1. Given
$$f(x) = \frac{1}{(|2\pi|^k |\Xi|)^{\frac{1}{2}}} e^{\frac{1}{2}(x-\mu)^T \Xi^T(x-\mu)} \quad \text{where } x, \mu \in \mathbb{R}^k,$$

$$\Xi \quad \text{is a } k - by - k \quad \text{positive define matrix and } |\Xi| \quad \text{is its determinant.}$$

$$\text{Show that } \int_{\mathbb{R}^k} f(x) \, dx = |.$$

Proof.

Since the hypothesis given, ne can rewrite
$$\int_{\mathbb{R}^k} f(x) dx$$
 as $\int_{\mathbb{R}^k} ((2\pi)^k |\mathcal{Z}|)^{\frac{1}{2}} e^{\frac{1}{2}(x-\mu)} dx$.

Let
$$u = \sigma^{-\frac{1}{L}}(x-\mu)$$
, we get $(x-\mu)^{T} \mathcal{E}^{-1}(x-\mu) = u^{T}u$ and $dx = \sqrt{|\mathcal{E}|} du$.

Then we have
$$\int_{\mathbb{R}^{k}} ((2n)^{k} |\mathcal{E}|)^{\frac{1}{L}} \cdot e^{\frac{1}{L}(x-\mu)^{T}} \mathcal{E}^{-1}(x-\mu) dx = (2\pi)^{\frac{k}{L}} \cdot \int_{\mathbb{R}^{k}} e^{\frac{u^{T}u}{L}} du$$

$$= (2\pi)^{\frac{k}{L}} \cdot \int_{\mathbb{R}^{k}} e^{\frac{1}{L}(\frac{k}{L}u^{\frac{1}{L}})} du$$

$$= (2\pi)^{\frac{k}{L}} \cdot \prod_{\lambda=1}^{k} \int_{\mathbb{R}^{k}} e^{-\frac{1}{L} \cdot u^{\lambda_{\lambda}}} du$$

$$= (2\pi)^{\frac{k}{L}} \cdot \prod_{\lambda=1}^{k} \int_{\mathbb{R}^{k}} e^{-\frac{1}{L} \cdot u^{\lambda_{\lambda}}} du$$

$$= (2\pi)^{\frac{k}{L}} \cdot \prod_{\lambda=1}^{k} \int_{\mathbb{R}^{k}} e^{-\frac{1}{L} \cdot u^{\lambda_{\lambda}}} du$$
where u_{λ} , for $\lambda = 1, 2, \dots, k$ are components of u .

2. Let A, B be n-by-n matrices and X be a n-by-1 vector. (a) Show that $\frac{\partial}{\partial A}$ trace $(AB)=B^T$.

Since trace
$$(AB) = \sum_{\dot{a}=1}^{n} (A_1B)_{\dot{a},\dot{a}}$$

$$= \sum_{\dot{a}=1}^{n} \sum_{\dot{j}=1}^{n} A_{\dot{a},\dot{j}} B_{\dot{j},\dot{a}},$$
we have $\frac{\partial}{\partial A_{k,l}} \operatorname{trace}(AB) = \frac{\partial}{\partial A_{k,l}} \sum_{\dot{a}=|\bar{j}=|}^{n} A_{\dot{a},\dot{j}} B_{\dot{j},\dot{a}}$

$$= B_{k,k}$$

Hence
$$\frac{\partial}{\partial A}$$
 trace $(AB) = B^T$.

(b) Show that
$$\alpha^T A \alpha = trace(\alpha x^T A)$$

We prove this by expanding both stoles.

$$\chi^{T} A \chi = \sum_{i=1}^{n} \chi_{i} (A_{X})_{i}.$$

$$= \sum_{i=1}^{n} \chi_{i} \sum_{j=1}^{n} A_{i,j} \chi_{j}.$$

$$= \sum_{i=1}^{n} \sum_{j=1}^{n} \chi_{i} A_{i,j} \chi_{j}.$$

$$= \sum_{i=1}^{n} \sum_{j=1}^{n} \chi_{i} A_{i,j} \chi_{j}.$$

$$= \sum_{i=1}^{n} \sum_{j=1}^{n} \chi_{i} A_{i,j} \chi_{j}.$$

(Right)

Since $trace(M_1M_2) = trace(M_2M_1)$ for any M_1,M_2 are n-by-n matrices, for all $n \in N$. $trace(M_1M_2) = trace(M_2M_1)$ for any M_1,M_2 are n-by-n matrices, for all $n \in N$. $trace(M_1M_2) = trace(M_2M_1)$ $trace(M_2M_1) = trace(M_2M_1)$

Therefore, the left side is equal to right side.

(c) discuss with ChatGPT and roommate.

Derive the maximum likelihood estimators for a multivariate Gaussian.

Given $\alpha_{1,1}, \dots, \alpha_{m}$ are $\tau, i.d.$ from $N(\mu, \Xi)$ where $\mu \in \mathbb{R}^{n}$ the mean vector Ξ , Ξ , Ξ is the covariance matrix.

The log-likelihood function $L(\mu,\Xi) = -\frac{m_L}{2} \log(2\pi) - \frac{m}{2} \log|\Xi| - \frac{1}{2} \sum_{n=1}^{m} (x_n - \mu)^T \Xi^T(x_n - \mu).$ $\frac{\partial L}{\partial \mu} = \Xi^T \sum_{n=1}^{m} (x_n - \mu).$

Setting to zero

re have $\sum_{n=1}^{m} (x_n - \mu) = 0$ such that $\hat{\mu} = \frac{1}{m} \sum_{n=1}^{m} \chi_n$.

we have
$$\frac{\partial}{\partial \Sigma} |_{\partial g} |_{\Sigma}| = (\Sigma^{-1})^{T} = \Sigma^{-1}$$

$$\frac{\partial}{\partial \Sigma} (x_{\lambda} - \mu)^{T} \Sigma^{-1} (x_{\lambda} - \mu) = -\Sigma^{-1} (x_{\lambda} - \mu) (x_{\lambda} - \mu)^{T} \Sigma^{-1}.$$

Then
$$\frac{\partial L}{\partial \Sigma} = -\frac{m}{2} \Sigma^{-1} + \frac{1}{2} \Sigma^{-1} \left(\sum_{i=1}^{m} (x_i - \mu_i) (x_i - \mu_i)^{T} \right) \Sigma^{-1}$$

Setting to zero, we get
$$-m \sum_{i=1}^{-1} \left(\sum_{k=1}^{m} (x_{k} - \mu)(x_{k} - \mu)^{T}\right) \sum_{i=0}^{T} = 0$$
.

Then fore,
$$\sum_{\bar{x}=1}^{m} (x_{1} - \mu) (x_{2} - \mu)^{T} = m \sum_{j} (x_{1} - \mu) (x_{2} - \mu)^{T} = m \sum_{j} (x_{1} - \mu) (x_{2} - \mu)^{T} = m \sum_{j} (x_{1} - \mu) (x_{2} - \mu)^{T} = m \sum_{j} (x_{1} - \mu) (x_{2} - \mu)^{T} = m \sum_{j} (x_{1} - \mu) (x_{2} - \mu)^{T} = m \sum_{j} (x_{2} - \mu)^{T} = m \sum_{j} (x_{1} - \mu) (x_{2} - \mu)^{T} = m \sum_{j} (x_{2} - \mu)^{T} = m \sum_{j} (x_{1} - \mu) (x_{2} - \mu)^{T} = m \sum_{j} (x_{2} - \mu)^{T} = m \sum_{j$$