QUANTENMECHANIK, BLATT 1, SOMMERSEMESTER 2015, C. KOLLATH

Abgabe Di 14.4 vor der Vorlesung. Am 10.4. finden schon Übungsstunden statt.

I. INSTALLIEREN SIE MATHEMATICA AUF IHREM COMPUTER SCHON VOR DER ÜBUNGSTUNDE. BEANTRAGEN SIE DIREKT NACH DER VORLESUNG DIE LIZENZ, DA ES EIN PAAR TAGE DAUERN KANN.

Mathematica Lizenz: http://mathematica.physik.uni-bonn.de/ Hierfür gibt es keine Punkte.

II. ERINNERUNG WAHRSCHEINLICHKEITSRECHNUNG

Der Mittelwert $\langle X \rangle$ einer Variable X ist definiert durch :

$$\langle X \rangle = \sum_{i=1}^{n} p_i x_i$$
 (für diskrete Distributionen),

und

$$\langle X \rangle = \int x f_X(x) dx$$
 (für kontinuierliche Distributionen)

und die Varianz, $(\Delta X)^2 = Var(X) = \langle X^2 \rangle - \langle X \rangle^2$, ist :

$$(\Delta X)^2 = Var(X) = \sum_{i=1}^n p_i x_i^2 - \left(\sum_{i=1}^n p_i x_i\right)^2,$$

beziehungsweise

$$(\Delta X)^2 = Var(X) = \int x^2 f_X(x) dx - \left(\int x f_X(x) dx\right)^2.$$

Berechnen Sie den Mittelwert und die Varianz der folgenden Verteilungsfunktionen (Überprüfen Sie Ihr Ergebnis mit Mathematica):

- (a) der Gaussverteilung : $f(x) = \frac{1}{a_0\sqrt{2\pi}} \exp\left(-\frac{x^2}{2a_0^2}\right)$
- (b) der Poissonverteilung : $f_{\lambda}(k) = \lambda^k e^{-\lambda}/k!$ mit $k = 0, 1, 2, \dots, \infty$
- (c) Plotten Sie beide Verteilungen mit dem Computer (zum Beispiel mit Mathematica) für verschiedene Parameterwerte. Überprüfen Sie so, ob Ihre Ergebnisse für den Mittelwert und die Varianz Sinn machen.

III. FOURIERTRANSFORMATION

Zwei Funktionen $f(\mathbf{r})$ und $g(\mathbf{k})$ sind die Fouriertransformation von einander, wenn

$$f(\mathbf{r}) = \frac{1}{(2\pi)^{d/2}} \int e^{i\mathbf{k}\cdot\mathbf{r}} g(\mathbf{k}) d^d \mathbf{k}.$$

Die inverse Fouriertransformation ist gegeben durch

$$g(\mathbf{k}) = \frac{1}{(2\pi)^{d/2}} \int e^{-i\mathbf{k}\cdot\mathbf{r}} f(\mathbf{r}) d^d \mathbf{r}.$$

Hier d ist die Dimension.

A. Theorem von Parseval-Plancherel

Wir nehmen zwei Funktionen $f_1(x)$ und $f_2(x)$ und ihre Fouriertransformationen $g_1(k)$ und $g_2(k)$.

1. Zeigen Sie die folgende Relation:

$$\int_{-\infty}^{+\infty} f_1^*(x) f_2(x) dx = \int_{-\infty}^{+\infty} g_1^*(k) g_2(k) dk$$

Hier * ist die komplex Konjugierte.

2. Zeigen Sie, dass ein Wellenpakets $\psi(\mathbf{r}) = \frac{1}{(2\pi)^{3/2}} \int \varphi(\hbar \mathbf{k}) e^{i\mathbf{k}\cdot\mathbf{r} - iEt/\hbar} d^3\mathbf{k}$ normiert ist, wenn φ normiert ist.

B. Ableitung

Zeigen Sie, dass die Fouriertransformation von $\frac{\partial f(\mathbf{r})}{\partial x_j}$ gegeben ist durch $ik_jg(\mathbf{k})$.

IV. UNSCHÄRFERELATIONEN

Seien $f(\mathbf{r})$ und $g(\mathbf{p})$ normierte Wellenfunktionen, wobei g die Fouriertransformierte von f ist. Wir definieren

$$\langle p_x \rangle = \int_{-\infty}^{\infty} p_x |g(\mathbf{p})|^2 d^3 \mathbf{p}$$

$$\langle p_x^2 \rangle = \int_{-\infty}^{\infty} p_x^2 |g(\mathbf{p})|^2 d^3 \mathbf{p}$$

und analog für $\langle x \rangle$ und $\langle x^2 \rangle$ mit $f(\mathbf{r})$.

A. Beweis der Unschärfe

Zeigen Sie, dass

$$\Delta x \Delta p_x \ge \hbar/2 \tag{1}$$

(und auch für die Richtungen y und z), wobei $(\Delta p_x)^2 = \langle p_x^2 \rangle - \langle p_x \rangle^2$, und $(\Delta x)^2 = \langle x^2 \rangle - \langle x \rangle^2$. Benutzen Sie neue Variablen für die $\langle x \rangle = \langle p_x \rangle = 0$.

Hinweis: Ein hilfreicher Ansatz ist die Betrachtung des Integrals $I(\lambda) = \int \left| kf(k) + \lambda \frac{\mathrm{d}f}{\mathrm{d}k} \right|^2 \mathrm{d}k$ welches für alle Werte von λ positiv ist, d.h. $I(\lambda) \geq 0$.

B. Gauss Funktion

Berechnen Sie die Fouriertransformation g(k) der Gauss Funktion

$$f(x) = \left(\frac{1}{\pi a_0^2}\right)^{1/4} \exp\left(-\frac{x^2}{2a_0^2}\right)$$

- 1. Plotten Sie die Funktion und seine Fouriertransformierte für $a_0=1,\,a_0=10,\,\mathrm{und}~a_0=100.$
- 2. Bestimmen Sie jeweils den Mittelwert und die Varianz der Verteilung wie im vorigen Teil 'Unschärferelation' definiert und berechnen Sie das Produkt $\Delta x \Delta k_x$. Was fällt Ihnen auf?