Licence 1 : Maths- Info et Eco-Stat Examen : Fonctions réelles de la variable réelle

Durée: 2 h 00 mn

Exercice 1

- 1. Soit f une application de \mathbb{R} vers \mathbb{R} . Ecrire à l'aide des symboles mathématiques usuels $(\forall, \exists, \Rightarrow)$ la phrase suivante : f(x) tend vers $-\infty$ quand x tend vers -2.
- 2. Donner la définition d'une suite minorée.
- 3. Déterminer l'ensemble de définition de la fonction f de la variable réelle x définie par

$$f(x) = (x+1)^{\frac{1}{x}}.$$

4. Enoncer, avec précision, le théorème de Rolle.

Exercice 2

Calculer les limites suivantes :

$$\lim_{x \to 0} \frac{(1 - e^x)\sin x}{x^2 + x^3} \qquad \text{et} \qquad \lim_{x \to 0} \frac{(\tan(x))^2}{\cos(2x) - 1}.$$

Exercice 3

Donner le développement limité en 0 à l'ordre 4 de $f(x) = \sqrt{1 + \sin x}$.

Exercice 4

- 1. Donnez la définition de suites adjacentes
- 2. On considère les suites (u_n) et (v_n) définies par $u_0=2$ et $v_0=4$ et pour tout $n\geqslant 0$

$$u_{n+1} = \frac{2u_n + v_n}{3}$$
 et $v_{n+1} = \frac{u_n + 2v_n}{3}$.

- a) Déterminer u_1 et v_1 .
- b) Démontrer que pour tout $n \ge 0$ on a

$$u_n \leqslant u_{n+1} \leqslant v_{n+1} \leqslant v_n.$$

- c) Démontrer que $(v_n u_n)$ est une suite géométrique dont on précisera la raison. En déduire que la suite $(v_n - u_n)$ tend vers 0.
- d) Démontrer que (u_n) et (v_n) convergent vers la même limite.
- e) Démontrer que la suite $(u_n + v_n)$ est constante.
- f) En déduire la limite des suites (u_n) et (v_n) .

Licence 1 : Maths- Info et Eco-Stat Examen : Fonctions réelles de la variable réelle

Durée : 2 h 00 mn

Licence 1 : Maths- Info et Eco-Stat Examen : Fonctions réelles de la variable réelle

Durée : 2 h 00 mn