

OLIMPIADA NAȚIONALĂ DE FIZICĂ SIBIU 2000

BAREM DE NOTARE – PROBA TEORETICĂ CLASA A IX-A

Subi	ectul 1	
a) 3,50	Conform principiului II (Fig. 1a): $\overrightarrow{G_1} + \overrightarrow{N_1} + \overrightarrow{T_1} = m_1 \overrightarrow{a_1}$ $\overrightarrow{G_2} + \overrightarrow{N_2} + \overrightarrow{T_2} = m_2 \overrightarrow{a_2}$ $\overrightarrow{G_1}$ $\overrightarrow{G_1}$ $\overrightarrow{G_1}$ $\overrightarrow{G_1}$ $\overrightarrow{G_2}$ $\overrightarrow{G_1}$ $\overrightarrow{G_2}$ $\overrightarrow{G_1}$ $\overrightarrow{G_2}$ $\overrightarrow{G_2}$ $\overrightarrow{G_2}$ $\overrightarrow{G_2}$	1,00
	Sfoara se scurtează cu accelerația relativă a patinatorului (1) față de patinatorul (2): $\vec{a} = \vec{a_1} - \vec{a_2}$	0,50
	Proiectând pe direcția orizontală, se obține sistemul: $ \begin{cases} T = m_1 a_1 \\ T = m_2 a_2 \\ a = a_1 + a_2 \end{cases} $	1,00
	Din rezolvarea sistemului rezultă: $T = \frac{m_1 m_2}{m_1 + m_2} a \; ; \; a_1 = \frac{m_2}{m_1 + m_2} a \; ; \; a_2 = \frac{m_1}{m_1 + m_2} a$	1,00
b) 2,00	Distanța parcursă de patinatorul (2) față de patinatorul (1) este $s = \frac{at^2}{2}$. Fie t_1 momentul la care sfoara s-a scurtat cu l/n . Atunci: $s = \frac{l}{n} = \frac{at_1^2}{2} \implies t_1 = \sqrt{\frac{2l}{na}}$	1,00
	Modulul vitezei relative a patinatorului (2) față de patinatorul (1) este $v_r = at$. La momentul t_1 : $v_{r1} = at_1 = \sqrt{\frac{2la}{n}}$	1,00
c) 3,50	Dacă ambii patinatori se mişcă față de gheață: $ \begin{cases} T' - F_{f1} = m_1 a_1 \\ T' - F_{f2} = m_2 a_2 \text{ unde } F_{f1} = \mu_1 m_1 g \text{ , } F_{f2} = \mu_2 m_2 g \\ a = a_1 + a_2 \end{cases} $ $ \overrightarrow{F_{f1}} $ $ \overrightarrow{F_{f1}} $ $ \overrightarrow{F_{f2}} $ $ \overrightarrow{F_{f2}} $ Fig. 1c	1,00
	În acest caz tensiunea din sfoară este: $T' = \frac{m_1 m_2}{m_1 + m_2} (a + \mu_1 g + \mu_2 g)$	0,50
	Caz care se realizează dacă $T' > \mu_2 m_2 g$, de unde se obține condiția: $m_1(a + \mu_1 g) > \mu_2 m_2 g$	0,50
	Dacă se mișcă doar patinatorul (1) în raport cu gheața: $\begin{cases} T'' - F_{\rm fl} = m_1 a \\ T'' - F_{\rm f2} = 0 \end{cases} \text{ unde } F_{\rm fl} = \mu_1 m_1 g \text{ , iar } F_{\rm f2} \leq \mu_2 m_2 g$	0,75
	Rezultă: $T'' = m_1(a + \mu_1 g)$	0,50
	Acest caz se realizează dacă $T'' \le \mu_2 m_2 g$, de unde se obține condiția: $m_1(a + \mu_1 g) \le \mu_2 m_2 g$	0,25
Punct din oficiu		1,00
Total	Subiect 1	10,00

Subie	ectul 2	
a) 3,00	Conform Fig. 2a, din triunghiurile AMN şi ANN' se obţine: $\frac{v_1 \Delta t}{\sin \Delta \alpha } = \frac{AN}{\sin(\pi - \alpha)}, \text{ respectiv } AN = \frac{H}{\sin(\alpha - \Delta \alpha)}$ $A \qquad N' \qquad B$ Fig. 2a	1,00
	Rezultă: $\frac{v_1 \Delta t}{\sin \Delta \alpha } = \frac{H}{\sin(\alpha - \Delta \alpha)\sin(\pi - \alpha)}$ Considerând $ \Delta \alpha $ sufficient de mic, se poate considera $\sin \Delta \alpha \approx \Delta \alpha \Rightarrow \frac{v_1 \Delta t}{ \Delta \alpha } \approx \frac{H}{\sin^2 \alpha}$	1,00
	$\omega = \frac{ \Delta\alpha }{\Delta t} \implies \omega(\alpha) = \frac{v_1}{H} \sin^2 \alpha$ La momentul inițial $\sin \alpha_0 = \frac{H}{L} = \frac{1}{2}$	1,00
	La momentul inițial $\sin \alpha_0 = \frac{H}{L} = \frac{1}{2}$ $\text{Conform ipotezei } \omega[\alpha(t)] = \text{const.} = \omega[\alpha_0(t_0)] \Rightarrow \frac{v}{H} \sin^2 \alpha = \frac{v_0}{H} \sin^2 \alpha_0 \Rightarrow v = \frac{v_0}{4 \sin^2 \alpha}$	1,00
b) 3,00	Din expresia vitezei unghiulare rezultă: $\omega = \frac{v_0}{4H} \implies \omega = 0.8 \text{ rad/s}$	0,50
	Mişcarea scândurii este circulară uniformă $\Rightarrow \alpha = \alpha_0 + \omega t$	0,50
	Legea vitezei cubului este: $v(t) = \frac{v_0}{4\sin^2(\omega t + \alpha_0)} \implies v(t) = \frac{2}{\sin^2(0.8t + 30^0)} \text{ (m/s)}$	1,00
c)	\overrightarrow{R} \overrightarrow{F}_{cf} \overrightarrow{F}_{f} \overrightarrow{F}_{g}	0,50
3,00	În sistemul de referință legat de corp, condiția de echilibru este: $\vec{N} + \vec{G} + \vec{F}_{\rm f} + \vec{F}_{\rm cf} = \vec{0}$	0,50
	$\begin{cases} N = mg\cos\alpha_1 \\ mg\sin\alpha_1 = F_f + F_{cf} \end{cases}$	0,50
	Corpul pornește în momentul în care $F_{\rm f}=\mu N$. Forța centrifugă este $F_{\rm cf}=m\omega^2 L$. Rezultă: $g\sin\alpha_1=\mu g\cos\alpha_1+\omega^2 L$	1,00
	Coefficientul de frecare este: $\mu = \frac{g \sin \alpha_1 - \omega^2 L}{g \cos \alpha_1} = tg\alpha_1 - \frac{\omega^2 L}{g \cos \alpha_1} \implies \mu = 0,546$	0,50
	din oficiu	1,00
Total S	Subject 2	10,00

Subjectul 3				
a) 3,00	$\begin{cases} \vec{a} = \frac{\vec{F}}{m} \\ \vec{F} \perp \vec{v} \end{cases} \Rightarrow \vec{a} \perp \vec{v} \Rightarrow \text{modulul vitezei rămâne constant}$	1,00		
	Proiecția particulei pe planul xOz se mișcă circular uniform pe un cerc cu centrul pe axa Ox , cu o viteză tangențială cu modulul egal cu v_2	1,00		
	Proiecția particulei pe axa Oy se mișcă rectiliniu uniform cu o viteză egală cu v_1	1,00		

b) 3,00	Principiul II pentru mișcarea circulară uniformă: $F = m \frac{v^2}{r}$	0,50
	r	0,50
	Distanța dintre axa cilindrului și axa Oy este egală cu raza proiecției traiectoriei pe planul xOz : $F = m\frac{v_2^2}{R} \implies R = \frac{mv_2^2}{F}$	0,75
	Intersecția traiectoriei cu axa Oy se produce la intervale de timp egale cu perioada mișcării circulare uniforme cu viteza de modul v_2 : $T = \frac{2\pi R}{v_2} = \frac{2\pi m v_2}{F}$	0,50
	Distanța dintre oricare două puncte succesive în care traiectoria intersectează axa Oy se obține din condiția de mișcare rectilinie uniformă cu viteza v_1 : $h = v_1 T \implies h = \frac{2\pi m v_1 v_2}{F}$	0,75
	Traiectoria particulei intersectează axa Oy în punctele aflate la coordonatele: $y_1 = h$, $y_2 = 2h$,, $y_n = nh$,	0,50
	În intervalul de timp t_1 (Fig. 3c): $\alpha_1 = \omega t_1$	0,50
	$\Rightarrow \begin{cases} R - x_1 = R\cos\alpha_1 = R\cos\omega t_1 \\ z_1 = R\sin\alpha_1 = R\sin\omega t_1 \end{cases} \iff \begin{cases} x_1 = R(1 - \cos\omega t_1) \\ z_1 = R\sin\omega t_1 \end{cases}$	1,00
	Dar: $\omega = \frac{v_2}{R} = \frac{F}{mv_2}$	0,50
c)	$\Rightarrow \begin{cases} x_1 = \frac{mv_2^2}{F} \left[1 - \cos\left(\frac{Ft_1}{mv_2}\right) \right] \\ z_1 = \frac{mv_2^2}{F} \sin\left(\frac{Ft_1}{mv_2}\right) \end{cases}$	0,50
3,00	$y_1 = v_1 t_1$	0,50
	$t_{0} = 0 \qquad t_{1} = \frac{T}{4} \ t_{2} = \frac{T}{2} \ t_{3} = \frac{3T}{4} \ t_{4} = T$ Fig. 3c	
	Fig. 3a	
Punct	din oficiu	1,00
Total Subject 3		10,00

Notă: Orice rezolvare corectă va fi punctată corespunzător.