# CMPE 212 Principles of Digital Design

Lecture 20

## Modular Sequential Logic

April 6, 2016

www.csee.umbc.edu/~younis/CMPE212/CMPE212.htm

#### Lecture's Overview

#### □ Previous Lecture

→ Introduction to sequential circuits

(Concept, effect of feedback on combinational circuits, finite state machines, example applications)

→ Memory devices

(S-R Latches, D-Latches, J-K and Toggle latches)

→ Flip-Flops

(Role of clock, timing behavior diagrams)

→ Clocked sequential circuits

(master-slave flip flops, level and edge triggered flip flops)

- ☐ This Lecture
  - → Modular Sequential Logic
    - Registers
    - Shift Registers
    - Synchronous and asynchronous counters



#### Popular Sequential Logic Modules

- □ The combinational logic circuits we have been studying so far have no memory → The outputs always follow the inputs
- ☐ These are referred to as finite state machines, because they can have at most a finite number of states
- ☐ A finite state machine responds to an input by generating an output that is function of that input and the current state
- ☐ Finite state machine are commonly used for the design of digital controllers (typically called sequencer)
- □ Sequential circuits combines both combinational logic and memory devices
- ☐ Like combinational logic, there exist sequential logic modules that are available as MSI components, e.g., 74XX series
- ☐ Shift registers and counters are the most popular sequential logic modules that are used in digital designs

#### Classical Model of a Finite State Machine



A FSM is composed of a combinational logic unit and delay elements (called latches or flip-flops) in a feedback path, which maintains state information



#### Register

- A register is composed of a set of flip-flops that stores parallel data, i.e., latches all bits at the same time at the clock edge
- Parallel output, i.e., all bits are available at the same time
- The register size is categorized by the number of stored bits



#### **Shift Registers**

- A shift register stores serial data bits and provides both serial and parallel output
- The serial output is simply a delayed bit sequence of the serial input with a delay that is proportional to the size of the register
- Numerous standard MSI devices are available, e.g., 7491A, 74164, etc. Some may not provide all features though
- The shift can be to the right or the left, with option to preload



## **Timing Diagram Shift-Right**



## Left-Right Shift Reg. with Parallel Load



## **Applications of Shift Registers**



#### Serial Adder:

- Shift right to add one bit at time using the full adder and save in shift register that corresponds to Z
- 2. Store the carry-out in cycle "i" in the D flip-flop to be used in the clock cycle "i+1" as carry-in for the next bit

#### **Applications of Shift Registers**

#### Serial Accumulator:

- Simply a serial adder for which the serial output is reused as a serial input to the accumulator
- ☐ The shift right frees up the left most significant bit in X to host the least significant bit of Z.
- After n iterations, Z will be stored in X
- Preset line is not used for X (need a different signal to reset the accumulator)
- The rest of the circuit is similar to the serial adder



### Parallel Accumulator Design



- No shift registers, just a register is used to store the accumulated values
  - Faster operation (adding n-bits rather than one bit at a time)

## **Synchronous Binary Counters**



- Synchronous counters start at zero and increment every clock cycle (until 2<sup>n</sup>-1 and then recycle)
- T flip-flops, implemented as J-K's, are used to toggle the next flip-flop when its output is 1





#### **Counting Down**



- Counter starts at 2<sup>n</sup>-1 and decrements every clock cycle until reaching zero and then resets back to 2<sup>n</sup>-1)
- T flip-flops, implemented as J-K's, are used to toggle the next flip-flop when its output is 1.
- Connecting to J and K to  $\overline{Q}$  instead of Q, triggers the transition on a change of  $\overline{Q}$  in, i.e. change of Q from 0 to 1,

### Synchronous Up/Down Counters

Factoring 1-0 or 0-1 transitions depends on the selection of the up or down mode

clock in order to freeze the state

The counter is either counting up or down



**Mohamed Younis** 

## **Asynchronous Binary Counters**



Asynchronous → state change is not controlled by a synchronizing clock (ready-go operation)

- Delay is not homogenous and one has to determine the worst case delay to avoid reading the wrong output
- Recycling back to zero is not instantaneous, (n-1)t<sub>p</sub>



#### **Down Counters**



### **Asynchronous Up/Down Counters**



- ☐ Counters are very popular module in sequential logic circuit
- ☐ An up/down counter is a simple finite state machine in which transitions from a particular state can be to the next (count-up), the previous (count-down) or the initial (CLR) states
- ☐ Generally synchronous design is much easier than asynchronous design; yet may not be as efficient

#### **Conclusion**

- □ **Summary** 
  - → Register and Shift Registers (Design, supporting right and lift shift, parallel load)
  - → Applications of Shift Registers (Serial adders, serial accumulators, parallel accumulators)
  - → Binary counters (synchronous and asynchronous counters, Down and up/down counters)
  - → Next Lecture
    - → Modular Sequential Logic
      - Modulo-N counters
      - Ring counters
      - Multiple sequence counters

Reading assignment: Sections 7.1 - 7.3 in the textbook

