Closest Pairs of Points O(nlogn)

One-dimensional version:

Input: n numbers $p_1,...,p_n\in Z$ (e.g. 1, 3, -2, 0)

Output: find i, j, i \neq j, such that $|p_i-p_j|$ is as small as possible (e.g. 0 and 1 are closest)

Naive algorithm: try all possible combinations i and j — $\Theta(n^2)$

Better algorithm: sort numbers in non-decreasing order and check adjacent numbers — $\Theta(nlogn) + \Theta(nl) = \Theta(nlogn)$

Two-dimensional version (Euclidean distance $dist(p,q) = \sqrt{(p_x - q_x)^2 + (p_y - q_y)^2}$):

For simplicity, assume no two points have the same x coordinate.

CLOSESTPAIR:

- 1. Divide points into two halves using a vertical line L (based on median of x coordinates)
- 2. Conquer: recursively compute CLOSESTPAIR on left half and right half. Let $\delta = min(dist)$
- 3. Combine
 - a. Take points within distance δ of L
 - b. Sort them by y coorinates. Call the sorted points $q_1, ..., q_n$.
 - c. For each point q_i , calculate its distance to $q_{i+1},...,q_{i+11}$
- 4. Output the closest pair seen among the recursive calls and the cross pairs (Step 3)

Claim: If |i-j| > 11, then $dist(q_i, q_j) > \delta$.

Proof: Partition the slab into squares of side length $\frac{\delta}{2}$. Each square can contain at most one point, because the distance between any two points is δ .

Therefore, if i < j-11, the y coordinate of q_i is less than that of q_j by more than δ .

Runtime:

Naively,
$$T(n) = 2T(rac{n}{2}) + heta(nlogn) = heta(nlog^2n)$$
 ($heta(nlogn)$ —sorting)

Actually, we can sort once for all

$$T(n) = 2T(rac{n}{2}) + heta(n) = heta(nlogn)$$