GEORGIA INST OF TECH ATLANTA ELECTROMAGNETIC EFFECTI—ETC F/6 20/3 A STUDY OF THE ANALYSIS AND MEASUREMENTS OF THREE-DIMENSIONAL A-ETC(U) DEC 80 J J WANG C PAPANICOLOPULOS F19628-78-C-0223 AD-A096 062 RADC-TR-80-372 NL UNCLASSIFIED 1 or 2 40.4 396362 - 3.ž

RADC-TR-80-372 Final Technical Report December 1980

CV?

AD A 0 9603

A STUDY OF THE ANALYSIS AND MEASUREMENTS OF THREE-DIMENSIONAL ARBITRARILY-SHAPED DIELECTRIC SCATTERERS

Georgia Institute of Technology

J. J. H. Wang C. Papanicolopulos

E

APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED

FILE COPY

ROME AIR DEVELOPMENT CENTER
Air Force Systems Command
Griffiss Air Force Base, New York 13441

81 3 06 063

This report has been reviewed by the RADC Public Affairs Office (PA) and is releasable to the National Technical Information Service (NTIS). At NTIS it will be releasable to the general public, including foreign nations.

RADC-TR-80-372 has been reviewed and is approved for publication.

APPROVED:

OTHO E. KERR Project Engineer

Othe E. Ken

APPROVED:

ALLAN C. SCHELL

Chief, Electromagnetic Sciences Division

Gelan Chul

FOR THE COMMANDER: John P. Huss

JOHN P. HUSS Acting Chief, Plans Office

If your address has changed or if you wish to be removed from the RADC mailing list, or if the addressee is no longer employed by your organization, please notify RADC (EEC) Hanscom AFB MA 01731. This will assist us in maintaining a current mailing list.

Do not return this copy. Retain or destroy.

	SECURITY ELASSIFICATION OF THIS PAGE (When Date Entered,	
	(19 REPORT DOCUMENTATION PAGE	READ INSTRUCTIONS BEFORE COMPLETING FORM
(18)	RADIC TR-87-372 AD-A096067	3 REC.PIENT'S CATALOG NUMBER
(6)	A STUDY OF THE ANALYSIS AND MEASUREMENTS OF THREE-DIMENSIONAL ARBITRARILY-SHAPED DIEL CTRIC SCATTERERS	s-TYPE OF REPORT & PERIOD COVERED Inal Jechnical Report Sep 78 — Sep 86
Y (2)	Z. AUTHOR(s)	6 CONTRACT OR GRANT NUMBER/31
1 / 52	1. J. H. Wang C. Papanicolopules	119628-78-C-9223
	9 PERFORMING ORGANIZATION NAME AND ADDRESS Georgia Institute of Tuchnology Engineering Experiment Station	10 PROGRAM SLEMENT PROJECT TASK 01102F 23051437
	Atlanta 3A 30332	11/12/7
	OPERATE OF THE CONTROL OF THE CONTRO	12. REPORT DATE
ļ	Honseom AFB MA 01731	13 NUMBER OF PAGES
	14 MONITORING AGENCY NAME & ADDRESS(It distances from Controlling Office	"S SECURITY CLASS, for this report. UNCLASSIFIED
	12 /	156 DECLASSIFICATION DOWNGRADING
	15 DISTRIBUTION STATEMENT (of this Report)	
ļ	approves for public release; distribution units	iteri.
1	DISTINGUITING STATEMENT of the absent entered in Block 20, if different from	n Reporti
	Flat or	
-	18 SUPPLEMENTARY NOTES	
	RANG Protest Engineer: Othe E. Kerr (RADC/EEC)	
f	THE KEY MORDS (Continue on reverse side if necessary and identify by block number-	
	Method of Momenta Arbitrarily-shaped Dielectric Scatterers	
J	The Fromagn die Scattering and Radiation	
	Integral adoption Solution	
-	PUBLIC STOCK & PUBLION 27 ABSTRACT Continue on reverse side it necessary and identify by block number:	
	Theoretical and experimental research was conducted tromagnetic scattering from heterogeneous discrepancies in the literature regarding the significant dvadic Green's functions were resolved consistent view is presented. Compact range search CE, were successfully performed. Extensive	icte trie bodies. The incularity of the and a unified and attering measurements of computations were
L	made for a correct of dielectric scatterers, in	rendins a one-foot (Contid

SECURITY CLASSIFICATION OF THIS PAGE When Data Entered

UNCLASSIFIED

UNCLASSIFIED

Item 20 (Cont'd)
bird at 1 GHz. The agreements between measurements and argumention were good except for the case of the sphere. Various example final sectoriques for handling large matrices were studied and a ask local-file manipulation technique has been explored and found to be potentially useful.

SUMMARY

The objective of this program is to conduct theoretical and experimental research to determine the electromagnetic scattering from heterogeneous dielectric bodies as individual bodies and as a cluster of bodies. The discrepancies in the literature regarding the singularity of the electric dyadic Green's functions were resolved and a unified and consistent view is presented. Compact range scattering measurements at 1 GHz were successfully performed to obtain measured data to validate the numerical analyses. Extensive computations were made for a variety of dielectric scatterers, including a one-foot bird at 1 GHz. The agreements between measurement and computation were good except for the resonant sphere, for which the calculated resonant frequencies were shifted by about 20 percent. Various numerical techniques were investigated successfully for implementation in the volume methods to treat symmetrical scatterers through use of symmetric matrices, the use of banded matrices, and virtual memory. A new local-file manipulation technique for handling large matrices has been explored and found to be potentially useful.

There has been very little research into the problem of scattering by dielectric objects of complex permittivity. Future research in this area should include the investigation of the surface integral equation technique and the exact solution for the dielectric prolate spheroid.

PREFACE

The research on this contract was carried out in the Electromagnetic directiveness division of the Electromics Technology Laboratory of the engineering experiment Station at the leavened Institute of lectnology. Atlanta, Georgia 30332. Dr. Johnson J. Wang served as the Project Director. This program is sponsored by the Rome Air Development Center, Air Force Systems Command and was designated on Georgia Tech Project A-2212. This tinal report covers the work which was performed from 1 September 1978 to 31 August 1980.

The authors wish to express their gratitude to Mr. Otho E. Kerr, Drs. John K. Schindler and Lee Poirier for their interest and support in this research. The authors also acknowledge the various contributions in the compact-range scattering measurements by Messrs. E. E. Weaver, W. P. Cooke, F. L. Cain and Dr. C. E. Ryan, Jr. as well as the expert programming assistance by Mr. Dwight Rudoiph.

Respectfully submitted.

Golum ANI. Wang

Johnson J. Wang Project Director

Approved:

Charles E. Ryan, Jr.

Chief,

EM Effectiveness Division

TABLE OF CONTLNES

Super Long		٠.
	SOURCE REGION	
	A. Introduction	
	8. A Unified and Consistent View	
	C. Various Forms of $g^{e^{e}}$ for the Rectangular Cavities	•
111.	COMPACT RANGE SCATTERING MEASUREMENT	• • •
	A. Compact Range Scattering Measurement Techniques at U GHz	1
	B. Simulation of Biological Bodies	+
* * * *	NUMERICAL COMPUTATIONS FOR VARTOUS DIELECTRIC SCATTFRERS	ı
	A. Scatterers of Simple Snapes	
	3. Scattering Computation for 1-foot birds	ij
٧.	IMPROVEMENTS OF COMPUTER ALGORITHM	7.
	A. Symmetrical Matrices	7 (
	B. Symmetrical scatterers	-
	C. Banded Matrix Techniques	-,
	D. Virtual Memory Technique	S.
	E. Local-file Manipulation Technique	8
VI.	METHODOLOGY FOR THE MODELING OF THE SCATTERING OF A FLOCK OF FLYING BIRDS	9]
VII.	CONCLUSIONS AND RECOMMENDATIONS	93
VIII.	REFERENCES	96
Appendices		
1.	SUBROUTINES USED IN LOCAL-FILE MANIPULATION ALGORITHM	100
11.	MATRIX SOLUTION BY THE LOWER-UPPER DECOMPOSITION	1.3.3

LIST OF FIGURES

Figure		Page
1.	A three-dimensional boundary-value problem in which V is the source region and V _t , V, V _t are volumes enclosed by surfaces S _t , S and S _t , respectively	4
2.	A pillbox principal volume cutting the volume cell $\boldsymbol{V}_{\text{D}}$ into two boxes	15
3.	Block diagram for 1 GHz compact range RCS measurement .	25
4.	The arrangement of the shock-mounted cancellation network used in the $1~\mathrm{GHz}$ scattering measurements	26
5.	The dual-channel receiving system used in the compact range measurement	27
6.	Partial view of the 12-foot high, 16-foot wide reflector used in the compact range	25
7.	The rectangular horn with a 24 in. x 32 1/2 in. aperture used as a feed for the reflector in the compact range	24
8.	Styrofoam support for the scattering target used in the compact range	3)
9.	Stainless-steel spheres used in the calibration of the scattering measurement	5 3
10.	Comparison between compact range measurements and other known data for a finite circular cylinder a) E-plane pattern	34
11.	 b) H-plane pattern	35 30
	b) Backscattering cross-section as a function of plate size	5.°
i - ' .	Compact range scattering measurement of conducting boxes. a) Bankscatter as a function of length as viewed from the side	38
	b) Backscatter as a function of length as viewed from the end	ş
13.	Side and front views of a sitting bird made or plaster	

LIST OF FIRENES (Continued)

(Tgr)		اید
r. * •	olic and completes of a largered made of plaster apparet.	. 2
15.	Side view of a "Super-stuff" simulated bird, SB4, in a styrotoam holder	43
16.	Comparison between the calculated results and Richmond's data for a dielectric cylinder	47
17.	A rectangular box of saline water under plane wave excitation (numbers are the index numbers for the volume cells)	48
18.	Comparison between calculated and measured RCS of square boxes of saline water shown in Figure 18	5 <i>2</i>
!4.	An 1-shaped box of saline water under plane wave excitation (numbers are the index numbers for the result cells)	۔ ⊷ز
	comparison between calculated and measured RCS of I-shaped boxes of saline water	61
.1.	calculation of RCS of a sphere with a dielectric constant of 1.70% and a function of radius a	b <u>2</u>
• • •	calculation of back-scatter cross-section for a sphere of a radius r and $\frac{1}{r} = 29.43 + 10.138 \dots$	0 3
23.	Carculation of back-scatter cross-section for a sphere of radius a and $\frac{1}{a} = 29.43 = 40.158 \dots$	Ŋч
2	side(a), front(b), and top(c) views of the 118 cell bird no. SB-4 to simulate a 0.8 pound Green-Winged leaf, r = 47.0 - jf3.2	1565
25.	Simulated bird model SB4 under plane wave excitation	67
26.	Back scattering cross section of bird SB4 versus elevation angle 3 with vertical polarization as shown in Figures 25 and 26	68
27.	Back scattering cross section of bird SB4 versus elevation angle 0 with horizontal polarization as shown in Figures 25 and 26	69
28.	A symmetrical scatterer illuminated by a plane wave incident in the plane of symmetry	72
29.	A scattering problem with two-plane symmetry	76

LIST OF FIGURES (Continued)

Figure		Page
30.	A display of the magnitude of matrix elements in a VIE matrix for an 8-cell dielectric cylinder which is strongly banded	79
31.	A display of the magnitude of matrix elements in a VIE matrix for a 12-cell prolate spheroid which is weakly banded	80
32.	Convergence of solution for the case of a 12-cell prolate spheroid expressed in percentage of error as a function of the normalized width of diagonal band	81
33.	Block diagram for the local-file manipulation algorithm	84
34.	The local-file simultaneous storage process for the 1^{th} , $(I + N)^{th}$ and $(I + 2N)^{th}$ rows in a large $3N \times 3N$ matrix	86
35.	Comparison of computer time required to generate (including input/output time) a matrix of various sizes by various matrix storage methods	88
36.	Comparison of matrix solution time on CDC CYBER-74 by various methods	89
37.	A flock of birds illuminated by a radar wave	92

LIST OF TABLES

Table		Page
Ι.	COMPARISON BETWEEN COMPACT RANGE MEASUREMENT AND EXACT CALCULATIONS FOR CONDUCTING SPHERES CALIBRATED WITH THE 0.04403% SPHERE	32
II.	ELECTRIC FIELD DISTRIBUTION IN THE 36-CELL RECTANGULAR BLOCK	49
111.	ELECTRIC FIELD DISTRIBUTION IN THE 128-CELL BLOCK	5
IV.	SUBROUTINES USED IN THE LOCAL-FILE MANIPULATION	83

Ine object. Leader contract was recommended and the compute the radar cross section of birds having a dimension of the two wavelengths at L-band. Verification would be obtained by comparing the computed values with the results of experimental measurements or full size bird models with dielectric properties similar to live birds.

Tunerical computations of the radar scattering from model birds were untained using the method of moments and dispositions (nat reduced the required sturage capacity of the computer, the widerpact range was built to was no the radar consistency in the bird page 13. Following in measurement of the disposition of the bird page 13. Following in measurement of the confector's amperties of the page 13. Following the percent of the confector's amperties of the particle of the disposition of the particle of the confector of the particle of the confector of the particle of the confector of the confecto

and the Con-

In a trace - Emily owner

SECTION ! INTRODUCTION

During the past decade, there has been a rapidly rising interest in electromagnetic problems involving dielectric objects. The interest in this area arises from a multitude of military and civilian needs. Human beings are increasingly more exposed to microwave radiation hazards on aircraft, ships, military installations and even in their homes. The knowledge of the electromagnetic scattering from birds, animals and humans is essential in the analysis of detection, identification and interference problems in radar systems. Biological and medical applications, such as blood thawing, enzyme inactivation and hyperthermia treatment of cancerous tissues, also demand accurate knowledge of the electromagnetic fields in dielectric bodies. Thus, electromagnetic scattering by dielectric bodies is a fundamental and important problem, and solutions for these scatterers have wide application.

Since September 1978, Georgia Tech has been supported by the Deputy for Electronic Technology (RADC/EEC), Air Force Systems Command, under contract F19628-78-C-0223 to conduct a two-year research program in this area. The emphasis is focused on analyses and measurements of the scattering characteristics of heterogeneous dielectric objects as individual bodies and as a cluster of bodies. Progress to date has included the clarification of discrepancies in the literature on the singularity of the Green's function in the source region, and measurements and calculations of the scattering cross-section of dielectric bodies of arbitrary shapes and complex dielectric constants. In addition, various numerical techniques have been investigated and a new local-file manipulation technique was explored and found to be potentially useful.

Numerical techniques developed in the current research program are capable of producing fairly accurate data for objects less than one free-space wavelength long. There are models for which the present technique is highly accurate, and there are geometries, such as the sphere, for which the present technique is not quite satisfactory probably due to the inherent deficiencies of the volume integral equation retained.

i

The success of compact-range scattering measurements at a frequency of 1 GHz represents an advance in the state-of-the-art of scattering measurements using the compact range technique. This extension of the compact range scattering measurements to lower frequencies demonstrates the versatility and usefulness of the compact range as a general purpose EM measurements facility.

ing Honers

maysic- and has been entersoring also used [1,1]. The electric lyable operation transition which relates the current source on the electric field. Its simulation in the electric field, has a stifficult of handle. Third have been recording the Institution of the Lates with a fit of the same arithmetic of the Lates with the same in the same and the same as a substitution of the same and the same as a same as the same as a same appears of the same and the sam

to lowe of modify lives the time-manufactions. Its constitution that

where the entiry observes to make the large transfer and the analysis of a substitution of the substitutio

$$E(\mathbf{r}) = \int_{-\Lambda}^{R} |\mathbf{r}| d\mathbf{r} = \mathbf{r} \cdot \mathbf{r} \cdot \mathbf{r} \cdot \mathbf{r} \cdot \mathbf{r} \cdot \mathbf{r}$$

where G^{ϵ} is called the electric dvades Green's concluse, w . The second derives either by the method of potential or the second concernment was in the latter method, G^{ϵ} is derived to each the second concernment.

$$+(\mathbf{x},\mathbf{x}-\mathbf{k}^2) \ \mathbf{G}^{\mathbf{e}} \ (\mathbf{r},\mathbf{r}^*) = (\mathbf{r} - \mathbf{r}^*)$$

subject to all the applicable boundary conditions for a lowest of as the Dirac-Helta function and this a sunt double. The presence of the sector

Figure 1. A three-dimensional boundary-value problem in which V is the source region and V_{ξ} , V, V_{ξ} are volumes enclosed by surfaces S_{ξ} , S_{ξ} and S_{ξ} , respectively.

function distates that G^{C} as obtained that a partion to sea ald so viewed in the light of the ameory of distributes.

in an unbossied region, threlegante twant consent of the form of the a

$$G_0^e(\mathbf{r},\mathbf{r}^*) = -\frac{\int_{[0,1]}^{[0,1]}}{f(t)} \left(1 + \frac{t}{k^2} - VV\right) g_{\mathbf{L}}(\mathbf{r},\mathbf{r}^*)$$
 (4)

where

$$g_1(\underline{r},\underline{r}') = -\frac{e^{-jkR}}{R}$$
, and (5a)

$$\mathbf{R} = \left\{ \mathbf{r} - \mathbf{r}^{\dagger} \right\}. \tag{5b}$$

In the source region where $\underline{r} = \underline{r}^{\dagger}$, questions arise as to whether (4) is still valid and, if valid, how to compute it since the R^{-3} term in (4) is in general not integrable [3]. For the static case in which k = 0, the rigorous treatment by Kellogg [3] is applicable. Using the method of retarded potential, Van Bladel [4] showed that

$$\hat{E}(\mathbf{r}) = PV \int_{V} \underline{J}(\mathbf{r'}) \cdot G_{0}^{C}(\underline{\mathbf{r}},\underline{\mathbf{r'}}) dV' - \frac{\underline{J}(\mathbf{r})}{3j_{\text{obs}}}.$$
 (6)

"PV" in Equation (6) denotes "Principal Value" integration, which specifies an integration carried out over the volume V-V, where V is an infinitesimal spherical volume centered at r.

With a rigorous classical procedure similar to Kellogg's treatment of the static case, Fikioris [5] derived the following expression

$$E(r) = \int_{V-V_D} J(r^*) \cdot G_0^e(r, r^*) dV^* + \int_{V_D} [J(r^*) - J(r)] \cdot$$

$$G_0^e(\mathbf{r},\mathbf{r}')dV' + \frac{J(\mathbf{r})}{10} \left[\frac{2}{3} e^{-jka}(1+jka) - 1\right],$$
 (7)

where a is the radius of a finite spherical volume ${\rm V}_{\rm D}$ centered at ${\rm r}$. He also indicated that ${\rm V}_{\rm D}$ does not have to be spherical but is not permitted, in general, to be infinitesimal. If ${\rm V}_{\rm D}$ assumes other geometries, the third term on the right side of Equation (7) will have to be modified accordingly. Equation (6) also answered implicitly the question as to how to evaluate the principal-value integration in Equation (6). Thus, for a spherical principal volume of radius a and a constant current J,

$$PV \int_{V} \underline{J(\underline{r})} \cdot \underline{G}^{e}(\underline{r},\underline{r}') dV' = \frac{\underline{J(\underline{r})}}{\underline{j\omega\varepsilon}} \cdot \frac{2}{3} e^{-jka}(1+jka).$$
 (8)

As will be discussed later, Equations (6) and (8) form the basis on which numerical analyses using free-space electric dyadic Green's function were carried out [6-8].

Chen [9] showed that the infinitesimal principal volume V_g can assume other geometries as long as the integrals over V_g and $V-V_g$ are properly handled. He also derived, as examples, expressions similar to Equation (6) for principal volumes in the shapes of the cube and the circular cylinder.

For fields in the bounded regions, the electric dyadic Green's functions for rectangular cavities and waveguides were discussed by various authors [10-16]. Their expressions are in the form of eigenfunction expansions plus a term containing the Dirac-delta function. Perhaps considering the delta function to be the only singular term, Yaghjian [17] explained the difference in the delta-function terms between Tai, et al. [11] and Rahmat-Samii [12] as being due to their different choices of the principal volume V_g and emphasized the need to include in G^o the shape of the principal volume involved. Johnson, et al., [16] also pointed out the ambiguities in the literature. Recently, Lee, et al. [18] examined this problem from the viewpoint of the potential theory and obtained expressions for the general problem. Most of their conclusions support existing results,

but questions concerning the usefulness of an infinitesimal principal volume V in numerical analyses were raised.

Proper handling of the electric field integral equation in the source region is essential when using it in numerical analyses involving dielectric scatterers. The difficulty arises in the calculation of the "self-cell" or self-coupling matrix elements that must be generated when using the method of moments. For the free space [6,8] and half-space [7], Equations (6) and (8), which are consistent with Equation (7), were employed in the scattering analysis of arbitrarily-shaped dielectric bodies. For the rectangular waveguide [19], the expressions of Tai [10] and Rahmat-Samii [12] were used. To the practicing engineer, it is desirable to remove all discrepancies and subtleties. In the following, it is shown that uniformity and consistency in this subject can be reached on the basis of mathematical analyses and numerical experiments.

B. A chilfred and Lonsistent View

Discussions of the singularity associated with the electric dyadic Green's function in the free space are comprehensive in the literature and opinions are not surriously divided. However, for the bounded regions, and as waveguides and envities, the discussions are more discordant. The process on se treated either by the distribution theory or by classical analysis associated to extend the theory. Much of the confusion can be also as a factor of the confusion can be also as a factor of a factor factor. The confusion in the confusion of the confusion can be also as a factor of a factor of an analysis.

The control of the co

The live of the live of the last will be for rest to the live of t

$$\hat{\mathbf{L}} = -\mathbf{1} \cdot \mathbf{L} \hat{\mathbf{L}} + \frac{1}{1} - \mathbf{L} \cdot \mathbf{L} \cdot \mathbf{L} \cdot \mathbf{L}_{\mathrm{Bert}}.$$
 (9.3)

$$|A| = \int_{\Lambda} (1 + e^{i\phi}) dV^{\dagger}$$
 (2)

The vector A satisfies the forentz condition and the interest, where A

$$(x,y) = (x,y) + (x,y) + (y,y)$$

Substitut to the appropriate banding conditions. The bow dary condition are that d^{2} are the objective and attention of the free analysis of d and d are that d^{2} are the condition of the free analysis of d and the half space, etc. has been well documented in the literature. Since the integrand in Equation (4b) is less singular than R , in fact it is R in free-space, the integral in Equation (9b) converges [3, p.148]. By substituting equation are into Equation (9a) and assuming that J satisfies the so-called "more Condition", it was proved by Kellogg [3] and Fikioris [5] for k=0 and $k\neq 0$ respectively that VV + A exists for the free-space case. Thus conclusion was later expanded to the bounded regions of waveguides and cavities by Yagjhian [17] and Lee, et al. [18]. It is interesting to note that by assuming the first-order differentiability of J. Van Bladel [4] was able to establish similar results by using the relations between surface

and volume integrals such as the divergence (Gauss) theorem. The Hölder condition is stronger than continuity, but may be either weaker or stronger than differentiability.

The potential approach is based on familiar and well-established classical analytical techniques and there are no identifiable disputes regarding it. If we choose the delta-function approach based on Equation (3), we should treat it as a distribution. $\underline{\underline{G}}^e$ is no longer a classical function, but is defined only when it is used in an integral [2,21]. Now, if $\underline{\underline{G}}^e$ is expressed in terms of functions that appear to be conventional, one may be misled to regard $\underline{\underline{G}}^e$ as being also conventional. For example, [22, p. 200] in

$$\nabla^{2}\left(\frac{e^{-jkR}}{4\pi R}\right) + k^{2}\frac{e^{-jkR}}{4\pi R} = -\delta(R)$$
(11)

the left side of the equation appears to be a classical function but can only be defined as a distribution at R=0. Note that the left side of Equation (11) contains a R^{-3} singular term and is closely related to the singular behavior of the free-space electric dyadic Green's function.

Historically, the free-space G^{c} is closely associated with the method of potential and \underline{G}^{c} for the bounded region is more closely associated with the method of distribution. They are discussed separately as follows.

4. We for the Free-Space

In the current distribution satisfies the so-called Hölder Condition, the electric field in the free-space can be expressed in terms of the electric (wadic Green's function in the following general form

$$\underline{E}(\underline{r}) = \int_{V-V_{\varepsilon}} \underline{J}(\underline{r}') \cdot \underline{G}^{e}(\underline{r},\underline{r}') dV'
+ \int_{V_{\varepsilon}} \{\underline{J}(\underline{r}') \cdot \underline{G}^{e}(\underline{r},\underline{r}') - \underline{J}(\underline{r}) \cdot \underline{G}_{o}(\underline{r},\underline{r}')\} dV'
- \frac{1}{j\omega\varepsilon} \underline{J}(\underline{r}) \cdot \int_{S_{\varepsilon}} \frac{\hat{\mathbf{n}}'\hat{\mathbf{R}}}{4\pi R^{2}} ds'$$
(12)

where

$$G_0(\mathbf{r}, \mathbf{r}^*) = \frac{1}{3\pi\epsilon} \nabla^* 7^* \frac{1}{4\pi R}$$
 (13)

and where for the free space

$$\int_{\mathbb{R}^{n}} \left(\underline{\mathbf{r}}, \mathbf{r}' \right) = U_{\mathbf{0}}^{\mathbf{e}}(\underline{\mathbf{r}}, \underline{\mathbf{r}}') = 0$$

Equation (12) applies also to regions for which s_t is periodic conducting and S^c satisfies n x Glon S_t . For the free-space waye, the derivation of equation (12) is similar to the work of Ree, et al. [18], which starts from a vector petential expression for the electric field. This expression can be obtained by a somewhat less rigorous method, also based on the method of potential, using relations between surface and volume integrals, such as the divergence theorem [23]. This differentiative method is similar to that of Van Bladel [4] and the classical portion of Ree, et al. [18] and must rely on the existence of the first derivative of the current J at the singular point r = r'. In practice, this slight difference in requirements for J is not considered to be significant.

If we let the maximum cord of V_{ϵ} Vanish, the following expression by Yaghjian [17] emerges from Equation (12)

$$\underline{E}(\underline{r}) = \frac{\lim_{r \to \infty} \int_{V-V} (r') \cdot G_{r}^{\mathbf{e}}(\underline{r}, r') dV^{\tau}$$

$$= \frac{1}{3 e^{\frac{1}{4}}} \cdot \underline{J}(\underline{r}) \cdot \int_{S_{\epsilon}} \frac{n'R}{4\pi R^2} ds' .$$
 (15)

It we choose V to be a sphere or a cube, Van Bladel', expression in the form of Equation (b) results. Equation (b) is the basis of all the knownr.ch. and sis for the oil electromagnetic boundary-value troplem

In the incorporate electric discrept specific ranks in remove the control of the

s 1 • ;

interior with often contain R terms, where $k \ge 0$, to reduce the R 3 inc. In the k 3 , where $n \ge 3$, and the integral containing the mass of the $n \ge 3$, $n \ge 3$, n

as well. It must also be pointed out that the evaluation of the integrals over $V-V_{\epsilon}$ and V_{ϵ} for a finite V_{ϵ} is by no means simple and is likely to depend on the particular problem under consideration. Thus, the claim that an infinitesimal principal volume $\mathbf{V}_{_{\mathbf{F}}}$ is not suitable for numerical computation appears at best premature.

b. \underline{G}^{e} in Regions Bounded by Conducting Surfaces

A very important feature of G^{e} for the bounded region is that expressions in the literature have been derived from the Ohm-Rayleigh method which expands the Dirac-delta function in terms of the eigenfunctions of a homogeneous Helmholtz equation [2]. Consequently, G^c derived by this method is based on the distribution theory and must be understood as a distribution, or generalized function. Furthermore, being a distribution, G does not necessarily need the special handling for its singularity through the principal volume approach since the purpose of the distribution expressions are for the handling of singular integrands. Both the distribution approach and the principal volume approach are discussed in the rollowing.

hagnjian [1/] and Lee, et al.[10] outlined proofs to show that the singularity associated with the electric dyadic green's function in a bounded region is exactly the same as that for the free-space. Specifically, Equations (12) and (13) will be the bounded region as well if G° , satisfies the reliation condition on fix G=0 by S , which is either infinite or perfectly conducting, or noth, waves does and cavities with perie thy consolting wall are in this case, in the the conductivity on the boundary is important, one car straign made to use the equivalent volume current theorem to recast the problem into the ideal case involving either intinite regions or perfective conduction. . Til Ha. Ei toth.

Derivation of Equation (12) for the bounded texton can be varried out by the method of parential councy the symmetry property (11) of 67 of thinkens (49) and the symmetry of the symmetry of

Since G^c for the bounded regions is often derived from the Onm-Raleigh method, and hence is a distribution, it can be used either in conjunction with Equation (12) or directly as a distribution. By either method, one should obtain the same results for the electric field.

Numerical computations involving G^{C} in a bounded region were conjucted by Wang [19] in determining the field intensity in an arbitrarily-shaped dielectric or biological body inside a rectangular waveguide. Since G^{C} is derived by the Ohm-Raleigh method, the question as to what G^{C} is at $r = r^{\alpha}$ need not be a matter of domearn. Meanwarie, the principal volume integration toleration is about able and useful either as a principal or anxiety tool but is no longer necessary as it is for the free space region. The allocation theory of the anxiety and it is not to use, it must be founded as $r = r^{\alpha}$.

ine most severe difficulty encountered in the analysis of the waveguide problem in reference is is the handling of the singular integrand, which was only briefly described in the paper. The method was supported by both the distribution theory and the principal volume approach. In the latter method, a "pril box" principal was chosen but other geometries could be used as long as the integrals were correctly handled.

The electric dyadic Green's function pertaining to a rectangular waveguide was first derived by Tai [10] as follows

$$G_{\rm T}^{\rm e} = G^{\rm l} - \frac{1}{2} = ZZ \in (Z - Z')$$
 (17)

where of is a double infinite trigonometric series resulting from an eigenfunction expansion of the boundary-value problem. In using the principal volume method, we choose a pill box to enclose the singular

point \underline{r} as shown in Figure 2. Based on the results of Yaghjian [17], we have

$$\int_{V_{D}} \underline{J} \cdot G_{T}^{e} dV' = \lim_{\epsilon \to 0} \left[\int_{Z_{1}}^{Z_{-\epsilon}} + \int_{Z_{+\epsilon}}^{Z_{2}} dZ' \int_{X_{1}}^{X_{2}} dX' \int_{Y_{1}}^{Y_{2}} dY' \underline{J} \cdot \underline{G}^{1} \right]$$

$$- \frac{J_{2}\hat{Z}}{J_{\omega\epsilon}}$$
(18)

The integral over Z' in Equation (18) can be integrated and is described by I in Equations (19-20) of Reference 19. The integration over x and y leads to double infinite series identical to those in Equations (16-18) of Reference 19. The series did not appear to converge when it was first computed numerically. It was found later that the rapidly oscillatory part of this series can be summed up in a closed form and the numerical value of the resulting expression converges satisfactorily [19].

We can also view \underline{G}_T^c as a distribution since it was derived from the delta-function method based on Equation (3). Using the equality

$$\int_{a}^{b} \sum_{n=1}^{\infty} g_{n}(x+t) dt \approx \sum_{n=1}^{\infty} \int_{a}^{b} g_{n}(x+t) dt$$
 (19)

which holds for every convergent series of distribution [24, p. 47], we can apply it successively for n and m to obtain, for a constant J,

$$\int_{V_{D}} \underline{J} \cdot \underline{G}_{T}^{e} dv = \sum_{m} \sum_{n} \underline{P} \quad \underline{f}_{m} (x) \ \underline{g}_{n}(y) \int_{Z_{1}}^{Z_{2}} h(\underline{z},\underline{z}') \ dz'$$

$$- \frac{J_{z}^{2}}{j\omega\epsilon} \qquad (20)$$

where \underline{P} is a vector determined by the polarization and amplitude of \underline{J} . Again, the integral over z' and f_m and g_n can be summed up to produce

Figure 2. A pillnow principal volume cutting the volume cell $V_{\frac{1}{12}}$ and a two boxes.

the tively Equations (19-20) and (16-18) in Reference 9. Thus, the aon (20, 22, derived are the distribution tecapy of 13, and processed seems of so that it is a (35 error to gray) versure approach.

the convergence condition required in the application of equation (19). According to Schwartz [24,26]

$$\sum_{n \in \mathbb{N}} \left(a_n \zeta(s) \sin x + \beta_n \right) = \text{Time}.$$

twinverses distributionally if and only if there is an integer a such .

as a r . We selecting $\kappa \neq 2$ for the summation over a and $k \neq 1$ for the unmation of a α , or visc leads, it can be shown that α^{-1} is a convergent lead of α .

It is also of interest to see what happens if we choose a different principal volume, such as a cube, in using Equation (17). In this case, the second term on the right side of Equation (18) will have to be changed to -3 + 1.000 according to Equation (15). It the same time, V in Figure 2 will have to be reduced and the integral over the added volume in V must be computed and added to the integral on the left of Equation (18). As will become more evident in the next section, G^{\dagger} is singular and the integration over these added infinitesimal volumes does not vanish and will, in combination with the rest of the terms, yield the correct value for the electric field.

For J that is not or is not assumed to be constant. Equation (16) can be used in conjunction with Equation (15) (with G_{α} replaced by G_{α} or course) for the principal volume approach. For the distribution approach, the tecanique of Equation (16) can also be used in Equation (2). The integration of the constant term corresponding to J(r) has been discussed and the term corresponding to J(r) has been discussed and the term

C. Various Forms of Ge for the Rectangular Cavities

As has been pointed out, \underline{g}^{e} for the bounded region derived by the Ohm-Raleigh method is a distribution and must be so treated. Yaghjian [17] and to some extent Johnson, et al. [16] have overemphasized the delta function term. In this section it will be shown that the expressions of Tai and Rozenfeld [11] and Rahmat-Samii [12] are mathematically identical and no discrepancy appears to exist. This finding was previously outlined in a symposium paper [27] and the full derivation follows.

The electric dyadic Green's function derived by Tai and Rozenfeld [11] is of the following form:

$$\underline{G}_{T}^{e} = -\frac{1}{k^{2}} \hat{Z} \hat{Z} \delta(|\underline{r} - \underline{r}'|) + \sum_{m,n} C_{mn}^{\star} \left[(\underline{m}_{e} \underline{m}'_{e} + \frac{k_{g}^{2}}{k^{2}} \underline{n}_{o} \underline{n}') f_{mn} \right] + \frac{k_{g}^{2}}{k^{2}} \underline{\lambda}_{o} \hat{\Sigma}_{o}^{\dagger} g_{mn} + \frac{k_{g}^{2}}{k^{2}} \underline{n}_{o} \hat{\Sigma}_{o}^{\dagger} \frac{3g_{mn}}{3z} - \frac{k_{g}^{2}}{k^{2}} \underline{\lambda}_{o} \underline{n}_{o}^{\dagger} \frac{3f_{mn}}{az} \right]$$
(22)

where $e^{-j\omega t}$ is implicit and suppressed, and

$$C_{mn}^{*} = \frac{2 \cdot (2-5)}{ab \kappa_{c}^{2} \cdot k_{g} \sin k_{g} C}$$
 (23)

$$f_{mn} = \begin{cases} \sin k_{g}(c-z) \sin k_{g}z' \\ \sin k_{g}z \sin k_{g}(c-z') \end{cases} \text{ for } z \stackrel{>}{\leq} z'$$
(24)

$$g_{mn} = \begin{cases} \cos k_g (c-z) \cos k_z z' \\ \cos k_g z \cos k_g (c-z') \end{cases} \quad \text{for } z \geq z'$$
(25)

$$\underline{\hat{z}} = \hat{z} \hat{z}$$
 (26)

$$\underline{\mathbf{m}}_{\mathbf{e}} = \nabla_{\mathbf{t}} + \mathbf{x} \mathbf{z}$$

$$\frac{\mathbf{n}}{\mathbf{o}} = \nabla_{\mathbf{t}} \Phi_{\mathbf{o}} \tag{28}$$

$$\mathfrak{c}_{0} = \operatorname{Sink}_{\mathbf{x}} \mathbf{x} \operatorname{Sink}_{\mathbf{y}} \mathbf{y} \tag{29}$$

$$\varphi_{\mathbf{e}} = \operatorname{Cosk}_{\mathbf{x}} \mathbf{x} \cdot \operatorname{Cosk}_{\mathbf{y}} \mathbf{y} \tag{30}$$

$$k_x = \frac{m\tau}{a}$$
, $k_y = \frac{n\tau}{b}$, $k_z = \frac{2\pi}{c}$, i.m.n = 0,1.1.... (31a)

$$\kappa_{1} = (\kappa^{2} - \kappa_{x}^{2} + \kappa_{y}^{2} + \kappa_{z}^{2})^{1/2}$$
 (51b)

$$k_{g} = (k^{2} - k_{\perp}^{2})^{1/2}$$
 (31c)

$$\hat{\varepsilon}_{0} = \begin{cases} 1 & \text{if } \varepsilon \text{ or } m \text{ or } n = 0 \\ 0 & \text{if } \lambda, m, n \neq 0 \end{cases}$$
(32)

The expression by Rahmat-Samii [12] had an error in sign resulting from a misprint. After correction, his expression reads, in terms of the $e^{j\omega t}$ convention chosen,

$$\underline{\underline{G}}_{R}^{e} = -\frac{1}{k^{2}} \underline{\underline{I}} \delta(|\underline{r}-\underline{r}'|) - \frac{1}{k^{2}} \sum_{n=0}^{\infty} \sum_{m=0}^{\infty} \sum_{k=0}^{\infty} \frac{\epsilon_{on} \epsilon_{om} \epsilon_{ok}}{abc \left[k^{2} - \left(\frac{n\pi}{a}\right)^{2} - \left(\frac{n\pi}{b}\right)^{2} - \left(\frac{\epsilon}{c}\right)^{2}\right]}$$

$$\left\{ \left(\frac{m\pi}{b}\right)^{2} + \left(\frac{\ell\pi}{c}\right)^{2} \right\} \cos \frac{n\pi x}{a} \cos \frac{n\pi x'}{a} \sin \frac{m\pi y}{b} \sin \frac{m\pi y'}{b}$$

$$= \frac{\operatorname{ar}}{a} \cdot \frac{\operatorname{mr}}{b} \cdot \cos \frac{\operatorname{n} \cdot \mathbf{x}}{a} \cdot \sin \frac{\operatorname{n} \cdot \mathbf{x}}{a} \cdot \operatorname{Sin} \frac{\operatorname{m} \cdot \mathbf{y}}{b} \cdot \cos \frac{\operatorname{m} \cdot \mathbf{y}}{b} \cdot \operatorname{Sin} \frac{\operatorname{sig}}{a} \cdot \operatorname{Sin} \frac{\operatorname{sig}}{a} \cdot \operatorname{vi}$$

$$= \frac{\operatorname{n} \cdot \operatorname{m}}{b} \cdot \cos \frac{\operatorname{n} \cdot \mathbf{x}}{a} \cdot \sin \frac{\operatorname{n} \cdot \mathbf{x}}{a} \cdot \operatorname{Cos} \frac{\operatorname{m} \cdot \mathbf{y}}{b} \cdot \cos \frac{\operatorname{m} \cdot \mathbf{y}}{b} \cdot \sin \frac{\operatorname{sig}}{a} \cdot \sin \frac{\operatorname{sig}}{a} \cdot \operatorname{vi}$$

$$= \frac{\operatorname{n} \cdot \operatorname{n} \cdot \operatorname{n}}{b} \cdot \sin \frac{\operatorname{n} \cdot \mathbf{x}}{a} \cdot \cos \frac{\operatorname{n} \cdot \mathbf{x}}{a} \cdot \operatorname{Cos} \frac{\operatorname{m} \cdot \mathbf{y}}{b} \cdot \sin \frac{\operatorname{m} \cdot \mathbf{y}}{b} \cdot \sin \frac{\operatorname{sig}}{a} \cdot \sin \frac{\operatorname{sig}}{a} \cdot \operatorname{vi}$$

$$= \frac{\operatorname{n} \cdot \operatorname{n} \cdot \operatorname{sig}}{a} \cdot \sin \frac{\operatorname{n} \cdot \mathbf{x}}{a} \cdot \operatorname{cos} \frac{\operatorname{n} \cdot \mathbf{x}}{a} \cdot \operatorname{cos} \frac{\operatorname{m} \cdot \mathbf{y}}{b} \cdot \sin \frac{\operatorname{sig}}{a} \cdot \operatorname{cos} \frac{\operatorname{n} \cdot \mathbf{x}}{b} \cdot \operatorname{cos} \frac{\operatorname{n} \cdot \mathbf{x}$$

Fig. that we are it are exchanged between the notations of equations (12) in Equation (22). The Equation (22) of Tai and Rozenfeld, but was $-\frac{\pi^2}{2}$ I in Rahmat Samin's expression of Equation (33). We will show that Equation (22) is identical to Equation (33) and therefore no discrepancy exists. We begin with Equation (24) of Tai and Rozenfeld (11) as follows:

$$G_{1}^{k} = \sum_{\substack{k_{1} \equiv 1, n \\ k_{2} \equiv 1 \text{ on } k_{2}}} \frac{C_{\text{sin}}}{K^{2} - k^{2}} \left(\underbrace{\underline{\mathbf{m}}_{e}\underline{\mathbf{m}}'_{e}}_{k_{2}} \operatorname{Sin} k_{z} z \operatorname{Sin} k_{z} z' \right) + \underbrace{\frac{k_{2}^{2}}{k_{2}^{2}}}_{n_{2} = 10^{-10}} \operatorname{Sin} k_{z} z \operatorname{Sin} k_{z} z'$$

$$+ \frac{k_{c}^{2}(k^{2} - k_{z}^{2})}{k^{2}} + \frac{k_{c}^{2}(k^{2} - k_{z}^{2})}{k^{2}} + \frac{k_{c}k_{z}^{2}}{k^{2}} + \frac{k_{c}k_{z}^{2}$$

where

$$\kappa^2 = k_x^2 + k_y^2 + k_z^2 \tag{36}$$

(35)

Substitution of Equations (23-32) into Equation (35) yields

$$g_T^e = -\frac{1}{k^2} \sum_{n=0}^{\infty} \sum_{m=0}^{\infty} \sum_{k=0}^{\infty} \frac{4(2-\delta_0)}{abc\{k^2 - K^2\}}$$

$$\begin{cases} \hat{x}\hat{x}(k^2 - k_x^2) & \cos k_x x \cos k_x x' \sin k_y y \sin k_y y' \sin k_z z \sin k_z z' \\ + \hat{y}\hat{y}(k^2 - k_y^2) & \cos k_x x \sin k_x x' \cos k_y y \cos k_y y' \sin k_z z \sin k_z z' \\ + \hat{z}\hat{z}(k^2 - k_z^2) & \sin k_x x \sin k_x x' \sin k_y y \sin k_y y' \cos k_z z \cos k_z z' \\ + \hat{z}\hat{z}(k^2 - k_z^2) & \sin k_x x \sin k_x x' \sin k_y y \sin k_y y' \cos k_z z \cos k_z z' \\ + \hat{x}\hat{y}(k^2 - k_z^2) & \sin k_x x \sin k_x x' \sin k_y y \sin k_y y' \sin k_z z \sin k_z z' \\ + \hat{x}\hat{y}(k^2 - k_z^2) & \sin k_x x \sin k_x x' \sin k_y y \sin k_y y' \sin k_z z \sin k_z z' \\ + \hat{x}\hat{y}(k^2 - k_z^2) & \sin k_x x \sin k_x x' \cos k_y y \sin k_y y' \sin k_z z \sin k_z z' \\ + \hat{x}\hat{y}(k^2 - k_z^2) & \sin k_x x \sin k_x x' \cos k_y y \sin k_y y' \sin k_z z \sin k_z z' \\ + \hat{x}\hat{y}(k^2 - k_z^2) & \sin k_x x \sin k_x x' \sin k_y y \cos k_y y' \cos k_z z \sin k_z z' \\ + \hat{x}\hat{y}(k^2 - k_z^2) & \sin k_x x \sin k_x x' \sin k_y y \cos k_y y' \cos k_z z \sin k_z z' \\ + \hat{x}\hat{y}(k^2 - k_z^2) & \sin k_x x \sin k_x x' \sin k_y y \sin k_y y' \sin k_z z \cos k_z z' \end{cases}$$

$$(3.1)$$

$$+ zx(- k_z k_z) Sink_x Cosk_x Sink_y Sink_y Sink_z Sink_z Sink_z$$

$$= \sum_{n=0}^{\infty} \sum_{n=0}^{\infty} \sum_{k=0}^{\infty} \frac{\sum_{k=0}^{\infty} \sum_{n=0}^{\infty} \sum_{k=0}^{\infty} \sum_{n=0}^{\infty} \sum_{k=0}^{\infty} \sum_{n=0}^{\infty} \sum_{k=0}^{\infty} \sum_{n=0}^{\infty} \sum_{n=0}^{\infty} \sum_{n=0}^{\infty} \sum_{k=0}^{\infty} \sum_{n=0}^{\infty} \sum_{n=0}^{\infty}$$

Sink_zzSink_zz'

$$= -\frac{1}{k^{2}} \delta(|\underline{r}-\underline{r}'|) - \frac{1}{k^{2}} \sum_{n=0}^{\infty} \sum_{m=0}^{\infty} \frac{\sum_{k=0}^{\infty} \frac{4(2-\delta_{0})}{abc}}{\frac{k^{2} + k^{2}}{k^{2} - K^{2}}}$$

$$\operatorname{Cosk}_{x} x \operatorname{Cosk}_{x} x' \operatorname{Sink}_{y} y \operatorname{Sink}_{y} y' \operatorname{Sink}_{z} z \operatorname{Sink}_{z} z' , \qquad (38)$$

$$= \frac{1}{\kappa^2} \cdot \sum_{n=0}^{\infty} \sum_{n=0}^{\infty} \sum_{k=0}^{\infty} \frac{k(2-k)}{(k^2-k)} (\kappa^2-k) \operatorname{sink}_{x} x \operatorname{sink}_{x} x'$$

CoskyyCoskyy'SinkgaSinkga'

$$\frac{1}{2} + \frac{1}{2} - \frac{1}{2} \left(\frac{\mathbf{r} - \mathbf{r}'(z)}{z} \right) = \frac{1}{2^2} \cdot \frac{\sum_{n=0}^{\infty}}{z^{n}} \cdot \frac{\sum_{n=0}^{\infty}}{z^{n}} \cdot \frac{4(2^{-1})^n \cdot k_n^n + k_n^n}{abc} \cdot \frac{k_n^n + k_n^n}{k_n^n - k_n^n}$$

1.1

$$= \frac{1}{k^{2}} \sum_{n=0}^{\infty} \sum_{m=0}^{\infty} \sum_{k=0}^{\infty} \frac{(2-k)}{abc(k^{2}-k^{2})} (k^{2}-k^{2}) \operatorname{Sink}_{x} \operatorname{Sink}_{x} \operatorname{Sink}_{y} \operatorname{Sink}_{y} \operatorname{Sink}_{y}$$

$$\operatorname{Cosk}_{z} z \operatorname{Cosk}_{z} z' = -\frac{1}{k^{2}} z(\underline{r-r'}) - \frac{1}{k^{2}} \sum_{n=0}^{\infty} \sum_{m=0}^{\infty} \sum_{n=0}^{\infty} \frac{4(2-r)}{abc}$$

$$\frac{k_{x}^{2}+k_{z}^{2}}{k_{z}^{2}-k_{z}^{2}} = \frac{\sinh_{x}x \cdot \sinh_{x}x' \cdot \sinh_{y}y \cdot \cosh_{z}z \cdot \cosh_{z}z'}{k_{z}^{2}-k_{z}^{2}} = \frac{(40)}{k_{z}^{2}}$$

Substitution of Equations (38-40) into Equation (37) yields an expression of $\underline{\underline{G}}_T^e$ identical to $\underline{\underline{G}}_R^e$ of Equation (33), with the understanding that m and n are exchanged and that

$$4(2-\delta_0) = \epsilon_0 \epsilon_0 \epsilon_0 \ell \tag{41}$$

if at least two of the three integers, m, n and ℓ , are nonzeros (when two or more of them are zero, the series term is zero). We can also prove directly that Equations (22) and (33) are identical either by substituting only Equation (40) into Equation (37) or by using Equations (38), (39) and the following relations

$$\sum_{k=0}^{\infty} \frac{1}{k^2 - k^2} \operatorname{Sink}_{z} z \operatorname{Sink}_{z} z'$$

$$= \frac{c}{2k \frac{\operatorname{Sink}_{z} c}{\operatorname{g}}} \left\{ \frac{\operatorname{Sink}_{g} (c - z) \operatorname{Sink}_{g} z'}{\operatorname{Sink}_{g} z \operatorname{Sink}_{g} (c - z')} \right\} z' z' z'$$
(42)

$$\sum_{k=0}^{\infty} \frac{\log z}{k^2 - k^2} \cdot \frac{\cosh z \cdot \cosh z}{\cosh z} \cdot \frac{\cosh z \cdot \cosh z}{\cosh z} = \frac{-c}{k \cdot s \cdot \sinh z} \cdot \frac{\cosh z \cdot \cosh z}{\cosh z \cdot \cosh z \cdot \cosh z} \cdot \frac{\cosh z}{\cosh z \cdot \cosh z} \cdot \frac{\cosh z}{\cosh z \cdot \cosh z} \cdot \frac{\cosh z}{\cosh z} \cdot \frac{\cosh z}{\cosh z} \cdot \frac{\cosh z}{\cosh z} \cdot \frac{\cosh z}{\cosh z} \cdot \frac{\cosh z}{\sinh z} \cdot \frac{\sinh z}{\sinh z} \cdot \frac{\cosh z}{\sinh z} \cdot \frac{\sinh z}{\sinh z} \cdot \frac{\sinh$$

$$\sum_{k=0}^{\infty} \frac{k_{z}}{k^{2}-k^{2}} \operatorname{Sink}_{z} z \operatorname{Cosk}_{z} z'$$

$$= \frac{-c}{2\operatorname{Sink}_{g} c} \begin{cases} \operatorname{Sin}(c-z)\operatorname{Cosk}_{z} z' \\ -\operatorname{Sink}_{g} z \operatorname{Cosk}_{z} (c-z') \end{cases} z \stackrel{>}{\underset{<}{\sim}} z'. \quad (44)$$

and

$$\sum_{c=0}^{\infty} \frac{k_z}{k^2 - k^2} \frac{Cosk_z z Sink_z z'}{cosk_g c} = \frac{c}{2 Sink_g c} \left\{ \frac{-Cosk_g (c-z) Sink_g z}{Cosk_g z Sin(c-z')} \right\} \qquad z \ge z' \qquad (45)$$

which were originally employed by Tai and Rozenfeld and can be directly derived from well known identities [20, p. 581]. This finding that the expressions of Rahmat-Samii and Tai and Rozenfeld are identical, even though they appear in different forms, has also been observed by Professor Tai [21]. For a more detailed description of the proof, the reader is referred to an earlier interim report [28].

SECTION III

COMPACT RANGE SCATTERING CHARTEL VI

any opt Result Subtering Mysephrematic Techniques of the distriction

for antenna and scattering area unersenses. The compete target is direct tenne for antenna and scattering accountments. The compete target is direct was first implemented in X and Xa bands [29], and was recently extended to 30 GHz [30]. At frequencies below 2 GHz, a number of technical difficulties have long been generally recognized. Major obstacles intelled the edge diffraction of the reflector, multipath of the illuminating wave, and precision of the instrumentation. These difficulties have been oversime and complet ranks RCS measurements were extended to as low as 1 GHz.

ment. Figure 3 shows a block diagram illuminating the principle of the set up and Figure 4 shows the physical arrangement of the cancellation retwork. The use of high-precision microwave components and heavy 1.4 inch semi-rikid cable is essential to obtain a does null insensitive to temperature variations and vibration. Even the 1.4 inch semi-rigid cable was semicimes found to be sensitive to vibration and had to be fastened to the mounting structure with a damping mechanism. The network was mounted on a ploniglass board which was seated on a layer of foam as shown in Figure 4. Other shockmounting devices were also placed below the tables, the receivers, the transmitter, the frequency "lock-box", etc. A 1-4 GHz solid-state cavity-tuned source with an output power of 20 to 200 mw was built for the measurement system. When connected with a lock-box, a frequency stability of 1 part in 106 was maintained. The dual-channel phase and amplitude receiving system is shown in Figure).

The compact range used in this study consists of a 12-foot high by 16-foot wide reflector as shown in Figure 6. The reflector was fed by a 24 in. x 32 1/2 in. rectangular horn, shown in Figure 7, located at a focal distance or about 12 feet. Both the reflector and horns are fabricated by standard methods with average mechanical tolerances. Figure 8 shows a a styrofoam support for the target under test.

Figure 3. Block diagram for 1 GHz compact range RCS measurement.

The arrangement of the shock-mounted cancellation network and in the 1 GHz scattering measurements. Figure 4.

Figure 5. The dual-channel receiving system used in the compact range measurement.

Figure 9. Partial view of the la-foot high, lo-foot side ref) efter used in the compact range.

The rectangular horn with a 24 in. x 32 1/2 in. aperture used as a feed for the reflector in the compact range. Figure 7.

At 1 GHz and lower, the multipath propagation, leakage and parasitic excitation along the source, cable and the components and equipments can cause severe difficulty. In fact, leakage from the source was initially found to be only 30 dB below the illuminating field in the quiet zone. These problems were overcome through careful shielding and the use of microwave absorbers.

The field in the quiet zone was probed with a dipole, and amplitude variations of less than ±1 dB and phase variations less than ±5 degrees over an area of 5 ft. x 3 ft. were achieved. Since the horn used is an ordinary rectangular horn, further improvement in the quiet zone illumination may be achievable by using low-side-lobe feeds such as a corrugated horn.

The ultimate criterion for the radar cross-section range using the cancellation method is the stability and depth of the null achievable. The deeper the null, the smaller echo return the system can detect. Also a stable null insures accurate and consistent measurements. To achieve stability and depth for the null, sufficiently high power and frequency stability of the source are essential. The sensitivity of the receiver is usually sufficient since the environmental noise in the range is usually quite high. In the 1 GHz measurements, we were able to obtain a null depth of -50 dBSM during the day and -60 dBSM in the night, which could be maintained for an average duration of 1.5 to 2 minutes.

The sensitivity of the compact range is displayed by measurements shown in Table I on small conducting spheres shown in Figure 9 whose echo areas are accurately known. The close agreement shows that accurate measurements can be made for small scatterers with low echo return. Figure 10a and 10b show measurements on a circular cylinder 2.76 wavelengths long for E and H plane aspect angles. Figure 11a and 11b show the measured data for flat conducting plates. Figures 12a and 12b show the measured data for rectangular conducting boxes. All these measurements are in good agreement with data in the literature, as can be seen in Figures 9 through 12. However, there is some confusion in the literature concerning the polarization of the data which remains to be clarified.

TABLE I

COMPARISON BETWEEN COMPACT RANGE MEASUREMENT
AND EXACT CALCULATIONS FOR CONDUCTING SPHERES
CALIBRATED WITH THE 0.04403\ SPHERE

Radius in	RCS in dBSM	
Wavelengths	Theoretical	Measured
.04403	-46.14	-46.1
.05503	-40.41	-40.4
.06054	- 37.63	-37.6
.06604	- 35.45	-35.5
.07154	-33.42	-33.4
.07705	-31.8 0	-31.8
.10456	-25.44	-25.4
.11010	-22.82	-22.8

Stainless-steel spheres used in the calibration of the scattering measurement. Figure 9.

Comparison between compact range measurements and other known data for α finite circular cylinder (continued). Figure 10.

Comparison between compact range measurements and other known data for a finite circular cylinder. b) H-plane pattern Figure 10.

ELEVATION ANGLE (DEGREES)

a) Backscattering pattern as a function of elevation angle.

Figure 11. Comparisons of measured and calculated backscattering cross-section of a square plate.

b) Backscattering cross-section as a function of plate size.

Figure 11. Comparisons of measured and calculated backscattering cross-section of a square plate.

 $\boldsymbol{a})$ Backscatter as a function of length as viewed from the side

Figure 12. Compact range scattering measurement of conducting boxes (continued).

b) Backscatter as a function of length as viewed from the end

Figure 12 . Compact range scattering measurement of conducting boxes.

h. Simulation of Biological Bodies

A major difficulty in measurements involving a diclosical only is the rack of consistency and stability. A live a bird or animal undergoes physicical changes and the time. They may well test today, and they may move during the tests. This difficults can be very frustrating and the interested reader may consult reference 32 for methods considered by Blacksmith and Mack [33].

Since the physical configuration and the dielectric property are the only parameters involved in the scattering measurements, it is feasible to perform the test on a simulated model. While the simulation model removes the inconsistency and instability inherent in real biological bodies, there exists some degree of uncertainty as to how close the simulation can be realistically accomplished. For example, it is difficult to simulate the feathers, skin, blood vessels, etc. However, feathers and skin have low dielectric constants and can sometimes be conveniently ignored. The blood vessels have high water content but are usually surrounded by muscle tissues which also contain water.

Simulation techniques for biological bodies were developed by Guy [34], who employed various chemicals to simulate the complex dielectric constant of fat, bone, and muscle tissue. His method was used in the fabrication of bird models in this research program.

Before making the model, a styrofoam mold is constructed to hold and support the moist jellied "Super-stuff" plastic. The mold is derived from a bird model made of plaster of paris. Figure 13 shows the side and front views of a sitting bird model made of plaster of paris. Figure 14 shows the side and front views of a flying bird model made of plaster of paris. Figure 16 shows the side view of a "Super-stuff" simulated flying Green Wingtail, SB4, in a styrofoam bolder.

The "Super-stuff" simulated muscle tissue is composed of the following materials

Saline solution (12g salt/liter) 76.5% (by weight)
Powdered polyethylene 15.2%
Super-stuff 8.4%.

(a) Side view

(b) Front view

Figure 13. Side and front views of a sitting bird made of plaster of paris.

(a) Side view

(b) Front view

Figure 14. Side and front views of a flying bird made of plaster of paris.

Figure 15. Side view of a "Super-stuff" simulated bird, SB4, in a styrofoam header

The "Super-stuff" is a jelling agent manufactured by Oil Center Research Corp. in Laffayette, Louisiana. The mixing process, which was improved here by trial and error, is critical to the homogeneity of the simulated tissue. Spectroscopic-grade salt is first added to deionized water in a blending mixer in an oven. After reaching 200°F the solution is stirred for about 2 minutes. Fine polyethylene powder is then slowly poured into the solution which is now being stirred at high speed. After half of the polyethelene powder is poured in, the rest of the powder is mixed with the super-stuff and poured into the solution being stirred at high speed. The temperature and stirring help to remove bubbles and attain homogeneity. The temperature is then raised to 450°F for two minutes and the mixture is then allowed to cool.

Although it is usually possible to make a simulation model to meet the required dimensions, it is not easy to obtain the required complex dielectric constant with high accuracy. In order to insure reasonable accuracy in the model, the in-vivo probe measurement technique [35] was used to determine the complex permittivity of the model. Ordinarilly there is about 5 percent error in this dielectric constant measurement. In all the simulation models measured, the disagreements between the anticipated and measured complex permittivity were mostly within 5 percent of each other.

SECTION IV

MEDERACAL - DUCLATIONS FOR VARIOUS DIELES DO SUMITERALIS

An exact solution for three-dimensional diclectric scatterers in free space exists only for the sphere. For scatterers of arbitrary shapes, numerical analyses employing the volume integral equation have been conducted [6-7,36-38]. There are other numerical and approximate methods which are devoted to the estimates of SAR (Specific Absorption Rate) [38], which is the average power absorbed per unit weight of the biological body. However, there appears to be little research in the analysis of the scattering cross section of arbitrarily-shaped dielectric and biological bodies.

In this section we discuss the use of the volume integral equation to compute the scattering cross section of three-dimensional arbitrarily-shaped dielectric bodies including rectangular and I-shaped boxes, spheres, finite circular cylinders, and simulated birds.

The basic volume integral equation has been discussed in detail in Reference o. The dielectric body can be replaced by an equivalent volume current J such that

$$J = j\omega \left(\psi - \psi_0 \right) E \tag{46}$$

where ω is the angular frequency. E is the electric field, ϵ_0 and ϵ are the complex permittivity in free space and the dielectric body, respectively. The volume integral equation in terms of the unknown J is

$$f_{v} G(\underline{\mathbf{r}},\underline{\mathbf{r}}') \ \underline{\mathbf{J}} \ (\underline{\mathbf{r}}') \ d\mathbf{v} - \frac{\varepsilon + 2\varepsilon_{o}}{3j\omega\varepsilon_{o}[\varepsilon-\varepsilon_{o}]} \ \underline{\mathbf{J}} \ (\underline{\mathbf{r}}) = \underline{\mathbf{E}}^{\mathbf{i}}(\underline{\mathbf{r}}), \tag{47}$$

where

$$G_{(\mathbf{r},\mathbf{r}')} = -j_{\omega\mu}(\mathbf{I} + \frac{\nabla\nabla}{k}) \frac{\exp(-j\mathbf{k}|\mathbf{r}-\mathbf{r}'|)}{4\pi|\mathbf{r}-\mathbf{r}'|}.$$

 $\underline{\underline{E}}^{i}$ (r) = incident electric field intensity,

 $f_{\rm v}$ = Principal volume integral excluding the singular point at |r-r'|

I = unit dyad

The solution of Equation (47) can be carried out by the method of moments. The dielectric body, generally heterogeneous, is divided into rectangular box cells and the equivalent current is expanded into a series of pulse functions, each of which is uniform in one cell and vanishes outside the cell. The Dirac-delta function, defined at the center of each volume cell, is used as the weighting function. By taking a scalar product on both sides of equation (47) with a weighting function and integrating over V, we generate a system of linear equations which is then solved numerically on a computer. The scattering cross section is then computed in terms of the equivalent current J by numerical integration.

Numerical computations have been conducted for dielectric and biological bodies of various shapes including cubes, cylinders, spheres, rectangular and I-shaped boxes, and simulated birds. Good agreements have been observed for the field distribution inside the dielectric body in comparison with the data from Michigan State University [6,36,37]. For scattering calculations, the only data available in the literature were for spheres and finite circular cylinders. The present calculation showed correctly the sharp resonance behavior of the back-scatter cross section as a function of frequency. But the frequencies of resonance were about 20 percent lower than those based on the Mie series computation. This discrepancy could be due to the reduced apparent size of the sphere in the simulation using rectangular cells. Agreement with the finite cylinder is good. These results are presented in detail as follows.

A. Scatterers of Simple Shapes

Figure 16 shows the calculated back-scatter cross section for a finite dielectric cylinder in comparison with the data from Richmond [39]. Figure 17 shows the geometry of a rectangular box of saline water and the way the volume cells are divided and numbered. The calculated field distribution is displayed in Tables 2a, 2b and 2c for the x-component, z-component and total field of the electric field intensity. They are in good agreement with Michigan State data [36]. Figure 18 shows the calculated back-scatter cross section of this rectangular box of saline water in comparison with the measured data obtained at the Georgia Tech compact range.

Figure 16. Comparison between the calculated results and Richmond's data for a dielectric cylinder.

rectingular box is a dime water and or plane save excitation (numbers are the links) campers for the volume ordisa.

TABLE II
ELECTRIC FIELD DISTRIBUTION IN THE 36-CELL RECTANGULAR BLOCK

Ex-DISTRIBUTION IN THE 36-CELL RECTANGULAR BLOCK

CELL	PRESENT	MICHIGAN STATE	
NO.	CALCULATION	CALCULATED	MEASURED
1	.0510	.0518	.0518
2	.0600	.0573	.0523
3	.0952	.0976	.1632
4	.0816	.0862	.0862
5	.0883	.0827	.0832
6	.1040	.1090	. 2355
7	.0870	.0935	.0935
8	.1225	.1180	.1180
9	.1355	.1410	.2869
10	.0292	.0339	.0459
11	.1008	.1050	.0878
12	.1611	.1570	.2017
13	.0930	.1020	.1258
14	.1956	.2020	.2020
15	.2546	.2480	.1256
16	.1345	.1460	.1460
17	.2267	.2330	.2330
18	.3294	.3220	.5410

TABLE II (Continued)

Ez DISTRIBUTION IN THE 36-CELL RECTANGULAR BLCCK

CELL	PRESENT	MICHIGAN STATE	
NO.	CALCULATION	CALCULATED	MEASURED
1	.2127	.2140	.2167
2	.1719	.1710	.1647
3	.1326	.1310	
4	.0982	.0963	.0963
5	.0955	.0927	.0927
6	.0730	.0698	
7	.0930	.0991	.0925
8	.0723	.0783	.0820
9	.0325	.0364	
10	.2207	.2230	.2230
11	.1355	.1360	.1456
12	.0554	.0544	
13	.0666	.0626	.0626
14	.0330	.0378	.0344
15	.0342	.0348	
16	.0964	.1010	.1010
17	.0932	.0963	.0963
18	.0543	.0563	

TABLE II (Continued)

E, - DISTRIBUTION IN THE 36-CELL RECTANGULAR BLOCK

CELL	PRESENT	MICHIGAN	STATE
NO.	CALCULATION	CALCULATED	MEASURED
Ì	.2187	.2202	
2	.1821	.1803	
3	.1633	.1633	
4	.1277	.1292	
5	.1301	.1242	
6	.1271	.1294	
7	.1274	.1362	
8	.1422	.1416	
9	.1394	.1456	
10	.2226	.2256	
11	.1689	.1718	
12	.1703	.1662	
13	.1144	.1137	
14	.1984	.2047	
15	.2569	.2505	
16	.1655	.1775	
17	.2451	.2521	
18	. 3339	.3269	

Figure 18. Comparison between calculated and measured RCS of square boxes of saline water shown in Figure 18.

Fig. r. 19 shows an I-shaped box of saline water under plane wave excitation. The numbers are the index number for the volume colin. Tables 70%, will and file show the calculated way and town in ide indicate the I-shaped lox of saline water. The agreements between the present calculation and that at Michigan State University [36] are good. Figure 20 shows the comparison between the measured and calculated back-scatter cross section data generated at Georgia Tech. The disagreement could be partially due to the acrylic box as indicated in the figure. Good agreements with Michigan State data were observed also for three other cases, including a cube and two rectangular cylinders, which will not be presented here.

Computations were also made for the dielectric sphere. Figure 21 50. What the back-scatter cross section of a dielectric sphere with a remainder permittivity of 2.592. The results deteriorate as Ka become. The ater than 2. Figures 22 and 23 show the computed results for a dielectric sphere with a complex dielectric constant of 29.43-j0.158 using 128-cell and 23-cell, respectively. The results are rather disappointing when compared with data generated by Burr and Lo [40], as shown in Figures 22 and 30-cell are resonance frequencies were shifted by 20 percent and the resonance peaks are off by 30 percent. This failure in predicting resonance phenomena in a dielectric sphere by the volume integral equation approach is in contrast to the high accuracy achieved for the calculation of conducting spheres by a surface integral equation approach [41,42].

The results for the sphere were presented in the 1980 IEEE AP-S Symposium. Both Professors Chen and Nyquist of the Michigan State University attended the meeting and commented that they had also observed similar difficulties with the sphere. They have further noticed that if the incident field exp(-jkr) is decomposed into a sine and cosine terms, the solution corresponding to one term is well behaved and that for the other is ill-behaved.

Figure 19. An I-shaped box of saline water under plane wave excitation (numbers are the index numbers for the volume cells).

TABLE III
ELECTRIC FIELD DISTRIBUTION IN THE 128-CELL BLOCK

$\rm E_{\rm x}\text{-}DISTRIBUTION$ IN THE 128-CELL BLOCK

CELL	PRESENT	MICHIGAN S	STATE
NO.	CALCULATION	CALCULATED	MEASURED
1	.0545	.0573	
2	.0342	.0353	
3	.0656	.0676	
4	.0279	.0294	
5	.0906	.0879	
6	.0899	.0887	
7	.0787	.0807	
8	.0557	.0558	
y	.1028	.1071	
10	.0165	.0173	
11	.1103	.1057	
12	.1027	.1018	
13	.0775	.0769	.0770
14	.0681	.0681	.0681
15	.0967	.1917	.1017
16	.0393	.0386	.0518

Ex-DISTRIBUTION IN THE 128-CELL BLOCK

TABLE III (Continued)

CELL	PRESENT	MICHIGAN S	STATE
NO.	CALCULATION	CALCULATED	MEASURED
_			
17	.0905	.06'3	, 791.
13	.0940	.0y1	.0760
, 9	.0383	JUS "	
	• 65 May •	• 10 000	
1	- 4-4 M	. 1	-
	. C. J. L.	.Ones	
		, 198 g	
	 .	.05.3	
19	.0	.04.11	
_ C.		دَ سَالَ .	
	, crist	• W	
23	-1	.1447	
9	. (14) 3 5	.061"	, .617
311	.06:1	.0645	. 117 50
J:	.096	.0661	.0001
32	.1834	.1857	.076n

TABLE III(Continued)

Ey-DISTRIBUTION IN THE 128-CELL BLOCK

CELL	PRESENT	MICHIGAN S	STATE
NO.	CALCULATION	CALCULATED	MEASURED
1	.0228	.0239	
2	.0482	.0501	
3	.0467	.0424	
4	.0698	.0623	
5	.0743	.0681	
6	.0497	.0466	
7	.0309	.0303	
8	.0867	.0858	
9	.1254	.1256	
10	.1215	.1234	
11	.0892	.0912	
12	.0490	.0500	
13	.0197	.0192	.0243
14	.0450	.0420	.0316
15	.0496	.0423	.0423
16	.0565	.0486	.0486

TABLE III(Continued)

Ey-DISTRIBUTION IN THE 128-CELL BLOCK

CELL	PRESENT	MICHIGAN S	STATE
NO.	CALCULATION	CALCULATED	MEASURED
17	.0713	.0671	.0547
18	.0567	.0544	
19	.0170	.0162	
20	.0512	.0485	
21	.0957	.0937	
22	.1370	.1382	
23	.1482	.1506	
24	.1131	.1136	
25	.0299	.0296	
26	.0658	.0641	
27	.0580	.0544	
28	.0304	.0262	
29	.0164	.0162	.0194
30	.0375	.0369	.0371
31	.0355	.0344	.0344
32	.0165	.0157	
	<u> </u>		

E_t-DISTRIBUTION IN THE 128-CELL BLOCK

TABLE III(Continued)

CELL	PRESENT	MICHIGAN STATE	
NO.	CALCULATION	CALCULATED	MEASURED
7	.05906	.06208	
1 2		.06208	
	.05910		
. 3	.08048	.07979	
4	.07517	.06709	
5	.11720	.11119	
6	.10280	.10019	
7	.08449	.08627	
8	.10300	.10235	~
9	.16220	.16500	
10	.12270	.12460	
11	.14180	.13961	-
12	.11380	.11342	
13	.07995	.07926	
14	.08163	.08001	
15	.10870	.11015	
16	.06883	.06206	

Et-DISTRIBUTION IN THE 128-CELL BLOCK

TABLE 111 (Continued)

CELL	PRESENT CALCULATION	MICHIGAN STATE	
NO.		CALCULATED	MEASURED
17	.11520	.10853	
18	.10980	.10869	
19	.05870	.05897	
20	.07472	.07522	
21	.10760	.10702	
22	.16680	.16954	
23	.16210	.16252	
24	.14080	.14030	
25	.05210	.05146	
26	.09062	.09236	
27	.07433	.08940	
28	.14720	.15167	
29	.06%37	. (1637.9	
30	.07588	.07870	
31	.07810	.07450	-
32	.18410	.18940	

Figure 20. Comparison between calculated and measured RCS of I-shaped boxes of saline water.

Figure 21. Calculation of RCS of a sphere with a dielectric constant of 2.592 as a function of radius a.

Calculation of back-scatter cross-section for a sphere of radius a and ϵ_r = 29.43 - j0.158. Figure 22.

Figure 23. Calculation of backess otter energy-section for a sphere of radius a and $r = 20.5 \times 10^{15}$

B. Scattering Computation for 1-foot birds

The Green Wingtail, which is an important migrant bird, was selected for extensive measurement and computation. This bird is typically 14.75 to 15.50 inches and weighs about a pound. At 1 GHz this bird is about 1 wavelength in length. Figures 13 and 14 show plaster-of-paris models for a Green Wingtail in sitting and flight positions, respectively.

Four simulation models, SB1 through SB4, were generated in this project. For the first three models, a number of problems developed in the experimental work. The permittivity was too high or too low or not uniform. These difficulties and the unsatisfactory data for the sphere directed the computation toward a more conservative approach. It was then decided that measurement for the bird should be started with a smaller bird exactly as the numerical model made of a group of cubic volume cells. With this principle in mind, SB4 was fabricated. Figure 24 shows the print-out of the cell centers for the side, front and top views for SB4. Figure 26 shows the geometry of the coordinate system and a plane wave incident in the x-z plane, which is the plane of symmetry for the bird. Figures 27 and 28 show fair agreement between the computed and measured results. It is noticed that the agreement is good as long as there is no sharp variation in the pattern. This difficulty in predicting sharp field variation and resonance phenomena may explain the use of specific absorption rate (SAR) in dealing with dielectric scattering problems [38].

Side(a), front(b), and top(c) views of the 118 cell bird no. SB-4 to simulate a 0.8 pound Green-Winged Teal, $c_{\rm F} \approx 47.0 \pm j13.2$. Figure 24.

Figure 25. Simulated bird model SB4 under plane wave excitation.

Figure 26. Back scattering cross section of bird SB4 versus elevation angle with vertical polarization as shown in Figures 19 and 26.

Figure 27. Back scattering cross section of bird Sm4 versus elevation angle ν with horizontal polarization as shown in Figures 25 and 26.

SECTION V

IMPROVEMENTS OF COMPUTER ALGORITHM

A number of modifications have been made on the existing Georgia Tech volume integral equation algorithm to make it more efficient for the computation of dielectric scatterers. Major improvements included: (1) the reduction of execution time and central memory requirement by 50% by using symmetrical matrices, and (2) the reduction of execution time and central memory requirement by 75% for scattering problems with one-plane symmetry and by 87.5% for scatterers with two-plane symmetry. In addition, the banded matrix [43,44] and virtual memory [45] techniques have been implemented successfully for small scatterers and a new local-file manipulation technique has been explored.

A. Symmetrical Matrices

It can be shown that the matrix of the volume integral equation algorithm is symmetrical if the following conditions are satisfied.

- the dielectric body is homogeneous and has a constant permittivity,
- (2) the volume cells are equal in size,
- (3) the volume cells are identical in shape.

The third condition is not critical and can often be ignored. To prove this, one can examine the following matrix elements in the algorithm.

$$Z_{pk}^{\ell n} = \int -j\omega u_{\circ} \left[\delta_{n}^{k} + \frac{1}{k_{o}^{2}} \frac{\delta^{2}}{\partial u_{n}^{2} \partial u_{k}}\right] \frac{e^{-jk_{o}\left|\underline{r}_{p}-\underline{r}'\right|}}{4\pi \left|\underline{r}_{p}-\underline{r}'\right|} B_{\ell}^{k}(\underline{r}') d\underline{r}'$$

$$-\frac{\varepsilon_{r}(\underline{r}_{p})+2}{3j\omega\left[\varepsilon\left(\underline{r}_{p}\right)-\varepsilon_{o}\right]} \delta_{k}^{n} \delta_{p}' \tag{48}$$

and

$$Z_{\ell n}^{pk} = \int -j\omega u_{o} \left[\frac{\partial^{n}}{\partial k} + \frac{1}{k_{o}^{2}} \frac{\partial^{2}}{\partial u_{k}^{2}} \frac{e^{-jk_{o} \left| \underline{r}_{k} - \underline{r}' \right|}}{4\pi \left| \underline{r}_{k} - \underline{r}' \right|} B_{p}^{n}(\underline{r}') d\underline{r}' \right]$$

 $-\frac{\varepsilon_{\mathbf{r}}(\mathbf{r}_{\perp})+2}{3j\omega[\varepsilon(\mathbf{r}_{\perp})-\varepsilon_{0}]}\hat{\sigma}_{\mathbf{n}}^{\mathbf{k}}\hat{\sigma}_{\mathbf{k}}^{\mathbf{p}}$ (49)

where k,n = 1,2,3 or x,y,z

 $\ell,p = 1,2,...L$; the index number of volume cell,

 ${\stackrel{\cdot}{\delta}}^k$ = the Kronecker delta function,

Bk = a pulse function being unity in the lth volume cell associated with k (which designates x,y or z and is merely a dummy index number of no consequence to the integration).

Since the pulse function B_p^n restricts the domain of integration to the unit volume, cell k in Equation (48) and cell p in Equation (49), $\frac{r}{r} - r'$; and $\frac{r}{r} - r'$ are equal. Thus Z_{pk}^{kn} and Z_{kn}^{pk} are equal under the three condition, stated.

For a symmetrical matrix, there are standard subroutines to handle its inversion or solution. The improved Georgia Tech algorithm is given an acronyt 'BPWSM" to denote "Biological-Plane-Wave-Symmetrical Matrix". Inia algorithm has been successfully applied in a number of cases with a resulting by reduction in computer control memory and execution time.

war gamma balan Statterurs

Two improved algorithms, BHPW2 and BHPW4, have been completed to nabile scattering problems with one-plane and two-plane symmetries with resulting reductions of 75λ and 87.5λ in computer time and central memory, respectively. These are discussed separately as follows.

when the direction of propagation of an incident plane wave

is in the plane of symmetry of a conducting scatterer, it is re
lized that some symmetric behavior must exist in the induced

in relation the surface of the scatterer. Without loss of generality,

when coordinates can be set up so that the plane of symmetry

with the XZ plane as shown in Figure 28. The polarization

. :

7.

PLANE OF SYMMETRY - XZ

Figure 28. A symmetrical scatterer illuminated by a plane wave incident in the plane of symmetry.

Service Committee Committe

of the incident wave is assumed to be either parallel or perpendicular to the XZ plane. Arbitrary polarization can be decomposed into two components, one parallel and the other perpendicular to the XZ plane. The overall scattering problem can then be treated by superposing the fields due to these two component incident fields.

At two symmetrical points ℓ and $\ell+L/2$ in Figure 28, the components of the induced currents exhibit the following relationships

$$J_{\ell}^{X} = J_{\ell}^{X} + L/2 ,$$

$$J_{\ell}^{Y} = -J_{\ell}^{Y} + L/2 ,$$

$$J_{\ell}^{Z} = J_{\ell}^{Z} + L/2 ,$$
(50)

when the incident \underline{E}^i is parallel to the z-axis. In Equation (50), $J_{\hat{\chi}}^{X}$ denotes, for example, the x component of the induced current in the lth cell.

When the incident \underline{E}^i is parallel to the y-axis, the induced current on the scatterer has the following property

$$J_{\ell}^{X} = -J_{\ell}^{X} + L/2 ,$$

$$J_{\ell}^{Y} = J_{\ell}^{Y} + L/2 ,$$

$$J_{\ell}^{Z} = -J_{\ell}^{Z} + L/2 .$$
(51)

The matrix equation to be solved is

$$\sum_{k=1}^{1} \sum_{k=1}^{3} J_{k}^{k} Z_{pk}^{2n} = V_{p}^{n}$$
 (52)

Since the excitation is symmetrical, we have

$$V_{\ell}^{n} = V_{\ell}^{n} + L/2 \tag{53}$$

Substitution of Equations (50) and (53) into Equation (52) yields

$$\frac{L/2}{\sum_{k=1}^{\infty}} \sum_{k=1}^{3} J_{k}^{k} + Z_{pk}^{(n)} + Z_{pk}^{(L/2+1)n} (-1)^{k+1} = V_{p}^{n},$$

$$n=1,2,3$$

$$p=1,2,...L/2$$
for $E^{1} = Z$

Substitution of Equation (51) and (53) into Equation (52) yields

$$\sum_{k=1}^{L/2} \sum_{k=1}^{3} J_{k}^{k} [Z_{pk}^{\ell n} + Z_{pk}^{(L/2+\ell)n} (-1)^{k}] = V_{p}^{n}$$

$$\sum_{k=1}^{n=1,2,3} J_{k}^{k} [Z_{pk}^{\ell n} + Z_{pk}^{(L/2+\ell)n} (-1)^{k}] = V_{p}^{n}$$

$$\sum_{k=1}^{n=1,2,3} J_{k}^{k} [Z_{pk}^{\ell n} + Z_{pk}^{(L/2+\ell)n} (-1)^{k}] = V_{p}^{n}$$

$$\sum_{k=1}^{n=1,2,3} J_{k}^{k} [Z_{pk}^{\ell n} + Z_{pk}^{(L/2+\ell)n} (-1)^{k}] = V_{p}^{n}$$

$$\sum_{k=1}^{n=1,2,3} J_{k}^{k} [Z_{pk}^{\ell n} + Z_{pk}^{(L/2+\ell)n} (-1)^{k}] = V_{p}^{n}$$

$$\sum_{k=1}^{n=1,2,3} J_{k}^{k} [Z_{pk}^{\ell n} + Z_{pk}^{(L/2+\ell)n} (-1)^{k}] = V_{p}^{n}$$

$$\sum_{k=1}^{n=1,2,3} J_{k}^{k} [Z_{pk}^{\ell n} + Z_{pk}^{(L/2+\ell)n} (-1)^{k}] = V_{p}^{n}$$

$$\sum_{k=1}^{n=1,2,3} J_{k}^{k} [Z_{pk}^{\ell n} + Z_{pk}^{(L/2+\ell)n} (-1)^{k}] = V_{p}^{n}$$

$$\sum_{k=1}^{n=1,2,3} J_{k}^{k} [Z_{pk}^{\ell n} + Z_{pk}^{(L/2+\ell)n} (-1)^{k}] = V_{p}^{n}$$

$$\sum_{k=1}^{n=1,2,3} J_{k}^{k} [Z_{pk}^{\ell n} + Z_{pk}^{(L/2+\ell)n} (-1)^{k}] = V_{p}^{n}$$

$$\sum_{k=1}^{n=1,2,3} J_{k}^{k} [Z_{pk}^{\ell n} + Z_{pk}^{(L/2+\ell)n} (-1)^{k}] = V_{p}^{n}$$

Equations (54) and (55) show that the number of equations has been excluded from 34 to 1/1/2).

a) aw --plane symmetr.

Figure 29 shows a scattering problem symmetrical with respect to the x-z and y-z planes. The directive of propagation of a plane wave is assumed to be parallel to the z-axis. When $\epsilon^{\hat{1}}=\hat{z}$, we have

$$\begin{cases} J_{x}^{4} = J_{x}^{2} = J_{x}^{3} = J_{x}^{3} \\ J_{x}^{4} = J_{x}^{2} = J_{x}^{3} = J_{x}^{4} \\ J_{x}^{4} = J_{x}^{2} = J_{x}^{3} = J_{x}^{4} \end{cases}$$

$$(12)$$

When $\underline{\underline{\mathbf{r}}}^{k} = \mathbf{y}$, we have

$$\begin{cases} J_{x}^{4} = J_{x}^{2} = -v_{x}^{3} = -v_{x}^{4} \\ J_{y}^{4} = J_{y}^{2} = J_{y}^{3} = J_{y}^{4} \\ J_{z}^{4} = -J_{z}^{2} = -J_{z}^{3} = J_{z}^{4} \end{cases}$$
(31)

In addition, the excitation at cells 1,2,3 and 4 is identical. The number of Equations in Equation (54) can therefore be reduced to one-quarter of its original size as follows

Figure 29. A scattering problem with two-plane symmetry.

$$\sum_{k=1}^{L/4} \sum_{k=1}^{3} J_{k}^{k} \left\{ z_{pk}^{kn} + (-1)^{k+1} \begin{bmatrix} (L/4+\ell)m & (L/2+\ell)n \\ 2pk & + Z_{pk} \end{bmatrix} + Z_{pk}^{(3/4 L+\ell)n} \right\} = v_{p}^{n}$$

$$= 1,2,3$$

$$= 1,2,3$$

$$= 1,2,3$$

$$= 1,2,3$$

$$= 1,2,3$$

$$= 1,2,3$$

$$= 1,2,3$$

$$= 1,2,3$$

$$= 1,2,3$$

$$= 1,2,3$$

$$= 1,2,3$$

$$= 1,2,3$$

$$= 1,2,3$$

$$= 1,2,3$$

$$= 1,2,3$$

$$= 1,2,3$$

$$= 1,2,3$$

$$= 1,2,3$$

$$= 1,2,3$$

$$= 1,2,3$$

$$= 1,2,3$$

$$= 1,2,3$$

$$= 1,2,3$$

$$= 1,2,3$$

$$= 1,2,3$$

$$= 1,2,3$$

$$= 1,2,3$$

$$= 1,2,3$$

$$= 1,2,3$$

$$= 1,2,3$$

$$= 1,2,3$$

$$= 1,2,3$$

$$= 1,2,3$$

$$= 1,2,3$$

$$= 1,2,3$$

$$= 1,2,3$$

$$= 1,2,3$$

$$= 1,2,3$$

$$= 1,2,3$$

$$= 1,2,3$$

$$= 1,2,3$$

$$= 1,2,3$$

$$= 1,2,3$$

$$= 1,2,3$$

$$= 1,2,3$$

$$= 1,2,3$$

$$= 1,2,3$$

$$= 1,2,3$$

$$= 1,2,3$$

$$= 1,2,3$$

$$= 1,2,3$$

$$= 1,2,3$$

$$= 1,2,3$$

$$= 1,2,3$$

$$= 1,2,3$$

$$= 1,2,3$$

$$= 1,2,3$$

$$= 1,2,3$$

$$= 1,2,3$$

$$= 1,2,3$$

$$= 1,2,3$$

$$= 1,2,3$$

$$= 1,2,3$$

$$= 1,2,3$$

$$= 1,2,3$$

$$= 1,2,3$$

$$= 1,2,3$$

$$= 1,2,3$$

$$= 1,2,3$$

$$= 1,2,3$$

$$= 1,2,3$$

$$= 1,2,3$$

$$= 1,2,3$$

$$= 1,2,3$$

$$= 1,2,3$$

$$= 1,2,3$$

$$= 1,2,3$$

$$= 1,2,3$$

$$= 1,2,3$$

$$= 1,2,3$$

$$= 1,2,3$$

$$= 1,2,3$$

$$= 1,2,3$$

$$= 1,2,3$$

$$= 1,2,3$$

$$= 1,2,3$$

$$= 1,2,3$$

$$= 1,2,3$$

$$= 1,2,3$$

$$= 1,2,3$$

$$= 1,2,3$$

$$= 1,2,3$$

$$= 1,2,3$$

$$= 1,2,3$$

$$= 1,2,3$$

$$= 1,2,3$$

$$= 1,2,3$$

$$= 1,2,3$$

$$= 1,2,3$$

$$= 1,2,3$$

$$= 1,2,3$$

$$= 1,2,3$$

$$= 1,2,3$$

$$= 1,2,3$$

$$= 1,2,3$$

$$= 1,2,3$$

$$= 1,2,3$$

$$= 1,2,3$$

$$= 1,2,3$$

$$= 1,2,3$$

$$= 1,2,3$$

$$= 1,2,3$$

$$= 1,2,3$$

$$= 1,2,3$$

$$= 1,2,3$$

$$= 1,2,3$$

$$= 1,2,3$$

$$= 1,2,3$$

$$= 1,2,3$$

$$= 1,2,3$$

$$= 1,2,3$$

$$= 1,2,3$$

$$= 1,2,3$$

$$= 1,2,3$$

$$= 1,2,3$$

$$= 1,2,3$$

$$= 1,2,3$$

$$= 1,2,3$$

$$= 1,2,3$$

$$= 1,2,3$$

$$= 1,2,3$$

$$= 1,2,3$$

$$= 1,2,3$$

$$= 1,2,3$$

$$= 1,2,3$$

$$= 1,2,3$$

$$= 1,2,3$$

$$= 1,2,3$$

$$= 1,2,3$$

$$= 1,2,3$$

$$= 1,2,3$$

$$= 1,2,3$$

$$= 1,2,3$$

$$= 1,2,3$$

$$= 1,2,3$$

$$= 1,2,3$$

$$= 1,2,3$$

$$= 1,2,3$$

$$= 1,2,3$$

$$= 1,2,3$$

$$= 1,2,3$$

$$= 1,2,3$$

$$= 1,2,3$$

$$= 1,2,3$$

$$= 1,2,3$$

$$= 1,2,3$$

$$= 1,2,3$$

$$= 1,2,3$$

$$= 1,2,3$$

$$= 1,2,3$$

$$= 1,2,3$$

$$= 1,2,3$$

$$= 1,2,3$$

$$= 1,2,3$$

$$= 1,2,3$$

$$= 1,2,3$$

$$= 1,2,3$$

$$= 1,2,3$$

$$= 1,2,3$$

$$= 1,2,3$$

$$= 1,2,3$$

$$= 1,2,3$$

$$= 1,2,3$$

$$= 1,2,3$$

$$= 1,2,3$$

$$= 1,2,3$$

$$= 1,2,3$$

$$= 1,2,3$$

$$= 1,2,3$$

$$= 1,2,3$$

$$= 1,2,3$$

$$= 1,2,3$$

$$= 1,2,3$$

$$= 1,2,3$$

$$= 1,2,3$$

$$= 1,2,3$$

$$= 1,2,3$$

$$= 1,2,3$$

$$= 1,2,3$$

$$= 1,2,3$$

when $\underline{\underline{E}}^{1} = \hat{z}$.

Substitution of Equations (57) into Equation (52) yields

$$\sum_{k=1}^{L/4} \sum_{k=1}^{3} J_{k}^{k} \left\{ z_{pk}^{\ell n} + (-1)^{k(1-\delta_{1k})} z_{pk}^{(L/4+\ell)n} + (-1)^{k(1-\delta_{2k})} z_{pk}^{(L/2+\ell)n} + (-1)^{k(1-\delta_{2k})} z_{pk}^{(L/2+\ell)n} \right\} = V_{p}^{n}$$

$$= 1, 2, 3$$

$$= 1, 2, 3, \dots, L/4$$

when $\underline{\mathbf{E}}^{i} = \hat{\mathbf{y}}$. In Equations (59) δ_{ju} is the Kronecker delta.

C. Banded Matrix Techniques

The banded matrix technique has been previously employed by Ferguson, et al. [43] and Balestri, et al. [44] in the scattering and radiation of thin-wire structures. These authors have demonstrated that the banded matrix technique can reduce the computer execution time in the computation of thin-wire scattering and radiation involving small matrices. They also demonstrated that wire-grid problems involving more wire segments than can be managed in the computer central memory can be solved by the banded matrix technique after proper numbering of wire segments. The segments are

numbered such that the difference between segment numbers for all neighboring segment pairs is small as compared with the total number of segments. In this case the large matrix elements are kept close to the principal diagonal of the matrix.

The basic banded matrix technique has been applied to the Volume Integral Equation algorithm. However, there are three unknowns in the nth cell in the Volume Integral Equation approach, while there is only one unknown in the nth segment in the wire algorithm. Fortunately the matrix generated in the Volume Integral Equation algorithm has a tendency to be banded. Figure 31 shows the matrix for the case of a simple cylinder formed with a linear array of volume cells. It can be seen that a diagonal band extended to one third of the columns and the rows must be included in order to include all the nonzero elements. It is also noted that outside this band all the matrix elements are zero. This phenomenon is due to the lack of coupling between orthogonal components of the electromagnetic source and field. For an object of more complex geometry, such as a sphere, elements throughout the entire matrix can be nonzero except for those related to the coupling between orthogonal components in the self cell. Figure 32 shows the matrix for the case of a prolate spheroid of 12 cells, which is weakly banded with some nonzero elements away from the diagonal band.

We now define the normalized width of the diagonal band as

Normalized Width of diagonal band = [(number of rows in band) + (number of columns in band)] [(total number of rows) x 2] (60)

Numerical tests have been conducted to explore the convergence of the solutions as a function of the normalized width of the diagonal band. Figure 33 shows that the error in the solution is reduced as the width of the diagonal band is increased. The error falls to near zero when the normalized width of the diagonal band is only 0.6. Note that for a general matrix the error reaches zero when the normalized width of the diagonal band approaches unity. It is also noteworthy that the error is only 5% when the normalized width of the diagonal is 0.15 or larger. Thus, a

Note: • The size of the shaded area in the square cell is proportional to the magnitude of the matrix element.

Figure 3(). A display of the magnitude of matrix elements in a VIE matrix for an 8-cell dielectric cylinder which is strongly banded.

Note: The size of the shaded area in the square cell is proportional to the magnitude of the matrix element.

Figure 31. A display of the magnitude of matrix elements in a VIE matrix for a 12-cell prolate spheroid which is weakly banded.

Figure 32. Convergence of solution for the case of a 12-cell prolate spheroid expressed in percentage of error as a function of the normalized width of diagonal band.

signadid or substitute of execution time can be second to defense small scattered. These manusard access also screngly indicate that a large scatterer, where can not be laudied to the computer of their memory, may be seemed using the conded matrix contings.

D. Virtual Memory Technique

The virtual memory is a software technique, in contrast to the extended-memory hardware capability, to store data in a digital computer for rapid and efficient access in computer-aided numerical analyses to overcome the limitations imposed by the size of the computer central memory. The basic algorithm had been developed by Carbrev [45] for realvalued data, and was employed in the present research to expand the capability of the Volume Integral Equation algorithm to handle large dielectric scatterers. When using exclusively the computer central memory to handle the matrix in the computation, the CDC CYBER-74 computer at Georgia Tech can only deal with matrices of about 38,300 complex elements, or about 65 volume cells. The use of the virtual memory technique can potentially make it possible to handle a matrix with 4 x $10^{\,6}$ complex elements, or 660 volume cells, which is about ten times the size of those limited by the computer central memory. A serious disadvantage of the virtual memory technique is its extremely large execution time, often ten times more than methods using central core memory alone.

The tasks involved in implementing the virtual memory technique in the Volume Integral Equation algorithm are twofold; the Carbrey algorithm must be extended to handle complex data and be integrated into the process of the moment method solution. Both of these difficulties have been overcome and successfully tested for small and medium scatterers. For large scatterers considerably exceeding the central memory, the computational efficiency is low and needs to be improved.

There are two steps involved in the numerical solution of a system of linear equations. First the matrix elements involved must be computed and stored for easy access. Secondly, the matrix equation must be solved by a certain process using either the central memory alone or the virtual memory, which uses both the central memory and disk memory. Both steps need large computer execution time and the key issue is to reduce the computer time to a level acceptable for practical computations.

E. Local-File Manipulation Technique

As has been noted in the preceding section, the virtual memory technique is care to a mist be farme metrices beyond the capacity of the computer contract metals but it to mandicapped by the encremely tone execution time needed. For example, 150,000 CPU sec is required in a computer run involving the solution of a 486 x 487 matrix. Furthermore, the CPU time required increases astronomically with the number of matrix elements when it exceeds the capacity of the computer central memory. In order to overcome this difficulty, a highly efficient "local-file manipulation" technique was developed at Georgia Tech. This technique, which has been tested only for small and medium-sized matrices, atilizes both the discs and the central memory for the storage of the matrix alements.

Similar to the virtual memory technique, the local-file manipulation method is a software technique and it has been written at Georgia Tech in Fortran 2 and COMPASS languages: the latter being a machine language used on CDC Coper 71. They key elements of the program include twenty-seven subroutines, eleven of which are written in COMPASS. These subroutines were implemented in the dielectric scattering calculation program used in this research project. They can be divided into three groups according to their functions as illustrated in Figure 33 and Table IV. Appendix I list, all these subroutines and describe their functions.

The key features of the local-file manipulation technique are in the efficient ways of storing and recalling the matrix elements as well as the specific method of solving the system of linear equations by the lower-upper decomposition method.

All the matrix elements are stored in the present program in four local files, each of which is allocated a certain disc space. The matrix elements are first divided into, say, three portions as shown in Figure 34. Elements in each of the corresponding rows of the three partitions are computed and stored in small arrays in the core memory. As soon as the three rows have been fully generated, these three rows are transferred from core

Figure 33. Block diagram for the local-file manipulation algorithm.

Table IV
SUBROUTINES USED IN THE LOCAL-FILE
MANIFULATION AT ROSTINA

OROUP A SUBROUTINES	GROUP B SUBROUTINES	SUBROUTINES
MMINIT	MMALLOCK	MMCDCGM
MMSTAT	MMLINK	MMCFBS
MMLOCK	MMSUPRT	MMCRNRM
MMSROW	MMCIO	MMCRSUB
MM GROW	MMMSG	
MMSLLM	CDD	
MMBAHED	MMRCL	
MMUPACK	MMCCFY	
MMGBUF	MMFSET	
MMINBND	MMRBUSY	
MMG1RA	MMSPLIM	
MMSINED		

Figure 34. The local-file simultaneous storage process for the I $^{\rm th}$, $({\rm I}+{\rm N})^{\rm th}$ and $({\rm I}+{\rm 2N})^{\rm th}$ rows in a large 3N x 3N matrix.

memory to local files in binary form with a "WRITE" statement. The process is repeated for N times until the complete matrix has been generated and stored in the three local files. This storage process is highly efficient in comparison with the conventional virtual memory technique because matrix elements of entire rows are read simultaneously into local files.

The solution of the matrix or the system of linear equations in the present local-file manipulation technique uses the lower-upper decomposition method described in Appendix II. There are two important features in this technique; the restorage of the matrix elements based on their frequencies of impending usage and the solution of the matrix by the lower-upper decomposition method.

In the restorage of the matrix elements a priority table is generated and stored in core memory to assign the "priority" level for each. Three priority levels, high, last and low, are assigned to the rows. The "high" priority is assigned to the row for which immediate and frequent access is needed. The local-file manipulation algorithm has been tested on the Georgia Tech CDC Cyber 74 computer with good results for small and medium sized matrices. Figure 35 shows a comparison for the time required for the generation and storage of the matrix elements between the virtual memory algorithm of Carbrey and the present local-file manipulation algorithm. This greatly improved efficiency in the storage process is probably due to the row storage method discussed previously. The matrix solution time required in the local-file manipulation technique is also much less time consuming than the Carbrey algorithm as shown in Figure 36. These comparisons are made only for small matrices and it remains to be seen whether similar comparisons hold for very large matrices. Unfortunately further study for the case of large matrices cannot be conducted within the time and resources of the present research program. It appears, however, that the local-file manipulation technique will prove to be considerably superior to the Carbrey virtual memory technique when applied to large matrices. A major advantage of the lower-upper decomposition process is that one does not have to repeat the matrix element generation

Figure 35. Comparison of computer time required to generate (including input/output time) a matrix of various size by various matrix storage methods.

Figure 36. Comparison of matrix solution time on CDC CYBER-74 by various methods.

for different expitations and therefore saved large CPU time when the angle and polarization of illumination are changed. A disadvantage of this method is that it requires twice as much storage space as other methods such as the Gaussian-elimination method because of the need to store both the upper and lower matrices [L] and [U]. However, this disadvantage is not of significant consequence when it is used in the local-file manipulation method. Since the matrices are stored in the virtually unlimited disc space, the efficiency of storage and access to the matrices are more important than the size of the storage space required. In addition, the enlarged storage requirement in this method can be reduced by the band-storage-mode technique [46].

SECTION VI

METHODOLOGY FOR THE MODELING OF THE SCATTERING OF A CLOCK OF FLYING BIRDS

In radar applications, the electromagnetic scattering from a flock of flying birds interferes with the detection and identification of objects, but it can also be used to track bird migratory patterns [47,48]. Radar return from birds is often observed as a large dot angel, which occurs at all microwave frequencies on virtually every type of radar. One of the most outstanding features of the scattering from a flock of birds, and hence the radar angel, is its irregularity; with variations of as much as three orders of magnitude [49]. This irregularity is due to that of the individual pird [33] and the density and formation of the flock.

Although the lack of repeatability and regularity in the scattering measurements for birds appears to fit a statistical model, several aspects of the problem are highly deterministic. The formation of a specific flock is quite orderly and therefore will probably be more accurately modeled deterministically. The individual birds can be better modeled statistically because of the variations in size, shape, and movements among them.

Let $\phi(\psi,\nu)$ be a random variable which represents the back-scatter cross-section from a specific type of bird as shown in Figure 37, the total radar cross-section $\phi_{\pm}(\psi,\nu)$ can be approximated by

$$\sigma_{t}^{2}(\sigma, \sigma) = \sum_{n=1}^{N} \sigma_{t}^{2}(\sigma, \sigma) e^{-2jk_{0}r} \cdot \underline{r}_{n}$$
 (61)

where r is a unit vector parallel to the line of sight between the radar and a reference bird in the flock, \mathbf{r}_n is the distance from the reference bird to a bird designated as number n, N is the total number of birds in the flock. Let the superscript $^{-1}$ denote "average", we have the expected total RCS of the flock as

the transfer of the how the manner of the contract of the contract of

$$\hat{\sigma}_{t}^{2}(\sigma,\phi) = \hat{\sigma}^{2}(\tau,\sigma) \sum_{n=1}^{\infty} e^{-j2k_{0}\hat{\mathbf{r}} + \frac{1}{2k_{0}}}$$
(62)

where it is assumed that the formation of the flock is deterministic, at least for the time interval under consideration.

The time variation of the radar return from a flock of flying birds is primarily due to the wing flapping and the flight path movement. The effect of this variation appears as radar scintillation and Doppler frequency shifts. Modeling of these phenomena can be based on the statistical characteristics of the random variable $\sigma(\psi,\varphi)$ pertaining to a single bird.

Depending on the available data on the single bird, there are several ways to model the scattering characteristics of a flock of birds by using Equations (61) and (62). Equation (61) can be used to generate a Monte-Carlo simulation with the statistical parameters of the single bird. If it is desired to include the effect of the array formation, r can also be considered as a random variable and be included in the model. If we are only interested in the time average scattering cross-section, Equation (62) is convenient to use as long as the average scattering cross-section of a single bird is known. The single bird data can be obtained by computation and measurement techniques discussed in this report. The techniques of modeling a flock of birds from scattering data of a single bird is similar in many ways to that of chaff cloud scattering problem, which has been recently investigated at Georgia Tech [50-52]. No numerical modeling was carried out in the research program because of the lack of quality data which can be used to compare with the model.

SECTION VII CONCLUSIONS AND RECOMMENDATIONS

Research has been conducted in the analysis and measurements of three-dimensional arbitrarily-shaped heterogeneous dielectric and biological bodies. The discrepancies in the literature regarding the singularity of the electric dyadic Green's functions were resolved. The discrepancies were centered at the singularity of the rectangular cavity. It was shown in this report that the apparent discrepancies do not exist and a unified and consistent view was presented.

Compact range scattering measurements were successfully conducted at 1 GHz. Techniques in fabricating simulation models using the "Superstuff" were investigated and several 1-foot birds were made. Extensive numerical analysis was carried out for dielectric scatterers of various shapes including cylinders, rectangular blocks, I-shaped blocks, spheres, and a 1-foot bird. The accuracy of these computations was good except for the resonant sphere, for which the resonance frequencies were shifted by about 20 percent.

Various numerical techniques have been investigated. Computer central memory requirements and execution time were reduced by 50 percent with the symmetrical matrix technique and by 75 percent for scatterers of one-plane symmetry. Banded matrix and virtual memory techniques have been implemented in the Volume Integral Equation algorithm and tested successfully for small scatterers. A new local-file manipulation technique for handling matrices larger than core capacity was explored and the results for small matrices showed that it is potentially much more efficient than the virtual memory algorithm developed by Carbrey.

It is recommended that the computational techniques developed in this research program be extended to the analysis of larger lossy dielectric bodies. In addition, the Surface Integral Equation approach should be explored to see whether its numerical convergence is more rapid than the Volume Integral Equation approach. The derivation of an exact solution

for the dielectric prolate spheroid appears to be a feasible research subject which should lead to accurate and useful data for dielectric scattering problems.

SECTION VIII

REFERENCES

- 1. P.M. Neless and M. Ceshbach, Mecheds is (Neurories) signification of CommeHULL Brok co., Inc., New York 1955.
- 2. C.T. Tai, <u>Dyadic Green's Functions in Electromagnetic Theory</u>, Intext Educational, Scranton, PA, 1971.
- 3. O.D. Kellogg, <u>Foundations of Potential Theory</u>, Springer Verlag, New York 1967 (reprinted from 1st ed., 1929).
- 4. J. Van Bladel. "Some remarks on Green's dyadic for infinite space."

 [hob. transactions on Ant. and Prop., Not. AP-9.50. 200-200, Nov. 1961.
- 5. J.G. Fikioris, "Electromagnetic field inside a current-carrying region," J. Math. Phys., Vol. 6, pp. 1617-1620, Nov. 1965.
- b. D.E. Livesay and K.M. Chen, "Electromagnetic fields induced inside arbitrarily shaped biological bodies," <u>IEEE Trans. dicrowave Theory Tech.</u>, Vol. MIT-. pp. 1273-1289, Dec. 1974.
- 7. C.W. Hohmann. "Three-dimensional induced polarization and electromagnetic modeling." Geophysics, Vol. 40. pp. 309-324. April 1975.
- 8. J.J.H. Wang, F.L. Cain, and E.C. Burdette, "Numerical Modeling of Three-dimensional arbitrarily-shaped heterogeneous biological bodies under complex excitations," 19/8 International Symposium on the Biological Effects of Electromagnetic Waves, Ottawa, Canada, June 1978.
- 9. K.M. Chen. "A simple physical picture of tensor Creen's function in source region," Proc. IEEE, Vol. 65. pp. 1202-1204, 1977.
- 10. C.I. Tai. "On the eigenfunction expansion of dyadic Green's functions, Proc. IEEE, Vol. 61, pp. 480-481, 1973.
- 11. C.T. Tai, and P. Rozenfeld, "Different representation of dvadic Green's functions for a rectangular cavity," <u>IEEE Trans. Microwave Theory Tech.</u>, Vol. MTT-24, pp. 597-601. Sept. 1976.
- 12. Y. Rahmat-Samii, "On the question of computation of the dyadic Green's function at the source region in waveguides and cavities," IEEE Trans. Microwave Theory Tech., Vol. MTT-23, pp. 762-765, S pt. 1975.
- 13. R.E. Collin. "On the incompleteness of E and H modes in waveguides." Can. J. Phys., Vol. 51, pp. 1135-1144. June 1973.
- 14. A.g. soward. ar.. 'On the longitudinal component of the Green's function duals." By c. 151. Vol. 6., s. 1755-175, Dec. 1975.

- 15. A.Q. Howard and D.B. Seidel, "Singularity extraction in kernel functions in a closed region problem," <u>Radio Science</u>, Vol. 13, pp. 425-429, May-June, 1978.
- 16. W.A. Johnson, A.Q. Howard, and D.G. Dudley, "On the irrotational component of the electric Green's dyadic," <u>Radio Science</u>, Vol. 14, pp. 961-967, November-December, 1979.
- 17. A.D. Yaghjian, "Electric dyadic Green's functions in the source region," Proc. IEEE, Vol. 68, pp. 248-263, Feb. 1980.
- 18. S.W. Lee, J. Boersma, C.L. Law and G.A. Deschamps, "Singularity in Green's function and its numerical evaluation," <u>IEEE Transactions on Ant. and Prop.</u>, Vol. AP-28, pp. 311-317, May 1980.
- 19. J.J.H. Wang, "Analysis of a three-dimensional arbitrarily shaped dielectric or biological body inside a rectangular waveguide,"

 <u>IEEE Trans. Microwave Theory Tech.</u>, Vol. MTT-26, pp. 457-462,

 <u>July 1978.</u>
- 20. R.E. Collin, Field Theory of Guided Waves, McGraw-Hill Book Co., Inc., New York 1969.
- 21. C.T. Tai, "Electric dyadic Green's functions in the source region," submitted to IEEE proceedings for publication; communicated to this author 2 July 1980.
- 22. J. Arsac, Fourier Transforms and the Theory of Distribution, Prentice-Hall, Englewood Cliffs, N.J., 1966.
- *23. J. Van Bladel, <u>Electromagnetic Fields</u>, McGraw-Hill Book Co., Inc., New York 1954, Appendix 3.
 - 24. P. Antosik, J. Mikusinski and R. Sikorski, <u>Theory of Distributions</u> the Sequential Approach, Elsevier Scientific Publishing Company, Amsterdam, 1973.
 - 2). L. Schwartz, <u>Théorie des distributions</u>, Vol. I, Actualities Scientifiques et Industrielles, Hermann & Cie, Paris 1957.
 - 26. L. Schwartz, Généralization de la notion de fonction, de derivation, dé transformation de Fourier, et applications mathmatiques et physiques, Amales Univ. Grenoble, Vol. 21, pp. 57-74, 1945.

- 27 F. Harrie; and Time-hermonic Electromagnetic Fields, McGraw-Hill Book Co., Inc., New York, 1961.
- 28. J.J.H. Wang and C. Papandeolopulon, "Analysis and Measuremente of three-dimensional arbitrarily-diaped diele cric scatteress", Interim Reports, Contract F19628-78-C-0223, Rome tir Developm of Center, Griffiss AFB, N.Y., February 1989, Above 10.
- 29. R.C. Johnson, H.A. Ecker, and R.A. Moore, "Compact Range Techniques and Measurements", IEEE Transactions on Ant. and Prop., Vol. AP-17, No. 5, pp. 568-576, Sept. 1969.
- 30. D.W. Hess, F.G. Willwerth and R.C. Johnson, "Compact Range Improvements and Performance at 30 GHz", 1977 International IEEE AP-S Symposium, pp. 264-267, Stanford, Cal., June 1977.
- 31. R.W.P. King and T.T. Wu, <u>The Scattering and Diffraction of Waves</u>. Harvard University Press, Cambridge, Mass., 1957.
- 32. I.S. Rombauer and M.R. Becker, <u>The Joy of Cooking</u>, The Bobbs-Merrit Co.. New York, pp. 389-424, 1953.
- 33. F. Blacksmith, Jr., and R.B. Mack, "On Measuring the Radar Cross Sections of Ducks and Chickens", <u>Proceedings of IEEE</u>, Vol. 53, p. 1125, August, 1965.
- 34. A.W. Guy, "Analyses of Electromagnetic Fields Induced in Biological Tissues by Thermographic Studies on Equivalent Phantom Models", IEEE Trans. Microwave Theory Tech., Vol. MTT-19, No. 2, pp. 205-214, February 1971.
- 35. E.C. Burdette, F.L. Cain and J. Seals, "In-Vivo Determination of Energy Absorption in Biological Tissue", Final Technical Report, U.S. Army Grant DAAG29-75-G-0182, Engineering Experiment Station, Georgia Institute of Technology, January 1979.
- 36. B.S. Guru and K.M. Chen, "Experimental and Theoretical Studies on Electromagnetic Fields Induced Inside Finite Biological Bodies", IEEE Trans. Microwave Theory Tech., Vol. MTT-24, No. 7, pp. 433-440, July 1976.
- 37. D.P. Nyquist, K.M. Chen and B.S. Guru, "Coupling Between Small Thin-Wire Antennas and a Biological Body", IEEE Transactions on Ant. and Prop., Vol. AP-25, No. 6, Nov. 1977.
- 38. M.J. Hagmann, O.P. Gandhi, and C.H. Durney, "Numerical Calculation of Electromagnetic Energy Deposition for a Realistic Model of Man", IEEE Transactions on Ant. and Prop., Vol. MTT-27, No. 9, Sept. 1979.

- 39. J.H. Richmond, "Digital Computer Solutions of the Algorithms Equations for Scattering Problems", Proc. IEEE, Vol. 53, pp. 796-804, August 1965.
- Marking Resonances in RCS", The Transaction of Automativity by Vol. AP-21, No. 4, p. 554-561, July 1973.
- 41. J.J.H. Wang, "Numerical Analysis of Three-dimensional Arbitrarily-shaped Conducting Scatterers by Trilateral Surface Cell Modeling", Radio Science, Vol. 13, No. 6, pp. 947-952, Nov.-Dec., 1978.
- 42. J.J.H. Wang, "Study of Surface-patch Techniques for Modeling 3-D Radiating or Scattering Objects", Interim Technical Report, Contract F19628-78-C-0224, Engineering Experiment Station, Georgia Institute of Technology, Dec. 1979 (being approved for public release). A084185.
- 43. T. Ferguson, T.H. Lehman and R.J. Balestri, "Efficiency Solution of Large Moment Problems: Theory and Small Problem Results", IEEE

 Transactions on Ant. and Prop., Vol. AP-24, No. 2, pp. 230-235, March
- 44. R.J. Balestri, T.R. Ferguson and E.R. Anderson, "General Electromagnetic Model for the Analysis of Complex Systems". Technical Report RADC-TR-77-137, Vol. I and II, Rome Air Development Center (RBCT), Griffis AFB. N.Y., April 1977, Vol I - A040025, Vol II - A040027.
- 45. B.R. Carbrey, "User Manual: Virtual Memory Subroutines". Picatimny Arsenal, Dover, N.J., Transmitted to Georgia Tech. November 1977.
- 46. IMSL Library Manual, International Mathematical and Statistical Libraries, Inc., Houston, Texas, 1979.
- 47. L.L. Bonham and L.V. Blake, "Radar Echoes from Birds and Insects", Sci. Monthly, Vol. 82, p. 204-209, 1956.
- 48. D. Levine, Radargrammetry, McGraw-Hill Book Co., Inc., . 235, New York, 1960.
- 49. G.E. Pollon, "Distributions of Radar Angels", IEEE Trans. Aerospae and Elect. Syst., Vol. AES-8, No. 6, November 1972.
- 50. J.J.H. Wang, "Analysis and Computer Modeling of Chaff Clouds", Georgia Tech Interim Report No. 3 on Project A-1840, Subcontract No. A6HM-567195 from Autonetics Group, Rockwell International Corporation, Prime Contract N00024-76-C-7107, Atlanta, Ga., July 1976.

- 51. W.P. Cooke, J.J. Wang and C.E. Ryan, Jr., "Consulting and Research Services in Support of the DG-AEGIS Electromagnetic Analysis Programs and the Ship Image Program", Georgia Tech Final Report on Project A-1819-002, Subcontract A6HM-567192 from Autonetics Group, Rockwell International Corporation, Atlanta, Ga., March 1972.
- 52. W.P. Cooke, J.J. Wang, B.J. Cown, and J.D. Adams, "Consulting and Research Services in Support of the Ship Image Model Development Program", Georgia Tech Report on Project A-1999, Subcontract No. A7HM-567218 from Autonetics Group, Rockwell International Corporation, Prime Contract No. N00024-76-C-7294, Atlanta, Ga., July 1972.

APPENDIX I
SUBROUTINES USED IN LOCAL-FILE MANIPULATION ALGORITHM

APPENDIX I

SUBROUTINES USED IN LOCAL-FILE MANIPULATION ALGORITHM

Sixteen of the subroutines are written in FORTRAN V and eleven of them are in the COMPASS machine language.

A. Subroutines Written in FORTRAN V

- MMCDCOM Decomposes a complex matrix to lower and upper submatrices.
- 2) MMCFBS Solves the decomposed matrix using forward and backward substitution.
- 3) MMCRNRM Normalizes a row in a matrix by dividing each (except the first) element of the row by its first element. The first element of the new row is then replaced by its reciprocal.
- 4) MMCRSUB Performs complex row-subtraction and the pivoting operation in the lower-upper decomposition method.
- 5) MMINIT Pre-sets matrix storage allocation among several local-files, allocates local-file addresses and allocates buffers for the first few rows. This is an initialization of parameters, which may be altered during the execution of the program.
- 6) MMSTAT Provides statistical information regarding the status and the efficiency of the core and buffer storage allocation as well as other program execution characteristics.
- 7) MMGBUF Searches for and provides a free buffer upon request.
- 8) MMINBND Assigns the priority for a row based on whether it is of current interest or not.
- 9) MMFSET Sets up a file-environment table for an I/O operation and starts the I/O operation.
- 10) MMLOCK Assigns buffers and insures that the buffer is available for usage.
- 11) MMGTRA Gets the disc address of a matrix-row from the address tables such as the row map, buffer maps, FET, etc.
- 12) MMSINBD Sets a map of in-bound/out-of-bound rows for later use by MMINBND.
- 13) MMGRDW Gets a matrix row from disc and stores it into the core through the buffer.

- 14) MMSROW Gets a matrix-row from the core and stores it into the disc through the buffer. This is the reverse process of MMGROW.
- 15) MMSLIM Determines and updates the priority table which assigns the matrix rows to be stored into the core memory.
- 16) MMBAHED Gets matrix rows to be used soon from the disc and stores them into the buffer. This is a portion of MMGROW and is not needed for MMSROW.

B. Subroutines Written in COMPASS

- MMALLOC Allocates central memory space for the buffers to be used; Sets up parameters such as the number of localfiles to hold the generated matrix, the number of rows per super-row, and the number of simultaneous I/O requests that are allowed.
- 2) MMLINK Links subroutines which allocate buffers, set file environment tables, row-maps, buffer-maps, and subroutines indirectly calling other subroutines.
- 3) MMSUPRT Contains a collection of subroutines to direct the computer to perform several simultaneous operations to take advantage of the overlapping mode of execution of the Cyber-74.
- 4) MMCIO Invokes "CIO" to process FET (file environment table). FET is a file-table containing information such as the address of the randomly-accessed records of a particular file. "CIO" stands for combined I/O operations and is used to perform the I/O operation in COMPASS. In FORTRAN, COBOL and other high level languages the I/O is performed automatically.
- o) MMMSG Displays messages on the computer-operator console and optionally displays messages in the dayfile.
- 9) COD Converts binary display to decimal display.
- i) MIRCL Monitors the 1/0 process to insure that the 1/0 operation is completed.
- o) MMCOPY Copies data from one array to the other.
- 9) MMRBUSY Checks () an 1,0 for a particular super-row is a process.
- MMSPLIM Sets the PPU limits. (A peripheral processor unit (PPU) is a small processor which provides communication paths between the central processor and the individual peripheral devices such as the disc unit. In this subroutine the user can limit or expand the number of simultaneously executed I/O requests depending on the computer's load, time of day, etc.
- 11) MMUPACK Unpacks the row-map and buffer-map. Keeps track on a table of tile-numbers corresponding to row, super rows, and buffers. Checks it a buffer cannot be released for a particular row.

GMPENDING OF THE LOWER-UPPER DECOMPOSITION METHO.

APPENDIX II

MATRIX SOLUTION BY THE LOWER-UPPER DECOMPOSITION METHOD

The lower-upper decomposition method for the solution of a matrix equation is based on the following theorem .

Theorem. Let [A] denote a NxN square matrix whose elements are denoted by a_{ij} , where i and j refer to the row and column of the element. Let $[A_k]$ denote a kxk square matrix which is a left-upper submatrix of [A] defined as

$$[A_k] = [a_{ij}]; i, j = 1, ...k.$$
 (AI-1)

If all the submatrices $[A_k]$, k=1,...N, are nonsingular, then [A] can be decomposed uniquely into the following form

$$[A] = [L] [U]$$
 (AII-2)

where all the three matrices are all of dimensions NxN, and [L] and [U] are referred to as the lower and upper triangular matrices of the following form

$$L = \begin{bmatrix} 1 & 0 & 0 & \dots & 0 \\ \ell_{21} & 1 & 0 & \dots & 0 \\ \vdots & & & \vdots \\ \ell_{n1} & \ell_{n2} & \dots & 1 \end{bmatrix}$$
(AII-3)

$$U = \begin{bmatrix} U_{11} & U_{12} & \dots & U_{1n} \\ 0 & U_{22} & \dots & U_{2n} \\ \vdots & & \vdots & \vdots \\ 0 & 0 & \dots & U_{nn} \end{bmatrix}$$
(AII-4)

By transferring [A] into the product of two such matrices, one can solve the matrix equation by forward and backward substitution to be explained later. First we will show how [L] and [U] can be evaluated.

 $[\Lambda II-5]$

$$= \begin{bmatrix} a_{11} & a_{12} & a_{13} & \dots & \\ a_{21} & a_{22} & a_{23} & \dots & \\ \vdots & \vdots & \vdots & \vdots & \vdots \\ a_{n1} & a_{n2} & a_{n3} & \dots & a_{nn} \end{bmatrix}$$

By equating the individual elements in the equation above, we obtain:

a) For the first row of U

$$u_{1j}=a_{1j}$$
 $j=1,2,\ldots,N$

b) For the first column of L

$$1_{i1}^{=a}i1/u_{i1}$$
 $i=1,2,...,N$

c) For the second row of U

$$u_{2j}=a_{2j}-1_{21}u_{1j}$$
 $j=2,3,...,N$

d) For the second column of L

$$1_{i2} = (a_{ia} - 1_{i1} u_{12}) / u_{22}$$

 $i = 2, 3, \dots, N$

The third row of P

All the matrix elements k_{ij} and u_{ij} can then be obtained in sequence according to the set of Equations (AII-6). Note that the simple process of determining the unknown k_{ij} and u_{ij} involves only straightforward substitution of the known a_{ij} and the previously calculated k_{ij} and u_{ij} following the order specified in Equation (AII-6). Note that Equation (AII-6) can be denoted in general as

$$\begin{bmatrix} \mathbf{u} \\ \mathbf{p} \end{bmatrix} = \mathbf{a} \\ \mathbf{p} \mathbf{j} = \begin{bmatrix} \mathbf{p} \\ \mathbf{k} \end{bmatrix} = \begin{bmatrix} \mathbf{p} \\ \mathbf{k} \end{bmatrix}$$

$$A_{iq} = (a_{iq} - \sum_{k=1}^{q-1} - a_{ik} a_{kq}) / a_{qq}$$
 $i = q+1,...N$ (AIII-7)

Let us now use this lower-upper decomposition method to solve the totrowing matrix equation

$$[A] [X] = [b] \tag{AII-8}$$

Appliving Equation (AI-2) to (A1-8), we have

$$\{L \mid \{U \mid \{X\} = \{b\}\}$$
 (AII-9)

asttin.

$$\{Y\} = \{Y\} = \{X\} = \{X\}$$

We have

$$[L] [y] = [b]$$
 (A1I-11)

Equation (AII-11), which can be written explicitly as follows

can be solved by the trivial forward substitution method, which merely solves the set of equations (AII-12) sequentially by direct substitution of the previously calculated $y_i^{-1}s$.

Next we write Equation (AII-10) explicitly as

$$u_{11}x_{1} + u_{12}x_{2} + \dots + u_{1n}x_{n} = y_{1}$$

$$u_{22}x_{2} + \dots + u_{2n}x_{n} = y_{2}$$

$$\dots + u_{nn}x_{n} = y_{n}$$

$$u_{nn}x_{n} = y_{n}$$

$$(341-15)$$

it is now obvious that the unknown \mathbf{x}_i 's can be solved sequentially by a back-forward substitution method starting from the last equation since \mathbf{y}_n 's nave been solved in Equation (All-12).

POCOTO DE POCOTO DEPOCITO DE POCOTO DE POCOTO

MISSION of

Rome Air Development Center

RADC plans and executes research, development, test and selected acquisition programs in support of Command, Control Communications and Intelligence (C3I) activities. Technical and engineering support within areas of technical competence is provided to ESP Program Offices (POs) and other ESD elements. The principal technical mission areas are communications, electromagnetic guidance and control, surveillance of ground and aerospace objects, intelligence data collection and handling, information system technology, ionospheric propagation, solid state sciences, microwave physics and electronic reliability, maintainability and compatibility.

Printed by United States Air Force Hanscom AFB, Mass. 01731

