Chapter 4

Multiple Choice

 Pthreads refers to A) the Windows standard. B) an implementation for thread behavior. C) a specification for thread behavior. D) an API for process creation and synchronization.
2. The multithreading model multiplexes many user-level threads to a smaller or equal number of kernel threads. A) many-to-one model B) one-to-one model C) many-to-many model D) many-to-some model
3. Cancellation points are associated with cancellation. A) asynchronous B) deferred C) synchronous D) non-deferred
4. Which of the following would be an acceptable signal handling scheme for a multithreaded program?A) Deliver the signal to the thread to which the signal applies.B) Deliver the signal to every thread in the process.C) Deliver the signal to only certain threads in the process.D) All of the above
 5. Thread-local storage is data that A) is not associated with any process B) has been modified by the thread, but not yet updated to the parent process C) is generated by the thread independent of the thread's process D) is unique to each thread
6. Windows uses the A) one-to-one model B) many-to-one model C) one-to many-model D) many-to-many model
7 is not considered a challenge when designing applications for multicore systems. A) Deciding which activities can be run in parallel B) Ensuring there is a sufficient number of cores

C) Determining if data can be separated so that it is accessed on separate cores D) Identifying data dependencies between tasks.
 8. A provides an API for creating and managing threads. A) set of system calls B) multicore system C) thread library D) multithreading model
9. The model maps many user-level threads to one kernel thread. A) many-to-many B) two-level C) one-to-one D) many-to-one
10. The model maps each user-level thread to one kernel thread. A) many-to-many B) two-level C) one-to-one D) many-to-one
11. In Pthreads, a parent uses the pthread_join() function to wait for its child thread to complete. What is the equivalent function in Win32? A) win32_join() B) wait() C) WaitForSingleObject() D) join()
12. A uses an existing thread — rather than creating a new one — to complete a task. A) lightweight process B) thread pool C) scheduler activation D) asynchronous procedure call
13. According to Amdahl's Law, what is the speedup gain for an application that is 60% parallel and we run it on a machine with 4 processing cores? A) 1.82 B) .7 C) .55 D) 1.43
 14 involves distributing tasks across multiple computing cores. A) Concurrency B) Task parallelism C) Data parallelism D) Parallelism

- 15. ______ is a formula that identifies potential performance gains from adding additional computing cores to an application that has a parallel and serial component.
- A) Task parallelism
- B) Data parallelism
- C) Data splitting
- D) Amdahl's Law
- 16. When OpenMP encounters the #pragma omp parallel directive, it
- A) constructs a parallel region
- B) creates a new thread
- C) creates as many threads as there are processing cores
- D) parallelizes for loops
- 17. Grand Central Dispatch handles blocks by
- A) placing them on a dispatch queue
- B) creating a new thread
- C) placing them on a dispatch stack
- D) constructing a parallel region

True/False

- 18. A traditional (or heavyweight) process has a single thread of control.
- 19. A thread is composed of a thread ID, program counter, register set, and heap.
- 20. Virtually all contemporary operating systems support kernel threads.
- 21. Linux distinguishes between processes and threads.
- 22. Each thread has its own register set and stack.
- 23. Deferred cancellation is preferred over asynchronous cancellation.
- 24. It is possible to create a thread library without any kernel-level support.
- 25. It is possible to have concurrency without parallelism.
- 26. OpenMP only works for C, C++, and Fortran programs.
- 27. The trend in developing parallel applications is to use implicit threading.
- 28. Task parallelism distributes threads and data across multiple computing cores.