STUDY NOTES

Theory of Functional Programming

Emma Bach March 27, 2025 Emma Bach March 27, 2025

Contents

P	reface	2
1	Term Rewriting Systems	3
	1.1 Abstract Reduction Systems	3

Preface

These notes are not based on any particular lecture I attended. Instead, they were created during self-study of theoretical topics related to functional programming and the λ -calculus.

My primary source is the "Handbook of Logic in Computer Science", edited by Samson Abramsky, Dov Gabbay and Thomas Maibaum, in particular volume 2, which deals with computational structures [2]. Additional sources I found helpful include the video "What is plus times plus?" by YouTube channel 2Swap, which is a wonderful introduction to the λ -calculus [1].

Chapter 1

Term Rewriting Systems

1.1 Abstract Reduction Systems

Definition 1.1.1.

- 1. An abstract reduction system is a structure $\mathcal{A} = \langle A, \{ \to_{\alpha} \}_{\alpha \in I} \rangle$, consisting of a set of terms A and a set of binary relations $\to_{\alpha} \in A^2$, called the **reduction relations** or the **rewrite relations**. As shorthand, the relation \to_{α} is occasionally written simply as α . An abstract reduction system with only one relation \to is also known as a **replacement system** or a **transformation system**.
- 2. If $a \to_{\alpha} b$, then b is known as a **one step** (α -) reduct of a, meaning that b can be created by applying the reduction \to_{α} to a once.

Note that we let \rightarrow_{α} be any arbitrary relation, without additional demands of transitivity, reflexivity, or anything else of the sort.

Example 1.1.2. As an example, we could consider a term rewriting system that reduces sums of natural numbers. To write this system as an abstract reduction system, we can define A and \rightarrow as follows:

- Let A be the smallest set of terms such that:
 - Every natural number $n \in \mathbb{N}$ is a term.
 - If t_1 and t_2 are terms, then $t_1 + t_2$ is a term.
- We define the following reduction relations \rightarrow_0 and \rightarrow_1 :
 - If n and m are natural numbers and k = n + m, then $n + m \rightarrow_0 k$
 - If $t_1 \rightarrow_0 k$, then $t_1 + t_2 \rightarrow_1 k + t_2$

We could now apply these reduction rules to reduce a sum:

$$10 + 5 + 2 + 7 \rightarrow_1 15 + 2 + 7 \rightarrow_1 17 + 7 \rightarrow_0 24$$

The term 15+2+7 is a one step 1-reduct of the term 10+5+2+7, while the term 17+7 is a one-step 1-reduct of 15+2+7 and therefore a two step 1-reduct of 10+5+2+7.

Definition 1.1.3. Given a reduction relation \to_{α} , we are often interested in investigating new relations created by extending \to_{α} . Some relations that are of interest to us include:

- The **transitive reflexive closure** $\twoheadrightarrow_{\alpha}$, defined as the smallest transitive relexive relation containing \rightarrow_{α} . To give a more explicit definition, we have $a \twoheadrightarrow_{\alpha} b$ iff:
 - 1. $a \to_{\alpha} b$, or
 - 2. a = b, or
 - 3. $\exists n : \exists c_1, \dots, c_n : a \to_{\alpha} c_1 \to_{\alpha} \dots \to_{\alpha} c_n \to_{\alpha} b$

In most of the literature, this closure would be denoted as \to_{α}^* . However, the book uses \to_{α} because it makes transitive diagrams involving the relation more legible.

Emma Bach March 27, 2025

• The **convertibility relation** $=_{\alpha}$ generated by \rightarrow_{α} , defined as the smallest equivalence relation containing \rightarrow_{α} . Once again, to give a more explicit definition:

We have
$$a =_{\alpha} b$$
 iff. $\exists u_1, \dots, u_n \in A$ such that $a = u_1, b = u_n$, and for each u_i , we have either $u_i \to_{\alpha} u_{i+1}$ or $u_{i+1} \to_{\alpha} u_i$.

Note that even though $\twoheadrightarrow_{\alpha}$ is the smallest transitive reflexive relation that contains \to_{α} and $=_{\alpha}$ is the smallest equivalence (transitive, reflexive, and symmetric) relation that contains \to_{α} , $=_{\alpha}$ is **not** equivalent to the symmetric closure of $\twoheadrightarrow_{\alpha}$, as can be seen in Example 1.1.4.

Example 1.1.4. Let $\to_{\alpha} = \{(a, c), (b, c), (c, d)\}.$ Then:

- $1. \ \twoheadrightarrow_{\alpha} = \{(a,a),(b,b),(c,c),(d,d),(a,c),(a,d),(b,c),(b,d),(c,d)\}$
- 2. The symmetric closure of $\twoheadrightarrow_{\alpha}$ would be $\twoheadrightarrow_{\alpha} = \{(a,a),(b,b),(c,c),(d,d),(a,c),(c,a),(a,d),(d,a),(b,c),(c,b),(b,d),(d,b),(c,d),(d,c)\}.$ Note that this relation is no longer transitive, since it includes (a,c) and (c,b), but not (a,b).
- 3. $=_{\alpha}$ would include every single pair of these elements.

In short, if $a \to_{\alpha} c \leftarrow_{\alpha} b$, then we have $a =_{\alpha} b$, but not necessarily $a \twoheadrightarrow_{\alpha}^{s} b$.

Bibliography

- [1] 2swap. What is plus times plus? https://www.youtube.com/watch?v=RcVA8Nj6HEo. Accessed: Spring 2025.
- [2] S. Ambramsky, Dov M. Gabbay, and T.S.E.Maibaum, editors. *Handbook of Logic in Computer Science, Volume 2: Background: Computational Structures.* Oxford Science Publications, 1992.