

LAB 1 - Sensors and actuators

Organization of Theory and Labs

- Week 1 Thursday
 - Lecture on theory
 - Lab 1 on Ufora
 - Do Lab 1 in practical session
 - Lab 2 on Ufora
 - Preparation work for Lab 2 at home
- Week n Thursday
 - Finish Lab n-1 at home and turn in report by Thursday @10 before theory
 - Turn in preparation work for Lab n by Thursday @10 before theory
 - Lecture on theory
 - Do Lab n in practical session
 - Lab n+1 on Ufora
 - Preparation work for Lab n+1 at home

-1 point per day lab turned in late! **The Big Picture**

- Colored boxes are hosted on Kubernetes cluster in the cloud
- Blue boxes you implement
- Orange boxes are shared services in the cloud

IoT Stack

@Home: Lab0: Python refresher

- Optional
- See Ufora for link to Dodona
- Start with Python met objecten

Lab 1

Goals of Lab 1

- Make an SSH connection with a Raspberry Pi
- Make a circuit for a sensor and an actuator
- Control a sensor and an actuator with an RPi
- Control a sensor and an actuator with an ESP32

Material

Own material

- Laptop & charger
- Micro-USB cable for ESP32
- Ethernet cable (optional)
- Future
 - Smartphone and charger

Material available in classroom

- (mobile) Screen with HDMI (& power cable (USB to barrel jack))
- HDMI cable
- Keyboard
- Mouse

Borrowed material handed out

- Raspberry Pi 3 Model B(+)
- EU Power Supply (2.5A 5.1V)
- SD-card (16 GB) + (SD-adapter)
- ESP32 microcontroller (WROOM JOY-iT or DOIT)
- RFID reader RC522 and RFID tag(s)
- Web of Things sensorkit
 - Breadboard
 - LEDs
 - 10K Ohm Resistors
 - 330 Ohm Resistors
 - Resistors (3x 1K or 3x 1.2K)
 - M/M Jumper Wires
 - M/F Jumper Wires
 - (Humidity and Temperature Sensor) (DHT22)
 - (PIR Motion Sensor)

Software to install

- PyCharm **Professional Edition [Free with UGent email].** Install via Jetbrains Toolbox App
- Arduino IDE

Setup process

- Setting up Raspberry Pi OS
- Connecting the Pi to a network
- Changing the hostname of your Pi
- Remotely accessing your Pi
- Connecting to your device
- Connect to Raspberry Pi via Pycharm Professional Edition
- Set date and time on RPI after setup

In Lab: #task1 & #task2

blink.py

readRFID.py

RPi pinout

Connecting RPi to breadboard

RFID RC522 reader pinout

In Lab: #task3 & #task4

Task3: blink

Execute these steps

Task4: rfid

ESP32 pinout

Material you need to submit

- Lab report in pdf: due Thursday 20 February at 10am
 - Screenshots and/or pictures
 - Question
- Videos of completed tasks
- Archive and name: "Lab1_FamilyName_FirstName.zip"
- Turn in to Ufora