2. Truth table:

Α	В	С	D	Decimal	Divisible by 4?	Χ
0	0	0	0	0	Yes	0
0	0	0	1	1	No	0
0	0	1	0	2	No	0
0	0	1	1	3	No	1
0	1	0	0	4	Yes	1
0	1	0	1	5	No	1
0	1	1	0	6	No	1
0	1	1	1	7	No	0
1	0	0	0	8	Yes	1
1	0	0	1	9	No	1
1	0	1	0	10	No	1
1	0	1	1	11	No	0
1	1	0	0	12	Yes	0
1	1	0	1	13	No	0
1	1	1	0	14	No	0
1	1	1	1	15	No	1

3. Karnaugh Map:

AB\CD	00	01	11	10
00	0	0	1	0
01	1	1	0	1
11	0	0	1	0
10	1	1	0	1

X = C'A' + D'B' + CA + DB

7. Your Circuit:

9. Truth Table:

Χ	Υ	Cin	Cout	S
0	0	0	0	0
0	0	1	0	1
0	1	0	0	1
0	1	1	1	0
1	0	0	0	1
1	0	1	1	0
1	1	0	1	0
1	1	1	1	1

10.

Cout:

$$S = X Y' Cin' + X' Y' Cin + X Y Cin + X' Y Cin'$$
 SOP
 $S = (X + Y + Cin) (X + Y' + Cin') (X' + Y' + Cin) (X' + Y + Cin')$ POS

11. Your DesignWorks Circuit:

<u>Approach 1:</u> Starting with the POS forms, apply the distributive law to reduce the large gates to 2-inputs: S = (X + Y + Cin)(X + Y' + Cin')(X' + Y' + Cin)(X' + Y + Cin') = [Cin + (X + Y)(X' + Y')][Cin' + (X + Y')(X' + Y')] Cout = (X + Y)(Cin + Y)(Cin + X)

Then build the circuit with OR gates behind AND gates and convert them directly to NOR gates. In 2 cases, the gates used for the Sum can be re-used in the creation of Cout.

