Modele de subiect de matematică pentru proba scrisă a Examenului de licență, sesiunea iulie și februarie 2013 Specializarea: Matematică informatică

Varianta 1

Algebră

Să se discute după parametrul real α compatibilitatea sistemului de mai jos, apoi să se rezolve în \mathbb{R}^4 :

$$\begin{cases} 5x_1 - 3x_2 + 2x_3 + 4x_4 = 3\\ 4x_1 - 2x_2 + 3x_3 + 7x_4 = 1\\ 8x_1 - 6x_2 - x_3 - 5x_4 = 9\\ 7x_1 - 3x_2 + 7x_3 + 17x_4 = \alpha \end{cases}$$

Analiză

- 1. Formula lui Leibniz-Newton: enunt și demonstrație
- 2. Pentru fiecare a > 0, stabiliţi natura seriei

$$\sum_{n=1}^{\infty} \frac{n!}{a(a+1)\dots(a+n)}.$$

Geometrie

- 1. Parabola (definiție, ecuația redusă, proprietatea optică).
- 2. Pe parabola de ecuație $y^2 = 2px$ se iau trei puncte distincte A, B, C. Tangentele în A, B, C la parabolă determină un triunghi A'B'C'. Să se demonstreze că dreapta care unește centrele de greutate ale triunghiurilor ABC și A'B'C' este paralelă cu axa Ox.

Varianta 2

Algebră

- 1. Definiți noțiunile: omomorfism de grupuri și omomorfism de inele.
- 2. Să se arate că dacă f este un endomorfism al grupului (\mathbb{Z} , +) atunci

$$f(x) = f(1) \cdot x, \ \forall x \in \mathbb{Z}.$$

3. Să se determine omomorfismele inelului $(\mathbb{Z}, +, \cdot)$.

Analiză

1. Primul criteriu al comparației pentru serii cu termeni pozitivi: enunț și demonstrație

2. Scrieți formula lui Maclaurin de ordinul n pentru funcția

$$f:]-\infty, 1[\to \mathbb{R}, \quad f(x) = (x+1)\ln(1-x).$$

$\mathbf{Geometrie}$

- 1. Hiperbola: definiție, deducerea ecuației reduse.
- 2. Fie punctele $A\left(0,a\right)$, $B\left(b,0\right)$, $C\left(c,0\right)$, $\left(a,b,c>0\right)$, raportate la reperul cartezian ortonormat x0y.
- a) Determinați coordonatele ortocentrului H, ale centrului de greutate G și ale centrului cercului circumscris O ale triunghiului ABC.
 - b) Demonstrați că punctele H, G, O sunt coliniare.