# Introduction to pattern recognition

LIN ZHANG

SSE, TONGJI UNIVERSITY

SEP. 2016

## Pattern recognition, machine learning, and data mining

Pattern recognition ≈ machine learning



# How do you make a decision?

How to pick a "good" watermelon?

How do you know you have a cold?

Can you pick out the apple from bananas?

You are trained from the experience

You learn knowledge to make good decisions



How?

Experience: data

Knowledge: model



Task:

Learn a model from data

Pattern

# What is machine learning?

One possible definition

a set of methods that can automatically detect patterns in data, and then use the uncovered patterns to predict future data, or to perform other kinds of decision making under uncertainty

# Example: detect patterns

How the temperature has been changing in the last 140 years?



#### **Patterns**

- We see repeated periods of fluctuation
- General trend is that temperatures are rising

Repetition frequently and near together
Recues learn to choos . day I frequency recurse
and resultans substitution - main factor.

H- a - Bretinis to pus Things into morath - tops he
Jugan etc. decerned Sugar was esonal
to appeare - formed tests of putting camely
in morath whenever it could reach is

h- Instead of puppy to their. Shows, bruse

# How do we describe the pattern?

Build a model: fit the data with a polynomial function



The model is not accurate for individual years

But overall, the model captures the major trend

# Predicting future

What is the temperature of 2010?

Global Surface Temperature Changes from the 20th Century Average (degrees C)



This particular polynomial model is not exactly accurate for that specific year, but it is pretty close

## What we have learned from this example?

#### Key ingredients in the machine learning task

- Data: collected from past observations (training data)
- Modeling: devised to capture the patterns in the data
  - The model does not have to be true -- as long as it is close, it is useful
  - We should tolerate randomness and mistakes -- many interesting things are stochastic by nature.
- Prediction: apply the model to forecast what is going to happen in future

8

## A rich history of applying statistical learning methods

#### Recognizing flowers (by R. Fisher, 1936)







Iris Setosa

Iris Versicolor

Iris Virginica

# Huge success 20 years ago

Recognizing handwritten zipcodes and checks (AT&T Labs, circalate 1990s)



10

# More modern ones, in your social life

Recognizing your friends on Facebook



# Learn your preferences

#### Recommending what you might like





# Why is machine learning so hot?

Flood of data leads to several high-impact applications

#### Consumer applications:

- speech recognition, information retrieval and search, email and document classification, stock price prediction, object recognition, product recommendation, robot...
- Highly desirable expertise from industry: Google, Facebook, Microsoft, Twitter, LinkedIn, Amazon, BAT, SAIC, Tesla...

#### Scientific applications:

- Biology and genetics: identify disease-causing genes and gene networks
- Climate science: predicting global warming trends
- Social science: social network analysis; social media analysis
- Business and finance: marketing, operation research
- Emerging ones: healthcare, energy,...

# What is in machine learning?

#### Different flavors of learning problems

- Supervised learning: make prediction given labeled training observations, e.g., Spam detection, Iris
- Unsupervised learning: Discover hidden and latent patterns in data; data exploration, e.g., topic modelling in text data
- Many other paradigms

#### The focus and goal of this course

- Supervised learning
- Unsupervised learning
- Semi-supervise learning

## Let's start!

Let's begin to explore the PR world!



attribute/feature

attribute val (from UCI machine learning repository)

|            | sepal length<br>(in cm) | sepal width (in cm) | petal length<br>(in cm) | petal width<br>(in cm) | class           |
|------------|-------------------------|---------------------|-------------------------|------------------------|-----------------|
| Sample 1   | 5.1                     | 3.5                 | 1.4                     | 0.2                    | Iris-setosa     |
| Sample 2   | 4.9                     | 3.0                 | 1.4                     | 0.2                    | Iris-setosa     |
| Sample 3   | 7.0                     | 3.2                 | 4.7                     | 1.4                    | Iris-versicolor |
| Sample 4   | 6.4                     | 3.2                 | 4.5                     | 1.5                    | Iris-versicolo  |
|            |                         |                     |                         |                        |                 |
| Sample 149 | 6.3                     | 3.3                 | 6.0                     | 2.5                    | Iris-virginica  |
| Sample 150 | 5.8                     | 2.7                 | 5.1                     | 1.9                    | Iris-virginica  |



Iris setosa 山鸢尾



Iris versicolor 变色鸢尾



label

Iris virginica



Denote  $D=\{x_1,x_2,...,x_m\}$  a dataset which contains m instances. Each instance has d features.

So  $x_i = (x_{i1} \ x_{i2} \ ... \ x_{id})$  is the *i*-th instance in the sample space X,  $x_{ij}$  is the value of  $x_i$  on *j*-th feature, and d is the dimension of sample  $x_i$ .

The process of learning a model from a dataset is called learning/training process

Data used in the training process is called training data

Each sample in the training data is called training sample

All the training samples consist of a training set



#### There are two types of prediction tasks

- Classification
- Regression

#### Classification

- Binary classification: a positive class and a negative class
- Multi-class classification
- A labels is used to represent the class that a sample belongs to

Denote  $y_i$  the label corresponding to the training sample  $x_i$ ,  $y_i \in \mathcal{Y}$ . The prediction task is to learn a mapping function  $f: \mathcal{X} \mapsto \mathcal{Y}$ 

We can also do clustering on data if labels are unknown



Learning tasks can be divided into

- Supervised learning (classification + regression)
- Unsupervised learning (clustering)

#### Generalization ability of a model

#### We assume that

- all the samples in a sample space obey a certain distribution (e.g. Gaussian distribution)
- and training samples are obtained by sampling from the space independently, i.e. training samples are independent and identically distributed (i.i.d)

The more samples are obtained, the more information about the distribution we can have, and the higher generalization ability of a learned model.

# hypothesis space

#### Induction vs deduction

Induction: special -> general

Deduction: general -> special

#### Inductive learning

Hypothesis is a model or pattern learned from training data

| 编号 | 色泽 | 根蒂 | 敲声 | 好瓜 |
|----|----|----|----|----|
| 1  | 青绿 | 蜷缩 | 浊响 | 是  |
| 2  | 乌黑 | 蜷缩 | 浊响 | 是  |
| 3  | 青绿 | 硬挺 | 清脆 | 否  |
| 4  | 乌黑 | 稍蜷 | 沉闷 | 否  |

# hypothesis space

The hypothesis space is much larger than the (training) sample space

There may exist more than one hypothesis corresponding to the same training set

These hypothesis forms a hypothesis set called version space



Given a new sample: (色泽=青绿; 根蒂=蜷缩; 敲声=沉闷) ls it good or bad?





Occam's razor

(色泽=\*; 根蒂=蜷缩; 敲声=浊响)

(色泽=\*; 根蒂=蜷缩; 敲声=\*)

Inductive bias is an assumption of "what is a good model"



#### No Free Lunch Theorem

$$\sum_{f} E_{ote}(\mathfrak{Q}_a|X,f) = \sum_{f} E_{ote}(\mathfrak{Q}_b|X,f)$$

$$E_{ote}(\mathfrak{L}_a|X,f) = \sum_{h} \sum_{\mathbf{x} \in \mathcal{X} - X} P(\mathbf{x}) \mathbb{I}(h(\mathbf{x}) \neq f(\mathbf{x})) P(h|X,\mathfrak{L}_a)$$

$$\sum_{f} E_{ote}(\mathfrak{L}_{a}|X,f) = \sum_{f} \sum_{h} \sum_{x \in \mathcal{X}-X} P(x) \mathbb{I}(h(x) \neq f(x)) P(h|X,\mathfrak{L}_{a})$$

$$= \sum_{x \in \mathcal{X}-X} P(x) \sum_{h} P(h|X,\mathfrak{L}_{a}) \sum_{f} \mathbb{I}(h(x) \neq f(x))$$

$$= \sum_{x \in \mathcal{X}-X} P(x) \sum_{h} P(h|X,\mathfrak{L}_{a}) \frac{1}{2} 2^{|\mathcal{X}|}$$

$$= \frac{1}{2} 2^{|\mathcal{X}|} \sum_{x \in \mathcal{X}-X} P(x) \sum_{h} P(h|X,\mathfrak{L}_{a})$$

$$= \frac{1}{2} 2^{|\mathcal{X}|} \sum_{x \in \mathcal{X}-X} P(x) \cdot 1$$