

Universidade de São Paulo Instituto de Física de São Carlos - IFSC

FCM 0410 Física para Engenharia Ambiental

Rotação, torque e momento angular

Prof. Dr. José Pedro Donoso

Agradescimentos

O docente da disciplina, Jose Pedro Donoso, gostaria de expressar o seu agradecimento a Flávia O. S. de Sá Lisboa pelo auxílio na montagem da página /web/ da disciplina.

Parte das figuras utilizadas nos slides foram obtidas do texto "Fisica" de P.A. Tipler e G. Mosca, através do acesso às paginas para os professores das editora LTC (Livros Técnicos e Científicos).

©2008 by W.H. Freeman and Company

Disco girando em torno de um eixo: velocidade e aceleração angular

©2008 by W.H. Freeman and Company

Sistema de partículas girando

$$I = \sum m_i r_i^2 = m_1 r_1^2 + m_2 r_2^2 + m_3 r_3^2 + m_4 r_4^2$$

Axis of rotation

©2008 by W.H. Freeman and Company

Momento de inercia de uma barra (eixo na extremidade)

©2008 by W.H. Freeman and Company

Momento de inercia de um aro (eixo pelo centro)

©2008 by W.H. Freeman and Company

Momento de inercia de um disco (eixo pelo centro)

Momento de inercia de um cilindro (eixo pelo centro)

©2008 by W.H. Freeman and Company

Table 9-1 Moments of Inertia of Uniform Bodies of Various Shapes

Thin cylindrical shell about axis

Solid cylinder about axis

Hollow cylinder about axis

Thin cylindrical shell about diameter through center

 $I = {}^{1}_{2}MR^{2} + {}^{1}_{12}ML^{2}$

Solid cylinder about diameter through center

 $I = {}^1_4 MR^2 + {}^1_{12} ML^2$

Hollow cylinder about diameter through center

Thin rod about perpendicular line through center

Thin rod about perpendicular line through one end

Thin spherical shell about diameter

 $I = \frac{2}{3}MR^2$

Solid sphere about diameter

 $I = \frac{2}{5}MR^2$

Solid rectangular parallelepiped about axis through center perpendicular to face

 $I = {1 \over 12}M(a^2 + b^2)$

^{*}A disk is a cylinder whose length L is negligible. By setting L = 0, the above formulas for cylinders hold for disks.

Momento de inercia: teorema dos eixos paralelos

©2008 by W.H. Freeman and Company

Aplicando o teorema dos eixos paralelos: momento de inercia de uma barra

$$I_{CM} = I_y - Mh^2 = \frac{1}{3}ML^2 - M(\frac{1}{2}L)^2 = \frac{1}{12}ML^2$$

Partícula pressa a uma barra que pode girar livremente: torque

©2008 by W.H. Freeman and Company

©2008 by W.H. Freeman and Company

A força F produz um torque F_tr em relação ao centro

©2008 by W.H. Freeman and Company

Torque devido à gravidade: ele é calculado como se toda a força gravitacional fosse aplicada no centro de massa

$$\tau = Mgx_{CM}$$

Barra pivotada: determine a aceleração angular

©2008 by W.H. Freeman and Company

Table 9-2 Analogs in Fixed-Axis Rotational and One-Dimensional Linear Motion

Rotational Motion		Linear Motion	
Angular displacement	$\Delta heta$	Displacement	Δx
Angular velocity	$\omega = \frac{d\theta}{dt}$	Velocity	$v_x = \frac{dx}{dt}$
Angular acceleration	$\alpha = \frac{d\omega}{dt} = \frac{d^2\theta}{dt^2}$	Acceleration	$a_x = \frac{dv_x}{dt} = \frac{d^2x}{dt^2}$
Constant-angular-acceleration equations	$\omega = \omega_0 + \alpha t$	Constant-acceleration equations	$v_x = v_{0x} + a_x t$
	$\Delta\theta = \omega_{\rm av} \Delta t$		$\Delta x = v_{\rm av} \Delta t$
	$\omega_{\rm av} = \frac{1}{2}(\omega_0 + \omega)$		$v_{\text{av}x} = \frac{1}{2}(v_{0x} + v_{x})$
	$\theta = \theta_0 + \omega_0 t + \frac{1}{2} \alpha t^2$		$x = x_0 + v_{0x}t + \frac{1}{2}a_xt^2$
	$\omega^2 = \omega_0^2 + 2\alpha \Delta\theta$		$v_x^2 = v_{0x}^2 + 2a_x \Delta x$
Torque	au	Force	F_x
Moment of inertia	I	Mass	m
Work	$dW = \tau d\theta$	Work	$dW = F_x dx$
Kinetic energy	$K = \frac{1}{2}I\omega^2$	Kinetic energy	$K = \frac{1}{2}mv^2$
Power	$P = au \omega$	Power	$P = F_x v_x$
Angular momentum*	$L = I\omega$	Momentum	$p_x = mv_x$
Newton's second law	$ au_{ m net} = I lpha = rac{dL}{dt}$	Newton's second law	$F_{\text{net}x} = ma_x = \frac{dp_x}{dt}$

^{*}Angular momentum is introduced in Chapter 10.

Judô: qual valor da força F para derrubar o adversário?

Torque : $-d\vec{F} = I\alpha$

Conservação da energia

$$Mgh = \frac{1}{2}Mv_{CM}^2 + \frac{1}{2}I_{CM}\omega^2$$

Uma esfera (β = 2/5), um cilindro (β = 1/2) e um aro (β = 1) num plano inclinado

Centrífugas de laboratório

©2008 by W.H. Freeman and Company

Explosão de um rotor de aço maciço em forma de disco

Empresa Test Devices Inc. (1985)

O loiô

Correspondências entre movimentos de traslação e rotação

Pure Translation (Fixed Direction)		Pure Rotation (Fixed Axis)	
Position	x	Angular position	θ
Velocity	v = dx/dy	Angular velocity	$\omega = d\theta/dt$
Acceleration	a = dv/dt	Angular acceleration	$\alpha = d\omega/dt$
Mass	m	Rotational inertia	I
Newton's second law	$F_{\text{net}} = ma$	Newton's second law	$ au_{ m net} = I lpha$
Work	$W = \int F dx$	Work	$W = \int \tau d\theta$
Kinetic energy	$K = \frac{1}{2}mv^2$	Kinetic energy	$K = \frac{1}{2}I\omega^2$
Power (constant force)	P = Fv	Power (constant torque)	$P = \tau \omega$
Work-kinetic energy theorem	$W = \Delta K$	Work-kinetic energy theorem	$W = \Delta K$

Momento angular

©2008 by W.H. Freeman and Company

Natureza vetorial da rotação

©2008 by W.H. Freeman and Company

©2008 by W.H. Freeman and Company

Regra da mão direita

©2008 by W.H. Freeman and Company

Torque e Momento angular

©2008 by W.H. Freeman and Company

Partícula movendo-se num circulo no plano xy

©2008 by W.H. Freeman and Company

Revisão de torque

- (a) Uma força age sobre uma partícula em A
- (b) Essa força produz um torque sobre a partícula em relação à origem
- (c) Regra da mão direita: o vetor torque aponta no sentido + Z

Momento angular

A partícula em A possui momento linear P = mv com o vetor P no plano xy

A partícula possui momento angular L = r×P em relação à origem O

Regra da mão direita: o vetor momento angular aponta no sentido +Z

- O módulo de L = rP_{\perp} = rmv_{\perp}
- O módulo de L é dado também por
- $L = r_{\perp}P = r_{\perp}mv$

Exemplo: primeira roda gigante (1893)

Patinadora Sasha Cohen em movimento de (a) traslação e (b) de rotação em torno de um eixo vertical Ref: Halliday, Resnick, Walker, *Fundamentos da Física*

Rotation axis 603X6603X6603X6603X6603X660 (b)

Conservação do Momento Angular

©2008 by W.H. Freeman and Company

©2008 by W.H. Freeman and Company