

Notación establecida por Intel para su familia de microprocesadores terminada en "86". **Advanced RISC Machine**

Arquitecturas

Microprocessor without Interlocked Pipeline Stage

CUADRO COMPARATIVO MIPS - x86 - ARM

	MIPS	X86	ARM
¿EN QUÉ SE BASAN?	Se basa en RISC (conjunto de instrucciones reducidas).	Se basa en RISC (conjunto de instrucciones reducidas).	Se basa en CISC (conjunto de instrucciones complejas).
¿DÓNDE LOS PODEMOS OBSERVAR?	Aún se encuentra en proceso de estar desarrollado para dispositivos Android.	Lo podemos observar en dispositivos Android.	Destaca en la mayoría de los teléfonos y tabletas del mercado, con sistema operativo Android.
CONSUMO DE ENERGÍA	Se usan en aplicaciones integradas que no requieren de tanta complejidad, por lo que consumen muy poca energía.	Suelen usarse en aplicaciones de alto rendimiento como servidores, por ende, tienen un alto consumo de energía.	Requieren de un gran consumo energético ya que sus instrucciones son complejas.
RENDIMIENTO	Al usarse en aplicaciones de poca complejidad, el rendimiento se ve comprometido para una mejor eficiencia energética.	Cuentan con un alto rendimiento ya que están diseñados en su mayoría para trabajar con aplicaciones que exigen un gran desempeño.	Agrega complejidad a sus instrucciones para poder obtener un mejor rendimiento.

Autores: Landeta Daniela y Veloz Edwin

CUADRO COMPARATIVO MIPS - x86 - ARM

	MIPS	X86	ARM
SEGURIDAD	Usa diferentes tecnologías de seguridad por hardware de CPU, entre ellas destacan: NX Bit, Intel TXT, Critoprocesador seguro, HSM.	vPro, la cual es una plataforma de PC integrada que ofrece características como: administración remota hasta Wi-Fi 6.	Usa la tecnología TrustZone, la cual proporciona una metodología rentable para aislar los componentes critico de seguridad en un sistema.
ESPACIO DE DIRECCIÓN	La dirección de inicio es 0xbfc00000, y tu tamaño límite es de 4MB, tiene un espacio para caché y des caché	Puede redireccionar hasta 16 exabytes de memoria.	No tiene el problema de limitación de MIPS, aunque ARM sí necesita habilitar de deshabilitar el caché.
TIPOS DE TAMAÑOS Y OPERANDOS	Soporta 8-16-32-64 bits.	Se basa en RISC (conjunto de instrucciones reducidas).	Se basa en RISC (conjunto de instrucciones reducidas).
REGISTROS	Se basa en RISC (conjunto de instrucciones reducidas).	Soporta 8-16-32-64 bits, y también soporta puntos flotantes de 80 bits.	Soporta 8-16-32-64 bits.

Autores: Landeta Daniela y Veloz Edwin

Conclusiones:

Una vez analizadas todas las caracteristicas de estas tres arquitecturas pudimos llegar a una conclusión clara, y es que cada una tiene su sector donde se desempeña mejor, sin embargo, MIPS está claramente diferenciada de las otras dos, ya que es la que más se usa en sistemas emebebidos y de baja potencia, en comparación a ARM y x86 que están destinadas para dispositivos más complejos. Con estos dos últimos se puede observar una tendencia, y es que, a pesar de que la arquitectura x86 es mayormente usada en computadoras, ARM poco a poco ha ido ganando terreno, hasta convertirse en un estándar en dispositivos móviles. La tendencia es que ARM termine dominando el mercado debido a que tienen un consumo enérgetico mucho menor que x86, aunque la desventaja es la complejidad de sus instrucciones.

Referencias:

- https://programmerclick.com/article/3601310108/
- https://www.quora.com/What-is-the-actual-difference-between-x86-ARM-and-MIPS-architectures
- https://www.programmersought.com/article/97014805595/
- https://www.profesionalreview.com/2017/11/26/procesadores-x86-vs-arm-diferencias-ventajasprincipales/
- https://es.quora.com/Por-qu%C3%A9-en-el-mundo-de-las-computadoras-se-dice-x86-para-referirse-a-32-bits-mientras-que-x64-se-refiere-a-64-bits

Autores: Landeta Daniela y Veloz Edwin