Topology Notes

Rebekah Dix

February 26, 2019

Contents

1	Set Theory	2
2	Topological Spaces	3
3	Basis for a Topology	4
4	Continuous Functions	5
5	Subspace Topology5.1 Connectedness	7 7
6	Metric Spaces 6.1 Special Properties and Maps	8
7	Sequences	9
8	Product Topology	10
9	Compactness	11
	Set Theory Review A.1 Functions	12 12

1 Set Theory

Definition 1.1 (Set cardinality \leq). Let A, B be sets. A has **cardinality less than or equal to** B (write $|A| \leq |B|$) if there exists an injection from A to B. In notation,

$$|A| \le |B| \iff \exists f : A \to B \text{ injective}$$
 (1.1)

Theorem 1.1 (Cantor). For all sets X (including infinite), $X \not\geq \mathcal{P}(X)$. That is, there does not exist an injection from $\mathcal{P}(X)$ to X.

Proof. The proof contains 2 steps:

- (i) Show that there is no surjection from X to $\mathcal{P}(X)$.
- (ii) Show that (i) implies that there is no injection from $\mathcal{P}(X)$ to X.

We start by proving (ii) through the following lemma:

Lemma 1.2. Let C, D be sets, $C \neq \emptyset$. If there is an injection $i : C \to D$, then there exists a surjection $j : D \to C$.

Proof.

The contrapositive of this lemma gives that no surjection from $D \to C$ implies no injection from $C \to D$.

Theorem 1.3 (Informal statement of the axiom of choice). Given a family \mathscr{F} of nonempty sets, it is possible to pick out an element from each set in the family.

Definition 1.2 (Partial order). A **partial order** is a pair $\mathcal{A} = (A, \triangleright)$ where $A \neq \emptyset$ such that for $a, b, c \in A$

- (i) Antireflexivity: $a \triangleright a$ never happens.
- (ii) Transitivity: $a \triangleright b$, $b \triangleright c \Rightarrow a \triangleright c$

Remark. With a partial order, you *can* have incomparable elements.

Example 1.1 (Partial order). For any set X, a partial order is $(\mathcal{P}(X), \subsetneq)$. For example, if $X = \{1, 2\}$, then $\{1\}$ and $\{2\}$ are incomparable.

Definition 1.3 (Maximal). Let (A, \triangleright) be a partial order. Then $m \in A$ is maximal if and only if no $a \triangleright m$.

Example 1.2 (Maximal elements). The following are examples of posets and their maximal elements:

- (i) $(\mathbb{N}, <)$ has no maximal element (there is no largest natural number).
- (ii) $(\{\{1\}, \{2\}\}, \subsetneq)$ has 2 maximal elements, since the two elements of the set are not comparable.

Definition 1.4 (Chain). A **chain** in a partial order (A, \triangleright) is a $C \subseteq A$ such that $\forall a, b \in C$, a = b or $a \triangleright b$ or $b \triangleright a$. (One interpretation in words, "C is linear")

Theorem 1.4 (Zorn's Lemma). Let (A, \triangleright) be a partial order such that the following condition is satisfied:

(\mathcal{Z}) In words, if every chain has an upper bound then there is a maximal element. More precisely, ff C is a chain, then $\exists x$ such that $x \triangle$

2 Topological Spaces

Definition 2.1 (Topology, Topological Space). A **topological space** is a pair (X, \mathcal{T}) where X is a nonempty set and \mathcal{T} is a set of subsets of X (called a **topology**) having the following properties:

(i) \emptyset and X are in \mathcal{T} .

$$\emptyset \in \mathcal{T}, X \in \mathcal{T}$$
 (2.1)

(ii) The union of *arbitrarily* many sets in \mathcal{T} is in \mathcal{T} .

$$A_{\eta} \in \mathcal{T} \ \forall \eta \in H \Rightarrow \bigcup_{\eta \in H} A_{\eta} = \left\{ a \in X \text{ for some (that is, } a \in A_{\eta}) \right\} \in \mathcal{T}$$
 (2.2)

(iii) The intersection a *finite* number of sets in \mathcal{T} is in \mathcal{T} .

$$A_1, \dots, A_n \in \mathcal{T} \Rightarrow A_1 \cap \dots \cap A_n \in \mathcal{T}$$
 (2.3)

A set *X* for which a topology \mathcal{T} has been specified is called a **topological space**, that is, the pair (X, \mathcal{T}) .

Example 2.1 (Examples of topologies). The following are examples of topological spaces:

- (i) The collection consisting of *X* and \emptyset is called the **trivial topology** or **indiscrete topology**.
 - (a) $\mathcal{T} = \{\emptyset, X\}$
- (ii) If *X* is any set, the collection of all subsets of *X* is a topology on *X*, called the **discrete topology**.
 - (a) $\mathcal{T} = \mathcal{P}(X)$
- (iii) Let $X = \{1\}$. Then $\mathcal{T} = \{\emptyset, \{1\}\}$ is a topology.
- (iv) Sierpinski: Let $X = \{a, b\}$ and $\mathcal{T} = \{\emptyset, X, \{a\}\}$. In this topology, b is glued to a. That is, we can't have a set with b and without a. However, a is *not* glued to a.

Remark. Observe that from these examples,

(v) $X = \mathbb{R}$ and $\mathcal{T} = \{\emptyset, X\} \cup \{[a, \infty) \mid a \in \mathbb{R}\}.$

Definition 2.2 ((Strictly) Finer, (Strictly) Coarser, Comparable). Suppose \mathcal{T} and \mathcal{T}' are two topologies on a given set X. If $\mathcal{T}' \supset \mathcal{T}$, we say that \mathcal{T}' is **finer** than \mathcal{T} . If \mathcal{T}' properly contains \mathcal{T} , we say that \mathcal{T}' is **strictly finer** than \mathcal{T} . For these respective situations, we say that \mathcal{T} is **coarser** or **strictly coarser** than \mathcal{T}' . We say that \mathcal{T} is **comparable** with \mathcal{T}' if either $\mathcal{T}' \supset \mathcal{T}$ or $\mathcal{T} \supset \mathcal{T}'$.

Example 2.2 (Finest and coarsest topologies). For any set *X*, the finest topology is the discrete topology and the coarsest topology is the trivial topology.

3 Basis for a Topology

Definition 3.1 (Basis, Basis Elements, Topology \mathcal{T} generated by \mathcal{B}). If X is a set, a **basis** for a topology on X is a collection \mathcal{B} of subsets of X (called **basis elements**) such that

- (i) Every element $x \in X$ belongs to some set in \mathcal{B} .
- (ii) If x belongs to the intersection of two basis elements B_1 and B_2 , then there is a basis element B_3 containing x such that $B_3 \subset B_1 \cap B_2$.

Example 3.1 (Bases). The following are example of bases of topologies:

- (i) $X = \mathbb{R}$ and $B = \{(a, b) | b > a\}$. We can cover \mathbb{R} with open intervals. Further, a real number x is contained in two intervals B_1 and B_2 , then there will be an open interval B_3 contained in the intersection of the two intervals. In this example, we can actually set $B_3 = B_1 \cap B_2$.
- (ii) $X = \mathbb{R}^2$ and $\mathcal{B} = \{\text{interiors of circles}\}$. We can cover \mathbb{R}^2 with circles. If x is in the intersection of two circles B_1 and B_2 , then we can construct a circle B_3 contained in the intersection $B_1 \cap B_2$. Note in this example, we can just take the actual intersection, as it's not a circle. This example can also be extended to other polygons.

Definition 3.2 (Topology \mathcal{T} generated by \mathcal{B}). If \mathcal{B} is a basis for a topology on X, then we define the **topology** \mathcal{T} **generated by** \mathcal{B} as follows: A subset U of X is said to be open in X (that is, to be an element of \mathcal{T}) if for each $x \in U$, there is a basis element $B_x \in \mathcal{B}$ such that $x \in B_x$ and $B_x \subset U$. Note that each basis element is itself an element of \mathcal{T} . More succinctly:

$$U \subset X : U \in \mathcal{T} \iff \forall x \in U \exists B_x \in \mathcal{B} \text{ s.t. } x \in B_x \subset U$$

Theorem 3.1 (Collection \mathcal{T} generated by a basis \mathcal{B} is a topology on X).

Proof. We check the three conditions:

(i) The empty set is vacuously open (since it has no elements), so $\emptyset \in \mathcal{T}$. Further, $X \in \mathcal{T}$ since for each $x \in X$, there must be at least one basis element B containing x, which itself is contained in X.

[[Incomplete]]

Lemma 3.2 (Every open set in X can be expressed as a union of basis elements (not unique)). Let X be a set and \mathcal{B} a basis for a topology \mathcal{T} on X. Then \mathcal{T} equals the collection of all unions of elements of \mathcal{B} .

Proof. We need to show two inclusions:

- (i) Collection of elements of \mathcal{B} in \mathcal{T} : In the topology \mathcal{T} generated by \mathcal{B} , each basis element is itself an element of \mathcal{T} . Since \mathcal{T} is a topology, their union is also in \mathcal{T} .
- (ii) Element of \mathcal{T} in collection of all unions of elements of \mathcal{B} : Take $U \in \mathcal{T}$. Then we know $\forall x \in U$ $\exists B_x \in \mathcal{B}$ such that $x \in B_x \in U$. Then we claim that $U = \bigcup_{x \in U} B_x$, so that U equals a union of elements of \mathcal{B} . Indeed, " \subset " follows since $x \in U \implies x \in B_x$. And, " \supset " follows since $B_x \subset U$, so that the union of all such B_x is in U.

Lemma 3.3. Let (X, \mathcal{T}) be a topological space. Suppose C is a collection of open sets of X (i.e., $C \subset \mathcal{T}$) such that for each open set U of X and each $x \in U$, there is an element $V \in C$ such that $x \in V \subset U$. Then C is a basis for the topology of X. In notation;

$$\forall U \in \mathcal{T} \ \forall a \in U \ \exists V \in \mathcal{C} \ s.t. \ a \in V, V \subset U$$

Definition 3.3 (Subbasis). A **subbasis** \mathscr{S} for a topology on X is a collection of subsets of X whose union equals X. The topology generated by the subbasis \mathscr{S} is defined to be the collection \mathcal{T} of all unions of finite intersections of elements of \mathscr{S} .

4 Continuous Functions

Definition 4.1 (Closed). A subset A of a topological space (X, \mathcal{T}) is said to be **closed** if the set $X - A \in \mathcal{T}$. In words, a subset of a topological space is closed if its complement (in the space) is open.

Example 4.1 (Sets can be both closed and open). Let (X, \mathcal{T}) be a topological space. Then $X - X = \emptyset \in \mathcal{T}$ and $X - \emptyset = X \in \mathcal{T}$. Therefore X, \emptyset are both closed and open. We call this type of set clopen. Further

Closed
$$\neq$$
 Not Open (4.1)

Example 4.2 (Sets can be neither closed nor open). Consider Q in the usual topology on R.

Definition 4.2 (Continuous). Let (X, \mathcal{T}) and (Y, σ) be topological spaces. A function $f: X \to Y$ is said to be **continuous** with respect to \mathcal{T} and σ if for each open subset V of Y, the set $f^{-1}(V)$ is an open subset of X. In symbols, $\forall S \in \sigma$, we have that $f^{-1}(S) \in \mathcal{T}$ (where $f^{-1}(S) = \{a \in X \mid f(a) \in S\}$). In words, the preimage of an open set is open.

Definition 4.3 (Homeomorphic). The topological spaces (X, \mathcal{T}) and (Y, σ) are **homeomorphic** if there exists a function $f: X \to Y$ such that

- (i) *f* is bijective.
- (ii) *f* is continuous.
- (iii) f^{-1} is also continuous.

We write $(X, \mathcal{T}) \cong (Y, \sigma)$ or $f : (X, \mathcal{T}) \cong (Y, \sigma)$.

Remark. This definition states that we can find a *single* bijection that's continuous in both directions.

Example 4.3 (Continuous functions). Let X be a set with more than one element. Let $\mathcal{T}_{disc} = \mathcal{P}(X)$ and $\mathcal{T}_{ind} = \{\emptyset, X\}$ (that is, the discrete and indiscrete topologies. We require X to have more than one element, else these topologies would be the same). Let f = id (that is f(x) = x). Then

- (i) $f:(X, \mathcal{T}_{disc}) \to (X, \mathcal{T}_{ind})$ is **continuous**. Indeed, if $S \subseteq X$, $S \in \mathcal{T}_{ind}$, then $f^{-1}(S) \in \mathcal{T}_{disc}$, since $\mathcal{T}_{disc} \supset \mathcal{T}_{ind}$.
- (ii) $f:(X,\mathcal{T}_{ind}) \to (X,\mathcal{T}_{disc})$ is **not continuous**. For example, suppose $X = \{1,2\}$. Let $S = \{1\} \in \mathcal{T}_{disc}$. Then $f^{-1}(\{1\}) = \{1\} \notin \mathcal{T}_{ind}$.

Remark. This example motivates a more general claim: Any map into the indiscrete topology or out of the discrete topology is continuous. Further, the identity map from a finer topology to a coarser topology is continuous.

Example 4.4 (Open, closed, continuous functions).

Definition 4.4 (Open map). $f:(X, \mathcal{T}) \to (Y, \sigma)$ is an **open map** if $\forall S \in \mathcal{T}$ we have that $f(S) \in \sigma$ (recall $f(S) = \{f(s) \mid s \in S\}$). In words: open sets map to open sets.

Definition 4.5 (Closed map). $f:(X,\mathcal{T})\to (Y,\sigma)$ is a **closed map** if $\forall S\subset X$ such that $X-S\in\mathcal{T}$ we have that $Y-f(S)\in\sigma$. In words: closed sets map to closed sets.

Continuous, open, and closed maps don't have clean relationships.

To see this, let $X = \{1, 2\}$.

- (i) Continuous, not open, not closed map: Let $f:(X,\mathcal{P}(X))\to (X,\{\emptyset,X\})$ be the identity map (discrete to indiscrete).
 - (a) Continuous: Previous example.
 - (b) Not open: $\{1\} \in \mathcal{P}(X)$ maps to $\{1\} \notin \{\emptyset, X\}$. Thus the map is not open.
 - (c) Not closed: $X \{1\} = \{2\} \in \mathcal{P}(X)$, so $\{1\}$ is closed in $(X, \mathcal{P}(X))$. But $\{2\} \notin \{\emptyset, X\}$. Thus $\{1\}$ is closed on the left, but not on the right.
- (ii) Open, closed, not continuous map: Let $f:(X,\{\emptyset,X\})\to (X,\mathcal{P}(X))$ be the identity map (indiscrete to discrete).
 - (a) Not continuous: Previous example.
 - (b) Open: Since $\mathcal{T}_{ind} \subset \mathcal{T}_{disc}$
 - (c) Closed: Since $\mathcal{T}_{ind} \subset \mathcal{T}_{disc}$.
- (iii) Continuous, closed, not open: Let $X = \mathbb{R}$ and $\tau = \tau_e$. Let $Y = \mathbb{R}^2$ and $\tau = \tau_{e_2}$ (basis is set of open balls). Define $f: X \to Y: r \mapsto (r, 0)$.
 - (a) Continuous: Clear.
 - (b) Not open: \mathbb{R} is sent to the x-axis, which is not open in the plane.
 - (c) Closed: Fix $A \subset \mathbb{R}$ closed (in τ_e -sense). We need to show that $f(A) = \{f(a) \mid a \in A\}$ is closed (in τ_{e_2} sense). Thus we must show $\mathbb{R}^2 f(A)$ is open, which is equivalent to showing that for all $b \in \mathbb{R}^2$, there exists an $\varepsilon > 0$ such that $B_{\varepsilon}(b) \subset \mathbb{R}^2 f(A)$. We prove by cases:
 - i. b not on x-axis: Let $\varepsilon =$ distance from b to x-axis. Thus $B_{\varepsilon}(b) \cap (x$ -axis) = \emptyset , and $f(A) \subset (x$ -axis). Thus $B_{\varepsilon}(A) \cap f(A) = \emptyset$, and $B_{\varepsilon}(b) \subset \mathbb{R}^2 f(A)$.
 - ii. b is on x-axis: Look at $a=f^{-1}(b)$ (note: a exists and is unique. f is injective and hits all of x-axis. Thus $b \notin f(A) \Rightarrow a \notin A$). Since A is closed in \mathbb{R} , if $a \notin A$, then $\exists \varepsilon > 0$ such that $(a \varepsilon, a + \varepsilon) \subseteq \mathbb{R} A$. Then

Claim 4.1.
$$B_{\varepsilon}(b) \subset \mathbb{R}^2 - f(A)$$

Proof. $B_{\varepsilon}(b) \cap (x\text{-axis}) = f((a - \varepsilon, a + \varepsilon))$. But $f((a - \varepsilon, a + \varepsilon)) \cap f(A) = \emptyset$, since $(a - \varepsilon, a + \varepsilon) \cap A = \emptyset$. Thus

$$B_{\varepsilon}(b) \cap f(A) = B_{\varepsilon}(b) \cap f(A) \cap (x\text{-axis})$$

$$= f((a - \varepsilon, a + \varepsilon)) \cap f(A)$$

= \emptyset

5 Subspace Topology

Definition 5.1 (Subspace topology). Given a topological space (X, \mathcal{T}) and a non-empty set $A \subseteq X$, the **subspace topology on** A **induced (or given) by** \mathcal{T} is (A, τ_A) where $\mathcal{T}_A = \{U \cap A \mid U \in \mathcal{T}\}$.

Remark. Intuitively, $U \cap A$ "should" be open in the sense of A, since it's the "all of the open set U" as far as A knows.

Proof that (A, τ_A) *is a topological space.* We check the axioms:

- (i) $\emptyset \in \mathcal{T}_A$: $\emptyset \in \mathcal{T}$, and $\emptyset \cap A = \emptyset$, so $\emptyset \in \mathcal{T}_A$.
- (ii) $A \in \mathcal{T}_A$: $X \in \mathcal{T}$, and $X \cap A = A$, so $A \in \mathcal{T}_A$.
- (iii) Closure under finite intersections [2 for simplicity]: Suppose $B_1, B_2 \in \tau_A$. We want to show that $B_1 \cap B_2 \in \tau_A$. We know that there exist $C_1, C_2 \in \mathcal{T}$ such that $B_1 = C_1 \cap A$ and $B_2 = C_2 \cap A$. Then

$$B_1 \cap B_2 = (C_1 \cap A) \cap (C_2 \cap A) = (C_1 \cap C_2) \cap A \tag{5.1}$$

But $C_1 \cap C_2 \in \mathcal{T}$ since \mathcal{T} is a topology, therefore $B_1 \cap B_2$ can be written as the intersection of a set in \mathcal{T} and A, so that $B_1 \cap B_2 \in \tau_A$.

5.1 Connectedness

Definition 5.2 (Connected). A space (X, τ) is **connected** if whenever sets V, W are

- (i) Nonempty
- (ii) Open
- (iii) $V \cup W = X$

we have $V \cap W \neq \emptyset$.

Remark. Equivalently, a set is connected if and only the only clopen sets are \emptyset , X.

Example 5.1 (Connected Set). Let $(X, \tau) = (\mathbb{R}, \tau_e)$ and $A = (0, 1) \cup (1, 2)$. Notice that

- (i) $(0,1) \in \tau_A$ since $(0,1) = (0,1) \cap A$ and $(0,1) \in \tau_e$).
- (ii) Similarly, $(1,2) \in \tau_A$.

Then notice that (0,1) = A - (1,2), so that the complements of both (0,1) and (1,2) are both open. Therefore each set is clopen. Thus A is not connected.

6 Metric Spaces

Definition 6.1 (Metric space). A **metric space** is a nonempty set X together with a binary function $d: X \times X \to \mathbb{R}$ which satisfies the following properties: For all $x, y, z \in X$ we have that

- (i) Positivity: $d(x, y) \ge 0$
- (ii) Definiteness: d(x, y) = 0 if and only if x = y
- (iii) Symmetry: d(x,y) = d(y,x)
- (iv) Triangle inequality: $d(x,y) + d(y,z) \ge d(x,z)$

Definition 6.2 (Metric topology). Given a metric space (X, d), the set $\mathcal{B} = \{B_{\varepsilon}(x) \mid \varepsilon > 0, x \in X\}$ is a basis for a topology on X (where $B_{\varepsilon}(x) = \{y \in X \mid d(x, y) < \varepsilon\}$) called the **metric topology**.

Theorem 6.1 ("Continuous" = "Continuous"). *If* (X_1, d_1) *and* (X_2, d_2) *are metric spaces with induced topologies* τ_{d_1} *and* τ_{d_2} , *then for* $f: X_1 \to X_2$, *the following are equivalent:*

- (i) f is continuous with respect to τ_{d_1} and τ_{d_2} .
- (ii) For all $a \in X_1$ and $\varepsilon > 0$, there exists a $\delta > 0$ such that for all $b \in X_1$ for which $d_1(a,b) < \delta$, we have that $d_2(f(a), f(b)) < \varepsilon$.

Proof. \Box

6.1 Special Properties and Maps

Definition 6.3 (T_2 , Hausdorff). (X, τ) is T_2 (**Hausdorff**) if for every distinct a, $b \in X$, there exist open sets V, $W \in \tau$ such that $a \in V$, $b \in W$, and $V \cap W = \emptyset$.

Theorem 6.2 (Separation Axiom). *Metric spaces are always* T_2 .

Proof. Let
$$\varepsilon = \frac{d(a,b)}{2}$$
. Then let $V = B_{\varepsilon}(a)$ and $W = B_{\varepsilon}(b)$.

Remark. Not all topological spaces are T_2 .

7 Sequences

Definition 7.1 (Converges). Fix a topological space (X, \mathcal{T}) . A sequence of points $(a_i)_{i \in \mathbb{N}} \subset X$ **converges** to $b \in X$ if for every open set W containing b, all but finitely many of the terms of the sequence are in W. In symbols

$$(a_i)_{i\in\mathbb{N}}\to b\iff \forall W\in\mathcal{T} \text{ s.t. } b\in W, \exists N\in\mathbb{N} \text{ s.t. } \forall m>n, a_m\in W$$

Definition 7.2 (Sequentially closed). A set $S \subset X$ is **sequentially closed** if for every sequence $(a_i)_{i \in \mathbb{N}}$ of points in S converging to some $b \in X$, we have $b \in S$.

How do sequentially closed and closed sets relate?

- In a metric space, a set is closed if and only if it is sequentially closed.
- In general topological spaces, this need not be true.

How bad can convergence be in an arbitrary topological space? Pretty bad.

Example 7.1 (Every sequence converges to every point). Let X be a set with at least 2 points and \mathcal{T} be the indiscrete (or trivial) topology (note: |X| = 1 isn't that interesting since every sequence in X would then be constant and hence convergent). Let $(a_i)_{i \in \mathbb{N}}$ be a sequence of points in X and fix a point $b \in X$.

Claim 7.1.
$$(a_i)_{i\in\mathbb{N}}\to b$$

Proof. Let $U \subset X$ such that $b \in U$ and $U \in \mathcal{T}$. Since $b \in U$, we have that $U \neq \emptyset$, so that the only possibility is that U = X (since $\mathcal{T} = \{\emptyset, X\}$). But then U contains all elements of the sequence $(a_i)_{i \in \mathbb{N}}$. Thus $(a_i)_{i \in \mathbb{N}}$ converges to b. Since b was arbitrary, $(a_i)_{i \in \mathbb{N}}$ converges to every point of X.

Example 7.2 (Every sequence converges to exactly one point or doesn't converge, or converges to everything). Let (X, \mathcal{T}) be the cofinite topology (on an infinite set X). For simplicity, let $X = \mathbb{N}$. Let $(a_i)_{i \in \mathbb{N}}$ be a sequence of points in X. We can divide the possible forms of $(a_i)_{i \in \mathbb{N}}$ into 3 cases:

- (i) No infinite repetition of any terms (ex. (1,2,3,4,...)).
- (ii) Exactly one value gets repeated infinitely often (ex. $(1,2,1,3,1,4,1,\ldots)$).
- (iii) At least 2 values get repeated infinitely often.

We will show that the respective outcomes for these cases are

- (i) Converges to every point.
- (ii) Converges to point repeated infinitely often.
- (iii) Doesn't converge.

Claim 7.2. A sequence with no infinite repetition converges to every point.

Proof. Let $a=(a_i)_{i\in\mathbb{N}}$ be a sequence in X with no infinite repetition and let $b\in X$. Let $b\in U$ where $U\in \mathcal{T}$ (U open). Note that $U\neq \emptyset$. Thus U is cofinite (that is, X-U is finite, so that finitely many points of X are not in U). Therefore each point not in U only appears finitely many times in the sequence (since there is no infinite repetition in a). Therefore only finitely many of the terms of a are not in U (finite \times finite = finite). Therefore the sequence converges to b.

Claim 7.3 (Metric space: closed \iff sequentially closed). In a metric space, a set is closed if and only if it is sequentially closed. More formally: If (X, d) is a metric space and \mathcal{T}_d is the induced topology on X, then $S \subset X$ is sequentially closed if and only if S is closed (with respect to T, that is $X - S \in T$).

Closed \Rightarrow sequentially closed. Suppose (for contradiction) that $A \subset X$, A closed, but A not sequentially closed. Since A is not sequentially closed, there is a sequence of points $(a_i)_{i\in\mathbb{N}}$ from A and a point $b \in X - A$ such that $(a_i)_{i \in \mathbb{N}} \to b$.

A closed means X - A is open. So since $b \in X - A$, there is some $U \in \mathcal{T}_d$ with $b \in U$ such that $U \cap A = \emptyset$. Of course, U = X - A works. But, we can find a basic open (i.e., a set in the basis we're using, here the set of open balls). Since $b \in X - A$ and X - A open, there exists $\varepsilon > 0$ such that $B_{\varepsilon}(b) \subset X - A$. Thus we have that

- (i) $B_{\varepsilon}(b)$ is open.
- (ii) $b \in B_{\varepsilon}(b)$.
- (iii) $B_{\varepsilon}(b)$ contains none of the terms of $(a_i)_{i \in \mathbb{N}}$ (since $a_i \in A$ for all i). But then $(a_i)_{i\in\mathbb{N}} \not\to b$, a contradiction.

Product Topology

Definition 8.1 (Product topology, two sets). Let (X, τ) and (Y, σ) be topological spaces. The prod**uct topology** on $X \times Y$ is the topology having as *basis* the collection \mathcal{B} of all set of the form $U \times V$ where *U* is an open subset of *X* and *V* is an open subset of *Y*. In symbols,

$$\mathcal{B}_{\tau \times \sigma} = \{ U \times V \mid U \in \tau, V \in \sigma \}$$
(8.1)

Remark. Note, open sets of $X \times Y$ need not be of the form open set in $X \times$ open set in Y.

Proof that $\mathcal{B}_{\tau \times \sigma}$ *is indeed a basis for a topology on* $X \times Y$. We check the two conditions required to be a basis:

- (i) \mathcal{B} "covers" X: Note that $X \in \tau$ and $Y \in \sigma$ (since they are each topologies). Therefore $X \times Y \in \mathcal{B}$. Thus for any $(x,y) \in X \times Y$, we have that $(x,y) \in X \times Y \in \mathcal{B}$.
- (ii) Intersection Property: Take two basis elements $U_1 \times V_1$ and $U_2 \times V_2$. Notice that

$$(U_1 \times V_1) \cap (U_2 \times V_2) = (U_1 \cap U_2) \times (V_1 \cap V_2)$$
 (8.2)

But then $U_1 \cap U_2 \in \tau$ and $V_1 \times V_2 \in \sigma$, so that $(U_1 \times V_1) \cap (U_2 \times V_2) \in \mathcal{B}$, so the intersection of two basis elements is again a basis element. This is stronger than the property required to be a basis, yet of course sufficient.

Definition 8.2 (Product space/topology for finitely many spaces). Let $(X_1, \tau_1), \ldots, (X_n, \tau_n)$ be topological spaces. The set of points of the **product space** is $X_1 \times \cdots \times X_n$. The basis for the product topology is

$$\mathcal{B}_{\tau_1 \times \dots \times \tau_n} = \{ W_1 \times \dots \times W_n \mid W_i \in \tau_i \}$$
(8.3)

Remark. Again, $\mathcal{B}_{\tau_1 \times \cdots \times \tau_n}$ is indeed a basis since the first condition is trivially satisfied ($X_1 \times \cdots \times X_n$ is a basis element) and the intersection of products is a product of intersections, and hence again a basis element.

Definition 8.3 (Projection Maps). Let (X_1, τ_1) and (X_2, τ_2) be topological spaces. Let

$$\pi_1: X_1 \times X_2 \to X_1: (x_1, x_2) \mapsto x_1$$

 $\pi_2: X_1 \times X_2 \to X_2: (x_1, x_2) \mapsto x_2$

then π_1 and π_2 are **projection maps**.

Claim 8.1. Let π_1 be π_2 projection maps (as above). Then

- (i) π_1 is continuous with respect to $\tau_1 \otimes \tau_2$ and τ_1 .
- (ii) π_2 is continuous with respect to $\tau_1 \otimes \tau_2$ and τ_2 .

Proof. We show π_1 is continuous. Suppose $S \subset X_1$ is open (i.e., $\in \tau_1$). We want to show that $\pi^{-1}(S) \in \tau_1 \otimes \tau_2$. We have that

$$\pi_1^{-1}(S) = \{ p \in X_1 \times X_2 \mid \pi_1(p) \in S \}$$

$$= \{ (x_1, x_2) \in X_1 \times X_2 \mid \pi_1((x_1, x_2)) \in S \}$$

$$= \{ (x_1, x_2) \in X_1 \times X_2 \mid x_1 \in S \}$$

$$= S \times X_2$$

Thus we have that

- S is τ_1 -open.
- X_2 is τ_2 -open.

so that $S \times X_2$ is in our basis for $\tau_1 \otimes \tau_2$. Thus, $S \times X_2 \in \tau_1 \otimes \tau_2$.

Example 8.1 (Projection Maps). Take $(X_1, \tau_1) = (X_2, \tau_2) = (\mathbb{R}, \tau_e)$. Take $S \subset \mathbb{R}^2$ to be the unit ball: $S = \{(x, y) \mid x^2 + y^2 < 1\}$. Observe that

$$\pi_1(S) = \pi_2(S) = (-1, 1)$$
(8.4)

9 Compactness

Definition 9.1 (Open cover). An **open cover** of (*X*, *τ*) is a family of *τ*-open sets $\mathcal{C} \subset \tau$ such that $\bigcup \mathcal{C} = X$.

Remark. The notation $\bigcup \mathcal{C} = X$ means X is the union of "stuff" in \mathcal{C} .

Example 9.1 (Open covers). The following are examples of open covers of (X, τ) :

- (i) Any basis for τ is an open cover of (X, τ) .
- (ii) Any subbasis for τ is an open cover of (X, τ) .
- (iii) $\{X\}$.

- (iv) τ .
- (v) Let $X = \mathbb{R}$ and $\tau = \tau_e$. Then $\{(-n, n) \mid n \in \mathbb{N}\}$ is an open cover of X.

Definition 9.2 (Subcover). \mathcal{D} is a **subcover** of \mathcal{C} if

- (i) $\mathcal{D} \subset \mathcal{C}$.
- (ii) \mathcal{D} is an open cover.

A finite subcover is a subcover which is finite.

Definition 9.3 (Compact). A topological space (X, τ) is **compact** if every open cover has a finite subcover.

Example 9.2 (Non-compact Set). Consider the topological space (\mathbb{R}, τ_e) . This space has a finite subcover: $\{\mathbb{R}\}$. But does this imply that (\mathbb{R}, τ_e) is compact? No! We need to see if *all* open covers have finite subcovers. Consider the open cover

$$C = \{(-n, n) \mid n \in \mathbb{N}\} \tag{9.1}$$

 \mathcal{C} has no finite subcover. Thus (\mathbb{R}, τ_e) is not compact.

A Set Theory Review

Definition A.1 (Difference). The **difference** of two sets, denoted A - B, is the set consisting of those elements of A that are not in B. In notation

$$A - B = \{x | x \in A \text{ and } x \notin B\}$$

Theorem A.1 (Set-Theoretic Rules). We have that, for any sets A, B, C,

(i) First distributive law for the operations \cap and \cup :

$$A \cap (B \cup C) = (A \cap B) \cup (A \cap C) \tag{A.1}$$

(ii) Second distributive law for the operations \cap and \cup :

$$A \cup (B \cap C) = (A \cup B) \cap (A \cup C) \tag{A.2}$$

(iii) DeMorgan's laws:

$$A - (B \cup C) = (A - B) \cap (A - C) \tag{A.3}$$

"The complement of the union equals the intersection of the complements."

$$A - (B \cap C) = (A - B) \cup (A - C) \tag{A.4}$$

"The complement of the intersection equals the union of the complements."

A.1 Functions

Exercise A.1. Let $f: A \to B$. Let $A_0 \subset A$ and $B_0 \subset B$. Then

- (i) $A_0 \subset f^{-1}(f(A_0))$ and equality holds if f is injective.
- (ii) $f(f^{-1}(B_0)) \subset B_0$ and equality holds if f is surjective.

Solution. We prove each item in turn:

- (i) Let $a \in A_0$. Then $f(a) \in f(A_0)$. We have that $f^{-1}(f(A_0)) = \{a \mid f(a) \in f(A_0)\}$. Then $f(a) \in f^{-1}(f(A_0))$, so that $A_0 \subset f^{-1}(f(A_0))$. We can actually show equality holds if and only if f is injective.
 - (a) \Leftarrow Suppose f is injective. Let $a \in f^{-1}(f(A_0))$. Then $f(a) \in f(A_0)$. Therefore there exists some $b \in f(A_0)$ such that f(a) = f(b). Injectivity implies $a = b \in A_0$.
 - (b) \Rightarrow We will prove the contrapositive. Suppose f is *not* injective. Then f(a) = f(b) for some $a \neq b$. Therefore $\{a, b\} \subset f^{-1}(f(\{a\}))$. Thus $f^{-1}(f(\{a\})) \not\subset \{a\}$.
- (ii) Let $x \in f(f^{-1}(B_0))$. Then there is some $b \in f^{-1}(B_0)$ such that f(b) = x. But $f(b) \in B_0$, so $x \in B_0$.
 - (a) \Leftarrow Suppose f is surjective. Take $b \in B_0$, then there exists some $a \in A_0$ such that f(a) = b, so that $a \in f^{-1}(B_0)$, and $b = f(a) \in f(f^{-1}(B_0))$.

Exercise A.2.

- Solution. (i) Let $B_0 \subset B_1$. Fix $x \in f^{-1}(B_0)$. Then $f(x) \in B_0$, which implies $f(x) \in B_1$. Thus $f^{-1}(B_0) \subset f^{-1}(B_1)$.
 - (ii) We show two inclusions:
 - (a) \supset : We can use (i), since $B_i \subset B_0 \cup B_1$, so $f^{-1}(B_0) \subset f^{-1}(B_0 \cup B_1)$ and $f^{-1}(B_1) \subset f^{-1}(B_0 \cup B_1)$, so $f^{-1}(B_0) \cup f^{-1}(B_1) \subset f^{-1}(B_0 \cup B_1)$.
 - (b) \subset : Let $x \in f^{-1}(B_0 \cup B_1)$. Thus there exists some $b \in B_0 \cup B_1$ such that f(x) = b. Therefore $x \in f^{-1}(B_0)$ or $x \in f^{-1}(B_1)$, so that $f^{-1}(B_0 \cup B_1) \subset f^{-1}(B_1)$.

(iii)