entileinväviseleikkikkikkikeinnitärin kerentyön erittosisinna on tehti enka one on i

DEUTSCHLAND

DEUTSCHES PATENTAMT

② Aktenzeichen:

P 32 12 928.9-33 7. 4. 82

) Anmeldetag: 3) Offenlegungstag:

20. 10. 83

Veröffentlichungstag der Patenterteilung:

26. 1.84

Innerhalb von 3 Monaten nach Veröffentlichung der Erteilung kann Einspruch erhoben werden

(73) Patentinhaber:

Lambda Physik GmbH, 3400 Göttingen, DE

(72) Erfinder:

, Hohla, Kristian, Dr.; Albers, Ernst, Dr., 3400 - Göttingen, DE

(5)-im Prüfungsverfahren entgegengehaltene Druckschriften nach § 44 PatG:

> DE-OS 25 34 322 Beth-Handbuch: Staubtechnik, Selbstverlag Maschinenfabrik Beth GmbH, Lübeck 1964; S. 18-22; Laser Focus, Oktober 1981, S. 65-68; Review Scientific Instruments 52(1981), Nr. 11, S. 1655, 1656;

Entladungsgepumpter Laser

Ein enttadungsgepumpter Laser mit einem Gasgemisch (2) enthaltenden Entladungsgefäß (1) besitzt im Bereich der Fenster (3) Gaseinlässe (4) und im übrigen einen Gasauslaß (7). Über Leitungen (10 und 11) und eine Umwälzpumpe (8) ist eine Reinigungseinrichtung in Form eines Elektrofilters (9) vorgesehen, um das Gasgemisch ohne Änderung seiner Zusammensetzung von Staubpartikeln zu reinigen. Der Gaskreislauf ist außerdem mit einer Ruhezone (12) für das den Gaseinlässen (4) zugeleitete Gasgemisch versehen.

(32 12 928)

Nummer:

Int. Cl.²:

32 12 928

Veröffentlichungstag: 26. Januar 1984

H 01 S 3/02

Fig₅2

STOP THE HOLD VIEW SANDER LANGER WHEN THE SECOND STREET OF THE SECOND SE

Patentansprüche:

1. Entladungsgepumpter Lase: mit einem ein Gasgemisch enthaltenden Entladungsgefäß, welches 5 im Bereich der Fenster Gaseinlässe und im übrigen einen Gasauslaß aufweist und über Leitungen und eine Umwälzpumpe an eine Reinigungseinrichtung ungeschlossen ist dadurch gekennzeichnet, daß als Reinigungseinrichtung ein Elektrofilter 10 (9) vorgesehen ist und der Gaskreislauf mit einer Ruhezone für das den Gaseinlässen (4) zugeleitete Gasgemisch verschen ist.

2 Laser nach Anspruch 1, dadurch gekennzeichnet, daß der Elelektrofilter (9) gleichzeitig als 15

Ruhezone ausgebildet ist.

3. Laser nach Anspruch i und 2. dadurch gekennzeichnet, daß die an die Vorionisierung wie auch an die Kollektoren des Ellektrofilters angelegten Spannungen auf die Teilchensorte und -graße 20 abgestimmt sind.

Die Erfindung bezieht sich auf einen entladungsgepumpten Laser mit einem ein Gasgemisch enthaltenden Entladungsgefäß, welches im Bereich der Fenster Gaseinlässe und im übrigen, einen Gasauslaß aufweist und über Leitungen und eine Umwälzpumpe an eine 30 Reinigungseinrichtung angeschlossen ist. Ein Laser dieser Art ist aus Laser Focus, Oktober 1981, S. 65-68 bekannt.

Bei Glasiasern, die durch eine elektrische Entladung kangeregt werden, tritt häufig ein Alterungsprozeß auf. 35 Zum einen wird das Gas verbraucht, da es in den Entladungszonen zu chemischen Umsetzungen kommt, zum anderen beobachtet man die Bildung von Staubteilchen bzw. von Aerosolen. Für die Bildung der Staubteilchen sind mehrere, im Deteil noch nicht ganz 40 erklärbare Prozesse verantwortlich, Eine große Rolle spiell der Elektrodenabbrand: Die Gasentladung erfolgt zwischen zwei Elektroden, an denen eine elektrische Spannung anliegt Bei genügender elektrischer Leitfähigkeit des Gases oder Gasgemisches fließt ein Strom, 45 der an der Grenzfläche zwischen Gas und Elektrodenmaterial zu einer erheblichen Belastung der Elektrodenoberfläche führt. Sowohl die lokale Erhitzung als auch die mechanische Belastsung im atomaren Bereich durch im elektrischen Feld beschieunigte geladene Teilchen 50 bewirken eine Erosion der Elektroden. Die herausgeschlagenen mikroskopisch kleinen Teilchen bilden Staub, der mit dem Gas oder Gasgemisch in den gesamten Innenraum des Lasers gelangt und in vielfacher Hinsicht stört. Die Laserwirkung bzw. die 55 Lasertatigkeit wird in mehrfacher Weise beeinflußt:

ì

Der Staub schlägt sich an elektrisch isolierenden Teilen nieder. Aufgrund der Veränderung der Oberflläche ändern sich die Isolationseigerischaf- 60 ten. Es können sich Nebenentladungen oder sogar kurzschlußartige Entladungskanäle ausbilden, die die Funktion des Lasers zum Erliegen bringen.

Der Staub wirkt als ein Filter für die Laserlichtstrahlung. Die Streuung an den Staubteilichen führt 65 zu einer Verminderung der Ausgangsleistung von Lasern. Dieser Effekt tritt besonders stark bei Lasern auf, die UV-Licht aussenden, da die

Streuung sehr stark zu kürzeren Wellenlängen hin anwächst : .

Der Staub kann-sich nicht nur an den isolierenden Wänden des Lasers mederschlagen sondern auch an den optischen Komponenten. In der Regel ist der Luser durch zwei optische Fenster abgeschlosson. Diese Fensier werden durch den Staub belegt und die Transmission der Fenster nimmt ab.

Neben den Problemen, die mit dem Vorhandensein und der Verteilung von Staubteilchen auftreten werden in Gaslasern gasförmige Verunreinigungen gebildet, die einerseits die physikalischen Vorgänge in der Gasentladung verändern können und andererseits durch starke Absorption die Ausgangsleistung erheblich vermindern.

Um den beschriebenen Nachteilen und der damit verbundenen Verkürzung der Lebensdauer derartiger Laser entgegenzuwirken, wurden bereits verschiedene Lösungsvorschläge gemacht. Da der Staub vornehmlich in der Entladungszone entsteht, soil durch die Strömungsführung des Gasgemisches erreicht werden. daß der Staub schnell aus dem gefährdeten Bereich abgeführt wird und sich in einem ungefährdeten Teil des Strömungskreislaufes absetzt. Damit läßt sich jedoch eine generelle Lösung nicht erzielen, weil es sich nicht vermeiden läßt, daß ein kleiner Teil des Staubes sich trotzdem im Nahbereich der Entladung niederschlägt. Zusätzlich entstehen insbesondere bei gepulsten Entladungen Druckwellen, die diese Staubpartikel in die gefährdeten Bereiche hineintransportieren.

Weiterhin ist es bekannt, besonders anfällige Teile des Entladungsbereiches oder des Lasers durch laufende Zugabe von frischem Lasergas bzw. Gasgemisch, das also noch nicht mit Staub beladen ist, zu spülen und damit von Staub freizuhalten. Dies führt zwar zu einer Reinhaltung der bespülten Teile, hat aber den Nachteil eines großen Gasverbrauchs. Um diesen Gasverbrauch zu reduzieren, ist von Ph. N. Mace: State-of-the-art in discharge-pumped excimer laser systems in the United States, Second Australian Laser Conference, Canberra, Aus. 1/9-4/9 1981, LA-UR-81-2541 Los Alamos Scientific Laboratory, ein Gasführungssystem vorgeschlagen worden, von dem die vorliegende Erfindung ausgeht. Dabei werden in einem Teilgasstrom mit Hilfe einer Reinigungseinrichtung und einer Umwälzpumpe wesentliche Gaskomponenten, nämlich die Halogen-Komponenten, und mit ihnen die Verunreinigungen abgeschieden. Diese Gaskomponente liegt zwar nur in geringer Konzentration vor, so daß das abgeschiedene Gas in gleicher Menge dem Kreislauf jeweils kontinuierlich zugeführt werden muß. Nach der Abscheidung dieses Gases, bei dem nur die Halogen-Komponenten erfaßt werden, wird der verbleibende Anteil Gas aus dem Gasgemisch den im Bereich der Fenster des Entladungsgefäßes vorgesehenen Gaseinlässen wieder zugeführt, wodurch eine Spülung der Fenster mit diesem Gas erfolgt. Dieser Prozeß, der auch von R. Tennant in Control of Contaminants in XeCl Lasern, Laser Focus October 1931, S. 65 – 68 beschrieben wurde. ist aufwendig and teuer.

In einer weiteren Literaturstelle (K. O. Kutschke, P. A. Hakkett und C. Wills »Rev. Sci. Instrum. 52 (II)« Nov. 1981, S. 1655, 1655 wird ein Verfahren beschrieben, bei dem insoweit ein umgekehrter Weg beschritten wird, als dort nient das Gas auf Kosten des Halogen-Gases gereinigt wird, sondern die teuerste Komponente aus dem Gasgemisch wieder aufbereitet wird. Dabei wird der weitaus größte Anteil, namlich die preiswerteren

だなが 見たがら はが とがというごう

Gaskomponenten, entfernt und jeweils durch frisches Gas ersetzt. Auch dieses Verfahren ist aufwendig und teuer, so daß sich eine Amortisation erst bei sehr langem Beirich ergeben wurde. In der bezeichneten Literaturstelle wird von 100 Tagen Betriebszeit gesprochen. Hierbei wird eine Betriebudauer von 5 Stunden pro Tag vorausgeseizt, während der der Laser mit 100 Hz Repetitionsrate arbeitet.

Die DE-OS 25 34 322 zeigt einen Jodlaser mit einer Reinigungsvorrichtung für das umgepumpte Gas, die in :0 den Endbereichen des Entladungsgefäßes angeschlossen ist. Hierbei werden jedoch nicht die Fenster mit sauberein Gas gespült, sondern das gesamte umgepumpte Gas wird am einen Ende entnommen, gereinigt und am anderen Ende wieder zugeführt. Die Reini- 15 gungsvorrichtung weist einen Staubabscheider auf. Außer dieser Reinigungsvorrichtung ist im Kreislauf noch eine Vorrichtung zum Ergänzen des Gases

Aus dem Beth-Handbuch: Staubtechnik, Selbstverlag 20 Maschinenfabrik Beth GmbH. Lübeck 1964, S. 18-22, ist eine Beschreibung der Entwicklung der industriellen Entstaubung, insbesondere bezogen auf die Hüttenindustrie, bekannt Dabei werden als Staubabscheider Tuchfilter und Elektroentstauber beschrieben.

Zusammenfassend läßt sich feststellen, daß die in der Zusammenfassend labt sich resistenen, das die in der Literatur beschriebenen Verfahren bei entladungsgepumpten Lasern solche Reinigungseinrichtungen für das umgewälzte Lasermedium vorschlagen, bei denen wesentliche Komponenten des Gasgemisches ver- 20 braucht werden, die dann durch eine aufwendige Nachfüllung ersetzt werden müssen.

Der Erfindung liegt die Aufgabe zugrunde, einen Laser der eingangs beschriebenen Art derart weiterzu-Erhöhung der Lebensdauer des Lasers erfolgt, ohne daß Gaskomponenten ergänzt werden müssen, um die ursprüngliche Gaszusammensetzung beizubehalten.

Erfindungsgemäß wird dies dadurch erreicht, daß als Reinigungseinrichtung ein Elektrofilter vorgesehen ist 40 Edelgasen und aus Halogen-Gasen zusammensetzt. und der Gaskreislauf mit einer Ruhezone für das den - Gaseinfassen zugeleitete Gasgemisch versehen ist. Damit ist es möglich, einen Teil oder die gesamte Gasmenge über das Elektrofilter zu leiten und hier die Staubpartikel, nicht aber Gaskomponenten, abzuschei- 45 den. Hierdurch ändert sich die Gaszusammensetzung nicht. Es seht das Gasgemisch nach der Passage durch den Elektrofilter als Spülgas zur Verfügung, welches den gefährdeten Komponenten, insbesondere den Fenstern zugeleiter wird. Damit wird die die Lebensdauer der 50 optischen Komponenten begrenzende Verschmutzung durch die staubförmigen Partikel aufgehoben und die Lebensdauer des Lasers erhöht. Es ist aber nicht nur die Anwendung des Elektrofilters, sondern auch die gleichzeitige Bereitstellung einer Ruhezone von beson- 55 derer Bedeutung. In dieser Ruhezone findet eine Regenerierung eines Teiles des Gasgemisches statt, das regeneriert in gefährdete Bereiche des Lasers eingespült wird, um die störenen Staubablagerungen zu verhindern.

Der Eiektrosilter kann gleichzeitig als Ruhezone ausgebildet sein, d.h. durch seinen gegenüber den Leitungen vergrößerten Durchflußquerschnitt tritt eine Beruhigung der Strömung verbunden mit einer Erhöhung der Verweilzeit auf, so daß eine Regenerierung 65 eines Teiles des Gasgemisches möglich wird. In dem Elektrofilter sind die an die Vorionisierung wie auch an die Kollektoren des Elektrofilters angelegten Spannun-

gen auf die Teilehensorte und -größe der abzuscheidenden Staubpartikel abgestimmt. Der Elektrofilter kann sowohl in das Entladungsgefäß integriert werden als auch in einen Gaskreislauf mit entsprechenden Leitungen eingesetzt sein. Durch die Wahl der Strömungsgeschwindigkeit in dem Elektrofilter kann der Reinheitsgrad eingestellt werden. Wegen der kleinen Strömungsgeschwindigkeiten und der damit verbunden en Verweilzeit im Elektrofiiter bzw. in den Ruhezonen reagieren auch gasformige Verunreinigungen wieder zurück. Damit wird nicht nur die Reinigung von Staubteilchen erreicht, sondern überraschenderweise auch eine Reduktion der störenden gasförmigen Bestandteile erzielt. Da die gefährdeten Komponenten mit gereinigtem Gas gespült werden, wird ein Absetzen des Staubes auf diesen Komponenten und damit eine Alterung vermieden. Ein Vorteil dieser aufgezeigten Lösung besieht Carin, daß nur ein Teil des Gasgemisches gereinigt werden muß, um die gefährdeten Teile sauber zu halten. Weiterhin wird durch die Verwendung eines Elektrofilters kein neuer Prozeß im Kreislauf des Gasgemisches eingeführt bzw. durchgeführt, wie es bei Benutzung der chemischen Abscheidemethoden aus dem Stand der Technik der Fall ist. In einem Elektrofilter befindet sich eine elektrische Glimmentladung, die dazu dient, das Gas bzw. die Staubteilchen zu ionisieren. Dabei findet ein der eigentlichen Laserentladung verwandter Vorgang statt. Die Kollektoren des Elektrofilters bestehen aus Metallplatten, die keine neue Verschmutzung herbeiführen. Die Benutzung nur eines Teils des Lasergases und die Sauberhaltung der Komponenten mit einem Teil dieses Gases führt dazu. daß der Elektrofilter verhältnismäßig klein dimensioniert werden kann. Eine aufwendige und teure bilden, daß eine Reinigung des Gasgemisches zur 35 Nachfüllung bzw. Wiederausbereitung des Gases wird dadurch vermieden.

Die Erfindung bezieht sich insbesondere auf die Anwendung bei sogenannten Edelgas-Halogenid-Lasern. Diese Laser arbeiten mit Gasgemisch, das sich aus

Ein Ausführungsbeispiel der Erfindung ist in der Zeichnung dargestellt und wird im folgenden näher beschrieben. Es zeigt

Fig. 1 eine schematische Darstellung des Lasers mit seiner Reinigungsvorrichtung und

Fig. 2 ein Diagramm mit der Darstellung der Energie pro Laserschuß in Abhängigkeit von der Schußzahl.

In Fig.1 ist in schematischer Darstellung ein Entladungsgefäß dargestellt, welches mit einem Gasgemisch 2 gefüllt ist. Das Entladungsgefäß 1 wird an beiden Enden durch optische Komponenten in Form rvon Fenstern 3 begrenzt, in deren Nähe Gaseiniässe 4 so angeordnet sind, daß die Fenster 3 von dem hier eintretenden Gasstrom bespült werden können. Es ist ein weiterer Gaseinlaß 5 am Gefäß 1 vorgesehen, der mit einem Dosierventil 6 ausgestattet ist. Der Gaseinlaß 5 dient dem Einfüllen des Gasgemisches 2.

Das Entladungsgefäß I besitzt auch einen Gasauslaß 7, der mit einer Pumpe 8 in Verbindung steht der ein Elektrofilter 9 nachgeschaltet ist. Von dort führen Leitungen 10 und 11 über Ruhezonen 12 zu den Gaseinlässen 4 im Bereich der Fenster 3. Es ist ersichtlich, daß der Elektrofilter 9 seibst eine im Questahnitt stark erweiterte Ruhezone darstellt, so daß auf die gesonderte Anordnung der Ruhezonen 12 in den Leitungen 10 auch verzichtet werden kann.

Während des Betriebes wird das Gasgemisch 2 oder ein Teil desselben durch die Pumpe 8 abgesaugt. Die

mittransportierten Staubpartikel werden in dem Elektrofilter 9 abgeschieden, ohne daß eine Gaskomponente mit abgeschieden wird. Bereits im Elektrofilter 9 und/oder in den nzchgeschalteten Ruhezonen 12 tritt eine Regenerierung des Gases ein, so daß durch die 5 Leitungen 10 die Fenster 3 mit gereinigtem Gas gleicher Zusammensetzung bespült und damit freigehalten werden können, wie es sich als Gasgemisch 2 innerhalb des Entladungsgefäßes 1 befindet. Die beschriebene Excimer-Gasentladung getestet. Das Ergebnis ist in Fig. 2 dargestellt. Auf der Ordinate (y) ist die Energie pro Laserschuß wiedergegeben. Die Abzisse zeigt die Schußzahl. In gestrichelter Linienführung ist die Lebensdauerkurve eines XeCl-Lasers (Ohne Elektrofilier) dargestellt Man erkennt, daß die Laserenergie bei einer Schußzahl von ca. 3 x 106 Schüsse auf etwa die Hälfte sinkt. In durchgezogener Linienführung ist die Lebensdauerkurve eines derartigen Lasers mit Reini-

gung und Regenerierung dargestellt. Man erkennt, daß hierdurch die Lebensdauer des Gases um den Faktor 3 erhöht erhöht ist. Der Absall der Energie ist hierbei nicht mehr auf die Verschinutzung der optischen Komponenten zurückzuführen, sondern erklärt sich durch eine Aufzehrung des Lasergases. Die Transmission der Fenster 3. die ein Maß für die Reinheit der Oberstäche darstellt, hat sich bei der gestrichelten Kurve nach 3 x 106 Schuß um 30 Prozent verringert Reinigung und Regenerierung wurde an einer typischen 10 während sie im Falle der durchgezogenen Linie mit Elektrofilter und Ruhezone sich überhaupt nicht gegenüber dem ersten Schuß verändert hat. Damit ist nachgewiesen, daß mit der aufgezeigten Anordnung. eine Rein- und Sauberhaltung der optischen Kompo-15 neiten mit sehr gutem Erfolg erreicht wird, und zwar bei sehr geringem Aufwand. Außerdem entsteht hierdurch keine zusätzliche Verunreinigung des Lasergases gegenüber dem normalen Betrieb.

Hierzu 1 Blatt Zeichnungen