ENHANCED ENGLISH ABSTRACT FOR DE2359818 FROM DERWENT

```
1 / 1 WPAT - @Thomson Reuters
Derwent Accession :
 1975-39580W [24]
Title :
 Piezo electric lead titanate-zirconate ceramic contg. pyrochlore type
 antimonate or niobate, giving balanced characteristics
Derwent Class :
 L02 L03
Patent Assignee :
  (DENK) DENKI KAGAKU KOGYO TDK
Inventor :
 HASEGAWA T; HORI M; TAKAHASHI K; TANAKA Y; TSURUTA M
Nbr of Patents :
Nbr of Countries :
 3
Patent Number :
 DE2359818
                A 19750605 DW1975-24 Ger *
 AP: 1973DE-2359818 19731130
 GB1408106
                 A 19751001 DW1975-40 Eng
 US4087366
                 A 19780502 DW1978-25 C04B-035/46 Eng NCEO
 AP: 1973US-0420653 19731130, 1976US-0709714 19760729, 1977US-0828193
 19770826, 1977US-0837264 19770927
 DE2359818
                  B 19780817 DW1978-34 Ger
 HS4169803
                  A 19791002 DW1979-41 C04B-035/46 Eng NCEO
 AP: 1973US-0420653 19731130, 1976US-0709714 19760729, 1977US-0828193
 19770826, 1977US-0837264 19770927
 US4184971
                 A 19800122 DW1980-05 C04B-035/46 Eng NCEO
 AP: 1973US-0420653 19731130, 1976US-0709714 19760729, 1977US-0828193
  19770826, 1977US-0837264 19770927
Priority Number :
 1973DE-2359818 19731130
Intl Patent Class :
 C04B-035/00; C04B-035/46; C04B-035/48; C04B-035/491; C04B-035/50;
 C04B-035/51; H01L-041/187
Advanced IPC (V8) :
 C04B-035/46 [2006-01 A - I R - -1; C04B-035/48 [2006-01 A - I R - -1;
  C04B-035/491 [2006-01 A - I R - -]; C04B-035/50 [2006-01 A - I R - -];
 C04B-035/51 [2006-01 A - I R - -1; H01L-041/187 [2006-01 A - I R - -1
Core IPC (V8) :
 CO4B-035/46 [2006 C - I R - -]; CO4B-035/48 [2006 C - I R - -];
  C04B-035/49 [2006 C - I R - -]; C04B-035/50 [2006 C - I R - -];
 C04B-035/51 [2006 C - I R - -]; H01L-041/18 [2006 C - I R - -]
EPO Class Codes :
 C04B-035/46+IDT; C04B-035/48+IDT; C04B-035/491; C04B-035/50+IDT;
  C04B-035/51+IDT; H01L-041/187
US Class Codes :
 2520629PZ
Abstract .
 DE2359818 A
 Piezoelectric ceramic compsn. contq. PbTiO3-PBZrO3 also contains a
 complex oxide of the pyrochlore type, pref. oxide(s) of the formula
 M2M'207 (in which M is Cd, Pb, Sr or Ba; M' is Sb or Nb).
 compsn. is x(M2M'207)1/2. (1-x) y(PbTiO3)z(PbZrO3) (in which y and z
 each = 0.2-0.8; y + z = 1.0 and x = 0.001-0.2), of 0.01-3.0 wt.% MnO2
```

can be added. The compsn. is prepd. by sintering the individual component at >1000 degrees C, with or without percalcination. The ceramic is used for the prodn. of ultrasonic transducers, ceramic filters and accelerometers, for sound pick-ups etc. The compsn. has a high piezoelectric constant, high stability, balanced electro-mechanical coupling coefft. (Kp) dielectric constant (epsilon) and mechanical quality factor (Cm), low dielectric loss (tan delta), high voltage stability and high flexural strength. It also has an excellent temp. coefft. and generally excellent temp. characteristics.

Manual Codes : CPI: L02-G07B L03-D01B Update Basic :

1975-24

Update Equiv. :

1975-40; 1978-25; 1978-34; 1979-41; 1980-05

Offenlegungsschrift 23 59 818

(11) 2 @

Aktenzeichen: Anmeldetag: Offenlegungstag:

30, 11, 73 5. 6.75

C 04 B 35-00 C 04 B 35-46

(30) Unionspriorität: **33** 33 31

(54) Bezeichnung: Piezoelektrische keramische Masse Anmelder: TDK Electronic Co., Tokio @ Vertreter: Wächtershäuser, G., Dipl.-Chem. Dr.rer.nat., Pat.-Anw., 8000 München Erfinder: Tanaka, Yoichi, Funabashi, Chiba; Tsuruta, Masamichi; Takahashi, Koji; Chiba; Hasegawa, Tsutomu, Tokio; Hori, Makoto, Ichihara, Chiba (Japan)

2359818

1A-587 TDK-3

27. November 1973

TDK Electronic Company, Tokyo, Japan

Piezoelektrische keramische Masse

Die Erfindung betrifft eine piezoelektrische keramische Masse.

Bisher werden in größerem Maße keramische Massen vom Typ des Bariumtitanats oder des Blei-Zirconat-Titanats für piezo-elektrische Zwecke eingesetzt. Zur Beseitigung verschiedener Nachteile wurden eine Reihe von verbesserten keramischen Massen vorgeschlagen. Zum Beispiel ist ein ternäres Mischkristallsystem der Zusammensetzung Pb(Mg_{1/3}. NB_{2/3})0₃-PbTi0₅-PbZrO₃ bekannt und ferner eine Abwandlung desselben durch Zugabe eines Oxyds von Mn, Cr, Co, Fe oder Ni, wodurch sich gewisse piezoelektrische Eigenschaften verbessern lassen.

Das Verhalten der magnesiumhaltigen Masse gegenüber Feuchtigkeit führt zu Störungen und insbesondere erlaubt der Gehalt an Feuchtigkeit kein einwandfreies Wiegen und keine längere Lagerung des Materials. Diese Masse hat einen elektromechanischen Kupplungskoeffizienten Kp von 50 - 58 %. Der dielektrische Verlust der Masse ist jedoch sehr hoch (in der Größenordnung von 2 - 2,4 %).

Bei einem ternären Mischkristallsystem mit der keramischen Grundkomponente PbTiO $_3$ – PbZrO $_3$ und mit einem Zusatz von Pb(Mn $_1/3$ Sb $_2/3$)O $_3$ werden die Dielektrizitätskonstante ξ und der elektromechanische Kupplungskoeffizient Kp durch eine geringe Änderung der Bestandteile stark beeinflusst. Massen mit einem Kp von mehr als 50 % haben eine geringe Dielektri-

2359818

- 2 -

zitätskonstante von etwa 500. Die Kombination der Komponenten ist begrenzt, da nur wenige Kombinationen zu einer Dielektrizitätskonstante von mehr als 1000 führen. Bei obigen Massen handelt es sich um eine Kombination einer keramischen Grundkomponente und einer Komponente vom Perovskit-Typ ABO.

Weitere Vorschläge befassen sich mit der Verbesserung durch Zusätze zur keramischen Grundkomponente PbTiOz-PbZrOz. Zum Beispiel kann in der keramischen Grundkomponente das Pb durch Sr ersetzt werden und ferner kann zusätzlich Sb₂03 und MnO2 hinzugegeben werden. Die beste modifizierte Masse mit einem Verhältnis der keramischen Grundkomponenten von PbTiO3:PbZrO3 von 47:53 hat jedoch nur einen elektromechanischen Kupplungskoeffizienten Kp von 60 % und eine Dielektrizitätskonstante ξ von 1750 mit tan δ = 2,5 %. Schon bei einer kleinen Zusammensetzung der keramischen Massen kommen nachteilige Verschlechterungen der Eigenschaften zustande. Eine Änderung der Manganmenge um 0,15 Gewichtsprozent bewirkt z. B. eine Änderung von Qm von etwa 1170 auf etwa 300. Zur Verringerung von tan d auf 1,0 % durch Zugabe der zusätzlichen Komponenten ändert sich der Wert von Kp von 60 % auf 48,3 %. Es ist bisher nicht gelungen, eine piezoelektrische keramische Masse zu schaffen, welche eine Kombination der jeweils erwünschten Werte für Kp, ξ , Q und tan d aufweist und welche gegenüber kleinen Änderungen der Zusammensetzung hinsichtlich der Eigenschaften stabil ist.

Es ist somit Aufgabe der vorliegenden Erfindung, eine piezoelektrische keramische Masse mit einer hohen piezoelektrischen Konstante zu schaffen, welche eine große Stabilität hat und welche hinsichtlich des elektromechanischen Kupplungskoeffizienten Kp, der Dielektrizitätskonstante ξ und dem mechanischen Gütefaktor Qm ausgewogene Eigenschaften besitzt und einen geringen dielektrischen Verlust tan \mathscr{S} aufweist und welche eine große Spannungsstabilität besitzt, sowie eine große Eigengefestigkeit.

Diese Aufgabe wird erfindungsgemäß durch eine piezoelektrische keramische Masse mit der keramischen Grundkomponente PbTiO₃ - PbZrO₃ gelöst, welche gekennzeichnet ist durch einen Gehalt an einem komplexen Oxyd vom Fyrochlortyp.

Das komplexe Oxyd vom Pyrochlortyp hat die Zusammensetzung ${\rm A_2B_2O_7}$. Hierunter fallen die folgenden komplexen Oxyde:

Die erfindungsgemäße piezoelektrische keramische Masse aus Mischkristall hat die folgenden Eigenschaften: Kp = 50 % bis 76 %; ε = 1000 bis 2500 und tan \checkmark < 2.0 %. Die zusammengesetzten Oxyde vom Pyrochlortyp haben eine komplexe Struktur mit 8 Strukturen von Einheitszellen. Die Niobkomponente (NbO6) bildet Zick-Zack-Ketten von O-Nb-O. Im Falle von einem Gehalt an Kadmium ist ein Sauerstoffatom durch vier Kadmiumatome gebunden, deren Gruppe unabhängig vom Nb ist. Wenn als zusammengesetzte Oxyde vom Pyrochlortyp Cd2Sb2O7 oder Cd2Nb2O7 gewählt werden oder Substitutionsprodukte derselben, wobei Cd durch Pb, Sr oder Ba ersetzt wurde, mit der keramischen Grundkomponente PbTiO3 und PbZrO3 kombiniert werden, und die Mischung danach gesintert wird. so wird eine piezoelektrische keramische Masse mit der nachstehenden Zusammensetzung gebildet: (1-x) y PbTi03 . z PbZrO3]. x(Cd2Sb2O7)1/2, wobei

die Beziehung 0,2 \leq y \leq 0,8; 0,2 \leq z \leq 0,8 und y + z = 1,0 und 0,001 \leq x \leq 0,2 gelten. Es ist bevorzugt, eine Mn-Komponente hinzuzugeben, und zwar als MnO₂ in einer Menge von 0,01 - 3,0 Gew.-% bezogen auf die gesamte Grundkomponente.

Wenn als zusammengesetztes Oxyd vom Pyrochlortyp(Cd2Sb2O7)1/2 oder (Cd2Nb2O7)1/2 oder Substitutionsprodukte bei denen Cd durch Pb, Sr oder Ba ersetzt wurde, mit Pb(Ti.Zr)03 in einer Menge von 1 - 20 Mol-% kombiniert werden, so bleiben die verbesserten Eigenschaften kontinuierlich erhalten, wenn die Mengenverhältnisse der Komponenten geändert werden, ohne daß es zu einer plötzlichen Änderung der Eigenschaften kommt. Dies ist ein wesentlicher Vorteil für die industrielle Anwendung. Keramische Massen, welche für viele verschiedene Anwendungen geeignet sind und sich für den praktischen Gebrauch dgnen, haben eine Zusammensetzung von PbTiO3 : PbZrO3 = 46 - 54 : 54 - 46 Mol-%. Das Verhältnis Pb(Ti.Zr)03: $(A_2B_2O_7)_{1/2}$ hat vorzugsweise den Wert (100 - 1~20): 1 - 20 Mol-%, wobei A Cd, Pb, Sr oder Ba und B Sb oder Nb bedeuten. Fig. 1 zeigt die Zusammensetzung in Dreieckskoordinaten. Der fett umrandete Bereich ist besonders bevorzugt. Die gestrichelte Linie bezeichnet spezielle bevorzugte Beispiele.

Die Massen haben einen Kp-Wert von mehr als etwa 60 % und einen ε -Wert von mehr als etwa 1400 und einen tan σ von etwa weniger als 2 %. Die piezoelektrischen Eigenschaften bilden ein Kontinuum im Bereich von 1 - 20 Mol-% an $(A_2B_2O_7)_{1/2}$, so daß die keramische Masse gegen eine Änderung der Zusammenstzung hinsichtlich ihrer Eigenschaften sehr stabil ist, wie die Tabellen 1 und 5 zeigen.

Wie Tabelle 2 zeigt, erzielt man ähnliche Ergebnisse, wenn das zusammengesetzte Oxyd vom Fyrochlortyp $(A_2B_2O_7)_{1/2}$, wobei A Pb, Sr oder Ba und B Sb oder Nb bedeuten, mit Pb(Ti.Zr) O_3 kombliniert wird. Wenn Mn in der Masse vorgesehen ist, so steigt der mechanische Gütefaktor Qm auf etwa 2000 bis 4500

way K/19/200

und der dielektrische Verlust tan δ verringert sich auf weniger als 1 % und die Dielektrisitätskonstante und der elektromechanische Kupplungskoeffizient fluktuieren nicht wesentlich. Somit zeigt die erfindungsgemäße keramische Masse ein ausgewogenes Verhältnis von Kp – ξ – tan δ – Qm, was eine Massenanfertigung begünstigt. Ein Zusatz von Mn zur Verbesserung des mechanischen Gütefaktors ist auch bei den anderen komplexen Oxyden und Pb(Ti.Zr)O₂ möglich, wobei der elektromechanische Kupplungskoeffizient Kp einen Wert von mehr als 72 % und insbesondere etwa 78 % haben kann, und wobei die Dielektrizitätskonstante und der mechanische Gütefaktor günstige Werte haben und wobei der dielektrische Verlust tan auf weniger als 1 % und insbesondere auf etwa 0,2 % verringert wird.

Die Fluktuation dieser Werte im Falle einer Änderung des Verhältnisses der Komponenten ist recht gering, da das komplexe Oxyd vom Pyrochlortyp im Gegensatz zu Komponenten vom Typ A B O₃ eine sich über eine lange Strecke erstreckende Kraft hat (long-range-force). Die erfindungsgemäßen ferroelektrischen piezoelektrischen keramischen Massen zeigen kontinuier-liche stabile Eigenschaften, welche bei einer geringen Änderung der Mengenverhältnisse der Komponenten sich nur gering ändern, was bei der industriellen Anwendung von großem Nutzen ist. Diese Eigenschaften stehen in einem optimalen Verhältnis zu einander und insbesondere sind die dielektrischen Eigenschaften gegenüber einer Änderung der angelegten Spannung stabil, wie die Figuren 2 und 3 zeigen.

Im Vergleich zur geringen Stabilität herkömmlicher Massen zeigen die erfindungsgemäßen Mischkristalle mit einem Gehalt an komplexem Oxyd vom Pyrochlortyp eine äußerst große Stabilität. Gemäß Fig. 2 ist die Stabilität der Dielektrizitätskonstante der erfindungsgemäßen keramischen Masse gegenüber einer Spannungsänderung äußerst groß und ferner ist auch der Temperaturkoeffizient der Dielektrizitätskonstante

wesentlich günstiger, wie die nachstehenden Tabellen zeigen. Wenn die erfindungsgemäße piezoelektrische Keramische Masse als Ultraschallwandler dient, so kann die Bingangsleistung erhöht werden, so daß höherfrequente Ultraschallwellen erzeugt werden können.

Ferner ist aus verschiedenen Gründen eine Stabilität des dielektrischen Verlustes ($an \delta$) gegenüber der Spannung wichtig. Eine Erhöhung von tan o bedeutet eine Erhöhung der Hitzebildung, was nicht erwünscht ist. Fig. 3 zeigt das ausgezeichnete Verhalten der erfindungsgemäßen keramischen Masse in dieser Hinsicht. Der mechanische Gütefaktor Om. welcher zu $an oldsymbol{\delta}$ im reziproken numerischen Verhältnis steht, ist ebenfalls gegenüber einer Spannungsänderung sehr stabil. Fig. 4 zeigt die Beziehung des mechanischen Gütefaktors Q eines Wandlers vom Langevin-Typ (Durchmesser 30 mm) (eingepaßte Bolzen) und der Amplitude A im unbelasteten Zustand an Luft. Diese Kurve zeigt, daß die erfindungsgemäße piezoelektrische keramische Masse ausgezeichnete piezoelektrische Eigenschaften und ausgezeichnete dielektrische Eigenschaften aufweist. Wenn der Wandler im Bereich von 0 - 30 Volt schwingt, so erfährt ein herkömmlicher Wandler ein plötzliches Absinken des mechanischen Gütefaktors Q um etwa 10 Volt und die Amplitude ist auf 3 - 4 u beschränkt. Ein aus der erfindungsgemäßen keramischen Masse bestehender Wandler zeigt jedoch einen hochstabilen mechanischen Gütefaktor Q (Fig. 4), so daß man eine erzwungene Wandlung bei 50 Volt unter Bildung von Ultraschallenergie hoher Intensität herbeiführen kann. Der Wandler wird durch die Erhöhung der angelegten Spannung nicht zerstört. Die Stabilität gegenüber Spannungsänderungen ist ein wesentliches Merkmal der erfindungsgemäßen Mischkristallmassen, und zwar aufgrund des Einflusses des komplexen Oxyds vom Pyrochlortyp. Diese Eigenschaften werden insbesondere erzielt, wenn 0,1 - 20 Mol des komplexen Oxyds vom Pyrochlortyp vorliegen.

Wenn der Temperaturkoeffizient der Dielektrizitätskonstante ξ -T.C. groß ist und wenn die piezoelektrische keramische Masse selbst erhitzt wird, so sind die Änderungen der Dielektrizitätekonstante ξ groß, wodurch sich auch die Impedanz ändert, so daß die Änpassung der Impedanz gestört wird. Daher kann die maximale Amplitude nicht erreicht werden. Die erfindungsgemäße piezoelektrische keramische Masse hat jedoch einen ausgezeichneten Temperaturkoeffizienten und allgemein ein ausgezeichnetes Temperaturverhalten.

Die erfindungsgemäße piezoelektrische keramimhe Masse eignet sich zur Herstellung von Ultraschallwandlern, von keramischen Filtern, von Beschleunigungsmessern, für Tonabnehmer oder dgl., je nach Auswahl der drei Komponenten der Formel oder je nach Zugabe des Manganzusatzes.

Im folgenden wird die Erfindung anhand von Ausführungsbeispielen näher erläutert.

Beispiel 1

PbO, TiO2, ZrO2, CdO und Sb2O5 werden im Pulverform als Ausgangsmaterialien für die Herstellung der piezoelektrischen keramischen Masse verwendet. Sb,0, kann anstelle von Sb,0, verwendet werden (gleiche molare Menge). Die als Ausgangsmaterialien verwendeten pulverigen Stoffe werden derart ausgewogen und vermischt, daß sie den drei Formeln Cd, Sb, O,, PbTiO3 und PbZrO3 entsprechen. Die gemischten Ausgangsmaterialien werden durch eine besondere Kugelmühle gut durchmischt und dann wird die Mischung geformt und bei 900 00 kalziniert. Die erhaltenen Komponenten Cd2Sb2O7, PbTiO3 und PbZrOz werden gewogen und gemischt, wobei sich die Atomverhältnisse x, y, z gemäß Tabelle 1 ergeben. Ferner wird die Mischung zerkleinert und dann in einer Kugelmühle vermischt und unter einem Druck von 1,5 t/cm2 zu einer Scheibe mit einem Durchmesser von 20 mm und einer Dicke von 1 mm geprest.

Die Scheibe wird während 2 h bei 1200 - 1250 °C gesintert, wobei die erfindungsgemäße ferroelektrische piezoelektrische keramische Masse entsteht. Diese Masse kann in herkömmlicher Weise als piezoelektrisches Element dienen. Hierzu werden zwei Silberelektroden an beiden Enden der Scheibe des piezoelektrischen Elementes angebracht und dieses wird bei 100 - 150 °C in Siliconöl getaucht und zur Polarisierung wird eine Gleichspannung von 3 KV/mm zwischen den Elektroden während 1 h angelegt. Die erhaltene piezoelektrische keramische Masse wird während 24 h gelagert. Die piezoelektrischen Eigenschaften, der elektromechanische Kupplungskoeffizient (Kp) und der mechanische Gütefaktor (Qm) werden gemäß dem I.R.E.-Standard-Verfahren gemessen. Der Koeffizient Kp wird aus der Resonanzfrequenz (f_r) und der Antiresonanzfrequenz (f_s) berechnet. Die Bielektrizitätskorstante (¿) und der dielektrische Verlust (tan d) werden bei einer Frequenz von 1 KHz bestimmt. Der Wert E-T.C. ist der Temperaturkoeffizient von ξ . Die piezoelektrischen Eigenschaften verschiedener Zusammensetzung sind in Tabelle 1 zusammengestellt, wobei das Verhältnis der Komponenten der verschiedenen Massen durch Angabe von x, 1-x, y und z für $(1-x)Pb(Ti_{v} .Zr_{z})0_{3}.x(Cd_{2}Sb_{2}O_{7})_{1/2}$ angegeben sind. [x(Cd₂Sb₂O₇)_{1/2} und (1-x)(y PbTiO₃ - z PbZrO₃) werden zu einem Mischkristall kombiniert, Gemäß Tabelle 1 erzielt man einen hohen elektromechanischen Kupplungskoeffizienten Kp über einen relativ breiten Bereich, sowie optimale Werte von Qm, ξ/ξ_0 und tan δ . Diese Werte sind für die verschiedenen Anwendungen erwünscht. Sie können durch Auswahl der Bestandteile in einem breiten Bereich eingestellt werden. Die Proben Nr. 1-26, 27 und 28 sind herkömmliche piezoelektrische keramische Massen der Zusammensetzung PbTiO3 - PbZrO3. Die erfindungsgemäßen piezoelektrischen keramischen Massen

sind den herkömmlichen Massen wesentlich überlegen.

Tabelle 1

	x(Cd _Z Sb _Z	07)1/2	· (1 -x)[y(Pb					fr-T. C.
- Жа	×	1 —x	у	z	E/E0	`t an∂ (%)	Кр (Я)	Om	(ppn/c)
1- 1	0.20	080	080	020	336	19	182	210	1800
1- 2	0.20	080	070	030	440	2.0	222	140	1620
1- 3	0.20	0.80	0.48	052	2590	2.2	52.1	50	900
1- 4	0.20	0.80	0.30	070	470	1.8	21.2	110	1590
1- 5	0.20	080	020	080	37 <i>5</i>	1.7	17.6	140	1800
1- 6	0.10	D90 ·	0.54	0.46	1330	1.9	58.4	80	1090
1- 7	0.10	080	0.48	0.52	2490	1.8	67.1	60	870
1 8	0.10	0.90	0.46	054	1480	1.8	582.	75	860
1- 9	0.08	0.92	0.56	0.50	2540	2.0 .	69.5	50	1130
1-10	0.08	092	0.48	0.52	2510	1.9	67.5	50	830
1-11	0.05	.095 :	080	020	430	113		145	1920

Fortsetzung Tabelle 1

1-12	0.05	0.95	0.68	032	480	1.5	24.5	230	1680
1-13	0.0 5.	0.95	0.60	0.40	850	1.4	35.1	95	1030
1-14	0.05	0.95	α52	0.48	1800	1.5	55.5	75	950
1-15	Q.0.5	0.95	0.50	0.50	2350	1.7	67.2	65	870
1-16	0.05	0.95	0.49	0.51	2490	1.9	74.1	60.	850
1-17	0.05	0.95	0.48	0.52	2390	20	760	. 55	820
1-18	0.05	0.95	0.46	0.54	1400	2.1	69.3	75	870
1-19	0.05	0.95	0.40	060	850	21	44.4 .	80	1230
1-20	0.05	0.95	0.32	88.0	550	1.8	3 1.7	240	1840
1-26	· 0.0 1	099	080	0.20	305	1.4	19.2	190	1890
1-22	0.01	ቢያያ	0.70	0.30	385	1.4	235	145	1680
1-23	001	0,99	0.48	0.52	1550	1.5	721	60	820
1-24	0.01	0.99	0.30	0.70	430	1.8	27.8	250	1640
1-25	0.01	099	0.20	0.80	296	20 .	21.1	300	1620
1-26	0 :	1.00	0.20	0.45	340	_	8.0	-,46	- 1
1-27	. 0	1.0 0	0.48.	0.52	1060		4 4.0	240	- 1
1-28	0	1.00	0.30	0.70	370	_	27.0	370	-
-	,								

x + (1-x) = 1; y + z = 1

Beispiel 2

Gemäß Beispiel 1 werden keramische Massen gebildet, wobei jedoord die Komponente $\mathrm{Gd}_2\mathrm{Sb}_2\mathrm{O}_7$ durch $\mathrm{Sr}_2\mathrm{Sb}_2\mathrm{O}_7$, $\mathrm{Pb}_2\mathrm{Sb}_2\mathrm{O}_7$ oder $\mathrm{Ba}_2\mathrm{Sb}_2\mathrm{O}_7$ ersetzt wird. Die piezoelektrischen Eigenschaften der erhaltenen Massen sind in Tabelle 2 zusammen mit den Komponenten zusammengestellt. Wenn Cd durch Sr, Ba oder Pb ersetzt wird, so erhält keramische Massen in Form ternärer Mischkristallsysteme ähnlich denjenigen gemäß Beispiel 1. Die Massen haben einen ähnlich hohen Wert von $\mathcal{E}_{\mathcal{E}}$ und somit eine hohe piezoelektrische d-Konstante. Die Werte Kp und \mathcal{E} , welche die Grundlage für die piezoelektrischen d-Konstanten bilden, sind in Tabelle 2 zusammengestellt.

Tabelle 2

1			x(A ₂	S6 ₂ O ₇)1/2*	(1-x)[y	(PbT	iO ₃)·z	(PbZr	O ₃)]
No.	A	x	1-x	у	ž.	6/60	tan∂ (96)	Кр (Я)	Qm	fr-T.C. (pm/t)
2- 1	Sr	ū20	080	0.80	0.20	550	1.8	2 1.2	200	1780
2- 2	Sr	0.20	0.80	0.50	0.50	3200	2.0	351	140	980
2- 5	Sr.	0.10	0.90	0.54	0.46	1560	1.8	59.8	80	1120
2- 4	Sr	0.10	0.70	046	0.54	2990	1.7	60.2	7.8	930
2- 5	Sr.	0.05	0.95	060	0.40	870	1.3	360	100	1020
1 1	Sr.		0.75	0.5 2	0.48	1800	1.4	58.0	75	970
2-7	8 r	0.05	0.95	0.40	0.60	850	1.9	4 4.5	80	1000

Fortsetzung Tabelle

2- 8	Sr	0.01	0.99	0.52	0.48	1300	1.3	69.2	65	1030
2 9	Sr	0.01	0.99	0.48	0.52	1550	.1.5	73.0	70	880
2-10	Pb	0.20	0.80	0.70	030	520	1.9	205	180	1730
2-11	Pb	0.20	0.80	0.48	0.52	3050	22	360	130	990
2-12	Pb	0.10	0.90	0.54	0.46	1490	1.8	583	.80	1030
2-13	Pb	0.10	0.90	0.46	0.54	2950	1.7	60.5	75	930
2-14	Рь	0.05	0.95	0.60	0.40	800	1.3	3 5.5	95	1010
2-15	Pb	0.05	0.95	0.52	0.48	1780	1.4	57.0	70	930
2-16	Рь	0.05	0.95	0.40	0.60	830	1.8	43.5	85	1280
2-17	Pb	0.01	0.99	0.52	0.48	1310	1.5	69.0	65	970
2-18	Pb	0.01	299	0.48	0.52	1,530	1.6	725	70	910
2-19	Ва	0.20	0.80	0.80	0.20	590	20	220	210	.1780
2-20	Ва	0.20	080	0.50	0.50	3320	2.5	345	130	9.70
2-21	Ba	010	0.90	0.54	0.46	1580	1.9	58.9	82	1090
2–22	Ba _.	0.10	0.90.	0.46	0.54	3050	2.1	61.2	70	960
2-23	Ba	0.05	0.95	0.60	0.40	900	1.5	365	100	1070
2-24	Ŗа	0.05	0.95	0.52	0.6.5	1890	1.9	60.2	70	990
2-25	Ва	0.05	0.95	0.40	0.60	920	2.2	45.5	80	1250
2-26	Ва_	0.01	0.99	0.59	0.48	1360	1.5	_687	75	990
2-27	Ва	0.01	299	0.58	0.52	1515	1.7	71.2	70	910

x + (1-x) = 1; y + z = 1509823/0789

Beispiel 3

Eine piezoelektrische Masse wird gemäß Beispiel 1 hergestellt, wobei jedoch zusätzlich MnO $_2$ zugegeben wird. Die piezoelektrischen Eigenschaften wurden gemessen und sind in Tabelle 3 zusammengestellt. Die Biegefestigkeit ist durch kg/cm 2 angegeben und der Temperaturkoeffizient der Dielektrizitätskonstante \in ist durch die Einheit ppm/ 0 c angegeben. Aus Tabelle 3 ergibt sich klar, daß durch die Zugabe von MnO $_2$ die Werte für Qm und tand verbessert werden. Wenn mehr als 3 Gew.-% MnO $_2$ hinzugegeben werden, so nehmen Qm und \mathcal{E}/\mathcal{E} o ab und tan d erhöht sich und die Isolierung wird schlechter. Demgemäß liegt die optimale Menge der Mangenkomponente im Bereich von 0,01 – 3,0 Gew.-%, berechnet als MnO $_2$ und bezogen auf die Gesamtgrundkomponente.

.. 11 ..

Tabelle 3

		x(Cd ₂ Sb	207)1/	2 ° (1 - x)[y(Pb	TiO ₃)	z(Pb	ZrO3)]	
					MnO,		tanô	Кp		Biege- festig	fr- -T.C.
Ka	×	1-x	y	z	١. ١	ε/ε ₀			Qn	keit '	
					(Gewys)		(%)	(96)		kg/off	(ppn)°
3- 1	0.20	0.80	0.70	0.30.	0.	440	2.0	22.2	140	830	1620
3 2	0.20	0.80	0.70	0.30	0.01	432	1.2	221	13 40	850	1600
3- 3	0.20	0.80	0.70	0.30	0.05	430	Ω9	220	2900	930	1570
3 4	0.20	080	0.70	0.30	0.1	415	0.6	220	3500	990	1530
3- 5	0.20	T80	0.70	0.30	0.5	407	0.3	2 1.7	4050	1090	1500
3- 6	0.20	0.80	0.70	0.30	0.5	400	0.2	2 1.5	5500	1150	1480
3- 7	0.20	0.80	0.70	0.30	1.0	395	0.6.3	20.6	3200	1210	1530
3- 8	0.20	080	0.70	0.30	3.0	385	0.6	20.0	2350	1060	1540
3- 9	0.20	0.80	0.70	0.30	4.0	325	1.6	162	480	980	1650
3-10	010	D 9 O	0.54	046	0	1330	1.9	584	80	860	1090
3-11	0.10	0.90	0.54	0.46	0.05	1150	0.7	580	1800	920	1110
3-12	0.10	0.90	0.54	0.46	0.1	1110	0.5	568	2230	980	1050
5-1 3	0.10	0.90	0.54	0.46	0.3	1095	Q2	56.5	2980	1040	990
314	. 0.1.0	0.90	0.54	0.46	0.5	1080	0.2	5 6.2	3200	1180	950
3-15		0.90	0.54	0.46	1.0	10531	00,5	5 5.0	2750	1210	1080
5-16	- Q 1 C	0.70	0.54	≝. i0.46	3.0	1055	0.7	532	2100	1100	1070

					Ta	belle	<u>3 Fc</u>	rtset	zung			
3–17	0.05	0.95	0.60	0.40	0 :	850	1.4	35.1	95	910	1030	-
3-18	0.05	0.9 5	0.60	0.40	0.05	805	0.6	3 4.8	1880	1020	1010	
3-19	0.05	0.95	0.60	0.40	۵1 .	795	0.3	3 4.5	2630	1090	980	
3-20	0.05	195	0.60	0.40	0.3	788	0.2	3 4.0	3750	! 1140	950	
321	0.05	0.95	0.60	0.40	0.5	760	0.2	33.8	4200	1230	910	
3-22	aoŝ	0.95	0.60	0.40	1.0	715	0.3	32.5	2690	1270	1000	
3-23	0.05	0.95	0.60	0.40	3.0	698	0.7	30.8	2200	1100	1010	
3-24	0.0 5	0.95	0.49	0.51	0	2490	0.8	74.1	60	910	1120	
3-25	0.0 5	0,9,5	049	0.51	0.05	2090	. 0.6	73.8	1120	99Ó	1030	
3-26	0.05	0.9 5	0.49	0.51	0.1	1980	0.3	728	1730	1060	1010	
327	0.05	0.95	0.49	0.51	0.3	1710	0.2	728	2040	1178	990	
3- 2 8	0.05	0.95	0.49	0.51	0.5	1624	0.2	716	! !2515	1280	980	
3-29	005	0.95	0.49	251	1.0	1422	0.3	523	1850	1250	1060	
3-3 0	0.05	0.95	0.49	0.51	3.0	1050	0.6	49.5	940	1140	1080	
3-31	0.05	Q95	0.40	.0.60	0	850	2.1	44.4	80	890	1330	
332	0.05	0.95	0.40	0.60	0.05	820	0.7	4 4.1	1540	1010	1290	
333	0.05	0.95	0.40	060	0.1	800	0.4	ļ	2700	1		
3-34	0.05	0.9.5	0.40	0.60	0.3	790	0.3	432	3520	1190	1250	
3-35	0.05	0.95	0.40	0.60	0.5	782	0.3	425.	3830	1250	1230	

2359818

- 16 -

Tabelle 3 Fortsetzung

3-5	7 0.05	0.95	0.40	0.60	3.0	758	44	40.6	2010	1130	1310
3-5	8 001	0.99	0.48	0.52	0 .	1550	1.5	721	. 60	990	820
3-3	9 001	0.99	0.48	0.52	0.05	1220	0.7	708	1580	980	830
3 -41	0 0 1	0.99	0.48	0.52	0.1	1095	0.3	7.0.2	 1930	1050	820
5-4	1 0.0 1	199	0.48	0.52	0.3	1050	0.3	702	2090	1180	810
3-42	2 001	1299	0.48	0.52	0.5	1015	0.2	69.9	2660	1190	810
5-43	0.01	0.99	0.48	0.52	1.0	996	0.3	68.7	2110	1210	860
3-44	201	299	0.48	0.52	3.0	972	0.7	65.6	1280	1090	900
3-45	0.01	099	030	0.70	0	430	1.8	27.8	250	880	1640
3-46	0.01	099	0.30	0.7.0	0.05	405	0.7	27.0	2020	990	1480
5,-47	0.01	099	0.30	0.70	Q1	398	0.5	265	2980	1060	1430
3-4 8	0.01	099	0.30	0.70	0.3	592	0.3	262	4030	1170	1430
3-49	001	166	0.30	0.70	0.5	383	0.2	25.5	4550	1210	1400
3-50	0.01	L99	0.30	0.70	LO	380	0.5	24.5	334D	1230	1400
3-51	0.01	099	0.30	070	20	358	۵6 "	235	2370	1100	1540

x + (1 - x) = 1, y + z = 1

Beispiel 4

Tabelle 4

	x(A2	Sb ₂ O ₇	1/2 (1	-x)[y(PbTi	O3 • z(PbZr	⊃ʒ)] tanδ	V-	-	Bie- gefe	fr-T.C.
Ма	A	! 	1-x		z	MHO. Ge##)	€/€0	(%)	(F)	Qm \	stig	(ppo(°c)
4- 1	Sr	0.05	095	0.48	0. ₅ 2	0	2890	1.9	780	65	910	1050
4- 2	Sr	0.05	0.95	0.48	a ₅ 2	0.01	2655	0.9	7 6.8	1530	990	1040
4- 3	Sr	0.05	0.95	L48	0.52	0.05	2530	Ω5	765	1700	1080	1060
4- 4	Sr	0.05	Q9 5	0.48	0.52	α1 .	2380	0.3	74.8	2050	1160	970
4- 5	Sr	0.05	0.95	0.4.8	0.52	0.3	1920	0.2	72.5	 2500	1190	940
4- 6	Sr	0.05	Q9 5	0.48	0.52	0.5	1830	0.2	70.8	! 2830	1225	990
4- 7	Sr	0.05	095	0.48	0.52	1.0	1520	0.3	63.2	2070	1250	1000
4 8	Sr	0.05	0.95	0.48	0.52	3.0	1025	۵7	520	1500	1190	1110
4 9	Sr-	0.05-	Q9-5	0.48-	 0,52-	4.0-	698	-1.7	39.5-	380	1110	-1180-
4-10.	Рь	005	0.9.5	0.49_	0.5 1		2610	20_	745	6D	890.	1080

Tabelle 4 Fortsetzung

4-11	Pb :-	0.05	0.95	0.49	0.51	005	2340	0.6	7 5.0	1330	990	1090
4-12	Рь	0.05	0.95	0.49	0.51	۵1.	2010	0.4	737	1900	1050	1030
4-13	Рь	0.05	0.95	049	0.51	0,3	1745	0.3	72.0	2250	1170	940
4-14	Pb.	0.05	0.95	0.49	0.5 1	0.5	1650	0.2	70.5	2470	1230	900
4-15	Рь	0.05	0.95	0.49	0.51	10.	1385	0.4	628	1880	1245	. 920
4-16	Pb	0.05	0.95	049	0.51	3.0	980	a 7	5 5.7	1350	1180	910
4-17	Ba	0.01	199	0.4B	0.52	0	1680	1.8	755	60	930	1030
4-18	Ba	0.01	299	0.48	Q 5 2	0.05	1510	0.5	712	1830	1050	1010
4-19	Ba	0.01	299	0.48	0.52	a1 ·	1440	0.3	708	2370	1130	990
4-20	Ba.	0.01	299	0.48	0.52	Q3 .	1320	0.3	68.6	2880	1210	950
4-21	Ba	0.01	0.99	0.48	0.5,2	0.5	1280	0.2	6 5.2	3030	1275	890
4-22	Ва	0.01	299	0.48	0.52	1.0	975	0.3	59.9	246D	1280	930
4-23	Ba	0.01	<u>199</u>	0.48	0.52	30 -	830	D.6	527	1450	1150	1050

Beispiel 5

Gemäß Beispiel 1 wird eine hoch-dielektrische piezoelektrische keramische Masse hergestellt, wobei PBO, TiO₂, ZrO₂, CdO und Nb₂O₅ als Ausgangsmaterialien in Pulverform eingestetzt werden. Der elektromechanische Kupplungskoeffizient Kp und der mechanische Gütefaktor Qm der Masse werden gemäß Belspiel 1 gemessen. Die piezoelektrischen Eigenschaften der verschiedenen Zusammensetzungen sind in Tabelle 5 zusammengestellt. Aus dieser Tabelle ergibt sich klar, daß ein hoher elektromechanischer Wandlerkoeffizient Kp in einem relativ breiten Bereich erhalten wird. Ferner kann man durch Auswahl der Zusammensetzung innerhalb eines zweiten Bereiches die für die jeweiligen Anwendungen erwünschten optimalen Werte

von Qm, E/E o und tan Seinstellen. Die Proben Nr. 5-26, 27 und 28 sind herkömmliche PbTiO3-FbZrO3 Massen. Die Eigenschaften der erfindungsgemäßen Massen sind denjenigen herkömmlicher Massen erheblich überlegen.

Tabelle 5

	(x(Cd	Nb2O7)1/2 (1	-x)[y(P	bTiO3)				
• • • •	-	T .	-	-		tano	Κp	Qm	fr,TC
Æ	x	1-x	У	z	e/e0	(96)	(96)		(ppm/°C)
						٠,	007		CFF 5
5-1	0.20	0.8	0.80	0.20	298	1.8	20.5	180	-165
5-2	0.20	1 0.8	0.70	0.30	415	2.0	2 4.7	120	-150
5-3	0.20	0.8	0.48	0.52	2360	2.1	334	60	100
5-4	0.20	0.8	. 0.30	0.70	445	1.9			. "
5-5	0.20	0.8	0.20	0.80	365	1.7	19.4	150	-160
5-6	0.10	. 0.9	0.54	0.46	1230	1.8	60.5	75	10
5-7	010	0.9	0.48	0.52	2250	1.9	663	60	÷ 60

Fortsetzung Tabelle 5

	5 - 8	010	0.9	0.46	0.54	1330	1.9	57.6	75	- 80	0,
	5 - 9	0.08	0.92	0.50	0.50	2360	21	684	60	3 (أد
	5-10	0.08	0.92	0.48	0.52	! 2290	2.0	669	65	5 (ا ا د
	5-11	0.05	0.95	080	0.20	410	1.3	2 2.5	155	-120	,
	5-12	0.05	0.95	8 9.0	0.32	465	1.6	2 6.8	130	-110	1
	5-13	0.05	0.95	1 0.90	0.40	790	1.5	37.1	100	- 30	
	5-14	0.05	0.95	0.52	0.48	1805	1.6	5 4.8	80	2.0	,
	5-15	0.05	0.95	0.50	0.50	2195	1.8	6 6.3	70	35	-
	5-16	0.05	0.95	049	0.51	2380	1.9	730	60	40	
	5-17	0.05	0.95	j 048	0.52	2410	2.0	688	70	50	i
	5-18	0.05	0.95	046	0.54	13,80	2.2	686	75	- Ť0	1
	5-19	0.05	0.95	0.40	0.60	810	23	438	85	-110	!
	5-20	0.05	0.95	0.32	068	545	1.8	3 20	180	-150	!
	5-21	0.01	0.99	0.80	0.20	315	1. 5	202	175	-145	
-	5-22	0.01	299	0.70	0.30	368	1.4	2 2.5	130	-140	
1	5-23	0.01	0,99	0.48	0.52	1480	1.6	7 0.9	65	. 25	
!	5-24	0.01	0.99	0.30	0.70	420	1.9	27.0	240	- 80	
	,5-25	0.01	0.9.9	0.20	0.80	290	21	2 1.5	28.0	-120	
	5-26	0	47	0.55	0.45	340		. 80	46	_	
	5-27	0 "		0.48	0.52	1060		4 4.0			
1	5-28	0	-0.9:	0.30	070	370		270 3	···		
•				,	1	.1			1		

x + (1-x) = 1; y + z = 1509823/0789

Beispiel 6

Das Verfahren gemäß Beispiel 5 wird wiederholt, wobei jedoch die Komponente $\mathrm{Cd}_2^{\mathrm{Mb}}_2\mathrm{O}_7$ durch $\mathrm{Sr}_2^{\mathrm{Mb}}_2\mathrm{O}_7$, $\mathrm{Pb}_2^{\mathrm{Mb}}_2\mathrm{O}_7$ oder $\mathrm{Ba}_2^{\mathrm{Mb}}_2\mathrm{O}_9$ ersetzt wird. Die piezoelektrischen Eigenschaften der erhaltenen Massen sind in Tabelle 6 zusammen mit den Komponenten und den Zusammensetzungen zusammengestellt. Wenn Cd durch Sr, Ba oder Pb ersetzt wird, so erhält man ternäre Mischkristallsysteme, ähnlich denjenigen gemäß Beispiel 1. Die so hergestellten Massen haben einen hochen £/£ o-Wert und eine hohe piezoelektrische d-Konstante. Die Werte Kp und £, auf welchen die piezoelektrische d-Konstante beruht, sind in Tabelle 6 zusammengestellt.

- 22 -Tabelle 6

4	, x(A ₂ Nb ₂	07)1/2	(1-x)	y (r I	I I	tanð	Kp	03/1	fr.TC
A	* .	1-x	у	*	A	2/20	_		Qm	
			-			1	(%)	(%)		(ppm/C
				.)	L					- ' :
6-1	0.20	0.B.	Q.B	0.2	S r	540	18	208	210	-160
6-2	020	0.8	0.50	050	S r	3150	21	348	155	. 60
6-3	0.10	11.9	054	046	.8 r	1480	1.9	358	85	20
6-4	0.10	0.9	046	0.54	Sr	2880	1.8	61.3	70	- 55
6-5	0.05	0.95	0.60	0.40	Sr	850	1.4	3 5.8	100	- 40
6-6	0.05	0.95	0.52	0.48	Sr	1720	1.4	5 6.7	75	. 35
6-7	0.05	0.95	0.40	060	Sr	855	20	452	100	-120
6-8	001	1 99	0.52	0.48	Sr	1268	1.5	682	75	30
6-9	0.01	0.99	0.48	0.52	Sr	415	1.6	709	70	20
6-10	0.20	0.8	0.80	0.20	Pь	. 505	20	21.8	190	-150
6-11	0.20	0.8	0.50	0.50	Рь	2996	2.5	562	150	50
6-12	<u>α</u> 10	0.9	0.54	0.46	Рb	1380	20	5 7.9	80	25
6-13	0.10	0.9	0.46	0.54	Рь	2810	1,8	59.8	75	- 60
6-14	0.05	0.95	0.60	0.40	Pb	785	15	354	105	- 45
6-15	0.05	0.95	0.52	Ω48	Рь	2270	1.9	705	75	30
6-16	0.05	0.95	0.40	0.60	Рь	805	1.6	42.9	90	-110 ;
6-17	0.01	0.99	0.52	0.48	Рь	1300	1.8	685	70	25
6-18	0.01	0.99	0.48	0.52	Рь	1510	2.1	708	70	20
6-19	0.20	0.8	0.80	0.20	Ba	585	1.9	225	220	-155
6-20	020	0.8	0.50	0.50	Ва	3180	22	368	155	55
6-21	0.10	1299	0.54	0.46	Ba	1510	1.8	5 %.0	88	30
6-22	0.10	0.99	046	0.54	Ba	2995	21	625	75	- 40
6-23,	005	0.95	0.60	0.40	Ва	885	1.6	37.0	110	- 40
6-24	005	0.95	0.52	0.48	В.	1810	1.9	608	75	35
6-25	0.05	0.95	0.40	0.60	В.	905	2,1	462	65	-120
6 - 26	0.01	199	0.52	0.48	В	1590	1.8	712	75	30
6-27	0.01	1199	0.48	0.52	l R.	1515	20	705	. 70	20

x + (1-x) = 1; y + z = 1509823/0789

Beispiel 7

Das Beispiel 5 wird wiederholt, wobei jedoch MnO_2 zu den Grundkomponenten gegeben wird und die piezoelektrischen Eigenschaften werden gemessen. Sie sind in Tabelle 7 zusammengestellt. Die Biegungsfestigkeit ist in Einheiten von kg/cm² angegeben und der Temperaturkoeffizient der Dielektrizitätskonstante £ ist durch $\mathrm{ppn}/^{0}\mathrm{C}$ angegeben. Aus Tabelle 7 ergibt sich eine Verbesserung von Qm und tan f durch Zugabe von MnO_2 . Wenn jedoch mehr als 3 Gew.-% MnO_2 zugegeben werden, so sinken die Werte für Qm und £/£ o und der Wert für tan ferhöht sich und ferner wird die Isolation verschlechtert. Demgemäß liegt die optimale Manganmenge im Bereich von 0,01 – 3,0 Gew.-%, berechnet als MnO_2 und bezogen auf die Gesamtgrundkomponente.

- 24 -

Tabelle 7

	x(Cd ₂ Nb _{2O7}) _{1/2} (1-x)[y(PbTiO ₃) z(PbZrO ₃)]												
					ī		tanő			fr. TO	Biege		
No.	×	1-x	y	z.	MnQ	8/20	! i(%)	(%)	Qm	∫ Gpm/C	keit		
					(Gewse)	i	1		1.	Garage G	(kg/cm ²		
7-1	0.20	0.8	0.70	0.30	0	415	20	247	120	-150	850		
7-2	0.20	0.8	0.70	0.50	001	402	12	242	1050	-130	900		
7-3	0.20	0.8	0.70	0.30	0.05	400	1.0	240	i 2110	-120	960		
7-4	0.20	0.8	0.70	030	0.1	395	0.5	238	2530	-105	990		
7-5	020	0.8	0.70	0.30	0.3	388	0.3	235	3090	- 90	1100		
7-6	020	0.8	0.70	0.50	0.5	375	0.2	230	5250	- 80	1230		
7-7	020	0.8	0.70	0.30	10	370	0.3	222	3870	- 65	1160		
7-8	020	0.8	0.70	0.50	3.0	355	۵7	21.5	3030	- 40	1090		
7-9	020	0.8	0.70	0.30	4.0	305	1.5	185	630	- 30	1060		
7-10	0.10	Q9	0.46	0.54	0	1330	1.9	57.6	75	- 80	900		
7-11	Q10	0.9	0.46	0.54	0.05	1095	0.7	560	1690	- 60	-960		
7-12	010	0.9	0.46	0.54	0.1	1080	0.4	557	2270	- 50	990		
7-13	0.10	09.	0.46	0.54	0.5	1065	0.5	552	2650	- 40	1130		
7-14	. 010	d9	0.46	054	0.5	1062	0.3	545	3080	- 35	1210		
7-15.	010	0.9	0.46	0.54	.10	1020	0.3	54.D	2630	10	1130		
7-16	0.10	0.9	0.46	0.54	.30	1000	08	5 1.5	2000	30	1100		
7-17	008	0.72	0.50	0.50	0	2360	21	684	60	- 30	930		
7-18	0.08	0.92	0.50	0.50	0.05	2050	0.7	568	1770	40	. 980		
7-19	-808-	Q92	- 0.50	0.50	-01	1990	-04	659	2230	55	-1060		
7-20	800	0.92	0.50	0.50	0.5	1830	0.3	652	2370	60	1230		

ı

•	au somme	1 -0-										
	7-21	0.08	092	0.50	050	0.5	1800	0.2	647	2550	70	1290
	7-22	0.08	L92	0.50	0.50	1.0	1795	0.3	645	2190	90	1200
	7-23	0.08	0.92	0.50	.0.50	3.0	1636	107	608	1800	110	1080
	7-24	0.05	0.95	0.49	051	0	2380	1.9	730	. 60	40	930
	7-25	0.05	£95	E49	0.51	0.3	1520	0.2	69.8	2200	55	1010
	7-26	0.05	0.95	£49	0.51	0.5	1390	, az	68.5	2630	60	1180
	7-27	0.05	0.95	049	0.51	1.0	1085	0.4	513	1985	. 75	1250
	7-28	0.05	0.95	0.49	051	3.0	950	מ בי	49.0	1010	100	1130
	7-29	0.05	£95	0.40	0.60	0	810	23	438	. 85	-110	970
	7-30	0.05	0.95	0.40	0.60	0.05	790	1.0	450	1980	- 95	1070
	7-31	0.05	0.95	040	0.60	.10.1	788	0.5	425	2330	- 80	1150
	7-32	DD 5	0.95	0.40	060	0.3	775	0.3	422	2680	- 60	1230
	7-33	005	0.95	040	0.60	0.5	762	0.3	415	3520	- 40	1280
	7-34	005	0.95	040	0.60	1.0	750	0.3	410	2790	- 25	1210
	7-35	0.05	0.95	0.40	0.60	3.0	708	0.9	39.7	1980	-, 10	1130
	7-36	. 001	0.99	0.70	0.30	. 0	368	1.4	225	130	-140	960
	7-37	001_	099	_070	0.30	0.05	355	0.6	220	1990	-130	990
	7-38	. 001	099	070	0.50	. 01	350	0.3	218	2340	-115	1080
	7-39	001	0.99	0.70	0.30	0.3	348	02	21.7	2880	-100	1210
	7-40	0.01	0,99	0.70	0.30	0.5	343	0.2	216	4270	- 85	1320
	7-41	0.01	L99	0.70	0.30	1.0	340	0.3	210	3110	- 60	1230
	7-42	001	L99	0.70	0.30	3.0	325	مه	202	2050	- 40	1190
	7-43	-0.01	0.99	-0.48	052	- a-	1480	-16	70.9	÷ 65	25	-9 90
	7-44	0.01	199	0.48	0.52	005	*		from the	1,670		1100
	7-45	0.01	0,99	0.48	0.52		1225		69.2 1		50 12	230
	7-46	0.01	0.99	0.48	0.52	.03			685 2		11	280
	7-47	0.01	E99	0.48	0.52	Δ5 ·	1205	- 1	685 2		80 13	1
	7-48	0.01	0.99	0.48	0.52	1.0	1196	- 1	67.3 2		90 12	220
	7-49	0.01	0.99	0.48	0.52	3. 0	1135	0.7	642 1	390	120 1	1901

x + (1 - x) = 1; y + z = 1

Beispiel 8

Das Verfahren gemäß Beispiel 6 wird wiederholt, wobei jedoch MnO_2 zu den Grundkomponenten gegeben wird. Die gemeesenen piezoelektrischen Eigenschaften sind in Tabelle 8 zusammengestellt. Aus dieser Tabelle ergibt sich eine Verbesserung der Werte für Qm und $\tan \theta$ durch Zugabe von MnO₂. Wenn jedoch mehr als 3 Gew.-% MnO₂ hinzugegeben werden, so sinken Qm und $\mathcal{E}/\mathcal{E}_0$ und man beobachtet eine Erhöhung des Wertes für tan \mathcal{G} . Ferner ist die Isolierung verschlechtert. Demgemäß liegt die optimale Menge'der Mangankomponente im Bereich von 0,01 – 3,0 Gew.-%, berechnet als MnO₂ und bezogen auf die Gesamtgrundkomponente.

Tabelle 8

	x(A ₂ Nb ₂ O ₇) _{1/2} · (1-x)[y(PbTiO ₃)· z(PbZrO ₃)]											
No.		•					Bie- gefe		Ι.		F	
	x.	1-x	y	z	A	MnO, (Gew,		E/E0	tan∂ ≉	Kp	Qm	fr.TO (ppm/ C)
8-1	005	0.95	0.48	0.52	Sr	a		2320	1.8	69.7	75	. 20
8-2	0.05	0.95	0.48	0.52	Sr	001	990	2095	0.7	69.2	1830	25
8-3	0.05	0.95	0.48	0.52	Sr	0.05	1090	2530	0.5	765	1700	35
8-4	0.05	0.95	0.48	0.52	8 r	a1	1210	2380	0.3	748	2050	50
8-5 -	0.05	0.95	0.48	0.52	8 r	0.3	1290	1490	0.3	680	2550	60
8-6	0.05	0.95	0.48	0.52	Sr	0.5	1310	1320	0.2	668	2630	75

Fortsetzung Tabelle 8

				T-		1 -		I	Π	T	1.0	1	
8-7-	0.05	0.95	0.48	0.52	Sr	LO	1230	1065	0.4	61.5	2050	90	
8-8	1 05	0.95	048	0.52	S r	8.00	1180	899	0.8	598	1320	110	i
8-9	0.05	0.95	0.4-8	0.52	8 r	4.0	1150	530	1.6	355	340	150	-
8-10	0.05	0.95	. 0.49	0.51	Рь	٥.	900	1970	1,9	705	75	50	
8-11	0.05	0.95	0.49	0.51	Рь	00°5	950	2340	Пě	750	1330	60	-
8-12	0.05	0.95	0.49	0.51	Pь	Q.1	990	2010	0.4	757	1900	75	-
8-13	0.05	0.95	0.49	0.51	Рb	0.3	1180	1445	0.3	692	2380	85	
8-14	0,05	0.95	0.4%	0.51	Pb	0.5	1260	1398	0.2	67.7	2530	100	
8-15	0.05	095	0.49	0.51	Pь	10	1210	1090	0.5	61.5	1780	120	
8-16	.005	0.95	0.49	0.51	Рь	3.0	1130	870	0.8	548	1040	140	
8-17	0.01	0.99	0.48	052	Ва	0	930	1515	1.9	70.5	78	20	
8-18	0.01	099	0.48	0.52	Ва	0.05	1030	1510	0.5	712	1830	30	
8-19	0.01	099	0.48	0.52	Ва	0.1	1150	1440	0.3	.708	2370	45	
`8-20	0.01	0.99	0.48	0.52	Ва	0.5	1230	1290	0.3	688	2900	55	
8-21.	001	092	048	0.52	Bạ	0.5	1290	1215	0.2	662	3100	70	
8-22	0.01	0.99	0.48	0.52	Ва	w	1230	1080	0.4	593	2240	90	
8-23	.001	099	0.48	052	Ва	3.0	1170	910	۵Z	53.8	1550	115	
						1		,	•	,		. ,	

Die Feldabhängigkeiten von \mathcal{E}/\mathcal{E} o und an^{\int} in Bezug auf die Spannung (V) an den Anschlüssen für die Probe Nr. 4-16 gemäß Tabelle 4 wurden gemessen und in den Figuren 2 und 3 dargestellt. Zum Vergleich wurden auch die entsprechenden Kurven für die herkömmlichen piezoelektrischen Massen in den Figuren 2 und 3 dargestellt. Wenn eine herkömmliche piezoelektrische Masse verwendet wird, und eine hohe Spannung angelegt wird, so beobachtet man verschlechterte piezoelektrische Eigenschaften und insbesondere eine Zunahme von tan dund eine Temperaturerhöhung. Die erfindungsgemäße Probe zeigt hingegen eine geringe Abhängigkeit der Werte \mathcal{E}/\mathcal{E} und tan of vom Wechselfeld. Aus diesem Sachverhalt ergibt sich. daß die erfindungsgemäße Masse stabil ist und zu einer geringen Hitzeentwicklung führt, wenn man sie als Hochleistungsultraschallwandler verwendet, so daß die Eingangsleistung mit großer Effektivität in Ultraschallwellen umgewandelt werden kann. Die erfindungsgemäße piezoelektrische keramische Masse eignet sich besonders gut in solchen Anwendungsfällen. in denen eine hohe Amplitudencharakteristik erforderlich ist. Fig. 5 zeigt den Temperaturkoeffizienten der Dielektrizitätskonstante als Funktion des Ti-Anteils für ein herkömmliches Produkt und für die Probe Nr. 1-14.

PATENTANSPRÜCHE

- 1) Piezoelektrische keramische Masse mit einem Gehalt an PbTiO3-PbZrO3, gekennzeichnet durch einen Gehalt an einem komplexen Oxyd vom Fyrochlortyp.
- 2. Piezoelektrische keramische Masse nach Anspruch 1, dadurch gekennzeichnet, daß das komplexe Oxyd vom Pyrochlortyp aus einem oder mehreren der folgenden Oxyde besteht:

 Cd_2Sb_2O_7, Cd_2Nb_2O_7 Pb_2Sb_2O_7, Pb_2Nb_2O_7, Sr_2Sb_2O_7, Sr_2Nb_2O_7,

 Pa_2Sb_2O_7 oder Ba_Nb_2O_7.
- Piezoelektrische keramische Masse nach einem der Ansprüche 1 oder 2 der Zusammensetzung

$$x_{(Pyrochlortyp)}^{(komplexes Oxyd vom)}$$
 . (1-x) $[y(PbTiO_3) z(PbZrO_3)]$

wobei 0,2 \leq y \leq 0,8; 0,2 \leq z \leq 0,8; y + z = 1,0 und 0,001 \leq x \leq 0,2 gilt.

- 4. Piezoelektrische keramische Masse nach einem der Ansprüche 1 bis 3, gekennzeichnet durch einen zusätzlichen Gehalt an 0,01 3,0 Gewichtsprozent MnO₂.
- 5. Piezoelektrische keramische Masse nach einem der Ansprüche 1 bis 4, dadurch gekennzeichnet, daß sie durch Sinterung der einzelnen Komponenten bei mehr als 1000 °C mit oder ohne vorhergehende Kalzinierung herstellbar ist.

509823/0789

. 32.

