Instituto Tecnológico de Buenos Aires

LABORATORIO DE ELECTRÓNICA

Trabajo Práctico 5

Analizador de Espectros

Grupo 2: Víctor OH 56679 Valentina LAGO 57249 Gonzalo SILVA 56089 Santiago BUALÓ 57557 Agustina IBARRECHE 53550

Profesores:
Pablo Cossutta
María Alejandra Weill
Matías Salvati

Medicion de distorción armónica

1.1. Medición

Utilizando el analizador de espectros, se midió la distorsión armónica del generador de funciones Agilent(modelo) con una señal senoidal de 0,7MHz y 250mVpp.

Para calcular la distorsión armónica total (THD) medida con el analizador, se utilizaron las ecuaciones 1.1 y 1.2.

$$THD = \frac{\sum_{j=1}^{n} P_j}{\sum_{i=0}^{n} P_i} \tag{1.1}$$

$$P_k[mW] = 1mW * 10^{P_k[dBm]/10}$$
(1.2)

Entonces,

$$P_0 = 123mW; P_1 = 123mW; P_2 = 123mW$$

$$\Rightarrow THD = Ans \tag{1.3}$$

Con las mediciones y cácluclos anteriores y utilizando otros generadores de funciones, se obtuvo la siguiente tabla:

Modelo	$P_0(mW)$	$P_1(mW)$	$P_2(mW)$	$P_3(mW)$	$P_4(mW)$	THD	THD_{Fab}
Agilent							
Picotest							
Instek							

1.2. Comparación con la hoja de datos

1.3. Conclusiones

Análisis de otras señales

 Utilizando señales (i)
cuadradas, (ii) triangulares(simetría 50 %) y (iii) un tren de pulsos con
 $DC=33,3\,\%$

- 1. Se analizó analíticamente el espectro de la señal
- 2. Se simuló el espectro mediante MATLAB
- 3. Se midió la señal con el analizador de espectros
- 4. Se calculó el DC en función a la medición

Análisis de una senal AM

Utilizando dos generadores de señales, se creó una señal modulada en AM de 200 mV pp donde:

Frecuencia de la portadora: 900kHz. Frecuencia de la moduladora: 100kHz.

Luego, con el analizador de espectros, y simulando el espectro de la señal en MATLAB, se verificaron las señales medidas. Además, se utilizó un osciloscopio en paralelo para verificar las amplitudes de las señales.

- 1. Moduladora Senoidal; m = 0.5
- 2. Moduladora Senoidal; m = 1
- 3. Moduladora Triangular; m = 1
- 4. Moduladora Senoidal; m = 1; frecuencia igual a la portadora

Análisis de una señal FM

Se repitió el ejercicio 3 con una señal FM.

Distribucion de Radiofrecuencias en Argentina

as;dlfjasdfklaj.

Análisis del espectro EM en la banda de FM

asdfjalkdsfj.

Ejercicio 7 Señal de Televisión

Otras Señales

Se conectaron al analizador de espectros las siguientes señales con amplitud $250 \mathrm{mV} pp$ y a frecuencia $125 \mathrm{kHz}$ y máxima.

- 1. $\sin(x)/x$
- 2. Tren de deltas (Tren de Pulsos con DC mínimo)