

Республиканская физическая олимпиада 2024 года

(Заключительный этап)

Экспериментальный тур

Решения задач 11 класс (для жюри)

Уважаемые члены жюри!

Задачи, предложенные школьникам для решения на олимпиаде, не стандартные и достаточно сложные. Предложенные здесь путей решений варианты не являются единственно возможными. Участники олимпиады могут предложить свои способы решения. Если эти способы приводят к ответам физически правильным И обоснованы, то задача (или ее отдельные пункты) оцениваться должны максимальными баллами.

Не забывайте, что Вы должны оценивать не только конечные ответы, но и отдельные правильные шаги в ходе решения!

Не жалейте баллов (если, конечно, есть за что!) для наших замечательных школьников!

Задание 1. Колебания линейки на цилиндре (Решение)

Часть1. Зависимость периода от диаметра.

1.1 Чтобы провести измерения с максимальной точностью и оценить случайную погрешность необходимо провести измерения времен максимального числа периодов колебаний несколько раз. В данном эксперименте провести измерения времен более 3 колебаний практически невозможно из-за сильного затухания. Поэтому проведены измерения 3 колебаний по 5 раз для одной и для сдвоенных линеек. Результаты этих измерений приведены в Таблице 1., в которой также приведены формулы, по которым проведен расчет погрешностей

Таблица 1.

	одна линейка	две линейки
	11,18	12,86
Времена 3 колебаний	11,15	12,69
t_i	11,22	12,65
	11,13	12,51
	11,17	12,55
Среднее время $\langle t \rangle = \frac{\sum_{i} t_{i}}{N}$	11,170	12,652
Случайная погрешность $\Delta t_{cn} = 2\sqrt{\frac{\displaystyle\sum_{i} \left(t_{i} - \left\langle t \right\rangle\right)^{2}}{n(n-1)}}$	0,030	0,123
Приборная погрешность $\Delta t_{np.}$	0,010	0,010
Полная погрешность $\Delta t = \sqrt{\left<\Delta t_{cr}\right>^2 + \left<\Delta t_{np.}\right>^2}$	0,032	0,123
Период колебаний Т	3,723	4,217
Погрешность измерения периода ΔT	0,011	0,041

Окончательные результаты измерения периодов колебаний одна линейка

$$T = (3.72 \pm 0.01)c; (1)$$

две линейки

$$T = (4,22 \pm 0,04)c; (2)$$

1.2 Зависимости периодов колебаний от диаметра цилиндра приведены в Таблице 2 (одна линейка) и Таблице 3 (две линейки).

Таблица 2. Одна линейка

		время N колебаний			_	1
d, mm	N	t_1 , c	t_2 , c	<i>t</i> ₃ , c	T, c	$\overline{T^{2}}$
10	3				3,723	0,072
20	3	8,93	8,69	8,91	2,948	0,115
25	5	12,03	12,07	12,08	2,412	0,172
35	5	9,69	9,66	9,75	1,940	0,266
40	5	8,97	8,98	8,86	1,787	0,313
60	5	7,05	6,98	7,01	1,403	0,508
87	10	11,67	11,64	11,68	1,166	0,735

Таблица 3. Две линейки

		время N колебаний			T -	1
d, MM	N	t_1 , c	t_2 , c	t_3 , c	T, c	$\overline{T^{2}}$
10	3				4,210	0,056
20	3	8,15	8,33	8,22	2,744	0,133
25	5	11,61	11,74	11,55	2,327	0,185
35	5	9,65	9,64	9,56	1,923	0,270
40	5	9,5	9,04	8,56	1,807	0,306
60	5	7,12	7,08	7,13	1,422	0,495
87	10	11,86	11,88	12,03	1,192	0,703

Графики полученных зависимостей показаны на рисунке.

1.4 Линеаризация зависимости (1), приведенной в условии задачи достигается очевидным способом: необходимо построить зависимость величины $z = T^{-2}$ от диаметров цилиндров. Эту зависимость можно представить в виде

$$z = C(d - a). (3)$$

Если определить параметры линейной зависимости z = Kd + B, то искомый параметр a выражается через коэффициенты линейной зависимости следующим образом:

$$a = -\frac{B}{K},\tag{4}$$

с погрешностью

$$\Delta a = |a| \sqrt{\left(\frac{\Delta K}{K}\right)^2 + \left(\frac{\Delta B}{B}\right)^2} \ . \tag{5}$$

В последних столбцах Таблиц 2 и 3 приведены значения величин д.

1.5 Графики линеаризованных зависимостей z(d) показаны на следующем рисунке.

Так как полученные зависимости линейны, то формула (1) из условия задачи правильно описывает экспериментальные данные.

1.6 Расчет коэффициентов линейной зависимости проведен по МНК, в результате получены следующие значения для одной линейки:

$$K_1 = (9.0 \pm 0.4) \cdot 10^{-3} \frac{1}{c^2 \cdot MM}; \implies B_1 = (4.3 \pm 2.4) \cdot 10^{-2} \frac{1}{c^2};$$
 (6)

для двух линеек

$$K_2 = (8.5 \pm 0.3) \cdot 10^{-3} \frac{1}{c^2 \cdot MM}; \implies B_2 = (3.0 \pm 1.1) \cdot 10^{-2} \frac{1}{c^2}.$$
 (7)

Экспериментальный тур.

Заключительный этап республиканской олимпиады по учебному предмету «Физика» 2023-2024 учебный год

Расчет параметров a по формулам (4) – (5) приводит к следующим значениям для одной линейки

$$a_1 = (4.8 \pm 2.7)_{MM}$$
 (8)

для двух линеек

$$a_1 = (3,5 \pm 1,4)_{MM} \tag{9}$$

Данный параметр имеет смысл толщины линейки.

- 1.7 Если положение равновесия является устойчивым, то колебания возможны. Из формулы
- (1) следует, что колебания могут происходить при

$$t > a$$
 (10)

Часть2. Зависимость периода колебаний от положения грузов.

2.1 Результаты измерений зависимости периода колебаний от положения магнитов приведены в Таблице 4.

Таблица 4. Результаты измерений

	Время 5 колебаний				период	
х, см	t_1 , c	t_2 , c	t_3 , c	t_4 , c	t_5 , c	T, c
19	8,38	8,37	8,27	8,14	8,23	1,66
16	7,47	7,37	7,34	7,42	7,28	1,48
13	6,17	6,28	6,22	6,37	6,21	1,25
10	5,08	5,03	5,12	5,2	5,09	1,02
7	4,19	4,28	4,11	4,26	4,28	0,84

График полученной зависимости показан на рисунке.

Простые теоретические рассуждения, основанные на анализе кинетической энергии линейки с грузами, приводят к следующему виду зависимости

$$A(x) = \alpha + \beta x^2. \tag{11}$$

Для проверки этой зависимости следует построить график линеаризованной зависимости $T^2(x^2)$. График линеаризованной зависимости показан на следующем рисунке.

Линейность данной зависимости подтверждает справедливость формулы (11) для описания полученных экспериментальных данных.

Экспериментальное задание 2. Преломление света (Решение)

Часть 1. Показатель преломления и дисперсия стекла.

1.1 Результаты измерений углов α и β приведены в Таблице 1. График полученной зависимости показан на рисунке.

Таблица 1.

α°	β°
70	49
80	44
90	42
100	42
110	42
120	43
130	44
140	47
150	50
160	53
170	57

Важно отметить, что данная зависимость имеет точку минимума.

1.2 Для увеличения точности измерения следует продлить лучи на большее расстояния, нарисовать их на листе бумаги, а затем провести измерения углов.

В результате проведенных измерений получены следующие значения

$$\alpha_{\min} = 100^{\circ} \pm 10^{\circ}$$

$$\beta_{\min} = 42^{\circ} \pm 1^{\circ}$$
(1)

1.3 – **1.4** Получим формулы для расчета показателя поглощения.

На рисунке показан симметричный ход луча через призму. Обозначим: α_0 - угол падения луча на грань призмы; γ - угол преломления на одной грани призмы; $\theta = \frac{\pi}{3}$ - угол при вершине призмы

Из закона отражения света следует, что $\alpha = 2\alpha_0$. (2)

При симметричном ходе луча, используя известное значение суммы углов треугольника, можно выразить

Заключительный этап республиканской олимпиады по учебному предмету «Физика» 2023-2024 учебный год

$$\theta + 2\left(\frac{\pi}{2} - \gamma\right) = \pi \quad \Rightarrow \quad \gamma = \frac{\theta}{2}.$$
 (3)

Закон преломления в данном случае имеет вид

$$\sin \alpha_0 = n \sin \gamma \,, \tag{4}$$

из которого с учетов выражений для углов следует формула для расчета показателя преломления по измеренному углу α :

$$n = \frac{\sin \alpha_0}{\sin \gamma} = \frac{\sin \frac{\alpha}{2}}{\sin \frac{\pi}{6}} = 2\sin \frac{\alpha}{2}.$$
 (5)

Угол отклонения луча 2 равен (сумма отклонений при двух преломлениях)

$$\beta = 2(\alpha_0 - \gamma) \tag{6}$$

отсюда следует, что $\alpha_0 = \frac{\beta + 2\gamma}{2} = \frac{\beta + \theta}{2}$

Из закона преломления следует искомая формула для расчета показателя преломления по углу β

$$n = \frac{\sin \alpha_0}{\sin \gamma} = \frac{\sin \frac{\beta + \theta}{2}}{\sin \frac{\pi}{6}} = 2\sin \frac{\beta + \theta}{2}.$$
 (7)

При расчетах в эти формулы следует подставить измеренные значения α_{\min} и β_{\min} . Расчеты приводят к следующим результатам:

По углу α_{\min} :

$$n = 1.5 \pm 0.1 \tag{8}$$

по углу β_{\min}

$$n = 1,55 \pm 0,01 \tag{9}$$

1.5 Оптическая схема для получения параллельного пучка света показана на рисунке.

1.6 Оптическая схема для получения спектра на экране показана на следующем рисунке.

1.7 Для расчета показателя преломления необходимо измерить значения угла минимального отклонения β для крайних цветов спектра. а затем по формуле (7) рассчитать соответствующие показатели преломления.

Результаты измерений и расчетов

Для красного цвета (примерное значение длины волны $\lambda_{\kappa\rho} \approx 700$ нм):

$$\beta_{\kappa p} = 41^{\circ}$$

$$n_{\kappa p} = 1,54$$

Для фиолетового цвета (примерное значение длины волны $\lambda_{\kappa p} \approx 400$ нм):

$$\beta_{\kappa p} = 38^{\circ}$$

$$n_{\kappa p} = 1,51$$

Таким образом, в пределах видимого диапазона показатель преломления изменяется на величину

$$\Delta n \approx 0.03. \tag{10}$$

1.8 Оценочный расчет дисперсии приводит к следующему значению дисперсии показателя преломления

$$D = \frac{0.03}{300\mu M} = 1 \cdot 10^{-4} \mu M^{-1} \ . \tag{11}$$

Часть 2. Преломление в жидкости и... радуга.

2.1 Для измерения углов α и β следует расположить чашку Петри на угломерном лимбе, с помощью которого можно измерить угол входа луча (он же угол α) и угол выхода луча φ

$$\varphi = \alpha + \pi - 2\beta \,. \tag{12}$$

Тогда угол преломления можно рассчитать по формуле

$$\beta = \frac{\pi + \alpha - \varphi}{2} \,. \tag{13}$$

Результаты измерений и последующих расчетов приведены в Таблице 2.

Таблица 2.

$lpha^{\circ}$	$arphi^\circ$	eta°	$\sin \beta$	$\sin \alpha$
0	180	0,0	0,000	0,000
10	176	7,0	0,122	0,174
20	170	15,0	0,259	0,342
30	170	20,0	0,342	0,500
40	166	27,0	0,454	0,643
50	164	33,0	0,545	0,766
60	165	37,5	0,609	0,866
70	166	42,0	0,669	0,940
80	173	43,5	0,688	0,985

Экспериментальный тур.

¹¹ класс. Решения задач. Бланк для жюри.

2.2 Для проверки закона преломления

следует построить график $\sin \alpha = F(\sin \beta)$. зависимости Тогда коэффициент наклона этого графика даст значение показателя преломления. синусов Значения углов приведены в Таблице 2.

График полученной зависимости показан рисунке.

- 2.3 Прямая пропорциональность между синусами углов подтверждает справедливость закона преломления света.
- 2.4 Расчет коэффициента наклона графика (по МНК) дает следующее значение показателя преломления

$$n = 1,42 \pm 0,03 \tag{15}$$

2.5 Угол преломления β связан с углом падения α соотношением (14), из которого следует, что угол преломления β рассчитывается по формуле

$$\beta = \arcsin\left(\frac{\sin\alpha}{n}\right). \tag{16}$$

При каждом преломлении на стенке чашки луч поворачивается по часовой стрелке на угол

$$\delta_1 = (\alpha - \beta). \tag{17}$$

Поэтому угол отклонения луча 1 равен

$$\theta_1 = 2(\alpha - \beta). \tag{18}$$

При отражении от внутренней поверхности угол поворота луча по часовой стрелке равен

$$\delta_2 = \pi - 2\beta. \tag{19}$$

Следовательно, угол поворота луча 2 равен

$$\theta_2 = 2\delta_1 + \delta_2 = \pi + 2\alpha - 4\beta. \tag{20}$$

Угол выхода луча из сосуда равен

$$\gamma = \pi - \theta_2 = 4\beta - 2\alpha \,. \tag{21}$$

Экспериментальный тур.

11 11 класс. Решения задач. Бланк для жюри.

2.6 Результаты расчетов по полученным выше формулам приведены в Таблице 3.

Таблица 3.

$lpha^{\circ}$	eta°	$\theta_{_{\! 1}} ^{ \circ}$	$ heta_2$ °	γ°
0	0,0	0,0	180,0	0,0
10	7,0	6,0	172,0	8,0
20	13,9	12,2	164,4	15,6
30	20,6	18,8	157,7	22,3
40	26,9	26,3	152,6	27,4
50	32,6	34,8	149,7	30,3
60	37,5	45,0	150,0	30,0
70	41,3	57,3	154,6	25,4
80	43,8	72,4	164,8	15,2

2.7 Графики полученных зависимостей.

2.8 Зависимость угла γ от угла падения на каплю имеет точку максимума. Вблизи экстремума происходит резкая концентрация лучей, поэтому в отраженном свете хорошо видна яркая граница отраженных лучей. Угол отклонения преломленных лучей экстремумов не имеет, поэтому резких ярких полос в проходящем свете не наблюдается.

2.9 Для наблюдения радуги на чашку следует направить параллельный пучок белого света от фонарика. Затем можно наблюдать глазом появление ярких бликов на стенке чашки, если смотреть в направлении угла γ . при этом можно измерить с помощью прозрачной линейки углы γ и $\Delta \gamma$ (эти углы совпадают с углами ψ в условии задачи) для границ видимого спектра.

2.10 Измерения дали следующие результаты

$$\psi \approx 38^{\circ}$$

$$\Delta \psi \approx 3^{\circ}$$
(22)