NMB - Oefenzitting 8: Geometrische modellering

Korneel Dumon, Daan Camps

Maak de volgende opgaven met behulp van een java-pakket dat de theorie van de cursus illustreert. Het pakket is te vinden op Toledo (cagd.jar).

Start het programma op met

Opgave 1. Controleer de volgende eigenschappen uit de cursus:

- a) Interpolerende veeltermeurven: $\vec{x}(u) = \sum_{i=0}^{n} \vec{p}_i L_i^n(u)$
 - \circ De curve zal doorgaans sterk oscilleren (zeker wanneer n stijgt). Het is zeer moeilijk om zachtverlopende curven te bekomen.
 - \circ Een kleine wijziging van één van de vectoren $\vec{p_i}$ zal vaak grote veranderingen veroorzaken in de ligging van de curve.
- b) Bézier-curven: $\vec{x}(t) = \sum_{i=0}^{n} \vec{b}_i B_i^n(t)$
 - $\circ\,$ De curve ligt binnen de convex omhullende van de Bézier-punten $\{\vec{b}_0,\vec{b}_1,\ldots,\vec{b}_n\}.$
 - o De Bézier-curve interpoleert in begin- en eindpunt: $\vec{x}(0) = \vec{b}_0$ en $\vec{x}(1) = \vec{b}_n$ en raakt er aan $\vec{b}_1 \vec{b}_0$ respectievelijk aan $\vec{b}_n \vec{b}_{n-1}$.
 - o De curve $\vec{x}(t)$ ligt achtereenvolgens dicht bij $\vec{b}_0, \vec{b}_1, \dots, \vec{b}_n$, maar elke $\vec{x}(t), 0 < t < 1$ is afhankelijk van alle $\vec{b}_i, i = 0, \dots, n$.
 - o De curve zal een zachtverlopend (niet sterk oscillerend) karakter hebben.
 - o Bij herhaalde toepassing van subdivisie convergeren de samengevoegde controleveelhoeken naar de curve $\vec{x}(t)$.
- c) Spline curven: $\vec{s}(u) = \sum_{i=-k}^{n-1} \vec{d_i} N_{i,k+1}(u)$
 - o Bij wijziging van één de Boor-punt $\vec{d_j}$ zal slechts een deel van de splinecurve wijzigen (lokale afhankelijkheid).
 - \circ Elk punt van een splinecurve van graad k ligt in de convex omhullende van k+1 de Boorpunten.
 - o Splinecurven van lagere graad sluiten dichter aan bij de controleveelhoek.
 - o Gesloten curven kunnen op een eenvoudige manier worden voorgesteld.
 - Samenvallende knooppunten kunnen gebruikt worden voor het verminderen van de continuïteitseigenschappen van de curve.

o Toevoegen van knooppunten kan gebruikt worden om het deel van de curve beïnvloed bij wijziging van een controlepunt te verkleinen (voor het aanbrengen van lokale wijzigingen).

d) NURBS-curven:
$$\vec{x}(u) = \left[\sum_{i=-k}^{n-1} w_i \vec{q_i} N_{i,k+1}(u)\right] / \sum_{i=-k}^{n-1} w_i N_{i,k+1}(u)$$

• De curve ligt in de convex omhullende van de controlepunten en is slechts lokaal afhankelijk van elk van de controlepunten.

Opgave 2. Ontwerp en teken een wijnglas waarvan de onderkant vlak is en de bovenkant scherpe randen vertoont.

Opgave 3. Teken je initialen in het volgende lettertype:

ABCDEFGHIJKLMNOPQRSTUVWXYZ