TRAJECTORIES with COSMOGRAVITY TUTORIAL

J.P. CORDONI 2022/06/23

Choose the type of mass and mobile

Enter the physical parameters of the trajectory

Calculated
values
during the
simulation

r(m)	Proper time	Gradient	V _r (m.s ⁻¹)	V _φ (m.s ⁻¹)	Distant observer time	spectral shift	Speed(m/s)
1.498e+11	6.750e+5	2.563e-14	4.756e+2	2.803e+4	6.750e+5	1.428e-8	2.803e+4

Calculation on break

Baryonic mass and particle

Inputs:

M = 2.000e + 30 kg

 $r_{phy} = 7.000e + 8 \text{ m}$

reference frame

Distant observer

mobile1:

 $r_0 = 1.500e + 11 \text{ m}$

 $\phi = 9.000e + 1^{\circ}$

 $V_{phy} = 2.985e+4 \text{ m.s}^{-1}$

Scale of the simulation

The Save button saves the graphic and the Inputs.

The Stop key ends the simulation and resets the inputs to the default values ... but the Last values key is used to recall the

1e+4 m

previous inputs.

Example 1: Small asteroid

Example 1 : Simulation result

