"Centralized" Bitcoins

Prof. Francesco Bergadano

Dipartimento di Informatica Università di Torino

Summary

- Basic concepts and tools
- Simple bitcoin scenario
- A centralized Bolockchain

Basic concepts and tools

- One-way hash functions
- Hash pointers & Hash chains
- Public keys as identities ("addresses")

When H is "one-way", we have that:

given V, it is practically impossible* to find I such that H(I) = V

When |V|=k sufficiently large: a brute force approach will require 2^k hash computations, for every trial we generate a random input I and compute H(I)

Hash pointers

A pointer:

Hash pointers

A pointer:

Hash pointers

A hash pointer:

Hash pointer notation

A hash pointer*:

^{*} this is a visualization, equivalent to the previous slide

Hash pointer properties

- (1) Given the hash pointer, it is practically impossible to generate an information block that makes the pointer valid
- (2) If the information I is changed, the hash pointer is no longer valid

Hash pointer properties

- (1) Given the hash pointer, it is practically impossible to generate an information block that makes the pointer valid
 - (2) If the information I is changed, the hash pointer is no longer valid

Hash pointer properties

- (1) Given the hash pointer, it is practically impossible to generate an information block that makes the pointer valid
- (2) If the information I is changed, the hash pointer is no longer valid

A two-element hash chain:

Simplified notation:

Adding an element:

Property:

Any change in Data causes invalid hash pointers

Property:

Any change in Data causes invalid hash pointers

Hash chains can be used as a tamper-evident log

... but one could make a new chain

A "signed" chain

In order to make the chain unforgeable ...

... the hash pointer is signed, using some private key K⁻, and the validity of the chain can be checked using the public key K⁺

Public keys as identities

In order to generate an identity:

- Generate a key pair <K⁺,K⁻>
- Publish K⁺or H(K⁺) in any appropriate way
- Start using K⁻ to sign any information you like

Public keys as identities

"think" as follows:

- K⁺ is the name of the identity
- Identity K⁺ "says" things by signing messages using key K⁻
- Hence, <M,Sig(M)> means "K⁺ says M", if Sig(M) is a valid signature for keypair <K⁺,K⁻> and message M

Public keys as identities

Remarks:

- One can generate as many identities as desired
- No certificates, no third parties needed
- Identities defined as public keys can be anonymous (they are called "addresses" in bitcoin jargon)

Anonymous public keys as identities – sample applications

- Start a blog ... keep posting (you do not know who I am, but I am the "same person")
- Maintain an unforgeable log
- Bitcoins (to be discussed)

A simple bitcoin scenario

- Bitcoins as signed data
- A simple, non-secure scenario
- A centrally managed currency

Bitcoins as signed data

Sig_C

«this is a new coin of value X»

Bitcoins as signed data

A simple, non-secure scenario

- Anyone can generate new coins of some type and value
- Coins are "payed" to someone else by signing a transaction
- The recipient can then "pay" the coin to someone else in the same way

"Paying" Bitcoins: C pays A

"Paying" Bitcoins: A pays B

Double spending

A centrally managed bitcoin system, avoiding double spending

- The chain of transactions are signed by a central authority
- The central authority can be the same identity that generates new coins
- Everyone must trust the central authority

A "signed" chain of payments

- C creates new coins and maintains the chain
- To pay B, A signs the newest block, submits to C
- C checks the signatures and absence of double spending, then adds the block to the chain

Optimization example: multiple payments per block

- Every block has a sequence number
- There can be many payments in each block, hence many signatures if done by different identities

Further optimization: transactions with IDs, types and signatures

A number of coins are used and created in each transaction

Types of transactions

We will use two types of transactions for the time being:

- "create coins": new coins are created (signed by C)
- "pay coins": some identity A uses coins that she owns to create and pay new coins to other identities (signed by A)

"Create coins" transaction

Transaction ID: 432

Transaction Type: create_coins

Used coins: null

Created coins:

Number	Value	Recipient
0	35	Alice
1	18	Bob
2	9	Noah

Signature: a signature of the transaction, done by the central authority C

"Create coins" transaction

"Pay coins" transaction

Transaction ID: 1732

Transaction Type: pay_coins

Used coins: 3:82,432:0, 1729:6

Created coins:

Number	Value	Recipient
0	350	Noah
1	43	Sam

Signature: a signature of the transaction, done by A. the owner of the used coins

"Pay coins" transaction

The centralized bitcoin system

- Coins as correctly signed information
- Only C can create coins
- C manages a tamper-evident blockchain
- Double spending impossible
- Users are anonymous (one could create a new ID and pay coins to his new ID)

Conclusions

- Bitcoins = signed data
- Payments = signed transactions
- To prevent double spending, a central authority was introduced, that is also responsible for creating coins

Next, we remove such a central authority