Strong-D Activity Prediction: Background

Chentian Jiang

4/9/2019

Strong-D

Stanford's STRONG-D Study: Strength Training Regimen for Normal Weight Diabetics

- ► Goal: determine the best exercise regimen for normal weight participants with Type 2 Diabetes
 - Manipulated variables: strength vs aerobic vs combined exercises
 - Response variable: indirect measures of blood sugar levels (hemoglobin A1c)

Strong-D Data

Table 1: Strong-D features used for RHR estimation.

Data Set	Features			
Fitbit/Fitabase:	Participant ID, timestamp (seconds),			
HR*	HR (bpm)			
Fitbit/Fitabase:	Participant ID, timestamp (minutes),			
Steps	num. steps			
Clinic	Participant ID, timestamp (date),			
	supine HR (bpm), sitting HR (bpm),			
	standing HR (bpm)			

► Fitbit data: 423 days of measurements for 78 participants from August 1, 2017 to September 28, 2018

Goal and Motivation

Build a machine learning model for classifying aerobic vs strength using wrist-worn, PPG-based Fitbit Charge 2 data.

- Convenience: wrist-worn, consumer product
- ► Estimate number of minutes for performing a type of activity
 - Study compliance
 - Weekly adult lifestyle guidelines (WHO): >150 minutes of moderate-intensity aerobic physical activity, >2 days with muscle-strengthening activities
- Determine which type of activity is occurring at which timestamp
 - Extract biomarkers according to the type of activity
 - Caveat: some biomarkers are used as features
- ► Feature engineering based on background literature and EDA
 - ▶ I hope that you all can help me brainstorm features throughout this presentation :)

Accelerometers for Classifying Activity Type

Figure 1: Wrist and hip accelerometers.

- ▶ Wrist, hip, ankle
- ▶ Static vs dynamic acceleration
 - ▶ $1g = 9.8 \text{ m/s}^2$
 - ▶ 1-3 axes
- ▶ 20-30 Hz

Accelerometers for Classifying Activity Type

Figure 2: Example accelerometer measurements for one participant (Ellis et al., 2014).

 Activity categories: aerobic (e.g. walking, running, basketball), household (e.g. laundry), vehicle

Traditional Method for Classifying Activity Type

Cut-point

- e.g. sedentary (< 100 CPM), light (100 1951 CPM), moderate to vigorous physical activity (>= 1952 CPM) (Ellis et al., 2016)
 - CPM: counts per minute (proprietary accelerometer metric)

Common Machine Learning Models

- Support Vector Machine (SVM)
- Neural Network (NN)
- Random Forest (RF)
- ▶ 75 95% accuracy

Support Vector Machine

► Feature augmentation

Neural Network

- Can represent complex relationships between features
 - ► Linear function (Wx)
 - Nonlinear (activation) function, e.g. ReLU: f(a) = max(0, a)

Random Forest

- Generalization
- ► Feature importance
- ► Successful with minor hyperparameter tuning

Features

Figure 3: Example feature importance for a random forest classifier (Ellis et al., 2016).

Features

Figure 4: Pitch, yaw and roll.

HR Feature

- ► "Maximum HR was estimated for each participant by maxHR = 220 age." (Ellis et al, 2014, p. 2195)
- ► Classification performance did *not* improve

Evaluation

	Laundry	Window	Dust	Dish	Sweep	Stairs	Walk	Jog
Laundry	29	8	4	45	7	0	3	0
Window	4	43	9	24	15	0	1	0
Dusting	4	11	23	12	45	0	1	0
Dishes	14	7	7	99	17	0	0	0
Sweeping	5	15	38	21	61	1	3	0
Stairs	0	2	0	4	0	110	22	6
Walk	3	1	1	12	0	21	435	7
Jog	0	0	0	1	0	1	12	196

Figure 5: Example confusion matrix, where the true labels are on the rows and the predicted labels are on the columns (Ellis et al., 2016).

► Leave-one-subject-out (LOSO) validation

Precision: TP/(TP+FP)

► Recall: TP/(TP+FN)
► F-score: 2*precision*recall (precision+recall)

Participants and Controlled vs Free-Living

"the high predictive accuracy of laboratory-calibrated models has not been reproducible in free-living settings." (Farrahi et al., 2019)

- ▶ Ellis et al. (2014): lab environment
- Staudenmayer et al. (2015): "as similar to free-living conditions (e.g., gardening and raking were performed outside and basketball was performed in a gym on a court) as possible." (p. 397)
- ► Ellis et al. (2016): free-living training measurements + labels via wearable camera

Gaps

- Classify strength/resistance vs aerobic
- ► Fitbit data
- Feature engineering informed by background literature and EDA
 - Personalized HR features
- Hybrid controlled and free-living conditions for training data collection

Feature Engineering Brainstorm

Build a machine learning model for classifying aerobic vs strength using wrist-worn, PPG-based Fitbit Charge 2 data.

Potential Features for a Random Forest Model

- rolling window summary functions for number of steps
- rolling window summary functions for HR
 - Rate of increase
- ► HR − RHR_{est}
 - RHR estimation model or clinical RHR measurements (supine, sitting, standing)