CLAIMS

What is claimed is:

i	1. A method of optimizing level converter placement, said method comprising the				
2	steps of:				
3	a) selectively placing each level converter at a minimum power point to				
4	minimize net power and transitional delay, transitional delay being a first voltage net				
5	delay to said level converter, through said level converter and a second voltage net delay				
6	from said level converter; and				
7	b) eliminating inefficient level converters.				
1	2. A method as in claim 1, wherein at least one said minimum power point is located				
2	at a geometric center between a pair of sinks on a corresponding second voltage net.				
1	3. A method as in claim 1, wherein at least one first voltage net originates at a first				
2	quadrant and a corresponding second voltage net connects to a plurality of sinks in a				
3	second quadrant and said minimum power point is located at minimum horizontal (x) and				
4	vertical (y) coordinates of said plurality of sinks.				
1	4. A method as in claim 1 at least one first voltage net originates at a first quadrant				
2	and a corresponding second voltage net connects to a plurality of sinks in a second				
3	quadrant and wherein said minimum power point is located comprising the steps of:				
4	A) locating a weighted center of said plurality of sinks; and				
5	B) providing a projection from said weighted geometric center to a baseline				
6	intersecting one of said plurality of sinks.				

- 1 5. A method as in claim 4 wherein said baseline is on a diagonal with axes of said
- 2 second quadrant and said intersecting one is closest to said axes.
- 1 6. A method as in claim 4 wherein locating said minimum distance comprises
- 2 finding a location at a Manhattan distance from a closest one of said plurality of sinks to
- 3 a source driving said first voltage net.
- 1 7. A method as in claim 1, wherein at least one first voltage net originates at a first
- 2 quadrant and a corresponding second voltage net connects to a plurality of sinks in a
- 3 second quadrant and third quadrant and said minimum power point is located at a side
- 4 drive point.
- 1 8. A method as in claim 7, wherein said second quadrant and said third quadrant are
- 2 on one side of an axis, at least one of said plurality of sinks being at a least distance from
- 3 said axis and said side drive point being located at said least distance directly across said
- 4 axis from a driver driving said at least one first voltage net.
- 1 9. A method as in claim 1, wherein at least one first voltage net originates at a first
- 2 quadrant and a corresponding second voltage net connects to a plurality of sinks in a
- 3 second quadrant and third quadrant and said minimum power point is located at a source
- 4 driving said first voltage net.
- 1 10. A method as in claim 1, wherein at said minimum power point is selected to
- 2 minimize wiring.
- 1 11. A method as in claim 1 wherein the step (b) of eliminating inefficient level
- 2 converters comprises deleting level converter fanin cones below a selected minimum
- 3 cone size.

2	converters comprises the steps of:				
3		i)	defining fanin cones for each of said level converters;		
4		ii)	reverting first voltage level nets in fanin cones below a selected minimum		
5	fanin	size.			
1	13.		thod as in claim 12, wherein the step (ii) of reverting voltage level nets		
2	compr	comprises:			
3		A)	selecting a smallest fanin cone size;		
4		B)	reverting said first voltage level nets having said smallest fanin cone size;		
5		C)	re-defining said fanin cones;		
6		D)	returning to step (A) until said smallest fanin cone size selected in step (A)		
7	is said	selecte	ed minimum fanin cone size.		
1	14.	A met	hod as in claim 1 wherein the step (b) of eliminating inefficient level		
2	conve	onverters comprises the steps of:			
3		i)	identifying second voltage level circuit elements receiving inputs from at		
4	least t	least two of said level converters;			
5		ii)	converting selected ones of said second voltage circuit elements to an		
6	equivalent first voltage circuit element;				
7		iii)	deleting said at least two level converters; and		
8		iv)	inserting a level converter at each output of said equivalent first voltage		
9	circuit	circuit element.			
1	15.	A method as in claim 14, wherein said second voltage circuit elements are			
2	selected in step (ii) by checking timing through said equivalent first voltage circuit				
3	element and said level converter at each output.				

A method as in claim 1 wherein the step (b) of eliminating inefficient level

1

12.

1 2 3 4	16. A method as in claim 1, wherein the step (b) of eliminating inefficient level converters comprises selectively replacing first voltage level buffer and level converter pairs with a single said level converter, said pairs being one said first voltage level buffer driving a corresponding said level converter.			
1 2	17. A method as in claim 16, wherein said pairs are selected by checking timing			
2	through said single level converter.			
1 2 1	18. A method as in claim 1, wherein an input netlist, technology definition and timing constraints are provided for placing and wiring step (a).			
1	19. A method of optimizing level converter placement in a multi supply integrated			
2	circuit design, said method comprising the steps of:			
3	a) providing an input netlist, technology definition and timing constraints for			
4	a circuit design;			
5	b) selectively placing level converters to minimize net power and transitional			
6	delay in said circuit design, each of said level converters being placed at a corresponding			
7	minimum power point, transitional delay being a first voltage net delay to a level			
8	converter, through said level converter and a second voltage net delay from said level			
9	converter; and			
10	c) deleting level converter fanin cones for corresponding said level			
11	converters below a selected minimum cone size:			

- converters below a selected minimum cone size;
- converting selected second voltage level circuit elements receiving inputs from at least two of said level converters to an equivalent first voltage circuit element; and
- e) selectively replacing first voltage level buffer and level converter pairs with a single said level converter, said pairs being one said first voltage level buffer driving a corresponding said level converter.

12

13

14

15

16

17

- 1 20. A method as in claim 19, wherein selectively placing said level converters in step 2 (b) comprises:
 - i) identifying ones of said level converters driving pairs of sinks on a corresponding second voltage net and locating said minimum power point for said pair at a geometric center between said pair;
 - ii) identifying first voltage nets originating at a first quadrant with corresponding second voltage nets connecting to a plurality of sinks in a second quadrant and locating said minimum power point in said second quadrant; and
 - iii) identifying said first voltage nets originating at a first quadrant with a corresponding second voltage net connecting to a plurality of sinks in a second quadrant and third quadrant and locating said minimum power point with said sinks.
- 1 21. A method as in claim 20, wherein said minimum power point is located in step (ii) at minimum horizontal (x) and vertical (y) coordinates of said plurality of sinks.
- 1 22. A method as in claim 20, wherein, wherein said minimum power point is located 2 in step (ii) comprising the steps of:
 - A) locating a weighted center of said plurality of sinks; and
- B) providing a projection from said weighted geometric center to a baseline intersecting one of said plurality of sinks.
- 1 23. A method as in claim 22, wherein said baseline is on a diagonal with axes of said second quadrant and said intersecting one is closest to said axes.
- 24. A method as in claim 22, wherein locating said minimum distance comprises finding a location at a Manhattan distance from a closest one of said plurality of sinks to a source driving said first voltage net.

3

4

5

6

7

8

9

10

11

3

- 25. A method as in claim 20, wherein said minimum power point is located in step
 (iii) at a side drive point.
- 1 26. A method as in claim 25, wherein locating said side drive point comprises:
- A) locating an axis between a driver driving a transitional net and sinks on said transitional net;
 - B) locating at least one of said sinks at a least distance from said axis; and
- 5 C) locating a point at said least distance directly across said axis from said driver.
- 1 27. A method as in claim 20, wherein said minimum power point is located in step 2 (iii) at a source driving said first voltage net.
- 1 28. A method as in claim 19, wherein the step (c) of deleting fanin cones comprises 2 the steps of:
- i) defining fanin cones for each of said level converters;
- 4 ii) reverting first voltage level nets in fanin cones below a selected minimum 5 fanin size.
- 1 29. A method as in claim 28, wherein the step (ii) of reverting voltage level nets comprises:
- 3 A) selecting a smallest fanin cone size;
- 4 B) reverting said first voltage level nets having said smallest fanin cone size;
- 5 C) re-defining said fanin cones;
- D) returning to step (A) until said smallest fanin cone size selected in step (A) is said selected minimum fanin cone size.

4

1	30. A method as in claim 19, wherein said second voltage circuit elements are						
2	selected in step (d) by checking timing through said equivalent first voltage circuit						
3	element and said level converters placed at each output.						
1	31. A computer program product for optimizing level converter placement in a multi						
2	supply integrated circuit (IC) design, said computer program product comprising a						
3	computer usable medium having computer readable program code thereon, said computer						
4	readable program code comprising:						
5	computer program code means for locating a minimum power point to minimize						
6	power and transitional delay for a level converter placed at said minimum power point,						
7	transitional delay being a first voltage net delay to said level converter, through said level						
8	converter and a second voltage net delay from said level converter						
9	computer program code means for placing level converters at minimum power						
10	points; and						
11	computer program code means for eliminating inefficient said level converters.						
1	32. A computer program product as in claim 31, wherein the computer program code						
2	means for locating said minimum power point comprises:						
3	computer program code means for locating a geometric center of a plurality of						
4	circuit sink elements on a net;						
5	computer program code means for locating a weighted center of said plurality of						
6	circuit sink elements on said net; and						
7	computer program code means for determining bounds for said plurality of circuit						
8	sink elements on said net.						
1	33. A computer program product as in claim 32, wherein the computer program code						
2	means for locating said minimum power point further comprises:						
3	computer program code means for providing a projection from said weighted						

geometric center to a baseline intersecting one of said plurality of sinks.

1	34.	A computer program product as in claim 33, wherein the computer program code					
2	means for locating said minimum power point further comprises:						
3		computer program code means for finding a location at a Manhattan distance from					
4	a clos	sest one of said plurality of sinks to a source driving said first voltage net.					
1	35.	A computer program product as in claim 31, the computer program code means					
2	for eliminating inefficient level converters comprising:						
3		computer program code means for identifying and deleting level converter fanin					
4	cones for corresponding said level converters below a selected minimum cone size;						
5		computer program code means for identifying and converting selected second					
6	voltag	voltage level circuit elements receiving inputs from at least two of said level converters to					
7	an eq	an equivalent first voltage circuit element; and					
8		computer program code means for selectively replacing first voltage level buffer					
9	and le	and level converter pairs with a single said level converter, said pairs being one said first					
10	voltag	ge level buffer driving a corresponding said level converter.					
1	36.	A computer program product as in claim 35, wherein the computer program code					
2	mean	s for locating said identifying and deleting fanin cones comprises:					
3		computer program code means for reverting first voltage level nets in fanin cones					
4	below	a selected minimum fanin size.					
1	37.	A computer program product as in claim 35, wherein the computer program code					
2	means for reverting voltage level nets comprises:						
3		computer program code means for selecting a smallest fanin cone size;					
4		computer program code means for reverting said first voltage level nets having					
5	said smallest fanin cone size; and						
6		computer program code means for re-defining said fanin cones.					

computer program code means for re-defining said fanin cones.

- 1 38. A computer program product as in claim 31, further comprising:
- 2 computer program code means for receiving an input netlist, technology
- 3 definition and timing constraints.