{2}B + \frac{1}{2}(C) + L$$

4

- B will always be greater than C & If 2 moles of C are formed the total 6 mole of B are also formed
- Correct option are (A), (D) \Rightarrow

- 6. $4Ag + 8KCN + O_2 + 2H_2O \longrightarrow 4K [Ag (CN)_2] + 4 KOH$
 - $4 \times 108g$ of Ag reacts with $8 \times 65g$ of KCN 100g of Ag reacts with $\frac{8 \times 65}{4 \times 108} \times 100$

Hence statement A is correct

- $4 \times 108g$ of Ag require 32 gm of O_2 \Rightarrow
- 100g of Ag require = $\frac{32}{4 \times 108} \times 100 = 7.40 \text{ gm}$

Hence option (C) is correct.

Volume of O_2 required = $\frac{7.4}{32} \times 22.4 = 5.20$ liters

- 7. $CaO +3C \longrightarrow CaC_2 + CO$
 - (A) Find product contains 85% CaC₂ & 15% CaO. Let mass of product = 100 gm
 - *:*.

- mass of CaO producing 85 gm Cal₂ = $\frac{85}{64}$ × 56 = 74.375 gm

 Initial mass of CaO = (74.375 + 15) = 89.37585 gm CaC₂ obtained from $8^{0.26}$

1000 kg CaC₂ obtained from $\frac{89.38}{85} \times 10^3$ kg CaO. = 1051.47 kg CaO.

- 100 gm produced requires CaO = 89.38g (B)
- 10^3 kg product requires CaO = $\frac{89.38}{100} \times 10^3 = 893.8$ kg CaO.
- $2NH_3 + \frac{5}{2}O_2 \longrightarrow 2NO + 3H_2O.$ 8.

$$2NO + O_2 \longrightarrow 2NO_2$$

$$2NO_2 + H_2O \longrightarrow HNO_3 + HNO_2$$

$$3HNO_2 \longrightarrow HNO_3 + NO + H_2O$$

- Moles of HNO₃ produced is help of moles of Ammonia used if HNO₂ is not used to produce HNO₃ by reaction (IV).
- (B) Incorrect
- $\frac{1}{4}$ th of total HNO₃ is produced by reaction (IV) if HNO₂ is used to produce HNO₃. (C)
- (D) Moles of number produced in reaction (IV) is 50% of moles of total HNO₃ produced.

9. mass of substance = 0.42 gm.

Volume of
$$N_2 = \frac{100}{11}$$
 ml

Temperature = 250 K

Pressure = 860 - 24 = 836 mm Hg

Step (1)

Volume of N₂ at S.T.P. i.e.
$$V_2 = \frac{P_1 V_1}{T_1} \times \frac{T_2}{P_2}$$

i.e.
$$V_2 = \frac{P_1 V_1}{T_1} \times \frac{T_2}{P_2}$$

$$\Rightarrow V_2 = \frac{836 \times 100 \times 273}{760 \times 11 \times 250} \Rightarrow V_2 = 10.92 \text{ ml}$$

$$\Rightarrow$$
 V₂ = 10.92 ml

Step (2)

% of N₂ in organic compound =
$$\frac{28 \times 10.92}{22700 \times 0.42} \times 100 = \frac{10}{3}$$
%

Correct option is (A)

10.
$$2A + 3B \longrightarrow C$$

moles: 3

moles: 3 4

$$\Rightarrow$$
 B is L.R. & C formed is $\frac{4}{3}$ moles only if the yeild is 100%.

 \Rightarrow Correct option (C).

 $Y_3Al_5O_{12}$

which $y_3Al_5O_{12}$
 $y_3Al_5O_{12}$

11.

weight % of Y
$$\longrightarrow \frac{89 \times 3}{594} \times 100 = 44.95 \%$$

weight % of Y
$$\longrightarrow \frac{89 \times 3}{594} \times 100 = 44.95 \%$$

weight % of Al $\longrightarrow \frac{27 \times 5}{594} \times 100 = 22.73 \%$

weight % of O
$$\longrightarrow \frac{12 \times 6}{594} \times 100 = 32.32 \%$$

12.
$$n_{C_6H_8O_6} = \frac{17.6 \times 10^{-3}}{176} = 10^{-4} \text{ moles}$$

O - atoms present =
$$6 \times 6 \times 10^{23} \times 10^{-4} = 3.6 \times 10^{20}$$
 moles of vitamin C in 1 gm of vitamin C = 5.68×10^{-3} . moles of vitamin C that should be consumed daily = 10^{-4}

13.
$$2H_2 + O_2 \longrightarrow 2H_2O$$

moles: $\frac{1}{2} \qquad \frac{1}{32} \implies O_2 \text{ is L.R.}$

$$\Rightarrow$$
 mass of H₂O produced = $\frac{1}{32} \times 2 \times 18 = 1.125 \text{ g}$

$$3H_2 + N_2 \longrightarrow 2NH_3$$

moles:
$$\frac{1}{2}$$
 $\frac{1}{28}$ \Rightarrow H_2 is L.R.

$$\Rightarrow$$
 mass of NH₃ produced = $\frac{1}{28} \times 2 \times 17 = 1.214 \text{ g}$

$$H2 + Cl_2 \longrightarrow 2HCl$$

moles:
$$\frac{1}{2}$$
 $\frac{1}{71}$ \Rightarrow Cl₂ is L.R

$$\Rightarrow$$
 mass of HCl produced = $2 \times 36.5 \times \frac{1}{71} = 10028$ g

$$2H_2 + C \longrightarrow CH_4$$

moles:
$$\frac{1}{2} \frac{1}{12}$$
 \Rightarrow C is L. R.

$$\Rightarrow \qquad \text{Mass of CH}_4 \text{ produced} = \frac{1}{12} \times 16 = 1.333g \qquad \qquad \text{Correct option is (A)}$$

14. Fe + Br₂
$$\longrightarrow$$
 FeBr₂

$$Br_2 + 3FeBr_2 \longrightarrow Fe_3Br_8$$

$$Fe_3Br_8 + 4Na_2CO_3 \longrightarrow 8NaBr + 4CO_2 + Fe_3O_4$$
.

(a)
$$n_{\text{NaBr}} = \frac{2.06 \times 10^3 \times 10^3}{103} = 2 \times 10^4$$

$$\frac{\text{moles of Fe}}{1} = \frac{\text{moles of FeBr}_2}{1}$$

$$\frac{\text{moles of FeBr}_2}{3} = \frac{\text{moles of Fe}_3\text{Br}_8}{1}$$

&
$$\frac{\text{moles of Fe}_3\text{Br}_8}{1} = \frac{\text{mole of NaBr}}{8}$$

$$\Rightarrow$$
 moles of Fe = $\frac{\text{moles of NaBr}}{8} \times 3 = \frac{2 \times 10^4}{8} \times 3$

$$\Rightarrow$$
 mass of Fe required = $\frac{6 \times 10^4 \times 56}{8} = 420 \text{ kg} \Rightarrow$ Correct option is (B)

(b)
$$3FeBr_2 + Br_2 \longrightarrow Fe_3Br_8$$

 $mole: \frac{3}{8} \times 2 \times 10^4 \times \frac{100}{70} \times \frac{100}{60} \qquad \frac{1}{8} \times 2 \times 10^4 \times \frac{100}{70}$

$$8 70 60 8 70$$

$$Fe_3Br_8 + 4Na_3CO_3 \longrightarrow 8 NaBr + 4CO_2 + Fe_3O_4$$

mole:
$$\frac{1}{8} \times 2 \times 10^4 \times \frac{100}{70}$$
 2×10

$$\Rightarrow \frac{10^6}{8 \times 7} = 0.01786 \times 10^6$$
$$= 1.786 \times 10^4 \text{ moles}$$

$$\Rightarrow$$
 mass of Fe required = $\frac{1.786 \times 10^4 \times 56}{10^2} = 17.86 \times 56$

$$= 1000 \text{ kg}$$
 or 10^3 kg

- Correct option is (C) \Rightarrow
- moles of CO₂ formed = $\frac{1}{2} \times 2 \times 10 = 10$ moles (c) Correct option is (B).

15. (a)
$$Ca_2B_6O_{11} + 2Na_2CO_3 \longrightarrow 2CaCO_3 + Na_2B_4O7 + 2NaBO_2$$

 $\left(\frac{3}{200} \times \frac{10^2}{32.2} \times \frac{100}{60}\right) \times 100 \times 100 \qquad \left(\frac{3}{200} \times \frac{10^2}{32.2} \times 100\right) \times 100$

$$Na_2B_4O_7 \longrightarrow 2NaBO_2 + B_2O_3$$

$$\left(100 \times \frac{3}{200} \times \frac{10^2}{32.2} \times 100\right)$$
 $\left(\frac{10^2}{32.2}\right) \times 100$

$$\left(\frac{10^2}{32.2}\right) \times 100$$

$$COO + B_2O_3 \longrightarrow CO(BO_2)_2$$

$$\left(\frac{10^2}{32.2}\right) \times 100 \qquad 10^2$$

$$n_{CO(BO_2)_2} = \frac{14.5 \times 10^3}{1450} = 10^2 \text{ moles}$$

- mass of $Ca_2B_6O_{11}$ required = $10^2 \times (80 + 66 + 176) = 322 \times 10^2$ g = 32.2 kg
- correct option is (A)

$$\Rightarrow \text{ correct option is (A)}$$
(b) mass of Ca₂B₆O₁₁ obtained = $\frac{3\times10^8}{200\times32.2\times60}\times3220 = \frac{10^8}{400}\text{g}$

$$= \frac{10^6}{4\times10^3}\text{kg} = \frac{1000}{4}\text{kg} = 250\text{ kg}$$

correct option is (A)

16.
$$UF_6 + H_2O \longrightarrow U_x O_y F_z + \left(H_{\frac{5}{5}} F_{\frac{95}{19}}\right)$$
 or (HF)

- The empirical formula of gas is HF (a)
- \Rightarrow Correct option is (C)
- Mass of $H_2O = 3.88 3.52 = 0.36$ gm (b)
- \Rightarrow moles of $H_2O = 0.2$
- $UF_6 + 2H_2O \longrightarrow U_1O_2F_2 + 4HF$ \Rightarrow
- Empirical formula of solid is UF₂O₂ \Rightarrow
- \Rightarrow Correct option is (A)
- 1 mole UF₆ gives 4 more HF (c)
- % of fluorine converted in gaseous product \Rightarrow

$$= 100 - \left(\frac{114 - 76}{114}\right) \times 100 = 66.66 \%$$

Correct option is (C) \Rightarrow

EXERCISE # JEE-MAINS

1. Moles pg CO =
$$\frac{2.01 \times 10^{23}}{6.02 \times 10^{23}} = 0.33$$

Mass of CO = 0.33×28
= 9.3 gm

3. Remain unchanged

sed! cellence The mass of 1 mole of the substance will remain unchanged.

- Correct option is (2)
- 8 mole oxygen atom is present in 1 mole Mg₃(PO₄)₂ 4.
 - 0.25 mole oxygen atom is present in $\left(\frac{1}{8} \times .25\right) = 3.125 \times 10^{-2}$ mole.
 - Correct option is (1) \Rightarrow
- 5. V.D = 94.8 \Rightarrow molar mass = $2 \times 94.8 = 189.6$ gm
 - \Rightarrow mass of chlorine = 74.75% of 189.6 = 141.726 gm
 - mole of Cl = $\frac{141.726}{35.5}$ = 4 \Rightarrow
 - Formed of metal chloride will be MCl₄.
 - Correct option is (2) \Rightarrow

6.
$$n_{O_3} \longrightarrow \frac{16}{48} = \frac{1}{3}$$
 mole

$$n_{CO} \longrightarrow \frac{28}{28} \sim 1 \text{ mole}$$

$$n_{O_2} \longrightarrow \frac{16}{32} = \frac{1}{2}$$
 mole

- Ratio of oxygen atoms = 1:1:1
- Correct option is (D)

7.
$$C_xH_y + \left(x + \frac{y}{4}\right)O_2 \longrightarrow xCO_2 + \frac{y}{2}H_2O$$

$$n_{\text{CO}_2} \rightarrow \frac{3.08}{44} = 0.07$$

$$n_{H_2O} \rightarrow \frac{.72}{18} = 0.04$$

- C: H = 0.07: 0.04 = 7:8
- The empirical formula of compounds is (C_7H_8)
- Correct option is (4) \Rightarrow
- 8. ratio of masses $\longrightarrow 1$: ratio of mole $\longrightarrow \frac{1}{16}$: $\frac{4}{14}$ ratio of molecules $\longrightarrow \frac{N_A}{16}$: $\frac{4N_A}{14}$
- $2C_8H_7SO_3Na + Ca^{+2} \longrightarrow Ca (C_8H_7SO_3)_2 + 2Na^+$ $mole : \frac{1}{206}$ $\Rightarrow \quad \text{maximum uptake of } Ca^{+2} \text{ ions} = \frac{1}{412}$ $\Rightarrow \quad \text{Correct option is (4)}.$ 9.
- **10.** By carius method,
 - % Br = $\frac{80 \times \text{weight of AgBr}}{188 \times \text{Weight of organic Halide}} \times 100$ $=\frac{80}{188}=\frac{141\times10^{-3}}{250\times10^{-3}}\times100=24$
 - Correct option is (1)
- $100 \text{ kg} \longrightarrow (10 \text{kg}^1 \text{ H})$ 11. $(20kg^2 H)$

$$\Delta$$
 W = 10 kg

- weight gain is 10% of 75 kg i.e. 7.5 kg \Rightarrow
- Correct option is (3)

12.
$$M_2CO_3 + 2HCl \longrightarrow 2MCl + CO_2 + H_2$$

$$n_{CO_2} \longrightarrow 0.01186$$

1 mole CO₂ is produced by 1 mole M₂CO₃

$$\Rightarrow$$
 0.01186 mole CO₂ is produced by $\left(\frac{1 \times 0.01186}{1}\right)$ mole M₂CO₃

$$\Rightarrow \qquad \frac{1}{M_{(M_2CO_3)}} = 0.01186$$

$$\Rightarrow$$
 $M_{M_2CO_3} = \frac{1}{0.01186} = 84.3 \text{ gm} \Rightarrow \text{Correct option is (2)}$

Mass ratio 6

Mole ratio So, empirical formula: CH₂

For buring CH₂ unit; oxygen required is $\frac{3}{2}$ mole

- UCATION Empirical formula is (CH₂O_{3/2}) i.e. $C_2H_4O_3$ \Rightarrow
- Correct option is (1) \Rightarrow

14. Moles of
$$C_{57}H_{110}O_6 = \frac{445}{890} = 0.5$$
 moles

From 2 moles of $C_{57}H_{110}O_6 \longrightarrow 110$ moles of H_2O is produced

0.5 moles of
$$C_{57}H_{110}O_6 \longrightarrow 110 \times \frac{0.5}{2}$$
 moles H_2O

$$\Rightarrow$$
 27.5 moles

Mass of
$$H_2O = 27.5 \times 18$$
 gram = 495 gram

15.
$$2 \text{ NaHCO}_3 + \text{H}_2\text{C}_2\text{O}_4 \longrightarrow \text{Na}_2\text{C}_2\text{O}_4 + 2\text{CO}_2 + 2\text{H}_2\text{O}$$

Moles of
$$CO_2$$
 = $\frac{0.25 \times 10^{-3}}{25}$

$$=10^{-5}$$
 moles

Moles of NaHCO₃ =
$$\frac{2}{2} \times 10^{-5}$$
 = 10^{-5}

wt. of NaHCO₃ =
$$10^{-5} \times 84$$

% Mass
$$= \frac{84 \times 10^{-5}}{10 \times 10^{-3}} \times 100 = 8.4\%$$

16.
$$C_x H_y N_z \xrightarrow{Duma} 6CO_2 + 4H_2O + N_2$$

Clearly,

$$x = 6$$

$$y = 8$$

$$z = 2$$

Hence C₆H₈N₂

17. Methane
$$CH_4$$
 $1 \text{ mole } C$
 $4 \text{ mole } H$
% mole of $C = \frac{1}{1+4} \times 100$

19. (1) 4 Fe +
$$3O_2 \longrightarrow 2 \text{ Fe}_2O_3$$

 $4 \times 56 \text{ gm}$ $3 \times 32 \text{ gm}$
 1 gm $\frac{3 \times 32}{4 \times 56} = \frac{3}{7} \text{ gram}$

(2)
$$C_3H_8$$
 + SO_2 \longrightarrow $3CO_2$ + $4H_2O$
 44 g 80 gm
 1 gram $\frac{80}{44} = \frac{20}{11} \text{ gram}$

(3)
$$2Mg + O_2 \longrightarrow 2MgO_2$$

 2×24 32
1 gram $\frac{32}{2\times24} = \frac{2}{3}$ gram

$$(4) \quad \begin{array}{ccc} P_4 & + & SO_2 & \longrightarrow & P_4O_{10} \\ 4\times31 & & 5\times16 & \\ & 1 \text{ gram} & & \frac{80}{124} = \frac{20}{31} \text{ gram} \\ & \text{Ans. (1)} & \end{array}$$

20. Mass of 1 mol of
$$AB_2 = M_A + 2M_B = 25 \times 10^{-3} \text{ kg}$$

Mass of 1 mol of
$$A_2B_2 = 2M_A + 2M_B = 30 \times 10^{-3} \ kg$$

$$M_A = 5 \times 10^{-3} \text{ kg / mol}$$

$$M_B = 10 \times 10^{-3} \ kg \ / \ mol$$

21.
$$C_xH_4 + \left(x + \frac{4}{4}\right)O_2 \longrightarrow x/O_2 + \frac{y}{2}H_2O$$

$$\frac{25}{M}$$

$$\frac{88}{44} = 2$$

$$\frac{88}{44} = 2$$
 $\frac{9}{18} = \frac{1}{2}$ moles

Moles of
$$CO_2 = \frac{25}{M} \times x = 2$$

Moles of
$$H_2O = \frac{25}{M} \times \frac{y}{2} = \frac{1}{2}$$

$$\frac{x}{y} = 2 \implies x = 2y$$

E.F.
$$= C_{z_y} H_y$$

Also
$$2y \times 12 + y$$

$$\Rightarrow$$
 24:1

gm Carbon gram H

22.
$$C_xH_y + \left(x + \frac{y}{4}\right)O_2 \longrightarrow x CO_2 + \frac{y}{2} H_2O$$

10 ml

For gases, volume is proportional to moles

$$\frac{10}{55} = \frac{1}{x + \frac{4}{4}} \qquad \dots (1)$$

$$\frac{1}{x} = \frac{10}{40}$$
 (2)

$$x = 4$$

$$y = 6$$

 C_4H_6

EXERCISE # JEE-ADVANCED

1. Mass of 1 $e^- = 9.1 \times 10^{-31} \text{ kg}$

$$\Rightarrow \text{ moles of e}^{-} \text{ weighing 1 kg} = \frac{1}{9.108 \times 10^{-31}} \times \frac{1}{N_{\Delta}} = \frac{1}{9.108 \times 6.023} \times 10^{8}$$

- \Rightarrow Correct option is (D)
- 2. $6\text{CaO} + \text{P}_4\text{O}_{10} \longrightarrow 2\text{Ca}_3(\text{PO}_4)_2$

$$nP_4O_{10} \longrightarrow \frac{852}{284} = 3 \text{ mole}$$

1 mole P₄O₁₀ reacts with 6 mole CaO

- $\Rightarrow \qquad \text{3 mole P_4O_{10} reacts with 18 mole CaO} \qquad \text{or} \qquad 18\times 56 \text{ CaO}$ i.e. 1008g CaO.
- 3. Atomic mass of Fe = $\frac{54 \times 5 + 56 \times 90 + 57 \times 5}{100} = 55.95$
 - \Rightarrow Correct option is (B)