7.1 习题

2024年8月3日

7.1.1

[a]

由定义 7.1.1 可知,

$$\sum_{i=m}^{n} a_i$$

$$= a_m + a_{m+1} + \dots + a_n$$

$$\sum_{i=n+1}^{p} a_i$$
= $a_{n+1} + a_{n+2} + \dots + a_p$

$$\sum_{i=m}^{p} a_{i}$$

$$= a_{m} + a_{m+1} + \dots + a_{n} + a_{n+1} + a_{n+2} + \dots + a_{p}$$

于是,

$$\sum_{i=m}^{n} a_i + \sum_{i=n+1}^{p} a_i$$
$$= \sum_{i=m}^{p} a_i$$

【b】【c】【d】的证明与【a】类似,证明略 【e】

归纳法证明。

归纳基始 m=n, 此时,

$$\left|\sum_{i=m}^{n} a_i\right| = |a_m|$$

$$\sum_{i=m}^{n} |a_i| = |a_m|$$

满足 $|\sum_{i=m}^{n} a_i| \leq \sum_{i=m}^{n} |a_i|$ 归纳假设 m < n = j - 1 时,命题成立。 n = j + + 时,由(a)可知,

$$\left|\sum_{i=m}^{j} a_i\right|$$

$$=\left|\sum_{i=m}^{j-1} a_i + a_j\right|$$

$$\leq \left|\sum_{i=m}^{j-1} a_i\right| + |a_j|$$

$$\sum_{i=m}^{j}|a_i|$$
 $=\sum_{i=m}^{j-1}|a_i|+|a_j|$
 $\geq |\sum_{i=m}^{j-1}a_i|+|a_j|$
【归纳假设保证的】

于是
$$|\sum_{i=m}^{j} |a_i| \ge |\sum_{i=m}^{j-1} a_i| + |a_j| \ge |\sum_{i=m}^{j} a_i|$$
 归纳完毕。

【f】与【e】类似,可通过归纳法证明。