Formación y Evolución de las Galaxias

Alfredo J. Mejía^{1,2}

¹Posgrado de Física Fundamental Universidad de Los Andes

²Centro de Investigaciones de Astronomía

4 de junio de 2017

Motivación I

Si bien los sondeos de galaxias de última generación han revelado detalles de los fenómenos físicos que intervienen en la formación y evolución de las galaxias, una construcción física ab initio permanece aún elusiva. La principal limitación en este sentido sigue siendo la tecnología. Por otra parte, desde el punto de vista teórico, mediante simulaciones cosmológicas autoconsistentes de formación de estructuras a gran escala, hemos llegado a la satisfactoria realización de que conocemos (y hasta cierto punto, entendemos) los aspectos físicos más relevantes en la formación de las galaxias. Existen esencialmente dos formas de modelar los procesos físicos de la formación y la evolución de las galaxias en dichas simulaciones: uno es mediante simulaciones hidrodinámicas de materia oscura y bariónica y el otro es el llamado método semianalítico; aunque ambos métodos son fundamentalmente distintos, obtienen resultados similares. Más aún, estos están en acuerdo cualitativo con las observaciones. Aún así, existen fenómenos físicos de gran importancia en la construcción de una teoría de formación de galaxias, que carecen

Motivación II

aún de un entendimiento completo. Es el objeto de este seminario hacer un recuento fenomenológico de los procesos físicos que intervienen en la formación de las galaxias, señalar las incertidumbres que existe en cada proceso y establecer las perspectivas a futuro. Ya que el enfoque es fenomenológico, este seminario estará naturalmente sesgado hacia los resultados del método semianalítico, sin embargo, cuando sea pertienente señalaré las diferencias entre los resultados de ambos métodos en comparación con las observaciones.

Antecedentes I

Formación de Galaxias. Aunque en los primeros modelos de formación de galaxias lograban predecir algunas propiedades globales, como la función de luminosidad de las galaxias y la existencia de galaxias satelites y galaxias centrales masivas compartiendo el mismo halo de materia oscura (White y Rees, 1978). Más aún, el modelo de colapso monolítico aún permitía predecir algunas de las propiedades observadas en galaxias elípticas (Larson, 1974; Larson y Tinsley, 1974). En particular, estos modelos predecían colores más azules hacia el núcleo galáctico que los observados, esto debido a que la tasa de formación estelar se extendendía en desde el momento en que el colapso iniciaba hasta el presente. Larson y Tinsley (1974) sugería que para 'apagar' la formación estelar en este tipo de galaxias, una fuente de energía en el núcleo de estas galaxias era necesaria para barrer y calentar el material gaseoso. La realización de que algunos

Antecedentes II

fenómenos físicos aún faltaban en la construcción de una teoría para describir la formación y evolución de las galaxias, era clara. Primeros indicios de que un número significativo de galaxias podrían albergar un agujero negro supermasivo ($\sim 10^6 - 10^9 \, \mathrm{M}_{\odot}$) apareció entre finales de los 80's y comienzos de los 90's (véase Kormendy y Richstone, 1995, para una revisión). Estos indicios, aunque en su mayoría circunstanciales, fueron suficientes para motivar la búsqueda de agujeros negros supermasivos en el universo local. Eventualmente, los movimientos estelares a escalas de unos pocos parsecs proveyó evidencia irrefutable de que muchas galaxias (independientemente de la clase morfológica), albergaban un aqujero negro supermasivo en su núcleo. Más importante aún, las masas de dicho agujero negro estaban correlacionadas con la luminosidad (Magorrian y col., 1998) y con la masa (medida con la dispersión de velocidades central Ferrarese y Merritt, 2000). Estas

Antecedentes III

correlaciones indicaban claramente que debía existir un vínculo fundamental entre la formación de las galaxias y la formación del agujero negro supermasivo que estas albergan. Eventualmente, los intentos por teorizar la formación de las galaxias comenzaron a incluir la formación y evolución de agujeros negros supermasivos y los efectos ambientales que estos producían (e. g. Springel, Di Matteo y Hernquist, 2005b). La lista de fenómenos físicos que capturaban la esencia de la formación y evolución de galaxias en el universo tomó la forma que hoy conocemos:

- Fusión de (sub)halos (gravedad),
- enfriamiento del material bariónico (termodinámica y transferencia radiativa),
- formación estelar,
- evolución química,
- feedback de la formación estelar,

Antecedentes IV

- formación de agujeros negros supermasivos, y
- feedback de núcleos activos.

Predicciones. Los primeros intentos por simular la formación de estructuras a escalas cosmológicas, lograban hacer predicciones cualitativamente en acuerdo un conjunto de observaciones:

- La formación de estructuras sobredensas,
- la formación de cúmulos de galaxias,
- los propiedades cinemáticas de esferoides y discos estelares, Sin embargo fallaron en predecir propiedades observadas directamente como los colores y otras estimadas como la tasa de formación estelar.

Teoría de formación de galaxias — en construcción l

En el marco del *Big Bang* se postula que el universo comenzó en un estado altamente denso, caliente y esencialmente homogéneo. Durante un corto período en su expansión, llamado inflación, se manifestaron fluctuaciones cuánticas que dieron origen a inhomogeneidades, las mismas que detectamos ahora en el Fondo Cósmico de Microondas (FCM). Las observaciones del FCM junto con mediciones de la distancia y las Oscilaciones Acústicas de Bariones (OAB) permiten determinar los parámetros cosmológicos con un nivel de incertidumbre considerablemente bajo (~ 10 por ciento). Estas mediciones han permitido determinar que el universo en el presente es plano y que está dominado por materia oscura y energía oscura en más de un 95 por ciento. Aunque no sabemos qué es exactamente la materia oscura, simulaciones han permitido descartar entre un gran número de candidatos. Es comúnmente asumido que la materia oscura se comporta como un fluído frío y no colisional y constituye el $\sim 25\,\mathrm{por}$ ciento de la materia-energía en el universo. La energía oscura, por otra parte, es aún más

Teoría de formación de galaxias — en construcción II

misteriosa y se ha introducido como un parámetro *ad hoc* para explicar la geometría y la tasa de expansión (acelerada) del universo. En las ecuaciones fundamentales de la Relatividad General, la energía oscura toma la forma de una constante, llamada Constante Cosmológica Λ y representa el \sim 70 por ciento de la materia-energía. El restante \sim 4 por ciento es materia bariónica.

Dadas estas condiciones iniciales, en un universo en expansión que contiene solo materia oscura, se desarrollan de manera natural regiones de sobre densidad. A medida que el universo se expande la densidad de campo (densidad promedio) disminuye. Sin embargo, cuando en estas regiones de sobre densidad se alcanza un valor crítico, la expansión del universo es despreciable y el material acumulado se convierte en autogravitante.

Los sondeos del cielo de los últimos 20 años nos ha permitido estudiar con relativo detalle (aún así estadísticamente hablando) los propiedades observables y físicas de las galaxias en escalas de tiempo cosmológicas (z < 6). Por una parte los

Teoría de formación de galaxias — en construcción III

métodos que buscan explotar los registros fósiles en el universo local (z < 0.5) han servido su propósito revelando correlaciones entre las propiedades físicas de las galaxias (la relación masa-metalicidad, Tremonti y col., 2004; Sánchez y col., 2013; la relación edad-metalicidad, Worthey, 1994; Gallazzi y col., 2005; Panter y col., 2008), mientras que estudios fuera del universo local (z>1) han permitido muestrear la distribución de masa estelar a escalas cosmológicas, la densidad de TFE, entre otros (véase Madau y Dickinson, 2014, para una revisión completa). Estas observaciones y mediciones han permitido la construcción de calibraciones en vista de una construcción ab initio de la formación de galaxias. También nos han permitido decir con certeza que hoy tenemos conocimiento de los fenómenos físicos que intervienen en la construcción de dicha teoría.

Aún así, los aspectos fundamentales relacionados con la formación estelar no están completamente entendidos. Por un lado las simulaciones que apuntan a resolver el problema de la formación de galaxias a escalas cosmológicas, de primeros

Teoría de formación de galaxias — en construcción IV

principios, (e.g., MILLENIUM Springel y col., 2005; ILLUSTRIS Vogelsberger y col., 2014) no han alcanzado la resolución espacial (< 20 pc) y ni en masa (< $10^6 M_{\odot}$) requeridos para experimentar distintos escenarios de formación estelar físicamente plausibles, de nuevo, en el contexto cosmológico. Por otro lado, las observaciones, incluso en nuestra propia galaxia (e.g. Lada, Lombardi y Alves, 2010), son aún insuficientes para elaborar una compresión completa de los mecanismos físicos que intervienen en el MIE y como estos propician o inhiben la formación estelar (véase McKee y Ostriker, 2007; Krumholz, 2014; Naab y Ostriker, 2016, para revisiones recientes).

A continuación una representación esquemática de los ingredientes necesarios para la elaboración de una teoría de formación de galaxias.

Enfriamiento del Gas I

El gas en el halo se asume que es calentado por ondas de choque producidas por el durante el colapso. Tradicionalmente se asume que el gas se encontraba en equilibrio colisional (sin embargo véase Wiersma, Schaye y Smith, 2009), por lo tanto el tiempo de enfriamiento se puede escribir como

$$t_{enf} = \frac{3}{2} \frac{1}{\mu \, m_H} \frac{k \, T_{gas}}{\rho_{gas}(r) \Lambda(T_{gas}, Z_{gas})}. \label{eq:tenf}$$

Bajo esta suposición, el mecanismo de enfriamiento más eficiente a escalas cosmológicas son los procesos radiativos de dos cuerpos. Dependiendo de la temperatura del gas, el mecanismo específico de enfriamiento, encapsulado en la función $\Lambda(T_{qas},Z_{qas})$, será uno u otro:

Bremsstrahlung. A temperaturas $T>10^7\,\mathrm{K}$, el gas está completamente ionizado, por lo tanto se enfría vía interacciones libre-libre como enfriamiento 'Bremsstrahlung'.

Enfriamiento del Gas II

Recombinación. En el rango de temperaturas $10^4 < T < 10^7 \, \text{K}$, las especies colisionalmente ionizadas pueden decaer al nivel base y los electrones recombinarse con los iones.

Emisión de metales. A temperaturas $T < 10^4\,\mathrm{K}$ el enfriamiento ocurre mediante (des)excitación colisional de especies pesadas, mediante un proceso llamado emisión de metales.

Los mecanismos de enfriamiento dependen, por supuesto, de las condiciones del gas y del medio en que este se encuentra. Si alguno de los procesos antes mencionados no es capaz de enfriar eficientemente el gas, este se convertirá en una estructura cuasi-estática soportada por presión, con una temperatura cercana a la temperatura virial. Eventualmente se enfriará, perderá su estructura soportada por presión. El gas frío es acretado en un disco en el centro del halo de materia oscura. Durante el proceso de acreción del gas se asume que el disco conserva su momento angular (véase White y Frenk, 1991; Cole y col., 2000).

Enfriamiento del Gas III

Para que la formación estelar tenga lugar, el gas debe entonces enfriarse lo suficiente como para condensarse en nubes de unas pocas decenas de parsecs.

Formación estelar y mergers l

El contenido estelar de una galaxia se ve afectado principalmente por dos fenómenos: la formación estelar, que es un fenómeno local que ocurre a escalas de unas pocas decenas de parsecs y la fusión de halos de materia oscura por acción de la gravedad, el cual tiene lugar en escalas de millones de parsecs. Las escalas temporales también son bastente diferentes entre un fenómeno y otro. La formación estelar, bajo la suposición de que no existe feedback estelar o de AGN (los cuales explicaré más adelante), es un fenómeno secular, es decir, se puede extender desde la formación del disco hasta el presente. El fenómeno de fusión de halos, por otra parte, puede borrar sus huellas en cuestión de unos pocos giga años.

Formación estelar y mergers II

Formación estelar es probablemente el fenómeno físico más fundamental en la astrofísica. Parte de lo que lo hace interesante es que aún no están resueltas las condiciones físicas bajo las cuales tiene lugar, pues las propiedades físicas del MIE (donde la formación estelar tiene lugar) son extremadamente complejas: primero el MIE está compuesto por gas en distintas fases coexistiendo en un amplio rango de densidades y temperaturas. Desde el punto de vista de las simulaciones ab initio a gran escala (e.g. simulaciones cosmológicas) estas condiciones físicas aún están lejos de ser resueltas. Sin embargo, la existencia de relaciones 'globales' o que se manifiestan de forma global en poblaciones de galaxias nos ha permitido hacer avances en nuestro entendimiento teórico de los procesos físicos involucrados en la formación estelar. En este sentido, las simulaciones ab initio y las semi-analíticas han desarrollado recetas con la

FORMACIÓN ESTELAR Y mergers III

sola meta de predecir dichas relaciones, es decir, con la sola meta de predecir de manera acertada dichas relaciones.

En una visión bastante esquemática, el proceso de formación estelar, partiendo del acentamiento del gas frío en una estructura soportada por momento angular, se puede resumir como sigue:

- Formación de gas atómico frío,
- formación de nubes de gas auto-gravitantes,
- formación de moleculas y nubes moleculares,
- formación de aglomeraciones densas dentro de esas nubes,
- formación de núcleos preestelares, estrellas y cúmulos estelares.

Formación estelar y mergers IV

De este conjunto de eventos, podemos decir que conocemos con cierto grado de certidumbre las condiciones iniciales, es decir, la formación del disco de qas, y el estadío final, cuando las estrellas y los cúmulos estelares ya se han formado. Desafortunadamente, las propiedades ópticas del del MIE en nubes de formación estelar dificultan la resolución de los fenómenos físicos mediante estudios observacionales. En particular, la formación de gas atómico, gas molecular y la formación subsiguiente de nubes moleculares, e incluso su rol en la formación estelar, son aún muy incertas. Multiples mecanismos siendo candidatos plausibles para la activación de la formación estelar una vez el gas se ha acentado en el disco. Desde el punto de vista teórico, en las simulaciones de formación de galaxias es común parametrizar la tasa de formación estelar,

$$\dot{
ho}_{\star} = \epsilon_{\star} rac{
ho_{
m gas}}{t_{\star}} \propto
ho_{
m gas}^{1,5},$$

Formación estelar y mergers V

e imponer un conjunto de reglas (condiciones) físicas para su activación. Una de estas reglas, y probablemente la más fundamental, es la escala de tiempo, t_{\star} , en que la formación estelar ocurre localmente. En general esta escala temporal depende de las propiedades físicas del gas y puede ser función de escala dinámica de tiempo, del tiempo de enfriamiento, de la escala de tiempo para la formación de moleculas (e.g. H₂). Ciertamente, aún no está claro si alguno de los procesos físicos que involucra adoptar una escala temporal u otra, es preponderante en la formación estelar y bajo qué circunstancias lo es.

Uno puede acotar la física que interviene en la formación estelar suponiendo dos esquemas: uno en el que los efectos locales dominan los mecanismos de formación estelar y otro en el que los efectos globales lo hacen. En el primer esquema se asume que la formación estelar es controlada en el corazón de nubes moleculares, en particular, por su estructura y abundancia;

Formación estelar y mergers VI

una afirmación que es respaldada por evidencia observacional que conduce a una correlación entre la TFE y la cantidad de gas denso en nubes moleculares (e.g. Lada, Lombardi y Alves, 2010). Lada, Lombardi y Alves (2010) encontraron que existe una fuerte correlación entre la abundancia de gas molecular en regiones de alta densidad con el número de objetos estelares jóvenes (directamente proporcional a la TFE). Bajo este esquema, la relación entre la TFE y la densidad del gas se explica por un decremento en la escala temporal o por un incremento de la fracción de gas por encima de cierto umbral, suponiendo $t_{\star} = f \times t_{cl}$. Bajo el segundo esquema, la formación estelar es dominada globalmente por fenómenos dinámicos, en lugar de los mecanismos de enfriamiento y la formación de gas molecular. Independientemente de la fase del gas, atómico o molecular, la densidad superficial de este es lo que controla la TFE. En lugar de suponer umbrales relacionados con el enfriamiento y la formación de gas molecular, este

Formación estelar y mergers VII

esquema supone que la transición entre los distintos regímenes de formación estelar está relacionada con inestabilidades dinámicas en el disco. En este sentido, la relación entre la TFE y la densidad del gas surge por escalas temporales acortadas en regiones de alta densidad o escalas dinámicas más cortas (e. g. Ostriker, McKee y Leroy, 2010). El esquema local explica naturalmente las relaciones locales entre las propiedades del gas molecular y la TFE. Sin embargo no explica por qué una galaxia o parte de ella se encuentra en distintos regímenes de formación estelar. El esquema global, por otro lado, sugiere que los modos de formación estelar relacionados con regiones de baja densidad pueden explicarse por inestabilidades dinámicas, una afirmación que es aún incierta. A altas densidades las altas TFE se explican por el compactamiento del gas. La eficiencia es regulada por el feedback estelar, sin embargo, la observación de que la eficiencia es similar

Formación estelar y mergers VIII

en nubes moleculares independientemente de que estas estén formando estrellas masivas o no, plantea dudas sobre este esquema.

Fusión de Halos. La fusión de halos o merger es uno de los mecanismos mediante los cuales la masa luminosa de una galaxia aumenta. Por supuesto, si una de las galaxias en el merger contiene una fracción importante de gas, la fusión o incluso la interacción entre las galaxias puede propiciar eventos de formación estelar violentos, caracterizados por un incremento en la eficiencia ϵ_{\star} . La fusión de galaxias puede también cambiar dramáticamente la estructura de las galaxias y propiciar el acrecimiento de materia al aqujero negro supermasivo en la región central de las galaxias. Las simulaciones de fusión de halos de materia oscura (junto con la galaxia correspondiente), han permitido avances significativos hacia la elaboración de una teoría que explique la formación de galaxias y su evolución subsiguiente. Entre las conclusiones a las que hemos llegado están (Naab y Ostriker, 2016):

Formación estelar y mergers IX

- La fusión binaria de halos es poco frecuente,
- en galaxias de baja masa y masa intermedia las estrellas se forman in situ,
- en galaxias masivas la fusión de galaxias es importante,

Uno puede distinguir entre dos casos extremos en la fusión de halos. Uno en el que la componente gaseosa es despreciable y por lo tanto la interacción es no colisional, y otro donde la componente gaseosa es importante. En el primer caso solo materia oscura y materia luminosa interactúan gravitacionalmente y dependiendo de la relación entre las masas, la galaxia resultante puede desarrollar un halo más compacto debido a relajación violenta. El proceso de relajación violenta propiciará un intercambio de momento angular entre el disco de la componente principal y el halo correspondiente, produciendo un sistema cinemáticamente caliente. En general existirá transferencia de momento angular entre el halo y la componente estelar y entre la componente estelar siendo enqullida y la

Formación estelar y mergers X

componente existente. El momento angular orbital de la componente de menor masa se transformará en momento rotacional en la componente más masiva, de manera que la galaxia resultante rotará más que sus progenitoras, independientemente de la morfología de las componentes interactuantes (Qu y col., 2017).

Si los sistemas interactuantes son esferoidales (y una es mucho menos masiva que la otra), no habrá relajación violenta y la galaxia de mayor masa asimilará a la galaxia más pequeña en un radio mayor. Este mecanismo, de hecho es capaz de explicar con éxito la evolución estructural de las galaxias tempranas más masivas que vemos en el universo local. Sin embargo, el rol de las fusiones menores en la formación de este tipo de galaxias dependerá de la frecuencia de estos eventos y de la morfología de las componentes de involucradas. Si la frecuencia de fusiones es muy baja, por ejemplo, la

Formación estelar y mergers XI

componente más masiva podría conservar su morfología original. En el caso de un disco estelar, podría haber un calentamiento moderado.

Por supuesto cuando la componente gaseosa no es despreciable en ninguna de las galaxias interactuantes ya no es posible asumir dinámica no colisional, tampoco es posible ignorar los efectos de transporte de energía mediante radiación. Interacciones de este tipo parecen ser las responsables de los fenómenos de brotes de formación estelar, como los observados en galaxias ultra-luminosas en el IR. El gas acentado en el centro de la galaxia puede hacer que el potencial sea más esférico, propiciando el desarrollo de cinemática rotacional y galaxias con morfología de disco (Jesseit y col., 2007). En este tipo de interacciones, la componente gaseosa acretada por el disco, si tiene momento angular lo suficientemente bajo puede ser acretada por el agujero negro supermasivo central de la galaxia. La energía liberada durante el proceso de acreción se ha encontrado responsable de imprimir

Formación estelar y mergers XII

momentum al gas acentado en el disco, disminuyendo dramáticamente la formación estelar (más adelante explicaré con más detalle la física detrás de los procesos de *feedback*).

Evolución química I

Una de las consecuencias de la evolución estelar es el enriquecimiento químico del MIE y del MIG. Posteriormente parte del material devuelto al MIG en eventos de supernovas y/o AGNs puede retornar al MIE, en el que el ciclo de formación estelar tiene lugar. La evolución química de estos medios es importante para la formación y evolución de galaxias por varias razones:

- La tasa de enfriamiento del gas puede depender de la metalicidad,
- la presencia de elementos pesados en el MIE propicia el crecimiento de granos de polvo,
- las propiedades observables de las galaxias son afectadas directa e indirectamente.

Evolución química II

El objetivo principal de la teoría de evolución química del material bariónico es seguir la evolución de la abundancia de las distintas especies observadas en estrellas y en el MIE/MIG. El punto de partida es el calculo de la masa retornada por las estrellas durante su vida al MIE. Existen principalmente dos mecanismos mediante los cuales las estrellas pueden retornar material al MIE: vientos estelares y explosiones de supernova. El primer mecanismo es importante para el retorno al MIE del material enriquecido producido en el proceso de nucleosíntesis en el interior de las estrellas y es particularmente eficiente en la fase de gigantes de las estrellas de masa intermedia, $\lesssim 5 \, \mathrm{M}_{\odot}$. En estrellas de mayor masa $< 100\,\mathrm{M}_{\odot}$, los vientos estelares y la nucleosíntesis en explosiones de supernova al final de la vida de estas estrellas son más importantes. Por otra parte, existen especies en la composición inicial de las estrellas que no es ni creado ni destruido durante la vida de las estrellas. La importancia de estas especies dependerá por

Evolución química III

supuesto de la composición química inicial de las estrellas. La masa retornada por una estrella en un momento dado al MIE depende entonces de varios factores:

- la masa inicial de la estrella,
- La composición química inicial de la estrella,
- la edad de la estrella.

Sin embargo, las propiedades estelares son descritas más facilmente si se considera que las estrellas nacen en grupo a partir del material en nubes moleculares, por lo tanto es una aproximación justa asumir que en un instante dado un conjunto de estrellas tendrá la misma composición química, Z_{\star} y la misma edad, t y estará distribuída en masa de acuerdo a una FIM, $\phi(m, Z_{\star})$. El artificio físico que mejor describe a tal población es conocido como una población estelar simple (PES). La tasa de masa eyectada por una PES en el instante t es (Yates y col., 2013):

$$e_{\text{masa}}(t) = \int_{m_{\text{inf}}}^{m_{\text{sup}}} \left[m - m_{\text{rem}}(m, Z_{\star}) \right] \psi(t - \tau(m, Z_{\star})) \phi(m, Z_{\star}) dm,$$

Evolución química IV

donde m_{rem} es la masa del remanente estelar que deja una estrella de masa y metalicidad iniciales m y Z_{\star} , respectivamente; $\tau(m, Z_{\star})$ es el tiempo de vida y $\phi(m, Z_{\star})$ es la FIM normalizada de manera que su integral en el rango $m_{inf}-m_{sup}$ es igual al número de estrellas en una PES de $1\,M_{\odot}$. En este sentido, el producto $\psi(t-\tau) \times \varphi$ es la tasa de nacimiento de estrellas de masa my metalicidad Z en el instante $t-\tau$. El producto de esta tasa de nacimiento por $m-m_{rem}$ es simplemente la tasa de eyección instantánea de masa en estrellas de masa m en t. Ahora, más interesante que esto es la masa en *metales* eyectada por una PES:

$$e_{Z}(t) = \int_{m_{inf}}^{m_{sup}} \left[y(m, Z_{\star}) + Z_{\star} \times (m - m_{rem}) \right] \psi(t - \tau(m, Z_{\star})) \phi(m, Z_{\star}) dm,$$

donde $y(m, Z_*)$ es el *yield* (la masa en metales nucleosintéticos) y $Z_* \times (m - m_{\text{rem}})$ es la masa inicial en metales que no fue procesada por la estrella. La suma de estos dos términos es la masa en metales retornada al MIE

Evolución química V

por una estrella de masa y metalicidad iniciales, \mathbf{m} y \mathbf{Z}_{\star} , respectivamente. Lo que en realidad nos interesa es la contribución en masa de cada especie. En ese caso el corchete en la integral anterior se puede escribir como:

$$m_{i} = y_{i}(m, Z_{\star}) + \frac{m_{i}}{m}(m - m_{rem}).$$

Las funciones $\tau(m, Z_{\star})$, $y_i(m, Z_{\star})$ son resultados de la teoría de evolución estelar (e. q. Portinari, Chiosi y Bressan, 1998; Marigo, 2001). De acuerdo de predicciones de la teoría de evolución estelar, el *yield* es el resultado de distintos mecanismo de eyección que se activan en tiempos diferentes, como podemos ver en los gráficos a continuación (Yates y col., 2013). En la práctica solo un número reducido de especies es considerado puesto que estas son relativamente más abundantes que otras y por lo tanto más facilmente observables/medibles. En particular las especies en color en el gráfico son importantes en el calculo de las tasas de enfriamiento del gas (Wiersma, Schaye y Smith, 2009).

Fenómenos de Feedback I

Los fenómenos de *feedback* (e.g., vientos estelares y los eventos de supernova) no solo pueden cambiar la composición química del MIE, también inyectan cantidades importantes de energía cinética. Como tal, el efecto neto del *feedback* estelar es el de regular la TFE. Tal regulación puede ocurrir de dos formas:

Preventiva, retardando la acreción del gas al MIE,

EYECTIVA, removiendo el gas previamente acretado al MIE.

Ambos efectos tienen un impacto relativo dependiendo de la situación de equilibrio dinámico del sistema en el que actúan. Por ejemplo, en sistemas cinemáticamente calientes, los fenómenos preventivos son más efectivos; mientras que en sistemas sostenidos por rotación, los fenómenos eyectivos juegan un papel más importante. Por su procedencia, los fenómenos de *feedback* se pueden clasificar en *feedback* estelar y en *feedback* de núcleos activos.

Fenómenos de Feedback II

Estelar. En las secciones anteriores ya vimos que los vientos estelares y los eventos de supernovas regulan la evolución química en el MIE y la tasa de enfriamiento del gas en el mismo, por lo tanto, regulan vimos que estos fenómenos efectivamente regulan la TFE. Desde el punto de vista cinemático, estos fenómenos inyectan cantidades importantes de momento y energía necesarios para regular la TFE en regiones de formación estelar, donde la eficiencia observada es de apenas $\sim 1\,\%$. Más aún la fracción de materia bariónica presente en galaxias se estima que es $\sim 20 \,\%$. En efecto, los trabajos en los que se incorporó únicamente el efecto termodinámico del feedback estelar llevaron a la conclusión inmediata de que los fenómenos radiativos únicamente no era lo suficientemente eficientes como para explicar la ineficiencia en la formación estelar ni la pequeña fracción de material bariónico observada en las galaxias. De esta forma, el momento

Fenómenos de Feedback III

inyectado en el MIE mediante mecanismos estelares puede parametrizarse en función de la tasa en la que este es inyectado como:

$$\dot{V}=rac{\dot{p}}{M_{\star}}$$
, ó $V=rac{\dot{p}}{\dot{M}_{\star}}$,

La primera relación es más apropiada en regiones donde la población se dispersa en escalas de tiempo más cortos que el tiempo de vida de las estrellas masivas y la segunda es más relevante en regiones donde la población está en equilibrio estadístico: la tasa a la que nacen las estrellas es la misma a la que mueren. Entonces, para que el momento inyectado en el MIE pueda suprimir la formación estelar y transportar material a escalas de cúmulos o asociaciones estelares tiene que ocurrir que $\dot{V} \times \tau_{din} \gtrsim V_{local}$.

Fenómenos de Feedback IV

Alternativamente, para que el momento inyectado en el MIE pueda remover material del MIE y expulsarlo al MIG tiene que ocurrir que $V \gtrsim V_{\text{global}}$. Entre las fuentes de energía—momento lo suficientemente importantes como para regular la TFE a escalas galácticas están:

- Supernovas ($V_{SN} > 48 \text{ km/s}$),
- ullet vientos estelares ($V_{
 m viento} > 140\,{
 m km/s}$ a $Z=Z_{\odot}$),
- ullet presión de radiación ($V_L > 190 \, \text{km/s} > V_{NM} \sim 10 \, \text{km/s}$),
- rayos cósmicos,
- fotoionización y calentamiento FUV.

(ver Krumholz, 2014, para una revisión completa).

Fenómenos de Feedback V

Núcleos activos. Probablemente una de las evidencias más claras de que las galaxias más masivas ($> 10^{11} \, \mathrm{M}_{\odot}$) siguen mecanismos formación/evolución diferentes al que siguen las galaxias menos masivas ($< 10^{11}\,\mathrm{M}_{\odot}$) se encuentra en la dicotomía observada en sus clases espectrales: las galaxias masivas son consistentemente las más rojas en el óptico (en reposo) mientras que las galaxias menos masivas son sistemáticamente más azules. La distribución de color como función de la luminosidad muestra una clara bimodalidad (Strateva y col., 2001; Baldry y col., 2004; Balogh y col., 2004), sin embargo no muestra fuerte dependencia con el ambiente (medido usando la densidad local, e.g., Balogh y col., 2004). Desde hace algún tiempo ha sido claro que las galaxias más masivas se forman en regiones preferiblemente más densas, lo cual podría sugerir que mecanismos dinámicos dominan la formación de estos objetos. Sin embargo, bajo el escenario de que las componentes que ensamblan a estas galaxias contienen

Fenómenos de Feedback VI

una fracción importante del material bariónico en forma de gas, no es posible reproducir galaxias tan rojas como las galaxias que observamos en el universo local. Más aún, no es posible reproducir la dicotomía en la distribución de color la cual sugiere que si las galaxias azules de alguna forma son progenitoras de las galaxias rojas, entonces la evolución/transición tiene que ocurrir en una escala de tiempo lo suficientemente corta como para que la dicotomía. De manera independiente la aparentemente íntima relación entre la masa del aqujero negro central y la dispersión de velocidades del bulbo sugería un vínculo co-evolutivo entre ambas componentes (Ferrarese y Merritt, 2000; Tremaine y col., 2002). La acreción de material en el aqujero central puede activar un AGN no solo es capaz de inyectar energía térmica a escalas galácticas sino también energía y momento mecánicos. Se piensa que dicha energía-momento asociados son mantenidos hasta que el agujero negro ha barrido todo el material

Fenómenos de Feedback VII

disponible para acretar. Si dicha hipótesis es cierta, los AGNs pueden regular o incluso detener completamente la formación estelar en una galaxia. Estos primeros resultados de Springel, Di Matteo y Hernquist (2005a) parecían prometedores, sin embargo, sobrestimaban artificialmente la influcencia térmica en la reducción de la TFE. Como hemos visto antes, los fotones pueden distribuir en energía y momento en el MIE. De hecho, la contribución al feedback del AGN puede dividirse en dos componentes: radiativa y mecánica. La primera es relativamente simple y establece la conexión entre los flujos entrantes y salientes de materia y el material

Fenómenos de Feedback VIII

acretado, el momento y la energía cinética. Suponiendo leyes de conservación estas relaciones son:

$$\begin{split} \dot{M}_{acr} &= \dot{M}_{ent} - \dot{M}_{sal}, \\ \dot{E}_{viento} &= \varepsilon_{viento} \dot{M}_{acr} c^2 = \frac{1}{2} \dot{M}_{sal} \left\langle \nu_{viento}^2 \right\rangle, \\ \dot{p} &= \dot{M}_{sal} \left\langle \nu_{viento} \right\rangle, \end{split}$$

donde la tasa de acreción en la región central alrededor del agujero negro se puede resolver, según el modelo de acreción de Bondi-Hoyle-Lyttleton, a partir del radio de Bondi

$$R_{ ext{Bondi}} \equiv rac{2GM_{ ext{AN}}}{c_s^2 + v_{ ext{rel}}^2},$$

Fenómenos de Feedback IX

donde $v_{\rm rel}$ es la velocidad relativa del gas respecto del AN. La masa acretada por el agujero negro es

$$\dot{M}_{\text{int}} = \dot{M}_{\text{Bondi}} \equiv rac{4\pi G^2 M_{\text{AN}}^2
ho}{\left(c_{\text{S}}^2 + v_{\text{rel}}^2\right)^{3/2}}.$$

De manera que la masa realmente acretada por el AN es

$$\dot{M}_{
m acr} = \dot{M}_{
m ent} rac{1}{1+\psi_{
m acr}},$$

donde $\psi_{acr} = 2\epsilon_{viento}c^2/v_{viento}^2$ es un parámetro relacionado con la eficiencia en dicha acreción y por lo general se fija en las simulaciones de formación de galaxias. El espectro de energía de un AGN tiene un pico importante en la región de los rayos X, los cuales son capaces de impartir momento en el medio. Durante la fase de AGN, las condiciones del MIE son modificadas drásticamente y la formación estelar es esencialmente

Fenómenos de Feedback X

suprimida, de manera que las galaxias crecen casi exclusivamente mediante fusión de halos. Eventualmente el flujo másico de entrada se iguala con el se salida y la acreción se detiene. En este punto una fracción importante del gas que estaba originalmente en el MIE ha sido expulsada al MIG y la radiación emitida por el AGN ha termalizado el ambiente de manera que este tiene una probabilidad muy baja de reingresar al halo de materia oscura y resumir la formación estelar. La distribución de colores y de masas en el universo local parece consistente con esta idea.

Las ideas expuestas en el párrafo anterior resuelven varias incógnitas en la formación de galaxias masivas: ¿por qué son aparentemente más viejas? ¿el fenómeno de downsizing? ¿enriquecimiento químico del MIG?.

Poder Predictivo – Teoría vs. Observaciones I

En las siguientes secciones mostraré cómo todas las reglas físicas que he expuesto hasta ahora se compaginan para reproducir las observaciones que hacemos en el universo local y, por lo tanto proveen una teoría física (aunque incompleta) para describir la formación y la evolución de las galaxias.

En general, en las simulaciones de formación y evolución de galaxias un conjunto de ~ 6 parámetros son introducidos y ajustados para reproducir un conjunto de observables y/o estimaciones basadas en la observaciones, mayormente en el universo local (Somerville y Davé, 2015; Guo y col., 2016; Naab y Ostriker, 2016).

Función de Masa contiene la información más fundamental sobre la formación y la evolución de las galaxias. Reproducirla es por supuesto de vital importancia en el marco de una compresión completa de los mecanismos de formación y de evolución de galaxias.

En la figura se muestran en color las distintas Funciones de Masa que resultan de las simulaciones numéricas de distintos grupos y se comparan

Poder Predictivo – Teoría vs. Observaciones II

con las medidas de Li y White y de Bernardi y colaboradores. La fracción cósmica de bariones se muestra como comparación y demuestra el caracter no lineal del origen de la Función de Masa. Los halos de materia oscura de baja masa se forman primero y luego estos ensamblan halos de mayor masa. Por el contrario y de acuerdo con las observaciones, las galaxias más masivas forman su contenido estelar primero y en escalas de tiempo cortas que las galaxias de masa intermedia y baja, las cuales forman su contenido estelar después en escalas de tiempo extendidas. Este fenómeno se ha apodado downsizing (Cowie y col., 1996). Las dos pendientes en la Función de Masa de alguna manera reflejan esas diferencias en la forman en que las galaxias adquieren su contenido estelar.

Las regiones donde existen las discrepancias más grandes se encuentran en los extremos de la Función de Masa. En la región de galaxias de baja masa los modelos tienden a sobreestimar la producción de galaxias de baja masa.

Poder Predictivo – Teoría vs. Observaciones III

De hecho, contrario a lo que las observaciones indican, en las simulaciones la formación estelar sique tendencias muy similares a la historia de acreción de materia oscura en halos. De acuerdo con lo dicho anteriormente, estas diferencias están probablemente relacionadas con las incertidumbres en la física que describe la formación estelar (McKee y Ostriker, 2007; Krumholz, 2014). En la región de alta masa de la Función de Masa, por otra parte, hay concenso general en que el feedback de AGNs juega un papel importante regulando la tasa de formación estelar en halos de alta masa. Las recetas para la inclusión de los efectos del AGN en MIE de las galaxias y en el MIG están aún en discusión. En algunos casos pareciera suficiente la inclusión de mecanismos puramente radiativos, los cuales logran resolver el problema de la eficiencia en la formación estelar en estos halos, sin embargo, no logran reproducir las observaciones del MIG.

Poder Predictivo – Teoría vs. Observaciones IV

Relaciones de escala son probablemente las pruebas más exigentes por las que tiene que pasar cualquier modelo que intenta describir la formación y la evolución de las galaxias. A continuación mostraré aquellas relaciones de escala que han sido particularmente difíciles de reproducir en el contexto de las simulaciones de formación de galaxias. La relación TFE $-M_{\star}$ como función del tiempo cósmico representa la evolución competitiva entre la acreción del gas al MIE y los fenómenos de feedback. La mayoría de los modelos predicen exitosamente la pendiente en casi todo el rango de masa, sin embargo, la amplitud en la mayoría de los casos está subestimada. Más aún, el cambio de la pendiente en la región de alta masa no es el mismo en todos los modelos, lo cual refleja incertidumbres en la definición de galaxias pasivas, es decir, incertidumbres en la implementación del 'apagado' de la TFE. En el rango $4 < z \lesssim 0$ se espera que la TFE diverja de la tasa de acreción de materia oscura en los

Poder Predictivo – Teoría vs. Observaciones V

halos, pues la 'formación estelar' está dominada por procesos in situ. A z>4 por otra parte es de esperarse que la eficiencia en la TFE sea baja debido a prolongados tiempos de enfriamiento del gas en un MIE pobre en metales, sin embargo, modelos en los que se incorporan estas consideraciones aún fallan en reproducir la amplitud de esta relación. La relación $Z_{qas}-M_{\star}$ representa la competencia entre el flujo de material enriquecido afuera del MIE y el proceso de reciclaje del mismo material. Cuando sea que la galaxia logre retener el material enriquecido en el MIE, el reciclaje será más eficiente, logrando retener la composición química a expensas de los mecanismos de feedback que tienden a transportar el material enriquecido hacia afuera del MIE. Esto es lo que sucede en las galaxias de masivas. Estos resultados parecen menos alentadores que los anteriores, pero hay que tener en cuenta que acá no solo cuentan las incertidumbres en los mecanismos de la formación estelar, sino también los

Poder Predictivo – Teoría vs. Observaciones VI

de la evolución estelar, me refiero en particular a los calculos de vientos y de pérdida de masa. En general parece haber más acuerdo entre las observaciones y los modelos en el régimen de alta masa, sin embargo, en galaxias de baja masa los modelos tienden a subestimar la metalicidad. No hay forma de, ajustando la dependencia del flujo de salida del material en el MIE, conciliar la Función de Masa y la relación $Z_{\text{gas}} - M_{\star}$ de manera simultánea. Este hecho podría apuntar a que el mecanismo de feedback dominante es preventivo o que existe un mecanismo regulador que ha sido consistentemente ignorado en las simulaciones.

Las relaciones de escala estructurales son particularmente difíciles de predecir en simulaciones pues muchas de las interacciones físicas entre la materia bariónica y los halos de materia oscura se implementan con un conjunto de suposiciones y *switches ad hoc*. Esto se debe principalmente a la resolución espacial necesaria para resolver los fenómenos dinámicos en

Poder Predictivo – Teoría vs. Observaciones VII

simulaciones cosmológicas. Hopkins y col. mostraron en una serie de simulaciones que es posible conciliar las relaciones de escala en sistemas dominados por esferoides con la cosmología estándar, siempre que los fenómenos disipativos sean implementados consistentemente. Las relaciones de escala estructurales surjen como consecuencia de los cambios estructurales debidos a fenómenos ambientales (e. q. fusión de halos) o inestabilidades dinámicas debidas a procesos disipativos internos de las galaxias (e. g. enfriamiento del gas, formación estelar). El Plano Fundamental establece una estrecha relación entre la luminosidad, el tamaño y la cinemática en sistemas dominados por esferoides. Esta relación puede entenderse como que dichos sistemas están en equilibrio virial. Sin embargo, las observaciones sugieren que el Plano Fundamental está sistemáticamente desviado de dicho equilibrio (véase discusión en Cappellari, 2016). (Hopkins y col., 2009) demuestra el rol de los efectos disipativos en los modelos de

Poder Predictivo – Teoría vs. Observaciones VIII

evolución de fusión de halos en términos de las relaciones de escala. En particular, la desviación del equilibrio virial en el Plano Fundamental es explica esencialmente por la presencia de una componente disipativa en los progenitores de las galaxias dominadas por esferoides.

RESUMEN Y PERSPECTIVAS I

Referencias I

- Larson, R. B. (1974). "Dynamical models for the formation and evolution of spherical galaxies". En: MNRAS 166, págs. 585–616.
- Larson, R. B. y B. M. Tinsley (1974). "Photometric Properties of Model Spherical Galaxies". En: *ApJ* 192, págs. 293–310.
- White, S. D. M. y M. J. Rees (1978). "Core condensation in heavy halos A two-stage theory for galaxy formation and clustering". En: MNRAS 183, págs. 341–358.
- White, S. D. M. y C. S. Frenk (1991). "Galaxy formation through hierarchical clustering". En: *ApJ* 379, págs. 52–79.
- Worthey, G. (1994). "Comprehensive stellar population models and the disentanglement of age and metallicity effects". En: *ApJS* 95, págs. 107–149.
- Kormendy, J. y D. Richstone (1995). "Inward Bound—The Search For Supermassive Black Holes In Galactic Nuclei". En: *ARA&A* 33, pág. 581.

Referencias II

- Cowie, L. L. y col. (1996). "New Insight on Galaxy Formation and Evolution From Keck Spectroscopy of the Hawaii Deep Fields". En: *AJ* 112, pág. 839.
- Magorrian, J. y col. (1998). "The Demography of Massive Dark Objects in Galaxy Centers". En: AJ 115, págs. 2285–2305.
- Portinari, L., C. Chiosi y A. Bressan (1998). "Galactic chemical enrichment with new metallicity dependent stellar yields". En: *A&A* 334, págs. 505–539.
- Cole, S. y col. (2000). "Hierarchical galaxy formation". En: MNRAS 319, págs. 168–204.
- Ferrarese, L. y D. Merritt (2000). "A Fundamental Relation between Supermassive Black Holes and Their Host Galaxies". En: *ApJl* 539, págs. L9–L12.
- Marigo, P. (2001). "Chemical yields from low- and intermediate-mass stars: Model predictions and basic observational constraints". En: A&A 370, págs. 194-217.
- Strateva, I. y col. (2001). "Color Separation of Galaxy Types in the Sloan Digital Sky Survey Imaging Data". En: AJ 122, págs. 1861–1874.

Referencias III

- Tremaine, S. y col. (2002). "The Slope of the Black Hole Mass versus Velocity Dispersion Correlation". En: *ApJ* 574, págs. 740–753.
- Baldry, I. K. y col. (2004). "Quantifying the Bimodal Color–Magnitude Distribution of Galaxies". En: *ApJ* 600, págs. 681–694.
- Balogh, M. L. y col. (2004). "The Bimodal Galaxy Color Distribution: Dependence on Luminosity and Environment". En: *ApJ* 615, págs. L101–L104.
- Tremonti, C. A. y col. (2004). "The Origin of the Mass-Metallicity Relation: Insights from 53,000 Star-forming Galaxies in the Sloan Digital Sky Survey". En: *ApJ* 613, págs. 898–913.
- Gallazzi, A. y col. (2005). "The ages and metallicities of galaxies in the local universe". En: MNRAS 362, págs. 41–58.
- Springel, V., T. Di Matteo y L. Hernquist (2005a). "Black Holes in Galaxy Mergers: The Formation of Red Elliptical Galaxies". En: *ApJl* 620, págs. L79–L82.

Referencias IV

- Springel, V., T. Di Matteo y L. Hernquist (2005b). "Modelling feedback from stars and black holes in galaxy mergers". En: MNRAS 361, págs. 776–794.
- Springel, V. y col. (2005). "Simulations of the formation, evolution and clustering of galaxies and quasars". En: *Nature* 435, págs. 629–636.
- Jesseit, R. y col. (2007). "2D kinematics of simulated disc merger remnants". En: MNRAS 376, págs. 997–1020.
- McKee, C. F. y E. C. Ostriker (2007). "Theory of Star Formation". En: *ARA&A* 45, págs. 565–687.
- Panter, B. y col. (2008). "The cosmic evolution of metallicity from the SDSS fossil record". En: MNRAS 391, págs. 1117–1126.
- Hopkins, P. F. y col. (2009). "Dissipation and Extra Light in Galactic Nuclei. IV. Evolution in the Scaling Relations of Spheroids". En: *ApJ* 691, págs. 1424–1458.

Referencias V

- Wiersma, R. P. C., J. Schaye y B. D. Smith (2009). "The effect of photoionization on the cooling rates of enriched, astrophysical plasmas". En: *MNRAS* 393, págs. 99–107.
- Lada, C. J., M. Lombardi y J. F. Alves (2010). "On the Star Formation Rates in Molecular Clouds". En: *ApJ* 724, págs. 687–693.
- Ostriker, E. C., C. F. McKee y A. K. Leroy (2010). "Regulation of Star Formation Rates in Multiphase Galactic Disks: A Thermal/Dynamical Equilibrium Model". En: *ApJ* 721, págs. 975–994.
- Sánchez, S. F. y col. (2013). "Mass-metallicity relation explored with CALIFA. I. Is there a dependence on the star-formation rate?" En: *A&A* 554, A58, A58.
- Yates, R. M. y col. (2013). "Modelling element abundances in semi-analytic models of galaxy formation". En: MNRAS 435, págs. 3500–3520.

Referencias VI

- Krumholz, M. R. (2014). "The big problems in star formation: The star formation rate, stellar clustering, and the initial mass function". En: *Physics Reports* 539, págs. 49–134.
- Madau, P. y M. Dickinson (2014). "Cosmic Star-Formation History". En: *ARA&A* 52, págs. 415–486.
- Vogelsberger, M. y col. (2014). "Introducing the Illustris Project: simulating the coevolution of dark and visible matter in the Universe". En: MNRAS 444, págs. 1518–1547.
- Somerville, R. S. y R. Davé (2015). "Physical Models of Galaxy Formation in a Cosmological Framework". En: *ARA&A* 53, págs. 51–113.
- Cappellari, M. (2016). "Structure and Kinematics of Early–Type Galaxies from Integral Field Spectroscopy". En: *ARA&A* 54, págs. 597–665.

Referencias VII

- Guo, Q. y col. (2016). "Galaxies in the EAGLE hydrodynamical simulation and in the Durham and Munich semi-analytical models". En: *MNRAS* 461, págs. 3457–3482.
- Naab, T. y J. P. Ostriker (2016). "Theoretical Challenges in Galaxy Formation". En: *ArXiv e-prints*.
- Qu, Y. y col. (2017). "A chronicle of galaxy mass assembly in the EAGLE simulation". En: MNRAS 464, págs. 1659–1675.