章节 08 函子

LATEX Definitions are here.

 $_{:1}\mathrm{id}(\mathsf{b}\Delta)$

先规定几种特殊的范畴:

- 离散范畴: 只有对象不含箭头(恒等箭头除外)的范畴。
- Set: 集合范畴, 为局部小范畴, 满足
 - Set 中对象可以是任意集合
 - *Set* 中箭头便是集合间映射。
- C^{op}: **反范畴**,满足
 - C^{op} 中对象皆形如 c,
 c 为任意 C 中的对象;
 - $\mathcal{C}^{\mathrm{op}}$ 中箭头皆形如 $\phi^{\mathrm{op}}: \mathsf{c}_2 \overset{\mathcal{C}^{\mathrm{op}}}{\longrightarrow} \mathsf{c}_1$, $\phi: \mathsf{c}_1 \overset{\mathcal{C}}{\longrightarrow} \mathsf{c}_2$ 可为任意 \mathcal{C} 中的箭头 。
- $\mathcal{C}^{\mathcal{C}at} \times \mathcal{D}$: **积范畴**,满足
- C/b: **俯范畴**,满足
 - C/b 中对象皆形如 $x \cdot 1 \cdot \phi$, 其中 x 和 ϕ : $x \xrightarrow{c} b$ 分别为 C 中任意的对象和箭头;
 - \mathcal{C}/b 中箭头皆形如 f_1 元 d 且满足下述交换图 , 其中 x_1 , x_2 为 \mathcal{C} 中对象且 ϕ_1 , ϕ_2 , f_1 , f_2 , f_3 , f_4 , f_5 , f_7 , f_8 , f_9 ,

- a/C:**仰范畴**,满足
 - a/C 中对象皆形如 $1.x.\phi$, 其中 x 和 ϕ : $c \xrightarrow{C} x$ 分别为 C 中任意的对象和箭头;
 - a/\mathcal{C} 中箭头皆形如 $_{\mathscr{F}}$ id . g_1 且满足下述交换图 , 其中 x_1 , x_2 为 \mathcal{C} 中对象且 ϕ_1 , ϕ_2 , $_{:1}$ id , g_1 皆为 \mathcal{C} 中箭头 ;

考虑范畴 \mathcal{C} 和 \mathcal{D} , 现提供函子定义:

- $P:\mathcal{C} \overset{\mathcal{C}at}{\longrightarrow} \mathcal{D}$ 为范畴当且仅当
 - 对任意 $\mathcal C$ 中对象 $\mathbf c$, $\mathbf cP$ 为 $\mathcal D$ 中对象且 $\mathbf c$ id $\mathbf P = \mathbf c \mathbf P \mathrm{id}$;
 - 对任意 \mathcal{C} 中箭头 ϕ_1 : $\mathbf{c}_1 \overset{c}{\rightarrow} \mathbf{c}_2$ 和 ϕ_2 : $\mathbf{c}_2 \overset{c}{\rightarrow} \mathbf{c}_3$,始终都有等式 $(\phi_1 \circ \phi_2)P = \phi_1 P \overset{\mathcal{D}}{\circ} \phi_2 P$ 成立。

假如 C, D 皆为**局部小范畴**, 并且刚才的 P 确实构成一个函子,则

- P 是**忠实的**当且仅当对任意 \mathcal{C} 中的对象 \mathbf{c}_1 , \mathbf{c}_2 $(\mathbf{c}_1 \overset{\mathcal{C}}{\rightarrow} \mathbf{c}_2)$ 与 $(\mathbf{c}_1 P \overset{\mathcal{D}}{\rightarrow} \mathbf{c}_2 P)$ 之间始终存在单射 ;
- P 是**完全的**当且仅当对任意 \mathcal{C} 中的对象 c_1 , c_2 $(c_1 \overset{\mathcal{C}}{\rightarrow} c_2)$ 与 $(c_1 P\overset{\mathcal{D}}{\rightarrow} c_2 P)$ 之间始终存在满射 ;
- P 是**完全忠实的**当且仅当 $\stackrel{c}{\rightarrow}$ 与 $\stackrel{\mathcal{D}}{\rightarrow}$ 间存在自然同构 , 即 $(\mathbf{c_1}\stackrel{\mathcal{C}}{\rightarrow}_)$ 与 $(\mathbf{c_1}\stackrel{\mathcal{D}}{\rightarrow}_)$ 间存在自然同构

若还知道 $P_1, P_2: \mathcal{C} \overset{\mathcal{C}at}{\longrightarrow} \mathcal{D}$ 为函子 , 则

- 函子 $P_1: \mathcal{C} \xrightarrow{\mathcal{C}at} \mathcal{D}$, 函子 $P_2: \mathcal{C} \xrightarrow{\mathcal{C}at} \mathcal{D}$, 函子的复合: $P_1 \circ P_2$
- 自然变换 $\eta_1: P_1 \xrightarrow{\mathcal{C}at} Q_1$,自然变换 $\eta_2: P_1 \xrightarrow{\mathcal{C}at} Q_1$,自然变换 $\theta_1: Q_1 \xrightarrow{\mathcal{C}at} R_1$ 自然变换的纵复合: $\eta_1 \circ_{\mathbf{v}} \eta_2$,自然变换的横复合: $\eta_1 \circ_{\mathbf{h}} \theta_1$,