Cinemática

1. La posición de una partícula en función del tiempo viene descrita por la función de la figura.

Halle gráficamente la velocidad en el instante t=2 s. ¿Cuándo es mayor la velocidad? ¿Cuándo es nula? ¿Es negativa alguna vez?

- **2**. Un cohete se lanza verticalmente hacia arriba con una aceleración de 20 m/s². Al cabo de 25 s el combustible se agota y el cohete continúa su movimiento sometido a la acción de la gravedad hasta que alcanza el suelo. Suponiendo que la velocidad inicial del cohete es nula, calcule:
 - a) El punto más alto alcanzado por el cohete.
 - b) El tiempo total que el cohete está en el aire.
 - c) La velocidad del cohete justo antes de chocar contra el suelo.
- **3.** Una persona en un ascensor en movimiento ve un tornillo que cae del techo. La altura del ascensor es de 3 m ¿cuánto tiempo tarda el tornillo en chocar con el suelo si el ascensor se eleva con una aceleración constante de 4 m/s² ¿Y si el ascensor desciende acelerándose con 4 m/s²? ¿Qué distancia recorre el ascensor mientras el tornillo cae en cada situación si la velocidad del ascensor es de 10 m/s en el instante en el que el tornillo se deprende del techo?
- 4. Un objeto se mueve en el plano de acuerdo con la ecuación

$$x = 2.0t + 3.0$$

$$y = -5.0t^2 + 20$$

donde x e y se miden en metros y t en segundos.

- a) Calcule la posición, velocidad y aceleración inicial del objeto.
- b) ¿Qué tipo de movimiento hace el objeto? Dibuje la trayectoria.
- **5.** La posición de una pelota de béisbol golpeada por un bateador viene dada por la expresión (r en metros y t en segundos): $\vec{r} = (15+12t)\vec{i} + (16t-4,9t^2)\vec{j}$
 - a) Indique las unidades de los números que aparecen en la fórmula.
 - b) Determine la velocidad y aceleración en función del tiempo.
 - c) ¿Cuáles son la velocidad y posición iniciales?
 - d) ¿Con qué ángulo con la horizontal sale la pelota tras ser golpeada por el bateador?
 - e) ¿Qué espacio recorre en horizontal antes de tocar el suelo?

- 6. Un atleta salta en longitud y despega del suelo a un ángulo de 30° con una velocidad de 11 m/s.
 - a) ¿Qué distancia salta en la dirección horizontal?
 - b) ¿Cuál es la altura máxima alcanzada?
- **7.** Un patinador desciende por una pista helada, alcanzando al finalizar la pista una velocidad de 45 m/s. En una competición de salto, debería alcanzar 90 m a lo largo de una pista inclinada 60° respecto de la horizontal.

- a) ¿Qué ángulo α debe formar su vector velocidad inicial con la horizontal?
- b) ¿Cuánto tiempo tarda en aterrizar?
- c) Calcule y dibuje las componentes tangencial y normal de la aceleración en el instante t/2, siendo t el tiempo de vuelo.
- **8.** Se lanza un objeto a 20 m/s desde una altura de 300 m haciendo un ángulo de 30° por debajo de la horizontal. Al mismo tiempo se lanza verticalmente otro objeto con velocidad desconocida v_0 desde el suelo a una distancia de 100 m.
 - a) Determine, la velocidad v_0 , el instante y la posición de encuentro de ambos objetos.
 - b) Dibuje la trayectoria de cada objeto hasta el momento en que se encuentran.
 - c) Calcule las componentes tangencial y normal de la aceleración del primer objeto en el instante de encuentro.

9. Una pelota resbala por un tejado que forma un ángulo de 30° con la horizontal y al llegar al borde queda en libertad con una velocidad de 10 m/s La altura desde el borde del tejado hasta la calle es 60 m y la anchura de la calle es de 30 m.

- a) Calcule la ecuación de la trayectoria descrita por la pelota.
- b) ¿Caerá la pelota al suelo o chocará con la pared opuesta?
- c) ¿Con qué velocidad llegará al punto de impacto?
- **10.** Una partícula sigue la trayectoria que se muestra en la figura, donde entre B y D la trayectoria es recta. Dibuje los vectores aceleración en A, C y E si:
 - a) La partícula se mueve con rapidez constante
 - b) La rapidez aumenta uniformemente
 - c) La rapidez disminuye uniformemente

- **11.** Una persona gira en un carrusel con velocidad angular constante. El módulo de su aceleración es de 0.8 m/s² cuando se encuentra a 4 m del eje.
 - a) ¿Determine el periodo y el módulo de la velocidad?
 - b) Si la persona se coloca a 2 m del eje y el carrusel sigue girando con el mismo periodo, ¿cuánto valen los módulos de la aceleración y de la velocidad?
- **12.** Las coordenadas de un cuerpo en movimiento son $x = 2 sen(\omega t)$ e $y = 2 cos(\omega t)$, donde x e y se miden en metros y t en segundos.
 - a) Determine la ecuación de su trayectoria.
 - b) Calcule el valor de su velocidad en cualquier instante.
 - c) ¿De qué tipo de movimiento se trata?
 - d) Calcule el valor de las componentes tangencial y normal de la aceleración en cualquier instante.
- 13. Un cuerpo inicialmente en reposo (θ =0, ω =0 en t=0) es acelerado en una trayectoria circular de 1.3 m de radio de acuerdo con la ecuación d ω /dt=120t²+48t+16 donde todos los valores se dan en las unidades del Sistema Internacional. Halle θ (t), ω (t) y las componentes paralela y perpendicular de su aceleración.

Ejemplo 2: Disparo de un proyectil con cierto ángulo

Se dispara un proyectil con una velocidad inicial v_0 , haciendo un ángulo θ con la horizontal. Calcular:

- 1)Las ecuaciones de movimiento
- 2)La trayectoria seguida por el proyectil
- 3)La altura máxima y el alcance horizontal del proyectil

- 2. Un cohete se lanza verticalmente hacia arriba con una aceleración de 20 m/s². Al cabo de 25 s el combustible se agota y el cohete continúa su movimiento sometido a la acción de la gravedad hasta que alcanza el suelo. Suponiendo que la velocidad inicial del cohete es nula, calcule:
 - a) El punto más alto alcanzado por el cohete.
 - b) El tiempo total que el cohete está en el aire.
 - c) La velocidad del cohete justo antes de chocar contra el suelo.

3. Una persona en un ascensor en movimiento ve un tornillo que cae del techo. La altura del ascensor es de 3 m ¿cuánto tiempo tarda el tornillo en chocar con el suelo si el ascensor se eleva con una aceleración constante de 4 m/s² ¿Y si el ascensor desciende acelerándose con 4 m/s²? ¿Qué distancia recorre el ascensor mientras el tornillo cae en cada situación si la velocidad del ascensor es de 10 m/s en el instante en el que el tornillo se deprende del techo? • (von 1 de la contraction)

- **5.** La posición de una pelota de béisbol golpeada por un bateador viene dada por la expresión (r en metros y t en segundos): $\vec{r} = (15+12t)\vec{i} + (16t-4,9t^2)\vec{j}$
 - a) Indique las unidades de los números que aparecen en la fórmula.
 - b) Determine la velocidad y aceleración en función del tiempo.
 - c) ¿Cuáles son la velocidad y posición iniciales?
 - d) ¿Con qué ángulo con la horizontal sale la pelota tras ser golpeada por el bateador?
 - e) ¿Qué espacio recorre en horizontal antes de tocar el suelo?

4. Un objeto se mueve en el plano de acuerdo con la ecuación

$$x = 2.0t + 3.0$$

$$y = -5.0t^2 + 20$$

donde x e y se miden en metros y t en segundos.

- a) Calcule la posición, velocidad y aceleración inicial del objeto.
- b) ¿Qué tipo de movimiento hace el objeto? Dibuje la trayectoria.

$$x_{0} = y_{0} + y_{0} = 30 \quad x_{0} = x_{0} = 20$$

$$x_{0} = (30, 20) m$$

- 6. Un atleta salta en longitud y despega del suelo a un ángulo de 30° con una velocidad de 11 m/s.
 - a) ¿Qué distancia salta en la dirección horizontal?
 - b) ¿Cuál es la altura máxima alcanzada?

$$V_{yz} \lor cos \theta = 11 cos 30^{\circ} = 11 \cdot 01866 = 01586 \text{ m/s}$$

$$V_{0}y = V_{0}se_{0} = 515 \text{ m/s}$$

$$V_{0}y = V_{0}se_{0}$$

- **8.** Se lanza un objeto a 20 m/s desde una altura de 300 m haciendo un ángulo de 30° por debajo de la horizontal. Al mismo tiempo se lanza verticalmente otro objeto con velocidad desconocida v_0 desde el suelo a una distancia de 100 m.
 - a) Determine, la velocidad v_0 , el instante y la posición de encuentro de ambos objetos.
 - b) Dibuje la trayectoria de cada objeto hasta el momento en que se encuentran.
 - c) Calcule las componentes tangencial y normal de la aceleración del primer objeto en el instante de encuentro.

(geneded) 0.7 | Vo|= 20 m/s Vox= 20 cos -30° = 12'32;7m/s Voy= 20 sex -30° = -47m/s

MALLS &

X= Nox+=100=> += 100 = S177 = S177 = 751598 ~

7 poschogue = (100, 7515018) m

 $Vel_{02} \rightarrow y_{2} = 0 + v_{02}t - \frac{1}{2}gt^{2} = 2 v_{02} + \frac{1}{2}gt = \frac{1}{1196} m/s$ $(b.) \quad x = v_{01}\cos dt = 2 + \frac{x}{190}\cos dt$ $y = y_{0} - v_{01}\sin dt = 2 + \frac{x}{190}\cos dt$ $y = y_{0} - v_{01}\sin dt = 2 + \frac{x}{190}\cos dt$ OPCIONAL

10. Una partícula sigue la trayectoria que se muestra en la figura, donde entre B y D la trayectoria es recta. Dibuje los vectores aceleración en A, C y E si:

- a) La partícula se mueve con rapidez constante
- b) La rapidez aumenta uniformemente
- c) La rapidez disminuye uniformemente

0.)

9. Una pelota resbala por un tejado que forma un ángulo de 30° con la 🗻 horizontal y al llegar al borde queda en libertad con una velocidad de 10 m/s La altura desde el borde del tejado hasta la calle es 60 m y la anchura de la calle es de 30 m.

- (عود منافر (الله عند الله عند) (عند الله عند) (عند الله عند) (عند الله عند) (عن
- b) ¿Caerá la pelota al suelo o chocará con la pared opuesta?
- c) ¿Con qué velocidad llegará al punto de impacto?

entre to y ti;
$$y=y_0+0+\frac{1}{2}a+2=$$
) $y=8^{183}-2^{14}S+2$
 $a=g\cdot Sex \cdot 30^{9}=4^{19}$
 $t_1=\frac{V_1}{\alpha}=\frac{10}{4^{10}}=2^{10}4S$
 $\Rightarrow y_1=\frac{1}{2}0=10+\frac{1}{2}0^{10}\cdot 2^{10}\times y_1=10^{12}S$
 $c_1 \cdot N \cdot cos30^{9}=\frac{1}{2}S^{18}S_{n}=\frac{1}{2}S^{19}$
 $c_1 \cdot N \cdot cos30^{9}=\frac{1}{2}S^{18}S_{n}=\frac{1}{2}S^{19}$
 $c_1 \cdot N \cdot cos30^{9}=\frac{1}{2}S^{18}S_{n}=\frac{1}{2}S^{19}$
 $c_2 \cdot N \cdot sos30^{9}=\frac{1}{2}S^{18}S_{n}=\frac{1}{2}S^{19}$
 $c_3 \cdot N \cdot cos30^{9}=\frac{1}{2}S^{18}S_{n}=\frac{1}{2}S^{19}$
 $c_4 \cdot N \cdot cos30^{9}=\frac{1}{2}S^{18}S_{n}=\frac{1}{2}S^{19}$
 $c_4 \cdot N \cdot cos30^{9}=\frac{1}{2}S^{18}S_{n}=\frac{1}{2}S^{19}$
 $c_4 \cdot N \cdot cos30^{9}=\frac{1}{2}S^{18}S_{n}=\frac{1}{2}S^{19}$
 $c_5 \cdot N \cdot cos30^{9}=\frac{1}{2}S^{18}S_{n}=\frac{1}{2}S^{19}S_{n}=\frac{1$

7. Un patinador desciende por una pista helada, alcanzando al finalizar la pista una velocidad de 45 m/s. En una competición de salto, debería alcanzar 90 m a lo largo de una pista inclinada 60°

respecto de la horizontal.

- a) ¿Qué ángulo α debe formar su vector velocidad inicial con la horizontal?
- b) ¿Cuánto tiempo tarda en aterrizar?
- c) Calcule y dibuje las componentes tangencial y normal de la aceleración en el instante t/2, siendo t el tiempo de vuelo.

Solifora": Antago

- 11. Una persona gira en un carrusel con velocidad angular constante. El módulo de su aceleración es de 0.8 m/s² cuando se encuentra a 4 m del eje.
 - a) ¿Determine el periodo y el módulo de la velocidad?
 - b) Si la persona se coloca a 2 m del eje y el carrusel sigue girando con el mismo periodo, ¿cuánto valen los módulos de la aceleración y de la velocidad?

$$C = \frac{V^2}{2N^2} = V = \frac{2NC}{T} = 0.89 \text{ m/s}$$

$$C = \frac{V^2}{2N^2} = \frac{1}{2N^2} =$$

- **12.** Las coordenadas de un cuerpo en movimiento son $x = 2 sen(\omega t)$ e $y = 2 cos(\omega t)$, donde x e y se miden en metros y t en segundos.
 - a) Determine la ecuación de su trayectoria.
 - b) Calcule el valor de su velocidad en cualquier instante.
 - c) ¿De qué tipo de movimiento se trata?
 - d) Calcule el valor de las componentes tangencial y normal de la aceleración en cualquier instante.

13. Un cuerpo inicialmente en reposo (θ =0, ω =0 en t=0) es acelerado en una trayectoria circular de 1.3 m de radio de acuerdo con la ecuación d ω /dt=120t²+48t+16 donde todos los valores se dan en las unidades del Sistema Internacional. Halle θ (t), ω (t) y las componentes paralela y perpendicular de su aceleración.

su aceleracion.

$$\frac{dw}{dt} = \frac{dw}{dt} = 1 \quad \text{with } \frac{dw}{dt} = 1$$