A2018

a) Beweisen Sie, dass die Polynomfunktion $p(x) = 6x^2 - 12x + 7$ für alle reellen Werte von x positive Werte annimmt.

b) Gegeben sind die zwei Gleichungen

$$\sqrt{6x^2 - 12x + 7} = 3x - 2 \tag{1}$$

$$\sqrt{6x^2 - 12x + 7} = 3x - 2 \qquad (2)$$

Untersuchen Sie beide Gleichungen auf Lösbarkeit und bestimmen Sie gegebenenfalls alle Lösungen.

c) Bestimmen Sie, für welche reellen Zahlen x die Ungleichung $\sqrt{6x^2 - 12x + 7} \le 3x - 2$ erfüllt ist.

a)
$$6x^2 - 12x + 7 = 0$$

 $x_{1/2} = \frac{-6 \pm \sqrt{36 - 24 \cdot 7}}{12}$

Diskriminante < 0, daher keine reelle Nullstelle.

b)
$$6x^2 - 12x + 7 = (3x - 2)^2 = 9x^2 - 12x + 4$$

 $-3x^2 - 3 = 0$ = $3x^2 = 3$ = $x^2 = 1$ $x_{1/2} = \pm 1$

Probe ist notwendig, da Quadrieren keine Äquivalenzumformung

$$X_A = 1$$
 ist Lösung für (1)
 $X_A = -1$ " (2)

Die linke Seite ist nach a) für alle reellen Zahlen definiert. Einen Schnittpunkt haben die Funktionen der beiden Seiten nach b) bei x = 1.

Punkt prolog bei
$$x = 0$$
: $\sqrt{7} \in 2$ faint $= (1, +\infty)$