MATH1326 Advanced Optimisation with Python

Week 6

- Partioning Problems
- Pulp Modelling & Solution

Table 11.7: Average quantity of freight transported between every pair of cities

	Atlanta	Boston	Chicago	Marseille	Nice	Paris
Atlanta	0	500	1000	300	400	1500
Boston	1500	0	250	630	360	1140
Chicago	400	510	0	460	320	490
Marseille	300	600	810	0	820	310
Nice	400	100	420	730	0	970
Paris	350	1020	260	580	380	0

Table 11.8: Distances between pairs of cities

	Boston	Chicago	Marseille	Nice	Paris
Atlanta	945	605	4667	4749	4394
Boston		866	3726	3806	3448
Chicago			4471	4541	4152
Marseille				109	415
Nice					431

Decision Variables

 $flow_{ijkl}$: 1 if freight from city i to city j flows through hubs k and l, 0 otherwise

hub; : 1 if city i serves as a hub, 0 otherwise

Parameters

 $cost_{ijkl}$: unit cost for any flow from city i to city j through hubs k and l

 $quant_{ii}$: Amount of freight that needs to be carried from city i to city j

minimize
$$\sum_{i \in \textit{CITIES}} \sum_{j \in \textit{CITIES}} \sum_{k \in \textit{CITIES}} COST_{ijkl} \cdot QUANT_{ij} \cdot flow_{ijkl}$$

$$\sum_{i \in \textit{CITIES}} hub_i = NHUBS$$

$$\forall i, j \in \textit{CITIES}: \sum_{k \in \textit{CITIES}} \sum_{l \in \textit{CITIES}} flow_{ijkl} = 1$$

$$\forall i, j, k, l \in \textit{CITIES}: flow_{ijkl} \leq hub_k$$

$$\forall i, j, k, l \in \textit{CITIES}: flow_{ijkl} \leq hub_l$$

$$\forall i \in \textit{CITIES}: hub_i \in \{0, 1\}$$

$$\forall i, j, k, l \in \textit{CITIES}: flow_{ijkl} \in \{0, 1\}$$

Airline Hub Location (revised)

Reduced number of decision variables

Accumulate the values transported between any pair of destinations and only define the decision variables for i < j.

Given the locations, there would be one hub in the US, and one in Europe.

Define the decision variable only for those hubs assuming intracontinental flights will only use a single hub.

```
\forall i, j, k \in US, i < j : (i, j, k, k)
\forall i, j, k \in EU, i < j : (i, j, k, k)
\forall i, k \in US, j, l \in EU : (i, j, k, l)
```

Airline Hub Location (revised)

Additional constraint

Intracontinental flights will use only a single hub

$$\forall i, j \in US, i < j : \sum_{k \in US} flow_{ijkk} = 1$$

 $\forall i, j \in EU, i < j : \sum_{k \in EU} flow_{ijkk} = 1$

Figure 15.6: Map of the capital and its quarters. Legend: quarter number, supporters/electorate

Figure 15.7: Electoral districts for REQD = 6

Decision variables

Choose_d: 1 if district d is selected, 0 otherwise

Parameters

 Maj_d : 1 if there is majority support in district d, 0 otherwise

 $Distr_{dq}$: 1 district d includes quarter q, 0 otherwise

```
\begin{aligned} & \text{maximize} \sum_{d \in RDIST} MAJ_d \cdot choose_d \\ & \sum_{d \in RDIST} choose_d = REQD \\ & \forall q \in QUARTERS : \sum_{d \in RDIST} DISTR_{dq} \cdot choose_d = 1 \\ & \forall d \in RDIST : choose_d \in \{0,1\} \end{aligned}
```