Reply to O.A. dated May 20, 2005

THE CLAIMS

The listing of claims will replace all prior versions of claims in the application.

Listing of Claims:

1. (Original) A method for manufacture of a device for regulating the flow of electrical

current, the method comprising:

providing for a semiconductor substrate;

providing for an electrically insulating layer in contact with the semiconductor substrate,

the insulating layer having a dielectric constant greater than 4.0;

providing for a gate electrode in contact with at least a portion of the insulating layer; and

providing a source electrode and a drain electrode in contact with the semiconductor

substrate and proximal to the gate electrode wherein at least one of the source electrode and the

drain electrode forms a Schottky contact or Schottky-like region with the semiconductor

substrate.

2. (Original) The method of claim 1, wherein the source and drain electrodes are formed

from a member of the group consisting of: platinum silicide, palladium silicide and iridium

silicide.

3. (Original) The method of claim 1, wherein the source and drain electrodes are formed

from a member of the group consisting of the rare earth silicides.

4. (Original) The method of claim 1, wherein the insulating layer is formed from a

member of the group consisting of metal oxides.

-2-

Application Number: 10/796,514 Reply to O.A. dated May 20, 2005

- 5. (Original) The method of claim 1, wherein the insulating layer is formed from an oxy-nitride stack.
- 6. (Original) The method of claim 1, wherein the Schottky contact or Schottky-like region is formed at least in areas adjacent to the channel.
- 7. (Original) The method of claim 1, wherein an entire interface between at least one of the source electrode and the drain electrode and the semiconductor substrate forms a Schottky contact or Schottky-like region with the semiconductor substrate.
- 8. (Original) The method of claim 1, wherein dopants are introduced into the channel region.
- 9. (Original) The method of claim 1, wherein the insulating layer includes more than one layer.
- 10. (Original) The method of claim 2 or 3, wherein the insulating layer is formed from a member of the group consisting of metal oxides.
- 11. (Original) The method of claim 2 or 3, wherein the insulating layer is formed from an oxy-nitride stack.

Attorney Docket: 14467.05

Application Number: 10/796,514 Reply to O.A. dated May 20, 2005

12. (Original) The method of claim 10, wherein the Schottky contact or Schottky-like region is formed at least in areas adjacent to the channel, and wherein dopants are introduced into the channel region.

- 13. (Original) The method of claim 11, wherein the Schottky contact or Schottky-like region is formed at least in areas adjacent to the channel, and wherein dopants are introduced into the channel region.
- 14. (Original) The method of claim 2 or 3, wherein providing a source electrode and a drain electrode in contact with the semiconductor substrate is performed at a processing temperature of less than about 800 °C.
- 15. (Original) A method for manufacture of a device for regulating the flow of electrical current, the method comprising:

providing for a semiconductor substrate;

providing for an electrically insulating layer in contact with the semiconductor substrate, the insulating layer having a dielectric constant greater than 7.6;

providing for a gate electrode in contact with at least a portion of the insulating layer; and

providing a source electrode and a drain electrode in contact with the semiconductor substrate and proximal to the gate electrode wherein at least one of the source electrode and the drain electrode forms a Schottky contact or Schottky-like region with the semiconductor substrate.

Reply to O.A. dated May 20, 2005

16. (Original) The method of claim 15, wherein the source and drain electrodes are

formed from a member of the group consisting of: platinum silicide, palladium silicide and

iridium silicide.

17. (Original) The method of claim 15, wherein the source and drain electrodes are

formed from a member of the group consisting of the rare earth silicides.

18. (Original) The method of claim 15, wherein the insulating layer is formed from a

member of the group consisting of metal oxides.

19. (Original) The method of claim 15, wherein the insulating layer is formed from an

oxy-nitride stack.

20. (Original) The method of claim 15, wherein the Schottky contact or Schottky-like

region is formed at least in areas adjacent to the channel.

21. (Original) The method of claim 15, wherein an entire interface between at least one

of the source electrode and the drain electrode and the semiconductor substrate forms a Schottky

contact or Schottky-like region with the semiconductor substrate.

22. (Original) The method of claim 15, wherein the insulating layer includes more than

one layer.

-5-

23. (Original) The method of claim 15, wherein dopants are introduced into the channel

region.

24. (Original) A method for manufacture of a device for regulating the flow of electrical

current, the method comprising:

providing for a semiconductor substrate;

providing for an electrically insulating layer in contact with the semiconductor substrate,

the insulating layer having a dielectric constant greater than 15;

providing for a gate electrode in contact with at least a portion of the insulating layer; and

providing a source electrode and a drain electrode in contact with the semiconductor

substrate and proximal to the gate electrode wherein at least one of the source electrode and the

drain electrode forms a Schottky contact or Schottky-like region with the semiconductor

substrate.

25. (Original) The method of claim 24, wherein the source and drain electrodes are

formed from a member of the group consisting of: platinum silicide, palladium silicide and

iridium silicide.

26. (Original) The method of claim 24, wherein the source and drain electrodes are

formed from a member of the group consisting of the rare earth silicides.

27. (Original) The method of claim 24, wherein the insulating layer is formed from a

member of the group consisting of metal oxides.

-6-

Reply to O.A. dated May 20, 2005

28. (Original) The method of claim 24, wherein the insulating layer is formed from an

oxy-nitride stack.

29. (Original) The method of claim 24, wherein the Schottky contact or Schottky-like

region is formed at least in areas adjacent to the channel.

30. (Original) The method of claim 24, wherein an entire interface between at least one

of the source electrode and the drain electrode and the semiconductor substrate forms a Schottky

contact or Schottky-like region with the semiconductor substrate.

31. (Original) The method of claim 24, wherein dopants are introduced into the channel

region.

32. (Original) The method of claim 24, wherein the insulating layer includes more than

one layer.

33. (Original) A method for manufacture of a device for regulating the flow of electrical

current, the method comprising:

providing for a semiconductor substrate;

providing for an electrically insulating layer in contact with the semiconductor substrate,

the insulating layer having a dielectric constant greater than 4.0;

providing for a gate electrode located in contact with at least a portion of the insulating

layer;

-7-

Reply to O.A. dated May 20, 2005

exposing the semiconductor substrate on one or more areas proximal to the gate electrode;

providing for a thin film of metal on at least a portion of the exposed semiconductor substrate; and

reacting the metal with the exposed semiconductor substrate such that a Schottky or Schottky-like source electrode and drain electrode are formed on the semiconductor substrate.

34. (Original) The method of claim 33, wherein the gate electrode is provided by:

depositing a thin conducting film on the insulating layer;

patterning and etching the conducting film to form a gate electrode; and

forming one or more thin insulating layers on one or more sidewalls of the gate electrode.

35. (Original) The method of claim 33, further comprising removing metal not reacted during the reacting process.

36. (Original) The method of claim 33, wherein the reacting comprises thermal annealing.

37. (Original) The method of claim 33, wherein the source and drain electrodes are formed from a member of the group consisting of: platinum silicide, palladium silicide and iridium silicide.

-8-

38. (Original) The method of claim 33, wherein the source and drain electrodes are formed from a member of the group consisting of the rare earth silicides.

- 39. (Original) The method of claim 33, wherein the insulating layer is formed from a member of the group consisting of metal oxides.
- 40. (Original) The method of claim 33, wherein the insulating layer is formed from an oxy-nitride stack.
- 41. (Original) The method of claim 33, wherein the Schottky contact or Schottky-like region is formed at least in areas adjacent to the channel.
- 42. (Original) The method of claim 33, wherein an entire interface between at least one of the source electrode and the drain electrode and the semiconductor substrate forms a Schottky contact or Schottky-like region with the semiconductor substrate.
- 43. (Original) The method of claim 33, wherein dopants are introduced into the channel region.
- 44. (Original) A method for manufacture of a device for regulating the flow of electrical current, the method comprising:

providing for a semiconductor substrate;

Reply to O.A. dated May 20, 2005

providing for an electrically insulating layer in contact with the semiconductor substrate, the insulating layer having a dielectric constant greater than 7.6;

providing for a gate electrode located in contact with at least a portion of the insulating layer;

exposing the semiconductor substrate on one or more areas proximal to the gate electrode;

providing for a thin film of metal on at least a portion of the exposed semiconductor substrate; and

reacting the metal with the exposed semiconductor substrate such that a Schottky or Schottky-like source electrode and drain electrode are formed on the semiconductor substrate.

45. (Original) The method of claim 44, wherein the gate electrode is provided by:

depositing a thin conducting film on the insulating layer;

patterning and etching the conducting film to form a gate electrode; and

forming one or more thin insulating layers on one or more sidewalls of the gate electrode.

- 46. (Original) The method of claim 44, further comprising removing metal not reacted during the reacting process.
- 47. (Original) The method of claim 44, wherein the reacting comprises thermal annealing.

Attorney Docket: 14467.05

Application Number: 10/796,514 Reply to O.A. dated May 20, 2005

48. (Original) The method of claim 44, wherein the source and drain electrodes are formed from a member of the group consisting of: platinum silicide, palladium silicide and iridium silicide.

- 49. (Original) The method of claim 44, wherein the source and drain electrodes are formed from a member of the group consisting of the rare earth silicides.
- 50. (Original) The method of claim 44, wherein the insulating layer is formed from a member of the group consisting of metal oxides.
- 51. (Original) The method of claim 44, wherein the insulating layer is formed from an oxy-nitride stack.
- 52. (Original) The method of claim 44, wherein the Schottky contact or Schottky-like region is formed at least in areas adjacent to the channel.
- 53. (Original) The method of claim 44, wherein an entire interface between at least one of the source electrode and the drain electrode and the semiconductor substrate forms a Schottky contact or Schottky-like region with the semiconductor substrate.
- 54. (Original) The method of claim 44, wherein dopants are introduced into the channel region.

Attorney Docket: 14467.05

Application Number: 10/796,514 Reply to O.A. dated May 20, 2005

55. (Original) A method for manufacture of a device for regulating the flow of electrical current, the method comprising:

providing for a semiconductor substrate;

providing for an electrically insulating layer in contact with the semiconductor substrate, the insulating layer having a dielectric constant greater than 15;

providing for a gate electrode located in contact with at least a portion of the insulating layer;

exposing the semiconductor substrate on one or more areas proximal to the gate electrode;

providing for a thin film of metal on at least a portion of the exposed semiconductor substrate; and

reacting the metal with the exposed semiconductor substrate such that a Schottky or Schottky-like source electrode and drain electrode are formed on the semiconductor substrate.

56. (Original) The method of claim 55, wherein the gate electrode is provided by:

depositing a thin conducting film on the insulating layer;

patterning and etching the conducting film to form a gate electrode; and

forming one or more thin insulating layers on one or more sidewalls of the gate electrode.

57. (Original) The method of claim 55, further comprising removing metal not reacted during the reacting process.

58. (Original) The method of claim 55, wherein the reacting comprises thermal annealing.

59. (Original) The method of claim 55, wherein the source and drain electrodes are formed from a member of the group consisting of: platinum silicide, palladium silicide and iridium silicide.

- 60. (Original) The method of claim 55, wherein the source and drain electrodes are formed from a member of the group consisting of the rare earth silicides.
- 61. (Original) The method of claim 55, wherein the insulating layer is formed from a member of the group consisting of metal oxides.
- 62. (Original) The method of claim 55, wherein the insulating layer is formed from an oxy-nitride stack.
- 63. (Original) The method of claim 55, wherein the Schottky contact or Schottky-like region is formed at least in areas adjacent to the channel.
- 64. (Original) The method of claim 55, wherein an entire interface between at least one of the source electrode and the drain electrode and the semiconductor substrate forms a Schottky contact or Schottky-like region with the semiconductor substrate.

65. (Original) The method of claim 55, wherein dopants are introduced into the channel region.

Claims 66-96 (canceled).