MTH 390	Name:	
Quiz 4		

Due: 2019-03-18 Section: 21

Instructions:

- 1. Read the directions carefully.
- 2. Write neatly in pencil and show all your work.
- 3. Use the appropriate notation.
- 4. Do not use decimals on any intermediate step.
- 5. If you have trouble during the quiz, feel free to ask me for help.

1. Solve the following difference equations.

a.
$$u_n - 5u_{n-1} + 6u_{n-2} = 0$$

b.
$$u_n - 10u_{n-1} + 25u_{n-2} = 0$$

c.
$$u_n + 2u_{n-1} + 4u_{n-2} = 0$$

2. Find the ACF for the following AR models. Hint: don't forget to find the coefficients.

a.
$$X_t - 0.45X_{t-1} + 0.05X_{t-2} = W_t, W_t \sim N(0, \sigma^2)$$

b. $X_t - X_{t-1} + 0.25X_{t-2} = W_t, W_t \sim N(0, \sigma^2)$

3. Find the ACF for the ARMA model $X_t - 0.7X_{t-1} + 0.1X_{t-2} = W_t + W_{t-1}, W_t \sim N(0, \sigma^2)$.

4. Find the ACF for the ARMA model $X_t - 0.4X_{t-1} + 0.04X_{t-2} = W_t + W_{t-1}, W_t \sim N(0, \sigma^2)$.

5. Identify each ARMA model. Plot the ACF and PACF for each model. Provide the code and a description for each plot.

a.
$$X_t = W_t - 0.55W_{t-1} - 0.3W_{t-3}, W_t \sim WN(0, \sigma^2)$$

b.
$$X_t = 1.5X_{t-1} - 0.56X_{t-2} + W_t, W_t \sim WN(0, \sigma^2)$$

c.
$$X_t = 0.6X_{t-1} + W_t - 0.9W_{t-2}, W_t \sim WN(0, \sigma^2).$$