(12) NACH DEM VERTRAG ÜBER DIE INTERNATIONALE ZUSAMMENARBEIT AUF DEM GEBIET DES PATENTWESENS (PCT) VERÖFFENTLICHTE INTERNATIONALE ANMELDUNG

554048

(19) Weltorganisation für geistiges Eigentum Internationales Büro

(43) Internationales Veröffentlichungsdatum 4. November 2004 (04.11.2004)

PCT

(10) Internationale Veröffentlichungsnummer WO 2004/095136 A2

- (51) Internationale Patentklassifikation⁷:
- G03F 1/00
- (21) Internationales Aktenzeichen:
- PCT/EP2004/004161
- (22) Internationales Anmeldedatum:

20. April 2004 (20.04.2004)

(25) Einreichungssprache:

Deutsch

(26) Veröffentlichungssprache:

Deutsch

DE

(30) Angaben zur Priorität:

103 18 560.7

24. April 2003 (24.04.2003)

- (71) Anmelder (für alle Bestimmungsstaaten mit Ausnahme von US): CARL ZEISS SMS GMBH [DE/DE]; Carl-Zeiss-Promenade 10, 07745 Jena (DE).
- (72) Erfinder; und
- (75) Erfinder/Anmelder (nur für US): DOBSCHAL, Hans-Jürgen [DE/DE]; Am Kötschauer Weg 26a, 99510 Kleinromstedt (DE). HARNISCH, Wolfgang [DE/DE]; Am Müllergraben 4, 07778 Lehesten (DE). SCHERÜBL, Thomas [DE/DE]; Kronfeldstrasse 2a, 07745 Jena (DE). ROSENKRANZ, Norbert [DE/DE]; Am Stichel 30, 07629 Reichenbach (DE). SEMMLER, Ralph [DE/DE]; Otto-Engau-Strasse 4, 07749 Jena (DE).
- (74) Gemeinsamer Vertreter: HAMPE, Holger; Carl Zeiss Jena GmbH, Carl-Zeiss-Promenade 10, 07745 Jena (DE).

- (81) Bestimmungsstaaten (soweit nicht anders angegeben, für jede verfügbare nationale Schutzrechtsart): AE, AG, AL, AM, AT, AU, AZ, BA, BB, BG, BR, BW, BY, BZ, CA, CH, CN, CO, CR, CU, CZ, DK, DM, DZ, EC, EE, EG, ES, FI, GB, GD, GE, GH, GM, HR, HU, ID, IL, IN, IS, JP, KE, KG, KP, KR, KZ, LC, LK, LR, LS, LT, LU, LV, MA, MD, MG, MK, MN, MW, MX, MZ, NA, NI, NO, NZ, OM, PG, PH, PL, PT, RO, RU, SC, SD, SE, SG, SK, SL, SY, TJ, TM, TN, TR, TT, TZ, UA, UG, US, UZ, VC, VN, YU, ZA, ZM, ZW.
- (84) Bestimmungsstaaten (soweit nicht anders angegeben, für jede verfügbare regionale Schutzrechtsart): ARIPO (BW, GH, GM, KE, LS, MW, MZ, SD, SL, SZ, TZ, UG, ZM, ZW), eurasisches (AM, AZ, BY, KG, KZ, MD, RU, TJ, TM), europäisches (AT, BE, BG, CH, CY, CZ, DE, DK, EE, ES, FI, FR, GB, GR, HU, IE, IT, LU, MC, NL, PL, PT, RO, SE, SI, SK, TR), OAPI (BF, BJ, CF, CG, CI, CM, GA, GN, GQ, GW, ML, MR, NE, SN, TD, TG).

Veröffentlicht:

 ohne internationalen Recherchenbericht und erneut zu veröffentlichen nach Erhalt des Berichts

Zur Erklärung der Zweibuchstaben-Codes und der anderen Abkürzungen wird auf die Erklärungen ("Guidance Notes on Codes and Abbreviations") am Anfang jeder regulären Ausgabe der PCT-Gazette verwiesen.

(54) Title: ARRANGEMENT FOR INSPECTING OBJECTS, ESPECIALLY MASKS IN MICROLITHOGRAPHY

(54) Bezeichnung: ANORDNUNG ZUR INSPEKTION VON OBJEKTEN, INSBESONDERE VON MASKEN IN DER MIKRO-LITHOGRAPHIE

(57) Abstract: The invention relates to an arrangement for inspecting objects, especially masks in microlithography. Said masks are disposed in a vacuum chamber. A converter converts illuminating radiation emitted from the object into radiation of a higher wave length. A sensor is also provided for recording images. The sensor is disposed outside the vacuum chamber and is arranged as an optical interface between the vacuum chamber to the sensor of the converter or at least one part of an image lens is arranged as a window in the vacuum chamber.

(57) Zusammenfassung: Anordnung zur Inspektion von Objekten, insbesondere von Masken in der Mikrolithographie, die sich in einer Vakuumkammer befinden, wobei ein Wandler zur Umwandlung der vom Objekt kommenden Beleuchtungsstrahlung in eine Strahlung grösserer Wellenlänge vorgesehen ist sowie ein Sensor zur Bildaufzeichnung vorgesehen ist, wobei sich der Sensor ausserhalb der Vakuumkammer befindet und als optische Schnittstelle von der Vakuumkammer zum Sensor der Wandler oder zumindest ein Teil eines Abbildungobjektives als Fenster in der Vakuumkammer angeordnet ist.

9

Anordnung zur Inspektion von Objekten, insbesondere von Masken in der Mikrolithographie

Zur Beobachtung von Objekten oder Abbildungen von Objekten, die sich in Vakuumkammern befinden ist es erforderlich entweder die Beobachtungsoptik und den Sensor(Kamera) in die Vakuumkammer einzubringen, oder die Beobachtung durch ein Vakuumfenster hindurch auszuführen.

Dies ist insbesondere erforderlich bei Abbildungen mittels extremer ultravioletter Strahlung(EUV), wenn diese Strahlung mittels Scintillatoren in Strahlung anderer Wellenlänge gewandelt wird und dann mittels weiterer Optiken auf den Sensor abgebildet wird (US 5498923).

Befindet sich der Sensor im Inneren der Kammer so führt das zu Ausgasungen von zum Beispiel Siloxanen oder Kohlenwasserstoffen aus dem Sensor. Dies erzeugt ein hohes Risiko von Kontaminationen auf den in der Kammer befindlichen Einrichtungen. Besonders gefährdet sind dabei optische Elemente die energiereicher Strahlung, insbesondere EUV Strahlung ausgesetzt sind.

Befindet sich der Sensor außerhalb der Kammer, muß die zur Abbildung benutzte Strahlung durch ein Vakuumfenster hindurch auf den Sensor geleitet werden. In diesem Falle ergeben sich durch das Fenster selbst Einschränkungen hinsichtlich Qualität der optischen Abbildung und nutzbarer Apertur der Abbildungsoptik.

Erfinderische Lösung:

Erfindungsgemäß wird dieses Problem gelöst, indem der Scintillator selbst das Fenster bildet oder die vor dem Sensor befindliche Abbildungsoptik so ausgebildet wird, dass sie oder ein Teil von ihr das Vakuumfenster bildet.

Dabei sind verschiedene Konfigurationen in Abhängigkeit von der jeweiligen Aufgabenstellung möglich.

- a) das abbildende Objektiv ist vakuumdicht und bildet das eigentliche Fenster
- b) der Scintillator bildet das Vakuumfenster.

 Dieses ist dann vorteilhaft auswechselbar ausgestaltet, wenn
 ein Alterungsvorgang des Scintillators einsetzt.
 - c) ein Teil des Objektives bildet das Vakuumfenster
 Hier ist insbesondere vorteilhaft, die von der
 Strahlungsquelle aus erste Linse der Abbildungsoptik als
 Vakuumfenster auszubilden, weil die übrigen Objektivteile
 dann nicht dem Vakuum ausgesetzt sind. Weiterhin kann dann
 die erste Linse an der Vakuumkammer fest angeordnet sein und
 der Rest des Objektives auswechselbar, um die
 Abbildungsbedingungen, beispielsweiise zur Aufnahme eines
 Übersichtsbildes, durch den Ansatz anderer Linsengruppen,
 zu verändern

Mit allen aufgeführten Varianten wird erreicht, das sich der eigentliche Sensor, welcher ein hohes Risiko bezüglich Ausgasen und Kontamination darstellt außerhalb der Vakuumkammer angeordnet werden kann und trotzdem eine hohe optische Abbildungsgüte möglich ist.

Die Erfindung wird anhand Fig.1 näher erläutert

Das mit einer EUV Lichtquelle LQ über eine Beleuchtungsoptik

EUVBO beleuchtete Objektfeld OF wird mittels einer EUV Optik

EUVO auf einen Scintillator S abgebildet. Der Scintillator

wandelt das Bild im EUV Wellenlängenbereich in ein Bild im längerwelligen Bereich welches mit einem Abbildungsobjektiv O (z.B. Mikroobjektiv) dann auf den Sensor abgebildet wird. Dabei wird das Abbildungsobjektiv/der Scintillator erfindungsgemäß in einer der oben beschriebenen Konfigurationen benutzt.

Das Objektiv O ist schematisch dargestellt, es kann ein erstes optisches Glied das Fenster bilden dem außerhalb der Vakuumkammer VK angeordnete, hier nicht dargestellte weitere Linsenglieder, folgen.

In Fig.2 ist ein optisches Beispiel für das Objektiv O angegeben.

Es handelt sich vorteilhaft um ein kittfreies Hybridobjektiv, wie es in DE 10130212 Al ausführlich beschrieben ist.

Dieses hat den Vorteil geringeren Materialaufwandes und besserer optischer Qualität.

Mit einem diffraktiven Element DOE erfolgt eine Brechungsverstärkung und Achromatisierung.

Das erste optische Glied F1/F2 kann hier das Fenster der Vakuumkammer sein, aber beispielsweise auch das DOE F9/F10.

Daten des Hybridobjektives (mm)

Fläche	Radius	Dicke	Material	
F1	Unendlich			
		1.000	Q1 (sytn. Quarz)	
F2	Unendlich			
		0.3028	Luft	
F3	-2.744			
F4	2 776	2.9773	Bk10	
	-3.116			•
F5	-9.911	0.0200	Luft	
	-3.311	2 5722		
F6	-5.292	2.5723	Bk7	
	3.232	0.0500	75-	
F7	19.699	0.0300	Luft	
		2.9207	Bk7	
F8	-11.828		DK /	
		0.0500	Luft	
F9	Unendlich			
		2.0033	Bk7	
F10	Unendlich			
		·		
F11	23.072			
F12	7 541	2.0000	Nsf6	
114	7.541	0.5604		
F13	9.051	0.5624	Luft	•
	7.031	2 2207	7.1.50	
F14	-15.148	3.2297	Psk53a	·
•		15.2701	Luft	
F15	-4.369	120.2701	Turre	
		0.500	Ssk2	
F16	-117.556		20110	

.....weiter zur Tubuslinse (nicht dargestellt)

Patentansprüche

angeordnet ist.

1.

Anordnung zur Inspektion von Objekten , insbesondere von Masken in der Mikrolithographie, die sich in einer Vakuumkammer befinden , wobei ein Wandler zur Umwandlung der vom Objekt kommenden Beleuchtungsstrahlung in eine Strahlung größerer Wellenlänge vorgesehen ist sowie ein Sensor zur Bildaufzeichnung vorgesehen ist, wobei sich der Sensor außerhalb der Vakuumkammer befindet und als optische Schnittstelle von der Vakuumkammer zum Sensor der Wandler oder zumindest ein Teil eines

2.

Anordnung nach Anspruch 1, wobei das Abbildungsobjektiv ein kittfreies Hybridobjektiv mit mindestens einem diffraktiven Element DOE ist.

Abbildungobjektives als Fenster in der Vakuumkammer

3.

Anordnung nach Anspruch 2, wobei eine erste Optikgruppe mit positiver Brechkraft und eine der ersten Optikgruppe nachgeschaltete zweite Optikgruppe mit negativer Brechkraft vorgesehen sind und die erste Optikgruppe das DOE enthält.

Fig.1: Ausführungsbeispiel Gesamtsystem

