ANALYSIS OF SEVERAL VARIABLES

Jaydeb Sarkar, notes by Ramdas Singh

Third Semester

List of Symbols

Placeholder

Contents

1	INTRODUCTION TO \mathbb{R}^n				
	1.1	Placeholder			
		1.1.1	Algebraic and Analytic Structure	1	
Ind	lex				

Chapter 1

INTRODUCTION TO \mathbb{R}^n

1.1 Placeholder

We begin with a definition.

```
Definition 1.1. The space \mathbb{R}^n is defined as \mathbb{R} \times \mathbb{R} \times \cdots \times \mathbb{R} (n \text{ times}) = \{(x_1, x_2, \dots, x_n) : x_i \in \mathbb{R}\}.
```

In the context of analysis, we will talk about open sets, closed sets, sequences, compact sets, and connected sets. In contrast, algebra considers \mathbb{R}^n as a vector space with the operators + and \cdot . Combining both these aspects results in the study of analysis of several variables. In this course, we will mainly focus on dealing with functions of the form $f: \mathbb{R}^n \to \mathbb{R}^m$, and talk about their properties such as continuity, differentiability, and integrability.

1.1.1 Algebraic and Analytic Structure

We note that \mathbb{R}^n is also an inner product space with the following properties:

- $\langle x, y \rangle = \sum_{i=1}^{n} x_i y_i$ for all $x, y \in \mathbb{R}^n$.
- The set $\{e_i\}_{i=1}^n$ consisting of the unit vectors is an orthonormal basis for \mathbb{R}^n .
- The simplest maps from \mathbb{R}^n to \mathbb{R}^m are linear maps that send lines to lines.

Example 1.2. Suppose the function f is a linear map from \mathbb{R} to \mathbb{R} . This implies that f(x) = xf(1) for all $x \in \mathbb{R}$. Thus, f(x) = cx for all $x \in \mathbb{R}$, where c is a constant. Conversely, if $c \in \mathbb{R}$, then $x \mapsto cx$ is a linear map. Therefore, we conclude that $\{f : \mathbb{R} \to \mathbb{R}, \text{linear}\} \leftrightarrow \mathbb{R}$, with a possible bijection given by $f \mapsto f(1)$.

In the above example, we note that 1 is not special; we could simply fix any $\alpha \in \mathbb{R} \setminus \{0\}$, and notice that $f(x) = \frac{x}{\alpha} f(\alpha)$ for all $x \in \mathbb{R}$. Here, replacing f(1) by $f(\alpha)$ is a kind of 'change of variable'.

Remark 1.3. Let $L: \mathbb{R}^n \to \mathbb{R}^m$ be a linear map. Then, $Le_j = \sum_{i=1}^m a_{ij}e_i$ for all j = 1, 2, ..., n. We may write L as $(a_{ij})_{m \times n} \in M_{m \times n}(\mathbb{R})$, the set of all $m \times n$ matrices with real entries.

Coming to the analysis side, there is a need for defining a distance between points in \mathbb{R}^n . Previously, we have seen that the *norm* may be given as $||x|| = \sqrt{\sum_{i=1}^n x_i^2}$ for all $x \in \mathbb{R}^n$. We can use this norm to define our required distance function.

Definition 1.4. The distance function between two points $d: \mathbb{R}^n \times \mathbb{R}^n \to \mathbb{R}_{\geq 0}$ is defined as $d(x,y) = ||x-y|| = \left(\sum_{i=1}^n (x_i - y_i)^2\right)^{1/2}$ for all $x,y \in \mathbb{R}^n$.

For n = 1, we note that d(x, y) = |x - y|, from the previous analysis courses. \mathbb{R}^n equipped with the function d is called a *metric space*. Coming to the properties of the inner product, we have

- $||x|| = \langle x, x \rangle^{1/2}$ for all $x \in \mathbb{R}^n$.
- $\langle x, y \rangle = \langle y, x \rangle$ for all $x, y \in \mathbb{R}^n$.
- The function \langle , \rangle is linear with respect to the first and second arguments.

We also have the important Cauchy-Schwarz inequality.

Theorem 1.5 (Cauchy-Schwarz inequality). For all $x, y \in \mathbb{R}^n$, we have $|\langle x, y \rangle| \leq ||x|| ||y||$.

Proof. Note that

$$0 \le \sum_{i=1}^{n} \sum_{j=1}^{n} (x_i y_j - x_j y_i)^2 = 2 \left(\sum_{i,j} x_i^2 y_j^2 - \sum_{i,j} x_i x_j y_i y_j \right) = 2 \left(\|x\|^2 \|y\|^2 - \langle x, y \rangle^2 \right)$$
(1.1)

$$\implies |\langle x, y \rangle| \le ||x|| \, ||y|| \,. \tag{1.2}$$

We note that equality occurs if and only if the first quantity in the above equation is zero, *i.e.*, if and only if $x_i y_j = x_j y_i$ for all i, j, or $\frac{x_i}{y_i} = \frac{x_j}{y_j}$ for all i, j showing that x and y are linearly dependent.

Corollary 1.6 (Triangle inequality). For all $x, y \in \mathbb{R}^n$, we have $||x + y|| \le ||x|| + ||y||$.

Proof. We have

$$||x + y||^2 = \langle x + y, x + y \rangle = ||x||^2 + 2\langle x, y \rangle + ||y||^2 \le ||x||^2 + 2||x|| ||y|| + ||y||^2 = (||x|| + ||y||)^2$$
 (1.3)

where the inequality follows from Cauchy-Schwarz.

The following will prove to be an important result.

Theorem 1.7. Let $L : \mathbb{R}^n \to \mathbb{R}^m$ be a linear map. Then, there exists a M > 0 such that $||Lx|| \le M ||x||$ for all $x \in \mathbb{R}^n$.

Proof. Rewriting x as $x = \sum_{i=1}^{n} x_i e_i$, we have

$$Lx = \sum_{i=1}^{n} x_i Le_i$$

$$\implies ||Lx|| = \left\| \sum_{i=1}^{n} x_i Le_i \right\| \le \sum_{i=1}^{n} |x_i| ||Le_i|| \le ||x|| \sum_{i=1}^{n} ||Le_i|| = ||x|| M.$$
(1.4)

The first inequality follows from the triangle inequality, and the second from Cauchy-Schwarz. In the last step, M is set to be $\sum_{i=1}^{n} ||Le_i||$, which is a constant.

We also term (\mathbb{R}^n, d) as a Euclidean metric space. There is now a need to define open sets in \mathbb{R}^n to talk more about the analysis of several variables.

Definition 1.8. For $a \in \mathbb{R}^n$ and r > 0, the *open ball* centred at a of radius r is $B_r(a) := \{x \in \mathbb{R}^n : d(x,a) < r\}$, the set of all points in \mathbb{R}^n that are at a distance less than r from a.

From the notion of open balls, we can define open sets.

Definition 1.9. A set $S \subseteq \mathbb{R}^n$ is said to be an *open set* if for all $x \in S$, there exists an r > 0 such that $B_r(x) \subseteq S$.

We now bring the notion of convergence of sequences.

Definition 1.10. Let $\{x_m\} \subseteq \mathbb{R}^n$ be a sequence and $x \in \mathbb{R}^n$. We say that $\{x_m\}$ converges to x if for every $\varepsilon > 0$, there exists a natural N such that $||x_m - x|| < \varepsilon$ for all $m \ge N$.

Index

Cauchy-Schwarz inequality, 2 converges, 3

distance, 1

metric space, 2

norm, 1

open ball, 2 open set, 3

Triangle inequality, 2