An Introduction to [WZU17]

An Attempt to Avoid the Old Cosmological Constant Problem

Yi-Fan Wang (王 一帆)

Institut für Theoretische Physik Universität zu Köln

June 14, 2017

Overview

The Old Cosmological Constant Problem

Model of Gravitation

Correlator of Field Strength

Overview

The Old Cosmological Constant Problem

Model of Gravitation

Correlator of Field Strength

Overview

- A vacuum-energy-contributed effective cosmological constant could differ 120 order-of-magnitude from observation, which needs an extreme fine-tuning by the bare cosmological constant.
- Wang, Zhu, and Unruh consider vacuum energy density instead, which is subject to fluctuation, and their result moderates the problem.
- ▶ They assumed a localised RW metric and obtained a FL-like equation for $a(t, \vec{x})$, whose coefficient contains quantum fluctuation. The solution to the equation is evaluated with the help of theories of parametric oscillations and adiabatic invariances.
- ► The result is qualitatively supported by numerical calculation and further quantitative discussions.

Overview

The Old Cosmological Constant Problem

Model of Gravitation

Correlator of Field Strength

Cosmological constant and vacuum energy

▶ GR + vacuum QFT

$$G_{\mu\nu} + \lambda_{\mathsf{b}} g_{\mu\nu} = 8\pi G T_{\mu\nu}^{\mathsf{vac}} \tag{1}$$

▶ In Minkowski space-time, Lorentz invariance requires

$$T_{\mu\nu}^{\mathsf{vac}} = -\rho_{\mu\nu}^{\mathsf{vac}} \eta_{\mu\nu},\tag{2}$$

which generalises to curved space-time as

$$T_{\mu\nu}^{\mathsf{vac}} = -\rho_{\mu\nu}^{\mathsf{vac}} g_{\mu\nu}.\tag{3}$$

▶ Effectively, eq. (1) can be written as

$$G_{\mu\nu} + \lambda_{\rm eff} g_{\mu\nu} = 0, \qquad \lambda_{\rm eff} = \lambda_{\rm b} + 8\pi G \rho^{\rm vac}; \qquad (4)$$

$$G_{\mu\nu} = -8\pi G \rho_{\rm eff}^{\rm vac} g_{\mu\nu}, \qquad \rho_{\rm eff}^{\rm vac} = \rho^{\rm vac} + \frac{\lambda_{\rm b}}{8\pi G}. \tag{5} \label{eq:gamma_power}$$

Hubble parameter and cosmological constant

▶ Homogeneity and isotropy: Robertson–Walker metric

$$ds^2 = -dt^2 + a^2(t)\delta_{ij} dx^i dx^j.$$
 (6)

▶ Hubble parameter / expansion rate $H := \dot{a}/a$; eqs. (4) and (5) take the corresponding Friedmann–Lemaître form

$$3H^2 = \lambda_{\text{eff}} = 8\pi G \rho_{\text{eff}}^{\text{vac}},\tag{7}$$

$$3\ddot{a} = \lambda_{\text{eff}} a = 8\pi G \rho_{\text{eff}}^{\text{vac}} a. \tag{8}$$

Solution to eq. (8)

$$a(t) = a(t_0) e^{H(t-t_0)} \tag{9}$$

The Old Cosmological Problem

- ▶ Contributions to $\rho_{\rm eff}^{\rm vac}$ or $\lambda_{\rm eff}$: vacuum fluctuation of all quantum fields, Electroweak phase transition, etc.
- $ightharpoonup \lambda_{
 m eff}$ by vacuum fluctuation evaluated in Minkowski space: taking neutral massless Klein–Gordon and sharp-momentum cut-off,

$$\langle \rho^{\mathsf{vac}} \rangle = \frac{\Lambda^4}{16\pi^2}.\tag{10}$$

Setting $\Lambda=E_{\rm P}$ results in a surpass of the observed value of $\lambda_{\rm eff}$ by ~ 120 orders of magnitude.

 \blacktriangleright Might be extremely fine-tuned by a $\lambda_{\rm b}$

Hawking Radiation

Results and interpretation

lacktriangle An early-time vacuum on \mathcal{I}^- in collapsing background

$$\hat{a}(p) |h\rangle := 0 \quad \Rightarrow \quad \langle h | \hat{n}_a(p) | h\rangle =: \langle \hat{n}_a(p) \rangle_b \equiv 0$$
 (11)

evolves to a late-time state on $\mathcal{I}^+ \cup \mathscr{R}^+$ with particles on \mathcal{I}^+

$$\langle \hat{n}_{\mathsf{on} \ \mathcal{I}^+}(\omega) \rangle_h =: \langle \hat{n}_b(\omega) \rangle_h \approx \Gamma_\omega (e^{2\pi\omega/\kappa} - 1)^{-1}.$$
 (12)

▶ Comparing eq. (11) with the Bose–Einstein distribution

$$\langle \hat{n}(\omega) \rangle_{\mathsf{BE}} = \left(e^{\omega/T} - 1 \right)^{-1},$$
 (13)

one may conclude that eq. (11) describes a grey-body radiation with the Hawking temperature,

$$T_{\mathsf{H}} := \kappa/2\pi \equiv \hbar/\mathsf{ck} \cdot \kappa/2\pi.$$

Hawking Radiation

Tension in the interpretation

▶ The state $|h\rangle$ or its density operator is pure,

$$\hat{\rho}_h = |h\rangle \langle h|, \qquad (15)$$

whilst the of equilibrium bosonic ideal gas

$$\hat{\rho}_{\mathsf{BE}}(T) = Z^{-1} e^{-\widehat{H}/T} \sim Z^{-1} \sum_{E} e^{-E/T} |E\rangle \langle E| \tag{16}$$

is thermal and mixed.

▶ How different are they?

Overview

The Old Cosmological Constant Problem

Model of Gravitation

Correlator of Field Strength

Classical theory of (1+1)d Dilaton Gravity Model I

▶ The action of the dilaton gravity model reads

$$S = \int d^2x \sqrt{-g} \left\{ \frac{e^{-2\phi}}{G} \left[R + 4(\nabla\phi)^2 + 4\lambda^2 \right] - \frac{1}{2} (\nabla f)^2 \right\}, \tag{17}$$

- $lackbox{}\phi(x)$ the dilaton field, without which topological
- $lackbox{}{} f(x)$ a massless neutral scalar field representing matter
- $\lambda > 0$ the cosmological constant
- ▶ Has a solution which resembles the collapsing body in (3+1)-dimensional Einstein gravitation
 - Each point represents a point
 - Thick line:

Quantum theory of (1+1)d Dilaton Gravity Model I

- Constraint system: Schrödinger quantisation does not apply
- ▶ (Formally) Dirac quantisation

$$\widehat{\mathcal{H}}_{\parallel}\Psi[g,\phi,f]=0,\qquad \widehat{\mathcal{H}}_{\perp}\Psi[g,\phi,f]=0. \tag{18}$$

- Semi-classical approximation: $\Psi = e^{i(G^{-1}S_0 + S_1 + GS_2 + ...)}$
 - $ightharpoonup O(G^{-1})$: Hamilton–Jacobi equation for pure gravity
 - $\bullet \ \ \mathrm{O}(\mathsf{G}^0) : \ \Psi = D[g,\phi]\chi[g,\phi,f]; \ \text{functional Schrödinger}$ equation for matter $\mathring{\mathbb{I}}\partial_t\chi[f] = \widehat{H}_{\mathsf{m}}\chi[f], \ \text{where}$

$$\widehat{H}_{\rm m} = \frac{1}{2} \int_0^{+\infty} \mathrm{d}k \left(-\frac{\delta^2}{\delta f^2(k)} + k^2 f^2(k) \right). \tag{19}$$

A quantum field theory in curved space-time can be derived!

Quantum theory of (1+1)d Dilaton Gravity Model II

▶ At early time, the vacuum wave functional is

$$\chi_0[f_{\rm e}] \propto \exp\biggl\{-\frac{1}{2}\int_{\mathbb{R}^+} {\rm d}k\, k\, f_{\rm e}^2(k)\biggr\} \sim \prod_k \exp\biggl\{\frac{1}{2}\frac{k}{\Lambda}\, f_{\rm e}^2\biggr\}, \ \mbox{(20)}$$

while at late time it evolves to

$$\chi_b[f_{\mathsf{I}}] \propto \exp\left\{-\int_{\mathbb{R}} \mathrm{d}p \, p \coth\left(\frac{\mathrm{m}p}{2\lambda}\right) |f_{\mathsf{I}}(p)|^2\right\} \sim \prod_p \mathrm{e}^{\ldots}, \quad (21)$$

where $f_{\rm e}(k)$ and $f_{\rm I}(p)$ are the Fourier transform of the matter field at early and late time, respectively.

▶ At late time, particle-number expectations are

$$\langle \hat{n}_b(p) \rangle_{\chi_b} = \left(e^{2\pi |p|/\lambda} - 1 \right)^{-1},$$
 (22)

leading to a Hawking-like black-body temperature

$$T_{\mathsf{HD}} \coloneqq \lambda/2\pi.$$

Overview

The Old Cosmological Constant Problem

Model of Gravitation

Correlator of Field Strength

Correlation of Fourier Modes

The discrepancy

▶ The Fourier-mode correlators can be calculated,

$$\begin{split} \left\langle \hat{f}^{\dagger}(p_1)\hat{f}(p_2)\right\rangle &= \frac{1}{T_{\mathrm{HD}}}\delta(p_1-p_2) \cdot \begin{cases} \frac{1}{2}\frac{1}{q}, & \text{vacuum}; \\ \frac{1}{8}\frac{\tanh\frac{q}{4}}{\frac{q}{4}}, & \chi_b; \\ \frac{1}{4}\frac{\coth\frac{q}{2}}{\frac{q}{2}}, & \hat{\rho}_{\mathrm{BE}}(T_{\mathrm{HD}}), \end{cases} \end{split} \tag{24}$$

where $q := p_1/T_{HD}$

▶ Diagonal elements (fluctuations) are plotted

Correlation of Fourier Modes

Fluctuation of the Fourier modes: diagram in log-log scale

Correlation of Fourier Modes

Fluctuation of the Fourier modes: interpretation

▶ Vacuum fluctuation

$$\left\langle \left| \hat{f} \right|^2 \right\rangle_{\text{V2C}} = \mathcal{O}(q^{-1})$$
 (25)

A black hole does not alter the high-energy processes

$$\left\langle \left| \hat{f} \right|^2 \right\rangle_{\chi_b} \approx \left\langle \left| \hat{f} \right|^2 \right\rangle_{\mathsf{th}} \approx \left\langle \left| \hat{f} \right|^2 \right\rangle_{\mathsf{vac}} = \mathcal{O}(q^{-1}), \quad |p| \gg T_{\mathsf{HD}}$$
(26)

▶ A black hole suppresses low-energy fluctuation of the pure state, while enhancing that of the thermal state

$$\mathrm{O}(1) \sim \left\langle \left| \hat{f} \right|^2 \right\rangle_{\chi_\mathrm{h}} \ll \left\langle \left| \hat{f} \right|^2 \right\rangle_{\mathrm{vac}} \ll \left\langle \left| \hat{f} \right|^2 \right\rangle_{\mathrm{th}} \sim \mathrm{O}(q^{-2}), \quad |p| \ll T_{\mathrm{HD}}$$

ightharpoonup Critical scale $|p| \sim T_{
m HD}$

Overview

The Old Cosmological Constant Problem

Model of Gravitation

Correlator of Field Strength

Trace Distance

Definitions

 \blacktriangleright Trace distance between Hermitian operators \widehat{M} and \widehat{N}

$$T(\widehat{M}, \widehat{N}) := \frac{1}{2} \operatorname{tr} \sqrt{(\widehat{M} - \widehat{N})^{\dagger} (\widehat{M} - \widehat{N})}$$
 (28)

- ▶ For density operators $\hat{\rho}$ and $\hat{\sigma}$,
 - $ightharpoonup 0 \le T(\hat{\rho}, \widehat{\sigma}) \le 1;$
 - Controlled by fidelity in

$$1 - F(\hat{\rho}, \widehat{\sigma}) \le T(\hat{\rho}, \widehat{\sigma}) \le \sqrt{1 - F^2(\hat{\rho}, \widehat{\sigma})},$$
 (29)

where we only need

$$F(|\alpha\rangle,\widehat{\sigma}) := \langle \alpha \,|\, \widehat{\sigma} \,|\, \alpha\rangle^{\frac{1}{2}}. \tag{30}$$

lacktriangle In our application, T is difficult while F can be obtained

Single-mode Distances between the Density Operators I

Bounds set by fidelity and eq. (28)

- ▶ The pure state can be decomposed upon discretisation $\chi_b[f] \sim \sum_p \chi_b^{(p)}(f_p) \equiv \sum_p \left\langle f_p \, \middle| \, \chi_b^{(p)} \right\rangle$, where $f_p \coloneqq f(p)$
- \blacktriangleright So is the thermal density operator $\hat{\rho}_{\rm th}(T) \sim \bigotimes_n \hat{\rho}_{\rm th}^{(p)}(T)$
- ▶ Fidelity (in eq. (28)) can be factorised as well

$$F \equiv \langle \chi_b \, | \, \hat{\rho}_{\mathsf{th}} \, | \, \chi_b \rangle^{\frac{1}{2}} \sim \prod_p \left\langle \chi_b^{(p)} \, | \, \hat{\rho}_{\mathsf{th}}^{(p)} \, | \, \chi_b^{(p)} \right\rangle^{\frac{1}{2}} =: \prod_p F^{(p)}; \tag{31}$$

 $lackbox{ }F^{(p)}$ can be computed in order to find bounds of T

$$F^{(p)}\!\left(|p\rangle\,, \hat{\rho}_{\mathrm{th}}^{(p)}(T_{\mathrm{HD}})\right) = \frac{\sqrt{u-1}}{\sqrt[4]{u^2+u+1}}, \quad u \coloneqq \mathrm{e}^q \equiv \mathrm{e}^{|p|/T_{\mathrm{HD}}}.$$

All-modes Distances between the Density Operators I

Bounds set by fidelity and eq. (28)

lacktriangle 'Go to the continuum limit': Λ dimension regulator

$$\sum_{p} g(p) \to \frac{1}{2\pi\Lambda} \int \mathrm{d}p \, g(p), \tag{33}$$

Analogously, to regularise a product

$$\prod_{p} f(p) \equiv \exp\left\{\sum_{p} \ln f(p)\right\} \to \exp\left\{\frac{1}{2\pi\Lambda} \int dp \ln f(p)\right\}$$
(34)

lacktriangle Regularised F can be calculated in order to set bounds of T

$$F(\chi_b, \hat{\rho}_{\rm th}) = \exp\biggl\{\frac{2}{2\pi\Lambda} \int_0^{+\infty} \mathrm{d}p \ln F^{(p)}\biggr\} = \exp\biggl(-\frac{\mathrm{tt}}{9} \frac{T_{\rm HD}}{\Lambda}\biggr) \\ \frac{1}{1000} \frac{1}{1000$$

Summary

- ► Compared the pure and the thermal descriptions of the radiation within the solvable dilaton gravity model
- ➤ Fourier-mode fluctuation: that of the thermal state diverges faster than the vacuum case does at low energy, while the pure-state fluc. remains finite; at high energies they converge.
- ► Trace distance: goes exponentially small with black hole temperature going to zero.
- Outlook in the proposed PhD study
 - ▶ Further discussion within full CGHS, BTZ, etc.
 - Make use of the decoherence theory
 - Nature of the microscopic degrees of freedom for BH entropy
 - ▶ Breakdown of the semi-classical approximations in QG

For Further Reading I

Qingdi Wang, Zhen Zhu, and William G. Unruh. "How the huge energy of quantum vacuum gravitates to drive the slow accelerating expansion of the Universe". In: *Physical Review D* 95.10 (May 2017).

More on Trace Distance

Interpretation

Maximal probability-difference obtainable

$$T(\hat{\rho}, \hat{\sigma}) = \max_{0 \le \widehat{\Lambda} \le \widehat{1}} \operatorname{tr} \left\{ \widehat{\Lambda}(\hat{\rho} - \hat{\sigma}) \right\}, \tag{36}$$

where all eigenvalues of $\widehat{\Lambda}$ are in the range [0,1]

- ▶ E.g. $\widehat{\Lambda} := |\alpha\rangle\,\langle\alpha|$, $|\alpha\rangle$ eigenstate of \widehat{A} with eigenvalue α
 - ightharpoonup tr $\left\{\widehat{\Lambda}\widehat{
 ho}\right\}$: the probability of getting lpha in measuring \widehat{A}
 - $\operatorname{tr}\{\widehat{\Lambda}(\widehat{\rho}-\widehat{\sigma})\}$: the difference of the probability above
 - $ightharpoonup T(\hat{\rho}, \widehat{\sigma})$: the maximal value of the difference above

More on Fidelity

General definition

$$F(|\alpha\rangle, |\beta\rangle) = |\langle \alpha | \beta \rangle| \tag{37}$$

$$F(|\alpha\rangle, \hat{\sigma}) = \sqrt{\langle \alpha \, | \, \hat{\sigma} \, | \, \alpha \rangle}$$
 (29 rev.)

$$F(\hat{\rho}, \hat{\sigma}) = \operatorname{tr} \sqrt{\hat{\rho}^{\frac{1}{2}} \hat{\sigma} \hat{\rho}^{\frac{1}{2}}}$$
 (38)

▶ Intepretation: faithfulness

$$F(|\alpha\rangle, |\alpha\rangle) = 1 \tag{39}$$

Another New Foundation of Statistical Physics

Specific and easy version of the construction

- ▶ Total isolated system U with energy constraint $\left\langle \widehat{H}_{U} \right\rangle \coloneqq E_{U}$, divided into a (sub)system S and an environment E
- ▶ Hilbert spaces $\mathcal{H}_R\supseteq\mathcal{H}_U=\mathcal{H}_S\otimes\mathcal{H}_E;\ \hat{1}_R$ identity on \mathcal{H}_R , dimension $d_R:=\dim\mathcal{H}_R<+\infty$
- lacktriangle Equiprobable / maximal-ignorant state of U

$$\hat{\mathcal{E}}_R \coloneqq d_R^{-1} \hat{1}_R \in \mathcal{H}_R \tag{40}$$

- \blacktriangleright Hamiltonians $\widehat{H}_U = \widehat{H}_S + \widehat{H}_E + \widehat{H}_{\rm int}$
- ▶ Canonical state of S with energy constraint

$$\widehat{\Omega}_{S}^{(\mathsf{E})} := \operatorname{tr}_{E} \widehat{\mathcal{E}}_{R} \propto \exp \left(-\widehat{H}_{S}/T_{\mathsf{th}}\right) \tag{41}$$

▶ Theorem: $\forall |\phi\rangle \in \mathcal{H}_{R}$, the reduced state of S

$$\operatorname{tr}_{E} |\phi\rangle \langle \phi| =: \hat{\rho}_{S}(\phi) \approx \widehat{\Omega}_{S}^{(\mathsf{E})}.$$

Another New Foundation of Statistical Physics

Generic and exact version of the construction

- \blacktriangleright Arbitrary constraint R; study the trace distance T between $\hat{\rho}_S(\phi)$ and $\widehat{\Omega}_S$
- \blacktriangleright Lemma: average distance is small w.r.t. $d_S/d_E^{\rm eff}$

$$\left\langle T\left(\widehat{\rho}_{S}(\phi),\widehat{\Omega}_{S}\right)\right\rangle \leq \frac{1}{2}\sqrt{d_{S}/d_{E}^{\text{eff}}}$$
 (43)

► Theorem: probability of large deviation is exponentially small w.r.t. the distance; an easy version

$$\frac{V\left[\left\{|\phi\rangle \mid T\left(\hat{\rho}_S(\phi), \widehat{\Omega}_S\right) \ge d_R^{-\frac{1}{3}}\right\}\right]}{V\left[\left\{|\phi\rangle\right\}\right]} \le 4\exp\left(-\frac{2d_R^{\frac{1}{3}}}{9\pi^3}\right) \quad (44)$$

lacksquare Effective dimension of E: setting $\widehat{\Omega}_E=\operatorname{tr}_S\widehat{\mathcal{E}}_R$,

$$d_U/d_S \equiv d_E \geq d_E^{\mathrm{eff}} \coloneqq \left(\operatorname{tr} \widehat{\Omega}_E^2 \right)^{-1} \geq d_R/d_S.$$

