Markdown

This is a markdown cell where we write instructions and math formulas. **Double click** to edit and **press Run** to see the formatted texts.

Load and Save Notebook

To load a note book, just go to "File" and navigate to "Open...". Use keyboard shortcut **Cmd/Ctrl+s** to save the file. You will be saving a checkpoint as well if you use this keyboard shortcut. You can click on "File" on the menu bar and select an option to revert to a certain checkpoint. Jupyter Notebook will also autosave your file every 120s, but it's still a good practice to press **Cmd/Ctrl+s** often when you write programs.

Code Blocks

Below will be an example of a Python code block. Hit **Run** to run the block.

```
In [26]: print("Hello world!")
Hello world!
```

You can also hit Run All in "Cell" menu. To run every blocks.

```
In [2]: print("Hello world, again!")
Hello world, again!
```

Python Programming

We have finished Jupyter Notebook introduction. Below we will start Python Programming.

Importing Libraries

For the lab, we will be using different libraries. This is how you do it in Python.

```
In [2]: import pandas as pd import numpy as np
```

By importing pandas as pd, you can use the shorthand $\,pd\,$ when you need to use pandas. The same method applies to $\,np\,$.

NumPy Tutorial

Below we show you a few ways to create arrays.

```
In [14]: # Create a basic array
         x = np.array([0, 1, 2, 3])
         print("x:\n", x)
         # Create a 2D array
         y = np.array([[0, 1, 2, 3],
                       [4, 5, 6, 7]])
         print("y:\n", y)
         # Create a 3 by 4 empty array
         z = np.zeros((3, 4))
         print("z:\n", z)
         # Create a 5 by 5 array filled with 1s
         a = np.ones((5, 5))
         print("a:\n", a)
         # Create a sequence of numbers, note the array does not include 20
         b = np.arange(0, 20, 2)
         print("b:\n", b)
         # Use reshape to change the dimention of the array
         c = np.arange(0, 20, 2, dtype=float).reshape(2, 5)
         print("c:\n", c)
         # Create a random 6 by 3 array with value between [0, 1).
         d = np.random.rand(6, 3)
         print("d:\n", d)
             # This creates random values ranging between [1, 4).
         d = d*3 + 1
         print("New d:\n", d)
         # Operations
         e = d + 10
         print("e:\n", e)
```

```
х:
 [0 1 2 3]
у:
[[0 1 2 3]
[4 5 6 7]]
 [[0. 0. 0. 0.]
 [0. 0. 0. 0.]
 [0. 0. 0. 0.]]
a:
 [[1. 1. 1. 1. 1.]
 [1. 1. 1. 1. 1.]
 [1. 1. 1. 1. 1.]
 [1. 1. 1. 1. 1.]
[1. 1. 1. 1. 1.]]
 [ 0 2 4 6 8 10 12 14 16 18]
c:
 [[0. 2. 4. 6. 8.]
 [10. 12. 14. 16. 18.]]
 [[0.10769134 0.90335426 0.26376816]
 [0.56614851 0.08040202 0.98168606]
 [0.60836736 0.4511608 0.21463848]
 [0.11412946 0.15256207 0.94490592]
 [0.37240798 0.30002266 0.71380106]
 [0.12298735 0.97421158 0.05734405]]
New d:
 [[1.32307402 3.71006279 1.79130449]
 [2.69844554 1.24120606 3.94505817]
 [2.82510207 2.35348241 1.64391543]
 [1.34238839 1.45768621 3.83471776]
 [2.11722393 1.90006799 3.14140318]
 [1.36896205 3.92263474 1.17203215]]
 [[11.32307402 13.71006279 11.79130449]
 [12.69844554 11.24120606 13.94505817]
 [12.82510207 12.35348241 11.64391543]
 [11.34238839 11.45768621 13.83471776]
 [12.11722393 11.90006799 13.14140318]
 [11.36896205 13.92263474 11.17203215]]
```

Now it's your turn.

To-do:

- 1. Create and print out an empty array with dimensions of 15 by 29.
- 2. From the 0 array you created, make it to an ones array without using np.ones. Print out the array.
- 3. Create an 8 by 9 array with values between [5, 11). Note that 11 is excluded. Print out the array.

```
0. 0. 0. 0. 0.]
0.
0. 0. 0. 0. 0.]
0. 0. 0. 0. 0.]
0.
0. 0. 0. 0. 0.]
0.
0. 0. 0. 0. 0.]
0.
0. 0. 0. 0. 0.]
0. 0. 0. 0. 0.]
0. 0. 0. 0. 0.]
0. 0. 0. 0. 0.]
0.
0. 0. 0. 0. 0.]
0.
0. 0. 0. 0. 0. 1
0.
0. 0. 0. 0. 0. 1
0. 0. 0. 0. 0.]
0. 0. 0. 0. 0.]
0. 0. 0. 0. 0.]]
1.
1. 1. 1. 1. 1.]
1. 1. 1. 1. 1.]
1. 1. 1. 1. 1.]
```

```
1.
1. 1. 1. 1. 1.
1.
1. 1. 1. 1. 1.
1. 1. 1. 1. 1.
1.
1. 1. 1. 1. 1.
1. 1. 1. 1. 1.
1. 1. 1. 1. 1.
1. 1. 1. 1. 1.
1.
1. 1. 1. 1. 1.
1.
1. 1. 1. 1. 1.
1. 1. 1. 1. 1.
1. 1. 1. 1. 1.
1. 1. 1. 1. 1.]]
arr:
[[ 7
  7
   6 8 6
      7
       5
       7 10]
   5 10
[ 5
 9
  9
     8 10
        9]
  7 10
     8
      5
    9
        8 ]
[ 5
 7 6
   5 10
     6
      5
       8
        9]
 5 10
   8
    6
     7
      8
       9
[10
        7]
    7
     7
      5
[ 5
 7
  5
   6
       6
        6]
[ 7
 8
  9
   7
    5
     7
      9
       5 10]
   6
    8 10
      7 10
 7 8
        6]]
```

Pandas Tutorial

Create Data Frame

Pandas is a data frame that will be used to handel our data.

```
In [15]: # Create a data frame from numpy array
       df_1 = pd.DataFrame(y, columns=['col 1', 'col 2', 'col 3', 'col 4'])
       print("df_1:\n", df_1, '\n')
       print("----") # for readability only
       # You can also use display() to make the dataframe looks nicer at the ou
       tput
       print("df 1 using display:")
       display(df_1)
       print("----")
       # Create a data frame with strings
       data_2 = {'Aminal': ['Dog', 'Cat'], 'Color': ['Yellow', 'Pink'], 'Age':
       [1, 3]}
       df 2 = pd.DataFrame(data=data 2)
       print("df_2:\n", df_2, '\n')
       print("----")
       # Print the type of the data. Notice that Age is int
       df 2.dtypes
       df_1:
          col 1 col 2 col 3 col 4
           0 1 2
                 5
            4
                       6
                            7
       -----
       df_1 using display:
         col 1 col 2 col 3 col 4
          4 5
                      7
                  6
       df 2:
         Aminal Color Age
          Dog Yellow 1
           Cat Pink 3
       _____
Out[15]: Aminal object
              object
       Color
       Age
               int64
       dtype: object
```

Now it's your turn.

To-do:

1. Create a data frame containing demographics of you and your 2 friends. The data frame should be 3 by 4. The columns will be 'Name', 'Age', 'Height', 'Hobby'. You can make up data if you like. Print or display the result.

```
In [22]: ### Insert your code below ###
        friends_data = np.array([['Ryan', '40', '6.0', 'Snowboarding'],
                                ['Roger', '39', '5.75', 'Writing'],
                                ['Steve', '39', '5.6', 'Reading']])
        df_friends = pd.DataFrame(friends_data, columns=['Name', 'Age', 'Height'
        , 'Hobby'])
        print("df friends:\n", df friends, '\n')
        print("----") # for readability only
        df friends:
                                   Hobby
             Name Age Height
                      6.0 Snowboarding
            Ryan 40
        1 Roger 39
                      5.75
                                Writing
        2 Steve 39
                      5.6
                                Reading
```

Modify Data Frame

Notice that when you use =, you are not copying data frame. You are just saying that df_3 is now referring to the same data frame as df_1 . If you change values in df_3 you will change the values in df_1 too, since both are referring to the same dataframe. Also notice that every time you click **Run** in this block, the values in 'col 1' changes.

```
In [23]: # Add a new column
    df_2['Weight'] = [89, 60]
    print("New df_2:")
    display(df_2)
    print("-----")

# Special thing to take notice
    df_3 = df_1
    df_3['col 1'] = df_3['col 1'] - 1
    print("df_3:")
    display(df_3)
    print("df_1:")
    display(df_1)
```

New df 2:

	Aminal	Color	Age	Weight	
0	Dog	Yellow	1	89	
1	Cat	Pink	3	60	
df	_3:				

	col 1	col 2	col 3	col 4
0	-2	1	2	3
1	2	5	6	7
df	1:			

	col 1	col 2	col 3	col 4
0	-2	1	2	3
1	2	5	6	7

Print Specific Data

Here we use <code>.loc</code>, <code>.at</code> to obtain the cell values by providing the <code>labels</code> (e.g. 'Age', 'Weight'). For rows, since we do not create labels for them the defaults will be 0, 1, 2, 3...etc. We use <code>.iloc</code>, <code>.iat</code> to obtain the cell values by prividing the indicies (positions) of the rows and columns.

```
In [24]: # Few ways to view the values
       # Create a data frame based on data 2; the values are copied
       df_4 = pd.DataFrame(data=data_2)
       print("df_4:")
       display(df 4)
       print("----")
       # Selection by Label
           # Getting the scalar value
       dog age = df 4.loc[0, 'Age']
       print("Age of Dog:", dog_age, '\n')
       print("----")
           # Getting the whole column
       aminals_age = df_4.loc[:, ['Age']]
       print("Age Column:")
       display(aminals age)
       print("----")
           # Faster way to get a scalar
       cat_age = df_4.at[1, 'Age']
       print("Age of Cat:", cat_age, '\n')
       print("----")
       # Selection by position
           # Selecting Row based on row number
       dog = df \ 4.iloc[0]
       print("Dog row:")
       print(dog, '\n')
       print("----")
           # Selecting Col based on col number
       animals age p = df 4.iloc[:, 2]
       print("Animals' age:")
       print(animals_age_p, '\n')
       print("----")
           # Selecting cell based on col number
       cat age p = df \ 4.iat[1, 2]
       print("Age of Cat: ", cat_age_p)
```

df_4:

	Amir	nal	Color	Age
0	D	og	Yellow	1
1	C	at	Pink	3
			 og: 1	
лу	5 01	Ъ	Jg• 1	
Age	e Co	lur	nn:	
	Age			
0	1	•		
1	3			
Age	e of	Ca	at: 3	
Dog	g ro	 w:		
	inal			og
Age			Yell	ow 1
_		0,	dtype	_
	 imal		age:	
0	1	5	age:	
1 Nar	3 ne: 7	Aae	e, dty	ne:
Age	e of	Ca	at: 3	

Now it's your turn.

To-do:

- 1. Add a new **row** to your **demographics** data frame. The new row will contain information of another friend. *Note that we haven't taught you how to do so but you should be able to find resources online easily.* Print/display the data frame.
- 2. Print all the information (whole row) about you using .loc .
- 3. Print the 'Name' of your second friend using .iat .

```
In [25]: ### Insert your code below ###
       df_friends = df_friends.append({'Name' : 'Kevin', 'Age' : '37', 'Height'
        : 6.1 , 'Hobby': 'Photography'}, ignore_index = True)
       print("df_friends:\n", df_friends, '\n')
        print("----") # for readability only
       print("Me row:\n", df_friends.iloc[0], '\n')
       print("----") # for readability only
        print("Second friend Name:\n", df_friends.iat[1, 0], '\n')
       print("----") # for readability only
       df friends:
            Name Age Height
                                Hobby
       0
           Ryan 40
                   6.0 Snowboarding
                    5.75
       1 Roger 39
                             Writing
       2 Steve 39 5.6
                             Reading
        3 Kevin 37 6.1 Photography
       Me row:
        Name
                       Ryan
                        40
       Age
       Height
                        6.0
       Hobby Snowboarding
       Name: 0, dtype: object
       Second friend Name:
        Roger
```

Congradulation on finishing the tutorial! Now you can move on to the next step of the lab.