

Course: Program: Duration:

Exam:

Paper Date: Section:

Digital Logic Design BS (Computer Science) 20 Minutes

14-June-21 2F Quiz 1

Course Code: | EE-227 Semester:

Spring 2021 20 Total Marks:

Page(s): Reg. No.

3 % Weight

Instruction/Notes:

Calculators are strictly not allowed in all exams Plagiarism will be dealt seriously causing an F in course

[10M]

Question 01:

Characteristic table of NP Flip-Flop is given below:

- a) Write the Characteristic equation of NP Flip-Flop. Show your working to get credit.
- b) Fill in the excitation table of NP Flip Flop.
- c) Draw its circuit.

Characteristic Table of NP Flip-Flop

N	Р	Q(t+1)
0	0	0
0	1	Q(t)
1	0	Q(t)'
1	1	1

Excitation Table of NP Flip-Flop

EXCITA	fion ranie	OI MEY AV	
Q(t)	Q(t+1)	N	P
0	0	0	X
0	(1	X
	0	X	0
	1	X	1

Characteristic Equation of NP Flip-Flop:

$$Q(t+1) = QN + QP$$

Circuit Diagram of NP Flipflop

Draw yourself

Scanned with CamScanner

Course: Program: Duration: Paper Date:

Section:

Digital Logic Design BS (Computer Science)

20 Minutes 14-June-21 2E

Semester: Total Marks: Weight Page(s):

EE-227 Spring 2021 20 3 %

Reg. No.

Instruction/Notes:

Plagiarism will be dealt seriously causing an F in course Exam:

3

Question 01:

[10M]

Characteristic table of L-M Flip Flop is given below. Find its characteristic equation and draw the circuit diagram.

- a) Write the Characteristic equation of LM Flip-Flop. Show your working to get credit.
 b) Fill in the cyclic is
 - b) Fill in the excitation table of LM Flip Flop.
 - c) Draw its circuit.

Characteristic Table of NP Flip-Flop

Character	istic Table of I	Ab Flib-Liob
L	M	Q(t+1)
0	0	Q'(t)
0	1	1
1	0	Q(t)
1	1	0

Excitation Table of LM Flip-Flop M Q(t+1) Q(t) 0 0 0 0 0

Characteristic Equation of LM Flip-Flop:

Q(t+1) = QL + LM + QLM

Circuit Diagram of LM Flipflop

Draw

Department of Computer Science

A sequential circuit with two *D* flip- flops *A* and *B*, one input *Y*, and one output *Z* is specified by the following input equations: equations:

DA = BY + A'Y,

DB = Y'

Z = A'B'

(a) Draw the logic diagram of the circuit.

(b) Derive the state table.

P. S	TIP	N.	SB	output	
0 0	0	0			
0 0			0		
0. 1	U	0	1	0	
0 1			0	0	7.31
10	0	0	1	- 0	
10		0	0	D	
	0	0	1	0	
			0	0	

Department of Computer Science

(c) Derive the state diagram.

(d) Is this a Mealy or a Moore machine?

Moore machine Contput is dependent on present state

Department of Computer Science

Course: Program: Duration: Paper Date:

Section:

Exam:

Digital Logic Design BS (Computer Science) 15 Minutes

16-June-21 2F Quiz 2

Course Code: Semester: Total Marks: Weight

Page(s):

Roll No.

EE-227 Spring 2021 15 2.5 % 2

Instruction/Notes:

Calculators are strictly not allowed in all exams Plagiarism will be dealt seriously causing an F in course

Question 01:

[5 M]

Simplify following combinational circuits using Boolean algebra identities and rules. Note: Show all steps of simplification and mention which the laws used for simplification in each step.

AB'C + A'BC + A' B'C

$$= C(\overline{A} + \overline{A})(\overline{B} + \overline{A})$$

Optimize the following functions into (1) sum-of-products and (2) product-of-sums forms: F(A,B,C,D) = (A'+B'+D')(A+B'+C')(A'+B+D')(B+C'+D')

(a) Write the above function in

Sum of Product (SOP) =
$$\Sigma m(0, 1, 2, 4, 5, 8, 10, 12, 4)$$

Product of Sum (POS)=
$$IIM(3, 6, 7, 9, 11, 13, 15)$$

- (b) Use only given K-Maps to simplify (optimize) the function into:
- (i) Sum of Product (SOP) form

(ii) Product of Sum (POS) form

$$F(A,B,C,D) = (\overline{A} + \overline{D})(\overline{C} + \overline{D}) + \overline{A} + \overline{B} + \overline{C})$$

Department of Computer Science

Course: Program:

Digital Logic Design BS (Computer Science) Duration: 15 Minutes

Paper Date: Section:

Exam:

16-June-21 2E Quiz 2

Course Code: Semester: Total Marks:

Weight

Page(s):

Roll No.

EE-227 Spring 2021 15

2.5 % 2

Instruction/Notes:

Calculators are strictly not allowed in all exams Plagiarism will be dealt seriously causing an F in course

Question 01:

[5 M]

Simplify following combinational circuits using Boolean algebra identities and rules. Note: Show all steps of simplification and mention which the laws used for simplification in each step.

AB'C(BD + CDE) + AC'

= ABBC D + ABCDE+AC

0 + A (BCDE+E)

= A (C+Z) (BDE+Z)

A (E + B DE)

·AB. B= 0

[10 M]

Question 02:

In

QI De

Optimize the following functions into (1) sum-of-products and (2) product-of-sums forms: $F(A, B, C, D) = \sum_{i=1}^{n} (2, 2, 3, 3)$ $F(A, B, C, D) = \sum m(2, 3, 5, 7, 8, 10, 12, 13)$

Sum of Product (SOP) =
$$(\overline{ABCD} + \overline{ABCD} +$$

Product of Sum (POS) = ((A+B+C+D)+(A+B+C+D)) + (A+B+C+D) + (A+B+C+D) Use only given K-Maps to simplify (optimize) the function into:

(i) Sum of Product (SOP) form

(ii) Product of Sum (POS) form

AB CI	00	01	11	10
00	6	0	1	\
01	0	1	1	0
11	1	1	10	0
10		0	0	1

F(A,B,C,D) = (A+B+C) (A+B+D) (A+B+E) (A+B+E)

Department of Computer Science

Course: Program:

Duration:

Section:

Paper Date:

Digital Logic Design BS (Computer Science)

15 Minutes 21-June-21

2F

Course Code: Semester: Total Marks: Weight

Page(s):

Roll No.

EE-227 Spring 2021 10 2.5 % 2

[5 M]

Instruction/Notes:

Exam: Quiz 3 Calculators are strictly not allowed in all exams Plagiarism will be dealt seriously causing an F in course

Question 01:

Design an 8-to-1-line multiplexer using a 3-to-8-line decoder and an 8X2 AND-OR.

external gates. Connect inputs A and B to the selection lines. The input requirements for the four data lines will be a function of the variables C and D. a function of the variables C and D. The values of these variables are obtained by expressing F as a function of C and D for each of the four cases with and D for each of the four cases when AB = 00, 01, 10 and 11. These functions must be implemented with external gates.

A	В	CD	F	
0	0	00	6	
0	0	0	1	F=D
0	0	0	O	
0	0	11		
0	1	0 0	1	
0	1	0 1	0	F=Cō
0)	1 0	0	
0)) 1	0	
	0	0.0	0	
1	0	01-	0	= CD
1	0	1.0	0.	
1	0	1	1	
1		0 0	1	
1	\	0 \	1	F=1
1	\	1 6	\	
1	(1	1	

Course: Program: **Duration:** Paper Date:

Section:

Digital Logic Design BS (Computer Science)

15 Minutes 21-June-21

2E Quiz 3 Semester: Total Marks: Weight

Page(s):

Roll No.

Spring 2021 15

2.5 % 2

Instruction/Notes:

Exam: Calculators are strictly not allowed in all exams Plagiarism will be dealt seriously causing an F in course

Question 01: [5 M]

Construct a 12-to-1-line multiplexer with a 3-to-8-line decoder, a 1-to-2-line decoder, and a 12x3 AND-OR. The selection codes 0000 through 1011 must be directly applied to the decoder inputs without added logic added logic.

Department of Computer Science

Question 02:

Implement the following Boolean function with an 8–to–1-line multiplexer and a single inverter with variable D as its input:

 $F(A, B, C, D) = \sum m(2, 4, 6, 9, 10, 11, 15)$

	A	B	- D	F				
	0	0 8	0	0	F=0			
	0	0 0		0				
C) 0	, \	0	1	F=5			
_ 0) (0				
0	1	0	Ø	1	F=D	2		
0	1	0	1	0	H-D	0	1	
O)	1	0	1		D		
0	- 1	- 1		0	f=D	10	1x8	+
1	0	0	Ø	0		D	MUX	
1	0	0			F=D	1		
1	0		0	t	F=1	0-		
1		1		1		D		
(1	0	,0	0				
1	1	0		0	F-0			
1	1	1	0	0				
1	1	1	1	1	C=D			
			1					