Chapter 11, Solution 85.

A regular household system of a single-phase three-wire allows the operation of both 120-V and 240-V, 60-Hz appliances. The household circuit is modeled as shown in Fig. 11.96. Calculate: (a) the currents I_1 , I_2 , and I_n , (b) the total complex power supplied, (c) the overall power factor of the circuit.

Figure 11.96 For Prob. 11.85.

Solution

(a)
$$15 \text{ mH} \longrightarrow j2\pi x 60x 15x 10^{-3} = j5.655$$

We apply mesh analysis as shown below.

For mesh x,

For mesh y,

$$120 = (10+j5.655) I_y - (10+j5.655) I_z$$
 (2)
For mesh z,
 $0 = -10 I_x - (10+j5.655) I_y + (50+j5.655) I_z$ (3)
Solving (1) to (3) gives
 $I_x = 20$, $I_y = 17.09-j5.142$, $I_z = 8$
Thus,
 $I_1 = I_x = 20 A$
 $I_2 = -I_y = -17.09+j5.142 = \frac{17.85 \angle 163.26^{\circ} A}{2} = 17.85 \angle 163.26^{\circ} A$
 $I_n = I_y - I_x = -2.91 - j5.142 = \frac{5.907 \angle -119.5^{\circ} A}{2} = 5.907 \angle -119.5^{\circ} A$
(b) $\overline{S_1} = (120) I^{\circ}_x = 120x20 = 2400$, $\overline{S_2} = (120) I^{\circ}_y = 2051 + j617$
 $\overline{S} = \overline{S_1} + \overline{S_2} = [4.451 + j0.617] kVA$

(c) pf = P/S = 4451/4494 = 0.9904 (lagging)