

DATA STRUCTURES AND ALGORITHM

TREES

TREES

TREES

Answer in a Short Quiz

- Trees is a nonlinear
 hierarchical data
 structure that consists
 of nodes connected by
 edges.
- 2. Yes
- 3. Root
- **4**. One
- **5**. Yes
- **6**. 13, 6, 60
- **7**. 7
- 8. Has no siblings
- 9. 4, 12, 7, 22
- **10**. 13, 6, 60, 23, 21

- **11**. 23, 6, 60, 12, 4, 7, 22
- **12**. 13, 16, 60, 12, 4, 7, 22
- **13**. 3 (depth)
- **14**. 3 (degree)
- 15. 4 (height)
- **16**. 6 (leaves)
- 17. No
- 18. No
- 19. No
- **20**. No
- **21**. Yes
- **22**. n^h
- **23**. $\log_n m$
- **24**. $\frac{n^{h}-1}{n-1}$
- **25**. $n^h 1$

GRAPH

VERTICES	IN- DEGREE	OUT- DEGREE
1	3	1
2	1	2
3	1	2
4	2	3
5	2	1

VERTICES	IN-	OUT-
	DEGREE	DEGREE
1	2	2
2	1	2
3	1	0
4	2	0
5	1	2
6	1	2

KRUSKAL'S ALGORITHM

e (B, C)	w 1
e (M, N)	w 1

PRIM'S ALGORITHM

e (A, B)	w 11
e (B, C)	w 1
e (C, M)	w 8
e (M, N)	w 1
e (C, D)	w 14
e (D, L)	w 6
e (D, K)	w 13
e (M, O)	w 17
e (C, F)	w 21
e (F, I)	w 9
e (G, I)	w 5
e (G, J)	w 16

TOTAL MINIMUM SPANNING TREE: 197

TOTAL MINIMUM SPANNING TREE: 197

w 35

w 40

e (E, N)

e (M, P)