The Inverse of a Matrix

Adam Wilson

Salt Lake Community College

The Inverse of a Matrix

Inverse Matrix

If there exists, for an $n \times n$ matrix \boldsymbol{A} , another matrix \boldsymbol{A}^{-1} of the same order such that

$$\mathbf{A}^{-1}\mathbf{A}=\mathbf{A}\mathbf{A}^{-1}=\mathbf{I}_n$$

then A^{-1} is called the **inverse** of matrix A, and A is called **invertible**.

The Inverse of a Matrix

Inverse Matrix

If there exists, for an $n \times n$ matrix \boldsymbol{A} , another matrix \boldsymbol{A}^{-1} of the same order such that

$$\mathbf{A}^{-1}\mathbf{A}=\mathbf{A}\mathbf{A}^{-1}=\mathbf{I}_n$$

then A^{-1} is called the **inverse** of matrix A, and A is called **invertible**.

Vocabulary

- A square matrix that is not invertible is called **singular**.
- A square matrix that is invertible is called **nonsingular**.

Properties of Invertible Matrices

Invertible Matrix Properties

• If \boldsymbol{A} is invertible, then so is \boldsymbol{A}^{-1} and

$$\left(oldsymbol{A}^{^{-1}}
ight)^{^{-1}} = oldsymbol{A}$$

Properties of Invertible Matrices

Invertible Matrix Properties

• If \boldsymbol{A} is invertible, then so is \boldsymbol{A}^{-1} and

$$\left(\boldsymbol{A}^{-1}\right)^{-1}=\boldsymbol{A}$$

 If A and B are invertible matrices of the same order, then their product AB is invertible. In fact,

$$(\boldsymbol{A}\boldsymbol{B})^{^{-1}} = \boldsymbol{B}^{^{-1}}\boldsymbol{A}^{^{-1}}$$

Properties of Invertible Matrices

Invertible Matrix Properties

• If \boldsymbol{A} is invertible, then so is \boldsymbol{A}^{-1} and

$$\left(\boldsymbol{A}^{-1}\right)^{-1}=\boldsymbol{A}$$

 If A and B are invertible matrices of the same order, then their product AB is invertible. In fact,

$$(\boldsymbol{A}\boldsymbol{B})^{^{-1}} = \boldsymbol{B}^{^{-1}}\boldsymbol{A}^{^{-1}}$$

• if \boldsymbol{A} is invertible, then so is $\boldsymbol{A}^{\mathsf{T}}$, and

$$\left({{oldsymbol{A}}^{\scriptscriptstyle{\mathsf{T}}}}
ight)^{^{-1}} = \left({{oldsymbol{A}}^{^{-1}}}
ight)^{^{\scriptscriptstyle{\mathsf{T}}}}$$

Inverses by Reduced Row Echelon Form

For an $n \times n$ matrix \mathbf{A} , the following process will calculate \mathbf{A}^{-1} , or show that \mathbf{A} is not invertible.

Step 1: Form the $n \times 2n$ augmented matrix $\mathbf{M} = [\mathbf{A}|\mathbf{I}_n]$.

Inverses by Reduced Row Echelon Form

For an $n \times n$ matrix \mathbf{A} , the following process will calculate \mathbf{A}^{-1} , or show that \mathbf{A} is not invertible.

- Step 1: Form the $n \times 2n$ augmented matrix $\mathbf{M} = [\mathbf{A}|\mathbf{I}_n]$.
- Step 2: Transform **M** into Reduced Row Echelon Form.

Inverses by Reduced Row Echelon Form

For an $n \times n$ matrix \mathbf{A} , the following process will calculate \mathbf{A}^{-1} , or show that \mathbf{A} is not invertible.

- Step 1: Form the $n \times 2n$ augmented matrix $\mathbf{M} = [\mathbf{A}|\mathbf{I}_n]$.
- Step 2: Transform M into Reduced Row Echelon Form.
- Step 3: If the left hand side of **M** is the identity matrix, then the right hand side is **A**⁻¹.
 - Otherwise, **A** is a non-invertible matrix.

Example

Consider the matrix:

$$\mathbf{A} = \begin{bmatrix} 1 & 1 & 1 \\ 0 & 2 & 1 \\ 1 & 0 & 1 \end{bmatrix}$$

Find **A**⁻¹

Example

Consider the matrix:

$$\mathbf{A} = \left[\begin{array}{rrr} 1 & 1 & 1 \\ 0 & 2 & 1 \\ 1 & 0 & 1 \end{array} \right]$$

Find \boldsymbol{A}^{-1}

Start by building the augmented matrix

$$\mathbf{M_A} = \begin{bmatrix} 1 & 1 & 1 & 1 & 0 & 0 \\ 0 & 2 & 1 & 0 & 1 & 0 \\ 1 & 0 & 1 & 0 & 0 & 1 \end{bmatrix}$$

Then transform M_A into Reduced Row Echelon Form.

$$\left[\begin{array}{ccc|ccc|ccc|ccc|ccc|} 1 & 1 & 1 & 1 & 0 & 0 \\ 0 & 2 & 1 & 0 & 1 & 0 \\ 1 & 0 & 1 & 0 & 0 & 1 \end{array}\right]$$

$$\begin{bmatrix} 1 & 1 & 1 & 1 & 1 & 0 & 0 \\ 0 & 2 & 1 & 0 & 1 & 0 \\ 1 & 0 & 1 & 0 & 0 & 1 \end{bmatrix} R_3 = r_3 - r_1$$

$$\begin{bmatrix} 1 & 1 & 1 & 1 & 1 & 0 & 0 \\ 0 & 2 & 1 & 0 & 1 & 0 \\ 1 & 0 & 1 & 0 & 0 & 1 \end{bmatrix} R_3 = r_3 - r_1$$

$$\Rightarrow \begin{bmatrix} 1 & 1 & 1 & 1 & 0 & 0 \\ 0 & 2 & 1 & 0 & 1 & 0 \\ 0 & -1 & 0 & -1 & 0 & 1 \end{bmatrix}$$

$$\left[\begin{array}{ccc|ccc|c} 1 & 1 & 1 & 1 & 0 & 0 \\ 0 & 2 & 1 & 0 & 1 & 0 \\ 0 & -1 & 0 & -1 & 0 & 1 \end{array}\right]$$

$$\begin{bmatrix} 1 & 1 & 1 & 1 & 0 & 0 \\ 0 & 2 & 1 & 0 & 1 & 0 \\ 0 & -1 & 0 & -1 & 0 & 1 \end{bmatrix} R_2 = -r_3$$

$$R_3 = r_2$$

$$\begin{bmatrix} 1 & 1 & 1 & 1 & 0 & 0 \\ 0 & 2 & 1 & 0 & 1 & 0 \\ 0 & -1 & 0 & -1 & 0 & 1 \end{bmatrix} R_2 = -r_3$$

$$\Rightarrow \begin{bmatrix} 1 & 1 & 1 & 1 & 0 & 0 \\ 0 & 1 & 0 & 1 & 0 & -1 \\ 0 & 2 & 1 & 0 & 1 & 0 \end{bmatrix}$$

$$\left[\begin{array}{ccc|ccc|c} 1 & 1 & 1 & 1 & 0 & 0 \\ 0 & 1 & 0 & 1 & 0 & -1 \\ 0 & 2 & 1 & 0 & 1 & 0 \end{array}\right]$$

$$\begin{bmatrix} 1 & 1 & 1 & 1 & 1 & 0 & 0 \\ 0 & 1 & 0 & 1 & 0 & -1 \\ 0 & 2 & 1 & 0 & 1 & 0 \end{bmatrix} R_3 = r_3 - 2r_2$$

$$\begin{bmatrix} 1 & 1 & 1 & 1 & 1 & 0 & 0 \\ 0 & 1 & 0 & 1 & 0 & -1 \\ 0 & 2 & 1 & 0 & 1 & 0 \end{bmatrix} R_3 = r_3 - 2r_2$$

$$\Rightarrow \begin{bmatrix} 1 & 1 & 1 & 1 & 0 & 0 \\ 0 & 1 & 0 & 1 & 0 & -1 \\ 0 & 0 & 1 & -2 & 1 & 2 \end{bmatrix}$$

$$\left[\begin{array}{ccc|ccc|c} 1 & 1 & 1 & 1 & 0 & 0 \\ 0 & 1 & 0 & 1 & 0 & -1 \\ 0 & 0 & 1 & -2 & 1 & 2 \end{array}\right]$$

$$\begin{bmatrix} 1 & 1 & 1 & 1 & 1 & 0 & 0 \\ 0 & 1 & 0 & 1 & 0 & -1 \\ 0 & 0 & 1 & -2 & 1 & 2 \end{bmatrix} R_1 = r_1 - r_3$$

$$\begin{bmatrix} 1 & 1 & 1 & 1 & 0 & 0 \\ 0 & 1 & 0 & 1 & 0 & -1 \\ 0 & 0 & 1 & -2 & 1 & 2 \end{bmatrix} R_1 = r_1 - r_3$$

$$\Rightarrow \begin{bmatrix} 1 & 1 & 0 & 3 & -1 & -2 \\ 0 & 1 & 0 & 1 & 0 & -1 \\ 0 & 0 & 1 & -2 & 1 & 2 \end{bmatrix}$$

$$\left[\begin{array}{ccc|ccc|c}
1 & 1 & 0 & 3 & -1 & -2 \\
0 & 1 & 0 & 1 & 0 & -1 \\
0 & 0 & 1 & -2 & 1 & 2
\end{array}\right]$$

$$\begin{bmatrix} 1 & 1 & 0 & 3 & -1 & -2 \\ 0 & 1 & 0 & 1 & 0 & -1 \\ 0 & 0 & 1 & -2 & 1 & 2 \end{bmatrix} R_1 = r_1 - r_2$$

$$\begin{bmatrix} 1 & 1 & 0 & 3 & -1 & -2 \\ 0 & 1 & 0 & 1 & 0 & -1 \\ 0 & 0 & 1 & -2 & 1 & 2 \end{bmatrix} R_1 = r_1 - r_2$$

$$\Rightarrow \begin{bmatrix} 1 & 0 & 0 & 2 & -1 & -1 \\ 0 & 1 & 0 & 1 & 0 & -1 \\ 0 & 0 & 1 & -2 & 1 & 2 \end{bmatrix}$$

Example

$$\left[\begin{array}{ccc|cccc}
1 & 0 & 0 & 2 & -1 & -1 \\
0 & 1 & 0 & 1 & 0 & -1 \\
0 & 0 & 1 & -2 & 1 & 2
\end{array}\right]$$

Since the left hand side is I_3 , we know the right hand side is the inverse:

$$\mathbf{A}^{-1} = \begin{bmatrix} 2 & -1 & -1 \\ 1 & 0 & -1 \\ -2 & 1 & 2 \end{bmatrix}$$

Example

Consider the matrix:

$$\mathbf{B} = \begin{bmatrix} 3 & 0 & 3 \\ -1 & 2 & 1 \\ 1 & 1 & 2 \end{bmatrix}$$

Find **B**⁻¹

Example

Consider the matrix:

$$\mathbf{B} = \begin{bmatrix} 3 & 0 & 3 \\ -1 & 2 & 1 \\ 1 & 1 & 2 \end{bmatrix}$$

Find **B**⁻¹

Start by building the augmented matrix

$$\mathbf{\textit{M}}_{B} = egin{bmatrix} 3 & 0 & 3 & 1 & 0 & 0 \ -1 & 2 & 1 & 0 & 1 & 0 \ 1 & 1 & 2 & 0 & 0 & 1 \end{bmatrix}$$

Then transform M_B into Reduced Row Echelon Form.

$$\begin{bmatrix} 3 & 0 & 3 & 1 & 0 & 0 \\ -1 & 2 & 1 & 0 & 1 & 0 \\ 1 & 1 & 2 & 0 & 0 & 1 \end{bmatrix}$$

$$\begin{bmatrix} 3 & 0 & 3 & 1 & 0 & 0 \\ -1 & 2 & 1 & 0 & 1 & 0 \\ 1 & 1 & 2 & 0 & 0 & 1 \end{bmatrix} R_1 = r_3$$

$$R_3 = r_1$$

$$\begin{bmatrix} 3 & 0 & 3 & 1 & 0 & 0 \\ -1 & 2 & 1 & 0 & 1 & 0 \\ 1 & 1 & 2 & 0 & 0 & 1 \end{bmatrix} R_1 = r_3$$

$$\Rightarrow \begin{bmatrix} 1 & 1 & 2 & 0 & 0 & 1 \\ -1 & 2 & 1 & 0 & 1 & 0 \\ 3 & 0 & 3 & 1 & 0 & 0 \end{bmatrix}$$

$$\begin{bmatrix} 1 & 1 & 2 & 0 & 0 & 1 \\ -1 & 2 & 1 & 0 & 1 & 0 \\ 3 & 0 & 3 & 1 & 0 & 0 \end{bmatrix}$$

$$\begin{bmatrix} 1 & 1 & 2 & 0 & 0 & 1 \\ -1 & 2 & 1 & 0 & 1 & 0 \\ 3 & 0 & 3 & 1 & 0 & 0 \end{bmatrix} R_2 = r_2 + r_1 R_3 = r_2 - 3r_1$$

$$\begin{bmatrix} 1 & 1 & 2 & 0 & 0 & 1 \\ -1 & 2 & 1 & 0 & 1 & 0 \\ 3 & 0 & 3 & 1 & 0 & 0 \end{bmatrix} R_2 = r_2 + r_1$$

$$\Rightarrow \begin{bmatrix} 1 & 1 & 2 & 0 & 0 & 1 \\ 0 & 3 & 3 & 0 & 1 & 1 \\ 0 & -3 & -3 & 1 & 0 & -1 \end{bmatrix}$$

$$\left[\begin{array}{ccc|ccc|ccc}
1 & 1 & 2 & 0 & 0 & 1 \\
0 & 3 & 3 & 0 & 1 & 1 \\
0 & -3 & -3 & 1 & 0 & -1
\end{array}\right]$$

Inverses by Reduced Row Echelon Form

$$\begin{bmatrix} 1 & 1 & 2 & 0 & 0 & 1 \\ 0 & 3 & 3 & 0 & 1 & 1 \\ 0 & -3 & -3 & 1 & 0 & -1 \end{bmatrix} R_2 = \frac{1}{3}r_2$$

$$R_3 = r_3 + r_2$$

Inverses by Reduced Row Echelon Form

$$\begin{bmatrix} 1 & 1 & 2 & 0 & 0 & 1 \\ 0 & 3 & 3 & 0 & 1 & 1 \\ 0 & -3 & -3 & 1 & 0 & -1 \end{bmatrix} R_2 = \frac{1}{3}r_2$$

$$\Rightarrow \begin{bmatrix} 1 & 1 & 2 & 0 & 0 & 1 \\ 0 & 1 & 1 & 0 & \frac{1}{3} & \frac{1}{3} \\ 0 & 0 & 0 & 1 & 1 & 0 \end{bmatrix}$$

Inverses by Reduced Row Echelon Form

Example

$$\begin{bmatrix} 1 & 1 & 2 & 0 & 0 & 1 \\ 0 & 3 & 3 & 0 & 1 & 1 \\ 0 & -3 & -3 & 1 & 0 & -1 \end{bmatrix} R_2 = \frac{1}{3}r_2$$

$$\Rightarrow \begin{bmatrix} 1 & 1 & 2 & 0 & 0 & 1 \\ 0 & 1 & 1 & 0 & \frac{1}{3} & \frac{1}{3} \\ 0 & 0 & 0 & 1 & 1 & 0 \end{bmatrix}$$

This means that B is a non-invertible matrix.

Invertibility and Solutions

Consider the matrix equation $\mathbf{A}\vec{\mathbf{x}} = \vec{\mathbf{b}}$.

Where **A** is an $n \times n$ matrix, and \vec{x} and \vec{b} are of length n.

• A unique solution exists if and only if **A** is invertible.

Invertibility and Solutions

Consider the matrix equation $\vec{A}\vec{x} = \vec{b}$.

Where **A** is an $n \times n$ matrix, and \vec{x} and \vec{b} are of length n.

- A unique solution exists if and only if **A** is invertible.
- Otherwise there are either:
 - No solutions.
 - Infinitely many solutions.

(Another method must be used to determine which.)

Example

Consider the system

Example

Consider the system

We can can write this as the matrix equation:

$$\underbrace{\begin{bmatrix}
1 & 1 & 1 \\
0 & 2 & 1 \\
1 & 0 & 1
\end{bmatrix}}_{\mathbf{A}} \underbrace{\begin{bmatrix}
x \\
y \\
z
\end{bmatrix}}_{\mathbf{x}} = \underbrace{\begin{bmatrix}
2 \\
-1 \\
3
\end{bmatrix}}_{\mathbf{x}}$$

Example

So, if ${\bf A}$ is invertible, then we can solve the matrix equation for $\vec{{\bf x}}$

$$A\vec{x} = \vec{b}$$

Example

So, if ${m A}$ is invertible, then we can solve the matrix equation for ${m \vec x}$

$$m{A} ec{m{x}} = ec{m{b}}$$
 $m{A}^{-1} m{A} ec{m{x}} = m{A}^{-1} ec{m{b}}$

Example

So, if ${m A}$ is invertible, then we can solve the matrix equation for ${ec x}$

$$\mathbf{A}\vec{\mathbf{x}} = \vec{\mathbf{b}}$$
$$\mathbf{A}^{-1}\mathbf{A}\vec{\mathbf{x}} = \mathbf{A}^{-1}\vec{\mathbf{b}}$$
$$\mathbf{I}_{3}\vec{\mathbf{x}} = \mathbf{A}^{-1}\vec{\mathbf{b}}$$

Example

So, if ${\bf A}$ is invertible, then we can solve the matrix equation for ${\vec x}$

$$m{A} ec{m{x}} = m{b}$$
 $m{A}^{-1} m{A} ec{m{x}} = m{A}^{-1} m{b}$
 $m{I}_3 ec{m{x}} = m{A}^{-1} m{b}$
 $ec{m{x}} = m{A}^{-1} m{b}$

Example

So, if ${m A}$ is invertible, then we can solve the matrix equation for ${ec x}$

$$A\vec{x} = \vec{b}$$
 $A^{-1}A\vec{x} = A^{-1}\vec{b}$
 $I_3\vec{x} = A^{-1}\vec{b}$
 $\vec{x} = A^{-1}\vec{b}$

So, if we can compute $\mathbf{A}^{-1}\vec{\mathbf{b}}$ we will have solved the system.

$$\begin{bmatrix} 2 & -1 & -1 \\ 1 & 0 & -1 \\ -2 & 1 & 2 \end{bmatrix}$$

$$\begin{bmatrix}
 2 & -1 & -1 \\
 \hline
 1 & 0 & -1 \\
 -2 & 1 & 2
 \end{bmatrix}
 \begin{bmatrix}
 5 \\
 \hline
 2
 \end{bmatrix}$$

$$\begin{bmatrix} 2 & -1 & -1 \\ 1 & 0 & -1 \\ -2 & 1 & 2 \end{bmatrix}$$

Example

$$\begin{bmatrix}
2 \\
-1 \\
0
\end{bmatrix}$$

$$\begin{bmatrix}
2 & -1 & -1 \\
1 & 0 & -1 \\
-2 & 1 & 2
\end{bmatrix}
\begin{bmatrix}
5 \\
2 \\
-5
\end{bmatrix}$$

So, we have

$$\begin{bmatrix} x \\ y \\ z \end{bmatrix} = \begin{bmatrix} 5 \\ 2 \\ -5 \end{bmatrix}$$

Invertible Matrix Characterization

Let **A** be a $n \times n$ matrix. The following are equivalent:

• A is an invertible matrix.

Invertible Matrix Characterization

- A is an invertible matrix.
- A^T is an invertible matrix.

Invertible Matrix Characterization

- A is an invertible matrix.
- **A**^T is an invertible matrix.
- A is row equivalent to I_n.
 (This means when you put A in RREF, you get I_n)

Invertible Matrix Characterization

- A is an invertible matrix.
- **A**^T is an invertible matrix.
- A is row equivalent to I_n.
 (This means when you put A in RREF, you get I_n)
- The rank of A is n.

Invertible Matrix Characterization

- A is an invertible matrix.
- **A**^T is an invertible matrix.
- A is row equivalent to I_n.
 (This means when you put A in RREF, you get I_n)
- The rank of **A** is n.
- The equation $A\vec{x} = \vec{0}$ has only the trivial solution $\vec{x} = \vec{0}$.

Invertible Matrix Characterization

- A is an invertible matrix.
- $\boldsymbol{A}^{\mathsf{T}}$ is an invertible matrix.
- A is row equivalent to I_n.
 (This means when you put A in RREF, you get I_n)
- The rank of **A** is n.
- The equation $A\vec{x} = \vec{0}$ has only the trivial solution $\vec{x} = \vec{0}$.
- The equation $\mathbf{A}\vec{\mathbf{x}} = \vec{\mathbf{b}}$ has a unique solution for every $\vec{\mathbf{b}} \in \mathbb{R}^n$.

Example

An engineering consultant finds that she must solve the following IVP:

$$y''' - 2y'' - y' + 2y = 0$$
, $y(0) = b_1$, $y'(0) = b_2$, $y''(0) = b_3$

She must solve this IVP for many different sets of initial conditions, and expects to do the same tomorrow.

Example

An engineering consultant finds that she must solve the following IVP:

$$y''' - 2y'' - y' + 2y = 0$$
, $y(0) = b_1$, $y'(0) = b_2$, $y''(0) = b_3$

She must solve this IVP for many different sets of initial conditions, and expects to do the same tomorrow.

The general solution is:

$$y(t) = c_1 e^{2t} + c_2 e^t + c_3 e^{-t}$$

(We will talk about to solve this type of DE in Chapter 4.)

Example

To determine c_1 , c_2 , and c_3 , we must plug in each initial condition, giving the system:

$$y(0) = c_1 + c_2 + c_3 = b_1$$

 $y'(0) = 2c_1 + c_2 - c_3 = b_2$
 $y''(0) = 4c_1 + c_2 + c_3 = b_3$

Example

To determine c_1 , c_2 , and c_3 , we must plug in each initial condition, giving the system:

$$y(0) = c_1 + c_2 + c_3 = b_1$$

 $y'(0) = 2c_1 + c_2 - c_3 = b_2$
 $y''(0) = 4c_1 + c_2 + c_3 = b_3$

We can write this as the matrix equation:

$$\underbrace{\begin{bmatrix} 1 & 1 & 1 \\ 2 & 1 & -1 \\ 4 & 1 & 1 \end{bmatrix}}_{\mathbf{A}} \underbrace{\begin{bmatrix} c_1 \\ c_2 \\ c_3 \end{bmatrix}}_{\vec{\mathbf{x}}} = \underbrace{\begin{bmatrix} b_1 \\ b_2 \\ b_3 \end{bmatrix}}_{\vec{\mathbf{b}}}$$

Example

If we can find the inverse of \bf{A} , then we can compute the constants for any set of initial conditions $\vec{\bf{b}}$.

Example

If we can find the inverse of \bf{A} , then we can compute the constants for any set of initial conditions $\vec{\bf{b}}$.

$$m{A}^{-1} = egin{bmatrix} -rac{1}{3} & 0 & rac{1}{3} \ 1 & rac{1}{2} & -rac{1}{2} \ rac{1}{3} & -rac{1}{2} & rac{1}{6} \end{bmatrix}$$

Example

If we can find the inverse of \bf{A} , then we can compute the constants for any set of initial conditions $\vec{\bf{b}}$.

$$m{A}^{-1} = egin{bmatrix} -rac{1}{3} & 0 & rac{1}{3} \ 1 & rac{1}{2} & -rac{1}{2} \ rac{1}{3} & -rac{1}{2} & rac{1}{6} \end{bmatrix}$$

Thus, the solution for any $\vec{\boldsymbol{b}}$ is:

$$\begin{bmatrix} c_1 \\ c_2 \\ c_3 \end{bmatrix} = \begin{bmatrix} -\frac{1}{3} & 0 & \frac{1}{3} \\ 1 & \frac{1}{2} & -\frac{1}{2} \\ \frac{1}{3} & -\frac{1}{2} & \frac{1}{6} \end{bmatrix} \begin{bmatrix} b_1 \\ b_2 \\ b_3 \end{bmatrix}$$