Programa de Asignatura

Historia del programa

Lugar y fecha de elaboración	Participantes	Observaciones (Cambios y justificaciones)
		Trabajo revisado por la Academia de Matemáticas.
Cancún, Q. Roo, 26/01/2017	Dr. Héctor Fernando Gómez García	
	Dr. Ana Celia Luque Guerrero M. Ramón Eduardo Ronzón Lavié	Se modificó el temario debido a la actualización del programa educativo 2017 de Ingeniería Industrial

Relación con otras asignaturas

Anteriores	Posteriores	
	a) Diseño de experimentos	
a)Probabilidad y Estadística	b)Control de Calidad	
	c) Investigación de operaciones	
Tema(s)		
a) Distribuciones de probabilidad	Tema(s)	
b) Ley de grandes números	a) Regresión lineal	
c) Teorema central del límite	b) Distribución normal	
d) Maximización de funciones	c) Distribución Poisson	
	d) Estimación de parámetros	

Nombre de la asignatura	Departamento o Licenciatura		
Estadística analítica	Ingeniería en Datos e Inteligencia Organizacional		

Ciclo	Clave	Créditos	Área de formación curricular
2 - 2	IL0204	8	Profesional Asociado y Licenciatura Básica

Tipo de asignatura	Horas de estudio			
	HT	HP	TH	HI

Objetivo(s) general(es) de la asignatura

Objetivo cognitivo

Explicar los conceptos de parámetros estadísticos para el entendimiento de los problemas de ingeniería que resuelve la Estadística.

Objetivo procedimental

Aplicar las técnicas estadísticas para realizar inferencias con el apoyo de software especializado.

Objetivo actitudinal

Potenciar el trabajo colaborativo por equipo mediante un proyecto final para la comprensión de los conceptos de Estadística Inferencial.

Unidades y temas

Unidad I. MUESTREO ESTADÍSTICO

Clasificar las diferentes técnicas de muestreo para la realización de un estudio estadístico adecuado.

- 1) Definición de muestreo
- 2) Técnicas de muestreo
- 3) Representatividad de la muestra
- 4) Tipos de muestreo
 - a) Muestreo aleatorio simple
 - b) Muestreo estratificado
 - c) Muestreo por conglomerados

Unidad II. DISTRIBUCIONES MUESTRALES

Describir las principales técnicas de determinación de distribuciones muestrales, para construir un marco teórico de

referencia.
reierencia.
1) Valor esperado y varianza de una combinación lineal de variables aleatorias
2) Muestra aleatoria
3) Valor esperado y varianza de la media muestral
4) Valor esperado y varianza de una varianza muestral
5) Funciones de distribución notables
a) Distribución exponencial
b) Distribución Ji-Cuadrada
c) Distribución t de student
d) Distribución F de Fisher
e) Distribución de Weibull
6) Coeficientes de correlación
Unidad III. ESTIMACIÓN DE PARÁMETROS
Operar las propiedades de los diferentes tipos de estimadores para la resolución de problemas de estimadores de parámetros poblacionales.
1) Espacios paramétricos
2) Estadístico, estimador y estimación de un parámetro
3) Características asociadas a un estimador.

a) Estimadores insesgados

b) Estimadores eficientes

c) Estimadores consistentes
4) Técnicas de estimación paramétrica
a) Método de momentos
b) Método de máxima verosimilitud
5) Intervalos de confianza
6) Pruebas de hipótesis
a) Definición y delimitación del concepto de hipótesis nula
b) Estadísticos de prueba
c) Región de rechazo
d) Tipos de error
e) Nivel de significancia
f) Análisis de varianza
Unidad IV. Regresión lineal simple
Aplicar técnicas de regresión lineal para el modelado estadístico.
1) Modelos probabilísticos lineales
2) Desviación puntual muestral
3) Ecuación del modelo lineal
4) Método de mínimos cuadrados
5) Estimación de parámetros

Actividades que promueven el aprendizaje

Docente	Estudiante
Promover el trabajo colaborativo en la definición de propuestas de solución a problemas	Realizar tareas asignadas
determinados.	Participar en el trabajo individual y en equipo
Coordinar la discusión de casos prácticos.	Resolver casos prácticos
Realizar foros para la discusión de temas o problemas.	Discutir temas en el aula Participar en actividades extraescolares

Actividades de aprendizaje en Internet

El estudiante deberá acceder al portal para la lectura de artículos:

http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.24.7812

http://www.worldscientific.com/

https://www.r-project.org/

Se promoverá el uso de mecanismos asíncronos (correo electrónico, grupo de noticias, WWW y tecnologías de información) como medio de comunicación.

Criterios y/o evidencias de evaluación y acreditación

Criterios	Porcentajes
Examen	30
Evidencias individuales (Uso de Algoritmos, participación, tareas, etc.)	20
Evidencias equipo (proyectos, exposiciones, etc.)	30

Total 100

Fuentes de referencia básica

Bibliográficas

Devore, Jay L. (2006). Probabilidad y Estadistica en Ciencias Básicas e Ingenierías (1a ED.). Ed.Thomson Paraninfo. ISBN 9706864571

Mendenhall William, Sincich Terry. (2016). Probabilidad y estadística para ingeniería y ciencias (6ta. Edición). Pearson. ISBN 978-1498731829

Montgomery Douglas, Runger George. (2013). Probabilidad y Estadística: Aplicadas a la Ingeniería (6ta edición). John Wiley & Sons. ISBN 978-1118865767

Spiegel Murray, Stephens Larry. (2014). Estadística (5ta edición). Mc Graw Hill. ISBN 978-0071822527

Wackerly Dennis, Mendenhall William, Scheaffer Richard. (2007). Estadistica matemática con aplicaciones (7ma edición). Thomson. ISBN 978-0495385066

Walpole Ronald. (2012). Probabilidad y estadística para ingenieros (9na Edición). Pearson Educación. ISBN 978-6073214179.

Web gráficas

Fuentes de referencia complementaria

Bibliográficas

Gutiérrez G. Eduardo. Fundamentos de Estadística Descriptiva e Inferencial para Ingeniería y Ciencias (1er. Edición). Nauka Educación

Kennet y Ron S. Estadística industrial moderna (4ta. Edición). International Thomson.

Navidi William. Statistics for Engineers and Scientists (2nd. Edition). México: Mc. Graw Hill.

Pulido G. Humberto; De la Vara Salazar R. Análisis y Diseño de Experimentos (2da. Edición). México: Mc. Graw Hill

Web gráficas

.

Perfil profesiográfico del docente

Académicos

Contar con licenciatura en matemáticas, actuaría, ingeniería industrial o afines.

Docentes

Tener experiencia docente mínimo de tres años a nivel superior en asignaturas de estadística inferencial.

Profesionales

Tener experiencia profesional mínimo de tres años en proyectos relacionados con los métodos estadísticos.