目录

高等代数笔记

陈群

November 15, 2019

1 行列式

1.1 n 元排列

定义 1.1 (n 元排列) 1,2,3,...,n (或者 n 个不同的正整数)的全排列称为一个 n 元排列.

显然,1,2,3,...,n (或者 n 个不同的正整数)的 n 元排列有 n! 个.

定义 **1.2** (逆序数对和逆序数) 给定一个数对 (a,b), $a \neq b$, 若有 a > b, 则称 (a,b) 为逆序数对. 一组数 1, 2, 3, ..., n 中的逆序数对的个数称为该数列的逆序数, 记作 $\tau(1, 2, 3, ..., n)$

对于数列 2431, 其中的逆序数对为 (2,1), (4,3), (4,1), (3,1), 其逆序数为 4.

定义 1.3 (奇排列与偶排列) 逆序数为奇数的排列称为奇排列; 逆序数为偶数的排列称为偶排列.

定理 1.1 对换排列中的两个数的位置会改变排列的奇偶性.

证明. 1. 对换相邻位置的两个数.

设对换之前的排列为 $a_1a_2...a_ia_j...a_n$,则对换之后的排列为: $a_1a_2...a_ja_i...a_n$,两个排列进行比计较可以知 道, 对于前 i-1 个位置而言, 互换前后的逆序数不变, 对于第 j+1 到 n 个位置而言, 互换前后的逆序数也 没有改变. 交换前, 第 i , j 位置的逆序数和为:

$$\tau(a_i, a_j) + \sum_{k=j+1}^{n} \tau(a_i, a_k) + \sum_{k=j+1}^{n} \tau(a_j, a_k)$$

交换后,第 i, j 位置的逆序数和为:

$$\tau(a_j, a_i) + \sum_{k=j+1}^n \tau(a_j, a_k) + \sum_{k=j+1}^n \tau(a_i, a_k)$$

上述两式的差为 $\tau(a_i, a_i) - \tau(a_i, a_i) = \pm 1$, 故两个排列的奇偶性相反.

2. 一般情况下

设对换之前的排列为 $a_1a_2...a_ia_{i+1}...a_{i+s}a_j...a_n$,则对换之后的排列为: $a_1a_2...a_ja_{i+1}...a_{i+s}a_i...a_n$,可以看做 s+1+s 次相邻元素之间的对换,每一次都改变了排列的奇偶性,由于 2s+1 为奇数,从而交换前后排列的 奇偶性相反.

定理 **1.2** 任一 n 元排列 $j_1 j_2 ... j_n$ 与 123...n 可以经过一系列的对换互变且所做的对换的次数与原排列 $j_1 j_2 ... j_n$ 的奇偶性相同.

证明. 设 $j_1j_2...j_n$ 经过 s 次对换变为 123,...n, 显然 123,...n 是偶排列. 由于每互换一次改变排列的奇偶性, 所以若 $j_1j_2...j_n$ 为奇排列, 则 s 为奇数; 若 $j_1j_2...j_n$ 为偶排列, 则 s 为偶数

1.2 n 阶行列式

定义 1.4 (n 阶行列式) n 阶行列式为 n! 项代数和, 其中每一项是不同行不同列的 n 个元素的乘积. 每一项按照行指标的自然顺序排列, 列指标所成的排列是奇排列时带负号, 偶排列时带正号.

$$\begin{vmatrix} a_{11} & a_{12} & a_{13} & \dots & a_{1n} \\ a_{21} & a_{22} & a_{23} & \dots & a_{2n} \\ \dots & \dots & \dots & \dots & \dots \\ a_{n1} & a_{n2} & a_{n3} & \dots & a_{nn} \end{vmatrix} := \sum_{j_1 j_2 \dots j_n} (-1)^{\tau(j_1 j_2 \dots j_n)} a_{1j_1} a_{2j_2} \dots a_{nj_n}$$

记作 |A| 或者 detA

特别地, 可以写作:

$$|A| := \sum_{i_1 i_2 \dots i_n} (-1)^{\tau(i_1 i_2 \dots i_n)} a_{i_1 1} a_{i_2 2} \dots a_{i_n n}$$

由上式可以得出结论:

性质 1.1

$$|A| := |A^T|$$

性质 1.2 A 作行变换, 第 i 行乘以 k, 得到 A

$$A \stackrel{\textcircled{1}*k}{\longrightarrow} B$$

得到

$$|B| = k|A|$$

证明.

$$\begin{vmatrix} a_{11} & a_{12} & a_{13} & \dots & a_{1n} \\ \dots & \dots & \dots & \dots \\ a_{i1} & a_{i2} & a_{i3} & \dots & a_{in} \\ \dots & \dots & \dots & \dots \\ a_{n1} & a_{n2} & a_{n3} & \dots & a_{nn} \end{vmatrix} \longrightarrow \begin{vmatrix} a_{11} & a_{12} & a_{13} & \dots & a_{1n} \\ \dots & \dots & \dots & \dots \\ ka_{i1} & ka_{i2} & ka_{i3} & \dots & ka_{in} \\ \dots & \dots & \dots & \dots \\ a_{n1} & a_{n2} & a_{n3} & \dots & a_{nn} \end{vmatrix}$$

B 的行列式可以表示为:

$$\begin{split} |B| &= \sum_{j_1 j_2 \dots j_n} (-1)^{\tau(j_1 j_2 \dots j_n)} a_{1j_1} a_{2j_2} \dots k a_{i,j_i} \dots a_{nj_n} \\ &= k \sum_{j_1 j_2 \dots j_n} (-1)^{\tau(j_1 j_2 \dots j_n)} a_{1j_1} a_{2j_2} \dots a_{i,j_i} \dots a_{nj_n} \\ &= k |A| \end{split}$$

性质 1.3

$$\begin{vmatrix} a_{11} & a_{12} & a_{13} & \dots & a_{1n} \\ \dots & \dots & \dots & \dots & \dots \\ b_1 + c_1 & b_2 + c_2 & b_3 + c_3 & \dots & b_n + c_n \\ \dots & \dots & \dots & \dots & \dots \\ a_{n1} & a_{n2} & a_{n3} & \dots & a_{nn} \end{vmatrix} = \begin{vmatrix} a_{11} & a_{12} & a_{13} & \dots & a_{1n} \\ \dots & \dots & \dots & \dots & \dots \\ b_1 & b_2 & b_3 & \dots & b_n \\ \dots & \dots & \dots & \dots & \dots \\ a_{n1} & a_{n2} & a_{n3} & \dots & a_{nn} \end{vmatrix} + \begin{vmatrix} a_{11} & a_{12} & a_{13} & \dots & a_{1n} \\ \dots & \dots & \dots & \dots & \dots \\ c_1 & c_2 & c_3 & \dots & c_n \\ \dots & \dots & \dots & \dots & \dots \\ a_{n1} & a_{n2} & a_{n3} & \dots & a_{nn} \end{vmatrix}$$

证明. 设左式为 |A|, 则有

$$\begin{split} |A| &= \sum_{j_1 j_2 \dots j_n} (-1)^{\tau(j_1 j_2 \dots j_n)} a_{1j_1} a_{2j_2} \dots (b_{j_i} + c_{j_i}) \dots a_{nj_n} \\ &= \sum_{j_1 j_2 \dots j_n} (-1)^{\tau(j_1 j_2 \dots j_n)} a_{1j_1} a_{2j_2} \dots b_{j_i} \dots a_{nj_n} + \sum_{j_1 j_2 \dots j_n} (-1)^{\tau(j_1 j_2 \dots j_n)} a_{1j_1} a_{2j_2} \dots c_{j_i} \dots a_{nj_n} \\ &= \begin{vmatrix} a_{11} & a_{12} & a_{13} & \dots & a_{1n} \\ \dots & \dots & \dots & \dots & \dots \\ b_1 & b_2 & b_3 & \dots & b_n \\ \dots & \dots & \dots & \dots & \dots \\ a_{n1} & a_{n2} & a_{n3} & \dots & a_{nn} \end{vmatrix} + \begin{vmatrix} a_{11} & a_{12} & a_{13} & \dots & a_{1n} \\ \dots & \dots & \dots & \dots & \dots \\ a_{n1} & a_{n2} & a_{n3} & \dots & a_{nn} \end{vmatrix} \\ &= \begin{vmatrix} a_{11} & a_{12} & a_{13} & \dots & a_{1n} \\ \dots & \dots & \dots & \dots & \dots \\ a_{n1} & a_{n2} & a_{n3} & \dots & a_{nn} \end{vmatrix}$$

性质 1.4

$$A \xrightarrow{(i,k)} C \Rightarrow |C| = -|A|$$

证明. 设:

$$|C| = \begin{vmatrix} a_{11} & a_{12} & a_{13} & \dots & a_{1n} \\ \dots & \dots & \dots & \dots & \dots \\ a_{k1} & a_{k2} & a_{k3} & \dots & a_{kn} \\ \dots & \dots & \dots & \dots & \dots \\ a_{i1} & a_{i2} & a_{i3} & \dots & a_{in} \\ \dots & \dots & \dots & \dots & \dots \\ a_{n1} & a_{n2} & a_{n3} & \dots & a_{nn} \end{vmatrix}, |A| = \begin{vmatrix} a_{11} & a_{12} & a_{13} & \dots & a_{1n} \\ \dots & \dots & \dots & \dots & \dots \\ a_{i1} & a_{i2} & a_{i3} & \dots & a_{in} \\ \dots & \dots & \dots & \dots & \dots \\ a_{k1} & a_{k2} & a_{k3} & \dots & a_{kn} \\ \dots & \dots & \dots & \dots & \dots \\ a_{n1} & a_{n2} & a_{n3} & \dots & a_{nn} \end{vmatrix}$$

则有

$$\begin{split} |C| &= \sum_{j_1 j_2 \dots j_i \dots j_k \dots j_n} (-1)^{\tau(j_1 j_2 \dots j_i \dots j_k \dots j_n)} a_{1j_1} a_{2j_2} \dots a_{kj_i} \dots a_{ij_k} \dots a_{nj_n} \\ &= \sum_{j_1 j_2 \dots j_k \dots j_i \dots j_n} (-1)^{\tau(j_1 j_2 \dots j_k \dots j_i \dots j_n)} a_{1j_1} a_{2j_2} \dots a_{ij_k} \dots a_{kj_i} \dots a_{nj_n} \\ &= (-1)|A| = -|A| \end{split}$$

性质 1.5 两行或者两列相等的行列式的值为 0.

证明.

$$\begin{vmatrix} a_{11} & a_{12} & a_{13} & \dots & a_{1n} \\ \dots & \dots & \dots & \dots \\ a_{i1} & a_{i2} & a_{i3} & \dots & a_{in} \\ \dots & \dots & \dots & \dots \\ la_{i1} & la_{i2} & la_{i3} & \dots & la_{in} \\ \dots & \dots & \dots & \dots \\ a_{n1} & a_{n2} & a_{n3} & \dots & a_{nn} \end{vmatrix} = l0 = 0$$

性质 1.7

$$A \overset{\text{(k)}+\text{(i)}l}{\longrightarrow} D \Rightarrow |A| = |D|$$

证明. 设

$$|D| = \begin{vmatrix} a_{11} & a_{12} & a_{13} & \dots & a_{1n} \\ \dots & \dots & \dots & \dots & \dots \\ a_{i1} & a_{i2} & a_{i3} & \dots & a_{in} \\ \dots & \dots & \dots & \dots & \dots \\ a_{k1} + la_{i1} & a_{k2} + la_{i2} & a_{k3} + la_{i3} & \dots & a_{kn} + la_{in} \\ \dots & \dots & \dots & \dots & \dots \\ a_{n1} & a_{n2} & a_{n3} & \dots & a_{nn} \end{vmatrix}, |A| = \begin{vmatrix} a_{11} & a_{12} & a_{13} & \dots & a_{1n} \\ \dots & \dots & \dots & \dots \\ a_{i1} & a_{i2} & a_{i3} & \dots & a_{in} \\ \dots & \dots & \dots & \dots & \dots \\ a_{k1} & a_{k2} & a_{k3} & \dots & a_{kn} \\ \dots & \dots & \dots & \dots & \dots \\ a_{n1} & a_{n2} & a_{n3} & \dots & a_{nn} \end{vmatrix}$$

则有

$$|D| = \begin{vmatrix} a_{11} & a_{12} & a_{13} & \dots & a_{1n} \\ \dots & \dots & \dots & \dots & \dots \\ a_{i1} & a_{i2} & a_{i3} & \dots & a_{in} \\ \dots & \dots & \dots & \dots & \dots \\ a_{k1} & a_{k2} & a_{k3} & \dots & a_{kn} \\ \dots & \dots & \dots & \dots & \dots \\ a_{n1} & a_{n2} & a_{n3} & \dots & a_{nn} \end{vmatrix} + l \begin{vmatrix} a_{11} & a_{12} & a_{13} & \dots & a_{1n} \\ \dots & \dots & \dots & \dots & \dots \\ a_{i1} & a_{i2} & a_{i3} & \dots & a_{in} \\ \dots & \dots & \dots & \dots & \dots \\ a_{i1} & a_{i2} & a_{i3} & \dots & a_{in} \\ \dots & \dots & \dots & \dots & \dots \\ a_{n1} & a_{n2} & a_{n3} & \dots & a_{nn} \end{vmatrix}$$

$$= |A| + l0 = |A|$$

1.3 Laplace 定理

定理 **1.3** 对于行列式 A = a(i, j), 取定 k 行, $i_1, i_2, ..., i_k$ 行, k 列, $j_1, j_2, ..., j_k$ 列, 其中 $i_1 < i_2 < ... < i_k, j_1 < j_2 < ... < j_k$, 行列交叉处的 k^2 个元素按照原来的排列顺序形成一个 k 阶行列式,称为 k 的 k 阶子式,记作

$$A\begin{pmatrix} i_1, i_2, ..., i_k \\ j_1, j_2, ..., j_k \end{pmatrix}$$

划去上述 k 行 k 列后剩余的元素按照原有顺序琮琤 n-k 阶行列式,称为 k 阶行列式的余子式。令

$$i'_1, i'_2, ..., i'_{n-k} = 1, 2, ..., n \setminus i_1, i_2, ..., i_k$$

其中 $i'_1 < i'_2 < ... < i'_{n-k}$

2 线性空间

2.1 线性空间的定义

定义 2.1

$$S \times M := \{(a, b) | A \in S, b \in M\}$$

称为 S 与 M 的笛卡尔积

定义 2.2 非空集合 S 上的一个代数运算定义为 $S \times S$ 到 S 的一个映射.

定义 **2.3** 设 V 是一个非空集合,K 是一个数域. 若 V 上有一个运算, 称为加法, 即 $(\alpha, \beta) \mapsto \alpha + \beta$;K 与 V 之间有运算, 称为数量乘法, 即 $k \times V \to V$: $(k, \alpha) \mapsto k\alpha$, 并且满足如下运算法则:

- (1) $\alpha + \beta = \beta + \alpha$, $\forall \alpha, \beta \in V$
- (2) $\alpha + \beta + \gamma = \alpha + (\beta + \gamma), \forall \alpha, \beta \in V$
- (3) V 中有元素 0, 使得: $\alpha + 0 = \alpha$, $\forall \alpha \in V$
- (4) $\forall \alpha \in V$, 有 $\beta \in V$, 满足 $\alpha + \beta = 0$. 称 β 为 α 的负元
- (5) $1\alpha = \alpha, \forall \alpha \in V$
- (6) $(kl)\alpha = k(l\alpha), \forall k, l \in K, \alpha \in V$
- (7) $(k+l)\alpha = k\alpha + l\alpha$, $\forall k, l \in K, \alpha \in V$
- (8) $k(\alpha + \beta) = k\alpha + k\beta$, $\forall k, l \in K, \alpha \in V$

那么称 V 为数域 K 上的一个线性空间 V 中元素可以称为向量 V 可以称作向量空间.

例 2.1 $\mathbb{R}^X := / \text{非空集合 } X$ 到 R 的映射/, 称为 X 上的实值函数. 规定:

$$(f+g)(x) := f(x) + g(x), \qquad \forall x \in X$$
$$(kf)(x) := kf(x), \qquad \forall x \in X, k \in \mathbb{R}$$

零函数为:

$$0(x) := 0, \forall x \in X$$

易证 \mathbb{R}^X 是 \mathbb{R} 上的一个线性空间.

设 V 是数域 K 上的线性空间, 其具有以下性质:

性质 2.1~V 中的零元是唯一的.

证明. 假设零元不唯一, 设 0_1 , 0_2 都是 V 的零元, 且有 $0_1 \neq 0_2$. 由 0_2 是零元, 所以 $0_1 + 0_2 = 0_1$; 由 0_1 是零元, 所以 $0_2 + 0_1 = 0_2$, 所以 $0_1 = 0_2$, 与假设矛盾, 故假设不成立.

性质 **2.2** 对于任意的 $\alpha \in V, \alpha$ 的负元是唯一的, 记作 $-\alpha$.

证明. 假设负元不唯一, 设 β_1 , β_2 都是 α 的负元, 且有 $\beta_1 \neq \beta_2$. 则有

$$\beta_1 + \alpha + \beta_2 = \beta_1 + (\alpha + \beta_2) = \beta_1 + 0 = \beta_1$$

$$\beta_1 + \alpha + \beta_2 = (\beta_1 + \alpha) + \beta_2 = 0 + \beta_2 = \beta_2$$

所以 $\beta_1 = \beta_2$, 与假设矛盾, 故而假设不成立.

性质 2.3 $0\alpha = 0$, $\forall \alpha \in V$

证明.

$$0\alpha = (0+0)\alpha = 0\alpha + 0\alpha$$
$$0\alpha + (-0\alpha) = 0\alpha + 0\alpha + (-\alpha)$$
$$0 = 0\alpha$$

性质 2.4 k0 = 0, $\forall k \in K$

证明.

$$k0 = k(0+0) = k0 + k0$$

 $k0 + (-k0) = k0 + k0 + (-k0)$
 $0 = k0$

性质 2.5 若 $k\alpha = 0$, 则有 k = 0 或 $\alpha = 0$

证明. 假设 $k \neq 0$

$$\alpha = 1\alpha = (k^{-1}k)\alpha = k^{-1}(k\alpha)$$

由 $k\alpha = 0$, 则有 $\alpha = 0$

性质 **2.6** $(-1)\alpha = -\alpha$, $\forall \alpha \in V$

证明.

$$\alpha + (-1)\alpha = 1\alpha + (-1)\alpha = (1-1)\alpha = 0$$

所以 $(-1)\alpha$ 是 α 的负元, 为 $-\alpha$.

2.2 线性子空间

定义 **2.4** V 是数域 K 上的线性空间, 其中的元素为 α, U 是 V 的的一个非空子集. 若 U 对于 V 的加法和数量乘法(以 V 中的加法和数量乘法对 U 中的元素作运算)也是 K 上的线性空间, 则称 U 是 V 的子空间. 定理 **2.1** V 的非空子集 U 是子空间

 \rightleftharpoons

- (1). 若 $\alpha, \beta \in U$, 则 $\alpha + \beta \in U$.(U 对于 V 的加法封闭)
- (2). 若 $\alpha \in U$, 则 $k\alpha \in U$.(U 对于 V 的数量乘法封闭)

证明. "⇒": 有定义可以得到;

" \leftarrow ":V 的加法和数量乘法限定到 U 上为 U 的加法和数量乘法,显然 8 条运算法则中,1,2,5,6,7,8 是成立的. 对于第 3 和第 4 条

- 3. 由 $U \neq \emptyset$, $\exists \beta \in U$, 使得, $0\beta = 0 \in U$, 从而 $0 \in U$, 零元存在.
- 4. 对于任意的 $\alpha \in U$, 有 $(-1)\alpha \in U$, 即 $-\alpha \in U$, 从而负元存在.

例 2.2 {0} 空间是子空间

定义 **2.5** 若存在一组向量 $\alpha_1, \alpha_2, ..., \alpha_s \in W$, 则将 $k_1\alpha_1 + k_2\alpha_2 + ... + k_s\alpha_s$ 称为 $\alpha_1, \alpha_2, ..., \alpha_s$ 的线性组合. 其中 $k_1, k_2, ..., k_s \in K$. 令 $W = \{k_1\alpha_1 + k_2\alpha_2 + ... + k_s\alpha_s | k_1, k_2, ..., k_s \in k\}$, 则有 $0 \in W$ 且 W 对于 V 的加法和数量乘法封闭, 从而 W 是 V 的子空间, 将其称作由向量组 $\alpha_1, \alpha_2, ..., \alpha_s$ 生成的子空间, 记作 $<\alpha_1, \alpha_2, ..., \alpha_s > ...$

定义 **2.6** $\beta \in \langle \alpha_1, \alpha_2, ..., \alpha_s \rangle$

: \Leftrightarrow 存在 $l_1, l_2, ..., l_s \in K$ 使得 $\beta = l_1\alpha_1 + l_2\alpha_2 + ... + l_s\alpha_s$. 此时称, β 可以由 $\alpha_1, \alpha_2, ..., \alpha_s$ 线性表出.

对于方程组:

 $x_1\alpha_1 + x_2\alpha_2 + \dots + x_n\alpha_n = \beta$

- \iff K 中有一组 $c_1, c_2, ..., c_n$, 使得 $c_1\alpha_1 + c_2\alpha_2 + ... + c_n\alpha_n = \beta$
- $\iff \beta$ 可以由 $\alpha_1, \alpha_2, ..., \alpha_n$ 线性表出.
- $\iff \beta \in <\alpha_1, \alpha_2, ..., \alpha_n >$ (生成的子空间).

2.3 线性相关与线性无关

定义 **2.7** 设 *V* 是数域 *K* 上的一个线性空间,对于 *V* 中的一个向量组: $\alpha_1, \alpha_2, ..., \alpha_s, (s \ge 1)$,若 *K* 中有不全为 0 的一组数,使得:

$$k_1\alpha_1 + k_2\alpha_2 + ... + k_s\alpha_s = 0$$

则称 $\alpha_1, \alpha_2, ..., \alpha_s$ 线性相关, 否则, 称 $\alpha_1, \alpha_2, ..., \alpha_s$ 线性无关. 即:

$$k_1\alpha_1 + k_2\alpha_2 + ... + k_s\alpha_s = 0 \implies k_1 = k_2 = ... = k_s = 0$$

则 $\alpha_1, \alpha_2, ..., \alpha_s$ 线性无关.

对于线性方程组

- (2) K^s 中的列向量 $\alpha_1,\alpha_2,...,\alpha_n$ 线性无关. \iff 齐次线性方程组 $x_1\alpha_1+x_2\alpha_2+...+x_n\alpha_n$ 只有零解. K^n 中的列向量 $\alpha_1,\alpha_2,...,\alpha_n$ 线性相关 \iff 以 $\alpha_1,\alpha_2,...,\alpha_n$ 为列向量的矩阵 A 的行列式: |A|=0 K^n 中的列向量 $\alpha_1,\alpha_2,...,\alpha_n$ 线性无关 \iff 以 $\alpha_1,\alpha_2,...,\alpha_n$ 为列向量的矩阵 A 的行列式: $|A|\neq 0$ 行向量的性质与上述情况相同.

2.4 线性相关和线性无关的向量组

- (1) α 线性相关 \iff $\exists k \neq 0$, 使得 $k\alpha = 0 \iff \alpha = 0$ 从而 α 线性无关 \iff $\alpha \neq 0$
- (2) 对于向量组 $\alpha_1,\alpha_2,...,\alpha_n$ 中,如果有一部分向量组线性相关,则 $\alpha_1,\alpha_2,...,\alpha_n$ 线性相关.

- (3) 向量组线性无关 ⇒ 不存在部分向量组线性相关(任何部分向量组线性无关)
- (4) 向量组 $\alpha_1, \alpha_2, ..., \alpha_s$ 线性相关 \iff 由定义可得,存在 K 中不全为 0 的数 $k_1, k_2, ..., k_s$ 使得:

$$k_1\alpha_1 + k_2\alpha_2 + \dots + k_s\alpha_s = 0$$

不妨设 $k_i \neq 0$, 则有

$$\alpha_i = -\frac{1}{k_i}(k_1\alpha_1 + k_2\alpha_2 + \dots + k_{i-1}\alpha_{i-1} + k_{i+1}\alpha_{i+1} + k_s\alpha_s)$$

 \iff $\alpha_1, \alpha_2, ..., \alpha_s$ 至少有一个向量可以由其余的向量线性表出. 其中第一个条件的必要性(" \Leftarrow ")的证明为:

证明. 设
$$\alpha_j = l_1\alpha_1 + ... + l_{j-1}\alpha_{j-1} + l_{j+1}\alpha_{j+1} + ... + l_s\alpha_s$$

$$\implies 0 = l_1\alpha_1 + ... + l_{j-1}\alpha_{j-1} - \alpha_j + l_{j+1}\alpha_{j+1} + ... + l_s\alpha_s \implies \alpha_1, \alpha_2, ..., \alpha_s$$
 线性相关.

则有逆否命题:

向量组 $\alpha_1,\alpha_2,...,\alpha_s$ 线性无关 \iff 其中每一个向量都不能由其余的向量线性表出. 命题 **2.2** 若 β 可以由向量 $\alpha_1,\alpha_2,...,\alpha_s$ 其表出方式是唯一的充分必要条件是 $\alpha_1,\alpha_2,...,\alpha_s$ 线性无关.

证明. "←":

设

$$\beta = a_1 \alpha_1 + a_2 \alpha_2 + \dots + a_s \alpha_s \tag{1}$$

假设表出不唯一,即β还可以表示成:

$$\beta = b_1 \alpha_1 + b_2 \alpha_2 + \dots + b_s \alpha_s \tag{2}$$

其中 $a_i \neq b_i$. (??)-(??)可以得到:

$$0 = (b_1 - a_1)\alpha_1 + (b_2 - a_2)\alpha_2 + \dots + (b_s - a_s)\alpha_s$$

由 $\alpha_1, \alpha_2, ..., \alpha_s$ 线性无关,可以得到:

$$a_i - b_i = 0, \quad i = 1, 2, ..., s$$

即 $a_i = b_i$,假设不成立, β 的表出方式是唯一的.

"⇒":

反证法. 假设 $\alpha_1, \alpha_2, ..., \alpha_s$ 线性相关,则有 K 中的 $k_1, k_2, ..., k_s(k_i)$ 不全为零)使得:

$$0 = k_1 \alpha_1 + k_2 \alpha_2 + \dots + k_s \alpha_s$$

此外,由

$$\beta = a_1 \alpha_1 + a_2 \alpha_2 + \dots + a_s \alpha_s \tag{3}$$

可以得到:

$$\beta = (a_1 + k_1)\alpha_1 + (a_2 + k_2)\alpha_2 + \dots + (a_s + k_s)\alpha_s \tag{4}$$

由 $k_1, k_2, ..., k_s$ 不全为零,不妨设 $k_i \neq 0$,则有 $a_i + k_i \neq a_i$.则(??)式和(??)式相比较,至少有一项是不相等的(第 i 个位置),从而 β 有两种不相同的表出方式,这与已证明的必要性矛盾,故而假设不成立, $\alpha_1, \alpha_2, ..., \alpha_s$ 是线性无关的.

命题 2.3 设 $\alpha_1,\alpha_2,...,\alpha_s$ 线性无关, 若 $\alpha_1,\alpha_2,...,\alpha_s,\beta$ 线性相关, 那么 β 可以由 $\alpha_1,\alpha_2,...,\alpha_s$ 线性表出.

证明. 由 $\alpha_1, \alpha_2, ..., \alpha_s, \beta$ 线性相关,则存在不全为零的一组数 $k_1, k_2, ..., .k_s, l$, 使得:

$$k_1\alpha_1 + k_2\alpha_2 + \dots + k_s\alpha_s + l\beta = 0$$

若 l = 0, 则有

$$k_1\alpha_1 + k_2\alpha_2 + \dots + k_s\alpha_s = 0$$

由 $\alpha_1, \alpha_2, ..., \alpha_s$ 线性无关,则有 $k_1, k_2, ..., .k_s$ 全为零,再加上 l, 有 $k_1, k_2, ..., .k_s, l$ 全为零,与 $\alpha_1, \alpha_2, ..., \alpha_s, \beta$ 线性相关矛盾,假设不成立. 所以 $l \neq 0$. 则有

$$\beta = -\frac{k_1}{l}\alpha_1 - \frac{k_2}{l}\alpha_2 - \dots - \frac{k_s}{l}\alpha_s$$

2.5 极大线性无关组

定义 2.8

$$<\alpha_1, \alpha_2, ..., \alpha_s>:=\{k_1\alpha_1+k_2\alpha_2+...+k_s\alpha_s|k_i\in K, i=1,2,...,s\}$$

称为 $\alpha_1, \alpha_2, ..., \alpha_s$ 生成的向量空间.

定义 2.9 $\alpha_1, \alpha_2, ..., \alpha_s$ 的一个部分组若满足:

- (a) 该部分组线性无关.
- (b) 从 $\alpha_1,\alpha_2,...,\alpha_s$ 中其余的向量中 (若有) 任取一个向量添加进来得到的新的部分组都线性相关.

则称它是为 $\alpha_1, \alpha_2, ..., \alpha_s$ 的极大线性无关组.

定义 **2.10** 若向量组 $\alpha_1, \alpha_2, ..., \alpha_s$ 中的每一个向量都可以由 $\beta_1, \beta_2, ..., \beta_r$ 线性表出,则称 $\alpha_1, \alpha_2, ..., \alpha_s$ 可以由 $\beta_1, \beta_2, ..., \beta_r$ 线性表出。若 $\alpha_1, \alpha_2, ..., \alpha_s$ 和 $\beta_1, \beta_2, ..., \beta_r$ 可以相互线性表出,则称这两个向量组是等价的,记作:

$$\{\alpha_1, \alpha_2, ..., \alpha_s\} \cong \{\beta_1, \beta_2, ..., \beta_r\}$$

命题 **2.4** $\alpha_1, \alpha_2, ..., \alpha_s$ 和它的任意一个极大线性无关组等价.

证明. 不妨设 $\alpha_1, \alpha_2, ..., \alpha_s$ 的一个极大线性无关组为 $\alpha_1, \alpha_2, ..., \alpha_m (m \le s)$

$$\alpha_i = 0\alpha_1 + ... + \alpha_j + ... + 0\alpha_s, \quad j = 1, 2, ..., m$$

故而 $\alpha_1, \alpha_2, ..., \alpha_m$ 中的所有的元素都可以由 $\alpha_1, \alpha_2, ..., \alpha_s$ 线性表出.

同时显然 $\alpha_1,\alpha_2,...,\alpha_m$ 可以由 $\alpha_1,\alpha_2,...,\alpha_m$ 线性表出. 对于 $\alpha_j(m < j \le s)$,将其添加到 $\alpha_1,\alpha_2,...,\alpha_m$ 中,形成 $\alpha_1,\alpha_2,...,\alpha_m,\alpha_j$,由极大线性无关组的定义, $\alpha_1,\alpha_2,...,\alpha_m,\alpha_j$ 线性相关,由前一命题可得, α_j 可以由 $\alpha_1,\alpha_2,...,\alpha_m$ 线性表出,从而 $\alpha_1,\alpha_2,...,\alpha_s$ 可以由 $\alpha_1,\alpha_2,...,\alpha_m$ 线性表出.

故而, $\alpha_1,\alpha_2,...,\alpha_s$ 和 $\alpha_1,\alpha_2,...,\alpha_m$ 可以相互线性表出, $\alpha_1,\alpha_2,...,\alpha_s$ 和它的任意一个极大线性无关组等价.

性质 2.7 等价具有以下的性质:

- (1). 每一个向量与其自身等价(反身性)
- (2). 若 $\{\alpha_1, \alpha_2, ..., \alpha_s\} \cong \{\beta_1, \beta_2, ..., \beta_r\} \Rightarrow \{\beta_1, \beta_2, ..., \beta_r\} \cong \{\alpha_1, \alpha_2, ..., \alpha_s\}$, 对称性

(3). $\{\alpha_1, \alpha_2, ..., \alpha_s\} \cong \{\beta_1, \beta_2, ..., \beta_r\}, \{\beta_1, \beta_2, ..., \beta_r\} \cong \{\gamma_1, \gamma_1, ..., \gamma_t\} \Rightarrow \{\alpha_1, \alpha_2, ..., \alpha_s\} \cong \{\gamma_1, \gamma_1, ..., \gamma_t\}$, 传递性

证明. 第三个性质的证明。

$$\alpha_{i} = \sum_{j=1}^{r} a_{ij} \beta_{j}, i = 1, 2, ..., s$$
$$\beta_{j} = \sum_{l=1}^{t} b_{jl} \gamma_{l}, j = 1, 2, ..., r$$

则有

$$\alpha_{i} = \sum_{j=1}^{r} a_{ij} \sum_{l=1}^{t} b_{jl} \gamma_{l} = \sum_{j=1}^{r} \sum_{l=1}^{t} a_{ij} b_{jl} \gamma_{l}$$
$$= \sum_{l=1}^{t} \sum_{j=1}^{r} a_{ij} b_{jl} \gamma_{l} = \sum_{l=1}^{t} \gamma_{l} \left[\sum_{j=1}^{r} a_{ij} b_{jl} \gamma_{l} \right]$$

所以有 α_i 可以由 $\gamma_1, \gamma_2, ..., \gamma_t$ 线性表出。

由以上等价关系的对称性和传递性可以得到:

命题 2.5 向量组 $\alpha_1, \alpha_2, ..., \alpha_s$ 的任意两个极大线性无关组等价。

引理 2.6 若 $\beta_1, \beta_2, ..., \beta_r$ 可以由 $\alpha_1, \alpha_2, ..., \alpha_s$ 线性表出,若 r > s, 那么 $\beta_1, \beta_2, ..., \beta_r$ 一定线性相关。

证明. 由已知可以得到

$$\beta_{1} = a_{11}\alpha_{1} + \dots + a_{s1}\alpha_{s}$$

$$\beta_{2} = a_{12}\alpha_{1} + \dots + a_{s2}\alpha_{s}$$

$$\vdots$$

$$\beta_{r} = a_{1r}\alpha_{1} + \dots + a_{sr}\alpha_{s}$$

令

$$x_1\beta_1 + x_2\beta_2 + ... + x_r\beta_r = 0$$

则有

$$\begin{aligned} x_1(a_{11}\alpha_1 + \dots + a_{s1}\alpha_s) \\ + x_2(a_{12}\alpha_1 + \dots + a_{s2}\alpha_s) \\ \vdots \\ + x_r(a_{1r}\alpha_1 + \dots + a_{sr}\alpha_s) &= 0 \\ \Rightarrow (a_{11}x_1 + \dots + a_{1r}x_r)\alpha_1 + \dots + (a_{s1}x_1 + \dots + a_{sr}x_r)\alpha_s &= 0 \end{aligned}$$

取向量组 $\alpha_1, \alpha_2, ..., \alpha_s$ 中的一个极大线性无关组,不妨设其为 $\alpha_1, \alpha_2, ..., \alpha_m$, 且有 $m \le s < r$, 则有方程组:

$$a_{11}x_1 + ... + a_{1r}x_r = 0$$

 $a_{21}x_1 + ... + a_{2r}x_r = 0$
 \vdots
 $a_{m1}x_1 + ... + a_{mr}x_r = 0$

由 $m \le s < r$, 方程组由非零解, 设非零解为 $k_1, k_2, ..., k_r$, 得到

$$k_1\beta_1 + k_2\beta_2 + ... + k_r\beta_r = 0$$

 $k_1, k_2, ..., k_r$ 不全为零,从而 $\beta_1, \beta_2, ..., \beta_r$ 线性相关。

引理 2.7 若 $\beta_1, \beta_2, ..., \beta_r$ 可以由 $\alpha_1, \alpha_2, ..., \alpha_s$ 线性表处,且 $\beta_1, \beta_2, ..., \beta_r$ 线性无关,那么 $r \leq s$.

推论 2.8 等价的线性无关的两个向量组所含有的向量的个数相等。即

$$\{\alpha_1, \alpha_2, ..., \alpha_m\} \cong \{\gamma_1, \gamma_2, ..., \gamma_s\} \Rightarrow m = s$$

证明. 由前一推论可以得到。

推论 2.9 $\alpha_1, \alpha_2, ..., \alpha_m$ 的任意两个极大线性无关组所含有的向量个数相等。

定义 **2.11** 向量组 $\alpha_1, \alpha_2, ..., \alpha_s$ 的任意一个极大线性无关组所含有的向量个数称为 $\alpha_1, \alpha_2, ..., \alpha_s$ 的秩 (rank). 只含有 0 的向量组的秩规定为 0. 记作 $rank\{\alpha_1, \alpha_2, ..., \alpha_s\}$

命题 2.10 向量组 $\alpha_1, \alpha_2, ..., \alpha_s$ 线性无关

 $\Leftrightarrow \alpha_1, \alpha_2, ..., \alpha_s$ 是其本身的极大线性无关组

 $\Leftrightarrow \operatorname{rank}\{\alpha_1, \alpha_2, ..., \alpha_s\} = s$

命题 2.11 向量组 (I) 可以由向量组 (II) 线性表出,则 $rank(I) \le rank(II)$

证明. 取(I)中的极大线性无关组(I)',(II)中极大线性无关组(II)',

 $(I) \cong (I)'$

 $(II) \cong (II)'$

则有

$$(I)' \cong (I)'$$

即 (I)' 可以由 (II)' 线性表出. 由引理**??**,(I)' 所含向量的个数 \leq (II)' 所含向量的个数。即为 $\mathrm{rank}(I) \leq \mathrm{rank}(II)$

推论 2.12 等价的向量组的秩相等。

2.6 基、维数和坐标

定义 2.12 设 V 是数域 K 上任意的线性空间。

V 的一个有限子集 { $\alpha_1, \alpha_2, ..., \alpha_s$ } 线性相 (\mathcal{E}) 关:⇔ 向量组 $\alpha_1, \alpha_2, ..., \alpha_s$ 线性相 (\mathcal{E}) 关

V 的一个无限子集 S 线性相关 :⇔ S 有一个有限子集是线性相关的

从而有, V 的一个无限子集 S 线性无关: $\Leftrightarrow S$ 任何一个有限子集是线性无关的

定义 2.13 设 V 是数域 K 上任意的线性空间。V 的一个子集 S 若满足以下条件:

- (1). S 是线性无关的
- (2). V 中的任意向量可以由 S 中的有限多个向量线性表出

则称 $S \in V$ 的一个基.

若 $S=\{lpha_1,lpha_2,...,lpha_s\}$,则向量组 $lpha_1,lpha_2,...,lpha_s$ 是 V 的一个(有序)基(Ø 规定为线性无关)

命题 2.13 任何一个线性空间都有一个基。

定义 2.14 若 V 有一个基是有限维的,则称 V 是有限维的。

若V有一个基是无限维的,则称V是无限维的。

定理 2.14 若 V 是有限维的,则 V 的任意两个基所含有向量的个数相同。

证明. 设 V 有一个基 $\alpha_1, \alpha_2, ..., \alpha_n$, 任取另外一个基 S, 假设 S 所含有的向量个数 k > n, 则 S 中可以取出 $\beta_1, \beta_2, ..., \beta_{n+1}$, 且 $\beta_1, \beta_2, ..., \beta_{n+1}$ 可以由 $\alpha_1, \alpha_2, ..., \alpha_n$ 线性表出。由 n+1 > n, 据引理??, $\beta_1, \beta_2, ..., \beta_{n+1}$ 线性 相关,这与 S 是一个基矛盾,假设不成立,进一步有 k <= n

$$\{\beta_1, \beta_2, ..., \beta_k\} \cong \{\alpha_1, \alpha_2, ..., \alpha_n\}$$

由两个向量组都是线性无关的,从而由推论??,等价的线性无关向量组含有相同的个数,从而 k = n 工推论 2.15 若 V 是无限维的线性空间,则 V 的任意一个基都是无限子集。

证明. 假设V有一个基是有限子集,由V中任何一个基的向量个数相同,这与V是无限维矛盾。

定义 2.15 若 V 是有限维的,则将 V 的任何一个基所含有的向量个数称为 V 的维数,记作 $\dim_K V$ 或者 $\dim V$; 若 V 是无限维的,则将 V 的维数记成 $\dim V = \infty$; $\{0\}$ 的维度规定为 0.

命题 2.16 设 $\dim V = n$, 则 V 任意 n+1 个向量都线性相关。

证明. 设 $\alpha_1, \alpha_2, ..., \alpha_n$ 是 V 的一个基,则对于 V 中的任意 n+1 个向量 $\beta_1, \beta_2, ..., \beta_n, \beta_{n+1}$ 都可以由 $\alpha_1, \alpha_2, ..., \alpha_n$ 线性表出,由 n+1 > n,从而 $\beta_1, \beta_2, ..., \beta_n, \beta_{n+1}$ 线性相关。

定义 **2.16** 设 dimV = n, 取 V 的一个基 $\alpha_1, \alpha_2, ..., \alpha_n$, 则 V 中的任意一个向量可以表示成

$$\alpha = a_1\alpha_1 + a_2\alpha_2 + \dots + a_n\alpha_n$$

且表示方式唯一。将 $(a_1, a_2, ..., a_n)$ 称为 α 在基 $\alpha_1, \alpha_2, ..., \alpha_n$ 下的坐标。

证明. 由定义??可得. □

对于

$$e_{1} = \begin{pmatrix} 1 \\ 0 \\ 0 \\ \vdots \\ 0 \end{pmatrix}, e_{2} = \begin{pmatrix} 0 \\ 1 \\ 0 \\ \vdots \\ 0 \end{pmatrix}, \dots, e_{n} = \begin{pmatrix} 0 \\ 0 \\ 0 \\ \vdots \\ 1 \end{pmatrix}$$

$$\alpha = \begin{pmatrix} a_1 \\ a_2 \\ a_3 \\ \vdots \\ a_n \end{pmatrix} = a_1 e_1 + a_2 e_2 + \dots + a_3 e_3$$

 $e_1, e_2, ..., e_n$ 为 K_n 的一个基(标准基)。

命题 2.17 设 $\dim V = n$, 则 V 中任意 n 个线性无关的向量都是 V 的一个基。

证明. 从 V 中取线性无关的向量组 $\alpha_1,\alpha_2,...,\alpha_n$, 任取 $\beta \in V$,由命题**??**, $\alpha_1,\alpha_2,...,\alpha_n$,线性相关,从而 $\alpha_1,\alpha_2,...,\alpha_n$ 是极大线性无关组, β 可以由 $\alpha_1,\alpha_2,...,\alpha_n$ 线性表出。由 β 的任意性可以得出, $\alpha_1,\alpha_2,...,\alpha_n$ 是 V 的一个基。