Module: Processus Stochastiques 2

Correction Test

Exercice 1 1/(2 pts) Soit Y une v.a. réelle sur (Ω, A, P) telle que $E(|Y|) < +\infty$.

On a que $\forall B \in \mathcal{F} : \int_{B} E(Y/\mathcal{F}) dP = \int_{B} Y dP$. Mais $\mathcal{F} = \{\emptyset, \Omega\}$, donc:

- Si $B = \Omega$: $\int_{\Omega} E(Y/\mathcal{F}) dP = \int_{\Omega} Y dP = E(Y) = E(Y)P(\Omega) = E(Y)\int_{\Omega} dP = \int_{\Omega} E(Y) dP$
- Si $B = \emptyset$: $\int_{\emptyset} E(Y/\mathcal{F}) dP = 0 = \int_{\emptyset} Y dP = \int_{\emptyset} E(Y) dP$

Donc $\forall B \in \mathcal{F} = \{\emptyset, \Omega\} : \int_B E(Y/\mathcal{F}) dP = \int_B E(Y) dP$, ainsi d'après le Lemme 1, $E(Y/\mathcal{F}) = E(Y)$ p.s.

2/ (1 pts) Soit X une v.a constante (p.s), i.e., X = a p.s où a est une constante. On sait que $E(Y/X) = E(Y/\sigma(X))$ avec $\sigma(X) = \{X^{-1}(B) : B \in \mathcal{B}_{\mathbb{R}}\}$ mais X prend (p.s.) seulement la valeur a donc $\{X = a\} = \{\omega : X(\omega) = a\} = \Omega$ et $\{X \neq a\} = \emptyset$, et ainsi $\sigma(X) = \{\{X = a\}, \{X \neq a\}\} = \{\emptyset, \Omega\}$. D'après la question 1/, E(Y/X) = E(Y) p.s.

Exercice 2 Soit $\mathcal{F}_n = \sigma(\varepsilon_1, \varepsilon_2, ..., \varepsilon_n)$. Montrons que $X_n = S_n^2 - T_n^2$ est une martingale par rapport à la filtration $(\mathcal{F}_n)_n$.

- (1 pts) $X_n = S_n^2 T_n^2$ est fonction des variables aléatoires $\varepsilon_1, \varepsilon_2, ..., \varepsilon_n$, donc X_n est \mathcal{F}_n -mesurable, ainsi $(X_n)_n$ est adaptée à la filtration $(\mathcal{F}_n)_n$.
- (1 pts) On a $E(|X_n|) \le E(S_n^2) + T_n^2$, et

$$E(S_n^2) = \sum_{i=1}^n E(\varepsilon_i^2) + \sum_{\substack{i,j=1\\i\neq j}}^n E(\varepsilon_i \varepsilon_j)$$
$$= \sum_{i=1}^n \sigma_i^2, \text{ car } E(\varepsilon_i \varepsilon_j) = 0 \text{ pour } i \neq j.$$

Donc $E(|X_n|) \le 2T_n^2 < +\infty$. D'où X_n est intégrable $\forall n \ge 1$.

• (4 pts) Montrons que: $E(X_{n+1}/\mathcal{F}_n) = X_n$. On a

$$E(X_{n+1}/\mathcal{F}_{n}) = E(S_{n+1}^{2}/\mathcal{F}_{n}) - T_{n+1}^{2}$$

$$= E[(S_{n} + \varepsilon_{n+1})^{2}/\mathcal{F}_{n}] - T_{n}^{2} - \sigma_{n+1}^{2}$$

$$= E[S_{n}^{2}/\mathcal{F}_{n}] + E[\varepsilon_{n+1}^{2}/\mathcal{F}_{n}] + 2E[S_{n}\varepsilon_{n+1}/\mathcal{F}_{n}] - T_{n}^{2} - \sigma_{n+1}^{2}$$

$$= S_{n}^{2} + E[\varepsilon_{n+1}^{2}] + 2S_{n}E[\varepsilon_{n+1}] - T_{n}^{2} - \sigma_{n+1}^{2} \text{ car } S_{n} \text{ est } \mathcal{F}_{n} - \text{mesurable}$$

$$\text{et } \varepsilon_{n+1} \text{ est indépendante de } \mathcal{F}_{n}.$$

$$= S_{n}^{2} + \sigma_{n+1}^{2} - T_{n}^{2} - \sigma_{n+1}^{2} \text{ car } E[\varepsilon_{n+1}] = 0 \text{ et } E[\varepsilon_{n+1}^{2}] = \sigma_{n+1}^{2}$$

$$= S_{n}^{2} - T_{n}^{2} = X_{n}.$$

Ainsi $X_n = S_n^2 - T_n^2$ est une martingale.

Exercice 3 A/ (4 pts)

- $1/T_1$ n'est pas un temps d'arrêt. Il ne peut pas deviner le future.
- $2/T_2$ est un temps d'arrêt. Sachant l'information disponible il peut savoir si sa fortune a dépassé le double de sa mise initiale.
- $3/T_3$ n'est pas un temps d'arrêt. en effet au temps T_3 personne ne sait que le cours est à son maximum.
- $4/T_4$ est un temps d'arrêt. La décision est prise en fonction de l'information dont on dispose.

B/ (2 pts)

 $1/M_t$ n'est pas une martingale car $E(M_t|\mathcal{G}_s)$ peut ne pas être égale à M_s ,par exemple si $\mathcal{F}_s \subset \mathcal{F}_t \subset \mathcal{G}_s$ alors $E(M_t|\mathcal{G}_s) = M_t$ et pas M_s .

 N_t n'est pas \mathcal{F}_t -mesurable (Car pour $B \in \mathcal{B}_{\mathbb{R}}$, on a $N_t^{-1}(B) \in \mathcal{G}_t$ mais $N_t^{-1}(B)$ peut ne pas appartenir à \mathcal{F}_t car $\mathcal{F}_t \subset \mathcal{G}_t$. donc N n'est pas une \mathcal{F}_t -martingale.

 $2/\{T=t\} \in \mathcal{F}_t \subset \mathcal{G}_t$ donc T est un \mathcal{G}_t -temps d'arrêt. $\{S=t\} \in \mathcal{G}_t$ mais $\{S=t\}$ peut ne pas appartenir à \mathcal{F}_t car $\mathcal{F}_t \subset \mathcal{G}_t$. Donc S n'est pas un \mathcal{F}_t -temps d'arrêt.