

ESCUELA POLITÉCNICA NACIONAL

MÉTODOS NUMÉRICOS

JIMÉNEZ JARAMILLO YASID GABRIEL

[Tarea 09] Ejercicios Unidad 04-A-B | Eliminación gaussiana vs Gauss-Jordan

EJERCICIO UNO

Para cada uno de los siguientes sistemas lineales, obtenga, de ser posible, una solución con métodos gráficos. Explique los resultados desde un punto de vista geométrico.

RESOLUCIÓN

```
%load_ext autoreload import numpy as np from src import eliminacion_gaussiana_redondeo,eliminacion_gaussiana, multiplicar_matriz_vector from src import gauss_jordan [01-10 21:04:55][INF0] 2025-01-10 21:04:55.140642 [01-10 21:04:55][INF0] 2025-01-10 21:04:55.141881 [01-10 21:04:55][INF0] 2025-01-10 21:04:55.143524
```

SISTEMA DE ECUACIONES A

$$x_1 + 2x_2 = 0$$

$$x_1 - x_2 = 0$$

```
%autoreload 2
A = [[1,2,3],[-2,-4,6]]
sol_a = eliminacion_gaussiana_redondeo(A)
print("La solución es:",sol_a)

[01-10 21:20:42][INF0]
[[-2. -4. 6.]
[ 0. 0. 6.]]

No existe solución.
La solución es: None
```

$$2x_1 + x_2 = -1$$

$$x_1 + x_2 = 2$$

$$x_1 - 3x_2 = 5$$

```
%autoreload 2
A = [[2,1,-1],[1,1,2],[1,-3,5]]
sol a = eliminacion gaussiana redondeo(A)
print("La solución es:",sol a)
AssertionError
                                          Traceback (most recent call
last)
Cell In[12], line 3
      1 get ipython().run line magic('autoreload', '2')
      2 A = [[2,1,-1],[1,1,2],[1,-3,5]]
----> 3 sol a = eliminacion_gaussiana_redondeo(A)
      4 print("La solución es:", sol a)
File c:\Users\User\Desktop\EPN\4. CUARTO SEMESTRE\1. METODOS
NUMERICOS\2. TAREAS\METODOS NUMERICOS\[TAREAS]\[TAREA 09]\src\
gaussian elimination round.py:43, in eliminacion gaussiana redondeo(A)
            logging.debug("Convirtiendo A a numpy array.")
     41
            A = np.array(A, dtype=np.float32)
---> 43 assert A.shape[0] == A.shape[1] - 1, "La matriz A debe ser de
tamaño n-by-(n+1)."
```

```
44 n = A.shape[0]
46 for i in range(n - 1): # loop por columna
47
48 # --- encontrar pivote

AssertionError: La matriz A debe ser de tamaño n-by-(n+1).
```

$$2x_1+x_2+x_3=1$$

$$2x_1+4x_2-x_3=-1$$

```
%autoreload 2
A = [[2,1,1,1],[2,4,-1,-1]]
sol a = eliminacion gaussiana redondeo(A)
print("La solución es:",sol a)
                                          Traceback (most recent call
AssertionError
last)
Cell In[13], line 3
      1 get ipython().run line magic('autoreload', '2')
      2 A = [[2,1,1,1],[2,4,-1,-1]]
----> 3 sol_a = eliminacion_gaussiana_redondeo(A)
      4 print("La solución es:",sol a)
File c:\Users\User\Desktop\EPN\4. CUARTO SEMESTRE\1. METODOS
NUMERICOS\2. TAREAS\METODOS NUMERICOS\[TAREAS]\[TAREA 09]\src\
gaussian elimination round.py:43, in eliminacion gaussiana redondeo(A)
     41
            logging.debug("Convirtiendo A a numpy array.")
            A = np.array(A, dtype=np.float32)
     42
---> 43 assert A.shape[0] == A.shape[1] - 1, "La matriz A debe ser de
tamaño n-by-(n+1)."
     44 n = A.shape[0]
     46 for i in range(n - 1): # loop por columna
     47
     48
        # --- encontrar pivote
AssertionError: La matriz A debe ser de tamaño n-by-(n+1).
```

EJERCICIO DOS

Utilice la eliminación gaussiana con sustitución hacia atrás y aritmética de redondeo de dos dígitos para resolver los siguientes sistemas lineales. No reordene las ecuaciones. (La solución exacta para cada sistema es $x_1 = -1$, $x_2 = 2$, $x_3 = 3$.

SISTEMA DE ECUACIONES A

$$-x_1+4x_2+x_3=8$$

$$\frac{5}{3}x_1+\frac{2}{3}x_2+\frac{2}{3}x_3=1$$

$$2x_1+x_2+4x_3=11$$

```
%autoreload 2
A = [[-1.0,4.0,1.0,8.0],[5/3,2/3,2/3,1.0],[2.0,1.0,4.0,11.0]]
sol_a = eliminacion_gaussiana_redondeo(A)
print("La solución es:",sol_a)

[01-10 21:18:21][INF0]
[[ 2.00e+00   1.00e+00   4.00e+00   1.10e+01]
[ 1.00e-02 -1.60e-01 -2.65e+00 -8.13e+00]
[ 0.00e+00   4.50e+00   3.00e+00   1.35e+01]]
[01-10 21:18:21][INF0]
[[ 2.00e+00   1.00e+00   4.00e+00   1.10e+01]
[ 0.00e+00   4.50e+00   3.00e+00  1.35e+01]
[ 1.00e-02   2.00e-02 -2.53e+00 -7.59e+00]]
La solución es: [-1.   1.   3.]
```

$$4x_1 + 2x_2 - x_3 = -5$$

$$\frac{1}{9}x_1 + \frac{1}{9}x_2 - \frac{1}{3}x_3 = -1$$

$$x_1 + 4x_2 + 2x_3 = 9$$

```
B = [[4,2,-1,-5],[1/9,1/9,-1/3,-1],[1,4,2,9]]
sol_b = eliminacion_gaussiana_redondeo(B)
print("La solución es:",sol_b)

[01-10 21:04:55][INF0]
[[ 4.000e+00    2.000e+00   -1.000e+00   -5.000e+00]
[-1.000e-02    5.000e-02   -3.000e-01   -8.500e-01]
[ 0.000e+00    3.500e+00    2.250e+00    1.025e+01]]
[01-10 21:04:55][INF0]
[[ 4.000e+00    2.000e+00   -1.000e+00   -5.000e+00]
[ 0.000e+00    3.500e+00    2.250e+00    1.025e+01]
```

```
[-1.000e-02 1.000e-02 -3.200e-01 -9.500e-01]]
La solución es: [-1.02 1.02 2.96875]
```

EJERCICIO TRES

Utilice el algoritmo de eliminación gaussiana para resolver, de ser posible, los siguientes sistemas lineales, y determine si se necesitan intercambios de fila:

SISTEMA DE ECUACIONES A

$$x_1 - x_2 + 3x_3 = 2$$

$$3x_1 - 3x_2 + x_3 = -1$$
,
 $x_1 + x_2 = 3$,

```
A = [[1,-1,3,2],[3,-3,1,-1],[1,1,0,3]]
sol_a = eliminacion_gaussiana(A)
print("\nLa solución es:",sol_a)
[01-10 21:24:52][INF0]
[[ 3.
              -3.
[ 0.
                                        2.3333333 ]
               0.
                            2.6666667
               2.
                           -0.33333334 3.3333333 11
 [ 0.
[01-10 21:24:52][INF0]
[[ 3.
              -3.
                                        -1.
               2.
                           -0.33333334 3.3333333 ]
 [ 0.
               0.
                            2.6666667
                                        2.3333333 ]]
 [ 0.
La solución es: [1.1875
                                        0.87499994]
                             1.8125
```

$$2x_1 - 1.5x_2 + 3x_3 = 1$$
,

$$-x_1+2x_3=3$$
,

$$4x_1 - 4.5x_2 + 5x_3 = 1$$
,

```
B = [[2, -1.5, 3, 1], [-1, 0, 2, 3], [4, -4.5, 5, 1]]
sol b = eliminacion gaussiana(B)
print("\nLa solución es:",sol_b)
[01-10 21:25:17][INFO]
         -4.5
                         1.
[[ 4.
                  5.
                         3.25 ]
[ 0.
         -1.125 3.25
          0.75
                         0.5 ]]
 [ 0.
                  0.5
[01-10 21:25:17][INFO]
[[ 4.
              -4.5
                           5.
                                      1.
              -1.125
                           3.25
                                      3.25
 [ 0.
                           2.6666667
 [ 0.
               0.
                                      2.666666711
La solución es: [-1. -0. 1.]
```

$$2x_1=3$$

 $x_1+1.5x_2=4.5$,

$$-3x_2+0.5x_3=-6.6$$
,

$$2x_1 - 2x_2 + x_3 + x_4 = 0.8$$
,

```
C = [[2,0,0,0,3],[1,1.5,0,0,4.5],[0,-3,0.5,0,-6.6],[2,-2,1,1,0.8]]
sol_c = eliminacion_gaussiana(C)
print("\nLa solución es:",sol c)
[01-10 21:25:24][INF0]
[[ 2.
                         3. ]
        0.
              0.
                    0.
 [ 0.
        1.5
              0.
                    0.
                         3. ]
 [ 0.
       -3.
              0.5
                   0.
                        -6.61
              1.
                        -2.2]]
 [ 0.
       -2.
                    1.
[01-10 21:25:24][INFO]
[[ 2.
                                           0.
                                                         3.
                0.
                              0.
                              0.5
                                                        -6.6
 [ 0.
               -3.
                                           0.
                0.
                              0.25
                                           0.
                                                        -0.29999995]
 [ 0.
                              0.666666
                                           1.
                                                         2.2
                                                                    11
 [ 0.
                0.
[01-10 21:25:24][INF0]
[[ 2.
                                           0.
                0.
                              0.
                                                         3.
               -3.
                              0.5
                                           0.
                                                        -6.6
 [ 0.
 [ 0.
                              0.666666
                                                         2.2
                0.
                                           1.
 [ 0.
                0.
                              0.
                                          -0.37500003 -1.125
                                                                    ]]
```

La solución es: [1.5 2. -1.1999997 2.9999998]

SISTEMA DE ECUACIONES D

$$x_1 + x_2 + x_4 = 2$$
,

$$2x_1+x_2-x_3+x_4=1$$
,

$$4x_1 - x_2 - 2x_3 + 2x_4 = 0$$
,

$$3x_1 - x_2 - x_3 + 2x_4 = -3.$$

```
D = [[1,1,0,1,2],[2,1,-1,1,1],[4,-1,-2,2,0],[3,-1,-1,2,-3]]
sol_d = eliminacion_gaussiana(D)
[01-10 21:25:32][INFO]
                       2.
                              0. 1
[[ 4.
         -1.
               -2.
 [ 0.
          1.5
                0.
                       0.
                              1.
                                  1
                       0.5
         1.25
               0.5
                             2.
 [ 0.
                       0.5
        -0.25
                           -3.
 [ 0.
               0.5
[01-10 21:25:32][INFO]
                                       2.
                                                    0.
[[ 4.
              -1.
                          -2.
 [ 0.
               1.5
                           0.
                                       0.
                                                    1.
                           0.5
                                       0.5
                                                    1.16666671
 [ 0.
               0.
                           0.5
                                       0.5
                                                   -2.8333333]]
 [ 0.
               0.
[01-10 21:25:32][INF0]
[[ 4.
                          -2.
                                       2.
                                                    0.
              -1.
 [ 0.
               1.5
                           0.
                                       0.
                                                    1.
                           0.5
                                       0.5
                                                    1.16666671
 [ 0.
               0.
 [ 0.
               0.
                           0.
No existe solución.
```

EJERCICIO CUATRO

Use el algoritmo de eliminación gaussiana y la aritmética computacional de precisión de 32 bits para resolver los siguientes sistemas lineales.

SISTEMA DE ECUACIONES A

$$\frac{1}{4}x_1 + \frac{1}{5}x_2 + \frac{1}{6}x_3 = 9,$$

$$\frac{1}{3}x_1 + \frac{1}{4}x_2 + \frac{1}{5}x_3 = 8,$$

$$\frac{1}{2}x_1 + x_2 + 2x_3 = 8.$$

```
A = [[1/4, 1/5, 1/6, 9], [1/3, 1/4, 1/5, 8], [1/2, 1, 2, 8]]
sol a = eliminacion gaussiana(A)
print("\nLa solución es:",sol a)
[01-10 21:26:34][INF0]
[[0.5]
                         2.
                                    8.
[ 0.
             -0.4166667 -1.1333333 2.6666665]
 [ 0.
             -0.3
                        -0.8333333 5. ]]
[01-10 21:26:34][INF0]
[[ 0.5
 [ 0.
              -0.4166667 -1.1333333
                                       2.6666665 ]
                          -0.01733333 3.0800002 11
 [ 0.
La solución es: [-227.07697 476.92322 -177.69237]
```

$$3.333 x_1 + 15920 x_2 - 10.333 x_3 = 15913$$
,

$$2.222 x_1 + 16.71 x_2 + 9.612 x_3 = 28.544$$
,

$$1.5611x_1 + 5.1791x_2 + 1.6852x_3 = 8.4254$$
.

```
B = [[3.333,15920,-10.333,15913],[2.222,16.71,9.612,28.544],
[1.5611,5.1791,1.6852,8.4254]]
sol_b = eliminacion_gaussiana(B)
print("\nLa solución es:",sol_b)

[01-10 21:26:42][INF0]
[[ 3.3329999e+00  1.5920000e+04 -1.0333000e+01  1.5913000e+04]
  [ 0.0000000e+00 -1.0596623e+04  1.6500668e+01 -1.0580122e+04]
```

```
[ 0.0000000e+00 -7.4513804e+03  6.5249376e+00 -7.4448555e+03]]
[01-10 21:26:42][INF0]
[[ 3.3329999e+00  1.5920000e+04 -1.0333000e+01  1.5913000e+04]
[ 0.0000000e+00 -1.0596623e+04  1.6500668e+01 -1.0580122e+04]
[ 0.0000000e+00  0.0000000e+00 -5.0780745e+00 -5.0786133e+00]]
La solución es: [0.99970937 1.0000001  1.0001061]
```

$$x_1 + \frac{1}{2}x_2 + \frac{1}{3}x_3 + \frac{1}{4}x_4 = \frac{1}{6},$$

$$\frac{1}{2}x_1 + \frac{1}{3}x_2 + \frac{1}{4}x_3 + \frac{1}{5}x_4 = \frac{1}{7},$$

$$\frac{1}{3}x_1 + \frac{1}{4}x_2 + \frac{1}{5}x_3 + \frac{1}{6}x_4 = \frac{1}{8},$$

$$\frac{1}{4}x_1 + \frac{1}{5}x_2 + \frac{1}{6}x_3 + \frac{1}{7}x_4 = \frac{1}{9}$$
.

```
C = [[1,1/2,1/3,1/4,1/6],[1/2,1/3,1/4,1/5,1/7],[1/3,1/4,1/5,1/6,1/8],
[1/4, 1/5, 1/6, 1/7, 1/9]]
sol c = eliminacion gaussiana(C)
print("\nLa solución es:",sol c)
[01-10 21:26:50][INFO]
                        0.33333334 0.25
[[1.
                                               0.166666671
 [0.
             0.08333334 0.08333333 0.075
                                               0.059523811
             0.08333333  0.08888888  0.08333334  0.06944444]
 [0.
             0.075
                        0.08333334 0.08035715 0.0694444511
 [0.
[01-10 21:26:50][INFO]
                        0.33333334 0.25
                                               0.166666671
[[1.
             0.5
 [0.
             0.08333334 0.08333333 0.075
                                               0.059523811
 [0.
                        0.00555557 0.00833335 0.009920641
             0.
                        0.00833335 0.01285715 0.01587302]]
 [0.
[01-10 21:26:50][INF0]
[[ 1.000000e+00
                  5.0000000e-01 3.3333334e-01 2.5000000e-01
   1.6666667e-01]
 [ 0.000000e+00
                  8.3333343e-02 8.3333328e-02 7.5000003e-02
   5.9523813e-021
 [ 0.000000e+00
                  0.0000000e+00 8.3333477e-03 1.2857154e-02
   1.5873022e-021
 [ 0.000000e+00
                  0.0000000e+00 0.0000000e+00 -2.3809634e-04
  -6.6138618e-04]]
```

```
La solución es: [-0.03174745 0.59525675 -2.3809996 2.7778091 ]
```

SISTEMA DE ECUACIONES D

$$2x_{1}+x_{2}-x_{3}+x_{4}-3x_{5}=7,$$

$$x_{1}+2x_{3}-x_{4}+x_{5}=2,$$

$$-2x_{2}-x_{3}+x_{4}-x_{5}=-5,$$

$$3x_{1}+x_{2}-4x_{3}+5x_{5}=6,$$

 $x_1 - x_2 - x_3 - x_4 + x_5 = -3$.

```
D = [[2,1,-1,1,-3,7],[1,0,2,-1,1,2],[0,-2,-1,1,-1,-5],[3,1,-4,0,5,6],
[1,-1,-1,-1,1,-3]
sol d = eliminacion gaussiana(D)
print("\nLa solución es:",sol d)
[01-10 21:26:57][INFO]
[[ 3.
                                                    5.
                                                                6.
               1.
                          -4.
                                       0.
]
              -0.33333334 3.3333335
                                                   -0.66666675 0.
 [ 0.
                                      -1.
                                                   -1.
              -2.
                                                               -5.
 [ 0.
                          -1.
                                       1.
]
                           1.6666667
                                                   -6.3333335
                                                              3.
 [ 0.
               0.3333333
                                       1.
 [ 0.
              -1.3333334
                           0.33333337 -1.
                                                   -0.66666675 -5.
]]
[01-10 21:26:57][INF0]
[[ 3.000000e+00
                  1.0000000e+00 -4.000000e+00
                                                 0.000000e+00
   5.000000e+00
                  6.000000e+001
 [ 0.0000000e+00 -2.0000000e+00 -1.0000000e+00
                                                 1.000000e+00
  -1.0000000e+00 -5.0000000e+00]
 [ 0.000000e+00
                 0.0000000e+00
                                 3.5000002e+00 -1.1666666e+00
 -5.0000006e-01
                  8.3333337e-011
 [ 0.000000e+00
                  0.0000000e+00
                                 1.5000001e+00
                                               1.1666666e+00
  -6.500000e+00
                 2.1666667e+001
 [ 0.000000e+00
                 0.0000000e+00 1.0000000e+00 -1.6666667e+00
```

```
-5.9604645e-08 -1.6666665e+00]]
[01-10 21:26:57][INF0]
[[ 3.
                1.
                             -4.
                                            0.
                                                         5.
                                                                      6.
 [ 0.
                -2.
                             -1.
                                                        -1.
                                                                      -5.
]
                0.
                              3.5000002
                                           -1.1666666
                                                        -0.50000006
 [ 0.
0.8333334 ]
                              0.
                                            1.6666666
                                                        -6.285714
 [ 0.
                0.
1.8095238 ]
                              0.
                0.
                                           -1.3333335
                                                         0.14285709 -
 [ 0.
1.9047618 ]]
[01-10 21:26:57][INFO]
                             -4.
                                            0.
                                                         5.
                                                                      6.
[[ 3.
                1.
                -2.
                             -1.
                                            1.
                                                        -1.
                                                                      -5.
 [ 0.
1
                0.
                              3.5000002
                                           -1.1666666
                                                        -0.50000006
 [ 0.
0.8333334 ]
                0.
                              0.
                                            1.6666666
                                                        -6.285714
 [ 0.
1.8095238 ]
                              0.
 [ 0.
                0.
                                            0.
                                                        -4.885715
0.45714247]]
La solución es: [1.8830409 2.8070176 0.730994
                                                        1.4385961
0.09356716]
```

EJERCICIO CINCO

Dado el sistema lineal:

$$x_1 - x_2 + \alpha x_3 = -2$$

 $-x_1 + 2x_2 - \alpha x_3 = 3$
 $\alpha x_1 + x_2 + x_3 = 2$

- a. Encuentre el valor(es) de α para los que el sistema no tiene soluciones.
- b. Encuentre el valor(es) de α para los que el sistema tiene un número infinito de soluciones.
- c. Suponga que existe una única solución para un valor determinado de α , encuentre la solución.

```
def analyze_system(alpha):
    matrix = [
        [1, -1, alpha],
        [-1, 2, -alpha],
        [alpha, 1, 1]
```

```
vector = [-2, 3, 2]
    try:
        # Convertir a matrices numpy
        matrix = np.array(matrix, dtype=float)
        vector = np.array(vector, dtype=float)
        # Intentar resolver el sistema
        solution = np.linalg.solve(matrix, vector)
        return solution
    except np.linalg.LinAlgError:
        return "No tiene solución o tiene infinitas soluciones"
alphas = [-1, 0, 1]
for alpha in alphas:
    result = analyze_system(alpha)
    print(f"Para \alpha = \{alpha\}, la solución es: {result}")
Para \alpha = -1, la solución es: No tiene solución o tiene infinitas
soluciones
Para \alpha = 0, la solución es: [-1. 1.]
Para \alpha = 1, la solución es: No tiene solución o tiene infinitas
soluciones
```

EJERCICIO SEIS

Suponga que en un sistema biológico existen n especies de animales y m fuentes de alimento. Si x_j representa la población de la j-ésima especie, para cada $j=1,\ldots,n$; b_i representa el suministro diario disponible del i-ésimo alimento y a_{ij} representa la cantidad del i-ésimo alimento consumida por la j-ésima especie.

$$a_{11}x_1 + a_{12}x_2 + \cdots + a_{1n}x_n = b_1$$

$$a_{21}x_1 + a_{22}x_2 + \cdots + a_{2n}x_n = b_2$$
,

\$\$\vdots \hspace{1.5cm} \vdots \hspace{2.2cm} \vdots \hspace{1cm} \vdots \$\$

$$a_{m1}x_1 + a_{m2}x_2 + \cdots + a_{mn}x_n = b_m$$

Esto representa un equilibrio donde existe un suministro diario de alimento para cumplir con precisión con el promedio diario de consumo de cada especie.

\begin{equation} A = [a_{ij}] = |begin{bmatrix} 1 & 2 & 0 & 3 | 1 & 0 & 2 & 2 | 0 & 0 & 1 & 1 | end{bmatrix} |end{equation}

 $\$ \textbf{x} = (x_j)=[1000, 500, 350, 400], $\$ y b= $(b_i)=[3500, 2700, 900)$. ¿Existe suficiente alimento para satisfacer el consumo promedio diario?

¿Existe suficiente alimento para satisfacer el consumo promedio diario?

```
A = np.array([[1,2,0,3],[1,0,2,2],[0,0,1,1]])
x = np.array([1000,500,350,400])

b_obtenido = multiplicar_matriz_vector(A,x)
print("El vector de consumo promedio diario es de:",b_obtenido)

El vector de consumo promedio diario es de: [3200. 2500. 750.]
```

b. ¿Cuál es el número máximo de animales de cada especie que se podría agregar de forma individual al sistema con el suministro de alimento que cumpla con el consumo?

```
A = np.array([[1,2,0,3],[1,0,2,2],[0,0,1,1]])
x = np.array([1005,511,355,491])

b_obtenido = multiplicar_matriz_vector(A,x)
print("El vector de consumo promedio diario es de:",b_obtenido)

El vector de consumo promedio diario es de: [3500. 2697. 846.]
```

c. Si la especie 1 se extingue, ¿qué cantidad de incremento individual de las especies restantes se podría soportar?

```
A = np.array([[1,2,0,3],[1,0,2,2],[0,0,1,1]])
x = np.array([0,1000,400,500])

b_obtenido = multiplicar_matriz_vector(A,x)
print("El vector de consumo promedio diario es de:",b_obtenido)

El vector de consumo promedio diario es de: [3500. 1800. 900.]
```

d. Si la especie 2 se extingue, ¿qué cantidad de incremento individual de las especies restantes se podría soportar?

```
A = np.array([[1,2,0,3],[1,0,2,2],[0,0,1,1]])
x = np.array([1080,0,380,430])

b_obtenido = multiplicar_matriz_vector(A,x)
print("El vector de consumo promedio diario es de:",b_obtenido)

El vector de consumo promedio diario es de: [2370. 2700. 810.]
```

En el caso de que la especie 2 se extinga, las poblaciones de las demás especies se verían beneficiadas con los siguientes aumentos:

- Especie 1: Un incremento significativo de 80, lo cual indica una mayor capacidad de aprovechar los recursos disponibles.
- Especie 3: Un aumento de 30, demostrando una adaptación moderada frente a la ausencia de la especie 2.
- Especie 4: También un incremento de 30, evidenciando un equilibrio en el uso de los recursos compartidos.

REPOSITORIO:

https://github.com/ImYasid/METODOS NUMERICOS.git

REFERENCIAS BIBLIOGRÁFICAS:

[1] Richard L. Burden, 2017. Análisis Numérico. Lugar de publicación: 10ma edición. Editorial Cengage Learning.

DECLARACIÓN DEL USO DE INTELENGIA ARTIFICIAL

Se utilizo IA para la optimización de código adicional al mejoramiento de la gramática del texto para un mejor entendimiento.