```
In [1]:
            import pandas as pd
          2 import numpy as np
          3 import matplotlib.pyplot as plt
          4 import seaborn as sns
In [2]:
          1 # Load the dataset
          2 data = pd.read_csv('MERGED2018-19.csv')
          3 # Checking for missing values
          4 print(data.isnull().sum())
          5 # Define the columns to keep
            columns_to_keep = [
                 'ST_FIPS', 'CONTROL', 'PREDDEG', 'UGDS_WHITE', 'UGDS_BLACK', 'UGDS_HISP',
          7
          8
                 'UGDS_ASIAN', 'UGDS_AIAN', 'UGDS_NHPI', 'UGDS_2MOR', 'UGDS_NRA', 'UGDS_UNKN', 'LATITUDE'
          9
         10 # Filter the dataset to only include these columns
         11 filtered_data = data[columns_to_keep]
```

C:\Users\harin\AppData\Local\Temp\ipykernel_28440\131281525.py:2: DtypeWarning: Columns (1725, 1726,1727,1728,1815,1818,1823,1824,1830,1831,1879,1880,1881,1882,1883,1884,1885,1886,1887,188 8,1889,1890,1891,1892,1893,1910,1911,1912,1913,1957,1958,1959,1960,1961,1962,1963,1964,1965,19 66,1967,1968,1969,1970,1971,1972) have mixed types. Specify dtype option on import or set low_memory=False.

data = pd.read_csv('MERGED2018-19.csv')

```
UNITID
OPEID
                               0
OPEID6
                               0
INSTNM
                               0
CITY
                               0
SCUGFFN
                             782
POOLYRS FTFTAIDPCT
                             774
FTFTPCTPELL_POOLED_SUPP
                             977
FTFTPCTFLOAN_POOLED_SUPP
                             977
SCUGFFN POOLED
                             774
Length: 1986, dtype: int64
```

In [3]: 1 filtered_data.describe()

Out[3]:

	ST_FIPS	CONTROL	PREDDEG	UGDS_WHITE	UGDS_BLACK	UGDS_HISP	UGDS_ASIAN	UGDS_AIAN
count	6806.000000	6806.000000	6806.000000	6041.000000	6041.000000	6041.000000	6041.000000	6041.000000
mean	29.032912	2.087570	1.833823	0.491790	0.179735	0.181379	0.037811	0.013504
std	16.769898	0.835281	1.070275	0.283737	0.217884	0.227826	0.079448	0.071663
min	1.000000	1.000000	0.000000	0.000000	0.000000	0.000000	0.000000	0.000000
25%	13.000000	1.000000	1.000000	0.252400	0.035600	0.036300	0.002400	0.000000
50%	29.000000	2.000000	2.000000	0.532100	0.095900	0.091000	0.014400	0.002300
75%	42.000000	3.000000	3.000000	0.723100	0.239000	0.235300	0.037300	0.006700
max	78.000000	3.000000	4.000000	1.000000	1.000000	1.000000	1.000000	1.000000
4								•

```
ST_FIPS
                0
CONTROL
                0
PREDDEG
                0
UGDS_WHITE
              765
UGDS_BLACK
              765
UGDS_HISP
              765
UGDS_ASIAN
              765
UGDS_AIAN
              765
UGDS_NHPI
              765
UGDS_2MOR
              765
UGDS_NRA
              765
UGDS_UNKN
              765
LATITUDE
              475
LONGITUDE
              475
dtype: int64
Original data size: (6806, 1986), Cleaned data size: (6806, 14)
```

```
In [5]:
             # Mapping for 'CONTROL' variable
          2
             control mapping = {
                 1: 'Public',
          3
          4
                 2: 'Private Nonprofit',
          5
                 3: 'Private For-profit'
          6
            }
          7
          8
            # Mapping for 'PREDDEG' (Predominant Undergraduate Degree Awarded)
          9
            preddeg mapping = {
                 0: 'Non-degree-granting',
         10
                 1: 'Certificate',
         11
                 2: 'Associate degree',
         12
         13
                 3: 'Bachelor\'s degree',
         14
                 4: 'Graduate degree'
         15
            }
         16
            # Mapping for FIPS code
         17
             st_fips_mapping = {
         18
                 1: 'Alabama', 2: 'Alaska', 4: 'Arizona', 5: 'Arkansas', 6: 'California',
         19
                 8: 'Colorado', 9: 'Connecticut', 10: 'Delaware', 11: 'District of Columbia',
                 12: 'Florida', 13: 'Georgia', 15: 'Hawaii', 16: 'Idaho', 17: 'Illinois',
         20
         21
                 18: 'Indiana', 19: 'Iowa', 20: 'Kansas', 21: 'Kentucky', 22: 'Louisiana',
         22
                 23: 'Maine', 24: 'Maryland', 25: 'Massachusetts', 26: 'Michigan',
         23
                 27: 'Minnesota', 28: 'Mississippi', 29: 'Missouri', 30: 'Montana',
                 31: 'Nebraska', 32: 'Nevada', 33: 'New Hampshire', 34: 'New Jersey',
         24
                 35: 'New Mexico', 36: 'New York', 37: 'North Carolina', 38: 'North Dakota',
         25
                 39: 'Ohio', 40: 'Oklahoma', 41: 'Oregon', 42: 'Pennsylvania',
         26
         27
                 44: 'Rhode Island', 45: 'South Carolina', 46: 'South Dakota',
                 47: 'Tennessee', 48: 'Texas', 49: 'Utah', 50: 'Vermont', 51: 'Virginia',
         28
                 53: 'Washington', 54: 'West Virginia', 55: 'Wisconsin', 56: 'Wyoming',
         29
         30
                 60: 'American Samoa', 64: 'Federated States of Micronesia', 66: 'Guam',
         31
                 69: 'Northern Mariana Islands', 70: 'Palau', 72: 'Puerto Rico', 78: 'Virgin Islands'
         32 }
         33
         34
            # Apply the mappings
            filtered_data['CONTROL'] = filtered_data['CONTROL'].map(control_mapping).astype('category')
         35
         36 | filtered_data['PREDDEG'] = filtered_data['PREDDEG'].map(preddeg_mapping).astype('category')
         37 | filtered_data['ST_FIPS'] = filtered_data['ST_FIPS'].map(st_fips_mapping).astype('category')
```

In [6]: 1 filtered_data

Out[6]:

	ST_FIPS	CONTROL	PREDDEG	UGDS_WHITE	UGDS_BLACK	UGDS_HISP	UGDS_ASIAN	UGDS_AIAN	UGDS_I
0	Arizona	Private Nonprofit	Graduate degree	NaN	NaN	NaN	NaN	NaN	
1	California	Private Nonprofit	Graduate degree	NaN	NaN	NaN	NaN	NaN	
2	California	Private Nonprofit	Graduate degree	NaN	NaN	NaN	NaN	NaN	
3	California	Private Nonprofit	Graduate degree	NaN	NaN	NaN	NaN	NaN	
4	California	Public	Graduate degree	NaN	NaN	NaN	NaN	NaN	
				•••					
6801	California	Private For-profit	Certificate	0.2162	0.0270	0.7027	0.0	0.0000	С
6802	Puerto Rico	Private For-profit	Certificate	0.0000	0.0000	1.0000	0.0	0.0000	С
6803	New Mexico	Private For-profit	Certificate	0.2432	0.0541	0.6216	0.0	0.0541	С
6804	Michigan	Private For-profit	Certificate	0.8462	0.0154	0.1231	0.0	0.0000	С
6805	Missouri	Private For-profit	Associate degree	0.8939	0.0455	0.0303	0.0	0.0303	С

6806 rows × 14 columns

Tn [7]:

print(filtered_data.describe())

	UGDS_WHITE	UGDS_BLACK	UGDS_HISP	UGDS_ASIAN	UGDS_AIAN	\
count	6041.000000	6041.000000	6041.000000	6041.000000	6041.000000	
mean	0.491790	0.179735	0.181379	0.037811	0.013504	
std	0.283737	0.217884	0.227826	0.079448	0.071663	
min	0.000000	0.000000	0.000000	0.000000	0.000000	
25%	0.252400	0.035600	0.036300	0.002400	0.000000	
50%	0.532100	0.095900	0.091000	0.014400	0.002300	
75%	0.723100	0.239000	0.235300	0.037300	0.006700	
max	1.000000	1.000000	1.000000	1.000000	1.000000	
	UGDS_NHPI	UGDS_2MOR	UGDS_NRA	UGDS_UNKN	LATITUDE	\
count	6041.000000	6041.000000	6041.000000	6041.000000	6331.000000	
mean	0.004573	0.030770	0.021385	0.035911	37.379213	
std	0.031879	0.038606	0.063130	0.072023	5.849565	
min	0.000000	0.000000	0.000000	0.000000	-14.322636	
25%	0.000000	0.000000	0.000000	0.000000	33.973926	
50%	0.000300	0.025000	0.000000	0.013300	38.833361	
75%	0.002600	0.041800	0.017300	0.039200	41.332940	
max	0.997300	0.631600	1.000000	1.000000	71.324702	
	LONGITUDE					
count	6331.000000					
mean	-90.309695					
std	17.980750					
min	-170.742774					
25%	-97.407742					
50%	-86.266315					
75%	-78.787266					
max	171.378129					


```
In [11]:
             # Correlation analysis for numeric variables
           2
             # Assuming UGDS_WHITE to UGDS_UNKN are percentage values as characters, convert to float
             race_columns = ['UGDS_WHITE', 'UGDS_BLACK', 'UGDS_HISP', 'UGDS_ASIAN', 'UGDS_AIAN', 'UGDS_N
           3
             for col in race_columns:
           4
           5
                 filtered_data[col] = pd.to_numeric(filtered_data[col], errors='coerce')
           6
           7
             # Drop rows with missing values after conversion
           8
             filtered_data = filtered_data.dropna(subset=race_columns)
           9
          10
             # Plotting a heatmap of the correlation matrix
             plt.figure(figsize=(10, 8))
          11
          12
             correlation_matrix = filtered_data[race_columns].corr()
          13
             sns.heatmap(correlation_matrix, annot=True, fmt=".2f", cmap='coolwarm')
             plt.title('Correlation Matrix of Racial Demographics')
          14
          15
             plt.xlabel('Demographic')
             plt.ylabel('Demographic')
          16
          17
             plt.xticks(rotation=45)
          18
             plt.yticks(rotation=0)
             plt.tight_layout()
          20
             plt.show()
          21
```



```
In [13]: 1 filtered_data = filtered_data.dropna(subset=['ST_FIPS', 'CONTROL', 'PREDDEG'])
2 # Save the filtered dataset to a new file
3 filtered_data.to_csv('Filtered_Dataset.csv', index=False)
```