モーメント法

機械学習

川田恵介 (keisukekawata@iss.u-tokyo.ac.jp)

Table of contents

1	シンプルなモデルの推定	2
1.1	それぞれの特徴	2
1.2	実例	2
1.3	分布	2
1.4	事例のばらつき例	3
1.5	イメージ図	3
1.6	イメージ図	3
1.7	データ分析の限界	4
1.8	Yの平均値の利点	4
1.9	数值例	4
1.10	数值例: 平均值	5
1.11	信頼区間	5
1.12	数值例: 信頼区間	6
1.13	数值例: 現実	6
1.14	数值例: 現実	7
1.15	数値例: "不幸な" 現実	7
1.16	確率的意思決定	8
1.17	性質: 信用確率	8
1.18	数值例: 現実	8
1.19	性質: 事例数	9
1.20	数值例: 小規模事例	10
1.21	数值例: 小規模事例	10
1.22	まとめ	11

1 シンプルなモデルの推定

- 事例数に比べて、 β の数が少ないモデルであれば、OLS や平均値は有力な推定方法
- OLS や平均値などを含む推定方法

1.1 それぞれの特徴

- 機械学習は、ある程度の事例数はあるが、Xの組み合わせがそれ以上多い場合に有効
 - 平均値と近い値が推定できるように設計されているが、具体て k にどの程度近いのかは不透明
- 平均値や OLS は、"十分な事例数のもとで、平均値を知りたいのであれば"、が有力
 - 推定値の分布が明確であり、推定誤差 (信頼区間) を計算できるため

1.2 実例

• 信頼区間: 横線は、95% の確率で母平均を含む

1.3 分布

• 一般的な定義: 値のばらつき方

- 種類の分布を区別することが重要
 - 個別事例値のばらつき (事例の分布)
 - 平均値などの、事例の分布を特徴づける値のばらつき

1.4 事例のばらつき例

- 自身のデータにおける Y のばらつき
- 仮想的な母集団における Y のばらつき
 - 上記は一般に一致しない
 - 事例から計算される値 (平均値など) も一致しない

1.5 イメージ図

1.6 イメージ図

• 赤色: 実際にわかる/灰色: 実際にはわからない

1.7 データ分析の限界

- 母平均と推定値は一致しない
 - 推定値 = 母平均 と主張すると、"100%"を嘘を主張してしまう

1.8 Yの平均値の利点

- Yの平均値の分布が、理論的に類推できる!!!
- 事例数が十分あり、ランダムサンプルングであれば、
 - 平均値の分布は正規分布 (ベル型分布) で近似でき、具体的に推定できる
 - * 中心極限定理と呼ばれる
 - 数値実験より、200事例以上を要求
- 平均値を保管する指標、信頼区間を計算できる

1.9 数值例

- Yの平均値を推定する
 - 母平均は 0.5
 - 事例数は500
 - 1000 名の研究者が独自にデータを収集し、計算する

1.10 数值例: 平均值

1.11 信頼区間

- データから計算される区間
 - 一定割合 (初期値では 95%) のデータについて、母平均を含む区間
 - 「データ上の平均値は正規分布に従う」、という性質から計算できる

1.12 数值例: 信頼区間

1.13 数值例: 現実

1.14 数值例: 現実

1.15 数値例: "不幸な"現実

1.16 確率的意思決定

- 一定確率で必ず"間違いを犯す"ことを許容する必要がある
 - 保険への加入、薬の服用等々
- "分析結果"も同様
 - 信頼区間を結果として報告する場合、一定確率で母平均を含む区間を報告してしまう
 - 初期設定では5%
 - * じゃんけんで3回負ける確率と同程度

1.17 性質: 信用確率

- 信用確率 (100 ミスを犯す確率) %
 - 「ある主張は信用確率が高いので採用する」
 - 仮想的な研究者の中で、母平均を含まない値を得る人の割合
 - * 類似概念: 火災に遭う人の割合
- 信用確率を上げるためには、信頼区間を広げる必要がある
 - 100% 間違わない信頼区間を得るためには、無限大に大きな区間が必要
 - * 分析結果を曖昧にしすぎており、"意味がない"

1.18 数值例: 現実

• 信用確率を 99.5% に変更 (じゃんけんで 5 回負ける確率と同程度)

1.19 性質: 事例数

- 平均値を計算するために用いた事例数の減少は、
 - 信頼区間を広げ、結論を曖昧にする
- 大幅な減少 (100 事例を割るなど) は
 - 信頼区間の計算が不可能になる
 - * 代替案: 最尤法/ベイズ法による推定
 - ・ 問題点: より非現実的な仮定が必要なケースが多い

1.20 数值例: 小規模事例

1.21 数值例: 小規模事例

1.22 まとめ

- OLS や平均値は、 β の数が事例数に比べて十分に少なければ、母平均を推論する優れた方法
 - 信頼区間を計算できる
 - * 平均値を用いる場合は、ざっくり 200 事例以上
- LASSO などの機械学習は、複雑な性質を持っており、信頼区間の計算方法が確立されていない