A multi-GNSS receiver

CXD5605AGF

Description

The CXD5605AGF is a multi-GNSS receiver with a nor sensitivity and fast acquisition engine.

The CXD5605AGF can operate from a single supply rail from 0.7 V to 1.8 V. Higher supply voltages up to 5.5 V are also possible using a companion PMIC (CXA3846GF). The CXA3846GF has two high efficiency DC-DC converters and very low power RTC (Real Time Clock) and XTAL oscillator.

The CXD5605AGF also has integrated digital noise filters and spectrum analyzer, enabling developers to measure against noise and observe the received spectrum in the final product.

Features

- A multi-GNSS receiver for GPS, GLONASS, SBAS, QZSS, BeiDou and Galileo
- Ultra-low power consumption
- Embedded noise filters and spectrum analyzer for development
- Embedded NVM (8 Mbit)
- 1.8 V Host MCU interface IO

Contents

Description	1
Features	
Contents	
Package	
Structure	
Absolute Maximum Ratings	
Recommended Operating Conditions	
Block Diagram	
Pin Description	
List	
Failsafe Mode	
Unused Pin Terminations	
Description of Functions	
Support Satellite Systems	
Position Accuracy	
Time-To-First-Fix (TTFF)	
Sensitivity	
Noise Filter	
RF Performance	
Internal LDO	
Power-On Reset	
Internal Clock Oscillators	
RTC Clock	g
Interfaces	
Description of Operation	9
State Transition	11
Position Update Rate Mode	
Electrical Characteristics	13
DC Characteristics	13
AC Characteristics	14
Test Circuit	
Reliability Qualification	19
ESD Strength	19
Moisture Sensitivity Level	19
Reflow Profile	20
Package Outline	22
Notice	23

Purpose of Use of the Products:	23
Safe Design:	23
Product Information:	23
EXCLUSION OF WARRANTY ON THE PRODUCTS:	23
LIMITATION OF LIABILITY:	24
Compliance with Laws:	24
Governing Law:	24
Notes:	24

Package

UFBGA-49Pin (WLCSP)

Structure

Silicon-Gate CMOS IC

Absolute Maximum Ratings

Item	Min.	Max.	Unit
I/O supply voltage	-0.3	2.5	V
Supply voltage	-0.3	1.4	V
Digital input voltage (except Failsafe Mode)	-0.3	IO supply voltage + 0.3	V
Digital input voltage (Failsafe Mode)	-0.3	2.2	V
RF_IN input power	_	0	dBm
Analog input voltage	-0.3	IO supply voltage + 0.3	V
Storage temperature	-65	150	°C
Magnetic field strength	_	1400	mT

Recommended Operating Conditions

	Item			Max.	Unit	Remarks
	I/O supply voltage (VDD_IO0, VDD_IO1, VDD_IO ANA)		1.80	1.89	V	
		0.65	0.70	0.75	V	In a range from -25 °C to 85 °C
	VDD_CORE	0.68	0.70	0.75	V	In a range from -40 °C to 85 °C
		0.90	1.00	1.10	V	
Supply voltage	VDDA_LNA, VDDA_LO, VDDA_ANA and LDO0_OUT (as analog blocks input)	0.65	0.70	0.75	V	
	LDO_IN for 0.70V (Typ.) from LDO0/1 supply	0.90	_	1.95	V	Even if the LDOs are not used,
	LDO_IN for VDD_CORE: 1.0V (Typ.) from LDO1 supply		_	1.95	٧	LDO_IN must be this input voltage level.
Noise level	VDD_IO_ANA, VDDA_LNA, VDDA_LO, VDDA_ANA and LDO0_OUT, LDO_IN		-		mVpp	Since noise on these power supplies could deteriorate receiver sensitivity, it is preferable to lesser noise level. Please see reference circuits and recommended parts on "CXD5605GF Application Note for Hardware Implementation" for better performance.
Magnetic field strength		_	_	45	mT	In 25 °C / 10-year
		_	_	20	mT	In 105 °C / 10-year
Operating tem	perature	-40	25	85	°C	
Junction temp	erature	_	_	105	°C	

Block Diagram

Pin Description

List

Pin#	Pin Name	Туре	I/O	IO Power Supply	Reset State	Description
A1	RF_IN	Analog	Input	VDD_IO_ANA		GNSS RF signal input
A2	VDDA_LNA	Power	_		_	Analog block (LNA) power
А3	VSSA_ANA	GND	_	_	_	Analog blocks GND
A4	VDD_IO_ANA	Power	_	_	_	Analog IO power
A5	P02 / UART0_CTS	Digital	In/Out	VDD_IO0	Hi-Z	UART CTS (Host IF)
A6	P03 / UART0_RTS	Digital	In/Out	VDD_IO0	Hi-Z	UART RTS (Host IF) / RF Mute
A7	VDD_IO0	Power	1		1	VDD_IO0 domain IO power
B1	VSSA_LNA	GND	_		_	Analog block (LNA) GND
B2	VSSA_LO	GND	1			Analog block (Local OSC) GND
В3	VDDA_LO	Power	ı	1		Analog block (Local OSC) Power
B4	VSSA_AIN	GND				Analog IO GND
B5	TEST0	Digital	Input	VDD_IO1	Hi-Z	Tied to GND
В6	P00 / UART0_TXD / I2C0_SCL	Digital	In/Out	VDD_IO0	Hi-Z	UART TX (Host IF) / I ² C SCL (Host IF / Slave)

Pin#	Pin Name	Туре	I/O	IO Power Supply	Reset State	Description
B7	P01 / UARTO_RXD / I2C0 SDA	Digital	In/Out	VDD_IO0	Hi-Z	UART RX (Host IF) / I ² C SDA (Host IF / Slave)
C1	DC_0	Analog	Output	VDD_IO1	_	For TEST Leave floating
C2	VSSA_XOSC	GND	_	_	_	Analog blocks GND
C3	VDDA_ANA	Power	_	_	_	Analog blocks power
C4	P07 / PMIC_INT_IN	Digital	In/Out	VDD_IO1	Hi-Z	TCXO enabler / Interrupt input from CXA3846GF
C5	P05 / EXTLD_IN	Digital	In/Out	VDD_IO0	Hi-Z	Timing signal input (from LTE Modem) / 1PPS out
C6	VSS	GND	_	_	_	Digital block VSS
C7	P04 / INT_OUT	Digital	In/Out	VDD_IO0	Hi-Z	Interrupt output / 1PPS out
D1	V_WL	Analog	In/Out	VDD_IO1	_	For TEST Leave floating
D2	XOSC_IN	Analog	In/Out	VDD_IO_ANA	_	Crystal OSC / Clock input from TCXO
D3	LDO0_OUT	Power	_	_	_	LDO output for analog blocks
D4	P17 / RTC_IRQ_OUT	Digital	In/Out	VDD_IO1	Hi-Z	External LNA enabler / Interrupt output to CXA3846GF
D5	SYSTEM0	Digital	Input	VDD_IO1	Hi-Z	BOOT MODE
D6	SYSTEM1	Digital	Input	VDD_IO1	Hi-Z	BOOT MODE
D7	VDD_IO1	Power	_	_	_	VDD_IO1 domain IO power
E1	LDO2_OUT	Analog	Out	VDD_IO_ANA	_	LDO output for memory core blocks
E2	VSSA_RCOSC	GND	_	_	_	Analog blocks GND
E3	P15 / I2C1_SDA	Digital	In/Out	VDD_IO1	Hi-Z	I ² C SDA (CXA3846GF IF / Master)
E4	P14 / I2C1_SCL	Digital	In/Out	VDD_IO1	Hi-Z	I ² C SCL (CXA3846GF IF / Master)
E5	VSS	GND	_	_	_	Digital block VSS
E6	P06 / BOOT_REC	Digital	In/Out	VDD_IO1	Pull-down	BOOT Recovery (Normally tied to GND) / 1PPS out
E7	VSS	GND	_	_	_	Digital block VSS
F1	LDO_IN	Analog	Input	VDD_IO_ANA	_	LDO0 / LDO1 input
F2	LDO_EN	Analog	Input	VDD_IO_ANA	_	LDO0 / LDO1 enabler
F3	P11 / SPI1_IO1	Digital	In/Out	VDD_IO1	Hi-Z	FLASH memory interface (SPI IO1 / Master)
F4	P12 / SPI1_IO2	Digital	In/Out	VDD_IO1	Hi-Z	FLASH memory interface (SPI IO2 / Master)
F5	P16 / SEN_IRQ_IN	Digital	In/Out	VDD_IO1	Hi-Z	Interrupt input
F6	RST_X	Digital	Input	VDD_IO1	Hi-Z	Reset input
F7	RTC_CLK_IN	Digital	Input	VDD_IO1	Hi-Z	RTC clock input
G1	P13 / SPI1_IO3	Digital	In/Out	VDD_IO1	Hi-Z	FLASH memory interface (SPI IO3 / Master)

Pin#	Pin Name	Туре	I/O	IO Power Supply	Reset State	Description
G2	P10 / SPI1_IO0	Digital	In/Out	VDD_IO1	Hi-Z	FLASH memory interface (SPI IO0 / Master)
G3	P09 / SPI1_SCK	Digital	In/Out	VDD_IO1	Hi-Z	FLASH memory interface (SPI CLK / Master)
G4	P08 / SPI1_CS_X	Digital	In/Out	VDD_IO1	Hi-Z	FLASH memory interface (SPI CS / Master)
G5	LDO1_OUT	Analog	Output	VDD_IO_ANA	ı	LDO output for digital block
G6	VDD_CORE	Power		_	_	Digital block power
G7	VDD_CORE	Power		_		Digital block power

Failsafe Mode

Digital pins are in failsafe mode when the interface power is not supplied and it is less than 700 mV with a pull-down resister, while the core supply (VDD_CORE) may or may not be available. If the pins are in failsafe mode and connected to 1.95 V, protection circuits prevent any abnormal leak current from the pins.

Unused Pin Terminations

LDO1_OUT

LDO1_OUT should be open if LDO1 is not used. However, LDO0_OUT should be tied to analog 0.7 V even if LDO0 is not used.

RTC_CLK_IN

RTC_CLK_IN should be tied with GND if an external RTC clock isn't used.

Description of Functions

Support Satellite Systems

- GPS (L1 C/A)
- GLONASS (L1OF)
- QZSS (L1 C/A)
- SBAS (L1 C/A)
- BeiDou (B1)
- Galileo (E1 CBOC)

Position Accuracy

Item	GPS	GPS & GLONASS	Unit	Remarks
2DRMS	1.0	1.0	m	Signal strength is -130 dBm

Time-To-First-Fix (TTFF)

Item	GPS	GPS & GLONASS	Unit	Remarks
Cold Start ¹	35	35	S	Signal attenuath is 120 dDm
Hot Start ²	2	2	s	Signal strength is -130 dBm

Sensitivity

Item	GPS	GPS & GLONASS	Unit	Remarks
Cold Start	-147	-147	dBm	
Hot Start	-160	-160	dBm	
Tracking	-161	-161	dBm	

Noise Filter

An embedded noise filter for GNSS signals. It is automatically enabled at the optimum settings for the input noise.

RF Performance

Item	Min.	Тур.	Max.	Unit	Remarks
Total NF	_	3	_	dB	

Internal LDO

Embedded LDOs are provided for each internal power supply block.

LDO0

LDO0 can be a power supply for RF Block and Analog Block.

Item	Min.	Тур.	Max.	Unit	Remarks
Output voltage	0.68	0.70	0.72	V	

LDO1

LDO1 can be a power supply for Digital Block.

Item	Min.	Тур.	Max.	Unit	Remarks
Output voltage	0.68	.68 0.70 0.72 V For VDD_CORE: 0.7		For VDD_CORE: 0.7 V (Typ.)	
Output voltage	0.95	1.00	1.05	٧	For VDD_CORE: 1.0 V (Typ.)

LDO2

LDO2 is power supply for memories and always enabled even if the LDO_EN pin tied to GND.

¹ Positioning start without TCXO bias, GPS time, current location, ephemeris or almanac.

² Positioning start with 1) | CXD5605AGF internal time – GPS time| < 500 µs, 2) | CXD5605AGF internal location - true positioning location| < 50 km, 3) TCXO bias is known, 4) ephemeris is known and 5) any satellite broadcast codes have been decoded.

Item	Min.	Тур.	Max.	Unit	Remarks
Output voltage	0.95	1.00	1.05	V	

Power-On Reset

An internal power-on reset circuit release the power-on reset after 7 ms to 12 ms passed when all of the VDDA_ANA pin , the LDO0_OUT pin, the VDDA_LO pin, the VDDA_LNA pin and the VDD_CORE pin reach a certain voltage or higher and enables autonomous startup without external reset control by the system. To avoid malfunction in boot-up, power-off state must be more than 100 ms.

The internal reset is generated from the power-on reset and the externa reset (the RST X pin).

Internal Clock Oscillators

RC Oscillator

A clock from this oscillator is used for the power management unit and RTC counter (if there is no external RTC clock).

RTC Clock

RTC counter maintains GNSS time and is used for the system wakeup/sleep timer function. Its clock sources are the RC oscillator or the RTC_CLK_IN pin with 32.768 kHz.

Because the clock from the RC oscillator is calibrated for the RTC counter but it may have frequency drift by temperature during sleep states (the calibration is done at S0: Exec and S1: Idle states), the sleep time also may be drifted. Below figure shows the frequency drifts by temperature around 25 °C at stabled input voltage.

Interfaces

Host MCU Interface

The following are provided as interfaces to the host MCU.

• UART: up to 1.00 Mbps (8-N-1), up to 2.00 Mbps (8-N-2),

I²C: Standard mode (100 kbps), Fast mode (400 kbps) and Fast mode plus (1 Mbps)

The interface selection is set by the SYSTEM0 and SYSTEM1 pins.

SYSTEM1	SYSTEM0	Selected interface
0	0	I ² C
0	1	UART
1	0	Reserved
1	1	Reserved

CXA3846GF Interface

This is an I²C interface with normal mode and fast mode. It is provided as an interface for the CXA3846GF.

1PPS Output

A 1PPS (pulse per second) signal is synchronized in the GPS time. P04 / INT OUT can be used for the 1PPS output.

Recovery Pin

When P06/BOOT_REC pin is high at power-on sequence³, the CXD5605AGF doesn't read a firmware on the FLASH memory to over-write it. Please refer to the "CXD5605AGF User's Manual" for details.

External FLASH Memory Interface

SPI1 is for an external FLASH memory. The max clock frequency is 39 MHz. The external FLASH memory is optional, and firmware can be held in not only the embedded NVM but also the external FLASH memory.

Item	Min.	Тур.	Max.	Unit	Remarks
FLASH memory size	0	ı	64	Mb	Recommended devices are listed in "Application Note for Hardware Implementation"

³ See AC characteristics - Power-on / Power-off, p.17

_

Description of Operation

State Transition

There are some states in the CXD5605AGF and the CXA3846GF operations as shown in the following diagram. If the CXA3846GF is not used, the system doesn't go to "S5" or "S6".

		CXA3846GF						
State	GNSS CPU		Always-on block	Backup RAM	Main RAM	CE Pin	RTC Counter	Registers
S0: Exec	Operation	Operation	Operation	Hold	Hold	Н	Operation	Hold
S1: Idle	Standby	Operation	Operation	Hold	Hold	Н	Operation	Hold
S2: Sleep0	Power-off	Power-off	Operation	Hold	Hold	Н	Operation	Hold
S3: Sleep1	Power-off	Power-off	Operation	Hold	Power-off	Н	Operation	Hold
S4: Sleep2	Power-off	Power-off	Operation	Power-off	Power-off	Н	Operation	Hold
S5: Deep Sleep	Power-off	Power-off	Power-off	Power-off	Power-off	Н	Operation	Hold
S6: Shutdown	Power-off	Power-off	Power-off	Power-off	Power-off	L	Off	Off

State Description

S0: Exec

GNSS positioning can be performed.

• S1: Idle

This is a command waiting state. The system can accept commands, but power consumption is managed to be low.

S2: Sleep0

The CXD5605AGF holds program code, data and satellite date but other logic circuit is powered off. The CXD5605AGF can wake up from this state without loading the data from an embedded NVRAM or an external FLASH memory or the system MCU.

S3: Sleep1

Because the CXD5605AGF holds satellite data only in this state, it must load program data from an embedded NVRAM or an external FLASH memory or the system MCU for wake-up but it can get a position with hot start.

S4: Sleep2

In this state, the CXD5605AGF is powered off except an internal PMU and always-on block.

S5: Deep Sleep

In this state, the CXD5605AGF is powered off but the CXA3846GF holds its RTC counter and backup registers.

S6: Shutdown

The CE pin of the CXA3846GF is low in this state. All functions are off but the leakage current is very low.

Position Update Rate Mode

The CXD5605AGF has two mode for position update rate. VDD_CORE voltage should be increased in High Update Rate Mode because an internal CPU needs higher clock frequency.

Normal Update Rate Mode

Position update rate: 1 Hz

> VDD_CORE voltage: 0.70 V (Typ.)

High Update Rate Mode

Position update rate: up to 5 HzVDD_CORE voltage: 1.0 V (Typ.)

Electrical Characteristics

DC Characteristics

Digital IO

Item		Symbol	nbol Min.		Max.	Unit
lancet valtage	H level	ViH	0.7 × IO supply voltage	_	IO supply voltage + 0.3	V
Input voltage	L level	VIL	-0.3	_	0.3 × IO supply voltage	V
Output valtage	H level	Vон	0.8 × IO supply voltage	_	_	V
Output voltage	L level	Vol	_	_	0.2 × IO supply voltage	V
Drivability	H level @V _{OH} (Min.)	Іон	1.2	_	_	mA
(VDD_IO0)	L level @VoL (Max.)	loL	1.2	_	_	mA
Drivability	H level @V _{OH} (Min.)	Іон	2	_		mA

Item		Symbol	Min.	Тур.	Max.	Unit
(VDD_IO1)	L level @V _{OL} (Max.)	loL	2	_		mA
Pull-up/down res	Pull-up/down resistance (VDD_IO0)		20	_	50	kΩ
Pull-up/down resistance (VDD_IO1)		R _{PUD}	30	_	70	kΩ
Capacitance	Capacitance		_	_	5	pF

Analog IO

LDO_EN

	Item	Symbol	Min.	Тур.	Max.	Unit
les est velte es	H level	VIH	0.8 × IO supply voltage	_	IO supply voltage + 0.3	V
Input voltage	L level	VIL	-0.3	_	0.3	V

Except LDO_EN

Item	Symbol	Min.	Тур.	Max.	Unit
Input voltage	Vı	_	_	Recommended operating supply voltage	٧
Output voltage	Vo	_	_	Recommended operating supply voltage	V

Current Consumption

• VDD_CORE (0.7 V (Typ.))

Item	State	Symbol	Min.	Тур.	Max.	Unit	Remarks	
Max load	_	MAX	_	_	40	mA		
Satellite acquisition		GNS _{ACQ}	_	13	_	mA	Cold Start	
	S0: Exec		_	5	_	mA	8-SV tracking w/ GPS only	
Satellite tracking		GNS _{TRK}	_	7	_	mA	24-SV tracking w/ multi constellations	
Idle	S1: Idle	IDLE	_	2	_	mA	Immediately after boot-up	
Sleep 0	S2: Sleep 0	SLP ₀	_	0.3	3	mA	Temp. in Max. is 25 °C	
Sleep 1	S2: Sleep 1	SLP ₁	_	20	200	μΑ	Temp. in Max. is 25 °C	
Sleep 2	S2: Sleep 2	SLP ₂	_	20	200	μΑ	Temp. in Max. is 25 °C	
Deep Sleep	S5: Deep Sleep	DSLP	_	_	0	μΑ	CXA3846GF cuts all power of CXD5605AGF core	
Shut down	S6: Shutdown	SD	_	_	0	μΑ		

• VDD_CORE (1.0 V (Typ.))

Item	State	Symbol	Min.	Тур.	Max.	Unit	Remarks
Max load	_	MAX	_	_	90	mA	
Satellite acquisition	00.5	GNS _{ACQ}	_	23	_	mA	Cold Start
Satellite tracking	S0: Exec	GNSTRK	_	12	_	mA	8-SV tracking w/ GPS only

Item	State	Symbol	Min.	Тур.	Max.	Unit	Remarks
			_	15	_	mA	24-SV tracking w/ multi constellations
Idle	S1: Idle	IDLE	_	4		mA	Immediately after boot-up
Sleep 0	S2: Sleep 0	SLP ₀	_	0.7	7	mA	Temp. in Max. is 25 °C
Sleep 1	S2: Sleep 1	SLP ₁	_	70	700	μΑ	Temp. in Max. is 25 °C
Sleep 2	S2: Sleep 2	SLP ₂	_	70	700	μΑ	Temp. in Max. is 25 °C
Deep Sleep	S5: Deep Sleep	DSLP	_	_	0	μA	CXA3846GF cuts all power of CXD5605AGF core
Shut down	S6: Shutdown	SD	_	_	0	μA	

Analog Core⁴

Item	State	Symbol	Min.	Тур.	Max.	Unit	Remarks
Max load	_	MAX	_	_	10	mA	
Satellite acquisition	SO: Evas	GNS _{ACQ}	_	3	_	mA	
Satellite tracking	S0: Exec	GNS _{TRK}	_	3	1	mA	
Idle	S1: Idle	IDLE	_	0.2	_	mA	Immediately after boot-up
Slean 0	C2: Class 0	CI D		20	40	μA	Temp. in Max. is 25 °C w/ ext. RTC clock
Sleep 0	S2: Sleep 0	SLP ₀		50	100	μΑ	Temp. in Max. is 25 °C w/0 ext. RTC clock
Olean 4	00: 01: 4	OL D		10	20	μΑ	Temp. in Max. is 25 °C w/ ext. RTC clock
Sleep 1	S2: Sleep 1	SLP ₁	_	40	80	μA	Temp. in Max. is 25 °C w/0 ext. RTC clock
Class 2	CO. Class 0	CI D		10	20	μA	Temp. in Max. is 25 °C w/ ext. RTC clock
Sleep 2	S2: Sleep 2 SLP ₂ — 40 80	80	μΑ	Temp. in Max. is 25 °C w/0 ext. RTC clock			
Deep Sleep	S5: Deep Sleep	DSLP	_		0	μA	CXA3846GF cuts all power of
Shut down	S6: Shutdown	SD	_	_	0	μA	CXD5605AGF core

VDD_IO0

State	Min.	Тур.	Max.	Unit	Remarks
All states except S5, S6	_	10	30	μΑ	During no IO toggling Temp. in Max. is 25 °C

VDD_IO1

State	Min.	Тур.	Max.	Unit	Remarks
S0: Exec	_	30	100	μA	During no IO toggling Temp. in Max. is 25 °C
All states except S0: Exec, S5, S6	_	10	50	μA	During no IO toggling Temp. in Max. is 25 °C

 $^{^{\}rm 4}\,$ VDDA_LNA, VDDA_LO, VDDA_ANA and LDO0_OUT

VDD_IO_ANA

State	Min.	Тур.	Max.	Unit	Remarks
S0: Exec	_	250	400	μA	Temp. in Max. is 25 °C
S1: Idle	_	170	300	μA	Temp. in Max. is 25 °C
S2: Sleep 0	_	140	300	μA	Temp. in Max. is 25 °C
S3: Sleep 1, S4: Sleep 2	_	60	200	μA	Temp. in Max. is 25 °C
—: Boot-up w/ internal LDOs use	_	_	300	mA	This current flows for 10 ms (ave.) to 30 ms (max.) at boot-up time when power for the VDD_CORE is supplied from LDO1.

AC Characteristics

UART (Host Interface)

Item	Symbol	Min.	Тур.	Max.	Unit	Remarks
UART Error Rate (except TX @ 115.2 kbps)	R _{BRT_ERR}	-1	ı	1	%	terr_tx / trate_ideal terr_rx / trate_ideal
UART Error Rate (TX @ 115.2kbps)	RBRT_ERR_FD_TX	-4		4	%	terr_tx / trate_ideal

These timing budgets are changed by PCB (Printed Circuit Board) design. Please evaluate UART function on your PCB carefully.

I²C (Host Interface and CXA3846GF Interface)

Item	Symbol		dard- ode	Fast-	Mode	Fa Mode	st- Plus ⁵	Unit	Remarks
ito	Cymber .	Min.	Max.	Min.	Max.	Min.	Max.		
SCL clock frequency	fscL	0	100	0	400	0	1000	kHz	_
HOLD time (repeated) START condition	thd;sta	4	_	0.6	_	0.26	_	us	_
LOW period of the SCL clock	t _{LOW}	4.7	_	1.3	_	0.5		us	_
LOW period of the SCL clock	t _{HIGH}	4	_	0.6	_	0.26	-	us	_
Setup time for a repeated START condition	tsu;sta	4.7	_	0.6	_	0.26	_	us	_
Data hold time	t _{HD;DAT}	0	_	0	_	•	-	us	_
Data setup time	t _{SU;DAT}	250	_	100	_	50	_	ns	_
Rise time of both SDA and SCL signals	t _{RISE}	_	1000	20	300		120	ns	_
Fall time of both SDA and SCL signals	t _{FALL}	_	300	_	300	_	120	ns	_
Setup time for STOP condition	tsu;sто	4	_	0.6	_	0.26	-	us	_
Bus free time between STOP and START condition	t _{BUF}	4.7	_	1.3	_	0.5	_	us	
Capacitive load for each bus line	CL	_	73	_	73	_	29	pF	4.7 kΩ Pull-up

_

⁵ Host Interface only

External FLASH Memory Interfaces

Item	Symbol	Min.	Тур.	Max.	Unit	Remarks
SCK Period	tscк	_	30.5	_	ns	33 MHz
SCK Duty Ratio	tscкн / tscк (tscкL/tscк)	40	50	60	%	_
CS_X active setup time	tslcн	7	_	_	ns	_
CS_X active hold time	t _{CHSH}	5	_	_	ns	_
IO Output Delay Time	top	-10.36	_	12.86	ns	_
IO Input Setup Time	tıs	0	_	_	ns	_
IO Input Hold Time	tıн	15.36	_	_	ns	_

Power-On / Power-Off

Item	Symbol	Min.	Тур.	Max.	Unit	Remarks
Time difference from VDD_IO1 and VDD_IO_ANA rise to VDD_IO0	tdiff_vdd_i00-i01	1	1	_	ms	_
VDD_IO0 rise time	trise_vdd_ioo	_	_	_	ms	_
VDD_IO0 fall time	tfall_vdd_ioo	_		_	ms	_
Power off period	t _{PWR_OFF}	100	_	_	ms	_
VDD_IO1 and VDD_IO_ANA rise time	trise_vdd_io	_	_	_	ms	_
VDD_IO1 and VDD_IO_ANA fall time	tfall_vdd_io	_	_	500	ms	_
Time difference from VDD_IO1 and VDD_IO_ANA rise to LDO_IN rise	tdiff_rise_vdd_io-L do_in	-5	_	1	ms	VDD_IO1 and VDD_IO_ANA can rise earlier than LDO_IN by 1ms
Time difference from VDD_IO1 and VDD_IO_ANA fall to LDO_IN	tdiff_fall_vdd_io-l do_in	0	_	10	ms	LDO_IN should fall later than VDD_IO1 and VDD_IO_ANA
Time difference from VDD Cores ⁶ rise to VDD_IO1 and VDD_IO_ANA rise	t _{DIFF_RISE_VDD_} CO RES-IO	0	_	6	ms	VDD Cores should rise earlier than VDD_IO1 and VDD_IO ANA
Time difference from VDD_CORE and LDO_IN rise to VDD_IO1 and VDD_IO_ANA rise	tdiff_rise_vdd_co re-ldoin-io	0		5	ms	VDD_CORE and LDO_IN should rise earlier than VDD_IO1 and VDD_IO_ANA
Time difference from VDD_IO1 and VDD_IO_ANA fall to VDD Cores fall	tdiff_fall_vdd_io- cores	0	l	10	ms	VDD Cores should fall later than VDD_IO1 and VDD_IO_ANA
LDO_IN rise time	t _{RISE_LDO_IN}	0.08	-	4.00	ms	Keep monotonically increasing
VDD Cores rise time	trise_vdd_cores	0.08	_	4.00	ms	Keep monotonically increasing
VDD Cores fall time	tfall_vdd_cores	_	_	_	ms	Keep monotonically decreasing
POR activating voltage	V _{POR_ACT}	_	_	500	mV	

Reset

Item	Symbol	Min.	Тур.	Max.	Unit	Remarks
RST assert period	t _{RST_ACT}	100	-	-	ms	_

⁶ VDDA_LNA, VDDA_LO, VDDA_ANA, LDO_OUT0 and VDD_CORE

Clocks

XOSC_IN

Item	Symbol	Min.	Тур.	Max.	Unit
Input voltage range	VIN	0.8	_	1.4	Vpp
Input Frequency	Fin	_	26.0	_	MHz
Input frequency characteristics	F _{IN_C}	-0.5	_	0.5	ppm
Duty Cycle	Dc	40	_	60	%

RTC_CLK_IN

Item	Symbol	Min.	Тур.	Max.	Unit
Input Frequency	F _{IN}	_	32.768	_	kHz
Frequency Tolerance	F _{IN_T}	-300	_	300	ppm
Duty Cycle	Dc	5	_	95	%

Boot-up

Item	Symbol	Min.	Тур.	Max.	Unit	Remarks
Time to accept commands from the system reset asserting	tBOOT_UP	_	_	1000	ms	

Test Circuit

Reliability Qualification

ESD Strength

CDM: ±250 V (JEDEC)

● HBM: ±2000 V (JEDEC)

Moisture Sensitivity Level

MSL1 (JEDEC)

Reflow Profile

IPC/JEDEC J-STD-020

Package Thermal Resistance

Theta JA: 44 K/W (JEDEC 2s2p board) / 97 K/W (JEDEC 1s0p board)

Package Outline

SONY CODE	U F B G A - 4 9 S - 3 1 2
JEITA CODE	S-UFBGA49-3.01x3.1-0.4
JEDEC CODE	

PACKAGE STRUCTURE

PACKAGE MATERIAL	Si SUBSTRATE
TERMINAL MATERIAL	Sn-4.0Ag-0.5Cu-3.0Bi
PACKAGE MASS	0.0119

Notice

Purpose of Use of the Products:

Customer shall use the Products with the utmost concern for safety, and shall not use the Products for any purpose that may endanger life or physical wellbeing, or cause serious damage to property or the environment, either through normal use or malfunction.

Use of the Products for purposes other than those stipulated in this specification is strictly prohibited.

Furthermore, usage of the Products for military purposes is strictly prohibited at all times.

Safe Design:

◆ Customer is responsible for taking due care to ensure the product safety design of its products in which the Products are incorporated, such as by incorporating redundancy, anti-conflagration features, and features to prevent mis-operation, in order to prevent accidents resulting in injury, death, fire, or other social damage as a result of failure.

Product Information:

- ◆ The product specifications, circuit examples, and any and all other technical information and content contained in this specification, as well as any other information and materials provided to Customer in connection with the Products (collectively, "Product Information") have been provided to Customer for reference purpose only, and the availability and disclosure of such Product Information and its usage by Customer shall not be construed as giving any indication that Sony, its subsidiaries and/or its licensors will license any right, including intellectual property rights in such Product Information by any implication or otherwise.
- ◆ Furthermore, even if circuit examples are included in this specification, they are provided only for reference purpose only, and are merely examples of application. Sony, its Subsidiaries and/or their authorized representatives shall not be liable for any damage arising out of their usage.

EXCLUSION OF WARRANTY ON THE PRODUCTS:

◆ UNLESS OTHERWISE NOTIFIED BY US IN WRITING, OTHERWISE AGREED BETWEEN THE CUSTOMER AND SONY, ITS SUBSIDIARIES OR ANY OF THEIR AUTHORIZED REPRESENTATIVES IN WRITING, OR TO THE EXTENT PERMITTED BY LAW, THE FOLLOWING TEMS AND CONDITIONS SHALL APPLY TO THE USAGE OF THE PRODUCTS AND THE PRODUCT INFORMATION:

THE PRODUCTS AND THE PRODUCT INFORMATION ARE PROVIDED BY SONY, ITS SUBSIDIARIES AND/OR THEIR AUTHORIZED REPRESENTATIVES "AS IS" AND WITHOUT WARRANTY OF ANY KIND AND SONY, ITS SUBSIDIARIES AND/OR THEIR AUTHORIZED REPRESENTATIVES MAKE OR HAVE MADE NO REPRESENTATION OR WARRANTY, EXPRESS OR IMPLIED, STATUTORY OR OTHERWISE, AND EXPRESSLY DISCLAIMS ANY REPRESENTATION OR WARRANTY (I) WITH RESPECT TO ACCURACY, RELIABILITY, VALUE, UTILITY OR SAFETY OF THE PRODUCTS AND THE PRODUCT INFORMATION, OR THE ABILITY OF CUSTOMER TO MAKE USE THEREOF, (II) WITH RESPECT TO ANY IMPLEMENTATION OF THE PRODUCTS AND THE TECHNICAL INFORMATION; (III) WITH RESPECT TO MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE; OR (IV) THAT THE PRODUCTS AND THE PRODUCT INFORMATION OR ANY IMPLEMENTATION THEREOF IS OR WILL BE FREE FROM INFRINGEMENT, MISAPPROPRIATION OR VIOLATION OF ANY INTELLECTUAL PROPERTY RIGHT OR ANY OTHER RIGHT OF ANY THIRD PARTY, AND ANY EQUIVALENTS OF ANY OF THE FOREGOING UNDER THE LAWS OF ANY JURISDICTION.

CUSTOMER HEREBY ACKNOWLEDGES AND AGREES THAT USE OF THE PRODUCTS AND THE PRODUCT INFORMATION IS AT CUSTOMER'S SOLE RISK AND THAT CUSTOMER IS RESPONSIBLE FOR THE USE OF THE PRODUCTS AND THE PRODUCT INFORMATION, INCLUDING DEFENDING ANY INFRINGEMENT CLAIM MADE AGAINST THE CUSTOMER IN RELATION WITH CUSOMTER'S USAGE OF THE PRODUCTS AND TECHNICAL INFORMATION.

NO ORAL OR WRITTEN INFORMATION OR ADVICE GIVEN BY SONY, ITS SUBSIDIARIES OR THEIR AUTHORIZED REPRESENTATIVES SHALL CREATE A WARRANTY, DUTY OR CONDITION OR IN ANY WAY INCREASE THE SCOPE OF THIS WARRANTY.

LIMITATION OF LIABILITY:

◆ TO THE EXTENT PERMITTED BY LAW, SONY, ITS SUBSIDIARIES AND/OR THEIR AUTHORIZED REPRESENTATIVES SHALL NOT BE LIABLE FOR ANY INCIDENTAL OR CONSEQUENTIAL DAMAGES FOR BREACH OF ANY EXPRESS OR IMPLIED WARRANTY, BREACH OF CONTRACT, NEGLIGENCE, STRICT LIABILITY OR UNDER ANY OTHER LEGAL THEORY RELATED TO THE PRODUCTS AND PRODUCT INFORMATION, INCLUDING, BUT NOT LIMITED TO, ANY DAMAGES ARISING OUT OF LOSS OF PROFITS, LOSS OF REVENUE, LOSS OF DATA, LOSS OF USE OF THE PRODUCTS OR ANY ASSOCIATED HARDWARE, DOWN TIME AND USER'S TIME, EVEN IF ANY OF THEM HAVE BEEN ADVISED OF THE POSSIBILITY OF SUCH DAMAGES.

Compliance with Laws:

Customer shall comply with all applicable laws, ordinances, rules and regulations in connection with the usage of the Products, including the export control laws or regulations of various countries and shall be fully responsible for obtaining approvals in connection with the export of the Products in accordance with such said laws, ordinances, rules and/or regulations.

Governing Law:

◆ This specification and the terms and conditions contained herein shall be governed by and construed in accordance with the laws of Japan, without reference to principles of conflict of laws or choice of laws. All controversies and disputes arising out of or relating to this specification and the terms and conditions contained herein shall be submitted to the exclusive jurisdiction of the Tokyo District Court in Japan as the court of first instance.

Notes:

- ◆ The product specifications, circuit examples, technical information and any and all other information and content relating to the Products contained in this specification may be revised or updated by Sony at Sony's sole discretion without prior notice to the Customer and Customer shall abide by their latest versions. Such revisions or updates will be made available to Customer in a way as Sony deems appropriate.
- ♦ Ensure that you have read and reviewed the notices contained in our delivery specification as well as this specification when purchasing and using the Products.