



# (Grundlagen der) Betriebssysteme | K.1



Franz J. Hauck | Institut für Verteilte Systeme, Univ. Ulm





# K | Rechteverwaltung (Grundlagen der) Betriebssysteme



Franz J. Hauck | Institut für Verteilte Systeme, Univ. Ulm

## Überblick

#### Überblick der Themenabschnitte

- A Organisatorisches
- B Zahlendarstellung und Rechnerarithmetik



- C Aufbau eines Rechnersystems
- D Einführung in Betriebssysteme
- E Prozessverwaltung und Nebenläufigkeit
- F Dateiverwaltung
- G Speicherverwaltung
- H Ein-, Ausgabe und Geräteverwaltung
- I Virtualisierung 🖁 🗷
- J Verklemmungen BS
- K Rechteverwaltung

#### Inhaltsüberblick

#### Rechteverwaltung

- Berechtigungen
  - allgemeine Betrachtungen zur Rechte- und Nutzerverwaltung
- UNIX/Linux
  - Arten von Berechtigungen
  - Weitergabe von Privilegien
  - Anmeldung am System
  - erweiterte Berechtigungen
- Windows
  - ACLs unter NT- und POSIX-Systemen
- Schutz vor schädlicher/fehlerhafter Software

## Einordnung

#### Alle physikalischen Ressourcen betroffen



## Berechtigungen

#### Wer hat Zugriff oder darf bestimmte Dinge tun?

- Konzentration auf Betriebssysteme
  - Zugriff auf Betriebssystem-Ressourcen
  - Verwaltungsaufgabe des BS beinhaltet Rechteverwaltung
  - muss immer auf anderer Ebene ergänzt werden
    - z.B. Zugangsberechtigungen zu Räumen etc.
- Mehrprozesssysteme
  - nicht jeder Prozess soll alles können
- Mehrbenutzersysteme
  - nicht jeder Nutzer soll alles können
- ❖ Berechtigungssystem und dessen Durchsetzung erforderlich

## Berechtigungen (2)

#### Zugriffsmöglichkeiten

- datenzentriert:
  - lesender und schreibender Zugriff
    - z.B. Datei lesen, Platte beschreiben, Speicher auslesen
- operationszentriert:
  - beliebige Operation
    - z.B. Datei löschen, Software installieren, Netzwerk nutzen, Prozess anhalten, Prozesse auflisten, Bildschirm nutzen, Drucken etc.
    - aber auch lesen und schreiben

## Berechtigungen (3)

### "Meta"-Berechtigungen

- Rechte vergeben, ändern und entziehen
  - pauschal
  - nur für bestimmte Rechte

## Rechteverwaltung

#### **Akteure einer Rechteverwaltung**

- Subjekte
  - Wer kann etwas tun?
  - z.B. Benutzer
- Objekte
  - Was kann bearbeitet werden?
  - z.B. Datei
- Operationen
  - Was wird getan?
  - z.B. lesender Zugriff

## Rechteverwaltung (2)

#### Organisation der Berechtigungen

- Rechte pro Subjekt
  - An welchen Objekten können welche Operationen ausgeführt werden?
  - z.B. pro Benutzer gespeichert, was erlaubt ist
  - Capability
    - eine Art Gutschein, der bestimmte Operation auf bestimmtem Objekt erlaubt

## Rechteverwaltung (3)

### Organisation der Berechtigungen (fortges.)

- Rechte pro Objekt
  - Welche Subjekte dürfen hier welche Operationen ausführen?
  - z.B. an Datei gespeichert, was erlaubt ist
  - Access Control List (ACL)
    - Liste der Subjekte und deren ausführbaren Operationen

## Rechteverwaltung (4)

#### Organisation der Berechtigungen (fortges.)

- Rechte pro Operation
  - Welche Subjekte dürfen diese Operation an welchen Objekten ausführen?
  - z.B. an Löschoperation sind Nutzer und deren löschbare Dateien angehängt
  - sehr selten implementiert

## **Rechteverwaltung (5)**

#### **Positive Rechte**

- Subjekt darf nichts
  - Rechte werden mit Capabilities oder ACLs hinzugefügt

#### **Negative Rechte**

- Subjekt darf alles
  - Capabilities und ACLs schränken ein

#### Kombination

- Subjekt erhält Rechte und wird wieder eingeschränkt
  - Reihenfolge von positiven und negativen Rechten entscheidend

## Benutzerverwaltung

#### **Unterscheidung von Benutzern**

- Identifikation als Subjekte im System
  - zur Durchsetzung von Berechtigungen
- Hinterlegen individueller Merkmale
  - z.B. Name, Passwort, Heimatverzeichnis, organisatorische Zuordnung, Präferenzen etc.

#### **Problem**

- viele Rechte sind für Gruppen von Benutzern identisch
  - z.B. Studierende vs. Mitarbeiter, Mitglieder einer Abteilung
  - einzelne Vergabe der Rechte aufwändig

## **Benutzerverwaltung (2)**

#### **Unterscheidung von Benutzergruppen**

- Einführung von Gruppen als weitere Subjekte
  - Berechtigungen an Gruppen festgemacht
    - erheblich vereinfacht.
      - Rechteänderung wirkt auf alle Nutzer in der Gruppe
  - Benutzerzuordnung zu Gruppen
    - Zugehörigkeit zu Gruppen aus dem realen Leben
      - z.B. Studierende, Professoren, Administratoren, Sopra-Gruppe
    - Gruppierung dediziert zur Rechtevergabe
      - z.B. Gruppe, die USB-Stick verwenden darf, Gruppe, die drucken darf
  - bedarf Gruppenverwaltung
    - häufig Zuordnung zu mehreren Gruppen möglich

## Benutzerverwaltung (3)

#### Erkennung des Benutzers durch das System

- Identifikation über Benutzername
  - Beweis der Identität durch weiteres Kriterium
    - meist geheimes Passwort
    - Alternativen zum Passwort: Chipkarte, Iris-Scan, Fingerabdruckscan, ...
- verschiedene Verfahren
  - einen Gegenstand haben
  - ein biometrisches Merkmal haben
  - etwas wissen
- Kombinationen mehrerer Verfahren sicherer
- Benutzername + Authentifizierungskriterium = Credentials

## **Benutzerverwaltung (4)**

#### **Anmeldedaten**

- Speicherung in sicherer Datenbank
  - vor Manipulation und illegalem Auslesen geschützt
  - aber Änderungen müssen möglich sein
    - z.B. regelmäßige Passwortänderungen
- Abgleich durch den Anmeldeprozess bei der Anmeldung
  - sichere Datenbank muss für Anmeldeprozess lesbar sein

### Änderungen an Benutzer-/Gruppendatenbanken

- benötigt erweiterte Rechte
  - z.B. Windows: GUI-Tool zur Kontoverwaltung
  - z.B. Kubuntu: KDE-Kontrollmodul "User-Management"
  - z.B. Linux: passwd-Kommando





# (Grundlagen der) Betriebssysteme | K.2



Franz J. Hauck | Institut für Verteilte Systeme, Univ. Ulm

#### Inhaltsüberblick

#### Rechteverwaltung

- Berechtigungen
  - allgemeine Betrachtungen zur Rechte- und Nutzerverwaltung
- UNIX/Linux
  - Arten von Berechtigungen
  - Weitergabe von Privilegien
  - Anmeldung am System
  - erweiterte Berechtigungen
- Windows
  - ACLs unter NT- und POSIX-Systemen
- Schutz vor schädlicher/fehlerhafter Software

## **UNIX/Linux Rechteverwaltung**

#### Berechtigungen geknüpft an Inode (Objekt)

- alles, was einen Inode hat, kann im Zugriff eingeschränkt werden
  - Dateien, Verzeichnisse, Geräte u.a.

#### **Benutzer (Subjekt)**

- Nutzer durch eindeutige Nummer (User-ID, UID) repräsentiert
  - Nutzer 0 (root) darf alles
    - Rechteprüfung ausgeschaltet
    - Administrator

### Nutzergruppen (Subjekt)

Gruppen durch eindeutige Nummer (Group-ID, GID) repräsentiert

## **UNIX/Linux Rechteverwaltung (2)**

#### Inodes und Berechtigungen

- Inodes haben einen Eigentümer (UID)
- Inodes gehören genau einer Gruppe an (GID)
- Inodes speichern Berechtigungen für drei Kategorien:
  - Eigentümer (User)
  - Gruppe (Group)
  - alle anderen (Rest der Welt, Others)
  - es gilt die erste Kategorie, die zutrifft
  - Berechtigungen nur vom Eigentümer änderbar
    - oder von root

## **UNIX/Linux Rechteverwaltung (3)**

#### Berechtigungen

- jeweils für die drei Kategorien individuell vergebbar
- Datei
  - Leserecht (r), Schreibrecht (w), Ausführungsrecht (x)
- Verzeichnis
  - Leserecht (r), Schreibrecht (w), Durchgangsrecht (x)
  - Leserecht erlaubt Auflisten des Verzeichnisinhalts.
  - Schreibrecht erlaubt Löschen und Anlegen von Verweisen
  - Durchgangsrecht erlaubt Auflösen von Pfadnamen zu Inodes
    - d.h. Name im Verzeichnis muss bekannt sein

## **UNIX/Linux Rechteverwaltung (4)**

#### Beispiel

```
$ ls -l /home/alice
 total 40
 drwx----- 3 alice users 4096 Jun 14 14:05 Musik
 -r--r-- 1 alice users 120 Jun 14 12:11 bsp.text
 -rwxr-x--- 1 alice users 14828 Jun 11 00:42 test
 -rw-r---- 1 alice users 2035 Jun 11 00:41 test.c
        andere
Nutzer
                     Gruppe
   Gruppe
               Nutzer
 Zugriffsrechte
      Anzahl Verweise
```

## **UNIX/Linux Rechteverwaltung (5)**

#### **Weiteres Beispiel**

```
$ ls -ld /tmp/test
drw----- 2 alice users 4096 Jun 14 07:11 /tmp/test
```

- Nutzerin Alice hat Leserecht im Verzeichnis
  - Auflistung ergibt:

```
$ ls -l /tmp/test
ls: cannot access test/welt: Permission denied
ls: cannot access test/hallo: Permission denied
total 0
-????????? ? ? ? ? ? hallo
-????????? ? ? ? ? welt
```

- Pfade können nicht aufgelöst werden (kein Durchgangsrecht)
  - daher kein Zugang zum Inode und seinen Metadaten

## **UNIX/Linux Rechteverwaltung (6)**

#### Weitere Berechtigungen an Inodes

- User S-Bit
  - bei ausführbaren Dateien
    - Ausführung findet unter Berechtigung des Dateieigentümers statt, nicht unter der Berechtigung des Nutzers
- Group S-Bit
  - bei ausführbaren Dateien
    - Ausführung findet unter Gruppenberechtigung der Datei statt nicht unter den Gruppen des Nutzers
  - bei Verzeichnissen
    - neue Einträge bekommen automatisch selbe Gruppenzuordnung wie Verzeichnis

## **UNIX/Linux Rechteverwaltung (7)**

#### Weitere Berechtigungen an Inodes (fortges.)

- Sticky Bit (T)
  - bei ausführbaren Dateien
    - Speicherseiten werden nicht ausgelagert
    - heute nicht mehr unterstützt.
  - bei Verzeichnissen
    - trotz Schreibrecht kann ein Nutzer nur seine eigenen Einträge löschen
    - wird z.B. für Verzeichnis temporärer Dateien genutzt

## **UNIX/Linux Rechteverwaltung (8)**

#### Darstellung zusätzlicher Rechte

```
$ ls -l /home/alice/demo
total 48
-rws--x--- 1 alice users    4096 Jun 14 14:05 cmd1
-rwxr-sr-x 1 alice sopra    2088 Jun 14 12:11 cmd2
drwxrws--- 3 alice sopra    503 Jun 14 12:11 shared
drwxrwxrwt 1 alice users 14828 Jun 11 00:42 stickydir
-rwSr-S--T 1 alice users 2035 Jun 11 00:41 zombie
```

- S-Bits nur sinnvoll bei gleichzeitigem X-Bit
- Großschreibung falls nicht gesetzt

## **UNIX/Linux Rechteverwaltung (9)**

#### **Beispiel Gruppenarbeit**

```
$ ls -la /home/alice/demo/shared
total 24
drwxrws--- 3 admin sopra 4096 Feb 21 00:54 .
drwxr-xr-x 56 root root 86016 May 26 23:21 ..
-rwxrwx--- 2 alice sopra 4096 Jun 14 11:09 fromAlice
-rw-rw---- 1 bob sopra 24476 Jun 14 10:48 fromBob
-rwxrwx--- 1 emil sopra 96061 Jun 10 20:14 fromEmil
```

- alle neuen Dateien bekommen sopra-Gruppe
  - obwohl Dateien sonst mit Standardgruppe des jeweiligen Nutzers angelegt werden (hier users)

## **UNIX/Linux Benutzerverwaltung**

#### Speicherung der Passwörter

- /etc/passwd öffentlich lesbar
  - enthält nur nicht-sensitive Informationen
    - Benutzername, Ids, Heimatverzeichnis, genutzte Shell

```
root:x:0:0:root:/root:/bin/sh
nico:x:1000:1000:Nico:/home/nico:/bin/bash
OID (Standardgruppe)
```

- /etc/shadow nicht öffentlich lesbar
  - enthält Passwort

```
root:$6$Az5Ne3iKJ.2B/...:15475:0:::::
nico:$6$Kjsd638/.JehD...:15458:0:90:5:::
```

## **UNIX/Linux Benutzerverwaltung (2)**

### Speicherung der Gruppen

- /etc/group öffentlich lesbar
  - enthält nur nicht-sensitive Informationen
    - Gruppenname, ID, zugeordnete Nutzer (außer Standardgruppe)
- /etc/gshadow nicht öffentlich lesbar
  - enthält optionales Passwort
  - Gruppen können mit Passwort geschützt sein
    - Anmelden an der Gruppe macht Berechtigung verfügbar

# Übertragung von Privilegien in UNIX/Linux

#### **Prozesstabelle**

- Betriebssystem führt Prozesstabelle aktiver Prozesse
- Prozess hat eine Benutzer- und Gruppen-ID (UID und GID)
  - operiert mit den Rechten des Benutzers und der Gruppe

#### **ID-Konzept unter Unix**

- reale UID, reale GID
  - IDs, unter denen der Prozess gestartet wurde
- effektive UID, effektive GID
  - IDs, gegen die geprüft wird, ob Zugriffe erlaubt sind
- normalerweise reale und effektive IDs identisch
  - Prozess erbt alle vier vom Elternprozess

# Übertragung von Privilegien in UNIX/Linux (2)

## Änderungen der IDs

- Systemaufrufe setuid() / setgid()
  - setzen reale <u>und</u> effektive ID des Prozesses
  - nur root kann auch reale ID setzen
  - normaler Nutzer kann nur seine eigene UID/GID setzen oder die mit S-Bit in der ausgeführten Datei gesetzten IDs
    - d.h. Umschaltung zwischen S-Bit und eigener UID möglich

## Übertragung von Privilegien in UNIX/Linux (3)

#### Beispiel: Passwort ändern

- jeder Benutzer soll sein Passwort ändern können
  - Schreibzugriff auf die Passwort-Datei /etc/shadow erforderlich
  - aber nicht jeder soll Passwörter lesen und die anderer Nutzer schreiben können
- **♦** Lösung
  - Programm zur Passwortänderung hat Administrator-S-Bit

```
$ ls -l /usr/bin/passwd
-rwsr-xr-x 1 root root 42824 Apr 9 04:32 /usr/bin/passwd
```

- wird mit Administratorrechten ausgeführt,
  - effektive UID = 0

## **Anmeldung unter UNIX/Linux**

#### **Ablauf des Login-Prozesses**



## Anmeldung unter UNIX/Linux (2)

#### **Login-Prozess**

- läuft mit Administratorrecht
  - kann Passwortdatei lesen
  - fragt Passwort ab, verschlüsselt es und vergleicht die beiden
  - startet Shell mit effektiver und realer UID/GID des angemeldeten Nutzers

```
/* cryptedpwd, uid, gid, shell aus /etc/{passwd,shadow} */
password = getpass("Password:");

if (strcmp(crypt(password, cryptedpwd), cryptedpwd) != 0) {
    write(1, "Login incorrect\n", 16);
} else {
    /* richtiges Passwort, starte Shell für Benutzer */
    if (fork()==0) {
        setuid(uid); setgid(gid); exec(shell);
    }
}
```





# (Grundlagen der) Betriebssysteme | K.3



Franz J. Hauck | Institut für Verteilte Systeme, Univ. Ulm

### Inhaltsüberblick

### Rechteverwaltung

- Berechtigungen
  - allgemeine Betrachtungen zur Rechte- und Nutzerverwaltung
- UNIX/Linux
  - Arten von Berechtigungen
  - Weitergabe von Privilegien
  - Anmeldung am System
  - erweiterte Berechtigungen
- Windows
  - ACLs unter NT- und POSIX-Systemen
- Schutz vor schädlicher/fehlerhafter Software

## **Erweiterte Berechtigungen in Linux**

### Lange Access Control Lists im Dateisystem

- Implementierung der POSIX-ACLs
  - Speicherung in sog. Extended Attributes (xattr; Name-Wert-Paare)
  - im Dateisystem für jeden Inode
- Markierung im Verzeichnislisting
  - klassische Rechte, dahinter "+"

```
$ ls -l /srv/www/web1
-rwxrwx---+ 2 root root 4096 May 18 14:16 /srv/www/web1
```

- positive Rechte für Benutzer und Gruppen
- Eigentümer kann Rechte selbst setzten
  - für beliebige Nutzer und Gruppen

## **Erweiterte Berechtigungen in Linux (2)**

### Bearbeiten der langen ACLs

■ Setzen/Löschen über den Befehl setfacl

```
$ setfacl -m user:alice:rwx /srv/www/web1
$ setfacl -m group:webusers:rwx /srv/www/web1
```

Anzeige der ACLs über den Befehl getfacl

```
$ getfacl /srv/www/web1
user::rwx
user:alice:rwx
group::---
group:webusers:rwx
mask::rwx
other::---
```

# **Erweiterte Berechtigungen in Linux (3)**

#### Besonderheiten

- ACL-Maske (maximale Rechte)
  - z.B. mask::rwx
  - bitweises logisches Und auf alle ACL-Einträge vor der Zugriffsprüfung
  - erlaubt zentrale Einschränkung der Rechte
  - Maske wird an Stelle der Gruppenrechte angezeigt

# **Erweiterte Berechtigungen in Linux (4)**

### Besonderheiten (fortges.)

- Vererbung der ACLs
  - Default-ACLs
    - z.B. default:user:alice:rwx
    - z.B. default:group::---
  - wird neue Datei angelegt, werden Default-ACLs des enthaltenden Verzeichnisses übernommen
  - wird neues Verzeichnis angelegt, werden die Default-ACLs des enthaltenden Verzeichnisses als Default-ACLs des neuen gesetzt
  - nachträgliche Änderungen der ACLs immer möglich

### Inhaltsüberblick

### Rechteverwaltung

- Berechtigungen
  - allgemeine Betrachtungen zur Rechte- und Nutzerverwaltung
- UNIX/Linux
  - Arten von Berechtigungen
  - Weitergabe von Privilegien
  - Anmeldung am System
  - erweiterte Berechtigungen
- Windows
  - ACLs unter NT- und POSIX-Systemen
- Schutz vor schädlicher/fehlerhafter Software

## Berechtigungen unter Windows

### Berechtigungen hängen an Objekten

- alles ist Objekt, insbesondere Dateien und Verzeichnisse
- Security Descriptors für alle Objekte
  - ACLs an Security Descriptors gekoppelt
- NTFS kann Security Descriptors speichern
- FAT kann das nicht
  - erlaubt lediglich Schreibschutz

# Berechtigungen unter Windows (2)

#### Rechtestufen

- No access: Kein Zugriff
- List: Anzeige von Dateien in Verzeichnissen
- Read: Inhalt von Dateien lesen, und list
- Add: Hinzufügen von Dateien zu einem Verzeichnis, und list
- Read & Add: Wie read und add
- Change: Ändern von Dateiinhalten, Löschen von Dateien und read & add
- Full: Ändern von Eigentümer und Zugriffsrechten und change

### ACLs konfigurierbar für beliebige Benutzer und Gruppen

positive und negative ACLs

# Berechtigungen unter Windows (3)

### Einstellung der Rechte





© 2024, Franz J. Hauck | Institut für Verteilte Systeme, Universität Ulm | http://www.uni-ulm.de/in/vs/hauck

# Berechtigungen unter Windows (4)

### Weitere Anmerkungen

- Benutzer SYSTEM (= Betriebssystem) kann explizit Rechte zugewiesen bekommen
  - normalerweise Vollzugriff auf alles
- Administratoren dürfen in der Regel ebenfalls nicht alles
  - müssen auch ausdrücklich Rechte zugewiesen bekommen
- weit komplexeres und detaillierteres Rechtekonzept als unter Linux
- Vererbung der ACLs an niedrigere Ebenen im Verzeichnisbaum ist Standard, lässt sich abschalten

# **Berechtigungen unter Windows (5)**

### **Auswertung der ACLs**

- ist keine ACL vorhanden, ist der Zugriff nicht möglich
- Verbote überschreiben Erlaubnisse
  - negative Rechte überschreiben positive Rechte
  - Achtung bei Verboten für ganze Gruppen
  - z.B. Alice ist in der Gruppe der Studierenden, Bob nicht
    - Alice legt Datei an
    - sie setzt ACLs:
       Alice & Bob dürfen lesen,
       Studierenden ist alles
       verboten
    - Resultat: Alice darf selbst nicht mehr lesen!



## Schutz vor schädlicher/fehlerhafter Software

### Speicherbereiche schützen

■ logische Adressräume (vgl. Kapitel G)

#### Weitere Maßnahmen zur Isolation von Prozessen

- Application Sandboxing
  - z.B. bei Android: Prozesse voneinander abgeschottet
- chroot
  - Trennung auf Dateisystemebene
  - neues Wurzelverzeichnis
- Virtualisierung
  - siehe nächstes Kapitel J



# Schutz vor schädlicher/fehlerhafter Software (2)

### **Beispiel: Android Sandbox**

- Sandbox basiert auf klassischen UNIX-Rechten
- jeder App läuft als Prozess mit eigener UID
  - keine zwei Prozesse mit gleicher UID
  - Prozess kann standardmäßig nur auf eigene Ressourcen zugreifen
  - Prozess kann nach erweiterten Rechten fragen, um auf andere Ressourcen/Daten auch anderer Prozesse zuzugreifen



# Vertiefung/Weiterführung der Thematik

### **Uni-Veranstaltungen**

- Grundlagen der Rechnernetze / Vernetzte Systeme
- Sicherheit in IT-Systemen
- Web Engineering
- Grundlagen Verteilter Systeme / Verteilte Systeme
- Kryptologie

#### Literatur

Barrett, Silverman, Byrnes. Linux Security Cookbook. O'Reilly, 2003.