Class 13 Transcriptomics A16246401

Scott MacLeod

Transcriptomics

In today's class we will expplore and analyze data from an RNASeq experiment where airway smooth muscles cells were treated with dexamethansone, a synthetic glucocorticoid steroid with anti-inflammatory effects (Himes et al. 2014).

Data Import

We have two input files, so-called "Count data" and "col data".

```
metadata <- read.csv("airway_metadata.csv",row.names=1)
head(metadata)</pre>
```

```
        dex
        celltype
        geo_id

        SRR1039508
        control
        N61311
        GSM1275862

        SRR1039509
        treated
        N61311
        GSM1275863

        SRR1039512
        control
        N052611
        GSM1275866

        SRR1039513
        treated
        N052611
        GSM1275867

        SRR1039516
        control
        N080611
        GSM1275870

        SRR1039517
        treated
        N080611
        GSM1275871
```

```
counts <- read.csv("airway_scaledcounts.csv",row.names=1)
head(counts)</pre>
```

	SRR1039508	SRR1039509	SRR1039512	SKK1039513	SKK1039516
ENSG0000000003	723	486	904	445	1170
ENSG0000000005	0	0	0	0	0
ENSG00000000419	467	523	616	371	582
ENSG00000000457	347	258	364	237	318

ENSG00000000460	96	81	73	66	118
ENSG00000000938	0	0	1	0	2
	SRR1039517	SRR1039520	SRR1039521		
ENSG0000000003	1097	806	604		
ENSG00000000005	0	0	0		
ENSG00000000419	781	417	509		
ENSG00000000457	447	330	324		
ENSG00000000460	94	102	74		
ENSG00000000938	0	0	0		

Q1. How many genes are in the data set?

```
nrow(counts)
```

[1] 38694

Q2. How many 'control' cell lines do we have?

```
sum(metadata$dex == "control")
```

[1] 4

4. Toy differential gene expression

Time to do some analysis.

We have 4 control and 4 treated samples/experiments/columns.

Make sure the metadata ID column matches the column in our count data.

```
colnames(counts)
```

```
[1] "SRR1039508" "SRR1039509" "SRR1039512" "SRR1039513" "SRR1039516"
```

[6] "SRR1039517" "SRR1039520" "SRR1039521"

```
all(colnames(counts) == metadata$id)
```

[1] TRUE

To start I will calculate the control.mean and treat.mean values and compare them.

-Identify and extract the control only columns. -Determine the mean value for each gene (i.e row) -Do the same for treated.

First the control.

```
#Where does it tell me whicih columns are control?
control.inds <- metadata$dex == "control"

#Above shows how to extract which is control or treated. True is control
control.counts <- counts[,control.inds]
control.mean <- apply(control.counts, 1, mean)</pre>
```

Now let's get the mean for treated.

```
treated.inds <- metadata$dex == "treated"
treated.counts <- counts[, treated.inds]
treated.mean <- apply(treated.counts, 1, mean)

meancounts <- data.frame(control.mean, treated.mean)
plot(meancounts)</pre>
```


THis data is screaming at us to log transform as it is so heavily skewed and over such a wide rangee.

```
plot(meancounts, log = "xy")
```

Warning in xy.coords(x, y, xlabel, ylabel, log): 15032 x values <= 0 omitted from logarithmic plot

Warning in xy.coords(x, y, xlabel, ylabel, log): 15281 y values <= 0 omitted from logarithmic plot

I want to compare the treated and then control values here and we will use fold change in log2 units to do this. Essentially: log2(treated/control)

```
log2fc <- log2(meancounts$treated.mean/meancounts$control.mean)
meancounts$log2fc <- log2fc</pre>
```

Some log review: No difference

```
log2(20/20)
```

[1] 0

A doulbing in the treated:

```
log2(20/10)
[1] 1
  log2(5/10)
[1] -1
  log2(40/10)
[1] 2
```

[1] -2

A common rule of thumb cut-off for calling a gene "differentially expressed" is a log2 foldchange value of either > +2 or < -2 for "up regulated" and "down regulated" respectively.

head(meancounts)

log2(2.5/10)

	${\tt control.mean}$	${\tt treated.mean}$	log2fc
ENSG0000000003	900.75	658.00	-0.45303916
ENSG0000000005	0.00	0.00	NaN
ENSG00000000419	520.50	546.00	0.06900279
ENSG00000000457	339.75	316.50	-0.10226805
ENSG00000000460	97.25	78.75	-0.30441833
ENSG00000000938	0.75	0.00	-Inf

We first need to remove zero count genes - as we can't say anything about these genes anyway and their division of log values are messing things up (divide by zero or log of 0) or the infiinity log problem.

```
zero.vals <- which(meancounts[,1:2]==0, arr.ind=TRUE)

to.rm <- unique(zero.vals[,1])
mycounts <- meancounts[-to.rm,]
head(mycounts)</pre>
```

	control.mean	${\tt treated.mean}$	log2fc
ENSG0000000003	900.75	658.00	-0.45303916
ENSG00000000419	520.50	546.00	0.06900279
ENSG00000000457	339.75	316.50	-0.10226805
ENSG00000000460	97.25	78.75	-0.30441833
ENSG00000000971	5219.00	6687.50	0.35769358
ENSG0000001036	2327.00	1785.75	-0.38194109

This table is much better!

```
to.rm.ind <- rowSums(meancounts[,1:2]==0) >0
mycounts <- meancounts[!to.rm.ind,]</pre>
```

Q. How many genes do we have left that we can say something about (i.e. they don't have any zero counts)?

```
nrow(mycounts)
```

[1] 21817

Q8. Using the up.ind vector above can you determine how many up regulated genes we have at the greater than 2 fc level?

```
up.ind <-sum(mycounts$log2fc > +2, na.rm =TRUE)
up.ind
```

[1] 250

Q9. Using the down.ind vector above can you determine how many down regulated genes we have at the greater than 2 fc level?

```
down.ind <- sum(mycounts$log2fc < -2, na.rm =TRUE)
down.ind</pre>
```

```
[1] 367
```

Q10. Do you trust these results? Why or why not?

We do trust these results becaue we have no done substanstial statistical analysis. The change is not significant! We are missing stats!

DESeq Analysis

Let's do this properly with the help of the DESeq2 package

```
library(DESeq2)
```

We have to use a specific data object for working DESeq.

converting counts to integer mode

Warning in DESeqDataSet(se, design = design, ignoreRank): some variables in design formula are characters, converting to factors

Run our main analysis with the DESeq() fucntion.

```
dds <- DESeq(dds)
```

estimating size factors

estimating dispersions

gene-wise dispersion estimates

mean-dispersion relationship

final dispersion estimates

fitting model and testing

To get the results out of our dds object we can use our DESeq function called results():

```
res <- results(dds)
head(res)

log2 fold change (MLE): dex treated vs control
Wald test p-value: dex treated vs control
DataFrame with 6 rows and 6 columns
baseMean log2FoldChange lfcSE stat
<numeric> <numeric> <numeric> <numeric> <
```

	Dabonoan	10821 01401141180	11001	2000	Prarac
	<numeric></numeric>	<numeric></numeric>	<numeric></numeric>	<numeric></numeric>	<numeric></numeric>
ENSG0000000003	747.194195	-0.3507030	0.168246	-2.084470	0.0371175
ENSG0000000005	0.000000	NA	NA	NA	NA
ENSG00000000419	520.134160	0.2061078	0.101059	2.039475	0.0414026
ENSG00000000457	322.664844	0.0245269	0.145145	0.168982	0.8658106
ENSG00000000460	87.682625	-0.1471420	0.257007	-0.572521	0.5669691
ENSG00000000938	0.319167	-1.7322890	3.493601	-0.495846	0.6200029
	padj				
	<numeric></numeric>				
ENSG0000000003	0.163035				
ENSG0000000005	NA				
ENSG00000000419	0.176032				
ENSG00000000457	0.961694				
ENSG00000000460	0.815849				
ENSG00000000938	NA				

pvalue

Volcano Plot

A very common and useful summary results figure from this type of analysis is called a volcano plot - a plot of log2FC vs P-value. We use the padj, the adjusted P-Value for multiple testing.

```
plot(res$log2FoldChange, -log(res$padj))
```


now let's add some color.

```
mycols <- rep("lightgreen", nrow(res))
mycols[ abs(res$log2FoldChange) > 2 ] <- "darkgreen"

inds <- (res$padj < 0.01) & (abs(res$log2FoldChange) > 2 )
mycols[ inds ] <- "darkblue"

plot( res$log2FoldChange, -log(res$padj),
   col=mycols, ylab="-Log(P-value)", xlab="Log2(FoldChange)" )

abline(v=c(-2,2), col="black", lty=2)
abline(h=-log(0.1), col="black", lty=2)</pre>
```


log(0.000005)

[1] -12.20607

log(0.05)

[1] -2.995732