I prodotti di uno spazio vettoriale

Dispense del corso di Geometria 1

Gabriel Antonio Videtta

A.A. 2022/2023

Indice

1	Intr	oduzione al prodotto scalare			5	
	1.1	Prime	definizio	ni	5	
		1.1.1	Prodott	o scalare e vettori ortogonali rispetto a φ	5	
		1.1.2		o definito o semidefinito		
	1.2	Il radi	radicale di un prodotto scalare			
		1.2.1	La form	a quadratica q associata a φ e vettori (an)isotropi	6	
		1.2.2	Matrice	associata a φ e relazione di congruenza	7	
		1.2.3	Studio o	del radicale V^{\perp} attraverso $M_{\mathcal{B}}(\varphi)$	8	
		1.2.4	Condizi	oni per la (semi)definitezza di un prodotto scalare	9	
	1.3	Formu	ıla delle d	limensioni e di polarizzazione rispetto a φ	10	
	1.4	Il teor	ema di L	agrange e basi ortogonali	11	
		1.4.1	L'algori	tmo di ortogonalizzazione di Gram-Schmidt	12	
1.5 Il teorema di Sylvester		ylvester	13			
		1.5.1	Caso co	mplesso	13	
		1.5.2	Caso rea	ale e segnatura di φ		
			1.5.2.1	Classificazione delle segnature per $n=1,2,3\ldots\ldots$	16	
			1.5.2.2	Metodo di Jacobi per il calcolo della segnatura	17	
			1.5.2.3	Criterio di Sylvester per la definitezza di un prodotto		
				scalare	19	
			1.5.2.4	Sottospazi isotropi e indice di Witt	19	

Introduzione al prodotto scalare

Nota. Nel corso del documento, per V, qualora non specificato, si intenderà uno spazio vettoriale di dimensione finita n.

1.1 Prime definizioni

1.1.1 Prodotto scalare e vettori ortogonali rispetto a φ

Definizione (prodotto scalare). Un prodotto scalare su V è una forma bilineare simmetrica φ con argomenti in V.

Esempio. Sia $\varphi: M(n, \mathbb{K}) \times M(n, \mathbb{K}) \to \mathbb{K}$ tale che $\varphi(A, B) = \operatorname{tr}(AB)$.

- $\varphi(A', B)$ (linearità nel primo argomento),
- $\blacktriangleright \varphi(\alpha A, B) = \operatorname{tr}(\alpha AB) = \alpha \operatorname{tr}(AB) = \alpha \varphi(A, B)$ (omogeneità nel primo argomento),
- $ightharpoonup \varphi(A,B) = \operatorname{tr}(AB) = \operatorname{tr}(BA) = \varphi(B,A)$ (simmetria),
- \blacktriangleright poiché φ è simmetrica, φ è lineare e omogenea anche nel secondo argomento, e quindi è una forma bilineare simmetrica, ossia un prodotto scalare su $M(n, \mathbb{K})$.

Definizione (vettori ortogonali). Due vettori $\underline{v}, \underline{w} \in V$ si dicono **ortogonali** rispetto al prodotto scalare φ , ossia $v \perp w$, se $\varphi(v, w) = 0$.

Definizione (somma diretta ortogonale). Siano $U \in W \subseteq V$ due sottospazi di V in somma diretta. Allora si dice che U e W sono in somma diretta ortogonale rispetto al prodotto scalare φ di V, ossia che $U \oplus W = U \oplus^{\perp} W$, se $\varphi(\underline{u},\underline{w}) = 0 \ \forall \underline{u} \in U, \underline{w} \in W$.

Definizione. Si definisce prodotto scalare canonico di \mathbb{K}^n la forma bilineare simmetrica $\varphi = \langle \cdot, \cdot \rangle$ con argomenti in \mathbb{K}^n tale che:

$$\varphi(\underline{v},\underline{w}) = \langle \underline{v},\underline{w} \rangle = \underline{v}^{\top}\underline{w}, \quad \forall \, \underline{v},\underline{w} \in V.$$

Osservazione. Si può facilmente osservare che il prodotto scalare canonico di \mathbb{K}^n è effettivamente un prodotto scalare.

- (linearità nel primo argomento),
- $\varphi(\alpha \underline{v}, \underline{w}) = (\alpha \underline{v})^{\top} \underline{w} = \alpha \underline{v}^{\top} \underline{w} = \alpha \varphi(\underline{v}, \underline{w}) \text{ (omogeneità nel primo argomento)},$ $\varphi(\underline{v}, \underline{w}) = \underline{v}^{\top} \underline{w} = (\underline{v}^{\top} \underline{w})^{\top} = \underline{w}^{\top} \underline{v} = \varphi(\underline{w}, \underline{v}) \text{ (simmetria)},$
- ightharpoonup poiché φ è simmetrica, φ è lineare e omogenea anche nel secondo argomento, e quindi è una forma bilineare simmetrica, ossia un prodotto scalare su \mathbb{K}^n .

Esempio. Altri esempi di prodotto scalare sono i seguenti:

- $\blacktriangleright \varphi(A,B) = \operatorname{tr}(A^{\top}B) \text{ per } M(n,\mathbb{K}),$
- $ightharpoonup \varphi(p(x), q(x)) = p(a)q(a) \text{ per } \mathbb{K}[x], \text{ con } a \in \mathbb{K},$
- $\varphi(p(x), q(x)) = \sum_{i=1}^{n} p(x_i)q(x)$ per $\mathbb{K}[x]$, con $x_1, ..., x_n$ distinti, $\varphi(p(x), q(x)) = \int_a^b p(x)q(x)dx$ per lo spazio delle funzioni integrabili su \mathbb{R} , con a, b in
- $\varphi(\underline{x},y) = \underline{x}^{\top}Ay$ per \mathbb{K}^n , con $A \in M(n,\mathbb{K})$ simmetrica, detto anche **prodotto** scalare indotto dalla matrice A, ed indicato con φ_A .

1.1.2 Prodotto definito o semidefinito

Definizione. Sia $\mathbb{K} = \mathbb{R}$. Allora un prodotto scalare φ si dice **definito positivo** $(\varphi > 0)$ se $\underline{v} \in V$, $\underline{v} \neq \underline{0} \implies \varphi(\underline{v},\underline{v}) > 0$. Analogamente φ è definito negativo $(\varphi < 0)$ se $\underline{v} \neq \underline{0} \implies \varphi(\underline{v},\underline{v}) < 0$. In generale si dice che φ è **definito** se è definito positivo o definito negativo.

Infine, φ è semidefinito positivo $(\varphi \geq 0)$ se $\varphi(\underline{v},\underline{v}) \geq 0 \ \forall \underline{v} \in V$ (o semidefinito **negativo**, e quindi $\varphi \leq 0$, se invece $\varphi(\underline{v},\underline{v}) \leq 0 \ \forall \underline{v} \in V$). Analogamente ai prodotti definiti, si dice che φ è **semidefinito** se è semidefinito positivo o semidefinito negativo.

Esempio. Il prodotto scalare canonico di \mathbb{R}^n è definito positivo: $\varphi((x_1,...,x_n),(x_1,...,x_n)) = \sum_{i=1}^n x_i^2 > 0$, se $(x_1,...,x_n) \neq \underline{0}$.

Al contrario, il prodotto scalare $\varphi: \mathbb{R}^2 \to \mathbb{R}$ tale che $\varphi((x_1, x_2), (y_1, y_2)) = x_1y_1 - x_2y_2$ non è definito positivo: $\varphi((x,y),(x,y)) = 0, \forall (x,y) \mid x^2 = y^2, \text{ ossia se } y = x \text{ o } y = -x.$

1.2 Il radicale di un prodotto scalare

1.2.1 La forma quadratica q associata a φ e vettori (an)isotropi

Definizione. Ad un dato prodotto scalare φ di V si associa una mappa $q:V\to\mathbb{K}$, detta forma quadratica, tale che $q(v) = \varphi(v, v)$.

Osservazione. Si osserva che q non è lineare in generale: infatti $q(\underline{v}+\underline{w}) \neq q(\underline{v}) + q(\underline{w})$

Definizione (vettore (an)isotropo). Un vettore $\underline{v} \in V$ si dice **isotropo** rispetto al prodotto scalare φ se $q(\underline{v}) = \varphi(\underline{v},\underline{v}) = 0$. Al contrario, \underline{v} si dice **anisotropo** se non è isotropo, ossia se $q(\underline{v}) \neq 0$.

Definizione (cono isotropo). Si definisce **cono isotropo** di V rispetto al prodotto scalare φ il seguente insieme:

¹In realtà, la definizione è facilmente estendibile a qualsiasi campo, purché esso sia ordinato.

$$CI(\varphi) = \{ \underline{v} \in V \mid \varphi(\underline{v}, \underline{v}) = 0 \},$$

ossia l'insieme dei vettori isotropi di V.

Esempio. Rispetto al prodotto scalare $\varphi : \mathbb{R}^3 \to \mathbb{R}$ tale che $\varphi((x_1, x_2, x_3), (y_1, y_2, y_3)) = x_1y_1 + x_2y_2 - x_3y_3$, i vettori isotropi sono i vettori della forma (x, y, z) tali che $x^2 + y^2 = z^2$, e quindi $CI(\varphi)$ è l'insieme dei vettori stanti sul cono di equazione $x^2 + y^2 = z^2$.

1.2.2 Matrice associata a φ e relazione di congruenza

Osservazione. Come già osservato in generale per le applicazioni multilineari, il prodotto scalare è univocamente determinato dai valori che assume nelle coppie $\underline{v_i}, \underline{v_j}$ estraibili da una base \mathcal{B} . Infatti, se $\mathcal{B} = (\underline{v_1}, ..., \underline{v_k}), \underline{v} = \sum_{i=1}^k \alpha_i \underline{v_i}$ e $\underline{w} = \sum_{i=1}^k \beta_i \underline{v_i}$, allora:

$$\varphi(\underline{v},\underline{w}) = \sum_{i=1}^{k} \sum_{j=1}^{k} \alpha_i \beta_j \, \varphi(\underline{v_i},\underline{v_j}).$$

Definizione. Sia φ un prodotto scalare di V e sia $\mathcal{B} = (\underline{v_1}, ..., \underline{v_n})$ una base ordinata di V. Allora si definisce la **matrice associata** a φ come la matrice:

$$M_{\mathcal{B}}(\varphi) = (\varphi(\underline{v_i}, v_j))_{i, j=1 \dots n} \in M(n, \mathbb{K}).$$

Osservazione.

- ▶ $M_{\mathcal{B}}(\varphi)$ è simmetrica, infatti $\varphi(\underline{v_i}, \underline{v_j}) = \varphi(\underline{v_j}, \underline{v_i})$, dal momento che il prodotto scalare è simmetrico,

Teorema 1.1. (di cambiamento di base per matrici di prodotti scalari) Siano \mathcal{B} , \mathcal{B}' due basi ordinate di V. Allora, se φ è un prodotto scalare di V e $P = M_{\mathcal{B}}^{\mathcal{B}'}(\mathrm{Id}_V)$, vale la seguente identità:

$$\underbrace{M_{\mathcal{B}'}(\varphi)}_{A'} = P^{\top} \underbrace{M_{\mathcal{B}}}_{A} P.$$

 $\begin{array}{ll} \textit{Dimostrazione.} \ \text{Siano} \ \mathcal{B} = (\underline{v_1},...,\underline{v_n}) \ \text{e} \ \mathcal{B}' = (\underline{w}_1,...,\underline{w}_n). \ \text{Allora} \ A'_{ij} = \varphi(\underline{w}_i,\underline{w}_j) = [\underline{w}_i]_{\mathcal{B}}^\top A[\underline{w}_j]_{\mathcal{B}} = (P^i)^\top AP^j = P_i^\top (AP)^j = (P^\top AP)_{ij}, \ \text{da cui la tesi.} \end{array}$

Definizione. Si definisce **congruenza** la relazione di equivalenza \cong (denotata anche come \equiv) definita nel seguente modo su $A, B \in M(n, \mathbb{K})$:

$$A \cong B \iff \exists P \in GL(n, \mathbb{K}) \mid A = P^{\top}AP.$$

Osservazione. Si può facilmente osservare che la congruenza è in effetti una relazione di equivalenza.

- $A = I^{\top}AI \implies A \cong A \text{ (riflessione)},$
- $A \cong B \implies A = P^{\top}BP \implies B = (P^{\top})^{-1}AP^{-1} = (P^{-1})^{\top}AP^{-1} \implies B \cong A$ (simmetria),
- ▶ $A \cong B$, $B \cong C \implies A = P^{\top}BP$, $B = Q^{\top}CQ$, quindi $A = P^{\top}Q^{\top}CQP = (QP)^{\top}C(QP) \implies A \cong C$ (transitività).

Osservazione. Si osservano alcune proprietà della congruenza.

- ▶ Per il teorema di cambiamento di base del prodotto scalare, due matrici associate a uno stesso prodotto scalare sono sempre congruenti (esattamente come due matrici associate a uno stesso endomorfismo sono sempre simili).
- ▶ Se A e B sono congruenti, $A = P^{\top}BP \implies \operatorname{rg}(A) = \operatorname{rg}(P^{\top}BP) = \operatorname{rg}(BP) = \operatorname{rg}(B)$, dal momento che P e P^{\top} sono invertibili; quindi il rango è un invariante per congruenza. Allora si può ben definire il rango $\operatorname{rg}(\varphi)$ di un prodotto scalare come il rango della matrice associata di φ in una qualsiasi base di V.
- ▶ Se A e B sono congruenti, $A = P^{\top}BP \implies \det(A) = \det(P^{\top}BP) = \det(P^{\top})\det(B)\det(P) = \det(P)^2\det(B)$. Quindi, per $\mathbb{K} = \mathbb{R}$, il segno del determinante è un altro invariante per congruenza.

1.2.3 Studio del radicale V^{\perp} attraverso $M_{\mathcal{B}}(\varphi)$

Definizione. Si definisce il **radicale** di un prodotto scalare φ come lo spazio:

$$V^{\perp} = \operatorname{Rad}(\varphi) = \{ \underline{v} \in V \mid \varphi(\underline{v}, \underline{w}) = 0 \ \forall \, \underline{w} \in V \}$$

Osservazione. Il radicale del prodotto scalare canonico su \mathbb{R}^n ha dimensione nulla, dal momento che $\forall\,\underline{v}\in\mathbb{R}^n\setminus\{\underline{0}\},\,q(\underline{v})=\varphi(\underline{v},\underline{v})>0\implies\underline{v}\notin V^\perp$. In generale ogni prodotto scalare definito positivo (o negativo) è non degenere, dal momento che ogni vettore non nullo non è isotropo, e dunque non può appartenere a V^\perp .

Definizione. Un prodotto scalare si dice **degenere** se il radicale dello spazio su tale prodotto scalare ha dimensione non nulla.

Osservazione. Sia $\alpha_{\varphi}: V \to V^*$ la mappa² tale che $\alpha_{\varphi}(\underline{v}) = p$, dove $p(\underline{w}) = \varphi(\underline{v}, \underline{w})$ $\forall \underline{v}, \underline{w} \in V$.

Si osserva che α_{φ} è un'applicazione lineare. Infatti, $\forall \underline{v}, \underline{w}, \underline{u} \in V$, $\alpha_{\varphi}(\underline{v} + \underline{w})(\underline{u}) = \varphi(\underline{v} + \underline{w}, \underline{u}) = \varphi(\underline{v}, \underline{u}) + \varphi(\underline{w}, \underline{u}) = \alpha_{\varphi}(\underline{v})(\underline{u}) + \alpha_{\varphi}(\underline{w})(\underline{u}) \implies \alpha_{\varphi}(\underline{v} + \underline{w}) = \alpha_{\varphi}(\underline{v}) + \alpha_{\varphi}(\underline{w}).$ Inoltre $\forall \underline{v}, \underline{w} \in V$, $\lambda \in \mathbb{K}$, $\alpha_{\varphi}(\lambda \underline{v})(\underline{w}) = \varphi(\lambda \underline{v}, \underline{w}) = \lambda \varphi(\underline{v}, \underline{w}) = \lambda \alpha_{\varphi}(\underline{v})(\underline{w}) \implies \alpha_{\varphi}(\lambda \underline{v}) = \lambda \alpha_{\varphi}(\underline{v}).$

Si osserva inoltre che Ker α_{φ} raccoglie tutti i vettori $\underline{v} \in V$ tali che $\varphi(\underline{v},\underline{w}) = 0 \ \forall \underline{w} \in W$, ossia esattamente i vettori di V^{\perp} , per cui si conclude che $V^{\perp} = \operatorname{Ker} \alpha_{\varphi}$ (per cui V^{\perp} è effettivamente uno spazio vettoriale). Se V ha dimensione finita, dim $V = \dim V^*$, e si

²In letteratura questa mappa, se invertibile, è nota come *isomorfismo musicale*, ed è in realtà indicata come b.

può allora concludere che dim $V^{\perp} > 0 \iff \operatorname{Ker} \alpha_{\varphi} \neq \{\underline{0}\} \iff \alpha_{\varphi} \text{ non è invertibile}$ (infatti lo spazio di partenza e di arrivo di α_{φ} hanno la stessa dimensione). In particolare, α_{φ} non è invertibile se e solo se $\det(\alpha_{\varphi}) = 0$.

Sia $\mathcal{B} = (\underline{v_1}, ..., \underline{v_n})$ una base ordinata di V. Si consideri allora la base ordinata del duale costruita su \mathcal{B} , ossia $\mathcal{B}^* = (v_1^*, ..., \underline{v_n^*})$. Allora $M_{\mathcal{B}^*}^{\mathcal{B}}(\alpha_{\varphi})^i = [\alpha_{\varphi}(\underline{v_i})]_{\mathcal{B}^*} =$

$$\begin{pmatrix} \varphi(\underline{v_i}, \underline{v_1}) \\ \vdots \\ \varphi(v_i, \underline{v_n}) \end{pmatrix} \underbrace{\qquad}_{\varphi \text{ è simmetrica}} \begin{pmatrix} \varphi(\underline{v_1}, \underline{v_i}) \\ \vdots \\ \varphi(\underline{v_n}, \underline{v_i}) \end{pmatrix} = M_{\mathcal{B}}(\varphi)^i. \text{ Quindi } M_{\mathcal{B}^*}^{\mathcal{B}}(\alpha_{\varphi}) = M_{\mathcal{B}}(\varphi).$$

Si conclude allora che φ è degenere se e solo se $\det(M_{\mathcal{B}}(\varphi)) = 0$ e che $V^{\perp} \cong \operatorname{Ker} M_{\mathcal{B}}(\varphi)$ mediante l'isomorfismo del passaggio alle coordinate.

1.2.4 Condizioni per la (semi)definitezza di un prodotto scalare

Proposizione 1.1. Sia $\mathbb{K} = \mathbb{R}$. Allora φ è definito \iff CI $(\varphi) = \{\underline{0}\}$.

Dimostrazione. Si dimostrano le due implicazioni separatamente.

 (\Longrightarrow) Se φ è definito, allora $\varphi(\underline{v},\underline{v})$ è sicuramente diverso da zero se $\underline{v} \neq \underline{0}$. Pertanto $CI(\varphi) = \{0\}$.

 (\Leftarrow) Sia φ non definito. Se non esistono $\underline{v} \neq \underline{0}, \underline{w} \neq \underline{0} \in V$ tali che $q(\underline{v}) > 0$ e che $q(\underline{w}) < 0$, allora φ è necessariamente semidefinito. In tal caso, poiché φ non è definito, deve anche esistere $\underline{u} \in V, \underline{u} \neq \underline{0} \mid q(\underline{u}) = 0 \implies \mathrm{CI}(\varphi) \neq \{\underline{0}\}.$

Se invece tali \underline{v} , \underline{w} esistono, questi sono anche linearmente indipendenti. Se infatti non lo fossero, uno sarebbe il multiplo dell'altro, e quindi le loro due forme quadratiche sarebbero concordi di segno, f. Si consideri allora la combinazione lineare $\underline{v} + \lambda \underline{w}$ al variare di $\lambda \in \mathbb{R}$, imponendo che essa sia isotropa:

$$q(\underline{v} + \lambda \underline{w}) = 0 \iff \lambda^2 q(\underline{w}) + 2\lambda q(\underline{v}, \underline{w}) + q(\underline{v}) = 0.$$

Dal momento che $\frac{\Delta}{4} = \overbrace{q(\underline{v},\underline{w})^2}^{\geq 0} - \overbrace{q(\underline{w})q(\underline{v})}^{>0}$ è sicuramente maggiore di zero, tale equazione ammette due soluzioni reali $\lambda_1,\,\lambda_2$. In particolare λ_1 è tale che $\underline{v}+\lambda_1\underline{w}\neq \underline{0}$, dal momento che \underline{v} e \underline{w} sono linearmente indipendenti. Allora $\underline{v}+\lambda_1\underline{w}$ è un vettore isotropo non nullo di $V \implies \mathrm{CI}(\varphi)\neq \{\underline{0}\}$.

Si conclude allora, tramite la contronominale, che se $CI(\varphi) = \{\underline{0}\}, \ \varphi$ è necessariamente definito.

Proposizione 1.2. Sia $\mathbb{K} = \mathbb{R}$. Allora φ è semidefinito \iff $\mathrm{CI}(\varphi) = V^{\perp}$.

Dimostrazione. Si dimostrano le due implicazioni separatamente.

 (\Longrightarrow) Sia φ semidefinito. Chiaramente $V^{\perp}\subseteq \mathrm{CI}(\varphi)$. Si assuma per assurdo che $V^{\perp}\subsetneq \mathrm{CI}(\varphi)$. Sia allora \underline{v} tale che $\underline{v}\in \mathrm{CI}(\varphi)$ e che $\underline{v}\notin V^{\perp}$. Poiché $\underline{v}\notin V^{\perp}$, esiste un vettore $\underline{w}\in V$ tale che $\varphi(\underline{v},\underline{w})\neq 0$. Si osserva che \underline{v} e \underline{w} sono linearmente indipendenti tra loro. Se infatti non lo fossero, esisterebbe $\mu\in\mathbb{R}$ tale che $\underline{w}=\mu\underline{v}\Longrightarrow \varphi(\underline{v},\underline{w})=\mu\,\varphi(\underline{v},\underline{v})=0$, f.

Si consideri allora la combinazione lineare $\underline{v} + \lambda \underline{w}$. Si consideri φ semidefinito positivo. In tal caso si può imporre che la valutazione di q in $\underline{v} + \lambda \underline{w}$ sia strettamente negativa:

$$q(\underline{v} + \lambda \underline{w}) < 0 \iff \overbrace{q(\underline{v})}^{=0} + \lambda^2 q(\underline{w}) + 2\lambda \varphi(\underline{v}, \underline{w}) < 0.$$

In particolare, dal momento che $\frac{\Delta}{4} = \varphi(\underline{v}, \underline{w})^2 > 0$, tale disequazione ammette una soluzione $\lambda_1 \neq 0$. Inoltre $\underline{v} + \lambda_1 \underline{w} \neq \underline{0}$, dal momento che \underline{v} e \underline{w} sono linearmente indipendenti. Allora si è trovato un vettore non nullo per cui la valutazione in esso di q è negativa, contraddicendo l'ipotesi di semidefinitezza positiva di φ , f. Analogamente si dimostra la tesi per φ semidefinito negativo.

 (\Leftarrow) Sia φ non semidefinito. Allora devono esistere $\underline{v}, \underline{w} \in V$ tali che $q(\underline{v}) > 0$ e che $q(\underline{w}) < 0$. In particolare, \underline{v} e \underline{w} sono linearmente indipendenti tra loro, dal momento che se non lo fossero, uno sarebbe multiplo dell'altro, e le valutazioni in essi di q sarebbero concordi di segno, f. Si consideri allora la combinazione lineare $\underline{v} + \lambda \underline{w}$, imponendo che q si annulli in essa:

$$q(\underline{v} + \lambda \underline{w}) = 0 \iff \lambda^2 q(\underline{w}) + 2\lambda q(\underline{v}, \underline{w}) + q(\underline{v}) = 0.$$

In particolare, dal momento che $\frac{\Delta}{4} = \varphi(\underline{v}, \underline{w})^2 > 0$, tale disequazione ammette una soluzione $\lambda_1 \neq 0$. Allora, per tale $\lambda_1, \underline{v} + \lambda_1 \underline{w} \in \mathrm{CI}(\varphi)$. Tuttavia $\varphi(\underline{v} + \lambda_1 \underline{w}, \underline{v} - \lambda_1 \underline{w}) = q(\underline{v}) - \underbrace{\lambda_1^2 q(\underline{w})}_{<0} > 0 \implies \underline{v} + \lambda_1 \underline{w} \notin V^\perp \implies \mathrm{CI}(\varphi) \supsetneq V^\perp.$

Si conclude allora, tramite la contronominale, che se $\mathrm{CI}(\varphi) = V^{\perp}, \ \varphi$ è necessariamente semidefinito.

1.3 Formula delle dimensioni e di polarizzazione rispetto a arphi

Definizione (sottospazio ortogonale a W). Sia $W \subseteq V$ un sottospazio di V. Si identifica allora come **sottospazio ortogonale a** W il sottospazio $W^{\perp} = \{\underline{v} \in V \mid \varphi(\underline{v}, \underline{w}) \ \forall \underline{w} \in W\}.$

Proposizione 1.3 (formula delle dimensioni del prodotto scalare). Sia $W \subseteq V$ un sottospazio di V. Allora vale la seguente identità:

$$\dim W + \dim W^{\perp} = \dim V + \dim(W \cap V^{\perp}).$$

Dimostrazione. Si consideri l'applicazione lineare a_{φ} introdotta precedentemente. Si osserva che $W^{\perp} = \operatorname{Ker}(i^{\top} \circ a_{\varphi})$, dove $i : W \to V$ è tale che $i(\underline{w}) = \underline{w}$. Allora, per la formula delle dimensioni, vale la seguente identità:

$$\dim V = \dim W^{\perp} + \operatorname{rg}(i^{\top} \circ a_{\varphi}). \tag{1.1}$$

Sia allora $f = i^{\top} \circ a_{\varphi}$. Si consideri ora l'applicazione $g = a_{\varphi} \circ i : W \to V^*$. Sia ora \mathcal{B}_W una base di W e \mathcal{B}_V una base di V. Allora le matrici associate di f e di g sono le seguenti:

(i)
$$M_{\mathcal{B}_{W}^{*}}^{\mathcal{B}_{V}}(f) = M_{\mathcal{B}_{W}^{*}}^{\mathcal{B}_{V}}(i^{\top} \circ a_{\varphi}) = \underbrace{M_{\mathcal{B}_{W}^{*}}^{\mathcal{B}_{V}^{*}}(i^{\top})}_{A} \underbrace{M_{\mathcal{B}_{V}^{*}}^{\mathcal{B}_{V}}(a_{\varphi})}_{B} = AB,$$

(ii)
$$M_{\mathcal{B}_{V}^{*}}^{\mathcal{B}_{W}}(g) = M_{\mathcal{B}_{V}^{*}}^{\mathcal{B}_{W}}(a_{\varphi} \circ i) = \underbrace{M_{\mathcal{B}_{V}^{*}}^{\mathcal{B}_{V}}(a_{\varphi})}_{B} \underbrace{M_{\mathcal{B}_{V}}^{\mathcal{B}_{W}}(i)}_{A^{\top}} = BA^{\top} \stackrel{B^{\top} = B}{=} (AB)^{\top}.$$

Poiché $\operatorname{rg}(A) = \operatorname{rg}(A^{\top})$, si deduce che $\operatorname{rg}(f) = \operatorname{rg}(g) \implies \operatorname{rg}(i^{\top} \circ a_{\varphi}) = \operatorname{rg}(a_{\varphi} \circ i) = \operatorname{rg}(a_{\varphi}|_{W}) = \dim W - \dim \operatorname{Ker} a_{\varphi}|_{W}$, ossia che:

$$\operatorname{rg}(i^{\top} \circ a_{\varphi}) = \dim W - \dim(W \cap \underbrace{\operatorname{Ker} a_{\varphi}}_{V^{\perp}}) = \dim W - \dim(W \cap V^{\perp}). \tag{1.2}$$

Si conclude allora, sostituendo l'equazione (1.2) nell'equazione (1.1), che dim $V = \dim W^{\top} + \dim W - \dim(W \cap V^{\perp})$, ossia la tesi.

Osservazione. Si identifica \underline{w}^{\perp} come il sottospazio di tutti i vettori di V ortogonali a \underline{w} . In particolare, se $W = \operatorname{Span}(\underline{w})$ è il sottospazio generato da $\underline{w} \neq \underline{0}$, $\underline{w} \in V$, allora $W^{\perp} = \underline{w}^{\perp}$. Inoltre valgono le seguenti equivalenze: $\underline{w} \notin W^{\perp} \iff \operatorname{Rad}(\varphi|_W) = W \cap W^{\perp} = \{\underline{0}\} \iff \underline{w} \text{ non è isotropo} \iff V = W \oplus^{\perp} W^{\perp}$.

In generale, se W è un sottospazio qualsiasi di V tale che $W \cap W^{\perp} = \{\underline{0}\}$, vale che $V = W \oplus^{\perp} W^{\perp}$.

Proposizione 1.4 (formula di polarizzazione). Se char $\mathbb{K} \neq 2$, un prodotto scalare è univocamente determinato dalla sua forma quadratica q. In particolare vale la seguente identità:

$$\varphi(\underline{v},\underline{w}) = \frac{q(\underline{v} + \underline{w}) - q(\underline{v}) - q(\underline{w})}{2}.$$

1.4 Il teorema di Lagrange e basi ortogonali

Definizione. Si definisce **base ortogonale** di V una base $\underline{v_1}$, ..., $\underline{v_n}$ tale per cui $\varphi(\underline{v_i},\underline{v_j})=0 \iff i\neq j$, ossia una base per cui la matrice associata del prodotto scalare è diagonale.

Teorema 1.2 (di Lagrange). Ogni spazio vettoriale V su \mathbb{K} tale per cui char $\mathbb{K} \neq 2$ ammette una base ortogonale.

Dimostrazione. Si dimostra il teorema per induzione su $n := \dim V$. Per $n \le 1$, la tesi è triviale (se esiste una base, tale base è già ortogonale). Sia allora il teorema vero per $i \le n$. Se V ammette un vettore non isotropo \underline{w} , sia $W = \operatorname{Span}(\underline{w})$ e si consideri la decomposizione $V = W \oplus W^{\perp}$. Poiché W^{\perp} ha dimensione n-1, per ipotesi induttiva ammette una base ortogonale. Inoltre, tale base è anche ortogonale a W, e quindi l'aggiunta di \underline{w} a questa base ne fa una base ortogonale di V. Se invece V non ammette vettori non isotropi, ogni forma quadratica è nulla, e quindi il prodotto scalare è nullo per la formula di polarizzazione. Allora in questo caso ogni base è una base ortogonale, completando il passo induttivo, e dunque la dimostrazione.

1.4.1 L'algoritmo di ortogonalizzazione di Gram-Schmidt

Definizione (coefficiente di Fourier). Siano $\underline{v} \in V$ e $\underline{w} \in V \setminus \mathrm{CI}(\varphi)$. Allora si definisce il **coefficiente di Fourier** di \underline{v} rispetto a \underline{w} come il rapporto $C(\underline{w},\underline{v}) = \frac{\varphi(\underline{v},\underline{w})}{\varphi(\underline{w},\underline{w})}$.

Algoritmo 1.1 (algoritmo di ortogonalizzazione di Gram-Schmidt). Se $CI(\varphi) = \{\underline{0}\}$ (e quindi nel caso di $\mathbb{K} = \mathbb{R}$, dalla *Proposizione 1.1*, se φ è definito) ed è data una base $\mathcal{B} = \{\underline{v_1}, \dots, \underline{v_n}\}$ per V, è possibile applicare l'algoritmo di ortogonalizzazione di Gram-Schmidt per ottenere da \mathcal{B} una nuova base $\mathcal{B}' = \{\underline{v_1}', \dots, \underline{v_n}'\}$ con le seguenti proprietà:

- (i) \mathcal{B}' è una base ortogonale,
- (ii) \mathcal{B}' mantiene la stessa bandiera di \mathcal{B} (ossia $\operatorname{Span}(\underline{v_1}, \dots, \underline{v_i}) = \operatorname{Span}(\underline{v_1}', \dots, \underline{v_i}')$ per ogni $1 \leq i \leq n$).

L'algoritmo si applica nel seguente modo: si prenda in considerazione $\underline{v_1}$ e si sottragga ad ogni altro vettore della base il vettore $C(\underline{v_1},\underline{v_i})\,\underline{v_1}=\frac{\varphi(\underline{v_1},v_i)}{\varphi(\underline{v_1},\underline{v_1})}\underline{v_1}$, rendendo ortogonale ogni altro vettore della base con $\underline{v_1}$. Si sta quindi applicando la mappa $\underline{v_i}\mapsto\underline{v_i}-\frac{\varphi(\underline{v_1},v_i)}{\varphi(\underline{v_1},\underline{v_1})}\underline{v_i}=\underline{v_i}^{(1)}$. Si verifica infatti che $\underline{v_1}$ e $\underline{v_i}^{(1)}$ sono ortogonali per $2\leq i\leq n$:

$$\varphi(\underline{v_1},\underline{v_i}^{(1)}) = \varphi(\underline{v_1},\underline{v_i}) - \varphi\left(\underline{v_1},\frac{\varphi(\underline{v_1},\underline{v_i})}{\varphi(\underline{v_1},\underline{v_1})}\underline{v_i}\right) = \varphi(\underline{v_1},\underline{v_i}) - \varphi(\underline{v_1},\underline{v_i}) = 0.$$

Poiché $\underline{v_1}$ non è isotropo, si deduce che vale la decomposizione $V = \operatorname{Span}(\underline{v_1}) \oplus \operatorname{Span}(\underline{v_1})^{\perp}$. In particolare dim $\operatorname{Span}(\underline{v_1})^{\perp} = n-1$: essendo allora i vettori $\underline{v_2}^{(1)}, \dots, \underline{v_n}^{(1)}$ linearmente indipendenti e appartenenti a $\operatorname{Span}(\underline{v_1})^{\perp}$, ne sono una base. Si conclude quindi che vale la seguente decomposizione:

$$V = \operatorname{Span}(\underline{v_1}) \oplus^{\perp} \operatorname{Span}(\underline{v_2}^{(1)}, \dots, \underline{v_n}^{(1)}).$$

Si riapplica dunque l'algoritmo di Gram-Schmidt prendendo come spazio vettoriale lo spazio generato dai vettori a cui si è applicato precedentemente l'algoritmo, ossia $V' = \operatorname{Span}(v_2^{(1)}, \dots, v_n^{(1)})$, fino a che non si ottiene $V' = \{\underline{0}\}$.

Esempio. Si consideri $V = (\mathbb{R}^3, \langle \cdot, \cdot \rangle)$, ossia \mathbb{R}^3 dotato del prodotto scalare standard. Si applica l'algoritmo di ortogonalizzazione di Gram-Schmidt sulla seguente base:

$$\mathcal{B} = \left\{ \underbrace{\begin{pmatrix} 1 \\ 0 \\ 0 \end{pmatrix}}_{v_1 = e_1}, \underbrace{\begin{pmatrix} 1 \\ 1 \\ 0 \end{pmatrix}}_{v_2}, \underbrace{\begin{pmatrix} 1 \\ 1 \\ 1 \end{pmatrix}}_{v_3} \right\}.$$

Alla prima iterazione dell'algoritmo si ottengono i seguenti vettori:

•
$$\underline{v_2}^{(1)} = \underline{v_2} - \frac{\varphi(v_1, v_2)}{\varphi(\underline{v_1}, \underline{v_1})} \underline{v_1} = \underline{v_2} - \underline{v_1} = \begin{pmatrix} 0 \\ 1 \\ 0 \end{pmatrix} = \underline{e_2},$$

•
$$\underline{v_3}^{(1)} = \underline{v_3} - \frac{\varphi(v_1, v_3)}{\varphi(\underline{v_1}, \underline{v_1})} \underline{v_1} = \underline{v_3} - \underline{v_1} = \begin{pmatrix} 0 \\ 1 \\ 1 \end{pmatrix}.$$

Si considera ora $V' = \operatorname{Span}(\underline{v_2}^{(1)}, \underline{v_3}^{(1)})$. Alla seconda iterazione dell'algoritmo si ottiene allora il seguente vettore:

•
$$\underline{v_3}^{(2)} = \underline{v_3}^{(1)} - \frac{\varphi(\underline{v_2}^{(1)},\underline{v_3}^{(1)})}{\varphi(\underline{v_2}^{(1)},\underline{v_2}^{(1)})} \underline{v_2}^{(1)} = \underline{v_3}^{(1)} - \underline{v_2}^{(1)} = \begin{pmatrix} 0\\0\\1 \end{pmatrix} = \underline{e_3}.$$

Quindi la base ottenuta è $\mathcal{B}' = \{\underline{e_1}, \underline{e_2}, \underline{e_3}\}$, ossia la base canonica di \mathbb{R}^3 .

1.5 II teorema di Sylvester

1.5.1 Caso complesso

Nota. D'ora in poi, nel corso del documento, si assumerà char $\mathbb{K} \neq 2$.

Teorema 1.3 (di Sylvester, caso complesso). Sia \mathbb{K} un campo i cui elementi sono tutti quadrati di un altro elemento del campo (e.g. \mathbb{C}). Allora esiste una base ortogonale \mathcal{B} tale per cui:

$$M_{\mathcal{B}}(\varphi) = \begin{pmatrix} I_r & 0 \\ 0 & 0 \end{pmatrix}.$$

Dimostrazione. Per il teorema di Lagrange, esiste una base ortogonale \mathcal{B}' di V. Si riordini allora la base \mathcal{B}' in modo tale che la forma quadratica valutata nei primi elementi sia sempre diversa da zero. Allora, poiché ogni elemento di \mathbb{K} è per ipotesi quadrato di un altro elemento di \mathbb{K} , si sostituisca \mathcal{B}' con una base \mathcal{B} tale per cui, se $q(\underline{v_i}) = 0$, $\underline{v_i} \mapsto \underline{v_i}$, e altrimenti $\underline{v_i} \mapsto \frac{v_i}{\sqrt{q(\underline{v_i})}}$. Allora \mathcal{B} è una base tale per cui la matrice associata del prodotto scalare in tale base è proprio come desiderata nella tesi, dove r è il numero di elementi tali per cui la forma quadratica valutata in essi sia diversa da zero.

Osservazione.

▶ Si può immediatamente concludere che il rango è un invariante completo per la congruenza in un campo \mathbb{K} in cui tutti gli elementi sono quadrati, ossia che $A \cong B \iff \operatorname{rg}(A) = \operatorname{rg}(B)$, se $A \in B$ sono matrici simmetriche con elementi in \mathbb{K} .

Ogni matrice simmetrica rappresenta infatti un prodotto scalare, ed è pertanto congruente ad una matrice della forma desiderata nell'enunciato del teorema di Sylvester complesso. Poiché il rango è un invariante della congruenza, si ricava che r nella forma della matrice di Sylvester, rappresentando il rango, è anche il rango di ogni sua matrice congruente.

In particolare, se due matrici simmetriche hanno lo stesso rango, allora sono congruenti alla stessa matrice di Sylvester, e quindi, essendo la congruenza una relazione di equivalenza, sono congruenti a loro volta tra di loro.

- \blacktriangleright Due matrici simmetriche in $\mathbb K$ con stesso rango, allora, non solo sono SD-equivalenti, ma sono anche congruenti.
- ightharpoonup Ogni base ortogonale deve quindi avere lo stesso numero di vettori isotropi, dal momento che tale numero rappresenta la dimensione del radicale V^{\perp} .

1.5.2 Caso reale e segnatura di φ

Definizione (segnatura di un prodotto scalare). Data una base ortogonale \mathcal{B} di V rispetto al prodotto scalare φ , si definiscono i seguenti indici:

$$\iota_{+}(\varphi) = \max\{\dim W \mid W \subseteq V \in \varphi|_{W} > 0\}, \qquad \text{(indice di positività)}$$

$$\iota_{-}(\varphi) = \max\{\dim W \mid W \subseteq V \in \varphi|_{W} < 0\}, \qquad \text{(indice di negatività)}$$

$$\iota_{0}(\varphi) = \dim V^{\perp}. \qquad \text{(indice di nullità)}$$

Quando il prodotto scalare φ è noto dal contesto, si semplifica la notazione scrivendo solo ι_+ , ι_- e ι_0 . In particolare, la terna $\sigma(\varphi) = \sigma = (i_+, i_-, i_0)$ è detta **segnatura** del prodotto φ .

Teorema 1.4 (di Sylvester, caso reale). Sia \mathbb{K} un campo ordinato i cui elementi positivi sono tutti quadrati (e.g. \mathbb{R}). Allora esiste una base ortogonale \mathcal{B} tale per cui:

$$M_{\mathcal{B}}(\varphi) = \begin{pmatrix} I_{\iota_{+}} & 0 & 0 \\ 0 & -I_{\iota_{-}} & 0 \\ 0 & 0 & 0 \cdot I_{\iota_{0}} \end{pmatrix}.$$

Inoltre, per ogni base ortogonale, esistono esattamente ι_+ vettori della base con forma quadratica positiva, ι_- con forma negativa e ι_0 con forma nulla.

Dimostrazione. Per il teorema di Lagrange, esiste una base ortogonale \mathcal{B}' di V. Si riordini la base in modo tale che la forma quadratica valutata nei primi elementi sia strettamente

1 Introduzione al prodotto scalare

positiva, che nei secondi elementi sia strettamente negativa e che negli ultimi sia nulla. Si sostituisca \mathcal{B}' con una base \mathcal{B} tale per cui, se $q(\underline{v_i}) > 0$, allora $\underline{v_i} \mapsto \frac{\underline{v_i}}{\sqrt{q(\underline{v_i})}}$; se $q(\underline{v_i}) < 0$, allora $\underline{v_i} \mapsto \frac{\underline{v_i}}{\sqrt{-q(\underline{v_i})}}$; altrimenti $\underline{v_i} \mapsto \underline{v_i}$. Si è allora trovata una base la cui matrice associata del prodotto scalare è come desiderata nella tesi.

Sia ora \mathcal{B} una qualsiasi base ortogonale di V. Siano inoltre a il numero di vettori della base con forma quadratica positiva, b il numero di vettori con forma negativa e c quello dei vettori con forma nulla. Si consideri $W_+ = \operatorname{Span}(\underline{v_1}, ..., \underline{v_a}), W_- = \operatorname{Span}(\underline{v_{a+1}}, ..., \underline{v_b}), W_0 = \operatorname{Span}(v_{b+1}, ..., v_c).$

Sia $M = M_{\mathcal{B}}(\varphi)$. Si osserva che $c = n - \operatorname{rg}(M) = \dim \operatorname{Ker}(M) = \dim V^{\perp} = \iota_0$. Inoltre $\forall \underline{v} \in W_+$, dacché \mathcal{B} è ortogonale, $q(\underline{v}) = q(\sum_{i=1}^a \alpha_i \underline{v_i}) = \sum_{i=1}^a \alpha_i^2 q(\underline{v_i}) > 0$, e quindi $\varphi|_{W_+} > 0$, da cui $\iota_+ \geq a$. Analogamente $\iota_- \geq b$.

Si mostra ora che è impossibile che $\iota_+ > a$. Se così infatti fosse, sia W tale che dim $W = \iota_+$ e che $\varphi|_W > 0$. $\iota_+ + b + c$ sarebbe maggiore di $a + b + c = n := \dim V$. Quindi, per la formula di Grassman, $\dim(W + W_- + W_0) = \dim W + \dim(W_- + W_0) - \dim(W \cap (W_- + W_0)) = \dim(W \cap (W_- + W_0)) = \dim W + \dim(W_- + W_0) - \dim(W + W_- + W_0) > 0$, ossia esisterebbe $\underline{v} \neq \{\underline{0}\} \mid \underline{v} \in W \cap (W_- + W_0)$. Tuttavia questo è assurdo, dacché dovrebbe valere sia $q(\underline{v}) > 0$ che $q(\underline{v}) < 0$, f. Quindi $\iota_+ = a$, e analogamente $\iota_- = b$. \square

Definizione. Si dice **base di Sylvester** una base di V tale per cui la matrice associata di φ sia esattamente nella forma vista nell'enunciato del teorema di Sylvester. Analogamente si definisce tale matrice come **matrice di Sylvester**.

Osservazione.

- ▶ Come conseguenza del teorema di Sylvester reale, si osserva che la segnatura di una matrice simmetrica reale è invariante per cambiamento di base, se la base è ortogonale.
- ▶ La segnatura è un invariante completo per la congruenza nel caso reale. Se infatti due matrici hanno la stessa segnatura, queste sono entrambe congruenti alla stessa matrice di Sylvester, e quindi, essendo la congruenza una relazione di equivalenza, sono congruenti tra loro. Analogamente vale il viceversa, dal momento che ogni base ortogonale di due matrici congruenti deve contenere gli stessi numeri ι_+ , ι_- e ι_0 di vettori di base con forma quadratica positiva, negativa e nulla.
- ▶ Vale che φ è definito positivo $\iff \sigma = (n,0,0)$. Infatti, per il teorema di Sylvester reale, $i_+ = n \iff$ la dimensione del massimo sottospazio di V su cui φ è definito positivo è $n \iff \varphi$ è definito positivo. Analogamente φ è definito negativo $\iff \sigma = (0,n,0)$.
- ▶ Nello stesso spirito dei prodotti definiti, φ è semidefinito positivo $\iff \iota_{-} = 0$. Infatti valgono le seguenti equivalenze: φ è semidefinito positivo \iff non esiste un vettore $\underline{v} \in V$, $\underline{v} \neq \underline{0}$ tale che $q(\underline{v}) < 0 \iff \iota_{-} = 0$. Analogamente φ è semidefinito

negativo $\iff \iota_+ = 0.$

▶ Se $\underline{w_1}$, ..., $\underline{w_k}$ sono tutti i vettori di una base ortogonale \mathcal{B} con forma quadratica nulla, si osserva che $W = \operatorname{Span}(w_1, ..., w_k)$ altro non è che V^{\perp} stesso.

Infatti, come visto anche nella dimostrazione del teorema di Sylvester reale, vale che dim $W = \dim \operatorname{Ker}(M_{\mathcal{B}}(\varphi)) = \dim V^{\perp}$. Sia allora la base $\mathcal{B} = \{\underline{w_1}, \dots, \underline{w_k}, \underline{v_{k+1}}, \dots, \underline{v_n}\}$ un'estensione di $\{\underline{w_1}, \dots, \underline{w_k}\}$. Se $\underline{w} \in W$ e $\underline{v} \in V$, $\varphi(\underline{w}, \underline{v}) = \varphi(\sum_{i=1}^k \alpha_i \underline{w_i}, \sum_{i=1}^k \beta_i \underline{w_i} + \sum_{i=k+1}^n \beta_i \underline{v_i}) = \sum_{i=1}^k \alpha_i \beta_i q(\underline{w_i}) = 0$ (dove α_i e $\beta_i \in \mathbb{K}$ rappresentano la i-esima coordinata di \underline{w} e \underline{v} nella base \mathcal{B}), e quindi $W \subseteq V^{\perp}$. Si conclude allora, tramite l'uguaglianza dimensionale, che $W = V^{\perp}$.

- ▶ Poiché dim Ker $(\varphi) = \iota_0$, vale in particolare che rg $(\varphi) = n \iota_0 = \iota_+ + \iota_-$ (infatti vale che $n = \iota_+ + \iota_- + \iota_0$, dal momento che n rappresenta il numero di elementi di una base ortogonale).
- ▶ Se $V = U \oplus^{\perp} W$, allora $\iota_{+}(\varphi) = \iota_{+}(\varphi|_{U}) + \iota_{+}(\varphi|_{W})$. Analogamente vale la stessa cosa per gli altri indici. Infatti, prese due basi ortogonali \mathcal{B}_{U} , \mathcal{B}_{W} di U e W, la loro unione \mathcal{B} è una base ortogonale di V. Pertanto il numero di vettori della base \mathcal{B} con forma quadratica positiva è esattamente $\iota_{+}(\varphi|_{U}) + \iota_{+}(\varphi|_{W})$.
- ▶ In generale, se W è un sottospazio di V, vale che $\iota_+(\varphi) \ge \iota_+(\varphi|_W)$. Infatti, se U è un sottospazio di W di dimensione $\iota_+(\varphi|_W)$ tale che $(\varphi|_W)|_U > 0$, allora U è in particolare un sottospazio di V tale che $\varphi|_U > 0$. Pertanto, per definizione, essendo $\iota_+(\varphi)$ la dimensione del massimo sottospazio su cui φ , ristretto ad esso, è definito positivo, deve valere che $\iota_+(\varphi) \ge \iota_+(\varphi|_W)$. Analogamente, $\iota_-(\varphi) \ge \iota_-(\varphi|_W)$.

1.5.2.1 Classificazione delle segnature per n=1, 2, 3

Sia \mathcal{B} una base di Sylvester per φ . Sia $A = M_{\mathcal{B}}(\varphi)$. Si indica con $x, y \in z$ le tre coordinate di $\underline{v} \in V$ secondo la base \mathcal{B} .

(n=1) Vi sono solo tre possibili matrici per A:

- A = (0), con $\sigma = (0, 0, 1)$, $rg(\varphi) = 0$ e $CI(\varphi) = V$,
- A = (1), con $\sigma = (1, 0, 0)$, $rg(\varphi) = 1$ e $CI(\varphi) = \{\underline{0}\}$,
- A = (-1), con $\sigma = (0, 1, 0)$, $rg(\varphi) = 1$ e $CI(\varphi) = \{\underline{0}\}$.

(n=2) Vi sono sei possibili matrici per A:

• A = 0, con $\sigma = (0, 0, 2)$, $rg(\varphi) = 0$ e $CI(\varphi) = V$,

•
$$A = \begin{pmatrix} 1 & 0 \\ 0 & 0 \end{pmatrix}$$
, con $\sigma = (1, 0, 1)$, $\operatorname{rg}(\varphi) = 1$ e $\operatorname{CI}(\varphi) = \{x = 0 \mid \underline{v} \in V\} = V^{\perp}$,

•
$$A = \begin{pmatrix} -1 & 0 \\ 0 & 0 \end{pmatrix}$$
, con $\sigma = (0, 1, 1)$, $rg(\varphi) = 1$ e $CI(\varphi) = \{x = 0 \mid \underline{v} \in V\} = V^{\perp}$,

•
$$A = \begin{pmatrix} 1 & 0 \\ 0 & -1 \end{pmatrix}$$
, con $\sigma = (1, 1, 0)$, $\operatorname{rg}(\varphi) = 2$ e $\operatorname{CI}(\varphi) = \{x^2 = y^2 \mid \underline{v} \in V\}$,

•
$$A = I_2$$
, con $\sigma = (2, 0, 0)$, $rg(\varphi) = 2$ e $CI(\varphi) = \{\underline{0}\}$,

•
$$A = -I_2$$
, con $\sigma = (0, 2, 0)$, $rg(\varphi) = 2$ e $CI(\varphi) = \{\underline{0}\}$.

Si osserva in particolare che $\det(A) = -1 \iff \sigma = (1,1,0)$. Pertanto se M è una matrice associata al prodotto scalare φ in una base \mathcal{B}' , $\det(M) < 0 \iff \sigma = (1,1,0)$.

(n=3) Se A contiene almeno uno zero nella diagonale, si può studiare A riconducendosi al caso n=2, considerando la matrice $A_{1,2}^{1,2}$, e incrementando di uno l'indice di nullità di φ (eventualmente considerando anche come varia il cono isotropo). Altrimenti A può essere rappresentato dalle seguenti quattro matrici:

•
$$A = I_3$$
, con $\sigma = (3, 0, 0)$, $rg(\varphi) = 3$ e $CI(\varphi) = \{\underline{0}\}$,

•
$$A = -I_3$$
, con $\sigma = (0, 3, 0)$, $rg(\varphi) = 3$ e CI $(\varphi) = \{\underline{0}\}$,

•
$$A = \begin{pmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & -1 \end{pmatrix}$$
, con $\sigma = (2, 1, 0)$, $\operatorname{rg}(\varphi) = 3$ e $\operatorname{CI}(\varphi) = \{x^2 + y^2 = z^2 \mid \underline{v} \in V\}$,

•
$$A = \begin{pmatrix} 1 & 0 & 0 \\ 0 & -1 & 0 \\ 0 & 0 & -1 \end{pmatrix}$$
, $\operatorname{con} \sigma = (1, 2, 0)$, $\operatorname{rg}(\varphi) = 3 \operatorname{eCI}(\varphi) = \{y^2 + z^2 = x^2 \mid \underline{v} \in V\}$.

Si osserva infine che, se $V=\mathbb{R}^3$ e \mathcal{B} ne è la base canonica, i coni isotropi delle ultime due matrici rappresentano proprio due coni nello spazio tridimensionale.

1.5.2.2 Metodo di Jacobi per il calcolo della segnatura

Proposizione 1.5. Sia \mathbb{K} un campo ordinato i cui elementi positivi sono tutti quadrati (e.g. \mathbb{R}). Sia W un sottospazio di V di dimensione k. Sia W' un sottospazio di V di dimensione k+1. Sia $\sigma(\varphi|_W)=(p,q,0),$ con $p,q\in\mathbb{N}$ e siano \mathcal{B} e \mathcal{B}' due basi di W e W'. Siano $B=M_{\mathcal{B}}(\varphi|_{W'})$ e $B'=M_{\mathcal{B}'}(\varphi|_W)$).

Sia
$$d := \frac{\det(B')}{\det(B)}$$
. Allora vale che:

$$\sigma(\varphi|_{W'}) = \begin{cases} (p+1, q, 0) & \text{se } d > 0, \\ (p, q+1, 0) & \text{se } d < 0, \\ (p, q, 1) & \text{altrimenti.} \end{cases}$$

Dimostrazione. Dalle precedenti osservazioni, vale che $\iota_+(\varphi|_{W'}) \geq \iota_+(\varphi|_W)$ e che $\iota_-(\varphi|_{W'}) \geq \iota_-(\varphi|_W)$. Inoltre $\varphi|_W$ è non degenere dal momento che $\iota_0(\varphi|_W) = 0$, e pertanto $p + q = \operatorname{rg}(\varphi|_W) = k$.

Siano ora \mathcal{B}_{\perp} e \mathcal{B}'_{\perp} due basi di Sylvester di W e W'. Siano $A = M_{\mathcal{B}_{\perp}}(\varphi|_W)$ e $A' = M_{\mathcal{B}'_{\perp}}(\varphi|_W)$. Allora $\det(A) = (-1)^p(-1)^q$, mentre $\det(A') = (-1)^p(-1)^q d'$, dove $d' \in \{-1,0,1\}$. Allora $\det(A') = \det(A)d' \implies d' = \frac{\det(A')}{\det(A)}$, dal momento che $\det(A) \neq 0$, essendo $\varphi|_W$ non degenere.

In particolare, $\sigma(\varphi|_{W'}) = (p, q, 1)$ se e solo se $\det(A') = 0 \implies d' = 0$. Dal momento che $\det(A') = 0 \iff \det(B') = 0$, $d' = 0 \iff d = 0$. Pertanto si conclude che $\sigma(\varphi|_{W'}) = (p, q, 1) \iff d = 0$.

Al contrario, $\sigma(\varphi|_{W'}) = (p+1,q,0)$ se e solo se d'=1, ossia se e solo se $\det(A')$ e $\det(A)$ sono concordi di segno. Dal momento che il segno è un invariante del cambiamento di base per la matrice associata a φ , d'=1 se e solo se $\det(B)$ e $\det(B')$ sono concordi di segno, ossia se e solo se d>0. Pertanto $\sigma(\varphi|_{W'}) = (p+1,q,0) \iff d>0$. Analogamente si verifica che $\sigma(\varphi|_{W'}) = (p,q+1,0) \iff d<0$, da cui la tesi. \square

Algoritmo 1.2 (metodo di Jacobi). Sia \mathcal{B} una base di V e sia $A = M_{\mathcal{B}}(\varphi)$. Se il determinante di ogni minore di testa³ di A (ossia dei minori della forma $A_{1,\dots,i}^{1,\dots,i}$, con $1 \leq i \leq n-1$) è diverso da zero, è possibile applicare il **metodo di Jacobi** per il calcolo della segnatura di φ .

Sia $d_i = \det \left(A_{1,\dots,i}^{1,\dots,i}\right) \ \forall \ 1 \leq i \leq n$ e si ponga $d_0 := 1$. Allora, per la *Proposizione 1.5*, ι_+ corrisponde al numero di permanenze del segno tra elementi consecutivi (escludendo 0) di (d_i) , mentre ι_- corrisponde al numero di variazioni del segno (anche stavolta escludendo 0). Infine ι_0 può valere solo 0 o 1, dove $\iota_0 = 1 \iff \det(A) = 0$.

Esempio. Sia
$$A = \begin{pmatrix} 1 & 1 & 0 \\ 1 & 2 & -1 \\ 0 & -1 & 4 \end{pmatrix} \in M(3, \mathbb{R}).$$

Si calcola la segnatura di φ_A mediante il metodo di Jacobi. Poiché A è la matrice associata di φ_A nella base canonica di \mathbb{R}^3 , si può applicare il metodo di Jacobi direttamente su A.

Si calcola allora la successione dei d_i :

1.
$$d_1 = \det(1) = 1$$
,

2.
$$d_2 = \det \begin{pmatrix} 1 & 1 \\ 1 & 2 \end{pmatrix} = 2 - 1 = 1,$$

³In realtà il metodo si estende ad ogni successione di minori coerente con un'estensione di base (i.e. i minori principali di A).

3.
$$d_3 = \det(A) = (8-1) - 4 = 3$$
.

Dal momento che vi sono tre permanenze di segno, si conclude che $\sigma(\varphi_A) = (3,0,0)$, ossia che φ_A è definito positivo.

1.5.2.3 Criterio di Sylvester per la definitezza di un prodotto scalare

Proposizione 1.6 (criterio di Sylvester per i prodotti definiti). Sia $\mathbb{K} = \mathbb{R}$. Sia \mathcal{B} una base di V, e sia $A = M_{\mathcal{B}}(\varphi)$. Sia $d_i = \det\left(A_{1,\dots,i}^{1,\dots,i}\right)$. Allora φ è definito positivo se e solo se $d_i > 0 \ \forall \ 1 \le i \le n$. Analogamente φ è definito negativo se e solo se $(-1)^i d_i > 0 \ \forall \ 1 \le i \le n$.

Dimostrazione. Si osserva che φ è definito positivo se e solo se $\iota_+ = n$. Pertanto, per il metodo di Jacobi, φ è definito positivo se e solo se vi sono solo permanenze di segno tra elementi consecutivi nella successione (d_i) , e quindi se e solo se $d_i > 0 \ \forall 1 \le i \le n$. Analogamente φ è definito negativo se e solo se $\iota_- = n$, e quindi se e solo se vi sono solo variazioni di segno $\iff d_i > 0$ se i è pari e $d_i < 0$ se i è dispari $\iff (-1)^i d_i > 0$, $\forall 1 \le i \le n$.

1.5.2.4 Sottospazi isotropi e indice di Witt

Definizione (sottospazio isotropo). Sia W un sottospazio di V. Allora si dice che W è un sottospazio isotropo di V se $\varphi|_W = 0$.

Osservazione.

- $ightharpoonup V^{\perp}$ è un sottospazio isotropo di V.
- ightharpoonup è un vettore isotropo $\iff W = \operatorname{Span}(\underline{v})$ è un sottospazio isotropo di V.
- ▶ $W \subseteq V$ è isotropo $\iff W \subseteq W^{\perp}$.

Proposizione 1.7. Sia φ non degenere. Se W è un sottospazio isotropo di V, allora dim $W \leq \frac{1}{2} \dim V$.

Dimostrazione. Poiché W è un sottospazio isotropo di V, vale che $W\subseteq W^{\perp}$. Allora vale che:

$$\dim W \le \dim W^{\perp}. \tag{1.3}$$

Inoltre, dal momento che φ è non degenere, vale anche che:

$$\dim W + \dim W^{\perp} = \dim V \implies \dim W^{\perp} = \dim V - \dim W. \tag{1.4}$$

Sostituendo allora l'equazione (1.4) nella disuguaglianza (1.3), si ottiene che dim $W \leq \frac{1}{2} \dim V$, ossia la tesi.

Definizione (indice di Witt). Si definisce l'**indice di Witt** $W(\varphi)$ di (V, φ) come la massima dimensione di un sottospazio isotropo di V.

1 Introduzione al prodotto scalare

Osservazione.

- ▶ Se $\varphi > 0$ o $\varphi < 0$, $W(\varphi) = 0$. Infatti ogni sottospazio non nullo W di V non ammette vettori isotropi, da cui si deduce che $\varphi|_W \neq 0$.
- ▶ Se φ è non degenere, per la *Proposizione 1.7*, vale che $W(\varphi) \leq \frac{1}{2} \dim V$.

Proposizione 1.8. Sia $\mathbb{K} = \mathbb{R}$ e sia φ non degenere. Allora $W(\varphi) = \min\{\iota_+(\varphi), \iota_-(\varphi)\}.$

Dimostrazione. Senza perdità di generalità si assuma $\iota_{-}(\varphi) \leq \iota_{+}(\varphi)$ (il caso $\iota_{-}(\varphi) > \iota_{+}(\varphi)$ è analogo). Sia W un sottospazio con dim $W > \iota_{-}(\varphi)$. Sia W^{+} un sottospazio con dim $W^{+} = \iota_{+}(\varphi)$ e $\varphi|_{W^{+}} > 0$. Allora, per la formula di Grassmann, $n \geq \dim(W + W^{+}) = \dim W + \dim W^{+} - \dim(W \cap W^{+}) > n - \dim(W \cap W^{+}) \implies \dim(W \cap W^{+}) > 0$. Quindi $\exists \underline{w} \in W, \underline{w} \neq \underline{0}$ tale che $\varphi(\underline{w}, \underline{w}) > 0$, da cui si ricava che W non è isotropo. Pertanto $W(\varphi) \leq \iota_{-}(\varphi)$.

Sia $a := \iota_+(\varphi)$ e sia $b := \iota_-(\varphi)$. Sia ora $\mathcal{B} = \{\underline{v_1}, \dots, \underline{v_a}, \underline{w_1}, \dots, \underline{w_b}\}$ una base di Sylvester per φ . Siano $\underline{v_1}$, ..., $\underline{v_a}$ tali che $\varphi(\underline{v_i}, \underline{v_i}) = 1$ con $1 \le i \le a$. Analogamente siano $\underline{w_1}$, ..., $\underline{w_b}$ tali che $\varphi(\underline{w_i}, \underline{w_i}) = -1$ con $1 \le i \le b$. Detta allora $\mathcal{B}' = \{\underline{v_1}' := \underline{v_1} + \underline{w_1}, \dots, \underline{v_b}' := \underline{v_b} + \underline{w_b}\}$, sia $W = \operatorname{Span}(\mathcal{B}')$.

Si osserva che \mathcal{B}' è linearmente indipendente, e dunque che dim $W=\iota_-$. Inoltre $\varphi(\underline{v_i}',\underline{v_j}')=\varphi(\underline{v_i}+\underline{w_i},\underline{v_j}+\underline{w_j})$. Se $i\neq j$, allora $\varphi(\underline{v_i}',\underline{v_j}')=0$, dal momento che i vettori di \mathcal{B} sono a due a due ortogonali tra loro. Se invece i=j, allora $\varphi(\underline{v_i}',\underline{v_j}')=\varphi(\underline{v_i},\underline{v_i})+\varphi(\underline{w_i},\underline{w_i})=1-1=0$. Quindi $M_{\mathcal{B}'}(\varphi|_W)=0$, da cui si conclude che $\varphi|_W=0$. Pertanto $W(\varphi)\geq i_-(\varphi)$, e quindi si conclude che $W(\varphi)=i_-(\varphi)$, da cui la tesi.