

Modelos de Pronósticos

Elementos de los Pronósticos

- Variables: Demanda, disponibilidad de materia prima, ventas.
- Horizonte de planeación: Número de períodos en que se calculó el pronóstico
- División temporal: años, días, meses.
- Frecuencia de Revisión

Elementos de los pronósticos

- Introducción al suavizado exponencial
- Suavizado Exponencial Simple
- Suavizado Exponencial con tendencia (Holt)
- Suavizado Exponencial con tendencia y estacionalidad (Holt-Winters)
 - Método Multiplicativo
 - Método Aditivo

Introducción al suavizado exponencial

- Los métodos de promedio móvil simple asignan pesos iguales (1/k) a todos los k puntos de datos.
- Observaciones recientes proveen información más relevante que observaciones pasadas.
- Se necesita un esquema de ponderación que asigne pesos decrecientes a las observaciones más distantes en el tiempo

Suavizado Exponencial Simple

- Los métodos de suavizado exponencial asignan mayor ponderación a las observaciones más recientes, y estas ponderaciones decrecen exponencialmente a medida que se vuelven más distantes en el tiempo.
- Estos métodos son más efectivos cuando las variables que se busca pronósticar cambien lentamente a lo largo del tiempo.

Datos vs. Métodos

5 CONTRACTOR OF THE PROPERTY O

Definiciones

- Demanda en t (y_t): demanda observada en el período t
- Pronóstico en t (\bar{y}_t) : Pronóstico calculado para el período t.
- I₀:Nivel estimado para el tiempo 0.
- I_T: Nivel estimado para el tiempo t.
- $\bar{y}_{t,t+\tau}$ Pronóstico calculado en t para τ períodos en el futuro.
- Error del Pronóstico:
- Horizonte de planeación (N): Es el número de períodos en los cuales se calculó un pronóstico

$$e_t = y_t - y_t$$

Suavizado exponencial Simple

- El método suavizado exponencial es utilizado para pronosticar series de tiempo cuando no existe un patrón de tendencia ni un patrón de estacionalidad, pero el promedio de la demanda de la serie y_t cambia lentamente a lo largo del tiempo.
- No es un modelo que considere tendencia

$$y_t = \beta_o + \varepsilon_t$$

Procedimientos para el Suavizado Exponencial Simple

 Paso 1: Calcule el valor inicial Estimado del promedio(level) de la serie en el tiempo t = 0

$$\ell_0 = \overline{y} = \frac{\sum_{t=1}^n y_t}{n}$$

 Paso 2: Calcule el Estimado actualizado utilizando la ecuación de suavizado

$$\ell_T = \alpha y_T + (1 - \alpha) \ell_{T-1}$$

donde α es la constante de suavizado con valor entre 0 and 1.

Procedimientos para el Suavizado Exponencial Simple

Note que

$$\begin{split} \ell_T &= \alpha \, y_T + (1 - \alpha) \ell_{T-1} \\ &= \alpha \, y_T + (1 - \alpha) [\alpha \, y_{T-1} + (1 - \alpha) \ell_{T-2}] \\ &= \alpha \, y_T + (1 - \alpha) \alpha \, y_{T-1} + (1 - \alpha)^2 \ell_{T-2} \\ &= \alpha \, y_T + (1 - \alpha) \alpha \, y_{T-1} + (1 - \alpha)^2 \alpha \, y_{T-2} + \dots + (1 - \alpha)^{T-1} \alpha \, y_1 + (1 - \alpha)^T \ell_0 \end{split}$$

Los coeficientes miden la constribución de las observaciones decreciendo exponencialmente a lo largo del tiempo.

Suavizado Exponencia Simple

• Pronóstico realizado en el tiempo T para y_{T+p}

$$\hat{y}_{T+p}(T) = \ell_T$$
 $(p = 1, 2, 3, ...)$

• SSE, MSE, y los errores estándar en el tiempo *T*

$$SSE = \sum_{t=1}^{T} [y_t - \hat{y}_t(t-1)]^2$$

$$MSE = \frac{SSE}{T-1}, \quad s = \sqrt{MSE}$$

• La empresa Bay City Seafood registró la cantidad de bacalao que se pesca mensualmente de los dos años anteriores previos.

Pesca ba (In Tons)

Month	Year 1	Year 2
January	362	276
February	381	334
March	317	394
April	297	334
May	399	384
June	402	314
July	375	344
August	349	337
September	386	345
October	328	362
November	389	314
December	343	365

• El gráfico sugiere que los datos no presentan ningún patron de tendencia ni estacionalidad, por lo tanto el suavizado exponencial es un modelo que se puede aplicar en este caso: $y_t = \beta_o + \varepsilon_t$

Es también possible que el promedio(or level) este cambiando lentamente a lo largo del tiempo.

• **Paso 1**: Calcule ℓ_0 promediando los primeros doce valores de la serie temporal.

$$\ell_0 = \frac{\sum_{t=1}^{12} y_t}{12} = \frac{362 + 381 + \dots + 343}{12} = 360.6667$$

A pesar de que no hay una justificación teórica, es una práctica frecuente que se calcule la estimación del suavizado exponencial, empleando la mitad de los datos históricos.

• **Paso 2**: Comience con la estimación ℓ_0 = 360.6667 y actualice el valor aplicando la ecuación de suavizado hasta llegar a los 24 datos observados.

Defina α = 0.1 arbitrariamente y juzgue las propiedades de esta seleccción de α probando el modelo.

$$\ell_1 = \alpha y_1 + (1 - \alpha)\ell_0 = 0.1(362) + 0.9(360.6667) = 360.8000$$

$$\ell_2 = \alpha y_2 + (1 - \alpha)\ell_1 = 0.1(381) + 0.9(360.8000) = 362.8200$$

One-period-ahead Forecasting

n	alpha	SSE	MSE	S	
24	0.1	28735.1092	1249.3526	35.3462	
Time		Smoothed Estimate	Forecast Made	Forecast	Squared Forecast
Period	у	for Level	Last Period	Error	Error
0		360.6667			
1	362	360.8000	360.6667	1.3333	1.7777
2	381	362.8200	360.8000	20.2000	408.0388
3	317	358.2380	362.8200	-45.8200	2099.4749
4	297	352.1142	358.2380	-61.2380	3750.0956
5	399	356.8028	352.1142	46.8858	2198.2762
6	402	361.3225	356.8028	45.1972	2042.7869
7	375	362.6903	361.3225	13.6775	187.0735
8	349	361.3212	362.6903	-13.6903	187.4234
9	386	363.7891	361.3212	24.6788	609.0411
10	328	360.2102	363.7891	-35.7891	1280.8609
11	389	363.0892	360.2102	28.7898	828.8523
12	343	361.0803	363.0892	-20.0892	403.5753
13	276	352.5722	361.0803	-85.0803	7238.6517
14	334	350.7150	352.5722	-18.5722	344.9281
15	394	355.0435	350.7150	43.2850	1873.5899
16	334	352.9392	355.0435	-21.0435	442.8295
17	384	356.0452	352.9392	31.0608	964.7756
18	314	351.8407	356.0452	-42.0452	1767.8027
19	344	351.0566	351.8407	-7.8407	61.4769
20	337	349.6510	351.0566	-14.0566	197.5894
21	345	349.1859	349.6510	-4.6510	21.6317
22	362	350.4673	349.1859	12.8141	164.2015
23	314	346.8206	350.4673	-36.4673	1329.8638
24	365	348.6385	346.8206	18.1794	330.4918

Example I

ullet Resultados asociados con diferentes valores de lpha

Smoothing Constant	Sum of Squared Errors
0.1	28735.11
0.2	30771.73
0.3	33155.54
0.4	35687.69
0.5	38364.24
0.6	41224.69
0.7	44324.09
0.8	47734.09

Example I

- Step 3: Find a good value of α that provides the minimum value for MSE (or SSE).
 - Use Solver in Excel as an illustration SE

	Α	В	С	D	Е	F
1	n	alpha	SSE	MSE	s	
2	24	0.03435	28089.1479	1221.2673	34.9466	
3						
4	Time		Smoothed Estimate	Forecast Made	Forecast	Squared Forecast
5	Period	у	for Level	Last Period	Error	Error
6	0		360.6667			
7	1	362	360.7125	360.6667	1.3333	1.7777
8	2	381	361.4095	360.7125	20.2875	411.5825
9	3	317	359.8838	361.4095	-44.4095	1972.1994
10	4	297	357.7235	359.8838	-62.8838	3954.3759
11	5	399	359.1415	357.7235	41.2765	1703.7457
12	6	402	360.6139	359.1415	42.8585	1836.8477
13	7	375	361.1081	360.6139	14.3861	206.9605
14	8	349	360.6921	361.1081	-12.1081	146.6059
15	9	386	361.5616	360.6921	25.3079	640.4879
16	10	328	360.4086	361.5616	-33.5616	1126.3778
17	11	389	361.3908	360.4086	28.5914	817.4685
18	12	343	360.7590	361.3908	-18.3908	338.2219
19	13	276	357.8472	360.7590	-84.7590	7184.0916
20	14	334	357.0280	357.8472	-23.8472	568.6912
21	15	394	358.2981	357.0280	36.9720	1366.9281
22	16	334	357.4634	358.2981	-24.2981	590.3991
23	17	384	358.3750	357.4634	26.5366	704.1911
24	18	314	356.8506	358.3750	-44.3750	1969.1431
25	19	344	356.4091	356.8506	-12.8506	165.1376
26	20	337	355.7424	356.4091	-19.4091	376.7141
27	21	345	355.3733	355.7424	-10.7424	115.3981
28	22	362	355.6010	355.3733	6.6267	43.9130
29	23	314	354.1718	355.6010	-41.6010	1730.6402
30	24	365	354.5438	354.1718	10.8282	117.2494

Suavizado Exponencial con tendencia (Holt)

 Si una serie de tiempo se incrementa o decrece a una tasa aproximadamente fija, entonces se puede definir a esta serie como una tendencia lineal

$$y_t = \beta_0 + \beta_1 t + \varepsilon_t$$

Si los valores de los parámetros θ_0 y θ_1 estan cambiando lentamente con el tiempo, el método de tendencia conocido como método puede ser aplicado a la serie de tiempo observada.

Note: Cuando ni θ_0 ni θ_1 cambia con el tiempo, es posible utilizar un modelo de regresión para pronosticar los valores de y_t .

• Promedio(o media) en el tiempo T: $\theta_0 + \theta_1 T$ Tasa de crecimiento (o tendencia): θ_1

Suavizado Exponencial con tendencia corregida

- Una aproximación más simple para este modelo de pronóstico, se plantea, el mismo que tiene dos constantes, denotados por α y γ .
- Existen dos parámetros que se estiman ℓ_{T-1} y b_{T-1} .
 - ℓ_{T-1} es la estimación del nivel de la serie de tiempo construida en el periodo T-1 (Este es denominado componente permanente).
 - b_{T-1} es la estimación de la tasa de crecimiento de la serie de tiempo construída en el periodo T-1 (Este denominado componente de tendencia).

Suavizado Exponencial con tendencia corregida

Nivel estimado

$$\ell_T = \alpha y_T + (1 - \alpha)(\ell_{T-1} + b_{T-1})$$

• Tendencia estimada

$$b_T = \gamma (\ell_T - \ell_{T-1}) + (1 - \gamma) b_{T-1}$$

donde: α = constant de suavizado para el nivel (0 \leq α \leq 1)

 γ = constante de suavizado para la tendencia(0 $\leq \gamma \leq$ 1)

Suavizado Exponencial con tendencia corregida

• Pronóstico realizado en T for y_{T+p}

$$\hat{y}_{T+p}(T) = \ell_T + pb_T$$
 $(p = 1, 2, 3, ...)$

• MSE y el error estandard s at time T

$$SSE = \sum_{t=1}^{T} [y_t - \hat{y}_t(t-1)]^2$$

$$MSE = \frac{SSE}{T-2}, \quad s = \sqrt{MSE}$$

• Ejemplo de ventas de Termostatos

Weekly Thermostat Sales							
206	189	172	255				
245	244	210	303				
185	209	205	282				
169	207	244	291				
162	211	218	280				
177	210	182	255				
207	173	206	312				
216	194	211	296				
193	234	273	307				
230	156	248	281				
212	206	262	308				
192	188	258	280				
162	162	233	345				

• Análisis:

- Tendencia creciente
- La tasa de crecimiento ha cambiado en el period de las ultimas 52 semanas
- No existe patron estacional
- ⇒ Se puede aplicar el método Holt's con tendencia

• **Paso 1**: Obtener un Estimado inicial de ℓ_0 y b_0 empleando un ajuste por lineal mínimos cuadradosline con la mitad de los datos históricos.

• y-intercepto = ℓ_0 ; pendiente = b_0

- Ejemplo
 - Ajustando las primeras 26 observaciones a una línea de tedencia
 - $\ell_0 = 202.6246$; $b_0 = -0.3682$

SUMMARY OUTPUT	
Regression Sta	atistics
Multiple R	0.111769555
R Square	0.012492433
Adjusted R Square	-0.028653715
Standard Error	25.5551741
Observations	26
ANOVA	
	df
Regression	1
Residual	24
Total	25
	Coefficients
Intercept	202.6246154
X Variable 1	-0.368205128

• Paso 2: Calculo del pronóstico y₁ para el tiempo 0

$$\hat{y}_{T+p}(T) = \ell_T + pb_T$$
 $T = 0, p = 1$

• Ejemplo

$$\hat{y}_1(0) = \ell_0 + b_0 = 202.6246 - 0.3682 = 202.2564$$

NIVERSID

- **Paso 3**: Actualice los valores estimados ℓ_T y b_T empleando valores predeterminados de las constantes de suavizado.
- Ejemplo: sea α = 0.2 and γ = 0.1

$$\ell_1 = \alpha y_1 + (1 - \alpha)(\ell_0 + b_0)$$

= 0.2(206) + 0.8(202.6246 - 0.3682) = 203.0051

$$b_1 = \gamma(\ell_1 - \ell_0) + (1 - \gamma)b_0$$

= 0.1(203.0051 - 202.6246) + 0.9(-0.3682) = -0.2933

$$\hat{y}_2(1) = \ell_1 + b_1 = 203.0051 - 0.2933 = 202.7118$$

1		alpha	gamma	SSE	MSE		
2	n 52	0.2	gamma 0.1	39182.4705	783.6494	s 27.993739	
3	52	0.2	U. I	39102.4705	703.0494	21.993139	
4					Forecast		Coursed
5	Time			Growth	Made Last	Forecast	Squared Forecast
6	Period		Level	Rate	Period	Error	Error
7	Period 0	У	202.6246	-0.3682	Pellod	Elloi	Elloi
8	1	206	202.0240	-0.3662	202.2564	3.7436	14.0145
9	2	245	211.1694	0.5524	202.7118	42.2882	1788.2923
10	3	185	206.3775	0.0180	211.7219	-26.7219	714.0582
11	4	169	198.9164	-0.7299	206.3955	-37.3955	1398.4224
12	5	162	190.9492	-1.4536	198.1865	-36.1865	1309.4608
13	6	177	186.9964	-1.7036	189.4955	-12.4955	156.1383
14	7	207	189.6343	-1.2694	185.2929	21.7071	471.1995
15	8	216	193.8919	-0.7167	188.3649	27.6351	763.6997
16	9	193	193.1402	-0.7202	193.1752	-0.1752	0.0307
17	10	230	199.9360	0.0314	192.4199	37.5801	1412.2609
18	11	212	202.3739	0.2720	199.9673	12.0327	144.7850
19	12	192	200.5167	0.0591	202.6459	-10.6459	113.3354
20	13	162	192.8607	-0.7124	200.5758	-38.5758	1488.0961
21	14	189	191.5186	-0.7754	192.1483	-3.1483	9.9117
22	15	244	201.3946	0.2898	190.7433	53.2567	2836.2799
23	16	209	203.1475	0.4361	201.6844	7.3156	53.5182
24	17	207	204.2669	0.5044	203.5836	3.4164	11.6718
25	18	211	206.0170	0.6290	204.7713	6.2287	38.7969
26	19	210	207.3168	0.6961	206.6460	3.3540	11.2492
27	20	173	201.0103	-0.0042	208.0129	-35.0129	1225.9019
52	45	255	280.9500	4.4428	287.4375	-32.4375	1052.1900
53	46	312	290.7142	4.9749	285.3928	26.6072	707.9453
54	47	296	295.7513	4.9811	295.6891	0.3109	0.0966
55	48	307	301.9860	5.1065	300.7324	6.2676	39.2823
56	49	281	301.8740	4.5846	307.0924	-26.0924	680.8155
57	50	308	306.7669	4.6155	306.4586	1.5414	2.3759
58	51	280	305.1059	3.9878	311.3823	-31.3823	984.8515
59	52	345	316.2750	4.7059	309.0937	35.9063	1289.2627

• Paso 4: Encuentre la major combinación para α y γ que minimiza el SSE (or MSE)

• Ejemplo: Use Solver in Excel

52			SSE	MSE	S	
	0.247	0.0951	38884.2448	777.6849	27.887002	
				Forecast		Squared
Time			Growth	Made Last	Forecast	Forecast
Period	у	Level	Rate	Period	Error	Error
0		202.6246	-0.3682			
1	206	203.1805	-0.2804	202.2564	3.7436	14.0145
2	245	213.2921	0.7074	202.9001	42.0999	1772.4001
3	185	206.8413	0.0270	213.9996	-28.9996	840.9751
4	169	197.5208	-0.8615	206.8683	-37.8683	1434.0063
5	162	188.1039	-1.6747	196.6593	-34.6593	1201.2665
6	177	184.1017	-1.8960	186.4292	-9.4292	88.9096
7	207	188.3260	-1.3142	182.2057	24.7943	614.7576
8	216	194.1673	-0.6341	187.0117	28.9883	840.3188
9	193	193.4016	-0.6466	193.5332	-0.5332	0.2843
10	230	201.9486	0.2273	192.7550	37.2450	1387.1882
	Period 0 1 2 3 4 5 6 7 8 9	Period y 0 1 206 2 245 3 185 4 169 5 162 6 177 7 207 8 216 9 193	Period y Level 0 202.6246 1 206 203.1805 2 245 213.2921 3 185 206.8413 4 169 197.5208 5 162 188.1039 6 177 184.1017 7 207 188.3260 8 216 194.1673 9 193 193.4016	Period y Level Rate 0 202.6246 -0.3682 1 206 203.1805 -0.2804 2 245 213.2921 0.7074 3 185 206.8413 0.0270 4 169 197.5208 -0.8615 5 162 188.1039 -1.6747 6 177 184.1017 -1.8960 7 207 188.3260 -1.3142 8 216 194.1673 -0.6341 9 193 193.4016 -0.6466	Time Growth Made Last Period y Level Rate Period 0 202.6246 -0.3682 1 206 203.1805 -0.2804 202.2564 2 245 213.2921 0.7074 202.9001 3 185 206.8413 0.0270 213.9996 4 169 197.5208 -0.8615 206.8683 5 162 188.1039 -1.6747 196.6593 6 177 184.1017 -1.8960 186.4292 7 207 188.3260 -1.3142 182.2057 8 216 194.1673 -0.6341 187.0117 9 193 193.4016 -0.6466 193.5332	Time Growth Made Last Forecast Period y Level Rate Period Error 0 202.6246 -0.3682 -0.2804 202.2564 3.7436 1 206 203.1805 -0.2804 202.2564 3.7436 2 245 213.2921 0.7074 202.9001 42.0999 3 185 206.8413 0.0270 213.9996 -28.9996 4 169 197.5208 -0.8615 206.8683 -37.8683 5 162 188.1039 -1.6747 196.6593 -34.6593 6 177 184.1017 -1.8960 186.4292 -9.4292 7 207 188.3260 -1.3142 182.2057 24.7943 8 216 194.1673 -0.6341 187.0117 28.9883 9 193 193.4016 -0.6466 193.5332 -0.5332

52	45	255	281.4910	4.1454	290.1732	-35.1732	1237.1566
53	46	312	292.1440	4.7640	285.6364	26.3636	695.0399
54	47	296	296.6839	4.7427	296.9080	-0.9080	0.8245
55	48	307	302.8023	4.8734	301.4265	5.5735	31.0637
56	49	281	301.0910	4.2475	307.6757	-26.6757	711.5940
57	50	308	305.9955	4.3100	305.3386	2.6614	7.0832
58	51	280	302.8248	3.5989	310.3055	-30.3055	918.4227
59	52	345	315.9460	4.5040	306.4237	38.5763	1488.1288

.....

Suavizado Exponencial, pronóstico

• El pronóstico para p-periodos adelante realizado en T

$$\hat{y}_{T+p}(T) = \ell_T + pb_T$$
 $(p = 1, 2, 3, ...)$

- Example
 - En la semana52, el cálculo del pronóstico para la semana 53 es:

$$\hat{y}_{53}(52) = \ell_{52} + b_{52} = 315.9460 + 4.5040 = 320.45$$

• En la semana 52, el pronóstico para tres periodos Adelante, es decir para la semana 55 se expresa:

$$\hat{y}_{55}(52) = \ell_{52} + 3b_{52} = 315.9460 + 3(4.5040) = 329.458$$

Métodos Holt-Winters

- Existen dos métodos Holt-Winters diseñados para las series de tiempo que tienen línea de tendencia
 - Método aditivo <u>Holt-Winters</u>: utilizado para series de tiempo con variaciones estacionales constantes (aditivos)
 - <u>Método Multiplicativo Holt-Winters</u>: utilizado para series de tiempo con variaciones estacionales incrementales (multiplicativo)
- El método Holt-Winters es un suavizado exponencial que permite manejar datos estacionales.
- El método multiplicativo Holt-Winters method es más conocido de los dos métodos mencionados.

Método Multiplicativo Holt-Winters

• Es considerado el método de mejor desempeño para el pronóstico de series de tiempo y se puede describir de acuerdo a la siguiente ecuación:

$$y_{t} = (\beta_{0} + \beta_{1}t) \times SN_{t} \times IR_{t}$$

- *SN_t*: patrón estacional
- *IR_t*: componente irregular
- Este método es apropiado cuando una serie de tiempo tiene una tendencia lineal con un patron estacional multiplicativo para el cual el nivel $(\beta_0 + \beta_1 t)$, la tasa de crecimiento (β_1) , y el patrón estacional (SN_t) pueden cambiar lentamente a lo largo del tiempo.

Método Multiplicativo Holt-Winters

Estimación del nivel(level)

$$\ell_T = \alpha(y_T / sn_{T-L}) + (1 - \alpha)(\ell_{T-1} + b_{T-1})$$

• Estimación de la tasa de crecimiento (o tendencia)

$$b_T = \gamma (\ell_T - \ell_{T-1}) + (1 - \gamma) b_{T-1}$$

Estimación del factor estacional

$$sn_T = \delta(y_T / \ell_T) + (1 - \delta)sn_{T-L}$$

donde α , γ , and δ son constantes de suavizado con valores entre 0 y 1,

L = número de estaciones en un año (L = 12 para datos mensuales, y L = 4 para datos cuatrimestrales)

Método Multiplicativo Holt-Winters

• Pronóstico realizado en el tiempo T para y_{T+p}

$$\hat{y}_{T+p}(T) = (\ell_T + pb_T)sn_{T+p-L}$$
 $(p = 1, 2, 3, ...)$

• MSE y los errores en el tiempo T

$$SSE = \sum_{t=1}^{T} [y_t - \hat{y}_t(t-1)]^2$$

$$MSE = \frac{SSE}{T - 3}, \quad s = \sqrt{MSE}$$

• Ejemplo para una bebida deportiva

Quarterly sales of Tiger Sports Drink									
Year									
Quarter	1	2	3	4	5	6	7	8	
1	72	77	81	87	94	102	106	115	
2	116	123	131	140	147	162	170	177	
3	136	146	158	167	177	191	200	218	
4	96	101	109	120	128	134	142	149	

- Observaciones:
 - Tendencia lineal creciente durante los anteriores 8 años.
 - La magnitud del periodo estacional se incrementa cuando el nivel de la serie de tiempo se incrementa
 - Método Multiplicativo Holt-Winters puede ser aplicado para el pronóstico de futuras ventas

• **Paso 1**: Obtener valores iniciales para el nivel ℓ_0 , la tasa de crecimiento b_0 , y los factores estacionales sn_{-3} , sn_{-2} , sn_{-1} , and sn_0 , ajustando una línea de tendencia con entre al menos 4 a 5 años de datos históricos

• *y*-intercepto = ℓ_0 ; pendiente = b_0

• Ejemplo

 Ajuste por mínimos cuadrados una línea de tendencia las 16 observaciones

• Línea de tendencia

•
$$\ell_0 = 95.2500$$
; $b_0 = 2.4706$

$$\hat{y}_t = 95.2500 + 2.4706t$$

SUMMARY OUTPUT	
Regression Sta	atistics
Multiple R	0.403809754
R Square	0.163062318
Adjusted R Square	0.103281055
Standard Error	27.58325823
Observations	16
ANOVA	
	df
Regression	1
Residual	14
Total	15
	Coefficients
Intercept	95.25
X Variable 1	2.470588235

- Paso 1: Encontrar factores estacionales
 - 1. Calcule \hat{y}_t para las observaciones utilizadas en la regresión para encontrar el nivel anteriormente. En este ejemplo, t = 1, 2, ..., 16.

$$\hat{y}_1 = 95.2500 + 2.4706(1) = 97.7206$$

 $\hat{y}_2 = 95.2500 + 2.4706(2) = 100.1912$
......
 $\hat{y}_{16} = 95.2500 + 2.4706(16) = 134.7794$

- **Paso 2**: Encontrar los factores estacionales iniciales
 - 2. Saque la tendencia de los datos calculando $S_t = y_t / \hat{y}_t$ para cada periodo de tiempo que es utilizado para realizer la regresión inicial. En el ejemplo, t = 1, 2, ..., 16.

$$S_1 = y_1 / \hat{y}_1 = 72/97.7206 = 0.7368$$

 $S_2 = y_2 / \hat{y}_2 = 116/100.1912 = 1.1578$
......
 $S_{16} = y_{16} / \hat{y}_{16} = 120/134.7794 = 0.8903$

- Paso2: Encontrar los factores estacionales iniciales
 - Calcule el promedio estacional para cada una de las L estaciones. Para encontrar los L valores promedio, se debe calcular los valores sin tendecia de la correspondiente estación. Por ejemplo para el cuarto 1,

$$\overline{S}_{[1]} = \frac{S_1 + S_5 + S_9 + S_{13}}{4}$$

$$= \frac{0.7368 + 0.7156 + 0.6894 + 0.6831}{4} = 0.7062$$

- Paso 2: Encontrar los factores estacionales iniciales
 - 4. Multiplicar el promedio de los valores estacionales por la constante normalizada

$$CF = \frac{L}{\sum_{i=1}^{L} \overline{S}_{[i]}}$$

tal que el promedio de los factores estacionales sea 1. Los factores estacionales iniciales son:

$$sn_{i-L} = \overline{S}_{[i]}(CF)$$
 $(i = 1, 2, ..., L)$

- Paso 2: Encontrar los factores estacionales iniciales
 - Multiplicar el promedio estacional por la constante de normalización de tal forma que el promedio estacional sea 1.
 - Ejemplo CF = 4/3.9999 = 1.0000

$$sn_{-3} = sn_{1-4} = \overline{S}_{[1]}(CF) = 0.7062(1) = 0.7062$$

 $sn_{-2} = sn_{2-4} = \overline{S}_{[2]}(CF) = 1.1114(1) = 1.1114$
 $sn_{-1} = sn_{3-4} = \overline{S}_{[3]}(CF) = 1.2937(1) = 1.2937$
 $sn_0 = sn_{4-4} = \overline{S}_{[1]}(CF) = 0.8886(1) = 0.8886$

• **Paso 3**: Calcular el pronóstico de *y*₁ empleando los valores iniciales del tiempo 0

$$\hat{y}_{T+p}(T) = (\ell_T + pb_T)sn_{T+p-L} \qquad (T = 0, p = 1)$$

$$\hat{y}_1(0) = (\ell_0 + b_0)sn_{1-4} = (\ell_0 + b_0)sn_{-3}$$

$$= (95.2500 + 2.4706)(0.7062)$$

$$= 69.0103$$

- **Paso 4**: Actualice los valores ℓ_T , b_T , y sn_T utilizando valores predeterminados de las constants de suavizado.
- Ejemplo: sea α = 0.2, γ = 0.1, y δ = 0.1

$$\ell_1 = \alpha (y_1 / s n_{1-4}) + (1 - \alpha)(\ell_0 + b_0)$$

= 0.2(72/0.7062) + 0.8(95.2500 + 2.4706) = 98.5673

$$b_1 = \gamma(\ell_1 - \ell_0) + (1 - \gamma)b_0$$

= 0.1(98.5673 - 95.2500) + 0.9(2.4706) = 2.5553

$$sn_1 = \delta(y_1/\ell_1) + (1-\delta)sn_{1-4}$$

= 0.1(72/98.5673) + 0.9(0.7062) = 0.7086

$$\hat{y}_2(1) = (\ell_1 + b_1)sn_{2-4}$$

= (98.5673 + 2.5553)(1.1114) = 112.3876

$$\ell_{2} = \alpha(y_{2}/sn_{2-4}) + (1-\alpha)(\ell_{1} + b_{1})$$

$$= 0.2(116/1.1114) + 0.8(98.5673 + 2.5553)$$

$$= 101.7727$$

$$b_{2} = \gamma(\ell_{2} - \ell_{1}) + (1-\gamma)b_{1}$$

$$= 0.1(101.7727 - 98.5673) + 0.9(2.5553)$$

$$= 2.62031$$

$$sn_{2} = \delta(y_{2}/\ell_{2}) + (1-\delta)sn_{2-4}$$

$$= 0.1(116/101.7727) + 0.9(1.1114)$$

$$= 1.114239$$

$$\hat{y}_{3}(2) = (\ell_{2} + b_{2})sn_{3-4}$$

$$= (101.7727 + 2.62031)(1.2937)$$

$$= 135.053$$

$$\ell_4 = \alpha(y_4/sn_{4-4}) + (1-\alpha)(\ell_3 + b_3)$$

$$= 0.2(96/0.8886) + 0.8(104.5393 + 2.6349)$$

$$= 107.3464$$

$$b_4 = \gamma(\ell_4 - \ell_3) + (1-\gamma)b_3$$

$$= 0.1(107.3464 - 104.5393) + 0.9(2.6349)$$

$$= 2.65212$$

$$sn_4 = \delta(y_4/\ell_4) + (1-\delta)sn_{4-4}$$

$$= 0.1(96/107.3464) + 0.9(0.8886)$$

$$= 0.889170$$

$$\hat{y}_5(4) = (\ell_4 + b_4)sn_{5-4}$$

$$= (107.3464 + 2.65212)(0.7086)$$

$$= 77.945$$

1	n	alpha	gamma	delta	SSE	MSE	s	
2	32	0.2	0.1	0.1	177.3223	6.1146	2.4728	
3	- JL	0.2	0.1	V. 1	111.0220	0.1140	2.4120	
4								
5						Forecast		Squared
6				Growth	Seasonal	Made Last	Forecast	Forecast
7	Time	у	Level	Rate	Factor	Period	Error	Error
8	-3				0.7062			
9	-2				1.1114			
10	-1				1.2937			
11	0		95.25	2.4706	0.8886			
12	1	72	98.56729	2.5553	0.7086	69.0103	2.9897	8.9384
13	2	116	101.7726	2.6203	1.1142	112.3876	3.6124	13.0494
14	3	136	104.5393	2.6349	1.2944	135.0531	0.9469	0.8967
15	4	96	107.3464	2.6521	0.8892	95.2350	0.7650	0.5853
16	5	77	109.731	2.6254	0.7079	77.9478	-0.9478	0.8984
17	6	123	111.9629	2.5860	1.1127	125.1919	-2.1919	4.8043
18	7	146	114.1974	2.5509	1.2928	148.2750	-2.2750	5.1755
19	8	101	116.1165	2.4877	0.8872	103.8091	-2.8091	7.8911
20	9	81	117.7668	2.4040	0.7059	83.9641	-2.9641	8.7858
21	10	131	119.6835	2.3552	1.1109	133.7108	-2.7108	7.3482
22	11	158	122.0734	2.3587	1.2930	157.7754	0.2246	0.0504
23	12	109	124.1164	2.3271	0.8863	110.4005	-1.4005	1.9615
24	13	87	125.8035	2.2631	0.7045	89.2593	-2.2593	5.1044
25	14	140	127.6589	2.2224	1.1094	142.2642	-2.2642	5.1268
26	15	167	129.7369	2.2079	1.2924	167.9337	-0.9337	0.8718
	•••							
38	27	200	156.1396	2.1752	1.2903	202.0396	-2.0396	4.1601
39	28	142	158.5505	2.1988	0.8908	140.9508	1.0492	1.1008
40	29	115	161.2803	2.2519	0.7047	113.1314	1.8686	3.4918
41	30	177	162.8178	2.1804	1.1046	180.9529	-3.9529	15.6252
42	31	218	165.7889	2.2595	1.2928	212.8988	5.1012	26.0220
43	32	149	167.8899	2.2437	0.8905	149.7057	-0.7057	0.4981

• **Paso 5**: Encuentre la mejor combinación de α , γ , and δ que minimice SSE (o MSE)

• Example: Use Solver en Excel

	alpha	gamma	delta			SSE	MSE	s		
32	0,6055	0,2595	0,10786			5,92E-17	2E-18	1,428E-09		
	Cuarto	Ventas	Límea te	level (I	(b)G(Tas	\$	S prom	Promóstica	Error de P	Error2
	-3						0,7062			
	-2						1,1114			
	-1						1,2937			
	0		95,25	95,25	2,470588		0,8886			
	1	72	97,7206	100,28	3,13515	0,736795	0,7075	69,012683	2,9873167	8,924061
1	2	116	100,191	104	3,285481	1,157787	1,1118	114,93655	1,063446	1,130917
	3	136	102,662	105,98	2,346656	1,324739	1,2926	138,79003	-2,790033	7,784282
	4	96	105,132	108,39	2,807466	0,913135	0,8883	96,78725	-0,78725	0,61976
	5	77	107,603	109,77	2,436915	0,715594	0,7068	78,668677	-1,668677	2,784482
2	6	123	110,074	111,25	2,189718	1,117435	1,1112	124,74937	-1,749367	3,060285
	7	146	112,544	113,14	2,113279	1,297269	1,2923	146,62889	-0,62889	0,395503
	8	101	115,015	114,32	1,868992	0,878149	0,8878	102,38118	-1,381184	1,907669
	9	81	117,485	115,22	1,618891	0,689448	0,7064	82,125235	-1,125235	1,266154
3	10	131	119,956	117,48	1,784612	1,092068	1,1116	129,82792	1,1720779	1,373766
	11	158	122,426	121,08	2,255181	1,290571	1,2937	154,12919	3,8708093	14,98316
	12	109	124,897	123	2,16842	0,872719	0,8876	109,49026	-0,490258	0,240352
	13	87	127,368	123,95	1,852281	0,683062	0,7059	88,421508	-1,421508	2,02068
4	14	140	129,838	125,89	1,875278	1,078265	1,1116	139,83729	0,1627072	0,026473
	15	167	132,309	128,57	2,083108	1,262199	1,2943	165,28863	1,7113724	2,928795
	16	120	134,779	133,4	2,797694	0,890344	0,8889	115,96288	4,0371199	16,29833
	17	94		134,36	2,319306		0,7053	36,143573	-2,149573	4,620664
- 5	18	147		133,99	1,622032		1,1101	151,93365	-4,933651	24,34091
	19	177		136,3	1,802183		1,2947	175,5159	1,4841005	2,202554
	20	128		141,68	2,728196		0,8905	122,76081	5,2391873	27,44908
	21	102		144,54	2,763233		0,7053	101,84272	0,1572789	0,024736
6	22	162		146,48	2,548705		1,1096	163,51578	-1,515777	2,297580
	23	191		148,11	2,312566		1,2942	192,94603	-1,946029	3,78702
	24	134		150,46	2,321681		0,8905	133,94834	0,0516599	0,002668
	25	106		151,27	1,929759		0,7048	107,75946	-1,759463	3,095708
7	26	170		153,2	1,930025		1,1096	169,99813	0,0018729	3,508E-0
	27	200		154,77	1,836612		1,294	200,76948	-0,769485	0,592106
	28	142		158,34	2,285296		0,8912	139,45691	2,5430934	6,467323
	29	115		162,16	2,684163		0,7053	113,21061	1,7893898	3,201915
8	30	177		161,62	1,846206		1,1081	182,91837	-5,918369	35,02708
-	31	218		166,5	2,633673		1,2956	211,51433	6,4856745	42,06397
		143			-					
	32	143		167,96	2,330026		0,8907	150,72236	-1,722358	2,966517

Método Multiplicativo Holt-Winters

• p-step-ahead forecast made at time T

$$\hat{y}_{T+p}(T) = (\ell_T + pb_T)sn_{T+p-L}$$
 $(p = 1, 2, 3, ...)$

Example

$$\hat{y}_{33}(32) = (\ell_{32} + b_{32})sn_{33-4} = (168.1213 + 2.3028)(0.7044) = 120.0467$$

$$\hat{y}_{34}(32) = (\ell_{32} + 2b_{32})sn_{34-4} = [168.1213 + 2(2.3028)](1.1038) = 190.6560$$

$$\hat{y}_{35}(32) = (\ell_{32} + 3b_{32})sn_{35-4} = [(168.1213 + 3(2.3028)](1.2934) = 226.3834$$

$$\hat{y}_{36}(32) = (\ell_{32} + 4b_{32})sn_{36-4} = [(168.1213 + 4(2.3028)](0.8908) = 157.9678$$

Método Multiplicativo Holt-Winters

• Ejemplo

Método aditivo Holt-Winters

• Es considerado generalmente el mejor método de serie de tiempo y se describe en la siguiente ecuación:

$$y_t = (\beta_0 + \beta_1 t) + SN_t + IR_t$$

- *SN_t*: patrón estacional
- *IR_t*: componente irregular
- Este método es apropiado cuando una serie de tiempo tiene una tendencia lineal con un patron constante estacional (Aditivo) tal que el nivel $(\beta_0 + \beta_1 t)$, y la tasa de crecimiento (β_1) y el patrón estacional (SN_t) puedan cambiar lentamente a lo largo del tiempo.

Método aditivo Holt-Winters

• Estimación del nivel

$$\ell_T = \alpha(y_T - sn_{T-L}) + (1 - \alpha)(\ell_{T-1} + b_{T-1})$$

• Estimación de la tasa de crecimiento (o tendencia)

$$b_T = \gamma (\ell_T - \ell_{T-1}) + (1 - \gamma) b_{T-1}$$

Estimación del factor estacional

$$sn_T = \delta(y_T - \ell_T) + (1 - \delta)sn_{T-L}$$

donde α , γ , y δ son constants de suavizado con valores entre 0 and 1,

L = número de estaciones en el año (L = 12 para datos mensuales, y L = 4 para datos cuatrimestrales)

Método aditivo Holt-Winters

• Pronóstico realizado para el tiempo T para y_{T+p}

$$\hat{y}_{T+p}(T) = \ell_T + pb_T + sn_{T+p-L}$$
 $(p = 1, 2, 3,...)$

• MSE y el error estandard s para el tiempo T

$$SSE = \sum_{t=1}^{T} [y_t - \hat{y}_t(t-1)]^2$$

$$MSE = \frac{SSE}{T - 3}, \quad s = \sqrt{MSE}$$

• Considere el ejemplo de ventas de bicicletas de montaña,

Quarterly sales of the TRK-50 Mountain Bike									
Year									
Quarter	1	2	3	4					
1	10	11	14	19					
2	31	33	36	41					
3	43	45	50	55					
4	16	17	21	25					

- Observaciones:
 - Tendencia lineal creciente para los últimos 4 años
 - La magnitude del periodo estacional es casi constante al mismo tiempo que la serie de tiempo se incrementa
 - ⇒ El modelo Aditivo Holt-Winters puede ser aplicado para el pronóstico de las ventas futuras

- **Paso 1**: Obtener valores iniciales para el nivel ℓ_0 , la tasa de crecimiento b_0 , y el factor estacional $sn_{.3}$, $sn_{.2}$, $sn_{.1}$, and sn_0 , ajustando a una línea por el método de mínimos cuadrados con al menos cuatro a cinco años de datos históricos.
 - *y*-intercepto = ℓ_0 ; pendiente = b_0

- Ejemplo
 - Ajuste por mínimos cuadrados a una línea las 16 observaciones
 - Linea ajustada:

$$\hat{y}_t = 20.85 + 0.980882 t$$

• $\ell_0 = 20.85$; $b_0 = 0.9809$

SUMMARY OUTPUT	
Regression St	atistics
Multiple R	0.320508842
R Square	0.102725918
Adjusted R Square	0.038634912
Standard Error	14.28614022
Observations	16
ANOVA	
	df
Regression	1
Residual	14
Total	15
	Coefficients
Intercept	20.85
Time	0.980882353

- **Paso 2**: Encuentre los factores iniciales estacionales
 - 1. Calcule \hat{y}_t para cada periodo de tiempo utilizado para encontrar la recta de regresión con el método de mínimos cuadrados. En el ejemplo, t = 1, 2, ..., 16.

$$\hat{y}_1 = 20.85 + 0.980882(1) = 21.8309$$

 $\hat{y}_2 = 20.85 + 0.980882(2) = 22.8118$

•••••

$$\hat{y}_{16} = 20.85 + 0.980882(16) = 36.5441$$

Clida / F

- **Paso 2**: Encuentre los valores de los factores estacionales iniciales
 - 2. Desestacionalicelos calculando $S_t = y_t \hat{y}_t$ para cada observación en el ajuste de mínimos cuadrados . En el ejemplo, t = 1, 2, ..., 16.

$$S_1 = y_1 - \hat{y}_1 = 10 - 21.8309 = -11.8309$$

$$S_2 = y_2 - \hat{y}_2 = 31 - 22.8112 = 8.1882$$

•••••

$$S_{16} = y_{16} - \hat{y}_{16} = 25 - 36.5441 = -11.5441$$

- Paso 2: Encontrar los valores estacionales iniciales
 - Calcule el promedio de los valores estacionales para cada uno de las L temporadas. Los L promedios son encontrados calculando el promedio de los valores desestacionalizados para cada temporada correspondiente. A continuación se muestra el cálculo para el cuatrimestre 1,

$$\overline{S}_{[1]} = \frac{S_1 + S_5 + S_9 + S_{13}}{4}$$

$$= \frac{(-11.8309) + (-14.7544) + (-15.6779) + (-14.6015)}{4} = -14.2162$$

- Paso 2: Encontrar los valores estacionales iniciales
 - 4. Calcular el promedio de *L* factores estacionales. El promedio debería ser 0.

Paso 3: Calcular el pronóstico para y_1 con el tiempo 0 utilizando los valores iniciales

$$\hat{y}_{T+p}(T) = \ell_T + pb_T + sn_{T+p-L} \qquad (T = 0, p = 1)$$

$$\hat{y}_1(0) = \ell_0 + b_0 + sn_{1-4} = \ell_0 + b_0 + sn_{-3}$$

$$= 20.85 + 0.9809 + (-14.2162) = 7.6147$$

• **Paso 4**: Actualice los valores estimados ℓ_T , b_T , and sn_T utilizando los valores predeterminados de las constantes de suavizamiento.

• Ejemplo: sea
$$\alpha = 0.2$$
, $\gamma = 0.1$, and $\delta = 0.1$
$$\ell_1 = \alpha(y_1 - sn_{1-4}) + (1-\alpha)(\ell_0 + b_0)$$

$$= 0.2(10 - (-14.2162)) + 0.8(20.85 + 0.9808) = 22.3079$$

$$b_1 = \gamma(\ell_1 - \ell_0) + (1-\gamma)b_0$$

$$= 0.1(22.3079 - 20.85) + 0.9(0.9809) = 1.0286$$

$$sn_1 = \delta(y_1 - \ell_1) + (1-\delta)sn_{1-4}$$

$$= 0.1(10 - 22.3079) + 0.9(-14.2162) = -14.0254$$

$$\hat{y}_2(1) = \ell_1 + b_1 + sn_{2-4} = \ell_1 + b_1 + sn_{-2}$$

$$= 22.3079 + 1.0286 + 6.5529 = 29.8895$$

1	n	alpha	gamma	delta	SSE	MSE	S	
2	16	0.2000	0.1000	0.1000	25.2166	1.9397	1.3927	
3								
4								
5						Forecast		Squared
6				Growth	Seasonal	Made Last	Forecast	Forecast
7	Time	у	Level	Rate	Factor	Period	Error	Error
8	-3				-14.2162			
9	-2				6.5529			
10	-1				18.5721			
11	0		20.85	0.9809	-10.9088			
12	1	10	22.30794	1.0286	-14.0254	7.6147	2.3853	5.6896
13	2	31	23.55864	1.0508	6.6418	29.8895	1.1105	1.2333
14	3	43	24.57314	1.0472	18.5575	43.1815	-0.1815	0.0329
15	4	16	25.87801	1.0729	-10.8057	14.7115	1.2885	1.6603
16	5	11	26.56583	1.0344	-14.1794	12.9256	-1.9256	3.7079
17	6	33	27.35185	1.0096	6.5424	34.2420	-1.2420	1.5427
18	7	45	27.97764	0.9712	18.4040	46.9190	-1.9190	3.6825
19	8	17	28.72023	0.9483	-10.8972	18.1431	-1.1431	1.3067
20	9	14	29.37074	0.9186	-14.2985	15.4892	-1.4892	2.2176
21	10	36	30.12295	0.9019	6.4759	36.8317	-0.8317	0.6918
22	11	50	31.1391	0.9133	18.4497	49.4289	0.5711	0.3262
23	12	21	32.0214	0.9102	-10.9096	21.1553	-0.1553	0.0241
24	13	19	33.00502	0.9176	-14.2692	18.6331	0.3669	0.1346
25	14	41	34.04291	0.9296	6.5240	40.3985	0.6015	0.3618
26	15	55	35.28807	0.9612	18.5759	53.4222	1.5778	2.4894
27	16	25	36.18131	0.9544	-10.9368	25.3396	-0.3396	0.1153

• Paso 5: Encontrar la mejor combinación de α , γ , and δ que minimice SSE (or MSE)

• Ejemplo: Use Solver en Excel

n	a	alpha	gamma	delta			SSE	MSE	s			
	16	0,328886	0,392978	0			15,81222676	1,216325	1,102871314			
						(b)G(Tasa						
	(٠,	Línea tendencia	level (I)	crecimiento)	S	S prom	Pronóstico (ȳ)	Error de Pron	Error2	
		-3						-14,2162				
		-2						6,552941				
		-1						18,57206				
		0		20,85	20,85	0,980882353		-10,9088				
		1	10	21,83088235	22,61537	1,289169108	-11,8308824	-14,2162	7,614705882	2,385294118	5,689628028	
	1	2	31	22,81176471	23,55649	1,152391095	8,188235294	6,552941	30,45748199	0,54251801	0,294325791	
		3	43	23,79264706	24,11669	0,919674386	19,20735294	18,57206	43,28093525	-0,280935251	0,078924615	
		4	16	24,77352941	25,43472	1,076219837	-8,77352941	-10,9088	14,12753908	1,87246092	3,506109897	
		5	11	25,75441176	25,64138	0,734500864	-14,7544118	-14,2162	12,29476315	-1,294763146	1,676411605	
	2	6	33	26,73529412	26,47515	0,773511941	6,264705882	6,552941	32,9288182	0,071181797	0,005066848	
		7	45	27,71617647	27,15332	0,736047618	17,28382353	18,57206	45,82071827	-0,820718271	0,673578481	
		8	17	28,69705882	28,27351	0,887003993	-11,6970588	-10,9088	16,98054904	0,019450959	0,00037834	
		9	14	29,67794118	29,13418	0,8766581	-15,6779412	-14,2162	14,94433489	-0,944334887	0,891768378	
	3	10	36	30,65882353	30,19034	0,947198535	5,341176471	6,552941	36,5637837	-0,563783704	0,317852065	
		11	50	31,63970588	31,54745	1,108284108	18,36029412	18,57206	49,70960231	0,290397688	0,084330817	
		12	21	32,62058824	32,472	1,036079251	-11,6205882	-10,9088	21,74691437	-0,746914368	0,557881073	
		13	19	33,60147059	33,5118	1,037539924	-14,6014706	-14,2162	19,29190284	-0,291902842	0,085207269	
	4	14	41	34,58235294	34,57588	1,047971183	6,417647059	6,552941	41,10227735	-0,102277348	0,010460656	
		15	55	35,56323529	35,89265	1,153602596	19,43676471	18,57206	54,19591033	0,804089665	0,64656019	
		16		·	36,45109		·		·	·	·	
								.,				

Pronóstico de p periodos Adelante realizado en el tiempo T

$$\hat{y}_{T+p}(T) = \ell_T + pb_T + sn_{T+p-L}$$
 $(p = 1, 2, 3,...)$

• Ejemplo

$$\hat{y}_{17}(16) = \ell_{16} + b_{16} + sn_{17-4} = 36.3426 + 0.9809 - 14.2162 = 23.1073$$

$$\hat{y}_{18}(16) = \ell_{16} + 2b_{16} + sn_{18-4} = 36.3426 + 2(0.9809) + 6.5529 = 44.8573$$

$$\hat{y}_{19}(16) = \ell_{16} + 3b_{16} + sn_{19-4} = 36.3426 + 3(0.9809) + 18.5721 = 57.8573$$

$$\hat{y}_{20}(16) = \ell_{16} + 4b_{16} + sn_{20-4} = 36.3426 + 4(0.9809) - 10.9088 = 29.3573$$

Additive Holt-Winters Method

• Example

Forecast Plot for Mountain Bike Sales

