Solution for Midterm 2

1. Use mathematical induction to prove that $\sum_{i=1}^n \frac{1}{i(i+1)} = \frac{n}{n+1}$ for every positive integer n.

Solution
$$P(n): \sum_{i=1}^{n} \frac{1}{i(i+1)} = \frac{n}{n+1}$$

Basic Step,
$$P(1)$$
: $\frac{1}{1.2} = \frac{1}{1+1} = \frac{1}{2}$
Inductive Step, $P(k) \rightarrow P(k+1)$

$$\begin{aligned} \textit{assume } P(k) \textit{ is true, i.e.} \quad & \sum_{i=1}^k \frac{1}{i(i+1)} = \frac{k}{k+1} \\ & \left[\sum_{i=1}^k \frac{1}{i(i+1)} = \frac{k}{k+1} \right] \rightarrow \left[\sum_{i=1}^k \frac{1}{i(i+1)} + \frac{1}{(k+1)(k+2)} = \frac{k}{k+1} + \frac{1}{(k+1)(k+2)} \right] \\ & \rightarrow \left[\sum_{i=1}^{k+1} \frac{1}{i(i+1)} = \frac{k(k+2)}{(k+1)(k+2)} + \frac{1}{(k+1)(k+2)} \right] \\ & \rightarrow \left[\sum_{i=1}^{k+1} \frac{1}{i(i+1)} = \frac{(k+1)(k+1)}{(k+1)(k+2)} = \frac{k+1}{k+2} \right], \textit{ thus } P(k+1) \textit{ is also true} \end{aligned}$$

2. What value is returned by the following algorithm? What is its basic operation? How many times is the basic operation executed? Give the worst-case running time of the algorithm using Big Oh notation.

Maradona (n)

input: a positive integer n $r \leftarrow 0$ for i = 1 to n for j = i + 1 to n for k = i + j - 1 to n $r \leftarrow r + 1$

return r

Solution

basic operation : $r \leftarrow r + 1$ (incrementing r at each step)

the basic operation executed

$$T(n) = \sum_{i=1}^{n} \sum_{j=i+1}^{n} \sum_{k=i+j-1}^{n} 1 = \frac{n^3 - n}{3} = O(n^3)$$
 times

the algorithm returns the value

$$\frac{n^3-n}{3}$$