Работа с математическом сопроцессором:

- o FPU Floating Point Unit, т.е. устройство работы с вещественными числами
- 8 регистров по 80 бит (ST(0) .. ST(7)) в стеке, где ST(0) вершина стека, всегда хранящая последнее значение при загрузке данных, сдвигая предыдущие значения вниз по стеку
 - введённые в стек числа автоматически становятся вещественными

о типы даных:

- целочисленные:
 - byte (DB) 1 байт
 - word (DW) 2 байта
 - dword (DD) 4 байта
 - qword (DQ) 8 байт
 - ten bytes (DT) 10 байт
- дробные:
 - (чтобы объявить дробное значение, нужно в записи использовать точку)
 - real4 (DD) (float) 4 байта
 - real8 (DD) (double) 8 байт
 - real10 (DD) (FPU) 10 байт

о команды:

- (зачастую вместо ST (i) может использоваться регистр или переменная)
- инициализация:
 - finit сброс FPU в состояние по умолчанию (округление к ближайшему целому)
 - fwait команда ожидания завершения операции для синхронизации работы с основным процессороом
- загрузка:
 - fild word ptr [var1] загрузка целого числа (16-битная переменная var1 загружается в верхний регистра стека ST)
 - fld word ptr [var1] загрузка дробного числа (загружается 16-битная переменная var1)
 - fld1 загрузка единицы в ST (0)
 - fldz загрузка нуля в ST (0)
 - fldpi загрузка π в ST (0)
- арифметика:
 - fadd st(0), st(1) сложение
 - fsub st(0), st(1) вычитание
 - fmul st(0), st(1) умножение
 - fdiv st(0), st(1) деление
- выгрузка:
 - fstp word ptr [res] сохранение дробного значения ST0 в 16-битную переменную res с автоматическим удалением из стека
 - fist word ptr [res] сохранение целочисленного значения STO
 - fst word ptr [res] то же, но без удаления из стека
 - fistp word ptr [res] сохранение целочисленного значения STO
- работа со стеком:
 - fld st(i) копирование ST(i) в вершину стека
 - fxch st(i) обмен ST(i) с вершиной стека
 - ffree st(i) освобождение регистра (маркировка как свободного)
 - fincstp изменение указателя вершины стека
- специальные математические функции:

- fsin синус от ST (0)
- fcos косинус от ST (0)
- fsqrt корень от ST (0)
- fscale умножает ST(0) на $2^{int(ST(1))}$
- операции сравнения:
 - fcom ST(i) сравнение ST(0) и ST(i) без извлечения регистра из стека, с установкой флагов состояния FPU
 - о флаги состояния FPU:
 - C0 = C2 = C3 = 0, если ST (0) больше
 - C0 = 1, C2 = C3 = 0, если ST(0) меньше
 - C0 = C2 = 0, C3 = 1, если ST (0) равно
 - C0 = C2 = C3 = 1, если ошибка сравнения
 - о после выполнения надо выгрузить регистр состояния FPU во флаги состояния основного процессора:
 - fstsw ax выгрузка регистра состояния FPU в регистр ах
 - sahf выгрузка регистра аh (ст.байт регистра ах) во флаги процессора
 - флаги переписываются:
 - СО → СГ (флаг переноса)
 - C2 **>** PF (флаг паритета)
 - СЗ → ZF (флаг нуля)
 - fcomp ST(i) то же, но после удаляет ST(0) из стека
 - fcomi st(i) то же, но устанавливает флаги основого процессора
 - fcompp сравнивает ST (0) и ST (1), после чего их удаляет
 - ftst сравнение ST (0) с нулём
 - fxam возвращение типа числа ST (0) (нормальное, ноль, бесконечность, NaN, т.д.)
- работа с массивами (БЕЗ ИСПОЛЬЗОВАНИЯ МАТЕМАТИЧЕСКОГО СОПРОЦЕССОРА):
 - о важно: младший байт имеет младший адрес
 - o loadsw команда, которая загружает 2 байта того, что хранится по адресу $\mathbf B$ sib или esi, $\mathbf B$ ax
 - после выполнения автоматически меняется значение SI на 2, причём:
 - если DF = 0 (для этого вызов CLD), то SI увеличится на 2
 - если DF = 1 (для этого вызов STD), то SI уменьшится на 2
 - loadsb, loadsd для обработки байта или двойного слова