Material Auxiliar - Unidade 2

Convergência Estocástica e Resultados Limite Explicações Detalhadas e Didáticas

> Curso de Inferência Estatística Outubro 2025

Sumário

1 Introdução

Este material auxiliar complementa as notas de aula da Unidade 2, fornecendo explicações mais detalhadas e didáticas dos principais conceitos abordados. O objetivo é facilitar a compreensão dos teoremas de convergência e suas aplicações práticas.

2 Notação $O(\cdot)$ e $o(\cdot)$ - Big O e Little o

2.1 Motivação e Intuição

A notação $O(\cdot)$ e $o(\cdot)$ é fundamental para descrever o comportamento assintótico de sequências e funções. Intuitivamente:

- $a_n = O(b_n)$: " a_n cresce no máximo tão rápido quanto b_n "
- $a_n = o(b_n)$: " a_n cresce mais devagar que b_n "

2.2 Definições Formais

Definição 2.1 (Big O para sequências). Sejam $\{a_n, n \geq 1\}$ e $\{b_n, n \geq 1\}$ sequências de números reais. Dizemos que

$$a_n = O(b_n)$$
 se e somente se $\exists k > 0, n_0 \in \mathbb{N} : \left| \frac{a_n}{b_n} \right| \le k, \quad \forall n \ge n_0$

Isto é, a razão $|a_n/b_n|$ é limitada para n suficientemente grande.

Definição 2.2 (Little o para sequências). Dizemos que

$$a_n = o(b_n)$$
 se e somente se $\lim_{n \to \infty} \frac{a_n}{b_n} = 0$

Isto é, a_n é desprezível comparado a b_n quando n é grande.

Exemplo 2.1 (Comparações Comuns). 1. $10n^2+n=O(n^2)$ porque $\frac{10n^2+n}{n^2}=10+\frac{1}{n}\leq 11$ para $n\geq 1$

- 2. $n = o(n^2)$ porque $\lim_{n \to \infty} \frac{n}{n^2} = \lim_{n \to \infty} \frac{1}{n} = 0$
- 3. $\log(n) = o(n)$ porque $\lim_{n\to\infty} \frac{\log(n)}{n} = 0$
- 4. $n^{1/2} = O(n) \text{ mas } n \neq O(n^{1/2})$

2.3 Propriedades Importantes

Observação 2.1 (Álgebra de O e o). 1. Se $a_n = o(b_n)$, então $a_n = O(b_n)$ (mas a recúproca é falsa)

- 2. Se $a_n = O(b_n)$ e $c_n = O(d_n)$, então:
 - $\bullet \ a_n \cdot c_n = O(b_n \cdot d_n)$
 - $a_n + c_n = O(\max\{|b_n|, |d_n|\})$
- 3. O(1) significa limitado: $|a_n| \le k$ para algum k > 0 e n grande
- 4. o(1) significa que $a_n \to 0$

2.4 Aplicação em Séries de Taylor

A notação $O(\cdot)$ é essencial para expressar aproximações via série de Taylor:

Exemplo 2.2 (Série de Taylor). Para uma função F(x) derivável até ordem n em torno de x_0 :

$$F(x) = \sum_{k=0}^{n} \frac{F^{(k)}(x_0)}{k!} (x - x_0)^k + o((x - x_0)^n)$$

quando $x \to x_0$.

Por exemplo:

- $e^x = 1 + x + \frac{x^2}{2} + O(x^3)$ quando $x \to 0$
- $\log(1+x) = x \frac{x^2}{2} + O(x^3)$ quando $x \to 0$

3 Convergência em Probabilidade

3.1 Intuição e Definição

A convergência em probabilidade expressa a ideia de que, à medida que n cresce, a probabilidade de U_n estar "longe" de u torna-se arbitrariamente pequena.

Definição 3.1 (Convergência em Probabilidade). Uma sequência de variáveis aleatórias $\{U_n, n \geq 1\}$ converge em probabilidade para um número u se

$$P(|U_n - u| \ge \varepsilon) \xrightarrow{n \to \infty} 0, \quad \forall \varepsilon > 0$$

Notação: $U_n \xrightarrow{P} u$

3.2 Interpretação Prática

Pense em U_n como uma estimativa de u baseada em n observações. Convergência em probabilidade significa que:

- Com n grande, é altamente improvável que U_n esteja longe de u
- Para qualquer margem de erro $\varepsilon > 0$ que você escolha, a probabilidade de erro pode ser tornada arbitrariamente pequena aumentando n

Exemplo 3.1 (Média Amostral). Se X_1, X_2, \ldots são v.a.'s i.i.d. com $E[X_i] = \mu$ e $Var(X_i) = \sigma^2 < \infty$, então

$$\bar{X}_n = \frac{1}{n} \sum_{i=1}^n X_i \xrightarrow{P} \mu$$

Isso significa que a média amostral converge para a média populacional.

3.3 Métodos para Provar Convergência em Probabilidade

- 1. Desigualdade de Chebyshev: Se $E[U_n] \to u$ e $Var(U_n) \to 0$, então $U_n \xrightarrow{P} u$
- 2. Convergência de momentos: Se $E[|U_n-u|^r] \to 0$ para algum r>0, então $U_n \stackrel{P}{\to} u$
- 3. Função geradora de momentos: Se $M_{U_n}(t) \to e^{tu}$ para todo t, então $U_n \xrightarrow{P} u$

3.4 Propriedades Algébricas

Observação 3.1 (Álgebra da Convergência em Probabilidade). Se $U_n \xrightarrow{P} u$ e $V_n \xrightarrow{P} v$, então:

1.
$$U_n + V_n \xrightarrow{P} u + v$$

2.
$$U_n \cdot V_n \xrightarrow{P} u \cdot v$$

3.
$$\frac{U_n}{V_n} \xrightarrow{P} \frac{u}{v}$$
 (se $P(V_n = 0) = 0$ e $v \neq 0$)

4. Se
$$g(\cdot)$$
 é contínua, então $g(U_n) \xrightarrow{P} g(u)$

4 Convergência em Distribuição

4.1 Definição e Diferenças

A convergência em distribuição é um conceito mais fraco que convergência em probabilidade.

Definição 4.1 (Convergência em Distribuição). Uma sequência $\{U_n, n \geq 1\}$ com f.d.a. $F_n(u)$ converge em distribuição para uma v.a. U com f.d.a. F(u) se

$$F_n(u) \xrightarrow{n \to \infty} F(u)$$

em todos os pontos de continuidade de $F(\cdot)$.

Notação: $U_n \xrightarrow{D} U$

4.2 Diferenças entre Convergências

- \bullet Convergência em Probabilidade \Rightarrow Convergência em Distribuição
- \bullet Convergência em Distribuição $\not\Rightarrow$ Convergência em Probabilidade (em geral)
- Exceção: Se $U_n \xrightarrow{D} c$ (constante), então $U_n \xrightarrow{P} c$

Exemplo 4.1 (Distinção Importante). Considere $X \sim N(0,1)$ e defina $U_n = X$ para todo n. Então:

4

- $U_n \xrightarrow{D} X$ (trivialmente, pois $F_n = F$ para todo n)
- $U_n \xrightarrow{P} X$ (não faz sentido: $U_n X = 0$ sempre!)

Agora considere $U_n = (-1)^n X$:

- $U_n \xrightarrow{D} X$ (ambos têm distribuição N(0,1))
- $U_n \stackrel{P}{\not\to} X$ (pois $|U_n X|$ não vai para zero)

4.3 Método da Função Geradora de Momentos

Um método poderoso para provar convergência em distribuição:

Observação 4.1 (Teorema de Continuidade de Lévy). Se $M_{U_n}(t) \to M_U(t)$ para todo t em uma vizinhança de zero, então $U_n \xrightarrow{D} U$.

Este método é frequentemente usado nas provas do TCL.

5 Lei Fraca dos Grandes Números

5.1 Versões e Interpretação

A Lei Fraca dos Grandes Números (LFGN) é um dos resultados fundamentais da probabilidade.

Observação 5.1 (LFGN - Versão Simples). Se X_1, \ldots, X_n são v.a.'s i.i.d. com $E[X_i] = \mu < \infty$ e $Var(X_i) = \sigma^2 < \infty$, então

$$\bar{X}_n \xrightarrow{P} \mu$$

Observação 5.2 (LFGN de Khinchin). A condição de variância finita pode ser relaxada: basta $E[X_i] = \mu < \infty$.

5.2 Interpretação Prática

- A média amostral é um estimador consistente da média populacional
- Quanto maior a amostra, mais confiável é a estimativa
- Justifica a "Lei dos Grandes Números" empírica: frequências relativas convergem para probabilidades

Exemplo 5.1 (Lançamento de Moedas). Se $X_i = 1$ (cara) ou $X_i = 0$ (coroa) com $P(X_i = 1) = p$, então

$$\frac{\text{n\'umero de caras em } n \text{ lançamentos}}{n} = \bar{X}_n \xrightarrow{P} p$$

5.3 Aplicações

- 1. Estimação de parâmetros: \bar{X}_n estima $\mu,\,S_n^2$ estima σ^2
- 2. Simulação Monte Carlo: Aproximar E[g(X)] por $\frac{1}{n}\sum_{i=1}^{n}g(X_i)$
- 3. **Testes de hipóteses:** Proporções amostrais convergem para proporções populacionais

6 Teorema Central do Limite

6.1 Enunciado e Importância

O Teorema Central do Limite (TCL) é possivelmente o teorema mais importante da estatística.

Observação 6.1 (TCL - Versão Clássica). Se X_1, \ldots, X_n são v.a.'s i.i.d. com $E[X_i] = \mu$ e $Var(X_i) = \sigma^2 < \infty$, então

$$\frac{\bar{X}_n - \mu}{\sigma / \sqrt{n}} = \frac{\sqrt{n}(\bar{X}_n - \mu)}{\sigma} \xrightarrow{D} N(0, 1)$$

6.2 Por Que é Tão Importante?

- 1. Universalidade: Funciona para qualquer distribuição com variância finita
- Base para inferência: Justifica o uso da distribuição normal em intervalos de confiança e testes
- 3. Aproximação prática: Com n moderadamente grande $(n \ge 30)$, \bar{X}_n tem distribuição aproximadamente normal

6.3 Interpretação Geométrica

O TCL diz que:

- A distribuição de \bar{X}_n fica mais concentrada em torno de μ (taxa $1/\sqrt{n}$)
- A forma da distribuição de $\frac{\bar{X}_n \mu}{\sigma/\sqrt{n}}$ converge para a curva normal
- Não importa a distribuição original dos X_i !

Exemplo 6.1 (Distribuição Uniforme). Se $X_i \sim U(0,1)$ (distribuição uniforme), então $E[X_i] = 1/2$ e $Var(X_i) = 1/12$.

$$\frac{\bar{X}_n - 1/2}{\sqrt{1/(12n)}} = \sqrt{12n} \left(\bar{X}_n - \frac{1}{2} \right) \xrightarrow{D} N(0, 1)$$

Embora X_i seja uniforme (nada parecido com normal), \bar{X}_n tem distribuição aproximadamente N(1/2, 1/(12n)) para n grande.

6

6.4 Versões Padronizadas

- σ conhecido: $Z_n = \frac{\sqrt{n}(\bar{X}_n \mu)}{\sigma} \xrightarrow{D} N(0, 1)$
- σ desconhecido: $T_n = \frac{\sqrt{n}(\bar{X}_n \mu)}{S_n} \xrightarrow{D} N(0, 1)$ (onde S_n é o desvio padrão amostral)

7 Teorema de Slutsky

7.1 Enunciado e Utilidade

O Teorema de Slutsky permite combinar convergências de tipos diferentes.

Observação 7.1 (Teorema de Slutsky). Se $U_n \xrightarrow{D} U$ e $V_n \xrightarrow{P} c$ (constante), então:

1.
$$U_n + V_n \xrightarrow{D} U + c$$

2.
$$U_n \cdot V_n \xrightarrow{D} c \cdot U$$

3.
$$\frac{U_n}{V_n} \xrightarrow{D} \frac{U}{c}$$
 (se $c \neq 0$)

7.2 Por Que é Útil?

O teorema de Slutsky é crucial quando:

- Temos uma convergência em distribuição mas precisamos fazer operações algébricas
- Queremos substituir parâmetros desconhecidos por estimadores consistentes
- Provamos distribuições assintóticas de estatísticas de teste

Exemplo 7.1 (Substituição do Desvio Padrão). Pelo TCL: $\frac{\sqrt{n}(\bar{X}_n - \mu)}{\sigma} \xrightarrow{D} N(0, 1)$ Como $S_n \xrightarrow{P} \sigma$, pelo Slutsky:

$$\frac{\sqrt{n}(\bar{X}_n - \mu)}{S_n} = \frac{\sqrt{n}(\bar{X}_n - \mu)}{\sigma} \cdot \frac{\sigma}{S_n} \xrightarrow{D} N(0, 1) \cdot 1 = N(0, 1)$$

Isso justifica usar S_n quando σ é desconhecido!

7.3 Aplicação em Testes de Hipóteses

O teorema de Slutsky permite construir estatísticas de teste quando parâmetros são desconhecidos, substituindo-os por estimadores consistentes sem alterar a distribuição assintótica.

8 Teorema de Mann-Wald (Método Delta)

8.1 Enunciado

O Método Delta é uma ferramenta para encontrar a distribuição assintótica de transformações de estimadores.

Observação 8.1 (Teorema de Mann-Wald). Se $\sqrt{n}(T_n - \theta) \xrightarrow{D} N(0, \sigma^2(\theta))$ e $g(\cdot)$ é uma função diferenciável com $g'(\theta) \neq 0$, então

$$\sqrt{n} \left[g(T_n) - g(\theta) \right] \xrightarrow{D} N \left(0, \sigma^2(\theta) \cdot [g'(\theta)]^2 \right)$$

8.2 Interpretação

O método delta diz que:

- Se T_n é aproximadamente normal com taxa $1/\sqrt{n}$
- Então $g(T_n)$ também é aproximadamente normal com taxa $1/\sqrt{n}$
- A variância é "inflada" por $[g'(\theta)]^2$

8.3 Ideia da Prova

A prova usa aproximação de Taylor de primeira ordem:

$$g(T_n) \approx g(\theta) + g'(\theta)(T_n - \theta)$$

Multiplicando por \sqrt{n} :

$$\sqrt{n}[g(T_n) - g(\theta)] \approx g'(\theta) \cdot \sqrt{n}(T_n - \theta)$$

Como $\sqrt{n}(T_n - \theta) \xrightarrow{D} N(0, \sigma^2)$, o resultado segue.

Exemplo 8.1 (Transformação Logarítmica). Se \bar{X}_n estima $\mu > 0$ e queremos estimar $\log(\mu)$, tome $g(x) = \log(x)$.

Como g'(x) = 1/x, temos:

$$\sqrt{n} \left[\log(\bar{X}_n) - \log(\mu) \right] \xrightarrow{D} N \left(0, \frac{\sigma^2}{\mu^2} \right)$$

Exemplo 8.2 (Transformação de Variância). Para estimar a variância σ^2 , usamos S_n^2 . Se queremos estimar o desvio padrão $\sigma = \sqrt{\sigma^2}$, usamos $g(x) = \sqrt{x}$ com $g'(x) = \frac{1}{2\sqrt{x}}$.

8.4 Aplicações Práticas

- 1. Transformações estabilizadoras de variância
- 2. Intervalos de confiança para funções de parâmetros
- 3. Testes de hipóteses sobre transformações
- 4. Modelos não-lineares

9 Resumo e Conexões

9.1 Hierarquia das Convergências

Convergência quase certa ⇒ Convergência em Probabilidade ⇒ Convergência em Distribuição

9.2 Teoremas Principais e Suas Relações

- 1. LFGN: $\bar{X}_n \xrightarrow{P} \mu$ (onde está o valor)
- 2. TCL: $\frac{\sqrt{n}(\bar{X}_n \mu)}{\sigma} \xrightarrow{D} N(0, 1)$ (quão rápido chega lá e qual a forma da distribuição)
- 3. Slutsky: Permite combinações algébricas
- 4. **Método Delta:** Estende para transformações não-lineares

9.3 Estratégia de Resolução de Problemas

- 1. Identificar se T_n é uma média ou função de médias
- 2. Aplicar LFGN ou TCL conforme apropriado
- 3. Se há parâmetros desconhecidos, usar Slutsky para substituí-los
- 4. Se há transformação não-linear, usar Método Delta
- 5. Verificar condições (i.i.d., momentos finitos, etc.)