Let B denote the set of nodes on the border of the grid G — i.e. the outermost rows and columns. Say that G has Property (*) if it contains a node $v \notin B$ that is adjacent to a node in B and satisfies $v \prec B$. Note that in a grid G with Property (*), the global minimum does not occur on the border B (since the global minimum is no larger than v, which is smaller than B) — hence G has at least one local minimum that does not occur on the border. We call such a local minimum an internal local minimum

We now describe a recursive algorithm that takes a grid satisfying Property (*) and returns an internal local minimum, using O(n) probes. At the end, we will describe how this can be easily converted into a solution for the overall problem.

Thus, let G satisfy Property (*), and let $v \notin B$ be adjacent to a node in B and smaller than all nodes in B. Let C denote the union of the nodes in the middle row and middle column of G, not counting the nodes on the border. Let $S = B \cup C$; deleting S from G divides up G into four sub-grids. Finally, let T be all nodes adjacent to S.

Using O(n) probes, we find the node $u \in S \cup T$ of minimum value. We know that $u \notin B$, since $v \in S \cup T$ and $v \prec B$. Thus, we have two cases. If $u \in C$, then u is an internal local minimum, since all of the neighbors of u are in $S \cup T$, and u is smaller than all of them. Otherwise, $u \in T$. Let G' be the sub-grid containing u, together with the portions of S that border it. Now, G' satisfies Property (*), since u is adjacent to the border of G' and is smaller than all nodes on the border of G'. Thus, G' has an internal local minimum, which is also an internal local minimum of G. We call our algorithm recursively on G' to find such an internal local minimum.

If T(n) denotes the number of probes needed by the algorithm to find an internal local minimum in an $n \times n$ grid, we have the recurrence T(n) = O(n) + T(n/2), which solves to T(n) = O(n).

Finally, we convert this into an algorithm to find a local minimum (not necessarily internal) of a grid G. Using O(n) probes, we find the node v on the border B of minimum value. If v is a corner node, it is a local minimum and we're done. Otherwise, v has a unique neighbor u not on B. If $v \prec u$, then v is a local minimum and again we're done. Otherwise, G satisfies Property (*) (since u is smaller than every node on B), and we call the above algorithm.

 $^{^{1}}$ ex624.352.598