

ΕΘΝΙΚΟ ΜΕΤΣΟΒΙΟ ΠΟΛΥΤΕΧΝΕΙΟ

ΣΧΟΛΗ ΗΛΕΚΤΡΟΛΟΓΩΝ ΜΗΧΑΝΙΚΩΝ ΚΑΙ ΜΗΧΑΝΙΚΩΝ ΥΠΟΛΟΓΙΣΤΩΝ

Ακ. έτος 2022-2023, 5ο εξάμηνο, ΣΗΜΜΥ

TMHMA 10 (A - ΚΑΣ)

4^η ΣΕΙΡΑ ΑΣΚΗΣΕΩΝ ΣΤΗΝ ΑΡΧΙΤΕΚΤΟΝΙΚΗ ΥΠΟΛΟΓΙΣΤΩΝ Ημερομηνία παράδοσης: 22/01/2023

Άσκηση 1.

1. Το μήκος κάθε λέξης είναι 4 Bytes. Ο αριθμός bits του offset είναι 5 bits, επομένως το μήκος κάθε block είναι:

size of block in Bytes =
$$2^{offset\ bits}=2^5=32\ Bytes$$
 άρα κάθε μπλοκ έχει μήκος $\frac{32}{4}=8$ λέξεις.

2. Οι γραμμές της κρυφής μνήμης είναι ίση με τον συνολικό αριθμό των blocks, άρα :

No. of blocks =
$$2^{index \ bits} = 2^5 = 32 \ blocks$$

δηλαδή 32 γραμμές.

3. Γνωρίζουμε πως το μέγεθος του physical address είναι 32 bits = 4 Bytes, επομένως το μέγεθος της κύριας μνήμης θα είναι $2^{32} Bytes$. Συνεπώς, το ζητούμενο ποσοστό είναι:

$$\lambda = \frac{Bytes \ \kappa \rho v \phi \dot{\eta} \varsigma \ \mu v \dot{\eta} \mu \eta \varsigma}{Bytes \ \kappa \dot{\upsilon} \rho \iota \alpha \varsigma \ \mu v \dot{\eta} \mu \eta \varsigma} * 100\% = \frac{2^2}{2^{32}} * 100\% = 2^{-30} * 100\% = 0,000000093\%$$

4.

ΑΚΟΛΟΥΘΙΑ ΔΙΕΥΘΥΝΣΕΩΝ ΜΝΗΜΗΣ	TAG	INDEX	DATA ADDRESS RANGE	ΑΠΟΤΕΛΕΣΜΑ
0	000000000000000000000000000000000000000	00000	00000	Αποτυχία
4	000000000000000000000000000000000000000	00000	00100	Επιτυχία
16	000000000000000000000000000000000000000	00000	10000	Επιτυχία
132	000000000000000000000000000000000000000	00100	00100	Αποτυχία
232	000000000000000000000000000000000000000	00111	01000	Αποτυχία
160	000000000000000000000000000000000000000	00101	00000	Αποτυχία
1024	00000000000000000000000000001	00000	00000	Αποτυχία
30	000000000000000000000000000000000000000	00000	11110	Αποτυχία
140	000000000000000000000000000000000000000	00100	01100	Επιτυχία
3100	0000000000000000000011	00000	11100	Αποτυχία
180	000000000000000000000000000000000000000	00101	10100	Επιτυχία
2180	000000000000000000000000000000000000000	00100	00100	Αποτυχία

Την εκάστοτε αποτυχία ή επιτυχία την καθορίζουμε με τον παρακάτω πίνακα (λαμβάνοντας υπόψη μόνο τα 2 τελευταία tag bits) :

SET	V	TAG
00000	1	X00, √, √, X 01, X00, X 11
	0	
00100	1	X00, √, X 10
00101	1	X 00, ✓
00110	0	
00111	1	X00
	0	

Σύμφωνα με τα παραπάνω, γίνονται 4 αντικαταστάσεις (χωρίς να λαμβάνουμε υπόψη την αντικατάσταση του κενού). Από τις 12 καταχωρήσεις, μόνο 4 καταλήγουν σε επιτυχία, επομένως το ποσοστό επιτυχίας είναι:

Hit ratio =
$$\frac{4}{12} * 100\% \approx 33.3\%$$

Άσκηση 2.

Εφόσον έχουμε blocks μέγεθος 32 Bytes, τα offset bits υπολογίζονται ως εξής:

offset bits =
$$\log_2 32 = \log_2 2^5 = 5$$

Η κρυφή μνήμη έχει συνολικό μέγεθος 512 Bytes δεδομένων και κάθε block έχει μέγεθος 32 Bytes, άρα η μνήμη αποτελείται από:

No. of Blocks =
$$\frac{cache\ memory\ size}{block\ size} = \frac{512\ Bytes}{32\ Bytes} = 16\ blocks$$

Συνεπώς, για τα bits του αριθμοδείκτη λαμβάνουμε ότι:

No. of Index bits =
$$\log_2 16 = \log_2 2^4 = 4$$

Για τη διεύθυνση του x έχουμε ότι:

x: 0xF1001000 = 11110001000000000001000 00000 0000

Tag bits Index bits Offset bits

Το στοιχείο του πίνακα x, x[1][0] θα απεικονίζεται 2 sets πιο κάτω από το στοιχείο x[0][0], δηλαδή:

Συνεπώς, το στοιχείο x[4][0] θα απεικονίζεται 8 sets κάτω από το στοιχείο x[0][0], άρα:

$$x[4][0] = 011110001000000000001000001000000 + 32_{\text{elements}} * 8 \text{ Bytes}$$
$$= 011110001000000000001000100000000$$

Καθώς οι πίνακες είναι αποθηκευμένοι διαδοχικά, καταλήγουμε στο συμπέρασμα ότι το στοιχείο y[0][0] τοποθετείται 2 sets πιο κάτω από το στοιχείο x[4][0], επομένως:

$$y[0][0] = 011110001000000000001000100000000 + 8_{elements} * 8 Bytes$$

= $0111100010000000000100010000000$

Αντίστοιχα, το στοιχείο z[0] θα βρίσκεται 8 sets κάτω από το στοιχείο y[0][0], άρα:

$$\begin{split} z[0] &= 01111000100000000001000101000000 \ + \ 32_{\text{elements}} * 8 \ \text{Bytes} \\ &= 01111000100000000001001001000000 \end{split}$$

Συνολικά, για τις διευθύνσεις των πινάκων (x,y,z) έχουμε τα εξής:

x: 0xF1001000 = 11110001000000000001000 00000 00000

Tag bits Index bits Offset bits

y: 0xF1001140 = 011110001000000000001000 10100 0000

Tag bits Index bits Offset bits

z: 0xF1001240 = 01111000100000000001001 00100 0000

Tag bits Index bits Offset bits

Εκτελώντας τον δοσμένο κώδικα, λαμβάνουμε τα παρακάτω αποτελέσματα:

ΑΚΟΛΟΥΘΙΑ ΔΙΕΥΘΥΝΣΕΩΝ	TAG	INDEX	DATA ADDRESS	ΑΠΟΤΕΛΕΣΜΑ
ΜΝΗΜΗΣ			RANGE	
1 ^η επανάληψη				
x[0][0]	1111000100000000001000	00000		
y[0][0]	011110001000000000001000	10100	0000	Αποτυχία
z[0]	011110001000000000001001	00100		
x[0][1]	1111000100000000001000	00000		
y[0][1]	011110001000000000001000	10100	1000	Επιτυχία
z[1]	011110001000000000001001	00100		
x[0][2]	1111000100000000001000	00001		
y[0][2]	011110001000000000001000	10101	0000	Αποτυχία
z[2]	011110001000000000001001	00101		
x[0][3]	11110001000000000001000	00001		
y[0][3]	011110001000000000001000	10101	1000	Επιτυχία
z[3]	011110001000000000001001	00101		
x[0][4]	11110001000000000001000	00010		
y[0][4]	011110001000000000001000	10110	0000	Αποτυχία
z[4]	011110001000000000001001	00110		
x[0][5]	11110001000000000001000	00010		
y[0][5]	011110001000000000001000	10110	1000	Επιτυχία
z[5]	011110001000000000001001	00110		
x[0][6]	11110001000000000001000	00011		
y[0][6]	011110001000000000001000	10111	0000	Αποτυχία
z[6]	011110001000000000001001	00111		
x[0][7]	11110001000000000001000	00011		
y[0][7]	011110001000000000001000	10111	1000	Επιτυχία
z[7]	011110001000000000001001	00111		
2 ^η επανάληψη				
x[1][0]	11110001000000000001000	00100		
y[1][0]	011110001000000000001000	11000	0000	Αποτυχία
z[8]	011110001000000000001001	01000		
x[1][1]	11110001000000000001000	00100		
y[1][1]	011110001000000000001000	11000	1000	Επιτυχία
z[9]	011110001000000000001001	01000		
x[1][2]	11110001000000000001000	00101		
y[1][2]	011110001000000000001000	11001	0000	Αποτυχία
z[10]	011110001000000000001001	01001		

x[1][3]	11110001000000000001000	00101		
y[1][3]	011110001000000000001000	11001	1000	Επιτυχία
z[11]	011110001000000000001001	01001		
x[1][4]	11110001000000000001000	00110		
y[1][4]	011110001000000000001000	11010	0000	Αποτυχία
z[12]	011110001000000000001001	01010		
x[1][5]	11110001000000000001000	00110		
y[1][5]	011110001000000000001000	11010	1000	Επιτυχία
z[13]	011110001000000000001001	01010		
x[1][6]	11110001000000000001000	00111		
y[1][6]	011110001000000000001000	11011	0000	Αποτυχία
z[14]	011110001000000000001001	01011		
x[1][7]	11110001000000000001000	00111		
y[1][7]	011110001000000000001000	11011	1000	Επιτυχία
z[15]	011110001000000000001001	01011		

SET	V	TAG
00000	1	X1111000100000000000000000, ✓
00001	1	X1111000100000000000000000, ✓
00010	1	X111100010000000001000, ✓
00011	1	X1111000100000000000000000, ✓
00100	1	X 011110001000000000001001, ✓, X 11110001000000000001000, ✓
00101	1	X 011110001000000000001001, ✓, X 11110001000000000001000, ✓
00110	1	X 0111100010000000000001001, ✓, X111100010000000000001000, ✓
00111	1	X 0111100010000000000001001, ✓, X11110001000000000000000, ✓
01000	1	X011110001000000000001000, ✓, X11110001000000000001000, ✓
01001	1	X01111000100000000001000, ✓
01010	1	X01111000100000000000000000000, ✓
01011	1	X01111000100000000001000, ✓
01100	0	
10100	1	X01111000100000000001000, ✓
10101	1	X01111000100000000001000, ✓
10110	1	X01111000100000000001000, ✓
10111	1	X01111000100000000001000, ✓
11000	1	X 01111000100000000001001, ✓
11001	1	X 01111000100000000001001, ✓
11010	1	X 01111000100000000001001, ✓
11011	1	X 01111000100000000001001, ✓
11100	0	

Σε κάθε επανάληψη, λοιπόν, έχουμε 4 αποτυχίες και 4 επιτυχίες.

Συνολικά, έχουμε: $\mathit{Misses} = 8*4 = 32$ αποτυχίες και $\mathit{Hits} = 8*4 = 32$ ευστοχίες

Σύμφωνα με τα παραπάνω, το ποσοστό ευστοχίας για όλη την εκτέλεση του δοσμένου κώδικα είναι ίσο με:

$$hit\ ratio = \frac{\#\ hits}{\#\ executions} * 100\% = \frac{32}{64} * 100\% = 50\%$$