Marker Follower

A Python-based system for detecting ArUco markers in images or video, and computing robot motion commands to follow a specific marker. This repository includes:

- A reusable marker detection class
- A standalone video processing script
- A ROS node for real-time robot control

Repository Contents

marker_detector.py

- MarkerDetector class.
- Member methods:
 - detect(): Detect ArUco markers in the image frame:
 - Uses OpenCV's ArUco module to:
 - Detect markers in images.
 - Estimate each marker's 3D pose (rvec, tvec) relative to the camera.
 - compute_velocity(): Computes linear and angular velocities based on:
 - Marker distance from the camera.
 - Pixel offset of the marker's center from the image center.
- Parameters:
 - Camera intrinsic parameters: camera_matrix, dist_coeffs

run.py

- A python script to:
 - Load a video file.
 - Detect markers frame-by-frame.
 - Compute desired robot velocities for following marker ID 1.
 - Overlay:
 - Marker bounding boxes.
 - Marker ID text.
 - Velocity vectors and debug info directly on the video frames.
- Draws arrows or curves representing motion commands:
 - Straight arrows for pure forward/backward movement.
 - Curved paths for simultaneous rotation and translation.
- Allows saving the annotated video if desired.
- Inputs:

PROF

- video_path: (e.g.,"/home/kimkt0408/bagfiles/2025-06-30-08-20-43.mp4")
- Parameters:
 - Controller parameters:
 - desired distance
 - k_linear
 - k_angular
 - max_linear_speed
 - max_angular_speed

Example usage:

```
python3 run.py
```

marker_follower_ros.py

A ROS wrapper of marker_detector.py

- Subscribed rostopic:
 - Camera images from /usb_cam/image_raw.
 - How to rosrun usb_cam in Clearpath Jackal:

```
rosrun image_view image:=/usb_cam/image_raw
```

- Published rostopic:
 - Publish robot velocity commands on /cmd_vel.
 - Publish annotated images for debugging on /marker_follower/annotated_image.
- Parameters:
 - Controller parameters:
 - desired distance
 - k_linear
 - k_angular
 - max_linear_speed
 - max_angular_speed

Example usage:

```
rosrun marker_follower marker_follower_ros.py
```

PROF