Types of Operating System

1) Resident Monitor 2) Bootch systems 3) Multiprogramming Systm. -muitiple programs are Degree Multiprogramming--number of processes loaded CPV byost-time spent on CPV TO buret - time spent on To CPV byord > IO barret - CPV bound IO burst > CPU burst - IO bound -mixture of CPV & IV bound processes is load into RAM 4) Time sharing system/ multitasking system - CPV time is shared into all the processes of RAM Response time < 1see

6) Multiprocessing system -multiple CPVs are fitted on single chip such processor is known as "multiprocessor"/"multi Core" -OS can take advantage of this to schedule multiple processes at same time on different cores. -processes can be executed paraellely, that's Why it is also known as parallel systms Linux - Kernel 2.57 Windows Vista

Types of multitesking

1) Process based multitesking

- system wide

STS Chrome

VLC Horrad

ii) Thread based Multitasking (Multithreading

-process wide (within process) multitusking

There are two types of muliprocessing is Symmetric muliprocessing

OS's Data Structures

1. Job queue / Process list

- all process of RAM are kept into this queue

2. Ready queue

- processes which are ready for execution on cpv cpv scheduler is going to select one process from ready quice

3. Waiting queues

-processes which are weiting for ID/event -per device one weiting queul.

Process Life cycle

n) Waiting -> Ready

Mon preemptive cpv access is given to another process voluntary - case i grantive cpv access is given to anothers process forcefully.

CPU Scheduling Criterias

- 1. CPU Utilization (Ideally : Max) -server OS -> Utilization -90%
 -Deskop OS -> Utilization -70%

 2. Through put (Ideally: Max) -Amount of work done in unit time 3. Waiting time (Ideally : Min) time spent by process into ready queue to get access of CPV. 4. Response time (Zdeally: Min) -time from cranival of process into ready queue upho
 - -time from crossived of process into ready queue upho first time gerting scheduled/executed on CPU 5. Turn Aroud Time(TAT) (I deally = mins)
- 5. Turn Aroud Time(TAT) (I deally = min)
 total time spent by process into RAM (memory)

FCFS (First Come First Serve) (Non-preemtive)

P1 0 24 0 24 P3 0 3 0 P2 0 3 24 24 24 24 24 24 24 24 24 24 24 24 24 34	0		1	CPU Burst	Arrival	Process	$\backslash H$	RT	WT	CPU Burst	Arrival	Process	
P2 0 3 2 4 2 4 P2 0 3 3 3 3		\bigcirc		3	0		24		\bigcirc)/1	0	P1	
	5	3	3	3	0	P2	2-1	24	24	3	0	P2	
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	30	9	6	24	0	P1	30 1	27	27	3	0	P3	\downarrow

Convoy effect

-due to arrival of longer process early, all other
processes was to wait for longer time.

SJF (Shortest Job First)
(preemptive)

(Mon-preemptive)

Process	Arrival	CPU Burst	WT	RT	TAT
P1	0	7		0	7
P2	2	4	6	6	10
P3	4	1	3	3	4
P4	5	4	7	7	1/1

(Shortest Remaining Time First)

				→ 1	1 1	- +	
į	Process	Arrival	CPU Burst	remain	W-\	RT	TAT
į	P1	0	7	7,5 X	9	O	16
	P2	2	4	1 4,2X	(\bigcirc	5
	Р3	4	1		Ó	\bigcirc	\
į	P4	5	4	4×	2	2	6
						0.5	

	PI	43	P2/	P4	PI	P2 PF P	2 14	1 91	
P	2 45 P2 P3 P4	7 8		2 16	6	2 4 5 P2 P3 P4	7		16

Storvetion:

due to longer CPU burst, process is not getting scheduled for longer time.

Priority

(Non-preemptive)

(preemptive)

Process	Arrival	CPU Burst	Priority
P1	0	10	3
P2	0	1	1 (H
P3	0	2	4 (4
P4	0	5	2

WT	RT	TAT
6	6	16
	Ď	
16	16	8
		6

Process	Arrival	CPU Burst	Priority
P1	0	10	3
P2	1	1	1
Р3	3	2	4
P4	0	5	2

WT	RT 6	TAT
Ō	\bigcirc	
13	13	
1		

	PZ/PG	P1		159
(f	•	6		16 13
	2_			
	P3 P4	PICO		P/
7	9	P2(9		P4
		PS (7		PS
		P4 (S	1	P7
		PS (6	/ I	P6 P3
		P7 (5)	> 12
		/		

P4 P2 P4 P1	P8/
P1 P2 P3 6	6 18
Sterroetion:	
due to low privaity, has to wait for longer time CPU time.	process e toget
	J
Aging: increesse privoity of	process
gradyally	

RR (per-emptive)

 Process
 CPU Burst
 remain
 WT
 RT

 P1
 53
 83,13×
 20
 20

 P2
 17
 X
 20
 37+40+7
 37

 P3
 68
 48,28,8
 37+40+7
 37

 P4
 24
 4
 X
 57+40
 57

Time Quantum = 20

Fair Share

- CPU time is divided into time slices (epoch)
- some share of each epoch is given to the processes which are in ready queue.
- share is given to the process on the basis of their priority
- priority of every process is decided by its nice value
- nice values range ---> -20 to +19 (40 values)
 - * -20 highest priority

* +19 - lowest priority

Process	Nice Value
P1	10
P2	10
P3	10
P4	10

Epoch - 100

Process	Nice Value	
P1	5	
P2	5	
P3	10	
P4	10	

Completely Fair Scheduler (CFS)

Multi Level Ready Queue

Multi Level Feedback Ready Queue

- 1. SCHED FIFO
- 2. SCHED_RR
- 3. SCHED OTHERS
- 4. SCHED_BATCH
- 5. SCHED_IDE

? real-time dosses/policies

CFS non real time classes/policles

