Actividad 8. Pruebas de hipótesis

Oscar Gutierrez

2024-08-23

Enlatados

Los pesos de 21 latas de duraznos empacados elegidas al azar fueron:

Peso de las latas: 11, 11.6, 11.6, 11.7, 10.9, 11.6, 12, 11.2, 11.5, 12, 12, 11.4, 11.2, 10.8, 10.5, 11.8, 12.2, 10.9, 11.8, 11.4, 12.1

Por estudios anteriores se saber que población del peso de las latas se distribuye normalmente.

Si a los dueños no les conviene que el peso sea menor, pero tampoco mayor a 11.7, prueba la afirmación de que el verdadero peso de las latas es de 11.7 con un nivel de confianza de 0.98 haciendo uso de los datos obtenidos en la muestra.

Paso 1. Hipótesis

- $H_0: \mu = 11.7$
- $H_1: \mu \neq 11.7$
- X se distribuye como una normal
- n < 30
- · No conocemos sigma

Entonces: La distribución muestral es la T de student.

Paso 2: Regla de decisión

Nivel de confianza es de 0.98 Nivel de significancia $\alpha = 0.02$

Necesito encontrar a cuántas desviaciones estándar está lejos el valor frontera.

Rechazo H_0 si:

- $|t_e| > |t_f|$
- valor $p < \alpha$

Paso 3: Análisis del resultados

- t_e : Número de desviaciones al que \bar{x} se encuentra lejos de μ
- Valor p: Probabilidad de obtener lo que obtuve o un valor más extremo

```
datos = c(11, 11.6, 11.6, 11.7, 10.9, 11.6, 12, 11.2, 11.5, 12, 12, 11.4, 11.2, 10.8, 1
0.5, 11.8, 12.2, 10.9, 11.8, 11.4, 12.1)
alpha = 0.02
n = length(datos)
df = n-1
mu = 11.7
x_bar = mean(datos)
s = sd(datos)
te = (x_bar - mu)/(s/sqrt(n))
tf = abs(qt(alpha/2, df))

cat('El valor frontera es:', tf, '\nEl valor obtenido es:', abs(te))
```

```
## El valor frontera es: 2.527977
## El valor obtenido es: 2.068884
```

```
valor_p = 2 * pt(te, df) # Se multiplica por dos al ser una prueba de dos colas cat('El valor p es de', valor_p)
```

```
## El valor p es de 0.0517299
```

Grafica

```
sigma = sqrt((n-1)/(n-3))
x=seq(-4*sigma,4*sigma,0.01)
y=dt(x,n-1)
plot(x,y,type="l",col="blue",xlab="",ylab="",frame.plot=FALSE,xaxt="n",yaxt="n",main="Re
gión de rechazo (distribución t de Student, gl=n-1)")

abline(v=tf,col="red",lty=5)
abline(v=-1*tf,col="red",lty=5)
abline(h = 0)
abline(v=0, col='blue', pch = 19)
points(mu,0,col="blue",pch=19)

points(te, 0, pch=19, cex=1.1)
```

Región de rechazo (distribución t de Student, gl=n-1)

Paso 4: Conclusión

No se tiene evidencia para rechazar H_0 ya que el valor p es mayor a α y el valor $|t_e|$ es menor al valor frontera. En el contexto del problema esto quiere decir que las latas de durazno tienen el peso requerido.

La decisión de Fowle Marketing Research, Inc.

Fowle Marketing Research, Inc., basa los cargos a un cliente bajo el supuesto de que las encuestas telefónicas (para recopilación de datos) pueden completarse en un tiempo medio de 15 minutos o menos. Si el tiempo es mayor a 15 minutos entonces se cobra una tarifa adicional. Compañías que contratan estos servicios piensan que el tiempo promedio es mayor a lo que especifica Fowle Marketing Research Inc. así que realizan su propio estudio en una muestra aleatoria de llamadas telefónicas y encuentran los siguientes datos:

Tiempo: 17, 11, 12, 23, 20, 23, 15, 16, 23, 22, 18, 23, 25, 14, 12, 12, 20, 18, 12, 19, 11, 11, 20, 21, 11, 18, 14, 13, 13, 19, 16, 10, 22, 18, 23

Por experiencias anteriores, se sabe que σ =4 minutos. Usando un nivel de significación de 0.07, ¿está justificada la tarifa adicional?

Paso 1. Hipótesis

• $H_0: \mu = 15$

- $H_1: \mu > 15$
- Se tiene una σ conocida
- n > 30

Entonces la distribucion es una Z

Paso 2. Regla de decisión

Nivel de confianza es de 0.93 Nivel de significancia $\alpha = 0.07$

Rechazo H_0 si:

- $|z_e| > |z_f|$
- valor $p < \alpha$

Paso 3: Análisis del resultados

- t_e : Número de desviaciones al que \bar{x} se encuentra lejos de μ
- · Valor p: Probabilidad de obtener lo que obtuve o un valor más extremo

```
datos = c(17, 11, 12, 23, 20, 23, 15, 16, 23, 22, 18, 23, 25, 14, 12, 12, 20, 18, 12, 1
9, 11, 11, 20, 21, 11, 18, 14, 13, 13, 19, 16, 10, 22, 18, 23)
alpha = 0.07
n = length(datos)
mu = 15
x_bar = mean(datos)
sigma = 4
ze = (x_bar - mu)/(sigma/sqrt(n))
zf = abs(qnorm(alpha))

cat('El valor frontera es:', zf, '\nEl valor obtenido es:', abs(ze))
```

```
## El valor frontera es: 1.475791
## El valor obtenido es: 2.95804
```

```
valor_p = 1 - pnorm(ze)
cat('El valor p es de', valor_p)
```

```
## El valor p es de 0.00154801
```

Grafica

```
sigma = 1
x=seq(-4*sigma,4*sigma,0.01)
y=dnorm(x)
plot(x,y,type="l",col="blue",xlab="",ylab="",frame.plot=FALSE,xaxt="n",yaxt="n",main="Re
gión de rechazo (distribución Z)")

abline(v=zf,col="red",lty=5)
abline(h = 0)
abline(v=0, col='blue', pch = 19)
points(mu,0,col="blue",pch=19)

points(ze, 0, pch=19, cex=1.1)
```

Región de rechazo (distribución Z)

Paso 4: Conclusión

Se tiene evidencia para rechazar H_0 ya que el valor p es menor a α y el valor $|z_e|$ es mayor al valor frontera.

En el contexto del problema esto quiere decir que no está justificada la tarifa adicional.