Домашнее задание 2. Курс «Алгебра». 2022—2023 учебный год. БПИ-2210. Вариант 23

- 1. Пусть $z = 2\sqrt{3} 2i$. Вычислить значение $\sqrt[5]{z^3}$, для которого число $\frac{\sqrt[5]{z^3}}{\sqrt{3} i}$ имеет аргумент $\frac{\pi}{15}$.
- 2. Решить систему уравнений:

$$\begin{cases} x(6-4i) + y(-6+14i) = -136 - 302i \\ x(-6+i) + y(1-9i) = 131 + 174i \end{cases}$$

- 3. Найти корни многочлена $-4x^6-80x^5-588x^4-1560x^3+2216x^2+20320x+31200$ и разложить его на множители над $\mathbb R$ и $\mathbb C$, если известны корни $x_1=-4-2i,\,x_2=-5+i,\,x_3=-5.$
- 4. Даны 3 комплексных числа: -12-3i, -14+27i, -23-8i. Найти число z, образующее параллелограмм с данными тремя на комплексной плоскости.
- 5. Даны числа $z_1 = -2i, z_2 = \sqrt{3} i$ соседние комплексные корни степени n числа z. Найти степень n и исходное число.
- 6. На комплексной плоскости нарисуйте область, заданную системой $(arg(z) \in (-\pi, \pi])$:

$$\begin{cases} |z - 3 - 2i| < 2\\ |arg(z - 1 - 5i)| < \frac{5\pi}{6} \end{cases}$$

7. Даны 3 некомпланарных вектора a = (0, 4, 5), b = (-2, 6, -1), c = (0, 1, 2). Найдите вектор x, удовлетворяющий системе уравнений:

$$(a, x) = \alpha, \quad (b, x) = \beta, \quad (c, x) = \gamma$$

- 8. Дана точка A(-13,-10,-15) и плоскость P:-16x-26y-14z-114=0. Найти координаты точки A_0 , расположенной симметрично точке A относительно плоскости P.
- 9. Даны точки A(-12, -9, 8), $M_1(-3, 4, 14)$, $M_2(-18, -1, 14)$. Написать каноническое уравнение прямой L, проходящей через точки M_1 и M_2 . Найти координаты точки A_0 , расположенной симметрично точки A относительно прямой L.
- 10. Заданы две прямые L_1 и L_2 своими общими уравнениями

$$L_1: \begin{cases} -18x - 2y - 18z + 50 = 0 \\ -x + 13y - 2z - 205 = 0 \end{cases} \qquad L_2: \begin{cases} -17x - 15y - 16z - 2055 = 0 \\ 14x + 4y + 19z + 1718 = 0 \end{cases}$$

Написать каноническое уравнение прямой, являющейся общим перпендикуляром к L₁ и L₂.