M.Sc. (PHYSICS)

CBCS PATTERN SYLLABUS

For SEMESTER-I-II-III-IV

SESSION 2018-2019

DEPARTMENT OF PHYSICS,

RAJEEV GANDHI GOVERNMENT P.G. COLLEGE,

AMBIKAPUR-497001 (CHHATTISGARH)

The post graduate course in Physics extends over a period of two academic years comprising of four semesters. The syllabus and schemes of examination are detailed herewith.

The four semesters M.Sc. course shall consists of 20 theory courses. In I/II/III/IV semester there shall be five theory courses each of 70 marks and 30 marks for internal assessment test. In internal assessment, there will be 10 marks for written test, 10 marks for assignment and 10 marks for a seminar in each paper.

Thus there shall be T/I=100 marks for each paper, minimum passing / qualifying marks shall be 36% in each theory/internal assessment. Candidate will be required to pass separately in each theory and internal assessment.

ACADEMIC PROGRAMMES & SCHEMES M.Sc. (Physics)

FIRST SEMESTER (CBCS System)

	уре	/Subjects)	Exte Writ Te	tten		Cont.	Int. Valı	uation	
Paper	Course Type	Course (Paper/Subjects)	Max. Marks	Ql. Marks	W. test	Seminar	Assignment	Total	Grand Total
I.	CCC	Mathematical Physics	70	25	10	10	10	30	100
II.	CCC	Lab course A	-	-	-	-	-	-	100
III	CCC	Lab Course B	-	-	-	-	-	-	100
IV	CCC	Classical Mechanics	70	25	10	10	10	30	100
V	CCC	Quantum Mechanics-	_I 70	25	10	10	10	30	100
VI	PRJ/FST/ EST	Social Outreach and Skill Development	-	-	-	-	-	-	100
	ECC/CB	Constitutionalism &Indian Political System	70	25	10	10	10	30	100
VII	ECC/CB	Electronic Devices an	d /X10 1pli	ica 2f5 n	s 10	10	10	30	100
	ECC/CB	Condensed Matter Physics - I	70	25	10	10	10	30	100
	ECC/CB	High Energy Physics- I	70	25	10	10	10	30	100
	TOTAL								700

SECOND SEMESTER (CBCS System)

Paper	Course Type	Course (Paper/Subjects)	Wri	ernal tten est		Cont.	Int. Val	luation	
Paj	Course	Cou (Paper/9	Max. Marks	Ql. Marks	W. test	Seminar	Assignm ent	Total	Grand Total
I.	CCC	Electronics	70	25	10	10	10	30	100
II.	CCC	Lab Course A	-	-	-	-	1	-	100
III	CCC	Lab Course B	-	-	-	-	-	-	100
IV	ССС	Atomic and Molecular Physics	70	25	10	10	10	30	100
V	CCC	Quantum Mechanics II	70	25	10	10	10	30	100
VI	OSC	Research methodology & computer Application: basics	70	25	10	10	10	30	100
	ECC/CB	Environmental and Forest Laws	70	25	10	10	10	30	100
VII	ECC/CB	Electronic Instrumentation	70	25	10	10	10	30	100
	ECC/CB	Condensed Matter - II	70	25	10	10	10	30	100
	ECC/CB	High Energy Physics - II	70	25	10	10	10	30	100
	TOTAL								700

THIRD SEMESTER

jer	Paper Course Type Course (Paper/Subjects)		Wri	ernal tten est		Cont.	Int. Val	luation	
Paj	Course	Cou (Paper/9	Max. Marks	Ql. Marks	W. test	Seminar	Assignm ent	Total	Grand Total
I.	CCC	Solid State Physics	70	25	10	10	10	30	100
II.	CCC	Lab Course A	-	-	ı	-	-	-	100
III	CCC	Lab Course B	-	-	-	-	-	-	100
IV	CCC	Nuclear and Particle Physics	70	25	10	10	10	30	100
V	CCC	Classical Electro Dynamics	70	25	10	10	10	30	100
VI	OSC	Intellectual Property, Human Rights &Environment: Basics	70	25	10	10	10	30	100
	ECC/CB	Tribal Studies	70	25	10	10	10	30	100
VII	ECC/CB	Microwave Electronics	70	25	10	10	10	30	100
	ECC/CB	Nano Science	70	25	10	10	10	30	100
	ECC/CB	High Energy Physics - III	70	25	10	10	10	30	100
		TOTAL							700

FOURTH SEMESTER

Paper	Paper Course Type aper/Subjects)		Exter Writ Te	ten		Cont.	Int. Val	luation	
Paj	Course	Course (Paper/Subjects	Max. Marks	QI. Marke	W. test	Seminar	Assignm ent	Total	Grand Total
I.	CCC	Materials Science and Laser Physics	70	25	10	10	10	30	100
II.	CCC	Lab Course A	1	-	1	-	-	-	100
III.	CCC	Lab Course B	-	-	ı	-	-	-	100
IV	SSC/PRJ	Dissertation	-	-	ı	-	-	-	100
V	CCC	Spectroscopy	70	25	10	10	10	30	100
VI	CCC	Statistical Physics	70	25	10	10	10	30	100
	ECC/CB	Energy Physics	70	25	10	10	10	30	100
VII	ECC/CB	Satellite Communication and Remote Sensing	70	25	10	10	10	30	100
	ECC/CB	Crystal Growth & Thin film Physics	70	25	10	10	10	30	100
	ECC/CB	Renormalization and Supersymmetry	70	25	10	10	10	30	100
	TOTAL								700

M. Sc. in PHYSICS: FIRST SEMESTER (ODD SEMESTER)

FACULTY OF SCIENCE

Eligibility Criteria (Qualifying Exams)	Admission Criteria	Course Code	Course Type	Course (Paper/Subjects)	Credits	Conta WeeK		_	EoSE Duration (Hrs.)				
						L	T	P	Thy	P			
	he	MSP 101	ССС	Mathematical Physics	6	4	3	00	3	0			
pline	ed by t	MSP 111/112	CCC	Lab Course A/ Lab Course B	6	00	00	6	00	6			
' disci	decid.	MSP 102	CCC	Classical Mechanics	6	4	3	00	3	0			
ıbject/	oral) if	MSP 103	CCC	Quantum Mechanics I	6	4	3	00	3	0			
ned su	r/and on Poli	MSP S01	PRJ/FST/EST	Social Outreach and Skill Development	6	00	00	9	00	4			
concerned subject/ discipline	Test (written or/and oral) if decided by the y ce of Reservation Policy.	MSP A01	ECC/CB	Constitutionalism &Indian Political System									
Bachelor Degree in the	Fest (w	rest (w	Fest (w	rest (w	MSP A02	ECC/CB	Electronic Devices and Applications	6	4	3	00	3	00
egree	Merit List Entrance Te University Observance	MSP A03	ECC/CB	Condensed Matter Physics - I									
lelor E		MSP A04	ECC/CB	High Energy Physics - I	TOTAL=								
Bach	1) 2) 3)	MINIMUM CREDITS IN INDIVIDUAL SUBJECT IS 6 AND IN COMPLETE SEMESTE IT WOULD BE 30											

	M.Sc. in PHYSICS	FIRST SEMESTER				
COURSE	CODE: MSP 101	COURSE TYPE : CCC				
COURSE	COURSE TITLE: MATHEMATICAL PHYSICS					
CREDIT:	06	HOURS: 90				
THEORY	: 06 PRACTICAL: 00	THEORY: 90 PRACTICAL: 00				
MARKS:	100	I				
THEORY		PRACTICAL: 00				
Scheme	of marks:					
		questions carrying 5 marks each to be asked two to be attempted				
	Word limit 100 words). Iiddle answer type guestions: thre	e questions carrying 9 marks each to be set two to be attempted				
(C	Word limit 250 words).					
	ong answer type questions: three Word limit 750 words).	questions carrying 14 marks each to be set two to be attempted				
	Complex Variables & matrix	•				
Hrs.	1	Riemann Condition, kinds of singularity, Line integrals				
UNIT-1 15 Hrs.	=	hy's formula, Taylor and Laurent series, poles, residues, on to evaluation of definite integrals, types of matrices,				
		gen values and eigen functions problems.				
	Linear Differential equations					
UNIT-2 20 Hrs		linear differential equations, Liouville's Theorem ions - Illustration with Legendre, Laguerre, Hermite and				
UN] 20		ions, Wronskian, ordinary and singular points.				
	Laplace and Fourier transfor	ms				
r-3	_	on of linear differential equations with constant				
UNIT-3 20 Hrs	_	Fourier transforms, Fourier sine and cosine transforms,				
n 2		s Applications, Fourier Series.				
_	Vector and Tensor Analysis	algulus Definition of scalars contravariant Vestors and				
UNIT-4 20Hrs		alculus, Definition of scalars, contravariant Vectors and s summation convention - Definition of tensors - Second				
UN] 20]		etric and anti-symmetric tensors - tensors of rank higher				
	than two - Covariant derivati					
ro 8	Group Theory & probability t	cheory roups and conjugate classes, Transformation, Matrix				
UNIT- 5 15Hrs		Reducible and irreducible representations, Probability,				
UN] 15		n variables, binomial, poisson and normal distributions.				
SUGGESTED READINGS		Physicists: George Arfken , Academic Press				
EST		ngineers and Physicists: L. A. Pipe , McGraw Hill otter and Goldberg , Prentice Hall of India				
JGG (EA)		for Physicists: A.W. Joshi, Wiley Eastern Ltd.				
S H	5. Vector Analysis (Schaum S					

M.Sc	. in PHYS	ICS		FIRST SEMESTER	
COURSE	OURSE CODE: MSP 111 COURSE TYPE : CCC				
COURSE	TITLE: L	ab Course A			
	CR	EDIT: 03	НО	URS: 90	
THEORY	7: 00	PRACTICAL: 03	THEORY: 00	PRACTICAL: 100	
		l	Marks		
THEORY	7 : 00		(EXPERIMENT	TICAL: 100 :60; VIVA-VOCE:20 & IONAL:20)	
	LAB CO	URSE A:	·		
		o study the characteristics o Study the characteristics			
	3. To	study the characteristics	of MOFET.		
	4. To	study the Characteristics	of LED.		
	5. To	o study the characteristic o	f an UJT.		
	6. To	study the characteristics	of FET.		
	7. To	o study the characteristic o	f a DIAIC.		
LABORATORY WORK MSP 111					

M.Sc. in PHYSIC	CS		FIRST SEMESTER				
COURSE CODE:	COURSE CODE: MSP 112 COURSE TYPE : CO						
COURSE TITLE: La	b Course B						
CRE	DIT: 03	HOU	RS: 90				
THEORY: 00	PRACTICAL: 03	THEORY: 00	PRACTICAL:				
			100				
	1	Marks	1				
THEORY: 00		PRACT	ICAL: 100				
		(EXPERIMENT:6	50; VIVA-VOCE:20 &				
		SESSIONAL:20)					
LAB COURSE B:							

- 1. To Study the various types of logic gates.
- 2. To Study the characteristic of NAND gate and its use as a universal gate.
- 3. To Study of characteristic of NOR gate and its use as a universal gate.
- 4. To study the Demorgan's theorem.
- 5. To study the full adder.
- 6. To study the half adder.
- 7. To study the BOOLEAN theorem.

	M.Sc. in PHYSICS	FIRST SEMESTER				
COURSE	CODE: MSP 102COURSE TYPE :	CCC				
COURSE	COURSE TITLE: CLASSICAL MECHANICS					
CREDIT:	CREDIT: 06 HOURS: 90					
THEORY	06 PRACTICAL: 00	THEORY: 90 PRACTICAL: 00				
MARKS:	100					
THEORY		PRACTICAL: 00				
Scheme	ormarks:					
		is carrying 5 marks each to be asked two to be attempted				
	Vord limit 100 words). iddle answer type questions: three questic	ons carrying 9 marks each to be set two to be attempted				
7)	Vord limit 250 words).					
	ong answer type questions: three question Vord limit 750 words).	s carrying 14 marks each to be set two to be attempted				
(,	Rigid body dynamics					
.1 Irs		netic Energy, Moment of inertia of a rigid body				
UNIT-1 15Hours		rincipal axes, moment of inertia tensor, Euler's				
UN 15F	•	n of a rigid body, Torque free motion of a rigid				
	body.					
		t's Principle and Lagrange's Equation, simple				
-2 irs		tion. Hamilton Principle, Calculus of Variations, from Hamilton's principle, Method of Lagrange's				
UNIT-2 20Hours		s and Symmetry Properties, Noether's theorem.				
UN 20]	<u> </u>	entum and angular momentum as a consequence				
	of homogeneity of time and space ar					
0	Generalized momentum, Legendre	e transformation and Hamilton's Equations of				
-3 20 urs		niltonian formulation, cyclic coordinates, Routh's				
VIT-3 Hour	-	tion of Relativistic Mechanics, Derivation of				
UNIT	-	Hamilton's variational principle. The principle of				
_	least action. Canonical transformation generati	ng functions and types of generating functions,				
4 %						
UNIT-4 20Hrs	Lagrange's and Poisson brackets as canonical invariants, equation of motion in Poisson bracket formulation. Infinitesimal contact transformation, Liouvilee					
UN 20	theorem, Hamilton-Jacobi equation and its applications in simple harmonic oscillator					
	and Kepler's problems .					
LO.		bles, Applications of Action and angle variables in				
T-!	=	pler's problems, periodic motion, theory of small				
UNIT- 5 15Hrs		on, normal modes and coordinates and its simple				
	applications.					

- 1. H. Goldstein, 2002, Classical Mechanics. 3rd Edition., C. Poole and J.Safko, Pearson Education, Asia, New Delhi.
- 2. S.N. Biswas, 1998, Classical Mechanics, Books and Allied Ltd., Kolkata.
- 3. L.D. Landau and E.M. Lifshitz, 1969, Mechanics, Pergomon Press, Oxford.
- 4. K.R. Symon, 1971, Mechanics, Addison Wesley, London.
- 5. J.L. Synge and B.A Griffith, 1949, Principles of Classical Mechanics, Mc. Graw-Hill, New York.
- 6. C.R.Mondal, Classical Mechanics, Prentice Hall of India, New Delhi.
- 7. A. Raychoudhary, Classical Mechanics, Oxford University Press

M.Sc. in	PHYSICS	FIRST SEMESTER					
COURSE	CODE: MSP 103	COURSE TYPE : CCC					
COURSE	COURSE TITLE: QUANTUM MECHANICS I						
CREDIT:	CREDIT: 06 HOURS: 90						
THEORY	: 06	THEORY: 90					
MARKS:	100						
	THEORY: 70 CCA: 30 Scheme of marks:						
vii. S	vii. Short answer type questions: three questions carrying 5 marks each to be asked two to be attempted (Word limit 100 words).						
7)	Vord limit 250 words).						
	ong answer type questions: three question: Vord limit 750 words).	s carrying 14 marks each to be set two to be attempted					
	Basic formalism						
	Wave functions for a free particle	e - Interpretation and conditions on the wave					
[-1 irs.	function - Postulates of quantum	Mechanics and the Schroedinger equation -					
UNIT-1 2 OHrs.	Ehrenfest's theorem - Operator form	nalism - Linear operators - Self adjoint operators -					
	Expectation Value - Stationary State	s - Hermitian Operators for dynamical variables -					
	Eigen values and eigen function - Or	thonormality - Uncertainty Principle.					
	Applications						
	Ladder operators and simple harm	onic oscillator - Rigid rotator - Step Potential -					
NIT-2 .5Hrs	Particle in a central potential - Pa	article in a periodic potential - Orbital angular					
UNI 15F		cs - Central forces and reduction of two body					
	•	es dentral forces and reduction of two body					
	problem.						
	General formalism:						
UNIT-3 15 Hours	Hilbert's space - Dirac notation - Rep	presentation theory - Co-ordinate and momentum					
NIT-3 1 Hours	representations - Time evolution - S	chroedinger, Heisenberg and Interaction pictures					
NO T	- Symmetries and conservation laws.						
	Approximation methods						
		ory for non- degenerate and degenerate levels -					
-4- rs							
UNIT-4 20Hrs	Application to ground state of anharmonic oscillator and Stark effect in Hydrogen -						
U 2	Variation method - Application to ground state of Helium atom - WKB approximation						
	- WKB quantization rule - Applicatio	n to simple Harmonic Oscillator.					

	Angular momentum and identical particles
	Commutation rules for angular momentum operators - Eigen value spectrum from
ro °	angular momentum algebra - Matrix representation - Spin angular momentum - Non-
UNIT- E	relativistic Hamiltonian including spin - Addition of two angular momenta - Clebsch -
UN ON	Gordan coefficients - Symmetry and anti symmetry of wave functions - Pauli's spin
	matrices.
	1. P.M. Mathews and K. Venkatesan, 1976, A Text book of Quantum Mechanics, Tata McGraw-Hill, New Delhi.
	2. L.I. Schiff, 1968, Quantum Mechanics, 3rd Edition, International Student Edition, McGraw-Hill Kogakusha, Tokyo.
GS .	3. V. Devanathan, 2005, Quantum Mechanics, Narosa Publishing House, New Delhi.
READIN	4. E. Merzbacher, 1970, Quantum Mechanics 2nd Edition, John Wiley and Sons, New York.
SUGGESTED READINGS	5. V.K. Thankappan, 1985, Quantum Mechanics, 2nd Edition, Wiley Eastern Ltd, New Delhi.
SUG	6. P.A.M. Dirac, 1973, The Principles of Quantum Mechanics, Oxford University Press, London.
	7. L.D. Landau and E.M. Lifshitz, 1976, Quantum Mechanics, Pergomon Press, Oxford.
	8.Ashok Das and A.C. Melissions: Quantum Mechanics - A modern approach (Gordon and Breach Science Publishers).

	M.Sc. in PHYSICS	FIRST SEMESTER				
COURSE	COURSE CODE: MSPA01COURSE TYPE: ECC/CB					
	COURSE TITLE: CONSTITUTION	ALISM & INDIAN POLITICAL SYSTEM				
CREDIT:	06	HOURS: 90				
THEORY	' : 06	THEORY: 90				
MARKS:						
THEORY Scheme	7: 70 CCA: 30 of marks:					
x. S (V xi. M	Short answer type questions: three question Word limit 100 words).	s carrying 5 marks each to be asked two to be attempted ons carrying 9 marks each to be set two to be attempted				
xii. L		s carrying 14 marks each to be set two to be attempted				
UNIT - 1 12 Hrs	Unit- I: Meaning: Constitution, Constitutional government & constitutionalism; Difference between Constitution & Constitutionalism; Constitutionalism: Basis, Elements, Features & future. Forms of Government: Democracy & Dictatorship, Unitary & Federal, Parliamentary & Presidential form. Ideals of the Indian Constitution incorporated in the Preamble.					
UNIT - 2 24 Hrs	Principles of the State Policy, Fundamen	al Review and Fundamental Rights, Directive ntal Duties, Procedure to Amend the Indian and High Court, Judicial Activism and Public Interest nergency.				
UNIT - 3 10 H rs	Unit-III:	ister, Council of Ministers. State Executive- Governor,				
UNIT - 4 24 Hrs	Unit-IV: Parliament of India, State Legislatures, Legislative Bills: Ordinary, Money and Financial, Union State Relations, Principles of the 'Separation of Power and the 'Principles of Check & Balance'. Political Parties and Pressure Groups. Challenges before Indian Democracy: Terrorism, Regionalism, Communalism, <u>Linguistics</u> and National Integration.					
UNIT - 5 20 Hrs	Unit-V:					

	HOBBES, Thomas, The Leviathan, Chapters XIII & XVII [entry]
	LOCKE, John, The Second Treatise of Civil Government, Chapter IX [entry]
	ROUSSEAU, Jean-Jacques, The Social Contract or Principles of Political Right
	MONTESQUIEU, The spirit of the laws,
	RAZ, Joseph, "The rule of law and its virtue", in The authority of law, Oxford University Press, 1979
GS	Dicey on British constitution
	P. Ishwara Bhat Inter-relationship between Fundamental Rights
AL	M P Jain Indian Constitutional Law
RE	H M Seervai Constitutional Law of India
SUGGESTED READINGS	V N Shukla Constitution of India
	D DBasu Shorter Constitution of India
	B Sivarao Constitutional Assembly Debates
)5	J. V R Krishna Iyer Fundamental Rights and Directive Principles
ns	Paras Diwan Human Rights and the Law
	P K Tripathi Some Insight into Fundamental Rights
	S P Sathe Fundamental Rights and Amendment to the Constitution
	P B Gajendragadkar Law, Liberty and Social Justice
	David Karrys Politics of Law

M	.Sc. in PHYSICS	FIRST SEMESTER				
COURSE	COURSE CODE: MSPA02COURSE TYPE : ECC/CB					
COURSE	COURSE TITLE: Electronic Devices and Applications					
CREDIT:	06	HOURS: 90				
THEORY	: 06	THEORY: 90				
MARKS: THEORY	100 : 70 CCA: 30					
	: 70 CCA : 30 of marks:					
	Short answer type questions: three question Word limit 100 words).	s carrying 5 marks each to be asked two to be attempted				
xiv. M	liddle answer type questions: three question	ons carrying 9 marks each to be set two to be attempted				
xv. L	Word limit 250 words). ong answer type questions: three question Word limit 750 words).	s carrying 14 marks each to be set two to be attempted				
	Fabrication of IC and logic families					
Irs.	Fabrication of IC - Monolithic integra	ated circuit fabrication - IC pressure transducers -				
UNIT- 1 20Hrs.	Monolithic RMS - Voltage measuring device - Monolithic voltage regulators -					
Ţ	Integrated circuit multipliers - Intergrated circuit logic - Schottky TTL - ECL - I2L - P					
N D	and NMOS Logic - CMOS Logic - Tristate logic circuits.					
	Opto electronic devices					
	Light sources and Displays - Light emitting diodes - Surface emitting LED - Edge					
UNIT-2 20Hrs	Emitting LED - Seven segment display - LDR - Diode lasers - Photo detectors - Basic					
UN 20	parameters - Photo diodes - p-i-n Photo diode - Solar cells - Photo transistors - IR and					
	UV detectors.					
	Timer and applications					
	555 Timer - Description - Monos	table operation - Frequency divider - Astable				
8 3	operation - Schimitt trigger - Phase	Locked Loops - Basic principles - Analog phase				
UNIT-3 20H rs	detector - Voltage Controlled Oscill	ator - Voltage to Frequency conversion - PLL IC				
UI 20	_	e - Capture range - Application - Frequency				
	multiplication.	aspense tange approached frequency				
	munipheadon.					

Op-amp applications Instrumentation amplifier - V to I and I to V converter - Op-amp circuits using diodes - Sample and Hold circuits - Log and Antilog amplifiers - Multiplier and Divider Electronic analog Computation - Schimitt Trigger - Astable, Monostable Multivibrator - Triangular wave generators - Sine wave generators - Rc Active filters. Pulse and digital Communication Pulse communications - Introduction - Types - Pulse-Amplitude Modulation (PAM) Pulse Time Modulation - Pulse Width Modulation (PWM) - Pulse Position Modulation (PPM) - Pulse Code Modulation (PCM) - Principles of PCM - Quantizing noise Generation and Demodulation of PCM - Effects of Noise - Advantages and applications of PCM - Pulse systems - Telegraphy - Frequency-Shift keying - Telemetry - Digital communication - Modem classification - Modes of modem operation - Modem interconnection - Modem interfacing.

- 1. S.M. Sze, 1985, Semiconductor Devices Physics and Technology, Wiley, New York.
- 2. Millman and Halkias, Integrated Electronics, McGraw-Hill, New Delhi.
- 3. R.A. Gaekwad, 1994, Op-Amps and intergrated circuits EEE.
- 4. Taub and Shilling, 1983, Digital Integrated Electronics, McGraw-Hill, New Delhi.
- 5. J. Millman, 1979, Digital and Analog Circuits and Systems, McGraw-Hill, London.
- 6. George Kenndy, 1987, Electronic communication systems 3rd Edition, McGraw-Hill, London.
- 7. R.F. Coughlin and F.F, Driscol, 1996, Op-Amp and linear integrated circuits, Prentice Hall of India, New Delhi.
- 8. M.S.Tyagi, Introduction to Semiconductor Devices, Wiley, New York.
- 9. P. Bhattacharya, 2002, Semiconductor Optoelectronic Devices, 2nd Edition, Prentice-Hall of India, New Delhi.
- 10. Deboo/ Burrous, 1985, Integrated circuits and semiconductor Devices Theory and application, McGraw-Hill, New Delhi.
- 11. D. Roy Choudhury, 1991, Linear integrated circuits, Wiley Eastern, New Delhi.
- 12. Ramakant Gaekwad, 1981, Operational amplifiers, Wiley Eastern, New Delhi.

M.Sc. in PHYSICS FIRST SEME					
COURSE	COURSE CODE: MSP A03 COURSE TYPE : ECC/CB				
COURSE	TITLE: CONDENSED MATTER PHYSICS - I				
	CREDIT: 06 HOURS: 90				
THEORY		THEORY: 90			
MARKS: THEORY					
Scheme	of marks:				
		s carrying 5 marks each to be asked two to be attempted			
	Word limit 100 words). Iiddle answer type questions: three questio	ns carrying 9 marks each to be set two to be attempted			
•	Word limit 250 words).	s carrying 14 marks each to be set two to be attempted			
	Word limit 750 words).				
·s.		Equilibrium transformation of first and second			
)Hrs	order, equilibrium diagrams, ph	ase rule, interpretation of phase diagrams,			
1 2(substitutional solid solutions, Veg	ard's law, intermediate phases, Hume-Rothery			
UNIT- 1 20Hrs.	rules, interstitial phases (carbid	les, nitrides, hydrides, borides). Martensitic			
n	transitions.				
	High temperature superconductors	s and GMR/CMR materials: High temperature			
	superconductors, normal state prop	perties (structural phase transition) of cuprates,			
	phase separation and charge distri	ibution into CuO2 planes, striped phase, phase			
UNIT-2 20Hrs	diagram, pseudogap, dependence of Tc on crystal structure, effect of impurities				
n n	.GMR/CMR materials, Ruddlesde	n-Popper series of perovskites. Onset of			
	ferromagnetism and metallic conduc	ction. Double exchange.			
	_	bon solids, fullerenes and tubules, formation and			
T-3		ibules. Single wall and multi-wall carbon tubules.			
UNIT-3 20 H rs		bon nanotubule based electronic devices.			
		glass transition temperature, effect of molecular			
		perature, free volume theory for glass transition,			
-4 rs	_				
UNIT-4 15 Hrs		d gap of polymers, electrical conduction in			
		and thermal properties of polymers, polymer			
	blends and composites.				

UNIT-

Structural characterization and electron structure determination: Basic theory of Xray diffraction, indexing of Debye-Scherrer patterns from powder samples, examples from some cubic and non-cubic symmetries. Neutron diffraction – basic interactions, cross section, scattering length and structure factor. Basic principles of X-ray absorption spectroscopy, photo emission and positron annihilation techniques. Qualitative discussion of experimental arrangement and of typical results for both simple as well as transition metals.

- 1. Andrei Mourachkine: Room temperature superconductivity, Cambridge International Science Publishing.
- 2. C.N.R. Rao: Colossal magnetoresistance, charge ordering and related properties of managanese oxide, Woprld Scientific, 1998
- 3. Polymer Physics by Ulf W. Gedde, Chapmann & Hall, 2001.
- 4. Introduction to Polymer Physics by David. I. Bower.
- 5. Polymer Science by J.R. Fried.

M	I.Sc. in PHYSICS	FIRST SEMESTER				
COURSE CODE: MSPA04 COURSE TYPE : ECC/CB						
COURSE	COURSE TITLE: HIGH ENERGY PHYSICS I					
CREDIT:	06	HOURS: 90				
THEORY	: 06	THEORY: 90				
MARKS:	100					
THEORY						
Scheme	of marks:					
		s carrying 5 marks each to be asked two to be attempted				
•	Word limit 100 words). Iiddle answer type questions: three questic	ons carrying 9 marks each to be set two to be attempted				
7)	Word limit 250 words).					
	ong answer type questions: three question Word limit 750 words).	s carrying 14 marks each to be set two to be attempted				
		ntal forces. Quarks and leptons. The mediators of the				
UNIT- 1 20Hrs.	electromagnetic, weak and strong inter	ractions. Interaction of particles with matter; particle				
UN 20	acceleration, and detection techniques. Symmetries and conservation laws.					
	Bound states. Discoveries and observa-	tions in experimental particle physics and relation to				
r-2 Irs	theoretical developments.					
UNIT-2 20Hrs						
& &	Symmetries, group theory, The gourp	SU92), Finite Symmetry Group: P and C, SU(2) of				
UNIT-3 20 H rs	Isospin, The group SU(3)					
UN 20						
-1	Quark and Antiquark states: Mesons, T	'hree quark states: Baryon, color factors, Asymptotic				
UNIT-4 15 Hrs	freedom. Charged and neutral weak interactions. Electroweak unification.					
UN 15						
	Decay rates, Cross sections, Feynman d	iagrams Introduction to Feynman integrals. The Dirac				
ſ- 5 ŀrs	equation. Feynman rules for quantum e	•				
UNIT- 5 15 Hrs	equation. Feynman rules for qualitum e	iecti ottyriainies (no tier ivation).				

- 1. Francis Halzen and Allan D. Martin, Quarks and Leptons: An Introductory Course in Modern Particle Physics, John Wiley and Sons
- 2. B.R. Martin and G. Shaw, Particle Physics, 2nd edition, J. Wiley and Sons (1997).
- 3. The Review of Particle Physics, Particle Data Group
- 4. David Griffiths, Introduction to Elementary Particles
- 5. Byron Roe Particle Physics at the New Millennium
- 6. Donald Perkin, Introduction to high energy physics.

M. Sc. in PHYSICS SECOND SEMESTER (EVEN SEMESTER)

FACULTY OF SCIENCE

Eligibility Criteria (Qualifying	Course Code	Course Type	Course (Paper/Subjects)	Credits	Contact Hours Per WeeK			EoSE Duration (Hrs.)	
Exams)					L	T	P	Thy	P
ctive	MSP 201	CCC	Electronics	6	4	3	00	3	0
irrespective	MSP 211/212	ССС	Lab Course A / Lab Course B	6	00	00	6	0	6
	MSP 202	CCC	Atomic and Molecular Physics	6	4	3	00	3	0
minati	MSP 203	CCC	Quantum Mechanics II	6	4	3	00	3	0
r exar s	MSP 221	OSC	Research methodology & computer Application: basics	6	4	3	00	3	00
meste	MSP B01	ECC/CB	Environmental and Forest Laws						
first semester arrear papers	MSP B02	ECC/CB	Electronic Instrumentation						
After appearing in the first semester examination of any number of back/ arrear papers	MSP B03	ECC/CB	Condensed Matter – II	6	4	3	00	3	00
	MSP B04	ECC/CB	High Energy Physics – II						
After ap of any nı	MINIMUM C	REDITS IN INDIVIDU	AL SUBJECT IS 6 AND IN COMPLETE SEMESTER IT WOULD BE 30	TOTAL= 36					

M.Sc. in PHYSICS SECOND SEMESTER						
COURSE CODE: MSP 201 COURSE TYPE : C						
COURSE	COURSE TITLE: ELECTRONICS					
CREDIT:	CREDIT: 06 HOURS: 90					
THEORY	: 06	PRACTICAL: 00	THEORY: 90 PRACTICAL: 00			
MARKS:	100					
THEORY Scheme		CCA: 30	PRACTICAL: 00			
		swer type questions: three nit 100 words).	e questions carrying 5 marks each to be asked two to be attempted			
ii. M	Iiddle ar	-	ee questions carrying 9 marks each to be set two to be attempted			
iii. L	ong ans	wer type questions: three	questions carrying 14 marks each to be set two to be attempted			
(1	nit 750 words). utional Amplifiers: Differ	ential amplifier - circuit configurations - dual input, balanced			
	_	-	AC and DC analysis, inverting and non-inverting inputs, CMRR-			
	_	•	inslator. Block diagram of typical OP-Amp analysis. Open loop			
r-1 irs.	configuration, inverting and non-inverting amplifiers, Op-Amp with negative feedback, effect					
UNIT-1 20 Hrs.	of feedback on closed loop gain, input resistance, bandwidth and output offset voltage,					
•		voltage follower. Practical Op-Amp, input offset voltage-input bias current-input offset				
			tage, integrator and differentiator.			
2 S	Oscillators: Oscillator and their Principle, the phase-shift oscillator, Wein bridge oscillator					
UNIT-2 15 Hrs	Hartley oscillators					
15 6						
3 .rs	Wave Shaping Circuits: Multivibrators and their principle, Types of Multivobrators					
UNIT-3 15 Hrs	-		stable Multivibrators), Comparators, clamping and clipping			
	Circuit		tional logic: Standard representations for logic functions,			
			of logical functions, Simplification of logical functions using			
[-4 rs						
UNIT-4 20Hrs	K-Map, Minimization of Logical functions specified in Minterms / Maxterms or truth table,					
	Don't care conditions, Adder (half and full), Subtractor (half and full), Multiplexers and their uses, Demultiplexer and their uses, BCD arithmatics, Seven Segment display device. ROM.					
			ne - bit memory, RS, JK, JK master slave, T and D type flip flops,			
LΩ	_		and asynchronous counters, Decade counter. A/D and D/A			
UNIT-5 20Hrs			and their circuitry, Basic idea of IC 555, Opto-electronic			
UN 20			ansistor, Light emitting Diode and their applications			
	Device		moistor, Eight chiltenig Diode and their applications			

- 1. "Electronic Devices and Circuit Theory" by Robert Boylested and Louis Nashdsky, PHI, New Delhi 110001, 1991.
- 2. "OP-AMP and Linear Integrated Circuits" by Ramakanth, A. Gayakwad, PHI, Second Edition 1991.
- 3. "Digital Principle and Applications" by A.P. Malvino and Donald P. Leach, Tata McGraw Hill Company, New Delhi, 1993.

M.Sc. in PHYS	SICS			SECC	OND SEMESTER	
COURSE CODE:	MSP 211			COURSE	TYPE : CCC	
COURSE TITLE: Lab Course A						
	CREDIT: 03			HOURS:	90	
THEORY: 00	PRACTICAL:	03	THEORY:	00	PRACTICAL:	
					100	
		Marks	5			
THEORY: 00			PRACTICAL: 100			
		(EXPI	ERIMENT:60; VI			
			SESSIONAL:20)			

LAB COURSE A:

- 1. To find the root of an Equation using secant method.
- 2. To find the modification of Euler equation by using c.
- 3. To find the real roots of the given function by implement lagragian inverse formula.
- 4. To find the real roots of any polynomial equation through graeffe's Method.
- 5. To find the value of definite integral using simpson's Method.
- 6. To find the real root of the given function using Regula falsi Method.
- 7. To find the root of an equation using Runga Kutta second order Method.
- 8. To find the solution of linear simultaneous equation using gauss elimination method.
- 9. To calculate finite integral or area under a curve using trapezoidal method.
- 10. To find the real root of the given function using by fixed point interaction Method.

M.Sc. in PHYSICS **SECOND SEMESTER COURSE CODE:** COURSE TYPE : **MSP 212** CCC **COURSE TITLE: Lab Course B** CREDIT: 03 **HOURS:** 90 THEORY: 00 PRACTICAL: 03 THEORY: 00 PRACTICAL: 100 Marks THEORY: 00 PRACTICAL: 100 (EXPERIMENT:60; VIVA-VOCE:20 & SESSIONAL:20)

LAB COURSE B:

- 1. To construct Ex-OR Gate and Ex-NOR Gate.
- 2. To study NOR gate as a universal gate.
- 3. To study NAND gate as a universal gate.
- 4. To construct half adder using Ex-OR gate.
- 5. To construct full adder using Ex-OR gate.
- 6. To study the DAC convertor.
- 7. To study the ADC convertor.
- 8. To study the clocked R-S flip-flop using NOR /NAND gate.
- 9. To study the clocked D-type flip-flop using NOR/NAND gate.
- 10. To study the clocked D-type flip-flop using NOR/NAND gate.

	M.Sc. in PHYSICS	SECOND SEMESTER				
COURSE CODE: MSP 202 COURSE TYPE : CCC						
COURSE	TITLE: ATOMIC AND MOLECULAR PHY	SICS				
CREDIT:	06	HOURS: 90				
THEORY	06 PRACTICAL: 00	THEORY: 90 PRACTICAL: 00				
MARKS:	100					
THEORY		PRACTICAL: 00				
	of marks:					
	hort answer type questions: three question Vord limit 100 words).	s carrying 5 marks each to be asked two to be attempted				
v. M	iddle answer type questions: three question	ns carrying 9 marks each to be set two to be attempted				
`	Vord limit 250 words). ong answer type questions: three question:	s carrying 14 marks each to be set two to be attempted				
	Word limit 750 words).					
-1 .s.		on method and their simple Applications, relativistic				
UNIT-1 20 Hrs.		Quantum mechanical treatment of stark effect, atom				
U 2(
. S		tion theory, linear Stark effect for hydrogen atom				
UNIT-2 15 Hrs	levels, inclusion of spin orbit interaction and weak magnetic field, Zeeman effect, effect of					
U 1	strong magnetic field. Magnetic dipole interaction, Lamb shift (only qualitative descript					
		nmetry, many particle wave functions and Pauli's				
က္သ	exclusion principle, spectroscopic terms for atoms. Variational method and its use in					
UNIT-3 20 Hrs	calculation of ground state energy. Heitler London method for hydrogen molecule. WKB					
UI 20	method for one dimensional problem, application to bound states (Bohr Sommerfeld					
	quantization) and the barrier penetration	on.				
	Spectroscopy (qualitative): General fea	tures of the spectra of one and two electron system –				
	singlet, doublet and triplet characters of emission spectra using examples, general features					
UNIT-4 20Hrs	of alkali spectra. Rotation and vibration band spectrum of a molecule, P,Q and R branches.					
UN 20	Raman spectra for rotational and vibrational transitions, General features of electronic					
	spectra, Frank and Condon's principle.					
	Laser cooling and trapping of atoms:	The scattering force, chirp cooling, optical molasses				
- 5 rs	technique, Doppler cooling limit, mag	gneto optical trap, Magnetic trap (only qualitative				
UNIT- 5 15Hrs	description) for confining low tempera	ture atoms produced by Laser cooling, Bose-Einstein				
n 「	condensation in trapped atomic vapours, the scattering length.					

- 1. G. Banewell Atomic and Molecular spectroscopy
- 2. Christopher J. Foot Atomic Physics, Oxford Master series, 2005
- 3. G.K. Woodgate, Elementray Atomic Structure, Second Edition Clarendon Press, Oxford.
- 4. T.A. Littlefield Atomic and Molecular Physics.
- 5. Eistaberg and Rasmic- Quantum Physics of Atoms. Molecules Solids and Nuclear Particles.
- 6. Ashok Das and A.C. Melfessions. Quantum Mechanics; A Modem Approach (Gordon and Breach Science Publishers).
- 7. White Atomic Spectra. 8. Herzberg- Molecular spectra.

M.Sc. in PHYSICS SECOND SEMESTER						
COURSE CODE: MSP 203 COURSE TYPE : CCC						
COURSE	COURSE TITLE: QUANTUM MECHANICS II					
CREDIT:	CREDIT: 06 HOURS: 90					
THEORY	: 06 PRACTICAL: 00	THEORY: 90				
MARKS:	100					
THEORY Scheme	: 70 CCA : 30 of marks:					
vii. S	hort answer type questions: three question	is carrying 5 marks each to be asked two to be attempted				
7)	Word limit 100 words).	ons carrying 9 marks each to be set two to be attempted				
	Nord limit 250 words).	ons carrying 9 marks each to be set two to be attempted				
	ong answer type questions: three question Word limit 750 words).	s carrying 14 marks each to be set two to be attempted				
	Scattering Theory					
_	Scattering amplitude - cross secti	ons - Transformation from centre of mass to				
UNIT-1 20 Hrs.	laboratory frame- Partial wave analysis - optical theorem - Phase shifts - Scattering					
UN 20	length and effective range - Low energy scattering - Born approximation and its					
	validity.					
	Perturbation Theory					
15 Hrs	Time dependent perturbation the	eory - Constant and harmonic perturbations -				
	Transition probabilities - Fermi's-Golden rule, Adiabatic approximation - Sudden					
IIT-2	approximation - The density matrix - spin density matrix and magnetic resonance -					
UN	Semi classical treatment of an atom with electromagnetic radiation.					
rs	Relativistic Quantum Mechanism					
20 Hrs	Klein-Gordon equation - Failures	- Dirac equation - Plane - wave solutions -				
.3 2	Interpretation of negative energy s	tates - Antiparticles - Spin of electron - Magnetic				
UNIT-3	moment of an electron due to spin -	Energy values in a coulomb potential.				
	Dirac equation					
4- S	Covariant form of Dirac equation - p	properties of gamma matrices, Invariance of Dirac				
UNIT-4 20Hrs	equation under Lorentz transforma	tion - T-Transformation for the Dirac equation in				
	presence of electromagnetic field.					

	Quantisation of Fields
	Relativistic Lagrangian and Hamiltonian of a charged particle in an electromagnetic
UNIT-5 15 Hrs	field - The Lagrangian and Hamiltonian formulations of field - Second quantization of
UN 15	Kelin-Gordon field - creation and annihilation operators - Commutation relation,
	Quantization of Dirac field.
	1. Ashok Das and A.C. Milissiones : Quantum mechanics - A Modern Approach, Garden and Breach Science Publishers.
	2. J.J. Sakurai : Advanced Quantum Mechanics (John Wiley)
ED 3S	3. E. Merzbacher, 1970, Quantum Mechanics, 2nd Edition, John Wiley and Sons, New York.
SUGGESTED READINGS	4. J.D. Bjorken and S.D. Drell, 1964, Relativistic Quantum Mechanics, McGraw-Hill, New York.
8	5. V.K. Thankappan, 1985, Quantum Mechanics, 2nd Edition, Wiley Eastern Ltd, New Delhi.
	6. L.D. Landau and E.M. Lifshitz, 1958 Quantum Mechanics, Pergomon Press, London.
	7. G. Aruldhas, 2002, Quantum Mechanics, Prentice-Hall of India, New Delhi.

M.Sc. in PHYSICS SECOND SEMESTER
COURSE CODE: MSP 221 COURSE TYPE : OSC

COURSE TITLE: RESEARCH METHODOLOGY & COMPUTER APPLICATION: BASICS

CREDIT: 06 HOURS: 90

THEORY: 06 PRACTICAL: 00 THEORY: 90

MARKS: 100

THEORY: 70 CCA: 30

Scheme of marks:

- i. Short answer type questions: three questions carrying 5 marks each to be asked two to be attempted (Word limit 100 words).
- ii. Middle answer type questions: three questions carrying 9 marks each to be set two to be attempted (Word limit 250 words).
- **iii.** Long answer type questions: three questions carrying 14 marks each to be set two to be attempted (Word limit 750 words).

OBJECTIVE:

- Understands the concept and place of research in concerned subject
- Gets acquainted with various resources for research
- Becomes familiar with various tools of research
- Gets conversant with sampling techniques, methods of research and techniques of analysis of data
- Achieves skills in various research writings
- Gets acquainted with computer Fundamentals and Office Software Package .

UNIT-1 15 Hrs.

CONCEPT OF RESEARCH:

Meaning and characteristics of research , Steps in research process , Types of research -

i) Basic, applied and action researchii) Quantitative and qualitative research , Areas of research in concern discipline

SELECTION OF PROBLEM FOR RESEARCH:

Sources of the selection of the problem ,Criteria of the selection of the problem ,Drafting a research proposal , Meaning and types of variables ,Meaning and types of hypotheses.

UNIT-2 15 Hrs

TOOLS OF RESEARCH:

Meaning and general information about construction procedure of (i) Questionnaire, (ii) Interview, (iii) Psychological test, (iv) observation (v) Rating scale (vi) Attitute scale and (vii) check list, Advantages and disadvantages of above tools

SAMPLING:

Meaning of population and sample, Importance and characteristics of sample, Sampling techniques - i) Probability sampling: random sampling, stratified random sampling, systematic sampling, cluster sampling ii)Non-probability sampling: incidental sampling, purposive sampling, quata sampling

UNIT-3 15 Hrs

METHODS OF RESEARCH

Meaning and conducting procedure of following methods of research: Historical method Survey method, Case study, Causal comparative method, Developmental methods, Experimental methods

UNIT-4 15 Hrs	TREATMENT OF DATA: Level of measurements of data, Steps in treatment of data: editing, coding, classification, tabulation, analysis and interpretation of results WRITING RESEARCH REPORT: Sections of report: Preliminary section, Content section: various chapters, Supplementary section: appendices, references, abstract, Format and style
	Computer Fundamentals Computer System: Features, Basic Applications of Computer, Generations of computers.
UNIT-5 15 Hrs	Parts of Computer System: Peatures, Basic Applications of Computer, Generations of Computers. Parts of Computer System: Block Diagram of Computer System; Central Processing Unit (CPU); Concepts and types of Hardware and Software, Input Devices - Mouse, Keyboard, Scanner, Bar Code Reader, track ball; Output Devices - Monitor, Printer, Plotter, Speaker; Computer Memory - primary and secondary memory, magnetic and optical storage devices. Operating Systems - MS Windows: Basics of Windows OS; Components of Windows - icons, taskbar, activating windows, using desktop, title bar, running applications, exploring computer, managing files and folders, copying and moving files and folders; Control panel: display properties, adding and removing software and hardware, setting date and time, screensaver and appearance; Windows Accessories: Calculator, Notepad, WordPad, Paint Brush, Command Prompt, Windows Explorer.
UNIT-6 15 Hrs	Office Software Package Word Processing - MS Word :Creating, Saving, Opening, Editing, Formatting, Page Setup and printing Documents; Using tables, pictures, and charts in Documents; Using Mail Merge sending a document to a group of people and creating form, letters and label. Spreadsheet - MS Excel :Opening a Blank or New Workbook, entering data/Function/Formula into worksheet cell, Saving, Editing, Formatting, Page Setup and printing Workbooks. Presentation Software - MS Power Point : Creating and enhancing a presentation, modifying a presentation, working with visual elements, adding Animations & Transitions and delivering a presentation

Agrawal, Y. P. (1988). **Better sampling : Concepts, Techniques and Evaluation.**New Delhi : sterling Publishers Private Ltd.Best, J. W. (1993).

Research in Education (6th ed.)New Delhi: Prentice-Hall of India Pvt. Ltd.

Broota, K. D. (1992) **Experimental design in Behavioral Research** (2nd ed.)

New Delhi: Wiley Eastern Limited.

Dasgupta, A. K. (1968). **Methodology of Economic Research**.Bombay: Asia Publishing House.Edwards, A. L. (1957). **Techniques of Attitude Scale construction.**New York: Appleton-Contury

Gall, M. D., Gall, J. P. and Borg, W. R. (2007). **Educational Research: An introduction** (8th ed.) Coston: Allyn and Bacon.

Garrett, H. E. & Woodworth, R. S. (1969). **Statistics in Psychology and Education**. Bombay :Vakils, Fecffer& Simons Pvt. Ltd.

Goode, W. J. & Hatt, Paul K. (1952). **Methods in Social Research.**New York: McGraw-Hill. Gopal, M. H. (1964). **An Introduction to research Procedure in Social Sciences.** Bombay: Asia Publishing House.

Hillway, T. (1964) *Introduction to Research (2nd ed.)* Noston: Houghton Miffin.

Hyman, H. H., et al. (1975). Interviewing in Social Research.

Chicago: University of Chicago Press.

Kerlinger, F. N. (1983) Foundation of Behavioural Research. (2nd Indian Reprint)

New York: Holt, Rinehart and Winston.

Kothari, C. R. (2007) **Research Methodology: Methods & Techniques** (3rd ed.)

New Delhi :WishwaPrakashan.Fundamentals Of Computers, Dr. P. Mohan, Himalaya Publishing House.

Microsoft First Look Office 2010, K. Murray, Microsoft Press.

Fundamental Of Research Methodology And Statistics, Y.K. Singh, New Age

International (P) Limited, Publishers.Practical Research Methods, Dr Catherine Dawson,

The Essence Of Research Methodology, Jan Jonker&BartjanPennink, Springer.

	M.Sc. in	PHYSICS	SECOND SEMESTER				
COUR	SE CODE:	MSPB01	COURSE TYPE : ECC/CB				
	COURSE TITLE: ENVIRONMENTALAND FOREST LAWS						
CRED	IT: 06		HOURS: 90				
THEO	PRY: 06		THEORY: 90				
MARI							
THEO		CCA: 30					
Schen	ne of marks:						
iv.			estions carrying 5 marks each to be asked two to be				
		Word limit 100 words).					
V.			tions carrying 9 marks each to be set two to be attempted				
vi.	•	250 words).	ons carrying 14 marks each to be set two to be attempted				
VI.	_	t 750 words).	ons carrying 14 marks each to be set two to be attempted				
		LUTION OF FOREST AND WIL	D LIFE LAWS				
. 1	a)	Importance of Forest and					
UNIT - 1 18 Hrs	b)		Evolution of Forest and Wild Life Laws				
NN 18	c)	Forest Policy during Briti					
_ ` `	d)	,					
	e) Methods of Forest and Wildlife Conservation.						
	FOR	EST PROTECTION AND LAW					
2	a)	Indian Forest Act, 1927					
UNIT - 2 18 Hrs	b)						
UNIT - 18 Hrs	c)	Rights of Forest Dwellers	and Tribal				
1	c)	The Forest Rights Act, 2006					
	d)	National Forest Policy 19					
	WIL	DLIFE PROTECTION AND LAV	V				
. 3		Myllica Daniel Arri	1072				
UNIT - 3 18 H rs	a)	Wild Life Protection Act,					
UNI7 18 H	b) c)	Wild Life Conservation st The National Zoo Policy	rategy and Projects				
	L)	THE National Loo Policy					

	CHAPTER - I	BASIC CONCEPTS
	a.	Meaning and definition of environment.
	b.	Multidisciplinary nature of environment
	c.	Concept of ecology and ecosystem
	d.	Importance of environment
	e.	Meaning and types of environmental pollution.
	f	Factors responsible for environmental degradation.
UNIT - 4 Irs	CHAPTER- II	NTRODUCTION TO LEGAL SYSTEM
VIT S	a.	Acts, Rules, Policies, Notification, circulars etc
UN	b.	Constitutional provisions on Environment Protection
UNI 18 Hrs	c.	Judicial review, precedents
1	d.	Writ petitions, PIL and Judicial Activism
	CHAPTER – I	LEGISLATIVE FRAMEWORK FOR POLLUTION CONTROL LAWS
	a)	Air Pollution and Law.
	b)	Water Pollution and Law.
	c)	Noise Pollution and Law.
	CHAPTER- L	EGISLATIVE FRAMEWORK FOR ENVIRONMENT PROTECTION
	a)	Environment Protection Act & rules there under
	b)	Hazardous Waste and Law
	c)	Principles of Strict and absolute Liability.
	d)	Public Liability Insurance Act
	e)	Environment Impact Assessment Regulations in India
UNIT - 5 Hrs	CHAPTER - ENVIRONMENTAL CONSTITUTIONALISM	
UNI 18 Hrs	a.	Fundamental Rights and Environment
8		i) Right to EqualityArticle 14
		ii) Right to InformationArticle 19
		iii) Right to LifeArticle 21
		iv) Freedom of Trade vis-à-vis Environment Protection
	b.	The Forty-Second Amendment Act
	C.	Directive Principles of State Policy & Fundamental Duties
	d.	Judicial Activism and PIL

Bharucha, Erach. <u>Text Book of Environmental Studies.</u> Hyderabad : University Press (India) Private limited, 2005.

Doabia, T. S. <u>Environmental and Pollution Laws in India</u>. New Delhi: Wadhwa and Company, 2005.

Joseph, Benny. <u>Environmental Studies</u>, New Delhi: Tata McGraw-Hill Publishing Company Limited, 2006.

Khan. I. A, <u>Text Book of Environmental Laws.</u> Allahabad: Central Law Agency, 2002.

Leelakrishnan, P. <u>Environmental Law Case Book.</u> 2nd Edition. New Delhi: LexisNexis Butterworths, 2006.

Leelakrishnan, P. <u>Environmental Law in India.</u> 2nd Edition. New Delhi: LexisNexis Butterworths, 2005.

Shastri, S.C (ed). <u>Human Rights, Development and Environmental Law, An Anthology.</u> Jaipur: Bharat law Publications, 2006.

Environmental Pollution by Asthana and Asthana, S,Chand Publication

Environmental Science by Dr. S.R.Myneni, Asia law House

Gurdip Singh, Environmental Law in India (2005) Macmillan.

Shyam Diwan and Armin Rosencranz, Environmental Law and Policy in India – Cases, Materials and Statutes (2nd ed., 2001) Oxford University Press.

JOURNALS:-

Journal of Indian Law Institute, ILI New Delhi. Journal of Environmental Law, NLSIU, Bangalore.

MAGAZINES:-

Economical and Political Weekly Down to Earth.

	M.Sc. in PHYSICS	SECOND SEMESTER		
COURSE	CODE: MSP B02	COURSE TYPE : ECC/CB		
COURSE TITLE: ELECTRONIC INSTRUMENTATION				
CREDIT:	06	HOURS: 90		
THEORY: 06 THEORY: 90				
MARKS: THEORY				
	of marks:			
 vii. Short answer type questions: three questions carrying 5 marks each to be asked two to be attempted (Word limit 100 words). viii. Middle answer type questions: three questions carrying 9 marks each to be set two to be attempted (Word limit 250 words). 				
	ong answer type questions: three question Word limit 750 words).	s carrying 14 marks each to be set two to be attempted		
UNIT-1 20Hrs.	Transducers: Classification of Transducers - Principle, construction and working of Thermistor, LVDT, Electrical strain gauges and capacitive transducers. Measurement of non-electrical quantities - Strain, Displacement, temperature, Pressure and Force.			
UNIT-2 20 Hrs	Digital Instrumentation: Principle, block diagram and working of Digital frequency counter, digital multimeter, digital pH meter, digital conductivity meter and digital storage oscilloscope.			
UNIT-3 20 Hrs	Analytical Instrumentation: Principle, block diagram, description, working and applications of UV-VIS spectrometer, IR spectrometer, Flame emission spectrometer and ICP - AES spectrometer - Basic concepts of Gas and Liquid Chromatography.			
UNIT4 15 Hrs	Bio-Medical Instrumentation: Physiological transducers to measure blood pressure, body temperature. Sources of Bio-electric potentials - resting potential, action potential, bio-potential electrodes. Principle, block diagram and operation of ECG and EEG - recorders.			
UNIT-5 15 Hrs	Computer Peripherals : Printers - Printer mechanism - Classification. Dot matrix, Ink jet and laser printers. Basic concepts of key board and mouse. Mass data storage - floppy disk -Hard Disk - Optical disk (CD).			

S
5
ラ
$\overline{}$
⋖
豆
\simeq
团
L
S
Ŧ
i B
\sim
9
7

- 1. Dr. Rajendra Prasad, Electronic Measurements and Instrumentation, Khanna Publications.
- 2. S. Ramambhadran, Electronic Measurements and Instrumentation Khanna Publications.
- 3. S.M. Dhir, Electronics and Instrumentation, Khanna Publishers. Khandpur

N	1.Sc. in PHYSICS	SECOND SEMESTER				
COURSE	CODE: MSP B03	COURSE TYPE : ECC/CB				
COURSE TITLE: CONDENSED MATTER PHYSICS – II						
CREDIT: 06 HOURS: 90						
THEORY	Y: 06	THEORY: 90				
MARKS THEORY						
	of marks:					
X.	Short answer type questions: three question	s carrying 5 marks each to be asked two to be attempted				
((Word limit 100 words).					
	Middle answer type questions: three question word limit 250 words).	ns carrying 9 marks each to be set two to be attempted				
	9 7	s carrying 14 marks each to be set two to be attempted				
	(Word limit 750 words). Disordered systems: Substitutional, po	ositional and topographical disorder, short and long				
		forming ability, nucleation and growth processes.				
		Anderson model for random system and electron localization, mobility and hopping				
	conduction. Metal glasses, models for structure of metal glasses. Structure factor for binary					
UNIT-1 20Hrs.	metallic glasses and its relationship with radial distribution function. Discussion of electric,					
UN 20	magnetic and mechanical properties of glassy systems. Point defects: shallow impurity states					
		in semiconductors. Localized lattice vibrational states in solids. Vacancies, interstitials and				
	colour centres in ionic crystals.	brational states in somes. Vacancies, interstitials and				
	•					
	Nanomaterials: Free electron theory (qualitative idea), variation of density of states with				
r-2 Irs	energy, variation of density of state and band gap with size of crystal. Electron confinement					
UNIT 20 H	in infinitely deep square well, confir	nement in two and one dimensional well, idea of				
	quantum well structure, tunneling through potential barrier, quantum dots, quantum wires.					
S rs	Different methods of preparation of r	nanomaterials. Sol-gel and chemical co-precipitation				
UNIT-3 0 H rs	nethod, effect of temperature on the size of the particles. Bottom up: cluster beam					
UN 20	evaporation, ion beam deposition, top down: ball milling. DC and RF sputtering.					
	Films and surfaces: Study of surface topography by multiple beam interferometry,					
_	conditions for accurate determination of step height and film thicknesses (Fizeau fringes).					
UNIT4 15 Hrs	Electrical conductivity of thin films, diff	ference of behaviour of thin films from bulk material,				
UN 15	Boltzman transport equation for a thin	film (for diffuse scattering), expression for electrical				
	conductivity for thin film. Enhancement	t of magnetic anisotropy due to surface pinning.				

-5- S	Experimental techniques: Basic ideas of the techniques of field emission, scanning		
	tunnelling and atomic force microscopy, scanning electron microscopy, transmission		
UNIT-5 15 Hrs	electron microscopy, X-ray diffraction line broadening, small angle X-ray scattering and		
0 1	small angle neutron scattering.		
	1.Tolansky: Multiple beam interferometry		
CS	2. Heavens: Thin films 3.Chopra: Physics of thin films		
READINGS	4. Quantum dot heterostructures: D. Bimerg, M. Grundmann and N.N. Ledenstov, John Wiley		
REA	& Sons, 1998		
	5. Nano particles and nano structured films – preparation, characterization and applications,		
EST	Ed. J.H. Fendler, John Wiley & Sons, 1998.		
SUGGESTED	6. Physics of low dimensional semiconductors: John H. Davies, Cambridge Univ. Press, 1997		
S	7. Physics of semiconductor nano structures: K.P. Jain, Narosa, 1997		

M.Sc. in	PHYSICS	SECOND SEMESTER			
COURSE	COURSE CODE: MSP B04 COURSE TYPE : ECC/CB				
COURSE	TITLE: HIGH ENERGY PHYSICS - I				
CREDIT:	CREDIT: 06 HOURS: 90				
THEORY	06	THEORY: 90			
MARKS:	100 70 CCA: 30				
THEORY Scheme	of marks:				
xiii. S	hart answer type allestions, three allestion	s carrying 5 marks each to be asked two to be attempted			
7)	Vord limit 100 words).				
	iddle answer type questions: three questio Vord limit 250 words).	ns carrying 9 marks each to be set two to be attempted			
xv. L	ong answer type questions: three questions	s carrying 14 marks each to be set two to be attempted			
	Nord limit 750 words). Moller scattering trace theorems	and properties of gamma matrices, helicity			
H .:	•	electron propagator, the photon propagator.			
UNIT-1 20Hrs.	representation at high energies., the	election propagator, the photon propagator.			
••	Structure of Hadrons: form factors, e-p scattering, inelastic e-p scattering, Bjorken scalin				
UNIT-2 20 Hrs	Partons, gluons, deep inelastic scattering, evolution equations for parton densities.				
UN 20					
.3 rs	QCD: Electron positron annihilation	into hadrons, heavy qwuark production, three jet			
UNIT-3	events, QCD corrections, Perturbative Q	CD, Drell-Yan process			
U] 20					
IT4 Hrs	•	form of weak interaction, Nuclear beta decay, muon			
_	decay, pion decay, neutrino electron	scattering, neutrino quark scattering, weak neutral			
UN 15	currents, the Cabibo angle, weak mixing angles, CP invariance.				
Ė	Gauge Symmetries: U(1) Local gauge in	variance and QED, Non-abelian gauge invariance and			
UNIT- 5	QCD, massive gauge bosons, spontaneou	us breakdown of symmetry, the Higgs mechanism.			
	1. Francis Halzen and Allan D. Martin	n, Quarks and Leptons: An Introductory Course in			
DIN	Modern Particle Physics, John Wiley and	l Sons			
SUGGESTED READINGS	2. B.R. Martin and G. Shaw, Particle Phys	sics, 2nd edition, J. Wiley and Sons (1997).			
ED I	3. David Griffiths, Introduction to Eleme	entary Particles			
EST	4. Byron Roe Particle Physics at the Nev	v Millennium			
[<u>G</u> G]	5. Donald Perkin, Introduction to high e	nergy physics).			
SU					

M. Sc. in PHYSICS THIRD SEMESTER (ODD SEMESTER)

FACULTY OF SCIENCE

Eligibility Criteria (Qualifying	Course Code	Course Type	Course (Paper/Subjects)	Credits	Contact Hours Per WeeK		Per	EoSE Duration (Hrs.)	
Exams)					L	T	P	Thy	P
nd ve ar	MSP 301	CCC	Solid State Physics	6	4	3	0	3	0
the Second irrespective ack/arrear	MSP 311/312	CCC	Lab Course A/Lab Course B	6	00	00	6	00	6
e res k/	MSP 302	CCC	Nuclear and Particle Physics	6	4	3	0	3	0
the i irres back/	MSP 303	CCC	Classical Electro Dynamics	6	4	3	0	3	0
g in latior of	MSP S02	OSC	Intellectual Property, Human Rights & Environment	6	4	3	00	3	00
opearing examina number	MSP C01	ECC/CB	Tribal Studies						
ear xau ml	MSP C02	ECC/CB	Microwave Electronics	6	4	3	00	3	00
	MSP C03	ECC/CB	Nano Science	O	4	3	00	3	00
ny rs	MSP C04	ECC/CB	High Energy Physics - III						
After semest of any papers	MINIMUM	CREDITS I	N INDIVIDUAL SUBJECT IS 6 AND IN	TOTAL=					
Aff Aff of page 1	COMPLETE SEMESTER IT WOULD BE 30			36					

M.Sc. in PHYSICS THIRD SEMESTER						
COURSE	COURSE CODE: MSP 301 COURSE TYPE : CCC					
COURSE	COURSE TITLE: SOLID STATE PHYSICS					
CREDIT:	06	HOURS: 90				
THEORY	: 06 PRACTICAL: 00	THEORY: 90 PRACTICAL: 00				
MARKS:	100	DD 4 CEVCAY 0.0				
THEORY Scheme	: 70 CCA : 30 of marks:	PRACTICAL: 00				
i. S		ns carrying 5 marks each to be asked two to be attempted				
ii. M		ons carrying 9 marks each to be set two to be attempted				
iii. L		ns carrying 14 marks each to be set two to be attempted				
	Crystal Physics					
S	Types of lattices - Miller indices - simp	ole crystal structures - Crystal diffraction - Bragg's law				
UNIT-1 20 Hrs.	- Reciprocal lattice (sc, bcc, fcc) - La	u equations - Atomic form factor - Types of crystal				
U]	binding - Cohesive energy of ionic crys	stals - Inert gas crystals - Vander Waal, Metal crystals -				
	Hydrogen bonded crystals.					
S	Lattice dynamics					
15 Hrs	Monoatomic lattices - Lattice with two atoms per primitive cell - First Brillouin zone - Group					
	and phase velocities - Quantization of lattice vibrations - Phonon momentum - Inelastic					
UNIT-2	scattering by phonons - Debye's theory of lattice heat capacity - Einstein's model and					
n	Debye's model of specific heat.					
	Theory of metals and semiconductors					
ယ် လ	Free electrons gas in three dimensions - Electronic heat capacity - Wiedmann-Franz law -					
UNIT-3 20 Hrs	Hall effect - Band theory of metals and semiconductors - Bloch theorem - Kronig-Penny					
U]		rier concentration - Mobility - Impurity conductivity -				
	de Haas Van Alphen effect.					
	Magnetism					
	•	ro magnetism - quantum theory of paramagnetism -				
T-4 Irs		demagnetization - Quantum theory of ferromagnetism				
UNIT-4 15Hrs		- Bloch Wall - Spin waves - Quantization - Magnons -				
		rie temperature and susceptibility of ferrimagnets -				
	Theory of antiferromagnetism - Neel to	emperature.				

	Super conductivity
ro s	Effect of magnetic fields - Meissner effect - Entropy and heat capacity - Energy gap -
UNIT- 5	Microwave and infrared properties - Type I and II superconductors - theoretical explanation
UN 20	London equation - Coherence length - BCS Theory - superconducting Tunneling - Josephson
	tunneling - DC and AC Josephson effects.
	1. N.W. Aschroft and N.D. Mermin, Solid State Physics, Rhinehart and Winton, New York.
	2. J.S. Blakemore, 1974, Solid State Physics, 2nd Edition, W.B. Saunder, Philadelphia.
NGS	3. A.J. Dekker, Solid State Physics, Macmillan India, New Delhi.
(EAD)	4. H.M. Rosenburg, 1993, The Solid State, 3rd Edition, Oxford University Press, Oxford.
SUGGESTED READINGS	5. S.O. Pillai, 1994, Problems and Solutions in Solid State Physics, New Age International, New Delhi.
SUGGI	6. S.L. Altmann, Band Theory of Metals, Pergamon, Oxford.
0,	7. M.A. Wahab, 1999, Solid State Physics, Structure and Properties of Materials, Narosa, New Delhi.
	8. J.M. Ziman, 1971, Principles of the Theory of Solids, Cambridge University Press, London.

M.Sc. in PHYSIC			THI	RD SEMESTER		
COURSE CODE:	MSP 311			COURSE	TYPE : CCC	
COURSE TITLE: La	COURSE TITLE: Lab Course A					
CRE		HOURS: 90				
THEORY: 00	PRACTICAL:	03	THEORY:	00	PRACTICAL:	
					100	
		Marks	i			
THEORY: 00			PRACTICAL: 100			
		(EXPERIMENT:60; VIVA-VOCE:20 &				
			SESSIONAL:20)			

LAB COURSE A:

- 1. To find the root of an Equation using Newton–Raphson method.
- 2. To find the root of an equation using Bisection Method.
- 3. To find the real roots of an equation using Simpson 1/3rd Method.
- To find the real roots of an equation using Simpson 3/8th Method.
- 5. To find the root of an equation using second Method.
- To find the root of an equation using Regala falsi Method
- To find the root of an equation using Runga Kutta fourth order Method.
- 8. To find the root of an equation using Jacobi method.
- 9. To find the root of an equation by Lu- Decomposition method.
- 10. To find the root of an equation by Newton forward difference Method.

M.Sc. in PHYSICS				THI	RD SEMESTER	
COURSE CODE:			COURSE	TYPE : CCC		
COURSE TITLE: La	COURSE TITLE: Lab Course B					
CREDIT: 03			HOURS: 90			
THEORY: 00	PRACTICAL:	02	THEORY:	00	PRACTICAL:	
					100	
		Marks	;			
THEORY: 00			PRACTICAL: 100			
			(EXPERIMENT:60; VIVA-VOCE:20 &			
				SESSIONAL	<i>ւ</i> :20)	

LAB COURSE B:

- 1. To construct and study T-Type Flip Flop using NAND/NOR gate.
- 2. To Construct and Study RS Flip Flop using NAND/NOR gate.
- 3. To construct and study D-Type Flip Flop using NAND/NOR gate.
- 4. To construct and study of 4 bitDigital to Analog Converter (DAC) using R-2R ladder method.
- 5. To study various Flip-Flops using Digital IC trainer.
- 6. Construction of full substractor using Ex-OR gate.
- 7. Construction of half substractor using Ex-OR gate.

M.Sc. in	PHYSICS	THIRD SEMESTER				
COURSE CODE: MSP 302 COURSE TYPE : CCC						
COURSE	COURSE TITLE: NUCLEAR AND PARTICLE PHYSICS					
CREDIT:	06	HOURS: 90				
THEORY	: 06 PRACTICAL: 00	THEORY: 90 PRACTICAL: 00				
MARKS:	100					
THEORY		PRACTICAL: 00				
Scheme	of marks:					
i. S	thort answer type questions: three question	is carrying 5 marks each to be asked two to be attempted				
`	Word limit 100 words).	ons carrying 9 marks each to be set two to be attempted				
	Word limit 250 words).	ons carrying 9 marks each to be set two to be attempted				
	9 71 1	s carrying 14 marks each to be set two to be attempted				
('	Word limit 750 words). Nuclear Structure And Models					
S.		model - Semi-empirical mass formula of Weizsacker -				
UNIT-1 20 Hrs	Nuclear stability - Mass parabolas - Bol	nr-Wheeler theory of fission, Experimental evidence for				
UN 20	shell effects, - Shell model - Spin-orbi	t coupling - Magic numbers - Angular momenta and				
	parities of nuclear ground state, Motte	lson - Nilsson Model.				
2 S.	Nuclear Interactions	on forces. Mason theory of nuclear forces. Vultavia				
UNIT-2 15 Hrs		or forces - Meson theory of nuclear forces - Yukawa - Low energy n-p scattering - Effective range theory,				
UNI 15	Isospin formalism.	Low energy if p scattering - Effective range theory,				
0	Nuclear reactions					
UNIT-3 20 Hrs	Types of reactions and conservation l	aws - Energetics of nuclear reactions, Q-equation and				
IT-3 Hrs	threshold energies, Direct and compound nuclear reactions, compound nucleus - Scattering					
No	matrix - Reciprocity theorem - Breit-Wigner one level formula, Optical model.					
	Nuclear decay					
-4. rs	Beta decay - Fermi's theory - Fermi-Kurie Plot - Fermi and Gamow - Teller selection rules -					
UNIT-4 20Hrs		y rates, Comparative half lives - Theory of Neutrino -				
U 2	Multipole transitions in nuclei - Nuclea	ron capture, Gamma decay - Internal conversion -				
	Particle Physics	1 15011101 15111.				
LS .	1	ification of Elementary Particles, Quantum number of				
15 Hrs		ctions between elementary particles - Hadrons and				
5 15		laws, strange particles, Elementary ideas of CP and				
		drons, Quark model, Qunatum number for quarks,				
UNIT-		del, - Gell-mann-Okubo mass formula for octet and				
ר	decaplet.					

SUGGESTED READINGS

- 1. Y.R. Waghmare, 1981, Introductory Nuclear Physics, Oxford-IBH, New Delhi.
- 2. Ghoshal, Atomic and Nuclear Physics, Volume 2.
- 3. J.M. Longo, 1971, Elementary Particles, McGraw-Hill, New York.
- 4. R.D. Evans, 1955, Atomic Nucleus, McGraw-Hill, New York.
- 5. B.L. Cohen, 1971, Concepts of Nuclear Physics, TMH, New Delhi.
- 6. M.K. Pal, 1982, Theory of Nuclear Structure, Affl. East-West, Chennai.
- 7. W.E. Burcham and M. Jobes, 1995, Nuclear and Particle Physics, Addison-Wesley, Tokyo.

ľ	M.Sc. in PHYSICS	THIRD SEMESTER				
COURSE CODE: MSP 303 COURSE TYPE : CCC						
COURSE TITLE: CLASSICAL ELECTRODYNAMICS						
CREDIT: 06 HOURS: 90						
THEORY	: 06	THEORY: 90				
MARKS:	100					
Schomo	: 70 CCA : 30 of marks:					
	thort answer type questions: three question Word limit 100 words).	s carrying 5 marks each to be asked two to be attempted				
v. M	liddle answer type questions: three question	ons carrying 9 marks each to be set two to be attempted				
•	Word limit 250 words). ong answer type questions: three question	s carrying 14 marks each to be set two to be attempted				
	Word limit 750 words).					
	·	r, Differential form of Gaussian law. Another equation				
-1- S.	of electrostatics and the scalar potential, Boundary conditions on E and D, surface					
UNIT-1 15 Hrs.	distribution of charges and dipoles, Poisson and Laplace equations, Green's Theorem,					
U 1:	Formal Solutions of electrostatic, Boundary value problem with Green's function,					
	Electrostatic potential energy.					
Boundary Value Problems in Electrostatics: Methods of Images, Point charge in						
T-2 Irs	of a grounded conducting sphere, point charge in the presence of a charged insulated					
UNIT-2 20 Hrs	conducting sphere, General solution for the potential, conducting sphere wit hemispheres at					
_	a different potential.					
	Magnetostatics: Introduction and defin	ition, Biot and Savart Law, the differential equations				
~	of magnetostatics and Ampere's law, magnetic induction for a current loop, Magnetic fields					
UNIT-3 20 Hrs	of a localized current distribution, Magnetic moment, Force and torque on and energy of a					
UN 20	localized current distribution in an external induction, Boundary conditions on B and H,					
	Uniformly magnetized sphere, magnetized	zed sphere in an external fields, permanent magnets.				
	Time varying fields, Maxwell's equation	ns, Poynting's Theorem, conservation laws: Energy in				
UNIT-4 20Hrs	a magnetic field, vector and scalar	potentials, Gauge transformations, Lorentz gauge,				
UN 20	Coulomb gauge, Green function for the	wave equation.				

.0	Lorentz transformations of space and time in four vector form, Equation of continuity in
Hrs	covariant form, Lorentz condition in covariant form, Lorentz transformations of electric and
15	magnetic fields, Lorentz force in covariant form, Maxwell's equations in covariant four
UNIT-5	vector form, Electromagnetic field tensor, transformation of four potentials and four
ND	currents, Invariance of the electromagnetic fields.
	1. J.D. Jackson: Classical Electrodynamics
ED	2. Panofsky & Phillip: Classical electrodynamics and magnetism
EST	3. Griffith: Introduction to Electrodynamics
SUGGESTED READINGS	4. Landau & Lifshitz: Classical Theory of Electrodynamics
S	5. Landau & Lifshitz: Electrodynamics of continuous media

	M.Sc. in	PHYS	SICS			TH	HIRD	SEMESTER
COURSE (CODE:	MSPS	02		COURSE	TYPE : OSC		
COURSE 7	TITLE: IN	TELL	ECTUAL PROPE	RTY RIGH	ΓS, HUMAN RIGH	ITS & ENV	TRON	NMENT
CREDIT:	CREDIT: 06 HOURS: 90							
THEORY:	06		Practical: 00			THEORY:	90	Practical: 00
MARKS:	100							
THEORY: Scheme of			CCA: 30					
	nort answ Vord limit			e questions	carrying 5 marks	each to be	aske	ed two to be attempted
•			_	e auestions (carrving 9 marks e	ach to be se	et two	to be attempted (Word
	nit 250 w		1	1	<i>y</i> 0			1
			questions: three	questions ca	rrying 14 marks ea	ach to be se	t two	to be attempted (Word
lin	nit 750 w		. Introduction 0	gongonta II	atonical Overvious			
			t matter of patent.	concepts, n	storical Overview.			
		•	of Patents.					
	• I	Develo	pment of Law of I	Patents thro	ugh international t	reaties and	conv	entions including TRIPS
1		Agreem						
			ure for grant of pa					
UNIT -			der, revocation an		n of patent.			
n		_	and obligations of of compulsory lice					
			ement of Patent a		edies			
Irs			es and penalties	ira regar rem	cares			
12 Hrs			sion on leading cas	ses.				
<u> </u>	• 1	Meanin	ng of Copyright, H	istorical Evo	lution,			
		,	matter of copyrig	ght.				
		Literary works						
		Dramatic Works & Musical Works						
		-	ter Programme					
		Cinematographic filmsRegistration of Copyrights						
2			of Copyright and O		Convrights			
T.			oring Rights		30p)11 8 110			
UNIT		_	of Performers & B	roadcasters				
1	• A	Assignr	ment of Copyright	•				
			's Special Rights (
		_	ement of Copyrigh					
7				-	diction of Courts and	-	ше	C Davis Uni December
4 Hrs		International Conventions including TRIPS Agreement WIPO, UCC, Paris Union, Berne Convention, UNESCO.						
[42			sion on leading cas	ses.				
.,			n Rights- Meanin		als			
-3 rs			n Rights Kinds	J = 1 = 2 3 4 1 4 1	-			
H H			related to Life, I	libertv. Eau	als & Disable			
UN 10	_	343		,,40	· 			

UNIT - 4 24 Hrs	 National Human Rights Commission State Human Rights Commission High Court Regional Court Procedure & Functions of High & Regional Court.
UNIT - 5 20 Hrs	 Basic concepts in human health and disease, Fundamentals of environmentally and occupationally induced illness. Case studies using current environment and human rights issues
SUGGESTED READINGS	 G.B.Reddy, Intellectual Property Rights and Law, Gogia Law Agency, Hyderabad. S.R.Myneni, Intellectual Property Law, Eastern Law House, Calcutta P Narayanan Intellectual Property Rights and Law (1999), Eastern Law House, Calcutta, India Vikas Vashistha, Law and Practice of Intellectual Property,(1999) Bharat Law House, New Delhi. Comish W.R Intellectual Property,3rd ed, (1996), Sweet and Maxwell P.S. Sangal and Kishor Singh, Indian Patent System and Paris Convention, Comish W.R Intellectual Property, Patents, Copyrights and Allied Rights, (2005) Bibeck Debroy, Intellectual Property Rights, (1998), Rajiv Gandhi Foundation.

ľ	M.Sc. in PHYSICS	THIRD SEMESTER				
COURSE	CODE: MSPC01	COURSE TYPE : ECC/CB				
COURSE TITLE:TRIBAL STUDIES						
CREDIT:	06	HOURS: 90				
THEORY: 06 THEORY: 90						
MARKS:						
Scheme	: 70 CCA : 30 of marks:					
	hort answer type questions: three question Word limit 100 words).	s carrying 5 marks each to be asked two to be attempted				
xi. M		ns carrying 9 marks each to be set two to be attempted				
	ong answer type questions: three questions Nord limit 750 words).	s carrying 14 marks each to be set two to be attempted				
		Need & importance of tribalstudies. Meaning, Definition &				
UNIT - 1 .2 Hrs	characteristics of Tribe, Caste & Race.					
UNIT - 12 Hrs						
	Scheduled Tribe in India · Population Co	omnosition of tribal classification of Indian Tribe - Racial				
- 5	Scheduled Tribe in India: Population Composition of tribal, classification of Indian Tribe – Racial, Lingual, Geographical, Cultural.					
UNIT - 2 24 Hrs	Some Major Tribes in India: Santhal, Khasi, Munda, Bhils.					
Some Major Tribes in Central India: Gond, Baiga, Bharia, Korkus.						
		loyment, migration & ExploitationEnvironmental &				
UNIT - 3 .0 H rs	Degradation.					
INI H (Problem of Health and sanitation :					
	Prostitution, Culture Decay due to assimilation. Replacement & Rehabilitation of Tribal population.					
4 s	- '	al Welfare in post independenceperiod. Constitutional				
UNIT - 4 24 Hrs	provision & safe guard after independence,	Legislation & Reservation Policy.				
UN 24						
	Tribal Development Programs for Scheo	luled Tribes : Medical, Education, Economy, Employment				
[- 5 Irs	& Agriculture Evaluation of Programs					
UNIT - 5 20 Hrs	Tribal Welfare & Advisory Agencies in India: Role of NGO's in tribal development, Role of					
۰۰ ر	Christian missionaries in tribal welfare & d	evelopment. Tribal Welfare Administration.				
	1. Tribal Development In India (Orissa)) by Dr. Taradutt				
TEE	2. Books on Tribal studies by PK Bhow	mik				
SUGGESTED READINGS	3. Books on 'Tribal Studies' by W.G. Arc	cher				
	-					
S _						
	<u> </u>					

M	.Sc. in PHYSICS	THIRD SEMESTER			
COURSE	CODE: MSP CO2COURSE TYPE :	ECC/CB			
COURSE	TITLE: MICROWAVE ELECTRONICS				
CREDIT: 06 HOURS: 90					
THEORY	THEORY: 06 THEORY: 90				
MARKS: THEORY					
	: 70 CCA : 30 of marks:				
	Short answer type questions: three question Word limit 100 words).	ns carrying 5 marks each to be asked two to be attempted			
	fiddle answer type questions: three questions word limit 250 words).	ons carrying 9 marks each to be set two to be attempted			
•	,	is carrying 14 marks each to be set two to be attempted			
	Word limit 750 words).				
		listribution in rectangular waveguide in TE and TM			
 	modes, Phase velocity, Group velocity, Characteristics impedance, wall current, Cavity				
UNIT-1 20Hrs.	resonators and their excitation techniques, Scattering matrix for Microwave Tees and hybrid				
U 2	junction directional coupler, Construction and working of precision attenuator and phase				
	shifter.				
	CIRCUIT THEORY OF WAVE GUIDES	: Power Transmission in Wave Guides, Equivalent			
01	Voltages and Currents, Impedance Description of Wave Guide Elements and Circuits, Foster's				
UNIT-2 20Hrs	Reaction Theorem, One Port Circuits, N-Ports Circuits, Scattering Matrix Formulation,				
UN 2C	Excitation and Coupling of Wave Guides, Dielectric Loaded Wave Guides, Surface Wave				
	Guides.				
	ANTENNAS: Familiarity with Different	Types of Antennas, Radiation Properties, Strip-Lines			
UNIT-3 20 H rs	and Microstrip Lines, Strip-Line Characteristics, Strip-Line Components, Microstrip				
UN 20	Antennas, Radiation Properties of Microstrip Antennas				
4 s	APPLICATIONS OF MICROWAVES:	Applications of Microwave in RADAR, Satellite			
UNIT-4 15 Hrs	Communication, Mobile Communicatio	n, Microwave Heating			
ъ è	FERRITES Microwave Propagation in	Ferrites, Nano Ferrites, Synthesis of Nano Ferrites,			
UNIT-5 15 Hrs	Dielectric Properties of Ferrites, Ferrite	es as Microwave Absorbers.			

SUGGESTED READINGS

- 1. Foundations for Microwave Engineering: R.E. Collins, Mc. Graw Hills
- 2. Solid State Electronic Devices: B. Streetman and S.K. Banerjee, PHI
- 3. Microwave Devices and Circuits: L.S.Y. Liao, PHI
- 4. Antenna Theory and Design: C.A. Balanis, John Wiley & Sons
- 5. Basic Microwave Techniques and Laboratory Manual: M. L. Sisodia, G. S. Raghuvanshi. New Age International, Jan 1, 1987

COURSE TITLE: NANO SCIENCE CREDIT: 06 THEORY: 06 THEORY: 90 THEORY: 90 THEORY: 90 THEORY: 90 TO CCA: 30 Scheme of marks: Short answer type questions: three questions carrying 5 marks each to be asked two to be attempted (Word limit 100 words). xvi. Short answer type questions: three questions carrying 9 marks each to be set two to be attempted (Word limit 250 words). xvii. Long answer type questions: three questions carrying 14 marks each to be set two to be attempted (Word limit 250 words). Introduction to Nanoparticles Introduction - Historical perspective of nanoparticle - Classification of nanomaterials - Nanorods - Nanoparticle - Nanomaterial preparation - Plasma arching - Chemical vapour deposition - Solgel electrodeposition - Ball milling technique. Nanocrystals Synthesis of metal nanoparticles and structures - Background on quantum semiconductors - Background on reverse Miceller solution - Synthesis of semiconductors - Cadmium telluroid nano crystals - Cadmium sulfide nano crystals - Silver sulfide nano crystals - Nanomanipulator - Nano tweezes - Nanodots. Characteristics of Nanomaterials Magnetism in particle of reduced size dimension - Variation of magnetism with size - Magnetic behavior of small particle - Diluted magnetic semiconductor (DMS) - Fe DME and its applications. Nanoparticle material - Nanolithography - Estimation of nanoparticle size using AFM. Nano Tubes New form of carbon - Types of nanotubes - Formation of nanotubes - Various techniques - Preparation and properties of nanotubes - Uses of nanotubes and applications - Nano material processing for nanotube - Light and Nano technology - Nanoholes and photons - Quantum electronic devices - Quantum information and Quantum Computers.	M	I.Sc. in PHYSICS	THIRD SEMESTER					
THORY: 06 THEORY: 90 MARKS: 100 THEORY: 70 CCA: 30 Scheme of marks: xvi. Short answer type questions: three questions carrying 5 marks each to be asked two to be attempted (Word limit 100 words). xvii. Widdle answer type questions: three questions carrying 9 marks each to be set two to be attempted (Word limit 250 words). xviii. Long answer type questions: three questions carrying 14 marks each to be set two to be attempted (Word limit 750 words). Introduction to Nanoparticles Introduction - Historical perspective of nanoparticle - Classification of nanomaterials - Nanorods - Nanoparticle - Nanomaterial preparation - Plasma arching - Chemical vapour deposition - Solgel electrodeposition - Ball milling technique. Nanocrystals Synthesis of metal nanoparticles and structures - Background on quantum semiconductors - Background on reverse Miceller solution - Synthesis of semiconductors - Cadmium telluroid nano crystals - Cadmium sulfide nano crystals - Silver sulfide nano crystals - Nano manipulator - Nano tweezes - Nanodots. Characteristics of Nanomaterials Magnetism in particle of reduced size dimension - Variation of magnetism with size - Magnetic behavior of small particle - Diluted magnetic semiconductor (DMS) - Fe DME and its applications. Nanoparticle material - Nanolithography - Estimation of nanoparticle size using AFM. Nano Tubes New form of carbon - Types of nanotubes - Formation of nanotubes - Various techniques - Preparation and properties of nanotubes - Uses of nanotubes and applications - Nano material processing for nanotube - Light and Nano technology - Nanoholes and photons - Quantum electronic devices - Quantum information and	COURSE	COURSE CODE: MSPC03COURSE TYPE : ECC/CB						
THEORY: 06 MARKS: 100 THEORY: 70 CCA: 30 Scheme of marks: xvi. Short answer type questions: three questions carrying 5 marks each to be asked two to be attempted (Word limit 100 words). xvii. Middle answer type questions: three questions carrying 9 marks each to be set two to be attempted (Word limit 250 words). Long answer type questions: three questions carrying 14 marks each to be set two to be attempted (Word limit 750 words). Introduction to Nanoparticles Introduction to Nanoparticle - Nanomaterial preparation - Plasma arching - Chemical vapour deposition - Solgel electrodeposition - Ball milling technique. Nanocrystals Synthesis of metal nanoparticles and structures - Background on quantum semiconductors - Background on reverse Miceller solution - Synthesis of semiconductors - Cadmium telluroid nano crystals - Cadmium sulfide nano crystals - Silver sulfide nano crystals - Nano manipulator - Nano tweezes - Nanodots. Characteristics of Nanomaterials Magnetism in particle of reduced size dimension - Variation of magnetism with size - Magnetic behavior of small particle - Diluted magnetic semiconductor (DMS) - Fe DME and its applications. Nanoparticle material - Nanolithography - Estimation of nanoparticle size using AFM. Nano Tubes New form of carbon - Types of nanotubes - Formation of nanotubes - Various techniques - Preparation and properties of nanotubes - Uses of nanotubes and applications - Nano material processing for nanotube - Light and Nano technology - Nanoholes and photons - Quantum electronic devices - Quantum information and	COURSE	COURSE TITLE: NANO SCIENCE						
MARKS: 100 THEORY: 70 CCA: 30 Scheme of marks: xvi. Short answer type questions: three questions carrying 5 marks each to be asked two to be attempted (Word limit 100 words). xvii. Middle answer type questions: three questions carrying 9 marks each to be set two to be attempted (Word limit 250 words). xviii. Long answer type questions: three questions carrying 14 marks each to be set two to be attempted (Word limit 750 words). Introduction to Nanoparticles Introduction - Historical perspective of nanoparticle - Classification of nanomaterials - Nanorods - Nanoparticle - Nanomaterial preparation - Plasma arching - Chemical vapour deposition - Solgel electrodeposition - Ball milling technique. Nanocrystals Synthesis of metal nanoparticles and structures - Background on quantum semiconductors - Background on reverse Miceller solution - Synthesis of semiconductors - Cadmium telluroid nano crystals - Cadmium sulfide nano crystals - Silver sulfide nano crystals - Nano manipulator - Nano tweezes - Nanodots. Characteristics of Nanomaterials Magnetic behavior of small particle - Diluted magnetic semiconductor (DMS) - Fe DME and its applications. Nanoparticle as chemical reagents - Specific heat of nanoparticle crystals - Melting point of Nanoparticle material - Nanolithography - Estimation of nanoparticle size using AFM. Nano Tubes New form of carbon - Types of nanotubes - Formation of nanotubes - Various techniques - Preparation and properties of nanotubes - Uses of nanotubes and applications - Nano material processing for nanotube - Light and Nano technology - Nanoholes and photons - Quantum electronic devices - Quantum information and	CREDIT: 06 HOURS: 90							
THEORY: 70 CCA: 30 Scheme of marks: xvi. Short answer type questions: three questions carrying 5 marks each to be asked two to be attempted (Word limit 100 words). xvii. Middle answer type questions: three questions carrying 9 marks each to be set two to be attempted (Word limit 250 words). Xviii. Long answer type questions: three questions carrying 14 marks each to be set two to be attempted (Word limit 750 words). Introduction to Nanoparticles Introduction - Historical perspective of nanoparticle - Classification of nanomaterials - Nanorods - Nanoparticle - Nanomaterial preparation - Plasma arching - Chemical vapour deposition - Solgel electrodeposition - Ball milling technique. Nanocrystals Synthesis of metal nanoparticles and structures - Background on quantum semiconductors - Background on reverse Miceller solution - Synthesis of semiconductors - Cadmium telluroid nano crystals - Cadmium sulfide nano crystals - Silver sulfide nano crystals - Nano manipulator - Nano tweezes - Nanodots. Characteristics of Nanomaterials Magnetism in particle of reduced size dimension - Variation of magnetism with size - Magnetic behavior of small particle - Diluted magnetic semiconductor (DMS) - Fe DME and its applications. Nanoparticle as chemical reagents - Specific heat of nanoparticle crystals - Melting point of Nanoparticle material - Nanolithography - Estimation of nanoparticle size using AFM. Nano Tubes New form of carbon - Types of nanotubes - Formation of nanotubes - Various techniques - Preparation and properties of nanotubes - Uses of nanotubes and applications - Nano material processing for nanotube - Light and Nano technology - Nanoholes and photons - Quantum electronic devices - Quantum information and	THEORY	: 06	THEORY: 90					
xvi. xvi. xvii. Short answer type questions: three questions carrying 5 marks each to be asked two to be attempted (Word limit 100 words). xviii. Word limit 250 words). Long answer type questions: three questions carrying 9 marks each to be set two to be attempted (Word limit 250 words). Long answer type questions: three questions carrying 14 marks each to be set two to be attempted (Word limit 750 words). Introduction to Nanoparticles Introduction - Historical perspective of nanoparticle - Classification of nanomaterials - Nanorods - Nanoparticle - Nanomaterial preparation - Plasma arching - Chemical vapour deposition - Solgel electrodeposition - Ball milling technique. Nanocrystals Synthesis of metal nanoparticles and structures - Background on quantum semiconductors - Background on reverse Miceller solution - Synthesis of semiconductors - Cadmium telluroid nano crystals - Cadmium sulfide nano crystals - Silver sulfide nano crystals - Nanomanipulator - Nano tweezes - Nanodots. Characteristics of Nanomaterials Magnetism in particle of reduced size dimension - Variation of magnetism with size - Magnetic behavior of small particle - Diluted magnetic semiconductor (DMS) - Fe DME and its applications. Nanoparticle as chemical reagents - Specific heat of nanoparticle crystals - Melting point of Nanoparticle material - Nanolithography - Estimation of nanoparticle size using AFM. Nano Tubes New form of carbon - Types of nanotubes - Formation of nanotubes - Various techniques - Preparation and properties of nanotubes - Uses of nanotubes and applications - Nano material processing for nanotube - Light and Nano technology - Nanoholes and photons - Quantum electronic devices - Quantum information and								
(Word limit 100 words). Middle answer type questions: three questions carrying 9 marks each to be set two to be attempted (Word limit 250 words). Long answer type questions: three questions carrying 14 marks each to be set two to be attempted (Word limit 750 words). Introduction to Nanoparticles Introduction - Historical perspective of nanoparticle - Classification of nanomaterials - Nanorods - Nanoparticle - Nanomaterial preparation - Plasma arching - Chemical vapour deposition - Solgel electrodeposition - Ball milling technique. Nanocrystals Synthesis of metal nanoparticles and structures - Background on quantum semiconductors - Background on reverse Miceller solution - Synthesis of semiconductors - Cadmium telluroid nano crystals - Cadmium sulfide nano crystals - Silver sulfide nano crystals - Nano manipulator - Nano tweezes - Nanodots. Characteristics of Nanomaterials Magnetism in particle of reduced size dimension - Variation of magnetism with size - Magnetic behavior of small particle - Diluted magnetic semiconductor (DMS) - Fe DME and its applications. Nanoparticle as chemical reagents - Specific heat of nanoparticle crystals - Melting point of Nanoparticle material - Nanolithography - Estimation of nanoparticle size using AFM. Nano Tubes New form of carbon - Types of nanotubes - Formation of nanotubes - Various techniques - Preparation and properties of nanotubes - Uses of nanotubes and applications - Nano material processing for nanotube - Light and Nano technology - Nanoholes and photons - Quantum electronic devices - Quantum information and								
(Word limit 100 words). Middle answer type questions: three questions carrying 9 marks each to be set two to be attempted (Word limit 250 words). Long answer type questions: three questions carrying 14 marks each to be set two to be attempted (Word limit 750 words). Introduction to Nanoparticles Introduction - Historical perspective of nanoparticle - Classification of nanomaterials - Nanorods - Nanoparticle - Nanomaterial preparation - Plasma arching - Chemical vapour deposition - Solgel electrodeposition - Ball milling technique. Nanocrystals Synthesis of metal nanoparticles and structures - Background on quantum semiconductors - Background on reverse Miceller solution - Synthesis of semiconductors - Cadmium telluroid nano crystals - Cadmium sulfide nano crystals - Silver sulfide nano crystals - Nano manipulator - Nano tweezes - Nanodots. Characteristics of Nanomaterials Magnetism in particle of reduced size dimension - Variation of magnetism with size - Magnetic behavior of small particle - Diluted magnetic semiconductor (DMS) - Fe DME and its applications. Nanoparticle as chemical reagents - Specific heat of nanoparticle crystals - Melting point of Nanoparticle material - Nanolithography - Estimation of nanoparticle size using AFM. Nano Tubes New form of carbon - Types of nanotubes - Formation of nanotubes - Various techniques - Preparation and properties of nanotubes - Uses of nanotubes and applications - Nano material processing for nanotube - Light and Nano technology - Nanoholes and photons - Quantum electronic devices - Quantum information and	xvi. S	Short answer type questions: three question	s carrying 5 marks each to be asked two to be attempted					
(Word limit 250 words). Long answer type questions: three questions carrying 14 marks each to be set two to be attempted (Word limit 750 words). Introduction to Nanoparticles Introduction - Historical perspective of nanoparticle - Classification of nanomaterials - Nanorods - Nanoparticle - Nanomaterial preparation - Plasma arching - Chemical vapour deposition - Solgel electrodeposition - Ball milling technique. Nanocrystals Synthesis of metal nanoparticles and structures - Background on quantum semiconductors - Background on reverse Miceller solution - Synthesis of semiconductors - Cadmium telluroid nano crystals - Cadmium sulfide nano crystals - Silver sulfide nano crystals - Nanomanipulator - Nano tweezes - Nanodots. Characteristics of Nanomaterials Magnetism in particle of reduced size dimension - Variation of magnetism with size - Magnetic behavior of small particle - Diluted magnetic semiconductor (DMS) - Fe DME and its applications. Nanoparticle as chemical reagents - Specific heat of nanoparticle crystals - Melting point of Nanoparticle material - Nanolithography - Estimation of nanoparticle size using AFM. Nano Tubes New form of carbon - Types of nanotubes - Formation of nanotubes - Various techniques - Preparation and properties of nanotubes - Uses of nanotubes and applications - Nano material processing for nanotube - Light and Nano technology - Nanoholes and photons - Quantum electronic devices - Quantum information and	7)	Word limit 100 words).						
T-LIND 1			ins carrying 9 marks each to be set two to be attempted					
Introduction to Nanoparticles Introduction - Historical perspective of nanoparticle - Classification of nanomaterials - Nanorods - Nanoparticle - Nanomaterial preparation - Plasma arching - Chemical vapour deposition - Solgel electrodeposition - Ball milling technique. Nanocrystals Synthesis of metal nanoparticles and structures - Background on quantum semiconductors - Background on reverse Miceller solution - Synthesis of semiconductors - Cadmium telluroid nano crystals - Cadmium sulfide nano crystals - Silver sulfide nano crystals - Nano manipulator - Nano tweezes - Nanodots. Characteristics of Nanomaterials Magnetism in particle of reduced size dimension - Variation of magnetism with size - Magnetic behavior of small particle - Diluted magnetic semiconductor (DMS) - Fe DME and its applications. Nanoparticle as chemical reagents - Specific heat of nanoparticle crystals - Melting point of Nanoparticle material - Nanolithography - Estimation of nanoparticle size using AFM. Nano Tubes New form of carbon - Types of nanotubes - Formation of nanotubes - Various techniques - Preparation and properties of nanotubes - Uses of nanotubes and applications - Nano material processing for nanotube - Light and Nano technology - Nanoholes and photons - Quantum electronic devices - Quantum electronic devices - Quantum information and		· · · · · · · · · · · · · · · · · · ·	s carrying 14 marks each to be set two to be attempted					
Nanorods - Nanoparticle - Nanomaterial preparation - Plasma arching - Chemical vapour deposition - Solgel electrodeposition - Ball milling technique. Nanocrystals Synthesis of metal nanoparticles and structures - Background on quantum semiconductors - Background on reverse Miceller solution - Synthesis of semiconductors - Cadmium telluroid nano crystals - Cadmium sulfide nano crystals - Silver sulfide nano crystals - Nano manipulator - Nano tweezes - Nanodots. Characteristics of Nanomaterials Magnetism in particle of reduced size dimension - Variation of magnetism with size - Magnetic behavior of small particle - Diluted magnetic semiconductor (DMS) - Fe DME and its applications. Nanoparticle as chemical reagents - Specific heat of nanoparticle crystals - Melting point of Nanoparticle material - Nanolithography - Estimation of nanoparticle size using AFM. Nano Tubes New form of carbon - Types of nanotubes - Formation of nanotubes - Various techniques - Preparation and properties of nanotubes - Uses of nanotubes and applications - Nano material processing for nanotube - Light and Nano technology - Nanoholes and photons - Quantum electronic devices - Quantum information and		l ,						
Nanocrystals		Introduction - Historical perspective	of nanoparticle - Classification of nanomaterials -					
Nanocrystals	NIT 10Hi	Nanorods - Nanoparticle - Nanomaterial preparation - Plasma arching - Chemical vapour						
Synthesis of metal nanoparticles and structures - Background on quantum semiconductors - Background on reverse Miceller solution - Synthesis of semiconductors - Cadmium telluroid nano crystals - Cadmium sulfide nano crystals - Silver sulfide nano crystals - Nano manipulator - Nano tweezes - Nanodots. Characteristics of Nanomaterials Magnetism in particle of reduced size dimension - Variation of magnetism with size - Magnetic behavior of small particle - Diluted magnetic semiconductor (DMS) - Fe DME and its applications. Nanoparticle as chemical reagents - Specific heat of nanoparticle crystals - Melting point of Nanoparticle material - Nanolithography - Estimation of nanoparticle size using AFM. Nano Tubes New form of carbon - Types of nanotubes - Formation of nanotubes - Various techniques - Preparation and properties of nanotubes - Uses of nanotubes and applications - Nano material processing for nanotube - Light and Nano technology - Nanoholes and photons - Quantum electronic devices - Quantum electronic devices - Quantum information and	n 2	deposition - Solgel electrodeposition - Ball milling technique.						
Background on reverse Miceller solution - Synthesis of semiconductors - Cadmium telluroid nano crystals - Cadmium sulfide nano crystals - Silver sulfide nano crystals - Nano manipulator - Nano tweezes - Nanodots. Characteristics of Nanomaterials Magnetic behavior of small particle - Diluted magnetic semiconductor (DMS) - Fe DME and its applications. Nanoparticle as chemical reagents - Specific heat of nanoparticle crystals - Melting point of Nanoparticle material - Nanolithography - Estimation of nanoparticle size using AFM. Nano Tubes New form of carbon - Types of nanotubes - Formation of nanotubes - Various techniques - Preparation and properties of nanotubes - Uses of nanotubes and applications - Nano material processing for nanotube - Light and Nano technology - Nanoholes and photons - Quantum electronic devices - Quantum information and		Nanocrystals						
manipulator - Nano tweezes - Nanodots. Characteristics of Nanomaterials Magnetism in particle of reduced size dimension - Variation of magnetism with size - Magnetic behavior of small particle - Diluted magnetic semiconductor (DMS) - Fe DME and its applications. Nanoparticle as chemical reagents - Specific heat of nanoparticle crystals - Melting point of Nanoparticle material - Nanolithography - Estimation of nanoparticle size using AFM. Nano Tubes New form of carbon - Types of nanotubes - Formation of nanotubes - Various techniques - Preparation and properties of nanotubes - Uses of nanotubes and applications - Nano material processing for nanotube - Light and Nano technology - Nanoholes and photons - Quantum electronic devices - Quantum information and		Synthesis of metal nanoparticles and structures - Background on quantum semiconductors -						
manipulator - Nano tweezes - Nanodots. Characteristics of Nanomaterials Magnetism in particle of reduced size dimension - Variation of magnetism with size - Magnetic behavior of small particle - Diluted magnetic semiconductor (DMS) - Fe DME and its applications. Nanoparticle as chemical reagents - Specific heat of nanoparticle crystals - Melting point of Nanoparticle material - Nanolithography - Estimation of nanoparticle size using AFM. Nano Tubes New form of carbon - Types of nanotubes - Formation of nanotubes - Various techniques - Preparation and properties of nanotubes - Uses of nanotubes and applications - Nano material processing for nanotube - Light and Nano technology - Nanoholes and photons - Quantum electronic devices - Quantum information and	IT-2 Hrs	Background on reverse Miceller solution - Synthesis of semiconductors - Cadmium telluroid						
Characteristics of Nanomaterials Magnetism in particle of reduced size dimension - Variation of magnetism with size - Magnetic behavior of small particle - Diluted magnetic semiconductor (DMS) - Fe DME and its applications. Nanoparticle as chemical reagents - Specific heat of nanoparticle crystals - Melting point of Nanoparticle material - Nanolithography - Estimation of nanoparticle size using AFM. Nano Tubes New form of carbon - Types of nanotubes - Formation of nanotubes - Various techniques - Preparation and properties of nanotubes - Uses of nanotubes and applications - Nano material processing for nanotube - Light and Nano technology - Nanoholes and photons - Quantum electronic devices - Quantum information and	UN 20	nano crystals - Cadmium sulfide nano crystals - Silver sulfide nano crystals - Nano						
Magnetism in particle of reduced size dimension - Variation of magnetism with size - Magnetic behavior of small particle - Diluted magnetic semiconductor (DMS) - Fe DME and its applications. Nanoparticle as chemical reagents - Specific heat of nanoparticle crystals - Melting point of Nanoparticle material - Nanolithography - Estimation of nanoparticle size using AFM. Nano Tubes New form of carbon - Types of nanotubes - Formation of nanotubes - Various techniques - Preparation and properties of nanotubes - Uses of nanotubes and applications - Nano material processing for nanotube - Light and Nano technology - Nanoholes and photons - Quantum electronic devices - Quantum electronic devices - Quantum information and		manipulator - Nano tweezes - Nanodots.						
its applications. Nanoparticle as chemical reagents - Specific heat of nanoparticle crystals - Melting point of Nanoparticle material - Nanolithography - Estimation of nanoparticle size using AFM. Nano Tubes New form of carbon - Types of nanotubes - Formation of nanotubes - Various techniques - Preparation and properties of nanotubes - Uses of nanotubes and applications - Nano material processing for nanotube - Light and Nano technology - Nanoholes and photons - Quantum electronic devices - Quantum electronic devices - Quantum information and		Characteristics of Nanomaterials						
its applications. Nanoparticle as chemical reagents - Specific heat of nanoparticle crystals - Melting point of Nanoparticle material - Nanolithography - Estimation of nanoparticle size using AFM. Nano Tubes New form of carbon - Types of nanotubes - Formation of nanotubes - Various techniques - Preparation and properties of nanotubes - Uses of nanotubes and applications - Nano material processing for nanotube - Light and Nano technology - Nanoholes and photons - Quantum electronic devices - Quantum electronic devices - Quantum information and	rs	Magnetism in particle of reduced siz	e dimension - Variation of magnetism with size -					
its applications. Nanoparticle as chemical reagents - Specific heat of nanoparticle crystals - Melting point of Nanoparticle material - Nanolithography - Estimation of nanoparticle size using AFM. Nano Tubes New form of carbon - Types of nanotubes - Formation of nanotubes - Various techniques - Preparation and properties of nanotubes - Uses of nanotubes and applications - Nano material processing for nanotube - Light and Nano technology - Nanoholes and photons - Quantum electronic devices - Quantum electronic devices - Quantum information and	0 Н	Magnetic behavior of small particle - D	viluted magnetic semiconductor (DMS) - Fe DME and					
Nano Tubes New form of carbon - Types of nanotubes - Formation of nanotubes - Various techniques - Preparation and properties of nanotubes - Uses of nanotubes and applications - Nano material processing for nanotube - Light and Nano technology - Nanoholes and photons - Quantum electronic devices - Quantum electronic devices - Quantum information and		its applications. Nanoparticle as chemi	cal reagents - Specific heat of nanoparticle crystals -					
Nano Tubes New form of carbon - Types of nanotubes - Formation of nanotubes - Various techniques - Preparation and properties of nanotubes - Uses of nanotubes and applications - Nano material processing for nanotube - Light and Nano technology - Nanoholes and photons - Quantum electronic devices - Quantum electronic devices - Quantum information and	LIN							
New form of carbon - Types of nanotubes - Formation of nanotubes - Various techniques - Preparation and properties of nanotubes - Uses of nanotubes and applications - Nano material processing for nanotube - Light and Nano technology - Nanoholes and photons - Quantum electronic devices - Quantum information and	n							
Preparation and properties of nanotubes - Uses of nanotubes and applications - Nano material processing for nanotube - Light and Nano technology - Nanoholes and photons - Quantum electronic devices - Quantum electronic devices - Quantum information and		Nano Tubes						
Preparation and properties of nanotubes - Uses of nanotubes and applications - Nano material processing for nanotube - Light and Nano technology - Nanoholes and photons - Quantum electronic devices - Quantum electronic devices - Quantum information and	Irs	New form of carbon - Types of nanotubes - Formation of nanotubes - Various techniques -						
material processing for nanotube - Light and Nano technology - Nanoholes and photons - Quantum electronic devices - Quantum electronic devices - Quantum information and Quantum Computers.		Preparation and properties of nanoti	ubes - Uses of nanotubes and applications - Nano					
Quantum electronic devices - Quantum electronic devices - Quantum information and Quantum Computers.	-4 1	material processing for nanotube - Lig	ght and Nano technology - Nanoholes and photons -					
Quantum Computers.	NIT							
	n							

	Applications			
ក់ ខ	Micromechanical systems - Robots - Ageless materials - Nanomechanics - Nano electronics -			
UNIT-5 15 Hrs	Optoelectronic devices - LED - Applications - Colourants and pigments - Nano biotechnology			
	- DNA chips - DNA array devices - Drag delivery systems.			
red	1. NANOSCIENCE AND NANO TECHNOLOGY : FRONTIERSOF FUNDAMENTALS BY : M.S. RAMCHANDRA RAO .			
GEST	2. NANO : THE ESSENTIALS . BY : T. PRADEEP			
SUGGESTED				

M	I.Sc. in PHYSICS	THIRD SEMESTER			
COURSE	CODE: MSP CO4COURSE TYPE : E	CCC/CB			
COURSE TITLE: HIGH ENERGY PHYSICS – III					
CREDIT:	CREDIT: 06 HOURS: 90				
THEORY	: 06	THEORY: 90			
MARKS: THEORY:	100 : 70 CCA: 30				
Scheme					
V)	Vord limit 100 words).	s carrying 5 marks each to be asked two to be attempted			
	iddle answer type questions: three questio Vord limit 250 words).	ons carrying 9 marks each to be set two to be attempted			
xxi. Lo	ong answer type questions: three questions Vord limit 750 words).	s carrying 14 marks each to be set two to be attempted			
.	Local gauge invariance and Yang-Mill	s fields, Lagrangian of the Spontaneous symmetry			
UNIT-1 20Hrs.	breaking and the Higgs mechanism, The	e Weinberg-Salam model and beyond.			
	Unified models of weak and electromagnetic interactions, Standard Model, flavor group,				
UNIT-2 20Hrs	flavor-changing neutral currents. Weak isospin.				
UNIT-3 20 H rs	Quark and lepton mixing. CP violation. Neutrino oscillations.				
T-4 Hrs	CKM quark mixing matrix, GIM med	chanism, rare processes, neutrino masses, seesaw			
UNIT-4 15 Hrs	mechanism				
UNIT-5 15 Hrs	QCD confinement and chiral symmetry	breaking, instantons, strong CP problem.			
	1. Francis Halzen and Allan D. Marti	n, Quarks and Leptons: An Introductory Course in			
Q (2	Modern Particle Physics, John Wiley and	d Sons			
STE	2. B.R. Martin and G. Shaw, Particle Phys	sics, 2nd edition, J. Wiley and Sons (1997).			
SUGGESTED READINGS	3. Particle Data Group, The Review of Pa	article Physics,			
SUG	4. David Griffiths, Introduction to Eleme	entary Particles			
	5. Donald Perkin, Introduction to high e	nergy physics.			

M. Sc. in PHYSICS FOURTH SEMESTER (EVEN SEMESTER)

FACULTY OF SCIENCE

Eligibility Criteria (Qualifying	Course Code	Course Type	Course (Paper/Subjects)	Credits	Contact Hours Per WeeK			EoSE Duration (Hrs.)	
Exams)					L	T	P	Thy	P
examination papers	MSP 401	CCC	Materials Science and Laser Physics	6	4	3	0	3	0
examir papers	MSP 411/412	CCC	Lab Course A/ Lab Course B	6	00	00	6	00	6
semester ck/arrear	MSP 402	CCC	Spectroscopy	6	4	3	0	3	0
ring in the Third semofany number of back/a	MSP 403	CCC	Statistical Physics	6	4	3	0	3	0
	MSP 421	SSC/PRJ	Dissertation	6	00	00	9	0	4
t the numbe	MSP D01	ECC/CB	Energy Physics						
After appearing in irrespective of any n	MSP D02	ECC/CB	Satellite Communication and Remote Sensing				00	2	00
	MSP D03	ECC/CB	Crystal Growth & Thin film Physics	6	4	3	00	3	00
	MSP D04	ECC/CB	Renormalization and Supersymmetry]					
Af	MINIMUM (CREDITS IN INC	DIVIDUAL SUBJECT IS 6 AND IN COMPLETE SEMESTER IT WOULD BE 30	TOTAL= 36					

I	M.Sc. in PHYSICS	FOURTH SEMESTER					
COURSE CODE: MSP 401 COURSE TYPE : CCC							
COURSE TITLE: MATERIAL SCIENCE AND LASER PHYSICS							
CREDIT: 06 HOURS: 90							
THEORY	THEORY: 06 PRACTICAL: 00 THEORY: 90 PRACTICAL: 00						
MARKS:	100						
THEORY Scheme	: 70 CCA : 30 of marks:	PRACTICAL: 50					
 i. Short answer type questions: three questions carrying 5 marks each to be asked two to be attempted (Word limit 100 words). ii. Middle answer type questions: three questions carrying 9 marks each to be set two to be attempted (Word limit 250 words). 							
iii. L	-	tions carrying 14 marks each to be set two to be attempted					
UNIT-1 20 Hrs.	Phase Diagram: Phase Diagram - Basic principle - Simple binary systems - Solid solutions - Application, Solid Solution - Interstitial and substitutional solid solutions - Hume -Rothery electron compounds, Intermediate and interstitial phases - Intermetallic compounds. Elementary ideas of corrosion - Oxidation - Creep and fracture.						
UNIT-2 15 Hrs	Defects Point defects - Schottky and Frenkel defects - number of defects as a function of temperature - Diffusion in metals - Diffusion and ionic conductivity in inonic crystals. Dislocations - Edge and screw dislocations - Burgers vector - Plastic deformation, Effect of grain size on dislocation motion - Effect of solute atoms on dislocation motion.						
UNIT-3 20 Hrs	Optical Properties, Dielectric Properties and Ferro Electrics Color centers - Photo conductivity - electronic transitions in photo conductors - Trap, Capture, recombination centers - General mechanism - Luminescence - Excitation and emission - Decay mechanisms - Thallium activate. Internal electric field in a dielectric - Clausius - Mossotti and Lorentz - Lorenz equations - Dielectric dispersion and losses. Ferroelectrics - Ferro electricity - General properties - Dipole theory - Ionic displacements, Thermodynamics of Ferro electric transitions.						

	Elastic Behaviour, Polymer and Ceramics			
	Anelastic and visco elastic behaviour - Atomic model of elastic behaviour - rubber like			
[-4 rs	elasticity - An elastic deformation - Relaxation process,			
JNIT-4 15Hrs	Polymers - Polymerization mechanism -Deformation of polymers - Behaviour of polymers.			
	Ceramics - Ceramic phases - Structure - classes - Effect of structure on the behaviour of			
	ceramic phases.			
	Laser Physics			
	Introduction - Einstein co-efficient - Possibility of amplification - Population inversion -			
	Laser pumping Rate equations - Three level and four level system - Optical resonator - Types			
- 5 rs	and modes of resonator - Oscillation - Threshold condition.			
JNIT- 5 20Hrs	Simple theory of Fabry - Perot optical resonant cavity system - Its limitations - the confocal			
) n "	resonant cavity - generalized confocal resonator theory - Spot size and beam divergence -			
	quality factor Q of an optical cavity, Spontaneous and stimulated emission - Conditions for			
	oscillation to occur - Frequency of oscillation of the system.			
	1. Lawrence H. Vlack, 1998, Elements of Materials Science and Engineering, 6th			
INGS	Edition, Second ISE reprint, Addison-Wesley.			
ADI	2. H. Iabch and H. Luth, 2001, Solid State Physics, An introduction to principles of			
SUGGESTED READINGS	Material Science, 2nd Edition, Springer.			
STE	2 D.D. Laud 1001 Laggra and Non-linear entire Wiley Eastern Ltd			
GGE	3. B.B. Laud, 1991, Lasers and Non linear optics, Wiley Eastern Ltd.			
SU	4. Verdayan J.J. 1993, Laser Electronics, Prentice-Hall India, New Delhi.			

M.Sc. in	PHYSICS		F	OURTH SEMESTER
COURSE C	ODE:	MSP 411	COL	JRSE TYPE : CCC
COURSE T	TTLE: Lal	o Course A		
	CREI	DIT: 03	HOU	RS: 90
THEORY:	00	PRACTICAL: 03	THEORY: 00	PRACTICAL: 100
		M	arks	1
THEORY: 00		(EXPERIMENT:6	PRACTICAL: 100 (EXPERIMENT:60; VIVA-VOCE:20 & SESSIONAL:20)	
	LAB COU	RSE A:		
	1. C++	program for aitken's de	lta squire method.	
		program for aitken's de program for steffensed	-	
	2. C++		method.	
	2. C++ 3. C++	program for steffensed	method. mula.	
IK	 C++ C++ C++ 	program for steffensed program for striling for	method. mula. lethod.	
ORY WORK 2 411	 C++ C++ C++ C++ 	program for steffensed program for striling for program for iteration m	method. mula. nethod.	

8. C^{++} program for Gaussian integration method.

M.Sc. in PHYSI		FOUI	RTH SEMESTER		
COURSE CODE:	MSP 412			COURSE	TYPE : CCC
COURSE TITLE:	Lab Course B				
С	REDIT: 03			HOURS:	90
THEORY: 00	PRACTICAL: 0)3	THEORY:	00	PRACTICAL:
					100
	•	Marks			
THEORY: 00				PRACTICAL	: 100
			(EXPERIMENT:60; VIVA-VOCE:20 &		
				SESSIONAL	:20)
LAB COURSE B:					

- 1. To study working of OP- AMP as a square wave generator using.
- 2. To study the working of OP-AMP as a inverting amplifier.
- 3. To study the working of OP-AMP as a non-inverting amplifier.
- 4. To study the working of OP-AMP as subtractor.
- 5. To study the working of OP-AMP as adder amplifier.
- 6. To study the working of OP-AMP as a Integrator.
- 7. To study the working of OP-AMP as a differentiator.
- 8. To study the characteristics of Thyraton

M.Sc. in	M.Sc. in PHYSICS FOURTH SEMESTER				
COURSE	COURSE CODE: MSP 402 COURSE TYPE : CCC				
COURSE	COURSE TITLE: SPECTROSCOPY				
CREDIT:	CREDIT: 06 HOURS: 90				
THEORY	THEORY: 06 PRACTICAL: 00 THEORY: 90 PRACTICAL: 00				
MARKS:					
THEORY Scheme		PRACTICAL: 00			
i. S (V ii. M (V iii. L	 (Word limit 100 words). ii. Middle answer type questions: three questions carrying 9 marks each to be set two to be attempted (Word limit 250 words). 				
UNIT-1 18 Hrs.	(Word limit 750 words). Microwave spectroscopy Pure rotational spectra of diatomic molecules - Polyatomic molecules - Study of linear molecules, Hyperfine structure and quadruple moment of linear molecules, Molecular structure determination - Stark effect - inversion spectrum of ammonia.				
UNIT-2 18 Hrs	Infrared spectroscopy Vibrational spectroscopy of diatomic and simple ployatomic molecules - Harmonic Oscillator - Anharmonic Oscillator - Rotational vibrators - Normal modes of vibration of Polyatomic molecules - Experimental techniques - Applications of infrared spectroscopy, Reflectance spectroscopy.				
UNIT-3 18 Hrs	Raman Spectroscopy Classical and quantum theory of Raman Scattering - Raman effect and molecular structure Raman effect and crystal structure - Raman effect in relation to inorganic, organic and physical chemistry - Experimental techniques - Coherent anti-Stokes Raman Spectroscopy.				
UNIT-4 18Hrs	NMR and NQR Techniques Theory of NMR - Bloch equations - Steady state solution of Bloch equations - Theory of chemical shifts, Applications of NMR to quantitative measurement, Quadruple Hamiltonian of NQR - Nuclear quadruple energy levels for axial and non-axial symmetry - Experimental techniques and applications.				

	ESR and Mossbauer Spectroscopy
ъ "	Quantum mechanical treatment of ESR - Nuclear interaction and hyperfine structure -
UNIT- E	Relaxation effects - Basic principles of spectrographs - Applications of ESR method.
UN 18	Mossbauer effect, Mossbauer spectrum - Experimental methods - Massbauer spectrometer -
	Hyperfine interactions - Magnetic hyperfine interactions - Electric quadruple interactions.
	1. C.N. Banwell and E.M. McCash, 1994, Fundamentals of Molecular Spectroscopy, 4th Edition, Tata McGraw-Hill Publications, New Delhi.
CS	2. G. Aruldas, 2001, Molecular Structure and Spectorscopy, Prentice - Hall of India Pvt.Ltd., New Delhi.
SUGGESTED READINGS	3. D.N. Satyanarayana, 2004, Vibrational Spectroscopy and Applications, New Age International Publications, New Delhi.
STED	4. Atta Ur Rahman, 1986, Nuclear Magnetic Resonance, Spinger Verlag, New York.
GGE	5. Towne and Schawlow, 1995, Micorwave Spectroscopy, McGraw-Hill,
ns	6. Raymond Chang, 1980, Basic Principles of Spectroscopy, Mc Graw-Hill, Kogakusha, Tokyo.
	7. D.A. Lang, Raman Spectroscopy, Mc Graw-Hill International, N.Y.

M.Sc. in PHYSICS FOURTH SEMESTER					
COURSE CODE: MSP 403 COURSE TYPE : CCC					
COURSE	COURSE TITLE: STATISTICAL PHYSICS				
CREDIT:	CREDIT: 06 HOURS: 90				
THEORY:	06	THEORY: 90			
MARKS: THEORY:	100 70 CCA: 30				
Scheme of					
i. S	port answer type questions, three question	s carrying 5 marks each to be asked two to be attempted			
(V	Vord limit 100 words).	, ,			
	iddle answer type questions: three questic Vord limit 250 words).	ons carrying 9 marks each to be set two to be attempted			
•		s carrying 14 marks each to be set two to be attempted			
(V	Vord limit 750 words).				
	• '	and Canonical ensembles : Concept of statistical			
UNIT-1 20 Hrs.		neorem, systems and ensemble, entropy in statistical			
UN]		odynamic and statistical quantities, micro canonical			
	ensemble, specific heat and entropy of a	a perfect gas using micro-canonical ensemble.			
s 2	Canonical ensemble, thermodynamic	functions for the canonical ensemble, calculation of			
UNIT-2 15 Hrs	means values, grand canonical ensemb	le, thermodynamic functions for the grand canonical			
UN 15	ensemble.				
	Partition functions and Statistics : Part	ition functions and properties, partition function for			
3 20 s	an ideal gas and calculation of thermodynamic quantities, Gibbs Paradox, validity of classical				
IT-3 Hrs	approximation, determination of translational, rotational an vibration contributions to the				
N N	partition function of an ideal diatomic gas. Specific heat of a diatomic gas.				
	Identical particles and symmetry requi	rement, difficulties with MaxwellBoltzmann statistics,			
-4 rs	quantum distribution functions, Bose Einstein and Fermi-Dirac statistics and Planck'				
UNIT-4 20Hrs	formula, Bose Einstein condensation, quantization of harmonic oscillator and creation and				
n 7	annihilation of phonon operators.				
	Theory of Metals : Fermi-Dirac dis	tribution function, density of states, temperature			
JNIT-5 15 Hrs	dependence of Fermi energy, specific h	eat, use of Fermi Dirac statistics in the calculation of			
UNIT- 15 Hr	thermal conductivity and electrical conduction band, Drude theory of light.				

SUGGESTED READINGS

1. Huag : Statistical Mechanics

2. Reif: Fundamentals of Statistical and Thermodynamical Physics.

3. Rice : Statistical mechanics and Thermal Physics.

4. Kittle : Elementray statistical mechanics.

M.Sc. in PHYSICS			FOURTH SEMESTER
COURSE CODE: MS	M 421		COURSE TYPE: SSC/PRJ
COURSE TITLE: DIS	SERTATION		
CRE	EDIT:6		HOURS: 135
THEORY: 0	PRACTICAL: 6	THEORY: 0	PRACTICAL:135
		MARKS: 100	
ТНЕ	ORY: 0		PRACTICAL:100
		(Course Repo	ort Submission:50 and Viva Voce:50)
OBJECTIVE: The main objective of the dissertation is to enable the students to learn on their own as			

OBJECTIVE: The main objective of the dissertation is to enable the students to learn on their own as well development of skill related to research and developmental activities.

Dissertation should be related to the field of Physics. Dissertation should include declaration by the candidate, certificate by supervisor, Acknowledgement, title and introduction along with the following points:

- 1. Introduction
- 2. Review of Literature
- 3. Materials and Methods
- 4. Results and Discussions
- 5. Summary
- 6. Bibliography

j	M.Sc. in PHYSICS	FOURTH SEMESTER			
COURSE	COURSE CODE: MSP D01 COURSE TYPE : ECC/CB				
COURSE TITLE: ENERGY PHYSICS					
CREDIT:	06	HOURS: 90			
THEORY	: 06	THEORY: 90			
MARKS : THEORY					
Scheme	of marks:				
	Short answer type questions: three question Word limit 100 words).	s carrying 5 marks each to be asked two to be attempted			
ii. M	liddle answer type questions: three question	ns carrying 9 marks each to be set two to be attempted			
	Word limit 250 words). ong answer type questions: three question	s carrying 14 marks each to be set two to be attempted			
	Word limit 750 words).				
.s.		nergy Sources and their availability-prospects of			
UNIT-1 20Hrs.		om other sources-Chemical energy-Nuclear energy-			
0 2	Energy Storage and distribution.				
s 2		ization- Energy from tides-Basic Principle of tidal			
UNIT-2 20Hrs	power-Utilization of tidal energy.				
UI 2					
50	Basic Principles of wind energy conve	rsion-power in the wind-forces in the blades- Wind			
IT-3 ; H rs	energy conversion-Advantages and Disadvantages of wind energy conversion				
energy conversion-power in the wind-forces in the energy conversion-power in the wind-forces in the energy conversion-Advantages and Disadvantages of wind energy systems (WECS) Energy Storage-Applications of Wind Energy.					
	Energy from Biomass: Biomass of	conversion Technologies-Wet and Dry Process-			
S	Photosynthesis.				
UNIT-4 15 Hrs	Biomass Generation: Introduction-Bas	ic Process and energetic- Advantages of anaerobic			
UN 15	digestion-Factors affecting bio-digestion and generation of gas- Biogas from waste fuel				
	Properties of biogas-utilization of bioga	s.			
	Solar radiation and its measurements-	Solar Cells, Solar Cells for direct conversion of Solar			
T-5 4rs	energy to electric powers- Solar ce	ll parameter- Solar cell electrical characteristics-			
UNIT-5 15 Hrs	Efficiency-Solar water Heater-Solar Dis	tillation-Solar Cooking-Solar Green House.			

Ī		1.Non-Conventional Sources of Energy by G.D.Rai,4 th edition, Khanna Publishers, New
	Delhi(1996)	
	INGS	2.Energy technology by S.Rao and Dr Paru Lekar
	ADI	3.John Twidell and Tony Weir ,Renewable Energy Sources,Taylor and Francis Group,
) RE	London and New York.
	SUGGESTED READINGS	4.M.P.Agrawal,Solar Energy, S. Chand and Co.
	GES	5.A.B. Meinel and A.P. Meinal, Applied Solar Energy
	SUG	6.Solar Energy,Principles of Thermal Collection and Storage by S.P. Sukhatme, 2nd
		edition, Tata Mc Graw –Hill Publishing Co. Ltd. New Delhi(1997)

M	I.Sc. in PHYSICS	FOURTH SEMESTER	
COURSE	CODE: MSP DO2	COURSE TYPE : ECC/CB	
COURSE	TITLE: SATELLITE COMMUNICATION	AND REMOTE SENSING	
CREDIT:	06	HOURS: 90	
THEORY	: 06	THEORY: 90	
MARKS :			
THEORY: Scheme (: 70 CCA: 30 of marks:		
(V	Vord limit 100 words).	ns carrying 5 marks each to be asked two to be attempted ons carrying 9 marks each to be set two to be attempted	
iii. Lo	Word limit 250 words). ong answer type questions: three questior Word limit 750 words).	ns carrying 14 marks each to be set two to be attempted	
	Principle of Satellite Communication	:General and Technical characteristics, Active and	
UNIT-1 20Hrs.	Passive satellites, Modem and Code co	mmunication Satellite Link Design:General link desig	
Passive satellites, Modem and Code communication Satellite Link Design:General li equation, Atmospheric and Ionospheric effect on link design, Earth station paramet			
	Satellite Analog Communication: Baseband analog signal, FDM techniques, S/N and C/N		
UNIT-2 20Hrs	ratio in FM in satellite link.		
20	Digital Satellite transmission: Advantages, Elements of digital satellite communication		
UNIT-3 20 H rs	Digital base band signal, Digital mode	ulation Techniques, Digital link Design, TDM, TDMA	
JNI	some applications of satellite communications.		
	Concept and Foundations of Remote S	ensing: Electromagnetic Radiation (EMR), interaction	
IT-4 Hrs	of EMR with atmosphere and ear	th surface, Application area of remote Sensing	
UNIT-4 15 Hrs	Characteristics of Remote Sensing Pl	latform & Sensors: Ground, Air & Space platforms	
U 1	Return Beam Vidicon, Multispectral Sca	anner, Brief idea of Digital Image Processing.	
	<u> </u>	lar Remote Sensing, Microwave Sensing, Lidar (Single	
UNIT-5 15 Hrs		idar): Data Characteristics. Earth Resource Satellites	
NI 5 I	Brief description of Landsat and Indian	,	

S	1. Satellite Communication : D.C. Agrawal and A. K. Maini.
NIC	2. Satellite Communication: T. Pratt and C. W. Bostiern.
READINGS	3. Satellite Communication System: M. Richharia.
	4. Introduction of Remote Sensing: J.B. Campbell.
EST	
SUGGESTED	
SI	

Constant temperature bath and crystallizer - Seed preparation and mounting - Slow cooling and solvent evaporation methods. Melt and Vapour Growth Techniques Melt technique: Bridgman technique - Basic process - Various crucibles design - Thermal consideration - Vertical Bridgman technique - Czochralski technique - Experimental arrangement - Growth process. Vapour technique: Physical vapour deposition - Chemical vapour deposition (CVD) - Chemical Vapour Transport. Thin Film Deposition Techniques Thin Films - Introduction to Vacuum Technology Deposition Techniques - Physical Methods - Resistive Heating, Electron Beam Gun, Laser Gun Evaporation and Flash Evaporations, Sputtering - Reactive Sputtering, Radio-Frequency Sputtering - Chemical Methods - Spray Pyrolysis - Preparation of Transparent Conducting Oxides. Characterization Technique X - Ray Diffraction (XRD) - Powder and single crystal - Fourier transform Infrared analysis (FT-IR) - Elemental analysis - Elemental dispersive X-ray		M.Sc. in PHYSICS	FOURTH SEMESTER		
THEORY: 06 THEORY: 90 THEORY: 100 THEORY:	COURSE CODE: MSP D03 COURSE TYPE : ECC/CB				
THEORY: 06 MARKS: 100 THEORY: 70 CCA: 30 Scheme of marks: i. Short answer type questions: three questions carrying 5 marks each to be asked two to be attempted (Word limit 100 words). iii. Middle answer type questions: three questions carrying 9 marks each to be set two to be attempted (Word limit 250 words). Iii. Long answer type questions: three questions carrying 14 marks each to be set two to be attempted (Word limit 750 words). Nucleation and Growth Nucleation – Different kinds of nucleation - Concept of formation of critical nucleus - Classical theory of nucleation - Spherical and cylindrical nucleus - Growth Kinetics of Thin Films - Thin Film Structure - Crystal System and Symmetry. Growth Techniques Solution Growth Technique: Low temperature solution growth: Solution - Solubility and super solubility - Expression of super saturation - Miers T-C diagram Constant temperature bath and crystallizer - Seed preparation and mounting - Slow cooling and solvent evaporation methods. Melt and Vapour Growth Techniques Melt technique: Bridgman technique - Basic process - Various crucibles design - Thermal consideration - Vertical Bridgman technique - Czochralski technique - Experimental arrangement - Growth process. Vapour technique: Physical vapour deposition - Chemical vapour deposition (CVD) - Chemical Vapour Transport. Thin Film Deposition Techniques Thin Films - Introduction to Vacuum Technology Deposition Techniques - Physical Methods - Resistive Heating, Electron Beam Gun, Laser Gun Evaporation and Flash Evaporations, Sputtering - Reactive Sputtering, Radio-Frequency Sputtering - Chemical Methods - Spray Pyrolysis - Preparation of Transparent Conducting Oxides. Characterization Technique X - Ray Diffraction (XRD) - Powder and single crystal - Fourier	COURSE TITLE: CRYSTAL GROWTH AND THIN FILM PHYSICS				
ARARKS: 100 THEORY: 70 CCA: 30 Scheme of marks: i. Short answer type questions: three questions carrying 5 marks each to be asked two to be attempted (Word limit 100 words). ii. Middle answer type questions: three questions carrying 9 marks each to be set two to be attempted (Word limit 250 words). Long answer type questions: three questions carrying 14 marks each to be set two to be attempted (Word limit 750 words). Nucleation and Growth Nucleation – Different kinds of nucleation - Concept of formation o critical nucleus – Classical theory of nucleation - Spherical and cylindrical nucleus - Growth Kinetics of Thin Films - Thin Film Structure – Crystal System and Symmetry. Growth Techniques Solution Growth Technique: Low temperature solution growth: Solution - Solubility and super solubility – Expression of super saturation – Miers T-C diagram Constant temperature bath and crystallizer - Seed preparation and mounting - Slow cooling and solvent evaporation methods. Melt and Vapour Growth Techniques Melt technique: Bridgman technique - Basic process - Various crucibles design - Thermal consideration – Vertical Bridgman technique - Czochralski technique - Experimental arrangement – Growth process. Vapour technique: Physical vapour deposition - Chemical vapour deposition (CVD) - Chemical Vapour Transport. Thin Film Deposition Techniques Thin Films - Introduction to Vacuum Technology Deposition Techniques - Physical Methods - Resistive Heating, Electron Beam Gun, Laser Gun Evaporation and Flash Evaporations, Sputtering - Reactive Sputtering, Radio-Frequency Sputtering - Chemical Methods - Spray Pyrolysis - Preparation of Transparent Conducting Oxides. Characterization Technique X - Ray Diffraction (XRD) - Powder and single crystal - Fourier	CREDIT:	06	HOURS: 90		
Scheme of marks: i. Short answer type questions: three questions carrying 5 marks each to be asked two to be attempted (Word limit 100 words). ii. Middle answer type questions: three questions carrying 9 marks each to be set two to be attempted (Word limit 250 words). Long answer type questions: three questions carrying 14 marks each to be set two to be attempted (Word limit 750 words). Long answer type questions: three questions carrying 14 marks each to be set two to be attempted (Word limit 750 words). Nucleation and Growth Nucleation - Different kinds of nucleation - Concept of formation or critical nucleus - Classical theory of nucleation - Spherical and cylindrical nucleus - Growth Kinetics of Thin Films - Thin Film Structure - Crystal System and Symmetry. Growth Techniques Solution Growth Technique: Low temperature solution growth: Solution - Solubility and super solubility - Expression of super saturation - Miers T-C diagram Constant temperature bath and crystallizer - Seed preparation and mounting - Slow cooling and solvent evaporation methods. Melt and Vapour Growth Techniques Melt technique: Bridgman technique - Basic process - Various crucibles design - Thermal consideration - Vertical Bridgman technique - Czochralski technique - Experimental arrangement - Growth process. Vapour technique: Physical vapour deposition - Chemical vapour deposition (CVD) - Chemical Vapour Transport. Thin Film Deposition Techniques Thin Films - Introduction to Vacuum Technology Deposition Techniques - Physical Methods - Resistive Heating, Electron Beam Gun, Laser Gun Evaporation and Flash Evaporations, Sputtering - Reactive Sputtering, Radio-Frequency Sputtering - Chemical Methods - Spray Pyrolysis - Preparation of Transparent Conducting Oxides. Characterization Technique X - Ray Diffraction (XRD) - Powder and single crystal - Fourier	THEORY	: 06	THEORY: 90		
i. Short answer type questions: three questions carrying 5 marks each to be asked two to be attempted (Word limit 100 words). iii. Middle answer type questions: three questions carrying 9 marks each to be set two to be attempted (Word limit 250 words). Long answer type questions: three questions carrying 14 marks each to be set two to be attempted (Word limit 750 words). Nucleation and Growth Nucleation – Different kinds of nucleation - Concept of formation of critical nucleus – Classical theory of nucleation - Spherical and cylindrical nucleus - Growth Kinetics of Thin Films - Thin Film Structure – Crystal System and Symmetry. Growth Techniques Solution Growth Technique: Low temperature solution growth: Solution Constant temperature bath and crystallizer - Seed preparation and mounting - Slow cooling and solvent evaporation methods. Melt and Vapour Growth Techniques Melt technique: Bridgman technique - Basic process - Various crucibles design - Thermal consideration – Vertical Bridgman technique - Czochralski technique - Experimental arrangement – Growth process. Vapour technique: Physical vapour deposition – Chemical vapour deposition (CVD) - Chemical Vapour Transport. Thin Film Deposition Techniques Thin Films – Introduction to Vacuum Technology Deposition Techniques - Physical Methods – Resistive Heating, Electron Beam Gun, Laser Gun Evaporation and Flash Evaporations, Sputtering - Reactive Sputtering, Radio-Frequency Sputtering - Chemical Methods – Spray Pyrolysis – Preparation of Transparent Conducting Oxides. Characterization Technique X – Ray Diffraction (XRD) – Powder and single crystal - Fourier					
(Word limit 100 words). Middle answer type questions: three questions carrying 9 marks each to be set two to be attempted (Word limit 250 words). Long answer type questions: three questions carrying 14 marks each to be set two to be attempted (Word limit 750 words). Nucleation and Growth Nucleation - Different kinds of nucleation - Concept of formation of critical nucleus - Classical theory of nucleation - Spherical and cylindrical nucleus - Growth Kinetics of Thin Films - Thin Film Structure - Crystal System and Symmetry. Growth Techniques Solution Growth Technique: Low temperature solution growth: Solution - Solubility and super solubility - Expression of super saturation - Miers T-C diagram Constant temperature bath and crystallizer - Seed preparation and mounting - Slow cooling and solvent evaporation methods. Melt and Vapour Growth Techniques Melt technique: Bridgman technique - Basic process - Various crucibles design - Thermal consideration - Vertical Bridgman technique - Czochralski technique - Experimental arrangement - Growth process. Vapour technique: Physical vapour deposition - Chemical vapour deposition (CVD) - Chemical Vapour Transport. Thin Film Deposition Techniques Thin Films - Introduction to Vacuum Technology Deposition Techniques - Physical Methods - Resistive Heating, Electron Beam Gun, Laser Gun Evaporation and Flash Evaporations, Sputtering - Reactive Sputtering, Radio-Frequency Sputtering - Chemical Methods - Spray Pyrolysis - Preparation of Transparent Conducting Oxides. Characterization Technique X - Ray Diffraction (XRD) - Powder and single crystal - Fourier					
Critical nucleus – Classical theory of nucleation - Spherical and cylindrical nucleus - Growth Kinetics of Thin Films - Thin Film Structure – Crystal System and Symmetry. Growth Techniques Solution Growth Technique: Low temperature solution growth: Solution - Solubility and super solubility – Expression of super saturation – Miers T-C diagram - Constant temperature bath and crystallizer - Seed preparation and mounting - Slow cooling and solvent evaporation methods. Melt and Vapour Growth Techniques Melt technique: Bridgman technique - Basic process - Various crucibles design - Thermal consideration – Vertical Bridgman technique - Czochralski technique - Experimental arrangement – Growth process. Vapour technique: Physical vapour deposition – Chemical vapour deposition (CVD) - Chemical Vapour Transport. Thin Film Deposition Techniques Thin Films – Introduction to Vacuum Technology - Deposition Techniques - Physical Methods – Resistive Heating, Electron Beam Gun, Laser Gun Evaporation and Flash Evaporations, Sputtering - Reactive Sputtering, Radio-Frequency Sputtering - Chemical Methods – Spray Pyrolysis – Preparation of Transparent Conducting Oxides. Characterization Technique X – Ray Diffraction (XRD) – Powder and single crystal - Fourier	ii. M (V iii. L	Vord limit 100 words). iddle answer type questions: three questio Vord limit 250 words). ong answer type questions: three questions	ns carrying 9 marks each to be set two to be attempted		
Growth Techniques Solution Growth Technique: Low temperature solution growth: Solution - Solubility and super solubility – Expression of super saturation – Miers T-C diagram - Constant temperature bath and crystallizer - Seed preparation and mounting - Slow cooling and solvent evaporation methods. Melt and Vapour Growth Techniques Melt technique: Bridgman technique - Basic process - Various crucibles design - Thermal consideration – Vertical Bridgman technique - Czochralski technique – Experimental arrangement – Growth process. Vapour technique: Physical vapour deposition – Chemical vapour deposition (CVD) – Chemical Vapour Transport. Thin Film Deposition Techniques Thin Films – Introduction to Vacuum Technology Deposition Techniques - Physical Methods – Resistive Heating, Electron Beam Gun, Laser Gun Evaporation and Flash Evaporations, Sputtering - Reactive Sputtering, Radio-Frequency Sputtering - Chemical Methods – Spray Pyrolysis – Preparation of Transparent Conducting Oxides. Characterization Technique X – Ray Diffraction (XRD) – Powder and single crystal - Fourier		Nucleation and Growth Nucleation – Di	fferent kinds of nucleation - Concept of formation of		
Growth Techniques Solution Growth Technique: Low temperature solution growth: Solution - Solubility and super solubility – Expression of super saturation – Miers T-C diagram Constant temperature bath and crystallizer - Seed preparation and mounting - Slow cooling and solvent evaporation methods. Melt and Vapour Growth Techniques Melt technique: Bridgman technique - Basic process - Various crucibles design - Thermal consideration – Vertical Bridgman technique Czochralski technique - Experimental arrangement – Growth process. Vapour technique: Physical vapour deposition – Chemical vapour deposition (CVD) - Chemical Vapour Transport. Thin Film Deposition Techniques Thin Films – Introduction to Vacuum Technology Deposition Techniques - Physical Methods – Resistive Heating, Electron Beam Gun, Laser Gun Evaporation and Flash Evaporations, Sputtering - Reactive Sputtering, Radio-Frequency Sputtering - Chemical Methods – Spray Pyrolysis – Preparation of Transparent Conducting Oxides. Characterization Technique X – Ray Diffraction (XRD) – Powder and single crystal - Fourier	IT-1 Hrs	critical nucleus – Classical theory of nu	cleation - Spherical and cylindrical nucleus - Growth		
- Solubility and super solubility – Expression of super saturation – Miers T-C diagram and Solvent temperature bath and crystallizer - Seed preparation and mounting - Slow cooling and solvent evaporation methods. Melt and Vapour Growth Techniques Melt technique: Bridgman technique - Basic process - Various crucibles design - Thermal consideration – Vertical Bridgman technique - Czochralski technique – Experimental arrangement – Growth process. Vapour technique: Physical vapour deposition – Chemical vapour deposition (CVD) – Chemical Vapour Transport. Thin Film Deposition Techniques Thin Films – Introduction to Vacuum Technology Deposition Techniques - Physical Methods – Resistive Heating, Electron Beam Gun, Laser Gun Evaporation and Flash Evaporations, Sputtering - Reactive Sputtering, Radio-Frequency Sputtering - Chemical Methods – Spray Pyrolysis – Preparation of Transparent Conducting Oxides. Characterization Technique X – Ray Diffraction (XRD) – Powder and single crystal - Fourier	UN 20	Kinetics of Thin Films - Thin Film Struct	ture – Crystal System and Symmetry.		
Constant temperature bath and crystallizer - Seed preparation and mounting - Slow cooling and solvent evaporation methods. Melt and Vapour Growth Techniques Melt technique: Bridgman technique - Basic process - Various crucibles design - Thermal consideration - Vertical Bridgman technique - Czochralski technique - Experimental arrangement - Growth process. Vapour technique: Physical vapour deposition - Chemical vapour deposition (CVD) - Chemical Vapour Transport. Thin Film Deposition Techniques Thin Films - Introduction to Vacuum Technology Deposition Techniques - Physical Methods - Resistive Heating, Electron Beam Gun, Laser Gun Evaporation and Flash Evaporations, Sputtering - Reactive Sputtering, Radio-Frequency Sputtering - Chemical Methods - Spray Pyrolysis - Preparation of Transparent Conducting Oxides. Characterization Technique X - Ray Diffraction (XRD) - Powder and single crystal - Fourier		Growth Techniques Solution Growth Te	echnique: Low temperature solution growth: Solution		
Melt and Vapour Growth Techniques Melt technique: Bridgman technique - Basic process - Various crucibles design - Thermal consideration - Vertical Bridgman technique Czochralski technique - Experimental arrangement - Growth process. Vapour technique: Physical vapour deposition - Chemical vapour deposition (CVD) - Chemical Vapour Transport. Thin Film Deposition Techniques Thin Films - Introduction to Vacuum Technology Deposition Techniques - Physical Methods - Resistive Heating, Electron Beam Gun, Laser Gun Evaporation and Flash Evaporations, Sputtering - Reactive Sputtering, Radio-Frequency Sputtering - Chemical Methods - Spray Pyrolysis - Preparation of Transparent Conducting Oxides. Characterization Technique X - Ray Diffraction (XRD) - Powder and single crystal - Fourier	2 rs	- Solubility and super solubility – Expression of super saturation – Miers T-C diagram -			
Melt and Vapour Growth Techniques Melt technique: Bridgman technique - Basic process - Various crucibles design - Thermal consideration - Vertical Bridgman technique Czochralski technique - Experimental arrangement - Growth process. Vapour technique: Physical vapour deposition - Chemical vapour deposition (CVD) - Chemical Vapour Transport. Thin Film Deposition Techniques Thin Films - Introduction to Vacuum Technology Deposition Techniques - Physical Methods - Resistive Heating, Electron Beam Gun, Laser Gun Evaporation and Flash Evaporations, Sputtering - Reactive Sputtering, Radio-Frequency Sputtering - Chemical Methods - Spray Pyrolysis - Preparation of Transparent Conducting Oxides. Characterization Technique X - Ray Diffraction (XRD) - Powder and single crystal - Fourier	JNIT 20H	Constant temperature bath and crystallizer - Seed preparation and mounting - Slow cooling			
Various crucibles design - Thermal consideration - Vertical Bridgman technique Czochralski technique - Experimental arrangement - Growth process. Vapour technique: Physical vapour deposition - Chemical vapour deposition (CVD) - Chemical Vapour Transport. Thin Film Deposition Techniques Thin Films - Introduction to Vacuum Technology Deposition Techniques - Physical Methods - Resistive Heating, Electron Beam Gun, Laser Gun Evaporation and Flash Evaporations, Sputtering - Reactive Sputtering, Radio-Frequency Sputtering - Chemical Methods - Spray Pyrolysis - Preparation of Transparent Conducting Oxides. Characterization Technique X - Ray Diffraction (XRD) - Powder and single crystal - Fourier		and solvent evaporation methods.			
Vapour technique: Physical vapour deposition – Chemical vapour deposition (CVD) – Chemical Vapour Transport. Thin Film Deposition Techniques Thin Films – Introduction to Vacuum Technology Deposition Techniques - Physical Methods – Resistive Heating, Electron Beam Gun, Laser Gun Evaporation and Flash Evaporations, Sputtering - Reactive Sputtering, Radio-Frequency Sputtering - Chemical Methods – Spray Pyrolysis – Preparation of Transparent Conducting Oxides. Characterization Technique X – Ray Diffraction (XRD) – Powder and single crystal - Fourier	S	Melt and Vapour Growth Techniques M	Ielt technique: Bridgman technique - Basic process -		
Vapour technique: Physical vapour deposition – Chemical vapour deposition (CVD) – Chemical Vapour Transport. Thin Film Deposition Techniques Thin Films – Introduction to Vacuum Technology Deposition Techniques - Physical Methods – Resistive Heating, Electron Beam Gun, Laser Gun Evaporation and Flash Evaporations, Sputtering - Reactive Sputtering, Radio-Frequency Sputtering - Chemical Methods – Spray Pyrolysis – Preparation of Transparent Conducting Oxides. Characterization Technique X – Ray Diffraction (XRD) – Powder and single crystal - Fourier	H	Various crucibles design - Thermal	consideration – Vertical Bridgman technique -		
Thin Film Deposition Techniques Thin Films – Introduction to Vacuum Technology Deposition Techniques - Physical Methods – Resistive Heating, Electron Beam Gun, Laser Gun Evaporation and Flash Evaporations, Sputtering - Reactive Sputtering, Radio-Frequency Sputtering - Chemical Methods – Spray Pyrolysis – Preparation of Transparent Conducting Oxides. Characterization Technique X – Ray Diffraction (XRD) – Powder and single crystal - Fourier	-	Czochralski technique – Experimental a	rrangement – Growth process.		
Thin Film Deposition Techniques Thin Films – Introduction to Vacuum Technology Deposition Techniques - Physical Methods – Resistive Heating, Electron Beam Gun, Laser Gun Evaporation and Flash Evaporations, Sputtering - Reactive Sputtering, Radio-Frequency Sputtering - Chemical Methods – Spray Pyrolysis – Preparation of Transparent Conducting Oxides. Characterization Technique X – Ray Diffraction (XRD) – Powder and single crystal - Fourier		Vapour technique: Physical vapour deposition - Chemical vapour deposition (CVD) -			
Deposition Techniques - Physical Methods - Resistive Heating, Electron Beam Gun, Laser Gun Evaporation and Flash Evaporations, Sputtering - Reactive Sputtering, Radio-Frequency Sputtering - Chemical Methods - Spray Pyrolysis - Preparation of Transparent Conducting Oxides. Characterization Technique X - Ray Diffraction (XRD) - Powder and single crystal - Fourier	S	Chemical Vapour Transport.			
Gun Evaporation and Flash Evaporations, Sputtering - Reactive Sputtering, Radio-Frequency Sputtering - Chemical Methods – Spray Pyrolysis – Preparation of Transparent Conducting Oxides. Characterization Technique X – Ray Diffraction (XRD) – Powder and single crystal - Fourier		Thin Film Deposition Techniques Th	in Films – Introduction to Vacuum Technology -		
Oxides. Characterization Technique X – Ray Diffraction (XRD) – Powder and single crystal - Fourier	+ S	Deposition Techniques - Physical Meth	nods – Resistive Heating, Electron Beam Gun, Laser		
Oxides. Characterization Technique X – Ray Diffraction (XRD) – Powder and single crystal - Fourier	IIT-4 Hr	Gun Evaporation and Flash Evaporations, Sputtering - Reactive Sputtering, Radio-Frequency			
Characterization Technique X – Ray Diffraction (XRD) – Powder and single crystal - Fourier	UN 15	Sputtering - Chemical Methods – Spray Pyrolysis – Preparation of Transparent Conducting			
		Oxides.			
transform Infrared analysis (FT-IR) – Elemental analysis – Elemental dispersive X-ray		Characterization Technique X – Ray Dif	ffraction (XRD) – Powder and single crystal - Fourier		
analysis (EDAV) - Scanning Floatron Migroscopy (CEM) - HV Via NID Sportrometer - Etabine	5 rs	transform Infrared analysis (FT-IR) -	- Elemental analysis – Elemental dispersive X-ray		
Z G analysis (EDAX) - Scanning Electron Microscopy (SEM) - 0V-VIS-NIK Spectrometer - Etching	JNIT L5 H	analysis (EDAX) - Scanning Electron Microscopy (SEM) – UV-Vis-NIR Spectrometer – Etching			
(Chemical) – Vickers Micro hardness.	7	(Chemical) – Vickers Micro hardness.			

SUGGESTED READINGS

- 1. J.C. Brice, Crystal Growth Processes, John Wiley and Sons, New York (1986)
- 2. P. SanthanaRagavan and P. Ramasamy, Crystal Growth Processes and Methods, KRU Publications, Kumbakonam (2001)
- 3. A. Goswami, Thin Film Fundamentals, New Age International (P) Limited, New Delhi (1996)
- 4. H.H. Willard, L.L. Merritt, J.A. Dean, F.A. Settle, CBS, Publishers and Distributors, New Delhi

N	M.Sc. in PHYSICS	FOURTH SEMESTER			
COURSE	COURSE TYPE : ECC/CB				
COURSE	COURSE TITLE: RENORMALIZATION AND SUPERSYMMETRY				
CREDIT:	CREDIT: 06 HOURS: 90				
THEORY	: 06	THEORY: 90			
MARKS : THEORY	: 70 CCA: 30				
Scheme	of marks:				
ii. M	Word limit 100 words).	s carrying 5 marks each to be asked two to be attempted ons carrying 9 marks each to be set two to be attempted			
	Word limit 750 words).	s carrying 14 marks each to be set two to be attempted			
UNIT-1 20Hrs.	Theory of renormalization. The renormalization group and applications to the theory of phase transitions.				
UNIT-2 20Hrs	Renormalization of Yang-Mills theories.				
UNIT-3 20 H rs	Applications of the renormalization group of quantum chromodynamics.				
UNIT-4 15 Hrs	Perturbation theory anomalies. Applications to particle phenomenology.				
UNIT-5 15 Hrs	Grand unification, The supersymmetric	Standard Model			