EvansCode

Michelle Evans

Set-Up

NOTE: Working directory should be set to source file location.

```
knitr::opts_chunk$set(echo = T)
knitr::opts_chunk$set(cache=F)
knitr::opts_chunk$set(message=FALSE)
knitr::opts_chunk$set(warning=FALSE)
library(xtable)
library(tidyr)
library(ggplot2)
library(lme4) #mixed models
library(broom) #easy model comparison
library(MuMIn)
library(car)
library(MASS)
library(gridExtra) #for facet grids later
library(cowplot)
library(caret)
library(ggthemes)
library(survival)
library(DHARMa) #mixed model residuals
library(dplyr)
library(multcomp)
colR <- "dodgerblue"</pre>
colS <- "gray60"
colU <- "maroon"</pre>
axisColor <- errorColor <- "gray40"</pre>
```

Data Loading and Formatting

Load and format infection data:

```
formatData <- function(month){
    #' format infection data
    #' @params month (ie. "august")
    #' @returns dataframe of properly formatted data
    #adjust wingLength
    monthDf <- read.csv(paste0("../data/infections/raw/", month,"Dengue.csv"))
    #convert wingLength and drop extra columns
    monthDf$Wing <- monthDf$WingLength*monthDf$conversion..mm.bar.
    monthDf <- dplyr::select(monthDf, -WingLength, -conversion..mm.bar.)

#dpi as factor</pre>
```

```
monthDf$DPI <- as.factor(monthDf$DPI)</pre>
  #add in class and site
  monthDf$site <- as.factor(substr(as.character(monthDf$Individual), 1, 2))</pre>
  monthDf$class <- NULL
  for (i in 1:nrow(monthDf)){
    if (substr(monthDf$site[i], 1,1)=="R"){
    monthDf$class[i] <- "Rural"</pre>
    } else if (substr(monthDf$site[i], 1,1)=="S"){
    monthDf$class[i] <- "Suburban"
    } else if (substr(monthDf$site[i], 1,1)=="U"){
    monthDf$class[i] <- "Urban"</pre>
  }
  monthDf$class <- as.factor(monthDf$class)</pre>
  #convert Y and N to 1 and O for statistics
  levels(monthDf$Body) <- c("NA", 0, 1)</pre>
  monthDf$Body <- as.numeric(as.character(monthDf$Body))</pre>
  levels(monthDf$Saliva) <- c("NA", 0, 1)</pre>
  monthDf$Saliva <- as.numeric(as.character(monthDf$Saliva))</pre>
  # august had no contaminated heads, so different corrections
  if (month=="august"){
    levels(monthDf$Head) <- c(0, 1)</pre>
  } else levels(monthDf$Head) <- c("NA",0, 1)</pre>
  monthDf$Head <- as.numeric(as.character(monthDf$Head))</pre>
  ##Fix false negatievs
  #adjust so that if saliva is positive, so is head
  #ddjust so that is head is positive, so is body
  monthDf$Head[monthDf$Saliva>0] <- 1</pre>
  monthDf$Body[monthDf$Head>0] <- 1
  return(monthDf)
}
august <- formatData("august")</pre>
oct <- formatData("october")</pre>
seasons <- rbind(august,oct)</pre>
seasons$block <- as.factor(c(rep("summer", nrow(august)), rep("fall", nrow(oct))))</pre>
seasonSumm <- seasons %>%
  filter(DPI==21) %>%
  #drop individual
  dplyr::select(-Individual, -site, -Wing, -DPI) %>%
  group_by(block, class) %>%
  summarise_all(funs(mean(.,na.rm=T),sd(.,na.rm=T),se=(sd(., na.rm=T)/sqrt(n())))) %>%
  ungroup()
Load and format microclimate data
climate <- read.csv('../data/microclimate/clean/2016TrialsAdult.csv')[,-1]</pre>
#toss out ridiculous levels
climate <- climate[climate$Temp<75,]</pre>
```

```
#format date
climate$Date <- strptime(climate$Date, format="%Y-%m-%d %H:%M:%S")</pre>
#draw out day
climate$Day <- as.Date(climate$Date)</pre>
# add tray id to climate data
trayID <- read.csv("../data/microclimate/trayLoggerID.csv") #read in IDs</pre>
climate <- merge(climate, trayID, by="Pot_ID")</pre>
#fix duplicates for R1T1
climate <- unique(climate)</pre>
#U2T2 and U1T2 are missing data
# range(climate[climate$Tray_ID=="U2T2", 'Date'])
# range(climate[climate$Tray_ID=="U1T2", 'Date'])
#drop U2T2 because it only has data until August 5th
inds <- which(climate$Tray_ID=="U2T2")</pre>
climate <- climate[-inds,]</pre>
rm(inds)
#U2T4 wasn't working right, reporting temps above 40C in October
inds <- which(climate$Tray_ID=="U2T4")</pre>
climate <- climate[-inds,]</pre>
rm(inds)
```

Load and format emergence data

Subset and standardize emergence data to be used with infections (i.e. weight by number of days mosquitoes were in larval environment)

Infection Dynamics

Infection by Class and Season

Make data long

```
infLong <- seasonInf %>%
  gather(type, infection, Body:Saliva) %>%
  dplyr::select(block, class, site, Individual, type, infection) %>%
  dplyr::group_by(block, class, type, site) %>%
  summarise(mean.inf=mean(infection, na.rm=T), sampleSize=sum(!is.na(infection)), positive=sum(infection)
  group_by(block, class, type) %>%
  summarise(se.inf=sd(mean.inf, na.rm=T)/n(), mean.inf=mean(mean.inf), samples=sum(sampleSize), positive ungroup() %>%
  mutate(stripLabel=case_when(
    type=="Body" ~ "Infected",
    type=="Head" ~ "Disseminated",
    type=="Saliva" ~ "Infectious"
  ))
infLong$sampleLab <- pasteO(infLong$positives, "(", infLong$samples, ")")</pre>
```

Plot (summer is alpha=1, fall is alpha=0.3)

```
\#pdf(file="figures/forMS/landclassXseasonInfection.pdf", width = 4, height=7, family="sans")
ggplot(data=infLong[order(infLong$block, decreasing=F),], aes(x=class, group=block))+
      geom_bar(stat="identity", aes(y=mean.inf, alpha=block, fill=class, color=factor(class)), position=pos
      \#geom\_text(aes(label=sampleLab, y=mean.inf), vjust=-2, color="black", position=position\_dodge(width=-2, color="black", position=position_dodge(width=-2, color="black", position=black", position=black | for the property |
      facet_wrap(~factor(stripLabel, levels=c("Infected", "Disseminated", "Infectious")), nrow=3, dir="v",
      scale_y = continuous(breaks = c(0,0.5,1), minor_breaks = c(0.25, 0.75), labels = c("0%", "50%", "100%"), linear = c(0.25, 0.75), labels = c("0%", "50%", "100%"), linear = c(0.25, 0.75), labels = c("0%", "50%", "100%"), linear = c(0.25, 0.75), labels = c("0%", "50%", "100%"), linear = c(0.25, 0.75), labels = c("0%", "50%", "100%"), linear = c(0.25, 0.75), labels = c("0%", "50%", "100%"), linear = c(0.25, 0.75), labels = c("0%", "50%", "100%"), linear = c(0.25, 0.75), linear = c(0.
      #ylim(0,1)+
      scale_fill_manual(values=c(colR, colS, colU))+
      scale_color_manual(values=c(colR, colS, colU))+
      scale_alpha_discrete(range=c(0,1), name="Season", labels=c("Fall", "Summer"))+
      geom_errorbar(aes(ymin=mean.inf-se.inf, ymax=mean.inf+se.inf), width=0.2, color=errorColor, position
      xlab("Land Class") +
      ylab("Percent Positive") +
      guides(fill=F, color= F,
                              alpha=guide_legend(override.aes=list(color=axisColor), reverse=T)) +
      theme_fivethirtyeight() +
      theme(panel.background = element_rect(fill = "transparent", colour = NA),
                          plot.background = element_rect(fill = "transparent", colour = NA),
                           legend.key = element_blank(),
                          panel.grid.major.x = element_blank(),
                          legend.background = element_rect(fill = "transparent", colour = NA),
                          axis.title = element_text(),
                          axis.title.x = element_text(),
                          axis.title.y=element text(),
                           #strip.background = element_blank(),
                          strip.text.x = element_text(size=12),
                          axis.line=element_line(color=axisColor, size=0.5),
                          panel.grid = element_blank(),
                          axis.text.y=element_text(size=12),
                          axis.text.x=element text(size=12))
```


Statistics on infection by season and land class

Body model selection

m0 2 435.5883

```
#create all the models
m0 <- glmer(Body~1 + (1|site),
                           data=seasons[seasons$DPI=="21",],
                           family=binomial(link="logit"))
m1 <- glmer(Body~block + (1|site),
                           data=seasons[seasons$DPI=="21",],
                           family=binomial(link="logit"))
m2 <- glmer(Body~class +</pre>
                          (1|site),
                           data=seasons[seasons$DPI=="21",],
                           family=binomial(link="logit"))
m3 <- glmer(Body~class + block + (1|site),
                           data=seasons[seasons$DPI=="21",],
                           family=binomial(link="logit"))
m4 <- glmer(Body~class*block + (1|site),
                           data=seasons[seasons$DPI=="21",],
                           family=binomial(link="logit"))
modelSums <- do.call(rbind, lapply(list(m0,m1,m2,m3, m4), broom::glance)) #m3 is best
AICc(m0, m1, m2, m3, m4) #still 3
##
      df
             AICc
```

```
## m1 3 426.0884
## m2 4 428.7311
## m3 5 417.7706
## m4 7 419.9622
Weights(AICc(m0,m1,m2,m3,m4))
## [1] 9.982942e-05 1.153806e-02 3.078070e-03 7.384377e-01 2.468464e-01
#create all the models
m0 <- glmer(Head~1 + (1|site),</pre>
                          data=seasons[seasons$DPI=="21",],
                          family=binomial(link="logit"))
m1 <- glmer(Head~block + (1|site),
                          data=seasons[seasons$DPI=="21",],
                          family=binomial(link="logit"))
m2 <- glmer(Head~class +</pre>
                          (1|site),
                          data=seasons[seasons$DPI=="21",],
                          family=binomial(link="logit"))
m3 <- glmer(Head~class + block + (1|site),
                          data=seasons[seasons$DPI=="21",],
                          family=binomial(link="logit"))
m4 <- glmer(Head~class*block + (1|site),
                          data=seasons[seasons$DPI=="21",],
                          family=binomial(link="logit"))
modelSums <- do.call(rbind, lapply(list(m0,m1,m2,m3, m4), broom::glance)) #model 3 is best
AICc(m0, m1, m2, m3, m4)
##
      df
             AICc
## m0 2 431.6814
## m1 3 419.6907
## m2 4 427.6540
## m3 5 414.1413
## m4 7 417.3718
tidy(m3)
##
                              estimate std.error statistic
                                                                 p.value group
                    term
## 1
             (Intercept) 2.817563e-01 0.2342544 1.202779 0.2290617845 fixed
## 2
           classSuburban 3.523897e-01 0.2867938 1.228721 0.2191763368 fixed
## 3
              classUrban -7.675402e-01 0.2933131 -2.616795 0.0088759581 fixed
## 4
             blocksummer -9.375460e-01 0.2416696 -3.879454 0.0001046913 fixed
## 5 sd_(Intercept).site 2.255814e-07
                                               NA
                                                         NΑ
                                                                      NA site
#create all the models
m0 <- glmer(Saliva~1 + (1|site),
                          data=seasons[seasons$DPI=="21",],
                          family=binomial(link="logit"))
m1 <- glmer(Saliva~block + (1|site),
                          data=seasons[seasons$DPI=="21",],
                          family=binomial(link="logit"))
m2 <- glmer(Saliva~class + (1|site),</pre>
                          data=seasons[seasons$DPI=="21",],
                          family=binomial(link="logit"))
```

```
m3 <- glmer(Saliva~class + block + (1|site),
                          data=seasons[seasons$DPI=="21",],
                          family=binomial(link="logit"))
m4 <- glmer(Saliva~class*block + (1|site),
                          data=seasons[seasons$DPI=="21",],
                          family=binomial(link="logit"))
m5 <- glmer(Saliva~ 1 + (1|site),
                          data=seasons[seasons$DPI=="21",],
                          family=binomial(link="logit")) #null model
modelSums <- do.call(rbind, lapply(list(m0, m1,m2,m3, m4, m5), broom::glance)) #model 1 is best (basica
AICc(m0, m1,m2,m3,m4, m5) #model 1
      df
            AICc
## m0 2 216.2245
## m1 3 214.1310
## m2 4 219.1221
## m3 5 217.1499
## m4 7 221.0126
## m5 2 216.2245
tidy(m1)
##
                           estimate std.error statistic
                                                             p.value group
## 1
             (Intercept) -2.6473436 0.3430712 -7.716600 1.194739e-14 fixed
             blocksummer 0.7827283 0.3988372 1.962526 4.970127e-02 fixed
## 3 sd_(Intercept).site 0.1700891
                                           NA
mixModelseasonsBody21 <- lme4::glmer(Body~class + block + (1|site),
                          data=seasons[seasons$DPI=="21",],
                          family=binomial(link="logit"))
summary(mixModelseasonsBody21)
## Generalized linear mixed model fit by maximum likelihood (Laplace
    Approximation) [glmerMod]
## Family: binomial (logit)
## Formula: Body ~ class + block + (1 | site)
      Data: seasons[seasons$DPI == "21", ]
##
##
       AIC
                 BIC
                       logLik deviance df.resid
##
      417.6
               436.4
                      -203.8
                                 407.6
                                            311
##
## Scaled residuals:
               1Q Median
      Min
                                3Q
## -1.5779 -0.8367 -0.5458 0.9716 1.8323
##
## Random effects:
                       Variance Std.Dev.
## Groups Name
         (Intercept) 6.524e-15 8.077e-08
## Number of obs: 316, groups: site, 9
## Fixed effects:
                 Estimate Std. Error z value Pr(>|z|)
                             0.2368 2.077 0.037846 *
## (Intercept)
                  0.4917
```

```
## classSuburban
                  0.4205
                             0.2886
                                      1.457 0.145130
## classUrban
                 -0.8483
                             0.2892 -2.933 0.003360 **
## blocksummer
                 -0.8546
                             0.2407 -3.551 0.000384 ***
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.05 '.' 0.1 ' ' 1
## Correlation of Fixed Effects:
               (Intr) clssSb clssUr
##
## classSubrbn -0.540
## classUrban -0.644 0.464
## blocksummer -0.544 -0.069
                             0.123
tidy(mixModelseasonsBody21)
##
                             estimate std.error statistic
                    term
                                                               p.value group
## 1
             (Intercept) 4.917107e-01 0.2367960 2.076517 0.0378462050 fixed
          classSuburban 4.205379e-01 0.2886423 1.456952 0.1451296729 fixed
## 3
              classUrban -8.482715e-01 0.2892454 -2.932706 0.0033602215 fixed
## 4
            blocksummer -8.546034e-01 0.2406755 -3.550854 0.0003839835 fixed
## 5 sd_(Intercept).site 8.076923e-08
                                             NA
                                                       NA
                                                                    NA site
car::Anova(mixModelseasonsBody21) #Wald test
## Analysis of Deviance Table (Type II Wald chisquare tests)
## Response: Body
         Chisq Df Pr(>Chisq)
## class 18.733 2 8.553e-05 ***
## block 12.609 1
                   0.000384 ***
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.05 '.' 0.1 ' ' 1
#confint(mixModelseasonsBody21) #profiled confidence interval
drop1(mixModelseasonsBody21, test="Chisq") #Likelihood ratio test
## Single term deletions
##
## Model:
## Body ~ class + block + (1 | site)
         Df
               AIC
                      LRT
                           Pr(Chi)
## <none>
            417.58
## class
          2 426.01 12.434 0.0019948 **
## block
          1 428.60 13.025 0.0003073 ***
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
summary(multcomp::glht(mixModelseasonsBody21, linfct = multcomp::mcp(class = "Tukey"), test = multcomp:
##
##
     Simultaneous Tests for General Linear Hypotheses
## Multiple Comparisons of Means: Tukey Contrasts
##
##
## Fit: lme4::glmer(formula = Body ~ class + block + (1 | site), data = seasons[seasons$DPI ==
       "21", ], family = binomial(link = "logit"))
##
```

```
## Linear Hypotheses:
##
                        Estimate Std. Error z value Pr(>|z|)
## Suburban - Rural == 0 0.4205
                                   0.2886
                                             1.457 0.31179
                        -0.8483
## Urban - Rural == 0
                                     0.2892 -2.933 0.00939 **
## Urban - Suburban == 0 -1.2688
                                     0.2990 -4.243 < 0.001 ***
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.05 '.' 0.1 ' ' 1
## (Adjusted p values reported -- single-step method)
summary(multcomp::glht(mixModelseasonsBody21, linfct = multcomp::mcp(block = "Tukey"), test = multcomp:
##
##
    Simultaneous Tests for General Linear Hypotheses
##
## Multiple Comparisons of Means: Tukey Contrasts
##
##
## Fit: lme4::glmer(formula = Body ~ class + block + (1 | site), data = seasons[seasons$DPI ==
       "21", ], family = binomial(link = "logit"))
##
## Linear Hypotheses:
                     Estimate Std. Error z value Pr(>|z|)
## summer - fall == 0 - 0.8546
                                  0.2407 -3.551 0.000384 ***
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.05 '.' 0.1 ' ' 1
## (Adjusted p values reported -- single-step method)
mixModelseasonsHead21 <- lme4::glmer(Head~class + block + (1|site),
                         data=seasons[seasons$DPI=="21",],
                         family=binomial(link="logit"))
tidy(mixModelseasonsHead21)
##
                             estimate std.error statistic
                   term
                                                               p.value group
## 1
             (Intercept) 2.817563e-01 0.2342544 1.202779 0.2290617845 fixed
## 2
          classSuburban 3.523897e-01 0.2867938 1.228721 0.2191763368 fixed
## 3
             classUrban -7.675402e-01 0.2933131 -2.616795 0.0088759581 fixed
            blocksummer -9.375460e-01 0.2416696 -3.879454 0.0001046913 fixed
## 5 sd_(Intercept).site 2.255814e-07
                                             NA
                                                       NA
                                                                    NA site
car::Anova(mixModelseasonsHead21) #Wald test
## Analysis of Deviance Table (Type II Wald chisquare tests)
##
## Response: Head
         Chisq Df Pr(>Chisq)
## class 14.208 2 0.0008220 ***
## block 15.050 1 0.0001047 ***
## Signif. codes: 0 '***' 0.001 '**' 0.05 '.' 0.1 ' ' 1
#confint(mixModelseasonsHead21) #profiled confidence interval
drop1(mixModelseasonsHead21, test="Chisq")
## Single term deletions
##
## Model:
## Head ~ class + block + (1 | site)
```

```
AIC
                       LRT Pr(Chi)
## <none>
            413.95
## class
          2 419.61 9.6653 0.007966 **
          1 427.53 15.5772 7.92e-05 ***
## block
## Signif. codes: 0 '***' 0.001 '**' 0.05 '.' 0.1 ' ' 1
summary(multcomp::glht(mixModelseasonsHead21, linfct = multcomp::mcp(class = "Tukey"), test = multcomp:
##
##
    Simultaneous Tests for General Linear Hypotheses
##
## Multiple Comparisons of Means: Tukey Contrasts
##
##
## Fit: lme4::glmer(formula = Head ~ class + block + (1 | site), data = seasons[seasons$DPI ==
       "21", ], family = binomial(link = "logit"))
## Linear Hypotheses:
                        Estimate Std. Error z value Pr(>|z|)
## Suburban - Rural == 0
                          0.3524
                                     0.2868
                                             1.229 0.43599
                                     0.2933 -2.617 0.02397 *
## Urban - Rural == 0
                         -0.7675
## Urban - Suburban == 0 -1.1199
                                     0.3031 -3.695 0.00065 ***
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.05 '.' 0.1 ' ' 1
## (Adjusted p values reported -- single-step method)
summary(multcomp::glht(mixModelseasonsHead21, linfct = multcomp::mcp(block = "Tukey"), test = multcomp:
##
    Simultaneous Tests for General Linear Hypotheses
##
## Multiple Comparisons of Means: Tukey Contrasts
##
##
## Fit: lme4::glmer(formula = Head ~ class + block + (1 | site), data = seasons[seasons$DPI ==
       "21", ], family = binomial(link = "logit"))
##
##
## Linear Hypotheses:
                     Estimate Std. Error z value Pr(>|z|)
## summer - fall == 0 -0.9375
                                  0.2417 -3.879 0.000105 ***
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.05 '.' 0.1 ' ' 1
## (Adjusted p values reported -- single-step method)
mixModelseasonsSaliva21 <- lme4::glmer(Saliva~block + (1|site),
                         data=seasons[seasons$DPI=="21",],
                         family=binomial(link="logit"))
tidy(mixModelseasonsSaliva21) #z-test
##
                          estimate std.error statistic
                   term
                                                            p.value group
## 1
             (Intercept) -2.6473436 0.3430712 -7.716600 1.194739e-14 fixed
            blocksummer 0.7827283 0.3988372 1.962526 4.970127e-02 fixed
## 3 sd_(Intercept).site 0.1700891
                                          NA
                                                    NΑ
```

```
car::Anova((mixModelseasonsSaliva21)) #Wald test
## Analysis of Deviance Table (Type II Wald chisquare tests)
## Response: Saliva
         Chisq Df Pr(>Chisq)
## block 3.8515 1
                      0.0497 *
## Signif. codes: 0 '***' 0.001 '**' 0.05 '.' 0.1 ' ' 1
confint(mixModelseasonsSaliva21) #profiled confidence interval
##
                    2.5 %
                              97.5 %
## .sig01
               0.00000000 0.8214351
## (Intercept) -3.41631136 -2.0450739
## blocksummer 0.02729408 1.6074316
drop1(mixModelseasonsSaliva21, test="Chisq")
## Single term deletions
##
## Model:
## Saliva ~ block + (1 | site)
                      LRT Pr(Chi)
         Df
               AIC
            214.06
## <none>
## block 1 216.19 4.1318 0.04208 *
## Signif. codes: 0 '***' 0.001 '**' 0.05 '.' 0.1 ' ' 1
#pairwise comparison
summary(multcomp::glht(mixModelseasonsSaliva21, linfct = multcomp::mcp(block = "Tukey"), test = multcom
##
    Simultaneous Tests for General Linear Hypotheses
##
## Multiple Comparisons of Means: Tukey Contrasts
##
##
## Fit: lme4::glmer(formula = Saliva ~ block + (1 | site), data = seasons[seasons$DPI ==
      "21", ], family = binomial(link = "logit"))
##
## Linear Hypotheses:
                     Estimate Std. Error z value Pr(>|z|)
##
## summer - fall == 0 0.7827
                                 0.3988
                                          1.963 0.0497 *
## Signif. codes: 0 '***' 0.001 '**' 0.05 '.' 0.1 ' ' 1
## (Adjusted p values reported -- single-step method)
Infection Efficiency
Format data for infection efficiency
bodyEff <- seasons %>%
```

dplyr::select(-Individual, -site, -Wing, -DPI, -Head, -Saliva) %>%

filter(DPI==21) %>%
#drop individual

```
group_by(block, class) %>%
  summarise(bodyMean=mean(Body,na.rm=T),bodySE=(sd(Body, na.rm=T)/sqrt(n()))) %%
  ungroup()
headEff <- seasons %>%
  filter(DPI==21) %>%
  filter(Body==1) %>%
  #drop individual
  dplyr::select(-Individual, -site, -Wing, -DPI, -Body, -Saliva) %>%
  group_by(block, class) %>%
  summarise(headMean=mean(Head,na.rm=T),headSE=(sd(Head, na.rm=T)/sqrt(n()))) %>%
  ungroup()
salEff <- seasons %>%
  filter(DPI==21) %>%
  filter(Head==1) %>%
  #drop individual
  dplyr::select(-Individual, -site, -Wing, -DPI, -Head, -Body) %>%
  group_by(block, class) %>%
  summarise(salMean=mean(Saliva,na.rm=T),salSE=(sd(Saliva, na.rm=T)/sqrt(n()))) %>%
  ungroup()
#group together
allEff <- full_join(bodyEff, headEff, by=c("block", "class"))</pre>
allEff <- full join(allEff, salEff, by=c("block", "class"))
library(tidyr)
meltMean <- allEff %>%
  select(block, class, contains("Mean")) %>%
  gather(key=variable, value=mean, -block, -class)
meltMean$type <- rep(c("Body", "Head", "Saliva"), each=6)</pre>
meltSE <- allEff %>%
  select(block, class, contains("SE")) %>%
  gather(variable, SE, -block, -class)
meltSE$type <- rep(c("Body", "Head", "Saliva"), each=6)</pre>
meltAll <- full_join(meltMean, meltSE, by=c("class", "block", "type")) %>%
  select(-variable.x, -variable.y)
Plot of infection efficiency
#supplemental plot
ggplot(data=meltAll[order(meltAll$block, decreasing=F),], aes(x=class, group=block))+
  geom_bar(stat="identity", aes(y=mean, alpha=factor(block), fill=factor(class)), color="gray20", posit
  facet_wrap(~type, nrow=3, dir="v") +
  scale_fill_manual(values=c(colR, colS, colU))+
  scale_alpha_discrete(range=c(1,0.3), name="Season", labels=c("Fall", "Summer"), guide=guide_legend(re
  geom_errorbar(aes(ymin=mean-SE, ymax=mean+SE), width=0.2, color="gray20", position =position_dodge(-0
  theme_base() +
  xlab("Land Class") +
  ylab("Infection Efficiency") +
```

```
guides(fill=F)
  #theme(legend.title=element_text("Season"))
Model Selection (Body is same as initial infection)
#create all the models
m1 <- glmer(Head~block + (1|site),
                          data=seasons[seasons$DPI=="21" & seasons$Body==1,],
                          family=binomial(link="logit"))
m2 <- glmer(Head~class +
                          (1|site),
                          data=seasons[seasons$DPI=="21" & seasons$Body==1,],
                          family=binomial(link="logit"))
m3 <- glmer(Head~class + block + (1|site),
                          data=seasons[seasons$DPI=="21" & seasons$Body==1,],
                          family=binomial(link="logit"))
m4 <- glmer(Head~class*block + (1|site),
                          data=seasons[seasons$DPI=="21" & seasons$Body==1,],
                          family=binomial(link="logit"))
m5 <- glmer(Head~class*(1|site),</pre>
                          data=seasons[seasons$DPI=="21" & seasons$Body==1,],
                          family=binomial(link="logit"))
modelSums <- do.call(rbind, lapply(list(m1,m2,m3, m4, m5), broom::glance)) #model 1 is best
AICc(m1, m2, m3, m4, m5)
##
      df
             AICc
## m1 3 106.3355
## m2 4 109.4356
## m3 5 110.3993
## m4 7 108.9752
## m5 4 109.4356
tidy(m1)
##
                           estimate std.error statistic
                    term
                                                              p.value group
## 1
             (Intercept) 2.3978953 0.3947713 6.074137 1.246562e-09 fixed
             blocksummer -0.5877867 0.5339828 -1.100760 2.710013e-01 fixed
## 3 sd_(Intercept).site 0.0000000
                                            NA
                                                      NA
                                                                    NA site
#create all the models
m1 <- glmer(Saliva~block + (1|site),
                          data=seasons[seasons$DPI=="21" & seasons$Body==1,],
                          family=binomial(link="logit"))
m2 <- glmer(Saliva~class + (1|site),
                          data=seasons[seasons$DPI=="21" & seasons$Body==1,],
                          family=binomial(link="logit"))
m3 <- glmer(Saliva~class + block + (1|site),
                          data=seasons[seasons$DPI=="21" & seasons$Body==1,],
                          family=binomial(link="logit"))
m4 <- glmer(Saliva~class*block + (1|site),
                          data=seasons[seasons$DPI=="21" & seasons$Body==1,],
                          family=binomial(link="logit"))
m5 <- glmer(Saliva~class*(1|site),</pre>
                          data=seasons[seasons$DPI=="21" & seasons$Body==1,],
```

family=binomial(link="logit"))

```
modelSums <- do.call(rbind, lapply(list(m1,m2,m3, m4, m5), broom::glance)) #between 1 and 3
AICc(m1, m2, m3, m4, m5)
##
      df
            AICc
## m1 3 150.9633
## m2 4 162.7401
## m3 5 150.3630
## m4 7 153.2814
## m5 4 162.7401
tidy(m1)
##
                          estimate std.error statistic
                                                            p.value group
## 1
             (Intercept) -2.0361094 0.3666955 -5.552589 2.814701e-08 fixed
            blocksummer 1.4633691 0.4480834 3.265841 1.091397e-03 fixed
## 3 sd_(Intercept).site 0.2624814
                                                     NA
                                                                 NA site
tidy(m3)
##
                          estimate std.error statistic
                   term
                                                             p.value group
## 1
             (Intercept) -2.5015553 0.4924147 -5.0801796 3.770782e-07 fixed
## 2
           classSuburban 0.1556519 0.5058740 0.3076891 7.583189e-01 fixed
## 3
              classUrban 1.1685198 0.5635947 2.0733338 3.814123e-02 fixed
## 4
            blocksummer 1.6490627 0.4616055 3.5724499 3.536572e-04 fixed
## 5 sd_(Intercept).site 0.0000000
                                          NA
                                                                  NA site
#model
mixModelseasonsBody21 <- lme4::glmer(Body~class + block + (1|site),
                          data=seasons[seasons$DPI=="21",],
                          family=binomial(link="logit"))
tidy(mixModelseasonsBody21)
##
                   term
                             estimate std.error statistic
                                                               p.value group
## 1
             (Intercept) 4.917107e-01 0.2367960 2.076517 0.0378462050 fixed
## 2
           classSuburban 4.205379e-01 0.2886423 1.456952 0.1451296729 fixed
## 3
             classUrban -8.482715e-01 0.2892454 -2.932706 0.0033602215 fixed
## 4
            blocksummer -8.546034e-01 0.2406755 -3.550854 0.0003839835 fixed
## 5 sd_(Intercept).site 8.076923e-08
                                             NA
                                                       NA
                                                                    NA site
car::Anova(mixModelseasonsBody21)
## Analysis of Deviance Table (Type II Wald chisquare tests)
##
## Response: Body
         Chisq Df Pr(>Chisq)
## class 18.733 2 8.553e-05 ***
## block 12.609 1
                   0.000384 ***
## Signif. codes: 0 '***' 0.001 '**' 0.05 '.' 0.1 ' ' 1
summary(multcomp::glht(mixModelseasonsBody21, linfct = multcomp::mcp(class = "Tukey"), test = multcomp:
##
##
     Simultaneous Tests for General Linear Hypotheses
##
## Multiple Comparisons of Means: Tukey Contrasts
```

```
##
##
## Fit: lme4::glmer(formula = Body ~ class + block + (1 | site), data = seasons[seasons$DPI ==
       "21", ], family = binomial(link = "logit"))
##
##
## Linear Hypotheses:
                        Estimate Std. Error z value Pr(>|z|)
## Suburban - Rural == 0
                          0.4205
                                     0.2886
                                              1.457 0.31182
## Urban - Rural == 0
                          -0.8483
                                      0.2892 -2.933 0.00932 **
                                      0.2990 -4.243 < 0.001 ***
## Urban - Suburban == 0 -1.2688
## Signif. codes: 0 '***' 0.001 '**' 0.05 '.' 0.1 ' ' 1
## (Adjusted p values reported -- single-step method)
summary(multcomp::glht(mixModelseasonsBody21, linfct = multcomp::mcp(block = "Tukey"), test = multcomp:
##
##
     Simultaneous Tests for General Linear Hypotheses
## Multiple Comparisons of Means: Tukey Contrasts
##
##
## Fit: lme4::glmer(formula = Body ~ class + block + (1 | site), data = seasons[seasons$DPI ==
       "21", ], family = binomial(link = "logit"))
## Linear Hypotheses:
                     Estimate Std. Error z value Pr(>|z|)
                                  0.2407 -3.551 0.000384 ***
## summer - fall == 0 -0.8546
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.05 '.' 0.1 ' ' 1
## (Adjusted p values reported -- single-step method)
mixModelseasonsHead21 <- lme4::glmer(Head~block + (1|site),</pre>
                          data=seasons[seasons$DPI=="21" & seasons$Body==1,],
                          family=binomial(link="logit"))
tidy(mixModelseasonsHead21)
##
                           estimate std.error statistic
                                                             p.value group
## 1
             (Intercept)
                         2.3978953 0.3947713 6.074137 1.246562e-09 fixed
            blocksummer -0.5877867 0.5339828 -1.100760 2.710013e-01 fixed
## 3 sd_(Intercept).site 0.0000000
                                                     NA
                                           NA
car::Anova(mixModelseasonsHead21) #no effect
## Analysis of Deviance Table (Type II Wald chisquare tests)
##
## Response: Head
          Chisq Df Pr(>Chisq)
## block 1.2117 1
                        0.271
drop1(mixModelseasonsHead21, test="Chisq")
## Single term deletions
##
## Model:
## Head ~ block + (1 | site)
                     LRT Pr(Chi)
         Df
              AIC
```

```
## <none>
            106.17
## block
          1 105.39 1.2235 0.2687
summary(multcomp::glht(mixModelseasonsHead21, linfct = multcomp::mcp(block = "Tukey"), test = multcomp:
##
##
     Simultaneous Tests for General Linear Hypotheses
##
## Multiple Comparisons of Means: Tukey Contrasts
##
##
## Fit: lme4::glmer(formula = Head ~ block + (1 | site), data = seasons[seasons$DPI ==
       "21" & seasons$Body == 1, ], family = binomial(link = "logit"))
##
## Linear Hypotheses:
                     Estimate Std. Error z value Pr(>|z|)
## summer - fall == 0 - 0.5878
                                  0.5340 - 1.101
## (Adjusted p values reported -- single-step method)
mixModelseasonsSaliva21 <- lme4::glmer(Saliva~class + block + (1|site),
                          data=seasons[seasons$DPI=="21" & seasons$Head==1,],
                          family=binomial(link="logit"))
tidy(mixModelseasonsSaliva21)
##
                              estimate std.error statistic
                                                                p.value
## 1
             (Intercept) -2.378555e+00 0.4916104 -4.8382922 1.309595e-06
## 2
           classSuburban 2.621010e-01 0.5198468 0.5041889 6.141286e-01
## 3
             classUrban 1.122170e+00 0.5732326 1.9576171 5.027495e-02
            blocksummer 1.714163e+00 0.4638138 3.6957993 2.191961e-04
## 4
## 5 sd_(Intercept).site 2.523364e-08
                                             NA
                                                         NA
                                                                      NΑ
    group
## 1 fixed
## 2 fixed
## 3 fixed
## 4 fixed
## 5 site
car::Anova((mixModelseasonsSaliva21)) #only block is significant
## Analysis of Deviance Table (Type II Wald chisquare tests)
##
## Response: Saliva
          Chisq Df Pr(>Chisq)
## class 4.1137 2 0.1278553
## block 13.6589 1 0.0002192 ***
## Signif. codes: 0 '***' 0.001 '**' 0.05 '.' 0.1 ' ' 1
drop1(mixModelseasonsSaliva21, test="Chisq")
## Single term deletions
##
## Model:
## Saliva ~ class + block + (1 | site)
         Df
               AIC
                       LRT
                             Pr(Chi)
## <none>
            139.79
## class 2 139.95 4.1567
                               0.1251
```

```
1 153.23 15.4317 8.554e-05 ***
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.05 '.' 0.1 ' ' 1
summary(multcomp::glht(mixModelseasonsSaliva21, linfct = multcomp::mcp(class = "Tukey"), test = multcom
##
##
     Simultaneous Tests for General Linear Hypotheses
##
## Multiple Comparisons of Means: Tukey Contrasts
##
##
## Fit: lme4::glmer(formula = Saliva ~ class + block + (1 | site), data = seasons[seasons$DPI ==
       "21" & seasons$Head == 1, ], family = binomial(link = "logit"))
##
##
## Linear Hypotheses:
                        Estimate Std. Error z value Pr(>|z|)
## Suburban - Rural == 0
                          0.2621
                                     0.5198
                                              0.504
                                                       0.869
## Urban - Rural == 0
                          1.1222
                                      0.5732
                                              1.958
                                                       0.123
                          0.8601
                                                       0.264
## Urban - Suburban == 0
                                      0.5521
                                              1.558
## (Adjusted p values reported -- single-step method)
summary(multcomp::glht(mixModelseasonsSaliva21, linfct = multcomp::mcp(block = "Tukey"), test = multcom
##
##
    Simultaneous Tests for General Linear Hypotheses
## Multiple Comparisons of Means: Tukey Contrasts
##
##
## Fit: lme4::glmer(formula = Saliva ~ class + block + (1 | site), data = seasons[seasons$DPI ==
       "21" & seasons$Head == 1, ], family = binomial(link = "logit"))
##
## Linear Hypotheses:
                     Estimate Std. Error z value Pr(>|z|)
                                          3.696 0.000219 ***
## summer - fall == 0 1.7142
                                  0.4638
## Signif. codes: 0 '***' 0.001 '**' 0.05 '.' 0.1 ' ' 1
## (Adjusted p values reported -- single-step method)
```

Infection and Microclimate

```
seasonSite <- seasons %>%
  filter(DPI=="21") %>%
  dplyr::select(-Individual, -DPI, - Wing) %>%
  dplyr::group_by(block, class, site) %>%
  summarise_all(funs(mean(.,na.rm=T), se=(sd(., na.rm=T)/sqrt(n()))))

#group with temperature data
seasonInfSite <- merge(seasonSite, rbind(augEnvVar,octEnvVar), by.x=c("block", "site"), by.y=c("block",
# inspect variable correlations
# cor(seasonInfSite[,10:18])</pre>
```

```
respV <- "Body_mean"</pre>
predVs <- c("Temp_mean_mean", "RH_mean_mean", "DTR_mean", "Temp_min_mean", "RH_min_mean", "Temp_max_mean
myCols <- c(respV, predVs, "block", "class", "site")</pre>
modDF <- seasonInfSite %>%
  dplyr::select(one_of(myCols))
modDF <- na.omit(modDF)</pre>
#model selection for initial variable (bc of high correlation)
m1 <- glm(Body_mean ~ Temp_mean_mean,
          data=modDF,
          family=gaussian(link="log"))
m2 <- glm(Body_mean ~ RH_mean_mean,
          data=modDF,
          family=gaussian(link="log"))
m3 <- glm(Body_mean ~ DTR_mean,
          data=modDF,
          family=gaussian(link="log"))
m4 <- glm(Body_mean ~ Temp_min_mean,
          data=modDF,
          family=gaussian(link="log"))
m5 <- glm(Body_mean ~ Temp_max_mean,</pre>
          data=modDF,
          family=gaussian(link="log"))
m6 <- glm(Body_mean ~ RH_min_mean,
          data=modDF,
          family=gaussian(link="log"))
m7 <- glm(Body_mean ~ RH_max_mean,
          data=modDF,
          family=gaussian(link="log"))
modelSums <- do.call(rbind, lapply(list(m1,m2,m3, m4, m5, m6, m7), broom::glance)) #1 seems best
AICc(m1,m2,m3, m4, m5, m6, m7)
##
      df
               AICc
## m1 3 -9.0569871
## m2 3 -0.5439088
## m3 3 -6.7374663
## m4 3 -8.0859090
## m5 3 -6.4929200
       3 -2.3719484
## m7 3 -1.1379604
tidy(m1)
##
                       estimate std.error statistic
               term
                                                           p.value
        (Intercept) 0.95866798 0.53632500 1.787476 0.092815805
## 2 Temp_mean_mean -0.07494337 0.02488645 -3.011412 0.008279968
#find covariates that aren't correlated
covars <- data.frame(cor(seasonInfSite[,10:18]))</pre>
rownames(covars[abs(covars$Temp_mean_mean)<0.8,]) #only RH_mean and RH_max
## [1] "RH_mean_mean" "RH_max_mean" "Temp_mean_se" "RH_mean_se"
```

```
#model selection
m1 <- glm(Body_mean ~ Temp_mean_mean,
          data=modDF,
          family=gaussian(link="log"))
m2 <- glm(Body_mean ~ RH_mean_mean,</pre>
          data=modDF,
          family=gaussian(link="log"))
m3 <- glm(Body_mean ~ Temp_mean_mean+RH_mean_mean,
          data=modDF,
          family=gaussian(link="log"))
m4 <- glm(Body_mean ~ Temp_mean_mean*RH_mean_mean,
          data=modDF,
          family=gaussian(link="log"))
modelSums <- do.call(rbind, lapply(list(m1,m2, m3, m4), broom::glance)) #3 seems best
AICc(m1,m2, m3, m4)
##
     df
                AICc
## m1 3 -9.0569871
## m2 3 -0.5439088
## m3 4 -12.8120279
## m4 5 -9.0366850
tidy(m3)
##
                       estimate std.error statistic
                                                           p.value
               term
        (Intercept) -1.02698904 0.88089922 -1.165842 0.2618821166
## 1
## 2 Temp_mean_mean -0.12883362 0.03098415 -4.158050 0.0008413049
       RH_mean_mean 0.03760852 0.01518724 2.476323 0.0256769139
finalBody <- glm(Body_mean ~ Temp_mean_mean+RH_mean_mean,</pre>
          data=modDF,
          family=gaussian(link="log"))
plot(cooks.distance(finalBody))
abline(h=4/length(modDF), lty=2)
```



```
car::Anova(finalBody)
## Analysis of Deviance Table (Type II tests)
## Response: Body_mean
                 LR Chisq Df Pr(>Chisq)
##
## Temp_mean_mean 20.7454 1 5.246e-06 ***
## RH_mean_mean
                   7.2752 1
                              0.006991 **
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
#confint(finalBody)
tidy(finalBody)
##
                      estimate std.error statistic
                                                         p.value
        (Intercept) -1.02698904 0.88089922 -1.165842 0.2618821166
## 2 Temp mean mean -0.12883362 0.03098415 -4.158050 0.0008413049
      RH_mean_mean 0.03760852 0.01518724 2.476323 0.0256769139
drop1(finalBody, test="F")
## Single term deletions
##
## Model:
## Body_mean ~ Temp_mean_mean + RH_mean_mean
##
                 Df Deviance
                                  AIC F value
                                                 Pr(>F)
                     0.27952 -15.8890
## Temp_mean_mean 1 0.66611 -2.2582 20.7455 0.0003796 ***
                  1 0.41510 -10.7713 7.2753 0.0165491 *
## RH_mean_mean
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.05 '.' 0.1 ' ' 1
outlierTest(finalBody)
```

```
## No Studentized residuals with Bonferonni p < 0.05
## Largest |rstudent|:
     rstudent unadjusted p-value Bonferonni p
## 8 2.598889
                        0.0093526
                                       0.16835
vif(finalBody)
## Temp_mean_mean
                    RH_mean_mean
         2.500624
                         2.500624
sqrt(vif(finalBody))>2
## Temp_mean_mean
                    RH mean mean
##
            FALSE
                            FALSE
#glm residuals
simulationOutput <- simulateResiduals(fittedModel = finalBody, n=999)</pre>
plotSimulatedResiduals(simulationOutput = simulationOutput)
```

Standardized residual

QQ plot residuals

Residual vs. predicted quantile lines should be horizontal lines at 0.25, 0.5, 0.75

Expected

Predicted value

```
m2 <- glm(Head_mean ~ RH_mean_mean,
          data=modDF,
          family=gaussian(link="log"))
m3 <- glm(Head_mean ~ DTR_mean,
          data=modDF,
          family=gaussian(link="log"))
m4 <- glm(Head_mean ~ Temp_min_mean,
          data=modDF,
          family=gaussian(link="log"))
m5 <- glm(Head_mean ~ Temp_max_mean,
          data=modDF,
          family=gaussian(link="log"))
m6 <- glm(Head mean ~ RH min mean,
          data=modDF,
          family=gaussian(link="log"))
m7 <- glm(Head_mean ~ RH_max_mean,
          data=modDF,
          family=gaussian(link="log"))
modelSums <- do.call(rbind, lapply(list(m1,m2,m3, m4, m5, m6, m7), broom::glance)) #1 seems best
tidy(m1)
##
                       estimate std.error statistic
               term
        (Intercept) 1.24680019 0.59855991 2.083000 0.053652279
## 2 Temp_mean_mean -0.09311821 0.02822372 -3.299289 0.004526073
#model selection
m1 <- glm(Head_mean ~ Temp_mean_mean,</pre>
          data=modDF,
          family=gaussian(link="log"))
m2 <- glm(Head_mean ~ RH_mean_mean,
          data=modDF,
          family=gaussian(link="log"))
m3 <- glm(Head_mean ~ Temp_mean_mean+RH_mean_mean,
          data=modDF,
          family=gaussian(link="log"))
m4 <- glm(Head_mean ~ Temp_mean_mean*RH_mean_mean,
          data=modDF,
          family=gaussian(link="log"))
modelSums <- do.call(rbind, lapply(list(m1,m2, m3, m4), broom::glance)) #3 seems best</pre>
AICc(m1,m2, m3, m4)
##
      df
                 AICc
## m1 3 -9.81626751
## m2 3
          0.06694249
## m3 4 -12.42640583
## m4 5 -8.51958039
tidy(m3)
##
                       estimate std.error statistic
                                                            p.value
## 1
        (Intercept) -0.76290213 1.00469599 -0.7593363 0.4594190579
```

```
## 2 Temp_mean_mean -0.14570591 0.03490278 -4.1746212 0.0008135761
       RH_mean_mean 0.03758149 0.01708945 2.1991047 0.0439706330
finalHead <- glm(Head_mean ~ Temp_mean_mean+RH_mean_mean,</pre>
          data=modDF,
          family=gaussian)
plot(cooks.distance(finalHead))
abline(h=4/length(modDF), lty=2)
                                          0
      9
      Ö
cooks.distance(finalHead)
     2
     o.
                                      0
      4
     o.
     \mathfrak{C}
     o.
     0.2
     0.1
                                                                                   0
                                                                       0
                                                  0
                                                                   0
     0.0
                     0
                                                                           0
                                                                               0
                             0
                                 0
             0
                 0
                         0
                                              0
                                                      0
                                                          0
                             5
                                                                       15
                                                  10
                                              Index
car::Anova(finalHead)
## Analysis of Deviance Table (Type II tests)
##
## Response: Head_mean
##
                  LR Chisq Df Pr(>Chisq)
## Temp_mean_mean 23.2199 1 1.445e-06 ***
## RH_mean_mean
                    7.3387 1
                                0.006749 **
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.05 '.' 0.1 ' ' 1
#confint(finalHead)
drop1(finalHead, test="F")
## Single term deletions
##
## Model:
## Head_mean ~ Temp_mean_mean + RH_mean_mean
                  Df Deviance
                                    AIC F value
                                                    Pr(>F)
                       0.26932 -16.5584
## <none>
## Temp_mean_mean 1 0.68622 -1.7229 23.2199 0.0002255 ***
                    1 0.40108 -11.3895 7.3387 0.0161642 *
## RH_mean_mean
```

Signif. codes: 0 '***' 0.001 '**' 0.05 '.' 0.1 ' ' 1

```
tidy(finalHead)
               term
                       estimate std.error statistic
                                                           p.value
## 1
                     0.59188906 0.35139747 1.684386 0.1127946327
        (Intercept)
## 2 Temp_mean_mean -0.06672422 0.01384692 -4.818705 0.0002254676
                     0.01603968 0.00592088 2.709003 0.0161642326
       RH_mean_mean
outlierTest(finalHead)
      rstudent unadjusted p-value Bonferonni p
## 13 3.213467
                        0.0013114
                                       0.023606
#qlm residuals
simulationOutput <- simulateResiduals(fittedModel = finalHead, n=999)</pre>
plotSimulatedResiduals(simulationOutput = simulationOutput)
```

Standardized residual

QQ plot residuals

Observed 0.2 0.4 0.6 0.8

Residual vs. predicted quantile lines should be horizontal lines at 0.25, 0.5, 0.75

Expected Predicted value

```
family=gaussian)
m3 <- glm(Saliva_mean ~ DTR_mean,
          data=modDF,
          family=gaussian)
m4 <- glm(Saliva_mean ~ Temp_min_mean,
          data=modDF,
          family=gaussian)
m5 <- glm(Saliva_mean ~ Temp_max_mean,
          data=modDF,
          family=gaussian)
m6 <- glm(Saliva_mean ~ RH_min_mean,
          data=modDF,
          family=gaussian)
m7 <- glm(Saliva_mean ~ RH_max_mean,
          data=modDF,
          family=gaussian)
modelSums <- do.call(rbind, lapply(list(m1,m2,m3, m4, m5, m6, m7), broom::glance)) #2 seems best, but t
tidy(m2)
##
             term
                    estimate
                               std.error statistic
                                                      p.value
## 1 (Intercept) -0.2856187 0.222758502 -1.282190 0.21804309
## 2 RH_mean_mean 0.0045945 0.002597975 1.768493 0.09603649
#model selection
m1 <- glm(Saliva_mean ~ Temp_mean_mean,
          data=modDF,
          family=gaussian)
m2 <- glm(Saliva_mean ~ RH_mean_mean,</pre>
          data=modDF,
          family=gaussian)
m3 <- glm(Saliva_mean ~ Temp_mean_mean+RH_mean_mean,
          data=modDF,
          family=gaussian)
m4 <- glm(Saliva_mean ~ Temp_mean_mean*RH_mean_mean,
          data=modDF,
          family=gaussian)
modelSums <- do.call(rbind, lapply(list(m1,m2, m3, m4), broom::glance)) #2 seems best
AICc(m1,m2, m3, m4)
      df
              AICc
## m1 3 -29.49212
## m2 3 -31.70849
## m3 4 -28.52592
## m4 5 -24.73537
tidy(m2)
##
             term
                    estimate
                               std.error statistic
## 1 (Intercept) -0.2856187 0.222758502 -1.282190 0.21804309
## 2 RH_mean_mean 0.0045945 0.002597975 1.768493 0.09603649
```

```
finalSal <- glm(Saliva_mean ~ RH_mean_mean,</pre>
                data=modDF, #drop outlier
                family=gaussian)
plot(cooks.distance(finalSal))
abline(h=4/length(modDF), lty=2)
                                                              0
     5
      o.
cooks.distance(finalSal)
      4
     o.
     0.3
     \alpha
     0.1
                             0
                                          0
                                                                                   0
                                  0
                                     0
             0
                                                  0
                                                                               0
                                                                       0
     0.0
                                                          0
                                                                           0
                 0
                     0
                                                      0
                                              0
                             5
                                                                      15
                                                  10
                                              Index
car::Anova(finalSal)
## Analysis of Deviance Table (Type II tests)
##
## Response: Saliva mean
##
                LR Chisq Df Pr(>Chisq)
## RH_mean_mean
                  3.1276 1
                                0.07698 .
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.05 '.' 0.1 ' ' 1
#confint(finalSal)
drop1(finalSal, test="F")
## Single term deletions
##
## Model:
## Saliva_mean ~ RH_mean_mean
##
                Df Deviance
                                 AIC F value Pr(>F)
                    0.11793 -33.423
## <none>
## RH_mean_mean 1 0.14098 -32.209 3.1276 0.09604 .
## Signif. codes: 0 '***' 0.001 '**' 0.05 '.' 0.1 ' ' 1
tidy(finalSal)
##
                    estimate
                                std.error statistic
                                                        p.value
             term
```

1 (Intercept) -0.2856187 0.222758502 -1.282190 0.21804309

```
## 2 RH_mean_mean 0.0045945 0.002597975 1.768493 0.09603649

outlierTest(finalSal)

## rstudent unadjusted p-value Bonferonni p
## 13 3.186174 0.0014417 0.02595

#glm residuals
simulationOutput <- simulateResiduals(fittedModel = finalHead, n=999)
plotSimulatedResiduals(simulationOutput = simulationOutput)</pre>
```

Standardized residual

QQ plot residuals

Opserved 0.1 0.2 0.4 0.6 0.8 Expected

Residual vs. predicted quantile lines should be horizontal lines at 0.25, 0.5, 0.75

Predicted value

Infection x Temperature Plot

```
\#pdf(file="figures/forMS/InfxTemp3Panel.pdf", width = 8, height=3, family="sans")
plotBody <- ggplot(data=seasonInfSite, aes(x=Temp_mean_mean, y=Body_mean))+</pre>
  geom_errorbar(aes(ymin=Body_mean-Body_se, ymax=Body_mean+Body_se), color=errorColor, width=0.1) +
  geom_point(aes(color=class, shape=block), size=4.5) +
  scale_color_manual(values=c(colR, colS, colU)) +
  theme_fivethirtyeight() +
  theme(panel.background = element_rect(fill = "transparent", colour = NA),
        plot.background = element_rect(fill = "transparent", colour = NA),
        legend.key = element_blank(),
        legend.background = element_rect(fill = "transparent", colour = NA),
        axis.title = element_text(),
        axis.title.x = element_text(),
        axis.title.y=element_text(),
        axis.line=element_line(color=axisColor, size=0.5),
        panel.grid = element blank())+
  ylab("Prop. Infected")+
  xlab("") +
  theme(legend.position="none")
```

```
plotHead <- ggplot(data=seasonInfSite, aes(x=Temp_mean_mean, y=Head_mean))+</pre>
   geom_errorbar(aes(ymin=Head_mean-Head_se, ymax=Head_mean+Head_se), color=errorColor, width=0.1) +
  geom_point(aes(color=class, shape=block), size=4) +
  scale color manual(values=c(colR, colS, colU)) +
  theme_fivethirtyeight() +
    theme(panel.background = element rect(fill = "transparent", colour = NA),
        plot.background = element_rect(fill = "transparent", colour = NA),
        legend.key = element blank(),
        legend.background = element rect(fill = "transparent", colour = NA),
        axis.title = element_text(),
        axis.title.x = element_text(),
        axis.title.y=element_blank(),
        axis.line=element_line(color=axisColor, size=0.5),
        panel.grid = element_blank())+
  #ylab("Prop. Disseminated")+
  xlab("Mean Daily Temperature (C)")+
  theme(legend.position="none")
plotSaliva <- ggplot(data=seasonInfSite, aes(x=Temp_mean_mean, y=Saliva_mean))+
  geom_errorbar(aes(ymin=Saliva_mean-Saliva_se, ymax=Saliva_mean+Saliva_se), color=errorColor, width=0.
  #qeom errorbarh(aes(xmin=Temp mean mean-Temp mean se, xmax=Temp mean mean+Temp mean se, y=Body mean),
  geom_point(aes(color=class, shape=block), size=4.5) +
  scale_color_manual(values=c(colR, colS, colU)) +
  theme_fivethirtyeight() +
    theme(panel.background = element_rect(fill = "transparent", colour = NA),
        plot.background = element_rect(fill = "transparent", colour = NA),
        legend.key = element_blank(),
        legend.background = element_rect(fill = "transparent", colour = NA),
        axis.title = element_text(),
        axis.title.x = element_text(),
        axis.title.y=element_blank(),
        axis.line=element_line(color=axisColor, size=0.5),
        panel.grid = element_blank()) +
  #ylab("Prop. Infectious")+
  xlab("") +
  scale_y_continuous(limits=c(0,1))+
  #theme(legend.position="right", legend.direction="vertical")
  theme(legend.position="none")
plot_grid(plotBody, plotHead, plotSaliva,
          labels=c("A", "B", "C"),
          ncol=3)
#dev.off()
Infection x Relative Humidity Plot
#pnq(file="figures/forMS/supplement/InfxRH3Panel.png", width = 8, height=3, units="in", res=500, family
plotBody <- ggplot(data=seasonInfSite, aes(x=RH_mean_mean, y=Body_mean))+</pre>
  geom_errorbar(aes(ymin=Body_mean-Body_se, ymax=Body_mean+Body_se), color=errorColor, width=0.1) +
  geom_point(aes(color=class, shape=block), size=4.5) +
  scale_color_manual(values=c(colR, colS, colU)) +
  theme_fivethirtyeight() +
```

theme(panel.background = element_rect(fill = "transparent", colour = NA),

```
plot.background = element_rect(fill = "transparent", colour = NA),
        legend.key = element_blank(),
        legend.background = element_rect(fill = "transparent", colour = NA),
        axis.title = element_text(),
        axis.title.x = element_text(),
        axis.title.y=element_text(),
        axis.line=element_line(color=axisColor, size=0.5),
        panel.grid = element blank())+
  ylab("Prop. Infected")+
  xlab("") +
  theme(legend.position="none")
plotHead <- ggplot(data=seasonInfSite, aes(x=RH_mean_mean, y=Head_mean))+</pre>
   geom_errorbar(aes(ymin=Head_mean-Head_se, ymax=Head_mean+Head_se), color=errorColor, width=0.1) +
  geom_point(aes(color=class, shape=block), size=4) +
  scale_color_manual(values=c(colR, colS, colU)) +
  theme_fivethirtyeight() +
    theme(panel.background = element_rect(fill = "transparent", colour = NA),
        plot.background = element_rect(fill = "transparent", colour = NA),
        legend.key = element_blank(),
        legend.background = element_rect(fill = "transparent", colour = NA),
        axis.title = element_text(),
        axis.title.x = element_text(),
        axis.title.y=element_blank(),
        axis.line=element line(color=axisColor, size=0.5),
        panel.grid = element_blank())+
  #ylab("Prop. Disseminated")+
  xlab("Relative Humidity (%)")+
  theme(legend.position="none")
plotSaliva <- ggplot(data=seasonInfSite, aes(x=RH_mean_mean, y=Saliva_mean))+</pre>
  geom_errorbar(aes(ymin=Saliva_mean-Saliva_se, ymax=Saliva_mean+Saliva_se), color=errorColor, width=0.
  geom_point(aes(color=class, shape=block), size=4.5) +
  scale_color_manual(values=c(colR, colS, colU)) +
  theme_fivethirtyeight() +
    theme(panel.background = element_rect(fill = "transparent", colour = NA),
        plot.background = element_rect(fill = "transparent", colour = NA),
        legend.key = element_blank(),
        legend.background = element_rect(fill = "transparent", colour = NA),
        axis.title = element_text(),
        axis.title.x = element_text(),
        axis.title.y=element_blank(),
        axis.line=element_line(color=axisColor, size=0.5),
        panel.grid = element_blank()) +
  #ylab("Prop. Infectious")+
  xlab("") +
  scale_y_continuous(limits=c(0,1))+
  #theme(legend.position="right", legend.direction="vertical")
  theme(legend.position="none")
plot_grid(plotBody, plotHead, plotSaliva,
          labels=c("A", "B", "C"),
```

```
ncol=3)
#dev.off()
```

Infection and Body Size

```
Body Infection
bodyWingDF <- seasonInf %>%
 dplyr::select(Body, Wing, site, block, class) %>%
  filter(!is.na(Body)) %>%
 filter(!is.na(Wing))
bodyWing <- glmer(Body~Wing + (1|site),</pre>
                          data=bodyWingDF,
                          family=binomial(link="logit"))
tidy(bodyWing)
##
                   term
                          estimate std.error statistic
                                                          p.value group
## 1
             (Intercept) 4.9878964 2.3128770 2.156577 0.03103867 fixed
## 2
                   Wing -2.0232763 0.9260367 -2.184877 0.02889787 fixed
                                                               NA site
## 3 sd_(Intercept).site 0.2128793
                                                    NA
                                          NA
summary(bodyWing)
## Generalized linear mixed model fit by maximum likelihood (Laplace
     Approximation) [glmerMod]
## Family: binomial ( logit )
## Formula: Body ~ Wing + (1 | site)
     Data: bodyWingDF
##
##
##
       AIC
                BIC
                     logLik deviance df.resid
##
      399.5
              410.5
                     -196.8
                                393.5
                                            286
##
## Scaled residuals:
##
      Min
               1Q Median
                               3Q
## -1.5784 -0.9612 -0.6971 0.9858 1.5234
##
## Random effects:
## Groups Name
                      Variance Std.Dev.
## site (Intercept) 0.04532 0.2129
## Number of obs: 289, groups: site, 9
##
## Fixed effects:
              Estimate Std. Error z value Pr(>|z|)
                            2.313
                4.988
                                   2.157
                                            0.0310 *
## (Intercept)
                -2.023
                            0.926 -2.185
## Wing
                                           0.0289 *
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.05 '.' 0.1 ' ' 1
## Correlation of Fixed Effects:
##
        (Intr)
```

```
## Wing -0.998
```

```
simulationOutput <- simulateResiduals(fittedModel = bodyWing, n=999)
plotSimulatedResiduals(simulationOutput = simulationOutput)</pre>
```


Residual vs. predicted quantile lines should be horizontal lines at 0.25, 0.5, 0.75

Predicted value

Anova (bodyWing)

```
## Analysis of Deviance Table (Type II Wald chisquare tests)
##
## Response: Body
        Chisq Df Pr(>Chisq)
##
## Wing 4.7737 1
                     0.0289 *
## Signif. codes: 0 '***' 0.001 '**' 0.05 '.' 0.1 ' ' 1
drop1(bodyWing, test="Chisq")
## Single term deletions
##
## Model:
## Body ~ Wing + (1 | site)
##
         Df
               AIC
                      LRT Pr(Chi)
            399.51
## <none>
## Wing
          1 402.21 4.6937 0.03027 *
## Signif. codes: 0 '***' 0.001 '**' 0.05 '.' 0.1 ' ' 1
ggplot(data=bodyWingDF, aes(x=factor(Body), y=Wing))+
 geom_boxplot() +
 geom_jitter(shape=16, position=position_jitter(0.1), aes(color=factor(class)), alpha=0.5) +
   theme_fivethirtyeight()+
```


Head Infection

QQ plot residuals

Residual vs. predicted quantile lines should be horizontal lines at 0.25, 0.5, 0.75

Anova(headWing)

```
## Analysis of Deviance Table (Type II Wald chisquare tests)
##
## Response: Head
         Chisq Df Pr(>Chisq)
##
## Wing 3.4157 1
                     0.06458 .
## Signif. codes: 0 '***' 0.001 '**' 0.05 '.' 0.1 ' ' 1
drop1(headWing, test="Chisq")
## Single term deletions
##
## Model:
## Head ~ Wing + (1 | site)
                AIC
                      LRT Pr(Chi)
            396.88
## <none>
          1 398.18 3.3029 0.06916 .
## Wing
## ---
```

Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

Saliva Infection

```
salWingDF <- seasonInf %>%
  dplyr::select(Saliva, Wing, site, block, class) %>%
 filter(!is.na(Saliva)) %>%
 filter(!is.na(Wing))
salWing <- glmer(Saliva~Wing + (1|site),</pre>
                          data=salWingDF,
                          family=binomial(link="logit"))
summary(salWing)
## Generalized linear mixed model fit by maximum likelihood (Laplace
     Approximation) [glmerMod]
## Family: binomial (logit)
## Formula: Saliva ~ Wing + (1 | site)
     Data: salWingDF
##
##
##
       AIC
                 BIC
                       logLik deviance df.resid
##
      194.7
               205.7
                       -94.4
                                 188.7
                                            288
##
## Scaled residuals:
                1Q Median
       Min
                                3Q
                                       Max
## -0.3494 -0.3369 -0.3324 -0.3267 3.1482
##
## Random effects:
                       Variance Std.Dev.
## Groups Name
           (Intercept) 0
## site
## Number of obs: 291, groups: site, 9
## Fixed effects:
               Estimate Std. Error z value Pr(>|z|)
## (Intercept) -2.9552
                            3.5124 -0.841
                                            0.40
## Wing
                 0.3021
                            1.4033
                                    0.215
                                               0.83
##
## Correlation of Fixed Effects:
        (Intr)
## Wing -0.998
tidy(salWing)
                                                           p.value group
##
                           estimate std.error statistic
                    term
## 1
             (Intercept) -2.9551864 3.512354 -0.8413692 0.4001411 fixed
## 2
                    Wing 0.3020559 1.403287 0.2152488 0.8295734 fixed
## 3 sd_(Intercept).site 0.0000000
                                                      NA
                                           NA
                                                                NA site
simulationOutput <- simulateResiduals(fittedModel = salWing, n=99)</pre>
plotSimulatedResiduals(simulationOutput = simulationOutput)
```


Direct Effects

Df

##

##

Model:

<none>

Wing

Data Format and Loading

Saliva ~ Wing + (1 | site) AIC

194.71

1 192.76 0.046633

LRT Pr(Chi)

0.829

```
emergAug <- read.csv("../data/emergence/raw/AugustEmergence.csv")</pre>
emergAug$block <- "summer"</pre>
emergOct <- read.csv("../data/emergence/raw/OctoberEmergence.csv")</pre>
emergOct$block <- "fall"</pre>
```

```
#drop U3T1 in fall because it was eaten by ants
emergOct <- filter(emergOct, Tray_Code!="U3T1")</pre>
emergOct <- filter(emergOct, Tray_Code!="S1T3") #dumped</pre>
emergOct <- filter(emergOct, Tray_Code!="U1T4") #dumped</pre>
emergAll <- rbind(emergOct, emergAug)</pre>
#expand so each mosquito gets one row
emergExp <- emergAll[rep(seq.int(1,nrow(emergAll)), emergAll$Num_Emerge),</pre>
                      c(11, 2,4,5,6:9)
#sum(emerqAll$Num_Emerqe) == nrow(emerqExp) #quick check this worked
emergTray <- emergExp %>%
  filter(Sex=="F") %>%
  mutate(devRate=1/Exp_Day) %>%
  group_by(Tray_Code, Site_Code, Class, block) %>%
  summarise(devRate=mean(devRate, na.rm=T)) %>%
  ungroup() %>%
  mutate(block=case_when(
    block=="summer" ~ "Summer",
    block=="fall" ~ "Fall"
  ))
emergTray$block <- factor(emergTray$block, levels=c("Summer", "Fall"))</pre>
#get survival per tray
survSumm <- emergExp %>%
  filter(Sex=="F") %>%
  group_by(block, Tray_Code) %>%
  dplyr::mutate(percSurv=n()) %>%
  ungroup() %>%
  dplyr::select(block, Class, Site_Code, Tray_Code, percSurv)
survSumm <- unique(survSumm)</pre>
fillIn <- function(df, endDay, totalMosq=50){
  #' Fill In Emergence Dates
  #' this function fills in for those mosquitoes that did not emerge so we do not have data for, it giv
  #' Oparam of the data frame you wish to fill in, in our case by pot
  #' @param endDay the last day of emergence
  #' Oparam totalMosq estimated starting number of mosquitoes per pot
  #' Creturns dataframe with census data filled in for mosquitoes that did not emerge
  toRep <- df[1,]
  toRep$Exp_Day <- endDay
  toRep$event <- 0
  if(nrow(df)<totalMosq){</pre>
    toAdd <- toRep[rep(1, (totalMosq-nrow(df))),]</pre>
    allTest <- rbind(df, toAdd)</pre>
  } else {
    toAdd <- NA
    allTest <- NA
  }
 return(allTest)
applyFill <- function(season, allData=emergExp){</pre>
 #' Apply FillIn function
  #' @param season "fall" or "summer"
```

```
#' Oparam allData full dataframe with row for each mosquito that emerged
  #' @returns censused data for the full season
  tempList <- list()</pre>
  tempDF <- allData
  tempDF <- tempDF[tempDF$Sex=="F",]</pre>
  tempDF <- tempDF[tempDF$block==season,]</pre>
  tempDF$event <- 1 #add emergence event</pre>
  for (i in 1:length(unique(tempDF$Tray_Code))){
    df <- tempDF[tempDF$Tray Code==unique(tempDF$Tray Code)[i],]</pre>
    endDay <- max(tempDF$Exp Day)</pre>
    tempList[[i]] <- fillIn(df=df, endDay=endDay)</pre>
  allSurv <- do.call(rbind.data.frame, tempList)</pre>
  return(allSurv)
summerSurv <- applyFill(season="summer")</pre>
fallSurv <- applyFill(season="fall")</pre>
allSurv <- rbind(summerSurv, fallSurv)</pre>
survTray <- allSurv %>%
  filter(Sex=="F") %>%
  group_by(Tray_Code, Site_Code, Class, block) %>%
  summarise(survival=mean(event))
survTray$block[survTray$block=="summer"] <- "Summer"</pre>
survTray$block[survTray$block=="fall"] <- "Fall"</pre>
survTray$block <- factor(survTray$block, levels=c("Summer", "Fall"))</pre>
Tie in tray-level climate data:
allClim <- rbind(augClim, octClim)</pre>
allClim$block <- factor(rep(c("Summer", "Fall"), each=34), levels=c("Summer", "Fall"))</pre>
survClim <- merge(survTray, allClim, by.x=c("block","Tray_Code"), by.y=c("block","Tray_ID"))</pre>
emergClim <- merge(emergTray, allClim, by.x=c("block","Tray_Code"), by.y=c("block","Tray_ID"))</pre>
```

Survival

Class x Season

```
m4 <- glmer(survival ~ Class * block + (1|Site_Code),</pre>
                   data=survTrav,
                 family=gaussian(link="logit"))
modelSums <- do.call(rbind, lapply(list(m1,m2,m3, m4), broom::glance))</pre>
modelSums #m1 is best, but near m3 & m4
##
         sigma
                  logLik
                               AIC
                                         BIC deviance df.residual
## 1 0.1658887 23.119655 -38.23931 -29.42054 1.693916
## 2 0.2422129 -1.621092 13.24218 24.26565 3.848056
                                                               62
## 3 0.1658848 23.140524 -34.28105 -21.05289 1.693094
                                                               61
## 4 0.1593213 25.878542 -35.75708 -18.11954 1.558505
                                                               59
AICc(m1,m2,m3, m4) #still m1
##
     df
              AICc
## m1 4 -37.59415
## m2 5 14.22579
## m3 6 -32.88105
## m4 8 -33.27433
SurvModSeason <- glmer(survival ~ block + (1|Site_Code),</pre>
                   data=survTray,
                 family=gaussian(link="logit"))
summary(SurvModSeason)
## Generalized linear mixed model fit by maximum likelihood (Laplace
    Approximation) [glmerMod]
## Family: gaussian (logit)
## Formula: survival ~ block + (1 | Site_Code)
##
     Data: survTray
##
##
       AIC
                BIC
                      logLik deviance df.resid
##
      -38.2
               -29.4
                       23.1
                                -46.2
##
## Scaled residuals:
##
       Min
                 1Q
                     Median
                                    ЗQ
                                            Max
## -2.15106 -0.83144 -0.01688 0.91427 1.73948
##
## Random effects:
                         Variance Std.Dev.
## Groups
              Name
## Site_Code (Intercept) 0.10886 0.3299
## Residual
                          0.02752 0.1659
## Number of obs: 67, groups: Site_Code, 9
##
## Fixed effects:
              Estimate Std. Error t value Pr(>|z|)
## (Intercept) 0.7042
                          0.2288
                                   3.078 0.00208 **
## blockFall
               -1.4902
                           0.1917 -7.775 7.55e-15 ***
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.05 '.' 0.1 ' ' 1
## Correlation of Fixed Effects:
             (Intr)
##
```

```
## blockFall -0.381
```

[1] 0.3130252

```
modResults <- tidy(SurvModSeason)
plot(SurvModSeason)</pre>
```



```
car::Anova(SurvModSeason)
## Analysis of Deviance Table (Type II Wald chisquare tests)
##
## Response: survival
##
        Chisq Df Pr(>Chisq)
## block 60.45 1 7.549e-15 ***
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.05 '.' 0.1 ' ' 1
survPair <- pairs(lsmeans::lsmeans(SurvModSeason, ~block))</pre>
survPair
                                  SE df z.ratio p.value
##
    contrast
                  estimate
   Summer - Fall 1.490186 0.1916654 NA 7.775 <.0001
##
##
## Results are given on the log odds ratio (not the response) scale.
#coefficients
boot::inv.logit(modResults$estimate[1]) #fall
## [1] 0.6691121
boot::inv.logit(modResults$estimate[1]+modResults$estimate[2]) #summer
```

Microclimate

##

1

```
Model selection
respV <- "survival"</pre>
predVs <- c("Temp_mean", "RH_mean", "DTR", "Temp_min", "RH_min", "Temp_max", "RH_max")
myCols <- c(respV, predVs, "block", "Class", "Site_Code")</pre>
modDF <- survClim %>%
 dplyr::select(one_of(myCols))
modDF <- na.omit(modDF)</pre>
#model selection for initial variable
m1 <- lmer(survival~Temp mean + (1|Site Code),
           data=modDF)
m2 <- lmer(survival~RH_mean + (1|Site_Code),</pre>
           data=modDF)
m3 <- lmer(survival~DTR + (1|Site_Code),
           data=modDF)
m4 <- lmer(survival~Temp_min + (1|Site_Code),
           data=modDF)
m5 <- lmer(survival~RH_min + (1|Site_Code),
           data=modDF)
m6 <- lmer(survival~Temp_max + (1|Site_Code),</pre>
           data=modDF)
m7 <- lmer(survival~RH_max + (1|Site_Code),
           data=modDF)
modelSums <- do.call(rbind, lapply(list(m1,m2,m3, m4, m5, m6, m7), broom::glance))</pre>
modelSums #m1 or m4
##
         sigma
                  logLik
                                 AIC
                                            BIC
                                                  deviance df.residual
## 1 0.1621684 15.571069 -23.142137 -14.569598 -44.577817
## 2 0.1837171 4.483259 -0.966518
                                     7.606021 -22.715586
                                                                     59
## 3 0.1775250 10.431923 -12.863847 -4.291308 -33.640148
                                                                     59
## 4 0.1627902 15.193627 -22.387254 -13.814715 -44.485120
                                                                     59
## 5 0.1794725 7.550733 -7.101467
                                     1.471072 -30.579517
                                                                     59
## 6 0.1864933 7.270278 -6.540555
                                     2.031984 -26.644909
                                                                     59
## 7 0.2517561 -8.273081 24.546163 33.118702 4.570757
Weights(AICc(m1,m2,m3, m4, m5, m6, m7))
## [1] 5.909927e-01 9.040816e-06 3.464812e-03 4.051924e-01 1.942651e-04
## [6] 1.467555e-04 2.607350e-11
tidy(m1)
```

std.error statistic

group

fixed

estimate

(Intercept) -0.74564962 0.145368674 -5.129369

term

```
## 2
                    Temp mean 0.05430927 0.006132529 8.855935
                                                                     fixed
## 3 sd (Intercept).Site Code 0.07289187
                                                             NA Site Code
                                                   NΑ
## 4 sd Observation.Residual 0.16216844
                                                   NA
                                                              NA Residual
#find covariates that aren't correlated
covars <- data.frame(cor(survClim[,6:12]))</pre>
rownames(covars[abs(covars$Temp_mean)<0.8,]) #only RH_mean and RH_max
## [1] "RH_mean" "RH_max"
#model selection
m1 <- lmer(survival~Temp_mean + (1|Site_Code),</pre>
           data=modDF)
m2 <- lmer(survival~Temp_mean + RH_mean + (1|Site_Code),</pre>
           data=modDF)
m3 <- lmer(survival~Temp_mean * RH_mean + (1|Site_Code),
           data=modDF)
m4 <- lmer(survival~RH_mean + (1|Site_Code),
           data=modDF)
modelSums <- do.call(rbind, lapply(list(m1,m2, m3, m4), broom::glance)) #1 seems best
modelSums
##
         sigma
                                            BIC deviance df.residual
                  logLik
                                 AIC
## 1 0.1621684 15.571069 -23.1421372 -14.569598 -44.57782
## 2 0.1627397 11.266002 -12.5320031 -1.816329 -44.61667
                                                                    58
## 3 0.1641516 6.089038 -0.1780767 12.680732 -44.92508
                                                                    57
## 4 0.1837171 4.483259 -0.9665180 7.606021 -22.71559
                                                                    59
AICc(m1, m2, m3, m4)
                AICc
      df
## m1 4 -22.4524820
## m2 5 -11.4793715
         1.3219233
## m3 6
## m4 4 -0.2768628
tidy(m1)
##
                                 estimate
                                            std.error statistic
                                                                     group
## 1
                  (Intercept) -0.74564962 0.145368674 -5.129369
                                                                     fixed
## 2
                    Temp_mean 0.05430927 0.006132529 8.855935
                                                                     fixed
## 3 sd_(Intercept).Site_Code 0.07289187
                                                   NA
                                                             NA Site_Code
## 4 sd_Observation.Residual 0.16216844
                                                              NA Residual
survModClim <- glmer(survival~Temp_mean+(1|Site_Code),</pre>
                    data=survClim,
                    family=gaussian("logit"))
summary(survModClim)
## Generalized linear mixed model fit by maximum likelihood (Laplace
    Approximation) [glmerMod]
## Family: gaussian (logit)
## Formula: survival ~ Temp_mean + (1 | Site_Code)
```

```
Data: survClim
##
##
                        logLik deviance df.resid
##
        AIC
                 BIC
##
      -40.2
               -31.6
                          24.1
                                  -48.2
##
## Scaled residuals:
                  1Q
                       Median
                                     3Q
## -2.40767 -0.84428 0.04972 0.84500 1.89339
##
## Random effects:
    Groups
              Name
                           Variance Std.Dev.
  Site_Code (Intercept) 0.11266 0.3357
                           0.02542 0.1594
## Residual
## Number of obs: 63, groups: Site_Code, 9
##
## Fixed effects:
##
               Estimate Std. Error t value Pr(>|z|)
## (Intercept) -5.53248
                            0.73027 -7.576 3.57e-14 ***
                0.23995
                            0.02966
                                     8.089 6.02e-16 ***
## Temp_mean
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.05 '.' 0.1 ' ' 1
## Correlation of Fixed Effects:
             (Intr)
## Temp_mean -0.956
modResults <- tidy(survModClim)</pre>
plot(survModClim)
                    0
                                             0
     0.2
                  0
                                                                                  0
                       0
                                                               0
                                   00
                  0
resid(., type = "pearson")
                                                                  O
                                                               0
                                             0
                                                                     8
                                      000
                        0
                                                                           0
     0.0
                                                                          0
                                                                              00
                                                                                 0
                                                                       0
                          0
                000
                                                            0
                                                              00
     -0.2
                  0
                                  O
                                                             0
    -0.4
             0.2
                                                0.5
                         0.3
                                    0.4
                                                                        0.7
                                                                                    8.0
                                                            0.6
                                             fitted(.)
```

qqnorm(resid(survModClim))

Normal Q-Q Plot


```
#coefficients
modResults$estimate[2] #temp coefficient
```

[1] 0.2399536

Emergence

Class x Season

Model Selection

```
modelSums #m2 is best
                                         BIC deviance df.residual
          sigma
                  logLik
                               AIC
## 1 0.019849282 162.9405 -319.8810 -313.2669 -336.0945
## 2 0.019767728 155.6473 -301.2945 -290.2711 -338.7079
## 3 0.006157888 228.8366 -449.6732 -440.8544 -479.8224
                                                                63
## 4 0.006095069 213.1806 -410.3611 -392.7236 -487.0683
                                                                59
## 5 0.006160639 221.1502 -430.3004 -417.0723 -483.8547
                                                                 61
AICc(m0, m1, m2, m3, m4) #still m2
##
             AICc
     df
## m0 3 -319.5000
## m1 5 -300.3109
## m2 4 -449.0280
## m3 8 -407.8784
## m4 6 -428.9004
mixEmergeTray <- lmer(devRate ~ block +(1|Site_Code),</pre>
                   data=emergTray)
summary(mixEmergeTray)
## Linear mixed model fit by REML ['lmerMod']
## Formula: devRate ~ block + (1 | Site_Code)
##
     Data: emergTray
##
## REML criterion at convergence: -457.7
##
## Scaled residuals:
      Min
               1Q Median
                               3Q
                                      Max
## -2.2281 -0.6178 0.1385 0.6286 1.7654
##
## Random effects:
## Groups
             Name
                         Variance Std.Dev.
## Site_Code (Intercept) 1.947e-05 0.004412
                         3.792e-05 0.006158
## Number of obs: 67, groups: Site_Code, 9
##
## Fixed effects:
               Estimate Std. Error t value
## (Intercept) 0.075350 0.001793 42.02
## blockFall -0.036743
                          0.001515 -24.25
##
## Correlation of Fixed Effects:
            (Intr)
## blockFall -0.388
tidy(mixEmergeTray)
##
                                            std.error statistic
                        term
                                 estimate
                                                                    group
## 1
                  (Intercept) 0.075350056 0.001793406 42.01506
                                                                    fixed
                   blockFall -0.036742816 0.001515196 -24.24955
## 3 sd_(Intercept).Site_Code 0.004412125
                                                  NA
                                                            NA Site Code
## 4 sd_Observation.Residual 0.006157888
                                                  NA
                                                             NA Residual
```



```
#confint(mixEmerge)
Anova(mixEmergeTray)
## Analysis of Deviance Table (Type II Wald chisquare tests)
##
## Response: devRate
##
         Chisq Df Pr(>Chisq)
## block 588.04 1 < 2.2e-16 ***
## Signif. codes: 0 '***' 0.001 '**' 0.05 '.' 0.1 ' ' 1
#pairwise
summary(multcomp::glht(mixEmergeTray, linfct = multcomp::mcp(block = "Tukey"), test = adjusted("holm"))
##
##
    Simultaneous Tests for General Linear Hypotheses
##
## Multiple Comparisons of Means: Tukey Contrasts
##
## Fit: lmer(formula = devRate ~ block + (1 | Site_Code), data = emergTray)
##
## Linear Hypotheses:
                      Estimate Std. Error z value Pr(>|z|)
##
## Fall - Summer == 0 -0.036743
                               0.001515 -24.25 <2e-16 ***
## Signif. codes: 0 '***' 0.001 '**' 0.05 '.' 0.1 ' ' 1
## (Adjusted p values reported -- single-step method)
```

Microclimate

Model Selection:

```
m4 <- lmer(devRate~Temp_min + (1|Site_Code),</pre>
           data=modDF)
m5 <- lmer(devRate~RH_min + (1|Site_Code),</pre>
           data=modDF)
m6 <- lmer(devRate~Temp_max + (1|Site_Code),</pre>
           data=modDF)
m7 <- lmer(devRate~RH_max + (1|Site_Code),
           data=modDF)
modelSums <- do.call(rbind, lapply(list(m0, m1,m2,m3, m4, m5, m6, m7), broom::glance))</pre>
modelSums #m1 or m4
##
           sigma
                   logLik
                                 AIC
                                           BIC deviance df.residual
## 1 0.019768076 153.2228 -300.4457 -294.0163 -316.6063
## 2 0.007165630 209.3282 -410.6565 -402.0840 -445.4920
                                                                    59
## 3 0.009061652 183.4426 -358.8852 -350.3127 -391.4812
                                                                    59
## 4 0.010435571 183.4782 -358.9563 -350.3838 -391.1167
                                                                    59
## 5 0.006977285 209.7237 -411.4474 -402.8749 -446.7692
                                                                    59
## 6 0.010041227 181.0941 -354.1882 -345.6156 -388.6008
                                                                    59
## 7 0.010883466 180.9413 -353.8826 -345.3101 -385.4466
                                                                   59
## 8 0.019655919 147.9562 -287.9124 -279.3398 -318.3476
                                                                   59
MuMIn::AICc(m0, m1,m2,m3, m4, m5, m6, m7)
      df
              AICc
## m0 3 -300.0389
## m1 4 -409.9668
## m2 4 -358.1956
## m3 4 -358.2666
## m4 4 -410.7577
## m5 4 -353.4985
## m6 4 -353.1930
## m7 4 -287.2227
tidy(m1)
##
                          term
                                    estimate
                                                 std.error statistic
                                                                          group
## 1
                   (Intercept) -6.667066e-02 0.0062175042 -10.72306
                                                                          fixed
                    Temp_mean 5.405793e-03 0.0002666941 20.26964
## 2
                                                                          fixed
## 3 sd_(Intercept).Site_Code 3.571659e-10
                                                        NA
                                                                  NA Site_Code
## 4 sd_Observation.Residual 7.165630e-03
                                                        NA
                                                                  NA Residual
#find covariates that aren't correlated
covars <- data.frame(cor(modDF[,2:7]))</pre>
rownames(covars[abs(covars$Temp_mean)<0.8,]) #mean RH</pre>
## [1] "RH mean"
#model selection
m1 <- lmer(devRate~Temp_mean + (1|Site_Code),</pre>
           data=modDF)
m2 <- lmer(devRate~Temp_mean + RH_mean + (1|Site_Code),</pre>
```

```
data=modDF)
m3 <- lmer(devRate~Temp_mean * RH_mean + (1|Site_Code),</pre>
           data=modDF)
m4 <- lmer(devRate~ RH_mean + (1|Site_Code),
           data=modDF)
modelSums <- do.call(rbind, lapply(list(m1,m2, m3, m4), broom::glance)) #1 seems best</pre>
modelSums
           sigma
                   logLik
                                AIC
                                          BIC deviance df.residual
## 1 0.007165630 209.3282 -410.6565 -402.0840 -445.4920
## 2 0.007155482 201.8216 -393.6431 -382.9275 -445.8598
                                                                  58
## 3 0.007115474 193.9168 -375.8336 -362.9748 -446.9274
                                                                  57
## 4 0.009061652 183.4426 -358.8852 -350.3127 -391.4812
AICc(m1,m2, m3, m4)
              AICc
##
      df
## m1 4 -409.9668
## m2 5 -392.5905
## m3 6 -374.3336
## m4 4 -358.1956
tidy(m1)
##
                                   estimate
                                               std.error statistic
                                                                        group
                         term
## 1
                  (Intercept) -6.667066e-02 0.0062175042 -10.72306
                                                                        fixed
## 2
                    Temp_mean 5.405793e-03 0.0002666941 20.26964
                                                                        fixed
## 3 sd (Intercept).Site Code 3.571659e-10
                                                      NA
                                                                 NA Site Code
## 4 sd_Observation.Residual 7.165630e-03
                                                       NA
                                                                 NA Residual
devClimMod <- lmer(devRate~Temp_mean +(1|Site_Code),</pre>
                    data=emergClim)
plot(devClimMod)
```


qqnorm(resid(devClimMod))

Normal Q-Q Plot

summary(devClimMod)

Linear mixed model fit by REML ['lmerMod']

```
## Formula: devRate ~ Temp_mean + (1 | Site_Code)
##
     Data: emergClim
##
## REML criterion at convergence: -418.7
##
## Scaled residuals:
                     Median
       Min
               10
                                    30
                                            Max
## -2.45479 -0.51575 0.09618 0.73667 2.25385
##
## Random effects:
## Groups
             Name
                          Variance Std.Dev.
## Site_Code (Intercept) 1.276e-19 3.572e-10
## Residual
                          5.135e-05 7.166e-03
## Number of obs: 63, groups: Site_Code, 9
##
## Fixed effects:
##
                 Estimate Std. Error t value
## (Intercept) -0.0666707 0.0062175 -10.72
               0.0054058 0.0002667
                                       20.27
## Temp_mean
##
## Correlation of Fixed Effects:
##
             (Intr)
## Temp_mean -0.989
modResults <- tidy(devClimMod)</pre>
#coefficients
modResults$estimate[2] #temp coefficient
```

Indirect Effects

[1] 0.005405793

Uninfected Body Size

Load body size data:

```
augWing <- read.csv("../data/emergence/raw/AugustWingLength.csv", stringsAsFactors = F)
octWing <- read.csv("../data/emergence/raw/OctoberWingLength.csv", stringsAsFactors = F)

#convert to mm & clean
augWing$mm <- augWing$Bars*augWing$Conversion.mm.bars.
octWing$mm <- octWing$Bars*octWing$Conversion.bars.mm.

octWing$site <- as.factor(substr(as.character(octWing$TrayCode), 1, 2))
augWing$site <- as.factor(substr(as.character(augWing$TrayCode), 1, 2))

getClass <- function(monthDf){
   monthDf$class <- NULL
   for (i in 1:nrow(monthDf)){
      if (substr(monthDf$site[i], 1,1)=="R"){
        monthDf$class[i] <- "Rural"
      }
}</pre>
```

```
if (substr(monthDf$site[i], 1,1)=="S"){
    monthDf$class[i] <- "Suburban"</pre>
    if (substr(monthDf$site[i], 1,1)=="U"){
    monthDf$class[i] <- "Urban"</pre>
  }
  monthDf$class <- as.factor(monthDf$class)</pre>
  return(monthDf)
augWing <- getClass(augWing)</pre>
octWing <- getClass(octWing)</pre>
octWing$block <- "Fall"</pre>
augWing$block <- "Summer"</pre>
augWing$Date <- as.Date(as.character(augWing$Date), format="%m/%d/%Y")</pre>
octWing$Date <- as.Date(as.character(octWing$Date), format="%m/%d/%Y")
#add day of experiment
augWing$Exp_Day <- as.numeric(augWing$Date-as.Date("2016-08-01", format="%Y-%m-%d"))</pre>
octWing$Exp_Day <- as.numeric(octWing$Date-as.Date("2016-09-26", format="%Y-%m-%d"))
#rename traycode column to match
colnames(augWing)[1] <- "Tray_Code"</pre>
colnames(octWing)[1] <- "Tray_Code"</pre>
#combine
fallWing <- octWing %>%
  dplyr::select(block, class, Site_Code=site, Tray_Code, Exp_Day, mm)
summerWing <- augWing %>%
  dplyr::select(block, class, Site_Code=site, Tray_Code, Exp_Day, mm)
allWing <- rbind(summerWing, fallWing)</pre>
allWing$block<- factor(allWing$block, levels=c("Summer", "Fall"))</pre>
#drop outlier in S2 (wing size =1.56 mm)
allWing <- allWing %>%
 filter(mm>1.6)
```

Land Class x Season

Model Selection

```
data=allWing)
m3 <- lmer(mm ~ class + block + (1|Site_Code),
                   data=allWing)
m4 <- lmer(mm ~ class*block + (1|Site_Code),
                   data=allWing)
modelSums <- do.call(rbind, lapply(list(m0,m1,m2,m3, m4), broom::glance))</pre>
modelSums #m0 is best
         sigma logLik
                                        BIC deviance df.residual
                              AIC
## 1 0.1782356 80.15274 -154.3055 -143.2243 -165.6758
## 2 0.1776557 78.44084 -148.8817 -134.1067 -167.9672
                                                              293
## 3 0.1782550 76.79547 -143.5909 -125.1223 -165.8069
                                                              292
## 4 0.1776747 75.26388 -138.5278 -116.3654 -168.4225
                                                               291
## 5 0.1741417 78.38996 -140.7799 -111.2301 -183.3942
                                                              289
AICc(m0, m1, m2, m3, m4) #still m0
      df
              AICc
## m0 3 -154.2236
## m1 4 -148.7447
## m2 5 -143.3848
## m3 6 -138.2381
## m4 8 -140.2799
wingMod <- lmer(mm~1 +(1|Site_Code),</pre>
                data=allWing)
summary(wingMod)
## Linear mixed model fit by REML ['lmerMod']
## Formula: mm ~ 1 + (1 | Site_Code)
     Data: allWing
##
## REML criterion at convergence: -160.3
##
## Scaled residuals:
      Min
              1Q Median
                                3Q
                                       Max
## -2.4380 -0.6426 0.1031 0.6165 3.3395
##
## Random effects:
## Groups
             Name
                          Variance Std.Dev.
## Site_Code (Intercept) 0.005613 0.07492
                          0.031768 0.17824
## Residual
## Number of obs: 297, groups: Site_Code, 9
##
## Fixed effects:
               Estimate Std. Error t value
## (Intercept) 2.38002
                          0.02724
                                    87.39
plot(wingMod)
```


Microclimate

Load Data:

```
climate <- read.csv(file='../data/microclimate/clean/2016TrialsAdultCleaned.csv', stringsAsFactors = F)</pre>
climate$Day <- as.Date(climate$Day, format="%Y-%m-%d")</pre>
climate$Site_Code <- as.factor(climate$Site_ID)</pre>
climate$Tray_Code <- as.factor(climate$Tray_ID)</pre>
getClimate <- function(indMosq, climateDF=climate, season){</pre>
  #' This is a function to apply over the rows of the octWing and augWing data frames. Must have climat
  #' Oparam indMosq row of the dataframe for each individual mosquito
  #' @param climateDF the dataframe containing climate data every 10 minutes
  #' @param season, either "summer" or "fall"
  #' @returns formatted data with climate and winglength for the individual mosquito
  #get date range
  startDate <- ifelse(season=="Summer", "2016-08-01", "2016-09-26")
  startDate <- as.Date(startDate, format="%Y-%m-%d")
  endDate <- indMosq$Date</pre>
  #subset temperature data
  try(climSubset <- climateDF %>%
    filter(Tray_Code==as.character(indMosq$Tray_Code)) %>%
    filter(Day>startDate & Day<endDate),</pre>
```

```
silent=T)
  #now take mean temperature
  tempMean <- climSubset %>%
    summarise(Tmean=mean(Temp, na.rm=T))
  # if (nrow(climSubset)<1000){</pre>
  # climSubset <- climate %>%
        filter(Site_ID==indMosq$site) %>%
        filter(Day>startDate & Day<endDate)</pre>
  # }
  #merge this all together
  \#mosqFormat \leftarrow cbind(indMosq[,c('block','class','site','Tray_ID','Exp_Day', 'mm')], Tmean=tempMean$Tm
  return(tempMean$Tmean)
}
augWing$Temp <- NA
for(i in 1:nrow(augWing)){
  indMosq <- augWing[i,]</pre>
  augWing$Temp[i] <- getClimate(indMosq, season="Summer")</pre>
octWing$Temp <- NA
for(i in 1:nrow(octWing)){
  indMosq <- octWing[i,]</pre>
  octWing$Temp[i] <- getClimate(indMosq, season="Fall")</pre>
#combine
fallWing <- octWing %>%
  dplyr::select(block, class, Site_Code=site, Tray_Code, Exp_Day, mm, Temp)
summerWing <- augWing %>%
    dplyr::select(block, class, Site_Code=site, Tray_Code, Exp_Day, mm, Temp)
allWing <- rbind(summerWing, fallWing)</pre>
allWing$block<- factor(allWing$block, levels=c("Summer", "Fall"))</pre>
#drop outlier in S2 (wing size =1.56 mm)
allWing <- allWing %>%
  filter(mm>1.6)
Statistics:
wingModTemp <- lmer(mm~Temp+(1|Site_Code),</pre>
                     data=allWing)
plot(wingModTemp)
```


summary(wingModTemp)

```
## Linear mixed model fit by REML ['lmerMod']
## Formula: mm ~ Temp + (1 | Site_Code)
##
      Data: allWing
##
## REML criterion at convergence: -151.5
##
## Scaled residuals:
##
       Min
                1Q Median
                                 3Q
                                        Max
## -2.5796 -0.5915 0.0659 0.6242
                                   3.4898
##
## Random effects:
   Groups
              Name
                          Variance Std.Dev.
    Site_Code (Intercept) 0.005402 0.0735
    Residual
##
                          0.031376 0.1771
## Number of obs: 290, groups: Site_Code, 9
##
## Fixed effects:
               Estimate Std. Error t value
##
## (Intercept) 2.253964
                          0.074292
                                    30.339
##
               0.005917
                          0.003142
                                      1.883
##
## Correlation of Fixed Effects:
        (Intr)
##
## Temp -0.932
confint(wingModTemp) #no effect of temperature
```

2.5 % 97.5 %

Normal Q-Q Plot

Plot

```
ggplot(data=allWing, aes(x=Temp, y=mm)) +
      geom_point(aes(col=factor(class), shape=factor(block))) +
      geom_smooth(method="lm")+
      theme_fivethirtyeight() +
      theme(panel.background = element_rect(fill = "transparent", colour = NA),
                         plot.background = element_rect(fill = "transparent", colour = NA),
                         legend.key = element_blank())+
      theme(legend.background = element_rect(fill = "transparent", colour = NA)) +
            theme(axis.title = element_text(), axis.title.x = element_text()) +
      ylab("Uninfected Wing Size")+
      xlab("Mean Temperature (C)") +
      scale_color_manual(values=c(colR, colS, colU), name="Class", labels=c("Rural", "Suburban", "Urban"))+
      \#scale\_alpha\_discrete(range=c(1,0.3), name="Season", labels=c("Fall", "Summer"), guide=guide\_legend(range=c(1,0.3), name="Season", labels=c(1,0.3), name="Seas
      scale_shape_discrete(name="Season",labels=c("Fall", "Summer"), guide=guide_legend(reverse=T)) +
      theme(legend.position="right", legend.direction="vertical")+
      guides(shape=F)
```

Growth Rate

Format and merge data

```
#calculate means per Exp_Day and Tray
growthWing <- allWing %>%
  dplyr::group by(block,class,Site Code,Tray Code, Exp Day) %>%
  dplyr::summarise(meanWing=mean(mm, na.rm=T)) %>%
  dplyr::ungroup()
growthWing$class <- tolower(growthWing$class)</pre>
#merge with emergence data
allEmerg$class <- allEmerg$Class</pre>
levels(allEmerg$class) <- c("Rural", "Suburban", "Urban")</pre>
levels(allEmerg$block) <- c("Summer", "Fall")</pre>
growthDF <- merge(allEmerg, growthWing, by=c("block", "class", "Site_Code", "Tray_Code", "Exp_Day"), al
trayMeans <- allWing %>%
  dplyr::group_by(block, Tray_Code) %>%
  dplyr::summarise(meanWing=mean(mm, na.rm=T))
#fill in missing with mean of tray during that block
for (i in 1:nrow(growthDF)){
  if (is.na(growthDF$meanWing[i])){
    temp <- trayMeans$meanWing[trayMeans$block==growthDF$block[i] & trayMeans$Tray_Code==growthDF$Tray_
    if (length(temp)==0) next
    growthDF$meanWing[i] <- temp</pre>
 } else next
}
#some trays had no mosquitoes emerge that weren't infected, so we take the site level mean for them
siteMeans <- allWing %>%
  dplyr::group_by(Site_Code, block) %>%
  dplyr::summarise(meanWing=mean(mm, na.rm=T))
for (i in 1:nrow(growthDF)){
  if (is.na(growthDF$meanWing[i])){
    temp <- siteMeans$meanWing[siteMeans$block==growthDF$block[i] & siteMeans$Site_Code==growthDF$Site_
    if (length(temp)==0) next
    growthDF$meanWing[i] <- temp</pre>
 } else next
}
growthDF$Fwx <- -121.240 + (78.02 * growthDF$meanWing)
growthDF$AxFwx <- growthDF$Num_Emerge*growthDF$Fwx
growthDF$xAxFwx <- growthDF$Exp_Day*growthDF$AxFwx
#get sum per day
growthDF2 <- growthDF %>%
  dplyr::group_by(block, Tray_Code, class, Site_Code) %>%
  dplyr::summarise(xAxFwx = sum(xAxFwx), AxFwx=sum(AxFwx))
growthDF2 <- growthDF2 %>%
  mutate(r=(log((1/50)*AxFwx))/(14+(xAxFwx/AxFwx))) %>%
  ungroup()
```

Plot

Adjust factor names for plotting:

```
levels(emergTray$block) <- c("Summer", "Fall")
levels(emergTray$Class) <- c("Rural", "Suburban", "Urban")

levels(survTray$block) <- c("Summer", "Fall")
levels(survTray$Class) <- c("Rural", "Suburban", "Urban")</pre>
```

Three panel survival, emergence and growth rate

```
\#png(file="figures/forMS/survEmergeGrowth.png", width = 4, height=7, units="in", res=500, family="sans", formula = 1, height=7, units="sans", formula = 1, height=7, units=1, height=7, units=1
survPlot <- ggplot(data=survTray, aes(x=Class, y=(survival*100)))+</pre>
    geom_boxplot(aes(fill=Class), width=0.4)+
    scale_fill_manual(values=c(colR, colS, colU), labels=c("Rural", "Suburban", "Urban"))+
    facet_wrap(~block, ncol=2)+
    ylab("Percent Survival")+
    theme_fivethirtyeight() +
    theme(panel.background = element_rect(fill = "transparent", colour = NA),
                plot.background = element_rect(fill = "transparent", colour = NA),
                legend.key = element_blank(),
                panel.grid.major.x = element_blank(),
                legend.background = element_rect(fill = "transparent", colour = NA),
                axis.title = element text(),
                axis.title.x = element_text(),
                axis.title.y=element_text(),
                #strip.background = element blank(),
                strip.text.x = element_text(size=12),
                axis.line=element_line(color=axisColor, size=0.5),
                panel.grid = element_blank(),
                axis.text.y=element_text(size=12),
                axis.text.x=element_text(size=12))+
    theme(axis.title.x = element_blank(),
                axis.text.x = element_blank(),
                axis.title.y= element_text(size=10),
                strip.text = element_text(size=10))+
    theme(legend.position="none")
#Emergence Plot
emergePlot <- ggplot(emergTray, aes(x=Class, y=devRate))+</pre>
    geom_boxplot(aes(fill=Class), width=0.4)+
    scale_fill_manual(values=c(colR, colS, colU), labels=c("Rural", "Suburban", "Urban"))+
    facet_wrap(~block, ncol=2)+
    ylab("Development Rate")+
      theme_fivethirtyeight() +
    theme(panel.background = element_rect(fill = "transparent", colour = NA),
                plot.background = element_rect(fill = "transparent", colour = NA),
                legend.key = element_blank(),
                panel.grid.major.x = element_blank(),
                legend.background = element_rect(fill = "transparent", colour = NA),
                axis.title = element_text(),
                axis.title.x = element_text(),
                axis.title.y=element_text(),
```

```
#strip.background = element_blank(),
        strip.text.x = element_text(size=12),
        axis.line=element_line(color=axisColor, size=0.5),
        panel.grid = element_blank(),
        axis.text.y=element_text(size=12),
        axis.text.x=element text(size=12))+
  theme(legend.position="none") +
  theme(strip.background = element blank(),
  strip.text.x = element blank()) +
  theme(axis.title.x = element_blank(),
        axis.text.x = element_blank(),
        axis.title.y= element_text(size=10))
growthPlot <- ggplot(data=growthDF2, aes(x=class, y=r))+</pre>
  geom_boxplot(aes(fill=class), width=0.4)+
  scale_fill_manual(values=c(colR, colS, colU), labels=c("Rural", "Suburban", "Urban"))+
  facet_wrap(~block, ncol=2)+
  theme_fivethirtyeight() +
  theme(panel.background = element_rect(fill = "transparent", colour = NA),
        plot.background = element_rect(fill = "transparent", colour = NA),
        legend.key = element_blank(),
        panel.grid.major.x = element_blank(),
        legend.background = element_rect(fill = "transparent", colour = NA),
        axis.title = element_text(),
        axis.title.x = element text(),
        axis.title.y=element_text(),
        #strip.background = element blank(),
        strip.text.x = element_text(size=12),
        axis.line=element_line(color=axisColor, size=0.5),
        panel.grid = element_blank(),
        axis.text.y=element_text(size=12),
        axis.text.x=element_text(size=12))+
  theme(legend.position="none") +
  theme(strip.background = element_blank(),
  strip.text.x = element_blank()) +
  ylab("Per Capita Growth\nRate (r')")+
  xlab("Land Class") +
  theme(axis.text.x = element_text(size=10)) +
  theme(axis.title = element_text(size=12),
        axis.title.y= element_text(size=10))
plot_grid(survPlot, emergePlot, growthPlot,
          labels=c("A", "B", "C"),
          nrow=3,
          align='v')
#dev.off()
```

Statistics

Season x Land Class

Model Selection

```
#model selection by AIC and logLik
m1 <- lmer(r ~ block + (1|Site_Code),
                   data=growthDF2)
m2 <- lmer(r ~ class + (1|Site_Code),</pre>
                   data=growthDF2)
m3 <- lmer(r ~ block + class + (1|Site_Code),
                   data=growthDF2)
m4 <- lmer(r ~ block*class + (1|Site_Code),</pre>
                   data=growthDF2)
modelSums <- do.call(rbind, lapply(list(m1,m2,m3, m4), broom::glance))</pre>
modelSums #m1 is best
          sigma logLik
                               AIC
                                         BIC deviance df.residual
## 1 0.02317469 150.8876 -293.7752 -284.7812 -319.0258
## 2 0.04934191 101.7433 -193.4867 -182.2442 -225.4769
                                                                 65
## 3 0.02317408 144.3205 -276.6410 -263.1500 -319.4812
                                                                 64
## 4 0.02304346 138.7162 -261.4324 -243.4445 -322.2346
                                                                 62
AICc(m1,m2,m3, m4) #still m1
##
      df
              AICc
## m1 4 -293.1598
## m2 5 -192.5492
## m3 6 -275.3076
## m4 8 -259.0718
growthModSeason <- lmer(r~ block+ (1|Site_Code),</pre>
                        data=growthDF2)
summary(growthModSeason)
## Linear mixed model fit by REML ['lmerMod']
## Formula: r ~ block + (1 | Site_Code)
##
      Data: growthDF2
##
## REML criterion at convergence: -301.8
## Scaled residuals:
                      Median
                                    3Q
       Min
              1Q
## -2.91104 -0.48351 0.05068 0.75767 1.80245
## Random effects:
## Groups
             Name
                          Variance Std.Dev.
## Site Code (Intercept) 0.0001764 0.01328
## Residual
                          0.0005371 0.02317
## Number of obs: 70, groups: Site_Code, 9
```

```
##
## Fixed effects:
##
                Estimate Std. Error t value
## (Intercept) 0.169354
                            0.005876
                                       28.82
               -0.081859
## blockFall
                            0.005548
                                     -14.75
##
## Correlation of Fixed Effects:
##
             (Intr)
## blockFall -0.458
```

plot(growthModSeason)

tidy(growthModSeason)

```
##
                         term
                                 estimate
                                            std.error statistic
                                                                     group
## 1
                  (Intercept) 0.16935442 0.005875706
                                                      28.82282
                                                                    fixed
                    blockFall -0.08185939 0.005548448 -14.75356
## 2
                                                                    fixed
## 3 sd_(Intercept).Site_Code 0.01328340
                                                   NA
                                                             NA Site_Code
## 4 sd_Observation.Residual 0.02317469
                                                   NA
                                                             NA Residual
```

car::Anova(growthModSeason) #Wald test

confint(growthModSeason) #profiled confidence interval

```
## 2.5 % 97.5 %

## .sig01 0.005098632 0.02410232

## .sigma 0.019439256 0.02774893

## (Intercept) 0.157555871 0.18115298

## blockFall -0.092829521 -0.07091747
```

Microclimate

```
levels(allClim$block) <- factor(as.character(allClim$block), levels=c("Summer", "Fall"))
#get temperature data
growthTemp <- merge(growthDF2, allClim, by.x=c("block","Tray_Code"), by.y=c("block", "Tray_ID"))
ggplot(data=growthTemp, aes(x=Temp_mean, y=r))+
    geom_point()+
    geom_smooth(method="lm")</pre>
```



```
##
## Call:
## lm(formula = r ~ Temp_mean, data = growthTemp)
##
## Residuals:
```

```
Median
                     1Q
## -0.042414 -0.016481 0.004224 0.014253 0.032784
##
## Coefficients:
##
                 Estimate Std. Error t value Pr(>|t|)
## (Intercept) 0.1655056 0.0158639 10.43 1.34e-15 ***
## Temp mean
              0.0001513 0.0006878
                                         0.22
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## Residual standard error: 0.01919 on 66 degrees of freedom
## Multiple R-squared: 0.0007328, Adjusted R-squared:
## F-statistic: 0.0484 on 1 and 66 DF, p-value: 0.8266
anova(growthTempMod)
## Analysis of Variance Table
## Response: r
             Df
                             Mean Sq F value Pr(>F)
##
                    Sum Sq
## Temp_mean 1 0.0000178 1.782e-05 0.0484 0.8266
## Residuals 66 0.0243013 3.682e-04
Vectorial Capacity
Arrange temperature data by hour for rate summation
climS <- climate[climate$Day >="2016-08-01" & climate$Day <="2016-09-03",]</pre>
climS$Block <- "summer"</pre>
climF <- climate[climate$Day >="2016-09-26" & climate$Day <="2016-11-08",]</pre>
climF$Block <- "fall"</pre>
#bind back together
climAll <- rbind(climS, climF)</pre>
climAll$Date <- as.POSIXct(climAll$Date)</pre>
climAll$Hour <- lubridate::hour(climAll$Date)</pre>
parameters <- dplyr::select(climAll, Block, Class, Site_ID, Tray_ID, Temp, Day, Hour)</pre>
Calculated set at 27C constant (x=27):
Briere: y \sim a * x * (x - t0) * (tmax - x)^(1/2) Quad: y \sim a * (x-t0) * (x-Tmax)
parameters <- unique(dplyr::select(climAll, Block, Class, Site_ID))</pre>
#a -- bite rate
parametersa \leftarrow ((1.93/10000)*27*(27-10.25)*((38.32-27)^0.5))
#adjust negatives
parameters$a[parameters$a<0] <- 0</pre>
parameters$a[is.na(parameters$a)] <- 0</pre>
# PDR - parasite development rate
parametersPDR \leftarrow ((1.09/10000)*27*(27-10.39)*((43.05-27)^0.5))
#adjust negatives
```

parameters\$PDR[parameters\$PDR<0] <- 0</pre>

```
parameters$PDR[is.na(parameters$PDR)] <- 0</pre>
# lf - mosquito lifespan
parameters 1f < -1.43*(27-13.41)*(27-31.51)
#adjust for zeros
parameters$lf[parameters$lf<0] <- 0</pre>
parameters$lf[is.na(parameters$lf)] <- 0</pre>
# we will then calculate the mean and se for these parameters per site and hour, then sum them up for a
library(dplyr)
paramRate <- parameters
paramRate <- dplyr::rename(paramRate, Site_Code=Site_ID)</pre>
paramRate <- dplyr::rename(paramRate, block=Block)</pre>
## u - daily probability of mosquito mortality
paramRate$mu <- 1/paramRate$lf</pre>
paramRate$block <- tolower(paramRate$block)</pre>
paramRate$Class <- tolower(paramRate$Class)</pre>
paramRateOld <- paramRate</pre>
```

Combine with field measured fecundity, survival, development rate and vector competence:

```
#EFD: from wing length
EFD <- allWing %>%
  group_by(block, Class=class, Site_Code) %>%
  dplyr::summarise(wingL=mean(mm, na.rm=T)) %>%
  ungroup() %>%
  mutate(fecundity=-121.240 + (78.02*wingL))
EFD$block <- tolower(EFD$block)</pre>
EFD$Class <- tolower(EFD$Class)</pre>
#pEA: larval survival
pEA <- survSumm %>%
  group_by(block, Class, Site_Code) %>%
  dplyr::summarise(pEA=mean((percSurv/50), na.rm=T))
pEA$block <- tolower(pEA$block)</pre>
pEA$Class <- tolower(pEA$Class)</pre>
#MDR: emergence rate (day ^-1)
MDR <- emergTray %>%
  group_by(block, Class, Site_Code) %>%
  dplyr::summarise(MDR=mean(devRate, na.rm=T))
MDR$block <- tolower(MDR$block)</pre>
MDR$Class <- tolower(MDR$Class)</pre>
#bc
bc <- seasonInfSite %>%
  dplyr::select(block, Class=class, Site_Code=site, bc=Saliva_mean)
bc$block <- tolower(bc$block)</pre>
bc$Class <- tolower(bc$Class)</pre>
```

```
Merge traits together
```

```
paramRate <- full_join(paramRate, EFD, by=c("block", "Class", "Site_Code"))</pre>
paramRate <- full_join(paramRate, pEA, by=c("block", "Class", "Site_Code"))</pre>
paramRate <- full_join(paramRate, MDR, by=c("block", "Class", "Site_Code"))</pre>
paramRate <- full_join(paramRate, bc, by=c("block", "Class", "Site_Code"))</pre>
Calculate EFD
paramRate$EFD <- paramRate$fecundity*paramRate$a</pre>
Calcuate VC w/o carry-over effects
paramNoCOE <- dplyr::select(climAll, Block, Class, Site_ID, Tray_ID, Temp, Day, Hour)</pre>
#based on model
paramNoCOE fecundity 2 <- ((4.88/100)*27*(27-8.02)*((35.65-27)^0.5))/24
paramNoCOE$fecundity2[paramNoCOE$fecundity2<0] <- 0</pre>
paramNoCOE$fecundity2[is.na(paramNoCOE$fecundity2)] <- 0</pre>
paramNoCDE\$bc2 <- (((7.35/10000)*27*(27-15.84)*((36.40-27)^0.5)) * ((4.39/10000)*27*(27-3.62)*((36.82-23)^0.5)) * ((4.39/10000)*27*(27-3.62)*((36.82-23)^0.5)) * ((4.39/10000)*27*(27-3.62)*((36.82-23)^0.5)) * ((4.39/10000)*27*(27-3.62)*((36.82-23)^0.5)) * ((4.39/10000)*27*(27-3.62)*((36.82-23)^0.5)) * ((4.39/10000)*27*(27-3.62)*((36.82-23)^0.5)) * ((4.39/10000)*27*(27-3.62)*((36.82-23)^0.5)) * ((4.39/10000)*27*((4.39/10000)*27*((4.39/10000)*27*((4.39/10000)*27*((4.39/10000)*27*((4.39/10000)*27*((4.39/10000)*27*((4.39/10000)*27*((4.39/10000)*27*((4.39/10000)*27*((4.39/10000)*27*((4.39/10000)*27*((4.39/10000)*27*((4.39/10000)*27*((4.39/10000)*27*((4.39/10000)*27*((4.39/10000)*27*((4.39/10000)*27*((4.39/10000)*27*((4.39/10000)*27*((4.39/10000)*27*((4.39/10000)*27*((4.39/10000)*27*((4.39/10000)*27*((4.39/10000)*27*((4.39/10000)*27*((4.39/10000)*27*((4.39/10000)*27*((4.39/10000)*27*((4.39/1000)*27*((4.39/1000)*27*((4.39/1000)*27*((4.39/1000)*27*((4.39/1000)*27*((4.39/1000)*27*((4.39/1000)*27*((4.39/1000)*27*((4.39/1000)*27*((4.39/1000)*27*((4.39/1000)*27*((4.39/1000)*27*((4.39/1000)*27*((4.39/1000)*27*((4.39/1000)*27*((4.39/1000)*27*((4.39/1000)*27*((4.39/1000)*27*((4.39/1000)*27*((4.39/1000)*27*((4.39/1000)*27*((4.39/1000)*27*((4.39/1000)*27*((4.39/1000)*27*((4.39/1000)*27*((4.39/1000)*27*((4.39/1000)*27*((4.39/1000)*27*((4.39/1000)*27*((4.39/1000)*27*((4.39/1000)*27*((4.39/1000)*27*((4.39/1000)*27*((4.39/1000)*27*((4.39/1000)*27*((4.39/1000)*27*((4.39/1000)*27*((4.39/1000)*27*((4.39/1000)*27*((4.39/1000)*27*((4.39/1000)*27*((4.39/1000)*27*((4.39/1000)*27*((4.39/1000)*27*((4.39/1000)*27*((4.39/1000)*27*((4.39/1000)*27*((4.39/1000)*27*((4.39/1000)*27*((4.39/1000)*27*((4.39/1000)*27*((4.39/1000)*27*((4.39/1000)*27*((4.39/1000)*27*((4.39/1000)*27*((4.39/1000)*27*((4.39/1000)*27*((4.39/1000)*27*((4.39/1000)*27*((4.39/1000)*27*((4.39/1000)*27*((4.39/1000)*27*((4.39/1000)*27*((4.39/1000)*27*((4.39/1000)*27*((4.39/1000)*27*((4.39/1000)*27*((4.39/1000)*27*((4.39/1000)*27*((4.39/1000)*27*((4.39/1000)*27*((4.39/1000)*27*((4
paramNoCOE$bc2[paramNoCOE$bc2<0] <- 0</pre>
paramNoCOE$bc2[is.na(paramNoCOE$bc2)] <- 0</pre>
#take mean of each hour and sum up
library(dplyr)
paramRateNoCOE <- paramNoCOE %>%
    group_by(Block, Class, Site_ID, Hour) %>%
    dplyr::select(-Temp, -Day, -Tray_ID) %>%
    summarise_all(funs(mean(.,na.rm=T))) %>%
    ungroup() %>%
    group by(Block, Class, Site ID) %>%
    summarise_all(funs(sum)) %>%
    ungroup()
paramRateNoCOE <- dplyr::rename(paramRateNoCOE, Site_Code=Site_ID)</pre>
paramRateNoCOE <- dplyr::rename(paramRateNoCOE, block=Block)</pre>
paramRateNoCOE$Class <- tolower(paramRateNoCOE$Class)</pre>
Merge w/ and w/o carry-over effects together
paramAll <- full_join(paramRate, paramRateNoCOE, by=c("block", "Class", "Site_Code"))</pre>
#calculate EFD
paramAll$EFD2 <- paramAll$fecundity2*paramAll$a</pre>
Calculate VC from traits (VCnoCOE is w/o carry-over)
paramAll <- mutate(paramAll,</pre>
                                           VC=((a^2)*bc*(exp(-mu/PDR))*EFD*pEA*(MDR^2))/((mu^2)))
paramAll <- mutate(paramAll,</pre>
                                         VCnoCOE = (((a^2)*bc2*(exp(-mu/PDR))*EFD2*pEA*(MDR^2))/((mu^2))))
```

Plotting

Add Temperature Back in For Comparison Plots

```
siteTemps <- dplyr::select(seasonInfSite, block, site, class, Temp_mean_mean)
levels(paramAll$Class) <- c("Rural", "Suburban", "Urban")
VCplot <- merge(paramAll, siteTemps, by.x=c("block", "Site_Code"), by.y=c("block", "site"))
VCplot <- VCplot %>%
    dplyr::select(block, Class, Site_Code, VC, VCnoCOE, Temp_mean_mean) %>%
    mutate(VCdiff=(VC-VCnoCOE)/VCnoCOE*100)
VCplot$block <- factor(VCplot$block, levels=c("summer", "fall"))</pre>
```

Comparison Line Plot

```
#pdf(file="figures/forMS/VCxTemp.pdf", width = 4, height=4, family="sans")
VCxTempPlot <- ggplot(data=VCplot, aes(x=Temp_mean_mean))+</pre>
  geom_smooth(aes(y=VC, color="WithCOE"), method="lm", show.legend=F)+
  geom_smooth(aes(y=VCnoCOE, color="WithoutCOE"), method="lm", show.legend=F)+
  geom_smooth(aes(y=VC, color="WithCOE"), method="lm", fill=NA)+
  geom_smooth(aes(y=VCnoCOE, color="WithoutCOE"), method="lm", fill=NA)+
  geom_point(aes(y=VC, color="WithCOE")) +
  geom_point(aes(y=VCnoCOE, color="WithoutCOE"))+
  coord cartesian(ylim=c(0,40))+
  theme_fivethirtyeight()+
  theme(panel.background = element rect(fill = "transparent", colour = NA),
        plot.background = element_rect(fill = "transparent", colour = NA),
        legend.key = element_blank(),
        legend.background = element rect(fill = "transparent", colour = NA),
        legend.position="bottom",
        legend.direction="horizontal",
        axis.title = element_text(),
        legend.text=element_text(size=8),
        legend.title = element_text(size=10),
        axis.line=element_line(color="gray40", size=0.5),
        panel.grid = element_blank())+
  guides(colour=guide_legend(title.position="top", title.hjust=0.5))+
  xlab("Temperature (C)")+
  ylab("Vectorial Capacity")+
  scale_colour_manual(name="Calcuation Type",
                      #values=c(WithCOE="#af8dc3", WithoutCOE="#7fbf7b"),
                      values=c(WithCOE="black", WithoutCOE="gray55"),
                      labels=c("With COEs", "Without COEs"))
VCxTempPlot
#dev.off()
#qet mean and se summary
VCplotsumm <- VCplot %>%
  dplyr::select(-Site_Code) %>%
  gather(calc, value, VC, VCnoCOE, VCdiff) %>%
  group_by(block, Class, calc) %>%
  dplyr::summarise_all(funs(mean=mean(., na.rm=T), se=sd(.)/sqrt(n()))) %>%
  ungroup()
#add in facet labels
VCplotsumm$labels <- case_when(</pre>
```

```
VCplotsumm$calc=="VC" ~ "With COEs" ,
  VCplotsumm$calc=="VCnoCOE" ~ "No COEs",
  VCplotsumm$calc=="VCdiff" ~ "Difference due to COEs"
VCplotsumm$labels <- factor(VCplotsumm$labels, levels=c("No COEs", "With COEs", "Difference due to COEs
#order factor
VCplotsumm$calc <- factor(VCplotsumm$calc, levels=c("VCnoCOE", "VC", "VCdiff"))</pre>
Panel Plots with Bar Graphs
noCOEplot <- ggplot(data=VCplotsumm[VCplotsumm$labels=="No COEs",], aes(x=factor(Class), group=block))
  geom_bar(stat='identity',
           aes(y=value_mean, fill=Class, alpha=block, color=Class),
           position=position_dodge(0.9),
           width=0.7) +
  geom_errorbar(aes(ymin=value_mean-value_se, ymax=value_mean+value_se),
                position=position dodge(0.9),
                width=0.4.
                color=errorColor)+
  ylim(0,50) +
  #facet_wrap(~labels, nrow=3) +
  #theme_fivethirtyeight() +
  ylab("Vectorial Capacity")+
  xlab("Land Class")+
  #theme_fivethirtyeight() +
  scale_x_discrete(labels=c("Rural", "Suburban", "Urban"))+
  scale_fill_manual(values=c(colR, colS, colU),
                    labels=c("Rural", "Suburban", "Urban")) +
  scale color manual(values=c(colR, colS, colU))+
  scale_alpha_discrete(range=c(1,0),
                       name="Season",
                       guide=guide_legend(),
                       labels=c("Summer", "Fall"))+
  #geom_hline(aes(yintercept=0))+
  guides(fill=F, alpha=F, color=F)+
  theme(panel.background = element_rect(fill = "transparent", colour = NA),
        plot.background = element_rect(fill = "transparent", colour = NA),
        legend.key = element_blank(),
        legend.background = element_rect(fill = "transparent", colour = NA),
        legend.position="right",
        axis.title.y=element_text(size=12),
        axis.title.x = element_blank(),
        axis.text.x = element_text(size=10),
        legend.text=element_text(size=6),
        legend.title = element_text(size=8),
        legend.key.size = unit(0.1, "in"),
        legend.direction = "vertical",
        legend.box = "vertical",
        panel.grid.major.x = element_blank(),
        panel.grid.major=element_blank(),
        strip.background = element_blank(),
        axis.ticks=element_blank(),
        axis.line=element_line(color=axisColor)) +
 theme(strip.text.x = element_text()) #this has to be seperate for some reason?
```

```
noCOEplot
with COEplot <- ggplot(data=VCplotsumm[VCplotsumm$labels=="With COEs",], aes(x=factor(Class), group=bloc
  geom bar(stat='identity',
           aes(y=value_mean, fill=Class, alpha=block, color=Class),
           position=position_dodge(0.9),
           width=0.7) +
  geom_errorbar(aes(ymin=value_mean-value_se, ymax=value_mean+value_se),
                position=position_dodge(0.9),
                width=0.4.
                color=errorColor)+
  ylim(0,50) +
  #facet_wrap(~labels, nrow=3) +
  ylab("Vectorial Capacity")+
  xlab("Land Class")+
  #theme_fivethirtyeight() +
  scale_x_discrete(labels=c("Rural", "Suburban", "Urban"))+
  scale_fill_manual(values=c(colR, colS, colU),
                    labels=c("Rural", "Suburban", "Urban")) +
  scale_color_manual(values=c(colR, colS, colU))+
  scale_alpha_discrete(range=c(1,0),
                       name="Season",
                       guide=guide_legend(),
                       labels=c("Summer", "Fall"))+
  #geom_hline(aes(yintercept=0))+
  guides(color=F, fill=F, alpha=F)+
  theme(panel.background = element_rect(fill = "transparent", colour = NA),
        plot.background = element_rect(fill = "transparent", colour = NA),
        legend.key = element_blank(),
        legend.background = element_rect(fill = "transparent", colour = NA),
        legend.position="right",
        axis.title.y=element_text(size=12),
        axis.title.x = element_blank(),
        axis.text.x = element_text(size=10),
        legend.text=element_text(size=6),
        legend.title = element_text(size=8),
        legend.key.size = unit(0.1, "in"),
        legend.direction = "vertical",
        legend.box = "vertical",
        panel.grid.major.x = element_blank(),
        panel.grid.major=element_blank(),
        strip.background = element_blank(),
        axis.line = element_line(color=axisColor),
        axis.ticks=element_blank()) +
 theme(strip.text.x = element_text()) #this has to be seperate for some reason?
withCOEplot
diffPlot <- ggplot(data=VCplotsumm[VCplotsumm$labels=="Difference due to COEs",], aes(x=factor(Class),
  geom_bar(stat='identity',
           aes(y=value_mean, fill=Class, alpha=block, color=Class),
           position=position_dodge(0.9),
           width=0.7) +
```

```
geom_errorbar(aes(ymin=value_mean-value_se, ymax=value_mean+value_se),
                position=position_dodge(0.9),
                width=0.4.
                color=errorColor)+
  #theme_fivethirtyeiqht() +
  ylab("Change in VC") +
  xlab("Land Class") +
  scale x discrete(labels=c("Rural", "Suburban", "Urban"))+
  scale fill manual(values=c(colR, colS, colU),
                    labels=c("Rural", "Suburban", "Urban")) +
  scale_color_manual(values=c(colR, colS, colU))+
  scale_alpha_discrete(range=c(1,0),
                       name="Season",
                       guide=guide_legend(),
                       labels=c("Summer", "Fall"))+
  geom_hline(aes(yintercept=0))+
  guides(color=F, alpha=guide_legend(override.aes=list(color=axisColor)))+
  theme(panel.background = element_rect(fill = "transparent", colour = NA),
        plot.background = element_rect(fill = "transparent", colour = NA),
        legend.key = element_blank(),
        legend.background = element_rect(fill = "transparent", colour = NA),
        legend.position="bottom",
        axis.title.y = element_text(size=12),
        axis.title.x = element_text(size=12),
        axis.text.x = element text(size=10),
        legend.text=element_text(size=8),
        legend.title = element text(size=12),
        legend.key.size = unit(0.1, "in"),
        legend.direction = "horizontal",
        legend.box = "vertical",
        panel.grid.major.x = element_blank(),
        panel.grid.major=element_blank(),
        strip.background = element_blank(),
        axis.ticks=element_blank(),
        axis.line = element_line(color=axisColor)) +
 theme(strip.text.x = element_text()) #this has to be seperate for some reason?
diffPlot
```

Use cowplot to combine the three bar graphs and VC over temp chart.

Statistics

```
VCplot$VCforStats <- VCplot$VC+0.000000001</pre>
VCplot$VCforStatsnoCOE <- VCplot$VCnoCOE+0.000000001</pre>
VCclass <- glmer(VCforStats~Class*block+ (1|Site_Code),</pre>
                    data=VCplot,
                   family=Gamma())
plot(VCclass)
      1.0
                 8
                     0
                                                                                               0
resid(., type = "pearson")
      0.5
                     0
                                                                                         0
                                                                        0
                 8
      0.0
                                                                        0
```

4

fitted(.)

0

6

0

summary(VCclass)

-0.5

-1.0

0 0

0

```
## Generalized linear mixed model fit by maximum likelihood (Laplace
##
     Approximation) [glmerMod]
   Family: Gamma (inverse)
## Formula: VCforStats ~ Class * block + (1 | Site_Code)
     Data: VCplot
##
##
##
        AIC
                 BIC
                       logLik deviance df.resid
      -21.3
               -14.2
                         18.6
                                 -37.3
##
                                             10
##
## Scaled residuals:
       Min
                1Q Median
                                3Q
                                       Max
## -1.5908 -0.5236 0.1252 0.7036 1.4925
##
## Random effects:
   Groups
                          Variance Std.Dev.
              Name
   Site_Code (Intercept) 0.0000
                                   0.0000
## Residual
                          0.3951
                                   0.6286
```

2

```
## Number of obs: 18, groups: Site_Code, 9
##
## Fixed effects:
##
                          Estimate Std. Error t value Pr(>|z|)
## (Intercept)
                           0.21097
                                      0.28460
                                               0.741
## Classsuburban
                          -0.04853
                                      0.35919 -0.135
                                                         0.893
## Classurban
                          -0.06044
                                      0.34962 -0.173
                                                         0.863
## blockfall
                                               0.705
                           4.18018
                                      5.93087
                                                         0.481
## Classsuburban:blockfall 0.05330
                                               0.006
                                      8.39037
                                                         0.995
## Classurban:blockfall
                        -2.59022
                                      6.38198 -0.406
                                                         0.685
##
## Correlation of Fixed Effects:
              (Intr) Clsssb Clssrb blckfl Clsss:
## Classsubrbn -0.792
## Classurban -0.814 0.645
              -0.048 0.038 0.039
## blockfall
## Clsssbrbn:b 0.034 -0.043 -0.028 -0.707
## Clssrbn:blc 0.045 -0.035 -0.055 -0.929 0.657
car::Anova(VCclass)
## Analysis of Deviance Table (Type II Wald chisquare tests)
##
## Response: VCforStats
##
               Chisq Df Pr(>Chisq)
## Class
              0.0400 2
                            0.9802
                            0.2804
## block
              1.1650 1
## Class:block 0.2958 2
                            0.8625
VCclassnoCOE <- glmer(VCforStatsnoCOE~Class*block+ (1|Site_Code),</pre>
                data=VCplot,
               family=Gamma())
plot(VCclassnoCOE)
```


summary(VCclassnoCOE)

```
## Generalized linear mixed model fit by maximum likelihood (Laplace
     Approximation) [glmerMod]
##
   Family: Gamma (inverse)
  Formula: VCforStatsnoCOE ~ Class * block + (1 | Site_Code)
##
      Data: VCplot
##
                       logLik deviance df.resid
##
        AIC
                 BIC
      122.2
                        -53.1
                                  106.2
##
               129.3
##
## Scaled residuals:
##
       Min
                1Q Median
                                 3Q
                                        Max
   -2.2014 -0.3893 -0.1272 0.4879
##
                                     2.7192
##
## Random effects:
   Groups
              Name
                          Variance Std.Dev.
                                    0.0000
   Site_Code (Intercept) 0.0000
                          0.1367
                                    0.3697
## Number of obs: 18, groups: Site_Code, 9
##
## Fixed effects:
                            Estimate Std. Error t value Pr(>|z|)
##
## (Intercept)
                            0.032784
                                        0.007897
                                                   4.152 3.3e-05 ***
## Classsuburban
                            0.002126
                                        0.011536
                                                   0.184 0.853751
## Classurban
                           -0.001858
                                        0.010856
                                                  -0.171 0.864088
## blockfall
                             0.302685
                                        0.081193
                                                   3.728 0.000193 ***
## Classsuburban:blockfall -0.087132
                                        0.101503
                                                  -0.858 0.390666
## Classurban:blockfall
                           -0.155630
                                        0.092118
                                                  -1.689 0.091132 .
```

```
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.05 '.' 0.1 ' ' 1
## Correlation of Fixed Effects:
              (Intr) Clsssb Clssrb blckfl Clsss:
## Classsubrbn -0.685
## Classurban -0.727 0.498
## blockfall -0.097 0.067 0.071
## Clsssbrbn:b 0.078 -0.114 -0.057 -0.800
## Clssrbn:blc 0.086 -0.059 -0.118 -0.881 0.705
car::Anova(VCclassnoCOE)
## Analysis of Deviance Table (Type II Wald chisquare tests)
##
## Response: VCforStatsnoCOE
##
                Chisq Df Pr(>Chisq)
## Class
               0.2985 2
                             0.8614
## block
              34.7659 1 3.718e-09 ***
## Class:block 3.0744 2
                             0.2150
## Signif. codes: 0 '***' 0.001 '**' 0.05 '.' 0.1 ' ' 1
#make long for comparison of with and without carry-over
VClong <- VCplot %>%
 gather(COE, value, VC, VCnoCOE)
VCtemp <- lm(value~Temp_mean_mean*COE, data=VClong)</pre>
#plot(VCtemp)
summary(VCtemp)
##
## lm(formula = value ~ Temp_mean_mean * COE, data = VClong)
## Residuals:
##
       Min
                 1Q
                      Median
                                   3Q
                                           Max
## -14.3372 -1.3931
                      0.4208
                               1.1874 10.8765
##
## Coefficients:
##
                            Estimate Std. Error t value Pr(>|t|)
## (Intercept)
                            -15.2797
                                         8.1697 -1.870 0.0706
                                                          0.0299 *
                              0.8017
                                         0.3527 2.273
## Temp_mean_mean
## COEVCnoCOE
                            -57.0284
                                        11.5537 -4.936 2.39e-05 ***
                                                 6.234 5.52e-07 ***
## Temp_mean_mean:COEVCnoCOE
                              3.1099
                                         0.4988
## Signif. codes: 0 '***' 0.001 '**' 0.05 '.' 0.1 ' ' 1
## Residual standard error: 4.984 on 32 degrees of freedom
## Multiple R-squared: 0.8631, Adjusted R-squared: 0.8502
## F-statistic: 67.24 on 3 and 32 DF, p-value: 6.578e-14
## Vectorial Capacity (w carry over) across Temp
VCtempCOE <- lm(VCforStats~Temp_mean_mean, data=VCplot)</pre>
#plot(VCtempCOE)
summary(VCtempCOE)
```

```
##
## Call:
## lm(formula = VCforStats ~ Temp_mean_mean, data = VCplot)
## Residuals:
##
      Min
               1Q Median
                               3Q
                                      Max
## -6.2585 -1.3362 0.2381 0.8065 4.4154
##
## Coefficients:
##
                 Estimate Std. Error t value Pr(>|t|)
## (Intercept)
                 -15.2797
                              3.9592 -3.859 0.001388 **
                              0.1709 4.690 0.000246 ***
## Temp_mean_mean 0.8017
## Signif. codes: 0 '***' 0.001 '**' 0.05 '.' 0.1 ' ' 1
##
\mbox{\tt \#\#} Residual standard error: 2.415 on 16 degrees of freedom
## Multiple R-squared: 0.5789, Adjusted R-squared: 0.5526
## F-statistic: 21.99 on 1 and 16 DF, p-value: 0.000246
```