Додаток 1

Міністерство освіти і науки України Національний технічний університет України «Київський політехнічний інститут імені Ігоря Сікорського" Факультет інформатики та обчислювальної техніки

Кафедра інформатики та програмної інженерії

Звіт

з лабораторної роботи № 3 з дисципліни «Алгоритми та структури даних-1. Основи алгоритмізації»

«Дослідження алгоритмів

розгалуженяя»

Варіант 15

Виконав студен	т 111-12, Кириченко Владислав Сергиович
•	(шифр, прізвище, ім'я, по батькові)
Перевірив	
	(прізвище, ім'я, по батькові)

Лабораторна робота № 3

Назва роботи: Дослідження ітераційних циклічних алгоритмів

Мета: Дослідити подання операторів повторення дій та набути практичних навичок їх використання під час складання циклічних програмних специфікацій.

Варіант 15

Умова задачі:

3 точністю $\varepsilon = 10^{-6}$ обчислити значення функції Ln x:

Ln(1+x) =
$$x - \frac{x^2}{2} + \frac{x^3}{3} - \dots + (-1)^{n-1} \frac{x^n}{n} + \dots$$
 при $|x| < 1$.

Постановка задачі: Задана змінна "**x**", обчислити значення функції $Ln(1+\mathbf{x})$ із заданою точністю **e**. Результатом розв'язку задачі ϵ змінна **ln**.

Побудова математичної моделі: Маємо змінну "х", в залежності від якої ми повинні знайти значення натурального логарифму числа (x+1) (змінна ln) із заданою точністю. Для цього скористаємося циклом передумови while і введемо змінну n у якості лічильника. Точність обчислення знаходться за формулою $abs(X_n - X_{n+1})$. Також нам буде потрібні функції pow(a,n) - піднесення числа a у степінь n, та abs(a) - модуль числа a.

Складемо таблицю змінних:

Змінна	Тип	Ім'я	Призначення
Значення е	Дійсний	e	Початкові дані
Значення n	Натуральний	n	Початкові дані
Значення х	Дійсний	X	Початкові дані
Значення	Дійсний	InPrevious	Проміжкове
InPrevious			значення
Значення Ln	Дійсний	Ln	Результат

3.Програмні специфікації запишемо у псевдокоді та графічній формі у вигляді блок-схеми.

Крок 1. Визначимо основні дії.

Крок 2. Перевірка чи задовольняє значення вхідного даного х умові задачі.

Крок 3. Деталізація обчислення першого наближеного значення InPrevious.

Крок 4. Деталізація обчислення другогонаближеного значення ln.

Крок 5. Деталізаці знаходження значення ln з точністю е.

```
Псевдокод:
Крок 1.
початок
  введення х,е,п
  перевірка чи abs(\mathbf{x}) < 1
  обчислення значення InPrevious
  обчислення значення In
  знаходження значення ln з точністю e за допомогою цикла
  виведення ln
кінець
Крок 2.
початок
  введення х,е,п
  якщо abs(x) < 1
        обчислення значення InPrevious
        обчислення значення In
        знаходження значення ln з точністю e за допомогою цикла
        виведення ln
        виведення "дані виходять за межі передбачены умовою задачі"
  все якщо
кінець
Крок 3.
початок
  введення х,е,п
  якщо abs(x) < 1
        lnPrevious = pow(-1,(n-1)) * float(pow(x,n))/n
        обчислення значення ln
        знаходження значення ln з точністю e за допомогою цикла
        виведення ln
  інакше
        виведення "дані виходять за межі передбачены умовою задачі"
  все якщо
  все якщо
кінець
```

```
Крок 4.
```

```
початок
  введення х,е,п
  якщо abs(x) < 1
        lnPrevious = pow(-1,(n-1)) * float(pow(x,n))/n
        ln = lnPrevious + pow(-1,(n-1)) * float(pow(x,n))/n
        знаходження значення ln з точністю e
        виведення ln
  інакше
        виведення "дані виходять за межі передбачены умовою задачі"
  все якщо
кінець
Крок 5.
початок
  введення х,е,п
  якщо abs(x) < 1
        lnPrevious = pow(-1,(n-1)) * float(pow(x,n))/n
        ln = lnPrevious + pow(-1,(n-1)) * float(pow(x,n))/n
        n++
        поки (abs(In - InPrevious) > e) повторити
          InPrevious = In
          ln += pow(-1,(n-1)) * float(pow(x,n))/n
          n++
        все повторити
        виведення ln
  інакше
        виведення "дані виходять за межі передбачены умовою задачі"
  все якщо
кінець
```

Блок схема:

4. Перевірка алгоритму

Блок	Дія	Дія	Дія
	Початок	Початок	Початок
1	Введення	Введення	Введення
	x=0.2, n=1,	x=-0.3, n=1,	x=2,n=1,
	e = 0.000001	e=0.000001	e=0.000001
2	abs(0.2) < 1 - true	abs(-0.3)<1 - true	abs(2) < 1 - false
3	InPrevious = 0.2	InPrevious =-0.3	вивід
			«дані виходять за
			межі передбачены
			умовою задачі»
4	ln = 0.18	$\ln = -0.345$	Кінець
5	виконання циклу	виконання циклу	
	(результат =>	(результат =>	
	ln = 0.182322)	ln = -0.356675	
6	Вивід: 0.182322	Вивід: -0.356675	
	Кінець	Кінець	

Перевірка 1(всі значення InPrevious)

0.2

0.18

0.182667

0.182267

0.182331

0.18232

0.182322

Перевірка 2(всі значення InPrevious)

- -0.3
- -0.345
- -0.354
- -0.356025
- -0.356511
- -0.356633
- -0.356664
- -0.356672
- -0.356674

Висновок - Було досліджено подання операторів повторення дій та набуто практичних навичок їх використання під час складання циклічних програмних специфікацій.