Orthugonal Subspace
. (
4 Matrix Spaces:
1) MCA) is the orthogonal complement of C(AT) in Rm
of C(A) in Rm
2) M(A) is the anthogonal complement of the C(A)
of the C(B)
Orthogonal complement means every
vector in one space is
enthogonal to all vectors
Orthogonal complement means every vector in one space is conthogonal to all vectors in the other space,
,
Ax=b let y C M(A)
=) Fx+ Fx = D

	Approximation & Round-If Erron
_	In many cases, no analytic Solution exists
	ex: ots
	Nomerical Sulutions provide approximate results that should be close to the the true result.
	results that should be close to
	the true result.
_	But: We can not topically compose the errors of the numerical method, - Rarely is the input exact - Algo without introduce errors. The results thus depend on both of these errors.
	errors of the numerical method,
	- Rarely is the Input exact
	- Algorithms introduce errors.
	-> The results thus depend on
	touth it there errors.
	The question is this:
	1) How much arrow is present in our calculation to is that error to lenable?"
	our calculation & is that
	enon to lenable?"
	Hely Creal: I Vertification, quantification & minimization of error.
	& minimitation of error,

	Accuracy Us Precision
_	Accuracy: How the value to the
	/ true Ualue,
	Typically thought of "Now accompte is the method"
	the method "?
	1º recision: How closely do the Computed Values agree.
	Computed Values agree.
	Increase Accuracy
	R S
	9
	1/0 Morical burns;
	Errors arise from numerical approximations
	Mumerical errors: Errors arise from numerical approximations, model choice, byskm, etc.
	Truth = approximate Value + Erron $x^* = X + R$
	$X \stackrel{\cdot}{} = X \stackrel{\cdot}{} + \stackrel{\cdot}{} \stackrel{\cdot}{}$

=> e= x* -x The error, Relative Emn: Truth - approx Prej = xx -x , Prejolo = Prej x 100% Typically we can't compute the error. Why?

The you have that, why approx, mate? Approximate ena Via_1 e approx = x - x oto Significant Rigure x = 26.5? x = 26.5? x = 26.5? Louk at this gause!

Significant Figues tell how much oseful information do me
oseful information do me
realy Nau.
/
Tripically the dicits that we are
Typically the digito that we are certain of tone mure,
ex,) \$3,800
5,29 x 10 4 3 Sig Digit,
5,39 x 10 9 3 Sig Dig,t, 5,380 x 10 4 4
5,380 ×10 4 5
3,300 X 10
Ox 1 loodie 2000) to compt
exil leading Zeros do not count towards this.
12 24.0) LN 12.
$\bigcirc \bigcirc $
0,001753
0.01753 All har U Sis,
0,1753 / figures
Sig fiss tell us which numbers you can use with confidence,
Can use with contidence,
- 32-bit machine? ? Signsticant Rigures. - CUI-b.t machine! 15 signsticant figures.
- GUI-b.7 machine ! 15 significant figures

- Double Precision: more precise than
- Double Precision: more precise than Single precision, but sloven to
USC.
M=3,141592653589793235462643,,,
<u></u>
^
False Significant Figure
J
6x1) 3,25x= 1,625,16256 (from
1,96x matlab)
In practice, only report
In practice, only report 1,65 (Chupping) on 1,66 (Rounding)
why?
Because in reality we do not know the third decimal point value,
the third decimal point value.
ex,) 3,259/1,960 = 1,662755,, Chaping
3,250/1,969 = 1,65058,
3.254/ 1.95T = 1.664N5 (1) Rounding
3,245/1,964 = 1,6522

Numbering System

Base 10 (Decima)) 0, ,,, 9 86409 0 × (0° 9 86409 Base-2 (Binany) \bigcirc 173 (in base-10)

Other System Desc-9 (Octal) 0,1,2,3,4,5,6,7 Base-16 (Hexa Occimal): 0,1, 15 porulo: 0,3122 = 3×10-1 + 1×10-3 + 3×10-3 + 2×10-4 Parcy: 101101: 1x22+0x2"+1x2"+ 1x22+0x2,+1x2. $0,1011 = (x2^{-1} + 0x2^{-2} + (x2^{-3} + 1x2^{-4} = 1)$ Finite Precision Anithmetic One Source of orner is the limitation of the Computer to represent a finite number of disits. - Operations between their Finite representations
of numbers introduce round-off eman, Look at how numbers are Stored.

Integers. Losh at an e-bit word There are & pieces of base-2 data V~ \ Sish

O => positive

Other > bits give the #

1 => negative

in base-a ex,) | | 0 0) 0) | => -(26+23+21+20)=->5 Thu, the Smallest # is 0000000 = 0 beseto 1 1 1 1 1 1 1 Desc 10 with the first bit: - 127 to 127 Since +0 = -()

=> Use -0 to represent -128

=1 &-bit con represent 2°=256 pieces
of Octa (-125-) 127) - Integer Arithmetic is exact so long es no remainder! $\frac{8}{2}$ $\frac{1}{2}$ $\frac{7}{3}$ $\frac{3}{3}$ - Now can get under on over flow, Unerflow: - 74+2 = -148 = octsive & Overflow! 123+42 = 160 € octsive & In modern Computers : 82-bit on EU- bit 32-bit? 2 = 2, 147, 483, 648 64-67: 263 = 9, 22327203687 X10 Side not! This is the reason that

all conputers could not use

more than UGB of memory,

2 Gb for os + 2 Gb other.

	Normalization
	need to stare
	1 in 2 = 144 = 0.006944 ft2
	144
	This is less accurate then
	1 ina = 6,694444 x15 2 Ft2
	new to
	Store
_	Pemox leading Zerus by lowering the exprinent.
	exponent.
	In general you want the mantissa to be bounded by?
	mentissa to be bounded by?
	$\frac{1}{B} \leq m \leq 1 - 3 \text{bise-10} \frac{1}{O} \leq m \leq 1$
	B
	Desc-2 1 Em C1
	7
	_
	If m L'2, multiple by 2, increase
	It m L'2, multiply by 2, increase exponent

Single Precision A real number is stored in U bytes (for 32 bit) bit (binary Dig,t): 0 on 1 1 byte = & bits Word = 4 bytes (32-bit), & bytes (64-bit) 32 bit (28 for digit) 8 for Signed expressor 1 for 8250 Max exp-nont : +2 =1/28 64 bit (Souble Precision) Culbats of 11 for signed exps Signed exponent: ±20=±1024 Singh Us, Double $\frac{\sum_{n=0}^{\infty} \frac{1}{2^{10}}}{\sum_{n=0}^{\infty} \frac{1}{2^{10}}} = \frac{1}{2^{10}} \frac{1}{2^{10}} = \frac{1}{2^{10}} \frac{1}{2^{10}} = \frac{1}{2^{10}} \frac{1}{2^{10}} = \frac{1}{2^{10}} =$

Mok: Nou can't access 10-128 un 10-1024 because those are reserved for infinity/NaN Matlab uses Double precision. Thous Its every hound alt error is when you do not have enough bits to store the answer, In owhle precision, the precision is 2-52 (2) Octenhood by the Mantissa) This is roughly 2,22 ×10-16 €

callod machine precision & given by

eps in mottab Simplified example of Man -off error. Adoition Problem. 0,99 + 0,0044 + 0,0042 ~ 0, 9986 (exact) 3-2isit anith metro! (0,99 + 0,0644) + 0,0042 - 0,994 + 0,0042 - 0,998 0,99+ (0,0044+0,0042)=0,99+0,0086=(0,999

There are ways to conlact this. Cancellation pron! Louk at $x^2 - 10x + 1 = 0$, b is large, r close to 3 12 Vb2-4 $x_1 = b + n$ $x_2 = b + n$ $x_3 = b + n$ $x_4 = b + n$ $x_5 = b + n$ x_5 Reformulate 1 $\chi_{2} = \frac{b-n}{b} \frac{b+n}{b+n} \cdot \frac{b^2-r^2}{2(b+n)} = \frac{cl}{2(b+n)} = \frac{2}{b+n}$ ex,) (+ b=9), r= 96.9794 χ_{g} - $60 \times 7 = 0$ exact : 0.0103) Standard : 0.01050 (3-digit math) reformulate: 0.01031