On the Convergence of Single-call Stochastic Extra-Gradient Methods

Yu-Guan Hsieh^{1,2} Franck lutzeler^{1,2} Jérôme Malick^{1,2,4} Panayotis Mertikopoulos^{1,3,4,5}

¹Univ. Grenoble Alpes ²LJK ³LIG ⁴CNRS ⁵Inria

Beyond Minimization

- Generative adversarial network (GAN) $\min_{\theta} \max_{\phi} \mathbb{E}_{x \sim p_{\mathcal{D}}}[f(D_{\phi}(x))] + \mathbb{E}_{z \sim p_{\mathcal{Z}}}[g(D_{\phi}(G_{\theta}(z)))].$
- More min-max: distributionally robust, primal-dual, ... • Seach of equilibrium: games, multi-agent RL, ...

Variational Inequalities

Definition and Setup

Closed convex set $\mathcal{X} \subseteq \mathbb{R}^d$; Vector field $V : \mathbb{R}^d \to \mathbb{R}^d$

Stampacchia variational inequality

Find
$$x^* \in \mathcal{X}$$
 s.t. $\forall x \in \mathcal{X}$, $\langle V(x^*), x - x^* \rangle \ge 0$. (VI)

Monoticity

$$\forall x, x' \in \mathbb{R}^d, \ \langle V(x') - V(x), x' - x \rangle \ge \alpha ||x' - x||^2$$
 constant $\alpha \ge 0$; strongly monotone: $\alpha > 0$.

Assumptions:

- Lipschitz continuous V.
- Noisy unbiased oracle \hat{V} .
- Finite-variance noise.

Example of Saddle Point Problem

Find
$$x^* = (\theta^*, \phi^*)$$
 such that
$$\forall \theta \in \Theta, \ \forall \phi \in \Phi, \ \mathcal{L}(\theta^*, \phi) \leq \mathcal{L}(\theta^*, \phi^*) \leq \mathcal{L}(\theta, \phi^*).$$

Let
$$\mathcal{X} \coloneqq \Theta \times \Phi$$
, $V \coloneqq (\nabla_{\theta} \mathcal{L}, -\nabla_{\phi} \mathcal{L})$. (VI) gives
$$\forall (\theta, \phi) \in \mathcal{X}, \ \langle \nabla_{\theta} \mathcal{L}(x^{\star}), \theta - \theta^{\star} \rangle - \langle \nabla_{\phi} \mathcal{L}(x^{\star}), \phi - \phi^{\star} \rangle \ge 0.$$

- Stationary condition.
- ullet If ${\mathcal L}$ is convex-concave, solves the original problem.

TL;DR

- 1. The most widely used single-call variants of Extra-Gradient (EG) are equivalent for unconstrained problems.
- 2. Such single-call EG methods enjoy similar convergence guarantees as EG.
- 3. First local convergence rate analysis for stochastic non-monotone VIs.

Extra-Gradient (EG)

Extra-Gradient [Korpelevich 1976]

$$X_{t+\frac{1}{2}} = \Pi_{\mathcal{X}}(X_t - \gamma_t \hat{V}_t)$$

$$X_{t+1} = \Pi_{\mathcal{X}}(X_t - \gamma_t \hat{V}_{t+\frac{1}{2}})$$

The first step anticipates the landscape to achieve better convergence.

But it requires two gradient evaluations per iteration!

Single-call Extra-Gradient (1-EG)

Past Extra-Gradient [2]	Reflected Gradient [3]	Optimistic Gradient [4]	
$X_{t+\frac{1}{2}} = \Pi_{\mathcal{X}}(X_t - \gamma_t \hat{V}_{t-\frac{1}{2}})$	$X_{t+\frac{1}{2}} = X_t - (X_{t-1} - X_t)$	$X_{t+\frac{1}{2}} = \Pi_{\mathcal{X}}(X_t - \gamma_t \hat{V}_{t-\frac{1}{2}})$	
$X_{t+1} = \Pi_{\mathcal{X}}(X_t - \gamma_t \hat{V}_{t+\frac{1}{2}})$	$X_{t+1} = \Pi_{\mathcal{X}}(X_t - \gamma_t \hat{V}_{t+\frac{1}{2}})$	$X_{t+1} = X_{t+\frac{1}{2}} + \gamma_t \hat{V}_{t-\frac{1}{2}} - \gamma_t \hat{V}_{t+\frac{1}{2}}$	

The above three methods are equivalent in the unconstrained setting.

Illustrative Experiments

deterministic; last iterate.

- ergodic.
- last iterate; local convergence.

Convergence Analysis

The following results hold for all the three variants of 1-EG.

Global Convergence

	Monotone		Strongly Monotone	
	Ergodic	Last Iterate	Ergodic	Last Iterate
Deterministic	1/t	?	1/t	$e^{-\rho t}$
Stochastic	$1/\sqrt{t}$?	1/t	1/t

Local Convergence

Definition [Regular Solution x^*].

$$\forall z \in TC(x^*), \ z^\top Jac_V(x^*)z = \sum_{i,j=1}^d z_i \frac{\partial V_i}{\partial x_j}(x^*)z_j > 0.$$

Theorem. If 1-EG is initialized sufficiently close to x^* and run with sufficiently small step-sizes, then:

- Deterministic: geometrical convergence of iterates.
- Stochastic:
- (a) The iterates are guaranteed to stay in a neighborhood of x^* with probability arbitrarily close to 1.
- (b) $\mathbb{E}\left[||X_t x^*||^2\right]$ the above happens $= \mathcal{O}(1/t)$.

Proof Ingredients

Deterministic

$$||X_{t+1} - p||^2 + \mu_{t+1} \le ||X_t - p||^2 - 2\gamma \langle V(X_{t+\frac{1}{2}}), X_{t+\frac{1}{2}} - p \rangle - c||X_{t+\frac{1}{2}} - X_t||^2 + \mu_t.$$

Stochastic + strongly monotone

$$\mathbb{E}[||X_{t+1} - x^*||^2] + \mu_{t+1} \le (1 - \alpha \gamma_t) (\mathbb{E}[||X_t - x^*||^2] + \mu_t) + M \gamma_t^2 \sigma^2.$$

References

- [1] G. M. Korpelevich, Ekonomika i Matematicheskie Metody
- [2] L. D. Popov, Mathematical Notes 1980.
- [3] Y. Malitsky, SIAM Journal on Optimization 2015.
- [4] C. Daskalakis, A. Ilyas, V. Syrgkanis, H. Zeng, ICLR 2018.
- [5] G. Gidel, H. Berard, G. Vignoud, P. Vincent, S. Lacoste-Julien, ICLR 2019.

