```
import pandas as pd
import matplotlib.pyplot as plt
import seaborn as sn
```

Data Loading

```
df = pd.read_csv('loan_sanction_test.csv')
```

Display the Dataset

```
print(df.head())
    Loan ID Gender Married Dependents
                                            Education Self Employed \
   LP001015
              Male
                        Yes
                                             Graduate
                                                                  No
                                      1
1
  LP001022
              Male
                        Yes
                                             Graduate
                                                                  No
  LP001031
              Male
                        Yes
                                      2
                                             Graduate
                                                                  No
  LP001035
              Male
                        Yes
                                      2
                                             Graduate
                                                                  No
4 LP001051
              Male
                         No
                                        Not Graduate
                                                                  No
   ApplicantIncome CoapplicantIncome
                                                     Loan Amount Term \
                                         LoanAmount
0
              5720
                                              110.0
                                                                 360.0
1
              3076
                                              126.0
                                   1500
                                                                 360.0
2
              5000
                                  1800
                                              208.0
                                                                 360.0
3
                                              100.0
              2340
                                  2546
                                                                 360.0
4
              3276
                                               78.0
                                                                 360.0
   Credit_History Property_Area
0
              1.0
                           Urban
1
               1.0
                           Urban
2
              1.0
                           Urban
3
              NaN
                           Urban
4
               1.0
                           Urban
```

Missing Values

```
# Check for missing values
missing_values = df.isnull().sum()
print(missing_values[missing_values > 0])
Gender
                    11
Dependents
                    10
Self Employed
                    23
LoanAmount
                     5
Loan Amount Term
                     6
Credit History
                    29
dtype: int64
```

Identify Numeric and Categorical Columns

Handle Missing Values

```
df[numeric_cols] = df[numeric_cols].fillna(df[numeric_cols].mean())
for col in categorical_cols:
    df[col].fillna(df[col].mode()[0], inplace=True)

C:\Users\Vashu Jain\AppData\Local\Temp\
ipykernel_14048\3363347938.py:6: FutureWarning: A value is trying to be set on a copy of a DataFrame or Series through chained assignment using an inplace method.
The behavior will change in pandas 3.0. This inplace method will never work because the intermediate object on which we are setting values always behaves as a copy.

For example, when doing 'df[col].method(value, inplace=True)', try using 'df.method({col: value}, inplace=True)' or df[col] = df[col].method(value) instead, to perform the operation inplace on the original object.

df[col].fillna(df[col].mode()[0], inplace=True)
```

Verify Missing Values

```
missing_values_after = df.isnull().sum()
print(missing_values_after[missing_values_after > 0])
Series([], dtype: int64)
```

Summarize Basic Statistics

```
summary_stats = df.describe()
print(summary_stats)
```

App Loan Amoun	licantIncome t Term \	CoapplicantIncome	LoanAmount
count	367.000000	367.000000	367.000000
367.000000			
mean	4805.599455	1569.577657	136.132597
342.537396	4910.685399	2224 222000	60.946040
std 64.620366	4910.085399	2334.232099	00.940040
min	0.000000	0.00000	28.000000
6.000000			
25%	2864.000000	0.000000	101.000000
360.000000	2705 00000	1005 00000	100 00000
50% 360.000000	3786.000000	1025.000000	126.000000
75%	5060.000000	2430.500000	157.500000
360.000000	3000.000000	21301300000	1371300000
max	72529.000000	24000.000000	550.000000
480.000000			
Cros	dit Uictory		
count	dit_History 367.000000		
mean	0.825444		
std	0.364778		
min	0.000000		
25%	1.000000		
50% 75%	1.000000 1.000000		
max	1.000000		
mu/\	1100000		

Univariate Analysis

Numeric Variables

Histograms

```
df['LoanAmount'].hist(bins=30)
plt.title('Histogram of Loan Amount')
plt.xlabel('Value')
plt.ylabel('Frequency')
plt.show()
```


Box plot

```
df.boxplot(column='LoanAmount')
plt.title('Box Plot of Loan Amount')
plt.show()
```


column name check

```
print(df.columns.tolist())
['Loan_ID', 'Gender', 'Married', 'Dependents', 'Education',
'Self_Employed', 'ApplicantIncome', 'CoapplicantIncome', 'LoanAmount',
'Loan_Amount_Term', 'Credit_History', 'Property_Area']
```

Bivariate Analysis

Scatter plot

```
plt.scatter(df['LoanAmount'], df['ApplicantIncome'])
plt.title('Scatter Plot between Loan Amount and Applicant Income')
plt.xlabel('Loan Amount')
plt.ylabel('Applicant Income')
plt.show()
```


Pair plot

sns.pairplot(df)
plt.show()

Multivariate AnalysiS

```
numeric_df = df.select_dtypes(include=['number'])
correlation_matrix = numeric_df.corr()
print(correlation matrix)
                    ApplicantIncome
                                     CoapplicantIncome
                                                         LoanAmount
ApplicantIncome
                           1.000000
                                              -0.110335
                                                           0.490174
CoapplicantIncome
                          -0.110335
                                               1.000000
                                                           0.150112
LoanAmount
                           0.490174
                                               0.150112
                                                           1.000000
Loan_Amount_Term
                                              -0.010940
                                                           0.093856
                           0.023187
Credit History
                           0.094083
                                              -0.066798
                                                           -0.011405
```

	Loan_Amount_Term	Credit_History
ApplicantIncome	$0.0\overline{2}3187$	$\overline{0}.094083$
CoapplicantIncome	-0.010940	-0.066798
LoanAmount	0.093856	-0.011405
Loan_Amount_Term	1.000000	-0.052370
Credit_History	-0.052370	1.000000

Heat map

```
sns.heatmap(correlation_matrix, annot=True, cmap='coolwarm')
plt.title('Correlation Heatmap')
plt.show()
```

