

Introduction to Deep Learning

What is a Neural Network?

Housing Price Prediction

size of house

price

Relu

Housing Price Prediction

Housing Price Prediction

Drawing of previous Image

Introduction to Deep Learning

Supervised Learning with Neural Networks

Supervised Learning

Input(x)	Output (y)	Application
Home features	Price	Real Estate Student
Ad, user info	Click on ad? (0/1)	Online Advertising
Image	Object (1,,1000)	Photo tagging 3 CNN
Audio	Text transcript	Speech recognition } KNN
English	Chinese	Machine translation
Image, Radar info	Position of other cars	Autonomous driving ? Custon/

Neural Network examples

Standard NN

Convolutional NN

Recurrent NN

Supervised Learning

Structured Data

Size	#bedrooms	•••	Price (1000\$s)
2104	3		400
1600	3		330
2400	3		369
:	:		:
3000	4		540

lacksquare			\bigvee
User Age	Ad Id	•••	Click
41	93242		1
80	93287		0
18	87312		1
:	:		:
27	71244		1

Unstructured Data

Audio

Image

Four scores and seven years ago...

Text

Introduction to Neural Networks

Why is Deep Learning taking off?

Scale drives deep learning progress

Scale drives deep learning progress

Basics of Neural Network Programming

Binary Classification

deeplearning.ai

Binary Classification

Notation

$$(x,y)$$
 $\times \in \mathbb{R}^{n_x}$, $y \in \{0,1\}$
 m training examples: $\{(x^{(i)},y^{(i)}),(x^{(i)},y^{(2i)}),...,(x^{(m)},y^{(m)})\}$
 $M = M$ train

 $M = M$ train

Basics of Neural Network Programming

Logistic Regression

deeplearning.ai

Logistic Regression

Given
$$x$$
, want $\hat{y} = P(y=1|x)$
 $x \in \mathbb{R}^{n}x$
Porareters: $w \in \mathbb{R}^{n}x$, $b \in \mathbb{R}$.
Output $\hat{y} = \sigma(w^{T}x + b)$
 $\sigma(\hat{x})$

$$X_0 = 1, \quad x \in \mathbb{R}^{n_x + 1}$$

$$\hat{y} = 6 (0^{T}x)$$

$$0 = 0^{T}$$

$$0 =$$

Network Programming

deeplearning.ai

Logistic Regression cost function

Basics of Neural

Logistic Regression cost function

$$\hat{y}^{(i)} = \sigma(w^T \underline{x}^{(i)} + b), \text{ where } \sigma(z^{(i)}) = \frac{1}{1 + e^{-z}} (i) \qquad \forall (i) = w^T \underline{x}^{(i)} + b$$
Given $\{(\underline{x}^{(1)}, \underline{y}^{(1)}), \dots, (\underline{x}^{(m)}, \underline{y}^{(m)})\}, \text{ want } \hat{y}^{(i)} \approx \underline{y}^{(i)} \qquad \forall (i) = w^T \underline{y}^{(i)} = w^T \underline{$

Basics of Neural Network Programming

deeplearning.ai

Gradient Descent

Gradient Descent

Recap:
$$\hat{y} = \sigma(w^T x + b)$$
, $\sigma(z) = \frac{1}{1 + e^{-z}} \leftarrow$

$$\underline{J(w,b)} = \frac{1}{m} \sum_{i=1}^{m} \mathcal{L}(\hat{y}^{(i)}, y^{(i)}) = -\frac{1}{m} \sum_{i=1}^{m} y^{(i)} \log \hat{y}^{(i)} + (1 - y^{(i)}) \log(1 - \hat{y}^{(i)})$$

Want to find w, b that minimize J(w, b)

Gradient Descent

$$J(\omega,b) \qquad \omega := \omega - \alpha \left(\frac{\partial J(\omega,b)}{\partial \omega} \right)$$

$$b := b - \alpha \left(\frac{\partial J(\omega,b)}{\partial \omega} \right)$$

DE J Jan

deeplearning.ai

Derivatives

Basics of Neural

Network Programming

Intuition about derivatives

deeplearning.ai

Basics of Neural Network Programming

More derivatives examples

Intuition about derivatives

More derivative examples

$$f(a) = a^2$$

$$f(\omega) = \alpha^3$$

$$\frac{\lambda}{\lambda a} f(a) = \frac{3a^2}{3x2^3} = 12$$

$$a = 2.001$$
 $f(a) = 8$
 $a = 2.001$ $f(a) = 8$

$$\frac{d}{da}f(a) = \frac{1}{a}$$

$$\frac{d}{da}f(a) = \frac{1}{a}$$

$$\frac{1}{a} = 2 \cdot 001 \quad f(a) \approx 0.69365$$

$$0.0005$$

$$0.0005$$

Basics of Neural Network Programming

deeplearning.ai

Computation Graph

Computation Graph

$$J(a,b,c) = 3(a+bc) = 3(5+3x^2) = 33$$
 $U = bc$
 $V = atu$
 $J = 3v$
 $U = bc$
 $U = bc$
 $U = bc$
 $U = atu$
 $U = atu$

Basics of Neural Network Programming

Derivatives with a Computation Graph

deeplearning.ai

Computing derivatives

Computing derivatives

$$a = 5$$

$$b = 3$$

$$b = 3$$

$$c = 2$$

$$du = 3$$

$$du =$$

deeplearning.ai

Basics of Neural Network Programming

Logistic Regression Gradient descent

Logistic regression recap

$$\Rightarrow z = w^{T}x + b$$

$$\Rightarrow \hat{y} = a = \sigma(z)$$

$$\Rightarrow \mathcal{L}(a, y) = -(y \log(a) + (1 - y) \log(1 - a))$$

Logistic regression derivatives

Basics of Neural Network Programming

deeplearning.ai

Gradient descent on m examples

Logistic regression on m examples

$$\frac{J(\omega,b)}{S} = \frac{1}{m} \sum_{i=1}^{m} f(\alpha^{(i)}, y^{(i)})$$

$$\frac{J(\omega,b)}{S} = \frac{1}{m} \sum_{i=1}^{m} f(\alpha^{(i)}, y^{(i)})$$

$$\frac{J(\omega,b)}{S} = \frac{1}{m} \sum_{i=1}^{m} \frac{J(\alpha^{(i)}, y^{(i)})}{J(\alpha^{(i)}, y^{(i)})}$$

$$\frac{J(\omega,b)}{J(\omega,b)} = \frac{1}{m} \sum_{i=1}^{m} \frac{J(\alpha^{(i)}, y^{(i)})}{J(\alpha^{(i)}, y^{(i)})}$$

$$\frac{J(\omega,b)}{J(\omega,b)} = \frac{1}{m} \sum_{i=1}^{m} \frac{J(\alpha^{(i)}, y^{(i)})}{J(\alpha^{(i)}, y^{(i)})}$$

$$\frac{J(\omega,b)}{J(\omega,b)} = \frac{1}{m} \sum_{i=1}^{m} \frac{J(\alpha^{(i)}, y^{(i)})}{J(\alpha^{(i)}, y^{(i)})}$$

Logistic regression on m examples

$$J=0; dw_{1}=0; dw_{2}=0; db=0$$

$$Z^{(i)} = \omega^{T} \chi^{(i)} + b$$

$$Z^{(i)} = \omega^{T} \chi^{(i)} + c$$

$$Z^$$

$$d\omega_1 = \frac{\partial J}{\partial \omega_1}$$

$$W_1 := W_1 - d d w_1$$
 $W_2 := W_2 - d d w_2$
 $b := b - d d b$

Vectorization

Basics of Neural Network Programming

deeplearning.ai

Vectorization

What is vectorization?

for i in range
$$(n-x)$$
:
 $2+= U[i]*x[i]$

Vertorized
$$Z = np.dot(\omega,x) + b$$

$$w^{\tau_x}$$

deeplearning.ai

Basics of Neural Network Programming

More vectorization examples

Neural network programming guideline

Whenever possible, avoid explicit for-loops.

Neural network programming guideline

Whenever possible, avoid explicit for-loops.

$$U = AV$$

$$U_{i} = \sum_{i} \sum_{j} A_{ij} V_{j}$$

$$U = np. zevos((n, i))$$

$$for i \dots G$$

$$u = i \exists t = A[i][i] * vC_{i}]$$

Vectors and matrix valued functions

Say you need to apply the exponential operation on every element of a matrix/vector.

$$v = \begin{bmatrix} v_1 \\ \vdots \\ v_n \end{bmatrix} \rightarrow u = \begin{bmatrix} e^{v_1} \\ e^{v_2} \end{bmatrix}$$

$$v = \begin{bmatrix} v_1 \\ \vdots \\ v_n \end{bmatrix} \rightarrow u = \begin{bmatrix} e^{v_1} \\ e^{v_n} \end{bmatrix}$$

$$u = np. \operatorname{zeros}((n, 1))$$

$$for i in range(n) : \leftarrow$$

$$np. \operatorname{deg}(v)$$

$$np. \operatorname{haximun}(v, 0)$$

$$v \neq v = \begin{bmatrix} v_1 \\ v_2 \\ v_n \end{bmatrix}$$

$$np. \operatorname{deg}(v)$$

$$np. \operatorname{haximun}(v, 0)$$

$$v \neq v = \begin{bmatrix} v_1 \\ v_n \end{bmatrix}$$

Logistic regression derivatives

$$J = 0, \quad dw_1 = 0, \quad dw_2 = 0, \quad db = 0$$

$$\Rightarrow \text{for } i = 1 \text{ to } n:$$

$$Z^{(i)} = w^T x^{(i)} + b$$

$$a^{(i)} = \sigma(z^{(i)})$$

$$J + = -[y^{(i)} \log \hat{y}^{(i)} + (1 - y^{(i)}) \log(1 - \hat{y}^{(i)})]$$

$$dz^{(i)} = a^{(i)}(1 - a^{(i)})$$

$$dw_1 + x_1^{(i)} dz^{(i)}$$

$$dw_2 + x_2^{(i)} dz^{(i)}$$

$$db + dz^{(i)}$$

$$J = J/m, \quad dw_1 = dw_1/m, \quad dw_2 = dw_2/m$$

$$db = db/m$$

$$d\omega / = m$$

Basics of Neural Network Programming

deeplearning.ai

Vectorizing Logistic Regression

Vectorizing Logistic Regression

$$Z^{(1)} = w^{T}x^{(1)} + b$$

$$Z^{(2)} = w^{T}x^{(2)} + b$$

$$Z^{(3)} = w^{T}x^{(3)} + b$$

$$Z^{(3)} = \sigma(z^{(3)})$$

$$Z^$$

Basics of Neural Network Programming

Vectorizing Logistic Regression's Gradient Computation

deeplearning.ai

Vectorizing Logistic Regression

$$\frac{dz^{(1)} = a^{(1)} - y^{(1)}}{dz^{(2)}} = a^{(2)} - y^{(2)}$$

$$\frac{dz^{(1)} = a^{(1)} - y^{(1)}}{dz^{(2)}} = a^{(2)} - y^{(2)}$$

$$A = [a^{(1)} - a^{(1)}] \qquad Y = [y^{(1)} - y^{(2)}]$$

$$A = [a^{(1)} - a^{(1)}] \qquad Y = [y^{(1)} - y^{(2)}]$$

$$A = [a^{(1)} - y^{(1)}] \qquad a^{(2)} - y^{(2)}$$

$$A = [a^{(1)} - y^{(1)}] \qquad a^{(2)} - y^{(2)}$$

$$A = [a^{(1)} - y^{(1)}] \qquad a^{(2)} - y^{(2)}$$

$$A = [a^{(1)} - y^{(1)}] \qquad a^{(2)} - y^{(2)}$$

$$A = [a^{(1)} - y^{(1)}] \qquad a^{(2)} - y^{(2)}$$

$$A = [a^{(1)} - y^{(1)}] \qquad a^{(2)} - y^{(2)}$$

$$A = [a^{(1)} - y^{(1)}] \qquad a^{(2)} - y^{(2)}$$

$$A = [a^{(1)} - y^{(1)}] \qquad a^{(2)} - y^{(2)}$$

$$A = [a^{(1)} - y^{(1)}] \qquad a^{(2)} - y^{(2)}$$

$$A = [a^{(1)} - y^{(1)}] \qquad a^{(2)} - y^{(2)}$$

$$A = [a^{(1)} - y^{(1)}] \qquad a^{(2)} - y^{(2)}$$

$$A = [a^{(1)} - y^{(1)}] \qquad a^{(2)} - y^{(2)}$$

$$A = [a^{(1)} - y^{(1)}] \qquad a^{(2)} - y^{(2)}$$

$$A = [a^{(1)} - y^{(1)}] \qquad a^{(2)} - y^{(2)}$$

$$A = [a^{(1)} - y^{(1)}] \qquad a^{(2)} - y^{(2)}$$

$$A = [a^{(1)} - y^{(1)}] \qquad a^{(2)} - y^{(2)}$$

$$A = [a^{(1)} - y^{(1)}] \qquad a^{(2)} - y^{(2)}$$

$$A = [a^{(1)} - y^{(1)}] \qquad a^{(2)} - y^{(2)}$$

$$A = [a^{(1)} - y^{(1)}] \qquad a^{(2)} - y^{(2)}$$

$$A = [a^{(1)} - y^{(1)}] \qquad a^{(2)} - y^{(2)}$$

$$A = [a^{(1)} - y^{(1)}] \qquad a^{(2)} - y^{(2)}$$

$$A = [a^{(1)} - y^{(1)}] \qquad a^{(2)} - y^{(2)}$$

$$A = [a^{(1)} - y^{(1)}] \qquad a^{(2)} - y^{(2)}$$

$$A = [a^{(1)} - y^{(1)}] \qquad a^{(2)} - y^{(2)}$$

$$A = [a^{(1)} - y^{(1)}] \qquad a^{(2)} - y^{(2)}$$

$$A = [a^{(1)} - y^{(1)}] \qquad a^{(2)} - y^{(2)}$$

$$A = [a^{(1)} - y^{(1)}] \qquad a^{(2)} - y^{(2)}$$

$$A = [a^{(1)} - y^{(1)}] \qquad a^{(2)} - y^{(2)}$$

$$A = [a^{(1)} - y^{(1)}] \qquad a^{(2)} - y^{(2)}$$

$$A = [a^{(1)} - y^{(1)}] \qquad a^{(2)} - y^{(2)}$$

$$A = [a^{(1)} - y^{(1)}] \qquad a^{(2)} - y^{(2)}$$

$$A = [a^{(1)} - y^{(1)}] \qquad a^{(2)} - y^{(2)}$$

$$A = [a^{(1)} - y^{(1)}] \qquad a^{(2)} - y^{(2)}$$

$$A = [a^{(1)} - y^{(1)}] \qquad a^{(2)} - y^{(2)}$$

$$A = [a^{(1)} - y^{(1)}] \qquad a^{(2)} - y^{(2)}$$

$$A = [a^{(1)} - y^{(1)}] \qquad a^{(1)} \rightarrow [a^{(1)} - y^{(1)}]$$

$$A = [a^{(1)} - y^{(1)}] \qquad a^{(1)} \rightarrow [a^{(1)} - y^{(1)}]$$

$$A =$$

$$db = \frac{1}{m} \sum_{i=1}^{m} dz^{(i)}$$

$$= \frac{1}{m} \left[x^{(i)} + \dots + x^{(i)} dz^{(m)} \right]$$

$$= \frac{1}{m} \left[x^{(i)} + \dots + x^{(i)} dz^{(m)} \right]$$

$$= \frac{1}{m} \left[x^{(i)} + \dots + x^{(i)} dz^{(m)} \right]$$

$$= \frac{1}{m} \left[x^{(i)} + \dots + x^{(i)} dz^{(m)} \right]$$

Implementing Logistic Regression

$$J = 0, dw_1 = 0, dw_2 = 0, db = 0$$

$$for i = 1 to m:$$

$$Z^{(i)} = w^T x^{(i)} + b$$

$$A^{(i)} = \sigma(Z^{(i)})$$

$$J + = -[y^{(i)} \log a^{(i)} + (1 - y^{(i)}) \log(1 - a^{(i)})]$$

$$dZ^{(i)} = a^{(i)} - y^{(i)}$$

$$dw_1 + x_1^{(i)} dz^{(i)}$$

$$dw_2 + x_2^{(i)} dz^{(i)}$$

$$db + dz^{(i)}$$

$$db + dz^{(i)}$$

$$dw_3 = dw_3 / m$$

$$dw_4 = dw_3 / m$$

$$dw_5 = dw_5 / m$$

$$dw_6 = dw_6 / m$$

$$dw_7 = dw_8 / m$$

$$dw_8 = dw_8 / m$$

Basics of Neural Network Programming

deeplearning.ai

Broadcasting in Python

Broadcasting example

Calories from Carbs, Proteins, Fats in 100g of different foods:

Apples Beef Eggs Potatoes

Carb
$$56.0$$
 0.0 4.4 68.0

Protein Fat 104.0 52.0 8.0 99.0 0.9 13.4

Squal Section from Cab, Roter, Fort. Can you do the arpliest for-loop?

Cal = A Sum (axis = 0)

cal = A.sum(
$$axis = 0$$
)

percentage = $100*A/(cal AssaysA(1.A))$
 $\uparrow (3,4) / (1,4)$

Broadcasting example

$$\begin{bmatrix}
1 \\
2 \\
3 \\
4
\end{bmatrix} + \begin{bmatrix}
100 \\
100
\end{bmatrix}
100$$

$$\begin{bmatrix}
1 & 2 & 3 \\
4 & 5 & 6
\end{bmatrix} + \begin{bmatrix}
100 & 200 & 300 \\
100 & 200 & 300 \\
100 & 200 & 300
\end{bmatrix}$$

$$\begin{bmatrix}
1 & 2 & 3 \\
4 & 5 & 6
\end{bmatrix} + \begin{bmatrix}
1000 & 100 & 100 \\
200 & 100 & 100
\end{bmatrix} = \begin{bmatrix}
(m, 1) \\
(m, n)
\end{bmatrix}$$

$$\begin{bmatrix}
(m, 1) \\
(m, n)
\end{bmatrix}$$

General Principle

$$(M, n) \qquad + \qquad (1, n) \qquad \sim (M, n)$$

$$motrix \qquad + \qquad (M, 1) \qquad \sim (M, n)$$

$$(M, 1) \qquad + \qquad R$$

$$\begin{bmatrix} 2 \\ 1 \end{bmatrix} \qquad + \qquad 100 \qquad = \qquad \begin{bmatrix} 101 \\ 102 \\ 103 \end{bmatrix}$$

$$[1 \ 23] \qquad + \qquad 100 \qquad = \qquad \begin{bmatrix} 101 \\ 102 \\ 103 \end{bmatrix}$$

Mostlab/Octave: bsxfun

Basics of Neural Network Programming

deeplearning.ai

A note on python/ numpy vectors

Python Demo

Python / numpy vectors

```
import numpy as np
a = np.random.randn(5)
a = np.random.randn((5,1))
a = np.random.randn((1,5))
assert(a.shape = (5,1))
```


deeplearning.ai

One hidden layer Neural Network

Neural Networks Overview

What is a Neural Network?

deeplearning.ai

One hidden layer Neural Network

Neural Network Representation

deeplearning.ai

One hidden layer Neural Network

Computing a Neural Network's Output

Neural Network Representation

$$a = \sigma(z)$$

Neural Network Representation

$$z = w^T x + b$$

$$a = \sigma(z)$$

Neural Network Representation

Neural Network Representation learning

Given input x:

$$z^{[1]} = W^{[1]} + b^{[1]}$$

$$a^{[1]} = \sigma(z^{[1]})$$

$$a^{[1]} = w^{[2]} a^{[1]} + b^{[2]}$$

$$a^{[2]} = w^{[2]} a^{[1]} + b^{[2]}$$

$$a^{[2]} = \sigma(z^{[2]})$$

$$a^{[2]} = \sigma(z^{[2]})$$

deeplearning.ai

One hidden layer Neural Network

Vectorizing across multiple examples

Vectorizing across multiple examples

$$z^{[1]} = W^{[1]}x + b^{[1]}$$

$$a^{[1]} = \sigma(z^{[1]})$$

$$z^{[2]} = W^{[2]}a^{[1]} + b^{[2]}$$

$$a^{[2]} = \sigma(z^{[2]})$$

$$for \quad (= 1 + b + b)$$

$$z^{(2]} = \omega x^{(2)} + b^{(2)}$$

$$z^{(2)} = \omega x^{(2)} + b^{(2)}$$
Andrew Ng

Vectorizing across multiple examples

deeplearning.ai

One hidden layer Neural Network

Explanation for vectorized implementation

Recap of vectorizing across multiple examples

One hidden layer Neural Network

Activation functions

deeplearning.ai

Activation functions

Pros and cons of activation functions

One hidden layer Neural Network

Why do you need non-linear activation functions?

Activation function

One hidden layer Neural Network

Derivatives of activation functions

Sigmoid activation function

$$g(z) = \frac{1}{1 + e^{-z}}$$

$$\frac{1}{1 + e^{-z$$

Tanh activation function

ReLU and Leaky ReLU

ReLU

$$g(t) = mox(0, t)$$

$$g(t) = \begin{cases} 0 & \text{if } t < 0 \\ 1 & \text{if } t > 0 \end{cases}$$

Leaky ReLU

$$g(z) = mox(0.01z, z)$$

 $g'(z) = \begin{cases} 0.01 & \text{if } z < 0 \\ 1 & \text{if } z > 0 \end{cases}$

One hidden layer Neural Network

Gradient descent for neural networks

Gradient descent for neural networks

Parameters:
$$(\sqrt{12})$$
 $(\sqrt{12})$ $(\sqrt$

Formulas for computing derivatives

Formal Propagation:
$$Z^{(1)} = \mu_{(1)} X + \mu_{(1)}$$

$$Y^{(1)} = g^{(1)} (Z^{(1)}) \leftarrow$$

$$Z^{(2)} = \mu_{(2)} Y^{(2)} + \mu_{(2)}$$

$$Z^{(2)} = \mu_{(2)} Y^{($$

Back propagation:

$$d^{[i]} = A^{[i]} = A^{[i]} + A^{[i]}$$

$$d^{[i]} = \frac{1}{m} d^{[i]} + A^{[i]}$$

$$d^{[i]} = \frac{1}{m} d^{[i]} + A^{[i]} + A^{[i]}$$

One hidden layer Neural Network

Backpropagation intuition (Optional)

Computing gradients

Logistic regression

 $N_{x} = N^{TOJ} \qquad N^{TOJ} = N^{TOJ$ Neural network gradients $W^{[1]} \rightleftharpoons z^{[1]} = W^{[1]}x + b^{[1]} \rightleftharpoons a^{[1]} = \sigma(z^{[1]}) \rightleftharpoons z^{[2]} = W^{[2]}x + b^{[2]} \rightleftharpoons a^{[2]} = \sigma(z^{[2]}) \rightleftharpoons \mathcal{L}(a^{[2]}, y)$ $b^{[1]} = b^{[1]} = b^{[1]} = b^{[1]} = a^{[2]} - a$ * 9^{(1)'}(z⁽¹⁾)

Colemb une produl

(n⁽¹⁾, n⁽¹⁾)

(n⁽¹⁾, n⁽¹⁾)

(n⁽¹⁾, n⁽¹⁾)

(n⁽¹⁾, n⁽¹⁾) > 2 [N] - (1,1) - (1,1) $dz_{\text{C1}} = \underbrace{\left(V_{\text{C1}}, V_{\text{O1}} \right)}_{\text{C2}} + \underbrace{\left(V_{\text{C1}}, V_{\text{O1}} \right)}_{$

Summary of gradient descent

$$dz^{[2]} = a^{[2]} - y$$
 $dW^{[2]} = dz^{[2]}a^{[1]^T}$
 $db^{[2]} = dz^{[2]}$
 $dz^{[1]} = W^{[2]T}dz^{[2]} * g^{[1]'}(z^{[1]})$
 $dW^{[1]} = dz^{[1]}x^T$
 $db^{[1]} = dz^{[1]}$

Vectorized Implementation:

$$\frac{1}{2} = \left(\frac{1}{2} \frac{$$

Summary of gradient descent

$$dz^{[2]} = a^{[2]} - y$$

$$dW^{[2]} = dz^{[2]}a^{[1]^T}$$

$$db^{[2]} = dz^{[2]}$$

$$dz^{[1]} = W^{[2]T}dz^{[2]} * g^{[1]'}(z^{[1]})$$

$$dW^{[1]} = dz^{[1]}x^T$$

$$db^{[1]} = dz^{[1]}$$

$$dz^{[2]} = a^{[2]} - y$$

$$dW^{[2]} = dz^{[2]}a^{[1]^T}$$

$$db^{[2]} = dz^{[2]}$$

$$dz^{[2]} = \frac{1}{m}np. sum(dz^{[2]}, axis = 1, keepdims = True)$$

$$dz^{[1]} = W^{[2]T}dz^{[2]} * g^{[1]'}(z^{[1]})$$

$$dz^{[1]} = W^{[2]T}dz^{[2]} * g^{[1]'}(z^{[1]})$$

$$dw^{[1]} = dz^{[1]}x^T$$

$$dw^{[1]} = \frac{1}{m}dz^{[1]}x^T$$

$$dz^{[1]} = \frac{1}{m}dz^{[1]}x^T$$

$$dz^{[1]} = \frac{1}{m}np. sum(dz^{[1]}, axis = 1, keepdims = True)$$

One hidden layer Neural Network

Random Initialization

What happens if you initialize weights to zero?

Random initialization

Deep Neural Networks

Getting your matrix dimensions right

Parameters $W^{[l]}$ and $b^{[l]}$

Vectorized implementation

Deep Neural Networks

Why deep representations?

Intuition about deep representation

Circuit theory and deep learning

Informally: There are functions you can compute with a "small" L-layer deep neural network that shallower networks require exponentially more hidden units to compute.

Deep Neural Networks

Building blocks of deep neural networks

Forward and backward functions

Forward and backward functions

Deep Neural Networks

Forward and backward propagation

Forward propagation for layer l

Backward propagation for layer l

Summary

Deep Neural Networks

Parameters vs Hyperparameters

What are hyperparameters?

Parameters: $W^{[1]}$, $b^{[1]}$, $W^{[2]}$, $b^{[2]}$, $W^{[3]}$, $b^{[3]}$...

Hyperparameters: dearning rate Δ #titerations

hidden layur L
hidden layur L
hidden layur L

Choice of autivortion furtion

doster: Momentum, minitanthe vise, regularjohns...

Applied deep learning is a very empirical process

Deep Neural Networks

What does this have to do with the brain?

Forward and backward propagation

$$Z^{[1]} = W^{[1]}X + b^{[1]}$$

$$A^{[1]} = g^{[1]}(Z^{[1]})$$

$$Z^{[2]} = W^{[2]}A^{[1]} + b^{[2]}$$

$$A^{[2]} = g^{[2]}(Z^{[2]})$$

$$\vdots$$

$$A^{[L]} = g^{[L]}(Z^{[L]}) = \hat{Y}$$

$$x_1$$
 x_2
 x_3
 x_4

$$dZ^{[L]} = A^{[L]} - Y$$

$$dW^{[L]} = \frac{1}{m} dZ^{[L]} A^{[L]^T}$$

$$db^{[L]} = \frac{1}{m} np. \operatorname{sum}(dZ^{[L]}, axis = 1, keepdims = True)$$

$$dZ^{[L-1]} = dW^{[L]^T} dZ^{[L]} g'^{[L]} (Z^{[L-1]})$$

$$\vdots$$

$$dZ^{[1]} = dW^{[L]^T} dZ^{[2]} g'^{[1]} (Z^{[1]})$$

$$dW^{[1]} = \frac{1}{m} dZ^{[1]} A^{[1]^T}$$

$$db^{[1]} = \frac{1}{m} np. \operatorname{sum}(dZ^{[1]}, axis = 1, keepdims = True)$$

