浙江大学 2020-2021 学年 秋冬 学期

《离散数学》课程期末考试试卷

课程号: <u>21120401</u> 开课学院: 计算机学院

考试试卷: ☑ A卷 □ B卷

评卷人

考试形式: ☑ 闭卷 □ 开卷,允许带 _____入场

考试日期: 2021 年 1 月 26 日, 考试时间: 120 分钟

诚信考试、沉着应考、杜绝违纪

考生姓名				学号		所属院系				
	题序	1	2	3	4	5	6	7	总分	
	得分									
	1,2,2,3									
	\\									

Zhejiang University
Discrete Mathematics, Fall-Winter 2020
Final Exam

- 1. (20 pts) Determine whether the following statements are true or false. If it is true fill a $\sqrt{}$ otherwise a \times in the bracket before the statement.
 - (a) (\checkmark) Let A, B and C be arbitrary sets. If $A C \subseteq B C$, then $A \cup C \subseteq B \cup C$.
 - (b) (\checkmark) Let A, B be two sets. If $\rho(A) \subseteq \rho(B)$, then $A \subseteq B$, where $\rho(X)$ is the power set of X. $(\neg \forall x) | (X) \equiv (\exists x \neg P(x)) | (X) \equiv (\exists x \neg P(x$
 - (c) (\mathbf{X}) Let P(x) be a predicate, then $\forall x P(x) \to Q \Leftrightarrow \forall x (P(x) \to Q)$, where Q is independent of x.
 - (d) (X) The poset $(\{1, 2, 4, 8, 12, 16, 32\}, |)$ is a lattice(格), where x | y denote x divides y.
 - X(e) \iff Let (S, \preceq) be a partially ordered set, if there is unique maximal element a of S, then a is the greatest element of S.
 - (f) () If the following assignments 000,011 and 110 make the propositional formula φ false, then φ can be converted in full conjunctive normal form $\Pi(0,3,6)$.
 - (g) (\mathbf{X}) The set of all functions from \mathbb{N} to $\{0,1\}$ is countably infinite.
 - (h) (\checkmark) If there are 800 people in a room then at least 3 of them are guaranteed to have the same birthday.
 - (i) (X) All simple complete graphs with at least 3 vertices are Euler graphs.
 - (j) (v) In a binary tree with n vertices and l leaves, then $2 \cdot l \leq n+1$.

2. (12 pts) On Mathematical Logic

Construct arguments to prove that the following reasoning is valid.

Hypothesis: $\neg p \lor q \to r, s \lor \neg q, \neg t, p \to t, \neg p \land r \to \neg s$

Conclusion: $\neg q$

- 3) TP (Modus Tollens)

D TpVq →r (H)

D r (Modus Ponens)

D Tp (Rules of conjunction)

3. (10 pts) On Infinite sets

Let A be an arbitrary infinite set, B be a countably infinite set, and $A \cap B = \emptyset$. Prove that sets A and $A \cup B$ have the same cardinality.

若A为T数无穷华,则可同时对A.B集合的元系编号 然后构造一映新:A \longrightarrow AUB, 磁起 f(Q_{2k}) = Q_{K} , f(Q_{2k+1}) = b_{K}

若A为不可数无矩阵,则以一运动动取出一可数无密集 C C A , 科对 C作业上映射,对A-C作恒等映射

4. **(12 pts)** ON GRAPH

Let G be a simple graph with n vertices and k connected components.

- What is the minimum possible number of edges of G? n + k
- What is the maximum possible number of edges of G?

证明:平衡法

5. (24 pts) On set and Relation

Let A be a set with n elements and $B = \{a, b, c\}$.

- (a) How many different symmetric relations on A?
- (b) How many different anti-symmetric relations on A? 2.3
- How many both symmetric and antisymmetric binary relations on A are there? 2"
- How many different equivalence relations are there on B?
- How many different partial order relations are there on B?
- Is there a binary relation R on B such that R is both an equivalence relation and a partial order? Either give an example, or show that no such R exist.

Justify your answer, but you don't need to give a formal proof.

6. **(10 pts)** ON TREE

Suppose that T is a tree of 9 vertices with a vertex of 6 degrees.

- What degree sequences can T have?
- (b) Draw all non-isomorphic trees of 9 vertices with a vertex of 6 degrees.

(a)度数主和为16 1+1+1+1+1+1+3+6 1+1+1+1+1+1+2+2+6

7. (12 pts) ON COUNTING

Let b_n denote the number of binary strings of length n that contain 101 as a substring and $B(x) = \sum_{n=1}^{\infty} b_n x^n$.

- (a) Determine the value of b_1, b_2, b_3, b_4, b_5 .
- Derive an explicit closed-form expression for B(x).

HINT: You might want to set up recurrence relation for the appropriate sequences. (a) fij: 臉海海与101有了位匹配,特别也: fi, 添示长度为治毒与101有110有110有一次匹配成油且出现数据 刚fit10 = fin + fin2 fin, 1 = fin + fin fi+1,2 = fi,1 fi+1,3 = fi,2 b3 = 1 3 b4=4 2 bs = 11 (b) $b_n = 2b_{n-1} - b_{n-2} + b_{n-3} + 2^{n-3}$, $b_n = 0, b_n = 0, b_n = 1$ (CEISH来的) $b_n - 2^n = 2(b_{n-1} - 2^{n-1}) - (b_{n-2} - 2^{n-2}) + (b_{n-3} - 2^{n-3})$ 金an=bn-2ⁿ, Ry an=2an-1-an-2+an-3

特征指4 13-212+1-1=D

dn:长度为n,以O打头 en:版物,以打头 $d_1 = e_1 = d_2 = e_2 = 0$ $d_n = d_{n-1} + e_{n-1}$ $e_n = e_{n-1} + d_{n-2} + 2^{n-3}$ Rybn=dn+1

 $D(x) = \sum_{n \geq 3} d_n x^n \quad E(x) = \sum_{n \geq 3} e_n x^n$

 $B(x) = \frac{1}{x}D(x)$

 $D(x) = \chi D(x) + \chi E(x) = \chi D(x) + \frac{\chi}{1-\chi} \left(\chi^2 D(x) + \frac{\chi^3}{1-2\chi} \right) = \chi D(x) + \frac{\chi^3}{1-\chi} D(x) + \frac{\chi^3}{1-2\chi}$ $E(x) = xE(x) + x^2D(x) + \sum_{n \ge 1} 2^{n-3}x^n$

 $= \chi E(\chi) + \chi^{2}D(\chi) + \chi^{3}\int_{1-2\chi}^{1-2\chi} (2\chi)^{4}$ $= \chi E(\chi) + \chi^{2}D(\chi) + \chi^{3}$ $= \chi E(\chi) + \chi^{2}D(\chi) + \chi^{3}$ $= \frac{1}{1-\chi} \left(\chi^{2}D(\chi) + \frac{\chi^{3}}{1-2\chi} \right)$

Enjoy Your Spring Festival