

AARHUS SCHOOL OF ENGINEERING

SUNDHEDSTEKNOLOGI 3. SEMESTERPROJEKT

Dokumentation

Gruppe 1 Lise Skytte Brodersen (201407432) Nina Brkovic(201406458) Jakob Degn Christensen(201408532) Toke Tobias Aaris(201407321) Annsofie Randrup Wagner (201406360) Anders Wiggers Birkelund(201404118)

Vejleder Studentervejleder Peter Johansen Aarhus Universitet

Indholdsfortegnelse

Kapite	1 Design	1
1.1	Systemarkitektur	1
	1.1.1 BBD-diagram	1
	1.1.2 IBD-diagram	2
1.2	Grænseflader	3
1.3	Hardware arkitektur	3
	1.3.1 Specifikationer	3
	1.3.2 Instrumentationsforstærker	3
	1.3.3 BDD Diagram	4
1.4	Software arkitektur	4
	1.4.1 Domænemodel	4
	1.4.2 Applikationsmodel	5
Kapite	2 Hardware implementering og test	.3
2.1	Tryktransducer	13
2.2	Operationsforstærker	13
	2.2.1	13
2.3	Filterblok	13
Kapite	3 Acceptest 1	.5
3.1	Accepttest af Use Cases	15
	•	15
		16
	3.1.3 Use Case 3	16
	3.1.4 Use Case 4	16
		17
		17
3 2		18

Design]

Versionshistorik

Version Dato Ansvarlig Beskrivelse

1.0

1.1 Systemarkitektur

Igennem BBD og IBD vil det overordnede blodtryksmålersystem beskrives i forhold til hvilke blokke systemet består af, og hvordan de interagerer med hinanden.

1.1.1 BBD-diagram

På figur 2.1 ses BDD-diagrammet for systemet. BBD viser de forskellige blokke for systemet og hvilke porte de består af. I tabel 2.2 ses en beskrivelse af blokkene.

 $Figur~1.1:~BBD ext{-}diagram$

Blok	Beskrivelse
Blodtryksmåler	Det overordnede system, som indeholder Trykmonitor, Instrumenteringsforstærker, DAQ og Computer
Trykmonitor	Registrerer en fysisk størrelse i form af en trykændring. I dette system anvendes en transducer. Transduceren har til opgave at transformere den fysiske størrelse til en
	elektrisk spænding, som viderebehandles gennem de resterne hardware blokke

Instrumenteringsforstærker Består af to dele. En forstærker-del og en filterings-del.

Det analoge signal fra Trykmonitoren bliver via denne blok

forstærket og filteret

DAQ Konverterer det analoge signal fra Trykmonitoren til et

digitalt signal

Computer Indeholder software til systemet, som er kodet i Visual Studio

 $\mathrm{C}\#.$ Softwaren kan blandt andet vise det digitale signal grafisk. Softwaren kan ligeledes kalibrere, nulpunktsjustere

og gemme målinger samt aktivere og deaktiver filter

Tabel 1.2: Beskrivelse af blokkene for systemet

1.1.2 IBD-diagram

På figur 2.2 ses IBD-diagrammet for systemet. IBD viser, hvordan de forskellige blokke intergerer med hinanden. IBD fortæller signalets behandling gennem systemet - altså hvordan signalet transformeres fra et målt fysisk tryk til et digitalt signal, som softwaren kan videre behandle og vise grafisk.

Figur 1.2: IBD-diagram

1.2 Grænseflader

Kommunikationsprotokol for hardware blokkene ses i tabel 2.3. Det er en beskrivelse og specifikation af hvilken indgang- og udgangssignal de forskellige blokke har.

Grænseflade	Signal	Type	Format	Værdi
Trykmoniter	Blodtryk	in	Tryk	0 - 300 mmHg
	Analogt	out	Spænding	+/- 13,5mV
Forstærker	Analogt	in	Spænding	+/- 13,5 mV
	Forstærket analogt	out	Spænding	+/- $5V$
Filter	Forstærket analogt	in	Spænding	+/- $5V$
	Filteret analogt	out	Spænding	$+/$ - $5\mathrm{V}$
DAQ	Filteret analogt	in	Spænding	+/- $5V$
	Digitalt	out	16-bit double	+/- 5
Computer	Digitalt	in	16-bit double	+/- 5

Tabel 1.3: Kommunikationsprotokol

1.3 Hardware arkitektur

Tryktransducer

1.3.1 Specifikationer

- Måleprobe kan indsættes intravenøst
- Operationel trykinterval 0-300 mmHg
- Udgangssignal: 2 udgange; +/- udgang
- Sensitivitet: $5\mu/V/V/mmHg$
- Operationstemperatur: 15-40 grader Celcius

1.3.2 Instrumentationsforstærker

Filterblok

Specifikationer

- 2. Ordens lavpasfilter
- Cutofffrekvens: 50 Hz
- Unity gain (ingen forstærkning)
- -20 dB ved 500 Hz

- Infinite indgangsimpedans
- Indgangsspænding +/-5 V
- \bullet Eksitationsspænding +/- 9 V

1.3.3 BDD Diagram

Forstærkerblok

Specifikationer

• Gain: 370

 \bullet Indgangspænding: +/- 0-14 mV

• Eksitationsspænding: +/- 9V

 \bullet Output spænding: +/- 5 V

• Båndbredde: 100 Hz

1.4 Software arkitektur

1.4.1 Domænemodel

Domænemodellen er skabt på baggrund af de seks Use Cases. Gennem navneordsanalyse af Use Casene er de konceptuelle klasser fundet. I modellen beskrives, hvordan de konceptuelle klasser interagerer med hinanden.

Figur 1.3: Domænemodel for blodtryksmålersystemet

1.4.2 Applikationsmodel

Sekvensdiagram

Sekvensdiagrammerne beskriver step-by-step, via metoder, forløbet i de forskellige Use Cases. Der er lavet et sekvensdiagram for hver Use Case, for at gøre systemet mere overskueligt. Et sekvensdiagram består af boundary-klasserne og domain-klasserne fra domænemodellen, samt en controller-klasse, med navn efter den specifikke Use Case.

Figur~1.4:~Sekvens diagram~for~UC1

Figur 1.5: Sekvensdiagram for UC2

 $Figur\ 1.6:\ Sekvensdiagram\ for\ UC3$

Figur 1.7: Sekvensdiagram for UC4

Figur 1.8: Sekvensdiagram for UC5

Figur 1.9: Sekvensdiagram for UC6

Opdateret klassediagram

De opdateret klassediagrammer indeholder metoderne fra de dertilhørende sekvensdiagrammer - dette giver et overblik over, hvilke metoder de forskellige klasser består af.

 $Figur\ 1.10:\ Klassediagram\ for\ UC1$

 $Figur\ 1.11:\ Klassediagram\ for\ UC2$

Figur 1.12: Klassediagram for UC3

Figur 1.13: Klassediagram for UC4

Figur 1.14: Klassediagram for UC5

Figur~1.15:~Klassediagram~for~UC6

Hardware implementering og test

2.1 Tryktransducer

Som tryktransducer anvendes TruWave (se datablad bilag). Herunder udregnes maksimalt udgangsspænding for tryktransducer ved maksimal trykbelastning (300 mmHg).

sed(2idn)

2.2 Operationsforstærker

Som forstærkerblok anvendes INA 114. Denne har den fordel at gain kan kontrolleres af en variabel modstand (potentiometer).

2.2.1

2.3 Filterblok

Acceptest 3

Versionshistorik

Version	Dato	Ansvarlig	Beskrivelse
1.0	30-09-2015	Alle	Første udkast. Klar til Review
2.0	08-10-2015	Alle	Rettelser efter review møde

3.1 Accepttest af Use Cases

3.1.1 Use Case 1

Kalibrér

	Test	Forventet resultat	Faktiske observationer	Godkendt
	$Hoved for l \emptyset b$			
1.	Start system	Kalibrering-vinduet vises, hvor system spørger om der skal foretages en ka- librering. Seneste kalibreringstidspunkt vises.		
2.	Tryk på "Ja"-knappen	System kalibrerer og Kalibrering-vinduet lukkes ned		
	Undtagelse			
2a.	Tryk på "Nej"- knappen	Kalibrering-vinduet lukkes ned		

Tabel 3.2: Accepttest af Use Case 1.

3.1.2 Use Case 2

Vis måling med filter

	Test	Forventet resultat	Faktiske observationer	Godkendt
	$Hoved for l \emptyset b$			
1.	System viser Monitor- vinduet	Blodtryksignal samt Systole-, Diastole- og pulsværdier udskrives i Monitor-vinduet		
	Undtagelse			
-				

Tabel 3.3: Accepttest of Use Case 2.

3.1.3 Use Case 3

Nulpunktsjustér

	Test	Forventet resultat	Faktiske observationer	Godkendt
	$Hoved for l \emptyset b$			
1.	Tryk på "Nulpunktsjustering"- knappen	Blodtrykssignalet udskrives i Monitor- vinduet med en baseli- ne ved 0. Tidsstemplet opdateres.		
	Undtagelser			

Tabel 3.4: Accepttest af Use Case 3.

3.1.4 Use Case 4

Deaktivér filter

Test	Forventet resultat	Faktiske observationer	Godkendt
$Hoved for l \emptyset b$			

1.	Markér "Deaktivér di- gitalt filtre"	Filteret deaktiveres og det ufiltreret blod- tryksignal udskrives i Monitor-vinduet
	Undtagelser	

Tabel 3.5: Accepttest af Use Case 4.

3.1.5 Use Case 5

Aktivér filter

	Test	Forventet resultat	Faktiske observationer	Godkendt	
	$Hoved for l \emptyset b$				
1.	Markér "Aktivér digi- talt filtre"	Filteret aktiveres og det filtreret blod- tryksignal udskrives i Monitor-vinduet			
	Undtagelser				

Tabel 3.6: Accepttest of Use Case 5.

3.1.6 Use Case 6

Gem måling

	Test		Forventet resultat	Godkendt	
	$Hoved for l \emptyset b$				
1.	Tryk på knappen	"Gem"-	Gem-vinduet åbnes		
2.	Indtast data		Datafelterne er ud- fyldt		

3.	Tryk på knappen	i "OK"-	Gem-vinduet lukkes ned og Monitor-	
			vinduet åbnes. Gem- me tidspunktet vises i	
			Monitor-vinduet	
	Undtagelse	r		
1a.	Tryk på knappen	"Gem"-	Gemme tidspunktet vises i Monitor- vinduet	

Tabel 3.7: Accepttest of Use Case 6.

3.2 Accepttest af ikke-funktionelle krav

Ikke-funktionelt krav	Test/handling	Forventet resultat	Faktiske vationer	obser-	Godkendt
Functionality					
System skal kunne vise et kontinuerligt blodtryksignal i Monitor-vinduet	Der ses om GUI'en viser et kontinuerligt blodtrykssignal	System viser et kontinuerligt blodtrykssignal			
System skal kun- ne vise Systole-, Diastole- og Pulsværdier med op til tre cifre	Der ses om GUI'en inde- holder Systole-, Diastole- og Pulsværdier med op til tre cifre	GUI'en inde- holder Systole-, Diastole- og Pulsværdier med op til tre cifre			
System skal kun- ne vise et blod- trykssignal med og uden et digi- talt filter	Der ses om GUI'en kan vise et blodtrykssig- nal med og uden digitalt filter	GUI'en kan vise et blodtrykssig- nal med og uden digitalt filter			
System skal kun- ne nulpunktsju- stere blodtryks- signalet	Der ses i GUI'en om blodtrykssig- nalet kan nul- punktsjusteres	Blodtrykssignalet kan nulpunktju- steres			

System skal kunne gemme en blodtryksmåling i en database	Der trykkes på "Gem"knappen i Monitor-vinduet og der indtastes gyldige værdier i Gem-vinduet og trykkes på "OK"-knappen	System gemmer data i en data- base og udskri- ver tidsstempel for gemt data i Monitor-vinduet
System skal kun- ne kalibreres	Der trykkes på "Ja"-knappen i kalibrering- vinduet	System er kali- breret
Usability		
Monitor-vinduet skal indeholde en "Gem"-knap	Der ses i Monitor-vinduet om der er en "Gem"-knap	Der er en "Gem"knap i Monitor- vinduet
Monitor-vinduet skal indeholde en "Nulpunktsjustér" -knap	Der ses i Monitor-vinduet - om der er en "Nulpunktsjustér"- -knap	Der er en "Nulpunktsjustér"- -knap i Monitor- - vinduet
Monitor-vinduet skal indeholde et tidsstempel for seneste nul- punktsjustering	Der ses i Monitor- vinduet, om der er et tids- stempel for seneste nul- punktsjustering	Der er et tids- stempel for seneste nul- punktsjustering i Monitor-vinduet
Monitor-vinduet skal indeholde to radiobuttons til aktivering og deaktivering af digitalt filter	Der ses i Monitor-vinduet om der er to radiobuttons til aktivering og deaktivering af digitalt filter	Der er to radio- buttons til akti- vering og deakti- vering af digitalt filter i Monitor- vinduet

Kalibrering- vinduet skal indeholde en "Ja"-knap og en "Nej"-knap	Der ses i kalibrering- vinduet om der er en "Ja"-knap og en "Nej"-knap	Der er en "Ja"knap og en "Nej"-knap i kalibrering- vinduet	
Kalibrering- vinduet skal indeholde et datostempel for seneste kalibrering	Der ses i kalibrering- vinduet om der er et tidsstem- pel for seneste kalibrering	Der er et tids- stempel for se- neste kalibrering i kalibrering- vinduet	
Gem-vinduet skal indeholde tekstbokse til data indtastning for målingen	Der ses i Gemvinduet, om der er tekstbokse til indtastning af data	Der er tekstbokse til indtastning af data i Gemvinduet	
Gem-vinduet skal indeholde en "OK"-knap	Der ses i Gemvinduet om der er en "OK"-knap	Der er en "OK"-knap i Gem-vinduet	
Det skal være muligt at aflæ- se værdier på Monitor-vinduet fra 2 meters afstand med normalt syn	Der testes af 5 personer med forskellige aldre med en syns- styrke på +/- 0,25, som place- res 2 meter fra Monitor-vinduet	Det er muligt for de 5 at aflæse værdierne på 2 meters afstand	
Reliability			
Systemet skal have en effektiv MTBF på 20 minutter og MTTR på 1 minut	Køre programmet i 20 minutter. Genstart derefter programmet, hvor der tages tid med et stopur	Programmet har kørt i 20 minut- ter og genstartes indenfor 1 minut	
Performance			

Blodtrykssignalet skal vises maksi- malt 5 sekunder efter UC1 er afsluttet	UC1 afsluttes samtidig med startes et stopur på en iPhone 5s. Når blodtryks- signalet vises stoppes uret	Blodtryksignalet vises indenfor de 5 sekunder
Systemet skal vise en graf for blodtryks- målingen, hvor y-aksen er mm- Hg og x-aksen er tid i sekunder	Der ses på grafen for blodtryks- signalet, om y-aksen er mm- Hg og x-aksen er tid i sekunder	Blodtryksignalets y-akse er mmHg og x-aksen er tid i sekunder
Systemet skal kunne måle blodtryksværdi- er fra 0 til 300 mmHg	Der foretages målinger hvor trykket er hen- holdsvis 280-295 og +300 (?)	(?)
Supportability		
	Don Iriggag i Iro	Data lam lamik
Softwaren skal opbygges efter trelagsmodellen	Der kigges i ko- den efter data- lag, logik-lag og GUI-lag	Data-lag, logik- lag og GUI-lag er at find i koden
opbygges efter	den efter data- lag, logik-lag og	lag og GUI-lag er
opbygges efter trelagsmodellen	den efter data- lag, logik-lag og	lag og GUI-lag er

Baggrunden i Monitor-vinduet skal være mørk	Der ses i Monitor-vinduet om baggrunden er mørk	Baggrunden i Monitor-vinduet er mørk
Blodtrykssignal og - værdier(systole og diastole) skal være røde og puls skal være grøn	Der ses på blodtryksdia-grammet om blodtrykssignal og -værdier er røde og puls er grøn	Blodtrykssignal og - værdier(systole og diastole) er røde og puls er grøn
Systolisk og diastolisk blodtryk skal fremhæves ved større skriftstørrelse end andre værdier i Monitor-vinduet (fx værdier på akserne)	Der ses i Monitor-vinduet om det systoliske og det diasto- liske blodtryk er fremhævet ved større skrift- størrelse end andre værdier i Monitor-vinduet	Det ses i Monitor-vinduet at det systoliske og det diasto- liske blodtryk er fremhævet ved større skrift- størrelse end andre værdier i Monitor-vinduet

 $Tabel \ 3.8: \ Accept test \ af \ Ikke-funktionelle \ krav$