

4 A CEILING APPARATUS AND METHOD OF REDUCING CONDENSATION IN
5 CONTROLLED ATMOSPHERE BUILDINGS

6 Field of the Invention

7 The present invention relates generally to controlling and minimizing
8 condensation on ceilings in buildings. The invention more particularly relates to the
9 control and minimizing of the collection of condensation on ceilings of food storage
10 buildings containing vegetables.

12 Background of the Invention

14 Many vegetables are stored in buildings with controlled atmospheres
15 including circulation of the air for the purpose of retaining produce freshness or
16 decreasing the time within which produce spoilage might occur. Air is forced
17 through vents located within the floor and circulates through the stored fruits or
18 vegetables. The controlled atmosphere is generally very humid creating an
19 opportunity for collection of condensate at the ceiling leading to condensate water
20 dripping upon and entering the bulk stored vegetable pile. The control and
21 minimizing of condensation inside the controlled atmosphere building is a recognized
22 industry problem and requirement for successful long term storage. Condensation
23 will form on the walls and ceiling of the controlled atmosphere building when the
24 ceiling or wall surface temperature drops below the temperature of the building
25 interior. Prior art directed to minimizing the formation of condensation in controlled
26 atmosphere buildings is seen in U.S. Patent No. 5,353,564 to Hansen.
27
28
29
30

Summary of the Invention

The controlled atmosphere building (20) interior ceiling (32) and interior walls (40) are subject to collection of condensation at the interior ceiling surface (34) and the interior wall surface (42). Maintaining the temperature of the interior wall surface (42) and interior ceiling surface (34) at or above the temperature of the building interior (22) will eliminate or minimize the collection of condensation. This is accomplished by composing the interior walls (40) and or the interior ceiling (32) of or affixing to the existing building walls and or ceiling a heating means (60) interposed between a first insulating board means (7) and a second insulating board means (14). The combined first insulating board means (7), interposed heating means (60) and second insulating board means (14) either form the surface of the interior ceiling (32) or interior wall (42) or are affixed to the existing interior building ceiling surface (32) and or interior wall (42) such that the exterior surface (4) of the structure forms the surfaces of the interior wall (40) and or interior ceiling (32). Heating means (60) is controlled to allow heating of the indicated first insulating board means (7) and second insulating board means (14) and specifically the second insulating board means (14) at the exterior surface (4). Heating means (60) is controlled to maintain the exterior surface (4) at or above the temperature of the building interior (22).

Brief Description of Drawings

28 Fig. 1 is a perspective of a controlled atmosphere building (20) showing a
29 cutaway of the wall (40) and ceiling (32). Also illustrated is bulk storage of
30 vegetables (70).

1 Fig. 2 is a section from Fig. 1 showing a building (20) walls (40) and ceiling
2 (32) and the apparatus of this patent (1) comprising a heating means (60) interposed
3 between a first insulating board means (7) and a second insulating board means (14).

5 Fig. 3 and Fig. 4 are details from Fig. 2 showing the invention including a
6 heating means (60) interposed between a first insulating board means (7) and a
7 second insulating board means (14). Additionally illustrated is power means (65) for
8 the heating means (60).

10 Fig. 5 and Fig. 6 are sections from Fig. 3 which illustrate, for the ceiling at
11 Fig. 5 and for the wall application at Fig. 6, the serpentine or sinusoidal arrangement
12 and dimensions of the heating means (60) relative to the at least one insulating board
13 means (7). Also seen is power means (65) and temperature control means (70) and
14 temperature sensing means (75). Fig. 5 illustrates
15

17 Detailed Description of the Invention

18 Fig. 1, 2, 3, 4, 5 and 6 illustrates a food storage controlled atmosphere
19 building (20) having an interior (22) which is subject to the accumulation of
20 condensation. The controlled atmosphere building (20) illustration omits air handling
21 equipment normally utilized in such facilities. This invention focuses on maintaining
22 the building interior surfaces at a temperature, approximately 0.5 degrees F, above
23 the dewpoint of the food storage building interior (22) to prevent the accumulation of
24 condensation on these surfaces. Accumulation of condensation on the building
25 ceiling (32) allows the condensate to drip onto and into bulk stored vegetables such
26 as potatoes causing or contributing to deterioration.

28 The apparatus and method of this invention comprises at least one insulating

1 board means (7) having a first top surface (9) and an exterior surface (4); the exterior
2 surface (4) is in atmosphere communication with the interior of a building (20). The
3 building (20) has a ceiling (32) and walls (40). The ceiling (32) has an apex (36) and
4 a width d1 (38) from the ceiling apex (36) to a wall (40). The wall (40), having an
5 interior wall surface (42), has a height d2 (48) from a building foundation (24) to the
6 ceiling (32). A heating means (60) is in thermal communication with and affixed by
7 heating means (60) affixing means (62) to the first top surface (9). The first top
8 surface (9) is affixed by construction means to a ceiling (32) at an interior ceiling
9 surface (34). The at least one insulating board means (7) has a width d5 (33) which is
10 less than or equal to the ceiling width d1 (38). The apparatus, at the wall (40), is
11 affixed, at the first top surface (9), by construction means to a wall (40) at an interior
12 wall surface (42) and where the at least one insulating board means (7) has a height
13 d6 (43) which is less than or equal to the wall (40) height d6 (43). A power means
14 (65) is connected by power interconnection means (64) with the heating means (60)
15 to operate the heating means (60) and temperature control means (70) is provided to
16 control the power mans (65) for temperature control of the heating means (60).
17

22 The preferred embodiment has is composed of a first insulating board means
23 (7) having a first top surface (9) and an exterior surface (4) and a second insulating
24 board means (14) having a bottom surface (11) and a second top surface (12). The
25 exterior surface (4) is moisture resistant. The at least one insulating board means (7),
26 the first insulating board means (7) and second insulating board means (14) is
27 comprised, in the preferred embodiment of polyisocyanurate rigid insulation board
28 having a moisture resistant surface. Insulating board means (7) may be substantially
29 planar. Other insulation materials will be recognized as equivalent.
30

1 In the preferred embodiment the heating means (60) is 220v heat tape (60)
2 controlled by a temperature control means (70) comprising thermostatic control with
3 temperature sensing by a temperature sensing means (75) generally provided by a
4 thermocouple or thermistor placed distal from the heating means (60) at the a first top
5 surface (9) or bottom surface (11). In an alternative embodiment the heating means
6 (60) may be a fluid heat transfer system means (60) comprised of tubing conducting
7 fluids having fluid temperature controlled by a temperature control means (70)
8 comprising thermostatic control with temperature sensing by a temperature sensing
9 means (75) operating valves and pumps for the delivery of temperature controlled
10 fluids. The heating means (60) is affixed by heating means affixing means (62) at the
11 first top surface (9) or bottom surface (11) which includes but is not limited to
12 adhesives, staples, tapes, sheet metal screws and other recognized equivalent affixing
13 means. In the preferred embodiment a single temperature measurement, via a
14 temperature sensing means (75) is provided for temperature control means (70)
15 operation with temperature control operated or adjusted manually by a building
16 manager upon inspection of interior ceiling surfaces (34) and interior wall surfaces
17 (42).

23 In the preferred embodiment the at least one heating means (60) is arranged,
24 relative to the ceiling (32), at the first top surface (9) or the bottom surface (11) in a
25 serpentine or sinusoidal arrangement. At the ceiling (32), the serpentine or sinusoidal
26 arrangement having a period p1 (39) and an amplitude d3 (34) of a width less than or
27 equal to the ceiling width d1 (38). At the wall the at least one heating means (60) is
28 arrangement in a serpentine or sinusoidal arrangement, having a period p1 (39) and
29 an amplitude d4 (49) of a height less than or equal to the height d2 (48) of the wall
30

1 (40) at the interior wall surface (42).

2 In the preferred embodiment the first insulating board means (7), at the first
3 top surface (9), is affixed by insulating board affixing means flush to the second
4 insulating board means (14) at the bottom surface (11) such that there is no cavity or
5 such that any space between the said first insulating board means (7) and the second
6 insulating board means (14) is minimized. Insulating board affixing means
7 comprises adhesives, staples, screws and other means recognized by those of ordinary
8 skill in insulation arts. The second top surface (12) is affixed by construction means
9 to a ceiling (32) at an interior ceiling surface (34) or to a wall (40) at an interior wall
10 surface (42). Construction affixing means includes but is not limited to staples,
11 screws, adhesives and other equivalent affixing means. In the preferred embodiment
12 a ceiling insulation means (80) is placed intermediate the second insulating board
13 means (7) at the second top surface (12) and the interior ceiling surface (34). Ceiling
14 insulation means (80) is blown, glass-blanket, foam and other insulation as will be
15 appreciated by those of ordinary skills in the insulation arts.

16 The method of heating controlled atmosphere ceilings and or walls is by
17 affixing at least one insulating board means (7) at a ceiling (32) and or a wall (40) of
18 an interior (22) of a building (20) where the ceiling (32) has an apex (36) and a width
19 d_1 (38) from the ceiling apex (36) to the wall (40). The wall (40), at an interior wall
20 surface (42) having a height d_2 (48) from a building foundation (24) to the ceiling
21 (32). The at least one insulating board means (7) having a first top surface (9) and an
22 exterior surface (4) and the exterior surface (4) is in atmosphere communication with
23 the interior (22). Heating the at least one insulating board means (7) with a heating
24 means (60) in thermal communication with and affixed by heating means (60)

1 affixing means (62) to the first top surface (9). Affixing by construction means, the
2 first top surface (9) to a ceiling (32) and or a wall (40); affixing the first top surface
3 (9) to a ceiling (32) at an interior ceiling surface (34) where the at least one insulating
4 board means (7) having a width d5 (33) which is less than or equal to the ceiling
5 width d1 (38); affixing the first top surface (9) to a wall (40) at an interior wall
6 surface (42) with the at least one insulating board means (7) having a height d6 (43)
7 which is less than or equal to the wall (40) height d6 (43). Supplying power means
8 (65) connected by power interconnection means (64) with heating means (60) to
9 operate the heating means (60) and providing temperature control means (70) to
10 control the power mans (65) for temperature control of the heating means (60).

14 In the preferred embodiment Thermax rigid foam board by Celotex® is used
15 as solid core insulation board which does not absorb moisture. Typical construction
16 is two sets of 716' resistance/heat cables at approximately 2kw each wired to a single
17 220v 4kw breaker. Heat cables are looped in a serpentine or sinusoidal arrangement
18 from building side to side with an approximate 2' period. Two sets of cables will heat
19 approximately 24' of building ceiling. The heating means comprised of heat cables
20 are controlled by a thermostat with the sensor, typically a thermocouple or thermistor,
21 between the Thermax boards. Operations typically call for the temperature between
22 the Thermax boards to be maintained approximately 1 to 2 degrees above the
23 temperature of the building interior. The building manager will observe and will
24 adjust the thermostat to increase the temperature if any condensation is observed.
25 The construction is two layers of Thermax with a blown in layer of R32 on the top
26 giving approximately R40 above the heat tape. This allows the heat tape to maintain
27 the temperature of the bottom board such that the interior surface is maintained at
28
29
30

1 approximately 0.5 degrees over the building interior temperature.

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30