TRC3000 Automation Project

Management: Failure Mode & Effects Analysis

Associate Professor Tuck Wah NG

Tuck.Ng@monash.edu

Motivation

- FMEA seeks improvements in:
 - Safety
 - Quality
 - Reliability
- Other potential benefits that it brings
 - Improves company image
 - Reduces costly product recalls
 - Creates a record to differentiate from competitors

History of FMEA

- Created by the aerospace industry in the 1960s.
- Ford began using FMEA in 1972 to analyze their engineering designs.
- Chrysler, Ford, and General Motors developed QS9000, an automotive equivalent to ISO9000. Design and process FMEAs were a standard for compliance with the QS9000
- Automotive Industry Action Group (AIAG) and American Society for Quality Control (ASQC) presented an FMEA manual that was approved by the Big Three automakers in 1993.

NASA and FMEA (1)

- On April 4, 1983, Challenger launched on her maiden voyage
- On January 28, 1986, seventy-three seconds into the mission, the Challenger exploded, killing the entire crew
- "Statistics don't count for anything," -Will Willoughby, the National Aeronautics and Space Administration's former head of reliability and safety during the Apollo moon landing program.
- This design-oriented only view prevailed in NASA in the 1970s, when the space shuttle was designed and prototypes built by many engineers that worked on the Apollo program.

- The real value of probabilistic risk analysis is in understanding the system and its vulnerabilities," -Benjamin Buchbinder, manager of NASA's risk management program.
- After the Challenger disaster, NASA began using risk estimation to address the relative probabilities of a particular hazardous condition arising from failure modes, human errors, or external situations.
- Since then, NASA formally adopted the FMEA as its principal means of identifying design failures

FMEA Procedure

10) Update the FMEA as action is taken

FMEA Worksheet

Example of Concept FMEA on Bicycle Brake Cable (with new nylon material)

Function	Potential Failure Mode	Potential Effect(s) of Failure	S e v	Potential Cause(s)/ Mechanism(s) of Failure	0 0 0	Current Design Controls (Prevention)	Current Design Controls (Detection)	D e t	R P N	Concerns
The brake cable provides adjustable and calibrated movement between the brake lever and brake caliper, under specified conditions of use and operating environment.		Operator is unable to close brake calipers, wheel does not slow down, possibly resulting in accident.	10	Abrasive wear of nylon cable due to wrong material selected	3	Cable material selection based on ANSI Standard #ABC.	Cable strength test# 456	2	60	Strength of new nylon cable material is less than steel for similar diameter
				Nylon material becomes brittle due to low humidity and bending loads	6		Testing samples undergo laboratory analysis for cracks per test regimen #456	5	300	Brittle nylon material is major concern in low humidity applications
	Cable binds	Increased friction between cable and sheath, resulting in operator having to use greater effort to close brake calipers.	8	Bend or kink in cable due to mis-routing	5	Nylon cable material design guide #123	Finite Element Analysis of all new cable material	2	70	Added controls will be needed in plant cable assembly
				Inadequate or wrong Iubrication between cable and sheath	1	Cable lubrication design guide #678	Brake lever effort test #789	1	7	
	brake caliper or brake lever locking nut)	Brake caliper does not close properly when brake lever is pulled, resulting in inadequate friction between brake pads and wheel, with possibility of accident.		Brake cable diameter too small to maintain secure position when locking nut is engaged	5	Tolerance study of cable locking mechanism	Brake calibration test #567	2	100	Redesign of cable locking mechanism will be needed

Severity Ratings

	I	T	
Ranking	Effect	Criteria: Severity of Effect	
_			
1	None	No effect.	
2	Very Minor	Very minor effect on product or system performance.	
3	Minor	Minor effect on product or system performance.	
4	Low	Small effect on product performance.	
		The product does not require repair.	
5	Moderate	Moderate effect on product performance.	
		The product requires repair.	
6	Significant	Product performance is degraded.	
		Comfort or convenience functions may not operate.	
7	Major	Product performance is severely affected but functions.	
		The system may not be operable.	
8	Extreme	Product is inoperable with loss of primary function.	
		The system is inoperable.	
9	Serious	Failure involves hazardous outcomes and / or noncompliance with government	
		regulations or standards.	
10	Hazardous	Failure is hazardous and occurs without warning. It suspends operation of the	
		system an/or involves noncompliance with government regulations.	

Occurrence Ratings

Ranking	Effect	Criteria: Severity of Effect	
1	None	No effect.	
2	Very Minor	Very minor effect on product or system performance.	
3	Minor	Minor effect on product or system performance.	
4	Low	Small effect on product performance. The product does not require repair.	
5	Moderate	Moderate effect on product performance. The product requires repair.	
6	Significant	Product performance is degraded. Comfort or convenience functions may not operate.	
7	Major	Product performance is severely affected but functions. The system may not be operable.	
8	Extreme	Product is inoperable with loss of primary function. The system is inoperable.	
9	Serious	Failure involves hazardous outcomes and / or noncompliance with government regulations or standards.	
10	Hazardous	Failure is hazardous and occurs without warning. It suspends operation of the system an/or involves noncompliance with government regulations.	

Detection Ratings

Ranking	Criteria: Detection Probability	
1	1 Almost Certain Detection	
2	2 Very High Chance of Detection	
3	High Probability of Detection	
4	Moderately High Chance of Detection	
5	Moderate Chance of Detection	
6	Low Probability of Detection	
7	Very Low Probability of Detection	
8	Remote Chance of Detection	
9	Very Remote Chance of Detection	
10	Absolute Uncertainty – No Control	

Risk Priority Number (RPN)

The RPN prioritizes the relative importance of each failure mode and effect on a scale of 1 - 1000. It is calculated as follows:

$RPN = (Severity) \times (Occurrence) \times (Detection)$

- 1. A 1000 rating implies a certain failure that is hazardous and harmful.
- 2. A 1 rating is a failure that is highly unlikely and unimportant.
- 3. Rating below 30 are reasonable for typical applications.
- 4. Ratings above 100 typically need to be attended to.

- Based on the RPN number, some recommended actions to be developed include:
 - Assign responsibilities
 - Outline corrective actions
 - Revise test plans, material specifications
- These actions should be specific, not general action items.

Simulink Fault Analyzer

Simulink Fault Analyzer enables systematic fault injection and safety analysis using simulation.

This can be used to identify possible faults so that RPNs can be assigned.