Circuitos Digitais Álgebra de Boole

Álgebra de Boole (ou Booleana)

- Desenvolvida pelo matemático britânico George Boole para estudo da lógica.
- Definida sobre um conjunto de dois elementos:
 (falso, verdadeiro) (0, 1) (baixo, alto)
- Seus elementos, a princípio, não tem significado numérico.
- Postulados: se x é uma variável booleana então:
 - \bullet Se x \neq 0 \Rightarrow x = 1
 - \bullet Se x \neq 1 \Rightarrow x = 0

Álgebra de Boole: funções

- Uma variável booleana só pode assumir apenas um dos valores possíveis (0 e 1)
- Uma ou mais variáveis e operadores podem ser combinados formando uma função lógica
 - $ightharpoonup Z_1(A) = f(A) = ... (expressão usando var. A)$
 - \bullet $Z_2(A,B) = f(A,B) = ... (expr. usando var. A e B)$
- Resultados de uma função lógica podem ser expressos numa tabela relacionando todas as combinações possíveis dos valores que suas variáveis podem assumir e seus resultados correspondentes: a Tabela-Verdade.

Álgebra de Boole: Tabela Verdade

	Vari	áveis	Função Lógica	
	A	В	Z=f(A,B)	
Lista das	0	0	0	Resultados da
combinações possíveis	0	1	1	função lógica para cada
dos estados das variáveis	1	0	1	combinação dos estados de
de entrada	1	1	1	entrada entrada

- Tabela-Verdade relaciona os resultados (saída) de uma função lógica para todas as combinações possíveis de suas variáveis (entrada).
- ◆ Na Tabela-Verdade acima a função lógica Z possui duas variáveis A e B, sendo Z = f(A, B) = A + B

Álgebra de Boole: operações

- São definidas algumas operações elementares na álgebra booleana:
 - Operação "Não" (NOT)
 - Operação "E" (AND)
 - Operação "Ou" (OR)
 - NAND
 - NOR
 - Operação "Ou-Exclusivo" (Exclusive-Or ou XOR)
 - XNOR

- Porta Lógica NOT
 - ♦ É a porta Inversora
 - Operador: Barra, Apóstrofo

$$\overline{A}$$
, A'

Símbolo

Tabela da Verdade

Α	F = A'
0	1
1	0

- Porta Lógica OR
 - ♦ Necessita de duas ou mais entradas
 - ◆ Operador: +

$$F = A + B$$

◆ Símbolo

Tabela da Verdade

Α	В	F = (A+B)
0	0	0
0	1	1
1	0	1
1	1	1

OR

- Porta Lógica AND
 - Necessita de duas ou mais entradas
 - Operador: .

$$F = A . B$$

◆ Símbolo

Tabela da Verdade

Α	В	F = (A.B)
0	0	0
0	1	0
1	0	0
1	1	1

AND

- Porta Lógica NOR
 - Equivalente a uma porta OR seguido de uma NOT
 - Operador:

$$F = (A + B)$$

◆ Símbolo

Tabela da Verdade

Α	В	F = (A+B)'
0	0	1
0	1	0
1	0	0
1	1	0

- Porta Lógica NAND
 - Equivalente a uma porta AND seguido de uma NOT
 - Operador:

$$F = (A . B)$$

Símbolo

Tabela da Verdade

Α	В	F = (A.B)'
0	0	1
0	1	1
1	0	1
1	1	0

- Porta Lógica XOR
 - ♦ É o OU Exclusivo
 - Compara dois valores, se forem diferentes, dá saída = 1
 - Operador:

$$F = (A \oplus B)$$

Tabela da Verdade

◆ Símbolo

Α	В	F = (A⊕B)
0	0	0
0	1	1
1	0	1
1	1	0

- Porta Lógica XNOR
 - ♦ É o complemento da Função XOR
 - Operador:

$$F = (A \oplus B)'$$

◆ Símbolo

Tabela da Verdade

Α	В	F = (A⊕B)'
0	0	1
0	1	0
1	0	0
1	1	1

$$A = 0, B = 1, C = 0$$

$$A = 0, B = 1, C = 0$$

$$A = 0, B = 1, C = 0$$

$$A = 0, B = 1, C = 0$$

$$A = 0, B = 1, C = 0$$

Exercícios

$$A = 0$$
, $B = 1$, $C = 1$, $D = 0$, $E = 0$, $F = 1$

$$S = 0$$

$$C$$

$$D$$

$$E$$

$$F$$

Exercício

Álgebra de Boole: precedência

- Precedência das Operações
 - (0) parêntesis
 - (1) "Negação"
 - ◆ (2) "E"
 - (3) "Ou", "Ou-exclusivo"
- O uso de parêntesis altera a precedência "normal" dos operadores, como na álgebra comum.

Álgebra de Boole: propriedades

- Sendo A, B e C variáveis booleanas
 - Propriedade Comutativa

$$A \oplus B = B \oplus A$$

Propriedade Associativa

$$(A \oplus B) \oplus C = A \oplus (B \oplus C) = A \oplus B \oplus C$$

Propriedade Distributiva

$$A + B \cdot C = (A + B) \cdot (A + C)$$

Álgebra de Boole: propriedades

Propriedades (Leis) de Absorção

$$A + \overline{A}B = A + B$$

$$♦$$
 (A + \overline{B}).B = A.B

Identidades importantes

$$A.B + A.\overline{B} = A$$

$$A.(\overline{A} + B) = AB$$

$$A.B + A.C = (A + C) \cdot (A + B)$$

Álgebra de Boole: dualidade

- Existe um princípio especial na álgebra booleana denominado "princípio da dualidade":
 - ◆ Para uma equação booleana qualquer, se trocarmos as operações E (₁) e operações OU (+) entre si assim como valores 0s e 1s entre si, obteremos uma equação igualmente válida.

$$A + 0 = A$$
 $A \cdot 1 = A$

$$A + 1 = 1$$
 $A \cdot 0 = 0$

$$A + A = A$$
 $A \cdot A = A$

Álgebra de Boole: dualidade

Teorema de Morgan

$$a + b = \overline{a} \cdot \overline{b}$$

$$a \cdot b = a + b$$

Consenso

$$(A+B) \cdot (A'+C) \cdot (B+C) = (A+B) \cdot (A'+C)$$

Álgebra de Boole: identidades

NOT

$$*\overline{\overline{A}} = A$$

AND

$$A \cdot 0 = 0$$

$$A \cdot \overline{A} = 0$$

OR

$$A + 0 = A$$

$$A + \overline{A} = 1$$

Funções de 2 Variáveis

- A
- B
- AB (AND)
- A+B (OR)
- A⊕B (XOR)

- Ā
- B
- AB (NAND)
- A+B (NOR)
- A⊕B (XNOR equivalência)
- 0 (Constante zero)
- 1 (Constante um)

Simplificação

Os teoremas, propriedade e identidades da álgebra booleana podem ser aplicados para simplificarmos funções lógicas e, com isso, reduzirmos o número necessário de operações.

$$A + A \cdot B =$$
 $(A + A) \cdot (A + B) =$
 $A \cdot (A + B) =$
 $B = 0$
 $A \cdot (A + 0) = A \cdot A = A$
 $B = 1$
 $A \cdot (A + 1) = A \cdot 1 = A$

$$F = a + b \cdot \overline{(a \cdot c)} =$$
 $A + b \cdot \overline{(a + c)} =$
 $A + b \cdot \overline{(a + c)} =$
 $A + b \cdot (a + c) =$
 $A + b \cdot a + bc =$
 $A + b \cdot a + bc =$
 $A + bc =$

$$F = a + b \cdot (a' \cdot c')'$$

 $A = 1 ; B = 0; C = 0$

$$F = 1 . (0 . 1)'$$

 $F = 1 . 1$

$$F = a + b \cdot c$$

F = 1

$$F = 1 + 0 . 0$$
 $F = 1 + 0$
 $F = 1$

Exercícios:

Simplificar as expressões:

1.
$$S = \overline{ABC} + \overline{ABC}$$

2.
$$S = (\overline{A} + B) \cdot (A + B)$$

3.
$$S = ABC + AC + AB$$

- 1) S = A . B
- 2) S = B
- 3) S = A

```
1)

S = A . B' . C + A . B' . C'

S = A . [(B' . C) + (B' . C')]

S = A . [B' . (C + C')]

S = A . B'
```

$$S = a \cdot b' \cdot c + a \cdot b' \cdot c'$$

$$A = 1 ; B = 0; C = 0$$

$$S = 1 . 1 . 0 + 1 . 1 . 1$$

$$S = 1 . 0 + 1 . 1$$

$$S = 0 + 1$$

$$s = 1$$

$$S = a \cdot b'$$

$$S = 1 \cdot 1$$

$$S = 1$$

$$S = a \cdot b' \cdot c + a \cdot b' \cdot c'$$

CASO 2

$$A = 0 ; B = 0 ; C = 1$$

$$S = 0 . 1 . 1 + 0 . 1 . 0$$

$$S = 0 \cdot 1 + 0 \cdot 0$$

$$S = 0 + 0$$

$$s = 0$$

$$S = a \cdot b'$$

$$S = 0 . 1$$

$$s = 0$$

```
2)
S = (A' + B) \cdot (A + B)
Identidade
S = B
3)
S = A \cdot B \cdot C + A \cdot C' + A \cdot B'
S = A \cdot [(B \cdot C) + C' + B']
S = A \cdot [(b \cdot c) + (c \cdot b)']
Identidade A + A' = 1
S = A
```

$$S = (a' + b) \cdot (a + b)$$

$$A = 1 ; B = 0;$$

$$S = (0 + 0) \cdot (1 + 0)$$

$$S = 0 \cdot 1$$

$$S = 0$$

$$s = b$$

$$S = 0$$

$$S = (a' + b) \cdot (a + b)$$

$$A = 0 ; B = 1;$$

$$S = (1 + 1) \cdot (0 + 1)$$

$$S = 1 \cdot 1$$

$$S = 1$$

$$s = b$$

$$S = 1$$

 $S = a \cdot b \cdot c + a \cdot c' + a \cdot b'$

CASO 1

A = 1 ; B = 0; C = 0

S = 1 . 0 . 0 + 1 . 1 + 1 . 1

 $S = 0 \cdot 0 + 1 + 1$

S = 0 + 1 + 1

S = 1 + 1

s = 1

S = A

s = 1

 $S = a \cdot b \cdot c + a \cdot c' + a \cdot b'$

CASO 2

$$A = 0 ; B = 0 ; C = 1$$

$$S = 0 . 0 . 1 + 0 . 1 + 0 . 1$$

$$S = 0 \cdot 1 + 0 + 0$$

$$S = 0 + 0 + 0$$

$$S = 0 + 0$$

$$S = 0$$

$$S = A$$

$$S = 0$$

Bibliografia

- Abel Guilhermino, Notas de Aula, UPE
- Romeu Corradi Jr., UNICAMP