Molecular Dynamics Improving Neighbor Table

Michael Graziano Sahan Bandara

Problem Statement

- Molecular dynamics systems = very common model
 - Two-body interatomic interactions (Lennard-Jones potential function)
 - o Periodic boundaries to represent "infinite" space
- Brute Force -> $O(N^2)$ performance when comparing atom pairs
- Improvement: Verlet Table Algorithm / Cell Linked List Algorithm
- Further improvement: https://arxiv.org/pdf/physics/0311055.pdf
 - Combines above techniques
 - Uses additional techniques to improve table update frequency/memory organization
- How does parallelization of system work?

Tasks

- 1. Research/study molecular dynamics model and algorithms
- 2. Implement/source code that can be used to create model.
- 3. Make improvements to model by:
 - a. Parallelizing
 - b. Following methods described in https://arxiv.org/pdf/physics/0311055.pdf
- 4. Demonstrate improvements/errors in system

Goals

- Demonstrate parallelization of simulation
- Show the progressive improvement between conventional methods/combined methods
- Understand the use of graph algorithm in solving a complex problem

- Interaction between particles in a "infinite" space
 - Utilize periodic boundaries
- Conservation of total energy

o
$$E = E_{kin} + E_{pot}$$

o $E_{pot} = \sum_{i=1...N} \sum_{j>i} e_{pot}(r_{ij})$ where $r_{ij} =$ distance between particles "i" and

"j" (Equation 2.2)¹

- Lennard-Jones Potential
 - Neutral particles
 - Repulsion Forces (no collisions)

Basics of Molecular Dynamics. Available from: C2_for.pdf

² Six Degree-of-Freedom Haptic Rendering for Biomolecular Docking - Scientific Figure on ResearchGate. Available from: https://www.researchgate.net/The-simulation-of-Lennard-Jones-potential_fig1_220110295 [accessed 1 May, 2018]

Periodic Boundaries

- Avoid surface effects
- Simulation particles see "images"
 - Image particles follow movement of simulation particle
- Pair interaction with closest particle
 - o Minimum Image Criterion
- Constant number of particles
 - Simulation exit -> Image enter

Basic Method - 1D & 2D

- Time step range: 1E-5 to 1E-12
- Maximum Iterations: 5000
- 2D performance tracks with 1D
 - o Particles vs Array Size
 - Additional dimension seen at low particle density
- 2048 particles require 226 seconds
 - Normal systems 1E6(+) particles!

Acceleration - The Problem Child

- System update in distinct time steps
 - Step SUFFICIENTLY small for stability
- Update method Verlet Velocity:
 - From Basics of Molecular Dynamics (C2_for.pdf):
 - $\mathbf{v}(t + 0.5*dt) = \mathbf{v}(t) + \mathbf{a}(t)*(0.5*dt)$
 - $\mathbf{r}(t + 0.5*dt) = \mathbf{r}(t) + \mathbf{v}(t + 0.5*dt)*dt$
 - a(t + dt) = F(r(t+dt))/m
 - $\mathbf{v}(t + dt) = \mathbf{v}(t + 0.5*dt) + \mathbf{a}(t + dt)*(0.5*dt)$
- Acceleration calculation $O(N^2)$ <- How to reduce impact?

Neighbor Table

- R_{Cut} -> Potential Cutoff
- \bullet R_{Skin} -> Considered Particle
- Circular boundaries
 - Used Square boundaries
- Data Structure for N particles:
 - Array (size N) of...
 - Pointers
 - Linked-Lists
 - Vectors
- Vector chosen for simplicity
 - Not efficiency
- Table reconstructed a set number of iterations

Basic Method vs. Neighbor Table

- Time step range: 1E-5 to 1E-12
- Maximum Iterations: 5000
- Table Update every 100 cycles
- Neighbor Table overkill at low particle density
- 16384 particles require 83 seconds
 - Improved with larger update interval
- Can we do anything else?

Improvements through parallelization

- \bullet O(N²) calculations result in lower performance.
- Force calculations in basic implementation.
- Neighbor map generation in neighbor map based implementation.
- Parallel execution using OpenMP.
- Parallelising nested 'for' loops which go through all the particles gives the largest performance improvement.

Force calculation in basic implementation

```
// Perform force & Epot calculation based on proximity
pragma omp parallel for private(j,dim,r2, r2_over, r6_over,fp,finst,dist_diff,in_range) reduction(+:Epot)
for (i = 0; i < np; i++) {
    for (j = i+1; j < np; j++) {
        r2 = 0.0:
        in range = true;
        for (dim = 0; dim < nd; dim++) {</pre>
            dist diff[dim] = pos[dim+i*nd] - pos[dim+j*nd];
            // Minimum Image Criterion
            if (abs(dist diff[dim]) > 0.5*L) { dist_diff[dim] -= sign(L, dist_diff[dim]); }
            if (dist diff[dim] > R cut) { in range = false; }
            r2 += dist diff[dim] * dist diff[dim];
        if (in range) {
            r2 \text{ over} = 1.0/r2;
            r6 over = r2 over*r2 over*r2 over;
            fp = 48.0*r6_over*(r6_over-0.5)*r2_over;
            for (dim = 0; dim < nd && in range; dim++) {
                finst[dim] = fp * dist diff[dim];
                acc[dim+i*nd] += finst[dim]/mass;
                acc[dim+j*nd] -= finst[dim]/mass;
            Epot += 4.0*(r6 over*r6 over-r6 over);
```

Results (Basic implementation)

2D simulation

Neighbor map generation

```
#pragma omp parallel for private(j, dim, diff dist, in range)
for (i = 0; i < np; i++) {
    for (j = 0; j < np; j++) {
   for(j = i+1; j < np; j++) {
        if (j == i) { continue; } // Can't pair the particle with itself
        else { // Check distances
            for (\dim = 0; \dim < \operatorname{nd}; \dim + +) {
                diff dist = pos[dim+i*nd] - pos[dim+j*nd];
                if (abs(diff_dist) > 0.5*L) { diff_dist -= sign(L, diff_dist); }
                in_range = (abs(diff_dist) <= R_skin);
                if (!in_range) { break; }
            if (in_range) { neighbor[i].push_back(j); }
```

Neighbor map based implementation

2D simulation

Simulation time variation with number of particles

Summary

- $O(N^2)$ calculation forces basic simulation size to less than ~500 particles to be effective
- Improvements can be made WITHOUT parallelization (but together would be the best)
 - Neighbor Table implementation and update interval
- Cell Linked List Algorithm analysis and integration next objective.