

Introdução à Probabilidade e Estatística Ficha Nº5: Intervalos de Confiança e Testes de Hipóteses

Para as licenciaturas em: Eng. Civil, Eng. das Energias Renováveis, Eng. Geológica, Eng. Informática e Eng. Mecatrónica

$2^{\rm o}$ semestre 2014/15 — $2{\rm h}$ Teóricas + $2{\rm h}$ Práticas

Docentes: Patrícia Filipe e Ana Isabel Santos

1. (2ª Frequência/Exame 2013) O departamento de recursos humanos da empresa que pretende recrutar funcionários para uma nova área de negócio, está a realizar um estudo para averiguar se o tipo de teste feito é adequado para o perfil de candidatos que procura. Para tal, seleccionou aleatoriamente a classificação no teste de 15 candidatos do sexo masculino e 15 candidatos do sexo feminino. De entre as várias análises estatísticas realizadas apresentam-se os seguintes resultados:

	Group Statistics								
Sexo N Mean Std. Deviation Std. Error N									
ĺ	Resultados	Masculino	15	94,40		4,775			
	no teste	Feminino	15	98,20	15,167	3,916			

	Tests of Normality							
Kolmogorov-Smirnov Shapiro-W						oiro-Wi	lk	
	Sexo	Statistic	df	Sig.	Statistic	df	Sig.	
Resultados	Masculino	,145	15	,200	,943	15	,425	
no teste	Feminino	,152	15	,200	,949,	15	,505	

	Independent Samples Test									
			ene's Test for lity of Variances		1	t-test for Equality	of Means			
		F			Mean	Std. Error		onfidence		
			Sig.	Df	Difference	Difference	Interval of the Difference			
					Difference		Lower	Upper		
Resultados	Equal Variances assumed	,761	,390	28	-3,800	6,175		6,705		
no teste	Equal variances not assumed			26,97	-3,800	6,175		6,719		

- (a) Verifique, ao nível de significância de 1%, se existe evidência suficiente nos resultados para afirmar que, em média, os candidatos do sexo masculino verificam o requisito exigido de uma classificação mínima no teste de 115.
- (b) Calcule o *p-value* associado ao teste da alínea anterior.
- (c) Determine o intervalo a 90% de confiança para a variância da classificação no teste dos candidatos do sexo feminino.

- (d) Diga, ao nível de significância de 1% se existem diferenças significativas na classificação média do teste entre os candidatos do sexo masculino e os candidatos do sexo feminino. Justifique convenientemente a sua resposta.
- 2. (Exame de recurso 2013) Um fabricante da indústria cerâmica pretende determinar se duas novas ligas premium, uma nacional e uma importada, possuem uma resistência ao calor superior à da liga standard já utilizada. Para tal foram realizados testes em que, para 20 fornadas de cada tipo de liga, se registou a temperatura máxima de resistência ao calor. Apresentam-se abaixo alguns dos resultados obtidos com a análise dos dados realizada com recurso ao software SPSS.

Tests of Normality

	Liga	Kolmogorov-S	Kolmogorov-Smirnov ^a				
	Liga	Statistic	df	Sig.	Statistic	df	Sig.
Tomporatura do	Premium Importada	,276	20	,000	,750	20	,000
Temperatura de resistência (ºC)	Premium Nacional	,156	20	,200*	,926	20	,129
	Standard	,106	20	,200*	,973	20	,825

a. Lilliefors Significance Correction

One-Sample Test

	Test Value = 1535					
	t df Sig. (2-tailed) Mean Differe					
Temperatura de resistência (ºC) Liga Premium nacional	3,869	19	?	6,48261		

Independent Samples Test

			ne's Test for y of Variances	t-test for Equality of Means			
		F	Sig.	Mean Difference	Std. Error Difference	99% Con Interval Differ	of the
						Lower	Upper
Temperatura de resistência (ºC)	Equal variances assumed	1,697	,200	25,42954	2,80969	;	33,04816
Premium nacional vs Standard	Equal variances not assumed			25,42954	2,80969		

- (a) As amostras recolhidas provêm de populações com distribuição normal?
- (b) Podemos afirmar, ao nível de significância de 10%, que a temperatura de resistência média da liga *premium* nacional é diferente de 1535?
- (c) Calcule o p-value associado ao teste da alínea anterior.
- (d) Com que confiança, podemos dizer que a variância da temperatura de resistência da liga *standard* se encontra entre]71.12, 166.04[?
- (e) Será que existe evidência estatística suficiente nos dados, ao nível de significância de 1%, para dizer que a temperatura de resistência média da nova liga *premium* nacional é significativamente diferente da liga *standard*? E significativamente melhor?
- 3. Foram retiradas 25 peças da produção diária de uma máquina, encontrando-se, para uma certa medida, uma média de 5.2 mm. Sabe-se que as medições têm distribuição normal. Construa intervalos de confiança para média populacional aos níveis de confiança de 90%, 95% e 99%.
 - (a) Com base num desvio-padrão populacional de 1.2 mm.

- (b) Com base num desvio-padrão amostral de 1.2 mm.
- (c) Justifique as diferenças obtidas.
- 4. Um conjunto de 40 condutores de camião, escolhidos aleatoriamente nas estradas nacionais, dispôs-se a participar numa experiência que tinha por objetivo medir os seus tempos de reação depois de almoço. A média e o desvio padrão dos tempos observados foram, respetivamente, 0.85 e 0.20 segundos. Admitindo que os tempos de reação seguem uma distribuição normal, determine:
 - (a) o intervalo de confiança a 95% para o valor esperado do tempo de reação após o almoço.
 - (b) o intervalo de confiança a 99% para a variância do tempo de reação após o almoço.
- 5. Pretende-se analisar os salários, por sexo, do pessoal em início de carreira duma determinada área. As tabelas seguintes foram obtidas com recurso ao SPSS e fornecem alguns elementos para descrever a amostra recolhida:

	N	Mean	Std. Deviation
salário	1100	2606.4205	696.79819

	Gender	N	Mean	Std. Deviation
calária	Feminino	Α	2476.9510	689.57645
salário	Masculino	631	2702.6506	687.00971

	Independent Samples Test									
		Equa	s Test for lity of ances			t-test	for Equality of M	1eans		
		F	Sig.	Df	Sig.(2- tailed)	Mean Difference	Std. Error Difference	90% Conf	Difference	
								Lower	Upper	
Resultados	Equal Variances assumed	.034	.854	В	.000	С	41.95173	-308.014	-143.345	
no teste	Equal variances not assumed			1006.36	.000	-225.6996	41.97410	-308.068	-143.331	

Com base nestes resultados:

- (a) Calcule o intervalo a 90% de confiança para a média global dos salários do pessoal em início de carreira.
- (b) Indique os valores de A, B e C.
- (c) Existem ou não diferenças significativas entre os salários médios iniciais nos 2 sexos?

6. Registou-se o comprimento, em metros, dos saltos de 10 atletas portugueses do sexo masculino em provas de triplo salto em pista coberta:

Tenha em conta que $\sum_{i=1}^{10} x_i = 151.5$ e que $\sum_{i=1}^{10} x_i^2 = 2295.8$ e que o comprimento dos saltos dos atletas portugueses do sexo masculino (em provas de triplo salto) é uma variável aleatória com distribuição normal com valor médio μ e desvio padrão σ metros. Determine:

- (a) a confiança do intervalo [14.95, 15.35] para o comprimento médio dos saltos.
- (b) o intervalo de confiança a 99% para a variabilidade do comprimento dos saltos dos atletas portugueses do sexo masculino em provas de triplo salto.
- (c) Teste, para um nível de significância de 10%, se é razoável admitir que o comprimento médio dos saltos é superior a 15.25 metros.
- 7. O Serviço Nacional de Saúde (SNS) afirma que a proporção de asmáticos numa certa população masculina é inferior a 10%. Um médico, pensando que este valor é muito baixo, deseja testar esta hipótese e escolhe ao acaso 200 homens do ficheiro dos seus doentes tendo verificado que 31 doentes sofrem de asma.
 - (a) Teste se o médico deve avisar o SNS de que a sua estimativa não está correcta?
 - (b) Calcule o *p-value* associado a este teste.
 - (c) Qual a potência de teste para p₁=0,18?
 - (d) Calcule o intervalo de confiança para a verdadeira proporção de asmáticos.
- 8. Foram efetuados estudos em Lisboa com o objectivo de determinar a concentração de monóxido de carbono (CO) perto de vias rápidas. Para isso recolheu-se uma amostra de 20 pequenos volumes de ar, para os quais se determinaram a respectiva concentração de CO (em partes por milhão, ppm), usando um espectrómetro. Tais medições resultaram numa média de valores de 100,5ppm com variância de 27,5ppm2, tendo-se verificado que em 5 das medições a concentração observada ultrapassava os 110ppm. Obteve-se, ainda, para uma confiança de 95% que a concentração de CO segue uma distribuição normal.
 - (a) Teste a hipótese de a variância da concentração esperada de CO ser inferior a 25ppm2, indicando os pressupostos que tenha de fazer. (Use um nível de significância de 1%.)
 - (b) Deduza um intervalo de confiança a 90% para a concentração média de CO na população.
 - (c) Qual a dimensão da amostra que deveria considerar, para que o erro de estimativa não ultrapasse os 0,3ppm. (Considere nível de significância de 5%)

- 9. Num trabalho realizado há já algum tempo concluiu-se que 62% dos passageiros que entram na estação A do metro tem como destino o centro da cidade. Esse valor tem vindo a ser utilizado em todos os estudos de transportes realizados desde então. Tendo surgido dúvidas sobre a actualidade daquele valor pois crê-se que tem vindo a diminuir, acompanhando o declínio do centro, realizou-se um inquérito naquela estação. Dos 240 passageiros inquiridos, 126 indicaram o centro como destino. Com base nestes resultados construa um intervalo de confiança a 90% para a percentagem de passageiros entrados em A e que saem no centro. O que pode concluir?
- 10. Certa linha de fabrico está programada de modo a produzir uma percentagem de artigos defeituosos não superior a 3%. De modo a verificar se o processo está sob controlo, são recolhidas periodicamente amostras de 50 artigos. A determinada altura verificou-se que uma dessas amostras continha dois artigos defeituosos e o encarregado declarou o processo fora de controlo, dando ordens para a interrupção do mesmo.
 - (a) Considerando um nível de significância de 5% diga se o encarregado agiu bem.
 - (b) Calcule o *p-value* associado a este teste.
 - (c) Calcule a potência do teste considerado na alínea a) para $p_1=0,035$ e para $p_1=0,1$. Que conclusões pode retirar sobre dois valores?
- 11. A poluição atmosférica é medida em dois locais distintos, um no centro de uma pequena cidade (Y) e outro numa zona rural, 15Km mais a sul, (X). As medições foram efectuadas 3 dias por semana, durante 4 meses e com idênticos instrumentos de medição. Em alguns dos dias não foram efectuadas medições devido a falhas de equipamento. Os resultados registados foram os seguintes:

$$\sum\limits_{i=1}^{31} x_i = 158.218, \; \sum\limits_{i=1}^{31} x_i^2 = 898.501.5, \; s_Y^2 = 3.8026 \text{ e } \sum\limits_{i=1}^{21} y_i^2 = 735.734$$

Considere que X e Y seguem uma distribuição normal.

- (a) Construa o intervalo de confiança a 97% para a comparação média da poluição atmosférica nos locais analisados. O que pode concluir?
- (b) Construa o intervalo de confiança a 98% para a variância da poluição atmosférica na zona rural.
- 12. Dois laboratórios (A e B) avaliam a quantidade de cloro de amostras de água recolhidas à mesma hora de cada dia. Considerando que as amostras recolhidas são independentes, e com base nos *outputs* abaixo,
 - (a) Construa o intervalo de confiança para a diferença entre as duas médias.
 - (b) Existe evidência suficiente nos resultados para afirmar, com uma confiança de 99%, que existem diferenças significativas entre os dois laboratórios?

Tests of Normality

	Kolmogorov-Smirnov ^a			Shapiro-Wilk			
	Statistic df Sig.			Statistic	df	Sig.	
LabA	,229	7	,200	,867	7	,176	
LabB	,250	7	,200*	,856	7	,147	

a. Lilliefors Significance Correction
*. This is a lower bound of the true significance

Group Statistics									
Grupo N Mean Std. Deviation Std. Error Mean									
I a la A	1	7	1,4671	0,45121	0,17054				
LabA	2	7	1,4929	0,44575	0,16848				

	Independent Samples Test										
	s Test for lity of ances		t-test for Equality of Means								
		F	Sig.	t	df	Sig. (2-tailed)	Mean Difference Std. Error Difference Difference Std. Error Difference Difference Lower Upper			Difference	
LabA	Equal Variances assumed	0,004	0,952	0,107	12	0,916	-0,02571	0,23973	-0,54803	?	
LauA	Equal variances not assumed			0,107	11,998	0,916	-0,02571	0,23973	?	0,49661	

13. Um investigador pretende estudar a capacidade de concentração dos alunos do ensino universitário antes e depois do almoço. Com esse objectivo, seleccionou aleatoriamente uma amostra de 10 alunos e mediu-se, utilizando um determinado coeficiente, a capacidade de concentração de cada aluno antes e depois do almoço:

Antes	52	45	55	50	55	47	50	46	56	53
Depois	50	49	51	48	53	43	49	47	55	50

	Tests of Normality											
	Kolmogo	rov-Sn	nirnova	Shapiro-Wilk								
	Statistic df Sig.				df	Sig.						
Antes	0,150	10	0,200	0,928	10	0,429						
Depois 0,139 10 0,200 0,968 10												

	lests of Normality										
	Kolmogo	rov-Sm	nirnova	Shapiro-Wilk							
	Statistic	df	Sig.	Statistic	df	Sig.					
Antes-Depois	,234	10	,128	,879,	10	,127					
a Lilliefors Significance Correction											

a. Lilliefors Significance Correction

Paired Samples Test									
		Mean	Std. Deviation	Std. Error Mea	n t	df	Sig. (2-tailed)		
Pair 1	Antes - Depois	1,400	2,413	0,76	3 1,835	9	0,100		

	One-Sample Statistics								
	N Mean Std. Deviation Std. Error Mean								
Antes	10	50,90	3,957	1,251					

	One-Sample Test										
		Test Value = 10									
				95% Confidence Interval of the Difference							
	t	df	Mean Difference	Lower	Upper						
Antes	3	9	40,900	,	j						

Com base nos *outputs* apresentados responda às seguintes questões:

- (a) Construa um intervalo a 98% de confiança para a diferença entre a capacidade média de concentração antes e depois do almoço.
- (b) Verifique se existe evidência suficiente nos resultados para afirmar que existem diferenças significativas entre a capacidade de concentração antes e depois do almoço.
- (c) Teste se podemos admitir uma variabilidade da capacidade de concentração antes do almoço igual 10.
- (d) Calcule o p-value associado ao teste de hipóteses da alínea anterior.
- (e) Considere o teste de hipóteses $H_0: \mu_X \leq k \ vs \ H_1: \mu_X > k$, onde μ_X representa o valor médio da capacidade de concentração antes do almoço. Sabendo que se rejeita a hipótese H_0 , ao nível de significância de 5%, para um valor de $\bar{x} > 56$, determine o valor da constante k.
- 14. A uma eleição concorrem três candidatos A, B e C. Qualquer deles admite desistir se esperar obter menos de 10% dos votos. Uma sondagem a 150 potenciais eleitores revelou as seguintes intenções de voto:

	A	В	С
Nº de Intenções de Voto	12	74	64

- (a) Determine um intervalo de confiança a 95% para a proporção de votos no candidato B.
- (b) Teste, ao nível de significância de 5% se o candidato A deve desistir.
- (c) Calcule o *p-value* associado ao teste da alínea anterior.
- (d) Qual é o número máximo de intenções de voto que um dos candidatos poderia obter para que fosse levado a desistir? (Considere um nível de confiança de 99%)
- 15. Suponha que o teor de nicotina de duas marcas de cigarros foi analisado, não se tendo rejeitado a hipótese de serem provenientes de populações com distribuição normal, nem de possuírem homogeneidade de variâncias. Admita que, numa amostra de 40 cigarros da marca A, o teor médio é 2.65mg e o desvio padrão 0.23mg e, numa amostra de 35 cigarros da marca B, o teor médio é 2.30mg e o desvio padrão 0.22mg.
 - (a) Teste, para uma confiança de 99%, se o teor médio de nicotina dos cigarros da marca A é superior ao teor médio de nicotina dos cigarros da marca B.
 - (b) Calcule o p-value associado ao teste da alínea anterior.
 - (c) Se o verdadeiro valor do teor médio de nicotina dos cigarros da marca A for de 2.1mg, determine a potência associada ao teste $H_0: \mu_A = 2.5 \ vs \ H_1: \mu_A \neq 2.5$.

16. Para comparar a resistência ao esforço físico de duas populações, A e B, submeteram-se dois grupos de indivíduos, um de cada população, a um exercício na passadeira rolante, medindo-se o tempo (em minutos) até ao consumo máximo de oxigénio.

Considere que X e Y representam o tempo (em minutos) até ao consumo máximo de oxigénio para cada indivíduo da população A e da população B, respectivamente. Admite-se que X e Y têm distribuição normal. Caso necessite utilize os seguintes resultados:

$$\sum_{i=1}^{10} x_i = 109.9, \ \sum_{i=1}^{10} (x_i - \bar{x})^2 = 49.41, \ \sum_{i=1}^{11} y_i = 174.7 \ e \sum_{i=1}^{11} (y_i - \bar{y})^2 = 111.74$$

- (a) Indique estimativas pontuais para o valor médio e desvio padrão de Y.
- (b) Determine um intervalo a 90% de confiança para o tempo médio até ao consumo máximo de oxigénio dos indivíduos da população B.
- (c) Obteve-se o seguinte intervalo de confiança para a razão de variâncias das duas populações: [0.0995; 2.584]. Determine o nível de confiança desse intervalo.
- 17. Com o objectivo de estudar algumas características dos jogadores de futebol que participam no Campeonato Europeu de Futebol de 2008, que está a decorrer na Áustria e na Suíça, foi recolhida aleatoriamente uma amostra de 72 jogadores, para os quais foram registados os valores das seguintes variáveis: país de origem, posição em campo (guarda-redes, defesa, médio, avançado), altura (em cm), peso (em kg), idade (em anos) e número de internacionalizações. Na amostra recolhida, 12 jogadores são da República Checa e 12 são da Grécia.

Tests of Normality

	Kolmogo	rov-Sn	nirnova	Shapiro-Wilk		
	Statistic	df	Sig.	Statistic	df	Sig.
Altura dos jogadores Checos	0,141	12	0,200*	0,946	12	0,574
Altura dos jogadores Gregos	0,167	12	0,200*	0,930	12	0,376

a. Lilliefors Significance Correction

Independent Samples Test

		Levene's	Test for Equality of Variances
		F	Sig.
Altura dos jogadores	Equal variances assumed	1,047	0,317

Group Statistics

	Grupo	N	Mean	Std. Deviation	Std. Error Mean
Altura dos jogadores	1	12	178,00	5,527	1,595
Aitura dos jogadores	2	12	180,00	4,390	1,267

^{*.} This is a lower bound of the true significance.

Com base nos resultados apresentados:

- (a) Determine um intervalo a 98% de confiança para a diferença entre as alturas médias dos jogadores checos e gregos. Justifique, convenientemente, a escolha do intervalo de confiança utilizado.
- (b) Indique a margem de erro associada ao intervalo anterior.
- (c) Para $\alpha=5\%$, diga se há diferença entre as alturas médias dos jogadores checos e gregos. Justifique, convenientemente, a sua resposta.
- (d) Averigue se podemos admitir que a altura média dos jogadores checos é superior a 175 cm (use um nível de significância de 1%).
- (e) Calcule o *p-value* associado ao teste anterior. Qual a conclusão a retirar a partir deste valor?
- (f) Qual deverá ser a altura média (amostral) dos jogadores checos de modo a poder considerar-se que a altura média (populacional) desses jogadores é superior a 175 cm, para um $\alpha=1\%$?
- (g) Será que existe evidência estatística suficiente nos dados, ao nível de significância de 1%, para dizer que a variância das alturas dos jogadores checos é superior à variância das alturas dos jogadores gregos?
- 18. De 72 jogadores inquiridos, 36 jogam em equipas estrangeiras, 34 em equipas do país de origem e 2 não têm equipa. Um conhecido jornal desportivo tem na sua primeira página a seguinte notícia: "mais de 40% dos jogadores do Campeonato Europeu de Futebol de 2008 jogam em equipas estrangeiras". Considerando um nível de significância de 5%, diga se concorda ou não com esta notícia.
- 19. Foi levado a cabo um estudo para averiguar se a ausência às aulas durante o semestre de Inverno é maior num centro urbano do norte ou do sul. Para tal, forma seleccionados aleatoriamente dois grupos de alunos: um grupo na cidade de Braga (X) e o outro na cidade de Faro (Y). De 300 estudantes de Braga, 64 faltaram pelo menos um dia e de 400 de Faro, 51 faltaram um ou mais dias.
 - (a) Determine o intervalo de confiança a 99% para a diferença entre as proporções de estudantes que faltaram pelo menos um dia às aulas durante o Inverno.
 - (b) Teste, ao nível de significância de 1%, se é possível afirmar-se que, durante o Inverno, se falta (pelo menos um dia) mais às aulas na região norte do que na região sul.
 - (c) Calcule o *p-value* associado ao teste anterior. Qual a conclusão a retirar a partir deste valor?
 - (d) Obteve-se o seguinte intervalo de confiança para a proporção de faltas na região sul:]0.0913; 0.1637[. Determine o nível (ou coeficiente) de confiança desse intervalo. Qual o desvio padrão da variável aleatória que mede a pluviosidade anual nessa região?

20. Tome-se o seguinte exemplo, relativo a dois tipos de geradores (I e II), e considere-se que

$$n_X = 27, \ \bar{x} = 10.0241, \ s_X = 4.20283$$

 $n_Y = 23, \ \bar{y} = 10.0496, \ s_Y = 3.53775$

com as variáveis X e Y a representarem a produção de energia eléctrica em KW/h do gerador do tipo I e II, respectivamente, e que a produção de energia eléctrica de ambos segue uma distribuição normal.

- (a) Teste se existe evidência estatística suficiente (para um ?=1%) para afirmar que o valor esperado da produção de energia eléctrica é igual nos dois geradores.
- (b) Calcule o *p-value* associado ao teste anterior. Qual a conclusão a retirar a partir deste valor?
- (c) O fabricante afirma que o desvio padrão da produção de energia eléctrica através do gerador II é de 4KW/h. Comente a afirmação do fabricante.
- (d) Determine um intervalo a 98% de confiança para a razão entre a variabilidade da produção de energia eléctrica dos dois geradores.

Docentes: Dulce Gomes e Patrícia Filipe