SEGMENTEZ LES CLIENTS D'UN SITE DE E-COMMERCE

Victoire MOHEBI
Juin 2022

DPENCLASSROOMS

AGENDA

- Problématique & Objectifs
- Mission
- Présentation de jeux de données
- Analyse exploratoire
- Modélisation
- Simulation
- Conclusion
- Recommandation

PROBLÉMATIQUE & OBJECTIF

Problématique:

Olist, un site de ecommerce au Brézil, souhaite obtenir une segmentation de ses clients.

Objectif:

Comprendre les différents types d'utilisateurs grâce à leur comportement et à leurs données personnelles.

MISSION

- Fournir une description actionnable de la segmentation et de sa logique sousjacente pour une utilisation optimale.
- Proposer un contrat de maintenance basée sur une analyse de la stabilité des segments au cours du temps

PRÉSENTATION DES DONNÉES

- Sources des données :
 Brasilia E-Commerce Public
 Dataset by Olis
- Neuf tables de dimension différentes

- Les informations anonymisées sur l'historique des commandes, les produits achetés, les commentaires de satisfaction, et la localisation des clients
- Les donnée complète sur 23 mois

PRÉSENTATION DES DONNÉES

ANALYSE EXPLOIRATOIRE

 Les clients sont de 4119 villes et de 27 états en Brézil

 Les vendeurs sont de 23 état en Brézil

ANALYSE EXPLOIRATOIRE

- Les clients ont payé avec quatre modes de paiement
- Ils ont payé en plusieurs fois

ANALYSE EXPLOIRATOIRE

- La note moyenne donnée par les client est élevée
- La majorité des clients sont satisfaits
- Le délai moyen de livraison est de 12 jours

	delivery_days	payment_installments	frequence	Note_Moy_Com	recence	panier_moyen
count	92746.000000	92746.000000	92746,000000	92746.000000	92746.000000	92746,000000
mean	12.060600	2.898307	1.033177	4.153367	237.798245	204,376237
std	9.466231	2.675020	0.208425	1.280530	152.591525	603.916800
min	0.000000	0.000000	1.000000	1.000000	1.000000	9.590000
25%	6.000000	1.000000	1,000000	4.000000	114.000000	63,150000
50%	10.000000	2.000000	1.000000	5.000000	219.000000	110.700000
75%	15,000000	4.000000	1.000000	5,000000	346.000000	195.690000
max	208.000000	24.000000	15.000000	5,000000	695.000000	109312,640000

SEGMENTATION RFM

- Approche analytique
- Approche automatique : méthodes non supervisées pour regrouper ensemble des clients de profils similaires

APPROCHE ANALYTIQUE

RFM : Technique de segmentation des clients, basée sur 3 données

« Recency » : la date du dernier achat

« Frequency » : nombre d'achats effectués sur une période précise

« Monetary » : total des achats sur la même période

DÉMARCHEAPPROCHE ANALYTIQUE

Traitement des outliers et *Data* prepration

Création de score RFM

Visualisation des segments

CRÉATION D'UN SCORE RFM

Sur la base du tableau RFM, nous attribuerons trois score 'R', 'F', 'M' à chaque client

- Le moyenne de ces trois scores est le "RFM_score" pour chaque client
- Pour calculer trois score 'R', 'F', 'M', on divise le 'std' de chaque variable par le somme des 'std' de trois variables

LABÉLISATION ET VISULISATION

Label	Description
Best Customers	rfm_score >= quantile(0.8)
Potential Customers	Quantile(0.5) <rfm_score <="" quantile(0.8)<="" td=""></rfm_score>
Almost Lost Customers	Quantile(0.2) <rfm_score <="quantile(50)</td"></rfm_score>
Lost Customers	rfm_score <= quantile(0.2)

DÉMARCHEMÉTHODES NON SUPERVISÉES - Kmeans

Nombre optimal de K: *Elbow Data préparation*Methode

Evaluer l'algorithme Kmeans Labélisation et la Visualisation des clusters

NOMBRE OPTIMAL DE K

Grâce à la méthode du coude basée sur le score de distortion (somme moyenne des carrés des distances aux centres), une segementation en K=5 clusters serait la meilleure option.

Méthode du coude : déterminer le meilleur K

EVALUER LA PERFORMACE DE KMEANS

MESURE DE FORME

Coefficient de silhouette

Forme des clusters

- SilhouetteVisualizer pour visualiser coefficient de silhouette pour un échantillonage de chaque cluster.
- Les clusters sont relativement bien répartis et les séparations sont claires

La visualisation en 2D avec InterclusterDistance montre que les clusters sont bien séparés

EVALUER LA STABILITÉ DE KMEANS

- Entrainer plusieurs fois le modèle sans fixer le RandomState
- Label initiaux: les clusters calculés dans le dernier modèle
- Comparer les ARI de chaque itération
- Les différentes itérations montrent des un score ARI proche de 1.
- On peut donc déduire que la stabilité à l'initialisation du modèle K-Means est bonne.

IMPORTANCE DE CHAQUE FEAUTURE

Le radar chart montre que le clustering s'est basé principalement sur la variable récence

	Valeur moyenne de R-F-M par clusters					
	kmeans_label	recence_moy	frequence_moy	panier_moyen_moy		
0	0	261.642	1.031	200.465		
1	1	511.327	1.023	200.229		
2	2	48.779	1.040	205.797		
3	3	379.899	1.032	208.437		
4	4	153.436	1.036	206.248		

LABÉLISATION DES CLUSTERS

Après avoir identifier les composantes métier de chaque cluster, on peut regrouper les client en 4 catégorie :

- Best Customers
- Potential Customers
- Almost lost Customers
- Lost Customers

Label	Description		
Best Customers	Ils ont acheté le plus récemment, et qui dépensent le plus		
Potential Customers	Ils n'ont pas acheté récemment mais qui dépensent beaucoup. Ils sont les client à fidéliser		
Almost Lost Customers	Ils n'ont pas acheté depuis un certain temps mais qui ont dépensé beaucoup		
Lost Customers	Ils n'ont pas acheté depuis un certain et n'ont pas dépensé beaucoup		

VISULISATION DES CLUSTERS

MODELISATION SUR PLUS DE VARIABLES

 Choisir plusieurs variables pertinentes pour améliorer le modèle

NOMBRE OPTIMAL DE K

Méthode du coude : déterminer le meilleur K

Grâce à la méthode du coude un clustering en K=5 clusters serait la meilleure option.

EVALUER LA PERFORMACE DE KMEANS

MESURE DE FORME

Coefficient de silhouette

Forme des clusters

- La visualisation de coefficient de silhouette pour un échantillonage de chaque cluster montre que les
- Les clusters sont relativement bien répartis, avec cependant quelques erreurs

La visualisation en 2D avec InterclusterDistance montre que les clusters sont bien séparés

EVALUER LA STABILITÉ DE KMEANS

- Les différentes itérations montrent un score ARI proche de 1.
- On peut donc déduire que la stabilité à l'initialisation du modèle K-Means est bonne.

IMPORTANCE DE CHAQUE FEAUTURE

- Le radar chart montre que le clustering s'est basé principalement sur la variable « note moyenne »
- Le regroupement des clients est fortement liée à leur satisfaction

Valeur moyenne des variables par clusters

	score_mean	deliveray_days_mean	payment_installments_mean	recence_mean	frequence_mean	panier_moyen_mean	
labels							
0	3.703	12.194	2.687	133.753	1.040	194.832	
1	4.998	10.872	3.075	387.889	1.030	189.823	
2	1.237	19.854	3.152	233.269	1.021	310.169	
3	4.997	9.724	2.720	122.395	1.038	183.409	
4	3.676	12.782	3.048	392.942	1.030	196.009	

LABÉLISATION ET VISUALISATION

CONTRAT DE MAINTENANCE

- Tester la stabilité temporelle de l'algorithme de segmentation client
- À quel moment les clients changent les clusters ?
- Pour cela il faut itérer le K-Means sur toute la période et calculer le score ARI par rapport avec la période initiale
- Une forte inflexion après 2 mois

Stabilité temporelle de la segmentation par K-Means

CONCLUSION

- La difficulté de la segmentation RFM est liée à la variance faible de 'F' (la majorité des clients ont effectué un seul achat)
- Les méthode nonsuppervisé nous permettent également de regrouper les clients

- Ces méthode pose des problèmes d'interprétation
- Regroupement des clients avec la méthode nonsuppervisé est fortement liées leur satisfaction des clients

Recommandation et perspective

- i. Prévoir la maintenance du programme de segmentation tous les 2 ou 3 mois
- ii. Re-tester cette stabilité temporelle au fil du temps. Il sera donc nécessaire de redéfinir les segments clients à chaque maintenance.
- iii. Réaliser une analyse sur les données plus réelles (fréquence plus représentative) pour une meilleure visualisation des difficultés en entreprise

MERCI DE VOTRE ATTENTION!

