Introduction to Algorithms, Fall, 2023 Final Exam

Problem D Maximum Weighted Independent Set in Trees

Time limit: 1 second

Memory limit: 2048 megabytes

Problem Description

A tree is an undirected connected graph without cycles. You are given a tree of n vertices, where the vertices are numbered from 1 to n. Each vertex is associated with a weight a_i .

An independent set within a graph is a collection of vertices where none are directly connected. In other words, it's a set S of vertices where no two vertices in S share an edge. The value of an independent set refers to the sum of the a_i values associated with the vertices it contains. The task is to determine the maximum achievable value of an independent set within the provided tree.

Input Format

The first line of the input contains an integer n. The second line of the input contains n space-separated integers a_i, a_2, \ldots, a_n , where a_i is the weight of the i-th vertex. The i-th of the following n-1 lines contains two integers u_i and v_i denoting an undirected edge between vertex u_i and v_i .

Output Format

Output the maximum possible value of an independent set in one line.

Technical Specification

- $1 \le n \le 2 \times 10^5$
- $1 \le a_i \le 10^9 \text{ for } i = 1, 2, \dots, n$
- $1 \le u_i, v_i \le n \text{ for } i = 1, 2, \dots, n-1$
- $u_i \neq v_i$ for i = 1, 2, ..., n-1
- It is guaranteed that the given graph is a tree and has no loops or multiple edges.

Scoring

- 1. (6 points) $(u_i, v_i) = (i, i+1)$ for i = 1, 2, ..., n-1. That is, the given tree is a path from 1 to n, containing exactly n vertices.
- 2. (9 points) No additional constraints.

Introduction to Algorithms, Fall, 2023 Final Exam

Sample Input 1

```
6
3 5 9 3 6 2
1 2
1 3
2 4
2 5
5 6
```

Sample Output 1

18

Sample Input 2

```
6
100 5 9 3 6 2
1 2
1 3
2 4
2 5
5 6
```

Sample Output 2

109

Sample Input 3

```
7
4 2 7 9 10 4 2
1 2 2 3 3 4 4 5 5 6 6 7
```

Introduction to Algorithms, Fall, 2023 Final Exam

Sample Output 3

23

Sample Input 4

Sample Output 4

400000000