TECHNISCHE UNIVERSITÄT MÜNCHEN

Florian Ettlinger Übung Dienstag FERIENKURS LINEARE ALGEBRA WS 2011/12

Aufgabe 1 Folgende Matrizen seien gegeben:

$$A = \begin{pmatrix} 2 & 3 & 4 & 5 \\ 1 & 1 & 2 & 1 \end{pmatrix}, \quad B = \begin{pmatrix} 1 & 3 \\ 2 & 2 \\ 3 & 1 \\ 4 & 4 \end{pmatrix}, \quad C = \begin{pmatrix} 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \\ 0 & 0 & 0 & 0 \end{pmatrix}$$

Man berechne $A \cdot B$ und $B \cdot A$, sowie alle Potenzen C^k mit $k \in \mathbb{N}_0$.

Aufgabe 2 Man untersuche die gegebenen Matrizen auf Invertierbarkeit und berechne gegebenenfalls die jeweils inverse Matrix.

Hinweis: Bei dem Gauss-Jordan-Verfahren wird die Matrix zunächst in eine obere Dreiecksmatrix transformiert. Was kann man in diesem Stadium über die Invertierbarkeit aussagen?

$$A = \begin{pmatrix} 1 & 0 & 2 \\ 2 & -1 & 3 \\ 4 & 1 & 8 \end{pmatrix}, \quad B = \begin{pmatrix} -1 & 2 & -3 \\ 2 & 1 & 0 \\ 4 & -2 & 5 \end{pmatrix}, \quad C = \begin{pmatrix} 1 & \mathbf{i} & \mathbf{i} \\ -\mathbf{i} & -1 & 0 \\ \mathbf{i} & 0 & 1 \end{pmatrix}$$

Aufgabe 3 Sei K ein Körper und $n, m \in \mathbb{N}$. Man zeige:

- a) Sei $A \in K^{n \times m}$. Die Matrix $A \cdot A^t$ ist symmetrisch.
- **b)** Sei $A \in GL(n, K)$. Es ist $A^t \in GL(n, K)$ und es gilt $(A^{-1})^t = (A^t)^{-1}$.

 $\bf Aufgabe~4~$ Man berechne (ohne elektronische Hilfsmittel) A^{20} für die Matrix

$$A = \begin{pmatrix} 1 & 0 & 0 \\ 2 & 1 & 0 \\ 0 & 3 & 1 \end{pmatrix}.$$

Hinweise: Man verwende die Zerlegung

$$A = E_3 + \begin{pmatrix} 0 & 0 & 0 \\ 2 & 0 & 0 \\ 0 & 3 & 0 \end{pmatrix}.$$

Wenn zwei Matrizen A und B kommutieren, d.h. wenn $A \cdot B = B \cdot A$, dann gilt die binomische Formel:

$$(A+B)^n = \sum_{k=0}^n \binom{n}{k} \cdot A^k \cdot B^{n-k}$$

Man verwende ausserdem, dass

$$\begin{pmatrix} 0 & 0 & 0 \\ 2 & 0 & 0 \\ 0 & 3 & 0 \end{pmatrix}^k = \begin{pmatrix} 0 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \end{pmatrix}$$

für $k \ge l$ und ein bestimmtes zu berechnendes l.

Aufgabe 5 Es seien die Matrizen

$$A = \begin{pmatrix} a_{11} & 2 & 3 \\ a_{21} & 1 & 3 \\ a_{31} & -1 & -2 \end{pmatrix}, \quad B = \begin{pmatrix} 2 & -2 & 1 \\ 0 & b_{22} & 2 \\ 0 & 1 & 2 \end{pmatrix}, \quad C = \begin{pmatrix} 2 & -3 & c_{13} \\ 4 & -3 & c_{23} \\ 0 & 0 & c_{33} \end{pmatrix}$$

gegeben mit $A \cdot B = C$. Man bestimme a_{ij}, b_{ij}, c_{ij} .

Aufgabe 6 Man bestimme jeweils $L\ddot{o}s(A, \vec{b})$.

a)
$$A = \begin{pmatrix} 2 & 4 \\ 3 & 6 \end{pmatrix}, \quad \vec{b} = \begin{pmatrix} 10 \\ 15 \end{pmatrix}$$

b)
$$A = \begin{pmatrix} 2 & 3 & -2 \\ 1 & -2 & 3 \\ 4 & -1 & 4 \end{pmatrix}, \quad \vec{b} = \begin{pmatrix} 5 \\ 2 \\ 1 \end{pmatrix}$$

c)
$$A = \begin{pmatrix} 2 & 1 & -2 \\ 3 & 2 & 2 \\ 5 & 4 & 3 \end{pmatrix}, \quad \vec{b} = \begin{pmatrix} 10 \\ 1 \\ 4 \end{pmatrix}$$

Aufgabe 7 Man löse das LGS $A\vec{x} = \vec{b}$ über \mathbb{F}_2 . Wie viele Lösungen gibt es?

$$(A, \vec{b}) = \begin{pmatrix} 1 & 0 & 1 & 0 & 1 & 1 & 0 \\ 0 & 1 & 0 & 1 & 1 & 0 & 1 \\ 1 & 0 & 0 & 1 & 1 & 1 & 1 \\ 0 & 1 & 1 & 0 & 1 & 0 & 0 \\ 1 & 1 & 1 & 1 & 0 & 1 & 1 \end{pmatrix}$$

Hinweis: Es gilt für $a \in \mathbb{F}_2$, dass -a = +a.

Aufgabe 8 Man löse die folgenden LGS in Abhängigkeit von $\alpha \in \mathbb{R}$.

a)
$$\begin{pmatrix} 2 & 4 & 2 \\ 2 & 12 & 7 \\ 1 & 10 & 6 \end{pmatrix} \cdot \begin{pmatrix} x_1 \\ x_2 \\ x_3 \end{pmatrix} = \begin{pmatrix} 12\alpha \\ 12\alpha + 7 \\ 7\alpha + 8 \end{pmatrix}$$

b)
$$\begin{pmatrix} 1 & 2 & 2 \\ 1 & 3 & 3 \\ 3 & 4 & 7 \\ 2 & 4 & \alpha \end{pmatrix} \cdot \begin{pmatrix} x_1 \\ x_2 \\ x_3 \end{pmatrix} = \begin{pmatrix} -3 \\ -4 \\ 2 \\ 3 \end{pmatrix}$$

Aufgabe 9 Man zeige, dass das folgende LGS über \mathbb{R} nur für $\beta=1$ oder $\beta=2$ Lösungen besitzt und gebe diese in beiden Fällen an.

$$\left(\begin{array}{ccc|c}
1 & 1 & 1 & 1 \\
1 & 2 & 4 & \beta \\
1 & 4 & 10 & \beta^2
\end{array}\right)$$

Aufgabe 10 Es sei $a_{ij}, b_i \in K$. Man betrachte das folgende LGS:

$$\begin{array}{rcl} (I) & a_{11}x_1 + a_{12}x_2 & = & b_1 \\ (II) & a_{21}x_1 + a_{22}x_2 & = & b_2 \end{array}$$

In Abhängigkeit von a_{ij} und b_i beschreibe man die Lösungsmenge L des LGS.

- Wann ist L einelementig?
- Wann ist L leer?
- ullet Wann enthält L mehr als ein Element? Wie sieht L dann aus?

Hinweis: Man berücksichtige, dass jede der beiden Gleichungen eine Gerade beschreibt.