Analysis and Differential Equations Individual

Please solve the following problems.

1. A map $f: A \to \mathbb{R}^n$, $A \subset \mathbb{R}^m$ is a (L-)Lipschitz map if there is a constant $L < \infty$ such that

$$|f(x) - f(y)| \le L|x - y|$$
 for all $x, y \in A$.

The smallest such constant L is called the Lipschitz constant of f and denoted by Lip(f).

1) Let $f: A \to \mathbb{R}, A \subset \mathbb{R}^m$. Let $G = \{(x, f(x)) : x \in A\} \subset \mathbb{R}^m \times \mathbb{R}$ denote its graph. Suppose that there exists $\alpha > 0$, such that for any $z \in G$, the cone

$$C_{z,\alpha} := z + \{(y_1, y_2) \in \mathbb{R}^m \times \mathbb{R} : |y_2| > \alpha |y_1|\} \subset \mathbb{R}^m \times \mathbb{R}$$

does not meet G. Prove that f is Lipschitz, with $\text{Lip}(f) \leq \alpha$.

- 2) Suppose that $f:A\to\mathbb{R},\ A\subset\mathbb{R}^m$ is an L-Lipschitz map. Prove that f can be extended to a L-Lipschitz map on \mathbb{R}^m , that is, there exists an L-Lipschitz map $g:\mathbb{R}^m\to\mathbb{R}$, such that $g\lfloor_A=f$.
- **2.** Let D be a region in the complex plane, z_0 a point in D. Let U be the open unit disk. If D is simply connected and $D \neq C$, then there exists at least one univalent function from $f: D \to U$ such that $f'(z_0) > 0$.

You can not use Riemann mapping theorem directly.

3. Let P(x) be polynomial of degree n. Show that

$$|P(0)| \le C \int_{-1}^{1} |P(x)| dx$$

4. Prove uniqueness of solutions to the following problem

$$\Delta u + \sqrt{u} = 0 \text{ in } \Omega$$

$$u > 0$$
 in Ω

$$u = 0$$
 on $\partial \Omega$

5. Let ℓ_2 be the Hilbert space of all square summable complex sequences $x = (x_k)_{k \ge 1}$, equipped with the following inner product and norm

$$\langle x, y \rangle = \sum_{k \ge 1} x_k \, \overline{y_k} \text{ and } ||x|| = \left(\sum_{k \ge 1} |x_k|^2\right)^{1/2}.$$

Let $u: \ell_2 \to \ell_2$ be the linear operator defined by

$$\forall x = (x_k)_{k \ge 1} \in \ell_2, \quad u(x) = \left(\sum_{k=1}^{\infty} \frac{x_k}{j+k}\right)_{j \ge 1}.$$

The aim of this exercise is to calculate the norm ||u||.

a) Let φ be the 2π -periodic function defined by $\varphi(t) = \mathrm{i}(\pi - t)$ for $0 \le t < 2\pi$, where $\mathrm{i} = \sqrt{-1}$. Show that

$$\sum_{j,k\geq 1} \frac{x_j y_k}{j+k} = \frac{1}{2\pi} \int_0^{2\pi} \left(\sum_{j\geq 1} x_j e^{-ijt} \right) \left(\sum_{k\geq 1} y_k e^{-ikt} \right) \varphi(t) dt, \quad \forall x, y \in \ell_2.$$

- b) Deduce that u is bounded and $||u|| \le \pi$.
- c) For any given $n \ge 1$ let $a_n = (1, \frac{1}{\sqrt{2}}, \dots, \frac{1}{\sqrt{n}}, 0, 0, \dots)$. Show that

$$\langle u(a_n), a_n \rangle \ge \pi \ln n + O(1).$$

Deduce $||u|| \ge \pi$.

d) For any given $n \geq 1$ let $a_n = (1, \frac{1}{\sqrt{2}}, \dots, \frac{1}{\sqrt{n}}, 0, 0, \dots)$. Show that

$$\langle u(a_n), a_n \rangle \ge \pi \ln n + O(1).$$

Deduce $||u|| \ge \pi$.