

Design and Analysis of Algorithms I

QuickSort

Analysis II: The Key Insight

Average Running Time of QuickSort

<u>QuickSort Theorem</u>: for every input array of length n, the average running time of QuickSort (with random pivots) is O(nlog(n)).

Note: holds for every input. [no assumptions on the data]

- recall our guiding principles!
- "average" is over random choices made by the algorithm (i.e., the pivot choices)

The Story So Far

 $C(\sigma)$ = # of comparisons between input elements $X_{ij}(\sigma)$ = # of comparisons between $\mathbf{z_i}$ and $\mathbf{z_j}$

ith, jth smallest entries in array

$$\underline{\mathsf{Recall}} \colon E[C] = \sum_{i=1}^{n-1} \sum_{k=i+1}^{n} \underbrace{Pr[X_{ij} = 1]}_{=Pr[z_i \ z_j \ get \ compared]}$$

<u>Key Claim</u>: for all i < j, $Pr[z_i, z_j \text{ get compared }] = 2/(j-i+1)$

Proof of Key Claim

 $Pr[z_i, z_j \text{ get }]$ compared] = 2/(j-i+1)

Fix z_i , z_j with i < jConsider the set z_i , z_{i+1} ,..., z_{j-1} , z_j

<u>Inductively</u>: as long as none of these are chosen as a pivot, all are passed to the same recursive call.

Consider the first among $z_i, z_{i+1}, ..., z_{j-1}, z_j$ that gets chosen as a pivot.

- 1. If z_i or z_i gets chosen first, then z_i and z_i get compared
- 2. If one of $z_{i+1},...,z_{j-1}$ gets chosen first then z_i and z_j are never compared [split into different recursive calls]

Tim Roughgarden

Proof of Key Claim (con'd)

- 1. z_i or z_i gets chosen first => they get compared
- 2. one of $z_{i+1},...,z_{j-1}$ gets chosen first => z_i , z_j never compared

Note: Since pivots always chosen uniformly at random, each of $z_i, z_{i+1}, ..., z_{i-1}, z_i$ is equally likely to be the first

$$\Rightarrow$$
 Pr[z_i,z_j get compared] = 2/(j-i+1) Choices that lead to case (1) Total # of choices

So:
$$E[C] = \sum_{i=1}^{n-1} \sum_{j=1}^{n} \frac{2}{j-i+1}$$
 [Still need to show this is O(nlog(n))

Tim Roughgarden