Approval Talk [HIG-23-005]

"Search for rare decays of the Higgs boson into a photon and a ρ^0 , ϕ or K^{*0} meson"

R. Covarelli 1 M. Pelliccioni 1 G. Umoret 1 M. D'Alfonso 2 G. Gomez Ceballos 2 C. Paus 2 K. Yoon 2

¹Politecnico di Torino, Turin, Italy

²Massachusetts Institute of Technology, Cambridge, U.S.

March 19, 2024

About this analysis

add paper front page

HIG-23-005

Collaboration

Collaboration of MIT and Torino groups, targeting different Higgs production categories.

Conveners

- ARC: Anadi Canepa (chair), Stefan Spanier, Jian Wang, Angelo Giacomo Zecchinelli
- CCLE: Christoph Maria Ernst Paus

Documentation

- Relevant links: CADI, TWiki, text
- Latest ANs (two individual + one combined):
 AN-22-004 (MIT, v9), AN-22-067 (Torino, v10), and AN-23-004 (combined, v7)

Introduction

Motivations

Higgs coupling with light quarks (u,d,s)

- Suppressed couplings and large QCD background hamper direct searches.
- Class of decays suggested H \to M γ , where M is a light-quark meson.
- In this analysis, $M=\phi, \rho^0, K^{*0}$ are considered.

Channel	Coupling	$SM\;\mathcal{BR}(H\toM\gamma)$
$H o \phi \gamma$	s	$(1.68 \pm 0.08) \times 10^{-5}$ [1]
$H o ho^0 \gamma$	u, d	$(2.31 \pm 0.11) \times 10^{-6}$ [1]
$H o K^{*0} \gamma$	d&s (flavor-changing)	(Only available for H \rightarrow d \overline{s} + \overline{d} s) $1.19 \times 10^{-11} \ \mbox{[3]}$

Table 1: $H \to M\gamma$ channels considered in this analysis with their respective couplings and predicted branching ratios.

Motivations

$H \to M\gamma$

- Direct contribution. The Higgs couples via Yukawa coupling to the quarks, one of which radiates a
 photon.
- Indirect contribution. The off-shell γ^* or Z^* produced in $H \to \gamma \gamma^*$, γZ^* fragments into a meson.

Direct and indirect contributions interfere destructively. Due to light quark masses, direct contribution is smaller than indirect. *Direct contribution is sensitive to deviation from SM*. Branching ratios are *typically* $\mathcal{O}(10^{-5}-10^{-6})$.

(a) Direct contributions via Yukawa coupling to the light quarks.

(b) Indirect contribution via a virtual photon or Z boson.

Figure 1: Leading order Feynman diagrams to the $H \to M\gamma$ processes. Image taken from Fig. 2 of [1].

Motivations

Flavor-conserving probes

- φ: s quark coupling (diagrams above)
- ρ^0 : u and d quark coupling

Flavor-changing probe

 K*0: flavor-changing s and d quarks via weak interaction (diagrams below)

Figure 2: Feynman diagrams showing the different Higgs boson decay mechanisms into a photon and a light meson (top: ϕ meson; bottom: K^{*0} meson).

Introduction

Strategy

Final states

- 1. High energy **photon**
- 2. High energy ditrack from meson
- 3. FIXI Look for photon-meson inv. mass

Strategy

• Higgs Production Categories

- No e/μ
- Veto events with $|\Delta \eta_{JJ}| > 3$

- Barrel photon $p_T^{\gamma} > 75 \text{ GeV}$
- No e/μ
- $|\Delta\eta_{II}| >$ 3, $M_{II} >$ 400 GeV

VBF low p_T^{γ}

- $40 < p_T^{\gamma} < 75 \text{ GeV}$
- No e/μ
- $|\Delta \eta_{II}| > 3$, $M_{II} > 300$ GeV

VH (Z₁₁H, W₁⋅ H)

- At least one l, ν
- Also included is $t\bar{t}H$, accounting for $\sim 30\%$.

March 19, 2024

Triggers

- What to discuss?
- FIX! Trigger efficiency how to measure (slide with plots)
 - $Z \rightarrow \mu^+ \mu^-$ events data/MC Measure photon leg & tau leg

 - Figs. 30 & 38

	ggH	High-p _T fl VBF	Low-p _T VBF	VH
				single/di-muon
Triggers	tau-like	VBF-like	tau-like	single/di-electron
				muon+gamma
		28.2 (2016)		
Luminosity (fb ⁻¹)	39.50 (2018)	7.7 (2017)	39.50 (2018)	138 (2016–2018)
		60 (2018)		

Simulated Samples

$$\begin{split} \phi(1020) &\to K^+ K^- \ (\text{BR} \sim 49\%) \\ \rho(770) &\to \pi^+ \pi^- \ (\text{BR} \sim 100\%) \\ K_0^*(892) &\to K^\pm \pi^\mp \ (\text{BR} \sim 100\%) \end{split}$$

FIXI Polarization reweighting (new slide if plot)

Photon selection

	ggH	High- $p_{\mathrm{T}}^{\mathrm{fl}}$ VBF	$Low\text{-}p_{T}^{fl}VBF$	VH
p_T^γ [GeV]	> 38	> 75	$38 < p_T^{\gamma} < 75$	> 40
$ \eta^{\gamma} $	< 2.1	< 1.4	< 2.1	< 2.5
γ -ID signal eff.	80%	90%	80%	90%

Table 2: Photon selection criteria across different production categories.

- γ -ID signal eff. = MVA-based selection ID [5]
- p_T^{γ} cut based on trigger
- Where is the information about di-photon veto for ggH?

 FIXI ggH & VH.
- ggH/VBF: conversion veto, VH: pixel veto.
- Highest- p_T^{γ} photon chosen as candidate.

◆ロ > ← 回 > ← 巨 > ← 巨 → り へ ○ ○

Ditrack reconstruction

- Track selection
 - 1. Originate from PV
 - 2. Pass "high purity" criteria
- Meson definition $(M = \phi, \rho^0, K_0^*)$
 - 1. Pair of oppositely charged tracks
 - 2. $p_T > 5 \text{ GeV}, |\eta| < 2.5$
 - 3. At least one track $p_T > 20 \text{ GeV}$
- Invariant mass
 - 1. $ho^0: 0.62 < m_{\pi\pi} < 0.92 \; {\rm GeV}$ $\phi: 1.008 < m_{KK} < 1.032 \; {\rm GeV}$ $K_0^*: 0.84 < m_{K\pi} < 0.94 \; {\rm GeV}$
 - 2. $m_{K\pi}$ closest to $m_{K_0^*}$ selected
 - 3. Reject events where m_{KK} consistent with m_{ϕ} and have higher p_T , vice versa.

Applies to all production categories.

mass sidebands

Di-track system

Define the relative **charged isolation** of the leading meson candidate,

$$I^{\mathrm{trk}}(M) = rac{p_T^M}{p_T^M + \sum_{trk} |p_T^{trk}|},$$

and the neutral isolation as

$$I^{\text{neu}}(M) = \frac{p_T^M}{p_T^M + \sum_{neu} |p_T^{neu}|}.$$

 $\sum_{trk/neu} |p_T^{trk/neu}|$: sum of charged/neutral track p_T within $\Delta R = 0.3$ of meson candidate.

	ggH	High- $p_{\mathrm{T}}^{\mathrm{fl}}$ VBF	$Low\text{-}p_{\mathrm{T}}^{\mathrm{fl}}\;VBF$	VH
p_T^M [GeV]	> 38	> 40	> 40	> 40
I_M^{trk}	> 0.9	> 0.9	> 0.9	> 0.8
I_M^{neu}	> 0.8	-	-	-

Table 3: Di-track system criteria across different production categories.

• Highest- p_T meson chosen as candidate.

15/34

March 19, 2024

Event tagging

	ggH	High- $p_{\mathrm{T}}^{\mathrm{fl}}$ VBF	$Low\text{-}p_{\mathrm{T}}^{\mathrm{fl}}VBF$	VH
Event tagging	$\begin{array}{l} \text{Meson candidate} \\ \text{within a jet with} \\ p_T^j > 40 \text{ GeV,} \\ \text{tracks with} \\ \Delta R < 0.07 \end{array}$	2 jets with $p_T^j > 40$ GeV, $m_{jj} > 400$ GeV, $\eta_{jj} > 3$	2 jets with $p_T^j > 30, 20$ GeV, $m_{jj} > 300$ GeV, $\eta_{jj} > 3$	1 selected and isolated e/μ or 2 selected e/μ compatible with m_Z

Table 4: Event tagging selection criteria across different production categories.

Summary of Event Selection FIX! Take the version of the paper

	Common selections					
M selection	"high-purity" tracks, opposite sign $ \eta^{\rm trk} <2.5,p_T^{\rm trk1}>20~{\rm GeV},p_T^{\rm trk1}>5~{\rm GeV}, \eta^M <2.1$					
	$0.62 < m_{\pi\pi} < 0.62$	$0.92 \text{ GeV}, 1.008 < m_k$	$_{ m CK} < 1.032~{ m GeV}, 0.84 <$	$m_{K\pi} < 0.94~{\sf GeV}$		
	ggH	High-p ^{fl} VBF	Low-p _T VBF	VH		
p_T^{γ} [GeV]	> 38	> 75	$40 < p_T^{\gamma} < 75$	> 40		
$ \eta^{\gamma} $	< 2.1	< 1.4	< 2.1	< 2.5		
γ -ID signal eff.	80%	90%	80% (endcap), 90% (barrel)	90%		
p_T^M [GeV]	> 38	> 40	> 40	> 40		
I_M^{trk}	> 0.9	> 0.9	> 0.9	> 0.8		
I_{M}^{neu}	> 0.8	-	-	-		
Event tagging	$\begin{array}{l} \text{Meson candidate} \\ \text{within a jet with} \\ p_{_T}^{\text{j}} > 40 \text{ GeV,} \\ \text{tracks with} \\ \Delta R < 0.07 \end{array}$	2 jets with $p_T^j > 40$ GeV, $m_{jj} > 400$ GeV, $\eta_{jj} > 3$	2 jets with $p_T^j > 30, 20$ GeV, $m_{jj} > 300$ GeV, $\eta_{jj} > 3$	1 selected and isolated e/μ or 2 selected e/μ compatible with m_Z		

Table 5: FIX! Taken from paper Summary of event selection before MVA.

MC/Data Background Comparison

content...

- Multivariate Analysis (MVA)
 - BDT classifiers based on ROOT TMVA [6] for ${f ggH}$, ${f low-p_T^fl}$ ${f VBF}$, and ${f high-p_T^fl}$ ${f VBF}$.
 - Training and validation samples defined by meson mass SR & sidebands.
 - Signal & Background events weighted by $1/(\sigma_M/M)$, where

$$\frac{\sigma_M}{M} = \sqrt{\left(\frac{\sigma_m}{m}\right)_{\text{meson}}^2 + \left(\frac{\sigma_E}{E}\right)_{\text{fl}}^2}$$

19/34

Multivariate Analysis (MVA)

• Input variables used for ggH and VBF categories.

	ggH	High- $p_{\mathrm{T}}^{\mathrm{fl}}$ VBF	$Low-p_{T}^{\mathrm{fl}}VBF$
		$p_T^{M\gamma}$	$p_T^{M\gamma}$
Kinematics	p_T^{γ}	p_T^{γ}	p_T^{γ}
	p_T^M	$p_T^M/m_{M\gamma}$	$p_T^M/m_{M\gamma}$
	η_M		
Meson Isolation	$I^{\mathrm{trk}}(M)$	$I^{\mathrm{trk}}(M)$	$I^{\mathrm{trk}}(M)$
		M_{JJ}	M_{JJ}
Jet-related		$\Delta\phi_{JJ}$	$\Delta \phi_{JJ}$
		FIXI zepVar	FIX! zepVar

20 / 34

- Multivariate Analysis (MVA): ggH category
 - Input variables
 - SR & CR
 - Results.
 - MVAdisc
 - cat0 & cat1

- Multivariate Analysis (MVA): High- p_T^{γ} VBF category
 - Input variables
 - SR & CR
 - Results.
 - MVAdisc

- Multivariate Analysis (MVA): Low- p_T^{γ} VBF category
 - Input variables
 - SR & CR
 - Results.
 - MVAdisc

content...

content...

Systematic Uncertainties

Note: only for signal

- 1. Integrated Luminosity
- 2. **Total inelastic cross section** correcting PU profile in simulation to data.
- 3. Trigger efficiencies.
- **4. Photon ID efficiencies**. Derived from $Z \rightarrow e^+e^-$.
- 5. Tracking efficiency.
- 6. Muon/Electron ID.
- 7. Meson Charged/Neutral Isolation Efficiencies.
- 8. JEC & JES

Theoretical:

- 9. QCD renormalization and factorization.
- 10. PDF & ff_S.
- 11. Parton shower modeling from renormalization of QCD-induced ISR and FSR in PYTHIA.

Signal modeling

- m_{Mfl}. Distribution of the reconstructed Higgs boson mass.
- Analytic function: two-tailed Crystal Ball(TTCB).

$$\mathrm{TTCB}(t) = \left\{ \begin{array}{ll} e^{-t^2/2}, & \mathrm{for} \ -\alpha_L < t < \alpha_R \\ \left(\frac{n_L}{|\alpha_L|}\right)^{n_L} e^{-\alpha_L^2/2} \left(\frac{n_L}{|\alpha_L|} - |\alpha_L| - t\right)^{-n_L}, & \mathrm{for} \ t \leq -\alpha_L \\ \left(\frac{n_R}{|\alpha_R|}\right)^{n_R} e^{-\alpha_R^2/2} \left(\frac{n_R}{|\alpha_R|} - |\alpha_R| + t\right)^{-n_R}, & \mathrm{for} \ t \geq \alpha_L \end{array} \right.$$

Fitted via unbinned likelihood to simulated signal events.

27 / 34

Background modeling

- Analytic functions: Chebychev polynomials (main), Bernstein polynomials and exponential series (determination of shape uncertainties).
- Fitting region defined as $m_{M\gamma}$ sidebands.
 - ggH category: $110 < m_{M\gamma} < 120$ GeV & $130 < m_{M\gamma} < 160$ GeV.
 - VBF categories (high & low p_T^{γ}): $100 < m_{M\gamma} < 120$ GeV & $130 < m_{M\gamma} < 170$ GeV.
 - VH category: $100 < m_{M\gamma} < 120 \text{ GeV } \& 130 < m_{M\gamma} < 150 \text{ GeV}.$
- Degree of polynomial determined with F-test.
- Bias test.

Signal & Background Post-fit Distributions

content...

- Upper limits on $\mathcal{B}(H \to \rho^0 \gamma)$, $\mathcal{B}(H \to \phi \gamma)$, and $\mathcal{B}(H \to K_0^* \gamma)$ set at 95% CL.
- CLs profile-likelihood ratio used as test-statistics, with the asymptotic approximation.
- Systematic uncertainties treated as nuisance parameters.

30 / 34

Figure 3: Expected and observed upper limits on $\mathcal{B}(H \to \rho^0 \gamma)$ (top left), $\mathcal{B}(H \to \phi \gamma)$ (top right), and $\mathcal{B}(H \to K_0^* \gamma)$ (bottom) split by analysis categories and combined. Green and yellow bands correspond to 1 and 2 σ confidence intervals in the expected upper limits.

31/34

March 19, 2024

	U.L. <i>B</i> (<i>F</i>	$H o ho^0 \gamma)$	U.L. ${\cal B}(I$	$H o \phi \gamma)$	U.L. $\mathcal{B}(H)$	$I \to K_0^* \gamma)$
category	$Exp.(10^{-4})$	${\sf Obs.}(10^{-4})$	$Exp.(10^{-4})$	${\sf Obs.}(10^{-4})$	$Exp.(10^{-4})$	$Obs.(10^{-4})$
VH	$62.3_{-17.9}^{+25.6}$	73.7	$37.3^{+16.9}_{-11.3}$	45.0	$25.3_{-7.3}^{+11.4}$	48.5
$low\text{-}p_T^\gammaVBF$	$49.6_{-15.0}^{+22.5}$	35.6	$33.1^{+18.7}_{-11.5}$	27.9	$18.8^{+8.90}_{-5.7}$	12.3
high- p_T^γ VBF	$22.9_{-6.9}^{+10.5}$	16.0	$16.0_{-5.5}^{+9.0}$	10.7	$9.13^{+4.25}_{-2.75}$	6.66
ggH	$6.01_{-1.72}^{+2.53}$	4.37	$3.08^{+1.33}_{-0.98}$	3.46	$2.20^{+0.94}_{-0.62}$	1.93
combined	$5.71^{+2.37}_{-1.63}$	3.74	$2.88^{+1.33}_{-0.83}$	2.97	$2.10^{+0.90}_{-0.58}$	1.71

Table 6: Exclusion limits at 95% CL on the branching fractions of the H boson decays. Observed and median expected limits with the upper and lower bounds in the expected 68% CL intervals are reported.

32 / 34

Channel	Coupling	$SM\;\mathcal{BR}(H\toM\gamma)$	Limits on \mathcal{BR}	Notes
$H o \phi \gamma$	s	$(1.68 \pm 0.08) \times 10^{-5}$ [1]	Exp. $4.2^{+1.8}_{-1.2} \times 10^{-4}$	ATLAS Run 2, 35.6 fb
$11 \rightarrow \psi \gamma$	3		Obs. 5.0×10^{-4} [2]	$\phi\gamma \to K^+K^-\gamma$
$H o \phi \gamma$	u, d	$(2.31 \pm 0.11) \times 10^{-6}$ [1]	Exp. $10.0^{+4.9}_{-2.8} \times 10^{-4}$	ATLAS Run 2, 35.6 fb
$\Pi \rightarrow \psi \gamma$	и, и		Obs. 10.4×10^{-4} [2]	$ ho \gamma ightarrow \pi^+ \pi^- \gamma$
$H o K^{*0} \gamma$	d&s (flavor-changing)	(Only available for $H \to d\overline{s} + \overline{d}s$)	Exp. $3.7^{+1.5}_{-1.0} \times 10^{-4}$	ATLAS Run 2, 134 fb
		1.19×10^{-11} [3]	Obs. 2.2×10^{-4} [4]	$K_0^* \gamma \to K^{\pm} \pi^{\mp} \gamma$

Table 7: $H \to M\gamma$ channels considered in this analysis with their respective couplings and predicted branching ratios.

Bibliography

- [1] M. König and M. Neubert, "Exclusive radiative Higgs decays as probes of light-quark Yukawa couplings", Journal of High Energy Physics 2015 (2015).
- [2] ATLAS collaboration, "Erratum to: Search for exclusive Higgs and Z boson decays to φγ and ργ with the ATLAS detector", Journal of High Energy Physics 2023 (2023).
- [3] J.I. Aranda, G. González-Estrada, J. Montaño et al., "Revisiting the rare H → q_iq_j decays in the standard model", Journal of Physics G: Nuclear and Particle Physics 47 (2020) 125001.
- [4] ATLAS collaboration, "Search for exclusive Higgs and Z boson decays to ωγ and Higgs boson decays to K₀^{*}γ with the ATLAS detector", Physics Letters B 847 (2023) 138292.
- [5] CMS collaboration, "Electron and photon reconstruction and identification with the CMS experiment at the CERN LHC", Journal of Instrumentation 16 (2021) P05014.
- [6] A. Hoecker, P. Speckmayer, J. Stelzer et al., "TMVA Toolkit for Multivariate Data Analysis", 2009.