

Python for Data Analytics Mastering NumPy

NumPy Arrays vs Python Lists

While Python lists are versatile, NumPy arrays are specifically designed for efficient numerical computation, providing significant performance advantages.

Homogeneous Data Types

Every element must be of the same type (e.g., int64 or float32), eliminating type-checking overhead.

Contiguous Memory

Stored as a single block, allowing processors to access data with maximum efficiency.

Vectorized Operations

Operations on entire arrays at once, delegating looping to optimized C code.

Performance Comparison

For an array of 1,000,000 elements:

NumPy can be 20-30x faster for large datasets.

Performance Benchmark

Quantitative comparison between Python lists and NumPy arrays for operations on 1,000,000 elements:

Creating NumPy Arrays

The most straightforward way to create a NumPy array is by converting existing Python data structures using np.array().

= 1D Arrays

```
python
list_a = [1, 2, 3, 4]
arr_ld = np.array(list_a)

[1, 2, 3, 4] → array([1, 2, 3, 4])

With specific data type
```

arr float = np.array([1, 2, 3], dtype=np.float32)

 $[1, 2, 3] \rightarrow \operatorname{array}([1., 2., 3.], \operatorname{dtype=float32})$

Multi-dimensional Arrays

Key Benefits

- . Preserves the structure of the input data
- Automatically determines data type
- Can be used with any nested sequence structure

Array Creation: arange() and linspace()

Similar to Python's range()

Random Array Generation

The numpy.random module is essential for simulations and statistical sampling, providing reproducible random data generation.

Best Practice: Use np.random.default_rng() to create a generator instance for reproducible results.

Creating Random Arrays

Random Integers

```
# Create random integer array
rand_integers = rng.integers(low=1, high=10, size=(2,
3))
[8, 2, 7] [8, 2, 5]
```

Key Concepts

Reproducibility

Provide a seed to the generator for reproducible results:

Create generator with seed
rng = np.random.default_rng(seed=42)

Distributions

The generator supports various statistical distributions:

Uniform

Normal

Integer

Choice

Array Indexing and Slicing

NumPy indexing works similarly to Python lists but extends to multiple dimensions with a more powerful and flexible syntax.

= 1D Arrays

Basic indexing:

```
import numpy as np
x = np.arange(10) # [0, 1, 2, 3, 4, 5, 6, 7, 8, 9]
```


Slicing:

```
x[1:7:2] # [1, 3, 5]
```

⊞ 2D Arrays

Multi-dimensional indexing:

```
import numpy as np
y = np.array([[1, 2, 3], [4, 5, 6]])
```


Accessing elements:

NumPy uses a single pair of brackets with comma-separated indices, more efficient than nested lists.

Key Points:

Zero-based indexing

Negative indices count from end

Slices are views, not copies

Advanced Slicing and Boolean Filtering

X Multi-dimensional Slicing

For 2D arrays, separate slice objects with commas to select specific rows and columns.

Example: Selecting submatrix

Original matrix:

1	2	3	4
5	6	7	8
9	10	11	12

Slicing operation:

matrix[:2, 1:3]

Result:

[[2, 3], [6, 7]]

Note: Slices are views of the original data.

Boolean Indexing

Select elements based on conditions. Creates a boolean array and uses it as an index.

Example: Filtering sales data

Sales data:

sales = np.array([150, 200, 120, 250, 300, 180, 90])

Boolean mask for sales > 190:

Filtered sales:

sales[high sales mask]

→ [200, 250, 300, 180]

Combining conditions:

sales[(sales > 100) & (sales < 200)]</pre>

→ [150, 120, 180]

Vectorized Operations

Vectorized operations enable execution of operations on entire arrays at once, delegating iteration to optimized C code for dramatic performance improvements.

Operation Comparison


```
import time

large_list = list(range(1000000))
squared_list = []

for x in large list:
```

NumPy Vectorized

```
import numpy as np
import time

large_array = np.arange(1000000)
squared_array = large_array**2
```

Performance Impact

Key Benefits

- Concise, readable code without explicit loops
- Delegates iteration to optimized C code
- Critical for data analytics with large datasets

Broadcasting

Broadcasting allows NumPy to perform arithmetic operations between arrays of different shapes without copying data.

Broadcasting Rules

- Compares dimensions from right to left
- \sim Dimensions are compatible if equal or one is 1
- Result shape is maximum of input shapes
- Eliminates unnecessary memory copies

Examples

Example 1: Scalar + Array

```
import numpy as np

# Scalar broadcasting
a = np.array([1.0, 2.0, 3.0])
b = 5.0

# 'b' broadcasts to shape of 'a'
result = a + b
# Output: [6. 7. 8.]
```

Example 2: 1D + 2D Array

```
import numpy as np

# Array broadcasting
matrix = np.array([[ 0, 0, 0],
[10, 10, 10],
[20, 20, 20]])
vector = np.array([1, 2, 3])

# 'vector' broadcasts across rows
result = matrix + vector
# Output:
# [[ 1 2 3]
# [11 12 13]
# [21 22 23]]
```

Basic Aggregations

NumPy provides fast built-in functions to compute summary statistics on arrays.

np.sum()

Computes the total sum of array elements.

np.mean()

Calculates the average of array elements.

↓ np.min()

Finds the minimum value in the array.

↑ np.max()

Finds the maximum value in the array.

Examples

1D Array

daily sales = np.array([150, 200, 180, 220, 250])

Total: 1000

Average: 200.0

Minimum: 150

Maximum: 250

2D Array

```
sales_data = np.array([[50, 60, 55, 65],
  [30, 35, 40, 33],
  [90, 85, 95, 88]])
```

★ axis=0

→ axis=1

[170 180 190 186]

[230 138 358]

Sum down columns

Sum across rows

Cumulative Operations and Indices

Cumulative Operations

Cumulative operations return an array of intermediate results.

np.cumsum()

Calculates the cumulative sum of elements along a given axis.

```
import numpy as np
daily_sales = np.array([150, 200, 180, 220, 250, 300, 280])
running_total = np.cumsum(daily_sales)
```


Useful for time series analysis and running totals.

argmin() and argmax()

These functions return the **index** of minimum and maximum values.

np.argmin()

Returns the index of the minimum element.

np.argmax()

Returns the index of the maximum element.

```
import numpy as np

sales = np.array([180, 220, 150, 250, 210])

best_day_index = np.argmax(sales)

worst_day_index = np.argmin(sales)
```


best_day_index = $3 \rightarrow \text{sales}[3] = 250$

worst_day_index = $2 \rightarrow \text{sales}[2] = 150$

Reshaping Arrays

The **reshape()** function changes an array's dimensions while preserving its data.

Key Features

- Must maintain the same number of elements
- Use -1 to let NumPy calculate a dimension

Code Examples:

import numpy as np

1D array with 12 elements
daily_sales = np.arange(12)

Reshape to 3x4 array
reshaped = daily_sales.reshape(3, 4)

Using -1 to auto-calculate
auto_reshaped = daily_sales.reshape(2, -1)

Reshape Visualization

NumPy infers the correct size for the dimension with -1.

Stacking Arrays

Stacking combines multiple arrays into a single, larger array. vstack() and hstack() are convenient functions for this purpose.

np.vstack()

Stacks arrays **on top of each other** (row-wise).


```
import numpy as np

array1 = np.array([[1, 2], [3, 4]])
array2 = np.array([[5, 6], [7, 8]])

v_stacked = np.vstack((array1, array2))
# Result: array([[1, 2], [3, 4], [5, 6], [7, 8]])
```


Stacks arrays side by side (column-wise).

```
import numpy as np

array1 = np.array([[1, 2], [3, 4]])
array2 = np.array([[5, 6], [7, 8]])

h_stacked = np.hstack((array1, array2))
# Result: array([[1, 2, 5, 6], [3, 4, 7, 8]])
```


Note: vstack() and hstack() are wrappers for np.concatenate(). vstack() ≡ concatenate(..., axis=0) and hstack() ≡ concatenate(..., axis=1)

Lab: Simulating Sales Data

Let's simulate daily sales data for multiple products over a year to practice NumPy array operations.

```
import numpy as np
np.random.seed(42)
# Parameters
num days = 364
num products = 4
# Simulate daily sales units
daily sales = np.random.randint(
   low=10,
   high=101,
    size=(num days, num products)
print("Shape:", daily sales.shape)
print("First 5 days:\\n", daily sales[:5])
```

Lab: Computing Monthly Averages

Reshaping daily sales data into monthly structure to calculate average daily sales per product per month.

Lab: Performance Comparison

Let's benchmark two approaches to calculate the total sales across all products and days:

Performance Results

Vectorized operations are **50-100x faster**.

Vectorization is essential for data analysis

Lab: Weekly Sales Aggregation

Transform daily sales data into weekly totals using NumPy reshaping and aggregation.

(52, 4)

total weekly sales

Key Takeaways

sum(axis=1)

- Combined reshaping and aggregation for time-series data
- Efficiently transform daily to weekly format