MA1521 CALCULUS FOR COMPUTING

Wang Fei

matwf@nus.edu.sg

Department of Mathematics Office: S17-06-16 Tel: 6516-2937

Chapter 2:Derivatives with Applications	2
Tangent Line	3
Definition	4
Examples	5
Derivative as Function	8
Differentiable Functions	12
Formulas	14
Chain Rule	19
Formulas of Derivatives	22
Implicit Differentiation	24
Calculus of Inverse Functions	30
Second Derivative	34
Higher Derivatives	36
Parametric Equations	
Log Differentiation	41
Extreme Values	45
Local Max & Min	47
Extreme Value Thm	
Finding Extrema	49
Closed Int. Method	
Increasing Test	57
First Derivative Test	
Concavity	
Concavity Test	
Curve Sketching	
Inequalities	
Approximation	
Optimization	
Examples	78
l'Hônital's Rule	89

Chapter 2:

Derivatives with Applications

2 / 101

The Tangent Line

• Recall that in Chapter 1 we have seen how to find the tangent line of the curve $y=x^2$ at $P(a,a^2)$:

$$m_{PQ} = \frac{\Delta y}{\Delta x}$$
$$= \frac{(a+h)^2 - a^2}{h}$$

o The slope of the tangent line can be written as

$$m := \lim_{h \to 0} m_{PQ} = \lim_{h \to 0} \frac{(a+h)^2 - a^2}{h}.$$

3 / 101

Definition of Derivative

• The derivative of a function f at a number a is

$$f'(a) := \lim_{h \to 0} \frac{f(a+h) - f(a)}{h}.$$

- o f is differentiable at a if f'(a) exists.
- \circ f'(a) is the slope of y = f(x) at x = a.
- Let x=a+h. Then h=x-a, and $h\to 0 \Leftrightarrow x\to a$. We may use an equivalent definition:

$$f'(a) := \lim_{x \to a} \frac{f(x) - f(a)}{x - a}.$$

• The tangent line to y = f(x) at (a, f(a)) is the line passing through (a, f(a)) with slope f'(a):

$$y - f(a) = f'(a)(x - a).$$

Examples of Derivatives

• Let $f(x) = x^2 - 8x + 9$. Find f'(3).

$$f'(3) = \lim_{h \to 0} \frac{f(3+h) - f(3)}{h}$$

$$= \lim_{h \to 0} \frac{[(3+h)^2 - 8(3+h) + 9] - (3^2 - 8 \cdot 3 + 9)}{h}$$

$$= \lim_{h \to 0} \frac{(-6 - 2h + h^2) - (-6)}{h}$$

$$= \lim_{h \to 0} \frac{-2h + h^2}{h} = \lim_{h \to 0} (-2 + h) = -2.$$

• The tangent line of y = f(x) passing through (3, -6):

$$y - (-6) = f'(3)(x - 3) = -2(x - 3).$$

That is, 2x + y = 0.

5/101

Examples of Derivatives

 $\bullet \quad \operatorname{Let} f(x) = \left\{ \begin{array}{ll} x^2 \sin\left(\frac{1}{x}\right), & \text{if } x \neq 0, \\ 0, & \text{if } x = 0. \end{array} \right. \text{Find } f'(0).$

$$f'(0) = \lim_{h \to 0} \frac{f(h+0) - f(0)}{h}$$
$$= \lim_{h \to 0} \frac{h^2 \sin\left(\frac{1}{h}\right) - 0}{h}$$
$$= \lim_{h \to 0} h \sin\left(\frac{1}{h}\right)$$
$$= 0.$$

Note that
$$-|h| \le h \sin\left(\frac{1}{h}\right) \le |h|$$
 for all $h \ne 0$. $h \to 0 \quad \downarrow \quad \downarrow \quad \downarrow \quad 0$ $\Rightarrow \quad 0 \quad \Leftarrow \quad 0$ (Squeeze Theorem)

Velocity

- Let s = s(t) be the position function of a particle.
 - o instantaneous velocity at time t = a: s'(a);
 - \circ speed at time t = a: |s'(a)|.
- **Example**. A ball is dropped from a tower 450m above the ground. Find its velocity after 5 seconds.

7 / 101

Example

 $\bullet \quad \text{Let } f(x) = \frac{1}{x}. \text{ Find } f'(a) \text{ at each } a \in \mathbb{R} \backslash \{0\}.$

$$f'(a) = \lim_{h \to 0} \frac{f(a+h) - f(a)}{h}$$

$$= \lim_{h \to 0} \frac{\frac{1}{a+h} - \frac{1}{a}}{h}$$

$$= \lim_{h \to 0} \frac{\frac{-h}{(a+h)a}}{h}$$

$$= \lim_{h \to 0} \frac{-1}{(a+h)a}$$

$$= -\frac{1}{a^2}.$$

 $\circ \quad f'$ is therefore a function defined on $\mathbb{R} \setminus \{0\}$.

Derivative as a Function

The **derivative** of f at point x = a:

$$f'(a) = \lim_{h \to 0} \frac{f(a+h) - f(a)}{h}.$$

The **derivative** of f as a function:

$$f'(x) = \lim_{h \to 0} \frac{f(x+h) - f(x)}{h}.$$

$$f'(x) = y' = \frac{dy}{dx} = \frac{df}{dx} = \frac{d}{dx}f(x) = D_x f(x) = \cdots$$

$$\frac{dy}{dx} := \lim_{\Delta x \to 0} \frac{\Delta y}{\Delta x}$$
 (Leibniz, 1646–1716, German)
$$f'(a) = \frac{dy}{dx}\Big|_{x=a}.$$

$$\circ \quad \left| \frac{dy}{dx} := \lim_{\Delta x \to 0} \frac{\Delta y}{\Delta x} \right| \quad \text{(Leibniz, 1646–1716, German)}$$

$$\circ \quad \overline{f'(a) = \frac{dy}{dx}\Big|_{x=a}}.$$

• Example. If $f(x) = \frac{1}{x}$, then $f'(x) = -\frac{1}{x^2}$.

9 / 101

Examples

• Let $f(x) = \frac{1-x}{2+x}$.

$$f'(x) = \lim_{h \to 0} \frac{f(x+h) - f(x)}{h}$$

$$= \lim_{h \to 0} \frac{\frac{1 - (x+h)}{2 + (x+h)} - \frac{1 - x}{2 + x}}{h}$$

$$= \lim_{h \to 0} \frac{-3h}{h(2 + (x+h))(2 + x)}$$

$$= \lim_{h \to 0} \frac{-3}{(2 + (x+h))(2 + x)}$$

$$= \frac{-3}{(2 + x)^2}.$$

Domain of $f: \mathbb{R} \setminus \{-2\}$; Domain of $f': \mathbb{R} \setminus \{-2\}$.

Examples

• Let $f(x) = \sqrt{x}$, $(x \ge 0)$. Find f'.

$$f'(x) = \lim_{h \to 0} \frac{f(x+h) - f(x)}{h}$$

$$= \lim_{h \to 0} \frac{\sqrt{x+h} - \sqrt{x}}{h}$$

$$= \lim_{h \to 0} \frac{(\sqrt{x+h} - \sqrt{x})(\sqrt{x+h} + \sqrt{x})}{h(\sqrt{x+h} + \sqrt{x})}$$

$$= \lim_{h \to 0} \frac{h}{h(\sqrt{x+h} + \sqrt{x})}$$

$$= \lim_{h \to 0} \frac{1}{\sqrt{x+h} + \sqrt{x}} = \frac{1}{2\sqrt{x}} \quad (x > 0).$$

The domain of f' may be *smaller* than the domain of f.

11 / 101

Differentiable Functions

- **Definition**. (We only consider the differentiability at a point or on open intervals)
 - $\circ f$ is differentiable at a if

$$f'(a) := \lim_{h \to 0} \frac{f(a+h) - f(a)}{h} \quad \text{exists.}$$

- o f is differentiable on (a, b) if it is differentiable at every $c \in (a, b)$.
- Questions.
 - What's the relation between differentiability and continuity?
 - What kinds of functions are differentiable?
 - o How to construct new differentiable functions?
 - How the derivative affects the original function?

Differentiability Implies Continuity

- Theorem. If f is differentiable at a, then f is continuous at a.
- Remark. The converse of the theorem is false.
 - \circ f(x) = |x| is continuous at 0, not differentiable at 0.
- **Proof**. Suppose f is differentiable at a.

That is,
$$f'(a) = \lim_{x \to a} \frac{f(x) - f(a)}{x - a} = L$$
.

$$\circ \lim_{x \to a} (f(x) - f(a)) = \lim_{x \to a} \frac{f(x) - f(a)}{x - a} \cdot (x - a) = L \cdot 0 = 0.$$

$$\circ \lim_{x \to a} f(x) = \lim_{x \to a} [(f(x) - f(a)) + f(a)] = 0 + f(a) = f(a).$$

Therefore, f is continuous at a.

13 / 101

Differentiation Formulas

• Let c be a constant. (c)' = 0.

$$\circ \frac{d}{dx}(c) = \lim_{h \to 0} \frac{c - c}{h} = \lim_{h \to 0} 0 = 0.$$

• Let *f* be a differentiable function, and *c* be a constant.

$$(cf)'(x) = \lim_{h \to 0} \frac{cf(x+h) - cf(x)}{h}$$

$$= \lim_{h \to 0} c \left[\frac{f(x+h) - f(x)}{h} \right]$$

$$= c \lim_{h \to 0} \frac{f(x+h) - f(x)}{h}$$

$$= cf'(x).$$

$$\therefore (cf)' = cf'.$$

Differentiation Formulas

• Let f and g be differentiable functions.

$$(f+g)'(x) = \lim_{h \to 0} \frac{(f+g)(x+h) - (f+g)(x)}{h}$$

$$= \lim_{h \to 0} \frac{[f(x+h) + g(x+h)] - [f(x) + g(x)]}{h}$$

$$= \lim_{h \to 0} \frac{[f(x+h) - f(x)] + [g(x+h) - g(x)]}{h}$$

$$= \lim_{h \to 0} \frac{f(x+h) - f(x)}{h} + \lim_{h \to 0} \frac{g(x+h) - g(x)}{h}$$

$$= f'(x) + g'(x).$$

$$\therefore (f+g)' = f' + g'.$$

$$(f-g)' = [f + (-g)]' = f' + (-g)' = f' + (-g')$$

$$= f' - g'.$$

15 / 101

Differentiation Formulas

• Let f and g be differentiable functions. What is (fg)'?

$$\frac{d}{dx} [f(x)]^2 = \lim_{h \to 0} \frac{[f(x+h)]^2 - [f(x)]^2}{h}$$

$$= \lim_{h \to 0} \frac{[f(x+h) - f(x)] \cdot [f(x+h) + f(x)]}{h}$$

$$= \lim_{h \to 0} \frac{f(x+h) - f(x)}{h} \cdot \lim_{h \to 0} [f(x+h) + f(x)]$$

$$= f'(x) \cdot [f(x) + f(x)] \quad (\because f \text{ is continuous})$$

$$= 2f'(x)f(x).$$

$$(fg)' = \frac{1}{2} [(f+g)^2 - f^2 - g^2]'$$

$$= \frac{1}{2} [2(f+g)'(f+g) - 2f'f - 2g'g]$$

$$= (f' + g')(f+g) - f'f - g'g$$

$$= f'g + fg'.$$

Differentiation Formulas

Let f and g be differentiable functions. What is (f/g)'? Suppose $q(x) \neq 0$.

$$\left(\frac{1}{g}\right)'(x) = \lim_{h \to 0} \frac{\left(\frac{1}{g}\right)(x+h) - \left(\frac{1}{g}\right)(x)}{h}$$

$$= \lim_{h \to 0} \frac{\frac{1}{g(x+h)} - \frac{1}{g(x)}}{h} = \lim_{h \to 0} \frac{\frac{g(x) - g(x+h)}{g(x)g(x+h)}}{h}$$

$$= \lim_{h \to 0} \left[\frac{g(x+h) - g(x)}{h} \cdot \frac{-1}{g(x)g(x+h)}\right]$$

$$= \lim_{h \to 0} \frac{g(x+h) - g(x)}{h} \cdot \lim_{h \to 0} \frac{-1}{g(x)g(x+h)}$$

$$= g'(x) \cdot \frac{-1}{[g(x)]^2} = \left(-\frac{g'}{g^2}\right)(x).$$

17 / 101

Differentiation Formulas

• Let f and g be differentiable functions. What is (f/g)'? Suppose $q(x) \neq 0$.

$$\left(\frac{f}{g}\right)' = \left(f \cdot \frac{1}{g}\right)' = f' \cdot \left(\frac{1}{g}\right) + f \cdot \left(\frac{1}{g}\right)'$$

$$= \frac{f'}{g} + \frac{f \cdot (-g')}{g^2}$$

$$= \frac{f'g - fg'}{g^2}.$$

$$\circ$$
 $(cf)' = cf'$

$$(f \pm g)' = f' \pm g'$$

$$(fg)' = f'g + fg'$$

$$\circ$$
 $(fq)' = f'q + fq'$

$$\circ \quad \left(\frac{f}{g}\right)' = \frac{f'g - fg'}{g^2}, \quad \text{if } g(x) \neq 0.$$

The Chain Rule

• Let $F(x) = \sqrt{x^2 + 1}$. Find F'.

$$F'(x) = \lim_{h \to 0} \frac{\sqrt{(x+h)^2 + 1} - \sqrt{x^2 + 1}}{h}$$

$$= \lim_{h \to 0} \frac{(\sqrt{(x+h)^2 + 1} - \sqrt{x^2 + 1})(\sqrt{(x+h)^2 + 1} + \sqrt{x^2 + 1})}{h(\sqrt{(x+h)^2 + 1} + \sqrt{x^2 + 1})}$$

$$= \lim_{h \to 0} \frac{(x+h)^2 + 1 - (x^2 + 1)}{h(\sqrt{(x+h)^2 + 1} + \sqrt{x^2 + 1})}$$

$$= \lim_{h \to 0} \frac{2xh + h^2}{h(\sqrt{(x+h)^2 + 1} + \sqrt{x^2 + 1})}$$

$$= \lim_{h \to 0} \frac{2x + h}{\sqrt{(x+h)^2 + 1} + \sqrt{x^2 + 1}}$$

$$= \frac{2x}{2\sqrt{x^2 + 1}} = \frac{x}{\sqrt{x^2 + 1}}.$$

19 / 101

The Chain Rule

• Let $F(x) = \sqrt{x^2 + 1}$. Find F'.

Note that $F=f\circ g$, where

$$\circ \quad f(x) = \sqrt{x} \text{, and } g(x) = x^2 + 1.$$

It is known that

$$\circ \quad f'(x) = \frac{1}{2\sqrt{x}}, \text{ and } g'(x) = 2x.$$

Question. Can we write F' by making use of f' and g'?

• If y = g(x), z = f(y), it seems that

$$F'(x) = \frac{dz}{dx} = \frac{dz}{dy} \frac{dy}{dx} = f'(g(x))g'(x) = \frac{2x}{2\sqrt{x^2 + 1}}.$$

Question. Can we always differentiate the composite of differentiable functions using this method?

The Chain Rule

• Theorem. Let f and g be differentiable functions. Then $F=f\circ g$ is differentiable and

$$F' = (f' \circ g)(g').$$

More precisely,

if g is differentiable at a and f is differentiable at b=g(a), then $F=f\circ g$ is differentiable at a and

$$F'(a) = f'(b)g'(a) = f'(g(a))g'(a).$$

In Leibniz notation, if y = g(x) and z = f(y), then

$$\left. \frac{dz}{dx} \right|_{x=a} = \frac{dz}{dy} \Big|_{y=b} \frac{dy}{dx} \Big|_{x=a}, \quad \text{or in short} \quad \frac{dz}{dx} = \frac{dz}{dy} \frac{dy}{dx}.$$

21 / 101

Formulas of Derivatives

$$\bullet \quad \frac{d}{dx}x^a = ax^{a-1}.$$

•
$$\frac{d}{dx}\sin x = \cos x$$
, $\frac{d}{dx}\cos x = -\sin x$;
 $\frac{d}{dx}\tan x = \sec^2 x$, $\frac{d}{dx}\cot x = -\csc^2 x$;
 $\frac{d}{dx}\sec x = \sec x \tan x$, $\frac{d}{dx}\csc x = -\csc x \cot x$.

•
$$\frac{d}{dx}\sin^{-1}x = \frac{1}{\sqrt{1-x^2}}, \quad \frac{d}{dx}\cos^{-1}x = -\frac{1}{\sqrt{1-x^2}}.$$

 $\frac{d}{dx}\tan^{-1}x = \frac{1}{1+x^2}, \quad \frac{d}{dx}\cot^{-1}x = -\frac{1}{1+x^2}.$
 $\frac{d}{dx}\sec^{-1}x = \frac{1}{x\sqrt{x^2-1}}, \quad \frac{d}{dx}\csc^{-1}x = -\frac{1}{x\sqrt{x^2-1}}.$

•
$$\frac{d}{dx}e^x = e^x$$
, $\frac{d}{dx}\ln|x| = \frac{1}{x}$

Examples

$$\bullet \quad \frac{d}{dx} \ln \frac{\sqrt{x+1}}{e^{2x} \cos^4 5x}.$$

$$\circ \frac{d}{dx} \ln \frac{\sqrt{x+1}}{e^{2x} \cos^4 5x} = \frac{1}{2(x+1)} - 2 - \frac{4}{\cos 5x} \cdot (-5\sin 5x)$$
$$= \frac{1}{2(x+1)} - 2 + 20\tan 5x.$$

$$\bullet \quad \frac{d}{dx} \left(x \sin^{-1} \frac{1}{x} \right).$$

$$\circ \frac{d}{dx} \left(x \sin^{-1} \frac{1}{x} \right) = 1 \cdot \sin^{-1} \frac{1}{x} + x \cdot \frac{1}{\sqrt{1 - (\frac{1}{x})^2}} \cdot (-x^{-2})$$

$$= \sin^{-1} \frac{1}{x} - \frac{1}{x\sqrt{1 - \frac{1}{x^2}}}.$$

23 / 101

Implicit Differentiation

• How to find the slope of the tangent line to the unit circle $x^2+y^2=1$ at a point $P(x_0,y_0)$ on the circle?

 $\circ \quad \overline{AB} \perp \overline{OP} \Rightarrow (\text{slope of } \overline{AB}) (\text{slope of } \overline{OP}) = -1$

$$y'|_P \cdot \frac{y_0}{x_0} = -1 \Rightarrow \left[y'|_P = -\frac{\overline{x_0}}{y_0}\right]$$

Implicit Differentiation

- How to find the slope of the tangent line to the unit circle $x^2 + y^2 = 1$ at a point $P(x_0, y_0)$ on the circle?
 - Given that $1 = x^2 + y^2$. Differentiate both sides with respect to x.

$$\frac{d}{dx}(1) = \frac{d}{dx}(x^2 + y^2).$$

That is,

$$0 = \frac{d}{dx}(x^2) + \frac{d}{dx}(y^2) = 2x + \frac{dy^2}{dy}\frac{dy}{dx}$$
$$= 2x + 2y\frac{dy}{dx}.$$

$$\frac{dy}{dx} = -\frac{2x}{2y} = -\frac{x}{y} \Rightarrow \left[\frac{dy}{dx} \Big|_{P} = -\frac{x_0}{y_0} \right].$$

25 / 101

Implicit Differentiation

• In general, we may not have a function y = f(x). Instead, it may be an equation

$$f(x,y) = 0.$$

We can still find $y' = \frac{dy}{dx}$ as follow:

- 1). Differentiate f(x, y) with respect to x;
- 2). Solve the equation $\frac{d}{dx}f(x,y)=0$ to express $\frac{dy}{dx}$ in terms of x and y.
- The method introduced is called implicit differentiation.

Remark. In other to use the method of implicit differentiation, we shall first assume that $\frac{dy}{dx}$ exists.

Examples

• Find $\frac{dy}{dx}$ if $x^3 + y^3 = 3xy$.

o Differentiate

$$x^3 + y^3 = 3xy$$

with respect to x:

$$(x^3)' = 3x^2$$

 $(y^3)' = 3y^2y'$
 $(xy)' = x'y + xy' = y + xy'$

$$3x^2 + 3y^2y' = 3(y + xy')$$

 $\circ \quad \text{Solve y':} \quad y' = \frac{x^2 - y}{x - y^2}, \quad (x, y) \neq (0, 0), (\sqrt[3]{4}, \sqrt[3]{2}).$

27 / 101

Find the Inverse Function

- Let f be a one to one function. Then it admits an inverse function f^{-1} . But how to find f^{-1} ?
- Recall that $y = f(x) \Leftrightarrow f^{-1}(y) = x$. We can thus apply the following procedure:
 - **1.** Write y = f(x).
 - **2.** Solve the equation for x in terms of y: $x = f^{-1}(y)$.
 - **3.** Interchanging x and y to express f^{-1} as a function in variable x: $y = f^{-1}(x)$.
- Interchanging x and y has the same effect as the reflection with respect to y = x.
 - \circ So the graphs of f and f^{-1} are symmetric with respect to the straight line y=x.

Examples

- Find inverse of $f(x) = x^3 + 2$ and $g(x) = \sqrt{-1 x}$.
 - 1. Let $y = f(x) = x^3 + 2$.
 - **2.** Solve x in terms of y: $x = \sqrt[3]{y-2}$.
 - **3.** Interchange x and y: $f^{-1}(x) = y = \sqrt[3]{x-2}$.
 - **1.** Let $y = g(x) = \sqrt{-1 x}$, $(x \le -1)$.
 - **2.** Solve x in terms of y: $x = -y^2 1$, $(y \ge 0)$.
 - **3.** Interchange x and y: $g^{-1}(x) = -x^2 1$, $(x \ge 0)$.

29 / 101

Calculus of Inverse Functions

- Let *f* be a continuous function defined on an interval.
 - \circ If f is increasing, then f is one to one.
 - $a < b \Rightarrow f(a) < f(b) \Rightarrow f(a) \neq f(b)$.

Similarly, if f is decreasing, then f is one to one.

- \circ If f is one to one, must f be increasing or decreasing?
- \bullet **Theorem**. Suppose f is a one-to-one and continuous function defined on an interval. Then
 - \circ f is either increasing or decreasing.
- ullet Theorem. Suppose f is a one-to-one and continuous function defined on an interval. Then
 - $\circ \quad \text{Its inverse function } f^{-1} \text{ is continuous.} \\$

Calculus of Inverse Functions

- **Theorem**. Let f be a one to one continuous function defined on an interval.
 - If f is differentiable at a, and $f'(a) \neq 0$,
 - then f^{-1} is differentiable at b = f(a),

and
$$(f^{-1})'(b) = \frac{1}{f'(a)}$$
.

31 / 101

Example

- $\bullet \quad \operatorname{Let} f(x) = x^2 \text{ on } [0,2]. \text{ Find } (f^{-1})'(1).$
 - $\bullet \quad \text{Method 1: } (f^{-1})(x) = \sqrt{x}. \text{ Then } (f^{-1})'(x) = \frac{1}{2\sqrt{x}}. \\ \bullet \quad (f^{-1})'(1) = \frac{1}{2\sqrt{x}} \Big|_{x=1} = \frac{1}{2}.$
 - \circ Method 2: f(1) = 1, and f'(x) = 2x. Then
 - $(f^{-1})'(1) = \frac{1}{f'(1)} = \frac{1}{2}$.

The advantage of Method 2 is that we can find $(f^{-1})'$ without knowing the explicit expression of f^{-1} .

Derivative of Trigonometric Functions

- Recall the inverse sine function $\sin^{-1} x : [-1,1] \to [-\frac{\pi}{2},\frac{\pi}{2}]$. What is $(\sin^{-1} x)'$?
 - $\circ \quad \text{Let } y = \sin^{-1} x \in \left[-\frac{\pi}{2}, \frac{\pi}{2} \right] \text{. Then } \sin y = x.$

$$\cos y \ge 0 \Rightarrow \cos y = \sqrt{1 - \sin^2 y} = \sqrt{1 - x^2}$$

$$\cos y \ge 0 \Rightarrow \cos y = \sqrt{1 - \sin^2 y} = \sqrt{1 - x^2}.$$

$$\therefore (\sin^{-1} x)' = \frac{1}{(\sin y)'} = \frac{1}{\cos y} = \frac{1}{\sqrt{1 - x^2}}, -1 < x < 1.$$

- The inverse cosine function $\cos^{-1} x : [-1, 1] \to [0, \pi]$.
 - \circ Let $y = \cos^{-1} x \in [0, \pi]$. Then $\cos y = x$.

$$\sin y \ge 0 \Rightarrow \sin y = \sqrt{1 - \cos^2 y} = \sqrt{1 - x^2}.$$

$$\therefore (\cos^{-1} x)' = \frac{1}{(\cos y)'} = \frac{-1}{\sin y} = \frac{-1}{\sqrt{1 - x^2}}, -1 < x < 1.$$

• Exercise. Prove that $(\tan x)' = \frac{1}{1+x^2}$.

33 / 101

Second Derivative

- Let f be a function. We can differentiate it to get f'.
- f' is a function, we can **differentiable** it to get (f')'.
 - $\circ \quad f'' := (f')'$, is called the **second derivative** of f.
 - o By Leibniz notation:

$$f''(x) = \frac{d}{dx} \left(\frac{dy}{dx} \right) = \frac{d^2y}{dx^2}.$$

- $\circ \quad f' = D(f) \Rightarrow f'' := D^2(f).$
- Geometric meaning:
 - \circ f' measures the change of f,
 - \circ f'' measures the change of f'.

Physical Meaning of Second Derivative

- Let s = s(t) be the position function of an object along a straight line.
 - s'(t) = v(t): the **instantaneous velocity**, it determines the change of the **position**,
 - s''(t) = v'(t) = a(t): the acceleration, it determines the change of the velocity.
- Example. Suppose the position of a particle is given by

$$s = s(t) = t^3 - 6t^2 + 9t.$$

- **Velocity**: $v(t) = s'(t) = 3t^2 12t + 9$.
- Acceleration: a(t) = s''(t) = v'(t) = 6t 12.

35 / 101

Higher Derivatives

- Let *f* be a function.
 - \circ Differentiate f to get f', the first derivative.
 - Differentiate f' to get f'', the second derivative.
 - Differentiate f'' to get f''', the third derivative.
 - Differentiate f''' to get f'''', the fourth derivative.
 - 0
- In general, we define $f^{(0)} := f$, and for positive integer n,

$$f^{(n)} := (f^{(n-1)})',$$

called the nth derivative of f.

Other notations: if y = f(x), then

$$f^{(n)}(x) = y^{(n)} = \frac{d^n y}{dx^n} = D^n f(x).$$

Examples

• Let $f(x) = x \cos x$. Find f', f'' and f'''.

$$f'(x) = (x \cos x)' = (x)' \cos x + x(\cos x)'$$

$$= \cos x - x \sin x.$$

$$f''(x) = (\cos x - x \sin x)' = (\cos x)' - (x \sin x)'$$

$$= -\sin x - [(x)' \sin x + x(\sin x)']$$

$$= -\sin x - \sin x - x \cos x$$

$$= -2 \sin x - x \cos x.$$

$$f'''(x) = (-2 \sin x - x \cos x)' = -2(\sin x)' - (x \cos x)'$$

$$= -2 \cos x - [(x)' \cos x + x(\cos x)']$$

$$= -2 \cos x - (\cos x - x \sin x)$$

$$= -3 \cos x + x \sin x.$$

37 / 101

Parametric Equations

- Let x and y be functions of variable t.
 - \circ x = x(t) and y = y(t).

This is a parametric equation of x and y.

- Examples.
 - $\circ \quad x^2+y^2=1 \ {\rm can \ be \ parameterized \ as}$
 - $x = \cos t$ and $y = \sin t$, $t \in \mathbb{R}$.
 - $\circ y^2 = x^3 + x^2$ can be parameterized as
 - $x=t^2-1$ and $y=t^3-t$, $t\in\mathbb{R}$.
- Question. Given a parametric equation, x=x(t) and y=y(t), how to find the derivative of y with respect to x?

Parametric Equations

- Suppose x = x(t) and y = y(t). Then
 - $\circ \frac{dy}{dx} = \frac{dy/dt}{dx/dt}$, provided that $\frac{dx}{dt} \neq 0$.
- **Example**. Find an expression for $\frac{dy}{dx}$ in terms of t if the curve is defined parametrically by
 - $\circ \quad x = \ln t \text{ and } y = t^2 e^t.$

Solution

$$\circ \quad \frac{dx}{dt} = \frac{1}{t} \text{ and } \frac{dy}{dt} = 2t - e^t.$$

$$\circ \quad \frac{dy}{dx} = \frac{dy/dt}{dx/dt} = t(2t - e^t)$$

$$\frac{dx}{dy} = \frac{dx/dt}{dy/dt} = \frac{1}{t(2t - e^t)}.$$

39 / 101

Parametric Equations

• We can find the second derivative by chain rule:

$$\circ \quad \frac{d^2y}{dx^2} = \frac{d}{dx}\left(\frac{dy}{dx}\right) = \frac{dt}{dx} \cdot \frac{d}{dt}\left(\frac{dy}{dx}\right) = \frac{1}{dx/dt} \cdot \frac{d}{dt}\left(\frac{dy}{dx}\right).$$

Example. $x = \ln t$ and $y = t^2 - e^t$.

$$\circ \quad \frac{dx}{dt} = \frac{1}{t} \text{ and } \frac{dy}{dt} = 2t - e^t.$$

$$\frac{d^2y}{dx^2} = \frac{1}{\frac{dx}{dt}} \cdot \frac{d}{dt} \left(\frac{\frac{dy}{dt}}{\frac{dx}{dt}}\right) = t(4t - e^t - te^t).$$

$$\frac{d^2x}{dy^2} = \frac{1}{\frac{dy}{dt}} \cdot \frac{d}{dt} \left(\frac{\frac{dx}{dt}}{\frac{dy}{dt}}\right) = -\frac{4t - e^t - te^t}{t^2(2t - e^t)}.$$

$$dy^2 \quad \frac{dy}{dt} \quad dt \quad \left(\frac{dy}{dt}\right) \qquad t^2(2t - \epsilon)$$
• Note.
$$\frac{dy}{dx} \cdot \frac{dx}{dy} = 1 \text{ but } \frac{d^2y}{dx^2} \cdot \frac{d^2x}{dy^2} \neq 1.$$

Logarithmic Differentiation

- Find $\frac{dy}{dx}$ if $y = \frac{(x^2+1)\sqrt{x+3}}{x-1}$, x > 1.
 - o Of course we can use product and quotient law to evaluate. But do we have a shortcut?
 - This is a product of positive functions.
 - Recall that $\ln ab = \ln a + \ln b$ for a > 0, b > 0.
 - 1. Take logarithmic function both sides:
 - $\ln y = \ln(x^2 + 1) + \frac{1}{2}\ln(x + 3) \ln(x 1)$.
 - 2. Differentiate with respect to x:

•
$$\frac{1}{y} \cdot \frac{dy}{dx} = \frac{2x}{x^2 + 1} + \frac{1}{2(x+3)} - \frac{1}{x-1}$$
.

$$\frac{dy}{dx} = \left[\frac{2x}{x^2+1} + \frac{1}{2(x+3)} - \frac{1}{x-1}\right] \frac{(x^2+1)\sqrt{x+3}}{x-1}.$$

41 / 101

Logarithmic Differentiation

- In general, if $y = f_1(x)f_2(x)\cdots f_n(x)$ is a product of nonzero functions, we can find the derivative as following:
 - 1. Take logarithmic function both sides:

$$\circ \ln |y| = \ln |f_1(x)| + \ln |f_2(x)| + \dots + \ln |f_n(x)|.$$

2. Differentiate with respect to x:

$$\circ \quad \frac{1}{y} \cdot \frac{dy}{dx} = \frac{f_1'(x)}{f_1(x)} + \frac{f_2'(x)}{f_2(x)} + \dots + \frac{f_n'(x)}{f_n(x)}.$$

3.
$$\frac{dy}{dx} = \left[\frac{f_1'(x)}{f_1(x)} + \frac{f_2'(x)}{f_2(x)} + \dots + \frac{f_n'(x)}{f_n(x)} \right] y$$

$$= \left[\frac{f_1'(x)}{f_1(x)} + \frac{f_2'(x)}{f_2(x)} + \dots + \frac{f_n'(x)}{f_n(x)} \right] f_1(x) f_2(x) \dots f_n(x).$$

• Such method is called logarithmic differentiation.

Logarithmic Differentiation

- **Example**. Find $\frac{dy}{dx}$ if $y = \frac{x \cos x}{\sqrt{\csc x}}$
 - 1. $\ln |y| = \ln |x| + \ln |\cos x| \frac{1}{2} \ln |\csc x|$.
 - 2. $\frac{1}{y} \cdot \frac{dy}{dx} = \frac{1}{x} + \frac{-\sin x}{\cos x} \frac{1}{2} \cdot \frac{-\csc x \cot x}{\csc x}$
 - 3. $\frac{dy}{dx} = \left[\frac{1}{x} \tan x + \frac{1}{2}\cot x\right] \frac{x\cos x}{\sqrt{\csc x}}.$
- **Example**. Find the derivative of y = f(x)g(x).
 - 1. $\ln |y| = \ln |f(x)| + \ln |g(x)|$.
 - 2. $\frac{1}{y} \cdot \frac{dy}{dx} = \frac{f'(x)}{f(x)} + \frac{g'(x)}{g(x)}.$
 - 3. $\frac{dy}{dx} = \left[\frac{f'(x)}{f(x)} + \frac{g'(x)}{g(x)} \right] y = f'(x)g(x) + f(x)g'(x).$

43 / 101

Logarithmic Differentiation

- Evaluate $\frac{d}{dx}x^x$. Exercise: $\frac{d}{dx}(x^x)^x$ and $\frac{d}{dx}x^{(x^x)}$.
 - $\circ \quad \frac{d}{dx}x^a = ax^{a-1}. \quad \text{Is } \frac{d}{dx}x^x = x \cdot x^{x-1} = x^x ?$ $\circ \quad \frac{d}{dx}a^x = a^x \ln a. \quad \text{Is } \frac{d}{dx}x^x = x^x \ln x ?$

 - \circ Let $y = x^x$. Then $\ln y = x \ln x$.
 - $\frac{1}{y}\frac{dy}{dx} = 1 \cdot \ln x + x \cdot \frac{1}{x} = \ln x + 1.$
 - $\frac{dy}{dx} = y(\ln x + 1) = x^x(\ln x + 1).$
- In general, if $y = f(x)^{g(x)}$, (f(x) > 0), then
 - $\circ \ln y = g(x) \ln f(x) \Rightarrow \frac{1}{y} \frac{dy}{dx} = \frac{d}{dx} [g(x) \ln f(x)].$

Absolute Maximum and Minimum Values

- $\bullet \quad \textbf{Definition}. \quad \text{Let } f \text{ be a function, and } D \text{ be its domain.}$
 - $\circ \quad f$ has an global (or absolute) maximum at $c \in D$

$$\iff f(c) \ge f(x) \text{ for all } x \in D.$$

 $\circ \quad f \text{ has an global (or absolute) minimum at } c \in D$

$$\iff f(c) \leq f(x) \text{ for all } x \in D.$$

• The absolute maximum and absolute minimum are called the (absolute) extreme values.

45 / 101

Example

• Let $f(x) = 3x^4 - 16x^3 + 18x^2$ on [-1, 3.5].

- \circ global max: highest point f(-1) = 37.
- \circ global min: lowest point f(3) = -27.
- What can we say about other "turning points" and "end points"?

Local Maximum and Local Minimum

- **Definition**. Let f be a function with domain D.
 - \circ f has a local (or relative) maximum at $c \in D$ $\iff f(c) \ge f(x)$ for all x near c

(i.e., for all x in an open interval containing c)

 $\circ \quad f$ has a local (or relative) minimum at $c \in D$

```
\iff f(c) \le f(x) \text{ for all } x \text{ near } c
```


47 / 101

Extreme Value Theorem

• Extreme Value Theorem.

If f is continuous on a finite closed interval [a, b],

 \circ then f attains extreme values on [a, b].

Precisely, f attains an

- absolute maximum value f(c) at some $c \in [a, b]$,
- o absolute minimum value f(d) at some $d \in [a, b]$.

(The proof requires the "compactness" of finite closed interval. It is omitted in our course.)

• Note. Similarly as the "Intermediate Value Theorem", the "Extreme Value Theorem" only shows the existence of the extreme values.

We shall introduce a method to find out the exact value of extreme values.

Where are the Extreme Values?

• The extreme value may be obtained at the endpoints.

• If the extreme value is not obtained at the end points,

by definition it must occur as a local max or a local min.

49 / 101

Finding the Extreme Values

- Let f be a continuous function on closed interval [a, b].
 - 1. Compute the values at **endpoints**: f(a), f(b).
 - 2. Find local max and local min of f on (a, b).
 - 3. Compare the values obtained above to seek out the **extreme values**:
 - The largest is the absolute maximum,
 - The smallest is the absolute minimum.
- The 1st and the 3rd steps are easy.

How to find the **local max** and **local min** of f on (a, b)?

• From the graphs, it seems that the local max and local min always occur at the "turning points".

Fermat's Theorem

- Fermat's Theorem.
 - Suppose f has a local maximum or local minimum at c. If f'(c) exists, then f'(c) = 0.
- Pierre de Fermat (1601-1665), French Lawyer.
 - \circ Fermat's Last Theorem: $x^n + y^n = z^n$ has no nontrivial integer solution for $n \ge 3$.
 - o He wrote: "I have discovered a truly remarkable proof which this margin is too small to contain."
- Note. We CANNOT find the local maximum and local minimum by simply solving f'(x) = 0.
 - \circ Even if f'(c) = 0, f may not have a local maximum or local minimum at c.
 - \circ Even if f has a local maximum or a local minimum at c, f'(c) may not exist, and so f'(c) may not be 0.

51 / 101

Examples

- " $f'(c) = 0 \Rightarrow f$ has local max or local min at c".
 - $\bullet \quad \text{Let } f(x) = x^3. \quad \text{Then } f'(x) = 3x^2 \text{ and } f'(0) = 0. \\ \text{But } f \text{ has no local max or local min at } 0.$
- "f has local max or local min at $c \Rightarrow f'(c) = 0$ ".
 - $\circ \quad \text{Let } g(x) = |x|. \quad \text{Then } f \text{ is a local minimum at } 0. \\ \text{But } f'(0) \text{ does not exist.}$

Critical Number

• Consider the following diagram:

- ullet Definition. Let f be a function with domain D. Then $c\in D$ is called a **critical number** of f if
 - $\circ \quad f'(c) \text{ does not exist, or } f'(c) \text{ exists and equals } 0.$

53 / 101

Closed Interval Method

• Fermat's Theorem (Rephrased).

If f has a local maximum or a local minimum at c,

- \circ then c is a critical number of f.
- Closed Interval Method:

Let f be a **continuous** function on interval [a, b].

- 1) Find the values of f at end points: x = a, x = b,
- 2) Find the values of f at critical numbers of f in (a,b):
 - o number $c \in (a, b)$ at which f'(c) does not exist, or
 - number $c \in (a, b)$ at which f'(c) = 0.
- 3) Compare the values of f(x) evaluated in 1) and 2):
 - The largest is the absolute maximum value.
 - The smallest is the absolute minimum value.

Examples

• Find the extreme values of $f(x) = x^{\frac{3}{5}}(4-x)$ on [-1,3].

- 1) End points: -1, 3;

2) Critical numbers: 0,1.5.
$$f'(x) = (x^{\frac{3}{5}})'(4-x) + x^{\frac{3}{5}}(4-x)'$$
$$= \frac{3}{5}x^{-\frac{2}{5}}(4-x) - x^{\frac{3}{5}} = \frac{4(3-2x)}{5x^{\frac{2}{5}}}.$$

- f'(x) does not exist $\Rightarrow x = 0$,
- $f'(x) = 0 \Rightarrow x = 1.5$.
- 3) Comparing f(-1), f(3), f(0), f(1.5),
 - Absolute maximum: $f(1.5) \approx 3.1886$.
 - Absolute minimum: f(-1) = -5.

55 / 101

Examples

- Let $f(x) = \sqrt[3]{x^2 x}$ be defined on [-1, 2].
 - $f'(x) = \frac{1}{3}(x^2 x)^{-2/3}(2x 1) = \frac{2x 1}{3(x^2 x)^{2/3}}.$
 - f'(x) does not exist: x = 0, x = 1;
 - f'(x) = 0: $x = \frac{1}{2}$.

- Absolute maximum: $f(-1) = f(2) = \sqrt[3]{2}$. Absolute minimum: $f(\frac{1}{2}) = -\frac{1}{\sqrt[3]{4}}$.

Increasing/Decreasing Test

• Consider the following functions:

 $\circ \quad \text{It seems that} \left\{ \begin{array}{ll} f \text{ "turns"} & \Leftrightarrow & f' = 0, \\ f \text{ is increasing} & \Leftrightarrow & f' > 0, \\ f \text{ is decreasing} & \Leftrightarrow & f' < 0. \end{array} \right.$

57 / 101

Increasing/Decreasing Test

• **Theorem**. Let *f* be a function such that

• It is continuous on [a, b], differentiable on (a, b).

Then

- \circ f'(x) = 0 on $(a, b) \Leftrightarrow f$ is constant on [a, b];
- \circ f'(x) > 0 on $(a, b) \Rightarrow f$ is increasing on [a, b];
- $\circ f'(x) < 0 \text{ on } (a,b) \Rightarrow f \text{ is decreasing on } [a,b].$

• The converse of Increasing/Decreaing Test fails:

- f is increasing $\Rightarrow f'(x) > 0$;
- ∘ f is decreasing $\Rightarrow f'(x) < 0$.

Note that f is not necessarily differentiable.

Even if f is differentiable, f' may be zero at some points.

- Let $f(x) = x^3$. Then f is increasing on \mathbb{R} .
 - $f'(x) = 3x^2 \Rightarrow f'(0) = 0$.

Example

- Let $f(x) = 3x^4 4x^3 12x^2 + 5$.
 - $f'(x) = 12x^3 12x^2 24x = 12(x+1)x(x-2).$

Interval	x+1	\boldsymbol{x}	x-2	f'(x)	f(x)
$(-\infty, -1)$	_	_	_	_	/
(-1,0)	+	_	_	+	
(0, 2)	+	+	_	_	
$(2,\infty)$	+	+	+	+	7

59 / 101

First Derivative Test

- $\bullet \hspace{0.4cm}$ Let f be a continuous function. Recall that
 - \circ if f has a local max or local min at c,
 - \circ then c is a critical number of f.

Now suppose c is a **critical number** of f.

How to check if f has a local max or local min at c?

First Derivative Test

• First Derivative Test.

Let f be **continuous** and c a **critical number** of f. Suppose f is **differentiable** near c (except possibly at c).

- \circ If f' changes from positive to negative at c, then f has a local maximum at c.
- o If f' changes from negative to positive at c, then f has a local minimum at c.
- \circ If f' does not change sign at c, then f has no local max/min at c.
- **Proof**. If f' changes from positive to negative at c, then
 - f is increasing on the left of c, and
 - \circ f is decreasing on the right of c.

So f has a **local maximum** at c.

Other two cases can be shown similarly. (Exercise)

61 / 101

Examples

•
$$f(x) = 3x^4 - 4x^3 - 12x^2 + 5$$

$$f'(x) = 12x^3 - 12x^2 - 24x = 12(x+1)x(x-2).$$

	Interval	$(-\infty, -1)$	(-1,0)	(0, 2)	$(2,\infty)$
	f'(x)	_	+		+
Į	f(x)	\	7	>	7

- \circ local maximum: x = 0;
- \circ local minimum: x = -1, x = 2.

Examples

- $\bullet \quad f(x) = x^{1/3}(x-4). \quad \text{Find its local max and local min.}$

$$\text{ Where are the critical numbers?} \\ f'(x) = (x^{4/3} - 4x^{1/3})' = \frac{4}{3}x^{1/3} - \frac{4}{3}x^{-2/3} = \frac{4}{3}\frac{x-1}{x^{2/3}}.$$

- f'(x) does not exists: x = 0;
- f'(x) = 0: x = 1.

Interval	$(-\infty,0)$	(0, 1)	$(1,\infty)$
f'(x)	_	_	+
f(x)	\		7

63 / 101

Concavity

Consider two graphs with the same end points:

- They are both increasing functions, but look different.
- We shall define concavity to distinguish the two types of (differentiable) functions.

Concavity

- **Definition**. Let f be differentiable on an open interval I.
 - If the graph lies above all its tangent lines on I, then it is said to be concave up.
 - \circ If the graph lies below all its tangent lines on I, then it is said to be concave down.

65 / 101

Concavity Test

- ullet Theorem. Let f be differentiable on open interval I.
 - The graph is concave up $\Leftrightarrow f'$ is increasing.
 - The graph is concave down $\Leftrightarrow f'$ is decreasing.
- Suppose f is twice differentiable on an open interval I.
 - $\qquad \text{ If } f''>0 \text{ on } I \text{, by Increasing Test } f' \text{ is increasing,} \\ \text{ then the graph of } f \text{ is concave up.}$
 - $\qquad \text{o} \quad \text{If } f'' < 0 \text{ on } I \text{, by Decreasing Test } f' \text{ is decreasing,} \\ \\ \text{then the graph of } f \text{ is concave down.}$
- The Concavity Test. Let f be a twice differentiable function on an open interval I.
 - \circ If f'' > 0 on I,

then the graph of f is **concave up** on I.

 \circ If f'' < 0 on I,

then the graph of f is concave down on I.

Graph f using f^\prime and $f^{\prime\prime}$

• Sketch the graph of $f(x) = x^4 - 4x^3$.

$$f'(x) = 4x^2(x-3).$$

Interval	$(-\infty,0)$	(0,3)	$(3,\infty)$
f'(x)		_	+
f(x)	\		7

So f(x) has local minimum at x=3.

$$f''(x) = 12x(x-2).$$

Interval	$(-\infty,0)$	(0, 2)	$(2,\infty)$
f''(x)	+	_	+
Concavity	Up	Down	Up

67 / 101

Graph f using f^\prime and $f^{\prime\prime}$

• Sketch the graph of $f(x) = x^4 - 4x^3$.

Interval	$(-\infty,0)$	(0,3)	$(3,\infty)$
f(x)	/	\	7
Intonial	()	(0.0)	(0)
Interval	$(-\infty,0)$	(0, 2)	$(2,\infty)$

Graph f using f^\prime and $f^{\prime\prime}$

• Sketch the graph of $f(x) = x^{2/3}(6-x)^{1/3}$.

$$\circ \quad f'(x) = \frac{4 - x}{x^{1/3}(6 - x)^{2/3}}.$$

Interval	$(-\infty,0)$	(0,4)	(4,6)	$(6,\infty)$
f'(x)	_	+	_	_
f(x)	\	7	\	

$$\circ \quad f''(x) = \frac{-8}{x^{4/3}(6-x)^{5/3}}.$$

Interval	$(-\infty,0)$	(0,6)	$(6,\infty)$
f''(x)	-	_	+
Concavity	Down	Down	Up

69 / 101

Graph f using f^\prime and $f^{\prime\prime}$

• Sketch the graph of $f(x) = x^{2/3}(6-x)^{1/3}$.

Some Inequalities

- Show that for all positive $x \neq 1$, $2\sqrt{x} > 3 \frac{1}{x}$.
 - $\circ \ \ \operatorname{Let} f(x) = 2\sqrt{x} \left(3 \frac{1}{x}\right) = 2\sqrt{x} 3 + \frac{1}{x}.$
 - $f'(x) = \frac{1}{\sqrt{x}} \frac{1}{x^2} = \frac{1}{x^2} \left(\sqrt{x^3} 1 \right).$

 - $\begin{cases} f'(x) > 0, & \text{if } x > 1, \\ f'(x) < 0, & \text{if } 0 < x < 1. \\ \end{cases}$ $\begin{cases} f \text{ is increasing on } [1, \infty), \\ f \text{ is decreasing on } (0, 1]. \end{cases}$
 - Then for any positive $x \neq 1$, f(x) > f(1) = 0.

$$2\sqrt{x} > 3 - \frac{1}{x}.$$

71 / 101

Some Inequalities

- We have seen that $\sin x < x$ for all $0 < x < \frac{\pi}{2}$ Show that $\frac{2}{\pi}x < \sin x$ when $0 < x < \frac{\pi}{2}$.
 - $\circ \quad \text{Let } g(x) = \frac{\sin x}{x} \text{ on } (0, \frac{\pi}{2}].$
 - $g'(x) = \left(\frac{\sin x}{x}\right)' = \frac{\cos x(x \tan x)}{x^2} < 0.$
 - By Increasing Test, g is decreasing on $(0, \frac{\pi}{2}]$.
 - For any $0 < x < \frac{\pi}{2}$, $g(x) > g(\frac{\pi}{2}) = \frac{\sin(\pi/2)}{\pi/2} = \frac{2}{\pi}$. That is,

$$\sin x > \frac{2x}{\pi}.$$

Some Inequalities

- Recall that $\sin x < x < \tan x$ for all $x \in (0, \frac{\pi}{2})$. $\tan x + \sin x$ and 2x, which one is bigger on $(0, \frac{\pi}{2})$?
- Let $f(x) = \tan x + \sin x 2x$.
 - $f'(x) = \sec^2 x + \cos x 2.$ $f''(x) = 2\sec^2 x \tan x - \sin x > 0$
 - $\circ \quad f' \text{ is increasing on } [0,\frac{\pi}{2}).$

Then for any $x \in (0, \frac{\pi}{2}), f'(x) > f'(0) = 0.$

• f is increasing on $[0,\frac{\pi}{2})$. Then for any $x\in(0,\frac{\pi}{2}),$ f(x)>f(0).

 $\therefore \tan x + \sin x > 2x.$

73 / 101

Approximation

- Suppose f is continuous. Then $x \to a \Rightarrow f(x) \to f(a)$.
 - $\circ \quad \text{In other words, if } x \approx a \text{, then } f(x) \approx f(a).$
 - \circ For example, $\sqrt{1.1} \approx \sqrt{1} = 1$.
- Question. Do we have a better approximation under some stronger assumptions?
- Suppose f' is continuous. Then $x \to a \Rightarrow f'(x) \approx f'(a)$.
 - \circ f can be approximated by the tangent line at a.
 - $f(x) \approx f(a) + f'(a)(x-a)$.
 - $\quad \text{o} \quad \text{For example, let } f(x) = \sqrt{x} \text{, then } f'(x) = \frac{1}{2\sqrt{x}}.$
 - $f(1.1) \approx f(1) + f'(1)(1.1 1) = 1.05.$

Approximation

• Suppose f'' is continuous. Then

$$\circ \quad x \to a \Rightarrow f'(x) \to f'(a) \text{ and } f''(x) \to f''(a).$$

- \circ Approximate f by a quadratic function P:
 - P(a) = f(a), P'(a) = f'(a), P''(a) = f''(a).

Let
$$P(x) = p + q(x - a) + r(x - a)^2$$
. Then

$$P(a) = f(a) \Rightarrow p = f(a);$$

$$P'(a) = f'(a) \Rightarrow q = f'(a)$$
;

$$P''(a) = f''(a) \Rightarrow 2r = f''(a).$$

$$f(x) \approx f(a) + f'(a)(x-a) + \frac{f''(a)}{2}(x-a)^2.$$

75 / 101

Approximation

• Let
$$f(x) = \sqrt{x}$$
. $f'(x) = \frac{1}{2}x^{-1/2}$, $f''(x) = -\frac{1}{4}x^{-3/2}$.

$$f(x) \approx f(1) + f'(1)(x-1) + \frac{f''(1)}{2}(x-1)^2.$$

• In general, assume that $f^{(n)}$ is continuous, then f can be approximated by a polynomial P(x) of degree n:

$$f(x) \approx f(a) + f'(a)(x-a) + \frac{f''(a)}{2!}(x-a)^2 + \frac{f'''(a)}{3!}(x-a)^3 + \dots + \frac{f^{(n)}(a)}{n!}(x-a)^n.$$

$$P(a) = f(a), P'(a) = f'(a), \dots, P^{(n)}(a) = f^{(n)}(a).$$

Optimization Problems

- What is optimization problem?
 - Finding extreme values in practical application.
 - Maximize areas, volumes, profits, ...,
 - Minimize distances, costs, times,
- How to optimize?
 - o Understand the problem.
 - o Draw a diagram.
 - o Introduce notations.
 - o Find relations among the variables.
 - Express the problem as finding the absolute maximum or minimum of a function $\overline{f(x)}$ on a specified domain.
 - o Find the absolute maximum and minimum.
 - Closed Interval Method (on finite closed interval),
 - Increasing/Decreasing Test (works for all cases).

77 / 101

Example 1

• **Example**. A farmer has 2400 ft of fencing and wants to fence off a rectangular field that borders a straight river. He needs no fence along the river. What are the dimensions of the field that has the largest area?

- \circ Aim: Maximize A = xy, where
 - 2x + y = 2400, $x, y \ge 0$.

- Maximize A = xy, where 2x + y = 2400, $x, y \ge 0$.
 - \circ $2x + y = 2400 \Rightarrow y = 2400 2x.$
 - $y \ge 0 \Rightarrow x \le 1200$.
- It is equivalent to

Finding maximum of A(x) = x(2400 - 2x) on [0, 1200].

- o Critical number:
 - A'(x) = 2400 4x.
 - $A'(x) = 0 \Rightarrow x = 600$. $A(600) = 720\,000$.
- \circ Endpoints: x = 0, 1200. A(0) = A(1200) = 0.
- \circ A(x) has maximum value $720\,000$ when x=600.
- Conclusion: the field has the largest area 720 000 ft²,

when it has width $600\,\mathrm{ft},$ and length $1200\,\mathrm{ft}.$

79 / 101

Example 2

• A cylindrical can is to be made to hold 1 liter of oil. Find the dimensions that will minimize the cost of the metal to manufacture the can.

- Minimize $S=2\pi rh+2\pi r^2$, where
 - $V = \pi r^2 h = 1$, r, h > 0.

• Minimize $S = 2\pi r^2 + 2\pi rh$, $V = \pi r^2 h = 1$, r, h > 0.

$$o \quad h = \frac{1}{\pi r^2} \Rightarrow S = 2\pi r^2 + \frac{2\pi r}{\pi r^2} = 2\pi r^2 + \frac{2}{r}.$$

Find the minimum of $S(r)=2\pi r^2+\frac{2}{r}$ for r>0.

- $\circ S'(r) = 4\pi r \frac{2}{r^2} = \frac{2}{r^2} (2\pi r^3 1).$
- $\begin{array}{c} r^2 \\ r^2 \\ \hline \\ 0 \\ S'(r) = 0 \Rightarrow r = \frac{1}{\sqrt[3]{2\pi}} = r_0. \\ 0 \\ < r \\ < r_0 \Rightarrow S'(r) \\ < 0; \quad r \\ > r_0 \Rightarrow S'(r) \\ > 0. \\ S(r) \text{ is decreasing on } (0, r_0], \text{ is increasing on } [r_0, \infty). \end{array}$

- \therefore S(r) has the absolute minimum at $r=r_0$.
- The cost is minimized when we choose radius $r=r_0=\frac{1}{\sqrt[3]{2\pi}}$, and height $h=\sqrt[3]{\frac{4}{\pi}}$.

81 / 101

Example 3

• Find the point on the parabola $y^2 = 2x$ that is **closest** to the point (1,4).

- Minimize $d = \sqrt{(x-1)^2 + (y-4)^2}$,
 - where $y^2 = 2x$.

• Minimize $d = \sqrt{(x-1)^2 + (y-4)^2}$, with $y^2 = 2x$.

$$d(y) = \sqrt{\left(\frac{y^2}{2} - 1\right)^2 + (y - 4)^2}, \quad (x = \frac{y^2}{2}).$$

It is equivalent to minimizing

$$f(y) = (d(y))^2 = \left(\frac{y^2}{2} - 1\right)^2 + (y - 4)^2 \text{ on } \mathbb{R}.$$

- $f'(y) = y^3 8$. Then $f'(y) = 0 \Rightarrow y = 2$.
- If y < 2, f'(y) < 0; f is decreasing on $(-\infty, 2]$.
- If y > 2, f'(y) > 0; f is increasing on $[2, \infty)$.
- \circ So f(y) attains the absolute minimum at y=2.
- \therefore d(y) attains the absolute minimum at y=2. (x=2)
- $\circ \quad \text{Therefore, the point on } y^2 = 2x \text{ which is closest to } (4,1) \text{ is } (2,2). \quad \text{Moreover, the distance is }$

$$d = \sqrt{(2-4)^2 + (2-1)^2} = \sqrt{5}.$$

83 / 101

Example 4

• A man launches his boat from point A on a bank of a straight river, 3km wide, and wants to reach point B, 8km downstream on the opposite bank, as quick as possible. If he can row 6km/h and run 8km/h, where should he land?

$$\text{o} \quad \text{Minimize } T(x) = \frac{\sqrt{9 + x^2}}{6} + \frac{8 - x}{8}, \, 0 \le x \le 8.$$

- Minimize $T(x) = \frac{\sqrt{9+x^2}}{6} + \frac{8-x}{8}$ on [0,8].
 - $T'(x) = \frac{x}{6\sqrt{9+x^2}} \frac{1}{8}.$ $T'(x) = 0 \Rightarrow 8x = 6\sqrt{9+x^2} \Rightarrow 16x^2 = 81 + 9x^2$ $\Rightarrow 7x^2 = 81 \Rightarrow x = \frac{9}{\sqrt{7}} (x > 0).$
 - $\qquad \text{Compare the values } T(0), \, T(8) \text{ and } T(\frac{9}{\sqrt{7}}) \text{:}$
 - $T(0)=1.5, \quad T(8)=\frac{73}{6}\approx 1.42, \quad \text{and} \quad T(\frac{9}{\sqrt{7}})=1+\frac{\sqrt{7}}{8}\approx 1.33.$
 - \circ $\;$ Therefore, he should land at $9/\sqrt{7}$ km away downstream from the starting point.

85 / 101

Example 5: Fermat's Principle and Snell's Law

- Fermat's Principle. The light travels along a path for which the time is minimized.
- ullet Snell's Law. Let v_1 and v_2 be the velocity of light in air and in water respectively. Use Fermat's Principle to show that

$$\frac{\sin \theta_1}{\sin \theta_2} = \frac{v_1}{v_2}.$$

Example 5: Fermat's Principle and Snell's Law

Minimize $T(x) = \frac{\sqrt{a^2 + x^2}}{v_1} + \frac{\sqrt{b^2 + (d - x)^2}}{v_2}$ on [0, d].

$$T'(x) = \frac{x}{v_1\sqrt{a^2 + x^2}} - \frac{d - x}{v_2\sqrt{b^2 + (d - x)^2}} = \frac{\sin\theta_1}{v_1} - \frac{\sin\theta_2}{v_2}.$$

- \circ As x moves from 0 to d smoothly,
 - $\theta_1 \nearrow \text{ and } \theta_2 \searrow \Rightarrow T'(x) \nearrow$.
 - T'(0) < 0, T'(d) > 0, T' is continuous on [0, d]. \Rightarrow there is a unique $x_0 \in (0,d)$ with $T'(x_0) = 0$.

T'(x) increases smoothly from negative to positive.

- T'(x) < 0 on $(0, x_0) \Rightarrow T(x) \searrow$ on $[0, x_0]$, T'(x) > 0 on $(x_0, d) \Rightarrow T(x) \nearrow$ on $[x_0, d]$.
- T(x) attains the min if $x = x_0$, at which $\frac{\sin \theta_1}{v_1} = \frac{\sin \theta_2}{v_2}$.

87 / 101

Example 5: Fermat's Principle and Snell's Law

Recall Example 4:

By Snell's Law, the time is minimized when $\frac{\sin \theta}{v_1} = \frac{\sin \frac{\pi}{2}}{v_2}$.

$$\circ \quad \frac{x/\sqrt{9+x^2}}{6} = \frac{1}{8} \Rightarrow x = \frac{9}{\sqrt{7}}.$$

Limits of Indeterminate Forms

How do we compute the following limits?

$$\circ \lim_{x \to 0} \frac{1 - \cos x}{x + x^2}, \lim_{x \to 0} \frac{x - \sin x}{x^3}, \lim_{x \to 0} \frac{\sqrt{1 - x} - 1 + \frac{x}{2}}{x^2}.$$

Both the numerator and denominator tend to 0 as $x \to 0$.

They have the 0/0 **Indeterminate Form**.

How to compute the following?

$$\circ \lim_{x \to \frac{\pi}{2}} \frac{\sec x}{1 + \tan x}, \lim_{x \to \infty} \frac{x^2 + 3x}{3x^2 + 1}.$$

Both the numerator and denominator tend to $\pm \infty$ as $x \to \frac{\pi}{2}$ or $x \to \infty$.

They have the ∞/∞ Indeterminate Form.

- **Question**. Can we evaluate the limits without using ϵ , δ -definition?
 - o We may use differentiation.

89 / 101

Example

$$\bullet \quad \lim_{x \to 0} \frac{1 - \cos x}{x + x^2}.$$

$$\circ \quad \text{Let } f(x) = 1 - \cos x \text{ and } g(x) = x + x^2.$$

•
$$f(0) = g(0) = 0$$
.

•
$$f'(x) = \sin x$$
, and $g'(x) = 1 + 2x$.

•
$$f'(x) = \sin x$$
, and $g'(x) = 1 + 2x$.

$$\lim_{x \to 0} \frac{f(x)}{g(x)} = \lim_{x \to 0} \frac{f(x) - f(0)}{g(x) - g(0)}$$

$$= \lim_{x \to 0} \frac{[f(x) - f(0)]/(x - 0)}{[g(x) - g(0)]/(x - 0)}$$

$$= \frac{\lim_{x \to 0} [f(x) - f(0)]/(x - 0)}{\lim_{x \to 0} [g(x) - g(0)](x - 0)}$$

$$= \frac{f'(0)}{g'(0)} = \frac{0}{1 + 2 \cdot 0} = 0.$$

However, this method does not work if q'(0) = 0.

l'Hôpital's Rule

- I'Hôpital's Rule. Let f and g be functions such that

 - $\begin{array}{ll} \circ & \lim_{x\to a} f(x) = \lim_{x\to a} g(x) = 0 \text{, and} \\ \circ & f \text{ and } g \text{ are } \mathbf{differentiable} \text{ near } a \text{ (except at } a \text{), and} \end{array}$
 - \circ $g'(x) \neq 0$ near a (except at a).

Then $\lim_{x\to a} \frac{f(x)}{g(x)} = \lim_{x\to a} \frac{f'(x)}{g'(x)}$, provided that the limit on the right hand side exists or equals $\pm\infty$.

- Guillaume Françis Antoine, Marquis de l'Hôpital (1661–1704) French Mathematician.
 - l'Hôpital's rule is published in his "Analysis of the infinitely small to understand curves", the first book on differential calculus.
 - The rule is discovered by Johann Bernoulli (1667–1748), a Swiss Mathematician.

91 / 101

Examples

• Find $\lim_{x\to 0} \frac{\sqrt{1-x}-1+\frac{x}{2}}{r^2}$.

$$\lim_{x \to 0} \frac{\sqrt{1 - x} - 1 + \frac{x}{2}}{x^2} = \lim_{x \to 0} \frac{\left(\sqrt{1 - x} - 1 + \frac{x}{2}\right)'}{(x^2)'}$$

$$= \lim_{x \to 0} \frac{\frac{-1}{2\sqrt{1 - x}} + \frac{1}{2}}{2x} = \lim_{x \to 0} \frac{\left(\frac{-1}{2\sqrt{1 - x}} + \frac{1}{2}\right)'}{(2x)'}$$

$$= \lim_{x \to 0} \frac{\frac{-1}{2} \cdot \frac{1}{2\sqrt{(1 - x)^3}}}{2}$$

$$= -\frac{1}{8}.$$

• Find $\lim_{x\to 0} \frac{x-\sin x}{x^3}$.

$$\lim_{x \to 0} \frac{x - \sin x}{x^3} = \lim_{x \to 0} \frac{(x - \sin x)'}{(x^3)'}$$

$$= \lim_{x \to 0} \frac{1 - \cos x}{3x^2}$$

$$= \lim_{x \to 0} \frac{(1 - \cos x)'}{(3x^2)'}$$

$$= \lim_{x \to 0} \frac{\sin x}{6x}$$

$$= \lim_{x \to 0} \frac{(\sin x)'}{(6x)'}$$

$$= \lim_{x \to 0} \frac{\cos x}{6} = \frac{1}{6}.$$

93 / 101

Remarks on l'Hôpital's Rule

- Remark.
 - The condition $x \to a$ may be replaced by $x \to a^+$ or $x \to a^-$. In other words, l'Hôpital's Rule also holds for one sided limit.
 - \circ l'Hôpital's Rule holds if $x \to a$ if replaced by $x \to \infty$ or $x \to -\infty$. In other words, it holds for limit at infinity.
 - If f and g are differentiable for large x, $\lim_{x\to\infty}f(x)=\lim_{x\to\infty}g(x)=0$, $g'(x)\neq0$ for large x. Then $\lim_{x\to\infty}\frac{f(x)}{g(x)}=\lim_{x\to\infty}\frac{f'(x)}{g'(x)}$, if the limit on the right hand side exists or equals $\pm\infty$.
 - $\circ \quad \text{l'Hôpital's Rule holds if } \lim_{x\to a} f(x) = \lim_{x\to a} g(x) = 0 \text{ is replaced by } \\ \lim_{x\to a} |f(x)| = \lim_{x\to a} |g(x)| = \infty.$

l'Hôpital's Rule (∞/∞)

- I'Hôpital's Rule. Suppose that
 - $\begin{array}{l} \circ & \lim\limits_{x \to a} |f(x)| = \lim\limits_{x \to a} |g(x)| = \infty, \\ \circ & f \text{ and } g \text{ are differentiable near } a \text{ (except at } a), \end{array}$

 - \circ $q'(x) \neq 0$ for all x near a (except at a).

Then $\lim_{x\to a} \frac{f(x)}{g(x)} = \lim_{x\to a} \frac{f'(x)}{g'(x)}$, provided that the limit on the right side exists or equals $\pm \infty$.

Example. Find $\lim_{x\to\pi/2} \frac{\sec x}{1+\tan x}$.

$$\lim_{x \to \pi/2} \frac{\sec x}{1 + \tan x} = \lim_{x \to \pi/2} \frac{(\sec x)'}{(1 + \tan x)'}$$
$$= \lim_{x \to \pi/2} \frac{\sec x \tan x}{\sec^2 x}$$
$$= \lim_{x \to \pi/2} \sin x = 1.$$

95 / 101

Examples

• Find $\lim_{x\to\infty} \frac{x^2+3x}{3x^2+1}$.

$$\lim_{x \to \infty} \frac{x^2 + 3x}{3x^2 + 1} = \lim_{x \to \infty} \frac{(x^2 + 3x)'}{(3x^2 + 1)'} = \lim_{x \to \infty} \frac{2x + 3}{6x}$$
$$= \lim_{x \to \infty} \frac{(2x + 3)'}{(6x)'} = \frac{2}{6} = \frac{1}{3}.$$

Find $\lim_{x\to 1} (1-x^2) \tan \frac{\pi x}{2}$.

$$\lim_{x \to 1} (1 - x^2) \tan \frac{\pi x}{2} = \lim_{x \to 1} \frac{1 - x^2}{\cot \frac{\pi x}{2}} = \lim_{x \to 1} \frac{(1 - x^2)'}{(\cot \frac{\pi x}{2})'}$$
$$= \lim_{x \to 1} \frac{-2x}{-\frac{\pi}{2} \csc^2 \frac{\pi x}{2}} = \frac{-2}{-\frac{\pi}{2} \cdot 1} = \frac{4}{\pi}.$$

Convert $0 \cdot \infty$ or $\infty - \infty$ indeterminate forms to $\frac{0}{0}$ or $\frac{\infty}{\infty}$ indeterminate forms, then apply l'Hôpital's rule.

Correct or Wrong?

- Evaluate $\lim_{x\to 1} \frac{x^2+1}{2x+1}$.
 - $\circ \lim_{x \to 1} \frac{x^2 + 1}{2x + 1} = \lim_{x \to 1} \frac{(x^2 + 1)'}{(2x + 1)'} = \lim_{x \to 1} \frac{2x}{2} = \lim_{x \to 1} x = 1.$
 - \circ We cannot apply l'Hôpital's rule unless the limits of numerator and denominator are both 0 or both $\pm\infty.$
- Evaluate $\lim_{x \to \infty} \frac{x + \sin x}{x}$.
 - $\begin{array}{l} \circ & \lim\limits_{x \to \infty} \frac{x + \sin x}{x} = \lim\limits_{x \to \infty} \frac{(x + \sin x)'}{x'} \\ = \lim\limits_{x \to \infty} (1 + \cos x). \text{ So the limit does not exist.} \end{array}$
 - o l'Hôpital's rule is inconclusive if $\lim_{x\to a} \frac{f'(x)}{g'(x)} \neq L, \pm \infty$. We shall use squeeze theorem for this question.

97 / 101

Correct or Wrong?

• Evaluate $\lim_{x \to \infty} \frac{x}{\sqrt{x^2 + 1}}$.

$$\lim_{x \to \infty} \frac{x}{\sqrt{x^2 + 1}} = \lim_{x \to \infty} \frac{1}{x/\sqrt{x^2 + 1}}$$

$$= \lim_{x \to \infty} \frac{\sqrt{x^2 + 1}}{x}$$

$$= \lim_{x \to \infty} \frac{x/\sqrt{x^2 + 1}}{1}$$

$$= \lim_{x \to \infty} \frac{x}{\sqrt{x^2 + 1}} = \cdots$$

The l'Hôpital's rule is useful only when the evaluation of $\lim_{x\to a} \frac{f'(x)}{g'(x)}$ is simpler than the evaluation of f(x)

$$\lim_{x \to a} \frac{f(x)}{g(x)}$$

Properties of the Exponential Function

- ullet We can compute the number e numerically as a limit.
- Theorem. $e = \lim_{x \to 0} (1+x)^{1/x}$.

$$\lim_{x \to 0} (1+x)^{1/x} = \lim_{x \to 0} \exp\left(\frac{1}{x}\ln(1+x)\right)$$

$$= \exp\left(\lim_{x \to 0} \frac{\ln(1+x)}{x}\right)$$

$$= \exp\left(\lim_{x \to 0} \frac{(\ln(1+x))'}{(x)'}\right)$$

$$= \exp\left(\lim_{x \to 0} \frac{1/(1+x)}{1}\right)$$

$$= \exp(1) = e.$$

- $\circ \quad \text{Remark}. \quad \text{Let } y = 1/x. \text{ Then } x \to 0^+ \Leftrightarrow y \to \infty.$
 - $e = \lim_{y \to \infty} (1 + 1/y)^y = \lim_{n \to \infty} (1 + 1/n)^n$.

99 / 101

Example

• Evaluate $\lim_{x\to 0^+} x^x$.

$$\lim_{x \to 0^{+}} x^{x} = \lim_{x \to 0^{+}} e^{x \ln x} = \exp\left(\lim_{x \to 0^{+}} x \ln x\right)$$

$$= \exp\left(\lim_{x \to 0^{+}} \frac{\ln x}{1/x}\right) = \exp\left(\lim_{x \to 0^{+}} \frac{1/x}{-1/x^{2}}\right)$$

$$= \exp\left(\lim_{x \to 0^{+}} (-x)\right) = \exp(0) = 1.$$

• In general, in order to evaluate $\lim_{x \to a} \left(f(x)^{g(x)} \right)$, we use

$$\lim_{x \to a} (f(x)^{g(x)}) = \lim_{x \to a} \exp(g(x) \ln(f(x)))$$
$$= \exp\left(\lim_{x \to a} g(x) \ln f(x)\right) = \cdots.$$

Continuously Compounded Interest

- Initial deposit: A dollars; Interest rate (year): r.
 - \circ Suppose the interest is credited n times per year.
 - After one year, we have $A\left(1+\frac{r}{n}\right)^n$ dollars. It seems that we will get more if n gets larger.
- Question. What will we get after one year if $n \to \infty$, in other words, if the interest is continuously compounded?

$$\begin{aligned} & \circ & \lim_{n \to \infty} A \left(1 + \frac{r}{n} \right)^n = \lim_{x \to \infty} A \left(1 + \frac{r}{x} \right)^x \\ & = A \lim_{x \to \infty} \exp \left(x \ln \left(1 + \frac{r}{x} \right) \right) = A \exp \left(\lim_{x \to \infty} \frac{\ln \left(1 + \frac{r}{x} \right)}{\frac{1}{x}} \right) \\ & = A \exp \left(\lim_{x \to \infty} \frac{\left(1 + \frac{r}{x} \right)^{-1} \frac{r}{-x^2}}{-\frac{1}{x^2}} \right) \\ & = A \exp \left(\lim_{x \to \infty} r \left(1 + \frac{r}{x} \right)^{-1} \right) = A \exp(r) = Ae^r. \end{aligned}$$