1		<u>CLAIMS</u>	
2	I clai	m:	
1	1.	An oscillatory amusement ride, which comprises:	
2		a housing having a bore, a closed first end containing an aperture, a second end,	
3	and a	side;	
4		a piston slidably mounted within the bore;	
5		a holder for a participant; and	
6		a means for transferring force between said piston and said holder passing through	
7	the a	perture in the closed first end of said housing, wherein said housing is capable of	
8	retair	ning a compressed fluid between the closed first end and the piston for at least one	
9	oscill	ation of the piston.	
1	2.	The oscillatory amusement ride as recited in claim 1, wherein:	
2		said housing contains an aperture in the side of said housing communicating with	
3	the at	the atmosphere and with the bore of said housing.	
1	3.	The oscillatory amusement ride as recited in claim 2, further comprising:	
2		a fluid supply valve between said piston and the first end of said housing.	
1	4.	The oscillatory amusement ride as recited in claim 3, further comprising:	
2		a separate supply valve located between the piston and the first end of said	
3	hous	ing.	
1	5.	The oscillatory amusement ride as recited in claim 1, further comprising:	
2		a fluid supply valve between said piston and the first end of said housing.	
1	6.	The oscillatory amusement ride as recited in claim 5, further comprising:	
2		a separate supply valve located between the piston and the first end of said	
3	hous	ing.	
1	7.	The oscillatory amusement ride as recited in claim 2, further comprising:	
2		a second housing having a bore, a closed first end containing an aperture, a	
3	seco	nd end, and a side;	
4		a piston slidably mounted within the bore of said second housing; and	
5		a means for transferring force between said piston and said holder passing through	
6	the a	perture in the closed first end of said second housing, wherein said second housing is	

7	capable of retaining a compressed fluid between the closed first end of said second
8	housing and the piston within said second housing for at least one oscillation of the piston
9	within said second housing and wherein said second housing contains an aperture in the
10	side of said second housing communicating with the atmosphere and with the bore of said
11	second housing.
1	8. The oscillatory amusement ride as recited in claim 7, wherein:
2	said force transferring means associated with said housing and said force
3	transferring means associated with said second housing are rotatably attached to said
4	holder.
1	9. The oscillatory amusement ride as recited in claim 4, further comprising:
2	a second housing having a bore, a closed first end having an aperture, a second
3	end, and a side;
4	a piston slidably mounted within the bore of said second housing; and
5	a means for transferring force between said piston within said second housing and
6	said holder passing through the aperture in the closed first end of said second housing,
7	wherein said second housing is capable of retaining a compressed fluid between the
8	closed first end of said second housing and the piston within said second housing for at
9	least one oscillation of the piston within said second housing and wherein said second
10	housing contains an aperture in the side of said second housing communicating with the
11	atmosphere and with the bore of said second housing;
12	a fluid supply valve between said piston within the bore of said second housing
13	and the first end of said second housing; and
14	a separate supply valve located between the piston within the bore of said second
15	housing and the first end of said second housing.
1	10. The oscillatory amusement ride as recited in claim 9, further comprising:
2	a movable platform from which a participant can jump or fall.
1	11. The oscillatory amusement ride as recited in claim 10, further comprising:
2	a sensor which indicates a loss of pressure within said housing or said second
3	housing;

a sensor which indicates whether said movable platform is in the jump position;

5	a source of compressible fluid;
6	a supply line between said source and said fluid supply valve associated with said
7	housing;
8	a blocking valve in said supply line;
9	a second supply line between said source and said fluid supply valve associated
10	with said second housing;
11	a blocking valve in said second supply line;
12	a sensor for detecting whether the movable platform is in the jump position; and
13	a microprocessor in communication with said sensors and with said fluid supply
14	valves that will activate the blocking valve in the appropriate supply line if an
15	unacceptable loss of pressure occurs within said housing or said second housing and will
16	not allow the fluid supply valves to supply fluid until the movable platform has been
17	moved away from the jump position.
1	12. The oscillatory amusement ride as recited in claim 10, wherein:
2	said force transferring means associated with said housing and said force
3	transferring means associated with said second housing are rotatably attached to said
4	holder.
1	13. The oscillatory amusement ride as recited in claim 12, further comprising:
2	a sensor which indicates a loss of pressure within said housing or said second
3	housing;
4	a sensor which indicates whether said movable platform is in the jump position;
5	a source of compressible fluid;
6	a supply line between said source and said fluid supply valve associated with said
7	housing;
8	a blocking valve in said supply line;
9	a second supply line between said source and said fluid supply valve associated
10	with said second housing;
11	a blocking valve in said second supply line;
12	a sensor for detecting whether the movable platform is in the jump position; and

13	a microprocessor in communication with said sensors and with said fluid supply	
14	valves that will activate the blocking valve in the appropriate supply line if an	
15	unacceptable loss of pressure occurs within said housing or said second housing and will	
16	not allow the fluid supply valves to supply fluid until the movable platform has been	
17	moved away from the jump position.	
1	14. The oscillatory amusement ride as recited in claim 9, wherein:	
2	said force transferring means associated with said housing and said force	
3	transferring means associated with said second housing are rotatably attached to said	
4	holder.	
1	15. The oscillatory amusement ride as recited in claim 1, further comprising:	
2	a valve in the side of said housing communicating with the atmosphere and with	
3	the bore of said housing.	
1	16. The oscillatory amusement ride as recited in claim 15, further comprising:	
2	a fluid supply valve between said piston and the first end of said housing.	
1	17. The oscillatory amusement ride as recited in claim 16, further comprising:	
2	a separate supply valve located between the piston and the first end of said	
3	housing.	
1	18. The oscillatory amusement ride as recited in claim 15, further comprising:	
2	a second housing having a bore, a closed first end containing an aperture, a	
3	second end, and a side;	
4	a piston slidably mounted within the bore of said second housing;	
5	a means for transferring force between said piston within said second housing and	
6	said holder passing through the aperture in the closed first end of said second housing,	
7	wherein said second housing is capable of retaining a compressed fluid between the	
8	closed first end of said second housing and the piston within said second housing for at	
9	least one oscillation of the piston within said second housing; and	
10	a valve in the side of said second housing communicating with the atmosphere	

and with the bore of said second housing.

2	19.	The oscillatory amusement ride as recited in claim 18, wherein:
3		said force transferring means associated with said housing and said force
4		transferring means associated with said second housing are rotatably attached to said
5		holder.
1		20. The oscillatory amusement ride as recited in claim 17, further comprising:
2		a second housing having a bore, a closed first end containing an aperture, a
3		second end, and a side;
4		a piston slidably mounted within the bore of said second housing;
5		a means for transferring force between said piston within said second housing and
6		said holder passing through the aperture in the closed first end of said second housing,
7		wherein said second housing is capable of retaining a compressed fluid between the
8		closed first end of said second housing and the piston within said second housing for at
9		least one oscillation of the piston within said second housing;
10		a valve in the side of said second housing communicating with the atmosphere
11		and with the bore of said second housing;
12		a fluid supply valve between said piston within the bore of said second housing
13		and the first end of said second housing; and
14		a separate supply valve located between the piston within the bore of said second
15		housing and the first end of said second housing.
1		21. The oscillatory amusement ride as recited in claim 20, further comprising:
2		a movable platform from which a participant can jump or fall.
1		22. The oscillatory amusement ride as recited in claim 21, further comprising:
2		a sensor which indicates a loss of pressure within said housing or said second
3		housing;
4		a sensor which indicates whether said movable platform is in the jump position;
5		a source of compressible fluid;
6		a supply line between said source and said fluid supply valve associated with said
7		housing;
8		a blocking valve in said supply line;

9	a second supply line between said source and said fluid supply valve associated
10	with said second housing;
11	a blocking valve in said second supply line;
12	a sensor for detecting whether the movable platform is in the jump position; and
13	a microprocessor in communication with said sensors and with said fluid supply
14	valves that will activate the blocking valve in the appropriate supply line if an
15	unacceptable loss of pressure occurs within said housing or said second housing and will
16	not allow the fluid supply valves to supply fluid until the movable platform has been
17	moved away from the jump position.
1	23. The oscillatory amusement ride as recited in claim 21, wherein:
2	said force transferring means associated with said housing and said force
3	transferring means associated with said second housing are rotatably attached to said
4	holder.
1	24. The oscillatory amusement ride as recited in claim 23, further comprising:
2	a sensor which indicates a loss of pressure within said housing or said second
3	housing;
4	a sensor which indicates whether said movable platform is in the jump position;
5	a source of compressible fluid;
6	a supply line between said source and said fluid supply valve associated with said
7	housing;
8	a blocking valve in said supply line;
9	a second supply line between said source and said fluid supply valve associated
10	with said second housing;
11	a blocking valve in said second supply line;
12	a sensor for detecting whether the movable platform is in the jump position; and
13	a microprocessor in communication with said sensors and with said fluid supply
14	valves that will activate the blocking valve in the appropriate supply line if an
15	unacceptable loss of pressure occurs within said housing or said second housing and will
16	not allow the fluid supply valves to supply fluid until the movable platform has been

moved away from the jump position.

1	25. The oscillatory amusement ride as recited in claim 20, wherein.		
2	said force transferring means associated with said housing and said force		
3	transferring means associated with said second housing are rotatably attached to said		
4	holder.		
1	26. An oscillatory amusement ride, which comprises:		
2	a housing having a bore, a closed first end containing an aperture, a second end,		
3	and a side;		
4	a piston slidably mounted within the bore;		
5	a holder for a participant;		
6	a cable that exits said housing through the aperture in the closed first end of said		
7	housing and re-enters said housing through the second end of said housing, said cable		
8	being attached to said piston within said second housing; and		
9	a means for transferring force between said cable associated with said second		
10	housing and said holder passing through the aperture in the closed first end of said second		
11	housing, wherein said housing is capable of retaining a compressed fluid between the		
12	closed first end and the piston for at least one oscillation of the piston.		
1	27. The oscillatory amusement ride as recited in claim 26, wherein:		
2	said housing contains an aperture in the side of said housing communicating with		
3	the atmosphere and with the bore of said housing.		
1	28. The oscillatory amusement ride as recited in claim 27, further comprising:		
2	a fluid supply valve between said piston and the first end of said housing.		
1	29. The oscillatory amusement ride as recited in claim 28, further comprising:		
2	a separate supply valve located between the piston and the first end of said		
3	housing.		
1	30. The oscillatory amusement ride as recited in claim 26, further comprising:		
2	a fluid supply valve between said piston and the first end of said housing.		
1	31. The oscillatory amusement ride as recited in claim 30, further comprising:		
2	a separate supply valve located between the piston and the first end of said		
3	housing.		

1	32. The oscillatory amusement ride as recited in claim 27, further comprising:
2	a second housing having a bore, a closed first end containing an aperture, a
3	second end, and a side;
4	a piston slidably mounted within the bore of said second housing;
5	a cable that exits said second housing through the aperture in the closed first end
6	of said second housing and re-enters said second housing through the second end of said
7	second housing, said cable being attached to said piston within said second housing; and
8	a means for transferring force between said cable associated with said second
9	housing and said holder passing through the aperture in the closed first end of said second
10	housing, wherein said second housing is capable of retaining a compressed fluid between
11	the closed first end of said second housing and the piston within said second housing for
12	at least one oscillation of the piston within said second housing and wherein said second
13	housing contains an aperture in the side of said second housing communicating with the
14	atmosphere and with the bore of said second housing.
1	33. The oscillatory amusement ride as recited in claim 32, wherein:
2	said force transferring means associated with said housing and said force
3	transferring means associated with said second housing are rotatably attached to said
4	holder.
1	34. The oscillatory amusement ride as recited in claim 29, further comprising:
2	a second housing having a bore, a closed first end containing an aperture, a
3	second end, and a side;
4	a piston slidably mounted within the bore of said second housing;
5	a cable that exits said second housing through the aperture in the closed first end
6	of said second housing and re-enters said second housing through the second end of said
7	second housing, said cable being attached to said piston within said second housing;
8	a means for transferring force between said cable associated with said second
9	housing and said holder; and
10	a means for transferring force between said piston within said second housing and
11	said holder passing through the aperture in the closed first end of said second housing

wherein said second housing is capable of retaining a compressed fluid between the

3	closed first end of said second housing and the piston within said second housing for at	
4	least one oscillation of the piston within said second housing and wherein said second	
.5	housing contains an aperture in the side of said second housing communicating with the	
.6	atmosphere and with the bore of said second housing;	
17	a fluid supply valve between said piston within the bore of said second housing	
18	and the first end of said second housing; and	
19	a separate supply valve located between the piston within the bore of said second	
20	housing and the first end of said second housing.	
1	35. The oscillatory amusement ride as recited in claim 34, further comprising:	
2	a movable platform from which a participant can jump or fall.	
1	36. The oscillatory amusement ride as recited in claim 35, further comprising:	
2	a sensor which indicates a loss of pressure within said housing or said second	
3	housing;	
4	a sensor which indicates whether said movable platform is in the jump position;	
5	a source of compressible fluid;	
6	a supply line between said source and said fluid supply valve associated with said	
7	housing;	
8	a blocking valve in said supply line;	
9	a second supply line between said source and said fluid supply valve associated	
10	with said second housing;	
11	a blocking valve in said second supply line;	
12	a sensor for detecting whether the movable platform is in the jump position; and	
13	a microprocessor in communication with said sensors and with said fluid supply	
14	valves that will activate the blocking valve in the appropriate supply line if an	
15	unacceptable loss of pressure occurs within said housing or said second housing and will	
16	not allow the fluid supply valves to supply fluid until the movable platform has been	
17	moved away from the jump position.	

1	37.	The oscillatory amusement ride as recited in claim 35, wherein:
2		said force transferring means associated with said housing and said force
3	transf	Perring means associated with said second housing are rotatably attached to said
4	holde	r.
1	38.	The oscillatory amusement ride as recited in claim 37, further comprising:
2		a sensor which indicates a loss of pressure within said housing or said second
3	housi	ng;
4		a sensor which indicates whether said movable platform is in the jump position;
5		a source of compressible fluid;
6		a supply line between said source and said fluid supply valve associated with said
7	hous	ing;
8		a blocking valve in said supply line;
9		a second supply line between said source and said fluid supply valve associated
10	with said second housing;	
11		a blocking valve in said second supply line;
12		a sensor for detecting whether the movable platform is in the jump position; and
13		a microprocessor in communication with said sensors and with said fluid supply
14	valve	es that will activate the blocking valve in the appropriate supply line if an
15	unac	ceptable loss of pressure occurs within said housing or said second housing and will
16	not	allow the fluid supply valves to supply fluid until the movable platform has been
17	mov	red away from the jump position.
1	39.	The oscillatory amusement ride as recited in claim 34, wherein:
2		said force transferring means associated with said housing and said force
3	trans	sferring means associated with said second housing are rotatably attached to said
4	hold	ler.
1	40.	The oscillatory amusement ride as recited in claim 26, further comprising:
2		a valve in the side of said housing communicating with the atmosphere and with
3	the	bore of said housing.
1	41.	The oscillatory amusement ride as recited in claim 40, further comprising:
2		a fluid supply valve between said piston and the first end of said housing.

1	42.	The oscillatory amusement ride as recited in claim 41, further comprising:		
2		a separate supply valve located between the piston and the first end of said		
3	housing.			
1	43.	The oscillatory amusement ride as recited in claim 40, further comprising:		
2		a second housing having a bore, a closed first end containing an aperture, a		
3	secon	ad end, and a side;		
4		a piston slidably mounted within the bore of said second housing;		
5		a cable that exits said second housing through the aperture in the closed first end		
6	of sai	id second housing and re-enters said second housing through the second end of said		
7	second housing, said cable being attached to said piston within said second housing;			
8	a me	ans for transferring force between said cable associated with said second housing		
9	and	said holder passing through the aperture in the closed first end of said second		
10	hous	ing, wherein said second housing is capable of retaining a compressed fluid between		
11	the c	the closed first end of said second housing and the piston within said second housing for		
12	at lea	ast one oscillation of the piston within said second housing; and		
13		a valve in the side of said second housing communicating with the atmosphere		
14	and v	with the bore of said second housing.		
1	44.	The oscillatory amusement ride as recited in claim 43, wherein:		
2		said force transferring means associated with said housing and said force		
3	transferring means associated with said second housing are rotatably attached to said			
4	hold	er.		
1	45.	The oscillatory amusement ride as recited in claim 42, further comprising:		
2		a second housing having a bore, a closed first end containing an aperture, a		
3	second end, and a side;			
4		a piston slidably mounted within the bore of said second housing;		
5		a means for transferring force between said piston within said second housing and		
6	said	holder passing through the aperture in the closed first end of said second housing,		
7	wherein said second housing is capable of retaining a compressed fluid between th			
8	clos	ed first end of said second housing and the piston within said second housing for a		
9	leas	t one oscillation of the piston within said second housing;		

10	a valve in the side of said second housing communicating with the authosphere		
11	and with the bore of said second housing;		
12	a fluid supply valve between said piston within the bore of said second housing		
13	and the first end of said second housing; and		
14	a separate supply valve located between the piston within the bore of said second		
15	housing and the first end of said second housing.		
1	46. The oscillatory amusement ride as recited in claim 45, further comprising:		
2	a movable platform from which a participant can jump or fall.		
1	47. The oscillatory amusement ride as recited in claim 46, further comprising:		
2	a sensor which indicates a loss of pressure within said housing or said second		
3	housing;		
4	a sensor which indicates whether said movable platform is in the jump position;		
5	a source of compressible fluid;		
6	a supply line between said source and said fluid supply valve associated with said		
7	housing;		
8	a blocking valve in said supply line;		
9	a second supply line between said source and said fluid supply valve associated		
10	with said second housing;		
11	a blocking valve in said second supply line;		
12	a sensor for detecting whether the movable platform is in the jump position; and		
13	a microprocessor in communication with said sensors and with said fluid supply		
14	valves that will activate the blocking valve in the appropriate supply line if an		
15	unacceptable loss of pressure occurs within said housing or said second housing and will		
16	not allow the fluid supply valves to supply fluid until the movable platform has been		
17	moved away from the jump position.		
1	48. The oscillatory amusement ride as recited in claim 46, wherein:		
2	said force transferring means associated with said housing and said force		
3	transferring means associated with said second housing are rotatably attached to sai		
4	holder.		

1	49.	The oscillatory amusement ride as recited in claim 48, further comprising:
2		a sensor which indicates a loss of pressure within said housing or said second
3		housing;
4		a sensor which indicates whether said movable platform is in the jump position;
5		a source of compressible fluid;
6		a supply line between said source and said fluid supply valve associated with said
7		housing;
8		a blocking valve in said supply line;
9		a second supply line between said source and said fluid supply valve associated
10		with said second housing;
11		a blocking valve in said second supply line;
12		a sensor for detecting whether the movable platform is in the jump position; and
13		a microprocessor in communication with said sensors and with said fluid supply
14		valves that will activate the blocking valve in the appropriate supply line if an
15		unacceptable loss of pressure occurs within said housing or said second housing and will
16		not allow the fluid supply valves to supply fluid until the movable platform has been
17		moved away from the jump position.
1		50. The oscillatory amusement ride as recited in claim 45, wherein:
2		said force transferring means associated with said housing and said force
3		transferring means associated with said second housing are rotatably attached to said
4		holder.