Definizione 1. Si dice che due insiemi X e Y sono equipotenti Y se esiste una bigezione tra X e Y.

Definizione 2. Si dice che un insieme X è *infinito* se esiste un'applicazione ingettiva ma non surgettiva di X in X.

Esempio 1. Sicuramente l'insieme \mathbb{N} dei numeri naturali è infinito in quanto (per esempio) l'applicazione $f: \mathbb{N} \to \mathbb{N}$ tale che per ogni $n \in \mathbb{N}$, f(n) = 2n, è ingettiva ma non surgettiva.

Osservazione 1. Se X è un insieme infinito e Y è un insieme che lo contieme, allora anche Y è infinito. Quindi gli insiemi numerici \mathbb{Z} , \mathbb{Q} , \mathbb{R} sono infiniti in quanto contengono \mathbb{N} .

Definizione 3. Si dice che un insieme X è *finito* se è vuoto o se non è infinito.

Teorema 1. Sia X un insieme finito non vuoto. Allora esiste $n \in \mathbb{N}$ ed ed esiste un'applicazione bigettiva $\gamma: J_n \to X$, dove $J_n = \{1, 2, \ldots, n\}$.

Osservazione 2. Con le stesse notazioni del Teorema 1, si può scrivere

$$X = \{\gamma(1), \gamma(2), \dots, \gamma(n)\}.$$

Inoltre si dice che X ha cardinalità n e si scrive:

$$|X| = n.$$

Proposizione 1. Due insiemi finiti X e Y sono equipotenti se e solo se hanno la stessa cardinalità.

Definizione 4. Un'applicazione bigettiva di un insieme finito in sé si dice *permutazione*

Osservazione 3. Si denoterà con S_n l'insieme delle permutazioni dell'insieme $J_n = \{1, 2, ..., n\}$. S_n si chiama insieme delle perumutazioni su n oggetti perché un qualunque insieme di cardinalità n è bigettivo a J_n e quindi studiare le permutazioni su J_n equivale a studiare le permutazioni su un qualunque insieme di cardinalità n.

Osservazione 4. Siano X, Y due insiemi finiti. Allora può esistere un'applicazione ingettiva avente X come insieme di partenza e Y come insieme di arrivo solo se $|X| \leq |Y|$ e inoltre, se $f: X \to Y$ è un'applicazione ingettiva tra X e Y, allora |f(X)| = |X|. Può esistere un'applicazione surgettiva avente X come insieme di partenza e Y come insieme di arrivo solo se $|X| \geq |Y|$. Infine, se |X| = |Y| allora un'applicazione $f: X \to Y$ è ingettiva se e soltanto se è surgettiva e quindi se e soltanto se è bigettiva.

Osservazione 5. Può essere utile pensare le applicazioni tra insiemi finiti usando il modello delle parole: se A e B sono insiemi finiti, con |A|=n, |B|=k, e se $f:A\to B$ è un'applicazione, si può immaginare che gli elementi di A siano delle caselle e gli elementi di B siano delle lettere da inserire nelle caselle nel modo che segue: posto, per comodità

$$A = \{a_1, \dots, a_n\}, B = \{b_1, \dots, b_k\},\$$

per ogni $j \in \{1, ..., k\}$, $i \in \{1, ..., n\}$, b_j viene inserito nella casella a_i se e solo se $b_j = f(a_i)$. In questo modo f diventa una parola di lunghezza n:

$$b_{i_1},\ldots,b_{i_n}$$

Esempio 2. Siano $A=\{1,2,3,5,6,7\},\ B=\{a,b,c,d,e,g,h,l\}.$ Allora l'applicazione $f:A\to B$ tale che

$$f(1) = d$$
, $f(2) = c$, $f(3) = a$, $f(4) = a$, $f(5) = d$, $f(6) = e$, $f(7) = h$ può essere scritta col modello delle parole come:

dcaadeh

pensando le caselle ordinate secondo l'ordine naturale di A. Se la parola che rappresenta un'applicazione f tra due insiemi finiti A e B non contiene ripetizioni, allora f è ingettiva; se contiene tutti gli elementi di B, allora f è surgettiva.

Cenni di calcolo combinatorio

Proposizione 2. (Principio dei cassetti) Siano A un insieme finito, B un sottoinsieme di A, $B \neq A$. Allora |B| < |A|.

Benchè appaia un'osservazione ovvia, il principio dei cassetti può essere utilizzato in alcune situazioni, come si vede dal seguente esempio:

Esempio 3. Usando il principio dei cassetti, si può provare che a Roma vivono almeno due persone che hanno lo stesso numero di capelli.

La dimostrazione si basa sul fatto che il numero di capelli di un essere umano è al massimo 200.000. Si indicano con \mathcal{A} l'insieme degli abitanti di Roma e con $B = \{0, 1, 2, \dots, 200.000\}$ l'insieme dei numeri naturali da 0 a 200.000. Il numero di abitanti di Roma è poco più di 2.825.000. Si suppone per assurdo che tutti gli elementi di \mathcal{A} abbiano un unmero diverso di capelli. Allora l'applicazione

$$F: \mathcal{A} \to B$$
 tale che $\forall x \in \mathcal{A}, \ F(x) =$ numero dei capelli di x

è chiaramente ingettiva e quindi risulta |F(A)| = |A| > 2.825.000: questo non è possibile perchè $F(A) \subset B$ e |F(A)| > 2.825.000, mentre |B| = 200.000, che contraddice il principio dei cassetti.

Proposizione 3. Siano A, B, C insiemi. Risulta allora:

(1)
$$|A \cup B \cup C| = |A| + |B| + |C|$$
$$-|A \cap B| - |A \cap C| - |B \cap C| + |A \cap B \cap C|.$$

Osservazione 6. Esiste anche una formula generalizzata per un numero qualsiasi di insiemi del principio di inclusione-esclusione, che viene omessa. Si osserva inoltre che se $C = \emptyset$, allora (1) diviene:

$$|A \cup B| = |A| + |B| - |A \cap B|,$$

che è il principio di inclusione-esclusione relativo a due insiemi.

Esercizio 1. Determinare il numero degli studenti di una classe di 36 alunni che svolgono attività extrascolastiche, sapendo che:

- 18 studiano musica
- 20 praticano il calcio
- 12 praticano atletica
- 12 studiano musica e praticano atletica
- 10 studiano musica praticano il calcio
- 6 praticano il calcio e l'atletica

• 2 praticano il calcio e l'atletica e studiano musica.

Se si indicano con M l'insieme degli studenti che studiano musica, con C l'insieme degli studenti che praticano il calcio, con A l'insieme degli studenti che praticano atletica allora si ha:

- |M| = 18, |C| = 20, |A| = 12
- $\bullet |M \cap C| = 10$
- $\bullet |M \cap A| = 12$
- \bullet $|C \cap A| = 6$
- $\bullet |M \cap C \cap A| = 2$

Quindi:

$$|M \cup C \cup A| = |M| + |C| + |A| - |M \cap C| - |M \cap A| - |C \cap A| + |M \cap C \cap A|$$

Quindi il numero delgi studenti che svolgono attività extrascolastiche è

$$|M \cup C \cup A| = 18 + 20 + 12 - 6 - 10 - 12 + 2 = 34$$

Proposizione 4. Sia $h \in \mathbb{N}^*$. Siano inoltre assegnati h insiemi non vuoti e finiti

$$A_1, A_2, \ldots, A_h$$
.

Allora si ha:

$$|A_1 \times A_2 \times \dots A_h| = |A_1| \cdot |A_2| \cdot \dots \cdot |A_h|,$$

ovvero la cardinalità del prodotto cartesiano di h insiemi non vuoti e finiti è uguale al prodotto delle cardinalità dei singoli insiemi.

Definizione 5. Siano $n, k \in \mathbb{N}^*$. Si dice disposizione con ripetizioni di k elementi di classe n una n-pla ordinata con ripetizioni di k oggetti.

Proposizione 5. Il numero delle disposizioni con ripetizioni di k elementi di classe $n \in k^n$.

Dimostrazione. Una disposizione con ripetizioni di k elementi di classe n può essere considerata una parola di lunghezza n con ripetizioni (e quindi un'applicazione di un insieme di cardinalità n in un insieme di cardinalità k). La scelta del primo elemento (ovvero di una lettera da inserire nella prima casella) può essere fatta in k modi, la seconda ugualmente in k modi, e così ogni scelta fino alla n-ma: pertanto le possibili disposizioni (ovvero parole) con ripetizioni saranno:

$$\underbrace{k \cdot k \cdots k}_{n \text{ volte}} = k^n.$$

Osservazione 7. Si può dimostrare la Proposizione 5 utilizzando la Proposizione 4.

Osservazione 8. Dalla dimostrazione della Proposizione 5, segue che anche il numero delle applicazioni di un insieme A di cardinalità n in un insieme B di cardinalità $k \in k^n$. Se si usa il simbolo B^A per l'insieme delle applicazioni di A in B, ovvero:

$$B^A = \{f : A \to B\},\$$

si ha la seguente identità:

$$|B^A| = |B|^{|A|}.$$

Definizione 6. (facoltativa) Siano A un insieme non vuoto, B un sottoinsieme di A. Si dice applicazione caratteristica di B l'applicazione

$$f_B: A \to \{0, 1\}$$
 tale che $\forall x \in A$ $f(x) = \begin{cases} 1 \text{ se } x \in B \\ 0 \text{ se } x \notin B \end{cases}$

Corollario 1. Sia A un insieme finito, con |A| = n, $n \in \mathbb{N}^*$. Allora

$$|\mathfrak{P}(A)| = 2^n.$$

Dimostrazione. (facoltativa) Si proverà che l'insieme delle parti di A è equipotente all'insieme $\{0,1\}^A = \{f: A \to \{0,1\}\}$ delle applicazioni dell'insieme A nell'insieme $\{0,1\}$, ovvero che è bigettiva l'applicazione

$$\Phi: \mathfrak{P}(A) \to \{0,1\}^A$$
 tale che $\forall B \in \mathfrak{P}(A), \ \Phi(B) = f_B$,

dove f_B è l'applicazione caratteristica di B (Definizione 6). Siano $B, C \in \mathfrak{P}(A)$, con $B \neq C$: si deve allora verificare che $\Phi(B) \neq \Phi(C)$, ovvero $f_B \neq f_C$. Poiché f_B e f_C hanno lo stesso inseme di partenza A e lo stesso inseme di arrivo $\{0,1\}$, si deve verificare che esiste almeno un elemento di A nel quale assumono valore diverso. Dalla teoria degli insiemi è noto che

$$B \neq C \iff ((\exists x \in B \text{ tale che } x \notin C) \lor (\exists x \in C \text{ tale che } x \notin B)).$$

Si suppone (per esempio) che $\exists x \in B$ tale che $x \notin C$ (nell'altra eventualità il ragionamento è del tutto analogo). Poichè $x \in B$, risulta che $f_B(x) = 1$ mentre, poiché $x \notin C$ risulta $f_C(x) = 0$ e quindi $f_B(x) \neq f_C(x)$, cioé $f_B \neq f_C$. Segue l'ingettività di Φ . Sia $f \in \{0,1\}^A$. Per provare la surgettività di Φ si deve dimostrare che esiste $B \in \mathfrak{P}(A)$ tale che $f = \Phi(B)$. Si pone

$$B = f^{-1}(1) = \{x \in A : f(x) = 1\}$$

e si verifica che $f = f_B = \Phi(B)$. Infatti f e f_B sono applicazioni aventi entrambe insieme di partenza A e insieme di arrivo $\{0,1\}$. Sia $x \in A$: se $x \in B$, allora f(x) = 1 e, per come è definita l'applicazione caratteristica di B, anche $f_B(x) = 1$; se $x \notin B$, allora $f(x) \neq 1$ e quindi dovrà essere f(x) = 0; d'altra parte, per come è definita l'applicazione caratteristica di B, $f_B(x) = 0$. Quindi esiste $B \in \mathfrak{P}(A)$ tale che $\Phi(B) = f$. Quindi Φ è ingettiva e surgettiva, cioè bigettiva.

Definizione 7. Siano $n, k \in \mathbb{N}^*$, $n \leq k$. Si dice disposizione semplice di k elementi di classe n una n-pla ordinata senza ripetizioni di k oggetti.

Proposizione 6. Il numero delle disposizioni semplici di k elementi di classe n, con $n \leq k$, è

$$(k)_n = k \cdot (k-1) \cdot (k-2) \cdot \ldots \cdot (k-n+1).$$

Dimostrazione. Una disposizione semplice di k elementi di classe n può essere considerata una parola di lunghezza n senza ripetizioni (e quindi un'applicazione ingettiva di un insieme di cardinalità n in un insieme di cardinalità k). La scelta del primo elemento (ovvero di una lettera da inserire nella prima casella) può essere fatta in k modi, la seconda in k-1 modi, perché il secondo elelmento deve essere diverso dal primo, e così per ogni scelta fino alla n-ma che può essere fatta in k-(n-1)=k-n+1 modi: pertanto le possibili disposizioni (ovvero parole) senza ripetizioni saranno:

$$k \cdot (k-1) \cdot \cdot \cdot \cdot (k-n+1)$$
.

Osservazione 9. Dalla dimostrazione della Proposizione 6, segue che anche il numero delle applicazioni ingettive di un insieme di cardinalità n in un insieme di cardinalità k, con $n \leq k$, è $(k)_n$.

In particolare il numero delle disposizioni semplici di n elementi di classe n (ovvero il numero delle applicazioni bigettive tra due insiemi di cardinalità n) è:

 $(n)_n = n \cdot (n-1) \cdot (n-2) \cdot \dots \cdot (n-n+1) = n \cdot (n-1) \cdot (n-2) \cdot \dots \cdot 1 = n!$ dove il numero n! si indica con il nome di n fattoriale.

Corollario 2. Il numero delle permutazioni di un insieme di cardinalità $n, n \in \mathbb{N}^*$, è n!, ovvero:

$$|\mathcal{S}_n| = n!$$

Osservazione 10. Si definisce anche

$$0! = 1.$$

Definizione 8. Siano r, s interi positivi, con $r \leq s, s \neq 0$. Si dice coefficiente binomiale il numero

$$\binom{s}{r} = \frac{s!}{r!(s-r)!}$$

Osservazione 11. Siano r, s interi positivi, con $r \le s, s \ne 0, r \ne 0$. Allora risulta:

$$\binom{s}{r} = \frac{(s)_r}{r!}.$$

Infatti si ha:

$$\binom{s}{r} = \frac{s \cdot \ldots \cdot (s-r+1)(s-r) \cdot \ldots \cdot 1}{r!(s-r)!} = \frac{s \cdot \ldots \cdot (s-r+1)(s-r)!}{r!(s-r)!}$$

da cui segue 2.

Proposizione 7. Valgono le seguenti identità, che si lasciano da dimostrare per esercizio:

a)
$$\binom{s}{0} = 1$$

b) $\binom{s}{1} = s$
c) $\binom{s}{s} = 1$
d) $\binom{s}{s-1} = s$

e)
$$\binom{s-1}{r} = \binom{s-1}{r} + \binom{s-1}{r-1}$$
.

Teorema 2. Vale la formula del binomio di Newton: $\forall a, b \in \mathbb{R}$, $\forall n \in \mathbb{N}^*$ si ha:

(3)
$$(a+b)^n = \sum_{h=0}^n \binom{n}{h} a^h b^{n-h}.$$

Definizione 9. Si dice combinazione semplice di k elementi di classe n una n-pla non ordinata senza ripetizioni di k oggetti.

Osservazione 12. Con le stesse notazioni della Definizione 9, una combinazione semplice di k elementi di classe n non è altro se non un sottoinsieme di cardinalità n di un insieme di cardinalità k.

Proposizione 8. Il numero dei sottoinsiemi di h elementi di un insieme di k elementi, ovvero il numero delle combinazioni semplici di n elementi di classe h è uguale a

$$\binom{k}{h}$$
.

Dimostrazione. Il numero $(k)_h$ delle disposizioni semplici va diviso per h! (numero delle permutazioni su h oggetti), poiché non interessa l'ordine nel caso delle combinazioni semplici: per la Definizione 8 tale numero è proprio

$$\binom{k}{h}$$
.

Osservazione 13. La Proposizione 8 e la formula del binomio di Newton forniscono una diversa dimostrazione del Corollario 1. Siano $n \in \mathbb{N}^*$, e sia A un insieme con |A| = n. Allora la cardinalità dell'insieme delle parti di A può essere pensata come

$$\sum_{h=0}^{n} \binom{n}{h}$$

poiché per ogni h = 1, ..., n, il coefficiente binomiale $\binom{n}{h}$ è il numero dei sottoinsiemi di cardinalità h di A. D'altra parte, per la formula del binomio di Newton, (3), si ha:

$$\sum_{h=0}^{n} \binom{n}{h} = \sum_{h=0}^{n} \binom{n}{h} 1^{h} 1^{n-h} = (1+1)^{n} = 2^{n}.$$

Definizione 10. Siano $n, k \in \mathbb{N}^*$. Si dice combinazione con ripetizioni di k elementi di classe n una n-pla non ordinata con ripetizioni di k oggetti.

La dimostrazione delle due proposizioni che seguono viene omessa.

Proposizione 9. Il numero delle combinazioni con ripetizione di k elementi di classe n è dato da

$$\binom{k+n-1}{n}$$
.

Proposizione 10. Il numero delle applicazioni surgettive di un insieme di cardinalità n in un insieme di cardinalità m, $n \ge m$ è:

$$\sum_{k=1}^{m} {m \choose k} (-1)^{m-k} k^n.$$

Esempio 4. Per n = 3, m = 2

$$\sum_{k=1}^{2} {2 \choose k} (-1)^{2-k} k^3 = {2 \choose 1} (-1)^1 + {2 \choose 2} (-1)^0 8 = -2 + 8 = 6.$$

Esempio 5. Per n = 4, m = 3

$$\sum_{k=1}^{3} {3 \choose k} (-1)^{3-k} k^4 = {3 \choose 1} (-1)^2 + {3 \choose 2} (-1)^1 2^4 + {3 \choose 3} (-1)^0 3^4$$
$$= 3 - 3 \cdot 16 + 81 = 3 - 48 + 81 = 36.$$

Osservazione 14. Risultano molto utili dei particolari diagrammi nella individuazione di tutte le applicazioni o le applicazioni ingettive o surgettive tra insiemi finiti, come illustrato negli esempi che seguono.

Esempio 6. Si vogliono determinare le $(3)_2 = 6$ (cf. Proposizione 6) applicazioni ingettive tra l'insieme $\{1,2\}$ e l'insieme $\{a,b,c\}$, ovvero le parole di lunghezza 2 senza ripetizioni formate da a,b,c. A tale scopo si può tracciare un diagramma del tipo:

Esempio 7. Si possono individure tutte le parole di lunghezza 2, anche con ripetizioni, formate dalle lettere a, b, c, ovvero le applicazioni tra l'insieme $\{1, 2\}$ e l'insieme $\{a, b, c\}$ (che sono in numero di $9 = 3^2$, come risulta dalla Proposizione 5) utilizzando il diagramma:

Esempio 8. Per determinare tutte le 6 applicazioni surgettive dell'insieme $\{1,2,3\}$ sull'insieme $\{a,b\}$ (cf. Esempio 4) si può utilizzare il diagramma:

Esercizio 2. Tenendo conto del modello delle parole e utilizzando opportuni diagrammi, individuare

- (1) tutte le applicazioni ingettive dell'insieme $\{1,2,3\}$ nell'insieme $\{a,b,c,d,e\}$
- (2) tutte le applicazioni dell'insieme $\{1,2,3\}$ nell'insieme $\{a,b,c,d\}$
- (3) tutte le applicazioni surgettive dell'insieme $\{1, 2, 3, 4\}$ nell'insieme $\{a, b\}$.