## TEMPERATURE CONTROL LOUVERS FOR THE MARINER VENUS AND MARINER MARS SPACECRAFTS

M. Gram - JPL

The function of active temperature control devices is to suppress temperature excursions and provide tighter temperature regulation than would otherwise result. Were it not for the widely varied heat inputs to spacecraft subassemblies, and for the bearing which temperatures have upon reliability and endurance, active temperature control devices would not be required.

Louvers are but one type of active temperature control device. Figures I and II show the louver systems designed for Mariner R and C respectively. Whereas they differ somewhat in configuration, mechanically and functionally they are similar. Mechanical features common to both systems are listed in Table I. An overall comparison is provided in Table II.

Thermal performance for the two systems in terms of the effective emittance as a function of louver blade angle is given in Table III. Theoretical performance values are also given for comparison (ref. JPL TR 32-555, Analysis of Movable Louvers for Temperature Control, J. Plamondon, 1964). The theoretical values have been based on diffuse emission-reflection, infinite length louver blades, and assumes no heat loss from bracketry.

In order to rationalize empirical and theoretical performance figures, an adjustment has been made to the empirical values, forcing them in agreement with theoretical values for the fully closed louver condition. The adjustment (or tare) may be considered to be an area of unit emittance which radiated in parallel with the louvers. The adjusted thermal performance figures are given in Table IV, and as can be seen are in only fair agreement with the theoretical values. The differences are felt to stem primarily from experimental errors made during the measurement of louver performance, and to a lesser extent from the inexact nature of the mathematical model.

## TABLE I

## Mechanical Features of the Mariner Louver System

- 1. Louvers are individually actuated -- not ganged.
- 2. Louver sensing and actuating elements are spiral-shaped bimetal coils.
- 3. The bimetal sensor-actuator is primarily radiatively coupled with the "sensed" temperature.
- 4. Louver blades are made of thin gauge polished aluminum alloy sheets.
- 5. Louver blades are center pivoted (1) to better withstand dynamic environments, and (2) to permit their usage in any spacecraft attitude during test.
- 6. Louvers are supported in bushing type bearings.
- 7. The temperature for incipient opening of the louvers may be varied by adjusting the anchor point of the bimetal coil.
- 8. Individual louvers may be removed from the assembly easily for replacement, cleaning, or inspection without affecting the louver adjustment.

TABLE II

Comparison of Mariner II and Mariner C

Louver Assemblies

|     |                                        | MA-II           | MA-C              |
|-----|----------------------------------------|-----------------|-------------------|
| 1.  | Effective emittance closed             | .08             | .12               |
| 2.  | Effective emittance open               | .72             | .76               |
| 3.  | Area of louver assembly                | 1.76 lb/sq. ft. | 1.62 sq. ft.      |
| 4.  | Weight                                 | 2.20 lb.        | 1.35 lb.          |
| 5.  | Weight per area ratio                  | 1.76 lb/sq. ft. | .83 lb/sq. ft.    |
| 6.  | Actuation range                        | 30°F            | 27 <sup>0</sup> F |
| 7.  | Year designed                          | 1961            | 1963              |
| 8.  | Year flown                             | 1962            | 1964 (?)          |
| 9.  | Static bearing friction in one-G field | 9° angle        | 6° angle          |
| 10. | Louver thickness                       | 20 mil          | 2 layers 5 mil    |
| 11. | Attachment to chassis                  | rivet           | bolt              |

TABLE III
(LOUVER PERFORMANCE)

| Louver Angle                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | Effective Emittance |           |             |  |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------|-----------|-------------|--|
| The state of the s | Mariner II          | Mariner C | Theoretical |  |
| 0.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | .08                 | .12       | .03         |  |
| 30                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | .37                 | •57       | •37         |  |
| 60                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | .61                 | .71       | •57         |  |
| 90                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | .72                 | .76       | .63         |  |

TABLE IV

(ADJUSTED LOUVER PERFORMANCE)

| Louver Angle                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | Effective Emittance |           |             |  |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------|-----------|-------------|--|
| Complete and the control of the cont | Mariner II          | Mariner C | Theoretical |  |
| 0°                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | .03                 | .03       | .03         |  |
| 30                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | .32                 | .48       | •37         |  |
| 60                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | .56                 | .62       | • 57        |  |
| 90                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | .67                 | .67       | .63         |  |
| Tare                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 9.0 Sq. In.         | 21.0      | ₩ atom man  |  |



Fig. 1



Fig. 2