

CHGM-141

General and Analytical Chemistry I

With Dr. Bailey

Recitation Week 12

(Bond Dissociation Energies, Entropy, Free Energy)

Part A:

1) Use the given average bond dissociation energies, D, to estimate ΔH for the reaction of methane, CH4(g), with fluorine according to the equation:

$$CH_4(g) + 2 F_2(g) \rightarrow CF_4(g) + 2 H_2(g)$$

Bond	D, k]/mol
C-F	450
C-H	410
F-F	158
Н-Н	436

$$H = \frac{1}{C} - H + 2F - F - F - C - F + 2H - H$$

$$H = D(Reactant bonds) - D(Product bonds)$$

$$2H' = \left[4D_{C-H} + 2D_{F-F}\right] - \left[4D_{C-F} + 2D_{H-H}\right] = \left[4mol\right] \cdot \left(410 \frac{KJ}{mol}\right) + \left(2mol\right) \cdot \left(58 \frac{KJ}{mol}\right) - \left[436 \frac{KJ}{mol}\right] = \left[4mol\right] \cdot \left(436 \frac{KJ}{mol}\right) = -1956 KJ - 2672 KJ = \left[-716 KJ\right]$$

Part B:

1) Determine the sign of ΔS° for each of the following:

I. $C6H6(s) \rightarrow C6H6(l) \leftarrow$

 \rightarrow II. $2 \operatorname{SO}_2(g) + \operatorname{O}_2(g) \rightarrow 2 \operatorname{SO}_3(g)$

- A) ΔS° should be negative for I and negative for II.
- B) ΔS° should be negative for I and positive for II.
- \bigcirc ΔS° should be positive for I and negative for II.
- \overline{D}) ΔS° should be positive for I and positive for II.

Liquids have more randomness and higher ENTRopy than solids (SO US)

$$\frac{2SO_2(g) + O_2(g)}{2+1 = 3 \text{ moles}} \rightarrow 2SO_3(g)$$

$$= Fewer moles of Product SO ASLO$$

- 2) The reaction of gaseous H_2 and liquid Br_2 to give gaseous HBr has $\Delta H = -17.4$ kcal/mol and $\Delta S = 27.2$ cal / (mol x K)
 - a) Write the balanced equation for this reaction
 - b) Does entropy increase or decrease in this process?
 - c) Is this process spontanious at all temperature? Explain.
 - d) What is the value of ΔG for the reaction at 300 K?

(a) $H_2(g) + Br_2(l) \longrightarrow 2 HBr(g)$

- (b) Entropy increases because the number of gaseous product molecules is greater than the number of gaseous reactant molecules.
- '(c) The process is spontaneous at all temperatures because ΔH is negative and ΔS is positive.
 - (d) $\Delta G = \Delta H T\Delta S$; $\Delta H = -17.4 \text{ kcal/mol}$; $\Delta S = 27.2 \text{ cal/(mol · K)}$; T = 300 K

$$T\Delta S = 300 \text{ K x } \frac{27.2 \text{ cal}}{\text{mol K}} \text{ x } \frac{1 \text{ kcal}}{10^3 \text{ cal}} = \frac{8.16 \text{ kcal}}{\text{mol}}$$

$$\Delta G = -17.4 \text{ kcal/mol} - 8.16 \text{ kcal/mol} = \sqrt{-25.6 \text{ kcal/mol}}$$

Reaction is "product-favored"

= spontaneous

-> see add. -> Sample problems

Part C:

Given:

Specific heat of water ice, 2.09J/g.°C Heat of fusion of water, 334J/g Specific heat of water, 4.18J/g.°C Heat of vaporization of water, 2260J/g Specific heat of water steam, 2.03J/g

Specific heat capacity of cupper is 0.382J/g.°C. Heat of fusion for copper is 205J/g

1) How much heat energy, in joules, is required to melt following:

a) 1.25 kg of copper at its melting point of
$$1083^{\circ}$$
C?
b) One mole of copper?
a) 1.25 kg Cu × $\frac{10^{3}g}{1 \text{ kg}}$ × $\frac{205 \text{ d}}{1 \text{ g cu}} = \frac{12.56 \times 10^{3} \text{ d}}{1 \text{ g cu}}$
b) MMCu = $63.55 \frac{3}{100}$ mol $63.55 \frac{4}{100}$ × $\frac{205 \frac{1}{100}}{100} = \frac{13028}{100} = \frac{13028}{100}$

2) Calculate the amount of heat required, in joules, to convert 125.0 g of ice at -15.0 °C to steam at 110.0 °C

(Hint: calculate the amount of heat required in each of the steps, and then add these amounts together to get your final answer).

these amounts together to get your final answer).

5 Steps: Resting is -> melting - heating water - evaporation - heating steam

125.0 g x
$$\frac{2.1 \text{ y}}{g.\text{ C}}$$
 $(0.0 - (-15.0))$ $(0.0 + 125.0 \text{ g})$ $(0.0 + 125.0 \text{$

See add. Sample problès

Gibbs Free Energy, G

$\Delta G^{\circ} = \Delta H^{\circ} - T \Delta S^{\circ}$

ΔH° ΔS° ΔG° Reaction
exo(-) increase(+) Prod-favored
endo(+) decrease(-)+ React-favored
exo(-) decrease(-)? T dependent
endo(+) increase(+)? T dependent

Sample Problems

Calculating ΔG°_{r×n} Example

Combustion of acetylene

$$C_2H_2(g) + 5/2 O_2(g) --> 2 CO_2(g) + H_2O(g)$$

 $\Delta H^{o}_{rxn} = -1238 \text{ kJ}$

 $\Delta S_{rxn}^{\circ} = -97.4 \text{ J/K or } -0.0974 \text{ kJ/K}$

 $\Delta G^{\circ}_{rxn} = -1238 \text{ kJ} - (298 \text{ K})(-0.0974 \text{ kJ/K})$ = -1209 kJ

Reaction is product-favored in spite of negative ΔS^{o}_{rxn}

Reaction is "enthalpy driven"

CHGM-141

General and Analytical Chemistry I

With Dr. Bailey

Recitation Week 12

(Bond Dissociation Energies, Entropy, Free Energy)

Part A:

1) Use the given average bond dissociation energies, D, to estimate ΔH for the reaction of methane, CH₄(g), with fluorine according to the equation:

$$CH_4(g) + 2 F_2(g) \rightarrow CF_4(g) + 2 H_2(g)$$

Bond	D, k]/mol
C-F	450
C-H	410
F-F	158
Н-Н	436

$$H = \frac{H}{C} - H + 2F - F - F - C - F + 2H - H$$

$$DH' = D(Reactant bonds) - D(Product bonds)$$

$$2H' = \left[4D_{C-H} + 2D_{F-F}\right] - \left[4D_{C-F} + 2D_{H-H}\right] = \left[4mol\right] \cdot \left(410 \frac{KS}{mol}\right) + \left(2mol\right) \cdot \left(58 \frac{KS}{mol}\right) - \left[436 \frac{KS}{mol}\right] = \left[4mol\right] \cdot \left(450 \frac{KS}{mol}\right) + \left(2mol\right) \cdot \left(436 \frac{KS}{mol}\right) = 1956 KS - 2672 KS = [-716 KS]$$

Part B:

1) Determine the sign of ΔS° for each of the following:

I. $C_6H_6(s) \rightarrow C_6H_6(l) \leftarrow$

 \rightarrow II. $2 \operatorname{SO}_2(g) + \operatorname{O}_2(g) \rightarrow 2 \operatorname{SO}_3(g)$

- A) ΔS° should be negative for I and negative for II.
- B) ΔS° should be negative for I and positive for II.
- $\bigcirc \Delta S^{\circ}$ should be positive for I and negative for II.
- \overline{D}) ΔS° should be positive for I and positive for II.

Liquids have more randomness and higher Entropy than solids

 $\frac{2SO_2(g) + O_2(g)}{2+1 = 3 \text{ moles}} \rightarrow 2SO_3(g)$ = Fewer moles of paramet so ASLO

2) The reaction of gaseous H_2 and liquid Br_2 to give gaseous HBr has $\Delta H = -17.4$ kcal/mol and $\Delta S = 27.2$ cal / (mol x K)

- a) Write the balanced equation for this reaction
- b) Does entropy increase or decrease in this process?
- c) Is this process spontanious at all temperature? Explain.
- d) What is the value of ΔG for the reaction at 300 K?

(a) $H_2(g) + Br_2(l) \longrightarrow 2 HBr(g)$

- (b) Entropy increases because the number of gaseous product molecules is greater than the number of gaseous reactant molecules.
- (c) The process is spontaneous at all temperatures because ΔH is negative and ΔS is positive.
- (d) $\Delta G = \Delta H T\Delta S$; $\Delta H = -17.4 \text{ kcal/mol}$; $\Delta S = 27.2 \text{ cal/(mol · K)}$; T = 300 K

$$T\Delta S = 300 \text{ K x } \frac{27.2 \text{ cal}}{\text{mol K}} \text{ x } \frac{1 \text{ kcal}}{10^3 \text{ cal}} = \frac{8.16 \text{ kcal}}{\text{mol}}$$

$$\Delta G = -17.4 \text{ kcal/mol} - 8.16 \text{ kcal/mol} = \sqrt{-25.6 \text{ kcal/mol}}$$

Reaction is "product-favored"

= spontaneous

-> see add. -> Sample problems

Part C:

Given:

Specific heat of water ice, 2.09J/g.°C Heat of fusion of water, 334J/g Specific heat of water, 4.18J/g.°C Heat of vaporization of water, 2260J/g Specific heat of water steam, 2.03J/g

Specific heat capacity of cupper is 0.382J/g.°C. Heat of fusion for copper is 205J/g

1) How much heat energy, in joules, is required to melt following:

a) 1.25.kg of copper at its melting point of
$$1083^{\circ}$$
C?
b) One mole of copper?
a) 1.25 kg Cu × $\frac{10^{3}g}{1 \text{ kg}}$ × $\frac{205 \text{ d}}{1 \text{ g cu}} = \frac{2.56 \times 10^{3} \text{ g}}{1 \text{ g cu}}$
b) MMCu = $63.55 \frac{3}{\text{mol}}$ 63.55 $\frac{4}{\text{mol}}$ × $\frac{205 \text{ d}}{1 \text{ sol}} = \frac{13.028 \text{ sol}}{1 \text{ mol}}$

2) Calculate the amount of heat required, in joules, to convert 125.0 g of ice at -15.0 °C to steam at 110.0 °C

(Hint: calculate the amount of heat required in each of the steps, and then add these amounts together to get your final answer).

these amounts together to get your final answer).

5 Steps: kesting ice -> melting - kesting water - evaporation - kesting steam

125.0g x
$$\frac{2.17}{g.\%}$$
 $(0.0 - (-15.0))$ $(0.0 + 125.0g x)$ $\frac{3347}{g}$ +

+ 125.0g x $\frac{4.187}{g\%}$ $(1000 - 0.0)$ $(0.0 + 125.0g x)$ $\frac{22607}{g}$ +

+ 125.0g x $\frac{2.07}{g.\%}$ $(110.0 - 100.0)$ $(0.0 + 125.0g x)$ $(0.0 +$

See a d'el. Sample problès

Gibbs Free Energy, G

$\Delta G^{\circ} = \Delta H^{\circ} - T \Delta S^{\circ}$

 ΔH^o ΔS^o ΔG^o Reaction exo(-) increase(+) Prod-favored endo(+) decrease(-)+ React-favored exo(-) decrease(-)? T dependent endo(+) increase(+)? T dependent

Sample Problems

Calculating $\Delta G^{ m o}_{ m rxn}$ Example

Combustion of acetylene

$$C_2H_2(g) + 5/2 O_2(g) --> 2 CO_2(g) + H_2O(g)$$

 $\Delta H^{\circ}_{rxn} = -1238 \text{ kJ}$

 $\Delta S_{rxn}^{\circ} = -97.4 \text{ J/K or } -0.0974 \text{ kJ/K}$

 $\Delta G^{o}_{rxn} = -1238 \text{ kJ} - (298 \text{ K})(-0.0974 \text{ kJ/K})$ = -1209 kJ

Reaction is product-favored in spite of negative $\Delta {\rm S^o}_{\rm rxn}$

Reaction is "enthalpy driven"

Calculating $\Delta G^{o}_{r imes n}$

 $-NH_4NO_3(s) + heat ---> NH_4NO_3(aq)$

 $\Delta H^{\circ}_{rxn} = +25.7 \text{ kJ}$

 $\Delta S_{rxn}^{o} = +108.7 \text{ J/K or } +0.1087 \text{ kJ/K}$

 $\Delta G_{rxn}^{o} = +25.7 \text{ kJ} - (298 \text{ K})(+0.1087 \text{ kJ/K})$

 $= -6.7 \, kJ$

Reaction is product-favored in spite of positive $\Delta {\rm H^o}_{\rm rxn}.$

Reaction is "entropy driven"