Trace Estimation

Raphael Meyer, Caltech

UMich EECS 598-004 Randomized Numerical Linear Algebra in Machine Learning

Motivation 1: Road Network Connectivity

NYC is adding a new bus line. Where should it go?

Idea: Maximize connectivity of transit network using existing bus stops

Given: Adjacency matrix $\mathbf{B} \in \mathbb{R}^{n \times n}$ in memory

Algorithm: For each possible new bus route (edge), build new $\mathbf{B}' \in \mathbb{R}^{n \times n}$,

and compute the connectivity of B'.

Return: Edge that maximized connectivity

Bottleneck: Computing connectivity

Caltech

Computational Bottleneck

- We want to compute connectivity of B:

Estrada Index: $tr(e^{B})$ Num of Triangles: $tr(\frac{1}{6}B^{3})$

- The trace is the sum of the diagonal of a matrix.
- \odot Computing B^3 takes $O(n^3)$ time. slow
- Computing $\mathbf{B}^3 x = \mathbf{B}(\mathbf{B}(\mathbf{B}x))$ takes $O(n^2)$ time. fast

Can we approximate $tr(\mathbf{B}^3)$ by computing few $\mathbf{B}^3 x_1, \dots, \mathbf{B}^3 x_m$?

Yes, we can!

Motivation 2: Gaussian Process Optimization

We have time series data, and want to interpolate it with kernel $k_{ heta}$

Idea: Maximize log-likelihood kernel matrix K_{θ} over hyperparameter θ

Given: Data points $(x_1, y_1), ..., (x_n, y_n)$, kernel function $k_{\theta}(x, x')$

Algorithm: Compute Gradient Descent of Log-Likelihood to optimize θ

Return: Optimal θ

Bottleneck: Computing gradients

$$\nabla_{\theta} \mathcal{L}(\theta) = \frac{1}{2} y^{T} \mathbf{K}^{-1} \frac{d\mathbf{K}}{d\theta} \mathbf{K}^{-1} y - \frac{1}{2} tr \left(\mathbf{K}^{-1} \frac{d\mathbf{K}}{d\theta} \right)$$

General Picture: Trace Estimation

 \odot Goal: Estimate trace of a $n \times n$ matrix A:

$$tr(A) = \sum_{i=1}^{n} A_{ii} = \sum_{i=1}^{n} \lambda_{i}$$

- \odot In downstream applications, A is not stored in memory.
- \odot Instead, **B** is in memory and A = f(B).

Num. Triangles Estrada Index Log-Determinant
$$tr(\frac{1}{6}\textbf{\textit{B}}^3)$$
 $tr(e^{\textbf{\textit{B}}})$ $tr(\ln(\textbf{\textit{B}}))$

- ① If $\mathbf{A} = f(\mathbf{B})$, then we can often compute $\mathbf{A}x$ quickly Compute $\mathbf{B}^q x$ in $\tilde{O}(n^2 \sqrt{q})$ time Lanczos-FA: compute $\mathbf{A}x$ in $\tilde{O}(n^2 \sqrt{\kappa(B)})$ time for many f
- \odot Goal: Estimate $tr(\pmb{A})$ by computing $\pmb{A}x_1,...,\pmb{A}x_m$

Matrix-Vector Oracle Model

Think of the Matrix-Vector Product as a Computational Primitive

 \odot Given access to a $n \times n$ matrix A only through a Matrix-Vector Multiplication Oracle:

$$x \stackrel{input}{\Longrightarrow} ORACLE \stackrel{output}{\Longrightarrow} Ax$$

- e.g. Randomized SVD, Johnson-Lindenstrauss, Power Method, Lanczos-FA
- Some existing lower bounds; very active area of research!

Trace Estimation: Estimate tr(A) with as few Matrix-Vector products $Ax_1, ..., Ax_k$ as possible.

$$|\operatorname{tr}(A) - \widetilde{tr}(A)| \le \varepsilon \operatorname{tr}(A)$$

Outline

- Part 1: The Girard-Hutchinson Trace Estimator
 - ② 2 Lines of MATLAB Code

- Part 2: The Hutch++ Trace Estimation
 - 5 Lines of MATLAB Code

- Part 3: Extensions of Hutch++
 - 3 Follow-up papers, at a very high level

- Part 4: Lower Bounds
 - No algorithm can get better big-Oh than Hutch++!

Part 1: Girard-Hutchinson

Part 2: Hutch++

Linear Algebra Notation

⊙ Let $A \in \mathbb{R}^{n \times n}$ be symmetric. Then, $A = U \Lambda U^T$

- ⊚ A is Positive Semi-Definite (PSD) if all $\lambda_i \geq 0$
- ① Trace $tr(A) = \sum_{i=1}^{n} A_{ii} = \sum_{i=1}^{n} \lambda_i$
- \odot Frobenius Norm $\|A\|_F^2 = \sum_{i=1}^n A_{ii}^2 = \sum_{i=1}^n \lambda_i^2$
- **⊙** For PSD matrices, $||A||_F \le tr(A)$

Girard-Hutchinson Trace Estimator

o If
$$x \sim \mathcal{N}(0, I)$$
, then
$$\mathbb{E}[x^T A x] = tr(A) \qquad \qquad \text{Var}[x^T A x] = 2\|A\|_F^2$$

 \odot Girard-Hutchinson Estimator: $H_{\ell}(A) \coloneqq \frac{1}{\ell} \sum_{i=1}^{\ell} x_i^T A x_i$ $\mathbb{E}[H_{\ell}(A)] = tr(A) \qquad \qquad \text{Var}[H_{\ell}(A)] = \frac{2}{\ell} ||A||_F^2$

Lemma:
$$H_{\ell}(A)$$
 needs $\ell = O\left(\frac{1}{\varepsilon^2}\right)$ for PSD A

For PSD A, we have $||A||_F \leq tr(A)$, so that

$$|H_{\ell}(A) - tr(A)| \le O(\frac{1}{\sqrt{\ell}}) ||A||_F$$
 (Chebyshev)
 $\le O(\frac{1}{\sqrt{\ell}}) tr(A)$ ($||A||_F \le tr(A)$)
 $= \varepsilon tr(A)$ ($\ell = O(\frac{1}{\varepsilon^2})$)

Girard-Hutchinson Trace Estimator

When is this analysis tight?

$$|H_{\ell}(A) - tr(A)| \approx O(\frac{1}{\sqrt{\ell}}) ||A||_F$$
 (Chebyshev)
 $\leq O(\frac{1}{\sqrt{\ell}}) tr(A)$ ($||A||_F \leq tr(A)$)
 $= \varepsilon tr(A)$ ($\ell = O(\frac{1}{\varepsilon^2})$)

- When is the bound $||A||_F$ ≤ tr(A) tight?
- \odot Let $\mathbf{v} = [\lambda_1 \dots \lambda_n]$ be eigenvalues of A
- When is $||v||_2 ≤ ||v||_1$ tight?
 - ⊚ Property of norms: $\|v\|_2 \approx \|v\|_1$ only if v is nearly sparse
- The estimator only needs $O(\frac{1}{\varepsilon^2})$ when A has few large eigenvalues!

Helping Hutchinson's Estimator

- \odot Idea: Explicitly estimate top few eigenvals of A. Use Hutchinson for rest.
- 1. Find a good rank-k approximation $\widetilde{A_k}$
- 2. Notice that $tr(A) = tr(A_k) + tr(A A_k)$
- 3. Compute $tr(A_k)$ exactly
- 4. Return Hutch++(A) := $tr(\widetilde{A_k}) + H_{\ell}(A \widetilde{A_k})$

Caltech

Lemma: If $k = \ell = O(\frac{1}{\epsilon})$ then $|\text{Hutch++}(\mathbf{A}) - \text{tr}(\mathbf{A})| \le \epsilon \operatorname{tr}(\mathbf{A})$

Finding a good Low-Rank Approximation

- Recall Randomized SVD:
 - 1. Let $S \in \mathbb{R}^{n \times (2k+1)}$ have iid $\mathcal{N}(0,1)$ entries
 - 2. Compute $\mathbf{Q} = orth(\mathbf{AS})$
 - 3. Then $\widetilde{A_k} = AQQ^{\mathrm{T}}$ is pretty good:

$$\mathbb{E} \left\| \boldsymbol{A} - \widetilde{\boldsymbol{A}_k} \right\|_F^2 \le 2 \|\boldsymbol{A} - \boldsymbol{A}_k\|_F^2$$

• Notice $tr(\widetilde{A_k})$ can be computed quickly:

$$tr(\widetilde{\boldsymbol{A}_k}) = tr(\boldsymbol{A}\boldsymbol{Q}\boldsymbol{Q}^T) = tr(\boldsymbol{Q}^T\boldsymbol{A}\boldsymbol{Q})$$

Hutch++

- Final Algorithm
 - \odot Input: Number of matrix-vector queries m, matrix A
 - 1. Sample $\mathbf{S} \in \mathbb{R}^{n \times \frac{m}{3}}$ and $\mathbf{G} \in \mathbb{R}^{n \times \frac{m}{3}}$ with iid $\mathcal{N}(0,1)$ entries
 - 2. Compute $\mathbf{Q} = qr(\mathbf{AS})$
 - 3. Return $tr(\mathbf{Q}^T A \mathbf{Q}) + \frac{1}{m/3} tr(\mathbf{G}^T (\mathbf{I} \mathbf{Q} \mathbf{Q}^T) A (\mathbf{I} \mathbf{Q} \mathbf{Q}^T) \mathbf{G})$

Experiments - Hutch++ vs Girard-Hutchinson

Hutch++ is fastest when A has fast eigenvalue decay. Here, $\lambda_i = i^{-c}$

Checkpoint - Hutch++

Can we approximate tr(A) by computing few $Ax_1, ..., Ax_m$?

- Yes, we can!
- \odot Girard-Hutchinson $H_{\ell}(\mathbf{A})$ uses $O\left(\frac{1}{\varepsilon^2}\right)$ matrix-vector products
- \odot We can estimate tr(A) with $O(\frac{1}{\varepsilon})$ matrix-vector products
- Four step algorithm:
 - 1. Find Low-Rank Approximation $\widetilde{A_k}$
 - 2. Compute $tr(\widetilde{A_k})$
 - 3. Compute $H_{\ell}(A \widetilde{A_k})$
 - 4. Return $tr(\widetilde{A_k}) + H_{\ell}(A \widetilde{A_k})$

Part 3: Extensions of Hutch++

Practical Considerations

What if my matrix is not PSD?

This is fine. Same proof shows $|\text{Hutch}++(A)-\text{tr}(A)| \le \varepsilon ||A||_1$

- Ocan we estimate the variance of Hutch++?
- © Can we maximize parallelism without wasting matrix-vector products?
- O Can we just be more efficient?
- Our contract the second of the fact that $\mathbf{A} = f(\mathbf{B})$?

A Posteriori Variance Estimation

- What is the confidence interval / actual variance of my Hutch++ sample?
- Intuitive answer: Sample variance of the Girard-Hutchinson Samples.
- Better answer: use Bootstrapping to estimate the true variance below

Lemma:
$$Var[\text{Hutch++}(A)] = \mathbb{E}[Var[H_{\ell}(A - \widetilde{A_k}) | Q]]$$

Proof. By law of total variance,

$$Var[\mathsf{Hutch++(A)}] = \mathbb{E}[Var[\mathsf{Hutch++(A)}|\boldsymbol{Q}]] + Var[\mathbb{E}[\mathsf{Hutch++(A)}|\boldsymbol{Q}]]$$

But observe that

$$\mathbb{E}[\mathsf{Hutch++}(A)|Q] = tr(\widetilde{A_k}) + tr(A - \widetilde{A_k}) = tr(A)$$

So

$$Var[\mathbb{E}[Hutch++(\mathbf{A})|\mathbf{Q}]]=0$$

Maximizing Parallelism

- To maximize parallelism, we want none of our matrix-vector products to depend on previous matrix-vector products.
- \odot In Hutch++, we must compute $m{AS}$ to compute $m{Q}$ to compute $m{\widetilde{A_k}} = m{AQQ}^T$
- Formally, this is an adaptive algorithm:

• Non-obvious question: is trace estimation possible non-adaptively?

$$\{\mathbf{x}_1, \dots, \mathbf{x}_m\} \longrightarrow \text{ORACLE} \longrightarrow \{\mathbf{A}\mathbf{x}_1, \dots, \mathbf{A}\mathbf{x}_m\}$$

$$\uparrow \qquad \qquad \downarrow$$
ALGORITHM
ALGORITHM

Caltech

Nyström++

O Idea: Use the Nyström approximation to PSD A:

- \odot Unlike before, we construct $\widetilde{A_k}$ non-adaptively!
- Output Description:
 Output Description:
 - 1. Use $\frac{m}{2}$ matrix-vector products to build $\widetilde{A_k}$
 - 2. Use $\frac{m}{2}$ matrix-vector products to compute $x_i^T A x_i$
 - 3. Return $tr(\widetilde{A_k}) + \frac{1}{m/2} \sum_{i=1}^{m/2} (x_i^T A x_i x_i^T \widetilde{A_k} x_i)$
- On-adaptive and basically always as fast/faster than Hutch++!
- Analysis is more involved

XTrace & Exchangeability

- Motivation: Exchangeability Principle in Statistics
 - Informally: any algorithm that uses iid samples, is unbiased, and
 has optimally small variance must be exchangeable.
 - If we reorder our samples, the algorithm's output doesn't change.
- The Girard-Hutchinson Estimator is exchangeable

- O Hutch++ and Nyström++ are NOT exchangeable!
 - Why?
- XTrace: leave-one-out version of Hutch++ that is exchangeable
 XNysTrace: Nyström version of Xtrace
- Even faster than Nyström++ in most cases!

Krylov-Aware Trace Estimation

- \odot Remember we often have A = f(B) where B is in memory
- Use Lanczos-FA Algorithm to approximately compute $x \mapsto f(\mathbf{B})x$
- Observation: Hutch++ style algorithms throw away pre-computed information if matrix-vector products with A are computed via Lanczos-FA
- "Krylov-Aware" Trace Estimator
 Takes B, f, m as inputs
 Avoids throwing away information
- \odot Fastest algorithm I know for estimating f(B)
- Maybe incompatible with XTrace style algorithms?

Checkpoint - Hutch++ Extentions

Can we approximate tr(A) by computing few $Ax_1, ..., Ax_m$?

- Yes, we can! Non-adaptively and super efficiently!
- O Practitioner Advice:
 - XNysTrace for PSD Matrices
 - XTrace for non-PSD Matrices
 - Krylov-Aware Trace Estimation for A = f(B)

- Natural theoretical question: Is better than $O(\frac{1}{\epsilon})$ possible?
 - No! $\Omega(\frac{1}{\epsilon})$ is optimal!

Part 4: Lower Bounds

Lower Bound Super Rough Intuition

$$x \stackrel{input}{\Longrightarrow} ORACLE \stackrel{output}{\Longrightarrow} Ax$$

- View the Matrix-Vector Oracle as a limit on information about A:
 - 1. Suppose $A \sim \mathcal{D}$ is a random matrix
 - 2. Then tr(A) is a random variable with variance
 - 3. Any algorithm that computes few oracle queries has little information about tr(A)
 - 4. Then, due to variance, the algorithm cannot predict tr(A) well
- Step 3 is hard to prove rigorously.

Removing the Algorithm's Agency

- \odot **Want to show:** Any algorithm that computes few oracle queries has little information about tr(A)
- Problem: Algorithm can pick many different query vectors x
- If instead algorithm had no freedom, we could use classical statistics to make lower bounds.

Two Observations:

- 1. Without loss of generality, query vectors are orthonormal. (Why?)
- 2. Let $G \in \mathbb{R}^{n \times n}$ be iid $\mathcal{N}(0,1)$ matrix Let $Q \in \mathbb{R}^{n \times k}$ have orthonormal columns Then GQ is a $\mathcal{N}(0,1)$ matrix, even conditioned on knowing Q. (informal) If A is Gaussian, then $\{Ax_1, \dots, Ax_m\}$ is independent of $\{x_1, \dots, x_m\}$

(informal) Without loss of generality, algorithm looks at first k cols of A

Wishart Anti-Concentration Method

Hidden Wishart Theorem:

- Let $G \in \mathbb{R}^{n \times n}$ be a $\mathcal{N}(0,1)$ matrix
- \odot Let $\mathbf{A} = \mathbf{G}^T \mathbf{G}$ be a Wishart Matrix
- \odot Suppose Algorithm computes $Ax_1, ..., Ax_m$, possibly adaptively.
- Then, there exists orthogonal $V ∈ \mathbb{R}^{n \times n}$ such that

$$VAV^T = \Delta + \begin{bmatrix} 0 & 0 \\ 0 & \widetilde{A} \end{bmatrix}$$

where $\widetilde{A} \in \mathbb{R}^{(n-m)\times (n-m)}$ is distributed as $\widetilde{G}^T\widetilde{G}$ where \widetilde{G} is $\mathcal{N}(0,1)$, conditioned on all observations $\{x_1, Ax_1, ..., x_m, Ax_m\}$

 \odot Δ is known deterministically by the algorithm

We can exactly separate the information we do/don't know about Acaltech

Wishart Anti-Concentration Method

- \odot Consider any (possibly adaptive) algorithm after m queries. Then,
- 1. $tr(\mathbf{A}) = tr(\mathbf{V}\mathbf{A}\mathbf{V}^T) = tr(\mathbf{\Delta}) + tr(\widetilde{\mathbf{A}})$
- 2. Let t be Algorithm's estimate of tr(A). Define $\tilde{t} := t tr(\Delta)$
- 3. Note $tr(A) = \|G\|_F^2 \sim \chi_{n^2}^2$ and $tr(\widetilde{A}) \sim \chi_{(n-m)^2}^2$
 - $|t tr(A)| = |\tilde{t} tr(\tilde{A})| \ge \Omega(n m)$
 - $tr(A) \leq O(n^2)$
- 4. Enforce $|t tr(A)| \le \varepsilon tr(A)$ $(n - m) \le \varepsilon C n^2$
- 5. Set $n = \frac{1}{2C\varepsilon}$ and simplify: $m \ge \frac{1}{4C\varepsilon}$

Checkpoint - Lower Bounds

Can we approximate tr(A) by computing few $Ax_1, ..., Ax_m$?

- **Output** Yes, but only if we take $m = \Omega\left(\frac{1}{\epsilon}\right)$ queries!
- O Proven via Hidden Wishart, but other methods exist:
 - Communication Complexity
 - Statistical Hypothesis Testing
 - Block Krylov Reduction
- Hidden second meaning: Wishart matrices are unstructured covariance matrices.
- If we want to estimate the trace of a covariance matrix (e.g. a Kernel matrix or Hessian), then do not expect that better than Hutch++ is possible! Otherwise, faster might exist!

The End.

Thanks!

Questions?

Caltech