AD-A102 841 GENERAL ELECTRIC CO PITTSFIELD MA ORDNANCE SYSTEMS F/6 9/5 ELECTRICAL CHARACTERIZATION AND SPECIFICATION OF PERIPHERAL DRI--ETC(U)
MAY 81 J S KULPINSKI, T HACK, T SIMONSEN F30602-80-C-0057 UNCLASSIFIED RADC-TR-81-72 NL 1 00 2 4F: AIG2841

RADC-TR-81-72 Final Technical Report May 1981

ELECTRICAL CHARACTERIZATION AND SPECIFICATION OF PERIPHERAL DRIVERS, CORE DRIVERS AND MULTIPLYING DACS

General Electric Ordnance Systems

John S. Kulpinski, et al

SELECTE AUG 1 4 1981

E

APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED

TE FILE COPY

ROME AIR DEVELOPMENT CENTER Air Force Systems Command Griffiss Air Force Base, New York 13441

81 8 14 055

This report has been reviewed by the RADC Public Affairs Office (PA) and is releasable to the National Technical Information Service (NTIS). At NTIS it will be releasable to the general public, including foreign nations.

RADC-TR-81-72 has been reviewed and is approved for publication.

APPROVED: '

THOMAS L. DELLECAVE

Project Engineer

APPROVED:

DAVID C. LUKE, Colonel, USAF

Havid C. Like

Chief, Reliability & Compatibility Division

FOR THE COMMANDER:

JOHN P. HUSS

Acting Chief, Plans Office

If your address has changed or if you wish to be removed from the RADC mailing list, or if the addressee is no longer employed by your organization, please notify RADC (RBRA) Griffiss AFB NY 13441. This will assist us in maintaining a current mailing list.

Do not return this copy. Retain or destroy.

SECURITY CLASSIFICATION OF THIS PAGE When Date Entered)

	REPORT DOCUMENTATION PAGE READ INSTRUCTION BEFORE COMPLETING READ INSTRUCTION BEFORE COMPLETING BEFO			
' 1	TR-81-72 PD-1	ALCOL SYLL		
ELECTRICAL CHARACTERIZATION AND SPECIFICATION Final Technical OF PERIPHERAL DRIVERS, CORE DRIVERS AND MULTIPLYING DACS, N/A				
7 AUTHO	R(a)	8 CONTRACT OR GRANT NUMBERIS		
John	S. Kulpinski, et al.	F30602-80-C-0057,		
9 PERFO	RMING ORGANIZATION NAME AND ADDRESS	10 PROGRAM ELEMENT PROJECT TAD		
	al Electric Ordnance Systems	62702F		
•	ronic Systems Division	23380186		
	field MA 01201	•		
11 CONTE	ROLLING OFFICE NAME AND ADDRESS	May 1981		
Rome	Air Development Center (EBRA)	13 NUMBER-OF PAGES		
	iss AFB XY 13441	1 12()		
14 MONITORING AGENCY NAME & ADDRESSED different tram Controlling Office) 15 SECURITY SEASS				
1/2 /= /				
Samo		UNCLASSIE UID		
ł		15# DECLASSIFICATION DOWNGRADING		
1	Bution statement of this Report) ved for public release; distributi John S.	on unlimited. /Kulpinski Thomas /Hack		
Appro	ved for public release; distributi	on unlimited. Kulpinski Thomas /Hack re /Simonsen Larry /Deluca		
Appro-	John S. BUTION STATEMENT 'SI the abstract onto John /I	on unlimited. /Kulpinski Thomas /Hack re /Simonsen Larry /Deluca Ounn		
Appro-	John S. BUTION STATEMENT Of the abstract onte EMENTARY NOTES Project Engineer: Thomas L. Delle	on unlimited. • /Kulpinski Thomas /Hack re /Simonsen Larry /Deluca Ounn cave (RBRA)		
Appro- i7 DISTRI Same 18. SUPPL RADC I 19. KEY #C Reliab Interf	John S. BUTION STATEMENT 'DI the abstract ente John /I EMENTARY NOTES Project Engineer: Thomas L. Delle	on unlimited. • /Kulpinski Thomas /Hack re /Simonsen Larry /Deluca Ounn cave (RBRA)		
Appro- 17 DISTRI Same 18 SUPPL RADC I 19 KEY #C Reliab Interf Charac	John S. BUTION STATEMENT Of the abstract ente John /I EMENTARY NOTES Project Engineer: Thomas L. Delle OROS (Continue on reverse side if necessary and identity by to cility ace Microcircuit	on unlimited. Kulpinski Thomas /Hack re /Simonsen Larry /Deluca Dunn cave (RBRA)		

SECURITY CLASSIFICATION OF THIS PAGE(When Data Entered)

following device types were evaluated:

Peripheral Drivers - 55450 and 55460 family, Core Drivers - 55325/6/7; And Multiplying CMOS DACs - 7520 family.

Data obtained during device characterization is published in handbook form and is available under separate cover from this document. However, samples of data sheets, histograms and plots are included in this report.

PREFACE

This report was prepared by General Electric Ordnance Systems, 100 Plastics Avenue, Pittsfield, Massachusetts, for Rome Air Development Center, Griffiss Air Force Base, Rome, New York, under contract F30602-80-C-0057. It covers the period from January 1980 to January 1981.

The work on this project was performed by the Electronic Circuits Engineering Operation of Ordnance Systems. Project responsibility was held by Mr. John Kulpinski of Circuit Design Engineering. Key individuals who made significant contributions to this work effort were Messrs. Thomas Hack and Theodore Simonsen of Circuit Design Engineering and Messrs. Larry Deluca, John Dunn, Robert Mossman and Jamie Schwehr of Circuit Test Engineering.

Mr. Thomas Dellecave, RBRA, is the Project Engineer at RADC for this contract.

Accession For	
NTIS GRADI	
DIIC TAL	
Unenno La Fill []	
Justifica i is i i i i i i i i i i i i i i i i i	
	_
By	
Division of the	
Avail 12220 200cs	
Avi. i mojor	
Dist sp. 3.34	
A	

ELECTRICAL CHARACTERIZATION AND SPECIFICATION OF PERIPHERAL DRIVERS, CORE DRIVERS, AND MULTIPLYING DACS

List of Sections

SECTION	TITLE	PACE NUMBER
I.	INTRODUCTION	I-i
II.	AUTOMATIC TEST DEVELOPMENT	II-i
III.	CHARACTERIZATION OF PERIPHERAL DRIVERS MIL-M-38510/129	III-i
IV.	CHARACTERIZATION OF CORE DRIVERS, MIL-M-38510/130	IV-i
v.	CHARACTERIZATION OF CMOS MDACs, MIL-M-38510/127	V-1

SECTION I

INTRODUCTION

TABLE OF CONTENTS

	Page
Objectives	I- 1
Scope of Applied Effort	1- 2
Background	I- 2
Development of Slash Sheets	1- 3
Characterization Data	I- 4
Formal Mectines Attended	I- 4

SECTION I

INTRODUCTION

Objectives

The overall objective of this work effort is to characterize and specify MIL-M-38510 ("General Specification for Microcircuits") detailed slash sheets.

Generally, "characterization" of a device type includes several related tasks:

- o Assessment of test parameters, limits, and test conditions.
- o Development of test procedures and test circuits compatible with automatic test systems.
- o Analysis of limits and verification of test circuits via sample device testing and data evaluation.
- o Assessment of device performance, identification of anomolies.
- o Generation and verification of detailed burn-in life test circuits

Concurrent with characterization, detailed MIL-M-38510 sizes sheet development includes:

- o Formulation of Table I, Electrical Performance Characteristics selection of test parameters required by military users and determination of test conditions and limits, compatible with automatic test methods and with device yield.
- o Formulation of Table II, Electrical Test Requirements; Table III, Group A Inspection; Table IV, Group C End Point Electrical parameters.
- o Design of static and dynamic test circuits, terminal connection diagrams, steady-state power and reverse bias burn-in circuits, accelerated burn-in and life test circuits.

All of the above activity is either guided by or reviewed by the manufacturers of the devices involved, and by Rome Air Development Center (RADC).

All of the characterization and specification effort performed is based upon the fundamental objectives of the JAN 38510 program - namely quality, reliability, interchangeability, and standardization.

Scope of Applied Effort

The specific tasks included in this effort are the characterization and specification of the following generic device types:

- o Peripheral Drivers
- o Core Drivers
- o Multiplying DACs

Originally, sense amplifiers and line drivers were also planned for characterization. Lack of vendor interest and support plus discontinued production by one vendor, led to cancellation of that effort and addition of the multiplying DAC effort.

Background

The second secon

General Electric Ordnance Systems, one of 166 operating product departments of the General Electric Company, develops and produces precision electromechanical and electronic military systems. Current activities include development, design and production of fire control and guidance systems for the Navy's TRIDENT Fleet Ballistic Missile program, the MK 73 Gun and Guided Missile Director (TARTAR), the MK 80 Director (AEGIS), the PHALANX close—in weapon system, MK 45 Gun Mounts, turnet drive and stabilization systems for the Army's Infantry Fighting Vehicle, advanced torpedo propulsion, and jet engine controls.

As users of microcircuits for military systems, Ordnance Systems has also performed electrical characterization of certain linear, digital, and interface microcircuits for MIL-M-38510 specification under previous contracts to Rome Air Development Center. These specification acitivities date back to 1971 and include seventeen separate contracts.

General Electric began this current effort in MIL-M-38510 microcircuits on January of 1980, having previously completed similar characterization and specification contracts in 1976 - 1979. Philosophies for establishing parameters, limits, and test circuits for conventional devices like op amps, comparators, logic devices and data converters were developed and coordinated with RADC, DESC, and the device manufacturers.

This current effort extended past efforts to a new class of devices, peripheral drivers and memory core drivers, and thus established important groundwork in the development of automatic tests and specifications for high-speed, high-voltage/current logic drivers.

Currently there are approximately thirty completed and in-process linear/interface slash sheets in the MIL+M-38510 program. Six slash sheets are devoted to op amps including the bipolar "standards", followers, BIFETs, quads, high-slew-rate, and lo-power and lo-noise BIFETs. Comparators, transistor arrays, and precision timers are contained in four slash sheets, as are CMOS and JFET analog switches. Voltage regulators are specified in six

separate slash sheets, and precision voltage reference in two others. Three slash sheets are devoted to D/Λ converters, and one each to A/D converters, sample/hold circuits, peripheral drivers, memory core drivers, and line drivers and line receivers.

Development of Slash Sheets

A procedure for developing new slash sneets to MIL-M-38510 has evolved through negotiations among all concerned parties. Device selection is influenced by user needs, which is determined from the marketplace and from organized committees, such as the Military Parts Control Group (MPCAG) at DESC, the G12 Solid State ElA Device Committee, and the Microelectronics Project Group of the Electronics Systems Committee of AIA. These recommendations are balanced with manufacturer recommendations obtained via the 3C-41 Committee on Linear Microcircuits. Devices of recent vintage, having high usage, multiple application potential in military systems, proven performance, and two or more sources are given priority. Single-sourced devices are acceptable, especially for hybrid devices, although multiple sources are preferred. Availability of devices, and expressed manufacturer interest in supporting slash sheet development are additional important considerations. Manufacturers typically recommend devices for slash sheet action in 3C-4! Committees, and then chair a JC-41 Subcommittee for preparation of slash sheet parameters, limits, and test circuits.

The industry data sheet forms the basis for the military specification parameters and limits. Typically, such data sheets do not specify all of the mecessary parameters over the military temperature range and over the common mode voltage range. The JC-41 Subcommittee, or the device manufacturer, usually prepares a proposed spec which contains more information than the industry data sheet. Conflicting items are negotiated in committees or via direct contact with manufacturers.

bata provides another base for determining parameters and limits. Devices for test are purchased from distributors and are also obtained from manufacturers via RADC request. Test circuits, compatible with automatic test systems, are developed. The devices are tested on a Tektronix S3263 Automatic Test System at GE Ordnance Systems Electronic Test Center. Data obtained at -55°C, +25°C, and + 125°C ambient is correlated to bench or vendor test data, analyzed, reduced and documented in data handbooks. Recommended limits are compared to the statistical sample data; parameter limits which are grossly inconsistent with the data are readily identified.

Specification additions, changes, and alternate approaches are discussed at the committee level. Device anomalies are identified in lab bench tests. Failure modes are also identified. User caution notes are added to the specification if it is decided appropriate.

Eurn-in circuits are usually recommended by the manufacturer and evaluated by RADC and/or GEOS on the available test samples. An objective is to minimize the number of external components while stressing the device near its limits.

Rough draft copies of the final slash sheet are prepared at GEOS and are forwarded to RADC for review. DESC distributes copies of this spec to manufacturers and users for final comments. Following assessment of the comments by all concerned parties, DESC prepares and issues the slash sheet.

Characterization Data

Data obtained during device characterization is usually published in handbook form separate from this document. Samples of the data sheets, histograms, and plots, are included in this report. The following data handbooks were published during this contract effort:

Characterization Data for MIL-M-38510/129, Peripheral Drivers (Commercial Types 55450 - 454, 55460 - 464) Jan 81

Characterization Data for MIL-M-38510/127, CMOS Multiplying DACs (Commercial Types 7520, 7521, 7523, 7541) Jan 81

Formal Meetings Attended (GE internal meetings not included)

JC-41 Committee on Linear ICs

Feb. 5, 6, 1980 - Phoenix, AZ June 10, 11, 1980 - Washington, DC Juct. 7, 8, 1980 - Burlington, MA

RADC/GE Meetings

Jan. 25, 1980 Contract Plans Pittsfield, MA Mar. 4, 1980 Contract Status & Plans Rome, NY Aug. 13, 1980

SECTION II

AUTOMATIC TEST DEVELOPMEN.

TABLE OF CONTENTS

2.1	Introduction	2456 11-1
2.2	Tektronix S3270 Test System Features	11-1
2.3	Tektronix System Accuracies	11-2
2.4	Correlation	11-3
2.5	Data Reduction	: I-4

SECTION II AUTOMATIC TEST DEVELOPMENT

2.1 Introduction

The second secon

The Interface Microcircuits & linear characterization efforts required the accumulation and subsequent reduction of vast amounts of test data. For both of these tasks, GE made extensive use of a Tektronix S-3270 test system and a Tektronix software development system. This section will describe the test system and the general approach to expanding its capabilities. A tew displays of raw and of reduced data, which have been developed for the device evaluations, will also be shown. Although several of the data displays are somewhat standardized, many of the linear device types required the development of unique data displays in order to effectively illustrate device performance in an easily digestible form.

1.1 Tektronix 8-3270 Test System Features

The test system is fully equipped to provide a state-of-the-art engineering tool for device characterization. The CPI162 System Controller has the Date/Time Option that gives the ability to store date and time information in the directory and data files. System peripherals include a 4014 Graphics Display Terminal, two CPI10 Disk Drives, a CP220 Reader/Punch, and LA180 Decprinter I and a 4631 Hard Copy Unit.

For voltage and current measurement and device stimulation, the system contains:

1894 feet Station, which contains many test functions and all electronics to interface the device under test (DUT) to the system.

2943/44 Clock Generators, which provide 10 driving and 4 comparing programmable phases.

Option 20 Waveform Digitizer, which provides the capability of converting 1000 points on a waveform to 10-bit digital values.

Once the waveform is thus stored in memory, software can be used to determine such things as rise time, overshoot, settling time, etc.

Six programmable voltage sources.

Two programmable current sources.

Temptronix 450A Temperature Chamber, which allows programmable DUT temperatures from -60 deg C to + 160 deg C.

IEEE Eus Interface Card, which allows the addition of IEEE 488 compatible equipment to the system.

With these hardware components, the test fistem has the following features:

Accommodates up to 128 active pins (64 input, 64 output) Functional testing at 20 MHz; force, compare, mask and store at 20 MHz

DC Tests: Differential voltage measurements; force V, measure I; force I, measure V

Dynamic Testing: Repetitive and one-shot time measurements; functional preconditioning

GO/NO-GO and analytical test capability

On-line interactive program development

bigital waveform analysis (1 sample/picosecond)

DUT environmental control (-60 deg C to 160 deg C)

Data logging and reduction. Computer graphics display

2.3 Tektronix System Accuracy

The linear test programs were developed to utilize the internal Tektronix measurement/stimulus hardware as much as as possible. How ver for many measurements, the Tektronix system could not provide the required accuracy. In these cases, more accurate external equipment was utilized via the IEEE 488 Bus. Two disadvantages in using external equipment are:

- 1) additional core is required to store the 488 bus control routines and.
- 2) execution time for external functions is significantly longer than time to execute internal Tektronix functions.

Table 2.1 lists instruments which are available for use with the S-3260/70.

Table 2.1 IEEE-488 Interfaced Instruments.

Manufacturer	Model	Description
Fluke	8502A	Precision Digital Multimeter
Hewlett Packard	3455A	Precision Digital Voltmeter
Hewlett Packard	4262A	LCR Meter
Hewlett Packard	5328A	Universal Counter
Fluke	5100A	Calibrator
Керсо	488-122	Power Supply Programmer
ICS Electronics	4880	Instrument Coupler
Hewlett Packard	2240A	Measurement and Control Processor
North Atlantic	225	Phase Angle Voltmeter

Figures 2-1 through 2-13 illustrate the accuracies of the internal Tektronix measurement and stimulus functions. Also, for certain internal functions, the accuracy of the external equipment that provides the same function, is displayed for comparison.

On many occasions, neither the internal Tektronix equipment nor the external equipment had sufficient accuracy, or response time. These cases required test adapter circuitry to interface the device under test (DUT) to the test equipment. These cases will be described in the appropriate chapters covering the individual linear device types.

2.4 Correlation

The second secon

Testing linear devices on the Tektronix system has required the implementation of many new test techniques. Each new technique, whether in the form of adapter circuitry or software, must be verified as accurate. In general, the first step of verification was to determine that the technique is designed to provide a measurement that is at least 10 to 1 times more accurate than the tolerance of the parameters. For instance a parameter of 5.0 volts plus or minus 10% must be measured by a meter that is at least accurate to plus or minus 1% when measuring 5.0 volts.

Verification of accuracy also included comparison of data taken by the new technique to data taken by an alternate method - usually on a bench circuit. When data from the two techniques did not agree, an analysis of error contributions was performed and corrections made if it was felt that the error was significant.

Correlation of Tektronix test data for peripheral driver devices to bench data uncovered some discrepancies. One discrepancy involved the inaccurate specification of worst case test conditions for output switching times. Correlation uncovered the discrepancy and led to recommended changes to the slash sheet.

2.5 Data Reduction

The presentation of test results is extremely important in any characterization effort. Raw data printouts are required for record, but are usually not organized in a manner that enable; one to scan them to assess general parameter trends.

Data Tables

For the linear devices, the first step in data reduction was organizing raw data into tables. Figure 2-14 and 2-15 illustrate two variations of data tables. Figure 2-14 illustrates data taken from multiplying D/A devices. Figure 2-15 is the form of table used for the Peripheral Driver devices. The left hand entries indicate the test parameters and test conditions. In Figure 2-14 the data from a particular device is entered in the column beneath the temperature at which the data was taken. In Figure 2-15, the data taken for five devices at a particular temperature, is entered in columns. Note that in both figures the low test specification limit for each parameter is on the left of the device data and the high specification limit is on the right hand side of the data. This enables the reader to more easily determine if a measurement on a device lies mathamatically between the specification limits.

Data Summaries, Line Graphs

Data tables, for the multiplying D/A with its large number of data points are too voluminous for a reader to mentally reduce and detect trends. Therefore the large quantities of data must also be presented in a summarized torm.

Figure 2-16 is a plot of linearity error (in LSBs) for all codes between 0 and 800. The plot is one of five sheets developed for each 7520 multiplying D/A device. The linearity plots were very instrumental in verifying the effectiveness of an abbreviated linearity test for 7520 multiplying D/A devices. Although two seperate sheets were required for each device under each set of operating conditions, one set of sheets allows one to quickly assess qualitatively, the linearity error of 1024 codes.

ilistograms

Textronix software included a basic histogram routine which was modified by GE to provide the variations shown in Figures 2-17 and 2-18. Figure 2-18 has grouped thirty devices according to hFE. The histogram differs from the basic Textronix histogram in that the bars are filled in and are separated by a narrow non-darkened region. Figure 2-18, another histogram variation, groups the codes from a single multiplying $\rm D/A$ device, according to the magnitude of each code's error. This type of plot is very useful in comparing general linearity error characteristics of one device to another.

Figure 2-1. 33260/70 - Single Ended Voltage Accuracies

Figure 2-2. 33200 10 - Differential Voltage Accuracies

Figure 2-3a. S3260/70 - Diff. Meas. vs. Fluke 8502 DVM Accuracies

FLUKE DMM 8502A					
Pange	Full Scale	Accuracies		Pesolution	lettling Time
100eV	31.2eV	3.305". of Peading	• Buy	:u+	200
IA	2. S V	0.004% of Reading	+944	luv	203
107	204	0.002% of Peading	•9 0 u¥	leu,	20.3
1004	:607	0.004% of Reading	+900uV	:80u7	2mJ

	T	EKTRONIX S3260	3/78	
	DIFF.	VOLTAGE MEASI	JREMEN'	73
Pange	Full Scale	i Accuractes	Resolution	Dettling Time
100s¥	102.2mV	0.15% of Reading+levi	0.85eV	4e3
ÎA	1.022V	0.1% of Reading+2eVI	0.Sev	.605
107	10.22V	Pr-18.13 of Reading+6eVI	Sev	.603
100	102.2V	97-18.3% of Reading+200mV1	50eV	1.205

Figure 2-36. 33200 70 - 3502 DVM Specification Comparison

Figure 2-4. \$3260/70 - Current Measurement Accuracies

The state of the s

Figure 2-5. 33260/70 - Current Measurement Accuracies (Cont'd.)

Figure 2-6. \$3260/70 - Time Measurement Accuracies

Figure 2-7. 33200/70 - Time Measurement Accuracies - HPO

Figure 2-8. \$3260/70 - Clock Cycle Accuracies

Figure 2-9. \$3260/70 - D70 Pin Electronics Card Accuracies

Figure 2-10. \$3260/70 - Forcing Voltage Accuracies

Figure 2-11. \$3250/70 - Forcing Current Accuracies

Figure 2-12. Fluke 3100B Meter Calibrator - Forcing Voltage Accuracies

Figure 2-13. Fluxe (1008 Meter Calibrator - Forcing Current Accuracies

1.26	63,430%
1.26	ا ب
1.26	0 0 0 0 0 0 0 0 0 0 0 0 0
4.00	580.m -2.88
2.00	1.00 200. 1.000 1.000
54.41 100. -100.	- 200. - 200. - 50.60.
199.	169.
13.4 m 520.m -560.m 263.m 520.m -500.m -500	1.90.
58.34 560.3	E. 662-
47.34 500.4 - 500.4 - 71.6 500.4 - 500	E E E
289.	EEEE
368.H 6.000 -500.H 373.H 6.00 -500.H -393.H 6.00 -500.H 6.00 -500.H -393.H 6.00 -500.H 6.00 -500.H -393.H 6.00 -500.H -350.H 6.00 -500.H -350.H 6.00 -500.H -350.H 6.00 -500.H -419.H 6.00 -500.H -410.H 6.00 -500.H -419.H 6.00 -410.H 6.	0000
457.7 599.7 6.00 464.7 599.7 6.00 492.7 599.7 6.00 492.7 599.7 6.00 492.7 599.7 6.00 492.7 599.7 6.00 492.7 599.7 6.00 492.7 599.7 6.00 492.7 599.7 6.00 492.7 599.7 6.00 492.7 599.7 6.00 492.7 599.7 6.00 492.7 599.7 6.00 492.7 599.7 6.00 492.7 599.7 6.00 6.00 532.7 \$500.7 6.00 6.00 532.7 \$500.7 6.00 6.00 532.7 \$500.7 6.00 6.00 532.7 \$500.7 6.00 6.00 532.7 \$500.7 6.00 6.00 532.7 \$500.7 6.00 6.00 532.7 \$500.7 6.00 6.00 532.7 \$500.7 6.00 6.00 532.7 \$500.7 6.00 6.00 532.7 \$500.7 6.00 6.00 532.7 \$600.7 6.00 6.00 532.7 \$600.7 6.00 6.00 532.7 \$600.7 6.00 6.00 6.00 532.7 \$600.7 6.00 6.00 6.00 532.7 \$600.7 6.00 6.00 6.00 532.7 \$600.7 6.00 6.00 6.00 532.7 \$600.7 6.00 6.00 6.00 532.7 \$600.7 6.00 6.00 6.00 532.7 \$600.7 6.00 6.00 6.00 532.7 \$600.7 6.00 6.00 6.00 532.7 \$600.7 6.00 6.00 6.00 532.7 \$600.7 6.00 6.00 6.00 532.7 \$600.7 6.00 6.00 6.00 6.00 6.00 6.00 6.00	- 55.00 C
444.M 500.M 6.00 427.M 500.M 0.00 532.M 500. 776. 0.00 776. 0.00 776. 0.00 776. 0.00 776. 0.00 736.M 353.M 0.00 500.M -410.M 0.00 6.00 6.00 247. 0.00	60.00 60.00 60.00 7.00 7.00
	60.00 60.00 7.00 17.00

MOTES:1.ZERO (4) IN LIMITS COLUMN MEANS NO LIMIT.IT CAN BE INTERPRETED AS 4 DASH (+). FI 198 2-16. Table of Characterization and for

55450 - DJAL PERIPHERAL POSITIUE-AND DRIVER (STATIC TESTS ONLY) TEMPERATURE-25DEG C ;DATE-11 DEC 30 TIME-09:38:33

PAPAMETER	TEST CONE	DITIONS	TEST	LO-LIMIT	SN11	SHIE	SN13	5414	SN15	TIMI1-IH	PH115
UIL	vcc•4.su		ຊີ ⊶ທຕ	800.07 800.07 800.00	1, 388 1, 398 1, 398	1.286 1.396	1.378 1.388 1.398	1.388 1.3988 1.398	1.488 1.418 1.428	2. 886 2. 886 2. 888	223
HIO	UCC-4.5U		nñ	800.0M 800.0M 800.0M	1.330	1.380	1.389 1.398	1.488 1.488	1.410 1.420 1.430	2.888 2.888	222
UIK	UCC-4.5U	IIC12MA	136	-1.506 -1.500 -1.500	-985.0M -1.150 -1.155	-990.0M -1.160 -1.170	-1.000 -1.170 -1.160	-985.0M -1.155 -1.165	-995.0M -1.160 -1.170	9.999 9.999 9.899	>>>
IIMI	0CC•5.5U	VIH-5.5U	-	9.999	26.40∪	10.25U	16.20U	14.650	8.5580	2.600M	Œ
11162	0CC-5.5U	VIH-5.5V	9 6 1	8.868 8.888	12.10U 6.250U	5.950U 4.850U	7.450U 7.450U	7.850U 5.500U	4.403U 3.866U	1.000m 1.000m	σσ
ІІНІ	UCC-5.5U	UIH-2.40	-	6.666	17.45U	8.0500	12.65U	11.450		89.890	∢
2112	05.3.00	UIH-2.40	ดฏ	9.086	1 50 co	4.700U 3.550U	5.800U 6.950U	5.15eU 5.18eU	3.468U 3.458U	46.66U 43.66U	₫⊄
1111	05.5.5U	UIL-0.40	-	-3.200M	-2.100M	-2.145M	-2.155M	-2.145M	-1.998#	6.666	Œ
111.2	ns.s. 33u	VIL-0.40	13	-1.699M -1.699M	-1.055M	-1.080M -1.070M	-1.075m -1.080m	-1.076M -1.075M	-1.805M -595.8U	8.888 8.888	σ σ
700	UCC-4.5U IOL-16MA	UIL-0.8U	123	9.969 9.693	235.0M 232.0M	246.5M 242.0M	259.5M 248.5M	242.5M 256.5M	236.84 236.84	500.0M 500.0M	20
1 00	UCC-4.5U IOH400UA	VIH-2.0V	123	ก. 496 ก. 496	2.695 2.725	2.695 2.695	2.715	2.725 2.738	2.788 2.698	4.500 4.500	> >
1051	VCC-4.5V	VIL-0.8U	153	-55.00M -55.00M	-25.15M -24.95M	-25.00M -24.95M	-25.18M -24.35M	-25.38M -25.10M	-24,55M -24,59M	9.666 6.666	αα
1052	VCC-5.5V	VIL-0.8U	£51	-55.00M -55.00M	-32.10M -31.95M	-31.95M -31.90M	-32.00M -31.10M	-32.30M -32.05M	-31.45H -31.35H	9.999 9.999	a a
Іссн	05.8+30U	U8.2-HIU	80	9.999	2.275F	2.320N	2.315M	2.315M	2.160M	4.000M	Œ
Tool	05.8+30U	VIL-0.0U	8	9.664	7.000M	7.100M	7.100M	7.168M	6.600M	11.00%	Œ

MINNS-2-15. Table of Caracterinal Light Colors of Fericanal Defense

FIGURE 2-16. LINEARITY ERROR (ALL CODES)
7520-10 BIT MULT. D'A CONVEPTER

FIRES 2-17. Historan Representation of Characteriza ion Data

FOR DEVICE S/N 10 AT 25 DEG C UDD=+15.0

EPROP BAND (LSB)

STRIBE 2-10. LINEARITY ERROR DISTRIBUTION

7520-10 BIT CMOS D/A CONUERTER

-1.6 -0.9 -0.8 -0.7 -0.6 -0.5 -0.4 -0.3 -0.2 -0.1 0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0

NUMBER OF EPRORS

SECTION III

PERIPHERAL DRIVERS

TABLE OF CONTENTS

3.1	Introduction	111-1
3.2	Description of Device Types	III-2
3.3	Test Development	111-2
3.4	Test Results and Data	III-17
3.5	Discussion of Results	111-18
3.6	Slash Sheet Development	111-19
3.7	Conclusions and Recommendations	111-19

Section III

(Characterization of Peripheral Drivers)

3.1 Introduction

Devices for interfacing between TTL logic and the outside world have been a requirement in military systems for as long as TTL logic has been employed in these systems. The devices selected for characterization provide great flexibility in application. The devices can be used as high-speed logic buffers, power drivers, relay drivers, lamp drivers, MOS drivers, line drivers, and memory drivers. Table 3-1 gives some specifics on the devices tested and their relationship to the military slash sheet device types.

Table 3-1. Table of Device Types Specified.

Military Device Type	Generic Device Type	Manufacturer Symbol	Peripheral Driver Description
12901	55450	N,T	Dual NAND gate and transistor (separate)
12902	55451	N,T	Dual AND, gate and transistor connected
12903	55452	-	Dual NAND gate and transistor connected
12904	55453	Т,И	Dual OR, gate and transistor connected
12905	55454	-	Dual NOR, gate and transistor connected
12906	55460	-	High voltage 55450
12907	5546 1	N.T	High voltage 55451
12908	55462	<u>-</u>	High voltage 55452
12909	55463	N	High voltage 55453
12910	55464	-	High voltage 55454

N = National Semiconductor

The manufacturer symbol column reflects the source of the devices which were characterized.

T = Texas Instruments

To sell, the reatures of the 55450/55450 series of devices which helped to the series are as to be a series of the series are as

1.7 Description of Device Cypes

the soliantans for all of the peropheral driver; are shown in Figure 1 and pools a prospending schematic circuits are shown in Figure 3-2.

at the state of th

end the property devices in organize a high mirent output stage, which will be difficult on an included for propagation delay measure— it, then then then the propagation for sless voltages, which will be a propagation of the sless voltages,

$(j_{\rm const}, j_{\rm const})$, which is the t

out to a proveled in it is for the extremic S-3270 test system to the extremic state potential distributions. All state inclinates test recommended to the c-44 committee, including one a citizent fests, were in experiented a 1808 as part of the contract of the contract

Section - 117 Frest Adapter

that electron continuity of a lesigned to provide the continuity of the section o

Figure 3-1 Peripheral Driver Block Diagram

Figure 3-2 Peripheral Driver Schematic Circuits

Figure 4-5 cektrosix (-22%) tatic est Mapher

test system. The adapter has the ability to test all static and static pulsed parameters required for characterization of the 55450 and 55460 peripheral drivers.

The adapter consists of Op Amp and transistor circuitry used to force the proper pulsed conditions on the DUT, while stimulated by the S-3270. Actual signal paths to the DUT are implemented by relay control and routed to the S-3270 for testing. All other static tests are performed using the S-3270 driver and measurement system capability.

h_{FE} Tests

Within the "static" test parameters, measurement of h_{FE} was the most difficult. Manufacturers data sheets specify a $t_W=300\,$ us with a duty cycle $\leq 2\%$. Bench testing indicated that h_{FE} testing could be accurately performed with $t_W=100\,$ us and a duty cycle of 2%. The data sheet specification allows time for the servo circuit used in h_{FE} measurements to reach its final value. A major convern was to minimize the effect of device self heating on parameter measurement.

The Forward Current Transfer Ratio ($h_{\rm FE}$) of the 55450, 55460 peripheral driver is automated using the circuit shown in Figure 3-4 in conjunction with the S-3270 and the Tektronix Waveform Digitizer option 20 (WFD).

Figure 3-4. her Test Circuit.

The criteria for measuring h_{FE} is to force V_{CE} and I_{C} to predescribed levels while servoing the base current, I_{b} to achieve these levels. The Forward Current Transfer Ratio h_{FE} becomes

$$h_{FE} = I_C/I_B$$
 with V_{CE} constant

The $V_{\rm CE}$ pulse level from the S-3270 is applied to one input of the base drive and comparator amplifier circuit, Al, while the other input to amplifier Al monitors the $V_{\rm CE}$ level of the DUT. The output of amplifier circuit Al servos the base current $I_{\rm B}$ until the DUT's $V_{\rm CE}$ voltage equals the input stimuli from the S-3270. The collector current $I_{\rm C}$ is forced to the proper level by the relationship of $(V_{\rm CC}-V_{\rm C})/R_{\rm C}$, since $V_{\rm CC}$ and $R_{\rm C}$ were fixed.

Buffer amplifier A2, senses the voltage drop across resistor $R_{\rm B}$, which is proportional to the base current $I_{\rm B}$. The buffer amplifier A2 was configured in a differential mode to reduce large common mode voltages present on $R_{\rm B}$ and to provide increased gain for single-ended measurement capability need by the WFD.

Tigure 3-5 illustrates a digitized voltage pulse from across Rg.

. igure 3-5. $h_{\rm FE}$ measurement waveform.

The voltage translates to 4.370 mA of current. Since the collector current was at 300 mA, $h_{\rm FE}$ is therefore 68.6.

The pulsed measurement techniques were used with $\rm V_C$ of 3 V at currents $\rm I_C$ of 100 mA and 300 mA.

VBE and VCE (SAT)

The Base to Emitter Voltage (V_{BE}) and the Collector to Emitter Saturation Voltage ($V_{CE}\left(SAT\right)$ pulsed parameters are measured by using the circuit of Figure 3-6 for S-3270 and WFD option 20.

Figure 3-6. V_{BE} , V_{CE} (SAT) test circuit.

The requirements for these tests are to force a given base drive and collector drive current under pulsed conditions, while measuring the resultant base-to-emitter and collector-to-emitter voltages. These

Figure 3-7A – $V_{\rm CE}/s_{\rm N}$, Measurement Maveform

Figure 3-7% V F - Measurement Waveform

are accomplished by applying an S-3270 programmed voltage $V_{\rm B}$ to one input of comparator amplifier A2. The other input to amplifier A2 monitors the voltage $V_{\rm B}$ located a one end of resistor $R_{\rm B}$, causing the output of A2 to serve the voltage $V_{\rm B}$ until it exactly equals the input stimuli voltage $V_{\rm B}$, applied from the S-3270. When these conditions are met, the DUT base current has been forced to the proper drive current level by the relationship of

$$1_B = (v_{BB} - v_B')/R_b$$

since V_{BB} and R_{b} are constants.

The collector current ($I_{\rm C}$) is forced to the proper conditions in much the same way as $I_{\rm b}$, with the exception of a much higher current provided by amplifier A1. The relationship of S-3270 input stimuli $V_{\rm C}$ to forcing current $I_{\rm C}$, becomes

$$T_{C} = (V_{CC} - V_{C}^{\dagger})_{RC}$$

Figure 3-7 illustrates digitized waveforms of $V_{\rm CE\,(SAT)}$ and $V_{\rm SE}$ parameters for a typical 55450 device using a base current $r_{\rm B}$ - 10 mA and a collector current of 100 mA respectively.

VIL Threshold

THE RESERVE THE PROPERTY OF TH

Input V_{IL} threshold tests are developed for the S-3270 test system to determine the margin between guaranteed V_{IL} max = +0.8 V and the actual V_{IL} input switching point.

Referring to Figure 3-8, the tests were implemented by pulsing input A, while sampling the output for a change of state.

Figure 3-8. VIL Threshold Test.

The initial level starts at + 2.0 V and each succeeding pulse is decremented by -10 mV. During the low level of the pulse, the device output is sampled for the $\rm V_{OL}$ state. If the output fails to switch during the sampling time, the input pulse is returned to + 2.0 V and a new pulse, with a level lowered by - 10 mV is applied to input A. This process is repeated N times, until the output switches to $\rm V_{OL}$, at which point the $\rm V_{IL}$ value is recorded

VIII Threshold

では、日本のでは、10mmのでは、10m

The input $V_{\rm IH}$ threshold tests are performed in a similar manner to the $V_{\rm IL}$ threshold tests with the exception of the initial pulse level and the delta increment (refer to Figure 3-9).

Note: 1. A = time device output is sampled for switched state.

Figure 3-9. VIII Threshold Test.

The initial level starts at + 0.8 V and each succeeding pulse is incremented by + 10 mV. During the high level of the pulse, the device output is sampled for the $V_{\rm OH}$ state. If the output fails to switch to the $V_{\rm OH}$ state during the sampling time, the input pulse is returned to + 0.8 V and a new pulse, with a level increased by + 10 mV.

Simplified Circuit Diagram of S-3270 Test System with HPO Figure 3-10

This process is repeated N times, until the output switches to $\rm V_{OH},$ at which point the $\rm V_{TH}$ value is recorded.

TtlH, TtHL, TPLH, TPHL

THE REPORT OF THE PARTY OF THE

Transition times and propagation delay times for device types (:-10) were measured using the S-3270 test system, the Tektronix High Performance Option (HPO) and a specially constructed test adapter.

The HPO option provides for high accuracy time measurements, skew time corrections, low device pin capacitance (<18 pF) and buffered scopetype compensation on all device output pins connected to the S-3270 system. A simplified HPO circuit diagram is shown in Figure 3-10, indicating the different signal paths, attenuators, and output compensating networks to provide high accuracy measurements. Correction factors such as skew time between S-3270 sector pins, comparator offsets and output compensator networks are all handled under separate S-3270 calibration procedures to ensure integrity of the system.

Ambiguities can occur as a result of time measurements dependency on supply voltage, temperature, load circuit consideration, layout and test equipment inaccuracies.

Figure 3-11 is the schematic of the load circuit for TTL gates that was proposed by JC-41.

Figure 3-11. JC-41 load circuit for TTL gates.

This circuit is used to simulate 10 standard TTL loads. Comparison of output waveforms obtained with this circuit loading the 55450 "gate" output versus 10 standard TTL gates loading the same gate showed similar results. (See Figure 3-12A, B).

Figure 3-12A

 $T_{\rm PLH}$ using JC-41 load circuit $V_{\rm CC}$ = 4.5 V.

Figure 3-12B

 T_{PLH} using 10 TTL gate loading $V_{CC} = 4.5 \text{ V}$

The JC-41 load circuit also increases the ambiguity in propagation delay time measurements.

Propagation delay times are measured at the 1.5 wolt points on the input and output waveforms. The flat region in the output waveform occurs near 1.5 V. Propagation delay times can vary by as much as 4 ns as a result of placing the output decision point on the low side or the high side of the flat region in the output waveform. This is clearly unacceptable.

The circuit shown in Figure 3-13 has been used as the load circuit for testing the TTL gate portion of the peripheral driver ICs.

Figure 3-13. Recommended TTL gate load circuit.

This circuit eliminates the ambiguity in propagation delay measurements and also stimulates worst case loading. C_L was raised to give a realistic value for ten TTL gate input capacitances (5 pF/input). R_1 was added to give $10 \times I_{IHMAX}$. R_2 is selected to give I_0 = $10 \times I_{ILMAX}$ at V_{OLMAX} .

Figure 3-14 shows the output waveforms that result after changing the load to the recommended configuration.

Figure 3-14

 T_{PLH} using recommended load circuit $V_{CC} = 4.5 \text{ V}$

This additional load capacitance increases $T_{\rm PLH}$, and the flat region previously noted is eliminated because reverse recovery in D1 occurs through a higher effective impedance. This eliminates the propagation delay measured ambiguity.

Switching time measurements for the output transistors and for the complete peripheral drivers were also measured with a $C_{\rm L}$ = 50 pF to reflect a more realistic value of load capacitance.

Supply voltage variations from 4.5 V to 5.5 V have resulted in variations in switching time measurements of up to 2 ns. The majority of devices exhibit slowest switching action at $V_{\rm CC}$ = 4.5 V so this has been selected for these measurements.

Refer to Figure 3-15 for a graph of typical variation in switching parameters with $V_{\rm CC}$.

Tthl C1=50Pfd Io1=200ma R1=50ohms

Figure 3-15 Type vs VCC

Transition time tests were the most difficult to implement, since they involved switching times in the order of 10 ns or less. Careful consideration to the test adapter layout, inductance, capacitance and grounding were critical to ensure that clean output switching waveforms could be achieved.

Figure 3-16 shows typical output transition waveforms from three different vendors.

It should be noted that the output transitions are different in the 80° - 100% and 0% - 20% regions for each vendor.

Correlation of S-3270 transition and propagation time data to beach data was verified by using three independent methods. These verification methods are as follows:

- 1) Measure data on bench circuit using oscilloscope.
- 2) Measure S-3270 test adapter on beach using oscilloscope.
- 3) Measure S-3270 test adapter on S-3270 test system using oscilloscope.

Figure 3-10A

Vendor A

 ${^T}_{T\,LH}$

Figure 3-168

Vendor B

 T_{TLH}

Figure 3-160

Vendor C

 T_{TLH}

1-1-50

3.4 Test Results and Data

A total of 85 peripheral drivers were tested on GEOS' Tektronix S-3270. Each device was sequentially tested at 25° C, -55° C and 125° C.

A typical data sheet for a group of 55450 devices is shown in Table 3-4. Data for up to 5 devices is displayed on a single sheet. This method simplifies comparison of different devices at a single temperatures.

The data was also recorded in the form of histograms for selected parameters at three temperatures. (A sample histogram is given in Table 3-5.) Included were the following:

55460	t_{T} HL	t _{PLH} t _{PHL}
	t _{PHL1} t _{PLH2}	$egin{array}{c} oldsymbol{t}_{\mathrm{R}} \ oldsymbol{t}_{\mathrm{F}} \end{array}$
	h _{FE} 1,2 V _{BE} 1,2 V _{CE} 1,2	$\begin{array}{c} v_{CBO1} \\ v_{CER1} \\ v_{BEO} \end{array}$
55451	${f t}_{ m THL}$ ${f t}_{ m TLH}$	t _{PLH} t _{PHL}
55453	t_{THL}	${\tt t_{PLH}} \\ {\tt t_{PHL}}$
55461	t_{THL}	${f t}_{ m PLH} \ {f t}_{ m PHL}$
55463	t _{THL} t _{TLH}	t _{PLH} t _{PHL}

This data was published in January 1981 for RADC in a 211 pg handbook entitled:

Characterization Data for MIL-M-38510/129 Peripheral Drivers

Sample data sheets and histograms have been included in the Appendix.

3.5 Discussion of Results

Most of the test data taken on the 55450/55460 family of peripheral drivers was within the limits proposed by the JC-41 Committee. The exceptions were the result of changes in test conditions (for example, changing the load circuit for timing tests). Although data on a number of parameters fell within a relatively tight spread relative to the test limits, no attempt was made to tighten the test limits due to the relatively small number of device samples. The exceptions are noted below.

Short-circuit output current (IOS)

As originally specified, the I_{OSMIN} specification was tested at V_{CCMAX} . But I_{OSMIN} is lower at V_{CCMIN} . To ensure that I_{OS} would be within the test limits over the full supply voltage range, I_{OSMIN} is tested at V_{CCMAX} .

Threshold Voltage (V_T)

Threshold testing of the peripheral drivers gave results that were within the expected range of values. The nominal V_T was approximately 1.3 volts at T_A = 25°C with a d V_T/dT_A approximately -3 mV/°C. This agrees well with measured V_T values for standard TTL.

Breakdown Voltage, V_{CBO} , V_{CER} , V_{EBO}

in all devices tested, v_{CBO} was greater than 17 volts (or nearly 50%) above the minimum breakdown limit. For v_{CER} , all of the devices were greater then 22 volts above the minimum test limit.

Vendor A showed slightly lower $V_{\rm EBO}$ than Vendor B (approximately .5 volts lower on the average).

There were no significant trends observed in breakdown voltages versus temperature.

All breakdown voltages were taken with the substraits pin floating.

Static Forward Current Transfer Ratio (hfg)

The JC-41 committee test conditions specify that hpg is to be measured under pulsed conditions with $t_W=300$ us and a duty cycle $\leq 2\%$. The devices were tested over a range of values for t_W with the duty cycle fixed at 2% with negligible changes in the measured values. T_W was changed to $t_W=100$ us to simplify test hardware.

At $T_A=25^\circ$, all measured $h_{FE}s'$ exceeded the minimum test limit by greater than two to one. As expected, h_{FE} tended to increase with increasing temperature over the full temperature range. In all cases, the devices tested exceeded the minimum test limit by a reasonable margin.

3.6 Slash Sheet Development

The military specification (MIL-M=38510 slash sheet) on the peripheral drivers was developed in parallel with the characterization effort. The majority of the slash sheet Table I parameters and limits were recommended by the JC-41 Committee on Linear Integrated Circuits. The major changes occurred in the switching time test load circuit and the $V_{\rm CC}$ specification for the switching tests. As a result, the switching parameter test limits were relaxed as needed to accommodate the new test conditions. Also, the $I_{\rm OS}$ testing is now specified at both extremes in supply voltage in order to have the test data reflect the worst case.

3.7 Conclusions and Recommendations

85 generic 55450/460 peripheral drivers were tested on GEOS' S-3270 to characterize their electrical parameters. Bench data was taken to validate S-3270 operation. With the exception of switching time parameters, the devices were well within the test limits.

The switching time of the devices was slowed as a result of the revised test conditions. The test limits for these parameters have been widened to accommodate the test changes.

APPENDIX - SECTION III

PERIPHERAL DRIVERS DATA

SHEETS AND HISTOGRAMS

55450 DUAL PERIPHERAL POSITIUE-AND DRIVER (STATIC TESTS ONLY) TEMPERATURE*25DEG C ;DATE*69 DEC 80 TIME*11:17:33

AND THE RESERVE OF THE PROPERTY OF THE PARTY OF THE PARTY

1.340
1.370 1.
1.245m -2.5.03 -2.5.
8.450U 7.300U 7.200U 3.700U 3.500U 3.500U 3.100U 2.500U 2.500U 2.500U 3.500U 3.
4.703 3.503 3.703 4.40 3.1030 2.5030 2.5030 3.35 3.2030 2.5030 2.5030 3.35 -2.465m -2.565 -2.463m -2.463m -1.245m -1.275m -1.245m -1.275m -1.245m -1.265m -1.245m -1.27 -1.245m -1.265m -1.245m -1.27 -1.255m -1.265m -1.27 -1.27 -2.75 2.715 2.715 2.715 -2.75 2.715 2.715 2.715 -2.75 2.715 2.715 2.715 -2.75 2.715 2.715 2.715 -2.75 2.715 2.715 2.715 -2.416m -33.67m -23.67m -24.57m -2.416m -33.67m -33.67m -33.67m -2.75 -2.75 -2.75 -2.75
6.5000 5.5000 5.5000 7.18 3.1000 2.5500 2.5000 3.35 -1.245m -2.550 -2.460m -2.41 171.5m 183.5m -1.255m -1.255m -1.25 -2.100m -2.100m 183.5m 183.5m 175.5m 175.5m 175.5m 175.5m 175.5m 183.5m 175.5m 175.5m 183.5m 175.5m 175.5m 183.5m 175.5m 175.5m 183.5m 175.5m 183.5m 175.5m 175.5m 183.5m 175.5m 175.5m 183.5m 175.5m 175.5
3.1000 2.5000 2.5000 3.50 -2.465m -2.5600 2.5000 3.50 -1.245m -1.265m -1.245m -1.27 171.5m 183.5m 180.0m 178. 2.700 2.715 2.715 2.715 2.72 -0.100m -20.40m -20.40m -21.6 -34.16m -30.60m -33.00m -21.6
-2.465M -2.525 -2.462M -2.41 -1.245M -1.265M -1.245M -1.23 172.5M 183.5M 183.6M -1.23 2.725 2.715 2.715 2.715 2.725 2.715 2.715 2.72 -2.727 -2.15 2.715 2.72 -2.727 -2.15 2.72 -2.727 -2.72 -2.727 -2.
-1.245M -1.265M -1.265M -1.256M -1.256M -1.256M -1.265M -1.265M -1.265M 178.5M 187.5M 183.5M 178.5M 178.5M 178.5M 178.5M 178.5M 183.5M 178.5M
171.5m
2.715 2.715 2.715 -2.153 -3.4159 -
-34.10m34.10
1.04.100 1.0
8.5000 8.5000 8.7000 8.64
3M 8.336M 8.500M 8.310M 8.110M

021K0 SSASS DUBL PERTERAL POSITIUS-AND DAIVER (STATIC TESTS)

1831
(((((((((((((((((((
666 600 600 600 600 600 600 600 600 600
6.000
0.600
0.900 6.
0.636 8.630 3.
-3.2007 -2.
-1.600m -1.
0.000 17
2.423 2.423 2.7
-55.02m 85.
-55.621
0.638
6.000
CHARLES OF THE COMMENT OF THE COMMEN

55459 DUAL PERIPHERAL POSITIUE-AND DRIVER (STATIC TESTS ONLY) TEMPERATURE-25DEG C ;DATE-11 DEC 80 TIME-09:36:33

CI FI Z	222	>>>	5000	α	αα	ď	er er	<	αŒ	כב	5 5	વહ	с. <u>с</u> .	Œ	C.
HI-LINIT	2.630 2.636 2.639	0.00 0.00 0.00 0.00	600 600 600 600	2.036M	1.000H 1.000H	80.654		223.0	6.0.0 0.000	509.67 533.81	4.503 4.500	୫୦୬.୫ ୫୦୬.୫	6.9.0 0.633	₹.808.4	11.65.3
SMS	1.400 1.410 1.420	1.420 1.420 1.430	-995.6M -1.160 -1.170	8.5500	4.40au 3.80au	6.909U	3.45eU	-1.99er	-1.605M -535.0U	236.58 236.6%	2.708 2.609	-24.558 -24.563	-21.45# -31.35#	2.166	8000.9
5414	1.386 1.398 1.398	1.400 1.400 1.400	-965.01 -1.155 -1.165	14.650	7.850U 5.500U	11.450	6.15eu 5.103u	-2.14SM	-1.076M -1.075M	242.5M 250.5M	2.785 2.733	City	-32.007 -32.65M	2.315M	7.1858
5413	1.370 1.380 1.390	00% 00% 00%	-1.600 -1.170 -1.160	16.200	() () () () () () () () () ()	12.650	6.950.8 0.9503	-2,155#	-1.075M -1.086M	250.54 250.54	0.7.50 2.7.53	LO W	-32.cc.1	8.515M	7.163#
SINS	1.570 1.359 1.390	1.330 1.539 1.403	-5.3.6M -1.160 -1.170	10.25U	5.5.0U 4.8.3U	8.6500	4.700U 3.556U	-2,14511	-1.65em	246.5M 242.6H		-85,000 -84,958	-31.5.7	2.5	7.1507
SM11	1.350 1.390 1.390	1.308 1.488 1.480	1.150 1.150	26.40∪	12.10U 6.250U	17.450	7.75eu 5.0eu	2.10cm	1.055m	ณณ			(5	3.0767	7.7.5
1117-07	2	82.0.63 82.0.63 83.0.63	-1.5 -1.5 -1.5 -0.5	6.039	6.0.9 6.0.9	6.603	(3.5)	3.60%	-1.6:34 -1.6:34	6.00.0 6.00.0	i	-55.0 - 5 5.0		3	6.00
-EST Pive	- 0E	138	1 2 13	-	2 13	1	13		ν. Ε	د ا	12.	£83	c,21	∞	۵
-DITIONS			11012.5A	UIH-5.5U	UIH-S.SU	UIH-2.40	UIH-2.40	UIL-0.4U	UIL-0.4U	UIL-0.80	01H-2 G€	VIL-0.ev	VIL-0.6U	U1H-5.8U	VIL-0.2U
TEST CON	UCC-4.5U	UCC•4.5U	U00-4.5U	00C-5.5U	V3C+5.5U	05.5-33U	08.8-000	VCC-5.5V	0cc • 5 · 50	05.01-101 05.4-000	100-4.50 100 -400UA	UCO-4.5U	VCO-5.5U	05.5-000	roc noc-s.su
MET 2.15.	UIL	E	y) =	1131	112	IIHI	IIHZ	17:1	27.:	100	53	1051	1002	1001	1001

SSARO DUAL PERIPPERAL POSITIUE-AND DRIVER (STATIC TESTS ONLY) PLUPERATURE RETERS O IDATE ROG DEC 80 TIME 69:38:37

では、10mmのでは、1

7. T.S.	>>	בים בים	55	he to	,, ,,	دد	55/	.> 5	55
HI-LIMIT	102.e 163.e	8.001 8.001	25.08 25.08	က မ (၁၈) (၁၈) (၁၈)	237.3 233.9	1.600	1.230 1.230	450.67 463.6~	708.69 768.6M
SNS	69.75 73.15	67.93 73.55	6.235	75.50 76.23	68.82 69.02	835.8M 831.0M	945.24 945.28	250.67 277.9M	377.9M 377.4M
8×4	25.89 75.15	64.55 75.20	6.235 8.248	ດ. ເຄ ກຸດ ເຄ ເຄ	77.38 78.15	835.67 831.03	10.00 10.00	58.89 88.89 88.89 88.89	ୁଞ୍ଚ.୯୩ 352.୧୩
5∀3	52.52 73.83	73.87 73.48	6.22.8 6.22.8	83.53 82.63	74.46 75.89	305.6M 818.3M	932.58 930.88	265.24 268.24	352.5M 357.0M
512	53.69 81.45	52.35 81.63	6.358 6.358	83.17 53.19	73.76	805.6M 831.0M	957.93 945.84	373.2m 230.6m	415.5M 402.8M
5N1	53.55	55.68 53.55	6.010 5.995	73.30 80.93	73.59	742.2M 205.6M	0000 0000 0000 0000 0000 0000	277.9H 227.1M	377.48
LO-LIMIT	35.63	39.63	5.000 5.600	85.00	30.00	653.6	200	0.000 0.000 0.000	8.003 8.003
TE31 F178	ນອ	201	202	13	5	11	4 11	100	16
SNOTTICH	IE-C	Rbe-500	IC-0	IC-IBBMA	IC-30ama	IC-100ma	IC-38877A	IC-100MA	IC-300MA
TE31 CO	IC-100JA	e0001+01	IE-1030A	Vc=+3V	000+37	Ib-tena	47 SOMA	Ib-10MA	Ib-30ma
3310 / 12		1	99%	i.i.	53.77	1285	:a:	V0ES71	005372

SEASO DUAL PERIPHERAL POSITIUE-AND DRIVER (STATIC TESTS ONLY) TEMPERATURE*25DEG 0 ;DATE*10 DEC 80 TIME*10:06:53

			VALUE BOOK BOOK	Comments of the Comments of th	STATE OF THE PERSON NAMED IN COLUMN	CONCERNIAL PROPERTY OF	THE REAL PROPERTY AND PERSONS ASSESSED.			The second second	Tarana and American
4013.76He	TEST CON	PITIONS	FEST PIN	רס-רואוד	SNô	SN7	SNS	SHS	SN10	HI-LIPIT	STIM
	IC-1000A	1E-0	.5 10	35.33 35.88	72.75 81.95	21.59 71.15	69.75 78.88	78.45 78.69	74.80	163.9 198.9	∵⊃
CCER	IC-1880A	Rbe-500	5 10	39.60 38.60	72.48 81.75	71.23	60.02 70.03	70.35	74.59 74.45	162.8 163.8	35
UEBO	IE-109UA	IC-6	.5 10	5.039 5.030	6.333 6.338	6.23 <i>8</i> 6.23 <i>8</i>	6.258 6.258	\$52.9 \$52.9	6.350 6.360	25.00 25.00	> >
1354	Uce-3U	IC-100MA	10	25.83 25.88	82.C2 85.31	81.77 83.50	62.71 68.93	79.75	92.30 93.40	6.00 6.00 8.00	\$0 pd
234	0ce•30	IC-300MA	10	30.00	73.53	75.17	63.13 62.46	65.53 67.07	84.58 85.19	66 (# K
1361	Ib-10mA	IC-100MA	4:1	0.000 0.000	818.3M	818.3M 818.3M	818.3m 831.0M	818.37 818.37	818.3M 818.3M	1.0 0.0 0.0 0.0 0.0	22
V552	Ib-30na	IC-306MA	A. e	60.60	957.93 952.83	932.5M 945.6M	957.93 945.88	945.2M 932.5M	932.5% 931.6%	1.00.0 6.00.0 6.00.0	دد
116300	1b-10ma	IC-1027A	1	6.0		#5.73 #2.73 #5.73	พร. 585 พร. 585	265.2M 265.3M	252.43 252.53	400.00	25
905572	Ib-300A	IC-38871A	18	6.000	48.53 22.53 22.53	336.7M 339.3M	377.4M 339.3M	333.3M 339.6M	326.7M 326.3M	720.en 783.8M	22

SGASO DUAL PERIPHERAL POSITIVE-AND DRIVER (STATIC TESTS ONLY)

THE REPORT OF THE PARTY OF THE

	TEST COND	SKOITIGN	TEST PIN*	LO-LIMIT	SN11	SNIZ	SN13	SN14	SN15	HI-LIMIT	8115
C250	1C-1COLA	1E-0	5 18	35.00 35.00	52.85 53.15	59.55 59.75	69.65 62.30	61.35 61.60	58.55 58.60	100.0	22
SKEP.	IC-100UA	Rbs-588	10	30.00	52.98 53.25	59.55 59.85	60.70 62.40	61.40 61.65	58.68 58.70	199.9 199.8	22
023	IE-100UA	IC-0	10	5.639	6.789	6.835 6.825	6.755	6.820 6.835	6.950 6.960	25.00 55.00	>>
1324	Vc=-30	IC-109MA	5 10	25.00	£2.25 67.49	81.62 82.52	75.67	87.62 89.71	83.39 82.74	390.5 3.0.5 3.4.0	**
PFE2	Vc=-3V	IC-300MA	5	38.68	62.97 61.89	73.53	68.28 67.46	73.67 75.71	75.64 77.15	809.0 809.0	**
MEN.	1ь-1епя	IC-100MA	42	6.639 6.638	817.6M 826.8M	865.2M 815.4M	805.6M 817.8M	804.4M 818.3M	808.7M 831.0M	1.808 1.808	22
8 0 0 0 0 0 0	1b-3059	1C-360MA	11	0.0.0 0.600	935.5M 942.8M	934.5M 945.0M	947.8M 947.6M	945.2M 945.8M	932.5M 932.5M	1.200	22
VOEST1	Ib-163a	IC-160MA	201	0.033 0.633	259.6M 259.8M	265.2M 267.8M	287.6M 289.2M	265.2M 265.0M	255.2M 264.8M	400.6M	>>
UCESTZ	Ib-3enA	IC-3897A	5 10	င့္သ (၁၁. ဝ	3-3-84 3-1-84	349.54 351.84	350.5M 351.2M	353.6# 353.8M	325.5M 324.8M	760.97 760.95	22

TRANSISTORS COMBINED) **-**₫ RIPHERAL POSITIVE-AND DRIVER (GATES EG C ; DATE+03 DEC 80 TIME+17:22:56 SS430 DUAL PER TEMPERATURE*250

とは大学とことをあると、 一般のでは、 一般のできない。 これでは、 一般のできない。 これでは、 一般のできない。 これには、 一般のできない。 これには、 一般のできない。 これには、 一般のできない。 これには、 これに

				A CONTRACTOR OF THE PARTY OF TH							1
\$34.2072°		SMOILICHOO LOSL	1531 1531	12-07	\$7.5	รหม	e X	5N4	SNS	HI-LIMI	00 1- 1- 1-2- 1-3-2-
				- Destroyment of	-			1000	2000		,,
155	0.00 · 4 · 10 · 5 · 6 · 6 · 6 · 6 · 6 · 6 · 6 · 6 · 6	10.650-10	n e	0.9.0 0.8.0	2.20 00.00 0.00 0.00	10.66N	9.2382	9.308X	NS59.0	15.634	15
	5 									3000	
T11.H	0000	C1.50PFD	νē.	6.600 6.600	9.100N	8.7.0N	8.976N	9.653% 8.420N	8.426M	12.623	n (^
	100.00	20-14	:						- 25.0	200 00	
X10-	000-4-30	CISSPFD		9.056	15.76%	15.76N	15.43A	2000	10.00	30.00	n (3)
	IO1-20079	୭୫+ <u>୧</u> ୯	ທີ່ມີ	0.000	15.24N	15.31N	15.03N	15.47N	14.77N	39.65	5
							1	200	7000	7000	V.
TPHL	UCC-4.5U	CINSEPFD	(0000	18.323	18.000	73.00.7	18.07N	17.88	30.05%	וני נ
	101-269MA	R1.58	ภถึ	0.000	17.76N	18.41N	17.57N	17.72N	17.53N	30.08%	S)
											Q. 0

TRANSISTORS COMBINED) **о**б SSASS DUAL PERIPHERAL POSITIUE-AND DRIUER (GATES TEMPERATURE SOLUTION BENDER (GATES)

	1 1/2 1 2 1/2 1 2 1/2 1	ina Malaan 4,4,	0000 (17) 255	557
HT-11427	7.0.5	त्युष्ट वृक्ष	2000 C	7.7.7.7.7.7.7.7.7.7.7.7.7.7.7.7.7.7.7.
SMIR	9.30EN 9.408N	8.353N	20.00 0.00 0.00 0.00 0.00 0.00 0.00 0.0	
543	X600.0	8.328 8.328	7 2 T 4 (3 %) 5 (4 %) 4 4 9	10 (to 10 t
828	2000 G	8.5:0x 8.323N	4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4	
243	N88316 -	18.2.8 18.2.8		10 f
945	1,12°43°		777 600 600 600	2.7 T
AIMIT-OT	200	100	103 - 63 103 - 63 103 - 63 103 - 74 104 - 74 64	1000
#534 4534	1000	1000		 40mg
TEST CONCETTIONS	01-0-17B	0.000	C1+537FE	C4 In. 0.00 10.00
		7 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	101-22373	100 A + COS
832547878		and mathematical	2.14	

55450 DUAL PEPIPHERAL POSITIVE-AND DRIVER (GATES & TRANSISTORS COMBINED) TEMPERATURE-25D2G C ;DATE-08 DEC 80 TIME-17:30:25

Contract and the Contract of t	THE RESERVE THE TRAINING STREET, SALES AND THE PROPERTY OF THE	THE RESERVE AND PERSONS AND PERSONS ASSESSMENT OF THE PERSONS ASSESSMENT ASSESSMENT OF THE PERSONS ASSESSMENT ASS		The state of the s							
331374576	PUSPLETEF TEST CO	TEST CONDITIONS	TEST PINE	LO-LIMIT	SN11	SN12	SN13	\$N:4	SN15	HI-LIMIT ANITS	S-IN
TTRE	100-4.5U ICL-200MA	C1-50PFD R1-50	1.00	6.630.8 8.638	11.16N 11.61N	10.26N 10.25N	10.11N 10.41N	9.648N 9.708N	10.46N 10.71N	15.00N 15.00N	ss
TTEH	UCC-4.5U IOL-2027A	C1-50PFD R1-50	10	ଡ.୦୨୫ ଡ.୦୧୬	10.47N 9.47CN	10.17N 9.370N	10.02N 5.72°N	10.43N 9.470H	9.970N	12.60x 12.60x	S
## DE TOTAL CONTROL OF THE TOTAL CONTROL OT THE TOTAL CONTROL OF THE TOT	100+4.5c	C1-50PFD R1-50	of	6.600 0.600 0.600	20.00 20.00 20.00 20.00	0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.0	15.00 to 15.15H	19.537 19.45N 19.65N	19.25N 19.68N 19.28N	30.62	တကက
TPHE	000-4.50 IOL-2007A	C1-5CPFD R1-53	#OE	0.630 0.633 0.633	22.55N 22.42N 22.07N	19.54N 19.40N 19.05N	18.84N 18.67N 18.32N	18.56N 18.40N 18.05N	20.67N 20.56N 20.21N	39.00N 30.00N 30.00N	SONO

0.YI.Y.) DRIVER (SUITOHING TIME-TIE GRIE TIME LIS:52:02 55459 DUPL PERIPHERAL POSITIUS-AND TEMPERATURE*350EG C 10ATE*15 DEC 50

THE RESERVE OF THE PARTY OF THE

	TEST OF STATE STATE STATE TO LEST	TEST F1:8	to-timit	SN1	Sti2 SN3	SN3	5.A	SNS	HI-LIMIT MITS	N175
7.1202	000-4159 IOL-1638 C(+509-70	- wg	6.03 6.03 6.03 6.03	11.56N 12.15N 12.93N	10.00.N 10.00.N 11.00.N	11.56N 12.02N 10.87N 12.44N 12.15N 12.65N 13.02N 10.93N 11.35N 10.24N 11.81N	12.44N 13.03N 11.8:N	12.83N 12.83N 11.65N	22.654 22.654 23.654	ທິດເລ
1FH.2	01-507FD IOL-16#A	±u.c.	000	Z## 8:40 ** 6	2003 80.100 7.000 7.000	7.07.4 7.00.38 6.4408	8.4524 8.5528 7.5151	2000. 2000. 2000.	27.70 200 200 200	ააა
	A STATE OF THE PARTY OF THE PAR	A		11 13	Carrier and Carrier	の動きの機能の (A)の存储は下の (M)の数に (A)の特別できる場合では (A)の (A)の (A)の (A)の (A)の (A)の (A)の (A)の	Maria Lakana Bara	Late Automobile	100 CEN	

DRIUER (SUITCHING TIME-TTL GATE ONLY) TIME-18:11:51 59490 DUAL PERIPHERAL POSITIVE-AND TEMPERATURE - 25DEG C 1DATE - 15 DEC 80

1		- Addition of the last of the		The second second	* K	1	受けていたがないのです。 かんきょう かんきょう こうかい こうしん イン・コンプラ アルカー かかかかん かいしゅうしょう こうしょう かいかい かんしょう こうしゅうしゅ 大学 大学 大学 アルカー はっかい しゅうしょう しゅうしょ アルカー・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・		TO THE PERSON AND PROPERTY OF THE PERSON AND PARTY AND PARTY.	
11	TE31 CC:1	# - # () [4] ! [- [1]	0.00 METHID=01 4-32-0	(a)	Č.	() ()	Ç G	6178	Marchael Services	(16) 213 (17) (17) (18) (18)
	TELEX COC-4.50 IOL-16ffA 1 9.00	13.0	Tep# : MK. A. B. T	\$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$		11. 444 12.00h 1	11.814 10.00N 11.60N 11.57N 10.10N 16.35N		Mark Sacra S	4.010.
C) .V	01461780 IOL+1017	(U ())	0130	7.7 7.7 6.635M	2002 2002 2002 2002 2002 2002	2.0728 E.C. 3.7	2. Σ Z (- Σ) (- Σ) (- Σ) (- Σ)	7.7.7. 7.7.0 7.7.0 7.7.0		C. C. C. O. U.)
100	The state of the s	TA CHEST TOTAL	**	O THE PERSON	F-C-86 TS - NET-TENERS	A STATE OF THE PARTY OF THE PAR	S. S. SELECTED STORES STREET S	S. COLONIA STREET	THE CHILL	1

DRIVER (SUITCHING TIME-TIL GATE ONLY) TIME-LIL GATE ONLY) SS4S9 DUAL PERIPHERAL POSITIUE-AND TENGERATURE:28DEG 0 ;DATE:15 DEC 53

Car a ministra	THE RESIDENCE OF THE PROPERTY		The American Address	La Company	Michigan V Miles	A King Market and A Section 1			40	-
18	TEST COMPLETIVE	6- 6 5-2 1-0	S 2111117-01	S411	51415	E: NS	41vs	SN15	PILLILL TOTAL	5.1.
To the state of th	123/1 USC*4.5V ICL*16HA C1*52PFD	L to the	6000	To Constant	200 view view view view view view view view	A CONTRACTOR OF THE PROPERTY O	14.378 14.078 13.0.5	14.974 19.774 13.484 14.374 13.884 14.974 16.005 14.014 14.074 13.814 16.074 16.005 14.014 14.014 15.814	25.00 25.00	ဟလ
23 23	USC-4.5U 101-1678 C1-568FE	CULY	000	PT-TI COMMENT	20:00:00 20:00:00 20:00:00	7. Z	122 174 14 174 14 144 14 144 144	0.00	7777 0000 0000 0000	www

55450 DUGL FIREFREDOL FOSITIOS-AND DRIVER (SUITCHING TIME-TRANSISTOR ONLY) Tenribrions-bosso o jeats-15 dec so time-15:46:41

	\$ 150 m	TEST ON DITTONS	#C3# ₽1* €	TINIT-01-INT	SN1 63.69		ENS	SN4	SNS	HI-LIMIT LAITS	11.15
を 第 5 5 1 - イ 2 - イ 2 - イ 3	03405-10 F. 3-81 C. 180-10	IC-20174 P1-50	2	9.609 8.809	8.346N 8.120N	8.950N 8.470N	8.522N	9.116N 8.978X	8.522N 8.553N	15.603 15.003	4.00
d.	18-37-3 01-50 97-0	10-20079 Pt-53	⊶ ₽	8.6.3 8.6.3	8.750N 8.576N	5.5 3.0 6.00 6.00	8.7502 8.4503 N	7.000 00 00 00 00 00 00 00 00 00 00 00 00	8.500x 8.700x	20.60 20.60	0.00
75	78.00.10 C1.50.10	10.50011A Flaso	 ∾	6.03.8 6.03.8	11.933 11.953	11.93N 11.33N	11.00N	12.17N 12.01N	11.44 11.25N	15.00:	Siz
151	IB-ESTA CI-SOPFD	10-2000A	0	6.03 8.83 8	20.00 20.00 20.00 20.00	2.7. 	2.5.5.0 80.0.0 80.0.0	7.70 0.00 0.00 0.00	8.750N 8.670N	15.234 15.66N	win
50 S. Validar		The property of the property of shoots and former and the same of		THE CHARLES	120 Car 1 Car 1		•	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	The state of the s	J. Carrier Street	712

55450 DUAL PERIPHERAL POSITIUE—AND DRIUER (SWITCHING TIME-TRANSISTOR ONLY) TERFERATURE-25DEG C 1DATE-15 DEC 80 TIME-19:10:56

- C. 175	-	v v	S	SS
HI-LIKIT	15.079 15.004	(1) (1) (1) (1) (1) (1) (1) (1) (1) (1)	15.03% 15.03%	15.03N 15.65N
SMIC	9.1564 8.5324	9.170N 9.110N	11.144	2000 2000 2000 2000 2000
648	8.457.8 NOTA:8	8.5254 8.746N	7.7	777 376 9.00 05.00
SN3	7.00.00	8.875A	7.5 11.3 11.3	9.416. 9.632.
5.87	80 80 80 80 80 80	88.0508 2007 2007 2007	iso)	0.57.3 0.11.0N 0.410.3 0.57.3 8.5.03 0.57.3
S 76	9.1508 9.0008	NO 00 00 00 00 00 00 00 00 00 00 00 00 00	N.C. 11	7.7.00 7.00 8.00 8.00 8.00 8.00 8.00 8.0
11/11-01	0.020 0.030	8.600 9.600	60.60 60.60 60.60	0.00 0.00 0.00
		⊶ ∩	0	0
	IC-2007A R1-50	IC-200MA R1-59	IC-2207A Pl-58	IC-200MA R1-50
00 1831 02.00.000	11 + 2019 C1 + 50PFD	18-25MA C1-50PFD	IB-SOMA CI-SOMA	IB-2009 C1-58PFD
03.20.00	2	2	5:	7.5

55459 DUAL PERIPHERAL POSITIUE-AND DRIVER (SWITCHING TIME-TRANSISTOR ONLY) TEMPERATURE-255EG C ;DATE-15 DEC 80 TIME-19:30:47

acane TER	TEST CO	OHDITIONS		נס-נוחוד	SNII	SN12	SH13	SN14	SNIS	ا	いしいた
7.0	18-207A C1-538FD	IC-2007A R1-50	-0	0.00	NC.77.90	7.7. (6.0) (6.0) (6.0)	10.774 10.733	NO.18.8	N. 32. 6	15.00N	တတ
TT.	10-50-10 C1-50PFD	IC-2007A R1-50	⊶ ⊘	0.00 0.003	2.000.00 2.000.00	10.41N 10.33N	10.193 9.95cN	9.8.9 9.670.0	10.784 10.538	89.03N 89.03N	ကက
TS	18-2004 C1-50FFD	10-2087A R1-50	⊷N	9.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00	11.77N 11.67N	11.31N 11.67N	11.60N 11.66N	11.87k	11.13%	20 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	O) (A)
14	IB-20MA Cl-5CPFD		~ ∩	000	2.0.0 8.578.0	10.37N 10.12N	9.70% 9.653%	19.10. 10.03N	10.51H 10.33N	V15	ωw
1	THE PERSON NAMED IN COLUMN TWO IS NOT THE OWNER.	THE RESERVE OF THE PARTY OF THE		個門に 南により けいの	CHARLES WITH COLUMN THE COLUMN TH			THE PARTY OF THE P	THE PERSON NAMED IN COLUMN TWO IS NOT THE PERSON NAMED IN COLUMN TWO IS NAMED IN COL	A STATE OF STATE OF	2

LIMIT

8 **8**

SAMPLES . • SETALUS

LOU UALLE . 9.103900N LOW UALUE - 9.108068N

The second secon

LIMIT

4 55

5678755 • C32877 •

MIGH CALUE + 21.419355 TITAL HIGH WALLE + 31.719059

100 UALUE + 14.36494N

THE RESERVE OF THE PROPERTY OF

THE PROPERTY OF THE PROPERTY O

\$

SAMPLES .

14.870034

19.816008

LOU GALUE .

THE RESIDENCE OF THE PROPERTY OF THE PROPERTY

SAMPLES -

8.000001N

Low UALUE .

LIMIT

8 8

SAMPLES . SAMPLES -

109 CALLE . 8.4888014

N101604.3

104 (-708 -

15:51:34 17 DEC 83 DECICE 1YPE 554582 URLUS AT 5 FROM DO450.LOGIJED LF-FALL TIME AT IN-30-8,IC+20049

sambles •

LOW UPLUE - 8.578832N

III-42

LIMIT

e e

SAMPLES •

DISPLAY
HIGH UALUE - 85.19026
TOTAL
HIGH UALUE - 85.19000

LOW UALLE . 61.89000

A CONTRACT OF THE PROPERTY OF

3

\$37d£'o\$

109 UALUE - 748.8200M

38

SAMPLES . SAMPLES -

109 UALUE - 859.1000M 104 VALUE - 853.19885

III**-**45

13:56:26 19 DEC 80 DEUICE TYPE 554508

UALUE AT 5 FROM DIASO.LOGIJED UCEsati AT Ib-104-10-109-4

III**-**46

LINIT

8 8

• Saldios

UCESALE

DISPLAY
HIGH UNLUE - 415.58987
TOTAL
HIGH UALUE - 415.56087

100 VALUE - 275.9000M

URLUE AT 5 FPOM PRASOLLOGIJED 14:48:55 17 DEC 80 VGEPI AT Ic-100uA,Rbo-500 chms DEUICE TYPE 554503

36 36

SAMPLES . SATPLES .

10W UALUE - 58.3528 LOW UPLUE . 52.35880

SAMPLES .

104 VALUE - 5.895600

SECTION IV

MEMORY CORE DRIVERS

TABLE OF CONTENTS

4.1	Introduction	IV-1
4.2	Description of Device Types	IV-1
4.3	Test Development	IV-4
4.4	Test Results and Data	IV-4
4.5	Slash Sheet Development	IV-14
4.6	Conclusions and Recommendations	TV-14

SECTION IV

MEMORY CORE DRIVERS MIL-M-38510/130

4.1 Introduction

The 55325/326/327 tamily of memory core drivers is the first line of core drivers to be characterized for RADC. Based on high previous utilization of these devices in military systems, both lemas instruments and Fairchild Semiconductor recommended characterization of these devices. It is expected, however, that usage in new military systems will be on a decline. Table 4-1 gives some specifics on the devices tested and their relationship to the military slash sheet device types.

Table 4-1	Table of	Dovice	Types	Specified
LUDIC 4-I	TOTAL CIT	LIC VICE	TANCO	SPECTATE

Device Type	Generic Type	Manufacturer Symbol	Output Configuration
130-01	55325	F, T	Dual source and dual sink
130-02	55326	F, T	Quad -ink
130-03	55327	F , T	Quad source

F = Fairchild Semiconductor (discontinued mid-1980)

T = Texas Instruments

The manufacturer symbol column reflects the source of the devices which were to be characterized. Other vendors produce the 55325 but were not included in the characterization effort since they did not express interest in the devices. Frirchild memory core drivers were characterized. These devices were discontinued by Fairchild after characterization. Texas instrument's components were received too late to be characterized.

4.2 Description of Device Types

The 5325/326/327 tamily of devices provide 600 mA of source or sink capability for memory core driver applications. Block diagrams of the various devices are given in Figure 4-1, and detailed schematics are given in Figure 4-2. The input circuit of the core drivers is identical to that used in a standard ITL gate. However, the totem pole driver and the output stage are designed differently in order to deliver higher output currents, to provide level translation from standard ITL levels to higher output voltages, and to provide a method of controlling maximum output current.

Figure 4-1

THE REPORT OF THE PARTY OF THE

Figure 4-2 Schematic Circuits, Memory Core Drivers

The primary difference between the 55325, 55326 and the 55327 memory core drivers is their output arrangement. The 55325 provides two source and two sink outputs. The 55326 furnishes 4 sink outputs and the 55327 has 4 "source outputs".

4.3 Test Development

The test development for memory core drivers was similar to the bench test development for peripheral drivers (see Section 3.3). $V_{\rm IH}$, $V_{\rm IL}$, $V_{\rm IK}$, $I_{\rm I}$, $I_{\rm IH}$, $I_{\rm IL}$, $I_{\rm CC}$ (off), $I_{\rm CC1}$ and $I_{\rm CC2}$ are tested in much the same way as they are for standard TTL gates.

All other test parameters require special consideration, however, since they involve pulse measurement techniques or high speed switching of the devices under test.

A simplified schematic for the static test circuit is included in Figure 4-3. (The actual test box developed contained all of its own loads, drive signals and power supplies.

Schematics of the switching time test circuits are included in figures 4-4, 4-5, 4-6 and 4-7. Automatic tests were not implemented for characterization of this device family.

4.4 Test Results and Data

A total of 24 memory core drivers were bench tested at $T_A=25^{\circ}\text{C}$. Sample test data of devices parameters is included in Table 4-2. Testing the 55325 family of devices is straightforward, requiring simple load circuits and TTL type test conditions. Testing is complicated, however, by the large combination of input and output configurations required by the device under test.

Tests that require unusual techniques are described below:

Saturation "Voltage", V(SAT)

 $V_{\rm (SAT)}$ is measured using pulse techniques. The manufacturers data sheet specifies that $t_{\rm W}$ = 200 us with a duty cycle of \leq 2%. The devices were measured over a range of repetition rates and duty cycles. The measured $V_{\rm CE\,(SAT)}$ was relatively insensitive to changes in both test conditions. (Refer to figure 4-8.)

This parameter must be measured at the DUT pins to minimize measurement error.

ĵ.	: •						n.	:-	1	ţ.					
53.15	1.3	1,3	1.35	1.36	1,35	1.35	2.6	23.1	23.2	0.85	0.87	0.68	0.94	1.73	1.72
5.312	1.4	1.3	1.35	1.35	1.34	1.35	5.5	23.2	23.2	0.79	0.81	08.0	68.0	1.60	1.59
5::11		``. —	1.34	1.34	1.35	1.34	15.2	23.0	23.1	68.63	0.85	0.86	0.92	1.68	1.68
538 539 5310 5311	, ₊	1.3	5 1.36	5 1.35	4 1.33	, 1, 34	ì		23.1	0.72	7.0 1	2 0.75	9 0.81	2 1.47	2 1.47
61.8	1.3 1.4	4 1.4	1.35 1.36 1.36	35 1.3	34 1.34	37 1.30	3.1 3.4 3.2	2 23.1	23.2	78 0.86	80 0.8	81 0.83	36 0.8	58 1.6.	59-1.6
5.17 5.36	.3 1.	13 1.4	.35 1.	1.36 1.39 1.34 1.35 1.34 1.30 1.33 1.35 1.35 1.35	1.34 1.33 1.34 1.32 1.36 1.27 1.34 1.34 1.34 1.35	1.37 1.34 1.35 1.36 1.37 1.30 1.30 1.37 1.36 1.34	3.2 3.	23.2 23.1 23.1 23.1 23.2 23.2 23.1 23.1	23.2 23.3	0.85 0.75 0.75 0.75 0.77 0.64 0.77 0.78 0.80 0.72	0.86 0.76 0.77 0.77 0.77 0.64 0.78 0.80 0.81 0.74	0.50 0.76 0.77 0.76 0.79 0.62 0.79 0.81 0.82 0.75	0.93 0.83 0.84 0.84 0.84 0.84 0.85 0.84 0.85 0.89 0.81	1.72 1.51 1.52 1.52 1.54 1.57 1.55 1.58 1.62 1.47	1,71 i.51 1.51 1.52 1.54 1.25 1.54 1.59 1.62 1.47 1.68
S.75 S	1,4 1,4 1,5 1,4 - 1,3		1,29 1,35	1,30 1	1.27 1	1,30,1	· ·	23.1.23	- -	9.54 0	0.40.0	6.62.0	0.65	1.27	1.20
53.5	, , , T		1.36 1.36 1.34 1.35 1.32	5 1.34	2 1.36	6 1.37	2 9 3,1 3,5 3,1 3,0 -	23.1 2	23.1	5 0.77	17 (1) 1	6 L' 1 9	i.	2 1.54	2 1.04
8 837	. I. S	1,3 1,4	34 1.3	34 1.3	34 1, 3,	35 1.3	5 3.1	2 23.1	2 23.2	75 0.7	77 0.77	77 0.7	ж• 0 1 58	52 1.5	51 1.5
83.2 833	1	1.3 1.	.36 1.	.35 1.	.33 1	. 34 1.		23,2-25.	3.2 23.	.75 0.	7.6	.76 0.	.,83.0.	.51 1.	.51 1.
s:11:s	1.3 1	1 1	1.36	1.35 1	1.34 1	1.37 1	9 5	23.1.23	23.1 23	1.00	1.08.1	0.65	. 65.0	1.72	1.71
lest in	· · · †	3,14	.^		٠.	11	1	7		~	, †	٠ <u>٠</u>	11	st	Ō
lest onditions P	Vec-2007, 76-24-1907						Vol=4.57, Vol=247	V.c.l=4.5\\.V.c.2=24\		V _{cc1} =5.5V,V _{cc2} =24V					
lest	- 77						Vec1=4.	Voc1=4.		V _{cc1} =5.					
Paradete							170	30.		IIL				-	٠.•

TABLE 4-2. Sample Test Data, 55325.

Notes: 1. All relays are in the de-energized position.

- 2. Rl = 300 ohms ±5% carbon.
 3. R2 = 39 ohms ± 5% carbon.
 4. R3 = 22 ohms ± 5% carbon.

Figure 4-3 Simplified Static Test Circuit Diagram for Memory Core Drivers IV-6

Notes: 1. The pulse generator has the following characteristics:

PRR = 0.2uS,
$$t_p$$
 = 200nS, $Z_{out} \approx 50$ Ω .

- 2. R_T = 1Kohm ± 5% carbon. 3. C_L = 50pF ± 5%, including probe and jig capacitance. 4. R_1 = 360 ohms ± 5% carbon.

Switching Time Test Circuit for Device Type 01 Figure 4-4

Notes: 1. The pulse generator has the following characteristics:

PRR =
$$0.008$$
, $t_p = 200nS$, $T_{out} = 50$

- 2. R₂ = 24 n 5% carbon.
 3. N₃ = 50pF + 5%, including probe and dig capacitance.
- 4. Riss onms 5% carbon.

Figure +-> Switching lime Test Circuit for Device Type 01

Device Type 03

Notes: 1. The pulse generator shall have the following characteristics:

 $z_{\rm out} \approx$ 50 ohms - For testing $v_{\rm CH}$ (after switching) PRR = 12.5kHz, $t_{\rm p}$ = 40uS - For all other tests. PRR = 0.2uS, $t_{\rm p}$ = 200nS.

- Cl = 50pF t 5% (including dig and probe capacitances). Bl = 400 onms t 5% carbon for $V_{\rm OH}$ tests. For all other tests Bt = 22 onms + 5% carbon.
- Connect VC to $V({\tt Clamp})$ for device type [2]. For device type [3], connect VC to $V({\tt Clamp})$
- R1 30 ohms : 55 (device type 3 only).

Figure 4-6 Switching Time Test Circuit for Device Types 02 and 03 11'-9

Motes: 1. The pulse generator shall have the following characteristics:

 $Z_{\text{out}} \approx 50$ ohms, PRR = 0.2mS, t_p = 200nS

- 2. Cy = $50pR \pm 5\%$ (including jig and probe capacitances). 3. Ry = 100 ohms $\pm 5\%$ carbon. 4. R1 = 360 ohms $\pm 5\%$ carbon.

The second secon

Figure 4-7 Switching Time Test Circuit for Device Type 03

 $V_{(SAT)}$ = .38 Rep Rate = 10 Duty Cycle = 2%

V(SAT) = .389 Rep Rate = 10 m Duty Cycle = 107

V(SAT) = .38 Rep Rate = 10 Duty Cycle = 20%

Figure 4-8 Saturation Veltage vs Daty Cycle for 55325 Device

Switching unaracteristics Trut, Trut, Trut, Thill

The following guidelines were used to ensure accorate and repeatable switching time measurements:

- 1. Test circuits were built on ground planes to minimize induced noise through signal returns and to minimize circuit inductances. High frequency wiring techniques were used throughout.
- 2. All power supply voltage pins were bypassed as close to the device under test (DUT) as possible. All supply lines were then checked for noise with the DUT switching.
- 3. The total bandwidth of the oscilloscope maintrame, plug ins, and probes were selected and verified to provide an overall oscilloscope measurement bandwidth of 350 MHz. (This translates to an oscilloscope rise/till time of \$20 mes)
- 4. All probes were adjusted for proper compensations
- The time skew between channels on the actillate pe was milled out;
- 6. The input signal to the DUT was terminated to manifely line reflections. The input signal line or made as chort as possible to shorten the time transcluring which any residual reflections might occur.
- Supply voltages were carefully regulated to minimate switching time measurement errors due to samply collain variation.
- 8. Load capacitance was adjusted for probe capacitance.

Most of the switching parameter results were is especified; however, one anomaly was discovered in $\Gamma_{\rm PMI}$ measurements at the source outputs for the 5325 devices. As shown in Figure 4-9, the high to low output transition shows a very high initial slope, but suddenly flattens out approximately 10 ns after the start of the output transition.

Figure 4-9A

T_{THL} source output, 55325 Vendor A C_L = 25 pF R = 1 K

Figure 4-9B

Fig. source output, 55325 Vendor B $C_L = 25 \ \text{pF}$ $R_L = 1 \ \text{K}$

One possible explanation for this effect involves reverse recovery action in the output stare $\frac{1}{2}$

As shown in Figure 4-10 (the simplified schematic diagram), the source section of the 55325 consists of a standard IT! inset followed by a high voltage totem pole driver and an emitter follower output. Assume that the input is initially in a logic low state. Q5 is off, causing the Parlimeton pair (concisting of Q3 and Q4) to be on and Q5 to be off.

Hence, Q_{1} is conducting and the output is in a high state.

Figure 4-10 Simplified Source Section of 55325

If the imput to the gate were to charge from the low state to the high state, the collector of Q_n will become forward biased, Q_n will turn on, Q_n and Q_n will turn off, and Q_n will start to conduct.

As the totem pole driver (consisting of Q_2 , Q_3 and Q_4) changes state, the bias voltage across the emitter junction of Q_1 changes from the forward direction to the reverse direction. Reverse recovery action begins in the emitter of Q_1 , tending to discharge C_L rapidly through the emitter of Q_1 and through Q_2 . After recover, Q_1 is cut off and C_L is left to discharge through R_L . Hence, the output of the core driver shows a two slope transition. The steep initial transition is due to discharge of C_L primarily through Q_1 , and the flatter portion of the transition occurs as C_L discharges through R_L .

A similar effect could occur with emitter breakdown of Q_1 during a high to low output transition. Further work is needed to investigate the exact cause.

4.6 Slash Sheet Development

The military specification (MIL-M-38510 slash sheet) on memory core drivers was developed in parallel with the characterization effort. As the test circuits and procedures were proofed out in the taking of device data, they were also incorporated into the slash sheet. With few exceptions, the proposed slash sheet Table I parameters and limits are the same as in the manufacturers data sheets. Limit changes were made only to switching parameters. An anomaly was observed in $T_{\rm THL}$ at the source outputs for the 55325. Further investigation is needed to fully understand the cause.

4.7 Conclusions and Recommendations

Twenty-four generic 55325 series memory core drivers were bench tested at GEOS. The devices tested in a predicatable fashion and within manufacturers limits except for selected switching time measurements. The data and slash sheet parameters and limits will be reviewed by interested manufacturers prior to issuance of MIL-M-38510/130.

SECTION V

CMOS MULTIPLYING D/A CONVERTERS

MIL-M-38510/127

Table of Contents

		rage
5.1	Introduction	V-1
5.2	Description of Device Types	V=2
5.3	Test Devolopment	V-5
5.4	Test Results and Data	,
5.5	Discussion of Data	V~
5.6	Slash Sheet Development	Q=10
5.7	Conclusions and Recommendations	V=27

SECTION V

MIL-M-38510/127

5.1 Introduction

CMOS multiplying digital to analog converters were initially introduced in late 1973 by Analog Devices. Since then these devices have been used in many applications and several other manufacturers have incorporated them into their product lines. Table 5-1 shows the CMOS multiplying DA converters to be specified in MIL-M-38510/127.

Table 5-1. Table of Device Types Specified.

Device	Generic	Manufacturer	Multiplying D/A Converter
Туре	Туре	Code *	Description
01	AD7523S	A,M	8-bit res., 8-bit lin.
02	AD7520U	A,M,L,N	10-bit res., 10-bit lin.
03	AD7521U	A,M,I,N	12-bit res., 10-bit lin.
04	AD7541T	A, I	12-bit res., 12-bit lin.
05	AD7541T	A, I	12-bit res., 12-bit lin.**
06	DAC1020LD	N	10-bit res., 10-bit lin.
07	DAC1220LD	$\ddot{\kappa}$	12-bit res., 10-bit lin.
08	DAC1218LD	N	12-bit res., 12-bit lin.
09	DAC1220LD	N	12-bit res., 12-bit lin.**

*Manufacturer Code

- A = Analog Devices
- M = Micro Power
- I = Intersil
- N = Mational Semiconductor

**Best fit linearity. All others are specified with end-point linearity.

Later deleted in slash sheet per agreement reached at JEDEC JC-41 meeting, 12 Feb 81.

A recommendation for characterization and possible slash sheet action was made by the JC-41 Committee to RADC. Some device features which should sustain this recommendation are as follows:

- 1. First monolithic 10-bit D/A converter. (AD7520)
- 2. Many potential applications and user options.
- 3. Cost effective with other competing process technologies.
- 4. Device is sourced by several manufacturers.
- 5. Low power dissipation.
- 6. Usage in military systems is high.

5.2 Description of Device Types

This CMOS series of multiplying D/A converters are fabricated with a deposited thin film 3-2k ladder over a CMOS integrated circuit. A functional schematic of a typical circuit is shown in Figure 5-1.

DIGITAL INPUTS (DTL.TTL CMOS COMPATIBLE)

Figure 5-. Mos Multiplying D/A Converter

the R-28 ladder resistors consists of silicon-chromium material arranged to provide the network shown. In one vendor's design, these resistors have nominal values of 10 K ohms and 20 K ohms with an absolute temperature coefficient of approximately -350° p₄m/oc and a tracking temperature coefficient of better than 1 ppm/oC.

When a voltage is applied to the reference terminal of the structure, the precision of the binary division of current is governed by the matching of the resistors and the drop across the associated switches. For proper oper on the output terminals loutland lout2 should not reference as possible. The CMOS switches of the integrated cir tructure are shown schematically in Figure 5-2.

Figure 5-2. CMOS Switch Schematic

With the application of a DTL/TTL/CMOS compatible logic signal, two CMOS inverters assume the proper states to drive their respective output switches such that one is "ON" and the other "OFF". The end result is that the same ladder current is steered in either direction. A logic "high" input results in an loutl switch position and current flow.

Most applications of these R-2R ladder and switch networks involve an external operational amplifier configured as a current to voltage converter. The feedback resistor for this op amp is one of the deposited thin film resistors. Figure 5-3 shows how both devices are connected together to form a voltage output multiplying DAC. The digital input word determines the states of all of the bits from the MSB (Most Significant Bit) to the LSB (Least Significant Bit). All of the binary currents gated through logic "l" positioned switches flow through the feedback resistor to the op amp output. Therefore,

Eo = -Ioutl * Rfb

The current Ioutl is the product of the reference voltage and the digital binary fraction divided by the R-2R ladder input resistance.

Iout1 = D * Eref/Zin

where

D = B1*(1/2) + B2*(1/4) + B3*(1/8) + ... BN*(1/2 expN)

B1 thru BN are 1 or 0.

Figure 5-3. Typical Voltage Output MDAC Application

For the more common 2-quadrant multiplication application of an 8 bit device as shown in Figure 5-3, the relationship between digital input and analog output is as follows:

Digital Input	Analog Output
1111 1111	-VREF * (1 - 1/2 exp 8) = -VREF * (255/256)
••••	
• • • • • • •	
1000-0001	-VREF * ((1/2) + (1/2 exp 8)) = VREF * (129/256)
1000 0000	-VREF * (1/2)
••••	
• • • • • • •	
0000 0001	-VREF * (1/2 exp 8) = -VREF * (1/256)
0000 000 0	0

This current mode DAC has an output impedance which varies with the input digital code word. Parasitic output capacitance interacting with this variable output impedance can result in poor closed loop response (either reduced bandwidth or ringing). A compensating capacitor across the output amplifier feedback resistor is recommended. Since the output impedance varies, the noise gain of the output op amp will result in a variable gain to noise and offsets. The op amp should therefore have low offset, low offset drift, and low noise. Also grounding techniques should be given careful consideration.

5.3 Test Development

A variety of devices were procured from three manufacturers as shown in Table 5.2.

Table 5.2. Device Types for Characterization.

Generic Type	Manufacturer	Quantity	Date Code
AD7523UD	Intersil	10*	7947
AD7523TD	Intersil	6*	7947
AD7520UD	Intersil	11*	7947
AD7520UD	Analog Devices	15	8006
AD7520UD	Analog Devices	10	8019
AD7521UD	Intersil	12*	7947
AD7521UD	Analog Devices	7*	8030
AD7541KD	Intersil	15*	7949
AD7541TD	Analog Devices	10	8038,8021
DAC1218	National	10*	8045

^{*}Data was submitted with the devices.

Much of the test development for the CMOS MDAC characterization originated with the work done in characterizing the AD562 D/A converters. Many of the test techniques are similar.

CMOS MDAC Test Parameters

At a JC-41 meeting in August 1979 the manufacturers presented a proposed CMOS MDAC Specification. A list of parameters is shown in Table 5-3.

Table 5-3. Test Parameters for Characterization.

Item No	Symbol	Test Parameter
1	Icc	Supply Current
2	Iref	Reference Input Current
3	IIL	Digital Input Leakage Current (logic 0)
4	HII	Digital Input Leakage Current (logic 1)
5	IZS	Zero Scale Current (IOUT1 at logic 0 input)
Ó	d12S/dT	Zero Scale Current Drift
7	IZS'	Zero Scale Current (IOUT2 at logic 1 input)
3	+dVFS	Gain Error (Full Scale) with +10V Reference
9	-dVFS	Gain Error (Full Scale) with -10V Reference
10	dVFS/dT	Gain Error Drift
11	+PS3	Power Supply Sensitivity (+ 1V change)
12	-PSS	Power Supply Sensitivity (- 1V change)
13	LE	Linearity Error (End Point)
14	LE(BF)	Linearity Error (Best Fit)
15	MCE .	Major Carry Error
16	FTE	Feedthrough Error
17	tSLH	Output Current Settling Time (low to high)
18	tSHL	Output Current Settling Time (high to low)
19	Со	Output Capacitance
20	en	Noise (broadband)

Test parameter items 1 through 15, except LE(BF) were setup to be measured on GEOS' S-3270 Automatic Tester. All of these parameters are static. The static test circuit is shown in Figure 5-4. This circuit is very similar to the one used in testing the AD562 D/A Converters. There were, however, several essential differences which had to be made. Since the CMOS multiplying D/A's use a variable reference, it was decided that data had to be taken for several reference voltage conditions. These conditions were chosen at + 10 V, - 10 V, and + 1.25 V. A Fluke 5100B was used to generate the different reference voltage levels. The 16 bit reference D/A converter was remotely located from the adapter through a ribbon cable so that it could be used with other test adapters. In order to maintain voltage accuracy at the adapter U6 error amplifier, the reference D/A output buffer U4 has its output to feedback connection made at the error amplifier output. Also a ground driver U2-U3 is used to force the DUT and adapter ground to be at the same potential as the external reference D/A. The IOUT1 current output of the DUT is converted to a voltage by means of op amp U5. Since a millivolt of op amp offset voltage at 10 volts full scale causes a 0.01% linearity error, it is important that this offset be trimmed out. In other words, Ioutl and Iout2 must go to virtual ground and output ground for proper operation. The offset adjustment of U5 is done with relays Kl and K4 energized. For any digital code word between zero scale and full scale, the test circuit and software are mechanized so that nearly equal and opposite voltages are generated by the reference D/A at the output of U4 and the DUT at the output of U5. The differences between these voltages is amplified by U6 with a gain setting of 100 V/V and appears at adapter output pin 21.

Since the reference D/A is accurate to 16 bits, it is assumed perfect and any error is charged against the DUT. The inverted voltage output of the DUT D/A at U5 is determined indirectly as follows:

EDUT = Eo/G - EREF D/A

EDUT = $-E_0/100 - 10(N)/2 \exp B$

where

G = -100 V/V is the error amp gain

N = decimal equivalent of the input digital code word

B = number of bits

An inspection of the static test circuit shows that if the measured output voltage is positive, EDUT, although negative in polarity, has a greater magnitude than EREF D/A. Consequently, the DUT output has a positive scale error with respect to the Reference D/A. The imaginary non-inverted value of the DUT D/A can then be written as

EDUT' = $Eo/100 + 10(N)/2 \exp B$

Op amp offset error ($V_{\rm IO}$ + $I_{\rm IB}$ $R_{\rm F}$) adds to linearity error since $I_{\rm OUT}1$ and $I_{\rm OUT}2$ must go to 0V. For 10:1 measurement accuracy with a 12 bit DAC, acceptable op amps include the LF155, LF156 and OP-05 with ${
m V_{IO}}$ (adj.) and the OP-07 without VIO (adj.). 7 Notes:

One millivolt of offset error on 10 VFS causes 0.01% linearity error. 72

Figure 5-4. Test circuit for static tests.

If a 12 bit MDAC at full scale had a measured adapter output Eo of O.1 volts.

EDUT' =
$$0.1/100 + 10(4095)/4096$$

EDUT' = $0.001 + 9.99756 V$
EDUT' = $9.99856 V$

The full-scale error of the device in % can be determined from

In millivolts the full-scale error is + dVFS = 0.01% of 10,000 mV = 1 mV. The linearity error of the DUT output transfer characteristic from zero scale to full scale is perhaps the most important parameter to be measured. For characterization, GEOS's procedure has been to measure the adapter output error for all digital input codes. Thus for a 12 bit converter 4096 discrete measurements are required. Automatic calculations are then done to determine the deviation of each DUT output point from a straight line between the DUT's zero scale and full scale end points. Figure 5-5 shows the transfer characteristic of a hypothetical poor device compared to an ideal device.

Figure 5-5. CMOS MDAC Transfer Characteristic.

7520-10 BIT D/A CONVERTER Figure 5-6. Automatic Linewilly alot

LINEARITY ERROR (ALL CODES)

After the linearity error is determined for each point the data can be automatically plotted as shown in Figure 5-6, or it can be summarized by listing the individual bit errors and the worst case positive and worst case negative bit errors and associated address codes.

By comparison the remaining parameters to be measured with the static test circuit are determined quite easily. Relays K! and K3 are energized to measure the zero scale currents at IOUT1 and IOUT2 using U5 as a current to voltage converter. Input reference current, which is a function of the 10V reference and the impedance of the R-2R ladder network is measured directly by energizing K2 with all bits high.

Feedthrough error, settling time and output capacitance were determined with separate test fixtures as shown in Figures 5-7, 5-8 and 5-9.

Figure 5-7. Feedthrough Error Test Circuit.

cigure 5-8. Settling Time Test Circuit.

apacitance Test Circuit.

5.4 est Results and Data

Characterization data was taken on twenty 10-bit devices from two vendors and fitteen 12-bit devices from three vendors. Each device was sequentially tested for all parameters at 25oC, -55oC and 125oC. The data was recorded in several different forms as follows:

- 1. A dedicated sheet for each device showing all parameters at all temperatures.
- A comparison of the parameters of ten devices at one temperature on a sheet.
- 3. Parameter histograms of all devices at each temperature.
- Plots of device bit linearity error vs applied digital input code.
- 5. Individual device histograms of bit linearity error vs frequency of occurrence.

The complete collection of data was published by GEOS in a handbook entitled:

Characterization Data for MIL-R-38510/127 CMOS Multiplying DA Converters (AD7520 & DAC 1020 Series)

```
Representative data sheets are shown in this report as follows:
                   Typical Mfr. Code A Device Data Sheet
    Table 5-4
    Table 5-5
                   Typical Mfr. Code B Device Data Sheet
                   Typical Mfr. Code C Device Data Sheet
    Table 5-6
                   Mfr. Code A Data (10 devices at 25oC)
    Table 5-7
                   Mfr. Code B Data (10 devices at 25oC)
    Table 5-8
                   Mfr. Code C Data (10 devices at 25oC)
    Table 5-9
                   Histogram of Gain Error (20 devices)
    Figure 5-10
                   Linearity Error Distribution Histogram
    Figure 5-11
                   Linearity Error vs Input Code Plot
    Figure 5-12
                   Linearity Histogram at V_{REF} = +10 \text{ V for S/N } 2
    Figure 5-13
                   Linearity Histogram at V_{REF} = -10 \text{ V for S/N } 2
    Figure 5-14
                  Linearity Histogram at V_{REF} = 1.25 \text{ V for S/N } 2
    Figure 5-15
                   Linearity Plot at Vcc = +10 V
    Figure 5-16
                   Linearity Plot at Vcc - 19 V
    Figure 5-17
```

5-5 Discussion of Data

The characterization data in all forms was reviewed to see how well it compares to the original limits proposed by the JC-41 Committee. A discussion of this data on a parameter by parameter basis follows:

Power Supply Current (Icc)

The power supply current is much less than the indicated 100 uA limits when the digital inputs are at 0 V or V_{CC} respectively. GEOS' data for these conditions is wrong because in making the measurements, full-scale was set at the 100 uA recommended limit while the actual current was typically less than 1 uA. As a consequence the machine accuracy and offset error swamped out the reading to be measured. This data was retaken on the bench and, except for one device, all values were less than 1 uA. When the digital input levels were set at the 0.8 V to 2.4 V TTL compatible levels the supply current increased significantly, thus indicating more leakage in the OFF transistors of CMOS switches. At -55°C several vendor code B devices just exceeded the 2 mA maximum limit. GEOS recommends that the -55°C limit be raised to 2.5 mA.

Reservance Current (IREF (+), IREF (-))

All of the data was between 0.8 and 1.3 mA compared to the 0.5 to 2 mA limits. This current reflects the value of the F-Ch ladder network.

Digital Input Leakage Current (IIL, IIH)

The individual device sheets were set up to indicate PASS or FAIL to summarize the results if any of the ten or twelve digital inputs had a failure. No failures were recorded and the histograms indicated a spread between 0 and 43 nanoamperes.

Zero Scale current (I_{ZS} , I_{ZS})

Typical device data was much less than the recommended limits of $\pm /-200$ nA. Except for one maverick device which measured ± 149.5 nA at $\pm 125^{\circ}$ C, all other data was between ± 11 nA and 0. GEOS recommends that the limits be reduced to ± 100 nA. It is believed that the single untypical value could be a measurement error because it does not agree with submitted vendor data.

Zero Scale Current Drift (dIZS/d)

A review of the data indicates that limits of +/- 400 pA/°C would be reasonable. There was no JC-41 recommendation on this parameter.

Full Scale Error (+ dVFS, - dVFS)

The distribution of data between - 45.6 mV and 17.6 mV was well within the $^{+}$ 100 mV recommended limits.

Full Scale Error Drift (dVFS/d.)

All of the data is within the # 10 ppm VFS/V limits.

Power Supply Sensitivity (+ PSS, - PSS)

The distribution of data is very much tighter than the recommended limits of \pm 100 ppm VFS/V. GEOS recommends that these limits be reduced to \pm 50 ppm VFS/V.

Linearity Error (LE)

Linearity error is one parameter which cannot be negotiated. The linearity has to be within 1/2 LSB to meet the stated accuracy requirement. Most of the data is well within the \pm 1/2 LSB limits. Figure 5-12 shows how the linearity for a typical device varies with its input code. Figures 5-13, 5-14 and 5-15 show the linearity histograms of one device (S/N 2) with $V_{\rm REF} = \pm$ 10 V, - 10 V and \pm 1.25 V respectively. Because of the apparent independence of reference voltage level the specification requirement to test at all three levels may be reduced to testing at \pm 10 V only.

Feedthrough Error (FTE)

All of the data for devices from vendors A and B were under 8.5 mVpp. These devices are within their 10 mVpp limit. Vendor Code C devices had feedthrough errors as high as 19 mVpp. These devices satisfy their 25 mVpp limit.

Output Current Settling Time (t_{SLH}, t_{SHL})

All devices had data values within the recommended 1 uses maximum limit.

Output Japhoitance (Jo)

All device data satisfies the 33-41 committee's recommended limits.

5.6 Clash Sheet Development

The slash sheet, MIL-M-38510/127, was developed as a joint effort of GEOS and the JC-41 Committee/Subcommittee. The majority of the test parameters were established early in the slash sheet development in a JC-41 Subcommittee meeting. One major change has been the deletion of +5V as a recommended operating supply voltage. All-codes data taken on a 7520 device from vendor A showed excessive linearity errors and differential linearity errors, especially at +1259C. A comparison of one such sample of data taken at two supply voltages is shown in the Appendix, Table 5-16 and Table 5-17. GEOS' recommendation to limit operating voltage to +15 volts was adopted by the JC-41 committee.

A major goal of the characterization was to develop an abbreviated test for linearity. Initial all-codes testing of the 7520 linearity error showed that the abbreviated test used for the 562 12-bit D/A Converter specified in MIL-M-38510/121 was invalid for the 7520, since it did not find the worst case codes having maximum linearity error. The following approach to an abbreviated test was developed by GE and is proposed for the slash sheet:

- Measure all combinations of the four MSB's with the lower order bits OFF.
- 2. Measure each of the lower order bits with the four MSB's OFF.
- 3. Determine the code word with the most positive predictable error based on the above tests, and measure that error. Repeat this measurement but with all lower order bits complemented one at a time.
- 4. Repeat the third group of tests above, but with the most negative predictable error codes.

This abbreviated test is done in Group A at three temperatures. An all-codes test at three temperatures is also required on a sample basis in the slash sheet.

This device is used as a multiplying DAC in many applications. Therefore, it is also necessary to test its ability to convert digital inputs with a negative reference voltage applied. GE has characterized the 7520 device at three reference voltage levels: +10V, - 10V, and + 1.25 V. Linearity errors are comparable at all three reference levels, although in many cases the error is slightly greater at minus ten volts than at plus ten volts. In order to guarantee the performance for both polarities, the abbreviated test is also required to be run at both plus and minus 10 volt levels, and at + 1.25 volts. This requirement will be further negotiated with the JC-41 committee.

Table I, Electrical Performance Characteristics, MIL-M-38510/127, is included in the following for reference.

5.7 Conclusions and Recommendations

The 7520 10-bit DAC (and the 7523 8-bit DAC which is manufactured using the 7520 chip) has been characterized and is judged suitable for use in military systems when procured via MIL-M 38510/127. Device manufacturers will review the characterization data and proposed slash sheet before the issuance of the final slash sheet.

The 7541 12-bit DACs have not yet been fully characterized at the time of writing of this report. That effort will be completed and integrated into the final released specification.

Table >-4. Typical Mir. Code A Device Data Sheet.

CMOS MULTIPLYING DAM CONVERTER		DEVICE TYPE	£ 7540	S/N 1	1.150	U- 5.775PU				
Praint Ter	F0-114	-55 DEG C	H17-14	רכ-רוש	25 28G C	H1-LIA	- 11.07	+125 EEG C	HI-LIM	
ICC - ALL IMPUTS AT 0 OU ICC - ALL IMPUTS AT 1 .0V ICC - ALL IMPUTS AT 0 8U ICC - ALL IMPUTS AT 2 4U				6 6 6 6 6 7 7 6 6 6 6	3.60 550. 8 725.1		0000	10.00 1004. 1004. 100.03	2.00. 2.00.	3322
IREF(+)-ALL INPUTS AT 15U IREF(-)-ALL INPUTS AT 15U	500.A	915.R	-500.F	500.7	940.A	2.00 -560.N	588.M	965.M	2.00 -500.h	11
IIL - ALL IMPUTS AT 0.00 IIL - ALL IMPUTS AT 0.80 IIM - ALL IMPUTS AT 15.00 IIM - ALL IMPUTS AT 2.40		PASSED PASSED PASSED PASSED	****	1 1 2 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	PASSED PASSED PASSED PASSED		-1.90 -1.90 -1.90	PASSED PASSED PASSED PASSED		5555
125 - ALL INPUTS AT 0.00 125' - ALL INPUTS AT 2.40 4125'4T - INPUTS AT 0.00 4125'/4T- INPUTS AT 2.40	-200. -200. -50.0	6.55.88	MWW 0000 0000 0000	- 1000			- 200. - 50. - 50.	-6.50 -6.50 -5.00 -6.50	55 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6	\$ \$ \$ \$ \$ \$ \$ \$ \$
GAIN ERROR (UFS)	-10.0	-16.5 6.30		-100.	-11.5	100. 0.00.	-100.	-4.55 -6.95		2 4
PSS - UCC-15V TO 16V PSS - UCC-15V TO 14V	-100.	1.29 -108.H	100.	-166.	-1.79 527.M	166. 166.	100.	-103.R 410.R	199.	# # # #
LINEARITY ERROR -	500.	-4.487		588.	-2.44H	•		35.18	500.8	181
LINEARITY ERROR -	9	124.7		F. 666.1	124.1	96	<u>.</u>	5.	500.1	1 83
LINEARITY ERROR -	500	;=		200	# · · · ·		500.	.6	500.H	: S
LINEARITY ERROR -	9 6				18.23	66	<u>.</u>	3 2	2.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00	151
LINEARITY ERROR -	500			9.0	7.40	9	566		F. 905	8 51
BIT LINEARITY ERROR - BD BIT LINEARITY ERROR - BD BIT LINEARITY ERROR - LSB	-500.A		5000 5000 5000 5000	E	76.1R 56.5R	. E. E.	E. 0001	2.0.1 2.0.1 2.0.1	E . 005	158 158
MAK(+) LINEARITY ERROR &		318.8	•	•	345.8	•	•	434.R	580.A	151
ASSOC ADDRESS (ALL CODES) MAX(+) LINEARITY ERROR &	::	455. 284. R	. 0	===	455. 334.M	ں ،	::	327. 422.M	500. H	ر د د
ASSOC ADDRESS (ABBREU)	-586.4	503.	23	- S. O. O.	463. -183.H	.	-5.00.		::	0EC
ASSOC ADDRESS (ALL CODES) MAX(-) LINEARITY ERROR & ASSOC ADDRESS (ABBREU)	- V	956. -67.48	:::	 	1.02K -167.R 944.			952. -262.1 952.1	:::	LS# PEC PEC
MAX(+) LINEARITY ERROR & A550C ADDRESS (VREF10V) MAX(-) LIMEARITY ERROR & A550C ADDRESS (VREF10V)	****	267.3 455. -83.73	#	••••• •••• •••• ••••	344.R 455. -134.R	\$ 	****	437.8 327. -216.8		
MANICA) LINEARITY ERROR & M6SOC ADDR (UMEF-41.25U) NANICA) LINEARITY ERROR & M6SOC ADDR (UMEF-41.65U)	***	11727. 1427.		::3: ::3:	2004 2004 2004 2004 2004 2004 2004 2004		****	358.3 463.3 768.3	.222	
HETESIS. 2ERO (0) IN LINITS COLUMN	JPH REAMS	£	LIMIT. IT CAN BE	INTERPRETED	\$	DASH (-),				

Table 5-5. Typical Mfr. Code B Device Data Sheet.

CC - ALL IMPUTS AT 0.00 0.00 -1.00 0.00 -1.00 0.00	- · ·	**************************************	7			지수 · · · · · · · · · · · · · · · · · · ·		2255 55 5252 5599 59 99 000 5 5 5 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6
			**************************************					4444 54 4444 645, 54 44
						2000 000 000 000 000 000 000 000 000 00		** 3222 559 59 59 50 50 50 50 50 50 50 50 50 50 50 50 50 5
			N N N N			00000000000000000000000000000000000000		2222 XE 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9
						4 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	0000	**************************************
	20		32.8 6.66 155.		000000000000000000000000000000000000000	24.3 7.98 1.68	9	54 44 E E E
			155.	100.	9 9	66	10.0	4 4 E E
	E. 000		=	C40 R		-385.₩	100. 100.	
2000 - 10	12.00 · 12		28.23 189.23 189.63		5 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6	925.U 163.H	0000	851 851
	E E E,		4.03.03 4.03.03 5.03.03			-6.687 4.298 55.48		128 128 128
##		E E E E	2.48 2.48 2.70 2.70 2.70 2.70 3.70 5.70	2 E E E E	# E E E E	114.8 7.728 5.838 -7.518	K.E.E.E.	183 183 183 183
MAX(+) LINEARITY ERROR & 0.00 265.F ASSOC ADDRESS (ALL CODES) 0.00 280. MAX(+) LINEARITY ERROR & 0.00 312. MAX(-) LINEARITY ERROR & -500.R -191.R ASSOC ADDRESS (ALL CODES) -500.R -191.R MAX(-) LINEARITY ERROR & -500.R -159.R ASSOC ADDRESS (ADDRESS ALL CODES) -500.R -171.R	W & W & & & & & & & & & & & & & & & & &		21000000000000000000000000000000000000	neneeee eeeeeee E E		# E E E	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	2002020 2002020 2002020 2002020
	E	••••	249.3 289.3 199.3	 	•••••	317.3 -192.3 741.	W • • • • • • • • • • • • • • • • • • •	LSB CSB CCB CCB
MAX(+) LINEARITY ERROR & 0.00 852.M ASSOC ADDR (UREF-+1.25U) 0.00 281. MAX(-) LINEARITY ERROR & -600.M -180.M ASSOC ADDR (UREF-+1.85V) 0.00 759.	::::	•••	E	 	33.3 •••	8	 	LSB DEC DEC DEC

Table 5.6. Typical Mir. Code C Device Data Sheet.

CHOS MULTIPLYING DAM CONVERTER	_	DEVICE TYPE	1218	S/K 9	1 LSB.	. 2.442MU				
PARAMETER	LO-LIM	SS DEG C DATA	HI-LIR	LO-LIM	25 DEG C DATA	HI-LIM	LO-LIM	125 DEG C DATA	HI-LIM	
ICC - ALL IMPUTS AT 0.0U ICC - ALL IMPUTS AT 15.0U ICC - ALL IMPUTS AT 0.8U ICC - ALL IMPUTS AT 2.4U	****	1.69 730.8 1.70 625.8		2322	1.65 1.60 1.60 1.60		0 0 0 0 0 0 0 0 0 0 0 0	6655 6655 6655 6655 6655 6655 6655 665	00000 0000	4444 4444
IREF(+)-ALL IMPUTS AT 15U	500.A	625.8 -625.8	-5.00 -5.00.A	580.H	320.H -635.H	2.00 -500.H	.2.000.11 -2.000.11	630.H -640.H	2.66 -566.H	ž č
IIL - ALL IMPUTS AT 0.00 IIL - ALL IMPUTS AT 0.80 IIM - ALL IMPUTS AT 15.00 IIM - ALL IMPUTS AT 2.40	- 1.99.	PASSED PASSED PASSED FAILED	****	1.000.	PASSED PASSED PASSED PASSED		1.000 1.000 1.000 1.000	PASSED PASSED FAILED PASSED	1111 00.00 0.00 0.00 0.00	5 555
125 - ALL INPUTS AT 6.60 125' - ALL INPUTS AT 2.40 4125'4T - INPUTS 7 3.00 4125'/4T- INPUTS AT 2.40	1000. 1000. 100.	-166. -136. 8.38. -62.5		0.000 0.000 0.000	-156 -1135. 6.68		-296. -296. -59.6	-4.38K # -195. 42.2K # 600. #	5000 5000 5000 5000 5000	P P Z Z P P Z Z P P Z Z P P Z Z
CAIN ERROR (UFS) CAIN ERROR (UFS/dT)	-186.	-907.M -1.32	166.	-166.	-1.97	166.	-100. -10.0	-3.66 1.69	166. 16.6) K
PSS - VCC-15V TO 16V PSS - VCC-15V TO 14V	-100.	2960.R	100.	-166.	300.H -1.65	166. 166.	-196.	-4.00 2.00	198.	E E
	-5000.H	41.5H 88.9H 3.67H	5000 5000 11	5000	സ്തന	0000 0000 E.E.E.	F. 6005-	674.7 128.7 208.7	E. 0005	851 851
LINEARITY ERROR -	E 60001-	70.17	5.000 5.000	8.00 9.00 9.00 9.00 9.00 9.00 9.00 9.00	യഥ	C. E. E.	0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.0	177.1		1.58 1.58
LINEARITY ERROR - LINEARITY ERROR - LINEARITY ERROR -	E. 606-	33.34		5000. 5000.	U (*) T	5.000 5.000	15000.1 15000.1	59.63 -19.78		2831 12831
LINEARITY LINEARITY LINEARITY	-5000.T	4 00 4 1	E.E.E.	E E E E	(') (20 (20 (E E E :	- 5000. - 5000. - 5000. - 5000.	1-104	E E E I	181 181 181
BIT LINEARITY ERROR - LSB	-500.M	50.5H	£. 00€	-500.4	43.83 E	500.1	-500.	53.67	_	128
MAX(+) LINEARITY ERROR & ASSOC ADDRESS (ALL CODES) MAX(+) LINEARITY ERROR & ASSOC ADDRESS (ABBREU)	6 6 6 6	00.00 0.00 0.00 0.00 0.00 0.00 0.00 0.	00.00.00.00.00.00.00.00.00.00.00.00.00.	0000 0000 0000	328.8 328.8 328.8	00000000000000000000000000000000000000	•••• ••• ••• ••• ••• ••• ••• ••• ••• •	1.38 3.87K 1.33 81K	00.00 00.00 00.00 00.00 00.00	LSB DEC DEC DEC
MAXI-) LINEARITY ERROR & MSSOC ADDRESS GALL CODESS NAXC-) LINEARITY ERROR & MSSOC ADDRESS (ABBREV)	-500.73 0.00 -500.73 6.00	-284. -272. -84. -84.	0000 0000 0000	00.00 00.00 00.00 0.00	-257.7 796. -254.8	\$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$	2000.00 000.00 000.00	-80.7M 264. -78.3M 792.	0 0 0 0 0 0 0 0	LSB CSB DEC
MAX(+) LINEMRITY ERROR & ASSOC ADDRESS (UREF18U) MAX(-) LINEARITY ERROR & ASSOC ADDRESS (UREF18U)	-5.00 -5.00 -6.00 -6.00	235.8 272. 3.37.8	N & & & & & & & & E	44.00.00 44.00.00 5.00.00	289.8 286. -587.8 3.78K	N 40 40 40 40 5	0000 0000 0000 0000 E	5311. -3.71. 3.58r	₩	LSB CEC DEC
AITY ERROR & UREF.+1.25U) RITY ERROR & UREF.+1.25U)	\$\$.\$	248 111 -876 2.9			231.8 71.6 516.8 2.83K	N. 0 0 0	••••• •••• •••• •••• ••••	1.29 2.80 1.29 3.80 1.29 4.80 4.80	 	2000 6000 6000
MOTES11.ZERO (8) IN LIMITS COL	COLUMN MEAN	IS NO LIMIT	T.IT CAN BE	INTERPRETED	AS A	DASH (-).				

	1 LSB 9.7754U	
	UREF . +130 EXCEPT LHERE SPECIFIED	TEMPERATURE . +25 DEGREES C
Mir. Code A Data (25 C	DEUTCE TAPE 7528	UDD + 15.0 WOLTS
Table 5-7. Mir. Code A	CHOS MULTIPLYING D/A CONVERTER	29 JAN 80 10:22:23

		S/N 1	S K 8	S/H 3	\$ X X	S < /8	9 5/5	S/N 2	# X/\$	8 K/S	S/N10		
PARAMETER ICC - ALL INPUTS AT 0.00 ICC - ALL INPUTS AT 15.00 ICC - ALL INPUTS AT 0.80		-3.00 550 R 5.003 725.1	-2.66 416. # 786.93	-4.50 515. # 35.63 640.1	-1.00 4.00 80.03 4.00	-6.50 4.77.8 5.663	0.004.00 0.000.00 0.00.00 €	-2.46.00 -466.4 -46.00	4.00.00 0.00.00 4.00.00 2.00.00	6.00 6.00 6.00 6.00 7.00 7.00	-500.H 428.# 755.0H	7.1-1.100.00.00.00.00.00.00.00.00.00.00.00.0	PANEE TANGE
IREF(-)-ALL INPUTS AT 15U	504.R	-966.3 E. 966.3	865.R -895.R	1.06	856.3 -875.3	1985.H	1.65	825.R	1.12	865.A -896.A	845.M -860.R	2.86 -566.8	\$ \$
IIL - ALL INPUTS AT 0.00 IIL - ALL IMPUTS AT 0.80 IIH - ALL INPUTS AT 15.00 IIH - ALL INPUTS AT 2.40	-1-200. -1.000.	PASS PASS PASS	8888 8888 8888 8888 8888	6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6	P P P P P P P P P P P P P P P P P P P	P P P P P P P P P P P P P P P P P P P	9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9	9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9	9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9	9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9	7777 7777 7777 7777 7777 7777 7777 7777 7777	 60.00 60.00	5555
125 - ALL INPUTS AT 0.00 125' - ALL INPUTS AT 2.40 4125'4T - INPUTS AT 0.00 4125'4T- INPUTS AT 2.40		0,0,0,0 0,0,0,0 0,0,0,0	က် က မေ လူလူ မွာ မွာ မေရာ မေရာ	-1.50 -1.50 -1.50 -1.50 -1.50	60000	0.00 0.00 0.00 0.00 0.00 0.00	-5.00 -0.00 -0.00 -0.00 -0.00	-3.00 0.00 0.00 0.00	N.V. & & N.V. & & N.V. & & & & & & & & & & & & & & & & & & &	4.01.00 0.00.00 0.00.00	4- 6-6- 6-6-6- 6-6-6-6-6-6-6-6-6-6-6-6-6	8 8 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9	P P R R P P P P P P P P P P P P P P P P
GAIN ERROR (UFS) GAIN ERROR (AUFS/AT)	-106.	-11.5	17.6	15.3	-1.12 6.00	1.42	5.80 8.80	4.63 6.60	-8.22 -8.69	-3.52	8 6 0.0 0.0	60. 60.	5 g
PSS - UCC+15U TO 16U PSS - UCC+15U TO 14U	-100.	-1.79 527.M	-684.M -1.03	279.H	116.H	-334.M -1.56	93.6M	6.69 -2.15	189.7 1.26	-457.M	1.18	199.	E E E
BIT LINEARITY ERROR - MSB BIT LINEARITY ERROR - B3 BIT LINEARITY ERROR - B4 BIT LINEARITY ERROR - B5 BIT LINEARITY ERROR - B5 BIT LINEARITY ERROR - B7 BIT LINEARITY ERROR - B7 BIT LINEARITY ERROR - B7 BIT LINEARITY ERROR - B8 BIT LINEARITY ERROR - B8 BIT LINEARITY ERROR - B8	MUNUMUNA 00000000000 000000000000 EFFEFF		5.00 5.00 5.00 5.00 5.00 5.00 5.00 5.00		44112382728 8.71811.0877.087 8.0077.0877.07 EEEEEEEEEEEE	000040000 .01440000 0.00.0.00 EXEFFEEEE	65.63.65.65.65.65.65.65.65.65.65.65.65.65.65.	4 8 4 4 9 4 8 4 8 4 8 4 8 4 8 4 8 4 8 4	######################################	24 100 104 104 104 104 104 104 104 104 10	88- 88- 88- 88- 88- 88- 88- 88- 88- 88-	NNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNN	22222222222222222222222222222222222222
MAX(+) LINEARITY ERROR & ASSOC ADDRESS (ALL CODES) MAX(+) LINEARITY ERROR & ASSOC ADDRESS (ABREU) MAX(-) LINEARITY ERROR & ASSOC ADDRESS (ALL CODES) MAX(-) LINEARITY ERROR & ASSOC ADDRESS (ALL CODES)	0 0 0 0 0 0 0 0 0 0	345.4 334.4 163 1016 167.7	574. 8 5.91 8 1.087 1.060. 1.5438 1.5438 944	36 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5	20 - 10 - 10 - 10 - 10 - 10 - 10 - 10 -	24 E 4 E 4 E 4 E 4 E 4 E 4 E 4 E 4 E 4 E	# W ! ! # W ! ! # W ! W ! ! # W ! W ! W ! ! # E E E ! I ! ! # E E E E E E E E E E E E E E E E E E E	4	61.4.3 55.65.3 1.325.3 1.325.3 1.325.3 1.325.3	5000. 5000. 5000. 5000. 5000. 5000. 5000. 5000. 5000. 5000.	# 00 00 00 00 00 00 00 00 00 00 00 00 00	E E E E E E E E E E E E E E E E E E E	
MAX(+) LINEARITY ERROR & ASSOC ADDRESS (UREF180) MAX(-) LINEARITY ERROR & ASSOC ADDRESS (UREF180)	6.001 6.001	344.8 455 -134.8 952	573.RX 591 -289.H	392.8 583 -107.8	320.1 199 -111.1	533. ME 207 -300. M	424.7 583 -173.5 952	394.7 359 231.7 952	688.NX 463 -264.M 944	501.8x 207 -272.8 816	434.N 335 -213.M 688	6.99	LSB LSB DEC
MAX(+) LINEARITY ERROR L ASSOC ADDR (UREF-+1.25U) MAX(-) LINEARITY ERROR L ASSOC ADDR (UREF-+1.25U)	\$ 18 1 E	264.H 327 -204.H 568	491.R 527 -389.R 496	273.N 71 -154.R 952	299.R 199 194.R	516.74 267 -415.#	342.8 79 -222.8 816	389.H 103 893.H	504.83 463 -435.8 560	492.R 207 407.R	382.8 335 -833.8 668	\$ \$	
HOTES:1.ZERO (0) IN LIMITS	M 100	MEANS NO	LINIT. IT	CAN BE	INTERPRETED	TED AS A	-) HSWG (;					

Y-. 1

	1 158- 9.775MU	
	DEUICE TYPE 7520 UREF + +10U EXCEPT UNERE SPECIFIED 1 158+ 9.775MU	TEMPEPATURE . +25 DEGREES C
Data 🤾 25°C.	DEUTCE TYPE 7520	UDD - 15.0 UOLTS
Table 5-8. Mfr. Code B Data 3 25°C.	CMOS MULTIPLVING D/A COMUERTER	29 JAN 86 10:23:42

5/H31 5/H32 5/H33 9/H34 5/H35 5/H36 5/H37 5/H38 5/H39 5/H40

			1		•			•					
PAPAMETER ICC - ALL IMPUTS AT 0.00 ICC - ALL IMPUTS AT 15.00 ICC - ALL IMPUTS AT 0.80 ICC - ALL IMPUTS AT 2.40		-1.50 704. # 170.H	-4.50 612. # 115.H	68.00 75.00 13.00	-2.60 652. # 160.7	13.50 137. x 1.35.3	-1.000 508. # 1.36	-3.58 576. # 140.9	-6.56 663. 1.03.3	1.50 1.50 1.50 1.50 1.50 1.50 1.50 1.50	-3.66.00 6.68.00 1.33.3	II 10000 0000 0000 0000	E SE
IREF(+)-ALL IMPUTS AT 150 IREF(-)-ALL IMPUTS AT 150	500.H	1.27	-1.26 48.	1.27	1.20	1.23	956.3 975.3	1.04	1.28	1.08	1.29	2.80 -500.H	<u> </u>
IIL - ALL INPUTS AT 0.60 IIL - ALL INPUTS AT 0.80 IIM - ALL INPUTS AT 15.60 IIM - ALL INPUTS AT 25.40	-1.86 -1.86 -1.86	PASS PASS PASS PASS	6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6	PASS PASS PASS	7 7 7 7 7 7 7 7 7 7 7 7 8 7 8 8 8 8 8 8	9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9	9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9	9 9 9 9 9 8 8 8 8 8 8 8 8 8	PPP PPS PPS SS SS SS	9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9	7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7	9999	5555
125 - ALL INPUTS AT 9.80 125' - ALL INPUTS AT 2.40 4125'4T - INPUTS AT 0.60 4125''AT- INPUTS AT 2.40	- 2000 - 2000 - 600 - 600	6.000 6.000 6.000 6.000	0000		4.0.00 0.00.00 0.00.00	L. 1. 0. 0. N. 1. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0.	0000 0000	- 15 - 15 - 15 - 15 - 15 - 15 - 15 - 15	2000 2000 2000 2000		Lines		₽₩₩ ₽₩₩ \$\ \$\ \$\ \$\ \$\ \$\ \$\ \$\ \$\ \$\ \$\ \$\ \$\
GAIN ERROR (UFS) GAIN ERROR (AUFS/AT)	-100.	-32.2	-34.0	-28.6 0.00	-37.8	-32.3	6.00	-45.6 0.00	-28.4 6.60		-25.4 6.66	100. 0.60	24 24
PSS - UCC-15U TO 16U PSS - UCC-15U TO 14U	-100.	155.M -311.M	321.H	-859.H 390.H	82.2H -1.07	644.R 805.R	208.H 936.H	191.M 1.05	978.H 163.H	460.T	-1.23 385.M	100. 100.	E E E
BIT LINEARITY ERROR - MSB BIT LINEARITY ERROR - BS BIT LINEARITY ERROR - B4 BIT LINEARITY ERROR - B5 BIT LINEARITY ERROR - B6 BIT LINEARITY ERROR - B7 BIT LINEARITY ERROR - B7 BIT LINEARITY ERROR - B7 BIT LINEARITY ERROR - B9 BIT LINEARITY ERROR - B9 BIT LINEARITY ERROR - B9	00000000000000000000000000000000000000		01111111111111111111111111111111111111	20-5-40-4-40-8 80-5-40-40-8 90-5-40-80-8 90-5-5-5-5-5-5-5-5-5-5-5-5-5-5-5-5-5-5-5	1191-1191-1191-1191-1191-1191-1191-119	######################################	######################################	111 0000 0000 0000 0000 0000 0000 0000	7. 8	######################################	04-100 04-100 06-100-4-100 06-100-100 1000-100 1000-100 1000-100	EEEEEEEEE	88888888888888888888888888888888888888
MAX(+) LINEARITY ERROR & ASSOC ADDRESS (ALL CODES) MAX(+) LINEARITY ERROR & ASSOC ADDRESS (ALL CODES) MAX(-) LINEARITY ERROR & ASSOC ADDRESS (ALL CODES) MAX(-) LINEARITY ERROR & ASSOC ADDRESS (ABBREU)	6 6 N N N 6 6 6 6 6	27.7. 28.6. 27.8.6. 12.8.7. 12.4.7. 14.7.4.7.	1024 1024 1026 1024 1024 1024 1036 1036 1036 1036 1036 1036 1036 1036	2000 2000 2000 2000 2000 2000 2000 200	369. H 114.6 124.6 1369. H 124.7 175. H 176. H	377.3 266.4 326.4 776 -284.3 -258.3	4 000 000 000 000 000 000 000 000 000 0	200 200 200 200 200 200 200 200 200 200	#	2.05.00.00 2.05.00.00.00 2.05.00.00.00 2.05.00.00.00 2.05.00.00.00	437.4 163.6 3.8 3.8 2.4 96.6 93.1	N N 0 0 0 0 0 0 0 0	
MAX(+) LINEARITY ERROR & ASSOC ADDRESS (UREF16U) MAX(-) LINEARITY ERROR & ASSOC ADDRESS (UREF16U)		249.H 288 199.H	479.8 776 -384.8 247	392.8 248 -325.8	376.H 776 -302.H 247	356.N 776 -272.N	376.8 360 -317.8 662	525.N# 776 -433.R	382.8 286 -318.8	431.7 80 -373.8	464.R 776 -364.R 247	500. 0.00.	LSB DEC LSB DEC
MAX(+) LINEARITY ERROR L ASSOC ADDA (UREF-+1.25U) MAX(-) LINEARITY ERROR L ASSOC ADDR (UREF-+1.25U) HOTES:1.ZERO (0) IN LINITS	-5.00 COLUMN	243.M 280 -185.M 741	445.H 776 -413.H 247 LINIT.IT	373.8 567 -363.8 517 CAN BE	356.N 33 776 23 -336.N -31 247 7 INTERPRETED	337.8 264 -312.8 759	389.1 361 360.7 695 DASH (523.8x 777 -461.8 247	2000 000 000 000 000 000 000 000 000 00	420.H 346 -348.H	427.R 776 -397.R		LSB LSB DEC DEC

•	یه						
	2T 170						
DEGMEES C	IEEEE Jagaa Ii	44 444 EE 3333	CCCC SE	E E		707070 80808080 80808080	
\$2+		0.0000 0.0000 0.00000 0.00000	00000 600000 60000000000000000000	100			# 1
TEMPERATURE	5/7 5/2 5/2 5/2 5/2 5/2 5/2 5/2 5/2 5/2 5/2	669 600 600 600 600 600 600 600 600 600	1.35.	300.F	N864 ON OON JUN 440 WOOD JUN 440 WOOD W. 480 WOOD W. 480 WOOD W. 480 WOOD W. 480 WOOD W. 480 WOOD W. 480 W. 4	2. 6. 2. 6. 2. 6. 6. 6. 6. 6. 6. 6. 6. 6. 6. 6. 6. 6.	888 888 3783 3783 71.7 71.7 71.8
5	S/N 8 736.7 736.7 736.7 746.7	-6886 -6886 -8866 -8666 -8666 -8666 -8666 -8666 -8666	20 20 20 20 20 20 20 20 20 20 20 20 20 2	*	88 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	6.00 877 -585.71 3218 2218 1175 -552.71
vo:.T\$	5/N 7 755.H 736.H 805.H	-645. 7555. 7555. 7555. 757. 757.	-156 -135. -135. -4.25	650.H 300.H	24.11.12.20.20.44.20.20.20.20.20.20.20.20.20.20.20.20.20.	24689 24689 24689 24689 24689 24689 24689	362. H 362. H 363. H 363. H 363. H
. 15.0	5/N 5 675.8 625.8 710.8	PASS PASS PASS PASS PASS PASS PASS	-1.56 -0.46 -0.46 -0.14 -0.14	-350.M 50.0M	24.00.00.00.00.00.00.00.00.00.00.00.00.00	2002 2002 2002 2002 2002 2004 2004 2005 2005	0.00 360 461.7 249.7 443.7
900	8/1 / 8/1 /	666.13 PASS PASS PASS FAIL	-1.56 -1.36.	-100.H	2.00 - 0.	200000 200000 200000 200000 200000 200000 200000 200000 2000000	26.05 - 46.05 - 46.05
	5	# 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	-1.00 -1.00	196.	E.E.E.E.E.E.E.E.E.E.E.E.E.E.E.E.E.E.E.	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	
14157100	METER INPUTS AT 0.60 INPUTS AT 15.60 INPUTS AT 0.80 INPUTS AT 2.40	L INPUTS AT 15U INPUTS AT 0.0U INPUTS AT 0.0U INPUTS AT 0.8U INPUTS AT 15.0U	INPUTS AT 0.00 INPUTS AT 2.40 INPUTS AT 2.40 INPUTS AT 2.40	50 TO 160	TV ERROR - MS B C ERROR - MS B C ERROR - MS	ARITY ERROR & SS (ALL CODES) ARITY ERROR & SS (ALL CODES) ARITY ERROR & SS (ALL CODES) SS (ABBREU) & SS (ABBREU)	LINEARITY ERROR & ADDRESS (UREF-10U) LINEARITY ERROR & ADDRESS (UREF-10U) LINEARITY ERROR & ADDRESS (UREF-15U) LINEARITY ERROR & ADDRESS (UREF-15U)
18 MAR 81	PARAME 100 - ALL IN 100 - ALL IN 100 - ALL IN 100 - ALL IN	IREF(+)-ALL IREF(-)-ALL III - ALL IN III - ALL IN III - ALL IN	125 - ALL 1 125 - ALL 1 126 - ALL 1 127 - ALL 1 128 -			MAX(+) LINEARITY MAX(+) LINEARITY MAX(-) LINEARITY MAX(-) LINEARITY MAX(-) LINEARITY MAX(-) LINEARITY MAX(-) LINEARITY ASSOC ADDRESS (A	MAX(+) LINE ASSOC ADDRE MAX(-) LINE MSSOC ADDRE MSSOC ADDRE MSSOC ADDRE MSSOC ADDRE

V=04

FOR DEVICE S/N 31 AT 25 DEG C UDD++15.0 UREF-10.0

LINEARITY ERROR DISTRIBUTION

ERROR BAND (LSB)

7520-10 BIT CMOS D/A CONVERTER

Figure 5-11. Linearity Error Histogram.

MUMBER OF ERRORS

The second second

THE RESERVE OF THE PARTY OF THE

7520-10 BIT D/A CONVERTER is ure 5-12. Linearity Error vs Input Code.

Figure 5-12. Linearity Error vs Input Code. (cont.)

WORST CASE NEGATIVE BIT ERROR--304.5MLSB @ ADDRESS 743

UORST CASE POSITIVE BIT ERROR-354.8MLSB @ ADDRESS 280

A CONTRACTOR OF THE PARTY OF TH

LINEARITY ERROR DISTRIBUTION

7520-10 BIT CMOS D/A CONVERTER

Figure 5-13. Linearity Histogram at VREF = \pm 10 V.

₹-14

LINEARITY ERROR DISTRIBUTION

0.0 0.1 0.2 0.3 0.4 0.5 0.6

ERROR BAND (LSB)

-1.0 -0.8 -0.8 -0.7 -0.6 -0.5 -0.4 -0.3 -0.2 -0.1

7520-10 BIT CMOS D/A CONVERTER

Figure 5-14. Linearity Histogram at VREF = - $10~\mathrm{V}_{\odot}$

V= -

LINEARITY ERROR DISTRIBUTION

7520-10 BIT CMOS D/A CONVERTER Figure 5-15. Linearity Histogram at VREF = 1.25 V.

LINEARITY ERROR (ALL CODES)

7520-10 BIT D/A CONVERTER

Linearity Plot at $V_{\rm CC}$ = + 15 V and TA = 125°C for S/N 10. Figure 5-16.

MIL-M-38510/127 REV - ORIG. DATE - 1/26/81

Table I. Electrical performance characteristics. $\underline{1}/$

Characteristic	Symbol	Conditions: Vcc = + 15V, Vref = + 10V, paragraph 3.4 and Figure 7.	Device Type			nits
Supply current from Vcc	Icc	All digital inputs at OV All digital inputs at Vcc All digital inputs at 0.8V All digital inputs at 2.4V	All All All All	- - -	100 100 2 2	uA uA mA mA
Reference input current	Iref	All digital inputs Vref= 10V at Vcc IOUT1 and IOUT2 Vref= -10V grounded	All All	0.5 -2		mA mA
Digital input leakage current	IIL	All digital inputs at OV All digital inputs at 0.8V All digital inputs at Vcc All digital inputs at 2.4V	01-05 06-09 01-05 06-09	-200 -1.0	1.0	uA uA uA uA
Zero scale current	IZS IZS'	All digital inputs at 0.8V All digital inputs at 2.4V	All All	-200 -200	200 200	nA nA
Zero scale current drift	dIZS/dT	All digital inputs at 0.8V	. All	(late	er) p	A/°C
Full scale error	+dvfs -dvfs	All digital inputs at Vcc, IOUT2 at OV. Vref = +10V As above with Vref = -10V	All All	-1 -1		VFS VFS
Full scale error drift	dVFS/dT	Change in +dVFS from -25°C to 125°C and from 25°C to -55°C	Al l	-10	10 VF	ppm S/OC
Power supply sensitivity at full scale from Vcc.	+PSS, -PSS	All digital inputs at Vcc; IOUT2 at OV VCC = + 14V to +16V Measured at IOUT1 and Rf	A11	-100	100 V	ppm FS/V

Table I. Electrical performance characteristics. $\underline{1}/$ (continued)

Characteristic S		paragraph 3.4 and Figure 7.	Туре	e Lim Min	Max	
Linearity error	LE	Measure the following:		-0.2		
(end point) $\frac{2}{2}$		most significant four bits with the lower order bits turned off.	02	05	•05	%VFS
		2. The individual lower bits with the most significant four bits turned off.	03	05	•05	%VFS
		3. The code word with the most positive combination of				
		bits in groups 1 & 2 above. 4. The code words derived from group 3 with all lower				
		order bits complemented one at a time. 5. The code word with the most		05		
		bits in groups 1 and 2. 07 - 6. The code words derived from	05			
		group 5 with all lower order bits complemented one at a time.	08	012	.012	%VFS
		 Groups 1 through 6 with Vref = -10V. Group 1 through 6 with Vref = 1.25V. Group A sample - all code combinations of the digital input bits. 	09	012	.012	% V FS
Bit linearity errors (best fit)	LE (BF)	If any end point linearity tests fail, certain devices may be tested to a best fit criteria. The vendor shall specify the criteria (i.e. 3/4 or 7/8 scale adjustment) and repeat all of the linearity tests.	05, 09	012	.012	2 %VFS

Table I. Electrical performance characteristics. 1/ (continued)

Characteristic	Symbol	Conditions: Vcc = + 15V, Vref = + 10V, paragraph 3.4 and Figure 7.	Device Type	Lim:		Units
We in a second	MCE	m. 1166	01	-0.4	0.4	%VFS
Major carry errors (differential linearity)	MCE	The difference between adjacent codes at all major transitions. (i.e. from OlllIIII	02,03	-0.1	0.1	ZVFS
Inteditty)		to 10000000)	04,05 08,09	025	.025	%VFS
Feedthrough	FTE	Vref=20Vpp, 100kHz and all		; -	10	m.Vpp
error		digital inputs low. TA=25°C Group D only. See Figure 8.) - 	25	mVpp
Output current settling time	tSLH	All inputs switched simul- taneously, low to high and	Al 1	_	1	usec
(to 1/2 LSB)	tSHL	high to low • TA=25°C• See Figure 9. 3/	A11	-	1	usec
Output capacitance	Со	All digital inputs at Vcc See Figure 10. Co at IOUT1 TA = 25°C Co at IOUT2	All All	- -	200 75	•
Output capacitance	Со	All digital inputs at OV See Figure 10. Co at IOUT1 TA = 25°C Co at IOUT2	All All		75 200	-
Noise	en	The single source of noise is the resistor network, which characteristically has Johnson or thermal noise. 4/	Aì1	6.5	40	Kohm

Notes:

- 1/ See definitions as described in 6.5.
- Linearity is specified to be within +/- 1/2 LSB. Thus an 8 bit device with a 10V reference must have end point linearity to within 1/2 of (100%VFS/2exp8) = 0.195 %VFS or 0.2 %VFS.
- 3/ For each device type, output current settling time is the duration from the digital input transition until the output for a 10V analog input transition is within 1/2 LSB of final value.
- 4/ The R-2R resistor network has Johnson or thermal noise. Noise at the DUT output is related to the noise resistance value according to en = SQR(4KTRn(BW))
 - where K = Boltzmann's constant = 1.38*E-23 joules/OK
 - T = Absolute temperature in OK
 - Rn = Rf(1+Rf/Ro) changes with Ro and the digital code word
 - BW = Bandwidth in Hertz.

٠.__.

MISSION of

Rome Air Development Center

RADC plans and executes research, development, test and selected acquisition programs in support of Command, Control Communications and Intelligence (C^3I) activities. Technical and engineering support within areas of technical competence is provided to ESP Program Offices (POs) and other ESD elements. The principal technical mission areas are communications, electromagnetic guidance and control, surveillance of ground and aerospace objects, intelligence data collection and handling, information system technology, ionospheric propagation, solid state sciences, microwave physics and electronic reliability, maintainability and compatibility.

*ค*ายคายคายคายคายคายคายคายคายคายคายคายคา

CONTROL OF THE WHEN THE PARTY OF THE PARTY O

