Introduction to Cryptography Lecture 16–18

©Michael Luttenberger

Chair for Foundations of Software Reliability and Theoretical Computer Science Technische Universität München

2019/01/18, 16:35

 Lecture 16 - 18 - OWF candidates, Construction of PRGs, HF One-way functions

Candidates for OWFs and OWPs

One-way functions from computationally secret encryption*

From one-way permutations to pseudorandom generators

Hash functions

- Informally, a function $f: X \to Y$ is one-way if
 - it is "easy" to compute f(x) for any $x \in X$, but
 - it is "infeasible" to compute $f^{-1}(y)$ for most $y \in Y$.
- In order to give a formal definition of "one-way" we need to make to precise what we mean by "easy", "infeasible", and "most".
- Just as in the case of PRGs and PRFs/PRPs one has to use either concrete or asymptotic bounds.
- We only consider the asymptotic definition:
 - The (security) parameter becomes the problem length n=|x| with $X_n:=\{x\in X\colon |x|=n\}.$
 - "easy" becomes DPT-computable.
 - "infeasible" and "most" becomes that any PPT-adversary has only a negligible chance to compute any $x' \in f^{-1}(f(x))$ for $x \overset{u}{\in} X_n$.

Definition: simple one-way function/permutation (OWF/OWP)
 A DPT-computable function

$$f \colon \{0,1\}^* \to \{0,1\}^*$$

is called a simple OWF if for any PPT-algorithm ${\cal A}$

$$\varepsilon(n) := \Pr_{x \in \{0,1\}^n} \left[\mathcal{A}(1^n, f(x)) \in f^{-1}(f(x)) \right]$$

is negligible in n.

It is a simple OWP if $f(\{0,1\}^n) = \{0,1\}^n$ for all $n \in \mathbb{N}$.

- Theorem: (w/o proof)
 If (simple) OWF exist, then P ≠ NP.
- ▶ We can only conjecture that certain problems yield OWFs.

- As simple OWF map binary strings to binary strings,
 it is quite cumbersome to really paraphrase actual problems like
 - Factorization of integers:

For a given $N \in \mathbb{N}$ find non-trivial x, y s.t. N = xy.

• Discrete logarithm:

For a cyclic group $\mathbb{G}=\langle g \rangle$ and $y \in \mathbb{G}$ find x s.t. $g^x=y$.

as a simple OWF.

▶ For these problems, it is more convenient to use collections of OWFs.

• **Definition**: A PPT-function collection $\mathcal{F} = (\mathsf{Gen}, f)$ consists of

Algorithm	Туре	Input	Output
Gen	PPT	1^n	$\mid I \overset{r}{\in} \mathcal{I}_n \text{ with } I \geq n$
f	DPT	$I \in \mathcal{I}_n$, $x \in Dom_I$	$y \in Rng_I$

where

Gen generates function parameters $I \in \mathcal{I}_n$.

Every parameter I defines a domain Dom_I and range Rng_I , and the function $f_I \colon \mathsf{Dom}_I \to \mathsf{Rng}_I \colon x \mapsto f_I(x) := f(I,x)$

 ${\mathcal F}$ is a permutation collection if f_I is a permutation on ${\sf Dom}_I={\sf Rng}_I$ for every $I\in {\mathcal I}_n.$

• **Definition**: A one-way function/permutation (collection) (OWF/OWP) $\mathcal{F} = (\mathsf{Gen}, f, \mathsf{Smpl})$ is a function/permutation collection (Gen, f) plus a sampling algorithm

Algorithm	Type	Input	Output
Smpl	PPT		some x where $x \in Dom_I$ except for negl. prob.

such that for any PPT-adversary $\Pr\left[\operatorname{Win}_{n,\mathcal{F}}^{\mathrm{OWF}}\right](\mathcal{A})$ is negl. in n:

- ① Alice&Bob generate $I := \operatorname{Gen}(1^n)$, choose $x := \operatorname{Smpl}(I)$, compute $y := f_I(x)$, and pass (I,y) to Eve.
- **2** Eve runs $\mathcal{A}(I,y)$ to obtain x'.
- ightharpoonup Let $Win_{n,\mathcal{F}}^{OWF}(\mathcal{A})$ be the event that $f_I(x')=y$.

Short: $\Pr_{I:=\mathsf{Gen}(1^n),x:=\mathsf{Smpl}(I)} \left[\mathcal{A}(I,f_I(x)) \in f_I^{-1}(f_I(x)) \right]$ is negl. in n.

- Generic setup for factorization:
- Gen is deterministic with $I_n := \operatorname{Gen}(1^n)$
- ullet $\mathsf{Dom}_{I_n} \subseteq [0, 2^{n/k} 1]^k$ for some k determined by I_n
- $\mathsf{Rng}_{I_n} = [2^{n-1}, 2^n 1]$
- $f_{I_n}(x_1, x_2, \dots, x_{k_n}) := x_1 \cdot x_2 \cdots x_{k_n}$ for $(x_1, \dots, x_k) \in \mathsf{Dom}_{I_n}$
- Smpl_{I_n} chooses $(x_1, x_2, \dots, x_k) \overset{u}{\in} \mathsf{Dom}_{I_n}$
- \triangleright Crucial point: choice of Dom_{I_n} .

DLP as OWF

- Generic setup for discrete logarithm:
- ullet Gen outputs some description of a cyclic group $\mathbb{G}=\langle g
 angle$
 - Description: algorithm which allows to compute in $\langle \mathbb{G},\cdot,1 \rangle$ efficiently.
 - E.g. for \mathbb{Z}_p^* knowledge of p suffices.
- ullet $\mathsf{Dom}_\mathbb{G} = \mathbb{Z}_{|\mathbb{G}|}$
- $\bullet \ \mathsf{Rng}_{\mathbb{G}} = \mathbb{G}$
- $f_{\mathbb{G}}(x) := g^x$ computed in \mathbb{G}
- $\operatorname{Smpl}_{\mathbb{G}}$ chooses $x \stackrel{u}{\in} \mathbb{Z}_{|\mathbb{G}|}$.
- Crucial point: choice of G

- Obviously, every simple OWF/OWP is also a OWF/OWP collection.
- We can transform any OWF/OWP collection into a simple OWF.

Given (Gen, Smpl, f), the single DPT-algorithm \widetilde{f} treats its input $\{0,1\}^n$ as random bit string which it uses to run Gen and Smpl.

```
\label{eq:final_solution} \begin{array}{l} \rhd \text{ "`$\widetilde{f}(x)$} := \mathsf{deduce} \ n \ \mathsf{from} \ |x|; \ \mathsf{split} \ x = x_\mathsf{Gen}||x_\mathsf{Smpl}; \\ I := \mathsf{Gen}(1^n, x_\mathsf{Gen}); \ \mathsf{return} \ y := f_I(\mathsf{Smpl}(I, x_\mathsf{Smpl})) \text{"'} \end{array}
```

 Lecture 16 - 18 – OWF candidates, Construction of PRGs, HF One-way functions

Candidates for OWFs and OWPs

One-way functions from computationally secret encryption* From one-way permutations to pseudorandom generators Hash functions

Notation:

N positive interger $(N \in \mathbb{N})$, usually N > 1.

N is an n-bit integer if $2^{n-1} \le N < 2^n$.

d|N short for "d divides N".

d is a nontrivial factor of N if d|N and $d \notin \{1, N\}$.

• Problem: Integer factorization

Given a positive integer N, find any nontrivial factor d of N – if there is one.

- Example: On input N = 12345678910111213, find 113.
- Ex: Let A be an algorithm which finds a nontrivial factor of a given N if there is one, and denote by TA its running time.

Show how to compute the complete prime factorization of an n-bit integer N in time $n \cdot T_A(n)$.

- Generic setup for factorization (reminder):
- Gen is deterministic with $I_n := \operatorname{Gen}(1^n)$
- $\mathsf{Dom}_{I_n} \subseteq [0, 2^{n/k} 1]^k$ for some k determined by I_n (i.e. a k-tuple of integers representable with n/k bits each)
- $\operatorname{Rng}_{I_n} = [0, 2^n 1]$
- $f_{I_n}(x_1,x_2,\ldots,x_{k_n}):=x_1\cdot x_2\cdots x_{k_n}$ for $(x_1,\ldots,x_k)\in \mathsf{Dom}_{I_n}$
- Smpl_{I_n} chooses $(x_1, x_2, \dots, x_k) \overset{u}{\in} \mathsf{Dom}_{I_n}$
- \triangleright Crucial point: choice of Gen resp. Dom_{I_n}
 - Product yields hard to factorize number.
 - Has to be efficiently samplable.
- ▶ Def.: We say that factorization is hard w.r.t. Gen if (we conjecture that) above is a OWF for this particular Gen.

- How difficult is it to find a factor?
- ▶ For most N, it's trivial: assume we choose $N \stackrel{u}{\in} [0, 2^n 1]$, then N is even with prob. 1/2.
- ightharpoonup Ex: For $d<2^n$, give a lower bound on the prob. that d|N when $N\stackrel{u}{\in}[0,2^n-1].$
- Conjecture: Standard conjecture for factorization

Factorization becomes an OWF if N is the product of two distinct random n/2-bit primes.

- ightharpoonup I.e. $\mathsf{Dom}_{I_n} = \{(p,q) \in [2^{n/2-1}, 2^{n/2}-1]^2 \colon p,q \text{ prime } \land p \neq q\}$
- \triangleright Ex: Assume p,q are generated using rejection sampling.

Approximate the probability that p=q using the prime number theorem.

- **Def**: We use $Gen\mathbb{P}^2$ to denote a PPT-algorithm that outputs a pair of distinct n/2-bit primes chosen uniformly at random from the set of all pairs of distinct n/2-bit primes except for negligible probability w.r.t. n (e.g. by means of rejection sampling using Miller-Rabin as primality test).
- Slightly imprecsie the standard conjecture for factorization becomes factorization is hard w.r.t. Gen P²
 (Gen P² actually combines parameter generation and sampling.)
- Remark: Factorization is hard w.r.t. $Gen\mathbb{P}^2$ iff computing square roots of quadratic residues modulo N=pq is hard. (See the appendix for details.)

- Best algorithms known (aka. published) today:
- Classical computers:

General number field sieve factorizes N in time $\mathcal{O}(e^{(\frac{64}{9}n)^{\frac{3}{3}}(\log n)^{\frac{2}{3}}})$.

For n=1024, this is roughly $c \cdot 2^{89}$ in the worst case for some constant c.

Quantum computers:

Shor's algorithm runs in time $\mathcal{O}(n^3)$ and requires $\mathcal{O}(n)$ qubits.

- Timeline of quantum computing
 - (D-Wave's systems are currently not considered to be universal quantum computers.)
- ▶ See here for a list of "factorization records".
- \triangleright So we essentially conjecture that $Gen\mathbb{P}^2$ only produces worst-case problem instances for integer factorization.

• Problem: Discrete logarithm problem (DLP)

Given a description of a finite cyclic group \mathbb{G} , a generator $\langle g \rangle = \mathbb{G}$, and a group element $y \in \mathbb{G}$, find an $x \in \mathbb{Z}$ such that $g^x = y$ in \mathbb{G} .

• Example: Let (p, p-1, g) be a description of $\langle g \rangle = \mathbb{Z}_p^*$ for p prime.

Given p = 1019, g = 7, and y = 65,

find x with $7^x \equiv 65 \pmod{1019}$.

- Generic setup for discrete logarithm (reminder):
- ullet Gen outputs some description of a cyclic group $\mathbb{G}=\langle g
 angle$
- $\bullet \ \mathsf{Dom}_{\mathbb{G}} = \mathbb{Z}_{|\mathbb{G}|}$
- ullet Rng $_{\mathbb{G}}=\mathbb{G}$
- $f_{\mathbb{G}}(x) := g^x$ computed in \mathbb{G}
- $\operatorname{Smpl}_{\mathbb{G}}$ chooses $x \stackrel{u}{\in} \mathbb{Z}_{|\mathbb{G}|}$.
- ▷ Crucial point: choice of Gen resp. G
 - · Above needs to become an OWF.
 - Need to be able to efficiently compute in G.
- Def.: We say that the DLP is hard w.r.t. Gen
 if (we conjecture that) above is an OWF for this particular Gen.

- The parameters output by Gen is in the case of the DLP a description of a group.
- ▶ We could output a table of the group operation (Cayley table)

BUT as the adversary is given the parameter/descriptions this would make brute-force search feasible.

- ▶ The description has to include
 - the chosen generator g
 - the size/order of the group |G|
 - enough information to efficiently compute in G
- For instance, for \mathbb{Z}_p^* the prime p is a succinct, but efficient description.

- As in the case of integer factorization:
 - Want to use only groups for which the DLP is always hard.
- Computing the discrete logarithm is easy in $\mathbb{Z}_M = \langle \mathbb{Z}_M, +, 0 \rangle$.
- As every cyclic group $\mathbb G$ is isomorpic to $\langle \mathbb Z_{|\mathbb G|},+,0 \rangle$, we want "worst-case" representations of $\mathbb Z_M$ which make computing the discrete logarithm hard.
- Let $M = |\mathbb{G}|$, and assume $M = p^r N$ with p prime and $\gcd(p, N) = 1$.

By the CRT:
$$\langle g \rangle = \mathbb{G} \cong \mathbb{Z}_M \cong \mathbb{Z}_{p^r} \times \mathbb{Z}_N \cong \langle g^{p^r} \rangle \times \langle g^N \rangle$$

That is: we can remove small prime factors of M, and work in smaller subgroups of \mathbb{G} .

ightharpoonup For this reason, we want to use primes p such that p-1 has one dominating prime factor, e.g. as in the case of a safe prime p=2q+1 (q also prime).

- Current conjectures which groups to use for a given n:
 - Pick a (safe) *n*-bit prime p and use \mathbb{Z}_p^* .
 - Pick a safe n+1-bit prime p and use \mathbb{QR}_p .

Note: \mathbb{QR}_p is of prime order q, i.e. we cannot use the CRT to move to smaller groups.

• More general: strong primes

A strong prime p is of the form p=kq+1 with q an n-bit prime and k "small" so that we can efficiently determine k from p-1.

Let g generate \mathbb{Z}_p^* , and use $\langle g^k \rangle$ for \mathbb{G} .

Ex: $\langle g^k \rangle$ is of prime order q, and a subgroup of \mathbb{QR}_p .

Cyclic subgroups of certain elliptic curves.

For certain curves, only generic, i.e. exponential-time algorithms are known. Allows to resort to smaller groups which allow for more efficient computation.

Definition:

Let $\operatorname{Gen}\mathbb{Z}_{\mathsf{safe}}^*$ be a PPT-algorithm which, on input 1^n , generates

(i) an n-bit Sophie-Germain prime q, so that p=2q+1 is a safe prime, and (ii) a generator g of \mathbb{Z}_p^* , and

outputs I = (p, p - 1, g) as description of $\langle g \rangle = \mathbb{Z}_p^*$.

- \triangleright Conjecture: The DLP is hard w.r.t. Gen \mathbb{Z}_{safe}^* .
- Definition:

Let $Gen \mathbb{QR}_{safe}$ be a PPT-algorithm which, on input 1^n , generates

(i) an n-bit Sophie-Germain prime q, so that p=2q+1 is a safe prime, and (ii) a generator g of \mathbb{QR}_p , and

outputs I = (p, q, g) as description of $\langle g \rangle = \mathbb{QR}_p$.

 \triangleright Conjecture: The DLP is hard w.r.t. GenQ \mathbb{R}_{safe} .

 $ightharpoonup \operatorname{Remark}$: W.r.t. to $\langle \mathbb{Z}_p^*, \cdot, 1 \rangle$ with p prime, the map

$$f_{(p,p-1,g)} \colon \mathbb{Z}_{p-1} \to \mathbb{Z}_{p-1} \colon x \mapsto (g^x \bmod p) \bmod (p-1)$$

is a permutation on \mathbb{Z}_{p-1} .

The conjecture that DLP is hard w.r.t. $Gen\mathbb{Z}_{safe}^*$ therefore yields a collection of one-way permutations (OWPs).

▶ Ex: Recall that

modulo a safe prime p, we have $(x^2)^{\frac{p+1}{4}} \equiv \pm x \pmod{p}$.

That is, we can efficiently map every $x^2 \in \mathbb{QR}_p$ to its positive square root in $\{1,\ldots,q\}$,

thereby turning the DLP w.r.t. $Gen \mathbb{QR}_{safe}$ into a OWP over \mathbb{Z}_q .

- ▶ Recall: Except for negl. probability, based on the conjecture by Hardy-Littlewood, we can generate both a (random) n-bit safe prime, and a generator of \mathbb{Z}_p^* in time polynomial in n.
- In practice, the actual group (description) is sometimes simply chosen from a list of precomputed descriptions, in particular, when using subgroups of elliptic curves (see e.g. [here]).
- ▶ But see also this talk by Dan Bernstein why this is perhaps not the best way to use elliptic curves: [PDF]
- The main reason why Gen is a randomized algorithm is that this allows us to efficiently find by means of sampling the parameters for a group, e.g. some (random safe) n-bit prime and some (random) generator of \mathbb{Z}_p^* resp. \mathbb{QR}_p .

- Best algorithms known today:
- ▶ Classical computers: Depends on G.
 - If $\mathbb{G} \leq \mathbb{Z}_p^*$ modulo a prime p: General number field sieve can be adapted; super-polynomial, but subexponential running time in $|\mathbb{G}|$.
 - If $\mathbb{G} \leq \mathsf{GF}(2^n)$: Index calculus algorithm takes also super-polynomial, but subexponential time $|\mathbb{G}|$.
 - For a general cyclic group \mathbb{G} : Several generic algorithms are known (see here for a list), all of which run in exponential time $\mathcal{O}(\sqrt{|\mathbb{G}|})$ in the worst case.
 - Remark: A generic algorithm does not make use of the particular representation of $\mathbb G$ or the implementation of the group operation, and essentially treats the group as a black box. Generic algorithms cannot do better than $\mathcal O(\sqrt{|\mathbb G|})$ in the worst case [13].
- ▶ Quantum computers: Shor's algorithm can also be used.
- See here for a list of "DLP records".

- Reminder: Let G be a finite commutative group. Then:
- ightharpoonup Its exponent $\lambda_{\mathbb{G}}$ is the least positive integer λ s.t. $\forall a \in \mathbb{G} : a^{\lambda} = 1$.
- ho If $\mathbb{G}=\mathbb{Z}_N^*$, then $\lambda(N):=\lambda_{\mathbb{Z}_N^*}$ is called the Carmichael function.
- \triangleright Let $N = \prod_{i=1}^r p_i^{e_i}$ be a prime factorization of N.

Then:
$$\lambda(N) = \text{lcm}(\lambda(p_1^{e_1}), \dots, \lambda(p_r^{e_r}))$$

where $\lambda(2) = 1$, $\lambda(4) = 2$, $\lambda(2^k) = 2^{k-2}$.

and
$$\lambda(p^e) = (p-1)p^{e-1}$$
 for $p > 2$.

- ▶ The map $\exp_e : \mathbb{G} \to \mathbb{G} : x \mapsto x^e$ is a permutation iff $\gcd(e, \lambda_{\mathbb{G}}) = 1$.
 - If $1=\gcd(e,\lambda_{\mathbb{G}})=ed+\lambda_{\mathbb{G}}f$, then $\exp_e^{-1}=\exp_d.$
 - In fact, \exp_e is always a homorphism. So for $\gcd(e,\lambda_{\mathbb{G}})=1$ it is also an isomorphism.
- Just as for $\varphi(N)$, we do not know how to efficiently compute $\lambda(N)$ if factorizing N is hard.

- Reminder: $\varphi(N)$ vs. $\lambda(N)$
- \triangleright **Ex**: Let N = pq with p, q distinct primes. Then:
 - $\bullet \ \gcd(e,\lambda(N)) = 1 \ \mathrm{iff} \ \gcd(e,\varphi(N)) = 1.$
 - $e \in \mathbb{Z}^*_{\lambda(N)} \Rightarrow \{e, e + \lambda(N)\} \subseteq \mathbb{Z}^*_{\varphi(N)}$.
- $hd So, \exp_e$ is also a bijection for $e \in \mathbb{Z}_{\varphi(N)}^*$, but we always can find distinct $e, e' \in \mathbb{Z}_{\varphi(N)}^*$ with $\exp_e = \exp_{e'}$.
- ightharpoonup Example: Let $N=11\cdot 13$. Then $\varphi(N)=120$ and $\lambda(N)=60$.
 - Let e=61. Then $\gcd(e,\varphi(N))=1$, but $\operatorname{Id}=\exp_1=\exp_{61}.$
- ightharpoonup Ex: $\exp_e
 eq \exp_{e'}$ for distinct $e, e' \in \mathbb{Z}^*_{\lambda(N)}$.
- \triangleright **Ex**: Let $N = 109 \cdot 163$.
 - For $e\in\mathbb{Z}_{\lambda(N)}^*$, how many $e'\in\mathbb{Z}_{\varphi(N)}^*$ are there with $\exp_e=\exp_{e'}$?

RSA problem 29

• The basic idea of the RSA problem is to use \exp_e as a one-way function.

- \triangleright In order to be able to compute \exp_e we need to know
 - $\mbox{\bf 1}$ A (succinct) description of $\mathbb G$ which enables us to compute efficiently within $\mathbb G.$
 - **2** The exponent $e \in \mathbb{Z}$. Wlog. $e \in \mathbb{Z}_{\lambda}$.
 - $\,\,{\bf \triangleright}\,\, \exp_e$ can then be computed efficiently by means of repeated squaring.
- Necessary: The description must not allow to efficiently compute $\lambda_{\mathbb{G}}$.
 - Otherwise, compute $\lambda_{\mathbb{G}}$, then use EEA.
- Conjetured candidates for such groups:
 - $\mathbb{G}=\mathbb{Z}_N^*$ with N a hard-to-factorize composite,
 - e.g. let N be the product of two distinct n/2-bit primes,
 - i.e. N = pq with $(p,q) := \operatorname{Gen} \mathbb{P}^2(1^n)$.

RSA problem 30

• Definition: Let

```
Gen: on input 1^n, run \mathrm{Gen}\mathbb{P}^2(1^n) to obtain p,q, set N:=pq, compute \lambda:=\lambda(N), choose any e\in\mathbb{Z}^*_\lambda\setminus\{1\}, and output I=(N,e). Smpl: on input I=(N,e), output x\stackrel{u}{\in}\mathbb{Z}^*_N.
```

f: on input I = (N, e) and $x \in \mathbb{Z}_N^*$, output $f_I(x) := x^e \mod N$.

The RSA problem is hard w.r.t. $Gen\mathbb{P}^2$ if above is a OWP.

Conjecture:

If factorization is hard w.r.t. $Gen\mathbb{P}^2$, then RSA is hard w.r.t. $Gen\mathbb{P}^2$.

 In fact, the RSA problem is a candidate for a trapdoor one-way permutation:

When the trapdoor $\lambda(N)$ (or $\varphi(N)$ or p,q) is known, we can compute d such that $ed \equiv 1 \pmod{\lambda}$, and, hence, $(x^e)^d \equiv x \pmod{N}$.

• **Definition**: A trapdoor one-way permutation (TDP) $\mathcal{F} = (\text{Gen}, f, \text{Smpl})$:

Algorithm	Туре	Input	Output
Gen	PPT	1^n	$(I,td) \overset{r}{\in} \mathcal{I}_n imes \mathcal{T}_n \; with \; I \geq n$
f	DPT	$I \in \mathcal{I}_n$, $x \in Dom_I$	$y \in Rng_I$
Smpl	PPT	1^n $I \in \mathcal{I}_n$, $x \in Dom_I$ $I \in \mathcal{I}_n$	$x \stackrel{r}{\in} Dom_I$

such that (i) (I, td) allows to efficiently compute f_I^{-1} ,

but (ii) for any PPT-adversary $\Pr[\operatorname{Win}_{n,\mathcal{F}}^{\operatorname{TDP}}](\mathcal{A})$ is negl. in n:

- ① Alice&Bob generate $(I, \mathsf{td}) := \mathsf{Gen}(1^n)$ and destroy td , choose $x := \mathsf{Smpl}(I)$, compute $y := f_I(x)$, and pass (I, y) to Eve.
- **2** Eve runs $\mathcal{A}(I, y)$ to obtain x'.
- \triangleright Let Win $_{n,\mathcal{F}}^{\text{TDP}}(\mathcal{A})$ be the event that x=x'.

RSA problem 32

- Lemma: If Eve, given (N, e), can efficiently compute ...
 - p, q, she can efficiently compute $\varphi(N)$, $\lambda(N)$, and d.
 - $\varphi(N)$, she can efficiently compute p,q. (Ex) Hint: Show that $q^2+q(N+1-\varphi(N))+N=0$ has to hold.
 - $\lambda(N)$, she can efficiently compute p,q. See, e.g., [6] p.232.
 - d, she can efficiently compute p, q. See, e.g., [5] p.143.
 - an $x \in \mathbb{Z}_N \setminus \mathbb{Z}_N^*$, she can efficiently compute p,q. (Ex)
- ightharpoonup So, if the RSA problem is an OWP w.r.t the specific ${\sf Gen}\mathbb{P}^2$, none of the above can be done efficiently, in particular, factorizing N given (N,e) has to be hard.
- But: In general, it is not known, if solely the conjecture that factorizing N on input (N,e) is hard, suffices for the RSA problem to be an OWP. Only for the restricted setting of generic algorithms, this has been shown so far [1].

■ Lecture 16 - 18 - OWF candidates, Construction of PRGs, HF

One-way functions

Candidates for OWFs and OWPs

One-way functions from computationally secret encryption*

From one-way permutations to pseudorandom generators

Hash functions

• Lemma: Let $\mathcal{E} = (\mathsf{Gen}_{\mathcal{E}}, \mathsf{Enc}, \mathsf{Dec})$ be a deterministic comp. secret ES with $\mathsf{Gen}_{\mathcal{E}}(1^n) \overset{u}{\in} \mathcal{K}_n = \{0,1\}^n$ and $\{0,1\}^{2n} \subseteq \mathcal{M}_n$. Then the following $\mathcal{F} = (\mathsf{Gen}_{\mathcal{F}}, \mathsf{Smpl}, f)$ is a OWF:

 $\mathsf{Gen}_{\mathcal{F}}$: on input 1^n , output I=m where $m \overset{u}{\in} \{0,1\}^{2n}$, $\mathsf{Dom}_m = \mathcal{K}_n$, and $\mathsf{Rng}_m = \mathcal{C}_n$.

Smpl: on input I=m, output $k \stackrel{u}{\in} \{0,1\}^n$. f: on input I=m and $k \in \{0,1\}^n$, output $f_m(k) := \operatorname{Enc}_k(m)$.

▶ Remark: As for comp. secrecy we only have to encrypt a single message, we can make the coin tosses ρ by Enc external, and simply supply Enc instead with the extended key $k||\rho$.

For similar reasons, we can assume that $Gen_{\mathcal{E}}(1^n)$ always generates a random key chosen uniformly from $\{0,1\}^n$.

Then above statement says that it is has to be hard to find $k||\rho|$ even when m and $c=\operatorname{Enc}_{k||\rho}(m)$ are known.

• Proof: Let \mathcal{B} be any PPT-algorithm which tries to invert \mathcal{F} , i.e.

on input
$$I=m$$
 and $c=\operatorname{Enc}_k(m)$, $\mathcal B$ tries to find some key in $f_I^{-1}(c)=\{k'\in\{0,1\}^n\mid\operatorname{Enc}_{k'}(m)=c\}.$

We construct from $\mathcal B$ the following PPT-adversary $\mathcal A$ for the game INDED vs. $\mathcal E$:

Alice&Bob	$\mid \mathcal{A} \mid$	$\mid \mathcal{B} \mid$
run $\mathcal{A}(1^n)$		
	$m_0, m_1 \overset{u}{\in} \{0, 1\}^{2n}$ return m_0, m_1	
	return m_0, m_1	
$b \overset{u}{\in} \{0,1\}$		
$k \stackrel{u}{\in} \{0,1\}^n$		
$c := Enc_k(m_b)$		
$run\mathcal{A}(1^n,Enc_k(m_b))$		
(,(-//	$run\mathcal{B}(m_1,Enc_k(m_b))$	
		return k'
	if $Enc_{k'}(m_1) = c$: return $r := 1$	
	$\begin{array}{l} \text{if } \operatorname{Enc}_{k'}(m_1) = c \colon \operatorname{return} \ r := 1 \\ \text{else: } \operatorname{return} \ r \overset{u}{\in} \{0,1\} \end{array}$	

• Case b = 1:

Alice&Bob	\mathcal{A}	\mathcal{B}
run $\mathcal{A}(1^n)$	21	
	$m_0, \mathbf{m}_1 \overset{u}{\in} \{0, 1\}^{2n}$ return m_0, m_1	
	return m_0, m_1	
$b \stackrel{u}{\in} \{0,1\} \ b := 1$		
$b \stackrel{u}{\in} \{0,1\} b := 1$ $k \stackrel{u}{\in} \{0,1\}^n$		
$c:=Enc_k(\pmb{m_1})$		
run $\mathcal{A}(1^n,c)$		
	run $\mathcal{B}(\pmb{m_1},c)$	
		return k'
	if $\operatorname{Enc}_{k'}(\underline{m_1}) = c$: return $r := 1$ else: return $r \stackrel{u}{\in} \{0, 1\}$	
	else: return $r \stackrel{u}{\in} \{0,1\}$	

- $\triangleright \mathcal{A}$ wins iff r=1.
- $ightharpoonup m_0$ can be removed.
- ▶ Rearrange interaction into the game OWF.

• Case b = 1: From \mathcal{B} 's point of view

\mathcal{B}
return k'

- > A wins iff either
 - (i) \mathcal{B} wins the game OWF vs. \mathcal{F} or
 - (ii) \mathcal{B} loses the game OWF vs. \mathcal{F} but \mathcal{A} guesses b correctly:

$$\Pr_{b=1}\left[\mathsf{Win}_{n,\mathcal{E}}^{\mathsf{INDED}}(\mathcal{A})\right] = \Pr\left[\mathsf{Win}_{n,\mathcal{F}}^{\mathsf{OWF}}(\mathcal{B})\right] + \left(1 - \Pr\left[\mathsf{Win}_{n,\mathcal{F}}^{\mathsf{OWF}}(\mathcal{B})\right]\right) \cdot \frac{1}{2}$$

• Case b = 0:

Alice&Bob	A	\mathcal{B}
run $\mathcal{A}(1^n)$		
	$egin{aligned} \mathbf{m_0}, m_1 \overset{u}{\in} \{0,1\}^{2n} \ & \text{return } \mathbf{m_0}, m_1 \end{aligned}$	
	return m_0, m_1	
$b \stackrel{u}{\in} \{0,1\} \ b := 0$		
$b \stackrel{u}{\in} \{0,1\} b := 0$ $k \stackrel{u}{\in} \{0,1\}^n$		
$c:=Enc_k(\pmb{m_0})$		
run $\mathcal{A}(1^n,c)$		
	run $\mathcal{B}(m_1,c)$	
		return k'
	if $\operatorname{Enc}_{k'}(m_1) = c$: return $r := 1$ else: return $r \stackrel{u}{\in} \{0,1\}$	
	else: return $r \overset{\iota}{\in} \{0,1\}$	

- $\triangleright \mathcal{A}$ wins iff r = 0.
- ▶ Again, collapse Alice&Bob and A.

• Case b = 0: From \mathcal{B} 's perspective:

Alice&Bob&.4	\mathcal{B}
$m_0 \stackrel{u}{\in} \{0,1\}^{2n}$	
$k \stackrel{u}{\in} \{0,1\}^n$	
$c := Enc_k(m_0)$	
$m_1 \stackrel{u}{\in} \{0,1\}^{2n}$	
run $\mathcal{B}(m_1,c)$	
	return k'
if $Enc_{k'}(m_1) = c$: $\neg Win_{n,\mathcal{E}}^{INDED}(\mathcal{A})$	
else: $Win_{n,\mathcal{E}}^{INDED}(\mathcal{A})$ with prob. $1/2$	

- \mathcal{A} wins iff \mathcal{B} , on input $(\mathbf{m_1},c)$ does not find some $k' \in \{0,1\}^n$ with $\operatorname{Enc}_{k'}(\mathbf{m_1}) = c$ where $c = \operatorname{Enc}_k(\mathbf{m_0})$,
 - \mathcal{B} can only find such a k' if $m_1 \in D_c = \{ \mathsf{Dec}_{k''}(c) \mid k'' \in \{0,1\}^n \}.$
 - ho As $m_1 \stackrel{u}{\in} \{0,1\}^{2n}$ and independently of m_0 , the prob. for $m_1 \in D_c$ is $|D_c| \, 2^{-2n} \le 2^{-n}$ for any ciphertext c.

and \mathcal{A} guesses correctly: $\Pr_{b=0}\left[\operatorname{Win}_{n,\mathcal{E}}^{\operatorname{INDED}}(\mathcal{A})\right] \geq (1-2^{-n}) \cdot \frac{1}{2}$.

In total:

$$\begin{aligned} &4 \cdot \Pr \left[\mathsf{Win}_{n,\mathcal{E}}^{\mathsf{INDED}}(\mathcal{A}) \right] \geq \\ &2 \cdot \Pr \left[\mathsf{Win}_{n,\mathcal{F}}^{\mathsf{OWF}}(\mathcal{B}) \right] + (1 - \Pr \left[\mathsf{Win}_{n,\mathcal{F}}^{\mathsf{OWF}}(\mathcal{B}) \right]) + (1 - 2^{-n}) \end{aligned}$$

▶ Thus:

$$4 \cdot \left| \Pr \left[\mathsf{Win}_{n,\mathcal{E}}^{\mathsf{INDED}}(\mathcal{A}) \right] - \frac{1}{2} \right| + 2^{-n} \ge \Pr \left[\mathsf{Win}_{n,\mathcal{F}}^{\mathsf{OWF}} \mathcal{B} \right].$$

ightharpoonup As $\mathcal E$ is comp. secret, the advantage of $\mathcal A$ is negl. in n, and, thus, any $\mathcal B$ can only succeed with negl. prob.

1 Lecture 16 - 18 - OWF candidates, Construction of PRGs, HF

One-way functions

Candidates for OWFs and OWPs

One-way functions from computationally secret encryption*

From one-way permutations to pseudorandom generators

Hash functions

- What remains is to show that from OWFs we can also construct PRGs of stretch l(n) = 2n.
- We only discuss how PRGs of arbitrary (polynomial) stretch can be constructed from OWPs based on the idea of the Blum-Micali PRG.
- ▷ See [8] for a general proof based on any OWF.

Recall:

A DPT-computable function $G:\{0,1\}^* \to \{0,1\}^*$ which stretches inputs of length n to outputs of length l(n)>n is a pseudorandom generator (PRG) if for every PPT-distinguisher $\mathcal D$

$$\left| \Pr_{x \overset{u}{\in} \{0,1\}^n}[\mathcal{D}(G(x)) = 1] - \Pr_{y \overset{u}{\in} \{0,1\}^{l(n)}}[\mathcal{D}(y) = 1] \right| \text{ is negligible.}$$

- We follow the presentation of [2]:
 - **1** Yao's characterization of PRGs via unpredictability: $G(\cdot)$ is a PRG iff given the first i bits of G(x) the i+1-th bit cannot be predicted (=computed) reliably.
 - 2 Hard-to-predict bits (hard-core predicates) hc_I for one-way permutations f_I allow to stretch a random string by one.
 - 3 Blum-Micali construction for obtaining arbitrary polynomial stretch.

Repeat: output $hc_I(x)$ (with x the seed) and "reseed" $x := f_I(x)$.

• **Definition**: A DPT-computable function $G:\{0,1\}^* \to \{0,1\}^*$ with polynomial stretch $l(n) \geq n$, i.e., $|G(x)| = l(|x|) \geq |x|$ for all x, is unpredictable (from the left) if for every PPT-algorithm $\mathcal P$ the prob.

$$\left| \Pr_{x,y=G(x),i} [\mathcal{P}(1^n, y_1 y_2 \dots y_{i-1}) = y_i] - 1/2 \right|.$$

is negligible for $x \stackrel{u}{\in} \{0,1\}^n$ and $i \stackrel{u}{\in} [l(n)]$ (and the coin tosses of \mathcal{P}).

- Ex: If $G(\{0,1\}^n) = \{0,1\}^n$ for every n, then it is unpredictable.
- Ex: Every PRG is unpredictable.
- Ex: Reformulate above definition as a game between Alice&Bob (using G) and Eve (using \mathcal{P}).

Yao's theorem 45

- Theorem [15]: (see the appendix for a proof)
 Let G(·) be as above. If G is unpredictable, then it is a PRG.
- ightharpoonup Proof idea: Given a distinguisher $\mathcal D$ for stretch s(n), define $\mathcal P_{\mathcal D}$ by:
 - Input: $y_1 y_2 \dots y_{i-1}$
 - Set $y' := y_1 y_2 \dots y_{i-1} y_i' \dots y_{s(n)}'$ with $y_j' \stackrel{u}{\in} \{0, 1\}$.
 - Return y_i iff $\mathcal{D}(1^n, y') = 1$ else return $1 y_i$.

That is, \mathcal{P} guesses the missing bits in order to run \mathcal{D} , and assumes:

 $y_i = y_i'$ iff \mathcal{D} thinks that y' has been generated by G.

- First goal: obtain a PRG of stretch l(n) = n + 1.
- ▶ Recall: Any DPT-computable f with $f(\{0,1\}^n) = \{0,1\}^n$ for all $n \in \mathbb{N}$ is unpredictable.
- Ansatz: G(x) = f(x)||hc(x)||
 - hc(x) is the single additional bit output by G.
 - It has to depend on the input x, so it needs to be some DPT-computable function from x to {0,1}.
- \triangleright Yao's theorem: suffices to show that G is unpredictable.
- ▶ The first n bits from the left are unpredictable as with $x \in \{0,1\}^n$ also $f(x) \in \{0,1\}^n$.
- \triangleright So, predicting hc(x) when given f(x) needs to be hard.
- \triangleright If such an hc(·) exists, it is called a hard-core predicate of f.

• Definition:

A DPT-computable function hc is a hard-core predicate of a function $f\colon\{0,1\}^*\to\{0,1\}^*$ if for every PPT-algorithm $\mathcal A$ the prob.

$$\left| \Pr_{x \in \{0,1\}^n}[\mathcal{A}(f(x)) = \mathrm{hc}(x)] - 1/2 \right| \text{ is negligible}.$$

Analogously, for a function collection: Then $I := \operatorname{Gen}(1^n)$, $x := \operatorname{Smpl}(1^n)$, and both $\mathcal A$ and hc are also given the parameter I.

Corollary:

If f is a PPT-computable permutation on $\{0,1\}^n$ (for every n) with hard-core predicate hc, then $G(x):=f(x)||\mathrm{hc}(x)$ is PRG of stretch l(n)=n+1.

Which functions possess hard-core predicates?

 \mathbf{Ex} : f has to be OWP in order to possess a hard-core predicate.

- Any simple OWP can be transformed into a new simple OWP which has a hard-core predicate:
- Theorem [7]: (see the appendix for a proof)

Let $f: \{0,1\}^* \to \{0,1\}^*$ be a simple one-way permutation.

For every $n \in \mathbb{N}$ and $x, r \in \{0, 1\}^n$ set

$$g(x,r) := f(x)||r \text{ and } g(x,r) := \sum_{i=1}^{n} x_i \cdot r_i \mod 2.$$

Then gl is a hard-core predicate of g.

- Ex: Show that g(x,r) is also a OWP.
- Note that the adversary is given f(x)||r, so he knows r.
- ightharpoonup Basic idea: As $r \stackrel{u}{\in} \{0,1\}^n$, to compute $\operatorname{gl}(x,r)$ the adversary has to be able to compute at least the majority of the linear combinations of the bits, which then suffices to compute x itself.

- The Goldreich-Levin predicate is quite inefficient, as it requires n additional truly random bits.
- For the conjectured OWP collections we have seen so far specific, practical hard-core predicates are known:
- DLP w.r.t. \mathbb{Z}_p^* for p prime:

$$hc_{(p,p-1,g)}(x) = (x < \frac{p-1}{2}?1:0).$$
 [4]

RSA:

Any single bit of x, given $x^e \mod N$, is as hard to compute as x itself. [10].

Theorem:

Let $f:\{0,1\}^* \to \{0,1\}^*$ be a permutation on $\{0,1\}^n$ for every n with hard-core predicate hc. For every $j \geq 0$ set

$$\mathsf{BM}^j(x) := \mathsf{hc}(f^{j-1}(x)) ||\mathsf{hc}(f^{j-2}(x))|| \dots ||\mathsf{hc}(f(x))|| \mathsf{hc}(x).$$

Then $BM^{l(|x|)}(x)$ is a PRG for every polynomial l(n) > n.

Corollary: (Ex)

$$\mathsf{MB}(x,1^s) := \mathsf{hc}(x) ||\mathsf{hc}(f(x))|| \dots ||\mathsf{hc}(f^{s-1}(x))||$$
 is a vIPRG.

- In pseudocode:
 - Input: $x \stackrel{u}{\in} \{0,1\}^*$, $j \in \mathbb{N}$.
 - for i from 1 to j:
 - output hc(x)
 - x := f(x)

ullet Remark: The result holds analogously for a permutation collection ${\cal F}$ which has a hard-core predicate.

```
Simply replace f(x) by f_I(x) and hc(x) by hc_I(x) = hc(I,x) for x \in \mathsf{Dom}_I.
```

- \triangleright E.g. for the DLP-OWP (known as the Blum-Micali PRG):
 - Given n, compute an n-bit prime p, and a generator g of \mathbb{Z}_p^* .
 - \triangleright Parameters: I = (p, p 1, g).
 - ightharpoonup Hard-core predicate: $hc_I(x) := (x < \frac{p-1}{2}?0:1)$.
 - \triangleright Note: As p is prime, $x \in \mathbb{Z}_{p-1}$ and $x \in \mathbb{Z}_p^*$ are equivalent.

- We want to show that the Blum-Micali construction is a PRG of variable stretch.
- \triangleright We only need to show that $\mathsf{BM}^{l(n)}(\cdot)$ is a PRG for any fixed polynomial stretch l(n)>n.
- \triangleright By Yao's theorem, it is equivalent to show that $\mathsf{BM}^{l(n)}(\cdot)$ is unpredictable (from the left).
- As before: We construct an algorithm $\mathcal A$ which tries to compute $\mathsf{hc}(x)$ given f(x) using a given predictor $\mathcal P$ as a black-box subprocedure, and show that this implies that $\mathcal P$ can succeed only with negligible probability.

Wanted: $A(1^n, f(x)) = h(x)$	Given: $\mathcal{P}(1^n, y_1 \dots y_{i-1}) = y_i$ for $y = BM^l(x')$
$x \stackrel{u}{\in} \{0,1\}^n$	$i \stackrel{u}{\in} [l]$
z := f(x)	$x' \stackrel{u}{\in} \{0,1\}^n$
$ ilde{h}:=\mathcal{A}(1^n,z)$	$y_1 \dots y_i := h(f^{l-1}(x') \dots h(f^{l-i+1}(x')) h(f^{l-i}(x')) $
	$\tilde{y}_i := \mathcal{P}(1^n, y_1 \dots y_{i-1})$
${\mathcal A}$ wins iff $h(x)\stackrel{?}{=} ilde{h}$	$ \begin{aligned} & x \in \{0,1\} \\ & y_1 \dots y_i := h(f^{l-1}(x') \dots h(f^{l-i+1}(x')) h(f^{l-i}(x')) \\ & \tilde{y}_i := \mathcal{P}(1^n, y_1 \dots y_{i-1}) \\ & \mathcal{P} \text{ wins iff } y_i = h(f^{l-i}(x')) \stackrel{?}{=} \tilde{y}_i \end{aligned} $

1 Idea: use \mathcal{P} to predict h(x);

	Given: $\mathcal{P}(1^n, y_1 \dots y_{i-1}) = y_i$ for $y = BM^l(x')$
$x \stackrel{u}{\in} \{0,1\}^n$	$\mid i \overset{u}{\in} [l]$
z := f(x)	$x' \stackrel{u}{\in} \{0,1\}^n$
$\tilde{h} := \mathcal{A}(1^n, z)$	$y_1 \dots y_i := h(f^{l-1}(x') \dots h(f^{l-i+1}(x')) h(f^{l-i}(x')) $
	$ ilde{y}_i := \mathcal{P}(1^n, y_1 \dots y_{i-1})$
${\mathcal A}$ wins iff $h(x)\stackrel{?}{=} ilde h$	$ \begin{vmatrix} y_1 \dots y_i := h(f^{l-1}(x') \dots h(f^{l-i+1}(x')) h(f^{l-i}(x')) \\ \tilde{y}_i := \mathcal{P}(1^n, y_1 \dots y_{i-1}) \\ \mathcal{P} \text{ wins iff } y_i = h(f^{l-i}(x')) \stackrel{?}{=} \tilde{y}_i \end{aligned} $

- 1 Idea: use \mathcal{P} to predict h(x);
- 2 I.e. would like to have $y_i = h(f^{l-i}(x')) \stackrel{!}{=} h(x)$

	Given: $\mathcal{P}(1^n, y_1 \dots y_{i-1}) = y_i$ for $y = BM^l(x')$
$x \stackrel{u}{\in} \{0,1\}^n$	$\mid i \overset{u}{\in} [l]$
z := f(x)	$\begin{vmatrix} i \stackrel{u}{\in} [l] \\ x' \stackrel{u}{\in} \{0, 1\}^n \end{vmatrix}$
$\tilde{h} := \mathcal{A}(1^n, z)$	$y_1 \dots y_i := h(f^{l-1}(x') \dots h(f^{l-i+1}(x')) h(f^{l-i}(x')) $
	$ ilde{y}_i := \mathcal{P}(1^n, y_1 \dots y_{i-1})$
${\cal A}$ wins iff $h(x)\stackrel{?}{=} ilde{h}$	$\begin{cases} x \in \{0,1\} \\ y_1 \dots y_i := h(f^{l-1}(x') \dots h(f^{l-i+1}(x')) h(f^{l-i}(x')) \\ \tilde{y}_i := \mathcal{P}(1^n, y_1 \dots y_{i-1}) \\ \mathcal{P} \text{ wins iff } y_i = h(f^{l-i}(x')) \stackrel{?}{=} \tilde{y}_i \end{cases}$

- **1** Idea: use \mathcal{P} to predict h(x);
- 2 I.e. would like to have $y_i = h(f^{l-i}(x')) \stackrel{!}{=} h(x)$
- **3** Sufficient: $f^{l-i}(x') = x$ resp. $x' = f^{i-l}(x)$ (Note: $i l \le 0$)

Wanted: $\mathcal{A}(1^n, f(x)) = h(x)$	Given: $\mathcal{P}(1^n, y_1 \dots y_{i-1}) = y_i$ for $y = BM^l(x')$
$x \stackrel{u}{\in} \{0,1\}^n$	$\mid i \overset{u}{\in} [l]$
z := f(x)	$x' \stackrel{u}{\in} \{0,1\}^n$
$\tilde{h} := \mathcal{A}(1^n, z)$	$y_1 \dots y_i := h(f^{l-1}(x') \dots h(f^{l-i+1}(x')) h(f^{l-i}(x')) $
	$ ilde{y}_i := \mathcal{P}(1^n, y_1 \dots y_{i-1})$
${\mathcal A}$ wins iff $h(x)\stackrel{?}{=} ilde{h}$	$\begin{cases} x \in \{0,1\} \\ y_1 \dots y_i := h(f^{l-1}(x') \dots h(f^{l-i+1}(x')) h(f^{l-i}(x')) \\ \tilde{y}_i := \mathcal{P}(1^n, y_1 \dots y_{i-1}) \\ \mathcal{P} \text{ wins iff } y_i = h(f^{l-i}(x')) \stackrel{?}{=} \tilde{y}_i \end{cases}$

- 1 Idea: use \mathcal{P} to predict h(x);
- 2 I.e. would like to have $y_i = h(f^{l-i}(x')) \stackrel{!}{=} h(x)$
- 3 Sufficient: $f^{l-i}(x') = x$ resp. $x' = f^{i-l}(x)$ (Note: $i l \le 0$)
- 4 Substitute $f^{i-l}(x)$ for x' on the right-hand side and simplify.

Wanted: $\mathcal{A}(1^n, f(x)) = h(x)$	Given: $\mathcal{P}(1^n, y_1 \dots y_{i-1}) = y_i$ for $y = BM^l(x')$
$x \stackrel{u}{\in} \{0,1\}^n$	$i\stackrel{u}{\in}[l]$
z := f(x)	$f^{i-l}(x) \stackrel{u}{\in} \{0,1\}^n$ (????)
$\tilde{h} := \mathcal{A}(1^n, z)$	$y_1 \dots y_i := h(f^{l-1}(f^{i-l}(x))) \dots h(f^{l-i}(f^{i-l}(x)))$
	$\tilde{y}_i := \mathcal{P}(1^n, y_1 \dots y_{i-1})$
${\cal A}$ wins iff $h(x)\stackrel{?}{=} ilde{h}$	$\begin{aligned} & f^{i-l}(x) \stackrel{u}{\in} \{0,1\}^n \text{ (???)} \\ & y_1 \dots y_i := h(f^{l-1}(f^{i-l}(x))) \dots h(f^{l-i}(f^{i-l}(x))) \\ & \tilde{y}_i := \mathcal{P}(1^n, y_1 \dots y_{i-1}) \\ & \mathcal{P} \text{ wins iff } y_i = h(f^{l-i}(f^{i-l}(x))) \stackrel{?}{=} \tilde{y}_i \end{aligned}$

- 1 Idea: use \mathcal{P} to predict h(x);
- 2 I.e. would like to have $y_i = h(f^{l-i}(x')) \stackrel{!}{=} h(x)$
- 3 Sufficient: $f^{l-i}(x') = x$ resp. $x' = f^{i-l}(x)$ (Note: $i l \le 0$)
- 4 Substitute $f^{i-l}(x)$ for x' on the right-hand side and simplify.

$$\begin{array}{c|c} \text{Wanted: } \mathcal{A}(1^n,f(x)) = h(x) & \text{Given: } \mathcal{P}(1^n,y_1\ldots y_{i-1}) = y_i \text{ for } y = \operatorname{BM}^l(x') \\ \hline x \overset{u}{\in} \{0,1\}^n & i \overset{u}{\in} [l] \\ z := f(x) & f^{i-l}(x) \overset{u}{\in} \{0,1\}^n \text{ (????)} \\ \tilde{h} := \mathcal{A}(1^n,z) & y_1\ldots y_i := h(f^{i-1}(x))||\ldots||h(f(x))||h(x) \\ \tilde{y}_i := \mathcal{P}(1^n,y_1\ldots y_{i-1}) \\ \mathcal{A} \text{ wins iff } h(x) \overset{?}{=} \tilde{h} & \mathcal{P} \text{ wins iff } y_i = h(x) \overset{?}{=} \tilde{y}_i \\ \end{array}$$

- 1 Idea: use \mathcal{P} to predict h(x);
- 2 I.e. would like to have $y_i = h(f^{l-i}(x')) \stackrel{!}{=} h(x)$
- 3 Sufficient: $f^{l-i}(x') = x$ resp. $x' = f^{i-l}(x)$ (Note: $i l \le 0$)
- 4 Substitute $f^{i-l}(x)$ for x' on the right-hand side and simplify.
- **6** Observe: \mathcal{P} only needs $y_1 \dots y_{i-1} = h(f^{i-1}(x))||\dots||h(f(x))$ which \mathcal{A} can compute directly as it is given z = f(x).

```
\begin{array}{lll} \text{Wanted: } \mathcal{A}(1^n,f(x)) = h(x) & & \text{Given: } \mathcal{P}(1^n,y_1\dots y_{i-1}) = y_i \text{ for } y = \operatorname{BM}^l(x') \\ \hline x \overset{u}{\in} \{0,1\}^n & & i \overset{u}{\in} [l] \\ z := f(x) & & f^{i-l}(x) \overset{u}{\in} \{0,1\}^n \text{ (????)} \\ \tilde{h} := \mathcal{A}(1^n,z) & & y_1\dots y_i := h(f^{i-1}(x))||\dots||h(f(x))||h(x) \\ \tilde{y}_i := \mathcal{P}(1^n,y_1\dots y_{i-1}) \\ \mathcal{A} \text{ wins iff } h(x) \overset{?}{=} \tilde{h} & & \mathcal{P} \text{ wins iff } y_i = h(x) \overset{?}{=} \tilde{y}_i \end{array}
```

- 1 Idea: use \mathcal{P} to predict h(x);
- 2 I.e. would like to have $y_i = h(f^{l-i}(x')) \stackrel{!}{=} h(x)$
- **3** Sufficient: $f^{l-i}(x') = x$ resp. $x' = f^{i-l}(x)$ (Note: $i l \le 0$)
- 4 Substitute $f^{i-l}(x)$ for x' on the right-hand side and simplify.
- **5** Observe: \mathcal{P} only needs $y_1 \dots y_{i-1} = h(f^{i-1}(x))||\dots||h(f(x))$ which \mathcal{A} can compute directly as it is given z = f(x).
- **6** Finally: as f is a bijection, it does not matter if we choose $x \stackrel{u}{\in} \{0,1\}^n$ or $f^{i-1}(x) \stackrel{u}{\in} \{0,1\}$ or $f(x) = z \stackrel{u}{\in} \{0,1\}^n$.

Alice&Bob	$\mathcal{A}(1^n,f(x))=h(x)$ using \mathcal{P}
$x \stackrel{u}{\in} \{0,1\}^n$	$i \stackrel{u}{\in} [l]$
z := f(x)	$y_1 \dots y_{i-1} := h(f^{i-2}(z)) \dots h(z) $
$\tilde{h} := \mathcal{A}(1^n, z)$	$y_1\dots y_{i-1}:=h(f^{i-2}(z)) \dots h(z))$ return $ ilde{h}:=\mathcal{P}(1^n,y_1\dots y_{i-1})$
${\cal A}$ wins iff $h(x)\stackrel{?}{=} ilde{h}$	

- **1** Idea: use \mathcal{P} to predict h(x);
- 2 I.e. would like to have $y_i = h(f^{l-i}(x')) \stackrel{!}{=} h(x)$
- 3 Sufficient: $f^{l-i}(x')=x$ resp. $x'=f^{i-l}(x)$ (Note: $i-l\leq 0$)
- 4 Substitute $f^{i-l}(x)$ for x' on the right-hand side and simplify.
- **6** Observe: \mathcal{P} only needs $y_1 \dots y_{i-1} = h(f^{i-1}(x))||\dots||h(f(x))$ which \mathcal{A} can compute directly as it is given z = f(x).
- **6** Finally: as f is a bijection, it does not matter if we choose $x \stackrel{u}{\in} \{0,1\}^n$ or $f^{i-1}(x) \stackrel{u}{\in} \{0,1\}$ or $f(x) = z \stackrel{u}{\in} \{0,1\}^n$.
- Yields above definition for A.

• Note that the proof requires that hc(x) is the right-most/last bit in the output of BM.

The reason for this is simply the definition of unpredictability which goes from left to right.

- Ex: Show that $G_l(x) := f^l(x) || \mathsf{BM}^l(x)$ is a PRG of fixed stretch for every fixed l polynomial in n.
 - Discuss the advantages/disadvantages of outputting also $f^l(x)$.
 - In particular, consider the case when a TDP is used for f and the resulting PRG is used within the prOTP.

Summary

1 Lecture 16 - 18 - OWF candidates, Construction of PRGs, HF

One-way functions

Candidates for OWFs and OWPs

One-way functions from computationally secret encryption*

From one-way permutations to pseudorandom generators

Hash functions

Hash and compression functions

- Informally: (only interface)
 - Any easy to compute function from " $\{0,1\}^*$ " to $\{0,1\}^{l_{\mathrm{out}}}$
 - Easy to compute: e.g. linear in the input length.
 - Read " $\{0,1\}$ *" as "practically unbounded input", e.g. all inputs up to 2^{1024} bits (= 2^{996} TB).

Definition:

Let $l_{\mathrm{out}} \in \mathbb{N}$ and $h \colon \mathcal{M} \to \{0,1\}^{l_{\mathrm{out}}}$ a DPT-computable function. h is a compression function if $\mathcal{M} = \{0,1\}^{l_{\mathrm{in}}}$ for some $l_{\mathrm{in}} > l_{\mathrm{out}}$. h is a hash function if $\mathcal{M} = \{0,1\}^{<2^l}$ for some l > 0.

 \triangleright Ideally, computation of h(m) takes $\mathcal{O}(|m|)$ time.

Hash functions: requirements

- In the design of efficient algorithms and data structures:
 - ullet Given: Universe U of possible data, hash values $\{0,1\}^{l_{\mathrm{out}}}.$
 - Goal: Find a hash function $h \colon U \to \{0,1\}^{l_{\text{out}}}$ such that for any unknown selection $S \subseteq U$ the number of collisions is "small".
 - Collision: Any two x, x' such that h(x) = h(x').
 - Ideally: "h distributes S uniformly over the hash values"

$$\forall y \in \{0,1\}^{l_{\text{out}}} \colon \left| h^{-1}(y) \cap S \right| \approx |S| / 2^{l_{\text{out}}}$$

- In general not possible; for a fixed h simply choose S ⊆ h⁻¹(y) for some suitable y ∈ {0,1}^{lout}.
- Solution: randomly choose h from a parametrized familiy, see universal hashing.

59

- For cryptographic uses, a hash function $h: \mathcal{M} \to \{0,1\}^{l_{\text{out}}}$ has to satisfy further requirements, e.g. (informally):
 - Collision resistance:

It is computationally infeasible to find m_1, m_2 s.t. $h(m_1) = h(m_2)$ and $m_1 \neq m_2$.

• Second-preimage resistance:

Given m_1 , it is computationally infeasible to find m_2 with $h(m_1) = h(m_2)$ and $m_1 \neq m_2$.

• Preimage resistance:

Given $h(m_1)$, it is computationally infeasible to find any m_2 with $h(m_1) = h(m_2)$. ("one-wayness")

- ▶ What means "computationally infeasible"?
 - ▶ Need to fix either asymptotic or concrete bounds on the resources and success probability of the adversary.
- \triangleright Preimage and second-preimage resistance: How is m_1 chosen?
 - Second-preimage resistance is meaningless if we are allowed to choose m_1 deterministically.
 - \triangleright Either let the advesary choose m_1 or $m_1 \stackrel{u}{\in} \{0,1\}^{L(n)} \subseteq \mathcal{M}$.
- ▶ Any function $h: A \to B$ with |A| > |B| has always a collision, i.e. a pair $m_1 \neq m_2$ with $h(m_1) = h(m_1)$.
 - There always exists an efficient adversary which simply outputs m_1, m_2 for a function.
 - ▶ Thus, consider collections (families) of hash functions.

Hash functions 61

Definition:

Let $\mathcal{H}=(\mathsf{Gen},h)$ be a function collection such that $h_I\colon \mathcal{M}_n \to \{0,1\}^{l_{\mathsf{out}}(n)}$ for any I output by $\mathsf{Gen}(1^n)$ where $l_{\mathsf{out}}(n)$ is a polynomial.

- $ightarrow \mathcal{H}$ is a collection of compression functions (CCF) if $\mathcal{M}_n = \{0,1\}^{l_{\mathsf{in}}(n)} \text{ for some polynomial } l_{\mathsf{in}}(n) > l_{\mathsf{out}}(n).$
- $ightarrow {\cal H}$ is a collection of hash functions (CHF) if ${\cal M} = \{0,1\}^{<2^{l(n)}} \mbox{ for some polynomial } l(n)>0.$

• Example: DLP-CCF

Gen: on input 1^n , run $\operatorname{Gen}\mathbb{QR}_{\mathsf{safe}}(1^n)$ to obtain (p,q,g), then choose $x \overset{u}{\in} \mathbb{Z}_q$, and set $r := g^x \bmod p$. Output I = (p,q,g,r).

h: on input I=(p,q,g,r) and $(u,v)\in\mathbb{Z}_q\times\mathbb{Z}_q$ output $h_{(p,q,g,r)}(u,v):=g^u\cdot r^v \bmod p$.

- Assume that $2^n \le q \le p \le 2q + 1 \le 2^{n+1} 1$.
- ▶ Then any n-bit string u represents some element in \mathbb{Z}_q , and any $x \in \mathbb{Z}_p^* \subseteq \mathbb{Z}_p$ can be represented as a n+1-bit string.
- ▶ I.e. h_I compresses $l_{in}(n) = 2n$ -bit strings to $l_{out}(n) = n + 1$ -bit strings.

- [11] discusses several formalizations of the preceding informal requirements, and studies their relation.
- In total, seven formalizations are obtained from the informal requirements depending on
 - \triangleright whether the adversary chooses m_1 , or if m_1 is chosen uniformly at random from a finite subset of $m_1 \stackrel{u}{\in} \{0,1\}^{L(n)} \subseteq \mathcal{M}_n$. ($L(n) = l_{\text{in}}(n)$ for a collection of compression functions.)
 - ▶ whether the adversary may pick a function from the collection, or if the function is generated randomly by Gen.
- We consider only the four most important definitions where the concrete hash function h_I is generated via $I := \text{Gen}(1^n)$.

• **Definition**: Let $\mathcal{H}=(\mathsf{Gen},h)$ be a CCF or CHF, and L(n) any polynomial such that $\{0,1\}^{L(n)}\subseteq\mathcal{M}_n$.

Game COLL	Game $UOWHF[L(n)]$	Game $\operatorname{Sec}[L(n)]$	Game $\Pr[L(n)]$
	$m_1 := \mathcal{A}(1^n) \in \{0, 1\}^{L(n)}$	$m_1 \stackrel{u}{\in} \{0,1\}^{L(n)}$	$m_1 \stackrel{u}{\in} \{0,1\}^{L(n)}$
$I := \operatorname{Gen}(1^n)$	$I \stackrel{r}{:=} Gen(1^n)$	$I \stackrel{r}{:=} Gen(1^n)$	$I \stackrel{r}{:=} Gen(1^n)$
$(m_1, m_2) \stackrel{r}{:=} \mathcal{A}(I)$	$m_2 := \mathcal{A}(I, m_1)$	$m_2 := \mathcal{A}(I, m_1)$	$m_2 := \mathcal{A}(I, h_I(m_1))$
$Win_{n,\mathcal{H}}^{\mathtt{Coll}}(\mathcal{A})$:	$Win_{n,\mathcal{H}}^{UOWHF[L(n)]}(\mathcal{A})$:	$Win_{n,\mathcal{H}}^{\mathrm{SEC}[L(n)]}(\mathcal{A})$:	$Win_{n,\mathcal{H}}^{\mathrm{Pre}[L(n)]}(\mathcal{A})$:
$h_I(m_1) = h_I(m_2)$	$h_I(m_1) = h_I(m_2)$	$h_I(m_1) = h_I(m_2)$	
and $m_1 eq m_2$	and $m_1 eq m_2$	and $m_1 eq m_2$	

If the respective winning probability is negligipalle w.r.t. n for any admissible PPT-adversary \mathcal{A} , then \mathcal{H} is

- Collision resistant
- $\mathrm{UOWHF}[L(n)]$: a universal one-way hash function w.r.t. inputs of length L(n)
- ullet SEC[L(n)]: second-preimage resistant w.r.t. inputs of length L(n)
- PRE[L(n)]: preimage resistant (one-way) w.r.t. inputs of length L(n)

• **Theorem** [11]:

```
Let \mathcal{H} = (Gen, h) be a CCF/CHF of output length l_{out}(n).
```

If \mathcal{H} is collision resistant, then it is a UOWHF for any L(n).

If $\mathcal H$ is a UOWHF for L(n), then it is second-pre. resistant for L(n).

If \mathcal{H} is second-preimage resistant for L(n), and $2^{l_{\mathrm{out}}(n)-L(n)}$ is negligible, then it is also preimage resistant for L(n).

- ▶ The term $2^{l_{\text{out}}(n)-L(n)}$ is esssentially the prob. that $h_I(m_1)$ has a unique preimage within $\{0,1\}^{L(n)}$.
- Ex: Assume that (Gen,g) is collision resistant with output length $l_{\mathsf{out}}(n)$. Let $h_I(x):=1x$ if $|x|=l_{\mathsf{out}}(n)$; otherwise $h_I(x):=0g_I(x)$.

Show that (Gen, h) is also collision resistant, but not preimage resistant for inputs of length $L(n) = l_{\text{out}}(n)$.

- Theorem: UOWHFs can be constructed from OWFs. [12]
- Conjecture: OWFs not enough for collision resistance. [14]

• Lemma:

Assume that the DLP is hard relative to $GenQR_{safe}$.

Then the DLP-CCF is collision resistant.

 $ightharpoonup \operatorname{\mathsf{Proof}}$: Let $\mathcal A$ be a PPT-collision attack on $(\operatorname{\mathsf{Gen}},h)$.

Define \mathcal{B} as follows:

- Input: (p,q,g) and $r=g^x \bmod p$ for some secret $x \in \mathbb{Z}_q$.
- If r=1, output x=0.
- Otherwise, pass (p,q,g,r) to ${\mathcal A}$ to obtain $(a,b) \neq (u,v)$.
- If $h_I(a,b) \neq h_{I,r}(u,v)$, output any element in \mathbb{Z}_q .
- Otherwise return $(a-u) \cdot (v-b)^{-1} \mod q$.

Ex: Determine the prob. that \mathcal{B} succeeds in computing a logarithm of r modulo p. (Why is it important that q is prime?)

Extending the domain of a compression function

- In practice, many hash functions are constructed from compression functions by means of the Merkle-Damgård construction. [9]
- ▶ E.g.: SHA-1, SHA-2, RIPEMD, Grøstl

- This construction was also used in NMAC and HMAC.
- Recall: For NMAC the compression functions are PRFs.
 - ▶ Many modern hash functions (in particular the SHA-3 candidates) have been designed with that in mind.
 - Grøstel's compression function is based on AES.

• **Definition**: Let $h:\{0,1\}^{l_{\text{in}}} \to \{0,1\}^{l_{\text{out}}}$ be a compression function with $\delta:=l_{\text{in}}-l_{\text{out}}>0$.

Let $\mathsf{pad}_{\mathsf{MD}}(m) := m ||0^p|| \lfloor |m||$ such that $|\mathsf{pad}_{\mathsf{MD}}(m)|$ is a minimal multiple of δ and $\lfloor |m||$ is encoded using exactly δ bits.¹

For any ${
m IV}\in\{0,1\}^{l_{
m out}}$, and $m\in\{0,1\}^*$ with $|m|<2^{\delta}$, define $H_{{
m IV}}(x):=z^{(t)}$ where:

$$z^{(0)} := IV \text{ and } z^{(i)} := h(z^{(i-1)}||m^{(i)}) \text{ for pad}_{MD}(m) = m^{(1)}||\dots||m^{(t)}.$$

For a CCF (Gen, h) apply the construction to each h_I yielding $H_{I,IV}$.

• Ex: Adapt the DLP-CCF so that the Merkle-Damgård construction can be applied to it.

¹This is not the only possible choice, but it suffices for us.

• **Theorem**: [9]

Let (Gen, h) be a collision-resistant CCF.

Construct (Gen, H) from (Gen, h) using the Merkle-Damgård construction.

Then (Gen, H) is a collision-resistant CHF for any fixed IV.

 \bullet The ${\rm IV}$ can be treated as a further function parameter of the CHF.

It is only important, that the ${\rm IV}$ is fixed by the function parameters I so that Alice and Bob uses the same ${\rm IV}$.

Recall for F-NMAC we indeed need to be able to change the IV.

• Fix any IV. We show that any collision of $H_I := H_{I, IV}$ yields a collision of h_I .

To this end, assume that $H_I(x) = H_I(y)$ for some $x \neq y \in \{0,1\}^*$.

- Let $\mathsf{pad}_{\mathsf{MD}}(x) = x^{(1)} \dots x^{(d)} x^{(d+1)}$ resp. $\mathsf{pad}_{\mathsf{MD}}(y) = y^{(1)} \dots y^{(t)} y^{(t+1)}$.
- Let $u^{(i)}$ be the intermediate values obtained from x, i.e.

$$\boldsymbol{u}^{(0)} = \mathrm{IV}$$
 and $\boldsymbol{u}^{(i)} = h_I(\boldsymbol{u}^{(i-1)}||\boldsymbol{x}^{(i)})$

Analogously for $v^{(i)}$ and $y^{(i)}$.

• Recall that by definition, |x|, |y| fit into a single block, i.e.

$$x^{(d+1)} = y^{(t+1)} \Rightarrow |x| = |y| \text{ s.t. } d = t.$$

• Assume first $x^{(d+1)} \neq y^{(t+1)}$.

Then: $u^{(d)}||x^{(d+1)} \neq v^{(t)}||y^{(t+1)}|$ is a collision of h_I .

• Assume thus $x^{(d+1)} = y^{(t+1)}$, i.e. t = d and |x| = |y|.

As $x \neq y$, there is some $i \in [d+1]$ s.t. $x^{(i)} \neq y^{(i)}$.

Hence, there is also some maximal index m s.t. $u^{(m-1)}||x^{(m)} \neq v^{(m-1)}||y^{(m)}|$.

- $\text{If } m = d+1 \text{, then } u^{(d)}||x^{(d+1)} \neq v^{(d)}||y^{(d+1)} \text{ and } \\ h_I(u^{(d)}||x^{(d+1)}) = H_I(x) = H_I(y) = h_I(v^{(d)}||x^{(d+1)}).$
- ho If $m \leq d$ and m is maximal, we need to have $u^{(m)} = v^{(m)}$.

Thus,
$$h_I(u^{(m-1)}||x^{(m)}) = u^{(m)} = v^{(m)} = h_I(v^{(m-1)}||y^{(m)}).$$

- Similar to block ciphers, the output length $l_{\rm out}$ of a hash function needs to be large enough so that the prob. of a collision is negligible:
- ightharpoonup Assume we have a compression function $h \colon \{0,1\}^{2l} \to \{0,1\}^l$.

Let X_1, \ldots, X_q be independent RV uniformly distributed on $\{0,1\}^{2l}$.

Intuitively, the best that h can do is to map $\frac{2^{2l}}{2^l}$ inputs on the same output, i.e. $|h^{-1}(y)| = 2^l$ for every y.

• If for some y the set of preimages is significantly larger than 2^l , the prob. of a collision only increases. [3]

Then, $h(X_i)$ is uniformly distributed on $\{0,1\}^l$. Probability of a collision:

- $\Theta(\binom{q}{2}2^{-l})$ within $\{h(X_1),\ldots,h(X_q)\}.$
- $\Theta(\binom{q}{2}2^{-2l})$ within $\{X_1,\ldots,X_q\}$ (exponentially smaller).

That is, a collision $h(X_i) = h(X_j)$ results almost always from $X_i \neq X_j$.

References 74 I

[1] D. Aggarwal and U. Maurer. Breaking RSA Generically is Equivalent to Factoring. URL: http://eprint.iacr.org/2008/260.pdf.

- [2] S. Arora and B. Barak. Computational complexity: a mordern approach. URL: http://www.cs.princeton.edu/theory/index.php/Compbook/Draft.
- [3] M. Bellare and T. Kohno. Hash Function Balance and its Impact on Birthday Attacks. URL: http://www.cs.washington.edu/homes/yoshi/papers/Hash/balance.pdf.
- [4] M. Blum and S. Micali. How to Generate Cryptographically Strong Sequences of Pseudo-Random Bits. URL: http://www.csee.wvu.edu/~xinl/library/papers/comp/Blum_FOCS1982.pdf.
- [5] J. Buchmann. Einführung in die Kryptographie.
- [6] N. Ferguson and B. Schneier. Practical cryptography.

Functions. URL: http://www.wisdom.weizmann.ac.il/~oded/X/ql.pdf.

[8] J. Håstad et al. Construction of a Pseudo-Random Generator From Any One-Way Function. URL:

http://www.cs.umd.edu/~gasarch/oneway/HILL.pdf.

- [9] R. Merkle. PhD thesis. URL: http://www.merkle.com/papers/Thesis1979.pdf.
 [10] M. Näslund. Bit Extraction, Hard-Core Predicates, and the Bit
- Security of RSA. URL: http://citeseerx.ist.psu.edu/viewdoc/download? doi=10.1.1.6.3112&rep=rep1&type=pdf.
- [11] P. Rogaway and T. Shrimpton. Cryptographic Hash-Function Basics: Definitions, Implications, and Separations for Preimage Resistance, Second-Preimage Resistance, and Collision Resistance. URL: http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.62.539&rep=rep1&type=pdf.

References 76 III

J. Rompel. One-way functions are necessary and sufficient for secure signatures. URL: http://www.cs.umd.edu/~jkatz/papers/rompel.pdf.

[13] V. Shoup. Lower Bounds for Discrete Logarithms and Related Problems. URL:

http://www.shoup.net/papers/dlhounds1.ndf

http://www.shoup.net/papers/dlbounds1.pdf.

[14] D. Simon. Finding Collisions on a One-Way Street: Can Secure Hash Functions be Based on General Assumptions. URL: http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.136.4654.

[15] A. Yao. Theory and Applications of Trapdoor Functions (Extended Abstract). URL: http://www.busim.ee.boun.edu.tr/~mihcak/teaching/ee684-spring07/proposed-project-papers/one-way-functions/Yao-XOR-Lemma-and-Hard-Core-Predicates/Yao-XOR-original.pdf.