

Применение нейронных сетей для улучшения решения уравнения переноса

Выполнил: Климов О. Д., ФН2–71Б под руководством д. ф.-м. н. Галанина М. П.

Постановка задачи

Формулировка

- Необходимо для одномерного уравнения переноса реализовать алгоритм улучшения решения на основе искусственных нейронных сетей.
- ② Протестировать работу программы на системе из 5 тестов (рис.1): левый и правый треугольники, прямоугольник, косинус, зуб.

▶ Приложение 1

Уравнение переноса

Задача Коши для уравнения переноса

$$\begin{cases} \frac{\partial u}{\partial t} + a \frac{\partial u}{\partial x} = 0, \\ u(x,0) = u_0(x), \end{cases}$$
 где $a = const > 0, \quad t \in (0,T).$ (1)

Решение имеет вид $u=u_0(x-at)$ и заключается в сносе неизменного профиля по характеристикам. Численные схемы имеют ряд проблем.

(а) Пример схемы с диссипацией

(b) Пример схемы с дисперсией

Рис. 2: Пример точного (буква М) и численного решения уравнения переноса при некоторых различных числах Куранта. Иллюстрации взяты из [1, с.416]

Понятие нейронной сети

Нейронная сеть — это модель основанная на принципе организации биологических нейронных сетей. Ее можно интерпретировать совершенно по-разному.

Нейрон

$$y_k = \varphi(u_k + b_k), \quad u_k = \sum_{j=1}^m w_{kj} x_j$$
 (2)

где x_1, x_2, \ldots, x_m — входные сигналы, $w_{k1}, w_{k2}, \ldots, w_{km}$ — веса связей нейрона k,

 u_k — линейная комбинация входных воздействий, b_k — порог,

arphi — функция активации, y_k — выходной сигнал.

Функции активации

- ullet $\varphi(x) = rac{1}{1 + \exp^{-x}}$ Сигмоида
- $\varphi(x) = \max(0, x)$ ReLU

Структура сети

В нейронной сети нейроны упорядочено располагаются по слоям и связываются между собой направленными связями. Каждый нейрон принимает входные сигналы от нейронов предыдущего слоя, преобразует их с помощью весов и функции активации и передает результат на следующий слой.

- Входной слой принимает $x = (x_1, x_2, \dots, x_m)$
- Скрытые слои выполняют основную обработку информации
- Выходной слой представляет результат $y = (y_1, y_2, \dots, x_n)$

Обучение сети

Обучением нейронной сети называется процесс настройки весов w_{ij} таким образом, минимизировать ошибку между результатом сети и целевым значением на обучающем наборе данных. [3, с.85] Вводят функцию потерь $L(y_{pred}, y_{true}) = \frac{1}{n} \sum_{i=1}^{n} (y_{pred,i} - y_{true,i})^2$

Алгоритм метода обратного распространения ошибки

- **1** Прямой ход: для входных данных x вычисляется результат y
- ② Обратный ход: вычисляется $\delta_k = \frac{\partial L}{\partial y_k} \cdot \varphi'(u_k)$ ошибка на выходном слое $\delta_j = \sum_{k=1}^n \delta_k w_{kj} \cdot \varphi'(u_j)$ ошибка на скрытых слоях
- $oldsymbol{\circ}$ Обновление параметров: $w_{kj}:=w_{kj}-\eta\cdot rac{\partial L}{\partial w_{kj}},$ где $rac{\partial L}{\partial w_{kj}}=\delta_k\cdot x_j,\quad \eta$ скорость обучения

Сверточная нейронная сеть

Сверточная нейронная сеть — особый тип сетей, который характеризуется наличием операций свертки и пуллинга.

Свертка и пуллинг • Приложение 3

Операция свертки для матрицы x и ядра свертки w с размером $h \times h$ определяется следующим образом:

$$y_{ij} = \sum_{m=0}^{h-1} \sum_{n=0}^{h-1} x_{i+m,j+n} \cdot w_{mn}.$$

Для сохранения исходной размерности добавляют нулевой **паддинг** — обрамление изображение нулями. Без паддинга размер уменьшается на (h-1) пикс. по каждому измерению.

Слои пуллинга (подвыборки) производят функцию уменьшения размерности данных при сохранении признаков.

Реализация алгоритма

Методика подготовки наборов данных

- Пары изображений «шумное-идеальное» созданы с помощью Wolfram Mathematica.
- 128х128 рх размер изображения, канал ч/б
- 3 теста левый и правый треугольник, прямоугольник, тесты 4, 5 оставлены для тестирования
- 2 обучающих набора данных: однородные и неоднородные фигуры соответственно. Набор №1 — 500 пар, набор №2 — 2000 пар

Способ реализации программы

- Язык программирования Python, фреймворк TensorFlow (TF)
- Использование функций создания моделей и их обучения из ТЕ
- Собственная реализация функций работы с наборами данных, их визуализации и расчета оценок
- Использование графического процессора для расчетов

Реализация алгоритма

Архитектура модели • Приложение 4

- Входной слой: Принимает изображения размером 128×128 с одним каналом (градации серого).
- Сверточные слои: Используются 4 последовательные свертки с ядром размером 3×3 . Каждая свертка сопровождается функцией активации ReLU.
- Уменьшение размерности (MaxPooling): После сверточных слоев применяется слой пулинга с блоком 2×2 .
- Декодирующие слои (UpSampling): На этапе восстановления разрешения используются транспонированные свертки с ядром 3×3 и операцией увеличения размера (UpSampling) для восстановления изображения до исходного размера.
- Выходной слой: Завершающий слой с функцией активации sigmoid, который возвращает выходное изображение.

Результаты для набора №1

Расчет оценок

$$\varkappa = L_{in} - L_{out}, \; \psi = L_{in}/L_{out}, \;$$
где $L_{in} = L(x, y_{true}), \; L_{out} = L(y_{pred}, y_{true})$

(a) Тест 1 для набора №1: $L_{in}=0.0198, L_{out}=0.0003, \varkappa=0.0194, \psi=60.07$

(b) Тест 2 для набора №1: $L_{in}=0.0205, L_{out}=0.0001, \varkappa=0.0204, \psi=254.75$

Результаты для набора №1

(c) Тест 3 для набора №1:
$$L_{in}=0.0195, L_{out}=0.0001, \varkappa=0.0194, \psi=220.01$$

(d) Тест 4 для набора №1: $L_{in}=0.0218, L_{out}=0.0043, \varkappa=0.017, \psi=5.06$

Результаты для набора №1 • дополнительные результаты в Приложение 5

(e) Тест 5 для набора №1: $L_{in}=0.0185, L_{out}=0.0108, \varkappa=0.0076, \psi=1.71$

Рис. 6: Результаты для набора №1 («входное-выходное-целевое» изобр.)

Таблица 1: Результаты тестирования алгоритма для набора данных №1

Тип теста	L_{in}	L_{out}	\varkappa	$ \psi $
Тест 1	0.0198	0.0003	0.0194	60.07
Тест 2	0.0205	0.0001	0.0204	254.75
Тест 3	0.0195	0.0001	0.0194	220.01
Тест 4	0.0218	0.0043	0.0170	5.06
Тест 5	0.0185	0.0108	0.0076	1.71

Результаты для набора №2

(a) Тест 1 для набора №1: $L_{in}=0.0198, L_{out}=0.0107, \varkappa=0.0091, \psi=1.84$

(b) Тест 2 для набора №1: $L_{in}=0.0205, L_{out}=0.0118, \varkappa=0.0087, \psi=1.73$

Результаты для набора №2

(c) Тест 3 для набора №1: $L_{in}=0.0195, L_{out}=0.0109, \varkappa=0.0086, \psi=1.78$

(d) Тест 4 для набора №2: $L_{in}=0.0218, L_{out}=0.0105, \varkappa=0.0113, \psi=2.08$

Результаты для набора №2 • дополнительные результаты в Приложение 6

(d) Тест 5 для набора №2: $L_{in}=0.0185, L_{out}=0.0130, \varkappa=0.0055, \psi=1.41$

Рис. 9: Результаты для набора №2 («входное-выходное-целевое» изобр.)

Таблица 2: Результаты тестирования алгоритма для набора данных №2

Номер теста	L_{in}	L_out	\varkappa	ψ
Тест 1	0.0198	0.0107	0.0091	1.84
Тест 2	0.0205	0.0118	0.0087	1.73
Тест 3	0.0195	0.0109	0.0086	1.78
Тест 4	0.0218	0.0105	0.0113	2.08
Тест 5	0.0185	0.0130	0.0055	1.41

Заключение

Перспективы задачи

- Дальнейшее исследование оптимизации модели
- Обучать модели на реальных данных, основанных на численных решениях определенных разностных схем
- Рассмотреть другие архитектуры моделей или, например, подход обучения без учителя

Итог

- Рассмотрены технологии нейронных сетей
- Разработан алгоритм улучшения решения уравнения переноса
- Созданы 2 набора данных
- Реализована программа и протестирована на системе тестов исходной задачи с примерами результатов

Список литературы

- Галанин М.П., Савенков Е.Б. Методы численного анализа математических моделей. М.: Изд-во МГТУ им. Н.Э. Баумана, 2018. 592 с. ISBN 978-5-7038-4796-1
- Хайкин С. Нейронные сети: полный курс.:,пер. с англ., 2-е изд. М.: Издательский дом «Вильямс», 2006. — 1104 с. — ISBN 5-8459-0890-6.
- Rashid T. Make Your Own Neural Network. CreateSpace Independent Publishing Platform, 1st edition, 2016. SAND96-0583.
- Николенко С., Кадурин А., Архангельская Е. Глубокое обучение. СПб.: Питер, 2022. 476 с. ISBN 978-5-4461-1537-2.
- Шолле Ф. Глубокое обучение на Python. СПб.: Питер, 2018. 400 с.
 ISBN 978-5-4461-0770-4.
- Гафаров Ф.М., Галимянов А.Ф. Искусственные нейронные сети и приложения: учебное пособие. Казань: Изд-во Казан. ун-та, 2018. 121 с.

Приложение 1: Начальные условия для системы тестов

$$(1a): u_0(x) = \frac{x - l_1}{l_2 - l_1} \quad -\text{ левый треугольник,}$$

$$(1b): u_0(x) = \frac{l_2 - x}{l_2 - l_1} \quad -\text{ правый треугольник,}$$

$$(1c): u_0(x) = \frac{2}{3} \quad -\text{ прямоугольник}$$

$$(1d): u_0(x) = \frac{1}{3}(1 - \cos(\frac{2\pi(x - l_1)}{l_2 - l_1})) \quad -\text{ косинус}$$

$$(1e): u_0(x) = \begin{cases} -\frac{2}{3}(l_{11} - l_1)(x - l_1) + 1, & l_1 \leq x < l_{11}, \\ \frac{1}{3}, & l_{11} \leq x \leq l_{22}, & -\text{ зу6,} \\ \frac{2}{3}(l_2 - l_{22})(x - l_2) + 1, & l_{22}, < x \leq l_2 \end{cases}$$

Приложение 2: Преобразование порога для модели нейрона

Использование порога b_k обеспечивает эффект аффинного преобразования выхода линейного сумматора u_k . В частности, в зависимости от того, какое значение принимает порог, положительное или отрицательное, можно двигать значения выхода нейрона. Обозначим $w_{k0} = b_k$ и преобразуем модель к следующему виду

$$y_k = \varphi(v_k), \quad v_k = \sum_{j=0}^m w_{kj} x_j \tag{3}$$

Таким образом, в выражении (3) добавился новый синапс. Его входной сигнал и вес соответственно равны

$$x_0 = +1, \quad w_{k0} = b_k.$$

Это позволило трансформировать модель нейрона к виду, при котором добавляется новый входной сигнал фиксированной величины +1, а также появляется новый синаптический вес, равный пороговому значению b_k .

Приложение 3: Визуализация сверточной нейронной сети

 \mathbf{f}

$$\mathbf{h}$$

$$\mathbf{g} = \mathbf{f} \circledast \mathbf{h}$$

$$y_{ij} = \sum_{m=0}^{h-1} \sum_{n=0}^{h-1} x_{i+m,j+n} \cdot w_{mn}$$
 — Свертка

$$x_{i+m,j+n} = \sum_{i=0}^{h-1} \sum_{j=0}^{h-1} y_{i+m',j+n'} \cdot w_{m'n'}$$
 — Транспонированная свертка

Приложение 4 ч1: Программа модели сети

Приложение 4 ч2: Программа модели сети

Листинг 1: Модель нейронной сети с использованием ТБ

```
model = Sequential([
       Conv2D(64, kernel size=3, padding="same", activation="relu",
            input shape=(128, 128, 1)),
       BatchNormalization().
       MaxPooling2D(pool size=2),
5
       Conv2D(128, kernel size=3, padding="same", activation="relu"),
       BatchNormalization(),
       MaxPooling2D(pool size=2),
9
10
       Conv2D(128, kernel size=3, padding="same", activation="relu"),
11
       BatchNormalization().
12
       UpSampling2D(size=2),
14
       Conv2D(64, kernel size=3, padding="same", activation="relu"),
15
       BatchNormalization().
16
       UpSampling2D(size=2).
18
       Conv2D(1, kernel size=3, padding="same", activation="sigmoid")
19
   1)
   model.compile(optimizer=SGD(learning rate=0.01), loss="mse",
        metrics=["mae"])
   model.summarv()
```

Приложение 4 ч3: Программа модели сети

Особенности реализации

- Модель представляет собой сверточный автокодировщик
- Модель имеет 296.217 параметров
- Набор предварительно перемешивается с целью избежать корреляций между последовательными данными
- В процессе обучения в каждой эпохе вычисляется наименьшее значение потерь на валидационной выборке и, в случае увеличения ее значения, сохраняется предыдущая модель
- Использована опция предзагрузки данных, где для следующей эпохи обучения данные параллельно загружаются, пока обрабатывается текущая эпоха, причем учитывая специфику системы и загрузку процессора.
- Для набора №1 оптимальным выбрано 100 эпох обучения, для набора №2 около 70

Приложение 5 ч.1: Доп. результаты, набор №1

Таблица 3: Результаты модели, обученной на наборе №1, при тестировании на валидационном наборе №2 (не входил в обучающую выборку)

Номер теста	L _{in}	L _{out}	×	ψ
Тест 1	0.0113	0.0063	0.0050	1.79
Тест 2	0.0093	0.0071	0.0022	1.31
Тест 3	0.0104	0.0096	0.0008	1.08
Тест 4	0.0129	0.0052	0.0076	2.46
Тест 5	0.0095	0.0050	0.0045	1.90

Рис. 11: Тесты из набора №2, используемые в тестировании

Приложение 6 ч.1: Доп. результаты, набор №1

Таблица 4: Результаты модели, обученной на наборе №2, при тестировании на валидационном наборе №2 (не входил в обучающую выборку)

Номер теста	L _{in}	L_{out}	и	ψ
Тест 1	0.0113	0.0007	0.0106	17.19
Тест 2	0.0093	0.0005	0.0088	20.16
Тест 3	0.0104	0.0002	0.0102	50.89
Тест 4	0.0129	0.0019	0.0109	6.62
Тест 5	0.0095	0.0050	0.0045	1.90

Рис. 12: Тесты из набора №2, используемые в тестировании