Social Network Analysis: Node and Graph Level Statistics Part 2

EPIC - SNA, Columbia University

Zack W Almquist

June 13th, 2018

University of Minnesota

Introduction to Statisticsl Inference Cohesion and Subgroups

Introduction to Statistics Inference

A First Look at Random Graphs

- So far, we have been measuring properties of graphs (and modeling their effects)
- Next step: modeling graphs themselves
 - Long-running and ongoing research area
 - Will crop up repeatedly in the coming weeks
- Today a quick introduction to some basic families
 - We'll see some uses of these model families in the next lecture...

The Notion of Random Graphs

- Let G = (V, E) be a graph. If E (and perhaps V) is a random set, then G is a random graph
 - Can consider G to be a random variable on some set G of possible graphs ("multinomial" representation)
 - Write probability mass function (pmf) as Pr(G = g)
- Let Y be the adjacency matrix of random graph G. Then Y is a random matrix
 - Write graph pmf as Pr(Y = y)
 - Y_{ij} is a binary random variable which indicates the state of the (random) i, j edge
 - $Pr(Y_{ij} = y_{ij})$ is the (marginal) proability of the Y_{ij} edge state

"Classical" Random Graphs

- Two families from the early (mathematical) literature:
 - The "N,M" family (Erdös-Rényi, size/density CUG)
 - Let M_m be the maximum number of edges in G. Then:

$$\Pr(G = g \mid N, M) = \binom{M_m}{M}^{-1}$$

The "N,p" family (homogeneous Bernoulli graphs)

$$\Pr(G = g \mid N, p) = p^{M}(1 - p)^{M_m - M}$$

- Both used as baseline models, but very limited
 - No heterogeneity, (almost) no dependence
 - Starting point for more complex models

Relaxation 1: Intra-dyadic Independence

- First way to build richer models: relax independence
- Intra-dyadic dependence models
 - Allow for size, density, reciprocity effects
- Two parallel models
 - Dyad census conditioned CUG (U|MAN)
 - Let G have fixed dyad census M, A, N. Then

$$Pr(G = g \mid M, A, N) = \frac{M!A!N!}{(M+A+N)!}$$

• Homogeneous dyadic multinomial family (u|man)

$$\Pr(G = g \mid m, a, n) = m^M a^A n^N$$

Relaxation 2: Homogeneity

- Second way to build richer models: relax homogeneity in edge probabilities
- Development for Bernoulli, multinomial cases:
- Inhomogeneous Bernoulli graph
 - Let $\Phi \in [0,1]^{N \times N}$ be a parameter matrix, and $B(X = x \mid p)$ the Bernoulli pmf.

$$Pr(G = g \mid \Phi) = \prod_{(i,j)} B(Y_{ij} = y_{ij} \mid \Phi_{ij})$$

- Inhomogeneous independent dyad graph
- Let $\Phi, \Psi \in [0,1]^{N \times N}$ be parameter matrices w/ $\Phi_{ij} + \Psi_{ij} \leq 1$. Then

$$\Pr(G = g \mid \Phi, \Psi) = \prod_{(i,j)} \left[\Phi_{ij} y_{ij} y_{ji} + \Psi_{ij} (y_{ij} (1 - y_{ij}) + (1 - y_{ij} y_{ij}) + (1 - \Phi_{ij} - \Psi_{ij}) (1 - y_{ij}) (1 - y_{ij}) \right]$$

• Intuitively, Φ sets the probability of mutuals, and Ψ sets the probability of asymmetrics

Simple Random Graph Models in Practice

- Models without trivial cross-dyadic dependence still have many uses
 - Baseline models for null hypothesis testing
 - Mathematical tools for exploring the space of graphs
 - Serious data models (in the inhomogeneous case)
 - Start with inhomogenous family, model parameter matrix using greression-like model (see, e.g., sna::netlogit) and/or with latent variables (e.g. package latentnet)
 - Can be extremely effective, if sufficiently strong covariates are available
 - Dyad dependent models are much more complex, but we'll see them later...

Cohesion and Subgroups

Introduction to Cohesion and Subgroups

R Lab

References and Places for More Information i

Introduction to Statisticsl Inference

Cohesion and Subgroups