Node Level Permutation

Quadratic Assignment Procedure

Network Autocorrelation

Baseline Models

Introduction to Network Statistics

Lorien Jasny¹

¹University of Exeter L.Jasny@exeter.ac.uk

PolNets Workshop
16 June 2023

Contents

Node Leve Permutation

Quadratic Assignment Procedure

Network Autocorre lation

Baselin Models

- Setup
 - R
 - RStudio
 - statnet package
 - datafiles for the class
- Basic SNA Measures
 - centrality measures
 - graph correlation
 - reciprocity
 - transitivity
- Hypothesis testing
 - for Node level indices
 - General permutation tests
 - Quadratic Assignment Procedure
 - Network Autocorrelation Models
 - for Graph level indices
 - Conditional Uniform Graph (CUG) Models

Hypothesis Testing

Node Level Permutation

Assignment Procedure

Network Autocorrelation

Baseline Models

Node Level Permutation

Quadratic Assignmen Procedure

Network Autocorrelation

Baseline

Relating Node level indices to covariates

• Node Level Indices: centrality measures, brokerage, constraint

Node Level Permuta-

Quadratic Assignmen Procedure

Network Autocorre lation

Baseline Models

Relating Node level indices to covariates

- Node Level Indices: centrality measures, brokerage, constraint
- Node Covariates: measures of power, career advancement, gender really anything you want to study that varies at the node level

Node Level Permuta-

Quadratic Assignmen Procedure

Network Autocorre

Baseline

Emergent Multi-Organizational Networks (EMON) Dataset

• 7 case studies of EMONs in the context of search and rescue activities from Drabek et. al. (1981)

Node Level Permuta-

Quadratic Assignmen Procedure

Network Autocorrelation

Baseline Models

Emergent Multi-Organizational Networks (EMON) Dataset

- 7 case studies of EMONs in the context of search and rescue activities from Drabek et. al. (1981)
- Ties between organizations are self-reported levels of communication coded from 1 to 4 with 1 as most frequent

Node Level Permutation

Quadratic Assignment Procedure

Network Autocorre lation

Baseline Models

Emergent Multi-Organizational Networks (EMON) Dataset

Attribute Data

- Command Rank Score (CRS): mean rank (reversed) for prominence in the command structure
- Decision Rank Score (DRS): mean rank (reversed) for prominence in decision making process
- Paid Staff: number of paid employees
- Volunteer Staff: number of volunteer staff
- Sponsorship: organization type (City, County, State, Federal, or Private)

Node Level Permutation

Quadratic Assignment Procedure

Network Autocorrelation

Baseline

Node Level Permutation

Quadratic Assignment Procedure

Network Autocorrelation

Baseline Models

Correlation between DRS and Degree?

• Subsample of Mutually Reported "Continuous Communication" in Texas EMON

Node Level Permutation

Quadratic Assignment Procedure

Network Autocorrelation

Baseline Models

- Subsample of Mutually Reported "Continuous Communication" in Texas EMON
- Degree is shown in color (darker is bigger)

Quadratic Assignment Procedure

Network Autocorrelation

Baseline Models

- Subsample of Mutually Reported "Continuous Communication" in Texas EMON
- Degree is shown in color (darker is bigger)
- DRS in size

Node Level Permutation

Quadratic Assignmen Procedure

Autocorrelation

Baseline Models

- Subsample of Mutually Reported "Continuous Communication" in Texas EMON
- Degree is shown in color (darker is bigger)
- DRS in size
- Empirical corelation $\rho = 0.86$

Quadratic Assignment Procedure

Network Autocorrelation

Baseline Models

$$\rho = 0.86$$

Node Level Permutation

Quadratic Assignment Procedure

Network Autocorrelation

Baseline Models

$$\rho = 0.86$$

Node Level Permutation

Quadratic Assignment Procedure

Network Autocorre lation

Baseline Models

$$\rho = 0.86$$

$$\rho = -0.07$$

Node Level Permuta-

Quadratic

Network Autocorre

Baseline Models

$$\rho = 0.86$$

Quadratic Assignment Procedure

Network Autocorre lation

Baseline Models

$$\rho = 0.86$$

Node Level Permutation

Quadratic Assignment Procedure

Network Autocorre lation

Baseline Models

Node Level Permutation

Node Level Permutation

Quadratic Assignment

Network Autocorre

Baseline Models

Quadratic Assignment Procedure

Network Autocorre

Baseline Models

Regression?

Node Level Permutation

Assignment Procedure

Network Autocorrelation

Baseline Models

Regression?

Node Level Permutation

Quadratic Assignment Procedure

Network Autocorrelation

Baseline

• Can use Node Level Indices as independent variables in a regression

Quadratic Assignment Procedure

Network Autocorrelation

Baselin

- Can use Node Level Indices as independent variables in a regression
- Big assumption: position predicts the properties of those who hold them

Quadratic Assignment Procedure

Network Autocorrelation

Baseline Models

- Can use Node Level Indices as independent variables in a regression
- Big assumption: *position* predicts the *properties of* those who hold them
- Conditioning on NLI values, so dependence in accounted for *assuming no error in the network*

Quadratic Assignment Procedure

Network Autocorrelation

Baseline Models

- Can use Node Level Indices as independent variables in a regression
- Big assumption: position predicts the properties of those who hold them
- Conditioning on NLI values, so dependence in accounted for assuming no error in the network
- NLIs as dependent variables more problematic due to autocorrelation

Code Time

Permutation

Quadratic

Node Level

Procedure Network

Autocorrelation

Baseline Models Sections 1-2.3

Node Level Permutation

Quadratic Assignment Procedure

Network Autocorre lation

Baseline Models

Quadratic Assignment Procedure

Marriage

Business

Quadratic Assignment Procedure

Network Autocorrelation

Baseline Models

Quadratic Assignment Proceedure

Marriage

Business

Graph Correlation

Node Leve Permutation

Quadratic Assignment Procedure

Network Autocorrelation

Baseline Models Quadratic Assignment Procedure

Graph Correlation

• Simple way of comparing graphs on the same vertex set by element

Quadratic Assignment Procedure

Graph Correlation

- Simple way of comparing graphs on the same vertex set by element
- $gcor\left(\begin{bmatrix} 1 & 1 \\ 1 & 0 \end{bmatrix}, \begin{bmatrix} 1 & 1 \\ 2 & 2 \end{bmatrix}\right) = cor([1, 1, 1, 0], [1, 1, 2, 2])$

Node Level Permutation

Quadratic Assignment Procedure

Network Autocorre lation

 $\begin{array}{c} {\rm Baseline} \\ {\rm Models} \end{array}$

Do business ties coincide with marriages?

Marriage

Business

 $\rho = 0.372$

Node Level Permutation

Quadratic Assignment Procedure

Network Autocorre lation

Baseline Models

Do business ties coincide with marriages?

Marriage

Business

Node Level Permutation

Quadratic Assignment Procedure

Network Autocorre lation

Baseline Models

Do business ties coincide with marriages?

Marriage

Business

 $\rho = 0.169$

Quadratic Assignment Procedure

Network Autocorrelation

Baseline Models

Do business ties coincide with marriages?

Marriage

Business

$$\rho = -0.034$$

Node Level Permuta-

Quadratic Assignment Procedure

Network Autocorre lation

Baseline Models

Do business ties coincide with marriages?

Marriage

Business

$$\rho = -0.101$$

Node Leve Permutation

Quadratic Assignment Procedure

Network Autocorrelation

Quadratic Assignment Procedure

Network Autocorrelation

Baseline Models

QAP Test

Quadratic Assignment Procedure

Network Autocorre lation

Baseline Models

QAP Test

Node Level Permutation

Quadratic Assignment Procedure

Network Autocorrelation

Node Leve Permuta-

Quadratic Assignment Procedure

Network Autocorre lation

Baseline Models Why can't we use the same permutation test?

Node Leve Permuta-

Quadratic Assignment Procedure

Network Autocorre lation

Baseline

lode Lev

Quadratic Assignment Procedure

Network Autocorrelation

lode Lev

Quadratic Assignment Procedure

Network Autocorrelation

Network Regression

tion

Quadratic

Quadratic Assignment Procedure

Network Autocorrelation

Node Leve Permutation

Quadratic Assignment Procedure

Network Autocorrelation

Baseline

Network Regression

• Family of models predicting social ties

Quadratic

Assignment Procedure

- Family of models predicting social ties
 - Special case of standard OLS regression

Quadratic Assignment Procedure

Network Autocorrelation

Baseline

- Family of models predicting social ties
 - Special case of standard OLS regression
 - Dependent variable is a network adjacency matrix

Permutation

Quadratic

Quadratic Assignment Procedure

Network Autocorre lation

Baseline Models

- Family of models predicting social ties
 - Special case of standard OLS regression
 - Dependent variable is a network adjacency matrix

•
$$\mathbf{E}Y_{ij} = \beta_0 + \beta_1 X_{1ij} + \beta_2 X_{2ij} + \dots + \beta_\rho X_{\rho ij}$$

Procedure

- Family of models predicting social ties
 - Special case of standard OLS regression
 - Dependent variable is a network adjacency matrix
- $\mathbf{E}Y_{ij} = \beta_0 + \beta_1 X_{1ij} + \beta_2 X_{2ij} + \dots + \beta_o X_{oij}$
 - Where **E** is the expectation operator (analogous to "mean" or "average")

- Family of models predicting social ties
 - Special case of standard OLS regression
 - Dependent variable is a network adjacency matrix
- $\mathbf{E}Y_{ij} = \beta_0 + \beta_1 X_{1ij} + \beta_2 X_{2ij} + \dots + \beta_o X_{oij}$
 - Where **E** is the expectation operator (analogous to "mean" or "average")
 - Y_{ij} is the value from i to j on the dependent relation with adjacency matrix Y

Assignment Procedure

- Family of models predicting social ties
 - Special case of standard OLS regression
 - Dependent variable is a network adjacency matrix
- $\mathbf{E}Y_{ij} = \beta_0 + \beta_1 X_{1ij} + \beta_2 X_{2ij} + \dots + \beta_o X_{oij}$
 - Where **E** is the expectation operator (analogous to "mean" or "average")
 - Y_{ij} is the value from i to j on the dependent relation with adjacency matrix Y
 - X_{kij} is the value of the kth predictor for the (i,j)ordered pair, and $\beta_0, \dots, \beta_\rho$ are coefficients

Data Prep

Quadratic Assignment Procedure

Network Autocorre-

Data Prep

Quadratic

Quadratic Assignment Procedure

Network Autocorrelation

Baseline

• Dependent variable is an adjacency matrix

Quadratic

Quadratic Assignment Procedure

Autocorre lation

- Dependent variable is an adjacency matrix
 - Standard case: dichotomous data

Data Prep

Node Leve Permutation

Quadratic Assignment Procedure

Network Autocorre lation

Baseline

- Dependent variable is an adjacency matrix
 - Standard case: dichotomous data
 - Valued case

Quadratic

Assignment Procedure

Autocorre lation

- Dependent variable is an adjacency matrix
 - Standard case: dichotomous data
 - Valued case
- Independent variables also in adjacency matrix form

Permutation

Quadratic Assignment Procedure

Autocorre lation

Baseline

- Dependent variable is an adjacency matrix
 - Standard case: dichotomous data
 - Valued case
- Independent variables also in adjacency matrix form
 - Always takes matrix form, but may be based on vector data

tion Quadratic

Assignment Procedure

Autocorre lation

- Dependent variable is an adjacency matrix
 - Standard case: dichotomous data
 - Valued case
- Independent variables also in adjacency matrix form
 - Always takes matrix form, but may be based on vector data
 - eg. simple adjacency matrix, sender/receiver effects, attribute differences, elements held in common

Code Time

Quadratic Assignment Procedure

Network Autocorrelation

Baseline Models Sections 2.4-2.5

Network Autocorrelation Models

Node Leve Permutation

Assignmer Procedure

Network Autocorrelation

Node Leve Permutation

Quadratic Assignment Procedure

Network Autocorrelation

Baseline

Network Autocorrelation Models

• Family of models for estimating how covariates relate to each other through ties

Network Autocorrelation

- Family of models for estimating how covariates relate to each other through ties
 - Special case of standard OLS regression

Network

Autocorrelation

- Family of models for estimating how covariates relate to each other through ties
 - Special case of standard OLS regression
 - Dependent variable is a vertex attribute

Procedure

Network

Autocorrelation

Baseline Models

- Family of models for estimating how covariates relate to each other through ties
 - Special case of standard OLS regression
 - Dependent variable is a vertex attribute
- $y = (I \Theta W)^{-1} (X\beta + (I \psi Z)^{-1} v)$

Network Autocorrelation

- Family of models for estimating how covariates relate to each other through ties
 - Special case of standard OLS regression
 - Dependent variable is a vertex attribute
- $y = (I \Theta W)^{-1} (X\beta + (I \psi Z)^{-1} v)$
 - where Θ is the matrix for the Auto-Regressive weights

- Family of models for estimating how covariates relate to each other through ties
 - Special case of standard OLS regression
 - Dependent variable is a vertex attribute
- $y = (I \Theta W)^{-1} (X\beta + (I \psi Z)^{-1} v)$
 - where Θ is the matrix for the Auto-Regressive weights
 - and ψ is the matrix for the Moving Average weights

Node Level Permutation

Quadratic Assignmen Procedure

Network Autocorrelation

Baseline

The Classical Regression Model

Node Level Permutation

Quadratic Assignment Procedure

Network Autocorrelation

Baseline

The Classical Regression Model

Node Level Permuta-

Quadratic Assignment Procedure

Network Autocorrelation

Baseline

The Classical Regression Model

Network Autocorrelation

The Classical Regression Model

Adding Network AR Effects

Node Level Permuta-

Quadratic Assignment Procedure

Network Autocorrelation

Adding Network AR Effects

Node Level Permuta-

Quadratic Assignment Procedure

Network Autocorrelation

Adding Network AR Effects

Node Level Permuta-

Quadratic Assignment Procedure

Network Autocorrelation

Network Autocorrelation

Baseline Models

Adding Network MA Effects

Node Level

Quadratic Assignment Procedure

Network Autocorrelation

Baseline Models

Adding Network MA Effects

Node Leve Permuta-

Quadratic Assignment Procedure

Network Autocorrelation

Baseline

Network ARMA Model

Node Leve Permuta-

Quadratic Assignment Procedure

Network Autocorrelation

Baseline

Node Level Permuta-

Quadratic Assignment Procedure

Network Autocorrelation

Baseline Models

Network Autocorrelation

Network Autocorrelation

Node Level Permuta-

Quadratic Assignment Procedure

Network Autocorrelation

Baseline Models

Node Level Permuta-

Quadratic Assignment Procedure

Network Autocorrelation

Baseline

Node Level Permutation

Quadratic Assignmen Procedure

Network Autocorrelation

Baseline Models

Permutation

Quadratic

Quadratic Assignment Procedure

Network Autocorrelation

Baseline

Inference with the Network Autocorrelation Model

• Usually observe \mathbf{y} , \mathbf{X} , and \mathbf{Z} and/or \mathbf{Z} , want to infer β , θ , and ϕ

Network Autocorrelation

Baseline Models

- Usually observe \mathbf{y} , \mathbf{X} , and \mathbf{Z} and/or \mathbf{Z} , want to infer β , θ , and ϕ
- Need each I W, I Z invertible for solution to exist

Network Autocorrelation

Baseline Models

- Usually observe \mathbf{y} , \mathbf{X} , and \mathbf{Z} and/or \mathbf{Z} , want to infer β , θ , and ϕ
- Need each I W, I Z invertible for solution to exist
- error in disturbance autocorrelation, v, assumed as iid, $v_i N(0, \sigma^2)$

Network Autocorrelation

Baseline Models

- Usually observe \mathbf{y} , \mathbf{X} , and \mathbf{Z} and/or \mathbf{Z} , want to infer β , θ , and ϕ
- Need each I W, I Z invertible for solution to exist
- error in disturbance autocorrelation, v, assumed as iid, $v_i N(0, \sigma^2)$
- Standard errors based on the inverse information matrix at the MLE

Network Autocorrelation

Baseline Models

- Usually observe \mathbf{y} , \mathbf{X} , and \mathbf{Z} and/or \mathbf{Z} , want to infer β , θ , and ϕ
- Need each I W, I Z invertible for solution to exist
- error in disturbance autocorrelation, v, assumed as iid, $v_i N(0, \sigma^2)$
- Standard errors based on the inverse information matrix at the MLE
- Compare models in the usual way (eg AIC, BIC)

Choosing the Weight Matrix

tion

Quadratic

Network Autocorrelation

Choosing the Weight Matrix

tion Quadratic

Assignmen Procedure

Network Autocorrelation

Baseline Models • crucial modeling issue to choose the right form

Permutation

Quadratic Assignment Procedure

Network Autocorrelation

Baseline

Choosing the Weight Matrix

- crucial modeling issue to choose the right form
 - standard adjacency matrix

Choosing the Weight Matrix

Node Leve Permutation

Quadratic Assignmen Procedure

Network Autocorrelation

- crucial modeling issue to choose the right form
 - standard adjacency matrix
 - row-normalized adjancecy matrix

tion Quadratic

Network Autocorre-

lation

Baseline Models

Choosing the Weight Matrix

- crucial modeling issue to choose the right form
 - standard adjacency matrix
 - row-normalized adjancecy matrix
 - structural equivalence distance

tion Quadratic

 $\begin{array}{c} {\rm Procedure} \\ {\bf Network} \end{array}$

Autocorrelation

Baseline Models

Choosing the Weight Matrix

- crucial modeling issue to choose the right form
 - standard adjacency matrix
 - row-normalized adjancecy matrix
 - structural equivalence distance
- Many suggestions given by Leenders 2002

Data Prep

Quadratic Assignment

Network Autocorrelation

Data Prep

tion Quadratic

Assignment Procedure

Network Autocorrelation

Baseline Models • Dependent variable is a vertex attribute

Node Leve Permutation

Quadratic Assignment Procedure

Network Autocorrelation

Baseline

- Dependent variable is a vertex attribute
- Covariates are in matrix form with one column per attribute

Data Prep

Node Leve Permutation

Quadratic Assignmen Procedure

Network Autocorrelation

- Dependent variable is a vertex attribute
- Covariates are in matrix form with one column per attribute
- \bullet Can include an intercept term by adding a column of 1s

Node Leve Permutation

Quadratic Assignment Procedure

Network Autocorrelation

- Dependent variable is a vertex attribute
- Covariates are in matrix form with one column per attribute
- \bullet Can include an intercept term by adding a column of 1s
- Weight matrices for both AR and MA terms in matrix form

Data Prep

Node Leve Permutation

Quadratic Assignment Procedure

Network Autocorrelation

- Dependent variable is a vertex attribute
- Covariates are in matrix form with one column per attribute
- Can include an intercept term by adding a column of 1s
- Weight matrices for both AR and MA terms in matrix form
- Can include multiple weight matrices (as a list) for both AR and MA

Leenders 2002

Node Level Permutation

Quadratic Assignment Procedure

Network Autocorrelation

Node Leve Permutation

Quadratic Assignment Procedure

Network Autocorrelation

Baseline Models

Leenders 2002

Node Leve Permutation

Quadratic Assignment Procedure

Network Autocorrelation

Baseline

• Dependent variable: proportion of support in a parish for democratic presidential candidate Kennedy in the 1960 elections

Variables

Node Leve Permutation

Quadratic Assignment Procedure

Network Autocorrelation

- Dependent variable: proportion of support in a parish for democratic presidential candidate Kennedy in the 1960 elections
- Covariates:

Network Autocorrelation

- Dependent variable: proportion of support in a parish for democratic presidential candidate Kennedy in the 1960 elections
- Covariates:
 - ullet B is the percentage of African American residents in the parish

lation

- Dependent variable: proportion of support in a parish for democratic presidential candidate Kennedy in the 1960 elections
- Covariates:
 - B is the percentage of African American residents in the parish
 - C is the percentage of Catholic residents in the parish

lation

- Dependent variable: proportion of support in a parish for democratic presidential candidate Kennedy in the 1960 elections
- Covariates:
 - ullet B is the percentage of African American residents in the parish
 - ullet C is the percentage of Catholic residents in the parish
 - ullet U is the percentage of the parish considered urban

lation

- Dependent variable: proportion of support in a parish for democratic presidential candidate Kennedy in the 1960 elections
- Covariates:
 - ullet B is the percentage of African American residents in the parish
 - ullet C is the percentage of Catholic residents in the parish
 - \bullet *U* is the percentage of the parish considered urban
 - BPE is a measure of 'black political equality'

lation

- Dependent variable: proportion of support in a parish for democratic presidential candidate Kennedy in the 1960 elections
- Covariates:
 - B is the percentage of African American residents in the parish
 - C is the percentage of Catholic residents in the parish
 - U is the percentage of the parish considered urban
 - BPE is a measure of 'black political equality'
- Weight matrix (ρ) : simple contiguity network

LJasny

Node Leve Permutation

Quadratic Assignment Procedure

Network Autocorrelation

Leenders 2002

Table 3 Network effects model for the Louisiana voting data

	OLS	$w_{ij}^{[1]}$	$w_{ij}^{[2]}$	$w_{ij}^{[6]}$	$w_{ij}^{[9]}$
ρ	, .\	0.31* (0.10)	0.07 (0.06)	0.12 (0.25)	0.04 (0.12)
Constant	21.03* (4.40)	13.87* (4.67)	19.83* (4.34)	16.78 (10.06)	19.80* (5.62)
В	0.01 (0.08)	-0.00(0.07)	0.00 (0.08)	0.01 (0.08)	0.01 (0.08)
C	0.30* (0.04)	0.22* (0.05)	0.28* (0.04)	0.29* (0.05)	0.29 (0.05)
U	-0.11*(0.04)	-0.10* (0.04)	-0.11* (0.04)	-0.11*(0.04)	-0.11*(0.04)
BPE	0.39* (0.06)	0.30* (0.06)	0.37* (0.06)	0.38* (0.06)	0.38* (0.06)

^{*} P < 0.05.

Table 4 Network disturbances model for the Louisiana voting data

	$w_{ij}^{[1]}$	$w_{ij}^{[2]}$	$w_{ij}^{[6]}$	$w_{ij}^{[9]}$
ρ	0.69* (0.10)	0.53* (0.13)	0.22 (0.42)	0.74* (0.15)
Constant	26.99* (4.50)	24.98* (4.22)	21.52* (4.30)	24.51* (5.06)
В	-0.11 (0.07)	-0.07 (0.07)	-0.00(0.08)	-0.09 (0.08)
C	0.37* (0.05)	0.35* (0.04)	0.31* (0.04)	0.38* (0.04)
U	-0.07* (0.03)	0.08* (0.03)	-0.11* (0.04)	-0.10*(0.04)
BPE	0.24* (0.06)	0.30* (0.06)	0.38* (0.06)	0.29* (0.06)

^{*}P < 0.05

Node Level Permutation

Quadratic Assignment Procedure

Network Autocorrelation

Table 5
Order of W matrices and autocorrelation models according to AIC

	Weight matrix	AIC	Order within model	Overall order
Network effects model	$w_{ij}^{[1]}$	439.12	1	3
	$w_{ij}^{[2]}$	445.52	2	5
	$w_{ij}^{[9]}$	446.78	4	8
	$w_{ij}^{[6]}$	446.44	3	6
Network disturbances model	$w_{ij}^{[1]}$	431.92	1	1
	$w_{ij}^{[2]}$	436.33	2	2
	$w_{ij}^{[9]}$	446.69	4	7
	$w_{ij}^{[6]}$	440.95	3	4
OLS	_	446.82	_	9

Code Time

tion Quadratic

Procedure Network

Autocorrelation

Baseline Models Section 2.6

Node Leve Permutation

Quadratic Assignment Procedure

Network Autocorrelation

Network Autocorrelation

Baseline Models

Baseline Models

 treats social structure as maximally random given some fixed constraints tion
Quadratic

Assignmen Procedure

Autocorrelation

Baseline Models

- treats social structure as maximally random given some fixed constraints
- methodological premise from Mayhew

- treats social structure as maximally random given some fixed constraints
- methodological premise from Mayhew
 - identify potentially constraining factors

- treats social structure as maximally random given some fixed constraints
- methodological premise from Mayhew
 - identify potentially constraining factors
 - compare observed properties to baseline model

- treats social structure as maximally random given some fixed constraints
- methodological premise from Mayhew
 - identify potentially constraining factors
 - compare observed properties to baseline model
 - useful even when baseline model is not 'realistic'

Types of Baseline Hypotheses

Quadratic

Network

Autocorrelation

Types of Baseline Hypotheses

Node Leve Permutation

Quadratic Assignmen Procedure

Network Autocorrelation

Empirical Network

Types of Baseline Hypotheses

Empirical Network

Types of Baseline Hypotheses

Empirical Network

LJasny

Node Level Permutation

Quadratic Assignment Procedure

Network Autocorrelation

Baseline Models

Types of Baseline Hypotheses

Types of Baseline Hypotheses

Node Leve Permutation

Quadratic Assignmen Procedure

Network Autocorrelation

Empirical Network

Types of Baseline Hypotheses

Empirical Network

Types of Baseline Hypotheses

Empirical Network

Types of Baseline Hypotheses

Types of Baseline Models

Node Leve Permutation

Quadratic Assignment Procedure

Network Autocorrelation

 $\begin{array}{c} {\rm Baseline} \\ {\rm Models} \end{array}$

Node Level Permutation

Quadratic Assignment Procedure

Network Autocorre lation

Baseline Models

Types of Baseline Models

• **Size:** given the number of individuals, all structures are equally likely

Permutation

Quadratic Assignment Procedure

Network Autocorrelation

Baseline Models

Types of Baseline Models

- **Size:** given the number of individuals, all structures are equally likely
- Number of edges/probability of an edge: given the number of individuals and interactions (aka Erdös-Renyi random graphs)

LJasny

Node Level Permuta-

Quadratic Assignment Procedure

Network Autocorrelation

Baseline Models

Types of Baseline Models

- **Size:** given the number of individuals, all structures are equally likely
- Number of edges/probability of an edge: given the number of individuals and interactions (aka Erdös-Renyi random graphs)
- **Dyad census:** given number of individuals, mutuals, asymmetric, and null relationships

LJasny

Node Level Permuta-

Quadratic Assignment Procedure

Network Autocorre lation

Baseline Models

Types of Baseline Models

- Size: given the number of individuals, all structures are equally likely
- Number of edges/probability of an edge: given the number of individuals and interactions (aka Erdös-Renyi random graphs)
- **Dyad census:** given number of individuals, mutuals, asymmetric, and null relationships
- **Degree distribution:** given the number of individuals and each individual's outgoing/incoming ties

Types of Baseline Models

Node Level Permutation

Quadratic Assignment Procedure

Autocorre lation

- **Size:** given the number of individuals, all structures are equally likely
- Number of edges/probability of an edge: given the number of individuals and interactions (aka Erdös-Renyi random graphs)
- **Dyad census:** given number of individuals, mutuals, asymmetric, and null relationships
- **Degree distribution:** given the number of individuals and each individual's outgoing/incoming ties
- Number of triangles: not implemented due to complexity with ERGM, can condition on the expected number of triangles

Method

tion Quadratic

Network Autocorre-

Node Leve Permutation

Quadratic Assignment Procedure

Network Autocorrelation

Baseline Models • Select a test statistic (graph correlation, reciprocity, transitivity. . .)

Network Autocorrelation

- Select a test statistic (graph correlation, reciprocity, transitivity...)
- Select a baseline hypothesis (what you're conditioning on)

Network Autocorrelation

- Select a test statistic (graph correlation, reciprocity, transitivity...)
- Select a baseline hypothesis (what you're conditioning on)
- Simulate from the baseline hypothesis

Network Autocorrelation

- Select a test statistic (graph correlation, reciprocity, transitivity...)
- Select a baseline hypothesis (what you're conditioning on)
- Simulate from the baseline hypothesis
- For each simulation, recalculate the test statistic

Node Leve Permutation

Quadratic Assignment Procedure

Network Autocorrelation

- Select a test statistic (graph correlation, reciprocity, transitivity...)
- Select a baseline hypothesis (what you're conditioning on)
- Simulate from the baseline hypothesis
- For each simulation, recalculate the test statistic
- Compare empirical value to null distribution, just as in standard statistical testing

Example

Permutation

Quadratic Assignment Procedure

Network Autocorre lation

Baseline Models Transitivity in the Hurricane Frederic EMON

Quadratic Assignment Procedure

Network Autocorrelation

Baseline Models

Transitivity in the Hurricane Frederic EMON

Quadratic Assignment Procedure

Network Autocorre lation

Baseline Models

Transitivity in the Hurricane Frederic EMON

- $\rho = 0.475$
- indicates that roughly half the time that $i \rightarrow j \rightarrow k$, $i \rightarrow k$

Quadratic Assignment Procedure

Network Autocorre lation

Quadratic Assignment Procedure

Network Autocorrelation

Bodin and Tengo

Permutation

Quadratic Assignmen Procedure

Network Autocorre lation

Baseline Models $\hbox{``Disentangling intangible social-ecological systems''}$

LJasny

Node Level Permuta-

Quadratic Assignment Procedure

Network Autocorre lation

Baseline Models

Bodin and Tengo

Symmetric resource access

Asymmetric resource access

Bodin and Tengo

Node Level Permuta-

Quadratic Assignment Procedure

Network Autocorrelation

Summary

tion Quadratic Assignment

Network Autocorrelation

Quadratic Assignment Procedure

Network Autocorre lation

Baseline Models \bullet Network indices as independent variables in regression

Quadratic Assignment Procedure

Network Autocorrelation

- Network indices as independent variables in regression
- QAP regression (edges are the dependent variable)

Quadratic Assignment Procedure

Autocorrelation

- Network indices as independent variables in regression
- QAP regression (edges are the dependent variable)
- Network Autocorrelation Model (vertex attribute is dependent variable)

Quadratic Assignment Procedure

Autocorrelation

- Network indices as independent variables in regression
- QAP regression (edges are the dependent variable)
- Network Autocorrelation Model (vertex attribute is dependent variable)
- CUG tests (network is dependent variable)

Quadratic Assignment Procedure

Network Autocorre lation

Baseline Models • the rest! whew!