CMPT 383 Comparative Programming Languages

Homework 6

This homework is due by 11:59pm PT on Wednesday Mar 23, 2022. No late submission is accepted. Please save your answers in a single file called h6_firstname_lastname.pdf and submit it to Canvas. You may also write on paper and scan it (or take a picture) into a PDF. Please make sure the text is readable. Requirements:

- Please include an environment in the judgments even if it is not used.
- 1. (20 points) Consider the FUN language that we learned, provide a big-step operational semantics to expression $e_1 \le e_2$. The expression evaluates to true if $e_1 \le e_2$. Otherwise, it evaluates to false.
- 2. (20 points) Consider the FUN language, prove the following expression evaluates to 3 with respect to the big-step operational semantics that can handle recursion.

let
$$x = 2$$
 in $x + 1$

3. (30 points) Suppose we add a program construct called testSign to the FUN language with the following syntax

$$e ::= \dots$$
 (all existing productions in FUN)
| 'testSign' $e e e e$

The evaluation result of testSign e_1 e_2 e_3 e_4 is

- the result of e_2 , if e_1 evaluates to a negative number
- the result of e_3 , if e_1 evaluates to zero
- the result of e_4 , if e_1 evaluates to a positive number

Provide a big-step operational semantics for testSign.

4. (30 points) Consider the testSign in Quesiton 3, provide a small-step operational semantics for testSign. Note that for expression testSign e_1 e_2 e_3 e_4 , the expression e_1 should be evaluated first. You can assume the small-step operational semantics for other FUN constructs already exists. Hint: here is the small-step operational semantics for if-then-else.

$$\frac{\langle e_1,E\rangle \to \langle e_1',E'\rangle}{\langle \text{if } e_1 \text{ then } e_2 \text{ else } e_3,E\rangle \to \langle \text{if } e_1' \text{ then } e_2 \text{ else } e_3,E'\rangle}$$

$$\overline{\langle \text{if true then } e_2 \text{ else } e_3,E\rangle \to \langle e_2,E\rangle}$$

$$\overline{\langle \text{if false then } e_2 \text{ else } e_3,E\rangle \to \langle e_3,E\rangle}$$