Clasificación lineal

J.D. Echeverry-Correa, Ph.D.
A. M. Alvarez-Meza, Ph.D.
jde@utp.edu.co;amalvarezme@unal.edu.co

Departamento de ingeniería eléctrica Universidad Tecnológica de Pereria Departamento de ingeniería eléctrica, electrónica y computación Universidad Nacional de Colombia-sede Manizales

Contenido

- Hoja de ruta
- 2 Conceptos y definiciones
- Función discriminante
- 4 Estimación de parámetros de funciones discriminantes

Contenido

- Hoja de ruta
- Conceptos y definiciones
- 3 Función discriminante
- 4 Estimación de parámetros de funciones discriminantes

Hoja de ruta (1)

Las técnicas de Aprendizaje de Máquina aplicadas a la Ciencia de los Datos pueden ser:

- De aprendizaje supervisado.
 - Objetivo: Encontrar una función que permita relacionar unas entradas \boldsymbol{X} con unas salidas \boldsymbol{y} , dado un set de pares de entradas-salidas $D = \{(\boldsymbol{x}_i, y_i)\}$
 - $\mathbf{X} \in \mathbb{R}^{N \times P}$
 - Las salidas \mathbf{y} pueden ser: o bien valores reales $y_i \in \mathbb{R}^N$, o bien variables categóricas en donde $y_i \in \{1, ..., C\}$
 - En el primer caso hablaríamos de un *sistema de regresión* y en el segundo caso hablaríamos de un *sistema de clasificación*

Hoja de ruta (2)

• De aprendizaje no supervisado.

- Objetivo: Dadas unas entradas $X \in \mathbb{R}^{N \times P}$, encontrar patrones de interés en los datos.
- Inicialmente, no se conoce qué hay que buscar.
- No hay métricas de error definidas (a diferencia del aprendizaje supervisado)

Contenido

- Hoja de ruta
- 2 Conceptos y definiciones
- 3 Función discriminante
- 4 Estimación de parámetros de funciones discriminantes

Conceptos básicos (1)

Supuestos:

- Cada muestra corresponde a una única clase.
- Los datos conforman espacios linealmente separables.

• Empezaremos por analizar el caso de K=2 clases.

Conceptos básicos (2)

- Cada muestra (instancia) está descrita por un conjunto de números
 ⇒ características
- Debemos escoger características que nos permitan discriminar entre las clases ejemplos positivos, ejemplos negativos
- En esta gráfica cada muestra está descrita por dos características

Conceptos básicos (3)

- El objetivo es dividir estos puntos con una línea recta
- Esto es lo que se conoce como clasificación lineal

 Si extendemos esta noción a múltiples características por cada una de las muestras, hablaremos entonces de planos (e hiperplanos) que separen entre los ejemplos positivos y los ejemplos negativos.

Conceptos básicos (4)

- No existe una única solución
- Pero sí se puede buscar la solución que satisfaga cierto criterio

Contenido

- Hoja de ruta
- Conceptos y definiciones
- Función discriminante
- 4 Estimación de parámetros de funciones discriminantes

Función discriminante (1)

 Una función discriminante toma un vector de entradas x y lo asigna a una de K posibles clases:

$$y(x): x \to k, k \in \{1, ..., K\}$$

La función discriminante está dada por:

$$y(\mathbf{x}) = \mathbf{w}^{\top} \mathbf{x} + w_0$$

- \mathbf{w} es el vector de pesos y w_0 es el bias o tendencia.
- $\mathbf{x} \in \mathcal{C}_1$ si $y(\mathbf{x}) > 0$; de lo contrario $\mathbf{x} \in \mathcal{C}_2$.
- La línea de decisión o superficie de decisión es y(x) = 0.
- El vector **w** es ortogonal a la superficie de decisión.

Función discriminante (2)

• Distancia de y(x) al origen: $-w_0/\|\mathbf{w}\|$.

Tarea: Demostrar.

• Distancia de un punto \mathbf{x} a $y(\mathbf{x})$: $y(\mathbf{x})/\|\mathbf{w}\|$. Tarea: Demostrar.

Función discriminante (3)

Con el objetivo de vectorizar las operaciones, se puede hacer $\tilde{\mathbf{x}} = (x_0, \mathbf{x})$, $\tilde{\mathbf{w}} = (w_0, \mathbf{w})$, por lo tanto $y(\mathbf{x}) = \tilde{\mathbf{w}}^{\top} \tilde{\mathbf{x}}$

Múltiples clases (1)

- Consideremos ahora la extensión de las funciones discriminantes a K>2 clases.
- Una posible opción: Considerar K-1 discriminantes \Rightarrow One-versus-the-rest:

Múltiples clases (2)

• Otra opción es considerar K(K-1)/2 discriminantes \Rightarrow One-versus-one:

Múltiples clases (3)

• Solución: emplear discriminante de K clases con K funciones lineales

$$y_k(\mathbf{x}) = \mathbf{w}_k^{\top} \mathbf{x} + w_{k0}$$

• $\mathbf{x} \in \mathcal{C}_k$, si $y_k(\mathbf{x}) > y_i(\mathbf{x})$, $k \neq j$

• El resultado serán hiperplanos de decisión de la forma

$$(\mathbf{w}_k - \mathbf{w}_j)^{\top} \mathbf{x} + (w_{k0} - w_{j0}) = 0$$

• Estos hiperplanos generarán regiones de decisión conectadas de manera simple y conexas.

Contenido

- Hoja de ruta
- 2 Conceptos y definiciones
- 3 Función discriminante
- 4 Estimación de parámetros de funciones discriminantes

Mínimos cuadrados (1)

- En regresión lineal, ya vimos cómo ajustar un modelo mediante una relación lineal entre los datos de entrada y los parámetros.
- Consideremos K clases descritas por modelos lineales

$$y_k(\mathbf{x}) = \mathbf{w}_k^{\top} \mathbf{x} + w_{k0}, \quad k = 1, ..., K$$

Podemos agrupar estos términos empleando notación vectorizada

$$y(x) = \widetilde{W}^{\top} \widetilde{x}$$

donde

$$\widetilde{\boldsymbol{W}} = [\widetilde{\boldsymbol{w}}_1, ..., \widetilde{\boldsymbol{w}}_k] = \begin{bmatrix} w_{10} & \cdots & w_{K0} \\ w_{11} & \cdots & w_{K1} \\ \vdots & \ddots & \vdots \\ w_{1D} & \cdots & w_{KD} \end{bmatrix}$$

• La salida será en la notación de 1-de-K y se podrá comparar entonces con los valores objetivo $\mathbf{t} = [t_1, ..., t_k]^{\top}$

Mínimos cuadrados (2)

• Supongamos entonces que tenemos un conjunto de entrenamiento $\{x_n, t_n\}_{n=1}^N$

 ${m T}$ será una matriz con vectores fila ${m t}_n^{ op}$

$$m{T} = \left[egin{array}{c} m{t}_1^{ op} \ dots \ m{t}_N^{ op} \end{array}
ight]$$

 $\widetilde{\boldsymbol{X}}$ será una matriz con vectores fila $\widetilde{\boldsymbol{x}}_n$

$$\widetilde{m{X}} = \left[egin{array}{c} m{x}_1^{ op} \ dots \ m{x}_N^{ op} \end{array}
ight]$$

• Para todo el set de entrenamiento tenemos entonces

$$\mathbf{Y}\left(\widetilde{\mathbf{X}}\right) = \widetilde{\mathbf{X}}\widetilde{\mathbf{W}}$$

ullet El objetivo entonces es escoger $\widetilde{oldsymbol{W}}$ que minimice

$$\widetilde{X}\widetilde{W} - T$$

Mínimos cuadrados (3)

• Para esto, minimizaremos la función de error cuadrático

$$E(\boldsymbol{w}) = \frac{1}{2} \sum_{n=1}^{N} \sum_{k=1}^{K} \left(\boldsymbol{w}_{k}^{\top} \boldsymbol{x}_{n} - t_{kn} \right)^{2}$$

En este punto nos conviene saber algo más de álgebra lineal

Propiedad de la traza de una matriz

$$\sum_{i,j} a_{ij}^2 = Tr\{\boldsymbol{A}^{\top}\boldsymbol{A}\}$$

 Entonces, el error cuadrático expresado en forma matricial será entonces:

$$E_D\left(\widetilde{\boldsymbol{W}}\right) = \frac{1}{2}\operatorname{Tr}\left\{\left(\widetilde{\boldsymbol{X}}\widetilde{\boldsymbol{W}} - \boldsymbol{T}\right)^{\top}\left(\widetilde{\boldsymbol{X}}\widetilde{\boldsymbol{W}} - \boldsymbol{T}\right)\right\}$$

Mínimos cuadrados (4)

Para minimizar esta expresión, derivamos

$$\frac{\partial}{\partial \widetilde{\boldsymbol{W}}} E_D\left(\widetilde{\boldsymbol{W}}\right) = \frac{1}{2} \frac{\partial}{\partial \widetilde{\boldsymbol{W}}} Tr \left\{ \left(\widetilde{\boldsymbol{X}} \widetilde{\boldsymbol{W}} - \boldsymbol{T}\right)^{\top} \left(\widetilde{\boldsymbol{X}} \widetilde{\boldsymbol{W}} - \boldsymbol{T}\right) \right\}
= \widetilde{\boldsymbol{X}}^{\top} \left(\widetilde{\boldsymbol{X}} \widetilde{\boldsymbol{W}} - \boldsymbol{T}\right)$$

E igualamos a cero

$$oldsymbol{\widetilde{W}}_{MSE} = \left(oldsymbol{\widetilde{X}}^ op oldsymbol{\widetilde{X}}^ op oldsymbol{T}$$
 donde $oldsymbol{\widetilde{X}}^+ \Rightarrow$ pseudo-inversa de $oldsymbol{\widetilde{X}}$

La función discriminante está dada por

$$y(x) = \widetilde{W}_{MSE}^{\top} \widetilde{x} = T^{\top} (\widetilde{X}^{+})^{\top} \widetilde{x}$$

Algunos inconvenientes (1)

Algunos inconvenientes (2)

Análisis discriminante de Fisher (1)

- El objetivo es proyectar los datos a un espacio de menor dimensionalidad donde la clasificación sea más sencilla.
- Sea $\mathbf{x} \in \mathbb{R}^D$.
- Se proyecta a una dimensión usando

$$y = \mathbf{w}^{\top} \mathbf{x}$$

- Se establece un umbral y_0 , y se clasifica un nuevo punto como de la clase C_1 si $y > y_0$, o de la clase C_2 si sucede lo contrario.
- ullet La idea es escoger $oldsymbol{w}$ de manera que maximice la separabilidad de las clases.

Análisis discriminante de Fisher (2)

Consideremos inicialmente un problema de dos clases

Intuición: Llevar el problema a una sola dimensión y buscar el umbral que separe ambas clases.

Análisis discriminante de Fisher (3)

Podríamos separar las clases de diversas formas

Los puntos centrales son los vectores que representan a la media de cada grupo

$$extbf{\emph{m}}_1 = rac{1}{N_1} \sum_{n \in \mathcal{C}_1} extbf{\emph{x}}_n, \qquad extbf{\emph{m}}_2 = rac{1}{N_2} \sum_{n \in \mathcal{C}_2} extbf{\emph{x}}_n$$

Análisis discriminante de Fisher (4)

Una medida de separación entre las clases es

$$m_1 - m_2 = \boldsymbol{w}^{\top} (\boldsymbol{m}_1 - \boldsymbol{m}_2)$$

donde

$$m_k = \boldsymbol{w}^{\top} \boldsymbol{m}_k$$

Se debe escoger \boldsymbol{w} de forma que se maximice la anterior expresión.

Análisis discriminante de Fisher (5)

- Se busca maximizar la distancia entre las medias y a la vez minimizar la variabilidad de las muestras en cada clase.
- La varianza intraclase se obtiene de los vectores transformados de la clase C_k como

$$s_k^2 = \sum_{n \in \mathcal{C}_k} (y_n - m_k)^2$$

donde $y_n = \mathbf{w}^{\top} \mathbf{x}_n$

El criterio de Fisher se define como

$$J(\mathbf{w}) = \frac{(m_2 - m_1)^2}{s_1^2 + s_2^2}$$

donde $(m_2-m_1)^2 \Rightarrow$ varianza entre clases, y $s_1^2+s_2^2 \Rightarrow$ varianza intraclase

Análisis discriminante de Fisher (6)

 Haciendo los cambios necesarios para hacer la expresión dependiente de w, tenemos

$$J(\mathbf{w}) = \frac{\mathbf{w}^{\top} \mathbf{S}_{B} \mathbf{w}}{\mathbf{w}^{\top} \mathbf{S}_{W} \mathbf{w}}$$

donde \boldsymbol{S}_B es la matriz de covarianza entre clases, calculada como

$$\mathbf{S}_B = (\mathbf{m}_2 - \mathbf{m}_1)(\mathbf{m}_2 - \mathbf{m}_1)^{\top}$$

y ${m S}_W$ es la matriz de covarianza intraclases, calculada como

$$\mathbf{S}_W = \sum_{n \in \mathcal{C}_1} (\mathbf{x}_n - \mathbf{m}_1)(\mathbf{x}_n - \mathbf{m}_1)^{\top} + \sum_{n \in \mathcal{C}_2} (\mathbf{x}_n - \mathbf{m}_2)(\mathbf{x}_n - \mathbf{m}_2)^{\top}$$

Análisis discriminante de Fisher (7)

Derivando

$$J(\mathbf{w}) = \frac{\mathbf{w}^{\top} \mathbf{S}_{B} \mathbf{w}}{\mathbf{w}^{\top} \mathbf{S}_{W} \mathbf{w}}$$

con respecto a \boldsymbol{w} , e igualando a cero, se tiene que $J(\boldsymbol{w})$ se maximiza cuando

$$(\mathbf{w}^{\top} \mathbf{S}_{B} \mathbf{w}) \mathbf{S}_{W} \mathbf{w} = (\mathbf{w}^{\top} \mathbf{S}_{W} \mathbf{w}) \mathbf{S}_{B} \mathbf{w}$$

Tarea: Demostrar.

Lo que importa de w es su dirección, no su magnitud.

$$extbf{w} \propto extbf{S}_W^{-1}(extbf{m}_2 - extbf{m}_1)$$

Discriminante lineal de Fisher

Algoritmo del perceptrón (1)

- Es un algoritmo para problemas de clasificación de dos clases.
- El vector de entrada es transformado por medio de una función no lineal en un nuevo vector de características $\phi(x)$.
- Este vector luego es usado para construir una función lineal generalizada de la forma

$$y(\mathbf{x}) = f\left(\mathbf{w}^{\top}\phi(\mathbf{x})\right)$$

• La función $f(\cdot)$ es la función signo.

$$f(a) = \begin{cases} +1, & a \ge 0 \\ -1, & a < 0 \end{cases}$$

ullet En este algoritmo se asume t=+1 para \mathcal{C}_1 , y t=-1 para \mathcal{C}_2

Algoritmo del perceptrón (2)

• La función a minimizar se conoce como el criterio del perceptrón

$$E_P(\mathbf{w}) = -\sum_{n \in \mathcal{M}} \mathbf{w}^{\top} \phi(\mathbf{x}_n) t_n$$

donde ${\mathcal M}$ denota el conjunto de patrones incorrectamente clasificados.

 Aplicando el algoritmo de gradiente descendiente estocástico a esta función, se tiene

$$\mathbf{w}^{(\tau+1)} = \mathbf{w}^{(\tau)} - \eta \nabla E_P(\mathbf{w}) = \mathbf{w}^{(\tau)} + \eta \phi(\mathbf{x}_n) t_n$$

donde η se conoce como la razón de aprendizaje, y τ indexa los pasos del algoritmo.

Algoritmo del perceptrón (3)

Básicamente

- Se empieza con un vector \boldsymbol{w} inicial. (P.ej. $\boldsymbol{w} = [0, \cdots, 0]$)
- Se empieza a evaluar, uno por uno, cada uno de los datos del conjunto de entrenamiento.
- Si el vector **w** clasifica un dato de forma equivocada, se ajusta el vector **w** en la dirección "correcta".
- ullet Si el vector $oldsymbol{w}$ ha dejado de cambiar, se detiene el algoritmo.

Algoritmo del perceptrón (4)

- Si los datos son linealmente separables, el algoritmo converge.
- Sin embargo, la solución no es única.
- El algoritmo depende del orden en el que los datos son procesados.
- Separar los datos de entrenamiento no implica una separación de datos no vistos (de evaluación).

Algoritmo del perceptrón (5)

Ejercicios Laboratorio

En un cuaderno (notebook) responda a las siguientes preguntas con ejemplos concretos de implementación sobre Python. Envie/comparta su notebook al correo amalvarezme@unal.edu.co.

- Consultar el funcionamiento (modelo matemático, función de costo y optimización) de los algoritmos de clasificación:
 sklearn.naive_bayes.GaussianNB,
 sklearn.linear_model.SGDClassifier,
 sklearn.discriminant_analysis.LinearDiscriminantAnalysis
 sklearn.discriminant_analysis.QuadraticDiscriminantAnalysis
 sklearn.lda.LDA, y sklearn.neighbors.KNeighborsClassifier
 según sus implementaciones en el paquete Scikit-Learn de Python.
- Utilizando la base de datos LFW PEOPLE, realice un análisis comparitivo de los métodos de clasificación mediante validación cruzada. Recuerde sintonizar los parámetros libres de cada algoritmo y calcular el acierto, la precisión, exahustividad, el F1 score y la matriz de confusión.

Referencias I

Murphy, K. (2012).

Machine Learning: A Probabilistic Perspective. The MIT Press. 1st Edition. 2012

Bishop, C. (2006).

Pattern recognition.

Ed. Springer. 2006