第五章 炔烃和二烯烃单元练习

一. 简答题

- 1. 为什么乙炔的酸性大于乙烯的酸性?
- 2. 判断下列两对化合物哪个更稳定,并简述理由:

- 2. CH₃CH₂CH₂C≡CH 与 CH₃CH=CHCH=CH₂
- 3. 反-1,2-二溴环己烷在 KOH- C_2H_5OH 中进行消除反应得 1,3-环己二烯而未得环己炔,为什么?
- 4. 下列化合物按照与 HBr 加成反应的相对活性大小排列成序。(> > >)
 - 1. CH₃CH=CHCH=CH₂
- 2. CH₂=CHCH₂CH₃
- 3. CH₃CH=CHCH₃
- 4.CH2=CHCH=CH2

二. 填空题 (*题目4学分免做)

- CH₃C≡CH + Br₂(1mol) — (
- 2. CH₃C≡CH + HCl(1mol) (
- 3. CH₃CH₂C≡CCH₂CH₃ (1) KMnO₄, OH⁻, H₂O (2) H⁺
- 4. * CH₃C≡CH + CH₃CH₂MgBr \longrightarrow () + (

5.
$$CH_3C \equiv CCH_3 \xrightarrow{Lindlar Pd/H_2} \left(\right) \xrightarrow{Br_2/CCl_4} \left(\right) + \left(\right)$$

7.
$$CH_3CH_2C \equiv CH$$
 NaNH₂ () C_2H_5Br () $H_3O^+.Hg^{2+}$ ()

8.
$$CH_3CH_2C\equiv CH \xrightarrow{1)B_2H_8, Et_2O}$$
 (

10.
$$CH_3CH_2CH=CH_2$$
 NBS $\left(\right) \triangle \left(\right)$

三. 用化学方法鉴别下列各组化合物:

四、用反应机理解释下列反应。

五. 合成题

1. 无机试剂可任选,由乙炔为唯一碳原料,合成顺-3-己烯.

以 ≤ C₂ 有机物合成

3. 完成下列转化 CH₃CH₂CH₂CH₂OH ———— CH₂BrCH=CHCH₂Br

六 推测题

1. 某烃 A 能使 Br₂/CCl₄ 褪色,能吸收 2molH₂,与 Ag(NH₃)₂⁺无反应,与 KMnO₄/H₂SO₄ 作用得一种一元酸,将 A 与 Na/Liq-NH₃ 还原得 B, B 与 Cl₂ 作用得 C, 将 C 与 KOH/EtOH 作用得(E)-2-氯-2-丁烯,试推测 A、B 的结构式和 C 的 Newman 投影式(最优势构象)。