IEEE 802.11 (WLAN)

Other WGs and WLAN Implementation issues

Luciano Bononi (bononi@cs.unibo.it)

© 2005 Luciano Bononi

© 2005 Luciano Bononi

Sistemi e Reti Wireless

IEEE 802.11 WGs

Gruppi di standardizzazione IEEE 802.11	Descrizione				
IEEE 802.11	lo standard originale: bitrate da 1 a 2 Mbps, spettro 2.4 Ghz livello fisico sia radio che infrarosso				
IEEE 802.11a	54 Mbit/s, 5 GHz, lanciato nel 2001				
IEEE 802.11b	sviluppo di IEEE 802.11 (1999), da 5.5 a 11 Mbps				
IEEE 802.11d	estensioni per roaming internazionale				
IEEE 802.11e	estensioni per qualità del servizio				
IEEE 802.11f	standard per Inter Access Point Protocol (IAPP)				
IEEE 802.11g	54 Mbit/s, 2.4 GHz, retrocompatibile con IEEE 802.11b				
IEEE 802.11h	selezione dinamica dei canali e controllo della poten: trasmissiva (compatibile con direttive europee)				
IEEE 802.11i	integrazioni e estensioni per la sicurezza (2004)				
IEEE 802.11j	estensioni per direttive giapponesi				
IEEE 802.11k	estensioni per misurazione dei parametri radio				
IEEE 802.11n	estensioni per throughput elevati (oltre 200 Mbps) mediant tecnologia MIMO (trasmettitori e ricevitori multipli)				
IEEE 802.11p	accesso wireless per sistemi veicolari (WAVE)				
IEEE 802.11r	estensioni per roaming veloce				
IEEE 802.11s	estensioni per reti wireless mesh				
IEEE 802.11t	metodi e metriche per misurazione e predizione delle prestazion				
IEEE 802.11u	internetworking con reti non 802.11 (cellulari)				
IEEE 802.11v	gestione e amministrazione delle reti wireless				

WLAN and WMAN Wireless Standards and technologies

	UWB	Bluetooth	Wi-fi	Wi-fi	Wi-fi	WiMAX	WiMAX	EDGE	CDMA	UMTS
Standard	802.15.3a	802.15.1	802.11a	802.11b	802.11g	802.16d	802.16e	2,5G	3G	3G
contesto	WPAN	WPAN	WLAN	WLAN	WLAN	WMAN (fisso)	WMAN (mobile)	WWAN	WWAN	WWAN
MAX bitrate	110-480 Mbps	720 Kbps	54 Mbps	11-22 Mbps	54-108 Mpbs	75 Mbps (20 Mhz)	30 Mbps (10 Mhz)	384 Kbps	2,4 Mbps	10 Mbps
distanza	10 m	10 m	100 m	100 m	100 m	10 km	5 km	5 km	5 km	5 km
spettro	7,5 Ghz	2,4 Ghz (ISM)	5 Ghz	2,4 Ghz (ISM)	2,4 Ghz (ISM)	11 Ghz	2-6 Ghz	1800 Mhz	multi	multi

© 2005 Luciano Bononi

istemi e Reti Wireles

Service Sets

- Basic Service Set
 - · Access Point
 - · Client nodes
 - Service Set Identifier (SSID): 32 char ID (network name?)
 - not a password: can be sniffed (in clear in packet headers)
 - Used for association of clients to APs (sharing the same SSID)
- Extended service set
 - · two or more BSS connected by distribution system
 - Wireless routers (different SSID)
 - Wireless repeaters (same SSID)?
- Independent Basic Service Set (IBSS)
 - Ad hoc network (peer to peer nodes, no AP authentication)

© 2005 Luciano Bononi

Range Extension between BSS cells and DS

IEEE 802.11: Distribution System

(DS)

AP: Access Point

BSS: Basic Service Set ESS: Extended Service Set DS: Network to transmit packets between BSSs to realize ESSs.

© 2005 Luciano Bononi

Sistemi e Reti Wireless

SSID

- Service Set Identifier (SSID):
 - · not a password! can be sniffed
 - AirMagnet, Netstumbler, AiroPeek NX...
 - Windows Xp sniffs SSID to configure NIC devices for access
 - ...potential for attacks?
 - · Admin: useless to delete SSID info from Beacon frames...
 - · ...Because SSID is used for association of clients to APs
 - · Many SSID are factory-defined and never changed
 - E.g. CISCO "tsunami", Proxim "Proxim", Symbol "Symbol"

© 2005 Luciano Bononi

BSS attacks

- BSS Attacks:
 - (Phy/MAC) layer interference (bla bla bla bla...)
 - (MAC) CTS flooding
- Rogue access points
 - · Un-authorized access point with no security alignment
 - Man in the middle + rogue access point to re-associate the client
 - · Sniff area with NetStumbler, AirMagnet WLAN analyzer
 - · Use centralized applications: AirWave, CiscoWorks
 - Use TCP port scanner (SuperScan 3.0) to monitor all 80 ports (rogue AP Web server responds?)

© 2005 Luciano Bononi

Sistemi e Reti Wireless

BSS security assessment (1)

- Review existing security policies, and monitor for rogue access points
 - Activate WEP at the very least
 - WEP key is static and crackable with AirSnort, WEPcrack
- Utilize pre-shared key, or dynamic key exchange mechanisms, and static IP (no DHCP)
 - IEEE 802.11i, Advanced Encryption Standard (AES) and dynamic key exchange (Wireless Protected Access, Wi-Fi Protected Access, WPA)
 - DHCP gives local IP and enable crackers for IP access to the whole network
- Ensure NIC and access point firmware is up-to-date
- Ensure only authorized people can reset the access points
 - Disable reset buttons and console programming port

© 2005 Luciano Bononi

Sistemi e Reti Wireless

4

BSS security assessment (2)

- Assign "strong" passwords to access points, locate in good places and and disable them when not used
- Disable SSID broadcast in Beacons (but still present in association frames)
- Adopt Access Controller over Open Network (not authenticated access)
 Access Points
 - · Implement mutual authentication mechanisms
 - Authentication of clients performed with RADIUS servers, IEEE 802.1X
- Use firewalls and IPSec VPNs technologies over client devices

© 2005 Luciano Bononi

Sistemi e Reti Wireless

IEEE 802.11 AP configuration (1)

- Configuring the AP...
 - Direct cable connection (console)
 - Wireless Web server access to URL "http://192.168.0.x"
 - · do it before installation of multiple APs
 - Set the IP address (static?)
 - · Set the radio channel
 - 1,6,11 preferable for IEEE 802.11b

© 2005 Luciano Bononi

Sistemi e Reti Wireless

10

IEEE 802.11 AP configuration (2)

- ...Configuring the AP
 - Set transmission power (max 100 mw)
 - Set SSID identifier (network name?)
 - · Set allowed data rates
 - Set beacon repetition interval (typical 10 ms)
 - Set RTS/CTS activation and payload threshold
 - · Set fragmentation threshold
 - Set WEP encryption (>128 bit = 26 HEX char)
 - · Set mutual devices authentication (no open system):
 - Pre-shared keys, 802.1x + RADIUS authentication server, WPA
 - · Set admin AP interface passwords

© 2005 Luciano Bononi

Sistemi e Reti Wireless

IEEE 802.11 WLAN deployment

- Radio planning
 - Map areas and channels with coverage analysis (AirMagnet, Yellow Jacket)
 - · Check pre-existing radio channels assigned (neighbor network?)
 - 75% are channel 6 (device default) (use NetStumbler)
 - Put AP high on the ceiling, with antennas vertical towards the floor (better propagation and coverage area)
 - Beware of metallic grids within walls (Faraday's grids)
 - Use Power over Ethernet (PoE) if the plug is unpractical
- Configuring the wireless repeater (increase AP radio range)
 - Switch the AP to repeater mode (see next slides)
 - · Set the SSID of the same root AP
 - Set the preferred AP and secondary AP to forward frames to
 - · Clients associates with the strongest signal with the same SSID

© 2005 Luciano Bononi

Sistemi e Reti Wireless

12

IEEE 802.11 WLAN deployment

- Configuring the wireless bridge (connects two or more wireless networks by considering MAC addresses only)
 - AP are similar to bridges, but connect many wireless users devices (NICs) to one network (e.g. Ethernet) and forward all frames received (no filtering)
 - Workgroup Bridges. Workgroup bridges connect wireless networks to larger, wired Ethernet networks
- Configuring the wireless router (connects wireless clients to more than one network, and always consider IP addresses)
 - · Setup IP address and domain name server (DNS) address, or DHCP server
 - Setup SSID, RTS/CTS, WEP, frequency channel, fragmentation, power, etc.
 - · Allow wireless clients to connect to more than one wireless network in the area
 - · Implement Network Address Translation (NAT) for IP address sharing
 - Improve network management options and network performance (selective forwarding, no broadcast)
 - Improve security with built-in firewalls (IP filtering), IPSec and VPN support

© 2005 Luciano Bononi

Sistemi e Reti Wireless

[/

Cohexistence Problems: mixed mode clients b/g

- IEEE 802.11b and IEEE 802.11g technologies
 - 802.11b is DSSS (11 Mb/s) in 2.4 Ghz
 - · Mbps depend on the distance from AP
 - 802.11g is OFDM (54 Mb/s) in 2.4 Ghz (extra speed)
 - New technology to deploy over 802.11b systems?
 - · Mixed mode Wireless router with b/g access support?
 - · Performance drawbacks
 - Low throughput (waiting the slowest technology for channel access)... Similar to the "slow car on the tunnel" problem
 - Solution: separate b and g communication with different APs connected to the network router
 - · Non-overlapping channels 1, 6, 11
 - Use mixed mode protection (RTS/CTS or CTS-to-self)

802,11b AP

(b only AP)

802.11g AP (g only AP)

© 2005 Luciano Bononi

