Vectores dispersos

El objetivo de este problema es familiarizarse con el uso de diccionarios.

1) El problema

Formalmente, un *vector disperso* v es una función en $|N \rightarrow |R|$, que es 0 para *casi* todos los valores de su dominio (es decir, v(x) es distinto de 0 únicamente para un conjunto finito de valores). De esta forma, un vector disperso puede representarse mediante una lista de pares (x,v(x)), un par para cada x para el cuál v(x) es distinto de 0.

Dados dos vectores dispersos u y v, el *producto escalar* de u y v viene dado por $\Sigma_{x \in \mathbb{N}} u(x)v(x)$. Debe implementarse un algoritmo eficiente (complejidad lineal) que, dados dos vectores dispersos representados como listas de pares sin ningún orden especial, encuentre su producto escalar.

2) Trabajo a realizar

Se proporciona un programa de prueba que lee 2N vectores dispersos. Cada vector disperso se representa como $(e_0, ..., e_k)$, donde cada elemento e_k se representa como un par *índice* – *valor i:v*. Por ejemplo:

representa el vector disperso que tiene un 45 como valor del índice 5, y un 56 como valor del índice 19765. El resto de los valores serán, por tanto, 0 (obsérvese que no pueden utilizarse espacios en blanco para separar los distintos elementos en cada línea). Para cada par de vectores leídos, el programa invoca a la función producto_escalar, que será el punto de entrada del algoritmo a implementar, e imprime el resultado.

Ejemplo de entrada / salida:

Entrada	Salida
(19765:56,5:45) (5:2,9876:4)	90
(5:45,19765:56) (9876:4,6:2)	0
() (78:90,73:5)	0