1 Structures

1.1 Words

- alphabet Σ
- Σ^* , Σ^{ω}
- ω -word $(\alpha : \mathbb{N} \to \Sigma) \in \Sigma^{\omega}$
- $Occ(\alpha) = {\alpha(n) \mid n \in \mathbb{N}}$
- $\operatorname{Inf}(\alpha) = \bigcap_{i \in \mathbb{N}} \{ \alpha(n) \mid n > i \}$

1.2 Finite Ranked Trees

- ranked alphabet $\Sigma_0, \ldots, \Sigma_m$
- trees T_{Σ}
- trees (inductive definition) $a \in \Sigma_i, t_1, \ldots, t_i \in T_{\Sigma} \Rightarrow a(t_1, \ldots, t_i) \in T_{\Sigma}$
- trees (labeled definition)
 - tree $t = (dom_t, val_t)$
 - $-\operatorname{dom}_t \subseteq (\mathbb{N}^*_{>0})$
 - $\operatorname{val}_t : \operatorname{dom}_t \to \Sigma$
 - if $\operatorname{val}_t(w) \in \Sigma_i$, then $wi \in \operatorname{dom}_t$ and $w(i+1) \notin \operatorname{dom}_t$
 - if $w = uv \in dom_t$, then $u \in dom_t$
 - if $w(i+1) \in \text{dom}_t$, then $wi \in \text{dom}_t$

1.3 Finite Unranked Trees

- alphabet Σ
- trees T_{Σ}
- \bullet trees (inductive definition)
 - $-h \in (T_{\Sigma})^*$ is a **hedge**
 - $-a \in \Sigma$, $h \text{ hedge} \Rightarrow a(h) \in T_{\Sigma}$
- trees (labeled definition)
 - tree $t = (dom_t, val_t)$
 - $-\operatorname{dom}_t\subseteq (\mathbb{N}_{>0}^*)$
 - $\operatorname{val}_t : \operatorname{dom}_t \to \Sigma$
 - if $w = uv \in dom_t$, then $u \in dom_t$
 - if $w(i+1) \in \text{dom}_t$, then $wi \in \text{dom}_t$

1.4 Infinite Trees

- alphabet Σ
- trees T_{Σ}
- tree $t: \{0,1\}^* \to \Sigma$
- path $\pi \in \{0,1\}^{\omega}$
- $t|_{\pi} \in \Sigma^{\omega} : n \mapsto t(\pi(n))$

1.5 Games

- \bullet arena / game graph $G=(V_0,V_1,E,c)$
 - V_0, V_1 player vertices, $V = V_0, V_1$
 - $E \subseteq V \times V$
 - colors C finite
 - colors $c:V\to C$
- winning condition Win $\subseteq C^{\omega}$
- game $\mathcal{G} = (G, \operatorname{Win})$
- play $\alpha \in V^{\omega}$
- winner of $\alpha = \begin{cases} 0 & \text{if } c(\alpha) \in \text{Win} \\ 1 & \text{else} \end{cases}$

2 Acceptance Conditions

 $\begin{array}{l} Q \text{ set of states/colors} \\ \rho \in Q^{\omega} \end{array}$

E $F \subseteq Q$. ρ accepted iff $F \cap \mathrm{Occ}(\rho) \neq \emptyset$

A $F \subseteq Q$. ρ accepted iff $Occ(\rho) \subseteq F$

Staiger-Wagner $\mathcal{F} \subseteq 2^Q$. ρ accepted iff $Occ(\rho) \in \mathcal{F}$

Büchi $F \subseteq Q$. ρ accepted iff $F \cap \text{Inf}(\rho) \neq \emptyset$

Generalized Büchi $F_1, \ldots, F_k \subseteq Q$. ρ accepted iff for all $1 \le i \le k$: $F_i \cap \text{Inf}(\rho) \ne \emptyset$ coBüchi $F \subseteq Q$. ρ accepted iff $\text{Inf}(\rho) \subseteq F$

Rabin $\Omega \subseteq 2^Q \times 2^Q$. ρ accepted iff there is $(E,F) \in \Omega$ s.t. $Inf(\rho) \cap E = \emptyset$ and $Inf \cap F \neq \emptyset$

• Rabin Chain: $\Omega = \{(E_i, F_i) \mid 1 \le i \le k\}$ with $E_k \subseteq F_k \subseteq E_{k-1} \subseteq \cdots \subseteq E_1 \subseteq F_1$

Streett $\Omega \subseteq 2^Q \times 2^Q$. ρ accepted iff for all $(E,F) \in \Omega$: $\mathrm{Inf}(\rho) \cap E \neq \emptyset$ or $\mathrm{Inf} \cap F = \emptyset$

Parity $c: Q \to C$. ρ accepted iff $\max \mathrm{Inf}(c(\rho))$ is even

Muller $\mathcal{F} \subseteq 2^Q$. ρ accepted iff $Occ(\rho) \in \mathcal{F}$

3 Word Automata

 $(Q, \Sigma, q_0, \Delta, Acc)$

Deterministic $\delta: Q \times \Sigma \to Q$

Non-Deterministic $\Delta \subseteq Q \times \Sigma \times Q$

Alternating $\delta: Q \times \Sigma \to B_+(Q)$ where $B_+(Q)$ are boolean formulas over $Q \cup \{0,1\}$ without negation

3.1 Deterministic Word Automata

- DBA
- weak DBA
- coDBA
- E-automaton
- A-automaton
- Staiger-Wagner automaton
- DMA
- DRA
- DPA

3.2 Nondeterministic & Alternating Word Automata

- NBA
- ABA

4 Finite Tree Automata

4.1 Ranked Top-Down Automata

 (Q, Σ, Δ, F) where $\Delta \subseteq \bigcup_{i=0}^m Q^i \times \Sigma_i \times Q$ or deterministic δ

- \bullet DTA
- NTA

4.2 Ranked Bottom-Up Automata

 (Q, Σ, Q_0, Δ) where $Q_0 \subseteq Q$ initial states, $\Delta \subseteq \bigcup_{i=0}^m Q \times \Sigma_i \times Q^i$ or deterministic δ

- \delta DTA
- ↓NTA

4.3 Unranked Bottom-Up Automata

$$(Q, \Sigma, \Delta, F)$$
 where $\Delta \subseteq \text{Reg}(Q) \times \Sigma \times Q$

Normalized For all (L_1, a_1, q_1) , (L_2, a_2, q_2) : If $a_1 = a_2$ and $q_1 = q_2$, then $L_1 = L_2$ **Deterministic** For all (L_1, a_1, q_1) , (L_2, a_2, q_2) : $L_1 \cap L_2 = \emptyset$ or $a_1 \neq a_2$ or $q_1 = q_2$

- DUTA
- NUTA

4.4 Ranked Tree Walking Automata

$$\begin{aligned} & \text{Types} = \{ \text{root}, 1, \dots, m \} \\ & \text{Dir} = \{ \uparrow, 0, 1, \dots m \} \\ & \text{type}_t(u) = \begin{cases} \text{root} & \text{if } u = \epsilon \\ i & \text{if } u = vi \end{cases} \end{aligned}$$

 $(Q, \Sigma, q_0, \Delta, F)$ where $\Delta \subseteq Q \times \text{Types} \times \Sigma \times Q \times \text{Dir}$ (current state, current type, current symbol, new state, movement) $\in \Delta$

 \bullet TWA

5 Infinite Tree Automata

a