UNIVERSITY OF CAMBRIDGE INTERNATIONAL EXAMINATIONS

GCE Advanced Level

MARK SCHEME for the November 2004 question paper

9701 CHEMISTRY

9701/04

Paper 4 (Structured Questions A2 Core), maximum raw mark 60

This mark scheme is published as an aid to teachers and students, to indicate the requirements of the examination. It shows the basis on which Examiners were initially instructed to award marks. It does not indicate the details of the discussions that took place at an Examiners' meeting before marking began. Any substantial changes to the mark scheme that arose from these discussions will be recorded in the published *Report on the Examination*.

All Examiners are instructed that alternative correct answers and unexpected approaches in candidates' scripts must be given marks that fairly reflect the relevant knowledge and skills demonstrated.

Mark schemes must be read in conjunction with the question papers and the Report on the Examination.

• CIE will not enter into discussion or correspondence in connection with these mark schemes.

CIE is publishing the mark schemes for the November 2004 question papers for most IGCSE and GCE Advanced Level syllabuses.

Grade thresholds taken for Syllabus 9701 (Chemistry) in the November 2004 examination.

	maximum	minimum	mark required	for grade:
	mark available	А	В	Е
Component 4	60	44	39	22

The thresholds (minimum marks) for Grades C and D are normally set by dividing the mark range between the B and the E thresholds into three. For example, if the difference between the B and the E threshold is 24 marks, the C threshold is set 8 marks below the B threshold and the D threshold is set another 8 marks down. If dividing the interval by three results in a fraction of a mark, then the threshold is normally rounded down.

November 2004

GCE A LEVEL

MARK SCHEME

MAXIMUM MARK: 60

SYLLABUS/COMPONENT: 9701/04

CHEMISTRY
Paper 4 (Structured Questions A2 Core)

Page 1	Mark Scheme	Syllabus	Paper
	A LEVEL – NOVEMBER 2004	9701	4

1 (a) (i) strong, because final pH is about 14

[1]

(ii)
$$(pH = 0.70) \Rightarrow [H^+] = 10^{-0.7} = 0.20 \text{ (mol dm}^{-3})$$

[1]

$$\therefore [H_2SO_4] = (0.10 \text{ mol dm}^{-3})$$

ecf [1]

(iii) (end point is at 34.0 cm 3 (\pm 0.5 cm 3), so)

amount of H⁺ used

$$= 0.2 \times 25/1000 = 0.0050 \text{ mol}$$

ecf from (ii) [1]

moles of guanidine

= moles of H^+ = 0.0050 mol

[guanidine]

=
$$0.005 \times 1000/34.0 = 0.147 \text{ (mol dm}^{-3}\text{)}$$

[1]

allow range: 0.145 - 0.149 ecf in 0.005 or 34.0

(iv) $M_r = 8.68/0.147$

ecf from (iii) [1] 6

7 CaSO₄ + **3** Ca(H_2PO_4)₂ + **2** HF

= 702.3

[1] [1]

(ii)
$$M_r$$
 values: $Ca(H_2PO_4)_2 = 234.1$,

234.1 x 3

$$H_2SO_4 = 98.0$$

 $98 \times 7 = 686$

both [1]

ecf from ratios in equation, and from M_r values

: mass of H_2SO_4 needed = 1.0 x 686/702.3 = **0.98** kg

[1]

(correct answer = [3] marks. accurate value is: 0.977 kg. Allow ecf from incorrect $M_{\rm r}$ or incorrect multipliers)

[1]

4

.

(c) (i) A solution that **resists** changes in pH [NOT: results in **no** pH change]

[1]

when **small amounts** of H⁺ or OH⁻ are added

(ii) pH = $-\log_{10}(6.3 \times 10^{-8}) + \log_{10}(0.1/0.2) = 6.9$

[1]

or
$$[H^+] = (6.3 \times 10^{-8}) \times 0.2/0.1 = 1.26 \times 10^{-7}$$

- -

$$\therefore pH = -\log_{10}(1.26 \times 10^{-7}) = 6.$$

3

2 (a) $O_2 + 4H^+ + 4e^ \longrightarrow$ $2H_2O$ (or equation ÷ 2)

Total 13
[1] 1

(b) ⊕

[1] 1

(c) 1.23 (V) (ignore sign)

[1] 1

(d) a better/larger salt bridge or a diaphragm or larger (area of) electrodes

or increase concentrations/pressure

[1] 1

[1]

			
Page 2	Mark Scheme	Syllabus	Paper
	A LEVEL – NOVEMBER 2004	9701	4

(e) time = $400 \times 24 \times 60 \times 60 = 34560000$ seconds

charge = current x time = 0.01 x 34 560 000 = 345 600 C ecf [1]

moles of H = 345 600/96 500 = 3.6 mol∴ mass of H = **3.6** g ecf [1] 3

(f) advantages: less pollution/CO₂/NO_x etc. *or* cleaner by-products

> less dependence on fossil fuels/finite resources any one [1]

disadvantages: more expensive (to develop or to run)

takes up more space

poor power-to-volume ratio

hydrogen is difficult to store or to transport any one [1]

2 NOT hydrogen is explosive/flammable

Total 9 solubilities **decrease** down the group [1] hydration energy of the cation decreases [1] lattice energy stays the same, or decreases less than H.E. [1] making $\Delta H_{\text{solution}}$ more endothermic or H.E. no longer able to overcome -L.E. [1] 4 Total 4 (a) an element forming one or more ions with a partially filled/incomplete d-shell [1]

(b) (i) almost no change (allow *slight* increase or *slight* decrease) [1]

(ii) density should increase [1]

because A_r is increasing but size/volume/radius stays the same [1]

> (allow partial ecf from b (i)) 3

(c)3d⁹ [1] 1

(d) (i) an ion formed when a ligand (datively) bonds to a (central metal) cation [1]

(ii)

[1] 2

			
Page 3	Mark Scheme	Syllabus	Paper
	A LEVEL - NOVEMBER 2004	9701	4

(e) (i) dark/deep/navy/royal/Oxford blue *or* purple [NOT Prussian blue or lilac or mauve] [1]

(ii)
$$4NH_3 + [Cu(H_2O)_6]^{2+}$$
 $[Cu(NH_3)_4(H_2O)_2]^{2+} + 4H_2O$

(f)
$$CuCl_4^{2-}$$
 is produced [1]

the equilibrium is **reversible**
$$or \Rightarrow$$
 in equation [1]

$$Cl^-$$
 ligands **replace/exchange** with H_2O ligands (in words) [1]

(the following equation is worth the first two marks)

$$[Cu(H_2O)6]^{2^+} + 4Cl^- \Rightarrow [CuCl_4]^{2^-} + 6H_2O$$

Total 12

(b)
$$SOC l_2/PC l_3/PC l_5$$
 [aq negates] [1]

(ii) (acyl chloride fastest) highly
$$\delta$$
 + carbon atom joined to 2 electronegative atoms

(aryl chloride slowest) delocalisation of lone pair over ring ⇒ stronger C-Cl bond

or impossibility of 'backside' attack on the C-Cl bond [1] 3

Page 4	Mark Scheme	Syllabus	Paper
	A LEVEL - NOVEMBER 2004	9701	4

(d) $C_6H_5-CO_2C_6H_5$

C₆H₅-CONHCH₃

C₆H₅-CO₂H

[1]

[1]

[1]

OR

3

Total 9

6 (a) (i) E

[1]

(ii) CH₃CH₂CH₂CO₂ (Na⁺)

[NOT C₃H₇COO-Na or C₃H₇COOH]

[1]

[but allow CH₃CH₂CH₂CO₂Na]

CH*l*₃ *or* name

[1] 3

(b) the alcohol from E has four different groups around a carbon atom

[1]

: it is chiral/asymmetric *or* it is produced as a 50:50 mixture of mirror images

[1]

or its mirror images are non-superimposable

$$C_3H_7$$
 C_3H_7 C_3H_7 C_3H_7

formulae: [1]

the alcohol from **D** has 2 identical groups on its central carbon atom [1]

4 max 3

Total 6

7 (a) orange colour disappears/bromine is decolourised (NOT discoloured, or goes clear)

[1]

(white) precipitate/solid/crystals is formed [1] 2

Page 5	Mark Scheme	Syllabus	Paper
	A LEVEL – NOVEMBER 2004	9701	4

(b)	e.g.	add neutral $FeCl_3$ (aq) – violet colour with phenol				
	or	add universal indicator – red/orange colour with phenol				
	or	add Na metal – fizzing/H ₂ evolved with phenol				
	or	add NaOH(aq) to the pure compound – phenol would dissolve				
	or	add H ⁺ (aq) to the pure compound – phenylamine would dissolve				
	or	add HNO ₂ at room temperature – phenylamine would produce gaseous N ₂₋				
	or	add HNO_2 at 5 $^{\circ}C$, followed by an alkaline solution of phenol – phenylamine would produce a coloured (orange) dye		1		
(c)	IV	KMnO ₄ + heat	[1]			
	V	$HNO_3 + H_2SO_4$ [1] (both) conc ^d and at 50 °C < T < 60 °C	[1]			
	VI	Sn + HC l (NOT LiA l H ₄)	[1]	4		

Total 7

