$$\frac{dU}{dt} = r_1 U_1 \left(1 - \frac{U_1 + \alpha U_2}{K_1} \right), \frac{dU_2}{dt} = r_2 U_2 \left(1 - \frac{U_2 + \beta U_1}{K_2} \right)$$

Typically, For species in the same niche,
$$\alpha\beta=1$$
.

Lotka-Volterra:

More realistic:

Rosenzueig-MacArthur

Functional-response I(U): Type I (Linear) $\underline{F}(\mathcal{U}) = s\mathcal{U}$ Type II (Holling's disc equation): E(U) = SU 1/8 we do this might be a

5-attack lencounter rate good idea to do linear sometion responsas

h - handling time / processing sood time. Sirst som Everything up to here is 8000 Essential Simplicity. Three populations: Biology Three populations.

Let = r, U, (1-U, +alle) - V \overline{P}, (U,) | Inspired by

U=+BU, -V \overline{P}, (Uz) | Memerical Models dl2 = 242 (1 - 42 + PU,) - V P(U2) in Biology"pg 234 $\frac{dV}{dt} = e_i V \underline{\Phi}_i(U_i) + e V \underline{\Phi}_i(U_i) - \beta V$ Not sure how to introduce competing predators.

Routh-Hurwitz is used to discover is these species Can coexist. Routh-Hunitz Criteria Given the characteristic equation $\int_{1}^{k} + a_{1} \int_{1}^{k-1} + a_{2} \int_{1}^{k-2} + ... + a_{k} = 0$ $H_1 = (a_1)$ $H_2 = (a_1 | a_3 | a_2)$, $H_3 = (a_1 | a_2 | a_1)$ $a_1 | a_2 | a_3$ $H_{i} = \begin{cases} a_{1} & 1 & 0 & 0 & \dots & 0 \\ a_{3} & a_{2} & a_{1} & 1 & \dots & 0 \\ a_{5} & a_{4} & a_{3} & a_{2} & \dots & 0 \\ a_{2i-1} & a_{2i-2} & a_{2i-3} & 2i-4 & \dots & a_{j} \end{cases}$ $H_{k} = \begin{cases} a_{1} & 1 & 0 & \dots & 0 \\ a_{3} & a_{2} & a_{1} & \dots & 0 \\ a_{3} & a_{2} & a_{1} & \dots & 0 \\ \vdots & \vdots & \vdots & \vdots & \vdots \\ 0 & 0 & 0 & \dots & a_{k} \end{cases}$ where the (l, m) term in the matrix H; is all-m for O < 21-m < k, 1 For 21=m, 0 For 21=m or 21=h+m. The steady-state U is stable 188 the determinants of all determinants of all Hurwitz matrices are positive: det Hi>0 (i=1, 2,..., R)

Not:	sve h)oN	to o	leu]	will	4	0%	•						
Introd	veina	80	me	/s:										
	= 1,ll				(le)	- 1	(万	(11)	P		1.		, ,	
													val = impvk	
dt=	242	1-	K	2	- 1	/ L	(Uz			1			MINITOR	
dV_	eV	\P_ (u.)-	-en	/ <u>\$</u> ,	(4,)-,	3/-	- FA	R	n _E	RS		
									ノ					
	۶, ۷	(()-	0.41	2	350	(t_n)								
		1		'										
	18	1	0.	4/2	Ther	1 10	Som	× //	MON	d.				
							700							,
		Bo	it is	s V	< o.	4 V ₀	alm	endy	hen	Son	cd	inb	oduce	zl
		Вс	it is	3 V	< 0. B/	4 Vo 1D.	alm	endy	ven ven	Son	ed	into	odra	el.
		Bo	it is	3 V	co.	4 V.	alm	endy	Ven	Son	red .	into	odice	
		Bo	/t i8	\$ V	co.	4 Vo 1D.	alm	endy	Pen	Sen	red	into	odice	
		Bo	11 18	3 V	(< 0.	4 V.	aln	endy	Pen	Sen	red	inb	odice	
		Bo	11 18		60. B/	4 V.	aln	endy	Pen	Sen	red	inb	odice	
		Bo			60. Br	4 V.	ahn	endy	Pen	Sen	red	inb	odice	
		Bo			Co.	4 V.	ahr	endy	Pen	Sen	red	inb	odice	
		Bo			(< 0.	4 V.0	aln	endy	Pen	Sen	red	inb	odica	