

Sequence List

<110> Rosen et al.

<120> 50 Human Secreted Proteins

<130> PZ016P2

<150> US 60/262,066

<151> 2001-01-18

<150> US 09/722,329

<151> 2000-11-28

<150> US 09/262,109

<151> 1999-03-04

<150> PCT/US98/18360

<151> 1998-09-03

<150> US 60/057,626

<151> 1997-09-05

<150> US 60/057,663

<151> 1997-09-05

<150> US 60/057,669

<151> 1997-09-05

<150> US 60/058,667

<151> 1997-09-12

<150> US 60/058,974

<151> 1997-09-12

<150> US 60/058,973

<151> 1997-09-12

<150> US 60/058,666

<151> 1997-09-12

<150> US 60/090,112

<151> 1998-06-22

<160> 206

<170> PatentIn Ver. 2.0

<210> 1

<211> 733

<212> DNA

<213> Homo sapiens

<400> 1

gggatccgga	gcccaaatct	tctgacaaaa	ctcacacatg	cccaccgtgc	ccagcacctg	60
aattcgaggg	tgccaccgtca	gtcttcctct	tccccccaaa	acccaaggac	accctcatga	120
tctccggac	tcctgaggtc	acatgcgtgg	tggtggacgt	aagccacgaa	gaccctgagg	180
tcaagtcaa	ctggtagctg	gacggcgtgg	aggtgcataa	tgccaagaca	aagccgcggg	240
aggagcagta	caacagcacg	taccgtgtgg	tcagcgtcct	caccgtcctg	caccaggact	300
ggctgaatgg	caaggagtac	aagtgcagg	tctccaacaa	agccctccca	accccccacatcg	360

agaaaaccat	ctccaaagcc	aaagggcagc	cccgagaacc	acaggtgtac	accctgccc	420
catcccgga	ttagctgacc	aagaaccagg	tcagcctgac	ctgcctggc	aaaggcttct	480
atccaagcga	catcgccgtg	gagtggaga	gcaatggca	gccggagaac	aactacaaga	540
ccacgcctcc	cgtgctggac	tccgacggct	ccttcttcct	ctacagcaag	ctcacccgtgg	600
acaagagcag	gtggcagcag	gggaacgtct	tctcatgctc	cgtgatgcat	gaggctctgc	660
acaaccacta	cacgcagaag	agcctctccc	tgtctccggg	taaatgagtg	cgacggccgc	720
gactctagag	gat					733

<210> 2
<211> 5
<212> PRT
<213> Homo sapiens

<220>
<221> Site
<222> (3)
<223> Xaa equals any amino acid

<400> 2
Trp Ser Xaa Trp Ser
1 5

<210> 3
<211> 86
<212> DNA
<213> Artificial Sequence

<220>
<221> Primer_Bind
<223> Synthetic sequence with 4 tandem copies of the GAS binding site found in the IRF1 promoter (Rothman et al., Immunity 1:457-468 (1994)), 18 nucleotides complementary to the SV40 early promoter, and a Xho I restriction site.

<400> 3
gcccctcgag atttccccga aatctagatt tcccccgaat gatttccccc aaatgatttc 60
cccgaaatat ctgccatctc aattag 86

<210> 4
<211> 27
<212> DNA
<213> Artificial Sequence

<220>
<221> Primer_Bind
<223> Synthetic sequence complementary to the SV40 promoter; includes a Hind III restriction site.

<400> 4
gcggcaagct ttttgcaaag cctaggc 27

<210> 5
<211> 271
<212> DNA
<213> Artificial Sequence

<220>
<221> Protein_Bind
<223> Synthetic promoter for use in biological assays; includes GAS binding sites found in the IRF1 promoter (Rothman et al., Immunity 1:457-468 (1994)).

<400> 5
 ctcgagattt ccccgaaatc tagatttccc cgaaatgatt tccccgaaat gatttccccg 60
 aaatatctgc catctcaatt agtcagcaac catagtcccg cccctaactc cgcccatccc 120
 gcccctaact ccgcccagtt ccgcccattc tccgccccat ggctgactaa ttttttttat 180
 ttatgcagag gccgaggccg cctcggcctc tgagctattc cagaagtagt gaggaggctt 240
 ttttgaggc cttaggctttt gcaaaaagct t 271

<210> 6
 <211> 32
 <212> DNA
 <213> Artificial Sequence

<220>
 <221> Primer_Bind
 <223> Synthetic primer complementary to human genomic EGR-1 promoter sequence (Sakamoto et al., Oncogene 6:867-871 (1991)); includes a Xho I restriction site.

<400> 6
 gcgcctcgagg gatgacagcg atagaacccc gg 32

<210> 7
 <211> 31
 <212> DNA
 <213> Artificial Sequence

<220>
 <221> Primer_Bind
 <223> Synthetic primer complementary to human genomic EGR-1 promoter sequence (Sakamoto et al., Oncogene 6:867-871 (1991)); includes a Hind III restriction site.

<400> 7
 gcgaagcttc gcgactcccc ggatccgcct c 31

<210> 8
 <211> 12
 <212> DNA
 <213> Homo sapiens

<400> 8
 ggggactttc cc 12

<210> 9
 <211> 73
 <212> DNA
 <213> Artificial Sequence

<220>
 <221> Primer_Bind
 <223> Synthetic primer with 4 tandem copies of the NF-KB binding site (GGGGACTTTCCC), 18 nucleotides complementary to the 5' end of the SV40 early promoter sequence, and a XhoI restriction site.

<400> 9
 gcggcctcga ggggactttc ccggggactt tccggggact ttccgggact ttccatcctg 60
 ccatctcaat tag 73

<210> 10
 <211> 256

<212> DNA
 <213> Artificial Sequence

 <220>
 <221> Protein_Bind
 <223> Synthetic promoter for use in biological assays; includes NF-KB binding sites.

 <400> 10

ctcgaggggaa	ctttccggg	gacttccgg	ggactttccg	ggactttcca	tctgccatct	60
caattagtca	gcaaccatag	tcccggccct	aactccgccc	atcccggccc	taactccgccc	120
cagttccgccc	cattctccgc	cccatggctg	actaatttt	tttattttag	cagaggccga	180
ggccgcctcg	gcctctgagc	tattccagaa	gtagttagga	ggcttttttg	gaggcctagg	240
cttttgcaaa	aagctt					256

<210> 11
 <211> 1110
 <212> DNA
 <213> Homo sapiens

<400> 11

gaattcgca	cgagcttggt	tcggggggga	gcaaaatcca	aatctgcta	aacaccaatg	60
ctgtcactca	gagtttgtgt	atctgctgtc	tgtggagctc	tggaccaggc	ttgagggacg	120
cctgggggtt	ccacccacat	ctggggcaaa	ccagaccccc	aagtcaactga	catgtcggtt	180
tttctactaa	tcacgttggc	tttggcaatt	ctgtatataa	taagaagtat	tgtgttctca	240
cttgcacttk	ggcagaacgg	ttcactccaa	ggctgaatga	ctgccacgga	ccatccccca	300
gcaggggtcc	tggggtttag	tggtttgatt	ctgagcacct	ctamgcamag	agcccccttag	360
tgggttccct	aactggacgg	ctaaccctgs	tgtggaatct	gactkkwtct	ggaccgaaga	420
ggacagcgctg	ctctggagaaa	atccttggc	cttgcctg	atgctggctc	ggggccaccct	480
ggccacccctc	ccttcatgccc	ccatgggacc	aggcagcgc	atgggagggg	gcagcttcca	540
gaacacccctt	ctgcttagggg	ctkctggcct	ccctgctggc	acggccacat	ccatggctcg	600
agtgtgtgg	tggaatgttt	tatcaacacc	agtccctcaca	gttccccag	atgagcgaag	660
gggaagggga	tgggtgtgtgg	ggggattgcc	tcccttgagg	ccccccagct	cccaggatac	720
ttgctggcgg	agctctgcct	gcgggtggagg	ccctatgact	tgacctccat	tttctccctg	780
ggcccctcgc	tggccctcac	tggcaggggc	tcctgcacgc	ctgcaaggcc	agagccccc	840
gccaggtgca	ggagaagtaa	atgcaggcca	gagataaatc	gtatcccct	ctaactcgga	900
tgtggagtga	gaggaaggaa	gcaggagtgg	agctgagtg	tagtgagagg	tggctgagaa	960
ggcgggggtcc	cgcttcttgc	ttccttggc	atttgctgt	ggtgctgggt	ttcagcctgg	1020
aagggtgcag	cctctgcact	aagtctggtt	tggtaacgt	tcatggccccc	caatataaac	1080
agtgttctgg	gcgttctttg	tgactctcga				1110

<210> 12
 <211> 936
 <212> DNA
 <213> Homo sapiens

<220>
 <221> misc_feature
 <222> (294)..(294)
 <223> n equals a,t,g, or c

<220>
 <221> misc_feature
 <222> (298)..(298)
 <223> n equals a,t,g, or c

<220>
 <221> misc_feature
 <222> (925)..(925)
 <223> n equals a,t,g, or c

<400> 12

gaattcggca	cgaggaattt	aagataccga	agtcttaaag	tgacctggac	gtgaaggaaa	60
aagtaagatg	agaaaataaaag	aaagcctttg	taagggtggtt	ttaaaaagcct	tatatgaaaa	120
ccttttaatc	tgtgtttctg	caagtgccat	ccttgcacag	tgttaagagg	gtaacatggg	180
ttaccttgc	accagcttca	gtgttaagct	caccctgttc	tttgaagcac	ccatgtcagt	240
attagaagaa	taggcagcag	ttccttagtt	tacatatgtt	tgkgcaatta	tttnctgnac	300
ttttttgttc	attaatttgt	cagtattaca	ccaaactgtt	tttgcacaaa	aaaaattttt	360
tttgcattca	tttaatttta	ggtcaataaa	cattttattt	atgtggctca	ttttatattt	420
cctaatttta	tttatttcat	actgttagtgt	acagtattat	agttctcaa	tatatagata	480
tatTTTtagtA	aaaaaggAAC	atgacgttga	tcatttgggc	aaattttacg	taaagagaag	540
agcatttatt	gtgttttggA	acattaattt	tgagatggga	tttttcaatt	ttattatttt	600
atTTTgttt	tttccaattt	actggaaattt	ccaaatttgg	gaacttttga	tacgatcttG	660
tgaaaacact	gtatTTTcgA	ctgaaaatttC	cactttcttc	atcttggTTT	ttagctaaaa	720
agagggactg	ttaaatacAA	tgtatgatac	catgacaaaa	atcttccCTG	aattgtcttt	780
gtaaaagtat	tattgaattt	tcaatttgcA	atttcttttG	aaaatgacca	tgctcgaaaa	840
aaaatgttagc	caaactaaaa	aaaaaaaaaa	aaaaaaaaaa	aaaaaaaaaa	aaaaaaaaaa	900
aaaaaaaaaa	aaaaaaaaaa	aaaanaaaaa	aaaaaaa			936

<210> 13

<211> 921

<212> DNA

<213> Homo sapiens

<400> 13

ggcacgaggg	ccgtttgcgt	cggaagcctg	aagcatgggc	gctgagtggtt	agctgggggc	60
cgargctggc	ggttcgctgc	tgctgtgcgc	cgcgctgcgt	gccccggcgt	gcgccttggg	120
cctgcgcctg	ggccgcgggc	agggggcggc	ggaccgcggg	gcccgcgtt	ggctctgcta	180
cgacgcgcgt	gtgcacttcg	cgctggaaagg	ccctttgttc	tacttgtctt	tagtagaaaa	240
cgttgcaaat	tccgatggct	tgattgttcc	tttatggaaa	gaatatggca	aagctgatgc	300
aagatgggtt	tatTTTgatc	caaccattgt	gtctgtggaa	attctgaccg	tcgccttggA	360
tgggtctctg	gcattgttcc	tcattttatgc	catagtcaaa	aaaaaatattt	accggcattt	420
cctgcagatc	accctgtgcg	tgtgcagact	gtatggctgc	tggatgacct	tcctcccaaa	480
gtggctcacc	agaagccccca	acctcaaacac	cagcaactgg	ctgtactgtt	ggctttacct	540
gtttttttt	aacgggtgtt	gggttctgat	cccaggactg	ctactgtggc	agtcatggct	600
agaactcaag	aaaatgcatt	agaaagaaac	cagttcagtg	aagaagttt	agtgaacttt	660
caaaaccagg	cacgagccat	tatctaactt	catgaaccag	aatgaatcaa	atcttttgt	720
ttggccaaaa	tgtataatcat	tccagtctac	actttgttt	tgtattgtt	tcctgtaaaa	780
acctgtttca	aattggttt	aaggcgacca	gttttcgtt	tattgtt	caattaaatg	840
gtgatatagg	gaaaagagaa	caaatttgcA	tttgcataaa	taaaatgttt	aattataaaaa	900
aaaaaaaaaa	aaaaaaaaaa	a				921

<210> 14

<211> 2541

<212> DNA

<213> Homo sapiens

<400> 14

ggcggaaaggg	gaggacgtgg	gatggtggcg	gactggctgc	agcagagcta	ccaaaggcgtc	60
aaagagaagt	cctctgaagc	cttggagttt	atgaagcggtt	acctgacggA	gttttacccag	120
gtgggtcagc	atgacacggc	ctgtaccatc	gcagccacgg	ccagcgtgg	caaggagaag	180
ctggctattt	cagcctgttc	ccggggcgct	tgcttcctt	gcccggttctc	tatacagacg	240
gaaggctcct	caggagcaac	agagaagatg	aagaaagggt	tatctgactt	cctaggggt	300
atctcagaca	cctttggcccc	ttcgcacagac	aaaaccatcg	actgcgtgt	catcacccgt	360
atgggcacac	cgtctggcac	agctgagccc	tatgtatggca	ccaaaggctcg	cctctatagc	420
ctgcagtcgg	acccagcaac	ctactgtat	gaaccagayg	ggcccccgga	attgtttgac	480
gcctggctt	cccaagttctg	cttggaggag	aagaagggggg	agatctcaga	gctccttgcA	540
ggcagccccc	ccatccgggc	cctctacacc	aagatggttc	cagcagctgt	ttcccattca	600
gaattctggc	atcggttattt	ctataaagtc	catcagtttg	agcaggagca	ggccccggagg	660
acgcctgaa	gcagcggggc	gaacagagca	tctytgaaga	gccccggctgg	gaggaggggg	720
aagaggagct	catgggcatt	tcaccatat	ctccaaaaga	ggcaaagggtt	cctgtggcca	780
aaatttctac	attccctgaa	ggagaacctg	gccccccagag	cccctgtgaa	gagaatctgg	840

tgacttcagt	tgagccccca	gcagaggta	ctccatcaga	gagcagttag	agcatctccc	900
tcgtgacaca	gatcgccaa	ccggccactg	cacctgaggc	acgagtgtca	cccaaggacc	960
tgtcccaaaa	gctgctagag	gcaccccttgg	aggaacaggg	cctggctgtg	gatgtgggtg	1020
aractggacc	ctcacccccc	attcactcca	agcccttaac	gcctgctggc	cacagattct	1080
ggtggctccc	tgctggccct	cttggccctc	tgctcacacc	tgggaagggg	ctctctaaat	1140
cccgccaga	aactctgact	tgtgccaaca	ataggatgac	ccaaggaga	ggaaacctat	1200
cctcctcacc	agaagagcct	gtgttttct	gctgaacacc	cactgttct	gaggactcct	1260
gctggaaagt	cccaaggat	agttctagcc	cttctgcctg	tgttagacaga	agctaaacca	1320
ccagtcctc	tcggaggaag	ctgagacaac	atactctgtc	catacataag	caggcaggga	1380
gggccatgcc	acctaccctt	ggctaaacag	ggacagtgaa	cacattttgg	ttcctatccc	1440
agtggtaag	aggcacttat	ctctggaaa	tttgcctctc	ttgggactct	ccccctccca	1500
ggcattttcc	attcctggaa	aggctccitt	ggggttcaga	atccagagac	caaaccctga	1560
cccacccct	tccttcctc	cagccacgc	tggtctgtcc	ccatgcctc	ccagggcttc	1620
ttcatgtcag	atgcacccaa	gtccttagcc	cagctgtgcc	acctgcagga	tttcgctctt	1680
gcgtttcttc	ccctcccaa	gaagggaggg	ggctacttca	ggcccttctg	tgtgtgcct	1740
ggcaggatac	cttgtccaa	cagctaccca	cctcaactcc	cctgtagttt	aggacacaaa	1800
acagctacca	gccccatcaga	gcccgtatca	aagccgagta	cttacaactc	tggtaagcct	1860
agcttcctcg	cctcagccct	tctgcttctg	gaaggcctat	cctgggggtg	aacttgaac	1920
tctcatcagg	cttctgcaaa	agctttctt	cctgaagaca	gaccgcct	tttgctctc	1980
accctccact	ctggtaaagc	tgcacccctg	ggggatgag	ggctgcagg	aatctctgga	2040
gagcctggtg	cttcacgatg	ctgctctggt	gattttgtt	cctaattctgg	tgtgctacc	2100
aatgagtgaa	aggatcggt	ggtcagggac	accgagagag	tgaggtcact	tccacttcaa	2160
accttcagtg	aggggggtgg	atggagagaa	tgctgaatct	tttttttgac	gggatgggt	2220
ttttctcttt	gtatttattt	cttttagttt	attaaccttt	tgggttttg	tgcaatatta	2280
tatattttaa	attataatgc	atctcccccag	agtattttgt	agctggaaa	agaaaaaaagg	2340
aaaaaaaaaaa	aaaaagattc	taacagctgt	tagtttata	attaaaaaaag	aaagaaaaaa	2400
gaacttgc	ctgaaccttt	tacagacttg	ccgttaacag	cattaaagtg	attcaccga	2460
agctaaaaaa	aaaaaaaaaa	aaaaaaaaaa	aaaaaaaaact	cgaggggggg	cccgtaacca	2520
atcgccctgt	atgtatcgta	t				2541

<210> 15
<211> 1046
<212> DNA
<213> Homo sapiens

<220>
<221> misc_feature
<222> (20)..(21)
<223> n equals a,t,g, or c

<400> 15						
agtgaatcct	gagtgggtn	ntcttagcc	taaacctgga	gtcaccacag	agctttata	60
aacagtgaga	aacctactac	ttcctacaga	aactgtgtc	tctgcaaagc	tcagcgctcg	120
ctccagcc	aatccccagg	ccctgtccct	gtacacac	agtttgagg	tcaggacatc	180
acaaaacatc	tgccaaacatc	gaaaagtcat	caggagccac	ccagacgtgg	ggtgtattgg	240
tgggaagaag	gagcatctta	gtctgcttcc	ttctgaggcc	cacagttcca	gaaggactag	300
cgtcctcaga	gcatgtggta	gtggctgttc	ttgtctttc	ctgggtgtgg	ggcctggta	360
cccctaaca	caacggagct	gttcccaggt	tcatttcgtc	ccttttctg	tggtagatg	420
aggctctcc	tgccttcctt	gctgggtgg	cttctgttt	tgaccacatc	ccttggaa	480
gtggctggc	tgcgttaactc	cagagcagcc	tggtgttagc	tggggctgcc	ttctgagtt	540
gggctgg	atgctgagta	tttgattca	gagcctttag	cattgacctt	ggctttctgg	600
gaccctacgc	ccctctgttt	gccttgtca	gtagagac	tctcacatta	gggattcatt	660
ttttccaaga	ctgtttgtca	aggtgtgt	caaacttct	cccagagcag	tgacatggat	720
ggaaattgt	agtgtgttga	gagacctacc	ctaaaagatg	gggctgcagt	catcctcagg	780
ggacctctg	ttctcagctc	cacctcagcc	acacttggt	gtgggtcagc	ttcttcgtaa	840
tcagcatccg	caggacagcg	ccaccctagcc	ctgcccacact	tgcttcctcc	gcttcttc	900
agaggctgga	gcccacccccc	atgctcgtcg	tctgttctgc	ttttttgatg	cacttacttg	960
tcccttcag	cgtattgtct	atgtcctatg	ttggtaaaaa	aaaaaaaaaa	aaaactcag	1020
ggggggcccg	tacccaaatcg	ccctat				1046

<210> 16

<211> 982
<212> DNA
<213> Homo sapiens

<220>
<221> misc_feature
<222> (4)..(4)
<223> n equals a,t,g, or c

<220>
<221> misc_feature
<222> (30)..(31)
<223> n equals a,t,g, or c

<220>
<221> misc_feature
<222> (149)..(149)
<223> n equals a,t,g, or c

<220>
<221> misc_feature
<222> (940)..(940)
<223> n equals a,t,g, or c

<400> 16

tgcnnccacg	cgtccgcgga	cgcgtggtn	nctaaccctt	ggtttgcgga	cggtcgggtg	60
tattctccgc	cggccccacg	ccctcgaggt	ccccgccacc	gaaccagcgg	cggaccggcc	120
cgcgcctccc	gccccattcc	cgcaccggnt	cgctcctcgc	tggggcggga	cctggcctgg	180
cggctctgg	cactatgagt	gaaacatctt	tcaacctaatt	atcagaaaaaa	tgtgacattc	240
tatccattct	tcgggaccat	cctgaaaaca	ggatttaccg	gaggaaaatc	gaggaactca	300
gcaaaaagggtt	caccgcattc	cgcaagacca	aaggggatgg	gaactgcttc	tacagggcct	360
tgggctattc	ctacctggag	tccctgctgg	ggaagagcag	ggagatcttc	aagttcaaag	420
aacgcgtact	gcagacccca	aatgacccttc	tggctgctgg	ctttgaggag	cacaaggttca	480
gaaacttctt	caatgctttt	acagtgtgg	ggaactggta	gagaaggatg	gctcagtg	540
cagcctgctg	aargtgtttc	aacgaccaga	gtgcctcggt	accacatcg	gcagttccgt	600
cgcctgctca	mgtcggsctt	catcaggaac	cgagcagact	tcttccggca	cttcattgt	660
gargagatgg	acatcaaaga	cttctgcact	cacgaagtag	agcccatggc	camggagtgt	720
gaccacatcc	agatcacggc	gttgcgcag	gccctgagca	ttgccctgca	agtggagttac	780
gtggacgaga	tggataccgc	cctgaaccac	cacgtgttcc	ctgaggccgc	caccccttcc	840
gtttacctgc	tctataaaaac	atcccactac	aacatcctt	atgcagccga	taaacattga	900
ttaattttag	gcatgcagt	ggaacctgtc	acctaattgn	actgcattct	gaatggaaaa	960
aaaaaaaaaa	aaaaaaaaactc	ga				982

<210> 17
<211> 3091
<212> DNA
<213> Homo sapiens

<400> 17

aaaccggaaa	gtttgttagga	aaattgctgc	acatggcctt	tgcagaaaaag	agagccttca	60
aaacctcta	cattccagta	gaaaactctc	tctgcaagtc	cttaactttt	ttcactcatt	120
ccaggaaggt	gcttcaatat	tggatattca	cacagagccc	agttttcaa	gtttgccttc	180
acagtcatcg	tatgctgaca	tgggtgttcc	acttcctgca	aaaaacttaa	tattnaaaga	240
tgggtctta	tcagaakgg	gtggacggc	accttcctca	cttcttattt	ctaatttcca	300
tttgcataa	tttgggttaca	ccatttgtt	ctcacacttt	ctgcctttt	tctttcttaa	360
cgtagctt	atagtgtcag	ccactaaaaa	gcatcctgct	gctgcagtgc	aattcttgct	420
taactaatat	taaaagttgg	ggaacatatt	catgtttct	gaagtttgc	tcattattgc	480
acatcttatt	gcgacaaaagt	gttttttagc	agccagcact	gtattttta	ccttgagagaca	540
atctgcattt	ctttataaa	actaagtata	tactttatag	gctttatgt	gactgttatg	600
tttataagca	gtcactatga	aaattgcaat	ggtaatttt	tatgttagtt	tatcaaacat	660
aaatctgtt	taattttata	ttttgttacc	tatactttgg	ggatcaagg	gaagagatgg	720

aactcttcct	ctgaaaaggc	ttcttggtagt	ttaaagtatgt	aaaactataa	aacaataaac	780
atccagttt	gagagatgtat	atgatagggc	attatgaatt	cctatgggtg	tctgtaaatt	840
atgtatgtca	gttggacatt	gtagaaggta	tgtaaatcatg	catagttgtg	tataactaa	900
ccttgattta	taaggtctta	agattatgac	tattcattga	catctcatga	gaagctttag	960
aagactttct	attttaaac	accattata	tgtggacttc	tgttgtcaact	gactttggc	1020
tttatatttt	catagagtct	ttatgaaaaa	aatagaattt	atttccact	cttntagcta	1080
tagctgctgc	acactttcac	cctgatttat	ttttttgtt	cttagcttg	atgtttcaa	1140
accaaggatt	gtgatTTtag	gttagaatta	catattagaa	gcattaagac	tatgtcttg	1200
gatcagaatg	cttagtgat	aaacctactt	tgaagacata	ctcttaagca	atctggatct	1260
taaattttatg	tgaataacttt	tttagaaaaat	gataaagaaa	aatggaatta	cttcaaagtg	1320
tttcttgagt	cattgattct	tttagcatct	caaatgttaa	ttagaataat	tggaatcact	1380
tttagactt	ttcaagttac	cttccttggg	aagttgtgc	agtgttatag	tttagtttag	1440
ctcctcttac	agggtaatgg	tttgctagtt	taaaactgta	accaaacgaa	ctggtcagac	1500
aacatatatc	taaaacactt	aaaatgttag	gaagtttggg	aatgttataa	cctaaacgtt	1560
tttgctggta	actttttgtt	atttatacat	atttgtgtat	ttaacataca	tacttcagga	1620
aatatatgcc	tttcctaaaa	cttaaccatg	cattcaatac	catggcctat	ctatagaatt	1680
gaatattttg	gaccatgtta	tctgtggcac	agtcaigtgt	gtgtttgagg	taaatgcagt	1740
aacggttagt	tttctacttt	gtcttataga	aggtagaaac	catgtgtatg	ttatgtttgt	1800
ctataaaaaga	aaaaatacta	atattaaata	atttcttacg	actctgagtc	actcacttat	1860
ttttccaata	attgatattt	tacattccta	gtgccattag	gtatgtatgt	atgtaaactt	1920
tacagtttt	cagctgaaag	ttgtaagttat	ttttttttt	tgatcggggc	tcttaatct	1980
cattttaaatt	tcctttgttt	gaactgttagt	tatttattcc	tatattaacc	atctaaacca	2040
actgtaatga	catgtacact	aatacagaat	tgaacatttg	tagttgtgg	cagtgaaccc	2100
agttgttggt	gaattttaaag	cttaaaatat	gggaatgatt	tgctgctata	tttccttga	2160
gagagaaaagg	aggaagaaaat	agaacctaatt	agtgtatcatg	aatttttaggg	aaagtaccga	2220
agaaccatgg	ggtcccctct	ggtttcttgc	gttgaatgag	gcaagggtaa	tcatctgatt	2280
ccgagctgaa	gacctctgg	cctcttaagg	agggagagtg	catttttaga	gcttttagca	2340
aaatgtgaaa	agctgtatgtt	tgcgccttgc	tttgcatttt	tggctttgtt	ttacttatac	2400
attaactcat	gtaatctctt	aaatcttaca	agcattgtatc	catttcaaca	aaaaggtaaa	2460
tttaaaatgc	agactttgtt	atttgc当地	gaagattcat	aaaaaattt	cgtccaatta	2520
tttgcaaat	agttatattc	atttggcttt	ttaccatgtt	ccttccttcc	tttttcccgc	2580
ttccttaatg	taattttaa	cctggcaaaac	attctttaga	aaccaagagg	aaagaaagaa	2640
caaataatcaa	aaaagacata	gaatttaata	ttgatacaat	ttcacctcta	aatggattt	2700
gaagaaaatgc	aactttat	aaaaaaatgt	catctgattt	cctttgttc	ttttttaaat	2760
tatgtaatca	gatgatttt	ttttttttt	tcaggggagc	ggaatattgg	tttctttac	2820
ttgttggttt	cagttttctc	tgccattcat	gtttctttt	tgtgttcagt	gtttcaata	2880
caatttgtat	ttaaggattt	taaaatacca	aactgtact	gagtagtacgt	gatcgtttc	2940
tgttaggatg	ttaatattat	acaatgaaat	ctataaagtg	ttgtcaattt	gattattgac	3000
acatataaca	tgtttacaaa	taaactgtgg	tattgatcaa	gttactatga	aaaaaaaaaaa	3060
aaacccgggg	ggggccccgg	aacccaatcc	c			3091

<210> 18
<211> 796
<212> DNA
<213> Homo sapiens

<220>
<221> misc_feature
<222> (398)..(398)
<223> n equals a,t,g, or c

<220>
<221> misc_feature
<222> (780)..(780)
<223> n equals a,t,g, or c

<220>
<221> misc_feature
<222> (787)..(787)
<223> n equals a,t,g, or c

<400> 18

gaattccggca	cgagctcggt	ccgaattcgg	cacgagtca	attgaagggt	gttggttttt	60
attattattt	agtgtgattt	atagtatcta	aatggcagg	tgggtgcataa	aagttaaaga	120
gaggggaaag	attacktagt	ttggttatac	agttataaac	accatgcagt	gtattcggt	180
gactgtgcta	tttctgttta	tccttgggt	tttggttttt	gtttttttt	ttgccttcac	240
agttagactg	caaattgattt	ttctcataac	gtatattatt	aataaatgt	gtcctataat	300
ttatactgaa	attaccttag	gatattttt	cataatactc	tcttactgct	tacattctat	360
aaattttca	cgtgataatt	gtcttgcgt	aactgggnaa	aaatgccaa	taacttcctt	420
tattatctgg	aaaaattaaa	tttgttcatt	tatattttct	acttactaaa	ttgagttttt	480
aaaaagactt	agtgtgacat	ttgacagtgt	cttccaacg	aacttctcta	acaagtttat	540
agttattttc	ctgttcaac	actattagaa	gtcttataaaa	ttatgctaat	tagcatggca	600
gtcatgttac	acactcttaa	cattgccaaa	gaactgttga	tttcgttga	aaaaaccctg	660
ggactgtgt	tgtgttaggtt	ttgtttgtat	tttaacaacc	aaaaatagaa	ataaaattag	720
aactgcgtt	taagttctaa	aaaaaaaaatt	aaaaaaaaaa	aaatttaaaa	atttgggacn	780
aaggcnggg	ggtccc					796

<210> 19

<211> 822

<212> DNA

<213> Homo sapiens

<400> 19

gatttaccac	ctagaaatgg	tgttttaaa	tttcttaata	tatctccttc	ttgtctttt	60
ctatatatct	ttatbtcata	gtcgagacaa	ttttatactc	tgaatttttta	tcatataagt	120
atctaccac	attatcagga	atgcttgcgt	agcatcattt	taatggcttc	aaaatagtct	180
atgatttaga	taacgatgat	ttggccattt	ttgtggtcac	ctaccactta	ttggagacat	240
attatattct	gagaatatta	tgccatttat	aggcatttaat	tccaatatgc	aaaagaactt	300
tgaaatgaag	gcgttattat	tcccaatttt	acagatgcgt	aaactgaagc	tcagagaggt	360
taagttcccc	gaggccatac	aggacaatag	gggcaaagat	ggtttgaat	caatggatgt	420
ctgacgacaa	aggccatgat	ctcaccactg	cactgcactg	tctcctgaag	ccctttgtgt	480
gaaatgatta	aatacatcat	gattatgtca	cacttcattt	acccttctcc	aggttagttga	540
acatctggat	gattttacat	cgtcaaatac	aaggttgtt	acaattaaag	gataaaacag	600
ggtgcggccg	gaaaggcggc	cgccccctcg	cccatcatgc	aatgcacatt	cgtgggaac	660
ctggcgttaa	gccattcgta	gatgacctgc	ttctggctcg	gggtttcata	tgtagcagag	720
cagctccctc	gctgcaatct	attgaaaatgc	agccctcgac	acaagggtt	gtaaaaaaaaat	780
aaataaataa	aacaaaaaaac	aaaaaaaaaa	aaaaaaaaactc	ga		822

<210> 20

<211> 657

<212> DNA

<213> Homo sapiens

<400> 20

cgccggcacga	gacgaaatga	ttcagttctg	gacatggcaa	gacatgtgcc	actctatcg	60
gcactgctgg	aattgcttcg	ggccattgct	tcttgcgt	ccatgggtcc	cctattgtt	120
cccccttcta	cagagaacgg	tgaagaggaa	gaagaacagt	cagaatgtca	aacttctgtt	180
ggtacattgt	tagccaaaat	gaagacctgt	gttgataacct	ataccaaccg	tttaaggtac	240
tatatacaat	gttcatttct	tttgagttt	cctctaacaa	tgtttttaaa	ataactccat	300
gggtgtttt	gttttcagt	gataatgtgt	ttttaaaagc	mtatacaccc	tcggctgggt	360
tgccgtggct	cacacctgt	gttcccccagc	actgtgggag	gccgagggtgg	gatggatccc	420
cgaggtcggg	agatcgagac	catcctggct	aacatggta	aaccccggtc	tactaaaaat	480
accaaaaaat	tagccaggca	tggtggcggg	cacctgtgtt	cccagctgt	cgggaggctg	540
aggcaggaga	atggcgtgaa	cccgggaggg	ggaggttgca	gtgagccgag	atcgcgccac	600
tgcactccag	cctgggtgac	agagagctcc	gtctcaaaaa	aaaaaaaaaa	aaaaaaaaaa	657

<210> 21

<211> 632

<212> DNA

<213> Homo sapiens

<220>

<221> misc_feature
 <222> (557)..(557)
 <223> n equals a,t,g, or c

<220>
 <221> misc_feature
 <222> (571)..(571)
 <223> n equals a,t,g, or c

<220>
 <221> misc_feature
 <222> (608)..(608)
 <223> n equals a,t,g, or c

<400> 21
 ggcacgagcc gcagctcccc ttttccttcc tctgcagacg ctggcgctgt ctgccggagg 60
 tgttgcccaa aaggccctag tggggcgtgg tcagctccac ctcctgatcc tgtgtgtcct 120
 ccgacatgct gctgattcta gtgaccctg tccccaccag gctcagagcc agaccgcgcc 180
 tggaccttct tttctgtact ccacgtgcct gcccggcctc caggggtgcgg ggggcgcctt 240
 cttgcaggcg gaccctgccc aggatgggc cagcctcgta ctcagctttg gccacaaaatg 300
 cagcccttgg cccacccac cctgcggcc ctgccttcc cagtatttcc cacatggcca 360
 cgactcctca gtcactagag cttcctgctg ggaacagtgt ccccccagagc ctcatgtcta 420
 tccttagaccc tgcagaagc tgggtccccaa agagtgcata tccccctaga gttgcctgcc 480
 catgcccacc tgcctttgtaa cttcccagg agattcatgc ttgctctgca cagcagggyt 540
 cgaggscacag gscatgnama sggaaatgtgcc ntcaggtttg ggtcaractg catcctgggg 600
 gcatctgntg gaaatgtgag cacacaaaacc aa 632

<210> 22
 <211> 865
 <212> DNA
 <213> Homo sapiens

<220>
 <221> misc_feature
 <222> (365)..(365)
 <223> n equals a,t,g, or c

<400> 22
 gaattcggca cgagtgcacct cgtatctaca tgctcaccta taccctcacc cgactttcc 60
 ctccctcctca ccccatcaaa ggcaataatg cacctgtttt tattcatctg ggcctttgg 120
 cttcccttc atatttcccg agacctcgct ttcttcttc tcttgttattt tttatttttc 180
 tatctttat gtgtcttctt ctaaaagtta taaacatgca caaaatctt ccatctcaaa 240
 atataataacc ctttacctgg tgccttgc accgcattt ctttattttat ttactttgc 300
 gccaggctt cctctgaagc ccaggctggg tgcgtacgcg atcatggctc actgcagcct 360
 cggantcccg ggctcaagcg atcctcctgc ttggaggatc agattttta tccttgcaga 420
 agtgataata tggcttcttc ctcatctcctt aaacaccagt catctgacat acactgcaga 480
 tctaaaatgg gccttacgtg ttctgcctt cttgcctac ctgttgagct tgcaccgctt 540
 ctgtgagttt ccccccaccc acaagagatc cttttccctt cgcgtccac taacccgaca 600
 taaatgttta tcatataaaag tttccgttg cactttgtt tttatgttctc ctggcttctt 660
 caccaagctg tgcacagct gggccctgtc gcctccttcc tgcgtatatgc agcgactatc 720
 gcagagccgc ttaatctttt ttgaaggcag ctgcgttca gcctgaggg ccacgggacg 780
 gacgccactc attcagycct accggggcg ctgtggcagc cggcattggc tgccgtgccc 840
 tccgcttgc tgcgtcagcc ctcga 865

<210> 23
 <211> 1222
 <212> DNA
 <213> Homo sapiens

<220>
 <221> misc_feature

<222> (772)..(772)
 <223> n equals a,t,g, or c

 <220>
 <221> misc_feature
 <222> (796)..(796)
 <223> n equals a,t,g, or c

 <220>
 <221> misc_feature
 <222> (823)..(823)
 <223> n equals a,t,g, or c

 <220>
 <221> misc_feature
 <222> (855)..(855)
 <223> n equals a,t,g, or c

 <400> 23

gaattcgcca	cgagcacatg	wktatatata	tattactgtt	ttgcctccat	tgaacatgcc	60
ttctacttcc	taatttgtgc	cagaattgac	tagtagacgc	tatgaatgca	tcatgctctt	120
tggcccattt	cgaacactca	ggtatgtctg	tactcttagt	tcatctattc	atcattgttt	180
ctacaggttcc	ctcatgcttt	aaaaaatata	tggcttttat	aatttatcca	gctttttctt	240
gtcattttaa	taagagtatg	tgtcttatac	aactactaca	ttcatccag	aagtagaagc	300
aaactattat	aatcccatta	tttttattcc	tactatttc	ttttcagaat	ttcttttaga	360
tattccttgg	atagttttat	tcaatctcc	atggcttca	gcttatctta	tgttctatct	420
tttggttcat	attctgcatt	ctggataatt	cttcatcttc	actttctagt	ttgttgatat	480
tccttttgg	gactataagg	tgctctttaa	aatggtcaat	aatgcctaag	atgtttattta	540
tcttgccctt	tgcagaaaaaa	aattttcagc	tttgctctg	gaatgatttt	gcatctcttc	600
caccaaactt	ccagtgtattc	aatggccaga	aaataatcta	tatgttaatt	tgttaatttg	660
atgggttcatg	gttcaaggct	gtataattta	aaagttgaa	gtcaaacaac	acatgatggg	720
ataatcctga	tgttacagat	tctcaaggga	aaatatgttt	ttgttttttc	tnccaattgt	780
tctartattt	acaganaaaac	ttcttaatta	tactgggtt	gtnaataart	atttttcttw	840
actcttcaa	tctangtcca	rctatgcattc	acccttcgc	tgatgagcat	taagaaaatc	900
caaatttggc	ccggggcgcgg	tggctcacgc	ttgtaatccc	agcactttgg	gaggccgagg	960
cggggtggatc	acgagggtca	gagatcgaga	ccatcctggc	taacacgggt	aaaccccgtc	1020
tctactaaaa	atacaaaaaaa	aaatttagctg	ggcgtgatgg	cgggcgccctg	tagtcccagc	1080
tactcggggag	gctgcggcag	gagaatggcg	tgaacccggg	aggcggagct	tgcagtgagc	1140
caagattgcg	ccactgcact	cccgctggg	ccacagagcg	agactccgtc	tcaaaaaaaaaa	1200
aaaaaaaaaa	aaaaaaaaactc	ga				1222
ggcagagggga	gccccggggcg	tgcttaaccaa	tgacttgagg	gagtaggggg	ccggggtttgg	60
gccctcatgtt	gctaaagggtc	accccgagtgg	gaagcggttc	aagagatggg	gtgaagggtg	120
gttcaccgggt	tcttcaagtc	ctcagcccttc	tggcccgmgg	aagttaaagca	accaagaggc	180
gggccttaaga	ccggaagcag	gaaggagggc	gcaggaagca	gggcgcccga	gcctgtcgta	240
cggtccttct	gtgggtctgt	cggtgccgag	ggcaggatgg	agaagctgcg	gctcctggc	300
ctccgcgtacc	aggagtacgt	gactcgtcac	ccggccggca	cggcccagct	ggagacagca	360
gtgcggggct	tcagttacct	gctggcaggt	cgattcggcc	attcgcacga	gctgtcagag	420
ctgggtgtact	ctgcctctaa	cctgcttgtg	ctgctcaatg	acgggatcct	acggaaggag	480
cttcggaaaa	agttgcctgt	gtcgctgtcc	cagcagaagc	tgctgacatg	gctgagcgtg	540
ctggagtgcg	tgaggggtgt	catggagatg	ggagctggca	agggtgtgggg	tgaagtggc	600
cgctggcttg	tcatcgccct	catccagctg	gccaaggctg	tactgcggat	gctcctgctg	660
ctctgggtca	agctggccct	ccagacttca	ccccctatcg	ttccactgg	cagagagacc	720
aggcacagcc	cccggtgggt	gaccacagcc	ywgyaacc	tgagcagtcc	tacgtggga	780
agcggtaaaa	ccgggtgggt	cgaaccctcc	agaacacgccc	gtccctgcac	tccaggcact	840

ggggagctcc ccagcagcgg gagggacggc agcagcagca tcacgaggag ctgagtgcga	900
cccccacccc cctggggctt gcaggagacc atcgcagagt tttgtacat tgcccgccg	960
ctgctgact tgctcagcct gggcctktgg ggtcarargt cgtggaaacc ctggcttgc	1020
gctggtgttg tggacgtgac cagcctgagc ctcctgagtg acagaaaaggg cctgaccgg	1080
arggagcggc gggagctgcg gcgcggamc atcctgctgc tctactacct gctgcgtct	1140
ccttctacg accgcttctc cgaggccagg atcctcttcc tgctccagtt gctggccac	1200
cacgtccctg gcgttggcct ggtcacaagg ccgctcatgg attacttgcc cacctggcag	1260
aaaatctact tctacagttt gggctgacag actcccgaa ggagggtgt gggaggggtg	1320
ggcagggagc cccttccc taataaaaact gactccggca gcaaaaaaaaaaaaaaaa	1380
aaaaaaaaaaa aaaaaaaaaaaa aaagggcggc c	1421
<210> 25	
<211> 638	
<212> DNA	
<213> Homo sapiens	
<220>	
<221> misc_feature	
<222> (597)..(597)	
<223> n equals a,t,g, or c	
<220>	
<221> misc_feature	
<222> (628)..(628)	
<223> n equals a,t,g, or c	
<220>	
<221> misc_feature	
<222> (630)..(630)	
<223> n equals a,t,g, or c	
<400> 25	
cggcacagt ttatttccaa ggtaagtagg ggtagactag aatggacata gcagctcctg	60
tcttatttgc ttaaggctg caatttctgt tcattctt acccatgcac tttgaaattt	120
cattgctctg caaagttcc actgaaaacat caggtcgaga agacaaaatg tagagaatag	180
caaaccaaaa atatactctt cagagagccc agtgtatggaa attatattct acgttaaggcc	240
attaaccagc tacaaagcag tagcagctaa ctaacctggg gataaaagac catctgctgg	300
ctgcataactg attccaagca taatgggtct cccattccca cctccacctg gctccacaat	360
tccctgcatg tcttttaacc tcctcttctt cagactcaat gcttccttat gcaactccag	420
aaacccagta tcttattttaa acacacctgc catttgaagt agacaggtca aggagaggtt	480
ggtccttctt ctggtataac ctcaggttca tcatggaat atagataagc tgtttactt	540
tcttggctta ttactctcc tgtaaaaaga gggagttca ggagattctt caaagcnaaa	600
ctgaatattt tgatggattt aaaaaananaaaaaaaa	638
<210> 26	
<211> 749	
<212> DNA	
<213> Homo sapiens	
<400> 26	
aaggccaagc caatggtaga agaaaaacagc tttattgaag gggcagtgtt atagctccag	60
ccctgttaca actctgatta ctcctgcaca gcaggctctg gcagagacta gcagctcagg	120
gcagtttgc agtcatttat akswaytygg cacgaggcga gattaagggg tgatttgtgc	180
aaaaatttct agggaaatggg taataacttt tgggtcatcg agtcaatgcc atggaagaga	240
ggggggataa cccccctgggt ttgcgtatggc aacggtaaac tgacatggca actgtatgagc	300
gtgtcttacg gaaagctcat tccacccag ccctgttca gctagtcctc aatttgtcc	360
agtgtccgag ccctgcctct ggagtcaagt cccacctctt acctcataag gagagacata	420
aatcaatgg aatagaatcga gagttccaga aataaaactca tacctcgatg atcaattgtat	480
tttcaacaac agtgccaaga ccattcagtk gggggaaaga atcatatttt caacaatgg	540
tgccagataa cgacatccaa aggagtcaa ctggccct gtctcacacc atctacagaa	600
attaagtc当地 agtgccctcaa acactaagag ctaagactat aacatttta gaagaataca	660

gggttacctc ttatgatct tgatttggta attgatttt agataacact aaaagcacaa	720
gcaacaatag gaaaaaaaaaaa aaaaaaaaaa	749
<210> 27	
<211> 788	
<212> DNA	
<213> Homo sapiens	
<220>	
<221> misc_feature	
<222> (290)..(290)	
<223> n equals a,t,g, or c	
<220>	
<221> misc_feature	
<222> (768)..(768)	
<223> n equals a,t,g, or c	
<400> 27	
aggggcmckg mctcccaccc accccatcac cagcttcca cttggaggcc ccctgtgcc	60
tgcagcctca ggtargccg tgggtcacca ggctggagar ggcccctgcc ttggccaggg	120
gtgcgaggtg acccggtgc attgctgggt gggagctgct gtctgttgtt caggggcctg	180
gccccccc tccccccca ccccgacctc gcaaagsgca ctcccggca gggtgtggtc	240
tggaaargcgg ggctggcggg gacatgggtg ttctgcattt cctagcgcan ttccctgtgg	300
tggktgaag ggtgcctggg ttaggcggg tcccaggagg gggtgagggg tgacaccttg	360
gggagggggc ctkcaaaggr cactgcctgt ggccacgtgg tgtctgtggg aattggctct	420
ggggactttg atgggtgttt gcggcccccag ttgcgcctt gctccctt ccagggtctcc	480
tggcttggc ccccccaccc ccctgcttag ctcggggaaaa tcccccgtgcg gctccagccc	540
cgggtcacgc tcaggagcga tgagagggc gccctggca cgcttcagga aagcctgtgt	600
ctgcgcgcgg gccaaggggc tccacgacaa aaggacaaga tttgacttaa attaagttt	660
tcccttgagg atattttcat ttctttaaa agaatataat ttcttctaa gatcttggwa	720
aaaaaaaaaaa aaaaaaaaaaaa aaaaaaaaaata cgtaggggg gtcggtnac ccaattgtcc	780
tgacgtgg	788
<210> 28	
<211> 941	
<212> DNA	
<213> Homo sapiens	
<400> 28	
ggcacgagat ttggcaagt gctgttatgt gaacaccacc atcacaatca agatagtcta	60
tagttctagt accccctgcc ctgaaacttg cttgttctgt ttagtcagct cctctccccca	120
ccaccagccc ttgtcaactg actcattttc tgcattgtata gtttatataa tttccagaat	180
gtcatataaa tggaaattcta gagtatgtt cttttggagt cgcaccttc acttaatgct	240
tctgagactc atctgtcttg ttgcataatat cagtagacaa gtcatttctt ttattgtga	300
gtagtaatct gtcataatggc tgcccacag tttgttatac cattatcac tggggggat	360
acttggktt tcagtttca gtgattatga agaaagctgc tgtcaacatt tgcaaacagt	420
ttgtgtgtcc acattgtckt agtaaataac taggagtgga attgcccgggt tggatgtaa	480
cagtataactt atctatgaaa aactgacaga ctttctaaa ataactgtac cattttacat	540
tcccaccacc agtgtatgaa agtcccagtt ccttaacttc actgacaatt ggtatgtcag	600
ggtttgggtt catttttatt ttgtttagt gatttcaag gtttatagcg ggatttcatt	660
ttggttttaa ttacacttc cctaatggcc attgagcatc tccactgctc gtttgctatc	720
catttgccta ttttctttt gaaactatgt tcaaattttt tgcattttt tttaaaacct	780
ggattgttcc ttattgattt ttgagagttc ttatatgtt ctggatagat atctttgtca	840
gttatgtgtt ttgcaaatat tgtataccat tatgtggctt gtgttttat tccattaaca	900
gtattttca cacaagaaaa aaaaaaaaaaaa aaaaaaaaaaaa a	941
<210> 29	
<211> 835	
<212> DNA	
<213> Homo sapiens	

<400> 29

ggcacgagca	caaaccctag	aattcccagg	gtacaccgtt	tagttgctaa	agatattca	60
agaacagttt	tctctctgg	aaagtttatt	tgctcctgtt	caaggtttca	tttcttcaa	120
cagagtaaa	caacttgggg	tacaatgtt	ttgttagtat	attttcttct	tatgtctgtt	180
atatttggca	ctaaattctt	tccttaata	atacacatgt	ttaaccatg	cataacttaac	240
cttataaaac	ttgttttttc	tctcatgcct	ggaagccatc	aaactccaaa	tgttcaggca	300
accagagcct	cagatgtatgg	ctccgcctt	ctaggaaccc	ccagtagacc	tctcgaaagc	360
atccgacagc	agtttacccc	aaaagaatgc	cccctgtcag	caggaaggcag	ctaagaccag	420
tcattgtccc	atattctcat	ggcaggtaga	tacacctctt	cagagagggg	aaataatatg	480
ggagtgttag	gaagggaaaga	acatggctgg	ctagggctcc	ataccctggc	tagtcctggc	540
tagggctcca	cactcacgga	cctaacttag	aacaggtatt	tctcgccaa	atgttgcatt	600
tcccaagacc	accctggctg	gacattgaga	ggaacacact	gacaggcacc	agcatgtgg	660
taggccactg	actgacagaa	caatgcagag	tttggctggg	gcagctggag	gacagcttgg	720
gccactgagc	agcctgactt	cagggaaaaaa	ccatctccct	tctgactctc	ccatctgctg	780
gtagctattt	ccactcaata	aaaccttgca	ctcattaaaa	aaaaaaaaaa	aaaaaaaaaa	835

<210> 30

<211> 553

<212> DNA

<213> Homo sapiens

<400> 30

gtgtgcggga	tttggtttagc	tgagcccacc	gagaggcgcc	tgcaggatga	aagctctctg	60
tctcctcttc	ctccctgtcc	tggggctgtt	ggtgtctagc	aagaccctgt	gctccatgga	120
agaagccatc	aatgagagga	tccaggaggt	cgccggctcc	ctaataattta	ggcaataag	180
cagcattggc	ctggagtgcc	agagcgtcac	ctccaggggg	gaccctggcta	cttgcggcc	240
aggcttcggcc	gtcaccggct	gcacttgtgg	ctccgcctgt	ggctcgtggg	atgtgcgcgc	300
cgagaccaca	tgtcaactgccc	agtgcgcggg	catggactgg	accggagcgc	gctgctgtcg	360
tgtcagcccc	tgaggtcgcc	cgcagtggca	acagcgcggg	cgaggcgcc	tccaggtccg	420
gagggttgcc	ggggagctgg	aaataaacct	ggagatgtat	atgtatgtat	tgatggaaaa	480
aaaaaaaaaa	aaaaaaaaaa	aaaaaaaaaa	aaaaaaaaaa	aaaaaaaaaa	aaaaaaaaaa	540
aaaaaaaaaa	aaa					553

<210> 31

<211> 1346

<212> DNA

<213> Homo sapiens

<220>

<221> misc_feature

<222> (637)..(637)

<223> n equals a,t,g, or c

<220>

<221> misc_feature

<222> (850)..(850)

<223> n equals a,t,g, or c

<400> 31

ggtcgaccca	cgcgtccgct	gagagtagcc	atgggctctg	gaggagacag	cctcctgggg	60
ggcagggtt	ccctgcctct	gctgcctt	ctcatcatgg	gaggcatggc	tcaggactcc	120
ccgccccaga	tcttagtcca	cccccaggac	cagctgttcc	aggccctgg	ccctgcagg	180
atgagctgcc	gagcctcagg	ccagccaccc	cccaccatcc	gctgggtct	aatggcag	240
ccctgagca	tgtgcccccc	agaccacac	cacctcctgc	ctgatgggac	ccttctgctg	300
ctacagcccc	ctgccccgggg	acatgcccac	gatggccagg	ccctgtccac	agacctgggt	360
gtctacacat	gtgaggccag	caaccggctt	ggcacggcag	tcagcagagg	cgctcgctg	420
tctgtgctg	tcctccggga	ggatttccag	atccagcctc	gggacatggt	ggctgtgggt	480
ggtgagcagt	ttactctgga	atgtggcccg	ccctggggcc	accagagcc	cacagtcata	540
tggtgaaaag	atgggaaaacc	cctggccctc	cagcccgaa	ggcacacagt	gtccgggggg	600
tccctgtga	tgcaagagc	agagaagagt	gacgaangga	cctacatgtg	tgtggccacc	660

aacagcgcag gacacaggga gagccgcga gcccgggtt ccatccagga gccccaggac	720
tacacggagc ctgtggagct tctggctgtg cgaattcagc tggaaaatgt gacactsctg	780
aaccggatc ctgcagargg ccccaagcct agaccggcgg tgtggctcar ctggaaargtc	840
agtggccctn tgccgcgtcc caatcttaca cggccttggt caggaccagg actgccccgg	900
gaggccaggg agctccgtgg gcagaggagg aacacaggat aaaaatggaa gttctcaata	960
aaaagaagat gtattggaa agaaaactac aaactttac caaggaatgg cctgttcct	1020
catttaaccg gcccttccc aattcgccct aagactttgg gggtggtctt cttgttaatta	1080
atctgtgttgc gcaaagaatg tctggAACAT ggacttggcg gtcagtaacc tgtaacagag	1140
ctacaactag gaaaattaga gtggtagtag tcacttattt aagaattcat tcaggtaaac	1200
agctgcaccc tctgtacccc ttaagtggca aagaagctgt tatagtcttc tgaaaattat	1260
cactatgagt gctataattc tgaatataat gtctcttaat tagaattcat acaagaacca	1320
aaaaaaaaaaaa aaaaaaaaaagg gcggcc	1346

<210> 32

<211> 626

<212> DNA

<213> Homo sapiens

<400> 32

ggcacgagaa acattttcct ttgggttttt tttttcttcc tttttctcc cctttactct	60
ttgggtggtg ttgctttcc ttccctttc cctttgagat tttttgttg ttgtttcctt	120
tttgtatTTT actgatatac ccaggatagt ttactctct tctagcttc tgcttaccgc	180
acactggata acacacacat acacacccac aaaaatgctc atgaacccaa tccggagaag	240
gttccagcag gtccccccacc ctcccctcct cctcctactt ctcctttaa cagcgaggac	300
aggaggggga caaggggaca cctggcaga cccgcccgt ctccccccac cccacccgc	360
ccctcacatc atactccaat cataaccttgc tatattacgc agtattttg gtttgcgg	420
acgcgcctac ctaagtacca tttacagaaa gtgactctgg ctggtcatta tttgtttat	480
ttgttccta tgcaaaaaaaaaa aaatgaaaat gaaaaaagggg ggattccata aaagattcaa	540
taaaagacaa aaaaaaaaaaa aaaagaaaaa aatgtataaa aattaaacaa gctatgcttc	600
gactctaaa aaaaaaaaaaa aaaaaaa	626

<210> 33

<211> 1018

<212> DNA

<213> Homo sapiens

<400> 33

ccacgcgtcc gcccgcgcgt ggcttgaac cattcaaata ccacattagg caagactgtg	60
ataggcctt tgccttcaaa tacaacaggc ctccactgac ccattccctca aagcagaagg	120
accctttagg gagagtacag atggattcc acagtgggtt gggtaatg gaaacctgt	180
ctagaccacc cagagggtcc ttctaaacca ctgggttggg gggactca cagtaattcc	240
aaatgtacaa tcagattcta gggctgttt tcggaagaag caagaattat cagtgccacc	300
ctccccactg ccccccagtgt aaaacaatag acattctgtg aaatgcaag ctattcttgc	360
gtttttctag tagtttatct cattttaccc tattcttct ttaaggaaaa ctcaatctt	420
atcacagtca attagagcga tcccaaggca tgggaccagg cctgcttgcc tatgtgtgat	480
ggcaatttggaa gatctggatt tagcactggg gtctcagcac cctgcagggtg tctgagacta	540
agtgtatctgc cttccagggtg gcgatcacct tctgcttca ggtacccca ctggcaaggc	600
caaggcttcc tccacgtttt ttctgcaatt aataatgtca tttaaaaaat gagcaaagcc	660
ttatccgaat cgatatacg aactaaagtc aatacattt gcaggaggct aagtgtttaaga	720
gtgtgtgtgt gtgtgtgtgc gtgcgtgtgt gtgtgtgtgt atgtgtgtga ataagtcgac	780
ataaaatgttt taatTTTggg caccttacca aacataacaa taatccatta tcctttggc	840
aacaccacaa agatcgcatc tgtaaaacag gtacaagggtt acatgagggtt agtttaattt	900
tacaccatga tattgggttattatgtctg ttaagtccaa acctttatct gtctgttatt	960
cttaatgttg aataaaactttt gaatttttc cttaaaaaaa aaaaaaaaaaa aaaaaaaaaa	1018

<210> 34

<211> 767

<212> DNA

<213> Homo sapiens

<220>

```

<221> misc_feature
<222> (292)..(292)
<223> n equals a,t,g, or c

<400> 34
cgcacgagg ggacagatgg gtttagggg gttgtragcc ggggcttcar agctctgctg   60
tctggggta ggggggagct ggaagctgga ggtgtggcag ccatggctct aggagccctg 120
agcctgaatg ctgccttcgc accctggcc tcctccctg gcccagacct cccattctr 180
aaagagaagc agccctctc tagtacccg tyttctgggg gagccaggtt ccgattaccc 240
accacctccc tgggcacacg tgaaagtct tcatttacca cctgttytgc gncaggagcg 300
ggattgtgaa ggtcatggat gactaccagg tcatggatga atccctaca acctcagctt 360
cgagatgaac ttcaatgaca agtgagtggg agttggccc ccatgccagg tgccccgtgg 420
agcatgaggg gagctgctga gctcagagg ctcccaaatg cccagctgc cacagtcgt 480
gcaatctccc cagaaacacc ccactgagat ttcaagggcc aggctccac acatggccg 540
ggaccagcca gggccagggt gccgaaggaa ttcatgggg ccttggcc tcagctgctc 600
cccaaccctg tctctgtcct gtcaatggcc tggcacatgt ttgcttgc ttttttgaa 660
acagagttt gcttgtcac tccagtctgg gcaatagtga gtccgtcaaa ttccatttcc 720
ccctccgccc catacctctt caaatgttta aaaaaaaaaa aaaaaaaaaa 767

<210> 35
<211> 840
<212> DNA
<213> Homo sapiens

<220>
<221> misc_feature
<222> (364)..(364)
<223> n equals a,t,g, or c

<400> 35
agattttttttttttaatg tccggagaag gaactctcag attactctcc tccctgcaaa 60
acgactattt accacccccc ctttgcttca acttggctcg agcgtcttta acctcaccat 120
tttgaatgtg cgaaaaatga ttaccagtca tctgaggagg gccaaattaa aggtgcacatc 180
gcaagaggag ctctggccctg acatcgctaa ctgagagcag ccctggcgga aaggtgctga 240
tcccggaggt agagcgactg ctgcggctcg agcgggggtgt ctgcgtgccc agcctcactg 300
acaatcgggg aaaatgcaga cgccccagcaa aacgacgca acagaaggct cctcggggg 360
gggntgctgc aggccctgtgg cgtaagatgg ttccgctcta cgccggktga cgggaaaccg 420
cagaagtggg tgtgagggtgt tggttgggg gcaaactctt gtacagtggc gagtgttaggg 480
gaaagccagc gggctccctt gccaagtcaac caaggacacgc agaagaggca gcagtaaaga 540
gcggcagcga agaccccgat accaaccat gtcatctgc gggggccggc gggcgcgacc 600
gtccccggata ggagcgcggc ccgggtccgg gctggacagg gcccaggagg cgaagaaggc 660
ctccccacagc catcaaccccc acccaccatg gccggcgcag caggccaggg acaagccccg 720
ctccctccga agctagagac agagaaaactg aggagctgaa cgcagcaatt tcctcgcccc 780
gaccccccaca ctcccgacag cgaaacaagc cagactgaaa aaaaaaaaaa aaaaactcga 840

<210> 36
<211> 1148
<212> DNA
<213> Homo sapiens

<220>
<221> misc_feature
<222> (820)..(820)
<223> n equals a,t,g, or c

<400> 36
atcagaccat cagaaggatt tgtataaaga gtgactctcc tatgaaggta aaggccaccc 60
ctcttcagtt ccagtgactg agatacattt ttccaaatctt gggggcaaat acagacacag 120
caagttccctt ctccctttt gaaatttggc agtgccttc accagtgagc acaaagccac 180
atttcaaaagg aaactgacaa attatcccc gctgccagaa gaagaaaatcc tcactggacg 240
gcttcctgtt tcctgtgggtt cattatctga ttggctgcag ggatgaaagt tttaagttc 300

```

ataggactga tgatcctcct cacctctgcg tttcagccg gttcaggaca aagtccaaatg	360
actgtgttgt gctccataga ctggttcatg gtcacagtgc accccttcat gctaaacaac	420
gatgtgtgt tacactttca tgaactacac ttgggcctgg gttggcccccc aaaccatgtt	480
cagccacacg cctaccagt cacctaccgt gttactgaat gtggcatcag ggccaaagct	540
gtctctcagg acatggttat ctacagcaact gagatacact actcttctaa gggcacgcca	600
tctaaggttg tgatcccagt gtcatgtgct gccccccaaa agtccccatg gctcaccaag	660
ccctgctcca tgagagtagc cagcaagagc agggccacag ccagaaggat gagaatgtct	720
acgagggttt cagcttgc cagtcagtc aaaggcccaa ctgcgattgt ccaccttgc	780
tcttcagtga agaagagcat acccagggtcc cttgtcacn aagcaggggc tcaggaggct	840
caacctctgc agccatctca ctttcttgat atttctgagg attggctct tcacacagat	900
gatatgattt ggtccatgtg atcctcaggat ttggggcttc ctgaagatgc tatttctaga	960
attatgtat agtgtacaaa tgtctgacaa ataagtgc ttttgaccct catgtgagca	1020
cttttgagaa agagaaacct atagcaactt catgaattaa gccttttct atattttat	1080
attcatgtgt aaacaaaaaa taaaataaaa ttctgatcgc ataaaaaaaaaaaaaaa	1140
ggcgccgc	1148

<210> 37
<211> 1367
<212> DNA
<213> Homo sapiens

<220>
<221> misc_feature
<222> (15)..(15)
<223> n equals a,t,g, or c

<220>
<221> misc_feature
<222> (28)..(28)
<223> n equals a,t,g, or c

<220>
<221> misc_feature
<222> (480)..(480)
<223> n equals a,t,g, or c

<220>
<221> misc_feature
<222> (796)..(796)
<223> n equals a,t,g, or c

<220>
<221> misc_feature
<222> (896)..(896)
<223> n equals a,t,g, or c

<220>
<221> misc_feature
<222> (1243)..(1243)
<223> n equals a,t,g, or c

<400> 37
atgtatacat catanaggca aacggtaacct gacagtaccg gtccgaattc ccgggtcgacc 60
cacgcgtccg tggttctact ctttgactat tatgaataat gctgctaaga acattaatgt 120
acaagttct gtgtggacat atgctttcat ttctcttatt ttcatatattt tccacctagg 180
agtggaaattt ctgggttgc tggtagtgc ttgttaact gttttagaaaa ccaccaaatt 240
atttttgttt tcttttaag atgaggtctc gctatgtgc ccaggctgg tttttttttt 300
tggcctcaag tgatcctccc acctcagcat cccaaagcgc tggattaca ggcattttttttt 360
atgccaccat tacacacccg gccagccacc aaattatattt ccaaagcagc tacaccaccc 420
tacattccca ccagcagtgt atgagcatcc catctctca cacccraca gtaattttgn 480
gtctgtctaa ttactatag ccattcttagt gggtaagaac tcacacacac ttctgtttct 540

tcttggcaat	gcatccatgt	ggagccatgc	tggggcttc	caggactggc	tgactttcac	600
ctccac ttgt	agaaaagaagg	acatactgg	caatactgt	gccccagagc	ttgg tccagg	660
gccttagaact	aaggatgcac	ccctgaatgg	ctcctggatg	gataatggc	tgggtgaggg	720
aggtacatgg	tgagggggat	actggttca	gtgcaattgg	agctcagtga	tatctgaraa	780
rtctggggc	tggganggg	gatgtgcata	tctaaggaca	ccaccacccg	tatgataagg	840
twtagaagar	gcagggtAAC	ctgtgtaraa	atcagctccc	arcctcctgc	tcgganctta	900
ccctcaagga	atgcagaacc	cctgtgtatc	cctttctcct	cctgatata	tttagatatt	960
tatccccacc	aaatcttcat	gttgaattgt	aatcccagt	ttggagatgg	ggcctgggtgg	1020
gaggagttt	ggtcatgggg	gtggacccct	catggcttgg	tgctgtcctc	actgttagtaa	1080
gttctcacaa	gatctaattt	tttaggtgt	tgccacctac	ccccctccac	tctctctc	1140
tttgctcct	gcttttgcta	tatgaggtac	ctgatcctgc	ttcaccgtcc	accatgactg	1200
taagcttctt	gaggcctccc	cagaagccaa	gcagatgcca	gnccatgt	tgtacagcct	1260
gcagaaccat	gaaccaatta	aacctttt	cttataaaaa	aaaaaaaaaa	aaaaaaaaaa	1320
aaaaaaaaaa	aaaaaaaaaa	aaaaaaaaaa	aaaaaaaaaa	ggcgcc		1367

<210> 38

<211> 921

<212> DNA

<213> Homo sapiens

<400> 38

ggcacgagga	cgatgatgtc	atcaaacact	tatatagtgc	ttgtatgcca	ggcactcctc	60
atcacagcta	tgaatcgtgg	tccaccaat	aagtgcacaa	gagtttatct	atttttaaat	120
ctttgccatc	actactaatg	ttgcagcgag	tgttttctt	tacatacatc	cttgcgaaag	180
tgtttggta	tatacctacg	gtagagttcc	ttggttatgt	ggtaccagca	tcttcaccta	240
ccaaacttgt	ccaaatgggt	accccaagt	tttgcgtat	cctgtcagta	tgtgcgaggg	300
gtttttact	ccacatttcc	tcccaaactt	ttttttttt	ttttgacaga	gtctgggctc	360
tgtcgccca	gctagttgca	gtggagctgg	aatcgcgcca	tggcattcca	gttggggca	420
acagagtgag	gcttcatccc	cctccaaagag	aaaagccaaa	ctaataagat	tcaaaatgt	480
aaataataaa	tttgtgtttt	tttatacttt	gcccctatag	tagttcctt	gcctcttcca	540
gtttctgg	gctgccccag	cattccgagc	gtgtggctgc	gaaactccag	tctcccccac	600
cttcacatca	tcttctccat	gtctccttac	cttccttgc	ctctgtctt	aaaagacact	660
gtgatggcat	ttaggaccca	cccagcta	tcagtgttt	ctcatctgca	gatccttgat	720
caagtcacat	ttgcagagac	ctctttca	aataaggtaa	cattccaaa	ttcctggat	780
taagacttga	tatctttgg	ttgtcattat	ttaacctact	acaattggc	ctatccctag	840
gccatgccag	cctgggtgat	aaagcgagac	tctgtctaa	aaaaaaaaaa	aaaaaaaaaa	900
aaaaaaaaaa	aaaaaaaaaa	a				921

<210> 39

<211> 632

<212> DNA

<213> Homo sapiens

<400> 39

tgacgtccac	tgccttgc	ccagcgac	gcctgtcat	cccacccct	gaggaagcat	60
ggggaccta	acaccctgg	cccctgcacc	agacaggccg	ttgtcaggcc	caggccaccg	120
gcccgggtct	gccacagctt	cccacgt	tgctgacat	cgtgtgcct	tgtgtgggt	180
ctgttgcgt	gtcgtgaaac	tgtgaccatc	actcagtcc	aacaagt	tggccctcga	240
ggccacagtt	atgcaactt	cagtgtgt	cataacgac	tcactgctt	ttaactcgat	300
aactctt	tttagtaaaa	tgcccaggag	tcctggaa	tacgcggact	tgcagagg	360
ttattttt	gccttagaaat	ctgcagaaat	taggaggac	cgagcccagc	gcagcagc	420
cgggacccgg	attgcgttt	ccttagcggg	atatgttt	acagatgaat	ataaaatgtt	480
tttttcttt	ggcttttgc	ttcttttgc	cccccttct	caccccttct	tctcccgac	540
cccacccccc	aaaaagcta	cttcttcatt	ccgtggtac	attat	ttaactaaag	600
aaagataaaa	ttctaaaaaa	aaaaaaaaaa	aa			632

<210> 40

<211> 608

<212> DNA

<213> Homo sapiens

<400> 40
 ggtgaagtca tcatgagctt tttccaactc ctgatgaaaa ggaaggaact cattcccttg 60
 gtggtgttca tgactgtggc ggcgggtgga gcctcatctt tcgctgtgtt ttctctttgg 120
 aaaaccgatg tgatccttga tcgaaaaaaaa aatccagaac cttgggaaac tgtggaccct 180
 actgtacctc aaaagcttat aacaatcaac caacaatgga aaccattga agagttgcaa 240
 aatgtccaaa gggtagccaa atgacgagcc ctcgcctt tcttctgaag agtactctat 300
 aaaatctagt gggaaacattt ctggcacaaa mttagattctg gacaccagtg tgccggaaatg 360
 cttctgtac atttttaggg tttgtctaca tttttggc tctggataag gaattaaagg 420
 agtgcagcaa taactgcact gttctaaaag tttgtggctt attttctgt aaatttgaat 480
 attgcatatt gaaatttttgg tttatgatct atgaatgtt ttcttaaaat ttacaaagct 540
 ttgtaaatta gattttctt aataaaatgc catttgcata agatttctca aaaaaaaaaaa 600
 aaaaaaaaaa 608

<210> 41
<211> 877
<212> DNA
<213> Homo sapiens

<400> 41
 ggcacgagaa cttcataaaag atgatttttta aaatgcccg ctctgagtgc aggtcctcag 60
 ctttactcct gaatgtgagc ctcgctgagt ccgaagccgg tcgcaggcct gggaaaccag 120
 ggtggctga ggaggcaacg ggaggcagaa gggccagcag gaaggatggg acccaaggct 180
 aggctgggg gtcagcagca gacatgggtt gaaggggagt gggtcatggg aaggcctgt 240
 gcaggatgga gcccagcagg gatatggaga ggacacaaaag ccaggcagaa ggcgtgtatg 300
 gcagcagaga ggagcaccca ggggcccggc ttggccacag agttagggcc acccaggggc 360
 cgccgcttgg ccacgagtgtt aggcccacgg tgcccttcag cacagtgcac cagggctcgc 420
 cagccaccca ggaccgagac tcgttagtgc gggggctgc agctccttc catccttcc 480
 tgggctgcct ctggccccca tctctccaaa tttagcagggg agctggagcc cctaagaccc 540
 cagcctcaca tcatcctcac gcctctgttgg aggcccacgc cctgctgcac ccgaatctt 600
 tggggcttccc tgaccatggg ctccctgaagt tcgaggcctg tgggtgttcc tctcttcaac 660
 ttgggtgtcgtc cggtgagttt ctgggagggtt tgcgttacta gattctgtgc ttcccttccac 720
 catgggaacc tgaatctct gttttgtttt tttagcatgca ggtaatttcc agccttaca 780
 tctgcctatc agacaaatcc tatcttcata cctcaggcag tatcaccccc aacgtgtggt 840
 ctaaatttgg acttctgtat gcatgaactc acctcga 877

<210> 42
<211> 978
<212> DNA
<213> Homo sapiens

<400> 42
 acgagccaaa acactccctc cgctcccact tcacttagag tcaaggccaa agtctccact 60
 caccatggcc caccgcagtt ggattctcag ctcctccctg ctcctccatc ccatctttt 120
 cctcctccct ccctcctctg cagccacccct agccacacca gggctctaga atctgttccc 180
 tggagatgtc cacgtggctt gtcctctt ctcctccagg tctctgtca gatgccacct 240
 cctctgtgtt gaaagattcc tttagtccac ttaatttttca atctcagtgc ctaccatgtc 300
 ctggcattct ttattattat tattattat atttattatc ttgattttct gtggctccca 360
 gaacaatgca agttcacgag ggaacaggga ttttgcgttgc tcctgtttac agctgcaccc 420
 ccagtgccta caagggtgccc tggcccagag taggtgctca ggacaatttgc ttcaatgaat 480
 aaagaattca accaggtgcg gtggctcaca cctgtaatcc cggcacttttggatgccaag 540
 gtgggttagat cacatgaggtt caggatttcg agaccagcct agccaacatg gtgaaccctg 600
 tctctactaa aaatacagaa attagctggg catggtggcg tgcacctgtca atcccaagct 660
 cttgggaggc tgaggcagga gaactgttttgc aacctggaaag gcccggagggtt gcagtgtgac 720
 aagatcgtgc cactgcactc caacctgaat gacagagccaa gactccatct caaaaactat 780
 ataataataa taataattca accagatgtt gtggctttagt cctgtatcc caacacttttgc 840
 ggaggctgag gcaggaggat tgcttgatc cacgagttca agaccagcct gggcaataaa 900
 acaagacccctc atctttacaa aaaaaaaaaa aaaaaaaaaa aaaaaaaaaa aaaaaaaaaa 960
 aaaaaaaaaa 978

<210> 43
<211> 999

<212> DNA

<213> Homo sapiens

<400> 43

gaattcggca	cgagcaggag	ggcaagtcaa	attttatggg	cctccaagac	tctgcagaag	60
agactcccag	gctgaataca	agccttaggc	cactggaata	tgctggttt	cctaccattc	120
accgtttgg	tacttatcat	ttacatttt	tcctcccaact	ccttcaaccc	cttatttact	180
ctatgtgatt	tttagcaagt	actttacat	ctaaagatat	tttctcatcc	ctaaaataag	240
aacaagggtga	tagagaatca	ctgtaactac	aagtccaata	gaataaggtt	ctatttcaga	300
ttgtctcagc	cttaatattt	agtctactaa	ctgggcaaca	tttagattct	attccaaatt	360
ccctcaaaacc	ctttctaaca	tcaacagact	aattccctta	gccccactcc	ttcctcatta	420
aaataaaaatc	actgggctgg	gcactatggc	tcctgcctgt	aaccccagca	cttcaggagg	480
ccaaggcagg	aggatcactt	gggtaagga	gtttgaaatc	agcctgggga	gcatagtgag	540
accccatctc	taaaaaaaa	aaaagaatta	accgggtgtg	gtggtatgca	tctgtagtcc	600
ctggtactgg	ggaagctggg	gcaggaggat	tgcttgagcc	taggagttt	aggttgcagt	660
gagctatctt	tgttgcagtg	agccatgtt	ttgcaaataa	ccagatctca	ttctttttt	720
tatggctgaa	tagcaactgca	ttgtgtatat	gtaccacata	taccagcctg	tgtgacaggg	780
caagacgtgt	ttctaaaaaa	aaaaattttt	ttttaataact	ctgagttt	ttttcaaaat	840
ctacagtcac	ttttcctaa	taatcaactt	aaaaaaaaat	ttcaaaataa	gcttgaattt	900
ggcccttgc	tctcacaaca	caaaaacacc	atttcccaa	ttacagcaca	gaaaacacac	960
gacattcatt	tctgtttct	gaatttggg	ggcccgta			999

<210> 44

<211> 510

<212> DNA

<213> Homo sapiens

<400> 44

gaattcggca	cagtcttcca	cacttgctt	tcaaggtgat	aaccctgaca	tctgtcaagt	60
gtaatccat	tatgaatata	gcaagagtt	tttactgcca	agtaagaaac	agatttagtt	120
tggccctgg	aatttctgcc	cctccccaa	acagcccatg	taattgcttc	tttttatct	180
ttctttcat	tttgctctc	attttcctc	tcttcaaagg	ccttttgc	acttttgtct	240
tttcttaagt	ttttctttat	cttgccttt	tcttctgtt	gtctcaaatt	ctcacattt	300
gccagtcctt	ctcttgcgt	ctccccgggt	gtaccttgg	cccgaaaca	cgaggagg	360
ttggctgagt	gggtttcgg	tgccgaaacc	tcccggggc	ctcctccag	tgatctcatt	420
gactgattt	gagacggcat	ctcgctccgt	cacccggca	gtggtgcgt	cgtaactcac	480
ccctgcagc	gtggacgctc	ctggactcg				510

<210> 45

<211> 986

<212> DNA

<213> Homo sapiens

<400> 45

ggcacgagct	taagttgaat	tataaaaatg	atggatataa	gtggtagctg	tatctagtga	60
agtgtctgtc	agtaagtgaa	acattttt	gtggtaggtt	atccacaaac	agtttagtt	120
tagaataaaa	cttatgagtg	acatctggaa	agtaaccatg	ctaagatggc	aagcacactg	180
gaaacaatta	ggccacttgg	ctttctttt	ctgtatttt	ttataagct	actttacctc	240
ccagtcctgg	aaacaagttt	tagttttt	ttggtttgg	gactagagcc	aatagtataa	300
tgttctcaaa	ggaaacagac	ttgagtttt	ggatttaggg	aactaacc	acttataatg	360
ttttttttt	gtttttgtcg	tgttagttat	gcactgttt	atttggaaaca	tttgcacta	420
ggggataata	caacattttt	aactctcatt	tgacaaccta	ctactaatca	cagaccacaa	480
gggttaatgac	caaattttat	ttggtttgc	acccatagtt	gtcttagccc	aacttcaaac	540
tcttacgatt	acttgggtaa	cgctctggag	gaccttcctt	gagatccct	atatttaaga	600
tatttgat	cttgaagata	gtataggata	tagagat	ccaaatagga	atataaggag	660
tatgttaaaa	tgaccagata	cctgtttat	agtttactga	cctagcagat	gtgtggaaaa	720
ggaatcagat	cttgattctt	ctgggtttat	actggttgt	aaacagaatg	atacagaaaa	780
tgtttccctt	gtttaactgg	tagttgaaca	tagaacttgg	gtattataga	tcactttca	840
ctttttggaa	tgtttgtat	tgaaacttaa	taaaactta	acatggcaaa	aaaaaaaaaa	900
aaaaaaaaaa	aaaaaaaaaa	aaaaaaaaaa	aaaaaaaaaa	aaaaaaaaaa	aaaaaaaaaa	960
aaaaaaaaaa	aaaaaaaaaa	aaaaaaaaaa	aaaaaaaaaa	aaaaaaaaaa	aaaaaaaaaa	986

<210> 46
<211> 747
<212> DNA
<213> Homo sapiens

<400> 46
catactttc aacattccct tctgtcctt ctttgtttt aaagaaaagct ctgattttgt 60
ttcattttca gctggagact taaatgacac caagcaaagc ctacttagtt tagatctcca 120
gaaattggct ggtggaaaaa aatcaaacat gaagattgca gttttgttt gttttttct 180
gcttattcatt ttcaaactg actttggaaa aaatgaagaa attccttagga agcaaaggag 240
gaagatctac cacagaaggt tgagggaaag ttcaacctca cacaaggcaca gatcaaacag 300
acagcttgaa attcmgcaaa caacagttt tacaccagta gcaagacttc ctattgttaa 360
ctttgattat agcatggagg aaaagttaa atcctttca agtttcctg gagtagaattc 420
aagttataat gtgttaccag gaaagaaggg acactgttg gtaaaggcga taaccatgtta 480
caacaaagct gtgtggcgcg ctgagccctg cactacctgc ctctgctcag atggaagagt 540
tctttgtat gaaaccatgt gccatcccc gaggtgcccc caaacagttt tacctgaagg 600
ggaatgctgc ccggctgtgc cgctactggt acagagctt agctaagcaa aatatcagtg 660
tgtgattaat cttaacttc cattttttt tgttactaat ttttagattaa aattatgata 720
cattaaaaaaaaaaaaaaa aactcga 747

<210> 47
<211> 340
<212> DNA
<213> Homo sapiens

<400> 47
acgagcagca gccctggcat gttcctgccc cacaggaata gaatggaggg agctccagaa 60
actttccatc ccaaaggcag tctccgtggt tgaagcagac tggatttttgc 120
gacccttgc ccctcttga gggagggag ctatgctagg actccaaacct cagggactcg 180
ggtggcctgc gctacttctt ttgatactga aaactttaa ggtgggaggg tggcaaggga 240
tgtgcttaat aatcaatttca agcctcaaa aaaaaaaaaaaaaaaa aaaaaaaaaaaaaaaa 300
aaaaaaaaaaaaaaa aaaaaaaaaaaaaaaa aaaaaaaaaaaaaaaa 340

<210> 48
<211> 567
<212> DNA
<213> Homo sapiens

<400> 48
ggcacgagag catttcctac ctatgtttaa agggacacgc cactgagtcc agcagagaga 60
tcccaatgtc cacactccct cgaaggaaca tggaatccat tggctgggt atggcccgca 120
cagggggcat ggtggtcattc acgggtctgc tctctgtcgc ccatgttccct gctgggtctg 180
ggcttcatca ttgccttggc actgggctcc cgcaagtaag gaggtctgcc cggagcagca 240
gcttctccag gaagccccagg gcaccatcca gctccccagc ccacctgctc ccaggccccca 300
ggcctgtggc tcccttgggt ccctcgctcc tcctctgccc tcctctcccc tagagccctc 360
tcctccctctt gtcctctcc ttggcccccag tgcctcacct tccaaactc cattatttcc 420
ctcaccacccac tcctgtcaga gttgactttc ctcccttaccactttaa acaccccat 480
aacaattttcc ccatccttca gtgaactaag tccctataat aaaggcttag cctgcatttg 540
ccaaaaaaaaaaaaaaa aaaaaaaaaaaaaaaa 567

<210> 49
<211> 1357
<212> DNA
<213> Homo sapiens

<400> 49
agtaggatcc agtctgtggg gctcatttga gggagaatga gcacggggct tttggaggct 60
gcagcctagg gccaagggtt ggaggctcac ctgagtgccag gtttaggcagg tgaagtgtct 120
ccccggaaac caagcttagag tgccccaccc gctcggccct gccttctcgg atcggatcca 180
gcacatccag gcttctcctc ctccccagga accagtggc acagctgagg ccatgtgagt 240

aggatcctga atgaggctt atctctggct gttcgcccc tcgtccaccg tggcaccagc	300
tccctcagcc agccggatg ggaccagcga ctgagagagc cagaggcaga gaggtgaggg	360
tgaccatatac ctggactgtg agaggaatgg gactctggc ctgttagctgc caagcaggtg	420
gcaggtgctc caggctgtga tctgcacccct ctgacccctg acattgacct cctacccctga	480
cccctgcctg accaagccat gtctgaacag gaggctcaag ccccaggggg ccgggggctg	540
cccccgaca tgctggcaga gcaggtggag ctgtgggtt cccagcagcc gcggcgctcg	600
gchgctctgct tcgtcggtgc cgtggccctc gtggcaggct gtggcgccgg cggcgktkgca	660
ctgctgyaa ccamcagcaa gcccgtcarg tgaatggcgg ctaagcaamg ggcactgtgc	720
tctgttgct ggctctsctg gttctggta acagctgatg agctcgctg tcaggacatg	780
aactgcattcc gccaggccca ccatgtggcc ctgctgcga gtggtggagg ggccgacgcc	840
ctcggtgtgc tgctcagtgg cctcgctgctg ctggtcaccc gcctgaccct ggccgggctg	900
gcccggcccc ctgccccctgc tcggccgctg gcckccatgc tgtctgtggg cattgctctg	960
gctgccttgg gctcgcttt gctgctggc ctgctgctgt atcaagtggg tgtgagcgga	1020
cactgcccct ccatctgtat ggccactccc tccacccaca gtggycatgg cggccatggc	1080
agcatcttca gcatctcagg acagttgtct gctggccggc gtcacagac cacatccagc	1140
attgccagsc tcatctgacg gagccagagc cgtccttctt ctcacagcgg ctcagcgtc	1200
cccaragccg agccagggtt tgagtgcattg tgaacgttga gtacacatga gtgcgttat	1260
ccccccaggc tgggtcagct cttctgttga ttgcatggcg tgtgattaaa agtcccatgt	1320
gttcccacac atccaaaaaa aaaaaaaaaa aactcga	1357

<210> 50
<211> 1075
<212> DNA
<213> Homo sapiens

<220>
<221> misc_feature
<222> (79)..(79)
<223> n equals a,t,g, or c

<220>
<221> misc_feature
<222> (604)..(604)
<223> n equals a,t,g, or c

<220>
<221> misc_feature
<222> (656)..(656)
<223> n equals a,t,g, or c

<400> 50	
gtgtcgacg tctcttcgac gtacctgtcc tcaggagccg cggccggcgc tgcgcctcg	60
acggccgtcg gggccgagna accatgagcc ccaggggcac gggctgctcc gccgggctgc	120
tgatgactgt cggtggctg cttctggcgg gcctccagtc cgccgcggg accaacgtca	180
ccgctgccgt ccaggatgcc gcctggccc acgaaggcga gggcgaggag gagaccgaaa	240
acaacgacag cgagaccgcg gagaactacg ctccgcctga aaccgaggat gtttcaaata	300
ggaatgtcgt caaagaagta gaattcgaa tgtgcaccgt tacatgtgg attgggttta	360
gagaagttat attaacaat ggatgccctg gtggtaatm caagtgtgtt gtacgggtar	420
aagaatgccg tggaccaaca gatttgtggct gggtaaacc aatttcagaa agtcttgaaa	480
gtgttagatt ggcattgtatt cacacatctc ccttaatctgt ttcaatatat gtggaactty	540
taagacagac cacaatccat tatacttgc aatgatttag caatcctaga agtacgcaag	600
gaangtcacc ctttgcattt gagtgacca cactggataa taatgaaata gtagcnacta	660
ttaaaattcac agtctatacg agcagtgaat tgcagatgag aagatcaagc ctaccagcca	720
ctgatgcacg cctaattttt gtgtgacca taggagtcat tatctgtgtt ttataattt	780
tcttattgtat cttcataatc ataaattggg cagcagtcaaa ggcttctgg ggggcaaaag	840
cctctacacc tgaggtacaa tccgacgaga gttctgtgag atacaaagat tcaacttctc	900
ttgaccaatt accaacagaa atgcctgggt aagatgtgc tttaagtggaa tggaatgaat	960
gatgttgaa tgatataaa caaaccaaaag gatattacag aatatttagat tcattattac	1020
aaaaataaaa tacacattga aatactttaa aaaaaaaaaa aaaaaaaaaa ctcga	1075

<210> 51

<211> 1025
 <212> DNA
 <213> Homo sapiens

<400> 51

ggcacgaggc	cgaaaagcag	aagggtgcag	tgaagctgag	atggcgctac	tgcagtcag	60
cctggcgac	aggcaagac	tccaccta	aaaaatata	aaaataaagt	gggattcattc	120
caagagctt	gacatgatta	actagtgtca	aggagatatg	tttatgccat	tattatcctc	180
cttacttggt	agggtacaac	agaaacagaa	caacaagggt	acagccttt	gctcaagtca	240
aaaagaaaat	aagtccctca	tcttaggttt	aaagttgttc	attcaggttag	tacagacttg	300
catttggaaag	acttatttctt	gatctctgt	agcttgcaca	gcaaggacat	cactacaatg	360
ggtacagaaa	taacacattc	tgatccttgc	tgagatcctt	gtatgggcct	atcttaaatc	420
tagcctattt	tctgtcttac	ccttgattt	ttataagtgg	aaaacaggaa	aaggctaacc	480
aagcaagagg	aaggcataga	ttcatcttcc	tttcaatctt	gactatagtt	taaagagaat	540
accatgatct	ttctgttcta	ttcttggctt	acttgaatat	ttagccaggt	ctctgcattct	600
tattcagtca	gaaaacagac	acagattcag	ataactcaa	ggatgttact	tgcttgagta	660
atcctggc	ctcgcttta	ctttgttagat	ccaggaacag	aattaagcag	acagttcggt	720
ctacactgcc	aaatttctta	gggaaaaaga	gggcaagtca	gaaggaggaa	gttggcattt	780
ggctcaaatg	accaaattat	ttaaggtctc	tacacttcac	tttgcaccaa	gtagacccaa	840
gaatgattat	aattcagcta	cgtgtgtgg	tgcaagatcag	tagtcctagc	tattcaggag	900
gctgaggcgg	gtggattgg	tgagcccggg	agtttgaggc	tgcaatgggc	tatgatctcg	960
ctgcgcttta	gcctggcaaa	cagaacaaga	ccctgtctca	aattaaaaaaaa	aaaaaaaaaaa	1020
aaaaaa						1025

<210> 52
 <211> 908
 <212> DNA
 <213> Homo sapiens

<400> 52

ggcagagaaa	tatgccaggt	agacaccagc	ccaagtaccc	tcctccagaa	gtctgtgact	60
accttgcac	tactttaggc	ccattccaca	aagcccatct	ctggtttgag	aattcatttt	120
gatctgtatc	tacaccaccc	aaagtttaggc	ctcctataat	gtccaaaaca	ttccttcag	180
ccttttatt	tcttactgt	ctgtcttta	ctgtactgtc	tatctgcagt	aattgaggac	240
ccataaaaatt	tagataacta	catgtcttgc	tcttagaaatt	gtcactcagc	ataatgagca	300
tttaacatac	aaaggcaatg	tactgttttgc	tggtgatcta	tgtaaaagaa	tacaatttt	360
ttttacataa	tttagtggaaat	tttattttt	attagggaaac	actaaaatagt	gtaatatttc	420
tttgcttta	aaaaattcc	ttgttagcaaa	tcaagattaa	ataatkgttt	cattttcttg	480
agcaatactg	aagcaggatg	aagtaagagg	aatgccattc	atttaaacat	gtttgcctt	540
atgaatttttgc	tctctttttt	ggtctctttt	tcttataattc	aagttacaaa	tgtacaagta	600
tccttactaa	gagtgtcct	tttgtatttt	acatatatac	agtatgaaaa	tacattggaa	660
cactagaaaa	gtttttaaat	aacagttcta	atttatacaga	aaattgtgtt	ttgggattga	720
gttcttgc	tcagcccaga	atcccaggtc	ctgggcctgg	ttttctaatg	ctgtcatctc	780
agttcgatata	tttacttttgc	aaccttggaaat	ctcctactta	atatatgacc	atgactttga	840
aaggcaaaag	aggaatcaag	aataaataaaa	acaaacttaa	tcttcatttt	aaaaaaaaaaa	900
aaaaaaa						908

<210> 53
 <211> 1255
 <212> DNA
 <213> Homo sapiens

<220>
 <221> misc_feature
 <222> (1236)..(1237)
 <223> n equals a,t,g, or c

<220>
 <221> misc_feature
 <222> (1255)..(1255)
 <223> n equals a,t,g, or c

<400> 53

gaattcggca	cgagaactct	tggcttccag	gttctagcac	tcattactac	catggacagc	60
agcttcctt	taattcagtg	ggattctgcc	aggcaggct	ccagggagc	tgtgggtct	120
agtacaagtt	tctcccctgt	tgctgctca	gtggcttca	ccctgccccaa	tacatattta	180
atatgacacc	atgtgtctct	ttgtcagtct	cctcatattg	agcctaggaa	ttggcaaaca	240
ctccatgaat	attacacat	tgacttttt	ttaagctctt	aagagaggaa	tatcccttgg	300
agtcctcttt	ggagatttcc	agtgtctcat	catcaagcaa	tatgtcctt	cagctaataa	360
gatctttag	tttcataatc	attgcctaatt	atccaaagat	taaatttaga	ccatggaaag	420
aaaaaaagat	ctcaaagcaa	ctcatgtccc	taaaaggaaa	tcacactcat	caaacaataa	480
cgctgtttc	acacaaagat	attactattt	tctaccttca	gtactggcag	actttaagtg	540
ggatatgaaa	agcctcagct	gctttgaat	gtgggtactt	taccctggta	aacatagatt	600
ccactcttca	gcttggccaa	tgttataat	actcagccct	gcagaaaagc	gtcctacttg	660
gctcttttat	cctccattgg	cttagacagg	aattggggaa	atacgcatgt	cagtattagc	720
aaaatcagca	gcaaaggagc	agargcatat	gaaagtccacc	tcmcaaaggc	aatgcatttt	780
aaccctatcc	ttgaraaaat	atgtgttcc	ytccagaaga	aggaatattc	actccagtgt	840
aaamccactt	aaattatctt	ttccattatc	ttgtttaata	atccaaattc	tttagaggctg	900
atagggttac	accatttat	aggcaaagaa	atggaaaccc	agagagataa	aatgacttcc	960
ccaaattctc	ttagcaaaat	ggagatagaa	tcaaaactga	atcccaatct	ctggtccccca	1020
tttggttaca	atcacagttat	ttttcacaat	attatctcaa	actttaccca	tcgcgtatgag	1080
gttcctggtc	tcgcagctct	ctcacagatg	attttaagcc	aggaaaactg	ctattttta	1140
atgcttattt	ttttctttgt	ttaatatgt	ttcattgttag	agattttgggg	aaaataaaat	1200
gaccaaaaaat	ctaaaaaaaaa	aaaaaaaaaa	actcgnnnggg	gggcccgtac	ccaan	1255

<210> 54

<211> 1142

<212> DNA

<213> Homo sapiens

<220>

<221> misc_feature

<222> (92)..(92)

<223> n equals a,t,g, or c

<400> 54

aattcggcag	agctgcctgg	aagttccagc	tccgagttcc	ctgggaggac	tttttcatag	60
gttagggacc	cgctccagag	ccccctctgg	tncacccctgg	gttcctccag	ccccaccgag	120
tcactcaactg	tgggaccctg	cctctgaata	atcaggaacg	gtggcttcag	agacgtctct	180
tgggccttcc	ctctggccac	gtctgcaccc	accccctsctg	ggcacccctcc	tagcctgcca	240
tccctcacct	gcagccaggg	tctcagggaa	ggtccatgtct	gcttggcctg	agttcaaggc	300
tttctgcctg	tagcctggac	tcccgtggac	ccccgtggc	agttggcttc	cccggtgcac	360
ctccacacccg	cctctgcctg	ccccctgtgg	ctgatgctat	cgccgaccgt	cccacgaccc	420
caccccgagc	tcctgaagcc	ggggctctgag	cctgcacatc	ctctggcctc	tcatccccca	480
ctctcctgag	agcagtggtc	acagccggcc	gccgttctgc	tgagaaggca	gagaggcagg	540
ctcaggccctc	agcgtggaca	gcaggatata	ggggcacgaa	ggacggggac	tcggccctt	600
cagaattcct	caggactctc	aggtgcagct	ttgccaaaaaa	ggaactttc	atgtcatgca	660
gttgaggggc	cttagtctca	atcccaggct	cctcttgact	ctgggcagct	ttaatcaggt	720
tgggcagcct	ctgctacacgc	gtggagtgg	atggctctct	tccctcagcc	acgcccgtt	780
tgaggacaga	ggtggggggag	tgggaagtgg	gaagtccacca	gagaacagga	gagggatttg	840
agggcgcgac	cccagcgctc	tccacggacc	agccagaggg	actggagcca	ggtgtgcac	900
ggttcaaggc	cctggccctg	cccagctct	gttggggag	ctcagccccca	gggttcggtc	960
gtcagcagtt	tcccaagaac	aagatgtgat	ggcatctgt	gctgaaaccc	tgatgaggac	1020
caggccccct	gcaccgctgt	cagcctgagg	aattaaagct	tttgtctgg	gaaraaaaaa	1080
aaaaaaaaaa	aaaaaaaaaa	aaaaaaaaaa	aaaaaaaaaa	aaaaaaaaaa	aaaaaaaaaaac	1140
tc						1142

<210> 55

<211> 1923

<212> DNA

<213> Homo sapiens

```

<220>
<221> misc_feature
<222> (144)..(144)
<223> n equals a,t,g, or c

<220>
<221> misc_feature
<222> (1910)..(1910)
<223> n equals a,t,g, or c

<220>
<221> misc_feature
<222> (1912)..(1912)
<223> n equals a,t,g, or c

<400> 55
aattcggcac agccttatgc cacagtagtg cctgttagcag agaaaaggatt ccctcccca 60
cctcagggcc cactgctgct gctctccagc ctgcagttc ctctaaggct ctggattggc 120
tggaaagagca acagagggcg gggnaaagag cttctatata tacctcagga ggaaaggcat 180
cccagacagt tttgaagttt tcaaagactg gctctgctgt taagaagttg tacttaaagc 240
ggaggagcta accacacctgc caaaaatgtgc aaaggacttg cagcttgc ccactcatgc 300
ctggaaaggg ccaaggagat taagatcaag ttgggaattc tcctccagaa gccagactca 360
gttggtgacc ttgtcattcc gtacaatgag aagccagaga aaccagccaa gaccaggaaa 420
acctcgctgg acgaggccct gcagttgcgt gattccctgg acaaactcct gcagaacaac 480
tatggacttg ccagtttcaa aagttcctg aagtctgaat tcagtgagga aaaccttgag 540
ttctggattt cctgtgagga ttacaagaag atcaagtccc ctgccaagat ggctgagaag 600
gcaaaagcaaa tttatgaaga attcattcaa acggaggcctc ctaaaagaggt gaatattgac 660
cacttcacta aggacatcac aatgaagaac ctggtgaaac cttccctgag cagcttgc 720
atggcccaga aaagaatcca tgccctgatg gaaaaggatt ctctgcctcg ctttgtgc 780
tctgagttt atcaggagtt aatcaagtag taatttagcc aggctatgaa atcatcctgt 840
gagttatttc ctccataata accctgcatt tcccattaat ctacatatct tcccacagca 900
gctttgctca gtgataacca catggaaaaa atccccagggg atgttgctta ctctttgc 960
ccacactgct ttggatactt atctactgtc cgaaggcctc tttcccact caattttcc 1020
tgccctgtta ttaattaaga tatcttcagc ttgtgtcag acacaatcag aatcacagaa 1080
aaatcctgcc taaggccaaag aaatataaga caagactatg atatcaatga atgtgggtta 1140
agtaatagat ttccagctaa attggctaa aaaagaatat taagtgtgga cagacctatt 1200
tcaaaggagc ttaattgatc tcacttgtt tagttctgat ccagggagat caccctcta 1260
attatttctg aacttggta ataaaaagttt ataagattt tatgaagcag ccactgtatg 1320
atatttaag caaatatgtt atttaaaaata ttgatcctc ccttggacca cttcatgtt 1380
agttgggtat tataataag agatacaacc atgaatatat tatgtttata caaaaatcaat 1440
ctgaacacaaa ttccataaaga tttctttt ataccttct cactggcccc ctccacctgc 1500
ccatagtcac caaattctgt tttaaatcaa tgacctaaga tcaacaatga agtattttat 1560
aaatgtattt atgctgctag actgtgggtc aatgtttcc atttcaaat tatttagaat 1620
tcttatgagt ttaaaaattt taaatttcta aatccaatca tgtaaatga aactgttgct 1680
ccattggagt agtctcccac taaaatatca agatggctat atgctaaaaa gagaaaatat 1740
ggtcaagtct aaaatggcta attgtcctat gatgctatta tcatagacta atgacattta 1800
tcttcaaaac accaaattgt cttagaaaaa attaatgtgta ttacaggtag aggccttcta 1860
ggtgagacac tttaaggta cactgcattt tgcaaaaaaa aaaaaaaaaan gnaaaattttt 1920
tgg 1923

<210> 56
<211> 1228
<212> DNA
<213> Homo sapiens

<400> 56
gaattcggca cgagccattt tgggtggga gtgggaggag ctgtgaatta tgacagttct 60
aattaatata attttgtctt tagaaaaaac aggccctgga cagcacttaa accacagtga 120
attggcaattt ctactaaacc tactacaatc taaaacaagt gttaaatatgg ctgattttgt 180
ccaagtgtt aacattaagg taaactctga gactcaacag cagctaaata aaataaacct 240
tcctgctgga attttggcaa caggtggaaaa acagacagat ccatcaacac cacaacagga 300

```

gtcttcgaaa ccgttggag gaattcagcc ttcttctcag accatccagc ctaaagtgg	360
gactgatgct gcccaggcg cgctgcagag tgcatggca gttctgtga ctcaagttat	420
aaaggctcag cagtcaaagc agaaagatgt gctactagaa gagagggaaa atggatccgg	480
acatgaagcg tcattacaac tcaggccact ccagaaccta gcactccgg tgcgggtaag	540
tgtgcagata ccagaccact aacacagctg cattacatkg tctactcagt gttgctgact	600
atatataatg tgtagatgttc agtgacattt cccaaagatg tcctgaagaa tctcagttaa	660
ctggcaatag gtgggtttt cagtcgttt acttccagga atggattctt taacaatta	720
tccatgtgag atagaactca ttrtgaatga taaagatatt tctaaggtaa acctatgg	780
aagaataat atttaactcc aaatacgaaa ggatgcttga ctaaggcata atttatgtac	840
acagtagctt ttgttcctca agcaatgaag tatacgtgaa ttctgcaccc agccgttaatt	900
agctttaaaa agccaattac ggctgggtgc agtggctcac acctgttaatc ccagcacttt	960
gagaagctga agtgggaaga ttgcctgaac ccaggaattc agtacctatc tgcacatgc	1020
agttagaccc tgcctctaaa acaattttt ttaattaact gggcatggta gcacatgc	1080
gtgattccag ctacttggaa ggctgaggtg ggtggatcac ttgagccag gaggtaagg	1140
ctgcagtgag ctgtgatcac tccactgcac tccagtcgg gtgacagagt gagaccgtgt	1200
caccaaaaaaa aaaaaaaaaa aactcgta	1228

<210> 57

<211> 1038

<212> DNA

<213> Homo sapiens

<220>

<221> misc_feature

<222> (2)..(2)

<223> n equals a,t,g, or c

<400> 57

gnaattccgc acgagttaat gtataaaata tttctataat gaattttat gggaaattaga	60
gcatcataga aaaaatgctc ttactgttga aaacattatt tggtacattt tggtcaacta	120
atctttcaat aacttttagt aactataatg ttaagttgtt ccagtggcag tcttataatag	180
taaatggcag ctgacagcat gaaaataaca tatctaataat tttgtgacta tcttatttagg	240
aaaatcagag aatttcaaaa ctttgttagt ttttagggta tagtcacatt ttataaatgt	300
gcggtatatt tatacatgat ttgacgttt tgwaaatatt ttccctggac ttttattttt	360
gatgagatct acagtgtagg caaactata taatctgtca actccattag tgcataatgc	420
agactcatcc ccatgctaaa attatagttt tkaaaataacg ctttgtaaa tagttgtgtt	480
aggtcattat caccaagtct tcaaggkatt acattataaa aaccttggkt ttatttc	540
tgaatamccg tttttccat gcaaagttaa aattcttcag ccttaattt ttttatttaat	600
atataaggat gtgatgagta tgactacaaa acaggaaaaa ataaacagat ttgcgttgc	660
gctttgcta aattgttacc tgacaaaatc tttagccagtt ctccattttgc ttttggat	720
gaagatactt agtttagtc caggggctgg ggcgcatacg tgatgcctgt ggtcccagt	780
ctttggggcc cggaggcagg tggatcactt aaggtcagga gtttggacc agcctgccca	840
acatggtaaa acgttgtctc tactaaaaat acaaaaatc gacaggcgtg gtggcacaca	900
tctgttaattc cagctactca ggaggctaac acaggaaaaat tccttgcacc tgggaggcag	960
aggttgcagt gagccattgc actccagcct gggcaacaca gtgagactct tgcctcaaaa	1020
aaaaaaaaaa aaactcgta	1038

<210> 58

<211> 990

<212> DNA

<213> Homo sapiens

<400> 58

gaattccgc cgagaatttt gaaagaagtt ctactgtgaa taaaaagcta tgaaacagca	60
tcacatacta cagagaaacc ttttggaaa ggaagagcca atagatatgg caaacatcat	120
tgttgtctt ttttcagaaa ttgcgcgcgc taccccgacc ttgcgcgcgc accaccctga	180
tccgtcagca gcccgcacca taaaagcaag gttctctacc agccaaaaga agaaaactct	240
ctgaaggctc aggtgtttt taaaattttt ttagcaataa aatattttt aaagtatgt	300
tattttttagt atgtatgtt actgcataatg taatcagcyt tattatagtg aaaatagaac	360
ttttgtatgtt actggggagac caaaacattt atgtgatataa ctttttgcataatttact	420
tatccatgtt atctggccca aacccgtaaa tatccgcgcgtt gtatatttct ctctggcccc	480

aagtttgtg atattgttg cctacatTTT awttgtacat atgkataaa ctccacactg	540
tacttcygtk atttcattta agctgtcagt tatctttta gagatttaga taaacagaga	600
catgtttta ttcttccat tgctgcttat tcctctgcgt aggttcatat ttcagkcctt	660
ttacttcaag agctctaaaa aaaatgtctt atagtgcagc tctattggta atcgattcct	720
ttagctttg gatgtttaaa aagtgcTTc tttaccttgc cttaattttt gaatgatatt	780
ttgctgagta atattctgag ttggtagtt tctctgacac tgctttttt ttttttttt	840
ttttttttg tcatttgaca cagaatctt cagtgagttg agatcgtgcc actgaactcc	900
agcttggggg acagagcaag actccatctc aaaaaaaaaa aaaaaaaaaa aaaaaaaaaa	960
aaaaaaaaaa aaaaaaaaaa aaaaactcga	990
<210> 59	
<211> 1767	
<212> DNA	
<213> Homo sapiens	
<220>	
<221> misc_feature	
<222> (26)..(26)	
<223> n equals a,t,g, or c	
<220>	
<221> misc_feature	
<222> (68)..(68)	
<223> n equals a,t,g, or c	
<220>	
<221> misc_feature	
<222> (80)..(80)	
<223> n equals a,t,g, or c	
<220>	
<221> misc_feature	
<222> (107)..(107)	
<223> n equals a,t,g, or c	
<220>	
<221> misc_feature	
<222> (1762)..(1762)	
<223> n equals a,t,g, or c	
<400> 59	
aagaaaaaaaaa taggcctgggt tgccanatta aggtccccgt ggctattttt aaccggattt	60
ggataccnag gtctttccan aggccgtatt ttggcccccg taacccttaa aaaaaaaaaa	120
agatttccaa aatgccgtt tcagaacctg ggTTTtaata gcagtattga atttgtaagc	180
tttagtagttg cagaaattga acactaggtg gcactcagtt atcttaacag gggaaagtact	240
gataacaattg ttgacttttcc ttTTactatg tgtaagaaat accccaaaca tgaaaagatt	300
gttttgcata tatgcatagtat tgtagaatat ttggcagag cagaaagatt atgttagaag	360
tgtgattttt attttcagaa gtcataataca tgtaagctac aattttgagt gctttataaa	420
cacttaagat atatatataa atttttaattt catagcaact tgtaaaaaat aaaataacttg	480
ttgaaaagcc ttTTcaaca tatccctaag ctaagggaaag aggaaggaat aacaactcag	540
tgaaaagatg gtctccagtt tctgaatgaa aaagctacag ctgagaaata aaataaaatg	600
tcatgctgca gaatatgtta tacccTTatt ttgtgttaag gatatatttt attatgtgaa	660
tggTTTgtt ttgtttttt gttttgttt ttgtgttgc ttgggaatta gctttactgg	720
taacttccctt atttagtttt tagtggtcaa ctctaataaa atgaaaacttag ggctgagcta	780
gttagccctc actagccaaa ctgaaactct atgcaacatt aaaagaagag atccatcatg	840
tagttgtga cactttatt ttattagtc cggggaaact ttctcgtat gaaaatacac	900
agggtataaa accttcacat ggctcaaaaa ggaaaacaag caaatctt ctaatctact	960
cttactataa ttccctaagt gtacaccaaa ctctggattt aaaaatctga agtactatag	1020
aacattaagt tgaagaatgg aaattaagag tacgtattca tggTTtatTT ttcttattct	1080
atggagttcg tgaacacatc taggtggaaat gcatctgaga ctaaggcgtg gtttttaatc	1140
ctcataagaa accagcctt aagaattaac aattcttccattt attggatattc taaacccctt	1200

aagatattta ggcttctgta	cataaaagtg ttttgctaa	atttacagta tatata	1260
ctttcatatt atttactaa	aatgtttga actttgcata	tttgatata	1320
gaatagcaca gctcaa	acat tagtttctt acttacccc	tctaaca	1380
gagagttct aaaaattcag	ctataacccc agttcatgta	tttactgg	1440
ctgaggtagt aacagccca	tcttggctg ttaa	atcg aatctcg	1500
ataaaaatag ttgggtaaa	tttgcattt atatgcaata	ctacttgg	1560
actaatttgt attaatgtg	gaaattgtat agtttcattt	attha	1620
aatggctcc aagaagttt	attttcatt ttttgctt	tacactctg	1680
acagtgtat aagctatgca	cagaaaataa aatgtttgaa	ttcc	1740
aaaaaaaaaa aaaaaaaaaa	atccaaaaaa aaaaaaaaaa	aaaaaaa	1767
anggggg			

<210> 60
<211> 1625
<212> DNA
<213> Homo sapiens

<220>
<221> misc_feature
<222> (1336)..(1336)
<223> n equals a,t,g, or c

<400> 60

gaattcgcca cgagaatcta	ccagccatga gtgaagtcta	cccttggaa	actgattgt	60
ctcagttcgg ctctaaataa	aatcttcca ttaactctgg	cttccagtgt	tttgta	120
gggagaacca gtcctccaag	ggagagttt gtcagccagc	tgaattgctg	cttcagtgac	180
aaaatgaaat tcactcaa	at tgttctgagc	tttaggacaa	aagaaaatgcc	240
ctgatagtga acttagcaaa	gcaccgttta	aaagaatggc	tctcatcact	300
ttgtcattac tgctcatctg	tgctaagtgc	cactgtctac	ttctgatccc	360
gsctctagcc tttgccttct	gcctaactcc	aagtagagtg	ttcttttat	420
gttcatataa cactttagca	tttacagagt	gtttcacat	gttattgt	480
cacagtcta raaataagga	aaggctgaga	cctaccaaa	tgacagtgtt	540
aggctgagcc ttgaaagcag	gacctctgtc	tcccacatta	gchgcttcatt	600
tctgcaagga caggtgcct	gctggggggc	catggtgca	ctgggtata	660
actgctaata tcctctttt	cttctaggct	gagaacatct	ctaaggamct	720
rtatatccag ggamctattt	tgtca	gttcaat	actaacc	780
tggttagcgt tgattctgga	caaagcgtgg	amctggcyt	ccctgtgt	840
cactgcccac	acatcac	tttttaagta	gtaagaataa	900
aatagctata cattaatcc	gttttagtg	ctgactgg	caggcttccg	960
tctgtctctt tcagtgc	tttgggtt	tggtgg	tttttgaga	1020
gacagagcca gactgtctca	aataaataaa	tatgagataa	tgca	1080
gagagaattt tattaaatgt	gacgaactgc	cccccccccc	cccccagcag	1140
aaatttatgc aaatcttga	cggggttt	cttgcctgc	caggattaaa	1200
ttcttgccac atgccttct	atgccttcca	tggctgg	tcaggagcc	1260
gctgaggagg gatgaaaatg	tcagtgtgt	acgatgcctc	atgggtt	1320
ctgggcacag ctggtn	gtctgccgt	cctcccttcc	ttcc	1380
ggctgctcca gttccatc	cgtggcaagc	cggtagagcc	attcatcccc	1440
tcctgaccct cgtacagttt	caaatgcagc	agacagccaa	agcaatgagt	1500
ggaacttcat ttccaaagg	cagcgc	ggctcctgag	caatgagaat	1560
gtccaccata ttcaaggcca	gcagaagagc	ccgattaaac	cctcg	1620
tgccc				1625

<210> 61
<211> 1588
<212> DNA
<213> Homo sapiens

<400> 61

actggaagat gtagagtgg	aggactgg	gtgaggg	cagagg	agctccccca	60
cccatgcac	ctctcg	cctcg	ctcag	ccctgg	120
tccccc	at	acc	act	tttgc	180
gccc	tttgg	gtc	acac	ccgg	240

tgcattgtgc	caacaataagg	atgacccaag	ggagagggaaa	cctatcctcc	tcaccagaag	300
agcctgtgtt	tttctgctga	acaccactg	ttcctgagga	ctcctgctgg	gaagtcccaa	360
gggatagttc	tagcccttct	gcctgtgtag	acagaagcta	aaccaccagt	ctctctcgga	420
ggaagctgag	acaacatact	ctgtccatac	ataagcaggc	agggagggcc	atgccaccta	480
cccttggcta	aacagggaca	gtgaacacat	tttggttcct	atcccaagtgg	gtaagaggca	540
cttatctctg	gaaaatttgc	ctctcttggg	actctcccc	tcccaggcat	tttccatcc	600
tggaaaggct	cctttggggt	tcagaatcca	gagaccaaacc	cctgaccac	ctccttcctt	660
tcctccagcc	cacgctggtc	tgtccccatg	cttcccaagg	gcttcttcat	gtcagatgca	720
cccaagtccct	tagcccagct	gtgccacctg	caggagttcg	ctcttcgtt	tcttcccttc	780
cccaagaagg	gagggggcta	cttcaggccc	ttctgtgtgt	tgccctggcag	gataacctgt	840
ccaaaccagct	acccacctca	actccccgt	agtttaggac	acaaaacacgc	taccagcggt	900
acagagcggt	gatcaaagcc	gagtacttac	aactctggta	agcctagctt	ctccgcctca	960
gcccttctgc	ttctggaaagg	gctatcctgg	gggtgaacctt	gaaactctca	tcaggctct	1020
gaaaaagctc	tttttcctga	agacagaccc	agcctttgtg	ctctcacccct	ccactctggt	1080
aaagctgcac	ctctggggga	atgaggggct	gcaggaatct	ctggagagcc	tggtgcttca	1140
cgatgctgtc	ctggtgattc	ttgtacctaa	tctggtgtgc	tcaccaatga	gtgaaaggga	1200
tcgtgggtca	gggacaccga	gagagtgagg	tcacttccac	ttcaaacctt	cagtgagggg	1260
gtgggatgga	gagaatgctg	aatctttttt	ttgacgggat	ggggtttttc	tctttgtaat	1320
tatttcttta	gttaattaa	cctttgggtt	gttgtgcaa	tattatatat	tttaaattat	1380
aatgcatctc	cccagagtat	ttttagctg	ggaaaagaaa	aaaggaaaaaa	aagaaaaaaaaa	1440
gattctaaca	gctgttagtt	ttataattaa	aaaagaaaaga	aaaagaact	ttgtcctgaa	1500
cctttacag	acttgcgtt	aacagcatta	aagtgattca	cccgaagctg	aaaaaaaaaa	1560
aaaaaaaaaaa	aaaaaaaaaa	aaactcga				1588

<210> 62
<211> 536
<212> DNA
<213> Homo sapien

```
<220>
<221> misc_feature
<222> (508)..(508).
<223> n equals a,t,g, or c
```

<400> 62						
ggtcgaccca	cgcgtccgcc	cacgcgtccg	gcttccttaa	tgttaattaa	accctggcaa	60
acattctta	gaaaccaaga	ggaaagaaaag	aacaaatatac	aaaaaaagaca	tagaattaa	120
tattgataca	attcacctc	taaaatggat	ttgaagaaaat	gcaactttat	atcaaaaaat	180
gtcatctgat	ttccttgggt	tctttttaa	attatgtaat	cagatgattt	tatgtttttt	240
ttcagggga	gcgaaatatt	ggtttctttt	acttgttgg	ttcagttttc	tctgccattc	300
atgtttcttt	tttgtgttca	gtgttcaaa	tacaatttgt	attnaaggat	tttaaaatac	360
caaactgtaa	ctgagtacag	tggatcgtt	tctgttagga	tgttaatatt	atacaatgaa	420
atctataaaag	tgttgtcaat	ttgattatttg	acacatataa	catgtttaca	aataaaactgt	480
ggtattgtatc	aaaaaaaaaa	aaaaaaaaancc	cccccccccc	ccccggaaaccc	aatccc	536

<210> 63
<211> 660
<212> DNA
<213> *Homo sapiens*

```

<400> 63
gcacgagacc aagcaaagcc tacttagttt agatctccag aaattggctg gtggaaaaaa 60
atcaaacatg aagattgcag ttttggggg tttttttctg cttatcattt ttcaaaactga 120
cttggaaaaa aatgaagaaa ttcccttaggaa gcaaaggagg aagatctacc acagaagggtt 180
gaggaaaaagt tcaacctcac acaaggcacag atcaaacaga cagcttgaa ttccgc当地 240
aacagttttt acaccagtag caagacttcc tattgttaac tttgattata gcatggagga 300
aaagtttgaa tccttc当地 360
aagaaggggac actgtttgggaaatgaaatgt gttaccagga 420
gagccctgca ctacctgc当地 480
catccccaga ggtcccccca aacaggtaata cctgaagggg aatgctgccc ggtctgtccg 540
ctactggtag aqagcttaaq ctaaqaaaa tatcqgtqg tqattaatct ttaacttcca 600

```

tttggggg ttactaattt tagataaaa ttatgataca ttaaaaaaaaaaa aaaaaaaaaaa 660

<210> 64
<211> 1038
<212> DNA
<213> Homo sapiens

<400> 64

ggcacgaggc gcctcgacg	gccgtcgaaa	ccgagaaacc atgagcccc	ggggcacggg	60
ctgctccccc	gggctgctga	tgactgtcg	ctggctgc	120
gcgcgggacc	aacgtcaccc	ctgccc	ggatgccc	180
cgaggaggag	accgaaaaca	acgacagcga	gaccgcggag	240
cgaggatgtt	tcaaata	atstcgtaa	agaagttagaa	300
atgtggatt	ggtgttagag	aagtata	tgccctgg	360
gtgtgttgta	cggtagaa	aatgccc	gaccaacaga	420
tttcagaaag	tcttggaa	gttagattgg	catgtattca	480
tcaaata	gtgaa	ccacaatcca	ttatacttgt	540
gcaatcc	acttc	taagacaaga	ccacaatcca	600
aataatgaaa	tartagcaac	tattaaattc	acagtctata	660
agaagatcaa	gcctacc	cactgatgcc	agcccta	720
cattatctgt	gtatttataa	ttttcttatt	gatcttcata	780
caaggctt	tcgggg	aa	ggcctctac	840
gagataaaa	gattcaactt	ctcttgacca	attaccaaca	900
tgcttaagt	gaatggaa	aatgatgtt	aatgatata	960
cagaatatta	gattcattat	tacaaaata	aaatacacat	1020
aaaaaaaaaa	aaactcg	aaaaaaa	aaaaaaa	1038

<210> 65
<211> 1009
<212> DNA
<213> Homo sapiens

<400> 65

agg	ttgcagt	gaagctgg	atggcgctac	tg	cag	tc	cc	ag	ctt	gg	gc	ac	agg	gc	aa	ga	ac	60	
tcc	ac	c	ct	ca	aa	aa	at	at	aa	at	aa	at	aa	at	aa	at	aa	at	120
aact	akt	gtc	aagg	agat	at	gt	y	m	tc	ca	tat	at	c	tc	t	ct	tc	ta	180
agaa	ac	agaa	ca	aca	agg	tg	ac	gc	ct	tt	gt	ca	ag	tc	aa	at	aa	at	240
tctt	tag	ttt	aag	tt	gtt	ca	tc	at	gt	tt	tt	gt	ca	at	cc	ct	ca	tt	300
ttt	ct	gt	tt	tt	tt	tt	tt	tt	tt	tt	tt	tt	tt	tt	tt	tt	tt	tt	360
tt	tt	tt	tt	tt	tt	tt	tt	tt	tt	tt	tt	tt	tt	tt	tt	tt	tt	tt	420
tt	tt	tt	tt	tt	tt	tt	tt	tt	tt	tt	tt	tt	tt	tt	tt	tt	tt	tt	480
tt	tt	tt	tt	tt	tt	tt	tt	tt	tt	tt	tt	tt	tt	tt	tt	tt	tt	tt	540
tt	tt	tt	tt	tt	tt	tt	tt	tt	tt	tt	tt	tt	tt	tt	tt	tt	tt	tt	600
tt	tt	tt	tt	tt	tt	tt	tt	tt	tt	tt	tt	tt	tt	tt	tt	tt	tt	tt	660
tt	tt	tt	tt	tt	tt	tt	tt	tt	tt	tt	tt	tt	tt	tt	tt	tt	tt	tt	720
tt	tt	tt	tt	tt	tt	tt	tt	tt	tt	tt	tt	tt	tt	tt	tt	tt	tt	tt	780
tt	tt	tt	tt	tt	tt	tt	tt	tt	tt	tt	tt	tt	tt	tt	tt	tt	tt	tt	840
tt	tt	tt	tt	tt	tt	tt	tt	tt	tt	tt	tt	tt	tt	tt	tt	tt	tt	tt	900
tt	tt	tt	tt	tt	tt	tt	tt	tt	tt	tt	tt	tt	tt	tt	tt	tt	tt	tt	960
tt	tt	tt	tt	tt	tt	tt	tt	tt	tt	tt	tt	tt	tt	tt	tt	tt	tt	tt	1020
tt	tt	tt	tt	tt	tt	tt	tt	tt	tt	tt	tt	tt	tt	tt	tt	tt	tt	tt	1038

<210> 66
<211> 34
<212> PRT
<213> Homo sapiens

<220>
<221> SITE
<222> (27)
<223> Xaa equals any amino acid

<400> 66

Met	Ser	Val	Phe	Leu	Leu	Ile	Thr	Leu	Ala	Leu	Ala	Ile	Leu	Tyr	Ile
1				5				10						15	

Ile	Arg	Ser	Ile	Val	Phe	Ser	Leu	Ala	Leu	Xaa	Gln	Asn	Gly	Ser	Leu
				20				25					30		

Gln Gly

<210> 67

<211> 32

<212> PRT

<213> Homo sapiens

<400> 67

Met	Arg	Asn	Lys	Glu	Ser	Leu	Cys	Lys	Val	Val	Leu	Lys	Ala	Leu	Tyr
1				5				10				15			

Ala	Asn	Leu	Leu	Ile	Cys	Val	Ser	Ala	Ser	Ala	Ile	Leu	Val	Gln	Cys
				20			25					30			

<210> 68

<211> 206

<212> PRT

<213> Homo sapiens

<400> 68

Met	Gly	Ala	Glu	Trp	Glu	Leu	Gly	Ala	Glu	Ala	Gly	Gly	Ser	Leu	Leu
1				5				10					15		

Leu	Cys	Ala	Ala	Leu	Leu	Ala	Ala	Gly	Cys	Ala	Leu	Gly	Leu	Arg	Leu
				20			25				30				

Gly	Arg	Gly	Gln	Gly	Ala	Ala	Asp	Arg	Gly	Ala	Leu	Ile	Trp	Leu	Cys
				35			40				45				

Tyr	Asp	Ala	Leu	Val	His	Phe	Ala	Leu	Glu	Gly	Pro	Phe	Val	Tyr	Leu
				50			55				60				

Ser	Leu	Val	Gly	Asn	Val	Ala	Asn	Ser	Asp	Gly	Leu	Ile	Ala	Ser	Leu
65					70				75			80			

Trp	Lys	Glu	Tyr	Gly	Lys	Ala	Asp	Ala	Arg	Trp	Val	Tyr	Phe	Asp	Pro
				85				90			95				

Thr	Ile	Val	Ser	Val	Glu	Ile	Leu	Thr	Val	Ala	Leu	Asp	Gly	Ser	Leu
				100			105				110				

Ala	Leu	Phe	Leu	Ile	Tyr	Ala	Ile	Val	Lys	Glu	Lys	Tyr	Tyr	Arg	His
				115			120				125				

Phe	Leu	Gln	Ile	Thr	Leu	Cys	Val	Cys	Glu	Leu	Tyr	Gly	Cys	Trp	Met
				130			135				140				

Thr Phe Leu Pro Glu Trp Leu Thr Arg Ser Pro Asn Leu Asn Thr Ser
 145 150 155 160
 Asn Trp Leu Tyr Cys Trp Leu Tyr Leu Phe Phe Asn Gly Val Trp
 165 170 175
 Val Leu Ile Pro Gly Leu Leu Leu Trp Gln Ser Trp Leu Glu Leu Lys
 180 185 190
 Lys Met His Gln Lys Glu Thr Ser Ser Val Lys Lys Phe Gln
 195 200 205

<210> 69
 <211> 215
 <212> PRT
 <213> Homo sapiens

<400> 69
 Met Val Ala Asp Trp Leu Gln Gln Ser Tyr Gln Ala Val Lys Glu Lys
 1 5 10 15
 Ser Ser Glu Ala Leu Glu Phe Met Lys Arg Asp Leu Thr Glu Phe Thr
 20 25 30
 Gln Val Val Gln His Asp Thr Ala Cys Thr Ile Ala Ala Thr Ala Ser
 35 40 45
 Val Val Lys Glu Lys Leu Ala Ile Ala Ala Cys Ser Arg Gly Ala Cys
 50 55 60
 Phe Leu Cys Pro Phe Ser Ile Gln Thr Glu Gly Ser Ser Gly Ala Thr
 65 70 75 80
 Glu Lys Met Lys Lys Gly Leu Ser Asp Phe Leu Gly Val Ile Ser Asp
 85 90 95
 Thr Phe Ala Pro Ser Pro Asp Lys Thr Ile Asp Cys Asp Val Ile Thr
 100 105 110
 Leu Met Gly Thr Pro Ser Gly Thr Ala Glu Pro Tyr Asp Gly Thr Lys
 115 120 125
 Ala Arg Leu Tyr Ser Leu Gln Ser Asp Pro Ala Thr Tyr Cys Asn Glu
 130 135 140
 Pro Asp Gly Pro Pro Glu Leu Phe Asp Ala Trp Leu Ser Gln Phe Cys
 145 150 155 160
 Leu Glu Glu Lys Lys Gly Glu Ile Ser Glu Leu Leu Val Gly Ser Pro
 165 170 175
 Ser Ile Arg Ala Leu Tyr Thr Lys Met Val Pro Ala Ala Val Ser His
 180 185 190
 Ser Glu Phe Trp His Arg Tyr Phe Tyr Lys Val His Gln Leu Glu Gln
 195 200 205
 Glu Gln Ala Arg Arg Thr Pro

210

215

<210> 70
<211> 33
<212> PRT
<213> Homo sapiens

<400> 70
Met Arg Leu Leu Leu Pro Ser Leu Leu Gly Gly Leu Ser Val Val Leu Thr
1 5 10 15
Thr Ser Leu Gly Ser Val Ala Gly Leu Arg Asn Ser Arg Ala Ala Trp
20 25 30

Trp

<210> 71
<211> 187
<212> PRT
<213> Homo sapiens

<220>
<221> SITE
<222> (73)
<223> Xaa equals any amino acid

<220>
<221> SITE
<222> (92)
<223> Xaa equals any amino acid

<220>
<221> SITE
<222> (94)
<223> Xaa equals any amino acid

<220>
<221> SITE
<222> (126)
<223> Xaa equals any amino acid

<400> 71
Met Gly Thr Ala Ser Thr Gly Pro Trp Ala Ile Pro Thr Trp Ser Pro
1 5 10 15

Cys Trp Gly Arg Ala Gly Arg Ser Ser Ser Ser Lys Asn Ala Tyr Cys
20 25 30

Arg Pro Gln Met Thr Phe Trp Leu Leu Ala Leu Arg Ser Thr Ser Ser
35 40 45

Glu Thr Ser Ser Met Leu Leu Gln Cys Gly Gly Thr Gly Arg Glu Gly
50 55 60

Trp Leu Ser Val Gln Pro Ala Glu Xaa Val Ser Thr Thr Arg Val Pro
65 70 75 80

Arg Asp His Ile Val Gln Phe Leu Arg Leu Leu Xaa Ser Xaa Phe Ile
85 90 95

Arg Asn Arg Ala Asp Phe Phe Arg His Phe Ile Asp Glu Glu Met Asp
100 105 110

Ile Lys Asp Phe Cys Thr His Glu Val Glu Pro Met Ala Xaa Glu Cys
115 120 125

Asp His Ile Gln Ile Thr Ala Leu Ser Gln Ala Leu Ser Ile Ala Leu
130 135 140

Gln Val Glu Tyr Val Asp Glu Met Asp Thr Ala Leu Asn His His Val
145 150 155 160

Phe Pro Glu Ala Ala Thr Pro Ser Val Tyr Leu Leu Tyr Lys Thr Ser
165 170 175

His Tyr Asn Ile Leu Tyr Ala Ala Asp Lys His
180 185

<210> 72

<211> 48

<212> PRT

<213> Homo sapiens

<400> 72

Met Phe Ala Pro Cys Phe Val Asn Leu Ala Leu Phe Tyr Leu Tyr Ile
1 5 10 15

Asn Ser Cys Asn Leu Leu Asn Leu Thr Ser Ile Asp Pro Phe Gln Gln
20 25 30

Lys Gly Lys Phe Lys Met Gln Thr Leu Leu Phe Ala Lys Glu Asp Ser
35 40 45

<210> 73

<211> 91

<212> PRT

<213> Homo sapiens

<220>

<221> SITE

<222> (79)

<223> Xaa equals any amino acid

<400> 73

Met Gln Cys Ile Arg Trp Thr Val Leu Phe Leu Phe Ile Leu Trp Val
1 5 10 15

Leu Val Phe Val Phe Phe Ala Phe Thr Val Arg Leu Gln Met Ile
20 25 30

Val Leu Ile Thr Tyr Ile Ile Asn Lys Cys Gly Pro Ile Ile Tyr Thr
 35 40 45

Glu Ile Thr Leu Gly Tyr Phe Cys Ile Ile Leu Ser Tyr Cys Leu His
 50 55 60

Ser Ile Asn Phe Ser Arg Asp Asn Cys Leu Cys Val Thr Gly Xaa Lys
 65 70 75 80

Cys Arg Ile Thr Ser Phe Ile Ile Trp Lys Asn
 85 90

<210> 74

<211> 28

<212> PRT

<213> Homo sapiens

<400> 74

Met Val Phe Leu Asn Phe Leu Ile Tyr Leu Leu Leu Val Phe Phe Tyr
 1 5 10 15

Ile Ser Leu Phe His Ser Arg Asp Asn Phe Ile Leu
 20 25

<210> 75

<211> 86

<212> PRT

<213> Homo sapiens

<400> 75

Met Ala Arg His Val Pro Leu Tyr Arg Ala Leu Leu Glu Leu Leu Arg
 1 5 10 15

Ala Ile Ala Ser Cys Ala Ala Met Val Pro Leu Leu Leu Pro Leu Ser
 20 25 30

Thr Glu Asn Gly Glu Glu Glu Glu Gln Ser Glu Cys Gln Thr Ser
 35 40 45

Val Gly Thr Leu Leu Ala Lys Met Lys Thr Cys Val Asp Thr Tyr Thr
 50 55 60

Asn Arg Leu Arg Tyr Tyr Ile Gln Cys Ser Phe Leu Leu Ser Leu Pro
 65 70 75 80

Leu Thr Met Phe Leu Lys
 85

<210> 76

<211> 124

<212> PRT

<213> Homo sapiens

<400> 76

Met Leu Leu Ile Leu Val Thr Pro Val Pro Thr Arg Leu Arg Ala Arg

1

5

10

15

Pro Arg Leu Asp Leu Leu Val Leu Thr Pro Arg Ala Cys Pro Ala Ser
 20 25 30

Arg Val Arg Gly Arg Leu Ser Cys Arg Arg Thr Leu Pro Arg Met Gly
 35 40 45

Pro Ala Ser Cys Ser Ala Leu Ala Thr Asn Ala Ala Pro Gly Pro Pro
 50 55 60

His Pro Ala Gly Pro Ala Phe Ser Ser Ile Ser His Met Ala Thr Thr
 65 70 75 80

Pro Gln Ser Leu Glu Pro Pro Ala Gly Asn Ser Val Pro Gln Ser Leu
 85 90 95

Met Ser Ile Leu Asp Pro Ala Ser Ser Trp Val Pro Lys Ser Ala Ser
 100 105 110

Pro Pro Arg Val Ala Cys Pro Cys Pro Pro Ala Leu
 115 120

<210> 77

<211> 38

<212> PRT

<213> Homo sapiens

<400> 77

Met His Leu Phe Leu Phe Ile Trp Ala Phe Gly Leu Pro Leu His Ile
 1 5 10 15

Ser Arg Asp Leu Ala Phe Phe Phe Leu Leu Tyr Phe Leu Phe Phe Tyr
 20 25 30

Leu Leu Cys Val Leu Leu
 35

<210> 78

<211> 64

<212> PRT

<213> Homo sapiens

<400> 78

Met Asn Ala Ser Cys Ser Leu Ala His Phe Glu His Ser Gly Met Ser
 1 5 10 15

Val Leu Leu Val His Leu Phe Ile Ile Val Ser Thr Val Pro Ser Cys
 20 25 30

Phe Lys Lys Tyr Met Ala Phe Ile Ile Tyr Pro Ala Phe Ser Cys His
 35 40 45

Phe Asn Lys Ser Met Cys Leu Ile Gln Leu Leu His Ser Ser Gln Lys
 50 55 60

<210> 79
 <211> 108
 <212> PRT
 <213> Homo sapiens

<220>
 <221> SITE
 <222> (62)
 <223> Xaa equals any amino acid

<220>
 <221> SITE
 <222> (63)
 <223> Xaa equals any amino acid

<400> 79
 Met Gly Ala Ala Lys Val Trp Gly Glu Val Gly Arg Trp Leu Val Ile
 1 5 10 15

Ala Leu Ile Gln Leu Ala Lys Ala Val Leu Arg Met Leu Leu Leu
 20 25 30

Trp Phe Lys Ala Gly Leu Gln Thr Ser Pro Pro Ile Val Pro Leu Asp
 35 40 45

Arg Glu Thr Arg His Ser Pro Arg Met Val Thr Thr Ala Xaa Xaa Thr
 50 55 60

Met Ser Ser Pro Thr Trp Gly Ser Gly Gln Thr Gly Trp Cys Glu Pro
 65 70 75 80

Ser Arg Thr Arg Arg Pro Cys Thr Pro Gly Thr Gly Glu Leu Pro Ser
 85 90 95

Ser Gly Arg Asp Gly Ser Ser Ser Ile Thr Arg Ser
 100 105

<210> 80
 <211> 43
 <212> PRT
 <213> Homo sapiens

<400> 80
 Met Asp Ile Ala Ala Pro Val Leu Phe Ala Leu Arg Leu Gln Phe Leu
 1 5 10 15

Phe Ile Leu Leu Pro Met His Phe Glu Ile Ser Leu Leu Cys Lys Val
 20 25 30

Ser Thr Glu Thr Ser Gly Arg Glu Asp Lys Met
 35 40

<210> 81

<211> 49
 <212> PRT
 <213> Homo sapiens

<400> 81
 Met Ala Thr Asp Glu Arg Val Leu Arg Lys Ala His Ser Thr Pro Ala
 1 5 10 15

Leu Phe Gln Leu Val Leu Asn Leu Val Gln Cys Pro Ser Pro Ala Ser
 20 25 30

Gly Val Lys Ser His Leu Leu Pro His Lys Glu Arg His Lys Ser Met
 35 40 45

Glu

<210> 82
 <211> 29
 <212> PRT
 <213> Homo sapiens

<220>
 <221> SITE
 <222> (9)
 <223> Xaa equals any amino acid

<220>
 <221> SITE
 <222> (14)
 <223> Xaa equals any amino acid

<400> 82
 Met Gly Val Leu His Leu Leu Ala Xaa Phe Leu Leu Val Xaa Gly Arg
 1 5 10 15

Val Pro Gly Leu Gly Gly Val Pro Gly Gly Gly Glu Gly
 20 25

<210> 83
 <211> 41
 <212> PRT
 <213> Homo sapiens

<400> 83
 Met Ser Tyr Lys Trp Asn Ser Arg Val Cys Phe Leu Trp Ser Arg Thr
 1 5 10 15

Phe His Leu Met Leu Leu Arg Leu Ile Cys Leu Val Ala Tyr Ile Ser
 20 25 30

Thr Glu Val Ile Ser Phe Ile Ala Glu
 35 40

<210> 84

<211> 89
 <212> PRT
 <213> Homo sapiens

<400> 84
 Met Leu Leu Leu Val Tyr Phe Leu Leu Met Ser Val Ile Phe Gly Thr
 1 5 10 15
 Lys Phe Phe Pro Leu Ile Ile His Met Phe Asn Pro Cys Ile Leu Asn
 20 25 30
 Leu Ile Lys Leu Val Phe Ser Leu Met Pro Gly Ser His Gln Thr Pro
 35 40 45
 Asn Val Gln Ala Thr Arg Ala Ser Asp Asp Gly Ser Ala Leu Leu Gly
 50 55 60
 Thr Pro Ser Arg Pro Leu Gly Ser Ile Arg Gln Gln Phe Thr Pro Lys
 65 70 75 80
 Glu Cys Pro Leu Ser Ala Gly Ser Ser
 85

<210> 85
 <211> 108
 <212> PRT
 <213> Homo sapiens

<400> 85
 Met Lys Ala Leu Cys Leu Leu Leu Pro Val Leu Gly Leu Leu Val
 1 5 10 15
 Ser Ser Lys Thr Leu Cys Ser Met Glu Glu Ala Ile Asn Glu Arg Ile
 20 25 30
 Gln Glu Val Ala Gly Ser Leu Ile Phe Arg Ala Ile Ser Ser Ile Gly
 35 40 45
 Leu Glu Cys Gln Ser Val Thr Ser Arg Gly Asp Leu Ala Thr Cys Pro
 50 55 60
 Arg Gly Phe Ala Val Thr Gly Cys Thr Cys Gly Ser Ala Cys Gly Ser
 65 70 75 80
 Trp Asp Val Arg Ala Glu Thr Thr Cys His Cys Gln Cys Ala Gly Met
 85 90 95
 Asp Trp Thr Gly Ala Arg Cys Cys Arg Val Gln Pro
 100 105

<210> 86
 <211> 303
 <212> PRT
 <213> Homo sapiens

<220>
 <221> SITE

<222> (203)

<223> Xaa equals any amino acid

<220>

<221> SITE

<222> (267)

<223> Xaa equals any amino acid

<220>

<221> SITE

<222> (274)

<223> Xaa equals any amino acid

<400> 86

Met	Gly	Ser	Gly	Gly	Asp	Ser	Leu	Leu	Gly	Gly	Arg	Gly	Ser	Leu	Pro
1				5					10					15	

Leu	Leu	Leu	Leu	Leu	Ile	Met	Gly	Gly	Met	Ala	Gln	Asp	Ser	Pro	Pro
						20		25					30		

Gln	Ile	Leu	Val	His	Pro	Gln	Asp	Gln	Leu	Phe	Gln	Gly	Pro	Gly	Pro
					35			40				45			

Ala	Arg	Met	Ser	Cys	Arg	Ala	Ser	Gly	Gln	Pro	Pro	Pro	Thr	Ile	Arg
		50				55				60					

Trp	Leu	Leu	Asn	Gly	Gln	Pro	Leu	Ser	Met	Val	Pro	Pro	Asp	Pro	His
					65		70		75			80			

His	Leu	Leu	Pro	Asp	Gly	Thr	Leu	Leu	Leu	Gln	Pro	Pro	Ala	Arg
					85			90			95			

Gly	His	Ala	His	Asp	Gly	Gln	Ala	Leu	Ser	Thr	Asp	Leu	Gly	Val	Tyr
					100			105				110			

Thr	Cys	Glu	Ala	Ser	Asn	Arg	Leu	Gly	Thr	Ala	Val	Ser	Arg	Gly	Ala
					115		120			125					

Arg	Leu	Ser	Val	Ala	Val	Leu	Arg	Glu	Asp	Phe	Gln	Ile	Gln	Pro	Arg
					130		135			140					

Asp	Met	Val	Ala	Val	Val	Gly	Glu	Gln	Phe	Thr	Leu	Glu	Cys	Gly	Pro
					145		150		155			160			

Pro	Trp	Gly	His	Pro	Glu	Pro	Thr	Val	Ser	Trp	Trp	Lys	Asp	Gly	Lys
					165			170			175				

Pro	Leu	Ala	Leu	Gln	Pro	Gly	Arg	His	Thr	Val	Ser	Gly	Gly	Ser	Leu
					180			185			190				

Leu	Met	Ala	Arg	Ala	Glu	Lys	Ser	Asp	Glu	Xaa	Thr	Tyr	Met	Cys	Val
					195		200			205					

Ala	Thr	Asn	Ser	Ala	Gly	His	Arg	Glu	Ser	Arg	Ala	Ala	Arg	Val	Ser
					210		215			220					

Ile	Gln	Glu	Pro	Gln	Asp	Tyr	Thr	Glu	Pro	Val	Glu	Leu	Leu	Ala	Val
					225		230		235		240				

Arg	Ile	Gln	Leu	Glu	Asn	Val	Thr	Leu	Leu	Asn	Pro	Asp	Pro	Ala	Glu
					245			250			255				

Gly Pro Lys Pro Arg Pro Ala Val Trp Leu Xaa Trp Lys Val Ser Gly
 260 265 270

Pro Xaa Arg Leu Pro Asn Leu Thr Arg Pro Cys Ser Gly Pro Arg Leu
 275 280 285

Pro Arg Glu Ala Arg Glu Leu Arg Gly Gln Arg Arg Asn Thr Gly
 290 295 300

<210> 87
 <211> 56
 <212> PRT
 <213> Homo sapiens

<400> 87
 Met Leu Met Asn Pro Ile Arg Arg Arg Phe Gln Gln Val Pro His Pro
 1 5 10 15

Pro Leu Leu Leu Leu Leu Leu Leu Thr Ala Arg Thr Gly Gly Gly
 20 25 30

Gln Gly Asp Thr Trp Ala Asp Pro Pro Ala Leu Pro Pro Pro His Pro
 35 40 45

Ala Pro His Ile Ile Leu Gln Ser
 50 55

<210> 88
 <211> 30
 <212> PRT
 <213> Homo sapiens

<400> 88
 Met Gln Ser Tyr Ser Leu Val Phe Leu Val Val Tyr Leu Ile Leu Pro
 1 5 10 15

Tyr Ser Ser Phe Lys Glu Asn Ser Ile Phe Ile Thr Val Asn
 20 25 30

<210> 89
 <211> 68
 <212> PRT
 <213> Homo sapiens

<220>
 <221> SITE
 <222> (37)
 <223> Xaa equals any amino acid

<220>
 <221> SITE
 <222> (62)
 <223> Xaa equals any amino acid

<220>
 <221> SITE
 <222> (64)
 <223> Xaa equals any amino acid

<400> 89
 Met Ala Leu Gly Ala Leu Ser Leu Asn Ala Ala Leu Ala Pro Trp Ala
 1 5 10 15
 Ser Ser Pro Gly Pro Asp Leu Pro Ile Leu Lys Glu Lys Gln Pro Leu
 20 25 30
 Ser Ser Tyr Pro Xaa Ser Gly Gly Ala Arg Phe Arg Leu Pro Thr Thr
 35 40 45
 Ser Leu Gly Thr Arg Glu Ser Ser Ser Phe Thr Thr Cys Xaa Val Xaa
 50 55 60
 Gly Ala Gly Leu
 65

<210> 90
 <211> 25
 <212> PRT
 <213> Homo sapiens

<400> 90
 Met Ile Thr Ser His Leu Arg Glu Ala Lys Leu Lys Val His Leu Gln
 1 5 10 15
 Glu Glu Leu Trp Pro Asp Ile Ala Asn
 20 25

<210> 91
 <211> 212
 <212> PRT
 <213> Homo sapiens

<220>
 <221> SITE
 <222> (180)
 <223> Xaa equals any amino acid

<400> 91
 Met Lys Val Phe Lys Phe Ile Gly Leu Met Ile Leu Leu Thr Ser Ala
 1 5 10 15
 Phe Ser Ala Gly Ser Gly Gln Ser Pro Met Thr Val Leu Cys Ser Ile
 20 25 30
 Asp Trp Phe Met Val Thr Val His Pro Phe Met Leu Asn Asn Asp Val
 35 40 45
 Cys Val His Phe His Glu Leu His Leu Gly Leu Gly Cys Pro Pro Asn
 50 55 60
 His Val Gln Pro His Ala Tyr Gln Phe Thr Tyr Arg Val Thr Glu Cys

65

70

75

80

Gly Ile Arg Ala Lys Ala Val Ser Gln Asp Met Val Ile Tyr Ser Thr
 85 90 95

Glu Ile His Tyr Ser Ser Lys Gly Thr Pro Ser Lys Phe Val Ile Pro
 100 105 110

Val Ser Cys Ala Ala Pro Gln Lys Ser Pro Trp Leu Thr Lys Pro Cys
 115 120 125

Ser Met Arg Val Ala Ser Lys Ser Arg Ala Thr Ala Arg Arg Met Arg
 130 135 140

Asn Ala Thr Arg Cys Ser Ala Cys His Ser Pro Val Lys Gly Pro Thr
 145 150 155 160

Ala Ile Val His Leu Val Ser Ser Val Lys Lys Ser Ile Pro Arg Ser
 165 170 175

Leu Val Thr Xaa Ala Gly Ala Gln Glu Ala Gln Pro Leu Gln Pro Ser
 180 185 190

His Phe Leu Asp Ile Ser Glu Asp Trp Ser Leu His Thr Asp Asp Met
 195 200 205

Ile Gly Ser Met
 210

<210> 92

<211> 44

<212> PRT

<213> Homo sapiens

<400> 92

Met Asn Asn Ala Ala Lys Asn Ile Asn Val Gln Val Ser Val Trp Thr
 1 5 10 15

Tyr Ala Phe Ile Ser Leu Ile Phe Ile Leu Phe His Leu Gly Val Glu
 20 25 30

Leu Leu Gly Cys Met Val Val Leu Cys Leu Thr Val
 35 40

<210> 93

<211> 40

<212> PRT

<213> Homo sapiens

<400> 93

Met Ser Ser Asn Thr Tyr Ile Val Leu Val Cys Gln Ala Leu Leu Ile
 1 5 10 15

Thr Ala Met Asn Arg Gly Pro Pro Asn Lys Cys Asn Arg Val Tyr Leu
 20 25 30

Phe Leu Asn Leu Cys His His Tyr

35

40

<210> 94
<211> 115
<212> PRT
<213> Homo sapiens

<400> 94
Met Gln Leu Ser Val Cys Val Ile Thr Thr Ser Leu Leu Phe Asn Ser
1 5 10 15
Ile Thr Leu Tyr Phe Ser Lys Met Pro Arg Ser Pro Gly Ser Tyr Ala
20 25 30
Asp Leu Gln Arg Phe Tyr Phe Leu Ala Leu Glu Ser Ala Glu Ile Arg
35 40 45
Arg His Arg Ala Gln Arg Ser Ser Leu Gly Thr Arg Ile Ala Phe Ala
50 55 60
Leu Ala Gly Tyr Val Tyr Thr Asp Glu Tyr Lys Met Phe Phe Ser Leu
65 70 75 80
Gly Phe Leu Leu Phe Ser Pro Pro Ser His Leu Pro Phe Ser Pro
85 90 95
Thr Pro Pro Pro Lys Lys Ala Thr Ser Ser Phe Arg Gly Thr Ile Ile
100 105 110
Phe Phe Asn
115

<210> 95
<211> 83
<212> PRT
<213> Homo sapiens

<400> 95
Met Ser Phe Phe Gln Leu Leu Met Lys Arg Lys Glu Leu Ile Pro Leu
1 5 10 15
Val Val Phe Met Thr Val Ala Ala Gly Gly Ala Ser Ser Phe Ala Val
20 25 30
Tyr Ser Leu Trp Lys Thr Asp Val Ile Leu Asp Arg Lys Lys Asn Pro
35 40 45
Glu Pro Trp Glu Thr Val Asp Pro Thr Val Pro Gln Lys Leu Ile Thr
50 55 60
Ile Asn Gln Gln Trp Lys Pro Ile Glu Glu Leu Gln Asn Val Gln Arg
65 70 75 80
Val Thr Lys

<210> 96
<211> 49
<212> PRT
<213> Homo sapiens

<400> 96
Met Pro Ser Ser Glu Cys Arg Ser Ser Ala Leu Leu Leu Asn Val Ser
1 5 10 15

Leu Ala Glu Ser Glu Ala Gly Arg Arg Pro Gly Lys Pro Gly Trp Ala
20 25 30

Glu Glu Ala Thr Gly Gly Arg Arg Ala Ser Arg Lys Asp Gly Thr Gln
35 40 45

Gly

<210> 97
<211> 34
<212> PRT
<213> Homo sapiens

<400> 97
Met Ala His Arg Ser Trp Ile Leu Ser Ser Ser Leu Leu Pro Ile Pro
1 5 10 15

Ile Phe Phe Leu Leu Pro Pro Ser Ser Ala Ala Thr Leu Ala Thr Pro
20 25 30

Gly Ser

<210> 98
<211> 44
<212> PRT
<213> Homo sapiens

<400> 98
Met Leu Val Phe Leu Pro Phe Thr Val Leu Val Leu Ile Ser Tyr Ile
1 5 10 15

Phe Ser Ser His Ser Phe Asn Pro Leu Phe Thr Leu Cys Asp Phe Glu
20 25 30

Gln Val Leu Leu His Leu Lys Ile Phe Ser His Pro
35 40

<210> 99
<211> 42
<212> PRT
<213> Homo sapiens

<400> 99

Met Ala Leu Val Ile Ser Ala Pro Pro Pro Asn Ser Pro Cys Asn Cys
 1 5 10 15

Phe Phe Phe Ile Phe Leu Phe Ile Leu Pro Leu Ile Phe Pro Leu Phe
 20 25 30

Lys Gly Leu Phe Ala Thr Phe Val Phe Phe
 35 40

<210> 100

<211> 44

<212> PRT

<213> Homo sapiens

<400> 100

Met Ala Ser Thr Leu Glu Thr Ile Arg Pro Leu Gly Phe Leu Leu Leu
 1 5 10 15

Tyr Cys Phe Ile Ser Leu Leu Tyr Leu Pro Val Leu Glu Thr Ser Phe
 20 25 30

Ser Phe Leu Leu Val Trp Arg Leu Glu Pro Ile Val
 35 40

<210> 101

<211> 165

<212> PRT

<213> Homo sapiens

<220>

<221> SITE

<222> (56)

<223> Xaa equals any amino acid

<400> 101

Met Lys Ile Ala Val Leu Phe Cys Phe Phe Leu Leu Ile Ile Phe Gln
 1 5 10 15

Thr Asp Phe Gly Lys Asn Glu Glu Ile Pro Arg Lys Gln Arg Arg Lys
 20 25 30

Ile Tyr His Arg Arg Leu Arg Lys Ser Ser Thr Ser His Lys His Arg
 35 40 45

Ser Asn Arg Gln Leu Gly Ile Xaa Gln Thr Thr Val Phe Thr Pro Val
 50 55 60

Ala Arg Leu Pro Ile Val Asn Phe Asp Tyr Ser Met Glu Glu Lys Phe
 65 70 75 80

Glu Ser Phe Ser Ser Phe Pro Gly Val Glu Ser Ser Tyr Asn Val Leu
 85 90 95

Pro Gly Lys Lys Gly His Cys Leu Val Lys Gly Ile Thr Met Tyr Asn
 100 105 110

Lys Ala Val Trp Ser Pro Glu Pro Cys Thr Thr Cys Leu Cys Ser Asp

115

120

125

Gly Arg Val Leu Cys Asp Glu Thr Met Cys His Pro Gln Arg Cys Pro
 130 135 140

Gln Thr Val Ile Pro Glu Gly Glu Cys Cys Pro Val Cys Pro Leu Leu
 145 150 155 160

Val Gln Ser Phe Ser
 165

<210> 102

<211> 62

<212> PRT

<213> Homo sapiens

<400> 102

Met Leu Gly Leu Gln Pro Gln Gly Leu Gly Trp Pro Ala Leu Leu Leu
 1 5 10 15

Leu Ile Leu Lys Thr Phe Lys Val Gly Gly Trp Gln Gly Met Cys Leu
 20 25 30

Ile Asn Gln Phe Gln Ala Ser Lys Lys Lys Lys Lys Lys Lys Lys Lys
 35 40 45

Lys
 50 55 60

<210> 103

<211> 74

<212> PRT

<213> Homo sapiens

<400> 103

Met Val Val Ile Thr Val Leu Leu Ser Val Ala His Val Pro Ala Gly
 1 5 10 15

Ala Gly Leu His His Cys Pro Gly Thr Gly Leu Pro Gln Val Arg Arg
 20 25 30

Ser Ala Arg Ser Ser Ser Phe Ser Arg Lys Pro Arg Ala Pro Ser Ser
 35 40 45

Ser Pro Ala His Leu Leu Pro Gly Pro Arg Pro Val Ala Pro Leu Val
 50 55 60

Pro Ser Leu Leu Leu Cys Pro Pro Leu Pro
 65 70

<210> 104

<211> 73

<212> PRT

<213> Homo sapiens

<220>
 <221> SITE
 <222> (71)
 <223> Xaa equals any amino acid

<400> 104
 Met Leu Ser Val Gly Ile Ala Leu Ala Ala Leu Gly Ser Leu Leu
 1 5 10 15
 Leu Gly Leu Leu Tyr Gln Val Gly Val Ser Gly His Cys Pro Ser
 20 25 30
 Ile Cys Met Ala Thr Pro Ser Thr His Ser Gly His Gly Gly His Gly
 35 40 45
 Ser Ile Phe Ser Ile Ser Gly Gln Leu Ser Ala Gly Arg Arg His Glu
 50 55 60
 Thr Thr Ser Ser Ile Ala Xaa Leu Ile
 65 70

<210> 105
 <211> 163
 <212> PRT
 <213> Homo sapiens

<220>
 <221> SITE
 <222> (106)
 <223> Xaa equals any amino acid

<220>
 <221> SITE
 <222> (113)
 <223> Xaa equals any amino acid

<400> 105
 Met Ser Pro Arg Gly Thr Gly Cys Ser Ala Gly Leu Leu Met Thr Val
 1 5 10 15
 Gly Trp Leu Leu Ala Gly Leu Gln Ser Ala Arg Gly Thr Asn Val
 20 25 30
 Thr Ala Ala Val Gln Asp Ala Gly Leu Ala His Glu Gly Glu Gly
 35 40 45
 Glu Glu Thr Glu Asn Asn Asp Ser Glu Thr Ala Glu Asn Tyr Ala Pro
 50 55 60
 Pro Glu Thr Glu Asp Val Ser Asn Arg Asn Val Val Lys Glu Val Glu
 65 70 75 80
 Phe Gly Met Cys Thr Val Thr Cys Gly Ile Gly Val Arg Glu Val Ile
 85 90 95
 Leu Thr Asn Gly Cys Pro Gly Gly Glu Xaa Lys Cys Val Val Arg Val
 100 105 110
 Xaa Glu Cys Arg Gly Pro Thr Asp Cys Gly Trp Gly Lys Pro Ile Ser

115

120

125

Glu Ser Leu Glu Ser Val Arg Leu Ala Cys Ile His Thr Ser Pro Leu
 130 135 140

Ile Val Ser Ile Tyr Val Glu Leu Leu Arg Gln Thr Thr Ile His Tyr
 145 150 155 160

Thr Cys Lys

<210> 106

<211> 54

<212> PRT

<213> Homo sapiens

<400> 106

Met Phe Met Pro Leu Leu Ser Ser Leu Leu Gly Arg Val Gln Gln Lys
 1 5 10 15

Gln Asn Asn Lys Val Thr Ala Phe Cys Ser Ser Gln Lys Glu Asn Lys
 20 25 30

Ser Leu Ile Leu Gly Leu Lys Leu Phe Ile Gln Val Val Gln Thr Cys
 35 40 45

Ile Trp Lys Thr Tyr Ser
 50

<210> 107

<211> 25

<212> PRT

<213> Homo sapiens

<400> 107

Met Ser Lys Thr Phe Leu Ser Ala Phe Leu Phe Leu Thr Val Leu Ser
 1 5 10 15

Leu Thr Val Leu Ser Ile Cys Ser Asn
 20 25

<210> 108

<211> 27

<212> PRT

<213> Homo sapiens

<400> 108

Met Cys Leu Phe Val Ser Leu Leu Ile Leu Ser Leu Gly Ile Gly Lys
 1 5 10 15

His Ser Met Asn Ile Tyr Thr Leu Thr Phe Phe
 20 25

<210> 109
<211> 61
<212> PRT
<213> Homo sapiens

<400> 109
Met Gln Leu Arg Gly Leu Ser Leu Asn Pro Arg Leu Leu Leu Thr Leu
1 5 10 15
Gly Ser Phe Asn Gln Val Gly Gln Pro Leu Leu Gln Arg Gly Val Gly
20 25 30
Trp Leu Ser Ser Leu Ser His Ala Ala Cys Glu Asp Arg Gly Gly Gly
35 40 45
Val Gly Ser Gly Lys Ser Pro Glu Asn Arg Arg Gly Ile
50 55 60

<210> 110
<211> 50
<212> PRT
<213> Homo sapiens

<400> 110
Met Leu Leu Thr Leu Phe Ala His Thr Ala Leu Asp Thr Tyr Leu Leu
1 5 10 15
Ser Glu Ala Phe Phe Pro His Ser Ile Leu Pro Ala Leu Leu Leu Ile
20 25 30
Lys Ile Ser Ser Ala Cys Ser Gln Thr Gln Ser Glu Ser Gln Lys Asn
35 40 45
Pro Ala
50

<210> 111
<211> 170
<212> PRT
<213> Homo sapiens

<400> 111
Met Thr Val Leu Ile Asn Ile Ile Leu Ser Leu Val Lys Thr Gly Pro
1 5 10 15
Gly Gln His Leu Asn His Ser Glu Leu Ala Ile Leu Leu Asn Leu Leu
20 25 30
Gln Ser Lys Thr Ser Val Asn Met Ala Asp Phe Val Gln Val Leu Asn
35 40 45
Ile Lys Val Asn Ser Glu Thr Gln Gln Gln Leu Asn Lys Ile Asn Leu
50 55 60
Pro Ala Gly Ile Leu Ala Thr Gly Glu Lys Gln Thr Asp Pro Ser Thr
65 70 75 80

Pro Gln Gln Glu Ser Ser Lys Pro Leu Gly Gly Ile Gln Pro Ser Ser
85 90 95

Gln Thr Ile Gln Pro Lys Val Glu Thr Asp Ala Ala Gln Ala Ala Val
100 105 110

Gln Ser Ala Phe Ala Val Leu Leu Thr Gln Leu Ile Lys Ala Gln Gln
115 120 125

Ser Lys Gln Lys Asp Val Leu Leu Glu Glu Arg Glu Asn Gly Ser Gly
130 135 140

His Glu Ala Ser Leu Gln Leu Arg Pro Leu Gln Asn Leu Ala Leu Arg
145 150 155 160

Cys Arg Val Ser Val Gln Ile Pro Asp His
165 170

<210> 112

<211> 39

<212> PRT

<213> Homo sapiens

<400> 112

Met	Leu	Leu	Leu	Leu	Lys	Thr	Leu	Phe	Val	Thr	Phe	Trp	Ser	Thr	Asn
1					5					10				15	

Leu Ser Ile Thr Phe Ser Asn Tyr Asn Val Lys Leu Tyr Gln Trp Gln
20 25 30

Ser Tyr Ile Val Asn Gly Ser
35

<210> 113

<211> 64

<212> PRT

<213> Homo sapiens

<400> 113

Met Lys Gln His His Ile Leu Gln Arg Asn Leu Leu Gly Lys Glu Glu
1 5 10 15

Pro Ile Asp Met Ala Asn Ile Ile Val Val Leu Phe Ser Glu Ile Ala
20 25 30

Ala Ala Thr Pro Ala Phe Ser Ser His His Pro Asp Pro Ser Ala Ala
35 40 45

Ser Asn Ile Lys Ala Arg Phe Ser Thr Ser Gln Lys Lys Lys Thr Leu
50 55 60

<210> 114

<211> 27
 <212> PRT
 <213> Homo sapiens

<400> 114
 Met Val Leu Phe Leu Phe Phe Val Phe Val Phe Cys Leu Tyr Trp Glu
 1 5 10 15
 Leu Ala Leu Leu Val Thr Ser Leu Phe Ser Phe
 20 25

<210> 115
 <211> 70
 <212> PRT
 <213> Homo sapiens

<220>
 <221> SITE
 <222> (60)
 <223> Xaa equals any amino acid

<400> 115
 Met Glu Phe Thr Gln Ile Val Leu Ser Phe Arg Thr Lys Glu Met Pro
 1 5 10 15

Val Ile Phe Leu Ile Val Asn Leu Ala Lys His Arg Leu Lys Glu Trp
 20 25 30

Leu Ser Ser Leu Pro Ser Thr Leu Ser Leu Leu Ile Cys Ala Lys
 35 40 45

Cys His Cys Leu Leu Ile Pro Lys Thr Val Xaa Ser Ser Leu Cys
 50 55 60

Leu Leu Pro Asn Ser Lys
 65 70

<210> 116
 <211> 21
 <212> PRT
 <213> Homo sapiens

<400> 116
 Gly Ala Ala Gly Ile Ser Gly Glu Pro Gly Ala Ser Arg Cys Cys Ser
 1 5 10 15
 Gly Asp Ser Cys Thr
 20

<210> 117
 <211> 55
 <212> PRT
 <213> Homo sapiens

<400> 117

Met Ser Ser Asp Phe Leu Cys Phe Phe Phe Lys Leu Cys Asn Gln Met
 1 5 10 15

Ile Leu Cys Phe Phe Arg Gly Ala Glu Tyr Trp Phe Leu Leu Leu
 20 25 30

Val Val Phe Ser Phe Leu Cys His Ser Cys Phe Phe Phe Val Phe Ser
 35 40 45

Val Ser Asn Thr Ile Cys Ile
 50 55

<210> 118
 <211> 88
 <212> PRT
 <213> Homo sapiens

<400> 118
 Met Lys Ile Ala Val Leu Phe Cys Phe Phe Leu Leu Ile Ile Phe Gln
 1 5 10 15

Thr Asp Phe Gly Lys Asn Glu Glu Ile Pro Arg Lys Gln Arg Arg Lys
 20 25 30

Ile Tyr His Arg Arg Leu Arg Lys Ser Ser Thr Ser His Lys His Arg
 35 40 45

Ser Asn Arg Gln Leu Gly Ile Pro Gln Thr Thr Val Phe Thr Pro Val
 50 55 60

Ala Arg Leu Pro Ile Val Asn Phe Asp Tyr Ser Met Glu Glu Lys Phe
 65 70 75 80

Glu Ser Phe Gln Val Phe Leu Glu
 85

<210> 119
 <211> 124
 <212> PRT
 <213> Homo sapiens

<220>
 <221> SITE
 <222> (75)
 <223> Xaa equals any amino acid

<400> 119
 Met Ser Pro Arg Gly Thr Gly Cys Ser Ala Gly Leu Leu Met Thr Val
 1 5 10 15

Gly Trp Leu Leu Ala Gly Leu Gln Ser Ala Arg Gly Thr Asn Val
 20 25 30

Thr Ala Ala Val Gln Asp Ala Gly Leu Ala His Glu Gly Glu Gly Glu
 35 40 45

Glu Glu Thr Glu Asn Asn Asp Ser Glu Thr Ala Glu Asn Tyr Ala Pro

50	55	60																					
Ser Glu Thr Glu Asp Val Ser Asn Arg Asn Xaa Val Lys Glu Val Glu																							
65	70	75			80	Phe Gly Met Cys Thr Val Thr Cys Gly Ile Gly Val Arg Glu Val Ile			85	90	95	Leu Thr Asn Gly Cys Pro Gly Gly Glu Ser Lys Cys Val Val Arg Val			100	105	110	Glu Glu Cys Pro Trp Thr Asn Arg Leu Trp Leu Gly			115	120	
		80																					
Phe Gly Met Cys Thr Val Thr Cys Gly Ile Gly Val Arg Glu Val Ile																							
85	90	95																					
Leu Thr Asn Gly Cys Pro Gly Gly Glu Ser Lys Cys Val Val Arg Val																							
100	105	110																					
Glu Glu Cys Pro Trp Thr Asn Arg Leu Trp Leu Gly																							
115	120																						

<210> 120
<211> 34
<212> PRT
<213> Homo sapiens

<400> 120
Pro Leu Leu Ser Ser Leu Leu Gly Arg Val Gln Gln Lys Gln Asn Asn
1 5 10 15
Lys Val Thr Ala Phe Cys Ser Ser Gln Lys Glu Asn Lys Ser Leu Ile
20 25 30
Leu Val

<210> 121
<211> 19
<212> PRT
<213> Homo sapiens

<400> 121
Gly Thr Pro Gly Val Ser Thr His Ile Trp Gly Lys Pro Asp Pro Gln
1 5 10 15
Val Thr Asp

<210> 122
<211> 206
<212> PRT
<213> Homo sapiens

<400> 122
Met Gly Ala Glu Trp Glu Leu Gly Ala Glu Ala Gly Gly Ser Leu Leu
1 5 10 15
Leu Cys Ala Ala Leu Leu Ala Ala Gly Cys Ala Leu Gly Leu Arg Leu
20 25 30
Gly Arg Gly Gln Gly Ala Ala Asp Arg Gly Ala Leu Ile Trp Leu Cys
35 40 45

Tyr Asp Ala Leu Val His Phe Ala Leu Glu Gly Pro Phe Val Tyr Leu
 50 55 60
 Ser Leu Val Gly Asn Val Ala Asn Ser Asp Gly Leu Ile Ala Ser Leu
 65 70 75 80
 Trp Lys Glu Tyr Gly Lys Ala Asp Ala Arg Trp Val Tyr Phe Asp Pro
 85 90 95
 Thr Ile Val Ser Val Glu Ile Leu Thr Val Ala Leu Asp Gly Ser Leu
 100 105 110
 Ala Leu Phe Leu Ile Tyr Ala Ile Val Lys Glu Lys Tyr Tyr Arg His
 115 120 125
 Phe Leu Gln Ile Thr Leu Cys Val Cys Glu Leu Tyr Gly Cys Trp Met
 130 135 140
 Thr Phe Leu Pro Glu Trp Leu Thr Arg Ser Pro Asn Leu Asn Thr Ser
 145 150 155 160
 Asn Trp Leu Tyr Cys Trp Leu Tyr Leu Phe Phe Asn Gly Val Trp
 165 170 175
 Val Leu Ile Pro Gly Leu Leu Leu Trp Gln Ser Trp Leu Glu Leu Lys
 180 185 190
 Lys Met His Gln Lys Glu Thr Ser Ser Val Lys Lys Phe Gln
 195 200 205

<210> 123
 <211> 55
 <212> PRT
 <213> Homo sapiens

<400> 123
 Met Asn Gln Ile Phe Leu Phe Gly Gln Asn Val Ile His Ser Ser Leu
 1 5 10 15
 His Phe Val Phe Val Leu Leu Leu Asn Asn Leu Phe Gln Ile Gly
 20 25 30
 Phe Lys Ala Thr Ser Phe Arg Cys Ile Val Val Gln Leu Asn Gly Asp
 35 40 45
 Ile Gly Lys Arg Glu Gln Ile
 50 55

<210> 124
 <211> 202
 <212> PRT
 <213> Homo sapiens

<220>
 <221> SITE
 <222> (23)

<223> Xaa equals any amino acid

<400> 124

Ser	Pro	Ser	Val	Arg	Ala	Gly	Ala	Gly	Pro	Glu	Asp	Ala	Leu	Lys	Gln
1				5					10					15	

Arg	Ala	Glu	Gln	Ser	Ile	Xaa	Glu	Glu	Pro	Gly	Trp	Glu	Glu	Glu	Glu
				20			25					30			

Glu	Glu	Leu	Met	Gly	Ile	Ser	Pro	Ile	Ser	Pro	Lys	Glu	Ala	Lys	Val
				35			40				45				

Pro	Val	Ala	Lys	Ile	Ser	Thr	Phe	Pro	Glu	Gly	Glu	Pro	Gly	Pro	Gln
	50				55				60						

Ser	Pro	Cys	Glu	Glu	Asn	Leu	Val	Thr	Ser	Val	Glu	Pro	Pro	Ala	Glu
	65				70				75			80			

Val	Thr	Pro	Ser	Glu	Ser	Ser	Glu	Ser	Ile	Ser	Leu	Val	Thr	Gln	Ile
				85					90				95		

Ala	Asn	Pro	Ala	Thr	Ala	Pro	Glu	Ala	Arg	Val	Leu	Pro	Lys	Asp	Leu
	100				105					110					

Ser	Gln	Lys	Leu	Leu	Glu	Ala	Ser	Leu	Glu	Gln	Gly	Leu	Ala	Val
	115				120					125				

Asp	Val	Gly	Glu	Thr	Gly	Pro	Ser	Pro	Pro	Ile	His	Ser	Lys	Pro	Leu
	130				135					140					

Thr	Pro	Ala	Gly	His	Arg	Phe	Trp	Trp	Leu	Pro	Ala	Gly	Pro	Leu	Gly
	145				150				155			160			

Pro	Leu	Leu	Thr	Pro	Gly	Lys	Gly	Leu	Ser	Lys	Ser	Arg	Pro	Glu	Thr
	165							170				175			

Leu	Thr	Cys	Ala	Asn	Asn	Arg	Met	Thr	Gln	Gly	Arg	Gly	Asn	Leu	Ser
				180				185			190				

Ser	Ser	Pro	Glu	Glu	Pro	Val	Phe	Phe	Cys					
	195				200									

<210> 125

<211> 24

<212> PRT

<213> Homo sapiens

<220>

<221> SITE

<222> (15)

<223> Xaa equals any amino acid

<400> 125

Gly	Pro	Glu	Asp	Ala	Leu	Lys	Gln	Arg	Ala	Glu	Gln	Ser	Ile	Xaa	Glu
1				5				10				15			

Glu	Pro	Gly	Trp	Glu	Glu	Glu								
				20										

<210> 126
<211> 24
<212> PRT
<213> Homo sapiens

<400> 126
Ala Lys Val Pro Val Ala Lys Ile Ser Thr Phe Pro Glu Gly Glu Pro
1 5 10 15
Gly Pro Gln Ser Pro Cys Glu Glu
20

<210> 127
<211> 23
<212> PRT
<213> Homo sapiens

<400> 127
Pro Ala Glu Val Thr Pro Ser Glu Ser Ser Glu Ser Ile Ser Leu Val
1 5 10 15
Thr Gln Ile Ala Asn Pro Ala
20

<210> 128
<211> 26
<212> PRT
<213> Homo sapiens

<400> 128
Leu Ser Gln Lys Leu Leu Glu Ala Ser Leu Glu Glu Gln Gly Leu Ala
1 5 10 15
Val Asp Val Gly Glu Thr Gly Pro Ser Pro
20 25

<210> 129
<211> 27
<212> PRT
<213> Homo sapiens

<400> 129
Trp Leu Pro Ala Gly Pro Leu Gly Pro Leu Leu Thr Pro Gly Lys Gly
1 5 10 15
Leu Ser Lys Ser Arg Pro Glu Thr Leu Thr Cys
20 25

<210> 130
<211> 229
<212> PRT

<213> Homo sapiens

<220>

<221> SITE

<222> (117)

<223> Xaa equals any amino acid

<220>

<221> SITE

<222> (195)

<223> Xaa equals any amino acid

<400> 130

Ile	Gly	Gly	Glu	Gly	Pro	Val	Ser	Pro	Thr	Ser	Thr	Ala	Arg	Pro	Cys
1															15

Ser	Ser	Lys	Asp	Ala	Ser	Ser	Ser	Phe	Trp	Asp	Arg	Ser	Leu	Gly	Ser
															30
					20				25						

Thr	Arg	Ala	Ser	Gly	Ala	Val	Ala	Gly	Leu	Ala	Ile	Cys	Val	Thr	Arg
															45
					35			40							

Glu	Met	Leu	Ser	Leu	Leu	Ser	Asp	Gly	Val	Thr	Ser	Ala	Gly	Gly	Ser
															60
					50		55								

Thr	Glu	Val	Thr	Arg	Phe	Ser	Ser	Gln	Gly	Leu	Trp	Gly	Pro	Gly	Ser
															80
					65		70		75						

Pro	Ser	Gly	Asn	Val	Glu	Ile	Leu	Ala	Thr	Gly	Thr	Phe	Ala	Ser	Phe
															95
					85			90							

Gly	Asp	Met	Gly	Glu	Met	Pro	Met	Ser	Ser	Ser	Ser	Ser	Ser	Gln	
															110
					100		105								

Pro	Gly	Ser	Ser	Xaa	Met	Leu	Cys	Ser	Ala	Arg	Cys	Phe	Arg	Ala	Ser
															125
					115		120			125					

Ser	Gly	Pro	Ala	Pro	Ala	Leu	Thr	Asp	Gly	Leu	Tyr	Arg	Asn	Thr	Asp
															130
						130		135		140					

Ala	Arg	Ile	Leu	Asn	Gly	Lys	Gln	Leu	Leu	Glu	Pro	Ser	Trp	Cys	Arg
															145
						145		150		155		160			

Gly	Pro	Gly	Trp	Arg	Gly	Cys	Leu	Gln	Gly	Ala	Leu	Arg	Ser	Pro	Pro
															165
							165		170		175				

Ser	Ser	Pro	Pro	Ser	Arg	Thr	Gly	Lys	Ala	Arg	Arg	Gln	Thr	Ile	Pro
															180
								180		185		190			

Gly	Ala	Xaa	Leu	Val	His	Tyr	Ser	Arg	Leu	Leu	Gly	Pro	Thr	Ala	Gly
															195
							195		200		205				

Tyr	Arg	Gly	Glu	Pro	Trp	Cys	His	His	Arg	Ala	Gln	Leu	Cys	Gln	Thr
															210
								210		215		220			

Val	Cys	Pro	Ser	Gly
				225

<210> 131

<211> 26
 <212> PRT
 <213> Homo sapiens

<400> 131
 Ala Arg Pro Cys Ser Ser Lys Asp Ala Ser Ser Ser Phe Trp Asp Arg
 1 5 10 15
 Ser Leu Gly Ser Thr Arg Ala Ser Gly Ala
 20 25

<210> 132
 <211> 27
 <212> PRT
 <213> Homo sapiens

<400> 132
 Arg Phe Ser Ser Gln Gly Leu Trp Gly Pro Gly Ser Pro Ser Gly Asn
 1 5 10 15
 Val Glu Ile Leu Ala Thr Gly Thr Phe Ala Ser
 20 25

<210> 133
 <211> 25
 <212> PRT
 <213> Homo sapiens

<400> 133
 Tyr Arg Asn Thr Asp Ala Arg Ile Leu Asn Gly Lys Gln Leu Leu Glu
 1 5 10 15
 Pro Ser Trp Cys Arg Gly Pro Gly Trp
 20 25

<210> 134
 <211> 28
 <212> PRT
 <213> Homo sapiens

<400> 134
 Pro Gly Trp Arg Gly Cys Leu Gln Gly Ala Leu Arg Ser Pro Pro Ser
 1 5 10 15
 Ser Pro Pro Ser Arg Thr Gly Lys Ala Arg Arg Gln
 20 25

<210> 135
 <211> 7
 <212> PRT
 <213> Homo sapiens

<400> 135

Gly Gly Arg Gly Gly Arg Gly
1 5

.

<210> 136

<211> 39

<212> PRT

<213> Homo sapiens

<400> 136

Tyr	Gln	Lys	Asn	Val	Thr	Phe	Tyr	Pro	Phe	Phe	Gly	Thr	Ile	Leu	Lys
1				5				10					15		

Thr	Gly	Phe	Thr	Gly	Gly	Lys	Ser	Arg	Asn	Ser	Ala	Lys	Gly	Ser	Pro
					20			25				30			

Pro	Ser	Ala	Arg	Pro	Lys	Gly
				35		

<210> 137

<211> 161

<212> PRT

<213> Homo sapiens

<400> 137

Pro	Leu	Val	Cys	Gly	Arg	Ser	Gly	Val	Phe	Ser	Ala	Ala	Pro	Thr	Pro
1					5				10				15		

Ser	Arg	Ser	Pro	Pro	Pro	Asn	Gln	Arg	Arg	Thr	Gly	Pro	Arg	Leu	Pro
					20			25				30			

Arg	His	Ser	Arg	Thr	Gly	Ser	Leu	Leu	Ala	Gly	Ala	Gly	Pro	Gly	Leu
						35		40				45			

Ala	Ala	Leu	Val	Thr	Met	Ser	Glu	Thr	Ser	Phe	Asn	Leu	Ile	Ser	Glu
					50			55				60			

Lys	Cys	Asp	Ile	Leu	Ser	Ile	Leu	Arg	Asp	His	Pro	Glu	Asn	Arg	Ile
						65		70			75			80	

Tyr	Arg	Arg	Lys	Ile	Glu	Glu	Leu	Ser	Lys	Arg	Phe	Thr	Ala	Ile	Arg
						85			90			95			

Lys	Thr	Lys	Gly	Asp	Gly	Asn	Cys	Phe	Tyr	Arg	Ala	Leu	Gly	Tyr	Ser
						100			105			110			

Tyr	Leu	Glu	Ser	Leu	Leu	Gly	Lys	Ser	Arg	Glu	Ile	Phe	Lys	Phe	Lys
						115			120			125			

Glu	Arg	Val	Leu	Gln	Thr	Pro	Asn	Asp	Leu	Leu	Ala	Ala	Gly	Phe	Glu
						130			135			140			

Glu	His	Lys	Phe	Arg	Asn	Phe	Phe	Asn	Ala	Phe	Thr	Val	Trp	Trp	Asn
						145			150			155			160

Trp

<210> 138
 <211> 23
 <212> PRT
 <213> Homo sapiens

<400> 138
 Val Phe Ser Ala Ala Pro Thr Pro Ser Arg Ser Pro Pro Pro Asn Gln
 1 5 . 10 15
 Arg Arg Thr Gly Pro Arg Leu
 20

<210> 139
 <211> 29
 <212> PRT
 <213> Homo sapiens

<400> 139
 Leu Ala Ala Leu Val Thr Met Ser Glu Thr Ser Phe Asn Leu Ile Ser
 1 5 10 15
 Glu Lys Cys Asp Ile Leu Ser Ile Leu Arg Asp His Pro
 20 25

<210> 140
 <211> 31
 <212> PRT
 <213> Homo sapiens

<400> 140
 Glu Glu Leu Ser Lys Arg Phe Thr Ala Ile Arg Lys Thr Lys Gly Asp
 1 5 10 15
 Gly Asn Cys Phe Tyr Arg Ala Leu Gly Tyr Ser Tyr Leu Glu Ser
 20 25 30

<210> 141
 <211> 20
 <212> PRT
 <213> Homo sapiens

<400> 141
 Asn Asp Leu Leu Ala Ala Gly Phe Glu Glu His Lys Phe Arg Asn Phe
 1 5 10 15
 Phe Asn Ala Phe
 20

<210> 142
 <211> 23
 <212> PRT

<213> Homo sapiens

<220>

<221> SITE

<222> (8)

<223> Xaa equals any amino acid

<400> 142

Arg	Pro	Leu	Val	Leu	Leu	Arg	Xaa	Arg	Glu	Ser	Ala	Phe	Leu	Glu	Leu
1															15

Leu	Ala	Lys	Cys	Glu	Lys	Leu
						20

<210> 143

<211> 8

<212> PRT

<213> Homo sapiens

<400> 143

Phe	Gly	Tyr	Thr	Val	Ile	Asn	Thr
1							5

<210> 144

<211> 29

<212> PRT

<213> Homo sapiens

<400> 144

Glu	Phe	Gly	Thr	Ser	Ala	Leu	Val	Ser	Thr	Cys	Ser	Pro	Ile	Pro	Ser
1															15

Pro	Asp	Phe	Ser	Leu	Leu	Leu	Thr	Pro	Ser	Lys	Ala	Ile
												20
												25

<210> 145

<211> 151

<212> PRT

<213> Homo sapiens

<220>

<221> SITE

<222> (15)

<223> Xaa equals any amino acid

<400> 145

Arg	Val	Val	His	Arg	Phe	Phe	Lys	Ser	Ser	Ala	Phe	Trp	Pro	Xaa	Glu
1															15

Val	Lys	Gln	Pro	Arg	Gly	Gly	Pro	Lys	Thr	Gly	Ser	Arg	Lys	Glu	Gly
															30

Ala	Gly	Ser	Arg	Ala	Pro	Gln	Pro	Val	Val	Arg	Ser	Phe	Cys	Gly	Ser
															45

Val	Gly	Ala	Glu	Gly	Arg	Met	Glu	Lys	Leu	Arg	Leu	Leu	Gly	Leu	Arg
50						55						60			
Tyr	Gln	Glu	Tyr	Val	Thr	Arg	His	Pro	Ala	Ala	Thr	Ala	Gln	Leu	Glu
65				70					75				80		
Thr	Ala	Val	Arg	Gly	Phe	Ser	Tyr	Leu	Leu	Ala	Gly	Arg	Phe	Ala	Asp
				85					90				95		
Ser	His	Glu	Leu	Ser	Glu	Leu	Val	Tyr	Ser	Ala	Ser	Asn	Leu	Leu	Val
		100						105				110			
Leu	Leu	Asn	Asp	Gly	Ile	Leu	Arg	Lys	Glu	Leu	Arg	Lys	Lys	Leu	Pro
		115					120					125			
Val	Ser	Leu	Ser	Gln	Gln	Lys	Leu	Leu	Thr	Trp	Leu	Ser	Val	Leu	Glu
		130				135					140				
Cys	Val	Glu	Val	Phe	Met	Glu									
	145			150											

<210> 146
<211> 44
<212> PRT
<213> Homo sapiens

<220>
<221> SITE
<222> (29)
<223> Xaa equals any amino acid

<220>
<221> SITE
<222> (39)
<223> Xaa equals any amino acid

<400> 146
Pro Gly Cys Ile Ala Gly Trp Glu Leu Leu Ser Val Val Gln Gly Pro
1 5 10 15
Gly Pro Arg Pro Pro Pro Arg Pro Arg Pro Arg Lys Xaa His Ser Arg
20 25 30
Ala Gly Cys Gly Leu Glu Xaa Gly Ala Gly Gly Asp
35 40

<210> 147
<211> 102
<212> PRT
<213> Homo sapiens

<220>
<221> SITE
<222> (12)
<223> Xaa equals any amino acid

<400> 147

Gly Val Thr Pro Trp Gly Gly Leu Gln Arg Xaa Leu Pro Val Ala
 1 5 10 15

Thr Trp Cys Leu Trp Glu Leu Val Leu Gly Thr Leu Met Gly Val Cys
 20 25 30

Gly Pro Ser Cys Arg Pro Ala Pro Ser Ser Arg Ala Pro Gly Leu Gly
 35 40 45

Pro Pro Thr Pro Leu Leu Ser Ser Gly Lys Ser Pro Cys Gly Ser Ser
 50 55 60

Pro Gly Ser Arg Ser Gly Ala Met Arg Gly Ala Pro Trp Pro Arg Phe
 65 70 75 80

Arg Lys Ala Cys Val Cys Ala Arg Gly Lys Gly Leu His Asp Lys Arg
 85 90 95

Thr Arg Phe Asp Leu Asn
 100

<210> 148
 <211> 34
 <212> PRT
 <213> Homo sapiens

<400> 148
 Ala Thr Trp Cys Leu Trp Glu Leu Val Leu Gly Thr Leu Met Gly Val
 1 5 10 15

Cys Gly Pro Ser Cys Arg Pro Ala Pro Ser Ser Arg Ala Pro Gly Leu
 20 25 30

Gly Pro

<210> 149
 <211> 27
 <212> PRT
 <213> Homo sapiens

<400> 149
 Pro Thr Pro Leu Leu Ser Ser Gly Lys Ser Pro Cys Gly Ser Ser Pro
 1 5 10 15

Gly Ser Arg Ser Gly Ala Met Arg Gly Ala Pro
 20 25

<210> 150
 <211> 59
 <212> PRT
 <213> Homo sapiens

<400> 150
 Ala Arg Asp Phe Gly Lys Cys Cys Tyr Val Asn Thr Thr Ile Thr Ile

1

5

10

15

Lys Ile Val Tyr Ser Ser Ser Thr Pro Cys Pro Glu Thr Cys Leu Phe
 20 25 30

Cys Leu Val Ser Ser Ser Pro His His Gln Pro Leu Ser Thr Asp Ser
 35 40 45

Phe Ser Val Cys Ile Val Tyr Ile Ile Ser Arg
 50 55

<210> 151

<211> 31

<212> PRT

<213> Homo sapiens

<400> 151

Thr Ile Lys Ile Val Tyr Ser Ser Ser Thr Pro Cys Pro Glu Thr Cys
 1 5 10 15

Leu Phe Cys Leu Val Ser Ser Ser Pro His His Gln Pro Leu Ser
 20 25 30

<210> 152

<211> 48

<212> PRT

<213> Homo sapiens

<400> 152

Gly Thr Ser Thr Asn Pro Arg Ile Pro Arg Val His Leu Leu Val Ala
 1 5 10 15

Lys Asp Ile Ser Arg Thr Val Ile Ser Leu Val Lys Phe Ile Cys Ser
 20 25 30

Cys Ala Arg Phe His Phe Phe Gln Gln Ser Glu Thr Thr Trp Gly Thr
 35 40 45

<210> 153

<211> 22

<212> PRT

<213> Homo sapiens

<400> 153

Leu Val Ala Lys Asp Ile Ser Arg Thr Val Ile Ser Leu Val Lys Phe
 1 5 10 15

Ile Cys Ser Cys Ala Arg
 20

<210> 154
 <211> 9
 <212> PRT
 <213> Homo sapiens

<400> 154
 Leu Ser Pro Pro Arg Gly Ala Cys Arg
 1 5

<210> 155
 <211> 10
 <212> PRT
 <213> Homo sapiens

<400> 155
 Gly Arg Pro Thr Arg Pro Leu Arg Val Ala
 1 5 10

<210> 156
 <211> 120
 <212> PRT
 <213> Homo sapiens

<400> 156
 Ala Trp Cys Pro Gln Thr His Thr Thr Ser Cys Leu Met Gly Pro Phe
 1 5 10 15

Cys Cys Tyr Ser Pro Leu Pro Gly Asp Met Pro Thr Met Ala Arg Pro
 20 25 30

Cys Pro Gln Thr Trp Val Ser Thr His Val Arg Pro Ala Thr Gly Leu
 35 40 45

Ala Arg Gln Ser Ala Glu Ala Leu Gly Cys Leu Trp Leu Ser Ser Gly
 50 55 60

Arg Ile Ser Arg Ser Ser Leu Gly Thr Trp Trp Leu Trp Trp Val Ser
 65 70 75 80

Ser Leu Leu Trp Asn Val Gly Arg Pro Gly Ala Thr Gln Ser Pro Gln
 85 90 95

Ser His Gly Gly Lys Met Gly Asn Pro Trp Pro Ser Ser Pro Glu Gly
 100 105 110

Thr Gln Cys Pro Gly Gly Pro Cys
 115 120

<210> 157
 <211> 25
 <212> PRT
 <213> Homo sapiens

<400> 157
 Cys Cys Tyr Ser Pro Leu Pro Gly Asp Met Pro Thr Met Ala Arg Pro

1

5

10

15

Cys Pro Gln Thr Trp Val Ser Thr His
 20 25

<210> 158
 <211> 18
 <212> PRT
 <213> Homo sapiens

<400> 158
 Ala Leu Gly Cys Leu Trp Leu Ser Ser Gly Arg Ile Ser Arg Ser Ser
 1 5 10 15

Leu Gly

<210> 159
 <211> 28
 <212> PRT
 <213> Homo sapiens

<400> 159
 Trp Asn Val Gly Arg Pro Gly Ala Thr Gln Ser Pro Gln Ser His Gly
 1 5 10 15

Gly Lys Met Gly Asn Pro Trp Pro Ser Ser Pro Glu
 20 25

<210> 160
 <211> 121
 <212> PRT
 <213> Homo sapiens

<400> 160
 Leu Ser Ala Tyr Arg Thr Leu Asp Asn Thr His Ile His Thr His Lys
 1 5 10 15

Asn Ala His Glu Pro Asn Pro Glu Lys Val Pro Ala Gly Pro Pro Pro
 20 25 30

Ser Pro Pro Pro Pro Thr Ser Pro Leu Asp Ser Glu Asp Arg Arg Gly
 35 40 45

Thr Arg Gly His Leu Gly Arg Pro Ala Gly Ser Pro Pro Thr Pro Pro
 50 55 60

Arg Pro Ser His His Thr Pro Ile Ile Thr Leu Tyr Ile Thr Gln Ser
 65 70 75 80

Phe Trp Phe Ser Arg Thr Arg Leu Pro Lys Tyr His Leu Gln Lys Val
 85 90 95

Thr Leu Ala Gly His Tyr Phe Val Tyr Leu Phe Pro Met Gln Lys Lys
 100 105 110

Asn Glu Asn Glu Lys Arg Gly Ile Pro
115 120

<210> 161
<211> 29
<212> PRT
<213> Homo sapiens

<400> 161
Leu Ser Ala Tyr Arg Thr Leu Asp Asn Thr His Ile His Thr His Lys
1 5 10 15

Asn Ala His Glu Pro Asn Pro Glu Lys Val Pro Ala Gly
20 25

<210> 162
<211> 13
<212> PRT
<213> Homo sapiens

<400> 162
Leu Asp Ser Glu Asp Arg Arg Gly Thr Arg Gly His Leu
1 5 10

<210> 163
<211> 28
<212> PRT
<213> Homo sapiens

<400> 163
Ile Ile Thr Leu Tyr Ile Thr Gln Ser Phe Trp Phe Ser Arg Thr Arg
1 5 10 15

Leu Pro Lys Tyr His Leu Gln Lys Val Thr Leu Ala
20 25

<210> 164
<211> 10
<212> PRT
<213> Homo sapiens

<400> 164
Val Ile Ile Leu Phe Ile Cys Ser Leu Cys
1 5 10

<210> 165
<211> 40
<212> PRT
<213> Homo sapiens

<400> 165
 Ile Asp Phe Phe Val Val Val Ser Phe Leu Tyr Phe Thr Asp Ile Thr
 1 5 10 15
 Arg Ile Val Tyr Ser Pro Ser Ser Phe Leu Leu Thr Ala His Trp Ile
 20 25 30
 Thr His Thr Tyr Thr Pro Thr Lys
 35 40

<210> 166
 <211> 40
 <212> PRT
 <213> Homo sapiens

<400> 166
 Ile Asp Phe Phe Val Val Val Ser Phe Leu Tyr Phe Thr Asp Ile Thr
 1 5 10 15
 Arg Ile Val Tyr Ser Pro Ser Ser Phe Leu Leu Thr Ala His Trp Ile
 20 25 30
 Thr His Thr Tyr Thr Pro Thr Lys
 35 40

<210> 167
 <211> 25
 <212> PRT
 <213> Homo sapiens

<220>
 <221> SITE
 <222> (8)
 <223> Xaa equals any amino acid

<400> 167
 Gly Val Val Ser Arg Gly Phe Xaa Ala Leu Leu Ser Gly Gly Arg Gly
 1 5 10 15
 Glu Leu Glu Ala Gly Gly Val Ala Ala
 20 25

<210> 168
 <211> 45
 <212> PRT
 <213> Homo sapiens

<400> 168
 Asp Phe Phe Phe Phe Asn Val Arg Arg Arg Asn Ser Gln Ile Thr Leu
 1 5 10 15
 Leu Pro Ala Lys Arg Leu Phe Thr Thr Ser Pro Leu Leu Gln Leu Gly
 20 25 30
 Leu Ser Val Phe Asn Leu Thr Ile Leu Asn Val Arg Lys

35

40

45

<210> 169
 <211> 30
 <212> PRT
 <213> Homo sapiens

<220>
 <221> SITE
 <222> (5)
 <223> Xaa equals any amino acid

<220>
 <221> SITE
 <222> (9)
 <223> Xaa equals any amino acid

<400> 169
 Cys Ile Asp His Xaa Gly Lys Arg Xaa Leu Thr Val Pro Val Arg Ile
 1 5 10 15

Pro Gly Arg Pro Thr Arg Pro Cys Phe Tyr Ser Leu Thr Ile
 20 25 30

<210> 170
 <211> 123
 <212> PRT
 <213> Homo sapiens

<400> 170
 Val Gln Gln Ser Leu Ser Ile Phe Lys Ser Leu Pro Ser Leu Leu Met
 1 5 10 15

Leu Gln Arg Val Phe Ser Cys Thr Tyr Ile Leu Ala Glu Val Phe Gly
 20 25 30

Tyr Ile Pro Thr Val Glu Phe Leu Gly Tyr Val Val Pro Ala Ser Ser
 35 40 45

Pro Thr Asn Ser Val Gln Met Val Thr Pro Ser Val Cys Met Thr Leu
 50 55 60

Ser Val Cys Ala Arg Gly Phe Leu Leu His Ile Ser Ser Gln Thr Phe
 65 70 75 80

Phe Phe Phe Asp Arg Val Trp Ala Leu Ser Pro Arg Leu Val Ala
 85 90 95

Val Glu Leu Glu Ser Arg His Gly Ile Pro Ala Trp Gly Asn Arg Val
 100 105 110

Arg Leu His Pro Pro Arg Glu Lys Pro Asn
 115 120

<210> 171

<211> 43
<212> PRT
<213> Homo sapiens

<400> 171
Val Gln Gln Ser Leu Ser Ile Phe Lys Ser Leu Pro Ser Leu Leu Met
1 5 10 15
Leu Gln Arg Val Phe Ser Cys Thr Tyr Ile Leu Ala Glu Val Phe Gly
20 25 30
Tyr Ile Pro Thr Val Glu Phe Leu Gly Tyr Val
35 40

<210> 172
<211> 41
<212> PRT
<213> Homo sapiens

<400> 172
Val Pro Ala Ser Ser Pro Thr Asn Ser Val Gln Met Val Thr Pro Ser
1 5 10 15
Val Cys Met Thr Leu Ser Val Cys Ala Arg Gly Phe Leu Leu His Ile
20 25 30
Ser Ser Gln Thr Phe Phe Phe Phe
35 40

<210> 173
<211> 39
<212> PRT
<213> Homo sapiens

<400> 173
Asp Arg Val Trp Ala Leu Ser Pro Arg Leu Val Ala Val Glu Leu Glu
1 5 10 15
Ser Arg His Gly Ile Pro Ala Trp Gly Asn Arg Val Arg Leu His Pro
20 25 30
Pro Pro Arg Glu Lys Pro Asn
35

<210> 174
<211> 182
<212> PRT
<213> Homo sapiens

<400> 174
Ala Ser Leu Ser Pro Lys Pro Val Ala Gly Leu Gly Asn Gln Gly Gly
1 5 10 15
Leu Arg Arg Gln Arg Glu Ala Glu Gly Pro Ala Gly Arg Met Gly Pro
20 25 30

Lys Ala Arg Leu Gly Gly Gln Gln Thr Trp Val Glu Gly Glu Trp
 35 40 45

Val Met Gly Arg Ala Cys Ala Gly Trp Ser Pro Ala Gly Asp Gly Arg
 50 55 60

Gly His Lys Ala Arg Gln Lys Ala Val Met Ala Ala Glu Arg Ser Thr
 65 70 75 80

Gln Gly Pro Pro Leu Gly His Glu Cys Arg Pro Pro Arg Gly Arg Arg
 85 90 95

Leu Ala Thr Ser Val Gly Pro Arg Cys Pro Ser Ala Gln Cys Pro Arg
 100 105 110

Ala Arg Gln Pro Pro Arg Thr Glu Thr Arg Ser Ala Gly Gly Leu Gln
 115 120 125

Leu Leu Pro Ile Leu Ser Trp Ala Ala Ser Ser Pro His Leu Ser Lys
 130 135 140

Leu Ala Gly Glu Leu Glu Pro Leu Arg Pro Gln Pro His Ile Ile Leu
 145 150 155 160

Thr Pro Leu Leu Gly Ala Met Pro Cys Cys Thr Arg Ile Phe Cys Phe
 165 170 175

Ser Leu Thr Met Gly Ser
 180

<210> 175

<211> 43

<212> PRT

<213> Homo sapiens

<400> 175

Ala Ser Leu Ser Pro Lys Pro Val Ala Gly Leu Gly Asn Gln Gly Gly
 1 5 10 15

Leu Arg Arg Gln Arg Glu Ala Glu Gly Pro Ala Gly Arg Met Gly Pro
 20 25 30

Lys Ala Arg Leu Gly Gly Gln Gln Gln Thr Trp
 35 40

<210> 176

<211> 42

<212> PRT

<213> Homo sapiens

<400> 176

Val Glu Gly Glu Trp Val Met Gly Arg Ala Cys Ala Gly Trp Ser Pro
 1 5 10 15

Ala Gly Asp Gly Arg Gly His Lys Ala Arg Gln Lys Ala Val Met Ala
 20 25 30

Ala Glu Arg Ser Thr Gln Gly Pro Pro Leu
 35 40

<210> 177
 <211> 44
 <212> PRT
 <213> Homo sapiens

<400> 177
 Gly His Glu Cys Arg Pro Pro Arg Gly Arg Arg Leu Ala Thr Ser Val
 1 5 10 15

Gly Pro Arg Cys Pro Ser Ala Gln Cys Pro Arg Ala Arg Gln Pro Pro
 20 25 30

Arg Thr Glu Thr Arg Ser Ala Gly Gly Leu Gln Leu
 35 40

<210> 178
 <211> 53
 <212> PRT
 <213> Homo sapiens

<400> 178
 Leu Pro Ile Leu Ser Trp Ala Ala Ser Ser Pro His Leu Ser Lys Leu
 1 5 10 15

Ala Gly Glu Leu Glu Pro Leu Arg Pro Gln Pro His Ile Ile Leu Thr
 20 25 30

Pro Leu Leu Gly Ala Met Pro Cys Cys Thr Arg Ile Phe Cys Phe Ser
 35 40 45

Leu Thr Met Gly Ser
 50

<210> 179
 <211> 39
 <212> PRT
 <213> Homo sapiens

<400> 179
 Ile Arg His Ser Leu Pro His Leu Leu Val Lys Val Ile Thr Leu Thr
 1 5 10 15

Ser Val Lys Cys Asn Pro Ile Met Asn Ile Ala Arg Val Ile Tyr Cys
 20 25 30

Gln Val Arg Asn Arg Leu Val
 35

<210> 180

<211> 97
 <212> PRT
 <213> Homo sapiens

<400> 180
 Phe Leu Pro Leu Pro Gln Thr Ala His Val Ile Ala Ser Phe Leu Ser
 1 5 10 15
 Phe Phe Ser Phe Cys Leu Ser Phe Phe Leu Ser Ser Lys Ala Phe Leu
 20 25 30
 Leu Leu Leu Ser Phe Ser Lys Phe Phe Ile Leu Phe Phe Ser Phe
 35 40 45
 Cys Cys Leu Lys Phe Ser His Leu Ala Ser Leu Ser Leu Val Val Ser
 50 55 60
 Arg Gly Val Pro Trp Thr Arg Lys His Gly Gly Ser Leu Ala Glu Trp
 65 70 75 80
 Val Phe Gly Ala Glu Thr Ser Arg Gly Pro Pro Ser Ser Asp Leu Ile
 85 90 95
 Asp

<210> 181
 <211> 103
 <212> PRT
 <213> Homo sapiens

<400> 181
 Leu Leu Leu Phe Tyr Leu Ser Phe His Phe Ala Ser His Phe Ser Ser
 1 5 10 15
 Leu Gln Arg Pro Phe Cys Tyr Phe Cys Leu Phe Leu Ser Phe Ser Leu
 20 25 30
 Ser Cys Ser Phe Leu Ser Val Val Ser Asn Ser His Ile Trp Pro Val
 35 40 45
 Phe Leu Leu Ser Ser Pro Gly Val Tyr Leu Gly Pro Gly Asn Thr Glu
 50 55 60
 Gly Ala Trp Leu Ser Gly Phe Ser Val Pro Lys Pro Pro Glu Gly Leu
 65 70 75 80
 Leu Pro Val Ile Ser Leu Thr Asp Leu Glu Thr Ala Ser Arg Ser Val
 85 90 95
 Thr Pro Ala Val Val Pro Ser
 100

<210> 182
 <211> 54
 <212> PRT
 <213> Homo sapiens

<400> 182

Phe	Phe	Ile	Gly	Leu	Glu	Thr	Arg	Ala	Asn	Ser	Ile	Met	Phe	Ser	Lys
1				5					10					15	

Glu	Thr	Asp	Leu	Ser	Cys	Trp	Ile	Arg	Gly	Thr	Asn	Pro	Thr	Tyr	Met
			20					25					30		

Ile	Phe	Phe	Leu	Phe	Leu	Ser	Cys	Ser	Tyr	Gly	Thr	Val	Leu	Phe	Gly
						35		40					45		

Thr	Phe	Ala	Thr	Arg	Gly
			50		

<210> 183

<211> 10

<212> PRT

<213> Homo sapiens

<400> 183

Pro	Glu	Gly	Glu	Cys	Cys	Pro	Val	Cys	Pro
1				5					10

<210> 184

<211> 10

<212> PRT

<213> Homo sapiens

<400> 184

Pro	Glu	Gly	Glu	Cys	Cys	Pro	Val	Cys	Pro.
1				5					10

<210> 185

<211> 49

<212> PRT

<213> Homo sapiens

<400> 185

Ile	Leu	Phe	Asn	Ile	Pro	Phe	Cys	Pro	Phe	Phe	Val	Phe	Lys	Glu	Ser
1					5				10				15		

Ser	Asp	Phe	Val	Ser	Phe	Ser	Ala	Gly	Asp	Leu	Asn	Asp	Thr	Lys	Gln
			20					25					30		

Ser	Leu	Leu	Ser	Leu	Asp	Leu	Gln	Lys	Leu	Ala	Gly	Gly	Lys	Lys	Ser
					35			40				45			

Asn

<210> 186

<211> 72

<212> PRT

<213> Homo sapiens

<400> 186

Arg	Ala	Ala	Ala	Leu	Ala	Cys	Ser	Cys	Pro	Thr	Gly	Ile	Glu	Trp	Arg
1				5					10				15		

Glu	Leu	Gln	Lys	Leu	Ser	Ile	Pro	Lys	Ala	Val	Ser	Val	Val	Glu	Ala
				20				25				30			

Asp	Trp	Ile	Phe	Ala	Leu	Pro	Leu	Thr	Pro	Cys	Pro	Ser	Leu	Arg	Glu
		35				40					45				

Gly	Ser	Tyr	Ala	Arg	Thr	Pro	Thr	Ser	Gly	Thr	Arg	Val	Ala	Cys	Ala
		50				55				60					

Thr	Ser	Phe	Asp	Thr	Glu	Asn	Phe								
		65			70										

<210> 187

<211> 21

<212> PRT

<213> Homo sapiens

<400> 187

Ser	Arg	Leu	Asp	Phe	Cys	Ser	Ala	Pro	Asp	Pro	Leu	Ser	Leu	Phe	Glu
1				5				10				15			

Gly	Gly	Glu	Leu	Cys											
			20												

<210> 188

<211> 68

<212> PRT

<213> Homo sapiens

<400> 188

Ile	Ser	Tyr	Leu	Val	Lys	Lys	Gly	Thr	Ala	Thr	Glu	Ser	Ser	Arg	Glu	
1				5				10				15				

Ile	Pro	Met	Ser	Thr	Leu	Pro	Arg	Arg	Asn	Met	Glu	Ser	Ile	Gly	Leu
				20				25				30			

Gly	Met	Ala	Arg	Thr	Gly	Gly	Met	Val	Val	Ile	Thr	Val	Leu	Leu	Ser
				35			40				45				

Val	Ala	Met	Phe	Leu	Leu	Val	Leu	Gly	Phe	Ile	Ile	Ala	Leu	Ala	Leu
				50			55			60					

Gly	Ser	Arg	Lys												
		65													

<210> 189

<211> 24

<212> PRT

<213> Homo sapiens

<400> 189

Met	Ala	Arg	Thr	Gly	Gly	Met	Val	Val	Ile	Thr	Val	Leu	Leu	Ser	Val
1				5					10					15	

Ala	Met	Phe	Leu	Leu	Val	Leu	Gly
		20					

<210> 190

<211> 25

<212> PRT

<213> Homo sapiens

<400> 190

Asn	Met	Glu	Ser	Ile	Gly	Leu	Gly	Met	Ala	Arg	Thr	Gly	Gly	Met	Val
1				5				10						15	

Val	Ile	Thr	Val	Leu	Leu	Ser	Val	Ala
		20						25

<210> 191

<211> 42

<212> PRT

<213> Homo sapiens

<400> 191

His	Glu	Ser	Ile	Ser	Tyr	Leu	Val	Lys	Lys	Gly	Thr	Ala	Thr	Glu	Ser
1				5				10						15	

Ser	Arg	Glu	Ile	Pro	Met	Ser	Thr	Leu	Pro	Arg	Arg	Asn	Met	Glu	Ser
	20						25						30		

Ile	Gly	Leu	Gly	Met	Ala	Arg	Thr	Gly	Gly
		35						40	

<210> 192

<211> 62

<212> PRT

<213> Homo sapiens

<220>

<221> SITE

<222> (52)

<223> Xaa equals any amino acid

<220>

<221> SITE

<222> (62)

<223> Xaa equals any amino acid

<400> 192

Thr	Ala	Asp	Glu	Leu	Gly	Cys	Gln	Asp	Met	Asn	Cys	Ile	Arg	Gln	Ala
1				5				10					15		

His	His	Val	Ala	Leu	Leu	Arg	Ser	Gly	Gly	Ala	Asp	Ala	Leu	Val
-----	-----	-----	-----	-----	-----	-----	-----	-----	-----	-----	-----	-----	-----	-----

20

25

30

Val Leu Leu Ser Gly Leu Val Leu Leu Val Thr Gly Leu Thr Leu Ala
 35 40 45

Gly Leu Ala Xaa Ala Pro Ala Pro Ala Arg Pro Leu Ala Xaa
 50 55 60

<210> 193

<211> 146

<212> PRT

<213> Homo sapiens

<220>

<221> SITE

<222> (64)

<223> Xaa equals any amino acid

<400> 193

Met Ser Glu Gln Glu Ala Gln Ala Pro Gly Gly Arg Gly Leu Pro Pro
 1 5 10 15

Asp Met Leu Ala Glu Gln Val Glu Leu Trp Trp Ser Gln Gln Pro Arg
 20 25 30

Arg Ser Ala Leu Cys Phe Val Val Ala Val Gly Leu Val Ala Gly Cys
 35 40 45

Gly Ala Gly Gly Val Ala Leu Leu Ser Thr Thr Ser Ser Arg Ser Xaa
 50 55 60

Glu Trp Arg Leu Ala Thr Gly Thr Val Leu Cys Leu Leu Ala Leu Leu
 65 70 75 80

Val Leu Val Lys Gln Leu Met Ser Ser Ala Val Gln Asp Met Asn Cys
 85 90 95

Ile Arg Gln Ala His His Val Ala Leu Leu Arg Ser Gly Gly Ala
 100 105 110

Asp Ala Leu Val Val Leu Leu Ser Gly Leu Val Leu Leu Val Thr Gly
 115 120 125

Leu Thr Leu Ala Gly Leu Ala Ala Ala Pro Ala Pro Ala Arg Pro Leu
 130 135 140

Ala Ala
 145

<210> 194

<211> 27

<212> PRT

<213> Homo sapiens

<220>

<221> SITE

<222> (26)

<223> Xaa equals any amino acid

<400> 194

Val	Ala	Ala	Leu	Phe	Asp	Val	Pro	Val	Leu	Arg	Ser	Arg	Gly	Gly	Asp
1															15

Cys	Ala	Ser	Asp	Gly	Arg	Arg	Gly	Arg	Xaa	Thr					
											20				25

<210> 195

<211> 44

<212> PRT

<213> Homo sapiens

<400> 195

Glu	Gly	Arg	Glu	Ala	Gly	Ser	Gly	Leu	Ser	Val	Asp	Ser	Arg	Asp	Lys
1															15

Gly	His	Glu	Gly	Arg	Gly	Leu	Gly	Pro	Phe	Arg	Ile	Pro	Gln	Asp	Ser
														'30	
						20									

Gln	Val	Gln	Leu	Cys	Gln	Lys	Gly	Thr	Phe	His	Val				
												35			40

<210> 196

<211> 42

<212> PRT

<213> Homo sapiens

<220>

<221> SITE

<222> (1)...(5)

<223> Xaa equals any amino acid

<400> 196

Xaa	Xaa	Xaa	Xaa	Xaa	Asn	His	Pro	Val	Ser	Tyr	Phe	Leu	His	Asn	Asn
1															15

Pro	Ala	Phe	Pro	Ile	Asn	Leu	His	Ile	Phe	Pro	Gln	Gln	Leu	Cys	Ser
															30
					20										

Val	Ile	Pro	Thr	Trp	Glu	Lys	Ser	Gln	Gly						
										35					40

<210> 197

<211> 190

<212> PRT

<213> Homo sapiens

<400> 197

Ser	Gly	Gly	Ala	Lys	Pro	Pro	Ala	Lys	Met	Cys	Lys	Gly	Leu	Ala	Ala
1															15
									5						

Leu Pro His Ser Cys Leu Glu Arg Ala Lys Glu Ile Lys Ile Lys Leu
 20 25 30

 Gly Ile Leu Leu Gln Lys Pro Asp Ser Val Gly Asp Leu Val Ile Pro
 35 40 45

 Tyr Asn Glu Lys Pro Glu Lys Pro Ala Lys Thr Gln Lys Thr Ser Leu
 50 55 60

 Asp Glu Ala Leu Gln Trp Arg Asp Ser Leu Asp Lys Leu Leu Gln Asn
 65 70 75 80

 Asn Tyr Gly Leu Ala Ser Phe Lys Ser Phe Leu Lys Ser Glu Phe Ser
 85 90 95

 Glu Glu Asn Leu Glu Phe Trp Ile Ala Cys Glu Asp Tyr Lys Lys Ile
 100 105 110

 Lys Ser Pro Ala Lys Met Ala Glu Lys Ala Lys Gln Ile Tyr Glu Glu
 115 120 125

 Phe Ile Gln Thr Glu Ala Pro Lys Glu Val Asn Ile Asp His Phe Thr
 130 135 140

 Lys Asp Ile Thr Met Lys Asn Leu Val Glu Pro Ser Leu Ser Ser Phe
 145 150 155 160

 Asp Met Ala Gln Lys Arg Ile His Ala Leu Met Glu Lys Asp Ser Leu
 165 170 175

 Pro Arg Phe Val Arg Ser Glu Phe Tyr Gln Glu Leu Ile Lys
 180 185 190

<210> 198
 <211> 31
 <212> PRT
 <213> Homo sapiens

<400> 198
 Ala Leu Pro His Ser Cys Leu Glu Arg Ala Lys Glu Ile Lys Ile Lys
 1 5 10 15

 Leu Gly Ile Leu Leu Gln Lys Pro Asp Ser Val Gly Asp Leu Val
 20 25 30

<210> 199
 <211> 25
 <212> PRT
 <213> Homo sapiens

<400> 199
 Asp Ser Leu Asp Lys Leu Leu Gln Asn Asn Tyr Gly Leu Ala Ser Phe
 1 5 10 15

 Lys Ser Phe Leu Lys Ser Glu Phe Ser
 20 25

<210> 200
<211> 29
<212> PRT
<213> Homo sapiens

<400> 200
Glu Asn Leu Glu Phe Trp Ile Ala Cys Glu Asp Tyr Lys Lys Ile Lys
1 5 10 15

Ser Pro Ala Lys Met Ala Glu Lys Ala Lys Gln Ile Tyr
20 25

<210> 201
<211> 28
<212> PRT
<213> Homo sapiens

<400> 201
Asp Ile Thr Met Lys Asn Leu Val Glu Pro Ser Leu Ser Ser Phe Asp
1 5 10 15

Met Ala Gln Lys Arg Ile His Ala Leu Met Glu Lys
20 25

<210> 202
<211> 16
<212> PRT
<213> Homo sapiens

<400> 202
Ile Arg His Glu Asn Phe Glu Arg Ser Ser Thr Val Asp Lys Lys Leu
1 5 10 15

<210> 203
<211> 16
<212> PRT
<213> Homo sapiens

<400> 203
Asn Ser Ile Thr Tyr Tyr Arg Glu Thr Phe Trp Glu Arg Lys Ser Gln
1 5 10 15

<210> 204
<211> 32
<212> PRT

<213> Homo sapiens

<400> 204

Ile Trp Gln Thr Ser Leu Leu Ser Tyr Phe Gln Lys Leu Pro Gln Leu
1 5 10 15

Pro Gln Pro Ser Ala Ala Thr Thr Leu Ile Arg Gln Gln Pro Ala Thr
20 25 30

<210> 205

<211> 19

<212> PRT

<213> Homo sapiens

<400> 205

Lys Gln Gly Ser Leu Pro Ala Lys Arg Arg Lys Leu Ser Glu Gly Ser
1 5 10 15

Gly Val Leu

<210> 206

<211> 51

<212> PRT

<213> Homo sapiens

<400> 206

Val Lys Ser Thr Leu Gly Arg Leu Ile Val Leu Ser Ser Ala Leu Asn
1 5 10 15

Lys Ile Phe Pro Leu Thr Leu Ala Ser Ser Val Leu Tyr Ser Gly Arg
20 25 30

Thr Ser Pro Pro Arg Glu Ser Phe Val Ser Gln Leu Asn Cys Cys Phe
35 40 45

Ser Asp Lys

50