	Test Name	Description	Input Stimulus	MA - Test Plan Expected	Checking Procedure	Status	Comments/Screenshots
Test ID Feature 1 Reset	reset_test	When reset is asserted, the DMA Core is resetted and no read or write operation can happen unless configured.	Apply clock; axi_resetn = 0; Execute Read_status Sequence	DMA core should read default values for S2MMSR and DMASR Registers. The read value should be 'h1 indicating both channels halted.		Pass	
2 MM2S Enable	mm2s_enable_test	Enables the Memory Mapped to Stream Read Operation. The dut will start reading from the provided base address and streams the data on the AXI-Stream Interface.	Configure the DMA's internal registers as following:	The DMA should assert arvalid alongwith valid SRC_ADDR to make a read request to AXI Slave Memory.	The signal activity can be monitored from waverform.	Pass	
3 S2MM Enable/Write	Test s2mm_enable_test/w rite_test	Enables the Stream to Memory Mapped Write Operation. The dut will take stream as input and start writing on the provided base address via AXI-4 Interface.	Configure the DMA's internal registers as following: 1. S2MM_DMACR = 32'h11001 2. S2MM_DA = 32'h0 3. S2MM_LENGTH = 32'h80 4. Start Axis_write Sequence	The DMA should be able to accept the write transactions through tvalid & tready handshake according to AXI-Stream Protocol.	The signal activity can be monitored from waverform.	Pass	
4 MM2S READ	read_test	Activates the Stream for Memory Mapped (MM2S) READ operations and initiates a Read Sequence to obtain the output on Stream. The Read Agent will transfer the data to the scoreboard, which has its internal memory pre-loaded with the same data (as BRAM). The scoreboard will verify each byte received from the DMA against the bytes in our internal memory model, and will report an error if there is any mismatch.	2. MM25_5A - CIG.5RC_ADDR	The DMA Should read same data from BRAM satrting form the SRC_ADDR as the data read from Memory Model in our scoreboard.	The scoreboard validates each byte received from the DMA against our memory model reads and generates an error if any mismatch is detected.	Pass	
5 Read After Write T	est raw_test	Enables the Stream to Memory Mapped Write Operation and then writes 128 Bytes to the provided destination address. The write operation is verified by succeding MM2S Read Operation.	Step 3: Configure the DMA's internal registers as following: 1. MM2S_DMACR = 32'h11001 2. MM2S_SA = 32'h0 3. MM2S_LENGTH = 32'h80 Step 4: Start the Axis_read_sequence to read 128 Bytes.	The bytes read from the BRAM via the MM2S channel should match the bytes written through the S2MM channel of the AXI DMA.		Pass	
6 4 KB Boundary Prote	e ction boundary_test	The AXI DMA should provide 4 KB address boundary protection (when configured in non-Micro DMA).	Step 1: Set the SRC_ADDR inside config class to be around 4KB boundary so that once the transfer initiates, it has to cross the boundary. In my case, it's 'hFFC. Step 2: Configure the DMA's internal registers with mm2s_boundary sequence. Step 3: Start the Axis_read_sequence to read DATA_LENGTH Bytes.		This can be verified through the console by reading the next generated address associated with the 16-beat INCR burst operation. It can also be observed from the waveform.	Pass	
7 Data Re-Alignme	nt data_realignment_te st	AXI DMA provides byte-level data realignment allowing memory reads and writes starting at any byte offset location.	Step 1: Set the SRC_ADDR inside config class at a random byte that is not aligned on word-size boundary. 'h33, for instance. Step 2: Configure the DMA for MM2S Read Operation with a defined DATA_LENGTH. Step 3: Start the Axis_read_sequence to read DATA_LENGTH Bytes.	The DMA should begin reading from the specified byte offset and automatically align them as valid bytes on the AXI-Stream.	The check can be carried out by cross-comparing the DMA's read operation with the memory model in our scoreboard. This verification can also be confirmed through the waveform.	Pass	
8 32 bits	axi_32_test		AAI	4 DATA WIDTHS		Dropped	
9 64 bits	axi_64_test					Dropped	
10 128 bits	axi_128_test	AXI DMA has primary AXI4 data width				Dropped	
11 256 bits	axi_256_test	support of 32, 64, 128, 256, 512, and, 1,024 bits				Dropped	
12 512 bits	axi_512_test					Dropped	
13 1024 bits	axi_1024_test					Dropped	
14			AXI-Str	ream DATA WIDTHS		Dropped	
8 bits	axis_8_test					Dropped	
16 bits	axis_16_test	AXI DMA has primary AXI4-Stream data width support of 8, 16, 32, 64, 128, 256, 512, and, 1,024 bits				Dropped	
32 bits	axis_32_test					Dropped	
64 bits	axis_64_test						
18 128 bits	axis_128_test					Dropped	
19 256 bits	axis_256_test					Dropped	
20 512 bits	axis_512_test					Dropped	
21 1024 bits	axis_1024_test		Interrupt	on Completion (IOC)		Dropped	
22 Read Introut	read_introut_test	DMA asserts mm2s_introut signal on the completion of read transfer when the IOC_IrqEn bit is set/enabled in MM2S_DMACR register. After assertion, write this bit to 1 to clear it (WC Policy)	 Enable MM2S Read operation. Execute Axis_read_seq Write this value 'h1000 to MM2S_DMASR Register to clear this interrupt signal. 	The dma should assert mm2s_introut signal at the end of read transfer. Writing a value of 'h1000 to MM2S_DMASR should de-assert this signal.	Can be validated through RAL Model where writing a value of 'h1000 to MM2S_DMASR should clear the interrupt signal. The written data value can be checked against the expected value in Register Sequence. Can also be confirmed through waveform.	Pass	

				AXI DI	MA - Test Plan			
Test ID	Feature	Test Name	Description	Input Stimulus	Expected	Checking Procedure 'h1000 to S2MM DMASR	Status	Comments/Screenshots
			DMA asserts s2mm_introut signal on the	 Enable S2MM WRITE operation. Execute Axis_write_seq 	The dma should assert s2mm_introut signal at the	should clear the interrupt signal. The written data value		
23	Write Introut	write_introut_test	completion of write transfer when the IOC_IrqEn bit is set/enabled in S2MM_DMACR register. After assertion,	3. Write this value 'h1000 to S2MM_DMASR Register to clear the	end of write transfer. Writing a value of 'h1000 to	can be checked against the expected value in Register	Pass	
			write this bit to 1 to clear it (WC Policy)	interrupt signal after the write transfer completion.	S2MM_DMASR should de-assert this signal.	Sequence. Can also be confirmed through waveform.		
					Register Bits			
			Run/Stop control for controlling running and		register bits			
			stopping of the DMA channel.	Enable MM2S Read operation.	The current transfer should	Can be validated through RAL Model reading the		
24	Run/Stop Bits	rs_test	0 = Stop; 1 = Run	2. Execute Axis_read_seq 3. Write this value 'h0 to	complete, however DMA will not consider any further transfers. i.e. writing to	MM2S_DMASR. The halted bit should get asserted after	Pass	
			Note: For Direct Register mode pending commands/transfers are	MM2S_DMACR Register to clear the R/S bit (Stops DMA Core).	MM2S_LENGTH Register will have no effect.	setting the MM2S_DMACR.RS = 0. Can also be confirmed via waveform.		
			flushed or completed. AXI4-Stream outs are potentially terminated.					
						The values can be validated		
			Setting either MM2S_DMACR.Reset = 1 or S2MM DMACR. Reset = 1 resets the	 Enable MM2S Read operation. Execute Axis_read_seq 	The control and Status	through the RAL Model by reading MM2S_DMASR and MM2S_DMACR. The Halted		
25	Soft Reset	soft_reset_test	entire AXI DMA engine. After completion of a soft reset, all		Registers should read default values and	Bit should be asserted after resetting the core. This can	Pass	
			registers and bits are in the Reset State. • 0 = Normal operation. • 1 = Reset in progress.	4. At the end, Read Control and Status Registers for validation.	mm2s_prmry_reset_out_n should assert after soft_reset.	also be confirmed through the waveform, where the reset signal should assert and		
			T = Neset in progress.	Status (Vegisters for Validation).		de-assert while the soft_reset is in progress.		
					Halted Bit			
				Execute the Read Registers		This can be validated through RAL Model Register Reads to check the status of the Control		
			When halted, writing to the LENGTH register	Sequence.	The MM2S channel should	and Status Registers. The MM2S and S2MM Control		
26	Halted	halted_write_test	has no effect on DMA operations.	2. Write to the Length Register using mm2s_length_sequence.	remain halted with the Status Register showing a 'h1' value when reading registers. It	Registers should read their default values, indicating no	Pass	
			0 = DMA Channel Running1 = DMA Channel Halted	3. Read the Control and Status Registers again using the Read_reg	should not initiate any transactions while halted.	change in the channel state and confirming no effect on writing the LENGTH Register		
				Sequence.		when the DMA is halted. This can also be confirmed through		
					Idle Bit	the waveform.		
				Execute the Read Status Sequence.	The Status Register MM2S_DMASR ('h04) should			
27	ldle	idle_state_test	Indicates the state of AXI DMA operations. • 0 = Not Idle (Transfer not Complete)	Then Enable MM2S Read Channel and start Axis read	read a value of 'h0 while running a transfer, indicating a NOT IDLE state. Once the	This can be validated by reading the status from MM2S_DMASR. It can also be	Pass	
	iuie	iuic_siale_lesi	 0 = Not Idle (Transfer not Complete) 1 = Idle (Transfer is Complete) 	Sequence.	transfer is complete, the Status Register should read	confirmed through the waveform.	F 455	
				3. Read the Status Registers again to check for the IDLE Bit.	'h1002, indicating the transfer has finished (IDLE).			
				1. Force the rresp signal with the	errupt on Error			
				slave Error (2'b10) in SLvErr Test class.	The mm2s_introut should be	The error can also be verified		
28	Slave Error	slave_error_test	This error occurs if the slave read from the Memory Map interface issues a Slave Error. • 0 = No Slave Error	2. Then configure the MM2S Read Channel with the Interrupt on Error	generated at the end of transfer to indicate that Error	by reading the Status Register (MM2S_DMASR). The	Pass	
			• 0 = No Slave Error • 1 = Slave Error Detected	Enabled (Err_IrqEn => SlvErr_seq) and start Axis_read Sequence.		rdata[14] and rdata[5] should be asserted indicating a Slave Error		
				3. Execute the Read the Status Registers.				
				registers.				
				1. Hardcode the rresp signal with the Decode Error (2'b11) in DUT's instantiation.				
			This error occurs if the address request	2. Then configure the MM2S Read	The mm2s_introut should be generated at the end of	by reading the Status Register		
29	Decode Error	decode_error_test	points to an invalid address. • 0 = No Decode Error • 1 = Decode Error Detected	Channel with the Interrupt on Error Enabled (Err_IrqEn => DecErr_seq)	transfer to indicate that Error had occured during the last	(MM2S_DMASR). The rdata[14] and rdata[6] should be asserted indicating a Slave	Pass	
				and start Axis_read Sequence. 3. Execute the Read the Status	transaction.	Error.		
				Registers.				
				SI	ave Not Ready			
					The DMA should cease producing address requests to			
			The test aims to determine the size of the	1. Set the DATA_LENGTH to be more than 512 bytes, 640 Bytes for instance.	the Slave memory once its buffer is full. The buffer reaches capacity after			
30	Slave Selection	buffer_overflow_tes	t DMA's internal buffer by keeping the ready signal low on the Stream Side.	2. Then configure the MM2S Read	receiving 512 bytes from the slave. Since the tready signal	Waveform.	Pass	
				Operation with a SRC_ADDR = 'h00 and start Axis_read Sequence.	is not asserted, the DMA stores the data in its internal buffer, which fills up after 512			
					bytes.			