Lista zadań nr 5: transakcje i optymalizacja

T1. (2pkt.) Rozważmy następujące klasy harmonogramów (definicje poniżej): serializowalne, bez kaskadowych przerwań (avoiding-cascading-aborts), odtwarzalne (recoverable) i ścisłe (strict), oraz następujące protokoły 2PL, S2PL, znaczników czasowych i walidacji.

Dla każdego harmonogramu poniżej oceń do jakich klas on należy i, które z protokołów go dopuszczają. Jeśli z jakiegoś powodu nie możesz się zdecydować to uzasadnij dlaczego. Akcje, poprzedzone nazwą transakcji, są podane w kolejności w jakiej mają być wykonane, jesli commit/abort nie jest pokazany to załóż, że może wystąpić jedynie po wszystkich podanych akcjach. Załóż, że znacznikiem czasowym transakcji Ti jest i.

```
T1:R(X), T2:R(X), T1:W(X), T2:W(X)
T1:W(X), T2:R(Y), T1:R(Y), T2:R(X)
T1:R(X), T2:R(Y), T3:W(X), T2:R(X), T1:R(Y)
T1:R(X), T1:R(Y), T1:W(X), T2:R(Y), T3:W(Y), T1:W(X), T2:R(Y)
T1:R(X), T2:W(X), T1:W(X), T2:Abort, T1:Commit
T1:R(X), T2:W(X), T1:W(X), T2:Commit, T1:Commit
T1:W(X), T2:R(X), T1:W(X), T2:Abort, T1:Commit
T1:W(X), T2:R(X), T1:W(X), T2:Commit, T1:Commit
T1:W(X), T2:R(X), T1:W(X), T2:Commit, T1:Commit
T1:W(X), T2:R(X), T1:W(X), T2:Commit, T1:Abort
T2:R(X), T3:W(X), T3:Commit, T1:W(Y), T1:Commit, T2:R(Y), T2:W(Z), T2:Commit
T1:R(X), T2:W(X), T2:Commit, T1:W(X), T1:Commit, T3:R(X), T3:Commit
T1:R(X), T2:W(X), T1:W(X), T3:R(X), T1:Commit, T2:Commit, T3:Commit
```

Definicje. Harmonogram jest (1) serializowalny jeśli jest równoważny jakiemuś harmonogramowi szeregowemu; (2) odtwarzalny (recoverable) jeśli transakcja może być zatwierdzona dopiero jeśli wszystkie transakcje, których dane przeczytała są zatwierdzone; (3) ścisły jeśli wszystkie dane, które czyta lub zapisuje były zmieniane wcześniej wyłącznie przez zatwierdzone transakcje. Harmonogram unika kaskadowych przerwań jeśli czyta jedynie dane zapisane przez zatwierdzone transakcje.

T2. (1 pkt.) Kiedy i dlaczego transakcja jest odrzucana w przypadku stosowania metody znaczników czasowych oraz metody walidacji? Podaj moment i powód odrzucenia.

- O1. (1 pkt.) Rozważmy operację LIMIT(R, k) wybierającą próbkę k krotek z relacji R. Sformułuj i udowodnij zasady przemienności (czyli wzajemnej rozdzielności) tej operacji z pozostałymi operacjami algebry relacji: ×, σ, ∪, ∩, \ oraz π, a także operacją złączenia naturalnego. Formułując zasady weź pod uwagę specyfikę operacji LIMIT(k): jej zadaniem jest zwrócenie dowolnych k krotek i dwa wywołania LIMIT(k) mogą być równoważne, nawet gdy zwracają różne krotki.
- O2. (2 pkt.) Rozważmy złączenie relacji semestr, przedmiot _semestr, przedmiot, grupa, uzytkownik (alias prac), wybor, uzytkownik (alias stud) z bazy danych zapisów, które posłuży nam do wybrania trójek:

(prac.nazwisko, stud.nazwisko, semestr.nazwa)

takich, że dany student uczęszcza na jakieś zajęcia do danego pracownika w danym semestrze. Sprawdź, w jakiej kolejności PostgreSQL wykona powyższy ciąg złączeń i czy zależy on porządku, w jakim podajesz (łączysz) relacje na liście FROM. Przedstaw plan zapytania PostgreSQL w postaci drzewa. Następnie dodaj do zapytania:

- warunek na nazwisko pracownika;
- warunek na nazwisko studenta.

Jak każdy z warunków wpływa na drzewo zapytania?