第6章 微波谐振器

第1节 串联和并联谐振电路 第2节传输线谐振器 第3节 矩形波导谐振腔 第4节 圆波导谐振腔 第5节 介质谐振器和开腔 第6节谐振器的激励和耦合 第7节 微波谐振腔的微扰和测量

微波谐振器

在微波领域中,具有储能和选频特性的元件称为 微波谐振器

相当于低频电路中的LC振荡回路 是一种用途广泛的微波元件

微波谐振器 (腔)

有多种应用:

- (1) 微波滤波器;
- (2) 振荡器或调谐放大器的振荡回路;
- (3)频率计;
- (4) 可调谐放大器
- (5) 倍频器, 频率预选器, 波长计, 回波箱等。

第1节 串联和并联谐振电路

如图所示串联RLC谐振电路

输入电阻为

$$Z_{in} = R + j\omega L - j\frac{1}{\omega C}$$

传送到谐振器的复数功率为

$$P_{in} = \frac{1}{2}VI^* = \frac{1}{2}Z_{in}|I|^2$$

$$=\frac{1}{2}Z_{in}\left|\frac{V}{Z_{in}}\right|^{2}=\frac{1}{2}\left|I\right|^{2}\left(R+j\omega L-j\frac{1}{\omega C}\right)$$

串联谐振电路

输入电阻为
$$Z_{in} = R + j\omega L - j\frac{1}{\omega C}$$

传送到谐振器的复数功率为

将起到個級語的及級列牛人

$$P_{in} = \frac{1}{2}VI^* = \frac{1}{2}Z_{in}|I|^2 = \frac{1}{2}Z_{in}\left|\frac{V}{Z_{in}}\right|^2 = \frac{1}{2}|I|^2\left(R + j\omega L - j\frac{1}{\omega C}\right)$$
消耗在R上的功率为 $P_l = \frac{1}{2}|I|^2R$

存储在电感L中的平均磁能为 $W_m = \frac{1}{4} |I|^2 L$

存储在电容C中的平均电能为 $W_e = \frac{1}{4} |V_C|^2 C = \frac{1}{4} |I|^2 \cdot \frac{1}{\omega^2 C}$

其中Vc是跨接在电容上的电压

复数功率改写为
$$P_{in} = P_l + 2j\omega(W_m - W_e)$$

输入阻抗改写为
$$Z_{in} = \frac{2P_{in}}{|I|^2} = \frac{P_l + 2j\omega(W_m - W_e)}{|I|^2/2}$$

串联谐振电路

消耗在R上的功率为
$$P_l = \frac{1}{2} |I|^2 R$$
 存储在电感L中的平均磁能为 $W_m = \frac{1}{4} |I|^2 L$ 其中VC是跨接在电容上的电压 存储在电容C中的平均电能为 $W_e = \frac{1}{4} |V_c|^2 C = \frac{1}{4} |I|^2 \cdot \frac{1}{\omega^2 C}$ 输入阻抗改写为 $Z_{in} = \frac{2P_{in}}{|I|^2} = \frac{P_l + 2j\omega(W_m - W_e)}{|I|^2/2}$

当存储磁能和电能相等即 $W_m = W_e$ 时产生谐振代入,所以有 $Z_{in} = \frac{P_l}{\left|I\right|^2/2} = R$ 是纯实数由 $W_m = W_e$ 所以有谐振频率 $\omega_0 = \frac{1}{\sqrt{LC}}$

串联谐振电路

谐振电路一个重要参量为品质因数Q:

$$P_{l} = \frac{1}{2} |I|^{2} R \qquad W_{m} = \frac{1}{4} |I|^{2} L$$

$$W_{e} = \frac{1}{4} |V_{C}|^{2} C = \frac{1}{4} |I|^{2} \cdot \frac{1}{\omega^{2} C}$$

$$Q = \omega \frac{(W_m + W_e)}{P_l} = \omega \times \frac{\text{平均储能}}{\text{损耗功率}}$$
 Q能衡量电路损耗

根据及谐振时 $W_m = W_o$ 有

$$Q = \omega_0 \frac{2W_{in}}{P_l} = \frac{\omega_0 L}{R} = \frac{1}{\omega_0 RC}$$

分析当接近谐振频率时输入阻抗特性 $令 \omega = \omega_0 + \Delta \omega$ Δω为小量

考虑
$$\omega_0 = \frac{1}{\sqrt{LC}}$$
 应用到 $Z_{in} = R + j\omega L - j\frac{1}{\omega C}$ 所以输入阻抗为
$$Z_{in} = R + j\omega L(1 - \frac{1}{\omega^2 LC}) = R + j\omega L(\frac{\omega^2 - \omega_0^2}{\omega^2})$$

串联谐振电路
$$Z_{in} = R + j\omega L(1 - \frac{1}{\omega^2 LC}) = R + j\omega L(\frac{\omega^2 - \omega_0^2}{\omega^2})$$

由于 $\Delta \omega$ 是小量,有 $\omega^2 - \omega_0^2 = (\omega - \omega_0)(\omega + \omega_0) = \Delta \omega(2\omega - \Delta \omega) \approx 2\omega \Delta \omega$ 所以输入阻抗为 $Z_{in} \approx R + j2L\Delta\omega \approx R + j\frac{2RQ\Delta\omega}{2}$

有损耗谐振器看成无耗谐振器来处理,需要把谐振频率换成 有效谐振频率 $\omega_0 \rightarrow \omega_0 (1 + \frac{J}{2O})$

无耗串联谐振器的输入阻抗,R=0代入有 $Z_m = j2L(\omega - \omega_0)$

把有效谐振频率代入有

$$Z_{in} = j2L(\omega - \omega_0 - j\frac{\omega_0}{2Q}) = \frac{\omega_0 L}{Q} + j2L(\omega - \omega_0) = R + j2L\Delta\omega$$

大多数实际谐振器损耗都很小,可以用这种微扰法求解

串联谐振电路 半功率相对带宽

$$Z_{in} \approx R + j \frac{2RQ\Delta\omega}{\omega_0}$$

当频率使
$$\left|Z_{in}\right|^2=2R^2$$
 由

$$P_{in} = \frac{1}{2}VI^* = \frac{1}{2}Z_{in}|I|^2 = \frac{1}{2}Z_{in}\left|\frac{V}{Z_{in}}\right|^2 = \frac{1}{2}|I|^2\left(R + j\omega L - j\frac{1}{\omega C}\right)$$

得到传送到电路的平均功率

是谐振时传送功率的一半

设BW是相对带宽,则在频率高端

$$\frac{\left(\omega - \omega_0\right)}{\omega_0} = \frac{\Delta\omega}{\omega_0} = \frac{BW}{2}$$

所以

$$\left|R+jRQ(BW)\right|^2=2R^2$$
 $BW=\frac{1}{O}$

大多数实际谐振器损耗都很小, 可以用这种微扰法求解

第1节 串联和并联谐振电路

如图所示并联RLC谐振电路

输入电阻为

$$Z_{in} = \left(\frac{1}{R} + \frac{1}{j\omega L} + j\omega C\right)^{-1}$$

传送到谐振器的复数功率为

$$P_{in} = \frac{1}{2}VI^* = \frac{1}{2}Z_{in}|I|^2$$

$$= \frac{1}{2} |V|^2 \frac{1}{Z_{in}} = \frac{1}{2} |V|^2 \left(\frac{1}{R} + \frac{j}{\omega L} - j\omega C \right)$$
 (b)

消耗在R上的功率为
$$P_l = \frac{1}{2} \frac{|V|^2}{R}$$

消耗在R上的功率为
$$P_l = \frac{1}{2} \frac{|V|^2}{R}$$
 存储在电容C中的平均电能为 $W_e = \frac{1}{4} |V|^2 C$ 其中 I_L 是流经电感的电流

存储在电感L中的平均磁能为
$$W_m = \frac{1}{4} |I_L|^2 L = \frac{1}{4} |V|^2 \frac{1}{\omega^2 L}$$

复数功率改写为
$$P_{in} = P_l + 2j\omega(W_m - W_e)$$

复数功率改写为
$$P_{in} = P_l + 2j\omega(W_m - W_e)$$
 输入阻抗改写为 $Z_{in} = \frac{2P_{in}}{\left|I\right|^2} = \frac{P_l + 2j\omega(W_m - W_e)}{\left|I\right|^2/2}$

当平均存储磁能和电能相等时产生谐振,即 $W_m = W_e$

代入,所以有输入阻抗
$$Z_{in} = \frac{P_l}{\left|I\right|^2/2} = R$$
 由 $W_m = W_e$

所以谐振频率为
$$\omega_0 = \frac{1}{\sqrt{LC}}$$

并联谐振电路品质因数Q: 根据及谐振时 $W_m = W_o$ 有

$$Q = \omega_0 \frac{2W_m}{P_l} = \frac{R}{\omega_0 L} = \omega_0 RC$$

接近谐振时 利用
$$\frac{1}{1+x} \approx 1-x+...$$
 对输入阻抗化简

考虑
$$\omega_0^2 = \frac{1}{IC}$$

$$Z_{in} = \left(\frac{1}{R} + \frac{1 - \Delta\omega/\omega_0}{j\omega_0 L} + j\omega_0 C + j\Delta\omega C\right)^{-1} \approx \left(\frac{1}{R} + j\frac{\Delta\omega}{\omega_0^2 L} + j\Delta\omega C\right)^{-1}$$

$$\approx \left(\frac{1}{R} + 2j\Delta\omega C\right)^{-1} \approx \frac{R}{1 + 2j\Delta\omega RC} = \frac{R}{1 + 2jQ\Delta\omega/\omega_0}$$

R趋于无穷大时上式简化为 $Z_{in} = \frac{1}{i2C(\omega - \omega_0)}$

$$R=\infty$$

$$Z_{in} = \frac{1}{j2C(\omega - \omega_0)}$$

$$Z_{in} = \left(\frac{1}{R} + \frac{1 - \Delta\omega/\omega_{0}}{j\omega_{0}L} + j\omega_{0}C + j\Delta\omega C\right)^{-1} \approx \left(\frac{1}{R} + j\frac{\Delta\omega}{\omega_{0}^{2}L} + j\Delta\omega C\right)^{-1}$$

$$\approx \left(\frac{1}{R} + 2j\Delta\omega C\right)^{-1} \approx \frac{R}{1 + 2j\Delta\omega RC} = \frac{R}{1 + 2jQ\Delta\omega/\omega_{0}}$$
R趋于无穷大时上式简化为 $Z_{in} = \frac{1}{j2C(\omega - \omega_{0})}$

有损耗谐振器看成无耗谐振器来处理,需要把谐振频率换成有效谐振频率

$$\omega_0 \Leftarrow \omega_0 (1 + \frac{J}{2Q})$$

半功率相对带宽

半功率发生在频率

$$(\omega - \omega_0)/\omega_0 = \Delta \omega/\omega_0 = BW/2$$

满足

$$\left|Z_{in}\right|^2 = R^2/2$$

所以

$$BW = \frac{1}{Q}$$

有载和无载Q

如谐振器是一个串联RLC电路

接负载 R_L

负载 R_L 与 R 串联相加有效电阻为 R_L + R

如谐振器是一个并联RLC电路 接负载 R_L

负载
$$R_L$$
 与 R 并联相加有效电阻为 $R_L R / (R_L + R)$

定义外部Q为
$$Q_e = \frac{\omega_0 L}{R_L}$$
 (对串联电路) 有载Q可表示为
$$Q_e = \frac{R_L}{\omega_0 L}$$
 (对并联电路)
$$\frac{1}{Q_e} = \frac{1}{Q_e} + \frac{1}{Q_e}$$

表4.1 串联和并联谐振回路的结果摘要

参量名称	串联谐振器	并联谐振器
输入阻抗 或输入导 纳	$Z_{in} = R + j\omega L - j\frac{1}{\omega C} \approx R + j\frac{2RQ\Delta\omega}{\omega_0}$	
功率损耗	$P_l = \frac{1}{2} I ^2 R$	$P_l = \frac{1}{2} \frac{\left V\right ^2}{R}$
磁储能	$W_{m} = \frac{1}{4} I ^{2} L$	$W_m = \frac{1}{4} V ^2 \frac{1}{\omega^2 L}$
电储能	$W_e = \frac{1}{4} I ^2 \frac{1}{\omega^2 C}$	$W_e = \frac{1}{4} V ^2 C$
谐振频率	$\omega_0 = \frac{1}{\sqrt{LC}}$	$\omega_0 = \frac{1}{\sqrt{LC}}$
无载Q值	$Q = \frac{\omega_0 L}{R} = \frac{1}{\omega_0 RC}$	$Q = \omega_0 RC = \frac{R}{\omega_0 L}$
外部Q值	$Q_e = \frac{\omega_0 L}{R_L}$	$Q_e = \frac{R_L}{\omega_0 L}$

第2节传输线谐振器

短路 λ/2传输线

对频率 $\omega = \omega_0$

传输线长度 $l = \lambda/2$

其中 $\lambda = 2\pi/\beta$

输入阻抗为 $Z_{in} = Z_0 \tanh(\alpha + j\beta)l$

用双曲函数表示为

$$Z_{in} = Z_0 \frac{\tanh \alpha l + j \tan \beta l}{1 + j \tan \beta l \tanh \alpha l}$$

如果
$$\alpha = 0$$
 则 $Z_{in} = jZ_0 \tan \beta l$

多数传输线损耗非常小,可以设 $\alpha l \ll 1$ 有 $\tanh \alpha l \approx \alpha l$

第2节传输线谐振器

短路λ/2传输线

对TEM波传输线有

$$\beta l = \frac{\omega l}{\upsilon_p} = \frac{\omega_0 l}{\upsilon_p} + \frac{\Delta \omega l}{\upsilon_p}$$

U_p 是传输线的相速

由于
$$\omega = \omega_0$$
 时 $l = \lambda/2 = \pi \upsilon_p/\omega_0$

所以 $\beta l = \pi + \frac{\Delta \omega \pi}{\omega_0}$ 这时 $\tan \beta l = \tan(\pi + \frac{\Delta \omega \pi}{\omega_0}) = \tan\frac{\Delta \omega \pi}{\omega_0} \approx \frac{\Delta \omega \pi}{\omega_0}$

考虑
$$\Delta \omega \alpha l / \omega_0 \ll 1$$
 代 $Z_{in} = Z_0 \frac{\tanh \alpha l + j \tan \beta l}{1 + j \tan \beta l \tanh \alpha l}$

$$\frac{\partial \mathcal{L}}{\partial \alpha} = \frac{\partial \mathcal{L}}{\partial \alpha} = \frac{\partial$$

短路 λ/2传输线

$$Z_{in} \approx Z_0 \frac{\alpha l + j(\Delta \omega \pi / \omega_0)}{1 + j(\Delta \omega \pi / \omega_0) \alpha l} \approx Z_0 (\alpha l + j \frac{\Delta \omega \pi}{\omega_0})$$

对比串联RLC谐振贿赂的输入阻抗

$$Z_{in} = R + 2jL\Delta\omega$$

等效电路电阻为

$$R = Z_0 \alpha L$$

等效电路电感为

$$L = Z_0 \pi / 2\omega_0$$

路电感为
$$L = Z_0 \pi / 2\omega_0$$
 $\omega_0 = \frac{1}{\sqrt{LC}}$ $z_{\text{in}} \Rightarrow$

等效电路电容为

$$C = 1/\omega_0^2 L$$

谐振发生在n=1,2,3,... 对于n=1,n=2 谐振模式电压分布如图

n = 1

 Z_0, β, α

由
$$Q = \frac{\omega_0 L}{R}$$
 求出谐振器Q为 $Q = \frac{\omega_0 L}{R} = \frac{\pi}{2\alpha l} = \frac{\beta}{2\alpha}$ 第一个谐振点 $\beta l = \pi$

例1:半波长同轴线谐振器Q的计算

 $\sigma = 5.813 \times 10^{7} (S/m)$

一 λ /2谐振腔由一段铜制同轴线组成, 内导体半径为1mm 外导体半径为4mm,谐振频率5GHz,比较空气填充和 聚四氟乙烯填充同轴谐振腔的Q值

解: 表面电阻为
$$R_{S} = \sqrt{\frac{\omega \mu_{0}}{2\sigma}} = 1.84 \times 10^{-2} \Omega$$

空气填充时导体损耗引起衰减为

$$\alpha_c = \frac{R_S}{2\eta \ln b / a} (\frac{1}{a} + \frac{1}{b}) = \frac{1.84 \times 10^{-2}}{2 \times 377 \ln(0.004 / 0.001)} (\frac{1}{0.001} + \frac{1}{0.004}) = 0.022 Np / m$$

聚四氟乙烯的
$$\varepsilon_r = 2.08 \tan \delta = 0.0004$$

导体损耗引起的衰减为

$$\alpha_c = \frac{1.84 \times 10^{-2} \sqrt{2.08}}{2 \times 377 \ln(0.004/0.001)} \left(\frac{1}{0.001} + \frac{1}{0.004}\right) = 0.032 Np/m$$

例1:半波长同轴线谐振器Q的计算

一λ/2谐振腔由一段铜制同轴线组成,内导体半径为1mm 外导体半径为4mm,谐振频率5GHz,比较空气填充和 聚四氟乙烯填充同轴谐振腔的Q值

解: 空气填充介质损耗为0

聚四氟乙烯填充介质损耗为

$$\alpha_d = k_0 \frac{\sqrt{\varepsilon_r}}{2} \tan \delta = \frac{104.7\sqrt{2.08} \times 0.0004}{2} = 0.030 Np/m$$

FF いく Q 为
$$Q_{air} = \frac{\beta}{2\alpha} = \frac{104.7}{2 \times 0.022} = 2380$$

$$Q_{teflon} = \frac{\beta}{2\alpha} = \frac{104.7\sqrt{2.08}}{2(0.032 + 0.030)} = 1218$$

空气填充Q值是聚四氟乙烯填充同轴谐振腔的Q值的2倍 导体表面镀银更好

短路λ/4传输线

可以获得并联谐振

有

长为 2/4 的短路传输线输入阻抗为

$$Z_{in} = Z_0 \tanh(\alpha + j\beta)l = Z_0 \frac{\tanh \alpha l + jtg\beta l}{1 + jtg\beta l \tanh \alpha l} = Z_0 \frac{1 - j\tanh \alpha lctg\beta l}{\tanh \alpha l - jctg\beta l}$$

 $-jctg\beta l$

在
$$\omega = \omega_0$$
 处 $l = \lambda/4$ 令 $\omega = \omega_0 + \Delta \omega$ 有 $\beta l = \frac{\omega_0 l}{\upsilon_p} + \frac{\Delta \omega l}{\upsilon_p} = \frac{\pi}{2} + \frac{\pi \Delta \omega}{2\omega_0}$

Fig.
$$ctg \beta l = ctg \left(\frac{\pi}{2} + \frac{\pi \Delta \omega}{2\omega_0}\right) = -tg \frac{\pi \Delta \omega}{2\omega_0} \approx \frac{-\pi \Delta \omega}{2\omega_0}$$

多数传输线损耗非常小, $\tanh\alpha l \approx \alpha l$ 考虑 $\alpha l\pi\Delta\omega/2\omega_0 \ll 1$

$$Z_{in} = Z_0 \frac{1 + j\alpha l\pi \Delta \omega / 2\omega_0}{\alpha l + j\pi \Delta \omega / 2\omega_0} \approx \frac{Z_0}{\alpha l + j\pi \Delta \omega / 2\omega_0}$$
结果同RLC并联电路 $Z_{in} = \frac{1}{(1/R) + 2i\Delta \omega / 2\omega_0}$

短路λ/4传输线

$$Z_{in} pprox \frac{Z_0}{\alpha l + j\pi \Delta \omega / 2\omega_0}$$

$$Z_{in} = \frac{1}{(1/R) + 2j\Delta\omega C}$$

所以

等效电路电阻为

$$R = \frac{Z_0}{\alpha l}$$

等效电路电容为 $C = \frac{\pi}{4\omega_0 Z_0}$

$$C = \frac{\pi}{4\omega_0 Z_0}$$

等效电路电感为 $L = \frac{1}{\omega_0^2 C}$

$$L = \frac{1}{\omega_0^2 C}$$

 $l = \lambda/4$ 时为并联谐振

在这个频率上输入阻抗是 $Z_{in} = R = Z_0 / \alpha l$

$$Z_{in} = R = Z_0 / \alpha l$$

谐振发生在 $l=\pi/2\beta$

谐振器Q为
$$Q = \omega_0 RC = \frac{\pi}{4\alpha l} = \frac{\beta}{2\alpha}$$

开路 λ/2传输线

有并联谐振电路特点

微带电路实际谐振器由开路线组成

传输线长度 $\lambda/2$ $n\lambda/2$

输入阻抗为

$$Z_{in} = Z_0 \coth(\alpha + j\beta)l = Z_0 \frac{1 + j \tan \beta l \tanh \alpha l}{\tanh \alpha l + j \tan \beta l}$$

$$\Delta \omega = \omega_0 + \Delta \omega$$

有
$$\beta l = \pi + \frac{\pi \Delta \omega}{\omega_0}$$

有
$$\beta l = \pi + \frac{\pi \Delta \omega}{\omega_0}$$
所以 $\tan \beta l = \tan \frac{\Delta \omega \pi}{\omega} \approx \frac{\Delta \omega \pi}{\omega}$

n = 2

多数传输线损耗非常小, $\tanh \alpha l \approx \alpha l$

所以
$$Z_{in} = \frac{Z_0}{\alpha l + j(\Delta \omega \pi / \omega_0)}$$
结果同并联电路 $Z_{in} = \frac{1}{(1/R) + 2j\Delta \omega C}$

开路 λ/2传输线

$$Z_{in} = \frac{Z_0}{\alpha l + j(\Delta \omega \pi / \omega_0)} \quad Z_{in} = \frac{1}{(1/R) + 2j\Delta \omega C}$$

$$Z_{in} = \frac{1}{(1/R) + 2j\Delta\omega C}$$

等效电路电阻为 $R = \frac{Z_0}{R}$

$$R = \frac{Z_0}{\alpha l}$$

等效电路电感为 $L = \frac{1}{\omega_0^2 C}$

$$L = \frac{1}{\omega_0^2 C}$$

等效电路电容为
$$C = \frac{\pi}{2\omega_0 Z_0}$$

由6.18和6.34求出谐振器Q为 $l=\pi/\beta$

$$Q = \omega_0 RC = \frac{\pi}{2\alpha l} = \frac{\beta}{2\alpha}$$

例2:半波长微带谐振器

$$\varepsilon_r = 2.2$$
, $\tan \delta = 0.001$

一 λ /2的50欧姆开路微带线构成的微带谐振器,基片是聚四氟乙烯厚度为0.159cm,导体为铜,计算5GHz时微带线长度和Q

解: 由式3.197,50欧姆微带线宽度 W=0.49cm

有效介电常数为
$$\varepsilon_e = 1.87$$

谐振长度为
$$l = \frac{\lambda}{2} = \frac{\upsilon_p}{2f} = \frac{c}{2f\sqrt{\varepsilon_r}} = \frac{3\times10^8}{2(5\times10^9)\sqrt{1.87}} = 2.19cm$$

传播常数为
$$\beta = \frac{2\pi f}{\upsilon_p} = \frac{2\pi f \sqrt{\varepsilon_r}}{c} = \frac{2\pi (5 \times 10^9) \sqrt{1.87}}{3 \times 10^8} = 143.2 rad/m$$

导体损耗引起的衰减为 $\alpha_c = \frac{R_S}{Z_0 W} = \frac{1.84 \times 10^{-2}}{50 \times 0.0049} = 0.075 Np/m$

介质损耗引起的衰减为
$$\alpha_d = \frac{k_0 \mathcal{E}_r(\mathcal{E}_r - 1) \tan \delta}{2 \sqrt{\mathcal{E}_r}(\mathcal{E}_r - 1)} = \frac{104.7 \times 2.2 \times 0.87 \times 0.001}{2 \sqrt{1.87} \times 1.2} = 0.0611 Np/m$$

所以Q为
$$Q = \frac{\beta}{2\alpha} = \frac{143.2}{2(0.075 + 0.0611)} = 526$$

电容负载同轴腔(缩短腔)

设同轴内导体的长度为1,特性阻抗为

$$Z_0 = 60\sqrt{\frac{1}{\varepsilon_r}\ln\frac{D}{d}}$$

这时从参考面aa'向左看进去的输入阻抗为

$$Z_{in} = jZ_0 \tan \beta l$$

用导纳表示时为 $j\beta_L = -j\frac{1}{Z_0}\cot\beta l$

而电容C的导纳为 $jB_c = j\omega C$

谐振时,aa'面的并联导纳为零,由此可得谐振条件为

$$B_C + B_L = 0 \quad , \quad \text{PP} \quad \omega_0 C = \frac{1}{Z_0} \cot(\frac{\omega l}{\upsilon}) \qquad \text{If } \upsilon = 1/\sqrt{\mu_0 \varepsilon}$$

给定长1后确定谐振频率的超越方程,可用图解法或数值法求

图解法求 @

图 4.7 (a) 所示的直线 $B_C = \omega C$ 与曲线 $-B_L = \frac{1}{Z_0} \cot(\frac{\omega l}{\upsilon})$

的交点,即为所求的谐振角频率 $\omega_{01},\omega_{02},\omega_{03},\ldots$

由此可见,对于一定长度的电容负载同轴腔,可以有无穷多个谐振频率。

如果给定 ω_0 和电容C, 改变腔长l

也可以在无穷多个长度上发生谐振,因 $\tan \beta = \tan(\beta l - p\pi)$

由(4.36)式可求得谐振时的腔长为

$$l = \frac{1}{\beta} \left(\arctan \frac{1}{\omega_0 C Z_0} + p\pi\right) = \frac{\lambda_0}{2\pi} \arctan \frac{1}{\omega_0 C Z_0} + p\frac{\lambda_0}{2}$$

第3节矩形波导谐振腔谐振器可由封闭波导段构成

即波导两端短路 电能磁能存储在腔内 功率消耗在腔的金属壁 及腔内电介质中

谐振频率

先推导腔无耗时的谐振频率

然后用微扰法确定Q

解波动方程, 利用分离变量法、边界条件求解

可利用以前的TE,TM解(已经满足边界条件x=0,a;y=0,b) 再考虑z=0,d处边界条件即可 $E_x=E_y=0$

谐振频率

TEmn TMmn 模横向电场为

$$E_{t}(x,y,z) = e(x,y)[A^{+}e^{-j\beta_{mn}z} + A^{-}e^{j\beta_{mn}z}]$$
相移常数为 $\beta_{mn} = \sqrt{k^{2} - (\frac{m\pi}{a})^{2} - (\frac{n\pi}{b})^{2}}$
其中 $k = \omega\sqrt{\mu\varepsilon}$
为填充材料的磁导率和介电常数
考虑Z=0处边界条件 $E_{t} = 0$

z=d处边界条件 $E_t = 0$ 所以 $E_t(x, y, d) = -e(x, y)A^+2j\sin\beta_{mn}d = 0$ 谐振时,腔的长度为半波导波长的整数倍 $\beta_{mn}d = p\pi$ 矩形谐振腔是一种短路波导型的半波长传输线谐振腔

谐振频率

谐振腔截止波数

谐振频率

$$f_{mnp} = \frac{ck_{mnp}}{2\pi\sqrt{\mu_r \varepsilon_r}} = \frac{c}{2\pi\sqrt{\mu_r \varepsilon_r}} \sqrt{\left(\frac{m\pi}{a}\right)^2 + \left(\frac{n\pi}{b}\right)^2 + \left(\frac{p\pi}{d}\right)^2}$$

TE_{10p} 模的Q值

场为
$$E_y = A^+ \sin \frac{\pi x}{a} (e^{-j\beta z} - e^{j\beta z})$$

$$H_x = \frac{-A^+}{Z_{TE}} \sin \frac{\pi x}{a} (e^{-j\beta z} + e^{j\beta z})$$

$$H_z = \frac{j\pi A^+}{k\eta a} \cos \frac{\pi x}{a} (e^{-j\beta z} - e^{j\beta z})$$
可化简为 $E_y = E_0 \sin \frac{\pi x}{a} \sin \frac{p\pi z}{d}$

可化简为
$$E_y = E_0 \sin \frac{\pi x}{a} \sin \frac{p\pi z}{d}$$

$$H_x = \frac{-jE_0}{Z_{TE}} \sin \frac{\pi x}{a} \cos \frac{p\pi z}{d}$$

$$H_z = \frac{j\pi E_0}{k\eta a} \cos\frac{\pi x}{a} \sin\frac{p\pi z}{d}$$

存储的电能为
$$W_e = \frac{\varepsilon}{4} \int_V E_y E_y^* dV = \frac{\varepsilon abd}{16} E_0^2$$

存储的磁能为
$$W_m = \frac{\mu}{4} \int_V (H_x H_x^* + H_z H_z^*) dV = \frac{\mu abd}{16} E_0^2 (\frac{1}{Z_{TE}^2} + \frac{\pi^2}{k^2 \eta^2 a^2})$$

TE_{10p} 模的Q值

存储的电能为
$$W_e = \frac{\varepsilon}{4} \int_V E_y E_y^* dV = \frac{\varepsilon abd}{16} E_0^2$$

存储的磁能为

$$W_{m} = \frac{\mu}{4} \int_{V} (H_{x} H_{x}^{*} + H_{z} H_{z}^{*}) dV = \frac{\mu abd}{16} E_{0}^{2} (\frac{1}{Z_{TE}^{2}} + \frac{\pi^{2}}{k^{2} \eta^{2} a^{2}})$$

化简

可得 $W_{\rho} = W_{m}$

所以谐振时电能和磁能是相等的

TE_{10p} 模的Q值 小损耗时,用微扰法

得导体壁功率损耗

$$P_c = \frac{R_S}{2} \oint_{walls} \left| H_t \right|^2 dS$$

表面电阻为 $R_S = \sqrt{\omega \mu_0 / 2\sigma}$

所以

$$\int_{0}^{a} \left(\left| H_{x} \right|_{y=0}^{2} + \left| H_{x} \right|_{y=0}^{2} \right) dx$$

$$P_{c} = \frac{R_{S}}{2} \left\{ 2 \int_{0}^{b} \int_{0}^{a} \left| H_{x} \right|_{z=0}^{2} dx dy + 2 \int_{0}^{d} \int_{0}^{b} \left| H_{z} \right|_{x=0}^{2} dy dz + 2 \int_{0}^{d} \int_{0}^{a} \left(\left| H_{x} \right|_{y=0}^{2} + \left| H_{x} \right|_{y=0}^{2} \right) dx dz \right\}$$

$$=\frac{R_{S}E_{0}^{2}\lambda^{2}}{8\eta^{2}}\left(\frac{p^{2}ab}{d^{2}}+\frac{bd}{a^{2}}+\frac{p^{2}a}{2d}+\frac{d}{2a}\right)$$

无耗腔的Q值
$$Q_c = \frac{2\omega_0 W_e}{P_c} = \frac{k^3 abd\eta}{4\pi^2 R_S} \frac{1}{(p^2 ab/d^2 + bd/a^2 + p^2 a/2d + d/2a)}$$

$$=\frac{(kad)^3b\eta}{2\pi^2R_S}\frac{1}{2p^2a^3b+2bd^3+p^2a^3d+ad^3}$$

 TE_{10} 模的Q值 小损耗时,用微扰法

电介质功率损耗

$$P_{d} = \frac{1}{2} \int_{V} J \cdot E^{*} dV = \frac{\omega \varepsilon}{2} \int_{V} |E|^{2} dV = \frac{abd\omega \varepsilon / |E_{0}|^{2}}{8}$$

理想导体有耗的电介质Q为

$$Q_d = \frac{2\omega W_e}{P_d} = \frac{\varepsilon'}{\varepsilon''} = \frac{1}{\tan \delta}$$

导体壁和电介质损耗都存在时,总功率求和,总Q为

$$Q = (\frac{1}{Q_c} + \frac{1}{Q_d})^{-1}$$

例3:设计矩形波导谐振腔

一矩形波导腔由铜WR-187H波段波导制成 a=4.755cm,b=2.215cm 腔用聚乙烯填充 $\varepsilon_r=2.25$, $\tan\delta=0.0004$ 若 TE_{10p} 模 谐振发生在f=5GHz处,求长度 $d\pi p=1,p=2$ 谐振模式引起的Q

解: 波数k为
$$k = \frac{2\pi f \sqrt{\varepsilon_r}}{c} = 157.08m^{-1}$$
 由 $k_{mnp} = \sqrt{(\frac{m\pi}{a})^2 + (\frac{n\pi}{b})^2 + (\frac{p\pi}{d})^2}$ 所以d为 $d = \frac{p\pi}{\sqrt{k^2 - (\pi/a)^2}}$

p=1 If
$$d = \frac{\pi}{\sqrt{157.08^2 - (\pi/0.04755)^2}} = 2.20cm$$

$$p=2$$
时 $d=2\times 2.20=4.40cm$

例3:设计矩形波导谐振腔

一矩形波导腔由铜WR-187H波段波导制成 a=4.755cm,b=2.215cm 腔用聚乙烯填充 $\varepsilon_r=2.25$, $\tan\delta=0.0004$ 若 TE_{10p} 模 谐振发生在f=5GHz处,求长度d和p=1,p=2谐振模式引起的Q

解:

由 在5GHz时,铜的表面电阻 $R_s = 1.84 \times 10^{-2} \Omega$

本征阻抗为
$$\eta = \frac{377}{\sqrt{\varepsilon_r}} = 251.3\Omega$$
 由 $Q_c = \frac{(kad)^3 b\eta}{2\pi^2 R_S} \frac{1}{2p^2 a^3 b + 2bd^3 + p^2 a^3 d + ad^3}$

由导体损耗引起的Q为 p=1时 $Q_c=3380$ p=2时 $Q_c=3864$

由介质损耗引起的Q为 $Q_d = \frac{1}{\tan \delta} = \frac{1}{0.0004} = 2500$

所以总Q为
$$p=1$$
时 $Q = (\frac{1}{3380} + \frac{1}{2500})^{-1} = 1437$
 $p=2$ 时 $Q = (\frac{1}{3864} + \frac{1}{2500})^{-1} = 1518$

第4节 圆波导谐振腔

谐振器可由两端短路圆波导段构成

圆波导基模TE₁₁模 圆柱腔基模TE₁₁₁模

圆柱腔可制作成微波频率计 原理:

当腔调谐到系统的工作频率时 W波段波导频率计 功率被腔吸收,在系统另外一处用功率计观察吸收现象

振荡模场方程

TE 波型

$$E_r = \frac{2\omega\mu_0 m}{k_c^2 r} H_0 J_m(k_c r)_{\cos m\varphi}^{\sin m\varphi} \sin(\frac{p\pi}{l}z) \qquad H_r = -\frac{j2}{k_c} (\frac{p\pi}{l}) H_0 J_m'(k_c r)_{\sin m\varphi}^{\cos m\varphi} \cos(\frac{p\pi}{l}z)$$

$$E_{\varphi} = \frac{2\omega\mu_0}{k_c} H_0 J_m'(k_c r)_{\sin m\varphi}^{\cos m\varphi} \sin(\frac{p\pi}{l}z) \qquad H_{\varphi} = \frac{jm}{k_c^2 r} (\frac{p\pi}{l}) H_0 J_m(k_c r)_{\cos m\varphi}^{\sin m\varphi} \cos(\frac{p\pi}{l}z)$$

$$H_z = -2jH_0J_m(k_c r)_{\sin m\varphi}^{\cos m\varphi} \sin(\frac{p\pi}{l}z)$$

其中 µ'mm 为第一类m阶贝塞尔函数第n个根

TM 波型

其中 $k_c = \mu_{mn}/a$

$$\begin{split} E_r &= -\frac{2}{k_c} (\frac{p\pi}{l}) E_0 J_m '(k_c r)_{\sin m\varphi}^{\cos m\varphi} \sin(\frac{p\pi}{l} z) \ H_r = -j \frac{2m\omega\varepsilon}{k_c r} E_0 J_m (k_c r)_{\cos m\varphi}^{\sin m\varphi} \cos(\frac{p\pi}{l} z) \\ E_\varphi &= \frac{2m}{k_c^2 r} (\frac{p\pi}{l})^2 E_0 J_m (k_c r)_{\cos m\varphi}^{\sin m\varphi} \sin(\frac{p\pi}{l} z) \ H_\varphi = -j \frac{2\omega\varepsilon}{k_c} E_0 J_m '(k_c r)_{\sin m\varphi}^{\cos m\varphi} \cos(\frac{p\pi}{l} z) \\ E_z &= 2E_0 J_m (k_c r)_{\sin m\varphi}^{\cos m\varphi} \cos(\frac{p\pi}{l} z) \end{split}$$

其中 µm 为第一类m阶贝塞尔函数第n个根

谐振波长

对于TE波
$$\lambda_c = \frac{2\pi a}{\mu'_{mn}}$$

对于TM波
$$\lambda_c = \frac{2\pi a}{11}$$

$$\lambda_c = \frac{2\pi a}{\mu_{mn}}$$

$$\beta_{mn} = \sqrt{k^2 - (\frac{m\pi}{a})^2 - (\frac{n\pi}{b})^2}$$

$$\frac{\mathcal{F}}{\sqrt{\left(\frac{\mu'_{nm}}{2\pi a}\right)^2 + \left(\frac{p}{2l}\right)^2}} \qquad \lambda_{0(TM_{mnp})} = \frac{1}{\sqrt{\left(\frac{\mu_{nm}}{2\pi a}\right)^2 + \left(\frac{p}{2l}\right)^2}}$$

$$\lambda_{0(TM_{mnp})} = \frac{1}{\sqrt{\left(\frac{\mu_{nm}}{2\pi a}\right)^2 + \left(\frac{p}{2l}\right)^2}}$$

空载品质因数

对于
$$TE_{mnp}$$
 $m \neq 0$ 时有

$$Q_{0} = \frac{\lambda_{0}}{2\pi\delta} \bullet \frac{\left[1 - \left(\frac{m}{\mu_{nm}}\right)^{2}\right] \left[\mu_{mn}^{2} + \left(\frac{p\pi}{2}\right)^{2} \left(\frac{D}{l}\right)^{2}\right]^{\frac{3}{2}}}{\mu_{mn}^{2} + \left(\frac{p\pi}{2}\right)^{2} \left(\frac{D}{l}\right)^{3} + \left(\frac{m}{\mu_{mn}^{2}}\right)^{2} \left(\frac{p\pi}{2}\right)^{2} \left(\frac{D}{l}\right)^{2} \left(1 - \frac{D}{l}\right)}$$

对于TM波
$$m \neq 0, p \neq 0$$
时有
$$Q_0 = \frac{\lambda_0}{\delta} \cdot \left[\frac{\mu_{mn}^2 + \left(\frac{p\pi}{2}\right)^2 \left(\frac{D}{l}\right)^2 \right]^{\frac{1}{2}}}{2\pi \left(1 + \frac{D}{l}\right)}$$

$$m \neq 0, p = 0$$
 时有 $Q_0 = \frac{\lambda_0}{\delta} \cdot \frac{\mu_{mn}}{2\pi \left(1 + \frac{a}{l}\right)}$ 其中D=2a

谐振模

TE010模振荡模与场结构见书P150

主要参数

当振波长
$$\lambda_0 = \frac{2\pi a}{\mu_{01}} = \frac{2\pi a}{2.405} = 2.62a$$

空载品质因数
$$Q_0 = \frac{\lambda_0}{\delta} \frac{\mu_{01}}{2\pi(1+a/l)} = \frac{2.405\lambda_0}{2\pi\delta(1+a/l)}$$

考虑
$$\lambda_0 = \frac{2\pi a}{2.405}$$
 所以

$$Q_{0(TM_{010})} = \frac{2.405 \times 2\pi a / 2.405}{2\pi \delta (1 + a / l)} = \frac{2\pi a^2 l}{\delta (2\pi a l + 2\pi a^2)} = \frac{2V}{\delta S}$$

谐振模

TE011模振荡模与场结构见书P151

主要参数

谐振波长
$$\lambda_0(TE_{011}) = \frac{1}{\sqrt{(\mu'_{01}/2\pi a)^2 + (1/2l)^2}}$$

TE11模振荡模与场结构见书P151

主要参数

谐振波长
$$\lambda_{0TE_{111}} = \frac{1}{\sqrt{(1/3.41a)^2 + (1/2l)^2}}$$