ANN - Demo

- Optical character recognition (OCR) problem: the process of converting scanned images of handwritten, typed or printed text into machine-encoded text.*
- Digit Recognizer: How to recognize handwritten numbers?

Images extracted from the Internet.

What is a digital image?

- The computer stores the information in binary representation.
- The basic unit is the bite {0,1}, and one byte is 8 bits: 10111101
- An image is a matrix of N x M pixels. The pixel is the smallest unit of information in a digital image, and each pixel is a point of the image.

Images extracted from Internet.

Image representation

- The image resolution is the amount of M x N pixels, it is the image size.
- While more resolution then better image quality.

- A pixel indicates the amount of light in the image at that position, in the point of the matrix.
- The pixel value is represented by a discrete value.

B/W Images

- Black and white images are represented only by binary values.
- A pixel with value 1 indicates the white color.
- A pixel value 0 represents the black color.

1	0	0	1	0	0
0	1	1	1	1	1
1	0	0	0	0	0
1	1	0	1	0	0

Gray scale Images

- Each pixel has a value equivalent to a level (intensity) of gray.
- For example, a pixel could represent 4 different colors:

3	0	2	1	2	0	
0	1	1	1	1	3	
1	2	0	3	0	0	
1	1	0	2	0	1	

Color Images

- Color depth refers to the diversity of colors to be represented.
- Colors variety, color depth, is the bits per pixel, that is, the number of bits necessary to represent the color of one pixel.

1 bit: {0, 1}, 2 different colors, black and white

2 bits: {00, 10, 01, 11}, 4 different colors.

3 bits: {000, 001, 010, 100, 110, 101, 011, 111}, 8 different colors

4 bits: {0000,0001,}, 16 colors

8 bits: {00000000, 00000001,}, 256 colors

Color Images

- Assuming an image with a color depth of 24 bits.
- There are 8 bits to store 3 primary colors: 8 bits for Red, 8 bits for Green, and 8 bits for Blue.
- A 24-bit image can have 256 tones of Red, 256 tones of Green, and 256 tones of Blue.
- The image can contain 16.777.216 (256 x 256 x 256) colors


```
R G B Color Name
0 0 0 Black
255 255 255 White
224 224 224 Light Gray
128 128 128 Gray
64 64 64 Dark Gray
255 0 0 Red
255 96 208 Pink
160 32 255 Purple
```

Digit Recognizer

- A digit represented in an image corresponds to a numerical matrix.
- Assume that the following image is composed of 28 x 28 pixels.
- It is a numerical matrix that contains 784 numbers.

DR Problem

• Predict the digit label [0,1,2,3,4,5,6,7,8,9] based on the intensity level value (color) of 784 pixels:

label	pixel0	pixel1	pixel2	pixel3	pixel4	pixel5		pixel775	pixel776	pixel777	pixel783
0	1	0	0	0	0	0	:	0	250	0	0
1	0	0	0	234	0	0		0	0	0	0
2	1	123	0	0	0	231		21	0	0	67
3	4	0	245	0	0	0		0	0	0	0

Digit Recognizer
 Data Set: 42.000 x 785

• Small DS: (1797, 64), each data point is a 8x8 image of a digit.

Link: Recognizing hand-written digits

ANN Process

- Build a neural network that allows the correct classification of labels based on pixels.
- From the miss classification, the label is corrected and through back propagation, the ANN model learns.

Jupyter Demo...