Effect of infection-dependent dispersal on the evolution of parasite virulence in metapopulation epidemiological models

Grégoire Azé 23/05/2023

FEEDME project

Dispersion of individuals

- Moving in space
- Contact with other individuals

Disease caused by a parasite

- Contact transmission
- Virulence = Mortality of pathogen

Dispersion dependent on the epidemiological status of the individual

Good health

Infected

--- Dispersion

Dispersion dependent on the epidemiological status of the individual

Snail + Leucochloridium paradoxum

Metapopulation

- Set of populations of individuals
- Spatially separated
- Connected with dispersion / migration
- Local dynamics for each patch
- Global dynamics with all patches of the metapopulation

What effects can infection-dependent dispersal have on the evolution of virulence?

- Infected Dispersal > Susceptible Dispersal
- Infected Dispersal < Susceptible Dispersal

Local Dynamics

Patch with one theoretical species of host

- Birth of individuals (b)
- Death of individuals (μ)
- Carrying Capacity (k)

Local Dynamics

Patch with one theoretical species of host

- Birth of individuals (b)
- Death of individuals (μ)
- Carrying Capacity (k)

And one theoretical species of parasite

- 2 different states (S and I)
- Transmission rate (β)
- Remission rate (y)
- Virulence of the parasite (α)

Local Dynamics

$$\frac{dS}{dt} = (b(1 - (S+I)/k) - \mu)S - \beta SI + \gamma I$$

$$\frac{dI}{dt} = \beta SI - \gamma I - \alpha I - \mu I$$

Local Dynamics

$$\frac{dS}{dt} = (b(1 - (S+I)/k) - \mu)S - \beta SI + \gamma I$$

Birth and death of individuals:

- No reproduction for infected individuals
- Density-dependent effect of k on birth rate

$$\frac{dI}{dt} = \beta SI - \gamma I - \alpha I - \mu I$$

Local Dynamics

$$\frac{dS}{dt} = (b(1 - (S+I)/k) - \mu)S - \beta SI + \gamma I$$

Birth and death of individuals:

- No reproduction for infected individuals
- Density-dependent effect of k on birth rate

Transmission of the parasite:

No spatial structure in a patch

$$\frac{dI}{dt} = \beta SI - \gamma I - \alpha I - \mu I$$

Local Dynamics

Remission of hosts:

No immunity for susceptible individuals

$$\frac{dS}{dt} = (b(1 - (S+I)/k) - \mu)S - \beta SI + \gamma I$$

Birth and death of individuals:

- No reproduction for infected individuals
- Density-dependent effect of k on birth rate

Transmission of the parasite:

No spatial structure in a patch

$$\frac{dI}{dt} = \beta SI - \gamma I - \alpha I - \mu I$$

Local Dynamics

Remission of hosts:

No immunity for susceptible individuals

$$\frac{dS}{dt} = (b(1 - (S+I)/k) - \mu)S - \beta SI + \gamma I$$

Birth and death of individuals:

- No reproduction for infected individuals
- Density-dependent effect of k on birth rate

Transmission of the parasite:

• No spatial structure in a patch

$$\frac{dI}{dt} = \beta SI - \gamma I - \alpha I - \mu I$$

✓ Virulence of the parasite

Additional mortality due to the parasite

Local Dynamics

Trade-off between Transmission (β) and Virulence of the parasite (α)

$$\beta(\alpha) = \beta_0 * \alpha/(1 + \alpha)$$

Value of β depends :

- β base value (β0)
- Virulence (α)

Local Dynamics

$$\frac{dS}{dt} = (b(1 - (S+I)/k) - \mu)S - \beta SI + \gamma I - mS$$

Emigration of hosts = Dispersal of individuals

$$\frac{dI}{dt} = \beta SI - \gamma I - \alpha I - \mu I - mI$$

Local Dynamics Equilibrium

$$= 0$$

Empty patch

- Only susceptible individuals
- "Disease-free equilibrium" (DFE)

- Constant fraction of susceptible and infected hosts
- "Endemic equilibrium"

Metapopulation

Metapopulation:

- All neighbors
- Migration between patches

3 quasi-stationary equilibrium:

- Empty patch
- DFE
- Endemic Equilibrium

 ε = Extinction of the population of a patch

Local Dynamics in a metapopulation

$$\frac{dS_i}{dt} = (b(1 - (S+I)/k) - \mu)S - \beta SI + \gamma I - m_S S + \sum_{i=1}^{z} m_S (1-\rho)S_j/z$$

$$\frac{dI_i}{dt} = \beta SI - \gamma I - \alpha I - \mu I - m_I I + \sum_{j=1}^{z} m_I (1 - \rho) I_j / z$$

Local Dynamics in a metapopulation

$$-m_{S}S + \sum_{i=1}^{z} m_{S}(1-\rho)S_{j}/z$$

$$- m_{I}I + \sum_{j=1}^{z} m_{I}(1-\rho)I_{j}/z$$

Migration parameters:

- ρ : Dispersal cost
- z : Number of neighboring patches
- m_S : Dispersal of susceptible individuals
- $ullet m_I$: Dispersal of infected individuals

Evolution of traits

Evolution of virulence:

- Mortality of the pathogen
- Noted α

Evolution of traits

Evolution of virulence:

- Mortality of the pathogen
- Noted α

Mutation:

- Rare
- Low effect

Evolution of traits

Evolution of virulence:

- Mortality of the pathogen
- Noted a

Resident > Mutant

Mutation:

- Rare
- Low effect

Dominant phenotype:

Evolution of traits

Evolution of virulence:

- Mortality of the pathogen
- Noted a

Mutant > Resident

Mutation:

- Rare
- Low effect

Dominant phenotype:

Evolution of virulence according to the infected dispersal

Dispersal value of susceptible hosts

• Fixed at 0.5

Dispersal value of infected hosts

• 0.1 to 4.0

Evolution of virulence according to the infected dispersal

Increase of infected hosts dispersal

Increase of virulence

Increase of infected hosts dispersal

More chance of finding patches with many susceptible hosts

Interest of the metapopulation

α obtained with metapopulation

<

α maximise

Introduction of a spatial structure

Alpha evolves towards lower values

- Increase in virulence with dispersion of the infected
- Effect of the difference between m_S and m_I ?

Convergent values of parasite virulence

Convergent values of parasite virulence

Convergent values of parasite virulence

Convergent values of parasite virulence

More chance of finding patches with many susceptible hosts

$$\frac{m_S+m_I}{2}$$

- Virulence of the parasite increases
 - More chance of finding empty patches for susceptible individuals

- High values of infected dispersal = Values of virulence reach a limit?
 - Not enough benefit from the trade off with transmission rate

R0 Value

 $\frac{m_S + m_I}{2}$

R0 Value

 $\frac{m_S + m_I}{2}$

Ro Value

Value of R0 increase

- With small Suceptible dispersal, R0 value has a bell-shaped structure
 - Small Infected dispersal, less transmission for infected
 - High Infected dispersal, Not enough S in patches, less transmission

Local prevalence of infected individuals

- Impact of ρ
- Can explain high R0 and high virulence

Susceptible individuals colonization

Susceptible individuals colonization

- Optimum of colonization influenced by Susceptible dispersal
- m_S = Less dispersal for individuals, Fewer colonised patches
- m_S = All patches occupied with a large population of susceptibles, Less colonisation

Infected individuals colonization

 Better colonization when high infected dispersal

$$\frac{m_S+m_I}{2}$$

Conclusion

- High Infected dispersal = High values of evolved virulence
- $m_S m_I$ = High values of evolved virulence
- Higher infected dispersal not the optimum

Perspectives

Evolution of virulence and Infected dispersal

- Evolution of α and m_I
- Same probabilty of mutation
- No trade-off between for infected dispersal, like α and β
- What values of infected dispersal will be selected?

Perspectives

Evolution of virulence and Infected dispersal

- Evolution of α and m_I
- Same probabilty of mutation
- No trade-off between for infected dispersal, like α and β
- What values of infected dispersal will be selected?

Thank you for your attention