

Baze podataka 2

Projektovanje relacione šeme baze podataka

Dr Ivan Luković
Dr Milan Čeliković
Dr Vladimir Ivančević
Dr Nikola Obrenović
Maksim Lalić
Milica Todorović

Anomalije ažuriranja, normalne forme, spojivost bez gubitaka.

- Motivacija za potrebu projektovanja šeme BP
 - Šema univerzalne relacije (U, OGR) se, praktično, ne može implementirati, jer
 - Skupovi U i OGR su preglomazni
 (i do nekoliko hiljada obeležja i ograničenja)
 - Nemoguće je (U, OGR) sagledati u celini, a to nema ni logičkog smisla
 - univerzalna relacija bi bila, takođe, prevelika
 - Javljaju se anomalije ažuriranja
 - Javlja se nepotrebna redundansa podataka

- Vrste anomalija ažuriranja
 - anomalije upisa
 - anomalije brisanja
 - anomalije modifikacije (redundanse)

Anomalije upisa

- Moraju se, pri pokušaju upisa podataka o jednom entitetu, znati vrednosti obeležja svih povezanih entiteta
- potrebno je zadatati sve vrednosti obeležja ključa
 - a neke od njih, međutim, nisu poznate u trenutku upisa

Anomalije brisanja

- brisanjem jedne torke gube se, na neželjen način, informacije o rezličitim realnim entitetima
 - koji su povezani sa entitetom kojeg reprezentuje brisana torka

- Anomalije modifikacije (redundanse)
 - modifikacija vrednosti obeležja istog realnog entiteta obavlja se na više mesta u relaciji
 - jer se nepotrebno ponavlja na više mesta u relaciji
 - često, za takvu operaciju, zahteva se prolaz kroz celu relaciju

- semantika obeležja koja postoje u univerzalnom skupu obeležja U
 - BRI broj indeksa
 - IME ime studenta
 - PRZ prezime studenta
 - BPI broj položenih ispita
 - OZP oznaka predmeta
 - NAP naziv predmeta
 - NAS prezime nastavnika
 - OCE ocena na ispitu

• Primer

Student

BRI	IME	PRZ	BPI	OZP	NAP	NAS	OCE
159	Ivo	Ban	13	P1	Mat	Han	09
159	Ivo	Ban	13	P2	Fiz	Kun	08
013	Ana	Tot	09	P1	Mat	Pap	06
119	Eva	Kon	15	Р3	Hem	Kiš	07
159	Ivo	Ban	13	Р3	Hem	Kiš	10
119	Eva	Kon	15	P1	Mat	Han	09
159	Ivo	Ban	13	P4	Mat	Car	10
037	Eva	Tot	01	P4	Mat	Car	10

- $\mathbf{F} = \{ \mathsf{BRI} \to \mathsf{IME+PRZ+BPI}, \mathsf{IME+PRZ} \to \mathsf{BRI}, \mathsf{OZP} \to \mathsf{NAP}, \mathsf{NAS} \to \mathsf{OZP+NAP}, \mathsf{BRI+OZP} \to \mathsf{OCE+NAS} \}$
 - šema relacije Student ima četiri ključa
 - K1 = BRI+NAS, K2 = IME+PRZ+NAS,
 - K3 = BRI+OZP, K4 = IME+PRZ+OZP
- Pojam ključa
 - vrlo bitan za sagledavanje anomalija ažuriranja

- Primer nekih anomalija ažuriranja
 - Ne mogu se upisati podaci o novom studentu, dok student ne položi makar jedan ispit
 - K3 = BRI+OZP
 - Brisanjem poslednjeg položenog ispita nekog studenta, gube se i osnovni podaci (IME, PRZ i BPI) o studentu
 - K3 = BRI+OZP
 - Promena prezimena jednog studenta se mora sprovesti u više od jedne torke

- Moguće je izbegavanje, ili u idealnom slučaju, potpuno uklanjanje anomalija ažuriranja
- Pema BP treba da zadovolji kriterijum odgovarajuće normalne forme
- Postoji sedam normalnih formi
 - 1NF, 2NF, 3NF, BCNF
 - 4NF, 5NF (PJNF), DKNF
- Za praksu su nabitnije prve četiri
 - temelje se an pojmovima fz i ključa

- Prva normalna forma (1NF)
 - šema relacije N(R, O) je u 1NF ako
 - R sadrži samo elementarna obeležja
 - za svaku pojavu r(N) važi da su sve vredosti svih obeležja R atomarne
 - ne predstavljaju niz, ili skup drugih vrednosti iz domena obeležja
- Šema BP (S, I) je u 1NF ako su sve šeme relacija skupa S u 1NF

 $(\forall r \in SAT(U))(\forall A \in U)(\forall t \in r)(t(A) \text{ je elementarno obeležje})$

• Primer:

- $-U = \{MBR, IME, PRZ, ADR, TEL\}$
- $F = \{MBR \rightarrow IME + PRZ + ADR + TEL\}$
- ADR = {PTT,MESTO,ULICA,BROJ}, TEL={POZBR,BRTEL}
- ako se u skupu U složena obeležja ADR i TEL zamene odgovarajućim skupovima obeležja, u tako dobijenom skupu obeležja važi i f.z. PTT→POZBR
- dekomponovanje složenog obeležja na elementarna obeležja može dovesti do definisanja funkcionalnih zavisnosti koje se inače ne bi mogle izraziti

Definicija:

Atribut A relacije R je potpuno funkcionalno zavisan od atributa X relacije R, ako je funkcionalno zavisan od atributa X, a nije funkcionalno zavisan ni od jednog pravog podskupa atributa X

 $F. z. X \rightarrow A$ se naziva potpunom ako za svako $Y \subset X$ važi $F \neq |Y \rightarrow A|$

- Druga normalna forma (2NF)
 - šema relacije N(R, F) sa skupom ključeva K je u
 2NF ako je
 - u 1NF i
 - ako je svako neprimarno obeležje u potpunoj funkcionalnoj zavisnosti od svakog ključa

$$(\forall A \in R \setminus Kpr)(\forall X \in K)(\forall Y \subset X)(F \neq Y \rightarrow A)$$

- $Kpr = \bigcup_{X \in K} (K)$ skup primarnih obeležja šeme relacije N
 - Šema BP (S,I) je u 2NF ako su sve šeme relacija skupa S u 2NF

Normalna forma

• Primer:

Student({BRI, PRZ, IME, BPI, OZP, NAP}, {BRI \rightarrow PRZ+IME+BPI, OZP \rightarrow NAP})

- $K = \{BRI + OZP\}$
- BRI + OZP → NAP
 - NAP neprimarno obeležje
 - nepotpuna fz
 - sledi iz OZP → NAP

• Primer:

- Nast_Pred ({OZN, PRN, OZP, NAP},{OZN→ OZP +NAP + PRN,
 OZP → NAP, NAP → OZP})
- $K = {OZN}$
- Da li šema relacije zadovoljava 2NF?

Definicija:

Netrivijalna f.z. $X \to A$ je tranzitivna, ako važi $X \to Y \in F^+$, $Y \to A \in F^+$ a ne važi da $Y \to X \in F^+$

- Treća normalna forma (3NF)
 - šema relacije N(R, F) sa skupom ključeva K je u 3NF ako je
 - u 1NFi
 - ako je svako neprimarno obeležje samo u netranzitivnoj funkcionalnoj zavisnosti od svakog ključa

$$(\forall A \in R \setminus Kpr)(\forall X \in K)(\forall Y \subseteq R \setminus \{A\})(F \models Y \to A \Rightarrow F \models Y \to X)$$

- $-Kpr = \bigcup_{K \in \mathbf{K}} (K)$ skup primarnih obeležja šeme relacije N
- Šema BP (S,I) je u 3NF ako su sve šeme relacija skupa S u 3NF

• Primer:

- Nast_Pred ({OZN, PRN, OZP, NAP},{OZN→ OZP +NAP + PRN,
 OZP → NAP, NAP → OZP})
- $K = {OZN}$
- Da li je OZN \rightarrow NAP tranzitivna f.z. ?

- Boyce-Codd normalna forma (BCNF)
 - šema relacije N(R, F) sa skupovima ključeva K je u BCNF ako je
 - u 1NF i
 - svaka netrivijalna funkcionalna zavisnost bilo kog atributa mora sadržati ključ s leve strane

$$(\forall A \in R)(\forall Y \subseteq R \setminus \{A\})(F \models Y \to A \Longrightarrow (\exists X \in K)(X \subseteq Y))$$

 – Šema BP (S,I) je u BCNF ako su sve šeme relacija skupa S u BCNF

- R ({A, B, C, D}, {AC->B, BC->D, A->B, B->A})
- $-K = \{AC, BC\}$
- A->B i B->A su netrivijalne f.z. koje ne sadrže ključ sa leve strane

- $-R1 ({A, C, D}, {AC->D}),$
- $-K = \{AC\}$
- $R2 ({A, B}, {A->B, B->A}),$
- $K = \{A, B\}$
- Da li navedene šeme relacija zadovoljavaju BCNF?

- Student({BRI, SPR, IME, SEM, SSMER, NAZSMER, IMERUK, NAZPRED, OCENA}, {BRI + SPR})
- F = { BRI → IME+SEM+SSMER+NAZSMER+IMERUK, SPR → NAZPRED + IMERUK, SSMER → NAZSMER + IMERUK, BRI + SPR → OCENA}
- U kojoj je normalnoj formi data šema relacije?

BRI	SPR	IME	SEM	SSMER	NAZSMER	IMERUK	NAZPRED	OCENA
21	121	Ana	5	1	Informacioni Sistemi	Sima	Matematika	7
21	323	Ana	5	1	Informacioni Sistemi	Sima	Baze Podataka	8
21	056	Ana	5	1	Informacioni Sistemi	Sima	Programiranje	8
77	056	Ivan	7	1	Informacioni Sistemi	Sima	Programiranje	10
77	121	Ivan	7	1	Informacioni Sistemi	Sima	Matematika	5
36	323	Mila	4	2	Menadžment	Mika	Baze Podataka	8
36	456	Mila	4	2	Menadžment	Mika	Ekonomija	9
36	442	Mila	4	2	Menadžment	Mika	Marketing	6
36	121	Mila	4	2	Menadžment	Mika	Matematika	7

•Dekompozicija:

- Student({BRI, IME, SEM, SSMER, NAZSMER, IMERUK}, {BRI})
- Prijava({BRI, SPR, NAZPRED, OCENA}, {BRI + SPR})

Prijava ({BRI, SPR, NAZPRED, OCENA}, {BRI + SPR})

BRI	SPR	NAZPRED	OCENA
21	121	Matematika	7
21	323	Baze Podataka	8
21	056	Programiranje	8
77	056	Programiranje	9
77	121	Matematika	10
36	323	Baze Podataka	7
36	456	Ekonomija	9
36	442	Menadžement	6
36	121	Matematika	7

Nepotpuna f.z.
BRI + SPR → NAZPRED
+ OCENA
usled SPR → NAZPRED
Nije u 2NF

Dekompozicija: Predmet({SPR, NAZPRED}, {SPR})Prijava1({BRI, SPR, OCENA}, {BRI + SPR})

- Student({BRI, IME, SEM, SSMER, NAZSMER, IMERUK}, {BRI})
- BRI → SSMER
- SSMER → NAZSMER → BRI → NAZSMER
- SSMER → BRI je tranzitivna
- Dekompozicija:

Student1({BRI, IME, SEM, SMER}, {BRI})
Smer({SSMER, NAZSMER, IMERRUK}, {SSMER})

- Student({BRI, IME, SEM, SSMER},{BRI})
- Smer({SSMER, NAZSMER, IMERUK}, {SSMER})
- Predmet({SPR, NAZPRED}, {SPR})
- Prijava({BRI, SPR, OCENA}, {BRI+SPR})

Zadatak:

$$-U = \{A, B, C, D, E\}, F = \{A \rightarrow D, D \rightarrow E, AB \rightarrow C\}$$

–Odrediti u kojoj normalnoj formi je šema relacije (U,F).

- -NastPredStud($\{OZN, OZP, BRI\}$, $\{OZN \rightarrow OZP, BRI + OZP \rightarrow OZN\}$)
- $K = \{BRI+OZN, BRI+OZP\}$
- Odrediti u kojoj normalnoj formi je šema relacije.

- Pravilo za dekomponovanje i spajanje bez gubitaka za dve šeme relacije
 - pri projektovanju šeme BP, polazni (U, F) treba dekomponovati na šeme relacije

$$(R_1, F_1)$$
 i (R_2, F_2)

- tako da bude zadovoljeno
 - $R_1 \cup R_2 = \boldsymbol{U}$
 - $K_1 \subseteq R_1 \cap R_2$ ili $K_2 \subseteq R_1 \cap R_2$ - K_1 - ključ šeme relacije (R_1, F_1) , K_2 - ključ šeme relacije (R_2, F_2)
 - jedna šema relacije mora sadržati ključ druge šeme relacije
- relacije nad (R_1, F_1) i (R_2, F_2) se smeju spajati samo ako važi $K_1 \subseteq R_1 \cap R_2$ ili $K_2 \subseteq R_1 \cap R_2$

Teorema o spojivosti bez gubitaka

- dati su (U, F), (R_1, F_1) i (R_2, F_2) , tako da je
 - $R_1 \cup R_2 = \boldsymbol{U}$
 - $F_1 = F|_{R1} i F_2 = F|_{R2}$
- $\triangleright \triangleleft (R_1, R_2)$ označava zavisnost spoja
 - kojom se grantuje spojivost bez gubitaka za (U,F), (R_1, F_1) i (R_2, F_2)
- važi ekvivalencija
 - $F \mid = \triangleright \triangleleft (R_1, R_2)$ akko
 - $F \mid = R_1 \cap R_2 \rightarrow R_1 \setminus R_2 \vee F \mid = R_1 \cap R_2 \rightarrow R_2 \setminus R_1$

Zadatak:

$$U = \{R, I, P, M, O, S\}$$

$$F = \{R \rightarrow I + P, M \rightarrow O, R + M \rightarrow S\}$$

R – šifra radnika

I – ime radnika

P – prezime radnika

M – šifra mašine

O – naziv mašine

S – broj sati nedeljnog angažovanja radnika na mašini

- Pretpostavimo da je isprojektovan skup šema relacija šeme baze podataka:
- $S = \{R_1(\{R, I, P\}, \{R \rightarrow I, R \rightarrow P\})\}$ $R_2(\{M\}, \{\})$ $R_3(\{M, R, S, O\}, \{M+R \rightarrow S, M \rightarrow O\})\}$
- Da li je obezbeđena spojivost ŠBP bez gubitaka informacija?
- Da li se u nekoj od relacija r₁(R₁), r₂(R₂), r₃(R₃) mogu javiti anomalije ažuriranja?
- Da li je skup šema relacija u 3NF?

Zadatak:

Dat je skup obeležja $\{D,N,M,P,O\}$ i skup f.z. $\{D\rightarrow N, N\rightarrow D, D\rightarrow M, P\rightarrow O\}$

D – oznaka dela O – naziv proizvođača

N – naziv dela Deo d se proizvodi na jednoj mašini m

M – mašina

P – oznaka proizvođača

Projektovanjem su definisane tri šeme relacije

$$R_1(\{D, M\}, \{D \rightarrow M\})$$

 $R_2(\{D, N, P\}, \{D \rightarrow N, N \rightarrow D\})$
 $R_3(\{P, O\}, \{P \rightarrow O\})$

Pojave nad tim šemama relacije su:

D	M
d1	m1
d2	m1
d3	m2

Р	0
p1	o1
p2	o1
р3	o2
p4	03

D	N	Р
d1	n1	p1
d1	n1	p2
d2	n2	p1
d2	n2	p3
d3	n3	р3
d1	n1	p4

- a) Odrediti ključeve šeme relacije
- b) U kojoj normalnoj formi se nalaze date ŠR?
- c) Koje anomalije se mogu javiti pri ažuriranju datih ŠR?

Zadatak:

$$U = \{A, B, C, D\}$$

$$F1 = \{C \rightarrow D, C \rightarrow A, B \rightarrow C\}$$

$$F2 = \{B \rightarrow C, D \rightarrow A\}$$

$$F3 = \{ABC \rightarrow D, D \rightarrow A\}$$

$$F4 = \{A \rightarrow B, BC \rightarrow D, A \rightarrow C\}$$

$$F5 = \{AB \rightarrow C, AB \rightarrow D, C \rightarrow A, D \rightarrow B\}$$

Za svaku šemu relacije R odrediti u kojoj normalnoj formi se nalazi.

```
U = \{A, B, C, D, E, F, G, H\}
F = \{ABC \rightarrow D, ABC \rightarrow E, AG \rightarrow H, A \rightarrow G, G \rightarrow B,
H \rightarrow AE, AC \rightarrow H
N_1(\{A, E, G, H\}, K) a) U kojoj normalnoj
N_2({A, C, F}, K) formi se nalaze date
                             ŠR?
N_3({A, C, D, H}, K)
N_{\Delta}(\{B,G\},K)
                                 b) Da li je očuvana
                                 spojivost bez gubitaka?
```

```
U = \{A, B, C, D, E, F, G, H, I, J, K, L\}
 F = \{A \rightarrow BC, D \rightarrow EF, G \rightarrow ABHI, GJ \rightarrow KLDE,
GD \rightarrow JKLE
N_1({A, B, C}, K) a) U kojoj normalnoj
N_2(\{D, E, F\}, K) formi se nalaze date ŠR?
N_3({A, B, G, H, I}, K)
N_{\Delta}(\{D, E, G, J, K, L\}, K)
     b) Da li je očuvana spojivost bez gubitaka?
```

Zadatak:

$$U = \{A, B, C, D, E, G, H\}$$

•
$$F = \{AB \rightarrow C, AC \rightarrow B, AD \rightarrow E, B \rightarrow D, BC \rightarrow A, E \rightarrow G\}$$

U kojoj normalnoj formi se nalaze ŠR sa sledećim skupom obeležja?

(a) *ABC*,

(d) DCEGH,

(b) ABCD,

(e) ACEH

(c) ABCEG,

Zadatak:

$$U = \{A, B, C, D, E, G, H\}$$

• $F = \{AB \rightarrow C, AC \rightarrow B, AD \rightarrow E, B \rightarrow D, BC \rightarrow A, E \rightarrow G\}$

Dekompozicijom su dobijene šeme relacija sa sledećim skupom obeležja ABC, ACDE, ADG. Da li je očuvana spojivost bez gubitaka?