

Schletter, Inc.		25° Tilt w/ Seismic Design
HCV	Standard PVMax Racking System	
	Representative Calculations - ASCE 7-05	

1. INTRODUCTION

1.1 Project Description

The following sections will cover the determination of forces and structural design calculations for the Schletter, Inc. PVMax ground mount system.

1.2 Construction

Photovoltaic modules are attached to aluminum purlins using clamp fasteners. Purlins are clamped to inclined aluminum girders, which are then connected to aluminum struts. Each support structure is equally spaced.

PV modules are required to meet the following specifications:

	<u>Maximum</u>		<u>Minimum</u>
Height =	2000 mm	Height =	1900 mm
Width =	1050 mm	Width =	970 mm
Dead Load =	3.00 psf	Dead Load =	1.75 psf

Modules Per Row = 2 Module Tilt = 25°

Maximum Height Above Grade = 3 ft

1.3 Technical Codes

- ASCE 7-05 Chapter 6, Wind Loads
- ASCE 7-05 Chapter 7, Snow Loads
- ASCE 7-05 Chapter 2, Combination of Loads
- International Building Code, IBC, 2003, 2006, 2009
- Aluminum Design Manual, Eighth Edition, 2005

Typical loading conditions of the module dead loads, snow loads, and wind loads are shown on the left.

2. LOAD ACTIONS

2.1 Permanent Loads

g_{MAX}	=	3.00	psf
g _{мім}	=	1.75	psf

Self-weight of the PV modules.

2.2 Snow Loads

	30.00 psf	Ground Snow Load, P_g =
(ASCE 7-05, Eq. 7-2)	18.56 psf	Sloped Roof Snow Load, P _s =
	1.00	I _s =
	0.82	$C_s =$
	0.90	$C_e =$

 $C_t =$

1.20

2.3 Wind Loads

Design Wind Speed, V =	120 mph	Exposure Category = C
Height <	15 ft	Importance Category = II

Peak Velocity Pressure, $q_z = 22.61 \text{ psf}$ Including the gust factor, G=0.85. (ASCE 7-05, Eq. 6-15)

Pressure Coefficients

Ct+ _{TOP}	=	1.100	
Cf+ BOTTOM	=	1.100 1.700 <i>(Pressure)</i>	Provided pressure coefficients are the result of wind tunnel testing done by Ruscheweyh Consult. Coefficients are
Cf- TOP, OUTER PURLIN	=	-2.500	located in test report # 1127/0611-1e. Negative forces are
Cf- TOP, INNER PURLIN	=	-1.900 (Suction)	applied away from the surface.
Cf- BOTTOM	=	-1.000	approx and morning contact.

2.4 Seismic Loads

S _s =	2.50	R = 1.25	ASCE 7, Section 12.8.1.3: A maximum S_s of 1.5
$S_{DS} =$	1.67	$C_{S} = 0.8$	may be used to calculate the base shear, C_s , of
$S_1 =$	1.00	$\rho = 1.3$	structures under five stories and with a period, T,
$S_{D1} =$	1.00	$\Omega = 1.25$	of 0.5 or less. Therefore, a S _{ds} of 1.0 was used to
T _a =	0.06	$C_{d} = 1.25$	calculate C _s .

2.5 Combination of Loads

ASCE 7 requires that all structures be checked by specified combinations of loads. Applicable load combinations are provided below.

Strength Design, LRFD

Component stresses are checked using the following LRFD load combinations:

1.2D + 1.6S + 0.8W 1.2D + 1.6W + 0.5S 0.9D + 1.6W ^M 1.54D + 1.3E + 0.2S ^R 0.56D + 1.3E ^R 1.54D + 1.25E + 0.2S ^O 0.56D + 1.25E O

Allowable Stress Design, ASD

Member deflection checks and foundation designs are done according to the following ASD load combinations:

1.0D + 1.0S 1.0D + 1.0W 1.0D + 0.75L + 0.75W + 0.75S 0.6D + 1.0W ^M (ASCE 7, Eq 2.4.1-1 through 2.4.1-8) & (ASCE 7, Section 12.4.3.2) 1.238D + 0.875E ° 1.1785D + 0.65625E + 0.75S ° 0.362D + 0.875E °

3. STRUCTURAL ANALYSIS

3.1 RISA Results

Appendix B.1 contains outputs from the structural analysis software package, RISA. These outputs are used to accurately determine resultant member and reaction forces from the loads seen throughout Section 2.

3.2 RISA Components

A member and node list has been provided below to correlate the RISA components with the design calculations in Section 4. Items of significance have been listed.

<u>Purlins</u>	Location	Diagonal Struts	Location	Front Reactions Location
M13	Тор	M3	Outer	N7 Outer
M14	Mid-Top	M7	Inner	N15 Inner
M15	Mid-Bottom	M11	Outer	N23 Outer
M16	Bottom			
<u>Girders</u>	<u>Location</u>	Rear Struts	Location	Rear Reactions Location
M1	Outer	M2	Outer	N8 Outer
M5	Inner	M6	Inner	N16 Inner
M9	Outer	M10	Outer	N24 Outer
Front Struts	<u>Location</u>			
M4	Outer			
M8	Inner			
M12	Outer			

^M Uses the minimum allowable module dead load.

^R Include redundancy factor of 1.3.

O Includes overstrength factor of 1.25. Used to check seismic drift.

4. MEMBER DESIGN CALCULATIONS

4.1 Purlin Design

Aluminum purlins are used to transfer loads to the support structure. Purlins are designed as continous beams with cantilevers. These are considered beams with internal hinges that can be joined with splices at 25% of the support respective span. See Appendix A.1 for detailed member calculations. Section units are in (mm).

4.2 Girder Design

Loads from purlins are transferred using an inclined girder, which is connected to a set of aluminum struts. Loads on the girder result from the support reactions of the purlins. See Appendix A.2 for detailed member calculations. Section units are in (mm).

4.3 Front Strut Design

The front aluminum strut connects a portion of the girder to the foundation. Vertical girder forces are then transferred down through the strut into the foundation. The strut is attached with single M12 bolts at each end. See Appendix A.3 for detailed member calculations. Section units are in (mm).

4.4 Diagonal Strut Design

A diagonal aluminum strut braces the support structure. It connects at a front portion of the girder and transfers horizontal forces to the rear foundation connection. The strut is attached with single M12 bolts at each end. See Appendix A.4 for detailed member calculations. Section units are in (mm).

4.5 Rear Strut Design

An aluminum strut connects the rear portion of the girder to the rear foundation connection. Both vertical and horizontal forces are transferred from the girder. The strut is attached with single M12 bolts at each end. See Appendix A.5 for detailed member calculations. Section units are in (mm).

5. FOUNDATION DESIGN CALCULATIONS

5.1 Helical Pile Foundations

The following LRFD loads include a safety factor of 1.3, and are to be used in conjunction with a Schletter, Inc. Geotechnical Investigation Report. The forces below should fall within the guidelines provided in the Geotechnical Investigation Report. If a Geotechnical Investigation Report is not present, please proceed to Section 5.2 for a concrete foundation design.

<u>Maximum</u>	<u>Front</u>	Rear	
Tensile Load =	<u>686.61</u>	<u>6847.58</u>	k
Compressive Load =	3665.22	<u>5100.07</u>	k
Lateral Load =	<u>317.04</u>	<u>3614.08</u>	k
Moment (Weak Axis) =	0.63	0.27	k

5.2 Design of Ballast Foundations

Ballast foundations are used to secure the racking structure in place. The foundations are checked for potential overturning and sliding. Bearing pressures applied by the racking and ballast foundations are checked against the allowable bearing pressures provided by the IBC tables 1804.2 (2003, 2006) & 1806.2 (2009).

Concrete Properties Footing Reinforcement Weight of Concrete = 145 pcf Use fiber reinforcing with (2) #5 rebar. 2500 psi Compressive Strength = Yield Strength = 60000 psi Overturning Check $M_0 =$ 192538.8 in-lbs Resisting Force Required = 2692.85 lbs A minimum 143in long x 35in wide x S.F. = 1.67 18in tall ballast foundation is required Weight Required = 4488.08 lbs to resist overturning. Minimum Width = Weight Provided = 7559.64 lbs Sliding Force = 869.00 lbs Use a 143in long x 35in wide x 18in tall Friction = 0.4 Weight Required = 2172.50 lbs ballast foundation to resist sliding. Resisting Weight = 7559.64 lbs Friction is OK. Additional Weight Required = Cohesion Sliding Force = 869.00 lbs Cohesion = 130 psf Use a 143in long x 35in wide x 18in tall 34.76 ft² Area = ballast foundation. Cohesion is OK. Resisting = 3779.82 lbs Additional Weight Required = 0 lbs Shear Key Additional Force = 0 lbs 200 psf/ft Lateral Bearing Pressure = Required Depth = 0.00 ft Shear key is not required. 2500 psi f'c = Length = 8 in

Bearing Pressure

 $\frac{\text{Ballast Width}}{35 \text{ in}} = \frac{35 \text{ in}}{36 \text{ in}} = \frac{37 \text{ in}}{38 \text{ in}} = \frac{38 \text{ in}}{7766 \text{ lbs}} = \frac{7992 \text{ lbs}}{7992 \text{ lbs}} = \frac{8208 \text{ lbs}}{7992 \text{ lbs}} = \frac{7992 \text{$

ASD LC		1.0D ·	+ 1.0S			1.0D +	- 1.0W		1	.0D + 0.75L +	0.75W + 0.75	iS		0.6D +	1.0W	
Width	35 in	36 in	37 in	38 in	35 in	36 in	37 in	38 in	35 in	36 in	37 in	38 in	35 in	36 in	37 in	38 in
FA	1142 lbs	1142 lbs	1142 lbs	1142 lbs	1526 lbs	1526 lbs	1526 lbs	1526 lbs	1894 lbs	1894 lbs	1894 lbs	1894 lbs	-325 lbs	-325 lbs	-325 lbs	-325 lbs
FB	1172 lbs	1172 lbs	1172 lbs	1172 lbs	2207 lbs	2207 lbs	2207 lbs	2207 lbs	2425 lbs	2425 lbs	2425 lbs	2425 lbs	-3288 lbs	-3288 lbs	-3288 lbs	-3288 lbs
F _V	128 lbs	128 lbs	128 lbs	128 lbs	1548 lbs	1548 lbs	1548 lbs	1548 lbs	1247 lbs	1247 lbs	1247 lbs	1247 lbs	-1738 lbs	-1738 lbs	-1738 lbs	-1738 lbs
P _{total}	9874 lbs	10090 lbs	10306 lbs	10522 lbs	11292 lbs	11508 lbs	11724 lbs	11940 lbs	11879 lbs	12095 lbs	12311 lbs	12527 lbs	922 lbs	1052 lbs	1182 lbs	1311 lbs
M	2800 lbs-ft	2800 lbs-ft	2800 lbs-ft	2800 lbs-ft	3917 lbs-ft	3917 lbs-ft	3917 lbs-ft	3917 lbs-ft	4774 lbs-ft	4774 lbs-ft	4774 lbs-ft	4774 lbs-ft	5346 lbs-ft	5346 lbs-ft	5346 lbs-ft	5346 lbs-ft
е	0.28 ft	0.28 ft	0.27 ft	0.27 ft	0.35 ft	0.34 ft	0.33 ft	0.33 ft	0.40 ft	0.39 ft	0.39 ft	0.38 ft	5.80 ft	5.08 ft	4.52 ft	4.08 ft
L/6	1.99 ft	1.99 ft	1.99 ft	1.99 ft	1.99 ft	1.99 ft	1.99 ft									
f _{min}	243.5 psf	242.8 psf	242.1 psf	241.5 psf	268.1 psf	266.7 psf	265.4 psf	264.2 psf	272.6 psf	271.1 psf	269.6 psf	268.3 psf	0.0 psf	0.0 psf	0.0 psf	0.0 psf
f _{max}	324.6 psf	321.7 psf	318.8 psf	316.2 psf	381.6 psf	377.1 psf	372.8 psf	368.7 psf	410.9 psf	405.5 psf	400.5 psf	395.6 psf	1297.4 psf	266.7 psf	178.2 psf	146.7 psf

Maximum Bearing Pressure = 1297 psf Allowable Bearing Pressure = 1500 psf Use a 143in long x 35in wide x 18in tall ballast foundation for an acceptable bearing pressure.

Seismic Design

Overturning Check

 $M_O = 2258.1 \text{ ft-lbs}$

Resisting Force Required = 1548.44 lbs S.F. = 1.67

Weight Required = 2580.74 lbs Minimum Width = 35 in in Weight Provided = 7559.64 lbs A minimum 143in long x 35in wide x 18in tall ballast foundation is required to resist overturning.

Bearing Pressure

ASD LC	1	.238D + 0.875	iΕ	1.1785D + 0.65625E + 0.75S			0.362D + 0.875E				
Width		35 in			35 in			35 in			
Support	Outer	Inner	Outer	Outer	Inner	Outer	Outer	Inner	Outer		
F _Y	275 lbs	535 lbs	173 lbs	747 lbs	1921 lbs	668 lbs	116 lbs	157 lbs	15 lbs		
F _V	186 lbs	181 lbs	189 lbs	137 lbs	134 lbs	146 lbs	186 lbs	182 lbs	188 lbs		
P _{total}	9634 lbs	9894 lbs	9532 lbs	9656 lbs	10830 lbs	9577 lbs	2853 lbs	2893 lbs	2751 lbs		
М	732 lbs-ft	719 lbs-ft	739 lbs-ft	545 lbs-ft	544 lbs-ft	576 lbs-ft	730 lbs-ft	717 lbs-ft	733 lbs-ft		
е	0.08 ft	0.07 ft	0.08 ft	0.06 ft	0.05 ft	0.06 ft	0.26 ft	0.25 ft	0.27 ft		
L/6	0.49 ft	0.49 ft	0.49 ft	0.49 ft	0.49 ft	0.49 ft	0.49 ft	0.49 ft	0.49 ft		
f _{min}	233.9 psf	242.1 psf	230.5 psf	245.5 psf	279.4 psf	241.4 psf	38.9 psf	40.8 psf	35.8 psf		
f _{max}	320.5 psf	327.2 psf	318.0 psf	310.1 psf	343.8 psf	309.7 psf	125.3 psf	125.7 psf	122.6 psf		

Maximum Bearing Pressure = 344 psf Allowable Bearing Pressure = 1500 psf

Use a 143in long x 35in wide x 18in tall ballast foundation for an acceptable bearing pressure.

Foundation Requirements: 143in long x 35in wide x 18in tall ballast foundation and fiber reinforcing with (2) #5 rebar.

5.3 Foundation Anchors

Threaded rods are anchored to the ballast foundations using the Simpson AT-XP epoxy solution. LRFD load results are compared to the allowable strengths of the epoxy solution. Please see the supplementary calculations provided by the Simpson Anchor Designer software.

6.1 Anchorage of Modules to Purlins and Connection of Purlins to Girders

Modules are secured to the purlins with Schletter, Inc. Rapid2+ mounting clamps. Purlins are secured to the girders with the use of 80mm mounting clamps. The reliability of calculations is uncertain due to limited standards, therefore the strength of the clamp fasteners has been evaluated by load testing.

6.2 Strut Connections

The aluminum struts connect the aluminum girder ends to custom brackets with mounting holes. Single M12 bolts are used to attach each end of the strut to the girder and post. ASTM A193/A193M-86 equivalent stainless steel bolts are used.

Front Strut Maximum Axial Load = M12 Bolt Capacity = Strut Bearing Capacity = Utilization =	2.819 k 12.808 k 7.421 k <u>38%</u>	M12 Bolt Capacity = 12 Strut Bearing Capacity = 7	.662 k .808 k .421 k <u>63%</u>
<u>Diagonal Strut</u> Maximum Axial Load = M12 Bolt Shear Capacity = Strut Bearing Capacity = Utilization =	2.572 k 12.808 k 7.421 k <u>35%</u>	Bolt and bearing capacities are accounting for dot (ASCE 8-02, Eq. 5.3.4-1)	uble shear.
		Struts under compression are show	wn to demon

ion are shown to demonstrate the load transfer from the girder. Single M12 bolts are located at each end of the strut and are subjected to double shear.

7. SEISMIC DESIGN

7.1 Seismic Drift

The racking structure has been analyzed under seismic loading. The allowable story drift of the structure must fall within the limits provided by (ASCE 7, Table 12.12-1).

Mean Height, h_{sx} = 56.48 in Allowable Story Drift for All Other Structures, Δ = { $0.020h_{sx}$ 1.130 in Max Drift, Δ_{MAX} = 0.595 in 0.595 ≤ 1.13, OK.

The racking structure's reaction to seismic loads is shown to the right. The deflections have been magnified to provide a clear portrayal of potential story drift.

APPENDIX A

A.1 Design of Aluminum Purlins - Aluminum Design Manual, 2005 Edition

Purlin = **S1.5**

Strong Axis:

3.4.14

$$L_{b} = 87 \text{ in}$$

$$J = 0.432$$

$$240.683$$

$$S1 = \left(\frac{Bc - \frac{\theta_{y}}{\theta_{b}}Fcy}{1.6Dc}\right)^{2}$$

$$S1 = 0.51461$$

$$S2 = \left(\frac{C_{c}}{1.6}\right)^{2}$$

$$S2 = 1701.56$$

 $\phi F_L = \phi b[Bc-1.6Dc^*\sqrt{((LbSc)/(Cb^*\sqrt{(lyJ)/2}))}]$

Weak Axis:

3.4.14

$$\begin{array}{ll} \mathsf{L_b} = & 87 \\ \mathsf{J} = & 0.432 \\ & 153.06 \\ S1 = \left(\frac{Bc - \frac{\theta_y}{\theta_b} Fcy}{1.6Dc}\right)^2 \\ \mathsf{S1} = & 0.51461 \\ S2 = \left(\frac{C_c}{1.6}\right)^2 \\ \mathsf{S2} = & 1701.56 \\ \varphi \mathsf{F_L} = & \varphi \mathsf{b} [\mathsf{Bc-1.6Dc*} \sqrt{(\mathsf{LbSc})/(\mathsf{Cb*} \sqrt{(\mathsf{lyJ})/2})}] \\ \varphi \mathsf{F_l} = & 29.4 \end{array}$$

3.4.16

$$S1 = \frac{Bp - \frac{\theta_y}{\theta_b} Fcy}{1.6Dp}$$

$$S1 = 12.2$$

$$S2 = \frac{k_1 Bp}{1.6Dp}$$

$$S2 = 46.7$$

$$\varphi F_L = \varphi b [Bp-1.6Dp*b/t]$$

$$\varphi F_L = 25.1 \text{ ksi}$$

 $\phi F_1 = 28.3 \text{ ksi}$

3.4.16

$$S1 = \frac{Bp - \frac{\theta_y}{\theta_b} Fcy}{1.6Dp}$$

$$S1 = \frac{12.2}{1.6Dp}$$

$$S2 = \frac{k_1 Bp}{1.6Dp}$$

$$S2 = 46.7$$

$$\varphi F_L = \varphi b [Bp-1.6Dp*b/t]$$

$$\varphi F_L = 23.1 \text{ ksi}$$

3.4.16.1

$$Rb/t =$$

$$S1 = \left(\frac{Bt - 1.17 \frac{\theta_y}{\theta_b} Fcy}{1.6Dt}\right)^2$$

$$S1 = 1.1$$

$$S2 = C_t$$

$$S2 = 141.0$$

$$\varphi F_L = 1.17 \varphi y Fcy$$

$$\varphi F_L = 38.9 \text{ ksi}$$

3.4.16.1

N/A for Weak Direction

$$h/t = 37.0588$$

$$S1 = \frac{Bbr - \frac{\theta_y}{\theta_b} 1.3Fcy}{mDbr}$$

$$S1 = 36.9$$

$$m = 0.65$$

$$C_0 = 40.985$$

$$Cc = 41.015$$

$$S2 = \frac{k_1 Bbr}{mDbr}$$

$$S2 = 77.2$$

$$\phi F_L = \phi b [Bbr - mDbr^* h/t]$$

$$\phi F_L = 43.2 \text{ ksi}$$

3.4.18

$$h/t = 32.195$$

$$S1 = \frac{Bbr - \frac{\theta_y}{\theta_b} 1.3Fcy}{mDbr}$$

$$S1 = 36.9$$

$$m = 0.65$$

$$C_0 = 45.5$$

$$Cc = 45.5$$

$$S2 = \frac{k_1 Bbr}{mDbr}$$

$$S2 = 77.3$$

$$\phi F_L = 1.3\phi y Fcy$$

$$\phi F_L = 43.2 \text{ ksi}$$

$$ly = 446476 \text{ mm}^4$$

$$1.073 \text{ in}^4$$

$$\begin{aligned} \phi F_L St &= & 25.1 \text{ ksi} \\ lx &= & 897074 \text{ mm}^4 \\ & & 2.155 \text{ in}^4 \\ y &= & 41.015 \text{ mm} \\ Sx &= & 1.335 \text{ in}^3 \\ M_{max} St &= & 2.788 \text{ k-ft} \end{aligned}$$

$$\phi F_L W k = 23.1 \text{ ksi}$$

$$ly = 446476 \text{ mm}^4$$

$$1.073 \text{ in}^4$$

$$x = 45.5 \text{ mm}$$

$$Sy = 0.599 \text{ in}^3$$

$$M_{max} W k = 1.152 \text{ k-ft}$$

Compression

3.4.9

b/t = 32.195
S1 = 12.21 (See 3.4.16 above for formula)
S2 = 32.70 (See 3.4.16 above for formula)

$$\phi F_L = \phi c[Bp-1.6Dp^*b/t]$$

 $\phi F_L = 25.1 \text{ ksi}$
b/t = 37.0588
S1 = 12.21
S2 = 32.70
 $\phi F_L = (\phi ck2^*\sqrt{(BpE))}/(1.6b/t)$
 $\phi F_L = 21.9 \text{ ksi}$

3.4.10

Rb/t = 0.0
$$S1 = \left(\frac{Bt - \frac{\theta_y}{\theta_b} Fcy}{Dt}\right)^2$$
S1 = 6.87
S2 = 131.3
$$\phi F_L = \phi y Fcy$$

$$\phi F_L = 33.25 \text{ ksi}$$

$$\phi F_L = 21.94 \text{ ksi}$$

$$A = 1215.13 \text{ mm}^2$$

$$1.88 \text{ in}^2$$

$$P_{max} = 41.32 \text{ kips}$$

A.2 Design of Aluminum Girders - Aluminum Design Manual, 2005 Edition

Girder = BF0

Strong Axis: 3.4.14

$$L_b = 104.56 \text{ in}$$
 $J = 1.08$
 179.85

$$S1 = \left(\frac{Bc - \frac{\theta_y}{\theta_b}Fcy}{1.6Dc}\right)$$

$$S1 = 0.51461$$

$$S2 = \left(\frac{C_c}{1.6}\right)^2$$

$$S2 = 1701.56$$

$$\phi F_L = \phi b [Bc - 1.6Dc^* \sqrt{((LbSc)/(Cb^* \sqrt{(lyJ)/2}))}]$$

$$\phi F_L =$$

$$\phi F_L = 29.0 \text{ ksi}$$

Weak Axis:

$$L_b = 104.56$$
 $J = 1.08$
 190.335

$$S1 = \left(\frac{Bc - \frac{\theta_y}{\theta_b}Fcy}{1.6Dc}\right)^2$$

$$S2 = \left(\frac{C_c}{1.6}\right)^2$$

$$S2 = 1701.56$$

$$\phi F_L = \phi b [Bc\text{-}1.6Dc^*\sqrt{((LbSc)/(Cb^*\sqrt{(lyJ)/2)})}]$$

$\phi F_1 =$ 28.9

3.4.16

b/t = 16.2

$$S1 = \frac{Bp - \frac{\theta_y}{\theta_b} Fcy}{1.6Dp}$$

$$S1 = 12.2$$

$$S2 = \frac{k_1 Bp}{1.6Dp}$$

$$S2 = 46.7$$

$$\varphi F_L = \varphi b [Bp-1.6Dp*b/t]$$

 $\varphi F_L = 31.6 \text{ ksi}$

$$S1 = \frac{Bp - \frac{\theta_y}{\theta_b}Fcy}{1.6Dp}$$

$$S1 = 12.2$$

$$S2 = \frac{k_1Bp}{1.6Dp}$$

$$S2 = 46.7$$

$$\varphi F_L = \varphi F Cy$$

$$\varphi F_L = 33.3 \text{ ksi}$$

3.4.16.1 Used Rb/t = 18.1
$$S1 = \left(\frac{Bt - 1.17 \frac{\theta_y}{\theta_b} Fcy}{1.6Dt}\right)^2$$

$$S1 = 1.1$$

$$S2 = C_t$$

$$S2 = 141.0$$

$$\phi F_L = \phi b[Bt-Dt^* \sqrt{(Rb/t)}]$$

31.1 ksi

 $\phi F_L =$

h/t =

S1 =

m =

Bbr -

3.4.18

$$h/t = 7.4$$

$$S1 = \frac{Bbr - \frac{\theta_y}{\theta_b} 1.3Fcy}{mDbr}$$

$$S1 = 35.2$$

$$m = 0.68$$

$$C_0 = 41.067$$

$$Cc = 43.717$$

$$S2 = \frac{k_1Bbr}{mDbr}$$

$$S2 = 73.8$$

$$\phi F_L = 1.3\phi y Fcy$$

$$\phi F_L = 43.2 \text{ ksi}$$

$$\phi F_L St = 29.0 \text{ ksi}$$

 $lx = 984962 \text{ mm}^4$

y = 43.717 mm

2.366 in⁴

1.375 in³

3.323 k-ft

$$C_0 = 40$$
 $Cc = 40$
 $S2 = \frac{k_1 Bbr}{mDbr}$
 $S2 = 77.3$
 $\phi F_L = 1.3 \phi y F c y$
 $\phi F_L = 43.2 \text{ ksi}$
 $\phi F_L =$

16.2

36.9

0.65

 $\frac{\theta_y}{2}$ 1.3Fcy

Compression

 $M_{max}St =$

Sx =

3.4.9

b/t =12.21 (See 3.4.16 above for formula) S2 = 32.70 (See 3.4.16 above for formula) $\varphi F_L = \varphi c[Bp-1.6Dp*b/t]$ $\varphi F_L =$ 31.6 ksi b/t =7.4 S1 = 12.21 32.70 S2 = $\phi F_L = \phi y F c y$ $\varphi F_L =$ 33.3 ksi

3.4.10

Rb/t = 18.1

$$S1 = \left(\frac{Bt - \frac{\theta_{y}}{\theta_{h}}Fcy}{Dt}\right)^{2}$$
S1 = 6.87
S2 = 131.3
 $\phi F_{L} = \phi c[Bt-Dt^{*}\sqrt{(Rb/t)}]$
 $\phi F_{L} = 31.09 \text{ ksi}$
 $\phi F_{L} = 31.09 \text{ ksi}$
 $\phi F_{L} = 1215.13 \text{ mm}^{2}$
1.88 in²

58.55 kips

 $P_{max} =$

A.3 Design of Aluminum Struts (Front) - Aluminum Design Manual, 2005 Edition

Strut = **55x55**

Strong Axis:

3.4.14

$$L_{b} = 24.8 \text{ in}$$

$$J = 0.942$$

$$38.7028$$

$$S1 = \left(\frac{Bc - \frac{\theta_{y}}{\theta_{b}} Fcy}{1.6Dc}\right)^{2}$$

$$S1 = 0.51461$$

$$S2 = \left(\frac{C_{c}}{1.6}\right)^{2}$$

$$S2 = 1701.56$$

 $\varphi F_L = \varphi b[Bc-1.6Dc^*\sqrt{(LbSc)/(Cb^*\sqrt{(lyJ)/2)})}]$

Weak Axis:

3.4.14

$$\begin{split} L_b &= & 24.8 \\ J &= & 0.942 \\ & 38.7028 \\ S1 &= & \left(\frac{Bc - \frac{\theta_y}{\theta_b} Fcy}{1.6Dc}\right)^2 \\ S1 &= & 0.51461 \\ S2 &= & \left(\frac{C_c}{1.6}\right)^2 \\ S2 &= & 1701.56 \\ \phi F_L &= & \phi b[Bc-1.6Dc^*\sqrt{((LbSc)/(Cb^*\sqrt{(lyJ)/2)})}] \\ \phi F_L &= & 31.4 \end{split}$$

3.4.16

$$S1 = \frac{Bp - \frac{\theta_y}{\theta_b} Fcy}{1.6Dp}$$

$$S1 = 12.2$$

$$S2 = \frac{k_1 Bp}{1.6Dp}$$

$$S2 = 46.7$$

$$\varphi F_L = \varphi b [Bp-1.6Dp*b/t]$$

$$\varphi F_L = 28.2 \text{ ksi}$$

 $\phi F_L = 31.4 \text{ ksi}$

3.4.16

b/t = 24.5

$$S1 = \frac{Bp - \frac{\theta_y}{\theta_b} Fcy}{1.6Dp}$$

$$S1 = 12.2$$

$$S2 = \frac{k_1 Bp}{1.6Dp}$$

$$S2 = 46.7$$

$$\varphi F_L = \varphi b [Bp-1.6Dp*b/t]$$

$$\varphi F_L = 28.2 \text{ ksi}$$

3.4.16.1

4.16.1 Not Used
Rb/t = 0.0
$$S1 = \left(\frac{Bt - 1.17 \frac{\theta_y}{\theta_b} Fcy}{1.6Dt}\right)^2$$
S1 = 1.1
$$S2 = C_t$$
S2 = 141.0
$$\varphi F_L = 1.17 \varphi y Fcy$$

$$\varphi F_L = 38.9 \text{ ksi}$$

3.4.16.1

N/A for Weak Direction

3.4.18

S1 =
$$\frac{Bbr - \frac{\theta_y}{\theta_b} 1.3Fcy}{mDbr}$$

S1 = $\frac{36.9}{m}$ m = 0.65
C₀ = 27.5
Cc = 27.5
S2 = $\frac{k_1Bbr}{mDbr}$
S2 = 77.3
 ϕ F_L = 1.3 ϕ yFcy
 ϕ F_L = 43.2 ksi
 ϕ F_LSt= 28.2 ksi
 ϕ F_LSt= 279836 mm⁴
0.672 in⁴

27.5 mm

0.621 in³

3.4.18 h/t = 24.5

$$S1 = \frac{Bbr - \frac{\theta_y}{\theta_b} 1.3Fcy}{mDbr}$$

$$S1 = 36.9$$

$$m = 0.65$$

$$C_0 = 27.5$$

$$Cc = 27.5$$

$$S2 = \frac{k_1Bbr}{mDbr}$$

$$S2 = 77.3$$

$$\phi F_L = 1.3\phi y Fcy$$

$$\phi F_L = 43.2 \text{ ksi}$$

$$V = 279836 \text{ mm}^4$$

$$0.672 \text{ in}^4$$

$$V = 27.5 \text{ mm}$$

 $Sy = 0.621 \text{ in}^3$ $M_{max}Wk = 1.460 \text{ k-ft}$

y = Sx =

 $M_{max}St = 1.460 \text{ k-ft}$

SCHLETTER

Compression

3.4.7 $\lambda = 0.57371$ r = 0.81 in $S1^* = \frac{Bc - Fcy}{1.6Dc^*}$ $S1^* = 0.33515$ $S2^* = \frac{Cc}{\pi} \sqrt{Fcy/E}$ $S2^* = 1.23671$ $\varphi cc = 0.87952$ $\varphi F_L = \varphi cc(Bc-Dc^*\lambda)$ $\varphi F_L = 28.0279 \text{ ksi}$

3.4.9

$$\begin{array}{lll} b/t = & 24.5 \\ S1 = & 12.21 \text{ (See 3.4.16 above for formula)} \\ S2 = & 32.70 \text{ (See 3.4.16 above for formula)} \\ \phi F_L = & \phi c [Bp-1.6Dp^*b/t] \\ \phi F_L = & 28.2 \text{ ksi} \\ \\ b/t = & 24.5 \\ S1 = & 12.21 \\ S2 = & 32.70 \\ \phi F_L = & \phi c [Bp-1.6Dp^*b/t] \\ \end{array}$$

3.4.10

 $\varphi F_L =$

Rb/t =

$$S1 = \left(\frac{Bt - \frac{\theta_y}{\theta_b} Fcy}{Dt}\right)^2$$

$$S1 = 6.87$$

$$S2 = 131.3$$

$$\phi F_L = \phi y Fcy$$

$$\phi F_L = 33.25 \text{ ksi}$$

$$\phi F_L = 28.03 \text{ ksi}$$

$$A = 663.99 \text{ mm}^2$$

$$1.03 \text{ in}^2$$

28.2 ksi

0.0

28.85 kips

A.4 Design of Aluminum Struts (Diagonal) - Aluminum Design Manual, 2005 Edition

Strut = <u>55x55</u>

 $P_{max} =$

Strong Axis:	Weak Axis:
3.4.14	3.4.14
$L_b = 98.03 \text{ in}$	$L_b = 98.03$
J = 0.942 152.985	J = 0.942 152.985
$S1 = \left(\frac{Bc - \frac{\theta_y}{\theta_b} Fcy}{1.6Dc}\right)^2$	$S1 = \left(\frac{Bc - \frac{\theta_y}{\theta_b} Fcy}{1.6Dc}\right)^2$
S1 = 0.51461	S1 = 0.51461
$S2 = \left(\frac{C_c}{1.6}\right)^2$	$S2 = \left(\frac{C_c}{1.6}\right)^2$
S2 = 1701.56	S2 = 1701.56
$\phi F_L = \phi b[Bc-1.6Dc^*\sqrt{((LbSc)/(Cb^*\sqrt{(lyJ)/2))}}]$	$\phi F_L = \phi b[Bc-1.6Dc^*\sqrt{((LbSc)/(Cb^*\sqrt{(lyJ)/2)})]}$
$\varphi F_L = 29.4 \text{ ksi}$	$\phi F_L = 29.4$

SCHLETTER

3.4.16

$$b/t = 24.5$$

$$S1 = \frac{Bp - \frac{\theta_y}{\theta_b} Fcy}{1.6Dp}$$

$$S1 = 12.2$$

$$S2 = \frac{k_1 Bp}{1.6Dp}$$

$$S2 = 46.7$$

$$\phi F_L = \phi b [Bp-1.6Dp*b/t]$$

$$\phi F_L = 28.2 \text{ ksi}$$

3.4.16.1 Not Used Rb/t = 0.0

Rb/t = 0.0

$$S1 = \left(\frac{Bt - 1.17 \frac{\theta_y}{\theta_b} Fcy}{1.6Dt}\right)^2$$

$$S1 = 1.1$$

$$S2 = C_t$$

$$S2 = 141.0$$

$$\varphi F_L = 1.17 \varphi y Fcy$$

$$\varphi F_L = 38.9 \text{ ksi}$$

3.4.18

$$h/t = 24.5$$

$$S1 = \frac{Bbr - \frac{\theta_y}{\theta_b} 1.3Fcy}{mDbr}$$

$$S1 = 36.9$$

$$m = 0.65$$

$$C_0 = 27.5$$

$$Cc = 27.5$$

$$S2 = \frac{k_1Bbr}{mDbr}$$

$$S2 = 77.3$$

$$\phi F_L = 1.3\phi y Fcy$$

$$\phi F_L = 43.2 \text{ ksi}$$

$$\begin{array}{lll} \phi F_L St = & 28.2 \text{ ksi} \\ \text{lx} = & 279836 \text{ mm}^4 \\ & 0.672 \text{ in}^4 \\ \text{y} = & 27.5 \text{ mm} \\ \text{Sx} = & 0.621 \text{ in}^3 \\ \text{M}_{\text{max}} St = & 1.460 \text{ k-ft} \end{array}$$

$\underline{\text{Compression}}$

3.4.7

$$\begin{array}{lll} \lambda = & 2.26776 \\ r = & 0.81 \text{ in} \\ & S1^* = \frac{Bc - Fcy}{1.6Dc^*} \\ S1^* = & 0.33515 \\ & S2^* = \frac{Cc}{\pi} \sqrt{Fcy/E} \\ S2^* = & 1.23671 \\ & \phi cc = & 0.89749 \\ & \phi F_L = & (\phi cc Fcy)/(\lambda^2) \\ & \phi F_L = & 6.10803 \text{ ksi} \end{array}$$

3.4.16

$$S1 = \frac{Bp - \frac{\theta_y}{\theta_b} Fcy}{1.6Dp}$$

$$S1 = 12.2$$

$$S2 = \frac{k_1 Bp}{1.6Dp}$$

$$S2 = 46.7$$

$$\varphi F_L = \varphi b [Bp-1.6Dp*b/t]$$

$$\varphi F_L = 28.2 \text{ ksi}$$

3.4.16.1

N/A for Weak Direction

$$h/t = 24.5$$

$$S1 = \frac{Bbr - \frac{\theta_y}{\theta_b} 1.3Fcy}{mDbr}$$

$$S1 = 36.9$$

$$m = 0.65$$

$$C_0 = 27.5$$

$$Cc = 27.5$$

$$S2 = \frac{k_1Bbr}{mDbr}$$

$$S2 = 77.3$$

$$\phi F_L = 1.3\phi y Fcy$$

$$\phi F_L = 43.2 \text{ ksi}$$

$$\begin{array}{rcl} \phi F_L W k = & 28.2 \text{ ksi} \\ ly = & 279836 \text{ mm}^4 \\ & 0.672 \text{ in}^4 \\ x = & 27.5 \text{ mm} \\ Sy = & 0.621 \text{ in}^3 \\ M_{max} W k = & 1.460 \text{ k-ft} \end{array}$$

3.4.9

$$\begin{array}{lll} b/t = & 24.5 \\ S1 = & 12.21 \text{ (See 3.4.16 above for formula)} \\ S2 = & 32.70 \text{ (See 3.4.16 above for formula)} \\ \phi F_L = & \phi c [Bp-1.6Dp^*b/t] \\ \phi F_L = & 28.2 \text{ ksi} \\ \\ b/t = & 24.5 \\ S1 = & 12.21 \\ S2 = & 32.70 \\ \phi F_L = & \phi c [Bp-1.6Dp^*b/t] \\ \end{array}$$

3.4.10

 $\varphi F_L =$

Rb/t = 0.0

$$S1 = \left(\frac{Bt - \frac{\theta_y}{\theta_b}Fcy}{Dt}\right)^{\frac{1}{2}}$$
S1 = 6.87
S2 = 131.3
 $\phi F_L = \phi y Fcy$
 $\phi F_L = 33.25 \text{ ksi}$

$$\phi F_L = 6.11 \text{ ksi}$$

$$A = 663.99 \text{ mm}^2$$

$$1.03 \text{ in}^2$$

$$P_{\text{max}} = 6.29 \text{ kips}$$

28.2 ksi

A.5 Design of Aluminum Struts (Rear) - Aluminum Design Manual, 2005 Edition

Strut = <u>55x55</u>

Strong Axis: Weak Axis: 3.4.14 $L_b =$ 69.80 in $L_b =$ 69.8 0.942 0.942 $S2 = \left(\frac{C_c}{1.6}\right)^2$ S2 = 1701.56 $S2 = \left(\frac{C_c}{1.6}\right)^2$ S2 = 1701.56 $\phi F_L = \phi b[Bc-1.6Dc^*\sqrt{((LbSc)/(Cb^*\sqrt{(lyJ)/2)})}]$ $\phi F_L = \phi b[Bc-1.6Dc^*\sqrt{((LbSc)/(Cb^*\sqrt{(lyJ)/2}))}]$ $\varphi F_L =$ $\phi F_L =$ 30.0 ksi 30.0

$$SA.16$$

$$b/t = 24.5$$

$$S1 = \frac{Bp - \frac{\theta_y}{\theta_b} Fcy}{1.6Dp}$$

$$S1 = 12.2$$

$$S2 = \frac{k_1 Bp}{1.6Dp}$$

$$S2 = 46.7$$

$$\varphi F_L = \varphi b[Bp-1.6Dp^*b/t]$$

$$\varphi F_L = 28.2 \text{ ksi}$$

$$SA.16$$

$$b/t = 24.5$$

$$S1 = \frac{Bp - \frac{\theta_y}{\theta_b} Fcy}{1.6Dp}$$

$$S1 = 12.2$$

$$S2 = \frac{k_1 Bp}{1.6Dp}$$

$$S2 = 46.7$$

$$\varphi F_L = \varphi b[Bp-1.6Dp^*b/t]$$

$$\varphi F_L = 28.2 \text{ ksi}$$

$$\varphi F_L = 28.2 \text{ ksi}$$

3.4.16.1 Not Used Rb/t = 0.0
$$S1 = \left(\frac{Bt - 1.17 \frac{\theta_y}{\theta_b} Fcy}{1.6Dt}\right)^2$$
$$S1 = 1.1$$

$$S1 = \left(\frac{Bt - 1.17 \frac{\theta_y}{\theta_b} Fcy}{1.6Dt}\right)^2$$

$$S1 = 1.1$$

$$S2 = C_t$$

$$S2 = 141.0$$

3.4.18

$$h/t = 24.5$$

$$S1 = \frac{Bbr - \frac{\theta_y}{\theta_b} 1.3Fcy}{mDbr}$$

$$S1 = 36.9$$

$$m = 0.65$$

$$C_0 = 27.5$$

$$Cc = 27.5$$

$$k \cdot Bbr$$

 $\phi F_L = 1.17 \phi y F c y$ $\phi F_L = 38.9 \text{ ksi}$

$$S2 = \frac{k_1 Bbr}{mDbr}$$

$$S2 = 77.3$$

$$\varphi F_L = 1.3 \varphi F_C Y$$

$$\varphi F_L = 43.2 \text{ ksi}$$

$$\begin{array}{lll} \phi F_L St = & 28.2 \text{ ksi} \\ \text{lx} = & 279836 \text{ mm}^4 \\ & 0.672 \text{ in}^4 \\ \text{y} = & 27.5 \text{ mm} \\ \text{Sx} = & 0.621 \text{ in}^3 \\ \text{M}_{\text{max}} St = & 1.460 \text{ k-ft} \end{array}$$

3.4.18

3.4.16.1

N/A for Weak Direction

Since
$$h/t = 24.5$$

$$S1 = \frac{Bbr - \frac{\theta_y}{\theta_b} 1.3Fcy}{mDbr}$$
 $S1 = 36.9$
 $M = 0.65$
 $M =$

$$\begin{split} \phi F_L W k &= & 28.2 \text{ ksi} \\ ly &= & 279836 \text{ mm}^4 \\ & & 0.672 \text{ in}^4 \\ x &= & 27.5 \text{ mm} \\ Sy &= & 0.621 \text{ in}^3 \\ M_{max} W k &= & 1.460 \text{ k-ft} \end{split}$$

Compression

3.4.7

$$\lambda = 1.61471$$

$$r = 0.81 \text{ in}$$

$$S1^* = \frac{Bc - Fcy}{1.6Dc^*}$$

$$S1^* = 0.33515$$

$$S2^* = \frac{Cc}{\pi} \sqrt{Fcy/E}$$

$$S2^* = 1.23671$$

$$\phi = 0.80606$$

$$\phi = (\phi = (\phi = fcy)/(\lambda^2))$$

$$\phi = 10.8205 \text{ ksi}$$

b/t = 24.5
S1 = 12.21 (See 3.4.16 above for formula)
S2 = 32.70 (See 3.4.16 above for formula)

$$\phi F_L = \phi c [Bp-1.6Dp^*b/t]$$

 $\phi F_L = 28.2 \text{ ksi}$
b/t = 24.5
S1 = 12.21
S2 = 32.70
 $\phi F_L = \phi c [Bp-1.6Dp^*b/t]$
 $\phi F_L = 28.2 \text{ ksi}$

3.4.10

$$\begin{aligned} \text{Rb/t} &= & 0.0 \\ S1 &= \left(\frac{Bt - \frac{\theta_y}{\theta_b} Fcy}{Dt} \right)^2 \\ \text{S1} &= & 6.87 \\ \text{S2} &= & 131.3 \\ \text{ϕF}_L &= & \text{ϕF}_L \text{ψF}_L \text{ψF}$$

APPENDIX B

B.1

The following pages will contain the results from RISA. Please refer back to Section 2 for load information and Section 4-5 for member and foundation design.

Model Name

Schletter, Inc.HCV

Standard PVMax Racking System

Nov 23, 2015

Checked By:____

Basic Load Cases

	BLC Description	Category	X Gravity	Y Gravity	Z Gravity	Joint	Point	Distribut	.Area(Me.	.Surface(
1	Dead Load, Max	DĽ	•	-1	•			4	,	, I
2	Dead Load, Min	DL		-1				4		
3	Snow Load	SL						4		
4	Wind Load - Pressure	WL						4		
5	Wind Load - Suction	WL						4		
6	Seismic - Lateral	EL			.8			8		

Member Distributed Loads (BLC 1 : Dead Load, Max)

	Member Label	Direction	Start Magnitude[lb/ft,F]	End Magnitude[lb/ft,F]	Start Location[ft,%]	End Location[ft,%]
1	M13	Υ	-9.843	-9.843	0	0
2	M14	Υ	-9.843	-9.843	0	0
3	M15	Υ	-9.843	-9.843	0	0
4	M16	Υ	-9.843	-9.843	0	0

Member Distributed Loads (BLC 2 : Dead Load, Min)

	Member Label	Direction	Start Magnitude[lb/ft,F]	End Magnitude[lb/ft,F]	Start Location[ft,%]	End Location[ft,%]
1	M13	Υ	-5.454	-5.454	0	0
2	M14	Υ	-5.454	-5.454	0	0
3	M15	Υ	-5.454	-5.454	0	0
4	M16	Υ	-5.454	-5.454	0	0

Member Distributed Loads (BLC 3 : Snow Load)

	Member Label	Direction	Start Magnitude[lb/ft,F]	End Magnitude[lb/ft,F]	Start Location[ft,%]	End Location[ft,%]
1	M13	Υ	-55.176	-55.176	0	0
2	M14	Υ	-55.176	-55.176	0	0
3	M15	Υ	-55.176	-55.176	0	0
4	M16	Υ	-55 176	-55 176	0	0

Member Distributed Loads (BLC 4: Wind Load - Pressure)

	Member Label	Direction	Start Magnitude[lb/ft,F]	End Magnitude[lb/ft,F]	Start Location[ft,%]	End Location[ft,%]
1	M13	V	-81.596	-81.596	0	0
2	M14	٧	-81.596	-81.596	0	0
3	M15	V	-126.102	-126.102	0	0
4	M16	V	-126.102	-126.102	0	0

Member Distributed Loads (BLC 5: Wind Load - Suction)

	Member Label	Direction	Start Magnitude[lb/ft,F]	End Magnitude[lb/ft,F]	Start Location[ft,%]	End Location[ft,%]
1	M13	V	185.444	185.444	0	0
2	M14	V	140.938	140.938	0	0
3	M15	V	74.178	74.178	0	0
4	M16	y	74.178	74.178	0	0

Member Distributed Loads (BLC 6 : Seismic - Lateral)

	Member Label	Direction	Start Magnitude[lb/ft,F]	End Magnitude[lb/ft,F]	Start Location[ft,%]	End Location[ft,%]
1	M13	Ζ	7.874	7.874	0	0
2	M14	Ζ	7.874	7.874	0	0
3	M15	Ζ	7.874	7.874	0	0
4	M16	Ζ	7.874	7.874	0	0
5	M13	Ζ	0	0	0	0
6	M14	Z	0	0	0	0
7	M15	Z	0	0	0	0
8	M16	Z	0	0	0	0

Model Name

: Schletter, Inc. : HCV

: Standard PVMax Racking System

Nov 23, 2015

Checked By:___

Load Combinations

	Description	S	P	S	В	Fa	В	Fa	В	Fa	В	Fa	В	Fa	В	Fa	В	Fa	В	Fa	В	Fa	B	Fa
1	LRFD 1.2D + 1.6S + 0.8W	Yes	Υ		1	1.2	3	1.6	4	.8														
2	LRFD 1.2D + 1.6W + 0.5S	Yes	Υ		1	1.2	3	.5	4	1.6														
3	LRFD 0.9D + 1.6W	Yes	Υ		2	.9					5	1.6												
4	LATERAL - LRFD 1.54D + 1.3E	Yes	Υ		1	1.54	3	.2			6	1.3												
5	LATERAL - LRFD 0.56D + 1.3E	Yes	Υ		1	.56					6	1.3												
6	LATERAL - LRFD 1.54D + 1.25	Yes	Υ		1	1.54	3	.2			6	1.25												
7	LATERAL - LRFD 0.56D + 1.25E	Yes	Υ		1	.56					6	1.25												
8																								
9	ASD 1.0D + 1.0S	Yes	Υ		1	1	3	1																
10	ASD 1.0D + 1.0W	Yes	Υ		1	1			4	1														
11	ASD 1.0D + 0.75L + 0.75W + 0	Yes	Υ		1	1	3	.75	4	.75														
12	ASD 0.6D + 1.0W	Yes	Υ		2	.6					5	1												
13	LATERAL - ASD 1.238D + 0.875E	Yes	Υ		1	1.2					6	.875												
14	LATERAL - ASD 1.1785D + 0.65.	.Yes	Υ		1	1.1	3	.75			6	.656												
15	LATERAL - ASD 0.362D + 0.875E	Yes	Υ		1	.362					6	.875												

Envelope Joint Reactions

	Joint		X [lb]	LC	Y [lb]	LC	Z [lb]	LC	MX [k-ft]	LC	MY [k-ft]	LC	MZ [k-ft]	LC
1	N8	max	776.127	2	1301.282	2	.513	1	.002	1	0	1	0	1
2		min	-936.985	3	-1705.776	3	-38.998	5	202	4	0	1	0	1
3	N7	max	.023	9	1040.561	1	683	12	001	12	0	1	0	1
4		min	266	2	-144.489	3	-243.874	4	483	4	0	1	0	1
5	N15	max	.004	9	2819.399	2	0	1	0	1	0	1	0	1
6		min	-2.559	2	-528.162	3	-231.743	4	465	4	0	1	0	1
7	N16	max	2523.688	2	3923.134	2	0	3	0	3	0	1	0	1
8		min	-2780.064	3	-5267.371	3	-39.143	5	204	4	0	1	0	1
9	N23	max	.035	14	1040.561	1_	8.609	1	.017	1	0	1	0	1
10		min	266	2	-144.489	3	-237.151	5	473	4	0	1	0	1
11	N24	max	776.127	2	1301.282	2	046	10	0	10	0	1	0	1
12		min	-936.985	3	-1705.776	3	-39.645	5	203	4	0	1	0	1
13	Totals:	max	4072.851	2	11287.757	2	0	1						
14		min	-4654.684	3	-9496.062	3	-826.246	5						

Envelope Member Section Forces

	Member	Sec		Axial[lb]	LC	y Shear[lb]	LC	z Shear[lb]	LC	Torque[k-ft]	LC	y-y Mome	LC	z-z Mome	LC_
1	M13	1	max	61.459	4	443.832	2	-8.236	12	0	15	.15	4	0	4
2			min	3.958	10	-798.008	3	-146.173	1	014	2	.011	10	0	3
3		2	max	51.953	4	308.581	2	-6.815	12	0	15	.098	4	.548	3
4			min	3.958	10	-563.563	3	-111.483	1	014	2	0	10	303	2
5		3	max	51.174	1	173.33	2	-5.394	12	0	15	.06	5	.908	3
6			min	3.958	10	-329.119	3	-76.792	1	014	2	037	1	497	2
7		4	max	51.174	1	38.079	2	-3.233	10	0	15	.034	5	1.079	3
8			min	3.958	10	-94.674	3	-42.102	1	014	2	085	1	582	2
9		5	max	51.174	1	139.771	3	.63	10	0	15	.01	5	1.06	3
10			min	3.958	10	-97.172	2	-30.882	4	014	2	105	1	559	2
11		6	max	51.174	1	374.216	3	27.279	1	0	15	005	12	.853	3
12			min	1.383	15	-232.423	2	-26.352	5	014	2	097	1	426	2
13		7	max	51.174	1	608.66	3	61.97	1	0	15	005	10	.458	3
14			min	-7.318	5	-367.674	2	-24.189	5	014	2	061	1	184	2
15		8	max	51.174	1	843.105	3	96.66	1	0	15	.006	2	.167	2
16			min	-16.824	5	-502.924	2	-22.026	5	014	2	052	4	127	3
17		9	max	51.174	1	1077.55	3	131.351	1	0	15	.095	1	.626	2
18			min	-26.33	5	-638.175	2	-19.862	5	014	2	068	5	901	3

Model Name

Schletter, Inc.HCV

: Standard PVMax Racking System

Nov 23, 2015

Checked By:____

	Member	Sec	1	Axial[lb]	LC	y Shear[lb]							LC		
19		10	max	53.449	4	1311.994	3	166.041	1	.007	3	.215	1	<u> 1.195</u>	2
20			min	3.958	10	-773.426		-103.162		014	2	0	3	-1.863	3
21		11	max	51.174	1_	638.175	2	-3.134	12	.014	2	1	4	.626	2
22			min	3.958	10	-1077.55		-131.351	1	0	15	005	3	901	3
23		12	max	51.174	1	502.924	2	-1.713	12	.014	2	.052	4	.167	2
24		10	min	3.958	10	-843.105	3	-96.66	1	0	15	008	3	127	3
25		13	max	51.174	1	367.674	2	224	3	.014	2	.024	5	.458	3
26		4.	min	3.958	10	-608.66	3	-61.97	1	0	15	<u>061</u>	1	184	2
27		14	max	51.174	1	232.423	2	1.908	3	.014	2	0	15	.853	3
28		4.5	min	2.804	15	-374.216	3	-35.721	4	0	15	097	1	426	2
29		15	max	51.174	1	97.172	2	7.411	1	.014	2	004	12	1.06	3
30		4.0	min	-5.26	5	-139.771	3	-27.431	5	0	15	105	1	<u>559</u>	2
31		16	max	51.174	1	94.674	3	42.102 -25.268	1	.014	15	001	12	1.079	2
33		17	min	-14.766 51.174	<u>5</u> 1	-38.079	3		5	<u> </u>	2	085 .004	3	<u>582</u> .908	
34		17	max min	51.174 -24.272	5	329.119 -173.33	2	76.792 -23.105	5	0	15	073	4	497	2
35		18	max		1	563.563	3	111.483	1	.014	2	.039	1	<u>497</u> .548	3
36		10	min	-33.778	5	-308.581	2	-20.941	5	0	15	082	5	303	2
37		19	max		1	798.008	3	146.173	1	.014	2	.143	1	<u>.303</u>	2
38		13	min	-43.284	5	-443.832	2	-18.778	5	0	15	098	5	0	3
39	M14	1	max	39.251	4	529.298	2	-8.575	12	.015	3	.223	4	0	1
40			min	2.595	12	-653.472	3	-152.849	1	016	2	.014	10	0	3
41		2	max	34.089	1	394.047	2	-7.153	12	.015	3	.154	4	.455	3
42		_	min	2.595	12	-476.391	3	-118.158		016	2	.003	10	372	2
43		3	max	34.089	1	258.796	2	-5.732	12	.015	3	.094	5	.768	3
44			min	2.595	12	-299.31	3	-83.468	1	016	2	016	1	635	2
45		4	max	34.089	1	123.545	2	-3.888	10	.015	3	.054	5	.937	3
46			min	2.208	15	-122.228		-61.124	4	016	2	069	1	789	2
47		5	max	34.089	1	54.853	3	025	10	.015	3	.015	5	.964	3
48			min	-6.236	5	-15.532	1	-51.418	4	016	2	094	1	834	2
49		6	max	34.089	1	231.935	3	20.603	1	.015	3	005	12	.849	3
50			min	-15.742	5	-146.957	2	-45.075	5	016	2	092	1	77	2
51		7	max	34.089	1	409.016	3	55.294	1	.015	3	005	10	.591	3
52			min	-25.248	5	-282.208	2	-42.911	5	016	2	072	4	597	2
53		8	max	34.089	1	586.098	3	89.984	1	.015	3	.003	2	.19	3
54			min	-34.754	5	-417.458	2	-40.748	5	016	2	094	4	315	2
55		9	max	34.089	1	763.179	3	124.675	1	.015	3	.084	1	1	1
56			min	-44.26	5	-552.709		-38.585	5	<u>016</u>	2	124	5	<u>354</u>	3
57		10	max	65.357	4	940.26	3_	159.365	1	.015	3	.223	4	<u>.575</u>	2
58		4.4	min	2.595	12	-687.96	2	-109.139		016	2	001	3	<u>-1.04</u>	3
59		11		55.851		552.709			12	.016	2	.153	4	.1	1
60		40	min	2.595	12	-763.179		-124.675		015	3	005	3	354	3
61		12	max		4	417.458	2	-1.375	12	.016	2	.091	4	.19	3
62		40	min	2.595	12	-586.098		-89.984	1	015	3	<u>008</u>	3	31 <u>5</u>	2
63 64		13	max	36.839 2.595	4	282.208	2	.289 -62.188	3	.016	2	.05 061	5	.591 597	2
		1.1	min		12	-409.016	3	2.421	3	015	3	.011	5		
65		14	max		1	146.957	2			.016	2			.849	2
66 67		15	min	2.595	12	<u>-231.935</u> 15.532	3	-52.482	4	015	3	092 003	12	77 064	
68		10			12	-54.853	1	14.087 -45.313	5	.016 015	3	003 094	1	.964 834	3
69		16	min max	2.595 34.089	1	122.228	3	48.777	1	015 .016	2	<u>094</u> 0	3	634 .937	3
70		10	min	.389	15	-123.545	2	-43.15	5	015	3	078	4	789	2
71		17	max		1	299.31	3	83.468	1	.016	2	.006	3	.768	3
72			min	-8.907	5	-258.796	2	-40.987	5	015	3	1	4	635	2
73		18	max	34.089	1	476.391	3	118.158	1	.016	2	.066	1	.455	3
74		10	min	-18.413	5	-394.047	2	-38.823	5	015	3	128	5	372	2
75		19	max		1	653.472	3	152.849	1	.016	2	.175	1	0	1
. 0			ших	01.000		300.712		102.070	- 1	.010					

Model Name

Schletter, Inc.HCV

: Standard PVMax Racking System

Nov 23, 2015

Checked By:____

	Member	Sec		Axial[lb]	LC	y Shear[lb]								z-z Mome	
76			min	-27.919	5	-529.298	2	-36.66	5	015	3	159	5	0	3
77	M15	1	max	76.655	5	723.049	2	-8.378	12	.017	2	.288	4	0	2
78			min	-35.74	1	-364.251	3	-152.859	1	012	3	.014	10	0	3
79		2	max	67.149	5	530.435	2	-6.957	12	.017	2	.205	4	.257	3
80			min	-35.74	1	-273.216	3	-118.168	1	012	3	.003	10	505	2
81		3	max	57.643	5	337.821	2	-5.536	12	.017	2	.131	5	.44	3
82			min	-35.74	1	-182.181	3	-88.364	4	012	3	016	1	855	2
83		4	max	48.137	5	145.207	2	-3.985	10	.017	2	.076	5	.55	3
84		 	min	-35.74	1	-91.146	3	-78.658	4	012	3	069	1	-1.049	2
85		5	max	38.631	5	.786	12	122	10	.017	2	.023	5	.587	3
86		5		-35.74	1	-47.408	2	-68.952	4	012	3	094	1	-1.089	2
			min										-		_
87		6	max	29.125	5	90.925	3_	20.594	1	.017	2	005	12	.55	3
88		-	min	-35.74	1_	-240.022	2	-62.57	5	012	3	092	1	973	2
89		7	max	19.619	5	181.96	3_	55.284	1	.017	2	005	10	.441	3
90			min	-35.74	1	-432.636	2	-60.407	5	012	3	092	4	702	2
91		8	max	10.113	5	272.995	3	89.975	1	.017	2	.003	2	.257	3
92			min	-35.74	1	-625.25	2	-58.244	5	012	3	128	4	276	2
93		9	max	.607	5	364.03	3	124.665	1	.017	2	.084	1	.306	2
94			min	-35.74	1	-817.864	2	-56.08	5	012	3	171	5	005	12
95		10	max	-2.738	10	455.066	3	159.356	1	.017	2	.285	4	1.042	2
96			min	-35.74	1	-1010.478	2	-118.066	14	012	3	0	3	329	3
97		11	max	-2.738	10	817.864	2	-2.992	12	.012	3	.201	4	.306	2
98			min	-35.74	1	-364.03	3	-124.665	1	017	2	005	3	005	12
99		12	max	-2.738	10	625.25	2	-1.571	12	.012	3	.125	4	.257	3
		12			1	-272.995	3	-89.975	1		2		3		2
100		40	min	-35.74					_	017		007		<u>276</u>	
101		13	max	-2.738	10	432.636	2	024	3	.012	3	.07	5	.441	3
102			min	-35.74	1	-181.96	3	-79.757	4	<u>017</u>	2	061	1	<u>702</u>	2
103		14	max	-2.738	10	240.022	2	2.108	3	.012	3	.016	5	.55	3
104			min	-42.864	4	-90.925	3	-70.051	4	017	2	092	1	973	2
105		15	max	-2.738	10	47.408	2	14.097	1	.012	3	003	12	.587	3
106			min	-52.37	4	786	12	-62.81	5	017	2	094	1	-1.089	2
107		16	max	-2.738	10	91.146	3	48.787	1	.012	3	0	3	.55	3
108			min	-61.876	4	-145.207	2	-60.647	5	017	2	101	4	-1.049	2
109		17	max	-2.738	10	182.181	3	83.478	1	.012	3	.006	3	.44	3
110			min	-71.382	4	-337.821	2	-58.484	5	017	2	138	4	855	2
111		18	max	-2.738	10	273.216	3	118.168	1	.012	3	.065	1	.257	3
112			min	-80.888	4	-530.435	2	-56.321	5	017	2	179	5	505	2
113		19	max	-2.738	10	364.251	3	152.859	1	.012	3	.175	1	0	2
114		13	min	-90.394	4	-723.049	2	-54.157	5	017	2	224	5	0	5
115	M16	1	max	71.364	5	641.959	2	-7.621	12	.008	1	.201	4	0	2
116	IVITO	-		-57.618	1	-294.269		-146.803		013	3	.011	12	0	3
		2													
117		2	max		5_4	449.345	2	-6.2	12	.008	1	.138	4	.2	3
118			min		1	-203.234	3_	-112.112		013	3	.002	10	44	2
119		3	max	52.352	5	256.731	2	-4.778	12	.008	1	.089	5	.327	3
120			min	-57.618	1	-112.199	3	-77.422	1	013	3	035	1	724	2
121		4	max	42.846	5	64.116	2	-3.357	12	.008	1	.052	5	.381	3
122			min	-57.618	1	-21.164	3	-54.101	4	013	3	084	1	853	2
123		5	max	33.34	5	69.872	3	.253	10	.008	1	.018	5	.362	3
124			min	-57.618	1	-128.498	2	-44.395	4	013	3	104	1	827	2
125		6	max	23.834	5	160.907	3	26.649	1	.008	1	005	12	.269	3
126			min	-57.618	1	-321.112	2	-39.686	5	013	3	097	1	646	2
127		7	max	14.328	5	251.942	3	61.34	1	.008	1	005	12	.102	3
128			min	-57.618	1	-513.726	2	-37.523	5	013	3	061	1	31	2
129		8	max	4.822	5	342.977	3	96.03	1	.008	1	.004	2	.182	2
130			min	-57.618	1	-706.34	2	-35.359	5	013	3	077	4	137	3
131		9		-37.616 -3.107	15	434.012	3	130.721	1	.008	1	.093	1	137 .828	2
		9	max												
132			ITHIN	<u>-57.618</u>	1	-898.954	2	-33.196	5	013	3	103	5	45	3

Model Name

Schletter, Inc. HCV

Standard PVMax Racking System

Nov 23, 2015

Checked By:____

	Member	Sec		Axial[lb]	LC		LC	z Shear[lb]	LC	Torque[k-ft]	LC		LC	z-z Mome	LC
133		10	max	-4.59	12	525.048	3	165.411	1	.008	1	.213	1	1.63	2
134			min	-57.618	1	-1091.568	2	-109.799	14	013	3	.003	12	837	3
135		11	max	-1.617	15	898.954	2	-3.75	12	.013	3	.136	4	.828	2
136			min	-57.618	1	-434.012	3	-130.721	1	008	1	002	3	45	3
137		12	max	-4.59	12	706.34	2	-2.328	12	.013	3	.077	4	.182	2
138			min	-57.618	1	-342.977	3	-96.03	1	008	1	006	3	137	3
139		13	max	-4.59	12	513.726	2	907	12	.013	3	.038	5	.102	3
140			min	-57.618	1	-251.942	3	-61.34	1	008	1	061	1	31	2
141		14	max	-4.59	12	321.112	2	.923	3	.013	3	.003	5	.269	3
142			min	-57.618	1	-160.907	3	-49.052	4	008	1	097	1	646	2
143		15	max	-4.59	12	128.498	2	8.041	1	.013	3	004	12	.362	3
144			min	-57.618	1	-69.872	3	-40.739	5	008	1	104	1	827	2
145		16	max	-4.59	12	21.164	3	42.731	1	.013	3	002	12	.381	3
146		1	min	-63.577	4	-64.116	2	-38.576	5	008	1	084	1	853	2
147		17	max	-4.59	12	112.199	3	77.422	1	.013	3	.002	3	.327	3
148		1 '	min	-73.083	4	-256.731	2	-36.413	5	008	1	101	4	724	2
149		18	max	-4.59	12	203.234	3	112.112	1	.013	3	.041	1	.2	3
150		10	min	-82.589	4	-449.345	2	-34.249	5	008	1	121	5	44	2
151		19		-4.59	12	294.269	3	146.803	1	.013	3	.145	1	0	2
152		19	max	-92.094	4	-641.959	2	-32.086	5		1	148	5	0	5
153	M2	1	min		2	2.071	4	.406	1	008	3	140	3	0	1
154	IVIZ		max min	-1508.103		.507	15	-32.006	4	0	4	0	2	0	1
		2			3						3				_
155				1110.741	2	2.034	4	.406	1	0		0	11	0	15
156			min		3	.498	15	-32.417	4	0	4	01	4	0	4
157		3		1111.215	2	1.997	4	.406	1	0	3	0	1_	0	15
158			min	-1507.393	3	.49	15	-32.828	4	0	4	021	4_	001	4
159		4	max		2	1.96	4	.406	1	0	3	0	1_	0	15
160			min	-1507.037	3	.481	15	-33.24	4	0	4	031	4	002	4
161		5		1112.162	2	1.923	4	.406	1	0	3	0	_1_	0	15
162		_	min	-1506.682	3	.472	15	-33.651	4	0	4	042	4	003	4
163		6	max		2	1.886	4	.406	1	0	3	0	_1_	0	15
164			min	-1506.327	3	.463	15	-34.062	4	0	4	053	4	003	4
165		7	max	1113.11	2	1.849	4	.406	1	0	3	0	_1_	0	15
166			min	-1505.971	3	.455	15	-34.474	4	0	4	064	4	004	4
167		8	max		2	1.812	4	.406	1	0	3	0	_1_	001	15
168			min	-1505.616	3	.446	15	-34.885	4	0	4	075	4	004	4
169		9	max	1114.057	2	1.775	4	.406	1	0	3	.001	1	001	15
170			min	-1505.261	3	.437	15	-35.296	4	0	4	086	4	005	4
171		10	max	1114.531	2	1.738	4	.406	1	0	3	.001	1	001	15
172			min	-1504.906	3	.429	15	-35.708	4	0	4	097	4	005	4
173		11		1115.005	2	1.701	4	.406	1	0	3	.001	1	001	15
174				-1504.55	3	.419	12	-36.119	4	0	4	109	4	006	4
175		12		1115.478	2	1.664	4	.406	1	0	3	.001	1	002	15
176				-1504.195	3	.405	12	-36.53	4	0	4	121	4	007	4
177		13		1115.952	2	1.627	4	.406	1	0	3	.002	1	002	15
178				-1503.84	3	.391	12	-36.942	4	0	4	132	4	007	4
179		14		1116.426	2	1.59	4	.406	1	0	3	.002	1	002	15
180		17	min	-1503.484	3	.376	12	-37.353	4	0	4	144	4	002	4
181		15		1116.9	2	1.553	4	.406	1	0	3	.002	1	002	15
182		10	min		3	.362	12	-37.764	4	0	4	156	4	002	4
		16													_
183		16		1117.373	2	1.516	4	.406	1	0	3	.002	1_1	002	15
184		47	min		3	.347	12	-38.176	4	0	4	168	4_	009	4
185		17		1117.847	2	1.479	4	.406	1	0	3	.002	1	002	15
186			min		3	.333	12	-38.587	4	0	4	181	4_	009	4
187		18		1118.321	2	1.442	4	.406	1	0	3	.002	_1_	002	15
188			min		3	.318	12		4	0	4	193	4_	01	4
189		19	max	1118.795	2	1.405	4	.406	1	0	3	.002	_1_	002	15

Model Name

Schletter, Inc.HCV

HCV

: Standard PVMax Racking System

Nov 23, 2015

Checked By:____

	Member	Sec		Axial[lb]				z Shear[lb]		Torque[k-ft]				z-z Mome	<u>LC</u>
190			min	-1501.708	3	.304	12	-39.41	4	0	4	206	4	01	4
191	<u>M3</u>	1	max	730.606	2	9.026	4	.19	1	0	10	00	1	.01	4
192			min	-870.657	3	2.135	15	646	5	0	4	013	4	.002	15
193		2	max	730.436	2_	8.154	4	.19	1	0	10	0	1	.006	4
194			min	-870.785	3	1.93	15	039	5	0	4	013	4	0	12
195		3	max	730.266	2	7.282	4	.666	4	0	10	00	1	.003	2
196			min	-870.912	3	1.725	15	.015	12	0	4	013	4	0	3
197		4	max	730.095	2	6.41	4	1.273	4	0	10	0	1	0	2
198			min	-871.04	3	1.52	15	.015	12	0	4	012	4	002	3
199		5	max	729.925	2	5.538	4	1.88	4	0	10	0	1	0	15
200			min	-871.168	3	1.315	15	.015	12	0	4	012	5	004	3
201		6	max	729.755	2	4.666	4	2.487	4	0	10	0	1	001	15
202			min	-871.296	3	1.11	15	.015	12	0	4	011	5	006	6
203		7	max	729.584	2	3.794	4	3.094	4	0	10	0	1	002	15
204			min	-871.423	3	.905	15	.015	12	0	4	009	5	008	6
205		8	max	729.414	2	2.922	4	3.701	4	0	10	0	1	002	15
206			min	-871.551	3	.7	15	.015	12	0	4	008	5	01	6
207		9	max	729.244	2	2.05	4	4.308	4	0	10	0	1	003	15
208			min	-871.679	3	.495	15	.015	12	0	4	006	5	011	6
209		10	max	729.073	2	1.178	4	4.915	4	0	10	0	1	003	15
210			min	-871.807	3	.29	15	.015	12	0	4	004	5	012	6
211		11	max	728.903	2	.392	2	5.523	4	0	10	.001	1	003	15
212			min	-871.934	3	084	3	.015	12	0	4	001	5	012	6
213		12	max	728.733	2	12	15	6.13	4	0	10	.002	4	003	15
214			min	-872.062	3	594	3	.015	12	0	4	0	12	012	6
215		13	max	728.562	2	325	15	6.737	4	0	10	.005	4	003	15
216			min	-872.19	3	-1.44	6	.015	12	0	4	0	12	011	6
217		14	max		2	53	15	7.344	4	0	10	.008	4	002	15
218				-872.318	3	-2.312	6	.015	12	0	4	0	12	011	6
219		15	max	728.222	2	735	15	7.951	4	0	10	.012	4	002	15
220				-872.446	3	-3.184	6	.015	12	0	4	0	12	009	6
221		16	max		2	94	15	8.558	4	0	10	.015	4	002	15
222				-872.573	3	-4.056	6	.015	12	0	4	0	12	008	6
223		17	max	727.881	2	-1.144	15	9.165	4	0	10	.02	4	001	15
224		1 '	min	-872.701	3	-4.928	6	.015	12	0	4	0	12	005	6
225		18	max	727.711	2	-1.349	15	9.772	4	0	10	.024	4	0	15
226		'	min	-872.829	3	-5.8	6	.015	12	0	4	0	12	003	6
227		19	max	727.54	2	-1.554	15	10.379	4	0	10	.029	4	0	1
228		13	min	-872.957	3	-6.672	6	.015	12	0	4	0	12	0	1
229	M4	1		1037.494	1	0.072	1	681	12	0	1	.02	4	0	1
230	IVIT		min	-146.789		0		-241.956		0	1	0	10	0	1
231		2		1037.665	1	0	1	681	12	0	1	0	1	0	1
232				-146.661	3	0	1	-242.103		0	1	008	4	0	1
233		3		1037.835	1	0	1	681	12	0	1	<u>.000</u>	12	0	1
234				-146.533	3	0	1	-242.251	4	0	1	036	4	0	1
235		4		1038.005	<u> </u>	0	1	681	12	0	1	- <u>030</u> 0	12	0	1
236		-		-146.405	3	0	1	-242.399	4	0	1	063	4	0	1
237		5		1038.176	<u> </u>	0	1	681	12	0	1	003 0	12	0	1
238		5		-146.278	3	0	1	-242.546		0	1	091	4	0	1
		6			<u>ა</u> 1		1			-	1		-		1
239		6		1038.346		0	1	681	12	0	1	<u> </u>	12	<u>0</u> 	1
240		7		-146.15 1038.516	<u>3</u> 1	0	1	-242.694 681	4 12	0	1	<u>119</u> 0	12	0	1
		/													
242		0		-146.022	3	0	1	-242.842		0	1	<u>147</u>	4	0	1
243		8		1038.687	1	0	1	681	12	0	1	0	12	0	1
244		_		<u>-145.894</u>	3_	0	1	-242.989	4	0	1	175	4	0	1
245		9		1038.857	1	0	1	681	12	0	1	0	12	0	1
246			min	-145.766	3	0	1	-243.137	4	0	1	203	4	0	1

Model Name

Schletter, Inc.HCV

: Standard PVMax Racking System

Nov 23, 2015

Checked By:____

	Member	Sec		Axial[lb]	LC	y Shear[lb]	LC	z Shear[lb]	LC	Torque[k-ft]	LC	y-y Mome		z-z Mome	LC
247		10		1039.028	_1_	0	1	681	12	0	1	0	12	0	1
248					3	0	1	-243.285	4	0	1	231	4	0	1
249		11		1039.198	_1_	0	1_	681	12	0	1	0	12	0	1
250				-145.511	3	0	1	-243.432	4	0	1	259	4	0	1
251		12		1039.368	_1_	0	1	681	12	0	1	0	12	0	1
252		10	min		3	0	1	-243.58	4	0	1	287	4	0	1
253		13		1039.539	_1_	0	1	681	12	0	1	0	12	0	1
254		4.	min		3_	0	1	-243.727	4	0	1	315	4	0	1
255		14		1039.709	1_	0	1	681	12	0	1	0	12	0	1
256		4.5	min	-145.128	3_	0	1	-243.875	4	0	1	343	4	0	1
257		15		1039.879	1	0	1	681	12	0	1	0	12	0	1
258		4.0	min	-145	3	0	1	-244.023	4	0	1	371	4	0	1
259		16	max		<u>1</u> 3	0	1	681	12	0	1	001	12	0	1
260 261		17		-144.872 1040.22	<u>ა</u> 1	0	1	-244.17 681	12	0	1	399 001	12	0	1
262		17	max min	-144.744	3	0	1	-244.318		0	1	427	4	0	1
263		18		1040.39		0	1	681	12	0	1	001	12	0	1
264		10	min		3	0	1	-244.466	4	0	1	455	4	0	1
265		19		1040.561		0	1	681	12	0	1	001	12	0	1
266		13	min	-144.489	3	0	1	-244.613	4	0	1	483	4	0	1
267	M6	1		3331.336	2	2.42	2	0	1	0	1	0	4	0	1
268	1010		min	-4662.288	3	.103	3	-32.35	4	0	4	0	1	0	1
269		2	max		2	2.391	2	0	1	0	1	0	1	0	3
270			min	-4661.933	3	.082	3	-32.761	4	0	4	01	4	0	2
271		3		3332.283	2	2.362	2	0	1	0	1	0	1	0	3
272			min	-4661.577	3	.06	3	-33.173	4	0	4	021	4	002	2
273		4	max	3332.757	2	2.334	2	0	1	0	1	0	1	0	3
274			min	-4661.222	3	.038	3	-33.584	4	0	4	032	4	002	2
275		5	max	3333.231	2	2.305	2	0	1	0	1	0	1	0	3
276			min	-4660.867	3	.017	3	-33.995	4	0	4	042	4	003	2
277		6	max	3333.705	2	2.276	2	0	1	0	1	0	1	0	3
278			min	-4660.512	3	005	3	-34.407	4	0	4	053	4	004	2
279		7		3334.178	2	2.247	2	0	1	0	1	0	1	0	3
280			min	-4660.156	3	027	3	-34.818	4	0	4	064	4	004	2
281		8		3334.652	2	2.218	2	0	1	0	1	0	1	0	3
282			min	-4659.801	3	048	3	-35.229	4	0	4	076	4	005	2
283		9		3335.126	2	2.189	2	0	1	0	1	0	1	0	3
284		40	min	-4659.446	3_	07	3	-35.641	4	0	4	087	4	006	2
285		10	max		2	2.16	2	0	1	0	1	0	1	0	3
286		4.4	min	-4659.09	3	092	3	-36.052	4	0	4	098	4	007	2
287		11		3336.073		2.132	2	0	1	0	1	0	1	0	3
288		12	min		3	113	3	-36.463	4	0	4	11	4	007	2
289		12		3336.547	2	2.103	2	0	1	0	1	0	1	0	3
290 291		12		-4658.38 3337.021	<u>3</u> 2	135 2.074	2	-36.875 0	1	0	1	122 0	1	008 0	3
292		13	min		3	157	3	-37.286	4	0	4	134	4	009	2
293		11		3337.494	2	2.045	2	0	1	0	1	0	1	0009	3
294		14	min		3	178	3	-37.697	4	0	4	146	4	009	2
295		15		3337.968	2	2.016	2	0	1	0	1	0	1	0	3
296		13	min	-4657.314	3	2	3	-38.109	4	0	4	158	4	01	2
297		16		3338.442	2	1.987	2	0	1	0	1	0	1	0	3
298		10	min		3	222	3	-38.52	4	0	4	17	4	011	2
299		17		3338.916	2	1.958	2	0	1	0	1	0	1	0	3
300			min		3	243	3	-38.931	4	0	4	182	4	011	2
301		18		3339.389	2	1.929	2	0	1	0	1	0	1	0	3
302		10	min	-4656.248	3	265	3	-39.343	4	0	4	195	4	012	2
303		19		3339.863	2	1.901	2	0	1	0	1	0	1	0	3
			ux	.5555.550			_		_		<u> </u>				

Model Name

Schletter, Inc. HCV

Standard PVMax Racking System

Nov 23, 2015

Checked By:____

	Member	Sec		Axial[lb]	LC	y Shear[lb]	LC	z Shear[lb]	LC	Torque[k-ft]	LC	y-y Mome	LC	z-z Mome	LC
304			min	-4655.893	3	287	3	-39.754	4	0	4	208	4	012	2
305	M7	1	max	2393.964	2	9.02	6	0	1	0	1	0	1	.012	2
306			min	-2569.456	3	2.118	15	898	5	0	4	013	4	0	3
307		2	max	2393.794	2	8.148	6	0	1	0	1	0	1	.009	2
308			min	-2569.584	3	1.913	15	291	5	0	4	013	4	003	3
309		3	max	2393.624	2	7.276	6	.367	4	0	1	0	1	.006	2
310			min	-2569.711	3	1.708	15	0	1	0	4	013	4	004	3
311		4	max	2393.453	2	6.404	6	.974	4	0	1	0	1	.003	2
312			min	-2569.839	3	1.503	15	0	1	0	4	013	4	006	3
313		5	max	2393.283	2	5.532	6	1.581	4	0	1	0	1	0	2
314			min	-2569.967	3	1.298	15	0	1	0	4	012	4	007	3
315		6	max	2393.113	2	4.66	6	2.188	4	0	1	0	1	001	2
316			min	-2570.095	3	1.093	15	0	1	0	4	011	4	008	3
317		7	max	2392.942	2	3.788	6	2.795	4	0	1	0	1	002	15
318			min	-2570.222	3	.888	15	0	1	0	4	01	4	009	3
319		8	max	2392.772	2	2.916	6	3.402	4	0	1	0	1	002	15
320			min	-2570.35	3	.668	12	0	1	0	4	009	4	01	4
321		9		2392.602	2	2.143	2	4.01	4	0	1	0	1	003	15
322			min	-2570.478	3	.329	12	0	1	0	4	007	5	011	4
323		10		2392.431	2	1.464	2	4.617	4	0	1	0	1	003	15
324			min	-2570.606	3	062	3	0	1	0	4	005	5	012	4
325		11		2392.261	2	.784	2	5.224	4	0	1	0	1	003	15
326			min	-2570.733	3	572	3	0	1	0	4	003	5	012	4
327		12		2392.091	2	.105	2	5.831	4	0	1	0	14	003	15
328		'-	min	-2570.861	3	-1.081	3	0.001	1	0	4	0	5	012	4
329		13	max		2	342	15	6.438	4	0	1	.003	4	003	15
330		10	min	-2570.989	3	-1.591	3	0.400	1	0	4	0	1	012	4
331		14	max		2	547	15	7.045	4	0	1	.006	4	003	15
332		17	min	-2571.117	3	-2.316	4	0	1	0	4	0	1	011	4
333		15	max		2	752	15	7.652	4	0	1	.009	4	002	15
334		13	min	-2571.244	3	-3.188	4	0	1	0	4	0	1	002	4
335		16		2391.409	2	957	15	8.259	4	0	1	.013	4	002	15
336		10	min	-2571.372	3	-4.06	4	0.200	1	0	4	0	1	008	4
337		17	+	2391.239	2	-1.162	15	8.866	4	0	1	.017	4	001	15
338		11/	min	-2571.5	3	-4.933	4	0.000	1	0	4	0	1	005	4
339		18		2391.069	2	-1.367	15	9.474	4	0	1	.022	4	0	15
340		10	min	-2571.628	3	-5.805	4	0	1	0	4	0	1	003	4
341		19		2390.898	2	-1.572	15	10.081	4	0	1	.026	4	0	1
342		19	min	-2571.755	3	-6.677	4	0	1	0	4	.020	1	0	1
343	M8	1		2816.332	2	_	1	0	1	0	1	.018	4	0	1
344	IVIO	-		-530.462		0	1	-232.637	_	0	1	_	1	0	1
345		2		2816.503		0	1	0	1	0	1	0	1	0	1
346				-530.334		0	1	-232.784		0	1	008	4	0	1
347		3				0	1	0	1	0	1	008 0	1	0	1
		3		2816.673			1	-232.932			1	_			1
348		4		-530.206		0	1		1	0	1	035 0	1	0	1
349		4		2816.844		0	_	0		0	1			0	1
350		-		-530.079			1	-233.08	4	0		062	4	_	_
351		5		2817.014		0	1	0	1	0	1	0	1	0	1
352		_		-529.951	3	0	1	-233.227	4	0	1	089	4	0	1
353		6		2817.184		0	1	0	1	0	1	0	1	0	1
354		-		-529.823	3	0	1	-233.375		0	1	116	4	0	1
355		7		2817.355		0	1	0	1	0	1	0	1	0	1
356				-529.695		0	1	-233.523		0	1	142	4	0	1
357		8		2817.525		0	1	0	1	0	1	0	1	0	1
358				-529.568		0	1	-233.67	4	0	1	169	4	0	1
359		9		2817.695		0	1	0	1	0	1	0	1	0	1
360			min	-529.44	3	0	1	-233.818	4	0	1	196	4	0	1

Model Name

Schletter, Inc.HCV

: Standard PVMax Racking System

Nov 23, 2015

Checked By:____

	Member	Sec	Axial[lb]	LC	y Shear[lb]	LC	z Shear[lb]	LC	Torque[k-ft]	LC	y-y Mome	LC	z-z Mome	. LC
361		10	max 2817.866	2	0	1	0	1	0	1	0	1	0	1
362			min -529.312	3	0	1	-233.966	4	0	1	223	4	0	1
363		11	max 2818.036	2	0	1	0	1	0	1	0	1	0	1
364			min -529.184	3	0	1	-234.113	4	0	1	25	4	0	1
365		12	max 2818.206	2	0	1	0	1	0	1	0	1	0	1
366			min -529.057	3	0	1	-234.261	4	0	1	277	4	0	1
367		13	max 2818.377	2	0	1	0	1	0	1	0	1	0	1
368			min -528.929	3	0	1	-234.408	4	0	1	304	4	0	1
369		14	max 2818.547	2	0	1	0	1	0	1	0	1	0	1
370			min -528.801	3	0	1	-234.556	4	0	1	33	4	0	1
371		15	max 2818.717	2	0	1	0	1	0	1	0	1	0	1
372			min -528.673	3	0	1	-234.704	4	0	1	357	4	0	1
373		16	max 2818.888	2	0	1	0	1	0	1	0	1	0	1
374			min -528.546	3	0	1	-234.851	4	0	1	384	4	0	1
375		17	max 2819.058	2	0	1	0	1	0	1	0	1	0	1
376			min -528.418	3	0	1	-234.999	4	0	1	411	4	0	1
377		18	max 2819.228	2	0	1	0	1	0	1	0	1	0	1
378			min -528.29	3	0	1	-235.147	4	0	1	438	4	0	1
379		19	max 2819.399	2	0	1	0	1	0	1	0	1	0	1
380			min -528.162	3	0	1	-235.294	4	0	1	465	4	0	1
381	M10	1	max 1110.267		1.98	6	032	10	0	1	0	4	0	1
382			min -1508.103	3	.445	15	-32.239	4	0	5	0	3	0	1
383		2	max 1110.741	2	1.943	6	032	10	0	1	0	10	0	15
384			min -1507.748		.437	15	-32.651	4	0	5	01	4	0	6
385		3	max 1111.215		1.906	6	032	10	0	1	0	10	0	15
386			min -1507.393		.428	15	-33.062	4	0	5	021	4	001	6
387		4	max 1111.689		1.869	6	032	10	0	1	0	10	0	15
388			min -1507.037		.419	15	-33.473	4	0	5	032	4	002	6
389		5	max 1112.162		1.832	6	032	10	0	1	0	10	0	15
390			min -1506.682	3	.41	15	-33.885	4	0	5	042	4	002	6
391		6	max 1112.636		1.795	6	032	10	0	1	0	10	0	15
392			min -1506.327	3	.402	15	-34.296	4	0	5	053	4	003	6
393		7	max 1113.11	2	1.758	6	032	10	0	1	0	10	0	15
394			min -1505.971	3	.393	15	-34.707	4	0	5	064	4	004	6
395		8	max 1113.583		1.721	6	032	10	0	1	0	10	0	15
396			min -1505.616		.384	15	-35.119	4	0	5	075	4	004	6
397		9	max 1114.057		1.684	6	032	10	0	1	0	10	001	15
398			min -1505.261	3	.376	15	-35.53	4	0	5	087	4	005	6
399		10	max 1114.531		1.647	6	032	10	0	1	0	10	001	15
400			min -1504.906		.367	15	-35.941	4	0	5	098	4	005	6
401		11	max 1115.005		1.61	6	032	10	0	1	0	10	001	15
402			min -1504.55		.358	15	-36.353	4	0	5	11	4	006	6
403		12	max 1115.478		1.573	6	032	10	0	1	0	10	001	15
404			min -1504.195		.349	15	-36.764	4	0	5	121	4	006	6
405		13	max 1115.952		1.535	6	032	10	0	1	0	10	002	15
406			min -1503.84		.341	15	-37.175	4	0	5	133	4	007	6
407		14	max 1116.426		1.498	6	032	10	0	1	0	10	002	15
408			min -1503.484		.332	15	-37.587	4	0	5	145	4	007	6
409		15	max 1116.9	2	1.461	6	032	10	0	1	0	10	002	15
410		'	min -1503.129		.323	15	-37.998	4	0	5	157	4	008	6
411		16	max 1117.373		1.424	6	032	10	0	1	0	10	002	15
412		'	min -1502.774		.315	15	-38.409	4	0	5	17	4	008	6
413		17	max 1117.847		1.387	6	032	10	0	1	0	10	002	15
414		l ''	min -1502.418		.306	15	-38.821	4	0	5	182	4	002	6
415		18	max 1118.321		1.35	6	032	10	0	1	0	10	002	15
416		10	min -1502.063		.297	15	-39.232	4	0	5	194	4	002	6
417		19	max 1118.795		1.321	2	032	10	0	1	0	10	002	15
417		ן ואַ	<u> </u>	<u>' </u>	1.321		032	ΙU	U		U	IU	002	<u> </u>

Model Name

Schletter, Inc.

HCV

Standard PVMax Racking System

Nov 23, 2015

Checked By:____

	Member	Sec		Axial[lb]	LC	y Shear[lb]	LC		LC	Torque[k-ft]	LC	y-y Mome	LC	z-z Mome	<u>LC</u>
418			min	-1501.708	3	.288	15	-39.643	4	0	5	207	4	009	6
419	M11	1	max	730.606	2	8.964	6	015	12	0	1_	0	10	.009	6
420			min	-870.657	3	2.093	15	67	5	0	4	013	4	.002	15
421		2	max	730.436	2	8.092	6	015	12	0	1	0	10	.006	2
422			min	-870.785	3	1.888	15	19	1	0	4	013	4	0	12
423		3	max	730.266	2	7.22	6	.557	4	0	1	0	10	.003	2
424			min	-870.912	3	1.683	15	19	1	0	4	013	4	0	3
425		4	max	730.095	2	6.348	6	1.164	4	0	1	0	10	0	2
426			min	-871.04	3	1.478	15	19	1	0	4	013	4	002	3
427		5	max	729.925	2	5.476	6	1.771	4	0	1	0	10	001	15
428			min	-871.168	3	1.273	15	19	1	0	4	012	4	004	4
429		6	max	729.755	2	4.604	6	2.378	4	0	1	0	10	002	15
430			min	-871.296	3	1.068	15	19	1	0	4	011	4	007	4
431		7	max	729.584	2	3.732	6	2.985	4	0	1	0	10	002	15
432			min	-871.423	3	.863	15	19	1	0	4	01	4	009	4
433		8	max	729.414	2	2.86	6	3.593	4	0	1	0	10	002	15
434			min	-871.551	3	.659	15	19	1	0	4	008	4	01	4
435		9	max	729.244	2	1.988	6	4.2	4	0	1	0	10	003	15
436			min	-871.679	3	.454	15	19	1	0	4	006	4	011	4
437		10	max	729.073	2	1.116	6	4.807	4	0	1	0	10	003	15
438		'	min	-871.807	3	.249	15	19	1	Ö	4	004	4	012	4
439		11	max	728.903	2	.392	2	5.414	4	0	1	0	12	003	15
440			min	-871.934	3	084	3	19	1	0	4	002	4	012	4
441		12	max	728.733	2	161	15	6.021	4	0	1	.001	5	003	15
442		12	min	-872.062	3	63	4	19	1	0	4	001	1	012	4
443		13	max	728.562	2	366	15	6.628	4	0	1	.004	5	003	15
444		13	min	-872.19	3	-1.502	4	19	1	0	4	001	1	012	4
445		14	max	728.392	2	571	15	7.235	4	0	1	.007	5	003	15
446		17	min	-872.318	3	-2.374	4	19	1	0	4	001	1	011	4
447		15	max	728.222	2	776	15	7.842	4	0	1	.011	5	002	15
448		13	min	-872.446	3	-3.246	4	19	1	0	4	001	1	002	4
449		16	max	728.051	2	981	15	8.45	4	0	1	.015	5	003	15
450		10	min	-872.573	3	-4.118	4	19	1	0	4	001	1	002	4
451		17	max	727.881	2	-1.186	15	9.057	4	0	1	.019	5	003 001	15
452		17		-872.701	3	-4.99	4	19	1	0	4	002	1		4
453		18	min	727.711	2	-1.391	15	9.664	4		1	.023	5	006 0	15
		10	max						1	0	4	002	1		
454		10	min	-872.829	3	-5.862	4	19 10.271	-	0				003	4
455		19	max	727.54	2	-1.596	15		4	0	11	.028	5	0	1
456	N440		min	-872.957	3	-6.734	4	19	1	0	4	002	1_	0	1
457	M12	1		1037.494	1	0	1	8.87	1	0	1	.019	5	0	1
458				-146.789		0	1	-236.844		0	1	001	1	0	1
459		2		1037.665	1	0	1	8.87	1	0	1	0	10	0	1
460			min		3	0	1	-236.991	4	0	1_	008	4	0	1
461		3		1037.835		0	1	8.87	1	0	1	0	1	0	1
462				-146.533		0	1	-237.139		0	1	035	4	0	1
463		4		1038.005		0	1	8.87	1	0	1	.002	1	0	1
464				-146.405		0	1	-237.286		0	1_	062	4	0	1
465		5		1038.176		0	1	8.87	1	0	1	.003	1	0	1
466				-146.278		0	1	-237.434		0	1	09	4	0	1
467		6		1038.346		0	1	8.87	1	0	1_	.004	1_	0	1
468				-146.15	3	0	1	-237.582	4	0	1	117	4	0	1
469		7	max	1038.516	1	0	1	8.87	1	0	1	.005	1	0	1
470			min	-146.022	3	0	1	-237.729	4	0	1	144	4	0	1
471		8	max	1038.687	1	0	1	8.87	1	0	1	.006	1	0	1
472				-145.894	3	0	1	-237.877	4	0	1	171	4	0	1
473		9		1038.857	1	0	1	8.87	1	0	1	.007	1	0	1
474				-145.766	3	0	1	-238.025	4	0	1	199	4	0	1

Model Name

Schletter, Inc. HCV

Standard PVMax Racking System

Nov 23, 2015

Checked By:____

	Member	Sec		Axial[lb]	LC	y Shear[lb]	LC	z Shear[lb]	LC	Torque[k-ft]	LC	y-y Mome	LC	z-z Mome	LC
475		10	max	1039.028	1	0	1	8.87	1	0	1	.008	1	0	1
476			min	-145.639	3	0	1	-238.172	4	0	1	226	4	0	1
477		11	max	1039.198	1	0	1	8.87	1	0	1	.009	1	0	1
478			min	-145.511	3	0	1	-238.32	4	0	1	253	4	0	1
479		12	max	1039.368	1	0	1	8.87	1	0	1	.01	1	0	1
480			min	-145.383	3	0	1	-238.467	4	0	1	281	4	0	1
481		13	max	1039.539	1	0	1	8.87	1	0	1	.011	1	0	1
482			min	-145.255	3	0	1	-238.615	4	0	1	308	4	0	1
483		14	max	1039.709	1	0	1	8.87	1	0	1	.012	1	0	1
484			min	-145.128	3	0	1	-238.763	4	0	1	336	4	0	1
485		15	max	1039.879	1	0	1	8.87	1	0	1	.013	1	0	1
486			min	-145	3	0	1	-238.91	4	0	1	363	4	0	1
487		16	max	1040.05	1	0	1	8.87	1	0	1	.014	1	0	1
488			min	-144.872	3	0	1	-239.058	4	0	1	39	4	0	1
489		17	max	1040.22	1	0	1	8.87	1	0	1	.015	1	0	1
490			min	-144.744	3	0	1	-239.206	4	0	1	418	4	0	1
491		18	max	1040.39	1	0	1	8.87	1	0	1	.016	1	0	1
492			min	-144.617	3	0	1	-239.353	4	0	1	445	4	0	1
493		19	max	1040.561	1	0	1	8.87	1	0	1	.017	1	0	1
494			min	-144.489	3	0	1	-239.501	4	0	1	473	4	0	1
495	M1	1	max		1	797.934	3	43.241	5	0	2	.143	1	0	15
496			min	-18.778	5	-442.933	2	-51.104	1	0	3	098	5	014	2
497		2	max		1	796.789	3	44.702	5	0	2	.111	1	.262	2
498			min	-18.446	5	-444.46	2	-51.104	1	0	3	071	5	502	3
499		3	max		3	580.994	2	14.896	5	0	3	.079	1	.527	2
500			min	-347.102	2	-613.332	3	-50.829	1	0	2	043	5	981	3
501		4	max		3	579.467	2	16.357	5	0	3	.048	1	.172	1
502			min	-346.39	2	-614.477	3	-50.829	1	0	2	033	5	6	3
503		5	max	568.195	3	577.94	2	17.817	5	0	3	.016	1	005	15
504			min	-345.678	2	-615.622	3	-50.829	1	0	2	022	5	218	3
505		6	max		3	576.413	2	19.277	5	0	3	001	10	.164	3
506			min	-344.966	2	-616.767	3	-50.829	1	0	2	015	1	551	2
507		7	max	569.263	3	574.886	2	20.737	5	0	3	.002	5	.547	3
508			min	-344.254	2	-617.912	3	-50.829	1	0	2	047	1	908	2
509		8	max		3	573.359	2	22.197	5	0	3	.015	5	.931	3
510			min	-343.542	2	-619.058	3	-50.829	1	0	2	079	1	-1.264	2
511		9	max		3	48.284	2	51.431	5	0	9	.052	1	1.086	3
512			min	-283.19	2	.457	15	-84.957	1	0	3	119	5	-1.441	2
513		10	max		3	46.757	2	52.891	5	0	9	0	10	1.062	3
514		1	min		2	008	5	-84.957	1	0	3	087	4	-1.471	2
515		11		584.479	3	45.23	2	54.351	5	0	9	004	10	1.038	3
516			min		2	-1.932	4	-84.957	1	0	3	065	4	-1.499	2
517		12	max		3	407.117	3	137.281	5	0	2	.077	1	.911	3
518			min		2	-675.867	2	-49.23	1	0	3	223	5	-1.331	2
519		13		598.316	3	405.972	3	138.741	5	0	2	.047	1	.659	3
520		10	min		2	-677.394	2	-49.23	1	0	3	137	5	911	2
521		14	max		3	404.826	3	140.201	5	0	2	.016	1	.407	3
522			min		2	-678.921	2	-49.23	1	0	3	05	5	49	2
523		15		599.384	3	403.681	3	141.661	5	0	2	.037	5	.156	3
524		10	min		2	-680.448	2	-49.23	1	0	3	014	1	088	1
525		16		599.918	3	402.536	3	143.121	5	0	2	.125	5	.355	2
526		1		-218.432	2	-681.975	2	-49.23	1	0	3	045	1	094	3
527		17	max		3	401.391	3	144.581	5	0	2	.215	5	.778	2
528		11	min	-217.72	2	-683.502	2	-49.23	1	0	3	076	1	343	3
529		12	max		5	644.288	2	-4.591	12	0	5	.197	5	.393	2
530		10	min		1	-293.253	3	-93.556	4	0	2	109	1	169	3
531		19	max		5	642.761	2	-4.591	12	0	5	.148	5	.013	3
UUI		13	πιαχ	JZ.000	J	042.701		- 4 .J81	12	U	J	.140	_ ວ_	.013	

Model Name

Schletter, Inc. HCV

Standard PVMax Racking System

Nov 23, 2015

Checked By:____

	Member	Sec		Axial[lb]	LC	y Shear[lb]	LC	z Shear[lb]	LC	Torque[k-ft]	LC	y-y Mome	LC	z-z Mome	LC
532			min	-146.799	1	-294.398	3	-92.096	4	0	2	145	1	008	1
533	M5	1	max	332.072	1	2623.957	3	78.148	5	0	1	0	1	.027	2
534			min	9.112	12	-1543.134	2	0	1	0	4	195	4	0	15
535		2	max	332.784	1	2622.812	3	79.608	5	0	1	0	1	.985	2
536			min	9.468	12	-1544.661	2	0	1	0	4	146	4	-1.614	3
537		3	max		3	1513.128	2	52.194	4	0	4	0	1	1.911	2
538			min	-1081.106	2	-1758.21	3	0	1	0	1	097	4	-3.193	3
539		4	+	1721.736	3	1511.601	2	53.654	4	0	4	0	1	.972	2
540			min	-1080.394	2	-1759.355	3	0	1	0	1	064	4	-2.102	3
541		5	max	1722.27	3	1510.074	2	55.114	4	0	4	0	1	.079	1
542		-	min	-1079.682	2	-1760.5	3	0	1	0	1	03	4	-1.009	3
543		6		1722.804	3	1508.547		56.574	4		4	.004	4	.084	3
		-			2	-1761.645	3	0	1	0	1	.004	1	902	2
544		7	min	-1078.97						_		_	•		
545		-		1723.338	3	1507.02	2	58.034	4	0	4	.04	4	1.177	3
546			min	-1078.258	2	-1762.79	3	0	1_	0	1_	0	1_	-1.838	2
547		8	max		3	1505.493	2	59.494	4	0	4	.077	4_	2.272	3
548			min	-1077.546	2	-1763.936	3	0	1	0	1_	0	_1_	-2.773	2
549		9		1736.622	3	164.451	2	172.892	4	0	1	0	_1_	2.623	3
550			min	-943.614	2	.46	15	0	1	0	1	182	4	-3.175	2
551		10		1737.156	3	162.924	2	174.352	4	0	_1_	0	_1_	2.527	3
552			min	-942.902	2	001	15	0	1	0	1	074	4	-3.277	2
553		11	max	1737.69	3	161.397	2	175.812	4	0	1	.034	4	2.432	3
554			min	-942.19	2	-1.771	6	0	1	0	1	0	1_	-3.378	2
555		12	max	1751.062	3	1108.013	3	189.343	4	0	1	0	1	2.124	3
556			min	-808.526	2	-1833.253	2	0	1	0	4	314	4	-3.016	2
557		13	max		3	1106.868	3	190.803	4	0	1	0	1	1.437	3
558			min	-807.814	2	-1834.78	2	0	1	0	4	196	4	-1.878	2
559		14	max	1752.13	3	1105.723	3	192.263	4	0	1	0	1	.75	3
560			min	-807.102	2	-1836.307	2	0	1	0	4	077	4	738	2
561		15		1752.664	3	1104.578	3	193.724	4	0	1	.042	4	.402	2
562		'	min	-806.39	2	-1837.834	2	0	1	0	4	0	1	0	15
563		16		1753.198	3	1103.433	3	195.184	4	0	1	.163	4	1.543	2
564		10	min	-805.678	2	-1839.361	2	0	1	0	4	0	1	621	3
565		17		1753.732	3	1102.287	3	196.644	4	0	1	.285	4	2.685	2
566		11/	min	-804.966	2	-1840.888	2	0	1	0	4	0	1	-1.305	3
567		18	max		12	2187.541	2	0	1	0	4	.301	4	1.371	2
		10		-331.543	1	-1049.303	3	-22.631	5	0	1		1		3
568		10	min	-10.341							-	0	_ •	678 .015	
569		19	max		12	2186.014 -1050.448	2	0	1	0	4	.288	4		1
570	140		min	-330.831	1_		3	-21.171	5	0	_	0	1_	026	3
571	<u>M9</u>	1	max		1	797.934	3	61.614	4	0	3	011	10	0	15
572			mın		12	-442.933		3.958	10	0	4	15	4_	014	2
573		2	max		1	796.789	3	63.074	4	0	3	009	10	.262	2
574			min	8.592	12	-444.46	2	3.958	10	0	4	111	4	502	3
575		3		567.127	3	580.994	2	50.829	1	0	2	006	10	.527	2
576			min		2	-613.332	3	3.928	10	0	3	079	_1_	981	3
577		4		567.661	3	579.467	2	50.829	1	0	2	004	10	.172	1
578			min	-346.39	2	-614.477	3	3.928	10	0	3	051	4	6	3
579		5		568.195	3	577.94	2	50.829	1	0	2	001	10	005	15
580					2	-615.622	3	3.928	10	0	3	028	4	218	3
581		6	max	568.729	3	576.413	2	50.829	1	0	2	.015	1	.164	3
582			min		2	-616.767	3	3.928	10	0	3	009	5	551	2
583		7	max		3	574.886	2	50.829	1	0	2	.047	1	.547	3
584			min		2	-617.912	3	3.928	10	0	3	.004	10	908	2
585		8		569.797	3	573.359	2	50.829	1	0	2	.079	1	.931	3
586		Ĭ	min	-343.542	2	-619.058	3	3.928	10	0	3	.006	10	-1.264	2
587		9		583.411	3	48.284	2	84.957	1	0	3	004	10	1.086	3
588			min		2	.473	15	6.866	10	0	9	138	4	-1.441	2
000				200.10		7 0		0.000						1. 771	

Model Name

Schletter, Inc. HCV

Standard PVMax Racking System

Nov 23, 2015

Checked By:____

Envelope Member Section Forces (Continued)

	Member	Sec		Axial[lb]	LC	y Shear[lb]	LC	z Shear[lb]	LC	Torque[k-ft]	LC	y-y Mome	LC	z-z Mome	LC
589		10	max	583.945	3	46.757	2	84.957	1	0	3	0	1	1.062	3
590			min	-282.478	2	.013	15	6.866	10	0	9	087	4	-1.471	2
591		11	max	584.479	3	45.23	2	85.001	4	0	3	.054	1	1.038	3
592			min	-281.766	2	-1.808	6	6.866	10	0	9	047	5	-1.499	2
593		12	max	597.782	3	407.117	3	156.345	4	0	3	006	12	.911	3
594			min	-221.28	2	-675.867	2	3.925	12	0	2	252	4	-1.331	2
595		13	max	598.316	3	405.972	3	157.805	4	0	3	004	10	.659	3
596			min	-220.568	2	-677.394	2	3.925	12	0	2	155	4	911	2
597		14	max	598.85	3	404.826	3	159.265	4	0	3	001	10	.407	3
598			min	-219.856	2	-678.921	2	3.925	12	0	2	056	4	49	2
599		15	max	599.384	3	403.681	3	160.725	4	0	3	.043	4	.156	3
600			min	-219.144	2	-680.448	2	3.925	12	0	2	.001	12	088	1
601		16	max	599.918	3	402.536	3	162.186	4	0	3	.143	4	.355	2
602			min	-218.432	2	-681.975	2	3.925	12	0	2	.003	12	094	3
603		17	max	600.452	3	401.391	3	163.646	4	0	3	.244	4	.778	2
604			min	-217.72	2	-683.502	2	3.925	12	0	2	.006	12	343	3
605		18	max	-7.977	12	644.288	2	57.685	1	0	2	.238	4	.393	2
606			min	-147.511	1	-293.253	3	-73.002	5	0	3	.009	12	169	3
607		19	max	-7.621	12	642.761	2	57.685	1	0	2	.201	4	.013	3
608			min	-146.799	1	-294.398	3	-71.542	5	0	3	.011	12	008	1

Envelope Member Section Deflections

	Member	Sec		x [in]	LC	y [in]	LC	z [in]	LC	x Rotate [r	LC	(n) L/y Ratio	LC	(n) L/z Ratio	LC
1	M13	1	max	Ō	1	.226	2	.011	3	1.548e-2	2	NC	1	NC	1
2			min	619	4	062	3	007	2	-4.129e-3	3	NC	1	NC	1
3		2	max	0	1	.165	2	.014	1	1.645e-2	2	NC	4	NC	1
4			min	619	4	.005	15	01	5	-3.616e-3	3	1134.18	3	NC	1
5		3	max	0	1	.217	3	.033	1	1.741e-2	2	NC	5	NC	2
6			min	619	4	.003	15	014	5	-3.103e-3	3	622.763	3	5154.845	1
7		4	max	0	1	.297	3	.048	1	1.838e-2	2	NC	5	NC	2
8			min	619	4	.003	15	011	5	-2.59e-3	3	484.086	3	3538.189	1
9		5	max	0	1	.322	3	.055	1	1.934e-2	2	NC	5	NC	2
10			min	619	4	.003	15	004	5	-2.078e-3	3	452.246	3	3103.773	1
11		6	max	0	1	.294	3	.051	1	2.031e-2	2	NC	4	NC	2
12			min	619	4	.003	15	004	10	-1.565e-3	3	488.416	3	3324.386	
13		7	max	0	1	.222	3	.038	1	2.127e-2	2	NC	4	NC	2
14			min	619	4	.005	15	007	10	-1.052e-3	3	611.337	3	4479.369	1
15		8	max	0	1	.272	2	.032	3	2.224e-2	2	NC	4	NC	2
16			min	619	4	.006	15	01	10	-5.395e-4	3	914.646	3	8464.838	3
17		9	max	0	1	.331	2	.032	3	2.32e-2	2	NC	4	NC	1
18			min	619	4	.007	15	019	2	-2.674e-5	3	1665.734	2	8208.181	3
19		10	max	0	1	.357	2	.032	3	2.417e-2	2	NC	4	NC	1
20			min	619	4	.001	3	023	2	4.86e-4	3	1333.91	2	8159.952	3
21		11	max	0	10	.331	2	.032	3	2.32e-2	2	NC	4	NC	1
22			min	619	4	.007	15	019	2	-2.674e-5	3	1665.734	2	8208.181	3
23		12	max	0	10	.272	2	.032	3	2.224e-2	2	NC	4	NC	2
24			min	619	4	.006	15	01	10	-5.395e-4	3	914.646	3	8464.838	3
25		13	max	0	10	.222	3	.038	1	2.127e-2	2	NC	4	NC	2
26			min	619	4	.004	15	007	10	-1.052e-3	3	611.337	3	4479.369	1
27		14	max	0	10	.294	3	.051	1	2.031e-2	2	NC	4	NC	2
28			min	619	4	.003	15	004	10	-1.565e-3	3	488.416	3	3324.386	1
29		15	max	0	10	.322	3	.055	1	1.934e-2	2	NC	5	NC	2
30			min	619	4	.002	15	002	10	-2.078e-3	3	452.246	3	3103.773	1
31		16	max	0	10	.297	3	.048	1	1.838e-2	2	NC	5	NC	2
32			min	619	4	.002	15	002	10	-2.59e-3	3	484.086	3	3538.189	1

Model Name

Schletter, Inc.

HCV

Standard PVMax Racking System

Nov 23, 2015

Checked By:____

33	Member	Sec 17	may	x [in]	LC 10	y [in] .217	LC 3	z [in] .033	LC 1	x Rotate [r 1.741e-2	LC 2	(n) L/y Ratio		(n) L/z Ratio	LC 2
34		17	max	619	4	.002	15	002	10	-3.103e-3	3	622.763	<u>5</u> 3	5154.845	
35		18	max	<u>019</u> 0	10	.165	2	.017	4	1.645e-2	2	NC	4	NC	1
36		10	min	619	4	.003	15	004	10	-3.616e-3	3	1134.18	3	9692.503	
37		19	max	0	10	.226	2	.011	3	1.548e-2	2	NC	1	NC	1
38		13	min	619	4	062	3	007	2	-4.129e-3	3	NC	1	NC	1
39	M14	1	max	0	1	.454	3	.01	3	8.564e-3	2	NC	1	NC	1
40	IVIT		min	468	4	669	2	006	2	-6.84e-3	3	NC	1	NC	1
41		2	max	400	1	.655	3	.011	3	9.729e-3	2	NC	5	NC	1
42			min	468	4	873	2	016	5	-7.897e-3	3	853.067	2	NC	1
43		3	max	400 0	1	.833	3	.024	1	1.089e-2	2	NC	5	NC	2
44			min	468	4	-1.058	2	02	5	-8.955e-3	3	447.006	2	6943.082	
45		4	max	0	1	.972	3	.039	1	1.206e-2	2	NC	5	NC	2
46		-	min	468	4	-1.211	2	015	5	-1.001e-2	3	320.844	2	4380.731	1
47		5	max	400	1	1.063	3	.047	1	1.322e-2	2	NC	15	NC	2
48		5	min	468	4	-1.324	2	004	5	-1.107e-2	3	265.557	2	3664.373	1
49		6	max	0	1	1.106	3	.045	1	1.439e-2	2	NC	15	NC	2
50		-	min	468	4	-1.394	2	004		-1.213e-2	3	239.781	2	3804.48	1
51		7	max	400 0	1	1.105	3	.034	1	1.555e-2	2	NC	15	NC	2
52				468	4	-1.426	2	006		-1.318e-2	3	229.881	2	5007.927	1
53		8	min	466 0	1	1.074	3	.03	4	1.672e-2	2	NC	15	NC	2
54		-	max	468	4	-1.427	2	009	10	-1.424e-2	3	229.587	2	5654.989	
			min		1	1.035						NC		NC	1
55		9	max	0			3	.028	3	1.788e-2	2		<u>15</u>		
56		10	min	468	4	-1.412	2	017		-1.53e-2	3	234.16	2	7921.621	4
57		10	max	0	1	1.014	3	.029	3	1.905e-2	2	NC	<u>15</u>	NC 0040 000	1
58		44	min	468	4	-1.401	2	02	2	-1.636e-2	3	237.499	2	9218.866	
59		11	max	0	12	1.035	3	.028	3	1.788e-2	2	NC 004.40	<u>15</u>	NC 0004 000	1
60		40	min	468	4	-1.412	2	017	2	-1.53e-2	3	234.16	2	9294.203	
61		12	max	0	12	1.074	3	.028	3	1.672e-2	2	NC	<u>15</u>	NC	2
62		40	min	468	4	-1.427	2	02	5	-1.424e-2	3	229.587		9652.669	
63		13	max	0	12	1.105	3	.034	1	1.555e-2	2	NC 000,004	<u>15</u>	NC F007.007	2
64		4.4	min	<u>468</u>	4	-1.426	2	014	5	-1.318e-2	3	229.881	2	5007.927	1
65		14	max	0	12	1.106	3	.045	1	1.439e-2	2	NC 000.704	15	NC	2
66		45	min	468	4	-1.394	2	004		-1.213e-2	3	239.781	2	3804.48	1
67		15	max	0	12	1.063	3	.047	1	1.322e-2	2	NC OCE EEZ	<u>15</u>	NC OCCA 070	2
68		40	min	468	4	-1.324	2	002	10	-1.107e-2	3	265.557	2	3664.373	1
69		16	max	0	12	.972	3	.039	1	1.206e-2	2	NC 200.044	5	NC	2
70		47	min	468	4	-1.211	2	002		-1.001e-2	3	320.844	2	4380.731	1
71		17	max	0	12	.833	3	.031	4	1.089e-2	2	NC 447,000	_5_	NC 5404.00	2
72		40	min	468	4	<u>-1.058</u>	2	002		-8.955e-3	3	447.006	2	5421.66	4
73		18	max		12	.655	3	.021		9.729e-3		NC 050.007	5	NC	1
74		40	min	468	4	873	2	003	10	-7.897e-3	3	853.067	2	7915.415	
75		19	max	0	12	.454	3	.01	3	8.564e-3	2	NC	1_	NC NC	1
76	NA E		min	468	4	669	2	006	2	-6.84e-3	3	NC NC	1_	NC NC	1
77	M15	1_	max	0	10	.465	3	.009	3	5.76e-3	3_	NC NC	1_	NC NC	1
78			min	384	4	667	2	006	2	-8.883e-3	2	NC NC	1_	NC NC	-
79		2	max	0	10	<u>.616</u>	3	.01	3	6.635e-3	3	NC 700,000	5	NC C704 F00	1
80			min	384	4	<u>906</u>	2	024	5	-1.01e-2	2	728.068	2	6764.502	
81		3	max	0	10	.753	3	.025	1	7.51e-3	3	NC 204 407	5_	NC 70	2
82		4	min	384	4	<u>-1.12</u>	2	<u>03</u>	5	-1.132e-2	2	384.407	2	5436.73	5
83		4	max	0	10	.869	3	.039	1	8.385e-3	3	NC	<u>5</u>	NC	2
84		-	min	384	4	<u>-1.29</u>	2	023	5	-1.253e-2	2	279.312	2	4352.003	
85		5	max	0	10	.956	3	.047	1	9.26e-3	3	NC 225 462	<u>15</u>	NC 2020 04	2
86		_	min	384	4	<u>-1.407</u>	2	008	5	-1.375e-2	2	235.162	2	3639.01	1
87		6	max	0	10	1.014	3	.046	1	1.013e-2	3	NC	<u>15</u>	NC	2
88		-	min	384	4	<u>-1.469</u>	2	003	10	-1.496e-2	2	217.097	2	3772.39	1
89		7	max	0	10	1.043	3	.035	1	1.101e-2	3	NC	15	NC	2

Model Name

: Schletter, Inc. : HCV

: Standard PVMax Racking System

Nov 23, 2015

Checked By:____

	Member	Sec		x [in]	LC	y [in]	LC	z [in]	LC x Rotate [r		(n) L/y Ratio			
90			min	384	4	<u>-1.481</u>	2	006	10 -1.618e-2	2	213.857	2	4945.913	
91		8	max	0	10	1.05	3	.037	4 1.188e-2	3	NC	<u>15</u>	NC 1701	2
92			min	384	4	<u>-1.458</u>	2	009	10 -1.74e-2	2	220.171	2	4581.189	
93		9	max	0	10	1.044	3	.027	4 1.276e-2	3	NC 000.044	<u>15</u>	NC CO40 OCO	1
94		10	min	384	1	<u>-1.421</u> 1.039	3	016 .026	2 -1.861e-2 3 1.363e-2	2	230.944 NC	<u>2</u> 15	6212.263	1
96		10	max	0 384	4	-1.4	2	019	3 1.363e-2 2 -1.983e-2	2	237.393	2	NC 9982.767	3
97		11	min max	364 0	1	1.044	3	.026	3 1.276e-2	3	NC	15	NC	1
98			min	384	4	-1.421	2	023	5 -1.861e-2	2	230.944	2	7621.104	
99		12	max	0	1	1.05	3	.026	3 1.188e-2	3	NC	15	NC	2
100		12	min	384	4	-1.458	2	027	5 -1.74e-2	2	220.171	2	6472.899	
101		13	max	0	1	1.043	3	.035	1 1.101e-2	3	NC	15	NC	2
102			min	384	4	-1.481	2	018	5 -1.618e-2	2	213.857	2	4945.913	1
103		14	max	0	1	1.014	3	.046	1 1.013e-2	3	NC	15	NC	2
104			min	384	4	-1.469	2	003	10 -1.496e-2	2	217.097	2	3772.39	1
105		15	max	0	1	.956	3	.047	1 9.26e-3	3	NC	15	NC	2
106			min	384	4	-1.407	2	002	10 -1.375e-2	2	235.162	2	3639.01	1
107		16	max	0	1	.869	3	.039	1 8.385e-3	3	NC	5	NC	2
108			min	384	4	-1.29	2	002	10 -1.253e-2	2	279.312	2	4342.917	4
109		17	max	0	1	.753	3	.041	4 7.51e-3	3	NC	5	NC	2
110			min	384	4	-1.12	2	002	10 -1.132e-2	2	384.407	2	4154.517	4
111		18	max	0	1	.616	3	.028	4 6.635e-3	3	NC	5	NC	1
112			min	384	4	906	2	003	10 -1.01e-2	2	728.068	2	5892.417	4
113		19	max	0	1	.465	3	.009	3 5.76e-3	3	NC	_1_	NC	1
114			min	384	4	667	2	006	2 -8.883e-3	2	NC	1_	NC	1
115	M16	1	max	0	12	.203	2	.008	3 1.118e-2	3	NC	_1_	NC	1
116			min	124	4	166	3	005	2 -1.323e-2	2	NC	<u>1</u>	NC	1
117		2	max	0	12	.106	1	.014	1 1.211e-2	3	NC	4	NC	1
118			min	124	4	133	3	017	5 -1.372e-2	2	1686.847	2	9513.884	
119		3	max	0	12	.044	1	.033	1 1.303e-2	3	NC	5_	NC 5454400	2
120		-	min	124	4	109	3	022	5 -1.42e-2	2	943.942	2	5154.183	
121		4	max	0	12	.021	9	.049	1 1.396e-2	3	NC 700 4 40	5	NC OF40 075	2
122		-	min	124	4	102	3	018	5 -1.469e-2	2	760.149	2	3519.075	
123		5	max	0	12	.023	9	.056	1 1.489e-2 5 -1.517e-2	3	NC 7FF 0F2	5	NC	3
124 125		6	min max	124 0	12	<u>115</u> .049	1	009 .053	5 -1.517e-2 1 1.582e-2	3	755.853 NC	<u>2</u> 4	3069.084 NC	2
126		0	min	124	4	146	3	002	10 -1.565e-2	2	917.858	2	3258.92	1
127		7	max	0	12	<u> 140 </u>	1	002 .04	1 1.675e-2	3	NC	4	NC	2
128		+	min	124	4	19	3	004	10 -1.614e-2	2	1495.71	2	4316.25	1
129		8	max	0	12	.183	1	.023	14 1.768e-2	3	NC	1	NC	2
130			min		4	239	3	007	10 -1.662e-2	2	2390 105		7140 753	4
131		9	max	0	12	.254	2	.023	3 1.861e-2	3	NC	4	NC	1
132			min	124	4	281	3	014	2 -1.711e-2	2	1518.265	3	NC	1
133		10	max	0	1	.289	2	.023	3 1.954e-2	3	NC	4	NC	1
134			min	124	4	299	3	017	2 -1.759e-2	2	1309.189	3	NC	1
135		11	max	0	1	.254	2	.023	3 1.861e-2	3	NC	4	NC	1
136			min	124	4	281	3	014	2 -1.711e-2	2	1518.265	3	NC	1
137		12	max	0	1	.183	1	.023	3 1.768e-2	3	NC	1	NC	2
138			min	124	4	239	3	013	5 -1.662e-2	2	2390.105	3	8237.082	1
139		13	max	0	1	.11	1	.04	1 1.675e-2	3	NC	4	NC	2
140			min	124	4	19	3	006	5 -1.614e-2	2	1495.71	2	4316.25	1
141		14	max	0	1	.049	1	.053	1 1.582e-2	3	NC	4	NC	2
142			min	124	4	146	3	002	10 -1.565e-2	2	917.858	2	3258.92	1
143		15	max	0	1	.023	9	.056	1 1.489e-2	3	NC	5	NC	3
144			min	124	4	115	3	0	10 -1.517e-2	2	755.853	2	3069.084	
145		16	max	0	1	.021	9	.049	1 1.396e-2	3	NC	5	NC	2
146			min	124	4	102	3	0	10 -1.469e-2	2	760.149	2	3519.075	1

Model Name

Schletter, Inc.HCV

: Standard PVMax Racking System

Nov 23, 2015

Checked By:__

	Member	Sec		x [in]	LC	y [in]	LC	z [in]	LC		LC			(n) L/z Ratio	
147		17	max	0	1	.044	1	.035	4	1.303e-2	3	NC	5_	NC	2
148			min	124	4	109	3	0	10	-1.42e-2	2	943.942	2	4822.591	4
149		18	max	0	1	.106	1	.023	4	1.211e-2	3	NC	4	NC	1
150			min	124	4	133	3	002	10	-1.372e-2	2	1686.847	2	7284.985	4
151		19	max	0	1	.203	2	.008	3	1.118e-2	3	NC	1	NC	1
152			min	124	4	166	3	005	2	-1.323e-2	2	NC	1	NC	1
153	M2	1	max	.007	2	.01	2	.007	1	2.091e-3	5	NC	1	NC	1
154			min	01	3	016	3	582	4	-1.455e-4	1	6802.241	2	118.655	4
155		2	max	.007	2	.009	2	.006	1	2.107e-3	5	NC	1	NC	1
156			min	009	3	015	3	535	4	-1.374e-4	1	7830.75	2	129.216	4
157		3	max	.007	2	.008	2	.006	1	2.122e-3	5	NC	1	NC	1
158			min	009	3	015	3	487	4	-1.294e-4	1	9206.942	2	141.761	4
159		4	max	.006	2	.006	2	.005	1	2.138e-3	5	NC	1	NC	1
160			min	008	3	014	3	441	4	-1.213e-4	1	NC	1	156.811	4
161		5	max	.006	2	.005	2	.004	1	2.154e-3	5	NC	1	NC	1
162			min	008	3	013	3	395	4	-1.132e-4	1	NC	1	175.073	4
163		6	max	.005	2	.004	2	.004	1	2.169e-3	5	NC	1	NC	1
164			min	007	3	013	3	35	4	-1.052e-4	1	NC	1	197.526	4
165		7	max	.005	2	.003	2	.003	1	2.185e-3	5	NC	1	NC	1
166			min	007	3	012	3	306	4	-9.71e-5	1	NC	1	225.565	4
167		8	max	.005	2	.002	2	.003	1	2.202e-3	4	NC	1	NC	1
168		0	min	006	3	012	3	265	4	-8.903e-5	4	NC NC	1	261.223	
		9		.004	2		2		1	2.22e-3		NC	1	NC	1
169		9	max			0		.003			4		1		_
170		40	min	006	3	011	3	225	4	-8.096e-5	1_	NC NC	_	307.568	4
171		10	max	.004	2	0	2	.002	1	2.238e-3	4_	NC NC	1_	NC 200,400	1
172		4.4	min	005	3	01	3	187	4	-7.29e-5	1_	NC NC	1_	369.406	4
173		11	max	.003	2	0	2	.002	1	2.255e-3	4_	NC	1	NC 454.045	1
174		4.0	min	004	3	009	3	<u>152</u>	4	-6.483e-5	1_	NC	1_	454.615	4
175		12	max	.003	2	0	15	.001	1	2.273e-3	_4_	NC	1_	NC	1
176		4.0	min	004	3	008	3	12	4	-5.676e-5	_1_	NC	1_	576.868	4
177		13	max	.002	2	0	15	0	1	2.291e-3	_4_	NC	_1_	NC	1
178			min	003	3	007	3	091	4	-4.869e-5	_1_	NC	_1_	761.645	4
179		14	max	.002	2	0	15	0	1	2.309e-3	_4_	NC	1_	NC	_1_
180			min	003	3	006	3	065	4	-4.063e-5	1_	NC	1_	1061.055	4
181		15	max	.002	2	0	15	0	1	2.327e-3	_4_	NC	_1_	NC	1_
182			min	002	3	005	3	043	4	-3.256e-5	1_	NC	1_	1596.106	4
183		16	max	.001	2	0	15	0	1	2.345e-3	4_	NC	<u>1</u>	NC	1
184			min	002	3	004	3	026	4	-2.449e-5	1	NC	1	2704.949	4
185		17	max	0	2	0	15	0	1	2.363e-3	4	NC	1	NC	1
186			min	001	3	003	3	012	4	-1.642e-5	1	NC	1	5663.907	4
187		18	max	0	2	0	15	0	1	2.381e-3	4	NC	1	NC	1
188			min	0	3	001	3	004	4	-8.355e-6	1	NC	1	NC	1
189		19	max	0	1	0	1	0	1	2.399e-3	4	NC	1	NC	1
190			min	0	1	0	1	0	1	-8.17e-7	3	NC	1	NC	1
191	M3	1	max	0	1	0	1	0	1	5.517e-8	3	NC	1	NC	1
192			min	0	1	0	1	0	1	-4.979e-4		NC	1	NC	1
193		2	max	0	3	0	15	.013	4	9.023e-5	4	NC	1	NC	1
194			min	0	2	003	6	0	3	1.385e-6		NC	1	NC	1
195		3	max	0	3	001	15	.025	4	6.784e-4	4	NC	1	NC	1
196			min	0	2	005	6	0	3	2.737e-6	12	NC	1	NC	1
197		4	max	.001	3	002	15	.037	4	1.267e-3	4	NC	1	NC	1
198		7	min	001	2	002 008	6	<u>.037</u> 0	3	4.089e-6	12	NC	1	NC NC	1
		E										NC NC	1	NC NC	
199		5	max	.002	3	002	15	.048	4	1.855e-3	4				1
200		_	min	002	2	<u>011</u>	6	0	3	5.442e-6		8992.505	6	NC NC	1
201		6	max	.002	3	003	15	.058	4	2.443e-3	4	NC 7044 040	2	NC NC	1
202		-	min	002	2	014	6	0	12	6.794e-6	12	7244.349	6	NC NC	1
203		7	max	.003	3	004	15	.067	4	3.031e-3	4	NC	5	NC	_1_

Model Name

: Schletter, Inc. : HCV

: Standard PVMax Racking System

Nov 23, 2015

Checked By:____

	Member	Sec		x [in]	LC	y [in]	LC	z [in]				(n) L/y Ratio	LC		LC
204			min	002	2	016	6	0	12	8.146e-6		6193.747	6	NC	1
205		8	max	.003	3	004	15	.076	4	3.619e-3	4	NC	5_	NC	1
206			min	003	2	018	6	0	12	9.499e-6		5545.308	6	NC	1
207		9	max	.004	3	004	15	.085	4	4.207e-3	4	NC	_5_	NC	1
208		40	min	003	2	02	6	0	12	1.085e-5	12	5160.165	6_	NC	1
209		10	max	.004	3	005	15	.093	4	4.795e-3	4	NC	5_	NC NC	1
210		44	min	004	2	021	6	0	12	1.22e-5	12	4970.746	6_	NC NC	1
211		11	max	.005	3	005	15	.101	4	5.384e-3	4	NC	5	NC NC	1
212		12	min	004	2	021	6	100	12	1.356e-5	12	4948.976	6	NC NC	1
213 214		12	max	.005 004	3	004 02	15	109 0	12	5.972e-3 1.491e-5	<u>4</u> 12	NC 5095.491	<u>5</u>	NC NC	1
215		13	min max	.004	3	02 004	15	.117	4	6.56e-3	4	NC	5	NC NC	1
216		13	min	005	2	004 019	6	0	12	1.626e-5		5441.243	6	NC	1
217		14	max	.006	3	004	15	.126	4	7.148e-3	4	NC	5	NC	1
218		14	min	005	2	017	6	0	12	1.761e-5	12	6063.716	6	NC	1
219		15	max	.007	3	003	15	.134	4	7.736e-3	4	NC	3	NC	1
220		10	min	006	2	014	6	0	12	1.896e-5	12	7135.318	6	NC	1
221		16	max	.007	3	002	15	.144	4	8.324e-3	4	NC	1	NC	1
222		· ·	min	006	2	011	6	0	12	2.032e-5		9074.122	6	NC	1
223		17	max	.008	3	001	15	.154	4	8.912e-3	4	NC	1	NC	1
224			min	006	2	008	6	0	12	2.167e-5	12	NC	1	NC	1
225		18	max	.008	3	0	15	.166	4	9.501e-3	4	NC	1	NC	1
226			min	007	2	005	1	0	12	2.302e-5	12	NC	1	NC	1
227		19	max	.009	3	0	5	.179	4	1.009e-2	4	NC	1	NC	1
228			min	007	2	002	1	0	12	2.437e-5	12	NC	1	NC	1
229	M4	1	max	.002	1	.007	2	0	12	8.768e-5	1	NC	1	NC	2
230			min	0	3	009	3	179	4	-1.415e-4	5	NC	1	138.909	4
231		2	max	.002	1	.006	2	0	12	8.768e-5	1_	NC	1_	NC	2
232			min	0	3	008	3	164	4	-1.415e-4	5	NC	1	151.089	4
233		3	max	.002	1	.006	2	00	12	8.768e-5	_1_	NC	_1_	NC	2
234			min	0	3	008	3	15	4	-1.415e-4	5	NC	1_	165.582	4
235		4	max	.002	1	.006	2	0	12	8.768e-5	_1_	NC	_1_	NC	2
236		_	min	0	3	007	3	<u>136</u>	4	-1.415e-4	_5_	NC	_1_	182.989	4
237		5	max	.002	1	.005	2	0	12	8.768e-5	_1_	NC	_1_	NC NC	2
238			min	0	3	007	3	122	4	-1.415e-4	5	NC NC	1_	204.127	4
239		6	max	.002	1	.005	2	0	12	8.768e-5	1_	NC	1	NC OOO 400	2
240		-	min	0	3	006	3	108	4	-1.415e-4	5	NC NC	1_	230.128	4
241		7	max	.002	1	.005	2	0	12	8.768e-5	1_	NC NC	1	NC 202,004	2
242		0	min	0	3	006	3	094	4	-1.415e-4	5	NC NC	1	262.601	4
243 244		8	max min	.002 0	3	.004 005	3	0 082	12	8.768e-5 -1.415e-4	1	NC NC	1	NC 303.892	4
245		9	max	.001	1	.004	2	0 <u>62</u> 0	12	8.768e-5	<u> </u>	NC	1	NC	1
246		-	min	0	3	005	3	069	4	-1.415e-4	5	NC	1	357.531	4
247		10	max	.001	1	.003	2	0	12	8.768e-5	1	NC	1	NC	1
248		10	min	0	3	004	3	058	4	-1.415e-4	5	NC	1	429.038	4
249		11	max	.001	1	.003	2	<u>.000</u>	12	8.768e-5	1	NC	1	NC	1
250			min	0	3	004	3	047	4	-1.415e-4	5	NC	1	527.441	4
251		12	max	0	1	.003	2	0	12	8.768e-5	1	NC	1	NC	1
252			min	0	3	003	3	037	4	-1.415e-4	5	NC	1	668.361	4
253		13	max	0	1	.002	2	0	12	8.768e-5	1	NC	1	NC	1
254			min	0	3	003	3	028	4	-1.415e-4	5	NC	1	880.787	4
255		14	max	0	1	.002	2	0	12	8.768e-5	1	NC	1	NC	1
256			min	0	3	002	3	02	4	-1.415e-4	5	NC	1	1223.696	4
257		15	max	0	1	.002	2	0	12	8.768e-5	1	NC	1	NC	1
258			min	0	3	002	3	014	4	-1.415e-4	5	NC	1	1833.036	4
259		16	max	0	1	.001	2	0	12	8.768e-5	1	NC	1	NC	1
260			min	0	3	001	3	008	4	-1.415e-4	5	NC	1	3084.607	4

Model Name

: Schletter, Inc. : HCV

: Standard PVMax Racking System

Nov 23, 2015

Checked By:____

	Member	Sec		x [in]	LC	y [in]	LC	z [in]			LC	(n) L/y Ratio	LC		LC
261		17	max	0	1	0	2	0	12	8.768e-5	_1_	NC	_1_	NC	1
262			min	0	3	0	3	004	4	-1.415e-4	5	NC	1_	6371.708	4
263		18	max	00	1	0	2	00	12	8.768e-5	_1_	NC	_1_	NC	1
264			min	0	3	0	3	001	4	-1.415e-4	5_	NC	1_	NC	1
265		19	max	0	1	0	1	0	1	8.768e-5	_1_	NC	_1_	NC	1
266			min	0	1	0	1	0	1	-1.415e-4	5	NC	1_	NC	1
267	<u>M6</u>	1	max	.022	2	.033	2	0	1	2.177e-3	4	NC	4	NC	1
268			min	031	3	047	3	588	4	0	1_	1472.508	3	117.491	4
269		2	max	.021	2	.03	2	0	1	2.191e-3	4	NC	_4_	NC	1
270		_	min	029	3	<u>044</u>	3	<u>54</u>	4	0	_1_	1559.04	3	127.949	4
271		3	max	.02	2	.027	2	0	1	2.204e-3	4	NC	4_	NC	1
272			min	028	3	042	3	492	4	0	1	1656.406	3	140.373	4
273		4	max	.018	2	.025	2	0	1	2.218e-3	4_	NC	4_	NC_	1
274			min	026	3	039	3	<u>445</u>	4	0	1_	1766.805	3	155.277	4
275		5	max	.017	2	.022	2	0	1	2.232e-3	4	NC 1000 000	4_	NC 470 004	1
276			min	024	3	037	3	399	4	0	1_	1893.063	3	173.361	4
277		6	max	.016	2	.019	2	0	1	2.246e-3	4	NC	4_	NC	1
278		-	min	022	3	034	3	353	4	0	1	2038.873	3	195.597	4
279		7	max	.015	2	.017	2	0	1	2.26e-3	4_	NC	4_	NC	1
280			min	021	3	031	3	309	4	0 074- 0	1_1	2209.164	3	223.364	4
281		8	max	.014	2	.014	2	0	1	2.274e-3	4	NC 0440.050	1	NC OFFO 677	1
282		_	min	019	3	029	3	267	4	0	1_1	2410.653	3	258.677	4
283		9	max	.012	2	.012	2	0	1	2.287e-3	4	NC	1_	NC 204 574	1
284		40	min	017	3	026	3	227	4	0	1_1	2652.746	3	304.574	4
285		10	max	.011	2	.01	2	0	1	2.301e-3	4	NC	1_	NC OCE 04.4	1
286		4.4	min	015	3	023	3	189	4	0	1_1	2949.031	3	365.814	4
287		11	max	.01	2	.008	2	0	1	2.315e-3	4	NC	1	NC	1
288		40	min	014	3	021	3	154	4	0	1_1	3319.888	3	450.199	4
289		12	max	.009	2	.006	2	0	1	2.329e-3	4	NC	1	NC 574	1
290 291		13	min	012 .007	2	018 .004	2	121 0	1	2.343e-3	<u>1</u> 4	3797.344 NC	<u>3</u>	571.271 NC	1
292		13	max	01	3	016	3	092	4	2.3436-3	1	4434.782	3	754.262	4
293		14	min	.006	2	.003	2	<u>092</u> 0	1	2.356e-3	4	NC	<u> </u>	NC	1
294		14	max	009	3	013	3	066	4	2.3306-3	1	5328.289	3	1050.776	4
295		15		.005	2	.002	2	<u>000</u> 0	1	2.37e-3	4	NC	<u> </u>	NC	1
296		15	max min	007	3	01	3	044	4	0	1	6670.043	3	1580.648	_
297		16	max	.004	2	0	2	0	1	2.384e-3	4	NC	1	NC	1
298		10	min	005	3	008	3	026	4	0	1	8908.464	3	2678.737	4
299		17	max	.002	2	008	2	<u>020</u> 0	1	2.398e-3	4	NC	<u> </u>	NC	1
300		17	min	003	3	005	3	012	4	0	1	NC	1	5608.883	4
301		18	max	.001	2	0	2	0	1	2.412e-3		NC	1	NC	1
302		10	min	002	3	003	3	004	4	0	1	NC	1	NC	1
303		19	max	0	1	0	1	<u>.004</u>	1	2.426e-3	4	NC	1	NC	1
304		10	min	0	1	0	1	0	1	0	1	NC	1	NC	1
305	M7	1	max	0	1	0	1	0	1	0	1	NC	1	NC	1
306	1717	1	min	0	1	0	1	0	1	-5.037e-4	4	NC	1	NC	1
307		2	max	.001	3	0	2	.013	4	6.791e-5	4	NC	1	NC	1
308			min	001	2	004	3	0	1	0	1	NC	1	NC	1
309		3	max	.003	3	001	15	.026	4	6.395e-4	4	NC	1	NC	1
310		Ĭ	min	003	2	007	3	0	1	0	1	NC	1	NC	1
311		4	max	.004	3	002	15	.037	4	1.211e-3	4	NC	1	NC	1
312			min	004	2	011	3	0	1	0	1	NC	1	NC	1
313		5	max	.006	3	003	15	.048	4	1.783e-3	4	NC	1	NC	1
314			min	005	2	014	3	0	1	0	1	8063.982	3	NC	1
315		6	max	.007	3	003	15	.058	4	2.354e-3	4	NC	1	NC	1
316			min	007	2	016	3	0	1	0	1	6801.084	3	9848.327	4
317		7	max	.008	3	004	15	.068	4	2.926e-3	4	NC	1	NC	1
	_					_			_			_			

Model Name

: Schletter, Inc. : HCV

: Standard PVMax Racking System

Nov 23, 2015

Checked By:____

	Member	Sec		x [in]	LC	y [in]	LC	z [in]		x Rotate [r		(n) L/y Ratio			
318			min	008	2	019	3	0	1	0	1_	6042.488	3	9870.613	
319		8	max	.01	3	004	15	.077	4	3.497e-3	4	NC	2	NC	1
320			min	009	2	02	3	0	1	0	1_	5530.893	4_	NC NC	1
321		9	max	.011	3	005	15	.085	4	4.069e-3	4	NC F4.47.C44	2	NC	1
322		40	min	01	2	021	3	0	1	0	1_1	5147.641	4_	NC NC	1
323		10	max	.013	3	005 022	15	.093	1	4.64e-3	<u>4</u> 1	NC	5	NC NC	1
324		11	min	012 .014	3	022 005	3 15	<u> </u>	4	5.212e-3	4	4959.398 NC	<u>4</u> 5	NC NC	1
326		+	max	013	2	005 022	3	0	1	0.2126-3	1	4938.276	4	NC NC	1
327		12	max	.015	3	022 005	15	.109	4	5.784e-3	4	NC	5	NC NC	1
328		12	min	014	2	005 021	3	0	1	0.7646-3	1	5084.993	4	NC NC	1
329		13	max	.017	3	005	15	.116	4	6.355e-3	4	NC	5	NC	1
330		13	min	016	2	02	3	0	1	0.5556-5	1	5430.496	4	NC	1
331		14	max	.018	3	004	15	.124	4	6.927e-3	4	NC	2	NC	1
332		17	min	017	2	018	3	0	1	0.3270 3	1	6052.168	4	NC	1
333		15	max	.02	3	004	15	.132	4	7.498e-3	4	NC	1	NC	1
334			min	018	2	016	3	0	1	0	1	7122.14	4	NC	1
335		16	max	.021	3	003	15	.141	4	8.07e-3	4	NC	1	NC	1
336			min	02	2	014	3	0	1	0	1	9057.773	4	NC	1
337		17	max	.022	3	002	15	.15	4	8.641e-3	4	NC	1	NC	1
338			min	021	2	011	3	0	1	0	1	NC	1	NC	1
339		18	max	.024	3	001	15	.161	4	9.213e-3	4	NC	1	NC	1
340			min	022	2	008	3	0	1	0	1	NC	1	NC	1
341		19	max	.025	3	0	10	.172	4	9.785e-3	4	NC	1	NC	1
342			min	023	2	005	3	0	1	0	1	NC	1	NC	1
343	M8	1	max	.007	2	.023	2	0	1	0	1	NC	1_	NC	1
344			min	001	3	026	3	172	4	-2.656e-4	4	NC	1_	143.945	4
345		2	max	.006	2	.021	2	0	1	0	1	NC	1_	NC	1
346			min	001	3	024	3	158	4	-2.656e-4	4	NC	1_	156.582	4
347		3	max	.006	2	.02	2	0	1	0	1_	NC	1_	NC	1
348			min	001	3	023	3	145	4	-2.656e-4	4	NC	1_	171.618	4
349		4	max	.006	2	.019	2	0	1	0	1	NC	1_	NC_	1
350		-	min	001	3	021	3	<u>131</u>	4	-2.656e-4	4_	NC	1_	189.676	4
351		5	max	.005	2	.018	2	0	1	0	1	NC	1_	NC 044.004	1
352			min	0	3	02	3	<u>117</u>	4	-2.656e-4	4_	NC NC	1_	211.604	4
353		6	max	.005	2	.016	2	0	1	0	1_1	NC NC	1_	NC	1
354		7	min	0	2	019	2	104	1	-2.656e-4	4	NC NC	1	238.576	4
355			max	.004	3	.015	3	0	4	0 -2.656e-4	1_1		1_1	NC 272.262	4
356 357		8	min	.004	2	017 .014	2	091 0	1	0	<u>4</u> 1	NC NC	1	NC	1
358		-	max min		3	016	3	079		-2.656e-4		NC	1	315.094	4
359		9	max	.004	2	.013	2	073	1	0	1	NC	1	NC	1
360			min	0	3	014	3	067	4	-2.656e-4	4	NC	1	370.735	4
361		10	max	.003	2	.011	2	<u>.007</u>	1	0	1	NC	1	NC	1
362		1.0	min	0	3	013	3	056	4	-2.656e-4	4	NC	1	444.912	4
363		11	max	.003	2	.01	2	<u>.000</u>	1	0	1	NC	1	NC	1
364			min	0	3	011	3	045	4	-2.656e-4	4	NC	1	546.991	4
365		12	max	.003	2	.009	2	0	1	0	1	NC	1	NC	1
366			min	0	3	01	3	036	4	-2.656e-4	4	NC	1	693.176	4
367		13	max	.002	2	.008	2	0	1	0	1	NC	1	NC	1
368			min	0	3	009	3	027	4	-2.656e-4	4	NC	1	913.542	4
369		14	max	.002	2	.006	2	0	1	0	1	NC	1	NC	1
370			min	0	3	007	3	02	4	-2.656e-4	4	NC	1	1269.277	4
371		15	max	.001	2	.005	2	0	1	0	1	NC	1	NC	1
372			min	0	3	006	3	013	4	-2.656e-4	4	NC	1	1901.426	4
373		16	max	.001	2	.004	2	0	1	0	1	NC	1_	NC	1
374			min	0	3	004	3	008	4	-2.656e-4	4	NC	1	3199.89	4

Model Name

: Schletter, Inc. : HCV

: Standard PVMax Racking System

Nov 23, 2015

Checked By:____

	Member	Sec		x [in]	LC	y [in]	LC	z [in]	LC	x Rotate [r	LC		LC		LC
375		17	max	0	2	.003	2	0	1	0	1_	NC	1_	NC	1
376			min	0	3	003	3	004	4	-2.656e-4	4	NC	1_	6610.317	4
377		18	max	0	2	001	2	0	1	0	_1_	NC	1_	NC NC	1
378		10	min	0	3	001	3	001	4	-2.656e-4	4	NC	1_	NC NC	1
379		19	max	0	1	0	1	0	1	0	1_	NC NC	1	NC NC	1
380	MAO	1	min	0	2	<u> </u>		0		-2.656e-4	4	NC NC	1	NC NC	1
381	M10	1	max	.007	3		3	586	10	2.161e-3	4	6802.241	2	NC	4
383		2	min	01 .007	2	016 .009	2	366 0	10	1.051e-5 2.174e-3	4	NC	1	117.879 NC	1
384			max min	009	3	015	3	538	4	9.916e-6	10	7830.75	2	128.372	4
385		3	max	.007	2	.008	2	<u>556</u> 0	10	2.187e-3	4	NC	1	NC	1
386		<u> </u>	min	009	3	015	3	491	4	9.322e-6	10	9206.942	2	140.836	4
387		4	max	.006	2	.006	2	0	10	2.2e-3	4	NC	1	NC	1
388			min	008	3	014	3	444	4	8.727e-6	10	NC	1	155.79	4
389		5	max	.006	2	.005	2	0	10	2.214e-3	4	NC	1	NC	1
390			min	008	3	013	3	397	4	8.133e-6	10	NC	1	173.935	4
391		6	max	.005	2	.004	2	0	10	2.227e-3	4	NC	1	NC	1
392			min	007	3	013	3	352	4	7.538e-6	10	NC	1	196.245	4
393		7	max	.005	2	.003	2	0	10	2.24e-3	4	NC	1	NC	1
394			min	007	3	012	3	308	4	6.944e-6	10	NC	1	224.105	4
395		8	max	.005	2	.002	2	0	10	2.253e-3	4	NC	1	NC	1
396			min	006	3	012	3	266	4	6.349e-6	10	NC	1	259.537	4
397		9	max	.004	2	0	2	0	10	2.266e-3	4	NC	1	NC	1
398			min	006	3	011	3	226	4	5.755e-6	10	NC	1	305.59	4
399		10	max	.004	2	0	2	0	10	2.28e-3	4	NC	1	NC	1
400			min	005	3	01	3	188	4	5.16e-6	10	NC	1	367.038	4
401		11	max	.003	2	0	2	0	10	2.293e-3	4	NC	<u>1</u>	NC	1
402			min	004	3	009	3	1 <u>53</u>	4	4.566e-6	10	NC	1_	451.712	4
403		12	max	.003	2	001	2	0	10	2.306e-3	4	NC	_1_	NC	1
404			min	004	3	008	3	121	4	3.972e-6	10	NC	_1_	573.203	4
405		13	max	.002	2	002	2	0	10	2.319e-3	4_	NC	_1_	NC	1
406			min	003	3	007	3	091	4	3.377e-6	10	NC	1_	756.836	4
407		14	max	.002	2	002	15	0	10	2.332e-3	4	NC		NC 1051 100	1
408		4.5	min	003	3	006	3	066	4	2.783e-6	10	NC	1_	1054.408	
409		15	max	.002	2	001	15	0	10	2.346e-3	4	NC NC	1_	NC 4500 045	1
410		4.0	min	002	3	005	3	044	4	2.188e-6	10	NC NC	1_	1586.215	
411		16	max	.001 002	3	001	15	0	10	2.359e-3 1.594e-6	4	NC NC	1	NC	1
		17	min		_	004 0	15	026	4	2.372e-3	<u>10</u> 4	NC NC		2688.464	1
413		17	max min	0 001	3	003	4	0 012	10	9.993e-7	10	NC NC	1	NC 5630.413	
415		1Ω	max	001 0	2	003 0	15	<u>012</u> 0		2.385e-3		NC NC	1	NC	1
416		10	min	0	3	002	4	004	4	4.049e-7	10	NC	1	NC	1
417		19	max	0	1	0	1	004	1	2.399e-3	4	NC	1	NC	1
418		13	min	0	1	0	1	0	1	-2.08e-7	2	NC	1	NC	1
419	M11	1	max	0	1	0	1	0	1	9.09e-7	1	NC	1	NC	1
420	IVIII		min	0	1	0	1	0	1	-4.973e-4	4	NC	1	NC	1
421		2	max	0	3	0	15	.013	4	8.163e-5	5	NC	1	NC	1
422			min	0	2	003	4	0	2	-1.722e-5	1	NC	1	NC	1
423		3	max	0	3	001	15	.025	4	6.58e-4	4	NC	1	NC	1
424		Ĭ	min	0	2	006	4	0	1	-3.534e-5	1	NC	1	NC	1
425		4	max	.001	3	002	15	.037	4	1.236e-3	4	NC	1	NC	1
426			min	001	2	009	4	0	1	-5.346e-5	1	NC	1	NC	1
427		5	max	.002	3	003	15	.048	4	1.813e-3	4	NC	1	NC	1
428			min	002	2	012	4	0	1	-7.159e-5	1	8614.44	4	NC	1
429		6	max	.002	3	004	15	.058	4	2.391e-3	4	NC	2	NC	1
430			min	002	2	015	4	0	1	-8.971e-5	1	6967.36	4	NC	1
431		7	max	.003	3	004	15	.067	4	2.969e-3	4	NC	5	NC	1

Model Name

: Schletter, Inc. : HCV

: Standard PVMax Racking System

Nov 23, 2015

Checked By:____

	Member	Sec		x [in]	LC	y [in]	LC	z [in]	LC	x Rotate [r	LC		LC		LC
432			min	002	2	018	4	0	1	-1.078e-4	1_	5976.007	4	NC	1
433		8	max	.003	3	005	15	.076	4	3.546e-3	4	NC	5	NC	1
434			min	003	2	02	4	0	1	-1.26e-4	<u>1</u>	5364.401	4_	NC	1
435		9	max	.004	3	005	15	.084	4	4.124e-3	4	NC	_5_	NC	1
436		40	min	003	2	021	4	0	1	-1.441e-4	1_	5002.682	4_	NC	1
437		10	max	.004	3	005	15	.093	4	4.702e-3	4	NC 4007.04	5_	NC	1
438		44	min	004	2	022	4	0	1	-1.622e-4	1_	4827.81	4_	NC	1
439		11	max	.005	3	005	15	.1	4	5.28e-3	4	NC 4044 045	5	NC	1
440		40	min	004	2	022	4	001	1	-1.803e-4	1_	4814.015	4_	NC NC	1
441		12	max	.005	3	005 021	15	.108 002	4	5.857e-3	4	NC 4962.912	<u>5</u> 4	NC NC	1
442		13	min	004 .006	3		15	002 .116	4	-1.985e-4	1_	NC	<u>4</u> 5	NC NC	1
444		13	max min	005	2	005 02	4	002	1	6.435e-3 -2.166e-4	<u>4</u> 1	5305.387	4	NC NC	1
445		14		.006	3	02 005	15	.124	4	7.013e-3	4	NC	-4 5	NC NC	1
446		14	max min	005	2	005 018	4	003	1	-2.347e-4	1	5917.617	4	NC NC	1
447		15	max	.003	3	018 004	15	.133	4	7.59e-3	4	NC	3	NC	1
448		10	min	006	2	016	4	003	1	-2.528e-4	1	6968.485	4	NC	1
449		16	max	.007	3	003	15	.142	4	8.168e-3	4	NC	1	NC	1
450		10	min	006	2	013	4	004	1	-2.71e-4	1	8867.043	4	NC	1
451		17	max	.008	3	002	15	.152	4	8.746e-3	4	NC	1	NC	1
452		<u> </u>	min	006	2	009	4	004	1	-2.891e-4	1	NC	1	NC	1
453		18	max	.008	3	002	15	.163	4	9.323e-3	4	NC	1	NC	1
454			min	007	2	005	4	005	1	-3.072e-4	1	NC	1	NC	1
455		19	max	.009	3	0	10	.175	4	9.901e-3	4	NC	1	NC	1
456			min	007	2	002	1	006	1	-3.253e-4	1	NC	1	NC	1
457	M12	1	max	.002	1	.007	2	.006	1	-7.173e-6	10	NC	1	NC	2
458			min	0	3	009	3	175	4	-1.706e-4	4	NC	1	141.77	4
459		2	max	.002	1	.006	2	.006	1	-7.173e-6	10	NC	1	NC	2
460			min	0	3	008	3	161	4	-1.706e-4	4	NC	1	154.205	4
461		3	max	.002	1	.006	2	.005	1	-7.173e-6	10	NC	_1_	NC	2
462			min	0	3	008	3	147	4	-1.706e-4	4	NC	1	169.001	4
463		4	max	.002	1	.006	2	.005	1	-7.173e-6	<u>10</u>	NC	_1_	NC	2
464		_	min	0	3	007	3	133	4	-1.706e-4	4_	NC	_1_	186.771	4
465		5	max	.002	1	.005	2	.004	1	-7.173e-6	10	NC	_1_	NC	2
466			min	0	3	007	3	<u>119</u>	4	-1.706e-4	4_	NC	1_	208.35	4
467		6	max	.002	1	.005	2	.004	1	-7.173e-6	<u>10</u>	NC	1	NC	2
468		-	min	0	3	006	3	<u>106</u>	4	-1.706e-4	4	NC	1_	234.894	4
469		7	max	.002	1	.005	2	.003	1	-7.173e-6	<u>10</u>	NC	1	NC 000 044	2
470			min	0	3	006	3	093	4	-1.706e-4	4	NC NC	1_	268.044	4
471 472		8	max	.002	3	.004	3	.003	1	-7.173e-6 -1.706e-4	10	NC NC	1	NC 310.196	2
			min			005	2	08							
473 474		9	max min	.001 0	3	.004 005	3	.002 068	1 4	-7.173e-6 -1.706e-4	4	NC NC	<u>1</u> 1	NC 364.953	4
475		10		.001	1	.003	2	.002	1	-7.173e-6	_	NC NC	1	NC	1
476		10	max min	0	3	004	3	057	4	-1.706e-4	4	NC	1	437.951	4
477		11	max	.001	1	.003	2	.002	1	-7.173e-6		NC	1	NC	1
478			min	0	3	004	3	046	4	-1.706e-4	4	NC	1	538.407	4
479		12	max	0	1	.003	2	.001	1	-7.173e-6		NC	1	NC	1
480		14	min	0	3	003	3	036	4	-1.706e-4	4	NC	1	682.267	4
481		13	max	0	1	.002	2	<u>030</u> 0	1		10	NC	1	NC	1
482		10	min	0	3	003	3	028	4	-1.706e-4	4	NC	1	899.125	4
483		14	max	0	1	.002	2	0	1	-7.173e-6		NC	1	NC	1
484			min	0	3	002	3	02	4	-1.706e-4	4	NC	1	1249.19	4
485		15	max	0	1	.002	2	0	1	-7.173e-6		NC	1	NC	1
486		'	min	0	3	002	3	013	4	-1.706e-4	4	NC	1	1871.25	4
487		16	max	0	1	.002	2	0	1	-7.173e-6		NC	1	NC	1
488			min	0	3	001	3	008	4	-1.706e-4		NC	1	3148.959	
.00			1111111			.001		.000		111 000 +		110	_	0110.000	

Model Name

: Schletter, Inc. : HCV

: Standard PVMax Racking System

Nov 23, 2015

Checked By:____

489		Member	Sec		x [in]	LC	y [in]	LC	z [in]	LC	x Rotate [r			LC		LC
491	489		17	max	0	-	0	2		1	-7.173e-6	10	NC	1_	NC	_
492				min										_		4
494			18		0		0					10		_1_		1
494				min	0	3		3	001	4		4		1_		1
496			19	max				1				10				-
496				min										1_		
1987		M1	1	max	.011		.226		.619	4		2		<u>1</u>	NC	1
A998	496			min	007		062	3		10		3		1_	NC	1
Second Color			2		.011	3	.11			4		4		5		1
500				min	007					1		3				1
501			3	max			.016		.582	4		4_		5_		_
502	500			min	007		013		007	1		1		2		5
503			4	max		3		3		4		4_		<u>15</u>		_
504	502			min	007		149		006	1		3		2		5
505			5	max	.011					4		4				-
Solid				min	006					1		3				5
507	505		6	max	.01		.268		.52	4	1.193e-2	2	8664.676	15		
Sob	506			min	006		425		002	1	-1.184e-2	3	207.969	2	3391.892	5
Sop 8 max	507		7	max	.01	3	.357	3	.499	4	1.59e-2	2	7333.042	15	NC	1
STO				min	006				0	3		3	175.606			4
STI	509		8	max	.01		.431	3	.477	4				15		1
512	510			min	006		64		0	12		3		2		4
513			9	max	.01		.479		.455	4		2		15	NC	1
S14	512			min	006	2	7	2	0	1	-2.023e-2	3	146.379	2	2396.047	4
515	513		10	max	.009		.497		.429	4		2	6002.195	15	NC	1
S16	514			min	006	2	72	2	0	10	-1.854e-2	3		2	2309.788	4
517	515		11	max	.009	3	.485	3	.401	4		2	6128.691	15	NC	1
518	516			min	006	2	699	2	0	10	-1.685e-2	3	146.871	2	2330.001	4
519	517		12	max	.009	3	.445	3	.371	4		2	6542.372	15		
S20	518			min	006	2	637		0	1	-1.467e-2	3	157.839	2	2454.306	4
521 14 max .008 3 .296 3 .296 4 1.411e-2 2 8661.66 15 NC 1 522 min 005 2 414 2 0 12 -8.803e-3 3 214.967 2 3867.007 4 523 15 max .008 3 .201 3 .255 4 9.48e-3 2 NC 15 NC 1 524 min 005 2 276 2 0 12 -5.872e-3 3 276.613 2 2666.332 4 525 16 max .008 3 .102 3 .215 4 8.158e-3 4 NC 1 526 min 005 2 137 2 0 12 -2.94e-3 3 389.951 2 NC 1 526 min 005 2 007 2 0 12 -9.49e-3 3 38	519		13	max	.009	3	.38	3	.335	4	1.875e-2	2		15	NC	1
S22	520			min	006	2	538	2	0	1	-1.173e-2	3	178.968	2	2880.316	4
523 15 max .008 3 .201 3 .255 4 9.48e-3 2 NC 15 NC 1 524 min 005 2 276 2 0 12 -5.872e-3 3 276.613 2 6266.332 4 525 16 max .008 3 .102 3 .215 4 8.158e-3 4 NC 15 NC 1 526 min 005 2 137 2 0 12 -2.94e-3 3 389.951 2 NC 1 527 17 max .008 3 .006 3 .179 4 9.327e-3 4 NC 5 NC 1 528 min 005 2 007 2 0 12 -9.039e-6 3 630.189 2 NC 1 529 18 max .008 3 .103 2 .149	521		14	max	.008	3	.296	3	.296	4	1.411e-2	2	8661.66	15	NC	1
524 min 005 2 276 2 0 12 -5.872e-3 3 276.613 2 6266.332 4 525 16 max .008 3 .102 3 .215 4 8.158e-3 4 NC 15 NC 1 526 min 005 2 137 2 0 12 -2.94e-3 3 389.951 2 NC 1 527 17 max .008 3 .006 3 .179 4 9.327e-3 4 NC 5 NC 1 528 min 005 2 007 2 0 12 -9.039e-6 3 630.189 2 NC 1 529 18 max .008 3 .103 2 .149 4 5.589e-3 2 NC 1 530 min 005 2 083 3 0	522			min	005	2	414	2	0	12		3	214.967	2	3867.007	4
525 16 max .008 3 .102 3 .215 4 8.158e-3 4 NC 15 NC 1 526 min 005 2 137 2 0 12 -2.94e-3 3 389.951 2 NC 1 527 17 max .008 3 .006 3 .179 4 9.327e-3 4 NC 5 NC 1 528 min 005 2 007 2 0 12 -9.039e-6 3 630.189 2 NC 1 529 18 max .008 3 .103 2 .149 4 5.589e-3 2 NC 1 NC 1 530 min 005 2 083 3 0 12 -1.801e-3 3 1328.317 2 NC 1 531 19 max .008 3 <t.< td=""><td>523</td><td></td><td>15</td><td>max</td><td>.008</td><td></td><td>.201</td><td>3</td><td>.255</td><td>4</td><td>9.48e-3</td><td>2</td><td>NC</td><td>15</td><td>NC</td><td>1</td></t.<>	523		15	max	.008		.201	3	.255	4	9.48e-3	2	NC	15	NC	1
526 min 005 2 137 2 0 12 -2.94e-3 3 389.951 2 NC 1 527 17 max .008 3 .006 3 .179 4 9.327e-3 4 NC 5 NC 1 528 min 005 2 007 2 0 12 -9.039e-6 3 630.189 2 NC 1 529 18 max .008 3 .103 2 .149 4 5.589e-3 2 NC 5 NC 1 530 min 005 2 083 3 0 12 -1.801e-3 3 1328.317 2 NC 1 531 19 max .008 3 .203 2 .124 4 1.114e-2 2 NC 1 NC 1 532 min 005 2 166	524			min	005	2	276	2	0	12	-5.872e-3	3	276.613	2	6266.332	4
527 17 max .008 3 .006 3 .179 4 9.327e-3 4 NC 5 NC 1 528 min 005 2 007 2 0 12 -9.039e-6 3 630.189 2 NC 1 529 18 max .008 3 .103 2 .149 4 5.589e-3 2 NC 5 NC 1 530 min 005 2 083 3 0 12 -1.801e-3 3 1328.317 2 NC 1 531 19 max .008 3 .203 2 .124 4 1.114e-2 2 NC 1 NC 1 532 min 005 2 166 3 0 1 -3.678e-3 3 NC 1 NC 1 533 M5 1 max .032 3 <td>525</td> <td></td> <td>16</td> <td>max</td> <td>.008</td> <td>3</td> <td>.102</td> <td>3</td> <td>.215</td> <td>4</td> <td>8.158e-3</td> <td>4</td> <td>NC</td> <td>15</td> <td>NC</td> <td>1</td>	525		16	max	.008	3	.102	3	.215	4	8.158e-3	4	NC	15	NC	1
528 min 005 2 007 2 0 12 -9.039e-6 3 630.189 2 NC 1 529 18 max .008 3 .103 2 .149 4 5.589e-3 2 NC 5 NC 1 530 min 005 2 083 3 0 12 -1.801e-3 3 1328.317 2 NC 1 531 19 max .008 3 .203 2 .124 4 1.114e-2 2 NC 1 NC 1 532 min 005 2 166 3 0 1 -3.678e-3 3 NC 1 NC 1 533 M5 1 max .032 3 .357 2 .619 4 0 1 NC 1 NC 1 NC 1 NC 1 NC 1 <t< td=""><td>526</td><td></td><td></td><td>min</td><td>005</td><td>2</td><td>137</td><td>2</td><td>0</td><td>12</td><td>-2.94e-3</td><td>3</td><td>389.951</td><td>2</td><td>NC</td><td>1</td></t<>	526			min	005	2	137	2	0	12	-2.94e-3	3	389.951	2	NC	1
529 18 max .008 3 .103 2 .149 4 5.589e-3 2 NC 5 NC 1 530 min 005 2 083 3 0 12 -1.801e-3 3 1328.317 2 NC 1 531 19 max .008 3 .203 2 .124 4 1.114e-2 2 NC 1 NC 1 532 min 005 2 166 3 0 1 -3.678e-3 3 NC 1 NC 1 533 M5 1 max .032 3 .357 2 .619 4 0 1 NC 1 NC 1 534 min 023 2 .001 3 0 1 -1.221e-5 4 NC 1 NC 1 535 2 max .032 3 .	527		17	max	.008	3	.006	3	.179	4	9.327e-3	4	NC	5	NC	1
530 min 005 2 083 3 0 12 -1.801e-3 3 1328.317 2 NC 1 531 19 max .008 3 .203 2 .124 4 1.114e-2 2 NC 1 NC 1 532 min 005 2 166 3 0 1 -3.678e-3 3 NC 1 NC 1 533 M5 1 max .032 3 .357 2 .619 4 0 1 NC 1 NC 1 534 min 023 2 .001 3 0 1 -1.221e-5 4 NC 1 NC 1 535 2 max .032 3 .173 2 .605 4 6.274e-3 4 NC 5 NC 1 536 min 023 2 .002 <t< td=""><td></td><td></td><td></td><td>min</td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></t<>				min												
530 min 005 2 083 3 0 12 -1.801e-3 3 1328.317 2 NC 1 531 19 max .008 3 .203 2 .124 4 1.114e-2 2 NC 1 NC 1 532 min 005 2 166 3 0 1 -3.678e-3 3 NC 1 NC 1 533 M5 1 max .032 3 .357 2 .619 4 0 1 NC 1 NC 1 534 min 023 2 .001 3 0 1 -1.221e-5 4 NC 1 NC 1 535 2 max .032 3 .173 2 .605 4 6.274e-3 4 NC 5 NC 1 536 min 023 2 .002 <t< td=""><td>529</td><td></td><td>18</td><td>max</td><td>.008</td><td>3</td><td>.103</td><td>2</td><td>.149</td><td>4</td><td></td><td>2</td><td>NC</td><td>5</td><td>NC</td><td>1</td></t<>	529		18	max	.008	3	.103	2	.149	4		2	NC	5	NC	1
532 min 005 2 166 3 0 1 -3.678e-3 3 NC 1 NC 1 533 M5 1 max .032 3 .357 2 .619 4 0 1 NC 1 NC 1 534 min 023 2 .001 3 0 1 -1.221e-5 4 NC 1 NC 1 535 2 max .032 3 .173 2 .605 4 6.274e-3 4 NC 5 NC 1 536 min 023 2 .002 3 0 1 0 1 747.256 2 9418.593 4 537 3 max .032 3 .048 3 .588 4 1.241e-2 4 NC 5 NC 1 538 min 023 2 037 2 </td <td>530</td> <td></td> <td></td> <td></td> <td>005</td> <td>2</td> <td>083</td> <td>3</td> <td>0</td> <td>12</td> <td>-1.801e-3</td> <td>3</td> <td>1328.317</td> <td>2</td> <td>NC</td> <td>1</td>	530				005	2	083	3	0	12	-1.801e-3	3	1328.317	2	NC	1
533 M5 1 max .032 3 .357 2 .619 4 0 1 NC 1 NC 1 534 min 023 2 .001 3 0 1 -1.221e-5 4 NC 1 NC 1 535 2 max .032 3 .173 2 .605 4 6.274e-3 4 NC 5 NC 1 536 min 023 2 .002 3 0 1 0 1 747.256 2 9418.593 4 537 3 max .032 3 .048 3 .588 4 1.241e-2 4 NC 5 NC 1 538 min 023 2 037 2 0 1 0 1 347.207 2 5555.522 4 539 4 max .032 3 .174<	531		19	max	.008	3	.203	2	.124	4		2	NC	1	NC	1
534 min 023 2 .001 3 0 1 -1.221e-5 4 NC 1 NC 1 535 2 max .032 3 .173 2 .605 4 6.274e-3 4 NC 5 NC 1 536 min 023 2 .002 3 0 1 0 1 747.256 2 9418.593 4 537 3 max .032 3 .048 3 .588 4 1.241e-2 4 NC 5 NC 1 538 min 023 2 037 2 0 1 0 1 347.207 2 5555.522 4 539 4 max .032 3 .174 3 .567 4 1.011e-2 4 9748.546 15 NC 1 540 min 022 2 295 2	532			min	005	2	166	3	0	1	-3.678e-3	3	NC	1	NC	1
535 2 max .032 3 .173 2 .605 4 6.274e-3 4 NC 5 NC 1 536 min 023 2 .002 3 0 1 0 1 747.256 2 9418.593 4 537 3 max .032 3 .048 3 .588 4 1.241e-2 4 NC 5 NC 1 538 min 023 2 037 2 0 1 0 1 347.207 2 5555.522 4 539 4 max .032 3 .174 3 .567 4 1.011e-2 4 9748.546 15 NC 1 540 min 022 2 295 2 0 1 0 1 209.327 2 4310.793 4 541 5 max .031 3 .359 <td>533</td> <td>M5</td> <td>1</td> <td>max</td> <td>.032</td> <td>3</td> <td>.357</td> <td></td> <td>.619</td> <td>4</td> <td>0</td> <td>1</td> <td>NC</td> <td>1</td> <td>NC</td> <td>1</td>	533	M5	1	max	.032	3	.357		.619	4	0	1	NC	1	NC	1
536 min 023 2 .002 3 0 1 0 1 747.256 2 9418.593 4 537 3 max .032 3 .048 3 .588 4 1.241e-2 4 NC 5 NC 1 538 min 023 2 037 2 0 1 0 1 347.207 2 5555.522 4 539 4 max .032 3 .174 3 .567 4 1.011e-2 4 9748.546 15 NC 1 540 min 022 2 295 2 0 1 0 1 209.327 2 4310.793 4 541 5 max .031 3 .359 3 .545 4 7.812e-3 4 6757.656 15 NC 1 542 min 022 2 58	534			min	023	2	.001	3	0	1		4	NC	1	NC	1
537 3 max .032 3 .048 3 .588 4 1.241e-2 4 NC 5 NC 1 538 min 023 2 037 2 0 1 0 1 347.207 2 5555.522 4 539 4 max .032 3 .174 3 .567 4 1.011e-2 4 9748.546 15 NC 1 540 min 022 2 295 2 0 1 0 1 209.327 2 4310.793 4 541 5 max .031 3 .359 3 .545 4 7.812e-3 4 6757.656 15 NC 1 542 min 022 2 58 2 0 1 0 1 145.458 2 3706.481 4 543 6 max .03 3 .	535		2	max	.032	3	.173	2	.605	4	6.274e-3	4	NC	5	NC	1
538 min 023 2 037 2 0 1 0 1 347.207 2 5555.522 4 539 4 max .032 3 .174 3 .567 4 1.011e-2 4 9748.546 15 NC 1 540 min 022 2 295 2 0 1 0 1 209.327 2 4310.793 4 541 5 max .031 3 .359 3 .545 4 7.812e-3 4 6757.656 15 NC 1 542 min 022 2 58 2 0 1 0 1 145.458 2 3706.481 4 543 6 max .03 3 .571 3 .522 4 5.514e-3 4 5166.967 15 NC 1 544 min 021 2 866	536			min	023	2	.002	3	0	1	0	1	747.256	2	9418.593	4
539 4 max .032 3 .174 3 .567 4 1.011e-2 4 9748.546 15 NC 1 540 min 022 2 295 2 0 1 0 1 209.327 2 4310.793 4 541 5 max .031 3 .359 3 .545 4 7.812e-3 4 6757.656 15 NC 1 542 min 022 2 58 2 0 1 0 1 145.458 2 3706.481 4 543 6 max .03 3 .571 3 .522 4 5.514e-3 4 5166.967 15 NC 1 544 min 021 2 866 2 0 1 0 1 111.363 2 3322.766 4	537		3	max	.032	3	.048	3	.588	4	1.241e-2	4	NC	5	NC	1
539 4 max .032 3 .174 3 .567 4 1.011e-2 4 9748.546 15 NC 1 540 min 022 2 295 2 0 1 0 1 209.327 2 4310.793 4 541 5 max .031 3 .359 3 .545 4 7.812e-3 4 6757.656 15 NC 1 542 min 022 2 58 2 0 1 0 1 145.458 2 3706.481 4 543 6 max .03 3 .571 3 .522 4 5.514e-3 4 5166.967 15 NC 1 544 min 021 2 866 2 0 1 0 1 111.363 2 3322.766 4	538			min	023	2	037			1	0	1	347.207	2	5555.522	4
540 min 022 2 295 2 0 1 0 1 209.327 2 4310.793 4 541 5 max .031 3 .359 3 .545 4 7.812e-3 4 6757.656 15 NC 1 542 min 022 2 58 2 0 1 0 1 145.458 2 3706.481 4 543 6 max .03 3 .571 3 .522 4 5.514e-3 4 5166.967 15 NC 1 544 min 021 2 866 2 0 1 0 1 111.363 2 3322.766 4	539		4	max	.032	3	.174	3	.567	4	1.011e-2	4		15	NC	1
541 5 max .031 3 .359 3 .545 4 7.812e-3 4 6757.656 15 NC 1 542 min 022 2 58 2 0 1 0 1 145.458 2 3706.481 4 543 6 max .03 3 .571 3 .522 4 5.514e-3 4 5166.967 15 NC 1 544 min 021 2 866 2 0 1 0 1 111.363 2 3322.766 4	540			min	022	2	295	2	0	1		1		2	4310.793	4
542 min 022 2 58 2 0 1 0 1 145.458 2 3706.481 4 543 6 max .03 3 .571 3 .522 4 5.514e-3 4 5166.967 15 NC 1 544 min 021 2 866 2 0 1 0 1 111.363 2 3322.766 4			5	max	.031	3	.359	3	.545	4	7.812e-3	4		15	NC	1
543 6 max .03 3 .571 3 .522 4 5.514e-3 4 5166.967 15 NC 1 544 min 021 2 866 2 0 1 0 1 111.363 2 3322.766 4	542			min	022	2		2	0	1	0	1		2	3706.481	4
544 min021 2866 2 0 1 0 1 111.363 2 3322.766 4			6			3		3	.522	4	5.514e-3	4	5166.967	15	NC	
										1		1	111.363			4
	545		7	max	.03	3	.781	3	.498	4	3.215e-3	4		15		

Model Name

Schletter, Inc. HCV

: Standard PVMax Racking System

Nov 23, 2015

Checked By:____

Member	Sec		x [in]	LC	y [in]	LC	z [in]	LC	x Rotate [r	LC	(n) L/y Ratio LC	(n) L/z Ratio	LC
546		min	021	2	-1.127	2	0	1	0	1	91.756 2	3001.933	4
547	8	max	.029	3	.959	3	.476	4	9.166e-4	4	3727.586 15	NC	1
548		min	021	2	-1.337	2	0	1	0	1	80.395 2	2672.571	4
549	9	max	.028	3	1.074	3	.455	4	0	1	3457.946 15	NC	1
550		min	02	2	-1.471	2	0	1	-7.183e-6	5	74.579 2	2388.008	4
551	10	max	.028	3	1.116	3	.429	4	0	1_	3376.772 15		1
552		min	02	2	-1.517	2	0	1	-6.887e-6	5	72.88 2	2331.729	4
553	11	max	.027	3	1.088	3	.401	4	0	1_	3458.201 15		1
554		min	02	2	-1.472	2	0	1	-6.591e-6	5	74.861 2	2366.611	4
555	12	max	.026	3	.992	3	.372	4	6.601e-4	4	3728.18 15		1
556		min	019	2	-1.333	2	0	1	0	1_	81.336 2	2406.223	4
557	13	max	.026	3	.838	3	.337	4	2.316e-3	_4_	4256.081 15		1
558		min	019	2	-1.111	2	0	1	0	_1_	94.241 2	2798.154	4
559	14	max	.025	3	.645	3	.296	4	3.972e-3	4	5169.191 15		1
560		min	<u>019</u>	2	837	2	0	1	0	_1_	117.09 2	3911.017	4
561	15	max	.024	3	.43	3	.252	4	5.628e-3	4	6761.98 15		1
562	10	min	018	2	<u>543</u>	2	0	1	0	<u>1</u>	158.287 2	7307.37	4
563	16	max	.023	3	.214	3	.21	4	7.284e-3	4_	9757.542 15		1
564	47	min	018	2	26	2	0	1	0	1_	239.373 2	NC NC	1
565	17	max	.023	2	.015	3	.173	1	8.94e-3	4	NC 5 424.503 2	NC NC	1
566	10	min	018	3	019	2	0	-	0 4 F24 o 2	1_1		NC NC	
567 568	18	max	.023 018	2	<u>.154</u> 151	3	.144 0	1	4.521e-3 0	<u>4</u> 1	NC 5 965.062 2	NC NC	1
569	19	max	.023	3	.289	2	.124	4	0	+	NC 1	NC NC	1
570	19	min	017	2	299	3	0	1	-6.625e-6	4	NC 1	NC	1
571 M9	1	max	.011	3	.226	2	.619	4	1.645e-2	3	NC 1	NC	1
572	<u> </u>	min	007	2	062	3	0	1	-6.618e-3	2	NC 1	NC	1
573	2	max	.011	3	.11	2	.604	4	8.168e-3	3	NC 5	NC	1
574		min	007	2	03	3	0	10	-3.246e-3	2	1169.349 2	NC	1
575	3	max	.011	3	.016	3	.586	4	1.236e-2	4	NC 5	NC	1
576		min	007	2	013	2	0	10	-2.533e-5	10	566.734 2	6005.513	4
577	4	max	.011	3	.087	3	.566	4	9.77e-3	5	NC 15	NC	1
578		min	007	2	149	2	0	10	-3.979e-3	2	361.088 2	4524.001	4
579	5	max	.011	3	.175	3	.544	4	7.928e-3	3	NC 15		1
580		min	006	2	29	2	0	10	-7.954e-3	2	262.556 2	3782.66	4
581	6	max	.01	3	.268	3	.522	4	1.184e-2	3	8625.323 15		1
582		min	006	2	42 <u>5</u>	2	0	10	-1.193e-2	2	207.969 2	3317.588	4
583	7	max	.01	3	.357	3	.499	4	1.576e-2	3	7300.594 15		1
584	-	min	006	2	<u>545</u>	2	0	1	-1.59e-2	2	175.606 2	2964.224	1
585 586	8	max	.01 006	3	.431 64	3	.477 0	1	1.967e-2 -1.988e-2	<u>3</u>	6514.783 15 156.406 2	NC 2648.98	-
587	9	min max	.01	3	<u>04</u> .479	3	.455	4	2.023e-2	3	6102.652 15		1
588		min	006	2	7	2	0	10	-2.218e-2		146.379 2	2389.407	4
589	10	max	.009	3	.497	3	.429	4	1.854e-2	3	5976.369 15		1
590	1.0	min	006	2	72	2	0	1	-2.335e-2	2	143.436 2	2310.618	_
591	11	max	.009	3	.485	3	.401	4	1.685e-2	3	6102.208 15		1
592		min	006	2	699	2	0	1	-2.453e-2	2	146.871 2		4
593	12	max	.009	3	.445	3	.371	4	1.467e-2	3	6513.901 15		1
594		min	006	2	637	2	0	10	-2.338e-2	2	157.839 2	2439.73	4
595	13	max	.009	3	.38	3	.335	4	1.173e-2	3	7299.166 15	NC	1
596		min	006	2	538	2	0	10	-1.875e-2	2	178.968 2	2877.102	4
597	14	max	.008	3	.296	3	.295	4	8.803e-3	3	8623.076 15		1
598		min	005	2	414	2	002	1	-1.411e-2	2	214.967 2	3949.301	5
599	15	max	.008	3	.201	3	.253	4	5.872e-3	3	NC 15		1
600	40	min	005	2	276	2	004	1	-9.48e-3	2	276.613 2	6718.195	
601	16	max	.008	3	.102	3	.212	4	7.26e-3	5	NC 15		1
602		min	005	2	137	2	006	1	-4.847e-3	2	389.951 2	NC	1

Company Designer Job Number Model Name Schletter, Inc.

HCV

Standard PVMax Racking System

Nov 23, 2015

Checked By:____

	Member	Sec		x [in]	LC	y [in]	LC	z [in]	LC	x Rotate [r	LC	(n) L/y Ratio	LC	(n) L/z Ratio	o LC
603		17	max	.008	3	.006	3	.176	4	9.101e-3	4	NC	5	NC	1
604			min	005	2	007	2	006	1	-4.288e-4	1	630.189	2	NC	1
605		18	max	.008	3	.103	2	.146	4	4.467e-3	5	NC	5	NC	1
606			min	005	2	083	3	005	1	-5.589e-3	2	1328.317	2	NC	1
607		19	max	.008	3	.203	2	.124	4	3.678e-3	3	NC	1	NC	1
608			min	005	2	166	3	0	12	-1.114e-2	2	NC	1	NC	1

Company:	Schletter, Inc.	Date:	8/1/2016
Engineer:	HCV	Page:	1/5
Project:	Standard PVMax - Worst Case, 14-	-40 Inch	Width
Address:			
Phone:			
E-mail:			

1.Project information

Customer company: Customer contact name: Customer e-mail: Comment:

Project description: Location: Fastening description:

2. Input Data & Anchor Parameters

General

Design method: ACI 318-05 Units: Imperial units

Anchor Information:

Anchor type: Bonded anchor

Material: A193 Grade B8/B8M (304/316SS)

Diameter (inch): 0.500

Effective Embedment depth, hef (inch): 6.000

Code report: IAPMO UES ER-263

Anchor category: -Anchor ductility: Yes hmin (inch): 8.50 c_{ac} (inch): 9.67 C_{min} (inch): 1.75 Smin (inch): 3.00

Load and Geometry

<Figure 1>

Load factor source: ACI 318 Section 9.2

Load combination: not set Seismic design: No

Anchors subjected to sustained tension: No Apply entire shear load at front row: No Anchors only resisting wind and/or seismic loads: No

Base Material

Concrete: Normal-weight

Concrete thickness, h (inch): 18.00

State: Cracked

Compressive strength, f'c (psi): 2500

 $\Psi_{c,V}$: 1.0

Reinforcement condition: B tension, B shear Supplemental reinforcement: Not applicable Reinforcement provided at corners: No

Do not evaluate concrete breakout in tension: No Do not evaluate concrete breakout in shear: No

Hole condition: Dry concrete

Inspection: Periodic

Temperature range, Short/Long: 110/75°F Ignore 6do requirement: Not applicable

Build-up grout pad: No

Base Plate

Length x Width x Thickness (inch): 4.00 x 4.00 x 0.28

Company:	Schletter, Inc.	Date:	8/1/2016
Engineer:	HCV	Page:	2/5
Project:	Standard PVMax - Worst Case, 14-	-40 Inch	Width
Address:			
Phone:			
E-mail:			•

<Figure 2>

Recommended Anchor

Anchor Name: AT-XP® - AT-XP w/ 1/2"Ø A193 Gr. B8/B8M (304/316SS)

Code Report: IAPMO UES ER-263

Company:	Schletter, Inc.	Date:	8/1/2016
Engineer:	HCV	Page:	3/5
Project:	Standard PVMax - Worst Case, 14-	-40 Inch	Width
Address:			
Phone:			
E-mail:			

3. Resulting Anchor Forces

Anchor	Tension load, N _{ua} (lb)	Shear load x, V _{uax} (lb)	Shear load y, V _{uay} (lb)	Shear load combined, $\sqrt{(V_{uax})^2+(V_{uay})^2}$ (lb)	
1	1020.0	27.0	565.0	565.6	
Sum	1020.0	27.0	565.0	565 6	

Maximum concrete compression strain (‰): 0.00 Maximum concrete compression stress (psi): 0 Resultant tension force (lb): 1020

Resultant compression force (lb): 0

Eccentricity of resultant tension forces in x-axis, e'_{Nx} (inch): 0.00 Eccentricity of resultant tension forces in y-axis, e'_{Ny} (inch): 0.00 Eccentricity of resultant shear forces in x-axis, e'_{Vx} (inch): 0.00 Eccentricity of resultant shear forces in y-axis, e'_{Vy} (inch): 0.00

<Figure 3>

4. Steel Strength of Anchor in Tension(Sec. D.5.1)

N _{sa} (lb)	ϕ	ϕN_{sa} (lb)	
8095	0.75	6071	

5. Concrete Breakout Strength of Anchor in Tension (Sec. D.5.2)

 $N_b = k_c \lambda \sqrt{f'_c h_{ef}^{1.5}}$ (Eq. D-7)

Kc	λ	f'c (psi)	h _{ef} (in)	N_b (lb)			
17.0	1.00	2500	5.247	10215			
$\phi N_{cb} = \phi (A_t)$	Nc / A_{Nco}) $\Psi_{ed,N}$ $\Psi_{c,N}$	$_{N}\Psi_{cp,N}N_{b}$ (Sec. I	D.4.1 & Eq. D-4))			
A_{Nc} (in ²)	A_{Nco} (in ²)	$\Psi_{ed,N}$	$\Psi_{c,N}$	$\Psi_{cp,N}$	N_b (lb)	ϕ	ϕN_{cb} (lb)
220.36	247.75	0.967	1.00	1.000	10215	0.65	5710

6. Adhesive Strength of Anchor in Tension (AC308 Sec. 3.3)

 $\tau_{k,cr} = \tau_{k,cr} f_{short-term} K_{sat}$

rt-term K _{sat} τ _{k,cr} (psi)
0 1.00 1035
. D-16f)
(in) h_{ef} (in) N_{a0} (lb)
0 6.000 9755
Ψ _{ed,Na} Ψ _{p,Na} N _{a0} (Sec. D.4.1 & Eq. D-16a)
$\Psi_{ m ed,Na}$ $\Psi_{ m p,Na}$

Company:	Schletter, Inc.	Date:	8/1/2016		
Engineer:	HCV	Page:	4/5		
Project:	Standard PVMax - Worst Case, 14-40 Inch Width				
Address:					
Phone:					
E-mail:					

8. Steel Strength of Anchor in Shear (Sec. D.6.1)

V_{sa} (lb)	$\phi_{ extit{grout}}$	ϕ	$\phi_{ extit{grout}} \phi V_{ ext{sa}}$ (lb)	
4855	1.0	0.65	3156	

9. Concrete Breakout Strength of Anchor in Shear (Sec. D.6.2)

Shear perpendicular to edge in y-direction:

 $V_{by} = 7(I_e/d_a)^{0.2} \sqrt{d_a \lambda} \sqrt{f'_c c_{a1}}^{1.5}$ (Eq. D-24)

l _e (in)	d _a (in)	λ	f'_c (psi)	c _{a1} (in)	V_{by} (lb)			
4.00	0.50	1.00	2500	7.00	6947			
$\phi V_{cby} = \phi (A_V)$	/c / A vco) \(\mathcal{P}_{ed, V} \(\mathcal{P}_{c, V} \)	$ \sqrt{\Psi_{h,V}V_{by}} $ (Sec.	D.4.1 & Eq. D-2	1)				
A_{Vc} (in ²)	A_{Vco} (in ²)	$arPsi_{\sf ed,V}$	$arPsi_{c,V}$	$\Psi_{h,V}$	V_{by} (lb)	ϕ	ϕV_{cby} (lb)	
192.89	220.50	0.925	1.000	1.000	6947	0.70	3934	

 V_{bx} (lb)

8282

Shear perpendicular to edge in x-direction:

$V_{bx} = 7(I_e/d_a)^{0.2} \sqrt{d_a \lambda} \sqrt{f'_c c_{a1}^{1.5}}$ (Eq. D-24)								
le (in)	da (in)	λ	f'c (psi)	Ca1 (in)				
4.00	0.50	1.00	2500	7.87				

 $\phi V_{cbx} = \phi (A_{Vc}/A_{Vco}) \Psi_{ed,V} \Psi_{c,V} \Psi_{h,V} V_{bx}$ (Sec. D.4.1 & Eq. D-21)

Avc (in ²)	Avco (in ²)	$\Psi_{\sf ed,V}$	$\Psi_{c,V}$	$\Psi_{h,V}$	V_{bx} (lb)	ϕ	ϕV_{cbx} (lb)
165.27	278.72	0.878	1.000	1.000	8282	0.70	3018

Shear parallel to edge in x-direction:

 $V_{by} = 7(I_e/d_a)^{0.2} \sqrt{d_a \lambda} \sqrt{f_c c_{a1}}^{1.5} \text{ (Eq. D-24)}$ $\frac{I_e \text{ (in)} \qquad d_a \text{ (in)} \qquad \lambda \qquad \qquad f'_c \text{ (psi)} \qquad c_{a1} \text{ (in)} \qquad V_{by} \text{ (lb)}}{4.00 \qquad 0.50 \qquad 1.00 \qquad 2500 \qquad 7.00 \qquad 6947}$ $\phi V_{cbx} = \phi (2) (A_{Vc}/A_{Vc}) \Psi_{ed,V} \Psi_{c,V} \Psi_{h,V} V_{by} \text{ (Sec. D.4.1, D.6.2.1(c) \& Eq. D-21)}$

$\varphi \mathbf{v} \cos \varphi \left(\frac{2}{3} \right) (11)$	2/(NVC) / NVCO) I ed, v I C, v I II, v v by (OCO. D.4.1, D.O.Z. NO) & Eq. D Z 1)						
Avc (in ²)	$Av\infty$ (in ²)	$\varPsi_{\sf ed,V}$	$\Psi_{c,V}$	$\Psi_{h,V}$	V _{by} (lb)	ϕ	ϕV_{cbx} (lb)
192.89	220.50	1.000	1.000	1.000	6947	0.70	8508

Shear parallel to edge in y-direction:

 $V_{bx} = 7(I_e/d_a)^{0.2} \sqrt{d_a \lambda} \sqrt{f'_c c_{a1}}^{1.5}$ (Eq. D-24)

l _e (in)	d _a (in)	λ	f'_c (psi)	<i>c</i> _{a1} (in)	V_{bx} (lb)		
4.00	0.50	1.00	2500	7.87	8282		
$\phi V_{cby} = \phi (2)$	$(A_{Vc}/A_{Vco})\Psi_{ed,V}$	$\Psi_{c,V}\Psi_{h,V}V_{bx}$ (Se	c. D.4.1, D.6.2.1	(c) & Eq. D-21)			
A_{Vc} (in ²)	A_{Vco} (in ²)	$\Psi_{\sf ed,V}$	$arPsi_{c,V}$	$\Psi_{h,V}$	V_{bx} (lb)	ϕ	ϕV_{cby} (lb)
165.27	278.72	1.000	1.000	1.000	8282	0.70	6875

10. Concrete Pryout Strength of Anchor in Shear (Sec. D.6.3)

 $\phi V_{cp} = \phi \min |k_{cp} N_a \; ; \; k_{cp} N_{cb}| = \phi \min |k_{cp} (A_{Na}/A_{Na0}) \, \Psi_{ed,Na} \, \Psi_{p,Na} N_{a0} \; ; \; k_{cp} (A_{Nc}/A_{Nco}) \, \Psi_{ed,N} \, \Psi_{c,N} \, \Psi_{cp,N} N_b| \; (\text{Eq. D-30a})$

Kcp	A_{Na} (in ²)	A_{Na0} (in ²)	$\Psi_{\sf ed,Na}$	$arPsi_{p,Na}$	N _{a0} (lb)	N _a (lb)		
2.0	109.66	109.66	1.000	1.000	9755	9755		
Anc (in²)	Ανω (in²)	$\Psi_{ed,N}$	$\Psi_{c,N}$	$arPsi_{cp,N}$	N _b (lb)	Ncb (lb)	ϕ	$\phi V_{c ho}$ (lb)
220.36	247.75	0.967	1.000	1.000	10215	8785	0.70	12298

Company:	Schletter, Inc.	Date:	8/1/2016		
Engineer:	HCV	Page:	5/5		
Project:	Standard PVMax - Worst Case, 14-40 Inch Width				
Address:					
Phone:					
E-mail:			_		

11. Results

Interaction of Tensile and Shear Forces (Sec. D.7)

Tension	Factored Load, Nua (lb)	Design Strength, øNn (lb)	Ratio	Status
Steel	1020	6071	0.17	Pass
Concrete breakout	1020	5710	0.18	Pass
Adhesive	1020	5365	0.19	Pass (Governs)
Shear	Factored Load, V _{ua} (lb)	Design Strength, øVn (lb)	Ratio	Status
Steel	566	3156	0.18	Pass (Governs)
T Concrete breakout y+	565	3934	0.14	Pass
T Concrete breakout x+	27	3018	0.01	Pass
Concrete breakout y+	27	8508	0.00	Pass
Concrete breakout x+	565	6875	0.08	Pass
Concrete breakout, combined	-	-	0.14	Pass
Pryout	566	12298	0.05	Pass
Interaction check Nua	$/\phi N_n$ $V_{ua}/\phi V_n$	Combined Rat	io Permissible	Status
Sec. D.7.1 0.1	9 0.00	19.0 %	1.0	Pass

AT-XP w/ 1/2"Ø A193 Gr. B8/B8M (304/316SS) with hef = 6.000 inch meets the selected design criteria.

12. Warnings

- This temperature range is currently outside the scope of ACI 318-11 and ACI 355.4, and is provided for historical purposes.
- Designer must exercise own judgement to determine if this design is suitable.
- Refer to manufacturer's product literature for hole cleaning and installation instructions.

Company:	Schletter, Inc.	Date:	8/1/2016		
Engineer:	HCV	Page:	1/5		
Project:	Standard PVMax - Worst Case, 32-40 Inch Width				
Address:					
Phone:					
E-mail:					

1.Project information

Customer company: Customer contact name: Customer e-mail:

Comment:

Project description:

Location:

Fastening description:

2. Input Data & Anchor Parameters

General

Design method: ACI 318-05 Units: Imperial units

Anchor Information:

Anchor type: Bonded anchor

Material: A193 Grade B8/B8M (304/316SS)

Diameter (inch): 0.500

Effective Embedment depth, hef (inch): 6.000

Code report: IAPMO UES ER-263

Anchor category: -Anchor ductility: Yes hmin (inch): 8.50 c_{ac} (inch): 9.67 C_{min} (inch): 1.75 Smin (inch): 3.00

Base Material

Concrete: Normal-weight

Concrete thickness, h (inch): 18.00

State: Cracked

Compressive strength, f'c (psi): 2500

 $\Psi_{c,V}$: 1.0

Reinforcement condition: B tension, B shear Supplemental reinforcement: Not applicable Reinforcement provided at corners: No

Do not evaluate concrete breakout in tension: No Do not evaluate concrete breakout in shear: No

Hole condition: Dry concrete

Inspection: Periodic

Temperature range, Short/Long: 110/75°F Ignore 6do requirement: Not applicable

Build-up grout pad: No

Load and Geometry

Load factor source: ACI 318 Section 9.2

Load combination: not set Seismic design: No

Anchors subjected to sustained tension: No

Base Plate

Length x Width x Thickness (inch): 4.00 x 7.00 x 0.28

Company:	Schletter, Inc.	Date:	8/1/2016
Engineer:	HCV	Page:	2/5
Project:	Standard PVMax - Worst Case, 32-	40 Inch	Width
Address:			
Phone:			
E-mail:			

<Figure 2>

Recommended Anchor

Anchor Name: AT-XP® - AT-XP w/ 1/2"Ø A193 Gr. B8/B8M (304/316SS)

Code Report: IAPMO UES ER-263

Company:	Schletter, Inc.	Date:	8/1/2016
Engineer:	HCV	Page:	3/5
Project:	Standard PVMax - Worst Case, 32	-40 Inch	Width
Address:			
Phone:			
E-mail:			

3. Resulting Anchor Forces

Anchor	Tension load, N _{ua} (lb)	Shear load x, V _{uax} (lb)	Shear load y, V _{uay} (lb)	Shear load combined, $\sqrt{(V_{uax})^2+(V_{uay})^2}$ (lb)
1	2732.0	1650.0	0.0	1650.0
2	2732.0	1650.0	0.0	1650.0
Sum	5464.0	3300.0	0.0	3300.0

Maximum concrete compression strain (%): 0.00 Maximum concrete compression stress (psi): 0

Resultant tension force (lb): 5464 Resultant compression force (lb): 0

Eccentricity of resultant tension forces in x-axis, e'_{Nx} (inch): 0.00 Eccentricity of resultant tension forces in y-axis, e'_{Ny} (inch): 0.00 Eccentricity of resultant shear forces in x-axis, e'_{Vx} (inch): 0.00 Eccentricity of resultant shear forces in y-axis, e'_{Vy} (inch): 0.00

<Figure 3>

4. Steel Strength of Anchor in Tension(Sec. D.5.1)

N _{sa} (lb)	ϕ	ϕN_{sa} (lb)
8095	0.75	6071

5. Concrete Breakout Strength of Anchor in Tension (Sec. D.5.2)

 $N_b = k_c \lambda \sqrt{f'_c h_{ef}}^{1.5} \text{ (Eq. D-7)}$

Kc	λ	ť (psi)	h _{ef} (in)	N_b (lb)				
17.0	1.00	2500	6.000	12492				
$\phi N_{cbg} = \phi (A_I)$	$_{ m Nc}$ / $A_{ m Nco}$) $\Psi_{ m ec,N}$ $\Psi_{ m ec}$	I,N $\Psi_{c,N} \Psi_{cp,N} N_b$ (Sec. D.4.1 & Eq	. D-5)				
A_{Nc} (in ²)	A_{Nco} (in ²)	$arPsi_{ec,N}$	$\mathscr{V}_{ed,N}$	$\Psi_{c,N}$	$arPsi_{cp,N}$	N_b (lb)	ϕ	ϕN_{cbg} (lb)
408.24	324.00	1.000	1.000	1.00	1.000	12492	0.65	10231

6. Adhesive Strength of Anchor in Tension (AC308 Sec. 3.3)

 $\tau_{k,cr} = \tau_{k,cr} f_{short-term} K_{sat}$

$ au_{k,cr}$ (psi)	$f_{ extit{short-term}}$	K _{sat}	τ _{k,cr} (psi)	
1035	1.00	1.00	1035	_
$N_{a0} = \tau_{k,cr} \pi d_{a}$	hef (Eq. D-16f)			
τ _{k,cr} (psi)	d _a (in)	h _{ef} (in)	N _{a0} (lb)	
1035	0.50	6.000	9755	_
$\phi N_{ag} = \phi (A_{Na})$	$_{a}$ / A_{Na0}) $\Psi_{ed,Na}$ Ψ	$Y_{g,Na} \Psi_{ec,Na} \Psi_{p,Na} N$	ao (Sec. D.4.1 & Eq.	D-16b)

A_{Na} (in ²)	A _{Na0} (in ²)	$\Psi_{\sf ed,Na}$	$\Psi_{g,Na}$	$\Psi_{ec,Na}$	$arPsi_{ extsf{p}, extsf{Na}}$	$N_{a0}(lb)$	ϕ	ϕN_{ag} (lb)	
158.66	109.66	1.000	1.043	1.000	1.000	9755	0.55	8093	

Company:	Schletter, Inc.	Date:	8/1/2016
Engineer:	HCV	Page:	4/5
Project:	Standard PVMax - Worst Case, 32-	-40 Inch	Width
Address:			
Phone:			
E-mail:			

8. Steel Strength of Anchor in Shear (Sec. D.6.1)

V_{sa} (lb)	$\phi_{ extit{grout}}$	ϕ	$\phi_{ extit{grout}} \phi V_{ ext{sa}}$ (lb)	
4855	1.0	0.65	3156	

9. Concrete Breakout Strength of Anchor in Shear (Sec. D.6.2)

Shear perpendicular to edge in x-direction:

 $V_{bx} = 7(I_e/d_a)^{0.2} \sqrt{d_a \lambda} \sqrt{f'_c c_{a1}}^{1.5}$ (Eq. D-24)

l _e (in)	da (in)	λ	f'_c (psi)	Ca1 (in)	V_{bx} (lb)			
4.00	0.50	1.00	2500	12.00	15593			
$\phi V_{cbgx} = \phi (A$	Avc/Avco) Yec, v Ye	$_{ed,V} arPsi_{c,V} arPsi_{h,V} arV_{bx}$	(Sec. D.4.1 & Ed	ą. D-22)				
Avc (in ²)	A_{Vco} (in ²)	$\Psi_{ec,V}$	$\varPsi_{\sf ed,V}$	$arPsi_{ extsf{c}, extsf{V}}$	$\Psi_{h,V}$	V_{bx} (lb)	ϕ	ϕV_{cbgx} (lb)
576.00	648.00	1.000	0.928	1.000	1.000	15593	0.70	9001

Shear parallel to edge in x-direction:

 $V_{by} = 7(I_e/d_a)^{0.2} \sqrt{d_a \lambda} \sqrt{f'_c c_{a1}}^{1.5}$ (Eq. D-24)

le (in)	da (in)	λ	f'c (psi)	<i>c</i> _{a1} (in)	V_{by} (lb)		
4.00	0.50	1.00	2500	13.66	18939		
$\phi V_{cbx} = \phi (2)$	$(A_{Vc}/A_{Vco})\Psi_{ed,V}$	$\Psi_{c,V}\Psi_{h,V}V_{by}$ (Se	c. D.4.1, D.6.2.1	(c) & Eq. D-21)			
A_{Vc} (in ²)	A_{Vco} (in ²)	$\Psi_{\sf ed,V}$	$\Psi_{c,V}$	$arPsi_{h,V}$	V_{by} (lb)	ϕ	ϕV_{cbx} (lb)
737.64	839.68	1.000	1.000	1.000	18939	0.70	23292

10. Concrete Pryout Strength of Anchor in Shear (Sec. D.6.3)

 $\phi V_{\textit{Cpg}} = \phi \min |\textit{KcpNag}\;;\; \textit{KcpNcbg}| = \phi \min |\textit{Kcp}(\textit{A}_\textit{Na} / \textit{A}_\textit{Na0}) \, \Psi_{\textit{ed},\textit{Na}} \, \Psi_{\textit{e},\textit{Na}} \, \Psi_{\textit{e},\textit{Na}} \, \Psi_{\textit{e},\textit{Na}} \, N_{\textit{a0}}\;;\; \textit{Kcp}(\textit{A}_\textit{Nc} / \textit{A}_\textit{Nco}) \, \Psi_{\textit{e},\textit{N}} \, \Psi_{\textit{e},\textit{N}} \, \Psi_{\textit{e},\textit{N}} \, \Psi_{\textit{e},\textit{N}} \, N_{\textit{b}}|\; (\text{Eq. D-30b})$

, ,,,	1 1 3 7 1		(3,	r, , , , , , , ,	, ,		
Kcp	A_{Na} (in ²)	A_{Na0} (in ²)	$\Psi_{\sf ed,Na}$	$\Psi_{g,Na}$	$\Psi_{ec,Na}$	$\Psi_{ m extsf{p},Na}$	<i>N</i> _{a0} (lb)	Na (lb)
2.0	158.66	109.66	1.000	1.043	1.000	1.000	9755	14715
A _{Nc} (in²)	A _{Nco} (in ²)	$\Psi_{ec,N}$	$\Psi_{\sf ed,N}$	$\Psi_{c,N}$	$\Psi_{cp,N}$	N _b (lb)	N _{cb} (lb)	ϕ
408.24	324.00	1.000	1.000	1.000	1.000	12492	15740	0.70

φV_{cpg} (lb) 20601

11. Results

Interaction of Tensile and Shear Forces (Sec. D.7)

Tension	Factored Load, Nua (lb)	Design Strength, øNn (lb)	Ratio	Status
Steel	2732	6071	0.45	Pass
Concrete breakout	5464	10231	0.53	Pass
Adhesive	5464	8093	0.68	Pass (Governs)
Shear	Factored Load, V _{ua} (lb)	Design Strength, øVn (lb)	Ratio	Status
Steel	1650	3156	0.52	Pass (Governs)
T Concrete breakout x+	3300	9001	0.37	Pass

Company:	Schletter, Inc.	Date:	8/1/2016		
Engineer:	HCV	Page:	5/5		
Project:	Standard PVMax - Worst Case, 32-40 Inch Width				
Address:					
Phone:					
E-mail:					

Concrete breako	ut y- 1650	23292	2 0.0	07	Pass	
Pryout	3300	20601	0.1	16	Pass	
					-	
Interaction check	$N_{ua}/\phi N_n$	$V_{ua}/\phi V_n$	Combined Ratio	Permissible	Status	
Sec. D.7.3	0.68	0.52	119.8 %	1.2	Pass	

AT-XP w/ 1/2"Ø A193 Gr. B8/B8M (304/316SS) with hef = 6.000 inch meets the selected design criteria.

12. Warnings

- This temperature range is currently outside the scope of ACI 318-11 and ACI 355.4, and is provided for historical purposes.
- Designer must exercise own judgement to determine if this design is suitable.
- Refer to manufacturer's product literature for hole cleaning and installation instructions.