

## Trabajo 1: Imágenes médicas

**Objetivo:** Aplicar conocimientos adquiridos sobre imágenes médicas, estándares DICOM y BIDS, modalidades de adquisición, principios físicos y sistemas informáticos clínicos.

## 1. Análisis de metadatos dicom y visualización

Cada grupo recibirá una imagen en formato DICOM (RX, CT o RM). Deberán:

1.1. Extraer y analizar los metadatos DICOM

Utilizar pydicom para extraer la metadata adjuntar anexo el notebook.

| Radiografía                                    | Tomografía Computarizada                       | Resonancia Magnética                       |
|------------------------------------------------|------------------------------------------------|--------------------------------------------|
| PatientName                                    | PatientName                                    | PatientName                                |
| Modality                                       | Modality                                       | Modality                                   |
| <ul> <li>ViewPosition</li> </ul>               | <ul> <li>SliceThickness</li> </ul>             | SliceThickness                             |
| <ul> <li>BodyPartExamined</li> </ul>           | • kVp                                          | BodyPartExamined                           |
| <ul> <li>Relative X-Ray Exposure</li> </ul>    | <ul> <li>BodyPartExamined</li> </ul>           | MR Acquisition Type                        |
| <ul> <li>Photometric Interpretation</li> </ul> | <ul> <li>Relative X-Ray Exposure</li> </ul>    | Photometric Interpretation                 |
| <ul> <li>Manufacturer</li> </ul>               | <ul> <li>ExposureTime</li> </ul>               | RepetitionTime (TR)                        |
| <ul> <li>Scanner Model</li> </ul>              | <ul> <li>Photometric Interpretation</li> </ul> | EchoTime (TE)                              |
| <ul> <li>Detector Active Shape</li> </ul>      | Manufacturer                                   | <ul> <li>Spacing Between Slices</li> </ul> |
| <ul> <li>Detector Description</li> </ul>       | Scanner Model                                  | Manufacturer                               |
|                                                |                                                | <ul> <li>MagneticFieldStrength</li> </ul>  |
|                                                |                                                | Scanner Model                              |

- Organizar la metadata extraída en Name, Tag, Type y Value, explique a qué hace referencia cada uno de ellos, el grupo al que pertenece, su relevancia y los valores válidos para ese metadato.
  - 1.2. Interpretación técnica
- Explicar cómo los parámetros técnicos se relacionan con el principio físico de la modalidad seleccionada.
  - 1.3. Visualización
- Cargar la imagen DICOM en Python y graficarla utilizando matplotlib.



## 2. Comparación multimodal de imágenes

Recibirán tres estudios de una misma persona (una RM, una TC y una RX del mismo segmento corporal).

- 2.1. Identificación y comparación
- Identificar correctamente la modalidad de cada imagen.
- Comparar:
- Calidad visual
- Resolución numérica (shape de la imagen, spacing, etc.)
- Diferencias de contraste percibidas
- Graficar las tres imágenes en un subplot (1x3) con matplotlib.
- Incluir anotaciones y describir las diferencias encontradas.

## 3. Simulación de flujo de información imagenológica

Diseñar un diagrama de flujo que represente el recorrido de una imagen médica desde su solicitud hasta la visualización e informe.

- ¿Dónde interviene DICOM?
- ¿Dónde se utiliza HL7 u otros estándares?
- ¿Qué sistemas y herramientas están involucrados en cada etapa?