1 Construction

1.1

On note construit par récurrence une famille $\Omega_{n,k}$ d'ouverts et une famille $F_{n,k}$ de fermés de [0,1] comme suit :

On pose $F_0 = [0, 1]$, $\Omega_0 = \Omega_{0,0} = \frac{1}{3}, \frac{2}{3}[$, $F_{0,1} = [0, \frac{1}{3}]$, $F_{1,1} = [\frac{2}{3}, 1]$; $F_1 = F_{0,1} \cup F_{1,1}$ est donc le complémentaire de Ω_0 dans [0, 1].

On envisage alors les deux tiers médians de $F_{0,1}$ et $F_{1,1}$, soit $\Omega_{0,1} =]\frac{1}{9}, \frac{2}{9}[$ et $\Omega_{1,1} =]\frac{7}{9}, \frac{8}{9}[$, que l'on retire respectivement à $F_{0,1}$ et $F_{1,1}$ pour obtenir $F_{0,2} = [0, \frac{1}{9}], \ldots, F_{3,2} = [\frac{8}{9}, 1].$

Ayant construits $F_{0,p}, \ldots, F_{2^p-1,p}$ on introduit leurs tiers médians ouverts $\Omega_{0,p}, \ldots, \Omega_{2^p-1,p}$ que l'on retire respectivement à $F_{0,p}, \ldots, F_{2^p-1,p}$ pour obtenir $F_{0,p+1}, \ldots, F_{2^{p+1}-1,p}$; F_p est la réunion des $F_{k,p}$ et Ω_p la réunion des $\Omega_{k,p}$.

Montrer que l'ensemble E des extrémités des $F_{k,l}$ est l'ensemble des rationnels triadiques de [0,1] dont l'écriture triadique est de la forme $0, x_1 \dots x_n 00\dots$ ou $0, x_1 \dots x_n 100\dots$ où $x_i \in \{0,2\}.$

1.2

On pose désormais

$$K_3 = \bigcap_{n \in \mathbf{N}} F_n$$

 K_3 est l'ensemble triadique de Cantor.

- a) Montrer que K_3 contient E, est compact, ne contient aucun intervalle non trivial, et que tous les points de K_3 sont des points d'accumulation.
- b) Prouver que K_3 est de mesure nulle, c'est-à-dire que, pour tout $\varepsilon > 0$, on peut trouver une famille dénombrable d'intervalles ouverts contenant K_3 et dont la somme des longueurs est $\leq \varepsilon$.
- b) Montrer qu'un élément $x \in [0, 1]$ est dans K_3 ssi son développement triadique (impropre dans le cas de $0, x_1 \dots x_n 100...$, que l'on représente donc par $0, x_1 \dots x_n 0222...$) ne contient pas de 1.

2 Applications

2.1

Soit f une fonction continue de R dans R, localement constante sur le complémentaire d'un fermé dénombrable F. Montrer que f est constante.

2.2

On définit par récurrence une suite f_n de surjections de [0,1] sur lui-même en posant :

i) $f_1(x) = \frac{3}{2}x$ sur $[0, \frac{1}{3}]$, $f_1(x) = \frac{1}{2}$ sur $[\frac{1}{3}, \frac{2}{3}]$. $f_1(x) = \frac{3}{2}x - \frac{1}{2}$ sur $[\frac{2}{3}, 1]$. ii) On suppose f_n construite de sorte qu'elle soit continue, affine de pente $(\frac{3}{2})^n$ sur chaque composante connexe de $F_{k,n}$, localement constante dans Ω_{n-1} . f_{n+1} se déduit alors de f_n en remplaçant f_n sur $F_{k,n}$ par une fonction croissante affine en trois morceaux, croissante de pente $(\frac{3}{2})^{n+1}$ sur $F_{2k,n+1}$ et $F_{2k+1,n+1}$, constante entre les deux et de même image que f_n ; ailleurs $f_{n+1} = f_n$.

Montrer que la suite de fonctions f_n converge uniformément vers une fonction croissante continue f, localement constante dans le complémentaire K_3 et telle que $f(K_3) = [0, 1]$.

2.3

La convention d'écriture triadique est celle de 2-b).

- a) Soit $n \in \mathbb{N}^*$. Montrer que la fonction τ_n qui à un nombre associe le n-ième chiffre de son développement triadique est continue sur K_3 .
- b) En déduire une surjection continue de K_3 sur $[0,1] \times [0,1]$. Etendre continûment cette surjection à [0,1].
- 5) Construire une fonction continue de [-1, 2] dans R telle que : f(-1) = -1, f(2) = 1, f ne possède aucun point de changement de signe.