(D) 15

EXERCISE - I

SINGLE CORRECT (OBJECTIVE QUESTIONS)

(B) 9

3. In the binomial $(2^{1/3} + 3^{-1/3})^n$, if the ratio of the

seventh term from the beginning of the expansion to

(C) 12

the seventh term from its end is 1/6, then n equals

1. If 'a' be the sum of the odd terms & 'b' the sum of the even terms in the expansion of $(1+x)^n$, then $(1-x^2)^n$ equals

(A) $a^2 - b^2$ (B) $a^2 + b^2$ (C) $b^2 - a^2$ Sol.

(D) none

(A) 6

Sol.

2. Given that the term of the expansion $(x^{1/3} - x^{-1/2})^{15}$ which does not contain x is 5m where $m \in N$, then m equals

(A) 1100

Sol.

(B) 1010

(C) 1001

(D) none

4. Let n be a positive integer. Then of the following, the greatest term is

$$(A)\left(1+\frac{1}{4n}\right)^{4n}$$
 $(B)\left(1+\frac{1}{3n}\right)^{3n}$ $(C)\left(1+\frac{1}{2n}\right)^{2n}$ $(D)\left(1+\frac{1}{n}\right)^{n}$

Sol.

5. If the coefficients of x^7 & x^8 in the expansion of

$$\left[2+\frac{x}{3}\right]^n$$
 are equal, then the value of n is

- (A) 15 **Sol.**
- (B) 45
- (C) 55
- (D) 56

7. Number of rational terms in the expansion of

$$(\sqrt{2} + \sqrt[4]{3})^{100}$$
 is

(A) 25

Sol.

- (B) 26
- (C) 27
- (D) 28

6. The expression $\frac{1}{\sqrt{4x+1}} \left[\left[\frac{1+\sqrt{4x+1}}{2} \right]^7 - \left[\frac{1-\sqrt{4x+1}}{2} \right]^7 \right]$

is a polynomial in x of degree

- (A) 7
- (B) 5
- (C) 4
- (D) 3

8. If $n \in \mathbb{N}$ & n is even, then

$$\frac{1}{1.(n-1)!} + \frac{1}{3!(n-3)!} + \frac{1}{5!(n-5)!} + \dots + \frac{1}{(n-1)!1!} \text{ equals}$$

- (A) 2^n (B) $\frac{2^{n-1}}{n!}$ (C) 2^n n! (D) none of these

Sol.

10. The last two digits of the number 3^{400} are (B) 43 (C) 29 (A) 81 (D) 01 Sol.

9. The sum of the series

$$(1^2 + 1) 1! + (2^2 + 1) \cdot 2! + (3^2 + 1) \cdot 3! \dots + (n^2 + 1) \cdot n!$$
 is

- (A) (n + 1).(n + 2)!
- (B) n. (n + 1)!
- (C) (n + 1).(n + 1)!
- (D) none of these

Sol.

11. The sum of the binomial coefficients of $\left[2x + \frac{1}{x}\right]^n$

is equal to 256. The constant term in the expansion is (A) 1120 (B) 2110 (C) 1210 (D) none Sol.

(B) 5 elements

(D) 10 elements

- 12. The sum of the co-efficients in the expansion of $(1 - 2x + 5x^2)^n$ is 'a' and the sum of the co-efficients in the expansion of $(1 + x)^{2n}$ is b. Then
- (A) a = b (B) $a = b^2$ (C) $a^2 = b$
- (D) ab = 1
- Sol.

- **15.** The greatest terms of the expansion $(2x + 5y)^{13}$ when x = 10, y = 2 is
- (A) ¹³C₅. 20⁸. 10⁵

14. Set of values of r for which,

(A) 4 elements

(C) 7 elements

Sol.

 $^{18}C_{r-2} + 2.^{18}C_{r-1} + ^{18}C_{r} \ge {}^{20}C_{13}$ contains

- (B) ¹³C₆. 20⁷. 10⁴
- (C) ¹³C₄. 20⁹. 10⁴

Sol.

(D) none of these

13. The sum of the co-efficients of all the even powers of x in the expansion of $(2x^2 - 3x + 1)^{11}$ is (A) 2.6^{10} (B) 3.6^{10} (C) 6^{11} (D) none Sol.

16. The binomial expansion of $\left(x^k + \frac{1}{x^{2k}}\right)^{3n}$, $n \in \mathbb{N}$

contains a term independent of x

- (A) only if k is an integer
- (B) only if k is a natural number
- (C) only if k is rational
- (D) for any real k

Sol.

- **18.** Let $(5+2\sqrt{6})^n = p+f$ where $n \in N$ and $p \in N$ and
- 0 < f < 1 then the value, $f^2 f + pf p$ is
- (A) a natural number
- (B) a negative integer
- (C) a prime number
- (D) an irrational number

Sol.

17.
$$\frac{C_0}{1} + \frac{C_1}{2} + \frac{C_2}{3} + \dots + \frac{C_{10}}{11} =$$

- (A) $\frac{2^{11}}{11}$ (B) $\frac{2^{11}-1}{11}$ (C) $\frac{3^{11}}{11}$ (D) $\frac{3^{11}-1}{11}$

Sol.

- **19.** The coefficient of $x^r(0 \le r \le n 1)$ in the expression $(x + 2)^{n-1} + (x + 2)^{n-2} \cdot (x + 1) + (x + 2)^{n-3} \cdot (x + 1)^2 +$+ $(x + 1)^{n-1}$ is
- (A) ${}^{n}C_{r}(2^{r}-1)$ (B) ${}^{n}C_{r}(2^{n-r}-1)$
- (C) ${}^{n}C_{r}(2^{r}+1)$ (D) ${}^{n}C_{r}(2^{n-r}+1)$

21. The co-efficient of x^4 in the expansion of

$$(1 - x + 2x^2)^{12}$$
 is

(B)
$${}^{13}C_3$$

(D) ${}^{12}C_3 + 3 {}^{13}C_3 + {}^{14}C_4$

Sol.

20. If $(1 + x + x^2)^{25} = a_0 + a_1 x + a_2 x^2 + \dots + a_{50}$. x^{50} then $a_0 + a_2 + a_4 + \dots + a_{50}$ is

- (A) even
- (B) odd & of the form 3n
- (C) odd & of the form (3n 1)
- (D) odd & of the form (3n + 1)

Sol.

22. If
$$\sum_{k=1}^{n-r} {}^{n-k}C_r = {}^xC_y$$
 then

(A)
$$x = n + 1$$
; $y = r$ (B) $x = n$; $y = r + 1$

(B)
$$x = n$$
; $y = r + 1$

(C)
$$x = n ; y = r$$

(D)
$$x = n + 1$$
; $y = r + 1$

- **23.** Coefficient of α^t in the expansion of $(\alpha+p)^{m-1}+(\alpha+p)^{m-2}(\alpha+q)+(\alpha+p)^{m-3}(\alpha+q)^2+....(\alpha+q)^{m-1}$ where $\alpha \neq -q$ and $p \neq q$ is
- (A) $\frac{{}^{m}C_{t}(p^{t}-q^{t})}{p-q}$ (B) $\frac{{}^{m}C_{t}(p^{m-t}-q^{m-t})}{p-q}$
- (C) $\frac{{}^{m}C_{t}(p^{t}+q^{t})}{p-q}$ (D) $\frac{{}^{m}C_{t}(p^{m-t}+q^{m-t})}{p-q}$

Sol.

24. The co-efficient of x^{401} in the expansion of $(1 + x + x^2 + \dots + x^9)^{-1}$, (|x| < 1) is (A) 1 (B) -1(C) 2 (D) - 2Sol.

25. Number of terms free from radical sign in the expansion of $(1 + 3^{1/3} + 7^{1/7})^{10}$ is (B) 5 (A) 4 (D)8 Sol.

- **26.** In the expansion of $(1 + x)^n (1 + y)^n (1 + z)^n$, the sum of the co-efficients of the terms of degree 'r' is
- (A) $^{n^3}$ C $_r$ (B) n C $_{r^3}$ (C) 3n C $_r$ (D) 3. 2n C $_r$