# (19)日本国特許庁 (JP) (12) 公開特許公報 (A)

# (11)特許出願公開番号

# 特開平10-294191

(43)公開日 平成10年(1998)11月4日

| (51) Int | .CL <sup>6</sup> |
|----------|------------------|
|----------|------------------|

### 識別記号

FΙ

H05B 41/24

H 0 5 B 41/24

G

41/29

41/29

# 審査請求 未請求 請求項の数14 OL (全 11 頁)

| (21) | 出題番      | ã |
|------|----------|---|
| (41) | LUBRER . | - |

(22)出顧日

特願平9-102215

平成9年(1997)4月18日

(71)出願人 000005832

松下電工株式会社

大阪府門真市大字門真1048番地

(72) 発明者 水川 宏光

大阪府門真市大字門真1048番地 松下電工

株式会社内

(72)発明者 熊谷 潤

大阪府門真市大字門真1048番地 松下電工

株式会社内

(72)発明者 野呂 浩史

大阪府門真市大字門真1048番地 松下電工

株式会社内

(74)代理人 弁理士 倉田 政彦

# (54) 【発明の名称】 放電灯点灯装置

## (57)【要約】

【課題】HIDランプのスローリーク時における過電流 を点灯装置に流すことを防止して、安全性を高めた放電 灯点灯装置を提供する。

【解決手段】少なくともスイッチング素子とインダクタ を含み、入力直流電源を電圧変換して出力するチョッパ 回路を用いて放電灯を安定に点灯維持する点灯回路と、 前記チョッパ回路のインダクタに流れる電流を検出する 検出手段と、該検出手段の出力を受けて前記インダクタ に流れる電流が不連続となるように前記スイッチング素 子をスイッチング動作させる第1の制御手段と、前記イ ンダクタに流れる電流が連続となるように前記スイッチ ング素子をスイッチング動作させる第2の制御手段とを 備え、放電灯の始動直後に第2の制御手段によりスイッ チング素子を制御した後、管電力が最大になるまでに第 1の制御手段に切り換える。



# 【特許請求の範囲】

【請求項1】 少なくともスイッチング素子とインダクタを含み、入力直流電源を電圧変換して出力するチョッパ回路を用いて放電灯を安定に点灯維持する点灯回路と、前記チョッパ回路のインダクタに流れる電流を検出する検出手段と、該検出手段の出力を受けて前記インダクタに流れる電流が不連続となるように前記スイッチング素子をスイッチング動作させる第1の制御手段と、前記インダクタに流れる電流が連続となるように前記スイッチング素子をスイッチング動作させる第2の制御手段とを備え、放電灯の始動直後に第2の制御手段によりスイッチング素子を制御した後、管電力が最大になるまでに第1の制御手段に切り換えることを特徴とする放電灯点灯装置。

【請求項2】 点灯回路は降圧チョッパ回路からなり、放電灯を直流点灯することを特徴とする請求項1記載の放電灯点灯装置。

【請求項3】 点灯回路は降圧チョッパ回路と4石フルブリッジ構成の極性反転回路からなり、放電灯を矩形波交流点灯することを特徴とする請求項1記載の放電灯点灯装置。

【請求項4】 点灯回路は4石フルブリッジ回路からなり、放電灯を矩形波交流点灯することを特徴とする請求項1記載の放電灯点灯装置。

【請求項5】 点灯回路が2石ハーフブリッジ回路からなり、放電灯を矩形波交流点灯することを特徴とする請求項1記載の放電灯点灯装置。

【請求項6】 放電灯の電圧を検出する管電圧検出手段を備え、管電圧を検出して第2の制御手段から第1の制御手段に切り換える手段を備えたことを特徴とする請求項1乃至5のいずれかに記載の放電灯点灯装置。

【請求項7】 放電灯の電流を検出する管電流検出手段を備え、管電流を検出して第2の制御手段から第1の制御手段に切り換える手段を備えたことを特徴とする請求項1乃至5のいずれかに記載の放電灯点灯装置。

【請求項8】 放電灯が点灯してからタイマ回路により経過時間を計測し、定格管電圧の30%乃至50%に達する時間において、第2の制御手段から第1の制御手段に切り換える手段を備えたことを特徴とする請求項1乃至5のいずれかに記載の放電灯点灯装置。

【請求項9】 請求項1乃至8のいずれかに記載の放電灯点灯装置において、放電灯の管電圧が略零から定格値以下の所定値に達するまでの期間、前記放電灯に流す電流を少なくとも定常点灯時の管電流より少なくすることを特徴とする放電灯点灯装置。

【請求項10】 請求項1乃至8のいずれかに記載の 放電灯点灯装置において、第2の制御手段から第1の制 御手段への切り換えを行うときに、ランプ電流値が下が らないように制御することを特徴とする放電灯点灯装 置。 【請求項11】 放電灯は高圧放電灯であることを特 徴とする請求項1乃至10のいずれかに記載の放電灯点 灯装置。

【請求項12】 高圧放電灯はメタルハライドランプ であることを特徴とする請求項11に記載の放電灯点灯 装置。

【請求項13】 高圧放電灯はANSI規格のM98 (70W)又はM130(35W)であることを特徴と する請求項11に記載の放電灯点灯装置。

【請求項14】 高圧放電灯の発光管はセラミック発 光管であることを特徴とする請求項11に記載の放電灯 点灯装置。

# 【発明の詳細な説明】

[0001]

【発明の属する技術分野】本発明は、メタルハライドランプ、高圧ナトリウムランプ、水銀ランプ等の高輝度高圧放電灯 (HIDランプ)を安定に点灯させるのに適した放電灯点灯装置に関するものである。

# [0002]

【従来の技術】高圧放電灯を安定に点灯させる従来の放電灯点灯装置を図19に示す。この放電灯点灯装置は、直流電源V1から電源スイッチSWを介して2石式のインバータIVに給電し、インバータIVからHIDランプ等の放電灯LAに高周波電力を供給して放電灯LAを始動・点灯させるようになっている。インバータIVは、直列接続したスイッチング素子Q7、Q8と、スイッチング素子Q7、Q8と、スイッチング素子Q7、Q8と、スイッチング素子Q7、Q8にそれぞれ逆並列接続したダイオードD7、D8と、インダクタL3とコンデンサC4、C5とで構成されている。

【0003】放電灯LAには、抵抗R1,R2及びコンデンサC6からなるランプ電圧検出回路4が並列に接続されていて、ランプ電圧V1aに応じた検出電圧V4を出力する。このランプ電圧検出回路4から出力された検出電圧V4は、演算増幅器OP、抵抗R5~R7及び基準電圧源Vkからなる反転増幅器APで反転増幅された後、電圧一周波数変換型の50%デューティの発振器OSCに入力される。発振器OSCは制御入力電圧に応じて、つまり放電灯LAのランプ電圧の検出値V4に応じて発振周波数を高低に変化させる。反転増幅器APの出力端、つまり発振器OSCの制御入力端にリミッタ電圧Vbを有するダイオードリミッタしMが接続されていて、反転増幅器APの出力電圧Vfはリミッタ電圧Vbより下がることはない。

【0004】上記ランプ電圧検出回路4と反転増幅器APとダイオードリミッタLMとは、放電灯LAのランプ電圧Vlaが略零から定格値以下の所定値に達するまでの期間、放電灯LAに定格ランプ電力より大きい過大ランプ電力を供給して放電灯LAの光束を急速に立ち上げる制御回路5aを構成している。

【0005】上記発振器OSCの出力信号は、反転回路

N1を介して駆動回路DR1に入力されるとともに、駆動回路DR2に直接入力される。この結果、駆動回路DR1は、スイッチング素子Q7を50%デューティでオン・オフ制御し、その周波数はランプ電圧V1aの高低に応じて変化する。同様に、駆動回路DR2は、スイッチング素子Q8を50%デューティでオン・オフ制御し、その周波数はランプ電圧V1aの高低に応じて変化する。なお、スイッチング素子Q7、Q8のオン・オフは丁度逆になる。

【0006】以上のような構成では、放電灯LAのランプ電圧V1aが定格値まで上昇した状態では、放電灯LAの通常点灯に必要なランプ電力W1a1を供給し、電源投入直後からランプ電圧V1aが所定値(定格値ないしはそれに近い値)に達するまでは、スイッチング素子Q7、Q8のスイッチング周波数を変化させて通常点灯時より過大なランプ電力W1a2を供給して放電灯LAの光束を急速に立ち上げる。

#### [0007]

【発明が解決しようとする課題】図19の放電灯点灯装置では、HIDランプのランプ電圧が低電圧状態であるときのランプ電流が多く、HIDランプのスローリークのようなランプ電圧が低くなるランプ異常時において、大きな電流が流れるため、部品の発熱対策等が必要であった。

【0008】本発明は、このような点に鑑みてなされたものであり、その目的とするところは、HIDランプのスローリーク時における過電流を点灯装置に流すことを防止して、安全性を高めた放電灯点灯装置を提供することにある。

# [0009]

【課題を解決するための手段】本発明の放電灯点灯装置によれば、図1及び図2に示すように、少なくともスイッチング素子Q2とインダクタL2を含み、入力直流電源1を電圧変換して出力するチョッパ回路2を用いて放電灯LAを安定に点灯維持する点灯回路と、前記チョッパ回路2のインダクタL2に流れる電流を検出する検出手段と、該検出手段の出力を受けて前記インダクタL2に流れる電流が不連続となるように前記スイッチング素子Q2をスイッチング動作させる第1の制御手段と、前記イッチング素子Q2をスイッチング素子Q2をスイッチング動作させる第2の制御手段とを備え、放電灯LAの始動直後に第2の制御手段とを備え、放電灯LAの始動直後に第2の制御手段によりスイッチング素子Q2を制御した後、管電力が最大になるまでに第1の制御手段に切り換えることを特徴とするものである。

## [0010]

# 【発明の実施の形態】

(実施例1)図1は本発明の実施例1の回路構成を示している。本実施例は、直流電源回路である昇圧チョッパ回路1と、降圧チョッパ回路2と、極性反転回路3と、

降圧チョッパ回路2のスイッチング素子Q2の駆動制御 を行うための制御回路5を備えている。直流電源回路1 は、商用電源ACを全波整流器DBで全波整流して得ら れる脈流電圧を、インダクタレ1、ダイオードD1、コ ンデンサC1、及びMOSFETなどのスイッチング素 子Q1により構成される所謂昇圧チョッパ回路により直 流電圧に変換するようになっている。降圧チョッパ回路 2は数10KHzでオン・オフするMOSFETなどの スイッチング素子Q2、ダイオードD2、インダクタレ 2で構成されており、そのインダクタし2に流れる電流 IL2は、図3(a)に示すように三角波状になり、イ ンダクタL2の2次巻線から直列接続されている抵抗R 4を介して検出される。そして、その電流 I L 2の検出 出力を制御回路5へ送り、制御回路5を通じて降圧チョ ッパ回路2のスイッチング素子Q2をゼロクロススイッ チング駆動制御するためのフィードバック信号としてい る。また、コンデンサC2は、降圧チョッパ回路2の出 力電流から高周波成分を除去するものである。極性反転 回路3は前段の降圧チョッパ回路2からの直流出力をM OSFETのようなスイッチング素子Q3~Q6で構成 されるフルブリッジ回路により、数100Hzで交番す る低周波の矩形波電力に変換し、高圧放電灯LAに低周 波の矩形波電流を供給する矩形波インバータを構成す

【0011】スイッチング素子Q2の駆動制御を行う制御回路5の詳細を図2に示す。この制御回路5は、降圧チョッパ回路2のインダクタL2の2次電圧を検出するゼロ電流検出回路14と、降圧チョッパ回路2のスイッチング素子Q2を駆動させるための信号のデューティーを決定し、降圧チョッパ回路2のスイッチング素子Q2をスイッチングする信号を出力するPWM回路8と、降圧チョッパ回路2のスイッチング素子Q2が或る一定時間以上スイッチングされない場合に信号を出力するオフ時間監視回路9と、ゼロ電流検出回路14とオフ時間監視回路9のどちらかに切り換えるための切換回路10と、ドライブ信号を出力するためのドライバ回路11とで構成される。

【0012】本実施例では、ランプ点灯までに、放電灯電圧が最大放電灯電圧より小さい或る放電灯電圧値Va(図4参照)以下では、切換回路10がオフ時間監視回路9を動作させて、インダクタL2に流れる電流IL2を図6(a)のように連続スイッチングさせることにより、ランプの立ち消え等を防ぎ、ランプを安定点灯まで維持する。

【0013】ここで、オフ時間監視回路9の内部の回路を図5に示す。オフ時間監視回路9は、可変のしきい値電圧E1と、コンデンサC3と、比較器Cp1と、定電流源E2と、コンデンサC3の放電用抵抗R5と、トランジスタなどのスイッチング素子Q7からなる。しきい値電圧E1は、Vaより小さい放電灯電圧では線型に減

少する電圧となり、Va以上の放電灯電圧では一定のし きい値電圧となる。しきい値電圧E1と放電灯電圧V1 aの関係を図7に示す。コンデンサC3の充電電圧(図 6(b))が、このしきい値電圧E1以下のとき、降圧 チョッパ回路2のスイッチング素子Q2にはドライブ信 号(図6(d))が出力されない。このオフ時間監視回 路9により、インダクタレ2に流れる電流 I L2を図6 (a) のように連続スイッチングさせることができる。 コンデンサC3の充電電圧が、しきい値電圧E1に達す れば、比較器Cplは "High" レベルの信号をPW M回路8へ出力する。このとき、PWM回路8からフィ ードバック信号として、スイッチング素子Q7をONさ せる信号 "x"が出力され、コンデンサC3の電荷が引 き抜かれ、ドライバ回路11から降圧チョッパ回路2の スイッチング素子Q2ヘドライブ信号(図6(d)の "High" レベルの信号) が出力される。 コンデンサ C3は次にPWM回路8の出力が "Low" レベルにな るまで短絡状態を保つ。

【0014】次に、放電灯電圧が図4の所定値Va以上

になると、切換回路10がゼロ電流検出回路14を動作

させて、インダクタL2に流れる電流 I L2を不連続ゼ ロクロススイッチングさせ、所望のランプ電力にてラン プを点灯する。ゼロ電流検出回路14は、降圧チョッパ 回路2のインダクタレ2の2次電圧(図3(b))を検 出し、降圧チョッパ回路2のインダクタし2の電流 IL 2(図3(a))がゼロになると、インダクタL2の2 次巻線電圧が立ち下がることを検出し、PWM回路8に トリガパルス(図3(c))を出力する。PWM回路8 は、ゼロ電流検出回路14からトリガパルスが入力され ると、一定時間"High"レベルの出力状態を保持し た後、"Low"レベルの信号を出力する。それをドラ イバ回路11が降圧チョッパ回路2のスイッチング素子 Q2ヘドライブ信号(図3(d))として出力する。 【0015】(実施例2)本実施例の回路構成は実施例 1(図1)と同じで、降圧チョッパ回路2のスイッチン グ素子Q2に対応する制御回路5の構成も同様である が、所定値Vaの設定について規定するものである。実 施例1では放電灯が点灯する始動直後からオフ時間監視 回路9でスイッチング素子Q2を連続スイッチングさ せ、少なくとも放電灯電力が定格になるまでの放電灯電 圧の所定値Vaにおいてゼロ電流検出回路14に切り換 えることにより、インダクタレ2に流れる電流 I L 2を 不連続ゼロクロススイッチングになるようにスイッチン グ素子Q2をスイッチングさせていたが、本実施例にお いては、ランプの故障モードの1つであるスローリーク (発光管内のガスがリークすることにより、放電灯電圧 が低下し、放電灯に過大な電流が流れ続ける現象) が起 こり得る定格放電灯電圧の30%~50%(例えば、定 格放電灯電圧が90Vであれば、約25V~45V)に オフ時間監視回路9からゼロ電流検出回路14に切り換

える所定値Vaを設定するものである。

【0016】(実施例3)図8は本発明の実施例3の回路構成を示している。本実施例は、図1の回路構成に、放電灯電圧検出回路4を付加したものである。また、制御回路5の構成を図9に示す。放電灯電圧検出回路4は、極性反転回路3の電源入力端間に並列に接続してある抵抗R1、R2の直列回路により高圧放電灯しAの放電灯電圧を検出し、その検出値V1a1を制御回路5へ送り、制御回路5を通じて降圧チョッパ回路2のスイッチング素子Q2を駆動制御するためのフィードバック信号とするものである。この放電灯電圧検出回路4を設けることにより、放電灯電圧が所定値Vaに達すれば、オフ時間監視回路9からゼロ電流検出回路14に切り換える。そして、放電灯電圧の値と降圧チョッパ回路2のスイッチング素子Q2のオン幅10n(オン・デューティー)とを対応させている(図10)。

【0017】制御回路5の構成については、放電灯電圧 の検出値を反転させる反転回路6と、放電灯電圧の検出 値とその反転値を比較し、低い方の値を得るための判別 回路7を付加している。反転回路6は、検出した放電灯 電圧に応じてその値を反転させる回路であり、図11に おいて、実線で示しているのが放電灯電圧を分圧して得 られる検出値V1a1であり、点線で示しているのが放 電灯電圧の検出値Vla1の反転値Vla2である。こ の点線の傾きは変えることができる。判別回路7では、 前記VIa1とVla2の値を比較して、低い方の値を 選択し、PWM回路8に出力する。この比較して得られ た放電灯電圧値がPWM回路8のしきい値電圧となり、 降圧チョッパ回路2のスイッチング素子Q2のオン幅t on (オン・デューティー) が図10のように決定され る。このように、放電灯電圧検出回路4を設けることに より、放電灯電圧が所定値Vaに達すれば、オフ時間監 視回路9からゼロ電流検出回路14に切り換えることが でき、また、切り換えた後は、放電灯電圧の値に応じて 降圧チョッパ回路2のスイッチング素子Q2のオン幅を 制御することができる。

【0018】(実施例4)図12は本発明の実施例4の回路構成を示している。本実施例は、放電灯電流検出回路12を付加することにより、放電灯電流検出回路12を付加することにより、放電灯電流検出回路14に切り換える。また、制御回路5の構成を図13に示す。放電灯電流検出回路12は、極性反転回路3の電源入力端間に直列に接続してある抵抗R3により高圧放電灯しAの放電灯電流を検出し、その検出値I1a1を制御回路5へ送る。制御回路5では、放電灯電流の検出値を得てオフ時間監視回路9からゼロ電流検出回路14に切り換えるための切換回路10を有している。その他の構成は実施例3と同様であるので、ここでは説明を省略する。

【0019】(実施例5)図14は本発明の実施例5の

制御回路の構成を示している。本実施例の主回路の構成 は図12と同様であるが、制御回路5の構成が異なり、 タイマー回路13を付加したものである。放電灯電流検 出回路4により放電灯電流が検出されると、タイマー回 路13が時間を積算し始める。始動から定格放電灯電圧 になるまでの時間はおおよそ決まっているので、タイマ ー回路13の時定数は放電灯電圧が所定値Vaに達する 時間に合わせておく。この所定値Vaに達する時間にな れば、切換回路10により、オフ時間監視回路9からゼ 口電流検出回路14に切り換える。

【0020】(実施例6)図4は本発明の実施例6の説明図である。本実施例は、実施例1において、ランプスローリークなど多電流による被害が起こり得る低ランプ電圧域でドライバ回路11から出力されるオン信号のデューティ幅を狭く設定することにより、図4で示すように低ランプ電圧域でのランプ電流の少ない回路特性を得る。

【0021】(実施例7)同様に、実施例2において、ランプスローリークを含むランプの異常時に、ランプ電圧の所定値Vaで切り替えられたゼロ電流検出回路14による制御でドライバ回路11から出力されるドライブ信号のオン幅を、通常よりも少なく設定することにより、図4で示すようにランプスローリーク時の多電流による危険性を確実に無くすことができる。

【0022】なお、図15はオフ時間監視回路9を動作させない場合の図10に示すオン幅制御のみによる回路特性を比較例として示している。本実施例では、スローリークが起こり得る低電圧域の所定値Vaにおいて、ゼロ電流検出回路14とオフ時間監視回路9を切り換えると共に、ドライブ信号のオン幅を低電圧域では少なく設定しているものである。

【0023】以上の実施例においては、放電灯点灯装置の一部についてのみ言及し、全体の詳細回路図については触れなかったが、例えばこれを実際の放電灯点灯装置に当てはめると、以下のようになる。

【0024】(実施例8)図16~図18に本発明を製品として具体化した点灯装置を一例として示す。図16は電源入力部、図17は力率改善部、図18は点灯回路部であり、各図は点J1~J8において接続されている。

【0025】図16に示す電源入力部では、端子TM 1. TM2に接続された交流電源ACから、ヒューズFS、サーマルプロテクタTP、低抵抗RO、並びフィルタ回路を介して整流回路DBの交流入力端子に接続されており、整流回路DBの直流出力端子には、コンデンサC9が接続されている。このコンデンサC9は小容量のものであり、実際の平滑動作は後段の力率改善部の昇圧チョッパ回路により行われる。フィルタ回路は、サージ電圧吸収用のZNR(酸化亜鉛非線形抵抗)、コイルL5、L6、及びコンデンサCx、Cy、C8、C81、

C82を含み、コンデンサC81, C82の直列回路の 中点はコンデンサC83を介して端子TM5に接続さ れ、端子TM5は大地(アース)に接続されている。 【0026】図17に示す力率改善部は、インダクタレ 1とスイッチング素子Q1及びダイオードD1を含む昇 圧チョッパ回路よりなり、点J1から整流回路DBの全 波整流出力を受けて、点 J 2 に接続された電解コンデン サC1(図18)に昇圧された平滑な直流電圧を得るも のである。昇圧チョッパ回路のスイッチング素子Q1は 昇圧チョッパ制御回路15のドライブ出力から抵抗R7 1, R72を介して駆動され、その電流は抵抗R73に より検出される。また、インダクタレ1に流れる電流 は、2次巻線に接続された抵抗R74を介して検出され る。さらに、点J2に生じる出力電圧は抵抗R8、R9 を介して検出され、点 J 1 の入力電圧は抵抗 R 9 1, R 92を介して検出される。昇圧チョッパ制御回路15の 動作電源Vcc1は、電源投入時には抵抗R93、R9 4を介して点J1から供給されるが、スイッチング素子 Q1のスイッチング動作が開始すると、インダクタレ1 の2次巻線出力をダイオードD71, D72で整流し、 抵抗R70を介してコンデンサC71に得られた直流電 圧がダイオードD73を介して供給される。このコンデ ンサC71に得られる直流電圧は、三端子型の電圧レギ ュレータIC1により定電圧化されて、点灯回路部制御 回路16の動作電源Vccとなる。点灯回路部制御回路 16は、図18に示す点灯回路部より点J3~J5を介 してゼロ電流検出、過電流検出、ランプ電圧検出を行う と共に、点J6~J8を介して矩形波ドライブ及び降圧 チョッパドライブ信号を出力している。

【0027】図18に示す点灯回路部は、降圧チョッパ回路部2を備え、電解コンデンサC1に得られた点J2の直流電圧をスイッチング素子Q2とダイオードD2及びインダクタL2の作用により、任意の直流電圧に降圧して、コンデンサC2に得られたランプ電圧を得ている。コンデンサC2に得られたランプ電圧は、抵抗R1,R2及び点J5を介して検出されている。また、インダクタL2に流れる電流は、抵抗R4、点J3を介して検出されており、降圧チョッパ回路部2に流れる電流は、抵抗R3、点J4を介して検出されている。降圧チョッパ回路部2のスイッチング素子Q2は、点J8に供給されるドライブ信号により、トランスT5と抵抗R51,R52を介して駆動されている。

【0028】次に、極性反転回路部は、4個のスイッチング素子Q3~Q6で構成されたフルブリッジ回路であり、各スイッチング素子Q3~Q6は汎用のドライバ回路IC2,IC3により、抵抗R11,R12;R21,R22;R31,R32;R41,R42を介して駆動される。矩形波ドライブのための信号は、点J6,J7を介して供給されている。また、各ドライバ回路IC2,IC3の動作電源としては、上述の定電圧Vcc

が供給されている。さらに、高電位側のスイッチング素子Q3,Q4を駆動するためのコンデンサC11,C12;C31,C32は、抵抗R13とダイオードD11,D31を介して定電圧Vccから充電される。フルブリッジ回路の出力には、イグナイタ回路17のパルストランスPTを介して放電灯LAが接続されている。放電灯LAは、例えば、ANSI規格のM98(70W)又はM130(35W)であり、その発光管はセラミック発光管である。TM3,TM4は放電灯LAを接続するための端子である。

### [0029]

【発明の効果】本発明によれば、放電灯の始動直後に点灯回路のチョッパ用のインダクタに流れる電流を連続的にスイッチングするようにスイッチング素子を動作させることにより、始動電流のピーク値を低く抑えることができ、始動電流を確実に流すことが出来るため、立ち消えしにくくなる。また、定格放電灯電圧に達するまでに不連続ゼロクロススイッチング動作に切り換えることにより、定格時の回路効率を最大にすることができる。特に、連続スイッチング動作から不連続ゼロクロススイッチング動作に切り換える放電灯電圧の所定値をスローリークが生じた場合における電圧に設定すれば、スローリーク時における過電流を点灯装置に流すことがなくなり、非常に安全である。

# 【図面の簡単な説明】

【図1】本発明の実施例1の主回路の構成を示す回路図である。

【図2】本発明の実施例1の制御回路の構成を示す回路 図である。

【図3】本発明の実施例1のゼロ電流検出回路の動作を示す波形図である。

【図4】本発明の実施例6又は7の回路特性を示す説明 図である。 【図5】本発明の実施例1のオフ時間監視回路の構成を 示す回路図である。

【図6】本発明の実施例1のオフ時間監視回路の動作を 示す波形図である。

【図7】本発明の実施例1のしきい値電圧と放電灯電圧 の関係を示す説明図である。

【図8】本発明の実施例3の回路図である。

【図9】本発明の実施例3の制御回路の回路図である。

【図10】本発明の実施例3におけるオン幅の制御特性を示す説明図である。

【図11】本発明の実施例3における反転回路の動作説明のための説明図である。

【図12】本発明の実施例4の回路図である。

【図13】本発明の実施例4の制御回路の回路図である。

【図14】本発明の実施例5の制御回路の回路図である。

【図15】本発明のオフ時間監視回路を動作させない場合の回路特性を示す説明図である。

【図16】本発明を製品として具体化した点灯装置の電源入力部の回路図である。

【図17】本発明を製品として具体化した点灯装置の力 率改善部の回路図である。

【図18】本発明を製品として具体化した点灯装置の点 灯回路部の回路図である。

【図19】従来例の回路図である。

# 【符号の説明】

- 1 昇圧チョッパ回路
- 2 降圧チョッパ回路
- 3 極性反転回路
- 5 制御回路
- LA 放電灯





【図3】













【図13】



【図14】





【図16】



【図17】



【図18】

