

Лекция 4

Поле комплексных чисел

Содержание лекции:

В данной лекции мы которотко рассмотрим поле комплексных чисел, которое возникает как алгебраичекое замыкание поля \mathbb{R} . Обсуждая алгбраические операции с комплексными числами мы заложим основы для использования этих чисел в различных областях математики и ее приложений.

Ключевые слова:

Комплексное число, поле комплексных чисел, алгебраическая форма KЧ, комплексно сопряженное число, тригонометрическая форма KЧ, формула Муавра, показательная форма KЧ.

Авторы курса:

Трифанов А.И.

Москаленко М.А.

Ссылка на ресурсы:

mathdep.ifmo.ru/geolin

Алгебраическая форма комплексного числа 4.1

Комплексным числом называется элемент z декартова произведения $\mathbb{R} \times \mathbb{R}$:

$$z = (a, b), \quad a, b \in \mathbb{R},$$

снабженного двумя бинарными операциями, undyиированными из \mathbb{R} :

- $(a_1, b_1) + (a_2, b_2) = (a_1 + a_2, b_1 + b_2);$ $(a_1, b_1) \cdot (a_2, b_2) = (a_1 a_2 b_1 b_2, a_1 b_2 + a_2 b_1);$

Nota bene Для множества комплексных чисел имеется специальное обозначение:

$$\mathbb{R} = \{(a,b): a,b \in \mathbb{R}\}.$$

Nota bene Имеет место свойство

$$z_1 = z_2 \quad \Leftrightarrow \quad a_1 = a_2, \quad b_1 = b_2.$$

Теорема 4.1. Множество \mathbb{C} имеет алгебраическую структуру поля.

Сначала проверим свойства операции +:

- 1. ассоциативность очевидна в силу ассоциативности + на множестве \mathbb{R} ;
- 2. нейтральный элемент $0_{\mathbb{C}} = (0,0)$, действительно:

$$\forall z \in \mathbb{C} \quad z + 0_{\mathbb{C}} = z = 0_{\mathbb{C}} + z;$$

3. обратным элементом для z = (a, b) является (-z) = (-a, -b);

Далее, проверим свойства операции ::

1. ассоциативность проверяется непостредственно:

$$((a_1, b_1) \cdot (a_2, b_2)) \cdot (a_3, c_3) = (a_1, b_1) \cdot ((a_2, b_2) \cdot (a_3, c_3)).$$

2. нейтральный элемент $1_{\mathbb{C}} = (1,0)$:

$$1_{\mathbb{C}} \cdot z = (1,0) \cdot (a,b) = (a,b).$$

3. обратным элементом для $z = (a, b) \neq (0, 0) = 0_{\mathbb{C}}$ является

$$z^{-1} = \left(\frac{a}{N(z)}, -\frac{b}{N(z)}\right), \quad N(z) = a^2 + b^2.$$

Осталось проверить дистрибутивность введенных операций слева и справа, что проводится непосредственным вычислением:

$$z_1 \cdot (z_2 + z_3) = z_1 \cdot z_2 + z_1 \cdot z_3.$$

Лемма 4.1. Отображение $\sigma: \mathbb{R} \to \mathbb{C}$, заданное формулой $\sigma(a) = (a,0)$ является вложением \mathbb{R} в \mathbb{C} .

▶

Покажем, что σ - гомоморфизм:

$$\sigma(a+b) = (a+b,0) = (a,0) + (b,0) = \sigma(a) + \sigma(b),$$

$$\sigma(ab) = (ab,0) = (a,0) \cdot (b,0) = \sigma(a) \cdot \sigma(b).$$

Далее σ инъективно:

$$\sigma(a) = \sigma(b) \quad \Rightarrow \quad \sigma(a-b) = (0,0) \quad \Rightarrow \quad a-b=0.$$

Следовательно σ - вложение.

4

Алгебраической формой комплексного числа $z=(a,b)\in\mathbb{C}$ называется представление его в следующем виде:

$$z = a + ib$$
,

где символ i называется **мнимой единицей** и обладает свойством $i^2 = -1 \in \mathbb{R}$.

Лемма 4.2. Отображение $(a,b) \mapsto a + ib$ является кольцевым изоморфизмом.

Nota bene Заметим, что i' = -i также является мнимой единицей, что приводит к автоморфизму $z \mapsto \bar{z}$ поля \mathbb{C} , который называется комплексным сопряжением.

Пусть $z=a+ib\in\mathbb{C}$ - комплексное число, тогда

- $\Re z \triangleq a$ называется **вещественной частью** числа z;
- $\Im z \triangleq b$ называется **мнимой частью** числа z;
- $\bar{z} = a ib$ называется числом, **комплексно сопряженным** к z;
- $N(z) \triangleq z\bar{z} = a^2 + b^2$ называется **нормой** комплексного числа z;
- $|z| = \sqrt{N(z)} = \sqrt{a^2 + b^2}$ называется **модулем** комплексного числа.

4.2 Тригонометрическая форма комплексного числа

Nota bene Пару вещественных чисел (a,b), определяющих комплексное число z, можно интерпретировать как координаты некоторой точки на плоскости, которая называется комплексной плоскостью. Координаты на рассматриваемой плоскости - это вещественная \Re и мнимая \Im оси.

Аргументом комплексного числа z (обозначается $\arg(z)$) называется направленный угол от оси \Re до луча Oz, откладываемый против часовой стрелки с величиной, берущейся по модулю $2\pi k$.

ПОЛЕ КОМПЛЕКСНЫХ ЧИСЕЛ

Nota bene Альтернативно паре (a,b) можно использовать пару (ρ,ψ) , определяемую следующим образом:

$$\begin{split} a &= \rho \cos \psi, \quad b = \rho \sin \psi, \\ \rho &= \sqrt{a^2 + b^2} = |z|, \quad \cos \psi = a/|z|, \quad \sin \psi = b/|z|. \end{split}$$

Пара (ρ, ψ) отвечает координатам точки z в *полярной системе координат*.

Тригонометрической формой комплексного числа $z \in \mathbb{C}$ называется представление его в следующем виде:

$$z = (\rho \cos \psi, \rho \sin \psi) = \rho(\cos \psi, \sin \psi).$$

Лемма 4.3. Имеют место свойства:

$$|z_1 z_2| = |z_1||z_2|$$
, $\arg(z_1 z_2) = \arg(z_1) + \arg(z_2)$.

Прямой проверкой убеждаемся, что

$$\rho_1(\cos\psi_1, \sin\psi_1) \cdot \rho_2(\cos\psi_2, \sin\psi_2) = \rho_1\rho_2(\cos(\psi_1 + \psi_2), \sin(\psi_1 + \psi_2)).$$

Теорема 4.2. (Формула Муавра) Пусть $z \in \mathbb{C}$ и $n \in \mathbb{N}$, тогда

$$|z^n| = |z|^n$$
, $\arg(z^n) = n \cdot \arg(z)$.

Доказательство проводится индукцией по n.

Пример 4.1. Найдем решение уравнения

$$z^n = \omega, \quad z, \omega \in \mathbb{C}, \quad n \in \mathbb{N}.$$

Из формулы Муавра следует

$$|z|^n \cdot (\cos(n\psi), \sin(n\psi)) = |\omega| \cdot (\cos\chi, \sin\chi),$$

откуда получаем

$$|z| = \sqrt[+]{|\omega|}, \quad n\psi = \chi + 2\pi k, \quad k \in \mathbb{Z}.$$

и значит

$$z = \sqrt[+]{|\omega|} \left(\cos\frac{\chi + 2\pi k}{n}, \sin\frac{\chi + 2\pi k}{n}\right)$$

ПОЛЕ КОМПЛЕКСНЫХ ЧИСЕЛ

Nota bene Из примера видно, что все решения уравнения лежат на окружности радиуса $r=\sqrt[+]{|\omega|}$ в верщинах *правильного* n - угольника.

Лемма 4.4. Множество корней уравнения $z^n = 1$ образует мультипликативную абелеву группу.

▶

Пусть S - множество решений данного уравнения. Покажем, что S замкнуто:

$$\varepsilon_1, \varepsilon_2 \in S \quad \Rightarrow \quad \varepsilon_1^n = 1, \quad \varepsilon_2^n = 1 \quad \Rightarrow \quad (\varepsilon_1 \varepsilon_2)^n = 1 \quad \Rightarrow \quad \varepsilon_1 \varepsilon_2 \in S.$$

Нейтральным элементом является $\varepsilon_0 = 1_{\mathbb{C}}$.

Обратный элемент к $\varepsilon \in S$ имеет вид $\varepsilon^{-1} = \varepsilon^{n-1}$.

4

Nota bene Альтернативная форма записи комплексного числа в тригонометрической форме имеет вид:

$$z = \rho \cdot (\cos \psi + i \sin \psi).$$

Показательная форма комплексного числа имеет вид

$$z = \rho \cdot e^{i\psi}$$
, $\rho = |z|$, $\psi = \arg(z)$, $i^2 = -1$.

Nota bene (формулы Эйлера)

$$\cos \psi = \frac{e^{i\psi} + e^{-i\psi}}{2}, \quad \sin \psi = \frac{e^{i\psi} - e^{-i\psi}}{2i}.$$