```
In [66]:
         import pandas as pd
         df=pd.read_csv ("E:\chrome downloads\iris\iris.data", header=None, names=cc)
         #df_xlsx=pd.read_excel('')
         #df_txt=pd.read_csv ("E:\chrome downloads\iris\iris.txt, delimeter='\t'")
         print(df)
                1
                     2
                               4
                                               5
                          3
         0
              5.1 3.5 1.4
                            0.2
                                     Iris-setosa
              4.9
                  3.0 1.4 0.2
                                     Iris-setosa
         1
         2
              4.7 3.2
                       1.3
                            0.2
                                     Iris-setosa
         3
              4.6 3.1
                       1.5
                             0.2
                                     Iris-setosa
         4
              5.0 3.6 1.4 0.2
                                     Iris-setosa
                   . . .
         145 6.7
                   3.0
                       5.2 2.3 Iris-virginica
                                 Iris-virginica
         146 6.3 2.5
                       5.0 1.9
         147
              6.5 3.0
                        5.2 2.0
                                 Iris-virginica
         148 6.2 3.4 5.4 2.3
                                  Iris-virginica
         149 5.9 3.0 5.1 1.8 Iris-virginica
         [150 rows x 5 columns]
In [65]: cc=["1","2","3","4","5"]
         cc
Out[65]: ['1', '2', '3', '4', '5']
In [67]:
         #to read headers
         df.columns
Out[67]: Index(['1', '2', '3', '4', '5'], dtype='object')
In [17]: # to read each clm
         print(df[["3","5"]])
                3
                                5
              1.4
         0
                      Iris-setosa
         1
              1.4
                      Iris-setosa
         2
              1.3
                      Iris-setosa
         3
              1.5
                      Iris-setosa
         4
              1.4
                      Iris-setosa
              . . .
         145 5.2 Iris-virginica
         146 5.0 Iris-virginica
         147
              5.2 Iris-virginica
         148
              5.4 Iris-virginica
         149
              5.1 Iris-virginica
         [150 rows x 2 columns]
```

```
In [31]: #each row
    #df.iloc[0]
    #for index ,row in df.iterrows():
    # print(index,row['5'])
    df.loc[df['5']=="Iris-setosa"]
```

Out[31]:

	1	2	3	4	5
0	5.1	3.5	1.4	0.2	Iris-setosa
1	4.9	3.0	1.4	0.2	Iris-setosa
2	4.7	3.2	1.3	0.2	Iris-setosa
3	4.6	3.1	1.5	0.2	Iris-setosa
4	5.0	3.6	1.4	0.2	Iris-setosa
5	5.4	3.9	1.7	0.4	Iris-setosa
6	4.6	3.4	1.4	0.3	Iris-setosa
7	5.0	3.4	1.5	0.2	Iris-setosa
8	4.4	2.9	1.4	0.2	Iris-setosa
9	4.9	3.1	1.5	0.1	Iris-setosa
10	5.4	3.7	1.5	0.2	Iris-setosa
11	4.8	3.4	1.6	0.2	Iris-setosa
12	4.8	3.0	1.4	0.1	Iris-setosa
13	4.3	3.0	1.1	0.1	Iris-setosa
14	5.8	4.0	1.2	0.2	Iris-setosa
15	5.7	4.4	1.5	0.4	Iris-setosa
16	5.4	3.9	1.3	0.4	Iris-setosa
17	5.1	3.5	1.4	0.3	Iris-setosa
18	5.7	3.8	1.7	0.3	Iris-setosa
19	5.1	3.8	1.5	0.3	Iris-setosa
20	5.4	3.4	1.7	0.2	Iris-setosa
21	5.1	3.7	1.5	0.4	Iris-setosa
22	4.6	3.6	1.0	0.2	Iris-setosa
23	5.1	3.3	1.7	0.5	Iris-setosa
24	4.8	3.4	1.9	0.2	Iris-setosa
25	5.0	3.0	1.6	0.2	Iris-setosa
26	5.0	3.4	1.6	0.4	Iris-setosa
27	5.2	3.5	1.5	0.2	Iris-setosa
28	5.2	3.4	1.4	0.2	Iris-setosa
29	4.7	3.2	1.6	0.2	Iris-setosa
30	4.8	3.1	1.6	0.2	Iris-setosa
31	5.4	3.4	1.5	0.4	Iris-setosa
32	5.2	4.1	1.5	0.1	Iris-setosa
33	5.5	4.2	1.4	0.2	Iris-setosa
34	4.9	3.1	1.5	0.1	Iris-setosa
35	5.0	3.2	1.2	0.2	Iris-setosa

```
1
         2 3
                             5
36 5.5 3.5 1.3 0.2 Iris-setosa
37 4.9 3.1 1.5 0.1 Iris-setosa
38 4.4 3.0 1.3 0.2 Iris-setosa
39 5.1 3.4 1.5 0.2 Iris-setosa
40 5.0 3.5 1.3 0.3 Iris-setosa
41 4.5 2.3 1.3 0.3 Iris-setosa
42 4.4 3.2 1.3 0.2 Iris-setosa
43 5.0 3.5 1.6 0.6 Iris-setosa
44 5.1 3.8 1.9 0.4 Iris-setosa
45 4.8 3.0 1.4 0.3 Iris-setosa
46 5.1 3.8 1.6 0.2 Iris-setosa
47 4.6 3.2 1.4 0.2 Iris-setosa
48 5.3 3.7 1.5 0.2 Iris-setosa
49 5.0 3.3 1.4 0.2 Iris-setosa
```

In [26]: #read specific location(r,c) df.iloc[148,4]

Out[26]: 'Iris-virginica'

In [32]: |df.describe()

Out[32]:

	1	2	3	4
count	150.000000	150.000000	150.000000	150.000000
mean	5.843333	3.054000	3.758667	1.198667
std	0.828066	0.433594	1.764420	0.763161
min	4.300000	2.000000	1.000000	0.100000
25%	5.100000	2.800000	1.600000	0.300000
50%	5.800000	3.000000	4.350000	1.300000
75%	6.400000	3.300000	5.100000	1.800000
max	7.900000	4.400000	6.900000	2.500000

```
In [37]: df.sort_values("4", ascending=False)
```

```
Out[37]:
                   1
                        2
                            3
                                 4
                                             5
            100 6.3 3.3 6.0 2.5 Iris-virginica
            109 7.2 3.6 6.1 2.5 Iris-virginica
            144 6.7 3.3 5.7 2.5 Iris-virginica
            114 5.8 2.8 5.1 2.4 Iris-virginica
            140 6.7 3.1 5.6 2.4 Iris-virginica
             13 4.3 3.0 1.1 0.1
                                     Iris-setosa
             37 4.9 3.1 1.5 0.1
                                     Iris-setosa
             32 5.2 4.1 1.5 0.1
                                     Iris-setosa
             34 4.9 3.1 1.5 0.1
                                     Iris-setosa
               9 4.9 3.1 1.5 0.1
                                     Iris-setosa
```

150 rows × 5 columns

```
In [48]: #making changes to data
    df['Total'] = df['1'] + df['2'] + df['3'] + df['4']
    df
```

Orr	t I	[42]	
ou	_	L 70 J	

	1	2	3	4	5	Total
0	5.1	3.5	1.4	0.2	Iris-setosa	10.2
1	4.9	3.0	1.4	0.2	Iris-setosa	9.5
2	4.7	3.2	1.3	0.2	Iris-setosa	9.4
3	4.6	3.1	1.5	0.2	Iris-setosa	9.4
4	5.0	3.6	1.4	0.2	Iris-setosa	10.2
145	6.7	3.0	5.2	2.3	Iris-virginica	17.2
146	6.3	2.5	5.0	1.9	Iris-virginica	15.7
147	6.5	3.0	5.2	2.0	Iris-virginica	16.7
148	6.2	3.4	5.4	2.3	Iris-virginica	17.3
149	5.9	3.0	5.1	1.8	Iris-virginica	15.8

150 rows × 6 columns

```
In [49]:
                          df[df.duplicated()]
Out[49]:
                                              1
                                                         2
                                                                    3
                                                                              4
                                                                                                            5 Total
                                        4.9
                                                    3.1
                                                             1.5
                                                                          0.1
                                                                                         Iris-setosa
                                                                                                                       9.6
                                37 4.9 3.1 1.5 0.1
                                                                                         Iris-setosa
                                                                                                                       9.6
                              142 5.8 2.7 5.1 1.9 Iris-virginica
                                                                                                                     15.5
                           df.info
In [50]:
                                                                                                                                                             2
Out[50]: <bound method DataFrame.info of</pre>
                                                                                                                                              1
                                                                                                                                                                           3
                                                                                                                                                                                          4
                                                                                                                                                                                                                                         5 Tota
                           0
                                          5.1
                                                        3.5
                                                                       1.4
                                                                                      0.2
                                                                                                              Iris-setosa
                                                                                                                                                       10.2
                           1
                                          4.9
                                                         3.0
                                                                       1.4
                                                                                      0.2
                                                                                                              Iris-setosa
                                                                                                                                                          9.5
                           2
                                          4.7
                                                         3.2
                                                                                      0.2
                                                                                                                                                          9.4
                                                                       1.3
                                                                                                              Iris-setosa
                           3
                                          4.6
                                                         3.1
                                                                                      0.2
                                                                                                                                                         9.4
                                                                       1.5
                                                                                                              Iris-setosa
                           4
                                          5.0
                                                         3.6
                                                                       1.4
                                                                                      0.2
                                                                                                              Iris-setosa
                                                                                                                                                       10.2
                                                                                                                                                          . . .
                           145
                                          6.7
                                                         3.0
                                                                       5.2
                                                                                      2.3
                                                                                                     Iris-virginica
                                                                                                                                                       17.2
                                          6.3
                                                                                                     Iris-virginica
                                                                                                                                                       15.7
                           146
                                                         2.5
                                                                       5.0
                                                                                      1.9
                                                                                                     Iris-virginica
                           147
                                          6.5
                                                         3.0
                                                                       5.2
                                                                                      2.0
                                                                                                                                                       16.7
                                                                                                     Iris-virginica
                           148
                                          6.2
                                                         3.4
                                                                       5.4
                                                                                      2.3
                                                                                                                                                       17.3
                           149
                                          5.9
                                                         3.0
                                                                       5.1
                                                                                   1.8
                                                                                                     Iris-virginica
                                                                                                                                                       15.8
                           [150 rows x 6 columns]>
In [27]:
                           import pandas as pd
                           data = {'firstName':['Aryan','Rohan','Riya','Yash','Siddant'],'LastName':['Single or the strength of the 
                           df=pd.DataFrame(data)
                           df
                           4
Out[27]:
                                     firstName LastName
                                                                                                 Type
                                                                                                                 Department
                                                                                                                                               salary yoe
                             0
                                                                                                                                               20000
                                                                                                                                                                      2
                                              Aryan
                                                                         Singh
                                                                                         Full time
                                                                                                                             Admin
                              1
                                            Rohan
                                                                     Agarval
                                                                                                intern
                                                                                                                                 Tech
                                                                                                                                                  5000
                                                                                                                                                                      3
                              2
                                                Riya
                                                                          Shah
                                                                                         Full time
                                                                                                                             Admin
                                                                                                                                               10000
                                                                                                                                                                      5
                              3
                                                                                                                                               10000
                                                                                                                                                                      7
                                                Yash
                                                                       Bhatia
                                                                                         part time
                                                                                                                                Tech
                                                                                         Full time Management
                                           Siddant
                                                                     Khanna
                                                                                                                                                                      6
                          avg_sal=df.pivot_table(values='salary',index='Department',columns='Type',aggfu
   In [7]:
                           avg_sal
  Out[7]:
                                               Type
                                                                         Full time
                                                                                                 intern part time
                                Department
                                           Admin 1.000005e+09
                                                                                                     NaN
                                                                                                                             NaN
                              Management 2.000000e+04
                                                                                                     NaN
                                                                                                                             NaN
                                                                                   NaN 5000.0
                                                                                                                      10000.0
                                               Tech
```

```
In [9]:
         sum_mean=df.pivot_table(values='salary',index='Type',aggfunc=['sum','mean','co
          sum mean
 Out[9]:
                             sum
                                         mean count
                            salary
                                        salary salary
              Type
           Full time
                   200001000020000 6.666700e+13
                                                  3
             intern
                             5000
                                  5.000000e+03
                                                  1
          part time
                            10000 1.000000e+04
                                                  1
         std_df=df.pivot_table(values='salary',index='Type',aggfunc='std')
In [10]:
          std df
Out[10]:
                        salary
             Type
          Full time 5773.502692
         seriesA=pd.Series([10,20,30,40,50,60])
In [29]:
          seriesB=pd.Series([40,50,60,70,80,90])
         not_common=seriesA.append(seriesB).unique()
         not_common
         C:\Users\NUTHAN SM\AppData\Local\Temp\ipykernel_6636\2351936300.py:3: FutureW
          arning: The series.append method is deprecated and will be removed from panda
          s in a future version. Use pandas.concat instead.
            not_common=seriesA.append(seriesB).unique()
Out[29]: array([10, 20, 30, 40, 50, 60, 70, 80, 90], dtype=int64)
In [31]: | smallest=seriesA.min()
          print(smallest)
         largest=seriesB.max()
         largest
         10
Out[31]: 90
In [32]:
         sumb=seriesB.sum()
         sumb
Out[32]: 390
In [35]: | avg_A=seriesA.mean()
         avg_A
Out[35]: 35.0
```

In [36]: medi_B=seriesB.median()
 medi_B

Out[36]: 65.0

In [47]: auto_mpg=pd.read_csv('C://datasets/auto-mpg.csv')
auto_mpg.head()

Out[47]:

	mpg	cylinders	displacement	horsepower	weight	acceleration	model year	origin	car name
0	18.0	8	307.0	130	3504	12.0	70	1	chevrolet chevelle malibu
1	15.0	8	350.0	165	3693	11.5	70	1	buick skylark 320
2	18.0	8	318.0	150	3436	11.0	70	1	plymouth satellite
3	16.0	8	304.0	150	3433	12.0	70	1	amc rebel sst
4	17.0	8	302.0	140	3449	10.5	70	1	ford torino

In [50]: auto_mpg.describe()

Out[50]:

	mpg	cylinders	displacement	weight	acceleration	model year	origin
count	398.000000	398.000000	398.000000	398.000000	398.000000	398.000000	398.000000
mean	23.514573	5.454774	193.425879	2970.424623	15.568090	76.010050	1.572864
std	7.815984	1.701004	104.269838	846.841774	2.757689	3.697627	0.802055
min	9.000000	3.000000	68.000000	1613.000000	8.000000	70.000000	1.000000
25%	17.500000	4.000000	104.250000	2223.750000	13.825000	73.000000	1.000000
50%	23.000000	4.000000	148.500000	2803.500000	15.500000	76.000000	1.000000
75%	29.000000	8.000000	262.000000	3608.000000	17.175000	79.000000	2.000000
max	46.600000	8.000000	455.000000	5140.000000	24.800000	82.000000	3.000000

In [51]: eight=auto_mpg[auto_mpg['cylinders']==8]
eight

Out[51]:

	mpg	cylinders	displacement	horsepower	weight	acceleration	model year	origin	car name
0	18.0	8	307.0	130	3504	12.0	70	1	chevrolet chevelle malibu
1	15.0	8	350.0	165	3693	11.5	70	1	buick skylark 320
2	18.0	8	318.0	150	3436	11.0	70	1	plymouth satellite
3	16.0	8	304.0	150	3433	12.0	70	1	amc rebel sst
4	17.0	8	302.0	140	3449	10.5	70	1	ford torino
			•••						
291	19.2	8	267.0	125	3605	15.0	79	1	chevrolet malibu classic (sw)
292	18.5	8	360.0	150	3940	13.0	79	1	chrysler lebaron town @ country (sw)
298	23.0	8	350.0	125	3900	17.4	79	1	cadillac eldorado
300	23.9	8	260.0	90	3420	22.2	79	1	oldsmobile cutlass salon brougham
364	26.6	8	350.0	105	3725	19.0	81	1	oldsmobile cutlass Is

103 rows × 9 columns

```
In [54]: | cars_new=auto_mpg.groupby('model year')['car name'].count()
          cars_new
Out[54]: model year
          70
                29
          71
                28
          72
                28
          73
                40
          74
                27
          75
                30
          76
                34
          77
                28
          78
                36
          79
                29
                29
          80
          81
                29
          82
                31
          Name: car name, dtype: int64
In [62]:
         import numpy as np
          data = np.array([[1, 6012], [2, 4079], [3, 6386], [4, 5230], [5, 4598], [6,
          5564], [7, 6971], [8, 7763], [9, 8032], [10, 8569]])
          print(data)
          1 6012]
               2 4079]
               3 6386]
               4 5230]
               5 4598]
               6 5564]
               7 6971]
               8 7763]
               9 8032]
              10 8569]]
In [63]: | steps_more_than_9000 = data[data[:, 1] > 9000]
          steps_more_than_9000
Out[63]: array([], shape=(0, 2), dtype=int32)
In [70]: df.head(5)
Out[70]:
                  2
                      3
                          4
                                    5
           0 5.1 3.5 1.4 0.2 Iris-setosa
           1 4.9 3.0 1.4 0.2 Iris-setosa
           2 4.7 3.2 1.3 0.2 Iris-setosa
           3 4.6 3.1 1.5 0.2 Iris-setosa
           4 5.0 3.6 1.4 0.2 Iris-setosa
```

```
In [86]: import matplotlib.pyplot as plt
plt.scatter(df['2'], df['4'])
plt.title('compare petal length and petal width')
plt.xlabel('Petal length')
plt.ylabel('Petal width')
plt.show()
```



```
In [88]: print(df.isnull().sum())

1      0
2      0
3      0
4      0
5      0
dtype: int64
```

In [89]: df.describe()

0u	t	8	9]	1

	1	2	3	4
count	150.000000	150.000000	150.000000	150.000000
mean	5.843333	3.054000	3.758667	1.198667
std	0.828066	0.433594	1.764420	0.763161
min	4.300000	2.000000	1.000000	0.100000
25%	5.100000	2.800000	1.600000	0.300000
50%	5.800000	3.000000	4.350000	1.300000
75%	6.400000	3.300000	5.100000	1.800000
max	7.900000	4.400000	6.900000	2.500000

In [93]: import seaborn as sns
 sns.countplot(x='3',data=df)
 #plt.xtricks(rotation=90)
 plt.show()


```
In [95]: sns.distplot(df['1'])
plt.show()
```

 $\label{local_temp_ipykernel_6636_2008306444.py:1: UserWarning: } \\$

`distplot` is a deprecated function and will be removed in seaborn v0.14.0.

Please adapt your code to use either `displot` (a figure-level function with similar flexibility) or `histplot` (an axes-level function for histograms).

For a guide to updating your code to use the new functions, please see https://gist.github.com/mwaskom/de44147ed2974457ad6372750bbe5751 (https://gist.github.com/mwaskom/de44147ed2974457ad6372750bbe5751)

sns.distplot(df['1'])


```
In [96]: sns.scatterplot(x='1',y='2',hue='2',data=df)
plt.show()
```


In [97]: df.info()

<class 'pandas.core.frame.DataFrame'>
RangeIndex: 150 entries, 0 to 149
Data columns (total 5 columns):

		(-, -
#	Column	Non-Null Count	Dtype
0	1	150 non-null	float64
1	2	150 non-null	float64
2	3	150 non-null	float64
3	4	150 non-null	float64
4	5	150 non-null	object

dtypes: float64(4), object(1)

memory usage: 6.0+ KB

```
In [103]:
         df.info
Out[103]: <bound method DataFrame.info of</pre>
                                                                                     5
                                                    1
                                                         2
                                                               3
                                                                    4
                    3.5
                          1.4
                5.1
                                0.2
                                        Iris-setosa
           1
                4.9
                     3.0
                          1.4
                                0.2
                                        Iris-setosa
           2
                4.7
                     3.2
                          1.3
                                0.2
                                        Iris-setosa
           3
                     3.1
                          1.5
                                0.2
                                        Iris-setosa
                                        Iris-setosa
           4
                5.0
                     3.6
                          1.4
                                0.2
                                2.3
                                     Iris-virginica
           145
                6.7
                     3.0
                          5.2
           146
                6.3
                     2.5
                          5.0
                                1.9
                                     Iris-virginica
                                     Iris-virginica
           147
                6.5
                     3.0
                          5.2
                                2.0
                                     Iris-virginica
           148
                6.2
                     3.4
                                2.3
                          5.4
           149
                                     Iris-virginica
                5.9 3.0
                          5.1 1.8
           [150 rows x 5 columns]>
In [108]: df['3'].value_counts().plot(kind='bar')
           plt.xlabel('1')
           plt.ylabel('count')
           plt.title('Spices distribution')
           plt.show()
```

Spices distribution

Out[147]:

	number	Pencil	textbooks	drawing sheets	Total units	profit
0	1	300	250	100	700	80000
1	2	350	350	125	1075	9500
2	3	400	400	190	1320	10256
3	4	500	420	210	1510	12000
4	5	520	500	250	None	15000

In [148]: dfr.describe()

Out[148]:

	number	Pencil	textbooks	drawing sheets	Total units	profit
count	5	5	5	5	5	5
unique	5	5	5	5	5	5
top	1	300	250	100	700	80000
frea	1	1	1	1	1	1

```
In [149]: '''plt.plot(number,profit, marker='o',linestyle='-')
    plt.title('line plot showing total profit on y axis and number column on x axis
    sns.lineplot(x='number',y='profit',data=dfr)
    plt.show()
```



```
In [150]: tprofit=dfr['profit'].sum()
    tprofit
```

Out[150]: '800009500102561200015000'

```
In [151]: dfr['drawing sheets'].max()
```

Out[151]: '250'

```
In [155]: meanimp=dfr.fillna(dfr.mean(),inplace=True)
    meanimp
```

C:\Users\NUTHAN SM\AppData\Local\Temp\ipykernel_6636\643901086.py:1: FutureWa rning: The default value of numeric_only in DataFrame.mean is deprecated. In a future version, it will default to False. In addition, specifying 'numeric_only=None' is deprecated. Select only valid columns or specify the value of n umeric_only to silence this warning.

meanimp=dfr.fillna(dfr.mean(),inplace=True)

```
In [ ]:
```