

Topic: Breath – Based Bio Signal Analyzer For Disease Detection

24AIM114 Analog System Design

&

24AIM113 Introduction to NN, CNN and GNN

Team members:

Dharshini K. | CB.AI.U4AIM24111 Esha R. | CB.AI.U4AIM24112 Harsshitha S. | CB.AI.U4AIM24115 Vaishnavi P. | CB.AI.U4AIM24149

Faculties:

Ms. Amrutha V

Mrs. Snigdhatanu Acharya

Project Overview:

- Developed a portable breath analyser device,DHEV(Detecting Harmful Exhaled Vapors) using ESP32, MQ-3, MQ-135, and DHT22 to detect VOCs related to diabetes (acetone) and GI issues (ammonia).
- Displayed real-time sensor data on OLED and merged synthetic + real dataset for model training.
- We have built an MLP model

Model Training:

- 1. Model Type: Multilayer Perceptron (MLP)
- 2. Input Features: Normalized values of Acetone, Ammonia, Temperature, and Humidity.
- 3. Output: Disease classification (4 classes).
- 4. Evaluation Metrics:
 - 1. Train Accuracy: **98.50%**
 - 2. Test Accuracy: 98.00%
 - 3. Test F1 Score: **0.9799**
 - 4. 5-Fold Cross-Validation F1: **0.9312 ± 0.0370**

Disease Detection Logic (Based on sensor values):

If acetone level (MQ-3) > threshold AND ammonia level (MQ-135) > threshold:
 Result: Both diseases detected (Diabetes and GI issue).

2. If only acetone level > threshold:

Result: Diabetic detected.

3. If only ammonia level > threshold:

Result: GI issue detected.

4. Else:

Result: Healthy.

TABLE 1. THE SHOLD RANGE FOR DISEASE DETECTION

DISEASE	NORMAL LEVEL	DISEASE LEVEL
Diabetes (Acetone)	<1.8ppm	>1.8ppm
Gastro Intestinal (Ammonia)	<1.5ppm	>1.5ppm

Why only ADAM optimizer is preferred?

- 1. Adaptive Learning Rates: Adjusts learning rates for each parameter.
- 2. Faster Convergence: Converges faster than SGD(Stochastic Gradient descent).
- 3. Low Memory Usage: Requires less memory.

Limitations of MQ3 and MQ135 Sensors:

1. Cross-Sensitivity:

- MQ3 cross-reacts with methane, hydrogen (affects acetone detection).
- MQ135 cross-reacts with benzene, CO₂, sulfides (affects ammonia detection).

2. Limited Sensitivity:

- Operates at ppm-level; disease-specific VOCs often require ppb-level sensitivity.
- Cannot distinguish between similar molecules (e.g., acetone and other ketones).

3. Environmental Interference:

• Humidity/temperature fluctuations alter sensor resistance, requiring complex calibration.

4. Stability and Recovery Issues:

• Baseline drift over time requires frequent recalibration.

S.	Hyperparameter Tuning				
No	Hidden layers	Alpha	Learning rate	F1 score- Training	F1 score- Testing
1	(32)	0.0001	0.001	78.4%	76.0%
2	(64)	0.001	0.001	82.1%	85.1%
3	(64, 32)	0.01	0.01	88.6%	94.7%
4	(64, 32, 16	0.05	0.01	91.3%	94.1%
5	(128, 64, 32)	0.05	0.005	90.7%	93.8%
6	(64, 64)	0.01	0.01	89.5%	92.5%
7	(32, 32, 32)	0.01	0.001	87.9%	83.0%
8	(128)	0.001	0.01	83.2%	81.2%
9	(128, 64)	0.001	0.005	88.0%	89.5%
10	(64, 32, 16)	0.001	0.005	87.3%	90.7%
11	(32, 32)	0.1	0.1	98.5%	97.9%

H	
''.	
Hi	
A	
Le	
L2	
E	

Hyperparameter	Value
Hidden Layers	(32, 32)
Activation Function	ReLU
Learning Rate	0.1
L2 Regularization (α)	0.01
Early Stopping Patience	20 epochs
Max Iterations	1500

Sensor Specifications & Detected Gases

Sensor	Detected Gas	Working Principle	Specifications
MQ-3	Acetone (Diabetes)	Semiconductor Gas Sensor –Detects acetone.	Range: 0.1 – 10 ppm
MQ-135	Ammonia (GI Issues)	Semiconductor Gas Sensor – Detects NH3 and other harmful gases.	Range: 0.1 – 10 ppm
DHT22	Temperature & Humidity	Capacitive Humidity & Thermistor – Measures environmental conditions.	Accuracy: ±0.5°C, ±2% RH

Sensor Connections

Sensor	AO (Analog Output)	GND	VCC
MQ-3	GPIO-35	GND	5V
MQ-135	GPIO-39	GND	5V

Sensor	I	OUT	+
DHT22	GND	GPIO4	3.3V

Output:

5-Fold Cross-Validation F1 Score (Weighted): 0.9312 ± 0.0370

Train Accuracy: 0.9850 Test Accuracy: 0.9800 Train F1 Score: 0.9850 Test F1 Score: 0.9799

