闭函数和下半连续函数的定义

设 $f:\mathbb{R}^n \to \mathbb{R}$ 为广义实值函数,则以下命题等价:

1.f(x) 的 $\forall \alpha, \{x|f(x) \leq \alpha\}$ 为闭集

2.f(x) 是 \mathbb{R}^n 上的下半连续函数 $\iff \liminf f(x) \geq f(x)$

什么是下极限? 什么是下半连续函数

假如一个趋于a的子列有极限,可能有多个极限点。这样的极限点组成一个集合,这个集合的下确界就是f(x)在a处的下极 $\liminf f(x)$

3. epif为闭集 (f(x)是闭函数的定义)

证明: 1.⇒2.:

通过反证法,假设 $\exists \{x_k\} \to x$,并且 $\liminf f(x) < f(x)$.那么一定 $\exists \alpha$ 使得 $\liminf f(x) < \alpha < f(x)$,所以一定存在 $\{x_k\}$

的子列 $\{x_{ik}\} \to x$ 使得 $f(x_{ik}) \le \alpha$,由于命题1., $x_{ik} \in \{x|f(x) \le \alpha\}$,所以 $x \in \{x|f(x) \le \alpha\}$.所以可以知道 $f(x) \le \alpha$

与假设矛盾所以假设不成立

证明2.⇒⇒3.:

要证明上镜图是一个闭集,即证明 $(x_k,\omega_k) \in epif$ 并且 $(x_k,\omega_k) \to (x,\omega)$.那么 $(x,\omega) \in epif$,

假设 $(x_k, \omega_k) \in epif$,那么 $f(x_k) \leq \omega_k$,由于它是下半连续函数

$$f(x) \le \lim_{k \to \infty} \inf f(x_k) \le \liminf \omega_k = \omega$$
 (2)

所以 $(x_k, \omega_k) \rightarrow (x, \omega)$

证明3. ⇒ 1.:

想证明 $\{x_k\}\subseteq \{x|f(x)\leq lpha\},$ 且 $x_k o x,$ 那么 $x\in \{x|f(x)\leq lpha\}$

 $(x_k, \alpha) \in epif$, 那么 $(x, \alpha) \in epif$. 因此 $f(x) \leq \alpha$

下面提出上面这个定理的条件放宽一些的情况:

1.假如不是 \mathbb{R}^n 上的闭函数,而是一个集合X上的闭函数。

 $epif = epi ilde{f}(x)$,显然我们知道 $epi ilde{f}(x)$ 是闭集并且 $ilde{f}(x)$ 的定义域为 \mathbb{R}^n

1

 $epi\tilde{f}(x)$ 是 \mathbb{R}^n 上的下半连续函数

1

 $\forall \alpha$ $\tilde{f}(x)$ 的水平集 = f(x)的水平集为闭集

f为X上的闭函数⇔f的水平集为闭集

2.假如不是 \mathbb{R}^n 上的下半连续函数,而是在dom f上下半连续

由于前边两个条件是等价的,这个时候我们只要能推导出来满足其中一个,或者找出不满足其中一个的反例

$$f(x)$$
是 $(0, +\infty)$ 上的下半连续函数
$$f(x) = \begin{cases} 1 & x \in (0, +\infty) \\ +\infty & \text{否则} \end{cases}$$
(4)

显然这个时候epif(x)不为闭集,而且 $\alpha=2$ 的水平集为 $(0,+\infty)$ 为开集

所以这个时候推不出f(x)是闭函数

倘若继续加条件,即dom f有界+在dom f上下半连续 \Longrightarrow f(x)为闭函数

f,epif,dom f,水平集的凸闭关系

这个里面前边的要求定义域为凸集

$$f$$
为凸函数 \iff $epif$ 为凸集 f 为闭函数 \iff $epif$ 为闭集

这个里面定义域是任意的

f为凸函数 $\rightarrow f$ 的水平集为凸函数

(从这里我们明白
$$\forall \alpha$$
水平集为凸集只是 f 为凸函数的必要条件) (6)

这里我们举个例子 $f = \sqrt{x}$ 对于 $\alpha \ge 0$,它的水平集为 $[0,\alpha^2]$,为凸集; $\alpha < 0$,为空集也为凸集

$$f$$
为闭集 \iff f 的水平集为闭集 (7)

非负线性组合的保凸保闭研究

$$f_i:\mathbb{R}^n o(\infty,+\infty], \lambda_i\geq 0, i=1,2,\cdots,m$$

$$g(x)=\sum_{i=1}^m\lambda_if_i(x) \tag{8}$$

那么就有 $f_i(x)$ 为凸函数 $\Rightarrow g(x)$ 为凸函数 $f_i(x)$ 为闭函数 $\Rightarrow g(x)$ 为闭函数

证明:

非负的线性组合仍然是凸函数,这个显然

下面证明闭函数 $f_i(x)$ 为闭函数所以它在 \mathbb{R}^n 上下半连续

$$\liminf f_i(x_k) \geq f_i(x)$$

$$\liminf g(x) = \liminf \sum_{i=1}^m \lambda_i f_i(x) \ge \sum_{i=1}^m \lambda_i \liminf f_i(x) \ge \sum_{i=1}^m \lambda_i f_i(x) = g(x) \tag{9}$$

因此我们也证明出来了g(x)在 \mathbb{R}^n 上下半连续,那么g(x)为闭函数

显然 $epif_i(x)$ 为闭集/凸集 $\Rightarrow g(x)$ 为闭集/凸集

上下确界的保凸性,保闭性运算

$$f_i: \mathbb{R}^n o (\infty, +\infty], \lambda_i \geq 0, i = 1, 2, \cdots, m$$

$$g(x) = \sup f_i(x)$$
 (10)

不难发现 $\operatorname{epi}(g) = \bigcap_i \operatorname{epi}(f_i)$,然而交集是保凸并且保闭的运算

 $C\subseteq\mathbb{R}^n$ 上的凸集, $f:\mathbb{R}^n o\mathbb{R}$ 且f为可微函数

1.

$$f$$
在 C 上为凸函数 $\Leftrightarrow f(x) \ge f(y) + \langle \nabla f(y), x - y \rangle$ 对于 $\forall x, y \in \mathbb{C}$
 f 在 C 上为严格凸函数 $\Leftrightarrow f(x) > f(y) + \langle \nabla f(y), x - y \rangle$ 对于 $\forall x, y \in \mathbb{C}$ (11)

"⇐"即要证明

$$\alpha f(x) + (1-\alpha)f(y) \ge f(\alpha x + (1-\alpha)y)$$
对于 $f(x) \ge f(z) + \langle \nabla f(z), x - z \rangle$

$$f(y) \ge f(z) + \langle \nabla f(z), y - z \rangle$$

$$\Leftrightarrow z = \alpha x + (1-\alpha)y,$$
下面我们得到 $\alpha f(x) + (1-\alpha)f(y) \ge \alpha f(z) + (1-\alpha)f(z) + 0 = f(z)$

"⇒"不妨令z>x

于是我们构造出下面割线斜率的值 $g(x)=rac{f(\alpha z+(1-\alpha)x)-f(x)}{\alpha(z-x)}$

显然α越大斜率就越大

$$g(\alpha) = \frac{f(\alpha z + (1 - \alpha)x) - f(x)}{\alpha(z - x)}$$
$$g(1) \ge g(0)$$
$$\frac{f(z) - f(x)}{z - x} \ge \nabla f(x)$$
 (13)