$\begin{array}{c} \textbf{Recommender Systems Deep Dive} \\ \textbf{Interview Preparation \& Research Foundations} \end{array}$

${\bf Contents}$

1	Introduction	2
	1.1 What This Document Covers	
2	Recommended Reading List	2
	2.1 Priority 1: Essential Textbooks	
	2.2 Priority 2: Deep Learning & Modern Methods	
	2.3 Priority 3: Industry Best Practices	4
3	Core Recommender System Concepts	4
	3.1 The Recommendation Problem	4
	3.2 Types of Feedback	Ę
4	Collaborative Filtering	F
•	4.1 User-Based Collaborative Filtering	
	4.2 Item-Based Collaborative Filtering	
	4.3 Matrix Factorization	
		•
5	Content-Based Filtering	8
	5.1 Feature Extraction	
	5.2 Building Content-Based Recommender	8
6	Neural Collaborative Filtering (NCF)	ę
	6.1 NCF Architecture	Ć
	6.2 Generalized Matrix Factorization (GMF)	10
	6.3 NeuMF: Neural Matrix Factorization	10
7	Sequential Recommendations	11
	7.1 RNN-Based Models	11
	7.2 Transformer-Based Models	12
8	Two-Stage Recommendation Architecture	12
0	8.1 Stage 1: Candidate Generation (Retrieval)	
	8.2 Stage 2: Ranking	
	0.2 Stage 2. Italixing	16
9	Evaluation Metrics	14
	9.1 Rating Prediction Metrics	
	9.2 Ranking Metrics	
	9.3 Beyond-Accuracy Metrics	
	9.4 Python Evaluation Example	15
10	Production Challenges & Solutions	16
	10.1 Cold Start Problem	16
	10.2 Scalability	16
	10.3 Freshness vs. Accuracy Trade-off	
	10.4 Diversity & Filter Bubble	17

	18
11.1 Multi-Task Learning	18
11.2 Graph Neural Networks for RecSys	19
11.3 Conversational Recommenders	20
11.4 Fairness in Recommendations	20
12 Interview Preparation Strategy	20
12.1 Week 1: Foundations (Ricci Handbook Part 1)	20
12.2 Week 2: Deep Learning (Aggarwal + 2024 Surveys)	21
12.3 Week 3: Production Systems (Industry Papers)	
12.4 Week 4: Evaluation & Advanced Topics	
13 Common Interview Questions	22
13.1 Algorithmic Questions	22
13.2 System Design Questions	
13.3 Deep Learning Questions	
13.4 ML Engineering Questions	
	24
14.1 ACM RecSys Conference	24
14.2 Related Conferences	
15 Conclusion	24

1 Introduction

This document provides a comprehensive overview of recommender systems, covering fundamental algorithms, deep learning approaches, evaluation metrics, and industry best practices. Whether preparing for research positions, ML engineering roles at companies like Netflix/Spotify, or deepening your understanding of personalization systems, this guide synthesizes key concepts from the RecSys community.

1.1 What This Document Covers

- Classical Methods: Collaborative filtering (user-based, item-based, matrix factorization)
- Deep Learning: Neural collaborative filtering, sequential models, transformers
- Hybrid Approaches: Combining content-based and collaborative methods
- Evaluation: Offline metrics, A/B testing, beyond-accuracy objectives
- Production Systems: Candidate generation, ranking, re-ranking pipelines
- Research Trends: Multi-stakeholder optimization, fairness, explainability

1.2 Target Audience

This guide is designed for:

- ML engineers interviewing at Netflix, Spotify, YouTube, Amazon
- Researchers preparing for RecSys conference submissions
- Industry practitioners building production recommendation systems
- Students wanting comprehensive RecSys foundations

2 Recommended Reading List

2.1 Priority 1: Essential Textbooks

1. Recommender Systems Handbook (3rd Edition, 2022)

Authors: Francesco Ricci, Lior Rokach, Bracha Shapira

Publisher: Springer

Pages: 1060

Why Read: The definitive reference for recommender systems. Written by top researchers in the field.

Structure (5 parts):

- 1. General Techniques: Collaborative filtering, content-based, knowledge-based, hybrid methods
- 2. Advanced Techniques: Session-based, adversarial ML, group recommendations, cross-domain
- 3. Value & Impact: Business metrics, user experience, long-term value
- 4. Human-Computer Interaction: Explanations, trust, control, transparency
- 5. Applications: E-commerce, music, video, social media, news

Key Topics Covered:

- Neural networks and context-aware methods
- Reciprocal recommender systems (two-way matching)
- Natural language techniques for RecSys
- Explainable AI for recommendations

• Ethical and societal implications

Interview Prep Value:

Comprehensive coverage of everything from basics to cutting-edge research. Essential for senior roles.

Reading Strategy:

- Week 1-2: Part 1 (General Techniques) Chapters 1-10
- Week 3: Part 2 (Advanced Techniques) Focus on neural methods
- Week 4: Part 3 (Evaluation) + Part 4 (HCI) Critical for interviews
- Reference: Part 5 (Applications) Read chapters relevant to target company

2. Recommender Systems: The Textbook (2016)

Author: Charu C. Aggarwal

Publisher: Springer

Pages: 498

Why Read: Aggarwal is a master educator. Clearest explanations of fundamental algorithms.

Structure (3 categories):

- 1. Algorithms & Evaluation: Collaborative filtering, content-based, knowledge-based, ensemble methods, evaluation
- 2. Domain-Specific Applications: Location-based, social tagging, time series recommendations
- 3. Advanced Topics: Privacy, attack-resistant systems, context-aware recommendations

Strengths:

- Mathematical rigor with intuitive explanations
- Detailed coverage of matrix factorization (SVD, SVD++, NMF)
- Excellent treatment of neighborhood methods
- Strong focus on evaluation methodologies

Interview Prep Value:

Best for understanding how algorithms work. Perfect for coding interview preparation.

Reading Strategy:

- Essential: Chapters 2-3 (Collaborative Filtering), Chapter 6 (Evaluation)
- Important: Chapters 4-5 (Content-based, Knowledge-based), Chapter 7 (Ensembles)
- Advanced: Chapters 8-11 (Context-aware, Time-aware, Social)

2.2 Priority 2: Deep Learning & Modern Methods

3. Deep Learning for Recommender Systems (Survey Papers)

Since there's no single "Deep Learning RecSys" textbook yet, focus on these comprehensive surveys:

Zhang et al. (2019): "Deep Learning Based Recommender System: A Survey and New Perspectives"

ArXiv: https://arxiv.org/abs/1707.07435

Covers:

- Neural Collaborative Filtering (NCF)
- Autoencoders for collaborative filtering
- CNNs for feature extraction from images/text
- RNNs for sequential recommendations

- Deep reinforcement learning for RecSys
- Adversarial learning and GANs

2024 Update: "In-depth Survey: Deep Learning in Recommender Systems"

Springer Neural Computing and Applications

New Topics:

- Transformers for recommendations (BERT4Rec, SASRec)
- Graph neural networks (LightGCN, PinSage)
- Variational autoencoders (VAE) for collaborative filtering
- Cross-domain transfer learning
- Multi-task learning architectures

Interview Prep Value:

Essential for understanding Netflix/YouTube-style systems. Most interview questions come from these topics.

2.3 Priority 3: Industry Best Practices

4. Tech Company Blog Posts & Papers

Must-Read Industry Papers:

- 1. **YouTube** (2016): "Deep Neural Networks for YouTube Recommendations" Two-stage architecture (candidate generation + ranking)
- 2. Netflix (2012): "Netflix Recommender System" Matrix factorization at scale
- 3. Spotify (2020): "The Rise of the Recommendation Era" Sequential models and explore-exploit
- 4. Amazon (2003): "Item-to-Item Collaborative Filtering" Classic item-based CF
- 5. Pinterest (2018): "PinSage: Graph Convolutional Neural Networks for Web-Scale Recommender Systems"
- 6. Meta (2019): "Deep Learning Recommendation Model (DLRM)"

Why Read Industry Papers:

- Understand production constraints (latency, scalability, freshness)
- Learn real-world architectures (two-tower models, multi-stage funnels)
- See how metrics connect to business goals
- Prepare for system design interviews

3 Core Recommender System Concepts

3.1 The Recommendation Problem

Given:

- Set of users $U = \{u_1, u_2, \dots, u_m\}$
- Set of items $I = \{i_1, i_2, ..., i_n\}$
- User-item interaction matrix $R \in \mathbb{R}^{m \times n}$ (typically 99%+ sparse)

Goal: Predict relevance score \hat{r}_{ui} for unobserved user-item pairs and recommend top-k items.

3.2 Types of Feedback

Explicit Feedback:

- Star ratings (1-5 stars)
- Thumbs up/down
- Like/dislike

Implicit Feedback:

- Clicks, views, watches
- Purchase history
- Time spent on page
- Skip behavior (negative signal)

Key Difference: Implicit feedback is abundant but noisy. No explicit negative feedback (absence doesn't mean dislike).

4 Collaborative Filtering

4.1 User-Based Collaborative Filtering

Core Idea: Recommend items liked by similar users.
Algorithm:

- 1. Compute user similarity: $sim(u, v) = cos(\vec{r}_u, \vec{r}_v)$
- 2. Find k nearest neighbors: $N_k(u) = \{v \mid sim(u, v) \text{ highest}\}\$
- 3. Predict rating: $\hat{r}_{ui} = \bar{r}_u + \frac{\sum_{v \in N_k(u)} \sin(u,v) \cdot (r_{vi} \bar{r}_v)}{\sum_{v \in N_k(u)} |\sin(u,v)|}$

Similarity Metrics:

- Cosine: $sim(u, v) = \frac{\vec{r}_u \cdot \vec{r}_v}{\|\vec{r}_u\| \|\vec{r}_v\|}$
- Pearson Correlation: Centered cosine (subtracts user mean)
- Jaccard: For binary feedback (sets of items)

Python Implementation:

```
from sklearn.metrics.pairwise import cosine_similarity
import numpy as np

# R: user-item matrix (m x n)
# users in rows, items in columns
user_sim = cosine_similarity(R)

def predict_user_based(user_id, item_id, k=20):
    # Find k nearest neighbors who rated item_id
    neighbors = user_sim[user_id].argsort()[::-1][1:k+1]
    neighbors = [n for n in neighbors if R[n, item_id] > 0]

if not neighbors:
    return R[user_id].mean() # Fallback to user average

# Weighted average of neighbor ratings
sims = user_sim[user_id, neighbors]
ratings = R[neighbors, item_id]
return np.dot(sims, ratings) / sims.sum()
```

Pros:

- Simple, interpretable
- No domain knowledge needed
- Works well for niche items

Cons:

- Cold start for new users
- Scalability: $O(m^2)$ similarity computation
- Sparsity: Hard to find similar users

4.2 Item-Based Collaborative Filtering

Core Idea: Recommend items similar to what user already likes. Algorithm:

- 1. Compute item similarity: sim(i,j) based on users who rated both
- 2. For target item i, find k nearest neighbors: $N_k(i)$
- 3. Predict: $\hat{r}_{ui} = \frac{\sum_{j \in N_k(i)} \sin(i,j) \cdot r_{uj}}{\sum_{j \in N_k(i)} |\sin(i,j)|}$

Why Item-Based Often Outperforms User-Based:

- Items are more stable than users (user tastes change)
- Fewer items than users in many domains $(n \ll m)$
- Item similarities can be precomputed offline
- Better scalability in production

Amazon's Approach:

Production Optimizations:

- Precompute top-k similar items for each item
- Store in key-value store (Redis) for fast lookup
- Update similarities incrementally (online learning)

4.3 Matrix Factorization

Core Idea: Decompose sparse user-item matrix into low-rank user and item latent factors.

Model:

$$R \approx P \times Q^{T}$$
$$\hat{r}_{ui} = \vec{p}_{u}^{T} \vec{q}_{i} = \sum_{f=1}^{k} p_{uf} \cdot q_{if}$$

Where:

- $P \in \mathbb{R}^{m \times k}$: User latent factors
- $Q \in \mathbb{R}^{n \times k}$: Item latent factors
- k: Number of latent dimensions (typically 50-200)

Optimization (Alternating Least Squares - ALS):

```
import numpy as np
def matrix_factorization_als(R, k=50, lambda_reg=0.1, iterations=20):
   m, n = R.shape
   P = np.random.rand(m, k)
   Q = np.random.rand(n, k)
   # Mask for observed ratings
   mask = (R > 0).astype(float)
   for iteration in range(iterations):
       # Fix Q, solve for P
       for u in range(m):
           Q_u = Q[mask[u] > 0] # Items rated by user u
           r_u = R[u, mask[u] > 0]
          P[u] = np.linalg.solve(Q_u.T @ Q_u + lambda_reg * np.eye(k),
                                Q_u.T @ r_u)
       # Fix P, solve for Q
       for i in range(n):
          P_i = P[mask[:, i] > 0] # Users who rated item i
          r_i = R[mask[:, i] > 0, i]
           Q[i] = np.linalg.solve(P_i.T @ P_i + lambda_reg * np.eye(k),
                                P_i.T @ r_i)
   return P, Q
```

Stochastic Gradient Descent (SGD) Alternative:

```
def matrix_factorization_sgd(R, k=50, lr=0.001, lambda_reg=0.1, epochs=100):
    m, n = R.shape
    P = np.random.rand(m, k) * 0.1
    Q = np.random.rand(n, k) * 0.1

for epoch in range(epochs):
    for u, i in zip(*np.where(R > 0)):
        # Compute error
        error = R[u, i] - P[u].dot(Q[i])

    # Update with gradient descent
    P[u] += lr * (error * Q[i] - lambda_reg * P[u])
    Q[i] += lr * (error * P[u] - lambda_reg * Q[i])

return P, Q
```

Extensions:

- SVD++: Incorporate implicit feedback
- Biased MF: Add user/item bias terms: $\hat{r}_{ui} = \mu + b_u + b_i + \vec{p}_u^T \vec{q}_i$
- Temporal MF: Time-aware factors
- NMF (Non-negative MF): Constrain $P, Q \ge 0$ for interpretability

Netflix Prize Winning Approach:

- Ensemble of 100+ models
- Blend of matrix factorization variants
- RBMs (Restricted Boltzmann Machines)
- Temporal dynamics modeling
- Final RMSE: 0.8567 (10% improvement over baseline)

5 Content-Based Filtering

Core Idea: Recommend items similar to what user has liked before, based on item features.

5.1 Feature Extraction

Text Features (movies, articles, products):

- TF-IDF vectors from descriptions
- Word embeddings (Word2Vec, GloVe, BERT)
- Topic models (LDA)

Categorical Features:

- Genre (one-hot encoding)
- Director, actors (multi-hot encoding)
- Tags, keywords

Numerical Features:

- Price, popularity, release year
- Average rating

5.2 Building Content-Based Recommender

Algorithm:

- 1. Build item profile: Feature vector $\vec{f_i}$ for each item
- 2. Build user profile: Aggregate features of items user liked
- 3. Compute similarity: $sim(user_profile, \vec{f_i})$
- 4. Rank items by similarity

Python Implementation:

```
from sklearn.feature_extraction.text import TfidfVectorizer
from sklearn.metrics.pairwise import cosine_similarity
# Example: Movie recommendations based on plot descriptions
movies = ['Movie_A', 'Movie_B', 'Movie_C']
descriptions = [
   'Action thriller with car chases',
   'Romantic comedy set in Paris',
   \verb|'Action|| adventure|| \verb|with|| explosions||
1
# Extract TF-IDF features
tfidf = TfidfVectorizer(stop_words='english')
item_features = tfidf.fit_transform(descriptions)
# User has watched Movie A and liked it
user_profile = item_features[0]
# Find most similar movies
similarities = cosine_similarity(user_profile, item_features).flatten()
recommendations = sorted(enumerate(similarities), key=lambda x: x[1], reverse=True)
# Top recommendations (excluding Movie A)
for idx, score in recommendations[1:]:
   print(f"{movies[idx]}:_\{score:.3f}")
```

Pros:

- No cold start for items (can recommend new items immediately)
- No need for user data from other users
- Transparent recommendations (can explain via features)

Cons:

- Limited serendipity (filter bubble)
- Requires rich item metadata
- Cold start for new users
- Over-specialization

6 Neural Collaborative Filtering (NCF)

Motivation: Matrix factorization assumes linear interaction between user and item latent factors. Neural networks can model non-linear interactions.

6.1 NCF Architecture

Paper: He et al. (2017) - "Neural Collaborative Filtering" **Model**:

- 1. Input Layer: User ID and Item ID (one-hot encoded)
- 2. Embedding Layer: Map to dense vectors
- 3. Neural CF Layers: MLP to learn interaction function
- 4. Output Layer: Predicted rating or probability

PyTorch Implementation:

```
import torch
import torch.nn as nn
class NCF(nn.Module):
   def __init__(self, num_users, num_items, embedding_dim=64, hidden_layers=[128, 64, 32]):
       super(NCF, self).__init__()
       # Embeddings
       self.user_embedding = nn.Embedding(num_users, embedding_dim)
       self.item_embedding = nn.Embedding(num_items, embedding_dim)
       # MLP layers
       layers = []
       input_dim = embedding_dim * 2
       for hidden_dim in hidden_layers:
           layers.append(nn.Linear(input_dim, hidden_dim))
           layers.append(nn.ReLU())
           layers.append(nn.Dropout(0.2))
           input_dim = hidden_dim
       self.mlp = nn.Sequential(*layers)
       self.output = nn.Linear(hidden_layers[-1], 1)
   def forward(self, user_ids, item_ids):
       user_embed = self.user_embedding(user_ids)
       item_embed = self.item_embedding(item_ids)
       # Concatenate embeddings
       x = torch.cat([user_embed, item_embed], dim=1)
       # Pass through MLP
       x = self.mlp(x)
       rating = self.output(x)
       return rating.squeeze()
# Training
model = NCF(num_users=10000, num_items=5000)
optimizer = torch.optim.Adam(model.parameters(), lr=0.001)
criterion = nn.MSELoss()
for epoch in range(epochs):
   for user_batch, item_batch, rating_batch in dataloader:
       optimizer.zero_grad()
       predictions = model(user_batch, item_batch)
       loss = criterion(predictions, rating_batch)
       loss.backward()
       optimizer.step()
```

6.2 Generalized Matrix Factorization (GMF)

NCF generalizes MF by using element-wise product instead of dot product:

 $\begin{aligned} \text{MF}: \quad \hat{y}_{ui} &= \vec{p}_u^T \vec{q}_i \\ \text{GMF}: \quad \hat{y}_{ui} &= \sigma(\vec{h}^T (\vec{p}_u \odot \vec{q}_i)) \end{aligned}$

6.3 NeuMF: Neural Matrix Factorization

Combine GMF and MLP paths:

```
class NeuMF(nn.Module):
   def __init__(self, num_users, num_items, gmf_dim=64, mlp_dim=64):
       super(NeuMF, self).__init__()
       # GMF path
       self.gmf_user_embed = nn.Embedding(num_users, gmf_dim)
       self.gmf_item_embed = nn.Embedding(num_items, gmf_dim)
       # MLP path
       self.mlp_user_embed = nn.Embedding(num_users, mlp_dim)
       self.mlp_item_embed = nn.Embedding(num_items, mlp_dim)
       self.mlp = nn.Sequential(
          nn.Linear(mlp_dim * 2, 128),
          nn.ReLU(),
          nn.Linear(128, 64),
          nn.ReLU()
       # Combine GMF and MLP
       self.output = nn.Linear(gmf_dim + 64, 1)
   def forward(self, user_ids, item_ids):
       # GMF path
       gmf_u = self.gmf_user_embed(user_ids)
       gmf_i = self.gmf_item_embed(item_ids)
       gmf_output = gmf_u * gmf_i # Element-wise product
       # MLP path
       mlp_u = self.mlp_user_embed(user_ids)
       mlp_i = self.mlp_item_embed(item_ids)
       mlp_input = torch.cat([mlp_u, mlp_i], dim=1)
       mlp_output = self.mlp(mlp_input)
       # Concatenate and predict
       combined = torch.cat([gmf_output, mlp_output], dim=1)
       rating = self.output(combined)
       return rating.squeeze()
```

7 Sequential Recommendations

Problem: Traditional CF ignores order of user interactions. Sequential models capture temporal dynamics.

7.1 RNN-Based Models

GRU4Rec (Hidasi et al., 2016):

```
import torch.nn as nn

class GRU4Rec(nn.Module):
    def __init__(self, num_items, embedding_dim=100, hidden_dim=100):
        super(GRU4Rec, self).__init__()
        self.item_embedding = nn.Embedding(num_items, embedding_dim)
        self.gru = nn.GRU(embedding_dim, hidden_dim, batch_first=True)
        self.fc = nn.Linear(hidden_dim, num_items)

def forward(self, item_sequence):
    # item_sequence: (batch, seq_len)
    embeds = self.item_embedding(item_sequence)
    gru_out, _ = self.gru(embeds)
```

```
# Use last hidden state
last_hidden = gru_out[:, -1, :]
logits = self.fc(last_hidden)
return logits
```

7.2 Transformer-Based Models

SASRec (Self-Attentive Sequential Recommendation):

```
class SASRec(nn.Module):
   def __init__(self, num_items, max_len=50, embedding_dim=64, num_heads=2, num_layers=2):
       super(SASRec, self).__init__()
       self.item_embedding = nn.Embedding(num_items + 1, embedding_dim, padding_idx=0)
       self.pos_embedding = nn.Embedding(max_len, embedding_dim)
       encoder_layer = nn.TransformerEncoderLayer(
          d_model=embedding_dim,
          nhead=num_heads,
          dim_feedforward=embedding_dim * 4,
          dropout=0.2
       self.transformer = nn.TransformerEncoder(encoder_layer, num_layers=num_layers)
       self.fc = nn.Linear(embedding_dim, num_items)
   def forward(self, item_sequence):
       # item_sequence: (batch, seq_len)
       seq_len = item_sequence.size(1)
       positions = torch.arange(seq_len).unsqueeze(0).to(item_sequence.device)
       # Embeddings
       item_embeds = self.item_embedding(item_sequence)
       pos_embeds = self.pos_embedding(positions)
       embeds = item_embeds + pos_embeds
       # Transformer
       embeds = embeds.transpose(0, 1) # (seq_len, batch, dim)
       mask = self.generate_square_subsequent_mask(seq_len).to(item_sequence.device)
       transformer_out = self.transformer(embeds, mask=mask)
       transformer_out = transformer_out.transpose(0, 1) # (batch, seq_len, dim)
       # Predict next item
       logits = self.fc(transformer_out[:, -1, :])
      return logits
   def generate_square_subsequent_mask(self, sz):
       mask = torch.triu(torch.ones(sz, sz), diagonal=1).bool()
       return mask
```

BERT4Rec (Bidirectional Encoder):

- Masks random items in sequence
- Predicts masked items using bidirectional context
- Pre-training + fine-tuning approach

8 Two-Stage Recommendation Architecture

Problem: Can't score millions of items for every user in real-time. **Solution:** Two-stage funnel (Candidate Generation \rightarrow Ranking)

8.1 Stage 1: Candidate Generation (Retrieval)

Goal: Narrow down millions of items to hundreds of candidates (fast, approximate). Methods:

- 1. Collaborative Filtering: User's nearest neighbors' items
- 2. ANN Search: Find items with similar embeddings (FAISS, Annoy)
- 3. Two-Tower Model: Encode user and items separately, dot product similarity

Two-Tower Architecture (YouTube):

```
class TwoTowerModel(nn.Module):
   def __init__(self, num_users, num_items, embedding_dim=128):
       super(TwoTowerModel, self).__init__()
       # User tower
       self.user_embedding = nn.Embedding(num_users, embedding_dim)
       self.user_mlp = nn.Sequential(
          nn.Linear(embedding_dim, 256),
          nn.ReLU(),
          nn.Linear(256, 128)
       )
       # Item tower
       self.item_embedding = nn.Embedding(num_items, embedding_dim)
       self.item_mlp = nn.Sequential(
           nn.Linear(embedding_dim, 256),
          nn.ReLU(),
          nn.Linear(256, 128)
       )
   def encode_user(self, user_ids):
       u = self.user_embedding(user_ids)
       return self.user_mlp(u)
   def encode_item(self, item_ids):
       i = self.item_embedding(item_ids)
       return self.item_mlp(i)
   def forward(self, user_ids, item_ids):
       user_embeds = self.encode_user(user_ids)
       item_embeds = self.encode_item(item_ids)
       # Dot product similarity
       scores = (user_embeds * item_embeds).sum(dim=1)
       return scores
# At serving time:
# 1. Encode user once
# 2. Use ANN (FAISS) to find top-k items by dot product
# 3. Pass candidates to ranking model
```

8.2 Stage 2: Ranking

Goal: Precisely rank candidates using rich features (slower, accurate).

Features:

- User features: Demographics, historical behavior
- Item features: Metadata, popularity, freshness

- Context features: Time, device, location
- Cross features: User-item interactions

Deep & Cross Network (DCN):

```
class DCN(nn.Module):
   def __init__(self, input_dim, cross_layers=3, deep_layers=[512, 256, 128]):
       super(DCN, self).__init__()
       # Cross Network
       self.cross_layers = nn.ModuleList([
           nn.Linear(input_dim, input_dim) for _ in range(cross_layers)
       # Deep Network
       deep = []
       for hidden_dim in deep_layers:
           deep.append(nn.Linear(input_dim, hidden_dim))
           deep.append(nn.ReLU())
           deep.append(nn.Dropout(0.2))
           input_dim = hidden_dim
       self.deep = nn.Sequential(*deep)
       # Combine
       self.output = nn.Linear(input_dim + input_dim, 1)
   def forward(self, x):
       # Cross network
       x_{cross} = x
       for cross_layer in self.cross_layers:
          x_cross = x * cross_layer(x_cross) + x_cross
       # Deep network
       x_{deep} = self.deep(x)
       # Combine and predict
       combined = torch.cat([x_cross, x_deep], dim=1)
       return self.output(combined).squeeze()
```

9 Evaluation Metrics

9.1 Rating Prediction Metrics

For explicit feedback (1-5 star ratings):

RMSE (Root Mean Squared Error):

RMSE =
$$\sqrt{\frac{1}{|T|} \sum_{(u,i) \in T} (r_{ui} - \hat{r}_{ui})^2}$$

MAE (Mean Absolute Error):

$$MAE = \frac{1}{|T|} \sum_{(u,i)\in T} |r_{ui} - \hat{r}_{ui}|$$

9.2 Ranking Metrics

For top-N recommendations:

Precision@K:

$$\label{eq:recision} \text{Precision@K} = \frac{\text{\# relevant items in top-K}}{K}$$

Recall@K:

$$\label{eq:Recall@K} \text{Recall@K} = \frac{\# \text{ relevant items in top-K}}{\text{Total } \# \text{ relevant items}}$$

NDCG@K (Normalized Discounted Cumulative Gain):

$$NDCG@K = \frac{DCG@K}{IDCG@K}$$

$$DCG@K = \sum_{i=1}^{K} \frac{2^{rel_i} - 1}{\log_2(i+1)}$$

MRR (Mean Reciprocal Rank):

$$MRR = \frac{1}{|U|} \sum_{n=1}^{|U|} \frac{1}{\text{rank of first relevant item}}$$

MAP (Mean Average Precision):

$$MAP = \frac{1}{|U|} \sum_{u=1}^{|U|} \frac{1}{|R_u|} \sum_{k=1}^{K} Precision@k \cdot rel_k$$

9.3 Beyond-Accuracy Metrics

Coverage:

$$Coverage = \frac{|\{i \mid i \text{ recommended to at least 1 user}\}|}{|I|}$$

Diversity (Intra-List Diversity):

ILD =
$$\frac{2}{|L|(|L|-1)} \sum_{i \in L} \sum_{j \in L, j > i} (1 - \sin(i, j))$$

Novelty:

Novelty(i) =
$$-\log_2 \frac{\text{popularity}(i)}{|U|}$$

Serendipity: Unexpected but relevant recommendations.

9.4 Python Evaluation Example

```
return len(recommended_k & relevant) / k

def recall_at_k(recommended, relevant, k):
    recommended_k = set(recommended[:k])
    return len(recommended_k & relevant) / len(relevant) if relevant else 0.0

# Example usage
recommended_items = [101, 205, 304, 112, 501] # Top-5 recommendations
relevant_items = {101, 304, 501, 999} # Ground truth relevant

print(f"Precision@5:__{precision_at_k(recommended_items,__relevant_items,__5):.3f}")

print(f"Recall@5:__{recall_at_k(recommended_items,__relevant_items,__5):.3f}")

# NDCG example
relevance = [1, 0, 1, 0, 1] # 1 if relevant, 0 if not (for top-5)
print(f"NDCG@5:__{lance_at_k(relevance,__5):.3f}")
```

10 Production Challenges & Solutions

10.1 Cold Start Problem

New User Cold Start:

- Popular items: Show trending/top-rated items
- Onboarding: Ask user to rate a few items or select preferences
- Content-based: Use demographics, device, location
- Meta-learning: Learn from other users with similar signup behavior

New Item Cold Start:

- Content-based: Use item metadata (genre, tags, price)
- Explore-exploit: Show new items to some users (Thompson Sampling, UCB)
- Transfer learning: Use embeddings from similar items

10.2 Scalability

Challenges:

- 100M+ users, 10M+ items
- Real-time inference († 100ms)
- Model retraining daily/hourly

Solutions:

- 1. Approximate Nearest Neighbors (ANN): FAISS, Annoy, ScaNN
- 2. Distributed Training: Spark MLlib, Horovod, Ray
- 3. Model Serving: TensorFlow Serving, TorchServe, Triton
- 4. Caching: Redis for precomputed recommendations
- 5. Sharding: Partition users/items across servers

FAISS Example:

```
import faiss
import numpy as np

# Item embeddings (10M items, 128-dim)
item_embeddings = np.random.randn(10_000_000, 128).astype('float32')

# Build index
index = faiss.IndexFlatIP(128) # Inner product (for dot product similarity)
index.add(item_embeddings)

# Query: Find top-100 items for user
user_embedding = np.random.randn(1, 128).astype('float32')
k = 100
scores, item_ids = index.search(user_embedding, k)

print(f"Top-{k}_items:_{item_ids[0]}")
print(f"Scores:_{item_ids[0]}")
```

10.3 Freshness vs. Accuracy Trade-off

Problem: User preferences change, items come and go. Stale recommendations hurt engagement. Solutions:

- Online learning: Update models with streaming data (online SGD)
- Recency weighting: Exponential decay of old interactions
- Time-aware features: Hour of day, day of week, seasonality
- A/B testing: Continuously validate model performance

10.4 Diversity & Filter Bubble

Problem: Pure accuracy optimization leads to echo chambers. **Solutions:**

- MMR (Maximal Marginal Relevance): Balance relevance and diversity
- DPP (Determinantal Point Process): Probabilistic diverse subset selection
- Multi-objective optimization: Accuracy + diversity + novelty
- Exploration: ϵ -greedy, Thompson Sampling

MMR Algorithm:

```
def maximal_marginal_relevance(candidates, user_profile, lambda_param=0.5, k=10):
    """"

LULLU_Lcandidates:_Llist_Lof_Litem_Lembeddings
LULLU_user_profile:_Luser_Lembedding
LULLU_lambda_param:_Ltrade-off_Lbetween_Lrelevance_Land_Ldiversity_L(0-1)
LULLU_""""

selected = []
    remaining = list(range(len(candidates)))

for _ in range(k):
    scores = []
    for idx in remaining:
        # Relevance to user
        relevance = cosine_similarity(candidates[idx], user_profile)

# Max similarity to already selected items
```

11 Advanced Topics

11.1 Multi-Task Learning

Goal: Jointly optimize for multiple objectives (clicks, watch time, likes, shares). YouTube Ranking Model:

```
class MultiTaskModel(nn.Module):
   def __init__(self, input_dim, shared_layers=[256, 128], task_layers=[64, 32]):
       super(MultiTaskModel, self).__init__()
       # Shared bottom layers
       shared = []
       for hidden_dim in shared_layers:
          shared.append(nn.Linear(input_dim, hidden_dim))
          shared.append(nn.ReLU())
          input_dim = hidden_dim
       self.shared = nn.Sequential(*shared)
       # Task-specific towers
       self.click_tower = self.build_tower(input_dim, task_layers)
       self.watch_time_tower = self.build_tower(input_dim, task_layers)
       self.like_tower = self.build_tower(input_dim, task_layers)
       # Output heads
       self.click_head = nn.Linear(task_layers[-1], 1) # Binary classification
       self.watch_time_head = nn.Linear(task_layers[-1], 1) # Regression
       self.like_head = nn.Linear(task_layers[-1], 1) # Binary classification
   def build_tower(self, input_dim, layers):
      tower = []
      for hidden_dim in layers:
          tower.append(nn.Linear(input_dim, hidden_dim))
          tower.append(nn.ReLU())
          input_dim = hidden_dim
      return nn.Sequential(*tower)
   def forward(self, x):
       shared_repr = self.shared(x)
       # Task-specific predictions
       click_repr = self.click_tower(shared_repr)
       watch_time_repr = self.watch_time_tower(shared_repr)
       like_repr = self.like_tower(shared_repr)
```

```
click_prob = torch.sigmoid(self.click_head(click_repr))
    watch_time = self.watch_time_head(watch_time_repr)
    like_prob = torch.sigmoid(self.like_head(like_repr))

    return click_prob, watch_time, like_prob

# Training with multi-task loss

def multi_task_loss(predictions, targets, weights=[1.0, 0.5, 0.3]):
    click_pred, watch_time_pred, like_pred = predictions
    click_target, watch_time_target, like_target = targets

click_loss = F.binary_cross_entropy(click_pred, click_target)
    watch_time_loss = F.mse_loss(watch_time_pred, watch_time_target)
    like_loss = F.binary_cross_entropy(like_pred, like_target)

return (weights[0] * click_loss +
    weights[1] * watch_time_loss +
    weights[2] * like_loss)
```

11.2 Graph Neural Networks for RecSys

Motivation: User-item interactions form a bipartite graph. GNNs can propagate information through the graph. LightGCN (He et al., 2020):

```
import torch
import torch.nn as nn
import torch_geometric
from torch_geometric.nn import MessagePassing
class LightGCN(nn.Module):
   def __init__(self, num_users, num_items, embedding_dim=64, num_layers=3):
       super(LightGCN, self).__init__()
       self.num_users = num_users
       self.num_items = num_items
       self.num_layers = num_layers
       # Embeddings (users and items share embedding space)
       self.embedding = nn.Embedding(num_users + num_items, embedding_dim)
       nn.init.normal_(self.embedding.weight, std=0.1)
   def forward(self, edge_index):
       # edge_index: user-item edges
       embeddings = self.embedding.weight
       all_embeddings = [embeddings]
       # Graph convolution layers
       for layer in range(self.num_layers):
           embeddings = self.propagate(edge_index, embeddings)
           all_embeddings.append(embeddings)
       # Average embeddings across layers
       final_embeddings = torch.stack(all_embeddings, dim=1).mean(dim=1)
       user_embeddings = final_embeddings[:self.num_users]
       item_embeddings = final_embeddings[self.num_users:]
       return user_embeddings, item_embeddings
   def propagate(self, edge_index, embeddings):
       # Normalize by degree (symmetric normalization)
```

11.3 Conversational Recommenders

Goal: Interactive recommendations through dialogue.

Approaches:

- Critiquing: "Show me similar but cheaper options"
- Preference elicitation: Ask questions to narrow down options
- Explanations: "Why did you recommend this?"
- Feedback loops: Incorporate thumbs up/down in real-time

11.4 Fairness in Recommendations

Issues:

- Popularity bias: Rich get richer (Matthew effect)
- Filter bubbles: Users see narrow content
- Demographic bias: Gender, race, age discrimination
- Provider fairness: Small creators don't get exposure

Solutions:

- Calibration: Match recommendation distribution to user's historical distribution
- Re-ranking: Post-process to ensure diversity/fairness
- Exposure control: Guarantee minimum exposure for all items
- Adversarial debiasing: Remove sensitive attributes from embeddings

12 Interview Preparation Strategy

12.1 Week 1: Foundations (Ricci Handbook Part 1)

Topics:

- Collaborative filtering (user-based, item-based)
- Matrix factorization (SVD, ALS)
- Content-based filtering
- Hybrid methods

Coding Practice:

- Implement user-based CF from scratch (NumPy)
- Implement matrix factorization with SGD
- LeetCode: "Design a Recommender System" (Medium)

12.2 Week 2: Deep Learning (Aggarwal + 2024 Surveys)

Topics:

- Neural Collaborative Filtering (NCF)
- \bullet Two-tower models
- Sequential models (RNN, Transformer)
- Graph neural networks (LightGCN)

Coding Practice:

- Build NCF in PyTorch
- Implement two-tower model with FAISS retrieval
- Train GRU4Rec on MovieLens dataset

12.3 Week 3: Production Systems (Industry Papers)

Topics:

- YouTube's two-stage architecture
- Netflix's matrix factorization at scale
- Spotify's sequential models
- Pinterest's PinSage (GNN at scale)

System Design Practice:

- Design Netflix recommendation system
- Design Spotify's "Discover Weekly"
- Design Amazon's "Customers who bought this also bought..."

12.4 Week 4: Evaluation & Advanced Topics

Topics:

- Offline metrics (NDCG, MAP, Recall@K)
- A/B testing for recommendations
- Beyond-accuracy objectives (diversity, novelty, fairness)
- Multi-task learning
- Conversational recommenders

Practice:

- Implement NDCG, MAP, diversity metrics
- Design A/B test for new ranking model
- Discuss trade-offs: accuracy vs. diversity vs. serendipity

13 Common Interview Questions

13.1 Algorithmic Questions

Q1: Explain the difference between user-based and item-based collaborative filtering. When would you use each?

Answer:

- User-based: Find similar users, recommend what they liked. Better for users with stable preferences.
- Item-based: Find similar items, recommend similar to what user liked. Better when items are stable (movies vs. fashion).
- Scalability: Item-based often better because # items; # users, item similarities can be precomputed.
- Example: Amazon uses item-based ("Customers who bought this also bought...").

Q2: How does matrix factorization work? What are its advantages over neighborhood methods? Answer:

- MF: Decompose sparse R into $P \times Q^T$ where P is user factors, Q is item factors.
- Advantages: Handles sparsity better, captures latent patterns, scalable with ALS/SGD.
- Example: Netflix Prize winner used ensemble of MF models.

Q3: How would you handle cold start for new users and new items? Answer:

- New user: Popular items, onboarding flow, content-based on demographics, meta-learning.
- New item: Content-based on metadata, explore-exploit strategies, transfer learning from similar items.
- Hybrid: Combine CF and content-based, gradually shift from content to CF as data accumulates.

13.2 System Design Questions

Q4: Design a recommendation system for YouTube videos.

Answer:

- 1. **Requirements**: 2B users, 800M videos, i 100ms latency, personalized homepage, watch next.
- 2. Architecture:
 - Candidate generation: Two-tower model, retrieve top-1000 from billions using ANN (FAISS)
 - Ranking: Multi-task DNN predicting click, watch time, likes
 - Re-ranking: Diversity, freshness, fairness
- 3. Features: User watch history, video metadata, context (time, device), CTR, watch time
- 4. Offline: Batch training on TPUs, daily model updates
- 5. Online: TensorFlow Serving, Redis caching, A/B testing
- 6. Metrics: Click-through rate, watch time, engagement (likes, shares), return rate

Q5: How would you evaluate a new recommendation algorithm? Answer:

- 1. Offline evaluation: Historical data, NDCG@K, Recall@K, coverage, diversity
- 2. A/B testing: 50/50 split, measure CTR, watch time, engagement, revenue
- 3. **Beyond-accuracy**: User satisfaction surveys, diversity, novelty, serendipity
- 4. Long-term effects: User retention, repeat visits, content discovery
- 5. **Iterate**: Start with offline \rightarrow online A/B \rightarrow gradual rollout \rightarrow monitor long-term

13.3 Deep Learning Questions

Q6: Explain Neural Collaborative Filtering (NCF). How does it differ from matrix factorization?

Answer:

- MF: Linear interaction (dot product): $\hat{y}_{ui} = \vec{p}_u^T \vec{q}_i$
- NCF: Non-linear interaction via MLP: $\hat{y}_{ui} = \text{MLP}([\vec{p}_u; \vec{q}_i])$
- Advantage: Can capture complex non-linear patterns
- NeuMF: Combines GMF (generalized MF) and MLP paths

Q7: How would you model sequential behavior in recommendations? Answer:

- RNN/GRU: GRU4Rec encodes session sequence
- Transformer: SASRec with self-attention captures long-range dependencies
- BERT4Rec: Bidirectional encoding with masked item prediction
- Production: Two-stage (sequence model for candidates → ranking model for final order)
- Example: Spotify's "Discover Weekly" uses sequential models on listening history

13.4 ML Engineering Questions

Q8: How would you scale recommendations to 100M users and 10M items?

Answer:

- Candidate generation: ANN with FAISS (100ms for top-1000 from 10M items)
- Model serving: TensorFlow Serving on GPU, batch inference
- Caching: Precompute recommendations for active users (Redis)
- Sharding: Partition users across servers
- Training: Distributed training on Spark, daily model updates
- Monitoring: Track latency, throughput, model drift

Q9: How do you handle the accuracy vs. diversity trade-off? Answer:

- MMR (Maximal Marginal Relevance): Balance relevance and diversity
- DPP (Determinantal Point Process): Probabilistic diverse subset
- Multi-objective: Optimize weighted sum of accuracy + diversity + novelty
- Re-ranking: Post-process to ensure categories/genres are covered
- **Exploration**: ϵ -greedy, Thompson Sampling for new items
- Example: Netflix shows mix of popular + niche, recent + catalog

14 RecSys Conference & Community

14.1 ACM RecSys Conference

2024: Bari, Italy (October 14-18)

2025: Prague, Czech Republic (September 22-26)

Tracks:

- Main research track (long/short papers)
- Industry track (production systems)
- Doctoral symposium
- Workshops (fairness, explainability, session-based, etc.)
- RecSys Challenge (annual competition by companies like Spotify, Twitter)

Key Topics (2024-2025):

- Large language models for recommendations
- Multi-stakeholder optimization
- Conversational recommenders
- Fairness and bias mitigation
- Graph neural networks
- Sequential and session-based recommendations

14.2 Related Conferences

WSDM (Web Search and Data Mining): Feb/March

WWW (The Web Conference): April/May

KDD (Knowledge Discovery and Data Mining): August

CIKM (Conference on Information and Knowledge Management): October

SIGIR (Information Retrieval): July - some RecSys overlap

15 Conclusion

Recommender systems are at the intersection of machine learning, information retrieval, and user experience. Whether you're preparing for interviews at Netflix, building a production RecSys, or conducting research for RecSys 2025, this guide provides a comprehensive foundation.

Key Takeaways:

- 1. Start with fundamentals: Collaborative filtering, matrix factorization
- 2. Master deep learning: NCF, two-tower models, sequential models
- 3. Study production systems: YouTube, Netflix, Spotify architectures
- 4. **Practice coding:** Implement algorithms from scratch, use real datasets
- 5. Think beyond accuracy: Diversity, fairness, explainability matter
- 6. Stay current: Read RecSys papers, follow industry blogs

Final Advice: Recommender systems is a rapidly evolving field. The best way to learn is to build. Use MovieLens or Amazon Reviews datasets, implement various algorithms, compare results, and iterate. Good luck!