Chapitre 0 – Analyse dimensionnelle

Plan du cours

- I Dimensions et unités
 - I.1 Définitions
 - I.2 Déterminer la dimension d'une grandeur
- II Utiliser l'analyse dimensionnelle
 - II.1 Vérifier une équation
 - II.2 Un moyen mnémotechnique
 - II.3 Estimer un résultat

Ce qu'il faut savoir et savoir faire

- → Contrôler l'homogénéité d'une expression, notamment par référence à des expressions connues.
- \to Déterminer les exposants d'une expression de type monôme $E=A^{\alpha}B^{\beta}C^{\gamma}$ par analyse dimensionnelle.

Questions de cours

- \rightarrow Indiquer les sept unités du Système international (dimension, nom et symbole).
- \rightarrow Déterminer la dimension et l'unité d'une grandeur à partir d'une expression simple.

Documents

Document 1 – Le Système international

Dimension		Unité S.I.		Constante associée
Temps	Τ	seconde	S	$\Delta \nu_{\rm Cs} = 9192631770{\rm Hz}$: fréquence de la
				transition hyperfine du césium 133.
Longueur	\mathbf{L}	mètre	m	$c = 299792458\mathrm{m\cdot s^{-1}}$: vitesse de la lumière
				dans le vide, seconde.
Masse	Μ	kilogramme	kg	$h = 6,62607015 \times 10^{-34}\mathrm{J\cdot s}$: constante de
				Planck, mètre, seconde.
Intensité électrique	Ι	ampère	A	$e = 1,602176634 \times 10^{-19} \mathrm{C}$: charge élémen-
				taire, seconde.
Température	Θ	kelvin	K	$k = 1,380649 \times 10^{-23} \mathrm{J\cdot K^{-1}}$: constante de
				Boltzmann, kilogramme, mètre, seconde.
Quantité de matière	N	mole	mol	$N_{\rm A} = 6,02214076 \times 10^{23}{\rm mol}^{-1}$: nombre
				d'Avogadro.
Intensité lumineuse	J	candela	cd	$K_{\rm cd} = 683{\rm lm}\cdot{\rm W}^{-1}$: efficacité lumineuse d'un
				rayonnement monochromatique de fréquence
				$540 \times 10^{12} \mathrm{Hz}$, kilogramme, mètre, seconde.

Table 1 – Les dimensions et unités des sept grandeurs de base du Système international.

La neuvième édition de la brochure sur le SI (https://www.bipm.org/fr/publications/si-brochure/) précise les modifications adoptées lors de la redéfinition du Système international d'unité, votée en 2018 lors de la 26ème Conférence générale des poids et mesures.

Document 2 - Nécessité de la redéfinition des unités

FIGURE 1 – À gauche : l'un des étalons en platine iridié, protégé sous ses deux cloches en verre, qui servait jusqu'en 2018 à la définition du kilogramme. À droite : évolutions de l'écart de masse des six témoins officiels à la masse du prototype international du kilogramme (Thomas M. et al.). La droite rouge, régression linéaire des données, présente une pente de l'ordre de 0,25 µg par an.

Document 3 – Préfixes

10^{n}	10^{12}	10^{9}	10^{6}	10^{3}	10^{0}	10^{-3}	10^{-6}	10^{-9}	10^{-12}	10^{-15}
Préfixe	téra	giga	méga	kilo	unité	milli	micro	nano	pico	femto
Symbole	Τ	G	${ m M}$	k		m	μ	n	р	f

Document 4 – Dimensions de quelques grandeurs courantes

Dimension	l	Unité		S.I.	Formule utilisée
Charge	$T \cdot I$	coulomb	С	$s \cdot A$	$i = \frac{\mathrm{d}q}{\mathrm{d}t}$
Capacité	$\mathrm{M}^{-1}\cdot\mathrm{L}^{-2}\cdot\mathrm{T}^4\cdot\mathrm{I}^2$	farad	F	$\mathrm{kg}^{-1}\cdot\mathrm{m}^{-2}\cdot\mathrm{s}^{4}\cdot\mathrm{A}^{2}$	$E = \frac{1}{2}Cu^2$
Inductance	$M \cdot L^2 \cdot T^{-2} \cdot I^{-2}$	henry	Η	$kg \cdot m^2 \cdot s^{-2} \cdot A^{-2}$	$E = \frac{1}{2}Li^2$
Fréquence	T^{-1}	hertz	Hz	s^{-1}	$f = \frac{1}{T}$
Énergie	$M \cdot L^2 \cdot T^{-2}$	joule	J	$\mathrm{kg}\cdot\mathrm{m}^2\cdot\mathrm{s}^{-2}$	$E = \frac{1}{2}mv^2$
Force	$M \cdot L \cdot T^{-2}$	newton	N	$\mathrm{kg}\cdot\mathrm{m}\cdot\mathrm{s}^{-2}$	$m\vec{a} = \vec{F}$
Résistance	$\mathrm{M}\cdot\mathrm{L}^2\cdot\mathrm{T}^{-3}\cdot\mathrm{I}^{-2}$	ohm	Ω	$\mathrm{kg}\cdot\mathrm{m}^2\cdot\mathrm{s}^{-3}\cdot\mathrm{A}^{-2}$	$P = Ri^2$
Pression	$M \cdot L^{-1} \cdot T^{-2}$	pascal	Pa	$\mathrm{kg}\cdot\mathrm{m}^{-1}\cdot\mathrm{s}^{-2}$	$p = \frac{F}{s}$
Tension	$M \cdot L^2 \cdot T^{-3} \cdot I^{-1}$	volt	V	$\mathrm{kg}\cdot\mathrm{m}^2\cdot\mathrm{s}^{-3}\cdot\mathrm{A}^{-1}$	P = ui
Puissance	$M \cdot L^2 \cdot T^{-3}$	watt	W	$\mathrm{kg}\cdot\mathrm{m}^2\cdot\mathrm{s}^{-3}$	$P = \frac{\mathrm{d}E}{\mathrm{d}t}$ ou $\vec{F} \cdot \vec{v}$

Table 2 – Expressions des unités S.I. de quelques grandeurs couramment utilisées. La dernière colonne propose quelques exemples de formules permettant de les retrouver rapidement.

Applications

Application 1 – Le pendule simple

Établir la liste de toutes les grandeurs physiques permettant de décrire le pendule simple représenté ci-contre.

Application 2 - Le joule

- 1. Déterminer la dimension de l'énergie cinétique $E = \frac{1}{2}mv^2$.
- 2. Exprimer le joule (J) à l'aide des unités de bases.
- 3. Montrer que le produit mgh est homogène à une énergie, où m est une masse, g l'accélération de pesanteur et h une hauteur.
- 4. Retrouver l'expression des autres dimensions du tableau 2 en fonction des dimensions de base.

Application 3 - Période du pendule simple

On note g l'accélération de pesanteur et l la longueur du pendule. Parmi les formules cidessous, identifier celle qui donne la période T du pendule simple. Justifier.

•
$$T = 2\pi\sqrt{lg}$$

•
$$T=2\pi\sqrt{lg}$$
 • $T=2\pi\sqrt{\frac{l}{lg}}$ • $T=2\pi\sqrt{\frac{l}{g}}$

•
$$T = 2\pi\sqrt{\frac{l}{g}}$$

•
$$T = 2\pi\sqrt{\frac{g}{l}}$$

Application 4 – Vitesse, longueur d'onde et fréquence

Retrouver, par analyse dimensionnelle, la relation simple entre la vitesse de propagation vd'une onde, sa longueur d'onde λ et sa fréquence ν .