서울시 스마트 분리수거 기기 우선 입지 선정

"서울시 실질 재활용률 증가를 위한 스마트 분리수거 기기 최적 입지 분석"

CONTENTS

1

서론

주제 선정 배경 현황 분석 문제 정의 2

본론

데이터 분석 군집 분석 입지 분석 3

결론

문제점 개선방안 활용방안 기대효과 참고 자료

출처: KBS NEWS

1. 문제 배경

늘어가는 재활용 쓰레기 배출량, 매립지는 감당불가?

▶ 코로나19로 인한 재활용 쓰레기 배출량 증가

2020년 초 발생한 코로나19 사태의 장기화로 택배 주문량 증가, 배달음식 소비가 늘면서 개활용 쓰레기 배출량 증가

▶ 인천 수도권 매립지 사용종료(2025)

출처: 인천광역시

쓰레기양을 줄여 매립지 포화 시기를 늦추면서 대체 매립지를 찾아야 함. 재활용 선별과정에서 발생한 매립 소각 쓰레기를 감소시킬 필요성이 대두

1. 실질 재활용률 정의

실질 재활용률

재활용품 선별 과정에서 재활용 되지 못하고 폐기물로 배출된 잔재물 발생량을 제외한 실제 재활용량

"OECD 국가 중 대한민국의 재활용률은 2위로 높으나 실질 재활용률은 낮음 "

2017년, OECD는 대한민국을 폐기물의 80% 이상을 재활용하고, 실질 재활용률도 59%인 재활용 강국으로 선정하였으나, 전문가들이 추산한 한국의 실질 재활용률은 40%

실질 재활용률 증가를 위해 스마트 분리수거 기기 설치의 최적 입지 선정 필요

1. 재활용 정거장

재활용 정거장

- 구마다 상이하며, 운영하지 않는 구도 존재
- 은평구 '그린 모아모아 재활용 정거장
 - 세척된 재활용품들만 배출할 수 있도록 관리 및 감독
 - 재활용 정거장 운영으로 선별비 4200만원 절감
 - 재활용률도 88%까지 끌어올림

한계점

- 1. 분리수거 날짜와 시간이 정해져 있어 이용 편의성 떨어짐
- 2. 기기를 통한 재활용품 수집이 아니므로 배출량, 배출시간 등의 정확한 데이터 수집이 어려움
- 3. 무단투기, 미관상 문제로 철거되는 경우 존재(ex. 양천구)

1. 스마트 분리수거 기기

170+

다양한 지역에서 참여하고 있습니다!

아파트 주거단지, 관공서, 주민센터, 관광지, 대형마트, 소매점, 광장 등

오늘의 분리수거 이스마트 분리수거 기기

- 재활용 바코드를 찍고 재활용품 투입
- 서울에 66대 설치
- 송파구 기준 68%까지 평균 재활용 회수율 증대

한계점

- 1. 지자체가 별도로 데이터를 수집하지 않음
- 2. 포인트 사용시, 상품이 선착순으로 소진되기 때문에 모은 포인트 사용의 어려움
- 3. 최적입지선정을 통한 설치가 아니기 때문에 접근성과 효율성이 떨어짐

출처: 오늘의 분리수거

1. 문제 정의

데이터 분석을 통해 접근성과 편리성을 높인다

재활용 정류장 한계점

- 분리수거 날짜와 시간이 정해져 있어 이용 편의성 떨어짐
- 기기를 통한 재활용품 수집이 아니므로 배출량, 배출시간 등의 정확한 데이터 수집이 어려움
- 무단투기, 미관상의 문제로 철거

오늘의 분리수거 한계점

- 지자체가 별도로 데이터를 수집하지 않음
- 상품의 선착순 소진으로 모은 포인트 사용의 어려움
- 최적 입지 선정을 통한 설치가 아니기 때문에 접근성과 효율성이 떨어짐

지자체 재활용 데이터 수집 가능

✓ 최적 입지 선정을 통한 접근성과 효율성 증가

✓ 실질 재활용률의 증가

유의미한 변수를 고려한 스마트 분리수거 기기 최적의 입지 분석을 통해 실질재활용률을 상승시켜 녹색경제 실현과 삶의 질 개선

데이터 수집 및 가공

데이터 분석

우선입지 위치 선정

2. 데이터 선정

재활용 배출량에 영향을 미치는 변수 선정

인구데이터

지리데이터

- 쓰레기 배출량이 **인구,산업구조,** 용도지역, 소득수준 등이 중요한 요인으로 영향을 미치고 있다고 함
- 이에 따라 **총면적, 용도지역** 등이 어느정도 영향을 미치는지 알기 위해 데이터 선정을 함

선정데이터

- 총면적 주거지역면적
- 상업지역면적 공업지역면적

폐기물 데이터

- 재활용품 수거량과 보유장비, 보유차량과의 상관관계를 분석한 결과 재활용 전담인력과의 상관관계가 높다고 함
- 이에 따라 **재활용 보유장비**에 따라 어느정도 영향을 미치는지 알기 위해 데이터 선정을 함

선정데이터

- 생활폐기물 관리 손수레
- 생활폐기물 관리 중장비

2. 데이터 수집

활용 데이터 수집

구분	분석데이터	기간	제공기관
건물관련 데이터	서울시 우리마을가게 상권분석서비스 (상권-추정매출)	2019	서울열린데이터광장
	서울시 우리마을가게 상권분석 서비스 (커피,음료 점포수)	2019	서울시 우리마을가게 상권분석 서비스
	소상공인시장진흥공단_상가(상권)정보	2021.06	공공데이터포털
	용도별건물정보 (구별로 존재)	2021.07	국가정보포털
지도 데이터	서울시_행정경계(읍면동)	2020	통계지리정보서비스
지리 데이터	용도지역(시군구) - 도시지역	2019	KOSIS 국가통계포털
	행정구역 현황	2019	KOSIS 국가통계포털
폐기물 관련 데이터	2019 생활계폐기물(생활(가정), 사업장생활계) 발생 및 처리현황 - (시군구) 생활폐기물 발생량	2019	환경부 폐기물 통계
	2019 생활계폐기물(생활(가정), 사업장생활계) 발생 및 처리현황 - (시군구) 관리인원 및 장비현황	2019	환경부 폐기물 통계
인구데이터	1인가구비율(시도/시/군/구)	2019	KOSIS 국가통계포털
	인구, 가구 및 주택 - 읍면동, 시군구	2019	KOSIS 국가통계포털
	행정구역 (읍면동)별 / 5세별 주민등록인구	2019	KOSIS 국가통계포털
	서울시 주민등록인구 (동별) 통계	2019	서울 열린 데이터 광장
	서울시 가구원수별 가구수 (동별) 통계	2020	서울 열린 데이터 광장
	서울시 주민등록인구 (연령별/동별) 통계	2019	서울 열린 데이터 광장
	서울시 가구형태별 가구 및 가구원 (동별) 통계	2020	서울 열린 데이터 광장

2. 데이터 수집

전처리: 수도권 데이터

2. 데이터 분석: 유의미한 변수 선정

재활용 변수와 <u>인구 관련 변수</u>의 상관계수가 높음

- ▶ 다중공선성 문제 해결위해 변수 선택 필요
- "**인구지수** " 도출

재활용 변수와 유의한 주거지역면적, 상업지역면적, 도시지역면적 변수선정

2. 데이터 분석

인구지수

재활용 변수와의 상관분석 결과, 유의한 변수를 사용하여 *PCA* 를 통해 인구지수 변수 생성

▶ PCA(주성분 분석) 결과

〈변수 별 적재량〉

1인 가구 : 0.46779226

일반 가구: 0.48278117

총 인구: 0.47773681

외국인 인구: 0.34242779

노인 인구: 0.45011497

주성분분석을 통해 각 변수들 적재량 확인 후 *인구지수* 변수 생성

2. 데이터 분석

단계적 회귀분석

```
> step_model <- step(lm(대체_재활용 ~ 1, data = model_data),
+ scope = list(lower = ~1, upper = ~인구_주성분 + 도시지역면적+
                               주거지역면적 + 상업지역면적 + 폐기물관리손수레_구간)
                  direction = 'both')
Start: AIC=627.37
대체 재활용 ~ 1
                    Df Sum of Sq RSS AIC
+ 인구 주성분
                    1 576659 283556 556.12
+ 주거지역면적
                 1 418236 441979 585.42
+ 상업지역면적
                 1 190864 669351 612.81
+ 도시지역면적
                  1 78889 781326 623.02
+ 폐기물관리손수레_구간 1 46357 813858 625.71
                                860215 627.37
<none>
Step: AIC=556.12
대체_재활용 ~ 인구_주성분
                    Df Sum of Sq RSS AIC
+ 주거지역면적
                   1 19355 264201 553.46
<none>
                                283556 556.12
+ 상업지역면적
                         8150 275406 556.20
+ 도시지역면적
                      4422 279135 557.09
+ 폐기물관리손수레_구간 1
                         756 282800 557.95
                   1 576659 860215 627.37
대체_재활용 ~ 인구_주성분 + 주거지역면적
                                 RSS
                                264201 553.46
+ 도시지역면적
                          2034 262168 554.95
+ 폐기물관리손수레_구간 1
                         161 264041 555.42
+ 상업지역면적
                           4 264197 555.46
- 주거지역면적
                       19355 283556 556.12
                    1 177778 441979 585.42
```

' 인구지수', '주거지역면적'

변수 선택

회귀분석

```
call:
lm(formula = 대체_재활용 ~ 인구_주성분 + 주거지역면적, data = model_data)
Residuals:
            10 Median
-162.70 -42.88 -15.86 28.42 199.74
Coefficients:
            Estimate Std. Error t value Pr(>|t|)
(Intercept)
                         7.971 26.658 < 2e-16 ***
인구_주성분
                       5.695
                               6.511 1.41e-08 ***
주거지역면적
                      11.583
                             2.148 0.0355 *
Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
Residual standard error: 64.76 on 63 degrees of freedom
Multiple R-squared: 0.6929, Adjusted R-squared: 0.6831
F-statistic: 71.06 on 2 and 63 DF, p-value: < 2.2e-16
```

약 68%의 설명력을 가지며 P-value가 0.05보다 작으므로 회귀분석 모델 사용

2. 데이터 분석

동별 데이터 분석을 위한 추가변수

카페 등 가게 수가 증가함에 따라 1회용 플라스틱 컵의 소비량도 증가

"일회용컵 사용, 11년 새 21억개 증가 "

출처: 연합뉴스

서울시 우리마을가게 상권분석 서비스 (커피-음료 점포 수) K-means

그룹의 평균이 되는 중심점(centroid) 선택 후 각 점을 가장 가까운 중심점에 할당함으로써 K개의 군집 형성

K-medoids

그룹의 대표점인 중간점(medoid)를 선택 후 중간점에 가까운 데이터들을 군집으로 형성

Hierarchical

계층적으로 각 데이터를 유사한 군집으로 형성

시각화

변수: 인구지수, 전체 점포 수, 주거건물대지면적

2. 군집분석

입지 선정 행정동 탐색 : 군집분석

	인구지수	전체점포수	주거건물대지면적	순위
Km_cluster				
1	2.366612	45.777778	737081.694756	3
2	1.820133	584.500000	1465698.048000	1
3	0.273448	222.923077	1423195.125662	2
4	-1.879252	26.588652	405210.598855	6
5	0.616075	106.235294	1172733.564168	3
6	0.153961	30.760563	588285.407523	5
K-me	ans			

Kmed_cluster	인구지수	전체점포수	주거건물대지면적	순위	
1	-2.212987	27.524752	361834.893294	6	
2	0.509232	141.888889	1202358.061362	3	
3	-0.535644	28.406504	520250.132801	5	
4	1.075440	33.032258	656298.668398	4	
5	2.773257	52.000000	856984.020181	2	
6	1.820133	584.500000	1465698.048000	1	
K-medoids					

	인구지수	전체점포수	주거건물대지면적	순위
H_cluster				
1	-1.497298	25.860335	424577.046221	10
2	0.649318	118.739130	1263918.247513	6
3	1.191844	203.714286	751055.452186	4
4	1.350419	39.818182	689825.585504	7
5	-3.338908	109 750000	499165 910450	g
6	1.820133	584.500000	1465698.048000	1
7	0.654459	60.000000	3889904.348000	4
8	1.380290	260.000000	4435491.396500	2
9	-1.341289	339.000000	1025711.810000	3
10	-3.621881	280.000000	690861.354000	7
Hierarchica				

각 군집에서 변수 별 평균의 순위를 구한 뒤, 순위합의 순위 중 상위 군집 채택

▶ 입지 선정 행정동

역삼1동 서교동 대치4동 상도1동

2. 입지분석

P-median

p-median은 (대표적인) 입지 선정 모델로, 수요지와 후보지간 이동에 소요되는 최소 비용을 산출하여 p개의 시설물을 배치하여 최적 입지를 선정하는 방법

▶ P-Median 알고리즘

$$min_y \sum_{i \in I} \sum_{j \in J} w_i r_{ij} y_{ij}$$

s.t.
$$\sum_{j \in J} y_{ij} = 1$$
, $\sum_{j \in J} x_j = S$,

$$y_{ij} \leq x_j, \qquad y_{ij}, x_j \in \{0,1\}$$

 $i: \triangle A = j: CA = j$

 w_i = 가중치 r_{ij} = 거리 S = 분리수거 기기 개수

입지후보지는 반드시 하나의 기기와 연결

▶ 거리 가중치

활발한 상권에 위치한 카페에 가중치 부여

활발한 상권에 위치한 집단에 3배의 가중치 부여

> 상권정보를 바탕으로 가중지역을 객관적으로 선정해서 알고리즘의 신뢰도 높임

2. 입지 선정 과정

쓰레기통은 접근성이 좋은 곳에 위치하는 것이 중요하기 때문에 공동주택 과 카페 각각 스마트 분리수거 기기 입지 분석 진행

- ▶ 공동주택에는 가중치 1배 부여 ✔
- ▶ 활발한 상권에 위치한 카페에 *" 3배"* 가중치 부여 <mark>◆</mark>

1) 공동주택

: 「주택법」 제2조제3호, 「주택법시행령」 제3조제1항제1호 및 「건축법 시행령」 별표 1 제2호가목) 의 아파트의 정의에 따라 **지상 4층 이하 주택**

> 행정동 별 공동주택 좌표 선택 후 P-median 통해 최적의 위치 선정 (원중심으로부터 반경 100m)

2. 입지 선정 과정

입지 선정 과정

활발한 상권 카페에 100m 원형 버퍼를 생성하여 그 안에 포함 되는 카페에 가중치 부여

* 카페 좌표들을 이용해 인근 지역끼리 모아 카페 매출 비교

행정동 별 카페 좌표 선택 후 P-median 통해 최적의 위치 선정 (원 중심으로부터 반경 100m)

2. 입지분석 - 최종입지선정

입지 선정 결과

서울시 강남구 언주로 104길

주택 밀집 지역 선정

가까운 거리에서 이용 가능

서울특별시 강남구 테헤란로39길 55

번화가 카페의 유동인구가 많은 곳 선정

기존에 의도하였던 카페에서 사용한 컵을 분리수거 하는 것 유도 가능

3. 문제점 개선방안

- ▶ (현행 정책 개선) 주택가 재활용 정거장의 시간적·물리적 한계를 극복하며 인건비 절감 가능 * 2019년 기준으로, 주택가 재활용 정거장의 총 사업비는 1,341,500,000원. 스마트 분리수거 기기는 대당 약 4,000,000원
- ▶ (자원 순환) 커피전문점의 확산으로 늘어난 플라스틱 컵의 처리 용이 (불가피하게 배출되는 쓰레기 재활용 가능)
- ▶ (환경 보호) 실질 재활용률 증가로 매립 쓰레기의 양을 줄여 폐기물 처리 문제 개선

▶ (인식 개선)스마트 분리수거 기기 사용을 통해 플라스틱 분리수거의 올바른 방법을 홍보하여 서울시민들의 재활용 촉진

3. 활용방안

▶ 자원순환포인트를 서울시 지역화폐 및 제로페이로 전환 사용하여 상생경제 실현

Q. 제로페이 란?

소상공인의 결제 수수료 부담을 줄이기 위해 민관이 합작해 만든 모바일 간편결제서비스 소비자가 매장 QR코드를 인식하여 결제하면, 소비자의 계좌에서 가맹점의 계좌로 이체가 되는 방식 (소상공인 비율: 연 매출 8억원 이하 소상공인이 전체 가맹점의 90%)

▶ (사업화 방안) 스마트 분리수거 기기를 통해 재활용 수거 데이터 수집)

<u>쓰레기 배출량 및 처리비용 예측, 최적 수거 경로 재설정, 타 지역 분리수거 기기 입지 선정에 활용</u>

- 공공 재활용 기반시설 현대화의 일환
- ▶ 행정동별 생활 여건에 맞춘 스마트 분리수거 기기설치로 폐기물 수거·처리 최적화
- ▶ 스마트 분리수거 기기 도입 시 평균 30%p 이상 실질 재활용률 증가
- ► 분리수거 활성화로 <mark>스마트 그린 도시</mark> 조성에 기여 : 인간과 환경이 공존하는 지속가능한 미래 환경 도시
- ▶ 매년 수십조원에 달했던 폐기물 처리 비용의 감소 (2017년 기준 연간 23조원)
- ▶ 서울시 쓰레기 배출량 최소화로 수도권 매립지 사용연한 증가

(使用年限)

3. 한계점

한계점

- ▶ 시간데이터의 통합의 어려움이 있었음(분기별 데이터 존재)
 - → 데이터 수집의 시간적 통일 필요함
- ▶ 재활용 관련 데이터 부족(행정동 별 재활용 데이터 존재하지 않음)
 - → 자치구 자체적으로 폭넓은 데이터 수집이 필요함

참고문헌

□ 참고자료

- 2019년도 전국 폐기물 발생 및 처리현황, 발간등록번호(11-1480000-001552-10), 환경부(2020)
- 서울시 자치구별 쓰레기 삶 분석, 윤성원·강지원·손혜진, 청년허브(2019.12)
- 울산지역 자원재활용 시설의 실질재활용률 산정연구, 김희종, 울산발전연구원, 기본과제 2019-13(2019.12.17)
- 서울시 단독주택 공간 분포 연구(1970~2009), 장명준, 강창덕, 서울도시연구 제12권 제2호(2011.06)
- 서울특별시, 서울시 재활용통계 작성방법 컨설팅(2016)
- 유기영, 공동주택 재활용품 적체 해소방안, 과학과 기술 2018년 7월호, pp. 41~45(2018)
- 유기영, [정책제안] 공동주택 재활용품 적체로 본 공공부문의 역할, 한국자치학회, 월간 공공정책 152호, 2018.6, pp 65~68(2018)
- 성신제, 인구변화가 쓰레기배출량에 미치는 영향, 한국지역지리학회지 제11권 제6호, pp. 559-570(2005)
- 정재춘, 폐기물의 분리수거 및 재활용에 대한 의식조사,
 Korean journal of environmental education v. 5 no. 1, 1993년 pp.62
- Korean journal of environmental education v.5 no.1, 1993년 pp 62~70 (1993)
- 2017 대한민국 OECD 환경성과평가, 환경부(2017)

□ 분석도구

