SEMINAR 10

- 1) Să se arate că vectorii (1,2,-1), (3,2,4), (-1,2,-6) din \mathbb{R}^3 sunt liniar dependenți și să se găsească o relație de dependență între ei.
- 2) Daţi o condiţie necesară şi suficientă pentru ca vectorii $v_1=(a_1,b_1), v_2=(a_2,b_2)$ să formeze o bază a \mathbb{R} -spaţiului vectorial \mathbb{R}^2 . Să se interpreteze geometric această condiţie. Folosind condiţia stabilită, găsiţi o infinitate de baze ale lui \mathbb{R}^2 . Există o bază a lui \mathbb{R}^2 în care coordonatele unui vector v=(x,y) să coincidă cu x şi y? Să se arate că $v_1=(1,0)$ şi $v_2=(1,1)$ formează o bază a lui \mathbb{R}^2 şi să se găsească coordonatele lui v=(x,y) în această bază.

Temă: Formulați și rezolvați o problemă similară celei de mai sus pentru \mathbb{R} -spațiul vectorial \mathbb{R}^3 .

- 3) Să se determine $a \in \mathbb{R}$ astfel încât vectorii $v_1 = (a, 1, 1), v_2 = (1, a, 1), v_3 = (1, 1, a)$ să formeze o bază a lui \mathbb{R}^3 .
- 4) Care dintre următoarele submulțimi ale lui \mathbb{R}^3 :
- a) $\{(1,0,-1),(2,5,1),(0,-4,3)\};$
- b) $\{(2, -4, 1), (0, 3, -1), (6, 0, 1)\};$
- c) $\{(1,2,-1),(1,0,3),(2,1,1)\};$
- d) $\{(-1,3,1), (2,-4,-3), (-3,8,2)\};$
- e) $\{(1, -3, -2), (-3, 1, 3), (-2, -10, -2)\}$

sunt baze ale \mathbb{R} -spațiului vectorial \mathbb{R}^3 ?

- 5) Fie V un \mathbb{R} -spaţiu vectorial şi $v_1, v_2, v_3 \in V$. Să se arate că vectorii v_1, v_2, v_3 sunt liniar independenți dacă și numai dacă vectorii $v_2 + v_3, v_3 + v_1, v_1 + v_2$ sunt liniar independenți. **Suplimentar:** i) Să se arate că $\langle v_1, v_2, v_3 \rangle = \langle v_2 + v_3, v_3 + v_1, v_1 + v_2 \rangle$.
- ii) Este proprietatea din enunț adevărată într-un spațiu vectorial peste un corp oarecare K?
- 6) Să se arate că în \mathbb{R} -spațiul vectorial $M_2(\mathbb{R})$ matricele

$$E_1 = \begin{pmatrix} 1 & 0 \\ 0 & 0 \end{pmatrix}, E_2 = \begin{pmatrix} 1 & 1 \\ 0 & 0 \end{pmatrix}, E_3 = \begin{pmatrix} 1 & 1 \\ 1 & 0 \end{pmatrix}, E_4 = \begin{pmatrix} 1 & 1 \\ 1 & 1 \end{pmatrix}$$

formează o bază și să se scrie matricea $A=\left(\begin{array}{cc} -2 & 3 \\ 4 & -2 \end{array}\right)$ în această bază.

7) a) Fie $a, b, c \in \mathbb{R}$ și polinoamele

$$f_1 = (X - b)(X - c), f_2 = (X - c)(X - a), f_3 = (X - a)(X - b).$$

Să se arate că:

i) f_1, f_2, f_3 sunt liniar independenți în \mathbb{R} -spațiul vectorial $\mathbb{R}[X]$ dacă și numai dacă

$$(a-b)(b-c)(c-a) \neq 0$$
;

- ii) dacă $(a-b)(b-c)(c-a) \neq 0$ atunci pentru orice $f \in \mathbb{R}[X]$ cu grad $f \leq 2$ există $\lambda_1, \lambda_2, \lambda_3 \in \mathbb{R}$, unic determinate, astfel încât $f = \lambda_1 f_1 + \lambda_2 f_2 + \lambda_3 f_3$.
- b) Să se determine $\lambda_1, \lambda_2, \lambda_3$ când $f = 1 + 2X X^2, a = 1, b = 2$ și c = 3.
- 8) Fie $n \in \mathbb{N}$ şi $f_n : \mathbb{R} \to \mathbb{R}$, $f_n(x) = \sin^n x$. Să se arate că $L = \{f_n \mid n \in \mathbb{N}\}$ este o submulțime liberă a \mathbb{R} -spațiului vectorial $\mathbb{R}^{\mathbb{R}}$.

1