REPUBLIQUE ALGERIENNE DEMOCRATIQUE ET POPULAIRE

MINISTERE DE L'ENSEIGNEMENT SUPERIEUR ET DE LA RECHERCHE SCIENTIFIQUE

HARMONISATION OFFRE DE FORMATION MASTER

ACADEMIQUE

Etablissement	Faculté / Institut	Département
Université M'Hamed Bougara- Boumerdes	Sciences	Mathématiques

Domaine: Mathématiques Informatique

Filière : Mathématiques

Spécialité : Modélisation Stochastique et Statistique

Année universitaire : 2016/2017

Etablissement : UMBB Intitulé du master : Modélisation Stochastique et Statistique Page 1

الجمهورية الجزائرية الـديمقراطيـة الـشعبيــة وزارة التعليــم العالــي والبحــث العلمــي

مواءمة عرض تكوين ماستر أكاديمي

القسم	الكلية/ المعهد	المؤسسة
الرياضيات	كلية العلوم	جامعة محمد بوقرة بومرداس

الميدان: رياضيات وإعلام آلي

الشعبة : رياضيات

التخصص: نمذجة ستوكاستيكية و احصاء

السنة الجامعية: 2017/2016

SOMMAIRE

I - Fiche d'identite du master
1 - Localisation de la formation
2 - Partenaires de la formation
3 - Contexte et objectifs de la formation
A - Conditions d'accès
B - Objectifs de la formation
C - Profils et compétences visées
D - Potentialités régionales et nationales d'employabilité
E - Passerelles vers les autres spécialités
F - Indicateurs de suivi de la formation
G – Capacités d'encadrement
4 - Moyens humains disponibles
A - Enseignants intervenant dans la spécialité
B - Encadrement Externe
5 - Moyens matériels spécifiques disponibles
A - Laboratoires Pédagogiques et Equipements
B- Terrains de stage et formations en entreprise
C - Laboratoires de recherche de soutien au master
D - Projets de recherche de soutien au master
E - Espaces de travaux personnels et TIC
L - Espaces de travado personneis et 110
II - Fiche d'organisation semestrielle des enseignement
1- Semestre 1
2- Semestre 2
3- Semestre 3
4- Semestre 4
5- Récapitulatif global de la formation
III - Programme détaillé par matière
•
IV - Accords / conventions

Etablissement : UMBB Intitulé du master : Modélisation Stochastique et Statistique Page 3

I – Fiche d'identité du Master (Tous les champs doivent être obligatoirement remplis)

1 - Localisation de la formation : Faculté (ou Institut) : Faculté des Sciences Département : de Mathématiques

2- Partenaires de la formation *:

- autres établissements universitaires :

- entreprises et autres partenaires socio économiques :

- Partenaires internationaux :

* = Présenter les conventions en annexe de la formation

Etablissement : UMBB Intitulé du master : Modélisation Stochastique et Statistique Page 5 Année universitaire : 2016/2017

3 – Contexte et objectifs de la formation

A - Conditions d'accès

- Licence académique nationale (options statistique ou Probabilités)
- Licence académique nationale (avec étude des deux modules optionnels en S6)

B - Objectifs de la formation

Dispenser des connaissances approfondies pour la formation de spécialistes de la modélisation stochastique et statistique. Le futur lauréat doit acquérir des connaissances, à l'issue de sa formation, lui permettant soit d'entreprendre et de mener à bien des travaux de recherche dans le cadre d'une inscription en doctorat avec une perspective d'intégration dans l'enseignement ou la recherche, soit une insertion dans la vie professionnelle (économique, industriel, financier, biologique, démographique,...)

C - Profils et compétences métiers visés

S'insérer dans la vie active à un poste de cadre dans le secteur privé ou le secteur public ; recherche et développement, notamment dans les différents domaines : économique, industriel, financier, biologique, démographique,... préparer une thèse de doctorat en s'orientant vers le développement de méthodes stochastiques.

D- Potentialités régionales et nationales d'employabilité des diplômés

Enseignement et recherche Administration, secteurs publics et privés Industrie Etudes doctorales Centres de recherche

E – Passerelles vers d'autres spécialités

Les passerelles se feront à l'issue du M1, et concernent toute mention d'un diplôme de master en mathématiques de profil statistique, modélisation stochastique ou Probabilités.

F – Indicateurs de suivi de la formation

Le travail personnel de recherche bibliographique préparatoire au projet du S4 est entamé en S3.

Le semestre S4 est réservé à un stage ou à un travail d'initiation à la recherche, sanctionné par un mémoire et une soutenance.

La réalisation du stage se fait en trois étapes consécutives :

 Mois d'octobre jusqu'à décembre de l'année M2 : Cette période est utilisée par l'étudiant pour découvrir son sujet arrêté par le tuteur ou un autre encadreur; il réalise son étude bibliographique à partir de références (articles, rapports ou thèses) indiquées par l'encadreur et effectue lui-même les recherches de

- documents complémentaires. Cette étude bibliographique donnera lieu à un rapport et une soutenance lors d'un exposé au mois de décembre de l'année M2.
- 2. Mois de février jusqu'à mi juin de l'année M2: l'étudiant est intégré dans le projet de recherche et y travaille à plein temps à la réalisation de l'objectif du stage.
- 3. Le stage donne lieu à la rédaction d'un mémoire et à une soutenance orale devant un jury, à la fin du mois de juin.

G - Capacité d'encadrement

Le nombre d'étudiants qu'il est possible de prendre en charge est 25

Etablissement : UMBB Intitulé du master : Modélisation Stochastique et Statistique Page 7

4 - Moyens humains disponibles

A : Enseignants de l'établissement intervenant dans la spécialité :

Etablissement : UMBB Intitulé du master : Modélisation Stochastique et Statistique

Page 8

Nom, prénom	Diplôme graduation + Spécialité	Diplôme Post graduation + Spécialité Grade		Type d'intervention *	Emargement
Khaldi khaled	DES probabilités et statistique	Doctorat d'état statistique	Profes- seur	Cours, TD et Encadrement	
Meddahi Samia	Ingénieur statistique	Doctorat Proba- statistique	MCB	Cours, TD et Encadrement	
Ferrani Yacine	DES probabilités et statistique	Doctorat Proba- statistique	МСВ	Cours, TD et Encadrement	
BenKaci Ali Nadir	DES Algèbre	Doctorat Analyse	MCB	Cours, TD	
Boudjemaa Redouane	DES mathématiques appliquées	Doctorat mathématiques appliqués	МСВ	Cours, TD et Encadrement	
Mechrouk Salima	DES Analyse	Doctorat Systèmes Dynamiques	MCB	Cours, TD	
Laoubi Karima	DES EDP	Doctorat EDP	MCB	Cours, TD	
Boukabcha Brahim	DES analyse	Magister probabilités statistique	MAA	Cours, TD et Encadrement	
Henneche Mohamed	Ingénieur statistique	Magister statistique	MAA	Cours, TD et Encadrement	
Banmansour Madina	Ingénieur probabilités statistique	Magister statistique	MAA	Cours, TD et Encadrement	
Bezoui Madani	Ingénieur Recherche opérationnelle	Magister Recherche opérationnelle	MAA	Cours, TD	
Grazem Mohamed	DES analyse	Magister analyse probabilités	MAA	Cours, TD et Encadrement	
Bensaradj Hassiba	DES probabilités et statistique	Magister RO	MAA	Cours, TD et Encadrement	
Tazrouti Moussa	Ingénieur probabilités statistique	Magister statistique	MAA	Cours, TD et Encadrement	
Tahar Souhila	DES probabilités et statistique	Magister Systèmes Dynamiques	MAA	Cours, TD et Encadrement	
Rahmoun Ahmed	DES probabilités- statistique	Magister probabilités statistique	MAA	Cours, TD et Encadrement	
Chemerik Hamida	DES probabilités et statistique	Magister probabilités statistique	MAB	Cours, TD et Encadrement	

Etablissement : UMBB Intitulé du master : Modélisation Stochastique et Statistique

* = Cours, TD, TP, Encadre	ment de stage, Encadrement de mémoire, autre (à préciser)
B : Encadrer	ment Externe :
Etablissement de ratta	chement :
Etablissement : UMBB In	ntitulé du master : Modélisation Stochastique et Statistique Page 10

Nom, prénom	Diplôme graduation + Spécialité	Diplôme Post graduation + Spécialité	Grade	Type d'intervention *	Emargement

Etablissement de rattachement :

Nom, prénom	Diplôme graduation + Spécialité	Diplôme Post graduation + Spécialité	Grade	Type d'intervention *	Emargement

Etablissement de rattachement :

Nom, prénom	Diplôme graduation + Spécialité	Diplôme Post graduation + Spécialité	Grade	Type d'intervention *	Emargement

^{* =} Cours, TD, TP, Encadrement de stage, Encadrement de mémoire, autre (à préciser)

5 – Moyens matériels spécifiques disponibles

A- Laboratoires Pédagogiques et Equipements : Fiche des équipements pédagogiques existants pour les TP de la formation envisagée (1 fiche par laboratoire)

Intitulé du laboratoire : CCM1

N°	Intitulé de l'équipement	Nombr	observations
		е	
	Micro-ordinateurs	25	
	Data show	01	
	Tableau blanc	02	

B- Terrains de stage et formation en entreprise :

Lieu du stage	Nombre d'étudiants	Durée du stage

Etablissement : UMBB Intitulé du master : Modélisation Stochastique et Statistique Page 12

C- Laboratoire(s) de recherche de soutien au master :

Chef du laboratoire		
N° Agrément du laboratoire		
Date :		
Avis du chef de laboratoire :		
Chef du laboratoire		
N° Agrément du laboratoire		
Date :		
Avis du chef de laboratoire:		

D- Projet(s) de recherche de soutien au master :

Intitulé du projet de recherche	Code du projet	Date du début du projet	Date de fin du projet

E- Espaces de travaux personnels et TIC :

Les enseignants disposent les espaces de travail nécessaires pour la formation, ainsi que des locaux (avec matériel informatique) qui seront disponibles pour les étudiants afin qu'ils puissent faire des calculs numériques et de consulter Internet.

Des locaux seront également disponibles pour des groupes de travail.

Etablissement : UMBB Intitulé du master : Modélisation Stochastique et Statistique Page 13

Etablissement : UMBB Intitulé du master : Modélisation Stochastique et Statistique Page 14 Année universitaire : 2016/2017

1- Semestre 1:

	VHS	VHS V.H hebdomadaire		Coeff	Coeff Crédits Mode d'évaluation				
Unité d'Enseignement	14-16 sem	С	TD	TP	Autres			Continu	Examen
UE fondamentales									
UEF1(O/P) Probabilités						4	8		
Probabilités approfondies	45h	1h30	1h30			2	4	Χ	X
Processus stochastiques 1	45h	1h30	1h30			2	4	Χ	X
UEF2(O/P) Statistique inférentielle						5	10		
et analyse de données						3	10		
Statistique inférentielle	67h30	3h	1h30			3	6	Χ	X
Analyse des données	45h	1h30	1h30			2	4	X	X
UE méthodologie									
UEM1(O/P) Statistique bayesienne,						5	9		
filles d'attente et logiciels						5	9		
Statistique bayesienne	45h	1h30	1h30			2	4	Χ	X
Files d'attente	45h	1h30	1h30			2	4	Χ	X
Logiciels de calcul Scientifique	15h			1h		1	1	Χ	
UE découverte									
UED1(O/P) Economie						2	2		
Economie 1	45h	1h30	1h30			2	2	Χ	X
UE transversales									
UET1(O/P) Anglais						1	1		
Anglais 1	22h30	1h30				1	1	Х	X
Total Semestre 1	375h	13h30	10h30	1h		17	30		

Page 15

Etablissement : UMBB Intitulé du master : Modélisation Stochastique et Statistique

2- Semestre 2:

	VHS	V.H hebdomadaire		Coeff	Coeff Crédits Mode d'évalua				
Unité d'Enseignement	14-16 sem	С	TD	TP	Autres			Continu	Examen
UE fondamentales									
UEF1(O/P) Processus stochastiques et statistique						9	18		
Processus stochastiques 2	67h30	3h	1h30			3	6	Χ	X
Statistique non paramétrique	67h30	3h	1h30			3	6	Χ	X
Statistique des processus	67h30	3h	1h30			3	6	Χ	X
UE méthodologie									
UEM1(O/P) Simulation et						5	9		
Modèles linéaires						5	9		
Simulation stochastique et méthodes de Monte Carlo	60h00	1h30	1h30	1h		3	6	X	X
Modèles linéaires	45h	1h30	1h30			2	3	Χ	X
UE découverte									
UED1(O/P) Séries temporelles						3	3		
Analyse des séries temporelles	67h30	1h30	1h30	1h30		3	3	Х	X
Total Semestre 2	375	13h30	9h	2h30		17	30		

3- Semestre 3:

Etablissement : UMBB Intitulé du master : Modélisation Stochastique et Statistique

	14-16 sem	С	TD	TP	Autres			Continu	Examen
UE fondamentales			`						
UEF1(O/P) Modélisation et calcul stochastique / Econométrie						9	18		
Modélisation stochastique	67h30	3h	1h30			3	6	X	X
Calcul stochastique et Applications	90h	3h	3h			4	8	X	X
Econométrie	45h	1h30	1h30			2	4	Х	X
UE méthodologie									
UEM1 (O/P) Fiabilité et R. O						5	9		
Fiabilité	60h00	1h30	1h30	1h		3	6	Х	X
Recherche opérationnelle	45h	1h30	1h30			2	3	Х	X
UE découverte					•				
UED1 (O/P) Economie						1	1		
Economie 2	22h30	1h30				1	1	Х	X
UE transversales									
UET1(O/P) Anglais et Éthique						2	2		
Anglais 2	22h30	1h30				1	1		X
Éthique et déontologie	22h30	1h30				1	1		X
Total Semestre 3	375h	15h	9h	1h		17	30		

Etablissement : UMBB Intitulé du master : Modélisation Stochastique et Statistique

4- Semestre 4:

Domaine: Mathématiques Informatique

Filière : Mathématiques

Spécialité : Analyse mathématique et Applications

Stage en entreprise sanctionné par un mémoire et une soutenance.

	VHS	Coeff	Crédits
Séminaires	15 h	1	1
Mémoire	435h	17	30
Total Semestre 4	450h	17	30

5- Récapitulatif global de la formation : (indiquer le VH global séparé en cours, TD, pour les 04 semestres d'enseignement, pour les différents types d'UE)

UE VH	UEF	UEM	UED	UET	Total
Cours	360	135h	67h30	67h30	630h30
TD	247h30	135h	45h	00	427h30
TP	00	30h	22h30	00	52h30
Travail personnel	742h30	244h30	15h	7h30	1009h30
Autre (S4 et mémoire)	435h	-	-	15h	450h
Total	1785h	544h30	150h	90h	2569h30
Crédits	84	27	6	3	120
% en crédits pour chaque UE	70%	22.5%	5%	2.5%	

Etablissement : UMBB Intitulé du master : Modélisation Stochastique et Statistique Page 18

III - Programme détaillé par matière (1 fiche détaillée par matière)

Etablissement : UMBB Intitulé du master : Modélisation Stochastique et Statistique Page 19

Semestre: 1

Intitulé de l'UE : Probabilités

Intitulé de la matière : Probabilités approfondies

Crédits : 4 Coefficients : 2

Objectifs de l'enseignement

Présenter les problèmes relatifs à l'exhaustivité, l'estimation ponctuelle et par intervalle de confiance

Connaissances préalables recommandées

Cours de base de calcul des probabilités et statistique

Contenu de la matière :

- Problèmes relatifs à l'exhaustivité
- Estimation ponctuelle
- Tests d'hypothèses
- Régions de confiance
- Distribution normale multidimensionnelle

Mode d'évaluation : Contrôle continu et examen

Références

- (1) Demensel G., Benichou D., Benichou R., Boy N., Poujet J.P. Probabilités, statistique inferentielle, fiabilité Ellipses, 1997
- (2) Lessard S. Statistique. Concept et méthodes.- Dunod
- (3) Statistique. Exercices corrigés. Tome 2 et tome 3 Sciences économiques Dunod

Etablissement : UMBB Intitulé du master : Modélisation Stochastique et Statistique Page 20

Semestre: 1

Intitulé de l'UE : Probabilités

Intitulé de la matière : Processus stochastiques 1

Crédits : 4 Coefficients : 2

Objectifs de l'enseignement

Présenter les processus stochastiques de base

Connaissances préalables recommandées

Cours de base de calcul des Probabilités et statistique

Contenu de la matière :

- chaînes de Markov : fonctions de transitions, graphe de Markov, temps d'entrée, décomposition de l'espace d'états, loi stationnaire, comportement asymptotique
- processus de Poisson : propriétés de la fonction de comptage, conséquences pour la simulation et l'estimation, processus de Poisson

Mode d'évaluation : Contrôle continu et examen

Référence :

- (1) Bauer H. Probability theory -Walter de Gruter and C., Berlin, 1996
- (2) Carton D. Processus aléatoires utilisés en recherche operationnelle Ecole Cntrale de Paris, 1993.
- (3) Feller W.-An introduction to Probability an dits applications, vol.1, 3rd Edition John and Wiley, New york, 1968
- (4) Foata D., Fuchs A- Processus stochastiques. Dunod. 2002
- (5) Kingman J.F.C. Poisson processses Clmaredon Press, Oxford, 1993
- (6) Loève M. Probability theory II, 4 th Edition Springer-Verlag, New York, 1978
- (7) Neveu J. Martingales à temps discret Masson, paris, 1972
- (8) Neveu J. Introduction aux Probabilités Ecole Polytechnique, Paris, 1994
- (9) Williams D. Probability with martingales Cambridge Univ. Press, 1991

Etablissement : UMBB Intitulé du master : Modélisation Stochastique et Statistique Page 21

Semestre: 1

Intitulé de l'UE : Statistique inférentielles et analyse des données

Intitulé de la matière : Statistique inférentielles

Crédits : 6 Coefficients : 3

Objectifs de l'enseignement

Présenter les problèmes relatifs à l'exhaustivité, l'estimation ponctuelle et par intervalle de confiance

Connaissances préalables recommandées

Cours de base de calcul des Probabilités et statistique

Contenu de la matière :

- Problèmes relatifs à l'exhaustivité
- Estimation ponctuelle
- Tests d'hypothèses
- Régions de confiance
- Distribution normale multidimensionnelle

Mode d'évaluation : Contrôle continu et examen

Références

- (1) Demensel G., Benichou D., Benichou R., Boy N., Poujet J.P. Probabilités, statistique inferentielle, fiabilité Ellipses, 1997
- (2) Lessard S. Statistique. Concept et méthodes.- Dunod
- (3) Statistique. Exercices corrigés. Tome 2 et tome 3 Sciences économiques Dunod

Etablissement : UMBB Intitulé du master : Modélisation Stochastique et Statistique Page 22

Semestre: 1

Intitulé de l'UE : Statistique inférentielles et analyse des données

Intitulé de la matière : Analyse de données

Crédits : 4 Coefficients : 2

Objectifs de l'enseignement

Fournir les bases essentielles de l'analyse des données avec mise en œuvre sur logiciel.

Connaissances préalables recommandées

Cours de base de calcul des Probabilités et statistique et d'algèbre

Contenu de la matière :

- analyse en composantes principales
- analyse factorielle des correspondances
- classification hiérarchique
- centres mobiles et nuées dynamiques
- variables supplémentaires, valeurs tests

Mode d'évaluation : Contrôle continu et examen

Références

- (1) Anderson T.W. An introduction to Multivariate statistical analysis Wiley and Son, New York
- (2) Benzecri J.P. L'analyse des données, Tome 1 : la taxinomie, tome 2 : l'analyse des correspondances, Dunod, (2 editon 1976)
- (3) Bouroche J.M. L'analyse des données P.U.F. Que sais-je ? 1980
- (4) Cegessat R. Exercices commentés de statistique et informatique appliquée Dunod, 2 edition, 1981
- (5) Lebart L., Morineau A., Fenelon J.P. Traitement des données statistiques, Dunod, 1982
- (6) Saporta G. Probabilités, analyse des données et statistique Technip, 1990

Etablissement : UMBB Intitulé du master : Modélisation Stochastique et Statistique Page 23

Semestre: 1

Intitulé de l'UE : Statistique bayesienne, filles d'attente et logiciels

Intitulé de la matière : Statistique bayesienne

Crédits : 4 Coefficients :2

Objectifs de l'enseignement

Présenter les estimateurs et leurs qualités ainsi qu'une introduction à la théorie asymptotique.

Connaissances préalables recommandées

Cours de base de calcul des Probabilités et statistique

Contenu de la matière :

- Théorie de l'estimation, principalement pour les modèles paramétriques.
- Description des différentes qualités d'un estimateur.
- Méthode d'estimation, vraisemblance et estimateur bayésien.
- Initiation à la théorie asymptotique.

Mode d'évaluation : Contrôle continu et examen

Référence :

- (1) Frontier S. Méthodes statistiques Masson, Paris, 1981
- (2) Gee M.C. Principes de statistique. Vuibert, Paris, 1975
- (3) Kalbfleisch J.G. Probability and statistical inference, Springer Verlag New York, 1985
- (4) Saporta G. théorie des méthodes de la statistique. Paris, 1978

Etablissement : UMBB Intitulé du master : Modélisation Stochastique et Statistique Page 24

Semestre: 1

Intitulé de l'UE : Statistique bayesienne, filles d'attente et logiciels

Intitulé de la matière : Filles d'attente

Crédits : 4 Coefficients : 2

Objectifs de l'enseignement

Introduire les files d'attente et étude des réseaux

Connaissances préalables recommandées

Cours de base de calcul des Probabilités

Contenu de la matière :

- Introduction à la théorie des files d'attente
- Etude générale de la file M/M/1
- File d'attente régie par un modèle markovien de naissance et de mort
- Files particulières
- File d'attente dans la cas général
- Statistique inferentielle dans les files d'attente
- Réseaux de files d'attente

Mode d'évaluation : Contrôle continu et examen

Références :

- (1) Baynat B. Théorie des files d'attente Hermes, 2000
- (2) Allen A.O.- Probability, statistics and queuning theory with computer science application- Academic Press New York, 1978
- (3) Cooper R.B. Introduction to queuning theory 2 edition New York,1981
- (4) Pujolle G, Fdida S. Modèles de systèmes et de réseaux Eyrolles ,1989

Etablissement : UMBB Intitulé du master : Modélisation Stochastique et Statistique Page 25

Semestre: 1

Intitulé de l'UE : Statistique bayesienne, filles d'attente et logiciels

Intitulé de la matière : Logiciels de calculs scientifique

Crédits : 1 Coefficients : 1

Objectifs de l'enseignement

Utilisation les langages suivants, Maple, Mathematica, Java, Matlab,..., dont les calculs (formel ou numériques) de mathématiques.

Connaissances préalables recommandées

Connaissances de base en informatique de licence

Contenu de la matière :

- Introduction: Choix des Langages (Maple, Mathematica, Scilab, Matlab,...)
- Prise en main. (Opérations élémentaires, les fonctions dans Maple, exemples de manipulation,...). Programmation
- La structure d'un programme Aspects avances.
- Quelques packages, Ecrire un programme, Exemples de programmes simples, Etude de quelques problèmes, Les graphes,...).

Mode d'évaluation : Contrôle continu

Références

- [1] Programmer avec Maple V, M.B. Monagan et al. Waterloo Maple Advancing Mathematics, (Springer).
- [2] Introduction à Mathematica, Jean Christophe Culioli, 2ème édition, (ellipses).
- [3] Initiation à MATLAB, Olivier LOUISNARD, (Dunod).
- [4] Maths avec Maple, T1,T2, Pierre Douillet, (ellipses).

Etablissement : UMBB Intitulé du master : Modélisation Stochastique et Statistique Page 26

Semestre: 1

Intitulé de l'UE : Economie

Intitulé de la matière : Economie 1

Crédits : 2 Coefficients : 2

Objectifs de l'enseignement

Introduire les éléments fondamentaux de l'économie de marché et ses règles de Fonctionnement

Connaissances préalables recommandées

Aucun près requis.

Contenu de la matière : Economie 1

- Concepts économiques de base
- Economie financière

Mode d'évaluation : Contrôle continu et examen

Références

- 1- C.F. Huang, R.H. Litzenberg. Foundations for financial economics. North-Holland, New York. 1988.
- 2- A.De Servigny, I. Zelenko. Economie financière. Dunod. 1999.

Etablissement : UMBB Intitulé du master : Modélisation Stochastique et Statistique Page 27

Semestre: 1

Intitulé de l'UE : Anglais

Intitulé de la matière : Anglais 1

Crédits : 1 Coefficients : 1

Objectifs de l'enseignement

Perfectionnement en langue Anglaise.

Connaissances préalables recommandées

Connaissance en langue Anglaise.

Contenu de la matière :

- Remédiassions en grammaire et orthographe.
- Expression orale.
- Construction de texte et production écrite.

Mode d'évaluation : Contrôle continu et examen

Référence :

- [1] http://www.anglaisfacile.com/
- [2] http://www.britishcouncil.org/fr/france-english-learn-enlish-online.htm
- [3] http://www.edufind.com/english/grammar/subject index.php
- [4] http://www.musicalenglishlessons.org/grammar-tenses.htm#names

Etablissement : UMBB Intitulé du master : Modélisation Stochastique et Statistique Page 28

Semestre: 2

Intitulé de l'UE : Processus stochastiques et statistique

Intitulé de la matière : Processus stochastiques 2

Crédits: 6 Coefficients: 3

Objectifs de l'enseignement

Présenter la suite du premier cours sur les processus: processus markoviens, renouvellement et comportement asymptotique

Connaissances préalables recommandées

Cours de base de calcul des Probabilités et statistique et processus stochastiques

Contenu de la matière :

- Processus markoviens de sauts : semi-groupe, matrice génératrice, simulation, loi stationnaire, théorèmes limites, homogénéisation, agrégation.
- Processus de renouvellement : fonction de renouvellement, théorèmes du renouvellement, équations de renouvellement.
- Processus régénératifs et semi régénératifs : comportement asymptotique, équations de renouvellement markovien.
- Projet sous matlab ou scilab.

Mode d'évaluation : Contrôle continu et examen.

Référence :

- (1) Bauer H. Probability theory -Walter de Gruter and C., Berlin, 1996
- (2) Carton D. Processus aléatoires utilisés en recherche opérationnelle Ecole Centrale de Paris, 1993.
- (3) Feller W.-An introduction to Probability an dits applications, vol.1, 3rd Edition John and Wiley, New york, 1968
- (4) Foata D., Fuchs A- Processus stochastiques. Dunod. 2002
- (5) Kingman J.F.C. Poisson processses Clmaredon Press, Oxford, 1993
- (6) Loève M. Probability theory II, 4 th Edition Springer-Verlag, New York, 1978
- (7) Neveu J. Martingales à temps discret Masson, paris, 1972
- (8) Neveu J. Introduction aux Probabilités Ecole Polytechnique, Paris, 1994
- (9) Williams D. Probability with martingales Cambridge Univ. Press, 1991

Etablissement : UMBB Intitulé du master : Modélisation Stochastique et Statistique Page 29

Semestre: 2

Intitulé de l'UE : Processus stochastiques et statistique Intitulé de la matière : Statistique non paramétrique

Crédits : 6 Coefficients : 3

Objectifs de l'enseignement

Présenter les tests non paramétriques ainsi que les tests d'association

Connaissances préalables recommandées

Cours de base de calcul des Probabilités et statistique

Contenu de la matière :

- Introduction: motivation des statistiques non paramétriques, limitation des méthodes paramétriques
- Tests non paramétriques : généralités, rangs, intervalle de confiance, intervalle de tolérance, tests de Wilcoxon, apparié, Kolmogorov-Smirnov, symétrie de Friedman, tests de dispersion
- Tests d'association : tests de Kendall, de Spearman, coefficient de concordance, efficacité des tests non paramétriques.

Mode d'évaluation : Contrôle continu et examen

Références

- (1) Barra J.R., Baille A. Problèmes de statistique mathématique Dunod , Paris
- (2) Cramer H. Mathematical methods of statistics Princeton University Press (Princeton)
- (3) Lehman Testing statistical hypotheses John Wiley and Sons, New York
- (4) Gibbons J.D. Non parametric statistical inference John Wiley and Sons, New York Ellipses, []
- (5) Rao C.R. Linear statistical inference an dits applications John Wiley and Sons, New York
- (6) Vo Khac K. Estimateurs et tests paramétriques et non paramétriques Ellipses,1985
- (7) Wilks S.S. Mathematical statistica John Wiley and Sons, New York

Etablissement : UMBB Intitulé du master : Modélisation Stochastique et Statistique Page 30

Semestre: 2

Intitulé de l'UE: Processus stochastiques et statistique

Intitulé de la matière : Statistique des processus

Crédits : 6 Coefficients : 3

Objectifs de l'enseignement

Ce cours est une base indispensable pour comprendre les méthodes de prévision stochastique. Il est étroitement relié au cours de théorie des processus stochastiques.

Connaissances préalables recommandées

Cours de base de calcul des Probabilités et statistique et processus stochastiques

Contenu de la matière :

- Introduction des modèles (processus d'ordre deux, processus de Markov et martingales).
- Filtrage des processus d'ordre deux. Applications aux modèles linéaires à courte mémoire
- Applications aux modèles linéaires à longue mémoire Estimation dans les processus du second ordre. Les problèmes sont essentiellement nonparamétriques: estimation de la suite des covariances, du spectre, ainsi que de l'espérance conditionnelle dans un modèle de régression non linéaire

Mode d'évaluation : Contrôle continu et examen

Référence:

- 1- Dacunha-Castelle D. Duflo M. (1983) Probabilités et Statistiques: vol.2. Problèmes à temps mobile. Masson.
- 2- Gihman I.I., Skorohod A.V. (1974) The theory of stochastic processes. Springer.
- 3- Härdle W. (1990). Applied non-parametric regression. Econom. Soc. Monographs
- 4- William D. (1997). Probability with martingales. Camb. Math. Textbooks.

Etablissement : UMBB Intitulé du master : Modélisation Stochastique et Statistique Page 31

Semestre : 2

Intitulé de l'UE : Simulation et Modèles Llinéaires

Intitulé de la matière : Simulation stochastique et méthodes de Monte Carlo

Crédits : 6 Coefficients : 3

Objectifs de l'enseignement

Acquérir des compétences pour modéliser une situation et mener une étude par une technique de simulation

Connaissances préalables recommandées

Cours de base de calcul des Probabilités et processus et programmation

Contenu de la matière :

- Modèles et simulation : construction d'un modèle, programmation d'une simulation, validation, exploitation des résultats
- Outils de programmation : langages de simulation, réseaux de Pétri.
- Méthodes de Monte-Carlo pour le calcul d'intégrales, l'optimisation.
- Etude des Méthodes de Monte-Carlo par chaînes de Markov (MCMC).
- Algorithmes MCMC courants : Hastings-Metropolis et échantillonneur de Gibbs

Mode d'évaluation : Contrôle continu et examen

Références

- (1) Bouleau N., Lepingle D. Numerical methods for stochastic processes Wiley Series in Probability and mathematical statistics, 1994
- (2) Karatzas I., Shreve S.E. Brownian motion and stochastic calculus Springer Verlag, 1991
- (3) Kloeden P., Platen E. Numerical Solution of Stochastic Differential Equations, Applications of mathematics, Stochastic Modelling and Applied Probability 23 Springer Verlag, 1992
- (4) Lapeyre B., Pardoux E., Sentis R. Méthodes de Monte Carlo pour les équations de transport et de diffusion Mathématiques et Applications 29 Springer Verlag, 1998
- (5) Yeart B. Modèles et algorithmes Markoviens Mathématiques et Applications 39 Springer Verlag, 2002

Intitulé du Master : Modélisation Stochastique et Statistique

Etablissement : UMBB Intitulé du master : Modélisation Stochastique et Statistique Page 32

Semestre: 2

Intitulé de l'UE : Simulation et Modèles linéaires

Intitulé de la matière : Modèles linéaires

Crédits : 3 Coefficients : 2

Objectifs de l'enseignement

Présenter les principaux modèles linéaires statistiques, tests fondamentaux ainsi que l'analyse de la variance.

Connaissances préalables recommandées

Cours de base de calcul des Probabilités et statistique.

Contenu de la matière :

- Introduction au modèle linéaire statistique : régression simple, analyse de la variance à un facteur, régression linéaire multiple, tests fondamentaux, compléments asymptotiques des statistiques.
- Problèmes spécifiques à la régression. Contrôle graphique à posteriori
- Critères de sélection de modèles prédictifs
- Problèmes spécifiques à l'analyse de la variance
- Analyse de la covariance

Mode d'évaluation : Contrôle continu et examen

Références

- (1) Arnold S.F. The theory of linear Models and Multivariate Analysis John Wiley and Sons, New York, 1981
- (2) Dagnélie P. Théorie et Méthodes Statistiques, vol.1, 2 Edition Les Presses Universitaires de Gembloux, 1984
- (3) Dagnélie P. Théorie et Méthodes Statistiques, vol.2, 2 Edition Les Presses Universitaires de Gembloux, 1986
- (4) Rao C.R. Linear Statistical Inference an dits Applications John Wiley and Sons, New York, 1971

Etablissement : UMBB Intitulé du master : Modélisation Stochastique et Statistique Page 33

Semestre: 2

Intitulé de l'UE : Séries temporelles

Intitulé de la matière : Analyse des séries temporelles

Crédits : 3 Coefficients : 3

Objectifs de l'enseignement

Introduire les séries temporelles et procéder à leur analyse en présentant les processus stationnaires, autorégressifs, ARMA et ARIMA

Connaissances préalables recommandées

Cours de base de calcul des Probabilités et statistique

Contenu de la matière :

- Séries temporelles : définition, traitement
- Tendance, opérateurs, filtres
- Moyennes mobiles
- Etude des processus stationnaires
- Estimation des paramètres d'un processus stationnaire au sens large

Mode d'évaluation : Contrôle continu et examen

Référence:

- (1) Breson G., Piritte A. Econométrie des séries temporelles. Théorie et applications- 1 édition, 1995
- (2) Gourieuroux C., Monfort M. Séries temporelles et modèles dynamiques Economica 2 éditions, 1995
- (3) Dacunha-Castelle D. Duflo M. (1983) Probabilités et Statistiques: vol.2. Problèmes à temps mobile.
- (4) MassonLessard S. Statistique. Concept et méthodes.- Dunod
- (5) Frontier S. Methodes statistiques Masson, Paris, 1981

Etablissement : UMBB Intitulé du master : Modélisation Stochastique et Statistique Page 34

Semestre: 3

Intitulé de l'UE : Modélisation et calcul stochastique / Econométrie

Intitulé de la matière : Modélisation stochastique

Crédits: 6 Coefficients: 3

Objectifs de l'enseignement

Présenter des problématiques réelles qu'une modélisation probabiliste permet de résoudre dans des cas simplifiés: trouver un traiet de longueur minimale entre plusieurs points. établir une stratégie de gestion de stock, estimer le taux de mutation de l'ADN,...

Connaissances préalables recommandées

Cours de base de calcul des Probabilités et processus stochastiques

Contenu de la matière :

- Le comportement asymptotique des chaînes de Markov à espace d'état discret: théorème ergodique, théorème limite central, convergence du recuit simulé
- Le contrôle des chaînes de Markov.
- L'estimation dans le cadre des chaînes de Markov cachées, ainsi que dans le cadre des lois de mélanges
- Les modèles d'évolution de populations: Galton-Watson, Wright-Fisher
- L'étude des files d'attente markovienne et des réseaux
- La fiabilité et l'étude des stratégies de maintenance
- Les lois de valeurs extrêmes pour l'estimation de quantiles

Mode d'évaluation : Contrôle continu et examen

Références

- (1) Brémaud, P., Markov chains, Gibbs fields, Monte-Carlo simulation, and queues. Text in applied mathematics . Springer-Verlag. New York-Heidelberg. Berlin, 1998
- (2) Casella, R., and Robert, C. Monte Carlo statistical methods. Springer texts in statistics. Springer, 1999.
- (3) Duflo, M. Algorithmes stochastiques, vol. 23 of Mathématiques & Applications. Springer, Berlin, 1996.
- (4) Embrecht, P., Klueppelberg, C., and Mikosch, T. Modelling extremal events for insurance and finance. (English), volume 33 of Applications of Mathematics. Springer, Berlin, 1997.
- (5) McLachlan, G., and Krishnan, T. The {E}{M} algorithm and extensions}. Wiley Series in Probability and Mathematical Statistics. Wiley & Sons, 1997.
- (6) Puterman, M.L. Markov Decision Processes. Wiley, 1994.
- (7) Robin, S., Rodolphe, F., and Schbath, S., ADN, mots et modèles. BERLIN, 2003.
- (8) Ycart, B., Modèles et algorithmes Markoviens, vol. 39 of Mathématiques & Applications. Springer, Berlin, 2002

Etablissement : UMBB Intitulé du master : Modélisation Stochastique et Statistique Page 35

Semestre: 3

Intitulé de l'UE : Modélisation et calcul stochastique / Econométrie

Intitulé de la matière : Calcul stochastique et applications

Crédits : 8 Coefficients : 4

Objectifs de l'enseignement

Présenter les processus stochastiques à temps continu usuels et permettre des approfondissements dans des directions telles que la finance, la fiabilité, les méthodes de Monte Carlo, les liens entre Probabilités et équations aux dérivées partielles.

Connaissances préalables recommandées

Cours de base de calcul des Probabilités, modélisation stochastiques et processus stochastiques

Contenu de la matière :

- Mouvement brownien : construction, propriétés de trajectoires
- Martingale à temps continu, théorème d'arrêt
- Intégrale stochastique, formule d'Itô
- Application à la finance (modèle de Black-Scholes)
- Equations différentielles stochastiques à coefficients lipchitziens
- Liens avec les équations aux dérivées partielles
- Application aux options. Inéquations et options américaines

Mode d'évaluation : Contrôle continu et examen

Références

- (1) N.Bouleau, Processus stochastiques et applications, Hermann 1988
- (2) D. Dacunha Castelle, M. Duflo, Probabilités et Statistiques, tome 2, Masson, 1984
- (3) I. Karatzas, S. Shreve, Brownian motion and stochastic Calculus, Springer-Verlag, 1987
- (4) D. Lamberton, B. Lapeyre, Introduction au calcul stochastyique appliqué à la finance, 2eme edition, Ellipses, 1997
- (5) M. Musiela, M. Rutkowsky, Martingale Methods in Financial Modelling, Springer, 1997
- (6) D. Revuz, M. Yor, Continuous martingales and Brownian motion, Springer-Verlag, 1991

Etablissement : UMBB Intitulé du master : Modélisation Stochastique et Statistique Page 36

Semestre: 3

Intitulé de l'UE: Modélisation et calcul stochastique / Econométrie

Intitulé de la matière : Econométrie

Crédits : 4 Coefficients : 2

Objectifs de l'enseignement

Présenter la géométrie des moindres carrés, tests sur les coefficients.

Connaissances préalables recommandées

Cours de base de calcul des Probabilités et statistique et processus stochastiques

Contenu de la matière :

- Eléments d'algèbre linéaire.
- géométrie des moindres carrés : série statistique bivariée, régression multivariée, corrélation partielle
- Modèle linéaire général : modèle, estimateur du modèle, tests sur les coefficients
- Méthode des moindres carrés généralisée
- Variables instrumentales et équations simultanées
- Multicolinéarité et choix des variables
- Modèles à choix discret

Mode d'évaluation : Contrôle continu et examen

Références

- (1) Bourbonnais R. Econométrie Dunod Paris, 1993
- (2) Greene W. Econometric analysis Mac Millan Publishing compagny, N.Y, 1990
- (3) Johnson J. Dinarab J. Methodes econometriques Economica, 1999
- (4) Johnson J. Econometrics methods Mac Graw Hill Singapore, 1988
- (4) Maddala G. Introduction to econometrie Mac Millan Publishing compagny, N.Y, 1988
- (5) Ruud P. An introduction to classical econometric theoty Oxford university Press, N.Y, Oxford

Etablissement : UMBB Intitulé du master : Modélisation Stochastique et Statistique Page 37

Semestre: 3

Intitulé de l'UE : Fiabilité et R. O Intitulé de la matière : Fiabilité

Crédits : 6 Coefficients : 3

Objectifs de l'enseignement

Le but de ce cours est de présenter certains outils probabilistes et statistiques utiles en mathématiques appliquées et d'illustrer leurs applications en fiabilité

Connaissances préalables recommandées

Cours de base de calcul des Probabilités et statistique

Contenu de la matière :

- Loi des statistiques d'ordre, représentation de Rényi, lois beta.
- Lois limites du maximum et du minimum. étude des records
- Lois de type Pareto, fonctions à variation régulière, loi de Cauchy
- Usure par accumulation de petites dégradations, décharges neuronales : processus de Poisson, lois gamma et de Bessel, mouvement brownien et loi de Lévy, lois inverse
- Comportement extrême de sommes de variables aléatoires indépendantes.
- Inégalités exponentielles et concentration, principe des grandes déviations, approximation normale de Laplace, développements d'Edgeworth.
- Notions sur le problème de la ruine des assurances.
- Problématique et terminologie de la fiabilité
- Processus de renouvellement et équations de renouvellement.
- Processus régénératifs.
- Processus semi-markoviens avec espace d'états fini. Processus semi-régénératifs.
- Applications aux calculs de coûts asymptotiques en sûreté de fonctionnement, incluant des politiques de maintenance correctives et préventives diverses.

Mode d'évaluation : Contrôle continu et examen

Références

- (1) Asmussen S., Applied Probability and Queues, Wiley, 1992.
- (2) Aven T., Jensen U., Stochastic Models in Reliability, Applications of Mathematics 41, Springer, 1999.
- (3) Bon J.L., Fiabilité des systèmes: modèles mathématiques, Masson, 1995.
- (4) Cinlar E., Introduction to Stochastic Processes, Prentice Hall, 1992.
- (5) Cocozza-Thivent C., Processus stochastiques et fiabilité des systèmes, Mathématiques et Applications 28, Springer, 1997.
- (6) Feller W., An Introduction to Probability Theory and its Applications, Tome II, Wiley, 1966 (réédité en 1971)
- (7) Gnédenko B., Béliaev Y., Méthodes mathématiques en théorie de la fiabilité.

Etablissement : UMBB Intitulé du master : Modélisation Stochastique et Statistique Page 38 Année universitaire : 2016/2017

Semestre: 3

Intitulé de l'UE: Fiabilité et R. O

Intitulé de la matière : Recherche Opérationnelle

Crédits : 3 Coefficients : 2

Objectifs de l'enseignement

Introduire la géométrie et mettre en forme de programmes linéaires, présenter l'algorithme du simplexe

Connaissances préalables recommandées

Cours de base d'algèbre et de programmation

Contenu de la matière :

- Introduction : définition d'un programme linéaire, exemples, différentes formes programme linéaire dual, fonction objective, base réalisable et base optimale
- Algorithme du simplexe, étude de cas particuliers et résolution d'exemples, théorème fondamental, théorème de Farkas, théorème des alternatives
- Compléments : algorithme révisé du simplexe, algorithme dual, interprétation géométrique de la programmation linéaire et de l'algorithme du simplexe

Mode d'évaluation : Contrôle continu et examen

Références

- (1) Kaufmann A. Méthodes et modèles de recherche opérationnelle Dunod, 1972
- (2) Martel A. Techniques et applications de la recherche opérationnelle Gaetan Morin 1979
- (3) Bellman R.E. linear programming Princeton University Press, 1957
- (4) Faure R. Précis de recherche opérationnelle
- (5) Ford L.R, Fulkerson D.R. Flow in networks
- (6) Roseaux Phénomènes aléatoires en recherché opératinnelle

Etablissement : UMBB Intitulé du master : Modélisation Stochastique et Statistique Page 39

Semestre: 3

Intitulé de l'UE : Economie

Intitulé de la matière : Economie 2.

Crédits : 1 Coefficients : 1

Objectifs de l'enseignement

Acquérir des connaissances permettant une analyse détaillée de la comptabilité générale Introduire des éléments d'économie avancée et ses règles de fonctionnement.

Connaissances préalables recommandées

Comptabilité générale, éléments de statistique descriptive, maitrise de l'outil informatique

Contenu de la matière : Economie 2

Economie (Economie financière, Règles de fonctionnement de l'économie financière dans un environnement aléatoire)

Comptabilité analytique (la méthode des couts complets, le direct costing, la méthode ABC, la méthode UVA, applications)

Mode d'évaluation : Contrôle continu et examen

Références

P. Piget. Comptabilité ananlytique. Economica. 2006

L. Dubrulle, D. Jourdain. Comptabilité ananlytique. Dunod. 2007

Etablissement : UMBB Intitulé du master : Modélisation Stochastique et Statistique Page 40

Semestre: 3

Intitulé de l'UE : Ethique et Anglais Intitulé de la matière : Anglais 2

Crédits : 1 Coefficients : 1

Objectifs de l'enseignement

Compréhension écrite des textes scientifiques, prise de parole sur thématiques scientifiques et présentation orale scientifique

Connaissances préalables recommandées

Connaissance en langue Anglaise.

Contenu de la matière :

Approfondissement des compétences langagières écrites et orales

Mode d'évaluation : Exposé : L'étudiant doit démontrer sa capacité à présenter en anglais un sujet en rapport avec les mathématiques.

Références

- [1] Catherine Baldit-Dufays, Marie-Annick Durand : Anglais scientifique pour les prépas.
- [2] Jen Tsi Yang, Janet N. Yang: An Outline of Scientific Writing: For Researchers with English as a Foreign Language
- [3] Nadezhda Riabtseva: English for Scientific Purposes
- [4] http://www.edufind.com/english/grammar/subject_index.php
- [5] http://www.musicalenglishlessons.org/grammar-tenses.htm#names

Etablissement : UMBB Intitulé du master : Modélisation Stochastique et Statistique Page 41

Semestre: 3

Intitulé de l'UE : Anglais et Ethique

Intitulé de la matière : Éthique et déontologie

Crédits : 1 Coefficients : 1

Objectifs de l'enseignement :

Connaitre les principes qui guident la vie universitaire et inspirent les codes de conduite et les règlements qui en découleront.

Connaissances préalables recommandées :

Bagage minimal d'un universitaire

Contenu de la matière :

Les notions de morale, d'éthique, de déontologie et de droit L'éthique, en tant que science de la morale, La déontologie de l'enseignant. La déontologie du chercheur

Mode d'évaluation : Contrôle continu

Références:

1- Karin Brodie, Teaching Mathematical Reasoning in Secondary School Classrooms, Springer

Science+Business Media, LLC 2010.

2- Charte d'éthique et de déontologie universitaires (www.mesrs.dz)

Etablissement : UMBB Intitulé du master : Modélisation Stochastique et Statistique Page 42

V- Accords ou conventions **NON** (Si oui, transmettre les accords et/ou les conventions dans le dossier papier de la formation)

Etablissement : UMBB Intitulé du master : Modélisation Stochastique et Statistique Page 43

LETTRE D'INTENTION TYPE

(En cas de master coparrainé par un autre établissement universitaire)

(Papier officiel à l'entête de l'établissement universitaire concerné)

Objet : Approbation du coparrainage du master intitulé :
Par la présente, l'université (ou le centre universitaire) déclare coparrainer le master ci-dessus mentionné durant toute la période d'habilitation de ce master.
A cet effet, l'université (ou le centre universitaire) assistera ce projet en :
 Donnant son point de vue dans l'élaboration et à la mise à jour des programmes d'enseignement, Participant à des séminaires organisés à cet effet, En participant aux jurys de soutenance, En œuvrant à la mutualisation des moyens humains et matériels.
SIGNATURE de la personne légalement autorisée :
FONCTION:
Date :

Etablissement : UMBB Intitulé du master : Modélisation Stochastique et Statistique Page 44

LETTRE D'INTENTION TYPE

(En cas de master en collaboration avec une entreprise du secteur utilisateur)

(Papier officiel à l'entête de l'entreprise)

OBJET: Approbation du projet de lancement d'une formation de master intitulé : Dispensé à : Par la présente, l'entreprise déclare sa volonté de manifester son accompagnement à cette formation en qualité d'utilisateur potentiel du produit. A cet effet, nous confirmons notre adhésion à ce projet et notre rôle consistera à : Donner notre point de vue dans l'élaboration et à la mise à jour des programmes d'enseignement, - Participer à des séminaires organisés à cet effet, - Participer aux jurys de soutenance, Faciliter autant que possible l'accueil de stagiaires soit dans le cadre de mémoires de fin d'études, soit dans le cadre de projets tuteurés. Les moyens nécessaires à l'exécution des tâches qui nous incombent pour la réalisation de ces objectifs seront mis en œuvre sur le plan matériel et humain. Monsieur (ou Madame).....est désigné(e) comme coordonateur externe de ce projet. SIGNATURE de la personne légalement autorisée : **FONCTION:**

Etablissement : UMBB Intitulé du master : Modélisation Stochastique et Statistique Page 45

Année universitaire : 2016/2017

CACHET OFFICIEL ou SCEAU DE L'ENTREPRISE

Date: