MWALIMU EXAMINATIONS BUREAU

UACE RESOURCE MOCK EXAMINATIONS 2018

S.6 PHYSICS P1 DRAFT GUIDE

Qn	Answer	Mark(s)
1. (a)	(i) Displacement Axes must be labelled Axes must be labelled	1
	(ii) Nelocity 1	1
(b)	(i) v v_0 t $180 - \frac{2}{3}t$ t t t t t	1
	Let $t = time$ during acceleration Then time during retardation is $\frac{0.50}{0.75}t = \frac{2}{3}t$	1/2
	$\therefore \text{ time at constant speed} = 180 - t - \frac{2}{3}t = 180 - \frac{5}{3}t$	1
	The maximum speed, $v_0 = 0.5t$ Now, distance covered = area under curve	1/2
	$1800 = \frac{1}{2} v_o (180 + 180 - \frac{5}{3} t)$ $= \frac{1}{2} \times 0.5t (360 - \frac{5}{3} t)$	1
	$\therefore t^2 - 216t + 4320 = 0$	1

	1 22 2 2 2 2 102 7 2	
	:. $t = 22.3 \text{ s or } 193.7 \text{ s}$ We take $t = 22.3 \text{ s}$	1
	$\frac{\text{ve take}}{\text{(ii)}} \text{v}_0 = 0.5 \text{t}$	1
	$= 0.5 \times 22.3 = 11.2 \text{ m s}^{-1}$	1
(c)	(i) If no external force acts on a system of colliding bodies, the total	
	momentum of the bodies remains constant.	1
	(ii) Suppose a particle of mass m ₁ originally moving with velocity u ₁	
	collides with another particle of mass m ₂ which is originally moving with	
	velocity u_2 . Then m_1 exerts a force F_1 on m_2 to change the velocity of m_2	1/2
	from u_2 to v_2 (according to the first law).	
	Also m_2 exerts a force F_2 on m_1 to change the velocity of m_1 from u_1 to	1/4
	V ₁ .	1/2
	Suppose the collision lasts for time δt . Then, according to the second law	1/2
	$F_1 = k \frac{m_2(v_2 - u_2)}{\delta t}$, where k is a constant	/2
	δt	1/2
	and $F_2 = k \frac{m_1(v_1 - u_1)}{\delta t}$	'-
	According to the third law, $F_2 = -F_1$	1
	$\therefore k \frac{m_1(v_1 - u_1)}{\delta t} = -k \frac{m_2(v_2 - u_2)}{\delta t}$	1
	$\therefore m_1 v_1 - m_1 u_1 = -m_2 v_2 + m_2 u_2$	
	$\therefore m_1 u_1 + m_2 u_2 = m_1 v_1 + m_2 v_2$	1
	:. Total momentum before collision = Total momentum after	1
	collision	
(d)	T 2g cos 30°	
	$T_{\mathbf{x}} \sim 1^{\circ}$	
	3kg	1
	2g sin30°	1
	2gμ cos30°	
	$\frac{\mathbf{v}}{3\mathbf{g}}$	
	$3g - T = 3a \dots (1)$	1
	$T - 2g \sin 30^{\circ} - 2g\mu \cos 30^{\circ} = 2a$ (2)	1
	Eq(1) + eq(2): $3g - 2g \sin 30^{\circ} - 2g\mu \cos 30^{\circ} = 5a$	
	$\therefore \qquad \qquad \mu = \frac{3g - 5a - 2g\sin 30^{\circ}}{2g\cos 30^{\circ}}$	
	$\mu = \frac{\mu}{2g\cos 30^{\circ}}$	
	$= \frac{(3 \times 9.81) - (5 \times 3) - (2 \times 9.81 \times 0.5)}{2 \times 9.81 \times 0.866}$	1
		1
	= 0.272	
	Total = 20	T .
2. (a)	(i) Is the maximum static frictional force between two surfaces in contact	1
	OR Is the frictional force between two surfaces in contact that are on the	
	Is the frictional force between two surfaces in contact that are on the	
	verge of having relative motion (ii)	
	Surfaces have projections. When two surfaces are in contact, the actual	
	area of contact is very small (compared to the surface area of the body).	
	area of contact is very small (compared to the surface area of the body).	

	Pressure at contact points is very high. The surfaces get pressed together. The projections focus welds. For motion to occur, the welds have to be broken hence an opposing force exists. This explains first law.	2
	When one surface of one body is changed, the actual area of contact remains the same when the reaction remains the same. The number of welds formed remain the same therefore frictional force remains the same. This explains the second law.	1
	When normal reaction is increased, the surfaces are pressed together by greater pressure. The number of contact points increase, the number of welds formed increase; the force required to break the welds increases; this means that frictional force increases; This explains the third law.	1
(b)	(i) At any point, the gravitational potential is the work done in taking a mass of 1 kg from infinity to that point.	1
	(ii) At the earth's surface the gravitational potential is $\frac{-GM}{r}$ But at the earth's surface the gravitational force on a mass m equals the	1
	mass's weight there. i.e. $\frac{GMm}{r^2} = mg$	1
	$GM = gr^2$ Thus the gravitational potential there $= \frac{-gr^2}{r} = -gr$	1
(c)	(i) Is the ratio of the weight of a substance to the weight of equal volume of water	1
	(ii) A uniform beam is balanced on a knife edge and its balance point G noted. Solids A and B are suspended from the beam as shown in figure below.	1
	Uniform beam	
	A Pivot B	
	Distance y is measured and recorded. Body B is then completely immersed in water and its position adjusted until the beam balances again.	1
	The distance y of body B from the pivot is measured and recorded. Body B is then completely immersed in liquid and its position adjusted	

	until the beam balances again.	1
	The distance, y' , of the body B from the pivot is measured and recorded. Relative density of the liquid is obtained from $\frac{y'(y''-y)}{y''(y'-y)}$	1
	Relative defisity of the liquid is obtained from $\frac{y''(y'-y)}{y''(y'-y)}$	
(d)	(i)	
	Francis (12.15) Francis (12.15)	
	Secretarian de la companya della companya della companya de la companya della com	
	Let cross – sectional area of the stem be A.	
	In water, $1 = 4 \text{ cm} = 4 \text{ x } 10^{-2} \text{ m}$.	1
	Weight of water displaced = Weight of hydrometer = $Ax(4x10^{-2} + y) x10^3 xg = Wt$ of hydrometereq. ₁	1
	= Ax(4x10 + y) x10 xg = wtornydronieter eq.1	
	In liquid of density $0.9g \text{ cm}^{-3}$, $1 = 6.0 \text{ cm} = 6 \text{ x } 10^{-2} \text{ m}$.	
	Weight of liquid displaced = Weight of hydrometer.	1
	$= A \times (6 \times 10^{-2} + y) \times 900 \times g = \text{Weight of hydrometer } \dots \text{eq.}_2$	
	From $(eq1)$ and $(eq2)$,	
	$A \times (4 \times 10^{-2} + y) \times 10^{3} \times g = A \times (6 \times 10^{-2} + y) \times 900 \times g$	1
	$(4 \times 10^{-2} + y) \times 10^{3} = (6 \times 10^{-2} + y) \times 900$	
	40 + 1000y = 54 + 900y	
	100y = 14 y = 0.14m	1
	(ii) For liquid of density 1.1gcm ⁻³ ,	
	Let depth be h.	
	Weight of liquid displaced = Weight of hydrometer A x h x 1, $100 \text{ x g} = \text{A x (} 0.06 + 0.14) + 900 \text{ x g}$	1
	$h \times 1,100 \times g = 11 \times (0.00 + 0.14) + 300 \times g$ $h \times 1,100 = 0.2 \times 900.$	1
	1 100b = 190	
	1,100h = 180 $h = 0.164 m$	1
	<i>Total</i> = 20	
3.(a)	(i) Kinetic energy is the energy possessed by a body by virtue of its motion while	1 1
	Potential energy is the energy possessed by a body by virtue of its	
	position.	

	(ii) Suppose a constant force, F, accelerates a body of mass m from rest to a velocity v in a distance s. Then, the work done by F is	
	W = Fs	
	= ma.s, where a = acceleration	1
	Using $2as = v^2 - u^2$, we have that $as = \frac{1}{2}v^2$	1
	$\therefore \qquad \mathbf{W} = \frac{1}{2} \mathbf{m} \mathbf{v}^2$	1
	This is the kinetic energy of the body of mass m which is moving with a velocity v	1
(b)	(i) A conservative force is one whose work done on a body depends only	
	on the initial and final positions of the body	1
	(ii) Suppose a particle of mass m moving vertically upwards passes the	
	datum level, O, with a velocity u. Then the particle's mechanical energy at O is	
	$= \frac{1}{2} \operatorname{mu}^{2} + 0 = \frac{1}{2} \operatorname{mu}^{2}$ When the particle is at point A its potential energy =	1
	X mgh and its velocity, v, is given by $v^2 = u^2 - 2gx$.	
	Thus, its kinetic energy is $\frac{1}{2}$ mv ² = $\frac{1}{2}$ m(u ² - 2gx)	
	Hence, the total mechanical energy of the particle at	1
	A is	1
	m.e = k.e + p.e	1
	$= \frac{1}{2} m(u^2 - 2gx) + mgx = \frac{1}{2} mu^2$	
	which is the same as the total mechanical energy at	
	0.	
(c)	(i) The moment of a force about a given point is the product of the force	<u>1</u>
	and the perpendicular distance from the point to the line of action of the force.	1
	(ii) Energy stored in the spring = work done by the couple	
	= torque x angle turned through in	/
	radians	1
	$= Fd\theta$	
	$= 6 \times 2 \times 0.5 \times \frac{120\pi}{180}$	/ 1 1
	= 12.56 J	1
(d)	(i) Tcos30°	
	i /	
	Tsin30°	
	/1	
	(40° l)	
	R	
		1
	μR	
	▼	
	200N	
	Taking moments about N, we have	

	$T \cos 30^{\circ} (0.5 - 0.5\cos 40^{\circ}) + 0.5T \sin 30^{\circ} \sin 40^{\circ} = 0.5 \times 200$	
	$\therefore (0.2026 + 0.3214)T = 200$	1
	$T = \frac{200}{0.524} = 381.7 \mathrm{N}$	1
	(ii) $R = T \sin 30^\circ$	1
	$= 381.7 \sin 30^{\circ} = 190.9 \text{ N}$	1/2
	$\mu R = T \cos 30^{\circ} - 200$	1
	$= 330.7 - 200 = 130.7 \mathrm{N}$	1/2
	$\therefore \mu = \frac{130.7}{190.9} = 0.685$	1
	<i>Total</i> = 20	
4. (a)	(i)the motion in which the acceleration of the particle is always	
	directed towards a fixed point in the path of the particle and its magnitude	
	is directly proportional to the displacement of the particle from the point.	1
	OR	
	(ii) For s.h.m. the acceleration If the displacement, $x = a \sin \omega t$	
	$\frac{d^2x}{dt^2} = \frac{dv}{dt} = -\omega^2 x \text{(since accn = } \qquad \text{Then the velocity, } v = \frac{dx}{dt} = a\omega$	1/2
	$\left(\frac{dv}{dt}\right)$	1/2
	$1.50 \text{ sin}\omega t = \frac{1}{2} \text{ and } \cos \omega t = 1$	72
	We may write $\frac{dv}{dt} = \frac{dv}{dx} \cdot \frac{dx}{dt} = -\omega^2 x$	
	$\therefore v \frac{dv}{dx} = -\omega^2 x$	
	$\therefore \text{vdv} = -\omega^2 \text{xdx} \qquad \qquad \text{Since } \sin^2 \omega t + \cos^2 \omega t = 1, \text{ it}$	1/2
	$\therefore \frac{1}{2}v^2 = -\frac{1}{2}\omega^2x^2 + C$ follows that	, 2
		1/2
	Now, $v = 0$ when $x = a$ So $C = \frac{1}{2}\omega^2 a^2$ $\therefore v^2 = \omega^2(a^2 - x^2)$ $\frac{x^2}{a^2} + \frac{v^2}{a^2\omega^2} = 1$ $\therefore \omega^2 x^2 + v^2 = a^2\omega^2$	1
	$\therefore \mathbf{v}^2 = \omega^2(\mathbf{a}^2 - \mathbf{x}^2) \qquad \qquad \therefore \omega^2 \mathbf{x}^2 + \mathbf{v}^2 = \mathbf{a}^2 \omega^2 \qquad \qquad $	
	$\therefore \mathbf{v} = \pm \omega \sqrt{\mathbf{a}^2 - \mathbf{x}^2} \qquad \qquad \qquad \dot{\mathbf{v}}^2 = \omega^2 (\mathbf{a}^2 - \mathbf{x}^2)$	
	$\therefore \mathbf{v} = \pm \omega \sqrt{\mathbf{a}^2 - \mathbf{x}^2}$	
(b)	(i)	
	Let the string be of length l whose end is fixed at P, and to whose other end is fixed a mass m. Suppose the mass m is freely oscillating such that at a certain instant the length of the arc OB is x when the string makes an angle θ with the	
	vertical.	

Then the force pulling m towards O along OB is mg sinθ.	1
Let a = acceleration of m (being positive in a direction away from O) Then $ma = -mg \sin\theta$	1
But since θ is small \Rightarrow sin $\theta \approx \theta = \frac{x}{l}$	1/2
Thus $ma = -mg\theta = -mg\frac{x}{l}$	1/2
$\therefore \frac{-g}{l}x = -\omega^2 x, where \ \omega^2 = \frac{g}{l}$	
Since the acceleration is proportional to the displacement, x, from O and the negative sign implies it is towards O, the mass executes simple harmonic motion.	1
(ii)-A mass is freely suspended from a string.	+
- The length, <i>l</i> , of the supporting string is measured.	1/2
- The suspended mass is set to oscillate with small amplitude in a vertical plane.	1/2 1/2 1/2
- The time for a suitable number of complete oscillations is measured, from which the period, T, is found.	1/2
- The procedure is repeated for several different values of the length	
and the results are tabulated, including T^2 .	1/2
- A graph of T^2 against l is plotted and its slope, s, is found	1
Now, from above $\omega^2 = \sqrt{\frac{g}{l}}$ (But $\omega = \frac{2\pi}{T}$)	1/2
$\therefore \qquad \qquad T^2 \ = \ \frac{4\pi^2}{g}l$	1/2 1/2
So the slope of the graph, $s = \frac{4\pi^2}{g}$ and g can be calculated	,-
(c) (i) At the extreme point the displacement, $x = amplitude$, a	
Now force = mass x acceleration	
$\therefore \qquad F = m\omega^2 a = \frac{4\pi^2}{T^2} ma$	
$T^2 = \frac{4\pi^2 \text{ma}}{F} = \frac{4\pi^2 \times 0.1 \times 3.6 \times 10^{-2}}{3.52} = 0.0404$	1
$\therefore \qquad T = 0.201 s$	1
(ii) The displacement, $x = (4.5 - 3.6) \times 10^{-2} = 0.9 \times 10^{-2} \text{m}$	1/2
Now $v = \omega \sqrt{a^2 - x^2}$	1/2
k.e = $\frac{1}{2}$ mw ² = $\frac{1}{2}$ mw ² (a ² - x ²)	1/2
$= \frac{1}{2} \times 0.1 \times \frac{4\pi^2}{0.0404} (3.6^2 - 0.9^2) \times 10^{-4}$	1/2
= 0.0594 J	1
(iii) Total energy = $\frac{1}{2}$ m ω^2 a ² = $\frac{1}{2}$ x 0.1 x $\frac{4\pi^2}{0.0404}$ × 3.6 ² × 10 ⁻⁴	1
= 0.0633 J	1
Total = 20	
5. (a) (i) - The range of the temperatures to be measured - Whether the temperature is rapidly changing - Anv two @ 1/2	
- Whether the temperature is to be taken at a point (in a limited space))

	(") 777	
	(ii) The property should	
	- vary continuously with temperature, in value or otherwise, over a	
	wide range	
	- be observable Any four @ ½)
	- be measurable	2
	- have reproducible values at the respective temperatures	
	- have distinguishable values even for small differences in	
	temperature	
(b)	(i)a universally chosen temperature for reference of any measured	
(-)	temperature at which all thermometers agree and at which temperature	
	certain physical changes occur.	1
	(ii) the temperature at which saturated water vapour, pure water and	1
		1
(-)	melting ice are all in equilibrium.	1
(c)	(i) Constriction \(\tau \)	1/2
		1/2
		1/2
	Bulb	, 2
	Mercury The range of this thermometer is 35°-42° because the human body	1/2
	temperature cannot lie outside this range. Such a short range makes the	/2
	scale very sensitive since a single degree on it is large enough to be subdivided.	1
		1 1
	The constriction near the bulb prevents mercury from flowing back	1
	before the temperature is being read.	
	(ii)	
	- For high sensitivity the bulb is made large and the bore is made	1
	narrow.	1
	- For quick action, the walls of the bulb are made thin	
(d)	$273 + 90 = \frac{2.000}{R_{tr}} \times 273.16$	1
		1
	$\therefore R_{tr} = \frac{2.000 \times 273.16}{363}$	1
		1
	= 1.505 Ω	1
(e)	(i)measurement of temperature of a body by observation of radiation from the body	1
	(ii)	1
	O Filament E	
	B	
	Connect labels	ina
	Correct labeli	_
	of any 4 main	
	$A \stackrel{\frown}{\smile} R \qquad parts @ \frac{1}{2}$	
	- The optical pyrometer consists of a telescope, OE, and a lamp having a	
	tungsten filament. G is a red filter through which light from the	
	furnace, B, whose temperature is required passes.	
	- The eyepiece, E, is focused upon the filament.	1/2

	- The furnace, B, is then focused by		
	image lies in the plane of the filame	ent.	1
	- The temperature of the filament is	adjusted using rheostat R until it	
	"disappears" in the background of	the radiation from B.	1
	Now, the ammeter, A, which measure	es the current, has been calibrated	
	directly in degrees, and gives the tem	perature of the furnace.	1/2
	Total	l = 2	
6. (a)	(i) the quantity of heat required to	convert 1 kg of a substance from	
	liquid to vapour at constant temperatu	_	1
	(ii) At the boiling point the kinetic er	nergy of the molecules remains	1
	constant.		
	Instead the heat supplied is used to de	o work against the intermolecular	1
	attractions as the molecules are being	completely freed.	
	Secondly, the gas so formed does wo	ork against the atmospheric pressure	
	(iii)		
		The apparatus is set up as shown	
		in the diagram.	1/2
		The setup is switched on and	
		given time to attain steady	
		conditions, with the liquid at its	1
	Lagging	boiling point.	
	Lagging This mage	Under these conditions, the heat	
	dannot	supplied by the heater is used in	1
		evaporating the liquid and	
	Vapour \\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\	offsetting the losses.	
	jacket	- The condensed liquid is then	1
	Heater	collected in a weighed beaker	
	\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \	over a measured time interval.	1/
	Vapour	Let $m_1 = mass$ of liquid collected	1/2
		per second	
	Candanaa FE	$V_1 = p.d$ across the heater coil	
	Condenser	I_1 = current through the coil	11/
	넘던	h = heat lost per second	$1\frac{1}{2}$
	1 54	L = specific latent heat of	
	→司[J	vaporisation of the liquid Then $I_1V_1 = m_1L + h$	
		(1)	
		- The experiment is repeated at	1
	<u> </u>	new values I_2 and V_2 of current	1/2
	(and p.d respectively.	/ 2
		Let m_2 = new mass of liquid	
		collected per second.	
		Then $I_2V_2 = m_2L + h$	· /
		$\dots \dots $	~
		From (1) and (2)	
		``	
		$L = \frac{I_1 V_1 - I_2 V_2}{m_1 - m_2}$	
		$\mathbf{m}_1 - \mathbf{m}_2$	

T I		
(b)	(i) Pt = $(m_w c_w + m_c c_c)(100 - 25)$	1
	$\therefore t = \frac{(m_w c_w + m_c c_c) \times 75}{P}$	1/2
	1	/ 2
	$= \frac{[(4 \times 4200) + (0.5 \times 400)] \times 75}{1000}$	1/2
	$= (16800 + 200) \times 0.075$	
	= 1275 s	1
	(ii) Time during boiling = $t_b = \frac{ml}{P} = \frac{4 \times 2.26 \times 10^6}{1000} = 9040$ s	1
	1 1000	1
_	$\therefore \text{total time} = 1275 + 9040 = 10,315 \text{ s}$ (iii) Cost = power in kW x hours x unit cost	
	· · ·	1
	$= 1 \times \frac{10315}{3600} \times 615$	-
	= 1,762/=	1
	Consider a body of volume V, surface area S and specific heat capacity c.	
	If the body is at a temperature excess $\Delta\theta$ and its material is of density ρ ,	1
	then it is losing heat at rate $\frac{dQ}{dt} = V\rho c \frac{d\theta}{dt} = kS\Delta\theta$	1
	At a given temperature, ρ , c, k and $\Delta\theta$ are constants.	
	10 0	1
	Thus, the rate of cooling $\frac{d\theta}{dt} \propto \frac{S}{V}$	
	If the linear dimensions of the body are x , then	1
	$\frac{S}{V} \propto \frac{1}{r}$ implying that $\frac{d\theta}{dt} \propto \frac{1}{r}$	1
	Therefore the smaller the body is, the higher its rate of cooling will be.	
	<i>Total</i> = 20	
7. (a)	Locus of peaks	
	$T_1 < T_2 < T_3$	
	E 'I	
	Shape $\rightarrow 1$ Relative positions - T_1	→ 1
	T_2	
	ativ	
	$\overline{\underline{o}}$	
	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	
	Violet ' '\ red Visible	
		1/
	(ii) At first the ball is invisible It becomes dull rad then bright rad and finally less rad tending to white	1/ ₂
	It becomes dull red, then bright red and finally less red, tending to white. This is because as the temperature rises, the intensity of the shorter	1
	wavelengths increases more rapidly.	1

	So the peak intensity shifts from the red end of the spectrum into the	1/
	visible spectrum, which is a narrow band.	1/2
	(iii) The cavities approximate to black bodies.	1
	So the radiation from the cavities is of higher intensity than that from the	1
	rest of the areas.	
(b)	(i) Wien's displacement law:	
	The wavelength of the highest intensity is inversely proportional to	
	the absolute temperature of the body.	4
	Stefan,s law:	
	The total power radiated by a black body per m ² is directly	
	proportional to the fourth power of the body's absolute temperature	Y
	(ii) According to Wien's displacement law	
	$\lambda_{\rm m} T = 2.9 \times 10^{-3} \rm mK$	1/2
	$T = \frac{2.9 \times 10^{-3}}{1.5 \times 10^{-6}}$	1/2
	= 1933 K	1
	_ 1/00 II	
	(iii)	
	Dull black tin plate	
	Polished	
	Cork held Cork held by year	
	by wax Cork held by wax	. 1_
) "ux 🔻 []	
	- Two sheets of tin plate, one colished and the other dull black, are	
	set up vertically a short distance apart.	1
	- On the back side of each is fixed a cork by means of wax.	1/2
	- A bunsen burner is placed midway between the plates.	1/2
	- As the burner continues burning, eventually the wax on the back	/2
	of the dull black plate melts and the cork falls while that on the	1/2
	polished plate remains.	/2
	Conclusion: The dull black plate must have absorbed heat faster than the	1/2
	<u> </u>	72
	polished one. So dull black surfaces are better absorbers than polished ones.	
(c)	(i) Let $r = radius$ of the star = 7.0×10^8 m	
(c)	R = distance between the star and the planet = 1.4×10^{11} m	
	Then at a distance R the total area catching the radiation from the star is	
	Then at a distance R the total area catching the radiation from the star is $4\pi R^2$	
	So power radiated by the star = power received over an area $4\pi R^2$	
	So power radiated by the star = power received over an area $4\pi R$ $\therefore \sigma AT^4 = 4\pi R^2 \times 1.4 \times 10^3$	1
		1
	$\therefore \sigma.4\pi r^2.T^4 = 4\pi R^2 \times 1.4 \times 10^3$	
	$\therefore \qquad T^4 = \left(\frac{R}{r}\right)^2 \times \frac{1.4 \times 10^3}{\sigma}$	1
	$= \left(\frac{1.4 \times 10^{11}}{7 \times 10^{8}}\right)^{2} \times \frac{1.4 \times 10^{3}}{5.7 \times 10^{-8}} = 9.824 \times 10^{14}$	1
	· · · · · · · · · · · · · · · · · · ·	1
	$T = \sqrt[4]{982.4} \times 10^3$	1
	= 5599 K	
	•	0

	(ii) - The star radiates as a black body	1/2
	- No radiant energy lost in the space around.	1/2
0()	<i>Total</i> = 20	
8(a)	Constant temperature bath Oil spray H X-ray tub A and B are parallel plates. H is a small hole in the centre of A	2 e
	 (i) The terminal velocity of the drops depends on the viscosity of the air. Viscosity depends on temperature So a constant temperature bath maintains a constant value of viscosity (ii) The distance moved by the drop. 	1 1/2 1/2 1
	The time taken to cover the distance	1
(b).	(i) to establish the magnitude of charge on an electron	1
	(ii) Very high voltages are required There is a risk of producing x-rays due to the high accelerating p.ds involved.	1
(c).	Ionisation by collision breakdown	1
	(ii)	
	 Electrons are emitted from the cathode by photoelectric effect. The electrons are accelerated towards the anode. 	1/2 1/2
	 As the p.d is increased more electrons are enabled to reach the anode per second- This is depicted as increase in current. When all the available electrons per second are reaching the anode, 	1/2
	there is no more increase in current. The current is said to be saturated. - As the p.d is increased further, the electrons' kinetic energy is	1/2
	increased until they are able to ionize the gas atoms on their way. - The ions so formed move to the cathode while the additional electrons	1/2
	join in the flight to the anode – This processes of ionization leads to increase in current. - The knocked–out electrons gain kinetic energy and produce more ions	1/2
	and electrons. - Eventually, as the p.d is increased, a point is reached at which the	1/2
	current grows uncontrollably – This is a state of breakdown (avalanche)	. =

(d).	The up thrust is negligible.	
	$\frac{V}{g}$ 6 π ηrv	
	d d d d d d d d d d d d d d d d d d d	
		1
	t t t t t t t t t t t t t t t t t t t	
	$mg mg mg 6\pi \eta rv = mg = \frac{4}{3} \pi r^3 \rho g $	1
	$ \therefore \qquad r = \sqrt{\frac{9\eta \ v}{2\rho \ g}} = \sqrt{\frac{9 \times 1.8 \times 10^{-5} \times 1.5 \times 10^{-3}}{2 \times 900 \times 9.81 \times 11.2}} $	1
	$= \sqrt{1.229 \times 10^{-12}} = 1.11 \times 10^{-6} \text{m}$	4
	Also $\frac{V}{d}q = mg = 6\pi \eta rv$	1
	$\therefore \qquad q = \frac{6 \times \pi \times \eta \times \text{rvd}}{V} = \frac{6 \pi \times 1.8 \times 10^{-5} \times 1.11 \times 10^{-6} \times 1.5 \times 10^{-3}}{780 \times 11.2}$ $= 6.47 \times 10^{-17} \text{ C}$	\
	$= 6.47 \times 10^{-17} \mathrm{C}$	1
	Total = 20 marks	
9.(a)	(i) To establish the electronic charge.	1
	(ii) Photoelectric emission is the emission of electrons from a metal	<u>l</u>
	surface when electromagnetic radiation of high enough frequency falls on it while thermionic emission is emission of electrons from a metal surface	1
	as a result of heating the metal.	1
	(i) Work function – minimum energy required for an electron to	
	be ejected from a metal surface.	1
(b).	(ii) Stopping potential – is the value of the negative potential	
	difference which just stops the electrons with maximum kinetic energy from reaching the anode from the cathode.	1
	(i) Laboratory Experiment to verify Einstein's photoelectric	1
(c).	Incident light	
		1/2
	(A)	1/2
	Colour filter	1/
	d.c amplifier	1/2
		1/2
	▼	
	P	
	<u> </u>	
	The circuit is connected as shown in which P is a potential divider. The	-
	incident light is passed through a colour filter to select a desired	1/2
	frequency f. The frequency of the filter is noted. The p.d V, applied to the	
	anode A, is increased negatively until the current, measured by the d.c	1/2
	amplifier just becomes zero. Then the reading, V _s , of the voltmeter is noted. It is the stopping potential for the frequency used.	1/2
	The procedure is repeated using different colour filters, each time noting	\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\
L	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	ı

	the common and in a stanning materials V	1/
	the corresponding stopping potentials V_s .	1/2
	A graph of V_s against f is plotted. It is a straight line with a negative intercept on the V_s axis	~
	intercept on the V_s axis. $V_s \spadesuit$	
	· *	
		1/2
		, =
	/	
	$\underline{w_0} \qquad \qquad f$	1/2
	e	*
	' '	
	The slope, s of the graph is obtained. Then Planck's constant is calculated	1/2
	from $h = slope \times e$, where e is the electronic charge.	+
	(ii) $f = 8.8 \times 10^{14} \text{ Hz}, W_0 = 2.5 \text{ eV} = 2.5 \times 1.6 \times 10^{-19} = 4 \times 10^{-19} \text{ J}$	
	By Einstein's equation, $\frac{1}{2}mv^2 = hf - W_0$	
	1 2 4 40-34 0 0 4014 4 40-19 4 500 40 10	
	$\frac{1}{2}mv^2 = 6.6 \times 10^{-34} \times 8.8 \times 10^{14} - 4 \times 10^{-19} = 1.808 \times 10^{-19}$	
	2	
	$v^2 = \frac{2 \times 1.808 \times 10^{-19}}{9.11 \times 10^{-31}} = 3.96926 \times 10^{11}$	
	5.11/10	4
	$v = 6.30 \times 10^5 \text{ ms}^{-1}$	
(1)	Given: $D = 4.0 \times 10^{-2} \text{ m}$, $d = 4.0 \times 10^{-2} \text{ m}$, $V = 12V$, $v = 1.0 \times 10^{6} \text{ ms}^{-1}$,	
(d).	The horizontal velocity remains the same = **	1/2
	The time taken between the plates is $t = \frac{D}{V}$	1/2
	Y	72
	and the vertical acceleration, $a_y = \frac{Ve}{dm}$	1/2
	Let v_y = the vertical velocity	~~
	Then, using $v = u + at$, where $u = 0$, we have	
	$v_y = \frac{VeD}{dmv}$	1/2
	Now, $\tan \theta = \frac{V_y}{v} = \frac{\text{VeD}}{\text{dmv}^2}$	1
	$= \frac{12 \times 1.6 \times 10^{-19} \times 4.0 \times 10^{-2}}{4.0 \times 10^{-2} \times 9.11 \times 10^{-31} 1.0 \times 10^{12}} = 2.11$	1
		1
	$\therefore \theta = 64.6^{\circ}$	1
	Total = 20 marks	
	Bohr's postulates of the hydrogen atom:	
10.(a).	(i) Electrons in the atom can revolve round the nucleus only in	
	certain allowed orbits and while in these orbits they do not emit	$\overline{1}$
	radiation.	
	(ii) an electron can jump from one orbit to another of lower energy	1
	emitting radiation of energy equal to the energy difference of the	
	two orbits	

	(or of higher energy by absorbing a definite amount of energy equal to the energy difference of the orbits)	
(b)	He proposed a model of a hydrogen atom in which one electron of charge -e and mass m was moving with speed v in an orbit of of radius r round a central nucleus of charge +e and in an orbit where the electron's angular momentum is a multiple of $h/2\pi$ the energy is constant, h being the Planck constant	
	i.e. Where: $mvr = nh/2\pi$ (1)	
	The total energy of an electron = k.e + p.e $= \frac{1}{2}mv^2 + \frac{-e^2}{4\pi\epsilon} \dots (2)$	1/2
	The force of attraction between the electron and the nucleus is	
	$F = \frac{e^2}{4\pi\epsilon_0 r^2}$ and this is the centripetal force $\frac{mv^2}{r}$	1/2
	$\therefore \frac{mv^2}{r} = \frac{e^2}{4\pi \varepsilon_c r^2} \qquad (3)$	1/2
	Thus $\frac{1}{2}mv^2 = \frac{e^2}{8\pi\epsilon_0 r}$	
	$\therefore \text{ total energy,} E = \frac{e^2}{8\pi \varepsilon_{\text{o}} r} - \frac{e^2}{4\pi \varepsilon_{\text{o}} r} = \frac{-e^2}{8\pi \varepsilon_{\text{o}} r} \dots $	1/2
	Now, r can be eliminated using (1) and (3) as follows	
	from (1) $v = \frac{nh}{2\pi rm}$ Substituting for v in (3) and solving for r, we have that	
	$r = \frac{\varepsilon_0 n^2 h^2}{\pi m e^2}$ Substituting for r in (4) gives	1
	Total energy, $E = \frac{-e^2}{8\pi\epsilon_o r} x \frac{\pi m e^2}{\epsilon_o n^2 h^2} = \frac{-me^4}{8\epsilon_o^2 n^2 h^2}$	1/2
	$E_3 = -\frac{9.11 \times 10^{-31} \times (1.6 \times 10^{-19})^4}{8 \times (8.85 \times 10^{-12})^2 \times 3^2 \times (6.6 \times 10^{-34})^2} = -2.416 \times 10^{-19} J$	1
	$E_2 = -\frac{9.11 \times 10^{-31} \times (1.6 \times 10^{-19})^4}{8 \times (8.85 \times 10^{-12})^2 \times 2^2 \times (6.6 \times 10^{-34})^2} = -5.44 \times 10^{-19} J$	
	Energy radiated	H
	$E = E_3 - E_2 = -2.416 \times 10^{-19}5.44 \times 10^{-19} = 3.024 \times 10^{-19}$	1/2
	$\frac{hc}{\lambda} = 3.024 \times 10^{-19} : \lambda = \frac{6.6 \times 10^{-34} \times 3.0 \times 10^{8}}{3.024 \times 10^{-19}} = 6.548 \times 10^{-7} m$	1
(c).	$E_1 = -10.4 \text{eV}, E_2 = -5.5 \text{eV}, E_3 = -3.7 \text{eV}, E_4 = -1.6 \text{eV}$	
	(i) Ionisation energy = E_{∞} - E_1 = 0 - 10.4 eV	1

	$= 10.4 \times 1.6 \times 10^{-19}$	
	$= 1.664 \times 10^{-18} \text{ J}$	1
	(ii) $E_f - E_i = 4.0 \text{ eV}$	
	$\therefore \qquad E_f = 4.0 \text{eV} + -10.4 \text{eV}$	1/2
	= $^{-}6.4 \text{ eV}$, the atom remains unexcited.	1
	$E_f = 11.0 \text{eV} + -10.4 \text{eV}$	1/2
	$= 0.6 \text{ eV}$, since E_f is positive, the atom is ionised.	1
(d).		
()	q_1 For closest distance of approach	
	k.e lost by the α-particle = electrostatic	1/2
	p.e of the	~ (
	z-nuclei	1
	charge system	
	$\frac{1}{2}$ mv ² = $\frac{q_1q_2}{4\pi\epsilon x}$	1/2
	$\therefore x = \frac{q_1 q_2}{2\pi \epsilon x m v^2}$	1
	But $q_1 = 2e$; $q_2 = ze$	
	$\therefore x = \frac{2e \times ze}{2\pi \text{emv}^2} = \frac{ze^2}{\pi \text{emv}^2}$	
(e).	If a continuous spectrum passes through a gas or sodium flame at a lower	- 1
(-)	temperature dark lines are observed in the emerging spectrum	1
	It is as a result that gases can absorb radiation at the same frequency as	1~
	they emit.	

-END-