Foundation of Computer Science

Some terminology

- Theorem: a statement that can be shown to be true (sometimes referred to as facts or results).
- Less important theorems are often called propositions.
- A lemma is a less important theorem, used as an auxiliary result to prove a more important theorem.
- A corollary is a theorem proven as an easy consequence of a theorem.
- A conjecture is a statement that is being proposed as a true statement. If later proven, it becomes a theorem, but it may be false.

Some terminology

- Axiom (or postulates) are statements that we assume to be true (algebraic axioms specify rules for arithmetic like commutative laws).
- A proof is a valid argument that establishes the truth of a theorem.
- Rules of inference: The statements used in a proof include axioms, hypotheses (or premises), and previously proven theorems., together with definition of terms, are used to draw conclusions from other assertions, tying together the steps of a proof.

Methods of proving theorems

To prove a theorem of the form $\forall x(P(x) \rightarrow Q(x))$, we use the steps:

- 1. Take an arbitrary element c of the domain and show that $(P(c) \rightarrow Q(c))$ is true.
- 2. Apply universal generalization to conclude $\forall x(P(x) \rightarrow Q(x))$.

3 Methods of showing statements of the type $p \rightarrow q$ to be true

- 1. **Direct proofs**: Assume p is true; the last step establishes q is true.
- 2. Proof by Contraposition: Uses a direct proof of the contrapositive of p → q, which is ¬q → ¬p. That is, assume ¬q is true; the last step established ¬p is true.
- 3. **Proof by Contradiction**: To prove that P is true, we assume ¬P is true and reach a contradiction, that is that $(r \land \neg r)$ is true for some proposition r. In particular, to prove $(p \rightarrow q)$, we assume $(p \rightarrow q)$ is false, and get as a consequence a contradiction. Assuming that $(p \rightarrow q)$ is false = $(\neg p \lor q)$ is false = $(p \land \neg q)$ is true.

Direct Proofs

A formal direct proof of a conditional statement $p \rightarrow q$ works as follows:

assume p is true, build steps using inference rules, with the final step showing that q is true.

In a (informal) direct proof, we assume that p is true, and use axioms, denitions and previous theorems, together with rules of inference to show that q must be true.

Definition

The integer n is even if there exists an integer k such that n = 2k, and n is odd if there exists an integer k such that n = 2k + 1.

Give a direct proof of the following theorem.

If n is an odd integer, then n² is odd.

Observations: We want to show that $\forall x(P(x) \rightarrow Q(x))$, where P(x) is "n is an odd integer" and Q(x) is "n² is odd".

Proof:

Let n be an odd integer.

By definition of odd, we know that there exists an integer k such that n = 2k + 1.

Squaring both sides of the equation, we get

$$n^2 = (2k + 1)^2 = 4k^2 + 4k + 1 = 2(2k^2 + 2k) + 1.$$

Since $n^2 = 2k0 + 1$, where $k0 = 2k^2 + 2k$, by the definition of odd we conclude n^2 is odd.

Exercise:

Theorem

If m and n are both perfect squares, then mn is also a perfect square.

Definition

An integer a is a perfect square if there is an integer b such that $a = b^2$.

Proof by Contraposition

This method of proof makes use of the equivalence $(p \rightarrow q) \equiv (\neg q \rightarrow \neg p)$.

In a proof by contraposition that $p \rightarrow q$, we assume $\neg q$ is true, and using axioms, definitions and previously proven theorems, together with inference rules, we show that $\neg p$ must be true.

(It is a direct proof of the contrapositive statement!)

Prove the Theorem by contraposition

If n is an integer and 3n + 2 is odd, then n is odd.

Proof: We prove the statement by contraposition.

Assume n is even (assuming -q). Then, by definition,

n = 2k for some integer k.

Thus, 3n + 2 = 3(2k) + 2 = 6k + 2 = 2(3k + 1).

So, we have that 3n + 2 = 2k0 where k0 = 3k + 1,

which means 3n + 2 is an even number.

This is the negation of the hypothesis of the theorem $(\neg p)$, which concludes our proof by contraposition.

When to use each type of proof?

Usually try a direct proof. If it doesn't work, try a proof by contraposition

Prove that for any integer number n, if n² is odd, then n is odd. using direct as well as proof by contraposition

Trying a direct proof.

Let n be an integer number. Assume that n^2 is odd. We get next that there exists an integer k such that $n^2 = 2k + 1$. Solving for n produces the equation $n = \pm \sqrt{2k + 1}$

which is not very useful to show that n is odd.

Try a prove by contraposition.

Let n be an integer number. Assume n is not odd. This means that n is even, and so there exists an integer k such that n = 2k. Thus, $n^2 = (2k)^2 = 4k^2 = 2(2k^2)$. So, taking $k0 = 2k^2$, we see that $n^2 = 2k0$ and so n^2 is even. This concludes our proof by contraposition.

Proof by Contradiction

 We can prove that p is true by showing for instance that ¬ p → (r ^ ¬ r), for some proposition r.

Proof by Contradiction

- If n is an integer and 3n + 2 is odd, then n is odd.
- p: 3n + 2 is odd
- q: n is odd
- Let $\neg q$ is true that is n is even.
- Then n = 2k for some integer k
- It follows that 3n+2 = 3(2k) + 2 = 6k+2 = 2(3k+1)
- Therefore 3n+2 is even which contradict with p.

Thank you