스마트 공간의 쾌적도 최적화를 위한 LSTM 기반의 환경 정보 예측 및 관리 시스템

01 최종 진행 상황

02 문제 인식

03 연구 목적

04 전체 구조도

05 주요 기능

06 기대효과

07 Q&A

01 최종 진행 상황

	7/4	7/6	7/8	7/11	7/13	7/15	7/18	7/20	7/22	7/25	7/27	7/29	8/1	8/3	8/5	8/8	8/10	8/12	8/16	8/18	8/22	8/24	8/26	8/28	8/29
센서데이터입력																									
DB 테이블 생성																									
Agent 생성																									
AI 모델 선정																									
AI 학습																									
UI 제작																									
주석/버그 리포트																									
최종 보고서 / ppt																									
논문																									

• **DB 테이블 생성** : 온도, 습도, 조도, 측정시간 저장

• 예측 모델 생성: LSTM 모델을 이용한 시간 단위 온도, 습도, 조도 예측

• 데이터 통신: 서버 및 클라이언트 통신 완료 및 데이터 송수신 완료

• GUI 작성 : Unity와 Html을 이용

• 논문 작성 완료

✓ 남태민: 스마트 공간의 쾌적도 관리를 위한 통합 장치제어 시스템 설계

✓ 황진주 : 최적 환경 제어를 위한 LSTM 기반 시간 단위 환경 변화량 예측 시스템

02 문제 인식

사용자의 수동 장치 조작을 통한 환경 상태가 관리되는 경우가 다수

03 연구 목적

실시간 데이터 수집

웹 서버

공동 데이터 공유 (Maria DB) 디지털 트윈

시계열 데이터 분석 (LSTM)

민감한 환경을 위한 예측 기반 자동 환경 제어 시스템

04 전체 구조도

05 기능설명

API Data Input

기상청 기상자료개방포털

종관기상관측(ASOS) - 자료

■ 자료설명

자료설명

종관기상관측이란 종관규모의 날씨를 파악하기 위하여 정해진 시각에 모든 관측소에서 같은 시각에 실시하는 지상관측을 말합니다. 종관규모는 일기도에 표현되어 있는 보통의 고기압이나 저기압의 공간적 크기 및 수명을 말하며, 주로 매일의 날씨 현상을 뜻합니다.

자료형태 분	분, 시간(매정시), 일, 월, 연					
	_, TE(110 1/, E) E) E	제공기간	1904년~(지점별, 요소별 다름)			
제공지적	103개 * 원하는 지점이 없는 경우, 방재기상관측(AWS) 메뉴 이용 * 원하는 지점이 없는 경우, 방재기상관측(AWS) 메뉴 이용 * 일기현상, 증발량, 현상번호					
유의사항	1회 조회 가능 최대 기간: 분 1일, 시간 1년, 일 10년, 월·연 제한 · 시간/분 자료에 대해 관측값의 정상 여부를 판단하는 품질검사 · 제공 요소: 기온, 습도, 기압, 지면온도, 풍향, 풍속, 일조 / 플래 그 · 전일 자료는 당일 10시 이후 확인 가능	플래그(QC FL	AG) 정보 제공			
비고	- 10분 또는 1시간 최다강수시각은 최다강수가 나타난 시작 시간으로, (-) 표기가 있는 경우 전날을 뜻함 - 강수량은 겨울철(11월~익년 3월) 3시간 간격으로 제공					
지침 요	요소별 관측방법이나 자료 산출방식에 대한 상세 설명은 ☞ [지상기상관측지침] 참조					

	Α	В	С	D	Е	F
1	지점	지점명	시간	온도	습도	기압
2	257	양산시	2012/08/01 1:00	26.5	68	1007.2
3	257	양산시	2012/08/01 2:00	26	70	1006.9
4	257	양산시	2012/08/01 3:00	25.5	73	1006.9
5	257	양산시	2012/08/01 4:00	25.5	74	1006.8

사용데이터

• **출처** : 기상청 종관 기상 관측 자료

· 내용 : 양산시의 1시간 단위의 시간/온도/습도/기압 데이터

• 수량: 88,382 개

활용

✓ 실시간 데이터 전송

✓ AI 예측 알고리즘 구동 확인

모델 학습

모델 예측

모델 학습 및 예측

- 모델 학습
 - ✓ 과거 참조할 데이터 개수 지정 : 200
 - ✓ 배치 사이즈 256
 - ✓ Epoch: 40
- · 모델 예측
 - ✓ 예측용 데이터 200개 입력
 - ✓ 예측 결과가 정확성 판단을 위한 1개 수신

모델 학습

모델 예측

데이터 입력

- 학습: n시간 간격의 모든 데이터 -> n시간 예측 모델
- 예측: n시간 간격의 200개 데이터 -> n시간 예측 모델
- **예시**: 2시간 미래 예측을 위해 2시간 간격 데이터로 학습한

모델에 2시간 간격의 데이터 200개 입력

1시간

간격

1시간 이후 예측

1시간 간격

데이터 (200)

LSTM

Prediction Model

(1hour)

Prediction

3시간 이후 예측

	시간	온도	습도	기압
	2022/08/01 00:00:00	29.5	74	1007.5
ightharpoonup	2022/08/01 01:00:00	29.6	74	1007.5
	2022/08/01 02:00:00	29.5	75	1007.4
	2022/08/01 03:00:00	29.6	75	1007.2
	2022/08/01 04:00:00	28.2	83	1006.9
	2022/08/01 05:00:00	28.6	79	1006.8
	2022/08/01 06:00:00	28.0	77	1006.6
	•••		•••	

Model Upgrade

1시간 간격

데이터 (AII)

LSTM

Training Model

(1hour)

Training

3시간

간격

	시간	온도	습도	기압
→	2022/08/01 00:00:00	29.5	74	1007.5
	2022/08/01 01:00:00	29.6	74	1007.5
	2022/08/01 02:00:00	29.5	75	1007.4
→	2022/08/01 03:00:00	29.6	75	1007.2
	2022/08/01 04:00:00	28.2	83	1006.9
	2022/08/01 05:00:00	28.6	79	1006.8
	2022/08/01 06:00:00	28.0	77	1006.6
	•••			

*오차: $\frac{1}{100}\sum_{i=0}^{100}|$ 실제값 – 예측값 |

모델 학습 시	예측 데이터의	오차 (Mean Absolute Error)					
시간 간격	시간 간격	온도	습도	기압			
	1 hour	0.4789	2.8653	0.4445			
1 6 0 1 15	2 hour	1.5651	5.4450	0.4014			
1 hour	4 hour	3.3006	12.4648	1.3702			
	8 hour	4.1446	21.5764	1.6678			
	1 hour	0.9037	4.1899	0.4577			
2 6 0 1 15	2 hour	0.9751	4.6113	0.3892			
2 hour	4 hour	2.9298	10.9491	1.1498			
	8 hour	3.5407	20.8980	2.2336			
	1 hour	0.6797	6.0997	0.4417			
/ b a	2 hour	1.1199	4.0003	0.4985			
4 hour	4 hour	2.3121	8.3772	0.9227			
	8 hour	3.3457	15.5100	1.4559			
	1 hour	0.6353	4.4487	0.5809			
0 hour	2 hour	1.1996	4.8721	0.7156			
8 hour	4 hour	3.4174	14.3692	1.0508			
	8 hour	2.6069	14.6309	1.3623			

적용 근거

- 테스트1: 모델 하나에 다양한 예측 결과 도출
 - ▶ 먼 예측일수록 오차가 커짐
- 테스트2: 다양한 모델에 하나의 예측 결과 도출
 - ▶ 예측 모델과 데이터가 동일한 시간간격인 경우 낮은 오차

🔷 (학습 데이터 간격 == 예측 데이터 간격)일 때 높은 정확도

모델 재학습

Web Server (Flask)

역할

- ✓ 학습용 데이터 저장/반환
- ✓ LSTM 모델 예측 결과 반환
- ✓ 희망 환경 설정 및 환경 제어 알고리즘 결과 반환
- ✔ 웹 클라이언트 호스팅/라우팅

Endpoint: http://192.168.0.2:5000

No.	Method	URI	Description
1	Post	/raspberry	라즈베리 센서 데이터 전송용
2	Post	/getValue	DB의 제일 최신 데이터 1개 반환
3	Post	/getRandom	랜덤 온도/습도/조도를 반환
4	Post	/csvToDB	전송 데이터를 DB에 저장
5	Post	/getValueForLSTM	LSTM 모델 예측을 위한 201개의 데이터를 최신순으로 반환
6	Post	/getAllIntervalValue	LSTM 모델 학습을 위해 모든 데이터를 희망하는 시간 간격으로 반환
7	Post	/getIntervalValueForLSTM	LSTM 예측을 위한 데이터를 희망하는 시간 간격으로 원하는 개수 만큼 반환
8	Post	/getPrediction	학습된 모델에서 희망하는 미래시간에 대해 예측
9	Post	/setEnv	희망 환경(온도/습도/조도)과 허용오차(온도/습도) 설정
10	Post	/getControl	현재 환경에 대한 제어값 반환

Web Client (Html)

LSTM을 이용한 온도/습도/조도 예측

희망하는 시간을 선택 후 "예측결과" 버튼을 누르세요. 분단위는 무시하기에, 12:32에 1시간을 선택하면 13:00의 데이터를 반환합니다. 예측에는 약 15초가 소요됩니다.

1시간 2시간 3시간 4시간 5시간 6시간 7시간 8시간 g시간 10시간 11시간 12시간 예측 결과

웹 클라이언트

• 입력: 현재 시간으로부터 추측하고 싶은 시간

• **출력**: n시간 후의 온도/습도/기압

▼ 22.08.23 11:00의 1시간 이후 예측 결과

▼ 22.08.23 11:00의 2시간 이후 예측 결과

한 번 실행 후 약 15초간 기다려주세요.

DataBase (Maria DB)

SELECT * from sensor_db2 where Collect_time > DATE_SUB('2022-08-02 20:00:00',INTERVAL 1 HOUR) ORDER BY num DESC LIMIT 201;
INSERT INTO sensor_db2(Collect_time, temperature, humidity, illuminance) VALUES('2022-08-02 20:00:00', '24.5', '1005.9', '83')

Collect_time ▼	Temperature	Illuminance	Humidity	Num 💡
2022-08-25 23:00:00	24.2	1,005.9	83	111,261
2022-08-25 22:00:00	24.2	1,006	82	111,260
2022-08-25 21:00:00	24.2	1,006.1	82	111,259
2022-08-25 20:00:00	25.8	1,005.5	74	111,258
2022-08-25 19:00:00	26.5	1,005.3	73	111,257
2022-08-25 18:00:00	27.4	1,005.1	67	111,250
2022-08-25 17:00:00	28.8	1,004.7	63	111,25
2022-08-25 16:00:00	30.8	1,004.2	49	111,25
2022-08-25 15:00:00	30.9	1,004.5	51	111,25
2022-08-25 14:00:00	30.3	1,005.1	54	111,25
2022-08-25 13:00:00	30.1	1,005.7	55	111,25
2022-08-25 12:00:00	29.6	1,006.4	55	111,25
2022-08-25 11:00:00	28.1	1,006.9	62	111,24
2022-08-25 10:00:00	25.9	1,007.6	67	111,24
2022-08-25 09:00:00	23.9	1,007.5	78	111,24
2022-08-25 08:00:00	21.7	1,007.7	86	111,24
2022-08-25 07:00:00	20.7	1,007.5	93	111,24
2022-08-25 06:00:00	19.9	1,007.3	95	111,24
2022-08-25 05:00:00	19.7	1,007	95	111,24
2022-08-25 04:00:00	20.1	1,006.9	93	111,24
2022-08-25 03:00:00	20.3	1,007.1	94	111,24
2022-08-25 02:00:00	20.6	1,007.3	90	111,24

사용 목적

- 친숙성 : 기존 사용 경험이 있는 DB로 빠른 개발
- 데이터 공유: 실시간 데이터를 다양한 용도로의 공유
- 쉬운 발췌: 희망 하는 데이터를 쿼리로 쉽게 정돈해 추출

Unity Client (Unity)

Unity Scripts를 게임오브젝트에 이용하여 실시간, 예측 데이터값, 환경 장치 제어값을 사용자에게 가시화

▶ 환경 장치 제어 값 요청 및 반환

Unity Scripts를 게임오브젝트에 이용하여 실시간, 예측 데이터값, 환경 장치 제어값을 사용자에게 가시화

▶ 실시간 데이터값 요청 및 반환

Unity Scripts를 게임오브젝트에 이용하여 실시간, 예측 데이터값, 환경 장치 제어값을 사용자에게 가시화

▶ 예측 데이터값 요청 및 반환

06 기대 효과

예측 기반 자동 환경 제어 시스템

예상 수요처

집, 오피스, 팩토리, 병원, 양식장

Q. 최종적으로 어떤 도움을 줄 수 있는지?

- 민감한 환경(실험실, 중환자실 등)의 상태를 관리할 수 있는 시스템
- 통합 관리가 가능하고, 이로 인해서, 전력 소비를 줄일 수 있다.
- 이상 상태에 따른 피해에 대한 예방 및 최소화
- 환경 요소에 따른 생산성 과 신뢰성 향상

준비한 발표는 여기까지 입니다.

질문이 있다면 편하게 해주십시오.

감사합니다.