draft-xu-intarea-challenge-icmpv4-00 draft-xu-intarea-challenge-icmpv6-00

Enhancing ICMP/ICMPv6 Error Message Authentication Using Challenge-Confirm Mechanism

Presenter: Ao Wang, Yuxiang Yang

March 2025

Problem Statement

ICMP Error Message

- □ ICMP error message
 - ◆ICMP error messages, defined in RFC 792 / 4443, are used to report network errors, aiding in network diagnostics and troubleshooting.
- Verification of ICMP error message
 - ◆ Verification of ICMP error messages involves verifying the integrity and accuracy of these messages to accurately reflect network issues.

Specifications on ICMP Error Message

□ RFC 792 / 1122 specifies:

◆ Every ICMP error message includes the Internet header and at least the first 8 data octets of the datagram that triggered the error; more than 8 octets MAY be sent; this header and data MUST be unchanged from the received datagram.

□RFC 1812 specifies:

◆ The ICMP datagram **SHOULD contain as much of the original datagram as possible** without the length of the ICMP datagram exceeding 576 bytes.

□RFC 4443 specifies:

◆ Every ICMPv6 error message (type < 128) MUST include as much of the IPv6 offending (invoking) packet (the packet that caused the error) as possible without making the error message packet exceed the minimum IPv6 MTU.

Problem

Current ICMP/ICMPv6 specifications have inherent limitations that allow off-path attackers to forge ICMP error messages.

- Lack of Source IP Address-Based Verification
 - ◆Certain ICMP/ICMPv6 error messages can originate from any intermediate router along the packet path.

Problem

Current ICMP/ICMPv6 specifications have inherent limitations that allow off-path attackers to forge ICMP error messages.

- ☐ Check on Embedded Packet is Bypassable
 - ◆For stateful embedded packets (e.g., TCP), hard to bypass.
 - ◆For stateless embedded packets (e.g., UDP, ICMP), easy to bypass.

Problem

Current ICMP/ICMPv6 specifications have inherent limitations that allow off-path attackers to forge ICMP error messages.

- ☐ Check on Embedded Packet is Bypassable
 - ◆For stateful embedded packets (e.g., TCP), hard to bypass.
 - ◆For stateless embedded packets (e.g., UDP, ICMP), easy to bypass.

Can impact all upper-layer protocols!

Attack Cases

□ ICMP Fragmentation Attack

◆Forge ICMP "Fragmentation Needed" messages to lower hosts Path MTU.

[1] Feng, X., Li, Q., Sun, K., Fu, C., and K. Xu, "Off-path TCP hijacking attacks via the side channel of downgraded IPID"

□ ICMP Redirect Attack

◆Forge ICMP Redirect messages to tamper with a victim's gateway, enabling Man-in-the-Middle (MitM) attack.

[2] Feng, X., Li, Q., Sun, K., Yang, Y., and K. Xu, "Man-in-the-middle attacks without rogue AP: When WPAs meet ICMP redirects"

Proposed Solution

Inspiration: TCP Challenge ACK Mechanism

■ RFC 5961: Proposed to defend against blind inwindow TCP attacks by sending challenge ACK packets to the peer.

Can we design a similar mechanism by double-checking ICMP error messages to enhance the security of ICMP protocol?

Updated Packet Formats

- ☐ The challenge will be carried in IP option as a random number.
 - ◆The middle routers and peers do not have to perform any additional processing on the option.

0	1	2	3
0 1 2 3 4 5	6 7 8 9 0 1 2 3 4 5	6 7 8 9 0 1 2	3 4 5 6 7 8 9 0 1
+-+-+-+-	+-+-+-+-+-+-+-+-	+-+-+-+-+-	+-+-+-+-+-+-+-+
Version I	HL Type of Service	Tota	al Length
+-+-+-+-+-	+-+-+-+-+-+-+-+-	+-+-+-+-+-	+-+-+-+-+-+-+-+
Id	entification	Flags Fi	ragment Offset
+-+-+-+-	+-+-+-+-+-+-+-+-	+-+-+-+-+-	+-+-+-+-+-+-+
Time to L	ive Protocol	Heade	er Checksum
+-+-+-+-	+-+-+-+-+-+-+-+-	+-+-+-+-+-	+-+-+-+-+-+-+
Source Address			
+-+-+-+-	+-+-+-+-+-+-+-+-	+-+-+-+-+-	+-+-+-+-+-+-+
Destination Address			
•			
+-+-+-+-+-	+-+-+-+-+-+-+-+-	+-+-+-+-+-+-	·-+-+-+-+-+-+-+-+
	+-+-+-+-+-+-+-+- pe Opt Data Len		
Option Ty		Rese	erved
Option Ty	pe Opt Data Len	Rese	erved
Option Ty	pe Opt Data Len +-+-+-+-	Rese	erved
Option Ty	pe Opt Data Len +-+-+-+-	Rese	erved
Option Ty	pe Opt Data Len +-+-+-+-	Rese	erved
Option Ty	pe Opt Data Len +-+-+-+-	Rese	erved
Option Ty	pe Opt Data Len +-+-+-+-	Rese	erved
Option Ty	pe Opt Data Len +-+-+	Rese	erved
Option Ty	pe Opt Data Len +-+-+	Rese	erved

Challenge-Confirm Option in IPv6

Considerations

- Authentication Strength
 - Utilizing high-entropy random numbers to ensure that challenges are unpredictable and resistant to forgery.
- Replay Attack Mitigation
 - ◆ Assigning unique random numbers to each challenge and implementing expiration timers to mitigate the risk of replay attacks.
- Denial of Service Prevention
 - ◆ Rate limiting and challenge frequency controls should be implemented to prevent potential DoS attacks.
- Backward Compatibility
 - ◆ The proposed mechanism only requires updates solely to the ICMP error message verification on end hosts. Intermediate routing devices remain unaffected.

Next Step

- □ Collaboration is welcome!
- ☐ Your comments and suggestions are welcome

Thanks!