1.1 Amaç-Hedef

Bu ödevde; el yazısı ile yazılmış 4 adet karakteri tanıyan geri-beslemeli sinir ağı kodlanacaktır. (Tanımlanacak karakterler ve oluşturulacak ağın yapısı size Tablo-1'de verilmiştir). Elde edilen sonuçlar ile hazır fonksiyonlardan elde edilen sonuçlar karşılaştırılacaktır. Kodlar, veriler ve hazırlayacağınız küçük bir rapor teslim edilecek, belirlenen bir zamanda demo yapılacaktır.

1.2 Verilerin Oluşturulması

Tanımlanması istenilen karakterlerin "0,1,2,3" olduğu varsayılırsa işlem adımları şu şekilde olacaktır:

• Mobil cihazların ekranlarını ya da *paint* kullanarak kendi el yazınızla belirtilen karakterlerden 10 adet yazmalısınız. (bknz. Şekil-1)

Sekil 1: Karakterlerin El Yazısı ile Yazılmış Bir Örneği

• Elde edilen 40 karakterin her birini 30 × 30 boyutlarında, her parçada bir karakter olacak şekilde ayırınız. Son durumda elinizde 40 adet resim oluşmuş olacaktır. (bknz. Şekil-2, Şekil-3)

Şekil 2: Karakterlerin $30\times30'$ luk Olarak Bölünmesi

Şekil 3: Bölünmüş Örnek Karakterler

• Her karakter için sizin seçeceğiniz 5 tanesi eğitim için, 5 tanesi test için kullanılacaktır. Bu yüzden resim dosyalarının isimlerini anlamlı vermeniz faydalı olacaktır. (Eğitim ve test için kullanılan resimlerin, demo sırasında gösterilmesi istenecektir.)

1.3 Resimlerin Okunması ve Düzenlenmesi

- Resimleri okumak için hazır kütüphane fonksiyonlarını kullanabilirsiniz (opencv, skimage)
- Resimlerin okunurken (ya da okunduktan sonra) siyah-beyaz formata çevrilmesi gerekmektedir. (Siyah-beyaz, gri-seviye demek değildir. 0 ve 1'lerden oluşacak şekilde olmalıdır. Gerekli kütüphane fonksiyonları bu konuda yardımcı olmaktadır)
- \bullet 0 ve 1'lerden oluşmuş olan 30×30 boyutlarındaki her resmi tek bir vektör haline getirmelisiniz. Dolayısıyla 900 uzunluğunda bir vektör olacaktır. Bunun için reshape fonksiyonunu kullanabilirsiniz.

- Elde edilen tüm vektörlerin sonuna 1 eklemelisiniz. Bu değer bias'ın girdideki katsayısı olacaktır. Sonuç olarak 901 uzunluğunda vektör oluşmuş olacaktır.
- Elde edilen 901 uzunluğundaki vektör sinir ağına girdi verileri olarak kullanılacaktır.

Bu bölümde anlatılan işlemler, eğitim ve test verilerinin tamamı için uygulanacaktır.

1.4 Sinir Ağının Ayarlanması

Şekil 4: Örnek Sinir Ağı Yapısı

Sinir ağında 901 adet giriş, 4 adet çıkış bulunmaktadır. Aralardaki katmanlarda kaç adet nöron olduğu bilgisi size Tablo-1'de verilmiştir. Örneğin 5, 3 yazılıysa ayarlamanız gereken sinir ağının yapısı Şekil-4'teki gibi olacaktır (Not: Rahat anlaşılması, kodlamayı rahat planlamak için ara katmanlar için bias olmayacaktır).

- Şekil-4'teki ağ yapısı üzerinden düşünülürse, katman 1'e gelen ağırlıklar 901×5 'lik bir matris ile, katman 2'ye gelen ağırlıklar ise 5×3 'lük bir matrisle, çıkışa gelen ağırlıklar ise 3×4 'lük bir matrisle ifade edilebilir.
- Ağdaki tüm ağırlıklar rastgele olarak atanmalıdır. Bunun için *numpy* kütüphanesindeki *random* fonksiyonlarını kullanabilirsiniz.
- Aktivasyon fonksiyonu olarak sigmoid fonksiyonunu kullanmalısınız.

1.5 Eğitim Aşaması

- Daha önce belirlemiş olduğunuz eğitim verileri ile tasarladığınız sinir ağını eğitmelisiniz.
- Eğitim için 1000, 1500, 2000 epoch kullanmalısınız. Her bir epoch değeri için ayrı değerlendirme istenilecektir.
- Her bir epoch sonunda elde edilen karesel hatayı bir dizi üzerinde saklamalısınız. Sakladığınız değerlerden grafik çizmeniz istenilecektir.

1.6 Test Aşaması

- Daha önce belirlemiş olduğunuz test verileri ile eğitmiş olduğunuz sinir ağının ağırlıklarını kullanarak hangi sonuçları elde ettiğinizi hesaplayınız.
- Test verilerinin kaç tanesini doğru yapıp yapmadığını belirleyiniz.

1.7 Raporda istenilenler

- Sizin için belirtilmiş ağın Şekil-4'teki gibi yapısını çiziniz.
- Aşağıda istenilen bilgileri 1000, 1500, 2000 epoch değerleri için belirlemelisiniz:
 - Eğitimler bittikten sonra her bir katmana (çıkış katmanı da dahil) gelen ağırlıkların son değerlerini tablo halinde eklemelisiniz. Diğer bir deyişle; ağın yapısı ayarlanırken rastgele atanan ağırlıkların, son değerleri gösterilmelidir.
 - Test verileri üzerinden elde edilen başarı için doğruluk matrisi (confusion matrix) gösterilmelidir. Bunun için sklearn kütüphanesindeki fonksiyonlar kullanılabilir.

- sklearn kütüphanesindeki *MLPClassifieer* fonksiyonu kullanarak (ya da farklı kütüphanelerin hazır fonksiyonları ile), eğitim ve test işlemleri yapmalısınız. Doğruluk matrisini belirtmelisiniz.
- Eğitim aşamasında bir dizi üzerinde tutulan değerler, epoch sayısına bağlı olarak hatadaki değişimi göstermektedir. x ekseni epoch sayısı, y ekseni dizi üzerinde tuttuğunuz hatalar olmak üzere bir grafik paylaşmalısınız. Bunun için matplotlib kütüphanesindeki puplot alt kütüphanesi kullanılabilir.

1.8 Ödev Teslimi

Ödevin son teslim tarihi **26 Nisan 2017 23:59**'dur. Ödevinizi tek bir zip dosyası içerisinde; kodlarınız, verileriniz ve raporunuz olacak şekilde e-mail yoluyla iletiniz. E-mailin konu kısmına **DerinYSA 1. Ödev**, zip dosyasına ise **isim-soyisim-numara** yazınız. Demo tarihi daha sonra ilan edilecektir.

1.9 Ödevle İlgili Tablo

Tablo-1, hangi öğrencinin hangi karakterler ile çalışacağını göstermektedir. Ağın yapısı sütunu, tasarlanacak yapay sinir ağında girdi ve çıktı katmanları hariç her bir katmandaki nöron sayısını göstermektedir.

Tablo 1: Öğrenci Bazlı Tanımlanacak Karakterler ile Girdi-Çıktı Katmanı Hariç Oluşturulacak Her katmandaki Nöron Sayısı

#	Öğrenci No	Adı	Soyadı	Karakterler	Ağın Yapısı
1	13501023	SERCAN CUMHUR	VURAL	1, 3, 5, 7	4, 6, 3
2	13501040	REDİ	GOKAJ	0, 2, 4, 6	6, 4, 3
3	14501013	UĞUR HALİS	KURT	a, b, 1, 2	7, 5, 3
4	14501059	MUSTAFA	KAPDAN	c, d, e, f	6, 4, 5
5	15501002	SAADET AYTAÇ	ARPACI	g, h, i, j	6, 6, 3
6	15501015	ÖMER FARUK	KARAASLAN	k, l, m, n	4, 4, 3
7	15501017	GÖKHAN	VARLIKLI	o, p, q, r	7, 4, 3
8	15501036	JEMSHIT	ISKANDEROV	s, t, u, v	7, 4, 5
9	15501066	MUHANAD HAMEED ARIF	AL-GBURI	w, x, y, z	5, 5, 3
10	15504029	FUAT	BESER	f, u, a, t	6, 7, 3
11	15504031	DOĞAN	ADIGÜZEL	d, o, g, a	4, 5, 4
12	15549029	JUN	MA	j, u, n, m	7, 3, 4
13	16501001	GÜRKAN	ŞAHIN	g, u, r, k	3, 5, 6
14	16501002	MECİT	YÜZKAT	m, e, c, i	7, 4, 6
15	16501010	YASİN FIRAT	PAYALAN	y, a, s, i	5, 7, 4
16	16501017	SEZGÍN	ACER	a, c, e, r	7, 4, 5
17	16501020	SÜEDA	KARAALİOĞLU	s, u, e, d	6, 4, 5
18	16501031	UĞUR	KÜÇÜK	u, g, r, k	4, 5, 3
19	16501041	ÇAĞATAY CAN	KARAAHMETOĞLU	c, a, g, t	5, 5, 6
20	16501047	ALİ OSMAN	ÖZERTÜRK	a, l, i, o	6, 6, 3
21	16501050	HÜSEYİN CAN	ERCAN	h, u, s, e	4, 6, 3
22	16501052	SARA	BEHJATJAMAL	s, a, r, b	4, 4, 5
23	16501054	MUHAMMED EMİN	BAĞDİGEN	e, m, i, n	7, 4, 6
24	16501504	ELIF	YALÇIN	e, l, i, f	3, 4, 5
25	16504037	ONUR CAN	KOYUN	o, n, u, r	5, 6, 3