Laboratório de Eletrônica Básica II – EE641

Profs.: Dr. Eduardo T. Costa PED: Mathias Scroccaro Costa	Turma $01/2022$		
Nome:	RA:		
Nome:	RA:		
Nomo	RΛ·		

CONVERSOR DIGITAL PARA ANALÓGICO

Conversor Digital para Analógico

- 1. Monte o circuito Conversor Digital para Analógico (DAC) em **placa furada padrão**, conforme o esquemático da Figura 1. Conside "C" com valor de 1 uF.
 - (a) Com auxílio de um gerador de sinais, insira uma forma de onda quadrada com amplitude de 1 V, frequência de 10 Hz e *offset* de 0,5 V (desta maneira, tensão mínima 0 V e máxima 1 V) nas entradas D0 a D7 do circuito. Monitore com um osciloscópio a tensão de pico na saída do circuito, no borne "Teste DAC". Complete a Tabela 1.

Figura 1: Circuito conversor digital para analógico.

D0	D1	D2	D3	D4	D5	D6	D7	Teste DAC [Vp] (calculado)	Teste DAC [Vp] (osciloscópio)
1	0	0	0	0	0	0	0		
0	1	0	0	0	0	0	0		
0	0	1	0	0	0	0	0		
0	0	0	1	0	0	0	0		
0	0	0	0	1	0	0	0		
0	0	0	0	0	1	0	0		
0	0	0	0	0	0	1	0		
0	0	0	0	0	0	0	1		
1	1	1	1	1	1	1	1		

Tabela 1: Dados do medidos do conversor Digital para Analógico

(c) (PÓS EXPERIMENTO) Encontre a função de transferência algébrica do circuito, ou seja, Vout(D0 D1,D2,D3,D4,D4,D5,D6,D7). Considere níveis de tensão analógicos para as entradas D0 a D7 Desconsidere o efeito da capacitância C.
(d) (PÓS EXPERIMENTO) A capacitância C contribui ao caráter filtro no circuito. Qual é o tipo e a frequência de corte do filtro em questão?