

Outline

Outline

- O Background and motivation
- O New optical method
- O Numerical simulations
- O Experimentation
- O Results
- O Conclusion

Background and Motivation

Liquid Properties

O Surface tension

© The National Wildlife Federation

O Viscosity

© Anton Paar Wiki

Project Goal

- Non-intrusive method for measurement of surface tension and viscosity
- O Why?
 - Understanding interface behavior
 - Modeling and simulation for industrial applications
- O Existing method/solutions
- O Personal goals
 - Cheap, simple and mobile setup

Capillary Waves

- O Interfacial tension is dominant force
- O Characterized by tiny amplitude and high frequency
- O Linear wave theory (dispersion eq.)

$$\omega^2 = k \left(g + \frac{k^2 \sigma}{\rho} \right)$$

New Optical Method

Numerical Validation

- O Using refraction as magnifier
- Ray-tracing simulator
 - MATLAB
 - Constrained and unconstrained numerical optimization
- O Geometric optics
 - Forward ray-tracing problem
 - Inverse ray-tracing problem

Mukim et al., AIP Advances, 2022

Numerical Validation

O Good accuracy for low and high curvature values

Numerical Simulations

Numerical Setup

- Objectives
 - Verify linear wave theory
 - Help in design of experiment
- O Planar symmetric setup
- O Numerical experiments
 - Frequency
 - Interfacial tension mN/m
- O Amplitude
- O Graded mesh and dynamic mesh motion

VoF Results

Volume fraction

O Interface

Experimentation

Proof of Concept

Setup

- O Laser sheet
- O Mechanical excitor for wave generation
- O Signal generator to drive the mechanical excitor at given frequency and amplitude
- O High speed camera for image capturing
 - Smart phone camera can be used
- O Tweaks in code for experimentation
 - Point laser source instead of line source
 - Glass Petry dish

Post-processing

O Mean Curve Calculation

Results

Image Processing

Inverse Ray-Tracing

Surface Normal

Cross-Section Reconstruction

Conclusion

Conclusion

- O Possible to measure tiny wave amplitude with simple setup
- O Experimentation with crude setup is challenging, time consuming but exciting
- O Need to perform quantification of sensitivity since initial study suggests high sensitivity to the input parameters
- O Inverse algorithm works well but needs few minutes to run per frame
- Need to make it faster before starting the temporal decay study for viscosity

