

Inteligencia Artificial 2014/2015

Relatório: TP1 - 1ª Fase

Docente: Susana Nascimento de Almeida

Turno: 3

Relatório: TP1 – 1ª Fase

Grupo 2:

André Martins Lopes nº 41883

David de Oliveira Pinto Gago nº 41710

João Pedro Guita de Almeida nº 42009

Indice

Introdução	3
Operadores	4
Estado	4
Custo	4
nPuzzle	5
Resultados:	5
Heurística	5
Distância Euclideana	5
Distancia Euclideana no espaço	5
Mars Rover	6
Resultados	6
Teste 1:	6
Teste 2:	6
Teste 3:	6
Teste 4:	7
Heuristica Escolhida	7
Conclusão	Q

Introdução

O objectivo deste trabalho é implementar a melhor solução para preparar uma missão de exploração a Marte para encontrar água. A cartografia do planeta Marte é feita pelo satélite e é trasmitido ao Rover autónomo que depois tem como objectivo obter a melhor rota entre dois pontos no terreno. É sugerido que seja escolhido o algoritmo de procura A* e teremos também de implementar heurísticas que solucionem o problema. Bem como analizar-las e por fim escolher a que melhor se adque ao problema.

Operadores

Neste caso os operadores possíveis são os 4 pontos cardeais, Norte, Sul, Este, Oeste e 4 pontos colaterais Nordeste, Sudeste, Noroeste, Sudoeste, pois são as direcções possiveis que o Rover pode escolher em cada estado.

Estado

O estado do Rover é caracterizado por:

- Coordenadas x e y (posição em que se encontra no mapa).
- BitmapTerrain. Representa a combinação de características do terreno (i.e, Altura e tipo de superficie).

Custo

Cada mudança de estado tem um custo associado. Em terreno normal, a função de custo é dada pela distância Euclidiana entre dois pontos no espaço, multiplicada pelo factor $e^{|\Delta h|}$ onde Δh é a diferença de altura. Ou seja:

$$Custo_{Terreno\ Nornal} = \left(\sqrt{(P_x - Q_x)^2 + (P_y - Q_y)^2 + (P_z - Q_z)^2} \right) * e^{|\Delta h|}$$

Por fim o $Custo_{Terreno\ Nornal}$ é multiplicado em função do tipo de terreno em que se encontra. Se for arenoso multiplica-se por 2 e se for rochoso por 3.

nPuzzle

Resultados:

Algoritmo	Solução	Nós	Nós		Tempo de
		Expandidos	Gerados	Custo	execução (s)
UniformCost Search	[RIGHT, DOWN, LEFT, UP, LEFT, UP, RIGHT, RIGHT, DOWN, LEFT, LEFT, UP, RIGHT, RIGHT, DOWN, LEFT, DOWN, LEFT, UP, RIGHT, DOWN, RIGHT, UP, LEFT]	141768	379535	24	1.417
AStarSearch	[RIGHT, DOWN, LEFT, UP, LEFT, UP, RIGHT, RIGHT, DOWN, LEFT, LEFT, UP, RIGHT, RIGHT, DOWN, LEFT, DOWN, LEFT, UP, RIGHT, DOWN, RIGHT, UP, LEFT]	442	1260	24	0.072

Heurística

Distância Euclideana

Visto que o Rover se pode desclocar em 8 direções, podemos usar a distância Euclideana para caulcular a euristica. E sabemos que é admissivel, pois sabe-se que o valor da hipotenusa é sempre inferior ou igual á soma dos quadrados dos catetos.

Distancia Euclideana no espaço

A distancia euclideana no espaço, adiciona à distancia Euclideana, o factor altura. Desta forma obtemos melhores estimativa de custo do caminho. Todavia, aumentamos a complexidade em relação à distancia Euclideana (XY), esta tornando a execução mais lenta, excuindo-a das possíveis hipoteses de escolha.

Mars Rover

Resultados

Realizamos um conjunto de 3 testes.

Teste 1:

i=0; j=6;

Algoritmo	Nós Expandidos	Nós Gerados	Tempo de execução (s)
UniformCostSearch	736660	5885696	8.353
AStarSearch (D.Euclideana)	541990	4330591	12.220
AStarSearch (MaxXYZ)	721865	5767582	15.658

Teste 2:

inicio: x = 0 e y = 0; fim: x = 999 y = 999;

Algoritmo	Nós Expandidos	Nós Gerados	Tempo de execução (s)
UniformCostSearch	999998	7987997	11.147
AStarSearch (D.Euclideana)	999998	7987997	23.754
AStarSearch (MaxXYZ)	999998	7987997	21.853

Teste 3:

inicio: x = 30 e y = 100; fim: x = 950 y = 650;

Algoritmo	Nós Expandidos	Nós Gerados	Tempo de execução (s)
UniformCostSearch	878836	7021215	9.749
AStarSearch (D.Euclideana)	685987	5480600	16.653
AStarSearch (MaxXYZ)	694099	5545442	16.949

Figura 1-Teste 3

Teste 4:

inicio: x = 600 e y = 100; fim: x = 650 y = 500;

Algoritmo	Nós Expandidos	Nós Gerados	Tempo de execução (s)
UniformCostSearch	340281	2717946	3.422
AStarSearch (D.Euclideana)	154884	1238710	3.411
AStarSearch (MaxXYZ)	340281	2717946	3.396

Figura 2- Teste 4

Heuristica Escolhida

Para o este problema escolhemos a distancia Euclideana, pois é admissivel e porque foi a que gerou menos nós, perto de metade. Ainda que tivesse um tempo de execução idêntico.

Conclusão

No que diz respeito à comparação de algoritmos para o problema do NPuzzle pode-se se constar que o algoritmo UniformCostSearch encontra a solução óptima, apesar de explorar mais nós que o AStarSearch. E também por isso é mais lento. O AStarSearch, tem a solução óptima, explora menos nós e tem um tempo de execução ≈20 vezes inferior que o UniformCostSearch.

Para o problema do Rover Marciano, foram estudadas as heuristicas para sabermos a sua admissibilidade, bem como o desempenho nos testes realizados. Destas verificou-se que a melhor é a distancia Euclideana, uma vez que encontra a solução óptima e explora menos nós.

Quando uma heuristica tem um valor identico ao custo do caminho optimo, vai expandir menos nós e por conseguinte é mais rápida.