Physical constants

Quantity	Symbol	Value	Unit	Relative Standard Uncertainty
Speed of light in vacuum	c	2.99792458×10^{8}	m/s	exact
Elementary charge	e	$1.602176634 \times 10^{-19}$	\mathbf{C}	exact
Planck constant	h	$6.62607015\times 10^{-34}$	J s	exact
Reduced Planck constant	\hbar	$1.0545718 \times 10^{-34}$	J s	1.5×10^{-8}
Electron mass	m_e	$9.10938356 \times 10^{-31}$	kg	5.0×10^{-8}
Proton mass	m_p	$1.672621898 \times 10^{-27}$	kg	2.0×10^{-8}
Fine-structure constant	α	$7.2973525693 \times 10^{-3}$	1	1.5×10^{-10}
Bohr radius	a_0	$5.2917721067 \times 10^{-11}$	m	1.9×10^{-10}
Rydberg constant	R_{∞}	$1.0973731568508 \times 10^7$	m^{-1}	6.6×10^{-12}

Table 1: Physical Constants

Table of Integrals

Integral	Result
$\int e^x dx$	$e^x + C$

Table of Polynomial Families

Polynomial Family	Definition
Hermite polynomials	$H_n(x) = (-1)^n e^{x^2} \frac{d^n}{dx^n} e^{-x^2}$
Laguerre polynomials	$L_n(x) = \frac{e^x}{n!} \frac{d^n}{dx^n} (e^{-x} x^n)$
Generalised Laguerre polynomials	$L_n^{(\alpha)}(x) = \frac{d^{\alpha}}{dx^{\alpha}} L_n(x) = \sum_{m=0}^n (-1)^m \frac{n+\alpha!}{(\alpha+m)!(n-m)!m!} x^m$
Legendre polynomials	$P_{\ell}(x) = \frac{1}{2^{\ell} \ell!} \frac{d^{\ell}}{dx^{\ell}} [(x^2 - 1)^{\ell}]$
Associated Legendre polynomials	$P_{\ell}^{m}(x) = \frac{1}{2^{\ell}\ell!} (1 - x^{2})^{m/2} \frac{d^{m+\ell}}{dx^{m+\ell}} (x^{2} - 1)^{\ell}$

Table 2: Common Polynomial Families

Hydrogenic wavefunctions

$$|n\ell m\rangle = \psi_{nlm}(r,\theta,\phi) = R_{n\ell}(r)Y_{\ell}^{m}(\theta,\phi)$$

$$R_{n\ell}(r) = -\left\{ \left(\frac{2Z}{na_0} \right)^3 \frac{(n-\ell-1)!}{2n[(n+\ell)!]^3} \right\}^{1/2} e^{-Zr/na_0} \left(\frac{2Zr}{na_0} \right)^{\ell} L_{n+\ell}^{2\ell+1} \left(2Zr/na_0 \right)$$
$$Y_{\ell}^m(\theta,\phi) = (-1)^{(m+|m|)/2} \sqrt{\frac{(2\ell+1)}{4\pi} \frac{(\ell-|m|)!}{(\ell+|m|)!}} P_{\ell}^m(\cos\theta) e^{im\phi}$$

ℓ	m	$Y_{\ell}^m(\theta,\phi)$
0	0	$\frac{1}{\sqrt{4\pi}}$
1	0	$\sqrt{\frac{3}{4\pi}}\cos\theta$
1	±1	$\mp \sqrt{\frac{3}{8\pi}} \sin \theta e^{\pm i\phi}$
2	0	$\sqrt{\frac{5}{16\pi}}(3\cos^2\theta - 1)$
2	±1	$\mp \sqrt{\frac{15}{8\pi}} \cos \theta \sin \theta e^{\pm i\phi}$
2	±2	$\sqrt{\frac{15}{32\pi}}\sin^2\theta e^{\pm 2i\phi}$
3	0	$\sqrt{\frac{7}{16\pi}} \left(5\cos^3\theta - 3\cos\theta \right)$
3	±1	$\mp \sqrt{\frac{21}{64\pi}} \sin\theta (5\cos^2\theta - 1)e^{\pm i\phi}$
3	±2	$\sqrt{\frac{105}{32\pi}}\sin^2\theta\cos\theta e^{\pm 2i\phi}$
3	±3	$\mp \sqrt{\frac{35}{64\pi}} \sin^3 \theta e^{\pm 3i\phi}$

Table 3:	Angular	wavefunctions
----------	---------	---------------

n	ℓ	$R_{n,l}(r)$
1	0	$2\left(\frac{Z}{a_0}\right)^{3/2}e^{-Zr/a_0}$
2	0	$2\left(\frac{Z}{2a_0}\right)^{3/2} \left(1 - \frac{Zr}{2a_0}\right) e^{-Zr/2a_0}$
2	1	$\frac{1}{\sqrt{3}} \left(\frac{Z}{3a_0}\right)^{3/2} \left(\frac{Zr}{a_0}\right) e^{-Zr/2a_0} \cos \theta$
3	0	$2\left(\frac{Z}{3a_0}\right)^{3/2} \left(1 - \frac{2Zr}{3a_0} + \frac{2}{27} \left(\frac{Zr}{a_0}\right)^2\right) e^{-Zr/3a_0}$
3	1	$\frac{4\sqrt{2}}{9} \left(\frac{Z}{3a_0}\right)^{3/2} \frac{Zr}{a_0} \left(1 - \left(\frac{Zr}{6a_0}\right)\right) e^{-Zr/3a_0}$
3	2	$\frac{2\sqrt{2}}{27\sqrt{5}} \left(\frac{Z}{3a_0}\right)^{3/2} \left(\frac{Zr}{a_0}\right)^2 e^{-Zr/3a_0}$

Table 4: Radial wavefunctions

Quantum mechanical formulae

$$E_{n}^{(1)} = \left\langle n \left| H' \right| n \right\rangle$$

$$E_{n}^{(2)} = \sum_{n \neq m} \frac{\left| \left\langle n^{(0)} \left| H' \right| m^{(0)} \right\rangle \right|^{2}}{\left(E_{n}^{(0)} - E_{m}^{(0)} \right)}$$

$$E_{0} \leq \frac{\left\langle \psi \left| H \right| \psi \right\rangle}{\left\langle \psi \right| \psi \right\rangle}$$

$$J_{\pm} = J_{x} \pm iJ_{y}$$

$$J_{\pm} \left| j m_{j} \right\rangle = \hbar \left[j \left(j + 1 \right) - m_{j} \left(m_{j} \pm 1 \right) \right]^{1/2} \left| j m_{j} \pm 1 \right\rangle$$

$\mid n \mid$	ℓ	m	$\psi_{n,\ell,m}(r, heta,\phi)$
1	0	0	$\frac{1}{\sqrt{\pi}} \left(\frac{Z}{a_0}\right)^{3/2} e^{-Zr/a_0}$
2	0	0	$\frac{1}{\sqrt{2\pi}} \left(\frac{Z}{2a_0} \right) - \left(1 - \frac{Z^T}{2a_0} \right) e^{-Zr/2a_0}$
2	1	0	$\frac{1}{2\sqrt{\pi}} \left(\frac{Z}{2a_0}\right)^{3/2} \left(\frac{Zr}{a_0}\right) e^{-Zr/2a_0} \cos \theta$
2	1	±1	$\mp \frac{1}{2\sqrt{2\pi}} \left(\frac{Z}{a_0}\right)^{3/2} \left(\frac{Zr}{a_0}\right) e^{-Zr/2a_0} \sin\theta e^{\pm i\phi}$
3	0	0	$\frac{1}{\sqrt{\pi}} \left(\frac{Z}{3a_0} \right)^{3/2} \left(1 - \frac{2Zr}{3a_0} + \frac{2}{27} \left(\frac{Zr}{a_0} \right)^2 \right) e^{-Zr/3a_0}$
3	1	0	$\frac{2\sqrt{2}}{3\sqrt{3\pi}} \left(\frac{Z}{3a_0}\right)^{3/2} \frac{Zr}{a_0} \left(1 - \left(\frac{Zr}{6a_0}\right)\right) e^{-Zr/3a_0} \cos\theta$
3	1	±1	$\mp \frac{2}{3\sqrt{3\pi}} \left(\frac{Z}{3a_0}\right)^{3/2} \frac{Zr}{a_0} \left(1 - \left(\frac{Zr}{6a_0}\right)\right) e^{-Zr/3a_0} \sin\theta e^{\pm i\phi}$
3	2	0	$\frac{1}{27\sqrt{2\pi}} \left(\frac{Z}{3a_0}\right)^{3/2} \left(\frac{Zr}{a_0}\right)^2 e^{-Zr/3a_0} (3\cos^2\theta - 1)$
3	2	±1	$\mp \frac{\sqrt{3}}{27\sqrt{\pi}} \left(\frac{Z}{3a_0}\right)^{3/2} \left(\frac{Zr}{a_0}\right)^2 e^{-Zr/3a_0} \sin\theta \cos\theta e^{\pm i\phi}$
3	2	±2	$\frac{\sqrt{3}}{54\sqrt{\pi}} \left(\frac{Z}{3a_0}\right)^{3/2} \left(\frac{Zr}{a_0}\right)^2 e^{-Zr/3a_0} \sin^2 \theta e^{\pm 2i\phi}$

Table 5: Complete wavefunctions of hydrogenic atoms