THE MULTIVATIATE GAUSSIAN INTEGRAL

SUBJECT

MATHEMATICS

 $\mathbf{B}\mathbf{y}$

0xLeo (github.com/0xleo)

 ${\tt SEPTEMBER~20,~2020}$

DRAFT X.YY MISSING: ...

Contents

1	Introduction - the n -dimensional Gaussian integral
	1.1 Requirements
	1.1.1 1D Gaussian integral
	1.1.2 Change of variables in a multivariable integral
2	Computing the integral
A	Appendices
	A.1 Lemma proof; Cartesian to polar differentials and $rdrd\theta$
	A.2 Lemma proof; determinant of orthogonal matrix is ± 1
	A.3 Proof; Jacobian of linear transform

1 Introduction - the *n*-dimensional Gaussian integral

The problem to solve in this tutorial is to compute the *n*-dimensional Gaussian integral defined as. The *n*-dimensional Gaussian integral has applications in quantum field theory and it's very beautiful to calculate as it combines a lot of linear algebra and multivariable calculus.

Before introducing the integral, it is necessary to remember the definition of a positive definite matrix.

DEFINITION 1.1 (positive definite matrix). Let A be a $n \times n$ symmetric real matrix. A is positive definite iff $\mathbf{x}^{\top} A \mathbf{x} > 0 \ \forall \ \mathbf{x} \in \mathbb{R}^n - \mathbf{0}$. Equivalently, A is positive definite iff all its eigenvalues $\lambda_1, \ldots, \lambda_n$ are strictly positive.

Proof that these statements are equivalent is obtained by diagonalising matrix A.

DEFINITION 1.2 (n-dim. Gaussian integral). Given a real symmetric and positive-definite matrix \mathbf{A} of $n \times n$, it is defined as

$$\int_{-\infty}^{\infty} \int_{-\infty}^{\infty} \dots \int_{-\infty}^{\infty} \exp(-\boldsymbol{x}^{\top} \boldsymbol{A} \boldsymbol{x}) dx_1 dx_2 \dots dx_n$$
 (1.1)

ref https:

//link.
springer

chapter/

10.1007/ 978-1-461:

com/

Before attempting to compute it, two techniques are required.

- 1. How to compute 1D Gaussian integrals.
- 2. How to perform change of variables in a multivariate integral.

1.1 Requirements

1.1.1 1D Gaussian integral

COROLLARY 1.1 (Gaussian integral).

$$\int_{-\infty}^{\infty} \exp(-\alpha x^2) = \sqrt{\frac{\pi}{\alpha}}$$
 (1.2)

Proof. We start by proving a simpler result for $\alpha = 1$; that

$$I := \int_{-\infty}^{\infty} \exp(-x^2) dx = \sqrt{\pi}$$

Changing (renaming) the dummy variable *x* to *y*:

$$I = \int_{-\infty}^{\infty} \exp(-y^2) dy$$
$$\therefore I^2 = \int_{-\infty}^{\infty} \exp(-y^2) dy \int_{-\infty}^{\infty} \exp(-x^2) dx = \int_{-\infty}^{\infty} \int_{-\infty}^{\infty} \exp(-x^2 - y^2) dx dy$$

If we change from Cartesian to polar coordinates in I^2 , i.e. $x := \cos(\theta)$, $y := \sin(\theta)$, then $x^2 + y^2 = r^2$ and $dxdy = rdrd\theta^{-1}$. The Cartesian integral limits cover the entire xy plane and so much the polar limits for r, θ . Therefore r ranges from 0 to ∞ and θ from 0 to 2π .

$$\therefore I^2 = \int_0^{2\pi} \int_0^{\infty} \exp(-r^2) r dr d\theta$$

Letting $u := -r^2 \Rightarrow rdr = -u/2$, the limits change $r = 0 \Rightarrow u \to \infty$, $r \to \infty \Rightarrow u \to -\infty$ and the integral becomes

$$I^{2} = -\frac{1}{2} \int_{0}^{2\pi} \int_{0}^{-\infty} \exp(u) du d\theta = -\frac{1}{2} \int_{0}^{2\pi} -d\theta = \pi$$

To conclude,

$$I = \int_{-\infty}^{\infty} \exp(-x^2) \, dx = \sqrt{\pi}$$

Finally, substituting in I $x := \sqrt{\alpha}y$, $\alpha > 0$, then $dx = \sqrt{\alpha}dy$, therefore

$$\int_{-\infty}^{\infty} \exp(-\alpha y^2) \sqrt{\alpha} dy = \sqrt{\pi} \Rightarrow$$

$$\int_{-\infty}^{\infty} \exp(-\alpha y^2) dy = \sqrt{\frac{\pi}{\alpha}}$$

¹Proof for $dxdy = rdrd\theta$ in A.1

1.1.2 Change of variables in a multivariable integral

Before introducing the change of variables the change of variables, it is necessary to introduce a scalar quantity called Jacobian

DEFINITION 1.3 (Jacobian). For a transformation $\Phi \mathbb{R}^m \to \mathbb{R}^n : (x_1, \dots, x_m) \to (f_1(x_1, \dots, x_n), \dots, f_n(x_m))$, the Jacobian is defined as the determinant

$$J = \det \begin{pmatrix} \begin{bmatrix} \frac{\partial f_1}{\partial x_1} & \frac{\partial f_1}{\partial x_2} & \cdots & \frac{\partial f_1}{\partial x_m} \\ \frac{\partial f_2}{\partial x_2} & \frac{\partial f_2}{\partial x_2} & \cdots & \frac{\partial f_2}{\partial x_m} \\ \vdots & \vdots & \ddots & \vdots \\ \frac{\partial f_n}{\partial x_2} & \frac{\partial f_n}{\partial x_2} & \cdots & \frac{\partial f_n}{\partial x_m} \end{bmatrix}$$

The matrix of partial derivatives in the determinant is called $Jacobian\ matrix$. The latter matrix is often denoted as $\frac{\partial (f_1,...,f_n)}{\partial (x_1,...,x_m)}$ or ∇f for shorthand.

EXAMPLE 1.1. Compute the Jacobian of the transformation from Cartesian to polar coordinates $\Phi:(x,y) \to (r,\theta)$ defined as $x = r\cos(\theta)$, $y = r\sin(\theta)$.

SOLUTION 1.1.

$$J = \det \left(egin{bmatrix} rac{\partial x}{\partial r} & rac{\partial x}{\partial heta} \ rac{\partial y}{\partial r} & rac{\partial y}{\partial heta} \end{bmatrix}
ight)$$

Compute partial derivatives

$$\frac{\partial x}{\partial r} = \cos \theta, \qquad \frac{\partial x}{\partial \theta} = -r \sin \theta$$

$$\frac{\partial y}{\partial r} = \sin \theta, \qquad \frac{\partial y}{\partial \theta} = r \cos \theta$$

Substitute

$$\therefore J = \det \begin{pmatrix} \begin{bmatrix} \cos \theta & -r \sin \theta \\ \sin \theta & r \cos \theta \end{bmatrix} \end{pmatrix} = r$$

LEMMA 1.1 (Change of variables). If an "1-1" mapping $\Phi:(x,y) \to (u(x,y),v(x,y))$ sends a region D in xy-space to a region D^* in uv-space, then

$$\int \int_{D} f(x, y) dx dy = \int \int_{D^{*}} f(u(x, y), v(x, y)) \left| \frac{\partial(u, v)}{\partial(x, y)} \right| du dv$$
 (1.3)

Notes:

- 1. Obviously this definition can be generalised in *n*-dimensional mappings but is stated in 2D for clarity.
- 2. |.| denotes absolute value we need the absolute Jacobian!
- 3. The proof of Lemma 1.1 in n dimensions is omitted but a neat proof is found in .

2 Computing the integral

To reiterate, the integral to compute is the following

$$\int_{-\infty}^{\infty} \int_{-\infty}^{\infty} \dots \int_{-\infty}^{\infty} \exp(-\mathbf{x}^{\top} \mathbf{A} \mathbf{x}) dx_1 dx_2 \dots dx_n$$

For succinctness, we denote as D the integration space, which is a subspace of \mathbb{R}^n , and the integral as

$$\int_{D} \exp(-\mathbf{x}^{\top} \mathbf{A} \mathbf{x}) dx_1 dx_2 \dots dx_n$$

ref: https: //math. stackexchacom/ questions/ 267267/ intuitive-

Because $\bf A$ is symmetric and real, it's diagonalisable, which means that there exists an orthonormal (therefore symmetric as well) matrix $\bf S$ such that

$$\mathbf{S}^{-1}\mathbf{A}\mathbf{S} = \mathbf{D}, \quad \mathbf{D} = \begin{bmatrix} \lambda_1 & & \\ & \ddots & \\ & & \lambda_n \end{bmatrix}, \quad \lambda_1 > \dots > \lambda_n > 0$$
 (1)

Positive eigenvalues λ_i are guaranteed as **A** is positive definite. Because **S** is orthonormal, $\mathbf{S}^{-1} = \mathbf{S}^{\top}$, therefore Eq. (1) can be rewritten as

$$\mathbf{S}^{\top} \mathbf{A} \mathbf{S} = \mathbf{D} \Rightarrow \mathbf{A} = \mathbf{S} \mathbf{D} \mathbf{S}^{\top} \tag{2}$$

The integral is hence rewritten

$$I = \int_{D} \exp(-\mathbf{x}^{\top} \mathbf{S} \mathbf{D} \mathbf{S}^{\top} \mathbf{x}) dx_{1} dx_{2} \dots dx_{n}$$
(3)

Substitute $\mathbf{y} = \mathbf{S}^{\top}\mathbf{x}$, therefore $\mathbf{y}^{\top} = \mathbf{x}^{\top}\mathbf{S}$. The differentials dx_1, \dots, dx_n will be transformed to $|J|dy_1, \dots, dy_n$ as stated in Lemma 1.1, where J is the Jacobian of the linear transform $f(\mathbf{x}) = \mathbf{S}^{\top}\mathbf{x}$. As proven in A.3, $J = \det(S^{\top})$. As proven in turn in A.2, the determinant of an orthogonal matrix such as \mathbf{S}^{\top} is 1. Therefore the new differentials are simply

$$dy_1 \dots dy_n = dx_1 \dots dx_n \tag{4}$$

Integral I is therefore transformed to

$$I = \int_{D} \exp(-\mathbf{y}^{\top} \mathbf{D} \mathbf{y}) \ dy_{1} \dots dy_{n}$$
 (5)

The scalar quantity $\mathbf{y}^{\mathsf{T}}\mathbf{D}\mathbf{y}$ is called quadratic form of \mathbf{D} and because the latter is diagonal as defined in Eq. (1), it's easy to see that it equals

$$\mathbf{y}^{\mathsf{T}}\mathbf{D}\mathbf{y} = \lambda_1 y_1^2 + \ldots + \lambda_n y_n^2 \tag{6}$$

Substituting Eq. (6) in Eq. (5), the integral is simplified to

$$I = \int_{D} \exp(-\lambda_1 y_1^2 - \dots - \lambda_n y_n^2) dy_1 \dots dy_n$$
 (7)

Expanding the integral the 1-dimensional real subspaces of \mathbb{R}^n (since D is in \mathbb{R}^n) and breaking the exponential, it can be rewritten as

$$I = \int_{D_1} \exp(-\lambda_1 y_1^2) dy_1 \dots \int_{D_n} \exp(-\lambda_n y_n^2) dy_n$$
 (8)

Now each one can be calculated individually. Each sub-integral is a Gaussian one with $\alpha = \lambda_i$, therefore from Eq. (1.2)

$$\int_{D_i} \exp(-\lambda_i y_i^2) dy_i = \sqrt{\frac{\pi}{\lambda_i}}, \quad i = 1, \dots, n$$
(9)

Finally, from Eq. (8) given Eq. (9)

$$\int_{D_1} \exp(-\lambda_1 y_1^2) dy_1 \dots \int_{D_n} \exp(-\lambda_n y_n^2) dy_n = \sqrt{\frac{\pi^n}{\lambda_1 \dots \lambda_n}}$$
(10)

Note that the product $\lambda_1 \dots \lambda_n$ is simply the determinant of the diagonal matrix **D** from Eq. (1), which contains the eigenvalues of **A**. Therefore $\lambda_1 \dots \lambda_n = \det(\mathbf{D})$. Thus the final result is obtained.

COROLLARY 2.1 (n-dimensional Gaussian integral).

$$\int_{-\infty}^{\infty} \int_{-\infty}^{\infty} \dots \int_{-\infty}^{\infty} \exp(-\boldsymbol{x}^{\top} \boldsymbol{A} \boldsymbol{x}) dx_1 dx_2 \dots dx_n = \sqrt{\frac{\pi^n}{\det(\boldsymbol{D})}}$$
(2.1)

A Appendices

A.1 Lemma proof; Cartesian to polar differentials and $rdrd\theta$

LEMMA A.1. If we transform from Cartesian to polar coordinates in the integral $I = \int \int_Q f(x,y) dx dy$ over some area Q by setting $x = r \cos(\theta)$, $y = r \cos(\theta)$, then:

$$\iint_{Q} f(x, y) dx dy = \iint_{A} f(r\cos(\theta), r\sin(\theta)) r dr d\theta$$
 (A.1)

Proof. Suppose we evaluate the integral over a polar region defined by $\alpha \le \theta \le \beta$, $g(\theta) \le r \le f(\theta)$, where the curves $f(\theta), g(\theta)$ are contained between two radii p, q, p < q. We infinitesimally partition θ in $\theta_0, \ldots, \theta_m$ and r in r_0, \ldots, r_n (Fig. 1).

Fig. 1. Expressing the area as the union of infinitesimal polar partitions.

Then the area dA of each tiny wedge is simply (Fig. 2) the difference between the sector from 0 to r + dr minus the sector from 0 to r:

$$dA = \frac{1}{2}(r+dr)^2 d\theta - \frac{1}{2}r^2 d\theta$$
$$= \frac{2r+dr}{2}dr d\theta$$
$$= r^* dr d\theta$$

, where $r^* \coloneqq \frac{2r + dr}{2}$ is the average radius of the infinitesimal wedge.

Fig. 2. Computing dA w.r.t. dr, $d\theta$.

In general, for the wedge jk, its area is:

$$\Delta A_{ik} \approx r_i \Delta r_i \Delta \theta_i$$

If we transform x and y in the polar domain as $x_{jk} = r_j \cos(\theta_k)$, $y_{jk} = r_j \sin(\theta_k)$, then the total area expressed by the integral is:

$$\int \int_{Q} f(x, y) dA = \int \int_{Q} f(x, y) dx dy \approx$$

$$\sum_{j=1}^{m} \sum_{i=1}^{n} f(r_{i}, \theta_{j}) \Delta A_{ij}$$

Taking the limit as $m, n \to \infty$:

$$\int \int_{Q} f(x,y) dA = \int_{\alpha}^{\beta} \int_{g(\theta)}^{f(\theta)} f(r,\theta) r dr d\theta$$

A.2 Lemma proof; determinant of orthogonal matrix is ± 1

Lemma A.2. The determinant of an orthogonal matrix is ± 1 .

Proof. Let $\mathbf{U} \in \mathbb{R}^{m \times n}$ be an orthogonal matrix. The columns of an orthogonal matrix are orthonormal, which means

$$\mathbf{u}_i^{\top}\mathbf{u}_j = \left\{ \begin{array}{ll} 1, & i = j \\ 0, & i \neq j \end{array} \right.$$

for any two columns $\mathbf{u}_i, \mathbf{u}_j$. Therefore

$$\mathbf{U}^{\top}\mathbf{U} = \mathbf{I}_m$$

Taking determinant and using their properties:

$$\det(\mathbf{U})\det(\mathbf{U}^{\top}) = \det(\mathbf{I}) \Rightarrow$$
$$\det(\mathbf{U})^{2} = 1 \Rightarrow$$
$$\det(\mathbf{U}) = \pm 1$$

A.3 Proof: Jacobian of linear transform

LEMMA A.3. Let $X \in \mathbb{R}^n$ and $Y \in \mathbb{R}^n$ be two real column vectors. Let also each element of X be functionally independent (no element in X if a function of element in Y and vice versa). If Y is given by the linear transform

$$Y = AX$$
, $det(A) \neq 0$

, where $\mathbf{A} = (\alpha_{ij})$ is non-singular $p \times p$ matrix of constants, then

$$Y = AX$$
, $det(A) \neq 0 \Rightarrow dY = det(A) dX$ (A.2)

Proof. We know that when we do change of variables with from **X** to **Y** = $f(\mathbf{X})$, then the differentials are given by:

$$d\mathbf{Y} = \det(\mathbf{J})d\mathbf{X} \tag{1}$$

where **J** is the Jacobian matrix of **Y**. For the linear transform $\mathbf{Y} = \mathbf{AX}$, because **X** and **Y** both have length n, the Jacobian is given by:

$$\mathbf{J} = \begin{bmatrix} \frac{\partial \mathbf{Y}}{\partial x_1} & \frac{\partial \mathbf{Y}}{\partial x_2} & \dots & \frac{\partial \mathbf{Y}}{\partial x_n} \end{bmatrix} = \begin{bmatrix} \frac{\partial \mathbf{Y}_1}{\partial x_1} & \frac{\partial \mathbf{Y}_1}{\partial x_2} & \dots & \frac{\partial \mathbf{Y}_1}{\partial x_n} \\ \frac{\partial \mathbf{Y}_2}{\partial x_1} & \frac{\partial \mathbf{Y}_2}{\partial x_2} & \dots & \frac{\partial \mathbf{Y}_2}{\partial x_n} \\ \vdots & \vdots & \ddots & \vdots \\ \frac{\partial \mathbf{Y}_n}{\partial x_1} & \frac{\partial \mathbf{Y}_n}{\partial x_2} & \dots & \frac{\partial \mathbf{Y}_n}{\partial x_n} \end{bmatrix}$$
(2)

However, each element y_i of **Y** is given by:

$$y_i = \alpha_{i1}x_1 + \alpha_{i2}x_2 + \ldots + \alpha_{in}x_n, \quad i = 1, \ldots, n$$

Therefore each entry (i, j) of the Jacobian is given by:

$$\frac{\partial y_i}{\partial x_j} = \alpha_{ij} \quad \forall \ i = 1, \dots, n, \quad \forall \ j = 1, \dots, n$$
(3)

i.e. J = A. Therefore Eq. (1) with the aid of Eq. (2), Eq. (3) yields:

$$d\mathbf{Y} = \det(\mathbf{A}) d\mathbf{X}$$