Set-A

Question 1:

Build the following function using 4x1 Mux: $F = \Sigma$ (0,4,5,6,8,10,12,13,15)

NB: Your circuit should be cost efficient, meaning you have to use the lowest number of components possible. You can use only 4x1 Mux.

Answer:

	10	I 1	12	13
A'B'	0	1	2	3
A'B	4	5	6	7
AB'	8	9	10	11
АВ	12	13	14	15
Values	1	A'B + AB = B (A'+A) = B	A'B + AB' = A XOR B	АВ

Here, A is the MSB and D is the LSB

Set-B

Question 1:

Build the following function using 4x1 Mux: $F = \Sigma$ (1,2,4,5,7,9,13,14,15)

NB: Your circuit should be cost efficient, meaning you have to use the lowest number of components possible.

Answer:

	10	11	12	I 3
A'B'	0	1	2	3
A'B	4	5	6	7
AB'	8	9	10	11
AB	12	13	14	15
Values	A'B	1	A'B' + AB = A XNOR B	A'B + AB = B (A'+A) = B

Here, A is the MSB and D is the LSB

Set-C

Question 1:

Build the following function using both 4x1 & 2x1 Mux: $F = \Sigma$ (0,4,5,6,8,10,12,13,15) NB: Your circuit should be cost efficient, meaning you have to use the lowest number of components possible. You must use both 4x1 and 2x1 mux.

Answer: Making an 8x1 MUX:

	10	l1	12	13	14	15	16	17
A'	0	1	2	3	4	5	6	7
Α	8	9	10	11	12	13	14	15
Values	1	0	Α	0	1	1	A'	Α

Here, A is the MSB and D is the LSB

Set-D

Question 1:

a) Build the following function using 2:4 decoder only: $F = \Sigma$ (0,4,5,6,8,10,12,13,15) NB: Your circuit should be cost efficient, meaning you have to use the lowest number of components possible.

Here, A is the MSB and D is the LSB

Set-E Question 1: Build the following function using 3:8 decoder only: F = Σ (0,4,5,6,8,10,12,13,15,19,24,27,28,29) NB: Your circuit should be cost efficient, meaning you have to use the lowest number of components possible.

Here, A is the MSB and E is the LSB $\,$

