WEEK-3

Day-2

PV Components & Economics

Introduction to PV Components

- PV systems are made up of several key components that enable solar energy conversion, storage, and delivery.
- Each component plays a crucial role in turning sunlight into a reliable power supply.
- In this lecture, we'll focus on inverters, batteries, maximum power point trackers (MPPT), and combiner boxes.
- We'll also delve into financial aspects, payback periods, incentives, and subsidies.
- Proper understanding helps engineers maximize both performance and financial return.
- This forms the basis for designing sustainable, cost-effective solar power systems.

Inverters — Types and Operations

- An inverter converts DC power from solar modules into AC power for appliances or for injection into the grid.
- There are several types: string inverters, microinverters, and central inverters.
- String inverters connect multiple modules in a series, while microinverters control each panel individually.
- Inverter selection depends on power capacity, shadow effects, cost, and maintenance ease.
- Properly sized inverters enable maximum power delivery while minimizing energy losses.

Batteries in PV Systems

- Batteries enable energy storage for use during nights or clouds when solar production drops.
- Lead-acid, lithium-ion, and flow batteries are the most commonly used technologies today.
- The battery's depth of discharge, charging rate, and lifecycle determine its performance and cost.
- Proper battery sizing guarantees reliable backup while avoiding over investments.
- Storage converts solar power into a flexible, 24/7 energy resource

Maximum Power Point Trackers (MPPT)

- An MPPT maximises power delivery by continually matching solar array voltage to its maximum power point.
- This helps extract the maximum available solar energy under changing conditions.
- Without MPPT, solar modules may perform at less than their rated power.
- Some inverters have integrated MPPTs; large solar plants often use separate, specialized ones.
- Implementing MPPT can significantly increase energy harvest and financial payback.

Junction Boxes and Combiner Boxes

- Junction boxes consolidate solar strings and enable easy maintenance and connection to the rest of the PV system.
- Combiner boxes gather output from multiple strings while adding overcurrent protection and surge arrestors.
- Proper combiner box design safeguards the solar array against overcurrent, surges, and other faults.
- This contributes to a reliable, code-compliance, and safe solar power installation.
- Combiner boxes are especially important in large and rooftop solar installations.

System Costs — CAPEX and OPEX

CAPEX

CAPEX (Capital Expenditure) covers the initial investment for solar modules, inverters, structures, and installation.

OPEX

OPEX (Operating Expenditure) includes maintenance, repairs, cleaning, and eventual component replacements.

- Lower OPEX typically results from choosing high-reliability components and employing proper maintenance routines.
- An accurate financial projection must account for both CAPEX and OPEX over the system's lifespan.
- This guides investors toward realistic payback periods and profits.

Return on Investment (ROI)

- The Return on Investment measures financial payback how much money is recovered over time.
- ROI depends on solar energy production, incentives, maintenance, financing, and energy prices.
- Generally, solar payback periods range from 5–10 years.
- After payback, the solar array produces free energy for 15–20 additional years.
- Higher solar incentives and energy prices shorten payback periods and increase profits.

Levelized Cost of Electricity (LCOE)

- The Levelized Cost of Electricity (LCOE) is the price per kWh of energy over the system's lifespan.
- LCOE = (Total Costs) / (Total Energy Produced).
- This metric helps investors compare solar with other energy sources, like natural gas or coal.
- Lower LCOE signals greater financial competitiveness.
- The main contributors to LCOE are the initial installation, maintenance, financing, and incentives.

Ecology and Sustainability of PV Systems

- PV systems enable clean, renewable energy without emitting greenhouse gases.
- This directly reduces reliance on fossil fuels and helps ease climate change impacts.
- PV modules typically pay back their energy investment within 2-4 years.
- After payback, solar power is practically emissions-free for the rest of its operational lifespan.
- Proper disposal and recycling further aid in conserving resources at the end of a PV system's life.

Case Study (Example)

- This case study involves a 5kWp rooftop solar PV system in Mumbai.
- The total installed cost was ₹2.5 lakhs, with a subsidy from PM-KUSUM.
- The payback period fell to nearly 6 years due to incentives and energy savings.
- The system produces about 7,000 kWh per year, reducing reliance on grid power.
- This illustrates how policy incentives can make solar energy more accessible and cost-effective.

Review Questions:

Ques 1: How does the choice between microinverters and string inverters affect system performance, reliability, and cost in a rooftop installation with partial shading?

Ques 2: In what ways can integrating MPPTs and properly sized batteries work together to optimize both energy output and financial returns in a hybrid solar system?

Ques 3: A developer is considering two solar systems: one with high CAPEX but low OPEX, and another with low CAPEX but high OPEX. How should they use LCOE and ROI to make an informed decision?

Feel free to reach out with any questions!

samaydora.energyiitb@gmail.com sushant.energyiitb@gmail.com

Contact No.

8847603399

6391275528