Topic 3: Work and Energy

Advanced Placement Physics

Dr. Timothy Leung

Olympiads School

Novemver 16, 2019

Files for You to Download

- Slides for this week and next
 - PhysAP-03-workEnergy.pdf-This week's slides on work and energy
 - PhysAP-03-momentumImpulse.pdf—Next week's slides on momentum, impulse and general collisions.
- PhysAP-04-Homework.pdf—Homework problems for Topics 3 and 4.

Please download/print the PDF file for the class slides before each class. There is no point copying notes that are already printed out for you. Instead, take notes on things I say that aren't necessarily on the slides. If you want to print the slides, we recommend that you print 4 slides per page to save paper.

Work and Energy

We start with some definition at are (unfortunately) not very useful:

- Energy is the ability to do work.
- Work is the mechanism in which energy is transformed.

Luckily, we can also use equations to define these concepts.

Work

Mechanical work is performed when a force F is used to displace an object by an infinitesimal amount $d\mathbf{r}$:

$$W = \int_{r_1}^{r_2} \mathbf{F}(r) \cdot d\mathbf{r}$$

- No work done if the force is perpendicular to displacement (i.e. $\mathbf{F} \cdot d\mathbf{r} = 0$)
- No work done if no displacement $(d\mathbf{r} = \mathbf{0})$
- Work can be positive or negative depending on the dot product
- When there are multiple forces acting on an object, we can compute the work done by each each force

Kinetic Energy

When we apply a force on an object to accelerate it, the resulting amount of work done is given by:

$$W_{\text{net}} = \int \mathbf{F}_{\text{net}} \cdot d\mathbf{x} = \int m\mathbf{a} \cdot d\mathbf{x} = m \int \frac{d\mathbf{v}}{dt} \cdot d\mathbf{x}$$

Since both \mathbf{v} and \mathbf{x} are continuous functions in time, we can switch the order of differentitation, i.e.:

$$= m \int \frac{d\mathbf{x}}{dt} d \cdot \mathbf{v} = m \int \mathbf{v} \cdot d\mathbf{v} = \int_{v_1}^{v_2} mv dv$$

Since v and dv must be in the same direction, the dot product is trivial: $\mathbf{v} \cdot d\mathbf{v} = v dv$

Kinetic Energy

Continuing from the last slide, this integral, when integrated from v_1 (initial velocity) to v_2 (final velocity):

$$m \int_{v_1}^{v_2} v dv = \frac{1}{2} m v^2 \Big|_{v_1}^{v_2} = \Delta K$$

where $K = \frac{1}{2}mv^2$ is defined as the **translational kinetic energy**

Work and Kinetic Energy

In fact, the *definition* of kinetic energy came from this integration, in that we want to say that work equals to the change in *something*, and we called that kinetic energy. This is the **work-energy theorem**:

$$W_{\rm net} = \Delta K$$

- ΔK can be positive or negative depending on the dot product
- There may be multiple forces acting on an object; each of the forces can add or take away kinetic energy from an object
- Therefore we use the "net" amount of work done in the above equation

Definition of Work

Work done by a force

- We can quantify work by calculating the work done by a specific force
- Example: A boy pushes a cart forward. The "work done by the boy" is the work done by the applied force.

· Work done on an object

- There may be more than one force acting on an object
- The *sum* of all the work done on the object by each force
- The work done by the net force
- Also called the net work W_{net}

Example

Example 1: A force $\mathbf{F} = 4.0x\hat{\imath}$ (in newtons) acts on an object of mass $2.0\,\mathrm{kg}$ as it moves from x = 0 to $x = 5.0\,\mathrm{m}$. Given that the object is at rest at x = 0,

- (a) Calculate the net work
- (b) What is the final speed of the object?

Gravitational Force & Potential Energy

The gravitational force (weight) of an object is defined as:

$$\mathbf{F}_g = m\mathbf{g}$$

For objects near the surface of Earth, we assume that $\mathbf{g} = -g\hat{\jmath} = -10\hat{\jmath}$ (in m/s²) is a constant. The work done to raise an object from height h_1 to h_2 is therefore:

$$W = \int \mathbf{F}_{g} \cdot d\mathbf{h} = \int_{h_{1}}^{h_{2}} -mg\hat{\mathbf{\jmath}} \cdot dh\hat{\mathbf{\jmath}} = -mgh\Big|_{h_{1}}^{h_{2}} = -\Delta U_{g}$$

where $U_g = mgh$ is the gravitational potential energy

Spring Force & Elastic Potential Energy

The spring force \mathbf{F}_e is the force a compressed or stretched spring exerts onto objects connected to it. It obeys Hooke's law:

$$\mathbf{F}_e = -k\mathbf{x}$$

When applied to the work equation, we can find the work done to compress/stretch a spring:

$$W = \int \mathbf{F}_e \cdot d\mathbf{x} = -k \int x dx = -\frac{1}{2} k x^2 \Big|_{x_1}^{x_2} = -\Delta U_e$$

where $U_e = \frac{1}{2}kx^2$ is the elastic potential energy

Conservative Forces

Gravitational force, spring force, electrostatic force (later in the course) are called **conservative forces**

- The work done by these forces relate to a change of another quantity called potential energy
- Since the potential energy is evaluated at the end points, the work done by a conservative force is path independent

Conservative Forces

Since the expressions for potential energies are obtained by integrating the work done by the conservative forces, these forces are therefore the negative gradient of the potential energies:

$$\mathbf{F} = -\nabla U = -\frac{\partial U}{\partial x}\hat{\mathbf{i}} - \frac{\partial U}{\partial y}\hat{\mathbf{j}} - \frac{\partial U}{\partial z}\hat{\mathbf{k}}$$

The direction of a conservative force always decreases the potential energy

Work and Potential Energy

Like kinetic energy, the expressions for potential energies come from integrating the work equation, in that work equals to the change in *something*, and we called that potential energy.

$$W_{\rm net} = -\Delta U$$

 ΔU can be positive or negative depending on the direction of the (conservative) force

Conservation of Mechanical Energy

Positive work done by conservative forces on an object does two things:

- 1. Decrease its potential energy, while
- 2. Increase its kinetic energy by the same amount

Mathematically, this shows that mechanical energy must always be conserved when there are only conservative forces:

$$W = -\Delta U = \Delta K \longrightarrow \Delta K + \Delta U = 0$$

That's why those forces are called conservative forces!

Isolated Systems and the Conservation of Energy

- Isolated system: a system of objects that does not interact with the surrounding
- "Interaction" can be in the form of
 - Friction
 - Exchange of heat
 - Sound emission
- Think of an isolated system as a bunch of objects inside an insulated box

Isolated Systems and Conservation of Energy

- Since the system is isolated from the surrounding environment, the environment can't do any work on it, by definition!
- Likewise, the energy inside the system cannot escape either
- Therefore energy of the system is conserved
- There are internal force inside the system that is doing work, but the work only converts kinetic energy into potential energies, and vice versa.

Example: Mass sliding on a spring

- Assuming that there is no friction in any part of the system
- The isolated system consists of the mass and the spring
- Energies:
 - Kinetic energy of the mass
 - · Elastic potential energy stored in the spring

Example: Gravity

- The isolated system consists of the mass and Earth
- Assuming no friction
- Energies:
 - Kinetic energy of the mass
 - Gravitational potential energy of the mass

Example: Vertical spring-mass system

- The system consists of a mass, a spring and Earth
- Energies:
 - Kinetic energy of the mass
 - Gravitational potential energy of the mass
 - Elastic potential energy stored in the spring
- The total energy of the system is conserved if there is no friction

What if there is friction?

Energy is always conserved as long as your system is defined properly

- As the mass vibrates, friction with air slows it down
- While the mass loses energy, the temperature of the air rises due to friction
- Energies:
 - Kinetic and gravitational potential energies of the mass
 - Elastic potential energy stored in the spring
 - Kinetic energy of the vibration of the air molecules
- Total energy is conserved even as the mass stops moving

Conservation of Energy

If there are only conservative forces, mechanical energy (i.e. K+U) is always conserved:

$$K + U = K' + U'$$

When there are non-conservative forces, instead of trying to isolate the system, we can calculate the work done by them W_{nc} and add it to the total energy of the system

$$K + U + W_{\rm nc} = K' + U'$$

Work By Non-Conservative Force

Examples of non-conservative forces include:

- Kinetic friction
 - W is usually negative
 - Converts mechanical energy in the system into sound and heat
- Applied force
 - W may be positive or negative, depending on the problem

Note that the work-kinetic energy theorem still applies when non-conservative forces are present

Example

Example 2: A mass m is dropped from a height of h above the equilibrium position of a spring. Set up the equation that determines the spring's compression d when the object is instantaneously at rest.

Energy Diagrams

• Plots of potential energy (U) vs. position for a conservative force

- If more than one conservative force, they can be combined into one graph
- Where slope is zero means no force acting on it: it is in a state of equilibrium
- An object placed at an equilibrium point with K=0 will remain there