Lecture 20 Exercise Solutions

Mark Eramian

Exercise 1

- a) This is a directed graph because the adjacency matrix is not symmetric.
- b) The graph for the given adjacency matrix is:

Exercise 2

Exercise 3

Since the graph is undirected, our adjacency matrix will be symmetric about the diagonal.

$$A = \begin{bmatrix} 0 & 1 & 1 & 1 & 1 & 0 & 1 & 0 \\ 1 & 0 & 0 & 0 & 0 & 1 & 1 & 0 \\ 1 & 0 & 0 & 0 & 0 & 0 & 1 & 1 \\ 1 & 0 & 0 & 0 & 0 & 0 & 1 & 1 \\ 1 & 0 & 0 & 0 & 0 & 1 & 1 & 0 \\ 0 & 1 & 0 & 0 & 1 & 0 & 1 & 0 \\ 1 & 1 & 1 & 1 & 1 & 1 & 0 & 1 \\ 0 & 0 & 1 & 1 & 0 & 0 & 1 & 0 \end{bmatrix}$$

Exercise 4

Exercise 5

The correct vertices on each list can appear in any order. Here is one possibility:

Exercise 6

The correct vertices on each list can appear in any order. Here is one possibility:

