Übungsblatt 12 zur Homologischen Algebra I

Aufgabe 1. Limiten zyklischer Gruppen

Sei \mathbb{N} mit der Teilbarkeitsordnung versehen. Zeige, dass der Kolimes $\operatorname{colim}_{n\in\mathbb{N}}\mathbb{Z}/(n)$ die Faktorgruppe \mathbb{Q}/\mathbb{Z} ist. Die Diagrammabbildungen $\mathbb{Z}/(n) \to \mathbb{Z}/(m)$ sind dabei durch (in \mathbb{Z} zu berechnende) Multiplikation mit m/n gegeben.

Aufgabe 2. Existenzkriterium für endliche Limiten

Sei \mathcal{C} eine Kategorie, in der es folgende spezielle endliche Limiten gibt: ein terminales Objekt, Produkte von je zwei Objekten und Differenzkerne (Equalizer) von je zwei parallelen Morphismen. Zeige, dass es in \mathcal{C} dann schon alle endlichen Limiten gibt.

Hinweis: Es ist nur noch die universelle Eigenschaft des im Beweis der Vorlesung konstruierten Objekts X nachzuweisen.

Aufgabe 3. Freie Konstruktionen

Sei \mathcal{C} eine Kategorie algebraischer Strukturen (etwa $\mathcal{C}=\mathrm{Ring}$ oder $\mathcal{C}=\mathrm{Mod}(R)$). Anschaulich stellt man sich das von den Elementen einer gewissen Menge M frei erzeugte Objekt L(M) in \mathcal{C} wie folgt vor: Man beginnt mit den Elementen aus M und fügt all solche Ausdrücke hinzu, damit L(M) zu einem Objekt von \mathcal{C} wird (etwa Summen und Produkte im Fall $\mathcal{C}=\mathrm{Ring}$). Dabei nimmt man nur solche Identifikationen vor, die von den Axiomen gefordert werden (etwa dem Assoziativgesetz). Die Zuordnung $M\mapsto L(M)$ definiert dann einen Funktor Set $\to \mathcal{C}$, welcher linksadjungiert zum $Vergissfunktor\ V:\mathcal{C}\to\mathrm{Set}$ ist.

- a) Erkläre, inwieweit die Adjunktionsbeziehung $L\dashv V$ obige anschauliche Vorstellung kodiert. (Diese Frage hat eine präzise Antwort.)
- b) Bestimme für die folgenden Vergissfunktoren Linksadjungierte.

1. $\operatorname{Mod}(R) \to \operatorname{Set}$

7. Ab \rightarrow Grp

2. Mon \rightarrow Set

8. $Mod(R) \to Ab$

3. $\operatorname{Grp} \to \operatorname{Set}$

9. $Alg(R) \to Mod(R)$

4. Ring \rightarrow Set

10. $Met_{complete} \rightarrow Met$

5. Top \rightarrow Set

11. $Alg(k) \rightarrow LieAlg(k)$

6. $sSet \rightarrow Set$

12. $sSet \rightarrow semi-sSet$

Dabei ist Mon die Kategorie der Monoide, Alg(R) die Kategorie der R-Algebren, $Met_{complete}$ die Kategorie der vollständigen metrischen Räume und gleichmäßig stetigen Abbildungen und semi-sSet die Kategorie der Verklebedaten. Findest du zum Vergissfunktor $Top \rightarrow Set$ auch einen Rechtsadjungierten?

Aufgabe 4. Globale Charakterisierung von Limes und Kolimes

Sei I eine Indexkategorie. Sei \mathcal{C} eine Kategorie, in der alle \mathcal{I} -förmigen Limiten existieren. Der $Diagonalfunktor\ \Delta: \mathcal{C} \to [\mathcal{I}, \mathcal{C}]$ schickt ein Objekt X auf den konstanten Funktor bei X (dieser schickt jedes Objekt auf X und jeden Morphismus auf id_X). Dabei ist $[\mathcal{I}, \mathcal{C}]$ die Kategorie der Funktoren $\mathcal{I} \to \mathcal{C}$.

- a) Sei für jedes Diagramm $F \in [\mathcal{I}, \mathcal{C}]$ ein Limes $\lim F \in \mathcal{C}$ gewählt. Definiere damit einen Funktor $\lim : [\mathcal{I}, \mathcal{C}] \to \mathcal{C}$, der jedem Diagramm seinen Limes zuordnet. Wie wirkt er auf Morphismen? Wieso sind die Funktoraxiome erfüllt?
- b) Zeige: $\Delta \dashv \lim$.
- c) Formuliere und beweise mit wenig Aufwand die duale Behauptung über Kolimiten.

Aufgabe 5. Aufrundung und Abrundung

Wir betrachten die drei monotonen Abbildungen

und die induzierten Funktoren zwischen $B\mathbb{Q}$ und $B\mathbb{Z}$. Zeige: $B[_] \dashv Bi \dashv B[_]$.

Aufgabe 6. Allquantifikation, Rückzug und Existenzquantifikation

Eine Abbildung $f: X \to Y$ zwischen Mengen induziert in kanonischer Art und Weise drei monotone Abbildungen zwischen den Potenzmengen. Zeige: $B \exists_f \dashv Bf^{-1} \dashv B \forall_f$.

$$\begin{split} &\exists_f: \quad \mathcal{P}(X) \longrightarrow \mathcal{P}(Y), \quad U \longmapsto \exists_f(U) := f[U] = \{y \in Y \mid \exists x \in X \colon y = f(x) \land x \in U\} \\ &f^{-1}: \quad \mathcal{P}(Y) \longrightarrow \mathcal{P}(X), \quad V \longmapsto f^{-1}[V] \\ &\forall_f: \quad \mathcal{P}(X) \longrightarrow \mathcal{P}(Y), \quad W \longmapsto \forall_f(W) := \{y \in Y \mid \forall x \in X \colon y = f(x) \Rightarrow x \in W\} \end{split}$$

Aufgabe 7. Lineares Currying

Seien R und S Ringe (mit Eins). Sei M ein R-S-Bimodul. Zeige

$$\begin{pmatrix} S\text{-Mod} & \longrightarrow & R\text{-Mod} \\ V & \longmapsto & M \otimes_S V \end{pmatrix} \xrightarrow{} \begin{pmatrix} R\text{-Mod} & \longrightarrow & S\text{-Mod} \\ W & \longmapsto & \operatorname{Hom}_R(M, W) \end{pmatrix}$$

Aufgabe 8. Die Dreiecksidentitäten von Adjunktionen

Sei $F\dashv G$ ein Paar adjungierter Funktoren. Zeige, dass zwischen der Eins $\eta: \mathrm{Id} \to G \circ F$ und der Koeins $\varepsilon: F \circ G \to \mathrm{Id}$ folgende Beziehungen bestehen:

Aufgabe 9. Ein Beispiel für Cartier-Dualität

Sei k ein kommutativer Grundring und $A = k[X]/(X^n - 1)$. Anschaulich ist A die Algebra der Funktionen auf dem Unterschema der n-ten Einheitswurzeln in \mathbb{A}^1_k (unabhängig davon, ob diese in k tatsächlich existieren oder nicht).

- a) Zeige, dass A mit der Komultiplikation $[X] \mapsto [X] \otimes [X]$ zu einer Bialgebra wird.
- b) Welche Bialgebra ist das Cartier-Duale $A^{\vee} = \operatorname{Hom}_k(A, k)$?