# Business Analytics PLS Regression

Instructor: Hrant Davtyan

Course: Business Analytics, Fall, MSSM, 2018

#### Content

- 1. Curse of dimensionality
- 2. Partial Least Squares (PLS)
- 3. Advantages and applications of PLS
- 4. Example

# Curse of dimensionality

# Problems of high dimensional data

- 1. High dimensional data data with large number of features, attributes or characteristics
- 2. Dimensionality of a model the number of independent or input variables used by the model
- 3. Problems:
  - Many highly correlated input variables (in linear regression this will cause multicollinearity)
  - Number of variables may be bigger than number of observations
  - Traditional analysis methods (e.g. linear regression) may fail or become computationally intractable

## Problems of high dimensional data

Curse of dimensionality- The difficulties posed by adding a variable increase exponentially with the inclusion of each variable.

#### One way to think of this intuitively

If we expand the chessboard to a cube, we increase the dimensions by 50%-from 2 dimensions to 3 dimensions. However, the location options increase by 800%, to 512 (8x8x8).



# Example

- 1. One more problem there may be not only many dependent variables but also more than one independent variable
- 2. Example of data where dependent and independent variables are explained by many factors:



### What to do?

Use models that will reduce the dimension of data!

# Partial Least Squares (PLS)

# What is PLS Regression?

- 1. The goal of partial least squares is to predict Y from X and to describe the common structure underlying the two variables
- 2. PLS maximizes the covariance between the target variables (Y) and the predictive variables (X).
- 3. Basically we want to do linear regression between two tables (1,2)

| Table 1: X variables |            |        |       |         |               | Table 2: Y variables |         |         |         |         |         |         |         |         |            |         |         |
|----------------------|------------|--------|-------|---------|---------------|----------------------|---------|---------|---------|---------|---------|---------|---------|---------|------------|---------|---------|
| Wine Name            | Varietal   | Origin | Color | Price   | Total acidity | Alcohol              | Sugar   | Tannin  | Fruity  | Floral  | Vegetal | Spicy   | Woody   | Sweet   | Astringent | Acidic  | Hedonic |
| 1                    | Merlot     | Chile  | Red   | - 0.046 | - 0.137       | 0.120                | - 0.030 | 0.252   | - 0.041 | - 0.162 | - 0.185 | 0.154   | 0.211   | - 0.062 | 0.272      | 0.044   | - 0.235 |
| 2                    | Cabernet   | Chile  | Red   | - 0.185 | - 0.165       | 0.140                | - 0.066 | 0.335   | - 0.175 | - 0.052 | - 0.030 | 0.041   | 0.101   | - 0.212 | 0.385      | - 0.115 | - 0.235 |
| 3                    | Shiraz     | Chile  | Red   | - 0.116 | - 0.162       | 0.219                | - 0.088 | 0.176   | 0.093   | - 0.271 | - 0.030 | 0.380   | 0.211   | - 0.062 | 0.160      | - 0.275 | - 0.235 |
| 4                    | Pinot      | Chile  | Red   | 0.093   | - 0.278       | 0.061                | - 0.003 | 0.098   | - 0.175 | - 0.052 | - 0.030 | - 0.072 | 0.101   | - 0.361 | 0.047      | 0.044   | - 0.105 |
| 5                    | Chardonnay | Chile  | White | 0.023   | - 0.283       | 0.022                | - 0.045 | - 0.124 | - 0.175 | 0.058   | - 0.185 | 0.041   | 0.101   | - 0.212 | - 0.178    | 0.044   | 0.025   |
| 6                    | Sauvignon  | Chile  | White | - 0.116 | 0.049         | 0.022                | 0.015   | - 0.118 | 0.093   | 0.168   | 0.590   | - 0.185 | - 0.229 | 0.087   | - 0.178    | 0.204   | 0.155   |
| 7                    | Riesling   | Chile  | White | - 0.081 | 0.210         | - 0.175              | - 0.093 | - 0.127 | - 0.041 | 0.387   | - 0.030 | - 0.072 | - 0.119 | - 0.062 | - 0.178    | 0.364   | 0.220   |

# PLS Regression

- 1. PLS Regression finds **latent variables (non-observable)** that explain X and are also the best for explaining Y.
- 2. Or in other words, PLS is a regression method that allows for the identification of underlying factors, which are a linear combination of the explanatory variables (X) (also known as latent variables) which best model the response or Y variables
- 3. PLS is preferred as a predictive technique rather than interpretive
- 4. Two types of PLS regression
  - PLS1- data includes only one dependent variable (Y)
  - PLS2- there are more than one dependent variables (Y)

## Example of dimension reduction

An example of how latent variables can be extracted from 2 variables:



- From the graph, we see that Alcohol and Sugar are highly correlated.
- ➤ 1st Dimension explains the highest part of the variance of the data.
- 2nd Dimension explains the remaining part of the variance.
- So we got 2 new variables which are not correlated anymore.

#### **Process**

- 1. 1 set of latent variables is extracted for set of independent variables (X)
- 2. 1 set of latent variables is extracted **simultaneously** of set of dependent variables (Y)
- 3. The x-scores of independent latent variables are used to predict y-scores or dependent latent variables
- 4. Predicted y-scores are used to predict **observable** response variables
- 5. The x and y scores are selected by partial least squares so that the relationship of successive pairs of x and y scores is as strong as possible (maximum covariance)

## Steps to run PLS

- 1. Standardize the data
- 2. Define the number of latent variables (components) we want to keep in our PLS regression.
- 3. Fit a set of components to X
- 4. Fit a set of components to Y
- 5. Reconcile the two sets of components so as to maximize covariance of X and Y

# Advantages and applications of PLS

# Advantages

- 1. PLS is a **soft modeling** technique (no hard assumptions as e.g. LINE)
- 2. It can model both multiple dependent and multiple independent variables
- 3. Can handle multicollinearity
- 4. Stronger predictions as when creating scores of X takes into account the correlation with Y to be as higher as possible
- 5. Can be applied to small samples
- 6. It can handle range of variables: nominal, ordinal, continuous
- 7. Partial least squares has the added benefit of providing a graphical representation of the relationships between the variables **path diagrams**

# Path Diagrams Representations

- 1. Observable variables are represented in a rectangular form
- 2. Latent variables are represented in an oval form
- 3. Relationships between variables are represented with straight arrows



# **Applications**

- 1. Widely used in chemometric
- 2. Marketing (e.g. to find out factors that influence customer satisfaction which may be measured by many variables)
- 3. Industrial applications (e.g. to improve product quality through excellence in operation)
- 4. Economics (e.g. to model growth rate based on many economic and non-economic variables)









# Example

#### Using Partial Least Squares Regression to Model Vehicle Sales

- 1. The first factor explains 20.9% of the variance in the predictors and 40.3% of the variance in the dependent variable.
- 2. The second factor explains 55.0% of the variance in the predictors and 2.9% of the variance in the dependent.
- 3. Together, the first three factors explain 81.3% of the variance in the predictors and 47.4% of the variance in the dependent.

|                | Statistics |                          |            |                                         |                       |  |  |  |  |
|----------------|------------|--------------------------|------------|-----------------------------------------|-----------------------|--|--|--|--|
| Latent Factors | X Variance | Cumulative X<br>Variance | Y Variance | Cumulative Y<br>Variance (R-<br>square) | Adjusted R-<br>square |  |  |  |  |
| 1              | .209       | .209                     | .403       | .403                                    | .395                  |  |  |  |  |
| 2              | .550       | .760                     | .029       | .431                                    | .420                  |  |  |  |  |
| 3              | .053       | .813                     | .043       | .474                                    | .460                  |  |  |  |  |
| 4              | .089       | .902                     | .009       | .483                                    | .465                  |  |  |  |  |
| 5              | .026       | .927                     | .002       | .485                                    | .464                  |  |  |  |  |

#### Using Partial Least Squares Regression to Model Vehicle Sales

- 1. The parameters table shows the estimated regression coefficients for each independent variable for predicting the dependent variable.
- 2. Instead of the typical tests (e.g. t-test) of model effects, look to the variable importance in each latent variable.

|                   | Latent Factors |       |       |       |       |  |  |  |  |
|-------------------|----------------|-------|-------|-------|-------|--|--|--|--|
| Variables         | 1              | 2     | 3     | 4     | 5     |  |  |  |  |
| [type=Automobile] | 1.037          | 1.053 | 1.011 | 1.057 | 1.055 |  |  |  |  |
| price             | 2.088          | 2.028 | 1.965 | 1.949 | 1.946 |  |  |  |  |
| engine_s          | .512           | .618  | .900  | .934  | .932  |  |  |  |  |
| horsepow          | 1.472          | 1.424 | 1.386 | 1.375 | 1.372 |  |  |  |  |
| wheelbas          | 1.104          | 1.145 | 1.093 | 1.085 | 1.084 |  |  |  |  |
| width             | .139           | .298  | .301  | .360  | .370  |  |  |  |  |
| length            | .815           | .882  | .856  | .861  | .859  |  |  |  |  |
| curb_wgt          | .155           | .293  | .295  | .300  | .319  |  |  |  |  |
| fuel_cap          | .059           | .175  | .472  | .475  | .474  |  |  |  |  |
| mpg               | .457           | .460  | .546  | .544  | .561  |  |  |  |  |

Cumulative Variable Importance

#### **Parameters**

| Independent       | Dependent Variables<br>Insales |  |  |  |  |
|-------------------|--------------------------------|--|--|--|--|
| Variables         |                                |  |  |  |  |
| (Constant)        | -2.107                         |  |  |  |  |
| [type=Automobile] | 944                            |  |  |  |  |
| price             | 044                            |  |  |  |  |
| engine_s          | .356                           |  |  |  |  |
| horsepow          | 002                            |  |  |  |  |
| wheelbas          | .041                           |  |  |  |  |
| width             | 030                            |  |  |  |  |
| length            | .018                           |  |  |  |  |
| curb_wgt          | .068                           |  |  |  |  |
| fuel_cap          | 056                            |  |  |  |  |
| mpg               | .079                           |  |  |  |  |

# Thank you