Math 287 Homework 7 rubric

Dr Holmes

March 14, 2022

- 1. There are 8 functions. None of them are one-to-one. Six of them are onto (all but the two constant functions).
- 2. There are 9 functions. None of them are onto $\{1, 2, 3\}$. Six of them are one-to-one (all but the three constant functions).
- 3. There are six functions from $\{1, 2, 3\}$ to $\{1, 2, 3\}$ which are onto $\{1, 2, 3\}$. All of them are one-to-one.
- 4. Claim 1 is the assertion that if E is an equivalence relation on A, $P = \{[a]_E : a \in A\}$ is a partition of A.

We verify this.

P needs to be a collection of nonempty subsets of A. Obviously each element $[a]_E = \{x \in A : x E a\}$ of P is a subset of A. We need to show that each set $[a]_E = \{x \in A : x E a\}$ is nonempty. Because E is reflexive, a E a, so $a \in \{x \in A : x E a\} = [a]_E$, establishing that each element of P is nonempty.

for any $A, B \in P$, we need either A = B or $A \cap B = \emptyset$. We will have $A = [a]_E$ for some $a \in A$ and $B = [b]_E$ for some $b \in A$, by definition of P, and we showed that for any a, b, either $[a]_E = [b]_E$ or $[a]_E \cap [b]_E = \emptyset$, so this is verified.

We need to show that any $a \in A$ belongs to some element of P, and we already showed this above when we showed $a \in [a]_E$ (when we showed elements of P are nonempty).

5. Suppose P is a partition of A. Claim 2 is the claim that the relation $x \equiv_P y$ defined as $(\exists B \in P : x \in B \land y \in B)$ is an equivalence relation.

We first show that \equiv_P is reflexive. For any $x \in A$, there is $B_0 \in P$ such that $x \in B_0$, so we have $x \in B_0 \land x \in B_0$, so we have $(\exists B \in P : x \in B \land x \in B)$, that is, $x \equiv_P x$.

Now we show the \equiv_P is symmetric. Suppose that $x \equiv_P y$. Our aim is to show $y \equiv_P x$. Because $x \equiv_P y$, we have $B_0 \in P$ such that $x \in B_0 \land y \in B_0$. So $y \in B_0 \land x \in B_0$. So $(\exists B \in P : y \in B \land x \in B)$, that is, $y \equiv_P x$.

Now we show that \equiv_P is transitive. This is where those with some success on this problem dropped the ball, alas. Suppose that $x \equiv_P y$ and $y \equiv_P z$. Our goal is to show $x \equiv_P z$. Because $x \equiv_P y$ there is $B_1 \in P$ such that $x \in B_1$ and $y \in B_1$. Because $y \equiv_P z$ there is $B_2 \in P$ such that $y \in B_2$ and $z \in B_2$. You do not get to give these witnesses the same name: you have to show that they are the same! Now we know that either $B_1 = B_2$ or $B_1 \cap B_2 = \emptyset$. But y belongs to both B_1 and B_2 , so $B_1 \cap B_2 \neq \emptyset$, so $B_1 = B_2$, so $x \in B_1$ and $z \in B_2 = B_1$, so $(\exists B \in P : x \in B \land z \in B)$, so $x \equiv_P z$.

- 6. Project 6.7. For each of the following relations defined on Z, determine whether it is an equivalence relation. If it is, determine the equivalence classes.
 - (a) < is not reflexive: 3 is not less than 3.
 - (b) \leq is not symmetric: $2 \leq 3$ but not $3 \leq 2$.
 - (c) The relation |x| = |y| is an equivalence relation.
 - (d) \neq is reflexive, but neither symmetric nor transitive.
 - (e) The relation xy > 0 is not reflexive: (0)(0) = 0. It is symmetric and transitive: it would be an equivalence relation on nonzero numbers.
 - (f) the relation " $x|y \vee y|x$ " is reflexive and symmetric, but it is not transitive. For example, it relates 2 to 10 and 10 to 5, but not 2 to 5.
- 7. We define (x,y)SD(z,w) if x+w=y+z. Show that this is an equivalence relation.

reflexive: (x,y)SD(x,y) means x + y = x + y, which is true.

symmetric: Assume that (x,y)SD(z,w). Our goal is to show that (z,w)SD(x,y). Because (x,y)SD(z,w) we have x+w=y+z. It follows that z+y=w+x (commutativity of addition and symmetry of equality) so (z,w)SD(x,y).

transitive: Assume that (x, y)SD(z, w) and (z, w)SD(u, v). Show that (x, y)SD(u, v). Because (x, y)SD(z, w) we have x+w=y+z. Because (z, w)SD(u, v) we have z+v=w+u. Thus we have x+w+z+v=y+z+w+u from which (by subtracting w and z from both sides we get x+v=y+u, so (x, y)SD(u, v).

What is the same about (x, y) and (z, w) if (x, y)SD(z, w)? What I was looking for was x - y = z - w: the differences of the numbers are the same. Nobody got that, but some noticed that (x, y) and (z, w) lie on the same line of slope 1 in the plane, which is a correct answer.