NOM	Prénom	Classe
CORRIGÉ		

Durée 45 minutes

Pas de document, ni calculatrice, ni téléphone portable

Inscrire les réponses aux endroits indiqués sur la feuille d'énoncé, sans râture ni surcharge (utiliser un brouillon!)

1. Définition : Deux ensembles A et B sont équipotents si et seulement si :

il existe une bijection de A vers B

2. Classer comme dénombrables ou non dénombrables les ensembles : \mathbb{N} , \mathbb{R} , \mathbb{N}^2 ,]-1,+1[, \mathbb{N}^*

dénombrables	non dénombrables	
$\mathbb{N}, \mathbb{N}^2, \mathbb{N}^*$	ℝ,]-1,+1[

3. Calculer
$$\sum_{k=1}^{n} k = \frac{n(n+1)}{2}$$
 et $\sum_{k=1}^{n} k^2 = \frac{n(n+1)(2n+1)}{6}$

- 4. Soient A et B deux ensembles finis. $Card(A \cup B) = Card(A) + Card(B) Card(A \cap B)$
- 5. Soient A et B deux ensembles finis tels que Card(A) = n et Card(b) = p. $Card(\mathcal{P}(A)) = 2^n$

Définition : B^A est l'ensemble des applications de A vers B

$$Card(B^A) = p^n$$

Le nombre d'applications <u>injectives</u> de A dans B est égal à $A_p^n = p(p-1)...(p-n+1) = \frac{p!}{(p-n)!}$ (si $p \ge n$)

Le nombre de parties de A à k éléments est égal à $\binom{n}{n} = \binom{n}{k} = \frac{n!}{k!(n-k)!}$

6. Relation de récurrence sur les coefficients $\binom{n}{k}$ du triangle de Pascal :

Pour
$$n \ge k \ge 0$$
 $\binom{n}{k} + \binom{n}{k+1} = \binom{n+1}{k+1}$, ou Pour $n \ge k \ge 1$ $\binom{n}{k} = \binom{n-1}{k-1} + \binom{n-1}{k}$

7. Formule d'Euler pour un polyèdre convexe de \mathbb{R}^3 (préciser la signification des notations)

S+F-A=2, où S est le nombre de sommets, F le nombre de faces et A le nombre d'arêtes

8. Soit l'équation de récurrence $u_{n+2} = a u_{n+1} + b u_n$ (a et b constantes réelles). on pose $\Delta = a^2 - 4b$ Écrire la solution générale de l'équation dans chacun des cas suivants :

$$1^{\circ} \Delta > 0 : u_n = A r_1^n + B r_2^n$$

où r_1 et r_2 sont les deux racines réelles de l'équation caractéristique $X^2 = aX + b$

 $2^{\circ} \Delta < 0$: $u_n = A \rho^n \cos(n\theta) + B \rho^n \sin(n\theta)$ où $\rho^{i\theta}$ et $\rho^{-i\theta}$ sont les deux racines imaginaires conjuguées

 $3^{\circ} \Delta = 0$: $u_n = A r_0^n + B n r_0^n$ où r_0 est la racine double.

(préciser les notations)

9. Définition de la transformée en Z d'une suite (u_n) :

C'est la fonction
$$f$$
 telle que $f(z) = \sum_{n=0}^{\infty} u_n \left(\frac{1}{z}\right)^n$

10. Transformée en Z de la suite géométrique (α^n) $(\alpha \text{ constante})$:

$$(\alpha^n)$$
 Transformée en $Z \to \frac{Z}{Z-\alpha}$

