$^2 \mbox{Departamento}$ de Engenharia da Computação e Sistemas

Universidade Estadual do Maranhão

Davi M. Carvalho¹

2

1. Algoritmos Escolhidos

O intuito do trabalho foi a realização da averiguação da complexidade de algoritmos de busca, logo fez-se necessária a seleção de três algoritmos, que foram escolhidos motivados principalmente por serem utilizados como base e amplamente conhecidos. Esses são descritos juntamente com suas complexidades (melhor, médio e pior casos), uso de memória e estabilidade, através da Tabela 1.

Algoritmo	Melhor	Médio	Pior	Memória	Estável
In-Place Merge Sort	$n \log_2 n$	$n \log_2 n$	$n \log_2 n$	1	Sim
Shelsort	$n \log_2 n$	$n \log_2 n$	$n \log_2 n$	$n \log_2 n$	Não
Libraysort	$n \log n$	$n \log n$	n²	n	Não

Quanto a autoria dos códigos, já que houve a possibilidade de copiar, foi utilizado o chatGPT que disponibilizou os mesmos.

1.1. Explicação Estrutura dos Códigos

```
public interface Exemplo {
    public void order(int[] array) //execacao do algoritmo
        de ordena o
    int[] averageCase(int n) //retorna caso medio, como ele
        semelhante aos outros, ele uma implementa o
        a parte
    int[] worstCase(int n) //Retorna pior caso
    int[] bestCase(int n) // retorna melhor caso
}
```

```
protected int[][] avarageCase(Integer qtt) {
          int[][] nums = new int[5][qtt];
          Random r = new Random();
          for (int i = 0; i < 5; i++) {</pre>
              for (int j = 0; j < qtt; j++) {</pre>
                   nums[i][j] = r.nextInt(1_000_001);
          }
          return nums;
      }
11
      protected void setMemoryUsed() {
12
          Long currentMemoryUsed = ((Runtime.getRuntime().
13
             totalMemory()) - Runtime.getRuntime().freeMemory());
          memoryUsed = currentMemoryUsed > memoryUsed?
14
             currentMemoryUsed : memoryUsed;
```

```
15  }
16
17  @Override
18  public long getHigherMemory() {
19    return memoryUsed;
20  }
```

Além do setMemoryUsed que será utilizado entre as linhas do código para tentar capturar o ponto de maior pico de mmeória e getHighertMemory que é apenas um get para pegar a maior memória encontrada. Na subseção 1.2 será descrita o primeiro algoritmo.

1.2. Shellsort

Apresentação do código:

```
public class Shellsort extends AlgorithmImpl {
      public int[] order(int[] nums) {
           int h = 1;
           int n = nums.length;
           while (h < n) {
               h = h * 3 + 1;
           }
           h = h / 3;
           int c, j;
10
           while (h > 0) {
11
               for (int i = h; i < n; i++) {</pre>
                    c = nums[i];
13
                    j = i;
14
                    while (j \ge h \&\& nums[j - h] > c) {
15
                        nums[j] = nums[j - h];
16
                         j = j - h;
17
18
                    nums[j] = c;
19
20
               setMemoryUsed();
21
               h = h / 2;
22
23
           return nums;
24
      }
25
26
27
      @Override
28
      public int[][] worstCase(Integer qtt) {
           int[][] nums = new int[1][qtt];
30
           for (int i=qtt; i > 0; i--)
31
               nums[0][qtt-i] = i;
32
           return nums;
33
      }
34
35
```

```
36     @Override
37     protected int[][] bestCase(Integer qtt) {
38         int[][] nums = new int[1][qtt];
39         for (int i = 0; i < qtt; i++) {
40               nums[0][i] = i;
41         }
42         return nums;
43     }</pre>
```

Cálculo de complexidade através de expansão.

A sequência de Knuth é: $h=1,4,13,\ldots$, e para cada h realizamos insertion sort com custo: $O\left(\frac{n^2}{h}\right)$

Somando para todos os gaps:

$$T(n) = \sum_{h} O\left(\frac{n^2}{h}\right)$$
 Somando para todos os gaps:

$$T(n) = \sum_h O\left(\frac{n^2}{h}\right)$$

Como o número de gaps é $O(\log n)$ e a soma converge:

$$T(n) = O(n^{3/2})$$

1.3. Librarysort

Apresentação do código:

```
public int[] order(int[] nums) {
          if (nums.length <= 1) return nums;</pre>
          double epsilon = 0.5; // define quanto espa o extra
             reservado
          int n = nums.length;
          int size = (int) ((1 + epsilon) * n);
          Integer[] gaps = new Integer[size];
          Arrays.fill(gaps, null);
          // Insere o primeiro elemento no meio
10
          int mid = size / 2;
11
          gaps[mid] = nums[0];
12
13
          int count = 1; // n mero de elementos inseridos
14
15
          for (int i = 1; i < n; i++) {
16
              int val = nums[i];
17
18
              // Busca bin ria para posi
19
              int pos = binarySearch(gaps, val);
20
21
              // Move para abrir espa o se necess rio
22
              pos = findGap(gaps, pos);
23
```

```
// Insere
25
               gaps[pos] = val;
26
               setMemoryUsed();
27
               count++;
28
29
               // Se muitos elementos inseridos, reespalha
30
               if (count > gaps.length \star (1.0 / (1.0 + epsilon))) {
31
                    gaps = rebalance(gaps, epsilon);
32
                    setMemoryUsed();
33
               }
34
           }
35
36
           // Copia os elementos de volta
37
           int index = 0;
38
           for (Integer val : gaps) {
39
               if (val != null) {
40
                    nums[index++] = val;
41
               }
42
           }
43
           return nums;
44
45
      private static int binarySearch(Integer[] gaps, int val) {
46
           int low = 0, high = gaps.length - 1;
47
           while (low <= high) {</pre>
48
               int mid = (low + high) / 2;
49
               if (gaps[mid] == null || gaps[mid] > val) {
50
                    high = mid - 1;
51
               } else if (gaps[mid] < val) {</pre>
52
                    low = mid + 1;
53
               } else {
54
                    return mid;
55
               }
56
           }
57
           return low;
58
      }
59
      private static int findGap(Integer[] gaps, int pos) {
61
           // Busca posi o disponvel
62
           while (pos < gaps.length && gaps[pos] != null) {</pre>
63
               pos++;
64
           }
           if (pos >= gaps.length) {
               // Se n o encontrou direita, procura esquerda
67
               pos = pos - 1;
68
69
               while (pos >= 0 \&\& gaps[pos] != null) {
                    pos--;
70
71
           }
72
          return pos;
73
```

```
}
74
75
       private static Integer[] rebalance(Integer[] gaps, double
76
          epsilon) {
           int n = (int) Arrays.stream(gaps).filter(x -> x != null)
77
               .count();
           int newSize = (int) ((1 + epsilon) * n);
78
           Integer[] newGaps = new Integer[newSize];
79
           Arrays.fill(newGaps, null);
80
81
           int idx = 0;
82
           int step = newSize / n;
           for (Integer val : gaps) {
84
                if (val != null) {
85
                    newGaps[idx] = val;
86
                     idx += step;
87
88
           }
89
           return newGaps;
90
       }
91
92
       @Override
93
       public int[][] worstCase(Integer qtt) {
94
           int[][] nums = new int[1][qtt];
           for (int i = 0; i < qtt; i++) {</pre>
96
                nums[0][i] = qtt - i;
97
           }
98
           return nums;
99
100
101
       @Override
102
       protected int[][] bestCase(Integer qtt) {
103
           int[][] nums = new int[1][qtt];
104
           for (int i = 0; i < qtt; i++) {</pre>
105
                nums[0][i] = i;
106
           }
107
           return nums;
108
109
       }
110
```

Cálculo de complexidade através de expansão. Cada inserção faz busca binária e possivelmente rebalanceamento. A recorrência é:

```
T(n) = T(n-1) + \log n
Expandindo: T(n) = T(n-1) + \log n
= T(n-2) + \log(n-1) + \log n
\vdots
= \sum_{i=2}^{n} \log i = \log(n!)
```

Pelo uso da fórmula de Stirling: $\log(n!) = \Theta(n \log n)$ Portanto: $T(n) = O(n \log n)$

1.4. In-Place MergeSort

```
public class InPlaceMergeSort extends AlgorithmImpl {
      @Override
      public int[] order(int[] nums) {
          int len = nums.length;
          return mergeSort(nums, 0, len-1);
      }
      public int[] merge(int[] nums, int start, int mid, int end)
          setMemoryUsed();
10
          int start2 = mid + 1;
11
12
          // Se os elementos j estiverem em ordem, n o faz nada
13
          if (nums[mid] <= nums[start2]) {</pre>
14
               return nums;
15
          }
16
17
          while (start <= mid && start2 <= end) {</pre>
18
               if (nums[start] <= nums[start2]) {</pre>
19
                   start++;
20
               } else {
21
                   int value = nums[start2];
22
                   int index = start2;
23
24
                    // Desloca todos os elementos entre start e
25
                       start2 para a direita
                   while (index != start) {
26
                        nums[index] = nums[index - 1];
27
                        index--;
28
29
30
                   nums[start] = value;
31
32
                   // Atualiza os ponteiros
33
                   start++;
34
                   mid++;
35
                   start2++;
36
               }
          }
38
          return nums;
39
      }
40
41
      public int[] mergeSort(int[] arr, int 1, int r) {
42
```

```
if (1 < r) {</pre>
44
                int m = 1 + (r - 1) / 2;
45
46
                mergeSort(arr, 1, m);
47
                mergeSort(arr, m + 1, r);
48
49
                this.merge(arr, 1, m, r);
50
                setMemoryUsed();
51
           }
52
           return arr;
53
54
       }
55
      @Override
56
      public int[][] worstCase(Integer qtt) {
57
           int[][] nums = new int[1][qtt];
58
           for (int i = 0; i < qtt; i++) {</pre>
59
                nums[0][i] = qtt - i;
60
           }
61
           return nums;
62
       }
63
64
      @Override
65
      protected int[][] bestCase(Integer qtt) {
66
           int[][] nums = new int[1][qtt];
           for (int i = 0; i < qtt; i++) {</pre>
68
                nums[0][i] = i;
69
           }
70
           return nums;
71
72
73
       }
74
```

Cálculo de complexidade através de expansão. Definimos a recorrência para o número de comparações como:

$$T(n) = 2T\left(\frac{n}{2}\right) + n$$
 Assumindo que $n = 2^k \Rightarrow k = \log_2 n$. Expandindo: $T(2^k) = 2T(2^{k-1}) + 2^k$
$$= 2(2T(2^{k-2}) + 2^{k-1}) + 2^k$$

$$= 4T(2^{k-2}) + 2 \cdot 2^k$$

$$= 8T(2^{k-3}) + 3 \cdot 2^k$$

$$\vdots$$

$$= 2^k T(1) + k \cdot 2^k$$

$$= k \cdot 2^k = n \log n$$
 Logo, a complexidade de tempo é: $T(n) = O(n \log n)$

Em termos de deslocamentos in-place, o pior caso pode chegar a $O(n^2)$.

2. Testes realizados

Os testes sugeridos foram os casos com [10,100,1000,10000,1000000,100000000] (entre dez a dez milhões). Os resultados foram salvos através de um arquivo csv que retornou o resultado. A tabela 1 representa os 5 primeiros resultados de cada algoritmo.

Table 1. Resultados de execução dos algoritmos de ordenação

Data	Algoritmo	N	Caso	Tempo (ms)	Memória (bytes)
2025-06-01T13:04:14	Shellsort	10	pior	3,443,784	61,699
2025-06-01T13:04:14	Shellsort	10	melhor	2,923,904	23,594
2025-06-01T13:04:14	Shellsort	10	médio	2,925,147	25,096
2025-06-01T13:04:14	Shellsort	100	pior	2,925,120	97,611
2025-06-01T13:04:15	Shellsort	100	melhor	2,925,120	95,063
2025-06-02T08:37:21	Library	10	pior	3,439,456	132,033
2025-06-02T08:37:21	Library	10	melhor	2,924,040	55,256
2025-06-02T08:37:22	Library	10	médio	2,925,283	49,412
2025-06-02T08:37:22	Library	100	pior	2,925,304	514,221
2025-06-02T08:37:22	Library	100	melhor	2,925,304	374,195
2025-06-02T08:37:23	Library	100	médio	2,927,131	201,446
2025-06-03T20:33:59	In-Merge Sort	10	pior	3,440,040	88,461
2025-06-03T20:33:59	In-Merge Sort	10	melhor	2,923,920	42,108
2025-06-03T20:34:00	In-Merge Sort	10	médio	2,925,163	43,097
2025-06-03T20:34:00	In-Merge Sort	100	pior	2,925,184	458,702
2025-06-03T20:34:00	In-Merge Sort	100	melhor	2,925,184	178,481

References

Figure 1. Gráfico resultados algoritmos por entradas.