

Mark Scheme (Results)

October 2021

Pearson Edexcel International A Level In Statistics S1 (WST01) Paper 01

Question Number	Scheme	Marks
1 (a)	[Sum of probs = 1 gives $p + q = 0.2$ and] so $P(B) = \underline{0.5}$	B1
(b)	e.g. $P(A) = 0.3$ or $0.1 + "$ their value for $p + q"$, $P(A \cap B) = 0.2$ or "their value for	(1)
	$p + q$ ", and $[P(A) \times P(B) =]0.3 \times "0.5" [= "0.15"]$	M1
	$0.15 \neq 0.2$ so [A and B are] not independent	A1 (2)
(c)	$[P(C B) =] \frac{p}{"0.5"} = p + 0.06 \text{ (o.e.)}$	M1
	[2p = p + 0.06 so] $p = 0.06$	A1
1	[Use of $p + q = 0.2$ gives] $\underline{q} = 0.14$	A1 (3)
(d)	Suitable event D drawn. [See Venn diagrams below]	B1
		(1)
	Notes	[7]
(a)	B1 for 0.5 or exact equivalent	
(b)	M1 for sight of correct probabilities for P(A) and P($A \cap B$) clearly labelled, 0.3 × "0.5 P(A) × P(B) = 0.15 Allow 0.04 + 0.06 + 0.2 for P(A) if clearly labelled	" seen or
ALT	$P(A \cap B)$ may be stated in part (a) $P(B)$ can ft from (a) eg $P(A) = "0.5" - 0.3-0.2$ May see $P(B \mid A) = \frac{2}{3}$ and compared with $P(B)$ or $P(A \mid B) = 0.4$ and $P(A) = 0.3$	
	A1 For all the correct probabilities and calculations, a comparison and correct conclusion to see 0.15 but will accept $P(A \cap B) \neq P(A) \times P(B)$ instead of 0.15 \neq 0.2 for comparison	
	SC Allow M1A0for P(A) = $0.1 + p + q$; P($A \cap B$) = $p + q$ clearly labelled and $0.5 \times (0.1 + p + q)$ or $(p + q + 0.3)(0.1 + p + q)$ given.	
(c)	M1 ft their P(B) from part (a). For a correct equation in p or q based on the given statement equation in terms of q is $\frac{0.2-q}{"0.5"} = 0.26-q$ (o.e.) Allow $\frac{p}{0.3+p+q} = p+0.06$	nt. NB
Ans only (d)	1st A1 for $(p =) 0.06$ 2^{nd} A1 for $(q =) 0.14$ (p =) 0.06 and $(q =) 0.14$ 3/3 B1 for a suitable event D drawn that has an intersection with B but not with A . Condone in labelled D	f not

Question Number	Scheme	Marks
2 (a)	$\left[S_{xp} = \right] 2347 - \frac{93 \times 273}{12}$ or $2347 - \frac{25389}{12} = 231.25$ (*)	Blcso
	$\left[S_{pp} = \frac{391.97}{12}\right]$	(1) M1
	$[r =] \frac{231.25}{\sqrt{148.25 \times "391.97"}}$ = 0.959307 awrt 0.959	M1 A1
(c)	$b = \frac{S_{xp}}{S_{xx}} = \frac{231.25}{148.25} [= 1.559865]$	(3) M1
	$a = \frac{273}{12}$ -"1.56"× $\frac{93}{12}$ or 22.75 - "1.56"×7.75 [=10.66] b = awrt 1.6 or $a = awrt 11$	M1 A1
	p = 10.7 + 1.56x	A1 (4)
(d)	e.g. each extra employee costs the company (on average)[\$"]156" a year in paper	B1 (1)
(e)	[New $p = $] $0.8 \times "10.66" + \frac{"1.559"}{2} \times \frac{93}{12} [=14.573]$	M1
	[compared with $\overline{p} = 22.75$] so percentage saving is $\frac{22.75 - 14.573}{22.75} \times 100$	M1
	= 35.94 awrt <u>36[%]</u>	A1 (3)
(a) (b)	Notes B1 for either correct expression [don't need = 231.25] 1st M1 for attempt at correct expression for S_{pp} Allow one transcription error e.g. 6620	[12] 0.72 May be
	seen in part (a) If no correct expression seen allow $S_{pp} = \text{awrt } 392$ or correctly placed in formula	ı for r
	2^{nd} M1 for a correct expression for r , ft their S_{pp} A1 for awrt 0.959	
(c)		
(d)	B1 for a suitable contextual comment that mentions their value of b Allow multiples eg every extra 100 employees costs the company "\$15600". Condo sign or use of £. Do not allow "\$1.56" for 1 person unless indicates in 100's	ne missing \$
(e)		
	2^{nd} M1 for correct percentage saving calculation using 22.75 (e.g. $\frac{14.573}{22.75} [\times 100]$) A	llow use of
	"10.7"+1.56"× $\frac{93}{12}$ [≈ 22.79] for 22.75 May be implied by correct answer.	
	A1 for awrt 36 SC use of 93 throughout part (e) rather than 7.75 leading to awrt 48 or 0.48 (they will n regression line from part(c) to calculate the original value) gains M0M1A0 SC use of 93 in part(c) Answer of 36% gains M1M1A1, 64% or 0.64 gains M1M1A0.	eed to use the

Question Number	Scheme	Marl	KS
3. (a)	[Median =] <u>53</u>	B1	
(b)	$Q_1 = 45$ $Q_3 = 61$ [IQR =] $61 - 45 = \underline{16}$ (*)	M1 A1cso	(1)
(c)	$Q_1 - 1.5 \times (IQR) = 45 - 1.5 \times 16 [= 21]$ or $Q_3 + 1.5 \times (IQR) = 61 + 1.5 \times 16 [= 85]$ Outliers are < 21 or > 85 So there are three outliers at 13, 87 and 88	M1 A1ft A1	(2)
(d)	x	M1 A1ft A1 A1	(3)
(e)	Age (males) e.g. the females are generally older than the men as median is higher $(67 > 53)$	B1	(4)
(f)(i) (ii)	No change to box plot means one in each section so granddaughter [34~56] Eldest daughter in range [67~72] or Anja's age [72~93] Since Anja 23 years older than eldest daughter Anja in range [90~93]	B1 M1 A1	(1)
	Notes		[14]
(a) (b)	B1 for 53 M1 for an attempt at both and at least one correct. No need to be labelled. A1cso for both correct quartiles seen and 61 – 45 leading to 16		
(c)			
(d)			
(e)	B1 for a correct comment, referring to ages , with reference to a correctly named statis include the figures compared. eg Females older than men and comparison of median, upper quartile or lower quartile Q_1, Q_2 and Q_3 with their figures which must agree with the statement. eg Males ages more spread out than female and comparison of ranges with males = 7 females = 73 eg Females older than males since Males are symmetrical $[Q3 - Q2 : Q2 - Q1] 8 : 8$ are negative skew 5 : 11	le, allow	
(A)(2)	NB use of mean/ IQR/ minimum/ maximum is B0. Ignore incorrect comments.		
(f)(i)	B1 for deducing granddaughter is at or below lower quartile but not below 34 Allow any reasonable adjustment for her mother's age, $\{34 \text{ to } x\}$ where $35 \square x \square 56$		
(ii)	M1 Suitable range for eldest daughter or Anja above upper quartile. Ignore any incorrec May be implied by a correct range.	t upper li	mit.
	A1 for a range of [90~93] for Anja's age		

Question Number	Scheme	Marks		
4. (a)	$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	B1 B1		
	$\frac{1}{3} \qquad \text{Yellow} \qquad \frac{4}{5} \qquad \text{Red} \qquad \frac{8}{8} \qquad \text{Red}$ $\frac{1}{8} \qquad \text{Yellow} \qquad \frac{1}{8} \qquad \text{Yellow}$ $\frac{1}{4} \qquad \text{Yellow}$	B1 (3)		
(b)	[Cases RYY or YRY or YYR] Prob = $\frac{2}{3} \times \frac{1}{5} \times \frac{1}{8} + \frac{1}{3} \times \frac{4}{5} \times \frac{1}{8} + \frac{1}{3} \times \frac{1}{5} \times \frac{6}{8}$ [= $\frac{1}{120}$ (2+4+6) or (0.0166+0.033+0.05)] = $\frac{12}{120}$ or $\frac{1}{10}$ (*)	M1 A1ft A1*cso		
(c)	$[P(RYY RYY \text{ or } YRY \text{ or } YYR) =] \frac{"\frac{2}{3} \times \frac{1}{5} \times \frac{1}{8}"}{\frac{1}{10}}$	(3) M1		
(d)	$=\frac{1}{\underline{6}}$ $x \qquad 0 \qquad 1 \qquad 2 \qquad 3$	A1 (2) B1		
	$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	M1 A1 (3)		
(6)	$= \frac{72}{120} \text{ or } \underline{0.6}$	A1 (2) [13]		
(a)	Notes 1st B1 completing the structure of branches: 2, 4 then 7 or 8 and suitable labels e.g. Y or R' 2nd B1 correct probabilities for at least bag A and bag B. Allow exact decimals 3rd B1 for a fully correct tree diagram. Condone missing 0 as probability. Allow exact decimals			
(b)	1 st M1 for at least one correct product of 3 probabilities (ft their tree diagram) 1 st A1ft for all 3 products of 3 probabilities added (no extras) (ft their tree diag.) 2 nd A1*cso for fully correct solution with no incorrect statements seen			
(c)	M1 for a ratio of probabilities with denominator of 0.1 and numerator $\frac{1}{60}$ oe or the product of 3 probabilities seen from their tree diagram representing $P(RYY)$ provided num < 0.1			
(d)	A1 for $\frac{1}{6}$ or exact equivalent B1 for a correct sample space i.e. { 0, 1, 2, 3} Allow extras if they have a probability of 0. M1 for at least 1 correct value of x and associated probability (excluding $x = 2$) [ft their tree] A1 for a fully correct probability distribution			
(e)	M1 for attempt at a correct expression (at least 2 correct ft part(d) non-zero products) A1 for 0.6 or any exact equivalent			

Question Number			Scheme			Marks
5. (a)	[By symmetry	$\mathrm{E}(Y)\]=\underline{0}$				B1
(b)	$q + r + u = \frac{19}{30}$	-				(1) M1
			[and attempt to	solve e.g. $a + r$	=]	M1
	$2(q+r)+u=1$ [and attempt to solve e.g. $q+r=$] $u=\frac{8}{30}=\frac{4}{15} (*)$					
(c)	$\mathrm{E}(Y^2) = (-9)$	$q^2 \times q + (-5)$	$r^2 \times r + 5^2 \times r$	$+9^2q$ or 162	2q + 50r	(3) M1
		$E(Y^2)$ -"0" ²				dM1
	Solving with q	$r + r = \frac{11}{30}$ oe e.	g. $(162-50)q$	$=37-\frac{55}{3}$ or		M1
					$q = \frac{1}{\underline{6}}$ and $r = \frac{1}{\underline{5}}$	A1
						(4)
(d)		12, $D = \sqrt{12^2 + 12^2}$	$\overline{Y^2}$; $Y = \pm 5 \Longrightarrow$	D = 13 or $Y =$	$=\pm 9 \Rightarrow D = 15$	B1, M1;A1
	d	12	13	15		MIAIGAIG
	P(D=d)	4 15	$\frac{6}{15}$ or $\frac{2}{5}$	$\frac{5}{15}$ or $\frac{1}{3}$		M1A1ftA1ft
						(6) [14]
(a)	B1 for 0			Notes		
(b)	1st M1 for a correct equation in q , r and u using $F(0)$ 2nd M1 for a second equation clearly based on sum of probs = 1 and an attempt to solve these 2 equations A1* cso correct value for u found with no incorrect working					
(c)	1^{st} M1 for an attempt at E(Y^2) with at least 3 correct products seen. The negative numbers do not need to be in brackets					
	2^{nd} dM1 for attempt at correct equation in q and r using $\text{Var}(Y)$ [ft their $\text{E}(Y)$ and $\text{E}(Y^2)$] Condone missing subtraction of 0^2 if 0 in part(a)					
	3^{rd} M1 using $q + r = 11/30$ (awrt 0.37) to attempt to solve two linear equations in q and r leading to equation in one variable. May be implied by correct answers.					
	•	$= \frac{1}{6} \text{ and } r = \frac{1}{5}$	•	•		
(d)	B1 for $D = 12$ 1st M1 for use of Pythagoras to work out $D = 13$ or 15 1st A1 for $D = 13$ and 15 2nd M1 for a correct value of D and an associated probability. Allow two occurrences (for 15 and 13) which add to the appropriate probability. 2nd A1ft for two correct values of D and associated probs ft their +ve q and r if $q + r = \frac{11}{30}$ Allow two occurrences (for 15 and 13) which add to the appropriate probability. 3rd A1ft for a fully correct probability distribution ft their +ve q and r if $q + r = \frac{11}{30}$					

Question Number	Scheme	Marks
	$H \sim N(25.1, 5.5^2)$	
	$P(H > 30.8) = P\left(Z > \frac{30.8 - 25.1}{5.5}\right) \text{ or } P(Z > 1.03636)$	M1
	= 1 - 0.8508 = 0.1492 or better (calc: 0.1500)	M1 A1cso (3)
(b)	$[P(H < y) = 0.05 \text{ implies}] \frac{y - 25.1}{5.5} = -1.6449$	M1B1
	y = 16.053 so range is awrt <u>16.1</u> ~ 30.8	A1 (3)
(c)(i)	P(H < d) = 0.05 + 0.2 + 0.3 [= 0.55]	M1
	$\frac{d-25.1}{5.5} = 0.13 \text{(Calc 0.12566)}$	M1
	$d = 0.13 \times 5.5 + 25.1 = 25.815 $ (25.791 calc)	A1cso (3)
(ii)	P(H < m) = 0.05 + 0.2 [= 0.25]	M1
	$\frac{m-25.1}{5.5} = -0.67 \text{(Calc 0.674489)}$	M1M1
	$m = \operatorname{awrt} 21.4$	A1 (4)
(d)	Height = $2 \times "m" + 3 \times 25.8 + 3 \times 30.8 [+8]$ = 220.6 awrt 221 (cm)	M1 A1 (2)
		[15]
	Notes	
(a)	1 st M1 for standardising 30.8 with 25.1 and 5.5 (allow \pm) Allow use of $z = 1.04$ 2 nd M1 for $1 - p$ (where $0.84)$	
	A1cso for an answer of 0.1492 or better(calc: 0.1500) with evidence of both M's	
(b)	M1 for standardising their letter y with 25.1 and 5.5 and setting equal to z value $1 < z $	
	B1 for use of $z = \pm 1.6449$ or better (calc 1.6448536) with the correct standardisation A1 for awrt 16.1 (ISW)(calc 16.053305) or range [16.1, 30.8](Allow 30.8 – 16.1 = 1	
Ans only	[awrt 16.05 scores 3/3 16.1 scores M1B0A1 unless 1.6449 or better is seen]	۳./[۶])
(c)(i)	1 st M1 for a correct method to calculate $P(H < d)$ implied by $z = awrt 0.13$ Allow $0.05 + awrt 0.200 + awrt 0.300 = 0.5505$	
	2^{nd} M1 for a correct standardisation = z where 0.125 , $ z $, 0.13	
	A1cso both method marks awarded, no errors seen and awrt 25.82 or awrt 25.79 or $d = \text{awrt } 0.13 \times 5.5 + 25.1 = \text{awrt } 25.8$	
ALT	Verification 2 nd M1 allow $\frac{25.8-25.1}{5.5} = 0.127$ or 0.13	
	A1 for 0.55 and 0.5517 (calc 0.5506 or better) seen	
(ii)	1st M1 correct method for $P(H < m)$ Allow $0.05 + \text{awrt } 0.200$ implied by $ z = [0.67 - 0.2^{\text{nd}}]$ M1 for standardising m with 25.1 and 5.5 and setting equal to z value $(0.65 \square z \square 0.67^{\text{nd}}]$ M1 for standardising m with 25.1 and 5.5 and setting equal to awrt -0.67^{nd} oe A1 for m = awrt 21.4 (use of z = 0.67 gives 21.415 and z = 0.68 gives 21.36) No need for 3^{nd} M1 to be awarded	_
1	Answer only 21.4 gets M1M1M0A1. 21.39 gets 4/4	

Question Number	Scheme		
ALT 1 (c)(i)	e.g. $P(H > 25.8 \mid "16.1" < H < 30.8)$ or $\frac{P(25.8 < H < 30.8)}{1 - (0.15 + 0.05)}$	M1	
	$= \frac{0.8508 - 0.5517}{0.8} \text{ (tables) or } \frac{0.299345}{0.8} \text{ (calc) } \approx \frac{3}{8}$	M1 A1cso	
		(3)	
	Notes		
(c)(i)	1 st M1 for a correct conditional probability statement ft their answer to (b) i.e. their 2 nd M1 for a ratio of probs of the form $\frac{q}{0.8}$ where $q = 0.3$ to 1sf	ry	
	A1 for probability of approx $\frac{3}{8}$		