Problem ST-4 (3 parts)

Pointers, Arrays, and Structs

Assuming a 32-bit system with 32-bit memory interface and 32-bit addresses, answer the following questions.

Part A Show how the struct definition below maps to memory. Assume it is allocated starting at address 5000. For each variable, draw a box showing its size and position in memory. Label the box with the variable name. Label each element of an array (e.g., Name[0]).

	5	000		
struct Dog {	5	004		
char		800		
unsigned char float	Age; Weight; 5	012		
struct Breed	*MyBreed; 5	016		
struct Dog }	*Next; 5	020		
	5	024		

Part B Suppose the following variables are allocated beginning at address 6000. Complete the table below, listing the value of the expression following this definition.

Explain what happens if **A** is incremented (e.g. **A++**).

Part C Write the MIPS code implementation of the dynamically allocated array access below in the smallest number of instructions. A pointer to the array (declared below) is stored in \$3. Variables X, Y, Z, and R reside in \$4, \$5 \$6, and \$2, respectively. Modify only \$1 and \$2.

Label	Instruction	Comment