Réseaux informatiques RXI

Chapitre 6
Routage IP

Objectifs d'apprentissage

- Savoir expliquer le processus d'acheminement d'un paquet sur un routeur
- Savoir expliquer la différence entre remise directe et remise indirecte ainsi que l'utilisation des adresses IP et MAC dans les deux cas
- Pour un réseau donné, savoir identifier les routes nécessaires sur chacun des routeurs
- Savoir utiliser l'algorithme de Dijkstra pour calculer le plus court chemin
- Pour un réseau donné, savoir appliquer manuellement la méthode de RIP pour calculer les routes
- Connaître la distinction entre les deux niveaux de routage

Acheminement et routage

- Il faut distinguer acheminement et routage
- Acheminement (forwarding):
 - Fonctionnalité du protocole IP
 - IP utilise la table de routage pour déterminer le prochain saut
 - Exécutée pour chaque paquet (rapide !)
- Routage (routing)
 - Fonctionnalité des protocoles de routage, comme RIP
 - Remplir la table de routage avec les routes optimales
 - Exécutée périodiquement pour mettre à jour les tables de routage (lente!)

Comment un routeur achemine-t-il un paquet IP?

- Chaque paquet IP contient l'adresse de destination
- Le routeur a une table de routage

Réseau de destination	Prochain routeur	Interface de sortie
123.0.0.0	216.1.2.3	Interface 1

- Le routeur cherche dans sa table l'entrée pour le réseau de destination
- Si aucune route trouvée:
 - Utiliser la route par défaut, s'il y en a
 - Ecarter le paquet avec une erreur « Non routable »

Destination	Prochain routeur	Sortie
7.0.0.0	xxx	xxx
8.0.0.0	XXX	xxx
9.0.0.0	2.1.1.2	If 2

Destination	Prochain routeur	Sortie
7.0.0.0	xxx	xxx
8.0.0.0	xxx	xxx
9.0.0.0	2.1.1.2	If 2

Remise directe et remise indirecte

 Il est important de comprendre la relation entre adresse IP de destination et adresse MAC de destination

Remise indirecte

- Le destinataire se trouve dans un autre réseau
- Il faut passer par un routeur intermédiaire pour atteindre le destinataire
- La source / le routeur construit une trame Ethernet avec comme adresse
 MAC destinataire celle du prochain nœud

Remise directe et remise indirecte

 Il est important de comprendre la relation entre adresse IP de destination et adresse MAC de destination

Remise directe

- Le destinataire se trouve dans le même réseau LAN
- La source / le routeur peut transmettre le paquet au destinataire sans passer par un autre nœud
- La source / le routeur construit une trame Ethernet avec comme adresse
 MAC destinataire celle du destinataire final

Tables de routage

 Les tables de routage peuvent être remplies manuellement ou par un protocole de routage

Routage statique

- L'administrateur configure manuellement les routes
- Faisable pour de petits réseaux

Routage dynamique

- Les routeurs utilisent un protocole de routage pour s'échanger des informations avec les autres routeurs
- Le protocole de routage calcule les routes et remplit la table de routage
- Permet de s'adapter automatiquement aux pannes de liens

Routage statique

Quelles routes faut-il configurer?

- Un routeur connaît les réseaux directement connectés
- Il faut configurer les routes vers tous les autres réseaux

Routage statique

Quelles routes faut-il configurer?

- Un routeur connaît les réseaux directement connectés
- Il faut configurer les routes vers tous les autres réseaux

Destination	Prochain routeur	Sortie
1.0.0.0/8	Directement connecté	If 1
150.1.0.0/16	Directement connecté	If 2
200.1.1.0/24	Directement connecté	If 3
Réseau A	150.1.1.2	If 2
Réseau B	150.1.1.2	If 2
Réseau C	200.1.1.2	If 3
Réseau D	200.1.1.2	If 3
		If 1
	7	.1.1.1/8

Route par défaut

- Une route par défaut peut être configurée pour simplifier la table de routage d'un routeur
- Si elle est présente, elle est appliquée si aucune autre route ne correspond

Exemple d'une table de routage avec route par défaut

Destination	Prochain routeur	Sortie
10.1.0.0/16	Directement connecté	If 1
10.2.0.0/16	Directement connecté	If 2
0.0.0.0/0	1.1.1.1	If O

ICMP Internet Control Message Protocol

- Permet de communiquer des problèmes
 - Envoyé par le routeur à la source
- Permet d'effectuer des diagnostiques
 - Envoyé par un utilisateur à un équipement
- Format de paquet:

Types de messages ICMP

Туре	Message	Description
0 et 8	Echo request et reply	Ping
3	Destination Unreachable Code 0: network unreachable Code 1: host unreachable	Problème de routage
5	Redirect	Le routeur indique à la source qu'il y a un meilleur chemin
11	Time exceeded	TTL d'un datagramme est arrivé à 0

Ping

Vérifier la connectivité et le bon fonctionnement d'un système

Problèmes de routage (ICMP type 3)

- Code 0: envoyé par le routeur s'il n'y a pas de route ou s'il la fragmentation est nécessaire mais interdite
- Code 1: envoyé par le routeur lors de la remise directe si la machine ne répond pas à la requête ARP

Fin partie 1

