Implementation of the New Chemistry Curriculum

...looking for ways to identify interventions that "work"

The triangles of curriculum design

The big changes: The sequence https://sites.google.com/r.umn.edu/chemistry-at-umr

General Chemistry 1

SI units
Dimensional analysis
Atoms, Moles and Mass
Stoichiometry Calculations
Ideal Gases
Theory of light and electronic structure
Periodic Table
Chemical bond: Lewis structures
Molecular orbital theory
Intermolecular forces and phase change
Solutions: properties and preparation

General Chemistry 2

Chem. Kinetics: Descriptive concepts
Chem. Kinetics: Integrated rate laws and Arrhenius
Thermodynamics: Descriptive concepts
Thermodynamics: Hess law and quantitative equil.
Quantitative Equilibrium
Electrochemistry
Acid/Base: Reactions, Ka, Kb and approximate pH.
Acid/Base: Titrations, buffers and ICE tables.
Precipitation Equilibria
Metallic Complexes: Bonding and Equilibria

Organic Chemistry 1

Bonding: Hybrid orbitals.
Resonance.
Acid/Base and polarity
Functional groups. Overview
Alkanes
Conformation of alkyl chains
Cycloalkanes
Alkenes and alkynes: structure
Alkenes and Alkynes reactivity.
Stereochemistry
Nucleophilic substitution.

Organic Chemistry 2

Mass spectrometry
Infrared spectroscopy (IR)
Nuclear magnetic resonance (NMR)
Conjugation and Ultraviolets pectroscopy
Aromaticity and Aromatic substitution
Alcohols and Ethers
Carbonyl reactivity
Carboxylic acid and acyl derivatives
Amines and Heterocycles

Implemented Interventions

- High Impact Practices (active learning et al)
 - Preclass:
 - Homemade videos
 - Submit a picture of preclass answers as attendance write them on paper (emphasis on paper)
 - Analytics on watching videos who's engaged?
 - During class: accountability vs comfortable environment
 - They are not assessed during class. (Low stakes)
 - But I give them a paper copy of activities so that it is easier to be engaged
 - We solve them together / some accountability Table lottery
 - After class:
 - Weekly homework. The same questions as in the milestone
- The Grading: Specifications grading The A/C/F scale
 - Laboratory
 - Preclass + Attendance
 - Milestones
- Splitting examinations between Milestones (low-level, memorize questions) and Science practices (high-level, open ended problems)
- Curriculum Sequence The content
 - Postponing the quantitative thinking and focusing on the Drawing-Representing-Explaining

Assessment?

- Are students learning the same as elsewhere?
 - ACS exams: nation wide accepted tool for majoring in chemistry.
 It would tell us that at least we are not damaging and
- Identifying what works
 - Will the new sequence help make connections?
 - Will milestones help them retain basic topics?
 - Is watching videos related to performance?

How is grade calculated

- Written exams: 3 semester (20%) + 1 final exam (10%)
 - Drop the lowest score during the semester
- Milestones 30% graded on A/C/F scale
 - Three attempts
- Attendance 10% graded on A/C/F scale
- Laboratory 20%
- Online Homework every Thursday
 - 5 attempts Drop the lowest score