Modularity Naximiza
Modulaity: A measure to check how well I the gray of nodes and its corrections.
1 A D D D D D D D D D D D D D D D D D D
Each vertox/ node 1 has a type of
Each vertox/ node i has a type ci Three are No type of lattle.
elmo elmo
Actual no of edges. S(Ci,Cj) = 1 Z Aij S(Ci,Cj) -> A Z Z edges (i) S(ci,Cj) = 1 if Ci = Cj Conted twice (He assume cyuph)
edges (i) svery pair of vortices
S(ci,cj) = 1 if ci=cj =0, otherwise conted twice (He assume (j,i) undirected grass)
S(ci,ci) - 1 of therise Consteal + will () He assume
yaph)
Expected no of edges.
1 Z Kiki S(Ci,Cj) ->B)
1 2 Mill 8(4,5)
2 is 2m
1) A i ha Notal - Expected.
Modularity Actual - Expected: Modularity Actual - Expected: Expected no of edges bet 2 of d of Kikil & (ci, gi)
1 2 Aij 8 (cisi) - 1 2 (kiki) 8 (ci, gi) 2 ij 2m) 8 (ci, gi) 1 4 (Aii - Kiki) 8 (ci, gi)
1 5 Aij 8 (Cifi) - 1 2 [] 2 m
= 12 (Aij - Kill) & (Ci, U)
= 1 2 (Aij - Kiki) S(Ci, Gi) = 12 2 (Aij - Kiki) S(Ci, Gi) Madulandy matrix
Total edge m 1 & (Aij - Kiti) & (Ci, Gi)
Total alger m. Total alger m. 2 m S(Ci, Gi) 2 m S(Ci, Gi) Modulandy Modulandy Assortative Mixing
1. Julianoly
Assortative Mixing
Disassar tatie u
Moduland de 70 -> Assortative Mixing de 20 -> Disassertative u
Q=0 > Nover
Always & = 1 Expected no. of edges bet V, & V4
1 1 no of edges let VI " 4
Topedia "

$$\frac{1}{2} \frac{1}{2} \frac{1}$$

Let $S_i^* = 1$ if vertex i belongs to group 1 $S_i^* = -1$ if vertex i is a 2

$$S(C_i^o, C_j^o) = \frac{1}{2} \left(S_i S_j^o + 1 \right)$$

$$S(C_i^o, C_j^o) = \frac{1}{2} \left(S_i S_j^o + 1 \right) \left(e_{youp 2} \right)$$

$$\frac{1}{2} \left(1 \cdot 1 + 1 \right) = 1 \left(e_{youp 2} \right)$$

$$\frac{Q}{2m} = \frac{1}{2m} \underbrace{\underbrace{\sum_{j=1}^{2} B_{ij} \underbrace{\sum_{j=1}^{2} (S_{i}.S_{j}+1)}_{2m}}_{S_{i}.j} \underbrace{\underbrace{\sum_{j=1}^{2} (S_{i}.S_{j}+1)}_{2m}}_{Convex}$$

$$= \underbrace{1}_{2m} \underbrace{\underbrace{\sum_{j=1}^{2} B_{ij} \underbrace{\sum_{j=1}^{2} (S_{i}.S_{j}+1)}_{2m}}_{S_{i}.S_{j}} \underbrace{\underbrace{\sum_{j=1}^{2} S_{i}.S_{j}}_{S_{i}.S_{j}}}_{Convex}$$

$$= \underbrace{1}_{4m} \underbrace{\underbrace{\sum_{j=1}^{2} B_{ij} \underbrace{S_{i}.S_{j}}_{S_{i}.S_{j}}}_{S_{i}.S_{j}} \underbrace{\underbrace{\sum_{j=1}^{2} B_{ij} \underbrace{S_{i}.S_{j}}_{S_{i}.S_{j}}}_{S_{i}.S_{i}.S_{j}}}_{S_{i}.S_{i}.S_{j}} \underbrace{\underbrace{\sum_{j=1}^{2} B_{ij} \underbrace{S_{i}.S_{j}}_{S_{i}.S_{j}}}_{S_{i}.S_{i}.S_{j}}}_{S_{i}.S_{i}.S_{j}}$$

$$= \underbrace{1}_{4m} \underbrace{\sum_{j=1}^{2} B_{ij} \underbrace{S_{i}.S_{j}}_{S_{i}.S_{j}}}_{S_{i}.S_{j}}}_{S_{i}.S_{i}.S_{j}}}_{S_{i}.S_{i}.S_{j}}$$

$$= \underbrace{1}_{4m} \underbrace{\sum_{j=1}^{2} B_{ij} \underbrace{S_{i}.S_{j}}_{S_{i}.S_{j}}}_{S_{i}.S_{j}}}_{S_{i}.S_{i}.S_{j}}$$

$$= \underbrace{1}_{4m} \underbrace{\sum_{j=1}^{2} B_{ij} \underbrace{S_{i}.S_{j}}_{S_{i}.S_{j}}}_{S_{i}.S_{j}.S_{j}}}_{S_{i}.S_{i}.S_{j}}}_{S_{i}.S_{i}.S_{j}}$$

$$= \underbrace{1}_{4m} \underbrace{\sum_{j=1}^{2} B_{ij} \underbrace{S_{i}.S_{j}}_{S_{i}.S_{j}}}_{S_{i}.S_{j}.S_{j}}}_{S_{i}.S_{i}.S_{j}}}_{S_{i}.S_{i}.S_{j}.S_{j}}$$

$$= \underbrace{1}_{4m} \underbrace{\sum_{j=1}^{2} B_{ij} \underbrace{S_{i}.S_{j}.S_{j}}}_{S_{i}.S_{j}.S_{j}.S_{j}}}_{S_{i}.S_{j}.S_{j}.S_{j}.S_{j}.S_{j}.S_{j}.S_{j}}}_{S_{i}.S_{j$$

To maximize a f , we take derivative

Max 1 STBS SielR 4m

Thu are 6 $(-1^{2} + (-1)^{2} +$

A (01R() =0 => 0 (STBC + B (n-STS))

 $\frac{\partial}{\partial s} (s^{1}BS) = 0 \Rightarrow \frac{\partial}{\partial s} \left[S^{T}BS + \beta (n-S^{T}S) \right]$ 2 SB + 2 Bn - JISTS Multiplier (Az=1x)

Eignrecht rabe 2 SB 4 0 - 2 p S = 0 method 2BS - 2BS = 0RBS = XBS Bs=Bs Maximing I sTBs = I sT Bs eigen verlocker sedgen sedgen sedgen sedgen sedgen sedgen sign sign sedgen sign sign sedgen sedgen sign sedgen sedgen sign sedgen sedgen sign sedgen se Moderated & sill be leading eigen vector S=[----] This nech will have either the entries of the entries Make the entries as +1 -re entire as -1 S will have n entries (components) because them are n vertices in the graph Each component will have +1 d -1

Spectal and form

Modularity Maximin algo

- 1. Calculate leading eigen vector of modularity
- 2. Divide vertices according to the Signe of the components in the leading eigen vector.