Convergence of $\sqrt[n]{n}$ in Lean4

Sophie Weber, David Leeb

16.07.2024

Definitions

Definition (Convergence of a sequence)

A sequence (a_n) converges to x if for every $\epsilon > 0$, there exists an $n \in \mathbb{N}$ such that for all $m \geq n$ we have $|a_m - x| < \epsilon$.

Lean Code

```
def ConvergesTo (a : \mathbb{N} \to \mathbb{R}) (x : \mathbb{R}) : Prop := \forall \ \epsilon > 0, \exists (n : \mathbb{N}), \forall \ m \geq n, |a \ m - x| < \epsilon
```

Lemmas

Lemma (Convergence of a constant sequence)

Let (a_n) be a constant sequence with $a_n = x$ for all n. Then (a_n) converges to x.

Lean Code

theorem of_constant (x : \mathbb{R}) : ConvergesTo (fun $_ \mapsto x$) x

Lemmas

Lemma (Sandwich theorem)

If (a_n) , (b_n) and (c_n) are sequences and there exists an $n \in \mathbb{N}$ such that $a_m \le b_m \le c_m$ for all $m \ge n$, and both (a_n) and (c_n) converge to x, then (b_n) converges to x.

Lean Code

```
theorem sandwich (a b c : \mathbb{N} \to \mathbb{R}) (h : \exists (n : \mathbb{N}), \forall m \geq n , a m \leq b m \land b m \leq c m) (x : \mathbb{R}) (ha : ConvergesTo a x) (hc : ConvergesTo c x) : ConvergesTo b x
```

Example

The sequence (a_n) defined by $a_n = \sqrt[n]{n}$ converges to 1.

Proof.

Let (a_n) be the sequence defined by $a_n = \sqrt[n]{n}$.

Remember: Sandwich Theorem

We need to find two sequences (b_n) and (c_n) such that $b_m \le a_m \le c_m$ for all $m \ge n$, and both (b_n) and (c_n) converge to 1.

Proof continued.

Note that for any positive integer $n \ge 1$, we have $1 \le \sqrt[n]{n}$. This follows from:

$$1 \le n$$

$$\Leftrightarrow 1^n \le \sqrt[n]{n}^n$$

$$\Leftrightarrow 1 \le \sqrt[n]{n}$$

From that we can see, that the sequence (b_n) can be defined by the constant sequence $b_n = 1$ for all n.

From the inequality $1 \leq \sqrt[n]{n}$ we can also derive the equality

$$\sqrt[n]{n} = 1 + d_n$$

for a suitable sequence (d_n) given by: $d_n := \sqrt[n]{n} - 1$

Proof continued.

To find the second sequence (c_n) , we want to show that $\sqrt[n]{n} \le 1 + \sqrt{\frac{2}{n-1}}$. For $n \ge 2$ this follows from:

$$n = \sqrt[n]{n} = (1 + d_n)^n$$

$$= \sum_{k=0}^n \binom{n}{k} \cdot d_n^k$$

$$\geq \binom{n}{2} \cdot d_n^2$$

$$= \frac{n!}{(n-2)! \cdot 2!} \cdot d_n^2$$

$$= \frac{n \cdot (n-1)}{2} \cdot d_n^2$$

Proof continued.

What we have so far:

$$n \ge \frac{n \cdot (n-1)}{2} \cdot d_n^2$$

From that we can derive:

$$\Leftrightarrow d_n^2 \le \frac{2}{n-1}$$
$$\Leftrightarrow d_n \le \sqrt{\frac{2}{n-1}}$$

Conclusion:

$$\sqrt[n]{n} = 1 + d_n \le 1 + \sqrt{\frac{2}{n-1}}$$

Proof continued.

Now we have the sequences (b_n) and (c_n) :

$$b_n = 1$$

$$c_n = 1 + \sqrt{\frac{2}{n-1}}$$

They fulfill the condition $b_n \le a_n \le c_n$ for all $n \ge 2$:

$$1 \le \sqrt[n]{n} \le 1 + \sqrt{\frac{2}{n-1}}$$

Proof continued.

We can easily see, that they both converge to 1:

$$\lim_{n\to\infty} 1 = 1$$

$$\lim_{n \to \infty} \left(1 + \sqrt{\frac{2}{n-1}} \right) = 1$$

We can now apply the Sandwich Theorem to conclude that $\lim_{n\to\infty} \sqrt[n]{n} = 1$.

Bibliography

► Forster, O. *Analysis I*. Springer Spektrum, 2015.