Tema 1

Programas Matemáticos

Conceptos básicos del tema 1

Conjuntos convexos:

- Un conjunto es convexo, si para todo par de puntos del conjunto, el segmento que los une también pertenece al conjunto.
 - Conjunto vacío: Convexo
 - Un punto: Convexo
 - Intersección de conjuntos convexos: Convexo

Vertice:

• Un punto de un conjunto es un vertice si no forma parte de ningún segmento entre otros dos puntos.

• Vértices más comunes $\begin{cases} & \text{Esquinas de un polígono} \\ & \text{Los puntos de cualquier curva} \end{cases}$

Hiperplano:

• Asociado a un vector, $c \in \mathbb{R}^n$, y un valor, $\alpha \in \mathbb{R}$.

• Es el conjunto $H = \{\bar{x} \in R^n | c \cdot \bar{x} = \alpha\}$

$$c_1x + c_2y + c_3z + \dots + c_nt = \alpha$$

Hiperplano:

Ejemplos:

$$x + 2y = 3 \rightarrow \begin{cases} vector \ c = (1,2) \\ valor \ \alpha = 3 \end{cases}$$

$$2x - 4y + 3z = 1 \rightarrow \begin{cases} vector \ c = (2, -4, 3) \\ valor \ \alpha = 1 \end{cases}$$

<u>Hiperplano:</u>

• Es el conjunto $H = \{\bar{x} \in R^n | c \cdot \bar{x} = \alpha\}$

$$c_1x + c_2y + c_3z + \dots + c_nt = \alpha$$

Semiespacios asociados:
$$\begin{cases} H^+ = \{ \bar{x} \in R^n | c \cdot \bar{x} \ge \alpha \} \\ H^- = \{ \bar{x} \in R^n | c \cdot \bar{x} \le \alpha \} \end{cases}$$

Tanto los hiperplanos como los semiespacios son convexos

Funciones convexas y concavas

¡No confundir convexidad de una función con convexidad de un conjunto!

Funciones convexas y cóncavas.

• Las funciones convexas van asociadas con la búsqueda de mínimos

• Las funciones cóncavas van asociadas con la búsqueda de máximos

Funciones convexas y cóncavas. Análisis con la Hessiana: Hf(x)

• F. estrictamente convexa $\leftarrow Hf(x)$ es Definida Positiva

• F. convexa $\leftarrow Hf(x)$ es Definida o SemiDefinida Positiva

• F. estrictamente cóncava $\leftarrow Hf(x)$ es Definida Negativa

• F. cóncava $\leftarrow Hf(x)$ es Definida o SemiDefinida Negativa

Programación matemática:

Optimizar
$$f(x_1, x_2, ..., x_n)$$

Sujeto a
$$\begin{cases} g_i(x_1,x_2,...,x_n) = b_i \\ g_i(x_1,x_2,...,x_n) \leq c_i \\ (x_1,x_2,...,x_n) \in \mathcal{C} \subseteq \mathbb{R}^n \end{cases}$$

Programación matemática:

Optimizar
$$f(x_1, x_2, ..., x_n)$$

Sujeto a
$$\begin{cases} g_i(x_1,x_2,\ldots,x_n) = b_i \\ g_i(x_1,x_2,\ldots,x_n) \leq c_i \\ (x_1,x_2,\ldots,x_n) \in \mathcal{C} \subseteq \mathbb{R}^n \end{cases}$$

 $(x_1, x_2, ..., x_n)$ Variables de decisión

 $f(x_1, x_2, ..., x_n)$ Función: Querremos buscar el valor más alto o más bajo

Programación matemática:

Optimizar
$$f(x_1, x_2, ..., x_n)$$

Sujeto a
$$\begin{cases} g_i(x_1,x_2,\ldots,x_n) = b_i \\ g_i(x_1,x_2,\ldots,x_n) \leq c_i \\ (x_1,x_2,\ldots,x_n) \in \mathcal{C} \subseteq \mathbb{R}^n \end{cases}$$

Las restricciones a las que está sujeto el programa forman el <u>Conjunto Factible</u>
Cada punto del conjunto factible es una <u>Solución Factible</u>

Las restricciones a las que está sujeto el programa forman el **Conjunto Factible**

S = Conjunto factible

Si $S = \emptyset \rightarrow \text{No existe solución}$

Si $S = \text{un punto} \rightarrow \text{La solución sería ese punto, no hay nada que optimizar.}$

Nº de restricciones de igualdad < número de variables

Clasificación de los programas

- Según las restricciones:
 - Sin restricciones
 - Con restricciones de igualdad
 - Con restricciones de desigualdad
 - Restricciones de todo tipo
- Según la función:
 - Diferenciable
 - No diferenciable

Clasificación de los programas

- Según la convexidad:
 - Convexo (si el conjunto factible es convexo)
 - No Convexo

- Según la linealidad:
 - Lineal: Si las funciones y restricciones son lineales
 - No lineal

Deseamos encontrar máximos y mínimos globales

Mínimo local: Es un punto tal que al movernos de él la función empieza a crecer

<u>Máximo local:</u> Es un punto tal que al movernos de él la función empieza a decrecer.

(Los encontraremos igualando la primera derivada a 0).

Mínimo global: El punto en el que la función toma el valor más pequeño Máximo global: El punto en el que la función toma el valor más grande

Dos teoremas:

TEOREMA DE WEIERSTRASS

Si un programa tiene un conjunto factible, S, <u>cerrado y acotado</u> y la función es continua: la función <u>alcanzará un máximo y un</u> <u>mínimo global</u> en S.

- Cerrado: Incluye la frontera
- Acotado: Existe una bola que incluya al conjunto (tamaño finito)

Dos teoremas:

TEOREMA CONVEXIDAD-GLOBALIDAD

Siempre que el conjunto factible, S, sea convexo:

- Si una función es convexa, un mínimo local será también global
- Si es estrictamente convexa, un mínimo local será también global único
- Si es concava, un máximo local será también global
- Si es estrictamente concava, un máximo local será también global único