1 Prove the following equations:

1.1
$$\left(\frac{\partial P}{\partial T}\right)_{S} = \frac{C_{P}}{T} \left(\frac{\partial T}{\partial V}\right)_{P}$$
1.2 $\frac{H}{RT^{2}} = -\left[\frac{\partial}{\partial T} \left(\frac{G}{RT}\right)\right]_{P}$
5 H P

B10704007 邱允平

2 Derive
$$dU = C_V dT + \left[T\left(\frac{\partial P}{\partial T}\right)_V - P\right] dV$$

Several thermodynamic properties of the changes between water (I) and ice (s) are $H_{H_2O(l)}$, $H_{H_2O(s)}$, $\Delta H_{H_2O(s\to l)}$, $\Delta S_{H_2O(s\to l)}$, and $\Delta G_{H_2O(s\to l)}$. Indicate that these properties are greater than, equal to, or smaller than zero at 298 K, 273 K, and 253 K. Set that the melting temperature of water/ice is 273 K.

	$H_{H_2O(l)}$	$H_{H_2O(s)}$	$\Delta H_{H_2O(s \rightarrow l)}$	$\Delta S_{H_2O(s \rightarrow l)}$	$\Delta G_{H_2O(s \rightarrow l)}$
298 K					
273 K					
253 K					

1. (1)
$$\left(\frac{\partial P}{\partial T}\right)_{S} \left(\frac{\partial T}{\partial S}\right)_{P} \left(\frac{\partial S}{\partial P}\right)_{T} = -1 \Rightarrow \left(\frac{\partial P}{\partial T}\right)_{S} = \frac{-\left(\frac{\partial S}{\partial T}\right)_{P}}{\left(\frac{\partial S}{\partial P}\right)_{T}} = \frac{-\left(\frac{CP}{T}\right)}{-\left(\frac{2V}{2T}\right)_{P}} = \frac{CP}{T} \left(\frac{\partial T}{\partial V}\right)_{P}$$

$$\left(\frac{3}{3T}\left(\frac{G}{RT}\right)\right)_{P} = -\left[\left(\frac{3G}{3T}\right)_{P} \cdot \frac{1}{RT} - \frac{G}{RT^{2}}\right] = \frac{G}{RT^{2}} + \frac{S}{RT} = \frac{G+ST}{RT^{2}}$$

$$\left(\frac{3}{3T}\left(\frac{G}{RT}\right)\right)_{P} = -\left[\left(\frac{3G}{3T}\right)_{P} \cdot \frac{1}{RT} - \frac{G}{RT^{2}}\right] = \frac{G}{RT^{2}} + \frac{S}{RT} = \frac{G+ST}{RT^{2}}$$

$$\left(\frac{3}{3T}\left(\frac{G}{RT}\right)\right)_{P} = -\left[\left(\frac{3G}{3T}\right)_{P} \cdot \frac{1}{RT} - \frac{G}{RT^{2}}\right] = \frac{G}{RT^{2}} + \frac{S}{RT} = \frac{G+ST}{RT^{2}}$$

$$2 \quad dU = \left(\frac{\partial U}{\partial T}\right)_{V}dT + \left(\frac{\partial U}{\partial V}\right)_{T}dV = C_{P}dT + \left(\frac{\partial U}{\partial V}\right)_{T}dV \quad B_{P} \quad dU = TdS - PdV \Rightarrow \left(\frac{\partial U}{\partial V}\right)_{T} = T\left(\frac{\partial S}{\partial V}\right)_{T} - P$$

$$(*) \text{(*)} \text{(*)} \Rightarrow dU = C_{P}dT + \left[T\left(\frac{\partial S}{\partial V}\right)_{T} - P\right]dV = C_{P}dT + \left[T\left(\frac{\partial P}{\partial T}\right)_{V} - P\right]dV$$

$$Q.E.D$$

 $\Delta H_{H_2O(s\rightarrow l)}$ $\Delta S_{H_2O(s\to l)}$ $\Delta G_{H_2O(s \rightarrow l)}$ $H_{H_2O(l)}$ $H_{H_2O(s)}$ 298 K 25°C 20 >0 = O 273 K oc くっ >0 40 253 K ->30 L >0 40 0 20 >0

$$H_{L} = O + \int_{148}^{T} C_{P,L} dT = 9s.44 [T - 148]$$

$$H_{S} = O + \int_{148}^{148} C_{P,L} dT - O + \int_{(S \to L)}^{14} + \int_{148}^{T} C_{P,S} dT$$

$$= 9s.44 [213 - 148] - 6008 + 38(T - 143)$$

$$= -7894 + 38(T - 148)$$