Adjunta

$$A^\dagger = \bar{A}^T$$

Simétrica

$$A = A^T$$

$$A_{ij} = A_{ji}$$

Anti-simétrica

$$A = -A^T$$

$$A_{ij} = -A_{ji}$$

Hermítica

$$A^{\dagger} = A$$

Valores próprios reais, $A_{ij} = \bar{A_{ji}}$

Anti-Hermítica

$$A^{\dagger} = -A$$

Valores próprios imaginários puros

Ortogonal

$$Q^TQ = I$$

Real, valores próprios ± 1 ,
base ortonormada Se for invertível $A^{-1}=A^T$

Unitária

$$U^{\dagger}U = I$$

Complexa, valores próprios com módulo 1

Se for invertivel $A^{-1} = A^{\dagger}$

Para grupos matrizes $G\subseteq GL(n,\mathbb{R}),$ álgebra de Lie é:

 $g = \{X \in M_n(\mathbb{R}) | \exists G(t) \in G \text{ tal que } G(0) = I, G'(0) = X$

Grupo de Lie G	Álgebra de Lie $g = T_I G$
$GL(n,\mathbb{R})$	$M_n(n,\mathbb{R})$
$SL(n,\mathbb{R})$	$\{X \in M_n(\mathbb{R}) tr(X) = 0\}$
SO(n)	$\{X \in M_n(\mathbb{R}) X^T = -X\}$ (hemi-hermíticas)
SU(n)	$\{X \in M_n(\mathbb{R}) X^{\dagger} = -X, tr(X) = 0\}$

Grupo	Definição	Álgebra de Lie	Dimensão
GL(n)			n^2
SL(n)	det = 1	tr(X) = 0	$n^2 - 1$
O(n)	$X^T X = I$	$X^T = -X$	$\frac{n(n-1)}{2}$
SO(n)	$X^T X = I, det = 1$		$\frac{n(n-1)}{2}$
U(n)	$X^{\dagger}X = I$	$X^{\dagger} = -X$	n^2
SU(n)	$X^{\dagger}X = I, det = 1$	$X^{\dagger} = -X, tr(X) = 0$	$n^2 - 1$

$\mathfrak{so}(3)$

Exemplo $SL(n\mathbb{R})$

$$SO(2) = \begin{pmatrix} \cos \theta & -\sin \theta \\ \sin \theta & \cos \theta \end{pmatrix} = e^{\theta \begin{pmatrix} 0 & -1 \\ 1 & 0 \end{pmatrix}}$$

$$SO(2) = \begin{pmatrix} \cos \theta & -\sin \theta \\ \sin \theta & \cos \theta \end{pmatrix} = e^{\theta \begin{pmatrix} 0 & -1 \\ 1 & 0 \end{pmatrix}}$$

$$SO(3) = \begin{pmatrix} \cos \theta & 0 & -\sin \theta \\ 0 & 1 & 0 \\ \sin \theta & 0 & \cos \theta \end{pmatrix} = e^{\theta \begin{pmatrix} 0 & 0 & -1 \\ 1 & 0 & 0 \\ 1 & 0 & 0 \end{pmatrix}}$$