

Características de los experimentos

Experimento binomial

- El experimento consta de una secuencia de n ensayos idénticos
- En cada ensayo hay dos resultados posibles. A uno de ellos se le llama éxito y al otro, fracaso.
- La probabilidad de éxito es constante de un ensayo a otro, nunca cambia y se denota por p. Por ello, la probabilidad de fracaso será 1 — p.
- Los ensayos son independientes, de modo que el resultado de cualquiera de ellos no influye en el resultado de cualquier otro ensayo.

Función de probabilidad binomial

Para un experimento binomial, sea p la probabilidad de un "éxito" y 1-p la probabilidad de un "fracaso" en un solo ensayo; entonces la probabilidad de obtener x éxitos en n ensayos, está dada por la función de probabilidad f(x):

$$f(x) = P(X = x) = \binom{n}{x} (p)^x (1-p)^{n-x}$$

$$\downarrow$$

$$\binom{n}{x} = \frac{n!}{x!(n-x)!}$$

Media

En una distribución binomial, la media nos indica el valor medio de un fenómeno aleatorio. Se calcula con la siguiente fórmula:

$$\mu = n \cdot p$$

Donde:

n es el número de ensayos

p es la probabilidad de éxito

Varianza

Es una medida de dispersión que nos indica qué tan lejos se encuentran los cuadrados de la desviación de la media. Se calcula con la fórmula:

$$\sigma^2 = n \cdot p \cdot q$$

Donde:

n es el número de ensayos

p es la probabilidad de éxito

q es la probabilidad de fracaso

Gráfica dinámico

https://www.geogebra.org/m/VsbWBzq2

Caso de estudio

• La vacuna rusa tiene un 80% de probabilidad de tener éxito en volver inmune contra el COVID 19 al individuo que se la aplica. Por lo tanto, ¿Cuál es la probabilidad de que, si 3 personas se ponen la vacuna, 2 de ellas se vuelvan inmunes?

• La vacuna rusa tiene un 80% de probabilidad de tener éxito en volver inmune contra el COVID 19 al individuo que se la aplica. Por lo tanto, ¿Cuál es la probabilidad de que, si 3 personas se

de ellas se vuelvan inmunes?

• La vacuna rusa tiene un 80% de probabilidad de tener éxito en volver inmune contra el COVID 19 al individuo que se la aplica. Por lo tanto, ¿Cuál es la probabilidad de que, si 3 personas se

• La vacuna rusa tiene un 80% de probabilidad de tener éxito en volver inmune contra el COVID 19 al individuo que se la aplica. Por lo tanto, ¿Cuál es la probabilidad de que, si 3 personas se

Función de probabilidad binomial

Para un experimento binomial, sea p la probabilidad de un "éxito" y 1-p la probabilidad de un "fracaso" en un solo ensayo; entonces la probabilidad de obtener x éxitos en n ensayos, está dada por la función de probabilidad f(x):

$$f(x) = P(X = x) = \binom{n}{x} (p)^x (1-p)^{n-x}$$

$$\downarrow$$

$$\binom{n}{x} = \frac{n!}{x!(n-x)!}$$

• La vacuna rusa tiene un 80% de probabilidad de tener éxito en volver inmune contra el COVID 19 al individuo que se la aplica. Por lo tanto, ¿Cuál es la probabilidad de que, si 3 personas se ponen la vacuna, 2 de ellas se vuelvan inmunes?

•
$$n = 3$$

• x = 2

• p = 0.8

•
$$1-p = 0.2$$

$$f(x) = P(X = x) = \binom{n}{x} (p)^x (1-p)^{n-x}$$

X: El número de éxitos en n

x: 0,1,2,3

$$P(X=2) = 3*(0.8)2 (0.2)1 = 0.384$$

$$\binom{n}{x} = \frac{n!}{x!(n-x)!}$$

Bibliografía

 Trujillo Guillen M. Distribución binomial. 2010. Accessed March 17, 2021.

https://search.ebscohost.com/login.aspx?direct=true&db=edsbas&AN=edsbas.5DF917BE&lang=es&site=eds-live