Reporte: Detección del Estado de Ánimo en Gatos mediante Imágenes (Gatección)

1. Objetivos del Proyecto

El objetivo principal de este proyecto es desarrollar un sistema automático capaz de detectar el estado de ánimo de los gatos a partir de imágenes, utilizando técnicas modernas de visión por computadora y aprendizaje profundo. Esto permitirá:

- Mejorar el bienestar animal: Identificar emociones negativas o de alerta puede ayudar a prevenir problemas de salud o estrés en los gatos.
- Facilitar el monitoreo remoto: Permite a dueños y veterinarios monitorear el estado emocional de los gatos sin intervención directa.
- Aportar a la etología aplicada: Generar herramientas accesibles para el estudio del comportamiento felino.

2. Problemas que Resuelve

- Interpretación objetiva de emociones: Los gatos no expresan emociones de forma tan evidente como otros animales; su lenguaje corporal y facial es sutil. Este sistema traduce esas señales en datos cuantificables que nos permitirán entender a nuestro michi.
- Prevención de problemas de salud: Detectar estados de molestia o alerta puede ser indicio temprano de enfermedad o incomodidad.
- Automatización: Reduce la necesidad de observación manual constante, ahorrando tiempo y recursos o incluso permitiéndonos identificar estados que no habíamos notado en el gato.
- Mejor comunicación humano-animal: Ayuda a los humanos a entender mejor a sus mascotas, fomentando una convivencia más armoniosa.

3. Procedimiento y Justificación de Implementación

a) Selección de Datos

Se utilizaron bases de datos públicas con imágenes de gatos, a las que se les realizó un **etiquetado manual** según criterios etológicos (posición de orejas, ojos, bigotes, tensión corporal). Esto permite tener un conjunto de entrenamiento específico para emociones, no solo para identificación de especie o raza.

b) Arquitectura del Modelo

Se implementó una **Red Neuronal Convolucional (CNN)** personalizada, llamada CatMoodNET, debido a la eficacia de las CNN para tareas de clasificación de imágenes.

- Dos bloques convolucionales con *ReLU* y *MaxPooling* para extraer características visuales relevantes.
- Tres capas densas (fully connected) para la toma de decisión final.
- Salida con 4 clases (emociones).

c) Proceso de Entrenamiento

- Preprocesamiento y augmentación: Redimensionado a 64x64, normalización, y augmentación con flips horizontales para mejorar la generalización.
- Entrenamiento y validación: Separación de datos para evitar sobreajuste y evaluar el desempeño real del modelo.
- Optimización: Uso de Adam como optimizador y CrossEntropyLoss como función de pérdida.

d) Evaluación y Uso

Se evaluó la precisión en entrenamiento y validación, y se implementaron funciones para predecir emociones tanto en imágenes del set como en imágenes nuevas. Se guardó el modelo entrenado para futuras predicciones sin necesidad de reentrenar.

4. Bibliotecas Utilizadas y su Rol en la Optimización

- os y glob: Para navegar por el sistema de archivos, listar rutas de imágenes y construir rutas de forma portable.
- torch y torch.nn, torch.nn.functional: Núcleo de PyTorch para definir modelos, capas convolucionales, funciones de activación y operaciones tensoriales.

- torch.optim: Proporciona optimizadores (Adam, SGD) y herramientas para ajustar tasas de aprendizaje durante el entrenamiento.
- torch.utils.data.Dataset y DataLoader: Para crear datasets personalizados y cargar datos en batches de forma eficiente, con soporte de múltiples procesos.
- torchvision.transforms: Para pipeline de preprocesado de imágenes (resize, flip, rotaciones, normalización) y data augmentation.
- PIL (Python Imaging Library): Carga y conversión de imágenes a formato RGB compatible con PyTorch.
- scikit-learn (train_test_split, precision_score):
 - train_test_split: División estratificada de los datos en entrenamiento y validación, garantizando representación de todas las clases.
 - precision_score: Cálculo de métricas por clase para evaluar la precisión individual de cada emoción.
- collections.Counter: Para contabilizar muestras por etiqueta y detectar desequilibrios de clases.
- random, numpy (np): Selección aleatoria de ejemplos para visualización y manejo de arreglos numéricos.
- matplotlib.pyplot: Visualización de curvas de pérdida, precisión, matrices de confusión e imágenes con sus predicciones.
- ipywidgets y IPython.display.display: Creación de un widget interactivo para subir imágenes en el notebook y mostrar predicciones en tiempo real.
- io: Manejo de buffers de bytes al cargar imágenes desde el widget sin guardarlas en disco.

Optimización lograda:

- PyTorch y torchvision permiten el uso eficiente de GPU, acelerando el entrenamiento.
- Las transformaciones y augmentaciones ayudan a que el modelo generalice mejor, evitando el sobreajuste en datasets pequeños.
- El uso de *Adam* como optimizador acelera la convergencia respecto a métodos clásicos como SGD.

5. Justificación de las 4 Emociones Seleccionadas

Las emociones seleccionadas no solo son representativas del comportamiento felino, sino que también tienen relevancia práctica para el bienestar y manejo del gato:

1. Enojado

Justificación: Un gato enojado puede estar experimentando dolor, enfermedad o incomodidad ambiental. Detectar este estado ayuda a intervenir a tiempo para mejorar su calidad de vida.

2. Dormido

Justificación: Clasificar si un gato duerme cómodamente permite evaluar su nivel de descanso y bienestar. Un sueño profundo y cómodo es signo de salud y tranquilidad, mientras que dormir en alerta puede indicar estrés.

3. Neutral

Justificación: El estado neutral es el más común y representa tranquilidad y comodidad. En gatos, la neutralidad facial suele ser señal de que están sanos y no presentan emociones negativas ni de alerta. Además, los gatos no suelen mostrar "alegría" como los perros, por lo que esta clase engloba también estados positivos.

4. Alerta

Justificación: Un gato en alerta puede estar percibiendo peligro o sentirse incómodo. Identificar este estado permite a los dueños o cuidadores actuar para mejorar el entorno o reducir factores de estrés.

6. Dificultades Presentadas

Durante la elaboración del proyecto, enfrentamos varios desafíos importantes:

- Definir las emociones a clasificar: Tomar la decisión de cómo lucían las emociones de los gatos fue complicado debido a la subjetividad de los criterios etológicos y la falta de consenso en la literatura sobre comportamiento felino.
- Decidir la cantidad de épocas de entrenamiento: Encontrar el balance entre un número adecuado de épocas para evitar el sobreajuste y garantizar una buena generalización fue un proceso iterativo que requirió múltiples pruebas.
- Condensar el conjunto de datos: La selección y condensación del conjunto de datos obtenido del Cat dataset de Kaggle para pruebas, entrenamiento y validación presentó dificultades, especialmente al garantizar que estuviera equilibrado y representara bien las emociones seleccionadas.

7. Conclusiones

- La combinación de técnicas de visión por computadora y aprendizaje profundo nos permitió abordar un problema complejo y poco explorado: la detección automática de emociones en gatos. Lo cuál resulta útil para aquellos que consideramos estos animales como parte de nuestra familia.
- La selección de emociones se basa en criterios etológicos y de bienestar animal, buscando un equilibrio entre lo observable y lo relevante para la salud y manejo de los gatos.
- El uso de bibliotecas modernas y una arquitectura CNN nos facilitó la implementación.