Problem Set 4 Solutions

1.

1.1 Remove implications and simplify

$$p \Rightarrow q \lor r$$
 becomes $\neg p \lor q \lor r$
 $p \land q \Rightarrow r$ becomes $\neg p \lor \neg q \lor r$

р	q	r	¬ p	¬ q	٦r	¬p∨q ∨r	¬pV¬qVr
Т	Т	F	F	F	Т	Т	F

Hence the two are not equivalent

1.2 Remove implications

$$p \Rightarrow q \lor r \text{ becomes } \neg p \lor q \lor r$$

$$p \land \neg q \Rightarrow r \text{ becomes } \neg (p \land \neg q) \lor r \text{ which becomes } \neg p \lor q \lor r$$

We get the same expression hence they are equivalent

1.3 Remove implications

$$p \Rightarrow q \lor r \text{ becomes } \neg p \lor q \lor r$$

¬
$$\mathbf{p} \land \mathbf{q} \Rightarrow \mathbf{r}$$
 becomes ¬(¬ $\mathbf{p} \land \mathbf{q}$) ∨ \mathbf{r} which becomes $\mathbf{p} \lor \neg \mathbf{q} \lor \mathbf{r}$

р	q	r	¬ p	¬ q	٦r	¬p V q V r	p V ¬ q V r
Т	F	F	F	Т	Т	F	Т

Hence the two are not equivalent

1.4 Remove implications

$$p \Rightarrow q \lor r \text{ becomes } \neg p \lor q \lor r$$

$$\neg r \land p \Rightarrow q \text{ becomes } r \lor \neg p \lor q$$

Both are equivalent

1.5 Remove implications

$$(p \Rightarrow (q \Rightarrow r))$$
 becomes $p \Rightarrow (\neg q \lor r)$ which becomes $\neg p \lor \neg q \lor r$

$$\mathbf{p} \land \mathbf{q} \Rightarrow \mathbf{r}$$
 becomes $\neg (\mathbf{p} \land \mathbf{q}) \lor \mathbf{r}$ which becomes $\neg \mathbf{p} \lor \neg \mathbf{q} \lor \mathbf{r}$

Both are equivalent

1.6

((p
$$\Rightarrow$$
 q) \lor (q \Rightarrow r)) becomes (¬ p \lor q) \lor (¬ q \lor r) which is always True

Hence both are equivalent

Q2

2.1

$$\{p \Rightarrow q \lor r\} \vdash (p \Rightarrow r)$$

$$\{p \Rightarrow q \lor r\}$$
 becomes $\neg p \lor q \lor r$

$$(p \Rightarrow r)$$
 becomes $\neg p \lor r$

р	q	r	¬ p	¬ q	٦r	¬p V q V r	¬p∨r
Т	Т	Т	F	F	F	Т	Т
Т	Т	F	F	F	Т	Т	F
Т	F	Т	F	Т	F	Т	Т
Т	F	F	F	Т	Т	F	F
F	Т	Т	Т	F	F	Т	Т
F	Т	F	Т	F	Т	Т	Т
F	F	Т	Т	Т	F	Т	Т
F	F	F	Т	Т	Т	Т	Т

 $\{p\Rightarrow q \lor r\} \models (p\Rightarrow r)$ is false as there is a case when $\{p\Rightarrow q \lor r\}$ is True, $(p\Rightarrow r)$ is False

2.2

$$\{p \Rightarrow r\} \vdash (p \Rightarrow q \lor r)$$

Truth table same as above

$$\{p\Rightarrow r\} \vdash (p\Rightarrow q \lor r)$$
 is True as everytime $\{p\Rightarrow r\}$ is True, $(p\Rightarrow q \lor r)$ is also True

2.3

$$\{p\Rightarrow q \lor r, q\Rightarrow r\} \vdash (p\Rightarrow r)$$

р	q	r	¬ p	¬ q	٦r	¬p V q V r	¬q∨r	¬p∨r
Т	Т	Т	F	F	F	Т	Т	T
Т	Т	F	F	F	Т	Т	F	F
Т	F	Т	F	Т	F	Т	Т	Т
Т	F	F	F	Т	Т	F	Т	F
F	Т	Т	Т	F	F	Т	Т	Т

F	Т	F	Т	F	Т	Т	F	Т
F	F	Т	Т	Т	F	Т	Т	Т
F	F	F	Т	Т	Т	Т	Т	Т

Wherever both $\mathbf{p}\Rightarrow\mathbf{q}\vee\mathbf{r}$ and $\mathbf{q}\Rightarrow\mathbf{r}$ are True $(\mathbf{p}\Rightarrow\mathbf{r})$ is True Hence, $\{\mathbf{p}\Rightarrow\mathbf{q}\vee\mathbf{r},\mathbf{q}\Rightarrow\mathbf{r}\}\models(\mathbf{p}\Rightarrow\mathbf{r})$ is True

Q3.

3.1 CNF of
$$(A \Rightarrow B) \Rightarrow C$$
 is $(A \lor C) \land (\neg B \lor C)$

3.2 CNF of
$$\mathbf{A} \Rightarrow (\mathbf{B} \Rightarrow \mathbf{C})$$
 is $(\neg \mathbf{A} \lor \neg \mathbf{B} \lor \mathbf{C})$

3.3 CNF of
$$(\neg P \Rightarrow (P \Rightarrow Q))$$
 is True

Q4 Given KB.

- 1. B \wedge C \rightarrow A becomes \neg B \vee \neg C \vee A
- 2. B
- 3. D \wedge E \rightarrow C becomes \neg D \vee \neg E \vee C
- 4. E V F
- 5. D ∧ ¬F

Since we want to entail A add ¬A

6. ¬A

Resolving (1) and (2) we get (¬C V A)

Resolving (¬C V A) and (3) we get (¬D V ¬E V A)

Resolving ($\neg D \lor \neg E \lor A$) and (4) we get ($\neg D \lor A \lor F$)

Resolving ($\neg D \lor A \lor F$) and (5) we get (A)

Resolving (A) and (6) we get empty

Hence the knowledge base can entail A

Q5 Given KB

- 1. A
- 2. B
- 3. D
- 4. ¬A V ¬B V C
- 5. ¬C V ¬D V E

Since we want to entail E add ¬E

6. ¬E

Resolving (4) and (1) we get (¬B V C)

Resolving (¬B V C) and (2) we get (C)

Resolving (C) and (5) we get (¬D V E)

Resolving (¬D V E) and (3) we get (E)

Resolving (E) and (6) we get empty

Hence the knowledge base can entail E

```
Q6.
```

State variables: $S = \{a, b, c, d\}$

Initial State: I = {a, b} Goal State: G = {b, d}

Actions (format: parameters, precondition, effect):

O1: < ∅, {a, b}, {¬b, c}>

O2: < ∅, {a, b}, {¬a, ¬b, d}>

O3: $< \emptyset$, {c}, {b, d}>

- 6.1. Yes we can reach the goal state by performing O1 and O3 in the same order.
- 6.2. With {a, b} O1 and O2 actions can be done.

When O1 is performed we get {¬b, c}

When O2 is performed we get {¬a, ¬b, d}

Both these states will be added to the search space when {a,b} is expanded by progression search.

Q7.

State variables: S = {a, b, c, d}

Initial State: I = {a, b} Goal State: G = {b, d}

Actions (format: parameters, precondition, effect):

O1: < ∅, {a, b}, {¬b, c}>

O2: < ∅, {a, b}, {¬a, ¬b, d}>

O3: $< \emptyset$, $\{c\}$, $\{b, d\}$ >

- Q7.1. null or empty set or can't be regressed as effect has ¬b and goal has b
- Q7.2. null or empty set or can't be regressed as effect has ¬b and goal has b

Q7.3. {c}