

Anmol Goel | Shekhar Tyagi Chaitanya Dagar | Saurabh Rai

## TABLE OF CONTENTS





# **Motivation**

We analyse music and acoustic features computationally to derive insights and make recommendations



# **PROBLEM**

Music analysis is an understudied field. Lack of insights in publicly available datasets is a major problem.

# SOLUTION

We aim to analyse music datasets using statistical and data visualisation tools. This will help in gaining better insights on how music can be modelled computationally.



# **Project Components**



#### Recommendations

We build a robust recommender system based on acoustic features of songs.



## Time Series Analysis

We analyse how music has evolved through the last century and predict acoustic features based on machine learning models



### Clustering

We cluster various artists and genres of music using Hierarchical Agglomerative Clustering algorithm.

## **Multi Tier Framework**



#### Recommendations

Based on cosine similarity of acoustic features.

#### Time series analysis

Analyse how features and song change through the years

#### Clustering

Cluster similar songs/genres

#### Dashboard

Build webapp to host the above three.

## **Data**

## Songs



1900s

2000s

## **Public Data**

Spotify music data of songs from 1921-2020.

160000 songs and acoustic features like tempo, energy, valence, etc.

Our project is a hybrid of recommendation systems, time series analysis and natural language processing.

## **Acoustic Features**



#### **Popularity**

How popular a song is.



#### Acousticness

How many acoustic instruments are in song.



#### **Energy**

How energetic the song is.



#### Tempo

Tempo of the song.



## **Danceability**

How danceable the song is.



#### Genre

Genre of music like pop, rock, etc.



## **Tools & Algorithms**



## t-SNE / PCA

Algorithm to build low dimensional embeddings for songs using acoustic features

### **Prophet**

Algorithm to forecast future changes and check anomalies in time series data.





#### **HAC**

State of the art clustering algorithm based on hierarchies in data.

#### **Cosine Distance**

Mathematical formula to estimate similarity between 2 latent embeddings.

$$similarity(A,B) = \frac{A \cdot B}{\|A\| \times \|B\|} = \frac{\sum_{i=1}^{n} A_i \times B_i}{\sqrt{\sum_{i=1}^{n} A_i^2} \times \sqrt{\sum_{i=1}^{n} B_i^2}}$$

# Algorithms

|                | Embedding<br>similarity | Linear<br>Time<br>Model | HAC |
|----------------|-------------------------|-------------------------|-----|
| Recommendation | Y                       | X                       | X   |
| Time Series    | X                       | Y                       | X   |
| Clustering     | X                       | X                       | Y   |







# **Spotify**

Our project can help serve better predictions and recommendations to music apps like Spotify.

# **Analysis**

Our project can help people to analyse music and is helpful in the field of computational social science



## **Timeline**





# **Future Work**

We aim to build a web application to visualise the musical features and recommend similar songs to users

# **THANKS!**

Anmol | Shekhar | Chaitanya | Saurabh

