

Wireless Sensor Network Denial of Sleep Attack

Presentation by Michael I Brownfield

Paper Authors

Major Michael Brownfield

Mr. Yatharth Gupta

Dr. Nathanial J. Davis IV (Head, Department of Electrical and Computer Engineering, Air Force Institute of Technology)

Motivation

FORTUNE

SMART DUST KICKS UP A STORM
 Tiny wireless sensors start monitoring the nation's food, workplaces, and welfare (02/2004).

Even More Motivation

Wireless Sensor BSS

Yes, Even More Motivation

Agenda

- Wireless Network Challenges
- Related Security Work
 - Software Solutions
 - Hardware Solutions
- MAC Layer Sources of Energy Loss
- Comparison Wireless Sensor Network Protocols
- Gateway MAC
- Protocol Analysis
- Conclusion

Sensor MAC Protocol Challenges

- Energy Efficiency
- RAM/ROM Memory Sizes
- Embedded Processor Capabilities
- Channel Utilization Efficiency
 - Throughput
 - Delay
 - Fairness
- Self-Configuration
- Network Scalability

76.8 kbps

250 kbps

10 kbps

Data Rate

Sensor Motes Believe it Or Not!

Virginia Tech WSN Software Security Solutions

Tiny Sec

AND STATE UNIVERSITY

- Fully Implemented with only 10% energy, latency, and BW overhead
- Proves hardware assistance is unnecessary
- Provides message authentication, integrity, and confidentiality w/out hardware acceleration

Dest				Ctr	Data	MAC	. –
(2)	(1)	(1)	(2)	(2)	(029)	(4)	+5

TinySec-AE packet format

Des (2)	AM Len (1) (1)	Data (029)	MAC (4)	+1
, ,			, ,	

TinySec-Authentication packet format

Dest	AM Len	Grp	Data	CRC
(2)	(1) (1)	(1)	(029)	(2)

Standard TinyOS packet format

CC2420 WSN Mote Transceiver Hardware Security Solutions

AES-128 Hardware Encryption with 4 Security Modes

- 1. Disabled
- Cipher block chaining Message Authentication Code (CBC-MAC) authentication
- 3. Counter (CTR) encryption / decryption
- 4. Counter with CBC-MAC (CCM) authentication and encryption / decryption

Link Layer Denial of Service ATTACKS!

- Link Layer Collision Attack
 - Attacker sends a signal at same time and frequency as legitimate traffic
- Link Layer Exhaustion Attack
 - Manipulate the MAC protocol to force nodes to stay awake (repeated RTS messages)

MAC Layer Sources of Energy Loss

- Idle Listening
- Frame Collisions
 - Propagation Delay
 - Hidden Terminal
 - Capture Effect
- Overhearing
- Protocol / Control Packet Overhead
 - Control Packets (RTS, CTS, ACK)
 - Management Packets (Association requests, Beacon
 - MAC Header transmission, Interframe Spacing
 - Contention Backoff

Current WSN MAC Approaches

Slotted CSMA:

- Sensor MAC (S-MAC) implemented
- Timeout MAC (T-MAC) implemented
- Berkeley-MAC (B-MAC) implemented

TDMA

- Traffic-Adaptive MAC (TRAMA)
- Low-Energy Adaptive Clustering Heirarchy (LEACH)
- Power Aware Clustered TDMA (PACT)
- Bit-Map Assisted (BMA)
- Proposed Gateway MAC (G-MAC)

Sensor MAC (S-MAC) Approach

Reduce energy through sleeping

 Reduce energy by synchronizing sleep schedules in clusters

Sensor 1	Listen		Sleep		
Sensor 2	Listen	Sle	ер	Listen	

Idle Listening Slotted Approaches

Reduce energy through sleeping <u>after</u> timeout

T-MAC Adaptive Timeout (TA)

$$TA = 1.5 * (T_{contention_interval} + T_{RTS_interval} + T_{SIFS})$$

Frame Collisions / Overhearing Avoidance

- Frame Collisions: RTS-CTS-Data-ACK
- Overhearing Avoidance: In-channel signaling to sleep during other transmissions

Virginia Tech Berkeley MAC (B-MAC) VIRGINIA POLYTECHNIC INSTITUTE AND STATE UNIVERSITY (Contention-based)

Versatile Low Power Media Access for Wireless Sensor Networks

Joseph Polastre, Jason Hill and David Culler Sensys November 2004

B-MAC GOALS

- Low Power operation
- Effective collision avoidance
- Simple and predictable
- Small code size and RAM usage
- Tolerable to changing RF/networking conditions
- Scalable to large numbers of nodes

BMAC Design Approach

- Minimalistic (BMAC)
 - Small core functionality: media access control
 - RTS/CTS, ACKs, etc are considered higher layer functionality (services) that Applications can turn on and off

Denial of Sleep Threat Analysis

S-MAC

$$T_{network lifetime} = T_{sensor lifetime} = \frac{C_{battery(mAhr)}}{(D)(I_{active(mA)}) + (1-D)(I_{sleep(mA)})}$$

T-MAC and B-MAC

$$T_{network lifetime} = T_{sensor lifetime} = \frac{C_{battery(mAhr)}}{I_{active(mA)}}$$

Proposed Gateway MAC

$$T_{network lifetime} = T_{sensor lifetime} = \frac{n_{nodes} * C_{battery(mAhr)}}{I_{active(mA)}}$$

Gateway MAC (G-MAC) Design Goals

- Flexible and Scalable
 - Allocate Transmission Slots for Active Communication
 - Distribute Clusterhead/Gateway Duties
- Energy-efficient
 - Eliminate Network-wide Idle Listening
 - Create Traffic Rhythm for Increased Sleep Duration
- Secure
 - Gateway Sentry
 - Embedded AES-128
- Dynamic
 - Self-configure, Self-recover

GMAC Design: Phase 1 Data Collection

- Collects Intra-Network Traffic:
 - Local Gossip reservations
 - Cluster Association Requests
- Collects Inter-Network Traffic:
 - Converge-cast (out to WDS)
 - Network Routing
 - Tandem routing
 - Terminal

GMAC Design: Phase 1 Data Distribution

- Gateway Node broadcasts
 Traffic Indication Map (GTIM)
 - Local Broadcast (dotted lines)
 - Gossip exchanges
 - Cluster Synchronization Beacon

GMAC Design

Protocols in Empty Network

G-MAC vs T-MAC Unicast Message

G-MAC vs T-MAC Broadcast Message

Tech GMAC Point Coordinator/ Gateway Election

Battery Pwr Level		Voltage Range
11	High	2.6 < Pwr (3.0-3.6)
10	Med	2.4 < Pwr ≤ 2.6
01	Low	2.1 < Pwr ≤ 2.4
00	Min	Pwr ≤ 2.1 volt

Memory Capacity Level		Percentage Avail. Capacity
11	High	30% < Mem
10	Med	20% < Mem ≤ 30%
01	Low	10% < Mem ≤ 20%
00	Min	Mem ≤ 10%

Critical Resource Level Algorithm

if Pwr = Min or Mem = Min
then Resource Level = 3
elseif Pwr = Low or Mem = Low
then Resource Level = 2
elseif Pwr = Med or Mem = Med
then Resource Level = 1
Elseif Pwr = High or Mem = High
then Resource Level = 0

GMAC Point Coordinator/ Gateway Election

Election Contention Backoff = (16-bit Random Number mod 2⁷) + (RL * 128)

Resource	Contention Window			
Level (RL)	Random(2 ⁷) + RL * 128			
0 (Max)	0 to 127 Slots	(16µs to 2ms)		
1	128 to 255 Slots	(2ms to 4ms)		
2	256 to 511 Slots	(4ms to 8ms)		
3 (Low)	512 to 1023 Slots	(8ms to 16ms)		

11 May 2005

Preliminary Results: G-MAC

Denial of Sleep Summary

- WSN networks are vulnerable to Denial of Sleep Attacks
- Design Security Measures at the System Architectural Level (when possible)
- Centralized network coordination functions (Gateway) can reduce the effects of Denial of Sleep Attacks

Questions

If we knew what it was we were doing, it would not be called research, would it?
--Albert Einstein

802.15.4 Frame Format

© 2005, Michael Brownfield 33 11 May 2005

Symbiotic Network

