东城区 2016-2017 学年度第二学期期末教学统一检测 初二数学

2017. 7

一、选择题(本题共30分,每小题3分)

下面各题均有四个选项,其中只有一个是符合题意的.

- 1. 下列函数中,正比例函数是

- A. $y=x^2$ B. $y=\frac{2}{x}$ C. $y=\frac{x}{2}$ D. $y=\frac{x+1}{2}$
- 2. 下列四组线段中,不能作为直角三角形三条边的是

- A. 3cm, 4cm, 5cm B. 2cm, 2cm, $2\sqrt{2}$ cm C. 2cm, 5cm, 6cm D. 5cm, 12cm, 13cm
- 3. 下图中,不是函数图象的是

- 4. 平行四边形所具有的性质是
 - A. 对角线相等
 - C. 每条对角线平分一组对角
- B. 邻边互相垂直
- D. 两组对边分别相等

5. 下表记录了甲、乙、丙、丁四名同学最近几次数学考试成绩的平均数与方差:

	甲	Z	丙	丁
平均数 (分)	92	95	95	92
方差	3. 6	3. 6	7. 4	8. 1

要选择一名成绩好且发挥稳定的同学参加数学比赛,应该选择

- A. 甲
- B. 乙
- C. 丙
- D. 丁

6. 若 x= -2 是关于 x 的一元二次方程 $x^2 + \frac{3}{2}ax - a^2 = 0$ 的一个根,则 a 的值为

- A. 1或-4 B. -1或-4 C. -1或4 D. 1或4

7. 将正比例函数 y=2x 的图象向下平移 2 个单位长度,所得图象对应的函数解析式是

- A. y = 2x 1 B. y = 2x + 2 C. y = 2x 2

8. 在一次为某位身患重病的小朋友募捐过程中,某年级有50师生通过微信平台奉献了 爱心. 小东对他们的捐款金额进行统计, 并绘制了如下统计图. 师生捐款金额的平均数

和众数分别是

D. 20,

9. 若关于 x 的一元二次方程 $(k-1)x^2+4x+1=0$ 有实数根,则 k 的取值范围是

- A. $k \le 5$ B. $k \le 5$, $\coprod k \ne 1$ C. k < 5, $\coprod k \ne 1$ D. k < 5

10. 点 P(x, y) 在第一象限内,且 x+y=6,点 A 的坐标为(4,0). 设 \triangle OPA 的面积为 S,则下列图象中,能正确反映 S 与 x 之间的函数关系式的是

- 二、填空题(本题共24分,每小题3分)
- 11. 请写出一个过点(0,1),且 y随着 x 的增大而减小的一次函数解析式______
- 12. 在湖的两侧有 A, B 两个消防栓,为测定它们之间的距离,小明在岸上任选一点 C, 并量取了 AC 中点 D 和 BC 中点 E 之间的距离为 BC 十 米.

- 13. 如图, 直线 y=x+b 与直线 y=kx+6 交于点 P(3, 5), 则关于 x 的不等式 kx+6>x+b 的解集是_______.
- 14. 在菱形 *ABCD* 中,∠*A*=60°,其所对的对角线长为 4,则菱形 *ABCD* 的面积 是 .

15. 《九章算术》是中国传统数学最重要的著作,奠定了中国传统数学的基本框架,书中的算法体系至今仍在推动着计算机的发展和应用.

《九章算术》中记载:今有户不知高、广,竿不知长、短.横之不出四尺,从之不出二尺,邪之适出.问户高、广、邪各几何?

译文是: 今有门,不知其高、宽,有竿,不知其长、短.横放,竿比门宽长出4尺;竖放,竿比门高长出2尺;斜放,竿与门对角线恰好相等.问门高、宽、对角线长分别是多少?若设门对角线长为×尺,则可列方程为

- 16. 方程 $x^2 8x + 15 = 0$ 的两个根分别是一个直角三角形的两条边长,则直角三角形的第三条边长是
- 17. 已知直线 y = 2x + 2 与 x 轴、y 轴分别交于点 A ,B . 若将直线 $y = \frac{1}{2}x$ 向上平移 n 个单位长度与线段 AB 有公共点,则 n 的取值范围是
- 18. 在一节数学课上,老师布置了一个任务:

已知,如图 1,在Rt $\triangle ABC$ 中, $\angle B=90^{\circ}$,用尺规作图作矩形 ABCD.

同学们开动脑筋, 想出了很多办法, 其中小亮作了图 2, 他向同学们分享了作法:

- ① 分别以点 A , C 为圆心,大于 $\frac{1}{2}AC$ 长为半径画弧,两弧分别交于点 E , F ,连接 EF 交 AC 于点 O ;
- ② 作射线 BO, 在 BO 上取点 D, 使 OD = OB;
- ③ 连接 AD, CD.

则四边形 ABCD 就是所求作的矩形.

老师说:"小亮的作法正确。"

小亮的作图依据是

三、解答题(本题共 46 分, 第 19—21, 24 题, 每小题 4 分, 第 22, 23, 25-28 题, 每小题 5 分) 19. 用配方法解方程: $x^2 - 6x = 1$

20. 如图, 正方形 ABCD 的边长为 9, 将正方形折叠, 使顶点 D 落在 BC 边上的点 E 处, 折痕为 GH . 若 BE : EC = 2:1, 求线段 EC , CH 的长.

- 21. 已知关于 x 的一元二次方程 $(m-1)x^2-(m+1)x+2=0$, 其中 $m \neq 1$.
- (1) 求证: 此方程总有实根;
- (2) 若此方程的两根均为正整数, 求整数 m 的值

22. 2017 年 5 月 5 日,国产大飞机 C919 首飞圆满成功. C919 大型客机是我国首次按照国际适航标准研制的 150 座级干线客机,首飞成功标志着我国大型客机项目取得重大突破,是我国民用航空工业发展的重要里程碑. 目前, C919 大型客机已有国内外多家客户预订六百架

表 1 是其中 20 家客户的订单情况.

表 1

客户	订单(架)	客户	订单(架)
中国国际航空	20	工银金融租赁有限公司	45
中国东方航空	20	平安国际融资租赁公司	50
中国南方航空	20	交银金融租赁有限公司	30
海南航空	20	中国飞机租赁有限公司	20
四川航空	15	中银航空租赁私人有限	20
		公司	
河北航空	20	农银金融租赁有限公司	45
幸福航空	20	建信金融租赁股份有限	50
		公司	
国银金融租赁有限公司	15	招银金融租赁公司	30
美国通用租赁公司GECAS	20	兴业金融租赁公司	20
泰国都市航空	10	德国普仁航空公司	7

根据表 1 所提供的数据补全表 2, 并求出这组数据的中位数和众数.

表 2

订单 (架)	7	10	15	20	30	50
客户(家)	1	1	2		2	2

23. 如图 1,在 \triangle ABC 中,D 是 BC 边上一点,E 是 AD 的中点,过点 A 作 BC 的平行线交 CE 的 延长线于 F,且 AF=BD,连接 BF.

- (1) 求证: 点 D 是线段 BC 的中点;
- (2) 如图 2, 若 AB=AC=13, AF=BD=5, 求四边形 AFBD 的面积.

图 1

图 2

24. 有这样一个问题: 探究函数 $y = \frac{1}{x} + 1$ 的图象与性质.

小明根据学习一次函数的经验,对函数 $y = \frac{1}{x} + 1$ 的图象与性质进行了探究.

下面是小明的探究过程,请补充完整:

- (1) 函数 $y = \frac{1}{x} + 1$ 的自变量 x 的取值范围是_____;
- (2) 下表是 y 与 x 的几组对应值.

Х	 -4	-3	-2	-1	-m	m	1	2	3	4	•••
у	 $\frac{3}{4}$	$\frac{2}{3}$	$\frac{1}{2}$	0	-1	3	2	$\frac{3}{2}$	$\frac{4}{3}$	$\frac{5}{4}$	

求出 m 的值;

(3) 如图,在平面直角坐标系 x0y 中,描出了以表中各对对应值为坐标的点.根据描出的点,画出该函数的图象;

(4) 写出该函数的一条性质

- 25. 已知:如图,平行四边形 ABCD 的对角线相交于点 O,点 E 在边 BC 的延长线上,且 OE=OB,联结 DE.
 - (1) 求证: *DE*⊥*BE*;
 - (2) 设 CD与 OE 交于点 F,若 $OF^2 + FD^2 = OE^2$, CE = 3 , DE = 4 ,求线段 CF 长.

- 26. 如图,在平面直角坐标系中,已知点 A $(-\sqrt{3}, 0)$, B (0, 3), C (0, -1) 三点.
 - (1) 求线段 BC 的长度;
 - (2) 若点 D 在直线 AC 上, 且 DB=DC, 求点 D 的坐标;

(3) 在(2)的条件下,直线 BD 上应该存在点 P,使以 A,B,P 三点为顶点的三角形是等腰三角形.请利用尺规作图作出所有的点 P,并直接写出其中任意一个点 P 的坐标.(保留作图痕迹)

- 27. 如图,在 \triangle ABD 中,AB=AD,将 \triangle ABD 沿 BD 翻折,使点 A 翻折到点 C. E 是 BD 上一点,且 BE> DE,连结 CE 并延长交 AD于 F,连结 AE.
- (1) 依题意补全图形;
- (2) 判断 $\angle DFC$ 与 $\angle BAE$ 的大小关系并加以证明;
- (3) 若 $\angle BAD$ =120°, AB=2, 取AD的中点G, 连结EG, 求EA+EG的最小值.

28. 在平面直角坐标系 xOy 中,已知点 $M\left(a,b\right)$ 及两个图形 W_1 和 W_2 ,若对于图形 W_1 上任意一点 $P\left(x,y\right)$,在图形 W_2 上总存在点 $P'\left(x',y'\right)$,使得点 P' 是线段 PM 的中点,则称点 P' 是点 P 关于点 M 的关联点,图形 W_2 是图形 W_1 关于点 M 的关联图形,此时三个点的坐标

满足
$$x' = \frac{x+a}{2}$$
, $y' = \frac{y+b}{2}$.

- (2) 已知,点A(-4,1),B(-2,1),C(-2,-1),D(-4,-1)以及点M(3,0)
 - ①画出正方形 ABCD 关于点 M 的关联图形;

②在 y 轴上是否存在点 N,使得正方形 ABCD 关于点 N 的关联图形恰好被直线 y=-x 分成面积相等的两部分?若存在,求出点 N 的坐标;若不存在,说明理由.

东城区 2016-2017 学年度第二学期期末统一检测 初二数学参考答案及评分标准 2017.7

一、选择题(本题共30分,每小题3分)

题号	1	2	3	4	5	6	7	8	9	10

答案 С Α В

二、填空题(本题共24分,每小题3分)

- 11. y=-x+1 等,答案不唯一. 12. 32 13. X<3 14. $8\sqrt{3}$

- 15. $x^2 = (x-4)^2 + (x-2)^2$ 16. $4 \text{ odd} \sqrt{34}$ 17. $\frac{1}{2} \le n \le 2$
- 18. 到线段两端距离相等的点在线段的垂直平分线上,对角线互相平分的四边形是平 行四边形,有一个角是直角的平行四边形是矩形.
- 三、解答题(本题共 46 分, 第 19—21, 24 题, 每小题 4 分, 第 22, 23, 25-28 题, 每小题 5 分)

$$\therefore EC = 3$$
.

设CH = x,

则
$$DH = 9 - x$$
 .

由折叠可知 EH = DH = 9 - x.

在 Rt $\triangle \triangle ECH$ 中, $\angle C=90^{\circ}$,

$$\therefore CH = 4.$$

21. (1)证明:由题意 *m* ≠ 1.

$$\Delta = \left[-(m+1) \right]^2 - 4 \times 2(m-1) \quad \dots \quad 1 \text{ fb}$$

$$= m^2 - 6m + 9$$

$$= (m-3)^2$$

$$\because (m-3)^2 \geqslant 0 恒成立,$$

∴方程
$$(m-1)x^2-(m+1)x+2=0$$
总有实根; ······2 分

(2) 解: 解方程
$$(m-1)x^2-(m+1)x+2=0$$
,

得
$$x_1 = 1$$
, $x_2 = \frac{2}{m-1}$.

 \therefore 方程 $(m-1)x^2-(m+1)x+2=0$ 的两根均为正整数,且m 是整数,

∴ m-1=1, ingle m-1=2.

 $\therefore m = 2$, 或m = 3.

-----4 分

22. 解:

订单(架)	7	10	15	20	30	45	50
客户(家)	1	1	2	10	2	2	2

-----3 分

中位数是 20, 众数是 20.5 分

- 23. (1)证明: : 点 E 是 AD 的中点, : AE= DE.
- \therefore AF// BC, \therefore \angle AFE= \angle DCE, \angle FAE= \angle CDE.

∴ △ *EAF*≌ △ *EDC*.1

 $\therefore AF = BD$

∴ BD= DC, 即 D是 BC 的中点.2 分

- (2) 解: ∵*AF*//*BD*, *AF*=*BD*,
- ∴四边形 *AFBD* 是平行四边形.3 分

∵ *AB*= AC, 又由(1)可知 D是 BC的中点,

∴ *AD*⊥ *BC*.4 5

在 Rt△ABD中,由勾股定理可求得 AD=12,

- ∴ 矩形 *AFBD* 的面积为 *BD*·*AD* = 60.
- -----5 分
- 24. 解: (1) x≠0; ············1 分
 - (2) $\Rightarrow \frac{1}{m} + 1 = 3$,
 - $\therefore m = \frac{1}{2} ; \dots 2$
 - (3) 如图

.....3分

(4) 答案不唯一, 可参考以下的角度:

.....4 分

- ①该函数没有最大值或 该函数没有最小值;
- ②该函数在值不等于1;
- ③增减性

- ∴ *OB*=*OD*.
- ∵*0B*=*0E*,
- ∴ *0E*=*0D*.

.....1 5

- ∵ *0B*=*0E*,
- ∴∠1=∠2.
- \therefore \angle 1+ \angle 2+ \angle 0DE+ \angle 0ED=180°,
- \therefore \angle 2+ \angle 0ED=90°.
- ∴ DE⊥ BE;2 分
- (2) $\mathbf{M}: : OE = OD, OF^2 + FD^2 = OE^2$,
- $\therefore OF^2 + FD^2 = OD^2.$
- ...△0FD 为直角三角形,且∠0FD=90°.3 分

在 Rt \triangle *CED*中, \angle CED=90 $^{\circ}$,CE=3,DE=4,

$$\therefore CD^2 = CE^2 + DE^2 .$$

$$\therefore CD = 5.$$

$$\nabla : \frac{1}{2}CD \cdot EF = \frac{1}{2}CE \cdot DE,$$

$$\therefore EF = \frac{12}{5}.$$

在 Rt \triangle *CEF* 中, \angle CFE=90° , CE=3, $EF = \frac{12}{5}$

- ∴ *BC*=4. ···············1 分
- (2) 设直线 AC 的解析式为 y=kx+b,
- 把 A $(-\sqrt{3}, 0)$ 和 C (0, -1) 代入 y=kx+b,

$$\cdot \begin{cases} -1=b \\ 0=-\sqrt{3}k+b \end{cases}$$

解得:
$$\begin{cases} k = -\frac{\sqrt{3}}{3}, \\ b = -1 \end{cases}$$

- ∴直线 AC 的解析式为: $y = -\frac{\sqrt{3}}{3}x 1$2 分
- ∵DB=DC,
- ∴点 D 在线段 BC 的垂直平分线上.
- ∴D 的纵坐标为 1.

把 y=1 代入 y=
$$-\frac{\sqrt{3}}{3}$$
x - 1,

解得 x= - 2√3,

∴ D 的坐标为(- 2√3, 1).3 分

(3)

当 A、B、P 三点为顶点的三角形是等腰三角形时,点 P 的坐标为 $(-3\sqrt{3}, 0)$, $(-\sqrt{3}, 2)$, $(-3, 3-\sqrt{3})$, $(3, 3+\sqrt{3})$, 写出其中任意一个即可.5 分

27. 解: (1)

-----2 分 (2) 判断: ∠DFC=∠BAE. 证明: : 将 \triangle ABD 沿 BD 翻折, 使点 A 翻折到点 C. \therefore BC=BA=DA=CD. 二四边形 ABCD 为菱形. $\therefore \angle ABD = \angle CBD$, AD // BC. 又: BE=BE, $\therefore \triangle ABE \cong \triangle CBE (SAS)$. $\therefore \angle BAE = \angle BCE$. ∴ AD// BC, $\therefore \angle DFC = \angle BCE$. $\therefore \angle DFC = \angle BAE$. (3) 连 CG, AC. 由P(-4,4)轴对称可知,EA+EG=EC+EGCG 长就是 EA+EG 的最小值. ······4 分 ∵∠*BAD*=120°,四边形 *ABCD* 为菱形, \therefore \angle *CAD*=60 $^{\circ}$. ∴△ACD 为边长为 2 的等边三角形. 可求得 $CG=\sqrt{3}$ \cdot *EA*+*EG* 的最小值为 $\sqrt{3}$

28. 解: (1)∵ P(-4,4). ……1分

(2)①连接 AM, 并取中点 A′;

同理, 画出 B'、C'、D';

∴正方形 A′B′C′D′为所求作.

-----3 分

- ②不妨设 N(0, n).
- ∵ 关联正方形**错误!未找到引用源。**被直线 y=-x 分成面积相等的两部分,
- ∴中心 *Q*落在直线 y=-x 上. ------4 分
- ∴正方形 ABC D的中心为 E(-3,0),

$$\therefore Q(\frac{-3+0}{2}, \frac{0+n}{2}).$$

