AMENDMENTS TO THE CLAIMS:

The listing of claims will replace all prior versions, and listings of claims in the application:

LISTING OF THE CLAIMS

1. (Previously Presented) A lighting apparatus for emitting white light comprising:

a semiconductor light source emitting radiation having a peak emission in the UV; and

a phosphor composition radiationally coupled to the light source, the phosphor composition comprising $(Ba,Sr,Ca)SiO_4$:Eu, one or more garnet phosphors having the general formula $(Y,Gd,La,Lu,Tb,Pr,Sm)_3(Al,Ga,In)_5O_{12}$:Ce, and at least one phosphor selected from the group consisting of $(Sr,Mg,Ca,Ba,Zn)_2P_2O_7$:Eu,Mn; $(Ca,Sr,Ba,Mg)_5(PO_4)_3(Cl,F,OH)$:Eu,Mn; and $(Sr,Mg,Ca,)MgAl_{10}O_{17}$:Eu,Mn, wherein said $(Ba,Sr,Ca)SiO_4$:Eu phosphor comprises $(Sr_{0.95}Ba_{0.025}Eu_{0.025})_2SiO_4$ or $(Sr_{0.58}Ca_{0.036}Eu_{0.06})_2SiO_4$.

- 2. (Original) The lighting apparatus of claim 1, wherein the light source is an LED.
- 3. (Currently Amended) The lighting apparatus of claim 2, wherein the LED comprises a nitride compound semiconductor represented by the formula $In_iGa_jAl_kN$, where $0 \le i$; $0 \le j$, $0 \le K\underline{k}$, and i+j+k=1.
- 4. (Original) The lighting apparatus of claim 1, wherein the light source is an organic emissive structure.
- 5. (Original) The lighting apparatus of claim 1, wherein the phosphor composition is coated on the surface of the light source.
- 6. (Original) The lighting apparatus of claim 1, further comprising an encapsulant surrounding the light source and the phosphor composition.

- 7. (Original) The lighting apparatus of claim 1, wherein the phosphor composition is dispersed in the encapsulant.
- 8. (Original) The lighting apparatus of claim 1, further comprising a reflector cup.
- 9. (Cancelled)
- 10. (Cancelled)
- 11. (Currently Amended) The lighting apparatus of claim 10, wherein said apparatus has a color point with ccx value of 0.5286 and a ccy value of 0.4604.
- 12. (Original) The lighting apparatus of claim 1, wherein said phosphor composition further comprises one or more additional phosphor.
- (Currently Amended) The lighting apparatus of claim 12, wherein said one or more 13. additional from the group consisting of phosphors are selected $(Ba,Sr,Ca)MgAl_{10}O_{17}:Eu^{2+},Mn^{2+};$ (Ba,Sr,Ca)₅(PO₄)₃(Cl,F,Br,OH):Eu²⁺,Mn²⁺,Sb³⁺; $(Ba,Sr,Ca)BPO_5:Eu^{2+},Mn^{2+}; \qquad (Sr,Ca)_{10}(PO_4)_6*nB_2O_3:Eu^{2+}; \qquad 2SrO*0.84P_2O_5*0.16B_2O_3:Eu^{2+}; \\$ $Sr_2Si_3O_{8*2}SrCl_2:Eu^{2+}; \quad Ba_3MgSi_2O_8:Eu^{2+}; \quad Sr_4Al_{14}O_{25}:Eu^{2+}; \quad BaAl_8O_{13}:Eu^{2+}; \quad \frac{2SrO-0.84P_2O_{5-1}}{2SrO-0.84P_2O_{5-1}} = \frac{1}{2} \frac{1}{2}$ (Ba,Sr,Ca)Al₂O₄:Eu²⁺; (Y,Gd,Lu,Sc,La)BO₃:Ce³⁺,Tb³⁺; 0.16B2O3:Eu²⁺; $(Ba,Sr,Ca)_2(Mg,Zn)Si_2O_7:Eu^{2+};$ $(Sr,Ca,Ba)(Al,Ga,In)_2S_4:Eu^{2+};$ $(Y,Gd,Tb,La,Sm,Pr,Ca)_2(Mg,Zn)Si_2O_7:Eu^{2+};$ $Lu)_{3}(Al,Ga)_{5}O_{12}:Ce^{3+}; \qquad (Ca,Sr)_{8}(Mg,Zn)(SiO_{4})_{4}Cl_{2}: \qquad Eu^{2+},Mn^{2+}; \qquad Na_{2}Gd_{2}B_{2}O_{7}:Ce^{3+},Tb^{3+}; \\ Na_{2}Gd_{2}B_{2}O_{7}:Ce^{3+},Tb^{3+}; \qquad Ca_{1}Gd_{2}B_{2}O_{7}:Ce^{3+},Tb^{3+}; \\ Na_{2}Gd_{2}B_{2}O_{7}:Ce^{3+},Tb^{3+}; \\ Na_{2}Gd_{2}B_{2$ $(Sr,Ca,Ba,Mg,Zn)_2P_2O_7:Eu^{2+},Mn^{2+};$ $(Ba,Sr)_2(Ca,Mg,Zn)B_2O_6:K,Ce,Tb;$ $Eu^{2+},Mn^{2+};$ $(Gd,Y,Lu,La)_2O_3:Eu^{3+},Bi^{3+};$ $(Ca,Sr,Ba,Mg)_{10}(PO_4)_6(F,Cl,Br,OH)$: $(Gd,Y,Lu,La)_2O_2S:Eu^{3+},Bi^{3+};$ $(Gd,Y,Lu,La)VO_4:Eu^{3+},Bi^{3+};$ $(Ca,Sr)S:Eu^{2+};$ $SrY_2S_4:Eu^{2+};$ $CaLa_{2}S_{4}:Ce^{3+}; \quad (Ca,Sr)S:Eu^{2+}; \quad 3.5MgO*0.5MgF_{2}*GeO_{2}:Mn^{4+}; \quad (Ba,Sr,Ca)MgP_{2}O_{7}:Eu^{2+},Mn^{2+}; \\$ $(Y,Lu)_2WO_6$: Eu^3+ , Mo^{6+} ; and $(Ba,Sr,Ca)_xSi_vN_z$: Eu^{2+} .
- 14. (Previously Presented) A lighting apparatus for emitting white light comprising:

a UV light source emitting radiation having a peak emission in the UV range; and

a phosphor composition radiationally coupled to the light source, the phosphor composition comprising $(Sr,Ba,Ca)_2SiO_4$:Eu, one or more garnet phosphors having the general formula $(Y,Gd,La,Lu,Tb,Pr,Sm)_3(Al,Ga,In)_5O_{12}$:Ce and a magnesium fluorogermanate phosphor, wherein said $(Sr,Br,Ca)_2SiO_4$:Eu phosphor comprises $(Sr_{0.95}Ba_{0.025}\ Eu_{0.025})_2SiO_4$ or $(Sr_{0.58}Ca_{0.036}\ Eu_{0.06})_2SiO_4$.

- 15. (Original) The lighting apparatus of claim 14, wherein the light source is a semiconductor LED.
- 16. (Currently Amended) The lighting apparatus of claim 14, wherein the LED comprises a nitride compound semiconductor represented by the formula $In_iGa_jAl_kN$, where $0 \le i$; $0 \le j$, $0 \le K\underline{k}$, and i+j+k=1.
- 17. (Original) The lighting apparatus of claim 14, wherein said light source is an organic emissive structure.
- 18. (Original) The lighting apparatus of claim 14, wherein the phosphor composition is coated on the surface of the light source.
- 19. (Original) The lighting apparatus of claim 14, further comprising an encapsulant surrounding the light source and the phosphor composition.
- 20. (Original) The lighting apparatus of claim 14, wherein the phosphor composition is dispersed in the encapsulant.
- 21. (Original) The lighting apparatus of claim 14, further comprising a reflector cup.
- 22. (Cancelled)
- 23. (Cancelled)

- 24. (Original) The lighting apparatus of claim 14, wherein said apparatus has a color point with ccx value of 0.5286 and a ccy value of 0.4604.
- 25. (Original) The lighting apparatus of claim 14, wherein said phosphor composition further comprises one or more additional phosphors.
- (Currently Amended) The lighting apparatus of claim 251, wherein said one or more 26. consisting of phosphors from the group additional selected are $(Ba,Sr,Ca)_{5}(PO_{4})_{3}(Cl,F,Br,OH) : Eu^{2+},Mn^{2+},Sb^{3+}; \\$ $(Ba,Sr,Ca)MgAl_{10}O_{17}:Eu^{2+},Mn^{2+};$ $(Ba.Sr.Ca)BPO_5:Eu^{2+}.Mn^{2+}: (Sr.Ca)_{10}(PO_4)_6*nB_2O_3:Eu^{2+}; 2SrO*0.84P_2O_5*0.16B_2O_3:Eu^{2+};$ $Sr_2Si_3O_{8*2}SrCl_2:Eu^{2+}; Ba_3MgSi_2O_8:Eu^{2+}; Sr_4Al_{14}O_{25}:Eu^{2+}; BaAl_8O_{13}:Eu^{2+}; 2SrO-0.84P_2O_{5-1}$ (Ba,Sr,Ca)Al₂O₄:Eu²⁺; (Y,Gd,Lu,Sc,La)BO₃:Ce³⁺,Tb³⁺; 0.16B₂O₃:Eu²⁺; $(Ba,Sr,Ca)_2(Mg,Zn)Si_2O_7:Eu^{2+};$ $(Sr,Ca,Ba)(Al,Ga,In)_2S_4:Eu^{2+};$ $(Y,Gd,Tb,La,Sm,Pr,Da,Ca)_2(Ba,Sr,Ca)_$ $Lu)_{3}(Al,Ga)_{5}O_{12}:Ce^{3+}; \qquad (Ca,Sr)_{8}(Mg,Zn)(SiO_{4})_{4}Cl_{2}: \qquad Eu^{2+},Mn^{2+}; \qquad Na_{2}Gd_{2}B_{2}O_{7}:Ce^{3+},Tb^{3+}; \\ Na_{2}Gd_{2}B_{2}O_{7}:Ce^{3+},Tb^{3+}; \qquad (Ca,Sr)_{8}(Mg,Zn)(SiO_{4})_{8}Cl_{8}: \qquad (Ca,Sr)_{8}(Mg,Zn)(SiO_{4})_{8}Cl_{8}$ $(Sr,Ca,Ba,Mg,Zn)_2P_2O_7:Eu^{2+},Mn^{2+}$: $(Ba,Sr)_2(Ca,Mg,Zn)B_2O_6:K,Ce,Tb;$ $Eu^{2+},Mn^{2+};$ (Ca,Sr,Ba,Mg)₁₀(PO₄)₆(F,Cl,Br,OH): (Gd,Y,Lu,La)₂O₃:Eu³⁺,Bi³⁺; (Gd,Y,Lu,La)₂O₂S:Eu³⁺,Bi³⁺; (Gd,Y,Lu,La)VO₄:Eu³⁺,Bi³⁺; (Ca,Sr)S:Eu²⁺; SrY₂S₄:Eu²⁺; $CaLa_{2}S_{4}:Ce^{3+}; \quad (Ca,Sr)S:Eu^{2+}; \quad 3.5MgO*0.5MgF_{2}*GeO_{2}:Mn^{4+}; \quad (Ba,Sr,Ca)MgP_{2}O_{7}:Eu^{2+},Mn^{2+}; \\ CaLa_{2}S_{4}:Ce^{3+}; \quad (Ca,Sr)S:Eu^{2+}; \quad (Ca,Sr)S:Eu^{2+}; \\ CaLa_{2}S_{4}:Ce^{3+}; \quad (Ca,Sr)S:Eu^{2+}; \quad (Ca,Sr)S:Eu^{2+}; \\ CaLa_{2}S_{4}:Ce^{3+}; \quad (Ca,Sr)S:Eu^{2+}; \\ CaLa_{2}S_{4}:Ce^{3+}; \quad (Ca,Sr)S:Eu^{2+}; \\ CaLa_{2}S_{4}:Ce^{3+}; \\$ $(Y.Lu)_2WO_6:Eu^3+, Mo^{6+}; (Ba,Sr,Ca)_xSi_yN_7:Eu^{2+}.$
- 27. (Previously Presented) A lighting apparatus for emitting white light comprising: a semiconductor light source emitting radiation having a peak emission in the UV range; and
- a phosphor composition radiationally coupled to the light source, the phosphor composition comprising (Ba,Sr,Ca)SiO₄:Eu, and one or more additional phosphors, wherein said (Ba,Sr,Ca)SiO₄:Eu phosphor comprises (Sr_{0.95}Ba_{0.025} Eu_{0.025})₂SiO₄ or (Sr_{0.58}Ca_{0.036} Eu_{0.06})₂SiO₄.
- 28. (Original) The lighting apparatus of claim 27, wherein the light source is a semiconductor LED.

- 29. (Currently Amended) The lighting apparatus of claim 27, wherein the LED comprises a nitride compound semiconductor represented by the formula $In_iGa_jAl_kN$, where $0 \le i$; $0 \le j$, $0 \le K\underline{k}$, and i + j + k = 1.
- 30. (Original) The lighting apparatus of claim 27, wherein said light source is an organic emissive structure.
- 31. (Original) The lighting apparatus of claim 27, wherein the phosphor composition is coated on the surface of the light source.
- 32. (Original) The lighting apparatus of claim 27, further comprising an encapsulant surrounding the light source and the phosphor composition.
- 33. (Original) The lighting apparatus of claim 27, wherein the phosphor composition is dispersed in the encapsulant.
- 34. (Original) The lighting apparatus of claim 27, further comprising a reflector cup.
- 35. (Cancelled)
- 36. (Cancelled)
- 37. (Previously Presented) The lighting apparatus of claim 27, wherein said apparatus has a color point with a ccx value or 0.5286 and a ccy value of 0.4604.
- 38. Canceled
- (Currently Amended) The lighting apparatus of claim 32, wherein said one or more 39. additional phosphors are selected from the group consisting of (Ba,Sr,Ca)MgAl₁₀O₁₇:Eu²⁺,Mn²⁺; (Ba,Sr,Ca)₅(PO₄)₃(Cl,F,Br,OH):Eu²⁺,Mn²⁺,Sb³⁺; 2SrO*0.84P₂O₅*0.16B₂O₃:Eu²⁺; $(Ba,Sr,Ca)BPO_5:Eu^{2+},Mn^{2+};$ $(Sr,Ca)_{10}(PO_4)_6*nB_2O_3:Eu^{2+};$ $Sr_2Si_3O_{8*2}SrCl_2:Eu^{2+}; \quad Ba_3MgSi_2O_8:Eu^{2+}; \quad Sr_4Al_{14}O_{25}:Eu^{2+}; \quad BaAl_8O_{13}:Eu^{2+}; \quad 2SrO-0.84P_2O_{5-1}O_{12}:Eu^{2+}; \quad 2SrO-0.84P_2O_{12}:Eu^{2+}; \quad 2SrO-0$

- 40. (Previously Presented) A phosphor blend including (Sr,Ba,Ca)₂SiO₄:Eu and at least one of (Sr,Mg,Ca,Ba,Zn)₂P₂O₇:Eu,Mn; (Ca,Sr,Ba,Mg)₅(PO₄)₃(Cl,F,OH):Eu,Mn; and (Sr,Ba,Ca)MgAl₁₀O₁₇:Eu,Mn, wherein said (Sr,Ba,Ca)₂SiO₄:Eu phosphor comprises (Sr_{0.95}Ba_{0.025} Eu_{0.025})₂SiO₄ or (Sr_{0.58}Ca_{0.036} Eu_{0.06})₂SiO₄.
- 41. (Cancelled)
- 42. (Cancelled)
- 43. (Previously Presented) The phosphor blend of claim 40, wherein said phosphor blend is capable of absorbing the radiation emitted by a light source having a peak emission in the UV range and emitting radiation that, when combined with said radiation from said light source, produces white light.
- 44. (Cancelled)
- 45. (Previously Presented) The lighting apparatus of claim 1, wherein said semiconductor light source has a peak emission at about 405 nm.
- 46. (Previously Presented) A lighting apparatus for emitting white light comprising:

a semiconductor light source emitting radiation having a peak emission in the UV;

and

a phosphor composition radiationally coupled to the light source, the phosphor composition comprising $(Sr,Ba,Ca)_2SiO_4$:Eu, and at least one phosphor selected from the group consisting of $((Sr,Mg,Ca,Ba,Zn)_2P_2O_7$:Eu,Mn; $(Ca,Sr,Ba,Mg)_5(PO_4)_3(Cl,F,OH)$:Eu,Mn; and $(Sr,Ba,Ca)MgAl_{10}O_{17}$:Eu,Mn, wherein said $(Sr,Br,Ca)_2SiO_4$:Eu phosphor comprises $(Sr_{0.95}Ba_{0.025}Eu_{0.025})_2SiO_4$ or $(Sr_{0.58}Ca_{0.036}Eu_{0.06})_2SiO_4$.