JEE EXPERT

ANSWER KEY

RANK ELEVATOR TEST SERIES

(RETS/PT-01) 12TH (Zenith X01 & X02) Date 18.08.2019

PHYSICS									
1	(B)	2	(A)	3	(D)	4	(B)	5	(C)
6	(C)	7	(D)	8	(C)	9	(D)	10	(B)
11	(C)	12	(B)	13	(B)	14	(D)	15	(A)
16	(A)	17	(C)	18	(C)	19	(D)	20	(C)
21	(A)	22	(C)	23	(C)	24	(A)	25	(B)
26	(D)	27	(D)	28	(C)	29	(C)	30	(B)
CHEMISTRY									
31	(C)	32	(C)	33	(C)	34	(C)	35	(D)
36	(C) (C)	37	(E) (B)	38	(C)	39	(C) (C)	40	(A)
30 41	(C) (B)	42	(B)	43	(C) (C)	44	(C) (D)	40 45	(A) (C)
46	, ,	42 47		48		44 49		50	
40 51	(C) (B)	52	(C) (A)	53	(D) (B)	49 54	(D) (C)	50 55	(C) (B)
56		57		53 58		54 59		60	
50	(D)	3/	(A)	50	(D)	39	(B)	OU	(B)
MATHEMATICS									
MIXTITE MIXTING									
61	(C)	62	(B)	63	(C)	64	(B)	65	(C)
66	(B)	67	(A)	68	(C)	69	(C)	70	(B)
71	(C)	72	(A)	73	(B)	74	(B)	75	(A)
76	(A)	77	(D)	78	(B)	79	(A)	80	(B)
81	(C)	82	(B)	83	(B)	84	(C)	85	(B)
86	(A)	87	(B)	88	(C)	89	(D)	90	(A)

JEE EXPERT

SOLUTIONS

RANK ELEVATOR TEST SERIES

(RETS/PT-01) 12TH (Zenith X01 & X02) Date 18.08.2019

MATHEMATICS

- 61. (C) Given equation can be written as l(x+2y+1)+m(3x+2y-1)=0. Dividing by l, it becomes $(x+2y+1)+\frac{m}{l}(3x+2y-1)=0$...(i)

 The family of lines (i) passes through the point of intersection of x+2y+1=0 and 3x+2y-1=07 \therefore (x, y)=(1, -1)
- 62. **(B)** Let $y = m_1x$ and $y = m_2x$ $\therefore m_1 + m_2 = \frac{-2h}{b}, \quad m_1m_2 = \frac{a}{b}$ in new position $m_1m_1' = -1 \implies m_1' = -\frac{1}{m_1}$ Similarly, $m_2' = -\frac{1}{m_2}$ New lines are $y = \left(-\frac{1}{m_1}\right)x$ and $y = \left(-\frac{1}{m_2}\right)x$ $\therefore (m_1y + x)(m_2y + x) = 0 \implies bx^2 2hxy + ay^2 = 0$
- 63. (C) Any line through (1, 2) can be written as $\frac{x-1}{\cos \theta} = \frac{y-2}{\sin \theta} = r$ where θ is the angle which this line makes with positive direction of x-axis. Any point on this line is $(r \cos \theta + 1, r \cos \theta + 2)$ when $|r| = \frac{1}{3}\sqrt{6}$, this point lies on the line x + y = 4.

 i.e. $r \cos \theta + 1 + r \sin \theta + 2 = 4$, $|r| = \frac{1}{2}\sqrt{6}$

$$\Rightarrow r(\cos\theta + \sin\theta) = 1, |r| = \frac{1}{3}\sqrt{6} \Rightarrow r^2 (1 + 2\sin\theta\cos\theta) = 1, r^2 = \frac{6}{9}$$

$$\Rightarrow 1 + \sin 2\theta = \frac{1}{r^2} = \frac{9}{6} \Rightarrow \sin 2\theta = \frac{1}{2} \Rightarrow 2\theta = \frac{\pi}{6} \text{ or } \frac{5\pi}{6} \Rightarrow$$

$$\theta = \frac{\pi}{12} \text{ or } \frac{5\pi}{12}$$

64. (B) As
$$\frac{PB}{PA} = 3$$
 \Rightarrow $AB = (PB - PA) = 2\sqrt{2} \{ : (PA)(PB) = PT^2 \}$

As point P is (2, 2) and the given circle $x^2 + y^2 = 2$ has diameter $2\sqrt{2}$.

- \Rightarrow AB is diameter of the circle.
- \Rightarrow Line must pass through the centre (0, 0) also.
- 65. (C)

- **66. (B)**
- **67. (A)** The circle is $(x^2 + y^2 a^2) + \lambda(2x a) = 0$
 - \therefore it passes through (2a, 0), then we have, $\lambda = -a$
- **68.** (C) Centre \equiv (-g, -f) The normal to given circle passes through centre.
- **69. (C)** Let z_1 , z_2 are represented by A, B whereas z_0 is represented by C.

Let P represent z_3

$$\frac{z_3 - z_1}{z_0 - z_1} = \frac{PA}{AC} e^{\frac{i\pi}{2}}; \frac{z_0 - z_2}{z_3 - z_2} = \frac{BC}{PB} e^{\frac{i\pi}{2}}$$

$$\frac{z_3 - z_1}{z_0 - z_1} \cdot \frac{z_0 - z_2}{z_3 - z_2} = \frac{PA}{\text{radius}} \cdot \frac{\text{radius}}{PB} e^{i\pi} = -1 \quad (\because PA = PB)$$

70. (B) Since $OP \perp BC$

71. (C) We have,

$$x^{n} - 1 = (x - 1) (x - \alpha) (x - \alpha^{2}).....(x - \alpha^{n-1})$$

$$\Rightarrow \frac{x^{n} - 1}{x - 1} = (x - \alpha) (x - \alpha^{2}).....(x - \alpha^{n-1})$$

$$\Rightarrow 1 + x + x^{2} + + x^{n-1} = (x - \alpha) (x - \alpha)^{2}.....(x - \alpha^{n-1})$$
Putting $x = 3$, we get
$$1 + 3 + 3^{2} + + 3^{n-1} = (3 - \alpha) (3 - \alpha^{2})....(3 - \alpha^{n-1})$$

$$\Rightarrow (3 - \alpha) (3 - \alpha^{2}).....(3 - \alpha^{n-1}) = \frac{3^{n} - 1}{3 - 1} = \frac{3^{n} - 1}{2}$$

- 73. (B) We have, $(z + \alpha \beta)^3 = \alpha^3$ $\Rightarrow z = \alpha \alpha \beta, z = \alpha w \alpha \beta, z = \alpha w^2 \alpha \beta.$ Thus, the vertices A, B and C of \triangle ABC are respectively, $\alpha \alpha \beta$, $\alpha w \alpha \beta$ and $\alpha w^2 \alpha \beta$.

 Clearly, $AB = BC = AC = |\alpha| |1 w| = \sqrt{3} |\alpha|$.
- **74. (B)** As the sum of the roots = 3 \Rightarrow both the roots cannot lie in the interval (0, 1).
- 75. (A) The roots of the equation $ax^2 + bx + c = 0$ are of opposite signs if they are real and their product is negative.

i.e. if
$$b^2 - 4ac \ge 0$$
 and $\frac{c}{a} < 0$

i.e. if
$$b^2 - 4ac \ge 0$$
 and $ac < 0$

i.e. if
$$ac < 0$$

(: when ac < 0,
$$b^2 - 4ac$$
 is automatically ≥ 0)

Hence, the roots of the given equation are of opposite signs if $2(a^2 - 2a) < 0$

i.e. if
$$a^2 - 2a < 0$$

i.e.
$$0 < a < 2$$
.

76. (A) Since $2+i\sqrt{3}$ is a root of $x^2 + px + q = 0$, therefore $2-i\sqrt{3}$ is also a root of the equation.

Sum of the roots =
$$-p$$

$$\Rightarrow (2+i\sqrt{3})+(2-i\sqrt{3})=-p$$

$$\Rightarrow$$
 $p = -4$

Now, product of the roots = q

$$\Rightarrow$$
 7 = q.

77. **(D)** Clearly
$$\alpha + \beta = p$$
 and $\alpha\beta = -(p+q)$
Now $(\alpha + 1) (\beta + 1) = \alpha + \beta + \alpha\beta + 1 = p - p - q + 1 = 1 - q ...(i)$
The given expression $= \frac{(\alpha + 1)^2}{(\alpha + 1)^2 + (q - 1)} + \frac{(\beta + 1)^2}{(\beta + 1)^2 + q - 1}$
 $= \frac{2(\alpha + 1)^2 (\beta + 1)^2 + (q - 1)[(\alpha + 1)^2 + (\beta + 1)^2]}{(\alpha + 1)^2 (\beta + 1)^2 + (q - 1)[(\alpha + 1)^2 + (\beta + 1)^2]}$

$$= \frac{2(1-q)^2 + (q-1)[(\alpha+1)^2 + (\beta+1)^2]}{2(1-q)^2 + (q-1)[(\alpha+1)^2 + (\beta+1)^2]} = 1; [By (i)]$$

78. (B)
$$2 + |e^x - 1| = (e^x)^2 - 2e^x + 1 = |e^x - 1|^2$$

m $|e^x - 1|^2 - |e^x - 1| - 2 = 0$
or $|e^x - 1| = 2, -1 \implies |e^x - 1| = 2$
 $\implies e^x - 1 = 2, -2 \implies e^x = 3, -1 \implies e^x = 3$

79. (A) We have
$$\tan\alpha + \tan\beta + \tan\gamma = 0$$

$$\Rightarrow \quad \tan\gamma = -h, \text{ and since tany satisfies the given equation,}$$

$$a \tan^3 \gamma + (2a - x) \tan \gamma + y = 0$$
or
$$a (-h)^3 + (2a - x) (-h) + y = 0$$
or
$$ah^3 + (2a - x) h = y$$

80. (B)
$$(2x - |\sin\theta|)^2 - 1 \ge -1$$

81. (C) $f(x) = ax^2 + bx + c$ represents a parabola as shown in figure \therefore Roots of $ax^2 + bx + c = 0$ lies in the interval (-1, 1).

82. (B)
$$\alpha, \beta, \gamma$$
 are roots of $x^3 + qx + r = 0$
 $\therefore \alpha + 1, \beta + 1, \gamma + 1$ are roots of $(x - 1)^3 + q(x - 1) + r = 0$
or $x^3 - 3x^2 + x(3 + q) + (r - q - 1) = 0$
Product of roots $= (-1)^3 \frac{(r - q - 1)}{1}$ or $(\alpha + 1)(\beta + 1)(\gamma + 1) = q + 1 - r$

83. (B) Given
$$\alpha < \beta$$
 ...(i) $c < 0 < b$...(ii) This \Rightarrow c is negative and b is positive ...(iii)

$$x^{2} + bx + c = 0 \implies \alpha + \beta = -b$$
 ...(iv)
 $\alpha\beta = c$...(v)

 \Rightarrow $\alpha\beta$ is negative so α and β are of opposite signs such that their sum is negative. $\Rightarrow |\alpha| > \beta \Rightarrow \alpha < 0 < \beta < |\alpha|$

84. (C)
$$y^2 + p^2 x^2 - 2pxy = a^2 + a^2 p^2 \implies p^2 (x^2 - a^2) - p(2xy) + y^2 - a^2 = 0$$

Roots are equal, so D = 0
 $\Rightarrow 4x^2 y^2 = 4(x^2 - a^2)(y^2 - a^2) \implies x^2 + y^2 = a^2$

85. (B)
$$\alpha + \beta = -\frac{b}{a}$$
 and $\alpha\beta = \frac{c}{a}$
Now, $(1 + \alpha + \alpha^2)(1 + \beta + \beta^2)$
 $= 1 + (\alpha + \beta) + (\alpha + \beta)^2 + \alpha\beta(\alpha + \beta) + \alpha^2\beta^2 - \alpha\beta$
 $= 1 - \frac{b}{a} + \frac{b^2}{a^2} - \frac{bc}{a^2} + \frac{c^2}{a^2} - \frac{c}{a}$
 $= \frac{a^2 - ab + b^2 - bc + c^2 - ac}{a^2} = \frac{a^2 + b^2 + c^2 - ab - bc - ac}{a^2}$
 $= \frac{(a - b)^2 + (b - c)^2 + (c - a)^2}{2a^2} \ge 0$

Hence given expression is always positive.

86. (A) If AB subtends γ at the centre of the circle, then $\gamma = 2C$. Similarly $\beta = 2B$, $\alpha = 2A$ $\Rightarrow \text{Arithmetic mean of three given quantities}$ $= \frac{1}{3} \left[\cos \left(2A + \frac{\pi}{2} \right) + \cos \left(2B + \frac{\pi}{2} \right) + \cos \left(2C + \frac{\pi}{2} \right) \right] = \frac{1}{3} [-\sin 2A - \sin 2B - \sin 2C]$ $= \frac{-1}{3} [\sin 2A + \sin 2B + \sin 2C]$

This will be minimum if $\sin 2A + 2B + \sin 2C$ is maximum, which is there at $A = B = C = \frac{\pi}{3}$ and minimum value $= -\frac{1}{3} \left(\frac{\sqrt{3}}{2} + \frac{\sqrt{3}}{2} + \frac{\sqrt{3}}{2} \right) = -\frac{\sqrt{3}}{2}$

88. (C)
$$t_n = \frac{2n+3}{n(n+1)} \cdot \frac{1}{3^n} = \left(\frac{3}{n} - \frac{1}{n+1}\right) \frac{1}{3^n} = \frac{1}{n \cdot 3^{n-1}} - \frac{1}{(n+1)3^n}$$
$$\sum_{n=1}^{n} t_n = 1 - \frac{1}{n+1} \cdot \frac{1}{3^n}$$

89. (D)
$$\tan x \tan 4x = 1 \implies \cos 4x \cos x - \sin 4x \sin x = 0$$

$$\implies \cos 3x = 0 \implies 3x = (2n+1)\frac{\pi}{2} \implies x = \frac{(2n+1)\pi}{6}, n \in I \implies x = \frac{\pi}{6}, \frac{\pi}{2}, \frac{5\pi}{6}$$

90. (A) From the given relations we have $\sin 2B = (3/2) \sin 2A$ and $3\sin^2 A = 1 - 2\sin^2 B = \cos 2B$ so that $\tan 2B = \frac{(3/2) \cdot \sin 2A}{3\sin^2 A} = \cot A$ or $1 - \tan 2B \tan A = 0$ $\Rightarrow A + 2B = \frac{\pi}{2} \Rightarrow B = \frac{\pi}{4} - \frac{A}{2}$