Missingness

Prof. Murillo

Computational Mathematics, Science and Engineering Michigan State University

Loss of Correlations from Mean Imputation

$$ho_{X,Y} = rac{\mathbb{E}[(X - \mu_X)(Y - \mu_Y)]}{\sigma_X \sigma_Y}$$

Loss of Correlations from Mean Imputation: Examples

missing rate = 0.8

Loss of Correlations from Mean Imputation: Examples

Loss of Correlations from Mean Imputation: Examples

But First....Three Topics From Last Time

impact of mean imputation on correlations

stochastic regression

diagnosing missingness

visualization

Stochastic Regression: What is the Goal?

Here is the raw data:

2.1. Complete-data scatterplot of the IQ and job performance scores from Table 2.1.

TABLE 2.1. Employee Selection Data Set

Complete data		Missing data	
IQ	Job performance	Job Performance	
78	9	_	
84	13	_	
84	10	_	
85	8	_	
87	7	_	
91	7	_	
92	9	_	
94	9	_	
94	11	_	
96	7	_	
99	7	7	
105	10	10	
105	11	11	
106	15	15	
108	10	10	
112	10	10	
113	12	12	
115	14	14	
118	16	16	
134	12	12	

Stochastic Regression: What is the Goal?

Here is the synthetic data:

Fit Data and Extrapolate

Point #1: mean imputation should "never" be done

Point #2: fitting is better, and perhaps good enough?

Point #3: don't need to use a line (first-order polynomial)

Variance/Volatility

Very often we want to extrapolate the "volatility" in our data.

Sometimes, we only have "volatility".

Point #4: when we impute, we want to preserve the mean, trend and variance

multiple imputation can change the conclusion!

But First....Three Topics From Last Time

• impact of mean imputation on correlations

stochastic regression

diagnosing missingness

visualization

More Details on Missingness

add missingness to the data.

Missingness in Terms of Conditional Probabilities

MCAR:

$$P(\text{missing}|\text{complete}) = P(\text{missing})$$

MAR:

$$P(\text{missing}|\text{complete}) = P(\text{missing}|\text{observed})$$

MNAR:

$$P(\text{missing}|\text{complete}) \neq P(\text{missing}|\text{observed})$$

More Details on Missingness

Visualizing Synthetic Missingness

Sorted by X Value

