Safe On-The-Fly Steady-State Detection for Time-Bounded Reachability

Joost-Pieter Katoen^{1,2} Ivan S. Zapreev^{1,2}

¹Software Modeling and Verification Group RWTH Aachen

²Formal Methods and Tools Group University of Twente

October 25, 2007

- Motivation
- 2 On-the-fly steady-state detection
- Time-bounded reachability
- 4 Results
- Detecting steady state
- **6** Experiments
- Conclusions

Outline

- Motivation
- On-the-fly steady-state detection

Motivation

Time-bounded reachability for continuous-time Markov chains

- Determine the probability to reach a (set of) goal state(s) within a given time span, such that prior to reaching the goal certain states are avoided.
- Efficient algorithms for time-bounded reachability are at the heart of probabilistic model checkers such as PRISM and ETMCC.
- Solution For large time spans, on-the-fly steady-state detection is commonly applied.
- To obtain correct results (up to a given accuracy), it is essential to avoid detecting premature stationarity.

Outline

- Motivation
- 2 On-the-fly steady-state detection
- Time-bounded reachability
- 4 Results
- Detecting steady state
- 6 Experiments
- Conclusions

Transient analysis

Transient probabilities of a CTMC

For a CTMC (S, Q) the state-probability after a delay of t time-units with the initial distribution $\overrightarrow{p(0)}$:

$$\overrightarrow{\pi^*(0,t)} = \overrightarrow{p(0)} \cdot e^{\mathcal{Q} \cdot t}$$

Jensen's method (Uniformization)

• Rewrite $Q = q \cdot (\mathcal{P}_{unif} - \mathcal{I})$, where $q > \max_{i \in S} |q_{i,i}|$:

$$\overrightarrow{\pi^*(0,t)} = e^{-qt} \cdot \overrightarrow{p(0)} \cdot e^{\mathcal{P}_{unif} \cdot qt}$$

• Rewrite matrix exponent, where $\gamma_i(t) = e^{-qt} \frac{(qt)^i}{i!}$:

$$\overrightarrow{\pi^*(0,t)} = \sum_{i=0}^{\infty} \gamma_i(t) \cdot \overrightarrow{p(0)} \cdot \overrightarrow{\mathcal{P}_{unif}}$$
 (1)

Transient analysis

Transient probabilities of a CTMC

For a CTMC (S, Q) the state-probability after a delay of t time-units with the initial distribution $\overrightarrow{p(0)}$:

$$\overrightarrow{\pi^*(0,t)} = \overrightarrow{p(0)} \cdot e^{\mathcal{Q} \cdot t}$$

Jensen's method (Uniformization)

• Rewrite $Q = q \cdot (\mathcal{P}_{unif} - \mathcal{I})$, where $q > \max_{i \in S} |q_{i,i}|$:

$$\overrightarrow{\pi^*(0,t)} = e^{-qt} \cdot \overrightarrow{p(0)} \cdot e^{\mathcal{P}_{unif} \cdot qt}$$

• Rewrite matrix exponent, where $\gamma_i(t) = e^{-qt} \frac{(qt)^i}{i!}$:

$$\overrightarrow{\pi^*(0,t)} = \sum_{i=0}^{\infty} \gamma_i(t) \cdot \overrightarrow{p(0)} \cdot \overrightarrow{\mathcal{P}_{unif}^i}$$
 (1)

The Fox-Glynn algorithm (Fox and Glynn, 1988)

Lemma

For real-valued function f with $||f|| = \sup_{i \in \mathbb{N}} |f(i)|$ and $\sum_{i=\mathcal{L}_{\epsilon}}^{\mathcal{R}_{\epsilon}} \gamma_i(t) \geq 1 - \frac{\varepsilon}{2}$ it holds:

$$\left|\sum_{i=0}^{\infty} \gamma_i(t) f(i) - \frac{1}{W} \sum_{i=\mathcal{L}_{\epsilon}}^{\mathcal{R}_{\epsilon}} w_i(t) f(i)\right| \leq \varepsilon \cdot ||f||$$

Where

lpha
eq 0, some constant $w_i(t) = lpha \gamma_i(t)$ $W = w(\mathcal{L}_{\epsilon}) + \ldots + w(\mathcal{R}_{\epsilon})$

The Fox-Glynn algorithm (Fox and Glynn, 1988)

Lemma

For real-valued function f with $||f|| = \sup_{i \in \mathbb{N}} |f(i)|$ and $\sum_{i=\ell_{-}}^{\mathcal{R}_{\epsilon}} \gamma_{i}(t) \geq 1 - \frac{\varepsilon}{2}$ it holds:

$$\left|\sum_{i=0}^{\infty} \gamma_i(t) f(i) - \frac{1}{W} \sum_{i=\mathcal{L}_{\epsilon}}^{\mathcal{R}_{\epsilon}} w_i(t) f(i) \right| \leq \frac{\varepsilon}{2} \cdot \|f\|$$

if f does not change sign.

Where

$$lpha
eq 0$$
, some constant $w_i(t) = lpha \gamma_i(t)$ $W = w(\mathcal{L}_{\epsilon}) + \ldots + w(\mathcal{R}_{\epsilon})$

Outline

- Motivation
- 2 On-the-fly steady-state detection
- Time-bounded reachability
- 4 Results
- Detecting steady state
- **6** Experiments
- Conclusions

Time-bounded reachability

Example

Determine states from which goal states may be reached with a probability at least 0.92, within the time interval [0, 14.5], while visiting only allowed states.

$$\mathrm{P}_{\geq 0.92}(\mathcal{A}\;\mathrm{U}^{[0,14.5]}\;\mathcal{G})$$

A - allowed states

 \mathcal{G} - goal states

Definition

For CTMC (S, \mathcal{Q}) and $S' \subseteq S$ let CTMC (S, \mathcal{Q}') be obtained by making all states in S' absorbing, i.e., $\mathcal{Q}' = \mathcal{Q}[S']$ where $q'_{i,j} = q_{i,j}$ if $i \notin S'$ and 0 otherwise.

Computing $Prob(s, \mathcal{A} U^{[0,t]} \mathcal{G})$

- ② Compute $\overrightarrow{\pi^*(t)} = e^{\mathcal{Q}[T \cup \mathcal{G}] \cdot t} \cdot \overrightarrow{\mathbf{1}_{\mathcal{G}}}$
- **③** Return $\forall s \in 1,...,N : Prob(s, A U^[0,t] G) = \pi^*(t)_s$

Computing $Prob(s, A \cup^{[0,t]} \mathcal{G})$

- **1** Determine $Q[\mathcal{I} \cup \mathcal{G}]$
- 2 Compute $\overrightarrow{\pi^*(t)} = e^{\mathcal{Q}[\mathcal{I} \cup \mathcal{G}] \cdot t} \cdot \overrightarrow{\mathbf{1}_{\mathcal{G}}}$
- **③** Return $\forall s \in 1, ..., N : Prob(s, A U^[0,t] G) = \pi^*(t)_s$

Computing $Prob(s, A \cup^{[0,t]} G)$

- **1** Determine $Q[\mathcal{I} \cup \mathcal{G}]$
- $\text{ Compute } \overrightarrow{\pi^*(t)} = e^{\mathcal{Q}[\mathcal{I} \cup \mathcal{G}] \cdot t} \cdot \overrightarrow{1_{\mathcal{G}}}$
- ⓐ Return $\forall s \in 1, ..., N : Prob(s, A U^[0,t] G) = \pi^*(t)_s$

Computing $Prob(s, A U^{[0,t]} G)$

- **1** Determine $Q[\mathcal{I} \cup \mathcal{G}]$
- $② Compute \overrightarrow{\pi^*(t)} = e^{\mathcal{Q}[\mathcal{I} \cup \mathcal{G}] \cdot t} \cdot \overrightarrow{\mathbf{1}_{\mathcal{G}}}$
- ③ Return $\forall s \in 1, ..., N : Prob(s, A U^[0,t] G) = \pi^*(t)_s$

Computing $Prob(s, A U^{[0,t]} G)$

- **1** Determine $Q[\mathcal{I} \cup \mathcal{G}]$
- **3** Return $\forall s \in 1, ..., N : Prob(s, \mathcal{A} U^{[0,t]} \mathcal{G}) = \pi^*(t)$

Computing $Prob(s, A \cup^{[0,t]} \mathcal{G})$

- ① Determine $Q[\mathcal{I} \cup \mathcal{G}]$
- **3** Return $\forall s \in 1, ..., N : Prob(s, \mathcal{A} \cup^{[0,t]} \mathcal{G}) = \pi^*(t)_s$

$$\begin{pmatrix} 0.0 & 0.5 & 0.5 & 0.0 \\ 0.3 & 0.0 & 0.0 & 0.7 \\ 0.0 & 0.0 & 1.0 & 0.0 \\ 0.0 & 0.0 & 0.0 & 1.0 \end{pmatrix}^{t} \cdot \overrightarrow{\mathbf{1}_{\mathcal{G}}} = \begin{pmatrix} 0.0 \\ 0.0 \\ 0.0 \\ 1.0 \end{pmatrix}$$

$$\begin{pmatrix} 0.0 & 0.5 & 0.5 & 0.0 \\ 0.3 & 0.0 & 0.0 & 0.7 \\ 0.0 & 0.0 & 1.0 & 0.0 \\ 0.0 & 0.0 & 0.0 & 1.0 \end{pmatrix}^{t} \cdot \overrightarrow{1_{\mathcal{G}}} = \begin{pmatrix} 0.0 \\ 0.7 \\ 0.0 \\ 1.0 \end{pmatrix}$$

Outline

- Motivation
- 2 On-the-fly steady-state detection
- Time-bounded reachability
- Results
- Detecting steady state
- 6 Experiments
- Conclusions

Refined steady-state detection error

Backward Computations

Let $\exists K : \forall i \geq K : \forall j \in 1, .., N : 0 \leq p_i^* - p(i)_j \leq \delta$.

$$\overrightarrow{\pi(t)} = \begin{cases} \overrightarrow{p(K)} &, \text{ if } K < \mathcal{L}_{\epsilon} \\ \frac{1}{W} \sum_{i=\mathcal{L}_{\epsilon}}^{K} w_{i}(t) \overrightarrow{p(i)} + \\ \overrightarrow{p(K)} \left(1 - \frac{1}{W} \sum_{i=\mathcal{L}_{\epsilon}}^{K} w_{i}(t) \right) &, \text{ if } \mathcal{L}_{\epsilon} \leq K \leq \mathcal{R}_{\epsilon} \\ \frac{1}{W} \sum_{i=\mathcal{L}_{\epsilon}}^{\mathcal{R}_{\epsilon}} w_{i}(t) \overrightarrow{p(i)} &, \text{ if } K > \mathcal{R}_{\epsilon} \end{cases}$$

Then if $\sum_{i=0}^{\mathcal{L}_{\epsilon}} \gamma_i(t) \leq \frac{\epsilon}{4}$, $\sum_{i=\mathcal{R}_{\epsilon}}^{\infty} \gamma_i(t) \leq \frac{\epsilon}{4}$:

$$\|\overrightarrow{\pi^*(t)} - \overrightarrow{\pi(t)}\|_{v}^{\infty} \le \delta + \frac{3}{4}\varepsilon$$

Steady-state detection criteria

Backward

- Steady-state is detected if $\|\overrightarrow{p^*} \overrightarrow{p(K)}\|_{v}^{\infty} \leq \frac{\varepsilon}{4}$
- 2 Use the Fox-Glynn algorithm with desired error $\frac{\epsilon}{2}$
- **3** Then the overall error bound for $Prob(s, \mathcal{A} \cup [0,t] \mathcal{G})$, will be ϵ

Comparing the results

Forward computations

Known (Malhotra et. al):

$$|\overrightarrow{p^*(0)} - \overrightarrow{p(0,K)}||_V \le \frac{\varepsilon}{4}$$
 $||\overrightarrow{\pi^*(0,t)} - \overrightarrow{\pi(0,t)}||_V \le \varepsilon$

New:

$$\|p^*(0) - p(0, K)\|_V^{\infty} \le \frac{\varepsilon}{8|Ind|} \left\| \sum_{j \in Ind} \left(\pi^*(0, t)_j - \pi(0, t)_j \right) \right\|$$

Backward computations

Known (Younes et. al):

$$\|\overrightarrow{p^*} - p(K)\|_{V} \le \frac{\varepsilon}{8} \quad \forall j \in S : -\frac{\varepsilon}{4} \le \pi^* (t)_j - \pi (t)_j \le \frac{3}{4}\varepsilon$$

New:

$$\|\overrightarrow{p^*} - \overrightarrow{p(K)}\|_{V}^{\infty} \le \frac{\varepsilon}{4} \qquad \|\overrightarrow{\pi^*(t)} - \overrightarrow{\pi(t)}\|_{V}^{\infty} \le \varepsilon$$

Comparing the results

Forward computations

Known (Malhotra et. al):

$$\|\overrightarrow{p^*(0)} - \overrightarrow{p(0,K)}\|_{\nu} \leq \frac{\varepsilon}{4}$$

New:

$$|\overrightarrow{p^*(0)} - \overrightarrow{p(0,K)}||_v^\infty \le \frac{\varepsilon}{8|Ind|} \quad |\sum_{j \in Ind} \left(\pi^*(0,t)_j - \pi(0)\right)|_v^\infty \le \frac{\varepsilon}{8|Ind|}$$

Backward computations

Known (Younes et. al):

$$\|\overrightarrow{p^*} - p(K)\|_{V} \le \frac{\varepsilon}{8} \quad \forall j \in S : -\frac{\varepsilon}{4} \le \pi^* (t)_j - \pi (t)_j \le \frac{3}{4}\varepsilon$$

New:

$$\|\overrightarrow{p^*} - \overrightarrow{p(K)}\|_{v}^{\infty} \le \frac{\varepsilon}{4} \qquad \|\overrightarrow{\pi^*(t)} - \overrightarrow{\pi(t)}\|_{v}^{\infty} \le \varepsilon$$

Comparing the results

Forward computations

Known (Malhotra et. al):

$$\|\overrightarrow{p^*(0)} - \overrightarrow{p(0,K)}\|_{v} \leq \frac{\varepsilon}{4}$$

$$\|\overrightarrow{\pi^*(0,t)} - \overrightarrow{\pi(0,t)}\|_{V} \leq \varepsilon$$

New:

$$|\overrightarrow{p^*(0)} - \overrightarrow{p(0,K)}||_v^\infty \le \frac{\varepsilon}{8|Ind|}$$

$$\left|\sum_{j\in Ind}\left(\pi^{*}\left(0,t\right)_{j}-\pi\left(0,t\right)_{j}\right)\right|\leq \varepsilon$$

Backward computations

Known (Younes et. al):

$$\|\overrightarrow{p^*} - p(K)\|_{V} \le \frac{\varepsilon}{8} \quad \forall j \in S : -\frac{\varepsilon}{4} \le \pi^* (t)_j - \pi (t)_j \le \frac{3}{4}\varepsilon$$

New:

$$\|\overrightarrow{p^*} - \overrightarrow{p(K)}\|_V^\infty \le \frac{\varepsilon}{4} \qquad \|\overrightarrow{\pi^*(t)} - \overrightarrow{\pi(t)}\|_V^\infty \le \varepsilon$$

Forward computations

Known (Malhotra et. al):

$$\|\overrightarrow{p^*(0)} - \overrightarrow{p(0,K)}\|_{v} \leq \frac{\varepsilon}{4}$$

$$\|\overrightarrow{\pi^*(0,t)} - \overrightarrow{\pi(0,t)}\|_{V} \leq \varepsilon$$

New:

$$\|\overrightarrow{p^*(0)} - \overrightarrow{p(0,K)}\|_{v}^{\infty} \leq \frac{\varepsilon}{8|Ind|}$$

$$\|\overrightarrow{p^*(0)} - \overrightarrow{p(0,K)}\|_{v}^{\infty} \le \frac{\varepsilon}{8|Ind|}$$
 $\sum_{j \in Ind} \left(\pi^*(0,t)_j - \pi(0,t)_j\right) \le \varepsilon$

Backward computations

Known (Younes et. al):

$$\|p^* - p(K)\|_{V} \leq \frac{\varepsilon}{8}$$

$$\forall j \in S : -\frac{\varepsilon}{4} \le \pi^* (t)_j - \pi (t)_j \le \frac{3}{4}\varepsilon$$

$$\|\overrightarrow{p^*} - \overrightarrow{p(K)}\|_{V}^{\infty} \le \frac{\varepsilon}{4} \qquad \|\overrightarrow{\pi^*(t)} - \overrightarrow{\pi(t)}\|_{V}^{\infty}$$

Forward computations

Known (Malhotra et. al):

$$\|\overrightarrow{p^*(0)} - \overrightarrow{p(0,K)}\|_{\nu} \leq \frac{\varepsilon}{4}$$

$$\|\overrightarrow{\pi^*(0,t)} - \overrightarrow{\pi(0,t)}\|_{V} \leq \varepsilon$$

New:

$$\|\overrightarrow{p^*(0)} - \overrightarrow{p(0,K)}\|_{v}^{\infty} \leq \frac{\varepsilon}{8|Ind|} \quad \left|\sum_{j \in Ind} \left(\pi^*\left(0,t\right)_{j} - \pi\left(0,t\right)_{j}\right)\right| \leq \varepsilon$$

Backward computations

Known (Younes et. al):

$$\|\overrightarrow{p^*} - \overrightarrow{p(K)}\|_{v} \le \frac{\varepsilon}{8} \quad \forall j \in S : -\frac{\varepsilon}{4} \le \pi^* (t)_j - \pi (t)_j \le \frac{3}{4}\varepsilon$$

$$\|\overrightarrow{p^*} - \overrightarrow{p(K)}\|_{v}^{\infty} \le \frac{\varepsilon}{4} \qquad \|\overrightarrow{\pi^*(t)} - \overrightarrow{\pi(t)}\|_{v}^{\infty} \le \varepsilon$$

Forward computations

Known (Malhotra et. al):

$$\|\overrightarrow{p^*(0)} - \overrightarrow{p(0,K)}\|_{v} \leq \frac{\varepsilon}{4}$$

$$\|\overrightarrow{\pi^*(0,t)} - \overrightarrow{\pi(0,t)}\|_{V} < \varepsilon$$

New:

$$\|\overrightarrow{p^*(0)} - \overrightarrow{p(0,K)}\|_{v}^{\infty} \leq \frac{\varepsilon}{8|Ind|} \quad \left|\sum_{j \in Ind} \left(\pi^*\left(0,t\right)_j - \pi\left(0,t\right)_j\right)\right| \leq \varepsilon$$

Backward computations

Known (Younes et. al):

$$\|\overrightarrow{p^*} - \overrightarrow{p(K)}\|_{\mathbf{v}} \le \frac{\varepsilon}{8} \quad \forall j \in S : -\frac{\varepsilon}{4} \le \pi^* (t)_j - \pi (t)_j \le \frac{3}{4}\varepsilon$$

$$\|\overrightarrow{p^*} - \overrightarrow{p(K)}\|_{V}^{\infty} \leq \frac{\varepsilon}{4} \qquad \|\overrightarrow{\pi^*(t)} - \overrightarrow{\pi(t)}\|_{V}^{\infty} \leq \varepsilon$$

Forward computations

Known (Malhotra et. al):

$$\|\overrightarrow{p^*(0)} - \overrightarrow{p(0,K)}\|_{v} \leq \frac{\varepsilon}{4}$$

$$\|\overrightarrow{\pi^*(0,t)} - \overrightarrow{\pi(0,t)}\|_{V} \leq \varepsilon$$

New:

$$\|\overrightarrow{p^{*}(0)} - \overrightarrow{p(0,K)}\|_{v}^{\infty} \leq \frac{\varepsilon}{8|Ind|} \quad \left|\sum_{j \in Ind} \left(\pi^{*}\left(0,t\right)_{j} - \pi\left(0,t\right)_{j}\right)\right| \leq \varepsilon$$

Backward computations

Known (Younes et. al):

$$\|\overrightarrow{p^*} - \overrightarrow{p(K)}\|_{v} \leq \frac{\varepsilon}{8} \quad \forall j \in S: -\frac{\varepsilon}{4} \leq \pi^* (t)_j - \pi (t)_j \leq \frac{3}{4}\varepsilon$$

$$\|\overrightarrow{p^*} - \overrightarrow{p(K)}\|_{\scriptscriptstyle \mathcal{V}}^{\infty} \leq \frac{\varepsilon}{4} \qquad \|\overrightarrow{\pi^*(t)} - \overrightarrow{\pi(t)}\|_{\scriptscriptstyle \mathcal{V}}^{\infty} \leq \varepsilon$$

Forward computations

Known (Malhotra et. al):

$$\|\overrightarrow{p^*(0)} - \overrightarrow{p(0,K)}\|_{\nu} \leq \frac{\varepsilon}{4}$$

 $\|\overrightarrow{\pi^*(0,t)} - \overrightarrow{\pi(0,t)}\|_{v} \leq \varepsilon$

New:

$$\|\overrightarrow{p^*(0)} - \overrightarrow{p(0,K)}\|_{v}^{\infty} \leq \frac{\varepsilon}{8|Ind|} \quad \left|\sum_{j \in Ind} \left(\pi^*\left(0,t\right)_j - \pi\left(0,t\right)_j\right)\right| \leq \varepsilon$$

Backward computations

Known (Younes et. al):

$$\|\overrightarrow{p^*} - \overrightarrow{p(K)}\|_{\nu} \leq \frac{\varepsilon}{8} \quad \forall j \in S : -\frac{\varepsilon}{4} \leq \pi^* (t)_j - \pi (t)_j \leq \frac{3}{4}\varepsilon$$

$$\|\overrightarrow{p^*} - \overrightarrow{p(K)}\|_{\mathcal{V}}^{\infty} \leq \frac{\varepsilon}{4} \qquad \|\overrightarrow{\pi^*(t)} - \overrightarrow{\pi(t)}\|_{\mathcal{V}}^{\infty} \leq$$

Forward computations

Known (Malhotra et. al):

$$\|\overrightarrow{p^*(0)} - \overrightarrow{p(0,K)}\|_{V} \le \frac{\varepsilon}{4} \qquad \|\overrightarrow{\pi^*(0,t)} - \overrightarrow{\pi(0,t)}\|_{V} \le \varepsilon$$

New:

$$\|\overrightarrow{p^{*}(0)} - \overrightarrow{p(0,K)}\|_{v}^{\infty} \leq \frac{\varepsilon}{8|Ind|} \quad \left|\sum_{j \in Ind} \left(\pi^{*}\left(0,t\right)_{j} - \pi\left(0,t\right)_{j}\right)\right| \leq \varepsilon$$

Backward computations

Known (Younes et. al):

$$\|\overrightarrow{p^*} - \overrightarrow{p(K)}\|_{\nu} \le \frac{\varepsilon}{8} \quad \forall j \in S : -\frac{\varepsilon}{4} \le \pi^* (t)_j - \pi (t)_j \le \frac{3}{4}\varepsilon$$

$$\|\overrightarrow{p^*} - \overrightarrow{p(K)}\|_{v}^{\infty} \leq \frac{\varepsilon}{4} \qquad \|\overrightarrow{\pi^*(t)} - \overrightarrow{\pi(t)}\|_{v}^{\infty} \leq \varepsilon$$

- Improval of the Fox-Glynn error bound
- ② Consideration of the error imposed by the weights $w_i(t)$
- 3 Refinement of the error-bound derivation for steady-state detection
- \bullet Restriction to I^{∞} -norm

- 1 Improval of the Fox-Glynn error bound
- ② Consideration of the error imposed by the weights $w_i(t)$
- Refinement of the error-bound derivation for steady-state detection
- Restriction to l^{∞} -norm

- Improval of the Fox-Glynn error bound
- ② Consideration of the error imposed by the weights $w_i(t)$
- Refinement of the error-bound derivation for steady-state detection
- a Restriction to I^{∞} -norm

- 1 Improval of the Fox-Glynn error bound
- ② Consideration of the error imposed by the weights $w_i(t)$
- Refinement of the error-bound derivation for steady-state detection
- **a** Restriction to I^{∞} -norm

Outline

- Motivation
- 2 On-the-fly steady-state detection
- Time-bounded reachability
- 4 Results
- Detecting steady state
- 6 Experiments
- Conclusions

Making states absorbing, for $\mathcal{A} \ \mathrm{U}^{[0,t]} \, \mathcal{G}$

Making states absorbing, for $\mathcal{A} \ \overline{\mathbb{U}^{[0,t]}} \ \mathcal{G}$

Making states absorbing, for $\mathcal{A} \ \overline{\mathbb{U}^{[0,t]}} \ \mathcal{G}$

Making states absorbing, for $\mathcal{A} \ \mathrm{U}^{[0,t]} \, \mathcal{G}$

Precise steady-state detection, Backward computations

$\mathsf{Theorem}$

For the stochastic matrix \mathcal{P}_B obtained after uniformizing CTMC (S, \mathcal{Q}^B) , for any K and $\delta > 0$ the following holds:

$$\|\overrightarrow{1} - \left(\overrightarrow{p(K)} + \overrightarrow{p^B(K)}\right)\|_{v}^{\infty} \leq \delta \Rightarrow \forall i \geq K : \|\overrightarrow{p^*} - \overrightarrow{p(i)}\|_{v}^{\infty} \leq \delta$$

Where

$$\begin{split} \overrightarrow{p(i)} &= \mathcal{P}_{B}^{i} \cdot \overrightarrow{1_{\mathcal{G}}} \\ \overrightarrow{p^{B}(i)} &= \mathcal{P}_{B}^{i} \cdot \overrightarrow{i_{B_{A,\mathcal{G}} \cup \mathcal{I}}} \\ \overrightarrow{p^{*}} &= \lim_{i \to \infty} \mathcal{P}_{B}^{i} \cdot \overrightarrow{1_{\mathcal{G}}} \end{split}$$

Outline

- Motivation
- 2 On-the-fly steady-state detection
- 3 Time-bounded reachability
- 4 Results
- Detecting steady state
- 6 Experiments
- Conclusions

Premature steady-state detection

Tools

Tool Name	Reference	S.s.d. method
Prism v2.1	(Kwiatkowska et al., 2004)	regular
ETMCC v1.4.2	(Hermanns et al., 2003)	regular
MRMC v1.0	(Katoen et al., 2005)	precise

Example

Figure: A slowly convergent CTMC

Computational results

Example

Tool	Error	K	$\mathcal{P}^K \cdot \overrightarrow{1_{\mathcal{G}}}$	$\overrightarrow{p^*}$
Prism v2.1(abs)	10^{-6}	2	$(5.00025 \cdot 10^{-5}, 2.5 \cdot 10^{-9}, 1.0)$	
Prism v2.1(rel)	10^{-1}	12	$(5.00275 \cdot 10^{-5}, 2.75 \cdot 10^{-8}, 1.0)$	(1.0, 1.0, 1.0)
ETMCC v1.4.2	10^{-6}	20	$(5.00475 \cdot 10^{-5}, 4.75 \cdot 10^{-8}, 1.0)$	(1.0, 1.0, 1.0)
MRMC v1.0	10^{-6}	_		

Workstation cluster (Haverkort et al., 2000)

IEEE 802.11 protocol (Massink et al., 2004)

Figure: Results for $Prob(0, true \overset{\mathsf{op}}{\mathrm{U}^{[0,t]}} \mathit{break})$, for various OD

Computation time

Figure: Time required to compute $Prob(0, \Phi U^{[0,t]} \Psi)$ probabilities

Outline

- Motivation
- 2 On-the-fly steady-state detection
- Time-bounded reachability
- 4 Results
- Detecting steady state
- **6** Experiments
- Conclusions

Conclusions

Results

- The error bound corrections
 - Steady-state detection fixed multiple problems
 - The Fox-Glynn algorithm partial error-bound refinement
 - Uniformization using the Fox-Glynn added weights influence
- Precise steady-state detection criteria
 - Forward computations preserves time complexity, computation time may slightly increase
 - Backward computations preserves time complexity, computation time may approximately double

(Katoen and Zapreev, 2006)

For more details see our QEST'06 paper.

Computational results

Computational results

- Fox, B. L. and Glynn, P. W.: 1988, Commun. ACM 31(4), 440
- Haverkort, B., Hermanns, H., and Katoen, J.-P.: 2000, in IEEE symp. on Reliable Distributed Systems (SRDS'00), pp 228-237
- Hermanns, H., Katoen, J.-P., Meyer-Kayser, J., and Siegle, M.: 2003, Int. J. on Softw. for Technology Transfer (STTT) 4(2), 153
- Katoen, J.-P., Khattri, M., and Zapreev, I. S.: 2005, in *Quantitative Evaluation of Systems (QEST)*, pp 243–244
- Katoen, J.-P. and Zapreev, I. S.: 2006, in *Quantitative Evaluation of Systems (QEST)*, IEEE Computer Society
- Kwiatkowska, M., Norman, G., and Parker, D.: 2004, in *Quantitative Evaluation of Systems (QEST)*, pp 322–323
- Massink, M., Katoen, J.-P., and Latella, D.: 2004, in *Dependable Systems and Networks (DSN)*, pp 711–720, IEEE Computer Society