

Matriks Kebalikan Umum

Bagus Sartono Prodi Statistika dan Sains Data IPB University

bagusco@appsipb.ac.id

Matriks Kebalikan Umum

Definisi MKU

• Matriks kebalikan umum bagi $_{m}\mathbf{A}_{n}$ dilambangkan $_{n}\mathbf{G}_{m}$ adalah matriks yang memenuhi $\mathbf{AGA} = \mathbf{A}$

Notasi lain G → A⁻

• Jika (\mathbf{A}_n) merupakan matriks non-singular, MKU bagi \mathbf{A} tidak lain adalah \mathbf{A}^{-1}

Let (A)
$$A = IA = A$$

$$A^{-1}A = IA = A$$

$$A^{-1} = G$$

Algoritma memperaleh MKU

- 1. Tentukan pangkat dari **A**, misal *k*
- 2. Cari anak matriks perseg $k \times k$ yang non-singular, misal **W**
- 3. Cari matriks kebalikan **W**, yaitu **W**⁻¹
- 4. Transpose matriks **W**⁻¹, yaitu (**W**⁻¹)^T
- 5. Ganti unsur di **A** dengan unsur (**W**⁻¹)^T pada posisi yang sama dengan posisi anak matriks yang digunakan
- 6. Ganti unsur A yang lain dengan 0 (nol)
- 7. Transpose matriks tersebut, dan itulah matriks **G**

MKU tidak unik, kecuali untuk A yang non-singular

Ilustrasi

$$\mathbf{A} = \begin{bmatrix} 4 & 1 & 2 \\ 1 & 1 & 5 \\ \hline 3 & 1 & 3 \end{bmatrix}$$

$$\mathbf{M} \times \mathbf{A} = \begin{bmatrix} 4 & 1 & 2 \\ 1 & 1 & 5 \\ \hline 3 & 1 & 3 \end{bmatrix}$$

$$\begin{bmatrix} 4 & 1 \\ 3 & 1 \end{bmatrix}$$

$$84 \rightarrow 1 \neq 0$$

$$r(A) = 2$$

$$\mathbf{W} = \begin{bmatrix} 4 & 1 \\ 3 & 1 \end{bmatrix}$$

$$\mathbf{W}^{-1} = \begin{bmatrix} 1 & -1 \\ -3 & 4 \end{bmatrix}$$

$$\left(\mathbf{W}^{-1}\right)^{T} = \begin{bmatrix} 1 & -3 \\ -1 & 4 \end{bmatrix}$$

$$\begin{array}{c|cccc}
1 & -3 & 0 \\
\hline
0 & 0 & 0 \\
-1 & 4 & 0
\end{array}$$

1. Tentukan pangkat dari
$$\mathbf{A}_i$$
 misa k

- \rightarrow 2. Cari anak matriks persegi $k \times k$ yang non-singular, misal **W**
 - 3. Cari matriks kebalikan **W**, yaitu **W**⁻¹
 - 4. Transpose matriks **W**⁻¹, yaitu (**W**⁻¹)^T
 - 5. Ganti unsur di **A** dengan unsur (**W**⁻¹)^T pada posisi yang sama dengan posisi anak matriks yang digunakan
- 6. Ganti unsur **A** yang lain dengan 0 (nol)
 - 7. Transpose matriks tersebut, dan itulah matriks **G**

transpose
$$\mathbf{G} = \begin{bmatrix} 1 & 0 & -1 \\ -3 & 0 & 4 \\ 0 & 0 & 0 \end{bmatrix}$$

m.k.u A

Matriks Kebalikan Umumdan SPL

Bagus Sartono Prodi Statistika dan Sains Data IPB University

bagusco@appsipb.ac.id

MKU dan SPL

Definisi MKU

• Matriks kebalikan umum bagi $_{m}\mathbf{A}_{n}$ dilambangkan $_{n}\mathbf{G}_{m}$ adalah matriks yang memenuhi $\mathbf{AGA} = \mathbf{A}$

Notasi lain G → A⁻

• Jika $_{n}\mathbf{A}_{n}$ merupakan matriks non-singular, MKU bagi \mathbf{A} tidak lain adalah \mathbf{A}^{-1}

MKUdan SPL

Teorema: Suatu SPL konsisten $\mathbf{A}\mathbf{x} = \mathbf{b}$ dengan $\mathbf{b} \neq \mathbf{0}$ memiliki solusi $\tilde{x} = \mathbf{G}\mathbf{b}$ dengan \mathbf{G} adalah matriks kebalikan umum bagi \mathbf{A}

dengan kata lain, jika $\mathbf{A}\mathbf{x} = \mathbf{b}$ dengan $\mathbf{b} \neq \mathbf{0}$ adalah SPL konsisten dan \mathbf{G} adalah matriks kebalikan umum bagi \mathbf{A} , maka solusi bagi SPL tersebut adalah $\tilde{x} = \mathbf{G}\mathbf{b}$

MKUdan SPL

Teorema: Suatu SPL konsisten $\mathbf{A}\mathbf{x} = \mathbf{b}$ memiliki solusi $\tilde{x} = \mathbf{G}\mathbf{b} + (\mathbf{G}\mathbf{A} - \mathbf{I})\mathbf{z}$ dengan \mathbf{z} adalah sembarang vektor berukuran banyaknya kolom \mathbf{A} .

$$A\hat{x} = \underline{b}?$$

$$A\hat{x} = A \left(\underline{6b} + (\underline{6A} - \underline{I}) \underline{z} \right)$$

$$= \underline{A}\underline{6b} + (\underline{A}\underline{6A} - \underline{A}\underline{I}) \underline{z}$$

$$= \underline{b} + (\underline{A} - \underline{A}) \underline{z}$$

$$A\hat{x} = \underline{b}$$

$$= \underline{b} + (\underline{A} - \underline{A}) \underline{z}$$

$$A\hat{x} = \underline{b}$$

$$= \underline{b} + (\underline{A} - \underline{A}) \underline{z}$$

$$A\hat{x} = \underline{b}$$

$$A\hat{x} = \underline{b}$$

$$= \underline{b} + (\underline{A} - \underline{A}) \underline{z}$$

$$A\hat{x} = \underline{b}$$

$$A\hat{x} = \underline{b}$$

$$= \underline{b} + (\underline{A} - \underline{A}) \underline{z}$$

$$A \times = b$$

$$A \times = b$$

$$A \times = b$$

$$A \times = b$$

$$A \times = a$$

$$A \times = b$$

$$A \times = a$$

$$A \times$$

terima kasih

