ICT 4203 Computer Graphics and Animation

Lecture 03
Bresenham Line Drawing Algorithm

Md. Mahmudur Rahman

Lecturer
Institute of Information Technology

Line Drawing Algorithms

• In computer graphics, popular algorithms used to generate lines are-

- **DDA algorithm**, DDA has the following problems:
 - Accumulation of round-off errors can make the pixelated line drift away from the intended.
 - The rounding operations and floating-point arithmetic involved are time consuming.
- The Bresenham line algorithm has the following advantages:
 - A fast incremental algorithm.
 - Uses only integer calculations.

• Basis of the algorithm:

• From start position decide A or B next

- Procedure
- Given-
 - Starting coordinates = (X_0, Y_0)
 - Ending coordinates = (X_n, Y_n)
- The points generation using Bresenham Line Drawing Algorithm involves the following steps-
- Step-01:
 - Calculate ΔX and ΔY from the given input.
 - These parameters are calculated as-
 - $\Delta X = X_n X_0$
 - $\Delta Y = Y_n Y_0$
- Step-02:
 - Calculate the decision parameter P_k.
 - $Pk = 2\Delta Y \Delta X$

• Step-03:

- Suppose the current point is (X_k, Y_k) and the next point is (X_{k+1}, Y_{k+1}) .
- Find the next point depending on the value of decision parameter P_k.

• Step-04:

• Keep repeating Step-03 until the end point is reached or number of iterations equals to $(\Delta X-1)$ times.

Bresenham's Line Algorithm - Practice Problems

Problem-01: Calculate the points between the starting coordinates (9, 18) and ending coordinates (14, 22).

Solution:

- Step-01: Calculate ΔX and ΔY from the given input.
 - $\Delta X = X_n X_0 = 14 9 = 5$
 - $\Delta Y = Y_n Y_0 = 22 18 = 4$
- Step-02: Calculate the decision parameter.
 - $P_k = 2\Delta Y \Delta X = 2 \times 4 5 = 3$
 - So, decision parameter P_k = 3
- Step-03: As $P_k \ge 0$, so case-02 is satisfied.
 - $P_{k+1} = P_k + 2\Delta Y 2\Delta X = 3 + (2 \times 4) (2 \times 5) = 1$
 - $X_{k+1} = X_{k+1} = 9 + 1 = 10$
 - $Y_{k+1} = Y_{k+1} = 18 + 1 = 19$
- Step-03 is executed until the end point is reached or number of iterations equals to 4 times.
- (Number of iterations = $\Delta X 1 = 5 1 = 4$)

Bresenham's Line Algorithm – Practice Problems

- Step-03 is executed until the end point is reached or number of iterations equals to 4 times.
 - (Number of iterations = $\Delta X 1 = 5 1 = 4$)

P _k	P _{k+1}	X _{k+1}	Y _{k+1}
		9	18
3	1	10	19
1	-1	11	20
-1	7	12	20
7	5	13	21
5	3	14	22

Bresenham's Line Algorithm – Practice Problems

Problem-02: Calculate the points between the (20, 10) and (30, 18).

Bresenham's Line Algorithm – Practice Problems

Problem-02: Calculate the points between the (20, 10) and (30, 18).

P _k	P _{k+1}	X _{k+1}	Y _{k+1}
		20	10
6	2	21	11
2	-2	22	12
-2	14	23	12
14	10	24	13
10	6	25	14
6	2	26	15
2	-2	27	16
-2	14	28	16
14	10	29	17
10	6	30	18

Bresenham's Line Algorithm – Self Study

<u>Task</u>: Find the equations for different slopes and practice at least one problem from each types.

THANK YOU