# Examen de Aprendizaje Automático

ETSINF, Universitat Politècnica de València, 16 de enero de 2015

| Anellidos | Nombre   |  |
|-----------|----------|--|
| ripemaos. | riombre. |  |

#### Cuestiones (2 puntos; tiempo estimado: 30 minutos)

Marca cada recuadro con una única opción de entre las dadas. Cada acierto suma 1/2 puntos y cada fallo resta 1/6 puntos.

1 C Considerar la siguiente modificación de la función de Widrow y Hoff

$$q_S(\boldsymbol{\theta}) = \sum_{n=1}^{N} (\boldsymbol{\theta}^t \boldsymbol{x}_n - y_n) + \frac{\lambda}{2} \boldsymbol{\theta},$$

Al aplicar la técnica de descenso por gradiente, en la iteración k el vector de pesos,  $\theta$ , se modifica como:  $\theta(k+1)$  $\boldsymbol{\theta}(k) - \rho_k \boldsymbol{\nabla} q_S(\boldsymbol{\theta})|_{\boldsymbol{\theta} = \boldsymbol{\theta}(k)}$ . En esta expresión, el gradiente,  $\boldsymbol{\nabla} q_S(\boldsymbol{\theta})|_{\boldsymbol{\theta} = \boldsymbol{\theta}(k)}$ , es:

$$A) \sum_{n=1}^{N} x_n + 1$$

A) 
$$\sum_{n=1}^{N} \boldsymbol{x}_{n} + 1$$
B) 
$$\sum_{n=1}^{N} \boldsymbol{x}_{n} + \lambda \boldsymbol{\theta}(k)$$
C) 
$$\sum_{n=1}^{N} \boldsymbol{x}_{n} + \frac{\lambda}{2}$$

$$C) \sum_{n=1}^{N} x_n + \frac{\lambda}{2}$$

$$D) \sum_{n=1}^{N} \boldsymbol{\theta}(k)^{t} \boldsymbol{x}_{n} + 1$$

En el problema de optimización con restricciones

$$\begin{array}{ll} \text{minimizar} & q(\mathbf{\Theta}), \quad \mathbf{\Theta} \in \mathbb{R}^D \\ \text{sujecto a} & v_i(\mathbf{\Theta}) \leq 0, \quad 1 \leq i \leq k \\ \end{array}$$

se cumplen las condiciones complementarias de Karush-Kuhn-Tucker  $\alpha_i^* v_i(\mathbf{\Theta}^*) = 0$  para  $1 \le i \le k$ . Indicar cuál de las siguientes afirmaciones se deduce de ellas:

- A) Existe un i tal que  $\alpha_i^* < 0$  y  $v_i(\mathbf{\Theta}^*) = 0$
- B) Para todo i, si  $\alpha_i^* = 0$ , entonces  $v_i(\mathbf{\Theta}^*) = 0$ , C) Si para un i,  $\alpha_i^* > 0$ , entonces  $v_i(\mathbf{\Theta}^*) = 0$
- D) Existe un i tal que  $v_i(\mathbf{\Theta}^*) > 0$  y  $\alpha_i^* = 0$

3|B| Las siguientes afirmaciones se refieren a la estimación por máxima verosimilitud de los parámetros de una mezcla de Kgaussianas (vector-media y peso de cada gaussiana) mediante un conjunto de vectores de entrenamiento cualquiera de dimensión D. Identifica cuál es falsa.

- A) Los parámetros de la mezcla se estiman adecuadamente mediante un algoritmo de esperanza maximización (EM)
- B) El algoritmo EM obtiene los valores óptimos de los parámetros a estimar
- C) La verosimilitud del conjunto de entrenamiento, calculada con los parámetros estimados, aumenta en cada iteración
- D) En cada iteración, el algoritmo EM estima los valores de las variables ocultas que, en este caso, son los pesos de las gaussianas.

Sea  $\mathcal C$  un conjunto de variables aleatorias. Un concepto importante en el que se basan las técnicas de redes bayesianas es:

- A) el grafo que relaciona a las variables entre si define una distribución de probabilidad conjunta en las variables  $\mathcal C$  y permite calcular cualquier probabilidad condicional en la que intervengan variables de  ${\cal C}$
- B) los nodos del grafo representan las dependencias entre las variables en  $\mathcal C$
- C) el grafo que relaciona a las variables entre si define una distribución de probabilidad condicional entre dos subconjuntos de variables en C
- D) las probabilidades condicionales se calculan a partir de los cliques (subgrafos completos) que contiene el grafo.

## Problema 1 (3 puntos; tiempo estimado: 30 minutos)

En la siguiente tabla se presenta una muestra de entrenamiento no linealmente separable en  $\mathbb{R}^2$  y los correspondientes multiplicadores de Lagrange óptimos obtenidos al entrenar una máquina de vectores soporte con esta muestra (y C=10):

| i                  | 1    | 2  | 3  | 4    | 5  | 6  | 7  | 8    |
|--------------------|------|----|----|------|----|----|----|------|
| $x_{i1}$           | 1    | 2  | 2  | 4    | 3  | 2  | 4  | 4    |
| $x_{i2}$           | 4    | 2  | 3  | 2    | 4  | 5  | 4  | 3    |
| Clase              | +1   | +1 | -1 | +1   | -1 | -1 | -1 | -1   |
| $\alpha_i^{\star}$ | 7.11 | 0  | 10 | 9.11 | 0  | 0  | 0  | 6.22 |

- a) Obtener la función discriminante lineal correspondiente
- b) Representar gráficamente la frontera lineal de separación entre clases y las muestras de entrenamiento, indicando cuáles son vectores soporte.
- c) Clasificar la muestra  $(5,5)^t$ .
- a) Pesos de la función discriminante:

$$\begin{aligned} \boldsymbol{\theta^{\star}} &= c_1 \ \alpha_1^{\star} \ \mathbf{x_1} + c_3 \ \alpha_3^{\star} \ \mathbf{x_3} + c_4 \alpha_4^{\star} \ \mathbf{x_4} + c_8 \alpha_8^{\star} \ \mathbf{x_8} \\ \boldsymbol{\theta_1^{*}} &= \ (+1) \ (1) \ (7.11) + (-1) \ (2) \ (10) + (+1) \ (4) \ (9.11) + (-1) \ (4) \ (6.22) \ = \ -1.33 \\ \boldsymbol{\theta_2^{*}} &= \ (+1) \ (4) \ (7.11) + (-1) \ (3) \ (10) + (+1) \ (2) \ (9.11) + (-1) \ (3) \ (6.22) \ = \ -2.00 \end{aligned}$$

Usando el vector soporte  $\mathbf{x_1}$  (que verifica la condición :  $0 < \alpha_1^* < C$ )

$$\theta_0^* = c_1 - \boldsymbol{\theta}^{*t} \mathbf{x_1} = 1 - ((-1.33) (1) - (2.00) (4)) = 10.33$$

b) Frontera de separación y representación gráfica:

Ecuación de la frontera lineal de separación:  $10.33 - 1.33 \ x_1 - 2.00 \ x_2 = 0 \rightarrow x_2 = -0.665 \ x_1 + 5.165$ . Los vectores de entrenamiento son todos los de la tabla. De ellos, los vectores soporte son:  $(1,4)^t$ ,  $(2,3)^t$ ,  $(4,2)^t$ ,  $(4,3)^t$ . Representación gráfica:



c) Clasificación de la muestra  $(5,5)^t$ :

El valor de la función discriminante para este vector es:  $\theta_0^* + \theta_1^* \ 5 + \theta_2^* \ 5 = -6.32 < 0 \Rightarrow \text{clase -1}.$ 

## Problema 2 (3 puntos; tiempo estimado: 30 minutos)

El perceptrón multicapa de la figura se utiliza para resolver un problema de regresión.



Se asume que la función de activación de los nodos de la capa de salida y de la capa oculta es de tipo sigmoid. Sean:

Un vector de entrada  $x_1 = 1.0$ 

Las salidas de la capa oculta  $s_1^1 = 0.622$   $s_2^1 = 0.119$  Las salidas de la capa de salida  $s_1^2 = 0.442$   $s_2^2 = 0.807$   $s_3^2 = 0.283$  Los valores deseados de la capa de salida  $t_1 = -1.0$   $t_2 = 1.0$   $t_3 = -2.0$ 

- a) los correspondientes errores en los tres nodos de la capa de salida y en los dos nodos de la capa oculta.
- b) Los nuevos valores de los pesos  $\theta_{32}^2$  y  $\theta_{23}^1$  asumiendo que el factor de aprendizaje  $\rho$  es 1.0
- a) Los errores en la capa de salida son:

$$\delta_1^2 = (t_1 - s_1^2) \ s_1^2 \ (1 - s_1^2) = -0.356; \qquad \delta_2^2 = (t_2 - s_2^2) \ s_2^2 \ (1 - s_2^2) = 0.030; \qquad \delta_3^2 = (t_3 - s_3^2) \ s_3^2 \ (1 - s_3^2) = -0.463$$

Los errores en la capa de oculta son:

$$\delta_1^1 = (\delta_1^2 \ \theta_{11}^2 + \delta_2^2 \ \theta_{21}^2 + \delta_3^2 \ \theta_{31}^2) \ s_1^1 \ (1 - s_1^1) = 0.183; \qquad \delta_2^1 = (\delta_1^2 \ \theta_{12}^2 + \delta_2^2 \ \theta_{22}^2 + \delta_3^2 \ \theta_{32}^2) \ s_2^1 \ (1 - s_2^1) = 0.014$$

b) El nuevo peso  $\theta_{32}^2$  es:  $\theta_{32}^2 = \theta_{32}^2 + \rho \ \delta_3^2 \ s_2^1 = (-1.0) + (1) \ (-0.463) \ (0.119) = -1.055$ El nuevo peso  $\theta_{23}^1$  es:  $\theta_{23}^1 = \theta_{23}^1 + \rho \ \delta_2^1 \ x_3 = (-0.5) + (1) \ (0.019) \ (2.0) = -0.472$ 

#### Problema 3 (2 puntos; tiempo estimado: 20 minutos)

Considerar la red bayesiana  $\mathcal{R}$  definida como  $P(A, B, C, D) = P(A) P(B) P(C \mid A, B) P(D \mid C)$ , cuyas variables A, B, C, y D toman valores en el conjunto  $\{0, 1\}$  y sus distribuciones de probabilidad asociadas son:

$$P(A=1) = 0.3 \qquad P(A=0) = 0.7$$

$$P(B=1) = 0.4 \qquad P(B=0) = 0.6$$

$$P(C=1 \mid A=0, B=0) = 0.1 \qquad P(C=0 \mid A=0, B=0) = 0.9$$

$$P(C=1 \mid A=0, B=1) = 0.2 \qquad P(C=0 \mid A=0, B=1) = 0.8$$

$$P(C=1 \mid A=1, B=0) = 0.3 \qquad P(C=0 \mid A=1, B=0) = 0.7$$

$$P(C=1 \mid A=1, B=1) = 0.4 \qquad P(C=0 \mid A=1, B=1) = 0.6$$

$$P(D=1 \mid C=0) = 0.3 \qquad P(D=0 \mid C=0) = 0.7$$

$$P(D=1 \mid C=1) = 0.7 \qquad P(D=0 \mid C=1) = 0.3$$

- a) Representar gráficamente la red
- b) Obtener una expresión simplificada de  $P(A \mid B, C, D)$  en función de las distribuciones definidas en los nodos de  $\mathcal{R}$  y calcular su valor para A = 0 cuando B = 1, C = 1 y D = 1.
- c) Dados B=1, C=1 y D=1, ¿Cuál es el valor óptimo de A?
- d) Obtener una expresión simplificada de  $P(B, C, D \mid A)$  y calcular su valor para B = 1, C = 1 y D = 1 cuando A = 0.
- a) Representación gráfica de la red:



b) Obtener una expresión simplificada de  $P(A \mid B, C, D)$  en función de las distribuciones definidas en los nodos de  $\mathcal{R}$  y calcular su valor para A = 0 cuando B = 1, C = 1 y D = 1.

$$\begin{split} P(A \mid B, C, D) &= \frac{P(A, B, C, D)}{P(B, C, D)} = \frac{P(A) \ P(B) \ P(C \mid A, B) \ P(D \mid C)}{P(B) \ P(D \mid C) \ \sum_{a} P(A = a) \ P(C \mid A = a, B)} \\ &= \frac{P(A) \ P(C \mid A, B)}{\sum_{a} P(A = a) \ P(C \mid A = a, B)} \\ P(A = 0 \mid B = 1, C = 1, D = 1) &= \frac{0.7 \cdot 0.2}{0.7 \cdot 0.2 \ + \ 0.3 \cdot 0.4} = 0.5385 \end{split}$$

- c) Dados B=1, C=1 y D=1, ¿Cuál es el valor óptimo de A?  $a^{\star}=\arg\max_{a\in\{0,1\}}P(A=a\mid B=1, C=1, D=1)$   $P(A=1\mid B=1, C=1, D=1)=1-0.5385=0.4615, \text{ por tanto el valor óptimo es } A=0$
- d) Obtener una expresión simplificada de  $P(B, C, D \mid A)$  y calcular su valor para B = 1, C = 1 y D = 1 cuando A = 0.

$$P(B,C,D \mid A) = \frac{P(A,B,C,D)}{P(A)} = P(B) \ P(C \mid A,B) \ P(D \mid C)$$
 
$$P(B=1,C=1,D=1 \mid A=0) = 0.4 \cdot 0.2 \cdot 0.7 = 0.056$$