Télécommunications par fibre optique

Et la lumière révolutionna les télécoms

Dodo Alexis Dealoue

Télécommunications par fibre optique

Et la lumière révolutionna les télécoms

Editions EDILIVRE APARIS
Collection Universitaire
93200 Saint-Denis – 2011

www.edilivre.com

Edilivre Éditions APARIS

175, boulevard Anatole France – 93200 Saint-Denis Tél. : 01 41 62 14 40 – Fax : 01 41 62 14 50 – mail : actualite@edilivre.com

Tous droits de reproduction, d'adaptation et de traduction, intégrale ou partielle réservés pour tous pays.

ISBN: 978-2-8121-5238-2 Dépôt légal: juin 2011

© Edilivre Éditions APARIS, 2011

DEDICACE

- A ma tendre épouse Togbo Bouka Lydie
- -A mes enfants qui lisent et relisent inlassablement mes innombrables manuscrits.
- − A mes 'Frères et Sœurs' de ZOUKOUGBEU
- A tous mes collègues de Côte d'Ivoire Telecom et d'Orange Côte d Ivoire
- A tous les passionnés des Télécoms à travers le monde

Je dédie cet ouvrage

PREFACE

Mon jeune frère et collègue m'a honoré en me demandant de préfacer son premier ouvrage dédié aux télécommunications. Qu'il écrive un livre pratique destiné aux professionnels et non professionnels des télécommunications, au sujet d'une matière aussi pointue et d'actualité que sont les câbles à fibre optique ne m'a pas étonné vu la curiosité d'esprit qu'il a toujours manifesté, le nez fourré dans les livres, en train de chercher à comprendre, à étudier et à concevoir des solutions autour des télécommunications. J'avoue que lorsqu'il m'a présenté son manuscrit et m'a demandé de lui faire plaisir en le préfaçant, j'ai eu des appréhensions relativement à la marge de manœuvre qu'il pourrait avoir pour innover sur cette matière largement entamée aujourd'hui dans le monde. Que va-t-il dire qui ne soit déjà publié ?

J'ai demandé à lire le manuscrit immédiatement. Heureuse coïncidence: en 1981, alors élève-ingénieur à l'École Polytechnique de Montréal (Canada), mon mémoire de fin de cycle d'ingénieur a justement porté sur la fibre optique, qui en était à ses tout débuts, avec pour sujet : « Transmission de données à grande vitesse sur pylônes THT de la Baie James à Montréal », commandé par Hydro-Québec Canada. Trouver les formules à cette époque était déjà très difficile, expliquer la fibre optique pouvait vous rendre chauve à force de tirer sur vos cheveux, et sa mise en œuvre pratique était un exercice dans lequel tous les St Thomas de l'époque ne se retrouvaient pas : voyez ici, dans ce manuscrit, avec quelles maestria et perspicacité Alexis, que j'ai plaisir à traiter de « tête chercheuse », un vrai fouineur, a mis à nu (c'est le cas de le dire) la fibre optique dans son explication et son utilisation pratique.

Différents « coups d'état » ont eu lieu dans les télécommunications, au cours des siècles, du point de vue évolution technologique, et Alexis en montre ici un exemple : la Fibre optique a été au câble de cuivre, ce que le cellulaire est aujourd'hui au fixe, ce que la commutation numérique est

aujourd'hui à la commutation analogique, ce que le Wi-Max est à l'ADSL etc.

Pour décrire ce média, mille ouvrages ne suffiront pas tant ce support de transmission a fait de notre planète terre un village où Noirs, Blancs, Jaunes, Rouges, riches, pauvres sont fédérés. En somme, les fibres optiques posées dans les océans, sous les chaussées, sur les pylônes électriques ont non seulement rapproché les hommes de cultures différentes mais ont construit une communauté, donnant un sens réel à la notion d'être vivant supérieur, à la civilisation des hommes.

J'ai parcouru le manuscrit avec attention et enthousiasme. Loin des grandes théories et formules mathématico-physiques à donner des migraines, Alexis nous présente de façon simple et claire l'usage de ce support extraordinaire en expliquant dans un langage accessible à tous, les notions importantes liées à l'histoire de la fibre optique, à sa fabrication et à son usage, principalement dans les télécommunications, en exposant les précautions à prendre lorsqu'on décide de bâtir un réseau de câbles à fibres optiques.

On ne peut pas dire que le Comité Nobel norvégien n'a pas eu le nez creux en distinguant Charles Kao, pionnier et inventeur de la fibre optique à utilisation télécom.

Cet ouvrage, je le conseille particulièrement à tous ceux et celles qui sont désireux d'apprendre à mieux connaitre la fibre optique ou à l'utiliser au meilleur de ses capacités...

GNON L. Basile

CEO and Founder BCCA Networks & Technologies
Ancien DG de l'Agence des Télécommunication
de Côte d'Ivoire (ATCI)
Consultant International Telecom et NTIC,
Membre d'IEEE, USA

Sommaire

DEDICACE	5
PREFACE	7
INTRODUCTION / HISTORIQUE	15
CHAPITRE 1 – LA FIBRE OPTIQUE	
ET LE GUIDAGE DE LA LUMIERE	19
11. C'EST QUOI LA LUMIERE	19
111. La nature de la lumière	19
112. Le spectre lumineux	20
113 L'onde électromagnétique	20
12. DESCRIPTION DE LA FIBRE OPTIQUE	21
13. GUIDAGE DU FAISCEAU LUMINEUX	21
131. Indice de réfraction d'un milieu	21
132. Loi Snell-Descartes	22
133. Astuce du guidage	23
14. NOTIONS DE MODES	24
141. Définition de Mode	24
142. Fréquence normalisée	24
15. LES DIFFERENTS TYPES DE FIBRES OPTIQUES	25
151. Fibres optiques multi modes à sauts d'indice	25
152. Fibres optiques multi modes à gradients d'indice	26
153. Fibres optiques unimodales	27
154. Fibre active	27
16. COMPARAISON	28
161. Comparaison de la fibre optique et du fil de cuivre	28
162. Comparaison de fibres entre elles	28

17. APPLICATION DE LA FIBRE OPTIQUE
AUTRE QUE LES TELECOMS
171. Médecine
172. Mesure
18. NORMALISATION UIT DES FIBRES OPTIQUES
CHAPITRE 2 – TECHNIQUES DE FABRICATION
DE LA FIBRE OPTIQUE
21- LA PREFORME
22. LE TUBE EBAUCHE
23. LA FABRICATION DE LA GAINE OPTIQUE
24. LA FABRICATION DU CŒUR OPTIQUE
25. LE FIBRAGE
26. LE CABLE A FIBRE OPTIQUE
CHAPITRE 3 – TRANSMETTRE
SUR LA FIBRE OPTIQUE
31. CHOIX DES LONGUEURS D'ONDE DE TRAVAIL
311. La diffusion de Rayleigh.
312. L'absorption
313. Choix des fenêtres de longueurs d'onde de travail
314. Expression de l'atténuation
32. ETUDES DE LA DISPERSION
ET DE LA BANDE PASSANTE
321. Notion de dispersion
322. La dispersion intermodale
323. Interprétation du signe de la dispersion chromatique
324. Compensation de la dispersion
chromatique le long d'une liaison
325. La dispersion de mode de polarisation (PMD)
33. CALCUL DE LA BANDE PASSANTE
D'UNE LIAISON A FIBRE OPTIQUE
331. Expression générale
332. Bande passante des fibres multi modes à saut d'indice
333. Bande passante des fibres multi
modes à gradient d'indice
334. Bande passante des fibres monomodes
335. Cas des débits numériques

336. Exemples de fiches techniques
d'un fabricant de fibre optique
34. LES COMPOSANTS OPTIQUES
341. Les coupleurs optiques
342. Les connecteurs optiques
343. Les filtres
334. Les atténuateurs
235. Les isolateurs
35. LES EMETTEURS OPTIQUES
351. Les diodes électroluminescentes
352. Les Diodes Laser
353. Comparaison
354. Les Modulateurs
36. LES RECEPTEURS OPTIQUES
361. Rôle et caractéristiques du récepteur
362. Les photodiodes PIN
363. Les photodiodes à Avalanche
364. Les Démodulateurs
365. Les comparaisons des récepteurs
CHAPITRE 4 – TECHNIQUES DE MULTIPLEXAGE
TT D'AMPLIFICATION
41. APERCU DES PRINCIPES DE MULTIPLEXAGES
TRADITIONNELS
42. MULTIPLEXAGE EN LONGUEUR D'ONDE (xWDM)
421. Principe
422. Bandes de travail
43. LES AMPLIFICATEURS OPTIQUES
431. Principe de l'amplification
432. Fibre dopée erbium ou
Erbium Doped Fiber Amplifier (EDFA)
333. Amplificateur de type RAMAN
434. Comparaison des deux types d'amplification
3.4 LES MULTIPLEXEURS OPTIQUES
A INSERTION ET EXTRACTION (OADM) (Optical Add and Drop Multiplexer)
(Obucai Aud and Diob Muniblexel)

A FIBRE OPTIQUE	
51. METHODOLOGIE	
511. Etape 1 : Au bureau, étude sommaire	
512. Etape 2 : Préparation de la mission	
de survey (sur le terrain),	
513. Etape 3 : Sur le terrain, correction des prévisions	•••
514. Etape 4 : De retour au bureau,	
affinement des prévisions	
515. Etape 5 : Terminer	•••
516. Cas d'une liaison sous marine ou fluviale	•••
52. BILAN D'UNE LIAISON A FIBRE OPTIQUE	
521. Bilan énergétique ou de puissance	
522. Bilan chromatique	
53 MAINTENANCE ET MESURE	•••
531. La maintenance	
532. La réflectométrie ou OTDR (Optical Time Domain	
Reflectometer)	
533. Exemples de fiches techniques d'OTDR	
534. Analyseur de spectre optique	
535. Autres appareils intéressants	
536. Le raccordement des fibres optiques	•••
54. LES DIFFERENTES TECHNIQUES	
DE POSE DE LA FIBRE	
541. Les techniques de pose	
542. Les précautions à prendre	•••
CHAPITRE 6 – RESEAUX A FIBRES OPTIQUES	
ET PERSPECTIVES	
61 TOPOLOGIES USUELLES	
62. QUELQUES GRANDS RESEAUX A FIBRE OPTIQUE E	
AFRIQUE	
63. CAS DU MONDE	•••
64 PERSPECTIVES	

HOMMAGE À

Pr. Charles Kuen KAO, Ingénieur Inventeur de la Fibre Optique dédiée aux télécoms Co-lauréat du Prix Nobel de Physiques 2009

« L'introduction de systèmes à fibres optiques révolutionnera les réseaux des communications. La faible atténuation de transmission et la grande capacité de la bande passante permettront aux signaux d'être transmis pour établir des communications sur de grandes distances avec peu ou sans amplification intermédiaire. »

INTRODUCTION / HISTORIQUE

Depuis la nuit des temps, les hommes ont toujours cherché à communiquer à distance. Des techniques diverses jalonnent le long parcours des inventions. Le tam-tam (onde sonore) par exemple a été beaucoup utilisé par les civilisations africaines comme vecteur d'informations.

En Europe, Claude Chappe invente en 1794 le télégraphe visuel. Grâce à l'utilisation d'un système de relais d'observateurs, la transmission les messages codés sous forme de **jeux de lumière** pouvait être communiquée en quelques minutes sur des distances importantes.

' 1 heure pour transmettre une information sur 400 km '

En 1854, John Tyndall, physicien irlandais démontre scientifiquement devant la Société Royale Britannique le principe de la réflexion totale interne de la lumière, battant ainsi en brèche l'idée que la lumière ne se déplace qu'en ligne droite. Sa découverte consistait à guider la lumière dans un jet d'eau sortant d'un trou percé à la base d'un réservoir. En injectant de la lumière dans ce jet, il a pu démontrer le principe qui est à la

base de la fibre optique actuelle : guider la lumière dans un conduit transparent.

Mais on doit la première tentative de transmission optique de la voix humaine à Alexander Graham Bell, inventeur du téléphone. En effet, il a mis au point un appareil appelé photophone au cours des années 1880. Le principe est le suivant:

La voix humaine amplifiée par un microphone fait vibrer un miroir qui réfléchit la lumière du soleil. Quelque 200 m plus loin, un second miroir capte cette lumière pour activer un cristal de sélénium et reproduire le son transmis. Bien qu'opérationnelle en terrain découvert, cette invention n'a pu avoir une application industrielle du fait des aléas climatiques : pluie, neige et les obstacles.

Malgré ces déclics scientifiques, l'utilisation de la lumière comme support viable de transmission d'informations sur une longue distance n'a pu progresser. Les recherches s'étant heurtés entre autres aux difficultés de production de faisceaux lumineux fins et au support lui même. Il a fallu attendre 1960, année de la découverte du laser pour que les recherches s'accélèrent.

En 1964, **Charles Kuen Kao**, décrit dans un important document la possibilité d'utilisation du couple laser-fibre optique pour bâtir un système de communication longue distance à faible perte.

Trois scientifiques de la compagnie Corning Glass Works de New York, Robert Maurer, Peter Schultz et Donald Keck, produisirent en 1970 la première fibre optique avec un affaiblissement 20 dB/Km

Et depuis le premier réseau de Chicago (USA) en 1977 à nos jours, la fibre n'a cessé de s'améliorer en qualité (0,2 dB/Km) tout en s'imposant comme support de référence dans le monde des télécommunications longue distance.

Dr. Charles Kuen Kao 1933

Dans ce cours, nous décrirons la fibre, étudierons sa fabrication avant d'aborder dans un important chapitre les aspects de transmission proprement dits.

Les derniers chapitres aborderont l'ingénierie d'une liaison à fibre optique et les grands réseaux du monde sans oublier les perspectives.