化学

「解答科目」記入方法

解答科目には「物理」、「化学」、「生物」がありますので、この中から2科目を選んで解答してください。選んだ2科目のうち、1科目を解答用紙の表面に解答し、もう1科目を裏面に解答してください。

「化学」を解答する場合は、右のように、解答用紙にある「解答科目」の「化学」を〇で囲み、その下のマーク欄をマークしてください。

科目が正しくマークされていないと、採点されません。

気体は、ことわりがない限り、理想気体(ideal gas)として扱うものとする。

計算には次の数値を用いること。また、体積の単位リットル(liter)は L で表す。

標準状態(standard state): 0℃, 1.01×10⁵ Pa(1 atm)

標準状態における理想気体のモル体積(molar volume): 22.4 L/mol

気体定数 (gas constant) : $R = 8.31 \times 10^3 \text{ Pa·L/(K·mol)}$

アボガドロ定数(Avogadro constant): $N_A = 6.02 \times 10^{23}$ /mol

ファラデー定数(Faraday constant): $F = 9.65 \times 10^4 \text{ C/mol}$

原子量 (atomic weight): H:1.0 C:12 N:14 O:16 Na:23

この試験における元素 (element) の族 (group) と周期 (period) の関係は下の 周期表 (periodic table) の通りである。ただし、H以外の元素記号は省略してある。

問1 次の原子①~④のうち、中性子 (neutron) の数が最も多いものを、一つ選びなさい。

1

① ^{19}F ② ^{22}Ne ③ ^{23}Na ④ ^{25}Mg

問 2 元素 $\mathbf{a} \sim \mathbf{d}$ の原子は、次表に示す電子配置 (electron configuration) をもつ。 $\mathbf{a} \sim \mathbf{d}$ に 関する下の記述 $\mathbb{D} \sim \mathbb{D}$ のうち、正しいものを一つ選びなさい。

原子	電子配置					
	K 殼(K shell)	L 殼(L shell)	M 殼(M shell)			
а	2	0	0			
b	2	4	0			
С	2	8	2			
d	2	8	7			

- ① aとbは周期表の同じ周期に属する。
- ② aとcは周期表の異なる族に属する。
- ③ **b**と**c**はどちらも金属元素(metallic element)である。
- ④ 化合物 bd4 中の b と d の間の結合 (bond) はイオン結合 (ionic bond) である。
- ⑤ 化合物 cd2 中の c と d の間の結合は共有結合 (covalent bond) である。

問3 塩化セシウム CsCl の結晶 (crystal) は、立方体 (cube) の単位格子 (unit cell) から っっなる(図 1)。単位格子中で,セシウムイオン Cs⁺ と塩化物イオン Cl⁻ が互いに接して **いる断面 abcd** を図 2 に示す。

 Cs^+ のイオン半径(ionic radius)をr, Cl^- のイオン半径をRとするとき,この単位格 子の一辺の長さを表す式として正しいものを、次の①~⑥の中から一つ選びなさい。

3

①
$$r + R$$

$$\sqrt{2}(r+R)$$

問 4 大気に含まれる微量気体 (minor component gas) の濃度を分子数の比で表す単位に ppm (parts per million, $1 \text{ ppm} = 1 \times 10^{-6}$) がある。現在の大気は 420 ppm の二酸化炭素 CO_2 を含む。1 mL の大気に含まれる CO_2 分子は何個か。最も近い値を,次の①~⑤の中から 一つ選びなさい。ここで大気 1 mol の体積は 25 L とする。

① 1.0×10^{15} ② 2.0×10^{15} ③ 1.0×10^{16} ④ 2.0×10^{16} ⑤ 1.0×10^{17}

炭酸水素ナトリウム NaHCO₃ と炭酸ナトリウム十水和物 Na₂CO₃·10H₂O の混合物が 問 5 ある。この混合物を加熱したところ、分解 (decomposition) して二酸化炭素 CO₂ と水が 発生し、炭酸ナトリウム Na₂CO₃ が得られた。このとき発生した CO₂ は標準状態で 67.2 L であり, 固体の質量 (mass) は 222 g 減少した。このとき発生した水は何 mol か。 最も近い値を、次の①~⑥の中から一つ選びなさい。ただし、水の体積は無視できるも 5 | mol のとする。

① 3.0 ② 4.0

③ 5.0

4 6.0 5 7.0

問6 27°Cで 1.6 mol の窒素 N₂ を容器に入れ、圧力を 2.0 × 105 Pa とした。このとき窒素 の密度(density)は何g/Lか。最も近い値を、次の①~⑤の中から一つ選びなさい。

1.1 ② 2.2 ③ 3.3 ④ 4.4

⑤ 5.5

問7 温度や容積を変えることのできる容器に三酸化硫黄 SO_3 の気体を入れ、じゅうぶんな時間が経過したところ、次の平衡状態 (equilibrium state) に達した。

$$2 SO_3(気)$$
 \iff $2 SO_2(気) + O_2(気)$

この式の正反応(forward reaction)は吸熱反応(endothermic reaction)である。

次の操作 \mathbb{T} ~ \mathbb{S} のうち、式の平衡 (equilibrium) を右に移動させるものを一つ選びなさい。ただし、アルゴン Ar は他の物質と反応しない。また、触媒 (catalyst) の体積は無視できるものとする。

- ① 温度を一定にして容積を減少させる。
- ② 全圧 (total pressure) を一定にして温度を低下させる。
- ③ 温度,全圧を一定にしてアルゴンを加える。
- ④ 温度,容積を一定にしてアルゴンを加える。
- ⑤ 温度,容積を一定にして触媒を加える。

- 問8 集気びん (gas collecting bottle) に集めたアンモニア NH₃ の量を求めるため、次の実験 a, b を行った。
 - a 集気びんに 0.100 mol/L 硫酸 H_2SO_4 aq を 50 mL 加えて,アンモニアを完全に吸収させた。
 - b 実験 a で得られた溶液の中から 10 mL を測り取り, 0.100 mol/L 水酸化ナトリウム 水溶液 NaOH aq を滴下 (add dropwise) したところ, 15.0 mL で中和点 (neutralization point) に達した。

集気びんに集めたアンモニアは何 mol か。最も近い値を、次の①~⑥の中から一つ 選びなさい。 **8** mol

- ① 1.25×10^{-3} ② 2.5×10^{-3} ③ 5.0×10^{-3}
- 4 1.25 × 10⁻² 5 2.5 × 10⁻² 6 5.0 × 10⁻²

問9 次の文中の空欄 a~c に適する数値と単語の組み合わせとして正しいものを、下表の ①~8の中から一つ選びなさい。

硫化水素 H_2S の水溶液と二酸化硫黄 SO_2 の水溶液を反応させると沈殿 (precipitate) ができる。この反応で硫化水素の中の硫黄原子 S の酸化数 (oxidation number) は、 a から b へと変化する。このとき、二酸化硫黄は c としてはたらく。

	а	b	С
1)	-2	0	酸化剤
2	+2	0	酸化剤
3	0	+2	酸化剤
4	0	-2	酸化剤
(5)	-2	0	還元剤
6	+2	0	還元剤
7	0	+2	還元剤
8	0	-2	還元剤

注) 酸化剤 (oxidizing agent), 還元剤 (reducing agent)

問 10 次の図のように、鉛蓄電池 (lead storage battery) を使い、硫酸銅(II)水溶液 CuSO4 aq を電気分解 (electrolysis) した。この実験に関する下の記述①~⑥のうち、正しいものを 一つ選びなさい。

- ① 電極 (electrode) A の質量 (mass) は減少した。
- ② 電極 B の質量は減少した。
- ③ 鉛蓄電池の硫酸 H₂SO₄ の濃度は増加した。
- ④ 電極 C の質量は増加した。
- ⑤ 電極 D の質量は変化しなかった。
- ⑥ 電解槽の硫酸銅(II)の濃度は減少した。

- 問 11 次の記述①~④のうち、塩化水素 HCl が酸化剤 (oxidizing agent) としてはたらいているものを、一つ選びなさい。
 - ① 亜鉛 Zn に希塩酸 dil. HCl を加えると気体が発生する。
 - ② 硫化鉄(II) FeS に希塩酸を加えると気体が発生する。
 - ③ 炭酸カルシウム CaCO3 に希塩酸を加えると気体が発生する。
 - ④ 酸化マンガン(IV) MnO₂ に濃塩酸 conc. HCl を加えて加熱すると気体が発生する。
- 問 12 窒素 N とその化合物に関する次の記述①~⑤のうち、<u>誤っているもの</u>を一つ選びなさい。
 - ① 窒素 N₂ は,工業的には液体空気の分留 (fractional distillation) で得られる。
 - ② アンモニア NH3 は、工業的には窒素と水素 H2 から作られる。
 - ③ アンモニアの水溶液のpHは、二酸化窒素 NO_2 の水溶液のpHよりも小さい。
 - ① 二酸化窒素のN原子の酸化数 (oxidation number) は、硝酸 HNO3のN原子の 酸化数よりも小さい。
 - ⑤ 銅 Cu に濃硝酸 conc. HNO3 を加えると、二酸化窒素が発生する。

問	13	アルミニウム	Al	と鉄 F	e に関す	トる次の記述	a~d の中	中には,正	こしいも	のが二つあ	る。
	そ	の組み合わせを	-,	下の①~	~⑥の中	から一つ選	びなさい。				13

- a アルミニウムも鉄も, 希塩酸 dil. HCl に溶けて水素 H2 が発生する。
- b アルミニウムも鉄も、水酸化ナトリウム水溶液 NaOH aq に溶けて水素が発生する。
- **c** アルミニウムも鉄も、濃硝酸 conc. HNO₃ には不動態 (passive state) をつくるため 溶けにくい。
- d アルミニウムの水酸化物 (hydroxide) はアンモニア水 NH₃ aq に溶けるが, 鉄の水酸化物はアンモニア水には溶けない。
- ① a, b ② a, c ③ a, d ④ b, c ⑤ b, d ⑥ c, d

問 14 金属イオン (metal ion) M^{2+} を含む塩 $M(NH_4)_2(SO_4)_2 \cdot 6H_2O$ がある。この塩の水溶液 は酸性 (acidic) を示した。この水溶液に硫化水素 H_2S の気体を通じても沈殿 (precipitate) は生じなかった。続けて、この水溶液に少量のアンモニア水 NH_3 aq を加えたところ、黒色の沈殿が生じた。

- \bigcirc Mg²⁺
- ② Ca²⁺
- (3) Ba^{2+}
- ④ Cu²⁺

- (5) Fe²⁺
- \bigcirc Zn^{2+}
- (7) Pb²⁺

問 15 次の化学反応 (chemical reaction) ①~④において、下線をつけた硫黄 S を含む物質が酸化剤 (oxidizing agent) としてはたらいているものはどれか。正しいものを一つ選びなさい。

- ① FeS + $H_2SO_4 \longrightarrow FeSO_4 + H_2S$
- $② \quad \underline{H_2S} \ + \ I_2 \longrightarrow 2 \, HI \ + \ S$
- 3 NaCl + $\underline{\text{H}}_2\text{SO}_4 \longrightarrow \text{NaHSO}_4 + \text{HCl}$
- $\textcircled{4} \quad Cu \ + \ 2 \, \underline{H_2SO_4} \ \longrightarrow \ CuSO_4 \ + \ 2 \, \underline{H_2O} \ + \ SO_2$

問 16 ある炭化水素 (hydrocarbon) 0.36 g を完全燃焼 (complete combustion) させたところ 二酸化炭素 CO₂ 1.10 g が得られた。この炭化水素の実験式 (empirical formula) にあて はまる化合物を、次の①~⑥の中から一つ選びなさい。

① C_5H_8 ② C_5H_{10} ③ C_5H_{12} ④ C_6H_6 ⑤ C_6H_8 ⑥ C_6H_{14}

- 問 17 次の記述 $\mathbf{a} \sim \mathbf{c}$ は、アセトアルデヒド (acetaldehyde)、エタノール (ethanol)、ジエチ ルエーテル (diethyl ether) のいずれかにあてまはる。 $\mathbf{a} \sim \mathbf{c}$ にあてはまる物質の組み合わせとして正しいものを、下表の① \sim ⑥の中から一つ選びなさい。
 - a 金属ナトリウム (sodium metal) を加えると気体が発生する。
 - **b** フェーリング液(Fehling's solution)を還元(reduction)する。
 - c ヨードホルム反応 (iodoform reaction) を示さない。

	a	bortsess endl	c c
1	アセトアルデヒド	エタノール	ジエチルエーテル
2	アセトアルデヒド	ジエチルエーテル	エタノール
3	エタノール	アセトアルデヒド	ジエチルエーテル
4	エタノール	ジエチルエーテル	アセトアルデヒド
5	ジエチルエーテル	エタノール	アセトアルデヒド
6	ジエチルエーテル	アセトアルデヒド	エタノール

問 18 サリチル酸 (salicylic acid) に関する下の記述①~⑤のうち、<u>誤っているもの</u>を一つ選びなさい。

- ① 加水分解 (hydrolysis) される。
- ② 銀鏡反応 (silver mirror test) を示さない。
- ③ ヨードホルム反応 (iodoform reaction) を示さない。
- ④ 塩化鉄(III)水溶液 FeCl₃ aq を加えると呈色 (coloring) する。
- ⑤ 炭酸水素ナトリウム水溶液 NaHCO3 aq を加えると気体が発生する。
- 問 19 次の分子式 (molecular formula) で表される化合物 **a**~**d** のうち, 異性体 (isomer) の数が等しいものが二つある。その組み合わせとして正しいものを,下の①~⑥の中から一つ選びなさい。
 - a C_4H_{10} b C_4H_8 c $C_2H_4Cl_2$ d C_3H_5Cl
 - ① a, b ② a, c ③ a, d ④ b, c ⑤ b, d ⑥ c, d

	分子構造	用途または性質
1	$ \begin{array}{c c} H & H \\ C & C \\ H & H \end{array} $	包装材料に使用される。
2	$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	衣料品に使用される。
3	$ \begin{array}{c c} & C & C & C & C & C & C & C & C & C & $	飲料(beverage)の容器 に利用される。
4	$ \begin{array}{c c} & CH_2 \\ & C=C \\ & CH_3 \end{array} $ $ \begin{array}{c c} & CH_2 \\ & H \end{array} $	天然繊維 (natural fiber) として衣料品に使用され る。
6	$\begin{array}{c} \text{OH} & \text{OH} \\ \text{CH}_2 & \text{CH}_2 \\ \text{HO} & \text{CH}_2 \\ \text{CH}_2 & \text{CH}_2 \\ \end{array}$	燃えにくく, 電気絶縁体 (electrical insulator) と して使用される。

化学の問題はこれで終わりです。解答欄の **21** ~ **75** はマークしないでください。 解答用紙の科目欄に「化学」が正しくマークしてあるか,もう一度確かめてください。

この問題冊子を持ち帰ることはできません。