

Big Data Engineer Bootcamp

Code 2

Agenda

Dev Environment

Work with Kafka

Work with Cassandra

Github Link

https://github.com/UncleBarney/big-data-bootcamp

Project Structure

- Apache Kafka
- Apache Zookeeper
- Apache Cassandra

Start Docker Environment (MacOS, *nix)

- Have a docker-machine vm called bigdata
- Start a Zookeeper Container
 - o docker run -d -p 2181:2181 -p 2888:2888 -p 3888:3888 --name zookeeper confluent/zookeeper
- Start a Kafka Container
 - o docker run -d -p 9092:9092 -e KAFKA_ADVERTISED_HOST_NAME=`docker-machine ip bigdata` -e KAFKA_ADVERTISED_PORT=9092 --name kafka --link zookeeper:zookeeper confluent/kafka
 - O If backtick is not working for you, use your virtual machine ip directly
- Start a Cassandra Container
 - o docker run -d -p 7199:7199 -p 9042:9042 -p 9160:9160 -p 7001:7001 --name cassandra cassandra:3.7

Start Docker Environment (Windows)

- Have a docker-machine vm called bigdata
- Start a Zookeeper Container
 - o docker run -d -p 2181:2181 -p 2888:2888 -p 3888:3888 --name zookeeper confluent/zookeeper
- Start a Kafka Container
 - o docker run -d -p 9092:9092 -e KAFKA_ADVERTISED_HOST_NAME=`docker-machine ip bigdata` -e KAFKA_ADVERTISED_PORT=9092 --name kafka --link zookeeper:zookeeper confluent/kafka
 - O If backtick is not working for you, use your virtual machine ip directly
- Start a Cassandra Container
 - o docker run -d -p 7199:7199 -p 9042:9042 -p 9160:9160 -p 7001:7001 --name cassandra cassandra:3.7

Why Use Docker For This

- Fast iteration
 - Develop once, deploy everywhere
 - Continuous integration, Continuous delivery
- Isolated environment
 - Experiment with unsafe stuff

Agenda

Dev Environment

Work with Kafka

Work with Cassandra

Functionality

- Write data to Kafka
 - Should be able to write to any kafka cluster
 - Should be able to write to any kafka topic
- Fetch data from stock exchange
 - Should be able to specify which stock

Work with Kafka Using Python

- pip install schedule
- pip install kafka-python
- pip install googlefinance
- pip freeze > requirements.txt
- 可以使用virtualenv来进行开发环境隔离
 - o pip install virtualenv
 - o virtualenv env
 - o source env/bin/active (MacOS *nix)
 - 直接去env/Scripts/目录下运行active脚本 (Windows)

Code LifeCycle

- Help you release resources properly
 - ThreadPool
 - Database Connections
 - Network Connections
- Otherwise you might create leak on server side

Agenda

Dev Environment

Work with Kafka

Work with Cassandra

Functionality

Read data from Kafka

- Should be able to read from any kafka cluster
- Should be able to read from any kafka topic

Write data to Cassandra

- Should be able to write to any Cassandra cluster
- Should be able to write to any Cassandra table, etc

Work with Cassandra Using Python

- pip install virtualenv
- virtualenv env
- pip install cassandra-driver
- pip freeze > requirements.txt

Work with Cassandra Using Python

- How to model data?
 - o Our data is time series
 - Leveraging this will give us better performance

- CREATE KEYSPACE "stock" WITH replication = {'class': 'SimpleStrategy', 'replication_factor': 1}

 AND durable_writes = 'true';
- USE stock;
- CREATE TABLE stock (stock_symbol text, trade_time timestamp, trade_price float, PRIMARY KEY (stock_symbol,trade_time));

Logging

- Log is your god when things go south
- Sometimes, logging is not enough in distributed system

Tracing

Cassandra Data Modeling

28, KR 28, FR 28, MA 28, VO

28, KRUIKSWIJK, Steven

28, FRAME, Alex

28, MATTHEWS, Michael

28, VOS, Marianne

Stored by last name

Multiple partitions, non-sequential rows

Stored by age

Single partition, sequential rows

Cassandra Data Modeling

SortedMap<String, SortedMap<ColumnKey, ColumnValue>>

key	Stored sorted by column key/name				
Stored sorted by row	Row key1	Column Key1	Column Key2	Column Key3	
		Column Value1	Column Value2	Column Value3	
Stored	:				

Further Reading

- Google Dapper Paper: http://research.google.com/pubs/pub36356.html
- Zipkin: http://zipkin.io
- Cassandra Data Modeling
 - http://www.planetcassandra.org/blog/the-most-important-thing-to-know-in-cassandra-data-modeling-the-primary-key/
- HBase Internal
 - https://www.mapr.com/blog/in-depth-look-hbase-architecture

Before Next Class

- docker pull mesosphere/mesos-master:0.28.0-2.0.16.ubuntu1404
- docker pull mesosphere/mesos-slave:0.28.0-2.0.16.ubuntu1404
- docker pull mesosphere/marathon:v1.1.1
- docker pull redis:alpine