#### COMPUTER SCIENCE



Database Management System

**Transaction & Concurrency Control** 

Lecture\_6

Vijay Agarwal sir





Conflict & View Serializable

Problem Due to Concurrent Execution





#### Confedict servializable.

- 50 BASIC Concept
- 60) Testing for Conflicting Servalizable La Precedence Grouph Method
  - 33 Conflict Pair
- ) ( Conflict equivalent to Any Servial Schedule.



# Seriolizable

(1) Conflict Serializable

(Subsicient) Condition) 2 View Serializable

Neccessery?

4 subticient

#### Serializable Schedule

A Schedule is serializable Schedule if it is equivalent to a Serial Schedule.

(i) Conflict Serializability



(Note)

If a Schedule is Conflict Serializable then

it is already view Serializable.

The a Schedule is Not Conflict Serializable (CNC)

then it may may Not be View Serializable.

The a schedule is Not View Serializable then it is

Not Serializable



A Schadule is serializable it ether it is

Conflict Serializable (66) View Serializable

(08) Both.

# View Serializablity: [5 4 5] For each Darta Item

1 Initial Read S: Non Serial Schadule (Given ) Schadule (Given )

12 Final Write S' Any Servial Schadule of S.

3) Write-Read (Updated Read) Sequence

> Final Write



Let S and S' be two schedules with the same set of transactions. S and S' are view equivalent if the following three conditions are met, for each data item

- 1. If in schedule S, transaction T<sub>i</sub> reads the initial value of Q, then in schedule S' also transaction T<sub>i</sub> must read the initial value of Q.
- 2. If in schedule S transaction  $T_i$  executes read(Q), and that value was produced by transaction  $T_i$  (if any), then in schedule S' also transaction  $T_i$  must read the value of Q that was produced by the same write(Q) operation of transaction  $T_i$ .
- The transaction (if any) that performs the final write(Q) operation in schedule S must also perform the final write(Q) operation in schedule S'.



- View Serializable Schedule: View equivalent serial schedule.
- View Equivalent: S<sub>1</sub> and S<sub>2</sub> said to be view equivalent.

Only if

[1] initial reads of  $S_1$  and  $S_2$  should be same.





2.

Final updations for every data item should be same in S<sub>1</sub> and S<sub>2</sub>





3.

Write-Read sequence should also be equal. (Updated Reads







A:1710 B:3290 5000

SICTI TZ)

Conflict Senializable



View Serializable

View : CTI T2) Segujalizable

# 3 Transaction than 31 Servial Schedule.

CTI T2 T3> CTI T3 T2) CT2 TI T3) CT2 T3 TI) CT3 TI TS CT3 T2TH

6 Servial Schedule

Pick Any one Conditions
of Neglect the some Serviced
Schedule Coption elimination
of them apply all 3 andition



Procrical

C2: 1900 3300 5200

In Consistent

# (1) Corleget Scerializable

TO CNC

Cycle Not Complict

2 View Serializabl

Not View Servializable

. Not Servializable

#### View Serializability (Cont.)



A schedule S is view serializable if it is view equivalent to a serial schedule.



Every conflict serializable schedule is also view serializable.

Below is a schedule which is viewserializable but not conflict serializable.

#### Note:

Every view serializable schedule that is not conflict serializable has blind writes.





Q.

|             | T <sub>1</sub> | T <sub>2</sub> | T <sub>3</sub> |
|-------------|----------------|----------------|----------------|
|             |                | R(A)           |                |
|             |                | R(B)           |                |
|             | W(B)           |                |                |
|             |                |                | R(B)           |
| 1 Inital Re | W(A)           | W(A)           |                |
| A: 15       |                |                | W(A)           |
| 3 final wo  | le             |                |                |
| A: T2       | 3              |                |                |



Q.



|    | T <sub>1</sub> | T <sub>2</sub> | T <sub>3</sub> |
|----|----------------|----------------|----------------|
|    | L              | R(A)           |                |
|    | ~              | R(B)           |                |
| しと | W(B)           |                |                |
|    |                | <b>'</b>       | R(B)           |
|    | W(A)           | 7              |                |
|    |                | W(A)           |                |
|    |                |                | W(A)           |





3 Transaction XC TI T2 T2 then 31 XCTIT3 T22 6 Serial Schedule (ててて 下) X CT3 TI T25 OInitial Read: T2 X CTO 72 II)





Consider the following transactions with data items P and Q initialized to zero:

```
T<sub>1</sub>: read (P);
  read (Q);
  if P = 0 then Q := Q + 1;
  write (Q).
T<sub>2</sub>: read (Q);
  read (P);
  if Q = 0 then P := P + 1;
  write (P).
```

Any non-serial interleaving of T<sub>1</sub> and T<sub>2</sub> for concurrent execution leads to

[GATE-2012-CS: 1M]



- A a serializable schedule
- a schedule that is not conflict serializable
- c a conflict serializable schedule
- D a schedule for which a precedence graph cannot be drawn



#### Consider the following schedule S of transactions T<sub>1</sub> and T<sub>2</sub>:



Which of the following is TRUE about the schedule S? [2004: 2 Marks]

|                                                             | T <sub>1</sub>                                | T <sub>2</sub>            |
|-------------------------------------------------------------|-----------------------------------------------|---------------------------|
| A S is serializable only as T <sub>1</sub> , T <sub>2</sub> | Read(A) $A = A-10$                            |                           |
| B S is serializable only as T <sub>2</sub> , T <sub>1</sub> |                                               | Read(A)<br>Temp = 0.2 * A |
| $C$ S is serializable both as $T_1$ , $T_2$ and $T_2$ $T_1$ |                                               | Write(A)<br>Read(B)       |
| $S$ is not serializable either as $T_1$ or as $T_2$         | Write(A)<br>Read(B)<br>B = B + 10<br>Write(B) |                           |
|                                                             |                                               | B = B + Temp<br>Write(B)  |

## MCQ Q.15



Consider a simple checkpointing protocol and the following set of operations in the log. (start, T4); (write, T4, y, 2, 3); (start, T1); (commit, T4); (write, T1, z, 5, 7); (checkpoint); (start, T2); (write, T2, x, 1, 9); (commit, T2); (start, T3); (write, T3, z, 7, 2); If a crash happens now and the system tries to recover using both undo and redo operations, what are the contents of the undo list and the redo list?

[GATE-2015-CS: 2M]

- A Undo: T3, T1; Redo: T2
- B Undo: T3, T1; Redo: T2, T4
- C Undo: none; Redo: T2, T4, T3, T1
- D Undo: T3, T1, T4; Redo: T2

### Problem due to Concurrent execution:

- 1) WR (write Read) Problem Divity Read un committed Read
- 2) RW (Read-Write) Un non Repeatable Read Pooblem 3) WW (Write-Write) Pooblem Lost Update Pooblem.
- (4) Phantom Tuple Problem.

