Лекция 5: Индуктивен принцип на Скот

1.5 Индуктивен принцип на Скот

Ще го срещнете под най-различни имена:

Индуктивен принцип на Скот и Де Бакер

Правило/принцип за µ-индукция на Скот

Индукционно правило на Скот

На английски се среща още като

Scott's fixed-point induction principle

Индуктивният принцип на Скот е метод за доказване на свойства на най-малката неподвижна точка f_{Γ} на непрекъснат оператор Γ .

Разбира се, някои свойства на f_{Γ} можем да доказваме с *обичайна индукция*. В *Пример* 1.8 така показахме, че единствената неподвижна точка на оператора

$$\Gamma(f)(x) \simeq \begin{cases} 1, & \text{ако } x = 0 \\ x.f(x-1), & \text{иначе.} \end{cases}$$

е x!, и значи f_{Γ} е x!.

В други случаи може да се наложи да използваме *пълна индукция*, както е във следващия пример.

Пример 1.13. Нека Γ е следният оператор:

$$\Gamma(f)(x)\simeq egin{cases} 1, & \text{ако } x=0 \ (f(rac{x}{2}))^2, & \text{ако } x>0 \ \text{е четно} \ 2(f(rac{x-1}{2}))^2, & \text{ако } x \ \text{е нечетно}. \end{cases}$$

Докажете, че Γ има единствена неподвижна точка — функцията 2^x .

Решение. Ще покажем, че ако f е неподвижна точка на Γ , то $f(x) = 2^x$ за всяко x. Следователно 2^x ще е най-малката н.т. на Γ . Наистина $f = \Gamma(f)$ означава, че за всяко x:

$$f(x)\simeq egin{cases} 1, & \text{ако } x=0 \ (f(rac{x}{2}))^2, & \text{ако } x>0 \ \text{е четно} \ 2(f(rac{x-1}{2}))^2, & \text{ако } x \ \text{е нечетно}. \end{cases}$$

Виждаме, че при x>0 функцията f вика себе си в точки от вида $\frac{x}{2}$ или $\frac{x-1}{2}$, които са строго по-малки от x и значи трябва да разсъждаваме с nълна uндукция, за да покажем, че

$$f(x) = 2^x$$
 за всяко $x \in \mathbb{N}$.

При x = 0 имаме $f(0) \stackrel{\text{деф}}{=} 1 = 2^0$.

Сега да фиксираме някакво x > 0 и да предположим, че за всички x' < x е вярно, че $f(x') = 2^{x'}$. Ако x е четно, за него ще имаме:

$$f(x) \simeq (f(\frac{x}{2}))^2 \ \stackrel{\text{\tiny H.X.}}{=} \ (2^{\frac{x}{2}})^2 \ = 2^x,$$

а ако x е нечетно, то отново от избора на f и индукционното предположение получаваме:

$$f(x) \simeq 2(f(\frac{x-1}{2}))^2 \stackrel{\text{\tiny H.X.}}{=} 2.(2^{\frac{x-1}{2}})^2 = 2^x$$

Накрая да разгледаме един оператор със следната по-особена дефиниция:

Пример 1.14.

$$\Gamma(f)(x)\simeq egin{cases} rac{x}{2}, & ext{ако } x ext{ е четно} \\ f(f(rac{3x+1}{2})), & ext{ако } x ext{ е нечетно}. \end{cases}$$

Ясно е, че тук пълна индукция относно x няма да върви най-малкото, защото аргументът $\frac{3x+1}{2}$ на вътрешното f е по-голям от текущия аргумент x. Оказва се, че въпреки това можем да доказваме свойства на f_{Γ} , само че това ще става не чрез индукция относно x, както беше в горните примери, а чрез съвършено различен индуктивен принцип — undykmushusm принцип на Ckom.

За да формулираме този принцип, ще въведем един специален вид свойства — тъй наречените *непрекъснати свойства*.

1.5.1 Непрекъснати свойства

Нека P е свойство на функциите от $\mathcal{F}_k = \{f \mid f : \mathbb{N}^k \longrightarrow \mathbb{N}\}$, или все едно, P е унарен предикат в \mathcal{F}_k .

Определение 1.13. Казваме, че свойството P е непрекъснато, ако за всяка монотонно растяща редица $f_0 \subseteq f_1 \subseteq \dots$ в \mathcal{F}_k е изпълнено условието:

$$\forall n P(f_n) \implies P(\bigcup_n f_n). \tag{1.6}$$

С други думи, P е непрекъснато, ако от това, че всеки член на растящата редица $\{f_n\}_n$ има свойството P следва, че и нейната точна горна граница $\bigcup f_n$ ще има свойството P.

Условието (1.6) се нарича още условие за <u>затвореност на P</u>. Ще си обясните защо, ако си представите P като множество — множеството M_P на тези функции, които имат свойството P.

Задача 1.6. Проверете дали е непрекъснато всяко от изброените подолу свойства в \mathcal{F}_1 :

- 1) $P_1(f) \iff \neg! f(1);$
- $P_2(f) \iff !f(0);$
- 3) $P_3(f) \iff f$ е тотална;
- 4) $P_4(f) \iff f$ е крайна;
- 5) $P_5(f) \iff f$ е с безкраен домейн, но не е тотална.

Решение. Да си припомним дефиницията (1.3) за точна горна граница f на дадена монотонно растяща редица $f_0 \subseteq f_1 \subseteq \dots$ за случая, когато тези функции са едноместни:

$$\forall x \forall y (f(x) \simeq y \iff \exists n \ f_n(x) \simeq y).$$
 (1.7)

1) Нека $f_0\subseteq f_1\subseteq\dots$ е монотонно растяща редица и нека за всяко $n,P_1(f_n)$ е вярно, т.е. вярно е, че

$$\neg!f_0(1), \ \neg!f_1(1), \ \neg!f_2(1), \dots$$

Но тогава от дефиницията (1.7) на f е ясно, че $\neg!f(1)$, т.е. и $P_1(f)$ е в сила.

2) Нека сега всяка функция от редицата $\{f_n\}_n$ има свойството P_2 , т.е.

$$\forall n \ ! f_n(0).$$

Ако допуснем, че граничната функция $f = \bigcup f_n$ не е дефинирана за x = 0, то съгласно (1.7) би трябвало за никое n да не е дефинирано $f_n(0)$ — противоречие.

- 3) P_3 също е непрекъснато, защото ако редицата $f_0 \subseteq f_1 \subseteq \dots$ се състои само от тотални функции, то тогава $f_0 = f_1 = \dots$ и следователно $\bigcup f_n = f_0$ също ще е тотална.
- 4) Свойството P_4 вече не е непрекъснато: да вземем една едноместна функция f, която не е крайна. Нека f_n е рестрикцията на f до началния сегмент $\{0,\ldots,n\}$:

$$f_n = f \upharpoonright \{0, \dots, n\}.$$

Ясно е, че така получената редица $f_0 \subseteq f_1 \subseteq \ldots$ от крайни приближения на f е монотонно растяща и нейната т.г.г. е f. Очевидно за всяко n, $P_4(f_n)$ е в сила, докато за функцията f това не е така.

5) Адаптирайте доказателството от по-горе, като този път тръгнете от тотална функция f.

1.5.2 Индуктивен принцип на Скот

Вече сме готови да формулираме *индуктивния принцип на Скот* за доказване на свойства на най-малките неподвижни точки на непрекъснати оператори.

Твърдение 1.11.(Индуктивен принцип на Скот) Нека $\Gamma: \mathcal{F}_k \longrightarrow \mathcal{F}_k$ е непрекъснат оператор, а P е свойство в \mathcal{F}_k , за което са изпълнени условията:

- 1) $P(\emptyset^{(k)});$
- 2) $P(f) \implies P(\Gamma(f))$ за всяка функция $f \in \mathcal{F}_k$;
- 3) свойството P е непрекъснато.

Тогава P е вярно за най-малката неподвижна точка f_{Γ} на оператора Γ .

Доказателство. От теоремата на Кнастер-Тарски знаем, че

$$f_{\Gamma} = \bigcup_{n} \Gamma^{n}(\emptyset^{(k)}).$$

Да положим отново $f_n = \Gamma^n(\emptyset^{(k)})$. В доказателството на теоремата видяхме, че редицата $\{f_n\}_n$ е монотонно растяща. С индукция по n ще покажем, че свойството P е вярно за всяка функция f_n от тази редица.

База n=0: имаме $f_0=\emptyset^{(k)}$ и $P(f_0)$ е точно условието 1).

Да приемем, че за някое n е вярно $P(f_n)$. Но тогава съгласно 2) ще е вярно и $P(\Gamma(f_n))$, т.е. ще е вярно $P(f_{n+1})$.

Получихме, че всеки член на монотонно растящата редица f_0, f_1, \ldots има свойството P. Но P е непрекъснато, следователно то ще бъде в сила и за точната горна граница f_{Γ} на тази редица.

Разбира се, далеч не всяко свойство на f_{Γ} може да се докаже с индуктивния принцип на Скот. Да вземем, да кажем, свойството

$$P(f) \iff \forall x \ f(x) = 2^x.$$

В Пример 1.13 видяхме, че то е изпълнено за н.м.н.т. f_{Γ} на съответния оператор Γ . Това свойство няма как да се докаже с принципа на Скот, защото още първото му условие $P(\emptyset^{(1)})$ пропада. В следващия раздел ще разгледаме няколко типа свойства, които могат да се атакуват с този принцип (непрекъснати са и са верни за $\emptyset^{(1)}$).

1.5.3 Непрекъснатост на някои типове свойства

Типичното приложение на индуктивния принцип на Скот е за свойствата от тип частична коректност. Да си припомним определенията за коректност на програма.

Нека \mathbf{P} е произволна програма с k входни променливи x_1, \ldots, x_k и една изходна променлива y. Нека $I(x_1, \ldots, x_k)$ и $O(x_1, \ldots, x_k, y)$ са съответно някакви 6xodho и 00 и 00 условие за програмата 01.

<u>Свойство от тип частична коректност</u> (относно даденото входно условие I и изходно условие O) ще наричаме условието $P_{p.c.}(f)$, което се дефинира по следния начин:

$$P_{p.c.}(f) \iff \forall \bar{x} \ (I(\bar{x}) \ \& \ !f(\bar{x})) \implies O(\bar{x}, f(\bar{x}))).$$

Преразказано, свойството $P_{p.c.}(f)$ ни говори, че една програма е частично коректна, ако при всеки коректен вход \bar{x} , **ако** програмата завърши върху \bar{x} , то резултатът ще е коректен.

В частност, когато $I(\bar{x})$ е вярно за всяко $\bar{x} \in \mathbb{N}^k$ (т.е. нямаме изискване за входните данни), горното условие за частична коректност добива вида:

$$P_{p.c.}(f) \iff \forall \bar{x} \ (!f(\bar{x}) \implies O(\bar{x}, f(\bar{x}))).$$

При свойствата от тип *тотална коректност* искаме при всеки коректен вход програмата задължително да завършва и резултатът отново да е коректен, разбира се. Или формално:

$$P_{t.c.}(f) \iff \forall \bar{x} \ (I(\bar{x}) \implies !f(\bar{x}) \& O(\bar{x}, f(\bar{x}))).$$

За съжаление, свойствата от тип тотална коректност не могат да се доказват с индуктивния принцип на Скот, защото очевидно пропада условието те да са в сила за никъде недефинираната функция $\emptyset^{(k)}$:

$$P_{t.c.}(\emptyset^{(k)}) \iff \forall \bar{x} \ (I(\bar{x}) \implies \underbrace{!(\emptyset^{(k)}(\bar{x}) \& O(\bar{x}, \emptyset^{(k)}(\bar{x})))}_{false}.$$

За сметка на това, обаче, всяко свойство от тип частична коректност е вярно за $\emptyset^{(k)}$ по тривиални причини ("от лъжата следва всичко"):

$$P_{p.c.}(\emptyset^{(k)}) \iff \forall \bar{x} \ (I(\bar{x}) \ \& \ \underbrace{!\emptyset^{(k)}(\bar{x})}_{false} \implies O(\bar{x}, \emptyset^{(k)}(\bar{x})))$$

За щастие, всяко такова свойство се оказва и непрекъснато.

Твърдение 1.12. Всяко свойство от тип частична коректност е непрекъснато.

Доказателство. Да вземем произволно свойство $P_{p.c.}$ от този тип:

$$P_{p.c.}(f) \iff \forall \bar{x} \ (I(\bar{x}) \ \& \ !f(\bar{x})) \implies O(\bar{x}, f(\bar{x})).$$

Да вземем и монотонно растяща редица $f_0 \subseteq f_1 \subseteq \ldots$, такава че всеки неин член има свойството $P_{p.c.}$. Нека f е точната горна граница на тази редица. Да фиксираме произволно $\bar{x} \in \mathbb{N}^k$ и да предположим, че за него предпоставката в горната импликация е вярна, т.е. верни са $I(\bar{x})$ и $!f(\bar{x})$.

Щом $!f(\bar{x})$, съгласно дефиницията (1.3) за точна горна граница, ще съществува n, такова че $!f_n(\bar{x})$ и съответно $f_n(\bar{x}) = f(\bar{x})$. Но $P_{p.c.}(f_n)$ е в сила, вярна е и предпоставката $I(\bar{x})$ & $!f_n(\bar{x})$ на това свойство, откъдето следва, че е вярно и следствието $O(\bar{x}, f_n(\bar{x}))$, с други думи, вярно е $O(\bar{x}, f(\bar{x}))$.

Свойствата от тип тотална коректност също са непрекъснати (убедете се сами!). За съжаление, те не могат да се доказват с правилото на Скот, защото както отбелязахме по-горе, не са верни за никъде недефинираната функция $\emptyset^{(k)}$.

В задачите ще ни се налага да доказваме свойства, които са конюнкция на две или повече други, по-прости свойства. В тези случаи ще ни е от полза следващото твърдение:

Твърдение 1.13. Нека свойствата P_1 и P_2 са непрекъснати. Тогава $P_1 \& P_2$ също е непрекъснато.

Доказателство. Фиксираме монотонно растяща редица $f_0 \subseteq f_1 \subseteq \dots$ с точна горна граница f и приемаме, че

$$\forall n(P_1 \& P_2)(f_n).$$

Тогава $\forall n P_1(f_n)$ и $\forall n P_2(f_n)$, откъдето (поради непрекъснатостта на P_1 и P_2) получаваме $P_1(f)$ и $P_2(f)$, а значи и $(P_1 \& P_2)(f)$.

Да се убедим, че дизюнкцията също запазва непрекъснатостта:

Твърдение 1.14. Ако P_1 и P_2 са непрекъснати, то и $P_1 \lor P_2$ е непрекъснато.

Доказателство. Тук вече не можем да твърдим, че

$$\forall n(P_1 \vee P_2)(f) \implies \forall nP_1(f) \vee \forall nP_2(f)$$
.

Затова ще разсъждаваме другояче.

Отново избираме растяща редица $f_0 \subseteq f_1 \subseteq \ldots$ с точна горна граница f и приемаме, че за всяко n е вярно $(P_1 \vee P_2)(f_n)$. Тогава за безброй много n ще е вярно $P_1(f_n)$ или $P_2(f_n)$ (или и двете). Да приемем, че се е случило първото.

Нека $\{f_{n_i}\}_i$ е подредицата на $\{f_n\}_n$, за която е вярно $\forall i P_1(f_{n_i})$. От непрекъснатостта на P_1 ще имаме, че то е в сила и за точната горна граница на редицата $\{f_{n_i}\}_i$. Да я означим с g:

$$g = \bigcup_{i} f_{n_i}$$
.

Да се убедим, че g е точна горна граница и на цялата редица $\{f_n\}_n$, с други думи, g=f. Интуитивно е ясно, че g трябва да е подфункция на f, защото g е граница на подредица на редицата с граница f. Наистина, да приемем, че за произволни $\bar{x}, y \colon g(\bar{x}) \simeq y$. От определението за т.г.г. следва, че трябва да съществува i, за което $f_{n_i}(\bar{x}) \simeq y$. Но f е т.г.г. на цялата редица $\{f_n\}_n$ и значи и $f(\bar{x}) \simeq y$. Понеже \bar{x} и y бяха произволни, то $g \subseteq f$.

Обратно, ако $f(\bar{x}) \simeq y$, то значи $f_n(\bar{x}) \simeq y$ за някое n. Нека i е такова, че $n_i \geq n$. Тогава $f_{n_i} \supseteq f_n$, което означава, че и $f_{n_i}(\bar{x}) \simeq y$, а оттук и $g(\bar{x}) \simeq y$. Така получихме, че от $f(\bar{x}) \simeq y$ следва, че и $g(\bar{x}) \simeq y$, и това е изълнено за произволните \bar{x} и y. Следователно $g \subseteq f$.

Сега от
$$P_1(g)$$
 и $g=f$ получаваме $P_1(f)$, откъдето и $(P_1 \vee P_2)(f)$.

Твърдение 1.15. Нека Γ и Δ са непрекъснати оператори от един и същи тип $(k \to m)$. Да дефинираме свойството P в \mathcal{F}_k по следния начин:

$$P(f) \stackrel{\text{деф}}{\iff} \Gamma(f) \subseteq \Delta(f).$$

Тогава P е непрекъснато свойство.

Доказателство. Да вземем монотонно растяща редица $f_0 \subseteq f_1 \subseteq \dots$ с точна горна граница f и да приемем, че за всяко n $P(f_n)$.

Непрекъснатостта на Γ и Δ означава, че

$$\Gamma(f) = \Gamma(\bigcup_n f_n) = \bigcup_n \Gamma(f_n)$$
 \mathbf{u} $\Delta(f) = \Delta(\bigcup_n f_n) = \bigcup_n \Delta(f_n).$

Следователно нашето условие $\Gamma(f)\subseteq \Delta(f)$ е еквивалентно с

$$\bigcup_{n} \Gamma(f_n) \subseteq \bigcup_{n} \Delta(f_n), \tag{1.8}$$

верността на което се съобразява ето как:

За фиксирано n, понеже $P(f_n)$ е вярно, ще имаме, че $\Gamma(f_n) \subseteq \Delta(f_n)$. Ясно е, че $\Delta(f_n) \subseteq \bigcup_n \Delta(f_n)$, откъдето общо

$$\Gamma(f_n) \subseteq \bigcup_n \Delta(f_n).$$

Но n беше произволно, следователно функцията $\bigcup_n \Delta(f_n)$ мажорира всеки член на редицата $\{\Gamma(f_n)\}_n$, и значи тя мажорира и точната ѝ горна граница $\bigcup_n \Gamma(f_n)$, което е точно условието (1.8).

Твърдение 1.16. Нека Γ и Δ са непрекъснати оператори от един и същи тип. Тогава е непрекъснато и свойството

$$P(f) \ \stackrel{\mathrm{def}}{\Longleftrightarrow} \ \Gamma(f) = \Delta(f).$$

Доказателство. Директно от предишните две твърдения, тъй като

$$P(f) \iff \Gamma(f) \subseteq \Delta(f) \& \Delta(f) \subseteq \Gamma(f).$$

Сега да се върнем към оператора Γ от нашия мотивационен $\Pi pumep~1.14$ от началото на този раздел, за да видим как с индуктивния принцип на Скот ще можем да докажем свойство на f_{Γ} .

Задача 1.7. Нека Г е дефиниран по следния начин:

$$\Gamma(f)(x)\simeq egin{cases} rac{x}{2}, & ext{ako }x ext{ е четно} \ f(f(rac{3x+1}{2})), & ext{ako }x ext{ е нечетно}. \end{cases}$$

Докажете, че за f_{Γ} е изпълнено:

$$\forall x(!f_{\Gamma}(x) \implies f_{\Gamma}(x) \le \frac{x}{2}).$$

Решение. Ще приемем наготово, че Γ е непрекъснат и следователно можем да приложим индуктивния принцип на Скот.

Да означим с P свойството от условието на задачата:

$$P(f) \iff \forall x (!f(x) \implies f(x) \le \frac{x}{2}).$$

За да покажем, че $P(f_{\Gamma})$ е вярно, трябва да проверим трите изисквания от правилото на Скот:

- 1) $P(\emptyset^{(1)});$
- 2) $P(f) \implies P(\Gamma(f))$ за всяка $f \in \mathcal{F}_1;$
- 3) свойството P е непрекъснато.

Но P е свойство от тип частична коректност и съгласно $Tespdenue\ 1.12$, то е непрекъснато. За такива свойства забелязахме също, че първото изискване $P(\emptyset^{(1)})$ е винаги вярно.

Следователно остана да проверим само условието 2), което впрочем е единственото, в което участва Γ .

Наистина, да фиксираме произволна функция $f \in \mathcal{F}_1$ и да приемем, че за нея P(f) е вярно. Това се явява *индуктивната хипотеза* при този тип индукция.

Да направим индуктивната стъпка означава да покажем, че е вярно и $P(\Gamma(f))$. Свойството $P(\Gamma(f))$ изглежда така:

$$P(\Gamma(f)) \iff \forall x (!\Gamma(f)(x) \implies \Gamma(f)(x) \le \frac{x}{2}).$$

Избираме произволно x и приемаме, че за него $!\Gamma(f)(x)$. Трябва да покажем, че

$$\Gamma(f)(x) \le \frac{x}{2}.$$

Но на колко е равно $\Gamma(f)(x)$? Поглеждаме към определението на Γ и виждаме, че това зависи от четността на x. Разглеждаме поотделно двете възможности за x.

1 сл. x е четно. Този случай е базисен за Γ , т.е. стойността на $\Gamma(f)(x)$ въобще не зависи от f. По-точно, имаме, че $\Gamma(f)(x) \stackrel{\text{деф}}{=} \frac{x}{2} \leq \frac{x}{2}$.

 ${f 2}$ сл. x е нечетно. ${f B}$ този случай $\Gamma(f)(x)\stackrel{{\mbox{\scriptsize деф}}}{\simeq} f(f(rac{3x+1}{2})).$

Нашето предположение е, че $\Gamma(f)(x)$ има стойност, т.е. изразът $f(f(\frac{3x+1}{2}))$ има стойност. Това означава, съгласно определението за суперпозиция, че и изразът $f(\frac{3x+1}{2})$ трябва да има стойност. Сега прилагаме двукратно индуктивното предположение P(f) и получаваме последователно:

$$f(f(\frac{3x+1}{2})) \overset{\text{\tiny H.X.}\ P(f)}{\leq} \frac{f(\frac{3x+1}{2})}{2} \overset{\text{\tiny H.X.}\ P(f)}{\leq} \frac{\frac{\frac{3x+1}{2}}{2}}{2} = \frac{3x+1}{8} \leq \frac{x}{2}.$$

С това приключи индуктивната стъпка, т.е. преходът $P(f) \Longrightarrow P(\Gamma(f))$, и понеже f беше произволна, можем да твърдим, че условието 2) е в сила за всяка функция $f \in \mathcal{F}_1$.

Да обобщим: показахме, че и трите изисквания от индуктивния принцип на Скот са изпълнени, и значи можем да твърдим, че свойството P е в сила и за f_{Γ} , с други думи, вярно е, че

$$\forall x(!f_{\Gamma}(x) \implies f_{\Gamma}(x) \le \frac{x}{2}).$$