Definition 1 (characteristic function). $\varphi_{\mu}(t) = \int_{\mathbb{R}^d} e^{i\langle t, x \rangle} d\mu(x)$ $\varphi_X(t) = \varphi_{\mu_X}(t) = \mathbb{E}e^{i\langle t, x \rangle}$

Proposition 2. $\varphi_X(0) = 1$ and $|\varphi_X(t)| \leq 1, t \in \mathbb{R}^d$

Proposition 3. φ_X uniformly continuous on \mathbb{R}^d .

Proposition 4. φ_X is a nonnegatively determined function on \mathbb{R}^d .

Theorem 5 (Bochner). A function $\varphi : \mathbb{R}^d \to \mathbb{C}$ is a characteristic function of a random d-dimensional vector iff $\varphi(0) = 1$, φ is continuous and φ is nonnegatively determined, i.e. $(\varphi(t_i - t_j))_{i,j}$ is nonnegatively determined for any t_i 's.

Proposition 6. $\varphi_{AX+b}(t) = e^{i\langle b,t \rangle} \varphi_X(A^T t)$, in particular $\varphi_{-X}(t) = \varphi_X(-t) = \overline{\varphi_X(t)}$.

Proposition 7. X real random variable, if $\mathbb{E}|X|^k < \infty$, $k \in \mathbb{Z}_+$, then $\varphi_X \in C^k(\mathbb{R})$ and $\varphi_X^{(k)}(t) = i^k \mathbb{E} X^k e^{itX}$.

Remark 8. Existence of φ_X' does not imply $\mathbb{E}|X| < \infty$.

Proposition 9. If μ, ν probability measures on \mathbb{R}^d such that $\varphi_{\mu} = \varphi_{\nu}$, then $\mu = \nu$.

Proposition 10. X_1, \ldots, X_n independent random d-dimensional variables, then $\varphi_{X_1+\ldots+X_n}(t) = \varphi_{X_1}(t)\ldots\varphi_{X_n}(t)$.