LAB 4 WRITE UP

Title: CS1026 Lab 4

Date: 17/02/2017

Aim: To design a circuit to implement $F(A,B,C,D) = \sum_{m} (0,2,5,6,9,11)$ using the

Quine-McCluskey Method.

	A	В	С	D	
(0)	0	0	0	0	✓
(2)	0	0	1	0	✓
(5)	0	1	0	1	
(6)	0	1	1	0	✓
(9)	1	0	0	1	✓
(11)	1	0	1	1	√

	Α	В	С	D
(0,2)	0	0	-	0
(2,6)	0	-	1	0
(9,11)	1	0	-	1

Iteration 2

Analysis:

- I began by designing the first table made up of the grouped minterms
- Following this I then grouped the minterms with minterms from the group below it producing the second table
- When no more minterms could be grouped I then made a prime implicant table using the prime implicants (terms that were not selected)
- Using column and row dominance methods I then reduced the table to the minimum SOP solution as seen above.
- Following this I then built and tested a circuit to implement this solution using Logisim.

Boolean Algebra:

$$F = (A'B'D') + (A'CD') + (A'BD) + (A'BC'D)$$