Data Encryption Standard

Initial permutation

Figure 2.4 Single Round of DES Algorithm

Expansion permutation

Straight Permutation

16	07	20	21	29	12	28	17
01 02	15	23	26	05	18	31	10
02	08	24	14	32	27	03	09
19	13	30	06	22	11	04	25

DES Analysis

The DES satisfies both the desired properties of block cipher. These two properties make cipher very strong.

Avalanche effect – A small change in plaintext results in a very great change in the ciphertext. **Completeness** – Each bit of ciphertext depends on many bits of plaintext.

Double DES Encryption

Given a plaintext P and two encryption keys K_1 and K_2 , a cipher text can be generated as,

$$C = E(K_2, E(K_1, P))$$

Decryption requires that the keys be applied in reverse order,

$$P = D(K_1, D(K_2, C))$$

