Chapter 9-10

Confidence Intervals and Hypothesis Testing One Sided HT for μ and σ^2

Statistics *Mehmet Güray Güler, PhD*

Last updated 22.07.2020

One Sided HT For μ

One Sided HT...

- Until now we deal with "not equal to" type of hypothesis like:
 - H_0 : $\mu = 5$
 - $H_1: \mu \neq 5$
- We may also have following type of hypothesis:
 - $H_0: \mu \le 5 \text{ (or } \mu = 5 \text{)}$
 - $H_1: \mu > 5$
- Or
 - $H_0: \mu \ge 5$ (or $\mu = 5$)
 - $H_1: \mu < 5$
- In general we use the alternative hypothesis to justify our beliefs.
- Test whether the evidence is sufficient to suspect the hypothesis.

- The very very same example[©]
- A random sample of 100 recorded deaths in Turkey during the past year showed an average life span of 71.8 years.
- We want to test the following hypothesis
 - H_0 : $\mu \leq 70$.
 - H_1 : $\mu > 70$.
- Assuming $\sigma = 9$, please perform HT.
- Use a 0.05 level of significance

- Since we know σ , we can use z here.
- Here, since it is single
 sided we have a rejection
 region of this type →

- Calculate z_{α} (not $z_{\alpha \setminus 2}$)
- Here we have $z_{0.05} = 1.645$
- Calculate z_{obs}

•
$$z_{obs} = \frac{71.8 - 70}{9/10} = 2 > 1.645$$

• Hence we reject H_0

- For the same question, what can you say about testing:
 - $H_0: \mu \geq 70$.
 - H_1 : $\mu < 70$

- **Step1:** The hypothesis are:
 - $H_0: \mu \ge \mu_0 \ (or \ \mu = \mu_0)$
 - H_1 : $\mu < \mu_0$
- **Step2:** The test statistic is given by: $z_{obs} = \frac{\bar{x}_{obs} \mu_0}{\sigma/\sqrt{n}}$
- Step 3: $[-\infty, -z_{\alpha}]$,
- **Step 4**: Calculate z_{obs} using the formula in step2
- Step5: if z_{obs} is in the critical region ($z_{obs} \leq -z_{\alpha}$), we reject H_0

- **Step1:** The hypothesis are:
 - H_0 : $\mu \le \mu_0 (or \ \mu = \mu_0)$
 - $H_1: \mu > \mu_0$
- **Step2:** The test statistic is given by: $z_{obs} = \frac{\bar{x}_{obs} \mu_0}{\sigma/\sqrt{n}}$
- Step 3: $[z_{\alpha}, \infty]$,
- **Step 4**: Calculate z_{obs} using the formula in step2
- Step5: if z_{obs} is in the critical region ($z_{obs} \ge z_{\alpha}$), we reject H_0

- **Step1:** The hypothesis are:
 - H_0 : $\mu \le \mu_0 (or \ \mu = \mu_0)$
 - $H_1: \mu > \mu_0$
- Step2: The test statistic is given by: $t_{obs} = \frac{\bar{x}_{obs} \mu_0}{s/\sqrt{n}}$ with v=n-1 d.f
- Step 3: $[t_{\alpha}, \infty]$,
- **Step 4**: Calculate t_{obs} using the formula in step2
- Step5: if t_{obs} is in the critical region ($t_{obs} \ge t_{\alpha}$), we reject H_0

- **Step1:** The hypothesis are:
 - $H_0: \mu \ge \mu_0 (or \ \mu = \mu_0)$
 - H_1 : $\mu < \mu_0$
- Step2: The test statistic is given by: $t_{obs} = \frac{\bar{x}_{obs} \mu_0}{s/\sqrt{n}}$ with v=n-1 d.f
- Step 3: $[-\infty, -t_{\alpha}]$,
- **Step 4**: Calculate t_{obs} using the formula in step2
- Step5: if t_{obs} is in the critical region ($t_{obs} \leq -t_{\alpha}$), we reject H_0

Other one sided hypothesis tests:

- All other HTs can be made using similar arguments. You can check:
 - Two means
 - Single variance
 - Two variances

- Example (σ known). A manufacturer of sports equipment has developed a new synthetic fishing line.
- They claim this new synthetic has a
 - mean breaking strength μ of (at least) 8 kg
 - with a standard deviation σ of 0.5 kg.
- A wholesale store (for ex. Decathlon) is interested in this synthetic fishing line but before they can advertise this claim they would like to test it.
- If the new synthetic lines are weaker than 8 kg, they won't buy it.
 Otherwise they will buy in large quantities.

• They want to test:

$$H_0: \mu \ge 8 \text{ vs } H_1: \mu < 8$$

• The null hypothesis is the default value, i.e., the fishing line is strong.

- They have tested a sample of n=50 lines
- It turns out that $\bar{X} = 7.85 \ kg$.
- What is the result for 0.01 level of significance?

Solution

- H_0 : $\mu = 8 \text{ vs } H_1$: $\mu < 8$
- Decision rule for $\alpha=0.01$ level of significance will be
 - Reject H_0 if $Z < -z_{0.01} = -2.33$,
 - where $Z = \frac{X \mu_0}{\sigma / \sqrt{n}}$ has the standard normal distribution
- Now, we use data to calculate the observed test statistic.

• (b) Using the sample mean, μ_0 = 8, σ = 0.5, and n = 50, we get

$$z_{obs} = \frac{\bar{X} - \mu_0}{\sigma / \sqrt{n}} = \frac{7.85 - 8}{0.5 / \sqrt{50}} = -2.12$$

- **DECISION**: We can't reject H_0 . (That means μ is **not smaller** than 8)
- **CONCLUSION**: The company would consider buying the lines. There is no enough evidence that the strength of the fishing line is less than 8 kg.

- Example (σ unknown):
- Assume s=0.48 and we are **not given** σ
- (a) Decision rule for $\alpha = 0.01$ level of significance will now be
- Reject H_0 if $T < -t_{0.01} = -2.40$, where T has v= n-1 = 49 d.o.f.

• Since $t_{obs} = \frac{7.85 - 8}{0.48/\sqrt{50}} = -2.21 > -2.40$ we can't reject H_0 .

HT = CI!

• Example. Consider Example 5, but take a two-sided alternative hypothesis.

$$H_0: m = 8$$
 vs. $H_1: m^{-1} 8$.

- Find the decision at the level of significance $\alpha = 0.02$, n=50
- *Solution:* Reject H_0 if $T > t_{0.01} = 2.40$, or $T < -t_{0.01} = -2.40$
- Since $t_{obs}=\frac{7.85-8}{0.48/\sqrt{50}}=-2.21>-2.40$, we cannot reject H0 at this level.

$$HT = CI!$$

• OR: A 98% confidence interval for μ :

•
$$\left(\bar{X} - t_{\alpha/2} \frac{S}{\sqrt{n}}, \bar{X} + t_{\alpha/2} \frac{S}{\sqrt{n}}\right) = 7.85 \pm 2.40 \frac{0.48}{\sqrt{50}} = (7.69, 8.01)$$

- Since 8 is in the CI, we cannot reject H0 at this level.
- The two procedures are equivalent

One Sided Tests for Variances

- 1. Write the hypotheses: H_0 : $\sigma^2 = \sigma_0^2$ vs.

 - A. H_1 : $\sigma^2 > \sigma_0^2$, B. H_1 : $\sigma^2 < \sigma_0^2$, or C. H_1 : $\sigma^2 \neq \sigma_0^2$.
- 2. Pick your test statistic: $\chi^2 = \frac{(n-1)S^2}{\sigma_c^2}$ with v = n-1 d.o.f.
- 3. Find your critical region $\chi^2 = \frac{(n-1)S^2}{\sigma_2^2}$
- 4. Calculate χ^2_{obs}
- 5. Draw appropriate conclusions.

- Example. A manufacturer of car batteries claims that the life of the company's batteries is approximately normally distributed with a standard deviation of at most 0.9 year.
- To test if the standard deviation can actually be larger than this claimed value, a random sample of 10 of these batteries is selected and tested.
- The sample standard deviation is found to be 1.2 years.
- Do the data support the manufacturer's claim?
- Use a 0.05 level of significance.

Solution. We begin with the hypotheses and the decision rule.

- 1. H_0 : $\sigma^2 = 0.81$ vs. H_1 : $\sigma^2 > 0.81$.
- 2. For $\alpha = 0.05$, the decision rule: Reject H_0 when $\chi^2 > 16.919$, with $\nu = 9$ degrees of freedom.

Solution(ctd.)
$$H_0$$
: $\sigma^2 = 0.81$ vs. H_1 : $\sigma^2 > 0.81$

3. Computations: $s^2 = 1.44$ and n = 10. This gives:

$$\chi_{obs}^2 = \frac{(9)(1.44)}{0.81} = 16.0$$

4. Decision: The χ^2 -statistic is not significant at the 0.05 level. We can't reject H_0 .

5. *P*-value =
$$P(\chi^2 > 16.0) \approx 0.07$$
. (later)

Based on the P-value of 0.07, H_0 does not have high credibility.

A bigger sample size may be taken to get a better picture.