CyberSecurity Data Sources

Classification of Cybersecurity Data Sources

Data Type	Description	Examples	Advantages	Limitations
Static (Offline) Data	Pre-collected and labeled datasets stored in files. Used for training ML models.	KDD Cup 1999, NSL- KDD, CICIDS2017, UNSW-NB15	Easy to access, standardized, labeled	May not represent the latest attack patterns
Dynamic (Live) Data	Real-time data captured from active networks or simulated environments.	Captured via Wireshark, Zeek, or network sensors	Reflects real- world, current threats	Hard to label, privacy risks, high setup cost

Overview of Commonly Used Datasets

Dataset	Year	Source	Key Features	Suitable For
KDD Cup 1999	1999	DARPA Intrusion Detection Evaluation	41 features, labeled attacks	Basic intrusion detection research
NSL-KDD	2009	University of New Brunswick	Improved KDD dataset with reduced redundancy	Educational use, ML benchmarks
UNSW-NB15	2015	Australian Centre for	49 features, modern attacks	Deep learning- based IDS

Cyber Security

CICIDS2017 2017 Canadian 80+ features, Realistic Institute for realistic enterprise-level Cybersecurity network traffic intrusion detection TON IoT 2020 **UNSW** IoT device IoT security AI Canberra traffic, models telemetry & attacks

Static vs Live Data: In-depth Comparison

Criteria Static Dataset Live Data Capture

Data Collection Already available Requires sensors, packet

capture tools

Cost Free / Open source Expensive setup

Data Labeling Pre-labeled Manual or semi-automated

Privacy Risk None Possible data exposure

AI Compatibility Directly usable for

supervised ML

Best Use Training & validation Real-time testing &

monitoring

Requires preprocessing