# Московский государственный университет имени М. В. Ломоносова Факультет вычислительной математики и кибернетики

## Отчет по заданию $N_{0}6$

# «Сборка многомодульных программ. Вычисление корней уравнений и определенных интегралов.»

Вариант  $8 \; / \; 4 \; / \; 1$ 

Выполнил: студент 104 группы Каратыщев Д. И.

Преподаватель: Гуляев Д. А.

# Содержание

| Постановка задачи                          |    |
|--------------------------------------------|----|
| Математическое обоснование                 | 3  |
| Результаты экспериментов                   | 6  |
| Структура программы и спецификация функций | 7  |
| Сборка программы (Маке-файл)               | 8  |
| Зависимость между модулями программы       | 9  |
| Отладка программы, тестирование функций    | 10 |
| Программа на Си и на Ассемблере            | 11 |
| Анализ допущенных ошибок                   | 12 |
| Список цитируемой литературы               | 13 |

### Постановка задачи

Требовалось реализовать численный метод, позволяющий вычислять площадь плоской фигуры, ограниченной тремя кривыми  $y=f_1(x),\ y=f_2(x),\ y=f_3(x)$  с заданной точностью  $\varepsilon=0.001.$ 

Для вычисления абсцисс точек пересечения кривых, нужных для нахождения вершин фигуры, использовался комбинированный метод (хорд и касательных) приближённого решения уравнения F(x) = 0.

Площадь плоской фигуры вычислялась с использованием квадратурной формулы - формулы прямоугольников. Отрезок, на котором применялся метод нахождения корней необходимо было вычислить аналитически.

#### Математическое обоснование

Приведём требования на сходимость методов и оценки точности [1] и обоснуем выбор значений  $\varepsilon_1$ ,  $\varepsilon_2$ , а также отрезков для поиска точек пересечения кривых.

Анализируя графики всех трёх кривых, легко заметить, в каком диапазоне значений лежит каждый из корней. Для простоты вычислений были выбраны следующие диапазоны: [-3.0, -2.0], [-2.0, -0.25], [1.0, 2.0].

Площадь плоской фигуры вычисляется как интеграл, равный сумме определённого интеграла Римана функции  $F_1(x) = -\frac{5}{x} - e^x - 2$  на отрезке от самой крайней точки пересечения кривых слева до средней и определённого интеграла Римана функции  $F_2(x) = -2x + 6 - e^x$  на отрезке от средней точки пересечения до самой крайней точки пересечения справа.

Обозначим интеграл на первом отрезке как  $I_1$ , а интеграл на втором отрезке как  $I_2$ . Тогда площадь плоской фигуры - это  $I:=I_1+I_2$ . Пусть  $I_1$  вычислен без погрешности,  $I_1'$  с погрешностью вычисления точек пересечения  $\varsigma$ , а  $I_1''$  с погрешностью вычисления точек пересечения  $\varsigma$  и погрешностью метода прямоугольников вычисления определённого интеграла  $\varepsilon_2$ . Тогда, используя неравенство треугольника, получим:  $|I_1-I_1''|\leq |I_1-I_1'-I_1''+|I_1'-I_1''|\leq |I_1-I_1'|+|I_1'-I_1''|\leq \varsigma+\varepsilon_2$  Аналогично показывается, что  $|I_2-I_2''|\leq \varsigma+\varepsilon_2$ , а также что  $|I-I'|\leq 2\varsigma+2\varepsilon_2$ ,

Аналогично показывается, что  $|I_2 - I_2''| \le \varsigma + \varepsilon_2$ , а также что  $|I - I'| \le 2\varsigma + 2\varepsilon_2$ , где I' - это интеграл, посчитаный с погрешностью  $\varepsilon = 2\varsigma + 2\varepsilon_2 = 0.001$  Положим  $\varepsilon_2 = 0.0001$ ,  $\varepsilon_1 = 0.000001$  и покажем, что при таких значениях погрешности достигается заданная точность  $\varepsilon = 0.001$ .

$$\int_{a}^{b} \left( -\frac{5}{x} - e^{x} - 2 \right) dx = \left( -\ln(|x|) - e^{x} - 2x \right) \Big|_{a}^{b} = 5\ln\left|\frac{a}{b}\right| + e^{a} - e^{b} - 2(b - a)$$

Теперь учтём, что мы ищем корни с погрешностью  $\varepsilon_1$ , запишем каждый полученный корень как  $a+\varepsilon_1$  и  $b+\varepsilon_1$  и путём несложных преобразований получим:

$$\int_{a}^{b} \left( -\frac{5}{x} - e^x - 2 \right) dx - \int_{a+\varepsilon_1}^{b+\varepsilon_1} \left( -\frac{5}{x} - e^x - 2 \right) dx = 5 \ln \left| \frac{ab + a\varepsilon_1}{ab + b\varepsilon_1} \right| + (e^{\varepsilon_1} - 1)(e^b - e^a)$$

Аналогично получаем формулу для разности интеграла функции  $F_2(x)$  без погрешности корней и интеграла функции  $F_2(x)$  с погрешностью корней:

$$\int_{a}^{b} \left( -2x + 8 + \frac{5}{x} \right) dx - \int_{a+\varepsilon_1}^{b+\varepsilon_1} \left( -2x + 8 + \frac{5}{x} \right) dx = 5 \ln \left| \frac{ab + b\varepsilon_1}{ab + a\varepsilon_1} \right| + 2\varepsilon_1 (b - a)$$

Теперь обозначим  $\varsigma_1:=5ln\left|\frac{ab+a\varepsilon_1}{ab+b\varepsilon_1}\right|+(e^{\varepsilon_1}-1)(e^b-e^a)$  и  $\varsigma_2:=5ln\left|\frac{ab+b\varepsilon_1}{ab+a\varepsilon_1}\right|+2\varepsilon_1(b-a)$ . Тогда  $\varsigma=min\{\varsigma_1,\varsigma_2\}$ . Таким образом, для  $\varsigma_1,a=-3,b=-0.25,\varepsilon_1=0.000001$  и для  $\varsigma_2,a=-0.25,b=2,\varepsilon_1=0.000001$  получим, соответственно,  $\varsigma_1\approx 0.00002$  и  $\varsigma_2\approx 0.00002\Rightarrow \varsigma\approx 0.00004$ 

Итак, получили, что  $\varepsilon=0.001\geq 0.00008+0.0002=0.00028\Rightarrow$  значения  $\varepsilon_1$  и  $\varepsilon_2$  выбраны верно.

Требования на сходимость методов:

- 1. Метод хорд и касательных. Функция F(x) должна удовлетворять следующим условиям на рассматриваемом сегменте [a,b]:  $F(x) \in C^1[a,b]$ , F'(x) монотонна на [a,b] и сохраняет знак на этом сегменте.
- 2. Метод прямоугольников. Требование:  $F(x) \in C^{2}[a,b]$

Очевидно, что функции  $g_1(x):=f_3(x)-f_1(x)=-\frac{5}{x}-e^x-2, g_3(x):=f_2(x)-f_1(x)=-2x+6-e^x$  удовлетворяют требованиям метода прямоугольников, так как  $g_1(x)\in C^\infty[-3.0,-0.25],\ g_3(x)\in C^\infty[0.25,2.0].$  Покажем теперь, что функции  $g_1(x),g_2(x):=f_3(x)-f_2(x)=-\frac{5}{x}+2x-8,g_3(x)$  удовлетворяют требованиям метода хорд и касательных. Видно, что  $g_1(x)\in C^\infty[-3.0,-2.0],\ g_2(x)\in C^\infty[-2.0,-0.25],\ g_3(x)\in C^\infty[1.0,2.0],$  то есть данные фукиции являются бесконечно гладкими на соответствующих сегментах. Проверим монотонность и сохранение знака их производных:

$$g_3'(x) = -2 - e^x \Rightarrow g_3'(x) < 0, \forall x < 0.$$
  
 $g_3''(x) = -e^x < 0, \forall x < 0$ 

Следовательно, производная функции  $g_3(x)$  сохраняет знак (меньше нуля  $\forall x < 0$ ), а также по следствию теоремы Лагранжа монотонно убывает (отрицательность второй производной)  $\forall x < 0$ .

$$g_2'(x) = \frac{5}{x^2} + 2 \Rightarrow g_2'(x) > 0, \forall x < 0.$$

$$g_2''(x) = -\frac{10}{x^3} > 0, \forall x < 0$$

Следовательно, производная функции  $g_2(x)$  сохраняет знак (больше нуля  $\forall x < 0$ ), а также по следствию теоремы Лагранжа монотонно возрастает (положительность второй производной)  $\forall x < 0$ .

Докажем, что  $g_1^{'}(x) = \frac{5}{x^2} - e^x$  монотонна и сохраняет знак.

$$g_1''(x) = -\frac{10}{r^3} - e^x$$

$$g_{1}^{"}(x) = 0 \Leftrightarrow ln\left(-\frac{10}{x^{3}}\right) - x = 0.$$
 Рассмотрим  $\left(ln\left(-\frac{10}{x^{3}}\right) - x\right)' = \frac{-3 - x}{x}$ .

Заметим, что  $\frac{-3-x}{x} = 0 \Leftrightarrow x = -3$  При этом в этой точке достигается мини-

мум функции  $ln\left(-\frac{10}{x^3}\right)-x, \forall x<0$ , приблизительно равный 2. Следовательно,  $g_1^{''}(x)\neq 0, \forall x<0\Rightarrow$  в силу непрерывности  $g_1^{''}(x)$  получаем, что либо  $g_1^{''}(x)>0$   $\forall x<0$ . Несложно убедиться, что  $g_1^{''}(x)>0$   $\forall x<0$ . Получаем по следствию теоремы Лагранжа, что  $g_1^{'}(x)$  монотонно возрастает на отрезке [-3.0,-2.0], и при этом легко проверить, что она сохраняет на нём знак.

Таким образом, все функции удовлетворяют требованиям методов, использовавшихся при решении поставленной задачи. Ниже приведены графики функций.



Рис. 1: Плоская фигура, ограниченная графиками заданных уравнений

## Результаты экспериментов

Приведём результаты вычислений - координаты точек пересечения (таблица 1) и площадь полученной фигуры (рис. 2).

| Кривые | x       | y      |
|--------|---------|--------|
| 1 и 3  | -2.3905 | 2.0916 |
| 2 и 3  | -0.5495 | 9.0990 |
| 1 и 2  | 1.2518  | 5.4965 |

Таблица 1: Координаты точек пересечения



Рис. 2: Плоская фигура, ограниченная графиками заданных уравнений

### Структура программы и спецификация функций

Приведём полный список модулей и функций, изобразив его графически. Функциональность каждого модуля описана в документации к коду.



## Сборка программы (Маке-файл)

Приведём зависимости между модулями программы, а также текст Макефайла.

#### Makefile

```
all: main clean.o
main: main.o f1.o f2.o f3.o der_f1.o der_f2.o der_f3.o
gcc -lm -m32 *.o -o main
main.o: main.c
gcc -c -m32 main.c
f1.o: f1.asm
nasm -f elf32 f1.asm
f2.o: f2.asm
nasm -f elf32 f2.asm
f3.o: f3.asm
nasm -f elf32 f3.asm
der f1.o: der f1.asm
nasm -f elf<br/>32 der_f1.asm
der_f2.0: der_f2.asm
nasm -f elf32 \text{ der}_f2.asm
der f3.o: der f3.asm
nasm -f elf<br/>32 der_f3.asm
clean.o:
rm -rf *.o
clean:
rm -rf *.o main
```

## Зависимость между модулями программы

Ниже приведены зависимости между модулями программы. Каждая зависимость указана стрелкой, над которой написан компилятор и его опции, используемые для получения выходного файла программы.



## Отладка программы, тестирование функций

Рассмотрим результаты отладки программы и тестирования функций. Было проведено по 3 теста для функции root и integral для разных кривых. В программе реализовывалась соответствующая функция, а затем проводилось тестирование. Приведём результаты в виде списка, вычисления корней и отрезков применения методов проводились с помощью анализов соответствующих графиков функций.

#### 1. Функция root.

- (а) Уравнения кривых:  $f_1(x)=ln\big(\frac{1+x^2}{5}\big), f_2(x)\equiv 0$ . Уравнения их производных:  $f_1^{'}(x)=\frac{2x}{1+x^2}, f_2^{'}(x)\equiv 0$ . Отрезок для вычисления корня: [1,4]. Результат аналитических вычислений корень уравнения равен 2.0000. Результат работы численного метода корень: 2.00000.
- (b) Уравнения кривых:  $f_1(x) = sin(x), f_2(x) = cos(x^2)$ . Уравнения их производных:  $f_1'(x) = cos(x), f_2'(x) = -2xsin(x^2)$ . Отрезок для вычисления корня: [0,2]. Результат аналитических вычислений - корень уравнения равен 0.849369. Результат работы численного метода - корень: 0.84937.
- (c) Уравнения кривых:  $f_1(x)=e^x, f_2(x)=\frac{9}{x^3}$ . Уравнения их производных:  $f_1^{'}(x)=e^x, f_2^{'}(x)=-\frac{27}{x^4}$ . Отрезок для вычисления корня: [0.25,4]. Результат аналитических вычислений корень уравнения равен 1.33359. Результат работы численного метода корень: 1.33359.

#### 2. Функция integral.

- (а) Уравнение кривой:  $f(x) = ln(\frac{1+x^2}{5}) 0$ . Уравнение её производной:  $f'(x) = \frac{2x}{1+x^2}$ . Отрезок для вычисления интеграла: [2,4]. Результат аналитических вычислений интеграл равен 1.3324. Результат работы численного метода интеграл: 1.33245
- (b) Уравнение кривой:  $f(x) = sin(x) cos(x^2)$ . Уравнение её производной:  $f'(x) = cos(x) + 2xsin(x^2)$ . Отрезок для вычисления интеграла: [2, 4]. Результат аналитических вычислений интеграл равен 0.104498. Результат работы численного метода интеграл: 0.10450
- (c) Уравнение кривой:  $f(x) = e^x \frac{9}{x^3}$ . Уравнение её производной:  $f^{'}(x) = e^x + \frac{27}{x^4}$ . Отрезок для вычисления интеграла: [2, 6]. Результат аналитических вычислений интеграл равен 395.04. Результат работы численного метода интеграл: 395.03971

## Программа на Си и на Ассемблере

Исходные тексты программы имеются в архиве, который приложен к этому отчету.

## Анализ допущенных ошибок

Было изменено значение  $\varepsilon_2$  с 0.0001 на 0.000001, а также исправлен вывод точек пересечения кривых.

## Список литературы

[1] Ильин В. А., Садовничий В. А., Сендов Бл. X. Математический анализ. Т. 1 — Москва: Наука, 1985.