

Теория вероятностей и математическая статистика

Вебинар 2

Дискретные случайные величины. Закон распределения вероятностей. Биномиальный закон распределения. Распределение Пуассона

Случайные величины

Случайные величины

Случайная величина — величина, которая в результате опыта принимает некоторое значение, неизвестное заранее.

Дискретные случайные величины, как правило, принимают целые или рациональные значения. Эти значения отделены друг от друга, т.е. если случайная величина принимает значения 1 и 2, то она не обязана принимать промежуточные значения.

Непрерывные случайные величины принимают вещественные значения. Здесь значения уже не отделены друг от друга, т.е. если непрерывная случайная величина принимает значения 1 и 2, то она также может принять и любое значение между ними.

Случайные величины

Случайная величина — величина, которая в результате опыта принимает некоторое значение, неизвестное заранее.

Дискретные случайные величины, как правило, принимают целые или рациональные значения. Эти значения отделены друг от друга, т.е. если случайная величина принимает значения 1 и 2, то она не обязана принимать промежуточные значения.

Непрерывные случайные величины принимают вещественные значения. Здесь значения уже не отделены друг от друга, т.е. если непрерывная случайная величина принимает значения 1 и 2, то она также может принять и *любое* значение между ними.

Примеры дискретных случайных величин:

- ${f 0}$ Сумма очков при 100-кратном подбрасывании игрального кубика.
- 2 Число метеоритов, упавших на Землю за год.
- ③ Количество машин, которые успевают проехать через данный светофор за один цикл.

Закон распределения

Пусть X — дискретная случайная величина. Закон распределения этой случайной величины — это соответствие между значениями, которые принимает эта величина, и вероятностями, с которыми она их принимает.

Пусть X — дискретная случайная величина. Закон распределения этой случайной величины — это соответствие между значениями, которые принимает эта величина, и вероятностями, с которыми она их принимает.

Например, пусть X — сумма значений двух подбрасываемых игральных кубиков. Вот её закон распределения:

	\overline{x}	2	3	4	5	6	7	8	9	10	11	12
P(X	=x	1/36	2/36	3/36	4/36	5/36	6/36	5/36	4/36	3/36	2/36	1/36

Пусть X — дискретная случайная величина. Закон распределения этой случайной величины — это соответствие между значениями, которые принимает эта величина, и вероятностями, с которыми она их принимает.

Например, пусть X — сумма значений двух подбрасываемых игральных кубиков. Вот её закон распределения:

x	2	3	4	5	6	7	8	9	10	11	12
P(X=x)	1/36	2/36	3/36	4/36	5/36	6/36	5/36	4/36	3/36	2/36	1/36

Отметим, что сумма вероятностей дискретной случайной величины всегда равна 1.

Закон распределения также удобно изобразить графически: откладываем на оси x значения случайной величины, а на оси y — соответствующие им вероятности.

Например, вот график распределения случайной величины, заданной ранее.

Пусть X, Y — дискретные случайные величины, причём X принимает значения x_i с вероятностями $P(X=x_i)$, $i=1,2,\ldots$, а Y принимает значения y_j с вероятностями $P(Y=y_j)$, $j=1,2,\ldots$

- Их сумма Z = X + Y случайная величина, которая принимает значения $z_{ij} = x_i + y_j$ с вероятностями $P(X = x_i, Y = y_j)$.
- Аналогично считаются разность и произведение случайных величин, надо лишь заменить соответствующие символы операций.
- $\mathit{Kвадрат}\ Z = X^2$ случайная величина, которая принимает значения $z_i = x_i^2$ по тому же закону распределения, что и X.

Пусть X, Y — дискретные случайные величины, причём X принимает значения x_i с вероятностями $P(X=x_i)$, $i=1,2,\ldots$, а Y принимает значения y_j с вероятностями $P(Y=y_j)$, $j=1,2,\ldots$

- Их сумма Z = X + Y случайная величина, которая принимает значения $z_{ij} = x_i + y_j$ с вероятностями $P(X = x_i, Y = y_j)$.
- Аналогично считаются разность и произведение случайных величин, надо лишь заменить соответствующие символы операций.
- $\mathit{Kвадрат}\ Z = X^2$ случайная величина, которая принимает значения $z_i = x_i^2$ по тому же закону распределения, что и X.

Замечание: не стоит путать сумму случайных событий и сумму случайных величин.

Пусть X — случайная величина. *Математическим ожиданием* называется среднее значение величины X при стремлении количества испытаний к бесконечности. Обозначается M(X).

Если X — дискретная случайная величина, принимающая значения x_i с вероятностями $p_i = P(X = x_i), i = 1, 2, \ldots$, то

$$M(X) = \sum_{i} p_i x_i = p_1 x_1 + p_2 x_2 + \dots$$

Дисперсией случайной величины X называется математическое ожидание квадрата отклонения случайной величины от её математического ожидания:

$$D(X) = M\left((X - M(X))^2\right)$$

Дисперсия является мерой разброса случайной величины относительно её среднего значения.

Законы распределения случайных величин

Биномиальное распределение

Пусть имеется некоторое событие A, которое наступает с вероятностью p. *Биномиальный закон* описывает распределение случайной величины X, задающей число наступлений события A в ходе проведения n независимых опытов.

Биномиальный закон распределения описывается формулой Бернулли:

$$P(X = k) = C_n^k \cdot p^k \cdot (1 - p)^{n - k}$$

Биномиальное распределение

Пусть имеется некоторое событие A, которое наступает с вероятностью p. *Биномиальный закон* описывает распределение случайной величины X, задающей число наступлений события A в ходе проведения n независимых опытов.

Биномиальный закон распределения описывается формулой Бернулли:

$$P(X = k) = C_n^k \cdot p^k \cdot (1 - p)^{n - k}$$

Математическое ожидание биномиального распределения:

$$M(X) = np$$

Дисперсия:

$$D(X) = np(1-p)$$

Закон биномиального распределения с параметрами n=20, p=0.25:

Допустим теперь, что имеется некоторый поток событий, такой, что в среднем за единицу времени событие наступает λ раз (т.е. с интенсивностью λ). Тогда случайная величина X, равная количеству наступлений события за единицу времени, имеет распределение Пуассона с параметром λ .

Случайная величина X принимает значения $0,1,2,\dots$ (счётное множество значений), а соответствующие вероятности выражаются формулой Пуассона :

$$P(X = k) = \frac{\lambda^k e^{-\lambda}}{k!}$$

Здесь λ — положительное вещественное число.

Распределение Пуассона

Как мы уже отметили, распределение Пуассона описывает счётчики событий, наступивших за единицу времени. Например, распределение Пуассона описывает:

- 🕕 число бракованных деталей в партии фиксированного размера,
- число опечаток в тексте фиксированного размера,
- 🔞 число автобусов, проехавших за фиксированное время мимо автобусной остановки.

Распределение Пуассона

Как мы уже отметили, распределение Пуассона описывает счётчики событий, наступивших за единицу времени. Например, распределение Пуассона описывает:

- 🕕 число бракованных деталей в партии фиксированного размера,
- число опечаток в тексте фиксированного размера,
- 🔞 число автобусов, проехавших за фиксированное время мимо автобусной остановки.

Математическое ожидание и дисперсия распределения Пуассона равны:

$$M(X) = D(X) = \lambda$$

Закон распределения Пуассона с параметром $\lambda=5$.

Распределение Пуассона является предельным случаем биномиального.

Если в последнем имеется очень большое число экспериментов $(n \to \infty)$, а вероятность наступления события A достаточно мала (можно считать, что $p \approx \lambda/n$), то такое распределение становится очень похоже на распределение Пуассона с параметром $\lambda=np$.

Например, справа изображены графики биномиального распределения (мятный) и распределения Пуассона (фиолетовый). Во всех четырёх случаях $\lambda=10$ и p=10/n. Параметр n сверху вниз: $20,\,40,\,100,\,1000$.

• Pаспределение Бернулли . Событие A наступает с вероятностью p. Индикатор наступления этого события, т.е.

$$X = egin{cases} 1, & \mathsf{coбытиe}\ A \ \mathsf{произошло}, \ 0 & \mathsf{иначe}, \end{cases}$$

имеет распределение Бернулли. Вероятности:

$$P(X = 1) = p, \ P(X = 0) = 1 - p$$

Замечание. Биномиальное распределение с параметрами $n,\ p$ является суммой n распределений Бернулли с параметром p.

• Дискретное равномерное распределение . Случайная величина X принимает n различных значений с одинаковой вероятностью 1/n. Не путать с непрерывным равномерным.

• Геометрическое распределение . Событие A наступает с вероятностью p. Случайная величина X, равная числу независимых испытаний до первого наступления события A, имеет геометрическое распределение. Вероятности:

$$P(X = k) = (1 - p)^k \cdot p$$

18 / 18

Описательная статистика. Качественные и количественные характеристики популяции. Графическое представление данных