முழுப் பதிப்புரிமை உடையது / All Rights Reserved

MORA E-TAMILS 202 Tamil Students, Faculty of Engineering, University of Moratuwa மாறட்டுவைப் பல்கலைக்கும் கொழியில் இரு பாற்கியில் கால் கால் மாறும்பு மானவர்கள் கொழியில் இரு மானவர்கள் கால் மாறும்பு மானவர்கள் கால் மாற்கு மாற்கியில் மானவர்கள் கால் மாற்கு மாற்கியில் மானவர்கள் கால் மாற்கு மாற்கியில் மானவர்கள் கால் மானவர்கள் கால் மாற்கியில் மானவர்கள் கால் மானவர்கள் கால் மானவர்கள் கால் மாற்கியில் மானவர்கள் கால் மானவர்கள் மாற்கியில் மானவர்கள் மாற்கியில் மானவர்கள் மாற்கியில் மானவர்கள் மாற்கியில் மானவர்கள் மாற்கியில் மானவர்கள் மானவர்கள் மாற்கியில் மானவர்கள் மாற்கியில் மானவர்கள் மானவர்கள் மாற்கியில் மானவர்கள் மாற்கியில் மானவர்கள் மானவர்கள் மாற்கியில் மானவர்கள் மனவர்கள் மானவர்கள் மானவர்கள் மானவர்கள் மானவர்கள் மானவர்கள் மானவர்கள் மானவர்கள் மானவர்கள் மனவர்கள் மானவர்கள் மானவர்கள் மானவர்கள் மானவர்கள் மானவர்கள் மானவர்கள் மானவர்கள் மனவர்கள் மனவர்கள் மனவர்கள் மனவர்கள்

கல்விப் பொதுத் தராதரப் பத்திர(உயர் தர) முன்னோடிப் பரீட்சை - 2021 General Certificate of Education (Adv.Level) Pilot Examination - 2021

இணைந்த கணிதம் I Combined Mathematics I

10	TI
----	----

மூன்று மணித்தியாலம் Three hours

சுட்டெண்:	
-----------	--

அறிவுறுத்தல்கள்:

- \divideontimes இவ்வினாத்தாள் **பகுதி A** (வினாக்கள் $1{-}10$) **பகுதி B** (வினாக்கள் $11{-}17$) என்னும் இரு பகுதிகளைக் கொண்டது.
- **∗ பகுதி A:**

எல்லா வினாக்களுக்கும் விடை எழுதுக. ஒவ்வொரு வினாவுக்கும் உமது விடைகளைத் தரப்பட்டுள்ள இடத்தில் எழுதுக. மேலதிக இடம் தேவைப்படுமாயின், நீர் மேலதிக தாள்களைப் பயன்படுத்தலாம்.

₩ பகுதி B:

ஐந்து வினாக்களுக்கு மாத்திரம் விடை எழுதுக.

- * ஒதுக்கப்பட்டுள்ள நேரம் முடிவடைந்ததும் **பகுதி A** யின் விடைத்தாள் ஆனது **பகுதி B** யின் விடைத்தாளுக்கு மேலே இருக்கத்தக்கதாக இரு பகுதிகளையும் இணைத்துப் பரீட்சை மண்டப மேற்பார்வையாளரிடம் கையளிக்க.
- lpha வினாத்தாளின் **பகுதி B** ஐ மாத்திரம் பரீட்சை மண்டபத்திலிருந்து வெளியே எடுத்துச் செல்வதற்கு அனுமதிக்கப்படும்.

(10) &	இணைந்த கல	னிதம் I
பகுதி	ഖിത്ന எண்	புள்ளிகள்
	1	
	2	
	3	
	4	
A	5	
A	6	
	7	
	8	
	9	
	10	
	11	
	12	
	13	
В	14	
	15	
	16	
	17	
	மொத்தம்	
	ச தவீ தம்	

வினாத்தாள் I	
வினாத்தாள் II	
மொத்தம்	
இறுதிப்புள்ளி	

இறுதிப் புள்ளிகள்

இலக்கத்தில்	
எழுத்தில்	

குறியீட்டெண்கள்

விடைத்தாள் பரீட்சகர் 1	
விடைத்தாள் பரீட்சகர் 2	
புள்ளிகளை பரீட்சித்தவர்	
மேற்பார்வை செய்தவர்	

பகுதி А

1.	கணிதத்தொகுத்தறிவுக்கோட்பாட்டைப்	பயன்படுத்தி	எல்லா	$n \in \mathbb{Z}^+$	இ ற்கும்	$\sum_{r=1}^{n} \frac{r}{2^r} =$	= 2 -	$\frac{n+2}{2^n}$	สส	நிறுவுக.
							• • • • • •		•••••	
							•••••			
		•••••								
2.	ஒரே வரிப்படத்தில் $y=\left x-3\right ,\;y=\left y-3\right $	2x-3 get	பெவற்றி	ன் வரை	புகளை ப	பரும்படி	யாக	ഖത്യെ	ь. இ	திலிருந்து
2.	ஒரே வரிப்படத்தில் $y=\left x-3\right ,\;y=\left $ சமனிலி $\left x\right >\left 2x+3\right $ ஐத் திருப்திய									திலிருந்து
2.										திலிருந்து
2.										திலிருந்து
2.										திலிருந்து
2.										திலிருந்து
2.										திலிருந்து
2.										திலிருந்து
2.										திலிருந்து
2.										திலிருந்து
2.										திலிருந்து
2.										திலிருந்து
2.										திலிருந்து
2.										திலிருந்து
2.										திலிருந்து
2.										திலிருந்து
2.										திலிருந்து
2.										திலிருந்து

3.	யாதாயினும் ஒரு சிக்கலெண் z இற்கு $\left i\overline{z}-1-i\right =\left z-1-i\right $ எனக் காட்டுக. $Arg\left(z-1+i\right)=\frac{\pi}{6}$ ஐத்
	திருப்தியாக்கும் சிக்கலெண்கள் z ஐ வகைகுறிக்கும் புள்ளிகளின் ஒழுக்கை பரும்படியாக ஆகண்
	வரிப்படத்தில் வரைக. இதிலிருந்து $Arg\left(z-1+i\right)=rac{\pi}{6}$ ஆக இருக்குமாறு $\left i\overline{z}-1-i\right $ இன்
	ு இழிவுப்பெறுமானத்தைக் காண்க.
4.	$\left(\sqrt[3]{2}+rac{1}{\sqrt[3]{3}} ight)^n$ இன் ஈருறுப்பு விரிவில் 7 $^{ ext{ab}}$ உறுப்புக்கும் $(n-5)$ $^{ ext{ab}}$ உறுப்புக்கும் இடையிலான விகிதம்
4.	$\left(\sqrt[3]{2}+rac{1}{\sqrt[3]{3}} ight)^n$ இன் ஈருறுப்பு விரிவில் 7 வது உறுப்புக்கும் $(n-5)$ வது உறுப்புக்கும் இடையிலான விகிதம் $1:6$ எனின் n இனைக் காண்க; இங்கு $n\in\mathbb{Z}^+$ ஆகும்.
4.	
4.	
4.	
4.	
4.	
4.	
4.	
4.	
4.	
4.	
4.	
4.	
4.	
4.	
4.	

5.	$\lim_{x \to \frac{\pi}{4}} \frac{256x^4 - \pi^4}{\tan x - 1} = 8\pi^3$ எனக் காட்டுக.
	$x \rightarrow \frac{y}{4}$ $tan x - 1$
6.	$x^2+y^2=r^2$ எனும் வட்டத்தின் பகுதி பரும்படியாக காட்டப்பட்டுள்ளது. $y_{igwedge}$ _
	$\hat{OPA} = heta igg(0 < heta < rac{\pi}{2} igg)$ ஆகும். நிழந்நப்பட்ட பகுதி PAB இனை
	$r\theta$
	x – அச்சுப்பற்றி 2π கோணத்தினூடாக சுழற்றப்படும் போது பெறப்படும் ${O}$ ${A}$ ${B}$ \xrightarrow{x}
	திண்மத்தின் கனவளவு $\frac{\pi r^3}{3} \left(2 - 3\sin\theta + \sin^3\theta\right)$ எனக் காட்டுக.
	3 \
	'

7.	$x^2=4y$ எனும் வளையிக்கு $P(2t,t^2),Q(4t,4t^2)$ ஆகிய புள்ளிகளில் வரையப்படும் தொடலிகள் R இல்
	சந்திக்கின்றன எனின் R இன் ஒழுக்கின் சமன்பாடு $2x^2=9y$ இனால் தரப்படுகின்றது எனக் காட்டுக. இங்கு
	tig(eq 0ig) பரமானம் ஆகும்.
8.	a,b என்பன $\dfrac{1}{a^2}+\dfrac{1}{b^2}=\dfrac{1}{c^2}$ ஆகுமாறு உள்ள நேர் பரமானங்கள் ஆகும்; இங்கு $c\in\mathbb{R}$. $\dfrac{x}{a}+\dfrac{y}{b}=1$ எனும்
	நேர்கோட்டிற்கு உற்பத்தியில் இருந்து வரையப்படும் செங்குத்தின் அடியின் ஒழுக்கு $x^2+y^2=c^2$ எனக்
	காட்டுக.

	$y = x^2$	-0	0.0071	<i>D</i> 0	шоолон	un i	உது	007110	رورسوو	CD	கொண்டதும்	x, y	ക്കാവയാ	رواالعموم	يروو	றவதுமாண	ي الماري
6	பட்டங்	கள்	உள்ள	าฮา	எனக்	காட்ட	9 9	പ്രഖ്ഖഥ	_டங்க6	ரின்	பரப்புகளின்	கூட்டு	த்தொகை	26π	எனக்	காட்டுக.	
		•••••			 θ 1						 (
	$\sec \theta$	+ tan	$\theta = ta$	an	$\frac{\theta}{2} + \frac{1}{4}$				டுக. இ		ிருந்து tan					காண்க.	
	sec θ ·	+ tan	$\theta = ta$	an	$\frac{\theta}{2} + \frac{2}{4}$				டுக. இ 							காண்க.	
	sec θ -	+ tan	$\theta = ta$	an($\frac{\theta}{2} + \frac{2}{2}$				டுக. இ							காண்க.	
	sec θ ·	+ tan	$\theta = ta$	an($\frac{\theta}{2} + \frac{2}{4}$				டுக. இ							காண்க.	
	sec θ -	+ tan	$\theta = ta$	an	$\frac{\theta}{2} + \frac{2}{4}$				டுக. இ							காண்க.	
	sec θ -	+ tan	$\theta = ta$	an	$\frac{\theta}{2} + \frac{2}{2}$				டுக. இ							காண்க.	
	sec θ	+ tan	$\theta = ta$	an	$\frac{\theta}{2} + \frac{2}{4}$				டுக. இ							காண்க.	
	sec θ	+ tan	$\theta = ta$	an	$\frac{\theta}{2} + \frac{2}{4}$				டுக. இ							காண்க.	
	sec θ -	+ tan	$\theta = ta$	nn	$\frac{\theta}{2} + \frac{\pi}{2}$				டுக. இ							காண்க.	
	sec θ -	+ tan	$\theta = ta$	an	$\frac{\theta}{2} + \frac{\pi}{2}$				டுக. இ							காண்க.	
	sec θ	+ tan	$\theta = ta$		$\frac{\theta}{2} + \frac{2}{2}$				டுக. இ							காண்க.	
	sec θ	+ tan	θ = ta		$\frac{\theta}{2} + \frac{2}{4}$				டுக. இ							காண்க.	
	sec θ	+ tan	$\theta = ta$	an($\frac{\theta}{2} + \frac{2}{4}$				டுக. இ							காண்க.	
	sec θ -	+ tan	$\theta = ta$	an($\frac{\theta}{2} + \frac{\pi}{2}$				டுக. இ							காண்க.	
	sec θ -	+ tan	$\theta = ta$	an($\frac{\theta}{2} + \frac{2}{2}$				டுக. இ							காண்க.	
	sec θ -	+ tan	$\theta = ta$		$\frac{\theta}{2} + \frac{2}{2}$				டுக. இ							காண்க.	
	sec θ -	+ tan	θ = ta	an($\frac{\theta}{2} + \frac{2}{4}$				டுக. இ							காண்க.	
	sec θ -	+ tan	$\theta = ta$	an($\frac{\theta}{2} + \frac{2}{4}$				டுக. இ							காண்க.	

முழுப் பதிப்புரிமை உடையது / All Rights Reserved

MORA E-TAMILS 2021 Tamil Stu introduction. University of Moratuwa MORA TAMILS 2020 Tamil Students, Faculty of Engineering. Iniversity of Moratuwa Indicate a public behavior of Moratuwa Indicate a public behavior

கல்விப் பொதுத் தராதரப் பத்திர(உயர் தர) முன்னோடிப் பரீட்சை - 2021 General Certificate of Education (Adv.Level) Pilot Examination - 2021

இணைந்த கணிதம் I Combined Mathematics I 10 T I

பகுதிB

- ☀ ஐந்து வினாக்களுக்கு மாத்திரம் விடை எழுதுக.
- 11. (a) $f(x) = x^2 + kx + \lambda^2 \lambda \mu$, $g(x) = 2x^2 + kx \mu^2 + \lambda \mu$ எனக்கொள்வோம்; இங்கு $\lambda > \mu > 0$ ஆகும். f(x) = 0, g(x) = 0 ஆகியன ஒரு பொதுமூலம் α ஐ கொண்டுள்ளன எனத் தரப்பட்டுள்ளது; இங்கு $\alpha > 0$ ஆகும். $\alpha = \lambda \mu$ எனக் காட்டுக. மேலும் $k = \mu 2\lambda$ எனக் காட்டி இதிலிருந்து
 - (i) k < 0 எனவும்
 - (ii) f(x) = 0 இன் பிரித்துக்காட்டி μ^2 எனவும்
 - (iii) g(x) = 0 இன் பிரித்துக்காட்டி $\left(3\mu 2\lambda\right)^2$ எனவும் காட்டுக.
 - $f(x)=0,\ g(x)=0$ ஆகியவற்றின் மற்றைய மூலங்கள் முறையே eta,γ எனக்கொள்வோம். $eta-\gamma=\lambda-rac{\mu}{2}$ எனக் காட்டி eta,γ ஆகியவற்றை $\lambda,\,\mu$ ஆகியவற்றில் காண்க. இதிலிருந்து $eta,\,\gamma$

ஆகியவற்றை மூலங்களாகக் கொண்ட இருபடிச் சமன்பாடு $2x^2-(2\lambda+\mu)x+\lambda\mu=0$ எனக் காட்டுக.

- $(b)\ h(x)=2x^3+ax^2+bx+c$ எனக் கொள்வோம்; இங்கு $a,b,c\in\mathbb{R}$ ஆகும். h(x) இனை x^2-1 இனால் வகுக்க வரும் மீதி 6x-3 எனத் தரப்பட்டுள்ளது. b=4 எனக் காட்டுக.
 - h(x) இனை x^2-3x இனால் வகுக்க வரும் மீதி kx+4 எனின் k,a,c ஆகியவற்றைக் காண்க.
 - (x-2) ஆனது h(x) இன் ஒரு காரணி எனக்காட்டி h(x) ஐ வடிவம் $(x-p)^2\,(2x-q)$ இல் எழுதலாம் எனக் காட்டுக; இங்கு $p,q\in\mathbb{R}.$
- 12. (a) பொறியியல் பீடமொன்றில் இருந்து சர்வதேச மாநாடு ஒன்றில் பங்குகொள்வதற்காக மின், கணினி, கட்டிட பொறியியல் பிரிவுகளில் இருந்து பரிந்துரைக்கப்பட்ட 20 நபர்கள் தொடர்பான விபரங்கள் அட்டவணையில் காட்டப்பட்டுள்ளது. மாநாட்டில் பங்குபற்றுவதற்காக இவர்களில் இருந்து 10 பேர் கொண்ட குழு ஒன்றைத் தெரிவுசெய்ய வேண்டியுள்ளது.

	ஆண்	பெண்
மின் பொறியியல்	4	2
கணினி பொறியியல்	4	4
கட்டிட பொறியியல்	4	2

- (i) குழுவில் செப்பமாக ஐந்து ஆண்களும் ஐந்து பெண்களும் இருக்குமாறு எத்தனை குழுக்களைத் தெரிவுசெய்ய முடியுமெனக் காண்க.
- (ii) குழுவில் ஆகக்குறைந்தது 5 ஆண்களும் 3 பெண்களும் இருக்குமாறு எத்தனை குழுக்களைத் தெரிவுசெய்ய முடியுமெனக் காண்க.
- (iii) ஒவ்வொரு பொறியியல் பிரிவில் இருந்தும் குறைந்தபட்சம் 2 ஆணும் ஒரு பெண்ணுமாக 6 ஆண்களும் 4 பெண்களும் கொண்ட எத்தனை குழுக்களைத் தெரிவுசெய்ய முடியுமெனக் காண்க.

$$(b\)\ r\in \mathbb{Z}^+$$
 இற்கு $U_r=rac{2(2r+7)}{(2r-1)\ (2r+1)\ (2r+3)}, V_r=rac{A}{2r+1}-rac{B}{2r-1}$ எனக் கொளவோம்; இங்கு $A,B\in \mathbb{R}.\ r\in \mathbb{Z}^+$ இற்கு $U_r=V_{r+1}-V_r$ ஆகுமாறு A,B ஆகியவற்றின் பெறுமானங்களைக் காண்க. இதிலிருந்து $n\in \mathbb{Z}^+$ இற்கு $\sum_{r=1}^n U_r=rac{2n(10n+17)}{3(2n+1)(2n+3)}$ எனக் காட்டுக.

முடிவில் தொடர் $\sum_{r=1}^{\infty}U_{r}$ ஒருங்குகின்றது எனக் காட்டி அதன் கூட்டுத்தொகையைக் காண்க.

$$r\in\mathbb{Z}^+$$
 இந்கு $W_r=U_r-U_{r+1}+U_{r+2}$ எனக் கொள்வோம். $\sum_{r=1}^nW_r=\sum_{r=1}^nU_r+U_{n+2}-U_2$ எனக் காட்டி முடிவில் தொடர் $\sum_{r=1}^\infty W_r$ ஒருங்கின்றதென உய்த்தறிந்து, அதன் கூட்டுத்தொகையைக் காண்க.

$$egin{aligned} egin{aligned} egin{aligned\\ egin{aligned} egin{aligned} egin{aligned} egin{aligned} eg$$

தாயங்கள் எனக் கொள்வோம். இங்கு $a,b\in\mathbb{R}$ ஆகும். $a=3,\,b=5$ எனக் காட்டுக.

 $m{C}^{-1}$ இனை எழுதி $m{C} + m{C}^{-1} = 7m{I}$ எனக் காட்டுக. இங்கு $m{I}$ ஆனது வரிசை 2 ஆகவுள்ள சர்வ சமன்பாட்டு தாயம் ஆகும்.

$$m{P} = \frac{1}{3} m{(C-2I)}$$
 எனக் கொள்க. $m{C}(m{Q} + m{P}) + m{A} m{A}^T = m{C} + m{C}^{-1}$ ஆகுமாறு தாயம் $m{Q}$ இனைக் காண்க.

$$(b)$$
 $z=\cos heta+i\sin heta$ எனக் கொள்க; இங்கு $0< heta<rac{\pi}{2}$ ஆகும்.

$$z+z^2=2\cos\left(rac{ heta}{2}
ight)\!\!\left(\cos\!\left(rac{3 heta}{2}
ight)\!\!+i\sin\!\left(rac{3 heta}{2}
ight)\!
ight)$$
 எனக் காட்டுக. இதிலிருந்து

- (i) $Arg(z+z^2)$
- (ii) $|z+z^2|$ ஆகியவற்றை எழுதுக.

ஆகண் வரிப்படத்தில் புள்ளிகள் A,B,C என்பன முறையே சிக்கலெண்கள் $z,z^2,z+z^2$ ஆகியவற்றை வகைக்குறிக்கின்றன. ஆகண் வரிப்படமொன்றில் A,B,C ஆகிய புள்ளிகளைப் பரும்படியாகக் குறித்து OACB ஆனது ஓர் சாய்சதுரம் எனக் காட்டுக.

மேலும்
$$heta=\frac{\pi}{6}$$
 ஆக இருக்கும்போது $z+z^2=\left(\frac{\sqrt{3}+1}{2}\right)(1+i)$ எனக் காட்டுக.

இதிலிருந்து
$$\cos\left(\frac{\pi}{12}\right) = \frac{\sqrt{6} + \sqrt{2}}{4}$$
 என உய்த்தறிக.

$$(c)$$
 $z=r(\cos lpha+i\sin lpha)$ எனக் கொள்வோம்; இங்கு $r\in \mathbb{R}, -rac{\pi}{2} ஆகும். த மோய்வரின் தேற்றத்தைப் பயன்படுத்தி $z^n+\overline{z}^n=2r^n\cos nlpha$ எனக் காட்டுக; இங்கு $n\in \mathbb{Z}^+$ ஆகும்.$

இதிலிருந்து அல்லது வேறுவிதமாக
$$(1+i)^n+(1-i)^n=2\Big(\sqrt{2}\Big)^n\cos\bigg(\frac{n\pi}{4}\bigg)$$
 எனக் காட்டுக.

14. (*a*) $x \neq 2$ இற்கு $f(x) = \frac{(x+1)(2x-1)}{(x-2)^2}$ எனக் கொள்வோம்.

 $x \neq 2$ இந்கு f(x) இன் பெறுதி f'(x) ஆனது $f'(x) = \frac{-9x}{(x-2)^3}$ இனால் தரப்படுகின்றது எனக் காட்டுக.

இதிலிருந்து y=f(x) எனும் வரைபின் திரும்பல் புள்ளியின் ஆள்கூறுகளைக் கண்டு அது உயர்வா இழிவா என வேறுபடுத்துக.

 $x \neq 2$ இந்கு $f''(x) = \frac{18(x+1)}{(x-2)^4}$ எனத் தரப்பட்டுள்ளது. y = f(x) இன் வரைபின் விபத்தி புள்ளியின் ஆள்கூறுகளைக் காண்க.

y=f(x) இன் வரைபை அணுகுகோடுகள், திரும்பற்புள்ளி, விபத்திப்புள்ளி ஆகியவற்றைக்காட்டிப் பரும்படியாக வரைக.

 $(b\)\ O$ இனை மையமாகவும் 2km ஆரையும் உடைய ஏரி ஒன்று படத்தில் காட்டப்பட்டுள்ளது. $3kmh^{-1}$ எனும் சீரான கதியில் நீந்தக்கூடியதும் $4kmh^{-1}$ எனும் சீரான கதியில் ஓடக்கூடியதுமான விலங்கு ஒன்று A யிலிருந்து B யிற்கு செல்வதற்காக A யிலிருந்து P வரை நீந்தி பின்னர் P யிலிருந்து B வரை ஏரியின் கரைவழியே ஓடிச்செல்கின்றது. விலங்கானது A யிலிருந்து B இனை அடைய எடுத்த மொத்தநேரம் T மணித்தியாலங்கள் ஆகும். $\angle PAB = \theta$ ஆரையன் எனக்கொள்க; இங்கு $0 < \theta < \frac{\pi}{2}$ ஆகும்.

(i)
$$T = \frac{1}{3}(4\cos\theta + 3\theta)$$
 எனக் காட்டுக.

(ii)
$$\frac{dT}{d\theta} = \frac{1}{3}(3 - 4\sin\theta)$$
 எனக் காட்டி T உயர்வாகும் θ இன் பெறுமானத்தைக் காண்க.

15.
$$(a)$$
 பொருத்தமான பிரதியீட்டைப் பயன்படுத்தி $I=\int\limits_0^1 \frac{1}{(x^2+1)^2} dx = \frac{\pi}{8} + \frac{1}{4}$ எனக் காட்டுக. $J=\int\limits_0^1 \frac{x^2}{(x^2+1)^2} dx$ எனின் $I+J=\frac{\pi}{4}$ எனக் காட்டி இதிலிருந்து J இனைக் காண்க.

$$(b)\ m\in\mathbb{Z}$$
 இந்கு பகுதிகளாக தொகையிடலைப் பயன்படுத்தி $\int\limits_0^{2\pi}e^x\cos\ mx\ dx=rac{1}{m^2+1}\Big(e^{2\pi}-1\Big)$ எனக் காட்டுக.

இதிலிருந்து
$$\int_{0}^{2\pi} e^{x} \cos x \cos 2x \ dx = \frac{3}{10} (e^{2\pi} - 1)$$
 எனக் காட்டுக.

$$(c)$$
 $\int_{a}^{b} f(x) \ dx = \int_{a}^{b} f(a+b-x) \ dx$ எனக் காட்டுக. இதிலிருந்து $\int_{1}^{3} \frac{\cos^{2}\left(\frac{\pi}{8}x\right)}{x(4-x)} \ dx = \frac{1}{4} \ln 3$ எனக் காட்டுக.

16. y = mx + c எனும் நேர்கோட்டுடன் $\frac{\pi}{4}$ கோணத்தை ஆக்கிச்செல்லும் நேர்கோடுகளின் படித்திறன்கள் $\frac{m-1}{m+1}, \frac{1+m}{1-m}$ எனக் காட்டுக. இங்கு $m \neq \pm 1$ ஆகும்.

 $A\equiv (0,-2)$ எனவும் $B\equiv (6,6)$ எனவும் கொள்வோம். A,B யினூடாகச் செல்லும் நேர்கோட்டின் சமன்பாட்டைக் கண்டு A யினூடாகச் செல்வதும் AB உடன் ஆக்கும் கூர்ங்கோணம் $\frac{\pi}{4}$ ஆகவும் உள்ள நேர்கோடுகள் l_1,l_2 ஆகியவற்றின் சமன்பாடுகளைக் காண்க. இங்கு l_1 ஆனது நேர் x — அச்சுடன் கூர்ங்கோணம் அமைக்கின்றது. AB யின் செங்குத்து இருகூறாக்கி l' இன் சமன்பாடு $l'\equiv 3x+4y-17=0$ எனக் காட்டுக. P ஆனது l' மீதுள்ள ஒரு புள்ளி எனக் கொள்வோம். P யின் ஆள்கூறுகளை (3-4t,2+3t) எனும் வடிவில் எழுதலாம் எனக் காட்டுக.

l' ஆனது l_1, l_2 ஆகியவற்றை இடைவெட்டும் புள்ளிகள் முறையே C, D எனின் C, D ஆகியவற்றின் ஆள்கூறுகளைக் கண்டு ACBD ஓர் சதுரம் எனக் காட்டுக.

சதுரம் ACBD இன் நான்கு பக்கங்களையும் உட்புறமாகத் தொடும் வட்டம் S இன் மையம், ஆரை ஆகியவற்றை கண்டு S இன் சமன்பாடு $S\equiv x^2+y^2-6x-4y+\frac{1}{2}=0$ எனக் காட்டுக.

S ஆனது AC இனை M இலும் CB இனை N இலும் தொடுகின்றது எனில் M,N இன் ஆள்கூறுகளைக் கண்டு M,N இனூடாகச் செல்லும் வட்டங்களின் சமன்பாடு $S+\lambda U=0$ எனக் காட்டுக. இங்கு $U\equiv 8x-6y-37=0$ உம் λ பரமானமும் ஆகும். இதிலிருந்து S இனை நிமிர்கோண முறையாக இடைவெட்டுவதும் M,N இனூடாகச் செல்வதுமான வட்டத்தின் சமன்பாடு S-U=0 எனக் காட்டுக.

- $17. \ (a) \ \frac{\cos \theta}{a} + \frac{\sin \theta}{b} = \frac{1}{c}$ எனக் கொள்வோம்; இங்கு $0 < \theta < \frac{\pi}{2}$ உம் $a,b,c \in \mathbb{R}$ ஆகும். $t = \tan \left(\frac{\theta}{2} \right)$ எனம் பிரதியிடுவதன் மூலம் $(ab+bc)t^2 2act + (ab-bc) = 0$ எனக் காட்டுக. $t \$ இற்கான தீர்வுகள் $\tan \left(\frac{\alpha}{2} \right), \ \tan \left(\frac{\beta}{2} \right)$ எனின் $\tan \left(\frac{\alpha+\beta}{2} \right) = \frac{a}{b}$ எனக் காட்டுக.
 - (b) (i) $0 < \theta < 180^{\circ}$ இற்கு $\sin 60^{\circ} \sin \theta = \sqrt{3} \sin 75^{\circ} \sin (45^{\circ} \theta)$ எனின் $\theta = 30^{\circ}$ எனக் காட்டுக.

 $c\sin\theta = \sqrt{3}a\,\sin(45^\circ - \theta)$ எனக் காட்டுக. சைன் விதியையும் மேலே $(b)\,(i)$ இலுள்ள முடிவையும் பயன்படுத்தி θ இனைக் காண்க.

(c) $\left(\sin^{-1}x\right)^3 + \left(\cos^{-1}x\right)^3 = \pi^3 a$ எனக் கொள்வோம்; இங்கு $-1 \le x \le 1$ ஆகும். $\sin^{-1}x + \cos^{-1}x = \frac{\pi}{2}$ எனும் முடிவைப்பயன்படுத்தி $\left(\sin^{-1}x - \frac{\pi}{4}\right)^2 = \frac{\pi^2}{48} (32a - 1)$ எனக் காட்டுக. இதிலிருந்து $a \ge \frac{1}{32}$ என உய்த்தறிக.

முழுப் பதிப்புரிமை உடையது / All Rights Reserved

MORA E-TAMILS 2021 Tamil Students, Faculty of Engineering, University of Moratuwa மாற்ட்டுள்ள பல்க்கைக்குக பெறியிற்ற பட்டத்திற்ற மான்றுக்கி மாற்ட்டுள்ள மால் சில் மான்றுக்கியில் மான்றில்

கல்விப் பொதுத் தராதரப் பத்திர(உயர் தர) முன்னோடிப் பரீட்சை - 2021 General Certificate of Education (Adv.Level) Pilot Examination - 2021

இணைந்த கணிதம் II Combined Mathematics II

10	$\lceil \mathbf{T} \rceil$	TT

மூன்று மணித்தியாலம் Three hours

அறிவுறுத்தல்கள்:

- \divideontimes இவ்வினாத்தாள் **பகுதி A** (வினாக்கள் 1-10) **பகுதி B** (வினாக்கள் 11-17) என்னும் இரு பகுதிகளைக் கொண்டது.
- **∗ பகுதி A:**

எல்லா வினாக்களுக்கும் விடை எழுதுக. ஒவ்வொரு வினாவுக்கும் உமது விடைகளைத் தரப்பட்டுள்ள இடத்தில் எழுதுக. மேலதிக இடம் தேவைப்படுமாயின், நீர் மேலதிக தாள்களைப் பயன்படுத்தலாம்.

் கூறி B வகு இ

ஐந்து வினாக்களுக்கு மாத்திரம் விடை எழுதுக.

- lpha ஒதுக்கப்பட்டுள்ள நேரம் முடிவடைந்ததும் **பகுதி A** யின் விடைத்தாள் ஆனது **பகுதி B** யின் விடைத்தாளுக்கு மேலே இருக்கத்தக்கதாக இரு பகுதிகளையும் இணைத்துப் பரீட்சை மண்டப மேற்பார்வையாளரிடம் கையளிக்க.
- st வினாத்தாளின் **பகுதி B** ஐ மாத்திரம் பரீட்சை மண்டபத்திலிருந்து வெளியே எடுத்துச் செல்வதற்கு அனுமதிக்கப்படும்.

山街 山街 1 2 3 4 5 6 7 8 9 10 11 12 13 B 14 15 16	(10)	இணைந்த கல	னிதம் II
A 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16	பகுதி	ഖിனா எண்	புள்ளிகள்
A 3 4 5 6 7 8 9 10 11 12 13 14 15 16		1	
A		2	
A 5 6 7 8 9 10 11 12 13 14 15 16		3	
A 6 7 8 9 10 11 12 13 14 15 16		4	
6 7 8 9 10 11 12 13 14 15 16		5	
8 9 10 11 12 13 14 15 16	A	6	
9 10 11 12 13 14 15 16		7	
10 11 12 13 14 15 16		8	
B 11 12 13 14 15 16		9	
B 12 13 14 15 16		10	
B 13 14 15 16		11	
B 14 15 16		12	
15 16		13	
16	В	14	
		15	
17		16	
		17	
மொத்தம்		மொத்தம்	
சதவீதம்		ச தவீ தம்	

வினாத்தாள் I	
வினாத்தாள் II	
மொத்தம்	
இறுதிப்புள்ளி	

இறுதிப் புள்ளிகள்

ĺ	இலக்கத்தில்	
I	எழுத்தில்	

குறியீட்டெண்கள்

விடைத்தாள் பரீட்சகர் 1	
விடைத்தாள் பரீட்சகர் 2	
புள்ளிகளை பரீட்சித்தவர்	
மேற்பார்வை செய்தவர்	

பகுதி А

1.	ஓப்பமான கிடை நிலத்தில் $2m,m$ திணிவுள்ள முறையே A,B என்ன வைக்கப்பட்டுள்ளன. B ஒய்வில் இருக்க A ஆனது B ஐ நோக்கி u கதிய உடன் நேரடியாக மோதுகின்றது. A,B இற்கிடையில் உள்ள மீளமைவுக் குணகம்	புடன் எறியப்	துணிக்கைகள் பட அது <i>B</i> மோதுகைக்கு
	சந்நு பின் A,B இன் வேகங்களைக் காண்க. அத்துடன் மோதுகைக்கு சந்றுபின் A,B இன் இயக்க சக்திகளின் விகிதம் $1\!:\!2$ எனக்காட்டுக.	u A (2)	
		A(2m)	B(m)
		• • • • • • • • • • • • • • • • • • • •	
2.	கிடை நிலத்தில் உள்ள புள்ளி O விலிருந்து கிடையுடன் கோணம் $ heta$		Р
	$(0< heta<90)$ இல் $u=\sqrt{ag}$ வேகத்துடன் துணிக்கை ஒன்று புவியீர்ப்பின் கீழ்		
	எறியப்படுகிறது. அது தன் பாதையில் கிடைத்தூரம் $\frac{a}{2}$ இல் இருக்கும் உயரம்	$u = \sqrt{ag}$	λa
	λa ஜக் கொண்ட புள்ளியினூடு செல்லின் $ an^2 heta - 4 an heta + (8 \lambda + 1) = 0$	β	<u> </u>
	எனக்காட்டுக. $\lambda \leq \frac{3}{8}$ என உய்த்தறிக.	$\frac{a}{2}$	

3.	ஓப்பமான கிடை மேசையில் வைக்கப்பட்டுள்ள m திணிவுடைய துணிக்கை P இந்கு இலேசான நீட்ட முடியாத இழையொன்றின் ஒரு முனை இணைக்கப்பட்டுள்ளது. இழையானது மேசையின் விளிம்பில் நிலைப்படுத்தப்பட்ட ஒப்பமான கப்பியிற்கு மேலாகச் சென்று m திணிவுடைய இயங்கும் ஒப்பமான கப்பி Q இன் கீழாகச்
	சென்று மறுமுனை நிலையான புள்ளி O இற்கு இணைக்கப்பட்டுள்ளது. கப்பியுடன் தொடுகையுறாத இழையின் பகுதிகள் கிடையாக or நிலைக்குத்தாக உள்ளதோடு மேசையின் விளிம்பிற்கு செங்குத்தாகவும்
	உள்ளன. ஆரம்பக்கில் இமை இறுக்குமாகவும் ${ m P}$ ஆனது மேசையின் விளிம்பில் இருந்து a துராக்கிலும்
	இருக்க ஓய்வில் இருந்து விடுவிக்கப்படுகிறது. P இன் ஆர்முடுகல் $\frac{2g}{5}$ எனக் காட்டுக. மேலும் P ஆனது
	மேசையின் விளிம்பை அடையும் போது Q இன் வேகத்தைக் காண்க.
	O 21441
	a
	P(m)
	P(m)
	Q(m)
4.	a,b என்பன மாறிலிகளாக இருக்க $1000 { m kg}$ திணிவுடைய கார் பருமன் $(a+bv)N$ வடிவத்தினுடைய
	தடைவிசைக்கு எதிராக ஒரு நேர்கிடைவீதியில் செல்கிறது. இங்கு v ஆனது ms^{-1} இல் காரின் கதியாகும்.
	கார் $10ms^{-1}$ கதியில் செல்லின் தடைவிசை $1500\mathrm{N}$ ஆக காணப்படுகிறது. காரின் எஞ்சின் $40\mathrm{kW}$ வலுவில்
	தொழிற்படும் போது உயர்கதி $20ms^{-1}$ ஆக உள்ளது. a,b இன் பெறுமானங்களைக் காண்க.

5.	மையம் O இல் $ heta$ கோணம் எதிரமைக்கும் a ஆரையுடைய ஒப்பமான மெல்லிய ஒடுக்கமான குழாய் AB
	நிலைக்குத்து தளத்தில் OA கிடையாக இருக்க நிலைப்படுத்தப்பட்டுள்ளது. m திணிவுடைய துணிக்கை, A
	இல் குழாயினுள் நிலக்குத்தாக மேல்நோக்கி \sqrt{ag} கதியுடன் எறியப்படுகிறது. தொடரும் இயக்கத்தில்
	துணிக்கை B ஜ மட்டுமட்டாக அடைந்து, பின் புவியீர்ப்பின் கீழ் நிலைக்குத்தாக கீழ்நோக்கி விழுகிறது.
	$ heta=30^{\circ}$ எனக் காட்டுக. துணிக்கை புவியீர்ப்பின் கீழ் இயங்கி OA இல் உள்ள புள்ளி C ஐ அடைய எடுத்த
	நேரத்தைக் காண்க. B
	a, \\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\
	$\langle \theta \rangle$
	ó a C A
6.	
6.	ightarrow $ ightarrow$ $ ightarrow$
6.	வழக்கமான குறியீட்டில் A,B,C ஆகியபுள்ளிகள் $\overrightarrow{AB} = -2\underline{i} + 4\underline{j}, \overrightarrow{OB} = 2\underline{i} + 7\underline{j}, \overrightarrow{OC} = \underline{i} + 9\underline{j},$ ஆகுமாறுள்ளன. இங்கு O ஆனது உற்பத்தி ஆகும். A,B,C ஆகியன ஒரு நேர்கோட்டில் உள்ள புள்ளிகள் எனக் காட்டுக.
6.	வழக்கமான குறியீட்டில் A,B,C ஆகியபுள்ளிகள் $\overrightarrow{AB} = -2\underline{i} + 4\underline{j}, \overrightarrow{OB} = 2\underline{i} + 7\underline{j}, \overrightarrow{OC} = \underline{i} + 9\underline{j},$ ஆகுமாறுள்ளன. இங்கு O ஆனது உற்பத்தி ஆகும். A,B,C ஆகியன ஒரு நேர்கோட்டில் உள்ள புள்ளிகள்
6.	வழக்கமான குறியீட்டில் A,B,C ஆகியபுள்ளிகள் $\overrightarrow{AB} = -2\underline{i} + 4\underline{j}, \overrightarrow{OB} = 2\underline{i} + 7\underline{j}, \overrightarrow{OC} = \underline{i} + 9\underline{j},$ ஆகுமாறுள்ளன. இங்கு O ஆனது உற்பத்தி ஆகும். A,B,C ஆகியன ஒரு நேர்கோட்டில் உள்ள புள்ளிகள் எனக் காட்டுக. OA மீது புள்ளி D ஆனது $\overrightarrow{BD} = (4\lambda - 2)\underline{i} + (3\lambda - 7)\underline{j}$ ஆகுமாறுள்ளது. இங்கு λ எண்ணி. $BD//CO$ எனின்
6.	வழக்கமான குறியீட்டில் A,B,C ஆகியபுள்ளிகள் $\overrightarrow{AB} = -2\underline{i} + 4\underline{j}, \overrightarrow{OB} = 2\underline{i} + 7\underline{j}, \overrightarrow{OC} = \underline{i} + 9\underline{j},$ ஆகுமாறுள்ளன. இங்கு O ஆனது உற்பத்தி ஆகும். A,B,C ஆகியன ஒரு நேர்கோட்டில் உள்ள புள்ளிகள் எனக் காட்டுக. OA மீது புள்ளி D ஆனது $\overrightarrow{BD} = (4\lambda - 2)\underline{i} + (3\lambda - 7)\underline{j}$ ஆகுமாறுள்ளது. இங்கு λ எண்ணி. $BD//CO$ எனின்
6.	வழக்கமான குறியீட்டில் A,B,C ஆகியபுள்ளிகள் $\overrightarrow{AB} = -2\underline{i} + 4\underline{j}, \overrightarrow{OB} = 2\underline{i} + 7\underline{j}, \overrightarrow{OC} = \underline{i} + 9\underline{j},$ ஆகுமாறுள்ளன. இங்கு O ஆனது உற்பத்தி ஆகும். A,B,C ஆகியன ஒரு நேர்கோட்டில் உள்ள புள்ளிகள் எனக் காட்டுக. OA மீது புள்ளி D ஆனது $\overrightarrow{BD} = (4\lambda - 2)\underline{i} + (3\lambda - 7)\underline{j}$ ஆகுமாறுள்ளது. இங்கு λ எண்ணி. $BD//CO$ எனின்
6.	வழக்கமான குறியீட்டில் A,B,C ஆகியபுள்ளிகள் $\overrightarrow{AB} = -2\underline{i} + 4\underline{j}, \overrightarrow{OB} = 2\underline{i} + 7\underline{j}, \overrightarrow{OC} = \underline{i} + 9\underline{j},$ ஆகுமாறுள்ளன. இங்கு O ஆனது உற்பத்தி ஆகும். A,B,C ஆகியன ஒரு நேர்கோட்டில் உள்ள புள்ளிகள் எனக் காட்டுக. OA மீது புள்ளி D ஆனது $\overrightarrow{BD} = (4\lambda - 2)\underline{i} + (3\lambda - 7)\underline{j}$ ஆகுமாறுள்ளது. இங்கு λ எண்ணி. $BD//CO$ எனின்
6.	வழக்கமான குறியீட்டில் A,B,C ஆகியபுள்ளிகள் $\overrightarrow{AB} = -2\underline{i} + 4\underline{j}, \overrightarrow{OB} = 2\underline{i} + 7\underline{j}, \overrightarrow{OC} = \underline{i} + 9\underline{j},$ ஆகுமாறுள்ளன. இங்கு O ஆனது உற்பத்தி ஆகும். A,B,C ஆகியன ஒரு நேர்கோட்டில் உள்ள புள்ளிகள் எனக் காட்டுக. OA மீது புள்ளி D ஆனது $\overrightarrow{BD} = (4\lambda - 2)\underline{i} + (3\lambda - 7)\underline{j}$ ஆகுமாறுள்ளது. இங்கு λ எண்ணி. $BD//CO$ எனின்
6.	வழக்கமான குறியீட்டில் A,B,C ஆகியபுள்ளிகள் $\overrightarrow{AB} = -2\underline{i} + 4\underline{j}, \overrightarrow{OB} = 2\underline{i} + 7\underline{j}, \overrightarrow{OC} = \underline{i} + 9\underline{j},$ ஆகுமாறுள்ளன. இங்கு O ஆனது உற்பத்தி ஆகும். A,B,C ஆகியன ஒரு நேர்கோட்டில் உள்ள புள்ளிகள் எனக் காட்டுக. OA மீது புள்ளி D ஆனது $\overrightarrow{BD} = (4\lambda - 2)\underline{i} + (3\lambda - 7)\underline{j}$ ஆகுமாறுள்ளது. இங்கு λ எண்ணி. $BD//CO$ எனின்
6.	வழக்கமான குறியீட்டில் A,B,C ஆகியபுள்ளிகள் $\overrightarrow{AB} = -2\underline{i} + 4\underline{j}, \overrightarrow{OB} = 2\underline{i} + 7\underline{j}, \overrightarrow{OC} = \underline{i} + 9\underline{j},$ ஆகுமாறுள்ளன. இங்கு O ஆனது உற்பத்தி ஆகும். A,B,C ஆகியன ஒரு நேர்கோட்டில் உள்ள புள்ளிகள் எனக் காட்டுக. OA மீது புள்ளி D ஆனது $\overrightarrow{BD} = (4\lambda - 2)\underline{i} + (3\lambda - 7)\underline{j}$ ஆகுமாறுள்ளது. இங்கு λ எண்ணி. $BD//CO$ எனின்
6.	வழக்கமான குறியீட்டில் A,B,C ஆகியபுள்ளிகள் $\overrightarrow{AB} = -2\underline{i} + 4\underline{j}, \overrightarrow{OB} = 2\underline{i} + 7\underline{j}, \overrightarrow{OC} = \underline{i} + 9\underline{j},$ ஆகுமாறுள்ளன. இங்கு O ஆனது உற்பத்தி ஆகும். A,B,C ஆகியன ஒரு நேர்கோட்டில் உள்ள புள்ளிகள் எனக் காட்டுக. OA மீது புள்ளி D ஆனது $\overrightarrow{BD} = (4\lambda - 2)\underline{i} + (3\lambda - 7)\underline{j}$ ஆகுமாறுள்ளது. இங்கு λ எண்ணி. $BD//CO$ எனின்
6.	வழக்கமான குறியீட்டில் A,B,C ஆகியபுள்ளிகள் $\overrightarrow{AB} = -2\underline{i} + 4\underline{j}, \overrightarrow{OB} = 2\underline{i} + 7\underline{j}, \overrightarrow{OC} = \underline{i} + 9\underline{j},$ ஆகுமாறுள்ளன. இங்கு O ஆனது உற்பத்தி ஆகும். A,B,C ஆகியன ஒரு நேர்கோட்டில் உள்ள புள்ளிகள் எனக் காட்டுக. OA மீது புள்ளி D ஆனது $\overrightarrow{BD} = (4\lambda - 2)\underline{i} + (3\lambda - 7)\underline{j}$ ஆகுமாறுள்ளது. இங்கு λ எண்ணி. $BD//CO$ எனின்
6.	வழக்கமான குறியீட்டில் A,B,C ஆகியபுள்ளிகள் $\overrightarrow{AB} = -2\underline{i} + 4\underline{j}, \overrightarrow{OB} = 2\underline{i} + 7\underline{j}, \overrightarrow{OC} = \underline{i} + 9\underline{j},$ ஆகுமாறுள்ளன. இங்கு O ஆனது உற்பத்தி ஆகும். A,B,C ஆகியன ஒரு நேர்கோட்டில் உள்ள புள்ளிகள் எனக் காட்டுக. OA மீது புள்ளி D ஆனது $\overrightarrow{BD} = (4\lambda - 2)\underline{i} + (3\lambda - 7)\underline{j}$ ஆகுமாறுள்ளது. இங்கு λ எண்ணி. $BD//CO$ எனின்
6.	வழக்கமான குறியீட்டில் A,B,C ஆகியபுள்ளிகள் $\overrightarrow{AB} = -2\underline{i} + 4\underline{j}, \overrightarrow{OB} = 2\underline{i} + 7\underline{j}, \overrightarrow{OC} = \underline{i} + 9\underline{j},$ ஆகுமாறுள்ளன. இங்கு O ஆனது உற்பத்தி ஆகும். A,B,C ஆகியன ஒரு நேர்கோட்டில் உள்ள புள்ளிகள் எனக் காட்டுக. OA மீது புள்ளி D ஆனது $\overrightarrow{BD} = (4\lambda - 2)\underline{i} + (3\lambda - 7)\underline{j}$ ஆகுமாறுள்ளது. இங்கு λ எண்ணி. $BD//CO$ எனின்
6.	வழக்கமான குறியீட்டில் A,B,C ஆகியபுள்ளிகள் $\overrightarrow{AB} = -2\underline{i} + 4\underline{j}, \overrightarrow{OB} = 2\underline{i} + 7\underline{j}, \overrightarrow{OC} = \underline{i} + 9\underline{j},$ ஆகுமாறுள்ளன. இங்கு O ஆனது உற்பத்தி ஆகும். A,B,C ஆகியன ஒரு நேர்கோட்டில் உள்ள புள்ளிகள் எனக் காட்டுக. OA மீது புள்ளி D ஆனது $\overrightarrow{BD} = (4\lambda - 2)\underline{i} + (3\lambda - 7)\underline{j}$ ஆகுமாறுள்ளது. இங்கு λ எண்ணி. $BD//CO$ எனின்

முளையில் தாங்கட் w	0 450		4 0:			0 . •		
$\frac{w}{2\sqrt{2}}$ ஆகுமெனின்	$\theta = 45$ என	க காட்டுக	. A	மறுதாககத	ந்துன் கிடை	, ந്വതെക് ദ	௬௶௧ௗ௧	் காண
A இல் உள்ள ட கிடைத்தூரம் யாது'		B இல் உ	உள்ள ம	றுதாக்கமும்	சந்திக்கும்	புள்ளிக்கு	சுவரில் (இருந்தா
								∕ V B
							/ u	,
							θ	
						A		////////
•••••	• • • • • • • • • • • • • • • • • • • •		•••••	• • • • • • • • • • • • • • • • • • • •		•••••		
			•••••	• • • • • • • • • • • • • • • • • • • •			• • • • • • • • • • • • • • • • • • • •	••••••
கரடான கிடையுடன் மேலாகச் செல்லும நிறையுடைய P,Q	θ சாய்வுள்ள ச ம் நீட்டமுடியா எனும் இரு չ	ாய்தளத்தி த இலேச துணிக்கைக	 ன் மேல் ரான இஏ கள் இை	விளிம்பில் நழயின் மு ணக்கப்பட்டு	நிலைப்படுத்த னைகளில் ள்ளன. பட	 தப்பட்டுள்ள முறையே ந்தில் காட்ட	ஒப்பமான ஒவ்வொன் ஒய்வாறு P	கப்பியி றும் ' யான
கரடான கிடையுடன் மேலாகச் செல்லும நிறையுடைய P,Q சுயாதீனமாக தொ சாய்தளத்தின் வி	θ சாய்வுள்ள ச ம் நீட்டமுடியா எனும் இரு த ங்கிக்கொண்டும் ளிம்பிற்கு செர்	ாய்தளத்தி த இலேச துணிக்கைச Q சாய் வகுத்தாகவு	ன் மேல் ரான இல கள் இை தளத்திலு ம் இருச்	விளிம்பில் நழ்பின் மு ணக்கப்பட்டு ம் இருக்க, க்க எல்லை	நிலைப்படுத்த னைகளில் ள்ளன. படத இழை இ லச்சமநிலைய	 தப்பட்டுள்ள முறையே ந்தில் காட்ட	ஒப்பமான ஒவ்வொன் ஒய்வாறு P அதன்	கப்பியி றும் ' யான பகுதிக
கரடான கிடையுடன் மேலாகச் செல்லும நிறையுடைய P,Q சுயாதீனமாக தொர சாய்தளத்தின் வி	θ சாய்வுள்ள ச ம் நீட்டமுடியா எனும் இரு த ங்கிக்கொண்டும் ளிம்பிற்கு செர்	ாய்தளத்தி த இலேச துணிக்கைச Q சாய் வகுத்தாகவு	ன் மேல் ரான இல கள் இை தளத்திலு ம் இருச்	விளிம்பில் நழ்பின் மு ணக்கப்பட்டு ம் இருக்க, க்க எல்லை	நிலைப்படுத்த னைகளில் ள்ளன. படத இழை இ லச்சமநிலைய	தப்பட்டுள்ள முறையே ந்தில் காட்ட நுக்கமாகவும்	ஒப்பமான ஒவ்வொன் ஒய்வாறு P அதன்	கப்பியி நும் ' யான பகுதிக
கரடான கிடையுடன் மேலாகச் செல்லுட நிறையுடைய P,Q சுயாதீனமாக தொ சாய்தளத்தின் வில இடையிலான உராட மேலும் sec $ heta$, tan (θ சாய்வுள்ள ச ந் நீட்டமுடியா எனும் இரு த ங்கிக்கொண்டும் ளிம்பிற்கு சொ ப்வுக்குணகம் <u>1</u>	ாய்தளத்தி த இலேச துணிக்கைச Q சாய் வகுத்தாகவு - எனின் இ	ன் மேல் ரான இன கள் இை தளத்திலு ம் இருச்	விளிம்பில் மழயின் மு ணக்கப்பட்டு ம் இருக்க, கக எல்லை n $ heta=rac{1}{2}$ என	நிலைப்படுத்த னைகளில் ள்ளன. படத இழை இ லச்சமநிலைய எக் காட்டுக.	தப்பட்டுள்ள முறையே த்தில் காட்ட றுக்கமாகவும் பில் உள்ள	ஒப்பமான ஒவ்வொன் தயவாறு P அதன் என. Q	கப்பியி நும் ' யான பகுதிக
கரடான கிடையுடன் மேலாகச் செல்லுட நிறையுடைய P,Q சுயாதீனமாக தொட சாய்தளத்தின் வில இடையிலான உராட	θ சாய்வுள்ள ச ந் நீட்டமுடியா எனும் இரு த ங்கிக்கொண்டும் ளிம்பிற்கு சொ ப்வுக்குணகம் <u>1</u>	ாய்தளத்தி த இலேச துணிக்கைச Q சாய் வகுத்தாகவு - எனின் இ	ன் மேல் ரான இன கள் இை தளத்திலு ம் இருச்	விளிம்பில் மழயின் மு ணக்கப்பட்டு ம் இருக்க, கக எல்லை n $ heta=rac{1}{2}$ என	நிலைப்படுத்த னைகளில் ள்ளன. படத இழை இ லச்சமநிலைய எக் காட்டுக.	தப்பட்டுள்ள முறையே த்தில் காட்ட றுக்கமாகவும் பில் உள்ள	ஒப்பமான ஒவ்வொன் தயவாறு P அதன் என. Q	கப்பியி நும் ' யான பகுதிக
கரடான கிடையுடன் மேலாகச் செல்லுட நிறையுடைய P,Q சுயாதீனமாக தொட சாய்தளத்தின் வில இடையிலான உராட	θ சாய்வுள்ள ச ந் நீட்டமுடியா எனும் இரு த ங்கிக்கொண்டும் ளிம்பிற்கு சொ ப்வுக்குணகம் <u>1</u>	ாய்தளத்தி த இலேச துணிக்கைச Q சாய் வகுத்தாகவு - எனின் இ	ன் மேல் ரான இன கள் இை தளத்திலு ம் இருச்	விளிம்பில் மழயின் மு ணக்கப்பட்டு ம் இருக்க, கக எல்லை n $ heta=rac{1}{2}$ என	நிலைப்படுத்த னைகளில் ள்ளன. படத இழை இ லச்சமநிலைய எக் காட்டுக.	தப்பட்டுள்ள முறையே த்தில் காட்ட றுக்கமாகவும் பில் உள்ள	ஒப்பமான ஒவ்வொன் தயவாறு P அதன் என. Q	கப்பியி றும் ' யான பகுதிக
கரடான கிடையுடன் மேலாகச் செல்லுட நிறையுடைய P,Q சுயாதீனமாக தொட சாய்தளத்தின் வில இடையிலான உராட	θ சாய்வுள்ள ச ந் நீட்டமுடியா எனும் இரு த ங்கிக்கொண்டும் ளிம்பிற்கு சொ ப்வுக்குணகம் <u>1</u>	ாய்தளத்தி த இலேச துணிக்கைச Q சாய் வகுத்தாகவு - எனின் இ	ன் மேல் ரான இன கள் இை தளத்திலு ம் இருச்	விளிம்பில் மழயின் மு ணக்கப்பட்டு ம் இருக்க, கக எல்லை n $ heta=rac{1}{2}$ என	நிலைப்படுத்த னைகளில் ள்ளன. படத இழை இ லச்சமநிலைய எக் காட்டுக.	தப்பட்டுள்ள முறையே த்தில் காட்ட றுக்கமாகவும் பில் உள்ள	ஒப்பமான ஒவ்வொன் தயவாறு P அதன் என. Q	கப்பியி றும் ' யான பகுதிக
கரடான கிடையுடன் மேலாகச் செல்லுட நிறையுடைய P,Q சுயாதீனமாக தொட சாய்தளத்தின் வில இடையிலான உராட	θ சாய்வுள்ள ச ந் நீட்டமுடியா எனும் இரு த ங்கிக்கொண்டும் ளிம்பிற்கு சொ ப்வுக்குணகம் <u>1</u>	ாய்தளத்தி த இலேச துணிக்கைச Q சாய் வகுத்தாகவு - எனின் இ	ன் மேல் ரான இன கள் இை தளத்திலு ம் இருச்	விளிம்பில் மழயின் மு ணக்கப்பட்டு ம் இருக்க, கக எல்லை n $ heta=rac{1}{2}$ என	நிலைப்படுத்த னைகளில் ள்ளன. படத இழை இ லச்சமநிலைய எக் காட்டுக.	தப்பட்டுள்ள முறையே த்தில் காட்ட றுக்கமாகவும் பில் உள்ள	ஒப்பமான ஒவ்வொன் தயவாறு P அதன் என. Q	கப்பியி றும் ' யான பகுதிக
கரடான கிடையுடன் மேலாகச் செல்லுட நிறையுடைய P,Q சுயாதீனமாக தொட சாய்தளத்தின் வில இடையிலான உராட	θ சாய்வுள்ள ச ந் நீட்டமுடியா எனும் இரு த ங்கிக்கொண்டும் ளிம்பிற்கு சொ ப்வுக்குணகம் <u>1</u>	ாய்தளத்தி த இலேச துணிக்கைச Q சாய் வகுத்தாகவு - எனின் இ	ன் மேல் ரான இன கள் இை தளத்திலு ம் இருச்	விளிம்பில் மழயின் மு ணக்கப்பட்டு ம் இருக்க, கக எல்லை n $ heta=rac{1}{2}$ என	நிலைப்படுத்த னைகளில் ள்ளன. படத இழை இ லச்சமநிலைய எக் காட்டுக.	தப்பட்டுள்ள முறையே த்தில் காட்ட நுக்கமாகவும் பில் உள்ள என உய்த்	ஒப்பமான ஒவ்வொன் தயவாறு P அதன் என. Q	கப்பியி றும் ' யான பகுதிக
நரடான கிடையுடன் மேலாகச் செல்லுட நிறையுடைய P,Q சுயாதீனமாக தொட சாய்தளத்தின் வில இடையிலான உராட	θ சாய்வுள்ள ச ந் நீட்டமுடியா எனும் இரு த ங்கிக்கொண்டும் ளிம்பிற்கு சொ ப்வுக்குணகம் <u>1</u>	ாய்தளத்தி த இலேச துணிக்கைச Q சாய் வகுத்தாகவு - எனின் இ	ன் மேல் ரான இன கள் இை தளத்திலு ம் இருச்	விளிம்பில் மழயின் மு ணக்கப்பட்டு ம் இருக்க, கக எல்லை n $ heta=rac{1}{2}$ என	நிலைப்படுத்த னைகளில் ள்ளன. படத இழை இ லச்சமநிலைய எக் காட்டுக.	தப்பட்டுள்ள முறையே த்தில் காட்ட நுக்கமாகவும் பில் உள்ள என உய்த்	ஒப்பமான ஒவ்வொன் தயவாறு P அதன் என. Q	கப்பியி நும் ' யான பகுதிக
நரடான கிடையுடன் மேலாகச் செல்லுட நிறையுடைய P,Q சுயாதீனமாக தொட சாய்தளத்தின் வில இடையிலான உராட	θ சாய்வுள்ள ச ந் நீட்டமுடியா எனும் இரு த ங்கிக்கொண்டும் ளிம்பிற்கு சொ ப்வுக்குணகம் <u>1</u>	ாய்தளத்தி த இலேச துணிக்கைச Q சாய் வகுத்தாகவு - எனின் இ	ன் மேல் ரான இன கள் இை தளத்திலு ம் இருச்	விளிம்பில் மழயின் மு ணக்கப்பட்டு ம் இருக்க, கக எல்லை n $ heta=rac{1}{2}$ என	நிலைப்படுத்த னைகளில் ள்ளன. படத இழை இ லச்சமநிலைய எக் காட்டுக.	தப்பட்டுள்ள முறையே த்தில் காட்ட நுக்கமாகவும் பில் உள்ள என உய்த்	ஒப்பமான ஒவ்வொன் தயவாறு P அதன் என. Q	கப்பியி நும் ' யான பகுதிக
நரடான கிடையுடன் மேலாகச் செல்லுட நிறையுடைய P,Q சுயாதீனமாக தொட சாய்தளத்தின் வில இடையிலான உராட	θ சாய்வுள்ள ச ந் நீட்டமுடியா எனும் இரு த ங்கிக்கொண்டும் ளிம்பிற்கு சொ ப்வுக்குணகம் <u>1</u>	ாய்தளத்தி த இலேச துணிக்கைச Q சாய் வகுத்தாகவு - எனின் இ	ன் மேல் ரான இன கள் இை தளத்திலு ம் இருச்	விளிம்பில் மழயின் மு ணக்கப்பட்டு ம் இருக்க, கக எல்லை n $ heta=rac{1}{2}$ என	நிலைப்படுத்த னைகளில் ள்ளன. படத இழை இ லச்சமநிலைய எக் காட்டுக.	தப்பட்டுள்ள முறையே த்தில் காட்ட நுக்கமாகவும் பில் உள்ள என உய்த்	ஒப்பமான ஒவ்வொன் ஓயவாறு P அதன் என. Q	கப்பியி றும் ' யான பகுதிக
நரடான கிடையுடன் மேலாகச் செல்லுட நிறையுடைய P,Q சுயாதீனமாக தொட சாய்தளத்தின் வில இடையிலான உராட	θ சாய்வுள்ள ச ந் நீட்டமுடியா எனும் இரு த ங்கிக்கொண்டும் ளிம்பிற்கு சொ ப்வுக்குணகம் <u>1</u>	ாய்தளத்தி த இலேச துணிக்கைச Q சாய் வகுத்தாகவு - எனின் இ	ன் மேல் ரான இன கள் இை தளத்திலு ம் இருச்	விளிம்பில் மழயின் மு ணக்கப்பட்டு ம் இருக்க, கக எல்லை n $ heta=rac{1}{2}$ என	நிலைப்படுத்த னைகளில் ள்ளன. படத இழை இ லச்சமநிலைய எக் காட்டுக.	தப்பட்டுள்ள முறையே த்தில் காட்ட நுக்கமாகவும் பில் உள்ள என உய்த்	ஒப்பமான ஒவ்வொன் ஓயவாறு P அதன் என. Q	கப்பியி றும் ' யான பகுதிக
கரடான கிடையுடன் மேலாகச் செல்லுட நிறையுடைய P,Q சுயாதீனமாக தொட சாய்தளத்தின் வில இடையிலான உராட	θ சாய்வுள்ள ச ந் நீட்டமுடியா எனும் இரு த ங்கிக்கொண்டும் ளிம்பிற்கு சொ ப்வுக்குணகம் <u>1</u>	ாய்தளத்தி த இலேச துணிக்கைச Q சாய் வகுத்தாகவு - எனின் இ	ன் மேல் ரான இன கள் இை தளத்திலு ம் இருச்	விளிம்பில் மழயின் மு ணக்கப்பட்டு ம் இருக்க, கக எல்லை n $ heta=rac{1}{2}$ என	நிலைப்படுத்த னைகளில் ள்ளன. படத இழை இ லச்சமநிலைய எக் காட்டுக.	தப்பட்டுள்ள முறையே த்தில் காட்ட நுக்கமாகவும் பில் உள்ள என உய்த்	ஒப்பமான ஒவ்வொன் ஓயவாறு P அதன் என. Q	கப்பியி நும் ' யான பகுதிக

A,B என்பன மாதிரி வெளியொன்றில் வரையப்பட்ட இரு சாரா நிகழ்ச்சிகளாகவும் $P(A)=x, P(B)=x-rac{1}{10}$
$_{,}P(A\cup B)=rac{7}{10}$ ஆகவும் உள்ளன. x இன் பெறுமானத்தைக் காண்க.
மேற்படாமலும், மற்றயவை எல்லாம் சமனில்லாதவைகளாகவும் இருப்பின் இவ் ஜந்து நோக்கங்களையும் காண்க.

(முழுப் பதிப்புரிமை உடையது / All Rights Reserved

MORA E-TAMILS 202 Tamil Stu ents, Faculty of Engineering, University of Moratuwa பெறும் இலம் பல்கலைக்கும் கியாழ்ப்படு நடியில் உருந்தில் மாணவிகள் நடியில் இல்ல மாணவிகள் நடியில் இல்ல மாணவிகள் நடியில் மாணவிகள் மாறும் மூனம் மாணவிகள் மாறும் முனவியில் மாணவிகள் மாறும் மூனம் மல்கலைக்கும் பெறியியில் மடியில் மாணவிகள் மாறும் மூனம் மல்கலைக்கும் பெறியியில் மடியில் மாணவிகள் காறும் மானவிகள் காறும் மாணவிகள் காறும் மாணவிகள் காறும் மாணவிகள் காறும் மானவியியில் மானவிக்கில் காறும் மாணவிகள் காறும் மானவிகள் காறும் கா

கல்விப் பொதுத் தராதரப் பத்திர(உயர் தர) முன்னோடிப் பரீட்சை - 2021 General Certificate of Education (Adv.Level) Pilot Examination - 2021

இணைந்த கணிதம் II Combined Mathematics II 10 T II

பகுதி B

☀ ஐந்து வினாக்களுக்கு மாத்திரம் விடை எழுதுக.

11. (a)

P akm Q 100km R

காட்டப்பட்டுள்ளவாறு P,Q,R எனும் முன்று புகையிரத நிலையங்கள் PO = akm. OR = 100kmஆக இருக்குமாறு ஒரு நேர்கோட்டில் உள்ளன. நேரம் t=0 இல் ஒரு புகைவண்டி ${
m X}$ ஆனது P ஜ $2ukmh^{-1}$ இல் கடந்து $fkmh^{-2}$ எனும் சீரான ஆர்முடுகலுடன் இயங்கி t=1h இன் பின் குறித்த நேரத்திற்கு மாறா வேகத்துடன் இயங்கி இறுதியாக $4 extit{fkmh}^{-2}$ எனும் அமர்முடுகலுடன் $\frac{1}{2} extit{h}$ இந்கு இயங்கி நிலையம் ${f Q}$ இல் t=T இல் ஒய்விற்குவருகிறது. நேரம் t=1h இல் வேறொரு புகைவண்டி Y ஆனது R ஜ $5ukmh^{-1}$ இல் கடந்து $fkmh^{-2}$ எனும் அமர்முடுகலில் இயங்கி $3ukmh^{-1}$ எனும் வேகத்தைப் பெற்று அக்கணத்தில் ஏற்பட்ட கணக்குலுக்கம் காரணமாக அதன் வேகம் $2ukmh^{-1}$ ஆக திடீரென குறைகிறது. பின்னர் தொடர்ந்து அதே அமர்முடுகல் fkmh^{-2} இல் இயங்கி O இல் ஒய்விற்கு வருகிறது. இரு புகையிரதங்களும் ஒரே கணத்தில் ஒய்விற்கு வருகின்றன. X,Y இன் இயக்கங்களிற்கு வேக – நேர வரைபுகளை ஒரே வரிப்படத்தில் பரும்படியாக வரைக. இதிலிருந்து அல்லது வேறுவிதமாக T=3, u=20, f=40 எனக் காட்டி a இன் பெறுமானத்தைக் காண்க.

(b) a அகலமான நேர் கரைகளையுடைய ஓர் ஆறு u என்ற மாறாக்கதியில் பாய்கின்றது. X என்பது ஆற்றின் கரையில் உள்ள ஒரு புள்ளியாகும். Y என்பது X இற்கு நேர் எதிரே ஆற்றின் நடுவில் உள்ள ஒரு புள்ளியாகும். படகு ஒன்று ஆறு சார்பாக λu கதியுடன் ஆறு பாயும் திசைக்கு எதிர் திசையுடன் θ $\left(0 < \theta < \frac{\pi}{2}\right)$ என்னும் ஒரு கோணம் அமைய X. இலிருந்து

புறப்பட்டு செல்கிறது.

படகு ஆறு பாயும் திசையிலே Y இற்கு நேர் எதிரே உள்ள Z என்னும் புள்ளியை அடைகிறது. அதன் பின் படகு ஆறுபாயும் திசைக்கு எதிர் திசையிலே Z இலிருந்து Y இற்கு செல்கிறது. படகின் X இலிருந்து Z வரையேயான இயக்கத்திற்கு வேகமுக்கோணத்தை வரைந்து, புவி தொடர்பான படகின் இயக்கத்திசை ஆறுபாயும் திசையுடன் $\tan^{-1}\left(\frac{\lambda\sin\theta}{1-\lambda\cos\theta}\right)$ எனக்காட்டுக. இங்கு $1<\lambda<\sec\theta$.

மேலும் படகின் X இலிருந்து Y வரையான முழு இயக்கதத்திற்கான நேரம் $\dfrac{a}{2(\lambda-1)u} an \left(\dfrac{\theta}{2}\right)$ எனவும் காட்டுக.

12. (a) உருவில் $\triangle ABC$ ஆனது $\stackrel{\wedge}{ABC} = \alpha$,

$$\stackrel{\circ}{ACB} = \frac{\pi}{2}, \quad AD = a$$
 ஆகவுள்ளதும் AB ஜக்

கொண்ட முகம் ஓர் ஓப்பமான கிடையுடன் lpha சாய்வுள்ள சாய்களத்தில் வைக்கப்பட்ட திணிவு m ஜ உடைய ஓர் ஒப்பமான சீரான புவியீர்ப்பு மையத்தினூடாக ஆப்பின் உள்ளதுமான நிலைக்குத்து குறுக்குவெட்டாகும். BC ஜ கொண்ட முகம் கிடையாகவும் AB சமாந்தரமாக மெல்லிய இந்கு ஒப்பமான தவாளிப்பு DE உள்ளது. P,Q எனும் முறையே 2m,m திணிவுடைய துணிக்கைகள் இலேசான இழையின் நீட்டமுடியாத நுனிகளில் தொடுக்கப்பட்டுள்ளன. இழையானது ஆப்பின் D உள்ள இலேசான ஒப்பமான கப்பியினூடாகவும் G இல் உள்ள நிலையான ஒப்பமான கப்பியினூடாகவும் சென்று படத்தில் P(2m) காட்டியவாறு P,Q என்பன சுயாதீனமாக கொங்கியவண்ணமுள்ளன. இழையின் DG ஆனது AB இற்கு சமாந்தரமாகவுள்ளது. ஆரம்பத்தில் இழை இறுக்கமாகவும் P ஆனது கப்பி D இற்கு அருகிலும் இருக்க தொகுதி விடப்படுகிறது. ஒய்விலிருந்து துணிக்கை ஆனது A ஜ அடைய எடுக்கும் நேரத்தை துணிவதற்கு போதிய சமன்பாடுகளை எழுதுக.

(b) உருவில் காட்டப்பட்டுள்ளவாறு நிலைக்குத்துத் தளத்தில் ABCD எனும் ஒப்பமான வட்டக்கம்பியின் ஒரு பகுதி நிலைப்படுத்தப்பட்டுள்ளது. கம்பியின் மையம் O உம், ஆரை a உம், $\stackrel{\wedge}{AOD} = \alpha$ உம் ஆகும். AOC நிலைக்குத்தாகவும் உள்ளது. E எனும் புள்ளி AC இல் D யினூடாக உள்ள கிடைமட்டத்தில் உள்ளது. m திணிவுடைய சிறிய மணி P ஆனது A இல் வைக்கப்பட்டு அதற்கு கிடையாக ஒரு வேகம் u

அது

கப்பி

தொடங்குகிறது. இங்கு
$$u = \frac{\sqrt{3}ag}{2}$$

வேளை

அகே

தரப்படும்

 $\stackrel{
ightarrow}{OP}$ ஆனது $\stackrel{
ightarrow}{OA}$ உடன் ஒரு கோணம் θ $(O \le \theta \le 2\pi - \alpha)$ ஐ ஆக்கும் போது மணி P இன் கதி v ஆனது $v^2 = \frac{ag}{4}(11 - 8\cos\theta)$ இனால் தரப்படும் எனக் காட்டுக.

வமியே

இயங்கக்

மேற்குறித்த தானத்தில் கம்பியிலிருந்து மணி P மீதுள்ள மறுதாக்கத்தைக் கண்டு $heta = \cos^{-1}\!\left(\frac{11}{12}\right)$ ஆகவுள்ள புள்ளியை மணி P கடக்கும் போது அது தன் திசையை மாற்றும் எனக்

மேலும் துணிக்கை $P,\ D$ இல் கம்பியைவிட்டு வெளியேறும் வேகத்தை α,a,g இல் காண்க. தொடரும் புவியீர்ப்பின் கீழ் இயக்கத்தில் துணிக்கை P ஆனது E யினூடு செல்லின் α ஆனது $8\cos^2\alpha-11\cos\alpha+2=0$ எனும் சமன்பாட்டை திருப்தியாக்கும் எனக்காட்டுக.

13.

-9-

உருவில் காட்டப்பட்டுள்ளவாறு ஓர் ஒப்பமான கிடையுடன் 30° இல் உள்ள தளத்தின் மீது A,B,O,C_0,C,D ஆகிய புள்ளிகள் அதே வரிசையில் ஒரு நேர்கோட்டில் $AB=2a,BO=a,OC_0=a$ $C_0C=a,CD=2a$ ஆகுமாறு உள்ளன. இயற்கை நீளம் 2a ஐயும் மீள்தன்மை மட்டு λ_1 ஐயும் உடைய ஒர் இலேசான மீள்தன்மை இழையின் ஒரு நுனி புள்ளி A உடனும் மற்றைய நுனி திணிவு m ஐ உடைய ஒரு துணிக்கை P உடனும் இணைக்கப்பட்டுள்ளன. இயற்கை நீளம் 2a ஐயும் மீள்தன்மை மட்டு λ_2 ஐயும் உடைய வேறொரு இலேசான மீள்தன்மை இழையின் ஒரு நுனி புள்ளி D உடனும் மற்றைய நுனி துணிக்கை P உடனும் இணைக்கப்பட்டுள்ளன. துணிக்கை P ஆனது D0 இல் பிடிக்கப்பட்டு விடப்படும் போது அது நாப்பத்தில் இருக்கிறது. $\lambda_1:\lambda_2=3:2$ எனின் $\lambda_1=3mg,\lambda_2=2mg$ எனக் காட்டுக.

இப்போது துணிக்கை P ஆனது C இற்கு கொண்டுவரப்பட்டு ஒய்வில் இருந்து விடுவிக்கப்படுகிறது. C இல் இருந்து B வரைக்கும் P இன் இயக்கத்திற்கான சமன்பாடு $x + \frac{5g}{2a}(x-2a) = 0$ இனால் தரப்படுகிறது. எனக்காட்டுக இங்கு CP = x ஆகும். இச்சமன்பாட்டை $X = -\omega^2 X$ எனும் வடிவில் உருமாற்றுக. இங்கு X = x - 2a, $\omega = \sqrt{\frac{5g}{2a}}$ ஆகும்.

 $\dot{X}^2 = \omega^2 \left(a_1^{\ 2} - X^2\right)$ ஜப் பயன்படுத்தி துணிக்கை P ஆனது B ஜ அடையும் போது அதன் வேகம் $\sqrt{\frac{15ag}{2}}$ எனக் காட்டுக. இங்கு a_1 வீச்சமாகும். மேலும் P ஆனது B ஜ அடையும் போது B இல் ஒய்வில் வைத்திருக்கப்படும் m திணிவுடைய துணிக்கையை மோதி தன்னுடன் சேர்த்துக்கொள்கிறது. மோதலுக்கு சற்றுபின் சேர்த்தி துணிக்கையின் வேகம் $\stackrel{\rightarrow}{BA}$ இன் திசையில் $\frac{1}{2}\sqrt{\frac{15ag}{2}}$ எனக் காட்டுக. B ஐக் கடந்த பின்னர் கணநிலை ஒய்விற்கு வரும்வரைக்கும் சேர்த்தி துணிக்கை Q இன் இயக்கச்சமன்பாடு $\stackrel{\rightarrow}{Y} = -\omega_0^2 Y$ எனக் காட்டுக இங்கு $\omega_0 = \sqrt{\frac{g}{2a}}$, Y = y + a , OQ = y .

B இல் தொடங்கி முதல் கணநிலை ஒய்விற்கு வரும்வரை இயக்கத்திற்கான நேரம் $\sqrt{\frac{2a}{g}}\cos^{-1}\!\left(\frac{4}{\sqrt{51}}\right)$ எனக் காட்டுக.

14. (a) உற்பத்தி O குறித்து A,B,C,D ஆகிய புள்ளிகளின் தானக்காவிகள் முறையே $\underline{a},\underline{b},\underline{c},\underline{d}$ ஆகும். இங்கு $\underline{a}=-5\underline{i}-2\underline{j},\ \underline{b}=\lambda\underline{i}+\mu\underline{j}$ இங்கு $\ (\lambda<\mu),\ \underline{c}=7\underline{i}+10\underline{j},\ \underline{d}=-5\underline{i}+14\underline{j}$ ஆகும். இங்கு $\ \underline{i},\underline{j}$ என்பன முறையே ox, oy அச்சுக்கள் வழியேயான செங்கோண அலகுக் காவிகள் ஆகும். $\overrightarrow{AB},\overrightarrow{AC},\overrightarrow{BD}$ ஆகியவற்றை $\underline{i},\overline{j},\lambda,\mu$ இல் காண்க.

 $AC\perp BD$ எனவும் $|\underline{b}|=\sqrt{45}$ எனவும் தரப்படின் $\lambda=3,\,\mu=6$ எனக்காட்டுக.

A,B,C என்பன ஒரே நேர்கோட்டில் உள்ளன என உய்த்தறிந்து AB:BC ஜ காண்க.

$$\overrightarrow{CA}$$
 . \overrightarrow{CD} ஐ காண்பதனூடாக $\angle ACD = \cos^{-1}\left(\frac{1}{\sqrt{5}}\right)$ எனக் காட்டுக.

(b) ABCD ஆனது AB = 3m, AD = 1m ஆகவுள்ள ஒரு செவ்வகம் ஆகும். AB மீது E எனும் புள்ளி AE =1m ஆகுமாறுள்ளது. BA,CB,DC,AD,ED,EC வழியே எழுத்துக்களின் ஒழுங்கு முறையினால் காட்டப்படும் திசைகளில் முறையே

 $10{,}14, P, Q, 7\sqrt{2}, 3\sqrt{5}N$ பருமனுள்ள விசைகள் தாக்குகின்றன. பொருத்தமான புள்ளிபற்றிய திருப்பத்தை கருதுவதன் மூலம் அல்லது வேறுவிதமாக தொகுதி ஒரு போதும் சமநிலையில் இருக்கமாட்டாது எனக் காட்டுக.

- (i) தொகுதி இணையாக ஒடுங்கும் எனின் P=11, Q=4 எனக்காட்டி, இணையின் திருப்பத்தின் பருமனையும் போக்கையும் காண்க.
- (ii) P=7, Q=8 எனின் விளையுள் விசையைக் கண்டு, அது ED இற்கு சமாந்தரமெனக்காட்டுக. அத்துடன் விளையுள் DC ஜ வெட்டுப்புள்ளியை இனம் காண்க.

தொகுதியிற்கு மேலதிகமாக M பருமனுள்ள இணைசேர்க்கும் போது விளையுள் விசையானது C யினூடு செல்லின் M இன் பருமனையும் போக்கையும் காண்க.

15. (a)

AB=2a,BC=2a , $CD=2\sqrt{3}a$ ஆகவுள்ள மூன்று சீரான கோல்கள் B,C ஆகியமுனைகளில் ஒப்பமான மூட்டப்பட்டுள்ளன. AB,BC,CD ஆகிய கோல்களின்நிறைகள் முறையே $W,\lambda W,2W$ ஆகும். முனை A ஒரு நிலைத்தபுள்ளியில் ஒப்பமாக பிணைக்கப்பட்டுள்ளது. கோல் AB இல் $AE=\frac{3}{2}a$ ஆகுமாறு உள்ள புள்ளி E இல் உள்ள ஒப்பமான நிலைத்த முளையில் AB ஆனது கிடையாக இருக்குமாறு தாங்கப்பெற்றும், மூட்டு C ஆனது ஒப்பமான கிடை நிலத்தில் பொறுத்திருக்க $B\hat{C}D=90^{\circ}$ யும் ஆகுமாறும்

இருக்க CD இற்கு செங்குத்தாக D இல் பிரயோகிக்கப்படும் P எனும் விசையினால் A,B,D என்பன ஒரே கிடைமட்டத்தில் இருக்குமாறு ஒரு நிலைக்குத்து தளத்தில் நாப்பத்தில் வைக்கப்பட்டுள்ளன. C இல் மறுதாக்கம் 3w ஆகும். $\lambda=2$ எனக் காட்டுக.

மேலும் முளை E இல் மறுதாக்கம் R=w எனக்காட்டுக.

அத்துடன் மூட்டு B இல் CB இனால் AB மீது உஞந்நப்படும் விசையின் கிடை, நிலைக்கூறுகள் முறையே $\dfrac{\sqrt{3}}{4}w,\dfrac{1}{4}w$ எனவும் காட்டுக.

(*b*) சுயாதீனமாக மூட்டப்பட்ட சமநீளமுடைய ஏ(ழ இலேசான கோல்களாலான சட்டப்படலை **உ**(h காட்டுகிறது. Α இல் நிலையாக சுயாதீனமாக C,D,E இல் முறையே பிணைக்கப்பட்டும் 400N. 300N, 200N நிறைகளையுடைய சுமைகள் C இல் F எனும் கிடை விசை கொங்கவிடப்பட்டு, பிரயோகிக்கப்பட்டு சட்டப்படல் AB, CD, DE என்பன கிடையாக இருக்க சமநிலையில் பேணப்படுகின்றது.

- i) F ஜயும் A இலுள்ள மறுதாக்கத்தின் கிடைக்கூறையும், நிலைக்குத்துக் கூறையும் கண்க.
- தகைப்பு வரிப்படம் ஒன்று வரைந்து இழுவைகளையும் , உதைப்புக்களையும் வேறுபடுத்தி கோல்களிலுள்ள தகைப்புகளை காண்க.

16.

- (i) அடியின் ஆரை r ஆகவும் உயரம் h ஆகவும் உள்ள ஒரு சீரான பொட்கூம்பின் திணிவுமையம் உச்சியில் இருந்து $\frac{2}{3}h$ இல் உள்ளது எனக் காட்டுக.
- (ii) ஆரை 2r ஜ உடைய சீரான பொட் அரைக்கோளம் ஒன்றின் அடியின் மையம் C யிலிருந்து ஒரு தூரம் $\sqrt{3}r$ இல் அதன் அச்சிற்கு செங்குத்தான தளம் ஒன்றினால் இருபகுதிகளாக பிரிக்கப்படுகிறது. இரு வட்ட ஓரங்களைக் கொண்ட பகுதி R இன் திணிவு மையம் அச்சின் மீது C யிலிருந்து $\frac{\sqrt{3}r}{2}$ இல் இருக்கிறது எனக் காட்டுக.

2r,r வட்ட ஒரங்களையும் h உயரமும் உடைய சீரான பொட்கூம்பின் அடித்துண்டின் திணிவுமையம் அதன் சிறிய வட்ட மையத்தில் இருந்து $\frac{5h}{9}$ தூரத்தில் அச்சின் வழியே உள்ளது எனக் காட்டுக.

பகுதி R (திணிவு 4m), சீரான ஆரையுடைய வட்டத்தட்டு (திணிவு m), கூம்பின் அடித்துண்டு (திணிவு M) ஆகியவற்றை எல்லாவற்றினதும் மையங்கள் ஒரே கோட்டில் அமையும் வண்ணம் பொருத்தி ஒரு $\sqrt{3}$

Ice cream Cub மேலே காட்டியவாறு உருவாக்கப்பட்டுள்ளது. $h = \frac{\sqrt{3}}{2}r$ எனின் Cub இன்

திணிவுமையம் அதன் அடியில் இருந்து அச்சின் வழியே $\dfrac{\sqrt{3}(81m+4M)}{18(M+5m)}r$ தூரத்தில் உள்ளது எனக் காட்டுக.

 $oldsymbol{{
m Cub}}$ இன் திணிவு மையம் ${
m R}$ இன் சிறியவட்டத்தின் மையத்தில் இருப்பின் 5M=36m என உய்த்தறிக.

- 17. (a) தனியார் நிறுவனம் ஒன்றிற்கு மைக்கல், நிமல், சுரேன் என்பவர்களில் ஒருவர் புதிய தலைமை நிர்வாகியாக நியமிக்கப்படுவர். மைக்கல், நிமல், சுரேன் என்பவர்கள் தலைமை நிர்வாகியாக ஆவதற்கான வாய்ப்புக்கள் முறையே 3:2:5 எனும் விகிதத்திலுள்ளது. மைக்கல், நிமல், சுரேன் என்பவர்கள் தலைமை நிர்வாகியாக நியமிக்கப்படுமிடத்து தொழிலாளர்களுக்கு சம்பள அதிகரிப்பு திட்டம் ஒன்றை அறிமுகப்படுத்துவதற்கான நிகழ்தகவுகள் முறையே 0.3, 0.5, x ஆகும். தொழிலாளர்களுக்கு சம்பள அதிகரிப்பு திட்டம் ஒன்றை அறிமுகப்படுத்துவதற்கான நிகழ்தகவு 0.29 ஆகும்.
 - i) x = 0.2 எனக்காட்டுக.
 - ii) சம்பள அதிகரிப்பு திட்டம் ஒன்றை அறிமுகப்படுத்தியிருப்பின் சுரேன் தலைமை நிா்வாகியாக நியமிக்கப்பட்டிருப்பதற்கான நிகழ்தகவு யாது?

(*b*) ஒரு குறித்த பரீட்சை ஒன்றிற்கு குறித்த எண்ணிக்கையான மாணவர்கள் பெற்ற புள்ளிகளின் பரம்பல் கீழே தரப்பட்டுள்ளது.

இப்பரம்பலின் ஆகாரம் 52 எனத்தரப்படின் தவறவிடப்பட்ட மீடிறன் a=25 எனக்காட்டுக. இப்பரம்பலின் இடை, இடையம், நியமவிலகல் ஆகியவற்றை காண்க. அத்துடன் ஓராயக்குணகத்தைக்கண்டு, பரம்பலின் வடிவம் எவ்வகையானது எனக்கூறுக?

पुर्वाक्रीकर्वा	மா.எண்ணிக்கை
30-40	15
40-50	20
50-60	a
60-70	05
70-80	15
80 -90	20