Halloween Candy Mini Project

Angela Liu

Section 1: Importing candy data

Importing the data:

```
candy_file <- "candy-data.csv"

candy = read.csv(candy_file, row.names=1)
head(candy)</pre>
```

	choco	olate	fruity	${\tt caramel}$	peanut	tyalmondy	nougat	crispedr	ricewafer
100 Grand		1	0	1		0	0		1
3 Musketeers		1	0	0		0	1		0
One dime		0	0	0		0	0		0
One quarter		0	0	0		0	0		0
Air Heads		0	1	0		0	0		0
Almond Joy		1	0	0		1	0		0
	hard	bar	pluribus	sugarpe	ercent	priceper	cent wi	npercent	
100 Grand	0	1	C)	0.732	0	.860	66.97173	
3 Musketeers	0	1	C)	0.604	0	.511	67.60294	
One dime	0	0	C)	0.011	0	.116	32.26109	
One quarter	0	0	C)	0.011	0	.511	46.11650	
Air Heads	0	0	C)	0.906	0	.511	52.34146	
Almond Joy	0	1	C)	0.465	0	.767	50.34755	

Q1. How many different candy types are in this dataset?

```
nrow(candy)
```

[1] 85

There are 85 candy types in the data set.

Q2. How many fruity candy types are in the dataset?

```
table(candy$fruity)
```

0 1 47 38

There are 38 fruity candy types.

What is you favorite candy?

We will use winpercent variable to see the percentage of people who prefer a selected candy over the a randomly chosen one.

```
candy["Twix", ]$winpercent
```

[1] 81.64291

Q3. What is your favorite candy in the dataset and what is it's winpercent value?

```
candy["Milky Way", ]$winpercent
```

[1] 73.09956

My favorite candies are Milky Ways and its winpercent value is 73.1%.

Q4. What is the winpercent value for "Kit Kat"?

```
candy["Kit Kat", ]$winpercent
```

[1] 76.7686

The winpercent value for Kit Kat is 76.8%.

Q5. What is the winpercent value for "Tootsie Roll Snack Bars"?

candy["Tootsie Roll Snack Bars",]\$winpercent

[1] 49.6535

The winpercent value is 49.7%.

Let's use the skimr() function to see a quick overview of our dataset.

```
# install.packages("skimr")
library("skimr")
skim(candy)
```

Table 1: Data summary

Name	candy
Number of rows	85
Number of columns	12
Column type frequency:	
numeric	12
Group variables	None

Variable type: numeric

skim_variable n_	_missingcom	plete_ra	ntmenean	sd	p0	p25	p50	p75	p100	hist
chocolate	0	1	0.44	0.50	0.00	0.00	0.00	1.00	1.00	
fruity	0	1	0.45	0.50	0.00	0.00	0.00	1.00	1.00	
caramel	0	1	0.16	0.37	0.00	0.00	0.00	0.00	1.00	
peanutyalmondy	0	1	0.16	0.37	0.00	0.00	0.00	0.00	1.00	
nougat	0	1	0.08	0.28	0.00	0.00	0.00	0.00	1.00	
crispedricewafer	0	1	0.08	0.28	0.00	0.00	0.00	0.00	1.00	
hard	0	1	0.18	0.38	0.00	0.00	0.00	0.00	1.00	
bar	0	1	0.25	0.43	0.00	0.00	0.00	0.00	1.00	
pluribus	0	1	0.52	0.50	0.00	0.00	1.00	1.00	1.00	
sugarpercent	0	1	0.48	0.28	0.01	0.22	0.47	0.73	0.99	
pricepercent	0	1	0.47	0.29	0.01	0.26	0.47	0.65	0.98	
winpercent	0	1	50.32	14.71	22.45	39.14	47.83	59.86	84.18	

Q6. Is there any variable/column that looks to be on a different scale to the majority of the other columns in the dataset?

The winpercent column is a different scale than the rest of the columns since the others are mainly 0's or 1's to indicate true or false.

Q7. What do you think a zero and one represent for the candy\$\text{chocolate column}?

The zero represents no chocolate, while the one represents that there is chocolate in the candy.

Q8. Plot a histogram of winpercent values

hist(candy\$winpercent)

Histogram of candy\$winpercent

Q9. Is the distribution of winpercent values symmetrical?

No, the distribution is slightly skewed right.

Q10. Is the center of the distribution above or below 50%?

The center of the distribution is below 50%.

Q11. On average is chocolate candy higher or lower ranked than fruit candy?

```
# mean of chocolate candy rank
  meanChocolate <- mean(candy$winpercent[as.logical(candy$chocolate)])</pre>
  meanChocolate
[1] 60.92153
  # mean of fruit candy rank
  meanFruity <- mean(candy$winpercent[as.logical(candy$fruity)])</pre>
  meanFruity
[1] 44.11974
  # to see if chocolate candy is ranked higher than fruit candy
  as.logical(meanChocolate > meanFruity)
[1] TRUE
On average, chocolate candy is ranked higher than fruity candy.
     Q12. Is this difference statistically significant?
  t.test(x = candy$chocolate, y = candy$fruity, c, alternative = "two.sided", mu = 0, paired
    Welch Two Sample t-test
data: candy$chocolate and candy$fruity
t = -0.15357, df = 168, p-value = 0.8781
alternative hypothesis: true difference in means is not equal to 0
95 percent confidence interval:
-0.1630081 0.1394786
sample estimates:
mean of x mean of y
0.4352941 0.4470588
```

Since the true difference in means is not 0, the t.test reflects that there is a statistical significant difference between the means of the chocolate and fruity candy.

Section 3: Overall Candy Rankings

Q13. What are the five least liked candy types in this set?

Here we sort the dataset by order of winpercent

```
head(candy[order(candy$winpercent),], n=5)
```

		chocolate	fruity	caran	ലി	neanutvalm	nondv	nougat	
Nik L Nip		0	1	ourun	0	y canaby and	0	0	
Boston Baked	Beans	0	0		0		1	0	
Chiclets		0	1		0		0	0	
Super Bubble		0	1		0		0	0	
Jawbusters		0	1		0		0	0	
		crispedrio	ewafer	${\tt hard}$	bar	pluribus	sugar	percent	pricepercent
Nik L Nip			0	0	0	1		0.197	0.976
Boston Baked	Beans		0	0	0	1		0.313	0.511
Chiclets			0	0	0	1		0.046	0.325
Super Bubble			0	0	0	0		0.162	0.116
Jawbusters			0	1	0	1		0.093	0.511
		winpercent	;						
Nik L Nip		22.44534							
Boston Baked	Beans	23.41782	?						
Chiclets		24.52499)						
Super Bubble		27.30386	;						
Jawbusters		28.12744	=						

The five least liked candy types in the set are Nik L Nip, Boston Baked Beans, Chiclets, Super Bubble, Jawbusters.

Q14. What are the top 5 all time favorite candy types out of this set?

```
# order the list in decreasing order of winpercent
head(candy[order(candy$winpercent, decreasing = TRUE),], n=5)
```

	chocolate	fruity	caramel	peanutyalmondy	nougat
Reese's Peanut Butter cup	1	0	0	1	0
Reese's Miniatures	1	0	0	1	0
Twix	1	0	1	0	0
Kit Kat	1	0	0	0	0
Snickers	1	0	1	1	1

	crispedricewa	afer	hard	bar	pluribus	sugarpercent
Reese's Peanut Butter cup		0	0	0	0	0.720
Reese's Miniatures		0	0	0	0	0.034
Twix		1	0	1	0	0.546
Kit Kat		1	0	1	0	0.313
Snickers		0	0	1	0	0.546
	pricepercent	wing	percer	nt		
Reese's Peanut Butter cup	0.651	84	4.1802	29		
Reese's Miniatures	0.279	8:	1.8662	26		
Twix	0.906	8:	1.6429	91		
Kit Kat	0.511	76	6.7686	30		
Snickers	0.651	76	6.6737	78		

The top 5 all time favorite candy types are Reese's Peanut Buttercups, Reese's miniatures, Twix, Kit Kat, and Snickers.

Q15. Make a first barplot of candy ranking based on winpercent values.

```
library(ggplot2)

ggplot(candy) +
  aes(winpercent, rownames(candy)) +
  geom_col()
```


Q16. This is quite ugly, use the reorder() function to get the bars sorted by winpercent?

```
library(ggplot2)

ggplot(candy) +
  aes(winpercent, reorder(rownames(candy), winpercent)) +
  geom_col()
```


Now let's add some color:

```
my_cols=rep("black", nrow(candy))
my_cols[as.logical(candy$chocolate)] = "chocolate"
my_cols[as.logical(candy$bar)] = "brown"
my_cols[as.logical(candy$fruity)] = "pink"

ggplot(candy) +
   aes(winpercent, reorder(rownames(candy),winpercent)) +
   geom_col(fill=my_cols)
```


Now, for the first time, using this plot we can answer questions like: > Q17. What is the worst ranked chocolate candy?

The worst ranked chocolate candy (chocolate colored in the chart) is Sixlets.

Q18. What is the best ranked fruity candy?

The best ranked fruity candy (colored pink) are Starbursts.

Section 4: Taking a look at pricepercent

Let's plot winpercent vs pricepercent. The pricepercent variable shows the percentile rank of the candy's price in comparison to other candies.

```
library(ggrepel)

# How about a plot of price vs win
ggplot(candy) +
   aes(winpercent, pricepercent, label=rownames(candy)) +
   geom_point(col=my_cols) +
   geom_text_repel(col=my_cols, size=3.3, max.overlaps = 5)
```

Warning: ggrepel: 65 unlabeled data points (too many overlaps). Consider increasing max.overlaps

Q19. Which candy type is the highest ranked in terms of winpercent for the least money - i.e. offers the most bang for your buck?

The fruity candy (marked in pink) are ranked highest in winpercent for less money (lower pricepercent).

Q20. What are the top 5 most expensive candy types in the dataset and of these which is the least popular?

```
ord <- order(candy$pricepercent, decreasing = TRUE)
head( candy[ord,c(11,12)], n=5 )</pre>
```

	pricepercent	winpercent
Nik L Nip	0.976	22.44534
Nestle Smarties	0.976	37.88719
Ring pop	0.965	35.29076
Hershey's Krackel	0.918	62.28448
Hershey's Milk Chocolate	0.918	56.49050

The top 5 most expensive candies by highest pricepercent are Nik L Nip, Nestle Smarties, Ring pop, Hershey's Krackel, Hershey's Milk Cocolate. The least popular (by winpercent) is Nik L Nip.

Section 5: Exploring the Correlation Structure

We can plot correlation matrices with corrplot package.

```
library(corrplot)
```

corrplot 0.92 loaded

```
cij <- cor(candy)
corrplot(cij)</pre>
```


Q22. Examining this plot what two variables are anti-correlated (i.e. have minus values)?

Fruity and chocolate candies are anti-correlated as they have very red dots (negative values).

Q23. Similarly, what two variables are most positively correlated?

It seems that winpercent and chocolate along with chocolate and bar are positively correlated.

Section 6: PCA

We can apply PCA to our dataset through prcomp().

```
pca <- prcomp(candy, scale = TRUE)
summary(pca)</pre>
```

Importance of components:

```
PC1
                                 PC2
                                        PC3
                                                PC4
                                                       PC5
                                                                PC6
                                                                        PC7
Standard deviation
                       2.0788 1.1378 1.1092 1.07533 0.9518 0.81923 0.81530
Proportion of Variance 0.3601 0.1079 0.1025 0.09636 0.0755 0.05593 0.05539
Cumulative Proportion
                       0.3601 0.4680 0.5705 0.66688 0.7424 0.79830 0.85369
                           PC8
                                   PC9
                                          PC10
                                                  PC11
                                                          PC12
Standard deviation
                       0.74530 0.67824 0.62349 0.43974 0.39760
Proportion of Variance 0.04629 0.03833 0.03239 0.01611 0.01317
Cumulative Proportion 0.89998 0.93832 0.97071 0.98683 1.00000
```

Now we plot a PCA score plot of PC1 vs PC2.

```
plot(pca$x[,1:2])
```


Adding some color and character:

```
plot(pca$x[,1:2], col=my_cols, pch=16)
```


In order to use ggplot2, we need to have an input data.frame with a separate column for the different aesthetics in the final plot. We will make a new data.frame that includes both the PCA results and candy data.

The ggrepel package can label the plot with candy names that do not overlap.

```
library(ggrepel)

p + geom_text_repel(size=3.3, col=my_cols, max.overlaps = 15) +
    theme(legend.position = "none") +
    labs(title="Halloween Candy PCA Space",
        subtitle="Colored by type: chocolate bar (dark brown), chocolate other (light brown caption="Data from 538")
```

Warning: ggrepel: 29 unlabeled data points (too many overlaps). Consider increasing max.overlaps

Halloween Candy PCA Space

Colored by type: chocolate bar (dark brown), chocolate other (light brown),

Data from 538

To make a more interactive plot where you can hover and see labels, plotly is quite useful.

```
# install.packages("plotly")
# library(plotly)
# ggplotly(p)
```

Now when we hover a mouse over a point, we can see the label name, PC1, PC2, and winpercent.

```
par(mar=c(8,4,2,2))
barplot(pca$rotation[,1], las=2, ylab="PC1 Contribution")
```


Q24. What original variables are picked up strongly by PC1 in the positive direction? Do these make sense to you?

The variables fruity, hard, and pluribus are picked up strongly by PC1 in the positive direction. This makes sense as there is more variance in the fruity, hard, and pluribus variables. A pluribus would have more variance since there are different types of candies included, leading to more variance.