A quick guide to LATEX

TEMPLATES

University Templates: DTU, AAU, KU

B, *I*, <u>U</u>

- Use \textbf for boldfaced text.
- Use \textit for italic text.
- Use \underline for underlined text.

SECTIONS AND NEW LINES

- Divide your document into sections using \section{}, \subsection{} and \subsubsection{}.
- Show table of contents with \tableofcontents.
- LATEX ignores extra spaces and new lines.
- Use \par or two line breaks to create a new paragraph.
- Use \\ to create a new line (but not create a new paragraph).
- Use \noindent to prevent a paragraph from indenting.

IMAGES

Upload images to Overleaf and use \begin{figure}...:

\begin{figure}[h]
\centering
\includegraphics[width=0.7\linewidth]{image.png}
\caption{How to upload an image}
\end{figure}

Figure 1: How to upload an image

MATH

Writing math

- Use \$ for writing inline math. e.g. \$ \sum_{n=1}^{\infty} \frac{1}{n} \sin(n) \$ yields $\sum_{n=1}^{\infty} \frac{1}{n} \sin(n)$.
- Use \[and \] for writing unnumbered display math. e.g. \[\sum_{n=1}^{\infty} \frac{1}{n} \sin(n) \] yields

$$\sum_{n=1}^{\infty} \frac{1}{n} \sin(n)$$

Use \begin{gather} and \end{gather} for writing numbered display math. Note: gather requires the ams-packages. See Packages section on next page.
 e.g. \begin{gather} \cos(0) = 1 \end{gather} yields

$$\cos(0) = 1 \tag{1}$$

Elementary functions

command	output
$\ln(x)$	ln(x)
$\log_{a}b$	$\log_a b$
$e^x=\exp(x)$	$e^x = \exp(x)$
\sin	sin
\cos	cos
\tan	tan
\cot	cot
\sec	sec
\csc	csc
\arcsin	arcsin
\arccos	arccos
\arctan	arctan
	<pre>\ln(x) \log_{a}b e^x=\exp(x) \sin \cos \tan \cot \sec \csc \arcsin \arccos</pre>

Basic symbols

v		
description	command	output
multiplication (dot)	\cdot	
multiplication (times)	\times	×
fraction	$frac{a}{b}$	$\frac{a}{b}$
square root	\sqrt{x}	$\sqrt[6]{x}$
exponentiation	a^b	a^b
subscript	a_b	a_b
plus/minus	\pm	±
not equal	\ne	\neq
less than or equal to	\le	· <
greater than or equal to	\ge	≠ ! ≈
approximately equal to	\approx	\approx
infinity	\infty	∞
dots	1,2,3,\ldots	$1, 2, 3, \dots$
dots	1+2+3+\cdots	$1 + 2 + 3 + \cdots$
nth root	$\sqrt[n]{x}$	$\sqrt[n]{x}$
absolute value	x	$ \dot{x} $
number sets	\mathbb{R}	\mathbb{R}

Calculus

description	command	output
derivative	$\frac{df}{dx}$	$\frac{df}{dx}$
derivative	f'	$_{f^{\prime}}^{dx}$
partial derivative	\frac{\partial f} {\partial x}	$\frac{\partial f}{\partial x}$
integral	\int_a^b dx	$\int_{a}^{b} dx$
limits	$\lim_{x\to \infty} \{x \in \inf y\}$	$\lim_{x \to \infty}$
summation	$\sum_{n=1}^{\int (\inf ty}a_n$	$\sum_{n=1}^{\infty} a_n$
product	$\prod_{n=1}^{\infty} = 1$	$\prod_{n=1}^{\infty} a_n$

Delimiters (parentheses)

description	command	output
parentheses	(x)	(x)
brackets	[x]	$[\mathbf{x}]$
curly braces	\{x\}	{x}

\right and \left makes the delimiters large. For example
\left\{\sin\left(\frac{1}{n}\right)\right\}_{n}^
{\infty} produces

$$\left\{\sin\left(\frac{1}{n}\right)\right\}_{n}^{\infty}.$$

Curly braces are non-printing characters that are used to gather text that has more than one character. Observe the differences between the four expressions x^2 , x^2 .

Functions

description	command	output
maps to	\to	\rightarrow
composition	\circ	0
piecewise	x =	
function	<pre>\begin{cases} x & x\ge 0\\ -x & x<0 \end{cases}</pre>	$ x = \begin{cases} x & x \ge 0 \\ -x & x < 0 \end{cases}$

Logic

description	command	output
not	\neg	\neg
and	\land	\wedge
or	\lor	V
ifthen	\to	\rightarrow
if and only if	\leftrightarrow	\leftrightarrow
logical equivalence	\equiv	=
therefore	\therefore	∴.
there exists	\exists	3
for all	\forall	\forall
implies	\Rightarrow	\Rightarrow
equivalent	\Leftrightarrow	\Leftrightarrow

Greek and Hebrew letters

command	output	command	output
\alpha	α	\beta	β
\gamma	γ	\Gamma	Γ
\delta	δ	\Delta	Δ
\epsilon	ϵ	\varepsilon	ε
\pi	π	\Pi	Π
\tau	au	\zeta	ζ
\theta	θ	\Theta	Θ
\chi	χ	\upsilon	v
\xi	ξ	\iota	ι
\omega	ω	\Omega	Ω
\eta	η	\rho	ρ
\kappa	κ	Υ	Υ
\lambda	λ	\Lambda	Λ
\mu	μ	\nu	ν
\sigma	σ	\Sigma	Σ
\phi	ϕ	\Phi	Φ
\varphi	φ	\Xi	Ξ
\psi	ψ	\Psi	Ψ
\aleph	X	\daleth	٦
\beth	コ	\gimel	J

Geometry

description	command	output
angle	\angle ABC	$\angle ABC$
degree	90^{\circ}	90°
triangle	\triangle ABC	$\triangle ABC$
segment	\overline{AB}	\overline{AB}

Set theory

description set brackets element of not an element of subset of subset of	<pre>command \{1,2,3\} \in \not\in \subset \subseteq</pre>	$\begin{array}{l} output \\ \{1,2,3\} \\ \in \\ \not\in \\ \subset \\ \subseteq \\ \not\subset \\ \supset \\ \bigcup \\ \cup \end{array}$
not a subset of	\not\subset	Ø
contains	\supset	\supseteq
contains	\supseteq	<i>⊇</i>
union	\cup	Ū
intersection	\cap	∩ 10
big union	$\bigcup_{n=1}^{10}A_n$	$\bigcup_{n=1}^{10} A_n$
big intersection	\bigcap_{n=1}^{10}A_n	$\bigcap_{n=1}^{10} A_n$
empty set	\emptyset	Ø
power set	\mathcal{P}	${\cal P}$
minimum	\min	$_{ m min}$
maximum	\max	max
supremum	\sup	\sup
infimum	\inf	\inf
limit superior	\limsup	\limsup
limit inferior	\liminf	lim inf
closure	\overline{A}	\overline{A}

Linear algebra

description	command	output
vector	\vec{v}	\vec{v}
vector	\mathbf{v}	\mathbf{v}
norm	\ \vec{v} \	$ \vec{v} $
matrix	\left[\begin{array}{ccc} 1 & 2 & 3 \\ 4 & 5 & 6 \\ 7 & 8 & 0 \end{array} \right]	$\begin{bmatrix} 1 & 2 & 3 \\ 4 & 5 & 6 \\ 7 & 8 & 0 \end{bmatrix}$
determinant	\left \begin{array}{ccc} 1 & 2 & 3 \\ 4 & 5 & 6 \\ 7 & 8 & 0 \end{array}	$ \begin{array}{c cccc} 1 & 2 & 3 \\ 4 & 5 & 6 \\ 7 & 8 & 0 \end{array} $
determinant	\right \det(A)	det(A)
trace	\det(A) \operatorname{tr}(A)	$\operatorname{tr}(A)$
	•	` '
dimension	\dim(V)	$\dim(V)$

Number theory

description	command	output
mod	\mod	mod
greatest common divisor	\gcd	gcd
ceiling	\lceil x \rceil	$\lceil x \rceil$
floor	\lfloor x \rfloor	$\lfloor x \rfloor$

LISTS

You can produce ordered and unordered lists.

description	command	output
	\begin{itemize}	
unordered list	\item Thing 1	• Thing 1
unordered list	\item Thing 2	• Thing 2
	\end{itemize}	
	\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\	
	\begin{enumerate}	
ordered list	\item Thing 1	1. Thing 1
	\item Thing 2	2. Thing 2
	\end{enumerate}	

TABLES

- 1. Use the booktabs package.
- 2. Make your table using tablesgenerator.com and choose the booktabs table style.

BIBLIOGRAPHY

- 1. Create bibliography.bib file.
- 2. Use csquotes and biblatex packages:

\usepackage{csquotes}
\usepackage[backend=biber]{biblatex}
\bibliography{bibliography.bib}

- 3. Cite source with \cite{} or \footcite{}.
- 4. Print bibliography with \printbibliography.

REFERENCES

• Label numbered sections, tables, figures and equations for later reference. For example

```
\begin{gather}
  \label{eq:N2} \vec{F} = m \vec{a}
\end{gather}
```

$$\vec{F} = m\vec{a} \tag{2}$$

• Reference them using \ref{}. For example: see Equation (\ref{eq:N2}) yields see Equation (2).

SYMBOLS (IN TEXT MODE)

The following symbols do **not** have to be surrounded by dollar signs: \$ = \$, % = %, & = %, # = #, $\textbackslash = \$

PACKAGES

\usepackage{amssymb,amsmath,amsthm,amsfonts} % Math.
\usepackage[pdftex]{graphicx} % For pictures.
\usepackage[danish]{babel} % For Danish writing.
\usepackage{hyperref} % Format links for pdf.
\usepackage{calc} % Reset counter after title page.
\usepackage[a4paper, margin=4cm]{geometry} % margins.

- physics: For easy typesetting of physics equations.
- Either mhchem or chemfig: For chemical formulas.

CREDIT

This guide was adapted from the Quick guide to LaTeX originally created by Dave Richeson, Dickinson College, http://divisbyzero.com/.