加州大学提出:实时实例分割算法YOLACT,可达33 FPS/30mAP!现已开源!

原创: Amusi CVer 今天

点击上方"**CVer**",选择"星标"和"置顶" 重磅干货,第一时间送达

前戏

最近实例分割方向,出了很多paper, CVer也立即跟进报道(点击可访问):

● CVPR2019 | 超越Mask R-CNN! 华科开源图像实例分割新方法MS R-CNN

本文要介绍一篇很棒的实时实例分割论文: YOLACT, 该论文是由 **加利福尼亚大学** 提出。截止 2019年4月16日,据Amusi所了解,上述**MS** R-CNN应该是实例分割 (Instance Segmentation) mAP 最高的算法; 而本文 **YOLACT** 是实例分割中最快的算法 (即FPS最大)。难能可贵都是这两篇paper,都已经开源!

注:YOLACT应该是Amusi了解到的第一个又快又好的实例分割算法,如果你有发现比这两个算法还fancy的paper,欢迎后台留言进行补充。

简介

《YOLACT: Real-time Instance Segmentation》

YOLACT Real-time Instance Segmentation

Daniel Bolya Chong Zhou Fanyi Xiao Yong Jae Lee University of California, Davis

{dbolya, cczhou, fyxiao, yongjaelee}@ucdavis.edu CVer

arXiv: https://arxiv.org/abs/1904.02689

github: https://github.com/dbolya/yolact

作者团队: 加利福尼亚大学

注: 2019年04月05日刚出炉的paper

Abstract: 我们提出了一个用于实时实例分割的简单全卷积模型,在单个Titan Xp上以33 fps在 MS COCO上实现了29.8 mAP, 这比以前的任何算法都要快得多。此外,我们只在一个GPU上 训练后获得此结果。我们通过将实例分割分成两个并行子任务: (1) 生成一组原型掩膜 (prototype mask); (2) 预测每个实例的掩膜系数 (mask coefficients)。然后我们通过将 原型与掩模系数线性组合来生成实例掩膜 (instance masks) 。我们发现因为这个过程不依赖 于 repooling, 所以这种方法可以产生非常高质量的掩模。此外, 我们分析 了 emergent behavior of our prototypes, 并表明他们学会 以 translation variant manner 定位实例,尽管是完全卷积的。最后,我们还提出了快速 NMS (Fast NMS) ,比标准NMS快12 ms,只有一点点性能损失。

Figure 1: Speed-performance trade-off for various instance segmentation methods on COCO. To our knowledge, ours is the first *real-time* (above 30 FPS) approach with around 30 mask mAP on COCO test-dev.

正文

背景

先介绍一下为什么叫YOLACT,因为其全称为: You Only Look At CoefficienTs。这里应该是致敬YOLO。

原作者在论文中引用了YOLOv3中的这句话,"Boxes are stupid anyway though, I'm probably a true believer in masks except I can't get YOLO to learn them."

"Boxes are stupid anyway though, I'm probably a true believer in masks except I can't get YOLO to learn them."

Joseph Redmon, YOLOv3 [Albyer

注:日常催更,YOLOv4该来了吧!

本文算法 (YOLACT)

YOLACT的目标是将掩模分支添加到现有的一阶段(one-stage)目标检测模型,其方式与 Mask R-CNN对 Faster-CNN 操作相同,但没有明确的定位步骤 (如, feature repooling)。 为此,我们将实例分割的复杂任务分解为两个更简单的并行任 务,这些任务可以组合以形成最终的掩码。第一个分支使用FCN生成一组图像大小的"原型掩码" masks),它们不依赖于任何一个实例。 第二个向目标检测分支添加额外 ("prototype 的 以预测用于编码原型空间中的实例表示的每个 anchor 的"掩模系数" ("mask coefficients)的向量。最后,对经过NMS后的每个实例,我们通过线性组合这两个 分支的工作来为该实例构造掩码。

YOLACT将问题分解为两个并行的部分,利用 fc层(擅长产生语义向量)和 conv层(擅长产生空间相干掩模)来分别产生"掩模系数"和"原型掩模"。然后,因为原型和掩模系数可以独立地计算,所以 backbone 检测器的计算开销主要来自合成(assembly)步骤,其可以实现为单个矩阵乘法。通过这种方式,我们可以在特征空间中保持空间一致性,同时仍然是一阶段和快速的。

Figure 2: **YOLACT Architecture** Blue/yellow indicates low/high values in the prototypes, gray nodes indicates in that are not trained, and k = 4 in this example. We base this architecture off of RetinaNet [25] using ResNet-101 + FPN.

1 原型生成 (Prototype Generation)

本文将 protonet 实现为FCN,其最后一层有k个 channels (每个原型一个) 并将其附加到 backbone 特征层

Figure 3: **Protonet Architecture** The labels denote feature size and channels for an image size of 550×550 . Arrows indicate 3×3 conv layers, except for the final conv which is 1×1 . The increase in size is an upsample followed by a conv. Inspired by the mask branch in [16]. Given

2 掩膜系数 (Mask Coefficients)

典型的基于Anchor (anchor-based) 的目标检测器在其预测 head 中具有两个分支: 一个分支用于预测 c 类置信度(confidences),另一个分支用于预测 4 个边界框回归量。对于掩模系数预测,本文简单地添加并行的第三个分支,其预测 k 个掩模系数,一个对应于每个原型。因此,不是每个 anchor 产生4 + c + k。

3 掩膜合成 (Mask Assembly)

为了生成实例掩码,我们需要将原型分支和掩模系数分支进行合成,使用前者与后者的线性组合作为系数。这个运算可以由单个矩阵相乘完成:

$$M = \sigma(PC^T)$$

其中, P是 h*w*k 的原型掩膜, C是 n*k 的掩膜系数。

4 YOLACT 检测器 (Detector)

Backbone: ResNet-101 + FPN

Image Size: 550*550

注:本文其实尝试了ResNet-101和DarkNet-53,这部分很好理解,backbone越轻量级,YOLACT运行速度越快,但mAP越低。不过使用ResNet-101就能达到33 FPS,真的很

赞。

4 快速非极大值抑制 (Fast NMS)

实验结果

YOLACT在COCO test-dev上的mAP和FPS,其中基于ResNet-101的YOLACT-550 比之前具有相同mAP的算法快了 3.8倍。

Method	Backbone	FPS	Time	AP	AP_{50}	AP ₇₅	AP_S	AP_M	AP_{I}
PA-Net [27]	R-50-FPN	4.7	212.8	36.6	58.0	39.3	16.3	38.1	53.1
RetinaMask [12]	R-101-FPN	6.0	166.7	34.7	55.4	36.9	14.3	36.7	50.5
FCIS [22]	R-101-C5	6.6	151.5	29.5	51.5	30.2	8.0	31.0	49.7
Mask R-CNN [16]	R-101-FPN	8.6	116.3	35.7	58.0	37.8	15.5	38.1	52.4
MS R-CNN [18]	R-101-FPN	8.6	116.3	38.3	58.8	41.5	17.8	40.4	54.4
YOLACT-550	R-101-FPN	33.0	30.3	29.8	48.5	31.2	9.9	31.3	47.7
YOLACT-400	R-101-FPN	44.0	22.7	24.9	42.0	25.4	5.0	25.3	45.0
YOLACT-550	R-50-FPN	42.5	23.5	28.2	46.6	29.2	9.2	29.3	44.8
YOLACT-550	D-53-FPN	40.0	25.0	28.7	46.8	30.0	9.5	2005	- A5.5
YOLACT-700	R-101-FPN	23.6	42.4	31.2	50.6	32.8	12.1	33.5	CV45.

Fast NMS的有效性

Method	NMS	AP	FPS	Time
YOLACT	Standard	30.0	23.8	42.1
	Fast	29.9	33.0	30.3
Mask R-CNN	Standard	36.1	8.6	116.0
	Fast	35.8	9.9	101.0

(a) Fast NMS	Fast NMS performs only slightly
worse than stan	dard NMS, while being around 12
ms faster. We a	lso observe a similar trade-off im-
plementing Fas	t NMS in Mask R-CNN.

k	AP	FPS	Time
32	27.7	32.4	30.9
64	27.8	31.7	31.5
128	27.6	31.5	31.8
256	27.7	29.8	33.6

(b) Prototypes	Choices for
k in our method	i. YOLACT
is robust to vary	ing k , so we
choose the faste:	st $(k = 32)$.

Method	AP	FPS	Time
FCIS w/o Mask Voting	27.8	9.5	105.3
Mask R-CNN (550 × 550)	32.2	13.5	73.9
fc-mask	20.7	25.7	38.9
YOLACT-550 (Ours)	29.9	33.0	30.3

(c) Accelerated Baselines We compare to other baseline methods by tuning their speed-accuracy trade-offs. fc-mask is our model but with 16×16 masks produced from an fc layer.

Table 2: **Ablations** All models evaluated on COCO val2017 using our servers. Models in Table 2b were transported for convenience.

YOLACT部分实例分割结果

CVer图像分割交流群

扫码添加CVer助手,可申请加入**CVer-图像分割交流群。一定要备注:图像分割+地点+学校/公司+ 昵称**(如图像分割+上海+上交+卡卡)

第7页 共8页 2019/4/16 10:23

▲长按加群

这么硬的论文速递,麻烦给我一个在看

▲长按关注我们

麻烦给我一个在看!

阅读原文

第8页 共8页 2019/4/16 10:23