MODELO EBC - EIQ540 CONTROL DE PROCESOS

COMPETENCIAS

C10 Diseña y simula sistemas, componentes o procesos relevantes para la solución de problemas en el campo de la ingeniería de procesos químicos

	Resulta	dos d	le Ar	orend	izaje
--	---------	-------	-------	-------	-------

RA10.1	Reconocer los elementos que componen un sistema de control de acuerdo a su rol en el proceso.
RA10.2	Desarrollar e interpretar diagramas P&ID de acuerdo a la norma ISA.
RA10.3	Describir el comportamiento dinámico de sensores y actuadores de acuerdo a sus especificaciones técnicas y condiciones de operación.
RA10.4	Describir el comportamiento dinámico de procesos utilizando modelos fenomenológicos.
RA10.5	Diseñar y analizar sistemas de control de procesos químicos de acuerdo los objetivos de control y tipo de sistema operado

EVALUACIÓN TRADICIONAL

PRUEBA 1 (HE1)	25%	(evalúa RA10.1, RA10.2 y RA10.3)	NP = HE1*0,25 + HE2*0,25 + HE3*0,25 + HE4*0,25	NP = Nota Presentación
PRUEBA 2 (HE2)	25%	(evalúa RA10.4)		NE = Nota Examen
PRUEBA 3 (HE3)	25%	(evalúa RA10.5)	NF = NP*0,6 + NE*0,4	NF = Nota Final
TRABAJO (HE4)	25%	(evalúa RA10.1, RA10.2, RA10.3, RA10.4 v RA10.5)		

EVALUACIÓN COMPETENCIAS

RA10.1	20%
RA10.2	10%
RA10.3	7,5%
RA10.4	30%
RA10.5	32,5%

C10 = RA10.1*0.2+RA10.2*0.1+RA10.3*0.075+RA10.4*0.3+RA10.5*0.325

	RA10.1	RA10.2	RA10.3	RA10.4	RA10.5
PRUEBA 1 (HE1)	15	5	5		
PRUEBA 2 (HE2)				25	
PRUEBA 3 (HE3)					25
TRABAJO (HE4)	5	5	2,5	5	7,5

ponderaciones hacia la	20	10	7.5	30	22.5
competencia	20	10	7,5	30	32,3

		IG1		IG	i2	IG	ì3			
# Rut	IE1	IE2	IE3	IE4	IE5	IE6	IE7	NOTA		
	10,0	30,0	20,0	10,0	10,0	10,0	10,0	7,0		
	0,0	0,0	0,0	0,0	0,0	0,0	0,0	1,0	RA Indicador general % Indicador específico	%
									IE1 Desarrolla análisis de grados de libertad de un proceso	10
									RA10.1 IG1 Reconocer los elementos que componen un sistema de control de acuerdo a su rol en el proceso. 60 IE2 Determina estado natural de procesos	30
									IE3 Determina lógicas de control de procesos	20
									RA10.2 IG2 Desarrollar e interpretar diagramas P&ID de acuerdo a la norma ISA. Desarrollar e interpretar diagramas P&ID de acuerdo a la 1E5 Desarrolla diagramas P&ID	10
									norma ISA. IE5 Desarrolla diagramas P&ID	10
									RA10.3 IG3 Describir el comportamiento dinámico de sensores y actuadores de acuerdo a sus especificaciones técnicas y 20 IE6 Modela sensores y actuadores	10
									condiciones de operación. Section 103 103 actuadores de acuer do a sus especificaciones technicas y condiciones de operación. 1E7 Determina parámetros dinámicos y estáticos de sensores y actuadores	10
									100	100

		IG1									
# Rut	IE1	IE2	IE3	NOTA							
	20,0	20,0	60,0	7,0							
	0,0	0,0	0,0	1,0							
					RA	Indica	ador general	%	ln	dicador específico	%
							Describir al comportomiento dinémico de process			Modela sistemas en estado transitorio	20
					RA10.4		Describir el comportamiento dinámico de procesos utilizando modelos fenomenológicos.	100	IE	Simula sistemas en estado transitorio	20
									IE	Describe el comportamiento dinámico de sistemas de acuerdo a las condiciones de entrada de proceso	60

Rut IE1 IE2 IE3 NOTA 30,0 30,0 40,0 7,0 0,0 0,0 0,0 1,0 RA Indicador general % Indicador específico RA Indicador general % Indicador específico RA10.5 IG1 Diseñar y analizar sistemas de control de procesos químicos de acuerdo los objetivos de control y tipo de sistema operado IE3 Analiza sistemas controladores en frecuencia
0,0 0,0 0,0 1,0 RA Indicador general
RA Indicador general % Indicador específico Diseñar y analizar sistemas de control de procesos químicos de acuerdo los objetivos de control y tipo 100 IE2 Analiza sistemas controladores en amplitud
Diseñar y analizar sistemas de control de procesos químicos de acuerdo los objetivos de control y tipo Diseñar y analizar sistemas de control y tipo
RA10.5 IG1 químicos de acuerdo los objetivos de control y tipo 100 IE2 Analiza sistemas controladores en amplitud
de sistema operado IE3 Analiza sistemas controladores en frecuencia

IE1	5,0 10,0 5,0 10,0 10,0 5,0 5,0 5,0 10,0 5,0 5,0 10,0 10			IG1		IC	G2	IC	G 3		IG4			IG5			
0,0 0,0 0,0 0,0 0,0 0,0 0,0 0,0 0,0 0,0		ut	IE1	IE2	IE3	IE4	IE5	IE6	IE7	IE8	IE9	IE10	IE11	IE12	IE13	NOTA	
			5,0	10,0	5,0	10,0	10,0	5,0	5,0	10,0	5,0	5,0	10,0	10,0	10,0	7,0	
			0,0	0,0	0,0	0,0	0,0	0,0	0,0	0,0	0,0	0,0	0,0	0,0	0,0	1,0	
																	R

	Indi	icador general	%	Indi	cador específico	9
				IE1	Desarrolla análisis de grados de libertad de un proceso	ļ
.1	1(-1	Reconocer los elementos que componen un sistema de control de acuerdo a su rol en el proceso.	20	IE2	Determina estado natural de procesos	1
		oona, o, ao		IE3	Determina lógicas de control de procesos	ļ
,	IG2	Desarrollar e interpretar diagramas P&ID de acuerdo a la	20	IE4	Intepreta diagramas P&ID	1
.2	102	norma ISA.	20	IE5	Desarrolla diagramas P&ID	1
,		Describir el comportamiento dinámico de sensores y	,	IE6	Modela sensores y actuadores	ļ
.3		actuadores de acuerdo a sus especificaciones técnicas y condiciones de operación.	10	IE7	Determina parámetros dinámicos y estáticos de sensores y actuadores	ļ
				IE8	Modela sistemas en estado transitorio	1
.4	IG4	Describir el comportamiento dinámico de procesos utilizando modelos fenomenológicos.	20	IE9	Simula sistemas en estado transitorio	
				IE10	Describe el comportamiento dinámico de sistemas de acuerdo a las condiciones de entrada de	ļ
		Dia 7		IE11	Sintoniza controladores PID	1
.5	16-5	Diseñar y analizar sistemas de control de procesos químicos de acuerdo los objetivos de control y tipo de sistema operado	30	IE12	Analiza sistemas controladores en amplitud	1

IE13 Analiza sistemas controladores en frecuencia 10
100

EV	'ALUACI	ÓN TRA	DICION	AL			EVALU	ACIÓN DE	COMPET	ENCIAS	
# Rut	HE1	HE2	HE3	HE4	NOTA	RA10.1	RA10.2	RA10.3	RA10.4	RA10.5	C10
	7,0	7,0	7,0	7,0	7,0	7,0	7,0	7,0	7,0	7,0	7,0
	1,0	1,0	1,0	1,0	1,0	1,0	1,0	1,0	1,0	1,0	1,0