ECEN 714 Lab 7 report Chenjie Luo

Fig. Schematic of my Flip-Flop

Fig. Layout of my Flip-Flop

Fig. DRC log

Fig. LVS result

Fig. Functionality of my Flip-Flop meets the requirement

Tab.1 rising and falling clock-to-Q of my Flip-Flop

		Tananag eleek te Q	- ,	I
Output Load(fF)	Rising delay(ns)	Falling delay(ns)	difference/ Rising delay(%)	difference / Falling delay(%)
1	0.2262	0.2173	3.934571176	4.095720202
10	0.275	0.2652	3.563636364	3.695324284
20	0.3215	0.3073	4.416796267	4.620891637
30	0.3663	0.3454	5.705705706	6.050955414
40	0.4106	0.3823	6.892352655	7.402563432
50	0.4549	0.4186	7.979775775	8.67176302
60	0.4989	0.4549	8.819402686	9.672455485
70	0.5436	0.491	9.676232524	10.71283096
80	0.587	0.527	10.22146508	11.38519924
90	0.6315	0.5432	13.98258116	16.25552283
100	0.6804	0.5578	18.01881246	21.97920402

Fig. input current vs. frequency in AC simulation

Tab.2 Input capacitance

Current(uA)	Frequency(MHz)	Capacitance(fF)
1.12718	50	3.589745223
2.25431	100	3.589665605
4.50818	200	3.589315287
6.76118	300	3.58873673
9.01276	400	3.587882166
11.2619	500	3.586592357
13.5097	600	3.585376858
15.7539	700	3.583689718
17.9927	800	3.581349522
20.2315	900	3.57952937

Thus, the average input capacitance is 3.586188284 fF.

LVS report:

@(#)\$CDS: LVS version 6.1.7-64b 01/24/2017 19:46 (sjfhw310) \$

Command line: /softwares/Linux/cadence/IC617/tools.lnx86/dfII/bin/64bit/LVS -dir

/home/grads/l/lchenjie/lchenjie/cadence/LVS -l -s -t

/home/grads/l/lchenjie/lchenjie/cadence/LVS/layout

/home/grads/l/lchenjie/lchenjie/cadence/LVS/schematic

Like matching is enabled.

Net swapping is enabled.

Using terminal names as correspondence points.

Compiling Diva LVS rules...

Net-list summary for /home/grads/l/lchenjie/lchenjie/cadence/LVS/layout/netlist

count

- 13 nets6 terminals
- 10 pmos
- 10 nmos

 $Net-list\ summary\ for\ /home/grads/l/lchenjie/lchenjie/cadence/LVS/schematic/netlist$

count

- 13 nets
- 6 terminals
- 10 pmos
- 10 nmos

Terminal correspondence points

N10 N6 CLK N7 N12 CLK_L N11 N11 D N8 N9 GND N9 N8 Q

N12 N10 VDD

Devices in the netlist but not in the rules:

pcapacitor

Devices in the rules but not in the netlist:

cap nfet pfet nmos4 pmos4

The net-lists match.

layout schematic

	instances	
un-matched	0 0	
rewired	0 0	
size errors	0 0	
pruned	0 0	
active	20 20	
total	20 20	
	nets	
un-matched	0 0	
merged	0 0	
pruned	0 0	
active	13 13	
total	13 13	
	terminals	
un-matched	0 0	
matched but		
different type	0 0	
total	6 6	
be files from /ho	ome/grads/l/lchenjie/lchenjie/caden	Ce
	, ,	

Probe files from /home/grads/l/lchenjie/lchenjie/cadence/LVS/schematic devbad.out:
netbad.out:
mergenet.out:
termbad.out:
prunenet.out:
prunedev.out:
audit.out:

 $Probe \ files \ from \ /home/grads/l/lchenjie/lchenjie/cadence/LVS/layout$

devbad.out:

netbad.out:
mergenet.out:
termbad.out:

prunedev.out:

prunenet.out:

Audit.out:

Fig. Sweeping posedge of D signal along clk rising edge
As we can see, when D signal arrives later than 2.7 ns, Q be will updated with previous D signal. Thus, set up time for positive edge is 3.0 ns - 2.7 ns = 0.3ns.

Fig. Sweep negedge of D singal along clk rising edge

Similarly, When falling edge of D arrives later than 14.8 ns while posedge of clk signal arrives at 15.0 ns, Q will be updated with previous signal. Therefore, set up time for falling edge is 0.2 ns

Since the set up time is supposed to be satisfy both posedge and negedge conditions, **set up time = 0.3 ns.**