PGD for low frequency dynamics problems involving localized non-linearities

Pierre NARGIL
Supervisors:
François LOUF
Pierre-Alain BOUCARD

LMT Cachan

Wednesday 7th May 2014

Project origin

Figure: Industrial problem

- Calculation time
- Set of parameters
- Non-linearity

Presentation plan

- MECASIF Project
- 2 Model Order Reduction
- Oifferent methods
 - POD
 - PGD
- A few results
 - Error
 - MAC
 - Loading velocity
- 6 Perspectives

Model order reduction

Reducing calculation time by reducing the dimension of the problem

Stakes of time saving

- Reducing the development cost
- Optimisation / Creation of probabilistic models
- Solving of problems reaching calculating machine's limits

Reduced order modeling: Solving projected problems How to obtain the basis to project on:

Reduction methods

- POD Proper Orthogonal Decomposition [A. Chatterjee 2000]
- PGD Proper Generalized Decomposition [P. Ladevèze 1989]

Presentation plan

- MECASIF Project
- 2 Model Order Reduction
- Oifferent methods
 - POD
 - PGD
- A few results
 - Error
 - MAC
 - Loading velocity
- Perspectives

Different methods

POD

- a posteriori
- give modes in :
 - space
 - time
- Principle :

Projection on a basis of modes exctracted from truncated SVD

PGD

- modes calculation "on the fly"
- give modes in :
 - space
 - time
 - parameter
- Principle :

Modes calculated using an iterative method (fixed point) at the same time as the resolution.

Proper Orthogonal Decomposition

A dynamic problem is solved on the system, and the SVD gives:

$$U(X,t) = \sum_{k=1}^{dim} V_{Sk} f_k(X)g_k(t)$$

The basis is obtained by truncating the result

The *n* modes $f_k(X)$ associated to the highest singular values are chose to make the reduced basis.

The SVD guarantees the best truncated basis such as:

$$U(X,t) - U_n(X,t) = U(X,t) - \sum_{k=1}^{n} V_{Sk} f_k(X)g_k(t)$$

is minimal for a fixed n (in Frobenius norm).

These couples are the more representative of the studied response.

Solving (Snapshot)

basis

Get the reduced \(\subseteq \) Projection on the \(\subseteq \) reduced basis

Solving

Picture Compression - Different number of singular values

Proper Generalized Decomposition

Approximation using separable variables

$$U_n(X,t,\lambda) = \sum_{k=1}^n f_k(X)g_k(t)h_k(\lambda)$$

The variational formulation gives a problem for each type of function

$$f_k = F(U_{k-1}, g_k, h_k)$$
, $g_k = G(U_{k-1}, f_k, h_k)$, $h_k = H(U_{k-1}, f_k, g_k)$

Algorithm

for
$$k = 1$$
 à n
for $j = 1$ à j_{max}
 $f_k = F(U_{k-1}, g_k, h_k)$
 $g_k = G(U_{k-1}, f_k, h_k)$
 $h_k = H(U_{k-1}, f_k, g_k)$
end

Iterating on the modes.

Solving the non-linear problem

$$\begin{cases} f_k = F(U_{k-1}, g_k, h_k) \\ g_k = G(U_{k-1}, f_k, h_k) \\ h_k = H(U_{k-1}, f_k, g_k) \end{cases}$$

with a fixed point loop.

Until you reach n modes.

Presentation plan

- MECASIF Project
- 2 Model Order Reduction
- Oifferent methods
 - POD
 - PGD
- 4 A few results
 - Error
 - MAC
 - Loading velocity
- Perspectives

Error indicators

$$e_{Max} = \left| \frac{max(s_{Ref} - s_{Cal})}{max(s_{Ref}) - min(s_{Ref})} \right|$$
(1)

-2
-3
-0 10 20 30 40 50 60 70 80 90 100
Number of modes of the PGD solution

Figure : Evolution of error indicators for a POD Solution

Figure : Evolution of error indicators for a PGD Solution

Log of maximal error

MAC Analysis $\frac{(\varphi_i.\psi_j)^2}{\varphi_i.\varphi_i\times\psi_j.\psi_j}$

Figure: POD space functions

Figure: PGD space functions

MAC Analysis $\frac{(\varphi_i,\psi_j)^2}{\varphi_i,\varphi_i\times\psi_j,\psi_j}$

Figure: Comparison between POD and PGD space functions

Loading velocity - Different Cases

Different Cases - Sinus Verse on a beam

Figure: Beam Problem

Figure: Loading

Different Cases - Different Loading Velocities

Loading in Sinus Verse for different period length :

Different Time Steps

Violent Case solved with different time steps for the integration scheme :

Different Integration Schemes

Violent Case solved with different Schemes:

Time Discontinuous Galerkin Method

Figure: Representation allowing discontinuities

Perspectives

- Integration Scheme
 - Use of the Galerkin discontinous in time method for the PGD
 - ► Influence of the choice of integration scheme on PGD Convergence
- Integration in an open FE software
- Putting together a work environment for the PGD team
 - Adding of parameter variables to the PGD
 - Using minimization instead of fixed point
- Solving non-linear problems
 - The usual solver can be used on non-linear problems
 - Yet to be implemented for the PGD