HW 3 Solutions

- 1. Bayes rule, variances, and priors. (10 points) Let $f(x|Y=k) \sim N(\mu_k, \sigma^2), k=1, 2$ be a two category one-dimensional problem with $P(Y=1) = \pi_1, P(Y=2) = \pi_2$.
 - (a) Compute the decision boundary assuming $\mu_1 > \mu_2$ and compute the Bayes loss.

$$\pi_1 f(x|Y=1) \ge \pi_2 f(x|Y=2)$$

$$\Leftrightarrow (x - \mu_2)^2 - (x - \mu_1)^2 \ge 2\sigma^2 \log \frac{\pi_2}{\pi_1}$$

$$\Leftrightarrow x \ge \frac{\mu_1 + \mu_2}{2} + \frac{\sigma^2 (\log \pi_2 - \log \pi_1)}{\mu_1 - \mu_2}$$

The decision boundary is the point $x = \frac{\mu_1 + \mu_2}{2} + \frac{\sigma^2(\log \pi_2 - \log \pi_1)}{\mu_1 - \mu_2}$.

Bayes loss =
$$\int_{R_1} \pi_2 \phi(x; \mu_2, \sigma^2) dx + \int_{R_2} \pi_1 \phi(x; \mu_1, \sigma^2) dx$$

= $\pi_2 \Phi \left(\frac{\mu_2 - \mu_1}{2\sigma} - \frac{\sigma(\log \pi_2 - \log \pi_1)}{\mu_1 - \mu_2} \right) + \pi_1 \Phi \left(\frac{\mu_2 - \mu_1}{2\sigma} + \frac{\sigma(\log \pi_2 - \log \pi_1)}{\mu_1 - \mu_2} \right),$

where $\phi(x; \mu, \sigma^2)$ is the density of $N(\mu, \sigma^2)$, $\Phi(x)$ is the CDF of standard normal distribution.

(b) Write the probability of error using the CDF of the normal distribution. Show that the error goes to zero as $\sigma \to 0$.

As
$$\sigma \to 0$$
, Bayes loss $\to \pi_2 \Phi(-\infty) + \pi_1 \Phi(-\infty) = 0$.

- (c) For fixed σ what happens to the decision boundary as $\pi_1 \to 0$? For small π_1 what is a very simple classification rule that can guarantee low error rate? When σ is fixed and $\pi_1 \to 0$, the decision boundary $x^* = \frac{\mu_1 + \mu_2}{2} + \frac{\sigma^2(\log \pi_2 \log \pi_1)}{\mu_1 \mu_2} \to +\infty$. Thus a simple rule that classifies all points into category 2 can guarantee low error rate.
- (d) Assume a classification problem with K classes. Let $L_{k,l}$ be the cost of choosing class l when class k is true. Let p(x,y) be the joint distribution of X,Y. The expected loss for a decision function h is

$$L(h) = \sum_{k=1}^{K} \sum_{l=1}^{K} \int_{h(x)=l} p(x,k) L_{k,l} dx.$$

Show that the decision rule with lowest loss is given by the generalize Bayes rule:

$$h_B(x) = \operatorname{argmin}_{j=1,\dots,K} \sum_{k=1}^{K} L_{k,j} p(k|x).$$

Hint: Use the loss of an individual example defined as $L(h,x) = \sum_{k=1}^{K} L_{k,h(x)} p(k|x)$.

$$L(h) = \sum_{k=1}^{K} \sum_{l=1}^{K} \int_{h(x)=l} p(x,k) L_{k,l} dx$$

$$= \sum_{k=1}^{K} \sum_{l=1}^{K} \int_{h(x)=l} p(x,k) L_{k,h(x)} dx$$

$$= \sum_{k=1}^{K} \int_{x} p(x,k) L_{k,h(x)} dx$$

$$= \int_{x} L(h,x) p(x) dx,$$

where

$$L(h, x) = \sum_{k=1}^{K} L_{k,h(x)} p(k|x).$$

Thus, the function L(h) is minimized by minimizing L(h, x) for any specific x, which gives the result:

$$h_B(x) = \operatorname{argmin}_{j=1,\dots,K} \sum_{k=1}^{K} L_{k,j} p(k|x).$$

(e) One way to avoid the degenerate situation from item 1c is to change the cost function. Set $L_{2,1}$ to be the cost of choosing class 1 when class 2 is true, and $L_{1,2}$ the cost of choosing class 2 when class 1 is true. Write the expected loss in this situation. Recompute the decision boundary. What values on $L_{i,j}$ would you assign to remedy the problem of small π_1 .

Loss =
$$\pi_2 L_{2,1} \int_{h(x)=1} \phi(x; \mu_2, \sigma^2) + \pi_1 L_{1,2} \int_{h(x)=2} \phi(x; \mu_1, \sigma^2).$$

By the result in (d), the classification area for category 1 is

$$R_1 = \{x : x \ge \frac{\mu_1 + \mu_2}{2} + \frac{\sigma^2(\log L_{2,1}\pi_2 - \log L_{1,2}\pi_1)}{\mu_1 - \mu_2}\}$$

We can set $L_{1,2} \gg L_{2,1}$ to avoid the problem caused by small π_1 .

- 2. Bernoulli mixtures: (20 points)
 - (a) Assume your observations are binary in R^d , i.e. $X = (X_1, \ldots, X_d), X_j \in \{0, 1\}, j = 1, \ldots, d$. We assume the d variables are independent with joint distribution $P(X_1 = x_1, \ldots, X_d = x_d) = P(X_1 = x_1) \cdots P(X_d = x_d)$, and $P(X_j = x) = p_j^x (1 p_j)^{1-x}$. Given a sample X_1, \ldots, X_n from this distribution write the log-likelihood, write the score equation for each parameter $p_j, j = 1, \ldots, d$ and write the maximum likelihood estimate \widehat{p}_j .

Log-likelihood: $\ell(X, p_1, ..., p_d) = \sum_{i=1}^d \sum_{j=1}^d [X_{ij} \log p_j + (1 - X_{ij}) \log(1 - p_j)].$ Score equation $\partial \ell / \partial p_j = \sum_{i=1}^n [X_{ij}/p_j - (1 - X_{ij})/(1 - p_j)] = 0.$ Writing $S_j = \sum_{i=1}^n X_{ij}$, we get $(1 - p_j)S_j = (n - S_j)p_j$ so that $\widehat{p}_j = S_j/n$.

(b) Assume you have a Bernoulli model for each of C classes, with probabilities $P(X_j = 1|Y = c) = p_{c,j}, c = 1, ..., C, j = 1, ..., d$ and $\pi_c = P(Y = c)$. Write out the Bayes classifier in terms of these models, show that it is a linear classifier $\max_c h_c(x)$, with $h_c(x) = W_c x + b_c$. Write out W_c and b_c in terms of the parameters of the model.

The Bayes classifier can be written as:

$$\hat{Y} = \arg\max_{c} \log P(X, Y = c) = \arg\max_{c} \sum_{j} \left[X_{j} \log \frac{p_{c,j}}{1 - p_{c,j}} + \log(1 - p_{c,j}) \right] + \log \pi_{c}.$$

So setting

$$W_c = [\log \frac{p_{c,j}}{1 - p_{c,j}}]_{j=1}^d, \quad b_c = \log \pi_c + \sum_{j=1}^d \log(1 - p_{c,j}),$$

we have the desired result.

(c) Assume now that the data X_1, \ldots, X_n come from a mixture model with M components and each component a product of d independent Bernoulli variables as in (a):

$$f(x;\theta) = \sum_{m=1}^{M} \pi_m f_m(x;\theta_m), \quad f_m(x;\theta_m) = \prod_{j=1}^{d} p_{j,m}^{x_j} (1 - p_{j,m})^{(1-x_j)},$$

where $\theta = (\pi_1, \dots, \pi_M, \theta_1, \dots, \theta_M)$ and $\theta_m = (p_{1,m}, \dots, p_{d,m})$. Derive the details of the EM algorithm for this model.

i. Write out the precise formula for computing the responsibilities $w_{mi}, m = 1, \ldots, M, i = 1, \ldots, n$ in terms of the current estimates $\widehat{\pi}_m, \theta_m, m = 1, \ldots, M$. $w_{mi} = \frac{\pi_m f_m(X_i; \theta_m)}{\sum_{r=1}^{M} \pi_r f_r(X_i; \theta_r)}.$

3

ii. In computing the responsibilities you would be computing ratios involving the f_m 's. If d is large you are multiplying lots of small numbers on a computer and quickly reaching the rounding error of the computer. You may be dividing by very small numbers, which is risky on the computer. Instead it is convenient to write:

$$f_m(X_i; \theta_m) = \exp[\sum_j X_{ij} \log p_{j,m} + (1 - X_{ij}) \log(1 - p_{j,m})].$$

For each data point, how would you use this expression for the different clusters to guarantee that the ratio you compute always has a value less than 1 in the numerator and a value greater than 1 and less than M in the denominator.

For each example X_i we compute

$$g_{mi} = \sum_{j} X_{ij} \log p_{j,m} + (1 - X_{ij}) \log(1 - p_{j,m}) + \log \pi_m.$$

Let $g_i^* = \max_m g_{mi}$, then

$$w_{mi} = \frac{\exp[g_{mi} - g_i^*]}{\sum_{r=1}^{M} \exp[g_{ri} - g_i^*]}.$$

The numerator is less than or equal to one depending on whether the maximum is achieved at m or not. And in the denominator the term corresponding to m' for which $g_{ri} = g_i^*$ is equal to 1.

iii. Once you have the responsibilities. Write the formula for computing the new estimates $\widehat{\pi}_m^{new}$, $p_{j,m}^{new}$.

Just like the EM fo Gaussian mixtures: $\widehat{\pi}_m^{new} = \frac{1}{n} \sum_{i=1}^n w_{mi}$. Using the formulation in the slides, we need to minimize $\sum_{i=1}^n w_{mi} \log f_m(X_i, \theta_m)$. This is the same computation as in (a) with weights w_{mi} for each example instead of weight 1. So $\widehat{p}_{j,m} = \frac{\sum_{i=1}^n w_{mi} X_{ij}}{\sum_{i=1}^n w_{mi}}$.