

Natural Language Processing (CS224N)

Lecture 12. Information from parts of words: Subword Models

NATURAL LANGUAGE PROCESSING

개요

- 1. 엄어학(Linguistics)
- 2. Purely Character-level Model
- 3. Sub-word models: two trends
 - 4. Character-level
 - To build word-level
 - 5. FastText

1. 엄어학(Linguistics)

주요개념

- 1. Phonemes(음소)
- 2. Morpheme(형태소)

1. Phonemes(음소) 어떤 언어에서 의미 구별 기능을 갖는 음성상의 최소 단위 Categorical perception의 근거가 되는 주요 단위

most unseen words are new morphological forms!

2. Morpheme(형태소) 뜻을 갖는 최소 언어 단위 semantic units

문제접: 언어별 표기 체계의 차이가 존재한다

예시1. 띄어쓰기 없음 (ex.중국어)

美固美島固阮机玩及其亦公室均接萩

예시2. 접어(Clitics) (ex.프랑스어, 아랍어)

Je vous ai apporté des bonbons

vs.

so+said+we+it

예시3. 복합어(ex. 영어, 독일어)

life insurance company employee vs. Lebensversicherungsgesellschaftsangestellter

Word Level vs. Character Level

Word Level 모델의 문제점 〈 방대한 크기의 단어장을 가져야 한다. 〉

- 1) 다양한 복합어의 가능성
- 2) Transliteration - 최대한 들리는 대로 유사하게 옮겨적기 - 들리는대로 번역하더라도 어느 정도는 맞아야! ex. Christopher -> Krystof
 - 3) 비표준어의 사용도 증가 - 인터넷 용어 ex. Goood vibesss, idk

Character Level 모델의 특징

- 1. Word Embedding이 Character Embedding으로 이루어질 수 있다.
 - => OOV(out of vocabulary) 문제를 해결 할 수 있다! 어떻게?
 - 모르는 단어에 대한 embedding을 형성할 수 있다.
 - 비슷한 맞춤법이면 비슷한 embedding을 갖는다.
 - 2. 언어에 따라 다양할 수 밖에 없다.
 - 딥러닝은 방대한 데이터를 요구하기에, written form이 필요하다.
 - 글로 쓰여진 형태의 데이터가 가장 처리하기 쉽고, 구하기도 쉽다! p.s. 교수 왈, 음소를 기준으로 딥러닝이 시도된 적은 없다.

2. Purely Character-Level Model

Character-level 모델은 크게 두 가지로 나뉘어진다.

- 1) 순수하게 character 그 자체만을 쓴 모델
- 2) Character를 이어붙이는 등으로 활용하여 word level처럼 사용하는 모델

Deep Convolutional Network 모델에서 Sentence Classification을 하는 데에 좋은 성능을 보였다. (Conneau, Schwenk, Lecun, Barrault, EACL 2017)

NMT에서는 초반 2007~2013년에 안 좋은 성과를 보였으나 2015년경부터는 좋은 성과를 내기 시작했다. (Wang Ling, Isabel Trancoso, Chris Dyer, Alan Black, arXiv, 2015) (Thang Luong, Christopher Manning, ACL 2016) (Marta R. Costa-Jussà, José A. R. Fonollosa, ACL 2016)

(English-Czech WMT 2015)
(Workshop on Statistical Machine Translation)

System	BLEU
Word-level model (single; large vocab; UNK replace)	15.7
Character-level model (single; 600-step backprop)	15.9

하지만 학습하는 데에 3주나 걸리는 치명적인 단점이…

Cf. 체코어는 character level에서 연구하기 좋은 언어이다. (길고 이상한 복합어가 엄청 많기 때문….)

(English-Czech WMT 2015) (Workshop on Statistical Machine Translation)

	source	Her 11-year-old daughter , Shani Bart , said it felt a little bit weird						
정답	human	ejí jedenáctiletá dcera Shani Bartová prozradila , že je to trochu zvláštní						
	char	ejí jedenáctiletá dcera , Shani Bartová , říkala , že cítí trochu divně 별로 차이 안 남						
	word	Její <unk> dcera <unk> <unk> řekla , že je to trochu divné 개 차이 날 (1)</unk></unk></unk>						
	word	Její <mark>11-year-old</mark> dcera Shani , řekla, že je to trochu <i>divné</i> 꽤 차이 날 (2)						

(English-Czech WMT 2015) (Workshop on Statistical Machine Translation)

Fully Character-Level Neural Machine Translation Without Explicit Segmentation

체코어->영어 *Bpe가 뭔지는 뒤에 나와요~

Encoder	Target	BLEU
Bpe	Bpe	20.3
Bpe	Char	22.4
Char	Char	22.5

Encoder & Decoder 모두 Character-level일 때 가장 성능이 좋았다.

LSTM seq2seq 모델

En: English Fr: French Cs: Czech

(x축의 의미) 3x2 + 4 Bidirectional LSTM Encoder 3층 LSTM Decoder 4층

〈 그래프 해석 〉 간단한 모델을 쓸거면 word-level 복잡한 모델을 쓸거면 char-level 특히. 체코어처럼 형태적으로 복잡한 언어의 경우! Char-level이 유리하다

> Revisiting Character-Based Neural Machine Translation with Capacity and Compression. 2018. Cherry, Foster, Bapna, Firat, Macherey, Google Al

LSTM seq2seq 모델

단. char-level 모델의 경우 학습하는 데에 있어서 시간이 오래 걸린다는 단점이 있다.

3. Sub-word models: two trends

l 3-1. Byte Pair Encoding

Bottom-up Clustering (character -) vocabulary)

```
Vocabulary
                                                      characters
                         l, o, w, e, r, n, w, s, t, i, d
Dictionary
                         Vocabulary
   low
                                                          (e,s) -> es [freq : 9]
                         l, o, w, e, r, n, w, s, t, i, d, es
   lower
  newest
                        Vocabulary
  widest
                         I, o, w, e, r, n, w, s, t, i, d, es, est (es, t) -> est [freq : 9]
                        Vocabulary
                        I, o, w, e, r, n, w, s, t, i, d, es, est, Io (I, o) -> lo [freq: 7]
```

l 3-1. Byte Pair Encoding

Dictionary

5 low 2 lower 6 newest 3 widest

10번 반복

l. o. w. e. r. n. w. s. t. i. d. es. est. lo. low. ne. new. newest. wi. wid. widest

l 3-1. Byte Pair Encoding

Dictionary

5 low 2 lower 6 newest 3 widest

10번 반복

I. o. w. e. r. n. w. s. t. i. d. es. est. lo. low. ne. new. newest. wi. wid. widest

더이상 OOV 아니다

HOW TO:

Jet makers feud over seat width with big orders at stake

_J et _makers _fe ud _over _seat _width _with _big _orders _at _stake

모든 단어의 맨 앞에 _를 붙이고. 단어를 subword로 통계에 기반하여 띄어쓰기로 분리

Ex) Jet -> _J et : 띄어쓰기 추가되어 subword 구분하는 구분자 역할

문장 복원 방법 : 모든 띄어쓰기 제거 & _를 띄어쓰기로 바꾸면 된다

l 3–2. Wordpiece/Sentencepiece model

CODE:

```
lines = [
  "I didn't at all think of it this way.",
  "I have waited a long time for someone to film"
for line in lines:
  print(line)
  print(sp.encode_as_pieces(line))
  print(sp.encode_as_ids(line))
  print()
I didn't at all think of it this way.
['_I', '_didn', "'", 't', '_at', '_all', '_think', '_of', '_it', '_thi
s', '_way', '.']
[41, 623, 4950, 4926, 138, 169, 378, 30, 58, 73, 413, 4945]
I have waited a long time for someone to film
['_I', '_have', '_wa', 'ited', '_a', '_long', '_time', '_for', '_someon
e', '_to', '_film']
[41, 141, 1364, 1120, 4, 666, 285, 92, 1078, 33, 91]
```

Character-based LSTM

- Convolution over characters to generate word embeddings

Fixed window of word
 embeddings used for PoS
 tagging

Character-based LSTM

Character-Aware Neural Language Models

- Yoon Kim, Yacine Jernite, David Sontag, Alexander M.Rush. 2015

- 다양한 언어에 대해서 좀 더 효율적이고 강력한 언어모델을 구성하기 위해 더 복잡하고 정교한 접근법을 취함
- 적은 매개변수로도 비슷한 결과 도출
- 사전모델을 사용해서 효율적으로 단어 처리 (rare-word problem 해결)

Technical Approach

Convolutional Layer

- Convolutions over character-level inputs
- Max-over-time pooling (effectively n-gram selection)
- Various filter size / not using word embedding

Highway Network

$$\mathbf{t} = \sigma(\mathbf{W}_T\mathbf{y} + \mathbf{b}_T)$$
 Output $\mathbf{z} = \mathbf{t} \odot g(\mathbf{W}_H\mathbf{y} + \mathbf{b}_H) + (\mathbf{1} - \mathbf{t}) \odot \mathbf{y}$ Transform Gate Input Carry Gate

- Model n-gram interactions
- Apply transformation while carrying over original information 'y'
- Functions akin to an LSTM memory cell

LSTM Network

- Hierarchical Softmax to handle large output vocabulary
- Trained with truncated backprop through time

Results

		DATA-S					
		Cs	DE	Es	FR	RU	AR
Datha	KN-4	545	366	241	274	396	323
Botha	MLBL	465	296	200	225	304	-
	Word	503	305	212	229	352	216
Small	Morph	414	278	197	216	290	230
	Char	401	260	182	189	278	196
	Word	493	286	200	222	357	172
Large	Morph	398	263	177	196	271	148
	Char	371	239	165	184	261	148

		Data-l					
		Cs	DE	Es	FR	RU	EN
Botha	KN-4 MLBL	862 643	463 404	219 203	243 227	390 300	291 273
Small	Word Morph	701 615	347 331	186 189	202 209	353 331	236 233
	Char	578	305	169	190	313	216

적은 매개변수로도 비슷한 결과 도출

	PPL	Size
LSTM-Word-Small	97.6	5 m
LSTM-Char-Small	92.3	5 m
LSTM-Word-Large	85.4	20 m
LSTM-Char-Large	78.9	19 m
KN-5 (Mikolov et al. 2012)	141.2	2 m
RNN [†] (Mikolov et al. 2012)	124.7	6 m
RNN-LDA [†] (Mikolov et al. 2012)	113.7	7 m
genCNN [†] (Wang et al. 2015)	116.4	8 m
FOFE-FNNLM [†] (Zhang et al. 2015)	108.0	6 m
Deep RNN (Pascanu et al. 2013)	107.5	6 m
Sum-Prod Net [†] (Cheng et al. 2014)	100.0	5 m
LSTM-1 [†] (Zaremba et al. 2014)	82.7	20 m
LSTM-2 [†] (Zaremba et al. 2014)	78.4	52 m

Results

	In Vocabulary				
	while	his	you	richard	trading
LSTM-Word	although letting though minute	your her my their	conservatives we guys i	jonathan robert neil nancy	advertised advertising turnover turnover
LSTM-Char (before highway)	chile whole meanwhile white	this hhs is has	your young four youth	hard rich richer richter	heading training reading leading
LSTM-Char (after highway)	meanwhile whole though nevertheless	hhs this their your	we your doug i	eduard gerard edward carl	trade training traded trader

- Word 고유명사인 사람이름에 대해서는 유사한 사람이름 순서대로
- · Char(before highway) 고유명사에 대해서는 잘못된 결과
- Char(after highway) 문자단위라도 highway를 거치면 사람이름과 유사한 결과

Results

- Word 처리불가. 그래서 보통은 원본 그대로 copy
- · Char(before highway) 처리가능하긴 하나 결과가 좋진 않음
- · Char(after highway) 가장 유사한 결과

Results

- Paper questioned the necessity of using word embeddings as inputs for neural language modeling.
- 'CNNs + Highway Network over characters' is better
- Key thinking
- ⇒ You can compose "building blocks" to obtain nuanced and powerful models!

Hybrid NMT

2-stage Decoding

메인 모델은 Word-level (4 layers)

Hybrid NMT

2-stage Decoding

(unknown) 토큰에 대해서는 Character-level로 다시 수행 (2 layers)

English-Czech Results

WMT'15 data (12M sentence pairs)

Systems	BLEU
Winning WMT'15 (Bojar & Tamchyna, 2015)	18.8
Word-level NMT (Jean et al., 2015)	18.3
Hybrid NMT (Luong & Manning, 2016)*	20.7

English-Czech Results

source	The author Stephen Jay Gould died 20 years after diagnosis
human	Autor Stephen Jay Gould zemřel 20 let po diagnóze.
char	Autor Stepher Stepher zemřel 20 let po diagnóze .
word	Autor Stephen Jay <unk> zemřel 20 let po <unk> .</unk></unk>
	Autor Stephen Jay Gould zemřel 20 let po po .
hybrid	Autor Stephen Jay <unk> zemřel 20 let po <unk> .</unk></unk>
	Autor Stephen Jay Gould zemřel 20 let po diagnóze.

Perfect translation!

English-Czech Results

source	The author Stephen Jay Gould died 20 years after diagnosis .
human	Autor Stephen Jay Gould zemřel 20 let po diagnóze.
char	Autor Stepher Stepher zemřel 20 let po diagnóze.
word	Autor Stephen Jay <unk> zemřel 20 let po <unk> .</unk></unk>
	Autor Stephen Jay Gould zemřel 20 let po po .
hybrid	Autor Stephen Jay <unk> zemřel 20 let po <unk> .</unk></unk>
	Autor Stephen Jay Gould zemřel 20 let po diagnóze.

• *Char*-based: wrong name translation

English-Czech Results

source	The author Stephen Jay Gould died 20 years after diagnosis .
human	Autor Stephen Jay Gould zemřel 20 let po diagnóze.
char	Autor Stepher Stepher zemřel 20 let po diag nóze .
word	Autor Stephen Jay <unk> zemřel 20 let po <unk> .</unk></unk>
	Autor Stephen Jay Gould zemřel 20 let popo.
hybrid	Autor Stephen Jay <unk> zemřel 20 let po <unk> .</unk></unk>
	Autor Stephen Jay Gould zemřel 20 let po diagnóze .

• *Word*-based: incorrect alignment

English-Czech Results

source	The author Stephen Jay Gould died 20 years after diagnosis .
human	Autor Stephen Jay Gould zemřel 20 let po diagnóze.
char	Autor Stepher Stepher zemřel 20 let po diagnóze .
word	Autor Stephen Jay <unk> zemřel 20 let po <unk> .</unk></unk>
	Autor Stephen Jay Gould zemřel 20 let po po .
hybrid	Autor Stephen Jay <unk> zemřel 20 let po <unk> .</unk></unk>
	Autor Stephen Jay Gould zemřel 20 let podiagnóze.

• Char-based & hybrid: correct translation of diagnóze

English-Czech Results

source	Her 11-year-old daughter , Shani Bart , said it felt a little bit weird
human	Její jedenáctiletá dcera Shani Bartová prozradila , že je to trochu zvláštní
word -	Její <unk> dcera <unk> <unk> řekla , že je to trochu divné</unk></unk></unk>
	Její 11-year-old dcera Shani , řekla , že je to trochu <i>divné</i>
hybrid -	Její <unk> dcera , <unk> <unk> , řekla , že je to <unk> <unk> <unk> Její jedenáctiletá dcera , Graham <i>Bart</i> , řekla , že cítí trochu <i>divný</i></unk></unk></unk></unk></unk></unk>
	Její jedenáctiletá dcera , Graham <i>Bart</i> , řekla , že cítí trochu <i>divný</i>

Word-based: identity copy fails

English-Czech Results

source	Her 11-year-old daughter, Shani Bart, said it felt a little bit weird
human	Její jedenáctiletá dcera Shani Bartová prozradila , že je to trochu zvláštní
word -	Její <unk> dcera <unk> <unk> řekla , že je to trochu divné Její 11-year-old dcera Shani , řekla , že je to trochu <i>divné</i></unk></unk></unk>
	Její 11-year-old dcera Shani , řekla, že je to trochu <i>divné</i>
hybrid -	Její <unk> dcera , <unk> <unk> , řekla , že je to <unk> <unk></unk></unk></unk></unk></unk>
	Její jedenáctiletá dcera , Graham <i>Bart</i> , řekla , že cítí trochu <i>divný</i>

- Hybrid: correct, 11-year-old jedenáctiletá
- Wrong: Shani Bartová

5. Chars for word embeddings

I 5, Chars for word embeddings

A Joint Model for Word Embedding and Word Morphology (Cao and Rei 2016)

- Same objective as w2v, but using characters
- Bi-directional LSTM to compute embedding
- Model attempts to capture morphology
- Model can infer roots of words
 ex) spit → lick, tongue
 spite, spiteful → malice, hatred, greed

I 5. Chars for word embeddings

FastText embeddings

Enriching Word Vectors with Subword Information

Bojanowski, Grave, Joulin and Mikolov. FAIR. 2016.

Aim : a next generation efficient word2vec-like word representation library.

but better for rare words and languages with lots of morphology

→ An extension of the w2v skip-gram model with character n-grams ex) where = (wh, whe, her, ere, re), (where): subwords for embedding

I 5, Chars for word embeddings

FastText embeddings

Represent word as sum of the subwords.

Word in context score is $s(w,c) = \sum_{g \in G(w)} \mathbf{z}_g^{\mathrm{T}} \mathbf{v}_c$

'hashing trick' 차원을 축소해서 원래 유사도를 구하는 방식

THE END