«КАЗАНСКИЙ ГОСУДАРСТВЕННЫЙ ЭНЕРГЕТИЧЕСКИЙ УНИВЕРСИТЕТ» (ФГБОУ ВО «КГЭУ»)

	U	
TEXHV	ЧЕСКИИ	ПРОЕКТ

Программный комплекс «АРМ администратора автосалона» (ПК АРМАА)

Исполнитель: Коробков Д.А.

Содержание

1. Of	щие положения	4
	. Полное наименование программного комплекса, его условное означение	4
	. Перечень организаций, участвующих в разработке программного иплекса	4
1.3	. Основания для разработки программного комплекса	4
1.4	. Краткая характеристика программного комплекса	4
	. Краткие сведения об основных проектных решениях по нкциональной и обеспечивающим частям	5
2. Фу	нкциональная и организационная структура	6
	. Перечень выделяемых подсистем и задач, решаемых в каждой из цсистем	6
2.2	. Схема информационных связей между подсистемами	7
3. По	становка задач и алгоритмы решения	9
3.1	. Решения по структуре программного комплекса	9
3.2	. Экономико-математическая модель задачи	10
3.3	. Входная оперативная информация	11
	. Нормативно-справочная информация	
4. O p	ганизация информационной базы	15
4.1	. Источники поступления информации и способы ее передачи	15
4.2	. Основные проектные решения по организации фонда НСИ	15
4.3	. Методы хранения, поиска, внесения изменений и контроля	15
5. Ал	ьбом эскизных форм и интерфейсов	17
6. Си	стема математического обеспечения	18
6.1	. Обоснование математического обеспечения	18
6.2	. Обоснование выбора системы программирования	18
6.3	. Перечень стандартных программных средств	19
7. Пр	оинцип построения комплекса технических средств	21
	. Описание и обоснование схемы технологического процесса обработиных	

	7.2. Обоснование и выбор структуры комплекса технических средств и	
	функциональных групп	. 22
	функционирования технических средств	. 22
	Мероприятия по подготовке объекта к внедрению программного	24
К(омплекса	. 24
	8.1. Перечень работ по внедрению программного комплекса, которые необходимо выполнить на стадии рабочего проектирования	. 24

1. ОБЩИЕ ПОЛОЖЕНИЯ

1.1. Полное наименование программного комплекса, его условное обозначение

Полное наименование программного комплекса — «Автоматизированное рабочее место администратора автосалона».

Условное обозначение – АРМАА или программный комплекс.

1.2. Перечень организаций, участвующих в разработке программного комплекса

Заказчиком программного комплекса APMAA является старший преподаватель кафедры ИТИС — Алексеев И.П., ФГБОУ ВО «Казанский государственный энергетический университет», 420066, г. Казань, ул. Красносельская, д. 51.

Исполнителем работ по созданию программного комплекса APMAA в 2023-2024 году является студент КГЭУ – Коробков Д.А.

1.3. Основания для разработки программного комплекса

Создание ПК АРМАА осуществляется на основании требований и положений следующих документов:

- методическое пособие «Проектный практикум по управлению разработкой и разработке программного обеспечения»;
- техническое задание на разработку программного комплекса «APM администратора автосалона».

1.4. Краткая характеристика программного комплекса

Программный комплекс "Автоматизированное рабочее место администратора автосалона" представляет собой специализированное программное обеспечение, разрабатываемое для управления и оптимизации операций и бизнес-процессов, связанных с деятельностью автосалона.

Экономические показатели:

- Эффективность: повышение эффективности работы автосалона, ускорение процессов продажи и обслуживания клиентов;
- Увеличение прибыли: возможность эффективного управления клиентской базой, анализа продаж;
- Сокращение затрат: уменьшение затрат на бумажную документацию и снижение риска ошибок в учете.

1.5. Краткие сведения об основных проектных решениях по функциональной и обеспечивающим частям

Основные проектные решения по функциональной части:

- Разработка базы данных для клиентов, автомобилей, заказов, сотрудников и т.д.;
- Создание интерфейсов для управления клиентами, автомобилями, продажами, сотрудниками и т.д.;
- Реализация логики для добавления, поиска, обновления и удаления данных;
 - Генерация отчетов и аналитики на основе данных.

Основные проектные решения по обеспечивающей части:

- Создание интерфейсов пользователя.
- Обеспечение безопасности данных через авторизацию и валидацию;
- Обеспечение регулярного резервного копирования базы данных;
- Создание документации для пользователей;
- Поддержка системы управления базами данных.

2. ФУНКЦИОНАЛЬНАЯ И ОРГАНИЗАЦИОННАЯ СТРУКТУРА

2.1. Перечень выделяемых подсистем и задач, решаемых в каждой из подсистем

Функциональная и организационная структура ПК APMAA включает в себя несколько подсистем, каждая из которых имеет свою функциональность и назначение.

- **1. Подсистема «Управление клиентами»** (подсистема для регистрации и обслуживания клиентов) включает в себя функции:
 - Добавление новых клиентов;
 - Поиск и просмотр информации о клиентах;
 - Учет контактных данных клиентов;
 - История взаимодействия с клиентами.
- **2.** Подсистема «Управление автомобилями» (подсистема для управления информацией об автомобилях) включает в себя функции:
 - Добавление и обновление информации об автомобилях;
 - Поиск и фильтрация автомобилей по различным параметрам;
 - Отслеживание состояния автомобилей (доступности для продажи.).
- **3. Подсистема «Управление поставками»** (подсистема для управления поставками запчастей) включает в себя функции:
 - Заказ поставок;
 - Отслеживание поставок (дата поставки, стоимость и т.д.);
 - Учет доступных запчастей на складе.
- **4. Подсистема «Управление продажами»** (подсистема для оформления заказов и продаж автомобилей) включает в себя функции:
 - Оформление заказов и продаж автомобилей;
 - Расчет стоимости автомобилей, включая скидки и налоги;
 - Отслеживание статуса заказов и доставки.

- **5.** Подсистема «Управление сотрудниками» (подсистема для регистрации, учета и управления сотрудниками автосалона) включает в себя функции:
 - Регистрация и аутентификация сотрудников;
 - Добавление новых сотрудников;
- Отслеживание рабочего времени и присутствия на рабочем месте (time-manager).
- **6.** Подсистема «Отчеты и аналитика» (подсистема для генерации отчетов и анализа данных) включает в себя функции:
 - Мониторинг производительности сотрудников;
- Генерация отчетов о продажах, статистиках, финансовых показателях и т.д.

2.2. Схема информационных связей между подсистемами

- 1. Подсистема "Управление клиентами" может взаимодействовать с:
- Подсистемой "Управление автомобилями" для просмотра информации об автомобилях, доступных для клиентов;
- Подсистемой "Управление продажами" для оформления заказов и продаж автомобилей клиентам;
- Подсистемой "Отчеты и аналитика" для анализа данных о клиентах и их истории взаимодействия с автосалоном.
- **2.** Подсистема "Управление автомобилями" может взаимодействовать с:
- Подсистемой "Управление продажами" для отслеживания состояния автомобилей, доступных для продажи, и оформления заказов на продажу;
- Подсистемой "Отчеты и аналитика" для генерации отчетов о наличии и статусе автомобилей.
 - 3. Подсистема "Управление поставками" может взаимодействовать с:

- Подсистемой "Управление автомобилями" для учета доступных запчастей на складе и заказа необходимых запчастей;
- Подсистемой "Отчеты и аналитика" для анализа данных о поставках и стоимости запчастей.

4. Подсистема "Управление продажами" может взаимодействовать с:

- Подсистемой "Управление клиентами" для оформления заказов и продаж автомобилей клиентам;
- Подсистемой "Управление автомобилями" для отслеживания состояния автомобилей, доступных для продажи, и расчета стоимости продажи;
- Подсистемой "Отчеты и аналитика" для генерации отчетов о продажах и статусе заказов.
- **5.** Подсистема "Управление сотрудниками" может взаимодействовать с:
- Подсистемой "Управление клиентами" для регистрации клиентов и учета истории взаимодействия;
- Подсистемой "Управление продажами" для управления сотрудниками, оформляющими заказы и продажи;
- Подсистемой "Отчеты и аналитика" для мониторинга производительности сотрудников.
- **6. Подсистема "Отчеты и аналитика"** может взаимодействовать со всеми подсистемами для сбора данных, анализа информации и генерации отчетов.

Эти информационные связи позволяют эффективно управлять автосалоном, обеспечивая необходимую функциональность и обмен данными между подсистемами.

3. ПОСТАНОВКА ЗАДАЧ И АЛГОРИТМЫ РЕШЕНИЯ

3.1. Решения по структуре программного комплекса

При проектировании программного комплекса должны быть использованы следующие основные принципы:

- Принцип стандартизации (унификации), состоящий в необходимости рационального применения типовых, унифицированных или стандартизированных проектных решений и технологий, внутренних и внешних интерфейсов и протоколов, что закладывает фундамент для блочного и модульного построения компонентов, подсистем и системы в целом, а также обеспечивает согласованность процедур сбора и обработки информации участниками информационного взаимодействия в рамках выполнения закрепленных за ними функций и имеющихся полномочий.
- Принцип преемственности, позволяющий при развитии системы обеспечить сохранение, развитие и эффективное использование существующей информации в сочетании с эффективными и рациональными методами и способами ее сбора, хранения и предоставления, а также максимально использовать при развитии возможности существующих материальных и нематериальных ресурсов системы.
- Принцип переносимости, обеспечивающий возможность функционирования разрабатываемых компонентов системы на любых однотипных элементах информационно—телекоммуникационной инфраструктуры.
- Принцип интегрируемости данных, позволяющий агрегировать согласованный состав данных в хранилище, доступном на основе единых процедур, регламентов, протоколов и технологий, рационально использовать типовые проектные решения и обеспечивать поддержку непротиворечивости данных в процессе информационного взаимодействия.
- Принцип комплексной безопасности информации, состоящий в осуществлении комплекса мер, призванных обеспечить защищенность

информации в системе от случайных или преднамеренных воздействий естественного или искусственного характера, связанных с возможностью нанесения ущерба системе и ее пользователям.

Принцип открытости, состоящий в способности системы к расширению состава предоставляемых сервисов и технологий, увеличению числа источников информации и ее пользователей без нарушения регламентов внутреннего функционирования системы и без ухудшения эксплуатационных характеристик.

Информационный обмен между компонентами системы обеспечивается с использованием открытых технологий и стандартов информационного взаимодействия.

3.2. Экономико-математическая модель задачи

Можно выделить следующую основную экономико-математическую модель задачи:

Входные данные:

- Данные о клиентах (имя, контактные данные и др.);
- Информация о продаваемых автомобилях (марка, модель, стоимость и др.);
 - Данные о продажах (дата, цена, скидка и др.);
- Расходы на административные и операционные расходы (аренда помещения, зарплаты сотрудников и др.).

Процессы:

- Процесс управления клиентской базой данных;
- Процесс управления данными о продажах и инвентаризации автомобилей;
 - Процесс администрирования автосалона.

Параметры и уравнения:

Уравнение прибыли: Прибыль = Выручка - Расходы.

Либо развернуто: Прибыль = (Выручка от продаж - Затраты на закупку автомобилей) - (Аренда помещения + Зарплаты сотрудников + Расходы на рекламу + Прочие операционные расходы).

Уравнение стоимости автомобиля: Стоимость = (Закупочная цена + Налоги + Дополнительные расходы) * (100% - Размер скидки).

Рентабельность = (Прибыль / Выручка от продаж) * 100%.

Выходные данные:

Финансовые показатели: Прибыль, выручка и прочие финансовые показатели.

Статистика продаж: Количество проданных автомобилей, динамика продаж и т.д.

Данная модель может быть использована для проведения анализа данных, оптимизации бизнес-процессов и принятия решений.

3.3. Входная оперативная информация

Предварительно входная оперативная информация представлена следующей таблицей:

Таблица №1 – Структура входной информации

Название поля	Тип поля	Описание поля
Таблица БД «items» (товары)		
iditem	int	[primary key] Идентификатор товара (автомобиля или запчасти)
item_type	varchar	Тип товара
supplier	int	Код поставщика
brand	varchar	Марка товара
model	varchar	Модель товара
description	text	Описание товара
year	int	Год производства
color	varchar?	Цвет автомобиля
vin_code	varchar?	[unique] VIN-код автомобиля

Price	decimal	Цена товара
max_speed	int?	Максимальная скорость
in_stock	boolean	Есть на складе
	Таблица БД	Ц «clients» (клиенты)
id_client	int	[primary key] Идентификатор клиента
name	varchar	Имя клиента
surname	varchar	Фамилия клиента
address	varchar	Адрес клиента
phone_number	varchar	Номер телефона клиента
email	varchar?	Адрес электронной почты клиента
	Таблица БД «s	suppliers» (поставщики)
id_supplier	int	[primary key] Идентификатор поставщика
name	varchar	Наименование поставщика
contact_person	varchar	Контактное лицо
phone_number	varchar	Номер телефона
email	varchar	Адрес электронной почты поставщика
note	text	Примечание
	Таблица Б	БД «sales» (продажи)
id_sale	int	[primary key] Идентификатор продажи
date	datetime	Дата продажи
employee	int	Код сотрудника
client	int	Код клиента
item	int	Код товара
price	decimal	Сумма продажи
pay_form	varchar	Форма оплаты
1 0-	Таблица Б	БД «orders» (заказы)
id_order	int	[primary key] Идентификатор заказа
date	datetime	Дата заказа
client	int	Код клиента
item	int	Код автомобиля
price	decimal	Сумма заказа
Proc		1 7
таблица БД «employees» (сотрудники) id employee int [primary key] Идентификатор сотрудника		
idemployee	varchar	[primary key] Идентификатор сотрудника Имя сотрудника
name	varchar	Фамилия сотрудника
surname position	varchar	Должность сотрудника
1	decimal	Зарплата
wage	ueciniai	Эарилата

phone_number	varchar	Номер телефона
email	varchar?	Адрес электронной почты
Таблица БД «time_manager» (учет рабочего времени сотрудников)		
idtm	int	[primary key] Идентификатор time-manager
employee	int	Код сотрудника
date	date	Дата
work_start_time	time?	Начало рабочего дня сотрудника
work_end_time	time?	Окончание рабочего дня сотрудника
work_start_time_fact	time?	Фактическое начало рабочего дня сотрудника
work_end_time_end	time?	Фактическое окончание рабочего дня сотрудника

3.4. Нормативно-справочная информация

Нормативно-справочная информация (НСИ) представляет собой набор данных и стандартов, которые используются для установления и описания определенных аспектов бизнес-процессов и операций в организации. НСИ обеспечивает единообразие, согласованность и стандартизацию информации, что важно для эффективного управления и принятия решений.

Содержание НСИ:

1. Справочник клиентов:

Информация о клиентах, включая имя, адрес, контактные данные и т.д. Форма представления: Таблица с полями для каждого атрибута клиента.

2. Справочник поставщиков:

Информация о поставщиках, включая имя, контактные данные и т.д.

Форма представления: Таблица с полями для каждого атрибута поставщика.

3. Справочник автомобилей:

Данные о моделях автомобилей, их технических характеристиках, стоимости и наличии на складе.

Форма представления: Таблица с полями для каждого атрибута автомобиля.

4. Справочник сотрудников:

Информация о сотрудниках, их должностях, контактных данных и рабочих графиках.

Форма представления: Таблицы с полями для каждого атрибута сотрудника/рабочего графика.

5. Справочник финансовых и налоговых данных:

Данные о налоговых ставках, методах учета финансовых операций и другие финансовые параметры.

Форма представления: Документы и руководства в электронном или виде.

4. ОРГАНИЗАЦИЯ ИНФОРМАЦИОННОЙ БАЗЫ

4.1. Источники поступления информации и способы ее передачи

Источники поступления информации в базу данных:

Ручной ввод: Администратор может вводить информацию вручную, например, данные о клиентах, автомобилях, продажах и т.п. с использованием форм и интерфейсов веб-приложения.

Импорт данных: Возможность импорта данных из внешних источников, например из CSV или Excel файлов.

Передача данных будет осуществляться с помощью сетевых протоколов (например HTTP/HTTPS, RESTful API, SOAP, FTP) либо через физические носители (flash-накопители).

4.2. Основные проектные решения по организации фонда НСИ

Справочники: Создание и поддержка справочников для различных видов данных, таких как клиенты, автомобили и т.п.

Учетные записи и роли: Определение учетных записей и ролей пользователей, чтобы обеспечить правильный доступ к данным и функциям.

Аудит и журналирование средствами MySQL: Регистрация всех действий пользователей с данными, чтобы отслеживать изменения и обеспечить безопасность.

4.3. Методы хранения, поиска, внесения изменений и контроля

База данных: Использование реляционной базы данных MySQL для хранения информации.

Поиск и индексы: Использование SQL-запросов для извлечения информации. Создание индексов для быстрого поиска и фильтрации данных.

Веб-интерфейс: Разработка удобного веб-интерфейса для администратора, который позволяет вносить изменения, добавлять новые данные и выполнять поиск.

Контроль версий: Использование системы контроля версий Git для отслеживания изменений в исходном коде и в проекте в целом.

Регулярное резервное копирование: Автоматическое создание резервных копий базы данных для предотвращения потери данных.

Политика безопасности: Разработка политик безопасности и аутентификации для обеспечения конфиденциальности и целостности данных.

Анализ данных: Использование инструментов анализа данных для создания отчетов и аналитики, которые помогают в принятии решений.

5. АЛЬБОМ ЭСКИЗНЫХ ФОРМ И ИНТЕРФЕЙСОВ

Эскизные формы документов, веб-страниц пользователя:

Рис. 1 – Эскиз веб-страницы пользователя

6. СИСТЕМА МАТЕМАТИЧЕСКОГО ОБЕСПЕЧЕНИЯ

6.1. Обоснование математического обеспечения

Использование математических методов в APMAA позволяет эффективно решать задачи автосалона, увеличивать точность расчетов, а также обеспечивать анализ и контроль ключевых аспектов бизнеса.

- Расчет стоимости автомобилей (выполнение задачи автоматического расчета стоимости автомобилей (включая скидки и налоги));
- Генерация отчетов о продажах, статистиках и финансовых показателей (использование математических операций для агрегации данных, расчетов средних значений, процентов и других манипуляций);
- Анализ производительности сотрудников (анализ производительности сотрудников и продаж автомобилей может включать в себя математические методы, такие как вычисление средних значений, стандартных отклонений и коэффициентов эффективности);
- Структурирование данных о клиентах, автомобилях, заказах и т.п., что обеспечивает более эффективное управление автосалоном.

Математическое обеспечение помогает автоматизировать и оптимизировать бизнес-процессы в автосалоне, что важно для повышения конкурентоспособности и эффективности его работы.

6.2. Обоснование выбора системы программирования

Выбор системы программирования можно обосновать требованиями к разработке, изложенными в техническом задании на разработку ПК АРМАА.

Таблица № 2 – Инструментальные средства

ИС	Функция
HTML	Создание пользовательского интерфейса, разметка веб-страниц
CSS	Стилизация веб-страниц

JavaScript, Node.js	Создание интерактивных элементов и обработка	
	пользовательских действий	
Python	Может использоваться для взаимодействия с базой	
	данных MySQL и формирования бизнес-логики	
	приложения, а также использоваться для вычислений,	
	создания отчетов и анализа данных.	
СУБД MySQL	Используется для хранения, управления и обработки	
	структурированных данных	

6.3. Перечень стандартных программных средств

Перечень программ для разработки и использования программного комплекса АРМАА:

1. Интегрированная среда разработки (IDE) – MS Visual Studio Code.

Бесплатная IDE для разработки приложений. Она предоставляет функциональность: редактора кода, подсветку синтаксиса, автодополнение, интеграцию с системами управления версиями и многие другие возможности. MS VS Code поддерживает множество языков программирования и технологий.

2. Система управления базами данных MySQL 8.0.34 и инструмент для визуального проектирования – MySQL Workbench 8.0.

MySQL — реляционная система управления базами данных (СУБД), предназначенная для хранения и управления данными. MySQL Workbench — инструмент с графическим интерфейсом для администрирования и проектирования баз данных MySQL.

- 3. Библиотеки для функционирования необходимых модулей и функций языков программирования.
 - 4. Утилита для контроля версий Git.

Git — это распределенная система управления версиями, которая используется для отслеживания изменений в коде и совместной работы разработчиков. Git предоставляет множество команд для работы с

репозиториями, создания и коммита изменений, слияния веток, управления ветками и многое другое. Он также имеет поддержку удаленных репозиториев, таких как GitHub и GitLab.

5. Графический редактор для создания макетов и дизайна интерфейса – Figma.

Figma — это инструмент для проектирования пользовательских интерфейсов (UI). Figma предоставляет множество инструментов для создания и редактирования дизайнов, а также возможности совместной работы в реальном времени, обмена макетами и комментирования.

6. Веб-браузер Google Chrome/Microsoft Edge/Яндекс Браузер.

7. ПРИНЦИП ПОСТРОЕНИЯ КОМПЛЕКСА ТЕХНИЧЕСКИХ СРЕДСТВ

7.1. Описание и обоснование схемы технологического процесса обработки данных

Схема технологического процесса обработки данных должна выглядеть следующим образом:

Захват данных:

Пользовательский интерфейс (UI): Администратор вводит данные о клиентах, автомобилях, продажах и т.д. через веб-интерфейс приложения.

Валидация данных:

Для обеспечения целостности и правильности данных, все введенные данные проходят проверку на соответствие ожидаемым форматам и ограничениям. Например, проверка на наличие обязательных полей, правильность формата номера телефона, электронной почты и т.п.

Трансформация данных:

На этом этапе данные могут быть преобразованы для соответствия структуре базы данных или для подготовки данных к дальнейшей обработке. Например, преобразование дат в нужный формат, вычисление дополнительных полей.

Хранение данных:

Для сохранения данных на долгосрочной основе, данные сохраняются в локальной базе данных на ПК администратора.

Извлечение данных:

Для отображения данных администратору автосалона, приложение извлекает данные из локальной базы данных и предоставляет их через веб-

интерфейс. Таким образом, администратор может видеть актуальную информацию.

7.2. Обоснование и выбор структуры комплекса технических средств и его функциональных групп

Ввиду уникальности предъявляемых требований к разработке была выбрана следующая структура комплекса технических средств:

- 1. Сервер/клиент: IBM-совместимый персональный компьютер, который будет выполнять роль сервера и клиента. Должен иметь достаточное количество ресурсов для обеспечения работы серверной части приложения и базы данных. (характеристики указаны в техническом задании);
 - 2. Источник питания: для обеспечения питания ПК;
- 3. Локальная база данных: для хранения данных работы автосалона требуется сервер баз данных. Это может быть тот же IBM-совместимый ПК, на котором работает серверное ПО для базы данных;
- 4. Система хранения данных: для хранения резервных копий данных, а также для обеспечения высокой доступности и надежности данных. (может использоваться жесткий диск персонального компьютера).

7.3. Комплекс мероприятий по обеспечению надежности функционирования технических средств

Надежное (устойчивое) функционирование программы должно быть обеспечено выполнением Заказчиком совокупности организационнотехнических мероприятий, перечень которых приведен ниже:

- а) организацией бесперебойного питания технических средств;
- б) использованием лицензионного программного обеспечения;
- в) регулярным выполнением рекомендаций Министерства труда и социального развития РФ, изложенных в Постановлении от 23 июля 1998 г.

«Об утверждении межотраслевых типовых норм времени на работы по сервисному обслуживанию ПЭВМ и оргтехники и сопровождению программных средств»;

г) регулярным выполнением требований ГОСТ 51188-98. Защита информации. Испытания программных средств на наличие компьютерных вирусов.

8. МЕРОПРИЯТИЯ ПО ПОДГОТОВКЕ ОБЪЕКТА К ВНЕДРЕНИЮ ПРОГРАММНОГО КОМПЛЕКСА

8.1. Перечень работ по внедрению программного комплекса, которые необходимо выполнить на стадии рабочего проектирования

Требования к заданию не предполагают внедрения разработки, но в случае необходимости внедрения на стадии рабочего проектирования должны быть проведены следующие работы:

- 1. Проведение детального анализа текущих бизнес-процессов автосалона, включая продажи, обслуживание, учет клиентов и автомобилей и т.д.
- 2. Определение требований и потребностей пользователей системы.
- 3. Формирование функциональных и технических требований к программному комплексу, включая список функций, структуру базы данных, макеты интерфейсов и т.д,
- 4. Определение технологической платформы разработки.
- 5. Проектирование архитектуру системы, включая компоненты, модули и их взаимодействие.
- 6. Составление технического задания на основе сформулированных требований.
- 7. Выбор методологии и создание плана разработки.
- 8. Составление рабочей документации, которая будет использоваться на этапе разработки. (схемы базы данных, диаграммы классов, пользовательские сценарии и т.д.)
- 9. Выбор/приобретение необходимых инструментов для разработки.
- 10. Разработка тестовых сценариев и планов тестирования, которые будут использоваться на этапе тестирования системы.
- 11. Создание плана внедрения, который включает в себя этапы по установке системы, обучению пользователей.
- 12. Установка и конфигурация окружения для разработки и тестирования ПК АРМАА.

13. Проверка того, что все необходимые ресурсы и условия готовы для начала разработки.