1	2	3	4
		1 1	
- 1		1 1	

CALIF.

APELLIDO Y NOMBRE: 6.

CARRERA: G.C wren- 37 1073

¿LLENÓ LA ENCUESTA?

LIBRETA Y NO. DE ORDEN:

CUATR. APROBACIÓN TPS: 4

CUATR. APROBACIÓN TALLER:

Algebra I Examen Final (10/12/2021)

1. Sea $V = \{1, 2, ..., 499, 500\}$. Se define en $\mathcal{P}(V) \setminus \emptyset$ la relación \mathcal{R} :

$$A \mathcal{R} B \iff \min(A) = \min(B) \text{ y } \max(A) = \max(B),$$

(donde si X es un subconjunto no vacío de V, $\min(X)$ denota el menor elemento de X y $\max(X)$ denota el mayor elemento de X. Por ejemplo para $X = \{2, 5, 8\}$, $\min(X) = 2$ y $\max(X) = 8$ mientras que para $X = \{5\}$, $\min(X) = \max(X) = 5$).

- (a) Probar que \mathcal{R} es una relación de equivalencia en $\mathcal{P}(V) \setminus \emptyset$ y calcular el cardinal de las clases de $X = \{1, 100\}$ y de $Y = \{50\}$.
- (b) ¿Cuántas clases de equivalencia tiene la relación R?
- 2. Determinar los posibles restos al dividir por 252 de todos los $a \in \mathbb{Z}$ que satisfacen que

$$(a^{225} + 10a + 1:252) = 14.$$

3. (a) Determinar todos los $n \in \mathbb{N}$ para los cuales

$$X^2 + X + 1 \mid X^{2n} + X^n + 1.$$

- (b) Calcular el resto de dividir a $X^{6n} + X^{3n} + 1$ por $X^2 + X + 1$.
- 4. Sea $f \in \mathbb{C}[X]$ y $\alpha \in \mathbb{C}$ una raíz de f de multiplicidad exactamente 5. Definimos la sucesión de polinomios $(f_n)_{n \in \mathbb{N}}$ como

$$f_1 := f$$
 y $f_{n+1} = (X - \alpha)^2 f_n + f^{n+1}, \ \forall n \in \mathbb{N}.$

Encontrar y probar una fórmula para la multiplicidad exacta de α como raíz de f_n . (Enunciar cuidadosamente todas las propiedades vistas en la teórica utilizadas.)