

Introduction to Embedded Systems

Prof. Dr.-Ing. Stefan Kowalewski | Julius Kahle, M. Sc. Summer Semester 2025

Exercise 2 – Data Buses

Overview

- Basics
- Hamming Code
- ► I²C
- Profibus

Basics

Task 1: a) - c)

Task 1: a)

a) Name two advantages that the star topology has over the bus topology.

- -no collision
- no implicit broadcast

 only one single point of failure

 multiple sender at the same time

- we have a single point of failure

Task 1: b)

=) avoid long sequences of 1s

b) Use the 4B/5B table to encode the message 000000111111.

Name	4B	5B	Name	4B	5B	Name	5B	Desc 3
0	0000	11110	8	1000	10010	Q	00000	Quiet
1	0001	01001	9	1001	10011	I	11111	Idle
2	0010	10100	Α	1010	10110	J	11000	Start #1
3	0011	10101	В	1011	10111	K	10001	Start #2
4	0100	01010	С	1100	11010	Т	01101	End
5	0101	01011	D	1101	11011	R	00111	Reset
6	0110	01110	E	1110	11100	S	11001	Set
7	0111	01111		1111	11101	Н	00100	Halt

11110 10101 mon

=) provided in
the exam 4

=) 80% of data rate

Then draw the signal diagram using **Differential NRZI** (Differential NRZ with inverted semantics: a level change represents a 1).

Task 1: b)

b) Use the 4B/5B table to encode the message 000000111111.

Name	4B	5B	Name	4B	5B	Name	5B	Desc
0	0000	11110	8	1000	10010	Q	00000	Quiet
1	0001	01001	9	1001	10011	I	11111	Idle
2	0010	10100	Α	1010	10110	J	11000	Start #1
3	0011	10101	В	1011	10111	K	10001	Start #2
4	0100	01010	С	1100	11010	Т	01101	End
5	0101	01011	D	1101	11011	R	00111	Reset
6	0110	01110	E	1110	11100	S	11001	Set
7	0111	01111	F	1111	11101	Н	00100	Halt

Then draw the signal diagram using **Differential NRZI** (Differential NRZ with inverted semantics: a level change represents a 1).

Task 1: c)

c) What are the names of the two sublayers of **Layer 2** (OSI-Model)? What are their tasks?

Medium Access Control - defines how/when the communication medius LJ- FICG.DMA

6 Presentation - defines frame formet - provide flow control 5 Session - error detection/correction ransport 2 Network -defines 10s/ 2 Data Link addresses 1 Physical

Hamming-Code

Task 2: a) – b)

Task 2: a)

a) Calculate the even parity Hamming code of the following bit sequence: 11001110

Bit #	1	(2)	3	4	5	6	7	8	9	10	11	12	13	14
Value	2	7	1	?	1	0	0	?	1	1	1	0		
PA	0		1		1.		0		1.		1			
P.		1	1,			0	0			1	1			
Pu				1	1	0	0					0		
Px								1	1	1	1	6		
'														
	0	1	1	1	1	0	0	1	1	1	1	0		

Task 2: b)

b) Correct and extract the 11 bit data sequence from this Hamming code protected sequence (even parity): 100100101100011

Bit #	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15
Value	1	0	0	1	\mathcal{O}	0	1	0	1	1	0	0	051	1	1
PA	1		O		0		1.		1		0		Ø	i	1
Pz		0	0			0	1			1	0			1	1
Py				1	0	0	1					\mathcal{C}	01	1	1
pg								C	1	1	0	0	0	11	1

=)
$$00011100011$$

- One error correction
 $1+4+8=13$ - two error detection

Inter-Integrated Circuit

Task 3: a) - e)

2

Task 3: a) - c

a) What topology does I²C use?

b) What does Wired-AND mean?

a zero is dominant on

the bus

c) What is the basic MAC concept? Why are there no collisions when multiple senders start at the same time?

Task 3: d)

d) Use a block scheme to depict the following communication: **A** sends three participants **B**, **C** and **D** a data byte each. After **A** sent the third data byte, it starts querying **B**, **C** and **D** for a one byte response. Indicate who controls the data line for each block.

- Start-Flag S 1 bif "]
- Stop-Flag P 1 bit " _ "
- Address of X Addr. of X 7 bit
- Data for X Data for X 8 617
- ACK/NACK-Flag

Task 3: d)

- A sends data bytes to B, C and D
- A reads data bytes from B, C and D.
- ▶ Indicate who controls the data line for each block.

Task 3: e)

06,0000 1010

7 06 10000 (1011)

A (address = 0x0a) and B (address = 0x0b) want to send messages to each other at the same time. A's message is 0xaa while B's message is 0xbb. Assume their clocks are perfectly synchronous, there is no transmission delay and they start at the exact same time. Draw SCL, SDA_A, SDA_B and SDA until the first transmission is complete. Mark the bit that decides who becomes master.

ProfibusTask 4

Task 4

a) What is the topology of Profibus and how is medium access controlled?

- Bus topology

- Master/Slave

- Multiple Mastes: Tokenbus

