Lista 2

Zadanie 1. Niech $\mathbb{W} \leq \mathbb{V}$ będą przestrzeniami liniowymi, zaś $U \subseteq \mathbb{V}$. Udowodnij, że następujące warunki są równoważne:

- 1. istnieje wektor $u \in \mathbb{V}$, taki że $U = u + \mathbb{W}$;
- 2. istnieje wektor $u \in U$, taki że U = u + W;
- 3. dla każdego wektora $u \in U$ zachodzi $U = u + \mathbb{W}$.

Udowodnij też równoważność poniższych warunków:

- 1. istnieje wektor $u \in \mathbb{V}$, taki że U u jest przestrzenią liniową;
- 2. istnieje wektor $u \in U$, taki że U u jest przestrzenią liniową;
- 3. dla każdego wektora $u \in U$ zbiór U u jest przestrzenią liniową.

Zadanie 2. Niech $\mathbb{W} \leq \mathbb{V}$ będzie podprzestrzenią liniową, zaś U i U' jej warstwami. Pokaż, że

$$U = U'$$
 lub $U \cap U' = \emptyset$.

Możesz skorzystać z Zadania 1, nawet jeśli nie potrafisz go udowodnić.

Zadanie 3. Wyznacz bazę obrazu dla następujących przekształceń liniowych (z \mathbb{R}^3)

- F(x, y, z) = (2x + y, 3x z, 5x + y z, -2x + 2y 2z);
- G(x, y, z) = (x + y, y 2z, 3z, x y);
- H(x, y, z) = (x + y, y + z);

$$LIN(F(\vec{v}_1), \dots, F(\vec{v}_k)) = Im F.$$

Wskazówka: Możesz skorzystać z faktu: jeśli $F: V \rightarrow W$ oraz $LIN(\vec{v}_1,\ldots,\vec{v}_k) = V$ to

Zadanie 4. Które z poniższych przekształceń są liniowe (dziedzinami i przeciwdziedzinami przekształceń są przestrzenie \mathbb{R}^n dla odpowiednich n)?

- L(x,y) = (2x y, x + 3y 1, 5x + 2y),
- L'(x, y, z) = (3x + 5y 2z, 2x y),
- $L''(x, y, z) = (x \cdot y + z, -2x z, -2y z)$.

Dla tych z powyższych przekształceń, które są liniowe, znajdź ich rzędy oraz podaj bazy jądra i obrazu.

Zadanie 5. Niech \mathbb{V} będzie przestrzenią liniową wymiaru n nad ciałem \mathbb{F} , zaś $F: \mathbb{V} \to \mathbb{F}$ niezerowym (tj. istnieje $\vec{v} \in \mathbb{V}$ takie że $F(\vec{v}) \neq \vec{0}$) przekształceniem liniowym (takie przekształcenia nazywamy funkcjonałami liniowymi).

- Jaki jest wymiar jądra $\ker F$?
- Ustalmy dowolny wektor $\vec{w} \in \mathbb{V} \setminus \ker F$. Pokaż, że LIN $(\ker F \cup \{\vec{w}\}) = \mathbb{V}$.
- Niech F, G będą dowolnymi funkcjonałami liniowymi na \mathbb{V} o tym samym jądrze, tj. ker $F = \ker G$. Korzystając z poprzedniego punktu pokaż, że wtedy istnieje $\beta \in \mathbb{F}$, taka że $F = \beta G$.

Zadanie 6. Rozważmy przestrzeń wielomianów o stopniu najwyżej 7 nad ciałem \mathbb{Z}_5 oraz przekształcenie liniowe zdefiniowane jako suma pierwszej i drugiej pochodnej, tj.:

$$F(x^{i}) = ix^{i-1} + i(i-1)x^{i-2} ,$$

gdzie $i(i-1)x^{i-2}$ dla i < 2 oznacza 0.

Podaj bazy jadra $\ker F$ i obrazu $\operatorname{Im} F$ tego przekształcenia. Podaj ich wymiary.

Wskazówka: Możesz skorzystać ze wskazówek do Zadania 3 i Zadania ??.

Zadanie 7. Dane jest przekształcenie liniowe $F: \mathbb{V} \to \mathbb{W}$. Udowodnij, że następujące warunki są równoważne:

- F jest różnowartościowe;
- $\dim(\ker(F)) = 0;$
- $\ker(F)$ składa się z jednego wektora;
- $\dim(\operatorname{Im}(F)) = \dim(\mathbb{V}).$

Zadanie 8 (* Nie liczy się do podstawy, choć nie jest takie trudne). Załóżmy, że dla przekształcenia liniowego $L: \mathbb{R}^2 \to \mathbb{R}^2$ zachodzi $L^3(\vec{v}) = \vec{0}$, dla każdego wektora $v \in \mathbb{R}^2$. Pokaż, że wtedy również $L^2(\vec{v}) = \vec{0}$, dla każdego wektora v.

Udowodnij uogólnienie tego faktu:

Jeśli dla $L: \mathbb{R}^n \to \mathbb{R}^n$ oraz pewnego k > n zachodzi $L^k(\vec{v}) = \vec{0}$ dla dowolnego wektora \vec{v} , to zachodzi również $L^n(\vec{v}) = \vec{0}$.

Wskazówka: Rozważ wektory
$$\vec{v}, L(\vec{v}), L^2(\vec{v}), \dots, L^n(\vec{v})$$
. Są one liniowo zależne.

Zadanie 9. Pokaż, że dla macierzy A, B, C odpowiednich wymiarów oraz skalara α zachodzą następujące zależności (Id oznacza macierze identycznościową/jednostkową odpowiedniego wymiaru, tj. mającą na przekątnej jedynkę oraz zera w innych miejscach):

$$\operatorname{Id} \cdot A = A \quad B \cdot \operatorname{Id} = B$$

$$A \cdot (B + C) = A \cdot B + A \cdot C$$

$$(A + B) \cdot C = A \cdot C + B \cdot C$$

$$\alpha(A \cdot B) = (\alpha A) \cdot B = A \cdot (\alpha B)$$

$$A[B|C] = [AB|AC]$$

$$\left[\frac{B}{C}\right] A = \left[\frac{BA}{CA}\right]$$

Zadanie 10. Podaj zwartą postać macierzy (nad \mathbb{R})

$$\begin{bmatrix} \alpha & 1 \\ 1 & \alpha \end{bmatrix}^n .$$

Postać zwarta nie zawiera sum, wielokropków itp.

Zadanie 11. Oblicz (macierze są nad \mathbb{R})

$$\begin{bmatrix} 1 & 2 & 2 \\ 2 & 1 & -2 \\ 2 & -2 & 1 \end{bmatrix}^{2}; \begin{bmatrix} 1 & 2 & 2 \\ 2 & 1 & -2 \\ 2 & -2 & 1 \end{bmatrix}^{3}; \begin{bmatrix} 1 & 2 & 2 \\ 2 & 1 & -2 \\ 2 & -2 & 1 \\ 1 & 2 & 2 \\ 2 & 1 & -2 \\ 2 & -2 & 1 \end{bmatrix} \cdot \begin{bmatrix} 1 & 2 & 2 & 1 & 2 & 2 \\ 2 & 1 & -2 & 2 & 1 & 2 & 2 \\ 2 & 1 & -2 & 2 & 1 & -2 \\ 2 & -2 & 1 & 2 & -2 & 1 \end{bmatrix}.$$