Nonlinear Optimization/MPEC Approach

Chris Conlon thanks to Che-Lin Su

Grad IO III

January 21, 2012

Unconstrained Optimization

Basic idea in many estimation problems is to use Newton-type methods to solve FOCs of equilibrium or estimating equations

$$\min f(x) : x \in \mathbb{R}^n$$

- $f: \mathbb{R}^n \to \mathbb{R}, c: \mathbb{R}^n \to \mathbb{R}^m$ smooth (typically \mathbb{C}^2)
- $x \in \mathbb{R}^n$ finite dimensional (may be large)

Want to find a local minimizer

$$\nabla f(x^*) = 0$$

Optimization Algorithms generate a sequence $x^{(k)}$ such that the gradient test

$$||\nabla f(x^{(k)})|| \leq \frac{\tau}{\tau}$$

is satisfied for some tolerance $\tau = 1e - 6$ or so. Warning!

General NLP Problem

A Nonlinear Programming (NLP) problem is defined by:

$$\begin{cases} \min_{x} f(x) & \text{objective} \\ \text{subject to} & c(x) = 0 & \text{constraints} \\ x \geq 0 & \text{variables} \end{cases}$$

Typical assumptions

- $f: R^n \to R, c: R^n \to R^m$ smooth (typically C^2)
- $x \in R^n$ finite dimensional (perhaps large)
- ▶ more general $l \le c(x) \le u$ is possible

Optimality Conditions for NLP

Constraint Qualifications (CQ)

Linearization of c(x)=0 characterize all feasible permutations, x^* local minimizer & CQ holds \exists multipliers λ^*, γ^* :

$$\nabla f(x^*) - \nabla c(x^*)\lambda^* - \gamma^* = 0$$

$$c(x^*) = 0$$

$$X^*\lambda^* = 0$$

$$x^* \ge 0, \gamma^* \ge 0$$

Where $X^* = diag(x^*)$, thus $X^*\lambda^* = 0 \Leftrightarrow x_i^*\gamma_i^* = 0$

NLP Solvers

F(w)=0 where $w=(x,\lambda,\gamma)$ with $x\geq 0, z\geq 0$. Optimization Algorithms generate a sequence $w^{(k)}$ such that the gradient test

$$||\nabla f(w^{(k)})|| \leq \frac{\tau}{\tau}$$

is satisfied for some tolerance $\tau=1e-6$ or so. (Same warning).

Optimization

"Folk Theory" of Optimization in Economics

- Unconstrained Optimization is easier than Constrained Optimization
- More parameters are harder
- Quasi-Newton Methods are unreliable

Consequences of Folk Theory

- ▶ Rewrite all problems as unconstrained optimization
- Use fixed points and multi-step procedures to reduce parameter space
- ► Use Nelder-Mead/Simplex methods for optimization

Optimization

Thanks to recent advances in optimization:

More Accurate Description of Optimizaiton

- 1. Shape of the problem is what matters convexity is really important
- 2. Constrained Problems are not much more difficult
- 3. More parameters can make the problem easier (or harder)

Consequences of State of the Art Optimization

- ► Tested stable Newton-routines are very reliable.
- ► Good Solvers handle 10,000+ parameters
- ► Computational burden are Jacobian and Hessian (and storage)

Recent Advances in Optimization Literature

Large Scale Algorithms

- Much focus has been on very large convex optimization problems these have gotten really good.
- Most of these rely on first and second derivatives and quadratic approximations.
- ▶ Ways to do derivatives: analytic, numeric, symbolic and automatic (new!)
- Easy to solve 10,000+ parameter constrained problems often in less than 20 major iterations.
- Lots of industrial strength software packages.
- When in doubt express your problem as a convex one.
- ▶ Algorithm is polynomial $\approx O(k^3)$

Convexity

An optimization problem is convex if

$$\min_{\mathbf{x}} f(\mathbf{x})$$
 s.t. $h(\mathbf{x}) \leq 0$ $A\mathbf{x} = 0$

- f(x), h(x) are convex (PSD second derivative matrix)
- Equality Constraint is affine

Some helpful identities about convexity

- Compositions and sums of convex functions are convex.
- ► Norms || are convex, max is convex, log is convex
- ▶ $\log(\sum_{i=1}^{n} \exp(x_i))$ is convex.
- Fixed Points can introduce non-convexities.
- Globally convex problems have a unique optimum

Nested Logit Model

FIML Nested Logit Model is Non-Convex

$$\min_{\theta} \sum_{j} q_{j} \ln P_{j}(\theta) \quad \text{s.t.} \quad P_{j}(\theta) = \frac{e^{\mathbf{x}_{j}\beta/\lambda} (\sum_{k \in \mathbf{g}_{l}} e^{\mathbf{x}_{j}\beta/\lambda})^{\lambda-1}}{\sum_{\forall l'} (\sum_{k \in \mathbf{g}_{l}'} e^{\mathbf{x}_{j}\beta/\lambda})^{\lambda}}$$

This is a pain to show but the problem is with the cross term $\frac{\partial^2 P_j}{\partial \beta \partial \lambda}$ because $\exp[x_j \beta/\lambda]$ is not convex.

A Simple Substitution Saves the Day: let $\gamma = \beta/\lambda$

$$\min_{\theta} \sum_{j} q_{j} \ln P_{j}(\theta) \quad \text{s.t.} \quad P_{j}(\theta) = \frac{e^{x_{j}\gamma} (\sum_{k \in \mathbf{g}_{j}} e^{x_{j}\gamma})^{\lambda - 1}}{\sum_{\forall l'} (\sum_{k \in \mathbf{g}_{j}'} e^{x_{j}\gamma})^{\lambda}}$$

This is much better behaved and easier to optimize.

Nested Logit Model (Conlon Mortimer 2009)

	Original ¹	Substitution ²	No Derivatives ³
Parameters	49	49	49
Nonlinear λ	5	5	5
Neg LL	2.279448	2.279448	2.27972
Iterations	197	146	352
Time	59.0 s	10.7 s	192s

Discuss Simplex, Sparsity.

Extremum Estimators

Often faced with extremum estimator problems in econometrics (ML, GMM, MD, etc.) that look like:

$$\hat{\theta} = \arg\max_{\theta} Q_n(\theta), \quad \theta \in \Theta$$
 (1)

Many economic problems contain constraints, such as: market clearing (supply equals demand), consumer's consume their entire budget set, or firm's first order conditions are satisfied. A natural way to represent these problems is as constrained optimization.

Constrained Problems

MPEC

$$\hat{\theta} = \arg\max_{\theta,P} Q_n(\theta,P), \quad \text{ s.t. } \quad \Psi(P,\theta) = 0, \quad \theta \in \Theta$$

Fixed Point / Implicit Solution

In much of the literature the tradition has been to express the solutions $\Psi(P,\theta)=0$ implicitly as $P(\theta)$:

$$\hat{\theta} = \arg\max_{\theta} Q_n(\theta, P(\theta)), \quad \theta \in \Theta$$

Constrained Problems

MPEC

$$\hat{\theta} = \arg\max_{\theta,P} Q_n(\theta,P), \quad \text{ s.t. } \quad \Psi(P,\theta) = 0, \quad \theta \in \Theta$$

Fixed Point / Implicit Solution

In much of the literature the tradition has been to express the solutions $\Psi(P,\theta)=0$ implicitly as $P(\theta)$:

$$\hat{\theta} = \arg \max_{\theta} Q_n(\theta, P(\theta)), \quad \theta \in \Theta$$

Rust Problem

- ▶ Bus repairman sees mileage x_t at time t since last overhaul
- Repairman chooses between overhaul and normal maintenance

$$u(x_t, d_t, \theta^c, RC) = \begin{cases} -c(x_t, \theta^c) & \text{if } d_t = 0\\ -(RC + c(0, \theta^c)) & \text{if } d_t = 1 \end{cases}$$

Repairman solves DP:

$$V_{\theta}(x_t) = \sum_{f_t, f_{t+1}, \dots} E\left\{ \sum_{j=t}^{\infty} \beta^{j-t} [u(x_j, f_j, \theta) + \varepsilon_j(f_j)] | x_t \right\}$$

- Econometrician
 - ▶ Observes mileage x_t and decision d_t but not cost.
 - Assumes extreme value distribution for $\varepsilon_t(d_t)$
- ▶ Structural parameters to be estimated $\theta = (\theta^c, RC, \theta^p)$.
 - Coefficients of cost function $c(x, \theta^c) = \theta_1^c x + \theta_2^c x^2$
 - Overhaul cost RC
 - ► Transition probabilities in mileages $p(x_{t+1}|x_t, d_t, \theta^p)$

Rust Problem

- ▶ Data: time series $(x_t, d_t)_{t=1}^T$
- Likelihood function

$$\mathcal{L}(\theta) = \prod_{t=2}^{T} P(d_t|x_t, \theta^c, RC) p(x_t|x_{t-1}, d_{t-1}, \theta^p)$$
 with $P(d|x, \theta^c, RC) = \frac{\exp[u(x, d, \theta^c, RC) + \beta EV_{\theta}(x, d)}{\sum_{d' \in \{0,1\}} \exp[u(x, d', \theta^c, RC) + \beta EV_{\theta}(x', d)}$
$$EV_{\theta}(x, d) = T_{\theta}(EV_{\theta})(x, d)$$

$$\equiv \int_{x'=0}^{\infty} \log \left[\sum_{d' \in \{0,1\}} \exp[u(x, d', \theta^c, RC) + \beta EV_{\theta}(x', d)] \right] p(dx'|x, d, \theta^p)$$

Rust Problem

Outer Loop: Solve Likelihood

$$\max_{\theta \geq 0} \mathcal{L}(\theta) = \prod_{t=2}^{T} P(d_t|x_t, \theta^c, RC) p(x_t|x_{t-1}, d_{t-1}, \theta^p)$$

- ► Convergence test: $\|\nabla_{\theta}\mathcal{L}(\theta)\| \leq \epsilon_{out}$
- ▶ Inner Loop: Compute expected value function EV_{θ} for a given θ
- EV_θ is the implicit expected value function defined by the Bellman equation or the fixed point function

$$EV_{\theta} = T_{\theta}(EV_{\theta})$$

- ► Convergence test: $\|EV_{\theta}^{(k+1)} EV_{\theta}^{(k)}\| \le \epsilon_{in}$
- ▶ Start with contraction iterations and polish with Newton Steps

NFXP Concerns

- Inner-loop error propagates into outer-loop function and derivatives
- ▶ NFXP needs to solve inner-loop exactly each stage of parameter search
 - to accurately compute the search direction for the outer loop
 - to accurately evaluate derivatives for the outer loop
 - for outer loop to converge!
- Stopping rules: choosing inner-loop and outer-loop tolerance
 - inner loop can be slow: contraction mapping is linearly convergent
 - ▶ tempting to loosen inner loop tolerance ϵ_{in} (such as 1e-6 or larger!).
 - Outer loop may not converge with loose inner loop tolerance.
 - check solver output message
 - ▶ tempting to loosen outer loop tolerance ϵ_{out} to promote convergence (1e − 3 or larger!).

Stopping Rules

- \blacktriangleright $\mathcal{L}(EV(\theta, \epsilon_{in}), \theta)$ the programmed outer loop objective function
- L: the Lipschitz constant (like modulus) of inner-loop contraction mapping
- ▶ Analytic derivatives $\nabla_{\theta} \mathcal{L}(EV(\theta, \epsilon_{in}), \theta)$ is provided: $\epsilon_{out} = O(\frac{L}{1-L}\epsilon_{in})$
- Finite-difference derivatives are used: $\epsilon_{out} = O(\sqrt{\frac{L}{1-L}}\epsilon_{in})$

Stopping Rules

Form the augmented likelihood function for data $X = (x_t, d_t)_{t=1}^T$

$$\mathcal{L}(\textit{EV}, \theta; X) = \prod_{t=2}^{T} P(d_t | x_t, \theta^c, RC) p(x_t | x_{t-1}, d_{t-1}, \theta^{\textit{P}})$$
 with $P(d | x, \theta^c, RC) = \frac{\exp[u(x, d, \theta^c, RC) + \beta EV(x, d)}{\sum_{d' \in \{0,1\}} \exp[u(x, d', \theta^c, RC) + \beta EV(x', d)}$

Rationality and Bellman equation imposes a relationship between θ and EV

$$EV = T(EV, \theta)$$

Solve constrained optimization problem

$$\max_{(\theta, EV)} \mathcal{L}(EV, \theta; X)$$
 subject to $EV = T(EV, \theta)$

β	Imple.	Parameters					MSE	
		RC	θ_{11}	θ_{31}	θ_{32}	θ_{33}	θ_{34}	
	true	11.726	2.457	0.0937	0.4475	0.4459	0.0127	
0.975	MPEC1	12.212	2.607	0.0943	0.4473	0.4454	0.0127	3.111
		(1.613)	(0.500)	(0.0036)	(0.0057)	(0.0060)	(0.0015)	-
	MPEC2	12.212	2.607	0.0943	0.4473	0.4454	0.0127	3.111
		(1.613)	(0.500)	(0.0036)	(0.0057)	(0.0060)	(0.0015)	_
	NFXP	12.213	2.606	0.0943	0.4473	0.4445	0.0127	3.123
		(1.617)	(0.500)	(0.0036)	(0.0057)	(0.0060)	(0.0015)	_
0.980	MPEC1	12.134	2.578	0.0943	0.4473	0.4455	0.0127	2.857
		(1.570)	(0.458)	(0.0037)	(0.0057)	(0.0060)	(0.0015)	_
	MPEC2	12.134	2.578	0.0943	0.4473	0.4455	0.0127	2.857
		(1.570)	(0.458)	(0.0037)	(0.0057)	(0.0060)	(0.0015)	_
	NFXP	12.139	2.579	0.0943	0.4473	0.4455	0.0127	2.866
		(1.571)	(0.459)	(0.0037)	(0.0057)	(0.0060)	(0.0015)	-

β	Imple.	Parameters						MSE
		RC	θ_{11}	θ_{31}	θ_{32}	θ_{33}	θ_{34}	
	true	11.726	2.457	0.0937	0.4475	0.4459	0.0127	
0.985	MPEC1	12.013	2.541	0.0943	0.4473	0.4455	0.0127	2.140
		(1.371)	(0.413)	(0.0037)	(0.0057)	(0.0060)	(0.0015)	-
	MPEC2	12.013	2.541	0.0943	0.4473	0.4455	0.0127	2.140
		(1.371)	(0.413)	(0.0037)	(0.0057)	(0.0060)	(0.0015)	-
	NFXP	12.021	2.544	0.0943	0.4473	0.4455	0.0127	2.136
		(1.368)	(0.411)	(0.0037)	(0.0057)	(0.0060)	(0.0015)	_
0.990	MPEC1	11.830	2.486	0.0943	0.4473	0.4455	0.0127	1.880
		(1.305)	(0.407)	(0.0036)	(0.0057)	(0.0060)	(0.0015)	-
	MPEC2	11.830	2.486	0.0943	0.4473	0.4455	0.0127	1.880
		(1.305)	(0.407)	(0.0036)	(0.0057)	(0.0060)	(0.0015)	-
	NFXP	11.830	2.486	0.0943	0.4473	0.4455	0.0127	1.880
		(1.305)	(0.407)	(0.0036)	(0.0057)	(0.0060)	(0.0015)	_

β	Imple.	Parameters					MSE	
		RC	θ_{11}	θ_{31}	θ_{32}	θ_{33}	θ_{34}	
	true	11.726	2.457	0.0937	0.4475	0.4459	0.0127	
0.995	MPEC1	11.819	2.492	0.0942	0.4473	0.4455	0.0127	1.892
		(1.308)	(0.414)	(0.0036)	(0.0057)	(0.0060)	(0.0015)	-
	MPEC2	11.819	2.492	0.0942	0.4473	0.4455	0.0127	1.892
		(1.308)	(0.414)	(0.0036)	(0.0057)	(0.0060)	(0.0015)	-
	NFXP	11.819	2.492	0.0942	0.4473	0.4455	0.0127	1.892
		(1.308)	(0.414)	(0.0036)	(0.0057)	(0.0060)	(0.0015)	_

β	Imple.	Runs	CPU Time	# of Major	# of Func.	# of Contrac.
		Conv.	(in sec.)	Iter.	Eval.	Mapping Iter.
0.975	MPEC1	1240	0.13	12.8	17.6	_
	MPEC2	1247	7.9	53.0	62.0	_
	NFXP	998	24.6	55.9	189.4	1.348e + 5
0.980	MPEC1	1236	0.15	14.5	21.8	_
	MPEC2	1241	8.1	57.4	70.6	_
	NFXP	1000	27.9	55.0	183.8	1.625e + 5
0.985	MPEC1	1235	0.13	13.2	19.7	_
	MPEC2	1250	7.5	55.0	62.3	_
	NFXP	952	42.2	61.7	227.3	2.658e + 5
0.990	MPEC1	1161	0.19	18.3	42.2	_
	MPEC2	1248	7.5	56.5	65.8	_
	NFXP	935	70.1	66.9	253.8	4.524e + 5
0.995	MPEC1	965	0.14	13.4	21.3	_
	MPEC2	1246	7.9	59.6	70.7	_
	NFXP	950	111.6	58.8	214.7	7.485e + 5

KNITRO 5.2.0: alg=1 opttol=1.0e-6 feastol=1.0e-6

Problem Characteristics

Objective goal: Maximize Number of variables: 207 bounded below: bounded above: 201 bounded below and above: fixed: free: 0 Number of constraints: 202 linear equalities: nonlinear equalities: 201 linear inequalities: nonlinear inequalities: range: Number of nonzeros in Jacobian: 2785 Number of nonzeros in Hessian: 1620

Final Statistics

```
Final objective value
                                 = -2.35221126396447e+03
Final feasibility error (abs / rel) = 1.33e-15 / 1.33e-15
Final optimality error (abs / rel) = 1.00e-08 / 6.71e-10
# of iterations
                                           12
# of CG iterations
# of function evaluations
                                           13
# of gradient evaluations
                                        13
# of Hessian evaluations
                                          12
Total program time (secs)
                           = 0.10326 ( 0.097 CPU time)
Time spent in evaluations (secs) = 0.05323
```

```
KNITRO 5.2.0: Locally optimal solution.
objective -2352.211264; feasibility error 1.33e-15
12 major iterations; 13 function evaluations
```

BLP Demand Example

BLP 1995

The estimator solves the following mathematical program:

$$\begin{aligned} & \min_{\boldsymbol{\theta_2}} & & g(\xi(\boldsymbol{\theta_2}))'Wg(\xi(\boldsymbol{\theta_2})) & \text{s.t.} \\ & g(\xi(\boldsymbol{\theta_2})) & = & \frac{1}{N} \sum_{\forall j,t} \xi_{jt}(\boldsymbol{\theta_2})' z_{jt} \\ & \xi_{jt}(\boldsymbol{\theta_2}) & = & \delta_j(\boldsymbol{\theta_2}) - x_{jt}\beta - \alpha p_{jt} \\ & s_{jt}(\delta(\boldsymbol{\theta_2}), \boldsymbol{\theta_2}) & = & \int \frac{\exp[\delta_j(\boldsymbol{\theta_2}) + \mu_{ij}]}{1 + \sum_k \exp[\delta_j(\boldsymbol{\theta_2}) + \mu_{ik}]} f(\boldsymbol{\mu}|\boldsymbol{\theta_2}) \\ & \log(S_{jt}) & = & \log(s_{jt}(\delta(\boldsymbol{\theta_2}), \boldsymbol{\theta_2})) & \forall j, t \end{aligned}$$

BLP Algorithm

The estimation algorithm is generally as follows:

- 1. Guess a value of nonlinear parameters θ_2
- 2. Compute $s_{jt}(\delta, \theta_2)$ via integration
- 3. Iterate on $\delta_{jt}^{h+1} = \delta_{jt}^h + \log(S_{jt}) \log(s_{jt}(\delta^h, \theta_2))$ to find the δ that satisfies the share equation
- 4. IV Regression δ on observable X and instruments Z to get residual ξ .
- 5. Use ξ to construct $g(\xi(\theta_2))$.
- 6. Possibly construct other errors/instruments from supply side.
- 7. Construct GMM Objective

The idea is that $\delta(\theta_2)$ is an implicit function of the nonlinear parameters θ_2 . And for each guess we find that implicit solution for reduce the parameter space of the problem.

Dube Fox Su 2009

BLP-MPEC

The estimator solves the following mathematical program:

$$\min_{\boldsymbol{\sigma}, \boldsymbol{\alpha}, \boldsymbol{\beta}, \boldsymbol{\xi}} \qquad g(\boldsymbol{\xi})' W g(\boldsymbol{\xi}) \quad \text{s.t.}$$

$$g(\boldsymbol{\xi}) = \frac{1}{N} \sum_{\forall j, t} \xi'_{jt} z_{jt}$$

$$s_{jt}(\boldsymbol{\sigma}, \boldsymbol{\alpha}, \boldsymbol{\beta}, \boldsymbol{\xi}) = \sum_{i} w_{i} \frac{\exp[x_{jt} \boldsymbol{\beta} + \xi_{jt} - \alpha p_{jt} + \sum_{l} \nu_{il} x_{jt}^{l} \boldsymbol{\sigma}_{l}]}{1 + \sum_{k} \exp[x_{kt} \boldsymbol{\beta} + \xi_{kt} - \alpha p_{kt} + \sum_{l} \nu_{il} x_{kt}^{l} \boldsymbol{\sigma}_{l}]}$$

$$\log(S_{jt}) = \log s_{jt}(\boldsymbol{\sigma}, \boldsymbol{\alpha}, \boldsymbol{\beta}, \boldsymbol{\xi}) \quad \forall j, t$$

- **Expand** the parameter space of the nonlinear search to include α, β, ξ
- Don't have to solve for ξ except at the end.
- ▶ No implicit functions of θ_2
- Sparsity!