ak

Hak Cipta Dilindungi Undang-Undang

Dilarang mengutip

BAB II

LANDASAN TEORI

2.1 Pengertian Sistem

Menurut Fat pengertian sistem adalah sebagai berikut :"Sistem adalah suatu himpunan suatu "benda" nyata atau abstrak (a set of thing) yang terdiri dari bagian—bagian atau komponen-komponen yang saling berkaitan, berhubungan, berketergantungan, saling mendukung, yang secara keseluruhan bersatu dalam satu kesatuan (Unity) untuk mencapai tujuan tertentu secara efisien dan efektif".

Pengertian Sistem Menurut Indrajit (2001: 2) mengemukakan bahwa sistem mengandung arti kumpulan-kumpulan dari komponen-komponen yang dimiliki unsur keterkaitan antara satu dengan lainnya.

2.2 Konsep dasar informasi

McFadden dkk mendefinisikan informasi sebagai data yang telah diproses sedemikian rupa sehingga meningkatkan pengetahuan seseorang yang menggunakan data tersebut. Informasi merupakan salah satu sumber daya yang sangat diperlukan di dalam suatu organisasi (mulianto, Agus. 2009).

Informasi memiliki karakteristik sebagai beirikut (davis, 1999):

- a) Benar atau salah.
 Informasi berhubungan dengan kebenaran terhadap kenyataan.
- b) Baru Informasi benar-benar baru bagi sipenerima.
- Informasi dapat memperbarui atau memberikan perubahan terhadap informasi yang telah ada.
- d) Korektif.
 Informasi dapat digunakan untuk melakukan koreksi terhadapa informasi sebelumnya yang salah atau kurang benar.
- e) Penegas.

c) Tambahan.

san State Islamic University of Sultan Syarif Kasim Riau

Hak Cipta Dilindungi Undang-Undang

I

Dilarang mengutip sebagian atau seluruh karya tulis ini tanpa mencantumkan dan menyebutkan sumber

Informasi dapat mempertegas informasi yang ada sebelumnya sehingga keyakinan terhadap informasi semakin meninggkat.

2.2.1 Fungsi dan siklus informasi

Fungsi utama informasi adalah menambah pengetahuan atau mengurangi ketidakpastian pemakai informasi. Informasi yang disampaikan kepada pemakai mungkin merupakan hasil dari data yang dimasukkan ke dalam pengolahan. Akan tetapi dalam kebanyakan pengambilan keputusan yang , mengurangi bermacammacam pilihan. Informasi yang disediakan bagi pengambil keputusan memberikan suatu kemungkinan faktor resiko pada tingkat-tingkatan pendapatan yang berbeda.

Informasi berfungsi untuk memberikan dasar guna melakukan seleksi. Informasi tidak mengarahkan ke apa yang harus dilakukan, tetapi mengurangi keanekaragaman dan ketidakpastian sehingga dapat dihasilkan keputusan yang baik. Fungsi informasi yang penting lainnya ialah memberikan standar-standar, aturan-aturan ukuran dan aturan-aturan keputusan untuk untuk penentuan dan penyebaran tanda-tanda kesalahan dan umpan balik guna mencapai tujuan kontrol. Dengan kata lain, dengan menganggap bahwa pengambil keputusan menanamkan modalnya dalam suatu proyek, maka informasi diperlukan untuk membantu mengontrol pelaksanaan proyek.

Pada umumnya banyak bagian informasi yang mungkin berguna, dan dengan cara tertentu dapat mempengaruhi tanggapan penerima informasi. Informasi dapat berasal dari pengamatan, percakapan dengan orang lain, rapatrapat panitia, dari majalah, dan dari sistem informasi itu sendiri. Sistem informasi hanya memberikan sebagian dari informasi yang dipergunakan oleh pengambil keputusan, dan bahwa informasi ini merupakan informasi formal dan dapat ditentukan banyaknya. Pada umumnya informasi hanya memberikan informasi formal mengenai keadaan yang mempunyai tingkat kemungkinan yang besar baik mengenai kejadian maupun mengenai hasil pembelajaran (termasuk kegiatan pemakai sendiri) organisasi. Oleh karena itu penentuan banyaknya informasi yang dapat ditangani atau dihasilkan oleh fungsi organisasi sangatlah penting.

Hak Cipta Dilindungi Undang-Undang

Dilarang mengutip

Data merupakan bentuk mentah yang belum dapat bercerita banyak sehingga perlu diolah lebih lanjut. Data diolah melalui satu model agar menghasilkan informasi. Didalam kegiatan suatu perusahaan, misalnya dari hasil transaksi penjualan oleh sejumlah salesman, dihasilkan sejumlah faktur yang merupakan data penjualan pada suatu periode tertentu. Faktur data penjualan tersebut belum dapat bercerita banyak kepada manajemen. Untuk keperluan pengambilan keputusan, faktur-faktur tersebut perlu diolah agar menjadi informasi penjualan.

Data diolah dengan menggunakan suatu proses tertentu. Misal, data tentang temperatur suatu ruangan didapat dalam derajat Fahrenheit. Data ini kurang berarti bagi penerimanya yang terbiasa dengan derajat Celcius. Supaya data berguna maka dibutuhkan model matematika untuk mengkonversi dari satuan derajan Fahrenheit ke satuan derajat Celcius.

Data diolah melalui suatu model informasi. Si penerima akan menerima informasi tersebut untuk membuat suatu keputusan dan melakukan tindakan yang akan mengakibatkan munculnya sejumlah data lagi. Data akan ditangkap sebagi input, diproses kembali melalui suatu model, dan seterusnya sehingga membentuk suatu siklus. Siklus inilah yang disebut siklus informasi. Agar lebih jelas lihat gambar 4.1. dibawah ini.

Gambar 2.1 Siklus Sistem Informasi

Hak Cipta Dilindungi Undang-Undang

Dilarang mengutip

2.2.2 Kualitaas informasi

Untuk mengukur apakah informasi tersebut memiliki kualitas atau tidak, tidak dapat mengujinya dengan empat dimensi diantaranya yaitu :

- a) Relevansi.
- b) Akurasi.
- c) Ketepatan waktu.
- d) Kelengkapan.

2,3 Konsep dasar sistem informasi

Sistem informasi adalah suatu sistem yang ada didalam organisasi yang mempertemukan kebutuhan pengolahan transaksi harian, mendukung operasi yang bersifat manajerial dan kegiatan strategi dari suatu organisasi dan pihak tertentu dengan laporan yang diperlukan. (zakiyudin, Ais. 2011).

Ada komponen-komponen dalam suatu sistem informasi:

- a) Perangkat keras (hardware).
- b) Perangkat lunak (software) atau Program.
- c) Basis data (database).
- d) Prosedur.
- e) Personil atau Orang.
- f)Jaringan komputer dan komunikasi data.

2.4 Definisi Peta Dan Pemetaan

Peta merupakan penyajian secara grafis dari kumpulan data yang mentah maupun yang telah dianalisis atau informasi sesuai lokasinya. Dengan kata lain peta adalah bentuk sajian informasi spasial mengenai permukaan bumi untuk dapat dipergunakan dalam bentuk keputusan.(idria.2011).

Pemetaan adalah proses pengukuran, perhitungan dan penggambaran permukaan bumi (terminologi geodesi) dengan menggunakan cara dan atau metode tertentu sehingga didapatkan hasil berupa softcopy maupun hardcopy peta yang berbentuk vektor maupun raster.

meto yang yarif Kasim Riau

State

Hak Cipta Dilindungi Undang-Undang

Dilarang mengutip

Model data raster mempunyai struktur data yang tersusun dalam bentuk matriks atau piksel dan membentuk grid. Setiap piksel memiliki nilai tertentu dan memiliki atribut tersendiri, termasuk nilai koordinat yang unik. Tingkat keakurasian model ini sangat tergantung pada ukuran piksel atau biasa di sebut dengan resolusi.

Model data vector merupakan model data yang paling banyak digunakan, model ini berbasiskan titik (point) dengan nilai (x,y) untuk membangun obyek spasialnya. Obyek yang dibangun terbagi menjadi tiga bagian yaitu berupa titik (point), garis (line), dan area (polygon).

a) Titik (point)

Titik merupakan representasi grafis yang paling sederhana pada suatu obyek. Titik tidak mempunyai dimensi tetapi dapat ditampilkan dalam bentuk symbol, baik pada peta maupun dalam layar monitor. Contoh: lokasi fasilitas kesehatan, lokasi kecelakaan.

b) Garis (line) Merupakan bentuk linier yang menghubungkan dua atau lebih titik dan merepresentasikan obyek dalam satu dimensi, Contoh : jalan, sungai, dll.

c) Area (polygon)

Polygon merupakan representasi obyek dalam dua dimensi, Contoh : danau, persil tanah. Perbandingan Struktur data vector dan data raster.

Tabel 2.1 Vektor dan Raster

Parameter	Vektor	Raster
Akurasi	Akurat dan lebih Presisi	Sangat bergantung
ive	, , , , , , , , , , , , , , , , , , ,	dengan ukuran grid/sel
Atribut	Relasi langsung dengan	Grid/sel
yof	DBMS	merepresentasikan
		atribut. Relasi dengan
Sultan		DBMS tidak secara
n Sy		langsung
2		

Iska

Dilarang mengumumkan dan memperbanyak sebagian atau seluruh karya tulis ini dalam bentuk apapun tanpa izin UIN Suska Riau Pengutipan tidak merugikan kepentingan yang wajar UIN Suska Riau Pengutipan hanya untuk kepentingan pendidikan, penelitian, penulisan karya ilmiah, penyusunan laporan, penulisan kritik atau tinjauan suatu masalah.

Hak Cipta Dilindungi Undang-Undang

Dilarang mengutip sebagian atau seluruh karya tulis ini tanpa mencantumkan dan menyebutkan sumber

Kompleksitas Tinggi, memerlukan Mudah dalam Algoritma dan proses mengorganisasi dan I ak yang sangat kompleks proses Kualitas tinggi, Output Bergantung terhadap sangat bergantung printer/plotter pada milk plotter/printer dan kortografi **Analisis** Spasial atribut Bergantung dan dengan terintegrasi. algoritma dan mudah kompleksitasnya sangat dianalisis. ka tinggi. Aplikasi dalam remote Tidak langsung, Langsung, analisa dalam memerlukan konversi sensing bentuk citra sangat memungkinkan Mudah untuk dilakukan Kompleks dan sulit Simulasi simulasi Digitasi, dan memerlukan memungkinkan Input Sangat konversi dari scanner untuk di aplikasikan dengan hasil konversi State dengan menggunakan scan Volume Tergantung Bergantung pada ukuran pada mic kepadatan dan jumlah grid/sel Un vertex Resolusi Barmacam-macam tetap

Sumber: Maita (2011)

Dilarang mengutip sebagian atau seluruh karya tulis ini tanpa mencantumkan dan menyebutkan sumber

Hak Cipta Dilindungi Undang-Undang

2.5 Kecelakaan Lalu Lintas

Kecelakaan lalu lintas menurut UU RI No. 22 tahun 2009 merupakan suatu peristiwa di jalan raya tidak diduga dan tidak disengaja melibatkan kendaraan dengan atau tanpa pengguna jalan lain yang mengakibatkan korban manusia dan atau kerugian harta benda.

2.5.1 Jenis dan bentuk Kecelakaan

Jenis dan bentuk kecelakaan dapat diklasifikasikan menjadi lima, yaitu :kecelakaan berdasarkan korban kecelakaan, kecelakaan berdasarkan lokasi kejadian, kecelakaan berdasarkan waktu terjadinya kecelakaan, kecelakaan berdasarkan posisi kecelakaan dan kecelakaan berdasarkan jumlah kendaraan yang terlibat. Penjelasan mengenai klasifikasi jenis dan bentuk kecelakaan tersebut diuraikan lebih lanjut dibawah ini.

2.5.2 Kecelakaan berdasarkan korban kecelakaan

Kecelakaan berdasarkan korban kecelakaan menitik beratkan pada manusia itu sendiri, kecelakaan ini dapat berupa luka ringan, luka berat maupun meninggal dunia. Menurut Pasal 93 dari Peraturan Pemerintah No. 43 Tahun 1993 tentang Prasarana dan Lalu Lintas Jalan, sebagai peraturan pelaksanaan dari Undang-undang Lalu Lintas dan Angkutan Jalan.

2.5.3 Kecelakaan Berdasarkan Lokasi Kejadian

Identifikasi daerah rawan kecelakaan lalu lintas meliputi dua tahapan diantaranya sejarah kecelakaan (accident history) dari seluruh wilayah studi dipelajari untuk memilih beberapa lokasi yang rawan terhadap kecelakaan dan lokasi terpilih dipelajari secara detail untuk menemukan penanganan yang dilakukan. Daerah rawan kecelakaan dikelompokkan menjadi tiga diantaranya tampak rawan kecelakaan (hazardous sites), rute rawan kecelakaan (hazardous routes) dan wilayah rawan kecelakaan (hazardous area) (Pusdiklat Perhubungan Darat, 1998).

Untuk mengidentifikasi lokasi daerah rawan kecelakaan, terlebih dahulu memerlukan definisi ukuran lokasi tersebut. Adapun beberapa definisi yang digunakan:

milik

~

X a

- Hak Cipta Dilindungi Undang-Undang Dilarang mengutip sebagian atau seluruh karya tulis ini tanpa mencantumkan dan menyebutkan sumber
- Black area, adalah wilayah dimana jaringan jalan mengalami frekuensi kecelakaan, atau kematian, atau kriteria kecelakaan lain, per tahun yang lebih besar dari jumlah minimal yang ditentukan. Black area dilakukan apabila pada suatu lokasi sering terjadi kecelakaan pada suatu titik yang berbeda.
- b. Black area, adalah wilayah dimana jaringan jalan mengalami frekuensi kecelakaan, atau kematian, atau kriteria kecelakaan lain, per tahun yang lebih besar dari jumlah minimal yang ditentukan. Black area dilakukan apabila pada suatu lokasi sering terjadi kecelakaan pada suatu titik yang berbeda.
- c. Black area, adalah wilayah dimana jaringan jalan mengalami frekuensi kecelakaan, atau kematian, atau kriteria kecelakaan lain, per tahun yang lebih besar dari jumlah minimal yang ditentukan. Black area dilakukan apabila pada suatu lokasi sering terjadi kecelakaan pada suatu titik yang berbeda.

2.5.4 Kecelakaan Berdasarkan Posisi Kecelakaan

Kecelakaan dapat terjadi dalam berbagai posisi tabrakan, diantaranya:

- a) Tabrakan pada saat menyalip (*Side Swipe*)
- b) Tabrakan depan dengan samping (Right Angle)
- State d) Tabrakan muka dengan belakang (*Rear End*)
 - Tabrakan muka dengan muka (*Head On*)
- Tabrakan dengan pejalan kaki (Pedestrian) e)
- f) Tabrak lari (*Hit and Run*)
- Tabrakan diluar kendali (Out Of Control).

2.5.5 Kecelakaan Berdasarkan Jumlah Kendaraan Yang Terlibat

Kecelakaan dapat juga didasarkan atas jumlah kendaraan yang terlibat baik itu kecelakaan tunggal yang dilakukan oleh satu kendaraan, kecelakaan ganda yang dilakukan oleh dua kendaraan, maupun kecelakaan beruntun yang dilakukan oleh lebih dari dua kendaraan.

Dilarang mengutip sebagian atau seluruh karya tulis ini tanpa mencantumkan dan menyebutkan sumber

Hak Cipta Dilindungi Undang-Undang

X a

2.6 Analytical Hierarchy Process (AHP)

Analytical Hierarchy Process (AHP) merupakan suatu model pendukung keputusan yang dikembangkan oleh Thomas L. Saaty. Pada hakikatnya AHP memperhitungkan hal-hal yang bersifat kualitatif dan kuantitatif. Konsepnya yaitu merubah nilai-nilai kualitatif menjadi nilai kuantitatif, sehingga keputusan yangdi ambil bisa lebih objektif.

Kelebihan AHP dibandingkan dengna metode pengambilan keputusan lainnya adalah:

- a) Struktur yang berhirarki, sebagai konsekuensi dari kriteria yang dipilih, pada sub-sub kriteria yang paling dalam
- b) Memperhitungkan validitas sampai dengan batas toleransi inkonsistensi berbagai kriteria dan alternative yang dipilih oleh para pengambil keputusan.
- c) Memperhitungkan daya tahan atau ketahanan keluaran analisis sensitivitas pengambilan keputusan.

2.6.1 Prinsip kerja AHP

Prinsip kerja AHP ialah menguraikan masalah multi faktor atau multi kriteria yang kompleks menjadi suatu hirarki. Hirarki didefinisikan sebagai suatu struktur multi level dimana level pertama adalah tujuan,yang diikuti oleh level faktor, kriteria, sub-kriteria, dan seterusnya ke bawah hingga hingga level terakhir dari alternatif. Kemudian tingkat kepentingan setiap variable diberi nilai numeric secara subjektif tentang arti penting variabel tersebut secara relatif dibandingkan dengan variabel lain.

A ata Iseane c University of Sultan Syarif Kasim Riau

Berikut Flowchart dari alur kerja Metode AHP:

Gambar 2.2 Flowchart AHP

I

ak

milik

X a

Hak Cipta Dilindungi Undang-Undang Dilarang mengutip Pengutipan hanya untuk kepentingan pendidikan, sebagian atau seluruh karya tulis ini tanpa mencantumkan dan menyebutkan sumber

prioritas.

Terdapat tiga prinsip dalam memecahkan persoalan denan AHP, Yaitu: a) Prinsip menyusun hirarki (Decompotition) adalah struktur masalah yang

kompleks dibagi menjadi bagian-bagian hirarki. Tujuannya adalah untuk menguraikan tujuan umum menjadi tujuan khusus.

b) Prinsip menentukan prioritas (Comparative Judgment) maksudnya adalah prinsip yang dibangun untuk melakukan perbandingan berpasangan dari semua elemen yang ada dengan tujuan skala kepentingan relatif dari elemen. Penilaian menghasilkan skala penilaian yang berupa angka. Perbandingan berpasangan dalam bentuk matriks jika dikombinasikan akan menghasilkan

c) Prinsip Konsistensi logis (Logical Consistency) adalah rasio konsistensi yang diharapkan kurang dari 10% (CR<0,1)

Dilarrang mengutip sebagian atau seluruh karya tulis ini tanpa mencantumkan dan menyebutkan sumber

Terdapat empat aksioma yang terkandung dalam model AHP:

- a) Reciprocal Comparison yaitu pengambilan keputusan harus dapat memuat perbandingan dan menyatakan preferensinya. Preferensi tersebut harus memenuhi syarat resiprokal yaitu apabila A lebih disukai daripada B dengan skala x, maka lebih B lebih disukai daripada A dengan skala 1/x.
- Homegenity yaitu preferensi seseorang harus dapat dinyatakan dalam skala terbatas atau dengan kata lain elemen-elemennya dapat dibandingkan satu sama lainnya. Kalau aksioma ini tidak dipenuhi maka elemen-elemen yang dibandingkan tersebut tidak homogen dan harus dibentuk cluster (kelompok elemen) yang baru.
- Independence yaitu preferensi seseorang harus dapat dinyatakan dengan mengasumsikan bahwa kriteria tidak dipengaruhi oleh alternatif-alternatif yang ada melainkan oleh objektif keseluruhan. Ini menunjukkan bahwa pola ketergantungan dalam AHP adalah searah, maksudnya perbandingan antara elemen-elemen dalam satu tingkat dipengaruhi atau tergantung oleh elemen-elemen tingkat diatasnya.
- d) *Expectation* yaitu untuk tujuan pengambil keputusan. Struktur hirarki diasumsikan tidak memakai seluruh kriteria atau objektif yang tersedia atau diperlukan sehingga keputusan yang diambil dianggap tidak lengkap.

2.6.2 Langkah-langkah Metode AHP

Adapun langkah-langkah dalam metode AHP adalah:

- a) Medefinisikan masalah dan tujuan yang akan dicapai.
- Mendefinisikan masalah dalam struktur hirarki. Diawali dengan tujuan umum, dilanjutkan dengan subtujuan-subtujuan, dan kemungkinan alternatif-alternatif pada tingkatan sebagai berikut.

Hak Cipta Dilindungi Undang-Undang Sultan Syarif Kasim Riau

Hak Cipta Dilindungi Undang-Undang

Dilarang mengutip sebagian atau seluruh karya tulis ini tanpa mencantumkan dan menyebutkan sumber

Goal Hak cipta Kriteria n Kriteria 1 Kriteria 2 milk Alternatif 1 Alternatif 2 Alternatif 3 Alternatif n

Gambar 2.3 Strukturr Hirarki

- c) Membuat matriks perbandingan berpasangan yang menggambarkan kontribusi relative tiap-tiap level (ukuran $n \times n$).
- d) Dengan rumus n (n-1) keputusan untuk mengembangkan matriks pada langkah 3. Kebalikan nilai matriks perbandingan mengikuti nilai tiap-tiap elemen matriks perbandingannya. Elemen matriks segitiga atas sebagai input dan elemen matriks segitiga bawah memiliki rumus

$$a[j,i] = \frac{1}{a[i,j]}$$
, untuki $i = j$ dan $a[i, i] = 1$, dimana $i = 1,2,...$ n (2.1)

Tabel 2.2 Skala penilaian AHP

Intensitas kepentingan	Definisi	Penjelasan
State Islam	Kedua elemen sama pentingnya.	Dua elemen penyumbangnya sama besar pada sifat itu.
ic University	Elemen yang satu sedikit lebih penting daripada yang lainnya	Pengalaman dan pertimmbangan sedikit menyokong satu elemen atas yang lainnya.
of Sultan Syar	Elemen yang esensial atau sangat penting dari elemen lainnya.	Pengalaman dan pertimbangan dengan kuat satu elemen atas elemen yang lainnya

Hak Cipta Dilindungi Undang-Undang

Dilarang mengutip sebagian atau seluruh karya tulis ini tanpa mencantumkan dan menyebutkan sumber

Satu elemen jelas lebih penting dari Satu elemen dengan kuat di sokong dan elemen lainnya. 7 dominannya telah terlihat. 0 Satu elemen mutlak lebih penting dari Bukti yang menyokong milik pada elemen yang lainnya. elemen yang satu atas 9 yang lain memiliki tingkat penegasan tertinggi. Nilai-nilai tengah di antara dua Bila kompromi <u>2</u>, 4, 6, 8 pertimbangan yang berdekatan dibutuhkan Jika untuk aktifitas i mendapat satu angka bila dibandingkan dengan Kebalikan aktifitas j, maka j mempunyai nilai kebalikannya bila dibandingkan dengan aktifitas i.

Sumber: Saaty (2000:73)

yarif

- e) Menentukan nilai sintesis hirarki yang digunakan untuk menentukan bobot eigenvector (vektor prioritas) dari kriteria. Penghitungan vektor prioritas dengan cara menjumlahkan nilai setiap kolom dari matriks kriteria kemudian membagi setiap nilai sel dari kolom dengan total kolom untuk memperoleh normalisasi matriks, dan menjumlahkan nilai-nilai dari setiap baris dan dibagi n. setiap vektor prioritas kriteria akan dikalikan dengan setiap elemen pada tingkat hirarki terendah dan jumlah sehingga diperoleh eigenvalue (nilai bobot prioritas).
- f) Memerikas konsistensi hirarki (*Consistent Ratio*).

Yang diukur dalam AHP adalah rasio konsistensi dengan melihat index konsistensi. Konsistensi yang diharapkan adalah yang mendekati sempurna, yaitu CR<0,1 agar menghasilkan keputusan yang mendekati valid.

$$CI = \frac{\lambda maks - n}{n - 1} \tag{2.2}$$

I I

Hak Cipta Dilindungi Undang-Undang

Dilarang mengutip

Keterangan:

n =banyak kriteria atau subkriteria

Ci = index konsisten (Consistent Index)

$$CR = \frac{CI}{RI} \tag{2.3}$$

Tabel 2.2 Nilai RI (Random index)

SUS	1	2	3	4	5	6	7	8	9	10	11
-RI	0.00	0.00	0.58	0.90	1.12	1.24	1.32	1.41	1.45	1.49	1.51

Sumber: Saaty, 1980

g) Langkah ke -3 hingga ke 6 merupakan langkah untuk seluruh level dalam hirarki.

2.6.3 Contoh kasus Perhitungan AHP

Contoh kasus penentuan daerah rawan kecelakaan dengan menggunakan metode AHP pada pada 'X'. Langkah-langkah yang akan dilakukan sebagai berikut.

2.6.3.1 Mendefinisikan Masalah

Pada kasus ini, masalah yang ingin dipecahkan dan tujuan yang ingin dicapai adalah mencari daerah yang rawan kecelakaan dari beberapa alternatif lokasi yang ada. Alternatif yang digunakan nantinya akan saling diperbandingkan. Alternatifnya yaitu Kecamatan Taman1 (KT1), Kecamatan Taman2 (KT2), Kecamatan Taman3 (KT3), Kecamatan Taman4 (KT4), Kecamatan Taman5 (KT5). Sedangkan kriterianya adalah Jumlah Kecelakaan (JKL), Jumlah Korban (JKB), Jumlah Pelanggar (JPL), Fasilitas Rambu Lalu Lintas (FRL), dan Kondisi Jalan (KJL).

D T

Hak Cipta Dilindungi Undang-Undang

Dilarang mengutip sebagian atau seluruh karya tulis ini tanpa mencantumkan dan menyebutkan sumber

2.6.3.2 Membuat Struktur Hirarki

Gambar 2.4 Hirarki Tujuan Proses Prioritas daerah rawan.

2.6.3.3 Membuat Matriks Perbandingan Berpasangan

Matriks Perbandingan dari penentuan Prioritas Pembangunan desa sebanyak 6 buah matriks. Matriks perbandingan berpasangan tersebut dibuat dengan memperhatikan skala penilaian perbandingan berpasangan pada tabel 2.4.

Tabel 2.3 Matriks Perbandingan Berpasangan antara Kriteria (level 2)

k	Kriteria	JKL	JKB	JPR	FRL	KJL
	JKL	1	JKL/JKB	JKL/JPR	JKL/FRL	JKL/KJL
S	JKB	JKB/JKL	1	JKB/JPR	JKB/FRL	JKB/KJL
tate	JPR	JPR/JKL	JPR/JKB	1	JPR/FRL	JPR/KJL
Isl	FRL	FRL/JKL	FRL/JKB	FRL/JPR	1	FRL/KJL
ami	KJL	KJL/JKL	KJL/JKB	KJL/JPR	KJL/FRL	1

Unsur-unsur matriks perbandingan tersebut diperoleh dengan membandingkan satu kriteria dengan kriteria lainnya. Missal unsur A_{11} adalah perbandingan kepentingan kriteria 1 dengan kriteria 1 juga sehingga otomatis nilai unsur A_{11} saman dengan 1. Dengan cara yang sama akan diperoleh nilai semua unsur diagonal matriks perbandingan sama dengan 1. Pada studi kasus kali ini nilai intensitas kepentingan pada kriteria di asumsikan sendiri. Dari tael 2.4 maka perbandingan berpasangan untuk level 2 tersebut dapat dilihat pada tabel 2.5 dibawah ini.

if Kasim Riau

N a

Hak Cipta Dilindungi Undang-Undang

Dilarang mengutip sebagian atau seluruh karya tulis ini tanpa mencantumkan dan menyebutkan sumber

Tabel 2.5 Matriks perbandingan berpasangan antar kriteria (level 2).

Kriteria	JKL	JKB	JPR	FRL	KJL
□ JKL	1	1	3	5	5
JKB	1	1	3	5	5
_ JPR	1/3	1/3	1	3	3
≥ FRL	1/5	1/5	1/3	1	1
S KJL	1/5	1/5	1/5	1/3	1

2.6.3.4 Melakukan perbandingan Berpasangan Antar Kriteria

Matriks perbandingan berpasangan kriteria dan menentukan nilai *eigen* vector yang diselesaikan dengan metode kuadrat. Matriks perbandingan berpasangan kriteria dari masalah penentuan daerah kecelakaan, kuadratkan matriks perbandingan berpasangan.

Langkah 1 : Kuadratkan matriks perbandingan berpasangan

[1	1	3	5	5		[1	1	3	5	5
1	1	3	5	5		1	1	3	5	5
1/3	1/3	1	3	3	X	1/3	1/3	1	3	3 =
1/5	1/5	1/3	1	1		1/5	1/5	1/3	1	1
1/5	1/5	1/3	1	1		1/5	1/5	1/3	1	1
[5,00	5,	00	12,:	34		29,00	29,	00		
5,00	5,1	00	12,:	34		29,00	29,	00		
2,19	2,	19	5,0	0		12,34	12,	34		
0,91	. 0,	91	2,1	19		5,00	5,	00		
L 0,91	1 0	,91	2,1	19		5,00	5,0	0		

Langkah 2 : hitung jumlah nilai setiap baris dari hasil matriks perbandingan,

kemudian lakukan normalisasi matriks

5.00 5.00 2.19 0.91	5,00 5,00 2,19 0,91	12,34 12,34 5,00 2,19	29,00 29,00 12,34 5,00	29,00 29,00 12,34 5,00	=	80, 34 80,34 34,06 14,01	=	0.36 0.36 0.15 0.06	
L 0,91	0.91	2,19	5,00	5,00 -		14,01	l	0.06-	
an						222,76		1	

State

sity of Sultan Syarif Kasim Riau

Hak Cipta Dilindungi Undang-Undang

Dilarang mengutip

Langkah 3: hentikan proses dan diperoleh nilai *eigen*, yaitu:

Jumlah Kecelakaan : 0,36 Jumlah Korban : 0,36 Jumlah Pelanggar : 0,15 Fasilitas Rambu Lalu Lintas : 0,06 Kondisi Jalan : 0,06

Setelah diperoleh nilai bobot prioritas kriterianya, maka dihitung nilai lamda maksimum (maks) atau *eigenvalue*, yaitu menjumlahkan hasil dari perkalian bobot prioritas dengan jumlah kolom.

maks =
$$(0.36 \times 3.733) + (0.36 \times 3.733) + (0.15 \times 7.666) + (0.06 \times 15) + (0.06 \times 15)$$

= 5.435

Dihitung nilai CI dengan persamaan Rumus, $= \frac{\lambda maks - n}{n-1}$ (2.4)

Dengan n = 5 (karena banyak kriterianya ada 5).

$$CI = \frac{5.435 - 5}{4} = 0.108$$

Nilai RI untuk n = 5 yaitu 1.12 (dapat dilihat di tabel 2.2), sehingga dapat dihitung CR dengan persamaan $CI = \frac{CI}{RI}$,

CR = 0.108/1.12

= 0.096 (konsisten karena memenuhi syarat CR < 0.1)

2.6.3.5 Melakukan Perbandingan Berpasangan Alternatif Lokasi

Dari matriks perbandingan berpasangan Kriteria, Maka dihasilkan 5 buah matriks perbandingan level tiga (antar alternatif) yaitu :

- a) Matriks perbandingan alternatif pada kriteria jumlah kecelakaan (JKL).
- b) Matriks perbandingan alternatif pada kriteria Jumlah Korban (JKB)
- c) Matriks perbandingan alternatif pada kriteria Jumlah Pelanggar (JPR)
- d) Matriks perbandingan alternatif pada kriteria Fasilatas Lantas (FRL)
- e) Matriks perbandingan alternatif pada kriteria Kondisi Jalan (KJL)

Hak Cipta Dilindungi Undang-Undang

Dilarang mengutip

Matriks perbandingan berpasangan alternatif dari masalah penentuan prioritas pembangunan yaitu :

- a) Kecamatan Taman1 (KT1),
- b) Kecamatan Taman2 (KT2),
- c) Kecamatan Taman3 (KT3),
- d) Kecamatan Taman4 (KT4),
- e) Kecamatan Taman5 (KT5)

Prosedur penyelesaian untuk mendapatkan nilai *eigen* alternatif berdasarkan kriteria sama dengan mencari nilai *eigen* pada kriteria sebelumnya. Pada studi kasus kali ini nilai intensitas alternatif pada kriteria di asumsikan sendiri.

1) Matriks alternatif pada kriteria Jumlah Kecelakaan (JKL)

Langkah pertama: kuadratkan matriks perbandingan berpasangan, kemudian hitung jumlah nilai setiap baris matriks, kemudian lakukan normalisasi.

A Kemudian diperoleh nilai eigen.

- a) Kecamatan Taman1 (KT1): 0,5
- b) Kecamatan Taman2 (KT2): 0,27
- c) Kecamatan Taman3 (KT3): 0,06
- d) Kecamatan Taman4 (KT4): 0, 13
- e) Kecamatan Taman5 (KT5): 0,04
- 2) Matriks perbandingan alternatif pada kriteria Jumlah Korban (JKB)

$$\begin{bmatrix} 1 & 5 & 5 & 7 & 7 \\ \frac{1}{5} & 1 & 1 & 5 & 5 \\ \frac{1}{5} & 1 & 1 & 3 & 3 \\ \frac{1}{7} & \frac{1}{5} & \frac{1}{3} & 1 & 5 \\ \frac{1}{7} & \frac{1}{5} & \frac{1}{3} & \frac{1}{5} & 1 \end{bmatrix}$$

of Sultan S

Dilarang mengutip sebagian atau seluruh karya tulis ini tanpa mencantumkan dan menyebutkan sumber

Hak Cipta Dilindungi Undang-Undang

3) Matriks perbandingan alternatif pada kriteria Jumlah Pelanggar (JPR)

4) Matriks perbandingan alternatif pada kriteria Fasilatas Lantas (FRL)

5) Matriks perbandingan alternatif pada kriteria Kondisi Jalan (KJL)

$$\begin{bmatrix} 1 & 5 & 5 & 7 & 7 \\ \frac{1}{5} & 1 & 1 & 5 & 5 \\ \frac{1}{5} & 1 & 1 & 3 & 3 \\ \frac{1}{7} & \frac{1}{5} & \frac{1}{3} & 1 & 5 \\ \frac{1}{7} & \frac{1}{5} & \frac{1}{3} & \frac{1}{5} & 1 \end{bmatrix}$$

2.6.3.6 Menghitung Bobot Prioritas Global

Hasil akhir dari penentuan prioritas pembangunan desa ditentukan berdasarkan nilai *eigen* alternatif berdasarkan kriteria dan nilai *eigen* kriteria, yaitu:

0,50	0.54	0.54	0.50	0,541	0,36	F 0.51]
0,27	0,20	0,09	0,27	0,20	0.36	0,51
0,06	0,15	0,04	0,06	0.15	X 0.15 = 0.06	0,095
0.13	0,07	0.04	0.13	0,07	0.06	0.09
10,04	0,04	0,30	0.04	0,04	0,06	0,077

Tabel 2.5 Peringkat Alternatif AHP

ALTERNATIF	BOBOT GLOBAL	PERINGKAT
Kecamatan Taman1 (KT1)	0.510	KLAU
Kecamatan Taman2 (KT2)	0.209	2
Kecamatan Taman3 (KT3)	0.095	3
Kecamatan Taman4 (KT4)	0.090	4
Kecamatan Taman5 (KT5)	0.077	5

Hak Cipta Dilindungi Undang-Undang

Dilarang mengutip

Dapat di ambil kesimpulan bahwa daerah kecamatan Taman1 memiliki daerah dengan tingkat rawan kecelakaan paling tinggi.

2.7 Pengertian Sistem Informasi Geografis

2.7.1 Sejarah Pengembangan

35000 tahun yang lalu, di dinding gua Lascaux, perancis, para pemburu Cromagnon menggambarkan hewan mangsa mereka, juga garis yang dipercaya sabagai rute migrasi hewan-hewan tersebut. Catatan awal ini sejalan dengan dua elemen struktur pada sistem informasi geografis modern sekarang, arsip grafis yang terhubung ke database atribut.

Pada tahun 1700-an teknik survey modern untuk pemetaan topografis diterapkan, termasuk juga versi awal pemetaan tematis, misalnya untuk keilmuan atan data sensus.

Awal abad ke-20 memperlihatkan pengembangan "litografi foto" dimana peta dipisahkan menjadi beberapa lapisan (*layer*). Perkembangan perangkat keras kompter yang dipacu oleh penelitian senjata nuklir membawa aplikasi pemetaan menjadi multifungsi pada awal tahun 1960-an.

Tahun 1967 merupakan awal pengembangan SIG yang bisa diterapkan Ottawa, Ontario oleh departemen energy, pertambangan dan sumber daya. Dikembangkan oleh Rogers Tomlison, yang kemudian disebut CGIS (*Canadian GIS*- SIG Kanada), digunakan untuk menyimpan, menganalisis dan mengolah data yang dikumpulkan untuk inventarisasi Tanah Kanada (CLI-*Canadian Land Inventoy*) – sebuah inisiatif untuk mengetahui kemampuan lahan di wilayah pedesaan kanada dengan memetakan berbagai informasi pada tanah, pertanian, pariwisata, alam bebas, ungags dan penggunaan tanah pada skala 1:250000. Faktor pemeringkatan klasifikasi juga diterapkan untuk keperluan analisis.

2.7.2 Definisi SIG

Geografi adalah ilmu yang mempelajari permukaan bumi dengan menggunakan pendekatan keruangan, ekologi, dan kompleks wilayah. Fenomena yang diamati merupakan dinamika perkembangan dan pembangunan wilayah yang ada dalam keseharian, misalnya informasi mengenai letak dan persebaran

Hak Cipta Dilindungi Undang-Undang

Dilarang mengutip

dari kejadian-kejadian alamiah maupun fenomena terdapatnya sumberdaya. Ketersedian data yang bersifat geografi, dimana memiliki atribut utama keruangan, akan memudahkan banyak kepentingan.

Sistem informasi geografis adalah sistem informasi khusus yang mengelola data yang memiliki informasi spasial (bereferensi keruangan). Atau dalam arti yang lebih sempit adalah sistem komputer yang memiliki kemampuan untuk membangun, menyimpan, mengelola dan menampilkan informasi bereferensi geografis.

Dalam pengelolaan SIG yang perlu mendapatkan perhatian tidak hanya sekedar aspek peta digital, meskipun hal ini yang utama. Hal lain yang tidak kalah penting adalah aspek pengelolaan *database* yang kandungannya yang merupakan atribut peta.

SIG dapt menyerap dan mengolah data dari bermacam sumber yang memiliki skala dan struktur yang berbeda. Selain itu SIG juga digunakan untuk investasi ilmiah, pengelolaan sumber daya, perencanaan pembangunan, kartografi, dan perencanaan rute. Misalnya SIG bisa membantu perencanan untuk secara cepat menghitung waktu tanggap darurat saat terjadi bencana alam, atau SIG dapat digunakan untuk mencari lahan basah (*wetlands*) yang membutuhkan perlindungan dari polusi.

Aplikasi SIG terlibat dalam berbagai bidang di berbagai disiplin ilmu, diantaranya yaitu: pemetaan tanah dan pemetaan prasaran kota, pemetaan kartografi dan peta tematik, ukur tanah dan fotogrametri, penginderaan jauh dan analisa citra, ilmu computer, perencanaan wilayah, ilmu tanah, dan geografi.

Berdasarkan sejarah perkembangannya, SIG dengan cepat menjadi peralatan utama dalam pengelolaan sumber daya alam. SIG banyak digunakan untuk membantu pengambilan keputusan dengan menunjukkan bermacam-macam pilihan dalam perencanaan pembangunan dan konversi.

2.7.3 Komponen Sistem (Subsistem) SIG

Beberapa subsistem dalam sistem informasi geografis antara lain adalah :

a. Input

7

milik

N O

Hak Cipta Dilindungi Undang-Undang

Dilarang mengutip sebagian atau seluruh karya tulis ini tanpa mencantumkan dan menyebutkan sumber Pengutipan hanya untuk kepentingan pendidikan, penelitian, penulisan karya ilmiah, penyusunan laporan, penulisan kritik atau tinjauan suatu masalah.

Pada tahap input, yang dilakukan adalah mengumpulkan dan mempersiapkan data spasial dan atau atribut dari berbagai sumber data. Data yang digunakan harus dikonversi menjadi format digital yang sesuai. Proses konversi yang dilakukan dikenal dengan proses dijitalisasi (digitizing).

Salah satu teknik mengubah data analog menjadi data digital adalah dengan digitasi menggunakan mesin digitizer, termasuk dengan mode digitizing on screen dari hasil data pemotretan (baik foto udara maupun foto satelit) melalaui penyapuan (scanning).

b. Manipulasi

Manipulasi data merupakan proses editing terhadap data yang telah masuk, hal ini dilakukan untuk menyesuaikan tipe dan jenis data agar sesuai dengan sistem yang akan dibuat, seperti : penyamaan skala, pengubahan sistem proyeksi, generalisasi dan sebagainya.

c. Manajemen data

Tahap ini meliputi seluruh aktifitas yang berhubungan dengan pengolahan data (menyimpan, mengorganisasi, dan menganalisis data) ke dalam sistem penyimpanan permanen, seperti : sistem *file server* atau database server sesuai kebutuhan sistem.

d. Query

Suatu metode pencarian informasi untuk menjawab pertanyaan yang di ajukan oleh pengguna SIG. pada SIG dengan sistem file server, query dapat dimanfaatkan dengan bantuan compiler atau interpreter yang digunakan dalam mengembangkan sistem, sedangkan SIG dengan sistem database server dapat memanfaatkan SQL yang terdapat pada DBMS yang digunakan

Analisis

State Islamic University of Sultan Syarif Kasim Riau

Terdapat dua jenis analisis fungsi dalam SIG, yaitu : fungsi analisis spasial, dan analisis atribut. Fungsi analisis spasial adalah proses yang dilakukan pada data spasial. Sedangkan fungsi analisis atribut adalah

2

×

Hak Cipta Dilindungi Undang-Undang

Dilarang mengutip

fungsi pengolahan data atribut, yaitu data yang tidak berhubungan dengan ruang.

f. Visualisasi (data Output)

Penyajian hasil berupa informasi baru atau database yang ada baik dalam bentuk *softcopy* maupun dalam bentuk *hardcopy* seperti dalam bentuk : peta, tebel, grafik dan lain-lain.

2.8 Pengenalan Website

Website, atau juga sering disebut web site atau WWW Site (namun juga lazim disebut site/situs saja), merupakan kumpulan halaman web yang dapat diakses menggunakan http di internet. Halaman web sendiri umumnya dalam bentuk dokumen HTML ataupun XHTML. Semua website yang ada diseluruh dunia menyusun sebuah "Dunia" maya yang disebut WWW atau World Wide Web.

Website merupakan sebuah tempat yang memungkinkan seorang menyatakan dirinya, hobinya, pengetahuannya, produk yang dijual dan apapun yang dapat diakomodasikan oleh teks, tulisan, gambar, video, animasi, file multimedia dan lain-lain.

Website dapat dijadikan sebagai media brosur elektronik yang dapat diakses oleh seluruh dunia selama 24 jam.tidak hanya untuk mempromosikan akan tetapi juga bisa sebagai media transakasi penjualan online seperti berniaga.com. web site juga bisa digunakan untuk mempromosikan sebuah Instansi/Universitas.

2.9 Bahasa Pemograman dan Databases

2.9.1 Apa itu Php?

Php singkatan dari PHP *Hypertext Preprocessors* yang digunakan sebagai bahasa script server-side dalam pengembangan web yang disisipkan pada dokumen HTML.

Penggunaan PHP memungkinkan web dapat dibuat dinamis sehingga perbaikan situs web tersebut menjadi lebih mudah dan efisien. PHP merupakan

Hak Cipta Dilindungi Undang-Undang

Dilarang mengutip

software *Open-source* yang disebarkan dan dilisensikan secara gratis serta dapat di download secara bebas dari situs resminya.

2.9.2 Sejarah Singkat PHP

PHP pertama kali diciptakan oleh Rasmus Ledorf pada tahun 1994. Awalnya, PHP digunakkan untuk mencatat jumah serta untuk mengetahui siapa saja pengunjung pada homepagenya. Rasmus ledorf adalah salah seorang pendukung open source. Oleh karena itu, ia mengeluarkan *Persona homepage tools* versi 1.0 kemudian menambah kemampuan PHP 1.0 dan meluncurkan PHP 2.0.

Pada tahun 1996, PHP telah banyak digunakan dalam website di dunia. Sebuah kelompok pengembang software yang terdiri dari Rasmus, Zeew Suraski, Andi Gutman, Stig Bekken, Shane Caraver dan Jim Winsted bekerja sama untuk menyempurnakan PHP 2.0. kemudian pada tahun 1998 diluncurkan PHP 3.0. penyumpurnaan terus dilakukan sehingga keluar PHP 4.0 pada tahun 2000. Tida berhenti sampai disitu, kemampuan PHP terus berkembang, kemudian dirilis PHP versi 5.0.

2.9.3 Konsep Databases

Untuk memahami prinsip-prinsip perancangan databases, yang perlu dipahami terlebih dahulu adalah konsep dasar dan terminologinya.

2.9.3.1 Entitas dan Relationship

Hal yang sangat mendasar dan harus dipahami adalah pemodelan entitas dan *relationship*. Entitas adalah berbagai hal dalam dunia nyata yang informasinya disimpan dalam databases.

Sebagai contoh, kita dapat menyimpan informasi pegawai dan bekerja untuk departemen tertentu. Dalam kasus ini, pegawai merupakan suatu entitas dan departemen juga merupakan entitas. *Relationship* merupakan hubungan antara entitas. Sebagai contoh , seorang pegawai bekerja untuk suatu departemen. Bekerja merupakan *relationship* antara entitas pegawai dan entitas departemen.

Relationship terdiri dari tiga derajat berbeda, yakni : one-to-one, one-to-many, many-to-many. one-to-on menghubungkan secara tepat dua entitas dengan satu kunci. Misalnya dalam satu perusahaan, satu orang pegawai memiliki satu

Dilarang mengutip sebagian atau seluruh karya tulis ini tanpa mencantumkan dan menyebutkan sumber

Hak Cipta Dilindungi Undang-Undang

Komputer kerja. *one-to-many* merupakan hubungan antara entitas dengan kunci key pada suatu tabel muncul berkali-kali dalam tabel lainnya. Misalnya banyak pegawai bekerja untuk satu departemen. *many-to-many* merupakan hubungan yang paling sering menyebabkan permasalahan dalam prakteknya. Dalam hubungan *many-to-many* kunci utama dari tabel kedua dapat muncul beberapa kali dalam tabel pertama.

2.9.3.2 Mysql

Ada sejumlah paket RDBMS yang tersedia, program tersebut bervariasi dalam kemampuan, fleksibilitas, dan harga. Namun pada dasarnya semua bekerja dengan cara yang sama. Mysql adalah merupakan salah satu RDBMS yang gratis. Program ini sangat cocok berpasangan dengan bahasa pemograman PHP dengan beberapa pertimbangan. Mysql menggunakan suatu format standar SQL bahasa data yang terkenal.

Mysql dilepas dengan suatu lisensi *open source*, dan tersedia secara Cuma-Cuma. Mysql bekerja pada berbagai sistem operasi dan banyak bahasa. Mysql bekerja dengan baik dan cepat dengan data yang besar.

2.10 Sekilas ARCGIS

Sejak akhir tahun 1990-an, perangkat lunak sistem informasi geografis telah berkembang pasat dengan hadirnya produk-produk baru yang berorentasi jauh kedepan. Produk yang menonjol dan mulai populer sejak tahun 2000-an yang di kembangkan oleh ESRI (*Enviromental System Research Institue*) ialah ArcGIS. Tidak seperti kebanyakan perangkat lunak SIG yang lainnya. ArcGIS merupakan perangkat lunak yang terbilang besar. Perangkat ini menyediakan kerangka kerja yang bersifat *scalable* (bisa diperluas sesuai kebutuhan) untuk merancang suatu aplikasi SIG.

2.11 MapServer

MapServer merupakan aplikasi freeware dan open source yang memungkinkan kita menampilkan data spasial (peta) di web. Aplikasi ini pertama kali dikembangkan di Universitas Minesotta, Amerika Serikat untuk projek ForNet (sebuah projek untuk manajemen sumber daya alam) yang disponsori

Hak Cipta Dilindungi Undang-Undang

Dilarang mengutip

NASA (National Aeronautics and Space Administration). Support NASA dilanjutkan dengan dikembangkan projek TerraSIP untuk manajemen data lahan. Saat ini, karena sifatnya yang terbuka (open source), pengembangan MapServer dilakukan oleh pengembang dari berbagai negara.

Pengembangan MapServer menggunakan berbagai aplikasi open source atau freeware seperti Shapelib untuk baca/tulis format data Shapefile, FreeType untuk merender karakter, GDAL/OGR untuk baca/tulis berbagai format data vektor maupun raster, dan Proj.4 untuk menangani beragam proyeksi peta.

Pada bentuk paling dasar, MapServer berupa sebuah program CGI (Common Gateway Interface). Program tersebut akan dieksekusi di web server, dan berdasarkan beberapa parameter tertentu (terutama konfigurasi dalam bentuk file*.MAP) akan menghasilkan data yang kemudian akan dikirim ke web browser, baik dalam bentuk gambar peta ataupun bentuk lain.

MapServer mempunyai fitur-fitur berikut:

- a) Menampilkan data spasial dalam format vektor seperti: Shapefile (ESRI), ArcSDE (ESRI), PostGIS dan berbagai format data vektor lain dengan menggunakan library OGR
- b) Menampilkan data spasial dalam format raster seperti: TIFF/GeoTIFF, EPPL7 dan berbagai format data raster lain dengan menggunakan library GDAL.
- c) Menggunakan quadtree dalam indexing data spasial, sehingga operasi-operasi spasial dapat dilakukan dengan cepat.
- d) Mapat dikembangkan (customizable), dengan keluaran yang dapat diatur menggunakan file¬file template.
- e) dapat melakukan seleksi objek berdasar nilai, berdasar titik, area, atau berdasar sebuah objek spasial tertentu.
- f) Mendukung rendering karakter berupa font TrueType.
- g) Mendukung penggunaan data raster maupun vektor yang di¬tiled (dibagi¬bagi menjadi sub bagian yang lebih kecil sehingga proses untuk mengambil dan menampilkan gambar dapat dipercepat).
- h) Dapat menggambarkan elemen peta secara otomatis: skala

State Islamic University of Sultan Syarif Kasim Riau

© Hak cipta milik UII

Hak Cipta Dilindungi Undang-Undang

Dilarang mengutip

grafis, peta indeks dan legenda peta.

- i) Menggunakan skala dalam penggambaran objek spasial.
- j) Dapat menggambarkan peta tematik yang dibangun menggunakan ekspresi lojik mapun ekspresi reguler.
- k) Dapat menampilkan label dari objek spasial, dengan label dapat diatur sedemikian rupa sehingga tidak saling tumpang tindih.
- Konfigurasi dapat diatur secara on the fly melalui parameter yang ditentukan pada URL.
- m) Dapat menangani beragam sistem proyeksi secara on the fly.

2.12 Metode Pengembangan Perangkat Lunak

2.12.1 Model Air Terjun (Waterfall)

Tahap-tahap utama dari model air terjun adalah:

- Analisis dan definisi persyaratan
 Pelayanan, batasan, dan tujuan ditentukan melalui konsultasi dengan user
- Perancangan sistem dan perangkat lunak.
 Proses perancangan sistem membagi persyaratan dalam sistem perangkat keras atau perangkat lunak, menentukan arsitektur sistem, abstraksi sistem.
- Implementasi dan pengujian unit.
 Perancangan perangkat lunak direlisasikan sebagai serangkaian program.
- 4) Integrasi dan pengujian sistem Unit program diintegrasi dan diuji sebagai sistem untuk menjamin bahwa persyaratan sistem dipenuhi.
- Operasi dan pemeliharaan.
 Sistem diinstal dan dipakai. Dilakukan koreksi terhadap kesalahan.

Pada prinsipnya, hasil dari setiap fase merupakan satu atau lebih dokumen yang disetujui (ditandatangani). Fase berikutnya tidak boleh dimulai sebelum fase sebelumnya selesai. Pada prakteknya, tahap-tahap ini bertumpang tindih satu sama lain. Pada waktu perancangan, masalah dengan persyaratan diidentifikasi,

State Islamic University of Sulandry arif Kasim Ria

Dilarang mengutip sebagian atau seluruh karya tulis ini tanpa mencantumkan dan menyebutkan sumber

Hak Cipta Dilindungi Undang-Undang

Iska

pada saat pengkodean, ditemukan masalah perancangan, dan seterusnya. Proses perangkat lunak ini sebenarnya bukan model linier sederhana, tetapi melibatkan iterasi kegiatan pengembangan.

2.12.2 Pengembangan Sistem Formal

Pengembangan sistem formal merupakan pendekatan terhadap pengembangan perangkat lunak yang memiliki kesamaan dengan model air terjun, tetapi proses pengembangannya didasarkan pada transformasi matematis dari spesifikasi sistem menjadi program yang dapat dijalankan.

Perbedaan kritis antara pendekatan ini dan model air terjun adalah:

- a) Spesifikasi persyaratan perangkat lunak diperbaiki menjadi spesifikasi formal yang rinci yang dinyatakan dalam notasi matematis.
- b) Proses pengembangan perancangan, implementasi , dan pengujian unit digantikan oleh proses pengembangan transformasional dimana spesifikasi formal diperbaiki, melalui serangkaian transformasi, menjadi program.

Pada proses transformasi, representasi matematis formal dari sistem secara sistematis diubah menjadi representasi sistem yang lebih rinci, tetapi tetap benar secara matematis. Setiap langkah menambahkan perincian sampai spesifikasi formal diubah menjadi program yang ekivalen.

2.12.3 Pengembangan Berdasarkan Pemakaian Ulang

Pada sebagian besar proyek perangkat lunak, terjadi pemakaian ulang. Hal ini biasanya terjadi secara informal ketika orang yang bekerja di proyek tersebut mengetahui adanya rancangan atau kode yang mirip dengan yang dibutuhkan. Mereka memodifikasinya sebagaimana dibtuhkan dan menggabungkannya dalam sistem.

Pendekatan yang berorientasi pemakaian ulang ini bergantung pada sejumlah besar komponen perangkat lunak yang dapat dipakai ulang, yang bisa didapat, dan beberapa kerangka kerja terintegrasi untuk komponen-komponen ini. Kadang kala komponen-komponen ini merupakan sistem.

Dilarang mengutip sebagian atau seluruh karya tulis ini tanpa mencantumkan dan menyebutkan sumber

Hak Cipta Dilindungi Undang-Undang

milik

X a

Tahap spesifikasi persyaratan dan tahap validasi dapat dibandingkan dengan proses lain, tetapi tahap pertengahan pada proses berorientasi pemakaian ulang ternyata berbeda. Tahap-tahap ini adalah:

- Analisis komponen. Jika diketahui spesifikasi persyaratan, komponenkomponen untuk implementasi spesifikasi tersebut akan dicari. Biasanya tidak ada kesesuaian yang tepat dan komponen yang dapat dipakai hanya memberikan sebagian dari fungsionalitas yang dibutuhkan.
- 2) Modifikasi persyaratan. Persyaratan dianalisisi dengan menggunakan informasi mengenai komponen yang telah didapat. Persyaratan kemudian dimodifikasi untuk merefleksikan komponen yang tersedia.
- 3) Perancangan sistem dengan pemakaian ulang. Pada fase ini, kerangka kerja sistem dirancang, atau kerangka kerja yang telah ada dipakai ulang. Perancang memperhitungkan komponen yang dipakai ulang dan mengatur kerangka kerja untuk menyesuaikan. Beberapa perangkat lunak yang baru mungkin perlu dirancang jika komponen yang dapat dipakai ulang tidak tersedia.
- 4) Pengembangan dan integrasi. Perangkat lunak yang tidak dapat dibeli akan dikembangkan dan komponen diintegrasikan untuk membentuk sistem.

2.13 Konsep OOAD (Object Oriented Analysis Design)

Object Oriented Analysis adalah metode analisis yang memeriksa requirements (syarat/keperluan yang harus dipenuhi suatu sistem) dari sudut pandang kelas-kelas dan objek-objek yang ditemui dalam ruang lingkup permasalahan. Sedangkan object oriented design adalah metode untuk mengarahkan arsitektur software yang didasarkan pada manipulasi objek-objek sistem atau subsistem. (Suhendar 2002)

Teknologi *object oriented* merupakan paradigma baru dalam rekayasa software yang didasarkan pada objek dan kelas. Diakui para ahli bahwa *object oriented* merupakan metodologi terbaik yang ada saat ini dalam rekayasa

State Is

softworie orie Kasim Riau

Hak Cipta Dilindungi Undang-Undang

Dilarang mengutip

software. Object oriented memandang software bagian per bagian, dan menggambarkan satu bagian tersebut dalam satu objek. Satu objek dalam sebuah model merupakan suatu fokus selama dalam proses analisis, desain dan implementasi dengan menekankan pada state, perilaku (behavior), dan interaksi objek-objek dalam model tersebut.

Object oriented mencakup bidang aplikasi yang sangat luas. Para pengguna sistem komputer dan sistem lain yang didasarkan atas teknologi komputer merasakan efek object oriented dalam bentuk meningkatnya aplikasi software yang mudah digunakan dan servis yang lebih fleksibel, yang muncul dalam berbagai bidang industri, seperti dalam perbankan, telekomunikasi dan sebagainya.

2.11.1 Kelas dan Objek

Objek adalah "benda", secara fisik atau konseptual, yang dapat kita temui disekeliling kita. *Hardware, software*, dokumen, manusia, dan bahkan konsep semuanya adalah contoh objek. Untuk kepentingan memodelkan perusahaannya, seorang kepala eksekutif akan melihat karyawan, gedung divisi, dokumen dan keuntungan sebagai objek. Seoarang teknisi mesin akan melihat ban, pintu, mesin, laju tertinggi, dan banyaknya bahan baskarkondi sebagai sebuah objek. Dan seorang *software engineer* akan memandang tumpukan, antrian, jendela (window), dan check box sebagai objek.

Sebuah objek memiliki keadaan sesaat (*state*) dan perilaku (*behavior*). State dari sebuah objek adalah kondisi objek tersebut atau himpunan dari keadaan yang menggambarkan objek tersebut. *State* dinyatakan dengan nilai dari atribut objeknya. Atribut adalah nilai internal suatu objek yang mencerminkan antara lain karakteristik objek, kondisi sesaat, koneksi dengan objek lain, dan identitas. Perubahan *state* dicerminkan oleh perilaku objek tersebut.

Behavior suatu objek mendefenisikan bagaimana sebuah objek bertindak dan memberi reaksi. Behavior ditentukan oleh himpunan semua atau beberapa operasi yang dapat dilakukan dengan objek itu sendiri. Behavior dari objek dicerminkan oleh interface, service dan method dari objek tersebut. Interface

Hak Cipta Dilindungi Undang-Undang

Dilarang mengutip

adalah pintu masuk untuk mengakses servis objek. *Method* adalah mekanisme internal objek yang mencerminkan perilaku objek tersebut.

Kelas (*class*) adalah defenisi umum (pola, template atau cetak biru) untuk himpunan sejenis. Kelas menetapkan spesifikasi perilaku dan atribut objek-objek tersebut. Kelas adalah keniskalan (abstraksi) dari entitas dalam dunia nyata. Objek adalah "contoh" dari sebuah kelas. (Suhendar 2002)

2.14 Unified Modeling Language (UML)

Unified Modeling Language (UML) merupakan sistem arsitektur yang bekerja dalam OOAD dengan satu bahasa yang konsisten untuk menentukan, visualisasi, mengkonstruksi, dan mendokumentasikan artifact yang terdapat dalam sistem software untuk memodelkan bisnis, dan sistem nonsoftware lainnya. UML merupakan suatu kumpulan teknik terbaik yang telah terbukti sukses dalam memodelkan sistem yang besar dan kompleks. (A. Suhendar, 2002)

UML adalah bahasa grafis untuk mendokumentasi, menspesifikasi, dan membangun sistem perangkat lunak. UML berorientasi objek, menerapkan banyak level abstraksi, tidak bergantung proses pengembangan, tidak bergantung bahasa dan teknologi, pemaduan beberapa notasi diberagam metodologi, usaha bersama dari banyak pihak, didukung oleh kakas-kakas yang diintegrasikan lewat XML. Standar UML dikelola oleh OMG (*Object Management Group*). (Hariyanto 2004)

Tujuan utama UML menurut Suhendar ada tiga yaitu:

- a) Memberikan model yang siap pakai, bahasa permodelan visual yang ekspresif untuk mengembangkan dan saling menukar model dengan mudah dan dimengerti secara umum.
- b) Memberikan bahasa permodelan yang bebas dari berbagai bahasa pemograman dan proses rekayasa.
- c) Menyatukan praktek-praktek terbaik yang terdapat dalam pemodelan.

 Untuk membuat suatu model, UML memiliki diagram grafis sebagai berikut:
 - 1) Diagram struktur

Sultan yarif Kasim Riau

Islamic University of

7

milik

N O

State Islamic University of Sultan Syarif Kasim Riau

Hak Cipta Dilindungi Undang-Undang Dilarang mengutip sebagian atau seluruh karya tulis ini tanpa mencantumkan dan menyebutkan sumber

Diagram ini untuk memvisualisasi, menspesifikasi, membangun dan mendokumentasikan aspek statik dari sistem. Diagram struktur UML terdiri dari:

a) Diagram kelas (class diagram)

Diagram ini menunjukkan sekumpulan kelas, interface dan kolaborasi dan keterkaitannya. Diagram kelas ditujukan untuk pandangan statik terhadap sistem.

b) Diagram objek (*object diagram*)

Diagram ini menunjukkan sekumpulan objek dan keterhubungannya. Diagram objek menyediakan notasi grafis formal guna memodelkan objek, kelas dan saling keterhubungan. Diagram objek berguna untuk abstract modeling dan perancangan program-program sesungguhnya.

c) Diagram komponen (component diagram) Diagram ini menujukkan organisasi dan kebergantungan diantar sekumpulan komponen. Diagram ini merupakan pandangan statik

d) Diagram deployment (deployment diagram)

terhadap implementasi sistem.

Diagram ini menunjukkan konfigurasi pemrosesan saat jalan dan komponen-komponen yang terdapat didalamnya. Diagram merupakan pandangan statik dari arsitektur.

2) Diagram Prilaku

Diagram ini untuk memvisualisasi, menspesifikasi, membangun dan mendokumentasikan aspek dinamis dari sistem. Diagram perilaku terdiri dari:

a) Diagram use-case (Use case diagram)

Diagram ini menunjukkan sekumpulan kasus fungsional dan aktor (jenis kelas khusus) dan keterhubungannya.

b) Diagram sekuen (Sequence diagram)

Diagram ini menunjukkan interaksi yang terjadi antar objek. Diagram ini merupakan pandangan dinamis terhadap sistem. Diagram ini

Hak Cipta Dilindungi Undang-Undang

Dilarang mengutip

7 milik

X a

menekankan pada basis keberurutan waktu dari pesan-pesan yang terjadi.

- c) Diagram kolaborasi (collaboration diagram)
 - Diagram ini juga merupakan diagram interaksi. Diagram ini menekankan pada organisasi struktur dari objek-objek yang mengirim dan menerima pesan.
- d) Diagram statechart (statechart diagram) Diagram ini adalah state-machine diagram, berisi state, transisi, kejadian, dan aktivitas. Statechart merupakan pandangan dinamis dari sistem. Diagram ini penting dalam memodelkan perilaku antarmuka, kelas, kolaborasi, dan menekankan pada urutan kejadian.
- e) Diagram aktivitas (activity diagram) Diagram ini menunjukkan interaksi yang terjadi antar objek. diagram ini merupakan pandangan dinamis terhadap sistem.

2.13.1 Sejarah UML

Tahun 1994, Grady Boch dan James Rumbaugh bergabung untuk menggunakan metode berorientasi objek. Ivan Jacobson bergabung pada tahun 1995, dan mereka bertiga fokus membuat suatu bahasa pemodelan objek standar sebagai ganti dari pendekatan atau metode objek standar. Berdasarkan kerja mereka dan hasil kerja lainnya pada industri, Unified Modeling Language (UML) versi 1.0 dirilis pada tahun 1997.

Unified Modeling Language (UML) tidak menentukan metode untuk sistem-sistem pengembangan, tetapi sudah diterima luas sebagai standar untuk pemodelan objek. Object Management Gorup/OMG, badan standar industri, mengadopsi UML pada bulan November 1997 dan terus bekerja sama untuk meningkatkannya berdasarkan kebutuhan industri. Pada saat ini, salah satu industri telah merilis sebuah sofware yang mendukung UML yaitu Visual Paradigm 6.4 Interprise edition. Berbagai industri juga bermunculan dan mendukung penggunaan UML dengan berbagai produk, diantaranya Rational Rose, SmartDraw, dan lain-lain.

Dilarang mengutip sebagian atau seluruh karya tulis ini tanpa mencantumkan dan menyebutkan sumber

Hak Cipta Dilindungi Undang-Undang

2.13.2 Use Case Diagram

Diagram *use case* merupakan salah satu diagram untuk memodelkan aspek perilaku sistem. Diagram *use case* digunakan untuk mendeskripsikan apa yang harus dilakukan oleh sistem. Diagram *use case* menyediakan cara mendeskripsikan pandangan eksternal terhadap sistem dan interaksi-interaksinya dengan dunia luar. Dengan cara ini, diagram *use case* menggantikan diagram konteks pada pendekatan konvensional. Untuk penciptaan model *use case* melibatkan pendefenisian sistem, pencarian aktor-aktor dan *use case*, mendeskripsikan *use case*, dan mendefenisikan hubungan antar *use case*, dan terakhir adalah melakukan validasi model. (Hariyanto 2004:267)

Tabel 2.5 Simbol-simbol *Use case* Diagram

N O	GAMBAR	NAMA	KETERANGAN
1	关	Actor	Menspesifikasikan himpuan peran yang pengguna mainkan ketika berinteraksi dengan <i>use case</i> .
2 State	>	Dependency	Hubungan dimana perubahan yang terjadi pada suatu elemen mandiri (independent) akan mempengaruhi elemen yang bergantung padanya elemen yang tidak mandiri (independent).
Islamic Uı	←	Generalizatio n	Hubungan dimana objek anak (descendent) berbagi perilaku dan struktur data dari objek yang ada di atasnya objek induk (ancestor).
niversit	>	Include	Menspesifikasikan bahwa <i>use case</i> sumber secara <i>eksplisit</i> .
tate Islamic University of Sultan Sy	₫	Extend	Menspesifikasikan bahwa <i>use case</i> target memperluas perilaku dari <i>use case</i> sumber pada suatu titik yang diberikan.
1 Syari		Association	Apa yang menghubungkan antara objek satu dengan objek lainnya.

ar<mark>if Kasim Riau</mark>

Dilarang mengutip sebagian atau seluruh karya tulis ini tanpa mencantumkan dan menyebutkan sumber:

Hak Cipta Dilindungi Undang-Undang

Menspesifikasikan paket yang menampilkan sistem secara terbatas. System Deskripsi dari urutan aksi-aksi yang 8 ditampilkan sistem yang menghasilkan Use Case suatu hasil yang terukur bagi suatu aktor Interaksi aturan-aturan dan elemen lain Collaboratio yang bekerja sama untuk menyediakan 09 prilaku yang lebih besar dari jumlah dan elemen-elemennya (sinergi). X Elemen fisik yang eksis saat aplikasi 10 Note dijalankan dan mencerminkan suatu sumber daya komputasi

Sumber: Hariyanto, (2004)

2.13.3 Class Diagram

Permodelan kelas menunjukkan kelas-kelas yang ada di sistem dan hubungan antar kelas-kelas itu, atribut-atribut dan operasi-operasi di kelas-kelas. Diagram kelas menunjukkan aspek statik sistem terutama untuk mendukung fungsional sistem. Kebutuhan fungsional berarti layanan-layanan yang harus disediakan sistem ke pemakai. Diagram kelas dapat secara langsung diimplementasikan di bahasa pemrograman berorientasi objek yang secara langsung mendukung bentukan kelas. (Bambang Hariyanto, 2004:277)

Tabel 2.6 Simbol-simbol class diagram

NO	GAMBAR	NAMA	KETERANGAN
niversity		Generalization	Hubungan dimana objek anak (descendent) berbagi perilaku dan struktur data dari objek yang ada di atasnya objek induk (ancestor).
of Sult	\Diamond	Nary Association	Upaya untuk menghindari asosiasi dengan lebih dari 2 objek.
an Syari		Class	Himpunan dari objek-objek yang berbagi atribut serta operasi yang sama.

Dilarrang mengutip sebagian atau seluruh karya tulis ini tanpa mencantumkan dan menyebutkan sumber

Hak Cipta Dilindungi Undang-Undang

Deskripsi dari urutan aksi-aksi yang ditampilkan sistem yang ± 4 Collaboration suatu menghasilkan hasil yang _ terukur bagi suatu aktor Operasi yang benar-benar dilakukan <u>_</u>5 <----Realization oleh suatu objek. Hubungan dimana perubahan yang terjadi pada suatu elemen mandiri Dependency akan **C**6 (independent) mempegaruhi elemen yang bergantung padanya Z elemen yang tidak mandiri

Sumber: Hariyanto, (2004)

2.13.4 Sequence Diagram

Diagram sekuen mendeskripsikan komunikasi diantara objek-objek, meliputi pesan-pesan yang ada dan urutan pesan tesan tersebut muncul. Diagram sekuen digunakan untuk memodelkan skenario penggunaan. Skenario penggunaan adalah barisan kejadian yang terjadi selama satu eksekusi sistem. Cakupan skenario dapat beragam, dari mulai semua kejadian di sistem atau hanya kejadian pada objek-objek tertentu. Skenario menjadi rekaman historis eksekusi sistem atau gagasan eksperimen eksekusi sistem yang diusulkan. (Hariyanto, 2004: 309)

Tabel 2.7 Simbol-simbol sequence diagram

NO	GAMBAR	NAMA	KETERANGAN
tate Islan		LifeLine	Objek <i>entity</i> , antarmuka yang saling berinteraksi.
nic Univers	<u></u>	Message	Spesifikasi dari komunikasi antar objek yang memuat informasi- informasi tentang aktifitas yang terjadi
ity of Sult	[4 [Message	Spesifikasi dari komunikasi antar objek yang memuat informasi- informasi tentang aktifitas yang terjadi

Hak Cipta Dilindungi Undang-Undang

Dilarang mengutip sebagian atau seluruh karya tulis ini tanpa mencantumkan dan menyebutkan sumber

2.13.5 Activity Diagram

Pada dasarnya diagram aktivitas adalah diagram flowchart yang diperluas dan menunjukkan aliran kendali satu aktivitas ke aktivitas lain. Daiagram aktivitas mendeskripsikan aksi-aksi dan hasilnya. Daigram aktivitas berfokus pada aktivitas-aktivitas, potongan-potongan dari proses yang berkorespondensi dengan metode-metode atau fungsi-fungsi anggota dan pengurutan dari aktivitas-aktivitas ini. Hal ini serupa dengan *flowchart*. Namun, diagram aktivitas berbeda dari *flowchart* terutama karena diagram aktivitas secara eksplisit mendukung aktivitas-aktivitas paralel dan sinkronisasi aktivitas-aktivitas ini. (Hariyanto, 2001:325)

Tabel 2.8 Simbol-simbol activity diagram

NO	GAMBAR	NAMA	KETERANGAN
R. a □ 1		Actifity	Memperlihatkan bagaimana masing- masing kelas antarmuka saling berinteraksi satu sama lain
2		Action	State dari sistem yang mencerminkan eksekusi dari suatu aksi
3	•	Initial Node	Bagaimana objek dibentuk atau diawali.
4	•	Actifity Final Node	Bagaimana objek dibentuk dan dihancurkan
State	Hariwanta (200	Fork Node	Satu aliran yang pada tahap tertentu berubah menjadi beberapa aliran

Sumber: Hariyanto, (2004)

Slamic University of Sultan Syarif Kasim Riau