Banach-Mazur Game

Jordan Wheeler

Nebraska Wesleyan University Department of Mathematics

May 4, 2016

- Decide on a topological space
- Player One Picks a nonempty open subset of the topological space
- Player Two Picks a nonempty open subset of the previous nonempty open subset chosen
- Then player one picks a nonempty open subset of the previous nonempty open subset picked by player two and it repeats
- This continues for a countably-infinite amount of turns

- Decide on a topological space
- Player One Picks a nonempty open subset of the topological space
- Player Two Picks a nonempty open subset of the previous nonempty open subset chosen
- Then player one picks a nonempty open subset of the previous nonempty open subset picked by player two and it repeats
- This continues for a countably-infinite amount of turns

- Decide on a topological space
- Player One Picks a nonempty open subset of the topological space
- Player Two Picks a nonempty open subset of the previous nonempty open subset chosen
- Then player one picks a nonempty open subset of the previous nonempty open subset picked by player two and it repeats
- This continues for a countably-infinite amount of turns

- Decide on a topological space
- Player One Picks a nonempty open subset of the topological space
- Player Two Picks a nonempty open subset of the previous nonempty open subset chosen
- Then player one picks a nonempty open subset of the previous nonempty open subset picked by player two and it repeats
- This continues for a countably-infinite amount of turns

- Decide on a topological space
- Player One Picks a nonempty open subset of the topological space
- Player Two Picks a nonempty open subset of the previous nonempty open subset chosen
- Then player one picks a nonempty open subset of the previous nonempty open subset picked by player two and it repeats
- This continues for a countably-infinite amount of turns

- Decide on a topological space
- Player One Picks a nonempty open subset of the topological space
- Player Two Picks a nonempty open subset of the previous nonempty open subset chosen
- Then player one picks a nonempty open subset of the previous nonempty open subset picked by player two and it repeats
- This continues for a countably-infinite amount of turns

Banach-Mazur Winning Strategies

Player One - Wins if the intersection of all the subsets chosen is nonempty

Player Two - Wins if the intersection of all the subsets chosen is empty

Real Ordered Topology is $\{(a, b)\}$

- Player One chooses an interval on the real line.
- Player Two then must (by the rules of the game) choose either the same interval or an interval within the previous one.
- No matter what Player Two chooses, Player One will choose an interval smaller (different endpoints) than the previous interval Player Two chose.

Real Ordered Topology is $\{(a, b)\}$

- Player One chooses an interval on the real line.
- Player Two then must (by the rules of the game) choose either the same interval or an interval within the previous one.
- No matter what Player Two chooses, Player One will choose an interval smaller (different endpoints) than the previous interval Player Two chose.

Real Ordered Topology is $\{(a, b)\}$

- Player One chooses an interval on the real line.
- Player Two then must (by the rules of the game) choose either the same interval or an interval within the previous one.
- No matter what Player Two chooses, Player One will choose an interval smaller (different endpoints) than the previous interval Player Two chose.

Player Two:

Player One:

Many Turns Later:

- First Turn (Player One): (x_1, y_1)
- Second Turn (Player Two): (x_2, y_2)
- Third Turn (Player One): (x_3, y_3)
- n^{th} Turn: (x_n, y_n)

$$(x_n)=\{x_1,x_2,x_3,...,x_n\}
ightarrow L$$
 (By Monotone Convergence) $(y_n)=\{y_1,y_2,y_3,...,y_n\}
ightarrow M$ (By Monotone Convergence) We know that $L \leq M$.

Thus, if
$$L < M$$
: $(L, M) \in \bigcap_{n=1}^{\infty} (x_n, y_n)$,

otherwise, if
$$L = M$$
: $L = M \in \bigcap_{n=1}^{\infty} (x_n, y_n)$

- First Turn (Player One): (x_1, y_1)
- Second Turn (Player Two): (x_2, y_2)
- Third Turn (Player One): (x_3, y_3)
- n^{th} Turn: (x_n, y_n)

$$(x_n)=\{x_1,x_2,x_3,...,x_n\}
ightarrow L$$
 (By Monotone Convergence) $(y_n)=\{y_1,y_2,y_3,...,y_n\}
ightarrow M$ (By Monotone Convergence) We know that $L\leq M$.

Thus, if
$$L < M$$
: $(L, M) \in \bigcap_{n=1}^{\infty} (x_n, y_n)$,

otherwise, if
$$L = M$$
: $L = M \in \bigcap_{n=1}^{\infty} (x_n, y_n)$

- First Turn (Player One): (x_1, y_1)
- Second Turn (Player Two): (x_2, y_2)
- Third Turn (Player One): (x_3, y_3)
- n^{th} Turn: (x_n, y_n)

$$(x_n) = \{x_1, x_2, x_3, ..., x_n\} \to L$$
 (By Monotone Convergence) $(y_n) = \{y_1, y_2, y_3, ..., y_n\} \to M$ (By Monotone Convergence) We know that $L \leq M$.

Thus, if L < M: $(L, M) \in \bigcap_{n=1}^{\infty} (x_n, y_n)$,

otherwise, if
$$L = M$$
: $L = M \in \bigcap_{n=1}^{\infty} (x_n, y_n)$

- First Turn (Player One): (x_1, y_1)
- Second Turn (Player Two): (x_2, y_2)
- Third Turn (Player One): (x_3, y_3)
- n^{th} Turn: (x_n, y_n)

$$(x_n)=\{x_1,x_2,x_3,...,x_n\}
ightarrow L$$
 (By Monotone Convergence) $(y_n)=\{y_1,y_2,y_3,...,y_n\}
ightarrow M$ (By Monotone Convergence) We know that $L\leq M$.

Thus, if
$$L < M$$
: $(L, M) \in \bigcap_{n=1}^{\infty} (x_n, y_n)$,

otherwise, if
$$L = M$$
: $L = M \in \bigcap_{n=1}^{\infty} (x_n, y_n)$

- First Turn (Player One): (x_1, y_1)
- Second Turn (Player Two): (x_2, y_2)
- Third Turn (Player One): (x_3, y_3)
- n^{th} Turn: (x_n, y_n)

$$(x_n) = \{x_1, x_2, x_3, ..., x_n\} \rightarrow L$$
 (By Monotone Convergence)
 $(y_n) = \{y_1, y_2, y_3, ..., y_n\} \rightarrow M$ (By Monotone Convergence)

We know that L < M

Thus, if
$$L < M$$
: $(L, M) \in \bigcap_{n=1}^{\infty} (x_n, y_n)$,

otherwise, if
$$L = M$$
: $L = M \in \bigcap_{n=1}^{\infty} (x_n, y_n)$

- First Turn (Player One): (x_1, y_1)
- Second Turn (Player Two): (x_2, y_2)
- Third Turn (Player One): (x_3, y_3)
- n^{th} Turn: (x_n, y_n)

$$(x_n) = \{x_1, x_2, x_3, ..., x_n\} \rightarrow L$$
 (By Monotone Convergence) $(y_n) = \{y_1, y_2, y_3, ..., y_n\} \rightarrow M$ (By Monotone Convergence) We know that $L \leq M$.

otherwise, if
$$L < M$$
: $(L, M) \in \prod_{n=1}^{\infty} (x_n, y_n)$, otherwise, if $L = M$: $L = M \in \bigcap_{n=1}^{\infty} (x_n, y_n)$

- First Turn (Player One): (x_1, y_1)
- Second Turn (Player Two): (x_2, y_2)
- Third Turn (Player One): (x_3, y_3)
- n^{th} Turn: (x_n, y_n)

$$(x_n) = \{x_1, x_2, x_3, ..., x_n\} \rightarrow L$$
 (By Monotone Convergence) $(y_n) = \{y_1, y_2, y_3, ..., y_n\} \rightarrow M$ (By Monotone Convergence) We know that $L \leq M$.

Thus, if
$$L < M$$
: $(L, M) \in \bigcap_{n=1}^{\infty} (x_n, y_n)$, otherwise, if $L = M$: $L = M \in \bigcap_{n=1}^{\infty} (x_n, y_n)$.

- First Turn (Player One): (x_1, y_1)
- Second Turn (Player Two): (x_2, y_2)
- Third Turn (Player One): (x_3, y_3)
- n^{th} Turn: (x_n, y_n)

$$(x_n) = \{x_1, x_2, x_3, ..., x_n\} \rightarrow L$$
 (By Monotone Convergence) $(y_n) = \{y_1, y_2, y_3, ..., y_n\} \rightarrow M$ (By Monotone Convergence) We know that $L \leq M$.

Thus, if
$$L < M$$
: $(L, M) \in \bigcap_{n=1}^{\infty} (x_n, y_n)$, otherwise, if $L = M$: $L = M \in \bigcap_{n=1}^{\infty} (x_n, y_n)$.

Right Ordered Topology is $\{(x, \infty)\}$

- Player One must choose (by the rules of the game) any real number as the left endpoint.
- Player Two then chooses another real number as the left endpoint that is bigger than the previous.
- This will continue, and the players will always choose a bigger left endpoint than the previous left endpoint.

Right Ordered Topology is $\{(x, \infty)\}$

- Player One must choose (by the rules of the game) any real number as the left endpoint.
- Player Two then chooses another real number as the left endpoint that is bigger than the previous.
- This will continue, and the players will always choose a bigger left endpoint than the previous left endpoint.

Right Ordered Topology is $\{(x, \infty)\}$

- Player One must choose (by the rules of the game) any real number as the left endpoint.
- Player Two then chooses another real number as the left endpoint that is bigger than the previous.
- This will continue, and the players will always choose a bigger left endpoint than the previous left endpoint.

- First Turn (Player One): (x_1, ∞)
- Second Turn (Player Two): (x_2, ∞)
- Third Turn (Player One): (x_3, ∞)
- n^{th} Turn: (x_n, ∞)

 $(x_n) = \{x_1, x_2, x_3, ..., x_n\} \rightarrow \infty$ We know that the sequence (x_n) approx

Thus, $\bigcap_{n=1}^{\infty} (x_n, \infty) = \emptyset$.

- First Turn (Player One): (x_1, ∞)
- Second Turn (Player Two): (x_2, ∞)
- Third Turn (Player One): (x_3, ∞)
- n^{th} Turn: (x_n, ∞)

 $(x_n) = \{x_1, x_2, x_3, ..., x_n\} \rightarrow \infty$ We know that the sequence (x_n) approach

Thus,
$$\bigcap_{n=1}^{\infty} (x_n, \infty) = \emptyset$$
.

- First Turn (Player One): (x_1, ∞)
- Second Turn (Player Two): (x_2, ∞)
- Third Turn (Player One): (x_3, ∞)
- n^{th} Turn: (x_n, ∞)

$$(x_n) = \{x_1, x_2, x_3, ..., x_n\} \to \infty$$

We know that the sequence (x_n) approaches infinity,

Thus,
$$\bigcap_{n=1}^{\infty} (x_n, \infty) = \emptyset$$
.

- First Turn (Player One): (x_1, ∞)
- Second Turn (Player Two): (x_2, ∞)
- Third Turn (Player One): (x_3, ∞)
- n^{th} Turn: (x_n, ∞)

$$(x_n) = \{x_1, x_2, x_3, ..., x_n\} \to \infty$$

We know that the sequence (x_n) approaches infinity

Thus,
$$\bigcap_{n=1}^{\infty} (x_n, \infty) = \emptyset$$
.

- First Turn (Player One): (x_1, ∞)
- Second Turn (Player Two): (x_2, ∞)
- Third Turn (Player One): (x_3, ∞)
- n^{th} Turn: (x_n, ∞)

$$(x_n) = \{x_1, x_2, x_3, ..., x_n\} \to \infty$$

We know that the sequence (x_n) approaches infinity,

Thus,
$$\bigcap_{n=1}^{\infty} (x_n, \infty) = \emptyset$$

- First Turn (Player One): (x_1, ∞)
- Second Turn (Player Two): (x_2, ∞)
- Third Turn (Player One): (x_3, ∞)
- n^{th} Turn: (x_n, ∞)

$$(x_n) = \{x_1, x_2, x_3, ..., x_n\} \to \infty$$

We know that the sequence (x_n) approaches infinity,

Thus,
$$\bigcap_{n=1}^{\infty} (x_n, \infty) = \emptyset$$
.

- First Turn (Player One): (x_1, ∞)
- Second Turn (Player Two): (x_2, ∞)
- Third Turn (Player One): (x_3, ∞)
- n^{th} Turn: (x_n, ∞)

$$(x_n) = \{x_1, x_2, x_3, ..., x_n\} \to \infty$$

We know that the sequence (x_n) approaches infinity,

Thus,
$$\bigcap_{n=1}^{\infty} (x_n, \infty) = \emptyset$$
.