<u>La modélisation du</u> robot FANUC LR Mate 200i.

Description géométrique des robots.

La description géométrique des robots manipulateurs (structures ouverte simple) est basée sur la notation de Denavit-Hertenberg qui est basé sur les règles et les conventions suivantes :

- La variable de l'articulation j est notée q_j .
- Le corps j est noté C_j .
- Les corps sont supposés parfaitement rigides. Il sont connectés par des articulation considérées comme idéales(pas de jeu mécanique, pas d'élasticité).
- Le repère R_j est lié au corps C_j .
- L'axe Z_j du repère R_j est porté par l'axe de l'articulation j.
- L'axe X_j est porté par la perpendiculaire commune aux axes Z_j et Z_{j+1} .

Le passage de R_{j-1} à R_j s'exprime en fonction des quatre paramètres suivant **Fig.(1)**:

- α_j : angle entre les axes Z_{j-1} et Z_j , correspondant a une rotation autour de X_{j-1} .
- d_i : distance Z_{i-1} et Z_i le long de X_{i-1} .
- $\bullet \quad \theta_j : \text{angle entre les axes } X_{j\text{--}1} \, \text{et } X_j \,, \, \text{correspondant a une rotation autour de } Z_j \,.$
- r_j : distance entre $X_{j-1} X_j$ le long de Z_j .

 $Fig. (1): param\`etres\ g\'eom\'etriques\ des\ structures\ ouverte$

La matrice de transformation définissant le repère R_i dans le repère R_{i-1} est donnée par :

$$^{j-1}T_{j} = Rot(x, \alpha_{j})Trans(x, d_{j})Rot(z, \theta_{j})Trans(z, r_{j})$$

$$T_{j-1}T_{j} = \begin{bmatrix} c\theta_{j} & -s\theta_{j} & 0 & d_{j} \\ c\alpha_{j}s\theta_{j} & c\alpha_{j}c\theta_{j} & -s\alpha_{j} & -r_{j}s\alpha_{j} \\ s\alpha_{j}s\theta_{j} & s\alpha_{j}c\theta_{j} & c\alpha_{j} & r_{j}c\alpha_{j} \\ 0 & 0 & 0 & 1 \end{bmatrix}$$
(1)

avec:
$$\begin{cases} c\theta_j = c_j = \cos(\theta_j) \\ s\theta_j = s_j = \sin(\theta_j) \end{cases}$$
 pour $j = 1, \dots, 6$

La modelisation geometrique du robot FANUC

Le modèle géométrique directe MGD

Le modèle générique direct est l'ensemble des relations qui permettent d'exprimer la situation de l'organe terminal du robot en fonction en fonction de ces coordonnées articulaire. La situation de l'organe terminal est définie par le vecteur :

$$X = \begin{bmatrix} x_1 & x_2 & \dots & x_m \end{bmatrix}^T$$

les variables articulaires sont définies par :

$$q = \begin{bmatrix} q_1 & q_2 & \dots & q_n \end{bmatrix}^T$$

et le modèle géométrique directe du robot s'écrit :

$$X = f(q). \tag{3}$$

Compte tenu de *l'expression (1)*, on écrit les matrices de transformation élémentaires pour le robot FANUC :

$${}^{0}T_{1} = \begin{bmatrix} c\theta_{1} & -s\theta_{1} & 0 & 0 \\ s\theta_{1} & c\theta_{1} & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \end{bmatrix}, \quad {}^{1}T_{2} = \begin{bmatrix} s\theta_{2} & -c\theta_{2} & 0 & d_{2} \\ 0 & 0 & -1 & 0 \\ c\theta_{2} & s\theta_{2} & 0 & 0 \\ 0 & 0 & 0 & 1 \end{bmatrix},$$

$${}^{2}T_{3} = \begin{bmatrix} c\theta_{3} & -s\theta_{3} & 0 & d_{3} \\ s\theta_{3} & c\theta_{3} & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \end{bmatrix}$$

$${}^{1}T_{3} = \begin{bmatrix} -s(\theta_{3} - \theta_{2}) & -c(\theta_{3} - \theta_{2}) & 0 & d_{2} + d_{3}s\theta_{2} \\ 0 & 0 & -1 & 0 \\ c(\theta_{3} - \theta_{2}) & -s(\theta_{3} - \theta_{2}) & 0 & d_{3}c\theta_{2} \\ 0 & 0 & 0 & 1 \end{bmatrix}$$

$${}^{3}T_{4} = \begin{bmatrix} c\theta_{4} & s\theta_{4} & 0 & d_{4} \\ 0 & 0 & -1 & -r_{4} \\ -s\theta_{4} & c\theta_{4} & 0 & 0 \\ 0 & 0 & 0 & 1 \end{bmatrix}, {}^{4}T_{5} = \begin{bmatrix} c\theta_{5} & -s\theta_{5} & 0 & 0 \\ 0 & 0 & 1 & 0 \\ -s\theta_{5} & -c\theta_{5} & 0 & 0 \\ 0 & 0 & 0 & 1 \end{bmatrix}$$

$${}^{5}T_{6} = \begin{bmatrix} c\theta_{6} & s\theta_{6} & 0 & 0 \\ 0 & 0 & -1 & 0 \\ -s\theta_{6} & c\theta_{6} & 0 & 0 \\ 0 & 0 & 0 & 1 \end{bmatrix}$$

En réalisant la composition des transformations du repère universel $R_{\rm 0}$ jusqu'au repère $R_{\rm 6}$, on obtient :

$${}^{0}T_{6} = {}^{0}T_{1} {}^{1}T_{2} {}^{2}T_{3} {}^{3}T_{4} {}^{4}T_{5} {}^{5}T_{6}$$
 (4)

notons:

$${}^{0}T_{6} = \begin{bmatrix} s_{x} & n_{x} & a_{x} & P_{x} \\ s_{y} & n_{y} & a_{y} & P_{y} \\ s_{z} & n_{z} & a_{z} & P_{z} \\ 0 & 0 & 0 & 1 \end{bmatrix} = \begin{bmatrix} {}^{0}S_{6} & P \\ 0 & 0 & 0 & 1 \end{bmatrix}$$
 (5)

Où:

P est le vecteur position de l'origine du repère terminal, O_6 dans le repère R_0 .

 $^{0}S_{6}$ est la matrice d'orientation du repère terminal par rapport à R_{0} .

X est le vecteur des cosinus directeurs :

$$X = \begin{bmatrix} s_x & s_y & s_z & n_x & n_y & n_z & a_x & a_y & a_z & P_x & P_y & P_z \end{bmatrix}^T.$$
 (6)

Après calcule et identification des termes des deux matrices de l'équation (5) , le modèle géométrique est le suivant :

$$\begin{split} s_x &= c_1(c_6(s_{2-3}c_4c_5 - c_{2-3}s_5) - s_{2-3}s_4s_6) - s_1(s_4c_5c_6 + c_4c_6) \\ s_y &= s_1(c_6(s_{2-3}c_4c_5 - c_{2-3}s_5) - s_{2-3}s_4s_6) + c_1(s_4c_5c_6 + c_4c_6) \\ s_z &= c_6(c_{2-3}c_4c_5 + s_{2-3}s_5) - c_{2-3}s_4s_6 \\ n_x &= c_1(s_6(s_{2-3}c_4c_5 - c_{2-3}s_5) + s_{2-3}s_4c_6) - s_1(s_4c_5s_6 - c_4c_6) \\ n_y &= s_1(s_6(s_{2-3}c_4c_5 - c_{2-3}s_5) + s_{2-3}s_4c_6) - c_1(s_4c_5s_6 - c_4c_6) \\ n_z &= s_6(c_{2-3}c_4c_5 + s_{2-3}s_5) + c_{2-3}s_4c_6 \\ a_x &= c_1(s_{2-3}c_4s_5 + c_{2-3}s_5) + c_{2-3}s_4c_6 \\ a_y &= s_1(s_{2-3}c_4s_5 + c_{2-3}c_5) - s_1s_4s_5 \\ a_y &= s_1(s_{2-3}c_4s_5 + c_{2-3}c_5) + c_1s_4s_5 \\ a_z &= c_{2-3}c_4s_5 - s_{2-3}c_5 \\ P_x &= c_1[d_4s_{(2-3)} + c_{(2-3)}r_4 + s_2d_3 + d_2] \\ P_y &= s_1[d_4s_{(2-3)} - s_{(2-3)}r_4 + c_2d_3 \\ P_z &= d_4c_{(2-3)} - s_{(2-3)}r_4 + c_2d_3 \\ \end{split}$$
 (7)

Le modèle géométrique inverse MGI.

Calcul des articulations de position.

La solution de (q1, q2, q3) peut se faire, à partir du vecteur position du modèle géométrique direct (MGD) qui est donner par les trois équations suivantes :

$$P_x = c_1[d_4 s_{(2-3)} + c_{(2-3)} r_4 + s_2 d_3 + d_2]$$

$$P_y = s_1[d_4 s_{(2-3)} + c_{(2-3)} r_4 + s_2 d_3 + d_2]$$

$$P_z = d_4 c_{(2-3)} - s_{(2-3)} r_4 + c_2 d_3$$

si on suppose que $\frac{r_4}{d_4} = \tan(\delta)$ on obtient :

$$P_{x} = c_{1} \left[\frac{d_{4}}{c_{\delta}} s_{(2-3+\delta)} + s_{2} d_{3} + d_{2} \right]$$
 (8)

$$P_{x} = s_{1} \left[\frac{d_{4}}{c_{\delta}} s_{(2-3+\delta)} + s_{2} d_{3} + d_{2} \right]$$
 (9)

$$P_{z} = \frac{d_{4}}{c_{\delta}} c_{(2-3+\delta)} + c_{2} d_{3}$$
 (10)

a partir des équation (8) et (9), on tire deux solutions de la première articulation :

$$\begin{cases} q_1 = \arctan(\frac{P_y}{P_x}) \\ q_1 = q_1 + \pi \end{cases}.$$

A partir des équation (8) et (10), on obtient :

$$\frac{P_x}{c_1} - d_2 = \frac{d_4}{c_\delta} s_{(2-3+\delta)} + s_2 d_3 \tag{11}$$

$$P_z = \frac{d_4}{c_\delta} c_{(2-3+\delta)} + c_2 d_3 \tag{12}$$

En élevant au carré puis en sommant, il vient :

$$\begin{split} c_{_{3-\delta}} &= \frac{Z^2 + X^2 - Y^2 - d_3^2}{2d_3Y} \\ s_{_{3-\delta}} &= \sqrt{1 - c_{_{3-\delta}}^2} \end{split}$$

avec:
$$\begin{cases} X = \frac{P_x}{c_1} - d_2 \\ Z = P_z \\ Y = \frac{d_4}{c_\delta} \end{cases}$$

$$q_3 = \arctan\left(\frac{s_{3-\delta}}{c_{3-\delta}}\right) + \delta \tag{13}$$

puisque on a deux solutions pour q_1 et δ donc on a quatre solution possible pour la troisième articulation.

En développant les équations (11) et (12), on obtient :

$$X = s_2 (Yc_{2-\delta} + d_3) - Yc_2 s_{3-\delta}$$
 (14)

$$Z = Ys_2 s_{3-\delta} + c_2 (Yc_{2-\delta} + d_3)$$
 (15)

En posant :
$$\begin{cases} A = Yc_{3-\delta} + d_3 \\ B = Ys_{3-\delta} \end{cases}$$

on obtient:

$$s_2 = \frac{AX + BZ}{A^2 + B^2} \tag{16}$$

et:

$$c_2 = \frac{AZ - BX}{A^2 + B^2} \tag{17}$$

a partir des équations (16) et (17) on trouve :

$$q_2 = \arctan \frac{AX + BZ}{AZ - BX}$$

Calcul des articulations d'orientation.

Puisque l'orientation de U_0 est donnée par la matrice 0A_6 et on à la relation suivante :

$${}^{3}A_{0} {}^{0}A_{6} = {}^{3}A_{6}$$
 (20)

puisque on a calculer $(q_1 \quad q_2 \quad q_3)$, donc 3A_0 est connue et la matrice 3A_6 est fonction de $(q_4 \quad q_5 \quad q_6)$

$${}^{3}A_{0}{}^{0}A_{6} = \begin{bmatrix} * & * & A_{1} \\ * & * & * \\ * & * & A_{2} \end{bmatrix} \qquad \text{et} \qquad {}^{3}A_{6} = \begin{bmatrix} * & * & c_{4}s_{5} \\ * & * & * \\ * & * & -s_{4}s_{5} \end{bmatrix}$$

avec:
$$\begin{cases} A_1 = c_1 s_{2-3} a_x + s_1 s_{2-3} a_y + c_{2-3} a_z \\ A_2 = s_1 a_x - c_1 a_y \end{cases}$$

(* représente les termes inutiles aux calculs.).

On déduit si $s_5 \neq 0$, deux solutions :

$$q_4 = \arctan\left(\frac{-A_2}{A_1}\right) = \arctan\frac{-\left(s_1 a_x - c_1 a_y\right)}{c_1 s_{2-3} a_x + s_1 s_{2-3} a_y + c_{2-3} a_z}$$
$$q_4' = q_4 + \pi$$

de plus en multipliant par 4A_3 , il vient :

$${}^{4}A_{3}{}^{3}A_{0} {}^{0}A_{6} = {}^{4}A_{6}$$

$${}^{4}A_{3}{}^{3}A_{0} {}^{0}A_{6} = \begin{bmatrix} * & * & A_{3} \\ A_{4} & A_{5} & * \\ * & * & A_{6} \end{bmatrix} \quad \text{et} \quad {}^{4}A_{6} = \begin{bmatrix} * & * & S_{5} \\ -S_{6} & C_{6} & * \\ * & * & C_{5} \end{bmatrix}$$

avec:
$$\begin{cases} A_{3} = (c_{4}c_{1}s_{2-3} - s_{4}s_{1})a_{x} + (c_{4}s_{1}s_{2-3} - s_{4}c_{1})a_{y} + (c_{4}c_{2-3})a_{z} \\ A_{4} = (s_{4}c_{1}s_{2-3} + c_{4}s_{1})s_{x} + (s_{4}s_{1}s_{2-3} - c_{4}c_{1})s_{y} + (s_{4}c_{2-3})a_{z} \\ A_{5} = (s_{4}c_{1}s_{2-3} + c_{4}s_{1})n_{x} + (s_{4}s_{1}s_{2-3} - c_{4}c_{1})n_{y} + (s_{4}c_{2-3})n_{z} \\ A_{6} = c_{1}c_{2-3}a_{x} + s_{1}c_{2-3}a_{y} - s_{2-3}a_{z} \end{cases}$$

par identification des deux matrices il vient :

$$\begin{aligned} q_5 &= \arctan\left(\frac{A_3}{A_6}\right) = \arctan\left(\frac{\left(c_4c_1s_{2-3} - s_4s_1\right)a_x + \left(c_4s_1s_{2-3} - s_4c_1\right)a_y + \left(c_4c_{2-3}\right)a_z}{c_1c_{2-3}a_x + s_1c_{2-3}a_y - s_{2-3}a_z}\right) \\ q_5' &= q_5 + \pi \\ \text{et} \\ q_6 &= \arctan\left(\frac{-A_4}{A_5}\right) = \arctan\left(\frac{-\left(\left(s_4c_1s_{2-3} + c_4s_1\right)s_x + \left(s_4s_1s_{2-3} - c_4c_1\right)s_y + \left(s_4c_{2-3}\right)a_z\right)}{\left(s_4c_1s_{2-3} + c_4s_1\right)n_x + \left(s_4s_1s_{2-3} - c_4c_1\right)n_y + \left(s_4c_{2-3}\right)n_z}\right) \\ q_6' &= q_6 + \pi \end{aligned}$$

Calcul des angles d'Euler ZYX

Pour déterminer les angles d'Euler, nous avons utilisé la convention d'Euler ZYX.

Voici les repères permettant d'observer les rotations successives :

Figure 6 : Repères des angles d'Euler ZYX

Cette convention utilise tout d'abord une rotation autour de Z0 d'un angle α , puis une rotation autour de Y1 d'un angle β et enfin une rotation autour de X2 d'un angle γ .

Voici les matrices correspondantes aux différentes rotations :

Rot
$$(X, Y, Z) = (\gamma, \beta, \alpha)$$

$$Rot(X) = \begin{bmatrix} 1 & 0 & 0 \\ 0 & \cos(\gamma) & -\sin(\gamma) \\ 0 & \sin(\gamma) & \cos(\gamma) \end{bmatrix}$$

$$Rot(Y) = \begin{bmatrix} \cos(\beta) & 0 & \sin(\beta) \\ 0 & 1 & 0 \\ -\sin(\beta) & 0 & \cos(\beta) \end{bmatrix}$$

$$Rot(Z) = \begin{bmatrix} \cos(\alpha) & -\sin(\alpha) & 0 \\ \sin(\alpha) & \cos(\alpha) & 0 \\ 0 & 0 & 1 \end{bmatrix}$$

Le produit matriciel de ces matrices de rotation nous donne une matrice de transformation.

$$Rot(Z)$$
 . $Rot(Y)$. $Rot(X) =$

$$\begin{bmatrix} \cos(\beta).\cos(\alpha) & \sin(\gamma).\sin(\beta).\cos(\alpha) - \cos(\gamma).\sin(\alpha) & \cos(\gamma).\sin(\beta).\cos(\alpha) + \sin(\gamma).\sin(\alpha) \\ \cos(\beta).\sin(\alpha) & \sin(\gamma).\sin(\beta).\sin(\alpha) + \cos(\gamma).\cos(\alpha) & \cos(\gamma).\sin(\beta).\sin(\alpha) - \sin(\gamma).\cos(\alpha) \\ -\sin(\beta) & \sin(\gamma).\cos(\beta) & \cos(\gamma).\cos(\beta) \end{bmatrix}$$

Rot(Z) . Rot(Y) . Rot(X) = Rot
$$_{(0,6)}$$
 avec Rot $_{(0,6)} = \begin{bmatrix} T11 & T12 & T13 \\ T21 & T22 & T23 \\ T31 & T32 & T33 \end{bmatrix}$

Par identification, on peut déterminer les angles d'Euler en fonction des termes de la matrice donnée par le MGD:

Si (T11 = T21 = 0): Rx =
$$\gamma$$
 = ATAN2 (T12, T22)
Ry = β = π / 2
Rz = α = 0

Sinon:
$$Rx = \frac{\gamma}{2} = ATAN2 (T32, T33)$$

$$Ry = \beta = ATAN2 (-T31, \frac{\sqrt{T11^2 + T21^2}}{2})$$

$$Rz = \alpha = ATAN2 (T21, T11)$$