ECE111 Final Projects Notes

8 Point FFT (This is one possible structure, see slides 35-40 of the lecture for other structures)

This is one butterfly structure (2 point FFT, see slides 30, 34 of the lecture),

You need to repeat it 4 (=N/2) times at each stage

Similarly this is another butterfly structure (2 point FFT)

You need to repeat it 4 (=N/2) times at this stage too (with different input/output indices, See slides 35-40 of the lecture)

Similarly you have 4 (=N/2) butterfly structure (2 point FFT) at each stage

The multipliers (W_N^K) also changes at each stage

Steps

- First design the butterfly structure (2 point FFT)
- Design one stage by repeating it (N/2) times
- Repeat each stage log(N) times
- At each stage you just need to change the input/output indices of the butterflies structure and the multipliers (W_N^K) (See slides 35-40 of the lecture)

Some more tips

The filter is symmetric. You can see it by plotting the coefficients.
 Therefore, you only need to save half of the coefficients.
 For example, if you have 4 coefficients a0, a1, a2, a3, where a0 = a3 and a1 = a2, the output,

```
y(n) = a0 x(n) + a1 x(n-1) + a2 x(n-2) + a3 x(n-3)
= a0 (x(n) + x(n-3)) + a1 (x(n-1) + x(n-2))
```

- You do not need to run the FIR and FFT modules simultaneously, therefore you can reuse the same adders and multipliers for each module
- In each module use same name for the inputs and outputs of the adders and multipliers to make the integration easier.

Moving IP cores out of a module

module1

Sharing IP cores between modules

