Тренировочное задание по теме "Соствления отчета по проделалнной работе".

Целевая аудитория: заказчик исследования. **Основная мысль отчёта**: Отображение существенных критических мест в данной задаче (<u>несбалансированность</u> <u>предсказываемых классов</u> в предоставленном наборе данных).

Выдвижение альтернативных задач на основе существующих данных, которые можно решить.

Способ коммуникации: отчёт для самостоятельного изучения с последующим обсуждением.

Отчет по решению задачи

"Проведение моделирования классификации вин"

Содержение

- Постановка задачи
- Описане данных и выявление проблем
- Подготовка данных для моделирования
- Моделироване и анализ результатов
- Возможные пути развития

Постановка задачи.

Для отбора ассортимента продаваемых вин в сети магазинов ААА данный момент для этого используется экспертная оценка.

Сложность данного метода заключается в следующем:

- 1. Требуется физически предоставить образцы вин эксперту для вынесения оценки, на проведение экспертизы и составления отчёта требуется время.
- 2. Категоризация сильно зависит от эксперта и в случае вынужденной замены человека, выполняющего эту работу, возможно смещение оценки в ту или иную сторону.

Постановка задачи.

Была выдвинута гипотеза:

• С помощью алгоритмов машинного обучения можно автоматизировать процесс категоризации новых образцов вин, основываясь на данных проведенных ранее экспертиз.

При качестве работы модели по критерию **ассигасу равному 80%** и выше можно **сократить траты** на экспертную оценку на 40000 руб/мес и **ускорить процесс** категоризации вин на 25мин/образец.

$$accuracy = \frac{число вернрых предсказаний классов}{общее число предсказаний} *100 %$$

Набор данных представляет из себя таблицу с количеством образцов 6497. Каждый образец охарактерезиван 12 свойствами (параметрами). Последнее свойство в таблице (качество образца) требуется предсказать.

тип	фиксированная кислотность	летучая кислотность	лимонная кислота	остаточный сахар	хлориды	свободный диоксид серы	общий диоксид серы	плотность	рН	сульфаты	алкоголь	качетво
white	7.0	0.27	0.36	20.7	0.045	45.0	170.0	1.0010	3.00	0.45	8.8	6
white	6.3	0.30	0.34	1.6	0.049	14.0	132.0	0.9940	3.30	0.49	9.5	6
white	8.1	0.28	0.40	6.9	0.050	30.0	97.0	0.9951	3.26	0.44	10.1	6

Существенным недостатком в данном наборе данных является сильная несбалансированность по классам.

Другие особенности:

- 10 образцов в предоставленном наборе обладают пропусками по одному из параметров в данных.
- **102** образца (около2.5%) значительно отличаются по одному из параметров от остальных в предоставленном наборе данных. Наличие таких данных может быть как ошибкой при занесении данных об образцах, так и уникальностью данных образцов. Пример подобных образцов с указанием параметра со значительным отличем приведен ниже.

	тип	фиксированная кислотность	летучая кислотность	лимонная кислота	остаточный сахар	хлориды	свободный диоксид серы	общий диоксид серы	плотность	рН	сульфаты	алкоголь	качетво
0	white	7	0.27	0.36	20.7	0.045	45	170	1.001	3	0.45	8.8	6
7	white	7	0.27	0.36	20.7	0.045	45	170	1.001	3	0.45	8.8	6
182	white	6.8	0.28	0.4	22	0.048	48	167	1.001	2.93	0.5	8.7	5
191	white	6.8	0.28	0.4	22	0.048	48	167	1.001	2.93	0.5	8.7	5
207	white	10.2	0.44	0.88	6.2	0.049	20	124	0.9968	2.99	0.51	9.9	4
325	white	7.5	0.27	0.31	5.8	0.057	131	313	0.9946	3.18	0.59	10.5	5
444	white	6.9	0.24	0.36	20.8	0.031	40	139	0.9975	3.2	0.33	11	6
745	white	7.4	0.2	1.66	2.1	0.022	34	113	0.99165	3.26	0.55	12.2	6
946	white	8.2	0.345	1	18.2	0.047	55	205	0.99965	2.96	0.43	9.6	5
1051	white	6.9	0.21	0.81	1.1	0.137	52	123	0.9932	3.03	0.39	9.2	6

Другие особенности:

- Наблюдается взаимосвязь между отдельными параметрами в предоставленном наборе данных. В качестве меры взаимосвязи была выбрана корреляция. Так корреляция между параметрами 'алкоголь' и 'плотность' равна -0.69 (чем выше содержание алкоголя, тем ниже плотность). Высокая корреляция между параметрами образцов может привести к тому, что обученная модель может получиться неустойчивой: при незначительном изменении одного из параметров поведение модели изменится гораздо сильнее требуемого и предсказание класса качества вина будет ошибочным.

Подготовка данных для моделирования

Меры по обработке входных данных:

- 1. Принято решение об **исключении** из набора данных **образцов с пропусками и со значительными отличиями** в параметрах. Предполагается, что это приведет к более устойчивой работе модели по основному набору.
- 2. Для исключения взаимосвязей между параметрами образцов предлагается произвести создание новых факторов на базе параметров с высокой корреляцией в виде комбинаций произведений этих параметров. При это использованные для создания новых факторов параметры измываются из описания образцов.

Таким образом предлагается **уменьшить взаимную корреляцию признаков**, используемых при создании модели.

Подготовка данных для моделирования

Таким образом были сформированы новые 4 фактора:

 Φ актор 1 = фиксированная кислотность * плотность

 Φ актор 2 = летучая кислотность * лимонная кислота * хлориды * общий диоксид серы

 Φ актор 3 = остаточный сахар * свободный диоксид серы * общий диоксид серы

 Φ актор 4=плотность *алкоголь

Использоыванные для создания новых факторов признаки не будут использоваться при создании модели классификации.

Моделироване и анализ результатов

Полученный набор данных был использован для обучения многоклассового классификатора. Качество работы по критерию по критерию ассигасу составило 42% на тестовой выборке, что существенно ниже требуемого уровня.

Моделироване и анализ результатов

	Класс 3	Класс 4	Класс 5	Класс 6	Класс 7	Класс 8	Класс 9
Предсказанный класс 3	1	4	3	1	3	0	0
Предсказанный класс 4	0	23	27	16	8	3	0
Предсказанный класс 5	13	90	348	144	25	5	0
Предсказанный класс 6	10	71	214	299	160	45	0
Предсказанный класс 7	0	16	24	105	128	58	1
Предсказанный класс 8	0	4	0	12	24	20	1
Предсказанный класс 9	0	0	0	1	1	1	0

Таблица предсказаний по классам

Здесь:

колонки - классы вина, выставленные экспертом,

строки - предсказанный математической моделью класс вина.

На диагонали марицы находится верное количество угаданных образцов (предсказание модели совпадает с классом, выставленный экспертом)

Заметно, что модель стремится ставить оценки ближе к среднему значению качества по всему набору данных.

Моделироване и анализ результатов

Следует отметить, модель в большинстве случев ошибалась **не более чем 1 класс** вверх или вниз относительно экспертной оценки.

Если исключить эти ошибки (не более чем на 1 класс) из общего числа, качество прогнозирования существенно увеличивается.

Возможные пути развития

Так как математическая модель не смогла показать требуемое качество работы, возможны следующие варианты дальнейшей работы:

- 1. Отказ от использования алгоритмов машинного обучения в связи с недостижением требуемого качества.
- 2. Остановка исследования для увеличения количества тренировочных данных, импользуемых при машинном обучении. Классификация производится с помощью экспетизы, новые отчеты добавляются к тренировочным данным для машинного обучения
- 3. Огрубление классификации путём уменьшения количетва классов (использовать не 9, а 3 класса).
 - 4. Исследование использования других моделей классификации.
- 5. Запуск модели в существующем виде для сравнения количества проданного вина при экспетрной оценке и с помощью алгоритмов машинного обочения (A/B тестирование)