

Plano de Ensino

Curso

CC2023 - Bacharelado em Ciência da Computação

Ênfase

Identificação

Disciplina

2357SCC - Circuitos Digitais

Unidade

Instituto de Biociências, Letras e Ciências Exatas

Departamento

Departamento de Ciências de Computação e Estatística

Créditos Carga Horária Seriação ideal

4 T:60.0 1

Pré - Requisito

Co - Requisito

Câmpus de São José do Rio Preto

Plano de Ensino

Objetivos

Propiciar ao aluno conhecimento de lógica e aritmética binárias, por meio de circuitos eletrônicos digitais, objetivando a compreensão e o desenvolvimento de sistemas computacionais.

Conteúdo

- 1. Sistemas numéricos binário e hexadecimal com operações e conversões entre ambos e a base numérica decimal:
- 2. Funções lógicas: funções e, ou, inversora, não e, não ou, ou exclusivo; não ou exclusivo; interligação entre expressões, circuitos e tabelas; equivalência de blocos lógicos;
- 3. Circuitos combinacionais: expressões de circuitos;
- 4. Álgebra booleana: introdução, postulados, propriedades, Teorema de DeMorgan;
- 5. Mapa de Karnaugh;
- 6. Circuitos aritméticos;
- 7. Circuitos de média complexidade: códigos e transcodificadores; multiplexadores e demultiplexadores;
- 8. Circuitos sequenciais: flip-flops RS, JK, D e T; registradores de deslocamento; contadores assíncronos: contadores síncronos:
- 9. Projeto de Circuitos Sequenciais: descrição de circuitos sequenciais e diagrama de estados; síntese de circuitos sequenciais.

Metodologia

Aulas com desenvolvimento teórico e exercícios, com abordagem sensível ao aprendizado, adotando a estratégia flipped classroom.

Bibliografia

BÁSICA:

- 1. TOCCI, R. J. & WIDMER, N. S. Sistemas Digitais Princípios e Aplicações, 12 ed., Pearson Prentice Hall, 2019.
- 2. IDOETA, IVAN V. & CAPUANO, FRANCISCO G. Elementos de Eletrônica Digital, 42 ed., São Paulo. Érica, 2018.

COMPLEMENTAR:

- 1. HAUPT, ALEXANDRE & DACHI, EDISON. Eletrônica Digital. Bluscher, 2016.
- 2. GARICA, PAULO ALVES & MARTINI, JOSÉ COLOMBO, Eletrônica Digital Teoria e Laboratório, Editora Érica, 2013.

Critérios de avaliação da aprendizagem

- Modalidades de avaliação: O aluno será avaliado por meio de uma ou mais modalidades de avaliação (prova, seminário, trabalho, listas de exercícios, etc.), com critérios a serem definidos pelo professor e divulgados aos alunos no início da disciplina.
- Recuperação (art. 12 da Res. Unesp 75/2016): Para os alunos que não obtiverem desempenho satisfatório nas avaliações previstas será dada oportunidade de recuperação ao longo da

UNIVERSIDADE ESTADUAL PAULISTA "JÚLIO DE MESQUITA FILHO"

Câmpus de São José do Rio Preto

Plano de Ensino

disciplina, por meio de atividades definidas pelo professor responsável no início do semestre.

- Cálculo da média do período regular: A média do período regular será calculada pela média aritmética (simples ou ponderada) entre as notas das avaliações definidas pelo professor no início da disciplina.
- Exame final (art. 11 da Res. Unesp 75/2016): Ao final do período regular da disciplina, o aluno que não obtiver média igual ou superior a 5,0 poderá se submeter a exame final, com o tipo de avaliação a ser definido pelo professor no início da disciplina. Após a realização do exame, a nota final será dada pela média aritmética simples entre a média do período regular e a nota do exame.

Ementa (Tópicos que caracterizam as unidades do programa de ensino)

Sistemas de Numeração e Códigos. Aritmética Binária. Representação e Manipulação de Circuitos Combinacionais. Minimização e Otimização de Funções Combinacionais. Projeto de Circuitos Combinacionais. Análise e Síntese de Circuitos Sequenciais e de Memória. Projeto de Circuitos Sequenciais. Circuitos Sequenciais Síncronos e Assíncronos. Modelo de Máquinas de Estado Finito (FSM). Componentes de Armazenamento.

Aprovação

 Conselho Curso
 08/11/2023

 Cons. Departamental
 08/11/2023

 Congregação
 08/11/2023