

Falling Detection on Raspberrypi

Speaker: Tse-Yu Chen

Advisor: Prof. Tong-Yu Hsieh

Human Pose (1/2)

Human Pose (2/2)

0	Nose	9	Left wrist
1	Left eye	10	Right wrist
2	Right eye	11	Left hip
3	Left ear	12	Right hip
4	Right ear	13	Left knee
5	Left shoulder	14	Right knee
6	Right shoulder	15	Left ankle
7	Left elbow	16	Right ankle
8	Right elbow	Total	17

PoseNET (1/5)

[1] G. Papandreou et al. "Towards Accurate Multi-person Pose Estimation in the Wild," 2017 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp.3711-3719, 2017 [2] G. Papandreou et al. "PersonLab: Person Pose Estimation and Instance Segmentation with a

Bottom-Up, Part-Based, Geometric Embedding Model", 2018 European Conference on Computer Vision(ECCV), 2018

PoseNET (2/5)

Keypoint and Vector

PoseNET (3/5)

Stride Num -> accuracy and speed

PoseNET (4/5)

- Try it yourself!
 - PoseNet Online (need camera)

https://storage.googleapis.com/tfjs-models/demos/posenet/camera.html

Google Play: PoseNet Broadcast

PoseNET (5/5)

- Architecture
 - MobileNetV1 v.s. Resnet50
- Method
 - SinglePose v.s. MultiPose
- Output Stride
 - 8 v.s. 16
- Multiplier (only for MobileNetV1)
 - **1.0, 0.75, 0.5**

Enter Broadcast URL

Check Your Setting

- Check your tensorflow and opency(cv2) module
 - If you miss any module, do the "dev install" commands in previous handout again.

```
檔案(F) 編輯(F) 分頁(T) 說明(H)
pi@raspberrypi:~/abc/tflite1/course $ ^C
pi@raspberrypi:~/abc/tflite1/course $ python3
Python 3.7.3 (default, Jul 25 2020, 13:03:44)
[GCC 8.3.0] on linux
Type "help", "copyright", "credits" or "license" for more information.
>>> import tensorflow as tf
>>> tf.__version__
12.0.01
>>> import cv2
>>> cv2.__version__
3.4.6
>>>
```


Download Demo Code

- 1. wget
 - "https://drive.google.com/u/0/uc?id=1o2Sg8t3jQDJzklai4H_gtl4L1UH_p1Fr&export=download"
 - -O course.zip
- 2. unzip course.zip

wget "TheLinkYouWantDownloadFrom" -O save_name

Fall Detection (1/6)

Use Case

Fall Detection (2/6)

Utilize the variation of different checkpoints to judge whether the "FALL" situation is happening or not.

Fall Detection (3/6)

The "argparse" library enables user to change your argument by user define command.

```
# Define and parse input arguments

parser = argparse_ArgumentParser()

parser.add_argument('--graph' ,

parser.add_argument('--threshold',

parser.add_argument('--threshold',

parser.add_argument('--image' ,

help='Name of the .tflite file, if different than detect.tflite' ,default='posenet

help='Name of the single image to perform detection on. To run detection on multiple

#把指令的內容傳送給各個參數

args = parser.parse_args()

GRAPH_NAME = args.graph |

min_conf_threshold = float(args.threshold)

IM NAME = args.image
```

You can set default case by adding "default=XXX" into the function.

Fall Detection (4/6)

The "Interpreter" library enables user to load the data from pretrained model (tflite).

Fall Detection (5/6)

- Heatmaps (9,9,17): probability of each keypoint in the 9x9 coordinate of image
- Offset vectors (9,9,34): used for more exact calculation of the keypoint's position

Fall Detection (6/6)

```
pi@raspberrypi:~/abc/new/course $ python3 image.py --image
=testwalk.jpg
INFO: Initialized TensorFlow Lite runtime.
351 367
i = 0
        151 93
                        0.7066974
i=1
        154 89
                        0.7857652
i= 2
        164 90
                        0.16755359
i= 3
        175 89
                        0.9077129
i=5
      193 123
                        0.96084285
                       0.9505185
i = 6
        179 122
i= 7
        214 165
                        0.8569784
i= 8
                        0.71413594
        183 167
i= 9
        187 203
                 0.81258196
i= 10
        181 201
                        0.5773627
i = 11
        215 184
                        0.8014803
i= 12
        187 190
                        0.77786845
i= 13
        170 253
                        0.7876316
                                  (x=365 v=81) ~ R:164 G:189 R:196
i= 14
      221 251
                        0.8053379
      143 311
i= 15
                        0.8262238
i= 16
        245 311
                        0.78343534
89
311
ok
```


SMTP (1/3)

- Simple Mail Transfer Protocol (SMTP)
 - Easy connection establish between server and client

SMTP (2/3)

```
import smtplib
from email.mime.text import MIMEText
def waring_message():
   #enter vour gmail account and password!!
                                            CHANGE
   gmail user = 'Donald J. Trump'
   gmail_password = 'MAGA2020!'
                                             THESE
   msq = MIMEText('someone fall !!!')
   msg['Subject'] = 'A mail from MLVD'
   msg['From'] = gmail user
                 = 'YouShouldEnterYourAccountHere@gmail.com'
   msg['To']
   server = smtplib.SMTP SSL('smtp.gmail.com', 465)
   server.ehlo()
                                              CHANGE
   server.login(gmail user, gmail password)
   server.send message(msg)
                                                 THIS
   server.quit()
   print('Email sent!')
   #允許程式進行存取
   #https://accounts.google.com/DisplayUnlockCaptcha
   #低安全性應用程式存取權
   #https://myaccount.google.com/lesssecureapps
```


SMTP (3/3)

← 低安全性應用程式存取權

某些應用程式和裝置採用的登入技術安全性較低,將導致您的帳戶出現安全漏洞。建議您停用這類應用程式的存取權;當然,您也可以選擇啟用存取權,但請瞭解相關風險。如果您並未使用這項設定,Google會自動關閉該權限。瞭解詳情

允許低安全性應用程式: 已開啟

Test

收件匣 ×

this is a letter from python!!!

- Image Detection
 - python3 image.py --image=XX.jpg
- Webcam Detection
 - python3 detect.py

