

电路原理

配套教材:

《电路》第5版

高等教育出版社

原著: 邱关源 修订: 罗先觉

		目录	
	第1章	电路模型和电路定律	3
	第2章	电阻电路的等效变换	. 10
	第3章	电阻电路的一般分析	. 11
	第4章	电路定理	14
	第5章	含有运算放大器的电阻电路	20
	第6章	储能元件	22
	第7章	一阶电路和二阶电路的时域分析	24
	第8章	相量法	32
	第9章	正弦稳态电路分析	36
	第10章	含有耦合电感的电路	47
	第11章	电路的频率响应	50
	第12章	三相电路	52
	第13章	非正弦周期电流电路和信号的频谱	58
	第14章	线性动态电路的复频率分析	59
	第15章	电路方程的矩阵形式	66
	第16章	二端口网络	69
	第17章	非线性电路	72

第1章 电路模型和电路定律

输入:激励↔电源(电能或电信号发生器)

→(激励源:电压源、电流源)

输出:响应(电源作用下产生的电压、电流)

负载:用电设备

端子数:元件对外端子的数目

元件

u、i参考方向一致→关联

$$p>0$$
, 吸收功率

$$p < 0$$
,释放功率

u、i参考方向相反→非关联

$$p>0$$
, 吸收功率

$$p < 0$$
,释放功率

常用公式

$$W = uq$$

$$q = it$$

$$W = uit$$

$$W = pt$$

(做功=电压X电荷)

(电荷量=电流×时间)

W: 功(焦耳j)

q: 电荷 (库伦C)

t: 时间 (秒s)

u: 电压 (伏特V)

i: 电流(安培A)

p: 功率 (瓦W)

电导:
$$G = \frac{1}{R}$$

(单位:西门子S)

若u、i参考方向为非关联,则 u = - Ri , i = - Gu

开路和短路都是针对线性电阻元件

(其伏安特性曲线是一条经过原点的直线,无记忆、耗能的双向元件)

开路: R→∞端电压u为任意值→流经元件i=0(断路)

短路: R=0流经元件i为任意值→端电压u=0

电压源 (交/直流) voltage

$$U(t) = U_S(t)$$

电流源 (交/直流) current

$$i$$
 (t)= i s(t)

4种受控电源 Voltage 电压 Current 电流

Control 控制 Source 源

基尔霍夫定律

• KCL: (结点) $\sum i=0$ (结点支路电流代数和为0)

流出结点为+ 流入结点为-

• KVL: (回路) $\sum u=0$ (回路电压代数和为0)

电压参考方向与指定回路的绕行方向一致U取+ 二者方向相反 U取-

第2章 电阻电路的等效变换

Reg: 等效电阻

$$\mathbf{R}_{12} = \frac{\mathbf{R}_{1}\mathbf{R}_{2} + \mathbf{R}_{2}\mathbf{R}_{3} + \mathbf{R}_{3}\mathbf{R}_{1}}{\mathbf{R}_{3}}$$

$$R_{12} = \frac{R_1 R_2 + R_2 R_3 + R_3 R_1}{R_3}$$
 $R_{23} = \frac{R_1 R_2 + R_2 R_3 + R_3 R_1}{R_1}$ △形电阻= $\frac{\text{Y形电阻两两乘积之和}}{\text{Y形不相邻电阻}}$

$$i_{3 \Delta} R_{31} = \frac{R_1 R_2 + R_2 R_3 + R_3 R_1}{R_2}$$

$$egin{align*} egin{align*} egin{align*}$$

$$\mathbf{R}_{1} = \frac{\mathbf{R}_{12} \mathbf{R}_{31}}{\mathbf{R}_{12} + \mathbf{R}_{23} + \mathbf{R}_{31}}$$

$$\mathbf{R}_{2} = \frac{\mathbf{R}_{23} \mathbf{R}_{12}}{\mathbf{R}_{12} + \mathbf{R}_{23} + \mathbf{R}_{31}}$$

$$\mathbf{R}_{3} = \frac{\mathbf{R}_{31} \mathbf{R}_{23}}{\mathbf{R}_{12} + \mathbf{R}_{23} + \mathbf{R}_{31}}$$

电阻电路的一般分析 第3章

b:支路数 n: 结点数 n-1:独立结点数

1:独立回路数

支路电流法:

- ① 选定各支路电流的参考方向;
- ② 对n-1个独立结点列出KCL方程;
- ③ 选取独立回路,指定回路的绕行方向, 列 $\sum R_{kik} = \sum u_{sk}$ (k代表支路编号)
- (4)如果含有受控源,先当独立源对待。

网孔电流法 (适用于平面电路)

自阻:相邻网孔电阻之和 $(R_{11}, R_{22}...R_{kk},)$ 自阻总是+

互阻:相邻网孔共有电阻(R_{12} , R_{13} , R_{23} ...) 流经电阻电流参考方向相同, 互阻取+, 反之互阻取-

- ①选网孔为独立回路,回路电流为假想电流 i_{m1} , i_{m2} , ... i_{mk} ; (k为网孔编号)
- ②表示出自阻 R_{11} , R_{22} ..., 互阻 R_{12} , R_{13} , R_{23} ..., 网孔电压源之和 U_{s11} , U_{s22} ...;
- ③列回路的KVL方程;
- ④ 求解相应支路的电流。

结点电压法

自导:连接于各结点支路电导之和 (G_{11} , G_{22} ...)

自导总是+

互导:连接于两结点间之路电导的负值(G_{12} , G_{13} , G_{23} ...) 互导总是-

- ① 选定参考结点,标定n-1个独立结点, 结点处电压 U_{n1} , U_{n2} , U_{n3} ...;
- ②写出独立结点KCL 方程;
- ③ 求解上述方程,得n-1个结点电压;
- ④ 求解各支路电流。

第4章 电路定理

叠加定理:

在线性电路中,任一支路电流(或电压)都是电路中各 个独立电源单独作用时,在该支路产生的电流(或电压) 的代数和。

注意:

- 1. 叠加定理只适用于线性电路。

2. 一个电源作用,其余电源为零 {电压源为零—短路。 电流源为零—开路。

- 3. 功率不能叠加(功率为电源的二次函数)。
- 4. U, i叠加肘要注意各分量的方向。
- 5. 含受控源(线性)电路亦可用叠加,但叠加只适用于 独立源,受控源应始终保留。

齐性定理:

在线性电路中,全部激励同时扩大或缩小k倍时,响应也扩大或缩小k倍。

替代定理:

电路中, N_A 、 N_B 两个一端口网络连接端口的电压 u_p 与电流 i_p , $u_s=u_p$ 的电压源或 $i_s=i_p$ 的电流源来替代其中的网路,而使另一网络的内部电压、电流均维持不变。

输入电阻 (等效电阻):

$$R_i = R_{eq} = \frac{$$
端口输入电压
端口输入电流

等效电阻的计算方法:

方法1 当网络内部不含受控源时可采用电阻串/并联方法计算。

<mark>方法2</mark> 加压求流法或加流求压法。

方法3 开路电压,短路电流法。

更有一般性

戴维宁定理

任何一个线性含有 (一端口网络)

独立电源线性电阻线性受控源

等效

电压源 (U_{oc})

电阻 R_i

电压源的电压=外电路新开肘端口处的开路电压

电阻=一端口中全部独立电源置零后的端口等效电阻

诺顿定理

任何一个线性含有 (一端口网络) 独立电源 线性电阻 线性受控源

电流源 (I_{sc})

等效

//

电导 G_i (电阻 R_i)

电流源电流=一端口的短路电流

电导(电阻)=一端口的全部独立电源置0后的输入电导(电阻)

诺顿等效电路可由戴维南等效电路经电源等效变换得到

最大功率传输定理:

 $U_{\rm s}$: 电压源电压

 R_{c} : 电源内阻

 R_{l} : 负载

 R_l 所获得的最大功率:

$$P_{l max} = \frac{U_s^2 R_s}{(2R_s)^2} = \frac{U_s^2}{4R_s}$$

当负载电阻 $R_l=R_s(R_l 与 R_s$ 匹配)时,负载获得最大功率

戴维宁等效电路下:

$$P_{l\,max} = \frac{U_{oc}^2}{4R_{eq}}$$

含有运算放大器的电阻电路 第5章

A: 运放的电压放大倍数

	(3100)
1	
	1951

	R_i	R_o	A
一般运放	10 $^6 \sim$ 10 $^{13}\Omega$	10 ~ 100 Ω	$10^5 \sim 10^7$
理想运放	∞	0	∞

理想运算放大器规则:

①
$$i_1 = i_2 = 0$$
 虚新
② $u^- = u^+$ 虚短

(2)
$$u^2 = u^+$$

原因: $R_i \rightarrow \infty$

第6章

储能元件

电
$$\hat{\mathbf{x}}$$
: $C = \frac{q}{u}$

q:电荷,单位库伦C,

U:电压,单位伏特V,

C: 电容, 单位法拉F

电感:
$$\Psi = Li$$

Ψ:磁通链,

$$\Psi_L = N \Phi_L$$

Φ:磁通,

$$u=\frac{\Psi}{t}$$

N: 匝数

L: 电感或自感系数

电容串联:
$$\frac{1}{C \text{ eq}} = \frac{1}{C_1} = \frac{1}{C_2} + \cdots + \frac{1}{C_n}$$

并联:
$$C_{eq} = C_1 + C_2 + \cdots C_3$$

电感串联:
$$L_{eq} + L_1 + L_2 + \bullet \bullet \bullet L_n$$

并联:
$$\frac{1}{L_{eq}} = \frac{1}{L_1} + \frac{1}{L_2} + \cdots + \frac{1}{L_n}$$

第7章 一阶电路的时域分析

一阶电路:含有一个动态元件的电路

換路定则:电容电压 u_c 和电感电流 i_L ,在换路前后瞬间不跃变。

Bp:

$$u_{C}(\theta^{-}) \qquad u_{c} \quad (\theta^{+}) = u_{c} \quad (\theta^{-})$$

$$\mathbf{i}_{L} \quad (\mathbf{0}^{+}) = \mathbf{i}_{L} \quad (\mathbf{0}^{-})$$

$$t=0^+$$
, 动作之后 $t=0^-$, 动作之前

利用环路定理求初始值步骤

- (1)根据换路前的电路(一般为稳定状态),确定 $u_{\mathcal{C}}(0)$ 和 $i_{\mathcal{L}}(0)$ 。
- (2) 由换路定则确定 $u_{C}(0^{+})$ 和 $i_{L}(0^{+})$ 。
- (3) 画t=0+ 时等值电路。
 - a. 换路后的电路
 - b. 电容(电感) 用电压源(电流源) 替代
 - C.取 t=0+时刻值,方向同原假定的电容电压,电感电流方向
- (4) 由 $t=0^+$ 电路求所需各变量的 $t=0^+$ 值。

一阶电路的零输入响应

RC电路

$$u_c = U_0 e^{-\frac{t}{RC}} \quad t \ge 0$$

$$i = \frac{u_C}{R} = \frac{U_0}{R}e^{-\frac{t}{RC}} = I_0e^{-\frac{t}{RC}} \qquad t \ge 0$$

$$\tau = R C$$

RL电路

$$i = I_0 e^{-\frac{R}{L}t} = I_0 e^{-\frac{t}{L/R}} \qquad t \ge 0$$

$$u_L = L \frac{\mathrm{d}i}{\mathrm{d}t} = -RI_0 e^{-\frac{t}{L/R}} \qquad t \ge 0$$

$$\tau = L/R$$

一阶电路的零状态响应

RC电路

$$u_C = u_C' + u_C'' = U_S + Ae^{-\frac{t}{RC}}$$

RL电路

$$i_L = \frac{U_S}{R} + Ae^{-\frac{R}{L}t}$$

一阶电路的全响应

全响应 = 强制分量(稳态解)+自由分量(暂态解)

$$u_C = U_S + (U_0 - U_S)e^{-\frac{t}{\tau}} \qquad t \ge 0$$

全响应=零状态响应+零输入响应

$$u_C = U_S(1 - e^{-\frac{t}{\tau}}) + U_0 e^{-\frac{t}{\tau}}$$
 $(t \ge 0)$

三要素法分析一阶电路

$$f(t) = f(\infty) + [f(0^+) - f(\infty)]e^{-\frac{t}{\tau}}$$

$$f(\infty)$$
 特解,稳态解
三要素 $f(0^+)$ 初始值
 au 时间常数

(详细习题,见P₁₅₄,例7-4)

单位阶跃函数 $\varepsilon(t) = \begin{cases} 0 & t < 0 \\ 1 & t > 0 \end{cases}$

单位冲激函数

$$\mathcal{S}(t) = \begin{cases} \int_{-\infty}^{\infty} \mathcal{S}(t) dt = 1 & t = 0 \\ \mathcal{S}(t) = 0 & t \neq 0 \end{cases}$$

第分性质:
$$\begin{cases} \int_{-\infty}^{\infty} f(t)\delta(t)dt = f(0) \\ \int_{-\infty}^{\infty} f(t)\delta(t-t_0)dt = f(t_0) \end{cases}$$

单位冲激函数 $\delta(t)$,单位阶跃函数 $\epsilon(t)$ 关系

$$\int_{-\infty}^{t} \delta(\varepsilon) d\varepsilon = \varepsilon(t)$$

$$\frac{d\varepsilon(t)}{dt} = \delta(t)$$

(详见P₁₇₃)

第8章 相量法

三角形式:
$$F = |F|(\cos\theta + j\sin\theta)$$

指数形式:
$$F=|F|=e^{j\theta}$$

极坐标:
$$F=|F|\angle\theta$$

$$\begin{cases} |F| = \sqrt{a^2 + b^2} \\ \theta = \arctan\left(\frac{b}{a}\right) \end{cases}$$
$$a = |F|\cos\theta$$
$$b = |F|\sin\theta$$

正弦量: 电路中接正弦规律变化的电压或电流

$i(t)=I_{\rm m}\sin(\omega t + \theta)$

(1) 幅值 (振幅、最大值): $I_{\rm m}$, $U_{\rm m}$

$$u(t)=U_{\rm m}\sin(\omega t + \theta)$$

(2) 角频率: ω

(3) 初相位: θ 或 ϕ_i , ϕ_u

相量形式

$$u_s$$
对应相量 $U_s = U_s e^{j\phi_u} = U_s \angle \phi_u$

$$i$$
对应相量 $I = Ie^{j\phi_i} = I\angle\phi_i$

基尔霍夫定律的相量形式

$$\sum i(t) = 0 \qquad \Rightarrow \qquad \sum \dot{I} = 0$$
$$\sum u(t) = 0 \qquad \Rightarrow \qquad \sum \dot{U} = 0$$

电路元件的相量关系

$$u = Ri \qquad \dot{U} = R\dot{I}$$

$$u = L\frac{\mathrm{d}i}{\mathrm{d}t} \qquad \dot{U} = j\omega L\dot{I}$$

$$u = \frac{1}{C}\int i\,\mathrm{d}t \qquad \dot{U} = \frac{1}{\mathrm{j}\omega C}\dot{I}$$

$$\phi_i = \phi_u$$

$$\phi_u = \phi_i + 90^\circ$$

电容
$$C$$
中

$$\phi_i = \phi_u + 90^\circ$$

感抗 oL

$$\dot{U}_L = j\omega L \dot{I}_L \longrightarrow U_L = \omega L I_L$$

感纳
$$-rac{1}{\omega L}$$

$$\dot{U}_c = \frac{1}{j\omega C} \dot{I}_c \longrightarrow U_c = \frac{1}{\omega C} I_c$$

第9章 正弦稳态电路分析图

阻抗Z:
$$Z = \frac{U}{\dot{I}} = \frac{U}{I} \angle (\phi_u - \phi_i)$$

代数形式: Z=R+jX

X>0 呈感性 X . 等效电抗分量 X<0 呈 容性

导纳Y:
$$Y = \frac{\dot{I}}{\dot{U}} = \frac{I}{U} \angle (\phi_i - \phi_u)$$

代数形式: Z=G+jB

G:等效电导分量

B: 等效电纳分量 B<0 呈感性

- B > 0 呈感动性

电路的相量图

1951

相量图的画法

以电路并联部分电压为参考方向:

- 1、由支路的VCR确定各并联支路的电流相量与电压相量之间的夹角
- 2、根据节点上的KCL方程,利用相量平移求和法则 画节点各支路电流相量多边形。

以电路串联部分电流为参考方向:

- 1、由支路的VCR确定各并联支路的电压相量与电流相量之间的夹角
- 2、根据节点上的KVL方程,利用相量平移求和法则 画回路上各电压相量多边形。

肘域列写微分方程

相量形式代数方程

$$\begin{cases} i_{L} = i_{C} + i_{R} \\ L \frac{di_{L}}{dt} + \frac{1}{C} \int i_{C} dt = u_{S} \\ R i_{R} = \frac{1}{C} \int i_{C} dt \end{cases}$$

$$\begin{cases}
\dot{I}_{L} = \dot{I}_{C} + \dot{I}_{R} \\
\dot{j}\omega L \dot{I}_{L} + \frac{1}{\dot{j}\omega C} \dot{I}_{C} = \dot{U}_{S} \\
\dot{R} \dot{I}_{R} = \frac{1}{\dot{j}\omega C} \dot{I}_{C}
\end{cases}$$

正弦稳态电路的分析

电阻电路与正弦电流电路相量法分析比较:

电阻电路:

KCL: $\sum i = 0$

KVL: $\sum u = 0$

元件约束关系: u = Ri

或 i = Gu

正弦电路相量分析:

KCL: $\sum I = 0$

KVL: $\sum \dot{U} = 0$

元件约束关系: U=ZI

或

正弦稳态电路的功率

(1) 瞬时功率 (instantaneous power)

$$p(t) = ui = \sqrt{2}U\sin\omega t \cdot \sqrt{2}I\sin(\omega t - \varphi)$$

$$= UI[\cos\varphi - \cos(2\omega t - \varphi)]$$

$$= UI\cos\varphi(1-\cos 2\omega t) - UI\sin\varphi\sin 2\omega t$$

(2) 平均功率 (average power) P

$$P = \frac{1}{T} \int_0^T p dt = \frac{1}{T} \int_0^T [UI \cos \varphi - UI \cos(\omega t - \varphi)] dt$$

$$=UI\cos\varphi$$

(单位: 瓦W)

注意:

$$\varphi = \phi_{u} - \phi_{i}$$
: 功率因数角

(对无源网络, 为等效阻抗的阻抗角)

cosφ: 功率因数

(用
$$\lambda$$
 表示: $\lambda = \cos \varphi = \frac{P}{S}$) P: 有功功率 S: 视在功率

(3)有功功率 = 平均功率P= UIcosφ

(4) 无功功率 (reactive power) Q

 $Q = UI \sin \varphi$

表示交换功率的最大值,单位: Var(乏)。

Q>0,网络吸收无功功率 Q<0,网络发出无功功率。

Q的大小反映网络与外电路交换功率的大小,

由储能元件L、C的性质决定。

(5)视在功率(表观功率)5

S = UI 单位: V•A(伏安)

反映电气设备的容量

R、L、C元件的有功功率和无功功率

$$P_R = UI\cos\varphi = UI\cos\theta^\circ = UI = I^2R = U^2/R$$

$$Q_R = UI\sin\varphi = UI\sin\theta^\circ = 0$$

$$P_L = UI\cos\varphi = UI\cos90^\circ = 0$$

$$Q_L = UI\sin\varphi = UI\sin90^\circ = UI$$

$$P_C = UI\cos\varphi = Ui\cos(-90^\circ) = 0$$

$$Q_C = UI\sin\varphi = UI\sin(-90^\circ) = -UI$$

P、Q、S关系

有功功率: P=UIcos φ

单位:W

无功功率: $Q=UI\sin\varphi$

单位:var

视在功率: S=UI

单位: V·A

$$S = P + jQ$$

$$S = \sqrt{P^2 + Q^2}$$

$$\varphi = \arctan \frac{Q}{P}$$

复功率

$$\bar{S} = \dot{U}\dot{I}^* = Z\dot{I} \cdot \dot{I}^* = ZI^2$$

$$\bar{S} = \dot{U}\dot{I}^* = \dot{U}(\dot{U}Y)^* = \dot{U}\cdot\dot{U}^*Y^* = U^2Y^*$$

$$\bar{S} = \dot{U}\dot{I}^* = UI \angle (\phi_u - \phi_i)$$

$$= UI \angle \varphi = S \angle \varphi$$

$$= UI \cos \varphi + jUI \sin \varphi$$

$$= P + jQ$$

最大功率传输

$$Z_{\mathrm{L}} = Z_{\mathrm{i}}^{*}, \quad \text{gp} \quad \left\{ egin{align*} R_{\mathrm{L}} = R_{\mathrm{i}} \\ X_{\mathrm{L}} = -X_{\mathrm{i}} \end{array}
ight.$$

$$P_{max} = \frac{U_{oc}^2}{4R_{eq}}$$

第10章 含有耦合电感的电路图

L: 自感系数 M: 互感系数

磁通链=自感磁通链+互感磁通链

$$\Psi_1 = \Psi_{11} + \Psi_{12} = L_1 i_1 \pm M i_2$$

 $\Psi_2 = \Psi_{22} + \Psi_{21} = L_2 i_2 \pm M i_1$

耦合因数
$$k = \frac{M}{\sqrt{L_1 L_2}} \le 1$$

去耦等效电路

(详见P₂₆₀例10-4)

去耦方法:

如果耦合电感的两条支路各有一端与第3支路形成一个仅含3条支路的共同结点,则可用3条无耦合的电感支路等效替代,3条支路的等效电感分别为:

(支路3)

$$L_3 = \pm M$$
 (同侧取"+", 异侧取"-")

(支路1)

$$L_1' = L_1 \mp M$$

(支路2)

$$L_2' = L_2 \mp M$$

M前所取符号与 L_3 中的相反

理想变压器

当 $L_1,M,L_2 \rightarrow \infty$, L_1/L_2 比值不变,则有

$$\begin{cases}
 u_1 = nu_2 \\
 i_1 = -\frac{1}{n}i_2
\end{cases}$$

$$\begin{cases}
 \dot{U}_1 = n\dot{U}_2 \\
 \dot{I}_1 = -\frac{1}{n}\dot{I}_2
\end{cases}$$

$$\dot{U}_1 = n\dot{U}_2$$

$$\dot{U}_1 = -\frac{1}{n}\dot{U}_2$$

理想变压器的元件特性
$$n = \frac{N_1}{N_2} = \frac{L_1}{M} = \frac{M}{L_2} = \sqrt{\frac{L_1}{L_2}}$$

理想变压器的电路模型
$$\frac{\dot{U}_1}{\dot{I}_1} = \frac{n\dot{U}_2}{-1/n\dot{I}_2} = n^2(-\frac{\dot{U}_2}{\dot{I}_2}) = n^2Z$$

第11章 电路的频率响应

RLC串联谐振

$$\begin{array}{c}
\stackrel{\cdot}{I} \quad R \\
+ \\
\stackrel{\cdot}{U} \quad \int_{\overline{j}\omega C}^{\overline{j}\omega C}$$

$$Z = R + \mathbf{j}(\omega L - \frac{1}{\omega C}) = R + \mathbf{j}(X_L + X_C)$$

$$= R + \mathbf{j}X$$

当
$$\omega_0 L = \frac{1}{\omega_0 C}$$
时,电路发生谐振。

RLC串联谐振下参数

谐振角频率

$$\omega_0 = \frac{1}{\sqrt{LC}}$$

谐振频率

$$f_0 = \frac{1}{2\pi\sqrt{LC}}$$

谐振周期

$$T_0 = \frac{1}{f_0} = 2\pi\sqrt{LC}$$

品质因数

$$Q = \frac{1}{R} \sqrt{\frac{L}{C}}$$

带

宽

$$BW = \frac{\omega_0}{Q}$$

第12章 三相电路

Y形电源

△形电源

对称三相电路的连接

谈
$$\dot{U}_{\mathrm{AN}}$$
= \dot{U}_{A} = $U \angle 0^{\mathrm{o}}$
 \dot{U}_{BN} = \dot{U}_{B} = $U \angle -120^{\mathrm{o}}$
 \dot{U}_{CN} = \dot{U}_{C} = $U \angle 120^{\mathrm{o}}$

$$\dot{U}_{AB} = \dot{U}_{AN} - \dot{U}_{BN} = U \angle 0^{\circ} - U \angle -120^{\circ} = \sqrt{3}U \angle 30^{\circ}$$
 $\dot{U}_{BC} = \dot{U}_{BN} - \dot{U}_{CN} = U \angle -120^{\circ} - U \angle 120^{\circ} = \sqrt{3}U \angle -90^{\circ}$
 $\dot{U}_{CA} = \dot{U}_{CN} - \dot{U}_{AN} = U \angle 120^{\circ} - U \angle 0^{\circ} = \sqrt{3}U \angle 150^{\circ}$

$$\dot{U}_{A} = U \angle 0^{\circ}$$
 $\dot{U}_{B} = U \angle -120^{\circ}$
 $\dot{U}_{C} = U \angle 120^{\circ}$

$$\dot{U}_{AB} = \dot{U}_{A} = U \angle 0^{\circ}$$
 $\dot{U}_{BC} = \dot{U}_{B} = U \angle -120^{\circ}$
 $\dot{U}_{CA} = \dot{U}_{C} = U \angle 120^{\circ}$

对称三相电路的计算

一相计算法

一相计算电路:

由一相计算电路可得:

$$\dot{I}_{A} = \frac{\dot{U}_{an}}{Z} = \frac{\dot{U}_{A}}{Z} = \frac{U}{|Z|} \angle \psi - \varphi$$

由对称性

$$\dot{I}_{\rm B} = \frac{U}{|Z|} \angle \psi - 120^{\rm o} - \varphi, \ \dot{I}_{\rm C} = \frac{U}{|Z|} \angle \psi + 120^{\rm o} - \varphi$$

电源△接与Y接的变换

$$\dot{U}_{\rm AN} = \frac{1}{\sqrt{3}} \dot{U}_{\rm AB} \angle -30^{\rm o}$$

$$\dot{U}_{\rm BN} = \frac{1}{\sqrt{3}} \dot{U}_{\rm BC} \angle -30^{\rm o}$$

$$\dot{U}_{\rm CN} = \frac{1}{\sqrt{3}} \dot{U}_{\rm CA} \angle -30^{\rm o}$$

对称三相电路的一般计算方法

- (1) 将所有三相电源、负载都化为等值Y-Y接电路;
- (2) 连接各负载和电源中点,中线上若有阻抗可不计;
- (3) 画出单相计算电路,求出一相的电压、电流:
 - 一相电路中的电压为Y接时的相电压。
 - 一相电路中的电流为线电流。
- (4) 根据△接、Y接射线量、相量之间的关系, 求出原电路的 电流电压。
- (5) 由对称性,得出其它两相的电压、电流。

第13章 非正弦周期电流电路 和信号的频谱

非正弦电流的有效值:

$$I = \sqrt{I_0^2 + I_1^2 + I_2^2 + I_3^2 + \dots} = \sqrt{I_0^2 + \sum_{k=1}^{\infty} I_k^2}$$

非正弦电流的平均值:

$$I_{av} = \frac{1}{T} \int_0^T |i| dt$$

非正弦电流的有效功率:

$$P = \frac{1}{T} \int_0^T p dt$$

第14章 线性动态电路的复频率分析

拉氏变换:
$$F(s) = L[f(t)] = \int_0^{+\infty} f(t)e^{-st}dt$$

拉氏反变换:
$$f(t) = L^{-1}[F(s)] = \frac{1}{2\pi j} \int_{\beta - j\infty}^{\beta + j\infty} F(s)e^{st}ds$$

拉氏变换的基本性质:

线性性质	齐次性	L[af(t)] = aF(s)	
	叠加性	$L[f_1(t) \pm f_2(t)] = F_1(s) \pm F_2(s)$	

微分性质

$$L\left[\frac{df(t)}{dt}\right] = sF(s) - f(0)$$

$$L[\int f(t)dt] = \frac{F(s)}{s}$$

$$L[f(t-T)1(t-T)] = e^{-Ts}F(s)$$

$$L[f_1(t) * f_2(t)] = L[\int_0^t f_1(t - \xi) f_2(\xi) d\xi]$$

$$= F_1(s) F_2(s)$$

常	原函数 f(t)	象函数 F(s)
	$A\delta(t)$	A
用逐	Aarepsilon(t)	$\frac{A}{s}$
数	t	$\frac{1}{s^2}$
的	$\frac{t^2}{2}$	$\frac{1}{s^3}$
拉	e^{-at}	$\frac{1}{s+a}$
氏	$1-e^{-at}$	$\frac{a}{s(s+a)}$
变	sin ωt	$\frac{\omega}{s^2 + \omega^2}$
换	cos ωt	$\frac{s}{s^2 + \omega^2}$
Φ·	$e^{-at}\sin \omega t$	$\frac{\omega}{(s+a)^2+\omega^2}$

运算电路

电阻元件的运算形式

$$i R$$
 $+ u -$

$$u=Ri$$

$$I(s)$$
 R $+ U(s) -$

$$U(s) = RI(s)$$

$$I(s) = GU(s)$$

线性性质

电感元件的运算形式

$$u_L = L \frac{di_L}{dt}$$

$$I_L(s) = \begin{bmatrix} sL \\ \vdots \\ i_L(0^-)/s \\ + U_L(s) - \end{bmatrix}$$

$$U_{L}(s) = L(sI_{L}(s) - i_{L}(0^{-}))$$
$$= sLI_{L}(s) - Li_{L}(0^{-})$$

电容元件的运算形式

$$|u_C|$$

$$I_{C}(s) \qquad u_{C}(0^{-})/s$$

$$1/sC \qquad + \qquad U_{C}(s) \qquad -$$

$$U_C(s) = \frac{1}{sC}I_C(s) + \frac{u_C(0^-)}{s}$$

$$I_{C}(s) = U_{C}(s)$$

$$I_C(s) = sCU_C(s) - Cu_C(0^-)$$

运算法解题步骤:

- 1. 由换路前电路计算 U_C(O⁻), i_L(O⁻), 以得到附加电源的参数。并将激励的时域函数变换成象函数。
- 2. 画运算电路模型,其中U_C(O-)和i_L(O-)的作用用附加电源表示,参数(R、L、C)用复频域阻抗表示,已知的和待求的电压电流均用象函数表示。
- 3. 应用电路分析方法求待求量的象函数。
- 4. 反变换求原函数。

(详见P₃₅₉₋₃₆₅ 例14-9至14-14) 题

第15章 电路方程的矩阵形式

关联矩阵:

描述结点与支路相关联性质的矩阵A。

(降阶) 关联矩阵A:

把 A_a 的任一行划去,剩下的 $[(n-1) \times b]$ 矩阵用A表示。

(今后主要用这种降阶 关联矩阵,所以往往 略去"降阶"二字)

结点电压方程

矩阵形式:

$$AYA^T \dot{U}_n = AI_s - AYU_s$$

(详见P₄₀₅ 例15-2题)

第16章 二端口网络

Y参数矩阵:

$$[Y] = \begin{bmatrix} Y_{11} & Y_{12} \\ Y_{21} & Y_{22} \end{bmatrix}$$

$$\begin{cases}
\dot{I}_1 = Y_{11}\dot{U}_1 + Y_{12}\dot{U}_2 \\
\dot{I}_2 = Y_{21}\dot{U}_1 + Y_{22}\dot{U}_2
\end{cases}$$

$$\begin{cases} \dot{I}_{1} = Y_{11}\dot{U}_{1} + Y_{12}\dot{U}_{2} \\ \dot{I}_{2} = Y_{21}\dot{U}_{1} + Y_{22}\dot{U}_{2} \end{cases} \begin{cases} Y_{11} = \frac{\dot{I}_{1}}{\dot{U}_{1}}\Big|_{\dot{U}_{2}=0} & Y_{21} = \frac{\dot{I}_{2}}{\dot{U}_{1}}\Big|_{\dot{U}_{2}=0} \\ Y_{12} = \frac{\dot{I}_{1}}{\dot{U}_{2}}\Big|_{\dot{U}_{1}=0} & Y_{22} = \frac{\dot{I}_{2}}{\dot{U}_{2}}\Big|_{\dot{U}_{1}=0} \end{cases}$$

Z参数矩阵:

$$[Z] = \begin{bmatrix} Z_{11} & Z_{12} \\ Z_{21} & Z_{22} \end{bmatrix}$$

$$\begin{cases} \dot{U}_1 = Z_{11}\dot{I}_1 + Z_{12}\dot{I}_2 \\ \dot{U}_2 = Z_{21}\dot{I}_1 + Z_{22}\dot{I}_2 \end{cases}$$

$$[Z] = [Y]^{-1}$$

$$\begin{aligned}
Z_{11} &= \frac{\dot{U}_1}{\dot{I}_1} \Big|_{\dot{I}_2 = 0} & Z_{21} &= \frac{\dot{U}_2}{\dot{I}_1} \Big|_{\dot{I}_2 = 0} \\
Z_{12} &= \frac{\dot{U}_1}{\dot{I}_2} \Big|_{\dot{I}_1 = 0} & Z_{22} &= \frac{\dot{U}_2}{\dot{I}_2} \Big|_{\dot{I}_1 = 0}
\end{aligned}$$

$$T$$
 参数矩阵 $[T] = \begin{bmatrix} A & B \\ C & D \end{bmatrix}$

转移电压比
$$A = \frac{U_1}{\dot{U}_2}\Big|_{\dot{I}_2=0}$$

转移阻抗
$$B = \frac{\dot{U}_1}{-\dot{I}_2}\Big|_{\dot{U}_2=0}$$

转移导纳
$$C = \frac{I_1}{\dot{U}_2} \Big|_{\dot{I}_2 = 0}$$

转移电流比
$$D = \frac{I_1}{-\dot{I}_2}\Big|_{\dot{U}_2=0}$$

$$H$$
参数矩阵
$$\begin{cases} \dot{U}_1 = H_{11}\dot{I}_1 + H_{12}\dot{U}_2 \\ \dot{I}_2 = H_{21}\dot{I}_1 + H_{22}\dot{U}_2 \end{cases}$$

$$\begin{bmatrix} \dot{\mathbf{U}}_1 \\ \dot{\mathbf{I}}_2 \end{bmatrix} = \begin{bmatrix} \mathbf{H}_{11} & \mathbf{H}_{12} \\ \mathbf{H}_{21} & \mathbf{H}_{22} \end{bmatrix} \begin{bmatrix} \dot{\mathbf{I}}_1 \\ \dot{\mathbf{U}}_2 \end{bmatrix} = \begin{bmatrix} \mathbf{H} \end{bmatrix} \begin{bmatrix} \dot{\mathbf{I}}_1 \\ \dot{\mathbf{U}}_2 \end{bmatrix}$$

$$H_{11} = \frac{\dot{U}_1}{\dot{I}_1} \Big|_{\dot{U}_2 = 0}$$

电压转移比

$$\mathbf{H}_{12} = \frac{\mathbf{U}_1}{\dot{\mathbf{U}}_2} \Big|_{\dot{\mathbf{I}}_1 = \mathbf{0}}$$

电流转移比
$$H_{21} = \frac{I_2}{\dot{I}_1}\Big|_{\dot{U}_2=0}$$

输入导纳

$$H_{22} = \frac{I_2}{\dot{U}_2} \Big|_{\dot{I}_1 = 0}$$

二端口的转移函数

$$\frac{U_2(s)}{U_1(s)}$$

$$\frac{I_2(s)}{I_1(s)}$$

(转移导纳)
$$\frac{I_2(s)}{U_1(s)}$$

$$\frac{U_2(s)}{I_1(s)}$$

第17章 非线性电路

小信号求u(t)和i(t)

 $oldsymbol{U}_s$: 直流电源

 $u_s(t)$: 交流小信号电源

任何时刻满足 $U_S >> \mid u_S(t) \mid$

Rs 为线性电阻

非线性电阻 i = f(u)

小信号分析法步骤

- 1. 求静态工作点,令 $i_s(t)=0$ 或 $u_s(t)=0$
- 2. 求出非线性元件在静态工作点处的动态电阻 R_d 或电导 G_d ;
- 3. 画出静态工作点处的小信号等效电路,解出 Δu , Δi ;
- 4. 求出*u*, *i*。

