

Functional Programming

Week 13 – Lambda Calculus, Summary

René Thiemann Philipp Anrain Marc Bußjäger Benedikt Dornauer Manuel Eberl Christina Kohl Sandra Reitinger Christian Sternagel

Department of Computer Science

Last Lecture

- cyclic definitions, e.g., fibs = 0 : 1 : zipWith (+) fibs (tail fibs)
- abstract data types
 - specify type of operations and behavior
 - hide implementation details (via suitable module export-lists)
 - example: queues
 - used to implement breadth-first-search in trees
 - basic implementation was simple, n operations require $\sim \frac{1}{2}n^2$ evaluation steps
 - improved implementation represents queues as two lists, n operations require $\sim 2n$ eval. steps

2/12 RT et al. (DCS @ UIBK) Week 13

λ -Calculus

3/12

A Glimpse of λ -Calculus

- λ -calculus works on λ -terms, which is either a λ -abstraction, a variable, or an application
- no types, no data type definitions, no function definitions, no built-in arithmetic, . . .
- only one evaluation mechanism: β -reduction

replace
$$(\x -> s)$$
 t by $s[x/t]$

where s[x/t] is the term s where the variable x is substituted by t

sufficiently strong to encode functional programs

Booleans in λ -Calculus

- encode Booleans as λ -terms, i.e., implement Bool as abstract data type
 - internal construction of provided operations
 - Bool: a -> a -> a
 True: \ x y -> x
 False: \ x y -> y
 if-then-else: \ c t e -> c t e
 - satisfied axioms
 - (if True then t else e) = t:
 (\ c t e -> c t e) (\ x y -> x) t e
 = (\ t e -> (\ x y -> x) t e) t e
 = (\ e -> (\ x y -> x) t e) e
 = (\ x y -> x) t e
 = (\ y -> t) e
 = t

• (if False then t else e) = e: similar

Booleans in λ -Calculus, continued

- so far, we have λ -terms that encode True, False, and if-then-else
- other Boolean functions can easily be encoded
 - b && c = if b then c else False
 - b | c = if b then True else c
 - not b = if b then False else True
- example: computation of False && True:

```
False && True -- unfold encoding of &&
```

- = if False then True else False -- unfold encoding of ite, False, True
- = (\ c t e -> c t e) (\ x y -> y) (\ x y -> x) (\ x y -> y)
- -- the line above is the lambda-term that is evaluated
- = (\ t e -> (\ x y -> y) t e) (\ x y -> x) (\ x y -> y)
- = $(\ e \rightarrow (\ x \ y \rightarrow y) (\ x \ y \rightarrow x) e) (\ x \ y \rightarrow y)$
- $= (\ x \ y \rightarrow y) \ (\ x \ y \rightarrow x) \ (\ x \ y \rightarrow y)$
- $= (\ y \rightarrow y) (\ x y \rightarrow y)$
- = \ x y -> y -- representation of False

Pairs in λ -Calculus

- pairs can be encoded similarly to Booleans
- we need three operations: (x, y), fst, snd
 - encoding of pairs is not typable in Haskell
 - encoding of (x, y): $\ c \rightarrow if c then x else y$
 - encoding of fst: \ p -> p True
 - encoding of snd: \ p -> p False
- using pairs, we can model tuples and lists

Church Numerals

- ullet also natural numbers can be represented in λ -calculus
- Church numerals: n is encoded as \ f x -> f (f ... (f x) ...) with n applications of f
- encoding type of natural numbers: (a -> a) -> a -> a
- examples
 - zero: \ f x -> x
 - one: $\setminus f x \rightarrow f x$
 - two: $\ \ f \ x \rightarrow f \ (f \ x)$
 - test on zero: $\ n \rightarrow n \ (\ b \rightarrow False)$ True
 - successor: $\ \ n \ f \ x \rightarrow f \ (n \ f \ x)$
 - addition: $\ \ n \ m \ f \ x \rightarrow n \ f \ (m \ f \ x)$
 - multiplication: $\ \ n \ m \ f \ x \rightarrow n \ (m \ f) \ x$
 - predecessor: possible, but more difficult

Recursion

• for defining general recursion, one can use the Y-combinator:

```
Y = \langle f \rangle (\langle x \rangle f (\langle x \rangle)) (\langle x \rangle f (\langle x \rangle))
```

- important property: Y g reduces to g (Y g), i.e., Y g is a fixpoint of g: g (Y g) = Y g
- recursive functions can be written as fixpoints of non-recursive functions
 add x y = if x == 0 then y else add (x+1) (y-1)
 - -- add is fixpoint of the non-recursive function addNR
 - -- equality: addNR add = add

addNR
$$a \times y = if \times == 0$$
 then $y = lse a (x+1) (y-1)$

- encoding of above addition function in λ -calculus
 - encode non-recursive function addNR as λ -term t similarly to previous slides
 - encode add as fixpoint: add = fixpoint of addNR = Y t

Summary of Course

What You Should Have Learned

- definition of types and functions
 - type definitions via type, newtype, and data
 - specify functions in various forms: pattern matching, recursion, combination of predefined (higher-order) function, list comprehensions, . . .
- understanding of types
 - parametric polymorphism and type classes
 - ability to infer most general types for simple definitions
- I/O in Haskell, do-notation, compilation with ghc
 definition and advantages of modules and abstract data types
- evaluation strategies, in particular Haskell's lazy evaluation
- basic knowledge of predefined types and functions within Prelude
- types Int, Integer, Double, [a], Maybe a, Either a b, String, Char, Bool, tuple
 - type classes for numbers, Show, Read, Eq, Ord
 - arithmetic and Boolean functions and operators
 - functions involving lists and strings
 - I/O: primitives for reading and writing (also into files)

What You Did Not Learn in This Course

- type inference algorithms
- compilation of functional programs
- static analysis and optimization of functional programs
- debugging and verification of functional programs
- concurrency
- more functional programming techniques (monads, functors, continuations, ...)