Appendix 3

Malcolm

Started 5 Nov 2024

Contents

A	Probability			2
	A.1	Funda	damental concepts	
		A.1.1	Permutations and Combinations, Binomial Coefficient	2
		A.1.2	Expectation and Variance	4
		A.1.3	Expected value of a function of a RV	5
		A.1.4	Expectation and variance of linear functions	6
		A.1.5	Variance in terms of Moments Expression	6
		A.1.6	Expectation and Variance of Bernoulli	7
		A.1.7	Expectation of Discrete Uniform	7
		A.1.8	Variance of Discrete Uniform	9
		A.1.9		9
В	Supplementary Notes 10			10
	B.1	The su	um of the first n natural numbers is $n(n+1)/2$	10
	B.2	Telesco	oping series	11
	B.3	Sum o	f series of products of consecutive integers	12
	B.4	Sum o	f sequence of squares	13

Appendix A

Probability

A.1 Fundamental concepts

A.1.1 Permutations and Combinations, Binomial Coefficient.

k-permutations

Starting with n distinct objects, and letting k be some positive integer where $k \leq n$, consider counting the number of different ways that we ca pick k out of these n objects and arrange them into a sequence—the number of distinct k-object sequences.

We first have n choices for the first object. Having chosen the first, there are only n-1 possible choices for the second, n-2 for the third, and so on. This continues until we have chosen k-1 objects, leaving us with n-(k-1) choices for the last one. The number of possible sequences, called k-permutations, can be written as

$$n(n-1)\cdots(n-k+1)$$

This can be rewritten, giving us

$$n(n-1)\cdots(n-k+1) = \frac{n(n-1)\cdots(n-k+1)(n-k)\cdots2\cdot1}{(n-k)\cdots2\cdot1}$$
$$= \frac{n!}{(n-k)!}$$

See that in the special case where k = n we have

$$n(n-1)(n-2)\cdots 2\cdot 1=n!$$

(This can also be seen from substituting k = n into the formula and recalling the convention 0! = 1.) (next page)

Reordering a set

Starting with k objects, consider trying to find how many ways can we order them in a set of k elements. This follows a fairly similar principle to permutation; think of having k 'slots' to order k elements in: the first 'slot' has k possible inputs, the second k-1 and so on. See that this just gives us k!.

Combinations

Combinations can be viewed as counting the number of k-element subsets of a given n-element set. Combinations are different from permutations in that there is no ordering of selected elements. For instance, where the 2-permutations of the letters A, B, C, and D are

the *combinations* of two out of these four letters are

See that the 'duplicates' are grouped together; for instance AB and BA are not viewed as distinct.

This reasoning can be generalised: each combination is associated with k! 'duplicate' k-permutations—all 'duplicate' permutations of any given combination is just that permutation reordered for the maximum number of times:

(any single combination of length k) $\cdot k! =$ (permutations of that combination)

The number n!/(n-k)! of k-permutations is equal to the number of combinations times k!. Hence the number of possible combinations is equal to

$$\frac{n!}{k! (n-k)!}$$

Binomial Coefficient

Consider a bernoulli process with probability p. We want the probability of k 'successes' in n trials. See that the probability of one specific sequence of n trials yielding k 'successes' would be

$$p^k(1-p)^{n-k}$$

We obtain the desired probability by multiplying this by the number of combinations of k 'successes' we can obtain in n trials:

$$\binom{n}{k} p^k (1-p)^{n-k}$$

(think tossing a coin three times and obtaining two heads—the heads might occur on the first and third tosses, or other *combinations* of trials).

A.1.2 Expectation and Variance

Expectation

We define the expected value of a random variable X with a PMF p_X by

$$\boxed{\mathbb{E}[X] = \sum_{x} x p_X(x)}$$

Variance and Standard Deviation

We define the variance associated with a random variable X as

$$\operatorname{var}(X) = \mathbb{E}\left[(X - \mathbb{E}[X])^2 \right] = \sum_{x} (X - \mathbb{E}[X])^2 p_X(x)$$

(See that the because of the square the variance is always nonnegative). The variance provides a measure of dispersion of X around the mean. Another measure of dispersion is the *Standard deviation* of X, which is defined as the square root of the variance and is denoted by σ_X :

$$\sigma_X = \sqrt{\operatorname{var}(X)}$$

The standard deviation is often easier to interpret because it has the same units as X.

A.1.3 Expected value of a function of a RV

Expectation of a function

Let X be a RV with PMF p_X , and let g(X) be a function of X. Then the expected value of the random variable g(X) is given by

$$\mathbb{E}[g(X)] = \sum_{x} g(x) p_X(x)$$

This can be shown, since

$$p_Y(y) = \sum_{\{x | g(x) = y\}} p_X(x)$$

we have

$$\mathbb{E}[g(X)] = \mathbb{E}[Y]$$

$$= \sum_{y} y p_{Y}(y)$$

$$= \sum_{y} \sum_{\{x|g(x)=y\}} p_{X}(x)$$

$$= \sum_{y} \sum_{\{x|g(x)=y\}} y p_{X}(x)$$

$$= \sum_{y} \sum_{\{x|g(x)=y\}} g(x) p_{X}(x)$$

$$= \sum_{x} g(x) p_{X}(x)$$

Variance

Using this we can write the variance of X as

$$\operatorname{var}(X) = \mathbb{E}\left[(X - \mathbb{E}[X])^2 \right] = \sum_{x} (X - \mathbb{E}[X])^2 p_X(x)$$

A.1.4 Expectation and variance of linear functions

We show for a random variable X, and letting Y = aX + b:

$$\mathbb{E}[Y] = a\mathbb{E}[X] + b, \quad \text{var}(Y) = a^2 \text{var}(X)$$

Linearity of Expectations:

$$\mathbb{E}[Y] = \sum_{x} (ax+b)p_X(x) = a\underbrace{\sum_{x} xp_x(x)}_{=\mathbb{E}[X]} + b\underbrace{\sum_{x} p_x(x)}_{=1} = a\mathbb{E}[X] + b$$

Variance:

$$\operatorname{var}(Y) = \sum_{x} (ax + b - \mathbb{E}[aX + b])^{2} p_{X}(x)$$

$$= \sum_{x} (ax + b - a\mathbb{E}[X] + b)^{2} p_{X}(x)$$

$$= a^{2} \sum_{x} (x - \mathbb{E}[X])^{2} p_{X}(x)$$

$$= a^{2} \operatorname{var}(X)$$

Note that unless g(X) is a linear function, it is not generally true that $\mathbb{E}[g(X)]$ is equal to $g(\mathbb{E}[X])$.

A.1.5 Variance in terms of Moments Expression

We show

$$var(X) = \mathbb{E}[X^2] - (\mathbb{E}[X])^2$$

see that

$$\begin{aligned} \text{var}(X) &= \sum_{x} (x - \mathbb{E}[X])^2 p_X(x) \\ &= \sum_{x} (x^2 - 2x \mathbb{E}[X] + (\mathbb{E}[X])^2) p_X(x) \\ &= \sum_{x} x^2 p_X(x) - 2\mathbb{E}[X] \sum_{x} x p_X(x) + (\mathbb{E}[X])^2 \sum_{x} p_X(x) \\ &= \mathbb{E}[X^2] - 2(\mathbb{E}[X])^2 + (\mathbb{E}[X])^2 \\ &= \mathbb{E}[X^2] - (\mathbb{E}[X])^2 \end{aligned}$$

A.1.6 Expectation and Variance of Bernoulli

Consider a Bernoulli RV X with PMF

$$p_X(k) = \begin{cases} p, & \text{if } k = 1. \\ 1 - p, & \text{if } k = 0. \end{cases}$$

The mean, second moment, and variance of X are as follows:

$$\mathbb{E}[X] = 1 \cdot p + 0 \cdot (1 - p) = p$$

$$\mathbb{E}[X^2] = 1^2 \cdot p + 0 \cdot (1 - p) = p$$

$$\text{var}(X) = \mathbb{E}[X^2] - (\mathbb{E}[X])^2 = p - p^2 = p(1 - p)$$

A.1.7 Expectation of Discrete Uniform

Consider a Discrete Uniform RV X with PMF, for $k \in [a, b]$:

$$p_X(k) = \begin{cases} \frac{1}{b-a+1}, & \text{if } k = a, a+1 \dots, b \\ 0, & \text{otherwise.} \end{cases}$$

An illustration is useful here:

Expectation

Upon inspection one might suppose that the expectation is

$$\mathbb{E}[X] = \frac{a+b}{2}$$

(next page)

Expectation (cont.)

The formula can be elucidated from the definition of the expectation. First see that a sequence $\sum_{k=a}^{b} k$ can be written as

$$\sum_{k=a}^{b} k = \sum_{k=1}^{b} k - \sum_{k=1}^{a-1} k$$

$$= \frac{(b)(b+1)}{2} - \frac{(a-1)(a)}{2} \quad \text{(see B.1)}$$

$$= \frac{b^2 + b - a^2 + a}{2} = \frac{(b-a+1)(a+b)}{2}$$

The last step isn't easy to factor, but working back from our 'hypothesis' for the expectation it coincides.

so now we have

$$\mathbb{E}[X] = \sum_{k=a}^{b} k \left(\frac{1}{b-a+1}\right)$$

$$= \frac{1}{b-a+1} \sum_{k=a}^{b} k$$

$$= \frac{1}{b-a+1} \cdot \frac{(b-a+1)(a+b)}{2}$$

$$\mathbb{E}[X] = \frac{(a+b)}{2}$$

A.1.8 Variance of Discrete Uniform

Case for $k \in [1, n]$:

We can obtain the second moment for a discrete uniform distributed over $k \in [1, n]$ as

$$\mathbb{E}[X^2] = \sum_{k=1}^n k^2 \left(\frac{1}{n}\right)$$

$$= \frac{1}{n} \sum_{k=1}^n k^2$$

$$= \frac{1}{n} \cdot \frac{n(n+1)(2n+1)}{6} \quad \text{(see B.4)}$$

$$= \frac{(n+1)(2n+1)}{6}$$

We then use the formula for variance in terms of moments expression:

$$var(X) = \mathbb{E}[X^2] - (\mathbb{E}[X])^2$$

$$= \frac{(n+1)(2n+1)}{6} - \left(\frac{n+1}{2}\right)^2$$

$$= \frac{1}{12}(n+1)(4n+2-3n-3)$$

$$= \frac{n^2 - 1}{12}$$

General case $k \in [a, b]$:

For the general case, note that a RV uniformly distributed over an interval [a,b] has the *same variance* as one which is uniformly distributed over [1,b-a+1]—the PMF of the second is just a shifted version of the PMF of the first.

Therefore, the desired variance is given by the first case, but instead with n = b - a + 1, yielding

$$var(X) = \frac{(b-a+1)^2 - 1}{12} = \frac{(b-a)(b-a+2)}{12}$$

A.1.9

Appendix B

Supplementary Notes

B.1 The sum of the first n natural numbers is n(n+1)/2

We have that

$$\sum_{i=1}^{i} i = 1 + 2 + \dots + n$$

Now consider $2\sum_{i=1}^{n} i$:

$$2\sum_{i=1}^{n} i = 2(1+2+\cdots+(n-1)+n)$$

$$= (1+2+\cdots+(n-1)+n)+(n+(n-1)+\cdots+2+1)$$

$$= (1+n)+(2+(n-1))+\cdots+((n-1)+2)+(n+1)$$

$$= (n+1)_1+(n+1)_2+\cdots+(n+1)_n$$

$$= n(n+1)$$

so

$$2\sum_{i=1}^{n} i = n(n+1)$$
$$\sum_{i=1}^{n} i = \frac{n(n+1)}{2}$$

B.2 Telescoping series

Let $\langle b_n \rangle$ be a sequence in \mathbb{R} . Let $\langle a_n \rangle$ be a sequence defined as

$$a_k = b_k - b_{k-1}$$

we show

$$\sum_{k=m}^{n} a_k = b_n - b_{m-1}$$

See that

$$\sum_{k=m}^{n} a_k = \sum_{k=m}^{n} (b_k - b_{k-1})$$

$$= \sum_{k=m}^{n} b_k - \sum_{k=m}^{n} b_{k-1}$$

$$= \sum_{k=m}^{n} b_k - \sum_{k=m-1}^{n-1} b_k$$

$$= \left(\sum_{k=m}^{n-1} b_k + b_n\right) - \left(b_{m-1} + \sum_{k=m}^{n-1} b_k\right)$$

$$= b_n - b_{m-1}$$

B.3 Sum of series of products of consecutive integers

We show

$$\sum_{j=1}^{n} j(j+1) = 1 \cdot 2 + 2 \cdot 3 + \dots + n(n+1) = \frac{n(n+1)(n+2)}{3}$$

See that

$$3i(i+1) = i(i+1)(i+2) - i(i+1)(i-1)$$
$$= (i+1)((i+1)+1)((i+1)-1) - i(i+1)(i-1)$$

Thus we have the basis of a telescoping series (see (B.2)):

$$3i(i+1) = b(i+1) - b(i)$$

where

$$b(i) = i(i+1)(i-1)$$

So we have

$$\sum_{j=1}^{n} 3j(j+1) = \sum_{j=1}^{n} (j+1)((j+1)+1)((j+1)-1) - j(j+1)(j-1)$$
$$= n(n+1)(n+2) - 0(0+1)(0-1)$$
$$= n(n+1)(n+2)$$

Thus

$$\sum_{j=1}^{n} j(j+1) = \frac{n(n+1)(n+2)}{3}$$

B.4 Sum of sequence of squares

We show

$$\forall n \in \mathbb{N} : \sum_{i=1}^{n} i^2 = \frac{n(n+1)(2n+1)}{6}$$

See that this follows from (B.3):

$$\sum_{i=1}^{n} 3i(i+1) = n(n+1)(n+2)$$

$$\sum_{i=1}^{n} 3i^{2} + \sum_{i=1}^{n} 3i = n(n+1)(n+2)$$

$$\sum_{i=1}^{n} 3i^{2} = n(n+1)(n+2) - 3\frac{n(n+1)}{2} \quad \text{see (B.1)}$$

$$\sum_{i=1}^{n} i^{2} = \frac{n(n+1)(n+2)}{3} - \frac{n(n+1)}{2}$$

$$= \frac{2n(n+1)(n+2) - 3n(n+1)}{6}$$

$$= \frac{n(n+1)(2n+1)}{6}$$