Floating-Point Representation Single-Cycle Processor

Dr. Igor Ivkovic

iivkovic@uwaterloo.ca

[with material from "Computer Organization and Design" by Patterson and Hennessy, and "Digital Design and Computer Architecture" by Harris and Harris, both published by Morgan Kaufmann]

Objectives

- Binary Representations of Numbers with Fractions
- Floating-Point Unit (FPU) Circuitry
- Single-Cycle Processor

Two common notations for representing fractions:

- Fixed-point: Binary point fixed
- Floating-point: Binary point floats to the right of the most significant 1

Fixed-Point Numbers:

6.75 using 4 integer bits and 4 fraction bits:

01101100
0110.1100

$$2^{2} + 2^{1} + 2^{-1} + 2^{-2} = 6.75$$

- Binary point is implied
- The number of integer and fraction bits must be agreed upon beforehand

Example1:

- Represent 7.510 using 4 integer bits and 4 fraction bits:
- $0111.1000_2 = (2^2 + 2^1 + 2^0 + 2^{-1})$
- Why not add 2⁻³? Since 0.0625 exceeds 0.01

Example2:

- How about 0.84332 using 4 fraction bits?
- $0.84332 \ge 2^{-1}$ so place 1 for 2^{-1} bit
 - \square Update 0.84332 0.5 = 0.34332
- $0.34332 \ge 2^{-2}$ so place 1 for 2^{-2} bit
 - \square Update 0.34332 0.25 = 0.09332
- \bullet 0.09332 < 2⁻³ so place 0 for 2⁻³ bit
- $0.09332 \ge 2^{-4}$ so place 1 for 2^{-4} bit
 - Update 0.09332 0.0625 = 0.03082
- The result is 0.1101₂ (0.8125₁₀)

Two Representations:

- Signed / magnitude representation
- Two's complement representation

Example:

- Represent -7.510 using 4 integer and 4 fraction bits
- **Signed / magnitude:** $1111.1000 (-2^2 2^1 2^0 2^{-1})$
- Two's complement:

Step1. Represent absolute value: 01111000

Step2. Invert the bits: 10000111

Step3. Add 1 to LSB: + 1

10001000

- Binary point floats to the right of the most significant 1
 - Similar to decimal scientific notation
 - For example, write 273₁₀ in scientific notation:

$$273 = 2.73 \times 10^{2}$$

In general, a number is written in scientific notation as:

$$\pm M \times B^{E}$$

M = mantissa

B = base

E = exponent

■ In the example, M = 2.73, B = 10, and E = 2

Example:

- Represent the value 228₁₀ using a 32-bit floating point representation (128 + 64 +32 + 4 = 228)
- We shall examine three different representations for the above
- The final version is called the IEEE 754 floating-point standard

Representation1.

- Step1. Convert decimal to binary: 228₁₀ = 11100100₂
- Step2. Write the number in binary scientific notation:

$$11100100_2 = 1.11001_2 \times 2^7$$

- Step3. Fill in each field of the 32-bit floating point number:
 - ☐ The sign bit is positive (0)
 - ☐ The 8 exponent bits represent the value 7
 - □ The remaining 23 bits are the mantissa

1	bit	8 bits	23 bits
	0	00000111	11 1001 0000 0000 0000 0000
S	ign	Exponent	Mantissa

Representation2.

- The first bit of the mantissa is always 1: $228_{10} = 11100100_2 = 1.11001 \times 2^7$
- So no need to store the first: implicit leading 1
- Store just the fraction bits in the 23-bit field

1 bit	8 bits	23 bits
0	00000111	110 0100 0000 0000 0000 0000
Sign	Exponent	Fraction

- Representation3.
 - Biased exponent: bias = 127 (011111111₂)
 - Biased exponent = bias + exponent
 - Ensures that the exponent is unsigned
 - □ To store –4 as exponent, store –4 + 127 = 123 (01111011₂)
 - Exponent of 7 is stored as:

$$127 + 7 = 134 = 10000110_{2}$$

The IEEE 754 32-bit floating-point (FP) representation of 228₁₀

1 bit	8 bits	23 bits
0	10000110	110 0100 0000 0000 0000 0000
Sign	Biased Exponent	Fraction

8 bits	23 bits
10000110	110 0100 0000 0000 0000 0000
Biased Exponent	Fraction
	10000110

- The above is represented in compliance with IEEE Std 754
- Developed in response to divergence of representations, and to ensure portability issues for scientific code
- Now it is almost universally adopted as a standard

Two IEEE Std 754 floating point representations:

- Single precision (32-bit), with 1/8/23 bits
- Double precision (64-bit), with 1/11/52 bits

- Example1: Write -58.25₁₀ in IEEE 754 FP Std
 - Convert decimal to binary: $58.25_{10} = 111010.01_2$
 - Write in binary scientific notation: 1.1101001 × 2⁵
 - Significand/Mantissa is Fraction with the "1." restored
 - Fill in the fields:

Sign bit: 1 (for negative)

8 exponent bits: $(127 + 5) = 132 = 1000 \ 0100_2$

23 fraction bits: 110 1001 0000 0000 0000 0000

1	l bit	8 bits	23 bits
	1	100 0010 0	110 1001 0000 0000 0000 0000
S	Sian	Exponent	Fraction

Example2: Write –0.75₁₀ in IEEE 754 FP Std

- Convert decimal to binary: 0.75₁₀ = 0.11₂
- Write in binary scientific notation: $1.1_2 \times 2^{-1}$
- Fill in the fields:

Sign bit: 1 (for negative)

8 exponent bits: $(127 - 1) = 126 = 0111 \ 1110_2$

23 fraction bits: 100 0000 0000 0000 0000₂

•	1 bit	8 bits	23 bits
	1	011 1111 0	100 0000 0000 0000 0000
	Sign	Exponent	Fraction

Example3: What is 11000000101000...00 in decimal?

- Sign = 1 (implies negative number)
- **Exponent = 10000001_2 = 129_{10}**
- Bias removed form the exponent = 129 127 = 2
- Fraction = $(1)01000...00_2 = 1.25_{10}$
- Result: $x = (-1) \times 1.25 \times 2^2 = -5.0$

■ IEEE 754 FP special cases:

Number	Sign	Exponent	Fraction
0	X	0000 0000	000 0000 0000 0000 0000
∞	0	1111 1111	000 0000 0000 0000 0000
-∞	1	1111 1111	000 0000 0000 0000 0000
NaN	Х	1111 1111	non-zero

Illegal values such as SQRT(-1)

- Single Floating-Point Precision: 32-bit
 - 1 sign bit, 8 exponent bits, 23 fraction bits, bias = 127
 - Also called single-precision, single, or float
- Double Floating-Point Precision: 64-bit
 - 1 sign bit, 11 exponent bits, 52 fraction bits, bias = 1023
 - Also called double-precision or double

Single-Precision Range:

- Exponents 0000 0000 and 1111 1111 are reserved as shown
- Has a precision of <u>about</u> 7 decimal digits since $log_{10}(2^{-24}) = -7.225 \approx -7$ (can rely on the 7th digit)

Smallest value has exponent: 00000001

- This leads to the actual exponent of 1 127 = −126
- Fraction: 000...00 leads to significand of 1.0
- Hence, the range is defined as $\pm 1.0 \times 2^{-126} \approx \pm 1.2 \times 10^{-38}$

Largest value has exponent: 11111110

- This leads to the actual exponent = 254 127 = +127
- Fraction: 111...11 leads to significand of 1.999999... ≈ 2.0
- $\pm 2.0 \times 2^{+127} \approx \pm 3.4 \times 10^{+38}$

Double-Precision Range:

- Exponents 0000...00 and 1111...11 are reserved as shown
- Has a precision of <u>about</u> 15 decimal digits since $log_{10}(2^{-53}) = -15.955 \approx -15$ (cannot rely on the 16th digit)

Smallest value has exponent: 0000000001

- This leads to the actual exponent of 1 1023 = –1022
- Fraction: 000...00 leads to significand of 1.0
- $\pm 1.0 \times 2^{-1022} \approx \pm 2.2 \times 10^{-308}$

Largest value has exponent: 11111111110

- This leads to the actual exponent = 2046 1023 = +1023
- Fraction: 111...11 leads to significand of 1.999999... ≈ 2.0
- $\pm 2.0 \times 2^{+1023} \approx \pm 1.8 \times 10^{+308}$

Floating-Point Rounding:

- Overflow: The number is too large to be represented
- Underflow: The number is too small to be represented

Rounding modes:

- Round Down
- Round Up
- Toward zero
- To nearest
- **Example:** Round 1.100101 (1.578125) to only 3 fraction bits

Round Down: 1.100

Round Up: 1.101

Towards zero: 1.100 (1.625 is farther from 0 than 1.5)

To nearest: 1.101 (1.578125 is closer to 1.625 than 1.5)

Floating-Point (FP) Addition Steps:

- 1. Extract exponent and fraction bits
- Prepend leading 1 to form mantissa
- 3. Compare exponents
- 4. Shift smaller mantissa if necessary
- Add mantissas
- Normalize mantissa and adjust exponent if necessary
- Round result
- 8. Assemble exponent and fraction back into floating-point format

- Floating-Point (FP) Example:
 - Step1. Extract exponent and fraction bits

What numbers		
are these in		
decimal?		

1 bit	8 bits	23 bits
0	01111111	100 0000 0000 0000 0000
Sign	Exponent	Fraction
1 bit	8 bits	23 bits
0	10000000	101 0000 0000 0000 0000 0000
	1000000	101 0000 0000 0000 0000

For the first number N1: S = 0, E = 127, F = .1

For the second number N2: S = 0, E = 128, F = .101

Step2. Prepend leading 1 to form mantissa

N1: 1.1

N2: 1.101

- Floating-Point (FP) Example:
 - Step3. Compare exponents

$$127 - 128 = -1$$
 so shift N1 right by 1 bit

Step4. Shift smaller mantissa if necessary

N1's mantissa: 1.1 >> 1 = 0.11 (equals the original x 2^1)

Step 5. Add mantissas

$$0.11 \times 2^{1}$$

+ 1.101×2^{1}
 10.011×2^{1}

Step6. Normalize mantissa and adjust exponent if needed

$$10.011 \times 2^1 = 1.0011 \times 2^2$$

Floating-Point (FP) Example:

Step7. Round result

No need since it fits into 23 bits

Step8. Assemble exponent and fraction into FP format

$$S = 0$$
, $E = 2 + 127 = 129 = 10000001_2$, $F = 001100..0_2$

Sign	Exponent	Fraction
0	10000001	001 1000 0000 0000 0000 0000
1 bit	8 bits	23 bits

Abbreviated Example:

- Add: $1.000_2 \times 2^{-1} + -1.110_2 \times 2^{-2} (0.5 + -0.4375)_{10}$
- Step1. Align binary points and shift number with the smaller exponent

$$1.000_2 \times 2^{-1} + -0.111_2 \times 2^{-1}$$

Step2. Add mantissas

$$1.000_2 \times 2^{-1} + -0.111_2 \times 2^{-1} = 0.001_2 \times 2^{-1}$$

- Step3. Normalize result and check for over/underflow
 - $1.000_2 \times 2^{-4}$, no change needed
- Step4. Round and renormalize if necessary

$$1.000_2 \times 2^{-4}$$
 (no change needed) = 0.0625_{10}

Floating-Point Unit (FPU) Circuitry /1

Floating-Point Multiplication Overview

Let us consider a 4-digit binary example:

- Multiply: $1.000_2 \times 2^{-1} \times -1.110_2 \times 2^{-2} (0.5 \times -0.4375)_{10}$
- Step1. Add exponents

Unbiased:
$$-1 + -2 = -3$$

Biased:
$$(-1 + 127) + (-2 + 127) = -3 + 254 - 127 = -3 + 127$$

Step2. Multiply mantissas

$$1.000_2 \times 1.110_2 = 1.1102 \implies 1.110_2 \times 2^{-3}$$

Step3. Normalize result and check for over/underflow

$$1.110_2 \times 2^{-3}$$
 (no change) with no over/underflow

Step4. Round and renormalize if necessary

$$1.110_2 \times 2^{-3}$$
 (no change)

Step5. Determine sign: +ve × −ve ⇒ −ve

$$-1.110_2 \times 2^{-3} = -0.21875$$

Floating-Point Unit (FPU) Circuitry /2

Floating-Point Adder:

- Can be significantly more complex than the integer adder
- Performing the addition in one clock cycle would take too long
- Much longer than integer operations
- Slower clock would penalize all instructions
- Floating-point adder usually takes several cycles

FP multiplier is of similar complexity to FP adder:

It uses a multiplier for significands instead of an adder

Floating-Point Unit (FPU) circuitry usually does:

- Addition, subtraction, multiplication, division, reciprocal, square-root, and FP-to-integer conversion
- Operations usually takes several cycles
- FP operations can be pipelined (as discussed later)

Floating-Point Unit (FPU) Circuitry /3

IEEE Std 754 specifies additional rounding control:

- Choice of rounding modes
- Allows programmer to fine-tune numerical behavior of a computation
- Not all FP circuits implement all options
- Most programming languages and FP libraries just use defaults (e.g., round to nearest)

FP Instructions in MIPS /1

FP circuitry is usually a coprocessor (i.e., number 1) that extends the system architecture

- It includes separate FP registers
- 32 single-precision: \$f0, \$f1, ... \$f31
- Paired for double-precision: \$f0/\$f1, \$f2/\$f3, ...
 - Release 2 of MIPS supports 32 × 64-bit FP registers

■ FP instructions operate only on FP registers:

- Programs typically do no perform integer operations on FP data, or vice versa
- More registers are available with minimal code-size impact

FP load and store instructions (d is for double):

```
lwc1, ldc1, swc1, sdc1  Load/store word
    e.g., lwc1 $f8, 32($sp)
Load/store word
    on coprocessor 1
```

FP Instructions in MIPS /2

Single-precision arithmetic:

```
add.s, sub.s, mul.s, div.s
e.g., add.s $f0, $f1, $f6
```

Double-precision arithmetic:

```
add.d, sub.d, mul.d, div.d
    e.g., mul.d $f4, $f4, $f6
```

Single- and double-precision comparison:

```
c.xx.s, c.xx.d (xx is eq, lt, le, ...)
```

Sets or clears FP condition-code bit

```
□ e.g. c.lt.s $f3, $f4
```

Branch on FP condition code true or false:

```
bc1t, bc1f
    e.g., bc1t TargetLabel
```

FP Instructions in MIPS /3

- Example: °F to °C
 - C code:

```
float f2c (float fahr) {
  return ((5.0/9.0)*(fahr - 32.0));
}
```

- fahr in \$f12, result in \$f0, literals in global memory space
- Compiled MIPS code:

```
f2c: lwc1 $f16, const5($gp)
    lwc2 $f18, const9($gp)
    div.s $f16, $f16, $f18
    lwc1 $f18, const32($gp)
    sub.s $f18, $f12, $f18
    mul.s $f0, $f16, $f18
    jr $ra
```

Microarchitecture:

How to implement an architecture in hardware

Processor includes:

- Datapath: Functional blocks
- Control: Control signals (more on these later)

Datapath:

- Elements that process data and addresses in the CPU
 - Includes registers, ALUs, multiplexers, memory units, etc
- We will build a MIPS datapath incrementally

- Program execution time:
 - Execution Time = (#instructions)(cycles/instruction)(seconds/cycle)
- Recall these definitions:
 - CPI: Cycles per Instruction
 - Clock period: Seconds per clock cycle
 - IPC: Instructions per cycle
- The challenge of architecture design is to meet the constraints of cost, power, and performance

Multiple implementations for a single architecture:

- Single-cycle: Each instruction executes in a single cycle
- Multicycle: Each instruction is broken into series of shorter steps
- Pipelined: Each instruction broken up into series of steps and multiple instructions are executed at once

The processor state in MIPS is determined by:

- Program Counter (PC): Address value of the current instruction being executed
- 32 registers and Memory
- MIPS has 32 32-bit registers

Instruction Fetch by adding 4 to PC address:

- We shall start with a subset of MIPS instructions:
 - R-type instructions: and, or, add, sub, slt
 - Memory instructions (I-type instructions): lw, sw
 - Branch instructions (J-type instructions): beq
- Our goal is to show how these instructions are executed on a single-cycle processor

Our goal: explain the processor architecture below

R-Type (Register-Type) Instruction:

- Reads two register operands
- Performs arithmetic/logical operation
- Writes register result

3 register operands:

- rs, rt: source registers, rd: destination register
- op: the operation code or opcode (0 for R-type instructions)
- shamt: the shift amount for shift instructions, otherwise it is 0
- funct: the function with opcode, tells computer what operation to perform

R-Type

- R-Type Assembly Code:
 - Order of registers: add rd, rs, rt

Field Values

Machine Code

ор	rs	rt	rd	shamt	funct
000000	10001	10010	10000	00000	100000
000000	01011	01101	01000	00000	100010
6 bits	5 bits	5 bits	5 bits	5 bits	6 bits

Hexadecimal Value

(0x02328020)

(0x016D4022)

I-Type (Immediate-Type) Instruction:

Uses immediate-value operand

3 register operands:

- rs, rt: register operands
- imm: 16-bit two's complement immediate
- op: the opcode
- The operation is completely determined by the opcode

I-Type

ор	rs	rt	imm
6 bits	5 bits	5 bits	16 bits

MemWrite

Data memory

MemRead

Address

Write

data

Read

data

I-Type Assembly Code:

Order of registers: lw rt, imm(rs) & addi rt, rs, imm

Assembly Code

Field Values

		ор	rs	rt	imm
addi \$s0	, \$s1, 5	8	17	16	5
addi \$t0	, \$s3, -12	8	19	8	-12
lw \$t2	, 32(\$0)	35	0	10	32
sw \$s1	, 4(\$t1)	43	9	17	4
		6 bits	5 bits	5 bits	16 bits

Machine Code

MIPS Register Set:

Name	Register Number	Usage
\$0	0	the constant value 0
\$at	1	assembler temporary
\$v0-\$v1	2-3	Function return values
\$a0 - \$a3	4-7	Function arguments
\$t0-\$t7	8-15	temporaries
\$s 0- \$s 7	16-23	saved variables
\$t8-\$t9	24-25	more temporaries
\$k0-\$k1	26-27	OS temporaries
\$gp	28	global pointer
\$sp	29	stack pointer
\$fp	30	frame pointer
\$ra	31	Function return address

Identifying registers by using \$ before name:

Example: \$0, "register zero", "dollar zero"

Registers used for specific purposes:

- \$0 always holds the constant value 0
- The saved registers, \$s0-\$s7, are used to hold variables
- The temporary registers, \$t0 \$t9, are used to hold intermediate values during a larger computation

Too much data to fit into only 32 registers:

- Store more data in memory
- Memory is large but it is slow
- Commonly used variables can be kept in registers
- Use load and store operations to interact with the memory

Each 32-bit data word has a unique address:

Word Address				Da	ta				
•				•					•
•				•					•
•				•					•
0000003	4	0	F	3	0	7	8	8	Word 3
00000002	0	1	Ε	Ε	2	8	4	2	Word 2
0000001	F	2	F	1	Α	С	0	7	Word 1
00000000	Α	В	С	D	Ε	F	7	8	Word 0

Reading Word-Addressable Memory:

- Load word (lw): lw \$s0, 2(\$t1)
- Add base address (\$t1) and the offset (2); address = (\$t1 + 2)
- Result: \$s0 holds the value at address (\$t1 + 2)
- **Example:** 1 w \$ \$ 0, 2 (\$ 0), **Result:** \$ \$ 0 = 0 x 0 1 EE 2842

Each 32-bit data word has a unique address:

Word Address				Da	ta				
•				•					•
•				•					•
•				•					•
0000003	4	0	F	3	0	7	8	8	Word 3
0000002	0	1	Ε	Ε	2	8	4	2	Word 2
0000001	F	2	F	1	Α	С	0	7	Word 1
0000000	Α	В	С	D	Ε	F	7	8	Word 0

Writing Word-Addressable Memory:

- Store word (sw): sw \$s0, 4(\$t4)
- Add base address (\$t4) and the offset (4); address = (\$t4 + 4)
- Result: stores the value in \$s0 to the address (\$t4 + 4)
- Example: sw \$s0, 4(\$0), Result: address 4 holds \$s0

- 32-bit instructions and data are stored in memory
 - Sequence of instructions: only difference between two programs
 - To run a new program: Simply store the new program in memory
 - **Program Execution:** Processor fetches (reads) instructions from memory in sequence
 - Processor performs the specified operation

		.,		
lw	\$t2,	32(\$0	0)	0x8C0A0020
add	\$s0,	\$s1,	\$s2	0x02328020
addi	\$t0,	\$s3,	-12	0x2268FFF4
sub	\$t0,	\$t3,	\$t5	0x016D4022

Machine Code

Assembly Code

Stored Program

Start with opcode:

- Tells us how to parse rest
- If opcode all 0s then it is an R-type instruction
- Function bits tell the operation
- If opcode is not 0s, then opcode tells the operation

■ Logical Instructions Sample: Source Registers

What are these in	\$s1	1111	1111	1111	1111	0000	0000	0000	0000
Hexadecimal?	\$s2	0100	0110	1010	0001	1111	0000	1011	0111

Result

Assembly Code

and \$s3,	\$s1,	\$s2	\$s3	0100	0110	1010	0001	0000	0000	0000	0000
or \$s4,	\$s1,	\$s2	\$s4	1111	1111	1111	1111	1111	0000	1011	0111
xor \$s5,	\$s1,	\$s2	\$s5	1011	1001	0101	1110	1111	0000	1011	0111
nor \$s6,	\$s1,	\$s2	\$ s6	0000	0000	0000	0000	0000	1111	0100	1000

Shift Operations:

- sll: shift left logical
- Example:

```
sll $t0, $t1, 5 # $t0 <= $t1 << 5
```

- srl: shift right logical
- Example:

```
srl $t0, $t1, 5 # $t0 <= $t1 >> 5
```

- sra: shift right arithmetic
- Example:

```
sra $t0, $t1, 5 # $t0 <= $t1 >>> 5
```

Shift Operations Code:

Field Values Assembly Code rt rd shamt funct op rs sll \$t0, \$s1, 2 17 8 2 0 0 0 18 2 2 srl \$s2, \$s1, 2 0 0 17 19 2 3 sra \$s3, \$s1, 2 0 17 0 6 bits 5 bits 5 bits 5 bits 5 bits

Machine Code

ор	rs	rt	rd	shamt	funct	1
000000	00000	10001	01000	00010	000000	(0x00114080)
000000	00000	10001	10010	00010	000010	(0x00119082)
000000	00000	10001	10011	00010	000011	(0x00119883)
6 bits	5 bits	5 bits	5 bits	5 bits	6 bits	I

Single-Cycle Datapath Trace for 1w /1

Step 1. Fetch instruction from Instruction Memory:

Single-Cycle Datapath Trace for 1w /2

Step 2. Read source operands from Register File:

Single-Cycle Datapath Trace for 1w/3

Step 3. Sign-extend the immediate:

Single-Cycle Datapath Trace for 1w /4

Step 4. Compute the memory address (add srcA/B):

Single-Cycle Datapath Trace for 1w/5

Step 5. Read data from Data Memory and write it back to Register File:

Single-Cycle Datapath Trace for 1w /6

Step 6. Determine the address of next instruction:

Single-Cycle Datapath Trace for sw

Steps:

- Compute the address the same as for lw
- Write data in rt to memory

Single-Cycle Datapath Trace for R-type

Steps:

- Read from rs and rt
- Write ALUResult to register file
- Write to rd (instead of rt)

Single-Cycle Datapath Trace for beq

- **Steps:** beq \$s0, \$s1, target
 - Determine whether values in rs and rt are equal
 - More on J-Type instructions in the coming lectures
 - Calculate branch target address (BTA):

BTA = (sign-extended immediate << 2) + (PC+4)

Single-Cycle Processor with Control Unit /1

Control Unit Added:

Single-Cycle Processor with Control Unit /2

Control Unit as a factored FSM:

Food for Thought

Download and Read Assignment #2 Specifications

- Read:
 - Chapter 5 of the course textbook
 - Review the material discussed in the lecture notes in more detail
 - (Optional) Chapter 6 and 7 of the Harris and Harris textbook

Midterm Overview /1

Midterm will cover:

- Lecture Notes #1 to #5
- Related Food for Thought readings
 - Review Assignment #1 and #2
- Review Course Notes up to Chapter 4, Section 4.5 (inclusive)
 - No calculators are allowed but we will provide a table with fraction values for FP calculations

Main Topics:

- Performance measurements
- Combinational logic circuitry
- Simplification of Boolean equations
- Karnaugh maps
- Timing and glitches
- ...

Midterm Overview /2

Main Topics Continued:

- Sequential logic circuitry
- Finite state machines
- Two's complement representation of integers
- Shift/AND/OR/NOT operations
- Ripple-carry adder and CLA adder
- Arithmetic Logic Unit and its components
- Binary representation of numbers with fractions
- Floating-point addition and multiplication
- Single-cycle processor (trace R-type and I-type instructions)