COMP0246 Modelling and Motopn Planning Lab 1(a) questions: Linear Algebra

Dr. Eddie Edwards Department of Computer Science University College London

7th November, 2024

Linear Algebra

1. a. Given an arbitrary 3D rotation matrix,

$$\mathbf{R} = egin{bmatrix} r_1 & r_2 & r_3 \ r_4 & r_5 & r_6 \ r_7 & r_8 & r_9 \end{bmatrix}$$

Prove that $||r_i|| \le 1$ where i = 1, 2, ..., 9.

- b. For any rotation matrix \mathbf{R} , prove that $\mathbf{R}_{k,\theta} = \mathbf{R}_{-k,-\theta}$, where k is the unit vector defined axis of rotation and θ is the angle of rotation.
- c. Given two arbitrary Cartesian coordinate frames a and b, what does each row in a rotation matrix ${}^{a}\mathbf{R}_{b}$ represent?
- 2. a. Provide a matricial example, i.e. a succession of 3 matrices along the 3 different axes, of gimbal lock for the Y-Z-Y (proper Euler, extrinsic) and x-y-z (Tait-Bryan, intrinsic) rotations. Why do we need to avoid gimbal lock when controlling robotic arms? How is this achieved?

- b. Show how to pass from Quaternion representation to rotation matrix representation. (You will need to provide all steps, not just the formula).
- c. What rotation representation would you suggest to use in the following cases:
 - Nano-robot with very limited memory storage
 - Nano-robot with very limited computational power
 - Iphone navigation system
 - Robotic arm wth 6 DOF
- 3. a. Prove that a rotation quaternion q and -q are equivalent.
 - b. When do two arbitrary rotation matrices \mathbf{R}_a and \mathbf{R}_b become commutative?