week 6 day 2

"Exact testing for model/data fit for log-linear models"
"Algebraic & Geometric Methods in Statistics"

Sonja Petrović Created for Math/Stat 561

Feb 15, 2023.

Agenda

- Chapter 9 from our textbook: Fisher's exact test
- Part of chapter 8, as we may need the cone of sufficient statistics.

Goals

- Understand hypotheses testing for model/data fit
- What is a p-value?
- Asymptotic vs. exact tests
- Fisher's test and example
- General goodness of fit test for log-linear models
- Open problems and relation to projects!

At the heart of statistical reasoning

 Given: data, find out if it is usual/expected? surprising/outlier? quantify??

At the heart of statistical reasoning

- Given: data, find out if it is usual/expected? surprising/outlier? quantify??
- Do all genders get fair salary in Chicago for data science jobs?

At the heart of statistical reasoning

- Given: data, find out if it is usual/expected? surprising/outlier? quantify??
- Do all genders get fair salary in Chicago for data science jobs?

• We expect a certain 'shape' of the data. A certain... distribution!

YOUR everyday intuition \mapsto formal framework.

	М	F	T/Nb	totals
≤ 135K	?	?	?	13
> 135K	?	?	?	13
totals	10	10	6	26

A simple search: Chicago data science salary data

Formal reasoning with data: independence example

- Modeling: Construct a statistical model for independence.
- **Question**: Does the model fit the observed set of gender vs. salary ranges?

(Can it adequately explain how the salary data was generated?)

Process:

Models with a design matrix

- X_1, \ldots, X_k discrete random variables, $X_i \in \{1, \ldots, d_i\}$
- $u=\mathsf{a}$ k-way contingency table $u\in\mathbb{Z}_{>0}^{d_1 imes\cdots imes d_k}$ [Draw a table!] Flatten u to vector.

Log-linear model

Sufficient statistics = marginals of
$$u$$
: $P_{\theta}(U = u) = \exp{\langle Au, \theta \rangle - \psi(\theta)}$.

Example $X_1 \perp \!\!\! \perp X_2$

$$\begin{bmatrix} u_{11} \\ \vdots \\ u_{d_1d_n} \end{bmatrix} = \begin{bmatrix} u_{1+} & \dots & u_{+d_2} \end{bmatrix}.$$

$$\int_{(d_1+d_2)\times d_1d}$$

License

This document is created for Math/Stat 561, Spring 2023.

All materials posted on this page are licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License.