Computing Customer Equity

What is Customer Equity?

$$CE = \sum_{Retained} CLV_{retained} + \sum_{New} \sum_{t=1}^{T} \frac{CLV_{new}}{(1+d)^{t}}$$

Retained = # of retained customers in current time period New = # of new customers in each future time period

Computing CLV

What is the average value of a retained customer?

$$CLV_{retained} = \sum_{t=1}^{T} \frac{\$M}{(1+d)^t}$$

$$M = (Rev - Tech) - (Sub + Full derivation of the first state of the first state$$

M = (Rev – Tech) – (Sub + Fulfil)
d =
$$(1+rate)^{(1/4)} - 1 = 2.41\%$$

r = $(\#total_t - \#new_t) / (\#total_{t-1})$

Turns out we can convert the infinite sum into:

$$CLV_{retained} = M*\frac{(1+d)}{(1+d-r)} = AvgCLV_{Retained}$$

How does CLV vary with time?

Computing New CLV

What is the average value of a new customer?

$$CLV_{new} = \sum_{t=1}^{T} \left(\frac{CLV_{ret} * GR^{t}}{(1+d)^{t}} \right) - AcqCost$$

$$M = (GC - Mktg)$$

$$d = (discount rate)$$

$$GR = (growth rate)$$

GR = (growth rate)

What about all new customers?

$$\sum_{\text{new }} \sum_{t=1}^{T} \frac{\text{CLV}_{\text{new}}}{(1+d)^{t}} = \text{CLV}_{\text{new }} * \frac{(1+d)}{(1+d-\text{GrowthRate})} = \text{AvgCLV}_{\text{New}}$$

Computing Growth Rate

What if we run a regression?

$$NumNew_t = \beta_0 + \beta_1 NumNew_{t-1} + \varepsilon_t$$

DV = NumNew _t	Coefficient (Std. Error)	P-Value	
Intercept	98.764 (97.000)	0.315	
NumNew _{t-1}	1.011 (0.043)	< 0.0001	
R-square = 0.930			

Netflix - Computing CE

How do we bring it together?

$$CE = \left[AvgCLV_{Retained} * N_{Re tained}\right] + \left[AvgCLV_{New} * N_{New}\right]$$

Do this for each time period.

CE vs. Market Cap

Are they related?

What if we run a regression?

$$MC_t = \beta_0 + \beta_1 CE_t + \varepsilon_t$$

DV = Market Cap	Coefficient (Std. Error)	P-Value	
Intercept	-1,177,121.40 (402,588.40)	0.006	
Customer Equity	0.442 (0.037)	< 0.0001	
R-square = 0.84			

CE vs. Market Cap

Customer Equity vs. Market Capitalization

Predicted MC vs. Actual MC

