CS378: Computer Networks Lab

Topic 01: Overview

Slides borrowed from:
Kameswari Chebrolu
Department of CSE, IIT Bombay

Inside Computer

Internet protocol stack

- Application: supporting network applications
 - FTP, SMTP, HTTP
- Transport: process-process data transfer
 - TCP, UDP
- Network: routing of datagrams from source to destination
 - IP, routing protocols
- Link: data transfer between neighboring network elements
 - PPP, Ethernet
- Physical: bits "on the wire"

Networking Code Organization

- Most applications are implemented as user space processes.
- Protocols are implemented in the system kernel
 - Socket layer
 - Protocol layer
 - Interface layer

Network Configurations Files

- When a host is configured to boot locally, network configuration parameters are stored in files.
- When the system boots up, parameters are read from the files and used to configure the daemons and the network interface.
- A parameter may be changed by editing the corresponding configuration file.
- Examples:
 - /etc/hosts
 - /etc/services
 - /etc/network/interfaces

Naming and Addressing

Uniquely identify processes in different computers for communications.

 Domain name application Port number transport IP address MAC address network link Asterix.iitb.ac.in physical

application transport network link physical

Domain Name

- A user friendly name to identify a host
- Domain Name System (DNS): resolves a domain name to the corresponding IP address.
- Example:
 - www.cse.iitb.ac.in → 59.162.23.130 (outside world)
 - www.cse.iitb.ac.in → 10.105.1.3 (inside IITB)
- A host first contacts its local DNS server to get the mapping
 - host needs to know the local DNS server address (specified in configuration file)

IP Address

- Each interface in a host is assigned an IP address.
- IPv4, 32 bits, dotted-decimal notation

```
128.238.42.112 means
10000000 in 1<sup>st</sup> Byte
111011110 in 2<sup>nd</sup> Byte
00101010 in 3<sup>rd</sup> Byte
01110000 in 4<sup>th</sup> Byte
```

■ IPv6, 128-bit address

Media Access Control Address

- Apart from IP address, each interface in a host also has a hardware address (MAC address)
- Ethernet MAC address is 48 bits long
 - E.g 00:18:F3:96:C2:A7
- ARP protocol is used to translate an IP address to MAC address

Port Numbers

- Address for the application layer user process.
- Port Number field specified in TCP or UDP header.
- Well-known port numbers
 - 1 to 255: Internet wide services
 - 256 to 1023: preserved for Unix specific services
 - 1024 and up: ephemeral port numbers
 - Port 80 is associated with http (web server)
 - Port 25 is associated with email

Encapsulation

- The application data is sent down
- Each layer adds a header to the data (PDU) from its higher layer.

Multiplexing and Demultiplexing

 Different higher layer protocols can use the service by the same lower layer protocol.

Application Header

• Example: Show Email Header

UDP Header Format

0 16 32

Source Port Number	Destination Port Number
Length	Checksum

TCP Header Format

0 16 32

Source Port Number			Destination Port Number	
Sequence Number				
Acknowledgement Number				
Hdr Len.	Reserved	Flags	Window Size	
TCP Checksum			Urgent Pointer	
Options (if any)				
Data (optional)				

IP Header Format

• Size: 20 bytes without options.

0 16 32

Version	Hdr Len	Differentiated Services	Total Length		
Identification		Flags	Fragment Offset		
Time	to Live	Protocol	Header Checksum		
Source IP Address					
Destination IP Address					
Options (if any, <= 40 bytes)					
Data					

Ethernet Frame Format

- Source Ethernet (MAC) Address
- Destination Ethernet Address
- Frame Type: used to identify the payload
- CRC: used for error control

Destination Address	Source Address	Frame Type	Data	CRC
6 bytes	6 bytes	2 bytes	46–1500 bytes	4 bytes

Packet Sniffer

- Sniffs messages being sent/received from/by your computer
- Store and display the contents of the various protocol fields in the messages
- Passive program
 - never sends packets itself
 - no packets addressed to it
 - receives a copy of all packets (sent/received)

Packet Sniffer Structure

Figure 1: Packet sniffer structure

Diagnostic Tools

- Tcpdump
 - E.g tcpdump -enx host 10.129.41.2 -w exe3.out
- Wireshark
 - wireshark -r exe3.out

http://openmaniak.com/tcpdump.php

http://openmaniak.com/tcpdump.php

Screen Shot

command

memo

listing of captured packets

details of selected packet header

content in hexadecimal and ASCII

Figure 1.22 ♦ An Ethereal screen shot

Miscellaneous Stuff

- Time is tight: Don't loiter, get on with the task asap
- Discuss with partner to ensure both understand what is being done
- Take turns (both need to learn what is happening)
- Each student reports "self" and "partner's" contribution to the lab
 - Reality check via exam
 - Total marks weighed accordingly