Поверхности второго порядка.

Эллипсоид.

Определение. Эллипсоидом называется поверхность Ф, имеющая каноническое уравнение вида

$$\frac{x^2}{a^2} + \frac{y^2}{b^2} + \frac{z^2}{c^2} = 1. \tag{1}$$

В сечениях плоскостями z = h получаем кривую

$$\frac{x^2}{a^2} + \frac{y^2}{b^2} = 1 - \frac{h^2}{c^2} \tag{*}$$

Если $|h| \neq c$, то обозначим $a'^2 = a^2 |1 - \frac{h^2}{c^2}|$, $b'^2 = b^2 |1 - \frac{h^2}{c^2}|$.

При |h| < c получаем эллипсы $\frac{x^2}{a'^2} + \frac{y^2}{b'^2} = 1$, полуоси которых a' и b' достигают максимального значения a и b при b = 0.

При |h| > c получаем мнимые эллипсы $\frac{x^2}{a'^2} + \frac{y^2}{b'^2} = -1$ (Ø). А при $h = \pm c$ из (*) получаем уравнение $\frac{x^2}{a^2} + \frac{y^2}{b^2} = 0$, которое задает только одну из точек $C_1(0,0,c)$ или $C_2(0,0,-c)$.

Аналогично, для сечений плоскостями x = h, или y = h.

Геометрические свойства эллипсоида.

- **1.** Из (1) получаем, что $|x| \le a$, $|y| \le b$, $|z| \le c$.Т.е., весь эллипсоид содержится в параллелепипеде, который определяется этими неравенствами.
- **2.** Координатные оси пересекают эллипсоид в точках $A_1(a,0,0)$, $A_2(-a,0,0)$, $B_1(0,b,0)$, $B_2(0,-b,0)$, $C_1(0,0,c)$, $C_2(0,0,-c)$, которые называются вершинами эллипсоида.
- **3.** Координатные оси являются осями симметрии эллипсоида, координатные плоскости плоскостями симметрии, начало координат O центром симметрии.
- **4.** При a=b эллипсоид будет поверхностью вращения вокруг Oz. Действительно, в этом случае его уравнение можно переписать так:

$$\frac{(\sqrt{x^2+y^2})^2}{a^2} + \frac{z^2}{c^2} = 1.$$

При a = b = c эллипсоид будет сферой:

$$x^2 + y^2 + z^2 = a^2 (**).$$

(1) может быть получен из сферы (**) в результате равномерного сжатия по взаимно перпендикулярным направлениям. Действительно, если в сделать замену координат x = x', $y = \frac{a}{h}y'$, $z = \frac{a}{c}z'$, то получим уравнение (1).

Однополостной и двуполостной гиперболоиды.

Определение. Однополостным и двуполостным гиперболоидами называются поверхности, имеющие канонические уравнения соответственно вида

$$\Phi_1: \frac{x^2}{a^2} + \frac{y^2}{b^2} - \frac{z^2}{c^2} = 1$$
(2) $\Phi_2: \frac{x^2}{a^2} + \frac{y^2}{b^2} - \frac{z^2}{c^2} = -1.$
(3)

В сечениях плоскостями z = h получаем соответственно кривые

$$\frac{x^2}{a^2} + \frac{y^2}{b^2} = 1 + \frac{h^2}{c^2} \qquad \qquad \frac{x^2}{a^2} + \frac{y^2}{b^2} = -1 + \frac{h^2}{c^2} \quad (*)$$

$$a'^2 = a^2(1 + \frac{h^2}{c^2}), \ b'^2 = b^2(1 + \frac{h^2}{c^2}); \qquad a'^2 = a^2|-1 + \frac{h^2}{c^2}|, \ b'^2 = b^2|-1 + \frac{h^2}{c^2}|, \ h \neq \pm c$$

при |h| > c получаем эллипсы при любом h получаем эллипсы

$$\frac{x^2}{a'^2} + \frac{y^2}{b'^2} = 1$$

В сечениях плоскостями y = h получаем соответственно кривые

$$\frac{x^2}{a^2} - \frac{z^2}{c^2} = 1 - \frac{h^2}{b^2} \quad (**)$$

$$a'^2 = a^2 |1 - \frac{h^2}{h^2}|, c'^2 = c^2 |1 - \frac{h^2}{h^2}|$$

и при $h \neq \pm b$ получаем гиперболы, и при любом h получаем гиперболы

$$\frac{x^2}{a'^2} + \frac{z^2}{c'^2} = \pm 1$$
,

а при $h = \pm b$ (**) превращается в уравнение $\frac{x^2}{a^2} - \frac{z^2}{c^2} = 0$, которое задает пару пересекающихся прямых.

$$\frac{x^2}{a^2} - \frac{z^2}{c^2} = -1 - \frac{h^2}{c^2}$$

Обозначим соответственно
$$a'^2 = a^2 \left| 1 - \frac{h^2}{b^2} \right|, \ c'^2 = c^2 \left| 1 - \frac{h^2}{b^2} \right| \qquad \qquad a'^2 = a^2 (1 + \frac{h^2}{b^2}) \ , \ c'^2 = c^2 (1 + \frac{h^2}{b^2}) \ .$$

$$-\frac{x^2}{a'^2} + \frac{z^2}{c'^2} = 1.$$

Аналогично, в сечениях Φ_2 плоскостями y = h получаем только гиперболы, а в сечениях Φ_1 – гиперболы или пары прямых при $h = \pm a$.

Прочие геометрические свойства гиперболоидов.

- **а).** Точно так же, как и для эллипсоида доказывается, что координатные оси являются осями симметрии гиперболоидов, координатные плоскости плоскостями симметрии, а точка O центром симметрии.
 - **б).** Пусть Φ_{o} конус, заданный уравнением

$$\Phi_0$$
: $\frac{x^2}{a^2} + \frac{y^2}{b^2} - \frac{z^2}{c^2} = 0$. (4)

Пусть $M_{0}(x,y,z_{0})\in\Phi_{0},\ M_{1}(x,y,z_{1})\in\Phi_{1},\ M_{2}(x,y,z_{2})\in\Phi_{2}$ – три точки с одинаковыми координатами x и y, лежащие на конусе и на гиперболоидах. Тогда

$$z_0^2 = c^2 \left(\frac{x^2}{a^2} + \frac{y^2}{b^2}\right), \quad z_1^2 = c^2 \left(\frac{x^2}{a^2} + \frac{y^2}{b^2} - 1\right), \quad z_2^2 = c^2 \left(\frac{x^2}{a^2} + \frac{y^2}{b^2} + 1\right) \implies$$

 $|z_1^2| < |z_0^2| < |z_2^2|$, а значит, Φ_1 лежит снаружи конуса Φ_0 , а Φ_2 – внутри. Кроме того, из тех же равенств следует $z_0^2 - z_1^2 = z_2^2 - z_0^2 = c^2 \Rightarrow$

$$M_0M_1=|z_0-z_1|=\frac{1}{|z_0+z_1|}\to 0$$
 и $M_2M_0=|z_2-z_0|=\frac{1}{|z_1+z_0|}\to 0$,

когда точки M_0 , M_1 , M_2 уходят на бесконечность. Значит, оба гиперболоида асимптотически приближаются к конусу.

Теорема. Через каждую точку однополостного гиперболоида проходит ровно 2 прямые, целиком лежащие на гиперболоиде. **Доказательство.**

Эллиптический и гиперболический параболоиды

Определение. <u>Эллиптическим и гиперболическим параболоидами</u> называются поверхности, имеющие канонические уравнения соответственно вида

$$\Phi_3$$
: $\frac{x^2}{a^2} + \frac{y^2}{b^2} = 2z$ (5) Φ_4 : $\frac{x^2}{a^2} - \frac{y^2}{b^2} = 2z$. (6)

В сечениях плоскостями z=h получаем соответственно кривые

$$\frac{x^2}{a^2} + \frac{y^2}{b^2} = 2h \qquad \qquad \frac{x^2}{a^2} - \frac{y^2}{b^2} = 2h \qquad (*)$$

Обозначим $a'^2 = 2|h|a^2, b'^2 = 2|h|b^2$.

При h > 0 получаем эллипсы

$$\frac{x^2}{a'^2} + \frac{y^2}{b'^2} = 1,$$

полуоси которых возрастают при

При $h \neq 0$ получаем гиперболы

$$\frac{x^2}{a'^2} - \frac{y^2}{b'^2} = \pm 1,$$

(см. на рисунке γ_4), а при h = 0 из

возрастании h, а при h < 0 получаем мнимые эллипсы

(*) получаем уравнение, которое задает пару пересекающихся прямых

$$\frac{x^2}{a'^2} + \frac{y^2}{b'^2} = -1.$$

$$\frac{x^2}{a'^2} - \frac{y^2}{b'^2} = 0.$$

В сечениях плоскостями y = h получаем для обеих поверхностей параболы

$$x^2 = 2a^2(z - \frac{h^2}{2b^2}).$$
 $x^2 = 2a^2(z + \frac{h^2}{2b^2}).$

Аналогично, в сечениях параболоидов плоскостями x = h получаем параболы.

Прочие геометрические свойства гиперболоидов.

- **а).** Из уравнения (5) получаем, что $z \ge 0$, т.е. Φ_3 целиком находится в полупространстве, которое определяется этим неравенством.
- **б).** Координатные оси пересекают оба параболоида только в точке O(0, 0, 0), которая называется вершиной.
- **в).** Ось Oz является осью симметрии параболоидов, а координатные плоскости Oxz и Oyz плоскостями симметрии. Других симметрий у параболоидов нет.

Теорема. Через каждую точку гиперболического параболоида проходит ровно 2 прямые, целиком лежащие на параболоиде. **Доказательство.**

Цилиндрические поверхности.

Определение. Назовём *цилиндрической* поверхность, через каждую точку которой проходит прямая, лежащая на поверхности, пересекающая некоторую пространственную кривую (*направляющую*)и параллельная некоторой фиксированной прямой на поверхности(образующей).

Если выбрать декартову систему координат так, чтобы ось Oz была параллельна образующим поверхности Φ , а направляющую γ' спроецировать в плоскость Oxy, то получим некоторую кривую γ . Если теперь мы возьмем γ в качестве направляющей, то получим ту же поверхность Φ . Поэтому будем с самого начала считать, что направляющей служит кривая γ , лежащая в плоскости Oxy. Пусть

$$\varphi(x,y) = 0 \qquad (1)$$

ее уравнение в плоскости Oxy (в пространстве она задается системой из двух уравнений: $\varphi(x, y) = 0$ и z = 0). Пусть M(x, y, z) — произвольная точка поверхности Φ . Тогда ее проекция на плоскость Oxy будет точка $M_0(x, y, 0)$; и эта точка должна принадлежать кривой γ . Поэтому ее координаты

удовлетворяют (1). Но тогда этому уравнению будут удовлетворять и координаты точки M_0 : ведь координаты x и y у этих точек одинаковы, а z в уравнение не входит.

Обратно, пусть координаты точки M(x, y, z) удовлетворяют (1). Тогда этому же уравнению удовлетворяют и координаты точки $M_o(x, y, 0)$, а т.к. $M_o \in Oxy$, то $M_o \in \gamma$. При этом, M и M_o лежат на одной прямой, параллельной оси $Oz \implies M \in \Phi$.

Итак, мы установили, что (1) и есть уравнение поверхности Φ , т.е. уравнение цилиндрической поверхности совпадает с уравнением ее направляющей кривой γ в плоскости Oxy, если образующие параллельны оси Oz.

Примеры

Теорема. Если поверхность второго порядка цилиндрическая, то она имеет тип одной из поверхностей следующей таблицы:

1. Эллиптический цилиндр	$\frac{x^2}{a^2} + \frac{y^2}{b^2} = 1$
2. Мнимый эллиптический цилиндр (Ø)	$\frac{x^2}{a^2} + \frac{y^2}{b^2} = -1$
3. Гиперболический цилиндр	$\frac{x^2}{a^2} - \frac{y^2}{b^2} = 1$
4. Параболический цилиндр	$y^2 = 2px$
5. Пара пересекающихся плоскостей	$a^2x^2 - b^2y^2 = 0$
6. Пара мнимых плоскостей, которые пересекаются по действительной прямой	$a^2x^2 + b^2y^2 = 0$
7. Пара параллельных плоскостей	$x^2 = a^2$
8. Пара совпадающих плоскостей	$x^2 = 0$
9. Пара мнимых параллельных плоскостей (Ø)	$x^2 = -a^2$

Конические поверхности.

Определение. Конической называется поверхность, составленная из множества всех прямых (образующих), проходящих через каждую точку некоторой кривой (направляющей), и через некоторую точку О (вершину).

Теорема. Направляющая конической поверхности Ф второго порядка имеет вид

$$\begin{cases} \varphi(x,y) = 0, \\ z = c, c \in \mathbf{R} \end{cases}$$

Где $\varphi(x, y)$ – многочлен 2 степени.

Теорема.

Существуют 4 типа конических поверхностей:
1. Конус
$$\frac{x^2}{a^2} + \frac{y^2}{b^2} - \frac{z^2}{c^2} = 0.$$

- **2.** Пара пересекающихся плоскостей $a^2x^2 b^2y^2 = 0$.
- **3.** Пара мнимых пересекающихся плоскостей $a^2x^2 + b^2y^2 = 0$.
- **4.** Пара совпадающих плоскостей $x^2=0$.

Доказательство.

Примеры.