Advanced Econometrics

Maximum Likelihood Estimation

- Likelihood function and the ML principle;
- Properties of ML estimators;
- Estimators of the information matrix
- Regressors
- Interpretation and inference in misspecified models
- Hypothesis testing.

- Let $f(y; \theta_0)$ denote the *probability density function/probability function* of the random variable y, given θ_0 . Our objective to to estimate the true parameter vector θ_0 .
- Example: A Bernoulli Random variable:

$$Y = \begin{cases} 1 & \text{with probability } \theta_0 \\ 0 & \text{with probability } 1 - \theta_0 \end{cases}$$

where $\theta_0 \in (0,1)$.Hence

$$f(y;\theta_0) = \mathcal{P}(Y = y|\theta_0) = \theta_0^y (1-\theta_0)^{1-y}, y = 0,1$$

• The *joint density* of *n* iid observations of *y* is

$$f(y_1,\ldots,y_n|\theta_0)=\prod_{i=1}^n f(y_i;\theta_0).$$

• If y is a discrete random variable, $f(y_1, ..., y_n | \theta_0)$ gives the probability of observing a particular sample, given θ_0 .

• Let us now take $f(y_i; \theta)$ as a function of θ given y_1, \dots, y_n and write

$$L(\theta|y_1,\ldots,y_n)=\prod_{i=1}^n f(y_i;\theta).$$

- This is the *likelihood function*, which gives the likelihood that the population parameter is θ , given the observed sample.
- Note: $L(\theta|y_1,...,y_n)$ is often abbreviated to $L(\theta)$.

• The *Maximum Likelihood (ML) principle* suggests that estimators of the unknown parameters are obtained by maximizing $L(\theta)$ with respect to θ .

$$\hat{\theta} = \arg\max_{\theta \in \Theta} L(\theta).$$

• If the random variable y is discrete $\hat{\theta}$ yields the value of θ that maximizes the probability of observing the sample that actually occurred. If the random variable y is continuous, such interpretation is no longer valid.

It is often convenient to work with the natural logarithm of the likelihood function $\log L(\theta)$. For example, in the iid case:

$$\log L(\theta|y_1,\ldots,y_n) = \sum_{i=1}^n \log f(y_i;\theta);$$

$$\hat{\boldsymbol{\theta}} = \arg\max_{\boldsymbol{\theta} \in \boldsymbol{\Theta}} L\left(\boldsymbol{\theta}\right) = \arg\max_{\boldsymbol{\theta} \in \boldsymbol{\Theta}} \log L\left(\boldsymbol{\theta}\right)$$

• Usually $\hat{\theta}$ can be obtained by solving the *likelihood equation*

$$\left. \frac{\partial \log L\left(\theta\right)}{\partial \theta} \right|_{\hat{\theta}} = 0$$

• **Example:** In the Bernoulli case $\mathcal{P}(Y = y | \theta_0) = \theta_0^y (1 - \theta_0)^{1-y}$ we have

$$\log L(\theta) = \sum_{i=1}^{n} y_{i} \log(\theta) + \sum_{i=1}^{n} (1 - y_{i}) \log(1 - \theta).$$

the solution is given by $\hat{\theta} = \bar{y} = \sum_{i=1}^{n} y_i / n$.

- Occasionally the ML estimator is *not unique*.
- Also, $\log L(\theta)$ may have only one global maximum, but multiple *local maxima*.

- The main regularity conditions (now assumed to hold) are as follows:
 - **1** The first three derivatives of $\log f(y|\theta)$ with respect to θ are continuous and finite for almost all y and for all θ ;
 - ② For all values of θ , $\left| \partial^3 \log f(y|\theta) / \partial \theta_j \partial \theta_k \partial \theta_l \right|$ is limited by a function that has finite expectation;
 - **1** The domain of y does not depend on θ ;
 - **1** θ is an interior point to the compact parameter space Θ .

- In order to proceed, it is interesting to look at some important results (Bartlett identities).
- Define the *score* vector $S(\theta)$ and the *Hessian* matrix $H(\theta)$ as

$$S(\theta) = \frac{\partial \log L(\theta)}{\partial \theta} = \sum_{i=1}^{n} \frac{\partial \log f(y_i|\theta)}{\partial \theta} = \sum_{i=1}^{n} s_i(\theta),$$

$$H(\theta) = \frac{\partial^2 \log L(\theta)}{\partial \theta \partial \theta'} = \sum_{i=1}^{n} \frac{\partial^2 \log f(y_i|\theta)}{\partial \theta \partial \theta'} = \sum_{i=1}^{n} H_i(\theta).$$

- First Bartlett identity: $E[s_i(\theta_0)] = 0$.
- Hence $E[S(\theta_0)] = 0$
- Second Bartlett identity: $Var[s_i(\theta_0)] = -E[H_i(\theta_0)]$
- $\operatorname{Var}\left[s_{i}\left(\theta_{0}\right)\right] = \operatorname{E}\left[s_{i}\left(\theta_{0}\right)s_{i}\left(\theta_{0}\right)'\right]$ defines Fisher's *information matrix*, denoted $\mathcal{I}(\theta_0)$.
- Hence, the result $\operatorname{Var}\left[s_{i}\left(\theta_{0}\right)\right] = \operatorname{E}\left[s_{i}\left(\theta_{0}\right)s_{i}\left(\theta_{0}\right)'\right] = -\operatorname{E}\left[H_{i}\left(\theta_{0}\right)\right]$ is also called the $information\ matrix\ identity$.

Properties of MLE

- Under the assumed regularity conditions the MLE possesses the following properties:
 - **1** Consistency: plim $\hat{\theta} = \theta_0$;
 - **2** Asymptotic normality: $\sqrt{n} (\hat{\theta} \theta_0) \stackrel{d}{\rightarrow} \mathcal{N}(0, \mathcal{I}(\theta_0)^{-1});$
 - **3** Asymptotic efficiency: if $\tilde{\theta}$ is a regular consistent asymptotically normal estimator such that $\sqrt{n} \left(\tilde{\theta} \theta_0 \right) \stackrel{d}{\to} \mathcal{N}(0,\Omega)$, then $\Omega \left[\mathcal{I}(\theta_0) \right]^{-1}$ is positive semi-definite, i.e., under these RC, the MLE asymptotically achieves the *Cramer-Rao* lower bound which is given by $\left[\mathcal{I}(\theta_0) \right]^{-1}$;
 - **1** Invariance: If $c(\theta)$ is a continuous and continuously differentiable one-to-one function, the MLE of $\gamma = c(\theta_0)$ is $c(\hat{\theta})$.
- **Example:** in the Bernoulli case $\mathcal{I}(\theta_0)^{-1} = \theta_0(1 \theta_0)$, therefore $\sqrt{n} (\hat{\theta} \theta) \stackrel{d}{\to} \mathcal{N}(0, \theta_0(1 \theta_0))$;

Estimators of the information matrix

- There are three commonly used estimators of $\mathcal{I}(\theta_0)$
 - **1 Expected Information:** If the form of the expected values of the second derivatives of the log-likelihood function is known, then we can evaluate $\mathcal{I}(\theta)$ at $\hat{\theta}$.
 - **2** *Observed Information*: Simply use $-\hat{H}(\hat{\theta})$.
 - **Outer Product of the Gradient (OPG)**: Because of the information matrix identity, we can also use $n^{-1} \sum_{i=1}^{n} s_i(\hat{\theta}) s_i(\hat{\theta})'$.
- The *OPG* is notorious for its poor finite sample performance.

Regressors

- The previous results are easy to extend to accommodate the presence of covariates.
- Suppose the joint distribution of y and x depends on α_0 , giving $f(y,x|\alpha_0) = f(y|x,\alpha_0)g(x|\alpha_0)$.
- Next, suppose that α_0 can be divided into θ_0 and δ_0 , so that (exogeneity of x) $f(y, x | \alpha_0) = f(y_i | x_i, \theta_0) g(x_i | \delta_0)$.
- For an iid sample $\{(y_i, x_i)\}_{i=1}^n$ then

$$\log L(\theta, \delta | y_i, x_i) = \sum_{i=1}^n \log f(y_i, x_i | \alpha) = \sum_{i=1}^n \log f(y_i | x_i, \theta) + \sum_{i=1}^n \log g(x_i | \delta).$$

and the term $\sum_{i=1}^{n} \log g(x_i|\delta)$. can be ignored

Regressors

• $\hat{\theta}$ can then be obtained by maximizing just $\sum_{i=1}^{n} \log f(y_i|x_i,\theta)$ with respect to θ . Therefore, frequently we will work directly with the conditional log-likelihood

$$\log L(\theta|y_i,x_i) = \sum_{i=1}^n \log f(y_i|x_i,\theta),$$

and this (under appropriate regularity conditions) will behave to a large extent like a standard log-likelihood.

• However, now $\mathrm{E}[-H_i\left(\theta_0\right)] = E\left[-\frac{\partial^2 \mathrm{log}f(y_i|x_i,\theta_0)}{\partial \theta \partial \theta'}\right] = \mathcal{I}\left(\theta_0\right) = \mathrm{E}\left[\frac{\partial \mathrm{log}f(y|x_i,\theta_0)}{\partial \theta}\frac{\partial \mathrm{log}f(y|x_i,\theta_0)}{\partial \theta'}\right]$, and so on.

Interpretation and inference in misspecified models

- If the likelihood function is misspecified, the MLE is generally inconsistent for the parameters of interest.
- However, under very general conditions, plim $\hat{\theta} = \theta^*$, where the *pseudo-true value* θ^* minimizes the Kullback-Leibler divergence, that is

$$\theta^* = \arg\min_{c} \int_{-\infty}^{+\infty} \left[\log \left(\frac{f_0(y)}{f(y|c)} \right) \right] f_0(y) dy = \arg\min_{c} \operatorname{E} \left[\log \left(\frac{f_0(y)}{f(y|c)} \right) \right].$$

where $f_0(y)$ is the true distribution of the data.

- The *Kullback–Leibler divergence* (also called relative entropy) is a measure of how one probability distribution is different from a second, reference probability distribution
- That is, the MLE leads to the *best approximation*, in the Kullback-Leibler sense, to $f_0(y)$, the true density.
- However, because the IM identity does not hold, the asymptotic covariance matrix is given by:

$$A^{-1}BA^{-1}$$
, $A = \mathbb{E}\left[-H_i\left(\theta^*\right)\right]$ $B = \mathbb{E}\left[s_i(\theta^*)s_i(\theta^*)'\right]$.

Author: Paulo M.D.C. Parente

Hypothesis testing

Consider a general set of restrictions to be tested

$$H_0:h(\theta_0)=0$$

where:

- θ : vector of parameters in model (the true value is given by θ_0)
- $h(\theta)$: $d \times 1$ vector of restrictions
- $L(\theta)$: likelihood function for model
- $S(\theta) = \sum_{i=1}^{n} s_i(\theta)$ the efficient score
- $\hat{\theta}$ and $\tilde{\theta}$: <u>unrestricted</u> and <u>restricted</u> MLE, respectively (that is $\hat{\theta} = \hat{\theta}_{ml}$ and $\tilde{\theta} = \tilde{\theta}_{ml}$).
- $\hat{\theta}$ is the value of θ that maximizes $\log L(\theta)$
- $\tilde{\theta}$ is the value of θ that maximizes $\log L(\theta)$ and satisfy $h(\theta) = 0$.
- $L(\hat{\theta})$ and $L(\tilde{\theta})$: value of $L(\theta)$ evaluated at $\hat{\theta}$ and $\tilde{\theta}$, respectively.

The 3 classical test principles

Likelihood Ratio Tests:

• Compare $L(\hat{\theta})$ and $L(\tilde{\theta})$ (if $h(\theta_0)=0$ then $L(\hat{\theta})$ should be close to $L(\tilde{\theta})$

Wald Tests:

• Compare $h(\hat{\theta})$ with 0 (since $h(\tilde{\theta}) = 0$).

Lagrange Multiplier or Score Tests:

• Compare $S(\tilde{\theta})$ with 0 (since $S(\hat{\theta}) = 0$).

The 3 classical test principles

Intuition:

The Wald Test

- How close is $h(\hat{\theta})$ to zero (since $h(\tilde{\theta}) = 0$)?
- Test statistic:

$$W = n \times h(\hat{\theta})' \left[\widehat{G(\hat{\theta})'} \left[\widehat{\mathcal{I}(\theta)} \right]^{-1} \widehat{G(\hat{\theta})} \right]^{-1} h(\hat{\theta}).$$

where

$$G(\theta) = \frac{\partial h(\theta)}{\partial \theta}.$$

and $\widehat{\mathcal{I}(\theta)}$ is an estimator of $\mathcal{I}(\theta_0)$.

• Under the null hypothesis:

$$\mathcal{W} \stackrel{D}{\to} \chi^2(d)$$
.

The Wald Test

Shortcoming: Wald test not invariant to how restrictions are formulated. E.g.: $\beta_0/(1-\alpha_0)=1$ (<u>nonlinear</u> restriction) and $\beta_0+\alpha_0-1=0$ (<u>linear</u> restriction) are equivalent restrictions, but may lead to different values of \mathcal{W} .

The Likelihood Ratio Test

- How "close" are $\mathcal{L}(\hat{\theta})$ and $\mathcal{L}(\tilde{\theta})$?
- Test is based on the *likelihood ratio*:

$$\lambda = rac{\mathcal{L}(ilde{ heta})}{\mathcal{L}(\hat{ heta})}.$$

Test statistic

$$\mathcal{LR} = -2\log(\lambda)$$

$$= 2\{\log \mathcal{L}(\hat{\theta}) - \log \mathcal{L}(\tilde{\theta})\}$$

• Under the null hypothesis:

$$\mathcal{LR} \stackrel{D}{\rightarrow} \chi^2(d)$$

The Lagrange Multiplier (LM) or Score Test

- How close is $S(\tilde{\theta})$ to zero (since $S(\hat{\theta}) = 0$)?
- Test statistic

$$\mathcal{LM} = S(\widetilde{\theta})' \left[\widehat{\mathcal{I}(\theta)}\right]^{-1} S(\widetilde{\theta})/n$$

• Under the null hypothesis:

$$\mathcal{LM} \stackrel{D}{\rightarrow} \chi^2(d)$$
.