BLOCKCHAIN

Şükrü ÇAKMAK sukru@sukru.org

Blockchain Basics

- Definition of Blockchain
- Centralized, Decentralized
- Distributed Ledger
- Cryptographic Hash
- History
- Blockchain Types
- Public vs Private

Growing list of records, called *blocks*, that are linked using cryptography.

Each block contains a *cryptographic hash* of the previous block, a **timestamp**, and transaction *data* (generally represented as a Merkle tree).

Digitally protected, decentralized, distributed ledger.

Basic Terms

- Immutable
- Append-Only
- Ledger
- Consensus

Basic Terms

Immutable

Cannot be changed, edited, or deleted. Permanent record.

Append-Only

A system in which data can only be read or added. No deletes or edits are possible.

Ledger

A log or historical record of events for a particular item.

Consensus

The truth is assumed to be whatever the majority of participants believe it to be.

So, what is blockchain?

- An immutable, append-only ledger
- Multiple copies of this ledger are stored on nodes (computers, servers) across a network
- Nodes attempt to reach consensus on the contents of the ledger

Centralized vs Decentralized

Centralized	Decentralized
Slow	Fast
Single Point of Failure	No Single Point of Failure
High Bandwidth Usage for Server	All Downloader and Uploaders

Distributed Ledger

A blockchain is typically managed by a peer-to-peer network collectively adhering to a protocol for inter-node communication and validating new blocks.

Peer-to-peer (P2P) networking is distributed application architecture that partitions tasks between peers.

Cryptographic Hash

It is a mathematical *algorithm* that maps data of arbitrary size (often called the "message") to a bit string of a fixed size (the "hash value", "hash", or "message digest") and is a *one-way function*.

The *SHA-256 algorithm* generates an almost-unique, fixed-size 256-bit (32-byte) hash. This is a one-way function, so the result cannot be decrypted back to the original value.

MD5? SHA-1? Bcrypt?

Cryptographic Hash

	Input				Output
One-way	Lorem		crypto-hash-func	\Rightarrow	1b7f8466f087c27f24e1c90017b82 9cd8208969018a0bbe7d9c452fa2 24bc6cc
Deterministic	Lorem	\Rightarrow	crypto-hash-func		1b7f8466f087c27f24e1c90017b82 9cd8208969018a0bbe7d9c452fa2 24bc6cc
Fixed size	Lorem ipsum dolor sit amet	\Rightarrow	crypto-hash-func	\Rightarrow	16aba5393ad72c0041f5600ad3c2 c52ec437a2f0c7fc08fadfc3c0fe964 1d7a3
Psuedo Random	Lorem ipsum dolor sit ame <mark>r</mark>	\Rightarrow	crypto-hash-func		bf36444fc3fb5a04a578cb69b98b3 43c0384c505e2b956ddb54af3f83e c92f1c

Cryptographic Hash

```
public class SecureHashAlgorithm {
    public static void main(String[] args) throws Exception {
        String message = "Hello from Sukru";
       MessageDigest digest = MessageDigest.getInstance("SHA-256");
        byte[] encodedHash = digest.digest(message.getBytes());
        System.out.println("Encoded: "+ bytesToHex(encodedHash));
   private static String bytesToHex(byte[] hash) {
        StringBuffer hexString = new StringBuffer();
       for (int i = 0; i < hash.length; i++) {</pre>
            String hex = Integer.toHexString(0xff & hash[i]);
            if(hex.length()==1) hexString.append('0');
            hexString.append(hex);
       return hexString.toString();
```

Visualisation

https://www.youtube.com/watch?v=_160oMzbIY8

Who invented?

Blockchain was invented by a person (or group of people) using the name **Satoshi Nakamoto** in 2008 to serve as the public transaction ledger of the **cryptocurrency bitcoin**.

https://bitcoin.org/bitcoin.pdf

Bitcoin: A Peer-to-Peer Electronic Cash System

Satoshi Nakamoto satoshin@gmx.com www.bitcoin.org

Abstract. A purely peer-to-peer version of electronic cash would allow online payments to be sent directly from one party to another without going through a financial institution. Digital signatures provide part of the solution, but the main benefits are lost if a trusted third party is still required to prevent double-spending. We propose a solution to the double-spending problem using a peer-to-peer network. The network timestamps transactions by hashing them into an ongoing chain of hash-based proof-of-work, forming a record that cannot be changed without redoing the proof-of-work. The longest chain not only serves as proof of the sequence of events witnessed, but proof that it came from the largest pool of CPU power. As long as a majority of CPU power is controlled by nodes that are not cooperating to attack the network, they'll generate the longest chain and outpace attackers. The network itself requires minimal structure. Messages are broadcast on a best effort basis, and nodes can leave and rejoin the network at will, accepting the longest proof-of-work chain as proof of what happened while they were gone.

Bitcoin Block Mining

transaction:{from: sukru, to: ege, amount:100} transaction:{from: ege, to: sukru, amount:58} transaction:{from: sukru, to: yasar, amount:34}

choose a random nonce: 2083236893

calculate the hash, starting with zero: 0000 0000 00

https://www.blockchain.com/btc/block/00000000839a8e6886ab5951d76f411475428afc90947ee320161bbf18eb6048

Homework

Write your own mining demo!

Blockchain Types

- 1. Public
- 2. Private
- 3. Consortium
- 4. Hybrid

Blockchain Types

- 1. Public (Bitcoin, Ethereum, Litecoin etc.)
- Private (Enterprise blockchains like Hyperledger)
- 3. Consortium (R3 Corda)
- 4. Hybrid (Dragonchain)

Blockchain Types

1. Public

Advantages
Trustable
Secure
Open and Transparent

Disadvantages
Lower TPS
Scalability
High Energy Consumption

Bitcoin can process 7 transactions per second (TPS) Ethereum 15 TPS

Visa 24.000 TPS

2. Private

Advantages	
Speed	
Scalability	

Disadvantages

Never Trust Building

Lower Security

Centralization

Identity and Access Management (IAM)

Public vs Private

	Public Blockchains	Private Blockchains	
Access level	o Anyone	 Single organization 	
Participation	PermissionlessAnonymous	PermissionedIdentities are known	
Security	 Consensus mechanism Proof of Work / Proof of Stake 	 Pre-approved participants Voting / multi-party consensus 	
Performance	Slow transaction speed	Lighter blockchain Fast transaction speed	

Smart Contracts

*Estimated Stats

PROGRAMMING LANGUAGES SUPPORTED BY BLOCKCHAIN-BASED PROJECTS

Key Concepts

Cryptographic Hash

Merkle Tree

Peer-to-peer

SHA-256

Block

Nonce

TPS

Mining

Public vs Private Blockchains

Please feel free to contact me if you need any further information sukru@sukru.org