第二季第 9 课: **幺半范畴** 首先简短回顾了张量积概念的发展,包括在线性空间和模范畴上的直和和张量积。从幺半群的代数概念出发,引入幺半范畴。幺半群上有一个封闭的二元运算,代之以双函子的方式描述,最直接的例子就是张量积。用计算机科学中的表达式树,描述了三元运算的不同结合顺序,幺半群中的结合律,其范畴化的描述就是在两个三元函子上,通过自然同构建立等价,构成了条件更为宽松的结合律。

用函子化的方式改造幺半群的构造方式,引入了幺半范畴。幺半范畴的定义拆解开,主要部分就是如何用自然同构来描述结合律和左右幺元律,以及这些条件的组合,即所谓的一致性条件。

作为实例,我们在集合范畴上用直积构造了一个幺半范畴的例子。作为对比,还引入了 Hilbert 空间范畴,用线性空间的张量积构造了幺半范畴的另一个例子,这个例子是许多前沿的量子理论研究的基础。从某种角度看,集合范畴和 Hilbert 空间范畴在构造幺半范畴后的不同,形成了经典/量子理论的分野。

幺半群 放弃严格的**相等** (equality)而改用灵活的**同构** (isomorphism),可以更好地描述诸多的实际问题. 回顾幺半群:

定义: 幺半群的代数式定义

集合 X 上赋予二元运算。, 即映射

$$\circ: X \times X \to X$$
$$(a,b) \mapsto a \circ b$$

若它是封闭的,且满足:

- 结合律: 对于 $\forall a, b, c \in X$ 满足 $(a \circ b) \circ c = a \circ (b \circ c)$
- 幺元: 若 $\exists 1_X \in X$ 使得对于 $\forall a \in X$ 满足 $a \circ 1_X = a = 1_X \circ a$,称 1_X 为幺元

则称 $(X, \circ, 1_X)$ 为**幺半群 (monoid)**.

这里用代数化的方式所描述的结合律和幺元,相当于用方程的相等 (equality)形式给出了一种静态的约束条件. 范畴论则倾向于更加动态的方式来描述概念,下面给出态射式的定义:

定义 0.0.1: 幺半群的态射式定义

幺半群 (monoid)是一个集合范畴的对象 $X \in \mathbf{Set}$, 并且有 \mathbf{Set} 中的态射 $\mu: X \times X \to X$ 和 $\eta: 1 \to X$ 使得下图交换:

即对于 $\forall a, b, c, \in X$ 有:

这里的 $1 \in X$ 即是幺元.

以上左图描述的是结合律,右图描述的是幺元.接下来,进一步发展这种借助交换图的、动态的描述方式, 并把以上定义的态射方式进一步发展为自然同构的方式. **结合子** 接用张量积的符号 \otimes 描述封闭的二元运算. 如果有结合律 $X\otimes (Y\otimes Z)=(X\otimes Y)\otimes Z$,用二元运算 \otimes 构造多元运算便不会产生运算顺序导致的歧义问题,可以直接用 $X\otimes Y\otimes Z$ 乃至 $V^{\otimes n}$ 这样的形式来表述. 现实中用相等来定义的结合律要求过于严格,故在范畴中结合律可以用自然同构实现. 结合律的表述需要三个变元,三元运算可以视为函子:

$$F = F(-, -, -) = ((- \otimes -) \otimes -), \quad G = G(-, -, -) = (- \otimes (- \otimes -))$$

置于三函子范畴中:

$$F, G \in \mathbf{Fct}(\mathcal{C} \times \mathcal{C} \times \mathcal{C}, \mathcal{C})$$

这样可以讨论自然同构

$$\alpha = \alpha(-, -, -) \in \operatorname{Nat}(F, G)$$

使得下图的外框交换:

下图中, 任意三元组 $\forall (X,Y,Z) \in \mathcal{C} \times \mathcal{C} \times \mathcal{C}$, 由自然同构 $\alpha(-,-,-)$ 产生了 \mathcal{C} 中的同构 $\alpha(X,Y,Z)$:

这就是**结合子 (associator)**. 用结合子 α 这种自然同构放松了代数中的结合律要求,在范畴论中不要求结合律的相等 $X \otimes (Y \otimes Z) = (X \otimes Y) \otimes Z$ 只要求自然同构 α 所构造的等价关系 $X \otimes (Y \otimes Z) \simeq (X \otimes Y) \otimes Z$ 并且用函子范畴中的自然同构来描述.

例 0.0.1: 集合范畴

令 $X,Y,Z\in\mathbf{Set}$ 为集合,对于 $x\in X,y\in Y,z\in Z,\;(x,(y,z))\neq((x,y),z)$ 且 $X\times(Y\times Z)\neq((X\times Y)\times Z),\;$ 但有结合子产生同构 $X\times(Y\times Z)\simeq((X\times Y)\times Z).$

例: 数的乘法

以自然数上的乘法 (\mathbb{N},\cdot) 结构为例,若以自然数为对象构成离散范畴 \mathbb{N} ,乘法构成双函子 $(-\cdot-):$ $(\mathbb{N},\mathbb{N})\to\mathbb{N}.$ 结合律的表述需要三个变元,三元运算可以视为函子: $F=F(-,-,-)=((-\cdot-)\cdot-), \quad G=G(-,-,-)=(-\cdot(-\cdot-))$ 置于三函子范畴中: $F,G\in\mathbf{Fct}((\mathbb{N},\mathbb{N},\mathbb{N}),\mathcal{C})$ 这样可以讨论自然同构

$$\alpha = \alpha(-, -, -) \in \operatorname{Nat}(F, G)$$

下图用结合子来表述

例 0.0.2: 张量空间

类似例0.0.1,对于 K-线性空间 $A, B, C \in \mathbf{Vct}_K$ 有如下同构:

$$A\otimes (B\otimes C) \xrightarrow{\quad \alpha_{A,B,C} \quad } (A\otimes B)\otimes C$$

 $\alpha_{A,B,C}$ 称为**结合子 (associator)**,它是 $V \in \mathbf{Vct}_K$ 上的自然同构. 记 $T^0V = K$, $T^1V = V$, $T^2V = V \otimes V$. 在同构的意义下可以把 K-线性空间 $V \in \mathbf{Vct}_K$ 的 3 阶张量记为:

$$T^3V = (V \otimes V) \otimes V \simeq V \otimes (V \otimes V)$$

类似可以定义更高阶的张量空间

$$T^nV=\underbrace{V\otimes\cdots\otimes V}_{n\text{ times}}$$

交换子 范畴上的交换律,方法和以上对结合律的讨论类似. 从函子范畴的角度来讨论范畴上的代数运算,二元运算视为双函子, 进而置于函子范畴构成函子对象:

$$(-\otimes -) \in \mathbf{Fct}(\mathcal{C} \times \mathcal{C}, \mathcal{C})$$

按照运算的顺序有函子:

$$F(X,Y) = X \otimes Y, \quad G(X,Y) = Y \otimes X$$

同样置于函子范畴中:

$$F(-,-),G(-,-)\in\mathbf{Fct}(\mathcal{C}\times\mathcal{C},\mathcal{C})$$

这样可以讨论自然同构

$$\gamma(-,-) \in \text{Nat}(F(-,-),G(-,-))$$

使得下图的外框交换:

下图中,任意二元组 $\forall (X,Y) \in \mathcal{C} \times \mathcal{C}$,由自然同构 $\gamma(-,-)$ 产生了 \mathcal{C} 中的同构 $\gamma(X,Y)$:

用函子范畴的自然同构放松了代数中的交换律要求,在范畴论中不要求结合律的相等 $X \otimes Y = Y \otimes X$ 只要求同构所构造的等价关系 $X \otimes Y \simeq Y \otimes X$ 并且用函子范畴中的自然同构来描述.

单位子 K-列范畴 Col_K 中的态射是矩阵,两个矩阵的**直和 (direct sum)**:

$$\begin{split} f \oplus g : K_n \oplus K_{n'} \to K_m \oplus K_{m'} \\ \begin{bmatrix} x \\ y \end{bmatrix} \mapsto \begin{bmatrix} f \\ g \end{bmatrix} \begin{bmatrix} x \\ y \end{bmatrix} = \begin{bmatrix} fx \\ gy \end{bmatrix} \end{split}$$

直和是一种并行化,通过 $f \oplus g$ 同时完成了两个独立的线性映射,也就是将直和 $f \oplus g$ 视为二元函数. 由于过去阐述过的双线性的需要,往往用张量积来替代直和进行并行化,构造双线的结构:

$$X \oplus Y \xrightarrow{\quad f \oplus g \quad} X \oplus Y \qquad \qquad X \otimes Y \xrightarrow{\quad f \otimes g \quad} X \otimes Y$$

在范畴上也可以用自然同构的方式构造幺元. 并行的方式可以讲两个态射合并,其中 $f\in \mathrm{End}(X)$ 是任意自态射, $1_I\in \mathrm{End}(I)$ 是幺元:

$$X \otimes I \xrightarrow{\quad f \otimes 1_I \quad} X \otimes I \qquad \quad I \otimes X \xrightarrow{\quad 1_I \otimes f \quad} I \otimes X$$

现在把代数中 $1 \cdot X = X = X \cdot 1$ 这种构造方式,去掉相等的条件,用自然同构来实现. 二元运算视为双函子,进而置于函子范畴构成函子对象:

$$(-\otimes -) \in \mathbf{Fct}(\mathcal{C} \times \mathcal{C}, \mathcal{C})$$

在固定的 I 下构成函子:

$$F(-) = I \otimes -, \quad G(-) = - \otimes I$$

同样置于函子范畴中:

$$F(-),G(-)\in\mathbf{Fct}(\mathcal{C},\mathcal{C})$$

这样可以讨论自然同构

$$\lambda(-) \in \operatorname{Nat}(F(-), \operatorname{id}), \quad \rho(-) \in \operatorname{Nat}(G(-), \operatorname{id})$$

使得以下两图外框交换:

下图中,任意二元组 $\forall X \in \mathcal{C}$,由自然同构 $\lambda(-)$ 和 $\rho(-)$ 产生了 \mathcal{C} 中的同构:

用函子范畴的自然同构放松了代数中的交换律要求,在范畴论中不要求幺元的相等 $I \otimes X = X = X \otimes I$ 只要求同构所构造的等价关系 $I \otimes X \simeq X \simeq X \otimes I$ 这就是左右**单位子 (unitor)**.

一致性条件 结合子是函子范畴 $\mathbf{Fct}(\mathcal{C} \times \mathcal{C}, \mathcal{C})$ 上的自然变换,产生如下四元结合律:

对于幺元,

以上用自然同构方式构造结合律和幺元,交换图称为一致性条件 (coherence conditions).

幺半范畴 在幺半群的定义出现了两处等号,分别是结合律 $(a\circ b)\circ c=a\circ (b\circ c)$ 和幺元 $a\circ 1_X=a=1_X\circ a$ 条件.按照上节的思想,在范畴中用自然同构来替代相等,将幺半群的定义中的结合律和幺元用一致性条件替代,构造范畴上类似于幺半群的幺半范畴:

定义

范畴 € 上赋予双函子:

$$(-\otimes -): \mathcal{C} \times \mathcal{C} \to \mathcal{C}$$

$$(X,Y) \mapsto X \otimes Y$$

称为**幺半积 (monoidal product)**,若存在**幺对象 (identity object)** $I \in \mathcal{C}$,以及自然同构 $\alpha(-,-,-),\lambda(-),\rho(-)$ 使得一致性条件成立,则称 $\mathcal{V} = (\mathcal{C},\otimes,I,\alpha,\lambda,\rho)$ 为**幺半范畴 (monoidal cate-**

gory).

如果幺半范畴 $(\mathcal{C}, \otimes, I, \alpha, \lambda, \rho)$ 中的自然同构 α, λ, ρ 都是恒等,则称为**严格幺半范畴 (strict monoidal category)**.

幺半范畴是幺半群的抽象,幺半群自然是个幺半范畴.幺半范畴则适用于更广泛的场合:

例 0.0.3: 集合范畴

集合范畴 Set, 以集合对象的 Cartes 积为幺半积, 以单点集为幺对象, 构成幺半范畴.

类似的,具有有限积的范畴都可以以终对象为幺对象,构造幺半范畴,称为 Cartesian **幺半范畴** (Cartesian monoidal category).

例

范畴 \mathcal{C} 上的自函子范畴 $\mathbf{End}^{\mathcal{C}}$,以函子的复合为幺半积,以恒等函子为幺对象,构成严格幺半范畴.

例

幺半积的原型是张量函子. 交换环 $R \in \mathbf{CRing}$ 可以通过张量积 $-\otimes_R -$ 进行 R-模的运算,使得 R-模 范畴 $\mathbf{Mod}(R)$ 在张量积 \otimes_R 和幺对象 $R \in \mathbf{Mod}(R)$ 下构成幺半范畴. 作为特例,K-线性空间范畴构成幺半范畴 ($\mathbf{Vct}_K, \otimes_K, K$),Abel 群范畴构成幺半范畴 ($\mathbf{Ab}, \otimes_{\mathbb{Z}}, \mathbb{Z}$).

例 0.0.4

交换环 $R \in \mathbf{CRing}$ 上的代数范畴 \mathbf{Alg}_R 在代数的张量积和幺对象 $R \in \mathbf{Alg}_A$ 下构成幺半范畴. 类似于上述幺半群的范畴化定义,下图描述了 R-代数范畴 \mathbf{Alg}_R 中的结合律和幺元:

$$\begin{array}{c|c} A \otimes_R A \otimes_R A & \xrightarrow{\quad 1_A \otimes_R \mu} \quad A \otimes_R \\ & \downarrow^{\mu \otimes_R 1_A} & & \downarrow^{\mu} \\ & A \otimes_R A & \xrightarrow{\quad \mu} \quad A \end{array}$$

左图描述的是结合律,右图描述的是幺元,对具体元素的映射关系如下:

