Terceira lista de exercícios da disciplina de Finanças Quantitativas e Gerenciamento de Risco

Nome: Cristiano Martins Monteiro

Matrícula: 2019707211

Os códigos estão zipados junto a este arquivo.

Questão 2. Nesta questão vamos comparar a performance de dois modelos: Markowitz (minimizando variância) e CVaR (Slide 58 de Downside Risk) com α = 5%. Em ambos os modelos, utilize 0.01% (0.0001) como retorno mínimo diário e 15% como peso máximo que um ativo qualquer pode ter no portfólio. Para o Markowitz, calcule μ e Σ através dos dados históricos. Para o CVaR, utilize a matriz de retornos in-sample como cenários (pela minha resolução foram 249 cenários). Para as séries out-of-sample dos dois portfólios:

(a) Plote um gráfico comparativo com a performance dos portfólios (simulando investimento inicial de R\$1) e do índice iBov normalizado para começar de 1.

Figura 1 – Performance do IBOV, Markowitz e CVaR no período out-of-sample

(b) Complete a tabela abaixo:

Portfólio	Retorno	Desvio	CVaR 5%	Sharp ratio	STARR	Drawdown
	esperado	padrão			ratio 5%	máximo
IBOV	-0,00027	0,03444	-0,09910	-0,00779	-0,00271	-46,81596%
Markowitz	-0,00043	0,02791	-0,08296	-0,01542	-0,00519	-41,30225%
CVaR	0,00098	0,03810	-0,11102	0,02583	0,00887	-52,16494%

O gráfico da Figura 1 e os resultados apresentados na tabela são similares aos apresentados pelo professor na live do dia 15/10/2020. A maior diferença entre os resultados da tabela e os do professor estão na coluna Drawdown máximo do CVaR. Apesar da diferença, eu acredito que os meus resultados também estão corretos.

O que pode ter acontecido é que a solução ótima encontrada pelos solvers que usei (ambos "glpk" e "Ipopt" para o CVaR verificando se as soluções seriam diferentes, usando Pyomo em Python) possui um conjunto diferente de pesos w, gerando uma queda diferente em março no *out-of-sample* da obtida pelo gráfico do professor. Apesar dessa diferença, o valor apresentado na tabela para o Drawdown máximo do CVaR condiz com a queda mais intensa do CVaR no gráfico da Figura 1.

Além da questão 2, eu também resolvi o desafio do final da lista de exercícios.

Desafio. Considere o modelo de otimização abaixo. O modelo assume, para cada ativo i, um portfólio atual composto por X_i ações e proporções desejadas w_i^* , encontradas previamente, indicando como devemos dividir o novo portfólio. Considere também P_i como o preço atual de i e f como o custo aplicado a cada transação e expresso como uma porcentagem do valor negociado.

O modelo utiliza variáveis x_i indicando quantas ações de i teremos após as negociações e G_i indicando o valor financeiro gasto para alterarmos a composição de i de X_i para x_i ações. Este modelo garante que gastaremos o mínimo possível nestes custos.

$$\begin{aligned} \min \sum_{i=1}^{N} G_i \\ \text{sujeito a} \quad P_i x_i &= w_i^* \big(\sum_{i=1}^{N} X_i P_i - \sum_{j=1}^{N} G_j \big) \\ G_i &\geq \big(x_i - X_i \big) P_i f \\ G_i &\geq \big(X_i - x_i \big) P_i f \end{aligned} \qquad i = 1, ..., N$$

O modelo inclui apenas custos variáveis (uma porcentagem do valor a ser negociado). Considere que, além do custo variável, temos um custo fixo **h**, expresso em moeda, a ser aplicado a cada negociação. Este valor é independente do tamanho da negociação. Altere o modelo acima para que inclua o custo fixo.

Para incluir os custos fixos das operações será necessário definir uma variável binária H_i para cada ativo i. O somatório dessas variáveis H_i multiplicadas por h é incluído na função objetivo, e para cada ativo é incluída uma restrição multiplicando H_i a um Big-M, e comparando o resultado da multiplicação a G_i .

$$\min \sum_{i=1}^{N} G_{i} + \sum_{i=1}^{N} h * H_{i}$$

$$\text{sujeito a} \quad P_{i} x_{i} = w_{i}^{*} \left(\sum_{i=1}^{N} X_{i} P_{i} - \sum_{j=1}^{N} G_{j} \right) \qquad \qquad i = 1, ..., N$$

$$G_{i} \geq (x_{i} - X_{i}) P_{i} f \qquad \qquad i = 1, ..., N$$

$$G_{i} \geq (X_{i} - x_{i}) P_{i} f \qquad \qquad i = 1, ..., N$$

$$M * H_{i} \geq G_{i} \qquad \qquad i = 1, ..., N$$

$$H_{i} \in \{0,1\} \qquad \qquad i = 1, ..., N$$