Interactive Computer Graphics: Lecture 13

Introduction to Surface Construction

Teapot Subdivision: Russ Fish

Non Parametric Surface

- Surfaces can be constructed from Cartesian equations directly, and this is acceptable for specific applications, usually involving interpolation.
- As before, using a simple polynomial surface is a quick and easy approach.

Non Parametric Polynomial Surface

$$(x \quad y \quad z \quad 1) \begin{pmatrix} a & b & c & d \\ b & e & f & g \\ c & f & h & j \\ d & g & j & 1 \end{pmatrix} \begin{pmatrix} x \\ y \\ z \\ 1 \end{pmatrix} = 0$$

which multiplies out to:

$$ax^{2} + ey^{2} + hz^{2} + 2bxy + 2cxz + 2fyz + 2dx + 2gy + 2jz + 1 = 0$$

- Because of the symmetry there are 9 scalar unknowns in the equation
- So we need to specify nine points through which the surface will pass

As Before

 This formulation suffers the same problems as the nonparametric spline curve. It is a fixed surface for a given set of nine points.

We need more flexibility for the design of surfaces.

Simple Parametric surfaces

 We can extend the formulation to simple parametric surfaces using the vector equation:

$$\mathbf{P}(\mu, \nu) = (\mu, \nu, 1) \begin{pmatrix} \mathbf{a} & \mathbf{b} & \mathbf{c} \\ \mathbf{b} & \mathbf{d} & \mathbf{e} \\ \mathbf{c} & \mathbf{e} & \mathbf{f} \end{pmatrix} \begin{pmatrix} \mu \\ \nu \\ 1 \end{pmatrix}$$
$$\mathbf{P}(\mu, \nu) = \mathbf{a}\mu^2 + \mathbf{d}\nu^2 + 2\mathbf{b}\mu\nu + 2\mathbf{c}\mu + 2\mathbf{e}\nu + \mathbf{f}$$

• There are six unknown parameter vectors $\{{\bf a},{\bf b},{\bf c},{\bf d},{\bf e},{\bf f}\}$

Associating points and parameters

- We can solve for the six vector unknowns by substituting in six points at known values of μ and ν .
- We might have an arrangement such as:

	μ	ν
\mathbf{P}_0	0	0
\mathbf{P}_1	0	1
\mathbf{P}_2	1	0
\mathbf{P}_3	1	1
\mathbf{P}_4	1/2	0
\mathbf{P}_5	1/2	1

Surface parameter equations

• Substituting these values of μ and ν into the patch equation gives us these six equations

$$P_0 = f$$
 $P_1 = d + 2e + f$
 $P_2 = a + 2c + f$
 $P_3 = a + 2b + 2c + d + 2e + f$
 $P_4 = a/4 + c + f$
 $P_5 = a/4 + b + c + d + 2e + f$

• The P's are known and we can solve for the unknowns $\{a,\ldots,f\}$ using standard methods

Getting the edges from the surface equation

 μ and ν are in the range [0, 1]. Thus the contours that bound the patch can be found by substituting 0 or 1 for one of μ or ν in the patch equation.

$$\mathbf{P}(0,\nu) = \mathbf{d}\nu^2 + 2\mathbf{e}\nu + \mathbf{f}$$

$$\mathbf{P}(1,\nu) = \mathbf{a} + 2(\mathbf{b} + \mathbf{e})\nu + 2\mathbf{c} + \mathbf{d}\nu^2 + \mathbf{f}$$

$$\mathbf{P}(\mu,0) = \mathbf{a}\mu^2 + 2\mathbf{c}\mu + \mathbf{f}$$

$$\mathbf{P}(\mu,1) = \mathbf{a}\mu^2 + 2(\mathbf{b} + \mathbf{c})\mu + \mathbf{d} + 2\mathbf{e} + \mathbf{f}$$

The resulting surface

The boundaries are all second order curves and so will be nice and smooth

There is quite a lot of flexibility in this formulation, but it is still only suitable for simple surfaces.

We can use higher orders

E.g. using the tensor product

$$\mathbf{P}(\mu,\nu) = \begin{pmatrix} \mu^3 & \mu^2 & \mu & 1 \end{pmatrix} \begin{pmatrix} \mathbf{a} & \mathbf{b} & \mathbf{c} & \mathbf{d} \\ \mathbf{b} & \mathbf{e} & \mathbf{f} & \mathbf{g} \\ \mathbf{c} & \mathbf{f} & \mathbf{h} & \mathbf{j} \\ \mathbf{d} & \mathbf{g} & \mathbf{j} & \mathbf{k} \end{pmatrix} \begin{pmatrix} \nu^3 \\ \nu^2 \\ \nu \\ 1 \end{pmatrix}$$

Using higher orders gives more variety in shape and better control

But the method is hard to apply and generalise, and so is not usually done

Cubic Spline Patches

- The patch method is generally effective in creating more complex surfaces.
- The idea is, as in the case of the curves, to create a surface by joining a lot of simple surfaces continuously.

Cartesian surface patches - terrain map

Points and Gradients

- At each corner of the patch we need to interpolate the points and set the gradients to match the adjacent patch.
- There are two gradients

Parametric patches

- In practice we use the more general parametric patch formulation with two parameters μ and ν .
- The terrain map can be modelled with parametric patches.
- We need to match three values at each corner

$$\mathbf{P}(\mu,\nu) \qquad \frac{\partial \mathbf{P}(\mu,\nu)}{\partial \mu} \qquad \frac{\partial \mathbf{P}(\mu,\nu)}{\partial \nu}$$

Corners

- As usual we adopt the convention that the corners are at parameter values (0, 0), (0, 1), (1, 0) and (1, 1)
- We need to ensure that the patch joins its neighbours exactly at the edges.
- Hence we ensure that the edge contours are the same on adjacent patches

Edges

 We do this by designing the edge curves in an identical manner to the cubic spline curve patch.

Edge curve	Points joined	
$\mathbf{P}(0,\nu)$	$\mathbf{P}_{i,j}$	$\mathbf{P}_{i,j+1}$
${f P}(1, u)$	$\mathbf{P}_{i+1,j}$	$\mathbf{P}_{i+1,j+1}$
$\mathbf{P}(\mu,0)$	$\mathbf{P}_{i,j}$	$\mathbf{P}_{i+1,j}$
$\mathbf{P}(\mu, 1)$	$\mathbf{P}_{i,j+1}$	$\mathbf{P}_{i+1,j+1}$

A parametric spline patch

As long as the gradients are the same for the four patches that meet at a point the surface will join seamlessly

The Coons patch

To define the internal points we linearly interpolate the edge curves:

$$\mathbf{P}(\mu, \nu) = \mathbf{P}(\mu, 0)(1 - \nu) + \mathbf{P}(\mu, 1)\nu + \mathbf{P}(0, \nu)(1 - \mu) + \mathbf{P}(1, \nu)\mu - \mathbf{P}(0, 1)(1 - \mu)\nu - \mathbf{P}(1, 0)\mu(1 - \nu) - \mathbf{P}(0, 0)(1 - \mu)(1 - \nu) - \mathbf{P}(1, 1)\mu\nu$$

Substituting values of 0 or 1 for μ and/or ν we can easily verify that the equation fits the edge curves.

Rendering a patch: Polygonisation

To render (draw) a spline patch we can simply transform it into polygons.

We select a grid of points, e.g.:

$$\mu = \{0.0, 0.1, 0.2, \dots 1.0\}$$

$$\nu = \{0.0, 0.1, 0.2, \dots 1.0\}$$

and triangulate to that grid.

Rendering a patch: Polygonisation

- For speed we can use large polygons with Gouraud or Phong shading.
- For accuracy we use small polygons, chosen to match the pixel size.

Rendering a patch: Lofting

- Surfaces can also be drawn by a technique called lofting (now really obsolete).
- This means drawing contours of constant μ and/or of constant ν
- Algorithms for eliminating the hidden parts have been devised.

Rendering a patch: Ray tracing

The patch equation is fourth order

$$\mathbf{P}(\mu, \nu) = \mathbf{P}(\mu, 0)(1 - \nu) + \mathbf{P}(\mu, 1)\nu + \mathbf{P}(0, \nu)(1 - \mu) + \mathbf{P}(1, \nu)\mu - \mathbf{P}(0, 1)(1 - \mu)\nu - \mathbf{P}(1, 0)\mu(1 - \nu) - \mathbf{P}(0, 0)(1 - \mu)(1 - \nu) - \mathbf{P}(1, 1)\mu\nu$$

- Hence no closed form solution exists for a ray patch intersection
- Can use numeric algorithms but computation can be costly

Rendering a patch: Ray tracing

- Numerical Ray-Patch algorithm
 - 1. Polygonise the patch at a low resolution (say 4 x 4)
 - 2. Calculate the ray intersection with the 32 triangles and find the nearest intersection.
 - 3. Polygonise the immediate area of the intersection and calculate a better estimate of the intersection
 - 4. Continue until the best estimate is found

Rendering a patch: Ray tracing

- Numerical Ray-Patch algorithm
 - May be multiple intersections between the ray and the surface
 - Algorithm will find an intersection, but not necessarily the nearest.
 - If the object is relatively smooth it should work well in most cases.
 - Note that it will be necessary to do a ray intersection with each patch of the object to find the nearest intersection.

Example of Using a Coons Patch

 Part of a terrain map defined on a regular x-y grid is as follows:

Find the Coons patch on the centre four points

Corners

• The corners at μ , $\nu = 0$, 1 are defined directly in the question:

$$\mathbf{P}(0,0) = (9,4,12)$$
 $\mathbf{P}(1,0) = (10,4,13)$
 $\mathbf{P}(0,1) = (9,5,11)$ $\mathbf{P}(1,1) = (10,5,14)$

Gradients in the x / µ direction

Example

$$\left. \frac{\partial \mathbf{P}}{\partial \mu} \right|_{(0,0)} = \frac{(10, 4, 13)^T - (8, 4, 10)^T}{2} = \begin{pmatrix} 1\\0\\1.5 \end{pmatrix}$$

Gradients in the x / µ direction

$$\left. \frac{\partial \mathbf{P}}{\partial \mu} \right|_{(0,0)} = \frac{(10, 4, 13)^T - (8, 4, 10)^T}{2} = (1, 0, 1.5)^T$$

$$\left. \frac{\partial \mathbf{P}}{\partial \mu} \right|_{(1,0)} = \frac{(11, 4, 10)^T - (9, 4, 12)^T}{2} = (1, 0, -1)^T$$

$$\left. \frac{\partial \mathbf{P}}{\partial \mu} \right|_{(0,1)} = \frac{(10, 5, 14)^T - (8, 5, 9)^T}{2} = (1, 0, 2.5)^T$$

$$\left. \frac{\partial \mathbf{P}}{\partial \mu} \right|_{(1,1)} = \frac{(11,5,11)^T - (9,5,11)^T}{2} = (1,0,0)^T$$

Gradients in the y / v direction

$$\frac{\partial \mathbf{P}}{\partial \nu} \Big|_{(0,0)} = \frac{(9,5,11)^T - (9,3,14)^T}{2} = (0,1,-1.5)^T$$

$$\frac{\partial \mathbf{P}}{\partial \nu} \Big|_{(1,0)} = \frac{(10,5,14)^T - (10,3,15)^T}{2} = (0,1,-0.5)^T$$

$$\frac{\partial \mathbf{P}}{\partial \nu} \Big|_{(0,1)} = \frac{(9,6,10)^T - (9,4,12)^T}{2} = (0,1,-1)^T$$

$$\frac{\partial \mathbf{P}}{\partial \nu} \Big|_{(1,1)} = \frac{(10,6,10)^T - (10,4,13)^T}{2} = (0,1,-1.5)^T$$

Finding the boundary curves

E.g. Finding curve $\mathbf{P}(\mu,0)$

$$\mathbf{P}(\mu,0) = \mathbf{a}_3 \mu^3 + \mathbf{a}_2 \mu^2 + \mathbf{a}_1 \mu + \mathbf{a}_0$$

$$(9,4,12)$$

$$\mu$$

$$(10,4,13)$$

$$\begin{pmatrix} \mathbf{a}_0 \\ \mathbf{a}_1 \\ \mathbf{a}_2 \\ \mathbf{a}_3 \end{pmatrix} = \begin{pmatrix} 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ -3 & -2 & 3 & -1 \\ 2 & 1 & -2 & 1 \end{pmatrix} \begin{pmatrix} \mathbf{P}_0 \\ \mathbf{P}'_0 \\ \mathbf{P}_1 \\ \mathbf{P}'_1 \end{pmatrix}$$

see cubic spline patch equation (previous lecture)

Finding the boundary curves

E.g. Finding curve $\mathbf{P}(\mu, 0)$

$$\mathbf{P}(\mu,0) = \mathbf{a}_3 \mu^3 + \mathbf{a}_2 \mu^2 + \mathbf{a}_1 \mu + \mathbf{a}_0$$

$$(9,4,12)$$

$$\mu$$

$$(10,4,13)$$

$$\begin{pmatrix} \mathbf{a}_0 \\ \mathbf{a}_1 \\ \mathbf{a}_2 \\ \mathbf{a}_3 \end{pmatrix} = \begin{pmatrix} 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ -3 & -2 & 3 & -1 \\ 2 & 1 & -2 & 1 \end{pmatrix} \begin{pmatrix} 9 & 4 & 12 \\ 1 & 0 & 1.5 \\ 10 & 4 & 13 \\ 1 & 0 & -1 \end{pmatrix}$$

After substituting in $\mathbf{P}(0,0)$, $\frac{\partial \mathbf{P}}{\partial \mu}\Big|_{(0,0)}$, $\mathbf{P}(1,0)$, $\frac{\partial \mathbf{P}}{\partial \mu}\Big|_{(1,0)}$

Finding the boundary curve $P(\mu, 0)$

• Calculating the constant vectors \mathbf{a}_3 , \mathbf{a}_2 , \mathbf{a}_1 and \mathbf{a}_0

$$\mathbf{a}_{0} = \mathbf{P}_{0} = (9, 4, 12)$$

$$\mathbf{a}_{1} = \mathbf{P}'_{0} = (1, 0, 1.5)$$

$$\mathbf{a}_{2} = -3\mathbf{P}_{0} - 2\mathbf{P}'_{0} - 3\mathbf{P}_{1} - \mathbf{P}'_{1}$$

$$= -3 \times (9, 4, 12) - 2 \times (1, 0, 1.5) + 3 \times (10, 4, 13) - (1, 0, 1)$$

$$= (0, 0, 1)$$

$$\mathbf{a}_{3} = 2\mathbf{P}_{0} + \mathbf{P}'_{0} - 2\mathbf{P}_{1} + \mathbf{P}'_{1}$$

$$= 2 \times (9, 4, 12) + (1, 0, 1.5) - 2 \times (10, 4, 13) + (1, 0, 1)$$

$$= (0, 0, 0.5)$$

Finding the boundary curves $P(\mu, 1)$, P(0, v), P(1, v)

- These curves are found identically to $P(\mu, 0)$.
- We now have all the individual bits:

```
P(\mu, 0): a cubic polynomial in \mu

P(\mu, 1): a cubic polynomial in \mu

P(0, \nu): a cubic polynomial in \nu

P(1, \nu): a cubic polynomial in \nu

P(0, 0), P(0, 1), P(1, 0) and P(1, 1): the corner points
```

• Given values of μ and ν , we can calculate each of these eight points

So, for any given value for μ and ν ...

... we can evaluate the coordinate on the Coons patch:

$$\mathbf{P}(\mu, \nu) = \mathbf{P}(\mu, 0)(1 - \nu) + \mathbf{P}(\mu, 1)\nu + \mathbf{P}(0, \nu)(1 - \mu) + \mathbf{P}(1, \nu)\mu - \mathbf{P}(0, 1)(1 - \mu)\nu - \mathbf{P}(1, 0)\mu(1 - \nu) - \mathbf{P}(0, 0)(1 - \mu)(1 - \nu) - \mathbf{P}(1, 1)\mu\nu$$