relacional Tema 2

Diseño lógico

Modelo relacional

Entidad y generalización

Relación binaria

diseño lógico

Transformación EER a relacional

- COLEGIOS (num. totalvotantes) C.P.: num
- MESAS(letra, cole, blanM, blanA, nulM. nulA) C.P.: (letra, cole) C.Aiena: cole → COLEGIO
- · VOTANTES (dnj. nombre, fechanac, direccion, letra, colegio) C.P.: dnj

C.Ajena: (letra colegio) → MESAS V.N.N.; letra, colegio

- · PARTIDOS (siglas, nombre, líder) C.P.: siglas
- · APODERADOS (dnj, nombre, partido) C.P.: dnj C.Aiena: partido → PARTIDOS
- NACIONALES (dni) C.P.: dnj C. Ajena: dnj → VOTANTES
- EXTRANJEROS (dnj. porpartido, orden)

C. Ajena: dnj → VOTANTES C. Ajena: porpartido → PARTIDOS

Si tiene valor la columna porpartido debe tener valor la columna orden

No tiene sentido que tenga valor la columna orden y no lo tenga porpartido

- . DE_MESAS (dnititular, dnisuplente) C.P.: dnititular
 - C.Alternativa : doisuplente

 - C. Ajena: dnititular → NACIONALES C. Ajena: dnisuplente → NACIONALES

Se debe controlar que no aparezca el mismo dnj en las dos columnas.

- POLÍTICOS (dnj. porpartido, orden) C.P.: dnj
 - C. Ajena: dnj → NACIONALES C.Aiena: por partido →PARTIDOS

V.N.N.: por partido V.N.N.:erden

- AUTONOMICAS(partido, mesa, colegio,
 - C.P.: (partido, mesa, colegio)
 - C. Ajena: partido → PARTIDOS
 - C. Ajena: (mesa, colegio) → MESAS
- · MUNICIPALES(partido, mesa, colegio, votos)
 - C.P.: (partido, mesa, colegio)
 - C. Ajena: partido → PARTIDOS
 - C. Ajena: (mesa, colegio) → MESAS
- VOCALES (dni, número) C.P.: dnj C. Ajena: dnj → DE_MESAS
- PRESIDENTES (dni)
 - C.P.: dnj
 - c. Ajena: dnj → DE_MESAS
- No se refleja que las generalizaciones sean totales ni tampoco que sean disjuntas.

modelo relacional

- Clave candidata
 - Clave primaria (CP)
 - Clave alternativa (cAlt)

No duplicados

No nulos

SÓLO PUEDE EXISTIR UNA CP PERO VARIAS CAIT

Clave ajena

Valor no nulo

una entidad

A

<u>a0</u>

a1

a2 1..1

a3

A(a0, a1, a2, a3)

C.P.: a0

V.N.N.: a2

una entidad

clave primaria compuesta

Α

<u>a0</u>

<u>a1</u>

a2 1..1

а3

A(a0, a1, a2, a3)

C.P.: (a0,a1)

V.N.N.: a2

una entidad

con atributos multivalor

A a0 a1 a2 1..1 A3 0.. N A(a0, a1, a2)

C.P.: a0

V.N.N.: a2

M(a0,a3)

C.P.:(a0, a3)

C.aj.: a0→A

generalización

A(a0, a1)

C.P.: a0

No se puede captar que es TOTAL

B(rA, b1, b2)

C.P.: rA

C. Ajena: rA → A

C(rA)

C.P.: rA

C. Ajena: rA→ A

D(rA, d1)

C.P.: rA

C. Ajena: rA→ A

en las tablas sólo se representan bien las generalizaciones P,S

A(a0, a1, rB)
C.P.: a0
C.aj.: rB → B

B(b0, b1) C.P.: b0

con una restricción de existencia

A(a0, a1, rB)

C.P.: a0

C.aj.: rB → B

V.N.N.: rB

B(b0, b1)

C.P.: b0

con una restricción de existencia

A(a0, a1, rB)

C.P.: a0

C.aj.: rB → B

B(b0, b1)

C.P.: b0

se pierde la R.E. de B hacia R

con una restricción de identificador

A(a0, a1, rB)

C.P.: (a0, rB)
C.aj.: rB → B

B(b0, b1)

C.P.: b0

cuando hay clave primaria compuesta

A(a0, a1, rB0, rB1)

C.P.: a0

C.aj.: (rB0,rB1) → B

B(b0, b1,b2)

C.P.: (b0,b1)

con atributo

- A(a0, a1, rB, r1*)
 - C.P.: a0
 - C.aj.: rB \rightarrow B
- B(b0, b1)
 - C.P.: b0

C.P.: a0 C.P.: rA

■B(b0, b1) C.aj.: rA \rightarrow A

C.P.: b0 C.aj.: $rB \rightarrow B$

V.N.N.:rB

^{*} Existirán valores de r1 cuando dispongamos de valores para rB

A(a0, a1) C.P.: a0 B(b0,b1) C.P.: b0 R(rA, rB, r1)

C.P.: (rA, rB)

C. Ajena: rA→ A

C. Ajena: rB → B

con atributo multivalor

C.P.: a0

B(b0, b1)

C.P.: b0

A(a0, a1) | R(rA, rB, r1)

C.P.: (rA, rB)

C. Ajena: rA→ A

C. Ajena: rB → B

R2(rA, rB, r2)

C.P.: (rA, rB, r2)

C. Ajena: (rA, rB)→ R

A(a0, a1)

C.P.: a0

B(b0, b1)

C.P.: b0

R(rA, rB)

C.P.: rA

C. Alt: rB

C. Ajena: rA→ A

C. Ajena: rB → B

con una restricción de existencia

A(a0, a1) C.P.: a0

B(b0, b1, rA)

C.P.: b0

C. Alt: rA

C. Ajena: rA→ A

con dos restricción de existencia

R(a0, a1, b0, b1)

C.P.: a0

C.Alt: b0

Reflexiva M:M

A(a0, a1) C.P.: a0

R(rA1, rA2)

C.P.: (rA1, rA2)

C. Ajena: rA1→ A

C. Ajena: rA2→ A

Reflexiva 1:M

A(a0, a1, rA)

C.P.: a0

C. Ajena: rA1→ A

Reflexiva 1:1

A(a0, a1)

C.P.: a0

R(rA1, rA2)

C.P.: rA1

C.Alternativa: rA2

C. Ajena: rA1 → A

C. Ajena: rA2→ A

Ternaria 1:1:1

A(a0, a1) C.P.: a0

B(b0,b1) C.P.: b0

C(c0,c1)

C.P.: c0

R(rA, rB, rC)

C.P.: (rA, rB)

C.Altern.: (rA, rC)

C.Altern.: (rB, rC)

C. Ajena: rA→ A

C. Ajena: rB → B

C. Ajena: $rC \rightarrow C$

Ternaria 1:1:M

A(a0, a1) C.P.: a0

B(b0,b1) C.P.: b0

C(c0,c1)

C.P.: c0

R(rA, rB, rC)

C.P.: (rA, rB)

C.Altern.: (rA, rC)

C. Ajena: rA→ A

C. Ajena: rB → B

C. Ajena: $rC \rightarrow C$

Ternaria 1:M:M

A(a0, a1) C.P.: a0

B(b0,b1) C.P.: b0

C(c0,c1)

C.P.: c0

R(rA, rB, rC)

C.P.: (rA, rB)

C. Ajena: rA→ A

C. Ajena: rB → B

C. Ajena: $rC \rightarrow C$

V.N.N.:rC

Ternaria 1:M:M

A(a0, a1) C.P.: a0

B(b0,b1) C.P.: b0

C(c0,c1)

C.P.: c0

R(rA, rB, rC)

C.P.: (rA, rB)

C. Ajena: rA→ A

C. Ajena: rB → B

C. Ajena: $rC \rightarrow C$

V.N.N.: rC

Se pierde restricción de existencia de B hacia R

Ternaria M:M:M

A(a0, a1) C.P.: a0

B(b0,b1) C.P.: b0

C(c0,c1)

C.P.: c0

R(rA, rB, rC)

C.P.: (rA, rB, rC)

C. Ajena: rA→ A

C. Ajena: rB → B

C. Ajena: $rC \rightarrow C$

