Chapitre 33

Groupe Symétrique

1 Permutations

Définition 1

Une bijection de [1, n] dans lui-même est appelée une **permutation** de [1, n].

L'ensemble des permutations de [1, n] sera noté S_n .

Exemple 2

Soient

$$\sigma = \begin{pmatrix} 1 & 2 & 3 & 4 & 5 \\ 2 & 5 & 4 & 3 & 1 \end{pmatrix} \quad \text{et} \quad \sigma' = \begin{pmatrix} 1 & 2 & 3 & 4 & 5 \\ 2 & 3 & 4 & 1 & 5 \end{pmatrix}$$

Calculer $\sigma\sigma'$, $\sigma'\sigma$, σ^2 et σ^{-1} .

Preuve:

On a:

$$\sigma\sigma' = \begin{pmatrix} 1 & 2 & 3 & 4 & 5 \\ 5 & 4 & 3 & 2 & 1 \end{pmatrix} \qquad \qquad \sigma'\sigma = \begin{pmatrix} 1 & 2 & 3 & 4 & 5 \\ 3 & 5 & 1 & 4 & 2 \end{pmatrix}$$
$$\sigma^2 = \begin{pmatrix} 1 & 2 & 3 & 4 & 5 \\ 5 & 1 & 3 & 4 & 2 \end{pmatrix} \qquad \qquad \sigma^{-1} = \begin{pmatrix} 1 & 2 & 3 & 4 & 5 \\ 5 & 1 & 4 & 3 & 2 \end{pmatrix}$$

Proposition 3

- 1. (S_n, \circ) est une groupe, appelé **groupe symétrique**.
- 2. S_n est fini et son cardinal vaut n!.
- 3. Ce groupe n'est pas abélien dès que $n \geq 3$.

Preuve:

- 1 Cours sur les structures algébriques.
- $\boxed{2} \text{ On pose } \Phi: \begin{cases} S_n \to \mathcal{A}(\llbracket 1, n \rrbracket) \\ \sigma \mapsto (\sigma(1), ..., \sigma(n)) \end{cases} \text{ bijective et } |\mathcal{A}(\llbracket 1, n \rrbracket)| = n!.$
- 3 S₃ n'est pas abélien car $\tau := \dots$ et $\tau' = \dots$ ne commutent pas.

Soient $\sigma, \sigma' \in S_n \mid \sigma_{|\{1,2,3\}} = \tau$ et $\sigma'_{|\{1,2,3\}} = \tau'$, fixes sur $[\![4,n]\!]$, alors $\sigma\sigma' \neq \sigma'\sigma$.

Définition 4: Vocabulaire

Soit $\sigma \in S_n$.

- 1. Si $x \in [1, n]$, l'ensemble $\{\sigma^k(x), k \in \mathbb{Z}\}$ est appelé **orbite** de x.
- 2. On dit que x est un **point fixe** de σ si $\sigma(x) = x$.
- 3. On appelle **support** de σ l'ensemble des éléments de [1, n] qui ne sont pas des points fixes.
- 4. Deux permutations σ et σ' sont dites **conjuguées** s'il existe $\alpha \in S_n$ tel que $\sigma' = \alpha \sigma \alpha^{-1}$.

Proposition 5

Deux permutations dont les supports sont disjoints commutent.

Preuve

Soient $\sigma, \sigma' \in S_n$. On note $S(\sigma) = \{x \in [1, n] \mid \sigma(x) \neq x\}$.

Supposons $S(\sigma) \cap S(\sigma') = \emptyset$.

Soit $x \in [1, n]$.

- Si $x \in S(\sigma)$: $x \notin S(\sigma')$ donc $\sigma \sigma'(x) = \sigma(x) \in S(\sigma)$ par bijectivité de σ .
- Si $x \notin S(\sigma)$: Soit $x \in S(\sigma')$ et on se ramène au 1er cas, soit $x \notin S(\sigma')$ et $\sigma \sigma'(x) = x = \sigma' \sigma(x)$.

Dans tous les cas, $\sigma \sigma'(x) = \sigma' \sigma(x)$

2 Cycles.

Définition 6

Soit p un entier supérieur à 2.

Une permutation γ est appellée un p-cycle s'il existe p éléments distincts $a_1, ..., a_p$ de [1, n] tels que

$$a_1 \overset{\gamma}{\mapsto} a_2 \overset{\gamma}{\mapsto} \dots \overset{\gamma}{\mapsto} a_p \overset{\gamma}{\mapsto} a_1.$$
 et $\forall b \in [1, n] \setminus \{a_1, \dots, a_p\} \ \gamma(b) = b.$

On note alors $\gamma = (a_1 \ a_2 \dots a_p)$.

Exemple 7: Conjugué d'un cycle

Soit $\gamma=(a_1,...,a_p)$ un p-cycle et $\sigma\in S_n$. Montrer que

$$\sigma \gamma \sigma^{-1} = (\sigma(a_1) \ \sigma(a_2) \ \dots \ \sigma(a_p)).$$

Preuve:

Soit $b \in [1, n] \setminus {\sigma(a_1), ..., \sigma(a_p)}$.

Alors $\sigma \gamma \sigma^{-1}(b) = \sigma \gamma(\sigma^{-1}(b)) = \sigma \sigma^{-1}(b) = b$ car $b \notin \{\sigma(a_1), ..., \sigma(a_p)\}$ donc $\sigma^{-1}(b) \notin \{a_1, ..., a_p\}$ donc c'est un point fixe de γ .

Soit $j \in [1, p]$.

Alors $\sigma \gamma \sigma^{-1}(\sigma(a_j)) = \sigma \gamma(a_j) = \sigma(a_{j+1})$ avec $a_{p+1} := a_1$.

On a bien que $\sigma \gamma \sigma^{-1}$ et $(\sigma(a_1)...\sigma(a_p))$ sont égaux en tout point.

[0.2cm] Remarque: Ceci démontre que tous les p-cycles sont conjugués.

Soient $\gamma = (a_1 \dots a_p)$ et $\gamma' = (b_1 \dots b_p)$ deux p-cycles.

Posons $\sigma \in S_n$ telle que :

- $\forall j \in [1, p] \ \sigma(a_j) = b_j$.
- Notons $[1, n] \setminus \{a_1, ..., a_p\} := \{a'_1, ..., a'_{n-p}\} \text{ et } [1, n] \setminus \{b_1, ...b_p\} := \{b'_1, ..., b'_{n-p}\}.$

On pose alors $\forall i \in [1, n - p] \ \sigma(a'_i) = b'_i$.

Alors σ est bien une bijection de [1, n] dans lui-même car injective et de même cardinal.

On a donc $\gamma' = (b_1 \dots b_p) = (\sigma(a_1) \dots \sigma(a_p)) = \sigma \gamma \sigma^{-1}$ donc γ et γ' sont conjugués.

Exemple 8: Calculs sur un cycle

Soit $\gamma = (a_1 \dots a_p)$. Déterminer γ^{-1} et γ^p .

Preuve:

La réciproque γ^{-1} :

Si $\gamma(b) = b$ alors $\gamma^{-1}(b) = b$ car c'est un point fixe.

Soit $j \in [1, p-1]$, $\gamma(a_j) = a_{j+1}$ donc $a_j = \gamma^{-1}(a_{j+1})$.

Alors $\forall k \in [2, p], \ \gamma^{-1}(a_k) = a_{k-1}, \ \text{et} \ \gamma^{-1}(a_1) = a_p.$

Ainsi, $\gamma^{-1} = (a_p \ a_{p-1} \dots a_2 \ a_1).$

[0.2cm] La puissance γ^p :

On a $\gamma = (a, \gamma(a), ..., \gamma^{p-1}(a))$ pour un $a \in [1, n]$.

- $\gamma^p(a) = \gamma(\gamma^{p-1}(a)) = a$.
- Soit $j \in [1, p-1]$, $\gamma^p(\gamma^j(a)) = \gamma^j(\gamma^p(a)) = \gamma^j(a)$.
- Soit $b \in [1, n] \setminus \{a, \gamma(a), ..., \gamma^{p-1}(a)\}$, alors $\gamma^p(b) = b$ car point fixe.

Ainsi, $\forall x \in [1, n], \ \gamma^p(x) = x \text{ donc } \gamma^p = id.$

Remarque: On pourrait aussi prouver que $p = \min\{j \in \mathbb{N}^* \mid \gamma^j = id\}$.

3 Transpositions

Définition 9

Une permutation τ qui est un 2-cycle est appelé une **transposition**.

Une transposition est donc une permutation de la forme (a,b) où $\{a,b\}$ est une paire de [1,n].

Proposition 10: Involutivité

Si τ est une transposition, alors

$$\tau^2 = id$$
 et $\tau^{-1} = \tau$

Preuve:

C'est un 2-cycle donc $\tau^2 = id$.

On en déduit que $\tau^{-1} = \tau$.

Lemme 11: Décomposition d'un cycle en produit de transpositions

Soit $\gamma = (a_1 \dots a_p)$. Alors

$$\gamma = (a_1 \ a_2)(a_2 \ a_3)...(a_{p-1} \ a_p)$$
 ou $\gamma = (a_1 \ a_p)(a_1 \ a_{p-1})...(a_1 \ a_2)$

Preuve :

Notons $\pi = (a_1 \ a_2)(a_2 \ a_3)...(a_{p-1} \ a_p)$. Montrons que $\gamma = \pi$.

- Soit $b \in [1, n] \setminus \{a_1, ..., a_p\} : \gamma(b) = b$ et $\forall j \in [1, p 1], (a_j \ a_{j+1})(b) = b$ car $b \notin \{a_j, a_{j+1}\}.$ Alors $\gamma(b) = \pi(b) = b$.
- Soit $j \in [1, p-1]$. Alors $\pi(a_j) = [...(a_{j-1} \ a_j)(a_j \ a_{j+1})...](a_j) = [...(a_{j-1} \ a_j)](a_{j+1}) = a_{j+1}$.
- $\pi(a_p) = [(a_1 \ a_2)...(a_{p-1} \ a_p)](a_p) = [(a_1 \ a_2)...(a_{p-2} \ a_{p-1})](a_{p-1}) = ... = a_1$

Donc $\forall x \in [1, n] \ \gamma(x) = \pi(x)$

Remarque: On retrouve que $(1\ 2)(2\ 3) = (1\ 2\ 3)$ et $(2\ 3)(1\ 2) = (3\ 2)(2\ 1) = (3\ 2\ 1) = (1\ 3\ 2)$

On a $(1\ 2)(2\ 3) \neq (2\ 3)(1\ 2)$.

4 Théorème de décomposition.

Théorème 12: Décomposition en produit de cycles à supports disjoints

Soit $\sigma \in S_n$. Il existe $\gamma_1, ..., \gamma_r$ r cycles à supports disjoints tels que

$$\sigma = \gamma_1 \gamma_2 ... \gamma_r$$

Les γ_i commutent et cette décomposition est unique à l'ordre près.

Preuve:

Soit $\sigma \in S_n$.

Une relation d'équivalence sur [1, n].

Pour $i, j \in [1, n]$, on note $i \sim j$ si $\exists k \in \mathbb{Z} \mid j = \sigma^k(i)$.

- Soit $i \in [1, n]$. $i = \sigma^0(i)$ donc $i \sim i$.
- Soient $i, j \in [1, n] \mid i \sim j$. Alors $\exists k \in \mathbb{Z} \mid j = \sigma^k(i) : i = \sigma^{-k}(j)$ et $j \sim i$.
- Soient $h, i, j \in [1, n] \mid h \sim i$ et $i \sim j : \exists k, l \in \mathbb{Z} \mid i = \sigma^k(h)$ et $j = \sigma^l(i)$ donc $j = \sigma^{l+k}(h)$ et $j \sim h$.

Il existe alors une partition de [1, n] en classes d'équivalences.

On fixe $x \in [1, n]$.

Prouvons qu'il existe $p \in \mathbb{N}^*$ tel que $[x] = \{x, \sigma(x), ..., \sigma^{p-1}(x)\}.$

On pose $p = \min\{k \in \mathbb{N}^* \mid \sigma^k(x) = x\}$. Cet ensemble est minoré. Il est non-vide car :

$$S: egin{cases} \mathbb{Z}
ightarrow \llbracket 1, n
rbracket & ext{n'est pas injective.} \ k \mapsto \sigma^k(x) & \end{cases}$$

Ainsi, $\exists k, k' \in \mathbb{Z} \mid k < k' \text{ et } \sigma^k(x) = \sigma^{k'}(x) \text{ donc } \sigma^{k'-k}(x) = x.$

Or $k' - k \in \mathbb{N}^*$, donc $\{k \in \mathbb{N}^* \mid \sigma^k(x) = x\} \neq \emptyset$.

Il faut montrer que $[x] = \{x, \sigma(x), ..., \sigma^{p-1}(x)\}.$

cst trivial.

Par division euclidienne : $\exists ! (q,r) \in \mathbb{Z}^2 \mid k = qp + r \text{ et } 0 \le r \le p - 1.$

Donc
$$y = \sigma^k(x) = \sigma^{pq+r}(x) = \sigma^r(\sigma^{pq}(x)) = \sigma^r(x)$$
 : $y \in \{x, \sigma(x), ..., \sigma^{p-1}(x)\}$.

Notons $A_1,...,A_r$ les classes d'équivalences non triviales de \sim . On a prouvé que :

$$\forall j \in [1, r] \exists x_j \in [1, n] \exists p_j \in \mathbb{N}^* \mid A_j = \{x_j, \sigma(x_j), ..., \sigma^{p_j - 1}(x_j)\}.$$

On pose alors $\gamma_j = (x_j \ \sigma(x_j) \ ... \ \sigma^{p_j-1}(x_j))$, il est clair que $\sigma = \gamma_1 \gamma_2 ... \gamma_r$.

Exemple 13: Une décomposition

Soit
$$\sigma = \begin{pmatrix} 1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 \\ 5 & 4 & 1 & 7 & 8 & 6 & 2 & 3 \end{pmatrix}$$
.

- 1. Décomposer σ en produit de cycles à supports disjoints.
- 2. Déterminer σ^4 , σ^{12} et σ^{666} .

Preuve:

$$\boxed{1}\ \sigma = (1\ 5\ 8\ 3)(2\ 4\ 7)$$

2

- $\sigma^4 = (\gamma_1 \gamma_2)^4 = \sum_{\text{comm}} \gamma_1^4 \gamma_2^4 = \gamma_2 \text{ car } \gamma_1^4 = id \text{ et } \gamma_2^4 = \gamma_2^3 \gamma_2 = \gamma_2.$
- $\sigma^{12} = (\gamma_1^4)^3 (\gamma_2^3)^4 = id$
- $\sigma^{666} = (1\ 8)(3\ 5) \text{ car } \sigma^{666} = \sigma^{12 \times 55} \sigma^6.$

Corrolaire 14

Toute permutation est un produit de transpositions.

La décomposition n'est pas unique et les transpositions ne commutent pas nécéssairement.

Preuve:

Soit $\sigma \in S_n$,

Le théorème (12) nous dit que : σ s'écrit comme un produit de cycles. (à supports disjoints)

Or tout cycle s'écrit comme un produit de transpositions.

En effet si

$$\gamma = (a_1 a_2 ... a_p)$$

Alors
$$\gamma = (a_1 a_2)(a_3 a_4)...(a_{p-1} a_p)$$

 σ s'écrit donc comme un produit de produit de transpositions.

Exemple 15

Décomposer en produit de transpositions la permutation

$$\sigma = \begin{pmatrix} 1 & 2 & 3 & 4 & 5 & 6 & 7 \\ 7 & 5 & 1 & 2 & 4 & 6 & 3 \end{pmatrix}$$

Preuve:

 $\sigma = (173)(254)$ (produit de cycles)

$$\sigma = (17)(73)(25)(54)$$

5 Signature

Définition 16

Soit $\sigma \in S_n$

- 1. Une paire $\{i, j\}$ de [1, n] est une **inversion** pour σ si i j et $\sigma(i) \sigma(j)$ sont de signe opposé.
- 2. Le nombre d'inversion de σ est noté $Inv(\sigma)$
- 3. On appelle **signature** de σ le nombre $\varepsilon(\sigma) = (-1)^{Inv(\sigma)}$

Exemple 17

Après avoir calculé son nombre d'inversions, donner la signature de

$$\sigma = \begin{pmatrix} 1 & 2 & 3 & 4 & 5 \\ 4 & 1 & 2 & 5 & 3 \end{pmatrix}$$

Preuve:

On va calculer $\varepsilon(\sigma)$ en comptant le nombre d'inversions.

Il y a $\binom{5}{2}$ paires dans [1, 5]

Ainsi on a $Inv(\sigma) = 4$ donc $\varepsilon(\sigma) = (-1)^4 = 1$

Proposition 18: TODO PRUVE PROPRE

- 1. L'identité a pour signature 1.
- 2. Les transpositions ont pour signature -1.

Preuve:

1 Il est clair (?)

que $Inv(id_{\llbracket 1,n\rrbracket})=0$ donc $\varepsilon(\sigma)=1^0=1.$

 $\boxed{2}$ Soit $\{1, j\}$ une paire de $\llbracket 1, n \rrbracket$,

 $\tau \in S_n$: $\exists (a,b) \in \llbracket 1,n \rrbracket \mid \tau = (a\ b)$ où $a \le b$.

- Cas $\{i,j\} \cap \{a,b\} = \emptyset$: $\tau(i) = i$ et $\tau(j) = j$ donc i-j est de même signe.
- Cas i = a et $j \neq b$: $\tau(a) = b$ et $\tau(j) = j$: |[a+1, b-1]|.
- Cas $i \neq a, j = b : \tau(i) = i$ et $\tau(b) = a : |[a+1, b-1]|$.
- Cas $\{i, j\} = \{a, b\}$

Alors $\tau(a) = b$ et $\tau(b) = a$, c'est une inversion.

Bilan : $Inv(\tau) = 2|[a+1, b-1]| + 1 = 2(b-a) - 1$, impair.

Donc $\varepsilon(\tau) = -1$.

Proposition 19: La signature comme un produit

$$\forall \sigma \in S_n \ \varepsilon(\sigma) = \prod_{\{i,j\}} \frac{\sigma(i) - \sigma(j)}{i - j}$$

Preuve:

Fixons $\{i, j\} \in \mathcal{P}_2(\llbracket 1, n \rrbracket)$ (ensembles des paires)

On a
$$\frac{\sigma(i)-\sigma(j)}{i-j}=(-1)^{x_{\{i,j\}}}\big|\frac{\sigma(i)-\sigma(j)}{i-j}\big|$$

où $x_{\{i,j\}} = \left\{ egin{array}{ll} 0 & {
m si \ i, \ j \ n'est \ pas \ une \ inversion} \\ 1 & {
m sinon.} \end{array} \right.$

$$\prod_{\{i,j\}} \frac{\sigma(i) - \sigma(j)}{i - j} = \prod_{\{i,j\}} (-1)^{x_{\{i,j\}}} \left| \frac{\sigma(i) - \sigma(j)}{i - j} \right| = (-1)^{\sum_{\{i,j\}} x_{\{i,j\}}} \times \prod_{\{i,j\}} \left| \frac{\sigma(i) - \sigma(j)}{i - j} \right|$$

Or
$$\sum_{\{i,j\}} x_{\{i,j\}} = Inv(\sigma)$$
 donc $(-1)^{\sum_{\{i,j\}}} = \varepsilon(\sigma)$

Reste à prouver $\prod_{\{i,j\}} |\frac{\sigma(i) - \sigma(j)}{i - j}| = 1$

Le produit vaut 1 car

$$\varphi: \left\{ \begin{array}{l} \mathcal{P}_2(\llbracket 1,n \rrbracket) \to \mathcal{P}_2(\llbracket 1,n \rrbracket) \\ \{i,j\} \mapsto \{\sigma(i),\sigma(j)\} \end{array} \right. \text{ est une bijection.}$$

On pose alors le changement d'indice $\{u, v\} = \{\sigma(i), \sigma(j)\}\$

$$\prod_{\{i,j\}} |\sigma(i) - \sigma(j)| = \prod_{\{u,v\}} |u - v| = \prod_{\{i,j\}} |i - j|$$

Théorème 20: TODO PREUVE PROPRE

La signature est l'unique application $\varepsilon: S_n \to \{-1, 1\}$ telle que

- 1. $\forall \sigma, \sigma' \in S_n \ \varepsilon(\sigma\sigma') = \varepsilon(\sigma)\varepsilon(\sigma')$
- 2. Pour toute transposition $\tau \in S_n$, $\varepsilon(\tau) = -1$

Preuve:

- 1 TODO
- 2 On le sait déjà (proposition 18)

<u>Unicité</u>: Soit $\delta: S_n \to \{-1,1\}$ une fonction qui vérifie 1. et 2.

Montrons que $\gamma = \varepsilon$ (ε la signature)

Soit $\sigma \in S_n$, $\exists r \in \mathbb{N}^* \ \exists \tau_1, \tau_2, ..., \tau_r$ transpositions : $\sigma = \tau_1 \tau_2 ... \tau_r$.

Alors

$$\delta(s) = \prod_{i=1}^{r} (-1)$$

$$= \varepsilon(\tau_1)\varepsilon(\tau_2)...\varepsilon(\tau_r)$$

$$= \varepsilon(\tau_1\tau_2...\tau_r)(1)$$

$$= \varepsilon(\sigma)$$

${\bf Corrolaire}~{\bf 21}$

La signature est l'unique morphisme de groupes non trivial de (S_n, \circ) dans (\mathbb{C}^*, \times)

Preuve:

- La fonction constante
 - $1: \begin{cases} S_n \to \mathbb{C}^* \\ \sigma \mapsto 1 \end{cases} \text{ est un } \underline{\text{morphisme de groupes}} \text{ dit morphisme } \underline{\text{trivial}}$
- La signature ε est un morphisme de groupes de S_n dans \mathbb{C}^* . Il est non trivial car si τ est une transposition $\varepsilon(\tau) = -1$
- Unicité Soit $f: S_n \to \mathbb{C}^*$ un morphisme de groupes.

Soit τ transpositions fixée. $\tau^2 = id$

Appliquons f:

$$f(\tau^2) = f(id) = 1 \Longrightarrow f(\tau)^2 = -1$$
 ou 1

• 1^{er} cas : $f(\tau) = 1$

Soit τ' , conjuguée à τ

 $\exists \alpha \in S_n, \tau' = \alpha \tau \alpha^{-1}$ (on a prouvé plutôt que 2 p-cycles sont conjugués)

$$f(\tau') = f(\alpha \tau \alpha^{-1}) = f(\alpha) f(\tau) f(\alpha)^{-1} = 1$$

or toute permutation est produit de transpositions $\implies \forall \sigma \in S_n f(\sigma) = 1.$

• 2ème cas $f(\tau) = -1$

Par conjugaison, $\forall \tau'$ transpositions $f(\tau') = -1$

f est un morphisme de groupe envoyant sur -1.