

Álgebra Relacional

Prof. Esp. Marcos Brito

Ementa da Disciplina

Conceitos Básicos de Banco de Dados:

- Definição de Banco de Dados;
- Terminologia básica;
- Usuários de Banco de Dados;
- Aplicações;
- Abstração de dados Esquema;
- Instância.

Sistemas de Gerenciamento de Banco de Dados (SGBD):

- Conceito de SGBD;
- Vantagens do SGBD;
- Comparação com o Sistema de Arquivos.

Aspectos de modelagem de dados:

- Conceito de Modelo de Dados; Conhecimento e especificação do minimundo;
- Métodos e técnicas; Objetivo da modelagem;
- Abstração; Coleta de requisitos;
- Análise de requisitos; Categorias de modelos.

Ementa da Disciplina

Modelo Conceitual de dados:

- Abordagem entidade-relacionamento (ER);
- Entidades; Atributos; Relacionamentos;
- Cardinalidade de relacionamentos;
- Diagrama entidade-relacionamento (DER).

Modelo Relacional:

- Nomenclatura do Modelo Relacional;
- Domínio;
- Relações;
- Chaves;
- Restrições de Integridade;
- Esquemas de Relação.

Mapeamento entre modelos de dados:

- Equivalência entre os Modelos Entidade-Relacionamento e Relacional;
- Regras para o mapeamento.

Ementa da Disciplina

Álgebra Relacional:

- Conceito de Álgebra Relacional;
- Operações: Seleção, Projeção, União, Diferença, Produto Cartesiano.
- Renomear;
- Junção.

Linguagem de Definição de Dados (DDL):

- Tipo de Dados em SQL;
- Comandos: Create, Drop, Alter;
- Restrições: Integridade de Domínio, Integridade de entidade, Integridade de Chave, Integridade Referencial.

Linguagem de Manipulação de Dados (DML):

- Comandos: Insert, Delete, Update, Select;
- Visões.

Projeto e implementação de um Banco de Dados:

Criação de um Banco de Dados a partir de um minimundo real escolhido

Álgebra Relacional

- Proposta por Edgar Frank Codd;
- ➤ Base para o entendimento das operações de um banco de dados relacional;
- Uma parte relacionada com a teoria dos conjuntos da Matemática;
- ➤ Parte teórica de como operar um banco de dados relacional;

Edgar Frank Codd

Operações

```
➤ Seleção(σ);
➤ Projeção (π);
➤ União (∪);
➤ Diferença (-);
➤ Produto Cartesiano (x);
➤ Junção (⋈);
\triangleright Renomear (P).
```

tab_cantor id id estado Nome 1 Belchior 2 Alceu Valença 3 João Gomes 4 Raul Seixas

tab estado id Nome 1 Bahia 2 Pernambuco 3 Ceará

Seleção

- ➤ Seleciona os registros de acordo com uma condição estabelecida;
- \succ σ id_estado = 2 (tab_cantor)

)

Projeção

- Especificação de colunas;
- ➤ Linhas duplicadas são eliminadas;
- $\triangleright \pi$ nome (tab_estado)

Nome	
Bahia	
Pernambuco	
Ceará	

União

- > União das tabelas envolvidas
- \triangleright (π id(tab_cantor)) \cup (π id(tab_estado))

id			
		1	
		2	
		3	
		4	

Diferença

- Retorna apenas os registros que contém na primeira tabela, mas que não contem na segunda.
- \succ (π id(tab_cantor)) (π id(tab_estado))

Produto Cartesiano

- Todas as linhas da primeira tabela com todas as linhas da outra tabela;
- ➤ tab_cantor x tab_estado

Produto Cartesiano

id	Nome	id_estado	id	Nome
1	Belchior	3	1	Bahia
1	Belchior	3	2	Pernambuco
1	Belchior	3	3	Ceará
2	Alceu Valença	2	1	Bahia
2	Alceu Valença	2	2	Pernambuco
2	Alceu Valença	2	3	Ceará
3	João Gomes	2	1	Bahia
3	João Gomes	2	2	Pernambuco
3	João Gomes	2	3	Ceará
4	Raul Seixas	1	1	Bahia
4	Raul Seixas	1	2	Pernambuco
4	Raul Seixas	1	3	Ceará
			0 0 0 0	

Junção

- ➤ Junção de registros entre tabelas de forma organizada e estabelecida;
- ➤ tab_cantor ⋈ (tab_cantor.id_estado = tab_estado.id) tab_estado

id	Nome	id_estado	id	Nome
1	Belchior	3	3	Ceará
2	Alceu Valença	2	2	Pernambuco
3	João Gomes	2	2	Pernambuco
4	Raul Seixas	1	1	Bahia

Renomear

- ➤ Renomear tabela;
- >P tab_cantor_nordeste (tab_cantor)

Considere a seguinte tabela de um banco de dados relacional:

Passagem (ID, Origem, Destino)

O comando da álgebra relacional que proporciona a exibição da origem e do destino, para passagens com ID maior do que 60, é:

- π_{Origem, Destino} (Passagem.ID > 60)
- $\pi_{Origem, Destino, ID > 60}$ (Passagem)
- $\pi_{Origem,\;Destino}\left(\sigma_{ID,Passagem>60}\right)$
- $\pi_{Origem, Destino}$ (Passagem. $\sigma_{ID>60}$)
- $\pi_{Origem, Destino} (\sigma_{ID>60} (Passagem))$

A álgebra relacional é uma linguagem de consulta utilizada para extrair informações de um banco de dados relacional; é baseada em operadores matemáticos. São operadores matemáticos que fazem parte da álgebra relacional:

- A Projeção; Seleção; e, União.
- B União; Atribuição; e, Junção.
- C Diferença; Atribuição; e, União.
- D Atribuição; Interseção; e, Projeção.