Problem 1. Let a=0 and b=1+i. Let γ be the path from a to b given by $\gamma(t)=a+t(b-a)$ for $t\in[0,1]$.

- (a) Let f(z) = 1. Compute $\int_{\gamma} f(z) dz$.
- **(b)** Let f(z) = z. Compute $\int_{\gamma} f(z) dz$.
- (c) Let $f(z) = z^2$. Compute $\int_{\mathcal{L}} f(z) dz$.

Solution. With b = 1 + i, we have $b^2 = 2i$ and $b^3 = 2i - 2$. With a = 0, the path from a to b is

$$\gamma(t) = bt$$
 and $\gamma'(t) = b$.

(a) With f(z) = 1,

$$\int_{\gamma} f(z) dz = \int_{\gamma} dz = \int_{0}^{1} \gamma'(t) dt = \int_{0}^{1} b dt = b \int_{0}^{1} dt = b \left[t \right]_{0}^{1} = b = 1 + i.$$

(b) With f(z) = z,

$$\int_{\gamma} f(z) dz = \int_{\gamma} z dz = \int_{0}^{1} \gamma(t) \gamma'(t) dt = \int_{0}^{1} b^{2}t dt = b^{2} \int_{0}^{1} t dt = b^{2} \left[\frac{t^{2}}{2} \right]_{0}^{1} = \frac{b^{2}}{2} = i$$

(c) With $f(z) = z^2$,

$$\int_{\gamma} f(z) \, dz = \int_{\gamma} z^2 \, dz = \int_0^1 (\gamma(t))^2 \gamma'(t) \, dt = \int_0^1 b^3 t^2 \, dt = b^3 \int_0^1 t^2 \, dt = b^3 \Big[\frac{t^3}{3} \Big]_0^1 = \frac{b^3}{3} = -\frac{2}{3} + \frac{2}{3}i.$$

Problem 2. Let a=0 and b=1+i. Let γ be the path from a to b given by $\gamma(t)=t+it^2$ for $t\in[0,1]$.

- (a) Let f(z) = 1. Compute $\int_{\gamma} f(z) dz$.
- **(b)** Let f(z) = z. Compute $\int_{\gamma} f(z) dz$.
- (c) Let $f(z) = z^2$. Compute $\int_{\mathcal{L}} f(z) dz$.

Solution. With b = 1 + i, we have $b^2 = 2i$ and $b^3 = 2i - 2$. The path from a to b is

$$\gamma(t) = t + it^2$$
 and $\gamma'(t) = 1 + 2it$.

(a) With f(z) = 1,

$$\int_{\gamma} f(z) dz = \int_{\gamma} dz = \int_{0}^{1} \gamma'(t) dt = \int_{0}^{1} (1 + 2it) dt = \int_{0}^{1} dt + i \int_{0}^{1} 2t dt = \left[t\right]_{0}^{1} + i \left[t^{2}\right]_{0}^{1} = 1 + i.$$

(b) With f(z) = z, we first note that

$$\gamma(t)\gamma'(t) = (t+it^2)(1+2it) = (t-2t^3) + i(2t^2+t^2) = (t-2t^3) + i(3t^3).$$

Then

$$\int_{\gamma} f(z) dz = \int_{\gamma} z dz = \int_{0}^{1} \gamma(t) \gamma'(t) dt = \int_{0}^{1} (t + it^{2}) (1 + 2it) dt = \int_{0}^{1} (t - 2t^{3}) dt + i \int_{0}^{1} 3t^{2} dt = \left[\frac{t^{2}}{2} - \frac{t^{3}}{2}\right]_{0}^{1} + i \left[t^{3}\right]_{0}^{1} = 0 + i = i$$

(c) With $f(z) = z^2$, we first note that

$$(\gamma(t))\gamma'(t) = (t+it^2)^2(1+2it) = (t^2-t^4+2it^3)(1+2it) = (t^2-t^4-4t^4) + i(2t^3-2t^5+2t^3) = (t^2-5t^4) + i(4t^3-2t^5).$$

Then

$$\int_{\gamma} f(z) dz = \int_{\gamma} z^{2} dz = \int_{0}^{1} (\gamma(t))^{2} \gamma'(t) dt = \int_{0}^{1} (t^{2} - t^{4} + 2it^{3})(1 + 2it) dt = \int_{0}^{1} (t^{2} - 5t^{4}) dt + i \int_{0}^{1} (4t^{3} - 2t^{5}) dt = \left[\frac{1}{3}t^{3} - t^{5}\right]_{0}^{1} + i\left[t^{4} - \frac{1}{3}t^{6}\right]_{0}^{1} = -\frac{2}{3} + \frac{2}{3}i$$

Problem 3. Let $a \in \mathbb{C}$ and let γ parameterize the circle of radius 1 about 0 by $\gamma(t) = e^{it}$ for $t \in [0, 2\pi]$.

- (a) Let f(z) = 1. Compute $\int_{\gamma} f(z) dz$.
- **(b)** Let f(z) = z. Compute $\int_{\gamma} f(z) dz$.
- (c) Let $f(z) = \frac{1}{z}$. Compute $\int_{\gamma} f(z) dz$.

Solution. Our contour is a circle given by $\gamma(t) = e^{it} = \cos t + i \sin t$. Thus

$$\gamma'(t) = -\sin t + i\cos t = i(\cos t + i\sin t) = ie^{it}.$$

Also note that if $a, b, c \in \mathbb{R}$,

$$\int_a^b e^{cit} dt = \int_a^b \cos ct + i \sin ct dt = \frac{1}{c} \left[\sin ct - i \cos ct \right]_a^b = \frac{1}{ci} e^{cit} \right]_a^b.$$

(a) With f(z) = 1,

$$\int_{\gamma} f(z) dz = \int_{\gamma} dz = \int_{0}^{2\pi} \gamma'(t) dt = \int_{0}^{2\pi} i e^{it} dt = i \int_{0}^{2\pi} e^{it} dt = i \left[\frac{1}{i} e^{it} \right]_{0}^{2\pi} = e^{2\pi i} - e^{0} = 0.$$

(b) With f(z) = z,

$$\int_{\gamma} f(z) dz = \int_{\gamma} z dz = \int_{0}^{2\pi} \gamma(t) \gamma'(t) dt = \int_{0}^{2\pi} i e^{2it} dt = i \int_{0}^{2\pi} e^{2it} dt = i \left[\frac{1}{2i} e^{2it} \right]_{0}^{2\pi} = \frac{1}{2} (e^{4\pi i} - e^{0}) = 0.$$

(c) With $f(z) = \frac{1}{z}$,

$$\int_{\gamma} f(z) dz = \int_{\gamma} \frac{1}{z} dz = \int_{0}^{2\pi} \frac{1}{\gamma(t)} \gamma'(t) dt = \int_{0}^{2\pi} i dt = i \left[t \right]_{0}^{2\pi} = 2\pi i.$$