

Distributed Networked Radio Deployments Using The DELTA Framework

GNU Radio Conference 2024

2024.09.19

Jason Merlo and Jeffrey Nanzer

Michigan State University, East Lansing, MI, USA

What is the DELTA Framework?

"...a collection of software tools and libraries which enable simple configuration and deployment to short-lived distributed networks of compute nodes, typically connected to radio peripherals running GNU Radio, designed to enable rapid iteration.

DELTA Framework Goals

1. Scalable development environment capable of handling 10—100s of devices

- Easily deploy code from a central location (e.g., dev laptop/PC) to a network of computers
 - Handle synchronization in a bandwidth-efficient manner and use incremental builds (preserve build cache between deployments)
- Easily monitor and control from a centralized interface (control node)

2. Scalable software interface

- Maintain GNU Radio companion for simple visual data-flow-centric implementation while enabling scalability
- Minimize copy/pasting blocks of code for parallel data channels

DELTA Framework Components

1. DELTA Project Tool (da_protool)

 Lightweight tool (similar to gr_modtool) for creating DELTA Framework projects, and adding controllers

2. GNU Radio Packages

- gr-delta-utils
 - Utilities for operating on lists of PDUs to enable scalability while maintaining support for GRC-based program design
- gr-delta-coordination
 - Software tools for wirelessly synchronizing time and phase between radio nodes with high accuracy

3. DELTA Python Package

 Python package for RF signal processing operations on bursty data; acts as the foundation for gr-delta-coordination

Project Creation

\$ da_protool newproj spectrum_monitor

Creating distributed array project in ./da-spectrum_monitor ...

spectrum_monitor

Host configuration information:

- IP address
- Scripts to launch / script args
- Radio resources connected

Project Creation

\$ da_protool newproj spectrum_monitor

Creating distributed array project in ./da-spectrum_monitor ...

spectrum_monitor

libs

Libraries to synchronize and install to all compute nodes:

- Path to library
- Folders to exclude
- Installation commands

Project Creation

\$ da_protool newproj spectrum_monitor

Creating distributed array project in ./da-spectrum_monitor ...

spectrum_monitor

libs

Radio configuration info:

- Radio identifier (name, serial number, IP address, etc.)
- Sample rates
- TX/RX Channels to use
- Port assignments
- Initial Gains
- Initial Center Frequencies

Controller Creation

```
$ da_protool add monitor_node
```

Adding controller files to "./controllers/monitor_node_ctrl"

controllers

Controller Creation

```
$ da_protool add spectrum_monitor
```

Adding controller files to "./controllers/spectrum_monitor_ctrl"

controllers

Deployment Process

\$ da_protool deploy

Demo

Thanks!

gitlab.msu.edu/delta/da-framework