Embedded System Software Team 1 Presentation

- KU SMART FARM -

201311276박형민201311287엄현식201311306이진호201311320한예훈

Index of Contents

We Use 10 Kinds of Sensors/Actuators

LED (Light)

3. LED를 켠다.

Light Sensor

1. 빛 조도 밝기를 감지한다.

Raspberry Pi

2. 센서로 부터 받은 값을 중앙 컨트롤러에게 보냄. 중앙 컨트롤러로 부터 신호를 받으면 LED를 켜는 신호를 보낸다

Raspberry Pi

2. 센서로 부터 받은 값을 중앙 컨트롤러에게 보냄. 중앙 컨트롤러로 부터 신호를 받으면 스프링 쿨러를 켜는 신호를 보낸다

Raspberry Pi

2. 센서로 부터 받은 값을 중앙 컨트롤러에게 보냄. 중앙 컨트롤러로 부터 신호를 받으면 알람을 켜는 신호를 보낸다

2. 센서로 부터 받은 값을 중앙 컨트롤러에게 보냄. 중앙 컨트롤러로 부터 신호를 받으면 알람과 카메라를 켜는 신호를 보낸다

1. 모션과 거리를 측정한다.

System Architecture

비정상 온도 식별 및 알림 시스템 : 온습도 센서 -> Buzzer & LED & Camera

Level 1

Level 2

비정상 온도 식별 및 알림 시스템 : 온습도 센서 -> Buzzer & LED & Camera

토양 온습도 데이터 기록

스프링쿨러 작동 제어

토양 온습도 데이터 계산

빛감도 데이터 기록

LED 작동 제어

빛감도 데이터 계산

미확인 물체 접근 식별 및 알림 시스템 : PIR & UltraSonic -> Buzzer & LED & Camera

Works in a divided role They work in a well-established role.

Additional Effect This is helpful to not only agriculture but also security and anti-fire.

Practical

This makes us more efficient. It is helpful.

Over-Spec

We use 2 more new sensor than Requirements demand.

Promising Field Smart Agriculture is a very

Simulate in a real model. We simulate it in mini real-environment.

June, 2019

Sun	Mon	Tue	Wed	Thu	Fri	Sat
26	27	28	29	30	31	01
Sensor / Device Coding + PPT						
02	03	04	05	06	07	08
		Control / Net	tworking 구현			
09	10	11	12	13	14	15
		User Interface 및 Storage	구현 / 시뮬레이션 환경 제작			최종 점검 및
16	17	18	19	20	21	22
Document 작성						

Sensor / Actuator 구현 & 각 모듈 인터페이스 정의

------ 각 모듈 구현

통합 및 테스트, 유지 보수 / 시뮬레이션 환경 준비

■ 최종 점검 및 Document 작성

QnA

