

Topology and Machine Learning

Graph Convolutional Networks, Random Walks, and Curvature: Why Oversmoothing and Oversquashing Happen

Giorgio Micaletto

Bocconi University

September, 2025

Roadmap

- The Main Ideas
 - Setup
 - The Effects Of Positive Curvature
 - The Effects Of Negative Curvature
 - What Editing The Graph Can and Can't Do
- 2 How To Write A Thesis 101
 - Scoping And Planning
 - Reading, Experimenting And Final Writing

Setup

Graph & Features. G = (V, E), |V| = n, adjacency with self-loops $\widetilde{A} = A + I_n$, random-walk normalization $\widetilde{A}_{rw} = \widetilde{D}^{-1}\widetilde{A}$.

Definition (Affine GCN Layer Kipf and Welling, 2017)

$$H^{(l+1)} = \sigma(\widetilde{A}_{rw} H^{(l)} W^{(l)}), \qquad H^{(0)} \in \mathbb{R}^{n \times d_0}.$$

Why A_{rw} matters. Iteration depth L induces multi-hop diffusion; ignoring nonlinearity and feature mixing,

$$\widetilde{A}_{\text{rw}}^L H^{(0)} \xrightarrow{I \to \infty} \Pi H^{(0)}, \quad \Pi = \mathbf{1} \pi^{\top} \quad (\pi \text{ stationary}).$$

Two pathologies. Oversmoothing (fast mixing to $\Pi H^{(0)}$) and oversquashing (many sources, few edges, information has a bottleneck, hence $\operatorname{Inf}^{(L)}(u \to v)$ small).

B

Positive Curvature and Oversmoothing

Idea. Uniformly *positive* edge curvature ($\mathfrak{c}(e) \geq \varepsilon > 0$) yields a *spectral gap* for $\widehat{A}_{\mathrm{rw}}$, so diffusion contracts everything orthogonal to π .

Claim (Informal Contraction Statement)

Let
$$1=\lambda_1>\lambda_2\geq\cdots\geq\lambda_n>-1$$
 for $\widetilde{A}_{\mathrm{rw}}.$ If $\mathfrak{c}(e)\geq\varepsilon$ $\forall e$, then $\lambda_2\leq1-\varepsilon$ and

$$\left\|\widetilde{A}_{\mathrm{rw}}^L - \Pi\right\|_2 = \lambda_2^L \ \Rightarrow \ \left\|\widetilde{A}_{\mathrm{rw}}^L H^{(0)} - \Pi H^{(0)}\right\|_{\infty} \leq (1 - \varepsilon)^L \left\|H^{(0)} - \Pi H^{(0)}\right\|_{\infty}.$$

Takeaway. Positively curved regions \Rightarrow quicker averaging \Rightarrow earlier oversmoothing for deep stacks unless counteracted (e.g., residual/identity connections, normalization changes, decoupled propagation).

B

Negative Curvature and Oversquashing

Core phenomenon. The number of nodes at distance d from v can grow exponentially in d, but messages into v often cross only $\mathcal{O}(1)$ edges (a narrow cut).

Claim (Informal Oversquashing Statement)

If an edge (x,y) has negative curvature $\mathfrak{c}(x,y) < 0$ then for some function g depending on \mathfrak{c} and Δ_{\max} , given the funneling set on the y side $\mathfrak{Q}_y := \mathcal{N}(y) \setminus \big(\triangle(x,y) \cup \{x\} \cup \Box_y(x,y) \big)$, for a 2-layer GCN,

$$\frac{1}{|\mathfrak{Q}_y|}\sum_{u\in\mathfrak{Q}_y}\mathrm{Inf}^{(2)}(u\to x) \ \leq \ g_{\mathfrak{c}}(\mathfrak{c}(x,y),\Delta_{\mathsf{max}})\ \alpha^{(2)}. \qquad \alpha^{(L)}:=\prod_{l=0}^{L-1}\mathcal{L}_\sigma\,\|W^{(l)}\|_2.$$

Difference with oversmoothing. Oversmoothing is a *spectral mixing* effect; oversquashing is a *topological capacity* effect and appears even without strong mixing.

Curvature-Guided Editing: What It Can and Can't Do

Heuristic goal. Use curvature to *reduce bottlenecks* and *avoid too-fast mixing* via *rewiring* (\mathcal{R}) , which adds (removes) edges where curvature is very negative (positive).

Claim (Informal Impossibility Statement)

For any non-absorbing \mathcal{R} , there is no strictly decreasing curvature-only functional $\mathcal{E}: \{graphs\} \to \mathbb{R}$ in expectation whenever edits occur:

$$\nexists \mathcal{E}: \mathbb{E}[\mathcal{E}(\mathcal{R}(G)) \mid G] < \mathcal{E}(G) \text{ whenever } \mathcal{R}(G) \neq G.$$

Practical message. Curvature is an excellent *diagnostic* (where to look) and a strong *prior* for edits, but not a universal scalar objective guaranteeing monotone improvement.

B

Scoping and Planning

- **Follow your curiosity.** Read widely in areas you *enjoy*; sustained reading surfaces tensions and gaps to turn into a research question.
- One-sentence \rightarrow one-paragraph \rightarrow one-page. Maintain these three living summaries; they keep scope tight and alignment with your advisor easy.
- **Define your contribution type early:** new theorem, sharper bound, negative result, method, or empirical finding. What will a skeptical reader remember?
- Use supervisors early and often. Bring half-formed ideas; feedback on scope prevents weeks of rework.
- Start earlier than you think. Build slack; set weekly milestones; write as you go so the endgame is editing, not drafting.
- **Deliverables.** Decide what must exist at the end (artifact+result+figure set); plan backwards.

B

Reading, Experimenting And Final Writing

- **Targeted reading.** For each paper: problem, core idea in 2 lines, why prior art fails, what the bound/intuition actually depends on.
- **Replication first.** Stand up a minimal pipeline reproducing one credible baseline before any novelty.
- Ablation plan. Design ablations to falsify your favorite story.
- **Reproducibility.** Fix random seeds; report variance; release a small runnable artifact where possible.
- Methods and Results \rightarrow Intro. Write the intro and abstract *last*.
- Narrative spine. Problem \Rightarrow obstacle (over-smooth/squash) \Rightarrow idea (curvature lens) \Rightarrow what works/doesn't \Rightarrow takeaways.
- Notation hygiene. One symbol per concept; add a small glossary; state assumptions.

Thank you!

Questions, comments, or thoughts?

Scan me to read my thesis

References I

Thomas N. Kipf and Max Welling. Semi-supervised classification with graph convolutional networks, 2017. URL https://arxiv.org/abs/1609.02907.