```
Car full name Minimal price (gross) [PLN] \
                    Tesla Model 3 Long Range
       40
                                                                    235490
                   Tesla Model 3 Performance
                                                                    260490
       41
       48
                       Volkswagen ID.3 Pro S
                                                                    179990
       49
                         Volkswagen ID.4 1st
                                                                    202390
                                                                    282900
       8
                                     BMW iX3
       18
                             Kia e-Niro 64kWh
                                                                    167990
       20
                             Kia e-Soul 64kWh
                                                                    160990
       15
                 Hyundai Kona electric 64kWh
                                                                    178400
       0
                      Audi e-tron 55 quattro
                                                                    345700
           Tesla Model 3 Standard Range Plus
                                                                    195490
             Volkswagen ID.3 Pro Performance
                                                                    155890
       22
                           Mercedes-Benz EOC
                                                                    334700
           Range (WLTP) [km] Battery capacity [kWh]
       40
                         580
                                                 75.0
       41
                         567
                                                 75.0
       48
                         549
                                                 77.0
       49
                         500
                                                 77.0
       8
                         460
                                                 80.0
       18
                         455
                                                 64.0
       20
                         452
                                                 64.0
       15
                         449
                                                 64.0
       0
                         438
                                                 95.0
       39
                         430
                                                 54.0
       47
                         425
                                                 58.0
       22
                         414
                                                 80.0
In [7]: ## Task 2: You suspect some EVs have unusually high or low energy consumption.
        ##Find the outliers in the mean- Energy consumption [kWh/100 km] column.
        import pandas as pd
In [8]: df = pd.read_excel('FEV_Data.xlsx')
        df.columns = df.columns.str.strip()
        print(df.columns.tolist())
```

```
imal empty weight [kg]', 'Permissable gross weight [kg]', 'Maximum load capacity [kg]', 'Number of seats', 'Number of doors',
        'Tire size [in]', 'Maximum speed [kph]', 'Boot capacity (VDA) [1]', 'Acceleration 0-100 kph [s]', 'Maximum DC charging power [k
        W]', 'mean - Energy consumption [kWh/100 km]']
In [9]: column = 'mean - Energy consumption [kWh/100 km]'
In [10]: df Clean = df.dropna(subset=[column])
In [11]: Q1=df Clean[column].quantile(0.25)
         Q3=df Clean[column].quantile(0.75)
         IOR = 03-01
         lower bound = 01 - 1.5*IOR
         upper bound = Q3 + 1.5*IQR
In [13]: outliers= df Clean[(df Clean[column] < lower bound) | (df Clean[column] > upper bound)]
In [14]: print("Outliers in Energy Consumption:")
         print(outliers[['Make', 'Model', column]])
        Outliers in Energy Consumption:
        Empty DataFrame
        Columns: [Make, Model, mean - Energy consumption [kWh/100 km]]
        Index: []
In [15]: ##Task 3: Your manager wants to know if there's a strong relationship between battery capacity and range.
         ## Create a suitable plot to visualize., Highlight any insights
         import pandas as pd
         import matplotlib.pyplot as plt
         import seaborn as sns
In [16]: df = pd.read excel('FEV Data.xlsx', sheet name="Auta elektryczne")
In [17]: plt.figure(figsize=(9, 6))
         sns.regplot(
             x="Battery capacity [kWh]",
             y="Range (WLTP) [km]",
```

['Car full name', 'Make', 'Model', 'Minimal price (gross) [PLN]', 'Engine power [KM]', 'Maximum torque [Nm]', 'Type of brakes', 'Drive type', 'Battery capacity [kWh]', 'Range (WLTP) [km]', 'Wheelbase [cm]', 'Length [cm]', 'Width [cm]', 'Height [cm]', 'Min

```
data=df,
    scatter_kws={"s": 60, "alpha": 0.7},
    line_kws={"color": "red", "linewidth": 2})
plt.title("Battery Capacity vs. Range (WLTP)", fontsize=14)
plt.xlabel("Battery Capacity [kWh]", fontsize=12)
plt.ylabel("Range (WLTP) [km]", fontsize=12)
plt.grid(True)
plt.tight_layout()
plt.show()
```


In [18]: ## Task 4: Build an EV recommendation class. The class should allow users to input their
budget, desired range, and battery capacity. The class should then return the top three EVs matching their criteria.
import pandas as pd

```
Car full name
                                            Make
                                                                    Model \
        42 Tesla Model S Long Range Plus Tesla Model S Long Range Plus
                Tesla Model S Performance Tesla
                                                      Model S Performance
        43
        44 Tesla Model X Long Range Plus Tesla Model X Long Range Plus
            Minimal price (gross) [PLN] Engine power [KM] Maximum torque [Nm] \
        42
                                 368990
                                                       525
                                                                            755
        43
                                 443990
                                                       772
                                                                           1140
        44
                                 407990
                                                       525
                                                                            755
                 Type of brakes Drive type Battery capacity [kWh]
                                                                    Range (WLTP) [km] \
        42 disc (front + rear)
                                       4WD
                                                             100.0
                                                                                   652
        43 disc (front + rear)
                                                             100.0
                                                                                   639
                                       4WD
        44 disc (front + rear)
                                       4WD
                                                             100.0
                                                                                   561
                 Permissable gross weight [kg] Maximum load capacity [kg] \
        42
                                           NaN
                                                                       NaN
        43
                                           NaN
                                                                       NaN
            . . .
        44
                                           NaN
                                                                       NaN
            Number of seats Number of doors Tire size [in] Maximum speed [kph] \
        42
                          5
                                           5
                                                          19
                                                                              250
                          5
                                           5
        43
                                                          21
                                                                              261
                          7
                                           5
                                                          20
                                                                              250
        44
            Boot capacity (VDA) [1] Acceleration 0-100 kph [s] \
        42
                              745.0
                                                            3.8
        43
                              745.0
                                                            2.5
        44
                              857.0
                                                            4.6
            Maximum DC charging power [kW]
                                            mean - Energy consumption [kWh/100 km]
        42
                                       150
                                                                               NaN
        43
                                       150
                                                                               NaN
        44
                                       150
                                                                               NaN
        [3 rows x 25 columns]
In [20]: ## Task 5: Inferential Statistics- Hypothesis Testing:
         import pandas as pd
         from scipy.stats import ttest ind
```

```
In [21]: df = pd.read_excel("FEV_Data.xlsx", sheet_name="Auta elektryczne")
In [22]: tesla_power = df[df["Make"] == "Tesla"]["Engine power [KM]"]
audi_power = df[df["Make"] == "Audi"]["Engine power [KM]"]

In [23]: t_stat, p_test = ttest_ind(tesla_power, audi_power, equal_var=False)
    print("T-test Result:", round(t_stat,3))
    print("P-value Result:", round(p_test,4))

    T-test Result: 1.794
    P-value Result: 0.1068

In []: video link : https://drive.google.com/drive/folders/1dv-10F_BxePgKmWvkIGZmFCstGwS1i1l?usp=drive_link

In []:
In []:
```