COSA SI STUDIA ALL'UNIVERSITÀ?

Informatica Triennale, Overview Anno I

TABLE OF CONTENTS

- Introduzione
- Analisi Matematica
- Matematica Discreta
- Algebra Lineare
- Logica e Reti Logiche
- Programmazione dei calcolatori
- Architettura degli elaboratori

INTRODUZIONE

Avendo appena concluso il ciclo di studi Magistrale in informatica, vorrei provare a raccontare cosa significa in pratica studiare informatica all'università.

La laurea in informatica segue la tipica divisione 3/2:

- Si inizia con la laurea triennale:
 - tre anni di studio
 - totale di 180 CFU
- Si continua con la laurea magistrale:
 - due anni di studio
 - totale di 120 CFU

CFU? (1/2)

I CFU sono i Crediti Formativi Universitari, e vengono utilizzati per ottenere la laurea.

CFU? (2/2)

Ciascun corso, progetto o attività può erogare una diversa quantità di CFU a seconda del lavoro richiesto allo studente, sia in termine di difficoltà che in termine di tempo.

Un credito CFU corrisponde a 25 ore di lavoro.

Laurea Triennale in Informatica (1/5)

L'obiettivo principale della laurea triennale in informatica consiste nel fornire la conoscenza base e gli strumenti per poter iniziare a comprendere e sfruttare il potere del calcolo automatico.

Laurea Triennale in Informatica (2/5)

A tale fine vengono introdotti alcuni dei principali modelli matematici che permettono di ragionare in modo chiaro ed efficiente sui tipici problemi computazionali.

Laurea Triennale in Informatica (3/5)

Nasce dunque il bisogno di sviluppare la padronanza di vari linguaggi della matematica, tra cui troviamo anche:

- Analisi Matematica
- Matematica Discreta
- Algebra Lineare
- Algebra Astratta
- Probabilità e Statistica

Laurea Triennale in Informatica (4/5)

Vengono anche introdotti ed analizzati i linguaggi più propri dell'informatica, i linguaggi di programmazione:

- C
- Python
- Java
- SQL
- HTML/CSS/JS
- Prolog

Laurea Triennale in Informatica (5/5)

E i vari contesti tecnologici in cui questi ultimi vengono utilizzati:

Architetture di elaboratori Sistemi operativi

Applicazioni

Applicazioni Web

Neb Browers

Databases

Modelli di Machine Learning

Blockchain

Cerchiamo quindi di capirci qualcosa, iniziando dalle materie tipicamente trattare nel primo anno di una triennale in informatica:

Analisi Matematica, Matematica Discreta

Algebra Lineare, Logica

Programmazione, Architettura degli elabor

ANALISI MATEMATICA

Analisi Matematica (1/7)

L'analisi matematica introduce lo studente allo studio dei numeri reali $\mathbb R$ e in particolare al calcolo infinitesimale.

Analisi Matematica (2/7)

I tre macro-argomenti tipicamente affrontati sono:

- limiti
- derivate
- integrali

Analisi Matematica (3/7)

Tipiche domande a cui il corso tenta di rispondere:

- Cosa differenzia i numeri reali dai numeri razionali?
- Perché $\sqrt{2} \in \mathbb{R}$ è un numero reale?
- Come possiamo gestire sequenze infinite di numeri?

Analisi Matematica (4/7)

Calcolare il valore della seguente serie infinita:

$$1 + \frac{1}{2} + \frac{1}{4} + \ldots + \frac{1}{2^n} + \ldots = \sum_{i=0}^{\infty} \frac{1}{2^i}$$

Analisi Matematica (5/7)

$$S = 1 + \frac{1}{2} + \frac{1}{4} + \frac{1}{8} + \dots$$

$$\frac{1}{2}S = \frac{1}{2} + \frac{1}{4} + \frac{1}{8} + \frac{1}{16} + \dots$$

Analisi Matematica (6/7)

$$S - \frac{1}{2}S = 1 + \frac{1}{2} + \frac{1}{4} + \frac{1}{8} + \dots$$
$$-\left(\frac{1}{2} + \frac{1}{4} + \frac{1}{8} + \frac{1}{16} + \dots\right)$$
$$= 1$$

Analisi Matematica (7/7)

$$S=\sum_{i=0}^{\infty}rac{1}{2^i}=2$$

NOTA BENE: i calcoli appena esposti non sono assolutamente formali, e valgono solamente in particolari condizioni!

MATEMATICA DISCRETA

Matematica Discreta (1/7)

La matematica discreta si pone l'obiettivo di analizzare tutte quelle strutture matematiche collegate all'insieme dei numeri naturali.

$$\mathbb{N}=\{0,1,2,3,4,\ldots\}$$

Matematica Discreta (2/7)

Sono tanti gli argomenti affrontati:

- Funzioni, Relazioni, Equivalenze
- Strutture algebriche
- Numeri Naturali e Induzione
- Aritmetica Modulare
- Scrittura posizionale
- Calcolo combinatorio
- Teoria dei numeri
- Algebre di Boole
- Teoria dei grafi

Matematica Discreta (3/7)

Tra i vari linguaggi della matematica, la matematica discreta è forse il linguaggio più importante per un informatico.

Nel mondo dei calcolatori digitali infatti tutto è discretizzato.

Matematica Discreta (4/7)

Definiamo un grafo G=(V,E) come una coppia di insiemi, dove:

• L'insieme V è detto insieme di **nodi**

$$V=\{v_1,v_2,v_3\}$$

• L'insieme E è detto insieme di archi

$$E = \{(v_1, v_2), (v_2, v_3), (v_1, v_3)\}$$

Matematica Discreta (5/7)

Königsberg bridges problem: È possibile trovare un cammino che percorre una e una sola volta tutti i ponti della cità di Königsberg e che finisce nello stesso posto in cui è iniziato?

Matematica Discreta (6/7)

Risposta: No, non è possibile. (Leonhard Euler, 1736)

Matematica Discreta (7/7)

Per rispondere a tale domanda Euler ha modellato la città tramite un **grafo**.

ALGEBRA LINEARE

Algebra Lineare (1/3)

I principali oggetti di studio dell'algebra lineare sono gli spazi vettoriali, le applicazioni lineari e le matrici

$$egin{bmatrix} 0 & 1 & 3 & 6 & 2 & 8 \ 1 & 3 & 5 & 6 & 8 & 9 \ 2 & 3 & 5 & 6 & 7 & 3 \ 2 & 1 & 5 & 9 & 10 & 11 \end{bmatrix}$$

Algebra Lineare (2/3)

Una delle prime operazioni che viene studiata sulle matrici è il **prodotto tra matrici**

$$\begin{bmatrix} 0 & 1 & 3 \\ 2 & 3 & 4 \\ 7 & 3 & 4 \end{bmatrix} \cdot \begin{bmatrix} 0 & 2 & 1 \\ 3 & 1 & 5 \\ 8 & 0 & 0 \end{bmatrix} = \begin{bmatrix} 27 & 1 & 5 \\ 41 & 7 & 17 \\ 41 & 17 & 22 \end{bmatrix}$$

Algebra Lineare (3/3)

L'algebra lineare è utilizzata in moltissimi campi, tra cui il campo del machine learning e in particolare in tutti i modelli a reti neurali.

LOGICA E RETI LOGICHE

Logica (1/6)

La **logica** è forse lo strumento di calcolo più vecchio di sempre.

Lo studio della logica è dunque fondamentale, in quanto permette di codificare tramite un linguaggio formale alcune delle più importanti regole di ragionamento.

Logica (2/6)

Non solo, il linguaggio formale della logica può poi essere costruito nel mondo reale tramite l'utilizzo di circuiti digitali.

Logica (3/6)

Sono due i principali linguaggi analizzati in un corso introduttivo di logica:

- Logica proposizionale
- Logica del primo ordine

Logica (4/6)

Argomenti tipicamente trattati:

- Tautologie, contraddizioni
- Regole di inferenza
- Assiomi logici
- Sistemi formali
- Il ruolo dei quantificatori

Logica (5/6)

Classico sillogismo:

```
Socrate è un uomo.
Tutti gli uomini sono mortali.
------
Socrate è mortale.
```

Logica (6/6)

Tradotto nella logica del primo ordine:

- Uomo(socrate)
- $\bullet \ \forall x: \ \mathrm{Uomo}(x) \implies \mathrm{Mortale}(x)$

Implica

Mortale(socrate)

PROGRAMMAZIONE DEI CALCOLATORI

Programmazione (1/5)

L'obiettivo del primo corso di programmazione è quello di introdurre lo studente ai linguaggi di programmazione e a come utilizzare questi ultimi per strutturare delle computazioni.

Programmazione (2/5)

Tipicamente si sceglie un linguaggio tra

C, Python, Java

Programmazione (3/5)

A partire dal linguaggio scelto si introduce in modo progressivo la sintassi del linguaggio e la relativa semantica.

```
int risultato = -1;
if (condizione) {
  risultato = 5;
} else {
  risultato = 10;
}
printf("%d\n", risultato);
```

Programmazione (4/5)

Risolvendo vari **problemi** si comincia ad acquisire famigliarità con il linguaggio di programmazione studiato.

Programmazione (5/5)

Calcolo numeri di Fibonacci:

$$F_n = F_{n-1} + F_{n-2}, \ F_1 = F_2 = 1$$

```
int fibo(int n) {
  int a = 1, b = 1, t = -1;

if (n <= 2) { return 1; }

for (int i = 2; i <= n; i++) {
    t = b;
    b = a + b;
    a = t;
}

return a;
}</pre>
```

ARCHITETTURA DEGLI ELABORATORI

Architettura (1/4)

L'obiettivo del corso di architettura è quello di studiare i concetti principali che si trovano alla base delle moderne architetture dei calcolatori.

In parole povere, si studia il modo in cui i computer sono strutturati al loro interno.

Architettura (2/4)

L'idea principale dietro alle moderne architetture è quella di costruire una serie di livelli di astrazione, in cui ciascun livello è costruito a partire dai servizi offerti dai livelli precedenti e offre a sua volta servizi ai livelli successivi.

Architettura (3/4)

Nei computer moderni troviamo i seguenti livelli:

- Livello Applicazione
- Livello Sistema operativo
- Livello ISA
- Livello Porte logiche
- Livello Circuiti
- Livello fisico

Architettura (4/4)

Le **porte logiche** sono utilizzate per implementare operazioni quali la **somma**

