UNIVERSIDAD MAYOR DE SAN SIMON FACULTAD DE CIENCIAS Y TECNOLOGÍA

PLAN GLOBAL REDES DE COMPUTADORAS

I. DATOS DE IDENTIFICACIÓN

■ Nombre de la materia: Redes de Computadoras

■ Código: 2010047

■ Grupo:

■ Carga horaria: 4 teóricas y 2 practicas

■ Materias con las que se relaciona: Taller de Sistemas Operativos,

Arquitectura de Computadoras II

■ Docente: MSc. Ing. Jorge Walter Orellana

Araoz

■ Teléfono: 4285437 - 71475551

■ Correo Electrónico: jorellana@memi.umss.edu.bo

II. JUSTIFICACIÓN

La materia permite desarrollar capacidades para diseñar en base a conceptos teóricos y prácticos redes de computadoras de Área local e interconectarlas a redes de área extensa o internet, considerando normas de seguridad.

La materia permite proporcionar los conocimientos teórico-prácticos sobre las nuevas propuestas y estándares de redes de datos teniendo en cuenta aspectos de arquitectura, implementación e impacto en los distintos ámbitos de trabajo.

Además de propiciar y mantener actividades de investigación, desarrollo y transferencia de tecnología en el área de las redes de datos.

III. OBJETIVOS

- Los alumnos serán capaces de evaluar las ventajas de las redes de computadoras y explicar el funcionamiento de los elementos de las redes.
- Los alumnos podrán analizar problemas de flujo de datos en las redes.
- Los alumnos podrán seleccionar servicios, protocolos y topología para la implementación de una red de computadoras
- Los alumnos serán capaces de distinguir problemas de implementación y uso de los servicios de las subredes y superredes para un óptimo aprovechamiento de los recursos.

IV. SELECCIÓN Y ORGANIZACIÓN DE CONTENIDOS

UNIDAD 1: INTRODUCCIÓN A REDES DE COMPUTADORAS

Objetivo de la Unidad

• Introducir al alumno al mundo de las redes de computadoras, mediante la historia de Internet y conceptos fundamentales de redes y las normas que los rigen.

Contenido

- 1.1 Concepto de las redes de computadoras y comunicaciones
- 1.2 Clasificación de las Redes
- 1.3 Arquitectura de Redes
- 1.4 El modelo de referencia OSI
- 1.5 El Modelo de Referencia TCP/IP.
- 1.6 Transmisión de Datos en redes WAN
- 1.7 Estándares

UNIDAD 2: NIVEL FÍSICO

Objetivos de la Unidad

 Transmitir conocimiento acerca del nivel hardware de redes y de los medios de transmisión físicos guiados y no guiados, reforzando la teoría con un taller de instalación de cables.

Contenido

- 2.1 Transmisión de Datos.
- 2.2 Medios de Transmisión
 - 2.2.1 Cable Coaxial
 - 2.3.2.Cable de Par Trenzado
 - 2.2.3 Cable de Fibra Óptica.
 - 2.2.4 Transmisión inalámbrica
 - 2.2.5 Microondas terrestres.
 - 2.2.6 Satélites.
 - 2.2.7 Infrarrojos.

UNIDAD 3: CONTROL DE ACCESO AL MEDIO (MAC)

Objetivos de la Unidad

 Transmitir conocimiento acerca del control de acceso al medio y principalmente de las colisiones y la forma de gestionarlos, además de reforzar la teoría con la simulación en computadora de colisiones

Contenido

- 3.1. Colisión
- 3.2. Estrategias o metodos MAC

- 3.2.1. Aleatoria Acceso Múltiple con Detección de Portadora (CSMA)
- 3.2.2. Distribuida Pase de testigo (Token-Pass)
- 3.2.3. Centralizada Sondeo o Polling
- 3.3. Protocolos de acceso múltiple
 - 3.3.1. Protocolo sin detección de portadora: ALOHA
 - 3.3.2. Protocolo sin detección de portadora: ALOHA RANURADO
 - 3.3.3. Protocolo con detección de portadora: CSMA 1-persistente
 - 3.3.4. Protocolo con detección de portadora: CSMA no persistente
 - 3.3.5. Protocolo con detección de portadora: CSMA p-persistente
 - 3.3.6. Protocolo con detección de portadora: CSMA con detección de colisión
 - 3.3.7. Protocolos sin colisiones: bitmap
 - 3.3.8. Protocolos sin colisiones: Protocolo de cuenta atrás binaria
 - 3.3.9. Protocolos de contención limitada
 - 3.3.10. Protocolos de redes inalámbricas: MACA
- 3.4. Redes locales y estándares

UNIDAD 4: ENLACE DE DATOS

Objetivo de la Unidad

 Transmitir conocimiento acerca del nivel de enlace, además de reforzar la teoría con la simulación en computadora del protocolo HDLC

Contenido

- 4.1. Tramas
- 4.2. Control de flujo
- 4.3. Control de errores
- 4.4. Códigos correctores de errores
- 4.5. Códigos detectores de errores
- 4.6. Protocolos de Enlace Elementales
- 4.7. Protocolos de Ventana Deslizante
- 4.8. Protocolos de nivel de enlace reales
- 4.9. El nivel de enlace en la Internet

UNIDAD 5: NIVEL DE RED

Objetivo de la Unidad

 Transmitir conocimiento acerca del nivel de red, direccionamiento IP y el diseño lógico de redes

Contenido

- 5.1. Servicios
- 5.2. Algoritmos de encaminamiento
- 5.3. Algoritmos de control de congestión
- 5.4. El datagrama ip
- 5.5. Fragmentación
- 5.6. Direccionamiento ip (subnetting y CIDR)

- 5.7. Protocolos de control de internet
- 5.8. Protocolos de routing
- 5.9. IPv6

Unidad 6: NIVEL DE TRANSPORTE

Objetivo de la Unidad

 Transmitir conocimiento acerca del nivel de transporte, reforzando la teoría con la implementación de sockets

Contenido

- 6.1. Primitivas del servicio de transporte
- 6.2. La interfaz sockets
- 6.3. Elementos de protocolos de transporte
- 6.4. Los protocolos de transporte de la internet: TCP Y UDP

UNIDAD 7: EL NIVEL DE APLICACIÓN

Objetivo de la Unidad

 Transmitir conocimiento acerca del nivel de aplicación, reforzando la teoría con la utilización de los protocolos mediante el uso de puertos desde línea de comandos

Contenido

- 7.1 Aplicaciones y Protocolos
- 7.2 Paradigmas
- 7.3 Servicios que necesitan las aplicaciones
- 7.4 El protocolo HTTP
- 7.5 El protocolo DNS--Domain Name System
- 7.6 El protocolo SMTP
- 7.7. El protocolo Telnet (Login remoto)

UNIDAD 8: SEGURIDAD EN REDES LAN

Objetivo de la Unidad

 Transmitir conocimiento acerca de la seguridad y vulnerabilidades concernientes a redes de Area local

Contenido

- 8.1 Introducción
- 8.2 Tipos de ataques y vulnerabilidades
- 8.3 Mitigación de ataques

V. METODOLOGIAS

- Exposición Magistral, Taller de hardware de redes (Motherboard, NIC, Hub, switch, etc)
- Taller de Instalación de cables UTP (Cruzado y directo), conocimiento fibra óptica.
- Taller de simulación de colisiones mediante software CISCO
- Taller de diseño de redes lógicas y su prueba en simuladores. Configuración de routers con software CISCO
- Taller de programación de sockets
- Taller de uso de protocolos de aplicación desde línea de comandos
- Participación en clase, practicas de ampliación de información

VI. CRONOGRAMA O DURACIÓN EN PERIODOS ACADÉMICOS POR UNIDAD

Unidad	DURACIÓN (HORAS ACADÉMICAS)	Duración en Semana
Introducción a Redes de Computadoras	6	1
Nivel Físico	12	2
Control de Acceso al Medio (MAC)	12	2
Enlace de Datos	24	4
Nivel de Red	24	4
Nivel de Transporte	18	3
El nivel de Aplicación	12	2
Seguridad en redes LAN	6	1

VII. CRITERIOS DE EVALUACIÓN

- 2 exámenes parciales
- 2 exposiciones tipo seminario
- Practicas en clase/Laboratorio
- Participación en clase
- Examen Final (si las anteriores evaluaciones no permiten la aprobación directa)

VIII. BIBLIOGRAFÍA

Texto base:

Orellana, Jorge. Texto de la materia Redes de Computadoras. 2005-2012
 http://espanol.groups.yahoo.com/group/redes_computadoras

Bibliografía complementaria:

- Tanenbaum, Andrew. Redes de computadoras. Prentice hall, 4ta Ed., 2003
- Black. Redes de ordenadores: protocolos, normas e interfaces, 1ra Ed., 1990
- Peterson, L; Davie, B; Morgan Kaufmann. Computer Networks: a system approach,
 2da Ed., 2000
- Stallings, W. Data and Computer Communications. Prentice Hall 4ta Ed., 1994
- Joe Casad. Modelo TCP/IP.Prentice Hall 1ra Ed., 1999
- Martin James. Local Area Networks. Prentice Hall, 1989
- Orellana, Jorge. Monografía protocolos TCP/IP. Universidad de Deusto España, 1995