Теоретическая информатика, осень 2020 г. Лекция 6. Применение леммы о накачке. Язык, удовлетворяющий лемме о накачке. Лемма Огдена.

Грамматики над односимвольным алфавитом. Невыразимые действия над грамматиками. Удаление пустых правил, удаление единичных правил, нормальный вид Хомского*

Александр Охотин 8 октября 2020 г.

Содержание

Ограничения выразительной мощности грамматик
 Невыразимые действия над грамматиками
 Нормальный вид Хомского

1 Ограничения выразительной мощности грамматик

1.1 Лемма о накачке (окончание)

С помощью леммы о накачке можно доказывать несуществование грамматик для ряда языков.

Пример 1. Язык $L = \{ a^n b^n c^n \mid n \geqslant 0 \}$ не задаётся никакой грамматикой.

Доказательство. Пусть есть, и пусть $p \geqslant 1$ — константа из леммы о накачке. Тогда для строки $w = a^p b^p c^p$ есть разбиение w = xuyvz, и нужно рассмотреть несколько случаев возможных разбиений.

- Если одна из строк u,v содержит символы разных типов, т.е., пересекает границу между a, b и c. Тогда $xu^2yv^2z \notin a^*b^*c^*$, и потому эта строка не может принадлежать L.
- Если $u,v\in a^*$, то $xu^0yv^0z=xyz=a^{p-|uv|}b^pc^p\notin L$. Случан $u,v\in b^*$ и $u,v\in c^*$ такие же

^{*}Краткое содержание лекций, прочитанных студентам 2-го курса факультета МКН СПбГУ в осеннем семестре 2020-2021 учебного года. Страница курса: http://users.math-cs.spbu.ru/~okhotin/teaching/tcs_fl_2020/.

• Если $u \in a^*$ и $v \in b^*$, то $xu^0yv^0z = a^{p-|u|}b^{p-|v|}c^p$; эта строка не принадлежит L, поскольку $p-|u| \neq p$ или $p-|v| \neq p$. Случай $u \in b^*$ и $v \in c^*$ такой же.

В каждом случае получено противоречие.

На основе этого факта можно сделать выводы о непредставимости, например, языков программирования.

Пример 2 (Флойд [1962]). Следующая строка — правильная программа на языке C тогда u только тогда, когда i=j=k.

main() { int
$$\underbrace{\mathbf{x} \dots \mathbf{x}}_{i \geqslant 1}$$
; $\underbrace{\mathbf{x} \dots \mathbf{x}}_{j \geqslant 1} = \underbrace{\mathbf{x} \dots \mathbf{x}}_{k \geqslant 1}$; }

Oтсюда можно вывести, что множество всех правильных программ на C не описывается грамматикой. Грамматиками описывают существенную часть синтаксиса языков программирования, но не весь синтаксис целиком.

Рис. 1: Роберт Флойд (1936–2001), Дэвид Вайз (род. 1945).

Существуют, однако, языки, удовлетворяющие условию леммы о накачке, но не задаваемые никакой грамматикой. Вот пример такого языка.

Пример 3 (Вайз [1976]). Язык $\{a^{\ell}b^{m}c^{n} \mid \ell, m, n \geqslant 1, \ell \neq m, m \neq n, \ell \neq n\}$ удовлетворяет лемме о накачке с константой p=7.

Доказательство. Для всякой строки $w=a^{\ell_a}b^{\ell_b}c^{\ell_c}\in L$, где $|w|\geqslant 7$, пусть $s\in\{a,b,c\}$ — тот из символов, который встречается в w чаще, чем два других, так что ℓ_s — наибольшее из чисел ℓ_a , ℓ_b и ℓ_c . Тогда $\ell_s\geqslant 4$, поскольку если $\ell_s\leqslant 3$, то строка имела бы длину 6.

Пусть k — наименьшее натуральное число, отличающееся от $\ell_s - \ell_t$, для всех $t \in \{a,b,c\}$. Число k не превосходит 3, и потому меньше, чем ℓ_s . Тогда предполагается накачивать блок из k символов s; иными словами, разбиение w = xuyvz, обещанное в лемме о накачке, определяется, полагая $u = s^k$ и $v = \varepsilon$, где x, y и z задаются подобающим образом, чтобы вышло xuyvz = w.

Для всякого $i \geqslant 1$, строка xu^iyv^iz принадлежит L, поскольку количество символов s остаётся наибольшим, в то время как количество двух других символов не изменяется. Для

i=0, строка xu^0yv^0z , из которой удалена подстока s^k , всё ещё принадлежит языку L, потому что, согласно условию $\ell_s-\ell_t\neq k$, получившееся количество символов s отличается от количества каждого из оставшихся символов.

1.2 Лемма Огдена

Чтобы доказать несуществование грамматики для языка из примера 3, используется следующий более мощный вариант леммы о накачке.

Лемма 1 (лемма Огдена [1968]). Для всякого языка $L \subseteq \Sigma^*$, задаваемого грамматикой, существует такое число $p \geqslant 1$, что для всякой строки $w \in L$ и для всякого множества $P \subseteq \{1, \ldots, |w|\}$ выделенных позиций в строке w, где $|P| \geqslant p$, существует разбиение w = xuyvz, где uv содержит хотя бы одну выделенную позицию, uyv содержит не более p выделенных позиций, u выполняется $xu^iyv^iz \in L$ для всех $i \geqslant 0$.

Рис. 2: Вильям Огден.

Доказательство. Доказательство дословно повторяет доказательство леммы о накачке, с тем единственным отличием, что размер поддеревьев считается не по числу листьев, а по числу sudenenhux листьев.

Пример 4. Язык $L = \{ a^{\ell}b^{m}c^{n} \mid \ell \neq m, \ m \neq n, \ \ell \neq n \}$ не удовлетворяет условию леммы Огдена и потому не задаётся никакой грамматикой.

Доказательство. Пусть p — число, данное леммой Огдена. Пусть $w = a^{p+p!}b^pc^{p+2p!}$ — строка, в которой выделены символы b^p . Лемма Огдена даёт разбиение w = xuyvz.

Если u или v содержит символы двух различных типов, то достаточно накачать дважды, чтобы получить строку xu^2uv^2z , не лежащую в $a^*b^*c^*$ и соответственно не попадающую в L.

Если как u, так и v попадают в b^p , то b^p накачивается $\frac{p!}{|uv|} + 1$ раз до достижения $b^{p+p!}$, так что получается строка $a^{p+p!}b^{p+p!}c^{p+2p!}$, не принадлежащая языку L.

Если u попадает в $a^{p+p!}$ а v- в b^p , то они вместе накачиваются, пока b^p не достигает $b^{p+2p!}$. Что при этом происходит с $a^{p+p!}$ — неважно, поскольку всякая строка $a^k b^{p+2p!} c^{p+2p!}$, где $k \ge 0$, не принадлежит языку.

Если u попадает в b^p , а v попадает в $c^{p+2p!}$, то они накачиваются, пока b^p не превратится в $b^{p+p!}$.

Для леммы Огдена также известны примеры языков, удовлетворяющих её условию, но не задаваемых никакой грамматикой.

1.3 Грамматики над односимвольным алфавитом

Теорема 1 (Парикх [1966]; Гинзбург и Райс [1962]). Всякая грамматика над односимвольным алфавитом $\Sigma = \{a\}$ задаёт регулярный язык.

Рис. 3: Рохит Парикх (род. 1936).

Доказательство. По лемме о накачке.

Пусть $L\subseteq a^*$ — язык, пусть p — константа из леммы о накачке. Для всякой строки $a^n\in L$, где $n\geqslant p$, лемма о накачке утверждает, что для некоторого числа ℓ , где $1\leqslant \ell\leqslant p$, все строки вида $a^{n+i\cdot \ell}$, для всех $i\geqslant 0$, также лежат в L. В частности, раз p! делится на ℓ , все строки вида $a^{n+i\cdot p!}$, где $i\geqslant 1$, принадлежат L.

Для всякого остатка j по модулю p!, язык $L \cap a^{\geqslant p}$ или содержит какую-то строку длины j по модулю p!, или не содержит. Если он содержит хотя бы одну строку a^{n_j} , где $n_j \equiv j \pmod{p!}$, то он содержит и все более длинные такие строки. Поэтому язык представим так.

$$L = (L \cap a^{< p}) \cup \bigcup_{\substack{j \in \{0, \dots, p! - 1\}:\\n_j \text{ определено}}} a^{n_j} (a^{p!})^*$$

А это по существу регулярное выражение.

2 Невыразимые действия над грамматиками

Незамкнутость относительно некой операции над языками: если для аргументов есть грамматика, а для результата операции — нет.

Пересечение: нельзя ли сделать каким-нибудь прямым произведением грамматик? К сожалению, нельзя.

Теорема 2 (Шейнберг [1960]). *Класс языков, задаваемых грамматиками, не замкнут относительно пересечения и дополнения.*

Доказательство. Языки $L_1 = \{ a^i b^\ell c^\ell \mid i, \ell \geqslant 0 \}$ и $L_2 = \{ a^m b^m c^j \mid j, m \geqslant 0 \}$, задаются следующими грамматиками.

$$S_1 \rightarrow aS_1 \mid A$$
 $S_2 \rightarrow S_2c \mid B$
 $A \rightarrow bAc \mid \varepsilon$ $B \rightarrow aBb \mid \varepsilon$

Если предположить, что семейство замкнуто относительно пересечения, то тогда пересечение двух вышеприведённых языков также будет описывается грамматикой.

$$L_1 \cap L_2 = \{ a^i b^{\ell} c^{\ell} \mid i, \ell \geqslant 0 \} \cap \{ a^m b^m c^j \mid j, m \geqslant 0 \} = \{ a^n b^n c^n \mid n \geqslant 0 \}$$

Однако ранее было доказано, что грамматики для этого пересечения не существует — противоречие.

Незамкнутость относительно дополнения следует из этого результата, используя замкнутость относительно объединения. \Box

Ещё одно действие, не выразимое в грамматиках — это так называемое деление языков один на другой. Конечно, это не полноценная обратная операция к конкатенации (умножению) — для конкатенации обратного элемента нет. Но если строка u — префикс строки uv, то uv можно «поделить» на u слева, получив строку v. Эту операцию обозначают через $u^{-1} \cdot uv = v$, и её можно распространить на языки, записав множество всех возможных «частных» такого вида, для аргументов взятых из двух языков.

$$K^{-1} \cdot L = \{ v \mid \exists u \in K : uv \in L \}$$

Теорема 3 (Гинзбург). *Множество языков, задаваемых грамматиками, не замкнуто относительно операции деления.*

Доказательство. Языки $K=\{\,a^mb^{2m}\mid m\geqslant 1\,\}^*$ и $L=a\{\,b^\ell a^\ell\mid \ell\geqslant 1\,\}^*$ задаются следующими двумя грамматиками.

$$S_2 \rightarrow S_2A \mid \varepsilon$$
 $S_1 \rightarrow S_1B \mid a$
 $A \rightarrow aAbb \mid abb$ $S_1 \rightarrow bAa \mid ba$

Пусть их частное $K^{-1}L$ также задаётся грамматикой; тогда есть грамматика и для его пересечения с регулярным языком a^* . Какие строки попадут в это пересечение? Это все строки, полученные откусыванием от строки вида $ab^{m_1}a^{m_1}b^{m_2}a^{m_2}\dots a^{m_{n-1}}b^{m_n}a^{m_n}$ из L некоторой строки из K, причём так, чтобы остался только заключительный кусок, $v=a^{m_n}$. Это возможно только в том случае, если строка $u=ab^{m_1}a^{m_1}b^{m_2}a^{m_2}\dots a^{m_{n-1}}b^{m_n}$ принадлежит языку K. Строка u принадлежит K тогда и только тогда, когда $2\cdot 1=m_1$ (то есть, $m_1=2$), и далее, $2m_1=m_2,\ 2m_2=m_3,\ \dots,\ 2m_{n-1}=m_n$. Отсюда вытекает, что $m_n=2^n$, и потому рассматриваемая произвольная строка, принадлежащая языку $K^{-1}L\cap a^*$, имеет вид $v=a^{2^n}$.

Поэтому язык имеет следующий вид.

$$K^{-1}L \cap a^* = \{ a^{2^n} \mid n \geqslant 0 \}$$

Это нерегулярный язык над односимвольным алфавитом, и потому, по ранее доказанной теореме, он не задаётся никакой грамматикой. Тем самым получено противоречие.

Рис. 4: Незамкнутость относительно деления.

3 Нормальный вид Хомского

Несмотря на то, что определение грамматик в целом очень просто, тем не менее, в них можно выразить некоторые конструкции, анализ которых может вызывать затруднения — как в алгоритмах, так и в математических доказательствах, и даже просто при чтении грамматики человеком.

Например, правило $A \to A$: алгоритм, глядя на него, может уйти в бесконечный цикл, доказательства индукцией по длине строки перестают проходить, да и человек, читающий грамматику, прежде чем он обнаружит, что это правило ни на что не влияет, может запутаться. А обнаружить подобные затруднения не всегда так просто. Скажем, правило $A \to EAE$, если E определено правилами $E \to EE \mid \varepsilon$, тоже ни на что не влияет, но обнаружение этого обстоятельства может потребовать некоторых усилий.

В более сложном варианте, грамматика может содержать *цепочку зависимостей*, образуемую, например, правилами $A \to EBE$ и $E \to \varepsilon$, связывающую представление строки w в виде A и в виде B. Прослеживание цепочки зависимостей может вылиться в *круговую зависимость*, такую как в правилах $A \to EBE$, $E \to \varepsilon$, $B \to EAE$, согласно которым представление w в виде A зависит от представления w в виде B, и наоборот.

Однако как цепочки зависимостей, так и круговые зависимости, могут быть удалены путём преобразования грамматики к *нормальному виду*.

3.1 Удаление пустых правил

Цель: по данной грамматике построить другую, задающую тот же язык и не содержащую «пустых правил» вида $A \to \varepsilon$.

Пример 5. Грамматика, определяющая язык $\{ab, b\}$.

$$S \to AB$$

$$A \to \varepsilon \mid a$$

$$B \to b$$

Правило $A \to \varepsilon$ хочется убрать. Однако его удаление потребует присовокупить к правилу $S \to AB$ дополнительное правило $S \to B$, соответствующее случаю, когда A задаёт строку ε . Поэтому в итоге получится следующая грамматика.

$$\begin{split} S &\to AB \mid B \\ A &\to a \\ B &\to b \end{split}$$

Сперва надо узнать, какие нетерминальные символы задают пустую строку ε . Для грамматики $G = (\Sigma, N, R, S)$ это следующее множество.

$$Nullable(G) = \{ A \mid A \in N, \ \varepsilon \in L_G(A) \}$$

Алгоритм 1 Построение множества Nullable(G).

 Γ рамматика $G = (\Sigma, N, R, S)$, переменная: $W \subseteq N$.

- 1: $W = \emptyset$
- 2: while W можно изменить do
- 3: $W = \{ A \in N \mid \text{есть правило } A \to B_1 \dots B_\ell, \text{ где } B_1, \dots, B_\ell \in W \}$

Hа выходе W = Nullable(G).

Последовательно строятся следующие множества.

 $Nullable_0(G) = \emptyset$

$$\text{Nullable}_{i+1}(G) = \{ A \in N \mid \text{есть правило } A \to B_1 \dots B_\ell, \text{ где } B_1, \dots, B_\ell \in \text{Nullable}_i(G) \}$$

Это последовательность вложенных множеств; рано или поздно множество насыщается.

Лемма 2. Грамматика $G = (\Sigma, N, R, S)$, множество NULLABLE(G) для неё. Новая грамматика $G' = (\Sigma, N, R', S)$, где R' содержит следующие правила.

$$A \to X_1 \dots X_\ell$$
 (для всех $\ell \geqslant 1, X_1, \dots, X_\ell \in \Sigma \cup N$ и $\theta_0, \dots, \theta_\ell \in \mathrm{Nullable}(G)^*$).

для которых в R есть правило $A o heta_0 X_1 heta_1 \dots X_\ell heta_\ell$

Тогда, для каждого $A \in N$, $L_{G'}(A) = L_G(A) \setminus \{\varepsilon\}$.

Рис. 5: Удаление пустых правил по лемме 2: (слева) правило $A \to \theta_0 X_1 \theta_1 \dots X_\ell \theta_\ell$ при разборе согласно исходной грамматике, где все θ_i описывают пустую строку; (справа) правило $A \to X_1 \dots X_\ell$ при разборе той же строки согласно построенной грамматике.

задающие пустую строку, как на рис. 5(левом), все эти потомки просто удаляются, как показано на рис. 5(правом) — причём в грамматике G' по построению найдётся правило без выброшенных нетерминальных символов. Получится дерево той же строки в грамматике G'.

И обратно: всякий раз, когда в дереве строки w согласно грамматике G' используется правило, которого не было в G, это правило было получено выбрасыванием нетерминальных символов, задающих пустую строку. Тогда каждой вершине, как на рис. 5(правом), добавляются эти выброшенные потомки с деревьями разбора пустой строки, как на рис. 5(левом).

Строгое доказательство: в каждую сторону индукцией по высоте дерева разбора, считая вершину A корнем. \Box

Построение из леммы 2 может привести κ экспоненциальному росту размера граммати- κ и.

Пример 6. Для всякого $n \geqslant 1$, следующая грамматика описывает множество всех строк над односимвольным алфавитом длины не более чем n.

$$S \to A_1 \dots A_n$$

 $A_i \to a \mid \varepsilon$ $(i \in \{1, \dots, n\})$

По построению из леммы 2, из единственного правила для S получаются 2^n-2 новых правил, соответствующих всем способам удаления нетерминальных символов, задающих пустую строку.

Подобный экспоненциальный рост может получится только для правил с длинными правыми частями. Чтобы его избежать, следует сперва преобразовать грамматику, обрезав правые части правил до длины не более чем 2. Для этого всякое правило $A \to XY\alpha$, где $X,Y \in \Sigma \cup N$ и $\alpha \in (\Sigma \cup N)^+$, заменяется на следующие два правила, где A' — новый нетерминальный символ.

$$A \to A'\alpha$$
$$A' \to XY$$

Это преобразование применяется, пока все правила не станут короткими. Оно приводит лишь к линейному росту размера грамматики. Далее, построение из леммы 2, применённое к получившейся грамматике, также вызывает лишь линейный рост размера.

3.2 Удаление единичных правил

Цель: по данной грамматике без пустых правил построить грамматику, задающую тот же язык и не содержащую «единичных правил» вида $A \to B$.

Лемма 3. Пусть $G = (\Sigma, N, R, S)$ — грамматика, в которой всякое правило имеет вид $A \to \alpha$, где $|\alpha| \geqslant 1$, и, соответственно, $\varepsilon \notin L_G(A)$ для всех $A \in N$. Тогда тот эке язык задаётся грамматикой $G' = (\Sigma, N, R', S)$, где R' содерэкит правило $A \to \alpha$ тогда и только тогда, когда $\alpha \in (\Sigma \cup N)^* \setminus N$ и есть последовательность правил $A_0 \to A_1, A_1 \to A_2, \ldots, A_{k-1} \to A_k, A_k \to \alpha$ в R, где $A_0 = A$ и $k \geqslant 0$.

Доказательство. Преобразованием деревьев разбора в обе стороны, как в лемме 2.

Рис. 6: Удаление единичных правил: (слева) цепочка правил $A \to A_1, A_1 \to A_2, \dots, A_{k-1} \to A_k, A_k \to \alpha$ в исходной грамматике; (справа) немедленное применение правила $A \to \alpha$ в построенной грамматике.

Похоже на преобразование ε -NFA в NFA. Рост размера грамматики: $O(n^2)$, так как в худшем случае каждый нетерминальный символ получит по собственному экземпляру почти каждого правила исходной грамматики.

Нижняя оценка на сложность: не менее чем $n^{\frac{3}{2}-o(1)}$ (Норберт Блум [1983]).

3.3 Приведение к нормальному виду

Определение 1. Грамматика $G = (\Sigma, N, R, S) - \epsilon$ нормальном виде Хомского, если всякое правило из R имеет следующий вид.

 $\begin{array}{ll} A \to BC & \quad (B,C \in N) \\ A \to a & \quad (a \in \Sigma) \end{array}$

 $S \to \varepsilon$ (только если S не используется в правых частях никаких правил)

Теорема 4 (Хомский [1959]). Для всякой грамматики можно построить грамматику в н.в.Хомского, задающую тот же язык.

Набросок доказательства. Подготовка: нарезать правила, чтобы длина правой части не превосходила 2.

Шаг 1: удалить все *пустые правила* вида $A \to \varepsilon$.

Шаг 2: удалить единичные правила вида $A \to B$.

Последний шаг: переместить символы из Σ в отдельные правила.

Список литературы

[1983] N. Blum, "More on the power of chain rules in context-free grammars", *Theoretical Computer Science*, 27 (1983), 287–295.

- [1959] N. Chomsky, "On certain formal properties of grammars", Information and Control, 2:2 (1959), 137–167.
- [1962] R. W. Floyd, "On the non-existence of a phrase structure grammar for ALGOL 60", Communications of the ACM, 5 (1962), 483–484.
- [1962] S. Ginsburg, H. G. Rice, "Two families of languages related to ALGOL", *Journal of the ACM*, 9 (1962), 350–371.
- [1968] W. F. Ogden, "A helpful result for proving inherent ambiguity", *Mathematical Systems Theory* 2:3 (1968), 191–194.
- [1966] R. J. Parikh, "On context-free languages", Journal of the ACM 13:4 (1966), 570–581.
- [1960] S. Scheinberg, "Note on the boolean properties of context free languages", *Information and Control*, 3 (1960), 372-375.
- [1976] D. S. Wise, "A strong pumping lemma for context-free languages", *Theoretical Computer Science*, 3:3 (1976), 359–369.