1 Optics

I want a Didinium $(0.1 \times 0.1 \text{mm}^2)$ to span 3×3 pixels.

pixel size = $1.55 \mu m$.

Magnification (Negative for real images, because they are inverted)

$$M = -\frac{3 \times \text{Pixel size}}{\text{Didinium size}} = -0.0465 \approx -0.05. \tag{1}$$

Focal length

$$M = \frac{f}{f - \text{WD}} \implies f = \text{WD} \frac{M}{M - 1} = \text{WD} \times 0.0476... \approx \text{WD} \times 0.05.$$
 (2)

Working Distance: Paper has WD = 60 - 100 mm.

Things to consider: vibrations from the pump, having space to add filters etc

Things to ignore: Depth of view, blurriness is not a problem for tracking. Distortion, can be corrected digitally.

Minimal Field of View:

$$FOV() = \arctan\left(\frac{h_o/2}{\text{WD}}\right)$$
 (3)

Following table shows Working Distance, required focal length and minimal field of view.

WD (mm)	f (mm)	FOV (°)
50	2.5	45
100	5	14
200	10	7
300	15	5

To image just $5 \times 5 \text{mm}^2$, M = -0.5. Then $f = \text{WD} \times 0.33... = \text{WD}/3$

WD (mm)	f (mm)	FOV (°)
50	17	3
100	33	1.4
200	67	0.7
300	100	0.5