ADAPTOR GRAMMARS FOR LEARNING NON-CONCATENATIVE MORPHOLOGY

Jan Botha Phil Blunsom

Department of Computer Science University of Oxford

EMNLP 2013, Seattle

talk talks talked talking

talk talks talked talking

talk talks talked talking

Gesundheitsreform (health reform) [German]

talk talks talked talking

Gesundheitsreform (health reform) [German]

```
talk
talks
talked
talking
```

Gesundheitsreform (health reform) [German]

→ Permits concatenative view.

```
Morphology, the usual:
```

```
talk
talks
talked
talking
```

Gesundheitsreform (health reform) [German]

 \rightarrow Permits concatenative view.

The "other" morphology:

```
kitAb (book)
kutub (books)
```

[Arabic]

```
Morphology, the usual:
```

```
talk
talks
talked
talking
```

Gesundheitsreform (health reform) [German]

 \rightarrow Permits concatenative view.

The "other" morphology:

```
kitAb (book)
kutub (books)
```

[Arabic]

```
talk
talks
talked
talking
```

Gesundheitsreform (health reform) [German]

→ Permits concatenative view.

The "other" morphology:

```
kitAb (book)
kutub (books)
wakitAbi (and my book)

[Arabic]
```

```
talk
talks
talked
talking
```

Gesundheitsreform (health reform) [German]

 \rightarrow Permits concatenative view.

The "other" morphology:

```
kitAb (book)
kutub (books)
wakitAbi (and my book)

[Arabic]
```

→ Needs non-concatenative view.

```
talk
talks
talked
talking
```

Gesundheitsreform (health reform) [German]

→ Permits concatenative view.

The "other" morphology:

```
kitAb (book)
kutub (books)
wakitAbi (and my book)

[Arabic]
```

- → Needs non-concatenative view.
- ⇒ This talk deals with **both** views; focus on Arabic & Hebrew.

Rich morphology \Rightarrow novelty, sparse data

Rich morphology ⇒ novelty, sparse data

Rule-based & supervised methods

• the usual limitations – costly, language-dependent ...

Rich morphology ⇒ novelty, sparse data

Rule-based & supervised methods

• the usual limitations – costly, language-dependent ...

Unsupervised methods

- mostly limited to concatenative morphology, or:
- constrained search + dictionaries (Darwish, 2002; Boudlal et al., 2009)
- statistics + heuristic constraints
 (Rodrigues & Cavar, 2007; Daya et al., 2008)
- nonparametric Bayesian model (Fullwood & O'Donnel, 2013)

Rich morphology ⇒ novelty, sparse data

Rule-based & supervised methods

the usual limitations – costly, language-dependent ...

Unsupervised methods

- mostly limited to concatenative morphology, or:
- constrained search + dictionaries (Darwish, 2002; Boudlal et al., 2009)
- statistics + heuristic constraints
 (Rodrigues & Cavar, 2007; Daya et al., 2008)
- nonparametric Bayesian model (Fullwood & O'Donnel, 2013)

Aim:

flexible model of joint segmentation and stem formation

THE PLAN

Proposal:

- encode (non-)concatenative morphology with a nice grammar formalism
- cast it as flexible nonparametric Bayesian model

THE PLAN

Proposal:

- encode (non-)concatenative morphology with a nice grammar formalism
- cast it as flexible nonparametric Bayesian model

Outcomes:

- improved segmentation of Hebrew & Arabic
- · induced lexicons of roots

THE PLAN

Proposal:

- encode (non-)concatenative morphology with a nice grammar formalism
- cast it as flexible nonparametric Bayesian model

Outcomes:

- improved segmentation of Hebrew & Arabic
- · induced lexicons of roots

CONTEXT-FREE GRAMMARS

SIMPLE RANGE CONCATENATING GRAMMARS

(Boullier, 2000)

"book"

"and my book"

"sent off"

SRCGs provide the sought-after linguistic flexibility.

SRCGs provide the sought-after linguistic flexibility.

Add Adaptor Grammars (Johnson et al., 2007)

nonparametric Bayesian extension of PCFGs

SRCGs provide the sought-after linguistic flexibility.

Add Adaptor Grammars (Johnson et al., 2007)

- nonparametric Bayesian extension of PCFGs
- whole subtrees reused across different inputs
 e.g. stem occurring in multiple word forms

SRCGs provide the sought-after linguistic flexibility.

Add Adaptor Grammars (Johnson et al., 2007)

- nonparametric Bayesian extension of PCFGs
- whole subtrees reused across different inputs e.g. stem occurring in multiple word forms
- Expanding a node (generatively) involves:
 - a) generate its direct children via base grammar *OR*
 - b) pick a completed subtree from cache.

SRCGs provide the sought-after linguistic flexibility.

Add Adaptor Grammars (Johnson et al., 2007)

- nonparametric Bayesian extension of PCFGs
- whole subtrees reused across different inputs e.g. stem occurring in multiple word forms
- Expanding a node (generatively) involves:
 - a) generate its direct children via base grammar *OR*
 - b) pick a completed subtree from cache.
- choice governed by Pitman-Yor Process

SRCGs provide the sought-after linguistic flexibility.

Add Adaptor Grammars (Johnson et al., 2007)

- nonparametric Bayesian extension of PCFGs
- whole subtrees reused across different inputs e.g. stem occurring in multiple word forms
- Expanding a node (generatively) involves:
 - a) generate its direct children via base grammar *OR*
 - b) pick a completed subtree from cache.
- choice governed by Pitman-Yor Process

We apply this to SRCGs.

 $Word(xyz) \rightarrow \underline{Pre}(x) \ \underline{Stem}(y) \ \underline{Suf}(z)$

 $\underline{\mathsf{Stem}}(abcde) \to \underline{\mathsf{Root}}(a,c,e) \ \underline{\mathsf{Template}}(b,d)$

 $\underline{\mathsf{Root}}(f,g,h) \to \mathsf{Char}(f) \; \mathsf{Char}(g) \; \mathsf{Char}(h)$

 $\mathsf{Template}(i,j) \to \mathsf{Char}(i) \; \mathsf{Char}(j)$

 $Word(xyz) \rightarrow \underline{Pre}(x) \ \underline{Stem}(y) \ \underline{Suf}(z)$

 $\underline{\mathsf{Stem}}(abcde) \to \underline{\mathsf{Root}}(a,c,e) \; \mathsf{Template}(b,d)$

 $\underline{\mathsf{Root}}(f,g,h) \to \mathsf{Char}(f) \; \mathsf{Char}(g) \; \mathsf{Char}(h)$

 $\mathsf{Template}(i,j) \to \mathsf{Char}(i) \; \mathsf{Char}(j)$

CACHE

STEM

ROOT

$$Word(xyz) \rightarrow \underline{Pre}(x) \ \underline{Stem}(y) \ \underline{Suf}(z)$$

$$\underline{\mathsf{Stem}}(abcde) \to \underline{\mathsf{Root}}(a,c,e) \; \mathsf{Template}(b,d)$$

$$\underline{\mathsf{Root}}(f,g,h) \to \mathsf{Char}(f) \; \mathsf{Char}(g) \; \mathsf{Char}(h)$$

 $\mathsf{Template}(i,j) \to \mathsf{Char}(i) \; \mathsf{Char}(j)$

Word

CACHE

STEM

ROOT

$$Word(xyz) \to \underline{Pre}(x) \ \underline{Stem}(y) \ \underline{Suf}(z)$$

$$\underline{\mathsf{Stem}}(abcde) \to \underline{\mathsf{Root}}(a,c,e) \; \mathsf{Template}(b,d)$$

$$\underline{\mathsf{Root}}(f,g,h) \to \mathsf{Char}(f) \; \mathsf{Char}(g) \; \mathsf{Char}(h)$$

 $\mathsf{Template}(i,j) \to \mathsf{Char}(i) \; \mathsf{Char}(j)$

Word

CACHE

STEM

ROOT

$$Word(xyz) \rightarrow \underline{Pre}(x) \ \underline{Stem}(y) \ \underline{Suf}(z)$$

$$\underline{\mathsf{Stem}}(abcde) \to \underline{\mathsf{Root}}(a,c,e) \ \underline{\mathsf{Template}}(b,d)$$

 $\underline{\mathsf{Root}}(f,g,h) \to \mathsf{Char}(f) \; \mathsf{Char}(g) \; \mathsf{Char}(h)$

 $\underline{\mathsf{Template}}(i,j) \to \mathsf{Char}(i) \; \mathsf{Char}(j)$

CACHE

STEM

ROOT

$$Word(xyz) \rightarrow \underline{Pre}(x) \ \underline{Stem}(y) \ \underline{Suf}(z)$$

$$\underline{\mathsf{Stem}}(abcde) \to \underline{\mathsf{Root}}(a,c,e) \; \mathsf{Template}(b,d)$$

$$\underline{\mathsf{Root}}(f,g,h) \to \mathsf{Char}(f) \; \mathsf{Char}(g) \; \mathsf{Char}(h)$$

 $\underline{\mathsf{Template}}(i,j) \to \mathsf{Char}(i) \; \mathsf{Char}(j)$

CACHE

STEM

Root

 $Word(xyz) \rightarrow \underline{Pre}(x) \ \underline{Stem}(y) \ \underline{Suf}(z)$

 $\underline{\mathsf{Stem}}(abcde) \to \underline{\mathsf{Root}}(a,c,e) \; \mathsf{Template}(b,d)$

 $\underline{\mathsf{Root}}(f,g,h) \to \mathsf{Char}(f) \; \mathsf{Char}(g) \; \mathsf{Char}(h)$

 $\mathsf{Template}(i,j) \to \mathsf{Char}(i) \; \mathsf{Char}(j)$

Stem

CACHE

STEM

ROOT

 $Word(xyz) \rightarrow \underline{Pre}(x) \ \underline{Stem}(y) \ \underline{Suf}(z)$

 $\underline{\mathsf{Stem}}(abcde) \to \underline{\mathsf{Root}}(a,c,e) \; \mathsf{Template}(b,d)$

 $\underline{\mathsf{Root}}(f,g,h) \to \mathsf{Char}(f) \; \mathsf{Char}(g) \; \mathsf{Char}(h)$

 $\mathsf{Template}(i,j) \to \mathsf{Char}(i) \; \mathsf{Char}(j)$

Stem

CACHE

STEM

Rоот

 $Word(xyz) \rightarrow \underline{Pre}(x) \ \underline{Stem}(y) \ \underline{Suf}(z)$

 $\underline{\mathsf{Stem}}(abcde) \to \underline{\mathsf{Root}}(a,c,e) \; \mathsf{Template}(b,d)$

 $\underline{\mathsf{Root}}(f,g,h) \to \mathsf{Char}(f) \; \mathsf{Char}(g) \; \mathsf{Char}(h)$

 $\mathsf{Template}(i,j) \to \mathsf{Char}(i) \; \mathsf{Char}(j)$

CACHE

STEM

ROOT

 $Word(xyz) \rightarrow \underline{Pre}(x) \ \underline{Stem}(y) \ \underline{Suf}(z)$

 $\underline{\mathsf{Stem}}(abcde) \to \underline{\mathsf{Root}}(a,c,e) \; \mathsf{Template}(b,d)$

 $\underline{\mathsf{Root}}(f,g,h) \to \mathsf{Char}(f) \; \mathsf{Char}(g) \; \mathsf{Char}(h)$

 $\mathsf{Template}(i,j) \to \mathsf{Char}(i) \; \mathsf{Char}(j)$

CACHE

STEM

ROOT

 $Word(xyz) \rightarrow \underline{Pre}(x) \ \underline{Stem}(y) \ \underline{Suf}(z)$

 $\underline{\mathsf{Stem}}(abcde) \to \underline{\mathsf{Root}}(a,c,e) \; \mathsf{Template}(b,d)$

 $\underline{\mathsf{Root}}(f,g,h) \to \mathsf{Char}(f) \; \mathsf{Char}(g) \; \mathsf{Char}(h)$

 $\mathsf{Template}(i,j) \to \mathsf{Char}(i) \; \mathsf{Char}(j)$

CACHE

STEM

ROOT

 $Word(xyz) \rightarrow \underline{Pre}(x) \ \underline{Stem}(y) \ \underline{Suf}(z)$

 $\underline{\mathsf{Stem}}(abcde) \to \underline{\mathsf{Root}}(a,c,e) \; \mathsf{Template}(b,d)$

 $\underline{\mathsf{Root}}(f,g,h) \to \mathsf{Char}(f) \; \mathsf{Char}(g) \; \mathsf{Char}(h)$

 $\frac{\mathsf{Template}(i,j) \to \mathsf{Char}(i) \; \mathsf{Char}(j)}{\mathsf{Char}(j)}$

CACHE

STEM

ROOT

 $Word(xyz) \rightarrow \underline{Pre}(x) \ \underline{Stem}(y) \ \underline{Suf}(z)$

 $\underline{\mathsf{Stem}}(abcde) \to \underline{\mathsf{Root}}(a,c,e) \; \mathsf{Template}(b,d)$

 $\underline{\mathsf{Root}}(f,g,h) \to \mathsf{Char}(f) \; \mathsf{Char}(g) \; \mathsf{Char}(h)$

 $\mathsf{Template}(i,j) \to \mathsf{Char}(i) \; \mathsf{Char}(j)$

CACHE

STEM

ROOT

 $Word(xyz) \rightarrow \underline{Pre}(x) \ \underline{Stem}(y) \ \underline{Suf}(z)$

 $\underline{\mathsf{Stem}}(abcde) \to \underline{\mathsf{Root}}(a,c,e) \; \mathsf{Template}(b,d)$

 $\underline{\mathsf{Root}}(f,g,h) \to \mathsf{Char}(f) \; \mathsf{Char}(g) \; \mathsf{Char}(h)$

 $\mathsf{Template}(i,j) \to \mathsf{Char}(i) \; \mathsf{Char}(j)$

CACHE

STEM

ROOT

 $Word(xyz) \rightarrow \underline{Pre}(x) \ \underline{Stem}(y) \ \underline{Suf}(z)$

 $\underline{\mathsf{Stem}}(abcde) \to \underline{\mathsf{Root}}(a,c,e) \; \mathsf{Template}(b,d)$

 $\underline{\mathsf{Root}}(f,g,h) \to \mathsf{Char}(f) \; \mathsf{Char}(g) \; \mathsf{Char}(h)$

 $\mathsf{Template}(i,j) \to \mathsf{Char}(i) \; \mathsf{Char}(j)$

CACHE

STEM

ROOT

 $Word(xyz) \rightarrow \underline{Pre}(x) \ \underline{Stem}(y) \ \underline{Suf}(z)$

 $\underline{\mathsf{Stem}}(abcde) \to \underline{\mathsf{Root}}(a,c,e) \; \mathsf{Template}(b,d)$

 $\underline{\mathsf{Root}}(f,g,h) \to \mathsf{Char}(f) \; \mathsf{Char}(g) \; \mathsf{Char}(h)$

 $\mathsf{Template}(i,j) \to \mathsf{Char}(i) \; \mathsf{Char}(j)$

CACHE

STEM

ROOT

 $Word(xyz) \rightarrow \underline{Pre}(x) \ \underline{Stem}(y) \ \underline{Suf}(z)$

 $\underline{\mathsf{Stem}}(abcde) \to \underline{\mathsf{Root}}(a,c,e) \; \mathsf{Template}(b,d)$

 $\underline{\mathsf{Root}}(f,g,h) \to \mathsf{Char}(f) \; \mathsf{Char}(g) \; \mathsf{Char}(h)$

 $\overline{\text{Template}}(i,j) \to \text{Char}(i) \; \text{Char}(j)$

CACHE

STEM

ROOT

 $Word(xyz) \rightarrow \underline{Pre}(x) \ \underline{Stem}(y) \ \underline{Suf}(z)$

 $\underline{\mathsf{Stem}}(abcde) \to \underline{\mathsf{Root}}(a,c,e) \; \mathsf{Template}(b,d)$

 $\underline{\mathsf{Root}}(f,g,h) \to \mathsf{Char}(f) \; \mathsf{Char}(g) \; \mathsf{Char}(h)$

 $\underline{\mathsf{Template}}(i,j) \to \mathsf{Char}(i) \; \mathsf{Char}(j)$

CACHE

STEM

ROOT

DATASETS

Hebrew

- 5k word types from CHILDES database
- vocalised

Standard Arabic $\times 2$

- synthesised 50k word types from BAMA dictionaries
- both orthographic variants: vocalised and unvocalised

Quranic Arabic

- 18k word types from annotated Quran (Dukes et al. 2010)
- extensive diacritics

Included all parts of speech; not filtered for verbs/nouns.

METHOD

- 1. Run MCMC sampler over unannotated data.
- 2. Collect 100 posterior samples.
- 3. Evaluate MAP parses against references.

METHOD

- 1. Run MCMC sampler over unannotated data.
- 2. Collect 100 posterior samples.
- 3. Evaluate MAP parses against references.

TASK 1: SEGMENTATION

ions o ion \cdot s

 $fabrications \rightarrow fabricat \cdot ion \cdot s$

METHOD

- 1. Run MCMC sampler over unannotated data.
- 2. Collect 100 posterior samples.
- 3. Evaluate MAP parses against references.

TASK 1: SEGMENTATION

ions \rightarrow ion \cdot s fabrications \rightarrow fabricat \cdot ion \cdot s

TASK 2: LEXICON INDUCTION

Prefixes	<u>Stems</u>	<u>Suffixes</u>	Roots
	ion	ion	
	fabricat	S	

EXAMPLE ANALYSES – ARABIC (UNVOCALISED)

EXAMPLE ANALYSES – ARABIC (VOCALISED)

EXAMPLE ANALYSES – QURAN

EXAMPLE ANALYSES

Top three Hebrew roots according to model

Root

- 1. **spr** (*tell*)
- 2. **Ibš** (wear)
- 3. ptx (open)

EXAMPLE ANALYSES

Top three Hebrew roots according to model

	Root	Correct Instances		
1.	spr (tell)	s ipar∙ti	ye ∙s a pr∙ u	
2.	lbš (wear)	li •lb oš	ti ∙lb e š∙ i	
3.	ptx (open)			

EXAMPLE ANALYSES

Top three Hebrew roots according to model

	Root	Correct	Instances	Mistaken Instance
1.	spr (tell)	s ipar∙ti	ye ∙s a pr• u	hi⊗ s ta p ⊗a <u>r</u> _↑ t
2.	lbš (wear)	li •lb oš	ti ∙lb eš•i	le _↑ ha⊗ lb i š
3.	ptx (open)			

F1-scores over word-internal morpheme boundaries

Morfessor CFG		
SRCG1		
SRCG2		
SRCG3		
SRCG4		

F1-scores over word-internal morpheme boundaries

(higher better)

Arabic (unvoc)

SRCG1 60.4 SRCG2 60.5 SRCG3 64.5 SRCG4 74.5	Morfessor CFG	55.6 47.4	
SRCG3 64.5	SRCG1	60.4	
	SRCG2	60.5	
SRCG4 74.5	SRCG3	64.5	
	SRCG4	74.5	

F1-scores over word-internal morpheme boundaries

	Arabic (unvoc)	Arabic	
Morfessor	55.6	40.0	
CFG	47.4	64.2	
SRCG1	60.4	71.9	
SRCG2	60.5	72.2	
SRCG3	64.5	71.6	
SRCG4	74.5	73.7	

F1-scores over word-internal morpheme boundaries

	Arabic (unvoc)	Arabic	Hebrew	
Morfessor	55.6	40.0	24.2	
CFG	47.4	64.2	60.1	
SRCG1	60.4	71.9	77.3	
SRCG2	60.5	72.2	77.4	
SRCG3	64.5	71.6	77.1	
SRCG4	74.5	73.7	78.1	

F1-scores over word-internal morpheme boundaries

	Arabic (unvoc)	Arabic	Hebrew	Quran
Morfessor	55.6	40.0	24.2	44.3
CFG	47.4	64.2	60.1	19.6
SRCG1	60.4	71.9	77.3	22.5
SRCG2	60.5	72.2	77.4	25.7
SRCG3	64.5	71.6	77.1	24.8
SRCG4	74.5	73.7	78.1	-

F1-scores over word-internal morpheme boundaries

	Arabic (unvoc)	Arabic	Hebrew	Quran
Morfessor	55.6	40.0	24.2	44.3
CFG	47.4	64.2	60.1	19.6
SRCG1	60.4	71.9	77.3	22.5
SRCG2	60.5	72.2	77.4	25.7
SRCG3	64.5	71.6	77.1	24.8
SRCG4	74.5	73.7	78.1	-

 $[\]Rightarrow$ Modelling discontiguous substructure improves segmentation

MORPHEME LEXICON INDUCTION RESULTS

F-score in set-based evaluation against gold lexicons

	Prefixes	Stems	Suffixes	Triliteral Roots
Arabic (unvo	calised)			P/R/F
CFG	33	44	40	_
Best SRCG	53	58	52	51 / 80 / 62

Conclusions

- Flexible modelling framework that handles concatenative and non-concatenative morphology
- Accounting for root-templatic stem formation improved segmentation in Hebrew and Arabic
- SRCG-variant of Adaptor Grammars potentially applicable to other SRCGs (parsing, translation)
- Further avenues for inquiry:
 - Induced roots as features in downstream tasks?
 - Success at handling other non-concatenative phenomena?
 - What does discontiguous model do on English, etc.
 - RCG with deletion $\xrightarrow{}$ irregular patterns, weak roots?

Thank you.