${f Last\ name}\ _$	
First name	

LARSON—MATH 610—CLASSROOM WORKSHEET 14 Minimal Polynomials, Invariant Subspaces, and Upper-Triangular Matrices.

Concepts & Notation

- (Chp. 5) eigenvalue, eigenvector, invariant subspace, minimal polynomial,
- (Chp. 8) generalized eigenvector.
- 1. (Claim:) Every operator on a finite-dimensional, nonzero, complex vector space has an eigenvalue.

Minimal Polynomials

- 2. (Existence, uniqueness, and degree of minimal polynomial). If V is a finite-dimensional vector space, and $T \in \mathcal{L}(V)$, then there is a unique monic polynomial $p \in \mathcal{P}(\mathbb{F})$ of smallest degree with p(T) = 0.
- 3. What is the minimal polynomial of $T \in \mathcal{L}(V)$ (for finite-dimensional V)?

Invariant Subspaces and Upper-Triangular Matrices

4. What is an invariant subspace of $T \in \mathcal{L}(V)$?

5. For $T \in \mathcal{L}(V)$ the eigenspace $U = \{v : T(v) = \lambda v\}$ corresponding to an eigenvalue λ of T is an invariant subspace of T.

6.	(Claim:)	Suppose 2	$T \in \mathcal{L}(V)$	and $(v_1,$	\ldots, v_n	is a	basis	of V .	Then	the i	following	g are
	equivalent	:										

- (a) the matrix of T with respect to (v_1, \ldots, v_n) is upper-triangular;
- (b) $T(v_k) \in span(v_1, \dots, v_k)$ for each $k = 1, \dots, n$;
- (c) $span(v_1, \ldots, v_k)$ is invariant under T for each $k = 1, \ldots, n$.

7. (Claim:) Suppose V is a finite-dimensional complex vector space and $T \in \mathcal{L}(V)$. Then T has an upper-triangular matrix with respect to some basis of V.

Complex Vector Spaces

8. Let $T \in \mathcal{L}(\mathbb{F}^3)$ with $T(z_1, z_2, z_3) = (4z_1, 0, 5z_3)$. Check that $\mathbb{C}^3 = null\ T^{dim\ \mathbb{C}^3} \oplus range\ T^{dim\ \mathbb{C}^3}$.

9. (Claim:) Suppose V is a finite-dimensional complex vector space and $T \in \mathcal{L}(V)$. Then $V = null\ T^{dim\ V} \oplus range\ T^{dim\ V}$.