Matrice semblable à son inverse

Dans tout le problème, E est un \mathbb{R} -espace vectoriel de <u>dimension</u> 3.

Pour u endomorphisme de E et n entier naturel non nul, on note $u^n = u \circ u \circ \cdots \circ u$ (n fois).

On note $\mathfrak{M}_3(\mathbb{R})$ le \mathbb{R} -espace vectoriel des matrices carrées d'ordre 3, $GL_3(\mathbb{R})$ le groupe des matrices inversibles de $\mathfrak{M}_3(\mathbb{R})$, et I_3 la matrice unité de $\mathfrak{M}_3(\mathbb{R})$.

On notera par 0 l'endomorphisme nul, la matrice nulle et le vecteur nul.

Pour deux matrices A et B de $\mathfrak{M}_3(\mathbb{R})$, on dira que la matrice A est **semblable** à la matrice B s'il existe une matrice P de $GL_3(\mathbb{R})$ telle que : $A = P^{-1}BP$. On rappelle que si B et B' sont deux bases de E, si P est la matrice de passage de la base B à la base B', si B' est un endomorphisme de B' de matrice B dans la base B' et de matrice B dans la base B' alors $A = P^{-1}BP$ (c'est-à-dire, la matrice A est semblable à la matrice B).

Partie I

1. On notera $A \sim B$ pour dire que la matrice A est semblable à la matrice B.

Démontrer que la relation \sim est une relation d'équivalence sur $\mathfrak{M}_3(\mathbb{R})$.

On pourra désormais dire que les matrices A et B sont semblables.

- 2. Démontrer que deux matrices de $\mathfrak{M}_3(\mathbb{R})$ de déterminants différents ne sont pas semblables.
- 3. Soit u un endomorphisme de E et soit i et j deux entiers naturels. On considère l'application w de $\operatorname{Ker} u^{i+j}$ vers E définie par : $w(x) = u^j(x)$.
 - (a) Montrer que $\text{Im} w \subset \text{Ker} u^i$.
 - (b) En déduire que $\dim(\operatorname{Ker} u^{i+j}) \leq \dim(\operatorname{Ker} u^i) + \dim(\operatorname{Ker} u^j)$.
- 4. Soit u un endomorphisme de E vérifiant : $u^3 = 0$ et rgu = 2.
 - (a) Montrer que $\dim(\text{Ker}u^2) = 2$. (On pourra utiliser deux fois la question **3b**.).
 - (b) Montrer que l'on peut trouver un vecteur a non nul de E tel que $u^2(a) \neq 0$, et en déduire que la famille $(u^2(a), u(a), a)$ est une base de E.
 - (c) Ecrire alors la matrice U de u et la matrice V de $u^2 u$ dans cette base.
- 5. Soit u un endomorphisme de E vérifiant : $u^2 = 0$ et rgu = 1.
 - (a) Montrer que l'on peut trouver un vecteur b non nul de E tel que $u(b) \neq 0$.
 - (b) Justifier l'existence d'un vecteur c de Keru tel que la famille (u(b), c) soit libre, puis montrer que la famille (b, u(b), c) est une base de E.
 - (c) Ecrire alors la matrice U' de u et la matrice V' de $u^2 u$ dans cette base.

Partie II

Soit désormais une matrice A de $\mathfrak{M}_3(\mathbb{R})$ semblable à une matrice du type $T = \begin{pmatrix} 1 & \alpha & \beta \\ 0 & 1 & \gamma \\ 0 & 0 & 1 \end{pmatrix}$ de $\mathfrak{M}_3(\mathbb{R})$.

On se propose de montrer que la matrice A est semblable à son inverse A^{-1} .

On pose alors $N = \begin{pmatrix} 0 & \alpha & \beta \\ 0 & 0 & \gamma \\ 0 & 0 & 0 \end{pmatrix}$, et soit une matrice P de $GL_3(\mathbb{R})$ telle que $P^{-1}AP = T = I_3 + N$.

6. Expliquer pourquoi la matrice A est bien inversible.

MATRICE SEMBLABLE À SON INVERSE

- 7. Calculer N^3 et montrer que $P^{-1}A^{-1}P = I_3 N + N^2$.
- 8. On suppose dans cette question que N=0, montrer alors que les matrices A et A^{-1} sont semblables.
- 9. On suppose dans cette question que rg(N) = 2. On pose $M = N^2 N$.
 - (a) Montrer que la matrice N est semblable à la matrice $\begin{pmatrix} 0 & 1 & 0 \\ 0 & 0 & 1 \\ 0 & 0 & 0 \end{pmatrix}$ et en déduire, en utilisant la question
 - **A.4.**, une matrice semblable à la matrice M.
 - (b) Calculer M^3 et déterminer rg(M).
 - (c) Montrer que les matrices M et N sont semblables.
 - (d) Montrer alors que les matrices A et A^{-1} sont semblables.
- 10. On suppose dans cette question que rg(N) = 1. On pose $M = N^2 N$. Montrer que les matrices A et A^{-1} sont semblables.
- 11. **Exemple**: soit la matrice $A = \begin{pmatrix} 1 & 0 & 0 \\ 0 & 0 & -1 \\ 0 & 1 & 2 \end{pmatrix}$.
 - On note (a,b,c) une base de E et u l'endomorphisme de E de matrice A dans cette base.
 - (a) Montrer que $Ker(u id_E)$ est un sous-espace vectoriel de E de dimension 2 dont on donnera une base (e_1, e_2) .
 - (b) Justifier que la famille (e_1, e_2, c) est une base de E, et écrire la matrice de u dans cette base.
 - (c) Montrer que les matrices A et A^{-1} sont semblables.
- 12. Réciproquement, toute matrice de $\mathfrak{M}_3(\mathbb{R})$ semblable à son inverse est-elle nécessairement semblable à une matrice

du type
$$T = \begin{pmatrix} 1 & \alpha & \beta \\ 0 & 1 & \gamma \\ 0 & 0 & 1 \end{pmatrix}$$
?

Matrice semblable à son inverse

Partie I

- 1. La relation considérée est **réflexive**: $\forall A \in \mathcal{M}_3(\mathbb{R})$, $A = I_3AI_3$ et $I_3 = I_3^{-1}$. Elle est **symétrique**, car si $A = P^{-1}BP$, alors $B = PAP^{-1} = (P^{-1})^{-1}AP^{-1}$, enfin elle est **transitive**, car si $A = P^{-1}BP$ et $B = Q^{-1}CQ$, alors $A = P^{-1}Q^{-1}CQP = (QP)^{-1}CQP$, et $GL_3(\mathbb{R})$ est un groupe multiplicatif.
- 2. On sait que le déterminant d'un produit de matrices est le produit des déterminants (c'est un morphisme multiplicatif), donc, si $A \sim B$, alors $\det A = \det \left(P^{-1}BP\right) = \det P^{-1}\det B\det P$, et comme $\det P^{-1} = \frac{1}{\det P}$, il vient $\det A = \det B$. On conclut alors par contraposition.
- 3. (a) Soit $y \in \operatorname{Im} w$, alors il existe $x \in \operatorname{Ker} u^{i+j}$, $y = w(x) = u^j(x)$. On en déduit : $u^i(y) = u^{i+j}(x)$. Or $x \in \operatorname{Ker} u^{i+j}$, donc $u^i(y) = 0$. Conclusion : $\operatorname{Im} w \subset \operatorname{Ker} u^i$.
 - (b) Utilisons le théorème du rang sur w: dim Kerw + rg $w = \dim \text{Ker} u^{i+j}$, donc

 $\dim \operatorname{Ker} u^j + \dim \operatorname{Im} w = \dim \operatorname{Ker} u^{i+j}.$

Avec l'inclusion précédente, on peut conclure : dim $\mathrm{Ker} u^{i+j} \leqslant \dim \mathrm{Ker} u^j + \dim \mathrm{Ker} u^i$

- 4. On suppose $u^3 = 0$ et $rg \ u = 2$.
 - (a) D'une part, $u^3=u^{2+1}$, donc 3)b donne $3=\dim \operatorname{Ker} u^3\leqslant \dim \operatorname{Ker} u^2+\dim \operatorname{Ker} u$, et, comme $rg\ u=2$, on a : $\dim \operatorname{Ker} u=1$ (th. du rang). D'autre part $u^2=u^{1+1}$, donc $\dim \operatorname{Ker} u^2\leqslant 1+1$. Finalement on obtient : $2\leqslant \dim \operatorname{Ker} u^2\leqslant 2$, ce qui permet de conclure : $\dim \operatorname{Ker} u^2=2$
 - (b) De dim Ker $u^2=2$, on peut déduire rg $u^2=1$, il existe donc un vecteur a non nul tel que u^2 $(a) \neq 0$. Supposons que les réels α, β, γ soient tels que $\alpha a + \beta u$ $(a) + \gamma u^2$ (a) = 0, alors par application de u^2 (linéaire), on trouve αu^2 (a) = 0, puisque $u^3 = 0$, de même que $u^4 = 0$, d'où $\alpha = 0$, puis, en appliquant u, on trouve $\beta = 0$ et il reste γu^2 (a) = 0, ce qui donne $\gamma = 0$. La famille $(u^2(a), u(a), a)$ est donc libre, elle est formée de 3 vecteurs, dans E de dimension 3, c'est donc une base de E.
 - (c) On a $u^3(a) = 0$, puis $u^2(a) = 1.u^2(a)$ enfin $u(a) = 0.u^2(a) + 1.u(a) + 0.a$. Donc $U = \begin{pmatrix} 0 & 1 & 0 \\ 0 & 0 & 1 \\ 0 & 0 & 0 \end{pmatrix}$ et $V = \begin{pmatrix} 0 & -1 & 1 \\ 0 & 0 & -1 \\ 0 & 0 & 0 \end{pmatrix}$.
- 5. On suppose $u^2 = 0$ et rg u = 1.
 - (a) Puisque rg u = 1, l'image de u est une droite vectorielle, il existe donc un vecteur b non nul, d'image non nulle par u.
 - (b) D'une part $u^2 = 0$, donc $u^2(b) = 0$, ce qui entraı̂ne $u(b) \in \text{Ker} u$, d'autre part, dim Ker u = 2, donc le vecteur non nul u(b) de Ker u peut être complété par un vecteur c de Ker u pour que la famille (u(b), c) forme une base de Ker u; il nous reste à vérifier que la famille (b, u(b), c) est libre. Or, si $\alpha b + \beta u(b) + \gamma c = 0$, alors, par application de u, on trouve $\alpha = 0$, puis, la famille (u(b), c) étant libre, on trouve $\beta = \gamma = 0$. Conclusion la famille considérée est libre et elle a un cardinal égal à la dimension de E, c'est donc une base de E.
 - (c) On a u(b) = 0.b + 1.u(b) + 0.c, u(u(b)) = 0 et u(c) = 0, donc $U' = \begin{pmatrix} 0 & 0 & 0 \\ 1 & 0 & 0 \\ 0 & 0 & 0 \end{pmatrix}$, puis $V' = \begin{pmatrix} 0 & 0 & 0 \\ -1 & 0 & 0 \\ 0 & 0 & 0 \end{pmatrix}$

Partie II

Matrice semblable à son inverse

- 6. On a $\det T = 1$ et A est semblable à T, donc $\det A = 1$, ce qui prouve que A est inversible.
- 7. $N^2 = \begin{pmatrix} 0 & \alpha & \beta \\ 0 & 0 & \gamma \\ 0 & 0 & 0 \end{pmatrix}^2 = \begin{pmatrix} 0 & 0 & \alpha \gamma \\ 0 & 0 & 0 \\ 0 & 0 & 0 \end{pmatrix}$, puis $N^3 = \begin{pmatrix} 0 & 0 & \alpha \gamma \\ 0 & 0 & 0 \\ 0 & 0 & 0 \end{pmatrix} \begin{pmatrix} 0 & \alpha & \beta \\ 0 & 0 & \gamma \\ 0 & 0 & 0 \end{pmatrix} = \begin{pmatrix} 0 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \end{pmatrix}$, donc $N^3 = 0$. On a alors : $(I N + N^2)(I + N) = I N^3 = I$, car la matrice N commute avec I et les puissances de N. On en déduit $T^{-1} = I N + N^2$. Autrement dit, $(P^{-1}AP)^{-1} = I N + N^2$. On peut conclure en remarquant que $(P^{-1}AP)^{-1} = P^{-1}A^{-1}P$. (on a utilisé la formule $(AB)^{-1} = B^{-1}A^{-1}$)
- 8. Si N=0, alors T=I, donc $A=I=A^{-1}$. Conclusion: A et A^{-1} sont semblables.
- 9. Ici rg N = 1 et $M = N^2 N$.
 - (a) Comme $rg\ N=2$, et $N^3=0$, appelons u l'endomorphisme de matrice N dans la base canonique de E, d'après la question 4)c. il existe une base de E dans laquelle u a pour matrice $U=\begin{pmatrix} 0 & 1 & 0 \\ 0 & 0 & 1 \\ 0 & 0 & 0 \end{pmatrix}$, donc N

est semblable à U et la matrice M est semblable à $V=\left(\begin{array}{ccc} 0 & -1 & 1 \\ 0 & 0 & -1 \\ 0 & 0 & 0 \end{array}\right).$

- (b) D'après la question 7), on a $V^3=0$, donc aussi $M^3=0$. D'autre part, le rang de V est 2, car le sous-espace engendré par ses vecteurs colonnes est de dimension 2. Les automorphismes conservent la dimension, donc si $P \in GL_3(\mathbb{R})$, les matrices V, VP et $P^{-1}VP$ ont le même rang. Conclusion, le rang de M est 2.
- (c) On a $N^3 = 0$ et rg N = 2, de même que $M^3 = 0$ et rg M = 2. Donc N et M sont semblables à la même matrice V. Par transitivité, on en déduit que M et N sont semblables.
- (d) On sait que A est semblable à T = I + N et A^{-1} est semblable à $I N + N^2 = I + M$. Il suffit de remarquer que si $M = Q^{-1}NQ$, alors $I + M = Q^{-1}(I + N)Q$, pour constater que A et A^{-1} sont semblables à deux matrices semblables entre elles, elles sont donc semblables.
- 10. Ici rg N=1, alors l'un au moins des deux coefficients α et γ est nul (sinon le rang serait 2, car il y aurait deux pivots non nuls), le calcul de 7) montre alors que $N^2=0$.

On a vu dans la partie A.5) que N est semblable à U' et M à V'. Or U' et V' sont semblables car si $P = \begin{pmatrix} -1 & 0 & 0 \\ 0 & 1 & 0 \end{pmatrix} = P^{-1}$, on vérifie aisément $V' = P^{-1}U'P$; donc en raisonnant comme ci-dessus, N et M sont

semblables puis I + N et I + M le sont aussi et enfin A et A^{-1} sont semblables.

- 11. Exemple : $A = \begin{pmatrix} 1 & 0 & 0 \\ 0 & 0 & -1 \\ 0 & 1 & 2 \end{pmatrix}$.
 - (a) Déterminons $\operatorname{Ker}(u-id_E)$, c'est l'ensemble des vecteurs de coordonnées (x,y,z) dans la base (a,b,c) tels que $\begin{cases} 0=0 \\ -y-z=0 \\ y+z=0 \end{cases}$, on reconnaît une équation de plan. Une base est, par exemple $(e_1,e_2)=(a,b-c)$.
 - (b) La matrice des coordonnées de la famille (a,b-c,c) dans la base (a,b,c) est $P=\begin{pmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & -1 & 1 \end{pmatrix}$, cette matrice a pour déterminant 1, donc la famille (a,b-c,c) est une base de E., dans cette base, la matrice de u est $\begin{pmatrix} 1 & 0 & 0 \\ 0 & 1 & -1 \\ 0 & 0 & 1 \end{pmatrix}$, car u(a)=a, u(b-c)=b-c et u(c)=-b+2c=-(b-c)+c.
 - (c) On est ici dans le cas de la question 10. donc A est semblable à A^{-1} .
- 12. Soit A = -I, alors, pour toute matrice B semblable à A, on a $B = P^{-1}(-I)P = -I$ donc la classe de similitude de -I est le singleton $\{-I\}$, il n'y a donc aucune matrice $T = \begin{pmatrix} 1 & \alpha & \beta \\ 0 & 1 & \gamma \\ 0 & 0 & 1 \end{pmatrix}$ semblable à -I.