Guia de trabajos prácticos N° 3

Microprogramación

- 1. Construir en **Arcosim** módulos específicos para resolver los siguientes problemas:
 - a. Crear un componente que incremente en 1 un valor con cada ciclo del clock (usando una única ALU).
 - b. Crear un componente que decremente en 1 un valor con cada ciclo de clock hasta que el resultado sea cero.
 - c. Hacer un componente que reciba en 2 buses 2 valores de 32 bits y devuelva en un bus el menor de los dos.
 - d. Crear un componente que reciba una entrada de 32 bits donde, los 4 primeros bits sean un código de operación, los siguientes 14 bits sean el primer operando, y los siguientes 14 bits el segundo operando. El componente debe desensamblar la instrucción realizar la operación entre ambos operando y devolver el resultado en 14 bis por un display.

Operaciones	Significado
0000	A + B
0001	A - B
0010	A * B
0011	A/B

- e. Armar un componente con varias ALUs que reciba en un bus de 32 bits dos operandos (16 y 16) y realice las cuatro operaciones y las deje en 4 display diferentes.
- f. Armar un componente con una única ALU (con capacidad para realizar las 4 operaciones básicas) que reciba en un bus de 32 bits dos operandos (16 y 16) y realice las cuatro operaciones y las deje en 4 display diferentes.
- g. Armar un dispositivo que permita almacenar un valor en un registro, donde reciba en un bus el número binario del registro a configurar y en otro bus el valor del registro.
- h. Armar un dispositivo que permita copiar a la memoria todos los valores de los registros. Recibiendo en un bus la dirección inicial de la memoria.
- i. Armar un dispositivo con 16 registros, que reciba en el bus 1 un valor decimal y en el bus 2 otro valor decimal y copie automáticamente el valor del registro indicado en el bus 1 al registro indicado en el bus 2.
- j. Contar la cantidad de bits en 1 que se reciben por bus de 32 bits.

Según la siguiente micro-arquitectura horizontal:

Con registros:

00	39.00.00	· ·													
0	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15
PC	AC	SP	IR	TIR	0	+1	-1	AM ask	SM ask	Ax	Вх	Сх	Dx	Ex	Fx
?	?	?	?	?	x00 00	x00 01	xFF FF	x0F FF	x00 0F	?	?	?	?	?	?

Estructura del MIR

Α	С	ALU	SH	М	М	R	W	Е	С		В		Α		ΑC	DR	2	
М	0			В	Α	D	R	Ν										
U	N			R	R			С										
Х	D																	

<u>AMUX</u>	COND	<u>ALU</u>	<u>SH</u>	MBR, MAR, RD,
0 = Buffer A	0 = No salta	0 = A + B	0 = No desplaza	WR, ENC
1 = MBR	1 = Si N==1	1 = A & B	1 = alu >> 1	0 = No
	2 = Si Z==1	2 = A	2 = alu << 1	1 = Si
	3 = Salta siempre	3 = ~A	3 = (no usado)	

2. Explicar en lenguaje natural lo que hacen los siguientes grupos de micro instrucciones.

a.

Α	С	ALU	SH	М	М	R	W	E	С	В	Α	ADDR
M	0			В	Α	D	R	N				
U	Ν			R	R			C				
X	D											
0	0	0	0	0	1	1	0	0	0	4	0	0
0	0	0	0	0	0	1	0	0	0	0	0	0
1	0	2	0	0	0	0	0	1	1	0	0	0

b.

Α	С	ALU	SH	М	М	R	W	Е	С	В	Α	ADDR
M	О			В	A	D	R	N				
U	Ν			R	R			C				
X	D											
									1 1 1	1 1 1		
0	0	0	0	0	1	1	0	0	0	4	0	0
0	0	0	0	0	0	1	0	0	0	0	0	0
0	0	0	0	0	1	0	1	0	0	1	0	0
0	0	0	0	0	0	0	1	0	0	0	0	0

C.

Α	С	ALU	SH	М	М	R		Е	С	В	Α	ADDR
M	0			В	Α	D	R	N				
U	Ν			R	R			C				
X	D											
0	0	3	0	0	0	0	0	1	1	0	13	0
0	0	0	0	0	0	0	0	1	1	6	1	0
0	1	0	0	0	0	0	0	0	0	1	10	(+3)
0	0	0	0	0	0	0	0	1	0	6	0	0
0	3	0	0	0	0	0	0	0	0	0	0	уу
0	3	1	0	0	0	0	0	1	0	3	8	XX

- 3. Codificar las siguientes micro-instrucciones:
 - a. Ax = (Ax + Bx) * 2
 - b. Dx = (Fx + Ax) / 4
 - c. [Fx] = [Cx Dx]
 - d. [(IR and AMask)] = Ax
 - e. Bx = Ex AND [Fx]
 - f. [SP+1] = [Dx * 2] + Cx
 - g. Ax = Ax or Bx
 - h. PC = [Dx] + Cx
 - i. [(IR and AMask)] = (Ex * 2) + (Ex / 2)
 - j. $[Dx] = (Ax + Bx + Cx) * \frac{1}{2}$
 - k. Ax = Ax * Bx
- 4. Resuelva las operaciones del ejercicio anterior usando las siguientes microinstrucciones de una arquitectura vertical:

Binario	Mnemónico	Instrucción	Significado
0000	ADD	Suma	r1:=r1+r2
0001	AND	Y bit a bit	r1:=r1&r2
0010	MOVE	Mueve registro	r1:=r2
0011	COMPL	Complemento	r1:=inv(r2)
0100	LSHIFT	Desplaza a la Izquierda	r1:=r2<<1
0101	RSHIFT	Desplaza a la Derecha	r1:=r2>>1
0110	GETMBR	Almacena MBR en registro	r1:=MBR
0111	TEST	Examina registro	N:=(r1<0); Z:=(r1==0)
1000	BEGRD	Comienza la Lectura	MAR:=r1; rd
1001	BEGWR	Comienza la Escritura	MAR:=r1; MBR:=r2; wr
1010	CONRD	Continúa la Lectura	rd
1011	CONWR	Continúa la Escritura	wr
1100			
1101	NJUMP	Salta si N=true	if N then goto r1<<4 r2
1110	ZJUMP	Salta si Z=true	if Z then goto r1<<4 r2
1111	UJUMP	Salta siempre	goto r1<<4 r2

5. Dada la arquitectura vertical propuesta por Tanenbaum y su matriz representativa del Decodificador de OP, se quieren implementar nuevas microinstrucciones, a saber:

- a. **SetMBR** carga el registro MBR con el contenido de un registro de uso general, MBR:=r2 SetMBR ,AC
- AddMBR acumula el contenido del registro MBR y de un registro de uso general, r1:=MBR+r1

AddMBR AC

c. **ZJMBR** si el valor del registro MBR es cero, entonces salta a la microinstrucción cuya dirección se calcula como (r1<<4) | r2

PJMBR XXXX