

Lecture Slides - 3

Mining Frequent Patterns, Association and Correlations

Overview

- Basic concepts and a road map
- Efficient and scalable frequent itemset mining methods
- Mining various kinds of association rules
- From association mining to correlation analysis
- Summary

September 15, 201

Data Mining: Concepts and Techniques

Frequent Pattern Analysis?

- Frequent pattern: A pattern (a set of items, subsequences, substructures, etc.) that occurs frequently in a data set
- Proposed by Agrawal, Imielinski, and Swami [AIS93] in the context of frequent itemsets and association rule mining
- Motivation: Finding inherent regularities in data
 - What products were often purchased together?— Beer and diapers?!
 - What are the subsequent purchases after buying a PC?
 - What kinds of DNA are sensitive to a particular drug?
- Applications
 - Basket data analysis, catalog design, sale campaign analysis, Web log analysis, and DNA sequence analysis.

Basic Concepts

- Itemset: A set of items
- k-itemset: A set of k items
- Frequency or support count of an itemset: No. of transactions containing the itemset
- Frequent itemset: An itemset that has frequency count more that the minimum support threshold
- Association Rule mining problem: (a 2-step process)
 - Finding all frequent itemsets
 - Generate strong association rules from the frequent itemsets

What is Association Rule?

• Let $X=\{X_1,\ X_2,\ ...,\ X_m\}$ be a set of item, D is dataset in which each transaction $T\subseteq X$

let A is a set of items. A transaction T is said to contain A iff A \subset T.

 An association rule is defined as an implication of the form A → B, where A⊂I, B ⊂I, and A∩B=φ

September 15, 2016

Data Mining: Concepts and Technique

Frequent Patterns and Association Rules

Transaction-id	Items bought	
10	A, B, D	
20	A, C, D	
30	A, D, E	
40	B, E, F	
50	B, C, D, E, F	ı

Let sup_{min} = 50%, conf_{min} = 50% Freq. Pat.: {A:3, B:3, D:4, E:3, AD:3} Association rules:

 $A \rightarrow D~(60\%,\,100\%)$

 $D \to A (60\%, 75\%)$

Itemset X = {x₁, ..., x_k}

 Find all the rules X → Y with minimum support and confidence

■ Support: Probability that a transaction contains X ∪ Y

 $sup(X \rightarrow Y) = P(X \cup Y)$

 Confidence: Conditional probability that a transaction having X also contains Y

 $conf(X \rightarrow Y) = P(Y/X)$

Scalable Methods for Mining Frequent Patterns

- The downward closure property of frequent patterns
 - Any subset of a frequent itemset must be frequent
 - If {beer, diaper, nuts} is frequent, so is {beer, diaper}
 - i.e., every transaction having {beer, diaper, nuts} also contains {beer, diaper}
- Scalable mining methods: Three major approaches
 - Apriori (Agrawal & Srikant, 1994)
 - Freq. pattern growth Fpgrowth (Han, Pei & Yin, 2000)
 - Vertical data format approach Charm (Zaki & Hsiao, 2002)

Apriori: A Candidate Generation-and-Test Approach

- Apriori pruning principle: If there is any itemset which is infrequent, its superset should not be generated/tested!
- Method:
 - Initially, scan DB once to get frequent 1-itemset
 - Generate length (k+1) candidate itemsets from length k frequent itemsets
 - Test the candidates against DB
 - Terminate when no frequent or candidate set can be generated

The Apriori Algorithm

Pseudo-code:

 C_k : Candidate itemset of size k L_k : frequent itemset of size k L_1 = {frequent items}; for $(k = 1; L_k! = \emptyset; k++)$ do begin C_{k+1} = candidates generated from L_k for each transaction t in database do

increment the count of all candidates in C_{k+1} that are contained in t L_{k+1} = candidates in C_{k+1} with min_support end

return $\cup_k L_k$

Data Mining: Concepts and Technique

Important Details of Apriori

- How to generate candidates?
 - Step 1: self-joining L_k
 - Step 2: pruning
- How to count supports of candidates?
- Example of Candidate-generation
 - L₃={abc, abd, acd, ace, bcd}
 - Self-joining: L₃*L₃
 - abcd from abc and bcd
 - acde from acd and ace
 - Pruning:
 - acde is removed because ade is not in L₃
 - C₄={abcd}

Challenges of Frequent Pattern Mining

- Challenges
 - Huge number of candidates
 - Huge data size
 - Multiple scans of transaction database
- Improving Apriori: general ideas
 - Shrink number of candidates
 - Transaction reduction
 - Reduce passes of transaction database scans

Centember 15, 201

Data Mining: Concepts and Techniques

Bottlenecks with Apriori

- Uses a generate-and-test approach generates candidate itemsets and tests if they are frequent
 - Generation of candidate itemsets is expensive (in both space and time)
 - Support counting is expensive
 - Subset checking (computationally expensive)
 - Multiple Database scans (I/O)

14

Speeding up Apriori Algorithm

- Dynamic Hashing and Pruning
- Transaction Reduction
- Partitioning

DHP: Reduce the Number of Candidates

- Hashing itemsets into corresponding buckets
- Can be used to reduce the size of candidate k-itemsets, Ck, for k>1 – specially 2-itemsets
- While scanning DB to L1, generate C2 for each t ∈ T and hash them into different bucket of a hash table – increase hash count
- If Supp_count(itemset)<min_sup then remove it from C2

16

How to Trim Candidate Itemsets

- In k-iteration, hash all "appearing" k+1 itemsets in a hash table, count all the occurrences of an itemset in the correspondent bucket.
- In k+1 iteration, examine each of the candidate itemset to see if its correspondent bucket count value is above the min. support (necessary condition)

18

Transaction Reduction

- Reduce no. of transactions for future iterations
- A transaction, t, not containing any frequent kitemset cannot contain any frequent (k+1)itemsets
 - Delete/mark *t* from further consideration

entember 15, 2016

Data Mining: Concepts and Techniques

Partitioning (DB scan only twice)

- A two-phase process
- Phase1:
 - Divide D into n disjoint partitions d_i
 - min_sup(d_i)=min_sup ×|d_i|
 - Generate frequent itemsets for each di local frequent itemsets (special DS is employed to scan D only once)
 - Merge local frequent itemsets to generate global candidate itemsets
- Phase2:
 - Scan D once more to find global frequent itemsets

Partitioning (cont...) PHASE I Combine all Find global Find the frequent Divided D into Frement local frequent frequent itemsets itemsets local to n partitions itemsets to form among candidates itemsets in D. each partition candidate itemset (1 scan) (1 scan) Mining frequent itemsets by partitioning dataset Data Mining: Concepts and Techniques

Frequent Pattern Growth (FP-Growth) Algorithm

- Allows frequent itemset discovery without candidate itemset generation.
- Two step approach:
 - Step 1: Build a compact data structure called the FP-tree
 - Built using 2 passes over the data-set.
 - Step 2: Extracts frequent itemsets directly from the FP-tree
 - Traversal through FP-Tree

Step-1: FP-Tree Construction

- FP-Tree is constructed using 2 passes over the dataset:
- Pass 1:
 - Scan data and find support for each item.
 - Discard infrequent items.
 - Sort frequent items in decreasing order based on their support.
 - For our example: a, b, c, d, e
 - Use this order when building the FP-Tree, so common prefixes can be shared.

2

FP-Tree Construction (cont...)

- Pass 2: FP-Tree construction
 - Read transaction 1: {a, b}
 - Create 2 nodes a and b and the path null→a→b. Set counts of a and b to
 - Read transaction 2: {b, c, d}
 - Create 3 nodes for b, c and d and the path null →b→c→d. Set counts to 1.
 - Note that although transaction 1 and 2 share b, the paths are disjoint as they don't share a common prefix. Add the link between the b's.
 - Read transaction 3: {a, c, d, e}
 - It shares common prefix item a with transaction 1 so the path for transaction 1 and 3 will overlap and the frequency count for node a will be incremented by 1. Add links between the c's and d's.
 - Continue until all transactions are mapped to a path in the FPtree.

Step-2: Frequent Itemset Generation

- Idea: Frequent pattern growth
 - Recursively grow frequent patterns by pattern and database partition
- Bottom-up algorithm which traverses leaves towards the root
 - Divide and conquer: first look for frequent itemsets ending in e, then de, etc. . . then d, then cd, etc. . .

27

Cont...

- Method
 - Identify prefix path sub-trees ending in an item(set)
 - For each frequent item, construct its conditional pattern-base, and then its conditional FP-tree
 - Repeat the process on each newly created conditional FP-tree
 - Until the resulting FP-tree is empty, or it contains only one path—single path will generate all the combinations of its sub-paths, each of which is a frequent pattern

Mining Patterns Containing 'e'

- 1. (e:3)
- 2. Conditional pattern base for e: {(acd:1), (ad:1), (bc:2)}
- 3.FP-Tree based on this conditional pattern base (called e's conditional FP-Tree) leads to only one frequent branch (c:3)
- 4.So, a frequent pattern (ce:3) can be derived

September 15, 2016

Data Mining: Concepts and Technique

TID	List of item_l	Ds
T100	I1, I2, I5	
T200	I2, I4	
T300	12, 13	L={{I2:7}, {I1:6},
T400	I1, I2, I4	{I3:6}, {I4:2},
T500	I1, I3	{I5:2}}
T600	12, 13	
T700	I1, I3	
T800	I1, I2, I3, I5	
T900	I1, I2, I3	
		_
September 15, 2016		

item	Conditional Pattern Base	Conditional FP-tree	Frequent Patterns Generated
I5	{{I2, I1: 1}, {I2, I1, I3: 1}}	⟨I2: 2, I1: 2⟩	{I2, I5: 2}, {I1, I5: 2}, {I2, I1, I5: 2}
I 4	{{I2, I1: 1}, {I2: 1}}	⟨I2: 2⟩	{I2, I4: 2}
I3	$\{\{I2, I1: 2\}, \{I2: 2\}, \{I1: 2\}\}$	⟨I2: 4, I1: 2⟩, ⟨I1: 2⟩	{I2, I3: 4}, {I1, I3: 4}, {I2, I1, I3: 2}
I1	{{I2: 4}}	⟨I2: 4⟩	{I2, I1: 4}

Example 2: FP-Growth Algorithm Items bought (6, a, c, d, g, i, m, p) {a, b, c, f, l, m, o} {b, f, h, j, o, w} {b, c, k, s, p} {a, f, c, e, l, p, m, n} TID 100 200 300 (ordered) frequent items of {f, c, a, m, p} {f, c, a, b, m} {f, b} min_support = 3 400 500 {c, b, p} {f, c, a, m, p} {} Header Table Scan DB once, find frequent 1-itemset (single item pattern) > c:1 Item frequency head -> c:3 b:1 b:1 Sort frequent items in frequency descending order, f-list a:3 p:1 3. Scan DB again, construct FP-tree m:2 b:1 p:2 m:1 F-list=f-c-a-b-m-p September 15, 2016

Benefits of the FP-tree Structure

- Completeness
 - Preserve complete information for frequent pattern mining
 - Never break a long pattern of any transaction
- Compactness
 - Reduce irrelevant info—infrequent items are gone
 - Items in frequency descending order: the more frequently occurring, the more likely to be shared
 - Never be larger than the original database (not count node-links and the count field)
 - For Connect-4 DB, compression ratio could be over 100

September 15, 2016 Data Mining: Concepts and Techniques

Frequent-Pattern Mining: Research Problems

- Mining fault-tolerant frequent, sequential and structured patterns
 - Patterns allows limited faults (insertion, deletion, mutation)
- Mining truly interesting patterns
 - Surprising, novel, concise, ...
- Application exploration
 - E.g., DNA sequence analysis and bio-pattern classification
 - "Invisible" data mining

September 15, 2016

Data Mining: Concepts and Techniques

Assignment-3

- Text Book
 - Exercises:

• 5.3(a) [Page: 275],

• 5.8 [Page: 276]

September 15, 2016

Pata Mining: Concepts and Techniques