

Série 4c

Convolution

Exercice 1

Effectuez les convolutions suivantes. Discutez des résultats obtenus

Exercice 2

10 9 8 7 6 8 11 6 9 9 Soit une image I(i,j)=9 10 12 8 6, 7 11 50 7 6

12 5 9

calculez l'image filtrée avec le filtre gaussien h(i,j)=2

Série 4c 15.10.2014 FRT

Exercice 3

Avec la méthode cv.Filter2D d'OpenCv, essayez les noyaux suivants et commentez les résultats.

Exercice 4

La convolution est une opération associative,

$$g(i,j) = (f(i,j) * h(i,j)) * h(i,j) = f(i,j) * (h(i,j) * h(i,j))$$

En vertu de ce principe, appliquer plusieurs fois un noyau à une image équivaut à appliquer une seule fois un noyau de taille plus grande.

• Soit
$$h(i,j) = \begin{bmatrix} 1 & 1 & 1 \\ 1 & 1 & 1 \end{bmatrix}$$
, calculez le noyau $h_2(i,j) = h(i,j) * h(i,j)$, correspondant à deux $\begin{bmatrix} 1 & 1 & 1 \\ 1 & 1 & 1 \end{bmatrix}$

 $0 \quad 0$ 0 0 0 0 1 1 1 passages du noyau h(i,i). Compléter le noyau avec des 0 : 0 0 ou faites 1 1 0 1 1 0 0 0 0 0

une convolution partielle.

- Calculez le noyau h₃(i,j)= h₂(i,j) * h(i,j)
- Vérifiez ce principe avec le logiciel ImageJ.
- Quelle est la taille du noyau $h_n(i,j)$?

Exercice 5

Comparer la complexité de la convolution par rapport à sa propriété d'associativité. Prendre une image de MxM et un noyau de NxN. Vaut-il mieux faire k fois la convolution avec un noyau NxN, ou faire une seule convolution avec un noyau convolué k fois avec lui-même. La taille d'un noyau NxN, convolué k fois vaut k(N-1)+1.

1

Exercice 6

Un noyau est dit **séparable** s'il peut s'écrire sous la forme

$$h(i,j) = h_1(i) * h_2(j)$$

Quel est le noyau h(i,j) obtenu avec les parties 2 et 1 1 1

1

Série 4c 15.10.2014 FRT