		Time: 3 Hours Marks: 10	00
N.B.	(2) I (3) I (4) S	All questions are compulsory. Figures to the right indicate full marks. Draw neat diagrams wherever necessary. Symbols have usual meaning unless otherwise stated. Use of non-programmable calculator is allowed.	
Q1	(i)	Attempt any two: Obtain the expression for the divergence and curl of electrostatic field in free space.	10
	(ii)	Find the potential of a uniformly charged spherical shell of radius R for points outside the sphere.	10
	(iii)	Explain First and second uniqueness theorem.	10
	(iv)	Suppose a point charge \mathbf{q} is held a distance \mathbf{d} above an infinite grounded conducting plane. Find the potential in the region above the plane.	10
02		Attempt any two:	
Q2	(i)	For a linear, homogeneous, isotropic dielectric system, obtain expressions for energy stored and electrostatic energy density.	10
	(ii)	For a polarized dielectric show that potential could be given as that due to bound surface charge density and bound volume charge density.	10
	(iii)	Using Ampere's circuital law for an infinite solenoid carrying a steady current I, show that the magnetic field is parallel to the axis of the solenoid. Also find the expression for magnetic field inside and outside the solenoid.	10
	(iv)	Using Biot-Savart law show that $\vec{\nabla} \cdot \vec{B} = 0$. Also explain the physical significance of the result obtained.	10
Q3		Attempt any two:	
6	(i)	Show that magnetization of material give rise to surface and volume bound current densities $K_b = M \times \hat{n}$ and $J_b = \nabla \times M$	10
ES.	(ii)	Give the physical interpretation of bound currents.	10
	(iii)	Why was it necessary to modify Ampere's law in its original form? Explain how Maxwell modified it. Write Maxwell's corrected equation in integral form.	10
	(iv)	Determine the boundary conditions for the fields E , B , D and H across boundary between two media	10
Q4		Attempt any two:	10
	(i)	Consider a wave travelling along z – axis in a medium with refractive index n_1 . If it is incident on the medium with refractive index n_2 normally, calculate the reflection and transmission coefficients.	10
	(ii)	State and derive Poynting's theorem.	10
	(iii)	Derive expressions for time average of energy density $\langle u \rangle$, Poynting vector $\langle \overline{S} \rangle$ and momentum density $\langle \mathcal{P} \rangle$ for plane electromagnetic wave travelling along $z - axis$.	10

84303 Page 1 of 2

Paper / Subject Code: 24253 / Physics: Electrodynamics

	(1V)	Consider a wave travelling in a medium with refractive index n_1 . If it is to be incident on the medium with refractive index n_2 obliquely, show that $\theta_I = \theta_R$ where θ_I is an angle of incidence and θ_R is the angle of reflection.	10
Q5		Attempt any four:	20
	(i)	Find the charge density (ρ) of a sphere centered at the origin, if the electric field is found to be $\overline{E} = kr^3\hat{r}$, where k is some constant.	05
	(ii)	Determine electric field due to potential $V = 2x^2 + 5y^3 + 6z^4$.	05
	(iii)	A uniform electric field 2 V/m exists in a linear homogeneous dielectric of constant 3. What is the energy density stored in the field?	05
		$\epsilon_0 = 8.85 \times 10^{-12} \frac{c^2}{Nm^2}$	
	(iv)	A vector field is given by $\vec{B} = 2yz \hat{x} + 4zx \hat{y} + 6xy \hat{z}$ Find the current density in the field at point (3, 4, -5) $\mu_0 = 4\pi \times 10^{-7}$ SI units.	05
	(v)	Show that the divergence of volume bound current density $\overrightarrow{I_h}$ is zero	05
	(vi)	A long copper rod of radius R carries a uniformly distributed free current I . Find H inside and outside the rod.	05
	(vii)	Derive the wave equation for the electric field in vacuum.	05
	(viii)	Show using Maxwell's equations,	05
		$rac{\partial ho}{\partial t} + abla \cdot ar{J} = 0$	

84303 Page 2 of 2