CS 584 - MACHINE LEARNING

TOPIC: DIMENSIONALITY REDUCTION

http://www.cs.iit.edu/~mbilgic

https://twitter.com/bilgicm

MOTIVATION

- Remove useless features
- Learn a low dimensional representation
- Visualization

APPROACHES

- Feature selection
- Feature extraction

FEATURE SELECTION

- Select a subset of the features
- Several approaches
 - Univariate feature selection
 - Mutual information, Chi2, ...
 - Recursive feature elimination
 - Using an external estimator, recursively remove least useful features
 - Model-based feature selection
 - L1 regularization, decision trees, ...
 - Sequential feature selection
 - Can use any model and performance metric

4

FEATURE EXTRACTION

- Feature extraction, projection, latent representation learning, manifold learning, ...
- Given an input, project it into another dimension (often lower)
- Unsupervised
 - Principal component analysis, isomap, t-SNE, deep learning, ...
- Supervised
 - Linear discriminant analysis, deep learning, ...

WE'LL COVER

- Principal component analysis
- Autoencoder

PRINCIPAL COMPONENT ANALYSIS

• Given a dataset x with d dimensions, project it into k dimensions (k < d) with minimum loss of information

• $z = (w^T)x - d([]] \cdots []$

- Principal component analysis (PCA) maximizes the variance in the projected space so that objects are spread out
 - $argmax_{\mathbf{w}}Var(\mathbf{z})$

PCA OBJECTIVE

- $\mathbf{o} \mathbf{z} = \mathbf{w}^T \mathbf{x}$
- \circ argmax_wVar(z)

- Reminder: $Var(aX + b) = a^2 Var(X)$ $Var(\mathbf{z}) = \mathbf{w}^T Var(\mathbf{x})\mathbf{w}$ We can trivially maximize variance by multiplying w by a large constant; hence, we enforce that **w** is unit length
 - $ww^T = 1$
- Objective
 - maximize $\mathbf{w}^T Var(\mathbf{x})\mathbf{w}$ subject to $\mathbf{w}\mathbf{w}^T = 1$

Background - Constrained Optimization

Form the Lagrangian:

$$F(\mathbf{\theta}, \mathbf{\lambda}) = f(\mathbf{\theta}) - \sum_{j=1}^{m} \lambda_{j} c_{j}(\mathbf{\theta})$$

EXAMPLE

• Maximize xy subject to x + y = 10メチャー10=0 シスララン 10

CS 584 – Machine Learning – Illinois Institute of Technology

PCA WITH ONE DIMENSION

- o maximize $Var(z_1) = w_1^T Var(\boldsymbol{x}) w_1$ subject to $w_1^T w_1 = 1$
- Let the variance of x be the covariance matrix Σ
- Objective
 - Maximize $w_1^T \Sigma w_1$ subject to $w_1^T w_1 = 1$
- Lagrange
 - maximize $w_1^T \Sigma w_1 \lambda (w_1^T w_1 1)$
- Take derivative with respect to w_1 , set to zero

- $\bullet \quad 2\Sigma w_1 2\lambda w_1 = 0$
- $\Sigma w_1 = \lambda w_1$
- \circ w_1 is an eigenvector and λ is an eigenvalue of Σ
- Because we maximize variance
 - maximize $w_1^T \Sigma w_1 = w_1^T \lambda w_1 = \lambda w_1^T w_1 = \lambda$
 - w_1 is the eigenvector that corresponds to the largest eigenvalue of Σ

PCA WITH k DIMENSIONS

- We want the second vector w_2 to be orthogonal to w_1 so that the z_2 is uncorrelated with z_1
- Skipping the derivation details
 - w_1 is the eigenvector for the largest eigenvalue λ_1
 - w_2 is the eigenvector for the second largest eigenvalue λ_2
 - •
 - w_k is the eigenvector for the k^{th} largest eigenvalue λ_k
- In the end, the transformation is typically centered around zero (in the new dimensions)
 - $z = \mathbf{w}^{\mathrm{T}}(\mathbf{x} \mathbf{m})$ where \mathbf{m} is the mean of \mathbf{x}

PCA EXAMPLE

See OneNote and Jupyter notebook

AUTOENCODER

- A neural network architecture where the input and output are the same
 - $x \rightarrow h \rightarrow x$
 - Input x is encoded into h, where h is typically lower dimensional than x and h is decoded back to x, with

some error

https://upload.wikimedia.org/wikipedia/commons/3/37/Autoencoder_schema.png

OTHER DL METHODS

- Transformers
- Contrastive learning
- **O** ...
- International conference on learning representations (ICLR)
 - https://iclr.cc/