

# Deformed2Self: Self-Supervised Denoising for Dynamic Medical Imaging

Junshen Xu, Elfar Adalsteinsson Junshen@mit.edu



# **Motivation** Denoising for dynamic medical imaging Fast imaging, e.g., EPI → low SNR complex noise statistics Motion between frames **Exploring similarity of images at different time frames** noise model noisy $\gamma_0$ images $\alpha$ clean $\alpha_0$ ¦images $\phi_1^{-1}$ motion deformation $\phi_N^{-1}$

### Method

#### Single-image denoising

- Improve the image quality using internal information of each slice
- Blind spot technique with dropout (Self2Self): denoising by training the network to recover the masked pixels

# Image registration

 Deformable registration between the target frame and the other frames

## Multi-image denoising

Aggregate information from different slices

# **Network Architecture**



D2S(28.70)

# Training and loss functions

Train the model on each series

DIP(23.89)

S2S(26.88)

- Self supervised learning
- End-to-end optimization
- $L = L_S + L_r + L_m + L_S$

VBM4D(26.95)

BM3D(26.36)

# $L_{s} = \frac{1}{N+1} \sum_{k=0}^{N} \|(1-b_{k}) \odot (\tilde{x}_{k} - y_{k})\|_{2}^{2}$

$$r = \frac{1}{N} \sum_{k=1}^{N} \|\tilde{x}_{k\to 0} - \tilde{x}_0\|_2^2 + \lambda \|\nabla \tilde{\phi}_k\|_2^2$$

$$L_m = \|(1-b)\odot(\hat{x}_0 - y_0)\|_2^2$$

## Results

#### PINCAT

|        | Gaussian        |       |                 |       |                 |       | Poisson |       |        |       |        |       |
|--------|-----------------|-------|-----------------|-------|-----------------|-------|---------|-------|--------|-------|--------|-------|
| Method | $\sigma = 15\%$ |       | $\sigma = 20\%$ |       | $\sigma = 25\%$ |       | P = 40  |       | P = 20 |       | P = 10 |       |
|        | PSNR            | SSIM  | PSNR            | SSIM  | PSNR            | SSIM  | PSNR    | SSIM  | PSNR   | SSIM  | PSNR   | SSIM  |
| Noisy  | 16.55           | 0.300 | 14.05           | 0.208 | 12.11           | 0.151 | 22.42   | 0.603 | 19.40  | 0.472 | 16.19  | 0.346 |
| BM3D   | 29.97           | 0.918 | 27.98           | 0.881 | 26.38           | 0.843 | 32.56   | 0.954 | 30.38  | 0.930 | 27.63  | 0.890 |
| VBM4D  | 31.36           | 0.936 | 29.65           | 0.913 | 28.28           | 0.886 | 32.35   | 0.953 | 29.92  | 0.930 | 27.65  | 0.899 |
| DIP    | 28.28           | 0.879 | 26.85           | 0.837 | 24.63           | 0.759 | 31.96   | 0.949 | 30.99  | 0.935 | 26.54  | 0.868 |
| S2S    | 30.27           | 0.928 | 28.04           | 0.900 | 27.68           | 0.883 | 33.05   | 0.962 | 31.25  | 0.951 | 30.55  | 0.939 |
| D2S    | 31.77           | 0.946 | 30.14           | 0.919 | 29.10           | 0.891 | 35.13   | 0.978 | 33.74  | 0.969 | 31.67  | 0.951 |

#### ACDC

|        | Gaussian       |       |                 |       |                 |       | Rician         |       |                 |       |                 |       |
|--------|----------------|-------|-----------------|-------|-----------------|-------|----------------|-------|-----------------|-------|-----------------|-------|
| Method | $\sigma = 5\%$ |       | $\sigma = 10\%$ |       | $\sigma = 15\%$ |       | $\sigma = 5\%$ |       | $\sigma = 10\%$ |       | $\sigma = 15\%$ |       |
|        | PSNR           | SSIM  | PSNR            | SSIM  | PSNR            | SSIM  | PSNR           | SSIM  | PSNR            | SSIM  | PSNR            | SSIM  |
| Noisy  | 26.02          | 0.769 | 20.00           | 0.518 | 16.48           | 0.369 | 25.70          | 0.742 | 19.66           | 0.513 | 16.07           | 0.368 |
| BM3D   | 32.32          | 0.953 | 28.54           | 0.905 | 26.45           | 0.860 | 29.58          | 0.874 | 23.69           | 0.777 | 19.78           | 0.689 |
| VBM4D  | 32.54          | 0.957 | 28.96           | 0.911 | 26.88           | 0.863 | 29.79          | 0.879 | 23.94           | 0.791 | 19.93           | 0.707 |
| DIP    | 26.95          | 0.875 | 25.55           | 0.815 | 23.48           | 0.718 | 26.10          | 0.811 | 22.76           | 0.736 | 19.10           | 0.629 |
| S2S    | 30.41          | 0.942 | 28.45           | 0.912 | 26.90           | 0.880 | 28.28          | 0.861 | 23.51           | 0.784 | 19.73           | 0.709 |
| D2S    | 32.16          | 0.960 | 30.26           | 0.936 | 28.22           | 0.887 | 29.37          | 0.879 | 24.25           | 0.812 | 20.20           | 0.743 |



#### Ablation study

| Mothad                     | Gaus     | ssian    | Rician   |          |  |  |  |  |  |
|----------------------------|----------|----------|----------|----------|--|--|--|--|--|
| Method                     | ROI-PSNR | ROI-SSIM | ROI-PSNR | ROI-SSIM |  |  |  |  |  |
| D2S                        | 28.01    | 0.894    | 27.55    | 0.889    |  |  |  |  |  |
| w/o single-image denoising | 27.81    | 0.888    | 27.34    | 0.884    |  |  |  |  |  |
| w/o image registration     | 27.68    | 0.887    | 27.24    | 0.883    |  |  |  |  |  |

# Conclusion

- We proposed Deformed2Self, a self-supervised deep learning method for dynamic imaging denoising.
- It explores the similarity of image content at different time frames
- Single- and multi-image denoising networks are combined to improve the image quality
- Experiments on a variety of noise settings show that our method has comparable or even better performance than other state-of-the-art unsupervised or self-supervised denoising methods.