Learning to Localize Sound Source in Visual Scenes

Arda Senocak, Tae-Hyun Oh, Junsik Kim, Ming-Hsuan Yang, In So Kweon. Senocak,

Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition. 2018.

Presenter: Energy Al – Sohee Kim

Human

Car → engine sound (1))

Learning based sound source localization

- How to learn to localize the sources (objects) from the sound signals
 - Based on simply watching and listening

- ✓ Learning task from unlabeled data = challenging
 - Unconstrained video contains
 - Unrelated audio
 - Audio source that is off the screen
 - Pigeon superstition
- ⇒ Biases the resulting localization to be unmatched
 - Semi-supervised setting
 - Provide some prior knowledge
 - Add supervised loss
 - Annotated data

Network Architecture

* Net------

❖ The main contributions

- A learning framework to localize sound source using the attention mechanism,
 guided by sound information
- A unified end-to-end deep convolutional neural network architecture
 - unsupervised, semi-supervised, fully-supervised
- Collect and annotate a new sound source localization dataset

❖ Recent work

✓ SoundNet

- Visual imagery as supervision for sound
- ⇒ Audio module in this work

- ✓ Aytar et al. and Arandjelovic et al.
 - Aligned cross-modal representations
 - Activation maps that localize object
 - → Not interactively estimated according to the given sound

A bridge layer

 Reveals the localization information of the sound sources

Recent work

- **✓** Sound source localization capability of humans
 - ⇒ Guided by visual information
 - ⇒ Two sources of information are closely correlated that humans can unconsciously learn the capability.

❖ Recent work

- ✓ Deep learning methods rely on
 - Synchrony of low-level features of sounds and videos
 - Spatial sparsity prior of audio-visual events
 - Low-dimensionality
 - Hand-crafted motion
- An unsupervised manner by only watching and listening to videos without using any manually designed constraints such as motion.

8/25

♦ Related Work and Problem Context

❖ Recent work

- ✓ Acoustic based approach in surveillance and instrumentation engineering
 - Requires specific devices (microphone arrays)
- ⇒ Without any special devices but a microphone to capture sound

❖ Recent work

✓ Attention mechanism philosophy

• Interact with sound context and visual representation across spatial axes

Ref) Xu, Kelvin, et al. "Show, attend and tell: Neural image caption generation with visual attention." *International conference on machine learning*. PMLR, 2015.

Proposed Algorithm

❖ Vision based sound localization within the unsupervised learning framework

> Two-stream network architecture

- ✓ Sound network
- ✓ Visual network
- ✓ Attention model

❖ Learning to Localize Sound Source in Visual Scenes

Proposed Algorithm

Sound Network

- Capture the concept of sound
- Convolutional module (conv), rectified linear unit (ReLu), pooling (pool) -> stack 10 layers
- 1-D deep convolutional architecture : invariant to input length
 - Use average pooling over sliding windows

❖ Learning to Localize Sound Source in Visual Scenes

Proposed Algorithm

Visual Network

- Image feature extractor + localization module
- Activation $\mathbf{\mathcal{V}} \in \mathbb{R}^{H' \times W' \times D}$ $(H' = \left[\frac{H}{16}\right], W' = \left[\frac{W}{16}\right], D = 512)$
- · Localization module: reveal sound source location information in the grid

flickr

You Tube

Web

Confidence map of sound source + (visual representation) **2** × ReLu-Fc (visual embedding) Output

12/25

Learning to Localize Sound Source in Visual Scenes

Proposed Algorithm

Localization Network

- Extracted visual and sound concepts -> localization networks
 - ⇒ **sound source location** (a soft confidence score map)
- Modeled based on the attention mechanism
- Reshape $[v_1; \dots; v_M] \in \mathbb{R}^{M \times D}$ (M = H'W')
- **Attention** α_i : probability that the grid i right location related to sound context (i $\in \{1, \cdot \cdot \cdot, M\}$)

map

flickr

You Tub

Attention α_i

$$\alpha_i = \frac{\exp(a_i)}{\sum_j \exp(a_j)}, \quad \text{where } a_i = g_{\mathtt{att}}(\mathbf{v}_i, \mathbf{h})$$
 $\mathbf{z} = \mathbb{E}_{p(i|\mathbf{h})}[\hat{z}]$ > The local vis

[Mechanism 1] $g_{cos}(\mathbf{v}_i, \mathbf{h}) = \bar{\mathbf{v}}_i^{\top} \bar{\mathbf{h}},$

[Mechanism 2] $g_{ReLu}(\mathbf{v}_i, \mathbf{h}) = \max(\bar{\mathbf{v}}_i^{\top} \bar{\mathbf{h}}, 0)$

Visual feature Z

$$\mathbf{z} = \mathbb{E}_{p(i|\mathbf{h})}[\hat{z}] = \sum_{i=1}^{M} \alpha_i \mathbf{v}_i$$

> The local visual feature at the sound source location

> Video frame > Video prediction > Audio signals - sound prediction

Unsupervised learning

Features f_v (video frame) and f_s (sound wave)

- ✓ Corresponding pairs (positive) close to each other -> extracted from same video
- ✓ Non-corresponding pairs (negative) far from each other -> extracted from another random video
 ⇒ Triplet loss

> A triplet network

> Unsupervised loss function

$$\mathcal{L}_U(D_+, D_-) = ||D_+||_2^2 + ||1 - D_-||_2^2$$
$$D_{\pm} = \frac{\exp(d_{\pm})}{\exp(d_+) + \exp(d_-)}$$

> A cycle loop

Unsupervised learning - issue

✓ The pigeon superstition issue

> Railways rather than train

⇒ False conclusion

- Road > Car
- Difficult without supervisory feedbacks
- ⇒ **Biasing** toward a certain semantically unrelated output

Semi-supervised learning

- A small amount of prior knowledge induce better inductive bias
- Add a supervised loss

> Semi-supervised loss function

Ground-truth attention map

> Cross entropy loss

$$\mathcal{L}_S(\boldsymbol{lpha}, \boldsymbol{lpha}_{\mathtt{GT}}) = -\sum_i lpha_{\mathtt{GT},i} \log(lpha_i)$$

◆ Experimental Results

❖ Dataset

- ✓ Unlabeled Flickr-SoundNet dataset
 - more than 2 million unconstrained sound & image pairs
 - Random subset of 144k pairs train

✓ Annotated in image coordinates

- Training supervision models
- 5k frames + sound → 3 subjects
- 1. Listen 20 secs
- 2. Draw bounding box
- 3. Tag the bounding box as object or ambient
- 2786 pairs => 250 Testing, 2236 Training

> Annotated

Figure 4. Sound Source Localization Dataset. Human annotators annotated the location of the sound source and the type of the source (object vs. non-object/ambient). This dataset is used for testing how well our network learned the sound localization and also for providing a supervision to unified architecture.

♦ Experimental Results – results and analysis

Evaluation metrics

✓ 3 annotations from 3 respective subjects

> ambiguous

✓ Weighted score map

- 1. Bounding box annotation \rightarrow binary maps $\{b_j\}_{j=1}^N$
- 2. Extract a representative score map g

$$\mathbf{g} = \min\left(\sum_{j=1}^{N} \frac{\mathbf{b}_{j}}{\#\text{consensus}}, 1\right)$$

$$\Rightarrow \text{Positives} \geq \#\text{consensus} \rightarrow \mathbf{g} = 1$$

$$N = 3$$
Min. opinion to agreement = 2

⇒ Consensus intersection over union (cloU)

$$cIoU(\tau) = \frac{\sum_{i \in \mathcal{A}(\tau)} g_i}{\sum_i g_i + \sum_{i \in \mathcal{A}(\tau) - \mathcal{G}} 1} \begin{vmatrix} \mathcal{A}(\tau) = \{i | \alpha_i > \tau\} \\ \mathcal{G} = \{i | g_i > 0\} \end{vmatrix}$$

Experimental Results – results and analysis

Qualitative Analysis

 \Rightarrow Visualize Localization response lpha

Unsupervised

Network

22/25

Experimental Results – results and analysis

Qualitative Analysis

> **Interactive** sound source localization

> Our Network vs Human annotation

Experimental Results – results and analysis

Qualitative Analysis

> Different Learning Methods

Experimental Results – results and analysis

Quantitative Analysis

✓ Table 1

	softmax		ReLU+softmax		
	cIoU	AUC	cIoU	AUC	
Unsup. 10k	43.6	44.9	_	_	
Unsup. 144k	66.0	55.8	52.4	51.2	
Sup. 2.5k	80.4	60.3	82.0	60.7	
Sup. 2.5k + Unsup. 10k	82.8	62.0	84.0	61.9	
Random	cIoU		AUC		
Kandom	0.12	± 0.2	32.3 ± 0.1		

> Performance evaluation with different learning schemes

✓ Table 2

	softmax		ReLU+softmax	
	cIoU	AUC	cloU	AUC
Unsup. 10k	43.6	44.9	_	_
Unsup. 144k	66.0	55.8	52.4	51.2
Sup. 0.5k + Unsup. 10k	78.0	60.5	79.2	60.3
Sup. 1.0k + Unsup. 10k	82.4	61.1	82.4	61.1
Sup. 1.5k + Unsup. 10k	82.0	61.3	82.8	61.8
Sup. 2.0k + Unsup. 10k	82.0	61.5	82.4	61.4
Sup. 2.5k + Unsup. 10k	82.8	62.0	84.0	61.9

 Semi-supervised learning with different number of samples

✓ Table 3

Subject	Unsu	Unsup. 144k		Sup.		Semi-sup.		
	IoU	AUC		IoU	AUC	Io	U	AUC
Subj. 1	58.4	52.2		70.8	55.6	74	.8	57.1
Subj. 2	58.4	52.4		72.0	55.6	73	.6	57.2
Subj. 3	63.6	52.6		74.8	55.6	77	.2	57.3
Avg.	60.1	52.4		72.5	55.6	75	.2	57.2

Performance measure against individual subjects

♦ Discussion and Conclusion

- ✓ Learning based sound source localization in visual scenes build its new benchmark dataset
- The model plausibly works / can often get to false conclusion without prior knowledge.
- Leveraging small amount of human knowledge can correct to capture semantically meaningful relationships
- ⇒ The task is not fully learnable problem only with unsupervised data, but it can be fixed by providing even small amount of supervision.

> Pigeons issue

- To deduce the way of machine learning about sound source localization in visual scenes.
- Sound based representation learning: at least small amount of supervision should be incorporated
- Open many potential directions for future research
 - Multi-modal retrieval
 - Sound based saliency or representation learning and its applications.