NMOSFET

E-nMOSFET $V_{TN} > 0$

D-nMOSFET $V_{TN}<0$

E-pMOSFET $V_{TP} < 0$

D-pMOSFET $V_{TP} > 0$

Zona di saturazione

$$I_{DS} = \frac{k_n}{2} (V_{GS} - V_{TN})^2$$

Condizioni: $V_{GS} > V_{TN}$ e $V_{DS} > V_{GS} - V_{TN}$

$$I_{DS} = \frac{k_p}{2} (V_{GS} - V_{TP})^2$$

Condizioni: $V_{GS} < V_{TP}$ e $V_{DS} < V_{GS} - V_{TP}$

Zona lineare o triodo

$$I_{DS} = k_n \left(V_{GS} - V_{TN} - \frac{V_{DS}}{2} \right) V_{DS}$$

Condizioni: $V_{GS} > V_{TN}$ e $V_{DS} < V_{GS} - V_{TN}$

 $I_{DS} = k_p \left(V_{GS} - V_{TP} - \frac{V_{DS}}{2} \right) V_{DS}$

Condizioni: $V_{GS} < V_{TP}$ e $V_{DS} > V_{GS} - V_{TP}$

Zona di interdizione

$$I_{DS}=0$$

Condizioni: $V_{GS} < V_{TN}$

 $I_{DS} = 0$

Condizioni: $V_{GS} > V_{TP}$

Modello ai piccoli segnali (in saturazione)

$$g_m = k_n (V_{GS} - V_{TN})$$

$$r_o = \frac{2}{k_n (V_{GS} - V_{TN})^2 \lambda_n}$$

$$g_m = -k_p(V_{GS} - V_{TP})$$
$$r_o = \frac{2}{k_p(V_{GS} - V_{TP})^2 \lambda_p}$$