411

1. Each of the subproblems apply AM-GM once.

(a)

$$\frac{a}{b} + \frac{b}{c} + \frac{c}{d} + \frac{d}{a} = 4\frac{1}{4}\left(\frac{a}{b} + \frac{b}{c} + \frac{c}{d} + \frac{d}{a}\right)$$
$$\leq 4\left(\frac{abcd}{abcd}\right)^{\frac{1}{4}}$$
$$= 4.$$

(b)

$$a^{6} + b^{9} + 64 = 3\frac{1}{3}(a^{6} + b^{9} + 64)$$

$$\leq 3(a^{6}b^{9}64)^{\frac{1}{3}}$$

$$= 12a^{2}b^{3}$$

- 2. By applying Cauchy-Schwarz we get that $1 = (x_1 + \dots + x_n)^2 \le n \sum_i x_i^2$. Therefore the norm of the vector is bounded below via $\frac{1}{n}, \frac{1}{n} \le \sum_i x_i^2$. Thus it is minimized via having a norm of $\frac{1}{n}$. An example solution would be $x_i = \frac{1}{n}$ for all $i \in [n]$.
- 3. (a) Suppose $\epsilon > 0$. Then there exists $N \in \mathbb{N}$ such that $\frac{1}{\sqrt{\epsilon}} < N$ by the archimedean principle. Therefore if $n \geq N$ then

$$\left| \frac{n^2}{n^4 + n^2 + 1} \right| < \left| \frac{n^2}{n^4} \right| = \left| \frac{1}{n^2} \right| < \epsilon.$$

(b) Suppose $\epsilon > 0$. Then there exists $N \in \mathbb{N}$ such that $\frac{1}{\epsilon} < N$. Suppose $n \geq N$. Then we have that

$$\left| \frac{5n^2 + n}{3n^2 + 1} - \frac{5}{3} \right| = \left| \frac{3n - 5}{3(3n^2 + 1)} \right| < \left| \frac{1}{3n} \right| = \frac{1}{3} \left| \frac{1}{n} \right| < \frac{\epsilon}{3} < \epsilon.$$

- 4. Suppose $\epsilon > 0$. Then there exists $N \in \mathbb{N}$ such that for all $n \geq N$ that $|a a_n| < \epsilon$. Therefore by the reverse triangle inequality we have that $||a| |a_n|| \leq |a a_n| < \epsilon$. Therefore $\lim |a_n| \to |a|$. The converse is not true. If we consider $a_n = (-1)^n (1 2^n)$, then clearly $\lim \sup a_n = 1$, $\lim \inf a_n = -1$. This obviously doesn't converge. However $|a_n| = 1 2^n$, which does converge to 1.
- 5. Let $a_n = 2^n$, $b_n = -2^n$. Clearly $a_n \to \infty$, $b_n \to -\infty$. However $a_n + b_n = 2^n 2^n = 0$, which does converge since it's constant.
- 6. We will show that a_n is bounded below and decreasing.
 - We will show that a_n is bounded below by $\frac{1+\sqrt{13}}{2}$. Clearly $3 \ge \frac{1+\sqrt{13}}{2}$. By the principle of mathematical induction for all $k \in \mathbb{N}$ if k < n then $a_k \ge \frac{1+\sqrt{13}}{2}$. Therefore $a_n = \sqrt{3+a_{n-1}} \ge \sqrt{3+\frac{1+\sqrt{13}}{2}} = \sqrt{\frac{7+\sqrt{13}}{2}} = \frac{\sqrt{1+\sqrt{13}}}{2}$. Thus a_n is bounded below.

Alex Valentino Homework 3
411

• We will show that a_n is decreasing. Clearly $3 \ge \sqrt{6}$. By the principle of mathematical induction, for all $k \in \mathbb{N}$ if k < n then $a_{k+1} \le a_k$. Therefore $a_n = \sqrt{3 + a_{n-1}}$, by the induction hypothesis $\sqrt{3 + a_{n-1}} \le \sqrt{3 + a_{n-2}} = a_{n-1}$. Thus $a_n \le a_{n-1}$. Therefore (a_n) is decreasing.

Therefore by the monotone convergence theorem (a_n) converges, and it converges to the lower bound given above. The solution will satisfy $\alpha = \sqrt{3 + \alpha}$, $\alpha^2 - \alpha - 3 = 0$. This has a root of $\frac{1+\sqrt{13}}{2}$. Additionally $\left(\frac{1+\sqrt{13}}{2}\right)^2 = \frac{7+\sqrt{13}}{2} = 3 + \frac{1+\sqrt{13}}{2}$.

- 7. We will show that (a_n) is decreasing and bounded.
 - We will show that (a_n) is bounded. Since $a_n \in (0,1)$ for all $n \in \mathbb{N}$, then we can say that for all $n \in \mathbb{N}$ $|a_n| \leq 1$. Thus (a_n) is bounded.
 - We will show that (a_n) is decreasing. Consider the given inequality $\frac{1}{4} < a_n(1 a_{n+1})$. We can treat the product of elements from the sequence as a geometric mean, and apply AM-GM:

$$\sqrt{a_n^2(1-a_{n+1})^2} \le \frac{a_n^2 + (1-a_{n+1})^2}{2}.$$

We know for $x \in (0,1)$ that $x^2 \leq x$. Therefore we have from the previous inequality $\frac{1}{4} < \frac{a_n+1-a_{n+1}}{2}$ which yields $a_{n+1} < a_{n+1} + 1 < a_n$. Therefore (a_n) is decreasing.

Thus (a_n) converges. But to what? Note that $\lim a_{n+1} = \lim a_n = \alpha$. Thus by the order limit theorem $\alpha(1-\alpha) \geq \frac{1}{4}$. This is equivalent to the inequality $(\alpha - \frac{1}{2})^2 \leq 0$. Since $(\alpha - \frac{1}{2})^2 \geq 0$ then $(\alpha - \frac{1}{2})^2 = 0$. Thus $\alpha = \frac{1}{2}$. Therefore $\lim a_n = \frac{1}{2}$