

IP Infusion

Whitepaper

Author: Michael Hung

BACKGROUND	3
HARDWARE REQUIREMENT:	3
SOFTWARE REQUIREMENT:	3
DEPLOYMENT SCENARIOS	3
VIRTUAL PRIVATE LAN SERVICE (VPLS)	3
Topology:	3
Configurations:	4
Show command and trouble-shooting:	15
APPENDIX	18
SETUP ON IXIA:	18

Background

This document serves as whitepaper to guide you on IP Infusion MPLS scenarios where the Agema Systems switch is enabled for Virtual Private LAN Service (VPLS). VPLS is a protocol for building a virtual multipoint Ethernet network on top of a MPLS network.

Hardware Requirement:

AGC7648 switch x 3.

Software Requirement:

Users can request AGC7648 image and evaluation license from https://www.ipinfusion.com/evaluate/.

The image must support MPLS feature.

Deployment Scenarios

Virtual Private LAN Service (VPLS)

Topology:

P router: Provider Router.

PE1, PE2 router: Provider Edge Router.

P, PE1, and PE2: AGC7648 with IP Infusion image loaded

Image version: DELTA AGC7648A-OcNOS-1.3.2.120-DC MPLS ZEBM-S0-P0-installer

CE1, CE3: Ixia line cards connect PE router to simulate CE router.

Configurations:

Step 1: Connection configuration.

Configure IP address on the interfaces between P, PE1 and PE2.

Step 2: MPLS and VPLS configuration.

Assign loopback IP address for PE1 router 1.1.1.1, P router 2.2.2.2, and PE2 router 3.3.3.3 .

Solution Center Document

PE1	P	PE2
router ldp	router ldp	router ldp
targeted-peer ipv4 3.3.3.3	interface lo	targeted-peer ipv4 1.1.1.1
exit-targeted-peer-mode	ip address 2.2.2.2/32 secondary	exit-targeted-peer-mode
interface lo	interface xe1	interface lo
ip address 1.1.1.1/32 secondary	ip address 20.20.20.1/24	ip address 3.3.3.3/32 secondary
interface xe1	label-switching	interface xe1
switchport	enable-ldp ipv4	ip address 20.20.20.2/24
mpls-vpls vpls1	interface xe6	label-switching
ac-admin-status up	ip address 10.10.10.2/24	enable-ldp ipv4
exit-if-vpls	label-switching	interface xe11
interface xe6	enable-ldp ipv4	switchport
ip address 10.10.10.1/24		mpls-vpls vpls1
label-switching		ac-admin-status up
enable-ldp ipv4		exit-if-vpls
mpls vpls vpls1 10		mpls vpls vpls1 10
redundancy-role primary		redundancy-role primary
signaling ldp		signaling ldp
vpls-type ethernet		vpls-type ethernet
vpls-peer 3.3.3.3		vpls-peer 1.1.1.1
exit-signaling		exit-signaling

Step 3: Routing configuration.

Configure OSPF on each router so that we don't need to specify the routing path.

PE1	P	PE2
router ospf 100	router ospf 100	router ospf 100
network 1.1.1.1/32 area 0.0.0.0	network 2.2.2.2/32 area 0.0.0.0	network 3.3.3.3/32 area 0.0.0.0
network 10.10.10.0/24 area 0.0.0.0	network 10.10.10.0/24 area 0.0.0.0	network 20.20.20.0/24 area 0.0.0.0
cspf disable-better-protection	network 20.20.20.0/24 area 0.0.0.0	cspf disable-better-protection
	cspf disable-better-protection	

Configuration Detail:

```
PE1:
# Note: The default login username/password is ocnos/ocnos.
OcNOS login:
Welcome to OcNOS
OcNOS login: ocnos
Password:
Last login: Thu Nov 16 03:38:31 UTC 2017 on ttyS0
Linux OcNOS 3.16.7-gfe23dcd-agc7648 #1 SMP Sat Jan 21 17:57:35 UTC 2017 x86 64
OcNOS version 1.3.2.120-OCNOS-DC-MPLS-ZEBM IPIRouter 10/12/17 19:39:52
OcNOS>en
OcNOS#
OcNOS#show run
!Last configuration change at 05:56:01 UTC Sat Nov 04 2017 by ocnos
no service password-encryption
logging monitor 7
ip vrf management
forwarding profile kaps profile-one
forwarding profile elk-tcam profile-one
hardware-profile statistics ingress-acl enable
mpls propagate-ttl
ip domain-lookup vrf management
```

```
bridge I protocol ieee vlan-bridge
feature telnet vrf management
feature ssh vrf management
snmp-server enable snmp vrf management
snmp-server view all .1 included vrf management
ntp enable vrf management
ntp source-interface
username ocnos role network-admin password encrypted
$1$l1t.lrK/$iwj.NrT1xlE5C7Mxn8F1p.
ip pim register-rp-reachability
ip pim vrf management register-rp-reachability
router ldp
 targeted-peer ipv4 3.3.3.3
  exit-targeted-peer-mode
interface eth0
 ip vrf forwarding management
 ip address 10.62.2.51/24
interface lo
 ip address 127.0.0.1/8
 ip address 1.1.1.1/32 secondary
 ipv6 address ::1/128
interface lo.management
 ip vrf forwarding management
 ip address 127.0.0.1/8
 ipv6 address ::1/128
interface xe1
 switchport
```



```
mpls-vpls vpls1
    ac-admin-status up
  exit-if-vpls
interface xe6
 ip address 10.10.10.1/24
 label-switching
 enable-ldp ipv4
mpls vpls vpls1 10
 redundancy-role primary
 signaling ldp
  vpls-type ethernet
  vpls-peer 3.3.3.3
  exit-signaling
router ospf 100
 network 1.1.1.1/32 area 0.0.0.0
 network 10.10.10.0/24 area 0.0.0.0
 cspf disable-better-protection
line con 0
 exec-timeout 30 0
 login
line vty 0 39
 login
end
```

```
PE2:
OcNOS#show run
!Last configuration change at 05:57:26 UTC Sat Nov 04 2017 by ocnos
no service password-encryption
logging monitor 7
ip vrf management
forwarding profile kaps profile-one
forwarding profile elk-tcam profile-one
hardware-profile statistics ingress-acl enable
mpls propagate-ttl
ip domain-lookup vrf management
bridge 1 protocol ieee vlan-bridge
feature telnet vrf management
feature ssh vrf management
snmp-server enable snmp vrf management
snmp-server view all .1 included vrf management
ntp enable vrf management
ntp source-interface
username ocnos role network-admin password encrypted
$1$7r7FySK0$ZXafIW96QRC8gDI4sp089.
ip pim register-rp-reachability
ip pim vrf management register-rp-reachability
router ldp
 targeted-peer ipv4 1.1.1.1
```



```
exit-targeted-peer-mode
interface eth0
ip vrf forwarding management
ip address 10.62.2.52/24
interface lo
ip address 127.0.0.1/8
 ip address 3.3.3.3/32 secondary
ipv6 address ::1/128
interface lo.management
ip vrf forwarding management
ip address 127.0.0.1/8
 ipv6 address ::1/128
interface xel
ip address 20.20.20.2/24
label-switching
enable-ldp ipv4
interface xell
switchport
mpls-vpls vpls1
    ac-admin-status up
  exit-if-vpls
```

```
mpls vpls vpls1 10
 redundancy-role primary
 signaling ldp
  vpls-type ethernet
  vpls-peer 1.1.1.1
  exit-signaling
router ospf 100
 network 3.3.3.3/32 area 0.0.0.0
 network 20.20.20.0/24 area 0.0.0.0
 cspf disable-better-protection
line con 0
 exec-timeout 30 0
 login
line vty 0 39
 login
end
<u>P:</u>
OcNOS#show run
!Last configuration change at 05:59:03 UTC Sat Nov 04 2017 by ocnos
no service password-encryption
logging monitor 7
ip vrf management
forwarding profile kaps profile-one
```



```
forwarding profile elk-tcam profile-one
hardware-profile statistics ingress-acl enable
mpls propagate-ttl
ip domain-lookup vrf management
bridge 2 protocol ieee vlan-bridge
feature telnet vrf management
feature ssh vrf management
snmp-server enable snmp vrf management
snmp-server view all .1 included vrf management
ntp enable vrf management
ntp source-interface
username ocnos role network-admin password encrypted
$1$ZrNKOhR0$/EEuXkzZPOXHP/H091KtM1
ip pim register-rp-reachability
ip pim vrf management register-rp-reachability
router ldp
interface eth0
 ip vrf forwarding management
 ip address 10.62.2.32/24
interface lo
 ip address 127.0.0.1/8
 ipv6 address ::1/128
```

```
interface lo.management
 ip vrf forwarding management
 ip address 127.0.0.1/8
 ipv6 address ::1/128
interface xe1
 ip address 20.20.20.1/24
label-switching
 enable-ldp ipv4
interface xe6
ip address 10.10.10.2/24
label-switching
enable-ldp ipv4
router ospf 100
network 2.2.2.2/32 area 0.0.0.0
 network 10.10.10.0/24 area 0.0.0.0
 network 20.20.20.0/24 area 0.0.0.0
cspf disable-better-protection
line con 0
 exec-timeout 30 0
 login
line vty 0 39
 login
end
```


Show command and trouble-shooting:

On PE1 router:

1. Make sure PE1 can ping PE2 loopback address.

```
OcNOS#ping 3.3.3.3

Press CTRL+C to exit

PING 3.3.3.3 (3.3.3.3) 56(84) bytes of data.

64 bytes from 3.3.3.3: icmp_seq=1 ttl=63 time=1.33 ms

64 bytes from 3.3.3.3: icmp_seq=2 ttl=63 time=1.29 ms

64 bytes from 3.3.3.3: icmp_seq=3 ttl=63 time=1.28 ms
```

If not, check your configuration and connection between PE1-P-PE2.

2. Check routing table on PE1 router.

```
OcNOS#show ip route

Codes: K - kernel, C - connected, S - static, R - RIP, B - BGP

O - OSPF, IA - OSPF inter area

N1 - OSPF NSSA external type 1, N2 - OSPF NSSA external type 2

E1 - OSPF external type 1, E2 - OSPF external type 2

i - IS-IS, L1 - IS-IS level-1, L2 - IS-IS level-2, ia - IS-IS inter area

* - candidate default
```

```
IP Route Table for VRF "default"
```

C

O 1.1.1.1/32 [110/11] via 10.10.10.1, xe6, 04:26:39
C 2.2.2.2/32 is directly connected, lo
O 3.3.3.3/32 [110/11] via 20.20.20.2, xe1, 04:00:01
C 10.10.10.0/24 is directly connected, xe6
C 20.20.20.0/24 is directly connected, xe1

127.0.0.0/8 is directly connected, lo

3. Check mpls vpls mesh.

OcNOS#show mpls vpls mesh

VPLS-ID	Peer Addr	Tunnel-Label	In-Label	Network-Intf	Out-Label	Lkps/St	PW-
INDEX	SIG-Protocol	Status					
10	3.3.3.3	52481	52480	xe6	52480	2/Up	
1	LDP	Active					

If the status is not "Active", issue the command "clear ldp session * ", then try above show command after few seconds.

On P router:

4. Check ldp session between P router and PE1/PE2 routers.

OcNOS#show	1dn	caccion
OCNOS#SHOW	rup	86881011

Peer IP Address	IF Name	My Role	State K	LeepAlive	UpTime
3.3.3.3	xe1	Active	OPERATIONA	L 30	05:22:33
1.1.1.1	xe6	Active	OPERATIONA	L 30	04:42:21

Check if the status is "OPERATIONAL".

5. Check ospf neighbor.

OcNOS#show ip ospf neighbor

Total number of full neighbors: 2

OSPF process 100 VRF(default):

Neighbor ID	Pri	State	Dead Time	Address	Interface
Inst	ance ID				
10.10.10.1	1	Full/DR	00:00:39	10.10.10.1	xe6
	0				
20.20.20.2	1	Full/DR	00:00:34	20.20.20.2	xe1
	0				

[&]quot;clear ip ospf process" could restart ospf process.

Finding:

- 1. User can issue "show ldp session" to check if LDP protocol is working on P router.
- 2. User can issue "show mpls vpls mesh" to check if VPLS is working on PE routers.
- 3. We setup Ixia to simulate 1k devices and 10k hosts and send layer-2 flows traffic between PE1 and PE2.
- 4. May add another PE router so that we can test redundancy switch over.

Appendix

Setup on Ixia:

1. Use IxNetwork to simulate CE routers. Choose scenario "L2VPN-CE" and add two instances into topology as following.

2. Click the "port" icon in the topology and change port setting.

3. Assign the Ixia ports that connects to PE1 and PE2 routers.

4. Do the same steps on the other side.

5. Click "traffic" to add L2-3 traffic items.

6. Click the "port" icon in the topology and change port setting. Add source/destination endpoints as following.

7. Click "Flow Group Setup" and check "Src/Dest Endpoint Pair" box.

8. Click "Frame Setup" and choose the frame size you'd like to test.

9. Click "Rate Setup" and choose packet rate.

10. Click "Ethernet" icon in topology and choose "VLAN-1" tab in the "Detail for Ethernet 1" window. Make sure that both CE sides assign different mac address.

11. Click "MAC Host Cloud" icon on both CE sides in the topology and check "MAC Pools". Make sure mac address assignment on both sides.

12. Click "Select Views" in statistics window. Choose the statistic items that you want to check.

13. Start "All Traffic" and check if "Frames Tx Rate" matches "Valid Frames Rx Rate".

14. Perform scale test by changing "Device Group Multiplier" and "Network Group Multiplier". "Device Group Multiplier" means the number of devices. "Network Group Multiplier" mean the number of hosts connecting to the device.

We simulate 1000k mac addresses as following.

