Mathematik

Unterricht - Abitur 2025

Niklas von Hirschfeld

All my contents

1 20	24-06-03 - Dreidimensionale Bildbearbeitung	3
1.1	Ressourcen	3
1.2	Stichpunkte	3
1.3	Mutliplikation mit einer Matrix	3
1.4	Projektion auf Ebenen	3
1.4.1	Identische Abbildung	3
1.4.2	Projetkion auf eine Koordinatenebene	4
1.4.3	Zentrische Strckung am Ursprung	4
1.4.4	Orthogonale Spigelung an der x_1-x_3-Ebene	4
1.4.5	Drehung um die x_2-Achse	4
1.5	Aufgaben S. 202	4
1.5.1	Matrix um zum Ursprung zu Spiegeln	4
1.6	Links:	4
2 20	24-08-12 - Wiederholung und Einleitung	5
	Wiederholung	
2.1.1	<u> </u>	
2.1.2	'	
2.1.2	Lbellell	J
3 20	24-06-05 - Ebenen veranschaulichen	6
3.1	Drei Schnittpunkte	6
3.2	Wenn alle drei Spurpunkte bekannt sind	6
/ 20	24-06-12 - Mathe LOG	7
4. L	2024-06-12	1

1 2024-06-03 - Dreidimensionale Bildbearbeitung

1.1 Ressourcen

• S. 201, 202

1.2 Stichpunkte

- Konstrukteur*innen
- Desinger*innen
- Spieleentwickelnde
- bearbeitung räumlicher Darstellung
- auf Computerbildschirm (2D Oberfläche)
- 3D auf 2D projektion
- CAD-Programme
- analytische Geometrie liefert komplette funktionalität für die entwicklung von CAD-Programmen

1.3 Mutliplikation mit einer Matrix

$$\begin{split} A \cdot \vec{p} &= a_{11} \& \ a_{12} \& \ a_{13} a_{21} \& \ a_{22} \& \ a_{23} a_{31} \& \ a_{32} \& \ a_{33} \cdot p_1 p_2 p_3 = \\ a_{11} \cdot p_1 \& + \& \ a_{12} \cdot p_2 \& + \& \ a_{13} \cdot p_3 a_{21} \cdot p_1 \& + \& \ a_{22} \cdot p_2 \& \\ &+ \& \ a_{23} \cdot p_3 a_{31} \cdot p_1 \& + \& \ a_{32} \cdot p_2 \& + \& \ a_{33} \cdot p_3 = \vec{p}_1 \vec{p}_2 \vec{p}_3 \end{split}$$

1.4 Projektion auf Ebenen

1.4.1 Identische Abbildung

A = 1 & 0 & 00 & 1 & 00 & 0 & 1

1.4.2 Projetkion auf eine Koordinatenebene

A = 0 & 0 & 0a & 1 & 0b & 0 & 1

1.4.3 Zentrische Strckung am Ursprung

 $\vec{p} = z \& 0 \& 00 \& z \& 00 \& 0 \& z$

1.4.4 Orthogonale Spigelung an der x_1-x_3-Ebene

Die x_1 - und x_3 -Koordinaten bleiben gleich und die x_2 -Koordinate ändert ihr vorzeichen.

$$\vec{p} \cdot 1 \ \& \ 0 \ \& \ 00 \ \& \ -1 \ \& \ 00 \ \& \ 0 \ \& \ 1 \cdot \vec{p} = p_1 - p_2 p_3$$

1.4.5 Drehung um die x_2-Achse

 $\vec{p} = \cos \phi \& 0 \& -\sin \phi 0 \& 1 \& 0 \sin \phi \& 0 \& \cos \phi \cdot \vec{p} = p_1 \cos \phi \& \& -p_3 \sin \phi \& p_2 \& p_1 \sin \phi \& \& +p_3 \cos \phi$

1.5 Aufgaben S. 202

1.5.1 Matrix um zum Ursprung zu Spiegeln

-1 & 0 & 00 & -1 & 00 & 0 & -1

1.6 Links:

[[dreidimensionale_bildbearbeitung-pres]]

2 2024-08-12 - Wiederholung und Einleitung

2.1 Wiederholung

- Was ist ein koordinaten system
- Was sind Vektoren
 - Lagen
 - Gleichungen
 - Kolineare Koordinaten
- Was sind Geraden
 - Lagen
 - Gleichungen
- Was sind Ebenen
 - Lagen
 - Gleichungen

2.1.1 Vektorprodukt

2.1.1.1 Kreuzprodukt

$$\vec{u} \times \vec{v} = u_2 \cdot v_3 - u_3 \cdot v_2 u_3 \cdot v_1 - u_1 \cdot v_3 u_1 \cdot v_2 - u_2 \cdot 1$$

 $\label{limage} $$./media/kreuzprodukt_hilfe.png : alt: fishy :class: bg-primary :width: 200px :align: center$

Der Normalvektor steht Orthogonal zu einem Vektor, einger Gerade oder einer Ebene. Für eine Ebene kann er mit dem Kreuzprodukt der Spannvektroen dieser berechnet werden.

Den Normalvektor Berechnen: $\vec{n} = \overrightarrow{AB} \times \overrightarrow{AC}$

Normalengleichung:

$$E: \quad (\vec{x} - \vec{p}) \cdot \vec{n} = 0$$

2.1.1.2 Skalar

2.1.2 Ebenen

$$E: \quad \frac{x_1}{u} + \frac{x_2}{v} + \frac{x_3}{w} = 1$$

3 2024-06-05 - Ebenen veranschaulichen

Spurpunkte: Schnittpunkte der Ebene mit den Koordinaten**achsen** Spurgeraden: Schnittgeraden einer Ebene mit den Koordianten**ebenen**

3.1 Drei Schnittpunkte

- Jeweils die anderen x-Werte (x_1, x_2, x_3) gleich null setzten
 - Für den x_1 Schnittpinkt $x_2=x_3=0$ einsetzen

3.2 Wenn alle drei Spurpunkte bekannt sind

$$E: \quad \frac{x_1}{u} + \frac{x_2}{v} + \frac{x_3}{w} = 1$$

wobei die Spurpunkte wie folgt aussehen:

$$S_1 = u00$$
 $S_2 = 0v0$ $S_3 = 00w$

4 2024-06-12 - Mathe LOG

4.1 2024-06-12

- Ebenen und Geraden: Lagebezhiehung Ebene zu Gerade
- Neu: Lagebeziehung Ebenen untereinander
- Aufgaben im Buch: S. 190