How Bitcoin works?

Content

A class in data structures:

- Hash pointers
- Blockchain

p(Data)

What happens if the data changes?

What happens if the data changes?

What happens if the data changes?

p does not reflect the change!!!

What happens if the data changes?

What happens if the data changes?

Hp(Data) does not point to Fake Data

What happens if the data changes?

Hp(Data) does not point to Fake Data

H(Fake Data) ≠ H(Data)

Examples of hash pointers:

- If I have a variable
- If my data is in an array
- If my data is in a dictionary (key-value)
 show this

Use of hash pointers:

- In any data structure that uses pointers
- Linked lists = blockchain
- Binary trees = Merkle Trees

Content

A class in data structures:

- Hash pointers
- Blockchain

The data structure

Prev: NULL

The data structure

Prev: NULL

The data structure

Block1

Prev: NULL

The data structure

Prev: NULL

Data 1

Block2

Prev:

The data structure

Block1

Prev: NULL

Data 1

Block2

Prev: Hp(Block1)

What is this is the only change?

Consistent historic data

Ledger

Alice pays Bob \$50

Alice

Bob

Charlie

Consistent historic data

Ledger

Alice pays Bob \$50

Alice pays Charlie \$20

Bob pays Charlie \$100

Charlie pays Alice \$40

. .

Alice

Bob

Charlie

Consistent historic data

Ledger 1

Alice pays Bob \$50

Alice pays Charlie \$20

Bob pays Charlie \$100

Charlie pays Alice \$40

. . .

Alice

Bob

Charlie

Consistent historic data

Ledger 1

Alice pays Bob \$50

Alice pays Charlie \$20

Bob pays Charlie \$100

Charlie pays Alice \$40

. .

Ledger 2

Bob pays Charlie \$250

Alice

Bob

Charlie

Consistent historic data

Ledger 1

Alice pays Bob \$50

Alice pays Charlie \$20

Bob pays Charlie \$100

Charlie pays Alice \$40

. . .

Ledger 2

Bob pays Charlie \$250

Bob pays Alice \$120

Alice

Bob

Charlie

Consistent historic data

Ledger 1

Alice pays Bob \$50

Alice pays Charlie \$20

Bob pays Charlie \$100

Charlie pays Alice \$40

. . .

Ledger 2

Bob pays Charlie \$250

Bob pays Alice \$120

Charlie pays Alice \$80

Alice pays Bob \$20

Alice

Bob

Charlie

Consistent historic data

Ledger 1

Alice pays Bob \$50

Alice pays Charlie \$20

Bob pays Charlie \$100

Charlie pays Alice \$40

. . .

Ledger 2

Bob pays Charlie \$250

Bob pays Alice \$120

Charlie pays Alice \$80

Alice pays Bob \$20

Alice pays Charlie \$10

Ledger 3

Alice

Bob

Charlie

Consistent historic data

Ledger 1

Alice pays Bob \$50

Alice pays Charlie \$20

Bob pays Charlie \$100

Charlie pays Alice \$40

. . .

Ledger 2

Bob pays Charlie \$250

Bob pays Alice \$120

Charlie pays Alice \$80

Alice pays Bob \$20

Alice pays Charlie \$10

Ledger 3

Alice pays Bob \$20

Alice pays Charlie \$10

Bob pays Charlie \$100

Charlie pays Alice \$40

Alice

Bob

Charlie

Consistent historic data

Ledger 1

Alice pays Bob \$50

Alice pays Charlie \$20

Bob pays Charlie \$100

Charlie pays Alice \$40

. . .

Ledger 2

Bob pays Charlie \$250

Bob pays Alice \$120

Charlie pays Alice \$80

Alice pays Bob \$20

Alice pays Charlie \$10

Ledger 3

Alice pays Bob \$20

Alice pays Charlie \$10

Bob pays Charlie \$100

Charlie pays Alice \$40

Alice

Bob

Charlie

Consistent historic data

Ledger 1

Alice pays Bob \$50

Alice pays Charlie \$20

Bob pays Charlie \$100

Charlie pays Alice \$40

. . .

Ledger 2

Bob pays Charlie \$250

Bob pays Alice \$20

Charlie pays Alice \$80

Alice pays Bob \$20

Alice pays Charlie \$10

Ledger 3

Alice pays Bob \$20

Alice pays Charlie \$10

Bob pays Charlie \$100

Charlie pays Alice \$40

Alice

Bob

Charlie

Ledger 2

Bob pays Charlie \$250

Bob pays Alice \$120

Charlie pays Alice \$80

Alice pays Bob \$20

Ledger 2

Bob pays Charlie \$250

Bob pays Alice \$120

Charlie pays Alice \$80

Alice pays Bob \$20

Alice pays Charlie \$10

Hash

Ledger 2

Bob pays Charlie \$250

Bob pays Alice \$120

Charlie pays Alice \$80

Alice pays Bob \$20

Alice pays Charlie \$10

64f3de1975fb7121411ed e2180547b8d94fcc5f7342 db03423444f528417b797

Hash

Ledger 2

Bob pays Charlie \$250

Bob pays Alice \$120

Charlie pays Alice \$80

Alice pays Bob \$20

Alice pays Charlie \$10

64f3de1975fb7121411ed e2180547b8d94fcc5f7342 db03423444f528417b797

Hash

Bob pays Charlie \$250

Ledger 2

Bob pays Alice \$20

Charlie pays Alice \$80

Alice pays Bob \$20

Ledger 2

Bob pays Charlie \$250

Bob pays Alice \$120

Charlie pays Alice \$80

Alice pays Bob \$20

Alice pays Charlie \$10

Hash

64f3de1975fb7121411ed e2180547b8d94fcc5f7342 db03423444f528417b797

Ledger 2

Bob pays Charlie \$250

Bob pays Alice \$20

Charlie pays Alice \$80

Alice pays Bob \$20

Bob pays Charlie \$250

Bob pays Alice \$120

Charlie pays Alice \$80

Alice pays Bob \$20

Alice pays Charlie \$10

Ledger 2

Bob pays Charlie \$250

Bob pays Alice \$20

Charlie pays Alice \$80

Alice pays Bob \$20

Alice pays Charlie \$10

64f3de1975fb7121411ed e2180547b8d94fcc5f7342 db03423444f528417b797

Hash

b4056df6691f8dc72e5630 2ddad345d65fead3ead929 9609a826e2344eb63aa4

Consistent historic data

Ledger 1

Alice pays Bob \$50

Alice pays Charlie \$20

Bob pays Charlie \$100

Charlie pays Alice \$40

Charlie pays Bob \$80

Consistent historic data

Ledger 1

Prev hash: NULL

Alice pays Bob \$50

Alice pays Charlie \$20

Bob pays Charlie \$100

Charlie pays Alice \$40

Charlie pays Bob \$80

Consistent historic data

L1

Ledger 1

Prev hash: NULL

Alice pays Bob \$50

Alice pays Charlie \$20

Bob pays Charlie \$100

Charlie pays Alice \$40

Charlie pays Bob \$80

Consistent historic data

L1

Ledger 1

Prev hash: NULL

Alice pays Bob \$50

Alice pays Charlie \$20

Bob pays Charlie \$100

Charlie pays Alice \$40

Charlie pays Bob \$80

Ledger 2

Bob pays Charlie \$250

Bob pays Alice \$120

Charlie pays Alice \$80

Alice pays Bob \$20

Consistent historic data

L1

Ledger 1

Prev hash: NULL

Alice pays Bob \$50

Alice pays Charlie \$20

Bob pays Charlie \$100

Charlie pays Alice \$40

Charlie pays Bob \$80

Ledger 2

Prev hash: Hp(L1)

Bob pays Charlie \$250

Bob pays Alice \$120

Charlie pays Alice \$80

Alice pays Bob \$20

Consistent historic data

L1

Ledger 1

Prev hash: NULL

Alice pays Bob \$50

Alice pays Charlie \$20

Bob pays Charlie \$100

Charlie pays Alice \$40

Charlie pays Bob \$80

L2

Ledger 2

Prev hash: Hp(L1)

Bob pays Charlie \$250

Bob pays Alice \$120

Charlie pays Alice \$80

Alice pays Bob \$20

Consistent historic data

Blockchain

Immutability

Immutability

Immutability

 $H(L2') \neq H(L2)$

Immutability

 $H(L2') \neq H(L2)$

Immutability

 $H(L2') \neq H(L2)$

 $H(L2') \neq H(L2)$

Immutability

L1 **L2'** Ledger 3 Ledger 1 Ledger 2 Prev hash: Hp(L2) Prev hash: NULL Prev hash: Hp(L1) ◀ Bob pays Charlie \$250 Alice pays Bob \$50 Alice pays Bob \$70 Bob pays Alice \$20 Alice pays Charlie \$35 Alice pays Charlie \$20 Charlie pays Alice \$80 Bob pays Charlie \$100 Bob pays Charlie \$150 Alice pays Bob \$20 Charlie pays Alice \$40 Charlie pays Alice \$15 Alice pays Charlie \$5 Charlie pays Bob \$80

 $H(L2') \neq H(L2)$

Alice L1 L2' Ledger 3 Ledger 1 Ledger 2 Prev hash: Hp(L2) Prev hash: NULL Prev hash: Hp(L1) Bob pays Charlie \$250 Alice pays Bob \$70 Alice pays Bob \$50 Bob pays Alice \$20 Alice pays Charlie \$35 Alice pays Charlie \$20 Charlie pays Alice \$80 Bob pays Charlie \$100 Bob pays Charlie \$150 Alice pays Bob \$20 Charlie pays Alice \$40 Charlie pays Alice \$15 Alice pays Charlie \$5 Charlie pays Bob \$80

Immutability

 $H(L2') \neq H(L2)$

Alice L1 L2' Ledger 1 Ledger 2 Ledger 3 Prev hash: Hp(L2) Prev hash: NULL Prev hash: Hp(L1) Bob pays Charlie \$250 Alice pays Bob \$70 Alice pays Bob \$50 Bob pays Alice \$20 Alice pays Charlie \$35 Alice pays Charlie \$20 Charlie pays Alice \$80 Bob pays Charlie \$100 Bob pays Charlie \$150 Alice pays Bob \$20 Charlie pays Alice \$40 Charlie pays Alice \$15 Alice pays Charlie \$5 Charlie pays Bob \$80

 $H(L2') \neq H(L2)$

Immutability

Alice L1 L2' Ledger 1 Ledger 2 Ledger 3 Prev hash: Hp(L2 Prev hash: NULL Prev hash: Hp(L1) Bob pays Charlie \$250 Alice pays Bob \$70 Alice pays Bob \$50 Bob pays Alice \$20 Alice pays Charlie \$35 Alice pays Charlie \$20 Charlie pays Alice \$80 Bob pays Charlie \$100 Bob pays Charlie \$150 Alice pays Bob \$20 Charlie pays Alice \$40 Charlie pays Alice \$15 Alice pays Charlie \$5 Charlie pays Bob \$80

 $H(L2') \neq H(L2)$

Immutability

 $H(L2') \neq H(L2)$

How to detect if there is a change?

If we only have the head

How to detect if there is a change?

H(Data 2)

H(Data 3)

H(Data 1)

Day1

How to make the proof more efficient???

reading

Narayanan et. Al:

- Chapter 1.2
- Chapter 9.1

Practice time!!!

Exercizes!!!

- Implement blockchain
- Run against the test data
- Different ways of implementing this

Let's see the two class we need to implement!!!