

Propositional Logic

- Syntax of the representation language specifies all the sentences that are wellformed.
- Semantics of the language defines the <u>truth</u> of each sentence with respect to each possible world.

Logic is a Formal Language

• Propositions:

- Anil is Intelligent
- Anil is hardworking
- If Anil is Intelligent and Anil is Hardworking, then Anil scores a high mark

Elements of Propositional Logic

Symbols

– Logical constants: TRUE, FALSE

Propositional symbols:P, Q, etc. (uppercase)

- Logical connectives: $\Lambda, \vee, \Leftrightarrow, \Rightarrow, \neg$

– Parentheses: ()

Sentences

- Atomic sentences: constants, propositional symbols
- Combined with connectives, e.g. $P \land Q \lor R$ also wrapped in parentheses, e.g. $(P \land Q) \lor R$

_

7

Elements of Propositional Logic

- Anil is intelligent = Intelligent(Anil)
- Propositions
- Anil is hardworking = Hardworking(Anil)
- Objects and relations or Functions

• A proposition (statement) can be true or false

Syntax of Propositional Logic

(Backus-Naur Form)

Precedence (from <u>highest</u> to <u>lowest</u>): \neg , Λ , \vee , \Rightarrow , \Leftrightarrow e.g.: \neg P Λ Q \vee R \Rightarrow S (not ambiguous), equal to: (((\neg P) Λ Q) \vee R) \Rightarrow S

Logical Connectives

Semantics of Propositional Logic

Validity

- A sentence is valid if it is true in all models.
- Valid sentences are known as tautologies.
- Every valid sentence is logically equivalent to *True*.

Semantics of Propositional Logic

Satisfiability

- A sentence is satisfiable if it is true in some models.
- Satisfiability can be checked by enumerating the possible models until one is found that satisfies the sentence.
- Most problems in computer sciences are satisfiability problems.
 - E.g., Constraint satisfaction problem, Search problems.

Example 1

- Let P stands for Intelligent(Anil)
- Let Q stands for Hardworking(Anil)
- · What does P A Q mean? Amisintelligant & hardworking
- What does P ∨ Q mean?
- $P \land Q$, $P \lor Q$ are compound propositions

Semantics of Propositional Logic

Interpretation of symbols

- Logical constants have fixed meaning
 - True: always means the fact is the case; valid
 - False: always means the fact is not the case; unsatisfiable
- Propositional symbols mean "whatever they mean"
 - e.g.: **P** "we are in a pit", etc.
 - Satisfiable, but not valid (true only when the fact is the case)

Interpretation of sentences

- Meaning derived from the meaning of its parts
 - Sentence as a combination of sentences using connectives
- Logical connectives as (boolean) functions:

TruthValue f (TruthValue, TruthValue)

Example 2

- Use parenthesis to ensure that the syntax is completely unambiguous:
 - A: John likes Kate.
 - B: John likes Chocolate.
 - C: John buys Chocolate
- $(A \land B) \Rightarrow C$
 - If John likes Kate and John likes Chocolate, John buys Chocolate
- A∧ (B⇒C) Two fack.
 - John likes Kate, and
 - If John likes Chocolate, then John buys Chocolate

Semantics of Propositional Logic

Interpretation of connectives

- Truth-table • Define a mapping from input to output • Monuter Pis True

Р	Q	¬ P	PΛQ	$P \lor Q$	$P \Rightarrow Q$	P⇔Q	
False	False	True	False	False	True	True	
False	True	True	False	True	True	False	
True	False	False	False	True	False	False	
True	True	False	True	True	True	True	

- Interpretation of sentences by decomposition

• e.g.:
$$\neg P \land Q \lor R \Rightarrow S$$
, with $P \leftarrow F$, $Q \leftarrow T$, $R \leftarrow F$, $S \leftarrow T$:
$$\neg P \leftarrow T \qquad ((\neg P) \land Q) \lor R) \leftarrow T$$

$$(\neg P) \land Q \leftarrow T \qquad (((\neg P) \land Q) \lor R) \Rightarrow S \leftarrow T$$

13

Exercise

Α	В	С	ΑΛВ	B⇒C	(A ∧ B) ⇒ C	$A \Lambda (B \Rightarrow C)$
Т	T	Т				
Т	Т	F				
Т	F	Т				
Т	F	F				
F	Т	Т				
F	Т	F				
F	F	Т				
F	F	F				

Validity and Inference

Testing for validity

- Using truth-tables, checking all possible configurations

• e.g.:
$$((P \lor Q) \land \neg Q) \Rightarrow P$$

	Р	Q	9 V Q	¬ Q	(P∨Q) Λ ¬Q	$((P \lor Q) \land \neg Q) \Rightarrow P$
	False	False	False	True	False	True
	False	True	True	False	False	True
[]	True	False	True	True	True	True
	True	True	True	False	False	True

- · The proposition says:
 - If $((P \lor Q) \land \neg Q)$ is True, then P is True.
 - If $((P \lor Q) \land \neg Q)$ is False, then ? (didn't specify, so P can be either True or False) -> overall, this proposition is *valid*

Thank you!

Recap

Α	В	С	ΑΛВ	B⇒C	(A ∧ B) ⇒ C	A Λ (B ⇒ C)
Т	Т	T				
Т	T	F				
Т	F	Т				
Т	F	F				
F	Т	T				
F	T	F				
F	F	Т				
F	F	F				

Recap

Precedence (from <u>highest</u> to <u>lowest</u>): \neg , Λ , \vee , \Rightarrow , \Leftrightarrow e.g.: \neg P Λ Q \vee R \Rightarrow S (not ambiguous), equal to: (((\neg P) Λ Q) \vee R) \Rightarrow S

Recap

Α	В	С	ΑΛВ	B⇒C	(A ∧ B) ⇒ C	A Λ (B ⇒ C)
Т	T	T	Т	Т	Т	T
Т	T	F	Т	F	F	F
Т	F	Т	F	Т	Т	Т
Т	F	F	F	Т	Т	T
F	Т	Т	F	Т	Т	F
F	Т	F	F	F	Т	F
F	F	Т	F	Т	Т	F
F	F	F	F	Т	Т	F

.

Literal and Clause

- Literal: A single proposition or its negation:
 - Example: P, ¬P
- A clause: A propositional formula formed from a finite collection of literals and logical connectives:
 - Example: $P \vee Q \vee \neg R$

Rules of Inference

Classic rules of inference

And-Elimination

$$\begin{array}{c} \bullet \quad \underline{\alpha_1 \wedge \alpha_2 \wedge \ldots \wedge \alpha_n} \\ \hline \alpha_i \end{array}$$

e.g. Cloudy Λ Humid \mid = Cloudy e.g. Cloudy, Humid Cloudy ⇒ NoSunTan

And-Introduction

$$\begin{array}{c} \bullet & \alpha_{1}, \alpha_{2}, \ldots, \alpha_{n} \\ \hline \alpha_{1} \wedge \alpha_{2} \wedge \ldots \wedge \alpha_{n} \end{array}$$

Cloudy Λ Humid \Rightarrow Rain

- Or-Introduction
- Double-Negation-Elimination

$$\frac{\neg \neg \alpha}{\alpha}$$

Rules of Inference

Sound inference rules

- Pattern of inference, that occur again and again
- Soundness proven once and for all (truth-table)

Classic rules of inference

- Implication-Elimination, or Modus Ponens (MP)

e.g., Cloudy Λ Humid \Rightarrow Rain I= Rain Cloudy Λ Humid

Rules of Inference

Resolution

- A technique of inference
- Suppose x is a literal and S1 and S2 are two propositional sentences represented in the clausal form
- If $(x \vee S1) \wedge (\neg x \vee S2)$. Then, we get $(S1 \vee S2)$
 - Here, (S1 \vee S2) is the resolvent,
 - x is resolved upon

Rules of Inference

• The resolution rule of inference

- Unit Resolution
- Unit resolution is a specific case of resolution where one of the clauses involved has only a single literal.

$$\frac{\alpha \vee \beta, \ \neg \beta}{\alpha}$$

e.g., Monday v Tuesday, ¬ Monday |= Tuesday

same as MP:
$$\frac{P \Rightarrow Q, P}{Q}$$
 i.e. $\frac{\neg \beta \Rightarrow \alpha, \neg \beta}{\alpha}$

9

Equivalence Rules

• Equivalent notations

$$\begin{array}{c}
\alpha \Rightarrow \beta, \alpha \\
\beta
\end{array}$$

$$\begin{array}{c}
1) \alpha \Rightarrow \beta, \alpha \mid -\beta \\
2) \alpha \Rightarrow \beta, \alpha \mid = \beta \\
\\
\alpha \Rightarrow \beta \\
3) \quad \frac{\alpha}{\beta}
\end{array}$$

$$4) ((\alpha \Rightarrow \beta) \land \alpha) \Rightarrow \beta$$

Rules of Inference

The resolution rule of inference

- Full Resolution (a more general form of the resolution rule)
 - $\frac{\alpha \vee \beta, \ \neg \beta \vee \gamma}{\alpha \vee \gamma}$

Truth-table for the resolution

α	β	γ	$\alpha \vee \beta$	¬β∨γ	$\alpha \vee \gamma$
False	False	False	False	True	False
False	False	True	False	True	True
False	True	False	True	False	False
False	True	True	<u>True</u>	<u>True</u>	<u>True</u>
True	False	False	<u>True</u>	<u>True</u>	<u>True</u>
True	False	True	<u>True</u>	<u>True</u>	<u>True</u>
True	True	False	True	False	True
True	True	True	<u>True</u>	<u>True</u>	<u>True</u>

Equivalence Rules

Equivalence rules

- Associativity: $\alpha \Lambda (\beta \Lambda \gamma) \Leftrightarrow (\alpha \Lambda \beta) \Lambda \gamma$

 $\alpha \vee (\beta \vee \gamma) \Leftrightarrow (\alpha \vee \beta) \vee \gamma$

- Distributivity: $\alpha \Lambda (\beta \vee \gamma) \Leftrightarrow (\alpha \Lambda \beta) \vee (\alpha \Lambda \gamma)$

 $\alpha \vee (\beta \wedge \gamma) \Leftrightarrow (\alpha \vee \beta) \wedge (\alpha \vee \gamma)$

− De Morgan's Law: $\neg(\alpha \lor \beta) \Leftrightarrow \neg\alpha \land \neg\beta$

 $\neg(\alpha \land \beta) \Leftrightarrow \neg\alpha \lor \neg\beta$

Complexity of Inference

Proof by truth-table

- Complete
 - The truth-table can always be written.
- Exponential time complexity
 - A proof involving **N** proposition symbols requires **2**^N rows.
 - In practice, a proof may refer only to a small subset of the KB.

Monotonicity

- Knowledge always increases

if
$$KB_1 = \alpha$$
 then $(KB_1 \cup KB_2) = \alpha$

• A reasoning agent

- Propositional logic as the "programming language"
- Knowledge base (KB) as problem representation
 - Percepts
 - Knowledge sentences
 - Actions
- Rule of inference (e.g., Modus ponens) as the algorithm that will find a solution

14

The Knowledge Base

TELLing the KB: percepts

- Syntax and semantics
 - Symbol **S11**, meaning "there is stench at [1,1]"
 - Symbol B12, meaning "there is breeze at [1,2]"

Percept sentences

- Partial list:

[Stench , nil, nil, nil, nil]

4

W!

3

A

S

OK

V

V

OK

V

OK

1

2

3

4

The Knowledge Base

Relooking at the Wumpus World

TELLing the KB: knowledge

- Rules about the environment
 - "All squares adjacent to the wumpus have stench."

 $S12 \Rightarrow W11 \lor W12 \lor W22 \lor W13_3$

 "A square with no stench has no wumpus and adjacent squares have no wumpus either."

 $\neg S12 \Rightarrow \neg W11 \land \neg W12 \land \neg W22$ $\land \neg W13$

[Stench , nil, nil, nil, nil]

1 2 3 4

Finding the Wumpus

Checking the truth-table

 Exhaustive check: every row for which KB is true also has W13 true

- 12 propositional symbols, i.e. S11, S21, S12, W11, W21, W12, W22, W13, W31, B11, B21, B12
- $2^{12} = 4.096$ rows
- > possible, but lengthy

Reasoning by inference

- Application of a sequence of inference rules (proof)
 - Modus Ponens, And-Elimination, and Unit-Resolution

Proof for "KB \Rightarrow W13"

Knowledge Base

R1:
$$\neg$$
S11 $\Rightarrow \neg$ W11 $\land \neg$ W21 $\land \neg$ W12

R2:
$$\neg$$
S21 $\Rightarrow \neg$ W11 $\land \neg$ W21 $\land \neg$ W22 $\land \neg$ W31

 $\Lambda \neg W22 \Lambda \neg W13$

R3:
$$\neg$$
S12 $\Rightarrow \neg$ W11 $\land \neg$ W12

R4:
$$S12 \Rightarrow W11 \lor W12 \lor W22$$
 $\lor W13$

Inferences

- 1. Modus Ponens: ¬S11, R1 $\neg W11 \land \neg W21 \land \neg W12$
- 2. And-Elimination: ¬W11, ¬W21, ¬W12
- 3. Modus Ponens: ¬ S21, R2 ¬W11 ∧ ¬W21 ∧ ¬W22 ∧ ¬W31
- 4. And-Elimination: |- ¬W11, ¬W21, ¬W22, ¬W31

Proof for "KB \Rightarrow W13"

Knowledge Base

R1: \neg S11 $\Rightarrow \neg$ W11 $\land \neg$ W21 ∧ ¬W12

R2: $\neg S21 \Rightarrow \neg W11 \land \neg W21$

 $\Lambda \neg W22 \Lambda \neg W31$

R3: $\neg S12 \Rightarrow \neg W11 \land \neg W12$ $\Lambda \neg W22 \Lambda \neg W13$

R4: $S12 \Rightarrow W11 \lor W12 \lor W22$

∨ W13

Inferences

5. Modus Ponens: S12. R4

(W13 \times W12 \times W22) ∨ W11

6. Unit-Resolution: ♦. ¬W11

(W13 \times W12) \times W22

Proof for "KB \Rightarrow W13"

Knowledge Base

R1: $\neg S11 \Rightarrow \neg W11 \land \neg W21$ ∧ ¬W12

R2: $\neg S21 \Rightarrow \neg W11 \land \neg W21$ $\Lambda \neg W22 \Lambda \neg W31$

R3: $\neg S12 \Rightarrow \neg W11 \land \neg W12$

Λ ¬W22 Λ ¬W13

R4: $S12 \Rightarrow W11 \lor W12 \lor W22$

∨ W13

Inferences

 $KB += \neg W11, \neg W21, \neg W12,$ ¬W22, ¬W31, (W13 \times W12) \times W22

7. Unit-Resolution: ♦. ¬W22 W13 V W12

8. Unit-Resolution: ◆, ¬W12 W13

 $KB \Rightarrow W13$

From Knowledge to Actions

TELLing the KB: actions

- Additional rules
 - e.g. "if the wumpus is 1 square ahead then do not go forward"

A12 Λ East Λ W22 \Rightarrow ¬Forward A12 Λ North Λ W13 \Rightarrow ¬Forward

• • •

ASKing the KB

– Cannot ask "which action?" but "should I go forward?"

21

A Knowledge-Based Agent Using Propositional Logic

```
function Propositional-KB-Agent (percept) returns action
static KB, // a knowledge base
t // a time counter, initially 0

Tell (KB, Make-Percept-Sentence (percept, t))
foreach action in the list of possible actions
do
    if Ask (KB, Make-Action-Query (t, action)) then
        Tell (KB, Make-Action-Sentence (action, t))
        t ← t + 1
        return action
end
```

Limits of Propositional Logic

· A weak logic

- Too many propositions to TELL the KB
 - e.g., the rule "if the wumpus is 1 square ahead then do not go forward" needs 64 sentences (16 squares x 4 orientations)!
 - Result in increased time complexity of inference
- Handling change is difficult
 - Need time-dependent propositional symbols
 e.g., A11 means "the agent is in square [1,1]" when?
 at t = 0: A11-0; at t = 1: A21-1;
 at t = 2: A11-2
 - Need to rewrite rules as time-dependent
 e.g., A12-0 ∧ East-0 ∧ W22-0 ⇒ ¬Forward-0
 A12-2 ∧ East-2 ∧ W22-2 ⇒ ¬Forward-2

Thank you!

24