Deep Generative Models

Lecture 13

Roman Isachenko

Moscow Institute of Physics and Technology Yandex School of Data Analysis

2024, Autumn

Outline

1. Flow Matching Endpoint conditioning Pair conditioning

$$d\mathbf{x} = \mathbf{f}(\mathbf{x},t)dt + g(t)d\mathbf{w} - \mathsf{SDE}$$
 with the probability path $p_t(\mathbf{x})$

Probability flow ODE

 $p_0(x)$

There exists ODE with identical the probability path $p_t(\mathbf{x})$ of the form $d\mathbf{x} = \left[\mathbf{f}(\mathbf{x},t) - \frac{1}{2}g^2(t)\frac{\partial}{\partial \mathbf{x}}\log p_t(\mathbf{x})\right]dt$

SDE Probability Flow ODE

 $p_t(x)$

Song Y., et al. Score-Based Generative Modeling through Stochastic Differential Equations, 2020

 $\rightarrow p_T(x)$

$$d\mathbf{x} = \mathbf{f}(\mathbf{x}, t)dt, \quad \mathbf{x}(t + dt) = \mathbf{x}(t) + \mathbf{f}(\mathbf{x}, t)dt$$

Reverse ODE

Let $\tau = 1 - t$ $(d\tau = -dt)$.

$$d\mathbf{x} = -\mathbf{f}(\mathbf{x}, 1 - \tau)d\tau$$

Reverse SDE

There exists the reverse SDE for the SDE $d\mathbf{x} = \mathbf{f}(\mathbf{x},t)dt + g(t)d\mathbf{w}$ that has the following form

$$d\mathbf{x} = \left(\mathbf{f}(\mathbf{x}, t) - g^2(t) \frac{\partial \log p_t(\mathbf{x})}{\partial \mathbf{x}}\right) dt + g(t) d\mathbf{w}, \quad dt < 0$$

Sketch of the proof

- Convert initial SDE to probability flow ODE.
- Revert probability flow ODE.
- Convert reverse probability flow ODE to reverse SDE.

Song Y., et al. Score-Based Generative Modeling through Stochastic Differential Equations, 2020

$$d\mathbf{x} = \mathbf{f}(\mathbf{x}, t)dt + g(t)d\mathbf{w} - \mathsf{SDE}$$

$$d\mathbf{x} = \left[\mathbf{f}(\mathbf{x}, t) - \frac{1}{2}g^2(t)\frac{\partial}{\partial \mathbf{x}}\log p_t(\mathbf{x})\right]dt - \mathsf{probability flow ODE}$$

$$d\mathbf{x} = \left(\mathbf{f}(\mathbf{x}, t) - g^2(t)\frac{\partial \log p_t(\mathbf{x})}{\partial \mathbf{x}}\right)dt + g(t)d\mathbf{w} - \mathsf{reverse SDE}$$

- We got the way to transform one distribution to another via SDE with some probability path $p_t(\mathbf{x})$.
- ▶ We are able to revert this process with the score function.

Song Y., et al. Score-Based Generative Modeling through Stochastic Differential Equations, 2020

$$d\mathbf{x} = \mathbf{f}(\mathbf{x}, t)dt + g(t)d\mathbf{w}$$

Variance Exploding SDE (NCSN)

$$d\mathbf{x} = \sqrt{\frac{d[\sigma^2(t)]}{dt}} \cdot d\mathbf{w}, \quad \mathbf{f}(\mathbf{x}, t) = 0, \quad g(t) = \sqrt{\frac{d[\sigma^2(t)]}{dt}}$$

Variance grows since $\sigma(t)$ is a monotonically increasing function.

Variance Preserving SDE (DDPM)

$$d\mathbf{x} = -rac{1}{2}eta(t)\mathbf{x}(t)dt + \sqrt{eta(t)}\cdot d\mathbf{w}$$
 $\mathbf{f}(\mathbf{x},t) = -rac{1}{2}eta(t)\mathbf{x}(t), \quad g(t) = \sqrt{eta(t)}$

Variance is preserved if $\mathbf{x}(0)$ has a unit variance.

Song Y., et al. Score-Based Generative Modeling through Stochastic Differential Equations, 2020

Outline

1. Flow Matching Endpoint conditioning Pair conditioning

Let consider ODE dynamic $\mathbf{x}_t = \mathbf{x}(t)$ in time interval $t \in [0,1]$ with boundaries $\mathbf{x}_0 \sim p_0(\mathbf{x}) = p(\mathbf{x})$, $\mathbf{x}_1 \sim p_1(\mathbf{x}) = \pi(\mathbf{x})$. Here $p(\mathbf{x})$ is a base distribution $(\mathcal{N}(0,\mathbf{I}))$ and $\pi(\mathbf{x})$ is a true data distribution.

$$\frac{d\mathbf{x}}{dt} = \mathbf{u}(\mathbf{x}, t),$$

 $\mathbf{u}(\mathbf{x},t):\mathbb{R}^m \times [0,1] \to \mathbb{R}^m$ is a vector field.

$$\frac{\partial p_t(\mathbf{x})}{\partial t} = -\text{div}\left(\mathbf{u}(\mathbf{x}, t)p_t(\mathbf{x})\right)$$

If we know the true vector field $\mathbf{u}(\mathbf{x},t)$, then KFP equation gives us the way to compute the density $p_t(\mathbf{x})$.

$$\mathbb{E}_{t \sim U[0,1]} \mathbb{E}_{\mathbf{x} \sim p_t(\mathbf{x})} \left\| \mathbf{u}(\mathbf{x},t) - \mathbf{u}_{\boldsymbol{\theta}}(\mathbf{x},t) \right\|^2 \rightarrow \min_{\boldsymbol{\theta}}$$

There exists infinite number of possible $\mathbf{u}(\mathbf{x},t)$ between $\pi(\mathbf{x})$ and $p(\mathbf{x})$.

$$p_t(\mathbf{x}) = \int p_t(\mathbf{x}|\mathbf{z})p(\mathbf{z})d\mathbf{z}$$

Here $p_t(\mathbf{x}|\mathbf{z})$ is a **conditional probability path**.

The conditional probability path $p_t(\mathbf{x}|\mathbf{z})$ satisfies KFP theorem

$$\frac{\partial p_t(\mathbf{x}|\mathbf{z})}{\partial t} = -\text{div}\left(\mathbf{u}(\mathbf{x},\mathbf{z},t)p_t(\mathbf{x}|\mathbf{z})\right),$$

where $\mathbf{u}(\mathbf{x}, \mathbf{z}, t)$ is a **conditional vector field**.

$$\frac{d\mathbf{x}}{dt} = \mathbf{u}(\mathbf{x}, t) \quad \Rightarrow \quad \frac{d\mathbf{x}}{dt} = \mathbf{u}(\mathbf{x}, \mathbf{z}, t)$$

Gaussian conditional probability path

$$p_t(\mathbf{x}|\mathbf{z}) = \mathcal{N}\left(\boldsymbol{\mu}_t(\mathbf{z}), \boldsymbol{\sigma}_t^2(\mathbf{z})\right)$$

Tong A., et al. Improving and Generalizing Flow-Based Generative Models with Minibatch Optimal Transport, 2023

$$\frac{\partial p_t(\mathbf{x}|\mathbf{z})}{\partial t} = -\text{div}\left(\mathbf{u}(\mathbf{x},\mathbf{z},t)p_t(\mathbf{x}|\mathbf{z})\right),$$

Theorem

$$\mathbf{u}(\mathbf{x},t) = \int \mathbf{u}(\mathbf{x},\mathbf{z},t) \frac{p_t(\mathbf{x}|\mathbf{z})p(\mathbf{z})}{p_t(\mathbf{x})} d\mathbf{z}$$

Proof

$$\begin{split} \frac{\partial p_t(\mathbf{x})}{\partial t} &= \frac{\partial}{\partial t} \int p_t(\mathbf{x}|\mathbf{z}) p(\mathbf{z}) d\mathbf{z} = \int \left(\frac{\partial p_t(\mathbf{x}|\mathbf{z})}{\partial t} \right) p(\mathbf{z}) d\mathbf{z} = \\ &= \int \left(-\text{div} \left(\mathbf{u}(\mathbf{x}, \mathbf{z}, t) p_t(\mathbf{x}|\mathbf{z}) \right) \right) p(\mathbf{z}) d\mathbf{z} = \\ &= -\text{div} \left(\int \mathbf{u}(\mathbf{x}, \mathbf{z}, t) p_t(\mathbf{x}|\mathbf{z}) p(\mathbf{z}) d\mathbf{z} \right) = -\text{div} \left(\mathbf{u}(\mathbf{x}, t) p_t(\mathbf{x}) \right) \end{split}$$

Flow Matching

$$\mathbb{E}_{t \sim U[0,1]} \mathbb{E}_{\mathbf{x} \sim p_t(\mathbf{x})} \left\| \mathbf{u}(\mathbf{x},t) - \mathbf{u}_{\boldsymbol{\theta}}(\mathbf{x},t) \right\|^2 \to \min_{\boldsymbol{\theta}}$$

Conditional Flow Matching

$$\mathbb{E}_{t \sim U[0,1]} \mathbb{E}_{\mathbf{z} \sim \rho(\mathbf{z})} \mathbb{E}_{\mathbf{x} \sim \rho_t(\mathbf{x}|\mathbf{z})} \left\| \mathbf{u}(\mathbf{x}, \mathbf{z}, t) - \mathbf{u}_{\boldsymbol{\theta}}(\mathbf{x}, t) \right\|^2 \to \min_{\boldsymbol{\theta}}$$

Theorem

If $supp(p_t(\mathbf{x})) = \mathbb{R}^m$, then the optimal value of FM objective is equal to the optimal value of CFM objective.

Proof

It is proved similarly with the denoising score matching theorem.

Tong A., et al. Improving and Generalizing Flow-Based Generative Models with Minibatch Optimal Transport, 2023

Outline

1. Flow Matching
Endpoint conditioning
Pair conditioning

Conditional Flow Matching

$$\mathbb{E}_{t \sim U[0,1]} \mathbb{E}_{\mathbf{z} \sim p(\mathbf{z})} \mathbb{E}_{\mathbf{x} \sim p_t(\mathbf{x}|\mathbf{z})} \left\| \mathbf{u}(\mathbf{x}, \mathbf{z}, t) - \mathbf{u}_{\theta}(\mathbf{x}, t) \right\|^2 \to \min_{\theta}$$

Let choose $\mathbf{z} = \mathbf{x}_1$. Then $p(\mathbf{z}) = p_1(\mathbf{x}_1)$.

$$p_t(\mathbf{x}) = \int p_t(\mathbf{x}|\mathbf{x}_1)p_1(\mathbf{x}_1)d\mathbf{x}_1$$

We need to ensure boundary conditions:

$$p_0(\mathbf{x}|\mathbf{x}_1) = p_0(\mathbf{x}); \quad p_1(\mathbf{x}|\mathbf{x}_1) = \delta(\mathbf{x} - \mathbf{x}_1)$$

Gaussian conditional probability path

$$ho_t(\mathbf{x}|\mathbf{x}_1) = \mathcal{N}\left(\boldsymbol{\mu}_t(\mathbf{x}_1), \boldsymbol{\sigma}_t^2(\mathbf{x}_1)\right)$$

$$\mu_0(\mathsf{x}_1) = 0, \quad \sigma_0(\mathsf{x}_1) = 1, \quad \mu_1(\mathsf{x}_1) = \mathsf{x}_1, \quad \sigma_1(\mathsf{x}_1) = 0$$

Theorem

$$\mathbf{u}(\mathbf{x}, \mathbf{x}_1, t) = \boldsymbol{\mu}_t'(\mathbf{x}_1) + \frac{\sigma_t'(\mathbf{x}_1)}{\sigma_t(\mathbf{x}_1)} \odot (\mathbf{x} - \boldsymbol{\mu}_t(\mathbf{x}_1))$$

Proof

$$\begin{split} \rho_t(\mathbf{x}|\mathbf{x}_1) &= \mathcal{N}\left(\mu_t(\mathbf{x}_1), \sigma_t^2(\mathbf{x}_1)\right) \\ \mathbf{x} &= \mu_t(\mathbf{x}_1) + \sigma_t(\mathbf{x}_1) \odot \epsilon, \quad \Rightarrow \quad \epsilon = \frac{1}{\sigma_t(\mathbf{x}_1)} \odot \left(\mathbf{x} - \mu_t(\mathbf{x}_1)\right) \\ \frac{d\mathbf{x}}{dt} &= \mathbf{u}(\mathbf{x}, \mathbf{x}_1, t) \\ \frac{d\mathbf{x}}{dt} &= \mu_t'(\mathbf{x}_1) + \sigma_t'(\mathbf{x}_1) \odot \epsilon = \mu_t'(\mathbf{x}_1) + \frac{\sigma_t'(\mathbf{x}_1)}{\sigma_t(\mathbf{x}_1)} \odot \left(\mathbf{x} - \mu_t(\mathbf{x}_1)\right) \end{split}$$

$$\begin{aligned} \mathbf{u}(\mathbf{x},\mathbf{x}_1,t) &= \boldsymbol{\mu}_t'(\mathbf{x}_1) + \frac{\boldsymbol{\sigma}_t'(\mathbf{x}_1)}{\boldsymbol{\sigma}_t(\mathbf{x}_1)} \odot (\mathbf{x} - \boldsymbol{\mu}_t(\mathbf{x}_1)) \\ \boldsymbol{\mu}_0(\mathbf{x}_1) &= 0, \quad \boldsymbol{\sigma}_0(\mathbf{x}_1) = 1, \quad \boldsymbol{\mu}_1(\mathbf{x}_1) = \mathbf{x}_1, \quad \boldsymbol{\sigma}_1(\mathbf{x}_1) = 0 \\ \boldsymbol{\mu}_t(\mathbf{x}_1) &= t\mathbf{x}_1; \quad \boldsymbol{\sigma}_t(\mathbf{x}_1) = (1-t); \quad \mathbf{u}(\mathbf{x},\mathbf{x}_1,t) = \frac{\mathbf{x}_1 - \mathbf{x}_1}{1-t} \end{aligned}$$

Diffusion

ОТ

Outline

1. Flow Matching Endpoint conditioning Pair conditioning

Summary

