IN THE CLAIMS

1. A brake disk for use with a disk brake system having brake pads for 1 2 axially engaging the disk, comprising: a disk member axially arrayed about a central axis and having an outer 3 rim and an inner rim, and an obverse face and a reverse face arrayed about a 4 disk plane, wherein 5 each said obverse face and reverse face is provided with circumferentially 6 alternating protruding segments and indented segments, said protruding 7 segments being adapted for physically engaging the brake pads. 8 2. The brake disk of claim 1, wherein 1 each said protruding segment includes a leading edge for gripping the 2 brake pad upon engagement. 3 3. The brake disk of claim 2, wherein 1 each said leading edge has an angle of incidence with the brake pad in the 2 range between +45° and -45°... 3

4. The brake disk of claim 1, wherein 1 each said indented segment is open to said outer rim and said inner rim 2 3 such that air flow is facilitated therethrough. 5. The brake disk of claim 1, wherein 1 each of said outer rim and said inner rim is scalloped in shape to provide 2 increased surface area for heat dissipation.. 3 6. The brake disk of claim 1, wherein 1 each said protruding segment is circumferentially wider than the adjacent 2 indented segments. 3 7. The brake disk of claim 6, wherein 1 The circumferential width ration of said indented segments to said 2 3 protruding segments is in the range of 10% to 40%. 8. In a disk braking system for use in transrotary motion applications, 1 including brake pads for engaging the surface of a brake disk the improvement 2 comprising: 3

4	providing the brake pad engaging surface of the brake disk with
5	alternating protruding segments for engaging the brake pads and indented
6	segments for facilitating cooling.
1	9. The improvement of claim 8, wherein
2	each said protruding segment is circumferentially wider than the adjacent
3	ones of said indented segments.
1	10. The improvement of claim 9, wherein
2	each said indented segment has circumferentially width of less than 40%
3	of that of said protruding segments segments.
1	11. The improvement of claim 8, and further including
2	an irregularly shaped outer rim and an irregularly shaped inner rim such
3	that expanded surface area in provided to aid heat dissipation therefrom.
,	that expanded burkers are provided in
1	12. The improvement of claim 8, and further providing that
2	the opposing axial surfaces of the disk both include alternating protruding
3	segments and indented segments and the indented segments on one surface are

4	situated axially opposite protruding segments on the opposing surface.
1	13. The improvement of claim 8, wherein
_	
2	each said protruding segment is circumferentially wider than the adjacent
3	ones of said indented segments.
1	14. The improvement of claim 8, wherein
1	14. The improvement of claim 8, wherein
2	each said protruding segment has a leading edge for engaging with and
3	gripping the surface of the brake pad.
5	gripping the surface of the stake pad.
1	15. The improvement of claim 14, wherein
2	Each said leading edge is adapted to engage the brake pad at a radial angle
3	of less than 45 degrees.