AMENDMENTS TO THE CLAIMS

1-17 (cancelled)

18. (Currently Amended) A process for the production of a compound of general formula I:

wherein

A represents CH or N:

R¹ represents H, lower alkyl (which alkyl group is optionally interrupted by O), Het, alkylHet, aryl or alkylaryl, which latter five groups are all optionally substituted (and/or, in the case of lower alkyl, optionally terminated) by one or more substituents selected from halo, cyano, nitro, lower alkyl, OR⁵, C(O)R⁶, C(O)OR⁷, C(O)NR⁸R⁹, NR^{10a}R^{10b} and SO₂NR^{11a}R^{11b};

R² and R⁴ independently represent lower alkyl;

R³ represents lower alkyl, which alkyl group is optionally interrupted by oxygen;

Het represents an optionally substituted four- to twelve-membered heterocyclic group, which group contains one or more heteroatoms selected from nitrogen, oxygen and sulfur;

 $R^5,\,R^6,\,R^7,\,R^8,\,R^9,\,R^{11a}$ and R^{11b} independently represent H or lower alkyl;

R^{10a} and R^{10b} either independently represent, H or lower alkyl or, together with the nitrogen atom to which they are attached, represent azetidinyl, pyrollidinyl or piperidinyl, which process comprises the dehydrogenation of a compound of general formula II,

wherein A, R^1 , R^2 , R^3 and R^4 are as defined above; and wherein the compound of general formula II is prepared by reaction of a compound of formula III,

with a compound of general-formula IV,

$$H_2N$$
 H_2N
 R^2

IV

19. (Currently Amended) A process as claimed in Claim 18, wherein the compound of general formula I is formed in a "one pot" procedure, in which a compound of formula III is reacted with a compound of general-formula IV, after which the

dehydrogenation reaction is performed directly on the intermediate compound of general formula II, formed *in situ*.

20. (previously presented) A process as claimed in Claim 18, wherein, in the compound of formula III, A represents CH, and that compound is prepared by oxidation of a compound of formula VI,

21. (previously presented) A process as claimed in Claim 20, wherein the compound of formula VI is prepared by reduction of a corresponding carboxylic acid of formula VII,

22. (currently amended) A process as claimed in Claim 20, wherein the compound of formula VI is prepared by esterification of a compound of formula VII.

as defined in Claim 21 to form a compound of formula VIIIA,

wherein

Ra represents lower alkyl; and

R³ represents lower alkyl, which alkyl group is optionally interrupted by oxygen;

R⁴ represents lower alkyl;

R³-and R⁴-are as defined in claim 18, followed by reduction of the ester of formula VIIIA.

23. (currently amended) A process as claimed in Claim 18, wherein, in the compound of formula III, A represents N, and that compound is prepared by reduction of a corresponding compound of formula VIIIB,

wherein R^a is lower alkyl as defined in Claim 22, and R³ and R⁴ are as defined in Claim 18.

24. (currently amended) A compound of general formula II,

wherein

A represents CH or N;

R¹ represents H, lower alkyl (which alkyl group is optionally interrupted by O), Het,
alkylHet, aryl or alkylaryl, which latter five groups are all optionally substituted (and/or, in the case of lower alkyl, optionally terminated) by one or more substituents selected from halo, cyano, nitro, lower alkyl, OR⁵, C(O)R⁶, C(O)OR⁷, C(O)NR⁶R⁷, NR¹⁰aR¹⁰b and SO₂NR¹¹aR¹¹b;

R² and R⁴ independently represent lower alkyl;

R³ represents lower alkyl, which alkyl group is optionally interrupted by oxygen;
Het represents an optionally substituted four- to twelve-membered heterocyclic group, which group contains one or more heteroatoms selected from nitrogen, oxygen and sulfur;

R⁵, R⁶, R⁷, R՞, Rゥ, R¹¹¹a and R¹¹¹b independently represent H or lower alkyl;

R^{10a} and R^{10b} either independently represent, H or lower alkyl or, together with the nitrogen atom to which they are attached, represent azetidinyl, pyrollidinyl or piperidinyl as defined in Claim 18.

25. (currently amended) A compound of formula III,

wherein A, R³ and R⁴ are as defined in Claim 24 48.

26. (currently amended) A compound of general formula VI,

wherein R^3 and R^4 are as defined in Claim 2420.

27. (currently amended) A compound of formula VIIIA,

wherein

Ra represents lower alkyl; and

R³ represents lower alkyl, which alkyl group is optionally interrupted by oxygen;

R⁴ represents lower alkyl, with the proviso that when R^a is methyl and R³ is propyl, R⁴ is not methyl or ethyl defined in Claim 22.

28. (currently amended) A process for the production of compounds of general formula I:

wherein

A represents CH or N;

R¹ represents H, lower alkyl (which alkyl group is optionally interrupted by O), Het, alkylHet, aryl or alkylaryl, which latter five groups are all optionally substituted (and/or, in the

case of lower alkyl, optionally terminated) by one or more substituents selected from halo, cyano, nitro, lower alkyl, OR⁵, C(O)R⁶, C(O)OR⁷, C(O)NR⁸R⁹, NR^{10a}R^{10b} and SO₂NR^{11a}R^{11b};

R² and R⁴ independently represent lower alkyl;

R³ represents lower alkyl, which alkyl group is optionally interrupted by oxygen;

Het represents an optionally substituted four- to twelve-membered heterocyclic group, which group contains one or more heteroatoms selected from nitrogen, oxygen and sulfur;

R⁵, R⁶, R⁷, R⁸, R⁹, R^{11a} and R^{11b} independently represent H or lower alkyl;

R^{10a} and R^{10b} either independently represent, H or lower alkyl or, together with the nitrogen atom to which they are attached, represent azetidinyl, pyrollidinyl or piperidinyl; with the proviso that the compound of formula I is not sildenafil; which process comprises the dehydrogenation of a compound of general formula II,

wherein A, R¹, R², R³ and R⁴ are as defined above.

29. (currently amended) A process for the production of compounds of general formula I:

wherein

A represents CH;

R¹ represents H, lower alkyl (which alkyl group is optionally interrupted by O), Het, alkylHet, aryl or alkylaryl, which latter five groups are all optionally substituted (and/or, in the case of lower alkyl, optionally terminated) by one or more substituents selected from halo, cyano, nitro, lower alkyl, OR⁵, C(O)R⁶, C(O)OR⁶, C(O)NR⁶R⁹, NR¹¹⁰aR¹⁰⁰ and SO₂NR¹¹¹aR¹¹¹⁰;

R² and R⁴ independently represent lower alkyl;

R³ represents lower alkyl, which alkyl group is optionally interrupted by oxygen;
Het represents an optionally substituted four- to twelve-membered heterocyclic
group, which group contains one or more heteroatoms selected from nitrogen, oxygen and sulfur;

R⁵, R⁶, R⁷, R⁸, R⁹, R^{11a} and R^{11b} independently represent H or lower alkyl; R^{10a} and R^{10b} either independently represent, H or lower alkyl or, together with the nitrogen atom to which they are attached, represent azetidinyl, pyrollidinyl or piperidinyl; with the proviso that the compound of formula I is not sildenafil; which process comprises the dehydrogenation of a compound of general formula II,

wherein A, R¹, R², R³ and R⁴ are as defined above.

30. (currently amended) A process for the production of compounds of general formula I:

wherein

A represents N;

R¹ represents H, lower alkyl (which alkyl group is optionally interrupted by O), Het, alkylHet, aryl or alkylaryl, which latter five groups are all optionally substituted (and/or, in the case of lower alkyl, optionally terminated) by one or more substituents selected from halo, cyano, nitro, lower alkyl, OR⁵, C(O)R⁶, C(O)OR⁷, C(O)NR⁸R⁹, NR^{10a}R^{10b} and SO₂NR^{11a}R^{11b};

R² and R⁴ independently represent lower alkyl;

R³ represents lower alkyl, which alkyl group is optionally interrupted by oxygen;

Het represents an optionally substituted four- to twelve-membered heterocyclic group, which group contains one or more heteroatoms selected from nitrogen, oxygen and sulfur;

 R^5 , R^6 , R^7 , R^8 , R^9 , R^{11a} and R^{11b} independently represent H or lower alkyl;

R^{10a} and R^{10b} either independently represent, H or lower alkyl or, together with the nitrogen atom to which they are attached, represent azetidinyl, pyrollidinyl or piperidinyl, which process comprises the dehydrogenation of a compound of general formula II,

wherein A, R^1 , R^2 , R^3 and R^4 are as defined above.