Lab 1

Priority Encoder

Input								Binary Output		
D7	D6	D 5	D4	D 3	D2	D1	D0	Q2	Q1	Q0
0	0	0	0	0	0	0	1	1	1	1
0	0	0	0	0	0	1	х	1	1	0
0	0	0	0	0	1	х	х	1	0	1
0	0	0	0	1	х	х	х	1	0	0
0	0	0	1	х	х	х	х	0	1	1
0	0	1	х	х	х	х	х	0	1	0
0	1	x	x	х	х	х	х	0	0	1
1	х	х	x	х	х	х	х	0	0	0

The output counts how many zeros are there in the input

$$\begin{split} Q_0 &= \sum (1,2,4,6) \\ Q_0 &= (\overline{D}_7 \overline{D}_6 \overline{D}_5 \overline{D}_4 \overline{D}_3 \overline{D}_2 \overline{D}_1 D_0 + \overline{D}_7 \overline{D}_6 \overline{D}_5 \overline{D}_4 \overline{D}_3 D_2 + \overline{D}_7 \overline{D}_6 \overline{D}_5 D_4 + \overline{D}_7 D_6) \\ Q_0 &= (\overline{D}_7 \overline{D}_5 \overline{D}_3 \overline{D}_1 D_0 + \overline{D}_7 \overline{D}_5 \overline{D}_3 D_2 + \overline{D}_7 \overline{D}_5 D_4 + \overline{D}_7 D_6) \\ Q_0 &= (\overline{D}_7 (\overline{D}_5 (\overline{D}_3 \overline{D}_1 D_0 + \overline{D}_3 D_2 + D_4) + D_6)) \end{split}$$

Similarly:

$$\begin{aligned} Q_1 &= \sum (0,1,4,5) \\ Q_1 &= (\overline{D}_7 \overline{D}_6 \overline{D}_5 \overline{D}_4 \overline{D}_3 \overline{D}_2 \overline{D}_1 D_0 + \overline{D}_7 \overline{D}_6 \overline{D}_5 \overline{D}_4 \overline{D}_3 \overline{D}_2 D_1 + \overline{D}_7 \overline{D}_6 \overline{D}_5 D_4 + \overline{D}_7 \overline{D}_6 D_5) \\ Q_1 &= (\overline{D}_7 \overline{D}_6 \overline{D}_3 \overline{D}_2 D_0 + \overline{D}_7 \overline{D}_6 \overline{D}_3 \overline{D}_2 D_1 + \overline{D}_7 \overline{D}_6 D_4 + \overline{D}_7 \overline{D}_6 D_5) \\ Q_1 &= (\overline{D}_7 (\overline{D}_6 (\overline{D}_3 \overline{D}_2 (D_0 + D_1) + D_4 + D_5))) \end{aligned}$$

And

$$\begin{aligned} Q_1 &= \sum (0,1,2,3) \\ Q_1 &= (\overline{D}_7 \overline{D}_6 \overline{D}_5 \overline{D}_4 \overline{D}_3 \overline{D}_2 \overline{D}_1 D_0 + \overline{D}_7 \overline{D}_6 \overline{D}_5 \overline{D}_4 \overline{D}_3 \overline{D}_2 D_1 + \overline{D}_7 \overline{D}_6 \overline{D}_5 \overline{D}_4 \overline{D}_3 D_2 + \overline{D}_7 \overline{D}_6 \overline{D}_5 \overline{D}_4 D_3) \\ Q_1 &= (\overline{D}_7 \overline{D}_6 \overline{D}_5 \overline{D}_4 D_0 + \overline{D}_7 \overline{D}_6 \overline{D}_5 \overline{D}_4 D_1 + \overline{D}_7 \overline{D}_6 \overline{D}_5 \overline{D}_4 D_2 + \overline{D}_7 \overline{D}_6 \overline{D}_5 \overline{D}_4 D_3) \\ Q_1 &= (\overline{D}_7 \overline{D}_6 \overline{D}_5 \overline{D}_4 (D_0 + D_1 + D_2 + D_3)) \end{aligned}$$

Test Bench

