Llista 2 Sèries de Fourier

1. Considerem la sèrie de Fourier d'una funció f en forma complexa, i.e. $\sum_{k=-\infty}^{\infty} \hat{f}(k)e^{ikt}$.

Sigui \mathcal{A} el conjunt de funcions contínues a $[-\pi, \pi]$ amb sèrie de Fourier absolutament convergent. Definim $||f||_{\mathcal{A}} = \sum_{k=-\infty}^{\infty} |\hat{f}(k)|$. Demostreu que:

- (a) La hipòtesi de convergència absoluta implica la convergència uniforme de la sèrie de Fourier.
- (b) Demostreu que si f és contínua i derivable a trossos, amb f' de quadrat integrable, llavors $f \in \mathcal{A}$ i doneu una cota per $||f||_{\mathcal{A}}$.
- (c) Proveu que si f i g estan a \mathcal{A} , llavors el seu producte fg també pertany a \mathcal{A} i es compleix $||fg||_{\mathcal{A}} \leq ||f||_{\mathcal{A}} ||g||_{\mathcal{A}}$.
- 2. Sigui f la funció definida a $[-\pi, \pi]$ per f(t) = |t|. Comproveu que

$$\hat{f}(n) = \begin{cases} \frac{\pi}{2} & \text{si } n = 0\\ \frac{-1 + (-1)^n}{\pi n^2} & \text{si } n \neq 0. \end{cases}$$

Utilitzant el desenvolupament en sèrie de Fourier de la funció anterior, proveu que

$$\sum_{n=0}^{\infty} \frac{1}{(2k+1)^2} = \frac{\pi^2}{8} \quad i \quad \sum_{n=1}^{\infty} \frac{1}{n^2} = \frac{\pi^2}{6}.$$

3. Volem provar: Si $f \equiv 0$ a $[a,b] \subset [-\pi,\pi]$, la seva sèrie de Fourier convergeix uniformement a zero a $[a+\delta,b-\delta]$ per $\delta>0$.

Per tal de demostrar aquest resultat, proveu primer la següent adaptació del lema de Riemann-Lebesgue:

Si f és 2π -periòdica, integrable i acotada, i g és una funció monòtona a trossos i acotada, llavors

$$\lim_{\lambda \to \infty} \int_{-\pi}^{\pi} f(x+t)g(t)\sin(\lambda t)dt = 0$$

 $uniformement\ en\ x.$

(Indicaci'o: podeu suposar que f i g s'on no-negatives i aproximar f per funcions esglaonades.)

4. Comproveu que per $\alpha \notin \mathbb{Z}$, la sèrie de Fourier de $\frac{\pi}{\sin(\pi\alpha)}e^{i(\pi-x)\alpha}$ a $[0,2\pi]$ ve donada per $\sum_{n=-\infty}^{\infty} \frac{e^{inx}}{n+\alpha}$. Utilitzeu la identitat de Parseval per demostrar que

$$\sum_{n=-\infty}^{\infty} \frac{1}{(n+\alpha)^2} = \frac{\pi^2}{(\sin(\pi\alpha))^2}.$$