Задача диспетчеризации грузовых автомобилей на открытых карьерах в режиме реального времени

Курсовая работа Выполнила Агаева Эмилия, 431 группа

Введение

Процесс добычи полезных ископаемых на открытых карьерах включает в себя множество этапов, и одним из основных является транспортировка материала. Затраты на транспортировку, особенно на крупных карьерах, доходят до 50% от общих затрат, именно поэтому оптимизация транспорта является настолько актуальной задачей. Диспетчеризация в режиме реального времени — это система автоматизированного управления транспортными потоками, которая мгновенно анализирует данные и корректирует работу техники для максимизации эффективности добычи. На данный момент большинство методов рассматривают цикл между разгрузками как единый процесс и недостаточно учитывают маршрутизацию гружёной техники. Это приводит к отклонениям в производстве из-за отсутствия корректировок во время цикла. Кроме того, алгоритмы часто используют единый критерий (например, минимизацию времени ожидания), что ограничивает гибкость системы. Для решения этих проблем, в данной работе будет рассмотрен метод, который, вопервых, разделяет полные и пустые грузовики, а во-вторых, оптимизирует такие параметры как: время ожидания грузовиков, отклонение от плановой интенсивности грузопотока и транспортные расходы.

В настоящее время широко используется многоуровневая FMS, основанная на многоэтапных алгоритмах планирования и включающая три стадии:

- 1. Поиск кратчайшего пути от каждого пункта погрузки до пункта разгрузки
- 2. Разработка модели распределения потоков самосвалов
- 3. Диспетчеризация самосвалов в реальном времени

Из этих трех этапов первый уже хорошо изучен. Маршруты в карьерах обычно просты, и базовые алгоритмы успешно решают задачу оптимизации пути. В настоящее время большинство исследований сосредоточено на оптимизации второго этапа, тогда как третий этап изучен недостаточно.

Используемые предположения

Предположения, используемые в модели:

- Полная загрузка: груз в кузове соответствует номинальной грузоподъёмности самосвала
- Тип груза за смену: за одну смену самосвал перевозит либо руду, либо отходы (но не смешанный груз одновременно)
- Стационарность экскаватора: положение экскаватора фиксировано в течение всей смены (не перемещается между уступами)
- Расчёт времени цикла: среднее время рейса (от погрузки до разгрузки и обратно) может быть достаточно точно прогнозируемо
- Топливное обеспечение: дозаправка не требуется в течение смены (учтён запас топлива на весь рабочий цикл)

Используемые параметры

```
k Индекс самосвалов (общий парк техники) k=1..K 
 Индекс пунктов разгрузки (дробилки/отвалы) i=1..I 
 ј Индекс экскаваторов (погрузочные единицы) j=1..J 
 k_m Индекс неисправных самосвалов k_m=1...K_m
```

 i_m Индекс неисправных самосвалов $k_m = 1...k_m$ i_m Индекс неисправных пунктов разгрузки $i_m = 1..I_m$ j_m Индекс неисправных экскаваторов $j_m = 1..J_m$

 Тпом
 Текущее время

TA_{kji} Время прибытия груженого самосвала k от экскаватора j к пункту i

TL_{kji} Остаток времени погрузки самосвала k на j до i

TF_{kji} Среднее время движение груженого самосвала k от j к i

TFD_{kji} Фактическое время отправки груженого самосвала k от j к i

D_{ji} Расстояние между экскаватором j и пунктом i

TD_n Время погрузки самосвала n

wkji Время ожидания в очереди на разгрузку для k от j до i

Ојі Время простоя маршрута от ј до і

L_{ji} Время последнего назначения самосвала от ј до і

Сјі Грузоподъемность последнего самосвала, отправленного от ј до і

Р_{јі} Плановый показатель грузопотока для маршрута от ј до і

mkji Стоимость рейса самосвала k при назначении на маршрут от j до i

М_к Расход топлива самосвала k

хкіі Бинарная переменная решения о назначении (полный рейс)

TA_{kij} Время прибытия пустого самосвала k от пункта разгрузки i к экскаватору j

TE_{kij} Среднее время движения пустого самосвала k от пункта i к экскаватору j

TED_{kij} Фактическое время отправки порожнего самосвала k от пункта i к экскаватору j

TD_{kij} Остаток времени на разгрузку самосвала k в пункте i перед отправкой к экскаватору j

SA_j Ближайшее время доступности экскаватора ј

N_{queue} Количество самосвалов в очереди

TS_n Время позиционирования самосвала n (период необходимый для подготовки к загрузке)

TL_n Время погрузки самосвала n

wkij Время ожидания самосвала k при назначении от і к ј

mkij Стоимость рейса самосвала k по маршруту от i до j

хкії Бинарная переменная решения о назначении (пустой рейс)

y_{min} Минимум целевой функции

n Номер экскаватора, к которому направляется самосвал

SR_i Время готовности экскаватора к погрузке

ТТі Среднее время движения от пункта разгрузки к назначенному экскаватору

Skji Время простоя экскаватора ј при назначении на маршрут от ј до і

Т_{kji} Время ожидания самосвала k на маршруте от j до i

сјі- Недовывоз (негативное отклонение от планового грузопотока от ј к і)

сјі+ Перевыполнение (позитивное отклонение от планового грузопотока от ј к і)

Модель диспетчеризации гружёных самосвалов (FTD):

В качестве потенциальных направлений рассматриваются все доступные пункты разгрузки, до которых может добраться гружёный самосвал.

Критерии оптимизации:

- Рассчетное время ожидания в очереди на разгрузку
- Отклонение от плановой интенсивности грузопотока
- Транспортные затраты до каждого пункта назначения

На основе этих подцелей формируется целевой функционал оптимизации с соответствующими ограничениями.

Расчеты

Рассчитываем время прибытия самосвала к пункту разгрузки на основе его текущего положения:

Самосвал k находится в процессе погрузки:

$$TAkji = Tnow + TLkji + TFkji$$

Самосвал k' следует к пункту разгрузки:

$$TA$$
k'ji = TFD kji + TF kji

Времена прибытия двух указанных типов образуют множество {TAkji, TAk'ji}. Его элементы сортируются в хронологическом порядке, формируя множество {T1, T2, ..., Tk, ...}, в котором расчетное время прибытия самосвала k, направляемого от j к i, составляет Tk. Согласно этой последовательности и правилам разгрузки, можно рассчитать время ожидания для каждого самосвала в последовательности.

• Из-за очереди на разгрузку, для самосвала в последовательности, если он и предыдущий самосвал являются либо крупнотоннажными, либо разнотипными самосвалами, время ожидания связано с временем завершения разгрузки предыдущего самосвала и рассчитывается по формуле:

$$W_{n} = \begin{cases} 0, n = 1 \\ max(T_{n-1} + w_{n-1} + TD_{n-1} - T_n, 0), n > 1 \end{cases}$$

• Для самосвала в последовательности, если он и предыдущий являются малотоннажными, время ожидания зависит от времени завершения разгрузки второго самосвала перед ним:

Wn =
$$\begin{cases} 0, n = 1, 2 \\ max(T_{n-2} + w_{n-2} + TD_{n-2} - T_n, 0), n > 2 \end{cases}$$

• Если самосвал предназначен для перевозки отходов, его пунктом назначения является отвал. Согласно очереди на разгрузку, его время ожидания связано с временем завершения разгрузки предыдущего самосвала в последовательности и рассчитывается по формуле:

$$Wn = \begin{cases} 0, n = 1 \\ max(T_{n-1} + w_{n-1} + TD_{n-1} - T_n, 0), n > 1 \end{cases}$$

Таким образом, мы получаем расчетное время ожидания wkji для назначения самосвала k от экскаватора j к каждому пункту разгрузки i. Сформулируем три подцели:

- о Минимизация расчетного времени ожидания. Первый коэффициент целевой функции равен wkji.
- о Минимизация отклонения от плановой интенсивности грузопотока, что может быть выражено через время простоя каждого маршрута. Второй коэффициент целевой функции од рассчитывается следующим образом:

$$o_{ji} = T_{now} - (L_{ji} + C_{jil} / P_{ji})$$

о Минимизация транспортных затрат самосвала до каждого пункта назначения, и ее коэффициент целевой функции mkji рассчитывается по следующей формуле:

$$m_{kji} = D_{ji} * M_k$$

Получили три цели модели:

$$f_{1} = \sum_{k=1}^{K} \sum_{i=1}^{I} \sum_{j=1}^{J} w_{kji} * x_{kji}$$

$$f_{2} = \sum_{k=1}^{K} \sum_{i=1}^{I} \sum_{j=1}^{J} o_{ji} * x_{kji}$$

$$f_{3} = \sum_{k=1}^{K} \sum_{i=1}^{I} \sum_{j=1}^{J} m_{kji} * x_{kji}$$

Поскольку три целевые функции имеют различную размерность, для устранения влияния различий в единицах измерения показателей требуется нормализация данных. В данном случае применяется метод min-max нормализации для стандартизации трех целевых функций:

$$f1 = (f1 - f1^{min}) / (f1^{max} - f1^{min})$$

$$f2 = (f2 - f2^{min}) / (f2^{max} - f2^{min})$$

$$f3 = (f3 - f3^{min}) / (f3^{max} - f3^{min})$$

После нормализации получаем целевую функцию:

$$y_{min} = P_1 f_1 + P_2 f_2 + P_3 f_3$$

где P₁ + P₂ + P₃ = 1 и весовые коэффициенты могут быть заданы и скорректированы в соответствии с фактическими условиями работы (техническое состояние оборудования, текущая загрузка) и желаемыми целями (если важно время ожидания – увеличим P₁, если важнее соблюдение планового грузопотока – то повысим P₂, а если же важна экономия топлива, то увеличим P₃)

Ограничения

$$\sum_{i=1}^{I} \sum_{j=1}^{J} x_{kji} = 1, k = 1..K$$

(1) один самосвал одновременно может следовать по одному маршруту

$$\sum_{i=1}^{I} \sum_{k=1}^{K} x_{kji} \leq 1, j = 1..J$$

(2) один пункт разгрузки обрабатывает ≤ одного самосвала одновременно

$$\sum_{k=1}^{K} \sum_{i=1}^{I} \sum_{j=1}^{J} x_{kji} \leq K$$

(3) число самосвалов в модели ≤ общего числа самосвалов

$$\sum_{k=1}^{K} \sum_{j=1}^{J} x_{kji} = 0$$
, $i = 1..I_m$ (4)

$$\sum_{i=1}^{I} \sum_{j=1}^{J} x_{kji} = 0, k = 1..K_{m}$$

 $\sum_{i=1}^{I} \sum_{j=1}^{J} x_{kji} = 0$, $k = 1..K_m$ (5) — исключение неисправного оборудования из планирования

$$\sum_{i=1}^{I} \sum_{k=1}^{K} x_{kji} = 0, j = 1..J_{m}$$
 (6)

$$x_{kji} = \{0, 1\}$$

(7) 1 – самосвал k на маршруте от i до j, 0 иначе

Модель диспетчеризации пустых самосвалов (ETD):

В качестве потенциальных направлений рассматриваются все достижимые пустым самосвалом экскаваторы.

Критерии оптимизации:

- о Время ожидания самосвала у экскаватора
- о Отклонение от плановой интенсивности грузопотока
- Транспортные затраты до каждого пункта назначения

На основе этих подцелей формируется целевая функция оптимизации с соответствующими ограничениями.

Расчеты

Рассчитываем время прибытия самосвала к экскаватору на основе его текущего положения:

о Самосвал k, направляемый к экскаватору после разгрузки:

$$TA\mathrm{kij} = T_{now} + TD\mathrm{kij} + TE\mathrm{kij}$$

Самосвал уже следующий к экскаватору:

$$TAk'ij = TEDkij + TEkij$$

Времена прибытия двух указанных типов образуют множество {TAkji, TAk'ji}. Его элементы сортируются в хронологическом порядке, формируя множество {T1, T2, ..., Tk, ...}, в котором расчетное время прибытия самосвала k, составляет Tk. Согласно этой последовательности можно рассчитать время ожидания для каждого самосвала в последовательности.

Время SA_j, когда экскаватор ј сможет принять самосвал:

$$SA_j = T_{now} + TL_{kij} + \sum_{n=1}^{n=Nqueue} (TS_n + TL_n)$$

Рассчитаем время ожидания:

• Для первого самосвала в очереди:

$$w_n = max(SA_j - T_1, 0)$$

• Для последующих самосвалов время ожидания связано с временем завершения погрузки предыдущего транспортного средства в последовательности и рассчитывается как:

$$w_n = max(T_{n-1} + w_{n-1} + TS_{n-1} + TL_{n-1} - T_n, 0), n > 1$$

Таким образом, мы получаем расчетное время ожидания wkji для назначения самосвала k от экскаватора j к каждому пункту разгрузки i.

Сформулируем три подцели:

- о Минимизация расчетного времени ожидания. Первый коэффициент целевой функции равен wkij.
- о Минимизация отклонения от плановой интенсивности грузопотока, что может быть выражено через процент выполнения планового показателя добычи для каждого экскаватора. Коэффициент s_i целевой функции рассчитывается следующим образом:

$$s_{j} = p'_{j} / p_{j}, p_{j} = \sum_{i=1}^{I} p_{ji} * T$$

где р'_j - фактическая выработка экскаватора ј с начала смены (получается из FMS), р_j – плановая выработка экскаватора ј за смену, р_{ji} - плановый грузопоток на маршруте от экскаватора ј до пункта разгрузки i, Т – время смены.

о Минимизация транспортных затрат самосвала до каждого пункта назначения, и ее коэффициент целевой функции mkji рассчитывается по следующей формуле:

$$m_{kij} = D_{ji} * M_k$$

Получили три цели модели:

$$f_{4} = \sum_{k=1}^{K} \sum_{i=1}^{I} \sum_{j=1}^{J} w_{kij} * x_{kij}$$

$$f_{5} = \sum_{k=1}^{K} \sum_{i=1}^{I} \sum_{j=1}^{J} s_{j} * x_{kij}$$

$$f_{6} = \sum_{k=1}^{K} \sum_{i=1}^{I} \sum_{j=1}^{J} m_{kij} * x_{kij}$$

Поскольку три целевые функции имеют различную размерность, для устранения влияния различий в единицах измерения показателей требуется нормализация данных. В данном случае применяется метод min-max нормализации для стандартизации трех целевых функций:

$$f4 = (f4 - f4^{min}) / (f4^{max} - f4^{min})$$

$$f5 = (f5 - f5^{min}) / (f5^{max} - f5^{min})$$

$$f6 = (f6 - f6^{min}) / (f6^{max} - f6^{min})$$

После нормализации получаем целевую функцию:

$$y_{min} = P_4 f_4 + P_5 f_5 + P_6 f_6$$

где P₄ + P₅ + P₆ = 1 и весовые коэффициенты могут быть заданы и скорректированы в соответствии с фактическими условиями работы (техническое состояние оборудования, текущая загрузка) и желаемыми целями (если важно время ожидания – увеличим P₄, если важнее соблюдение планового грузопотока – то повысим P₅, а если же важна экономия топлива, то увеличим P₆)

Ограничения

$$\sum_{i=1}^{I} \sum_{j=1}^{J} x_{kij} = 1, k = 1..K$$

$$\sum_{j=1}^{J} \sum_{k=1}^{K} x_{kij} \leq 1, i = 1..J$$

$$\sum_{k=1}^{K} \sum_{i=1}^{I} \sum_{j=1}^{J} x_{kij} \leq K$$

$$\sum_{k=1}^{K} \sum_{j=1}^{J} x_{kij} = 0$$
, $i = 1..I_{m}$

(5)

(6)

$$\sum_{i=1}^{I} \sum_{j=1}^{J} x_{kij} = 0, k = 1..K_{m}$$

исключение неисправного оборудования из планирования

$$\sum_{i=1}^{I} \sum_{k=1}^{K} x_{kij} = 0, j = 1..J_{m}$$

$$x_{kij} = \{0, 1\}$$

(8) масса груза не должна превышать грузоподъемность самосвала

$$S_{kij} < C_k$$

Реализация метода

Рассмотрим реализацию данного метода (FTD) на языке Python. Для простоты была выбрана простая модель карьера: 4 самосвала, 3 пункта погрузки и 2 пункта разгрузки. Функции, вычисляющие массив времени прибытия каждого самосвала и 3 основных подцели оптимизации:

```
def get_T():
    T = {}
    for j in range(J):
        for i in range(I):
            key = (j, i)
            TA_kji = []
            for k in range(K):
                 TA = TD + (D[j][i] * 1000) / (S[k] * 1000 / 60)
                 TA_kji.append((k, TA))
                 TA_kji.sort(key=lambda x: x[1])
                T[key] = TA_kji
                 return T
```

```
O(J * I * K)
```

$$O(J * I * K)$$

Параметры

Информация о самосвалах (обозначения согласованы с ранее представленными):

```
S = np.array([60, 50, 70, 65])
C = np.array([20, 25, 15, 30])
M = np.array([30, 25, 35, 28])
```

где S – скорость движения (км/ч), C – вместимость (т), M – расход топлива (т/км)

Информация о пунктах загрузки и разгрузки (строки – пункты загрузки, столбцы – разгрузки):

расстояние между і и ј (км)

```
D = np.array([
      [15, 20],
      [25, 10],
      [18, 30]
])
```

```
P = np.array([
        [100, 150],
        [200, 50],
        [75, 125]
])
```

плановый грузопоток между і и ј (т / ч)

Оптимизация

Оптимизация построенного целевого функционала производится при помощи библиотеки SciPy, для решения задач MILP в ее подмодуле optimize имеется функция linprog. При оптимизации учитывается и то, что переменные x_ijk принимают значения {0, 1}, и все ограничения на задачу.

Полученные результаты

x_opt	::		
k	j	i	x_ijk
1 1 1 1 1	1 1 2 2 3 3	1 2 1 2 1 2	1 0 0 0 0
2	1	1	0
2	1	2	1
2	2	1	0
2 2 2 2	2	2	0
2	3	1	0
2	3	2	0

Результат:

y_min: 1.65

x_opt	:		
k	j	i	x_ijk
3	1	1	0
3	1	2	0
3	2	1	0
3	2	2	1
3 3 3 3	3	1	0
3	3	2	0
4	1	1	0
4	1	2	0
4	2	1	0
4	2	2	0
4	3	1	1
4	3	2	0

x_opt	:		
k	j	i	x_ijk
1 1 1 1 1	1 1 2 2 3 3	1 2 1 2 1 2	0 0 0 0 1 0
2 2 2 2 2 2	1 1 2 2 3 3	1 2 1 2 1 2	0 0 0 0 0

Результат:

y_min: 1.78

x_opt	:		
k	j	i	x_ijk
3	1	1	0
3	1	2	0
3	2	1	0
3	2	2	1
3	3	1	0
3	3	2	0
4	1	1	0
4	1	2	0
4	2	1	1
4	2	2	0
4	3	1	0
4	3	2	0

Выводы

При реализации метода, были сделаны следующие выводы о рассматриваемом алгоритме:

1) Метод работает корректно

2)

- Общая сложность алгоритма без учета оптимизации не превосходит O(J * I * K log K)
- Оптимизация в SciPy дает сложность O((K * I * J)^3)

В реальности значения этих параметров обычно такие, что данный алгоритм сработает за приемлемое количество времени.

Оценка метода

Для оценки эффективности предложенной модели в исследовании используется реальный карьерный полигон, на котором проводятся имитационные испытания. В среде MATLAB разработаны три модели:

- Предлагаемая модель
- MSC-модель
- Многоцелевая модель

Ключевые показатели эффективности (КРІ):

- Общий объем перевозок
- Коэффициент использования оборудования
- Среднее время ожидания самосвалов
- Общие затраты
- Время принятия решений

MSC-модель

Пустые самосвалы на точке разгрузки направляются к экскаватору с наименьшим показателем насыщения, который определяется как отношение числа уже назначенных самосвалов к плановому числу самосвалов для данного экскаватора

Ключевая цель - равномерное распределение самосвалов через равные временные интервалы и обеспечение непрерывной работы экскаваторов без простоев

Целевая функция системы выражается следующим образом:

n: argmini {(SRi - Tnow) / TTi}

Многоцелевая модель

Целевые функции модели:

• Первый критерий оптимизации: минимизация суммарного времени простоя работающих экскаваторов

$$f_1 = \sum_{k=1}^{K} \sum_{i=1}^{J} \sum_{j=1}^{J} S_{kij} * X_{kij}$$

• Второй критерий оптимизации: минимизация общего времени ожидания самосвалов

$$f_2 = \sum_{k=1}^{K} \sum_{i=1}^{I} \sum_{j=1}^{J} T_{kij} * X_{kij}$$

• Третий критерий оптимизации: минимизация отклонений от плановой интенсивности потоков на маршрутах

$$f_3 = \sum_{i=1}^{I} \sum_{j=1}^{J} (C_{ji} + C_{ji})$$

Параметры карьера

			Loading place					
Dump place	Parameters	<i>j</i> 1	j ₂	<i>j</i> ₃	j 4	j 5	j 6	j 7
<i>i</i> ₁	Distance/km	5.26	5.19	4.21	2.46	1.9	0.64	1.27
	Flow rate/ $(t \cdot h^{-1})$	680	770	650	750	0	0	0
i_2	Distance/km	1.9	0.99	1.9	1.48	2.04	3.09	3.51
	Flow rate/ $(t \cdot h^{-1})$	716	734	762	670	0	0	0
<i>i</i> ₃	Distance/km	5.89	5.61	5.61	2.46	2.46	1.06	0.57
	Flow rate/ $(t \cdot h^{-1})$	700	684	744	760	0	0	0
<i>i</i> ₄	Distance/km	0.64	1.76	1.27	4.21	3.72	5.05	6.1
	Flow rate/ $(t \cdot h^{-1})$	0	0	0	0	686	714	750
i ₅	Distance/km	4.42	3.86	3.72	0.78	1.62	1.27	0.5
	Flow rate/ $(t \cdot h^{-1})$	0	0	0	0	780	646	740

	Tro	Truck		
Model	XCMG XDE120	XCMG XDE240	WK-20	
Capacity(t)	110	220	-	
Full Load Fuel Consumption(kg/h)	116	241	-	
No-load Fuel Consumption(kg/h)	68	141	-	
Idle Fuel Consumption(kg/h)	13	28	-	
Full Load Speed(km/h)	21	18	-	
No-load Speed(km/h)	30	28	-	
Loading Time(min)	3	5	-	
Dumping time(min)	2.5	3	-	
Rated Power(KW)	-	-	1120	
Idle Power(KW)	-	-	124.32	

Плановый грузопоток и расстояния транспортировки приведены в таблице.

Суммарный плановый объем перевозок за смену составляет 103,488 тонн.

7 погрузочных пунктов: 4 для руды, 3 для отходов;

5 пунктов разгрузки: 3 дробилки, 2 отвала

На графике показан общий объем перевозимых материалов для трех моделей при различных размерах автопарка.

При одинаковом количестве техники предложенная модель перевозит как минимум на 14% больше материала

Минимальный размер автопарка (ед. техники) для выполнения производственных норм:

- предложенная модель: 28 единиц
- многоцелевая модель: 32 единицы
- MSC-модель: 36 единиц

Разработанная модель позволяет:

- достигать плановых показателей с меньшим парком техники
- обеспечивать более высокую производительность на единицу оборудования

На следующем слайде будет представлен график коэффициента использования оборудования, включающий:

- а. использование экскаваторов
- использование самосвалов

Эффективность использования экскаваторов:

- наивысший коэффициент использования экскаваторов
- превосходство не менее чем на 15% по сравнению с другими моделями
- стабильность показателей при различных размерах автопарка

Эффективность использования самосвалов (показатель пробега пустых самосвалов)

- средний пробег пустых самосвалов в других моделях на 36% выше
- оптимизация маршрутов в предложенной модели минимизирует непроизводительный пробег

Применение предложенной модели позволяет:

- повысить общий коэффициент использования оборудования
- обеспечить более рациональное использование техники:
 - максимальная загрузка экскаваторов
 - минимизация непроизводительных пробегов самосвалов

график времени ожидания самосвала

График показывает, что время ожидания самосвала у предложенной модели больше, чем у двух других моделей.

Причина заключается в том, что предложенная модель склонна выбирать пункт назначения с длительным временем ожидания, а не более удаленный пункт назначения.

Таким образом, предложенная модель может снизить транспортные расходы, потому что расход топлива в режиме ожидания ниже, чем при движении.

график общих затрат для разных размеров автопарка

Стоимость системы диспетчеризации самосвалов в карьере включает в основном энергопотребление экскаваторов и расход топлива самосвала.

Затраты на работу самосвалов и общие эксплуатационные расходы предложенной модели являются наименьшими среди трех моделей, и преимущество увеличивается с ростом размера автопарка.

график скорости принятия решений

Среди трех моделей предложенная модель имеет наименьшие среднее время и разницу экстремальных значений.

Это показывает, что предложенная модель является наилучшей с точки зрения скорости диспетчеризации, а также наиболее стабильной из-за минимальных колебаний времени обработки.

Результаты сравнения

В сравнении с эталонными моделями разработанное решение демонстрирует следующие ключевые преимущества:

Повышение производственной эффективности:

- обеспечение более высоких объемы добычи
- улучшение коэффициента использования экскаваторов
- сокращение средней дистанции пробега пустых самосвалов

Экономия эксплуатационных затрат:

- снижение общего потребления топлива
- уменьшение энергозатрат производственного оборудования
- сокращение среднего времени принятия решений

Заключение

Данное исследование предлагает адаптивный метод диспетчеризаци, предназначенный для определения оптимальных пунктов загрузки и разгрузки в соответствии с производственными требованиями. Модель принимает решения о назначении маршрутов, анализируя результаты планирования путей на втором этапе системы управления автопарком в сочетании с актуальными условиями.

Для оценки эффективности предложенной модели были выбраны эталонные модели. Результаты демонстрируют, что:

- производительность предложенной модели как минимум на 14% выше, чем у двух сравниваемых моделей
- эксплуатационные затраты системы ниже как минимум на 6%
- модель демонстрирует высокую эффективность и оптимально балансирует между минимизацией расстояний перевозок и максимизацией загрузки техники