Матрицы Адамара

Теорема Адамара. Если у матрицы A размера $n \times n$ все элементы по модулю не больше 1, то $|\det A| \leq n^{n/2}$.

Квадратная матрица H называется $\mathit{матрицей}\ A\mathit{дамарa}$, если все ее элементы равны ± 1 и столбцы попарно ортогональны.

Гипотеза. Матрица Адамара $n \times n$ существует для любого числа n, кратного 4.

Гипотеза не доказана, в частности, для n = 668,716,892.

Матрица Адамара называется *нормализованной*, если у нее первая строчка и первый столбец состоят из одних единиц.

- 1. Докажите теорему Адамара.
- 2. Нарисуйте все нормализованные матрицы Адамара порядков 1, 2, 4.
- **3.** Докажите, что если H матрица Адамара, то $H \cdot H^T = n \cdot E_n$.

Адамаровость матрицы сохраняется при умножении строки или столбца на -1, а также при перестановке строк или столбцов. Матрицы Адамара, получаемые друг из друга применением некоторого числа таких преобразований, называются эквивалентными.

Количество классов эквивалентности: для порядков 1, 2, 4, 8, 12 - 1; 16 - 5; 20 - 3; 24 - 60; 28 - 487; 32 - больше миллиона.

- **4.** Докажите, что для матриц Адамара достигается верхняя оценка в теореме Адамара. (Именно этому факту матрицы Адамара обязаны своим названием)
- **5.** Для простого числа p обозначим $S_d = S_{p,d} := \sum_{j \in \mathbb{Z}_p} \left(\frac{j(j+d)}{p} \right)$ сумма символов Лежандра.
 - (a) Докажите, что S_d не зависит от $d \neq 0$.
 - (b) Найдите S_d для каждого $d \in \mathbb{Z}_p$.
- **6.** Постройте матрицу Адамара $n \times n$ для n, равного
 - (2a) 2a, если дана матрица Адамара $a \times a$;
 - (ab) ab, если даны матрицы Адамара $a \times a$ и $b \times b$;
 - (4k) p+1, где p- простое число вида 4k-1.

Домашнее задание.

1. Постройте матрицу Адамара $n \times n$ для n = 2p + 2, где p — простое число вида 4k + 1.