Example

Bangzheng Li

1 Problem 1

Consider the ring homomorphism $\hat{\varphi}: \mathbb{C}[x,y] \to \mathbb{C}[x^{\pm 1}] \times \mathbb{C}[y^{\pm 1}], x \mapsto (x,0), y \mapsto (0,y).$

Claim: $\ker \hat{\varphi} = (xy)$.

Proof: every polynomials f in $\mathbb{C}[x,y]$ can be written into the form c+xP(x)+yP(y)+xyR(x,y), where $c\in\mathbb{C},P\in\mathbb{C}[x],Q\in\mathbb{C}[y],R\in\mathbb{C}[x,y]$, and we have $\hat{\varphi}(f)=(c+xP(x),c+yQ(y))$, so we see that $f\in\ker\hat{\varphi}\Leftrightarrow f\in(xy)$.

Thus $\hat{\varphi}$ induces an injective homomorphism $\varphi: \mathbb{C}[x,y]/(xy) \to \mathbb{C}[x^{\pm 1}] \times \mathbb{C}[y^{\pm 1}]$. From this we can view $\mathbb{C}[x^{\pm 1}] \times \mathbb{C}[y^{\pm 1}]$ as a $\mathbb{C}[x,y]/(xy)$ -algebra.

And we have $\varphi(\overline{x+y})=\varphi(\bar x)+\varphi(\bar y)=(x,y)$ has inverse (x^{-1},y^{-1}) (in $\mathbb{C}[x^{\pm 1}]\times\mathbb{C}[y^{\pm 1}]$).

Thus by proposition in lecture 9, \exists homomorphism $\varphi': (\mathbb{C}[x,y]/(xy))_{x+y} \to \mathbb{C}[x^{\pm 1}] \times \mathbb{C}[y^{\pm 1}]$ such that the following diagram commutes:

$$\mathbb{C}[x,y]/(xy) \xrightarrow{\varphi} \downarrow^{\iota} \mathbb{C}[x,y]/(xy))_{x+y} \xrightarrow{\varphi'} \mathbb{C}[x^{\pm 1}] \times \mathbb{C}[y^{\pm 1}]$$

And from the construction in lecture 9, φ' is given by

$$\varphi'\left(\frac{\overline{P(x,y)}}{\overline{x+y^n}}\right) = \varphi\left(\overline{P(x,y)}\right) \cdot (x^{-n}, y^{-n})$$

Claim: φ' is bijective, hence an isomorphism.

Proof: injectivity: suppose $\varphi'\left(\frac{\overline{P(x,y)}}{\overline{x+y^n}}\right) = 0$, then $\varphi\left(\overline{P(x,y)}\right) \cdot (x^{-n},y^{-n}) = 0$, and because (x^{-n},y^{-n}) is not a zero divisor, we see $\varphi\left(\overline{P(x,y)}\right) = 0$, but φ is injective, hence $\overline{P(x,y)} = 0 \Rightarrow \frac{\overline{P(x,y)}}{\overline{x+y^n}} = 0$.

Surjectivity: $\forall \left(\frac{P(x)}{x^n}, \frac{Q(y)}{y^m}\right) \in \mathbb{C}[x^{\pm 1}] \times \mathbb{C}[y^{\pm 1}], \text{ pick } N \in \mathbb{Z}^+ > \max(n, m), \text{ then } x \in \mathbb{Z}^+$

$$\left(\frac{P(x)}{x^n},\frac{Q(y)}{y^m}\right) = \left(\frac{P(x)x^{N-n}}{x^N},\frac{Q(y)y^{N-m}}{y^N}\right) = \varphi'\left(\frac{\overline{P(x)x^{N-n} + Q(y)y^{N-m}}}{\overline{x+y}^N}\right)$$

Thus φ' is surjective.

So φ' gives the desired isomorphism.

2 Problem 2

Put $\lambda = \sqrt{-5}$.

2.1 a

 $1/1 = \frac{2}{2} \in I_2$, which is the identity of A_2 , hence because I_2 is an ideal in A_2 we see $I_2 = A_2$, hence I_2 is obvious free module of rank 1 because it is generated by $1/1 \in A_2$.

2.2 b

Claim: $I_3 = \frac{1+\lambda}{1} A_3$.

Proof: $1 + \lambda \in I \Rightarrow \frac{1+\lambda}{1} \in I_3 \Rightarrow \frac{1+\lambda}{1} A_3 \subset I_3$.

And pick any $\frac{2x+(1+\lambda)y}{3^n} \in I_3(n \in \mathbb{Z}_{\geq 0})$, we have $\frac{2x+(1+\lambda)y}{3^n} = \frac{(1-\lambda)x+3y}{3^{n+1}} \frac{1+\lambda}{1}$, this shows $I_3 \subset \frac{1+\lambda}{1} A_3$.

Consider the (A_3 -module) homomorphism $A_3 \to I_3, x \to \frac{1+\lambda}{1}x$. It is surjective because $I_3 = \frac{1+\lambda}{1}A_3$, it is injective because $\frac{1+\lambda}{1}\frac{a}{3^n} = 0$ ($a \in A, n \in \mathbb{Z}_{\geq 0}$) $\Rightarrow \exists m \in \mathbb{Z}_{\geq 0} \ s.t. \ 3^m (1+\lambda)a = 0 \Rightarrow [A \text{ is domain}]a = 0 \Rightarrow \frac{a}{3^n} = 0$.

3 Problem 3

Put $\iota: A \to A_{\mathfrak{p}}, a \to a/1$ as usual. Put $S = A - \mathfrak{p}$.

Claim: for prime ideal $\mathfrak{q} \subset A$, TFAE:

- (1) $\mathfrak{q} \subset \mathfrak{p}$.
- $(2)\ sa\in \mathfrak{q} \Rightarrow a\in \mathfrak{q}\ \forall s\in S, a\in A.$

Proof: $(1) \Rightarrow (2) : \mathfrak{q} \subset \mathfrak{p} \Rightarrow S \cap \mathfrak{q} = \emptyset \Rightarrow [\mathfrak{q} \text{ prime}] \Rightarrow a \in \mathfrak{q}.$

 $(2) \Rightarrow (1)$: if $\mathfrak{q} \not\subset \mathfrak{p}$, then $\mathfrak{q} \cap S \neq \emptyset$.

Let $s \in \mathfrak{q} \cap S$, then because \mathfrak{q} is prime, $\exists a \in A - \mathfrak{q}$, then $sa \in \mathfrak{q}$ but $a \notin \mathfrak{q}$, contradiction!

From lecture 10, ∃a (set) bijection

 $\Psi: \{ \text{ideal } I \subset A: sa \in A \Rightarrow a \in I \ \forall s \in S, a \in A \} \xrightarrow{\sim} \{ \text{ideal } I' \subset A_{\mathfrak{p}} \}.$

And $\Psi(I) = I_{\mathfrak{p}}, \Psi^{-1}(I') = \iota^{-1}(I').$

Claim: if $\mathfrak{q} \subset \mathfrak{p}$ is a prime ideal, then $\mathfrak{q}_{\mathfrak{p}} \subset A_{\mathfrak{p}}$ is also a prime ideal.

Proof: $\mathfrak{q}_{\mathfrak{p}} \neq A_{\mathfrak{p}}$ because $\mathfrak{q} \neq A$ and Ψ is a bijection.

Suppose $\frac{a}{s}\frac{b}{t} \in \mathfrak{q}_{\mathfrak{p}}$ $(a, b \in A, s, t \in S)$, then $\exists q \in \mathfrak{q}, r \in S \ s.t. \ \frac{a}{s}\frac{b}{t} = \frac{q}{r}$.

Thus $\exists l \in S \ s.t. \ lrab = lstq \in \mathfrak{q}$.

But $l, r \in S \Rightarrow l, r \notin \mathfrak{q}$, thus because \mathfrak{q} prime, we see $a \in \mathfrak{q}$ or $b \in \mathfrak{q}$.

So $\frac{a}{s} \in \mathfrak{q}_{\mathfrak{p}}$ or $\frac{b}{t} \in \mathfrak{q}_{\mathfrak{p}}$, therefore $\mathfrak{q}_{\mathfrak{p}}$ is a prime ideal.

Claim: if $\mathfrak{q}' \subset A_{\mathfrak{p}}$ is a prime ideal, then $\iota^{-1}(\mathfrak{q}') \subset A$ is a prime ideal.

Proof: $\iota^{-1}(\mathfrak{q}') \neq A$ because $\mathfrak{q}' \neq A_{\mathfrak{p}}$ and Ψ^{-1} is a bijection.

Suppose $ab \in \iota^{-1}(\mathfrak{q}')(a,b \in A)$, then $\frac{ab}{1} \in \mathfrak{q}' \Rightarrow \frac{a}{1}\frac{b}{1} \in \mathfrak{q}'$

 $\Rightarrow \frac{a}{1} \in \mathfrak{q}' \text{ or } \frac{b}{1} \in \mathfrak{q}' \Rightarrow a \in \iota^{-1}(\mathfrak{q}') \text{ or } b \in \iota^{-1}(\mathfrak{q}').$

Therefore from these claims we see that the restriction of Ψ on $\{\text{prime ideal }\mathfrak{q}\subset\mathfrak{p}\},\Psi|_{\{\text{prime ideal }\mathfrak{q}\subset\mathfrak{p}\}}\colon\{\text{prime ideal }\mathfrak{q}\subset\mathfrak{p}\}\to\{\text{prime ideal }\mathfrak{q}'\subset A_{\mathfrak{p}}\}\ \text{is a bijection.}$

4 Problem 4

Consider the map $\psi: (M \oplus N)_S \to M_S \oplus N_S, (m,n)/s \to (m/s,n/s)$ and the map $\iota: M_S \oplus N_S \to (M \oplus N)_S, (m/s,n/t) \to (mt,ns)/(st)$. ψ well-defined: $(m,n)/s = (m',n')/s' \Rightarrow \exists t \in S \text{ s.t. } ts'(m,n) = ts(m',n') \Rightarrow ts'm = tsm' & ts'n = tsn' \Rightarrow (m/s,n/s) = (m'/s',n'/s')$. ι well-defined: $(m/s,n/t) = (m'/s',n'/t') \Rightarrow \exists r,l \in S \text{ s.t. } rms' = rm's & lnt' = ln't \Rightarrow (rl)mts't' = (rl)m't'st & (rl)nss't' = (rl)n's'st \Rightarrow (mt,ns)/(st) = (m't',n's')/(s't')$.

It's easy to see that both ψ and ι are A-module homomorphisms.

$$\iota \circ \psi = \mathrm{id} : \iota \circ \psi((m,n)/s) = (ms,ns)/s^2 = (m,n)/s.$$

$$\psi \circ \iota = \mathrm{id} : \psi \circ \iota((m/s, n/t)) = (mt/(st), ns/(st)) = (m/s, n/t).$$

Therefore ψ gives the desired isomorphism $(M \oplus N)_S \xrightarrow{\sim} M_S \oplus N_S$.

- 5 Problem 5
- 6 Problem 6
- 7 Problem 7
- 8 Problem 8

For $X \xrightarrow{f} Y, Z \xrightarrow{g} W$, we call the following commutative diagram D1:

$$F(X) \xrightarrow{F(f)} F(Y)$$

$$\downarrow^{\kappa_X} \qquad \downarrow^{\kappa_Y}$$

$$F'(X) \xrightarrow{F'(f)} F'(Y)$$

And call the following commutative diagram D2:

$$G(Z) \xrightarrow{G(g)} G(W)$$

$$\downarrow^{\eta_Z} \qquad \qquad \downarrow^{\eta_W}$$

$$G'(Z) \xrightarrow{G'(g)} G'(W)$$

8.1 a

We construct functor morphism $\widetilde{\kappa}: FG \Rightarrow F'G$ where $\widetilde{\kappa}_X = \kappa_{G(X)}$. Check: let $X \xrightarrow{f} Y$ (which induces $G(X) \xrightarrow{G(f)} G(Y)$), consider

$$F(G(X)) \xrightarrow{F(G(f))} F(G(Y))$$

$$\downarrow_{\widetilde{\kappa}_X = \kappa_{G(X)}} \qquad \downarrow_{\widetilde{\kappa}_Y = \kappa_{G(Y)}}$$

$$F'(G(X)) \xrightarrow{F'(G(f))} F'(G(Y))$$

Then this diagram is the same diagram as D1 if we take X = G(X), Y = G(Y), f = G(f), thus commute. This shows $\widetilde{\kappa}$ is indeed functor morphism. Similarly we can define $\widetilde{\kappa}' : FG' \Rightarrow F'G'$.

Now we construct functor morphism $\tilde{\eta}: FG \Rightarrow FG'$ where $\tilde{\eta}_X = F(\eta_X)$. Check: let $X \xrightarrow{f} Y$ (which induces $G(X) \xrightarrow{G(f)} G(Y)$), consider

$$F(G(X)) \xrightarrow{F(G(f))} F(G(Y))$$

$$\downarrow \widetilde{\eta}_X = F(\eta_X) \qquad \downarrow \widetilde{\eta}_Y = F(\eta_Y)$$

$$F(G'(X)) \xrightarrow{F(G'(f))} F(G'(Y))$$

Route $\rightarrow \downarrow$: $F(\eta_Y) \circ F(G(f)) = F(\eta_Y \circ G(f))$.

Route $\downarrow \rightarrow : F(G'(f)) \circ F(\eta_X) = F(G'(f) \circ \eta_X).$

From D2 we see $\eta_Y \circ G(f) = G'(f) \circ \eta_X$, which shows that the above diagram is commute, i.e. $\widetilde{\eta}$ is indeed functor morphism.

Similarly we can define $\widetilde{\eta}': F'G \Rightarrow F'G'$.

8.2 b

We claim the following diagram commutes:

$$\begin{array}{ccc} FG & \stackrel{\widetilde{\eta}}{\longrightarrow} & FG' \\ \bigvee_{\widetilde{\kappa}} & & \bigvee_{\widetilde{\kappa}'} \\ F'G & \stackrel{\widetilde{\eta}'}{\longrightarrow} & F'G' \end{array}$$

We want to show that $\widetilde{\kappa}' \circ \widetilde{\eta} = \widetilde{\eta}' \circ \widetilde{\kappa}$, so we only need to show $\forall X, \widetilde{\kappa}_X' \circ \widetilde{\eta}_X = \widetilde{\eta}_X' \circ \widetilde{\kappa}_X$.

This is equivalent to $\kappa_{G'(X)} \circ F(\eta_X) = F'(\eta_X) \circ \kappa_{G(X)}$, which is equivalent to the following diagram commutes:

$$FG(X) \xrightarrow{F(\eta_X)} FG'(X)$$

$$\downarrow^{\kappa_{G(X)}} \qquad \downarrow^{\kappa_{G'(X)}}$$

$$F'G(X) \xrightarrow{F'(\eta_X)} F'G'(X)$$

This is just D1 with $X = G(X), Y = G'(X), f = \eta_X$, thus commutes.

9 Problem 9

9.1 a

Recall that in lecture 12, $\sigma_{X,F}$ is given by $\sigma_{X,F}(\tau) = \tau_X(1_X)$, where $\tau \in \operatorname{Hom}_{Fun}(F_X,F)$.

$$\operatorname{Hom}_{Fun}(F_X, F) \xrightarrow{\sigma_{X,F}} F(X)$$

$$\downarrow^{\eta \circ ?} \qquad \qquad \downarrow^{\eta_X}$$

$$\operatorname{Hom}_{Fun}(F_X, G) \xrightarrow{\sigma_{X,G}} G(X)$$

Now take any $\kappa \in \operatorname{Hom}_{Fun}(F_X, F)$.

Route
$$\rightarrow \downarrow$$
: $\kappa \mapsto \eta_X(\sigma_{X,F}(\kappa)) = \eta_X(\kappa_X(1_X))$.

Route
$$\downarrow \rightarrow : \kappa \mapsto \sigma_{X,F}(\eta \circ \kappa) = (\eta \circ \kappa)_X(1_X) = \eta_X \circ \kappa_X(1_X).$$

And they are obviously equal.

9.2 b

From lecture 12, we have $f_Y^* : \operatorname{Hom}_{\mathcal{C}}(Y,Y) \to \operatorname{Hom}_{\mathcal{C}}(X,Y), \psi \mapsto \psi \circ f$.

$$\operatorname{Hom}_{Fun}(F_X, F) \xrightarrow{\sigma_{X,F}} F(X)$$

$$\downarrow ? \circ f^* \qquad \qquad \downarrow F(f)$$

$$\operatorname{Hom}_{Fun}(F_Y, F) \xrightarrow{\sigma_{Y,F}} F(Y)$$

Now take any $\kappa \in \operatorname{Hom}_{Fun}(F_X, F)$.

Route
$$\rightarrow \downarrow$$
: $\kappa \mapsto F(f)(\sigma_{X,F}(\kappa)) = F(f)(\kappa_X(1_X))$.

Route
$$\downarrow \rightarrow: \kappa \mapsto \sigma_{Y,F}(\kappa \circ f^*) = (\kappa \circ f^*)_Y(1_Y) = \kappa_Y(f_Y^*(1_Y)) = \kappa_Y(1_Y \circ f) = \kappa_Y(f).$$

Because $\kappa: F_X \Rightarrow F$ is a morphism of functors, we have the following commutative diagram:

$$\operatorname{Hom}_{\mathcal{C}}(X,X) \xrightarrow{f \circ ?} \operatorname{Hom}_{\mathcal{C}}(X,Y)$$

$$\downarrow^{\kappa_{X}} \qquad \qquad \downarrow^{\kappa_{Y}}$$

$$F(X) \xrightarrow{F(f)} F(Y)$$

Route $\rightarrow \downarrow$: $1_X \mapsto \kappa_Y(f \circ 1_X) = \kappa_Y(f)$.

Route $\downarrow \rightarrow: 1_X \mapsto F(f)(\kappa_X(1_X)).$

Thus we have $F(f)(\kappa_X(1_X)) = \kappa_Y(f)$, i.e. the original diagram commutes.

10 Problem 10

10.1 a

Let C = A-Mod.

We will construct a functor isomorphism $\kappa: F_A \Rightarrow F$.

Let $M \in Ob(\mathcal{C})$, then we define $\kappa_M : Hom_{\mathcal{C}}(A, M) \to M, \psi \to \psi(1)$ (as sets).

It is bijective because ψ is uniquely determined by the value of it on 1.

Check: $\forall X \xrightarrow{f} Y, \psi \in \operatorname{Hom}_{\mathcal{C}}(A, X)$, we have $(f \circ \psi)(1) = f(\psi(1))$, i.e. the diagram is commute. Hence κ is indeed morphism of functors. And because

each κ_M is bijective, we see κ is isomorphism of functors.

Thus we have an isomorphism $\operatorname{End}_{\mathcal{C}}(A) \xrightarrow{\sim} \operatorname{End}_{Fun}(F_A) \xrightarrow{\sim} \operatorname{End}_{Fun}(F)$.

It sends an element $g \in \operatorname{End}_{\mathcal{C}}(A)$ to $\eta^g \in \operatorname{End}_{Fun}(F_A)$ and then to $\kappa \circ \eta^g \circ \kappa^{-1} \in \operatorname{End}_{Fun}(F)$. And we have $A \xrightarrow{\sim} \operatorname{End}_{\mathcal{C}}(A), a \mapsto (g_a : 1 \mapsto a)$.

Thus we get an isomorphism $A \xrightarrow{\sim} \operatorname{End}_{Fun}(F), a \mapsto \iota^a$, where $\iota_M^a(m) = am$. And the composition is given by $\iota^a \circ \iota^b = \iota^{ab}$.

10.2 b

Let C = Rings.

We will construct a functor isomorphism $\kappa: F_{\mathbb{Z}[x]} \Rightarrow F$.

Let $M \in Ob(\mathcal{C})$, then we define $\kappa_M : \operatorname{Hom}_{\mathcal{C}}(\mathbb{Z}[x], M) \to M, \psi \to \psi(x)$ (as sets). It is bijective because ψ is uniquely determined by the value of it on x (since $\psi(1)$ must be 1).

Check: $\forall X \xrightarrow{f} Y, \psi \in \operatorname{Hom}_{\mathcal{C}}(\mathbb{Z}[x], X)$, we have $(f \circ \psi)(x) = f(\psi(x))$, i.e. the diagram is commute. Hence κ is indeed morphism of functors. And because each κ_M is bijective, we see κ is isomorphism of functors.

Thus we have an isomorphism $\operatorname{End}_{\mathcal{C}}(\mathbb{Z}[x]) \xrightarrow{\sim} \operatorname{End}_{Fun}(F_{\mathbb{Z}[x]}) \xrightarrow{\sim} \operatorname{End}_{Fun}(F)$. It sends an element $g \in \operatorname{End}_{\mathcal{C}}(\mathbb{Z}[x])$ to $\eta^g \in \operatorname{End}_{Fun}(F_{\mathbb{Z}[x]})$ and then to $\kappa \circ \eta^g \circ \kappa^{-1} \in \operatorname{End}_{Fun}(F)$. And we have $\mathbb{Z}[x] \xrightarrow{\sim} \operatorname{End}_{\mathcal{C}}(\mathbb{Z}[x]), P \mapsto (g_a : x \mapsto P)$. Thus we get an isomorphism $\mathbb{Z}[x] \xrightarrow{\sim} \operatorname{End}_{Fun}(F), P \mapsto \iota^P$, where $\iota^P_R(r) = P(r)$.

And the composition is given by $\iota^P \circ \iota^Q = \iota^{P \circ Q}$.