MDIO 1. Examen Parcial. Noviembre del 2000

P1) Una empresa de servicios informáticos debe decidir para los siguientes 4 años el tipo y la cantidad de proyectos que debe desarrollar. Para cada uno de los 5 tipos posibles de proyectos en los que la empresa puede competir conoce el beneficio esperado por proyecto y la inversión necesaria en equipo y licencias de software que debe efectuar para poder desarrollarlos. Si quiere desarrollar proyectos del tipo 1 o el tipo 2 debe comprar un conjunto de licencias de software de bases de datos valoradas en 60.000ϵ y ya dispone del hardware necesario. Si quiere desarrollar proyectos de los restantes tipos 3, 4, 5 requerirá adquirir hardware específico para cada tipo de proyecto. Para los de tipo 3 la inversión ascenderá a 30.000ϵ . Para los de tipo 4 la inversión ascenderá a 25.000ϵ y para los de tipo 5 la inversión será de 40.000ϵ .

La empresa no desea ampliar su plantilla y para el desarrollo de todos los proyectos dispone de 200.000 horas de programador y de 60.000 horas de analista. La siguiente tabla muestra los recursos necesarios en miles de horas de analista y de programador para cada proyecto según el tipo de éste, así como el beneficio por proyecto en miles de ϵ :

	1	2	3	4	5
h.analista	1	1	4	1	3
h.programador	10	5	6	4	6
beneficio	50	50	40	60	50

Si x_i es el número (entero) de proyectos de tipo i que desarrollará la empresa (i = 1, 2, ... 5), establecer un problema de programación lineal entera que maximize el beneficio total = beneficios por proyectos - inversiones, en este horizonte de cuatro años y mediante el cual se determine cuántos y qué tipo de proyectos deben lanzarse.

- **P2)** Supongamos que la empresa del problema anterior puede recibir subvenciones que cubran los gastos de inversión en hardware y licencias de software y supongamos que esta empresa excluye a priori los proyectos de tipo 5. Admitiendo soluciones no enteras:
 - 1. Cuántos proyectos de los tipos 1, 2, 3, 4 debe emprender la empresa y cuáles no deben emprenderse. Cuántas horas de analista y de programador quedarán libres ?. Cuál será el beneficio de la empresa ?
 - 2. Formular el problema dual correspondiente al del apartado anterior. Cuál es el valor de las variables duales para la base óptima obtenida en el apartado anterior?. Y para la base $I_B = \{1,2\}$?
 - 3. Ha resultado adecuada la decisión de excluir los proyectos de tipo 5 ? (Sugerencia: añadir la columna correspondiente a los proyectos de tipo 5 a la tabla óptima obtenida en el apartado anterior e intentar hallar en esta nueva situación el beneficio óptimo.)
 - 4. Finalmente y por cuestiones estratégicas los proyectos del tipo 5 deben ser excluidos. Por otra parte la administración decide mantener la subvención siempre y cuando el número total de proyectos sea superior o igual 60. Es posible satisfacer el hecho de mantener un número de proyectos ≥ 60 ? (Sugerencia: a) ampliar la tabla óptima encontrada en el apartado 1 con una nueva restricción y aplicar el algoritmo del símplex dual o alternativamente b) utilizar el método de variables artificiales para el problema formulado con la nueva restricción)

SOLUCIONES

P1 Variables x_i = cantidad de recursos de proyectos de tipo i. i = 1, 2, 3, 4, 5.:

Limitaciones por recursos:

$$R1$$
 x_1+ x_2 $4x_3+$ x_4+ $3x_5 \le 60$
 $R2$ $10x_1+$ $5x_2+$ $6x_3+$ $4x_4+$ $6x_5 \le 200$
 $R3$ $x_i \ge 0$, $x_i \in Z$, $i = 1, 2, 3, 4, 5$.

 $\Omega = \{ x \in \mathbb{R}^n \mid x \text{ verifica R1, R2, R3} \}$

Variables δ_i , i = 1, 2, 3, 4, 5.:

$$\delta_i \, = \, \left\{ egin{array}{ll} = 1 & {
m Se\ emprenden\ proyectos\ tipo}\ i \\ = 0 & {
m No\ se\ emprenden\ proyectos\ tipo}\ i \end{array}
ight.$$

Variables δ_{DB} :

$$\delta_{DB} \,=\, \left\{ egin{array}{ll} = 1 & {
m Se\ compra\ la\ licencia\ de\ B.D.} \ \\ = 0 & {
m No\ se\ compra\ la\ licencia\ de\ B.D.} \end{array}
ight.$$

Condiciones:

• Si se va a emprender algún proyecto de tipo i, entonces $\delta_i = 1$:

$$x_i > 0 \Rightarrow \delta_i \ge 1$$

 $-x_i \ge 0 \text{ ó } \delta_i - 1 \ge 0 \text{ ó los dos}$

$$-\bar{x}_{i} = Min_{x \in \Omega} - x_{i} = \begin{cases} -20 \\ -40 \\ -Min \left\{ \frac{60}{4}, \frac{200}{6} \right\} = -15 \\ -50 \\ -20 \end{cases}, i = 1, 2, 3, 4, 5.$$

$$\left. \begin{array}{c} -x_i \geq (-\bar{x}_i)\alpha_i \\ (\delta_i - 1) \geq (-1)(1 - \alpha_i) \end{array} \right\} \rightarrow \left. \begin{array}{c} x_i \leq \bar{x}_i\alpha_i \\ \delta_i \geq \alpha_i \end{array} \right\} \Rightarrow x_i \leq \bar{x}_i\delta_i, \quad \alpha_i \in \{0, 1\}, \quad i = 1, 2, 3, 4, 5$$

• Sea la variable $\delta_{12} \stackrel{\Delta}{=} \delta_1 + \delta_2$:

$$\begin{array}{lll} \delta_{12} > 0 & \Rightarrow & \delta_{BD} \geq 1 \\ -\delta_{12} \geq 0 & \circ & \delta_{BD} - 1 \geq 0, \text{ o los dos.} \end{array}$$

Finalmente:

$$\delta_1 + \delta_2 \leq 2\delta_{BD}$$

Modelo final:

P2

1. x_5 , x_6 variables de holgura en este problema:

	1	2	3	4	5	6	0
Ī	1	1	4	1	1	0	60 200
	10	5	6	4	0	1	200
Ī	-5	-5	-4	-6	0	0	0

Se utilizará el símplex primal. Entra x_4 , sale x_6 :

Únicamente deben emprenderse proyectos tipo 4. Sobran 10000 horas de analista y 0 horas de programador.

2.

Problema dual de (P):

Variables duales para la base óptima del problema anterior: $I_B^* = \{5,4\}$ $\lambda = (0,-6/4)$. Basta sólo fijarse en la fila de costes reducidos de la tabla óptima.

Puede calcularse también mediante:

$$B = \begin{pmatrix} 1 & 1 \\ 0 & 4 \end{pmatrix}, \ \lambda = B^{-\top} c_B = \frac{1}{4} \begin{pmatrix} 4 & 0 \\ -1 & 1 \end{pmatrix} \begin{pmatrix} 0 \\ -60 \end{pmatrix} = \begin{pmatrix} 0 \\ -15 \end{pmatrix}$$

3. Se introduce una nueva variable x_7 (cantidad de proyectos de tipo 5) y se comprueba si para la tabla óptima obtenida en el apartado 1 tendrá coste reducido negativo:

$$r_7 = c_7 - a_7^{\top} \lambda = -50 - (3, 6)(0, -15) = 40$$

Por lo tanto no resultaría rentable emprender proyectos de tipo 5.

4.

1	2	3	4	5	6	7	0
$\overline{-1}$	-1	-1	-1	0	0	1	-60
-6/4	-1/4	5/2	0	1	-1	0	10
10/4	5/4	3/2	1	0	1/4	0	50
10	10/4	5	0	0	6/4	0	300

Se utilizará el símplex dual: Sale x_7 , Entra x_4 :

1	2	3		5		7	-
1	1	1	1	0	0	-1	60
-6/4	-1/4	5/2	0	1	-1	0	10
3/2	$1\\-1/4\\1/4$	1/2	0	0	1/4	1	-10
10	10/4	5	0	0	6/4	0	300

Dual no acotado: problema primal infactible. Al añadir la nueva restricción el problema se torna infactible. No es posible satisfacer la exigencia de la administración.