Causal Inference

Lecture 14

Xiaofei Shi

Where does bias come from?

Created by Wilson Joseph from Noun Project

Summary

- Trial data does not shield you from biased results
- Introducing graphical models

AB testing

Created by Wilson Joseph from Noun Project

Images from The Noun Project

AB testing

New Website

Old Website

Images from The Noun Project

AB testing

New Website

Old Website

Images from The Noun Project

AB testing == Randomized controlled trials?

New Website

Old Website

Images from The Noun Project

Created by Wilson Joseph from Noun Project

Most tests are not significant

AB Testing and why statistical power matters

Most tests are not significant

AB Testing and why statistical power matters

What happens when tests are not significant

Created by Adrien Coquet from Noun Project

What happens when tests are not significant

People want to understand why

from Noun Project

What happens when tests are not significant

Created by Adrien Coquet from Noun Project

- People want to understand why
- Can data mining techniques help identify a group that would respond better to the new feature?

With 80% power, your feature had no significant impact from an AB test

- A: exposure to an Advertisement
- S: user **S**igned-up for the service

Perhaps the detectable effect was smaller than you thought, so you regress on user behavior

- A: exposure to an Advertisement
- S: user **S**igned-up for the service
- C: user Clicks

User behavior, however, are often proxy for unobserved user characteristics

- A: exposure to an Advertisement
- S: user **S**igned-up for the service
- C: user Clicks
- B: unobserved **B**ackground

From data mining, you will likely find a feature that the ads impacts as well

- A: exposure to an Advertisement
- S: user **S**igned-up for the service
- C: user Clicks
- B: unobserved **B**ackground

Is there any risk of different backgrounds being a confounder for our treatment?

- A: exposure to an Advertisement
- S: user **S**igned-up for the service
- C: user Clicks
- B: unobserved **B**ackground

Turns out we can detect a significant effect from A on S even if A has no impact

- A: exposure to an Advertisement
- S: user **S**igned-up for the service
- C: user Clicks
- B: unobserved **B**ackground

Let's simulate this!

n <- 1000
background <- runif(n)
ad <- rbinom(n, 1, 0.2)</pre>

Let's simulate this!


```
n <- 1000
background <- runif(n)
ad <- rbinom(n, 1, 0.2)

clicks <- rexp(n, 0.1/(background + ad))</pre>
```

Let's simulate this!


```
n <- 1000
background <- runif(n)
ad <- rbinom(n, 1, 0.2)

clicks <- rexp(n, 0.1/(background + ad))
signup <- rbinom(n, 1, background)</pre>
```

Use regression as a rough approximation

What if we observe the background?


```
n <- 1000
background <- runif(n)</pre>
ad \leftarrow rbinom(n, 1, 0.2)
clicks <- rexp(n, 0.1/(background + ad))</pre>
signup <- rbinom(n, 1, background)</pre>
model <- lm(signup ~ ad + clicks)</pre>
```

Collider's in Graphical Models!

- Let A be a coin toss
- Let B be a separate coin toss
- Let C be "Were the coin toss outcomes from A and B the same?"
- C is a "collider"

A and B are independent

- Let A be a coin toss
- Let B be a separate coin toss
- Let C be "Were the coin toss outcomes from A and B the same?"

Conditioning on C, A and B are not independent

- Let A be a coin toss
- Let B be a separate coin toss
- Let C be "Were the coin toss outcomes from A and B the same?"

Where do we spot a collider?

How would you spot this in real life?

Can regularization or feature selection help?

What is the fix?

Takeaways

- Trial data does not shield you from biased results
- Colliders are variables you need to be careful about adding to your model

Recall

AB testing in Data Science is more than a calculation

- Need to communicate the value as an internal product

- Forces a lot of necessary infrastructure and cultural changes

Communicating AB testing as an internal product

- Cost avoidance
 - Decrease "what about...?" arguments
 - Detect bugs early on

Can you see the difference?

Communicating AB testing as an internal product

- Cost avoidance
 - Decrease "what about...?" arguments
 - Detect bugs early on

Can you see the difference?

Communicating AB testing as an internal product

- Value generation
 - Accelerates feedback
 - Align measurable objectives

What are the implications for public health practice?

A multipronged surveillance strategy could lead to enhanced case detection and reduced transmission of highly infectious diseases such as COVID-19.

AB testing forces necessary changes in the company

- Teams need to agree on outcome definitions

 Data pipelines need to be transparent and consistent

Make decisions based on AB testing results

by Francisco Javier Diaz Montejano from Noun Project

Data Science is about end to end execution

- Communicate the importance of AB testing
- Provide the algorithm
- Test the execution
- Educate the company to proper AB testing

More about causal inference

• Prediction and causation are quite different. Typical questions are:

Prediction: Predict Y after observing X = x

Causation: Predict Y after setting X = x.

Causation involves predicting the effect. For example:

Prediction: Predict health given that a person takes vitamin C

Causation: Predict health if I give a person vitamin C

Prediction v.s. Causation

- Correlation is not causation!!!
- Prediction is about passive observation;
 - Causation is about active intervention
- Causal effects can be estimated consistently from randomized experiments.
- It is difficult to estimate causal effects from observational (non-randomized)
 experiments.
- All causal conclusions from observational studies should be regarded as very tentative.

Preliminaries

- 2 types of causal questions:
 - Causal inference: What is the causal effect of X on Y
 - Causal discovery: Determine the causal relationship among the variables.

Preliminaries

- 2 types of causal questions:
 - Causal inference: What is the causal effect of X on Y
 - Causal discovery: Determine the causal relationship among the variables.
- 2 types of data
 - Randomized: causal inference is straightforward
 - Observational (non-randomized): subject matter knowledge, stronger assumption

Preliminaries

- 2 types of causal questions:
 - Causal inference: What is the causal effect of X on Y
 - Causal discovery: Determine the causal relationship among the variables.
- 2 types of data
 - Randomized: causal inference is straightforward
 - Observational (non-randomized): subject matter knowledge, stronger assumption
- 2 languages of causation: mathematically they are equivalent!
 - Causal graphs: we have seen this last time!
 - Counterfactuals: we are going to see it today!

Causal graphs

Counterfactuals

- treatment X, outcome Y
- Counterfactuals:

what their value of Y would have been if we changed their value of I

Causal inference is tricky

- Causal effects can be estimated consistently from randomized experiments;
- It is difficult to estimate causal effects from observational (non-randomized) experiments;
- All causal conclusion from observational studies should be regarded as very tentative.