주 제 분 석 목소리가

01

주제 소개

□1 주제 소개

딥러닝을 활용한 화자 프로파일링

주제 선정 배경

사람의 음성을 바탕으로 성별, 나이, 출신 지역, 최종 학력 등을 유추할 수 있는 모델 구현

02

개발 환경

02 개발 환경

개발 환경

현재 개발 환경

서버에서 주피터 노트북을 실행해 서버를 연 후

포트 포워딩을 통해 로컬에서 직접 접속

03

음성 데이터

03 음성 데이터

EDA

03 음성 데이터

EDA

03 음성 데이터

EDA

04

분석 과정

모델링

MFCC를 활용한 모델 - CNN

Input 위, 아래 2칸씩 Zero Padding

Convolutional Layer

Max Pooling

Max Fooling				
29	15	28	184	
0	100	70	38	
12	12	7	2	
12	12	45	6	
			x 2 Il size	
	100	184		

Max Pooling

45

모델링

MFCC를 활용한 모델 - RNN

분류 모델이므로 Many-to-One의 형태

் <mark>최종 Hidden Laye</mark>r의 Output만 사용!

모델링

Mel Spectrogram을 활용한 모델 - CNN

Convolutional Layer

Batch Normalization

29	15	28	184
0	100	70	38
12	12	7	2
12	12	45	6
	,		x 2 I size
	100	184	
	12	45	

Max Pooling

모델링

Mel Spectrogram을 활용한 모델 - RNN

모델링

모델 개요

모델 유형	Input 유형	Input Size	모델 구성	
CNN (Convolutional NN)	MFCC	torch.size([3, 13, 126000])	[Conv * Pool] Layer 2개 + FC Layer 2개	
Vanilla RNN (Recurrent NN)	MFCC	torch.size([126000, 39])	RNN Hidden Layer 2개 + Sequence 길이 126000	
CNN	Mel Spectrogram	torch.size([2, 2000, 2000])	[Conv * BN * Pool] Layer 4개 + FC Layer 2개	
Vanilla RNN	Mel Spectrogram	torch.size([5000, 256])	RNN Hidden Layer 2개 + Sequence 길이 5000	A
			DeepVoice O	W

모델링

모델 성능 평가

모델의 유형과 무관하게 학습이 제대로 이루어지지 않음

모델유형

CNN (Convolutional NN)

Vanilla RNN (Recurrent NN)

CNN

Vanilla RNN

① Loss (Cross Entropy Loss)

■ Learning Rate: 5e-6~1e-9 적용

모델 성능 평가

■ Batch Size: 10~25 적용

■ Epochs: 1~20 적용

■ 1.5000 ~ 1.7000 사이 진동

② Train Accuracy

■ Sample: 100개~1000개 사용

■ 20% ~ 40% 사이 진동

문제점

① Loss 수렴하지 않음

② Train Set에 대한 정확도 낮음

데이터 전처리 방법 근본적인 개선 필요!

감사합니다

주 제 분 석 목소리가

01

복습 및 정리

□1 복습 및 정리

1주차 복습

딥러닝팀의 1주차

음성을 바탕으로 성별, 나이, 지역 유추하는 모델 구현

개발환경

서버에서 주피터 노트북을 실행해 서버를 연 후 포트 포워딩을 통해 로컬에서 직접 접속 데이터

여러 개의 JSON 파일 하나의 CSV로 변환 전처리를 거쳐 Feature engineering 모델링

MFCC / Mel Spectrogram을 이용한 CNN 모델과 RNN 모델

□1 복습 및 정리

정리

multiclass-multioutput classification

□1 복습 및 정리

모델 추가

CNN for Raw Waveform

Feature Engineering 없이 입력으로 raw-audio를 사용하는 CNN 모델

- Wei Dai, et. al (2016)

DeepVoice

DeepVoice

02

시행착오 및 최종 input

02

시행착오 및 최종 input

시행착오

모델 성능 문제

모델 유형	연령	성별	방언
Vanilla RNN	train acc : 0.3	train acc : 0.56	train acc : 0.25
(Recurrent NN)	val acc : 0.28	val acc : 0.55	val acc : 0.16
CNN	train acc : 0.9	train acc : 0.99	train acc : 0.99
	val acc : 0.55	val acc : 0.82	val acc : 0.28
CNN + LSTM	train acc : 0.52	train acc : 0.79	train acc : 0.45
	val acc : 0.28	val acc : 0.84	Val acc : 0.2
CNN for raw waveform	train acc : 0.99	train acc : 0.99	train acc : 0.99
	val acc : 0.5	val acc : 0.86	val acc : 0.25

미շ 시행착오 및 최종 input

시행착오

훈련 데이터 균등 샘플링

연령, 방언 label에 불균형이 심해 모델의 학습에 지장이 있을 것이라 판단 → 데이터를 각 label마다 균등하게 샘플링하여 훈련 데이터로 이용

02

시행착오 및 최종 input

시행착오

Noise 제거: RNNoise

validation accuracy

	연령 분류 딥러닝	성별 분류 딥러닝	방언 분류 딥러닝	Logistic Regression
노이즈 미제거	40.72	81.07	50.34	0.85
노이즈 제거	43.24	82.13	50.27	0.65
		J	ι	γ
약간의 성능 향상			큰 성능 하락	

노이즈 제거 + 딥러닝 모델을 사용 성별 분류에 유용한 F0 주파수를 딥러닝 모델의 입력에 추가

02 시행착오 및 최종 input

최종 input

최종 Input

[3, 14, 400]

MFCC + F0 / MFCC + F0의 1차 차분 / MFCC + F0의 2차 차분

03

최종 모델링

03 최종 모델링

모델 연결

필요성

우리가 예측하려 하는 label이 다른 label의 예측에 도움을 줄 수 있지 않을까?

음성 외에 아무 정보도 주어지지 않은 상태의 방언 분류

VS

음성과 함께 60대 남성이라는 정보가 주어진 상태의 방언 분류

03 최종 모델링

모델 연결

multitask learning

장점

Knowledge Transfer
 task 1을 학습하며 얻은 정보가
 다른 task를 해결하는 데 도움

- Overfitting 감소 여러 task를 동시에 해결해야 하기 때문에 보다 일반화 된 feature를 추출하도록 학습

03 최종 모델링

모델 연결

개요

Hard Parameter Sharing

LSTM Base MTL

04

결과 및 의의

4 결과 및 의의

♪ 최종 결과

최종 결과 정리

모델 유형	연령	성별	방언
MFCC + F0	train acc : 0.57	train acc : 0.9	train acc : 0.3
Hard Parameter Sharing	val acc : 0.55	val acc : 0.84	val acc : 0.29
CNN For raw-waveform	train acc : 0.99	train acc : 0.99	train acc : 0.99
Hard Parameter Sharing	val acc : 0.5	val acc : 0.85	val acc : 0.28
CLSTM	train acc : 0.51	train acc : 0.9	train acc : 0.23
	val acc : 0.45	val acc : 0.85	val acc : 0.35

감사합니다

