Investigación Operativa

C.C. Lauritto & Ing. Casanova

Guía 02: Solución de PL

Fecha de Entrega: 08 de Febrero de 2017

Ravera P. & Rivera R.

Índice

Ejercicios	3
Punto 01 - Modelos Lineales	3
Inciso A	3
Inciso B	4
Inciso C	5
Inciso D	6
Punto 02 - Simplex Modelos Lineales	7
Inciso A	7
Inciso B	8
Inciso C	J
Inciso D	1
Punto 03 - Compañía	1
Punto 04 - Granja Modelo	3
Punto 05 - Almacén La Falda	4
Punto 06 - Lotería	б
Punto 07 - Turkeyco	3
Punto 08 - Importador	1
Punto 09 - Compañía de Seguros	3
Punto 10 - Criador de Perros	ō
Punto 11 - Banco Gane	7
Punto 12 - Papelera Moderna	Э
Punto 13 - Ciudad de Progreso	1

Ejercicios

Punto 01 - Modelos Lineales

Inciso A

Función Objetivo

$$Max Z = 2X_1 + 4X_2$$

Restricciones

$$x + y - 4 = 0 \tag{1}$$

$$x + 2y - 5 = 0 (2)$$

Por lo que los puntos son:

- A = (0, 0.25)
- B = (3,1)
- C = (4,0)

$$A \rightarrow 2(0) + 4(2.5) = 10$$

$$B \rightarrow 2(3) + 4(1) = 10$$

$$C \rightarrow 2(4) + 4(0) = 8$$

Por lo tanto, el problema cuenta con Soluciones Alternativas, siendo Determinístico - Lineal - Continuo.

Región factible:

Inciso B

Función Objetivo

$$Max Z = 2X_1 + 8X_2$$

Restricciones

$$2x - 5y = 0 \tag{3}$$

$$-x + 5y = 5 \tag{4}$$

$$x + 2y = 4 \tag{5}$$

Por lo que los puntos son:

$$\begin{cases} (??) \\ (??) \end{cases} \rightarrow A = \left(\frac{10}{7}, \frac{9}{7}\right)$$

$$\begin{cases} (??) \\ (??) \end{cases} \rightarrow B = (5,2)$$

$$\begin{cases} (??) \\ (??) \end{cases} \to C = (2.22, 0.88)$$

$$A \rightarrow 2\left(\frac{10}{7}\right) + 8\left(\frac{9}{7}\right) = 13.14$$

 $B \rightarrow 2(5) + 8(2) = 26$
 $C \rightarrow 2(2.22) + 8(0.88) = 11.48$

El máximo se halla en B. El problema es Determinístico - Lineal - Continuo. Región factible:

Inciso C

La función objetivo es:

$$Max Z = 2X_1 + X_2$$

La región factible no está acotada, por lo que el valor de Z es ∞ . La variable X_2 puede crecer libremente.

El problema e Deterministico - Lineal - Continuo.

Inciso D

La función objetivo es:

$$Max Z = 3X_1 + 9X_2$$

En este caso la solución es Infactible o Incompatible ya que la región factible es un conjunto vació al ser no convexo.

El problema es Determinístico - Lineal - Continuo.

${\bf Punto}\ \ {\bf 02}\ \ {\bf - Simplex\ Modelos\ Lineales}$

Inciso A

$$Max\ Z = 2X_1 + 4X_2$$

s.a.: $X_1 + 2X_2 \le 5$
 $X_1 + X_2 \le 4$
 $X_1, X_2 \ge 0$

Forma Estándar:

$$Max \ Z = 2X_1 + 4X_2 + 0X_3 + 0X_4$$

s.a.:
$$X_1 + 2X_2 + X_3 = 5$$

$$X_1 + X_2 + X_4 = 4$$

$$X_1, X_2, X_3, X_4 \ge 0$$

Éste problema tiene soluciones alternativas, lo cual podemos detectar gracias a que existen dos conjuntos de variables básicas con el mismo valor de Z.

Cuadro 1: Tableau Simplex 02A

				2	4	0	0	
	C_k	X_k	B_k	A_1	A_2	A_3	A_4	$\theta_i = b_i/a_{ij}$
\leftarrow	0	X_3	5	1	2	1	0	$\theta_1 = 1.66$
	0	X_4	4	1	1	0	1	$\theta_2 = 4$
		Z = 0		-2	-4	0	0	
					\uparrow			
	4	X_2	2,5	0,5	1	0,5	2,5	$\theta_1 = 5$
\leftarrow	0	X_4	1,5	$0,\!5$	0	-0,5	1	$ heta_2=3$
		Z = 10		0	0	2	0	
				\uparrow				
\leftarrow	4	X_2	1	1	2	1	0	
	2	X_1	3	1	1	0	1	
		Z = 10		0	0	2	0	
							\uparrow	

Inciso B

$$Max Z = 2X_1 + 8X_2$$

$$s.a.: 2X_1 + 4X_2 \ge 8$$

$$2X_1 - 5X_2 \le 0$$

$$-1X_1 + 5X_2 \le 5$$

$$X_1, X_2 \ge 0$$

Forma Estándar:

$$Max\ Z = 2X_1 + 8X_2 + 0X_3 + 0X_4 + 0X_5 - M\mu_1$$
 s.a.:
$$2X_1 - 5X_2 - 1X_3 + 0X_4 + 0X_5 + 1\mu_1 = 8$$

$$2X_1 - 5X_2 - 0X_3 + 1X_4 + 0X_5 + 0\mu_1 = 0$$

$$-1X_1 + 5X_2 - 0X_3 + 0X_4 + 1X_5 + 0\mu_1 = 5$$

$$X_1, X_2, X_3, X_4, X_5 \ge 0$$

La Solución Básica Factible Óptima es $X_1 = 5$ y $X_2 = 2$.

Cuadro 2: Tableau Simplex 02.A

	C_k	X_k	B_k	A_1	A_2	A_3	A_4	A_5	A_6	$\theta_i = b_i/a_{ij}$
	-M	M_1	8	2	4	-1	0	0	1	$\theta_1 = 2$
	0	X_4	0	2	-5	0	1	0	0	$\theta_2 = X$
\leftarrow	0	X_5	5	-1	5	0	0	1	0	$\theta_3 = 1$
		Z = -8M		-2M	-4M	M	0	0	0	
					†					
\leftarrow	-M	M_1	4	14/5	0	-1	0	-4/5	1	$ heta_1=10/7$
	0	X_4	5	1	0	0	1	1	0	$\theta_2 = 5$
	8	X_2	1	-1/5	1	0	0	1/5	0	$\theta_3 = X$
	#REF!	Z = -4M + 8		-14/5	0	M	0	4/5M	0	
				<u></u>						

Cuadro 3: Tableau Simplex 02.B

	C_k	X_k	B_k	A_1	A_2	A_3	A_4	A_5	A_6	$\theta_i = b_i/a_{ij}$
	2	X_1	10/7	1	0	-5/14	0	-2/7	5/14	$\theta_1 = -4X$
\leftarrow	0	$oldsymbol{X_4}$	25/7	0	0	5/14	1	9/7	-5/14	$ heta_2=10$
	8	X_2	9/7	0	1	-1/14	0	1/7	1/14	$\theta_3 = -18X$
		Z = 92/7		0	0	-9/7	0	4/7	9/7	
						†				
	2	X_1	5	1	0	0	1	1	0	
	0	X_3	10	0	0	1	14/5	18/5	-1	
	8	X_2	2	0	1	0	1/5	2/5	0	
		Z = 26		0	0	0	18/5	26/5	M	

Inciso C

$$Max\ Z = 2X_1 + X_2$$

 $s.a.: 1X_1 - 1X_2 \le 10$
 $2X_1 \le 40$
 $X_1, X_2 \ge 0$

Forma Estándar:

$$\begin{aligned} Max \ Z &= 2X_1 + X_2 + 0X_3 + 0X_4 \\ s.a. \ : &1X_1 - 1X_2 + 1X_3 + 0X_4 = 10 \\ 2X_1 + 0X_2 + 0X_3 + 1X_4 &= 40 \\ X_1, X_2, X_3, X_4 &\geq 0 \end{aligned}$$

Cuadro 4: Tableau Simplex 02.C

				2	1	0	0	
	C_k	X_k	B_k	A_1	A_2	A_3	A_4	$\theta_i = b_i/a_{ij}$
\leftarrow	0	X_3	10	1	-1	1	0	$\theta_1 = 10$
	0	X_4	40	2	0	0	1	$\theta_2 = 20$
		Z = 0		-2	-1	0	0	
				\uparrow				
	2	X_1	10	1	-1	1	0	$\theta_1 = 10X$
\leftarrow	0	X_4	20	0	2	-2	1	$\theta_2 = 10$
		Z = 10		0	-2	2	0	
					\uparrow			
	2	X_1	20	1	0	0	1/2	$\theta_1 = 8X$
	1	X_2	10	0	1	-1	1/2	$\theta_2 = -10X$
		Z = 50		0	0	-1	3/2	
						\uparrow		

Como podemos ver, en la última iteración del Simplex no existe un $\theta \geq 0$ por lo que la solución no esta acotada, o sea, $Z \to \infty$.

Inciso D

$$Max \ Z = 3X_1 + 9X_2$$

 $s.a. : 1X_1 + 4X_2 \ge 9$
 $1X_1 + 2X_2 \le 4$
 $X_1, X_2 \ge 0$

Forma Estándar:

$$\begin{aligned} Max \ Z &= 3X_1 + 9X_2 + 0X_3 + 0X_4 - M\mu_1\\ s.a. \ :& 1X_1 + 4X_2 - 1X_3 + 0X_4 + 1\mu_1 = 9\\ 1X_1 + 2X_2 - 0X_3 + 1X_4 + 0\mu_1 &= 4\\ X_1, X_2, X_3, X_4 &\geq 0 \end{aligned}$$

Cuadro 5: Tableau Simplex 02.D

	C_k	X_k	B_k	A_1	A_2	A_3	A_4	A_5	$\theta_i = b_i/a_{ij}$
	-M	M_1	9	1	4	-1	0	1	$\theta_1 = 9/4$
\leftarrow	0	X_4	4	1	2	0	1	0	$ heta_2=2$
		Z = -9M		-M - 3	-4M - 9	M	0	0	
					†				
	-M	M_1	1	-1	0	-1	-2	1	
	9	X_2	2	1/2	1	0	1/2	0	
		Z = -M + 18		M + 3/2	0	M	2M + 9/2	0	

En esté caso, el problema es incompatible ya que la región de factibilidad es igual al conjunto vacio.

Punto 03 - Compañía

Las variables de decisión son:

- X_A la cantidad vendida del producto A
- ullet X_B la cantidad vendida del producto B

Función Objetivo:

$$Max Z = 70 \left[\frac{\$}{Ua} \right] X_A [Ua] + 50 \left[\frac{\$}{Ub} \right] X_B [Ub]$$
 (6)

Restricciones:

$$2\left[\frac{Hs}{Ua}\right]X_{a}\left[Ua\right] + 4\left[\frac{Hs}{Ub}\right]X_{b}\left[Ub\right] \le 100\left[Hs\right]$$

$$5\left[\frac{Hs}{Ua}\right]X_{a}\left[Ua\right] + 3\left[\frac{Hs}{Ub}\right]X_{b}\left[Ub\right] \le 110\left[Hs\right]$$

Forma Estándar:

$$\begin{aligned} Max \ Z &= 70X_1 + 50X_2 + 0X_3 + 0X_4\\ s.a. \ : &2X_1 + 4X_2 + 1X_3 + 0X_4 = 100\\ 5X_1 + 3X_2 + 0X_3 + 1X_4 &= 110\\ X_1, X_2, X_3, X_4 &\geq 0 \end{aligned}$$

Cuadro 6: Tableau Simplex 03

	C_k	X_k	B_k	A_1	A_2	A_3	A_4
	0	X_3	100	2	4	1	0
\leftarrow	0	X_4	110	5	3	0	1
		Z = 0		-70	-50	0	0
				\uparrow			
\leftarrow	0	X_3	56	0	14/5	1	-2/5
	70	X_1	22	1	3/5	0	1/5
		Z = 1540		0	-8	0	70/5
					↑		
	50	X_2	20	0	1	5/14	-1/7
	70	X_1	10	1	0	-3/14	10/35
		Z = 1700		0	0	20/7	90/7

De esta manera, para maximizar la utilidad deberíamos producir 20 y 10 unidades de los productos A y B respectivamente. De esa manera, nuestra ganancia ascendería a los \$1700. Los efectos de contar con más recursos (una unidad más) son los siguientes:

- Hora de la Máquina 1: Nuestra ganancia aumentaría en 20/7 [\$], podríamos producir 5/4 unidades más del producto A, pero deberíamos producir 3/4 unidades menos del B.
- Hora de la Máquina 2: Nuestra ganancia aumentaría en 90/7 [\$], produciendo 1/7 menos unidades del producto A y 10/35 más del producto B.

Punto 04 - Granja Modelo

Las variables de decisión son:

- ullet X_1 Cantidad de maíz utilizada en el alimento.
- X_2 Cantidad de soja utilizada en el alimento.

Función Objetivo:

$$Min\ Z = 0.30 \left[\frac{\$}{Kg_M} \right] X_1 [Kg_M] + 0.09 \left[\frac{\$}{Kg_S} \right] X_2 [Kg_S]$$
 (7)

Restricciones:

$$1 \left[\frac{Kg}{Kg_M} \right] X_1 [Kg_M] + 1 \left[\frac{Kg}{Kg_S} \right] X_2 [Kg_S] \ge 800 [Kg]$$

$$0.09 \left[\frac{Kg}{Kg_M} \right] X_1 [Kg_M] + 0.6 \left[\frac{Kg}{Kg_S} \right] X_2 [Kg_S] \ge 0.3 (X_1 + X_2) [Kg]$$

$$0.02 \left[\frac{Kg}{Kg_M} \right] X_1 [Kg_M] + 0.06 \left[\frac{Kg}{Kg_S} \right] X_2 [Kg_S] \ge 0.05 (X_1 + X_2) [Kg]$$

Forma Estándar:

$$Z = 0.3X_1 + 0.9X_2 + 0X_3 + 0X_4 + 0X_5 + M\mu_1 + M\mu_2$$

$$s.a.: 1X_1 + 1X_2 - 1X_3 + 1\mu_1 = 800$$

$$-0.21X_1 + 0.3X_2 - 1X_4 + 1\mu_2 = 0$$

$$-0.08X_1 + 0.01X_2 + 1X_5 = 0$$

$$X_1, X_2, X_3, X_4, X_5 \ge 0$$

Se determinó entonces que se deben utilizar 200 kg de Maíz y 600 de Soja para cumplir con las exigencias impuestas.

 A_2 C_k X_k B_k $\theta_i = b_i/a_{ij}$ A_1 A_3 A_4 A_5 A_6 A_7 1 $\theta_1 = 800$ M M_1 800 1 -1 0 0 0 1 M M_2 0-0,210,03 0 -1 0 0 $\theta_2 = 0$ 1 $\theta_3 = 0$ X_5 0 -0.030,01 0 0 1 0 0 Z = 800M0,79M0,13M-M-M0 0 0 \uparrow 0 $\theta_1 = 240$ M M_1 800 1,7 -1 3,33 0 -3,33 1 0,09 -0,73,33 $\theta_2 = X$ X_2 0 1 0 -3,30 0 $\theta_3 = 0$ 0 X_5 0 -0,0230 0,03 0 -0,03 1 Z = 800M0 0,17M-M3,33M0 -4,33M \uparrow M_1 800 4 0 -1 0 0 $\theta_1 = 200$ M-100 1 0,09 X_2 0 -3 0 0 $\theta_2 = X$ 1 0 100 0 $\theta_3 = X$ 0 X_4 0 -0.69M0 0 30 0 -1 Z = 800M0 -M0 -100M0 -M41 \uparrow 1 0,3 X_1 200 0 -0.250 -25 0,09 600 -0.7525 X_2 0 1 0 0 X_4 138 0 0 -0,69M1 12,75

0,14

0

-5,25

Cuadro 7: Tableau Simplex 04

Punto 05 - Almacén La Falda

Las variables de decisión son:

Z = 114

• X₁: cantidad de cajas que se solicitan al depósito

0

0

• X_2 : cantidad de cajas que se solicitan al proveedor

La función objetivo es:

$$Min\ Z = 1\left[\frac{\$}{C_d}\right] X_1 [C_d] + 6\left[\frac{\$}{C_p}\right] X_2 [C_p]$$
 (8)

Sujeta a:

$$1 \left[\frac{Kg_A}{C_d} \right] X_1 [C_d] + 2 \left[\frac{Kg_A}{C_p} \right] X_2 [C_p] \ge 80 [Kg_A]$$

$$5 \left[\frac{Kg_Q}{C_p} \right] X_2 [C_p] \ge 60 [Kg_Q]$$

$$X_1 [C_d] \le 40 [C_d]$$

$$X_2 [C_p] \le 30 [C_p]$$

$$X_1, X_2 > 0$$

Forma Estándar:

$$\begin{aligned} 1X_1 + 6X_2 + 0X_3 + 0X_4 + 0X_5 + 0X_6 + M\mu_1 + M\mu_2 \\ 1X_1 + 2X_2 - 1X_3 + 0X_4 + 0X_5 + 0x_6 + 1\mu_1 + 0\mu_2 &= 80 \\ 0X_1 + 2X_2 + 0X_3 - 1X_4 + 0X_5 + 0x_6 + 0\mu_1 + 1\mu_2 &= 10 \\ 1X_1 + 0X_2 - 0X_3 - 0X_4 + 1X_5 + 0X_6 + 0\mu_1 + 0\mu_2 &= 40 \\ 0X_1 + 1X_2 - 0X_3 - 0X_4 + 0X_5 + 0X_6 + 0\mu_1 + 0\mu_2 &= 30 \\ X_1, X_2 &\geq 0 \end{aligned}$$

MM C_k X_k B_k A_1 A_2 A_3 A_4 A_5 A_6 A_7 A_8 $\theta_i = b_i/a_{ij}$ $\theta_1 = X$ M M_1 -1 M M_2 -1 $\theta_2 = 10$ X_5 $\theta_3 = X$ X_6 $\theta_4 = 30$ Z = 90MM-13M - 6-M-MM M_1 -2 -2 $\theta_1 = 30$ -1 $\theta_2 = X$ X_2 -1 $\theta_3 = X$ X_5 X_6 -1 $\theta_4 = 20$ -3M + 6Z = 60M + 60M-1-M2M - 6 \uparrow M M_1 -2 $\theta_1 = 20$ -1 $\theta_2 = X$ X_2 $\theta_3 = 40$ X_5 X_4 -1 $\theta_4 = X$ Z = 180 + 20M-2M + 6-MM-1-M \uparrow X_1 -2 $\theta_1 = X$ -1 $\theta_2 = 30$ X_2 $\mathbf{2}$ $\theta_3 = 10$ X_5 -1 $\theta_4 = 20$ X_4 -1 Z = 200-1 1 - M-M \uparrow X_1 -1/2-1/21/2 X_2 -1/2 X_6 1/21/2

Cuadro 8: Tableau Simplex 05

De esta manera, podemos alcanzar el costo mínimo (de \$160) si traemos del depósito la totalidad de las cajas disponibles (40) y le compramos al proveedor el 66.67% de su stock disponible (o sea 20 de 30 cajas).

-1/2

-2

1/2

3 - M

 $\frac{-1}{-M}$

-1/2

-3

Punto 06 - Lotería

 X_4

Z = 160

Las variables de decisión son:

• X_1 : Cantidad de acciones del tipo A invertidas (en millones).

• X_2 : Cantidad de acciones invertidas del tipo B (en millones).

La función objetivo es:

$$Max Z = 0.10X_1 [\$] + 0.07X_2 [\$]$$
 (9)

Sujeta a:

$$X_{1} [\$] + X_{2} [\$] = 10 [\$]$$

$$X_{1} [\$] \le 6 [\$]$$

$$X_{2} [\$] \ge 2 [\$]$$

$$X_{1}, X_{2} \ge 0$$

Forma Estándar:

$$\begin{aligned} 0.1X_1 + 0.07X_2 + 0X_3 + 0X_4 - M\mu_1 - M\mu_2 \\ 1X_1 + 1X_2 + 0X_3 + 0X_4 + 1\mu_1 - 0\mu_2 &= 10 \\ 1X_1 + 0X_2 + 1X_3 + 0X_4 - 0\mu_1 - 0\mu_2 &= 6 \\ 0X_1 + 1X_2 + 0X_3 + 1X_4 - 0\mu_1 + 1\mu_2 &= 2 \end{aligned}$$

Cuadro 9: Tableau Simplex 06

				0,1	0,07	0	0	-M	-M	
	C_k	X_k	B_k	A_1	A_2	A_3	A_4	A_5	A_6	$\theta_i = b_i/a_{ij}$
	$\overline{-M}$	M_1	10	1	1	0	0	1	0	$\theta_1 = 10$
	0	X_3	6	1	0	1	0	0	0	$\theta_2 = X$
\leftarrow	-M	M_2	20	0	1	0	-1	0	1	$ heta_3=2$
		Z = -12M		-M	-2M	0	M	0	0	
					↑					
	-M	M_1	8	1	0	0	1	1	-1	$\theta_1 = 8$
\leftarrow	0	X_3	6	1	0	1	0	0	0	$ heta_2=6$
	0,07	X_2	2	0	1	0	-1	0	1	$\theta_3 = X$
		Z = -8M		-M	0	0	-M	0	2M	
				\uparrow						
\leftarrow	$\overline{-M}$	M_1	2	0	0	-1	1	1	-1	$ heta_1=2$
	0,1	X_1	6	1	0	1	0	0	0	$\theta_2 = X$
	0,07	X_2	2	0	1	0	-1	0	1	$\theta_3 = X$
		Z = -2M		0	0	M	-M	0	2M	
							\uparrow			
	0	X_4	2	0	0	-1	1	1	-1	
	0,1	X_1	6	1	0	1	0	0	0	
	0,07	X_2	4	0	1	-1	0	1	0	
		Z = 8, 8		0	0	-0,07	0	M	M	

Punto 07 - Turkeyco

Las variables de decisión son:

- \bullet B_1 : Cantidad de carne 'blanca' utilizada en chuleta tipo 1.
- \bullet N_1 : Cantidad de carne 'negra' utilizada en chuleta tipo 1.
- \bullet B_2 : Cantidad de carne 'blanca' utilizada en chuleta tipo 2.
- N_2 : Cantidad de carne 'negra' utilizada en chuleta tipo 2.
- ullet P_1 : Cantidad de pavos del tipo 1 utilizados.
- ullet P_2 : Cantidad de pavos del tipo 2 utilizados.

La función objetivo es:

$$Max Z = 4 \left[\frac{\$}{Kg_{C1}} \right] (B_1 + N_1) [Kg_{C1}] + 3 \left[\frac{\$}{Kg_{C2}} \right] (B_2 + N_2) [Kg_{C2}] - 10 \left[\frac{\$}{Kg_{P1}} \right] P_1 [Kg_{P1}] - 8 \left[\frac{\$}{Kg_{P2}} \right] P_2 [Kg_{P2}]$$
(10)

Sujeta a:

$$B_{1}\left[Kg_{C1}\right] + N_{1}\left[Kg_{C1}\right] \leq 50\left[Kg_{C1}\right]$$

$$B_{2}\left[Kg_{C2}\right] + N_{2}\left[Kg_{C2}\right] \leq 30\left[Kg_{C2}\right]$$

$$B_{1}\left[Kg_{C1}\right] \geq 0.7\left(B_{1} + N_{1}\right)\left[Kg_{C1}\right]$$

$$B_{2}\left[Kg_{C2}\right] \geq 0.6\left(B_{2} + N_{2}\right)\left[Kg_{C2}\right]$$

$$1\left[\frac{Kg}{Kg_{C1}}\right] B_{1}\left[Kg_{C1}\right] + 1\left[\frac{Kg}{Kg_{C2}}\right] B_{2}\left[Kg_{C2}\right] \leq 5\left[\frac{Kg}{Kg_{P1}}\right] P_{1}\left[Kg_{P1}\right] + 3\left[\frac{Kg}{Kg_{P2}}\right] P_{2}\left[Kg_{CP2}\right]$$

$$1\left[\frac{Kg}{Kg_{C1}}\right] N_{1}\left[Kg_{C1}\right] + 1\left[\frac{Kg}{Kg_{C2}}\right] N_{2}\left[Kg_{C2}\right] \leq 2\left[\frac{Kg}{Kg_{P1}}\right] P_{1}\left[Kg_{P1}\right] + 3\left[\frac{Kg}{Kg_{P2}}\right] P_{2}\left[Kg_{CP2}\right]$$

$$B_{1}, B_{2}, N_{1}, N_{2}, P_{1}, P_{2} \geq 0$$

Solución por Software 1: Ejercicio 07 - LINGO

	ю Р ю	J		
Global optim	al solution foun	d.		
Objective va			177.5556	
Infeasibilit			0.00000	
Total solver			4	
Elapsed runt	ime seconds:		0.03	
Model Class:			LP	
m , -	,	2		
Total variab		6		
Nonlinear va		0		
Integer vari	ables:	0		
Total constr	aints.	1 9		
		13		
Nonlinear co	nstraints:	0		
Total nonzer	08:	28		
		0		
Nonlinear no	π⊽61Ω2;	U		
		Warria - 1-7		
 Value R	educed Cost	Variable		
varue K 	euuceu COST	В1		
35 0000	0 00000	DΙ		
35.00000	0.000000	NT 4		
145.0000	0 00000	N 1		
15.00000	0.000000	D.0		
1 40 0000	0 00000	B2		
18.00000	0.000000	***		
		N2		
12.00000	0.000000	- ·		
		P1		
8.66667	0.000000			
		P2		
3.22222	0.000000			
		D		
	ng Dual Pari	Row		
Slack or Surpl	us Dual Pri			
177 5556	1.000000	1		
177.5556	1.000000	0		
1 0 000000	0 57770	2		
0.00000	2.577778	2		
1 0 000000	1 600000	3		
0.00000	1.622222	A		
	O A A A A A A	4		
0.00000	-0.444444	-		
	O A A A A A A	5		
0.00000	-0.444444	2		
	4 55550	6		
0.000000 Dunto 07 cent on p	1.555556	20 =		-
Punto 07 cont. en p		20 7		
0.00000	1.111111	_		
<u> </u>		8		
15.00000	0.000000			
		9		
12.00000	0.000000			
		10		
05 0000	0 00000			

Podemos observar entonces que lo más conveniente para la empresa es utilizar para la confección de la chuleta número 1, 35Kg de carne blanca y 15Kg de carne oscura, mientras que para la chuleta número 2 las cantidades son 18Kg y 12Kg respectivamente. Por otra parte es conveniente adquirir casi 9 pavos del tipo 1 y un poco más de 3 del tipo 2.

Punto 08 - Importador

Las variables de decisión son:

- X_1 : Cantidad de dinero (en millones) dispuesto para importar repuestos.
- X_2 : Cantidad de dinero (en millones) destinado a importar sustancias químicas.

La función objetivo es:

$$Max Z = 0.02X_1 [\$] + 0.06X_2 [\$]$$
 (11)

Sujeta a:

$$X_{1} [\$] + X_{2} [\$] \le 20 [\$]$$

$$X_{1} [\$] \le 16 [\$]$$

$$X_{2} [\$] \le 8 [\$]$$

$$2X_{2} [\$] - X_{1} [\$] \ge 0$$

Forma Estándar:

$$0.02X_1 + 0.06X_2 + 0X_3 + 0X_4 + 0X_5 + 0X_6$$
$$1X_1 + 1X_2 + 1X_3 + 0X_4 + 0X_5 + 0X_6 = 20$$
$$1X_1 + 0X_2 + 0X_3 + 1X_4 + 1X_5 + 0X_6 = 16$$
$$0X_1 + 1X_2 + 0X_3 + 0X_4 + 1X_5 + 0X_6 = 8$$
$$-1X_1 + 2X_2 + 1X_3 + 0X_4 + 0X_5 + 1X_6 = 0$$

Cuadro 10: Tableau Simplex 08

				0,02	0,06	0	0	0	0	
	C_k	X_k	B_k	A_1	A_2	A_3	A_4	A_5	A_6	$\theta_i = b_i/a_{ij}$
	0	X_3	20	1	1	1	0	0	0	$\theta_1 = 20$
	0	X_4	16	1	0	0	1	0	0	$\theta_2 = X$
	0	X_5	8	0	1	0	0	1	0	$\theta_3 = 8$
\leftarrow	0	X_6	0	-1	2	0	0	0	1	$\theta_4 = X$
		Z = 0		-0,02	-0,06	0	0	0	0	
					↑					
\leftarrow	0	X_3	20	3/2	0	1	0	0	-1/2	$\theta_1=13,33$
	0	X_4	16	1	0	0	1	0	0	$\theta_2 = 16$
	0	X_5	8	1/2	0	0	0	1	-1/2	$\theta_3 = 16$
	0,06	X_2	0	-1/2	1	0	0	0	1/2	$\theta_4 = X$
		Z = 0		-0,05	0	0	0	0	0,03	
				↑						
	0,02	X_1	13,33	1	0	2/3	0	0	-1/3	
	0	X_4	2,66	0	0	-2/3	1	0	1/3	
	0	X_5	1,33	0	0	-1/3	0	1	-1/3	
	0,06	X_2	6,66	0	1	1/3	0	0	1/3	
		Z = 0,66		0	0	1/30	0	0	1/75	

Entonces, lo recomendable resulta la inversión de 13.33 millones aproximadamente en repuestos para maquinarias agrícolas y 6.66 millones por otra parte en sustancias químicas.

Punto 09 - Compañía de Seguros

Las variables de decisión son:

- \bullet X_1 : Unidades de 'Riesgos Especiales' vendidas.
- X_2 : Unidades de 'Hipotecas' vendidas.

La función objetivo es:

$$Max Z = 5 \left[\frac{\$}{u1} \right] X_1 [u1] + 2 \left[\frac{\$}{u2} \right] X_2 [u2]$$
 (12)

Sujeta a:

$$3\left[\frac{Hs}{u1}\right] X_{1}\left[u1\right] + 2\left[\frac{Hs}{u2}\right] X_{2}\left[u2\right] \le 2400\left[Hs\right]$$

$$1\left[\frac{Hs}{u2}\right] X_{2}\left[u2\right] \le 800\left[Hs\right]$$

$$2\left[\frac{Hs}{u1}\right] X_{1}\left[u1\right] \le 1200\left[Hs\right]$$

$$X_{1}, X_{2} > 0$$

Forma Estándar:

$$5X_1 + 2X_2 + 0X_3 + 0X_4 + 0X_5$$
$$3X_1 + 2X_2 + 1X_3 + 0X_4 + 0X_5 = 2400$$
$$0X_1 + 1X_2 + 0X_3 + 1X_4 + 0X_5 = 800$$
$$2X_1 + 0X_2 + 0X_3 + 0X_4 + 1X_5 = 1200$$

Cuadro 11: Tableau Simplex 09

				5	2	0	0	0	
	C_k	X_k	B_k	A_1	A_2	A_3	A_4	A_5	$\theta_i = b_i/a_{ij}$
	0	X_3	2400	3	2	1	0	0	$\theta_1 = 800$
	0	X_4	800	0	1	0	1	0	$\theta_2 = X$
\leftarrow	0	X_5	1200	2	0	0	0	1	$\theta_3 = 600$
		Z = 0		-5	-2	0	0	0	
				\uparrow					
\leftarrow	0	X_3	600	0	2	1	0	-3/2	$ heta_1=300$
	0	X_4	800	0	1	0	1	0	$\theta_2 = 800$
	5	X_1	600	1	0	0	0	1/2	$\theta_3 = X$
		Z = 3000		0	-2	0	0	5/2	
					\uparrow				
	2	X_2	300	0	1	1/2	0	-3/4	
	0	X_4	500	0	0	-1/2	1	3	
	5	X_1	600	1	0	0	0	1/2	
		Z = 3600		0	0	1	0	1	

Podemos observar que lo más beneficioso sería la venta de 600 unidades del producto 1 ('Riesgo Especial') y 300 unidades del producto 2 ('Hipotecas'). También cabe aclarar que las horas administrativas no se llegan a consumir en su totalidad, existiendo un sobrante de

500, que podrían ser utilizadas en otras actividades.

Punto 10 - Criador de Perros

Las variables de decisión son:

- X_1 : Cantidad de alimento del tipo 1 utilizado.
- X_2 : Cantidad de alimento del tipo 2 utilizado.

La función objetivo es:

$$Min \ Z = 50 \left[\frac{\$}{Kg_1} \right] X_1 [Kg_1] + 25 \left[\frac{\$}{Kg_2} \right] X_2 [Kg_2]$$
 (13)

Sujeta a:

$$0.1 \left[\frac{Kg_G}{Kg_1} \right] X_1 [Kg_1] + 0.3 \left[\frac{Kg_G}{Kg_2} \right] X_2 [Kg_2] \ge 8 [Kg_G]$$

$$0.3 \left[\frac{Kg_C}{Kg_1} \right] X_1 [Kg_1] + 0.4 \left[\frac{Kg_C}{Kg_2} \right] X_2 [Kg_2] \ge 19 [Kg_C]$$

$$0.3 \left[\frac{Kg_{Ca}}{Kg_1} \right] X_1 [Kg_1] + 0.1 \left[\frac{Kg_{Ca}}{Kg_2} \right] X_2 [Kg_2] \ge 7 [Kg_{Ca}]$$

$$X_1, X_2 \ge 0$$

Forma Estándar:

$$50X_1 + 25X_2 + 0X_3 + 0X_4 + 0X_5 + M\mu_1 + M\mu_2 + M\mu_3$$

$$0.1X_1 + 0.3X_2 - 1X_3 + 0X_4 + 0X_5 + 1\mu_1 + 0\mu_2 + 0\mu_3 = 8$$

$$0.3X_1 + 0.4X_2 + 0X_3 - 1X_4 + 0X_5 + 0\mu_1 + 1\mu_2 + 0\mu_3 = 19$$

$$0.3X_1 + 0.1X_2 + 0X_3 + 0X_4 - 1X_5 + 1\mu_1 + 0\mu_2 + 1\mu_3 = 7$$

Cuadro 12: Tableau Simplex 10

				50	25	0	0	0	M	M	M	
	~	77	D			-	-	-				0 1 /
	C_k	X_k	B_k	A_1	A_2	A_3	A_4	A_5	A_6	A_7	A_8	$\theta_i = b_i/a_{ij}$
\leftarrow	M	M_1	8	0,1	0,3	-1	0	0	1	0	0	$\theta_1=26,666$
	M	M_2	19	0,3	0,4	0	-1	0	0	1	0	$\theta_2 = 47, 5$
	M	M_3	7	0,3	0,1	0	0	-1	0	0	1	$\theta_3 = 70$
		Z = 34M		0,7M	0,8M	-M	-M	-M	0	0	0	
					\uparrow							
	25	X_2	26,66667	0,33	1	-3,33	0	0	3,33	0	0	$\theta_1 = X$
\leftarrow	M	$oldsymbol{M_2}$	8,333333	0,16	0	$1,\!33$	-1	0	-1,33	1	0	$\theta_2=6,25$
	M	M_3	4,3333333	$0,\!27$	0	0,33	0	-1	-0,33	0	1	$\theta_3 = 13$
		Z=12,67M		0,43M	0	1,66M	-M	-M	2,67M	0	0	
						\uparrow						
	25	X_2	47,5	0,75	1	0	-2,5	0	0	2,5	0	$\theta_1 = X$
	0	X_3	6,25	0,13	0	1	-0,75	0	-1	0,75	0	$\theta_2 = X$
\leftarrow	M	M_3	$2,\!25$	0,23	0	0	$0,\!25$	-1	0	-0.25	1	$ heta_3=9$
		Z=2,25M		0,23M	0	0	0,25M	-M	-M	-1,25M	0	
							\uparrow					
	25	X_2	70	3	1	0	0	-10	$\theta_1 = 23, 3$			
	0	X_3	13	0,8	0	1	0	-3	$\theta_2 = 41,56$			
\leftarrow	0	X_4	9	0,9	0	0	1	-4	$ heta_3=10$			
		Z = 1750		25	0	0	0	-250				
				\uparrow								
	25	X_2	40	0	1	0	-3,33	3,33				
	0	X_3	5	0	0	1	-2,66	0,55				
	50	X_1	10	1	0	0	1,11	-4,44				
		Z = 1500		0	0	0	-250/9	-1250/9				

En este caso, sugerimos al criador de perros el siguiente plan, con el cual podrá satisfacer

las necesidades alimentarias de sus animales con el menor costo:

- Utilizar 10 unidades del alimento tipo 1
- Utilizar 40 unidades del alimento tipo 2
- La necesidad de grasas saturadas de los animales se encuentra satisfecha con un nivel por encima del requerido.

Punto 11 - Banco Gane

Las variables de decisión son:

- X_1 : Dinero (en millones) que se destina a préstamos Personales.
- ullet X_2 : Dinero (en millones) que se destina a préstamos Automovilísticos.
- lacktriangle X_3 : Dinero (en millones) que se destina a préstamos para el Hogar.
- X_4 : Dinero (en millones) que se destina a préstamos Agrícolas.
- X_5 : Dinero (en millones) que se destina a préstamos Comerciales.

La función objetivo es:

$$Max Z = 0.026X_1 [\$] + 0.051X_2 [\$] + 0.086X_3 [\$] + 0.069X_4 [\$] + 0.078X_5 [\$]$$
 (14)

Sujeta a:

$$X_{4} [\$] + X_{5} [\$] \ge 0.4 (X_{1} + X_{2} + X_{3} + X_{4} + X_{5}) [\$]$$

$$X_{3} [\$] \ge 0.5 (X_{1} + X_{2} + X_{3}) [\$]$$

$$(0.1X_{1} + 0.07X_{2} + 0.03X_{3} + 0.05X_{4} + 0.02X_{5}) [\$] \le 0.04 (X_{1} + X_{2} + X_{3} + X_{4} + X_{5}) [\$]$$

$$(X_{1} + X_{2} + X_{3} + X_{4} + X_{5}) [\$] \le 12 [\$]$$

Cuadro 13: Tableau Simplex 11

				2	4	0	0	
	C_k	X_k	B_k	A_1	A_2	A_3	A_4	$\theta_i = b_i/a_{ij}$
\leftarrow	0	X_3	5	1	2	1	0	$\theta_1 = 1.66$
	0	X_4	4	1	1	0	1	$\theta_2 = 4$
		Z = 0		-2	-4	0	0	
					\uparrow			
	4	X_2	2,5	0,5	1	0,5	2,5	$\theta_1 = 5$
\leftarrow	0	X_4	1,5	$0,\!5$	0	-0,5	1	$ heta_2=3$
		Z = 10		0	0	2	0	
				\uparrow				
\leftarrow	4	X_2	1	1	2	1	0	
	2	X_1	3	1	1	0	1	
		Z = 10		0	0	2	0	
							↑	

Solución por Software 2: Ejercicio 11 - LINGO

	<u> </u>					
Global optimal s	olution found.					
Objective value:			0.9936000			
Infeasibilities:			0.00000			
Total solver ite:	rations:		2			
Elapsed runtime	seconds:		0.07			
Model Class:			LP			
Total variables:		6				
Nonlinear variab		0				
Integer variables	S:	0				
m		4.0				
Total constraints		10				
Nonlinear constr	aints:	0				
Total nonzeros:		28				
Nonlinear nonzero	08.	0				
Nonlinear honzer	os.	O				
Variable	Value	Reduce	d Cost			
X1	0.00000	0.6	000000E-01			
X2	0.00000	0.3	500000E-01			
Х3	7.200000	0.	000000			
X4	0.00000	0.9	000000E-02			
X5	4.800000	0.00000				
Z2	0.00000	0.	000000			
Row	Slack or Surplus	Dual	Price			
1	0.9936000	1.	000000			
2	0.00000	-0.8000000E-02				
3	3.600000	0.	000000			
4	0.1680000	0.	000000			
5	0.00000	0.8	280000E-01			
6	0.00000	0.00000				
7	0.00000		000000			
8	7.200000		000000			
9	0.00000		000000			
10	4.800000	0.	000000			

La mejor política de préstamos para el Banco Gane es la siguiente:

- Destinar 7,2 millones a préstamos para casas.
- Destinar 4,8 millones a préstamos comerciales.

De esta manera, la ganancia del banco sería de \$993600.

Punto 12 - Papelera Moderna

Las variables de decisión son:

- X_1 : Cantidad de cortes en posición 7-9.
- X_2 : Cantidad de cortes en posición 5-5-7.
- X_3 : Cantidad de cortes en posición 5-5-9.
- X_4 : Cantidad de cortes en posición 5-5-5.
- X_5 : Cantidad de cortes en posición 9-9.
- X_6 : Cantidad de cortes en posición 7-7-5.

La función objetivo es:

$$\begin{split} Min~Z &= 4 \left[\frac{pies}{C} \right] X_1 \left[C \right] + 3 \left[\frac{pies}{C} \right] X_2 \left[C \right] + 1 \left[\frac{pies}{C} \right] X_3 \left[C \right] \\ &+ 0 \left[\frac{pies}{C} \right] X_4 \left[C \right] + 2 \left[\frac{pies}{C} \right] X_5 \left[C \right] + 1 \left[\frac{pies}{C} \right] X_6 \left[C \right] \end{split}$$

Sujeta a:

$$2X_{2}[C] + 2X_{3}[C] + 4X_{4}[C] + 1X_{6}[C] \ge 150[C]$$
$$1X_{1}[C] + 1X_{2}[C] + 2X_{6}[C] \ge 200[C]$$
$$1X_{1}[C] + 1X_{3}[C] + 2X_{5}[C] \ge 300[C]$$
$$X_{1}, X_{2}, X_{3}, X_{4}, X_{5}, X_{6} \ge 0$$

	C_k	X_k	B_k	A_1	A_2	A_3	A_4	A_5	A_6	A_7	A_8	A_9
\leftarrow	0	X_4	25/2	-0,13	0,38	1/2	1	0	0	-1/4	0,13	0
	1	X_6	100	1/2	1/2	0	0	0	1	0	-1/2	0
	2	X_5	150	1/2	0	1/2	0	1	0	0	0	-1/2
		Z = 400		5/2	5/2	0	0	0	0	0	1/2	1
						↑						
	1	X_3	25	-1/4	3/4	1	2	0	0	-1/2	1/4	0
	1	X_6	100	1/2	1/2	0	0	0	1	0	-1/2	0
	2	X_5	137,5	0,63	-0,38	0	-1	1	0	1/4	-0,13	-1/2
		Z = 400		5/2	5/2	0	0	0	0	0	1/2	1

Cuadro 14: Tableau Simplex 12

Podemos ver que existen múltiples soluciones:

- Solución 01:
 - Realizar 100 cortes con el esquema 6
 - Realizar 150 cortes con el esquema 5
- Solución 02:
 - Realizar 25 cortes con el esquema 3
 - Realizar 100 cortes con el esquema 6
 - Realizar 137,5 cortes con el esquema 5

Ambas estrategias nos permiten alcanzar un desperdicio de sólo 400 pies

Punto 13 - Ciudad de Progreso

Las variables de decisión son:

- X_1 : Cantidad de colectivos necesarios de 00 a 08 Hs.
- X_2 : Cantidad de colectivos necesarios de 04 a 23 Hs.
- X_3 : Cantidad de colectivos necesarios de 08 a 16 Hs.
- X_4 : Cantidad de colectivos necesarios de 12 a 20 Hs.
- X_5 : Cantidad de colectivos necesarios de 16 a 24 Hs.
- X_6 : Cantidad de colectivos necesarios de 20 a 04 Hs.

La función objetivo es:

$$Min \ Z = \sum_{i=1}^{6} X_i [C]$$
 (15)

Sujeta a:

$$X_{1}[C] + X_{6}[C] \ge 4[C]$$

$$X_{1}[C] + X_{2}[C] \ge 8[C]$$

$$X_{2}[C] + X_{3}[C] \ge 10[C]$$

$$X_{3}[C] + X_{4}[C] \ge 7[C]$$

$$X_{4}[C] + X_{5}[C] \ge 12[C]$$

$$X_{5}[C] + X_{6}[C] \ge 4[C]$$

$$X_{1}, X_{2}, X_{3}, X_{4}, X_{5}, X_{6} \ge 0$$

Cuadro 15: Tableau Simplex 13.A

				1	1	1	1	1	1	0	0	0	0	0	0
	C_k	X_k	B_k	A_1	A_2	A_3	A_4	A_5	A_6	A_7	A_8	A_9	A_{10}	A_{11}	A_{12}
	1	X_1	4	1	0	0	0	0	1	-1	0	0	0	0	0
	1	X_2	10	0	1	1	0	0	0	0	0	-1	0	0	0
\leftarrow	0	X_8	6	0	0	1	0	0	1	-1	1	-1	0	0	0
	1	X_4	8	0	0	0	1	0	-1	0	0	0	0	-1	1
	0	X_{10}	1	0	0	-1	0	0	-1	0	0	0	1	-1	1
	1	X_5	4	0	0	0	0	1	1	0	0	0	0	0	-1
		Z = 26		0	0	0	0	0	0	-1	0	-1	0	-1	0
						\uparrow									
	1	X_1	4	1	0	0	0	0	1	-1	0	0	0	0	0
	1	X_2	4	0	1	0	0	0	-1	1	-1	0	0	0	0
	1	X_3	6	0	0	1	0	0	1	-1	1	-1	0	0	0
	1	X_4	8	0	0	0	1	0	-1	0	0	0	0	-1	1
	0	X_{10}	7	0	0	0	0	0	0	-1	1	-1	1	-1	1
\leftarrow	1	X_5	4	0	0	0	0	1	1	0	0	0	0	0	-1
		Z = 26		0	0	0	0	0	0	-1	0	-1	0	-1	0
									\uparrow						

Cuadro 16: Tableau Simplex 13.B

	C_k	X_k	B_k	A_1	A_2	A_3	A_4	A_5	A_6	A_7	A_8	A_9	A_{10}	A_{11}	A_{12}
\leftarrow	1	$oldsymbol{X_1}$	0	1	0	0	0	-1	0	-1	0	0	0	0	1
	1	X_2	8	0	1	0	0	1	0	1	-1	0	0	0	-1
	1	X_3	2	0	0	1	0	-1	0	-1	1	-1	0	0	1
	1	X_4	12	0	0	0	1	1	0	0	0	0	0	-1	0
	0	X_{10}	7	0	0	0	0	0	0	-1	1	-1	1	-1	1
	1	X_6	4	0	0	0	0	1	1	0	0	0	0	0	-1
		Z=26		0	0	0	0	0	0	-1	0	-1	0	-1	0
															\uparrow
	0	X_{12}	0	1	0	0	0	-1	0	-1	0	0	0	0	1
	1	X_2	8	1	1	0	0	0	0	0	-1	0	0	0	0
	1	X_3	2	-1	0	1	0	0	0	0	1	-1	0	0	0
	1	X_4	12	0	0	0	1	1	0	0	0	0	0	-1	0
	0	X_{10}	7	-1	0	0	0	1	0	0	1	-1	1	-1	0
	1	X_6	4	1	0	0	0	0	1	-1	0	0	0	0	0
		Z = 26		0	0	0	0	0	0	-1	0	-1	0	-1	0