Форматы представления данных в компьютере

Для вопросов по курсу: natalya.shevskaya@moevm.info
Префикс в теме письма [CS_23XX]

Шевская Наталья Владимировна СПбГЭТУ "ЛЭТИ", ФКТИ, МОЭВМ

Представление целых чисел

M

Позиционные системы счисления

• Десятичная система счисления

$$56789_{10} = 5 * 10^4 + 6 * 10^3 + 7 * 10^2 + 8 * 10^1 + 9 * 10^0$$

• Двоичная система счисления

$$10011_2 = 1 * 2^4 + 0 * 2^3 + 0 * 2^2 + 1 * 2^1 + 1 * 2^0$$

• Восьмеричная система счисления

$$567_8 = 5 * 8^2 + 6 * 8^1 + 7 * 8^0$$

• Шестнадцатеричная система счисления

$$56A8C_{16} = 5 * 16^4 + 6 * 16^3 + A * 16^2 + 8 * 16^1 + C * 16^0$$

Вспомогательные функции Python

```
>>> b = 127
                                         >>> int(0b10010)
>>> b.bit_length()
                                         >>> 0b11101000 + 0b10010
....
>>> bin(127)
                                         ....
                                         >>> '{:b}'.format(0b11101000 >> 2)
>>> "{:b}".format(127)
```


Формат представления чисел на компьютере

Числа конечной точности - числа, представляемые в фиксированном количестве разрядов.

Арифметические операции с числами конечной точности имеют ограничения и могут вызвать переполнение.

Переполнение -- ситуация когда результат операции не помещается в наперед заданное количество разрядов.

Формат представления беззнаковых целых чисел

123:

7	6	5	4	3	2	1	0
0	1	1	1	1	0	1	1

Диапазон значений:

Для
$$n = 8$$
: $0 \dots 2^8 - 1 \Rightarrow 0 \dots 255$

	7	6	5	4	3	2	1	0
42:	0	0	1	0	1	0	1	0

	7	6	5	4	3	2	1	0
128:	1	0	0	0	0	0	0	0

	7	6	5	4	3	2	1	0
255:	1	1	1	1	1	1	1	1

	7	6	5	4	3	2	1	0	
305:	0	0	1	1	0	0	0	1	
		П	EPE	ПОЛЬ	ЕНИ	E			_

Формат представления знаковых целых чисел

$$ho$$
 Прямой код $(-2^{n-1}+1\dots 2^{n-1}-1)$ $(-2^{8-1}+1\dots 2^{8-1}-1)\Rightarrow (-2^7+1\dots 2^7-1)\Rightarrow$ $(-128+1\dots 128-1)\Rightarrow (-127\dots 127)$

$$ightharpoonup$$
 Обратный код (-2ⁿ⁻¹ + 1 ... 2ⁿ⁻¹-1) (-2⁸⁻¹ + 1 ... 2⁸⁻¹-1) \Rightarrow ... \Rightarrow (-127 ... 127)

```
-123: 1 0 0 0 0 1 0 0
```

$$\succ$$
 Доп. код $(-2^{n-1} \dots 2^{n-1}-1)$ $(-2^{8-1} \dots 2^{8-1}-1) \Rightarrow (-2^7 \dots 2^7-1) \Rightarrow (-128 \dots 127)$

Дополнительный код -- единственный ноль

В 10-СС	В 2-СС	Инвертируем	Выделяем знаковый бит	Дополняем до двух	В 10-СС и доп. кода
0	000	111	1 11	0 00	0
1	001	110	1 10	1 11	-1
2	010	101	1 01	1 10	-2
3	011	100	1 00	1 01	-3
4	100	011	0 11	1 00	-4
5	101	010	0 10	0 11	3
6	110	001	0 01	0 10	2
7	111	000	0 00	0 01	1

Примеры диапазонов

Разрядность	Диапазон беззнаковых чисел	Диапазон знаковых чисел (дополнительный код)
8	От 0 до 255	От –128 до 127
32	От 0 до 4 294 967 295	От –2 147 483 648 до 2 147 483 647
64	От 0 до 18 446 744 073 709 551 615	От -9 223 372 036 854 775 808 до 9 223 372 036 854 775 807

Прямой, обратный и дополнительный код

Пример для 8 бит	Прямой	Обратный	Дополнительный
123	01111011	01111011	01111011
-123	1 1111011	10000100	10000101
-42	10101010	1 1010101	1 1010110
-127	11111111	10000000	10000001
-128	impossible	impossible	10000000

Примеры с доп. кодом: -126 - 2 = -128

M

Примеры с доп. кодом: -126 - 2 = -128

+

-128₁₀

M

Примеры с доп. кодом: 126 - 2 = 124

124₁₀

0 1 1 1 1 1 0 0

Примеры с доп. кодом: -126 + 2 = -124

Примеры с доп. кодом: -126 - 2 = -128

Представление чисел с плавающей точкой

Формат представления чисел с плавающей точкой

Стандарт IEEE 754:

одинарная точность (single precision) - 4 байта.
 Пример: float в С
 примерно от 10⁻³⁸ до 10³⁸

двойная точность (double precision) - 8 байт.
 Примеры: double в C, float в Python
 примерно от 10⁻³⁰⁸ до 10³⁰⁸

Одинарная точность

- 1 бит знак (0 положительные числа, 1 отрицательные)
- > 8 бит порядок
- 23 бита дробная значащая часть числа мантисса
- 127 смещение

1,111101 - мантисса, записывается только дробная часть

2 - истинный порядок, 129 - смещенный порядок

знак		порядок							мантисса									
0	1	0	0	0	0	0	0	1	1	1	1	1	0	1		0	0	0

Одинарная точность

Специальные случаи:

- Если порядок и мантисса равны 0, число равно 0.
- Если порядок равен 255 и мантисса равна 0, число в зависимости от знака -∞ или +∞.
- Если порядок равен 255 и мантисса не равна 0, значение считается недопустимым числом и является NaN (Not a Number).

знак				пор	ядок				мантисса						
0	0	1	0	0	0	0	0	1	1	1	1		0	0	0

Двойная точность

- 1 бит знак (0 положительные числа, 1 отрицательные)
- 11 бит порядок
- > 52 бита дробная значащая часть числа мантисса
- > 1023 смещение

1,111101 - мантисса

2 - истинный порядок, 1025 - смещенный порядок

знак				порядок											
0	0	1	0	•••	0	0	1	1	1	1		0	0	0 :	20

Пример 446.15625 в одинарной точности

```
446,15625_{10} \Rightarrow отдельно обрабатываем целую часть 346_{10} \Rightarrow 346_{10}
```

порядок: 8 знаков влево \Rightarrow 1,10111110????????????? хвост из 15 знаков

собираем хвост....

0.15625 в бинарном виде

0,15625	* 2	=	0,3125	⇒	1,101111100???????????
0,3125	* 2	=	0,625	⇒	1,1011111000??????????
0,625	* 2	=	1,25	-1 ⇒	1,10111110001??????????
0,25	* 2	=	0,5	⇒	1,101111100010??????????
0,5	* 2	=	1,0	-1 ⇒	1,1011111000101?????????

Где взять все остальные знаки? Забить нулями!

1,10111110001010000000000

превратим в знак | порядок | мантисса

446.15625 в памяти компьютера

Знак: 0

Порядок: истинный 8 + смещение 127 = 135_{10} ⇒ 1000 0111_2

Мантисса: 1,1011111000101000000000

Итого:

Двойная точность:

Знак: 0

Порядок: истинный 8 + смещение 1023 = $1031_{10} \Rightarrow 100\ 0000\ 0111_{2}$

Мантисса: 1,1011111000101000000000 + 29 нулей

Собираем число обратно в 10-СС

Знак: 1 -- отрицательное

Порядок: 1000 0111 $_2$ ⇒ 135 $_{10}$ (смещенный) ⇒ 135 - 127 = 8 (истинный)

Мантисса:

переводим хвост привычным способом:

Переводим 0,011 в 10-СС

0,011 0000 0000 0000

0	,		-2														
0	,	0	1	1	0	0	0	0	0	0	0	0	0	0	0	0	0

$$= 0^{2}-1^{1} + 1^{2}-2^{2} + 1^{2}-3^{2}+0^{2}-4^{2}+0^{2}-5^{2}+...+0^{2}-16^{2}=0^{2}+1/4^{2}+1/8^{2}+0^{2}+...+0^{2}-16^{2}=0^{2}+1/4^{2}+1/8^{2}+0^{2}+...+0^{2}+$$

Соединяем "голову" и хвост, припоминая про отрицательный знак:

переводим 2-СС делением на 2 собираем *остатки в обратном порядке*

переводим в 2-СС умножением на 2 собираем **целые части в прямом порядке**

1) вычисляем истинный порядок
2) идем в мантиссу и выделяем оттуда целую часть 10-го числа

- 3) переводим двоичное представление целого в 10-СС
 - 4) двоичный "хвост" переводим в 10-СС с отрицательными степенями
 - 5) собираем число из знака, целой и вещественной части

Чем двойная точность отличается от одинарной?

Знак -- тот же самый (1 бит)

Порядок -- вместо 8 работаем с **11** битами (смещение из-за этого равно не 127, а **1023**)

Мантисса -- вместо 23 бита работаем с **52** битами (в худшем случае при переводе дробной части выполним на *29* итераций больше)

Пример с "плохим" хвостом числа

0,8919

Какая целая часть у этого числа?

Какой порядок у этого числа?

Сколько итераций для вычисления мантиссы придется сделать?

M

0,8919 переводим в 2-СС

- 1) $0.8919 * 2 = 1.7838 \Longrightarrow 0.1$ (-1)
- 2) $0.7838 * 2 = 1.5676 \Longrightarrow 0.11 (-1)$
- 3) $0.5676 * 2 = 1.1352 \Longrightarrow 0.111 (-1)$
- 4) $0.1352 * 2 = 0.2704 \Longrightarrow 0.1110$
- 5) $0,2704 * 2 = 0,5408 \Longrightarrow 0,11100$
- 6) $0.5408 * 2 = 1.0816 \Longrightarrow 0.111001 (-1)$

• • • •

M

Мантисса и порядок для числа 0,8919

$$0,111001?.. = 1,11001?.. *2^(-1)$$

• • • •

$$0,0816 * 2 = \dots$$

истинный -1 ==> -1 + 127 = 126 ==> 0111 1110 0 | 0111 1110 | 11001? сколько итераций нужно сделать еще? 23-5=18

Для вопросов по курсу: natalya.shevskaya@moevm.info

Префикс в теме письма [CS_23XX]