2024 JC1 Promotional Exam

1. Sub
$$(7,10) \Rightarrow 25a - 121b - c = 0$$

Line y = x - 1 cuts the graph at x = 1

Sub x=1 and y=0 into equation of hyperbola $\Rightarrow a-b-c=0$

Using GC:

$$a = \frac{5}{4}c$$
, $b = \frac{1}{4}c$

Sub into equation of hyperbola

$$\frac{5}{4}c(x-2)^2 - \frac{1}{4}c(y+1)^2 = c$$

Since a,b,c are positive integers

$$5(x-2)^2 - 1(y+1)^2 = 4$$
 is a possible equation of the hyperbola

Where a = 5, b = 1, c = 4

$$2(a)$$

$$\frac{dy}{dx} = 3\sec^2 3x$$

$$= 3(1 + \tan^2 3x)$$

$$= 3(1 + y^2)$$

$$\frac{d^2y}{dx^2} = 0 + 6y\frac{dy}{dx}$$

$$= 6y\frac{dy}{dx}, \text{ where } A = 6$$

1st Alternative Method

2nd Alternative Method

1 7 Hternative Wethou	2 THICHIUHVE MEHIOD
$\frac{\mathrm{d}y}{\mathrm{d}x} = 3\sec^2 3x$	$\tan^{-1} y = 3x$
dx	$\frac{1}{1+y^2}\frac{\mathrm{d}y}{\mathrm{d}x} = 3$
d^2y	$1+y^2 dx$
$\frac{\mathrm{d}^2 y}{\mathrm{d}x^2} = 6\sec 3x \cdot 3\sec 3x \cdot \tan 3x$	$\frac{\mathrm{d}y}{\mathrm{d}x} = 3 + 3y^2$
$= 6(3\sec^2 3x)\tan 3x$	$\frac{d^2y}{dx^2} = 6y\frac{dy}{dx}$, where $A = 6$
dy .	dx^2 dx , where $x = 0$
$= 6y \frac{dy}{dx}, \text{ where } A = 6$	

(b)
$$\frac{d^{3}y}{dx^{3}} = 6\frac{dy}{dx} \cdot \frac{dy}{dx} + 6y \cdot \frac{d^{2}y}{dx^{2}}$$

$$= 6\left(\frac{dy}{dx}\right)^{2} + 6y\left(\frac{d^{2}y}{dx^{2}}\right)$$

$$\frac{d^{4}y}{dx^{4}} = 6\left(2\frac{dy}{dx}\right) \cdot \frac{d^{2}y}{dx^{2}} + 6 \cdot \frac{dy}{dx} \cdot \frac{d^{2}y}{dx^{2}} + 6y\frac{d^{3}y}{dx^{3}}$$

$$= 18 \cdot \frac{dy}{dx} \cdot \frac{d^{2}y}{dx^{2}} + 6y\frac{d^{3}y}{dx^{3}}, \text{ where } B = 18 \text{ and } C = 6$$

Area =
$$\int_0^1 x^2 dx - \frac{1}{2} \left(\frac{1}{2} \right) (1)$$
 \underline{OR} = $\int_0^1 x^2 dx - \int_{\frac{1}{2}}^1 2x - 1 dx$
= $\left[\frac{x^3}{3} \right]_0^1 - \frac{1}{4}$
= $\frac{1}{3} - \frac{1}{4}$
= $\frac{1}{12}$ units²

Alternative method

Area =
$$\int_0^1 \frac{1}{2} (y+1) - \sqrt{y} \, dy$$

= $\left[\frac{1}{4} y^2 + \frac{1}{2} y - \frac{2}{3} y^{\frac{3}{2}} \right]_0^1$
= $\frac{1}{4} + \frac{1}{2} - \frac{2}{3}$
= $\frac{1}{12} \text{ units}^2$

(b)

Volume
$$= \pi \int_0^1 (x^2)^2 dx - \frac{1}{3}\pi (1)^2 (\frac{1}{2})$$
 OR $= \pi \int_0^1 (x^2)^2 dx - \pi \int_{\frac{1}{2}}^1 (2x-1)^2 dx$
 $= \pi \left[\frac{x^5}{5} \right]_0^1 - \frac{1}{6}\pi$
 $= \frac{\pi}{5} - \frac{\pi}{6}$
 $= \frac{\pi}{30} \text{ units}^3$

4(a)
$$y = \frac{4-x}{2+3x-2x^2} = \frac{4-x}{-(2-x)(1+2x)} \Rightarrow \text{Asymptotes are } y = 0, x = 2, x = -\frac{1}{2}$$

(b) From the graph, -0.5 < x < 2 or x > 4

OR:
$$\frac{4-x}{2+3x-2x^2} > 0 \Rightarrow -(4-x)(x-2)(2x+1) > 0$$

 $\Rightarrow -0.5 < x < 2 \text{ or } x > 4$

© ASRJC 2024 [Turn over

(c) Replace x with |x|,

$$-0.5 < |x| < 2$$
 or $|x| > 4$

Since $|x| \ge 0 > -0.5$ for all real values of x,

$$|x| < 2$$
 or $|x| > 4$

$$-2 < x < 2$$
 or $x < -4$ or $x > 4$

5(a) $|\mathbf{c} \times \hat{\mathbf{a}}|$ represents the perpendicular distance from the point R to the line PQ.

Area of
$$\triangle PQR = \frac{1}{2} \times \text{base} \times \text{height}$$

$$= \frac{1}{2} \times |\mathbf{a}| \times |\mathbf{c} \times \hat{\mathbf{a}}|$$

$$= \frac{1}{2} \times |\mathbf{a}| \times |\mathbf{c} \times \frac{\mathbf{a}}{|\mathbf{a}|}$$

$$= \frac{1}{2} |\mathbf{c} \times \mathbf{a}| \text{ units}^2 \qquad \text{(Shown)}$$

(b) By replacing **a** with $-\mathbf{a}$ and **c** with **b** in part (a), area of $\Delta PQR = \frac{1}{2} |\mathbf{b} \times (-\mathbf{a})| = \frac{1}{2} |\mathbf{b} \times \mathbf{a}|$

$$\Rightarrow \frac{1}{2} |\mathbf{c} \times \mathbf{a}| = \frac{1}{2} |\mathbf{b} \times \mathbf{a}|$$

$$\Rightarrow |\mathbf{c} \times \mathbf{a}| = |\mathbf{b} \times \mathbf{a}| \qquad \text{(Shown)}$$

OR: From the diagram, $\mathbf{c} = \mathbf{a} + \mathbf{b}$ so $|\mathbf{c} \times \mathbf{a}| = |(\mathbf{a} + \mathbf{b}) \times \mathbf{a}|$

$$= |\mathbf{a} \times \mathbf{a} + \mathbf{b} \times \mathbf{a}|$$

=
$$|\mathbf{b} \times \mathbf{a}|$$
 since $\mathbf{a} \times \mathbf{a} = \mathbf{0}$ (Shown)

$$|\mathbf{c} \times \mathbf{a}| = |\mathbf{b} \times \mathbf{a}| \implies |\mathbf{c}||\mathbf{a}|\sin \angle QPR = |\mathbf{b}||\mathbf{a}|\sin \angle PQR$$

$$\implies \frac{|\mathbf{c}|}{\sin \angle PQR} = \frac{|\mathbf{b}|}{\sin \angle OPR} \quad \text{(Shown)}$$

6(a)

(b) 1. Translation of 4 units in the positive *x*-direction:

$$y^2 - x^2 = 1$$
 replace x by $x - 4$ $y^2 - (x - 4)^2 = 1$

2. Scale by scale factor k parallel to the y-axis:

$$y^{2} - (x-4)^{2} = 1$$
 replace y by $\frac{y}{k} = \frac{y^{2}}{k^{2}} - (x-4)^{2} = 1$

3. Translation of 1 unit in the negative *y*-direction:

$$\frac{y^2}{k^2} - (x-4)^2 = 1$$
 replace y by $y+1$ $\frac{(y+1)^2}{k^2} - (x-4)^2 = 1$

Alternative (manipulate y first then x)

- 1. Scale by scale factor k parallel to the y-axis
- 2. Translation of 1 unit in the negative y-direction
- 3. Translation of 4 units in the positive x-direction

Alternative (translation before scaling)

- 1. Translation of 4 units in the positive *x*-direction
- 2. Translation of $\frac{1}{k}$ unit in the negative y-direction

$$y^{2} - (x-4)^{2} = 1$$
 replace y by $y + \frac{1}{k} \left(y + \frac{1}{k}\right)^{2} - (x-4)^{2} = 1$

3. Scale by scale factor k parallel to the y-axis

$$\left(y + \frac{1}{k}\right)^{2} - (x - 4)^{2} = 1 \quad \text{replace } y \text{ by } \frac{y}{k} \quad \left(\frac{y}{k} + \frac{1}{k}\right)^{2} - (x - 4)^{2} = 1$$
$$\frac{(y + 1)^{2}}{k^{2}} - (x - 4)^{2} = 1$$

(c) C_1 has asymptotes $y = -\frac{x}{2} + 1$ and x = 4, which intersects at (4,-1)

 C_2 is a hyperbola center at (4,-1) and has oblique asymptote $y = -1 \pm k(x-4)$,

For C_1 and C_2 to cut exactly 2 times, the gradient of oblique asymptote $y = -1 \pm k(x-4)$ must be greater or equals to than that of C_1 .

$$\therefore k \ge \frac{1}{2}$$

© ASRJC 2024

7(a)
$$f^{2}(a) = 5$$

 $f(\sqrt{5+2a}) = 5$
 $\sqrt{5+2\sqrt{5+2a}} = 5$
 $\sqrt{5+2a} = \frac{25-5}{2}$
 $a = 47.5$

- (b) largest k=0
- (c)

Let
$$y = \left| \frac{x}{1 - 2x} \right|$$

 $y = -\frac{x}{1 - 2x}$ $\therefore x \le 0$
 $y - 2xy = -x$
 $x = \frac{y}{2y - 1}$
 $g^{-1}(x) = \frac{x}{2x - 1}$
Domain of $g^{-1} = \left[\frac{1}{3}, \frac{1}{2} \right]$

(d)
$$R_g = \left[\frac{1}{3}, \frac{1}{2}\right]$$

$$D_f = \left(-\frac{5}{2}, \infty\right)$$

Since $R_g \subseteq D_f$, so gf exists.

$$(-\infty, -1] \xrightarrow{g} \left[\frac{1}{3}, \frac{1}{2}\right) \xrightarrow{f} \left[\sqrt{\frac{17}{3}}, \sqrt{6}\right]$$
So $R_{fg} = \left[\sqrt{\frac{17}{3}}, \sqrt{6}\right]$

8(a) When
$$x=0$$

$$0 = 1 - 2\cos 2\theta \Rightarrow 2\theta = \cos^{-1}\left(\frac{1}{2}\right) = \frac{\pi}{3} \Rightarrow \theta = \frac{\pi}{6}$$

$$y = \sin\left(\frac{\pi}{3}\right) - 1 = \frac{\sqrt{3}}{2} - 1$$

The coordinate of the point where C cuts the y-axis is $\left(0, \frac{\sqrt{3}}{2} - 1\right)$.

(b)
$$\frac{dx}{d\theta} = 4\sin 2\theta; \frac{dy}{d\theta} = 2\cos 2\theta$$
$$\frac{dy}{dx} = \frac{\frac{dy}{d\theta}}{\frac{dx}{d\theta}} = \frac{2\cos 2\theta}{4\sin 2\theta} = \frac{1}{2}\cot 2\theta$$

When
$$\theta = \frac{\pi}{4}$$
, $x = 1$ and $y = 0$.

(1,0)

When
$$\theta = \frac{\pi}{4}$$
, $\frac{dy}{dx} = 0$

When $\theta \rightarrow 0$, the gradient will tend towards $+\infty$

The tangent of C as $\theta \rightarrow 0$ will get steeper and steeper until it tends towards a vertical line.

(c) When
$$\theta = 0$$
, $x = -1$ and $y = -1$. $\therefore (-1, -1)$

When
$$\theta = \frac{3\pi}{8}$$
, $x = 1 - 2\cos\left(\frac{3\pi}{4}\right) = 1 + \sqrt{2}$ $y = \sin\left(\frac{3\pi}{4}\right) - 1 = \frac{\sqrt{2}}{2} - 1$

(d)
$$x=1-2\cos 2\theta$$
 and $y=\sin 2\theta-1$

$$\cos 2\theta = \frac{1-x}{2}$$
 and $\sin 2\theta = y+1$

Since
$$\sin^2 A + \cos^2 A = 1$$

Then
$$\left(\frac{1-x}{2}\right)^2 + (y+1)^2 = 1$$

© ASRJC 2024 [Turn over

$$\int \frac{x+2}{x^2+2x-3} dx = \int \frac{1}{2} \left(\frac{2x+2}{x^2+2x-3} \right) + \frac{1}{(x+1)^2 - (2)^2} dx
= \frac{1}{2} \ln \left| x^2 + 2x - 3 \right| + \frac{1}{2(2)} \ln \left| \frac{(x+1)-2}{(x+1)+2} \right| + C
= \frac{1}{2} \ln \left| x^2 + 2x - 3 \right| + \frac{1}{4} \ln \left| \frac{x-1}{x+3} \right| + C$$

Alternative Method

$$\int \frac{x+2}{x^2+2x-3} dx = \frac{1}{4} \int \frac{3}{x-1} + \frac{1}{x+3} dx$$
$$= \frac{3}{4} \ln|x-1| + \frac{1}{4} \ln|x+3| + C$$

(b)

$$\int 2x \sin x \, dx = 2x(-\cos x) - \int 2(-\cos x) \, dx$$

$$= -2x \cos x + \int 2\cos x \, dx$$

$$= -2x \cos x + 2\sin x + C$$

(c)

For
$$x = 3\sin\theta$$

$$\frac{dx}{d\theta} = 3\cos\theta$$

$$\int_0^{\frac{3}{2}} \sqrt{9 - x^2} \, dx = \int_0^{\frac{\pi}{6}} \sqrt{9 - (3\sin\theta)^2} \left(\frac{dx}{d\theta}\right) d\theta$$

$$= \int_0^{\frac{\pi}{6}} 3\sqrt{1 - \sin^2\theta} \left(3\cos\theta\right) d\theta$$

$$= \int_0^{\frac{\pi}{6}} 9\cos^2\theta \, d\theta$$

$$= 9 \int_0^{\frac{\pi}{6}} \frac{\cos 2\theta + 1}{2} d\theta$$

$$= \frac{9}{2} \left[\frac{\sin 2\theta}{2} + \theta\right]_0^{\frac{\pi}{6}}$$

$$= \frac{9}{4}\sin\frac{\pi}{3} + \frac{9}{2}\left(\frac{\pi}{6}\right) - 0 - 0$$

$$= \frac{9}{4}\left(\frac{\sqrt{3}}{2}\right) + \frac{3}{4}\pi$$

$$= \frac{9}{8}\sqrt{3} + \frac{3}{4}\pi$$

10(i) The lines are coplanar \Rightarrow The lines are intersecting lines since they are not parallel.

Let
$$\begin{pmatrix} 1-\lambda \\ 2 \\ 5+3\lambda \end{pmatrix} = \begin{pmatrix} a+\mu \\ 9+7\mu \\ 9+b\mu \end{pmatrix}$$

By comparing rows,
$$2 = 9 + 7\mu$$
 $\Rightarrow \mu = -1$
 $1 - \lambda = a + \mu$ $\Rightarrow \lambda = 2 - a$...Eq(1)
 $5 + 3\lambda = 9 + b\mu$ $\Rightarrow \lambda = \frac{4 - b}{3}$...Eq(2)

$$5 + 3\lambda = 9 + b\mu$$
 \Rightarrow $\lambda = \frac{4 - b}{3}$... Eq(2)

Eq(1) = Eq(2):
$$2-a = \frac{4-b}{3}$$

$$\Rightarrow 6-3a = 4-b$$

$$\Rightarrow 3a = b+2 \quad \text{(Shown)}$$

Angle between the two lines is $\cos^{-1} \frac{11}{\sqrt{660}}$ (ii)

$$\Rightarrow \theta = \cos^{-1} \left| \frac{\underline{a} \underline{b}}{|\underline{a}| |\underline{b}|} \right|$$

$$\Rightarrow \cos^{-1} \frac{11}{\sqrt{660}} = \cos^{-1} \frac{\begin{pmatrix} -1\\0\\3 \end{pmatrix} \cdot \begin{pmatrix} 1\\7\\b \end{pmatrix}}{\begin{pmatrix} 1\\0\\-3 \end{pmatrix} \begin{pmatrix} 1\\7\\b \end{pmatrix}}$$

$$\therefore \frac{11}{\sqrt{660}} = \frac{|3b-1|}{\sqrt{1+9}\sqrt{1+49+b^2}}$$

$$\frac{11}{6} = \frac{1 - 6b + 9b^2}{50 + b^2}$$

$$43b^2 - 36b - 544 = 0$$

$$b = \frac{36 \pm \sqrt{1296 + 93568}}{86} = 4$$
 (reject negative value of b)

[Turn over © ASRJC 2024

(iii) A normal for
$$\Pi_2$$
 is $\begin{pmatrix} 1\\0\\-3 \end{pmatrix} \times \begin{bmatrix} 2\\1\\3 \end{pmatrix} - \begin{bmatrix} 1\\2\\5 \end{bmatrix} \end{bmatrix}$

$$= \begin{pmatrix} 1\\0\\-3 \end{pmatrix} \times \begin{pmatrix} 1\\-1\\-2 \end{pmatrix}$$

$$= \begin{pmatrix} -3\\-1\\-1 \end{pmatrix} = -\begin{pmatrix} 3\\1\\1 \end{pmatrix}$$

$$\mathbf{r} \cdot \begin{pmatrix} 3 \\ 1 \\ 1 \end{pmatrix} = \begin{pmatrix} 1 \\ 2 \\ 5 \end{pmatrix} \cdot \begin{pmatrix} 3 \\ 1 \\ 1 \end{pmatrix} = 3 + 2 + 5 = 10$$

$$\therefore \Pi_2 \colon \mathbf{r} \cdot \begin{pmatrix} 3 \\ 1 \\ 1 \end{pmatrix} = 10$$

(iv) Angle required =
$$\cos^{-1} \begin{vmatrix} 3 \\ -1 \\ 1 \end{vmatrix} \frac{3}{1} \frac{3}{1}$$

=
$$\cos^{-1} \left| \frac{9}{11} \right| = 0.613 \text{ rad } (3 \text{ sf}) \text{ or } 35.1^{\circ} \text{ (nearest } 0.1^{\circ})$$

(v)
$$\Pi_1: \mathbf{r} \cdot \frac{\begin{pmatrix} 3 \\ -1 \\ 1 \end{pmatrix}}{\sqrt{11}} = \frac{6}{\sqrt{11}} < \frac{7}{\sqrt{11}}$$

 $\begin{array}{c|c}
 & 7 \\
\hline
\Pi_1 & 7 \\
\hline
\frac{6}{\sqrt{11}} & 7 \\
\hline
\frac{7}{\sqrt{11}}
\end{array}$

 Π_3

Since Π_1 and Π_3 are parallel, then

 Π_3 : $\mathbf{r} \cdot \frac{\begin{pmatrix} 3 \\ -1 \\ 1 \end{pmatrix}}{\sqrt{11}} = k$ where k is a real constant.

Since Π_3 is closer to the origin to Π_1 , then $k = -\left(\frac{7}{\sqrt{11}} - \frac{6}{\sqrt{11}}\right) = \frac{-1}{\sqrt{11}}$

$$\Rightarrow \Pi_3 \colon \mathbf{r} \cdot \begin{pmatrix} 3 \\ -1 \\ 1 \end{pmatrix} = \frac{-1}{\sqrt{11}}$$

Hence the cartesian equation for Π_3 is 3x - y + z = -1

11(a) (i)
$$V = \frac{4}{3}\pi r^{3} \Rightarrow \frac{dV}{dr} = 4\pi r^{2}$$

$$S = 4\pi r^{2} \Rightarrow \frac{dS}{dr} = 8\pi r$$

$$\frac{dV}{dS} = \frac{dV}{dr} \div \frac{dS}{dr} = \frac{4\pi r^{2}}{8\pi r} = \frac{r}{2}$$

(ii)
$$\frac{dV}{dt} = \frac{dV}{dS} = \frac{dS}{dt} = \frac{r}{2} (3) = \frac{3r}{2}$$
When $\frac{dV}{dt} = 9$,
$$9 = \frac{3r}{2} \Rightarrow r = 6$$

Method 1

Method 2

(b) (i) Time taken on straight road =
$$\frac{250 - x}{130}$$

Distance from straight road to Town C, d

(Method 1): =
$$\sqrt{x^2 + 80^2 - 2x(80)\cos\frac{2\pi}{3}}$$
 (cosine rule)

(Method 2): =
$$\sqrt{(x+40)^2 + (40\sqrt{3})^2}$$
 (Pythagoras' Thm)

Distance from straight road to Town C = $\sqrt{x^2 + 80x + 6400}$

[Turn over © ASRJC 2024

Time taken on desert =
$$\frac{\sqrt{x^2 + 80x + 6400}}{110}$$

Total time taken by competitor P,
$$T = \frac{250 - x}{130} + \frac{\sqrt{x^2 + 80x + 6400}}{110}$$

$$T = 11 \left(\frac{250 - x}{1430} \right) + 13 \left(\frac{\sqrt{x^2 + 80x + 6400}}{1430} \right)$$

$$T = \frac{1}{1430} \left(2750 - 11x + 13\sqrt{x^2 + 80x + 6400} \right) \text{ (shown)}$$

(ii)
$$\frac{dT}{dx} = \frac{1}{1430} \left(-11 + 13 \left(\frac{1}{2} \right) \left(x^2 + 80x + 6400 \right)^{-\frac{1}{2}} \left(2x + 80 \right) \right)$$

$$\frac{dT}{dx} = \frac{1}{1430} \left(-11 + 13(x + 40)(x^2 + 80x + 6400)^{-\frac{1}{2}} \right)$$

To find minimum time, $\frac{dT}{dx} = 0$

$$\frac{1}{1430} \left(-11 + 13(x + 40)(x^2 + 80x + 6400)^{-\frac{1}{2}} \right) = 0$$

$$\frac{13(x+40)}{\sqrt{x^2+80x+6400}} = 11$$

Method 1: Using GC

$$x = 70$$

or

Method 2: Algebra

$$\overline{13(x+40)} = 11\sqrt{x^2+80x+6400}$$

$$169(x+40)^2 = 121(x^2 + 80x + 6400)$$

$$169(x^2 + 80x + 1600) - 121(x^2 + 80x + 6400) = 0$$

$$169x^2 + 13520x + 270400 - 121x^2 - 9680x - 774400 = 0$$

$$48x^2 + 3840x - 504000 = 0$$

$$x = 70$$
 or $x = -150$ (rej as $x \ge 0$)

Sub x = 70 into T

$$T = \frac{1}{1430} \left(2750 - 11(70) + 13\sqrt{(70)^2 + 80(70) + 6400} \right)$$
$$= \frac{3670}{1430}$$
$$= 2.566 \text{ hr}$$

= 154 min or 2 hr 34 min (nearest minute)

(iii) Time taken by Competitor
$$Q = \frac{\sqrt{250^2 + 80^2 - 2(250)(80)\cos\frac{2\pi}{3}}}{M} = \frac{\sqrt{88900}}{M}$$

Time taken by Competitor
$$P = \frac{250}{130} + \frac{80}{M}$$

Since Competitor P is faster than Competitor Q

$$\frac{\sqrt{88900}}{M} > \frac{250}{130} + \frac{80}{M}$$

$$\frac{\sqrt{88900} - 80}{M} > \frac{25}{13}$$

Also,
$$M > 0$$

Hence *M* lies between 0 and 113.

$$12(a) \ 10000(1.009)^2 + 810 \ (1.009) = \$10998.10$$

(b)

Month	Start of month	End of month
1	10000	10000(1.009)
2	10000(1.009) + 810	$10000(1.009)^2 + 810 (1.009)$
3	$10000(1.009)^2 + 810(1.009) + 810$	$10000(1.009)^3 + 810(1.009)^2 + 810(1.009)$
		••
n		$10000(1.009)^{n} + 810(1.009)^{n-1} + + 810(1.009)$

At the end of *n*th month,

$$S_n = 10000(1.009)^n + 810(1.009)^{n-1} + \dots + 810(1.009)$$

$$= $10000(1.009)^n + $810 \left(\frac{(1.009)[(1.009)^{n-1} - 1]}{(1.009) - 1} \right)$$

$$= $10000(1.009)^n + $90810[(1.009)^{n-1} - 1]$$

$$= $10000(1.009)(1.009)^{n-1} + $90810(1.009)^{n-1} - $90810$$

$$= $100900(1.009)^{n-1} - $90810 \quad \text{(Shown)}$$

(c)
$$100900(1.009)^{n-1} - 90810 > 30000$$
$$100900(1.009)^{n-1} > 90810 + 30000$$
$$n - 1 > \frac{\lg 1.197324}{\lg 1.009}$$
$$n > 21.0998$$

OR using GC

	Amt at the end of the month	
n	$100900(1.009)^{n-1} - 90810$	
21	29892.01	
22	30978.32	
23	32074.42	

When n = 21, at the end of the 21^{st} month, amount in account = \$29892.01

At the start of the 22^{nd} month, amount in account = \$29892.01 + \$810 = \$30702.01

... on 1 Oct 2025, the account will first exceed \$30000.

(d) Amount Mr. P will have at the end of N months

$$= 30000 + \left[100 + 110 + \dots + \left(100 + 10(N - 1)\right)\right]$$
$$= 30000 + \frac{N}{2} \left[2(100) + (N - 1)(10)\right]$$
$$= 30000 + 95N + 5N^{2}$$

(e)
$$30000 + 95N + 5N^2 > 30000 \times 1.009^N$$

From	GC.	$49 \le N \le 344$

	$30000 + 95N + 5N^2$	30000×1.009 ^N
:	:	:
48	46080	46120.84
49	46660	46535.93
50	47250	46954.75
:	•	•
343	650830	648322.77
344	654360	654157.67
345	657900	660045.09

© ASRJC 2024 [Turn over