Introduction to Group Theory

Based on the lectures of Florian Naef David Lawton 22337087

20th May 2024.

Contents

1	Lecture 1: Definitions & Examples	2
2	Lecture 2: Integers Modulo n and the Quaternion Group2.1 Integers Modulo n: $\mathbb{Z}/n\mathbb{Z}$	
3	Lecture 3: Generators-Relations	7
4	Lecture 4: Symmetric Group	8
5	Lecture 5: The Category of Groups.	9
6	Lecture 6: Group Actions	11
7	Lecture 7: Subgroups	13
8	Lecture 8: Cyclic Groups and Subgroups.	14

1 Lecture 1: Definitions & Examples

Def. 1.1: A **group** is pair (G, m) such that G is a **set** and $m: G \times G \to G$ is a mapping from G to itself s.t.

- G is associative under m, ie. $m(a,(b,c)) = m((a,b),c) \ \forall \ a,b,c \in G$.
- G has a unit, ie. $\exists e \in G$ s.t. $m(e,g) = m(g,e) = g \ \forall g \in G$.
- Each element of G has an inverse, ie. $\forall a \in G, \exists b \in G \text{ s.t. } m(a,b) = m(b,a) = e.$

Remark:

We usually write m(a, b) as a * b, $a \cdot b$, or ab. Associativity becomes a(bc) = (ab)c.

We also write the inverse of element a as a^{-1} .

The notation (G, m) is rewritten simply as G for convenience.

Examples:

- 1. $G = \{e\}$ (Trivial group)
- 2. $(\mathbb{Z},+)$, e=0, $a^{-1}=-a$ (Integers under addition)
- 3. $(\mathbb{Q}, +)$ (Rational numbers under addition)¹
- 4. $(\mathbb{Q}^x = \mathbb{Q} \setminus \{0\}, *), e = 1, a^{-1} = \frac{1}{a}$
- 5. $GL(n,\mathbb{R}) = \{n \times n \text{ matrix } A \text{ with entries in } \mathbb{R} | \det A \neq 0\}, e = \mathbb{I}, A^{-1} = A^{-1} \text{ (General linear group)}$
- 6. $S(X) = \{f : X \times X \to X | f \text{ bijective} \}, e = Id_X, f^{-1} = f^{-1}$

Def. 1.2: A group is **abelian** if all elements of the set are commutative under the mapping, ie. for group G = (G, m), $ab = ba \, \forall \, a, b \in G$. Note: a * b often written as a + b for abelian groups. **Prop. 1.1:**

- 1. The unit is unique
- 2. For each $a \in G$, a^{-1} is uniquely determined.
- 3. $(a^{-1})^{-1} = a$
- 4. $(ab)^{-1} = b^{-1}a^{-1}$
- 5. For any $a_1, ..., a_n$, the value of $a_1 \cdot ... \cdot a_n$ is independent of bracketing.

Pf.

- 1. Suppose e, e' are both units of group G. Then e = e'e = e'. \square
- 2. Given $a \in G$, suppose $\exists b_1, b_2 \in G$ s.t. they both satisfy the conditions of the inverse of a. Then $b_1 = b_1 e = b_1 (ab_2) = (b_1 a)b_2 = eb_2 = b_2$. \square
- 3. Let $b=(a^{-1})^{-1}$, therefore $ba^{-1}=e=a^{-1}b$. a satisfies this, and since the inverse is uniquely determined, $a=b=(a^{-1})^{-1}$.
- 4. $ab(b^{-1}a^{-1}) = a(bb^{-1})a^{-1} = aa^{-1} = e$. Similar for $(b^{-1}a^{-1})ab$. Therefore $b^{-1}a^{-1}$ satisfies the conditions of the inverse of ab, and is therefore equal to $(ab)^{-1}$ since the inverse is uniquely determined.

¹For any field F, (F, +) and $(F \setminus \{0\}, *)$ are groups.

²1, 2, 3 abelian. 4, 5 generally non-abelian $(n \ge 2 \text{ in } 4, |X| \ge 3 \text{ in } 5.)$

5. Proof by induction. Let $f(a_1, ..., a_n)$ be a bracketing of $a_1, ..., a_n$. Define $f(a_1, ..., a_n) = (a_1(...(a_{n-1}a_n)...)) := m_n(a_1, ..., a_n)$.

Induction on n:

$$\begin{array}{ll} n=1,2\colon\, m(a_1)=a_1, & m_2(a_1,a_2)=m(a_1,a_2).\\ n\geq 3\colon\, f=m(f_1(a_1,...,a_k),f_2(a_{k+1},...,a_n)).\\ \text{By ind. hyp. } f_1=m_k,\, f_2=m_{n-k}. \end{array}$$

It remains to show that $m(m_k, m_{n-k}) = m_n \ \forall \ k$.

$$\begin{split} k &= 1 : m(a_1, m_{n-1}(a_2, ..., a_n)) = m_n(a_1, ..., a_n). \\ k &> 1 : m(m_k(a_1, ..., a_k), m_{n-k}(a_{k+1}, ..., a_n)) = m(m(a_1, m_{k-1}(a_2, ..., a_k)), m_{n-k}(a_{k+1}, ..., a_n)). \\ &= m(a_1, m(m_{k-1}(a_2, ..., a_k), m_{n-k}(a_{k+1}, ..., a_n))) \text{ by associativity.} \\ &= m(a_1, m_{n-1}(a_2, ..., a_n)) = m_n(a_1, ..., a_n) \end{split}$$

Remark:

Either of left or right inverse, uniquely characterise a^{-1} .

Prop 1.2: Left and right cancellation hold in any group.

$$ax = ay : x = y \tag{1}$$

$$xa = ya : x = y \tag{2}$$

Pf.: Multiply by a^{-1} from left, right respectively.

Remark:

Let $(G, m), m: G \times G \to G$ satisfy:

- m(a, m(b, c)) = m(m(a, b), c) (Associativity)
- $\exists e \in G \text{ s.t. } m(e,g) = g, \ \forall \ g \in G. \text{ (Left-unit)}$
- $\forall a \in G, \exists b \in G \text{ s.t. } m(b,a) = e. \text{ (Left-inverse)}$

then (G, m) is a group.

Notation:

$$x^{n} = x \cdot (x, n-2 \text{ times}) \cdot x, \ x^{-n} = x^{-1} \cdot (x^{-1}, n-2 \text{ times}) \cdot x^{-1}$$
 (3)

$$n \cdot x = x + x + x + \dots + x, \quad -n \cdot x = (-x) + (-x) + (-x) + \dots + (-x)$$
 (For abelian) (4)

Def. 1.3: The **order** of $x \in G$ is the smallest $n \in \mathbb{Z}^+$ s.t. $x^n = e$. The order is denoted |x| = n. **Example:**

- $\bullet \ \ G=\mathbb{C}^\times, x=i, |x|=4.$
- $G = \operatorname{GL}(2, \mathbb{R}), x = \begin{pmatrix} 0 & -1 \\ 1 & 1 \end{pmatrix}, |x| = 6$

2 Lecture 2: Integers Modulo n and the Quaternion Group

2.1 Integers Modulo n: $\mathbb{Z}/n\mathbb{Z}$

Def. 2.1.1: Let $a, b \in \mathbb{Z}$. We say a, b have the same residue mod n, and write $a \equiv b \pmod{n}$ if $\exists k \in \mathbb{Z}$ s.t. $a - b = k \cdot n$.

Given $a \in \mathbb{Z}$ denote by

$$\bar{a} = \{b \in \mathbb{Z} | b \equiv a \pmod{n}\}\$$
$$= \{a + kn \in \mathbb{Z} | k \in \mathbb{Z}\} \subseteq \mathbb{Z}$$

and define

$$\mathbb{Z}/n\mathbb{Z} = \{\bar{a} \subseteq \mathbb{Z} | a \in \mathbb{Z}\} \tag{5}$$

Lemma 2.1.1:

- $a \equiv b \pmod{n} \Leftrightarrow \bar{a} = \bar{b}$
- $\mathbb{Z}/n\mathbb{Z} = \{\overline{0}, \overline{1}, \overline{2}, ..., \overline{n-1}\}$

Pf.:

$$a \equiv b \pmod{\mathbf{n}} \ \Rightarrow \ a = b + k \cdot n$$

$$\Rightarrow b = a - k \cdot n = a + l \cdot n, \ l \in \mathbb{Z}$$

$$\Rightarrow b = a \pmod{\mathbf{n}}$$

$$\begin{split} \mathbb{Z}/n\mathbb{Z} &= \{\bar{a} \subseteq \mathbb{Z} | a \in \mathbb{Z} \}, \ \bar{a} = \{a + kn \in \mathbb{Z} | k \in \mathbb{Z} \} \\ &\Rightarrow \ \forall \ a < n, \ \bar{a} = \{a + kn \in \mathbb{Z} | k \in \mathbb{Z} \}, \\ &\forall \ a \geq n, \ \bar{a} = \{n + b + kn \in \mathbb{Z} | k \in \mathbb{Z}, a = n + b \} \\ &= \{b + (k+1)n | k \in \mathbb{Z} \} = \bar{b} \end{split}$$

$$\begin{array}{l} \Rightarrow \ \forall \ a \geq n, \ \bar{a} = \overline{a-n} \\ \\ \Rightarrow \ \mathbb{Z}/n\mathbb{Z} = \{ \bar{a} \subseteq \mathbb{Z} | a \in \mathbb{Z}, \ a < n \} = \{ \bar{0}, \bar{1}, ..., \overline{n-1} \} \end{array}$$

Prop. 2.1.1:

The assignment $m(\bar{a}, \bar{b}) = \overline{a+b}$ is well defined, and $(\mathbb{Z}/n\mathbb{Z}, m)$ is an abelian group.

Pf.:

Let $\bar{a_1} = \bar{a_2}$, $\bar{b_1} = \bar{b_2}$, this implies that $a_1 \equiv a_2 \pmod{n}$, $b_1 \equiv b_2 \pmod{n}$. It is then necessary that $a_1 + b_1 = a_2 + b_2 \pmod{n}$. Thus $\overline{a_1 + b_1} = \overline{a_2 + b_2}$, and so m is well defined.

It remains to show that $(\mathbb{Z}/n\mathbb{Z}, m)$ is a group. Therefore we must show that it is associative, and contains a left-unit, and left-inverse.

Let $G = (\mathbb{Z}/n\mathbb{Z}, m)$. For $a, b, c \in G$,

$$m(a,b) = a + b, \ m(b,c) = b + c$$

 $\Rightarrow m(a, m(b,c)) = a + b + c = m(m(a,b),c),$

therefore G is associative.

To show the existence of the left-unit, we must show there exists $e \in G$ s.t. $e + g = g \ \forall \ g \in G$. For

 $m(\bar{a}, \bar{b}) = \overline{a+b} = \bar{b}$, where $\bar{a}, \bar{b} \in G$, it is clear from this that $a = k \cdot n$ for some $k \in \mathbb{Z}$. Therefore $a = 0 \pmod{n}$. This implies that $\bar{a} = \bar{0}$. Therefore $\bar{0}$ is the left-unit of G (and consequently right-unit as abelian).

To show the existence of the left-inverse, we must show that $\forall a \in G, \exists b \in G \text{ s.t. } m(a,b) = e$. If $m(\bar{a}',\bar{b}') = \bar{0}$, then $a' = -b' \pmod{n}$. Therefore, $a' = n - b' \pmod{n}$, which implies that $\bar{a} = \overline{n-b}'$. Hence, $\forall \bar{g} \in G, \bar{g}^{-1} = \overline{n-g}$.

 $G=(\mathbb{Z}/n\mathbb{Z},m)$ then satisfies all the required conditions of a group. To show that G is abelian, one must only note that a+b=b+a \forall $a,b\in\mathbb{Z}$ which implies that $\overline{a+b}=\overline{b+a}$, and consequently $m(\bar{a},\bar{b})=m(\bar{b},\bar{a})$ $\forall \bar{a},\bar{b}\in G$.

Notation:

We write $a = \bar{a}$, for example, in $\mathbb{Z}/5\mathbb{Z}$, we write 2 + 3 = 0.

Lemma:

 $1 \in \mathbb{Z}/n\mathbb{Z}$ has order n.

Pf.:

$$n \cdot 1 = n = 0$$

$$k \cdot 1 = k \neq 0, \text{ for } 0 < k < n$$

2.2 Quaternion Group

Let $Q_8 = \{\pm 1, \pm i, \pm j, \pm k\}$, with $m: Q_8 \times Q_8 \rightarrow Q_8$ given by:

$$i^{2} = j^{2} = k^{2} = -1$$

 $ij = k, ki = j, jk = i$
 $ji = -k, ik = -j, kj = -i$

where signs manipulate as expected.

Prop. 2.2.1

 (Q_8, m) is a group.

Pf.:

Simple to show associativity, left-unit, left-inverse. Not done here.

3 Lecture 3: Generators-Relations

Given a set $r_1, r_2, r_3, ..., r_l$ of words (relations) in $g_1^{\pm}, g_2^{\pm}, ..., g_k^{\pm}$ (generators). We can define a group

$$G = \langle g_1, ..., g_k | r_1, ..., r_l \rangle \tag{6}$$

This is called the presentation of a group. We will define the group more precisely later.

Elements of G are words (combinations) of $g_1^{\pm}, g_2^{\pm}, ..., g_l^{\pm}$ under the equivalence relation given by

- removing/adding $g_i g_i^{-1}, g_i^{-1} g_i, e$,
- replacing an occurrence of r_i with e.

Example: Dihedral Group

$$D_{2n} = \langle r, s | r^n = s^2 = (sr)^2 = e \rangle \tag{7}$$

Let w try to enumerate all the elements of D_{2n} : If f is any word in r^{\pm} , s^{\pm} , use $r^{-1} = r^{n-1}$ and $s^{-1} = s$ to get a word in r, s. Since $s^2 = e$, we can assume

$$f = r^{i_1} s r^{i_2} s \dots s r^{i_l}, \ i_j > 0 \tag{8}$$

and then use $sr = (sr)^{-1} = r^{-1}s^{-1} = r^{n-1}$ to move the terms around and reach the form $f = sr^i$ or $f = r^i$.

$$\Rightarrow D_{2n} = \{e, r, ..., r^{n-1}, s, rs, ..., r^{n-1}s\}$$
(9)

These elements are not necessarily distinct.

 D_{2n} is the group of symmetries on a regular n-gon. D_{2n} can be realised as

$$r = \begin{pmatrix} \cos(\theta) & -\sin(\theta) \\ \sin(\theta) & \cos(\theta) \end{pmatrix}, \ \theta = \frac{2\pi}{n}, \ s = \begin{pmatrix} -1 & 0 \\ 0 & -1 \end{pmatrix}$$
 (10)

Remark:

- $G = \langle \text{gen.} | \text{rel.} \rangle$ is always a group.
- Generally, it is difficult to decide for $x \in G$, if x = e.

4 Lecture 4: Symmetric Group

The symmetric group is the group of bijective maps from a set of n elements to the its These map between permutations of these n elements.

$$S_n = \{ \sigma : \{1, 2, ..., n\} \to \{1, 2, ..., n\} | \sigma \text{ bij.} \}$$
 (11)

Each element of S_n can be written in the form of the permutation it maps the original set to, ie. $(\sigma(1), ..., \sigma(n))$.

$$\sigma = \begin{pmatrix} 2 & 1 & 3 \end{pmatrix} \in S_3 \text{ or } \sigma = \begin{pmatrix} 1 & 2 & 3 \\ 2 & 1 & 3 \end{pmatrix} \in S_3.$$
 (12)

as well as this these maps can be decomposed into cycles. For example,

$$\sigma = \begin{pmatrix} 1 & 2 & 3 & 45 \\ 3 & 4 & 5 & 2 & 1 \end{pmatrix} \in S_5$$
$$1 \to 3 \to 5 \to 1, \ 2 \to 4 \to 2$$
$$\Rightarrow \sigma = \begin{pmatrix} 1 & 3 & 5 \end{pmatrix} \begin{pmatrix} 2 & 4 \end{pmatrix}$$

this is called cycle decomposition.

Def. 4.1:

Given $a_1, a_2, ..., a_l \in \{1, ..., n\}$, all distinct, we define an 'l-cycle': $S_n \ni \sigma := \begin{pmatrix} a_1 & ... & a_l \end{pmatrix}^3$ by the formula

$$\sigma(x) = \begin{cases} a_{j+1} & \text{, if } x = a_j \\ x & \text{, else} \end{cases}$$
 (13)

Lemma 4.1

Let $\sigma = (a_1 \quad a_2 \quad \dots \quad a_l)$ and $\tau = (b_1 \quad b_2 \quad \dots \quad b_k)$ be such that $\{a_1, a_2, \dots, a_l\} \land \{b_1, b_2, \dots, b_k\} = \emptyset$. Then $\sigma \cdot \tau = \tau \cdot \sigma$.

Pf.:

Since the two sets, $A = \{a_1, a_2, ..., a_l\}$, $B = \{b_1, b_2, ..., b_k\}$ are disjoint, $\sigma(b_i) = b_i, \tau(a_i) = a_i$ and $\sigma(x) = \tau(x) = x \ \forall \ x \text{ not in } A, B$. Therefore it follows that $\sigma \cdot \tau(b_i) = \tau \cdot \sigma(b_i) = b_{i+1}$, $\sigma \cdot \tau(a_i) = \tau \cdot \sigma(a_i) = a_{i+1}$, and $\sigma \cdot \tau(x) = \tau \cdot \sigma(x) = x \ \forall \ x \text{ not in } A, B$. Therefore $\forall \ g \in \{1, ..., n\}, \tau \cdot \sigma = \sigma \cdot \tau$.

Prop. 4.1

Every $\sigma \in S_n$ admits a decomposition into disjoint cycles.

Pf.:

For some $\sigma \in S_n$, and $i \in \{1,...,n\}$ be s.t. $i = \min\{j \in \{1,...,n\} | \sigma(j) \neq j\}$. For some l_1, l_2 , we have $\sigma^{l_1}(i) = \sigma^{l_2}(i)$. Therefore, $\sigma^{l_1-l_2}(i) = i$, and w.l.o.g. $l = l_1 - l_2 > 0$. Set $\sigma = (i \quad f(i) \quad ... \quad f^{l-1}(i))$. The proof is continued by replacing σ with $\sigma_1^{-1} \cdot \sigma$, and $i = \min\{j \in \{1,...,n\} | \sigma(j) \neq j\}$ with $i = \min\{j \in \{1,...,n\} | \sigma(j) \neq j\}$ and repeating.

Remark:

Not every product of cycles is a cycles decomposition. ie. If the cycles are not disjoint.

$$^{3}(a_{1} \quad a_{2} \quad \dots \quad a_{l}) = (a_{2} \quad \dots \quad a_{l} \quad a_{1})$$

5 Lecture 5: The Category of Groups.

Consider $G = \{e, a, b, c\}$ with multiplication.

Note that if we assign a=2, b=1, c=3 this 'is' (isomorphic to, this will be defined later) $\mathbb{Z}/4\mathbb{Z}$.

Def. 5.1:

Let G, H be groups. A group **homomorphism** is a map $\varphi : G \to H$ s.t.

$$\varphi(a \cdot_G b) = \varphi(a) \cdot_H \varphi(b) \tag{15}$$

 $(\cdot_G, \cdot_H \text{ denote the binary maps of } G, H \text{ respectively.})$

Def. 5.2:

If group homomorphism φ is a bijection, then it is called a **group isomorphism**. In this case G, H are **isomorphic**.

Prop. 5.1:

Let $\varphi:G\to H$ be a group homomorphism. Then

1.
$$\varphi(e_G) = e_H$$

2.
$$\varphi(a^{-1}) = \varphi(a)^{-1}$$

Pf.:

From the definition of a group homomorphism:

$$\varphi(e_G \cdot_G b) = \varphi(e_G) \cdot_H \varphi(b)$$
$$= \varphi(b)$$

This implies

$$\varphi(b) = \varphi(e_G) \cdot_H \varphi(b)$$

which can only be true if

$$\varphi(e_G) = e_H \tag{16}$$

proving the first condition. The second condition begins in a similar way, from the definition of a group homomorphism we know

$$\varphi(a \cdot_G a^{-1}) = \varphi(a) \cdot_H \varphi(a^{-1})$$

but

$$\varphi(a \cdot_G a^{-1}) = \varphi(e_G) = e_H$$

$$\Rightarrow \varphi(a) \cdot_H \varphi(a^{-1}) = e_H$$

$$\Rightarrow \varphi(a^{-1}) = \varphi(a)^{-1}$$

Def. 5.3:

|G| is called the **order** of G. This is defined as the number of elements in the group for a finite group (group in which the underlying set is finite) or infinity for a non-finite group.

Prop. 5.2

Let G be a group of order 2. Then $G \cong \mathbb{Z}/2\mathbb{Z}$ (Isomorphic)

Pf.:

 $G \text{ group} \Rightarrow \exists \ e \in G, \text{ and } a \in G \text{ s.t } a \neq e. \text{ Define map } \varphi : \mathbb{Z}/n\mathbb{Z} \to G.$

$$0 \mapsto e$$
$$1 \mapsto a$$

We must then check that $\varphi(x+y) = \varphi(x)\varphi(y) \; \forall \; , y \in \digamma/n\mathbb{Z}$:

x	$\mid y \mid$	
0	0	Trivially true
1	1	$\varphi(1+1) = \varphi(0) = e$
		$\varphi(1)\varphi(1) = a^2$
		Only true if $a^2 = e$, which must be true since $a^2 = a$ implies $a = e$.
0	1	True since $\varphi(1) = a$, $e\varphi(1) = a$
1	0	True since $\varphi(1) = a$, $e\varphi(1) = a$

Prop. 5.3:

- 1. Let $f: H \to K$, $g: G \to H$ be group homomorphisms, then so is $f \circ g$.
- 2. Let $f: H \to K$ be a group isomorphism, then so is f^{-1} .

Pf.:

- 1. $(f \circ g)(ab) = f(g(ab) = f(g(a)g(b)) = f(g(a))f(g(b)) = (f \circ g)(a)(f \circ g)(b)$ Therefore $f \circ g$ satisfies the condition of a group homomorphism.
- 2. $f(f^{-1}(ab)) = ab = f(f^{-1}(a))f(f^{-1}(b))$, then since f is injective, f(p) = f(q) implies p = q. Therefore $f^{-1}(ab) = f^{-1}(a)f^{-1}(b)$, and f^{-1} is then a group homomorphism.

6 Lecture 6: Group Actions

Def. 6.1: A group action of a group G on a set X is a map $G \times X \to X$ written as $(g, x) \mapsto g.x$ s.t.

- $\bullet \ g_1 \cdot (g_2 \cdot x) = (g_1 g_2) \cdot x$
- $\bullet \ e \cdot x = x$

We sometimes write $G \circlearrowleft X$.

A map of sets $G \times X \to X$ can be equivalently given by

$$G \to^{\rho} \{f : X \to X\}$$
$$g \mapsto \rho(g)$$

where $\rho(g)(x) = g \cdot x$.

Prop. 6.1:

A map $G \times X \to X$ defines a group action iff⁴ the corresponding map $G \to^{\rho} \{f : X \to X\}$ is s.t. $\rho(g) \in S_X \ \forall \ g \in G \ \text{and} \ \rho : G \to S_X \ \text{is a group homomorphism.}^5$

Pf.:

$$\rho(g_1)(\rho(g_2)(x)) = \rho(g_1g_2)(x) \Leftrightarrow \rho(g_1) \circ \rho(g_2) = \rho(g_1g_2)$$

$$\Leftrightarrow \rho(e) = \mathrm{id}_X$$

"
$$\Rightarrow$$
 " : $\rho(g) \circ \rho(g^{-1}) = \rho(gg^{-1}) = \rho(e) = \mathrm{id}_X \Rightarrow \rho(g) \text{ surj.}^6$
 $\rho(g^{-1}) \circ \rho(g) = \rho(g^{-1}g) = \mathrm{id}_X \Rightarrow \rho(g) \text{ inj.}^7$

This implies that $\rho(g) \in S_X$, as the requirement is that the map is bijective. Since the first line, at the start of the proof, is true for any for any group action, this implies that $\rho: G \to S_X$ is a group homomorphism. Then, since all steps taken are reversible, the same process can be taken in reverse to show the bijectivity of $\rho(g)$, and ρ being a group homomorphism, implies that the map $G \times X \to X$ is a group action, proving " \Leftarrow ".

Examples:

- 1. Trivial action: For any X, we define $G \times X \to X$ s.t. $(g, x) \mapsto x$.
- 2. Defining action of S_X on $X: S_X \times X \to X$, $(\sigma, x) \mapsto \sigma(x)$. We can claim that the map ρ from above is in this scenario id: $S_X \to S_X$.
- 3. G acting on itself by

$$\begin{array}{ll} \rho_l: G\times G\to G & (g,x)\mapsto gx \\ \rho_r: G\times G\to G & (g,x)\mapsto xg^{-1} \\ \rho_{adj.}: G\times G\to G & (g,x)\mapsto gxg^{-1} \end{array} \begin{array}{ll} \text{Called left regular action.} \\ \text{Called right regular action.} \end{array}$$

 $^{^4}$ If and only if

 $^{{}^{5}}S_{X}$ is the symmetric group on set X

⁷Maps are surjective if and only if a right inverse exists for each element. Maps are injective if and only if a left inverse exists for each element.

Verification of each as a group action:

$$\rho_l$$
:

We can let the map corresponding to ρ_l , $\phi: G \to \{f: X \to X\}$ be s.t. $\phi(g)(x) = gx$.

Then $\phi(g_1)(\phi(g_2)(x)) = \phi(g_1)(g_2x) = g_1g_2x = \phi(g_1g_2)(x)$.

 $\Rightarrow \phi(g_1) \circ \phi(g_2) = \phi(g_1g_2), \phi(e) = e$

As in the above proof, this implies both left and right inverses therefore $\rho_l \in S_X$

 ρ_r :

Analagous to ρ_l

 $\rho_{adj.}$:

Similar to
$$\rho_l$$
, define $\phi(g)(x) = gxg^{-1}$. Then $\phi(g_1)(\phi(g_2)(x)) = \phi(g_1)(g_2xg_2^{-1})$
= $g_1g_2xg_2^{-1}g_1^{-1} = (g_1g_2)x(g_1g_2)^{-1} = \phi(g_1g_2)(x)$.
 $\Rightarrow \phi(g_1) \circ \phi(g_2) = \phi(g_1g_2), \phi(e) = e$

Same conclusion can be drawn as in the case of ρ_l .

4.
$$D_{2n} \times \{1,...,n\} \rightarrow \{1,...,n\}$$
:

$$(r^i, j) \mapsto i + j \mod n$$

 $(r^i s, j) \mapsto i - j \mod n$

Figure 1: Illustration of the action of the D_{12} group on the set $\{1,...,n\}$. The element s of D_{2n} reflects across the vertical, and the element r rotates by $\frac{2\pi}{n}$ in the anti-clockwise direction.

7 Lecture 7: Subgroups

Def. 7.1:

A subset $H \leq G$ of a group (G, m) is a **subgroup** if the restriction of m to $H \times H$ turns H into a group. We write $H \leq G$ in that case.

Remark:

To specify, H is required to have contain the unit, inverses and be associative, it is also required to have closure under m. That is to say $\forall a, b \in H, m(a, b) \in H$.

Prop. 7.1:

 $H \subseteq G$ is a subgroup iff

- \bullet *H* is non-empty.
- if $a, b \in H$, $ab^{-1} \in H$.

Pf.

```
" ⇒ " : H \leq G \Rightarrow \exists e \in H \text{ s.t. } ea = a \forall a \in H.

∴ H \text{ non-empty.}

H \leq G \Rightarrow \forall b \in H, \exists c \in H \text{ s.t. } bc = e \ (c = b^{-1})

∴ \forall a, b \in H, m(a, b^{-1}) = ab^{-1} \in H \text{ due to closure under } m

" \( \infty \) " : As a subset of G, associativity implied.

H \text{ non-empty } \therefore \exists h \in H. Second condition implies aa^{-1} \in H \Rightarrow e \in H. (unit exists) w.l.o.g. we can impose that the subset H \text{ is not the trivial group, ie. } H \neq (\{h = e\}, m),

\Rightarrow \exists h \in H \text{ s.t. } h \neq e. \Rightarrow eh^{-1} = h^{-1} \in H. (inverses exist) for any 2 elements a, b \in H, ab^{-1} \in H \text{ and } b^{-1} \Rightarrow a, b^{-1} \in H \text{ so } ab \in H. (closure)
```

Examples:

- 1. Every group G has a trivial subgroup, $(\{e\}, m) \leq G$, and an improper subgroup, $G \leq G$.
- 2. $n\mathbb{Z} = \{nk | k \in \mathbb{Z}\} \subseteq \mathbb{Z}$ is a subgroup of $(\mathbb{Z}, +)$.
- 3. Given $x \in G$, $\langle x \rangle = \{x^n | n \in \mathbb{Z}\} \subseteq G$ is the subgroup of G generated by x.
- 4. Let $G \times X \to X$ be a group action, and $s \in X$. The **stabilizer of** s, $G_s := \{g \in G | g \cdot s = s\}$, forms a subgroup of G.

- 5. Let $\varphi: G \to H$ be a group homomorphism. Then
 - $\ker \varphi := \{g \in G | \varphi(g) = e\}$

 $\therefore H \leq G.$

• im $\varphi := \varphi(G) = \{ \varphi(g) \in H | g \in G \}$

are both subgroups, of G and H respectively.

8 Lecture 8: Cyclic Groups and Subgroups.

Def. 8.1:

A group H is **cyclic** if it can be generated by a single element. That is to say $\exists x \in H$ s.t. $H = \langle x \rangle = \{x^n | n \in \mathbb{Z}\}.$

Prop. 8.1:

If $H = \langle x \rangle$, then $|H| = |x|^8$. Also

- 1. if $|H| = n < \infty$, then the elements $e, x, x^2, ..., x^{n-1}$ are all distinct and $H = \{e, x, ..., x^{n-1}\}$.
- 2. if $|H| = \infty$ then $H = \{..., x^{-2}, x^{-1}, e, x, x^2, ...\}$ and $x^a \neq x^b$ if $a \neq b$.

Pf.

$$\begin{split} |x| &= n: \\ \text{We first show } H = \langle x \rangle \subseteq \{e, x, ..., x^{n-1}\}. \\ \text{Let } x^m \in H, \ m = kn + r, \ 0 \leq r \leq n - 1 \\ x^m = x^{kn + r} = x^n \cdot x^n \cdot ... \cdot x^n \cdot x^r = e \cdot x^r = x^r \\ \Rightarrow H = \langle x \rangle = \{x^r | 0 \leq r \leq n - 1\} = \{e, x, ..., x^{n-1}\}. \end{split}$$

To show $x^i \neq x^j \ \forall i, j \text{ s.t. } 0 \leq i, j \leq n-1,$ assume $x^i = x^j, \ \Rightarrow x^{i-j} = e$. But, $0 \leq i-j \leq n-1$, contradicting |x| = n

 $|x|=\infty$:

 $x^i \neq x^j \ \forall \ i \neq j$ shown as in the first case.

Theorem 8.1:

Let $H = \langle x \rangle$, then

• if |H| = n, there exists a group isomorphism defined by

$$\varphi: \ \mathbb{Z}/n\mathbb{Z} \to H \tag{17}$$

$$k \mapsto x^k$$
 (18)

• and if $|H| = \infty$, there exists group isomorphism defined by

$$\varphi: \mathbb{Z} \to H$$

$$k \mapsto x^k$$

Pf.

• φ well defined:

Finite order: $k \equiv l \pmod{n} \Rightarrow k = l + mn, m \in \mathbb{Z}$.

Then $x^k = x^{l+mn} = x^l(x^n)^m = x^l$. No equivalent terms in \mathbb{Z} for non-finite order.

• φ group homomorphism:

$$\varphi(k_1 + k_2) = x^{k_1 + k_2} = x^{k_1} \cdot x^{k_2} = \varphi(k_1) \cdot \varphi(k_2)$$

• φ bijective:

Follows from previous proposition. Also provable through existence of left, right inverses.

⁸The order of element $x \in G$ can also be defined as the order of the subgroup which it generates.