

【实验题目】VLAN 实验

【实验目的】掌握 VLAN 配置方法。

【实验说明】

截屏只是记录一下实验结果,应尽量缩小,可以大致看清楚就可以了。 注意实验开始前重启交换机: #reload

【预备知识】

- 两台交换机之间采用干道(trunk)端口连接,干道端口属于所有 VLAN。非干道端口为普通 VLAN 接口(主机端口),默认为 VLAN 1。
- 进入干道的帧需要封装 VLAN ID,使得接收方可以知道该帧来自哪个 VLAN。从干道收到的没有 封装 VLAN ID 的帧属于 Native VLAN,默认为 VLAN 1。

【配置举例】

- 启动VLAN 10 (config)#vlan 10
- 把接口f0/5 配置为VLAN 10 接口 (config)#interface f0/5 (config-if)#switchport access vlan 10
- 把接口f0/24`配置为干道接口 (config)#interface f0/24 (config-if)#switchport mode trunk
- 显示VLAN(不显示trunk 接口) #show vlan
- * 交换机不一定有 f0/5 等接口, 用#show interface 查看一下接口名

【实验任务】

发送:用 anysend 发帧,选择实验网网卡(接口),修改 MAC DA或 MAC SA,然后发送(可以设置周期发送)。

接收:用 WireShark 接收帧,选择实验网网卡,选择 ARP 协议,设置 filter:eth.src==0001.0EC3.0F0E(改为源主机地址)

复杂 filter:eth.src==0001.0EC3.0F0E or eth.dst==0002.DEF5.2D13

(1) 用命令 ipconfig /all 查出实验网网卡的 MAC 地址:

PC1: 44-33-4C-0E-BE-70 PC2: 44-33-4C-0E-CE-79 PC3: 00-88-99-00-0A-49 PC4: F4-8E-38-F2-28-C9

(2) 按下图配置 VLAN:

单交换机实现 VLAN

[PC1 分别向 PC2、PC3 和 PC4 发帧]

哪些主机可以收到?

- 答: ①PC1 发送给 PC2 的时候, PC2 和 PC4 不能收到, 但 PC1 和 PC3 可以收到。
 - ②PC1 发送给 PC3 的时候, PC2 和 PC4 不能收到, 但 PC1 和 PC3 可以收到。
 - ③PC1 发送给 PC4 的时候, PC2 和 PC4 不能收到, 但 PC1 和 PC3 可以收到。

收到该帧的主机截屏 WireShark:

①PC1:

PC3:

②PC1:

PC3:

[PC2 发送广播帧]

答: PC1 和 PC3 无法收到, PC2 和 PC4 收到了。

收到该帧的主机截屏 WireShark:

PC2:

30 13.181023	Shenzhen_0e:ce:79	Broadcast	AKP	64 Who has 192.168.1.255? Tell 192.168.1.2 [ETHERNET FRAME CHECK SEQUENCE INCORRECT]
31 13.695865	Shenzhen_0e:ce:79	Broadcast	ARP	64 Who has 192.168.1.255? Tell 192.168.1.2 [ETHERNET FRAME CHECK SEQUENCE INCORRECT]
32 14.197856	Shenzhen_0e:ce:79	Broadcast	ARP	64 Who has 192.168.1.255? Tell 192.168.1.2 [ETHERNET FRAME CHECK SEQUENCE INCORRECT]
33 14.709827	Shenzhen_0e:ce:79	Broadcast	ARP	64 Who has 192.168.1.255? Tell 192.168.1.2 [ETHERNET FRAME CHECK SEQUENCE INCORRECT]
34 15.209947	Shenzhen_0e:ce:79	Broadcast	ARP	64 Who has 192.168.1.255? Tell 192.168.1.2 [ETHERNET FRAME CHECK SEQUENCE INCORRECT]
35 15.723938	Shenzhen_0e:ce:79	Broadcast	ARP	64 Who has 192.168.1.255? Tell 192.168.1.2 [ETHERNET FRAME CHECK SEQUENCE INCORRECT]
36 16.227867	Shenzhen_0e:ce:79	Broadcast	ARP	64 Who has 192.168.1.255? Tell 192.168.1.2 [ETHERNET FRAME CHECK SEQUENCE INCORRECT]
37 16.737829	Shenzhen_0e:ce:79	Broadcast	ARP	64 Who has 192.168.1.255? Tell 192.168.1.2 [ETHERNET FRAME CHECK SEQUENCE INCORRECT]
38 17.236952	Shenzhen_0e:ce:79	Broadcast	ARP	64 Who has 192.168.1.255? Tell 192.168.1.2 [ETHERNET FRAME CHECK SEQUENCE INCORRECT]
39 17.751786	Shenzhen_0e:ce:79	Broadcast	ARP	64 Who has 192.168.1.255? Tell 192.168.1.2 [ETHERNET FRAME CHECK SEQUENCE INCORRECT]
40 18.250727	Shenzhen_0e:ce:79	Broadcast	ARP	64 Who has 192.168.1.255? Tell 192.168.1.2 [ETHERNET FRAME CHECK SEQUENCE INCORRECT]
41 18.765745	Shenzhen_0e:ce:79	Broadcast	ARP	64 Who has 192.168.1.255? Tell 192.168.1.2 [ETHERNET FRAME CHECK SEQUENCE INCORRECT]
43 19.265721	Shenzhen_0e:ce:79	Broadcast	ARP	64 Who has 192.168.1.255? Tell 192.168.1.2 [ETHERNET FRAME CHECK SEQUENCE INCORRECT]
44 19.779650	Shenzhen_0e:ce:79	Broadcast	ARP	64 Who has 192.168.1.255? Tell 192.168.1.2 [ETHERNET FRAME CHECK SEQUENCE INCORRECT]
45 20.287612	Shenzhen 0e:ce:79	Broadcast	ARP	64 Who has 192.168.1.255? Tell 192.168.1.2 [ETHERNET FRAME CHECK SEQUENCE INCORRECT]

PC4:

[Switch#show vlan 并截屏]

这一部分的实验我们将四台主机分别连接到第二台交换机的 G0/1、G0/2、G0/23 和 G0/24 端口:

主机	连接交换机的端口	VLAN ID
PC1	G0/1	VLAN 10
PC2	G0/23	VLAN 20
PC3	G0/24	VLAN 10
PC4	G0/2	VLAN 20

[分析实验结果]

答: 实验结果与理论课所学知识符合。因为 PC1 和 PC3 属于同一个虚拟局域网, PC2 和 PC4 属于同一个虚拟局域网。而一个 VLAN 的帧只能转发到属于同一个 VLAN 的端口或者干道端口,所以 PC1 发送的帧会在 VLAN 0 这个虚拟局域网中转发,从而 PC1 和 PC3 能够收到这个帧, PC2 发送的广播帧只能在其所在的虚拟局域网中传送,故只有 PC2 和 PC4 自己收到了。

(3) 按下图进行配置:

[PC1 分别向 PC2、PC3 和 PC4 发帧]

- 答: ①PC1 发送给 PC2 的时候, PC2 和 PC4 不能收到, 但 PC1 和 PC3 可以收到。
 - ②PC1 发送给 PC3 的时候, PC2 和 PC4 不能收到, 但 PC1 和 PC3 可以收到。
 - ③PC1 发送给 PC4 的时候, PC2 和 PC4 不能收到, 但 PC1 和 PC3 可以收到。

收到该帧的主机截屏 WireShark:

①PC1:

PC3:

②PC1:

PC3:【下面这张截图的过滤地址原来是 44-33-4C-0E-BE-70,因为下一步实验要过滤得到源地址为 44-33-4C-0E-CE-79 的帧,所以进行了修改,这是修改后的截图。所以截到的帧实际上还是过滤成源地址 是 44-33-4C-0E-BE-70 的所有帧】

③PC1:

「PC2 发广播帧]

答: PC1 和 PC3 无法收到, PC2 和 PC4 收到了。

收到该帧的主机截屏 WireShark:

PC2:

PC4:

【这部分实验我们的交换机的端口配置是:】

交换机名称	端口号	端口 VLAN ID	端口所连主机
交换机 1	G0/1	VLAN 10	PC1
	G0/13	TRUNK	交换机 2
	G0/23	VLAN 20	PC2
交换机 2	G0/2	VLAN 20	PC4
	G0/13	TRUNK	交换机 1
	G0/24	VLAN 10	PC3

[SwitchA#show vlan 并截屏]

11-S5750-1#show vlan VLAN Name	Status	Ports
1 VLANOOO1	STATIC	Gi0/2, Gi0/3, Gi0/4, Gi0/5 Gi0/6, Gi0/7, Gi0/8, Gi0/9 Gi0/10, Gi0/11, Gi0/12, Gi0/13 Gi0/14, Gi0/15, Gi0/16, Gi0/17 Gi0/18, Gi0/19, Gi0/20, Gi0/21 Gi0/22, Gi0/24, Gi0/25, Gi0/26 Gi0/27, Gi0/28
10 VLAN0010	STATIC	GiO/1, GiO/13
20 VLAN0020	STATIC	GiO/13, GiO/23

[SwitchB#show vlan 并截屏]

VLAN Name	Status	Ports
1 VLAN0001	STATIC	Gi0/3, Gi0/4, Gi0/5, Gi0/6 Gi0/7, Gi0/8, Gi0/9, Gi0/10 Gi0/11, Gi0/12, Gi0/13, Gi0/14 Gi0/15, Gi0/16, Gi0/17, Gi0/18 Gi0/19, Gi0/20, Gi0/21, Gi0/22 Gi0/23, Gi0/25, Gi0/26, Gi0/27 Gi0/28
10 VLAN0010 20 VLAN0020	STATIC STATIC	Gi0/13, Gi0/24 Gi0/2, Gi0/13

[分析实验结果]

答:本次实验结果与上一个实验的结果相同,因为两台交换机之间是一条干道,任何一个 VLAN 的帧都能转发到干道端口,所以这与四台主机都连接上同一台交换机的结果是一样的。所以 PC1 发送的帧仍然只在 VLAN 10 这个网段中传输,所以 PC1 和 PC3 都截获 PC1 发送的数据包,而 PC2 和 PC4 没有收到;同理 PC2 的广播帧也只在 VLAN 20 这个网段中传输,所以 PC2 和 PC4 能截获 PC2 发送的广播帧数据包而 PC1 和 PC3 无法收到。另外 show vlan 的结果显示,干道端口是通过将该端口匹配到所有已有的 VLAN ID 而形成的。

(4) 接上一步骤,将 SwitchA 和 SwitchB 的接口 FO/24 分别改为 VLAN 10 和 VLAN 20:

[PC1 分别向 PC2、PC3 和 PC4 发帧]

- 答: ①PC1 发送给 PC2 的时候, PC2 和 PC3 不能收到, 但 PC1 和 PC4 可以收到。
 - ②PC1 发送给 PC3 的时候, PC2 和 PC3 不能收到, 但 PC1 和 PC4 可以收到。
 - ③PC1 发送给 PC4 的时候, PC2 和 PC3 不能收到, 但 PC1 和 PC4 可以收到。

收到该帧的主机截屏 WireShark:

①PC1:

②PC1:

③PC1:

PC4:

[PC2 发广播帧]

答: 只有 PC2 自己能够收到。

收到该帧的主机截屏 WireShark:

PC2:

【这部分实验我们的交换机的端口配置是:】

交换机名称	端口号	端口 VLAN ID	端口所连主机
交换机 1	G0/1	VLAN 10	PC1
	G0/13	VLAN 10	交换机 2
	G0/23	VLAN 20	PC2
交换机 2	G0/2	VLAN 20	PC4
	G0/13	VLAN 20	交换机1
	G0/24	VLAN 10	PC3

[SwitchA#show vlan 并截屏]

GiO/2, GiO/3, GiO/4, GiO/5 GiO/6, GiO/7, GiO/8, GiO/9 GiO/10, GiO/11, GiO/12, GiO/14
GiO/15, GiO/16, GiO/17, GiO/18 GiO/19, GiO/20, GiO/21, GiO/22
GiO/24, GiO/25, GiO/26, GiO/27 GiO/28 GiO/1, GiO/13 GiO/23

[SwitchB#show vlan 并截屏]

11-S5750-2(config-if-GigabitEthernet VLAN Name	0/13)#show Status	vlan Ports
1 VLAN0001	STATIC	Gi0/3, Gi0/4, Gi0/5, Gi0/6 Gi0/7, Gi0/8, Gi0/9, Gi0/10 Gi0/11, Gi0/12, Gi0/14, Gi0/15 Gi0/16, Gi0/17, Gi0/18, Gi0/19 Gi0/20, Gi0/21, Gi0/22, Gi0/23 Gi0/25, Gi0/26, Gi0/27, Gi0/28
10 VLAN0010	STATIC	Gi0/24
20 VLAN0020	STATIC	GiO/2, GiO/13

[分析实验结果]

答:实验结果与理论相符合。当 PC1 发送帧给其他三台主机时,由于 PC1 和 PC2 连接在同一台交换机且两者处于不同的 VLAN 下,所以 PC1 的帧 PC2 无法收到;而 PC1 所连接的交换机 1 与交换机 2 所连接的端口的 VLAN ID 为 10,所以 PC1 的帧可以从交换机 1 转发出去。由于交换机 2 上与交换机 1 相连的端口不是干道端口,所以这些帧能够转发到交换机 2 并被收下。因为 PC3 和 PC4 都与交换机 2 之间相接,而 PC3 的 VLAN ID 为 10,PC4 的 VLAN ID 为 20,交换机 2 收到 PC1 的帧的端口的 VLAN ID 为 20,故这些帧只会转发到 PC4 所在网段,因此 PC3 收不到这些帧,只有 PC4 可以收到。

【实验体会】

写出实验过程中的问题、思考及解决方法,简述实验体会(如果有的话)。要求分别写并署名。打分是统一的。

[张三]

[李四]

[王五]

[...]

【交实验报告】

上传地址: http://172.18.187.9/netdisk/default.aspx?vm=17net

截止日期 (不迟于): 2019年5月7日 23:00 (周二)

每个小组统一交一份实验报告。需填写小组所有同学的学号和姓名。

文件名:最小学号_VLAN 实验.doc