Table of Common Distributions

taken from $Statistical\ Inference$ by Casella and Berger

Discrete Distributions

distribution	pmf	mean	variance	mgf/moment
$\overline{\operatorname{Bernoulli}(p)}$	$p^x(1-p)^{1-x}; \ x=0,1; \ p\in(0,1)$	p	p(1-p)	$(1-p) + pe^t$
Beta-binomial (n, α, β)	$\binom{n}{x} \frac{\Gamma(\alpha+\beta)}{\Gamma(\alpha)\Gamma(\beta)} \frac{\Gamma(x+\alpha)\Gamma(n-x+\beta)}{\Gamma(\alpha+\beta+n)}$	$\frac{n\alpha}{\alpha+\beta}$	$rac{nlphaeta}{(lpha+eta)^2}$	
Notes: If $X P$ is binomial (n,P) and P is $beta(\alpha,\beta)$, then X is $beta-binomial(n,\alpha,\beta)$.				
Binomial(n, p)	$\binom{n}{x} p^x (1-p)^{n-x}; \ x=1,\dots,n$	np	np(1-p)	$[(1-p)+pe^t]^n$
Discrete $Uniform(N)$	$\frac{1}{N}; \ x = 1, \dots, N$	$\frac{N+1}{2}$	$\frac{(N+1)(N-1)}{12}$	$\frac{1}{N} \sum_{i=1}^{N} e^{it}$
Geometric(p)	$p(1-p)^{x-1}; p \in (0,1)$	$\frac{1}{p}$	$\frac{1-p}{p^2}$	$\frac{pe^t}{1 - (1 - p)e^t}$
Note: $Y = X - 1$ is negative binomial $(1, p)$. The distribution is memoryless: $P(X > s X > t) = P(X > s - t)$.				
${\bf Hypergeometric}(N,M,K$	$(\frac{\binom{M}{x}\binom{N-M}{K-x}}{\binom{N}{K}}; \ x = 1, \dots, K$	$\frac{KM}{N}$	$\frac{KM}{N} \frac{(N-M)(N-k)}{N(N-1)}$?
	$M - (N - K) \le x \le M; \ N, M, K > 0$			
Negative Binomial (r, p)	$\binom{r+x-1}{x}p^r(1-p)^x; \ p \in (0,1)$	$\frac{r(1-p)}{p}$	$\frac{r(1-p)}{p^2}$	$\left(\frac{p}{1 - (1 - p)e^t}\right)^r$
	$\binom{y-1}{r-1}p^r(1-p)^{y-r};\ Y=X+r$			
$Poisson(\lambda)$	$\frac{e^{-\lambda}\lambda^x}{x!}; \ \lambda \ge 0$	λ	λ	$e^{\lambda(e^t-1)}$

Notes: If Y is $\operatorname{gamma}(\alpha, \beta)$, X is $\operatorname{Poisson}(\frac{x}{\beta})$, and α is an integer, then $P(X \ge \alpha) = P(Y \le y)$.