Airfare ML: Predicting Flight Fares

Context:

An airline is a company that provides air transport services for traveling passengers and freight. Airlines use aircraft to supply these services and may form partnerships or alliances with other airlines for codeshare agreements, in which they both offer and operate the same flight. Generally, airline companies are recognized with an air operating certificate or license issued by a governmental aviation body. Airlines may be scheduled or charter operators.

Airlines assign prices to their services in an attempt to maximize profitability. The pricing of airline tickets has become increasingly complicated over the years and is now largely determined by computerized yield management systems.

The price of an Airline Ticket is affected by a number of factors, such as flight duration, days left for departure, arrival time and departure time etc. Airline organizations may diminish the cost at the time they need to build the market and at the time when the tickets are less accessible. They may maximize the costs. The price may rely upon different factors. Each factor has its own proprietary rules and algorithms to set the price accordingly. Recent advances in Artificial Intelligence (AI) and Machine Learning (ML) makes it possible to infer such rules and model the price variation.

Sources:

Data collected using Python script with Beautiful Soup and Selenium libraries. Script collected data on various flight details such as Date of booking, Date of travel, Airline and class, Departure time and source, Arrival time and destination, Duration, Total stops, Price. The scraping process was designed to collect data for flights departing from a specific set of airports (Top 7 busiest airports in India). Note that the Departure Time feature also includes the Source airport, and the Arrival Time feature also includes the Destination airport. Which is later extracted in Cleaned_dataset. Also both cleaned and scraped datasets have provided so that one can use dataset as per their requirement and convenience. Inspiration:

Dataset created to provide users with valuable resource for analyzing flight fares in India. Detailed information on flight fares over time can be used to develop more accurate pricing models and inform users about best times to book tickets. Data can also be used

Library

```
In [59]:
         import pandas as pd
         import numpy as np
         import matplotlib.pyplot as plt
         import seaborn as sns
         colors = ['#97C1A9','#FFFFFF']
         import warnings
         warnings.filterwarnings("ignore")
         import imblearn
         from collections import Counter
         from imblearn.over_sampling import SMOTE
         from xgboost import XGBRegressor
         from lightgbm import LGBMRegressor
         from sklearn.ensemble import GradientBoostingRegressor
         from sklearn.model selection import train test split
         import pickle
         import flaml
```

Data

```
In [3]: data=pd.read_csv('Cleaned_dataset.csv')
In [4]: data.shape
Out[4]: (452088, 13)
```

In [5]: data.describe()

Out[5]:

	Duration_in_hours	Days_left	Fare
count	452088.000000	452088.000000	452088.000000
mean	12.349222	25.627902	22840.100890
std	7.431478	14.300846	20307.963002
min	0.750000	1.000000	1307.000000
25%	6.583300	13.000000	8762.750000
50%	11.333300	26.000000	13407.000000
75%	16.500000	38.000000	35587.000000
max	43.583300	50.000000	143019.000000

```
In [6]: data.isnull().sum()
```

```
Out[6]: Date_of_journey
                             0
        Journey_day
                             0
        Airline
                             0
                             0
        Flight_code
        Class
                             0
        Source
        Departure
                             0
        Total_stops
        Arrival
                             0
        Destination
        Duration_in_hours
                             0
        Days_left
                             0
        Fare
                             0
```

dtype: int64

memory usage: 44.8+ MB

In [7]: data.info()

<class 'pandas.core.frame.DataFrame'>
RangeIndex: 452088 entries, 0 to 452087
Data columns (total 13 columns):

#	Column	Non-Null Count	Dtype		
0	Date_of_journey	452088 non-null	object		
1	Journey_day	452088 non-null	object		
2	Airline	452088 non-null	object		
3	Flight_code	452088 non-null	object		
4	Class	452088 non-null	object		
5	Source	452088 non-null	object		
6	Departure	452088 non-null	object		
7	Total_stops	452088 non-null	object		
8	Arrival	452088 non-null	object		
9	Destination	452088 non-null	object		
10	Duration_in_hours	452088 non-null	float64		
11	Days_left	452088 non-null	int64		
12	Fare	452088 non-null	int64		
<pre>dtypes: float64(1), int64(2), object(10)</pre>					

```
EDA
In [9]:
         df=data.copy()
         col = list(data.columns)
In [10]:
         categorical_features = []
         numerical_features = []
         for i in col:
             if len(data[i].unique()) > 10:
                 numerical_features.append(i)
                 categorical_features.append(i)
         print('Categorical Features :',*categorical_features)
         print('Numerical Features :',*numerical_features)
         Categorical Features : Journey_day Airline Class Source Departure Total_stops Arriva
         1 Destination
         Numerical Features : Date_of_journey Flight_code Duration_in_hours Days_left Fare
 In [ ]:
         df.head
```

Fare

In [8]: data = data.dropna()

data.shape

Out[8]: (440087, 13)

data.drop_duplicates(keep=False, inplace=True)

data = data.reset_index(drop = True)

```
In [12]: plt.figure(figsize=(15,5))
    sns.set(style='whitegrid')

df['Fare_grup'] = [ int(i / 1000) for i in df['Fare']]
    ax=sns.histplot(df['Fare_grup'],kde=True,color=colors[0],edgecolor = 'k');
# ax.bar_Label(ax.containers[0])
```



```
In [13]: #skewness and kurtosis
print("Skewness: %f" % df['Fare'].skew())
print("Kurtosis: %f" % df['Fare'].kurt())
```

Skewness: 1.305353 Kurtosis: 0.796830

Categorical

```
In [14]: | df[categorical_features].head()
Out[14]:
                                                                             Arrival Destination
              Journey_day
                             Airline
                                      Class Source Departure Total_stops
           0
                                                                                        Mumbai
                  Monday
                           SpiceJet Economy
                                               Delhi After 6 PM
                                                                           After 6 PM
                                                                 non-stop
           1
                                                                                        Mumbai
                  Monday
                             Indigo Economy
                                               Delhi After 6 PM
                                                                 non-stop Before 6 AM
           2
                  Monday GO FIRST Economy
                                               Delhi After 6 PM
                                                                                        Mumbai
                                                                 non-stop
                                                                         Before 6 AM
           3
                                                                                        Mumbai
                  Monday
                           SpiceJet Economy
                                               Delhi After 6 PM
                                                                           After 6 PM
                                                                 non-stop
           4
                            Air India Economy
                                               Delhi After 6 PM
                                                                           After 6 PM
                                                                                        Mumbai
                  Monday
                                                                 non-stop
In [15]:
          categorical_features
Out[15]:
          ['Journey_day',
            'Airline',
            'Class',
            'Source',
            'Departure',
            'Total_stops',
            'Arrival',
            'Destination']
In [16]: def catplot(x):
               sns.set(style='whitegrid')
              fig = plt.subplots(1,2,figsize = (15,4))
               plt.subplot(1,2,1)
               df[x].value_counts().plot.pie(autopct='%1.2f%%', shadow=True, textprops={'fontsiz
               plt.subplot(1,2,2)
               ax=sns.histplot(data=df,x=x,color=colors[0],edgecolor = 'k')
               ax.bar_label(ax.containers[0])
              tit = x + ' Distribution'
              plt.suptitle(tit)
              fig = plt.subplots(1,1,figsize = (13,5))
               plt.subplot(1,1,1)
               ax=sns.boxplot(x = x ,y = 'Fare',data = df,palette = colors);
              tit2=x + ' vs fare'
               plt.title(tit2)
 In [ ]:
```

Journey_day

In [17]: catplot('Journey_day')

Airline

In [18]: catplot('Airline')

SpiceJet IndigoGO FIRSAIr India AirAsia Vistara Akasa AAdilance Aibtar Air Airline

Class

In [19]: catplot('Class')

Source

In [20]: catplot('Source')

Departure

In [21]: catplot('Departure')

Total_stops

In [22]: catplot('Total_stops')

Total_stops Distribution

Arrival

In [23]: catplot('Arrival')

Destination

In [24]: catplot('Destination')

Airline with most flights

In [25]: df1=df.groupby(['Airline','Flight_code'],as_index=False).count()

Out[26]: Text(0.5, 0.98, 'Airline with most flight')

In []:

Classes of Different Airlines

Out[28]: Text(0.5, 0.98, 'Classes of Different Airlines')

Fare vs Duration based on class

```
In [29]: df['dur']=df['Duration_in_hours'].round(0)
    df['Fare_group'] = [ int(i / 1000) for i in df['Fare']]

In [30]: plt.figure(figsize=(15,5))
    sns.lineplot(data = df,x = 'dur',y = 'Fare_group',hue = 'Class')
    plt.title('Fare vs Furation based on class',fontsize=20)
```


Days Left For Departure Versus Ticket Price of each Airline

Out[31]: Text(0.5, 1.0, 'Days Left For Departure Versus Ticket Price')

Total number of Flights from one city to another

```
df.groupby(['Flight_code','Source','Destination','Airline','Class'],as_index=False).c
In [32]:
Out[32]:
               Source
                      Destination Flight_code
            0
                 Delhi
                          Mumbai
                                          361
              Mumbai
                             Delhi
                                          312
                 Delhi
                         Bangalore
                                          281
            3
                 Delhi
                          Chennai
                                          250
            4
                 Delhi
                           Kolkata
                                          224
            5
                 Delhi
                        Hyderabad
                                          222
              Mumbai
                        Bangalore
                                          221
              Mumbai
                           Kolkata
                                          215
              Mumbai
                          Chennai
                                          195
              Mumbai
                        Hyderabad
                                          192
```

Average Price of different Airlnes from Source city to Destination city

[33]:	lf.	groupby((['Airline'	,'Source',	'Destination'	'],as_	_index=F	alse)
	•							
3]:		Airline	Source	Destination	Fare			
	0	Vistara	Kolkata	Mumbai	35827.490454			
	1	Vistara	Kolkata	Delhi	35236.037466			
	2	Vistara	Delhi	Kolkata	34471.920570			
	3	Vistara	Kolkata	Bangalore	33903.469274			
	4	Vistara	Bangalore	Kolkata	33137.275827			
	5	Vistara	Mumbai	Kolkata	32766.361448			
	6	Air India	Bangalore	Kolkata	32429.328096			
	7	Air India	Kolkata	Bangalore	32326.384379			
	8	Air India	Ahmedabad	Chennai	31986.554209			
	9	Vistara	Kolkata	Chennai	31906.405215			

Feature Engineering

Encoding

```
In [34]: FE=data.copy()
```

```
le=LabelEncoder()
          for col in FE.columns:
              if FE[col].dtype=='object':
                  FE[col]=le.fit_transform(FE[col])
         Scaling
In [36]:
         from sklearn.preprocessing import MinMaxScaler,StandardScaler
In [37]:
         FE['Duration_in_hours']=FE['Duration_in_hours'].round(1)
In [38]: FE.head()
Out[38]:
             Date_of_journey_Journey_day Airline Flight_code Class Source Departure Total_stops Arrival De
          0
                                                                                       2
                                                                                              2
                         0
                                           6
                                                   1209
                                                                   3
                                                                            2
          1
                         0
                                           5
                                                    164
                                                                   3
                                                                                       2
                                    1
                                                            1
                                                                                              3
          2
                         0
                                                                            2
                                    1
                                           4
                                                    942
                                                                   3
                                                                                       2
                                                                                              3
                                                            1
          3
                         0
                                    1
                                           6
                                                   1224
                                                            1
                                                                   3
                                                                            2
                                                                                       2
                                                                                              2
                         0
                                    1
                                           0
                                                    852
                                                            1
                                                                   3
                                                                            2
                                                                                       2
                                                                                              2
In [39]: FE.info()
          <class 'pandas.core.frame.DataFrame'>
          RangeIndex: 440087 entries, 0 to 440086
          Data columns (total 13 columns):
                                   Non-Null Count
           #
               Column
                                                    Dtype
          - - -
           0
               Date_of_journey
                                   440087 non-null
                                                    int32
           1
               Journey day
                                   440087 non-null
                                                    int32
           2
               Airline
                                   440087 non-null int32
           3
               Flight code
                                   440087 non-null
                                                   int32
           4
               Class
                                   440087 non-null
                                                    int32
           5
               Source
                                   440087 non-null
                                                    int32
           6
               Departure
                                   440087 non-null int32
           7
               Total stops
                                   440087 non-null int32
           8
                                   440087 non-null int32
               Arrival
           9
               Destination
                                   440087 non-null
                                                    int32
           10
              Duration_in_hours 440087 non-null
                                                   float64
              Days left
                                   440087 non-null
                                                    int64
           12
               Fare
                                   440087 non-null
                                                    int64
          dtypes: float64(1), int32(10), int64(2)
          memory usage: 26.9 MB
In [40]:
         mms = MinMaxScaler() # Normalization
          # Normalization
          FE['Duration_in_hours'] = mms.fit_transform(FE[['Duration_in_hours']])
```

from sklearn.preprocessing import LabelEncoder

In [35]:

In [41]: FE

Out[41]:

	Date_of_journey	Journey_day	Airline	Flight_code	Class	Source	Departure	Total_stops	Arriva
0	0	1	6	1209	1	3	2	2	
1	0	1	5	164	1	3	2	2	;
2	0	1	4	942	1	3	2	2	;
3	0	1	6	1224	1	3	2	2	4
4	0	1	0	852	1	3	2	2	1
440082	49	1	8	1386	0	0	2	0	:
440083	49	1	8	1367	0	0	1	0	(
440084	49	1	8	1358	0	0	3	0	(
440085	49	1	8	1374	0	0	1	0	4
440086	49	1	8	1360	0	0	1	0	1

440087 rows × 13 columns

Correlation

```
In [42]: corr = FE.corrwith(data['Fare']).sort_values(ascending = False).to_frame()
    corr.columns = ['Fare']

plt.subplots(figsize = (5,5))
    sns.heatmap(corr,annot = True,cmap = colors,linewidths = 0.4,linecolor = 'black');

plt.title('Fare Correlation');
```


We will create 2 Datasets:

- **1st**: Based on the statistical and EDA, we will drop the following features: 'Date_of_journey', 'Journey_day', 'Airline','Source', 'Departure','Arrival', 'Destination', 'Days_left'
- 2nd : We will use all features

```
In [43]: df1=FE.copy()
df2=FE.copy()

# Dataset for model based on Statistical Test :
    df1 = df1.drop(columns = ['Date_of_journey', 'Journey_day', 'Airline','Source', 'Depa
```

Model

```
In [44]: f1 = df1.iloc[:,:4].values
    t1 = df1.iloc[:,4].values
    f2 = df2.iloc[:,:12].values

In [45]: x_train1, x_test1, y_train1, y_test1 = train_test_split(f1, t1, test_size = 0.15, ran
    x_train2, x_test2, y_train2, y_test2 = train_test_split(f2, t2, test_size = 0.15, ran

In [46]: def model(regression,x_train,y_train,x_test,y_test):
    regression.fit(x_train,y_train)
    prediction = regression.predict(x_test)
    print("MAPE Score : ", (np.mean(np.abs((y_test - prediction)/y_test))*100))
```

XGB

LGBM

```
In [49]: Regressor_LGBM = LGBMRegressor(random_state=1)
    model(Regressor_LGBM,x_train1,y_train1,x_test1,y_test1)

MAPE Score : 23.195415291350354

In [50]: model(Regressor_LGBM,x_train2,y_train2,x_test2,y_test2)

MAPE Score : 17.328064339817942
```

Gradient Booster

```
In [51]: Regressor_grad = GradientBoostingRegressor(random_state=1)
    model(Regressor_grad,x_train1,y_train1,x_test1,y_test1)
```

MAPE Score : 25.210125029384766

```
In [52]: model(Regressor_grad,x_train2,y_train2,x_test2,y_test2)
```

MAPE Score: 21.847673452188594

Hyperparameter Tuning

From these results it is found that Dataset 2 shows better results and XGB is the best model

```
In [58]: pip install flaml
         Collecting flaml
           Downloading FLAML-1.2.3-py3-none-any.whl (256 kB)
         Requirement already satisfied: xgboost>=0.90 in d:\app\anaconda\lib\site-packages (f
         rom flaml) (1.7.5)
         Requirement already satisfied: scikit-learn>=0.24 in d:\app\anaconda\lib\site-packag
         es (from flaml) (1.2.2)
         Requirement already satisfied: lightgbm>=2.3.1 in d:\app\anaconda\lib\site-packages
         (from flam1) (3.3.5)
         Requirement already satisfied: scipy>=1.4.1 in d:\app\anaconda\lib\site-packages (fr
         om flaml) (1.8.0)
         Requirement already satisfied: NumPy>=1.17.0rc1 in d:\app\anaconda\lib\site-packages
         (from flaml) (1.24.3)
         Requirement already satisfied: pandas>=1.1.4 in d:\app\anaconda\lib\site-packages (f
         rom flaml) (1.3.4)
         Requirement already satisfied: wheel in d:\app\anaconda\lib\site-packages (from ligh
         tgbm>=2.3.1->flaml) (0.37.0)
         Requirement already satisfied: pytz>=2017.3 in d:\app\anaconda\lib\site-packages (fr
         om pandas>=1.1.4->flaml) (2021.3)
         Requirement already satisfied: python-dateutil>=2.7.3 in d:\app\anaconda\lib\site-pa
         ckages (from pandas>=1.1.4->flaml) (2.8.2)
         Requirement already satisfied: six>=1.5 in d:\app\anaconda\lib\site-packages (from p
         ython-dateutil>=2.7.3->pandas>=1.1.4->flaml) (1.16.0)
         Requirement already satisfied: threadpoolctl>=2.0.0 in d:\app\anaconda\lib\site-pack
         ages (from scikit-learn>=0.24->flaml) (2.2.0)
         Requirement already satisfied: joblib>=1.1.1 in d:\app\anaconda\lib\site-packages (f
         rom scikit-learn>=0.24->flaml) (1.2.0)
         Installing collected packages: flaml
         Successfully installed flaml-1.2.3
         Note: you may need to restart the kernel to use updated packages.
In [54]: # from flaml import AutoML
         # automl = AutoML()
         # settings = {
```

After training for 2 minutes the best results were obtained and we saved them as files

"time_budget": 120, # total running time in seconds

automl.fit(X_train=x_train2, y_train=y_train2, **settings)

"task": 'regression', # task type

random seed

"metric": 'mape', # primary metrics for regression can be chosen from: ['mae',

"estimator_list": ['xgboost'], # list of ML learners; we tune lightgbm in this

"log file name": '/content/drive/MyDrive/projek/fare pred/xq4.log', # flaml lo

#

#

#

#

#

"seed": 1,

MAPE Score : 8.779263207342018