# ANALIZĂ MATEMATICĂ Noțiuni teoretice și probleme rezolvate

MIRCEA OLTEANU

# Cuprins

| 1 | Seri                         | Serii de numere 7                    |  |  |  |  |  |
|---|------------------------------|--------------------------------------|--|--|--|--|--|
|   | 1.1                          | Noţiuni teoretice                    |  |  |  |  |  |
|   | 1.2                          | Serii cu termeni pozitivi            |  |  |  |  |  |
|   | 1.3                          | Serii cu termeni oarecari            |  |  |  |  |  |
| 2 | ții metrice. Continuitate 29 |                                      |  |  |  |  |  |
|   | 2.1                          | Noţini teoretice                     |  |  |  |  |  |
|   | 2.2                          | Spaţii metrice                       |  |  |  |  |  |
|   | 2.3                          | Teorema contracției                  |  |  |  |  |  |
|   | 2.4                          | Funcții continue                     |  |  |  |  |  |
|   | 2.5                          | Spaţii normate şi operatori liniari  |  |  |  |  |  |
| 3 | Şiru                         | ri de funcții. Funcții elementare 67 |  |  |  |  |  |
|   | 3.1                          | Noțiuni teoretice                    |  |  |  |  |  |
|   | 3.2                          | Şiruri şi serii de funcţii           |  |  |  |  |  |
|   | 3.3                          | Formula lui Taylor. Serii Taylor     |  |  |  |  |  |
|   | 3.4                          | Serii de puteri, funcții elementare  |  |  |  |  |  |
| 4 | Fun                          | cții diferențiabile 107              |  |  |  |  |  |
|   | 4.1                          | Noțiuni teoretice                    |  |  |  |  |  |
|   | 4.2                          | Derivate parțiale și diferențiala    |  |  |  |  |  |
|   | 4.3                          | Diferențiala funcției compuse        |  |  |  |  |  |
|   | 4.4                          | Extreme locale                       |  |  |  |  |  |
|   | 4.5                          | Funcții implicite                    |  |  |  |  |  |
|   | 4.6                          | Extreme cu legături                  |  |  |  |  |  |
| 5 | Inte                         | grale improprii și cu parametri 161  |  |  |  |  |  |
|   | 5.1                          | Noțiuni teoretice                    |  |  |  |  |  |
|   | 5.2                          | Integrale improprii                  |  |  |  |  |  |
|   | 5.3                          | Integrale cu parametri               |  |  |  |  |  |

| 6  | Măs  | sură și integrală                 | 181 |
|----|------|-----------------------------------|-----|
|    | 6.1  | Noțiuni teoretice                 | 181 |
|    | 6.2  | Funcții integrabile               | 192 |
|    | 6.3  | Serii Fourier                     | 201 |
|    | 6.4  | Operatori pe spații Hilbert       | 213 |
| 7  | Inte | egrale duble și triple            | 229 |
|    | 7.1  | Noțiuni teoretice                 | 229 |
|    | 7.2  | Integrale duble                   | 232 |
|    | 7.3  | Integrale triple $\dots$          | 237 |
| 8  | Inte | egrale curbilinii și de suprafață | 243 |
|    | 8.1  | Noțiuni teoretice                 | 243 |
|    | 8.2  | Integrale curbilinii              | 249 |
|    | 8.3  | Integrale de suprafață            |     |
| 9  | Fori | mule integrale                    | 267 |
|    | 9.1  | Noțiuni teoretice                 | 267 |
|    | 9.2  | Formula Green-Riemann             | 269 |
|    | 9.3  | Formula Gauss-Ostrogradski        |     |
|    | 9.4  | Formula lui Stokes                |     |
| 10 | Exe  | mple de teste pentru examen       | 289 |
|    |      | Analiză matematică I              | 289 |
|    |      | Analiză matematică II             |     |

# Introducere

Această lucrare este rezultatul cursurilor şi seminariilor de analiză matematică ținute de autor studenților anilor întâi ai Facultăților de Automatică și Electronică din Universitatea Politehnica București. Cartea este structurată în zece capitole, conținând exerciții rezolvate care acoperă programa cursului de analiză din primul şi al doilea semestru. În ultimul capitol sunt exemple de subiecte propuse la examenele de analiză matematică. Fiecare capitol începe cu o secțiune teoretică ce conține principalele noțiuni şi rezultate necesare rezolvării exercițiilor. Desigur, pentru înțelegerea conceptelor fundamentale ale analizei este necesară o pregătire teoretică suplimentară. Pentru aceasta, sunt recomandate cursurile care se adresează studenților din învătământul superior tehnic; o listă cu acestea se găsește în bibliografia de la sfârșit, îndeosebi lucrările [4], [6], [9]. De asemenea, se recomandă consultarea și a altor culegeri de probleme, de exemplu [11], [12], [13], [14].

# Capitolul 1

# Serii de numere

# 1.1 Noțiuni teoretice

### Relații

Dacă M este o mulțime arbitrară nevidă, orice submulțime  $\rho \subseteq M \times M$  se numește relație pe M. Se notează  $x\rho y$  dacă  $(x,y) \in \rho$ .

Relația  $\rho$  se numește:

reflexivă dacă  $x\rho x$ ,  $\forall x \in M$ ;

simetrică dacă  $x\rho y \Rightarrow y\rho x$ ;

antisimetrică dacă  $x\rho y$  şi  $y\rho x \Rightarrow x = y$ ;

tranzitivă dacă  $x\rho y$  și  $y\rho z \Rightarrow x\rho z$ .

O relație se numește relație de ordine dacă este reflexivă, antisimetrică și tranzitivă.

Relația de ordine  $\rho$  (pe mulțimea M) se numește totală (sau se mai spune că mulțimea M este total ordonată) dacă pentru orice  $x, y \in M$  rezultă  $x \rho y$  sau  $y \rho x$ .

În cele ce urmează  $(M, \leq)$  este o mulțime total ordonată, iar X este o submulțime nevidă a lui M. Un element  $a \in M$  se numește majorant al mulțimii X dacă  $x \leq a, \forall x \in X$ . Dacă mulțimea majoranților lui X este nevidă, atunci X se numește majorată.

Un element  $b \in M$  se numește minorant al lui X dacă  $b \leq x$ ,  $\forall x \in X$ . Mulțimea X se numește minorată dacă mulțimea minoranților săi este nevidă. Mulțimea X se numește mărginită dacă este și majorată și minorată.

Dacă X este o submulțime majorată a lui M, atunci un element  $\alpha \in M$  se numește marginea superioară a lui X dacă:

i.  $x \le \alpha, \forall x \in X$ ; ( $\alpha$  este majorant).

ii. dacă  $x \leq \gamma$ ,  $\forall x \in X$ , atunci  $\alpha \leq \gamma$ ; ( $\alpha$  este cel mai mic majorant).

Analog se definește marginea inferioară a unei mulțimi minorate.

Notațiile uzuale pentru marginea superioară și marginea inferioară ale lui X (dacă există) sunt sup X și, respectiv, inf X.

# Mulțimi de numere

Mulţimea  $N = \{0, 1, 2, ...\}$  a numerelor naturale se defineşte axiomatic după cum urmează (axiomele lui Peano):

- i. există  $s: N \mapsto N$  funcție injectivă (funcția succesor);
- ii. există  $0 \in N$  astfel încât funcția  $s: N \mapsto N \setminus \{0\}$  este bijectivă;
- iii. pentru orice submulțime  $A \subseteq N$  cu proprietățile

$$0 \in N \text{ si } s(n) \in A, \forall n \in N,$$

rezultă A = N (principiul inducției matematice).

Mulțimea numerelor întregi este  $Z = \{..., -2, -1, 0, 1, 2, ...\}$ , iar mulțimea numerelor raționale este:

$$Q=\{\tfrac{m}{n}\mid m,n\in Z, n\neq 0, \text{ cu convenția } \tfrac{m}{n}=\tfrac{p}{k}\text{ dacă } mk=np\}.$$

Prin definiție, mulțimea numerelor reale R satisface axiomele următoare:

- i. structura algebrică: există două operații (adunarea și înmulțirea, notate + și  $\cdot$  ) astfel încât  $(R,+,\cdot)$  este corp comutativ;
- ii. structura de ordine: există o relație de ordine totală pe R (notată  $\leq$ ), compatibilă cu operațiile algebrice:

$$x \le y \Rightarrow x + z \le y + z, \ \forall x, y, z \in R$$

$$0 \le x \le y \Rightarrow 0 \le xy, \forall x, y \in R.$$

iii. axioma marginii superioare (Cantor): orice submulțime nevidă și majorată a lui R are o margine superioară în R.

Modulul unui număr real 
$$x \in R$$
 este  $|x| = \begin{cases} x & \text{dacă} & x \ge 0 \\ -x & \text{dacă} & x < 0 \end{cases}$ 

Mulțimea C a numerelor complexe este mulțimea perechilor ordonate de numere reale,  $C=R\times R$ . Cu operațiile

$$(a,b) + (c,d) = (a+b,c+d)$$
 si  $(a,b) \cdot (c,d) = (ac-bd,ad+bc)$ ,

 $(C,+,\cdot)$  este corp comutativ. Se notează i=(0,1) și identificând perechile de forma (a,0) cu numărul real a, orice număr complex  $z\in C$  se scrie  $z=a+ib, a,b\in R$ ; prin calcul direct se obține  $i^2=-1$ .

Modulul numărului complex z=a+ib este, prin definiție,  $|z|=\sqrt{a^2+b^2}$ ; proprietățile modulului sunt:

i. 
$$|z| \geq 0, \forall z \in C$$

ii.  $|z|=0 \Leftrightarrow z=0$ 

iii.  $|z + w| \le |z| + |w|, \, \forall z, w \in C$ 

iv.  $|zw| = |z| \cdot |w|, \, \forall z, w \in C.$ 

Fie  $z \in C$ ,  $z \neq 0$ ; argumentul (redus) al lui z este, prin definiție, unghiul  $\varphi \in [0, 2\pi)$  făcut de semidreptele Ox și Oz (în sens trigonometric pozitiv). Forma trigonometrică a lui z este  $z = |z|(\cos \varphi + \sin \varphi)$ .

### Şiruri de numere

Un şir de numere reale (complexe) este orice aplicație  $x: N \mapsto R$  (respectiv C); notația uzuală este  $x(n) = x_n, \forall n \in N$ .

Dacă  $\varphi: N \mapsto N$  este o funcție strict crescătoare, atunci  $x_{\varphi(n)}$  se numește subșir al șirului  $x_n$ .

Un şir de numere reale (sau complexe) se numeşte convergent dacă există un număr real (respectiv complex) a cu proprietatea:

$$\forall \epsilon > 0, \exists N(\epsilon) \in N \text{ astfel încât } \forall n \geq N(\epsilon), |x_n - a| < \epsilon.$$

În acest caz, numărul a se numește limita șirului și se notează  $a = \lim_{n \to \infty} x_n$ . Dacă există, limita este unică.

Un şir este convergent dacă şi numai dacă orice subşir al său este convergent.

Şirul  $x_n$  (de numere reale sau complexe) se numeşte mărginit dacă există M>0 astfel încât  $|x_n|\leq M, \ \forall\, n\in N.$ 

Şirul  $x_n$  de numere reale se numeşte monoton dacă  $\forall n \in N, x_n \leq x_{n+1}$  (crescător), sau  $\forall n \in N, x_n \geq x_{n+1}$  (descrescător).

Orice şir convergent este mărginit. Pentru şiruri de numere reale are loc şi următorul rezultat (teorema lui Weierstrass):

Orice şir monoton şi mărginit este convergent; dacă şirul este crescător, atunci limita este marginea sa superioară ( $\sup x_n$ ), iar dacă şirul este descrescător, atunci limita este marginea sa inferioară ( $\inf x_n$ ).

Un şir  $x_n$  se numeşte şir Cauchy (sau fundamental) dacă:

$$\forall \epsilon > 0, \exists N(\epsilon) \in N \text{ astfel încât } \forall n, m \geq N(\epsilon), |x_n - x_m| < \epsilon.$$

Mulţimea numerelor reale are următoarea proprietate de completitudine (criteriul general al lui Cauchy de convergență):

Un şir de numere reale este convergent (în R) dacă şi numai dacă este şir Cauchy.

Mulţimea numerelor raţionale nu are această proprietate: de exemplu, şirul (crescător şi mărginit de numere raţionale)  $x_n = \left(1 + \frac{1}{n}\right)^n$  este şir Cauchy, dar nu are limită raţională. În schimb, există  $\lim_{n\to\infty} x_n \in R$ .

Şirurile de numere complexe convergente (Cauchy) se pot caracteriza cu ajutorul şirurilor de numere reale convergente (respectiv Cauchy):

i.  $z_n = x_n + iy_n$  este şir (de numere complexe) convergent dacă şi numai dacă şirurile (de numere reale)  $x_n$  şi  $y_n$  sunt şiruri convergente. În acest caz,  $\lim_{n \to \infty} z_n = \lim_{n \to \infty} x_n + i \lim_{n \to \infty} y_n$ .

 $\lim_{n\to\infty}z_n=\lim_{n\to\infty}x_n+i\lim_{n\to\infty}y_n.$  **ii.**  $z_n=x_n+iy_n$  este şir Cauchy în C dacă şi numai dacă  $x_n$  şi  $y_n$  sunt siruri Cauchy în R.

Mulţimea numerelor complexe are (ca şi mulţimea numerelor reale) proprietatea de completitudine: un şir de numere complexe este convergent dacă şi numai dacă este şir Cauchy.

Se spune că un şir de numere reale  $x_n$  are limita  $\infty$  dacă:

 $\forall M > 0, \exists N_M \in N \text{ astfel încât } \forall n \geq N_M, x_n > M.$ 

Şirul de numere reale  $x_n$  are limita  $-\infty$  dacă:

 $\forall M < 0, \ \exists N_M \in N \text{ astfel încât } \forall n \geq N_M, \ x_n < M.$ 

Un şir de numere complexe  $z_n$  are limita  $\infty$  dacă:

 $\forall M > 0, \exists N_M \in N \text{ astfel încât } \forall n \geq N_M, |z_n| > M.$ 

#### Serii de numere

Fie  $x_n$  un şir de numere complexe şi fie  $s_n = \sum_{k=1}^n x_k$  şirul sumelor parţiale

asociat. Seria  $\sum_n x_n$ se numește convergentă dacă șirul  $s_n$  este șir convergent;

în caz contrar seria se numește divergentă. Dacă seria este convergentă, atunci limita șirului  $s_n$  este suma seriei, notată  $\sum_n x_n$ . Seria  $\sum_n x_n$  se numește absolut convergentă dacă seria  $\sum_n |x_n|$  este serie

Seria  $\sum_{n} x_n$  se numește absolut convergentă dacă seria  $\sum_{n} |x_n|$  este serie convergentă. Orice serie absolut convergentă este convergentă, reciproca fiind falsă.

Dacă  $x_n = u_n + iv_n, u_n \in R, v_n \in R$ , atunci seria  $\sum_n x_n$  este convergentă

dacă și numai dacă seriile  $\sum_n u_n$  și  $\sum_n v_n$  sunt ambele convergente.

Dăm în continuare două exemple remarcabile de serii.

#### Seria geometrică

Fie  $z \in C$  (numit rație) și fie seria geometrică  $\sum_{n \geq 0} z^n$ . Atunci seria este

convergentă dacă și numai dacă |z| < 1. In acest caz suma seriei este:

$$\sum_{n\geq 0} z^n = \frac{1}{1-z}.$$

Evident, dacă z=1 seria este divergentă; pentru orice  $z\in C,\ z\neq 1$  șirul sumelor parțiale este:

$$s_n = \sum_{k=0}^n z^k = \frac{1 - z^{n+1}}{1 - z}, \forall z \neq 1.$$

De aici rezultă că  $s_n$  este convergent dacă și numai dacă |z| < 1.

# Seria lui Riemann (seria armonică generalizată)

Fie 
$$\alpha \in R$$
 și fie seria  $\sum_{n \ge 1} \frac{1}{n^{\alpha}}$ .

Seria dată este convergentă dacă și numai dacă  $\alpha > 1$ ; în particular, seria armonică  $\sum \frac{1}{n}$  este divergentă.

Fie  $\alpha \leq 1$ . Vom demonstra că șirul sumelor parțiale  $s_n$  este nemărginit, deci divergent; pentru orice  $n \in N$ , avem inegalitățile:

$$s_{2^{n}} = 1 + \frac{1}{2^{\alpha}} + \frac{1}{3^{\alpha}} + \dots + \frac{1}{2^{n\alpha}} \ge 1 + \frac{1}{2} + \dots + \frac{1}{2^{n}} \ge$$

$$\ge 1 + \frac{1}{2} + \left(\frac{1}{3} + \frac{1}{4}\right) \left(+\frac{1}{5} + \frac{1}{6} + \frac{1}{7} + \frac{1}{8}\right) + \dots$$

$$\dots + \left(\frac{1}{2^{n-1} + 1} + \frac{1}{2^{n-1} + 2} + \dots + \frac{1}{2^{n}}\right) \ge$$

$$\ge 1 + \frac{1}{2} + 2 \cdot \frac{1}{4} + 4 \cdot \frac{1}{8} + \dots + 2^{n-1} \cdot \frac{1}{2^{n}} = 1 + \frac{n}{2} \to \infty.$$

Fie acum  $\alpha>1$ ; este suficient să arătăm că șirul sumelor parțiale este mărginit (fiind crescător, rezultă convergent). Pentru orice  $n\in N$  avem inegalitățile:

$$\begin{split} s_{2^{n}-1} &= 1 + \left(\frac{1}{2^{\alpha}} + \frac{1}{3^{\alpha}}\right) + \left(\frac{1}{4^{\alpha}} + \frac{1}{5^{\alpha}} + \frac{1}{6^{\alpha}} + \frac{1}{7^{\alpha}}\right) + \ldots + \\ &\quad + \left(\frac{1}{2^{(n-1)\alpha}} + \frac{1}{2^{(n-1)\alpha} + 1} + \ldots + \frac{1}{2^{n\alpha} - 1}\right) \leq \\ &\leq 1 + 2 \cdot \frac{1}{2^{\alpha}} + 4 \cdot \frac{1}{4^{\alpha}} + 8 \cdot \frac{1}{8^{\alpha}} + \ldots + 2^{n-1} \cdot \frac{1}{2^{(n-1)\alpha}} = \\ &= 1 + \frac{1}{2^{\alpha-1}} + \frac{1}{2^{2(\alpha-1)}} + \frac{1}{2^{3(\alpha-1)}} + \ldots + \frac{1}{2^{(n-1)(\alpha-1)}} \leq \frac{2^{\alpha-1}}{2^{\alpha-1} - 1}. \end{split}$$

De aici rezultă că șirul  $s_n$  este mărginit.

# Criterii de convergență pentru serii de numere

# 1. Criteriul general al lui Cauchy.

Fie  $z_n \in C$  un șir de numere complexe; atunci seria  $\sum z_n$  este convergentă dacă și numai dacă  $\forall \varepsilon > 0, \exists N(\varepsilon) \in N$  cu proprietatea

$$|z_{n+1} + z_{n+2} + \dots + z_{n+p}| < \varepsilon, \forall n \ge N(\varepsilon), \forall p \in N.$$

## 2. Criteriul comparației

- Fie  $u_n \ge v_n \ge 0$ . a. Dacă seria  $\sum u_n$  este convergentă, atunci și seria  $\sum_n v_n$  este convergentă.
- **b.** Dacă seria  $\sum_{n=1}^{n} v_n$  este divergentă, atunci și seria  $\sum_{n=1}^{n} u_n$  este divergentă.

# 3. Criteriul de comparație la limită

- Fie  $u_n>0$  și  $v_n>0$ . **a.** Dacă  $\lim_{n\to\infty}\frac{u_n}{v_n}$  există și este un număr real nenul, atunci cele două serii au aceeaşi natură.
- **b.** În particular, dacă  $v_n = \frac{1}{n^{\alpha}}$ , atunci obținem criteriul de comparație la limită cu seria lui Riemann:

Fie  $\ell = \lim_{n \to \infty} n^{\alpha} u_n$ .

- i. Dacă  $\alpha > 1$  și  $\ell \in R$ , ( $\ell$  poate fi și 0), atunci seria  $\sum u_n$  este convergentă.
- ii. Dacă  $\alpha \leq 1$  și  $\ell > 0, (\ell \text{ poate fi și } \infty)$  atunci seria  $\sum_{n=0}^{\infty} u_n$  este divergentă.

# 4. Criteriul raportului (al lui D'Alembert)

Fie  $u_n > 0$ ; presupunem că există  $\lim_{n \to \infty} \frac{u_{n+1}}{u_n} = \ell$ 

- a. Dacă  $\ell < 1$ , atunci seria  $\sum_{n} u_n$  este convergentă.
- **b.** Dacă  $\ell > 1$ , atunci seria  $\sum_{n=1}^{\infty} u_n$  este divergentă.

O variantă (mai generală) a acestui criteriu este: Dacă există  $c \in (0,1)$  și  $n_0 \in N$  astfel încât

$$\frac{u_{n+1}}{u_n} < c, \forall \, n \ge n_0,$$

atunci seria  $\sum_n u_n$  este convergentă.

#### 5. Criteriul rădăcinii (al lui Cauchy)

Fie  $u_n > 0$ ; presupunem că există  $\lim_{n \to \infty} \sqrt[n]{u_n} = \ell$ .

a. Dacă  $\ell < 1$ , atunci seria  $\sum_{n} u_n$  este convergentă.

# 1.1. NOŢIUNI TEORETICE

13

**b.** Dacă  $\ell > 1$ , atunci seria  $\sum_{n} u_n$  este divergentă.

O variantă (mai generală) a acestui criteriu este: Dacă există  $c \in (0,1)$  și  $n_0 \in N$  astfel încât

$$\sqrt[n]{u_n} < c, \forall n \ge n_0,$$

atunci seria $\sum_n u_n$ este convergentă.

# 6. Criteriul Raabe-Duhamel

Fie  $u_n > 0$ ; presupunem că există

$$\lim_{n \to \infty} n \left( \frac{u_n}{u_{n+1}} - 1 \right) = \ell.$$

a. Dacă  $\ell > 1$ , atunci seria  $\sum u_n$  este convergentă.

**b.** Dacă  $\ell < 1$ , atunci seria  $\sum_{n=1}^{n} u_n$  este divergentă.

# 7. Criteriul logaritmic

Fie  $u_n > 0$ ; presupunem că există  $\lim_{n \to \infty} \frac{\ln \frac{1}{u_n}}{\ln n} = \ell$ .

a. Dacă  $\ell > 1$ , atunci seria  $\sum_{n} u_n$  este convergentă. b. Dacă  $\ell < 1$ , atunci seria  $\sum_{n} u_n$  este divergentă.

# 8. Criteriul condensării

Fie  $u_n \geq u_{n+1} \geq 0, \forall n \in \mathbb{N}$ . Atunci seriile

$$\sum_{n} u_n \text{ si } \sum_{n} 2^n u_{2^n}$$

au aceeași natură.

#### 9. Criteriul integral

Fie  $f:(0,\infty)\mapsto [0,\infty)$  o funcție descrescătoare și fie șirul

$$a_n = \int_1^n f(t)dt.$$

Atunci seria  $\sum f(n)$  este convergentă dacă și numai dacă șirul  $a_n$  este convergent.

# 10. Criteriul lui Leibniz

Fie  $u_n \ge 0$  și fie seria alternată  $\sum_{n} (-1)^n u_n$ . Dacă șirul  $u_n$  este descrescător și are limita zero, atunci seria este convergentă.

# 11. Criteriul Abel-Dirichlet

Fie  $a_n$  un şir descrescător cu  $a_n \to 0$  şi fie  $u_n$  un şir de numere complexe

astfel încât șirul sumelor parțiale  $\sum_{k=1}^n u_k$  este mărginit. Atunci seria  $\sum_n a_n u_n$  este convergentă.

# Convergență condiționată

O serie convergentă  $\sum_n u_n$  se numește necondiționat convergentă dacă pentru orice permutare (funcție bijectivă)  $\sigma: N \mapsto N$ , seria  $\sum_n u_{\sigma(n)}$  este de asemenea convergentă; altfel, seria se numește condiționat convergentă.

Dăm în continuare două rezultate remarcabile cu privire la convergența condiționată:

#### Teorema lui Dirichlet

Orice serie absolut convergentă este necondiționat convergentă.

#### Teorema lui Riemann

Fiind date o serie convergentă, dar nu absolut convergentă și  $S \in R \cup \{\pm \infty\}$ , atunci există o permutare a termenilor seriei inițiale astfel încât suma noii serii să fie S.

### Aproximarea sumelor seriilor convergente

Evident, suma unei serii convergente se poate aproxima cu termenii şirului sumelor parţiale. Dăm mai jos două rezultate în acest sens.

# Aproximarea sumelor seriilor cu termeni pozitivi

Fie  $u_n \geq 0$  și fie  $k \geq 0$  astfel încât  $\frac{u_{n+1}}{u_n} < k < 1, \forall n \in \mathbb{N}$ . Dacă S este suma seriei convergente  $\sum_{n \in \mathbb{N}} u_n$ , iar  $s_n = \sum_{k=0}^n u_k$  este suma primilor n+1 termeni, atunci:

$$|S - s_n| < \frac{k}{1 - k} u_n.$$

#### Aproximarea sumelor seriilor alternate

Fie  $\sum_{n\in N} (-1)^n u_n$  o serie alternată convergentă, și fie S suma sa.

Dacă  $S_n = \sum_{k=0}^{n} (-1)^k u_k$  este suma primilor n+1 termeni, atunci

$$|S - S_n| \le u_{n+1}.$$

#### 1.2 Serii cu termeni pozitivi

Să se studieze natura următoarelor serii cu termeni pozitivi definite de şirul  $x_n$  (exerciţiile 1-30):

1. 
$$x_n = \left(\frac{3n}{3n+1}\right)^n$$
 Soluţie

Seria diverge; se aplică criteriul necesar:  $\lim_{n\to\infty} x_n = \frac{1}{\sqrt[3]{e}} \neq 0$ .

**2.** 
$$x_n = \frac{1}{n!}$$

Seria converge; se apoate aplica criteriul comparației:

$$x_n \le \frac{1}{2^n}, \forall n \ge 4.$$

**3.** 
$$x_n = \frac{1}{n\sqrt{n+1}}$$
.

Aplicăm criteriul de comparație la limită:  $\lim_{n\to\infty} n^{\frac{3}{2}}x_n = 1$ , deci seria converge.

**4.** 
$$x_n = \frac{\sqrt[3]{n+1} - \sqrt[3]{n}}{n^a}, a \in R$$

$$\lim_{n\to\infty} n^{\alpha} x_n = \lim_{n\to\infty} n^{\alpha} \frac{1}{n^a (\sqrt[3]{(n+1)^2} + \sqrt[3]{n(n+1)} + \sqrt[3]{n^2})}.$$
 Alegând  $\alpha = a + \frac{2}{3}$ , se obţine limita  $\frac{1}{3}$  (finită şi nenulă) şi deci, conform cri-

teriului de comparație la limită, seria este convergentă dacă și numai dacă  $a > \frac{1}{3}$ .

**5.** 
$$x_n = \frac{n^a}{\sqrt{n+1} - \sqrt{n}}, a \in R$$

Se amplifică cu conjugata și se procedează ca în exemplul precedent.

$$6. x_n = \sqrt{n} \ln \left( 1 + \frac{1}{n} \right)$$

# Soluţie

Se compară la limită cu $\frac{1}{\sqrt{n}};$ seria este divergentă.

7. 
$$x_n = \frac{1}{\sqrt{n}} \ln \left( 1 + \frac{1}{\sqrt{n^3 + 1}} \right)$$

### Soluţie

Se compară la limită cu  $\frac{1}{n^2}$ .

**8.** 
$$x_n = \frac{1}{n^a} \ln \left( 1 + \frac{1}{n^b} \right), \ a, b \in R$$

### Soluţie

Se compară la limită cu  $\frac{1}{n^{b-a}}$ .

**9.** 
$$x_n = \frac{\ln(n+2)}{\sqrt{n^3+1}}$$

### Soluție

Pentru orice  $\alpha \in (1, \frac{3}{2})$  se obţine  $\lim_{n \to \infty} n^{\alpha} x_n = 0$  şi deci seria este convergentă.

**10.** 
$$x_n = \frac{n!}{n^{2n}}$$

# Soluţie

Aplicăm criteriul lui D'Alembert:

$$\lim_{n \to \infty} \frac{x_{n+1}}{x_n} = \lim_{n \to \infty} \left(\frac{n}{n+1}\right)^{2n} = \frac{1}{e^2} < 1,$$

deci seria converge

**11.** 
$$x_n = n! \left(\frac{a}{n}\right)^n, a \in R$$

#### Soluție

Se aplică criteriul raportului:

$$\lim_{n \to \infty} \frac{x_{n+1}}{x_n} = \lim_{n \to \infty} a \left(\frac{n}{n+1}\right)^n = \frac{a}{e}$$

Dacă a < e, atunci seria este convergentă; dacă a > e, atunci seria este divergentă. Pentru a = e, aplicăm criteriul lui Raabe-Duhamel:

$$\lim_{n \to \infty} n \left( \frac{x_n}{x_{n+1}} - 1 \right) = \lim_{n \to \infty} n \left( \left( \frac{n+1}{n} \right)^n \frac{1}{e} - 1 \right) =$$

$$= n \left( \left( 1 + \frac{1}{n} \right)^n \frac{1}{e} - 1 \right) = \frac{1}{e} \lim_{n \to \infty} \frac{\left( 1 + \frac{1}{n} \right)^n - e}{\frac{1}{n}}.$$

Ultima limită se calculează aplicând regula lui L'Hopital:

$$\lim_{x \to 0} \frac{(1+x)^{\frac{1}{x}} - e}{x} = \lim_{x \to 0} \frac{(1+x)^{\frac{1}{x}-1} [x - (1+x)\ln(1+x)]}{x^2} = -\frac{e}{2};$$

rezultă că seria este divergentă.

Observație: pentru a = e, divergența seriei se poate demonstra și aplicând criteriul necesar: șirul  $x_n$  nu converge la zero.

**12.** 
$$x_n = \frac{(n!)^2}{(2n)!}$$

### Soluție

Seria este convergentă; se aplică criteriul raportului.

**13.** 
$$x_n = (2n+1) \left( \frac{a(a-1)...(a-n+1)}{(a+1)(a+2)...(a+n+1)} \right)^2, a \notin Z.$$

## Soluţie

Aplicând criteriul raportului, rezultă:

$$\lim_{n\to\infty}\frac{x_{n+1}}{x_n}=\lim_{n\to\infty}\frac{(2n+3)(a-n)^2}{(2n+1)(a+n+2)^2}=1. \text{ Cu criteriul Raabe-Duhamel,}$$
 se obţine: 
$$\lim_{n\to\infty}n\left(\frac{x_n}{x_{n+1}}-1\right)=4a+3. \text{ Dacă }a>-\frac{1}{2}, \text{ atunci seria converge; dacă }a<-\frac{1}{2}, \text{ seria diverge; dacă }a=-\frac{1}{2}, \text{ atunci }x_n=\frac{2}{2n+1} \text{ și deci seria diverge.}$$

**14.** 
$$x_n = \frac{n!}{(a+1)(a+2)...(a+n)}, a > -1.$$

#### Soluție

Criteriul raportului nu decide; aplicând criteriul Raabe-Duhamel, se obtine:

$$\lim_{n\to\infty} n\left(\frac{x_n}{x_{n+1}}-1\right) = \lim_{n\to\infty} n\left(\frac{a+n+1}{n+1}-1\right) = a,$$

deci pentru a<1 seria diverge, iar pentru a>1 converge; dacă a=1, se obține seria armonică (divergentă).

**15.** 
$$x_n = \frac{1 \cdot 3 \cdot 5....(2n-1)}{2 \cdot 4 \cdot 6...2n}$$
.

#### Soluţie

Seria este divegentă (criteriul Raabe-Duhamel).

**16.** 
$$x_n = \frac{1 \cdot 3 \cdot 5 \dots (2n-1)}{2 \cdot 4 \cdot 6 \dots 2n} \cdot \frac{1}{2n+1}$$

#### Solutie

Se aplică criteriul lui Raabe-Duhamel: seria este convergentă.

**17.** 
$$x_n = \left(1 - \frac{3\ln n}{2n}\right)^n$$

# Soluţie

Criteriul rădăcinii nu decide; aplicând criteriul logaritmic, se obține:

$$\lim_{n \to \infty} \frac{\ln(1 - \frac{3\ln n}{2n})^{-n}}{\ln n} = \frac{3}{2},$$

deci seria converge.

**18.** 
$$x_n = \left(\frac{n+1}{3n+1}\right)^n$$

### Soluţie

Seria converge; se aplică criteriul rădăcinii.

**19.** 
$$x_n = \left(\frac{an+1}{bn+1}\right)^n$$
,  $a > 0, b > 0$ 

# Soluţie

Aplicând criteriul rădăcinii se obține:

$$\lim_{n \to \infty} \sqrt[n]{x_n} = \frac{a}{b}.$$

Dacă a < b, atunci seria converge, iar dacă a > b seria diverge. Dacă a = b, atunci seria diverge (criteriul necesar).

**20.** 
$$x_n = \begin{cases} \frac{1}{n} a^n & \text{dacă} & n \text{ par} \\ n a^n & \text{dacă} & n \text{ impar} \end{cases}$$
,  $a > 0$ 

#### Soluţie

Aplicând criteriul rădăcinii, se obține  $\lim_{n\to\infty} \sqrt[n]{|x_n|} = a$ , deci dacă a < 1, seria este convergentă, iar dacă a > 1, seria este divergentă; pentru a = 1, seria este divergentă (criteriul necesar). Să mai observăm că pentru această serie, criteriul raportului nu decide.

**21.** 
$$x_n = \frac{\sqrt{1 - \cos\frac{\pi}{n}}}{n\ln(n+1)}$$

Solutie

$$x_n = \frac{\sqrt{2\sin^2\frac{\pi}{2n}}}{n\ln(n+1)} = \frac{\sqrt{2}\sin\frac{\pi}{2n}}{n\ln(n+1)} < \frac{\sqrt{2}\frac{\pi}{2n}}{n\ln(n+1)} < \frac{1}{n^2}, \text{ deci seria converge.}$$

**22.** 
$$x_n = \frac{\ln n \cdot \ln(1 + \frac{1}{n})}{n}$$

Soluție  $x_n < \frac{\frac{1}{n} \ln n}{n} = \frac{\ln n}{n^2}.$  Se aplică acum criteriul logaritmic:

$$\lim_{n \to \infty} \frac{\ln\left(\frac{n^2}{\ln n}\right)}{\ln n} = \lim_{n \to \infty} \left(2 - \frac{\ln(\ln n)}{\ln n}\right) = 2,$$

deci seria converge.

$$23. \ x_n = \left(\frac{1}{\ln n}\right)^{\ln(\ln n)}.$$

Se aplica criteriul logaritmic:

$$\lim_{n\to\infty}\frac{\ln{(\ln{n})^{\ln{(\ln{n})}}}}{\ln{n}}=\lim_{n\to\infty}\frac{(\ln{(\ln{n})})^2}{\ln{n}}=0,$$

deci seria diverge.

**24.** 
$$x_n = \sqrt[n]{n} - 1$$
.

Din inegalitate<br/>a $n>\left(1+\frac{1}{n}\right)^n, \forall\, n\,\geq 3$ rezultă $\sqrt[n]{n}-1>\frac{1}{n},$ deci seria este divergentă.

**25.** 
$$x_n = \frac{1}{n \ln n}$$
.

# Soluție

Se aplică criteriul integral:

$$\lim_{n \to \infty} \int_{2}^{n} \frac{1}{x \ln x} dx = \lim_{n \to \infty} \ln(\ln n) - \ln(\ln 2) = \infty,$$

deci seria diverge.

26. 
$$x_n = \frac{1}{n \ln^2 n}$$
 Soluţie

Seria converge (se aplică criteriul integral).

**27.** 
$$x_n = \frac{a^n(n!)^2}{(2n)!}, a > 0$$

#### Soluție

Se aplică criteriul raportului:

$$\frac{x_{n+1}}{x_n} = \frac{a(n+1)^2}{(2n+1)(2n+2)} \to \frac{a}{4}.$$

Rezultă că pentru  $a \in (0,4)$  seria converge, iar pentru a > 4, seria diverge. Pentru a = 4, se aplică criteriul Raabe-Duhamel:

$$\lim_{n \to \infty} \left( \frac{x_n}{x_{n+1}} - 1 \right) = \lim_{n \to \infty} n \left( \frac{(2n+1)(2n+2)}{4(n+1)^2} - 1 \right) = -\frac{1}{2},$$

deci seria diverge.

**28.** 
$$x_n = \frac{a(a+1)...(a+n-1)}{b(b+1)...(b+n-1)}(c-2)^n, a>0, b>0, c>2$$

# Soluţie

Se aplică criteriul raportului:

$$\lim_{n \to \infty} \frac{x_{n+1}}{x_n} = \lim_{n \to \infty} \frac{a+n}{b+n} (c-2) = c-2,$$

deci pentru 2 < c < 3 seria converge, și pentru c > 3 seria diverge; dacă c = 3, se aplică criteriul Raabe-Duhamel și rezultă: dacă b - a < 1 seria diverge, dacă b - a > 1, seria converge. Dacă b - a = 1, atunci seria este divergentă (seria armonică).

**29.** 
$$x_n = \frac{1}{n^p \ln^q n}, p > 0, q > 0.$$

# Soluție

Dacă p > 1, atunci seria converge pentru orice q > 0 deoarece (se aplică criteriul comparației):

$$x_n \le \frac{1}{n^p}.$$

Dacă p=1, se aplică criteriul integral: seria converge dacă și numai dacă q>1.

Dacă p < 1 se aplică criteriul de condensare: seria are aceeași natură cu seria cu termenul general  $\frac{1}{n^q 2^{n(p-1)} \ln^q 2}$ , care este divergentă pentru orice q > 0 (se poate aplica criteriul raportului).

$$30. \ x_n = \frac{1}{n^{\alpha}} \sin \frac{\pi}{n}, \alpha \in R$$

#### Solutie

Aplicând criteriul de comparație la limită, rezultă că seria are aceeași natură cu seria  $\sum_n \frac{1}{n^{\alpha+1}}$ .

# 1.3 Serii cu termeni oarecari

Să se studieze convergența și absolut convergența seriilor definite de șirul  $x_n$  (exercițiile 31-50):

**31.** 
$$x_n = \frac{(-1)^n}{n}$$

#### Soluție

Seria nu este absolut convergentă (seria modulelor este seria armonică), dar este convergentă (cu criteriul lui Leibniz):  $\frac{1}{n}$  este descrescător la 0.

**32.** 
$$x_n = \begin{cases} -\frac{1}{n} & \text{dacă} \quad n \text{ impar} \\ \frac{1}{2^n} & \text{dacă} \quad n \text{ par} \end{cases}$$

#### Soluţie

Să observăm mai întâi că nu se poate aplica criteriul lui Leibniz; șirul

$$a_n = \begin{cases} \frac{1}{n} & \text{dacă} \quad n \text{ impar} \\ \frac{1}{2^n} & \text{dacă} \quad n \text{ par} \end{cases}$$

tinde la zero dar nu este descrescător. Vom arăta acum că seria este divergentă, deci condiția de monotonie din ipoteza criteriului lui Leibniz este necesară. Şirul sumelor parțiale are un subșir divergent:

$$s_{2n} = -\left(1 + \frac{1}{3} + \dots + \frac{1}{2n-1}\right) + \left(\frac{1}{2^2} + \frac{1}{2^4} + \dots + \frac{1}{2^{2n}}\right) \to -\infty,$$

deci seria este divergentă (conform criteriului necesar).

**33.** 
$$x_n = \begin{cases} -\frac{1}{n^2} & \text{dacă} & n \text{ impar} \\ \frac{1}{n^3} & \text{dacă} & n \text{ par} \end{cases}$$

#### Solutie

Seria este absolut convergentă.

Pe de altă parte, șirul  $a_n = \begin{cases} \frac{1}{n^2} & \text{dacă} & n \, \text{impar} \\ \frac{1}{n^3} & \text{dacă} & n \, \text{par} \end{cases}$  nu este descrescător, ceea ce arată că criteriul lui Leibniz nu este necesar pentru convergența unei serii alternate.

**34.** 
$$x_n = (-1)^n$$

#### Solutie

Seria este divergentă: se aplică criteriul necesar.

**35.** 
$$x_n = \sin\left(\pi\sqrt{n^2 + 1}\right)$$

## Soluție

Seria este alternată:

$$x_n = (-1)^n \sin\left(\pi\sqrt{n^2 + 1} - n\pi\right) = (-1)^n \sin\frac{1}{n + \sqrt{n^2 + 1}}.$$

Seria este convergentă (cu criteriul lui Leibniz).

**36.** 
$$x_n = \frac{\sin nx}{n}, x \in R$$

### Soluție

Dacă  $x = k\pi, k \in \mathbb{Z}$ , atunci  $x_n = 0, \forall n \in \mathbb{N}$ ; presupunem în continuare că  $x \neq k\pi, k \in \mathbb{Z}$ . Arătăm mai întâi că seria nu este absolut convergentă:

$$|x_n| = \frac{|\sin(nx)|}{n} \ge \frac{\sin^2(nx)}{n} = \frac{1 - \cos(2nx)}{2n}, \forall n \in \mathbb{N}^*.$$

Deci, presupunând prin absurd că seria dată ar fi absolut convergentă, ar rezulta (cu criteriul de comparație) că și seria  $\sum_{n} \frac{1-\cos(2nx)}{2n}$  ar fi

convergentă. Seria  $\sum_{n} \frac{\cos(2nx)}{2n}$  este convergentă (aplicăm criteriul Abel-Dirichlet): fie  $a_n = \frac{1}{2n}$  și  $u_n = \cos(2nx)$ . Atunci  $a_n$  este descrescător la 0, iar  $u_n$  are șirul sumelor parțiale mărginit:

$$\left| \sum_{k=1}^{n} \cos(2nx) \right| = \left| \frac{\sin(nx)\cos(n+1)x}{\sin x} \right| \le \frac{1}{|\sin x|}.$$

Rezultă că și seria  $\sum_{n} \frac{1}{2n}$  ar trebui să fie convergentă, fiind suma a două serii convergente: contradicție.

Arătăm acum că seria este convergentă, tot cu criteriul Abel-Dirichlet; fie  $a_n = \frac{1}{n}$  şi  $u_n = \sin(nx)$ . Atunci  $a_n$  este descrescător la 0, iar  $u_n$  are şirul sumelor parțiale mărginit:

$$\left| \sum_{k=1}^{n} \sin(kx) \right| = \left| \frac{\sin \frac{nx}{2} \cdot \sin \frac{(n+1)x}{2}}{\sin \frac{x}{2}} \right| \le \frac{1}{|\sin \frac{x}{2}|}.$$

$$37. \ x_n = \frac{\sin nx}{n^{\alpha}}, x \in R, \alpha \in R$$

# Soluţie

Dacă  $x = k\pi, k \in \mathbb{Z}$ , atunci  $x_n = 0$ ; presupunem  $x \neq k\pi, k \in \mathbb{Z}$ . Dacă  $\alpha \leq 0$ ,

atunci  $x_n$  nu converge la 0, deci seria diverge. Presupunem  $\alpha > 0$ . Dacă  $\alpha > 1$ , atunci seria este absolut convergentă (cu criteriul de comparație):  $|x_n| \leq \frac{1}{n^{\alpha}}$ .

Dacă  $\alpha \in (0,1]$ , atunci seria nu este absolut convergentă (am demonstrat în exercițiul anterior că pentru  $\alpha = 1$  seria nu este absolut convergentă), dar este convergentă (cu criteriul Abel-Dirichlet).

**38.** 
$$x_n = (-1)^n \sqrt[n]{n} \sin \frac{1}{n}$$

#### Soluție

Seria nu este absolut convergentă (se compară la limită cu seria armonică). Seria este alternată; vom demonstra că șirul  $a_n = \sqrt[n]{n} \sin \frac{1}{n}$  este descrescător la 0, deci seria converge.

Evident  $a_n \to 0$ ; pentru a arăta că  $a_n$  este descrescător (începând de la un rang suficient de mare), fie funcția  $f(x) = x^{\frac{1}{x}} \sin \frac{1}{x}$ . Calculăm

$$f'(x) = x^{\frac{1}{x}-2} \left( (1 - \ln x) \sin \frac{1}{x} - \cos \frac{1}{x} \right).$$

Pentru a studia semnul derivatei (pentru x "mare"), calculăm:

$$\lim_{x \to \infty} (1 - \ln x) \sin \frac{1}{x} - \cos \frac{1}{x} = -1 + \lim_{x \to \infty} \frac{\sin \frac{1}{x}}{\frac{1}{x}} \cdot \frac{1 - \ln x}{x} = -1,$$

deci f'(x) < 0 pentru x suficient de mare, deci şirul  $a_n$  este descrescător.

**39.** 
$$x_n = \frac{n(2+i)^n}{3^n}$$

#### Solutie

Seria este absolut convergentă:

$$|x_n| = \frac{|n(2+i)^n|}{3^n} = n\left(\frac{\sqrt{5}}{3}\right)^n,$$

ultima serie fiind convergentă (criteriul raportului sau al rădăcinii).

**40.** 
$$x_n = \frac{1}{n+i}$$

#### Soluţie

Seria este divergentă;

$$x_n = \frac{1}{n+i} = \frac{n-i}{n^2+1} = \frac{n}{n^2+1} - i\frac{1}{n^2+1}.$$

Seriile  $\sum_{n} \frac{n}{n^2 + 1}$  şi  $\sum_{n} \frac{1}{n^2 + 1}$  nu sunt ambele convergente (prima diverge, a doua converge), deci seria din enunt diverge.

**41.** 
$$x_n = \frac{1}{(n+i)\sqrt{n}}$$

# Soluţie

Seria este absolut convergentă:  $|x_n| = \frac{1}{\sqrt{n(n^2+1)}}$ ; se compară la limită cu seria armonică.

**42.** 
$$x_n = \frac{z^n}{n}, z \in C$$

### Soluţie

Dacă |z| < 1, atunci seria este absolut convergentă (cu criteriul raportului). Dacă |z| > 1, atunci seria este divergentă, deoarece  $x_n$  nu converge la 0. Studiem acum cazul |z| = 1; fie  $z = e^{it}$ ,  $t \in R$ . Atunci

$$x_n = \frac{e^{int}}{n} = \frac{\cos(nt)}{n} + i\frac{\sin(nt)}{n}.$$

Seria nu este absolut convergentă deoarece  $|x_n| = \frac{1}{n}$ . Dacă  $t = 2k\pi, k \in \mathbb{Z}$ , atunci seria este divergentă:  $x_n = \frac{1}{n}$ . Dacă  $t \neq 2k\pi$ , atunci seriile  $\sum_n \frac{\cos(nt)}{n}$  și  $\sum_n \frac{\sin(nt)}{n}$  sunt ambele convergente (cu criteriul Abel-Dirichlet, ca în exercițiul 36).

**43.** 
$$x_n = \frac{z^n}{n!}, z \in C$$

## Soluție

Seria este absolut convergentă.

**44.** 
$$x_n = \frac{z^n}{n^{\alpha}}, z \in C, \alpha \in R$$

#### Soluție

Dacă |z| < 1, seria este absolut convergentă pentru orice  $\alpha \in R$ ; dacă |z| > 1, atunci seria este divergentă pentru orice  $\alpha \in R$ . Dacă |z| = 1, şi  $\alpha > 1$ , seria converge absolut, iar dacă  $\alpha \le 0$ , seria diverge. In cazul |z| = 1 şi  $\alpha \in (0,1]$  se procedează ca în exercițiile 36,37 și 42.

**45.** 
$$x_n = \sin \frac{1}{n^2} + i(-1)^n \ln \left(1 + \frac{1}{n}\right)$$

### Soluție

Seria este convergentă deoarece seriile:

$$\sum_{n} \sin \frac{1}{n^2} \quad \text{si} \quad \sum_{n} (-1)^n \ln \left( 1 + \frac{1}{n} \right)$$

sunt convergente (se aplică criteriul de comparație la limită cu  $\frac{1}{n^2}$  și, respectiv, criteriul lui Leibniz); seria nu este absolut convergentă (se aplică criteriul de comparație la limită cu  $\frac{1}{n}$  pentru seria modulelor).

**46.** 
$$x_n = \frac{a + (-1)^n \sqrt{n}}{n}, a \in R$$

### Soluție

Dacă a=0 seria este convergentă dar nu este absolut convergentă. Dacă  $a \neq 0$ , atunci seria este divergentă.

**47.** 
$$x_n = \frac{a\sqrt[3]{n} + b(-1)^n \sqrt{n}}{\sqrt{n^3 + 1}}$$

# Soluţie

Dacă b=0 seria este absolut convergentă pentru orice  $a \in R$ . Dacă  $b \neq 0$ , atunci seria este convergentă dar nu este absolut convergentă  $\forall a \in R$ .

**48.** 
$$x_{2n-1} = \frac{1}{\sqrt{n+1}-1}$$
 şi  $x_{2n} = -\frac{1}{\sqrt{n+1}+1}$ 

#### Soluție

Seria este divergentă:  $\sum_{n\geq 1} (x_{2n-1} + x_{2n}) = \sum_{n\geq 1} \frac{2}{n}.$ 

**49.** 
$$x_{2n-1} = \frac{1}{3^{n-1}}$$
 şi  $x_{2n} = -\frac{1}{5^n}$ 

# Soluție

Seria este absolut convergentă:

$$\sum_{n\geq 1} |x_n| = \sum_{n\geq 1} \frac{1}{3^{n-1}} + \sum_{n\geq 1} \frac{1}{5^n}.$$

**50.** 
$$x_{2n-1} = \frac{1}{5n-3}$$
 şi  $x_{2n} = -\frac{1}{5n-3}$ 

#### Soluție

Seria este convergentă dar nu absolut convergentă:

$$\sum_{n\geq 1} (x_{2n+1} + x_{2n}) = \sum_{n\geq 1} \left( \frac{1}{5n-3} - \frac{1}{5n-1} \right) = \sum_{n} \frac{2}{(5n-3)(5n-1)}.$$

**51.** În seria convergentă  $\sum_{n\geq 1} \frac{(-1)^{n+1}}{n} = 1 - \frac{1}{2} + \frac{1}{3} - \frac{1}{4} + \dots$  să se permute ordinea termenilor astfel încât să se obțină o serie convergentă dar cu o altă sumă.

# Soluţie

Seria  $\sum_{n>1} \frac{(-1)^{n+1}}{n}$  este convergentă și suma sa este un număr nenul S>0.

Menţionăm că suma acestei serii este ln 2, dar acest rezultat nu se va folosi în raţionamentul următor. Fie deci:

$$1 - \frac{1}{2} + \frac{1}{3} - \frac{1}{4} + \dots = S$$

Înmulțind egalitatea de mai sus cu  $\frac{1}{2}$ , rezultă:

$$\frac{1}{2} - \frac{1}{4} + \frac{1}{6} - \frac{1}{8} + \dots = \frac{1}{2}S$$

Însumăm acum cele două egalități grupând termenii astfel:

$$1 + \left(-\frac{1}{2} + \frac{1}{2}\right) + \frac{1}{3} + \left(-\frac{1}{4} - \frac{1}{4}\right) + \frac{1}{5} + \left(-\frac{1}{6} + \frac{1}{6}\right) + \frac{1}{7} + \left(-\frac{1}{8} - \frac{1}{8}\right) + \frac{1}{9} + \left(\frac{1}{10} - \frac{1}{10}\right) + \frac{1}{11} + \dots = \frac{3}{2}S.$$

Seria de mai sus este (după efectuarea calculelor din paranteze):

$$1 + \frac{1}{3} - \frac{1}{2} + \frac{1}{5} + \frac{1}{7} - \frac{1}{4} + \frac{1}{9} + \frac{1}{11} - \dots = \frac{3}{2}S,$$

care este o permutare a seriei initiale.

Să se aproximeze cu o eroare mai mică decât  $\epsilon$  sumele seriilor definite de şirul  $x_n$  (exercițiile 52-56)

**52.** 
$$x_n = \frac{(-1)^n}{n!}, \epsilon = 10^{-3}$$

#### Soluție

În cazul seriilor alternate, eroarea este mai mică decât primul termen neglijat; deci cea mai mică soluție a inecuației  $|x_n| < \epsilon$  este rangul primului termen neglijat. Obținem:  $\frac{1}{n!} < 10^{-3} \Rightarrow n = 7$ , deci

$$S \approx \sum_{k=0}^{6} \frac{(-1)^k}{k!} = 0,36805.$$

**53.** 
$$x_n = \frac{(-1)^n}{n^3 \sqrt{n}}, \ \epsilon = 10^{-2}.$$

# Soluţie

$$n^3\sqrt{n} > 100 \Rightarrow n = 4$$
, deci $S \approx \sum_{k=2}^{3} \frac{1}{n^3\sqrt{n}} = 0,06725$ .

**54.** 
$$x_n = \frac{1}{n!}, \epsilon = 10^{-3}$$

# Soluţie

Dacă S este suma seriei și  $s_n = \sum_{k>0} \frac{1}{k!}$ , atunci

$$S - s_n = \frac{1}{(n+1)!} + \frac{1}{(n+2)!} + \dots \le \frac{1}{n!} \frac{1}{n} < 10^{-3} \Rightarrow n = 6,$$

deci  $S \approx 2,7166$ .

**55.** 
$$x_n = \frac{1}{n!2^n}, \epsilon = 10^{-4}$$

### Soluţie

Fie S suma seriei și  $s_n$  suma primilor termeni. Aplicăm rezultatul cu privire la aproximarea unei serii cu termeni pozitivi (a se vedea secțiunea teoretică); pentru aceasta, evaluăm:

$$\frac{x_{n+1}}{x_n} = \frac{1}{2n+2} < \frac{1}{6} = k, \forall n \ge 2,$$

deci 
$$S - s_n \le x_n \frac{k}{1 - k} = \frac{1}{n!2^n} \frac{1}{5} < 10^{-4} \Rightarrow n = 5.$$

Aproximarea cerută este  $S \approx s_5 = \sum_{k=1}^{5} \frac{1}{k^2 k!} = 1,146463...$ 

**56.** 
$$x_n = \frac{1}{n^4(2n)!}, \epsilon = 10^{-6}$$

### Soluție

Aplicăm același procedeu ca în exercițiul anterior:

$$\frac{x_{n+1}}{x_n} = \left(\frac{n}{n+1}\right)^4 \frac{1}{(2n+1)(2n+2)} < \frac{1}{56} = k, \ \forall \ n \ge 3.$$

Rezultă  $S - s_n \le x_n \frac{k}{1-k} \le \frac{1}{56} x_n$ ; din condiția:

$$x_n \frac{k}{1-k} = \frac{1}{56} x_n < 10^{-6},$$

rezultă  $n \geq 4,$  deci $S \approx x_1 + x_2 + x_3 + x_4 = 0,5026212.$ 

# Capitolul 2

# Spații metrice. Continuitate

# 2.1 Noțini teoretice

### Spaţii metrice

Fie X o mulțime nevidă; o aplicație  $d: X \times X \mapsto R$  se numește distanță (metrică) pe X dacă:

i.  $d(x,y) \geq 0, \forall x,y \in R$ 

ii.  $d(x,y) = 0 \Leftrightarrow x = y$ .

iii.  $d(x,y) = d(y,x) \forall x, y \in X$ .

iv.  $d(x, z) \le d(x, y) + d(y, z)$ .

Perechea (X, d) se numește spațiu metric.

Dacă  $Y\subseteq X$  este o submulțime nevidă, atunci (Y,d) se numește subspațiu metric indus.

Un şir  $x_n \in X$  se numeşte convergent dacă există  $a \in X$  astfel încât

$$\forall \epsilon > 0, \exists n_{\epsilon} \in N \text{ cu proprietatea } d(x_n, a) < \epsilon, \forall n \geq n_{\epsilon}.$$

În acest caz a se numește limita șirului și se notează  $a = \lim_{n \to \infty} x_n$  sau  $x_n \to a$ . Un șir  $x_n \in X$  se numește șir Cauchy (fundamental) dacă

$$\forall \epsilon > 0, \exists n_{\epsilon} \in N \text{ astfel încât } d(x_n, x_m) < \epsilon, \forall n, m \geq n_{\epsilon}.$$

Un spațiu metric se numește complet dacă orice șir Cauchy este convergent.

Fie  $d_1$  și  $d_2$  două distanțe pe o aceeași mulțime X. Metricele  $d_1$  și  $d_2$  se numesc echivalente dacă există  $\alpha>0$  și  $\beta>0$  astfel încât

$$d_1(x,y) < \alpha d_2(x,y) < \beta d_1(x,y), \forall x,y \in X.$$

In acest caz, (dacă  $d_1$  şi  $d_2$  sunt echivalente), se demonstrează că un şir  $x_n \in X$  este convergent (respectiv Cauchy) în spațiul metric  $(X, d_1)$  dacă şi

numai dacă este convergent (respectiv Cauchy) în spațiul metric  $(X, d_2)$ .

### Mulțimi remarcabile în spații metrice

Fie  $a \in X$  și r > 0; bila deschisă de centru a și rază r este, prin definiție, mulțimea

$$B(a,r) = \{ x \in X \mid d(a,x) < r \}.$$

Sfera de centru a și rază r este definită prin

$$S(a,r) = \{x \in X \mid d(a,x) = r,$$

iar bila închisă de centru a și rază r este

$$\overline{B(a,r)} = B(a,r) \cup S(a,r) = \{x \in X \mid d(x,a) \le r\}.$$

O submulțime  $D\subseteq X$  se numește deschisă dacă  $\forall a\in D, \exists\, r>0$  astfel încât  $B(a,r)\subseteq D.$ 

O submulțime  $F\subseteq X$  se numește închisă dacă  $X\setminus D$  (complementara) este mulțime deschisă.

Se poate demonstra următoarea caracterizare cu şiruri a mulțimilor închise: F este închisă dacă și numai dacă pentru orice şir convergent  $x_n \in F$  rezultă  $\lim_{n \to \infty} x_n \in F.$ 

O submulţime  $M \subseteq X$  se numeşte mărginită dacă există  $a \in X$  şi r > 0 astfel încât  $M \subseteq B(a, r)$ .

O mulțime  $K \subseteq X$  se numește compactă dacă pentru orice familie de mulțimi deschise  $(D_i)_{i \in J}$  cu proprietatea  $\bigcup_{i \in J} D_i \supseteq K, \exists I \subseteq J, I$  finită astfel

$$\operatorname{încât} \bigcup_{i \in I} D_i \supseteq K.$$

Spaţiul metric X se numeşte conex dacă nu există două submulţimi simultan deschise (sau închise)  $D_1$  şi  $D_2$  cu proprietăţile:

$$D_1 \neq \emptyset$$
,  $D_2 \neq \emptyset$ ,  $X = D_1 \cup D_2$  şi  $D_1 \cap D_2 = \emptyset$ .

O submulţime  $A \subseteq X$  se numeşte conexă dacă spaţiul metric (indus) (A,d) este conex. Rezultă următoarea caracterizare a submulţimilor conexe: o submulţime  $A \subseteq X$  este conexă dacă şi numai dacă nu există două submulţimi deschise  $D_1$  şi  $D_2$  astfel încât  $D_1 \cap D_2 = \emptyset$ ,  $D_1 \cap A \neq \emptyset$ ,  $D_2 \cap A \neq \emptyset$  şi  $A \subseteq D_1 \cup D_2$ .

Fie  $A \subseteq X$  și fie  $a \in X$ . Punctul a se numește punct de acumulare al mulțimii A dacă pentru orice r > 0, avem  $B(a,r) \cap A \setminus \{a\} \neq \emptyset$ . Caracterizarea cu șiruri a punctelor de acumulare este:

Punctul  $a \in X$  este punct de acumulare al mulțimii A dacă și numai dacă există un şir  $x_n \in A$  astfel încât  $x_n \neq a \, \forall n \in N$  şi  $\lim_{n \to \infty} x_n = a$ .

Un punct al mulțimii A se numește punct izolat al lui A dacă nu este punct de acumulare al lui A. Mulțimea A se numește perfectă dacă este închisă și nu conține puncte izolate.

Mulțimile finite nu au puncte de acumulare. În plus, se poate demonstra că orice multime perfectă este nenumărabilă.

# Funcții continue

Fie (X, d) și (Y, d') două spații metrice.

O aplicație  $f:X\mapsto Y$  se numește continuă în punctul  $a\in X$  dacă

 $\forall \epsilon>0, \exists \delta_\epsilon>0\;\; \text{astfel încât}\; \forall x\in X\;\; \text{cu proprietatea}\; d(x,a)<\delta_\epsilon\;\; \text{rezultă}$ 

$$d'(f(x), f(a)) < \epsilon.$$

O formulare echivalentă (cu șiruri) este:

f este continuă în a dacă și numai dacă pentru orice șir  $x_n \in X$  cu proprietatea  $\lim_{n\to\infty} x_n = a$ , rezultă  $\lim_{n\to\infty} f(x_n) = f(a)$ . Funcția f se numește continuă (pe X) dacă este continuă în orice punct

 $a \in X$ .

#### Caracterizarea funcțiilor continue

Următoarele afirmații sunt echivalente:

- i. Aplicația  $f: X \mapsto Y$  este continuă.
- ii. Aplicația f întoarce mulțimi deschise în mulțimi deschise, i.e.: pentru orice submulțime deschisă  $D \subseteq Y$  rezultă că  $f^{-1}(D)$  este submulțime deschisă în X.
- iii. Aplicația f întoarce mulțimi închise în mulțimi închise, i.e. pentru orice submulțime închisă  $D \subseteq Y$  rezultă că  $f^{-1}(D)$  este submulțime închisă în X.

# Uniform continuitate

O aplicație  $f: X \mapsto Y$  se numește uniform continuă (pe X) dacă:

$$\forall \epsilon > 0, \exists \delta_{\epsilon} > 0 \text{ astfel încât } d(x,y) < \delta_{\epsilon} \implies d'(f(x),f(y)) < \epsilon.$$

# Proprietăți ale funcții continue

Fie  $f: X \mapsto Y$  o funcție continuă; atunci:

Dacă A este multime compactă atunci f(A) este multime compactă.

Dacă X este conex, atunci f(X) este conex (ca subspațiu al lui Y).

Dacă X este spațiu metric compact, atunci f este uniform continuă pe X.

### Principiul contracției, metoda aproximațiilor succesive

Fie (X,d) un spațiu metric și fie  $f:X\mapsto X$ . Aplicația f se numește contracție (pe X) dacă există  $k\in[0,1)$  astfel încât:

$$d(f(x), f(y)) \le k \cdot d(x, y), \forall x, y \in X.$$

Numărul k se numește factor de contracție.

# Teorema de punct fix a lui Banach

Fie (X, d) un spațiu metric complet și fie  $f: X \mapsto X$  o contracție de factor k. Atunci există un unic punct  $\xi \in X$  astfel încât  $f(\xi) = \xi$ .

Punctul  $\xi$  de mai sus se numește punct fix al aplicației f.

Construcția lui se face astfel: fie  $x_0 \in X$ , arbitrar fixat și fie șirul (numit șirul aproximațiilor succesive) definit prin recurență  $x_{n+1} = f(x_n)$ . Se demonstrează că șirul  $x_n$  este convergent și limita sa este punctul fix căutat. În plus, are loc formula (evaluarea erorii):

$$d(x_n, \xi) \le \frac{k^n}{1 - k} \cdot d(x_0, x_1), \forall n \in N.$$

# Exemple uzuale de spații metrice

a. Multimea numerelor reale, R, este spațiu metric cu distanța uzuală

$$d(x,y) = |x - y|, \forall x, y \in R.$$

Se poate demonstra că singurele mulțimi conexe din R sunt intervalele.

**b.** Pe multimea numerelor complexe, C, distanța uzuală este

$$d(z, w) = |z - w|, \forall z, w \in C.$$

**c.** Fie  $R^n = \{x = (x_1, x_2, ..., x_n) \mid x_i \in R\}$ . Distanța uzuală (euclidiană):

$$d_2(x,y) = \sqrt{\sum_{k=1}^{n} (x_k - y_k)^2}$$
, unde  $x = (x_1, x_2, ..., x_n), y = (y_1, y_2, ..., y_n)$ .

În  $\mathbb{R}^n$  o mulțime este compactă dacă și numai dacă este închisă și mărginită.

**d.** Fie  $C^n = \{x = (x_1, x_2, ..., x_n) \mid x_j \in C\}$ . Distanța uzuală (euclidiană):

$$d_2(x,y) = \sqrt{\sum_{k=1}^{n} |x_k - y_k|^2},$$

cu notații evidente.

e. Fie  $\ell^2(N)=\{x:N\mapsto R\mid \sum_n|x(n)|^2<\infty\}$ . Generalizarea distanței euclidiene la cazul infinit dimensional (pe  $\ell^2(N)$ ) este

$$d(x,y) = \sqrt{\sum_{n} |x(n) - y(n)|^2}.$$

**f.** Fie  $A \neq \emptyset$  și fie  $\mathcal{M}(A) = \{f : A \mapsto R \mid f \text{ mărginită}\}$ . Distanța "supremum" pe spațiul funcțiilor mărginite este

$$d_{\infty}(f,g) = \sup_{x \in A} |f(x) - g(x)|.$$

**g.** Fie  $a,b \in R$  și fie  $\mathcal{C}[a,b] = \{f: [a,b] \mapsto R \mid f \text{ continuă}\}$ . Distanța uzuală pe spațiul funcțiilor continue este

$$d_{\infty}(f,g) = \sup_{x \in [a,b]} |f(x) - g(x)|.$$

- **h.** Mai general, dacă X este un spațiu metric compact, atunci mulțimea funcțiilor continue  $\mathcal{C}(X) = \{f: X \mapsto R \mid f \text{ continuă}\}$  este spațiu metric cu distanța  $d_{\infty}(f,g) = \sup_{x \in X} |f(x) g(x)|$ .
  - i. Fie  $\mathcal{B} = \{0, 1\}$  codul (alfabetul) binar. Pe produsul cartezian

$$\mathcal{B}^n = \{(x_1, x_2, ... x_n) \mid x_j \in \mathcal{B}, \forall j = 1, 2, ..., n\}$$

definim distanța Hamming:

$$d((x_1, x_2, ..., x_n), (y_1, y_2, ..., y_n)) = \sum_{j=1}^{n} |x_j - y_j|.$$

Distanța Hamming măsoară de fapt numărul de necoincidențe dintre elementele  $(x_1, x_2, ..., x_n)$  și  $(y_1, y_2, ..., y_n)$ .

**j.** Orice mulțime nevidă A se poate organiza ca spațiu metric (discret) cu distanța "discretă"  $\rho(x,y) = \left\{ \begin{array}{ll} 1 & \mathrm{dacă} & x \neq y \\ 0 & \mathrm{dacă} & x = y \end{array} \right.$ 

#### Spaţii normate

Fie X un spațiu vectorial complex (sau real).

O aplicație  $\| \|: X \longrightarrow [0, \infty)$  cu proprietățile:

- **a.**  $||x+y|| \le ||x|| + ||y||$
- **b.**  $\| \alpha x \| = |\alpha| \| x \|$
- **c.**  $||x|| = 0 \iff x = 0,$

pentru orice x,  $y \in X$  și  $\alpha \in C$ , se numește normă. O aplicație care verifică

doar condițiile a și b se numește seminormă.

Perechea (X, || ||) se numește spațiu normat. Orice spațiu normat este și spațiu metric, distanța dintre x și y fiind, prin definiție,

$$d(x,y) = \parallel x - y \parallel$$

Dacă în plus orice şir Cauchy este convergent, atunci  $(X, \| \|)$  se numeşte spațiu Banach (sau spațiu normat complet). Se poate demonstra că operațiile algebrice sunt continue: dacă  $\lim_{n\to\infty} x_n = x$  și  $\lim_{n\to\infty} y_n = y$ , atunci  $\lim_{n\to\infty} (x_n + y_n) = x + y$  și analog pentru înmulțirea cu scalari.

# Exemple de spații normate

i. Spațiile vectoriale  $\mathbb{R}^n$  și  $\mathbb{C}^n$  sunt spații Banach cu norma euclidiană:

$$||x||_2 = \sqrt{\sum_{j=1}^n |x_j|^2}.$$

ii. Spațiile de șiruri  $\ell^p(Z)$  și  $\ell^p(N)$ Fie  $p \in R$ ,  $p \ge 1$ , fixat și fie

$$\ell^p(Z) = \{x: Z \to C; \sum_{n \in Z} |x(n)|^p \text{ este convergentă}\}.$$

Facem precizarea că dacă  $(a_n)_{n\in Z}$  este un şir de numere complexe indexat după Z, atunci seria  $\sum_{n\in Z} a_n$  este convergentă dacă seriile  $\sum_{n=-\infty}^{0} a_n$  şi  $\sum_{n=1}^{\infty} a_n$  sunt amândouă convergente.

Cu operațiile uzuale cu șiruri,  $\ell^p(Z)$  este spațiu vectorial. Norma este

$$\| x \|_p = \left( \sum_{n \in \mathbb{Z}} |x(n)|^p \right)^{\frac{1}{p}}.$$

Se demonstrează că  $(\ell^p(Z), \| \ \|_p)$  este spațiu Banach.

Analog se definesc spațiile  $\ell^p(N) = \{x : N \to C; \sum_{n=0}^{\infty} |x(n)|^p < \infty \}.$ 

iii. Spațiul șirurilor mărginite

Fie  $\ell^{\infty}(Z) = \{x : Z \to C ; x \text{ şir mărginit } \}$ . Cu operațiile uzuale,  $\ell^{\infty}(Z)$  este spațiu vectorial. Aplicația  $\|x\|_{\infty} = \sup_{n \in Z} |x(n)|$  este normă, iar  $(\ell^{\infty}(Z), \|\cdot\|_{\infty})$  este spațiu Banach.

Analog se defineşte spaţiul  $\ell^{\infty}(N)$ .

iv. Spațiul funcțiilor continue

Fie  $\mathcal{D}$  un spațiu metric compact (caz particular:  $D = [a, b], a, b \in R$ ) și fie

$$C(\mathcal{D}) = \{ f : \mathcal{D} \to C ; f \text{ continuă} \}.$$

Cu operațiile uzuale,  $\mathcal{C}(\mathcal{D})$  este spațiu vectorial. Structura de spațiu Banach este definită de norma supremum:

$$\parallel f \parallel_{\infty} = \sup_{t \in \mathcal{D}} |f(t)|.$$

v. Spațiul funcțiilor mărginite

Fie  $A \neq \emptyset$ ; spatiul vectorial al funcțiilor mărginite

$$\mathcal{M}(A) = \{ f : A \mapsto R \mid f \text{ marginita } \}$$

este spațiu Banach cu norma supremum:  $||f||_{\infty} = \sup_{t \in A} |f(t)|$ .

# Serii înt-un spațiu normat

Fie (X, || ||) un spațiu normat și fie  $(x_n)_{n \in N}$  un șir de elemente din X. Spunem că seria  $\sum_{n \in N} x_n$  este convergentă la  $x \in X$  (numit în acest caz

suma seriei) dacă șirul sumelor parțiale,  $s_n = \sum_{k=1}^n x_k$  converge la x. Seria  $\sum_{n \in N} x_n$  se numește absolut convergentă dacă seria (de numere reale și pozitive)  $\sum_{n \in N} || x_n ||$  este convergentă. Cu o demonstrație asemănătoare celei de la serii de numere reale se poate arăta că într-un spațiu Banach orice serie absolut convergentă este convergentă, reciproca fiind, în general, falsă.

#### Operatori liniari

Fie  $(X, \| \|)$  şi  $(Y, \| \|)$  două normate; o aplicație  $T: X \to Y$  se numește aplicație liniară (sau operator liniar) dacă:

$$T(\alpha x + \beta y) = \alpha T(x) + \beta T(y), \forall x, y \in X, \forall \alpha, \beta \in C.$$

Operatorul T se numește liniar și continuu dacă, în plus, aplicația T este și continuă.

Mulţimea operatorilor liniari şi continui de la X în Y se notează cu  $\mathcal{L}(X,Y)$ . Cu operațiile uzuale:

$$(T+S)(x) = T(x) + S(x), \ (\alpha T)(x) = \alpha T(x), \ \forall \alpha \in C, \ \forall x \in X,$$

mulțimea  $\mathcal{L}(X,Y)$  este spațiu vectorial.

Pentru orice aplicație liniară  $T:X\mapsto Y,$  se demonstrează că următoarele afirmații sunt echivalente:

- a. T este continuă.
- **b.** T este continuă în  $0 \in X$ .
- c. există M > 0 astfel încât:  $\forall x \in X, \parallel T(x) \parallel \leq M \parallel x \parallel$ . Spațiul vectorial  $\mathcal{L}(X,Y)$  se organizează ca spațiu normat cu norma:

$$||T|| = \inf\{M > 0 \mid ||T(x)|| \le M ||x||\}.$$

Au loc următoarele egalități:

$$||T|| = \sup\{||Tx|| \mid ||x|| \le 1\} = \sup\{||Tx|| \mid ||x|| = 1\}.$$

Din definiție rezultă:

$$||Tx|| \le ||T|| ||x|| \forall T \in \mathcal{L}(X), \forall x \in X.$$

Se demonstrează de asemenea inegalitatea:

$$\parallel TS \parallel \leq \parallel T \parallel \parallel S \parallel, \ \forall T, S \in \mathcal{L}(X).$$

Dacă Y este spațiu Banach, atunci  $(\mathcal{L}(X,Y), \| \ \|)$  este spațiu Banach. Dacă Y este corpul scalarilor (R sau C) atunci  $\mathcal{L}(X,C)$  se notează X' și se numește dualul spațiului X, iar elementele lui se numesc funcționale liniare și continue.

În cazul X = Y, notăm  $\mathcal{L}(X) = \mathcal{L}(X, X)$ .

# Spectru, valori proprii, vectori proprii

In continuare presupunem că X este spațiu Banach.

Pentru orice operatori  $T, S \in \mathcal{L}(X)$  se definește produsul (compunerea):

$$(TS)(x) = T(S(x)), \forall x \in X.$$

Un operator  $T \in \mathcal{L}(X)$  se numește inversabil dacă există  $T^{-1} \in \mathcal{L}(X)$  astfel încât TS = I, unde, am notat cu I operatorul identic:  $Ix = x, \forall x \in X$ . Un rezultat fundamental (teorema lui Banach) afirmă că un operator T este inversabil dacă și numai dacă este bijectiv.

Pentru orice  $T \in \mathcal{L}(X)$ , mulţimea:

$$\sigma(T) = \{ \lambda \in C \mid \text{operatorul } \lambda I - T \text{ nu este inversabil} \}$$

se numește spectrul operatorului T. Se demonstrează că spectrul este mulțime nevidă și compactă inclusă în  $\{\lambda \in C \mid |\lambda| \leq ||T||\}$ .

Numărul  $r(T) = \sup\{|\lambda| \mid \lambda \in \sigma(T)\}$  se numește raza spectrală a operatorului T; evident,  $r(T) \leq ||T||$  și, în plus, are loc formula razei spectrale:

$$r(T) = \lim_{n \to \infty} ||T^n||^{\frac{1}{n}}.$$

Submulţimea:

$$\sigma_p(T) = \{ \lambda \in \sigma(T) \mid \text{operatorul } \lambda I - T \text{ nu este injectiv} \}$$

se numeşte spectrul punctual (sau mulţimea valorilor proprii). Dacă  $\lambda \in \sigma_p(T)$ , atunci există  $x \in X, x \neq 0$ , astfel încât  $Tx = \lambda x$ . În acest caz vectorul x se numeşte vector propriu al lui T asociat valorii proprii  $\lambda$ . Dacă X este un spaţiu Banach finit dimensional,  $(C^n \text{ sau } R^n)$  atunci spectrul coincide cu mulţimea valorilor proprii şi

$$\sigma_p(T) = \sigma(T) = \{ \lambda \in C \mid P_T(\lambda) = 0 \},$$

unde,  $P_T$  este polinomul caracteristic al operatorului T.

# 2.2 Spaţii metrice

1. Să se demonstreze că următoarele aplicații sunt metrici pe  $\mathbb{R}^2$ , echivalente cu distanța euclidiană:

**a.** 
$$d_1((x_1, y_1), (x_2, y_2)) = |x_1 - x_2| + |y_1 - y_2|$$
.

**b.** 
$$d_{\infty}((x_1, y_1), (x_2, y_2)) = \max\{|x_1 - x_2|, |y_1 - y_2|\}.$$

#### Solutie

Se verifică direct definiția distanței. Fie  $d_2$  distanța euclidiană pe  $R^2$  și fie  $(x,y) \in R^2$ ; din inegalitățile:

$$\sqrt{|x|^2 + |y|^2} \le |x| + |y| \le \sqrt{2(|x|^2 + |y|^2)},$$

$$\frac{1}{2}(|x|+|y|) \le \max\{|x|,|y|\} \le |x|+|y|,$$

rezultă:

$$d_2((x_1, y_1), (x_2, y_2)) \le d_1((x_1, y_1), (x_2, y_2)) \le \sqrt{2} d_2((x_1, y_1), (x_2, y_2))$$

și respectiv

$$\frac{1}{2}d_1((x_1, y_1), (x_2, y_2)) \le d_\infty((x_1, y_1), (x_2, y_2)) \le d_1((x_1, y_1), (x_2, y_2)).$$

- **2.** Să se generalizeze exemplul de mai sus în cazurile  $\mathbb{R}^n$  și  $\mathbb{C}^n$ .
- **3.** Să se caracterizeze șirurile convergente și șirurile Cauchy într-un spațiu metric discret. Să se demonstreze că orice spațiu metric discret este complet.

#### Soluţie

Fie (X,d) un spaţiu metric discret şi fie  $x_n$  un şir în X; fie  $0 < \varepsilon < 1$ . Dacă  $x_n \to a$ , atunci există  $n_{\varepsilon} \in N$  astfel încât  $d(x_n,a) < \varepsilon < 1, \forall n \geq n_{\varepsilon}$ , deci  $d(x_n,a) = 0, \forall n \geq n_{\varepsilon}$ ; rezultă că şirul  $x_n$  este constant (începând de la un rang). Un raţionament similar se aplică şi în cazul şirurilor Cauchy.

**4.** Pe mulțimea numerelor raționale, Q, considerăm distanța uzuală (indusă din R), d(x,y) = |x-y|. Să se demonstreze că spațiul metric (Q,d) nu este complet.

#### Soluție

Fie şirul de numere raţionale  $x_n = \left(1 + \frac{1}{n}\right)^n$ . Se ştie că în R şirul  $x_n$  este convergent la  $e \in R \setminus Q$ . Rezultă că  $x_n$  este şir Cauchy în R, deci şi în Q; dacă  $x_n$  ar fi convergent în Q, atunci în R ar avea două limite, ceea ce constituie o contradicție.

#### 5. Mulțimea lui Cantor

Notăm cu  $I_0$  intervalul [0,1]. Eliminăm din  $I_0$  intervalul din mijloc,  $(\frac{1}{3},\frac{2}{3})$  și notăm

$$I_1 = \left[0, \frac{1}{3}\right] \cup \left[\frac{2}{3}, 1\right]$$

mulţimea astfel obţinută. Continuăm procedeul: din fiecare din intervalele  $[0, \frac{1}{3}], [\frac{2}{3}, 1]$  eliminăm intervalul din mijloc şi notăm cu  $I_2$  mulţimea rezultată:

$$I_2 = \left[0, \frac{1}{9}\right] \cup \left[\frac{2}{9}, \frac{3}{9}\right] \cup \left[\frac{6}{9}, \frac{7}{9}\right] \cup \left[\frac{8}{9}, 1\right].$$

Continuând procedeul, se obține un şir de mulțimi  $I_0, I_1, I_2, ...$  cu proprietățile:

i.  $I_0 \supset I_1 \supset I_2 \supset \dots$ 

ii.  $I_n$  este reuniunea a  $2^n$  intervale, fiecare de lungime  $3^{-n}$ .

Prin definiție, mulțimea lui Cantor este intersecția:  $C = \bigcap_{n \in N} I_n$ .

Să se demonstreze următoarele proprietăți:

- a. C este multime compactă.
- **b.** Mulțimea C nu conține intervale.
- c. Mulțimea lui Cantor este perfectă (nu conține puncte izolate); în particular, rezultă că  $\mathcal C$  nu este mulțime numărabilă.

#### Soluție

**a.** Mulțimea  $\mathcal{C}$  este mărginită (inclusă în [0,1]) și închisă (intersecție de mulțimi închise).

b. Din construcție, rezultă:

$$\mathcal{C} \cap \left(\frac{3k+1}{3^m}, \frac{3k+2}{3^m}\right) = \emptyset, \, \forall k, m \in \mathbb{N}.$$

Dar, orice interval  $(\alpha, \beta)$  conține un interval de forma  $\left(\frac{3k+1}{3^m}, \frac{3k+2}{3^m}\right)$  dacă m este ales cu condiția  $3^{-m} < \frac{\beta - \alpha}{6}$ . Rezultă că mulțimea  $\mathcal{C}$  nu conține intervale.

**c.** Fie  $a \in \mathcal{C}$  și fie S un interval arbitrar care-l conține pe a; pentru orice  $n \in N$ , fie  $J_n$  acel interval al lui  $I_n$  care-l conține pe a. Alegem  $n_0$  suficient de mare astfel încât  $J_{n_0} \subseteq S$ ; dacă notăm cu  $x_n$  acel capăt al intervalului  $J_n$  diferit de a, rezultă  $x_n \in \mathcal{C} \cap S$ ,  $x_n \neq a, \forall n \geq n_0$ .

**6.** Fie spațiul metric  $(R^n, d_2)$ , fie  $x_m = (x_1^m, x_2^m, ..., x_n^m)$  un șir de elemente din  $R^n$  și  $a = (a_1, a_2, ..., a_n) \in R^n$ . Atunci:

$$\lim_{m \to \infty} x_m = a \text{ (în } R^n) \iff \lim_{m \to \infty} x_k^m = a_k \text{ (în } R), \forall k \in \{1, 2, ..., n\}.$$

#### Soluție

Se aplică inegalitățile:

$$|x_j^m - a_j| \le d_2(x_m, a) \le \sum_{k=1}^n |x_k^m - a_k|, \forall j \in \{1, 2, ..., n\}.$$

**7.** Fie  $a, b \in R, a < b$ .

a. Să se demonstreze că

$$d_1(f,g) = \int_a^b |f(x) - g(x)| dx$$

este distanță pe mulțimea funcțiilor continue C[a, b].

**b.** Să se demonstreze că orice şir  $f_n \in \mathcal{C}([a,b])$  convergent în raport cu distanța  $d_{\infty}$  este convergent şi în raport cu distanța  $d_1$ , dar reciproca este falsă.

#### Soluție

a. Se verifică direct definiția (se folosesc proprietățile modulului și ale integralei).

**b.** Fie  $f_n, f \in \mathcal{C}([a,b])$  astfel încât  $d_{\infty}(f_n, f) \to 0$ . Atunci:

$$d_1(f_n, f) = \int_a^b |f_n(x) - f(x)| dx \le (b - a) \cdot d_{\infty}(f_n, f) \to 0.$$

Pentru a arăta că reciproca este falsă, fie şirul  $f_n(x) = \frac{1}{1+nx}$ . Atunci  $f_n \to 0$  în raport cu distanța  $d_1$ , dar nu converge în raport cu  $d_{\infty}$ .

**8.** Fie (X,d) un spaţiu metric complet şi fie  $A\subseteq X$ ; să se demonstreze că spaţiul metric indus (A,d) este complet dacă şi numai dacă A este submulţime închisă în X.

#### Soluție

Se foloseşte caracterizarea cu şiruri a mulţimilor închise. Presupunem mai întâi că A este închisă. Dacă  $x_n \in A$  este un şir Cauchy (în X), atunci există (deoarece X este complet)  $x \in X$  astfel încât  $x_n \to x$ . Dar A este închisă, deci  $x \in A$ . Implicația inversă o lăsăm ca exercițiu.

9. a. Să se demonstreze că aplicația

$$d: R \times R \mapsto [0, \infty), d(x, y) = |\arctan x - \arctan y|, \forall x, y \in R,$$

este distanță pe R.

**b.** Spaţiul metric (R, d) nu este complet.

#### Soluție

- a. Funcția arctg este injectivă, deci $d(x,y) = 0 \Leftrightarrow x = y$ .
- **b.** Şirul  $x_n = n$  este şir Cauchy în raport cu distanța d:

$$d(x_n, x_m) = |\operatorname{arctg} n - \operatorname{arctg} m| = \left|\operatorname{arctg} \left(\frac{n-m}{1+nm}\right)\right| \to 0,$$

dacă  $m, n \to \infty$ .

Presupunând, prin absurd, că șirul  $x_n$  este convergent la  $a \in R$ , atunci  $d(x_n, a) \to 0$ ; pe de altă parte:

$$d(x_n, a) = |\arctan n - \arctan a| =$$

$$= \left|\arctan\left(\frac{n-a}{1+na}\right)\right| \to \left|\arctan\left(\frac{1}{a}\right)\right| \neq 0, \forall a \in R,$$

contradicție.

10. Exemplul de mai sus se poate generaliza astfel: fie X o mulţime nevidă arbitrară, fie  $f:X\mapsto R$  și fie

$$d: X \times X \mapsto [0, \infty), \ d(x, y) = |f(x) - f(y)|.$$

Atunci d este distanță pe X dacă și numai dacă funcția f este injectivă.

**11.** In spaţiul metric 
$$(R^2, d_2)$$
 considerăm submulţimile:  $A = \{(x, y) \in R^2 \mid 0 < x^2 + y^2 \le 1\},$   $B = \{(x, y) \in R^2 \mid 1 \le x^2 + y^2 \le 2\},$   $D = \{(x, y) \in R^2 \mid x^2 + y^2 < 1, x > 0, y > 0\},$   $E = \{(x, y) \in R^2 \mid ax + by + c = 0, a, b, c \in R \text{ constante fixate}\},$   $F = \left\{\left(\frac{1}{n}, 1\right) \in R^2 \mid n \in N\right\}, \ G = F \cup \{(0, 1)\}.$ 

Să se precizeze dacă mulțimile sunt deschise, închise, mărginite, conexe sau compacte.

#### Soluție

A este multime mărginită și conexă, dar nu este deschisă și nici închisă. B este compactă și conexă. D este deschisă, conexă și mărginită. E este închisă, conexă și nemărginită. F este mărginită, dar nu este deschisă, nici închisă și nici conexă. G este mulțime compactă.

12. Să se dea un exemplu de submulțime în  $\mathbb{R}^2$  care este conexă, dar nu este conexă prin arce (o submulțime M a unui spațiu metric X se numește conexă prin arce dacă pentru orice  $x,y \in M$  există  $a,b \in R$  și o funcție continuă  $\gamma: [a, b] \mapsto M$  astfel încât  $\gamma(a) = x$  și  $\gamma(b) = y$ ).

#### Soluție

Un exemplu este:

$$H = \left\{ \left( x, \sin \frac{1}{x} \right) \in \mathbb{R}^2 \mid x \in (0, 1] \right\} \bigcup \left\{ (0, y) \in \mathbb{R}^2 \mid y \in [-1, 1] \right\}.$$

13. Să se arate că într-un spațiu metric intersecția unei familii infinite de mulțimi deschise nu este neapărat deschisă și reuniunea unei familii infinite de mulțimi închise nu este neapărat închisă.

#### Solutie

Fie, de exemplu, în spațiul metric R multimile deschise

$$D_n = \left(-\frac{1}{n}, \frac{1}{n}\right), \forall n \in N^*.$$

Atunci  $\bigcap_{n\geq 1} D_n = \{0\}$ . În acelaşi spațiu metric, fie mulțimile închise

$$F_n = \left[\frac{1}{n}, 1 - \frac{1}{n}\right], \forall n \in N^*.$$

Atunci 
$$\bigcup_{n\geq 1} F_n = (0,1).$$

#### 2.3Teorema contracției

14. Să se decidă dacă următoarele functii sunt contractii pe multimile indicate:

**a.** 
$$f(x) = \sin x, x \in R$$
.

**b.** 
$$f(x) = \ln x, x \in [e, \infty).$$

**c.** 
$$f(x) = \operatorname{arctg} x, x \in R$$

c. 
$$f(x) = \arctan x, x \in R$$
.  
d.  $f(x) = \frac{1 - x^2}{5(1 + x^2)}, x \in R$ .  
e.  $f(x) = \frac{2x}{1 + x^2}, x \in R$ .

**e.** 
$$f(x) = \frac{2x}{1+x^2}, x \in R.$$

## Soluții

a. Funcția  $f(x) = \sin x$  nu este contracție pe R. Presupunând prin absurd că ar exista  $k \in (0,1)$  astfel încât  $|\sin x - \sin y| \le k |x-y|, \forall x,y \in R$ atunci, în particular pentru y=0, se obține  $|\sin x| \le k |x|, \forall x \in R$ ; rezultă că  $\lim_{x\to 0} \frac{|\sin x|}{|x|} \le k < 1$ , contradicție. Funcția sinus este totuși contracție pe orice interval închis care nu conține numere de forma  $k\pi, \forall k \in Z$  (pentru demonstrație se poate aplica teorema lui Lagrange).

**b.** Funcția  $f(x) = \ln x$  este contracție pe  $[e, \infty)$ ; din teorema lui Lagrange rezultă:

$$|\ln x - \ln y| \le \left(\sup_{c \ge e} \frac{1}{c}\right) |x - y| \le \frac{1}{e} |x - y|, \forall x, y \in R.$$

c. Funcția  $f(x) = \operatorname{arctg} x$  nu este contracție pe R; fie, prin absurd,  $k \in (0,1)$ astfel încât  $|\arctan x - \arctan y| \le k|x-y|, \forall x,y \in R$ . În particular pentru y = 0 rezultă  $|\operatorname{arctg} x| \le k |x|, \forall x \in R$  și deci  $\lim_{x \to 0} \frac{|\operatorname{arctg} x|}{|x|} \le k < 1$ , contradicție. Funcția  $f(x) = \operatorname{arctg} x$  este contracție pe orice interval I pentru care 0 nu este punct de acumulare, deoarece, pe un astfel de interval are loc inegalitatea sup |f'(x)| < 1.

d. Funcția nu este contracție pe R; raționament similar cu exemplele a și c de mai sus.

e. Funcția este contracție pe R.

15. Să se aproximeze cu o eroare mai mică decât  $10^{-3}$  soluția reală a ecuației  $x^3 + 4x - 1 = 0$ .

#### Solutie

Ecuația are o singură soluție reală,  $\xi \in (0,1)$ . Vom aplica metoda aproximațiilor succesive. Fie X = [0,1] și  $f: X \mapsto X$ ,  $f(x) = \frac{1}{x^2+4}$ . Ecuația este echivalentă cu f(x)=x, iar spațiul metric X este complet (cu metrica uzuală indusă din R); demonstrăm acum că f este contracție pe X. Derivata este  $f'(x)=\frac{-2x}{(x^2+4)^2}$ , iar  $\sup_{x\in X}|f'(x)|=-f'(1)=\frac{2}{25}<1$ , deci f este contracție cu factorul factorul de contracție  $k=\frac{2}{25}$ . Şirul aproximațiilor succesive este

$$x_0 = 0, x_{n+1} = f(x_n) = \frac{1}{x_n^2 + 4};$$

evaluarea erorii:

$$|x_n - \xi| < \frac{k^n}{1 - k} |x_0 - x_1| = \frac{1}{3} \cdot \left(\frac{2}{25}\right)^n,$$

deci  $\xi \approx x_3 = f\left(\frac{16}{65}\right) = 0,2355072.$ 

Aceeași ecuație se poate rezolva aproximativ și folosind contracția  $g(x) = \frac{1}{4}(1-x^3), x \in [0,1]$ . În acest caz factorul de contracție este  $k = \sup_{x \in (0,1)} |g'(x)| = \frac{3}{4}$ . Metoda aproximațiilor succesive converge mult

mai încet în acest caz,  $\xi \approx x_6$ .

16. Să se calculeze cu o eroare mai mică decât  $10^{-3}$  soluția reală a ecuației  $x^3 + 12x - 1 = 0$ .

#### Soluție

Ecuația are o singură soluție reală  $\xi \in (0,1)$  și este echivalentă cu x = f(x), unde  $f(x) = (x^2 + 12)^{-1}$  este contracție pe [0,1], cu factorul de contracție  $k = \frac{2}{169}$ .

17. Să se calculeze cu o eroare mai mică decât  $10^{-3}$  soluția reală a ecuației  $x^5+x-15=0$ .

#### Solutie

Ecuația are o singură soluție reală  $\xi \in (1,2)$ . Scriem ecuația sub forma echivalentă  $x = \sqrt[5]{15-x}$ ; aplicația  $f(x) = \sqrt[5]{15-x}$  este contracție pe [1,2] cu factorul de contracție  $k = \frac{1}{5\sqrt[5]{14^4}}$ .

**18.** Fie  $a \in (0, 10^{-1})$ . Să se construiască un şir al aproximațiilor succesive pentru soluția din (0, 1) a ecuației  $xe^x = a$ .

#### Soluție

Scriem ecuația sub forma  $x = \phi(x)$ , cu  $\phi(x) = ae^{-x}$ . Atunci  $\phi: [0,1] \mapsto [0,1]$  este o contracție (cu factorul a).

19. Ecuația lui Kepler Să se construiască un şir care converge la (unica) soluție a ecuației  $x = q \sin x + m, q \in (-1, 1), m \in R$ .

#### Soluție

Funcția  $f: R \mapsto R$ ,  $f(x) = q \sin x + m$  este contracție:

$$\sup_{x \in R} |f'(x)| = q < 1,$$

deci ecuația x = f(x) are o soluție unică  $\xi \in R$ . Pentru orice  $x_0 \in R$ , șirul

$$x_{n+1} = f(x_n) = q\sin x_n + m$$

converge la  $\xi$ , eroarea la pasul n fiind:

$$|x_n - \xi| < \frac{q^n}{1 - q} |x_1 - x_0|.$$

**20.** Fie  $a, b, c \in R$ ; în ce condiții se poate aplica metoda aproximațiilor succesive ecuației:  $x = a \sin x + b \cos x + c$ ?

#### Soluție

Fie  $f: R \mapsto R$ ,  $f(x) = a \sin x + b \cos x + c$ . Funcția f se poate scrie sub forma:

$$f(x) = \sqrt{a^2 + b^2} \left( \frac{a}{\sqrt{a^2 + b^2}} \sin x + \frac{b}{\sqrt{a^2 + b^2}} \cos x \right) + c =$$
$$= \sqrt{a^2 + b^2} \sin(x + \phi) + c,$$

cu  $\phi \in R$  bine ales. Rezultă că aplicația f este contracție dacă și numai dacă  $\sqrt{a^2+b^2}<1$ ; dacă această ipoteză este adevărată, atunci un șir al aproximațiilor succesive este (de exemplu)  $x_0=0,\,x_{n+1}=f(x_n)$ . Eroarea

la pasul n este cel mult  $\frac{\left(\sqrt{a^2+b^2}\right)^n}{1-\sqrt{a^2+b^2}}|b+c|$ .

**21.** Să se demonstreze că pentru orice  $a \in (-1,1)$  și pentru orice funcție continuă  $h:[0,1] \mapsto R$  există o singură funcție continuă  $u:[0,1] \mapsto R$  astfel încât  $u(x) = h(x) + a \sin u(x), \forall x \in [0,1].$ 

#### Soluție

Studiem ecuația în spațiul metric  $(\mathcal{C}([0,1]), d_{\infty})$ ). Fie aplicația

$$F: \mathcal{C}([0,1]) \mapsto \mathcal{C}([0,1]), (F(f))(x) = h(x) + a \sin f(x), \forall x \in [0,1].$$

Este suficient să demonstrăm că F este contracție (funcția u din concluzie este punctul fix al contracției). Fie  $f,g\in\mathcal{C}([0,1])$ ; atunci:

$$d_{\infty}(F(f), F(g)) = \sup_{x \in [0,1]} |a(\sin f(x) - \sin g(x))| \le |a| \cdot d_{\infty}(f, g),$$

deci F este contracție cu factorul |a|.

**22. Sisteme liniare** Fie  $A=(a_{ij})$  o matrice pătratică de ordinul  $n \in N$  cu elemente  $a_{ij} \in R, \forall i, j \in \{1, 2, ..., n\}$  și fie  $b_i \in R, \forall i \in \{1, 2, ..., n\}$ . Pentru ce valori ale parametrului  $\lambda \in R$  se poate aplica metoda aproximațiilor succesive sistemului liniar:  $x_i = \lambda \sum_{k=1}^{n} a_{ik} x_k + b_i, \forall 1 \leq i \leq n$ ?

#### Soluție

Fie d una din distanțele echivalente pe  $\mathbb{R}^n$  (a se vedea exercițiile 1 și 2) și fie

$$T: \mathbb{R}^n \mapsto \mathbb{R}^n, T(x_1, x_2, ..., x_n) = \lambda \cdot \left(\sum_{k=1}^n a_{1k} x_k + b_1, ..., \sum_{k=1}^n a_{nk} x_k + b_n\right).$$

Se impune condiția ca T să fie contracție și se obțin valorile cerute pentru  $\lambda$ . Vom face în continuare calculul pentru distanța euclidiană,  $d=d_2$ . Pentru orice vectori  $x=(x_1,x_2,...,x_n)$  și  $y=(y_1,y_2,...,y_n)$  din  $R^n$ , avem (aplicăm inegalitatea lui Schwarz):

$$d_2(T(x), T(y)) = |\lambda| \sqrt{\sum_{i=1}^n \left(\sum_{k=1}^n a_{ik}(x_k - y_k)\right)^2} \le$$

$$\leq |\lambda| \sqrt{\sum_{i=1}^{n} \left( \left( \sum_{k=1}^{n} a_{ik}^{2} \right) \left( \sum_{k=1}^{n} (x_{k} - y_{k})^{2} \right) \right)} = |\lambda| \sqrt{\sum_{i=1}^{n} \sum_{k=1}^{n} a_{ik}^{2}} \cdot d_{2}(x, y).$$

DeciTeste contracție dacă și numai dacă  $|\lambda| \leq \left(\sqrt{\sum_{i=1}^n \sum_{k=1}^n a_{ik}^2}\right)^{-1}.$ 

- 23. Să se rezolve exercițiul anterior în raport cu distanțele  $d_1$  și  $d_{\infty}$ .
- **24.** Ecuații integrale de tip Fredholm Fie  $a,b \in R, a < b$  și fie  $K: [a,b] \times [a,b] \mapsto R$  o funcție continuă (numită nucleu). Pentru orice funcție continuă  $f: [a,b] \mapsto R$  și pentru orice  $\lambda \in R$ , fie ecuația (cu necunoscuta  $\phi$ ):

$$\phi(x) = \lambda \int_{a}^{b} K(x, y)\phi(y)dy + f(x), \, \forall x \in [a, b].$$

Să se afle pentru ce valori ale lui  $\lambda \in R$  se poate aplica metoda aproximațiilor succesive ecuației considerate.

#### Soluție

Studiem ecuația în spațiul Banach  $(\mathcal{C}([a,b]),d_{\infty})$ . Fie aplicația

$$U: \mathcal{C}([a,b]) \mapsto \mathcal{C}([a,b]), (U\phi)(x) = \lambda \int_a^b K(x,y)\phi(y)dy + f(x).$$

Ecuația Fredholm se scrie  $U(\phi) = \phi$ . Pentru orice  $\phi, \psi \in \mathcal{C}([a, b])$ , calculăm:

$$d_{\infty}(U\phi, U\psi) = \sup_{x \in [a,b]} |(U\phi)(x) - (U\psi)(x)| =$$

$$= \sup_{x \in [a,b]} |\lambda \int_{a}^{b} K(x,y)(\phi(y) - \psi(y))dy| \le$$

$$\le |\lambda| \sup_{x \in [a,b]} \int_{a}^{b} |K(x,y)| \cdot |\phi(y) - \psi(y)|dy \le$$

$$\le |\lambda| \parallel K \parallel_{\infty} \int_{a}^{b} |\phi(y) - \psi(y)|dy,$$

unde, am notat  $||K||_{\infty} = \sup_{(x,y) \in [a,b]^2} |K(x,y)|$ . Rezultă deci

$$d_{\infty}(U\phi, U\psi) \leq |\lambda| \parallel K \parallel_{\infty} (b-a)d_{\infty}(\phi, \psi), \forall \phi, \psi \in \mathcal{C}([a, b]).$$

Aplicația U este contracție dacă și numai dacă  $|\lambda| < \frac{1}{(b-a) \parallel K \parallel_{\infty}}$ . În această ipoteză, construim un șir al aproximațiilor succesive: fie  $\phi_0 \in \mathcal{C}([a,b])$  și  $\phi_{n+1} = U\phi_n$ . Calculăm primii termeni ai șirului:

$$\phi_{1}(x) = (U\phi_{0})(x) = \lambda \int_{a}^{b} K(x,y)\phi_{0}(y)dy + f(x), \forall x \in [a,b].$$

$$\phi_{2}(x) = (U\phi_{1})(x) = \lambda \int_{a}^{b} K(x,y) \left(\lambda \int_{a}^{b} K(y,t)\phi_{0}(t)dt + f(y)\right) dy + f(x) =$$

$$= f(x) + \lambda \int_{a}^{b} K(x,y)f(y)dy + \lambda^{2} \int_{a}^{b} \int_{a}^{b} K(x,y)K(y,t)\phi_{0}(t)dtdy =$$

$$= f(x) + \lambda \int_{a}^{b} K(x,y)f(y)dy + \lambda^{2} \int_{a}^{b} \left(\phi_{0}(t) \int_{a}^{b} K(x,y)K(y,t)dy\right) dt.$$

Definim nucleele iterate:

$$K_1(x,y) = K(x,y),$$

$$K_{2}(x,y) = \int_{a}^{b} K(x,t)K_{1}(t,y)dt,$$

$$K_{3}(x,y) = \int_{a}^{b} K(x,t)K_{2}(t,y)dt,$$
......
$$K_{n}(x,y) = \int_{a}^{b} K(x,t)K_{n-1}(t,y)dt.$$

Cu aceste notații, soluția ecuației Fredholm este:

$$\xi(x) = f(x) + \sum_{n>1} \lambda^n \int_a^b K_n(x, y) f(y) dy, \, \forall x \in [a, b].$$

Fie  $R(x, y, \lambda) = \sum_{n \geq 0} \lambda^n K_{n+1}(x, y)$  rezolventa ecuației; atunci:

$$\xi(x) = f(x) + \lambda \int_{a}^{b} R(x, y, \lambda) f(y) dy.$$

**25.** Să se determine  $\lambda \in R$  astfel încât ecuației

$$\phi(x) = \lambda \int_0^1 xy\phi(y)dy + x^2$$

să i se poată aplica metoda aproximațiilor succesive și, în acest caz, să se rezolve ecuația.

#### Soluţie

Cu notațiile din exercițiul precedent, a = 0, b = 1,

 $K: [0,1] \times [0,1] \mapsto R, K(x,y) = xy, f(x) = x^2$  şi  $||K||_{\infty} = 1$ . Aplicaţia U definită prin  $(U\phi)(x) = \lambda \int_0^1 xy\phi(y)dy + x^2$  este contracţie dacă şi numai dacă  $|\lambda| < 1$ . În acest caz, nucleele iterate sunt:

$$K_1(x,y) = K(x,y) = xy,$$

$$K_2(x,y) = \int_0^1 K(x,t)K_1(t,y)dt = \int_0^1 xt^2ydt = \frac{1}{3}xy,$$

$$K_3(x,y) = \int_0^1 \frac{1}{3}xt^2ydt = \frac{1}{3^2}xy.$$

În general,  $K_n = \frac{1}{3^{n-1}}xy$ . Rezultă:

$$R(x,y,\lambda) = \sum_{n>0} \left(\frac{\lambda}{3}\right)^n xy = \frac{3xy}{3-\lambda},$$

și deci soluția (unică) a ecuației este

$$\xi(x) = x^2 + \lambda \int_0^1 \frac{3xy}{3-\lambda} y^2 dy = x^2 + \frac{3\lambda}{4(3-\lambda)} x.$$

#### 26. Metoda lui Newton

Fie  $a,b \in R$  şi fie  $f:[a,b] \mapsto R$  o funcție de două ori derivabilă astfel încât  $f'(x) \neq 0, \forall x \in [a,b]$ . Presupunem că ecuația f(x) = 0 are o soluție  $\xi \in [a,b]$ . Metoda lui Newton aproximează  $\xi$  cu șirul aproximațiilor succesive generat de contracția  $g(x) = x - \frac{f(x)}{f'(x)}$ . Să se găsească o condiție suficientă pentru a se putea aplica metoda aproximațiilor succesive și să se interpreteze geometric metoda.

#### Soluție

Condiția  $|g'(x)| \leq k < 1$  (pentru ca g să fie contracție) este echivalentă cu  $|f(x)f''(x)| < k(f'(x))^2, \forall x \in [a,b]$ . Dacă această condiție este îndeplinită, atunci șirul aproximațiilor succesive este  $x_n = x_{n-1} - \frac{f(x_{n-1})}{f'(x_{n-1})}$ . Geometric,  $x_n$  este abscisa punctului de intersecție al tangentei la graficul funcției f în punctul  $(x_{n-1}, f(x_{n-1}))$  cu axa Ox. Într-adevăr, ecuația tangentei este  $y - f(x_{n-1}) = f'(x_{n-1})(x - x_{n-1})$  și pentru y = 0 se obține  $x_n$ .

**27.** Fie a > 0 și  $p \in N$ . Să se aplice metoda lui Newton pentru a construi un șir al aproximațiilor succesive pentru  $\sqrt[p]{a}$ .

#### Solutie

Fie  $f(x) = x^p - a$  și  $g(x) = x - \frac{f(x)}{f'(x)} = \frac{1}{p} \left( (p-1)x + ax^{1-p} \right)$ . Aplicația g este contracție pe un interval care conține  $\sqrt[p]{a}$ :

$$|g'(x)| = \frac{p-1}{p} |1 - ax^{-p}| < \frac{p-1}{p} < 1, \forall x > \sqrt[p]{\frac{a}{2}}.$$

In concluzie, pentru a construi un șir al aproximațiilor succesive, trebuie ca primul termen,  $x_0$ , să fie ales astfel încât  $x_0 > \sqrt[p]{\frac{a}{2}}$ .

# 2.4 Funcţii continue

28. Să se studieze continuitatea in zero funcției

$$f(x) = \begin{cases} x[\frac{1}{x}], & x \in (0, 1] \\ 1, & x = 0 \end{cases}$$

unde, [a] este partea întreagă a numărului  $a \in R$ .

#### Soluție

Din dubla inegalitate:

$$x\left(\frac{1}{x} - 1\right) < f(x) \le x\frac{1}{x}, \forall x \in (0, 1],$$

rezultă că funcția f este continuă în 0.

**29.** Fie

$$f: R \mapsto R, f(x) = \begin{cases} x \sin \frac{1}{x}, & x \neq 0 \\ 0, & x = 0 \end{cases}$$

Să se demonstreze că f este uniform continuă pe R.

#### Soluție

Funcţia f este continuă, deci pe orice interval compact  $[a,b] \subset R$  este şi uniform continuă. Fie  $x_n \to \infty$  şi  $y_n \to \infty$  astfel încât  $|x_n - y_n| \to 0$ . Atunci  $|f(x_n) - f(y_n)| \to 0$  (deoarece  $\lim_{n \to \infty} f(x_n) = \lim_{n \to \infty} f(y_n) = 1$ ), deci f este uniform continuă pe R.

**30.** Fie  $f:(0,1]\mapsto R, f(x)=\sin\frac{1}{x}$ . Să se demonstreze că f nu este uniform continuă.

#### Soluție

Fie 
$$x_n = \frac{1}{n\pi}$$
 şi  $y_n = \frac{1}{\frac{\pi}{2} + 2n\pi}$ . Atunci  $|x_n - y_n| \to 0$ , dar

$$|f(x_n) - f(y_n)| \to 1 \neq 0.$$

**31.** Fie  $f:(0,1]\mapsto R, f(x)=\ln x$  şi  $g:[1,\infty)\mapsto R, g(x)=\ln x$ . Să se studieze uniform continuitatea funcțiilor f şi g.

#### Soluție

Funcția f nu este uniform continuă: fie  $x_n = e^{-n}$  și  $y_n = e^{-2n}$ . Atunci  $|x_n - y_n| \to 0$ , dar  $|f(x_n) - f(y_n)| \to \infty$ . Funcția g este uniform continuă: din inegalitatea  $\sup_{x \ge 1} |g'(x)| \le 1$ , rezultă, (aplicând teorema lui Lagrange):

$$|q(x) - q(y)| < |x - y|, \forall x, y \in [1, \infty).$$

**32.** Fie (X, d) un spațiu metric, fie  $f: X \mapsto R$  o aplicație continuă și fie  $a \in R$ . Considerăm mulțimile:

$$A = \{ x \in X \mid f(x) < a \}$$

$$B = \{ x \in X \mid f(x) \le a \}$$
$$D = \{ x \in X \mid f(x) = a \}.$$

Să se demonstreze că A este mulțime deschisă, iar B și D sunt mulțimi închise.

#### Soluție

 $A = f^{-1}((-\infty, a)), B = f^{-1}((-\infty, a]), D = f^{-1}(\{a\});$  mulţimea  $(-\infty, a)$  este deschisă, iar mulţimile  $(-\infty, a]$  şi  $\{a\}$  sunt închise.

**33.** Să se construiască o funcție continuă, bijectivă având inversa discontinuă.

#### Soluție

Fie  $X = [0, 2\pi)$  cu distanța uzuală indusă din R. Fie cercul unitate

$$Y = \{(x, y) \in R^2 \mid x^2 + y^2 = 1\},\$$

cu distanța euclidiană indusă din  $R^2$  (se poate lua și metrica "lungimea arcului", care este echivalentă cu distanța euclidiană). Fie funcția:

$$f: X \mapsto Y, f(t) = (\cos t, \sin t).$$

Atunci f este continuă (deoarece componentele sunt continue) și bijectivă. Dacă funcția inversă  $f^{-1}: Y \mapsto X$  ar fi continuă, atunci imaginea oricărui șir convergent din Y ar fi un șir convergent în X. Şirul  $\left(\sqrt{1-\frac{1}{n^2}},-\frac{1}{n}\right)$  converge la (1,0) în Y, dar imaginea sa prin funcția  $f^{-1}$ :

$$f^{-1}\left(\left(\sqrt{1-\frac{1}{n^2}}, -\frac{1}{n}\right)\right) = 2\pi - \arctan\left(\frac{1}{n\sqrt{1-\frac{1}{n^2}}}\right)$$

nu este șir convergent în X; altfel ar trebui ca  $2\pi \in X$ , contradicție.

**34.** Există funcții continue și bijective de la [0,1) în (0,1) ? Solutie

Fie X=[0,1) cu metrica indusă din R și Y=(0,1) cu aceeași metrică. Să presupunem, prin absurd, că ar exista o funcție continuă și bijectivă  $f:X\mapsto Y$ . Fie a=f(0) și fie g restricția lui f la (0,1); atunci  $g((0,1))=(0,a)\cup(a,1)$ . Dar (0,1) este mulțime conexă în X, restricția g este continuă, deci ar trebui ca g((0,1)) să fie mulțime conexă în Y, contradicție.

Să se studieze continuitatea următoarelor funcții în origine (exercițiile 35-47):

**35.** 
$$f(x,y) = \begin{cases} \frac{x^2y}{x^2+y^2}, & (x,y) \neq (0,0) \\ 0, & (x,y) = (0,0) \end{cases}$$

## Soluție

 $\lim_{\substack{(x,y)\to (0,0)\\ z}} f(x,y) = \lim_{\substack{(x,y)\to (0,0)}} \frac{x^2y}{x^2+y^2} = 0, \text{ deoarece } |\frac{x^2y}{x^2+y^2}| \leq |x|. \text{ Rezultă că}$ 

**36.** 
$$f(x,y) = \begin{cases} \frac{xy}{x^2 + y^2}, & (x,y) \neq (0,0) \\ 0, & (x,y) = (0,0) \end{cases}$$

Trecând la coordonate polare,  $x = \rho \cos \varphi$ ,  $y = \rho \sin \varphi$ , obţinem:

$$\lim_{(x,y)\to(0,0)} f(x,y) = \lim_{(x,y)\to(0,0)} \frac{xy}{x^2 + y^2} = \lim_{\rho\to 0} \frac{\rho^2 \sin\varphi \cdot \cos\varphi}{\rho^2} = \sin\varphi \cdot \cos\varphi,$$

ceea ce arată că limita în (0,0) nu există, deci funcția nu este continuă în origine.

**37.** 
$$f(x,y) = \begin{cases} \frac{x^2y}{x^4+y^2}, & (x,y) \neq (0,0) \\ 0, & (x,y) = (0,0) \end{cases}$$

#### Soluție

 $\lim_{(x,y)\to(0,0)} \frac{x^2y}{x^4+y^2} \text{ nu există: fie } (x_n,y_n) = (\frac{1}{n},\frac{1}{n^2}) \to (0,0). \text{ Atunci}$  $f(x_n,y_n) \to \frac{1}{2}$ . Dacă  $(x'_n,y'_n) = (\frac{1}{n},\frac{1}{n}) \to (0,0)$ , atunci  $f(x'_n,y'_n) \to 0$ . Se observă că deși  $\lim_{x\to 0} f(x,mx) = 0, \forall m \in \mathbb{R}$ , totuși limita nu există.

**38.** 
$$f(x,y) = \begin{cases} \frac{x^2 - y^2}{x^2 + y^2}, & (x,y) \neq (0,0) \\ 0, & (x,y) = (0,0) \end{cases}$$

 $\lim_{(x,y)\to(0,0)} f(x,y)$  nu există.

**39.** 
$$f(x,y) = \begin{cases} (x^2 + y^2) \sin \frac{1}{xy}, & (x,y) \neq (0,0) \\ 0, & (x,y) = (0,0) \end{cases}$$

#### Soluție

Din inegalitatea  $\left|(x^2+y^2)\sin\frac{1}{xy}\right| \leq x^2+y^2$ rezultă

$$\lim_{(x,y)\to(0,0)} f(x,y) = 0,$$

deci funcția este continuă.

**40.** 
$$f(x,y) = \begin{cases} \frac{ye^{-\frac{1}{x^2}}}{y^2 + e^{-\frac{2}{x^2}}}, & (x,y) \neq (0,0) \\ 0, & (x,y) = (0,0) \end{cases}$$

#### Soluţie

 $\lim_{(x,y)\to(0,0)}f(x,y)$ nu există; dacă  $(x_n,y_n)=(\frac{1}{\sqrt{\ln n}},\frac{1}{n})\to(0,0),$ atunci

$$f(x_n, y_n) \to \frac{1}{2},$$

iar dacă  $(x'_n, y'_n) = (\frac{1}{\sqrt{\ln n}}, \frac{1}{n^2}) \to (0, 0)$ , atunci

$$f(x_n', y_n') \to 0.$$

**41.** 
$$f(x,y) = \begin{cases} \frac{1}{xy} \sin \frac{x^3 y^2}{x^2 + y^2}, & (x,y) \neq (0,0) \\ 0, & (x,y) = (0,0) \end{cases}$$

## Soluţie

$$\lim_{(x,y)\to(0,0)} f(x,y) = \lim_{(x,y)\to(0,0)} \frac{\sin\frac{x^3y^2}{x^2+y^2}}{\frac{x^3y^2}{x^2+y^2}} \cdot \frac{x^3y^2}{x^2+y^2} = 0, \text{ deoarece}$$

$$\left| \frac{x^3 y^2}{x^2 + y^2} \right| \le |x^3|,$$

deci funcția este continuă.

**42.** 
$$f(x,y) = \begin{cases} \frac{x^2 + y^2}{\sqrt{x^2 + y^2 + 1} - 1}, & (x,y) \neq (0,0) \\ 0, & (x,y) = (0,0) \end{cases}$$

#### Solutie

 $\lim_{(x,y)\to(0,0)} f(x,y) = \lim_{(x,y)\to(0,0)} \frac{x^2+y^2}{\sqrt{x^2+y^2+1}-1} = 2, \text{ deci funcția nu este continuă.}$ 

**43.** 
$$f(x,y) = \begin{cases} \frac{\sqrt{x^2 \cdot y^2 + 1} - 1}{x^2 + y^2}, & (x,y) \neq (0,0) \\ 0, & (x,y) = (0,0) \end{cases}$$

# Soluţie

$$\lim_{(x,y)\to(0,0)} f(x,y) = \lim_{(x,y)\to(0,0)} \frac{\sqrt{x^2y^2+1}-1}{x^2+y^2} =$$

$$= \lim_{(x,y)\to(0,0)} \frac{x^2y^2}{(x^2+y^2)(\sqrt{x^2y^2+1}+1)} = 0,$$

deci funcția este continuă.

**44.** 
$$f(x,y) = \begin{cases} \frac{e^{-\frac{1}{x^2+y^2}}}{x^4+y^4}, & (x,y) \neq (0,0) \\ 0, & (x,y) = (0,0) \end{cases}$$

#### Soluţie

Folosind limita  $\lim_{t\to 0_+}\frac{e^{-\frac{1}{t}}}{t^n}=0, \forall n\in N,$  rezultă  $\lim_{(x,y)\to(0,0)}f(x,y)=0,$  deci funcția este continuă.

**45.** 
$$f(x,y) = \begin{cases} (1+x^2y^2)^{-\frac{1}{x^2+y^2}}, & (x,y) \neq (0,0) \\ 0, & (x,y) = (0,0) \end{cases}$$

#### Soluţie

$$\lim_{(x,y)\to(0,0)} f(x,y) = \lim_{(x,y)\to(0,0)} (1+x^2y^2)^{-\frac{1}{x^2+y^2}} =$$

$$= \lim_{(x,y) \to (0,0)} \left( (1+x^2y^2)^{\frac{1}{x^2y^2}} \right)^{-\frac{x^2y^2}{x^2+y^2}} = 1,$$

deci funcția nu este continuă.

**46.** 
$$f(x, y, z) = \begin{cases} \frac{x^2}{x^2 + y^2 + z^2}, & (x, y, z) \neq (0, 0, 0) \\ 0, & (x, y, z) = (0, 0, 0) \end{cases}$$

#### Soluție

Folosind coordonatele sferice:

$$x = \rho \sin \theta \cos \varphi, y = \rho \sin \theta \sin \varphi, z = \rho \cos \theta,$$

obţinem

$$\lim_{(x,y,z)\to(0,0,0)} f(x,y,z) = \lim_{\rho\to 0} \frac{\rho^2(\sin^2\theta\cos^2\varphi)}{\rho^2} = \sin^2\theta\cos^2\varphi,$$

deci limita nu există.

**47.** 
$$f(x,y,z) = \begin{cases} \frac{xz}{\sqrt{x^2 + y^2}}, & (x,y,z) \notin Oz \\ 0, & x = y = 0 \end{cases}$$

#### Soluție

Fie  $(0,0,z_o) \in Oz$ ; analizăm mai întâi cazul  $z_o \neq 0$ . Folosind coordonate cilindrice,

$$x = \rho \cos \varphi, y = \rho \sin \varphi, z = z,$$

obţinem

$$\lim_{(x,y,z)\to(0,0,z_o)} f(x,y,z) = \lim_{(\rho,z)\to(0,z_o)} \frac{\rho\cos\varphi\cdot z}{\rho} = z_o\cos\varphi,$$

deci limita nu există.

Dacă  $z_o = 0$ , din inegalitatea

$$|f(x, y, z)| \le |z|,$$

rezultă

$$\lim_{(x,y,z)\to(0,0,0)} f(x,y,z) = 0,$$

deci funcția este continuă în origine.

# 2.5 Spaţii normate şi operatori liniari

**48.** a. Fie  $x_0 \in [a, b]$ ; pe spaţiul funcţiilor continue,  $(\mathcal{C}[a, b], \| \|_{\infty})$  considerăm aplicaţia (numită evaluarea în punctul  $x_0$ ):

$$F_{x_0}: \mathcal{C}[a,b] \mapsto R, \ F_{x_0}(f) = f(x_0).$$

Să se demonstreze că  $F_{x_0}$  este funcțională liniară și continuă și să se calculeze norma  $\parallel F_{x_0} \parallel$ .

**b.** Mai general, să se demonstreze că pentru orice  $t_1, t_2, ..., t_n \in [a, b]$  și orice  $c_1, c_2, ..., c_n \in R$ , aplicația:

$$F: \mathcal{C}[a,b] \mapsto R, \ F(f) = \sum_{k=1}^{n} c_k f(t_k)$$

este funcțională liniară și continuă. În plus:

$$\parallel F \parallel = \sum_{k=1}^{n} |c_k|.$$

#### Soluţie

a. Fie  $f, g \in \mathcal{C}[a, b]$  și  $\alpha, \beta \in R$ ; atunci:

$$F_{x_0}(\alpha f + \beta g) = \alpha f(x_0) + \beta g(x_0) = \alpha F_{x_0}(f) + \beta F_{x_0}(g),$$

deci ${\cal F}_{x_0}$ este funcțională liniară.

Pentru orice  $f \in \mathcal{C}[a, b]$ , avem:

$$|F_{x_0}(f)| = |f(x_0)| \le ||f||_{\infty},$$

deci  $F_{x_0}$  este continuă și  $||F_{x_0}|| \le 1$ .

Dacă 1 este funcția constantă 1, atunci  $|F_{x_0}(\mathbf{1})| = 1$ , deci  $||F_{x_0}|| = 1$ .

**b.** Evident, se poate presupune că  $c_k \neq 0$ ,  $\forall k \in \{1, 2, ..., n\}$  și că punctele  $t_1, t_2, ..., t_n$  sunt alese crescător; liniaritatea:

$$F(\alpha f + \beta g) = \sum_{k=1}^{n} c_k \alpha f(t_k) + \sum_{k=1}^{n} c_k \beta g(t_k) =$$

$$= \alpha F(f) + \beta F(g) \ \forall f, g \in \mathcal{C}[a, b], \ \forall \alpha, \beta \in R.$$

Din inegalitatea:

$$|F(f)| = \left| \sum_{k=1}^{n} c_k f(t_k) \right| \le$$

$$\le \sum_{k=1}^{n} |c_k f(t_k)| \le \left( \sum_{k=1}^{n} |c_k| \right) \parallel f \parallel_{\infty}, \forall f \in \mathcal{C}[a, b],$$

rezultă continuitatea lui F și inegalitatea:

$$||F|| \le \sum_{k=1}^{n} |c_k|.$$

Pentru a demonstra inegalitatea inversă, considerăm funcția  $h:[a,b] \to R$ , definită astfel: în punctele  $t_k$  ia valorile  $\operatorname{sgn}(c_k)$ , pe fiecare interval  $(t_k, t_{k+1})$  funcția este liniară, iar pe intervalele  $[a, t_1)$  și  $(t_n, b]$  funcția h este constantă. Notând  $u_k = \frac{c_k}{|c_k|}$ , funcția h este:

$$h(x) = \begin{cases} u_k &, x = t_k \\ u_1 &, x \in [a, t_1) \\ u_n &, x \in (t_n, b] \\ \frac{u_{k+1} - u_k}{t_{k+1} - t_k} x + \frac{u_k t_{k+1} - u_{k+1} t_k}{t_{k+1} - t_k} &, x \in (t_k, t_{k+1}) \end{cases}$$

Evident, din definiție rezultă funcția h este continuă și  $||h||_{\infty} = 1$ , deci:

$$||F|| \ge |F(h)| = \left| \sum_{k=1}^{n} c_k h(t_k) \right| = \left| \sum_{k=1}^{n} c_k \frac{c_k}{|c_k|} \right| = \sum_{k=1}^{n} |c_k|,$$

ceea ce încheie demonstrația.

**49. a.** Pe spațiul Banach  $(\mathcal{C}[a,b], \| \|_{\infty})$  al funcțiilor continue (reale) considerăm aplicația

$$J: \mathcal{C}[a,b] \mapsto R, J(f) = \int_a^b f(t)dt.$$

Să se demonstreze că J este funcțională liniară și continuă și apoi să se calculeze norma sa.

**b.** Mai general, pentru orice funcție continuă  $\varphi:[a,b]\mapsto R$  aplicația:

$$J_{\varphi}: \mathcal{C}[a,b] \mapsto R, \ J_{\varphi}(f) = \int_{a}^{b} \varphi(t) f(t) \ dt$$

este o funcțională liniară și continuă si

$$\parallel J_{\varphi} \parallel = \int_{a}^{b} |\varphi(t)| dt.$$

#### Soluție

a. Liniaritatea este o consecință directă a proprietăților integralei Riemann. Pentru orice  $f \in \mathcal{C}[a,b]$ , avem:

$$|J(f)| = \left| \int_{a}^{b} f(t) \, dt \right| \le$$

$$\leq \int_{a}^{b} |f(t)| dt \leq (b-a) \cdot \|f\|_{\infty},$$

deci J este continuă. Din inegalitatea de mai sus rezultă și  $||J|| \le b - a$ . Pentru a demonstra inegalitatea inversă, fie  $\mathbf{1}(t) = 1, \forall t \in [0, 1]$ . Atunci  $||\mathbf{1}||_{\infty} = 1$  și deci:

$$||J|| \ge |J(\mathbf{1})| = b - a.$$

Rezultă ||J|| = b - a.

b. Liniaritatea este evidentă; din inegalitatea:

$$|J_{\varphi}(f)| = \left| \int_{a}^{b} \varphi(t)f(t) dt \right| \le \int_{a}^{b} |\varphi(t)f(t)| dt \le ||f||_{\infty} \int_{a}^{b} |\varphi(t)| dt$$

rezultă continuitatea și inegalitatea:

$$\parallel J_{\varphi} \parallel \leq \int_{a}^{b} |\varphi(t)| dt.$$

Pentru a demonstra inegalitatea inversă construim o funcție  $g \in \mathcal{C}[a,b]$  după cum urmează; fie  $\varepsilon > 0$ , arbitrar fixat și fie o diviziune a intervalului [a,b],

$$a = t_0 < t_1 < t_2 < \dots < t_n = b$$
,

astfel încât

$$\max_{k=1}^{n} |\varphi(t_k) - \varphi(t_{k-1})| < \varepsilon.$$

Această alegere a diviziunii este posibilă datorită continuității funcției  $\varphi$ . Împărțim intervalele diviziunii în două grupe:

în prima grupă considerăm intervalele (notate  $\Delta'_1, \, \Delta'_2, ..., \Delta'_r$ ) pe care funcția  $\varphi$  nu se anulează (nu schimbă semnul);

în grupa a doua, celelalte intervale (notate  $\Delta_1'', \, \Delta_2'', ..., \Delta_s''$ ).

Definim funcția g pe fiecare interval al diviziunii urmând următoarele reguli:

i.  $g(t) = \operatorname{sgn}(\varphi(t)), \forall t \in \Delta_i', \forall i = 1, 2, ..., r;$ 

ii. g(t) este liniară în restul punctelor din [a, b]; (se pot da formule concrete, a se vedea exercițiul anterior);

iii. dacă a sau b este extremitate a unui interval din a doua grupă, atunci g(a) = 0, (repectiv g(b) = 0).

Evident, funcția g este continuă și  $||g||_{\infty} \le 1$ , deci:

$$\|J_{\varphi}\| \ge |J_{\varphi}(g)| =$$

$$= \left| \sum_{j=1}^{r} \int_{\Delta'_{j}} \varphi(t) g(t) dt + \sum_{k=1}^{s} \int_{\Delta''_{k}} \varphi(t) g(t) dt \right| \ge$$

$$\ge \sum_{j=1}^{r} \int_{\Delta'_{j}} |\varphi(t)| dt - \sum_{k=1}^{s} \int_{\Delta''_{k}} |\varphi(t)| dt =$$

$$= \int_{a}^{b} |\varphi(t)| dt - 2 \sum_{k=1}^{s} \int_{\Delta''_{k}} |\varphi(t)| dt >$$

$$> \int_{a}^{b} |\varphi(t)| dt - 2\varepsilon (b - a).$$

Pentru  $\varepsilon \to 0$ , rezultă inegalitatea:

$$||J_{\varphi}|| \geq \int_{a}^{b} |\varphi(t)| dt,$$

ceea ce încheie demonstrația.

**50.** Fie  $C^1[a, b]$  spațiul vectorial al funcțiilor de clasă  $C^1$  definite pe intervalul compact [a, b].

a. Să considerăm pe  $C^1[a,b]$  norma supremum:  $\|f\|_{\infty} = \sup_{x \in [a,b]} |f(x)|$ . Să se demonstreze că aplicația de derivare

$$D: \mathcal{C}^1[a,b] \mapsto \mathcal{C}[a,b], D(f) = f',$$

este operator liniar dar nu este și continuu. Pe spațiul funcțiilor continue,  $\mathcal{C}[a,b]$ , este considerată, ca de obicei, norma supremum.

**b.** Să considerăm acum pe spațiul  $\mathcal{C}^1[a,b]$  norma:

$$|| f || = || f ||_{\infty} + || f' ||_{\infty}.$$

Să se demostreze că aplicația de derivare D este în acest caz operator continuu.

#### Soluție

**a.** Liniaritatea este evidentă. Fie şirul  $f_n(x) = \frac{1}{n} \sin nx$ ; atunci  $||f_n||_{\infty} = \frac{1}{n}$  și deci  $f_n \to 0$  în spațiul normat  $(\mathcal{C}^1[a,b], || ||_{\infty})$ , dar şirul  $D(f_n) = f'_n$  nu converge (la 0) în  $\mathcal{C}[a,b]$ .

**b.** Fie  $f \in \mathcal{C}^1[a,b]$ ; din inegalitatea:

$$\parallel D(f) \parallel_{\infty} = \parallel f' \parallel_{\infty} \leq \parallel f \parallel_{\infty} + \parallel f' \parallel_{\infty} = \parallel f \parallel$$

rezultă că D este operator continuu.

**51.** Să se demonstreze că orice operator liniar  $T: \mathbb{R}^n \mapsto \mathbb{R}^n$  este continuu (pe spaţiul  $\mathbb{R}^n$  este considerată norma euclidiană, notată în continuare  $\| \ \|_2$ ). **Soluție** 

Fie T ca în enunț, fie  $\{e_1, e_2, ..., e_n\}$  baza canonică în  $\mathbb{R}^n$  și fie:

$$K = \max\{||Te_1||_2, ||Te_2||_2, ..., ||Te_n||_2\}.$$

Pentru orice vector  $x = \sum_{j=1}^n x_j e_j \in \mathbb{R}^n$ , au loc inegalitățile:

$$|x_i| < ||x||_2, \forall i = 1, 2, ..., n.$$

De aici și din inegalitatea triunghiului, rezultă:

$$||Tx||_2 = ||T\left(\sum_{j=1}^n x_j e_j\right)||_2 = ||x_j T e_j||_2 \le$$

$$\leq \sum_{j=1}^{n} |x_j| \parallel Te_j \parallel_2 \leq nK \parallel x \parallel_2, \ \forall x \in \mathbb{R}^n,$$

deci operatorul T este continuu şi  $||T|| \le nK$ . Evident, demonstrația de mai sus rămâne adevărată și pe spațiul  $C^n$ .

#### 52. Operatorul de înmulțire cu variabila independentă

Pe spaţiul Banach complex  $(C[a, b], \| \|_{\infty})$  considerăm operatorul (de îmulțire cu variabila independentă):

$$(Mf)(x) = xf(x), \ \forall f \in \mathcal{C}[a, b], \ \forall x \in [a, b].$$

- a. Să se demonstreze că M este liniar și continuu și ||M|| = |b|.
- **b.** Să se demonstreze că spectrul lui M este :

$$\sigma(M) = [a, b].$$

- c. Să se demonstreze că mulțimea valorilor proprii este vidă:  $\sigma_p(M)=\emptyset.$  Soluție
- **a.** Pentru orice  $f, g \in \mathcal{C}[a, b]$  şi  $\alpha, \beta \in C$ , avem:

$$(M(\alpha f + \beta g))(x) = x(\alpha f + \beta g)(x) =$$

$$= \alpha x f(x) + \beta x g(x) = (\alpha M f + \beta M g)(x), \ \forall x \in [a, b],$$

deciM este liniar. Continuitatea:

$$\parallel Mf \parallel_{\infty} = \sup_{x \in [a,b]} |xf(x)| \leq |b| \parallel f \parallel_{\infty}, \ \forall \ f \in \mathcal{C}[a,b], \forall \ x \in [a,b],$$

deci M este continuu și în plus  $||M|| \le |b|$ .

Notând cu 1 funcția constantă 1, atunci  $\|\mathbf{1}\|_{\infty} = 1$  și deci:

$$\parallel M\parallel\geq\parallel M\mathbf{1}\parallel_{\infty}=\sup_{x\in[a,b]}|x|=|b|,$$

 $\operatorname{deci} \parallel M \parallel = |b|.$ 

**b.** Demonstrăm egalitatea  $\sigma(M) = [a, b]$  prin dublă incluziune.

Prin definiție,  $\lambda \in \sigma(M)$  dacă și numai dacă operatorul  $\lambda I - M$  nu este inversabil (ceea ce este echivalent cu a fi bijectiv, conform teoremei lui Banach; a se vedea secțiunea teoretică a acestui capitol). Fie  $\lambda_0 \in [a,b]$ ; din egalitatea:

$$((\lambda_0 I - M)(f))(x) = (\lambda_0 - x)f(x), \forall f \in \mathcal{C}[a, b], \forall x \in [a, b]$$

rezultă că operatorul  $\lambda_0 I - M$  nu este surjectiv deoarece imaginea sa este:

$$\mathcal{I}\mathrm{m}(\lambda_0 I - M) = \{ f \in \mathcal{C}[a, b] \mid f(\lambda_0) = 0 \} \neq \mathcal{C}[a, b],$$

deci  $[a,b] \subseteq \sigma(M)$ . În locul incluziunii inverse  $\sigma(M) \subseteq [a,b]$  demonstrăm incluziunea echivalentă:  $C \setminus [a,b] \subseteq C \setminus \sigma(M)$ . Fie  $\lambda_0 \notin [a,b]$ ; atunci funcția

$$\varphi: [a,b] \mapsto C, \ \varphi_0(x) = \frac{1}{\lambda_0 - x}$$

este corect definită și continuă, deci  $\| \varphi_0 \|_{\infty} < \infty$ . Considerăm operatorul:

$$S: \mathcal{C}[a,b] \mapsto \mathcal{C}[a,b], \ (Sf)(x) = \varphi_0(x)f(x) = \frac{1}{\lambda_0 - x}f(x), \ \forall x \in [a,b].$$

Se demonstrează fără dificultate că S este operator liniar. Continuitatea rezultă din inegalitatea:

$$\parallel Sf \parallel_{\infty} = \sup_{x \in [a,b]} |\varphi_0(x)f(x)| \leq \parallel \varphi_0 \parallel_{\infty} \parallel f \parallel_{\infty}, \ \forall f \in \mathcal{C}[a,b].$$

În concluzie, operatorul  $S \in \mathcal{L}(\mathcal{C}[a,b])$ ; în plus, au loc egalitățile:

$$(\lambda_0 I - M)Sf = (S(\lambda_0 I - M))f = \varphi_0 \frac{1}{\varphi_0} f = f, \ \forall f \in \mathcal{C}[a, b],$$

deci operatorul  $\lambda_0 I - M$  este inversabil şi  $(\lambda_0 I - M)^{-1} = S$ , ceea ce demonstrează că  $\lambda_0 \notin \sigma(M)$ .

c. Pentru a demonstra că M nu are valori proprii, vom arăta că pentru orice  $\lambda \in [a, b]$ , operatorul  $\lambda I - M$  este injectiv. Fie  $\lambda_0 \in [a, b]$  și fie  $f \in \mathcal{C}[a, b]$  astfel încât  $(\lambda_0 I - M)f = 0$ ; rezultă:

$$(\lambda_0 - x)f(x) = 0, \forall x \in [a, b].$$

De aici rezultă

$$f(x) = 0, \ \forall x \in [a, b] \setminus \{\lambda_0\}.$$

Funcţia f fiind continuă, rezultă şi  $f(\lambda_0) = 0$ , deci f(x) = 0,  $\forall x \in [a, b]$ ; in concluzie,  $\lambda_0 I - M$  este injectiv.

#### 53. Operatorul de înmulțire

Exemplul anterior se poate generaliza după cum urmează. Fie  $\phi \in \mathcal{C}[a,b]$  şi fie operatorul (de înmulțire cu funcția  $\phi$ ):

$$M_{\phi}: \mathcal{C}[a,b] \mapsto \mathcal{C}[a,b], M_{\phi}f = \phi f.$$

- a. Să se arate că  $M_{\phi}$  este operator liniar şi continuu şi  $||M_{\phi}|| = ||\phi||_{\infty}$ .
- **b.** Spectrul lui  $M_{\phi}$  coincide cu imaginea funcției  $\phi$ :

$$\sigma(M_{\phi}) = \{\phi(x) \mid x \in [a, b]\}.$$

c. Operatorul  $M_{\phi}$  are valori proprii dacă și numai dacă există intervale (nedegenerate)  $J \subseteq [a,b]$  astfel încât  $\phi(x) = c, \forall x \in J$ . În acest caz c este valoare proprie a lui  $M_{\phi}$ .

#### Soluție

a. Liniaritatea este imediată; din inegalitatea:

$$\parallel M_{\phi}f \parallel_{\infty} = \sup_{x \in [a,b]} |\phi(x)f(x)| \le \parallel \phi \parallel_{\infty} \parallel f \parallel_{\infty},$$

rezultă continuitatea și  $\parallel M_{\phi} \parallel \leq \parallel \phi \parallel_{\infty}$ . Inegalitatea inversă rezultă ca în exercitiul anterior.

**b.** Fie  $A = \{\phi(x) \mid x \in [a,b]\}$  imaginea lui  $\phi$ . Demonstrăm egalitatea  $\sigma(M_{\phi}) = A$  prin dublă incluziune. Dacă  $\lambda_0 \in A$ , atunci există  $x_0 \in [a,b]$  astfel încât  $\phi(x_0) = \lambda_0$ ; de aici rezultă că operatorul  $\lambda_0 I - M_{\phi}$  nu este surjectiv deoarece imaginea sa este:

$$\mathcal{I}\operatorname{m}(\lambda_0 I - M_\phi) = \{ f \in \mathcal{C}[a, b] \mid f(x_0) = 0 \} \neq \mathcal{C}[a, b].$$

Pentru a demonstra incluziunea inversă, fie  $\lambda_0 \notin A$ ; atunci funcția

$$\varphi_0: [a,b] \mapsto C, \ \varphi_0(x) = \frac{1}{\lambda_0 - \phi(x)}$$

este corect definită și continuă. Rezultă că operatorul  $\lambda_0 I - M_\phi$  este inversabil, inversul său fiind operatorul de înmulțire cu funcția  $\varphi_0$ :

$$(\lambda_0 I - M_\phi)^{-1} f = M_{\varphi_0} f = \varphi_0 f, \forall f \in \mathcal{C}[a, b].$$

Continuitatea operatorului  $M_{\varphi_0}$  se poate arăta direct, dar este și o consecință a teoremei lui Banach (a se vedea secțiunea teoretică).

c. Fie  $\lambda_0 \in \sigma(M_\phi) = A$  astfel încât există  $f \in \mathcal{C}[a,b]$  cu proprietatea  $(\lambda_0 I - M_\phi)f = 0$ ; dacă funcția  $\phi$  nu este constantă pe nici un interval, atunci, din egalitatea  $(\lambda_0 - \phi(x))f(x) = 0, \forall x \in [a,b]$  și din continuitatea lui f rezultă  $f(x) = 0, \forall x \in [a,b]$ , deci operatorul  $\lambda_0 I - M_\phi$  este injectiv, deci  $\lambda_0$  nu este valoare proprie pentru  $M_\phi$ . Să presupunem acum că există  $J \subseteq [a,b]$  astfel încât  $\phi(x) = c, \forall x \in J$ . Demonstrăm că c este valoare proprie a lui  $M_\phi$ ; pentru aceasta, considerăm o funcție neidentic nulă  $f_0 \in \mathcal{C}[a,b]$  astfel încât  $f_0(x) = 0, \forall x \in [a,b] \setminus J$ . Atunci  $f_0$  este vector propriu asociat valorii proprii c:

$$((cI - M_{\phi})f_0)(x) = 0, \ \forall x \in [a, b].$$

Operatorul de înmulțire se poate defini și condiții mai generale. De exemplu, dacă  $D \subset R^n$  este o mulțime compactă și dacă  $\phi: D \mapsto C$  este o funcție continuă, atunci, pe spațiul  $\mathcal{C}(D)$  al funcțiilor continue pe D se poate defini operatorul (de înmulțire cu  $\phi$ ):  $M_{\phi}f = \phi f$ . Se poate demonstra că proprietățile demonstrate mai sus sunt adevărate și în acest caz.

#### 54. Operatorul integral

Fie  $K: [a,b] \times [a,b] \mapsto R$  o funcție continuă și fie operatorul integral (asociat nucleului K) definit prin:

$$T_K: \mathcal{C}[a,b] \mapsto \mathcal{C}[a,b], \ (T_K(f))(s) = \int_a^b K(s,t)f(t) \, dt.$$

Pe spațiul funcțiilor continue este considerată norma supremum.

- a. Să se demonstreze că  $T_K$  este operator liniar și continuu.
- **b.** Norma operatorului  $T_K$  este:

$$||T_K|| = \sup_{s \in [a,b]} \int_a^b |K(s,t)| dt.$$

#### Soluție

a. Pentru orice  $f,g\in\mathcal{C}[a,b]$  și  $\alpha,\beta\in R$  avem:

$$(T_K(\alpha f + \beta g))(s) = \int_a^b K(s,t)(\alpha f(t) + \beta g(t)) dt =$$

$$= \alpha \int_a^b K(s,t)f(t) dt + \beta \int_a^b K(s,t)g(t) dt = \alpha (T_K f)(s) + \beta (T_K g)(s),$$

 $\forall s \in [a, b]$ , deci  $T_K$  este liniar.

Continuitatea operatorului  $T_K$  rezultă din inegalitatea:

$$\|T_K f\|_{\infty} = \sup_{s \in [a,b]} \left| \int_a^b K(s,t) f(t) dt \right| \le$$

$$\le \|f\|_{\infty} \sup_{s \in [a,b]} \int_a^b |K(s,t)| dt, \ \forall f \in \mathcal{C}[a,b].$$

b. Din inegalitatea de mai sus rezultă și inegalitatea

$$\parallel T_K \parallel \leq \sup_{s \in [a,b]} \int_a^b |K(s,t)| \, dt.$$

Demonstrăm acum inegalitatea inversă. Aplicația

$$[a,b] \ni s \mapsto \int_a^b |K(s,t)| dt \in R$$

este continuă (definită pe un compact) și deci există  $s_0 \in [a,b]$  astfel încât:

$$\sup_{s \in [a,b]} \int_a^b |K(s,t)| \, dt = \int_a^b |K(s_0,t)| \, dt.$$

Notăm  $\phi(t) = K(s_0, t)$ ; evident,  $\phi \in \mathcal{C}[a, b]$ . Pe spațiul Banach  $\mathcal{C}[a, b]$  considerăm funcționala (ca în exercițiul 49.b)

$$J_{\phi}(f) = \int_{a}^{b} \phi(t)f(t) dt = \int_{a}^{b} K(s_{0}, t)f(t) dt.$$

Conform exercițiului 49,  $J_{\phi}$  este funcțională liniară și continuă pe  $\mathcal{C}[a,b]$  și

$$||J_{\phi}|| = \int_{a}^{b} |\phi(t)| dt = \int_{a}^{b} |K(s_{0}, t)| dt.$$

În demonstrația egalității de mai sus s-a arătat (a se vedea soluția exercițiului 49.b) că pentru orice  $\varepsilon > 0$ , există o funcție  $g \in \mathcal{C}[a,b]$  astfel încât  $\parallel g \parallel_{\infty} \leq 1$  și

$$J_{\phi}(g) \geq ||J_{\phi}|| - \varepsilon.$$

Deoarece  $\parallel g \parallel \leq 1$  avem:

$$||T_K|| \ge ||T_K g||_{\infty} \ge (T_K g)(s_0) = \int_a^b K(s_0, t)g(t) dt =$$

$$= J_{\phi}(g) \ge ||J_{\phi}|| - \varepsilon = \sup_{s \in [a, b]} \int_a^b |K(s, t)| - \varepsilon.$$

Deoarece  $\varepsilon > 0$  a fost ales arbitrar, rezultă:  $\parallel T_K \parallel = \sup_{s \in [a,b]} \int_a^b |K(s,t)| \, dt$ .

#### 55. Operatorul de convoluție

Fie două şiruri  $x,y:Z\mapsto C$ , cu proprietatea că pentru orice  $n\in Z$  seria  $\sum_{k\in Z}x(n-k)y(k)$  este convergentă. În acest caz se poate defini şirul

$$x \star y : Z \mapsto C, (x \star y)(n) = \sum_{k \in Z} x(n-k)y(k),$$

numit convoluția (sau produsul de convoluție) șirurilor x și y.

- a. Să se demonstreze că pentru orice  $x, y \in \ell^1(Z)$ , există convoluția  $x \star y$ .
- **b.** Să se demonstreze că pentru orice  $x, y \in \ell^1(Z)$ , convoluția  $x \star y \in \ell^1(Z)$ , și în plus  $||x \star y||_1 \leq ||x||_1 ||y||_1$
- c. Produsul de convoluție este comutativ și asociativ.
- **d.** Pentru orice  $m \in \mathbb{Z}$ , fie şirul  $\sigma_m(n) = \delta_m^n$ , unde,  $\delta_m^n$  este simbolul lui Kronecker. Să se demonstreze egalitatea:

$$(\sigma_m \star x)(n) = x(n-m), \forall x \in \ell^1(Z), \forall m, n \in Z.$$

În particular,  $\sigma_0$  este element neutru pentru convoluție.

e. Fie  $\theta \in \ell^1(Z)$  un şir fixat şi fie operatorul (de convoluție):

$$C_{\theta}: \ell^1(Z) \mapsto \ell^1(Z), C_{\theta}x = \theta \star x.$$

Să se demonstreze că operatorul  $C_{\theta}$  este liniar și continuu.

### Soluţie

**a.** Fie  $x, y \in \ell^1(Z)$  și fie  $n \in Z$ ; atunci:

$$\sum_{k \in Z} |x(n-k)y(k)| \leq \sum_{k \in Z} \left( |x(n-k)| \sum_{k \in Z} |y(k)| \right) = ||y||_1 ||x||_1.$$

**b.** Fie  $x, y \in \ell^1(Z)$ ; atunci:

$$\| x \star y \|_{1} = \sum_{n \in \mathbb{Z}} |(x \star y)(n)| = \sum_{n \in \mathbb{Z}} \left| \sum_{k \in \mathbb{Z}} x(n - k)y(k) \right| \le$$

$$\le \sum_{n \in \mathbb{Z}} \sum_{k \in \mathbb{Z}} |x(n - k)y(k)| = \sum_{k \in \mathbb{Z}} \left( |y(k)| \sum_{n \in \mathbb{Z}} |x(n - k)| \right) =$$

$$= \left( \sum_{k \in \mathbb{Z}} |y(k)| \right) \left( \sum_{m \in \mathbb{Z}} |x(m)| \right) = \| x \|_{1} \| y \|_{1},$$

comutarea sumelor (în k și n) fiind corectă datorită absolut convergenței ambelor serii.

**c.** Pentru orice  $x, y \in \ell^1(Z)$  și  $n \in Z$ , avem:

$$(x\star y)(n) = \sum_{k\in Z} x(n-k)y(k) = \sum_{m\in Z} x(m)y(n-m) = (y\star x)(n).$$

Analog se demonstrează și asociativitatea.

**d.** Pentru orice  $x \in \ell^1(Z)$  și  $m, n \in Z$ , avem:

$$(\sigma_m \star x)(n) = (x \star \sigma_m)(n) = \sum_{k \in \mathbb{Z}} x(n-k)\sigma_m(k) = x(n-m).$$

e. Lăsăm liniaritatea ca exercițiu. Fie  $\theta \in \ell^1(Z)$ , fixat; atunci, pentru orice  $x \in \ell^1(Z)$ , aplicând inegalitatea de la punctul b, avem:

$$|| C_{\theta} x ||_1 = || \theta \star x ||_1 \le || \theta ||_1 || x ||_1,$$

ceea ce încheie demonstrația.

**56.** Fie  $(X, \| \ \|)$  un spațiu Banach și fie  $T \in \mathcal{L}(X)$  un operator astfel încât  $\| T \| < 1$ . Să se demonstreze că I - T este operator inversabil și

$$(I-T)^{-1} = \sum_{n\geq 0} T^n.$$

În plus, are loc inegalitatea:

$$\| (I-T)^{-1} \| \le \frac{1}{1-\|T\|}.$$

#### Soluție

Spațiul  $\mathcal{L}(X)$  este complet, deci orice serie (de operatori) absolut convergentă este și convergentă. Fie seria  $\sum_{n\geq 0} T^n$ ; seria converge absolut:

$$\sum_{n\geq 0} \| T^n \| \leq \sum_{n\geq 0} \| T \|^n = \frac{1}{1 - \| T \|},$$

deci converge în spațiul  $\mathcal{L}(X)$ . Fie  $S \in \mathcal{L}(X)$  suma acestei serii și fie  $S_n = \sum_{k=0}^n T^k$  șirul sumelor parțiale asociat; atunci:

$$(I-T)S_n = (I-T)(I+T+t^2+...+T^n) = I-T^{n+1}.$$

Dar şirul  $T^{n+1}$  converge la O în spațiul  $\mathcal{L}(X)$ :

$$||T^{n+1}|| \le ||T||^{n+1} \to 0$$
, când  $n \to \infty$ ,

deci (I-T)S=I. Analog se arată și egalitatea S(I-T)=I, deci într-adevăr  $S=(I-T)^{-1}$ . În plus, dintr-un calcul făcut mai sus, rezultă:

$$\| (I-T)^{-1} \| = \| \sum_{n \ge 0} T^n \| \le \frac{1}{1-\|T\|},$$

ceea ce încheie demonstrația.

# Capitolul 3

# Şiruri şi serii de funcţii Funcţii elementare

# 3.1 Noțiuni teoretice

#### Convergență punctuală și convergență uniformă

Fie (X,d) un spațiu metric, fie  $f_n: X \mapsto R(C)$  un şir de funcții şi fie  $f: X \mapsto R(C)$  o funcție.

Şirul  $f_n$  converge punctual (sau simplu) la f dacă

$$\lim_{n \to \infty} (x) = f(x), \forall x \in X.$$

Se spune că f este limita punctuală a șirului  $f_n$ . Şirul  $f_n$  este uniform convergent la f dacă

$$\forall \varepsilon > 0, \exists N(\varepsilon) > 0$$
 astfel încât  $|f_n(x) - f(x)| < \varepsilon, \forall n \ge N(\varepsilon), \forall x \in X.$ 

Într-o formulare echivalentă, șirul  $f_n$  converge uniform la f dacă și numai dacă

$$\lim_{n \to \infty} \sup_{x \in X} |f_n(x) - f(x)| = 0.$$

Evident, convergența uniformă implică convergența punctuală, reciproca fiind falsă.

Dacă  $f_n$  sunt funcții mărginite, atunci convergența uniformă coincide cu convergența în spațiul metric al funcțiilor mărginite,  $(\mathcal{M}, d_{\infty})$ .

Dacă funcțiile  $f_n$  sunt continue, iar şirul  $f_n$  converge simplu la f, nu rezultă, în general, continuitatea funcției f. De exemplu, şirul de funcții continue

$$f_n: [0,1] \mapsto R, f_n(x) = x^n$$

converge punctual la funcția discontinuă  $f(x) = \begin{cases} 0 & \text{dacă} & x \in [0, 1) \\ 1 & \text{dacă} & x = 1 \end{cases}$ 

Are loc următorul rezultat:

#### Transfer de continuitate

Dacă  $f_n$  sunt funcții continue și șirul  $f_n$  converge uniform la f, atunci funcția f este continuă.

### Integrare termen cu termen

Fie  $f_n, f : [a, b] \mapsto R$  funcții continue.

Dacă  $f_n$  converge uniform la f, atunci

$$\lim_{n \to \infty} \int_a^b f_n(x) dx = \int_a^b f(x) dx.$$

Să considerăm șirul  $f_n(x) = \frac{\sin(nx)}{n}, x \in R$ . Şirul  $f_n$  converge uniform la funcția constantă 0:

$$\lim_{n \to \infty} \sup_{x \in R} |f(x)| \le \lim_{n \to \infty} \frac{1}{n} = 0.$$

Funcțiile  $f_n$  sunt derivabile, dar șirul derivatelor  $f'_n(x) = \cos(nx)$  nu converge (nici punctual). Rezultatul următor dă condiții suficiente în care șirul derivatelor converge:

#### Derivare termen cu termen

Presupunem că funcțiile  $f_n$  sunt derivabile,  $\forall n \in \mathbb{N}$ . Dacă șirul  $f_n$  converge punctual la f și dacă există  $g:[a,b]\mapsto R$  astfel încât  $f'_n$  converge uniform la g, atunci f este derivabilă și f' = g.

### Serii de funcții

Fie  $u_n: X \mapsto R(C)$  un şir de funcţii şi fie  $s_n = \sum_{i=1}^n u_i$  şirul sumelor parţiale.

Se spune că seria  $\sum u_n$  este punctual (simplu) convergentă dacă  $s_n$  este punctual convergent. Seria este uniform convergentă dacă  $s_n$  converge uniform. Suma seriei este limita (punctuală sau uniformă) a șirului sumelor parțiale.

#### Criteriul lui Weierstrass de convergență uniformă

Dacă există un şir cu termeni pozitivi  $a_n$  astfel încât  $|u_n(x)| \le a_n, \forall x \in X$  şi seria  $\sum_n a_n$  converge, atunci seria  $\sum_n u_n$  converge uniform.

Transfer de continuitate

Dacă  $u_n$  sunt funcții continue și seria  $\sum_n u_n$  converge uniform la f, atunci

funcția f este continuă.

#### Integrare și derivare termen cu termen

Se spune că o serie de funcții  $\sum f_n$  are proprietatea de integrare termen cu

termen pe intervalul 
$$[a,b]$$
 dacă  $\int_a^b \left(\sum_n f_n(x)\right) dx = \sum_n \int_a^b f_n(x) dx$ .

Se spune că o serie de funcții  $\sum f_n$  are proprietatea de derivare termen

cu termen pe mulțimea 
$$D$$
 dacă  $\left(\sum_{n=1}^{n} f_n(x)\right)' = \sum_{n=1}^{n} f_n'(x), \forall x \in D.$ 

Are loc următorul rezultat:

Fie  $u_n:[a,b]\mapsto R$  un șir de funcții continue. a. Dacă seria  $\sum_n u_n$  converge uniform la f, atunci f este integrabila și

$$\int_{a}^{b} \sum_{n} u_{n}(x) dx = \sum_{n} \int_{a}^{b} u_{n}(x) dx.$$

b. Presupunem că funcțiile  $u_n$  sunt derivabile. Dacă seria  $\sum_{n} u_n$  converge

punctual la f și dacă există  $g:[a,b]\mapsto R$ astfel încât  $\sum_n u_n'$  converge uni-

form la g, atunci f este derivabilă și f' = g.

Trebuie menționat că ipotezele teoremei de mai sus sunt condiții suficiente (nu și necesare) pentru ca o serie să se poată integra (respectiv deriva) termen cu termen.

#### Formula lui Taylor

Fie  $I \subseteq R$  un interval deschis și fie  $f: I \mapsto R$  o funcție de clasă  $\mathcal{C}^m$  pe I. Pentru orice  $a \in I$  definim polinomul Taylor de gradul  $n \leq m$  asociat funcției f în punctul a:

$$T_{n,f,a}(x) = \sum_{k=0}^{n} \frac{f^{(k)}(a)}{k!} (x-a)^{k}.$$

Restul de ordin n este, prin definiție,

$$R_{n,f,a}(x) = f(x) - T_{n,f,a}(x).$$

Polinoamele Taylor de gradul întâi (respectiv de gradul al doilea) se numesc aproximarea liniară (respectiv pătratică) ale funcției în jurul punctului a.

### Teoremă (Formula lui Taylor cu restul Lagrange)

Fie  $f: I \mapsto R$  de clasă  $\mathcal{C}^{n+1}$  și  $a \in I$ . Atunci, pentru orice  $x \in I$ , există

 $\xi \in (a,x)$  (sau (x,a)) astfel încât

$$f(x) = T_{n,f,a}(x) + \frac{(x-a)^{n+1}}{(n+1)!} f^{(n+1)}(\xi).$$

#### Observații

1. Restul de ordin n poate fi scris sub forma Peano :

 $\exists\,\omega:I\mapsto R$ astfel încât  $\lim_{x\to a}\omega(x)=\omega(a)=0$  și

$$R_{n,f,a}(x) = \frac{(x-a)^n}{n!} \omega(x).$$
**2.**  $\lim_{x \to a} \frac{R_{n,f,a}(x)}{(x-a)^n} = 0.$ 

**2.** 
$$\lim_{x \to a} \frac{R_{n,f,a}(x)}{(x-a)^n} = 0$$

3. Restul de ordin n poate fi scris sub forma integrală:

$$R_{n,f,a}(x) = \frac{1}{n!} \int_{a}^{x} f^{(n+1)}(t)(x-t)^{n} dt.$$

#### Seria Taylor

Fie  $I \subseteq R$  un interval deschis și fie  $f: I \mapsto R$  o funcție de clasă  $\mathcal{C}^{\infty}$  pe I. Pentru orice  $x_0 \in I$  definim seria Taylor asociată funcției f în punctul  $x_0$ :

$$\sum_{n=0}^{\infty} \frac{f^{(n)}(x_0)}{n!} (x - x_0)^n.$$

#### Observații

- 1. Seria Taylor asociată funcției f în punctul  $x_0$  este o serie de puteri.
- 2. Seria Taylor asociată lui f în  $x_0 = 0$  se mai numește și serie Mc Laurin.

#### Teorema de reprezentare a funcțiilor prin serii Taylor

Fie a < b și fie  $f \in \mathcal{C}^{\infty}([a,b])$  astfel încât există M > 0 cu proprietatea că  $\forall n \in N, \forall x \in [a,b], |f^{(n)}(x)| \leq M.$  Atunci pentru orice  $x_0 \in (a,b)$ , seria Taylor a lui f în jurul lui  $x_0$  este uniform convergentă pe [a,b] și suma ei

este funcția 
$$f$$
, adică  $f(x) = \sum_{n\geq 0} \frac{f^{(n)}(x_0)}{n!} (x-x_0)^n, \ \forall x \in [a,b].$ 

#### Serii de puteri

Fie  $(a_n)_{n\in\mathbb{N}}$  un şir de numere complexe şi  $a\in C$ . Seria  $\sum_{n=0}^{\infty}a_n(z-a)^n$  se numește seria de puteri centrată în a definită de șirul  $a_n$ .

#### Formula razei de convergență

Fie seria 
$$\sum_{n=0}^{\infty} a_n (z-a)^n$$
 și fie  $\alpha = \limsup_{n} \sqrt[n]{|a_n|}$ .

#### 3.1. NOTIUNI TEORETICE

71

Raza de convergență a seriei date, (notată R), se definește astfel:

$$R = \begin{cases} 0 & \text{dacă} & \alpha = \infty \\ \infty & \text{dacă} & \alpha = 0 \\ \frac{1}{\alpha} & \text{dacă} & \alpha \in (0, \infty) \end{cases}$$

#### Teorema lui Abel

Fie  $\sum_{n=0}^{\infty} a_n (z-a)^n$  o serie de puteri și fie R raza sa de convergență.

- 1. Dacă R=0, atunci seria converge numai pentru z=a.
- **2.** Dacă  $R = \infty$ , atunci seria converge absolut pentru orice  $z \in C$ .
- **3.** Dacă  $R \in (0, \infty)$ , atunci seria este absolut convergentă pentru |z-a| < Rși divergentă pentru |z-a|>R.
- **4.** Seria este uniform convergentă pe orice disc închis  $|z-a| \le r$ ,  $\forall r \in (0,R)$ .

#### Derivare și integrare termen cu termen

Fie  $\sum_{n=0}^{\infty} a_n (z-a)^n$  o serie de puteri şi fie S(z) suma sa.

- 1. Seria derivatelor  $\sum_{n=1}^{\infty} na_n(z-a)^{n-1}$  are aceeasi rază de convergență cu
- seria iniţială și suma sa este S'(z). 2. Seria primitivelor  $\sum_{n=0}^{\infty} a_n \frac{(z-a)^{n+1}}{n+1}$  are aceeasi rază de convergență cu

#### Functii elementare

1. 
$$e^z = \sum_{n=0}^{\infty} \frac{1}{n!} \cdot z^n, \ \forall z \in C.$$

**2.** 
$$\frac{1}{1-z} = \sum_{n=0}^{\infty} z^n, \ \forall |z| < 1.$$

3. 
$$\frac{1}{1+z} = \sum_{n=0}^{\infty} (-1)^n z^n, \ \forall |z| < 1.$$

**4.** 
$$\cos z = \sum_{n=0}^{\infty} \frac{(-1)^n}{(2n)!} \cdot z^{2n}, \ \forall z \in C.$$

**5.** 
$$\sin z = \sum_{n=0}^{\infty} \frac{(-1)^n}{(2n+1)!} \cdot z^{2n+1}, \ \forall z \in C.$$

**6.** 
$$(1+z)^{\alpha} = \sum_{n\geq 0} \frac{\alpha(\alpha-1)(\alpha-2)...(\alpha-n+1)}{n!} z^n, \ \forall |z| < 1, \ \alpha \in R.$$

# 3.2 Şiruri şi serii de funcţii

Să se studieze convergența punctuală și uniformă a următoarelor siruri de funcții (exercițiile 1-9):

**1.** 
$$u_n:(0,1)\mapsto R$$
;  $u_n(x)=\frac{1}{nx+1}, n\geq 0$ .

### Soluție

Fie x > 0, fixat. Atunci  $\lim_{n \to \infty} u_n(x) = \lim_{n \to \infty} \frac{1}{nx+1} = 0$ , deci  $u_n$  converge punctual la f(x) = 0.

Evident,  $\sup_{x \in (0,1)} |u_n(x) - f(x)| = \sup_{x \in (0,1)} \left| \frac{1}{nx+1} \right| = 1$  si deci $u_n$  nu converge uniform la f.

2. 
$$u_n: [0,1] \mapsto R \; ; \; u_n(x) = nx(1-x)^n, n \ge 0.$$

Pentru orice  $x \in (0,1)$ , fixat, avem:

$$\lim_{n \to \infty} u_n(x) = \lim_{n \to \infty} nx(1-x)^n = 0,$$

și deci  $u_n$  converge punctual f(x) = 0. Studiem acum convergența uniformă:

$$\sup_{x \in (0,1)} |u_n(x) - f(x)| = \sup_{x \in (0,1)} |nx(1-x)^n| = u_n\left(\frac{1}{n+1}\right) \to \frac{1}{e},$$

deci  $u_n$  nu este uniform convergent.

**3.** 
$$u_n: [0,1] \mapsto R ; u_n(x) = x^n - x^{2n} , n \ge 0.$$

#### Soluție

Pentru orice  $x \in [0, 1]$  fixat, rezultă:

$$\lim_{n \to \infty} u_n(x) = \lim_{n \to \infty} (x^n - x^{2n}) = 0,$$

deci  $u_n$  converge punctual la f(x) = 0.

Studiem convergența uniformă:

$$\sup_{x \in (0,1)} |u_n(x) - f(x)| = \sup_{x \in (0,1)} |x^n - x^{2n}| = u_n \left(\frac{1}{\sqrt[n]{2}}\right) = \frac{1}{4},$$

73

deci  $u_n$  nu converge uniform.

**4.** 
$$u_n: R \mapsto R \; ; \; u_n(x) = \sqrt{x^2 + \frac{1}{n^2}} \; , \; n > 0.$$

### Soluție

Fie  $x \in R$ , fixat; atunci:

$$\lim_{n \to \infty} u_n(x) = \lim_{n \to \infty} \sqrt{x^2 + \frac{1}{n^2}} = \sqrt{x^2} = |x|,$$

deci  $u_n$  converge punctual  $f(x) = |x|, \forall x \in R$ . Studiem convergența uniformă:

$$\sup_{x \in R} |u_n(x) - f(x)| = \sup_{x \in R} \left| \sqrt{x^2 + \frac{1}{n^2}} - \sqrt{x^2} \right| =$$

$$= \sup_{x \in R} \frac{1}{n^2 \left( \sqrt{x^2 + \frac{1}{n^2}} + \sqrt{x^2} \right)} = \frac{1}{n} \to 0,$$

deci  $u_n$  converge uniform la f. Se observă că pentru orice  $n \in N$ ,  $u_n$  este funcție derivabilă, dar f nu este derivabilă.

**5.** 
$$u_n: (-\infty, 0) \mapsto R, \ u_n(x) = \frac{e^{nx} - 1}{e^{nx} + 1}, n \ge 0.$$

# Soluţie

Fie x < 0, fixat; atunci:

$$\lim_{n \to \infty} u_n(x) = \lim_{n \to \infty} \frac{e^{nx} - 1}{e^{nx} + 1} = -1,$$

deci  $u_n$  converge punctual la f(x)=-1 ,  $\forall x\in (-\infty,0)$ . Convergența uniformă:

$$\sup_{x \in (-\infty,0)} |u_n(x) - f(x)| = \sup_{x \in (-\infty,0)} \left| \frac{e^{nx} - 1}{e^{nx} + 1} + 1 \right| = 1,$$

deci  $u_n$  nu converge uniform.

**6.** 
$$u_n: R \mapsto R, \ u_n(x) = \text{arctg} \frac{x}{1 + n(n+1)x^2}, n > 0.$$

### Soluție

Fie  $x \in R$ , fixat; atunci:

$$\lim_{n \to \infty} u_n(x) = \lim_{n \to \infty} \arctan \frac{x}{1 + n(n+1)x^2} = 0,$$

deci  $u_n$  converge punctual la  $f(x) = 0, \forall x \in R$ . Convergența uniformă:

$$\sup_{x \in R} |u_n(x) - f(x)| = \sup_{x \in R} \left| \operatorname{arctg} \frac{x}{1 + n(n+1)x^2} \right|.$$

Funcțiile  $u_n$  sunt impare deci este suficient să gasim supremumul pe intervalul  $(0, \infty)$ .

$$u'_n(x) = \left(\arctan\frac{x}{1 + n(n+1)x^2}\right)' = \frac{1 - n(n+1)x^2}{x^2 + (1 + n(n+1)x^2)^2},$$

deci supremumul este atins în  $x = \frac{1}{\sqrt{n(n+1)}}$ ; în final rezultă că  $u_n$  este uniform convergent.

7. 
$$u_n: (1,\infty) \mapsto R, \ u_n(x) = \sqrt{(n^2+1)\sin^2\frac{\pi}{n} + nx} - \sqrt{nx}, n > 0.$$

# Soluţie

Folosim inegalitatea  $\sin x \le x , \forall x \in [0, \frac{\pi}{2}]$  şi obţinem :

$$0 \le u_n(x) \le \frac{(n^2 + 1)\sin^2\frac{\pi}{n}}{\sqrt{(n^2 + 1)\sin^2\frac{\pi}{n} + nx} + \sqrt{nx}} < \frac{(n^2 + 1)\frac{\pi^2}{n^2}}{2\sqrt{n}} < \frac{\pi^2}{\sqrt{n}} \to 0,$$

deci şirul  $u_n$  este uniform convergent la 0.

8. 
$$u_n(x) = x^n e^{-nx}, x \ge 0.$$

### Soluție

Fie  $x \geq 0$ , fixat. Atunci  $\lim_{n \to \infty} u_n(x) = 0$ , deci şirul converge punctual la funcția f(x) = 0,  $\forall x \geq 0$ . Studiind variația funcției  $u_n$ , rezultă:

$$\lim_{n \to \infty} \sup_{x > 0} |u_n(x)| = \lim_{n \to \infty} |u_n(1)| = \lim_{n \to \infty} e^{-n} = 0,$$

deci şirul este uniform convergent.

**9.** 
$$u_n(x) = \frac{nx}{1+n+x}, x \in [0,1].$$

### Solutie

Fie  $x \in [0,1]$ , fixat. Atunci  $\lim_{n \to \infty} u_n(x) = x$ , deci şirul  $u_n$  converge punctual la f(x) = x,  $\forall x \in [0,1]$ . Pentru a studia convergența uniformă, calculăm:

$$\lim_{n \to \infty} \sup_{x \in [0,1]} |u_n(x) - f(x)| = \lim_{n \to \infty} \sup_{x \in [0,1]} \frac{x + x^2}{1 + n + x} = \lim_{n \to \infty} \frac{2}{2 + n} = 0,$$

75

deci șirul converge uniform; faptul că supremumul de mai sus se atinge în x=1 rezultă din studiul variației funcției  $x\mapsto \frac{x+x^2}{1+n+x}$  pe [0,1] (funcția este crescătoare).

**10.** Fie şirul 
$$u_n: R \mapsto R, \ u_n(x) = \frac{\sin nx}{\sqrt{n}}, \ n > 0.$$

Să se studieze convergența șirurilor  $u_n$  și  $u'_n$ .

## Soluție

Din inegalitatea

$$\left|\frac{\sin nx}{\sqrt{n}}\right| \le \frac{1}{\sqrt{n}} \to 0,$$

rezultă că șirul  $u_n$  converge uniform la 0 .

Şirul derivatelor nu este punctual convergent:

$$(u_n(x))' = \sqrt{n}\cos nx.$$

**11.** Fie şirul 
$$u_n: R \mapsto R, \ u_n(x) = x + \frac{1}{n}$$
.

Să se studieze convergența șirurilor  $u_n$  și  $u_n^{2l}$ .

# Soluție

Şirul  $u_n$  converge uniform la f(x) = x:

$$\lim_{n \to \infty} \sup_{x \in R} |u_n(x) - x| = \lim_{n \to \infty} \frac{1}{n} = 0.$$

Şirul  $u_n^2$  converge punctual la  $f^2(x) = x^2$ , dar nu converge uniform:

$$\lim_{n\to\infty}\sup_{x\in R}|u_n^2(x)-x^2|=\lim_{n\to\infty}|2\frac{x}{n}+\frac{1}{n^2}|=\infty.$$

**12.** Fie şirul 
$$u_n:[0,\infty)\mapsto R,\ u_n(x)=\frac{ne^{-x}+xe^{-n}}{x+n}, n\in N$$
 si fie

 $A_n=\int_0^1 u_n(x)dx, \forall n\in N^*$ . Să se studieze convergența șirului  $u_n$  și să se calculeze  $\lim_{n\to\infty}A_n$ .

### Soluție

Fie  $x \geq 0$ , fixat.

$$\lim_{n \to \infty} u_n(x) = \lim_{n \to \infty} \frac{ne^{-x} + xe^{-n}}{x + n} = e^{-x},$$

deci  $u_n$  converge punctual la  $f(x) = e^{-x}, \forall x \ge 0.$ 

Evaluăm în continuare

$$g_n(x) = |u_n(x) - f(x)| = \left(1 - \frac{n}{n+x}\right)|e^{-n} - e^{-x}|, \, \forall x > 0, \, \forall n \in \mathbb{N}^*.$$

Dacă  $x \in (n, \infty)$  atunci:

$$e^{-x} < e^{-n} \Rightarrow |e^{-n} - e^{-x}| < e^{-n} \Rightarrow g_n(x) < e^{-n} \to 0.$$

Dacă  $x \in [0, n]$  atunci

$$e^{-x} \ge e^{-n} \Rightarrow |e^{-n} - e^{-x}| \le |e^{-n}| + |e^{-x}| =$$
  
=  $e^{-n} + e^{-x} \le 2e^{-x}$ ,

deci

$$g(x) \le \frac{2xe^{-x}}{x+n}, \forall x \in [0, n].$$

Studiem acum variația funcției  $[0,1] \ni x \mapsto \frac{2xe^{-x}}{x+n}$ .

$$\left(\frac{2xe^{-x}}{x+n}\right)' = 2\frac{e^{-x}}{(x+n)^2} \cdot (-x^2 - nx + n),$$

deci functia  $\frac{2xe^{-x}}{x+n}$  este crescătoare pe $(0,\frac{\sqrt{n^2+4n}-n}{2})$  și descrescătoare pe $(\frac{\sqrt{n^2+4n}-n}{2},n),$ deci

$$g_n(x) \le \frac{8n}{(\sqrt{n^2 + 4n} + n)^2} \cdot e^{-\frac{2n}{\sqrt{n^2 + 4n} + n}} \to 0.$$

Deci  $u_n$  converge uniform la f.

Aplicând transferul de integrabilitate obţinem:

$$\lim_{n \to \infty} A_n = \int_0^1 f(x) dx = \int_0^1 e^{-x} dx = \frac{e - 1}{e}.$$

13. Fie  $u_n:(0,\infty)\mapsto R,\ u_n(x)=e^{-nx}.$  Să se studieze convergența șirurilor  $u_n$  și  $u_n'$ .

# Soluţie

Şirurile  $u_n$  şi  $u'_n$  converg simplu la funcția constantă zero, dar nu converg uniform.

**14.** Fie şirul  $f_n: [0, \frac{\pi}{2}] \mapsto R$ , definit prin relația de recurență:

$$f_1(x) = x, f_{n+1}(x) = \sin(f_{n-1}(x)).$$

Să se studieze convergența punctuală și uniformă.

### Solutie

Fie  $x \in [0, \frac{\pi}{2}]$  fixat. Şirul  $f_n(x)$  este descrescător:

$$f_{n+1}(x) = \sin(f_n(x)) \le f_n(x), \forall n \in N$$

și mărginit:

$$0 \le f_n(x) \le x, \forall n \in N.$$

Deci şirul  $f_n$  este punctual convergent.

Fie  $f: [0, \frac{\pi}{2}] \mapsto R$ ,  $f(x) = \lim_{n \to \infty} f_n(x)$ . Trecând la limită în relația de recurență, se obține:  $f(x) = \sin(f(x))$ ,  $\forall x \in [0, \frac{\pi}{2}]$ . Se demonstrează simplu că singura soluție a ecuației  $t = \sin t$  este t = 0, deci funcția f este constantă zero. Studiem acum convergentă uniformă; pentru aceasta, trebuie calculat  $\sup_{x \in [0, \frac{\pi}{2}]} |f_n(x)|$ . Demonstram în continuare că funcția  $f_n$   $f_n(x) = \int_{0}^{\infty} |f_n(x)| dx$ 

este crescătoare pentru orice  $n \in N$  și deci supremumul de mai sus este  $f_n(\frac{\pi}{2})$ . Şirul  $f_n(\frac{\pi}{2})$  converge la zero (deoarece s-a demonstrat mai sus că  $\lim_{n\to\infty} f_n(x) = 0, \ \forall x \in [0, \frac{\pi}{2}]$ ) și deci  $f_n$  este uniform convergent.

Demonstrația faptului că  $f_n$  sunt funcții crescătoare se face prin inducție:  $f_1$  este crescătoare; presupunem că  $f_k$  sunt crescătoare pentru orice  $1 \le k \le n$  și demonstrăm că  $f_{n+1}$  este crescătoare. Fie  $0 \le x < y \le \frac{\pi}{2}$ ; atunci:

$$f_{n+1}(x) = \sin(f_n(x)) \le \sin(f_n(y)) = f_{n+1}(y),$$

deci  $f_{n+1}$  este funcție crescătoare, ceea ce încheie demonstrația.

- **15.** Fie şirul  $f_n : [0, \infty) \mapsto R, f_n(x) = x^{1 + \frac{1}{n}}$ .
- a. Să se studieze convergența punctuală.
- **b.** Să se studieze convergența uniformă pe [0,1].
- c. Să se studieze convergența uniformă pe  $[1, \infty)$ .
- **d.** Să se studieze convergența punctuală a șirului derivatelor (acolo unde există).
- e. Să se studieze convergența uniformă a șirului derivatelor pe [0,1].

### Soluție

**a.** Fie  $x \ge 0$ , fixat; atunci

$$\lim_{n \to \infty} f_n(x) = \lim_{n \to \infty} x^{1 + \frac{1}{n}} = x,$$

deci  $f_n$  converge punctual la f(x) = x.

b. Pentru a studia convergența uniformă pe [0, 1], calculăm:

$$\sup_{x \in [0,1]} |f_n(x) - f(x)| = \sup_{x \in [0,1]} \left( x - x^{1 + \frac{1}{n}} \right).$$

Studiind variația funcției de mai sus, rezultă că supremumul se atinge în  $x=\left(\frac{n}{n+1}\right)^n$ ; rezultă:

$$\lim_{n\to\infty}\sup_{x\in[0,1]}|f_n(x)-f(x)|=\lim_{n\to\infty}\left(\frac{n}{n+1}\right)^n\left(1-\frac{n}{n+1}\right)=0,$$

deci șirul  $f_n$  converge uniform pe [0,1] la funcția f.

**c.** Şirul nu converge uniform la f pe  $[1,\infty)$ . Procedând ca mai sus, obţinem:

$$\sup_{x \ge 1} |f_n(x) - f(x)| = \sup_{x \ge 1} x \left( x^{\frac{1}{n}} - 1 \right) = \infty.$$

**d.** Evident,  $f'_n(x) = \left(1 + \frac{1}{n}\right) x^{\frac{1}{n}}$ . Pentru orice x > 0, fixat, avem:

$$\lim_{n \to \infty} f'_n(x) = \lim_{n \to \infty} \frac{n}{n+1} x^{\frac{1}{n}} = 1 = f'(x).$$

În x = 0, avem  $\lim_{n \to \infty} f'_n(0) = 0$ . Deci şirul derivatelor converge punctual pentru orice  $x \in [0, \infty)$ .

e. Şirul derivatelor nu converge uniform pe [0,1]:  $\sup_{x\in[0,1]}\left|\frac{n}{n+1}x^{\frac{1}{n}}-1\right|\geq 1$ . Un alt argument este faptul că funcția limită (a șirului derivatelor) nu este continuă.

Să se studieze convergența următoarelor serii de funcții și să se decidă dacă se pot deriva termen cu termen (exercițiile 16-22):

**16.** 
$$\sum_{n} n^{-x}, x \in R.$$

### Solutie

Seria converge punctual dacă și numai dacă  $x \in (1, \infty)$  (se compară cu seria lui Riemann).

Fie r > 1; pentru orice  $x \ge r$ , avem  $\frac{1}{n^x} \le \frac{1}{n^r}$ . Seria  $\sum_n \frac{1}{n^r}$  este convergentă și deci, conform criteriului lui Weierstrass, seria converge uniform pe intervalul  $[r, \infty)$ .

Seria derivatelor:  $\sum_{n\geq 1} (n^{-x})' = -\sum_{n\geq 1} n^{-x} \ln n$  converge uniform pe orice in-

terval  $[r, \infty)$ ; se aplică criteriul lui Weierstrass:

$$\sum_{n\geq 1} n^{-x} \ln n \le \sum_{n\geq 1} n^{-r} \ln n, \, \forall \, x \ge r.$$

Ultima serie (numerică) este convergentă.

79

17. 
$$\sum_{n=1}^{\infty} \frac{\sin nx}{2^n}, x \in R.$$

Solution 
$$|u_n(x)| = \left| \frac{\sin nx}{2^n} \right| \le \frac{1}{2^n} , \forall x \in R.$$

Seria  $\sum_{n\geq 1}\frac{1}{2^n}$  este convergentă și din criteriul lui Weierstrass rezultă că seria

$$\sum_{n \ge 1} \frac{\sin nx}{2^n}$$

este uniform convergentă pe R

Seria derivatelor  $\sum_{n\geq 1}^{\infty} \left(\frac{\sin nx}{2^n}\right)' = \sum_{n\geq 1} \frac{n\cos nx}{2^n}$  converge uniform pe R (criteriul lui Weierstrass), deci seria se poate deriva termen cu termen.

18.  $\sum_{n\geq 1} \frac{1}{n^2 + (\varphi(x))^2}$ , unde  $\varphi: [a,b] \mapsto R$  este o funcție de clasă  $\mathcal{C}^1$ arbitrară

### Soluție

Seria are termeni pozitivi și  $\frac{1}{n^2 + (\varphi(x))^2} \le \frac{1}{n^2}$ . Seria  $\sum_{n=1}^{\infty} \frac{1}{n^2}$  este conver-

gentă, deci $\sum_{n=1}^{\infty} \frac{1}{n^2 + (\varphi(x))^2}$  este uniform convergentă pe [a,b].

Seria derivatelor  $\sum_{n\geq 1} \frac{-2\varphi(x)\varphi'(x)}{(n^2+(\varphi(x))^2)^2}$  este uniform convergentă pe [a,b], deci

**19.** 
$$\sum_{n>1} \frac{(x+n)^2}{n^4}$$
;  $x \in [a,b]$ ,  $0 < a < b$ .

Din inegalitățile 0 < a < b și  $a \le x \le b$  rezultă  $(x+n)^2 \le (b+n)^2$  și deci

$$\sum_{n>1} \frac{(x+n)^2}{n^4} \le \sum_{n>1} \frac{(b+n)^2}{n^4}.$$

Aplicând criteriul lui Weierstrass, rezultă că seria este uniform convergentă

Seria derivatelor converge uniform pe [a, b], deci seria se poate deriva termen cu termen.

**20.** 
$$\sum_{n>1} \frac{\ln(1+nx)}{nx^n}$$
;  $x>0$ .

# Soluție

Aplicând inegalitatea  $\ln(1+x) \le x$  obţinem

$$\sum_{n\geq 1} \frac{\ln(1+nx)}{nx^n} \leq \sum_{n\geq 1} \frac{1}{x^{n-1}}.$$

Ultima serie este convergentă dacă  $\frac{1}{x} \in (-1,1)$  (deci  $x \in (1,\infty)$ ) și divergentă în rest . Deci seria inițială este simplu convergentă pentru  $x \in (1,\infty)$ . Seria converge uniform pe orice interval  $[\alpha,\infty), \alpha>1$ .

Dacă  $x \in (0,1]$ , atunci din inegalitatea:

$$\sum_{n>1} \frac{\ln(1+nx)}{nx^n} \ge \sum_{n>1} \frac{\ln(1+nx)}{n},$$

rezultă că seria este divergentă, deoarece ultima serie este divergentă (criteriul necesar). În concluzie, seria dată converge dacă și numai dacă x>1. Seria derivatelor este:

$$\sum_{n>1} \left( \frac{1}{(1+nx)x^n} - \frac{\ln(1+nx)}{x^{n+1}} \right).$$

Fie r > 1; din inegalitățile:

$$\left| \frac{1}{(1+nx)x^n} \right| \le \frac{1}{(1+nr)r^n}, \, \forall \, x \in [r, \infty),$$

$$\left|\frac{\ln(1+nx)}{(1+nx)x^{n+1}}\right| \le \frac{n}{x^n} \le \frac{n}{r^n}, \forall \, x \in [r,\infty),$$

rezultă că seria derivatelor converge uniform pe orice interval  $[r, \infty), r > 1$ .

**21.** 
$$\sum_{n\geq 0} x^n (1-x), \ x\geq 0.$$

### Solutie

Şirul sumelor parţiale este

$$s_n(x) = 1 - x^{n+1}.$$

Rezultă că seria converge simplu pentru orice  $x \in [0, 1]$ . Suma seriei este

$$s: [0,1] \mapsto R, \ s(x) = 1, \forall x \in [0,1) \ \text{ si } s(1) = 0.$$

Seria nu converge uniform pe [0,1] (altfel suma seriei ar fi continuă), dar converge uniform pe orice interval  $[0,\alpha]$ ,  $\alpha < 1$ .

converge uniform pe orice interval  $[0,\alpha]$ ,  $\alpha<1$ . Seria derivatelor  $\sum_{n\geq 0}(nx^{n-1}-(n+1)x^n)$  are şirul sumelor parţiale

$$s_n'(x) = -(n+1)x^n$$

care converge uniform pe orice interval compact  $[0, r], \forall r < 1$ .

**22.** 
$$\sum_{n>0} e^{-nx}, x>0.$$

### Soluție

Şirul sumelor parţiale este  $s_n(x) = \sum_{k=0}^n e^{-kx} = \frac{1 - e^{-(n+1)x}}{1 - e^{-x}}$ . Seria converge

punctual la funcția  $f(x) = \frac{1}{1 - e^{-x}}$  pentru orice x > 0; seria nu converge uniform pe  $(0, \infty)$ :

$$\sup_{x>0} \left| \sum_{k=0}^{n} e^{-kx} - f(x) \right| = \sup_{x>0} \left| \frac{-e^{-(n+1)x}}{1 - e^{-x}} \right| = \lim_{x\to0} \frac{e^{-(n+1)x}}{1 - e^{-x}} = \infty.$$

Seria derivatelor  $\sum_{n \geq 0} \left( -ne^{-nx} \right)$  are şirul sumelor parțiale

$$s_n'(x) = \left(\frac{1 - e^{-(n+1)x}}{1 - e^{-x}}\right)' = \frac{(n+1)e^{-(n+1)x} - ne^{-(n+2)x} - e^{-x}}{(1 - e^{-x})^2}.$$

Pentru orice x > 0 fixat avem

$$\lim_{n \to \infty} s'_n(x) = -\frac{e^{-x}}{(1 - e^{-x})^2},$$

deci seria derivatelor converge punctual la derivata sumei. Convergența nu este uniformă pe  $(0,\infty)$ , dar seria derivatelor converge uniform pe orice interval compact  $[r,\infty) \, r > 0$  (se poate face un raționament asemănător cu cel pentru seria inițială).

**23.** Să se demonstreze că funcția  $f: R \mapsto R$ ,  $f(x) = \sum_{n \ge 1} \frac{\sin nx}{n(n+1)}$  este continuă. Se poate deriva seria termen cu termen ?

### Soluție

Seria este uniform convergentă (se aplică criteriul lui Weierstrass):

$$\sum_{n\geq 1} \frac{\sin nx}{n(n+1)} \leq \sum_{n\geq 1} \frac{1}{n(n+1)},$$

ultima serie fiind convergentă. Seria derivatelor  $\sum_{n\geq 1} \frac{\cos nx}{n+1}$  nu converge punctual, deci seria nu se poate deriva termen cu termen.

**24.** Fie seria de funcții 
$$\sum_{n>1} (-1)^n \frac{x^2+n}{n^2}$$
,  $x \in R$ .

a. Să se studieze convergența punctuală pentru orice  $x \in R$  și convergența uniformă pe orice interval [a, b]. Este seria uniform convergentă pe R?

**b.** Să se studieze absolut convergența pentru orice  $x \in R$ .

c. Să se studieze continuitatea sumei seriei (acolo unde ea există).

d. Se poate deriva seria termen cu termen?

### Soluție

a. Fie  $x \in R$ ; seriile numerice  $\sum_n (-1)^n \frac{x^2}{n^2}$  şi  $\sum_n (-1)^n \frac{1}{n}$  sunt ambele convergente, deci seria dată este punctual convergentă pentru orice  $x \in R$ . Studiem acum convergența uniformă pe intervalul [a,b]. Seria  $\sum_n (-1)^n \frac{x^2}{n^2}$  este uniform convergență pe [a,b]; pentru aceasta, aplicăm criteriul lui Weierstrass de convergență uniformă pentru serii:

$$\left| (-1)^n \frac{x^2}{n^2} \right| \le \frac{b^2}{n^2}, \, \forall x \in [a, b],$$

iar seria numerică  $\sum_{n} \frac{1}{n^2}$  este convergentă.

Seria nu este uniform convergentă pe R; pentru aceasta, fie a suma seriei  $\sum_{n} \frac{(-1)^n}{n^2}$  şi b suma seriei  $\sum_{n} \frac{(-1)^n}{n}$ . Evident, seria dată converge punctual

la funcția  $f(x) = ax^2 + b$ . Fie  $s_n(x) = \sum_{k=1}^n (-1)^k \frac{x^2 + k}{k^2}$ . Calculăm:

$$\lim_{n \to \infty} \sup_{x \in R} |f(x) - s_n(x)| = \lim_{n \to \infty} \sup_{x \in R} x^2 \left| \sum_{k=1}^n \frac{(-1)^k}{k^2} - a \right| = \infty,$$

deci seria nu converge uniform pe R la f.

**b.** Seria nu converge absolut pentru nici un  $x \in R$  deoarece seria  $\sum_{n} \frac{x^2 + n}{n^2}$  este divergentă (se poate compara cu seria armonică).

**c.** Evident, funcția f (suma seriei) este continuă pe R (deși seria nu converge uniform pe R).

**d.** Seria nu verifică ipotezele teoremei de derivare termen pe R: seria dată trebuie să conveargă punctual, iar seria derivatelor să conveargă uniform; prima condiție a fost verificată. Seria derivatelor este  $\sum_{n\geq 1} (-1)^n \frac{2x}{n^2}$ , serie care nu este uniform convergentă pe R:

$$\lim_{n \to \infty} \sup_{x \in R} \left| 2x \sum_{k=1}^{n} \frac{(-1)^k}{k^2} - 2ax \right| = \infty.$$

Menționăm totuși că seria derivatelor converge uniform pe orice compact din R. Seria dată se poate deriva termen cu termen, egalitatea

$$\left(x^2 \sum_{n \ge 1} \frac{(-1)^n}{n^2} + \sum_{n \ge 1} \frac{(-1)^n}{n}\right)' = 2x \sum_{n \ge 1} \frac{(-1)^n}{n^2}, \forall x \in R$$

fiind evident adevărată.

**25.** Fie seria 
$$\sum_{n\geq 1} \frac{nx^n + x}{n^2 + 1}$$
.

- a. Pentru ce valori ale lui  $x \in R$  seria converge?
- b. Să se studieze convergența uniformă.
- c. Se poate deriva seria termen cu termen?

### Solutie

**a.** Fie  $x \in (-1,1)$ , fixat. Descompunem seria:

$$\sum_{n\geq 1} \frac{nx^n + x}{n^2 + 1} = x \sum_{n\geq 1} \frac{1}{n^2 + 1} + \sum_{n\geq 1} \frac{n}{n^2 + 1} x^n.$$

Prima serie este convergentă pentru orice  $x \in R$ . A doua serie converge absolut dacă  $x \in (-1,1)$ ; pentru demonstrație se poate aplica criteriul raportului:

$$\lim_{n \to \infty} \left| \frac{\frac{n+1}{(n+1)^2 + 1}}{\frac{n}{n^2 + 1}} \cdot \frac{x^{n+1}}{x^n} \right| = |x| < 1.$$

Dacă x=-1, seria converge (cele două serii de mai sus sunt convergente) dar nu converge absolut.

Dacă x = 1 seria este divergentă (se poate compara cu seria armonică).

Dacă |x| > 1 seria diverge (se poate aplica criteriul necesar).

In concluzie, seria converge dacă și numai dacă  $x \in [-1, 1)$ .

b. Aplicând criteriul lui Weierstrass, seria converge absolut și uniform pe orice compact  $[-r,r] \subset (-1,1)$ :

$$\sum_{n\geq 1}\left|\frac{nx^n+x}{n^2+1}\right|\leq \sum_{n\geq 1}\frac{nr^n+r}{n^2+1},\,\forall\,|x|\leq r,$$

iar ultima serie (numerică) este convergentă.

**c.** Seria derivatelor este:

$$\sum_{n\geq 1} \left(\frac{nx^n + x}{n^2 + 1}\right)' = \sum_{n\geq 1} \left(\frac{n^2}{n^2 + 1}x^{n-1} + \frac{1}{n^2 + 1}\right) =$$

$$= \sum_{n\geq 1} \frac{1}{n^2 + 1} + \sum_{n\geq 1} \frac{n^2}{n^2 + 1}x^{n-1}.$$

Seria derivatelor converge uniform pe orice interval  $[-r,r] \subset (-1,1)$ , deci seria se poate deriva termen cu termen.

**26.** Să se stabilească natura seriei  $\sum_{n\geq 1} (f_n - f_{n-1}) \operatorname{dacă}$ :

**a** 
$$f_n : [0,1] \mapsto R \; ; \; f_n(x) = nx(1-x)^n, \forall n \in N.$$

**a** 
$$f_n: [0,1] \mapsto R \; ; \; f_n(x) = nx(1-x)^n, \forall n \in N.$$
  
**b.**  $f_n: (0,1] \mapsto R, \; f_n(x) = \frac{e^{nx}}{1+e^{nx}}, \forall n \in N.$ 

a. Calculăm șirul sumelor parțiale

$$S_n(x) = \sum_{k=1}^n (f_k(x) - f_{k-1}(x)) = f_n(x) - f_0(x) = f_n(x), \forall x \in [0, 1].$$

Folosind exercițiul 2 din acest capitol rezultă că seria este simplu convergentă (la 0) dar nu este uniform convergentă.

b. Calculăm șirul sumelor parțiale:

$$S_n(x) = \sum_{k=1}^n (f_k(x) - f_{k-1}(x)) = f_n(x) - f_0(x) = \frac{e^{nx}}{1 + e^{nx}} - \frac{1}{2}.$$

Rezultă că seria converge punctual la funcția  $S(x) = \frac{1}{2}$ . Din evaluarea:

$$\sup_{x \in (0,1]} \left| S_n(x) - \frac{1}{2} \right| = \sup_{x \in (0,1]} \left| \frac{e^{nx}}{1 + e^{nx}} - 1 \right| = \sup_{x \in (0,1]} \frac{1}{1 + e^{nx}} = \frac{1}{2},$$

rezultă că seria nu este uniform convergentă.

85

**27.** Fie  $D_1 = \{z \in C \mid |z| = 1\}$  cercul unitate și fie  $\mathcal{C}(D_1)$  spațiul Banach al funcțiilor continue pe  $D_1$  cu norma supremum. Fie, de asemenea,  $\ell^1(Z)$  spațiul Banach al șirurilor absolut sumabile cu norma  $\| \ \|_1$ , (a se vedea secțiunea teoretică a capitolului 2).

a. Să se demonstreze că pentru orice  $z \in D_1$  și pentru orice șir  $x \in \ell^1(Z)$ , seria (de numere complexe)  $\sum_{n \in Z} x(n)z^{-n}$  este absolut convergentă.

**b.** Pentru orice  $x \in \ell^1(Z)$ , notăm cu  $\mathcal{Z}x$  funcția (corect definită, datorită punctului a):

$$\mathcal{Z}x: D_1 \mapsto C, \ (\mathcal{Z}x)(z) = \sum_{n \in \mathbb{Z}} x(n)z^{-n}.$$

Funcția  $\mathcal{Z}x$  se numește transformata  $\mathcal{Z}$  ("zet") a șirului x. Să se demonstreze că  $\mathcal{Z}x$  este funcție continuă.

c. Să se demonstreze că aplicația

$$\mathcal{Z}: \ell^1(Z) \mapsto \mathcal{C}(D_1), \ (\mathcal{Z}x)(z) = \sum_{n \in Z} x(n)z^{-n}$$

este liniară și continuă.

**d.** Să se demonstreze că pentru orice șiruri  $x, y \in \ell^1(Z)$  are loc egalitatea:

$$\mathcal{Z}(x \star y) = (\mathcal{Z}x)(\mathcal{Z}y),$$

unde,  $x \star y$  este convoluția șirurilor x și y, (cf. exercițiului 55, cap. 2).

e. Fie  $\theta \in \ell^1(Z)$  un şir fixat şi fie  $M_{\mathcal{Z}\theta}$  operatorul de înmulţire cu funcţia  $\mathcal{Z}\theta$  ( a se veda exerciţiului 53 din capitolul 2):

$$M_{\mathcal{Z}\theta}: \mathcal{C}(D_1) \mapsto \mathcal{C}(D_1), \ M_{\mathcal{Z}\theta}f = (\mathcal{Z}\theta)f.$$

Fie, de asemenea, operatorul de convoluție cu  $\theta$  (a se vedea exercițiul 55 din capitolul 2):

$$C_{\theta}: \ell^1(Z) \mapsto \ell^1(Z), C_{\theta}x = \theta \star x.$$

Să se demonstreze relația:

$$\mathcal{Z} C_{\theta} x = M_{\mathcal{Z}\theta} \mathcal{Z} x, \ \forall x \in \ell^1(Z).$$

### Soluție

**a.** Fie  $z \in D_1$  și fie  $x \in \ell^1(Z)$ ; atunci:

$$\sum_{n \in Z} |x(n)z^{-n}| \le \sum_{n \in Z} |x(n)| = ||x||_1 < \infty.$$

**b.** Fie  $x \in \ell^1(Z)$ ; pentru a demonstra că funcția  $\mathcal{Z}x$  este continuă pe  $D_1$  este suficient să demonstrăm că seria  $\sum_{n \in Z} x(n)z^{-n}$  este uniform convergentă

pe  $D_1$ . Pentru aceasta aplicăm criteriul lui Weierstrass:

$$\sum_{n\in Z} \left| x(n)z^{-n} \right| \le \sum_{n\in Z} |x(n)|,$$

ultima serie fiind o serie numerică absolut convergentă.

**c.** Liniaritatea o propunem ca exercițiu; pentru orice  $x \in \ell^1(Z)$ , avem:

$$\| \mathcal{Z}x \|_{\infty} = \sup_{z \in D_1} |(\mathcal{Z}x)(z)| = \sup_{z \in D_1} \left| \sum_{n \in \mathbb{Z}} x(n)z^{-n} \right| \le$$

$$\le \sup_{z \in D_1} \sum_{n \in \mathbb{Z}} |x(n)| |z^{-n}| = \| x \|_1,$$

ceea ce arată că  ${\mathcal Z}$  este operator continuu.

**d.** Fie  $x, y \in \ell^1(Z)$  și  $z \in D_1$ ; atunci:

$$(\mathcal{Z}(x \star y))(z) = \sum_{n \in \mathbb{Z}} (x \star y)(n) z^{-n} = \sum_{n \in \mathbb{Z}} \left( \sum_{k \in \mathbb{Z}} x(n-k)y(k) \right) z^{-n} =$$

$$= \sum_{k \in \mathbb{Z}} \left( y(k) \sum_{n \in \mathbb{Z}} x(n-k) z^{-n} \right) = \sum_{k \in \mathbb{Z}} \left( y(k) \sum_{m \in \mathbb{Z}} x(m) z^{-k-m} \right) =$$

$$= \left( \sum_{m \in \mathbb{Z}} x(m) z^{-m} \right) \left( \sum_{k \in \mathbb{Z}} y(k) z^{-k} \right) = (\mathcal{Z}x) (\mathcal{Z}y) ,$$

comutarea seriilor (în n și k) fiind permisă datorită faptului că ambele sunt absolut convergente.

e. Fie  $\theta \in \ell^1(Z)$ ; atunci, pentru orice  $x \in \ell^1(Z)$ , aplicând punctul d, rezultă:

$$\mathcal{Z}C_{\theta}x = \mathcal{Z}(\theta \star x) = (\mathcal{Z}\theta) \ (\mathcal{Z}x) = M_{\mathcal{Z}\theta}\mathcal{Z}x,$$

ceea ce încheie demonstrația.

# 3.3 Formula lui Taylor. Serii Taylor

Să se dezvolte în serie Mc Laurin următoarele funcții precizânduse domeniul de convergență (exercițiile 28-41):

**28.** 
$$f(x) = e^x$$

## Soluție

Calculăm derivatele funcției și obținem :  $(e^x)^{(n)} = e^x, \forall n \in \mathbb{N}$ . Rezultă

$$e^x = \sum_{n=0}^{\infty} \frac{1}{n!} \cdot x^n.$$

Pentru determinarea domeniului de convergență folosim criteriul raportului

$$\lim_{n \to \infty} \left| \frac{x^{n+1}}{(n+1)!} \cdot \frac{n!}{x^n} \right| = \lim_{n \to \infty} \left| \frac{x}{n+1} \right| = 0 < 1,$$

seria este convergentă pe R .

Restul de ordin n este :  $R_n(x) = \frac{x^{n+1}}{(n+1)!} \cdot e^{\xi}$ ,  $\xi \in (0,x)$  sau  $\xi \in (x,0)$ .

**29.** 
$$f(x) = chx$$

# Soluție

Din relațiile:  $(\operatorname{ch} x)' = \operatorname{sh} x$  și  $(\operatorname{sh} x)' = \operatorname{ch} x$  rezultă

$$(ch)^{(2n)}(0) = ch(0) = 1$$
 și  $(ch)^{(2n+1)} = sh(0) = 0$ .

Rezultă seria

$$\operatorname{ch} x = \sum_{n>0} \frac{1}{(2n)!} x^{2n}, \forall x \in R.$$

**30.** 
$$f(x) = \sinh x$$

# Soluție

Procedând ca mai sus, obținem:

$$sh x = \sum_{n>0} \frac{1}{(2n+1)!} x^{2n+1}, \forall x \in R.$$

**31.** 
$$f(x) = \sin x$$

# Soluţie

Calculăm derivata de ordin n a funcției sinus:

$$(\sin x)^{(n)} = \sin\left(x + n\frac{\pi}{2}\right), \forall n \in N,$$

şi deci  $\sin^{(2n)}(0) = 0$  şi  $\sin^{(2n+1)}(0) = (-1)^n$ . Rezultă

$$\sin x = \sum_{n=0}^{\infty} \frac{(-1)^n}{(2n+1)!} \cdot x^{2n+1}.$$

Pentru determinarea domeniului de convergență folosim criteriul raportului

$$\lim_{n \to \infty} \left| \frac{x^{2n+3}}{(2n+3)!} \cdot \frac{(2n+1)!}{x^{2n+1}} \right| = \lim_{n \to \infty} \frac{x^2}{(2n+2)(2n+3)} = 0 < 1,$$

deci seria este convergentă pe R .

**32.** 
$$f(x) = \cos x$$

### Soluție

Derivata de ordin n a funcției cosinus este:

$$(\cos x)^{(n)} = \cos\left(x + n\frac{\pi}{2}\right),\,$$

și deci

$$\cos x = \sum_{n=0}^{\infty} \frac{(-1)^n}{(2n)!} \cdot x^{2n}.$$

Seria este convergentă pe R.

**33.** 
$$f(x) = (1+x)^{\alpha}, \ \alpha \in R$$

### Soluție

Fie  $\alpha \in R$ ; derivata de ordinul n a funcției  $x \mapsto (1+x)^{\alpha}$  este:

$$((1+x)^{\alpha})^{(n)} = \alpha(\alpha-1)(\alpha-2)...(\alpha-(n-1))(1+x)^{\alpha-n}, \ \forall n \in \mathbb{N}.$$

Rezultă că derivata de ordin n în zero este  $\alpha(\alpha-1)(\alpha-2)...(\alpha-(n-1))$  și deci (seria binomială):

$$(1+x)^{\alpha} = \sum_{n>0} \frac{\alpha(\alpha-1)(\alpha-2)...(\alpha-n+1)}{n!} x^{n}.$$

Domeniul de convergență al seriei este |x| < 1.

**34.** 
$$f(x) = \frac{1}{1+x}$$

Soluție

89

$$\frac{1}{1+x} = \sum_{n>0} (-1)^n x^n, \, \forall \, x \in (-1,1).$$

**35.** 
$$f(x) = \sqrt{1+x}$$
.

# Soluție

Caz particular al seriei binomiale:  $\alpha = \frac{1}{2}$ ; rezultă:

$$\sqrt{1+x} = \sum_{n>0} \frac{(-1)^{n-1} \cdot 3 \cdot \dots (2n-3)}{2^n} x^n, \forall |x| < 1.$$

**36.**  $f(x) = \ln(1+x)$  ; să se calculeze apoi suma seriei

$$\sum_{n\geq 1} \frac{(-1)^{n+1}}{n}.$$

### Soluţie

Derivata de ordin n a funcției  $x \mapsto \ln(1+x)$  este:

$$(\ln(1+x))^{(n)} = \left(\frac{1}{1+x}\right)^{(n-1)} = \frac{(-1)^{n-1}(n-1)!}{(1+x)^n}, \, \forall \, n \in \mathbb{N}.$$

Rezultă seria:

$$\ln(1+x) = \sum_{n=1}^{\infty} \frac{(-1)^{n-1}}{n} \cdot x^n,$$

care este convergentă pe (-1,1]. În particular, se obține:

$$\sum_{n \ge 1} \frac{(-1)^{n+1}}{n} = \ln 2.$$

37.  $f(x) = \operatorname{arctg} x$ ; să se calculeze apoi suma seriei

$$\sum_{n\geq 0} \frac{(-1)^n}{2n+1}.$$

# Soluție

Dezvoltăm în serie derivata funcției:

$$(\operatorname{arctg} x)' = \frac{1}{1+x^2} = \sum_{n\geq 0} (-1)^n x^{2n}, \forall |x| < 1.$$

Integrând termen cu termen, rezultă (convergența în punctele  $\pm 1$  rezultă aplicând criteriul lui Leibniz):

$$\operatorname{arctg} x = \sum_{n>0} \frac{(-1)^n}{2n+1} x^{2n+1}, \forall x \in [-1, 1].$$

În particular, se obține (seria Leibniz-Gregory):

$$\sum_{n\geq 0} \frac{(-1)^n}{2n+1} = \frac{\pi}{4}.$$

**38.** 
$$f(x) = \int_0^x \frac{\sin t}{t} dt$$

# Soluție

Aplicând dezvoltarea funcției sinus și integrând termen cu termen, rezultă:

$$\int_0^x \frac{\sin t}{t} dt = \sum_{n=0}^\infty \frac{(-1)^n}{(2n+1)(2n+1)!} \cdot x^{2n+1}$$

Seria este convergentă pe R.

**39.** 
$$f(x) = \sin^2 x$$

Liniarizând și aplicând dezvoltarea funcției cosinus, se obține:

$$\sin^2 x = \frac{1 - \cos 2x}{2} = \sum_{n=1}^{\infty} \frac{(-1)^{n-1} 2^{2n-1}}{(2n)!} \cdot x^{2n}.$$

Seria este convergentă pe R.

**40.** 
$$f(x) = \frac{3}{(1-x)(1+2x)}$$

# Solutie

Descompunem funcția în fracții simple:

$$f(x) = \frac{3}{(1-x)(1+2x)} = \frac{1}{1-x} + \frac{2}{1+2x} = \sum_{n=0}^{\infty} x^n + \sum_{n=0}^{\infty} (-2)^n x^n.$$

Prima serie este convergentă pe (-1,1) iar a doua pe  $\left(-\frac{1}{2},\frac{1}{2}\right)$ . Rezultă:

$$\frac{3}{(1-x)(1+2x)} = \sum_{n=0}^{\infty} (1+(-1)^n 2^{n+1}) x^n, \forall |x| < \frac{1}{2}.$$

91

**41.** 
$$f(x) = \frac{1}{1 + x + x^2 + x^3}$$

### Soluție

Descompunem funcția în fracții simple :

$$f(x) = \frac{1}{1+x+x^2+x^3} = \frac{1}{1+x} + \frac{1}{1+x^2} - \frac{x}{1+x^2} =$$

$$= \sum_{n=0}^{\infty} (-1)^n x^n + \sum_{n=0}^{\infty} (-1)^n x^{2n} - \sum_{n=0}^{\infty} (-1)^n x^{2n+1} = \sum_{n=0}^{\infty} c_n x^n, \forall |x| < 1,$$

unde  $c_n=1$  dacă n=4k ,  $c_n=-1$  dacă n=4k+1 și  $c_n=0$  în rest.

**42.** Să se dezvolte în serie de puteri ale lui x-1 funcția

$$f: R \setminus \{0\} \mapsto R, f(x) = \frac{1}{x}.$$

### Soluție

Derivata de ordin n este:

$$f^{(n)}(x) = \frac{(-1)^n n!}{x^{n+1}}, \text{ deci } f^{(n)}(1) = (-1)^n n!, \forall n \in \mathbb{N}.$$

Rezultă

$$\frac{1}{x} = \sum_{n=0}^{\infty} (-1)^n (x-1)^n, \forall x \in (0,2).$$

43. Să se dezvolte în serie de puteri ale lui x + 4 funcția

$$f: R \setminus \{-2, -1\} \mapsto R, f(x) = \frac{1}{x^2 + 3x + 2}.$$

### Soluție

Se descompune funcția în fracții simple și apoi se procedează ca la exercițiul anterior (se calculează derivata de ordin n în x = -4):

$$f(x) = \frac{1}{x^2 + 3x + 2} = \frac{1}{x+1} - \frac{1}{x+2} =$$
$$= \sum_{n=0}^{\infty} \left( \frac{1}{2^{n+1}} - \frac{1}{3^{n+1}} \right) (x+4)^n, \, \forall \, x \in (-6, -2).$$

O altă metodă este de a aplica direct dezvoltarea funcției  $\frac{1}{1+x}$  translatată în x = -4:

$$f(x) = \frac{1}{x+1} - \frac{1}{x+2} = \frac{1}{-3\left(1 - \frac{x+4}{3}\right)} - \frac{1}{-2\left(1 - \frac{x+4}{2}\right)} =$$

$$= -\sum_{n\geq 0} \frac{1}{3^{n+1}} (x+4)^n + \sum_{n\geq 0} \frac{1}{2^{n+1}} (x+4)^n, \forall |x+4| < 2.$$

44. Să se determine aproximările liniare și pătratice ale următoarelor funcții în jurul punctelor indicate:

**a.**  $f(x) = x \ln x$  în jurul punctului a = 1.

**b.**  $f(x) = \sqrt[3]{x+1} \sin x$  în jurul punctului a = 0.

a. Aproximările cerute sunt polinoamele Taylor de gradul 1 și respectiv 2.

Se calculează f(1) = 0, f'(1) = 1, f''(1) = 1. Rezultă:

$$T_1(x) = f(1) + f'(1)(x - 1) = x - 1.$$

$$T_2(x) = f(1) + f'(1)(x-1) + \frac{1}{2!}f''(1)(x-1)^2 = (x-1) + \frac{1}{2}(x-1)^2.$$
  
**b.** Analog, se obţine  $T_1(x) = 1 + x$  şi  $T_2(x) = 1 + x + \frac{1}{2}x^2.$ 

**b.** Analog, se obtine 
$$T_1(x) = 1 + x$$
 şi  $T_2(x) = 1 + x + \frac{1}{2}x^2$ .

**45.** Să se demonstreze că există funcții  $f \in \mathcal{C}^{\infty}(R)$  care nu se pot dezvolta în serie Taylor.

### Soluție

Un exemplu uzual este funcția

$$f: R \mapsto R, \ f(x) = \left\{ \begin{array}{ccc} e^{-\frac{1}{x^2}} & \text{dacă} & x \neq 0 \\ 0 & \text{dacă} & x = 0 \end{array} \right.$$

Atunci  $f \in \mathcal{C}^{\infty}(R)$  și în plus funcția f și toate derivatele ei în 0 sunt nule:  $f^{(n)}(0) = 0, \forall n \in \mathbb{N}$ . Dacă funcția s-ar putea dezvolta în serie Mc Laurin într-o vecinătate  $\mathcal{V}$  a originii, atunci

$$f(x) = f(0) + \frac{f'(0)}{1!}x + \frac{f''(0)}{2!}x^2 + \dots = 0, \forall x \in \mathcal{V},$$

contradicție: evident, funcția f nu se anulează în alte puncte în afara originii.

46. Folosind dezvoltări limitate să se calculeze următoarele limite: a.  $\lim_{x\to 0}\frac{1-\cos x^2}{x^2\sin x^2}$ 

**a.** 
$$\lim_{x \to 0} \frac{1 - \cos x^2}{x^2 \sin x^2}$$

b. 
$$\lim_{x\to 0} \frac{\ln(1+2x)-\sin 2x+2x^2}{x^3}$$
 Soluţie

a. Considerăm funcțiile  $f(x) = 1 - \cos x^2$  și  $g(x) = \sin x^2$  pe care le dezvoltăm in jurul lui 0. Obținem:

$$f'(x) = 2x \sin x^{2} \Rightarrow f'(0) = 0$$

$$f''(x) = 2\sin x^{2} + 4x^{2}\cos x^{2} \Rightarrow f''(0) = 0$$

$$f'''(x) = 12x\cos x^{2} - 8x^{3}\sin x^{2} \Rightarrow f'''(0) = 0$$

$$f^{(4)}(x) = 12\cos x^{2} - 48x^{2}\sin x^{2} - 16x^{4}\cos x^{2} \Rightarrow f^{(4)}(0) = 12$$

$$g'(x) = 2x\cos x^{2} \Rightarrow g'(0) = 0$$

$$g''(x) = 2\cos x^{2} - 4x^{2}\sin x^{2} \Rightarrow g''(0) = 2$$

Notăm  $0(x^k)$  orice expresie care verifică egalitatea  $\lim_{x\to 0} \frac{0(x^k)}{x^k} = 0$ . Rezultă

$$\lim_{x \to 0} \frac{1 - \cos x^2}{x^2 \sin x^2} = \lim_{x \to 0} \frac{\frac{12x^4}{4!} + 0(x^4)}{\frac{2x^4}{2!} + 0(x^4)} = \frac{1}{2}.$$

O altă metodă constă în a aplica direct dezvoltările funcțiilor sinus și cosinus (până la gradul al treilea).

**b.** Considerăm funcția  $f(x) = \ln(1+2x) - \sin 2x + 2x^2$  pe care o dezvoltăm in jurul lui 0; pentru aceasta, putem calcula derivatele până la ordinul al treilea ale funcției f (ca mai sus) sau putem aplica dezvoltările funcțiilor logaritm și sinus:

$$f(x) = \sum_{n \ge 1} \frac{(-1)^{n+1} 2^n}{n} x^n - \sum_{n \ge 0} \frac{(-1)^n 2^n}{(2n+1)!} x^{2n+1} + 2x^2.$$

Rezultă:

$$\lim_{x \to 0} \frac{\ln(1+2x) - \sin 2x + 2x^2}{x^3} = \lim_{x \to 0} \frac{\frac{16x^3}{3!} + 0(x^3)}{x^3} = \frac{8}{3}.$$

**47.** Să se calculeze limita: 
$$\lim_{x\to 0} \left( \frac{2+x}{2x(e^x-1)} - \frac{1}{x^2} \right)$$

### Solutie

Scriem mai întâi limita sub forma:

$$\lim_{x \to 0} \left( \frac{2+x}{2x(e^x - 1)} - \frac{1}{x^2} \right) = \lim_{x \to 0} \frac{x^2 + 2x - 2e^x + 2}{2x^2(e^x - 1)}.$$

Considerăm funcțiile  $f(x) = x^2 + 2x - 2e^x + 2$  și  $g(x) = e^x - 1$  pe care le dezvoltăm in jurul lui 0. Procedăm ca în exercițiul precedent și obținem :

$$\lim_{x \to 0} \left( \frac{2+x}{2x(e^x - 1)} - \frac{1}{x^2} \right) = \lim_{x \to 0} \frac{-\frac{x^3}{3} + 0(x^3)}{2x^3 + 0(x^3)} = -\frac{1}{6}.$$

Să se calculeze cu o eroare mai mică decât  $10^{-3}$  integralele (exercițiile 48-51):

**48.** 
$$\int_0^{\frac{1}{2}} \frac{\sin x}{x} dx$$
.

# Soluţie

Se dezvoltă integrantul în serie de puteri în jurul lui 0, se integrează termen cu termen și se aproximează seria alternată rezultată:

$$\int_0^{\frac{1}{2}} \frac{\sin x}{x} \, dx = \sum_{n>0} \frac{(-1)^n}{(2n+1)!(2n+1)2^{2n+1}}.$$

**49.** 
$$\int_0^{\frac{1}{2}} \frac{\ln(1+x)}{x} dx.$$

### Soluţie

Se procedează analog; rezultă:

$$\int_0^{\frac{1}{2}} \frac{\ln(1+x)}{x} \, dx = \sum_{n \ge 1} \frac{(-1)^{n-1}}{n^2 2^n}.$$

**50.** 
$$\int_0^{\frac{1}{3}} \frac{\arctan}{x} dx$$
.

### Solutie

Analog, se obține:

$$\int_0^{\frac{1}{3}} \frac{\arctan}{x} dx = \sum_{n \ge 0} \frac{(-1)^n}{(2n+1)^2 3^{2n+1}}.$$

51. 
$$\int_0^1 e^{-x^2} dx.$$
 Soluţie

Analog, rezultă:

$$\int_0^1 e^{-x^2} dx = \sum_{n>0} \frac{(-1)^n}{n!(2n+1)}.$$

### 3.4 Serii de puteri, funcții elementare

Să se calculeze raza de convergență și mulțimea de convergență în R pentru următoarele serii de puteri (exercițiile 52-62):

52. 
$$\sum_{n=0}^{\infty} x^n$$
 Soluţie

Fie R raza de convergență:  $R = \lim_{n \to \infty} \frac{|a_n|}{|a_{n+1}|} = 1$ . Deci seria este absolut convergență pe (-1,1) si dir lut convergentă pe (-1,1) și divergentă pe  $(-\infty,-1) \bigcup (1,\infty)$  . Evident, seria este uniform convergentă pe orice interval închis  $|x| \leq r < 1$ . Dacă  $x \in \{-1, 1\}$  se obține o serie divergentă.

53. 
$$\sum_{n=1}^{\infty} n^n x^n$$
 Soluţie

Fie R raza de convergență:  $R = \lim_{n \to \infty} \frac{|a_n|}{|a_{n+1}|} = 1$ . Deci seria este absolut convergență pa ( 1.1) lut convergentă pe (-1,1) și divergentă pe  $(-\infty,-1) \cup (1,\infty)$ . Evident, seria este uniform convergentă pe orice interval închis  $|x| \leq r < 1$ . Dacă  $x \in \{-1, 1\}$  se obține o serie divergentă.

54. 
$$\sum_{n=1}^{\infty} (-1)^{n+1} \frac{x^n}{n}$$
 Soluţie

 $R = \lim_{n \to \infty} \frac{|a_n|}{|a_{n+1}|} = 1$ . Deci seria este absolut convergentă pe (-1,1), divergentă pe  $(-\infty,-1) \cup (1,\infty)$  și uniform convergentă pe  $|x| \le r < 1$ . Dacă x=-1 se obţine seria  $\sum_{n=1}^{\infty}\frac{-1}{n}$  care este divergentă, iar pentru x=1 se obţine seria  $\sum_{n=1}^{\infty}\frac{(-1)^{n+1}}{n}$  care este o serie convergentă.

$$55. \sum_{n=1}^{\infty} \frac{n^n x^n}{n!}$$

Soluție

$$R = \lim_{n \to \infty} \frac{|a_n|}{|a_{n+1}|} = \lim_{n \to \infty} \frac{n^n (n+1)!}{n! (n+1)^{n+1}} = \lim_{n \to \infty} \left(\frac{n}{n+1}\right)^n = \frac{1}{e}.$$

Seria este absolut convergentă pe  $\left(-\frac{1}{e},\frac{1}{e}\right)$  și divergentă pe  $\left(-\infty,-\frac{1}{e}\right)\bigcup\left(\frac{1}{e},\infty\right)$ . Seria este uniform convergentă pe  $|x|\leq r< e$ . Dacă

 $(-\infty, -\frac{1}{e}) \bigcup (\frac{1}{e}, \infty)$ . Seria este uniform convergentă pe  $|x| \le r < e$ . Dacă  $x \in \left\{-\frac{1}{e}, \frac{1}{e}\right\}$  se obține o serie divergentă (criteriul raportului).

**56.** 
$$\sum_{n=1}^{\infty} \frac{x^n}{n^p}, p \in R$$

### Soluție

 $R = \lim_{n \to \infty} \frac{|a_n|}{|a_{n+1}|} = 1$ . Seria este absolut convergentă pentru  $x \in (-1,1)$ , divergentă pentru  $x \in (-\infty,-1) \cup (1,\infty)$  și uniform convergentă pe $|x| \le r < 1$ . Dacă x = -1 se obține seria  $\sum_{n=1}^{\infty} \frac{(-1)^n}{n^p}$  care este divergentă pentru

 $p \leq 0$  și convergentă pentru p > 0, iar pentru x = 1 se obține seria  $\sum_{n=1}^{\infty} \frac{1}{n^p}$  care este divergentă pentru  $p \leq 1$  și convergentă pentru p > 1. Prin urmare mulțimea de convergență este:

- $[-1,1] \operatorname{dac\, \tilde{a}} p > 1,$
- [-1,1) dacă  $p \in (0,1]$  și
- (-1,1) dacă  $p \leq 0$ .

**57.** 
$$\sum_{n=1}^{\infty} \left( \cos \frac{1}{n} \right)^{\frac{n^2+2}{n+2}} x^n$$

### Solutie

R=1. Seria este absolut convergentă pe (-1,1), divergentă pe  $(-\infty,-1) \bigcup (1,\infty)$  și uniform convergentă pe  $|x| \leq r < 1$ . Dacă  $x \in \{-1,1\}$  se obține o serie divergentă (se aplică criteriul necesar).

**58.** 
$$\sum_{n=1}^{\infty} \frac{n!}{(a+1)(a+2)...(a+n)} x^n , a > 0$$

### Solutie

Raza de convergență este R=1. Seria este absolut convergentă pe (-1,1), divergentă pe  $(-\infty,-1) \bigcup (1,\infty)$  și uniform convergentă pe  $|x| \leq r < 1$ . Dacă x=1 obtinem seria

$$\sum_{n \ge 1} \frac{n!}{(a+1)(a+2)...(a+n)}.$$

Cu criteriul Raabe-Duhamel obţinem:

$$\lim_{n \to \infty} n \left( \frac{a_n}{a_{n+1}} - 1 \right) = a.$$

Seria este divergentă pentru a < 1 și convergentă pentru a > 1; dacă a = 1seria este seria armonică (divergentă). Dacă x = -1 se obține o serie convergentă (cu criteriul lui Leibniz).

59. 
$$\sum_{n=1}^{\infty} \frac{(x-1)^{2n}}{n \cdot 9^n}$$
 Soluţie

Raza de convergență este R = 3. Seria este absolut convergentă pe (-2, 4), divergentă pe  $(-\infty, -2) \bigcup (4, \infty)$  și uniform convergentă pe  $|x-1| \le r < 3$ . Dacă  $x \in \{-2, 4\}$  se obține seria armonică.

**60.** 
$$\sum_{n=1}^{\infty} \frac{(x+3)^n}{n^2}$$

# Solutie

Raza de convergență este R = 1. Seria este absolut convergentă pe (-4, -2), divergentă pe  $(-\infty, -4) \cup (-2, \infty)$  și uniform convergentă pe  $|x+3| \le r < 1$ .

Dacă  $x \in \{-4, -2\}$  se obțin seriile  $\sum_{n \ge 1} \frac{(\pm 1)^n}{n^2}$  care sunt absolut convergente.

**61.** 
$$\sum_{n=1}^{\infty} \frac{(-1)^{n-1}}{n} (x-2)^{2n}$$

R=1. Seria este absolut convergentă pentru  $(x-2)^2<1$ , adică  $x\in(1,3)$ ; seria este divergentă pentru  $x \in (-\infty, 1) \cup (3, \infty)$  și uniform convergentă pe  $(x-2)^2 \le r < 1$ . Dacă  $x \in \{1,3\}$  se obține seria  $\sum_{n>1} \frac{(-1)^{n-1}}{n}$  care este convergentă.

**62.** 
$$\sum_{n=1}^{\infty} (-1)^{n+1} \frac{(2n-1)^{2n}}{(3n-2)^{2n}} (x-1)^n$$

Soluție  $R = \frac{9}{4}$ . Seria este absolut convergentă pentru  $|x-1| < \frac{9}{4}$ , adică  $x \in \left(-\frac{5}{4}, \frac{13}{4}\right)$ ; seria este divergentă pentru  $x \in \left(-\infty, -\frac{5}{4}\right) \cup \left(\frac{13}{4}, \infty\right)$ ; seria este uniform convergentă pe  $|x-1| \le r < \frac{9}{4}$ . Dacă  $x = -\frac{5}{4}$  se obține seria  $-\sum_{n \ge 1} \left(\frac{9}{4}\right)^n \frac{(2n-1)^{2n}}{(3n-2)^{2n}}$  care este divergentă (criteriul necesar), iar dacă

$$x = \frac{13}{4}$$
 se obține seria  $\sum_{n>1} (-1)^{n+1} \left(\frac{9}{4}\right)^n \frac{(2n-1)^{2n}}{(3n-2)^{2n}}$  care este divergentă.

În exercițiile 63-68, să se studieze convergența următoarelor serii de funcții

**63.** 
$$\sum_{n=0}^{\infty} \ln^n x, \ x > 0$$

# Solutie

Cu schimbarea de variabilă  $t = \ln x$  se obține o serie de puteri cu raza de convergență  $R = \lim_{n \to \infty} \frac{|a_n|}{|a_{n+1}|} = 1$ . Seria de puteri este absolut convergentă pentru  $t \in (-1,1)$  și divergentă pentru  $t \in (-\infty,-1) \bigcup (1,\infty)$ . Rezultă că seria inițială este convergentă dacă și numai dacă  $x \in (\frac{1}{e}, e)$ . Evident, seria este uniform convergentă pe  $[e^{-r}, e^r], \forall r < 1.$ 

**64.** 
$$\sum_{n=1}^{\infty} \left(1 + \frac{1}{n}\right)^{-n^2} e^{-nx}$$

Cu schimbarea de variabilă  $t=e^{-x}>0$  se obține o serie de puteri având raza de convergență  $R = \lim_{n \to \infty} \sqrt[n]{\left(1 + \frac{1}{n}\right)^{n^2}} = e$ . Seria este absolut convergentă pentru  $t \in (0, e)$ , deci pentru x > -1 și divergentă pentru  $t \in (e, \infty)$ , adică x < -1. Evident seria este uniform convergentă pe  $x \ge r$ ,  $\forall r > -1$ . Dacă x = -1 se obține o serie divergentă (se poate aplica criteriul necesar):

$$\left(1 + \frac{1}{n}\right)^{-n^2} e^n = \left(\left(1 + \frac{1}{n}\right)^{-n} e\right)^n \ge 1.$$

**65.** 
$$\sum_{n\geq 1} \frac{1}{n!x^n}$$

Fie  $y=x^{-1}$ ; seria de puteri  $\sum_{n\geq 1}\frac{1}{n!}y^n$  are raza de convergență  $R=\infty$ , deci seria inițială converge pentru orice  $x \neq 0$ .

**66.** 
$$\sum_{n\geq 0} (-1)^{n+1} e^{-n\sin x}$$

Soluție Fie  $y=e^{-\sin x}$ ; seria de puteri  $\sum_{n\geq 0} (-1)^{n+1}y^n$  are raza de convergență R=1

și converge dacă și numai dacă  $y \in (-1,1)$ . Rezultă că seria inițială converge dacă și numai dacă  $\sin x > 0$ , adică

$$x \in \bigcup_{k \in Z} (2k\pi, (2k+1)\pi).$$

67. 
$$\sum_{n\geq 1} rac{(-1)^n}{n} \sin^n x$$
 Soluţie

Fie  $y = \sin x$ ; seria  $\sum_{n \geq 1} \frac{(-1)^n}{n} y^n$  converge dacă și numai dacă  $y \in (-1,1]$ , deci seria iniţială converge dacă şi numai dacă  $x \neq (4k-1)\frac{\pi}{2}, \forall k \in \mathbb{Z}.$ 

**68.** 
$$\sum_{n>0} \left(\frac{x}{\ln x}\right)^n, x>0$$

Fie  $y = \frac{x}{\ln x}$ ; seria converge dacă și numai dacă |y| < 1, sau echivalent,  $x < |\ln x|$ . Fie  $\xi \in (0,1)$  soluția unică a ecuației  $x = -\ln x$ . Seria converge dacă și numai dacă  $x \in (0, \xi)$ .

Să se găsească raza de convergență și mulțimea de convergență în C pentru următoarele serii de puteri (exercițiile 69-73):

**69.** 
$$\sum_{n\geq 1} \frac{z^n}{n^p}, z \in C$$

Raza de convergentă este 1. Seria este absolut convergentă pentru orice |z|<1 și divergentă pentru |z|>1. Cazurile  $z=\pm 1$  au fost studiate în exercițiul 11. Fie  $z=e^{it}, t\neq k\pi, k\in \mathbb{Z}$ . Dacă  $p\leq 0$ , seria este divergentă (criteriul necesar); dacă p > 1, seria este absolut convergentă. Dacă  $p \in (0,1]$ , seria este convergentă (părțile reală și imaginară sunt convergente - se aplică criteriul Abel-Dirichlet).

**70.** 
$$\sum_{n=0}^{\infty} i^n z^n , z \in C$$

R=1, deci discul de absolut convergență al seriei este |z|<1. Dacă |z|=1șirul termenilor seriei nu tinde la 0 deci seria este divergentă.

**71.** 
$$\sum_{n=0}^{\infty} (1+ni)z^n$$
,  $z \in C$ 

# Soluție

R=1, deci discul de absolut convergență al seriei este |z|<1. Dacă |z|=1șirul termenilor seriei nu tinde la 0, deci seria este divergentă.

**72.** 
$$\sum_{n=0}^{\infty} \frac{(z-2i)^n}{n \cdot 3^n}$$
,  $z \in C$ 

R=3, deci discul de absolut convergență este |z-2i|<3. Dacă |z-2i|=3. deci  $z - 2i = 3e^{i\theta}$  se obține seria  $\sum_{n>1} \frac{e^{in\theta}}{n}$  care a fost studiată în capitolul 1, exercițiul 42.

73. 
$$\sum_{n=0}^{\infty} (-1)^n \frac{z^{n+1}}{n+1}$$
,  $z \in C$ 

R=1, deci discul de absolut convergență al seriei este |z|<1. Dacă  $|z|=1, z=e^{i\theta}$  se obține seria  $\sum_{n\geq 1}(-1)^{n+1}\frac{e^{in\theta}}{n}$ . Dacă z=-1, seria este divergentă (seria armonică); pentru  $z \neq -1$  seria este convergentă (criteriul Abel-Dirichlet).

Să se calculeze sumele seriilor de funcții (exercițiile 74-80) :

**74.** 
$$\sum_{n\geq 0} x^{2n}$$

# Solutie

Soluție 
$$\sum_{n\geq 0} x^{2n} = \sum_{n\geq 0} (x^2)^n = \frac{1}{1-x^2}, \forall |x| < 1...$$

75. 
$$\sum_{n=0}^{\infty} (-1)^n \frac{x^{2n+1}}{2n+1}$$
Soluţie

Raza de convergență este 1. Fie S(x) suma seriei date. Seria derivatelor are aceeasi rază de convergentă cu seria initială si suma ei este egală cu derivata sumei. Calculăm:

$$S'(x) = \sum_{n \ge 0} (-1)^n (x^2)^n = \frac{1}{1+x^2}, \forall |x| < 1.$$

Rezultă  $S(x) = \operatorname{arctg} x + C$ . Din S(0) = 0, rezultă C = 0.

**76.** 
$$\sum_{n=0}^{\infty} (n+1)x^n$$

# Solutie

Fie S(x) suma seriei. Seria primitivelor are aceeasi rază de convergență cu seria inițială (R=1) și suma ei este egală cu o primitivă a sumei seriei date. Integrând seria termen cu termen se obține:

$$\int_0^x S(x) dx = \sum_{n \ge 0} x^{n+1} = \frac{x}{1-x}, \forall |x| < 1.$$

Rezultă  $S(x) = \frac{1}{(1-x)^2}$ .

77. 
$$\sum_{n=0}^{\infty} \frac{n}{n+1} \left(\frac{x}{2}\right)^n$$
 Soluţie

Seria converge pentru  $x \in (-2,2)$  și fie S(x) suma seriei. Dacă x=0, atunci S(0) = 0; fie  $x \in (-2, 2) \setminus \{0\}$ ;

$$S(x) = \sum_{n \ge 0} \left(\frac{x}{2}\right)^n - \sum_{n \ge 0} \frac{1}{n+1} \left(\frac{x}{2}\right)^n = \frac{2}{2-x} - \frac{2}{x} \sum_{n \ge 0} \frac{1}{n+1} \left(\frac{x}{2}\right)^{n+1}.$$

Suma ultimei serii (pe care o notăm cu T(x)) se calculează prin derivare

$$T'(x) = \left(\sum_{n\geq 0} \frac{1}{n+1} \left(\frac{x}{2}\right)^{n+1}\right)' = \frac{1}{2} \sum_{n\geq 0} \left(\frac{x}{2}\right)^n = \frac{1}{2(1-\frac{x}{2})} = \frac{1}{2-x}.$$

Rezultă:

$$T(x) = \sum_{n>0} \frac{1}{n+1} \left(\frac{x}{2}\right)^{n+1} = C - \ln(2-x).$$

Din T(0) = 0 rezultă  $C = \ln 2$ . În concluzie rezultă:

$$S(x) = \frac{2}{2-x} - \frac{2}{x} \ln \frac{2}{2-x}, \forall x \in (-2,2), x \neq 0 \text{ si } S(0) = 0.$$

78. 
$$\sum_{n=1}^{\infty} \frac{(n+1)^3}{n(n+2)} x^{n-1}$$
 Soluţie

Seria este absolut convergentă pentru  $x \in (-1,1)$ . Dacă x=0 suma este  $\frac{8}{3}$ ; fie  $x \in (-1,1) \setminus \{0\}$ . Coeficientul  $\frac{(n+1)^3}{n(n+2)}$  se descompune în fracții simple:

$$\frac{(n+1)^3}{n(n+2)} = n+1 + \frac{1}{2n} + \frac{1}{2(n+2)}.$$

Rezultă (pentru  $x \in (-1,1) \setminus \{0\}$ ):

$$\sum_{n=1}^{\infty} \frac{(n+1)^3}{n(n+2)} x^{n-1} = \sum_{n\geq 1} x^{n-1} + \sum_{n\geq 1} n x^{n-1} + \sum_{n\geq 1} \frac{1}{2n} x^{n-1} + \sum_{n\geq 1} \frac{1}{2(n+2)} x^{n-1} =$$

$$= \frac{1}{1-x} + \sum_{n\geq 1} (x^n)' + \frac{1}{2x} \sum_{n\geq 1} \int_0^x x^{n-1} dx + \frac{1}{2x^3} \sum_{n\geq 1} \int_0^x x^{n+1} dx =$$

$$= \frac{1}{1-x} + \left(\sum_{n\geq 1} x^n\right)' + \frac{1}{2x} \int_0^x \left(\sum_{n\geq 1} x^{n-1}\right) dx + \frac{1}{2x^3} \int_0^x \left(\sum_{n\geq 1} x^{n+1}\right) dx =$$

$$= \frac{1}{1-x} + \left(\frac{x}{1-x}\right)' + \frac{1}{2x} \int_0^x \left(\frac{1}{1-x}\right) dx + \frac{1}{2x^3} \int_0^x \left(\frac{x^2}{1-x}\right) dx =$$

$$= \frac{1}{1-x} + \frac{1}{(1-x)^2} + \frac{1}{2x} \ln \frac{1}{1-x} + \frac{1}{2x^3} \left(-x - \frac{x^2}{2} + \ln \frac{1}{1-x}\right).$$

**79.** 
$$\sum_{n>1} nx^{-n}$$

# Soluție

Se face substituția  $y=x^{-1}, x\neq 0$ . Suma seriei (de puteri)  $\sum_{n\geq 1} ny^n$  se calculează prin derivarea seriei  $\sum_{n\geq 1} y^n$  și apoi înmulțire cu y; rezultă:

$$\sum_{n \ge 1} ny^n = \frac{y}{(1-y)^2}, \, \forall \, y \in (-1,1).$$

Rezultă:

$$\sum_{n>0} nx^{-n} = \frac{x}{(x-1)^2}, \, \forall \, x \in (-\infty, -1) \cup (1, \infty).$$

**80.** 
$$\sum_{n\geq 1} (4n-3)x^{-(4n-3)}$$

# Soluţie

Se procedează analog cu exercițiul precedent.

81. Să se dezvolte în serie de puteri centrate în zero funcția  $f(x) = \arcsin x$  și apoi să se demonstreze

$$1 + \sum_{n \ge 1} \frac{1 \cdot 3 \cdot 5 \dots \cdot (2n-1)}{2 \cdot 4 \cdot 6 \dots (2n)} \cdot \frac{1}{2n+1} = \frac{\pi}{2}.$$

### Soluție

Dezvoltăm în serie derivata funcției arcsin (folosim seria binomială petru exponentul  $\alpha = -\frac{1}{2}$ ):

$$(\arcsin x)' = \frac{1}{\sqrt{1-x^2}} = 1 + \sum_{n>1} \frac{1 \cdot 3 \cdot 5 \dots \cdot (2n-1)}{2 \cdot 4 \cdot 6 \dots (2n)} x^{2n}, \forall |x| < 1.$$

Integrând termen cu termen (de la 0 la x), obţinem:

$$\arcsin x = x + \sum_{n \ge 1} \frac{1 \cdot 3 \cdot 5 \dots (2n-1)}{2 \cdot 4 \cdot 6 \dots (2n)} \cdot \frac{1}{2n+1} x^{2n+1}, \forall x \in [-1, 1].$$

Convergența în punctele  $\pm 1$  se stabilește cu criteriul lui Leibniz. Suma seriei numerice din enunț este  $\arcsin(1) = \frac{\pi}{2}$ .

82. Să se dezvolte în serie de puteri centrate în zero funcția  $f(x)=\ln\left(x+\sqrt{1+x^2}\right)$  și apoi să se demonstreze:

$$1 + \sum_{n \ge 1} (-1)^n \frac{1 \cdot 3 \cdot 5 \dots (2n-1)}{2 \cdot 4 \cdot 6 \dots (2n)} \cdot \frac{1}{2n+1} = \ln(1+\sqrt{2}).$$

# Soluţie

Procedăm analog cu exercițiul anterior:

$$\left(\ln(x+\sqrt{1+x^2})' = \frac{1}{\sqrt{1+x^2}} = 1 + \sum_{n\geq 1} (-1)^n \frac{1\cdot 3\cdot 5...(2n-1)}{2\cdot 4\cdot 6...(2n)} \cdot x^{2n}, \, \forall \, |x| < 1.$$

Rezultă dezvoltarea:

$$\ln(x + \sqrt{1 + x^2}) =$$

$$= x + \sum_{n>1} (-1)^n \frac{1 \cdot 3 \cdot 5 \dots (2n-1)}{2 \cdot 4 \cdot 6 \dots (2n)} \cdot \frac{1}{2n+1} \cdot x^{2n+1}, \, \forall \, x \in [-1,1].$$

În particular pentru x=1 obținem suma seriei date:  $\ln(1+\sqrt{2})$ .

Folosind serii de puteri să se calculeze sumele următoarelor serii de numere (exercițiile 83-90):

**83.** 
$$\sum_{n\geq 1} \frac{(-1)^{n+1}}{n}$$

# Soluţie

Suma este  $\ln 2$ .

**84.** 
$$\sum_{n\geq 0} \frac{(-1)^n}{2n+1}$$

### Soluţie

Suma este  $arctg1 = \frac{\pi}{4}$ .

**85.** 
$$\sum_{n>0} \frac{(-1)^n}{2^{2n} n!}$$

# Soluţie

Suma este  $e^{-\frac{1}{4}}$ .

**86.** 
$$\sum_{n>0} \frac{(-1)^n}{(2n+1)3^n}$$

### Soluţie

Suma este  $\sqrt{3} \arctan(\frac{1}{\sqrt{3}}) = \frac{\pi\sqrt{3}}{6}$ .

87. 
$$\sum_{n=0}^{\infty} \frac{(-1)^n}{(2n+1)(2n+2)}$$

# Solutie

Fie dezvoltarea:

$$\arctan x = \sum_{n=0}^{\infty} \frac{(-1)^n}{2n+1} \cdot x^{2n+1} \forall x \in (-1,1).$$

Primitiva care se anulează în 0 este:

$$\int_0^x \arctan x = \sum_{n \ge 0} \frac{(-1)^n}{(2n+1)(2n+2)} x^{2n+2}.$$

Calculând (prin părți) integrala, rezultă:

$$x \operatorname{arctg} x - \frac{1}{2} \ln(x^2 + 1) = \sum_{n \ge 0} \frac{(-1)^n}{(2n+1)(2n+2)} x^{2n+2},$$

deci suma cerută este  $\frac{\pi}{4} - \frac{1}{2} \ln 2$ .

88. 
$$\sum_{n=0}^{\infty} \frac{n+1}{4^n}$$
 Soluţie

Raza de convergență a seriei  $\sum_{n=0}^{\infty} (n+1) x^n$  este 1 și

$$\sum_{n=0}^{\infty} (n+1)x^n = \sum_{n=0}^{\infty} (x^{n+1})' = \left(\sum_{n=0}^{\infty} x^{n+1}\right)' =$$
$$= \left(\frac{x}{1-x}\right)' = \frac{1}{(1-x)^2}, \forall x \in (-1,1).$$

În particular, pentru  $x=\frac{1}{4}$  rezultă  $\sum_{n=0}^{\infty}\frac{n+1}{4^n}=\frac{16}{9}$ .

**89.** 
$$\sum_{n\geq 1} \frac{(-1)^n}{(2n+1)^2}$$

# Soluție

Din dezvoltarea funcției arctg:

$$arctg x = \sum_{n>0} \frac{(-1)^n}{2n+1} x^{2n+1}, \, \forall \, x \in [-1,1],$$

rezultă

$$\int_0^1 \frac{\arctan x}{x} dx = \sum_{n>0} \frac{(-1)^n}{(2n+1)^2}.$$

Valoarea acestei integrale (constanta lui Catalan) este aproximativ 0, 91596.

**90.** 
$$\sum_{n\geq 0} \frac{(-1)^n}{3n+1}$$

Seria de puteri  $\sum_{n>0} \frac{(-1)^n}{3n+1} x^{3n+1}$  converge pentru orice  $x\in (-1,1]$ ; integrând

termen cu termen, se obţine:

$$\sum_{n\geq 0} \frac{(-1)^n}{3n+1} = \lim_{x\to 1} \sum_{n\geq 0} \frac{(-1)^n}{3n+1} x^{3n+1} =$$

$$= \lim_{x\to 1} \int_0^x \sum_{n\geq 0} (-1)^n x^{3n} dx = \lim_{x\to 1} \int_0^x \frac{dx}{1+x^3} =$$

$$= \lim_{x\to 1} \left( \frac{1}{6} \ln \frac{(x+1)^2}{x^2 - x + 1} + \frac{1}{\sqrt{3}} \operatorname{arctg} \frac{2x-1}{\sqrt{3}} + \frac{\pi\sqrt{3}}{18} \right) = \frac{1}{3} \ln 2 + \frac{\pi\sqrt{3}}{9}.$$

# Capitolul 4

# Funcții diferențiabile

# 4.1 Noțiuni teoretice

# Derivate parțiale, diferențială

Fie D o submulțime deschisă în  $R^n$  și fie  $f:D\mapsto R$ . Fie  $a\in D$  și  $s\in R^n$  un versor arbitrar. Se spune că f este derivabilă în punctul a după direcția s dacă există în R limita:

$$\lim_{t \to 0} \frac{f(a+ts) - f(a)}{t}.$$

Dacă există, această limită se notează  $\frac{df}{ds}(a)$  și se numește derivata lui f după s în punctul a. Se spune că f are derivată parțială în punctul a în raport cu variabila  $x_k$  dacă există  $\frac{df}{de_k}(a)$ , care în acest caz se notează  $\frac{\partial f}{\partial x_k}(a)$ . Funcția f se zice derivabilă parțial pe D dacă pentru orice  $a \in D$  și pentru orice  $k \in \{1, 2, ..., n\}$  există  $\frac{\partial f}{\partial x_k}(a)$ . Funcțiile

$$\frac{\partial f}{\partial x_k}: D \mapsto R$$

se numesc derivatele parțiale ale lui f. Funcția f se zice de clasă  $C^1$  pe D (se notează  $f \in C^1(D)$ ) dacă toate derivatele parțiale  $\frac{\partial f}{\partial x_k}$  există și sunt funcții continue pe D.

Presupunem că  $f \in C^1(D)$ ; pentru orice  $a \in D$ , vectorul

$$\operatorname{grad}_a f = \left(\frac{\partial f}{\partial x_1}(a), \frac{\partial f}{\partial x_2}(a), ..., \frac{\partial f}{\partial x_n}(a)\right)$$

se numește gradientul lui f în punctul a. Are loc formula:

$$\frac{df}{ds}(a) = s \cdot \operatorname{grad}_a f, \forall s \in \mathbb{R}^n.$$

Fie  $F:D\mapsto R^m$ ,  $F=(f_1,f_2,..,f_m)$ . Presupunând că există toate derivatele parțiale  $\frac{\partial f_i}{\partial x_j}(a)$ , se poate defini matricea jacobiană a aplicației F în punctul a prin:

$$J_F(a) = \left(\frac{\partial f_i}{\partial x_j}(a)\right)_{1 \le i \le m, 1 \le j \le n}.$$

Dacă m=n, atunci matricea este pătratică și determinantul ei se numește jacobianul funcțiilor  $f_1, f_2, ..., f_n$  în punctul a și se notează

$$\det(J_F(a)) = \frac{D(f_1, f_2, ..., f_n)}{D(x_1, x_2, ..., x_n)}.$$

Funcția F se numește de clasă  $C^1$  pe mulțimea D dacă toate componentele sale,  $f_1, ..., f_m$  sunt de clasă  $C^1$ .

### Diferențiala

Aplicația  $F:D\mapsto R^m$  se numește diferențiabilă în punctul  $a\in D$  dacă există o aplicație liniară  $DF(a):R^n\mapsto R^m$  astfel încât

$$\lim_{x \to a} \frac{F(x) - F(a) - DF(a)(x - a)}{\parallel x - a \parallel} = 0.$$

Dacă există, aplicația DF(a) se numește diferențiala lui F în punctul a.

### Legătura dintre derivate parțiale și diferențială

i. Dacă F este diferențiabilă în punctul a atunci F este derivabilă parțial în a. În acest caz, matricea (în baza canonică) a aplicației liniare DF(a) este matricea jacobiană a lui F în a, deci

$$DF(a)x = J_F(a)x^T, \forall x \in \mathbb{R}^n.$$

Dacă  $f: D \mapsto R$  este diferențiabilă în  $a \in D$ , atunci

$$Df(a): \mathbb{R}^n \mapsto \mathbb{R},$$

$$Df(a)(x_1, x_2, ..., x_n) = \frac{\partial f}{\partial x_1}(a)x_1 + \frac{\partial f}{\partial x_2}(a)x_2 + ... + \frac{\partial f}{\partial x_n}(a)x_n,$$

sau, notând cu  $dx_j$  proiecția pe componenta j, diferențiala se scrie sub forma:

$$Df(a) = \frac{\partial f}{\partial x_1}(a)dx_1 + \frac{\partial f}{\partial x_2}(a)dx_2 + \dots + \frac{\partial f}{\partial x_n}(a)dx_n.$$

ii. Dacă  $F \in C^1(D)$  atunci F este diferențiabilă în orice  $a \in D$ .

# Diferențiala funcției compuse

Fie  $A\subseteq R^n$  şi  $B\subseteq R^m$  două mulțimi deschise şi fie  $F:A\mapsto B,$   $G:B\mapsto R^k.$  Dacă F este diferențiabilă în  $a\in A$  şi G este diferențiabilă în  $b=F(a)\in B$  atunci compunerea  $G\circ F$  este diferențiabilă în a și

$$D(G \circ F)(a) = DG(b) \circ DF(a).$$

Relația dintre matricele jacobiene asociate este

$$J_{G \circ F}(a) = J_G(b)J_F(a).$$

# Derivate parţiale de ordin superior

Funcția  $f:D\mapsto R$  se numește de clasă  $C^2$  pe D dacă  $f\in C^1(D)$  și  $\frac{\partial f}{\partial x_k}\in C^1(D), \forall k\in\{1,2,..,n\}$ . Funcțiile  $\frac{\partial}{\partial x_j}\left(\frac{\partial f}{\partial x_k}\right)$  se numesc derivatele parțiale de ordinul al doilea și se notează  $\frac{\partial^2 f}{\partial x_j\partial x_k}$ . În cazul particular j=k, se folosește notația  $\frac{\partial^2 f}{\partial x_k^2}$ .

# Teorema de simetrie a lui Schwartz

Dacă  $f \in C^2(D)$ , atunci

$$\frac{\partial^2 f}{\partial x_j \partial x_k}(a) = \frac{\partial^2 f}{\partial x_k \partial x_j}(a), \forall j,k \in \{1,2,..,n\}, \, \forall a \in D.$$

# Diferențiala a doua

Fie  $f \in C^2(D)$  și  $a \in D$ . Matricea hessiană a lui f în a este matricea (simetrică)

$$H_f(a) = \left(\frac{\partial^2 f}{\partial x_i \partial x_j}\right)_{1 \le i, j \le n}.$$

Diferențiala a doua a funcției f în punctul a este forma pătratică

$$D^2 f(a) : R^n \to R, \ D^2 f(a)(h_1, h_2, ..., h_n) = \sum_{i=1}^n \sum_{j=1}^n \frac{\partial^2 f}{\partial x_i \partial x_j}(a) h_i h_j.$$

## Polinomul Taylor

Fie D o submulțime deschisă din  $R^n$ , fie  $f:D\mapsto R$  o funcție de clasă  $\mathcal{C}^m$  și fie  $a=(a_1,a_2,...,a_n)\in D$ . Notăm

$$\Delta f(a) = Df(a)(x - a) = \sum_{k=0}^{n} \frac{\partial f}{\partial x_k}(a)(x_k - a_k).$$

Puterea simbolică  $[\Delta f(a)]^{(k)}$  se definește ca fiind puterea k a polinomului  $\Delta f(a)$  cu convențiile

$$\left(\frac{\partial f}{\partial x_1}(a)\right)^{p_1} \left(\frac{\partial f}{\partial x_2}(a)\right)^{p_2} \dots \left(\frac{\partial f}{\partial x_n}(a)\right)^{p_n} = \frac{\partial^k f}{\partial x_1^{p_1} \partial x_2^{p_2} \dots \partial x_n^{p_n}}(a),$$

 $\forall p_1, p_2, ...p_n \in \{0, 1, ..., k\}$  astfel încât  $p_1 + p_2 + ...p_n = k$ .

Polinomul Taylor de gradul m asociat funcției f în punctul a este, prin definiție:

$$T_m(f,a)(x) = f(a) + \frac{1}{1!}\Delta f(a) + \frac{1}{2!}[\Delta f(a)]^{(2)} + \dots + \frac{1}{m!}[\Delta f(a)]^{(m)}, \ \forall x \in D,$$

iar restul de ordin m este  $R_m(f,a)(x) = f(x) - T_m(f,a)(x)$ . De exemplu, dacă n = 2,  $(a_1, a_2) = (a, b)$ , atunci:

$$T_1(f,(a,b))(x,y) = f(a,b) + (x-a)\frac{\partial f}{\partial x}(a,b) + (y-b)\frac{\partial f}{\partial y}(a,b),$$

$$T_2(f,(a,b))(x,y) = f(a,b) + (x-a)\frac{\partial f}{\partial x}(a,b) + (y-b)\frac{\partial f}{\partial y}(a,b) +$$

$$+\frac{1}{2!}\left((x-a)^2\frac{\partial^2 f}{\partial x^2}(a,b) + 2(x-a)(y-b)\frac{\partial^2 f}{\partial x \partial y}(a,b) + (y-b)^2\frac{\partial^2 f}{\partial y^2}(a,b)\right).$$

În general, pentru  $m \in N$ :

$$T_m(f,(a,b))(x,y) = \sum_{k=0}^{m} \frac{1}{k!} [\Delta f(a,b)]^{(k)},$$

unde

$$[\Delta f(a,b)]^{(k)} = \sum_{i=0}^{k} C_k^i (x-a)^{k-i} (y-b)^i \frac{\partial^k f}{\partial x^{k-i} \partial y^i} (a,b).$$

Polinoamele  $T_1(f,a)$  și  $T_2(f,a)$  se numesc aproximarea liniară și, respectiv, aproximarea pătratică a funcției f în jurul punctului a.

# Formula lui Taylor

În condițiile de mai sus, fie r > 0 astfel încât  $B(a,r) \subseteq D$ . Atunci, pentru orice  $x \in B(a,r)$ , există  $\xi \in [a,x]$  astfel încât

$$f(x) = T_m(f, a) + \frac{1}{m!} [\Delta f(\xi)]^{(m)}.$$

În particular, rezultă că

$$\lim_{x \to a} \frac{R_m(f, a)(x)}{\|x - a\|^m} = 0.$$

#### Extreme locale

Fie D o submulțime deschisă în  $R^n$  și  $f:D\mapsto R$ . Un punct  $a\in D$  se numește punct de extrem local pentru funcția f dacă există o vecinătate  $V\subseteq D$  a punctului a astfel încât  $f(x)-f(a)\leq 0, \forall x\in V$  (maxim local) sau  $f(x)-f(a)\geq 0, \forall x\in V$  (minim local).

Un punct  $a \in D$  se numește punct critic al lui f dacă f este diferențiabilă în a și Df(a) = 0.

#### Teorema lui Fermat

Cu notațiile de mai sus, dacă  $a \in D$  este punct de extrem local pentru f și funcția f este diferențiabilă în a, atunci a este punct critic al lui f.

# Condiții suficiente de extrem local

Fie  $f \in C^2(D)$  și fie  $a \in D$  un punct critic pentru f. Dacă forma pătratică  $D^2f(a)$  este pozitiv definită (respectiv negativ definită) atunci a este minim local (respectiv maxim local) al lui f. Dacă matricea hessiană are valori proprii de semne contrare, atunci a nu este extrem local.

### Difeomorfisme

Fie A, B doi deschişi din  $\mathbb{R}^n$ . O aplicație  $f: A \mapsto B$  se numește difeomorfism dacă este bijectivă, de clasă  $\mathbb{C}^1$  și cu inversa de clasă  $\mathbb{C}^1$ .

# Teorema funcției inverse

Dacă intr-un punct  $a \in A$  diferențiala Df(a) este izomorfism liniar (sau, echivalent,  $\det(J_f(a)) \neq 0$ ), atunci f este difeomorfism local în jurul lui a, adică există V vecinătate a lui a și W vecinătate a lui f(a) astfel încât restricția  $f: V \mapsto W$  să fie difeomorfism.

#### Teorema funcțiilor implicite

Fie  $A \subseteq \mathbb{R}^n$  și  $B \subseteq \mathbb{R}^m$  două mulțimi deschise.

Notăm  $x = (x_1, x_2, ..., x_n) \in A$ ,  $y = (y_1, y_2, ..., y_m) \in B$  și  $(x, y) \in A \times B$ . Fie  $F: A \times B \mapsto R^m, F(x, y) = (f_1(x, y), f_2(x, y), ..., f_m(x, y))$  o funcție de clasă  $C^1$ . Fie  $(a, b) \in A \times B$  astfel încât

$$F(a,b) = 0$$
 și  $\frac{D(f_1, f_2, ..., f_m)}{D(y_1, y_2, ..., y_m)} \neq 0.$ 

Atunci există  $V\subseteq A$  vecinătate deschisă a lui a și  $W\subseteq B$  vecinătate deschisă a lui b și o unică funcție  $\phi:V\mapsto W$  cu proprietățile:

$$\phi \in C^1(V), \ \phi(a) = b \text{ si } F(x, \phi(x)) = 0, \forall x \in V.$$

### Extreme cu legături

Fie  $M\subseteq R^p$  o submulțime nevidă și  $a\in M$ . Fie f o funcție definită pe o vecinătate a lui a. Se spune că punctul a este punct de extrem pentru f cu legătura M (sau extrem condiționat) dacă a este punct de extrem local pentru restricția lui f la M, sau, echivalent, dacă există V o vecinătate a lui a astfel încât

$$f(x) \le f(a)$$
 sau  $f(x) \ge f(a), \ \forall x \in V \cap M$ .

# Teorema multiplicatorilor lui Lagrange

Fie D o submulțime deschisă din  $R^{n+m}$  și fie  $f: D \mapsto R$  o funcție de clasă  $C^1(D)$ . Notăm  $D \ni (x,y) = (x_1,x_2,...,x_n,y_1,y_2,...,y_m)$  variabilele din D. Fie  $g_k: D \mapsto R$ ,  $\forall k \in \{1,2,...,m\}$  funcții de clasă  $C^1(D)$  și fie

$$M = \{(x, y) \in D \mid g_k(x, y) = 0, \forall 1 \le k \le m\}.$$

Dacă  $(a,b) \in M$  este punct de extrem local pentru f cu legătura M astfel încât

$$\frac{D(g_1, g_2, ..., g_m)}{D(y_1, y_2, ..., y_m)}(a, b) \neq 0,$$

atunci există  $\lambda=(\lambda_1,\lambda_2,...,\lambda_m)\in R^m$  astfel încât (a,b) să fie punct critic al funcției

$$F(x, y, \lambda) = f(x, y) + \lambda_1 q_1(x, y) + \lambda_2 q_2(x, y) + ... + \lambda_m q_m(x, y),$$

sau, echivalent, (a,b) este soluție a sistemului de n+2m ecuații cu n+2m necunoscute:

$$\frac{\partial F}{\partial x_i} = 0, \ \frac{\partial F}{\partial y_k} = 0, \ g_k = 0, \ \forall j \in \{1, 2, ..., n\}, \ \forall k \in \{1, 2, ..., m\}.$$

# 4.2 Derivate parțiale și diferențiala

**1.** Fie  $f: R^2 \mapsto R$ ,  $f(x,y) = 2x^3y - e^{x^2}$ . Să se calculeze, cu definiția, derivatele parțiale de ordinul întâi ale lui f în punctele (0,0) și (-1,1). Solutie

Observăm că f este continuă în cele două puncte. Aplicând definiția, obținem:

$$\frac{\partial f}{\partial x}(0,0) = \lim_{x \to 0} \frac{f(x,0) - f(0,0)}{x} = \lim_{x \to 0} \frac{-e^{x^2} + 1}{x} = 0.$$
$$\frac{\partial f}{\partial y}(0,0) = \lim_{y \to 0} \frac{f(0,y) - f(0,0)}{y} = 0.$$

$$\frac{\partial f}{\partial x}(-1,1) = \lim_{x \to -1} \frac{f(x,1) - f(-1,1)}{x+1} = \lim_{x \to -1} \frac{2x^3 - e^{x^2} + 2 + e}{x+1} = 6 + 2e.$$
$$\frac{\partial f}{\partial y}(-1,1) = \lim_{y \to 1} \frac{f(-1,y) - f(-1,1)}{y-1} = -2.$$

 ${\bf 2.}~{\bf a.}~{\bf S}$ ă se studieze existența derivatelor parțiale în origine pentru funcția

$$f(x, y, z) = \sqrt{x^2 + y^2 + z^2}.$$

**b.** Este funcția  $g:R^2\mapsto R,\,g(x,y)=x\sqrt{x^2+y^2}$  de clasă  $\mathcal{C}^1(R^2)$  ? Soluție

a. Aplicând definiția, se obține:

$$\lim_{x \to 0} \frac{f(x,0,0) - f(0,0,0)}{x} = \lim_{x \to 0} \frac{|x|}{x}.$$

Limita de mai sus nu există, deci funcția f nu are derivate parțiale în origine.

**b.** Pentru orice  $(x,y) \neq (0,0)$ , avem:

$$\frac{\partial g}{\partial x}(x,y) = \frac{2x^2 + y^2}{\sqrt{x^2 + y^2}}, \quad \frac{\partial g}{\partial y}(x,y) = \frac{xy}{\sqrt{x^2 + y^2}}.$$

În origine derivatele parțiale există și sunt nule:

$$\frac{\partial g}{\partial x}(0,0) = \lim_{x \to 0} \frac{x|x|}{x} = 0, \ \frac{\partial g}{\partial y}(0,0) = 0.$$

Verificăm dacă derivatele parțiale sunt continue (în origine):

$$\lim_{(x,y)\to(0,0)} \frac{\partial g}{\partial x}(x,y) = \lim_{(x,y)\to(0,0)} \frac{2x^2+y^2}{\sqrt{x^2+y^2}} = 0,$$

deoarece  $\left|\frac{2x^2+y^2}{\sqrt{x^2+y^2}}\right| \le 2\sqrt{x^2+y^2};$ 

$$\lim_{(x,y)\to(0,0)} \frac{\partial g}{\partial y}(x,y) = \lim_{(x,y)\to(0,0)} \frac{xy}{\sqrt{x^2 + y^2}} = 0,$$

deoarece  $\left|\frac{xy}{\sqrt{x^2+y^2}}\right| \leq \sqrt{x^2+y^2}$ . Rezultă că  $f \in \mathcal{C}^1(\mathbb{R}^2)$ .

**3.** Folosind definiția, să se calculeze derivatele parțiale de ordinul al doilea ale funcțiilor următoare, în punctele indicate:

**a.** 
$$f: R^2 \mapsto R, f(x,y) = \sqrt{x^2 + y^2}$$
 în  $(1,0)$  şi  $(1,1)$ .  
**b.**  $g: R^3 \mapsto r, g(x,y,z) = xe^{yz}$  în  $(0,0,0)$  şi  $(1,1,1)$ .

**b.** 
$$g: R^3 \mapsto r, \ g(x, y, z) = xe^{yz} \text{ în } (0, 0, 0) \text{ și } (1, 1, 1)$$

a. Se calculează mai întâi derivatele parțiale de ordinul întâi într-un punct arbitrar  $(x, y) \neq (0, 0)$ :

$$\frac{\partial f}{\partial x}(x,y) = \frac{x}{\sqrt{x^2 + y^2}}, \frac{\partial f}{\partial y}(x,y) = \frac{y}{\sqrt{x^2 + y^2}}.$$

Calculăm acum derivatele parțiale de ordinul al doilea (cu definiția):

$$\begin{split} \frac{\partial^2 f}{\partial x^2}(1,0) &= \lim_{x \to 1} \frac{\frac{\partial f}{\partial x}(x,0) - \frac{\partial f}{\partial x}(1,0)}{x-1} = \lim_{x \to 1} \frac{\frac{x}{\sqrt{x^2}} - 1}{x-1} = 0. \\ \frac{\partial^2 f}{\partial y^2}(1,0) &= \lim_{y \to 0} \frac{\frac{\partial f}{\partial y}(1,y) - \frac{\partial f}{\partial y}(1,0)}{y} = \lim_{y \to 0} \frac{y}{y\sqrt{1+y^2}} = 1. \\ \frac{\partial^2 f}{\partial x \partial y}(1,0) &= \lim_{x \to 1} \frac{\frac{\partial f}{\partial y}(x,0) - \frac{\partial f}{\partial y}(1,0)}{x-1} = 0. \\ \frac{\partial^2 f}{\partial y \partial x}(1,0) &= \lim_{y \to 0} \frac{\frac{\partial f}{\partial x}(1,y) - \frac{\partial f}{\partial x}(1,0)}{y} = \lim_{y \to 0} \frac{\frac{1}{\sqrt{1+y^2}} - 1}{y} = 0. \end{split}$$

Analog se calculează și în punctul (1,1).

b. Derivatele parțiale de ordinul întâi într-un punct arbitrar sunt:

$$\frac{\partial g}{\partial x}(x,y,z) = e^{yz}, \ \frac{\partial g}{\partial y}(x,y,z) = xze^{yz}, \ \frac{\partial g}{\partial z}(x,y,z) = xye^{yz}.$$

 $\ln (0,0,0)$  toate derivatele parțiale de ordinul al doilea sunt nule. În punctul (1,1,1), avem:

$$\frac{\partial^2 g}{\partial x^2}(1,1,1) = 0, \frac{\partial^2 g}{\partial u \partial x}(1,1,1) = e = \frac{\partial^2 g}{\partial z \partial x}(1,1,1),$$

celelalte calculându-se analog.

**4.** Fie  $f:R^3\mapsto R^2,\,f(x,y,z)=(x^2-yz,y^2-z^2).$  Să se calculeze, folosind definiția, derivata după direcția  $h=(\frac{1}{3},\frac{2}{3},\frac{2}{3})$  a funcției f în punctul (x, y, z) = (1, 1, 2).

#### Soluție

Aplicând definiția, obținem:

$$\frac{df}{dh}(1,1,2) = \lim_{t \to 0} \frac{f\left((1,1,2) + t(\frac{1}{3}, \frac{2}{3}, \frac{2}{3})\right) - f(1,1,2)}{t} =$$

$$= \lim_{t \to 0} \frac{\left(-1 - \frac{4}{3}t - \frac{1}{3}t^2, -3 - \frac{4}{3}t\right) - (-1, -3)}{t} = \left(-\frac{4}{3}, -\frac{4}{3}\right).$$

**5.** Fie  $f:R^3\mapsto R^2,$   $f(x,y,z)=(x^3-y^3,x^3+y^3+z^3).$  Să se calculeze derivata după direcția  $h=\frac{1}{\sqrt{6}}(1,-1,2)$  a lui f în punctul (1,-1,1).

# Soluție

Se aplică definiția (ca în exercițiul precedent).

6. Să se calculeze laplacianul următoarelor funcții:

a. 
$$f: R^2 \setminus \{(0,0)\} \mapsto R, f(x,y) = \ln(x^2 + y^2)$$

**b.** 
$$g: R^3 \setminus \{(0,0,0)\} \mapsto R, g(x,y,z) = \ln(x^2 + y^2 + z^2)$$

**6.** Sa se calculeze laplacianul urmatoarelor funcții:  
**a.** 
$$f: R^2 \setminus \{(0,0)\} \mapsto R, f(x,y) = \ln(x^2 + y^2).$$
  
**b.**  $g: R^3 \setminus \{(0,0,0)\} \mapsto R, g(x,y,z) = \ln(x^2 + y^2 + z^2).$   
**c.**  $h: R^2 \setminus \{(0,0)\} \mapsto R, h(x,y) = \frac{1}{\sqrt{x^2 + y^2}}.$ 

**d.** 
$$k: R^3 \setminus \{(0,0,0)\} \mapsto R, \ k(x,y,z) = \frac{1}{\sqrt{x^2 + y^2 + z^2}}.$$

Laplacianul unei funcții f de n variabile, este, prin definiție:

$$\Delta f = \frac{\partial^2 f}{\partial x_1^2} + \frac{\partial^2 f}{\partial x_2^2} + \dots + \frac{\partial^2 f}{\partial x_n^2}.$$

O funcție al cărei laplacian este nul se numește funcție armonică.

a. Calculăm derivatele parțiale:

$$\frac{\partial f}{\partial x}(x,y) = \frac{2x}{x^2 + y^2},$$

$$\frac{\partial f}{\partial y}(x,y) = \frac{2y}{x^2 + y^2}$$

$$\frac{\partial^2 f}{\partial x^2}(x,y) = \frac{2y^2 - 2x^2}{(x^2 + y^2)^2},$$

$$\frac{\partial^2 f}{\partial y^2}(x,y) = \frac{2x^2 - 2y^2}{(x^2 + y^2)^2},$$

şi deci  $\Delta f = 0$ .

**b.** Derivatele partiale:

$$\frac{\partial g}{\partial x}(x,y,z) = \frac{2x}{x^2 + y^2 + z^2},$$

$$\frac{\partial^2 g}{\partial x^2}(x, y, z) = \frac{2y^2 + 2z^2 - 2x^2}{(x^2 + y^2 + z^2)^2},$$

şi deci 
$$\Delta g = \frac{2}{x^2 + y^2 + z^2}$$
.

c. Derivatele partiale:

$$\frac{\partial h}{\partial x}(x,y) = \frac{-x}{\sqrt{(x^2 + y^2)^3}},$$

$$\frac{\partial^2 h}{\partial x^2}(x,y) = \frac{2x^2 - y^2}{\sqrt{(x^2 + y^2)^5}},$$

şi deci 
$$\Delta h = \frac{1}{\sqrt{(x^2 + y^2)^3}}$$
.

**d.** Derivatele partiale:

$$\frac{\partial k}{\partial x}(x,y,z) = \frac{-x}{\sqrt{(x^2 + y^2 + z^2)^3}},$$

$$\frac{\partial^2 k}{\partial x^2}(x,y,z) = \frac{2x^2 - y^2 - z^2}{\sqrt{(x^2 + y^2 + z^2)^5}},$$

şi deci  $\Delta k = 0$ .

7. Să se calculeze laplacianul funcțiilor:

**a.** 
$$f(x,y) = (x^2 + y^2)^{-1}$$
.

**a.** 
$$f(x,y) = (x^2 + y^2)^{-1}$$
.  
**b.**  $g(x,y,z) = (x^2 + y^2 + z^2)^{-1}$ .

a. 
$$\frac{\partial^2 f}{\partial x^2}(x,y) = \frac{6x^2 - 2y^2}{(x^2 + y^2)^3}$$
, deci  $\Delta f = 4(x^2 + y^2)^{-2}$ .

**b.** 
$$\frac{\partial^2 g}{\partial x^2}(x, y, z) = \frac{6x^2 - 2(y^2 + z^2)}{(x^2 + y^2 + z^2)^3}$$
, deci  $\Delta g = 2(x^2 + y^2 + z^2)^{-2}$ .

8. Fie funcția 
$$f(x,y) = \begin{cases} \frac{xy}{\sqrt{x^2 + y^2}} & \text{dacă} \quad (x,y) \neq (0,0) \\ 0 & \text{dacă} \quad (x,y) = (0,0) \end{cases}$$
Să se demonstreze că  $f$  este continuă, are derivate parțiale de ordinul întâi

în orice punct și nu este diferențiabilă în origine.

Din inegalitatea:  $|f(x,y)| \leq |x|$  rezultă  $\lim_{(x,y)\to(0,0)} f(x,y) = 0$ , deci funcția

este continuă. Este evident că în orice punct  $(x,y) \neq (0,0)$  funcția are derivate parțiale de ordinul întâi; studiind existența lor în origine (cu definiția), obţinem:  $\frac{\partial f}{\partial x}(0,0) = \frac{\partial f}{\partial y}(0,0) = 0.$ Demonstrăm acum că f nu este diferenţiabilă în origine; dacă ar fi, atunci

diferențiala sa ar fi aplicația identic nulă deoarece:

$$df(0,0)(x,y) = \frac{\partial f}{\partial x}(0,0)x + \frac{\partial f}{\partial y}(0,0)y = 0.$$

Din definiția diferențiabilității ar trebui ca:

$$\lim_{(x,y)\to(0,0)}\frac{f(x,y)-f(0,0)-df(0,0)(x,y)}{\sqrt{x^2+y^2}}=\lim_{(x,y)\to(0,)}\frac{xy}{x^2+y^2}=0,$$

contradicție cu faptul că această limită nu există. (se pot folosi coordonatele polare).

9. Să se studieze continuitatea și existența derivatelor parțiale în origine

pentru funcţine:  
**a.** 
$$f(x,y) = \begin{cases} \frac{x^3 - y}{\sqrt{x^2 + y^2}} & \text{dacă} \quad (x,y) \neq (0,0) \\ 0 & \text{dacă} \quad (x,y) = (0,0) \end{cases}$$
  
**b.**  $g(x,y) = \begin{cases} \frac{x^3 - y^2}{\sqrt{x^2 + y^2}} & \text{dacă} \quad (x,y) \neq (0,0) \\ 0 & \text{dacă} \quad (x,y) = (0,0) \end{cases}$   
Soluție

**a.** 
$$\lim_{(x,y)\to(0,0)} f(x,y) = \lim_{(x,y)\to(0,0)} \frac{x^3 - y}{\sqrt{x^2 + y^2}} = \lim_{\rho \to 0} \frac{\rho(\rho^2 \cos^3 \varphi - \sin \varphi)}{\rho} = -\sin \varphi,$$

deci funcția nu este continuă în origine.

Studiem acum existența derivatelor parțiale:

$$\lim_{x \to 0} \frac{f(x,0) - f(0,0)}{x} = \lim_{x \to 0} \frac{x^3}{x |x|} = 0,$$

$$\lim_{y \to 0} \frac{f(0,y) - f(0,0)}{y} = \lim_{y \to 0} \frac{-y}{y|y|} = -\infty,$$

deci f nu este derivabilă parțial în raport cu y în origine.

**b.** Din inegalitatea:  $|f(x,y)| \leq \sqrt{x^2 + y^2}$ , rezultă că funcția g este continuă

în origine.

Studiem acum existența derivatelor parțiale:

$$\lim_{x \to 0} \frac{g(x,0) - g(0,0)}{x} = \lim_{x \to 0} \frac{x^2}{|x|} = 0,$$

$$\lim_{y \to 0} \frac{g(0,y) - g(0,0)}{y} = \lim_{y \to 0} \frac{-y}{|y|}.$$

Ultima limită nu există, deci g nu este derivabilă parțial în raport cu y în origine.

10. Să se demonstreze că următoarele funcții sunt diferențiabile în orig-

10. Să se demonstreze că următoarele funcții sunt difine dar nu sunt de clasă 
$$\mathcal{C}^1$$
:

a.  $f(x,y) = \begin{cases} (x^2 + y^2) \sin \frac{1}{x^2 + y^2} & \text{dacă} \quad (x,y) \neq (0,0) \\ 0 & \text{dacă} \quad (x,y) = (0,0) \end{cases}$ 

b.  $g(x,y) = \begin{cases} \frac{xy^2}{\sqrt{x^2 + y^4}} & \text{dacă} \quad (x,y) \neq (0,0) \\ 0 & \text{dacă} \quad (x,y) = (0,0) \end{cases}$ 

c.  $h(x,y,z) = \begin{cases} \frac{xy^2z}{\sqrt{x^2 + y^4 + z^2}} & \text{dacă} \quad (x,y,z) \neq (0,0,0) \\ 0 & \text{dacă} \quad (x,y,z) = (0,0,0) \end{cases}$ 

Soluție

# Solutie

a. Calculând derivatele parțiale de ordinul întâi, se obține:

$$\frac{\partial f}{\partial x}(x,y) = \begin{cases} 2x\sin\frac{1}{x^2+y^2} - \frac{2x}{x^2+y^2}\cos\frac{1}{x^2+y^2} & \text{dacă} \quad (x,y) \neq (0,0) \\ 0 & \text{dacă} \quad (x,y) = (0,0) \end{cases}$$

$$\frac{\partial f}{\partial y}(x,y) = \begin{cases} 2y \sin \frac{1}{x^2 + y^2} - \frac{2y}{x^2 + y^2} \cos \frac{1}{x^2 + y^2} & \text{dacă} \quad (x,y) \neq (0,0) \\ 0 & \text{dacă} \quad (x,y) = (0,0) \end{cases}$$

Derivatele parțiale sunt continue în orice punct  $(x,y) \neq (0,0)$ , dar în origine nu sunt continue deoarece  $\lim_{(x,y)\to(0,0)} \frac{\partial f}{\partial x}(x,y)$  nu există (se pot folosi

coordonatele polare). Am demonstrat deci că f nu este de clasă  $\mathcal{C}^1$  pe  $\mathbb{R}^2$ . Studiem diferențiabilitatea în origine (în rest, derivatele parțiale fiind continue, funcția este diferențiabilă):

$$\lim_{(x,y)\to(0,0)} \frac{f(x,y) - f(0,0) - df(0,0)(x,y)}{\sqrt{x^2 + y^2}} =$$

$$= \lim_{(x,y)\to(0,0)} \sqrt{x^2 + y^2} \sin\frac{1}{x^2 + y^2} = 0,$$

deci f este diferențiabilă în origine.

**b.** În puncte  $(x,y) \neq (0,0)$  derivatele parțiale sunt:

$$\frac{\partial g}{\partial x}(x,y) = \frac{y^6}{(x^2 + y^4)\sqrt{x^2 + y^4}}.$$

$$\frac{\partial g}{\partial y}(x,y) = \frac{2xy^5}{(x^2 + y^4)\sqrt{x^2 + y^4}}.$$

Evident, (cu definiția), în origine derivatele parțiale sunt nule. Derivatele parțiale nu sunt continue în origine; demonstrăm pentru  $\frac{\partial g}{\partial x}$ :

$$\lim_{x \to 0} \frac{\partial g}{\partial x}(x,0) = 0,$$

$$\lim_{y \to 0} \frac{\partial g}{\partial x}(y^2, y) = \frac{1}{2},$$

deci  $\lim_{(x,y)\to(0,0)} \frac{\partial g}{\partial x}$  nu există.

Demonstrăm că g este diferențiabilă în origine:

$$\lim_{(x,y)\to(0,0)}\frac{g(x,y)-g(0,0)}{\sqrt{x^2+y^2}}=\lim_{(x,y)\to(0,0)}\frac{xy^2}{\sqrt{x^2+y^4}\sqrt{x^2+y^2}}=0,$$

deoarece:

$$\left| \frac{x}{\sqrt{x^2 + y^4}} \right| \le 1 \text{ şi}$$

$$\lim_{(x,y)\to(0,0)} \frac{y^2}{\sqrt{x^2+y^2}} = 0.$$

c. Lăsăm ca exercițiu faptul că h nu este de clasă  $\mathcal{C}^1$ ; demonstrăm că h este diferențiabilă în origine. Derivatele parțiale în origine sunt toate nule (se aplică definiția); diferențiabilitatea:

$$\lim_{(x,y,z)\to(0,0,0)} \frac{f(x,y,z) - f(0,0,0)}{\sqrt{x^2 + y^2 + z^2}} = xy^2 z$$

$$= \lim_{(x,y,z)\to(0,0,0)} \frac{xy^2z}{\sqrt{x^2 + y^4 + z^2}\sqrt{x^2 + y^2 + z^2}} = 0,$$

deoarece:

$$\left| \frac{xz}{\sqrt{x^2 + y^4 + z^2}} \right| \le 1 \text{ şi}$$

$$\lim_{(x,y,z)\to(0,0,0)}\frac{y^2}{\sqrt{x^2+y^2+z^2}}=0.$$

11. Să se demonstreze că următoarele funcții nu sunt continue în origine, totuși au derivate partiale în acest punct.

**a.** 
$$f(x,y) = \begin{cases} \frac{xy^2}{x^2 + y^4} & \text{dacă} \quad (x,y) \neq (0,0) \\ 0 & \text{dacă} \quad (x,y) = (0,0) \end{cases}$$
**b.**  $g(x,y) = \begin{cases} e^{-\left(\frac{x^2}{y^2} + \frac{y^2}{x^2}\right)} & \text{dacă} \quad xy \neq 0 \\ 0 & \text{dacă} \quad xy = 0 \end{cases}$ 

# Soluție

a. Pentru a demonstra că funcția nu este continuă în origine, se pot considera șirurile:  $(x_n,y_n)=(\frac{1}{n^2},\frac{1}{n})\to (0,0)$  și  $(x'_n,y'_n)=(\frac{1}{n},\frac{1}{n})\to (0,0)$ ; atunci:

$$\lim_{n \to \infty} f(x_n, y_n) = \frac{1}{2},$$
$$\lim_{n \to \infty} f(x'_n, y'_n) = 0.$$

Derivatele parţiale:

$$\frac{\partial f}{\partial x}(0,0) = \frac{\partial f}{\partial y}(0,0) = 0.$$

b. Pentru a demonstra că funcția nu este continuă în origine, calculăm:

$$\lim_{x \to 0} g(x, mx) = \lim_{x \to 0} e^{-\left(\frac{x^2}{(mx)^2} + \frac{(mx)^2}{x^2}\right)} = e^{-\left(\frac{1}{m^2} + m^2\right)},$$

deci limita nu există (depinde de m).

Derivatele parțiale în origine sunt ambele nule (rezultă direct din definiția funcției).

**12.** Fie funcția 
$$f(x,y) = \begin{cases} xy \sin \frac{x^2 - y^2}{x^2 + y^2} & \text{dacă} \quad (x,y) \neq (0,0) \\ 0 & \text{dacă} \quad (x,y) = (0,0) \end{cases}$$

**a.** Să se arate că f este de clasă  $\mathcal{C}^1$  pe  $\mathbb{R}^2$ .

**b.** Să se arate f are derivate parțiale mixte de ordinul al doilea în orice punct și să se calculeze  $\frac{\partial^2 f}{\partial x \partial y}$  și  $\frac{\partial^2 f}{\partial y \partial x}$  în origine; este funcția f de clasă  $\mathcal{C}^2$  pe  $R^2$ ?

#### Soluție

a. Derivatele parțiale de ordinul întâi sunt:

$$\frac{\partial f}{\partial x}(x,y) = \begin{cases} y \sin \frac{x^2 - y^2}{x^2 + y^2} + \frac{4x^2y^3}{(x^2 + y^2)^2} \cos \frac{x^2 - y^2}{x^2 + y^2} & \text{dacă} & (x,y) \neq (0,0) \\ 0 & \text{dacă} & (x,y) = (0,0) \end{cases}$$

$$\frac{\partial f}{\partial y}(x,y) = \begin{cases} x \sin \frac{x^2 - y^2}{x^2 + y^2} - \frac{4y^2 x^3}{(x^2 + y^2)^2} \cos \frac{x^2 - y^2}{x^2 + y^2} & \text{dacă} & (x,y) \neq (0,0) \\ 0 & \text{dacă} & (x,y) = (0,0) \end{cases}$$

Se demonstrează că  $\frac{\partial f}{\partial x}$  și  $\frac{\partial f}{\partial y}$  sunt continue, deci f este de clasă  $\mathcal{C}^1$  pe  $R^2$ .

b. Evident, funcția are derivate parțiale de ordinul al doilea în orice punct  $(x,y) \neq (0,0)$ ; studiem existența derivatelor mixte în origine (cu definiția):

$$\frac{\partial^2 f}{\partial x \partial y}(0,0) = \lim_{x \to 0} \frac{x \sin 1}{x} = \sin 1; \ \frac{\partial^2 f}{\partial y \partial x}(0,0) = \lim_{y \to 0} \frac{y \sin(-1)}{y} = -\sin 1.$$

Funcția nu este de clasă  $C^2$  pe  $R^2$ ; dacă ar fi fost, atunci, conform teoremei de simetrie a lui Schwartz, cele două derivate mixte de ordinul al doilea ar fi trebuit să fie egale.

**13.** Fie funcția: 
$$f(x,y) = \begin{cases} \frac{xy^3}{x^2 + y^2} & \text{dacă} \quad (x,y) \neq (0,0) \\ 0 & \text{dacă} \quad (x,y) = (0,0) \end{cases}$$

**a.** Să se arate că f este de clasă  $\mathcal{C}^1$  pe  $\mathbb{R}^2$ .

 ${\bf b.}\;$  Să se arate f are derivate parțiale mixte de ordinul al doilea în orice punct și să se calculeze  $\frac{\partial^2 f}{\partial x \partial u}$  și  $\frac{\partial^2 f}{\partial u \partial x}$  în origine; este funcția f de clasă  $\mathcal{C}^2$ pe  $\mathbb{R}^2$  ?

# Soluție

Derivatele parțiale de ordinul întâi s

Derivatele parțiale de ordinul intai sunt: 
$$\frac{\partial f}{\partial x}(x,y) = \begin{cases} \frac{y^5 - x^2y^3}{(x^2 + y^2)^2} & \text{dacă} \quad (x,y) \neq (0,0) \\ 0 & \text{dacă} \quad (x,y) = (0,0) \end{cases}$$
$$\frac{\partial f}{\partial x}(x,y) = \begin{cases} \frac{3x^3y^2 + xy^4}{(x^2 + y^2)^2} & \text{dacă} \quad (x,y) \neq (0,0) \\ 0 & \text{dacă} \quad (x,y) = (0,0) \end{cases}$$

Derivatele partiale de ordinul al doilea în origine:

$$\frac{\partial^2 f}{\partial x \partial y}(0,0) = \lim_{x \to 0} \frac{\frac{\partial f}{\partial y}(x,0)}{x} = 0,$$

$$\frac{\partial^2 f}{\partial u \partial x}(0,0) = \lim_{y \to 0} \frac{\frac{\partial f}{\partial x}(0,y)}{y} = 1,$$

deci funcția nu este de clasă  $C^2(\mathbb{R}^2)$ .

14. Să se studieze existența derivatelor parțiale și a diferențialei în origine pentru funcția:  $f(x,y) = \begin{cases} \frac{xy^2 - yx^2}{x^2 + y^2} & \text{dacă} \quad (x,y) \neq (0,0) \\ 0 & \text{dacă} \quad (x,y) = (0,0) \end{cases}$ 

# Soluție

Funcția are derivate parțiale în orice punct, dar nu este diferențiabilă în origine.

**15.** Fie  $f: R^3 \mapsto R$ ;  $f(x,y,z) = x^2 + yz - xy$  şi a = (1,1,2). Să se determine versorul s stiind că  $\frac{df}{ds}(a)$  este maxim.

# Soluție

$$\frac{df}{ds}(a) = s \cdot \operatorname{grad}_a f = \parallel s \parallel \cdot \parallel \operatorname{grad}_a f \parallel \cdot \cos(s, \widehat{\operatorname{grad}}_a f) =$$

$$= \| \operatorname{grad}_a f \| \cdot \cos(s, \widehat{\operatorname{grad}}_a f).$$

Deci maximul se obține atunci când s are aceeași direcție și același sens cu  $\operatorname{grad}_a f$ . Rezultă:  $\operatorname{grad}_a f = (1,1,1) \Rightarrow s = \frac{1}{\sqrt{3}}(1,1,1)$ .

**16.** Fie  $f: R^3 \mapsto R$ ;  $f(x,y,z) = xy^2 - 2xyz$  și a=(2,1,1). Să se determine versorul s stiind că  $\frac{df}{ds}(a)$  este minim.

# Soluţie

Repetând rationamentul din exercițiul anterior, rezultă că minimul se obține atunci când s are aceeași direcție și sens opus cu  $\operatorname{grad}_a f$ .

Rezultă: grad<sub>a</sub>
$$f = (-1, 0, -4) \Rightarrow s = \frac{1}{\sqrt{17}}(1, 0, 4).$$

17. Să se calculeze jacobienii transformărilor în coordonate polare, cilindrice și sferice.

# Soluţie

Transformarea în coordonate polare este:

$$(x,y) = (\rho \cos \varphi, \rho \sin \varphi), \ (\rho, \varphi) \in (0, \infty) \times (0, 2\pi).$$

Jacobianul într-un punct arbitrar  $(\rho, \varphi)$  este:

$$\frac{D(x,y)}{D(\rho,\varphi)} = \det \begin{pmatrix} \cos \varphi & -\rho \sin \varphi \\ \sin \varphi & \rho \cos \varphi \end{pmatrix} = \rho$$

Transformarea în coordonate cilindrice este

$$(x, y, z) = (\rho \cos \varphi, \rho \sin \varphi, z), (\rho, \varphi, z) \in (0, \infty) \times (0, 2\pi) \times R.$$

Jacobianul într-un punct arbitrar este:

$$\frac{D(x,y,z)}{D(\rho,\varphi,z)} = \det \left( \begin{array}{ccc} \cos\varphi & -\rho\sin\varphi & 0 \\ \sin\varphi & \rho\cos\varphi & 0 \\ 0 & 0 & 1 \end{array} \right) = \rho.$$

Transformarea în coordonate sferice este

 $(x,y,z) = (\rho \sin \theta \cos \varphi, \rho \sin \theta \sin \varphi, \rho \cos \theta), (\rho,\theta,\varphi) \in (0,\infty) \times (0,\pi) \times (0,2\pi).$  Jacobianul într-un punct arbitrar este:

$$\frac{D(x,y,z)}{D(\rho,\theta,\varphi)} = \det \begin{pmatrix} \sin\theta\cos\varphi & \rho\cos\theta\cos\varphi & -\rho\sin\theta\sin\varphi \\ \sin\theta\sin\varphi & \rho\cos\theta\sin\varphi & \rho\sin\theta\cos\varphi \\ \cos\theta & -\rho\sin\theta & 0 \end{pmatrix} = \rho^2\sin\theta.$$

**18.** Fie funcția  $f: \mathbb{R}^2 \mapsto \mathbb{R}$ ,  $f(x,y) = e^{x+y}$ . Să se scrie polinomul Taylor de gradul n asociat funcției f în punctele (0,0) și (1,-1).

### Solutie

Fie  $m,k\in N,\,k\leq m\leq n.$  Se calculează

$$\frac{\partial^m f}{\partial x^k \partial y^{m-k}}(x,y) = e^{x+y}$$

și deci

$$\frac{\partial^m f}{\partial x^k \partial y^{m-k}}(0,0) = 1, \ \frac{\partial^m f}{\partial x^k \partial y^{m-k}}(1,-1) = 1.$$

Rezultă

$$T_n(f,(0,0))(x,y) = 1 + \frac{1}{1!}(x+y) + \frac{1}{2!}(x+y)^2 + \dots + \frac{1}{n!}(x+y)^n.$$

$$T_n(f,(1,-1))(x,y) = 1 + \frac{1}{1!}((x-1) + (y+1)) + \dots + \frac{1}{2!}((x-1)^2 + 2(x-1)(y+1) + (y+1)^2) + \dots + \frac{1}{n!}((x-1) + (y+1))^n =$$

$$= T_n(f,(0,0)).$$

19. Să se calculeze aproximarea liniară în jurul originii a funcției

$$f(x, y, z) = \sqrt{\frac{x+1}{(y+1)(z+1)}}$$

# Soluție

Se calculează

$$\frac{\partial f}{\partial x}(0,0,0) = \frac{1}{2}, \ \frac{\partial f}{\partial y}(0,0,0) = \frac{\partial f}{\partial z}(0,0,0) = -\frac{1}{2}.$$

Aproximarea cerută este polinomul Taylor de gradul întâi:

$$T_1(f, (0, 0, 0))(x, y, z) = 1 + \frac{1}{2}(x - y - z).$$

**20.** Să se calculeze aproximativ  $\sqrt{1,01}\sqrt[3]{0,97}$ , folosind polinomul Taylor de gradul 2 asociat funcției  $f(x,y) = \sqrt{x}\sqrt[3]{y}$  în punctul (1,1).

# Soluție

Se calculează

$$\frac{\partial f}{\partial x}(1,1) = \frac{1}{2}, \frac{\partial f}{\partial y}(1,1) = \frac{1}{3}, \frac{\partial^2 f}{\partial x^2}(1,1) = -\frac{1}{4},$$

$$\frac{\partial^2 f}{\partial x \partial y}(1,1) = \frac{1}{6}, \, \frac{\partial^2 f}{\partial y^2}(1,1) = -\frac{2}{9}.$$

Aproximarea de ordinul 2 a funcției f în jurul punctului (1,1) este

$$f(1+h,1+k) \approx f(1,1) + \frac{1}{1!} \left( \frac{\partial f}{\partial x}(1,1)h + \frac{\partial f}{\partial y}(1,1)k \right) +$$

$$+\frac{1}{2!}\left(\frac{\partial^2 f}{\partial x^2}(1,1)h^2+2\frac{\partial^2 f}{\partial x\partial y}(1,1)hk+\frac{\partial^2 f}{\partial y^2}(1,1)k^2\right).$$

În particular pentru h=0,1 și k=-0,3, obținem valoarea aproximativă cerută.

**21.** Să se determine aproximarea liniară a funcției  $f(x,y) = x^2 e^{x^2 + y^2}$  în jurul punctului (1,-1).

# Soluție

Se calculează polinomul Taylor de gradul întâi.

**22.** Să se calculeze aproximativ  $e^{-0.2}\sqrt[4]{1,02}$ .

#### Soluție

Se poate folosi polinomul Taylor de gradul al doilea asociat funcției

$$f(x,y) = e^x \sqrt[4]{y}.$$

23. Să se determine polinomul Taylor de gradul n al funcției  $f(x,y) = e^{2x+y}$  în origine.

# Soluție

Derivatele parțiale de ordinul k sunt:

$$\frac{\partial^k f}{\partial x^{k-j}\partial y^j}(x,y)=2^{k-j}e^{2x+y}, \forall\, j\in\{0,1,...,k\}.$$

Rezultă:

$$\frac{1}{k!} \sum_{j=0}^{k} C_k^j \frac{\partial^k f}{\partial x^{k-j} \partial y^j}(0,0) x^{k-j} y^j = \frac{1}{k!} \sum_{j=0}^{k} C_k^j 2^{k-j} x^{k-j} y^j,$$

deci polinomul Taylor de gradul n în origine este:

$$T_n(f,(0,0))(x,y) = \sum_{k=0}^n \frac{1}{k!} \sum_{j=0}^k C_k^j 2^{k-j} x^{k-j} y^j.$$

**24.** Să se determine polinomul Taylor de gradul n al funcției  $f(x, y, z) = e^{x+y+z}$  în origine.

# Soluție

Analog cu exercițiul anterior:

$$\frac{\partial^m f}{\partial x^i y^j z^k}(x, y, z) = e^{x+y+z}, \forall m = i+j+k.$$

Rezultă:

$$T_n(f,(0,0,0))(x,y,z) = \sum_{k=0}^n \frac{1}{k!} (x+y+z)^k.$$

25. Să se calculeze diferențialele funcțiilor:

**a.** 
$$f: R^2 \setminus \{(x,y) \mid x=0\}, f(x,y) = \arctan \frac{y}{x}$$
.

**a.** 
$$f: R^2 \setminus \{(x,y) \mid x=0\}, f(x,y) = \operatorname{arctg} \frac{y}{x}.$$
  
**b.**  $g: R^2 \setminus \{(x,y) \mid y=0\}, g(x,y) = -\operatorname{arctg} \frac{x}{y}.$ 

Într-un punct  $(x,y) \in \mathbb{R}^2 \setminus \{(x,y) \mid xy \neq 0\}$ , din domeniul comun al funcțiilor f și g diferențialele sunt egale:

$$df(x,y) = dg(x,y) = -\frac{y}{x^2 + y^2}dx + \frac{x}{x^2 + y^2}dy.$$

# 4.3 Diferențiala funcției compuse

**26.** Fie  $f \in C^2(\mathbb{R}^2)$  şi fie  $g: \mathbb{R}^2 \mapsto \mathbb{R}$ ,  $g(x,y) = f(x^2 + y^2, x^2 - y^2)$ . Să se calculeze derivatele parțiale de ordinul întâi și al doilea ale funcției g.

# Soluţie

Fie  $u = x^2 + y^2$  şi  $v = x^2 - y^2$ ; derivatele parţiale ale funcţiilor u şi v sunt:  $\frac{\partial u}{\partial x} = 2x$ ,  $\frac{\partial u}{\partial y} = 2y$ ,  $\frac{\partial v}{\partial x} = 2x$ ,  $\frac{\partial v}{\partial y} = -2y$ . Rezultă:

$$\frac{\partial g}{\partial x} = \frac{\partial f}{\partial u}\frac{\partial u}{\partial x} + \frac{\partial f}{\partial v}\frac{\partial v}{\partial x} = 2x\left(\frac{\partial f}{\partial u} + \frac{\partial f}{\partial v}\right)$$

$$\frac{\partial g}{\partial y} = \frac{\partial f}{\partial u} \frac{\partial u}{\partial y} + \frac{\partial f}{\partial v} \frac{\partial v}{\partial y} = 2y \left( \frac{\partial f}{\partial u} - \frac{\partial f}{\partial v} \right).$$

Derivatele parțiale de ordinul al doilea:

$$\frac{\partial^2 g}{\partial x^2} = \frac{\partial}{\partial x} \left( \frac{\partial g}{\partial x} \right) = \frac{\partial}{\partial x} \left( 2x \left( \frac{\partial f}{\partial u} + \frac{\partial f}{\partial v} \right) \right) =$$

$$= 2 \left( \frac{\partial f}{\partial u} + \frac{\partial f}{\partial v} \right) + 2x \left( \frac{\partial^2 f}{\partial u^2} \frac{\partial u}{\partial x} + \frac{\partial^2 f}{\partial v \partial u} \frac{\partial v}{\partial x} + \frac{\partial^2 f}{\partial u \partial v} \frac{\partial u}{\partial x} + \frac{\partial^2 f}{\partial v^2} \frac{\partial v}{\partial x} \right) =$$

$$= 2 \left( \frac{\partial f}{\partial u} + \frac{\partial f}{\partial v} \right) + 4x^2 \left( \frac{\partial^2 f}{\partial u^2} + 2 \frac{\partial^2 f}{\partial u \partial v} + \frac{\partial^2 f}{\partial v^2} \right).$$

$$\frac{\partial^2 g}{\partial x \partial y} = \frac{\partial^2 g}{\partial y \partial x} = \frac{\partial}{\partial y} \left( \frac{\partial g}{\partial x} \right) = \frac{\partial}{\partial y} \left( 2x \left( \frac{\partial f}{\partial u} + \frac{\partial f}{\partial v} \right) \right) =$$

$$= 2x \left( \frac{\partial^2 f}{\partial u^2} \frac{\partial u}{\partial y} + \frac{\partial^2 f}{\partial v \partial u} \frac{\partial v}{\partial y} + \frac{\partial^2 f}{\partial u \partial v} \frac{\partial u}{\partial y} + \frac{\partial^2 f}{\partial v^2} \frac{\partial v}{\partial y} \right) = 4xy \left( \frac{\partial^2 f}{\partial u^2} - \frac{\partial^2 f}{\partial v^2} \right).$$

$$\frac{\partial^2 g}{\partial y^2} = \frac{\partial}{\partial y} \left( \frac{\partial g}{\partial y} \right) = \frac{\partial}{\partial y} \left( 2y \left( \frac{\partial f}{\partial u} - \frac{\partial f}{\partial v} \right) \right) =$$

$$= 2 \left( \frac{\partial f}{\partial u} - \frac{\partial f}{\partial v} \right) + 2y \left( \frac{\partial^2 f}{\partial u^2} \frac{\partial u}{\partial y} + \frac{\partial^2 f}{\partial v \partial u} \frac{\partial v}{\partial y} - \frac{\partial^2 f}{\partial u \partial v} \frac{\partial u}{\partial y} - \frac{\partial^2 f}{\partial v^2} \frac{\partial v}{\partial y} \right) =$$

$$= 2 \left( \frac{\partial f}{\partial u} - \frac{\partial f}{\partial v} \right) + 4y^2 \left( \frac{\partial^2 f}{\partial u^2} - 2 \frac{\partial^2 f}{\partial u \partial v} + \frac{\partial^2 f}{\partial v^2} \right).$$

**27.** Fie  $r=\sqrt{x^2+y^2+z^2}$  și fie  $f\in\mathcal{C}^1(R)$ . Să se calculeze laplacianul funcțiilor  $g(x,y,z)=f\left(\frac{1}{r}\right)$  și h(x,y,z)=f(r).

# Soluţie

Calculăm mai întâi:

$$\frac{\partial}{\partial x}\left(\frac{1}{r}\right) = \frac{-x}{r^3}, \ \frac{\partial}{\partial x}\left(r\right) = \frac{x}{r}$$

Derivatele parțiale ale funcției g:

$$\frac{\partial g}{\partial x} = f'\left(\frac{1}{r}\right)\left(-\frac{x}{r^3}\right), \ \frac{\partial^2 g}{\partial x^2} = f''\left(\frac{1}{r}\right)\left(-\frac{x}{r^3}\right)^2 - f'\left(\frac{1}{r}\right)\left(\frac{3x^2 - r^2}{r^5}\right)$$

Rezultă  $\Delta g = \frac{1}{r^4} f''\left(\frac{1}{r}\right)$ . Derivatele parțiale ale funcției h:

$$\frac{\partial h}{\partial x} = f'(r)\frac{x}{r}, \frac{\partial^2 h}{\partial x^2} = f''(r)\frac{x^2}{r^2} + f'(r)\frac{r^2 - x^2}{r^3},$$

deci  $\Delta h = f''(r) + \frac{2}{r}f'(r)$ .

**28.** Dacă  $f \in C^2(\mathbb{R}^3)$  și  $u(x,y) = f(x^2 + y^2, x^2 - y^2, 2xy)$  să se calculeze derivatele parțiale de ordinul al doilea ale funcției u.

# Soluție

Fie 
$$p = x^2 + y^2, q = x^2 - y^2$$
 şi  $r = 2xy$ .
$$\frac{\partial u}{\partial x} = \frac{\partial f}{\partial p} \frac{\partial p}{\partial x} + \frac{\partial f}{\partial q} \frac{\partial q}{\partial x} + \frac{\partial f}{\partial r} \frac{\partial r}{\partial x} = 2x \frac{\partial f}{\partial p} + 2x \frac{\partial f}{\partial q} + 2y \frac{\partial f}{\partial r}$$

$$\frac{\partial u}{\partial y} = \frac{\partial f}{\partial p} \frac{\partial p}{\partial y} + \frac{\partial f}{\partial q} \frac{\partial q}{\partial y} + \frac{\partial f}{\partial r} \frac{\partial r}{\partial y} = 2y \frac{\partial f}{\partial p} - 2y \frac{\partial f}{\partial q} + 2x \frac{\partial f}{\partial r}$$

$$\frac{\partial^2 u}{\partial x^2} = 2 \frac{\partial f}{\partial p} + 2x \left( \frac{\partial^2 f}{\partial p^2} \frac{\partial p}{\partial x} + \frac{\partial^2 f}{\partial p \partial q} \frac{\partial q}{\partial x} + \frac{\partial^2 f}{\partial p \partial r} \frac{\partial r}{\partial x} \right) + 2 \frac{\partial f}{\partial q} +$$

$$+2x \left( \frac{\partial^2 f}{\partial q \partial p} \frac{\partial p}{\partial x} + \frac{\partial^2 f}{\partial q^2} \frac{\partial q}{\partial x} \right) +$$

$$+2x \left( \frac{\partial^2 f}{\partial q \partial r} \frac{\partial r}{\partial x} \right) + 2y \left( \frac{\partial^2 f}{\partial r \partial p} \frac{\partial p}{\partial x} + \frac{\partial^2 f}{\partial r \partial q} \frac{\partial q}{\partial x} + \frac{\partial^2 f}{\partial r^2} \frac{\partial r}{\partial x} \right) =$$

$$= 4x^2 \left( \frac{\partial^2 f}{\partial p^2} + \frac{\partial^2 f}{\partial q^2} + 2 \frac{\partial^2 f}{\partial p \partial q} \right) + 4xy \left( \frac{\partial^2 f}{\partial p \partial r} + \frac{\partial^2 f}{\partial q \partial r} \right) + 4y^2 \frac{\partial^2 f}{\partial r^2} + 2 \frac{\partial f}{\partial p} + 2 \frac{\partial f}{\partial q}$$

$$\frac{\partial^2 u}{\partial x \partial y} = 4xy \left( \frac{\partial^2 f}{\partial p^2} - \frac{\partial^2 f}{\partial q^2} + \frac{\partial^2 f}{\partial r^2} \right) + 4(x^2 + y^2) \frac{\partial^2 f}{\partial p \partial r} +$$

$$\begin{split} +4(x^2-y^2)\frac{\partial^2 f}{\partial q\partial r} + 2\frac{\partial f}{\partial r} \\ \frac{\partial^2 u}{\partial y^2} &= 4y^2\left(\frac{\partial^2 f}{\partial p^2} + \frac{\partial^2 f}{\partial q^2} - 2\frac{\partial^2 f}{\partial p\partial q}\right) + 4xy\left(\frac{\partial^2 f}{\partial p\partial r} - \frac{\partial^2 f}{\partial q\partial r}\right) + \\ &+ 4x^2\frac{\partial^2 f}{\partial r^2} + 2\frac{\partial f}{\partial p} - 2\frac{\partial f}{\partial q}. \end{split}$$

**29.** Fie  $a \in R$  și fie g și h două funcții de clasă  $C^2$  pe R. Să se demonstreze că f(x,y) = g(x-ay) + h(x+ay) verifică ecuația coardei vibrante:

$$\frac{\partial^2 f}{\partial y^2} - a^2 \frac{\partial^2 f}{\partial x^2} = 0.$$

Soluţie Calcul direct.

**30.** Să se afle  $f \in \mathcal{C}^2(R)$  știind că funcția  $u(x,y) = f(x^2 - y^2)$  este armonică pe  $R^2$ .

# Soluţie

O funcție este armonică dacă satisface relația  $\frac{\partial^2 u}{\partial x^2} + \frac{\partial^2 u}{\partial u^2} = 0.$ 

$$\frac{\partial u}{\partial x} = 2xf'(x^2 - y^2) \; ; \; \frac{\partial^2 u}{\partial x^2} = 2f'(x^2 - y^2) + 4x^2f''(x^2 - y^2).$$
$$\frac{\partial u}{\partial y} = -2yf'(x^2 - y^2) \; ; \; \frac{\partial^2 u}{\partial y^2} = -2f'(x^2 - y^2) + 4y^2f''(x^2 - y^2)$$

Înlocuind în  $\frac{\partial^2 u}{\partial x^2} + \frac{\partial^2 u}{\partial y^2} = 0$ , rezultă  $4(x^2 + y^2)f''(x^2 - y^2) = 0$ ; în final se obține f(t) = at + b, cu  $a, b \in R$  arbitrar fixate.

31. Să se afle  $f \in \mathcal{C}^2(R)$  știind că funcția  $v(x,y) = f(\frac{y}{x})$  este armonică. Soluție

$$\begin{split} \frac{\partial v}{\partial x} &= -\frac{y}{x^2} f'(\frac{y}{x}) \; ; \; \frac{\partial^2 v}{\partial x^2} = \frac{2y}{x^3} f'(\frac{y}{x}) + \frac{y^2}{x^4} f''(\frac{y}{x}) \\ \frac{\partial v}{\partial y} &= \frac{1}{x} f'(\frac{y}{x}) \; ; \; \frac{\partial^2 v}{\partial y^2} = \frac{1}{x^2} f''(\frac{y}{x}). \end{split}$$

Înlocuind în ecuația dată, rezultă:

$$\frac{x^2 + y^2}{x^4} f''(\frac{y}{x}) + \frac{2y}{x^3} f'(\frac{y}{x}) = 0.$$

Notând  $t = \frac{y}{x}$  se obţine (după calcule):

$$\frac{f''(t)}{f'(t)} = \frac{-2t}{t^2 + 1},$$

și deci

$$f(t) = a \cdot \operatorname{arctg}(t) + b$$

cu  $a, b \in R$  arbitrar fixate.

32. Să se demonstreze că laplacianul în coordonate polare este:

$$\Delta f = \frac{\partial^2 f}{\partial \rho^2} + \frac{1}{\rho^2} \frac{\partial^2 f}{\partial \varphi^2} + \frac{1}{\rho} \frac{\partial f}{\partial \rho}.$$

# Soluție

Fie  $f \in C^2(\mathbb{R}^2), x = \rho \cos \varphi, y = \rho \sin \varphi$ .

$$\frac{\partial x}{\partial \rho} = \cos \varphi, \ \frac{\partial x}{\partial \varphi} = -\rho \sin \varphi, \ \frac{\partial y}{\partial \rho} = \sin \varphi, \ \frac{\partial y}{\partial \varphi} = \rho \cos \varphi.$$

$$\frac{\partial f}{\partial \rho} = \frac{\partial f}{\partial x} \frac{\partial x}{\partial \rho} + \frac{\partial f}{\partial y} \frac{\partial y}{\partial \rho} = \frac{\partial f}{\partial x} \cos \varphi + \frac{\partial f}{\partial y} \sin \varphi$$

$$\frac{\partial f}{\partial \varphi} = \frac{\partial f}{\partial x} \frac{\partial x}{\partial \varphi} + \frac{\partial f}{\partial y} \frac{\partial y}{\partial \varphi} = \frac{\partial f}{\partial x} (-\rho \sin \varphi) + \frac{\partial f}{\partial y} \rho \cos \varphi.$$

Rezolvând sistemul, (în necunoscutele  $\frac{\partial f}{\partial x}$  și  $\frac{\partial f}{\partial y}),$  rezultă:

$$\begin{split} \frac{\partial f}{\partial x} &= \frac{\partial f}{\partial \rho} \cos \varphi - \frac{\partial f}{\partial \varphi} \frac{\sin \varphi}{\rho}, \ \frac{\partial f}{\partial y} &= \frac{\partial f}{\partial \rho} \sin \varphi + \frac{\partial f}{\partial \varphi} \frac{\cos \varphi}{\rho}. \\ \frac{\partial^2 f}{\partial x^2} &= \frac{\partial}{\partial x} \left( \frac{\partial f}{\partial x} \right) = \cos \varphi \frac{\partial}{\partial \rho} \left( \frac{\partial f}{\partial x} \right) - \frac{\sin \varphi}{\rho} \frac{\partial}{\partial \varphi} \left( \frac{\partial f}{\partial x} \right) = \\ &= \frac{\partial^2 f}{\partial \rho^2} \cos^2 \varphi - 2 \frac{\partial^2 f}{\partial \rho \partial \varphi} \frac{\sin \varphi \cos \varphi}{\rho} + \frac{\partial^2 f}{\partial \varphi^2} \frac{\sin^2 \varphi}{\rho^2} + \frac{\partial f}{\partial \rho} \frac{\sin^2 \varphi}{\rho} + \\ &\quad + 2 \frac{\partial f}{\partial \varphi} \frac{\sin \varphi \cos \varphi}{\rho^2}. \\ \frac{\partial^2 f}{\partial y^2} &= \frac{\partial^2 f}{\partial \rho^2} \sin^2 \varphi + 2 \frac{\partial^2 f}{\partial \rho \partial \varphi} \frac{\sin \varphi \cos \varphi}{\rho} + \frac{\partial^2 f}{\partial \varphi^2} \frac{\cos^2 \varphi}{\rho^2} + \frac{\partial f}{\partial \rho} \frac{\cos^2 \varphi}{\rho} - \\ &\quad - 2 \frac{\partial f}{\partial \varphi} \frac{\sin \varphi \cos \varphi}{\rho^2}. \end{split}$$

In concluzie:

$$\Delta f = \frac{\partial^2 f}{\partial \rho^2} + \frac{1}{\rho^2} \frac{\partial^2 f}{\partial \varphi^2} + \frac{1}{\rho} \frac{\partial f}{\partial \rho}.$$

**33.** Fie ecuația diferențială  $x^2 \frac{d^2y}{dx^2} + x \frac{dy}{dx} + 2y = 0$ . Ce devine ecuația dacă se face schimbarea de variabile  $(x,y) \mapsto (t,y)$ , unde  $x=e^t$ ?

Calculăm  $\frac{dy}{dx}$  şi  $\frac{d^2y}{dx^2}$  în funcție de  $\frac{dy}{dt}$  şi  $\frac{d^2y}{dt^2}$ . Din  $x=e^t$ , rezultă  $t=\ln x$  şi deci  $\frac{dt}{dx}=\frac{1}{x}=e^{-t}$ ; rezultă:

$$\frac{dy}{dx} = \frac{dy}{dt}\frac{dt}{dx} = \frac{dy}{dt}e^{-t},$$

$$\frac{d^2y}{dx^2} = \frac{d}{dx}\left(\frac{dy}{dt}e^{-t}\right) = \frac{d}{dt}\left(\frac{dy}{dt}e^{-t}\right)\frac{dt}{dx} = e^{-2t}\left(\frac{d^2y}{dt^2} - \frac{dy}{dt}\right).$$

Ecuația devine:  $\frac{d^2y}{dt^2} + 2y = 0$ .

**34.** Să se demonstreze că funcția  $z(x,y) = xy + xe^{\frac{y}{x}}$  verifică ecuația

$$x\frac{\partial z}{\partial x} + \frac{\partial z}{\partial y} = xy + z.$$

# Soluție

Se calculează derivatele parțiale de ordinul întâi ale lui z.

**35.** Ce devine ecuația  $x^2y'' + 2xy' + \frac{1}{x^2}y = 0$  dacă se face schimbarea de variabile  $(x,y) \mapsto (t,y)$ , unde  $t = \frac{1}{x}$ 

# Soluție

Se calculează

$$\frac{dy}{dx} = \frac{dy}{dt}\frac{dt}{dx} = -\frac{1}{x^2}\frac{dy}{dt} = -t^2\frac{dy}{dt}$$
, etc.

**36.** Ce devine ecuația  $x^2 \frac{\partial^2 z}{\partial x^2} - y^2 \frac{\partial^2 z}{\partial y^2} = 0$  prin schimbarea de variabile  $(x,y) \mapsto (u,v)$ , unde u = xy,  $v = \frac{x}{u}$ .

# Soluție

Se calculează:

$$\frac{\partial z}{\partial x} = \frac{\partial z}{\partial u}\frac{\partial u}{\partial x} + \frac{\partial z}{\partial v}\frac{\partial v}{\partial x} = y\frac{\partial z}{\partial u} + \frac{1}{y}\frac{\partial z}{\partial v}, \text{ etc.}$$

37. Să se determine funcțiile z = z(x, y) care verifică ecuația

$$x^2 \frac{\partial z}{\partial x} + y^2 \frac{\partial z}{\partial y} = z^2,$$

folosind schimbarea de variabile:

$$(x, y, z) \mapsto (u, v, w)$$
, unde,  $u = x$ ,  $v = \frac{1}{y} - \frac{1}{x}$ ,  $w = \frac{1}{z} - \frac{1}{x}$ .

# Soluție

O metodă constă în a calcula mai întâi x,y și z în funcție de u,v și w; se obține:

 $x = u, y = \frac{u}{uv+1}, z = \frac{u}{uw+1}.$ 

Se calculează acum derivatele parțiale ale lui u și v în raport cu x și y:

$$\begin{split} \frac{\partial u}{\partial x} &= 1, \, \frac{\partial u}{\partial y} = 0, \, \frac{\partial v}{\partial x} = \frac{1}{x^2} = \frac{1}{u^2}, \, \frac{\partial v}{\partial y} = -\frac{1}{y^2} = -\left(\frac{uv+1}{u}\right)^2. \\ \frac{\partial z}{\partial x} &= \frac{\partial}{\partial x} \left(\frac{u}{uw+1}\right) = \frac{\partial}{\partial u} \left(\frac{u}{uw+1}\right) \frac{\partial u}{\partial x} + \frac{\partial}{\partial v} \left(\frac{u}{uw+1}\right) \frac{\partial v}{\partial x} = \\ &= \frac{1-u^2 \frac{\partial w}{\partial u} - \frac{\partial w}{\partial v}}{(uw+1)^2}. \\ \frac{\partial z}{\partial y} &= \frac{\partial}{\partial y} \left(\frac{u}{uw+1}\right) = \frac{\partial}{\partial u} \left(\frac{u}{uw+1}\right) \frac{\partial u}{\partial y} + \frac{\partial}{\partial v} \left(\frac{u}{uw+1}\right) \frac{\partial v}{\partial y} = \\ &= \left(\frac{uv+1}{uw+1}\right)^2 \frac{\partial w}{\partial v}. \end{split}$$

Înlocuind în ecuația inițială, se obține:  $\frac{\partial w}{\partial u} = 0$ . Rezultă deci că w este o funcție constantă în raport cu variabila u, deci w = f(v), unde f este o funcție arbitrară de clasă  $\mathcal{C}^1$  pe R. Rezultă

$$\frac{1}{z} - \frac{1}{x} = f\left(\frac{1}{y} - \frac{1}{x}\right),\,$$

deci

$$z(x,y) = \frac{x}{1 + xf\left(\frac{1}{y} - \frac{1}{x}\right)}.$$

O altă metodă constă în a calcula:

$$\frac{\partial w}{\partial x} = -\frac{1}{z^2} \frac{\partial z}{\partial x} + \frac{1}{x^2}, \ \frac{\partial w}{\partial y} = -\frac{1}{z^2} \frac{\partial z}{\partial y}$$

132

și deci

$$\frac{\partial z}{\partial x} = -z^2 \frac{\partial w}{\partial x} + \frac{z^2}{x^2}, \ \frac{\partial z}{\partial y} = -z^2 \frac{\partial w}{\partial y}.$$

Se calculează apoi

$$\frac{\partial w}{\partial x} = \frac{\partial w}{\partial u} \frac{\partial u}{\partial x} + \frac{\partial w}{\partial v} \frac{\partial v}{\partial x}, \text{ etc.}$$

38. Fie  $f \in C^1(R)$  și  $n \in N$ . Să se demonstreze că funcția

$$z(x,y) = x^n f\left(\frac{y}{x^2}\right)$$

verifică ecuația:

$$x\frac{\partial z}{\partial x} + 2y\frac{\partial z}{\partial y} = nz.$$

$$\frac{\partial z}{\partial x} = nx^{n-1}f\left(\frac{y}{x^2}\right) - 2yx^{n-3}f'\left(\frac{y}{x^2}\right), \ \frac{\partial z}{\partial y} = x^{n-2}f'\left(\frac{y}{x^2}\right).$$

**39.** O funcție  $f:D\mapsto R$  se numește omogenă de grad r pe D dacă

$$f(t(x_1, x_2, ..., x_n)) = t^r f(x_1, x_2, ..., x_n), \forall t \in \mathbb{R}^*, \forall (x_1, x_2, ..., x_n) \in D.$$

Să se arate că orice funcție omogenă de grad r pe  $R^3$  satisface relațiile: a.  $x\frac{\partial f}{\partial x} + y\frac{\partial f}{\partial y} + z\frac{\partial f}{\partial z} = rf$ .

**a.** 
$$x\frac{\partial f}{\partial x} + y\frac{\partial f}{\partial y} + z\frac{\partial f}{\partial z} = rf$$
.

**b.** 
$$\left(x\frac{\partial}{\partial x} + y\frac{\partial}{\partial y} + z\frac{\partial}{\partial z}\right)^2 f = r(r-1)f.$$

a. Derivând în raport cu t relația

$$f(tx, ty, tz) = t^r f(x, y, z),$$

rezultă:

$$x\frac{\partial f}{\partial x}(tx, ty, tz) + y\frac{\partial f}{\partial y}(tx, ty, tz) + z\frac{\partial f}{\partial z}(tx, ty, tz) = rt^{r-1}f(x, y, z) \quad (\star)$$

În particular pentru t=1, se obține relația de la punctul a.

**b.** Se derivează în continuare relația  $(\star)$  în raport cu t.

# 40. Operatori diferențiali

Fie  $\overline{V} = P\overline{i} + Q\overline{j} + R\overline{k}$  un câmp de vectori de clasă  $\mathcal{C}^2$  pe un deschis  $U \subseteq R^3$ 

și  $f \in \mathcal{C}^2(U)$  (câmp scalar). Operatorii diferențiali de ordinul întâi sunt gradientul, divergența și rotorul, definiți pentru orice  $a \in U$  astfel:

$$(\operatorname{grad} f)(a) = (\nabla f)(a) = \frac{\partial f}{\partial x}(a)\overline{i} + \frac{\partial f}{\partial y}(a)\overline{j} + \frac{\partial f}{\partial z}(a)\overline{k}.$$

$$(\operatorname{div} \overline{V})(a) = (\nabla \overline{V})(a) = \frac{\partial P}{\partial x}(a) + \frac{\partial Q}{\partial y}(a) + \frac{\partial R}{\partial z}(a).$$

$$(\operatorname{rot} \overline{V})(a) = (\nabla \times \overline{V})(a) =$$

$$= \left(\frac{\partial R}{\partial y}(a) - \frac{\partial Q}{\partial z}(a)\right)\overline{i} + \left(\frac{\partial P}{\partial z}(a) - \frac{\partial R}{\partial x}(a)\right)\overline{j} + \left(\frac{\partial Q}{\partial x}(a) - \frac{\partial P}{\partial y}(a)\right)\overline{k}.$$

În cele ce urmează vom nota cu  $\overline{r}=(x,y,z)$  vectorul de poziție și cu  $r=\sqrt{x^2+y^2+z^2}$  norma sa. Evident,  $\overline{r}$  este un câmp vectorial, iar r este un câmp scalar.

Pentru orice câmpuri vectoriale  $\overline{V}$  și  $\overline{W}$  și orice câmpuri scalare f și g de clasă  $C^2$ , au loc relațiile:

- **a.** grad(fg) = fgradg + ggradf.
- **b.**  $\operatorname{div}(f\overline{V}) = f\operatorname{div}\overline{V} + \overline{V}\operatorname{grad}f$ .
- $\mathbf{c.} \operatorname{div}(\overline{V} \times \overline{W}) = \overline{W} \operatorname{rot} \overline{V} \overline{V} \operatorname{rot} \overline{W}.$
- **d.**  $\operatorname{rot}(f\overline{V}) = f\operatorname{rot}\overline{V} \overline{V} \times \operatorname{grad} f$ .

$$\mathbf{e.} \ \operatorname{grad}(\overline{V} \ \overline{W}) = \overline{W} \times \operatorname{rot} \overline{V} + \overline{V} \operatorname{rot} \overline{W} + \frac{d\overline{V}}{d\overline{W}} + \frac{\overline{W}}{d\overline{V}},$$

unde,  $\frac{d\overline{V}}{d\overline{W}}$  este derivata după direcția  $\overline{W}$  a lui  $\overline{V}$ .

$$\mathbf{f.} \operatorname{rot}(\overline{V} \times \overline{W}) = \overline{V} \operatorname{div} \overline{W} - \overline{W} \operatorname{div} \overline{V} + \frac{d\overline{V}}{d\overline{W}} - \frac{d\overline{W}}{d\overline{V}}.$$

**g.**  $\frac{df}{d\overline{a}} = \overline{a} \operatorname{grad} f$ ,  $\operatorname{grad}(\overline{a} \overline{r}) = \overline{a}$ , pentru orice vector constant  $\overline{a}$ .

- **h.** grad $r^{\alpha} = \alpha r^{\alpha 2} \overline{r}, \forall \alpha \in R$
- i.  $rot(grad f) = \overline{0}$ .
- **j.**  $\operatorname{div}(\operatorname{rot}\overline{V}) = 0.$

**k.** div(grad 
$$f$$
) =  $\Delta f = \frac{\partial^2 f}{\partial x^2} + \frac{\partial^2 f}{\partial y^2} + \frac{\partial^2 f}{\partial z^2}$ .

### Solutie

Calcul direct.

41. Să se calculeze divergența câmpului vectorial

$$\overline{V} = \overline{r} + \frac{\overline{k}\,\overline{r}}{r^4}\overline{r},$$

unde  $\overline{k}$  este versorul axei Oz,  $\overline{k} = (0, 0, 1)$ .

Soluţie

$$\operatorname{div} \overline{V} = \operatorname{div} \left( \overline{r} + \frac{\overline{k} \, \overline{r}}{r^4} \overline{r} \right) = 3 + \left( \frac{\overline{k} \, \overline{r}}{r^4} \right) \operatorname{div} \overline{r} + \overline{r} \operatorname{grad} \left( \frac{\overline{k} \, \overline{r}}{r^4} \right) =$$

$$= 3 + 3 \frac{\overline{k} \, \overline{r}}{r^4} + \overline{r} \left( \frac{1}{r^4} \operatorname{grad}(\overline{k} \, \overline{r}) + (\overline{k} \, \overline{r}) \operatorname{grad} r^{-4} \right) =$$

$$= 3 + 3 \frac{\overline{k} \, \overline{r}}{r^4} + \overline{r} \left( \frac{\overline{k}}{r^4} - 4 \frac{(\overline{k} \, \overline{r})}{r^6} \overline{r} \right) = 3.$$

**42.** Să se calculeze rotorul câmpului vectorial  $\overline{V} = \frac{1}{r}(\overline{k} \times \overline{r})$ .

Soluție

$$\operatorname{rot} \overline{V} = \operatorname{rot} \left( \frac{1}{r} \left( \overline{k} \times \overline{r} \right) \right) = \frac{1}{r} \operatorname{rot} (\overline{k} \times \overline{r}) - (\overline{k} \times \overline{r}) \operatorname{grad} \frac{1}{r} =$$

$$= \frac{1}{r} \left( \overline{k} \operatorname{div} \overline{r} - \overline{r} \operatorname{div} \overline{k} + \frac{d\overline{k}}{d\overline{r}} - \frac{d\overline{r}}{d\overline{k}} \right) + (\overline{k} \times \overline{r}) \frac{\overline{r}}{r^3} = \frac{2\overline{k}}{r}.$$

**43.** Să se verifice că următoarele transformări sunt difeomorfisme şi să se calculeze jacobianul transformării inverse:

**a.** 
$$F:(0,\infty)\times(0,2\pi)\mapsto R^2\setminus\{(0,0)\}, F(\rho,\varphi)=(\rho\cos\varphi,\rho\sin\varphi).$$

**b.** 
$$G: R^2 \setminus \{(0,0)\} \mapsto R^2 \setminus \{(0,0)\}, G(x,y) = \left(\frac{x}{x^2 + y^2}, \frac{y}{x^2 + y^2}\right).$$

#### Soluție

**a.** Fie  $x = \rho \cos \varphi, y = \rho \sin \varphi$ ; atunci  $\frac{D(x,y)}{D(\rho,\varphi)} = \rho \neq 0$ , iar iacobianul transformării inverse este

$$\frac{D(\rho,\varphi)}{D(x,y)} = \left(\frac{D(x,y)}{D(\rho,\varphi)}\right)^{-1} = \frac{1}{\rho}.$$

**b.** Fie  $u = \frac{x}{x^2 + y^2}, v = \frac{y}{x^2 + y^2}$ . Atunci

$$\frac{D(u,v)}{D(x,y)} = -\frac{1}{(x^2 + y^2)^2} \quad \text{si} \quad \frac{D(x,y)}{D(u,v)} = -(x^2 + y^2)^2.$$

135

44. Fie aplicația

$$F: \{(x,y) \in \mathbb{R}^2 \mid x > 0, y > 0\} \mapsto \{(x,y) \in \mathbb{R}^2 \mid y > 0\}, F(x,y) = (xy, 3y).$$

Să se demonstreze că F este un difeomorfism.

### Soluție

Se demonstrează că F este bijectivă. Evident, F este de clasă  $\mathcal{C}^1$ . Iacobianul intr-un punct arbitrar este  $3y \neq 0$ , deci F este difeomorfism. Se poate calcula și transformarea inversă:  $F^{-1}(x,y) = \left(\frac{3x}{y}, \frac{y}{2}\right)$ .

45. Să se demonstreze că aplicația

$$f: (0, \infty) \times (0, \infty) \mapsto \{(x, y) \in R^2 \mid x > 0\}, f(x, y) = \left(xy, \frac{1}{2}\left(y^2 - x^2\right)\right)$$

este un difeomorfism și să se calculeze inversa.

# Soluţie

Faptul că f este difeomorfism local rezultă din faptul că iacobianul este nenul în orice punct:  $\det(J_f(x,y)) = x^2 + y^2 \neq 0$ . Se arată că f este o bijecție și

$$f^{-1}(x,y) = \left(\sqrt{\sqrt{x^2 + y^2} - y}, \frac{x}{\sqrt{\sqrt{x^2 + y^2} - y}}\right).$$

# 4.4 Extreme locale

46. Să se calculeze extremele locale ale funcțiilor:

**a.** 
$$f: R^2 \mapsto R, f(x,y) = x^3 + y^3 - 6xy.$$

**b.** 
$$g: R^2 \mapsto R, g(x,y) = x^3 + 8y^3 - 2xy.$$

**c.** 
$$h: R^2 \mapsto R, h(x,y) = x^2 y e^{2x+3y}.$$

#### Solutie

a. Punctele critice ale funcției f sunt soluțiile sistemului:

$$\begin{cases} \frac{\partial f}{\partial x} = 0 \\ \frac{\partial f}{\partial y} = 0 \end{cases}, \text{ adică} \begin{cases} 3x^2 - 6y = 0 \\ 3y^2 - 6x = 0 \end{cases}$$

Rezultă două puncte critice: (0,0) și (2,2). Pentru a decide dacă acestea

sunt puncte de extrem, se calculează matricea hessiană (mai întâi într-un punct arbitrar):

$$H_f(x,y) = \begin{pmatrix} \frac{\partial^2 f}{\partial x^2} & \frac{\partial^2 f}{\partial x \partial y} \\ \frac{\partial^2 f}{\partial y \partial x} & \frac{\partial^2 f}{\partial y^2} \end{pmatrix} = \begin{pmatrix} 6x & -6 \\ -6 & 6y \end{pmatrix}$$

In punctele critice se obţine:

$$H_f(0,0) = \begin{pmatrix} 0 & -6 \\ -6 & 0 \end{pmatrix}$$
 şi  $H_f(2,2) = \begin{pmatrix} 12 & -6 \\ -6 & 12 \end{pmatrix}$ 

Valorile proprii ale matricei  $H_f(0,0)$  sunt de semne contrare, deci (0,0) nu este punct de extrem, iar valorile proprii ale matricei  $H_f(2,2)$  sunt ambele strict pozitive, deci (2,2) este punct de minim local.

**b.** Punctele critice sunt (0,0) şi  $(\frac{1}{3},\frac{1}{6})$ . Primul nu este punct de extrem, iar al doilea este punct de minim local.

**c.** Mulţimea punctelor critice este:  $\{(0,y) \mid y \in R\} \cup \{(-1,-\frac{1}{3})\}$ . Punctul  $(-1,-\frac{1}{3})$  este punct de minim (matricea hessiană are valorile proprii pozitive). În punctele (0, y), criteriul cu matricea hessiană nu decide (există o valoare proprie nulă). Se evaluează semnul diferentei

$$f(x,y) - f(0,y) = x^2 y e^{2x+3y}.$$

Pentru puncte situate deasupra axei Ox (adică y > 0), există un disc (de rază suficient de mică, de exemplu  $\frac{y}{2}$ ), pe care diferența f(x,y)-f(0,y) este pozitivă, deci aceste puncte sunt minime locale. Analog, punctele situate sub axa Ox sunt maxime locale. Pentru y=0 (deci în origine), diferența f(x,y) - f(0,0) nu păstrează semn constant pe nici o vecinătate a lui (0,0), deci originea nu este punct de extrem.

47. Să se determine extremele locale ale funcțiilor:

**a.** 
$$f(x,y,z) = x^2 + y^2 + z^2 + 2x + 6y - 6z, (x,y,z) \in R^3.$$
  
**b.**  $g(x,y,z) = x^2 + y^2 + z^2 - xy + x - 2z, (x,y,z) \in R^3.$ 

**b.** 
$$q(x,y,z) = x^2 + y^2 + z^2 - xy + x - 2z, (x,y,z) \in \mathbb{R}^3$$
.

**c.** 
$$h(x, y, z) = \frac{1}{x} + \frac{x}{y} + \frac{y}{z} + z, \ x \neq 0, y \neq 0, z \neq 0.$$

Funcția f are un singur punct critic, (-1, -3, 3). Matricea hessiană are toate valorile proprii strict pozitive, deci punctul (-1, -3, 3) este minim

**b.** Funcția g are punctul critic  $\left(-\frac{2}{3}, -\frac{1}{3}, 1\right)$  care este minim local deoarece valorile proprii ale hessianei sunt stict pozitive.

137

**c.** Punctele critice sunt (1,1,1) și (-1,1,-1). Matricea hessiană într-un punct arbitrar este

$$H_h(x,y,z) = \begin{pmatrix} \frac{2}{x^3} & -\frac{1}{y^2} & 0\\ -\frac{1}{y^2} & \frac{2x}{y^3} & -\frac{1}{z^2}\\ 0 & -\frac{1}{z^2} & \frac{2y}{z^3} \end{pmatrix}$$

Punctul (1,1,1) este minim local, iar (-1,1-1) este maxim local.

48. Să se determine punctele de extrem local ale funcțiilor

$$f: R^2 \mapsto R, f(x,y) = xy \text{ si } g: R^3 \mapsto R, g(x,y,z) = xyz.$$

### Soluție

Singurul punct critic al funcției f este (0,0) care nu este punct de extrem deoarece diferența f(x,y)-f(0,0) nu păstrează semn constant pe nici o vecinătate a originii. Punctele critice ale funcției g sunt

$$(x,0,0), (0,y,0), (0,0,z), \forall x,y,z \in R.$$

Funcția nu are puncte de extrem.

49. Să se determine extremele locale ale funcțiilor:

**a.** 
$$f:(0,2\pi)\times(0,2\pi)\mapsto R, f(x,y)=\sin x\sin y\sin(x+y).$$

**b.** 
$$g:(0,\pi)^3 \mapsto R, g(x,y,z) = \sin x + \sin y + \sin z - \sin(x+y+z).$$

# Soluție

a. Punctele critice sunt soluțiile sistemului:

$$\left\{ \begin{array}{ll} \frac{\partial f}{\partial x} & = & \cos x \sin y \sin(x+y) + \sin x \sin y \cos(x+y) = \sin y \sin(2x+y) = 0 \\ \frac{\partial f}{\partial y} & = & \sin x \cos y \sin(x+y) + \sin x \sin y \cos(x+y) = \sin x \sin(x+2y) = 0 \end{array} \right.$$

Rezultă punctele critice:  $(x_1, y_1) = (\pi, \pi)$  şi  $(x_2, y_2) = (\frac{\pi}{3}, \frac{\pi}{3})$ . Derivatele parțiale de ordinul al doilea:

$$\frac{\partial^2 f}{\partial x^2} = 2\sin y \cos(2x + y),$$

$$\frac{\partial^2 f}{\partial u^2} = 2\sin x \cos(x + 2y),$$

$$\frac{\partial^2 f}{\partial x \partial y} = \sin(2x + 2y).$$

Punctul  $(x_2, y_2)$  este maxim local:

$$rt - s^2 =$$

$$=\frac{\partial^2 f}{\partial x^2}\left(\frac{\pi}{3},\frac{\pi}{3}\right)\,\frac{\partial^2 f}{\partial y^2}\left(\frac{\pi}{3},\frac{\pi}{3}\right)-\left(\frac{\partial^2 f}{\partial x \partial y}\left(\frac{\pi}{3},\frac{\pi}{3}\right)\right)^2=\frac{9}{4}>0,\ r=-\sqrt{3}<0.$$

În punctul  $(x_1, y_1) = (\pi, \pi)$ , derivatele parțiale de ordinul al doilea sunt nule, deci trebuie evaluat semnul diferenței  $f(x, y) - f(\pi, \pi) = \sin x \sin y \sin(x+y)$  în jurul punctului  $(\pi, \pi)$ . Se poate face acest lucru fie folosind formula lui Taylor de ordinul 3, fie direct, observând că pentru  $x < \pi$ ,  $y < \pi$  diferența este negativă, iar pentru puncte  $x > \pi$ ,  $y > \pi$  diferența este pozitivă. Rezultă că  $(x_1, y_1)$  nu este extrem local.

În particular, rezultă inegalitatea

$$\sin x \sin y \sin(x+y) \le \left(\frac{\sqrt{3}}{2}\right)^3, \forall x, y \in (0, \pi)$$

**b.** Se calculează punctele critice ale funcției g:

$$\begin{cases} \frac{\partial g}{\partial x} = \cos x - \cos(x + y + z) = 0\\ \frac{\partial g}{\partial y} = \cos y - \cos(x + y + z) = 0\\ \frac{\partial g}{\partial z} = \cos z - \cos(x + y + z) = 0 \end{cases}$$

deci

$$\cos x = \cos y = \cos z = \cos(x + y + z).$$

Deoarece funcția cos este injectivă pe  $(0,\pi)$ , rezultă x=y=z. Se obține  $\cos x=\cos 3x$ , adică  $2\sin x\sin 2x=0$ , cu singura soluție  $x=\frac{\pi}{2}$ . Rezultă punctul critic  $(x,y,z)=\left(\frac{\pi}{2},\frac{\pi}{2},\frac{\pi}{2}\right)$ . Derivatele parțiale de ordinul al doilea sunt:

$$\frac{\partial^2 g}{\partial x^2} = -\sin x + \sin(x+y+z), \frac{\partial^2 g}{\partial y^2} = -\sin y + \sin(x+y+z),$$
$$\frac{\partial^2 g}{\partial z^2} = -\sin z + \sin(x+y+z),$$
$$\frac{\partial^2 g}{\partial x \partial y} = \frac{\partial^2 g}{\partial y \partial z} = \frac{\partial^2 g}{\partial x \partial z} = \sin(x+y+z).$$

În punctul critic matricea hessiană este  $\begin{pmatrix} -2 & -1 & -1 \\ -1 & -2 & -1 \\ -1 & -1 & -2 \end{pmatrix}$ . Polinomul car-

acteristic  $P(\lambda) = \lambda^3 + 6\lambda^2 + 9\lambda + 4$  are toate rădăcinile strict negative, deci  $(\frac{\pi}{2}, \frac{\pi}{2}, \frac{\pi}{2})$  este punct de maxim. Se observă că este un maxim global.

139

50. Să se determine punctele de extrem local ale funcțiilor:

**a.** 
$$f(x,y) = 3xy^2 - x^3 - 15x - 36x + 9, (x,y) \in \mathbb{R}^2.$$

**b.** 
$$f(x,y) = y^4 - 8y^3 + 18y^2 - 8y + x^3 - 3x^2 - 3x$$
,  $(x,y) \in R^2$ .  
**c.**  $f(x,y) = 4xy - x^4 - y^4$ ,  $\forall (x,y) \in R^2$ .

**c.** 
$$f(x,y) = 4xy - x^4 - y^4, \forall (x,y) \in \mathbb{R}^2.$$

# Soluție

**a.** Punctele critice sunt  $(x_1, y_1) = (2, 3), (x_2, y_2) = (-2, -3);$  nici unul nu este punct de extrem.

**b.** Punctele critice sunt

$$(x_1, y_1) = (1 + \sqrt{2}, 2), (x_2, y_2) = (1 + \sqrt{2}, 2 + \sqrt{3}), (x_3, y_3) = (1 + \sqrt{2}, 2 - \sqrt{3}),$$

$$(x_4, y_4) = (1 - \sqrt{2}, 2), (x_5, y_5) = (1 - \sqrt{2}, 2 + \sqrt{3}), (x_6, y_6) = (1 - \sqrt{2}, 2 - \sqrt{3}).$$

Punctele de extrem sunt  $(x_2, y_2)$ ,  $(x_3, y_3)$  (minime) şi  $(x_4, y_4)$  (maxim).

c. Punctele critice sunt (0,0),(1,1),(-1,-1); primul nu este punct de extrem, celelalte sunt puncte de maxim.

51. Să se determine extremele locale ale funcțiilor:

**a.** 
$$f:(0,\infty)\times(0,\infty)\mapsto R$$
,  $f(x,y)=4x^2+\frac{2}{xy^2}+y^2$ 

**a.** 
$$f:(0,\infty)\times(0,\infty)\mapsto R$$
,  $f(x,y)=4x^2+\frac{2}{xy^2}+y^2$   
**b.**  $f:R^2\setminus\{(0,0)\}\mapsto R$ ,  $f(x,y)=\frac{x+y}{\sqrt{x^2+y^2}}$ .

a. Funcția f este de clasă  $\mathcal{C}^2$  și are in domeniul de definiție un singur punct critic  $(x_1, y_1) = (\frac{1}{2}, \sqrt{2}).$ 

În punctul critic matricea hessiană este  $\begin{pmatrix} 24 & 4\sqrt{2} \\ 4\sqrt{2} & 8 \end{pmatrix}$ .  $\Delta_1=24>0$  și

 $\Delta_2 = 24 \cdot 8 - 32 > 0 \operatorname{deci}\left(\frac{1}{2}, \sqrt{2}\right)$  este punct de minim local şi  $f\left(\frac{1}{2}, \sqrt{2}\right) = 4$ .

b. Funcția f este de clasă  $\mathcal{C}^2$  și are in domeniul de definiție punctele critice  $(x,x), x \in R^*$ 

Matricea hessiană intr-un punct critic este

$$H_f(x,x) = \begin{pmatrix} \frac{-x}{2\sqrt{2}|x|^3} & \frac{x}{2\sqrt{2}|x|^3} \\ \frac{x}{2\sqrt{2}|x|^3} & \frac{-x}{2\sqrt{2}|x|^3} \end{pmatrix}$$

Dacă x < 0 atunci (x, x) sunt puncte de minim și  $f_{\min} = -\sqrt{2}$ ; dacă x > 0, atunci (x, x) sunt puncte de maxim și  $f_{\text{max}} = \sqrt{2}$ .

**52.** Să se determine extremele locale ale funcțiilor:

**a.** 
$$f: R^2 \mapsto R, f(x,y) = x^4 + y^4 - 2x^2 + 4xy - 2y^2$$

**a.** 
$$f: R^2 \mapsto R$$
,  $f(x,y) = x^4 + y^4 - 2x^2 + 4xy - 2y^2$   
**b.**  $f: R^3 \mapsto R$ ,  $f(x,y,z) = x^2 + y^2 + 3z^2 - xy + yz + 2xz$ 

# Soluție

140

a. Funcția f este de clasă  $\mathcal{C}^2$  și are in domeniul de definiție punctele critice  $(x_1, y_1) = (0, 0); (x_2, y_2) = (\sqrt{2}, -\sqrt{2}); (x_3, y_3) = (-\sqrt{2}, \sqrt{2})$ 

Într-un punct oarecare matricea hessiană este

$$\begin{pmatrix} 12x^2 - 4 & 4 \\ 4 & 12y^2 - 4 \end{pmatrix}$$

Punctele  $(\sqrt{2}, -\sqrt{2}); (-\sqrt{2}, \sqrt{2})$  sunt minime locale, iar (0,0) nu este ex-

**b.** Funcția f este de clasă  $C^2$  și are in domeniul de definiție un singur punct critic  $(x_1, y_1, z_1) = (0, 0, 0)$ .

Matricea hessiană în punctul critic este  $\begin{pmatrix} 2 & -1 & 2 \\ -1 & 2 & 1 \\ 2 & 1 & 6 \end{pmatrix}$ .  $\Delta_1 = 2 > 0, \ \Delta_2 = 3 > 0$  şi  $\Delta_3 = 4 > 0$  deci (0,0,0) este punct de minim

local strict și  $f_{\min} = 0$ .

53. Să se determine extremele locale ale funcției:

$$F: \mathbb{R}^2 \mapsto \mathbb{R}, \ f(x,y) = x^3 + 3xy - 15x - 12y.$$

# Soluție

Punctele critice sunt (1,2),(2,1),(-2,-1); folosind matricea hessiană, se decide natura acestor puncte.

54. Să se determine extremele globale ale funcțiilor:

**a.** 
$$f(x,y) = (x^2 + y^2)e^{-x^2 - y^2},$$
  
**b.**  $g(x,y) = \frac{2x+y}{\sqrt{x^2+y^2}}.$ 

**b.** 
$$g(x,y) = \frac{2x+y}{\sqrt{x^2+y^2}}$$
.

### Soluție

Se trece la coordonate polare și se reduce problema la a determina extremele unor funcții de o singură variabilă reală.

**55.** Să se determine extremele locale ale funcției: 
$$f(x,y,z)=x+\frac{y^2}{4x}+\frac{z^2}{y}+\frac{2}{z}$$
, definită pentru  $x>0,y>0,z>0$ .

Se determină punctele critice și apoi, folosind matricea hessiană, se decide natura lor.

**56.** Să se determine extremele funcțiilor:

a. 
$$f(x,y) = xy\sqrt{1-x^2-y^2}$$
, definită pentru  $x^2 + y^2 < 1$ .

# 4.5. FUNCȚII IMPLICITE

141

**b.**  $g(x,y) = (1+e^y)\cos x - ye^y, (x,y) \in \mathbb{R}^2.$ 

**a.** Punctele critice sunt (0,0),  $(\frac{\sqrt{3}}{3},\pm\frac{\sqrt{3}}{3})$ ,  $(\frac{-\sqrt{3}}{3},\pm\frac{\sqrt{3}}{3})$ . **b.** Punctele critice sunt  $(2n\pi,0)$  și  $((2n+1)\pi,-2), \forall n\in \mathbb{Z}$ . Primele sunt puncte de maxim, iar celelalte nu sunt puncte de extrem.

57. Să se determine extremele următoarelor funcții:

**a.**  $f(x, y, z) = xy \ln(x^2 + y^2)$ . **b.**  $g(x, y, z) = -2x^2 + 2xy - 5y^2 + 6x + 6y$ .

Soluţie

**a.** Puncte de maxim:  $(\frac{1}{\sqrt{2e}}, \frac{1}{\sqrt{2e}}), (-\frac{1}{\sqrt{2e}}, -\frac{1}{\sqrt{2e}});$  puncte de minim:  $(\frac{1}{\sqrt{2e}}, -\frac{1}{\sqrt{2e}}), (-\frac{1}{\sqrt{2e}}, \frac{1}{\sqrt{2e}}).$  **b.** Funcția are un singur punct de extrem (maxim): (2,1).

#### 4.5 Funcții implicite

**58.** Funcția z = z(x, y) este definită implicit de ecuația

$$(y+z)\sin z - y(x+z) = 0.$$

Să se calculeze expresia:

$$E = (z\sin z)\frac{\partial z}{\partial x} - y^2\frac{\partial z}{\partial y}.$$

### Soluție

Fie  $F(x,y,z)=(y+z)\sin z-y(x+z)$ . Funcția z=z(x,y) există în vecinătatea punctelor cu proprietatea  $\frac{\partial F}{\partial z}\neq 0$ , adică

$$\sin z + (y+z)\cos z - y \neq 0.$$

In această ipoteză, se calculează derivatele parțiale ale funcției z, derivând relația F(x, y, z) = 0 în raport cu x și respectiv y, (z este funcție de x și y):

$$\frac{\partial z}{\partial x}\sin z + (y+z)\cos z \frac{\partial z}{\partial x} - y\left(1 + \frac{\partial z}{\partial x}\right) = 0,$$

deci:

$$\frac{\partial z}{\partial x} = \frac{y}{\sin z + (y+z)\cos z - y}.$$

$$\left(1 + \frac{\partial z}{\partial y}\right)\sin z + (y+z)\cos z\frac{\partial z}{\partial y} - (x+z) - y\frac{\partial z}{\partial y} = 0,$$

deci

$$\frac{\partial z}{\partial y} = \frac{x + z - \sin z}{\sin z + (y + z)\cos z - y}.$$

Înlocuind  $\frac{\partial z}{\partial x}$  și  $\frac{\partial z}{\partial y}$  cu valorile obținute mai sus în expresia E, se obține

$$E = \frac{yF(x, y, z)}{\sin z + (y + z)\cos z - y} = 0.$$

**59.** Fie  $g \in C^1(R^2)$  și fie funcția z = z(x,y) definită implicit de ecuația  $g(y^2 - x^2, z - xy) = 0$ . Să se calculeze expresia  $E = y \frac{\partial z}{\partial x} + x \frac{\partial z}{\partial y}$ .

# Soluție

Fie funcția  $F(x,y,z)=g(y^2-x^2,z-xy)$ . Notăm  $u=y^2-x^2$  și v=z-xy. Condiția de existență a funcției z=z(x,y) este  $\frac{\partial F}{\partial z}\neq 0$ , adică  $\frac{\partial g}{\partial v}\neq 0$ . În această ipoteză, se calculează derivatele parțiale ale funcției z:

$$\frac{\partial g}{\partial u}(-2x) + \frac{\partial g}{\partial v}\left(\frac{\partial z}{\partial x} - y\right) = 0 \Rightarrow \frac{\partial z}{\partial x} = \frac{2x\frac{\partial g}{\partial u} + y\frac{\partial g}{\partial v}}{\frac{\partial g}{\partial v}}.$$

$$2y\frac{\partial g}{\partial u} + \frac{\partial g}{\partial v}\left(\frac{\partial z}{\partial y} - x\right) = 0 \Rightarrow \frac{\partial z}{\partial y} = \frac{x\frac{\partial g}{\partial v} - 2y\frac{\partial g}{\partial u}}{\frac{\partial g}{\partial v}}.$$

Înlocuind, se obține:  $E = x^2 + y^2$ .

**60.** Fie  $a \in R$  și fie funcția z = z(x, y) definită de ecuația

$$x^2 + y^2 + z^2 = a^2.$$

Să se calculeze diferențiala întâi și diferențiala a doua ale funcției z.

### Soluție

Fie funcția  $F(x,y,z)=x^2+y^2+z^2-a^2$ . Funcția z=z(x,y) există în vecinătatea punctelor cu proprietatea  $\frac{\partial F}{\partial z}\neq 0$ , adică  $z\neq 0$ . Există deci două submulțimi ale sferei de centru O și rază a pe care există câte o funcție z: semisfera  $x^2+y^2+z^2=a^2, z>0$  și semisfera  $x^2+y^2+z^2=a^2, z<0$ . Vom calcula diferențialele funcției z asociate primei semisfere (z>0):

$$2x + 2z \frac{\partial z}{\partial x} = 0 \Rightarrow \frac{\partial z}{\partial x} = -\frac{x}{z} = -\frac{x}{\sqrt{a^2 - x^2 - y^2}}.$$

Analog, 
$$\frac{\partial z}{\partial y} = -\frac{y}{z} = -\frac{y}{\sqrt{a^2 - x^2 - y^2}}$$
 şi deci
$$dz = -\frac{x}{z}dx - \frac{y}{z}dy = -\frac{x}{\sqrt{a^2 - x^2 - y^2}}dx - \frac{y}{\sqrt{a^2 - x^2 - y^2}}dy.$$

Diferențiala a doua:

$$2 + 2\left(\frac{\partial z}{\partial x}\right)^2 + 2z\frac{\partial^2 z}{\partial x^2} = 0,$$

deci:

$$\frac{\partial^2 z}{\partial x^2} = -\frac{x^2 + z^2}{z^3} = \frac{y^2 - a^2}{z^3} = \frac{y^2 - a^2}{\sqrt{(a^2 - x^2 - y^2)^3}}.$$
$$2\frac{\partial z}{\partial y}\frac{\partial z}{\partial x} + 2z\frac{\partial^2 z}{\partial x \partial y} = 0,$$

deci

$$\frac{\partial^2 z}{\partial x \partial y} = -\frac{\frac{\partial z}{\partial x} \frac{\partial z}{\partial y}}{z} = -\frac{xy}{z^3} = -\frac{xy}{\sqrt{(a^2 - x^2 - y^2)^3}}.$$

În concluzie:

$$d^2z = \frac{y^2 - a^2}{\sqrt{\left(a^2 - x^2 - y^2\right)^3}} dx^2 - \frac{2xy}{\sqrt{\left(a^2 - x^2 - y^2\right)^3}} dx dy + \frac{x^2 - a^2}{\sqrt{\left(a^2 - x^2 - y^2\right)^3}} dy^2$$

**61.** Funcțiile u=u(x,y) și v=v(x,y) sunt definite implicit de sistemul de ecuații u+v=x+y, ux+vy=1. Să se calculeze derivatele parțiale de ordinul întâi și al doilea ale funcțiilor u și v.

#### Soluție

Fie  $F: R^4 \mapsto R^2$ , F(x,y,u,v) = (u+v-x-y,ux+vy-1). Notând f(x,y,u,v) = u+v-x-y și g(x,y,u,v) = ux+vy-1, condiția de existență a funcțiilor u și v este  $\frac{D(f,g)}{D(u,v)} \neq 0$ , adică  $y-x \neq 0$ . În această ipoteză, derivând în raport cu x și respectiv y relațiile f=0, g=0, se obtine:

$$\frac{\partial u}{\partial x} + \frac{\partial v}{\partial x} = 1 \text{ si } u + x \frac{\partial u}{\partial x} + y \frac{\partial v}{\partial x} = 0,$$

$$\frac{\partial u}{\partial y} + \frac{\partial v}{\partial y} = 1 \text{ si } x \frac{\partial u}{\partial y} + v + y \frac{\partial v}{\partial y} = 0,$$

de unde rezultă:

$$\frac{\partial u}{\partial x} = \frac{u+y}{y-x}, \ \frac{\partial v}{\partial x} = \frac{u+x}{x-y}, \ \frac{\partial u}{\partial y} = \frac{v+y}{y-x}, \ \frac{\partial v}{\partial y} = \frac{v+x}{x-y}.$$

Pentru a calcula derivatele parțiale de ordinul al doilea, se derivează în continuare în raport cu x și respectiv y:

$$\frac{\partial^2 u}{\partial x^2} + \frac{\partial^2 v}{\partial x^2} = 0, \operatorname{gi} 2\frac{\partial u}{\partial x} + x\frac{\partial^2 u}{\partial x^2} + y\frac{\partial^2 v}{\partial x^2} = 0,$$

de unde rezultă

$$\frac{\partial^2 u}{\partial x^2} = \frac{2\frac{\partial u}{\partial x}}{y - x} = \frac{2(u + y)}{(y - x)^2}.$$

Analog se calculează și celelalte derivate parțiale de ordinul al doilea.

**62.** Fie  $F \in C^2(\mathbb{R}^2)$ . Funcția y = y(x) este definită implicit de ecuația

$$F(\sin x + y, \cos y + x) = 0.$$

Să se determine y'' în punctele critice ale lui y.

#### Solutie

Fie  $u=\sin x+y,\,v=\cos y+x.$  Condiția de existență a funcției y este  $\frac{\partial F}{\partial u}-\frac{\partial F}{\partial v}\sin y\neq 0$ . Derivând ecuația F(u,v)=0 în raport cu x, rezultă:

$$(*) (y' + \cos x)\frac{\partial F}{\partial u} + (1 - y'\sin y)\frac{\partial F}{\partial v} = 0.$$

Se obtine:

$$y' = \frac{\frac{\partial F}{\partial u}\cos x + \frac{\partial F}{\partial v}}{\frac{\partial F}{\partial v} - \frac{\partial F}{\partial u}}.$$

Derivând relația (\*) în raport cu x și înlocuind y' = 0, rezultă (în punctele critice):

$$y'' = \frac{-\frac{\partial^2 F}{\partial u^2} \cos^2 x - 2\frac{\partial^2 F}{\partial u \partial v} \cos x - \frac{\partial^2 F}{\partial v^2} + \frac{\partial F}{\partial u} \sin x}{\frac{\partial F}{\partial u} - \frac{\partial F}{\partial v} \sin y}.$$

**63.** Funcțiile y = y(x) și z = z(x) sunt definite implicit de sistemul

$$\begin{cases} \sin x + \sin y + \sin z &= a \\ x^2 + y^2 + z^2 &= b \end{cases}, a, b \in R.$$

145

Să se calculeze y'' și z''.

#### Soluție

Fie  $f(x,y,z)=\sin x+\sin y+\sin z-a,\,g(x,y,z)=x^2+y^2+z^2-b$  și F(x,y,z)=(f(x,y,z),g(x,y,z)). Condiția de existență pentru funcțiile y și z este  $\frac{D(f,g)}{D(y,z)}\neq 0 \Leftrightarrow 2z\cos y-2y\cos z\neq 0.$  Derivând ecuațiile f=0,g=0 în funcție de x, rezultă:

$$(*) \begin{cases} \cos x + y' \cos y + z' \cos z = 0 \\ 2x + 2yy' + 2zz' = 0 \end{cases}$$

Soluţia sistemului este

$$y' = \frac{x\cos z - z\cos x}{z\cos y - y\cos z}, \ z' = \frac{y\cos x - x\cos y}{z\cos y - y\cos z}.$$

Derivând relațiile  $(\star)$ în funcție de x, rezultă:

$$\begin{cases} y'' \cos y - (y')^2 \sin y + z'' \cos z - (z')^2 \sin z &= \sin x \\ 2(y')^2 + 2yy'' + 2(z')^2 + 2zz'' &= -2 \end{cases}$$

Rezolvând sistemul, rezultă y'' și z''.

**64.** Funcțiile u=u(x,y), v=v(x,y), z=z(x,y) sunt definite implicit de sistemul de ecuații

$$\begin{cases} u + \ln v &= x \\ v - \ln u &= y \\ z &= 2u + v \end{cases}$$

Să se calculeze  $\frac{\partial z}{\partial x}$ ,  $\frac{\partial^2 u}{\partial x \partial y}$ ,  $\frac{\partial^2 v}{\partial y^2}$ .

# Soluție

Fie funcțiile:

$$f(x, y, u, v, z) = u + \ln v - x,$$
  

$$g(x, y, u, v, z) = v - \ln u - y,$$
  

$$h(x, y, u, v, z) = z - 2u - v$$

și fie F = (f, g, h). Condiția de existență a funcțiilor u, v, z este

$$\frac{D(f,g,h)}{D(u,v,z)} \neq 0 \Leftrightarrow 1 + \frac{1}{uv} \neq 0.$$

Derivând relațiile f=0, g=0, h=0 în raport cu x, rezultă

$$\frac{\partial u}{\partial x} = \frac{uv}{1+uv}, \, \frac{\partial v}{\partial x} = \frac{v}{1+uv}, \, \frac{\partial z}{\partial x} = \frac{2uv+v}{1+uv}.$$

Derivând relațiile f=0, g=0 în raport cu y, rezultă:

$$(*) \left\{ \begin{array}{rcl} \frac{\partial u}{\partial y} + \frac{1}{v} \frac{\partial v}{\partial y} & = & 0 \\ -\frac{1}{u} \frac{\partial u}{\partial y} + \frac{\partial v}{\partial y} & = & 1 \end{array} \right.$$

Soluția sistemului este:  $\frac{\partial u}{\partial y} = -\frac{u}{1+uv}$ ,  $\frac{\partial v}{\partial y} = \frac{uv}{1+uv}$ . Derivând relațiile (\*) în raport cu x, rezultă

$$\left\{ \begin{array}{ll} \frac{\partial^2 u}{\partial x \partial y} - \frac{1}{v^2} \frac{\partial v}{\partial x} \frac{\partial v}{\partial y} + \frac{1}{v} \frac{\partial^2 v}{\partial x \partial y} & = & 0 \\ \frac{\partial^2 v}{\partial x \partial y} + \frac{1}{u^2} \frac{\partial u}{\partial x} \frac{\partial u}{\partial y} - \frac{1}{u} \frac{\partial^2 u}{\partial x \partial y} & = & 0 \end{array} \right.$$

Rezolvând sistemul, rezultă

$$\frac{\partial^2 u}{\partial x \partial y} = \frac{uv(u-1)}{(1+uv)^3}.$$

Analog se calculează și  $\frac{\partial^2 v}{\partial y^2}$ .

**65.** Fie  $g \in C^1(R)$  și fie funcția z=z(x,y) definită implicit de ecuația  $xyz=e^{g(z)}$ . Să se demonstreze că z nu are puncte critice.

# Soluţie

Fie  $F(x, y, z) = xyz - e^{g(z)}$ ; condiția de existență a funcției z este

$$\frac{\partial f}{\partial z} \neq 0 \Leftrightarrow xy - g'(z)e^{g(z)} \neq 0.$$

Derivând ecuația F = 0 în raport cu x se obține:

$$yz + xy\frac{\partial z}{\partial x} - e^{g(z)}g'(z)\frac{\partial z}{\partial x} = 0.$$

Rezultă

$$\frac{\partial z}{\partial x} = -\frac{yz}{xy - g'(z)e^{g(z)}}$$

și analog,

$$\frac{\partial z}{\partial y} = -\frac{xz}{xy - g'(z)e^{g(z)}}.$$

Sistemul

$$\begin{cases} \frac{\partial z}{\partial x} &= 0\\ \frac{\partial z}{\partial y} &= 0\\ F(x, y, z) &= 0 \end{cases}$$

nu are soluții, deci z nu are puncte critice.

**66.** Să se determine extremele funcției y=y(x) definite implicit de ecuația  $x^3+y^3-2xy=0$ .

# Soluție

Fie  $F(x,y)=x^3+y^3-2xy$ . Funcția y=y(x) este definită în vecinătatea punctelor pentru care  $\frac{\partial F}{\partial y}\neq 0$ , adică  $3y^2-2x\neq 0$ . În această ipoteză, se determină punctele critice ale funcției y:

$$3x^{2} + 3y^{2}y' - 2y - 2xy' = 0 \Rightarrow y'(x) = \frac{2y - 3x^{2}}{3y^{2} - 2x}.$$

Punctele critice sunt soluțiile sistemului:

$$\begin{cases} y' = 0 \\ F = 0 \\ \frac{\partial F}{\partial y} \neq 0 \end{cases} \Rightarrow \begin{cases} 2y - 3x^2 = 0 \\ x^3 + y^3 - 2xy = 0 \\ 3y^2 - 2x \neq 0 \end{cases} \Rightarrow \begin{cases} y = \frac{3x^2}{2} \\ x^3 \left(27x^3 - 16\right) = 0 \\ \frac{\partial F}{\partial y} \neq 0 \end{cases}.$$

Unica soluție este  $(x,y) = \left(\frac{2\sqrt[3]{2}}{3}, \frac{2\sqrt[3]{4}}{3}\right)$ . Pentru a decide dacă  $x = \frac{2\sqrt[3]{2}}{3}$  este punct de extrem local pentru y, vom calcula  $y''\left(\frac{2\sqrt[3]{2}}{3}\right)$ :

$$6x + 6y(y')^{2} + 3y^{2}y' - 2y' - 2y' - 2xy'' = 0, \Rightarrow y''(\frac{2\sqrt[3]{2}}{3}) = -3 < 0,$$

deci  $x = \frac{2\sqrt[3]{2}}{3}$  este maxim local pentru y și  $y(\frac{2\sqrt[3]{2}}{3}) = \frac{2\sqrt[3]{4}}{3}$ .

67. Să se determine extremele funcției z=z(x,y), definite implicit de ecuația  $z^3+z+20(x^2+y^2)-8(xy+x+y)=0$ .

#### Solutie

Fie  $F(x,y,z)=z^3+z+20(x^2+y^2)-8(xy+x+y)$ ; condiția de existență a funcției z este  $\frac{\partial F}{\partial z}\neq 0$ , adică  $3z^2+1\neq 0$ . Evident, condiția este îndeplinită pentru orice  $x,y,z\in R$ . Derivatele parțiale de ordinul întâi ale lui z:

$$3z^{2}\frac{\partial z}{\partial x} + \frac{\partial z}{\partial x} + 40x - 8(y+1) = 0 \Rightarrow \frac{\partial z}{\partial x} = \frac{8(y+1) - 40x}{3z^{2} + 1}$$

$$3z^2 \frac{\partial z}{\partial y} + \frac{\partial z}{\partial y} + 40y - 8(x+1) = 0 \Rightarrow \frac{\partial z}{\partial y} = \frac{8(x+1) - 40y}{3z^2 + 1}.$$

Punctele critice ale funcției z sunt soluțiile sistemului:

$$\begin{cases} \frac{\partial z}{\partial x} &= 0\\ \frac{\partial z}{\partial y} &= 0 \\ F(x,y,z) &= 0 \end{cases} \Rightarrow \begin{cases} \frac{8(y+1)-40x}{3z^2+1} &= 0\\ \frac{8(x+1)-40y}{3z^2+1} &= 0\\ z^3+z+20(x^2+y^2)-8(xy+x+y) &= 0 \end{cases}$$

Unica soluție a sistemului este  $(x, y, z) = (\frac{1}{4}, \frac{1}{4}, 1)$ . Pentru a decide dacă el este punct de extrem local, se calculează derivatele parțiale ale funcției z.

$$6z\left(\frac{\partial z}{\partial x}\right)^{2} + 3z^{2}\frac{\partial^{2}z}{\partial x^{2}} + \frac{\partial^{2}z}{\partial x^{2}} + 40 = 0 \Rightarrow \frac{\partial^{2}z}{\partial x^{2}} = -\frac{40}{3z^{2} + 1}.$$

$$6z\left(\frac{\partial z}{\partial y}\right)^{2} + 3z^{2}\frac{\partial^{2}z}{\partial y^{2}} + \frac{\partial^{2}z}{\partial y^{2}} + 40 = 0 \Rightarrow \frac{\partial^{2}z}{\partial y^{2}} = -\frac{40}{3z^{2} + 1}.$$

$$6z\frac{\partial z}{\partial y}\frac{\partial z}{\partial x} + 3z^{2}\frac{\partial^{2}z}{\partial x\partial y} + \frac{\partial^{2}z}{\partial x\partial y} - 8 = 0 \Rightarrow \frac{\partial^{2}z}{\partial x\partial y} = \frac{8}{3z^{2} + 1}.$$

Rezultă

$$\frac{\partial^2 z}{\partial x^2}(\frac{1}{4},\frac{1}{4}) = -10, \ \frac{\partial^2 z}{\partial y^2}(\frac{1}{4},\frac{1}{4}) = -10, \ \frac{\partial^2 z}{\partial x \partial y}(\frac{1}{4},\frac{1}{4}) = 2,$$

deci în punctul  $(\frac{1}{4}, \frac{1}{4})$ , funcția z are un maxim local.

**68.** Fie  $a \in R$ ,  $a \neq 0$ ; să se determine extremele locale ale funcției z = z(x,y) definite implicit de ecuația  $(x^2 + y^2 + z^2)^2 = a^2 - x^2 - z^2$ .

#### Soluţie

Fie  $F(x,y,z)=(x^2+y^2+z^2)^2-a^2+x^2+z^2$ ; Condiția de existență a funcției z este  $\frac{\partial F}{\partial z}\neq 0$ , adică  $z\neq 0$ . În această ipoteză, se calculează derivatele parțiale ale funcției z:

$$2(x^2+y^2+z^2)\left(2x+2z\frac{\partial z}{\partial x}\right)+2x+2z\frac{\partial z}{\partial x}=0 \Rightarrow \frac{\partial z}{\partial x}=-\frac{x}{z}.$$
 
$$2(x^2+y^2+z^2)\left(2y+2z\frac{\partial z}{\partial y}\right)+2z\frac{\partial z}{\partial y}=0,$$
 de unde rezultă 
$$\frac{\partial z}{\partial y}=\frac{-2y(x^2+y^2+z^2)}{z(2x^2+2y^2+2z^2+1)}.$$
 Sistemul 
$$\begin{cases} \frac{\partial z}{\partial x}=0\\ \frac{\partial z}{\partial y}=0 \text{ are soluţiile} \end{cases}$$
 
$$F(x,y,z)=0$$
 
$$(x_1,y_1,z_1)=\left(0,0,\sqrt{\frac{-1+\sqrt{1+4a^2}}{2}}\right)$$
 şi
$$(x_2,y_2,z_2)=\left(0,0,-\sqrt{\frac{-1+\sqrt{1+4a^2}}{2}}\right).$$

Se observă că este verificată condiția  $z \neq 0$ . Derivatele parțiale de ordinul al doilea:

$$\left(2x+2z\frac{\partial z}{\partial x}\right)^2+\left(x^2+y^2+z^2\right)\left(2+2\frac{\partial z}{\partial x}+2z\frac{\partial^2 z}{\partial x^2}\right)+2+2\frac{\partial z}{\partial x}+2z\frac{\partial^2}{\partial x^2}=0,$$

de unde rezultă  $\frac{\partial^2 z}{\partial x^2} = -\frac{3z^2 + y^2 + z^2 + 1}{z(x^2 + y^2 + z^2 + 1)}.$ 

$$4y^{2} + (x^{2} + y^{2} + z^{2})\left(2 + 2z\frac{\partial^{2}z}{\partial y^{2}}\right) + 2z\frac{\partial^{2}z}{\partial y^{2}} = 0,$$

de unde rezultă  $\frac{\partial^2 z}{\partial y^2} = -\frac{x^2+3y^2+z^2}{z(x^2+y^2+z^2+1)}.$ 

$$\left(2x+2z\frac{\partial z}{\partial x}\right)\left(2y+2z\frac{\partial z}{\partial x}\right)+$$

$$+(x^2+y^2+z^2)\left(2\frac{\partial z}{\partial x}\frac{\partial z}{\partial y}+2z\frac{\partial^2 z}{\partial x}\partial y\right)+2\frac{\partial z}{\partial x}\frac{\partial z}{\partial y}+2z\frac{\partial^2 z}{\partial x\partial y}=0,$$

de unde rezultă  $\frac{\partial^2 z}{\partial x \partial y} = -\frac{2xy}{z(x^2+y^2+z^2+1)}.$ 

Calculând derivatele parțiale de ordinul al doilea în punctul critic (0,0), rezultă:

$$r = \frac{\partial^2 z}{\partial x^2}(0,0) = -\frac{1}{z}, \ s = \frac{\partial^2 z}{\partial x \partial y}(0,0) = 0, \ t = \frac{\partial^2 z}{\partial y^2}(0,0) = -\frac{z}{z^2 + 1}.$$

Deoarece  $rt - s^2 = \frac{1}{z^2+1} > 0$ , (şi pentru  $z_1$  şi pentru  $z_2$ ), rezultă că atât  $z_1$  cât şi  $z_2$  au extreme locale în (0,0). Funcția  $z_1$  satisface condiția r < 0, deci are un maxim local în (0,0), iar valoarea ei în acest punct este

$$z_1(0,0) = \sqrt{\frac{-1 + \sqrt{1 + 4a^2}}{2}}.$$

Funcția  $z_2$  satisface condiția r > 0, deci are un minim local în (0,0), iar valoarea ei în acest punct este

$$z_2(0,0) = -\sqrt{\frac{-1+\sqrt{1+4a^2}}{2}}.$$

**69.** Să se determine extremele locale ale funcției y = y(x) definite implicit de ecuația  $x^3 + y^3 - 3x^2y - 3 = 0$ .

# Soluție

Fie  $F(x,y) = x^3 + y^3 - 3x^2y - 3$ . Condiția de existență pentru y este  $\frac{\partial F}{\partial y} \neq 0$ , adică  $3y^2 - 3x^2 \neq 0$ . În această ipoteză, se calculează y':

$$3x^{2} + 3y^{2}y' - 6xy - 3x^{2}y' = 0 \Rightarrow y'(x) = \frac{2xy - x^{2}}{y^{2} - x^{2}},$$

deci punctele critice ale funcției y sunt

$$x_1 = 0, y_1(0) = \sqrt[3]{3}, x_2 = -2, y_2(-2) = -1.$$

$$6x + 6y(y')^2 + 3y^2y'' - 6y - 12xy' - 3x^2y'' = 0 \Rightarrow$$

$$y''(x) = \frac{-2x + 2y - 2y(y')^2 + 4xy'}{y^2 - x^2}.$$

Rezultă  $y''(0) = \frac{2}{\sqrt[3]{3}} > 0$ , deci  $x_1 = 0$  este minim local şi  $y''(-2) = -\frac{2}{3}$ , deci  $x_2 = -2$  este maxim local.

70. Să se determine punctele de extrem ale funcției y=y(x) definite implicit de ecuația  $x^2+y^2-e^{2{\rm arctg}\frac{x}{y}},\,y\neq 0.$ 

### Soluție

Condiția de existență a funcției y este

$$y(x^2 + y^2) + xe^{2\arctan\frac{x}{y}} \neq 0.$$

Se obține

$$y' = \frac{2ye^{\arctan \frac{x}{y}} - x(x^2 + y^2)}{y(x^2 + y^2) + xe^{2\arctan \frac{x}{y}}};$$

punctele critice sunt:

$$x_1 = \sqrt{\frac{e^{\frac{\pi}{2}}}{2}}, x_2 = -\sqrt{\frac{e^{\frac{\pi}{2}}}{2}}.$$

În aceste puncte  $y(x_1) = x_1$  şi  $y(x_2) = x_2$ . Se calculează  $y''(x_{1,2})$ , etc.

71. Să se calculeze y'(1), y fiind definită implicit de  $x^3 - y - \cos y = 0$ . Soluție

Condiția de existență este  $\sin y - 1 \neq 0$ ; derivând relația dată, rezultă  $y'(x) = \frac{3x^2}{1-\sin y}$ .

151

72. Să se calculeze y'(0) și y''(0), unde y este definită implicit de ecuația

$$e^{x^2 - y^2} = \sin(x + 2y) + 1.$$

### Soluție

Se derivează ecuația dată în raport cu x.

73. Să se calculeze derivatele parțiale de ordinul întâi în punctul (1,1) ale funcției z definite implicit de

$$2z = \sqrt{x^2 + y^2} \operatorname{tg} \frac{z}{\sqrt{x^2 + y^2}}.$$

#### Soluție

Se derivează relația dată în raport cu x și y.

**74.** Fie  $G \in \mathcal{C}^{\infty}(\mathbb{R}^3)$  și fie z = z(x,y) definită implicit de relația

$$z + G(x, y, z) = 0.$$

Să se calculeze derivatele parțiale de ordinul întâi ale lui z.

### Soluție

Derivând în raport cu x, se obține:

$$\frac{\partial z}{\partial x} + \frac{\partial G}{\partial x} + \frac{\partial G}{\partial y} + \frac{\partial G}{\partial z} \frac{\partial z}{\partial x} = 0.$$

75. Să se calculeze x'(0) și y'(0), funcțiile x și y fiind definite implicit de sistemul de ecuații:

$$\begin{cases} xy + 2y^2 + yz + x + y &= 1\\ \arctan \frac{x}{y} + \ln(x^2 + 2y^2 + z^2) &= \ln 2 \end{cases}.$$

Se derivează relațiile date în funcție de z.

76. Să se determine extremele următoarelor funcții definite implicit:

**a.** y=y(x), definită de  $2yx^2+y^2-4x-3=0$ . **b.** y=y(x) definită de  $(x^2+y^2)^2=x^2-y^2$ . **c.** z=z(x,y), definită de  $x^2+y^2+z^2-xz-yz+2x+2y+2z-2=0$ .

## Soluție

Aceeași metodă ca în exercițiul 70.

# 4.6 Extreme cu legături

77. Să se determine extremele locale ale funcției f(x, y, z) = xyz cu legătura x + y + z = 1.

# Soluţie

Se aplică metoda multiplicatorilor lui Lagrange. Fie funcțiile g(x,y,z)=x+y+z-1 și  $F(x,y,z)=f+\lambda g=xyz+\lambda(x+y+z-1)$ . Extremele cerute verifică sistemul:

$$\begin{cases} \frac{\partial F}{\partial x} &= 0\\ \frac{\partial F}{\partial y} &= 0\\ \frac{\partial F}{\partial z} &= 0\\ g &= 0 \end{cases} \Rightarrow \begin{cases} yz + \lambda &= 0\\ xz + \lambda &= 0\\ xy + \lambda &= 0\\ x + y + z - 1 &= 0 \end{cases}$$

Soluțiile sistemului sunt:

pentru 
$$\lambda_1 = -\frac{1}{9} \Rightarrow (x_1, y_1, z_1) = \left(\frac{1}{3}, \frac{1}{3}, \frac{1}{3}\right)$$
  
pentru  $\lambda_2 = 0 \Rightarrow \begin{cases} (x_2, y_2, z_2) &= (1, 0, 0), \\ (x_3, y_3, z_3) &= (0, 1, 0), \\ (x_4, y_4, z_4) &= (0, 0, 1) \end{cases}$ 

Pentru a decide natura celor patru puncte critice, se calculează diferențiala a doua a funcției F:

$$d^{2}F = \frac{\partial^{2}F}{\partial x^{2}}dx^{2} + \frac{\partial^{2}F}{\partial y^{2}}dy^{2} + \frac{\partial^{2}F}{\partial z^{2}}dz^{2} + \frac{\partial^{2}F}{\partial x\partial y}dxdy + \frac{\partial^{2}F}{\partial x\partial z}dxdz + \frac{\partial^{2}F}{\partial y\partial z}dydz =$$

$$= 2\left(zdxdy + ydxdz + xdydz\right).$$

Pe legătură, avem dg=0, adică dx+dy+dz=0. Rezultă deci că restricția lui  $d^2F$  la legătura g=0 este:

$$d^{2}F = 2((1 - x - y)dxdy + ydx(-dx - dy) + xdy(-dx - dy)) =$$

$$= 2(-ydx^{2} - xdy^{2} + (1 - 2x - 2y)dxdy).$$

În punctul  $(x_1, y_1, z_1) = \left(\frac{1}{3}, \frac{1}{3}, \frac{1}{3}\right)$  se obține:

$$d^{2}F\left(\frac{1}{3},\frac{1}{3},\frac{1}{3}\right) = -\frac{2}{3}\left(dx^{2} + dxdy + dy^{2}\right),$$

care este o formă pătratică negativ definită și deci  $(x_1, y_1, z_1) = \left(\frac{1}{3}, \frac{1}{3}, \frac{1}{3}\right)$  este maxim local al funcției f cu legătura g = 0.

Celelalte puncte nu sunt puncte de extrem; de exemplu, în (1,0,0), rezultă

153

 $d^2F(1,0,0)=-2dy^2-2dxdy$ , care are valorile proprii  $-1\pm\sqrt{2}$ , etc. Se poate studia și semnul diferenței f(x,y,z)-f(1,0,0) într-o vecinătate a punctului (1,0,0), restricționată la planul x+y+z=1.

**78.** Să se calculeze valorile extreme ale funcției f(x,y,z)=x+y+z restricționate la  $\Gamma=\{(x,y,z)|x^2+y^2+z^2=1,\,2x+2y+z=1\}.$ 

# Soluţie

Intersecția dintre sferă și plan este un cerc deci o mulțime compactă. Funcția f fiind continuă, rezultă că este mărginită (pe  $\Gamma$ ) și își atinge marginile. Există deci  $\alpha$  și  $\beta$  în  $\Gamma$  astfel încât  $f(\alpha) = \inf_{\Gamma} f$  și  $f(\beta) = \sup_{\Gamma} f$ . Pentru a determina aceste valori, se aplică metoda multiplicatorilor lui Lagrange. Fie  $g(x,y,z) = x^2 + y^2 + z^2 - 1$ , h(x,y,z) = 2x + 2y + z - 1 și fie  $F(x,y,z) = x + y + z + \lambda(x^2 + y^2 + z^2 - 1) + \mu(2x + 2y + z - 1)$ . Se determină punctele critice ale funcției F cu legăturile date:

$$\begin{cases} \frac{\partial F}{\partial x} = 1 + 2\lambda x + 2\mu = 0\\ \frac{\partial F}{\partial y} = 1 + 2\lambda y + 2\mu = 0\\ \frac{\partial F}{\partial z} = 1 + 2\lambda z + \mu = 0 \Rightarrow\\ g = x^2 + y^2 + z^2 - 1 = 0\\ h = 2x + 2y + z - 1 = 0 \end{cases}$$

$$\Rightarrow \begin{cases} \lambda_1 = -\frac{1}{4} & \mu_1 = -\frac{1}{2} & (x_1, y_1, z_1) = (0, 0, 1) \\ \lambda_2 = \frac{1}{4} & \mu_2 = -\frac{11}{18} & (x_2, y_2, z_2) = \left(\frac{4}{9}, \frac{4}{9}, -\frac{7}{9}\right) \end{cases}$$

Având numai două puncte critice, într-unul dintre ele funcția va lua valoarea maximă, iar în celălalt, valoarea minimă. Se calculează f(0,0,1)=1 (maxim) și  $f(\frac{4}{9},\frac{4}{9},-\frac{7}{9})=\frac{1}{9}$  (minim).

79. Să se determine extremele globale ale funcției

$$f(x, y, z) = 2x^2 + 2y^2 - xy + z^4 - 2z^2$$

pe mulțimea compactă  $\Gamma = \{(x, y, z) | x^2 + y^2 + 2z^2 \le 8\}.$ 

# Soluţie

Se determină mai întâi extremele locale ale lui f pe interiorul lui  $\Gamma$  (care este o mulțime deschisă), apoi se determină extremele lui f cu legătura  $x^2+y^2+2z^2=8$ .

Punctele critice ale lui f din mulțimea  $\{(x,y,z)|x^2+y^2+2z^2<8\}$  sunt

soluțiile sistemului:

$$\begin{cases} \frac{\partial f}{\partial x} = 4x - y = 0\\ \frac{\partial f}{\partial y} = 4y - x = 0\\ \frac{\partial f}{\partial z} = 4z^3 - 4z = 0 \end{cases} \Rightarrow \begin{cases} (x_1, y_1, z_1) = (0, 0, 0)\\ (x_2, y_2, z_2) = (0, 0, 1)\\ (x_3, y_3, z_3) = (0.0 - 1) \end{cases}$$

Matricea hessiană într-un punct arbitrar este  $\begin{pmatrix} 4 & -1 & 0 \\ -1 & 4 & 0 \\ 0 & 0 & 12z^2 - 4 \end{pmatrix}$ . În

punctul (0,0,0) matricea hessiană are și valori proprii pozitive și negative, deci originea nu este extrem local. În (0,0,1) şi (0,0,-1) matricea hessiană are toate valorile proprii pozitive, deci acestea sunt amândouă minime locale. Valoarea funcției în aceste puncte este f(0,0,1) = f(0,0,-1) = -1. Se determină acum extremele locale ale lui f cu legătura

$$g(x, y, z) = x^2 + y^2 + 2z^2 - 8 = 0.$$

Fie 
$$F(x,y,z)=2x^2+2y^2-xy+z^4-2z^2+\lambda(x^2+y^2+2z^2-8)$$
. Se rezolvă sistemul: 
$$\begin{cases} \frac{\partial F}{\partial x}=&4x-y+2\lambda x=&0\\ \frac{\partial F}{\partial y}=&4y-x+2\lambda y=&0\\ \frac{\partial F}{\partial z}=&4z^3-4z+4\lambda z=&0\\ g=&x^2+y^2+2z^2-8=&0 \end{cases}$$

Din primele două ecuații rezultă x=y sau  $\lambda=-\frac{5}{2}$ . Cazul x=y conduce la soluțiile:

$$\begin{array}{l} \lambda_1 = -3, (x_1, y_1, z_1) = (0, 0, \pm 2), \\ \lambda_{2,3} = -\frac{3}{2}, (x_2, y_2, z_2) = \left(\sqrt{\frac{3}{2}}, \sqrt{\frac{3}{2}}, \pm \sqrt{\frac{5}{2}}\right), (x_3, y_3, z_3) = \left(-\sqrt{\frac{3}{2}}, -\sqrt{\frac{3}{2}}, \pm \sqrt{\frac{5}{2}}\right). \\ \hat{\text{In aceste puncte funcția } f \text{ ia valorile:} \end{array}$$

$$f(0,0,\pm 2) = 8, \ f\left(\sqrt{\frac{3}{2}},\sqrt{\frac{3}{2}},\pm\sqrt{\frac{5}{2}}\right) = f\left(-\sqrt{\frac{3}{2}},-\sqrt{\frac{3}{2}},\pm\sqrt{\frac{5}{2}}\right) = \frac{23}{4}.$$

Cazul  $\lambda=-\frac{5}{2}$  conduce la sistemul  $\begin{cases} x+y&=&0\\ x^2+y^2+2z^2&=&8 \text{ cu soluțiile:}\\ z(2z^2-7)&=&0 \end{cases}$ 

$$(x_4, y_4, z_4) = (2, -2, 0), (x_5, y_5, z_5) = (-2, 2, 0)$$

$$(x_6, y_6, z_6) = \left(\frac{\sqrt{2}}{2}, -\frac{\sqrt{2}}{2}, \pm\sqrt{\frac{7}{2}}\right)(x_7, y_7, z_7) = \left(-\frac{\sqrt{2}}{2}, \frac{\sqrt{2}}{2}, \pm\sqrt{\frac{7}{2}}\right).$$

În aceste puncte funcția f ia valorile:

$$f(2,-2,0) = f(-2,2,0) = 20,$$

$$f\left(\frac{\sqrt{2}}{2}, -\frac{\sqrt{2}}{2}, \pm\sqrt{\frac{7}{2}}\right) = f\left(-\frac{\sqrt{2}}{2}, \frac{\sqrt{2}}{2}, \pm\sqrt{\frac{7}{2}}\right) = \frac{33}{4}$$
.  
Comparând valorile funcției  $f$ , rezultă că valoarea minimă a funcției (pe

multimea  $\Gamma$ ) este f(0,0,1) = f(0,0,-1) = -1, iar valoarea maximă este f(2,-2,0) = f(-2,2,0) = 20.

80. Să se determine maximul și minimul funcției

$$f(x,y) = x^2 + y^2 - 3x - 2y + 1$$

pe mulțimea  $K = \{(x,y) \in \mathbb{R}^2 \mid x^2 + y^2 \le 1\}.$ 

#### Soluție

Funcția își atinge marginile pe mulțimea K. Determinăm mai întâi extremele funcției pe mulțimea deschisă  $\{(x,y) \in \mathbb{R}^2 \mid x^2 + y^2 < 1\}$ . Sistemul

$$\begin{cases} \frac{\partial f}{\partial x} = 2x - 3 = 0\\ \frac{\partial f}{\partial y} = 2y - 2 = 0 \end{cases}$$

nu are soluții în interiorul cercului unitate. Rezultă că valorile extreme se vor atinge pe cerc. Pentru a le determina, aflăm extremele funcției f cu legătura  $g(x,y) = x^2 + y^2 - 1 = 0$ . Funcția lui Lagrange este

$$F(x,y) = x^2 + y^2 - 3x - 2y + 1 + \lambda(x^2 + y^2 - 1),$$

şi deci rezultă sistemul

$$\begin{cases} \frac{\partial F}{\partial x} = 2x - 3 + 2\lambda x = 0\\ \frac{\partial F}{\partial y} = 2y - 2 + 2\lambda y = 0\\ g(x, y) = x^2 + y^2 - 1 = 0 \end{cases}$$

Soluțiile sunt:

Sordyme Same 
$$\begin{array}{l} \lambda_1=-1-\frac{\sqrt{13}}{2},\,x_1=-\frac{3\sqrt{13}}{13},\,y_1=-\frac{2\sqrt{13}}{13}\\ \lambda_2=-1+\frac{\sqrt{13}}{2},\,x_2=\frac{3\sqrt{13}}{13},\,y_2=\frac{2\sqrt{13}}{13}.\\ \text{Calculând valorile funcției }f \text{ în aceste puncte se obțin valorile extreme} \end{array}$$

cerute.

**81.** Fie  $D = \{(x,y)|x+y=1\}$ . Să se determine extremele locale ale funcției  $f: D \mapsto R, f(x,y) = x^2 + y^2 - x - y$ .

# Soluție

Se aplică metoda multiplicatorilor lui Lagrange.

Fie legătura g(x,y) = x + y - 1 și fie

$$F(x,y) = f(x,y) + \lambda g(x,y) = x^2 + y^2 - x - y + \lambda(x+y-1).$$

Sistemul 
$$\begin{cases} \frac{\partial F}{\partial x} = & 2x - 1 + \lambda = & 0 \\ \frac{\partial F}{\partial y} = & 2y - 1 + \lambda = & 0 \text{ are soluțiile } \lambda = 0, (x,y) = \left(\frac{1}{2},\frac{1}{2}\right) \\ g = & x + y - 1 = 0 \end{cases}$$
 Matricea hessiană a funcției  $F$  (într-un punct arbitrar, deci și pe  $D$ ) este

Matricea hessiană a funcției F (într-un punct arbitrar, deci și pe D) este  $\begin{pmatrix} 2 & 0 \\ 0 & 2 \end{pmatrix}$ , deci punctul  $\begin{pmatrix} \frac{1}{2}, \frac{1}{2} \end{pmatrix}$  este minim local.

82. Să se determine punctele cele mai depărtate de origine care se găsesc pe suprafața de ecuație  $4x^2 + y^2 + z^2 - 8x - 4y + 4 = 0$ .

# Soluţie

Problema este echivalentă cu a găsi extremele funcției

$$f(x, y, z) = x^2 + y^2 + z^2$$

cu legătura  $q(x, y, z) = 4x^2 + y^2 + z^2 - 8x - 4y + 4 = 0$ .

83. Să se determine valorile extreme ale funcției

$$f: R^3 \mapsto R, f(x, y, z) = 2x^2 + y^2 + 3z^2$$

pe mulțimea  $\{(x, y, z) \in R^3 | x^2 + y^2 + z^2 = 1\}.$ 

# Soluţie

Se aplică metoda multiplicatorilor lui Lagrange; fie

$$g(x,y,z) = x^{2} + y^{2} + z^{2} - 1 \text{ si } F(x,y,z) = f(x,y,z) + \lambda g(x,y,z).$$

$$\begin{cases} \frac{\partial F}{\partial x} = & 2(2+\lambda)x = & 0\\ \frac{\partial F}{\partial y} = & 2(1+\lambda)y = & 0\\ \frac{\partial F}{\partial z} = & 2(3+\lambda)z = & 0\\ g = & x^{2} + y^{2} + z^{2} - 1 = 0 \end{cases} \text{ are soluțiile}$$

$$\lambda_{1} = -1, (x,y,z) \in \{(0,1,0); (0,-1,0)\},$$

$$\lambda_{2} = -2, (x,y,z) \in \{(1,0,0); (-1,0,0)\}.$$

Sfera unitate este mulțime compactă, deci funcția f iși atinge marginile; rezultă  $f_{\min} = f(0, 1, 0) = 1$  și  $f_{\max} = f(0, 0, 1) = 3$ .

 $\lambda_3 = -3, (x, y, z) \in \{(0, 0, 1); (0, 0, -1)\}.$ 

84. Să se determine valorile extreme ale produsului xy când x şi y sunt coordonatele unui punct de pe elipsa de ecuație  $x^2 + 2y^2 = 1$ . Soluție

Problema este echivalentă cu a găsi valorile extreme ale funcției f(x,y) = xycu legătura  $q(x, y) = x^2 + 2y^2 - 1$ .

Considerăm funcția  $F(x,y) = xy + \lambda(x^2 + 2y^2 - 1)$ . Din sistemul:

$$\begin{cases} \frac{\partial F}{\partial x} = y + 2\lambda x = 0\\ \frac{\partial F}{\partial y} = x + 4\lambda y = 0\\ g = x^2 + 2y^2 - 1 = 0 \end{cases}$$

rezultă  $\lambda = \pm \frac{\sqrt{2}}{4}$ .

Pentru  $\lambda = \frac{\sqrt{2}}{4}$ , rezultă:

$$(x_1, y_1) = \left(\frac{\sqrt{2}}{2}, -\frac{1}{2}\right)$$
 și  $(x_2, y_2) = \left(-\frac{\sqrt{2}}{2}, \frac{1}{2}\right)$ .

Pentru  $\lambda = -\frac{\sqrt{2}}{4}$ , rezultă:

$$(x_3, y_3) = \left(\frac{\sqrt{2}}{2}, \frac{1}{2}\right)$$
 şi  $(x_4, y_4) = \left(-\frac{\sqrt{2}}{2}, -\frac{1}{2}\right)$ .

Valorile extreme ale funcției continue f pe elipsă (care este mulțime compactă) sunt:  $f(x_1, y_1) = -\frac{\sqrt{2}}{4}$  (minim) și  $f(x_3, y_3) = \frac{\sqrt{2}}{4}$  (maxim).

**85.** Fie  $a, b, c \in R$ ,  $a^2 + b^2 + c^2 \neq 0$ ; să se determine valorile extreme ale funcției

$$f: \mathbb{R}^3 \mapsto \mathbb{R}, \ f(x, y, z) = ax + by + cz,$$

pe mulțimea  $D = \{(x, y, z) \in \mathbb{R}^3 \ | \ x^2 + y^2 + z^2 = r^2 \}.$ 

# Solutie

Se aplică metoda multiplicatorilor lui Lagrange.

Fie 
$$g(x, y, z) = x^2 + y^2 + z^2 - r^2$$
 și  $F(x, y, z) = f(x, y, z) - \lambda g(x, y, z)$ 

Mulțimea D este compactă. Deoarece f este continuă, rezultă că f este își atinge marginile pe D. In concluzie, f are cel puţin un punct de minim global condițonat de g și un punct de maxim global condițonat de g.

Sistemul

$$\begin{cases} \frac{\partial F}{\partial x} = & a - 2\lambda x = & 0\\ \frac{\partial F}{\partial y} = & b - 2\lambda y = & 0\\ \frac{\partial F}{\partial z} = & c - 2\lambda z = & 0\\ g = & x^2 + y^2 + z^2 - r^2 = & 0 \end{cases}$$

are soluțiile  $\lambda=\pm\frac{\sqrt{a^2+b^2+c^2}}{2r},\;(x,y,z)=\left(\frac{a}{2\lambda},\frac{b}{2\lambda},\frac{c}{2\lambda}\right).$  Deoarece f are cel puțin două puncte de extrem globale pe D, deducem că valoarile extreme ale lui f sunt  $\pm r \sqrt{a^2 + b^2 + c^2}$ .

86. Să se determine extremele funcției

$$f: R^3 \mapsto R, f(x, y, z) = xyz$$

pe mulțimea 
$$\{(x, y, z) \in R^3 | x^2 + y^2 + z^2 = 1, x + y + z = 0\}$$
 Solutie

Fie 
$$g(x, y, z) = x^2 + y^2 + z^2 - 1$$
,  $h(x, y, z) = x + y + z$  şi  $F(x, y, z) = f(x, y, z) + \lambda g(x, y, z) + \mu h(x, y, z)$ 

$$\begin{cases} \frac{\partial F}{\partial x} = & yz + 2\lambda x + \mu = & 0\\ \frac{\partial F}{\partial y} = & xz + 2\lambda y + \mu = & 0\\ \frac{\partial F}{\partial z} = & xy + 2\lambda z + \mu = & 0 \text{ are soluţiile}\\ g = & x^2 + y^2 + z^2 - 1 = & 0\\ h = & x + y + z = & 0 \end{cases}$$

maxim în care f are valoarea  $\frac{1}{3\sqrt{6}}$ .

87. Funcția z = z(x, y) este definită implicit de ecuația

$$x^2 + y^2 + z^2 - 2x + 2y - 4z - 10 = 0.$$

Să se determine extremele locale ale lui z cu legătura x=0.

### Soluție

Fie 
$$F(x,y,z)=z(x,y)+\lambda x$$
. Se obţine sistemul: 
$$\begin{cases} \frac{\partial z}{\partial x}+\lambda &= \frac{1-x}{z-2}+\lambda\\ \frac{\partial z}{\partial y} &= -\frac{1+y}{z-2}\\ x &= 0\\ x^2+y^2+z^2-2x+2y-4z-10 &= 0 \end{cases}$$

Soluțiile sunt  $(x_1, y_1, z_1) = (0, -1, 2 + \sqrt{15})$  și  $(x_2, y_2, z_2) = (0, -1, 2 - \sqrt{15})$ . Calculându-se diferențiala a doua a funcției F (pe legătură) se obține

$$D^2F = \frac{\partial^2 z}{\partial y^2} \, dy^2.$$

Rezultă că funcția  $z_1$  are un maxim în (0,-1) iar funcția  $z_2$  are un minim  $\hat{n}$  (0,-1).

88. Să se determine extremele funcției  $f(x,y,z) = x^3 + y^3 + z^3$  pe mulţimea  $\{(x, y, z) \in \mathbb{R}^3 \mid x^2 + y^2 + z^2 = 1\}.$ 

# Solutie

Funcția f este continuă, iar mulțimea dată este compactă, deci există cel puțin doua puncte de extrem (în care f își atinge valorile extreme). Fie

159

 $F(x,y,z) = x^3 + y^3 + z^3 + \lambda(x^2 + y^2 + z^2 - 1)$ ; rezultă sistemul sistemul

$$\begin{cases} \frac{\partial F}{\partial x} = 3x^2 + 2\lambda x &= 0\\ \frac{\partial F}{\partial y} = 3y^2 + 2\lambda y &= 0\\ \frac{\partial F}{\partial z} = 3z^2 + 2\lambda z &= 0\\ x^2 + y^2 + z^2 - 1 &= 0 \end{cases}$$

Sistemul format din primele trei ecuații are soluțiile x=y=z=0 și  $x=y=z=-\frac{2}{3}\lambda$ . Prima soluție nu verifică ultima ecuație; cea de a doua, înlocuită în ultima ecuație dă  $\lambda_1=\frac{\sqrt{3}}{2}$  și  $\lambda_2=-\frac{\sqrt{3}}{2}$ . Se obțin soluțiile  $x_1=y_1=z_1=\frac{\sqrt{3}}{3}$  și  $x_2=y_2=z_2=-\frac{\sqrt{3}}{3}$ . Calculând valorile funcției f în aceste puncte, rezultă valorile extreme ale lui f.

89. Să se calculeze extremele următoarelor funcții pe mulțimile indicate:

**a.** 
$$f(x,y) = e^{xy}$$
,  $(x,y) \in \mathbb{R}^2$ ,  $x + y = 3$ .

**b.** 
$$f(x,y,z) = x + y + z$$
,  $(x,y,z) \in R^3$ ,  $x^2 + y^2 + z^2 = 4$ ,  $x - y + z = 0$ .

# Soluție

Se aplică metoda multiplicatorilor lui Lagrange.

**90.** Să se determine valorile extreme ale funcției  $f(x,y) = \ln(x^2+y^2)-xy$  pe mulțimea  $\{(x,y) \in \mathbb{R}^2 \mid x^2+y^2 \leq 16, y \geq 2\}.$ 

#### Solutie

Se determină mai întâi extremele (libere) pe mulțimea deschisă

$$\{(x,y) \in \mathbb{R}^2 \mid x^2 + y^2 < 16, y > 2\}.$$

Apoi se rezolvă două probleme de extrem cu legături, legăturile fiind

$$x^2 + y^2 = 16$$
 şi respectiv  $y = 2$ .

**91.** Fie matricea (simetrică de ordinul n),

$$A = (a_{ij})_{ij}, \ a_{ij} = a_{ji}, \ \forall i, j \in \{1, 2, ..., n\}.$$

Să se determine valorile extreme ale funcției (formei pătratice)

$$f(x_1, x_2, ..., x_n) = \sum_{i,j=1}^{n} a_{ij} x_i x_j$$

pe sfera 
$$x_1^2 + x_2^2 + \dots + x_n^2 = 1$$
.

### Soluție

Construim funcția lui Lagrange

$$F(x_1, x_2, ..., x_n) = f(x_1, x_2, ..., x_n) - \lambda(x_1^2 + x_2^2 + ... x_n^2 - 1).$$

Rezultă sistemul:

$$\begin{cases} \frac{\partial F}{\partial x_1} &= \frac{\partial f}{\partial x_1} - 2\lambda x_1 = 0\\ \frac{\partial F}{\partial x_2} &= \frac{\partial f}{\partial x_2} - 2\lambda x_2 = 0\\ \dots\\ \frac{\partial F}{\partial x_n} &= \frac{\partial f}{\partial x_n} - 2\lambda x_n = 0\\ \frac{\partial F}{\partial \lambda} &= 1 - (x_1^2 + x_2^2 + \dots + x_n^2) = 0 \end{cases}$$

Sistemul se scrie sub forma echivalentă:

$$\begin{cases}
(a_{11} - \lambda)x_1 + a_{12}x_2 + \dots + a_{1n}x_n &= 0 \\
a_{21}x_1 + (a_{22} - \lambda)x_2 + \dots + a_{2n}x_n &= 0 \\
\dots & \dots & \dots \\
a_{n1}x_1 + a_{n2}x_2 + \dots + (a_{nn} - \lambda)x_n &= 0 \\
x_1^2 + x_2^2 + \dots + x_n^2 &= 1
\end{cases}$$

Evident, sistemul liniar (format din primele n ecuații) are soluții nenule dacă şi numai dacă  $\lambda$  este valoare proprie a matricei A (valorile proprii sunt reale deoarece A este matrice simetrică). În acest caz, pentru a calcula valorile extreme ale funcției f, se îmulțește prima ecuație de mai sus cu  $x_1$ , a doua cu  $x_2$ , ş.a.m.d., a n-a ecuație cu  $x_n$  și se adună membru cu membru cele n relații obținute; rezultă:

$$f(x_1, x_2, ..., x_n) - \lambda(x_1^2 + x_2^2 + ... + x_n^2) = 0$$

În concluzie, pe sfera unitate are loc egalitatea  $f(x_1, x_2, ..., x_n) = \lambda$ . Rezultă că valorile minimă şi maximă ale funcției f sunt cea mai mică şi (respectiv) cea mai mare valoare proprie ale matricei A.

# Capitolul 5

# Integrale improprii şi cu parametri

# 5.1 Noţiuni teoretice

# Integrale improprii

Fie  $a,b\in R$  și fie  $f:[a,b)\mapsto R$  o funcție local integrabilă (integrabilă pe orice interval compact  $[u,v]\subseteq [a,b)$ ). Integrala improprie (în b)  $\int_a^b f(x)dx$  se numește convergentă dacă limita

$$\lim_{t \to b} \int_{a}^{t} f(x) dx$$

există și este finită; altfel, integrala se numește divergentă. Dacă  $f:[a,\infty)\mapsto R$  este local integrabilă, atunci integrala improprie (la  $\infty$ )  $\int_a^\infty f(x)dx$  se numește convergentă dacă limita

$$\lim_{t \to \infty} \int_{a}^{t} f(x) dx$$

există și este finită.

Integrala improprie  $\int_a^b f(x)dx$  (b poate fi şi  $\infty$ ) se numeşte absolut convergentă dacă integrala  $\int_a^b |f(x)|\,dx$  este convergentă.

# Exemple

a. Fie  $a \in (0, \infty)$  și  $\alpha \in R$ . Atunci integrala  $\int_a^\infty \frac{dx}{x^\alpha}$  este convergentă dacă și

numai dacă  $\alpha > 1$ .

**b.** Fie  $a, b \in R$ , a < b şi  $\alpha \in R$ . Atunci integrala  $\int_{-\infty}^{b} \frac{dx}{(b-x)^{\alpha}}$  este convergentă dacă și numai dacă  $\alpha < 1$ .

# **Demonstratie**

**a.** Fie  $\alpha \neq 1$ ; atunci:

$$\lim_{t\to\infty}\int_a^t\frac{1}{x^\alpha}dx=\lim_{t\to\infty}\left(\frac{t^{1-\alpha}}{1-\alpha}-\frac{a^{1-\alpha}}{1-\alpha}\right)<\infty \text{ dacă și numai dacă }\alpha>1.$$

Dacă  $\alpha = 1$ , atunci:

$$\lim_{t \to \infty} \int_a^t \frac{1}{x} dx = \lim_{t \to \infty} (\ln t - \ln a) = \infty.$$

**b.** Analog.

# Criterii de convergență

# Criteriul lui Cauchy

Fie  $f:[a,b)\mapsto R$ , local integrabilă; atunci integrala  $\int_a^b f(t)dt$  este convergentă dacă și numai dacă  $\forall \varepsilon>0, \exists \, b_\varepsilon\in [a,b)$  astfel încât  $\forall x,y\in (b_\varepsilon,b)$  să rezulte  $\left| \int_{x}^{y} f(t)dt \right| < \varepsilon$ .

Criteriul de comparație Fie  $f,g:[a,b)\mapsto R,$   $(b \text{ poate fi și }\infty)$  astfel încât  $0\leq f\leq g;$  i. dacă integrala  $\int_a^b g(x)dx$  este convergentă, atunci și integrala  $\int_a^b f(x)dx$ 

ii. dacă integrala  $\int_a^b f(x)dx$  este divergentă, atunci și integrala  $\int_a^b g(x)dx$ 

# Criteriul de comparație la limită

Fie  $f, g: [a, b) \mapsto [0, \infty)$  astfel încât există limita:

$$\ell = \lim_{x \to b} \frac{f(x)}{g(x)}.$$

i. Dacă  $\ell \in [0, \infty)$  și  $\int_a^b g(x)dx$  este convergentă, atunci și  $\int_a^b f(x)dx$  este

ii. Dacă  $\ell \in (0,\infty)$  sau  $\ell = \infty$  și  $\int_a^b g(x)dx$  este divergentă, atunci și

### 5.1. NOTIUNI TEORETICE

163

 $\int_{a}^{b} f(x)dx \text{ este divergent } a.$ 

Criteriul de comparație cu  $\frac{1}{x^{\alpha}}$ Fie  $a \in R$  și  $f: [a, \infty) \mapsto [0, \infty)$ , local integrabilă astfel încât există

$$\ell = \lim_{x \to \infty} x^{\alpha} f(x).$$

i. Dacă  $\alpha > 1$  și  $0 \le \ell < \infty$ , atunci  $\int_{-\infty}^{\infty} f(x) dx$  este convergentă.

ii. Dacă  $\alpha \leq 1$  și  $0 < \ell \leq \infty$ , atunci  $\int_{a}^{\infty} f(x) dx$  este divergentă.

Criteriul de comparație cu  $\frac{1}{(b-x)^{\alpha}}$ 

Fie a < b și  $f: [a, b) \mapsto [0, \infty)$ , local integrabilă astfel încât există

$$\ell = \lim_{x \to b} (b - x)^{\alpha} f(x).$$

i. Dacă  $\alpha < 1$  și  $0 \le \ell < \infty$ , atunci  $\int_{0}^{\delta} f(x) dx$  este convergentă.

ii. Dacă  $\alpha \geq 1$  și  $0 < \ell \leq \infty$ , atunci  $\int_{a}^{b} f(x) dx$  este convergentă.

# Criteriul lui Abel

Fie  $f, g: [a, \infty) \mapsto R$  cu proprietățile:

f este de clasă  $\mathcal{C}^1$ ,  $\lim_{x\to\infty} f(x) = 0$ ,  $\int_a^\infty f'(x)dx$  absolut convergentă, g este continuă, iar funcția  $G(x) = \int_a^x f(t)dt$  este mărginită pe  $[a,\infty)$ . Atunci integrala  $\int_{-\infty}^{\infty} f(x)g(x)dx$  este convergentă.

### Integrale cu parametri

Fie  $A \neq \emptyset$  şi  $[a,b] \subset R$  un interval compact. Fie  $f: [a,b] \times A \mapsto R$  o funcție (de două variabile reale) astfel încât pentru orice  $y \in A$  aplicația  $[a,b] \ni x \mapsto f(x,y) \in R$  este integrabilă Riemann. Funcția definită prin:

$$F: A \mapsto R, \ F(y) = \int_a^b f(x, y) dx,$$

se numește integrală cu parametru.

# Continuitatea integralei cu parametru

Dacă  $f:[a,b]\times A\mapsto R$  este continuă, atunci integrala cu parametru  $F(y)=\int_a^b f(x,y)dx$  este funcție continuă.

# Formula lui Leibniz de derivare

Fie  $f:[a,b]\times(c,d)\mapsto R$  o funcție continuă astfel încât derivata parțială  $\frac{\partial f}{\partial y}$  există și este continuă pe  $[a,b]\times(c,d)$ . Atunci integrala cu parametru  $F(y)=\int_a^b f(x,y)dx$  este derivabilă și

$$F'(y) = \int_a^b \frac{\partial f}{\partial y}(x, y) dx, \ \forall y \in (c, d).$$

# Formula generală de derivare

Fie  $f:[a,b]\times(c,d)\mapsto R$  o funcție continuă astfel încât derivata parțială  $\frac{\partial f}{\partial y}$  există și este continuă pe  $[a,b]\times(c,d)$  și fie  $\varphi$ ,  $\phi:(c,d)\mapsto[a,b)$  două funcții de clasă  $\mathcal{C}^1$ . Atunci funcția  $G(y)=\int_{\varphi(y)}^{\phi(y)}f(x,y)dx$  este derivabilă și:

$$G'(y) = \int_{\varphi(y)}^{\phi(y)} \frac{\partial f}{\partial y}(x, y) dx + f(\phi(y), y) \phi'(y) - f(\varphi(y), y) \varphi'(y), \ \forall \ y \in (c, d).$$

#### Schimbarea ordinei de integrare

Fie  $f: [a,b] \times [c,d] \mapsto R$  o funcție continuă; atunci:

$$\int_{a}^{b} \left( \int_{c}^{d} f(x, y) dy \right) dx = \int_{c}^{d} \left( \int_{a}^{b} f(x, y) dx \right) dy.$$

# Integrale improprii cu parametri

Fie  $f:[a,b)\times A\mapsto R$  o funcție cu proprietatea că pentru orice  $y\in A$ , aplicația  $[a,b)\ni x\mapsto f(x,y)\in R$  este local integrabilă și integrala (improprie)  $\int_a^b f(x,y)dx$  converge. Se poate defini în acest caz funcția

$$F(x,y) = \int_{a}^{b} f(x,y)dx,$$

numită integrală improprie cu parametru.

Integrala  $\int_a^b f(x,y)dx$  se numește uniform convergentă (în raport cu y) pe mulțimea A dacă

$$\forall \varepsilon > 0, \ \exists b_{\varepsilon} \in (a,b) \text{ astfel încât } \left| \int_{t}^{b} f(x,y) dx \right| < \varepsilon, \ \forall t \in (b_{\varepsilon},b), \ \forall y \in A.$$

# Continuitatea integralei improprii cu parametru

Dacă  $f:[a,b)\times A\mapsto R$  este continuă și dacă integrala  $\int_a^b f(x,y)dx$  este uniform convergentă pe A, atunci funcția  $F:A\mapsto R,\ F(y)=\int_a^b f(x,y)dx$  este continuă.

# Derivarea integralei improprii cu parametru

Fie  $f:[a,b)\times(c,d)\mapsto R$  o funcție continuă astfel încât derivata parțială  $\frac{\partial f}{\partial y}$  există și este continuă pe  $[a,b)\times(c,d)$  și pentru orice  $y\in(c,d)$  fixat integrala  $\int_a^b f(x,y)dx$  este convergentă. Dacă integrala  $\int_a^b \frac{\partial f}{\partial y}(x,y)dx$  este uniform convergentă pe (c,d), atunci integrala improprie cu parametru  $F(y)=\int_a^b f(x,y)dx$  este derivabilă și

$$F'(y) = \int_a^b \frac{\partial f}{\partial y}(x, y) dx, \ \forall y \in (c, d).$$

#### Schimbarea ordinei de integrare în integrala improprie

Dacă  $f:[a,b)\times[c,d]\mapsto R$  este continuă și dacă integrala  $\int_a^b f(x,y)dx$  este uniform convergentă pe (c,d), atunci :

$$\int_{c}^{d} \left( \int_{a}^{b} f(x, y) dx \right) dy = \int_{a}^{b} \left( \int_{c}^{d} f(x, y) dy \right) dx.$$

# Criterii de uniform convergență Criteriul lui Cauchy

Fie  $f:[a,b)\times A\mapsto R$  o funcție cu proprietatea că pentru orice  $y\in A$ , aplicația  $[a,b)\ni x\mapsto f(x,y)\in R$  este local integrabilă. Atunci următoarele afirmații sunt echivalente:

i. integrala improprie  $\int_a^b f(x,y)dx$  este uniform convergentă pe A.

ii.  $\forall \varepsilon > 0, \exists b_{\varepsilon} \in (a,b)$  astfel încât pentru orice  $u, v \in (b_{\varepsilon},b)$  rezultă

$$\left| \int_{u}^{v} f(x, y) dx \right| < \varepsilon, \forall y \in A.$$

### Criteriul de comparație

Fie  $f:[a,b)\times A\mapsto R$  o funcție cu proprietatea că pentru orice  $y\in A$ , aplicația  $[a,b)\ni x\mapsto f(x,y)\in R$  este local integrabilă și fie  $g:[a,b)\mapsto R$ astfel încât  $|f(x,y)| \leq g(x), \forall x \in [a,b), \forall y \in A$ . Dacă integrala  $\int_a^b g(x)dx$ este convergentă, atunci integrala  $\int_a^b f(x,y)dx$  este uniform convergentă.

# Funcțiile lui Euler

Fie  $\Gamma$  şi B funcțiile (integralele) lui Euler:

$$\Gamma(\alpha) = \int_0^\infty x^{\alpha - 1} e^{-x} dx, \alpha > 0,$$
 
$$B(p, q) = \int_0^1 x^{p - 1} (1 - x)^{q - 1} dx, p > 0, q > 0.$$

# Proprietățile uzuale ale funcțiilor $\Gamma$ și B

**a.** 
$$\Gamma(1) = 1$$
.

**b.** 
$$\Gamma(\alpha+1)=\alpha\Gamma(\alpha)$$
.

**c.** 
$$B(p,q) = B(q,p)$$
.

c. 
$$B(p,q) = B(q,p)$$
.  
d.  $\Gamma(\alpha)\Gamma(1-\alpha) = \frac{\pi}{\sin(\alpha\pi)}, \forall \alpha \in (0,1)$ .

$$\mathbf{e.}\ B(p,q) = \frac{\Gamma(p)\Gamma(q)}{\Gamma(p+q)}.$$

**f.** 
$$B(p,q) = \int_{0}^{\infty} \frac{y^{p-1}}{(1+y)^{p+q}} dy.$$

g. 
$$\Gamma(n) = (n-1)!, \forall n \in \mathbb{N}.$$

**h.** 
$$\Gamma(\frac{1}{2}) = \sqrt{\pi}$$
.

g. 
$$\Gamma(n) = (n-1)!, \forall n \in N$$
.  
h.  $\Gamma(\frac{1}{2}) = \sqrt{\pi}$ .  
i.  $\Gamma(n+\frac{1}{2}) = 1 \cdot 3 \cdot 5....(2n-1) \cdot 2^{-n} \sqrt{\pi}$ .

#### 5.2 Integrale improprii

Aplicand criteriile de comparație cu  $\frac{1}{x^{\alpha}}$  și  $\frac{1}{(b-x)^{\alpha}}$ , să se studieze natura integralelor următoare (exercițiile 1-10):

$$\mathbf{1.} \int\limits_{1}^{\infty} \frac{dx}{\sqrt{x^2 + 1}}.$$

 $\lim_{x\to\infty} x^{\frac{1}{2}} \frac{1}{\sqrt{x^2+1}} = 1$ , deci integrala este divergentă.

**2.** 
$$\int_{0}^{1} \frac{x^2}{\sqrt{1-x^2}} dx$$
.

 $\lim_{x\to 1}(1-x)^{\frac{1}{2}}\frac{x^2}{\sqrt{1-x^2}}=\frac{1}{\sqrt{2}},$  deci integrala este convergentă.

3. 
$$\int_{0}^{1} \frac{\sin x}{1 - x^2} dx$$
.

 $\lim_{x\to 1} (1-x) \frac{\sin x}{1-x^2} = \frac{\sin 1}{2}$ , deci integrala este divergentă.

Următoarele integrale sunt improprii în ambele capete.

$$\mathbf{4.} \int\limits_{1}^{\infty} \frac{x}{\sqrt{x^3 - 1}} dx.$$

 $\lim_{x\to\infty}x^{\frac{7}{2}}\frac{x}{\sqrt{x^3-1}}=1$ , deci integrala este divergentă, (deși în x=1 integrala este convergentă).

$$5. \int_{1}^{\infty} \frac{\ln x}{\sqrt{x^3 - 1}} dx.$$

Soluţie Integrala este convergentă:  $\lim_{x\to 1} \frac{\ln x}{\sqrt{x^3-1}} = 0$ ,  $\lim_{x\to \infty} x^{1,1} \frac{\ln x}{\sqrt{x^3-1}} = 0$ .

$$\mathbf{6.} \int_{1}^{\infty} \frac{dx}{x\sqrt{x} - 1}.$$

Soluție  $\lim_{x\to\infty} x^{\frac{3}{2}} \frac{1}{x\sqrt{x}-1} = 1$ , deci integrala este convergentă la infinit, dar este divergentă în x=1:  $\lim_{x\to 1} (x-1) \frac{1}{x\sqrt{x}-1} = \frac{3}{2}$ , deci integrala este divergentă.

7. 
$$\int_{-1}^{\infty} \frac{x^{2n}e^{-x}}{\sqrt{1+x}} dx, n \in N.$$

# Soluţie

Integrala este convergentă pentru orice  $n \in N$ :

$$\lim_{x \to -1} (1+x)^{\frac{1}{2}} \frac{x^{2n} e^{-x}}{\sqrt{1+x}} = e,$$

$$\lim_{x \to \infty} x^2 \frac{x^{2n} e^{-x}}{\sqrt{1+x}} = 0.$$

8. 
$$\int_{1}^{\infty} \frac{dx}{x(\ln x)^{\alpha}}, \alpha > 0.$$

# Soluție

Cu schimbarea de variabilă  $\ln x = u$ , obținem integrala  $\int\limits_0^\infty \frac{du}{u^\alpha}$ , care este divergentă pentru orice  $\alpha > 0$ .

**9.** 
$$\int_{0}^{1} \frac{x^{m} - 1}{\ln x} dx, m \in N - \{0\}.$$

#### Soluție

Integrala este convergentă:

$$\lim_{x \to 0} x^{\frac{1}{2}} \frac{x^m - 1}{\ln x} = 0,$$

$$\lim_{x \to 1} (x - 1)^{\frac{1}{2}} \frac{x^m - 1}{\ln x} = 0.$$

10. 
$$\int_{0}^{\infty} \frac{\arctan(ax)}{x^m} dx, a > 0, m \in N - \{0\}.$$

#### Solutie

Dacă m=1, integrala este divergentă; dacă m>1, integrala este convergentă.

11. Să se arate că integrala  $\int\limits_0^\infty \frac{\sin x}{x} dx$  este convergentă, dar nu este absolut convergentă.

#### Soluție

Convergența ( la  $\infty$  ) rezultă aplicând criteriul lui Abel:  $f(x)=\frac{1}{x}$  și  $g(x)=\sin x$ . În 0 integrala este convergentă deoarece funcția  $\frac{\sin x}{x}$  se poate prelungi prin continuitate.

Presupunem acum prin absurd ca integrala  $\int\limits_0^\infty \frac{\sin x}{x} \ dx$  ar fi absolut convergentă. Atunci, din inegalitatea:

$$\frac{1 - \cos 2x}{2} = \sin^2 x \le |\sin x|,$$

ar rezulta (aplicând criteriul de comparație) că integrala  $\int\limits_0^\infty \frac{1-\cos 2x}{2x}\ dx$  este convergentă; de aici, ar rezulta (întrucât integrala  $\int\limits_0^\infty \frac{\cos 2x}{2x}\ dx$  este convergentă, conform criteriului lui Abel), că și integrala  $\int\limits_0^\infty \frac{1}{2x}\ dx$  ar fi convergentă, ceea ce constituie o contradiție.

# 5.3 Integrale cu parametri

12. Să se studieze continuitatea funcției

$$F(y) = \int_0^\infty \frac{\sin xy}{1 + x^2} dx, \forall y \in R.$$

#### Solutie

Fie  $f(x,y)=\frac{\sin xy}{1+x^2},\,(x,y)\in[0,\infty)\times R$ . Evident, f este funcție continuă. Demonstrăm acum că integrala (improprie) cu parametru

$$\int_0^\infty f(x,y)dx$$

este uniform convergentă în raport cu y pe R și deci funcția F este continuă. Evident, are loc inegalitatea:

$$|f(x,y)| \le \frac{1}{1+x^2}, \forall (x,y) \in [0,\infty) \times R.$$

Integrala improprie  $\int\limits_{-\infty}^{\infty}\frac{1}{1+x^2}\;dx$ este convergentă și deci, conform criteriului de comparație, integrala dată este uniform convergentă.

**13.** Fie  $f: [0,1] \times (0,\infty) \mapsto R, f(x,y) = \frac{x}{y^2} e^{-(\frac{x}{y})^2}$  și fie integrala parametru  $F(y) = \int_0^1 f(x, y) dx$ . Să se calculeze:

i. 
$$\lim_{y \to 0} \int_0^1 f(x, y),$$

ii. 
$$\int_0^1 \lim_{y \to 0} f(x, y) dx$$
. Soluţie

i. Pentru orice y > 0, avem:

$$F(y) = \int_0^1 f(x, y) dx = -\frac{1}{2} e^{-\left(\frac{x}{y}\right)^2} \Big|_0^1 = \frac{1}{2} - \frac{1}{2} e^{-\frac{1}{y^2}}.$$

În consecință, rezultă: 
$$\lim_{y\to 0}\int_0^1 f(x,y)=\frac{1}{2}$$
. **ii.** Pe de altă parte:  $\int_0^1 \lim_{y\to 0} f(x,y)\,dx=\int_0^1 0\;dx=0$ .

**14.** Fie 
$$f(x,y) = \begin{cases} \ln \sqrt{x^2 + y^2} & \text{dacă} \quad (x,y) \in [0,1] \times (0,\infty) \\ \ln x & \text{dacă} \quad (x,y) \in (0,1] \times \{0\} \end{cases}$$
 și fie  $F(y) = \begin{cases} \int_0^1 f(x,y) dx & \text{dacă} \quad y > 0 \\ -1 & \text{dacă} \quad y = 0 \end{cases}$ 

şi fie 
$$F(y) = \begin{cases} \int_0^1 f(x,y)dx & \text{dacă} \quad y > 0 \\ -1 & \text{dacă} \quad y = 0 \end{cases}$$

i. Să se demonstreze că funcția F este continuă.

ii. Să se calculeze F'(0).

iii. Să se calculeze 
$$\int_{0}^{1} \frac{\partial f}{\partial y}(x,0) dx$$
.

i. Pentru orice y > 0, integrând prin părți, obținem:

$$F(y) = \int_0^1 f(x, y) dx = x \ln \sqrt{x^2 + y^2} \Big|_0^1 - \int_0^1 \frac{x^2}{x^2 + y^2} dx =$$
$$= \ln \sqrt{1 + y^2} - 1 + y \cdot \operatorname{arctg} \frac{1}{y}.$$

Pentru y = 0, obţinem  $F(0) = \int_0^1 f(x,0)dx = \int_0^1 (-1)dx = -1$ .

Funcția F este continuă în 0:

$$\lim_{y \to 0_+} F(y) = \lim_{y \to 0_+} \ln \sqrt{1 + y^2} - 1 + y \cdot \operatorname{arctg} \frac{1}{y} = -1.$$

ii. Derivata F'(0) se calculează cu definiția:

$$F'(0) = \lim_{y \to 0_+} \frac{F(y) - F(0)}{y} = \lim_{y \to 0_+} \left(\frac{1}{y} \ln \sqrt{1 + y^2} + \operatorname{arctg} \frac{1}{y}\right) = \frac{\pi}{2}.$$

iii. Pentru orice  $x \in (0,1]$ , avem:

$$\frac{\partial f}{\partial y}(x,0) = \lim_{y \to 0_+} \frac{\ln \sqrt{x^2 + y^2} - \ln x}{y} = \lim_{y \to 0_+} \frac{\ln \sqrt{1 + \left(\frac{y}{x}\right)^2}}{\left(\frac{y}{x}\right)^2} \cdot \frac{y}{x^2} = 0.$$

Rezultă  $\int_0^1 \frac{\partial f}{\partial y}(x,0)dx = 0.$ 

**15.** Fie  $f:[0,\infty)\times[0,1]\mapsto R,$   $f(x,y)=ye^{-xy}$  și fie integrala cu parametru  $F(y)=\int_0^\infty f(x,y)dx,$   $\forall\,y\in[0,1].$  Să se studieze continuitatea funcției F.

# Soluţie

Evident, F(0) = 0; pentru orice  $y \in (0, 1]$ , avem:

$$F(y) = \int_0^\infty y e^{-xy} dx = -e^{-xy} \Big|_0^\infty = 1,$$

deciF nu este continuă în 0.

**16.** Fie 
$$\alpha > 0$$
. Să se calculeze  $\int_{0}^{\infty} \frac{\sin \alpha x}{x} dx$ .

# Soluţie

Considerăm integrala (cu parametrul y > 0):

$$F(y) = \int_{0}^{\infty} e^{-yx} \frac{\sin x}{x} dx.$$

Sunt verificate ipotezele teoremei de derivare sub integrală și obținem:

$$F'(y) = \int_0^\infty -e^{-yx} \sin x dx = -\frac{1}{y^2 + 1}.$$

Rezultă deci  $F(y) = -\arctan y + \frac{\pi}{2}$ ; în concluzie:

$$\int_0^\infty \frac{\sin x}{x} dx = \lim_{y \to 0} F(y) = \frac{\pi}{2}.$$

Se arată simplu (printr-o schimbare de variabilă) că:

$$\int_0^\infty \frac{\sin(\alpha x)}{x} dx = \frac{\pi}{2}, \, \forall \, \alpha > 0.$$

Analog, dacă  $\alpha < 0$ , atunci  $\int_0^\infty \frac{\sin \alpha x}{x} dx = -\frac{\pi}{2}$ .

17. Fie 
$$\alpha, \beta \in R$$
; să se calculeze  $\int_0^\infty \frac{\sin \alpha x \cdot \cos \beta x}{x} dx$ .

# Soluţie

Se transformă produsul  $\sin \alpha x \cdot \cos \beta x$  în sumă şi apoi se aplică rezultatul din exercițiul anterior.

18. Să se calculeze integrala  $J=\int\limits_0^1 \frac{\ln(1+x)}{1+x^2} dx$ , folosind integrala cu

parametru 
$$F(\alpha) = \int_{0}^{\alpha} \frac{\ln(1+\alpha x)}{1+x^2} dx, \alpha > 0.$$

# Soluţie

Prin derivare în raport cu  $\alpha$ , obținem:

$$F'(\alpha) = \frac{\ln(1+\alpha^2)}{2(1+\alpha^2)} + \frac{\alpha}{1+\alpha^2} \operatorname{arctg} \alpha.$$

Primitivele acestei funcții sunt:  $\frac{1}{2} \operatorname{arctg} \alpha \ln(1+\alpha^2) + k, k \in R$ . Dar F(0) = 0 și deci k = 0. Rezultă  $J = F(1) = \frac{\pi}{8} \ln 2$ .

19. Să se calculeze integrala:

$$F(y) = \int_0^{\frac{\pi}{2}} \ln(\cos^2 x + y^2 \sin^2 x) dx, \, \forall y > 0.$$

#### Solutie

Dacă y = 1, atunci, evident, F(1) = 0.

Fie y > 0,  $y \neq 1$ ; atunci:

$$F'(y) = \int_0^{\frac{\pi}{2}} \frac{2y\sin^2 x}{\cos^2 x + y^2\sin^2 x} dx = 2y \int_0^{\frac{\pi}{2}} \frac{\operatorname{tg}^2 x}{1 + y^2 \operatorname{tg}^2 x} dx =$$

$$= 2y \int_0^\infty \frac{u^2}{(1+y^2u^2)(1+u^2)} du =$$

$$= \frac{2y}{1-y^2} \int_0^\infty \left(\frac{1}{1+y^2u^2} - \frac{1}{1+u^2}\right) = \frac{\pi}{1+y}.$$

Rezultă  $F(y) = \pi \ln(1+y) + k$ , unde k este o constantă ce se determină din condiția F(1) = 0; se obține  $k = -\pi \ln 2$ , și deci $F(y) = \pi \ln \frac{1+y}{2}$ .

**20.** Pentru orice 
$$a > 0, b > 0$$
, să se calculeze  $J = \int_{0}^{1} \frac{x^b - x^a}{\ln x} \cos(\ln x) dx$ .

# Soluţie

Integrala J se poate scrie și sub forma:

$$J = \int_0^1 \frac{x^b - x^a}{\ln x} \cos(\ln x) dx = \int_0^1 \cos(\ln x) \left( \int_a^b x^y dy \right) dx =$$
$$= \int_a^b \left( \int_0^1 x^y \cos(\ln x) dx \right) dy.$$

Vom calcula mai întâi integrala:  $J_1 = \int_0^1 x^y \cos(\ln x) dx$ , folosind schimbarea de variabilă:  $t = \ln x$ ; obţinem:  $J_1 = \frac{y+1}{1+(y+1)^2}$ , şi deci  $J = \frac{1}{2} \ln \frac{1+(b+1)^2}{1+(a+1)^2}$ .

21. Să se calculeze integralele:

$$J(\alpha) = \int_{0}^{\frac{\pi}{2}} \frac{\arctan(\alpha \operatorname{tg} x)}{\operatorname{tg} x} dx, \alpha > 0, \alpha \neq 1 \text{ si } I = \int_{0}^{\frac{\pi}{2}} \frac{x}{\operatorname{tg} x} dx.$$

Solutie

$$J'(\alpha) = \int\limits_0^{\frac{\pi}{2}} \frac{dx}{1 + \alpha^2 \mathrm{tg}^2 x} \;. \; \text{Pentru a calcula ultima integrala facem schimbarea}$$
 de variabilă  $t = \mathrm{tg} x$ ; în final obţinem  $J(\alpha) = \frac{\pi}{2} \ln(1 + \alpha)$  şi  $I = \frac{\pi}{2} \ln 2$ .

22. Să se calculeze integralele:

**a.** 
$$F(a) = \int_{0}^{\frac{\pi}{2}} \ln\left(\frac{1 + a\cos x}{1 - a\cos x}\right) \frac{dx}{\cos x}, |a| < 1.$$

**b.** 
$$G(a) = \int_{0}^{\infty} \frac{\arctan(ax)}{x(1+x^2)} dx, a \in R, |a| \neq 1.$$

Soluţie

**a.** 
$$F'(a) = \int_{0}^{\frac{\pi}{2}} \frac{2}{1 - a^2 \cos^2 x} dx$$
; cu schimbarea de variabilă  $t = \operatorname{tg} x$ , obţinem:

$$F'(a) = \int_0^\infty \frac{2}{t^2 + (\sqrt{1 - a^2})^2} dt = \frac{2}{\sqrt{1 - a^2}} \operatorname{arctg} \frac{t}{\sqrt{1 - a^2}} \Big|_0^\infty = \frac{\pi}{\sqrt{1 - a^2}},$$

şi deci $F(a) = \pi \arcsin a$ .

**b.** 
$$G'(a) = \int_{0}^{\infty} \frac{dx}{(1+x^2)(1+a^2x^2)} = \frac{\pi}{2(1+a)}$$
 și deci  $G(a) = \frac{\pi}{2}\ln(1+a)$ .

23. Să se calculeze integralele:

**a.** 
$$J(a,b) = \int_{0}^{\infty} \frac{\ln(a^2 + x^2)}{b^2 + x^2} dx, a > 0, b > 0, a \neq b.$$

**b.** 
$$F(a) = \int_{0}^{1} \frac{\ln(1 - a^{2}x^{2})}{x^{2}\sqrt{1 - x^{2}}} dx, |a| < 1.$$

# Soluţie

a. Derivând în raport cu a, obținem:

$$J' = \int_0^\infty \frac{2a}{(a^2 + x^2)(b^2 + x^2)} dx =$$

$$= \int_0^\infty \frac{2a}{b^2 - a^2} \left(\frac{1}{a^2 + x^2} - \frac{1}{b^2 + x^2}\right) dx = \frac{\pi}{b(a+b)}.$$

Rezultă deci $J=\frac{\pi}{b}\ln(a+b)+K(b).$  Pentru a calcula K(b), calculăm

$$J(b,b) = \int_0^\infty \frac{\ln(b^2 + x^2)}{b^2 + x^2} dx = \int_0^{\frac{\pi}{2}} \frac{\ln(b^2 + b^2 \operatorname{tg}^2 t)}{b^2 + b^2 \operatorname{tg}^2 t} b(1 + \operatorname{tg}^2 t) dt =$$
$$= \frac{1}{b} \int_0^{\frac{\pi}{2}} \ln \frac{b^2}{\cos^2 t} dt = \frac{\pi}{b} \ln b - \frac{2}{b} \int_0^{\frac{\pi}{2}} \ln \cos t dt.$$

Ultima integrală se poate calcula cu schimbarea de variabilă  $t=\frac{\pi}{2}-y$  și se obține

$$\int_0^{\frac{\pi}{2}} \ln \cos t dt = -\frac{\pi}{2} \ln 2.$$

Rezultă  $J(b,b)=\frac{\pi}{b}\ln(2b)$  și deciK(b)=0.

**b.** Derivând în raport cu a, obținem:

$$F'(a) = \int_0^1 \frac{-2a}{(1 - a^2 x^2)\sqrt{1 - x^2}} dx =$$

175

$$= \int_0^{\frac{\pi}{2}} \frac{-2a}{1 - a^2 \sin^2 t} dt = -\frac{2a}{1 - a^2} \int_0^{\infty} \frac{du}{u^2 + (\frac{1}{\sqrt{1 - a^2}})^2} = -\frac{a\pi}{\sqrt{1 - a^2}},$$
 deci  $F(a) = \pi \sqrt{1 - a^2} + k$ ; dar  $F(0) = 0$ , deci  $F(a) = \pi (\sqrt{1 - a^2} - 1)$ .

24. Să se calculeze integrala:

$$J(a) = \int_0^1 \frac{\arctan(ax)}{x\sqrt{1-x^2}} dx, \ a \in R.$$

#### Soluție

Derivata funcției J este:

$$J'(a) = \int_0^1 \frac{dx}{(1+a^2x^2)\sqrt{1-x^2}} = \int_0^{\frac{\pi}{2}} \frac{\cos t}{(1+a^2\sin^2 t)\cos t} dt =$$
$$= \int_0^\infty \frac{du}{1+(1+a^2)u^2} = \frac{\pi}{2\sqrt{1+a^2}}.$$

Rezultă:

$$J(a) = \frac{\pi}{2} \ln \left( a + \sqrt{1 + a^2} \right) + C,$$

constanta C calculându-se din J(0) = 0. În final se obține:

$$J(a) = \ln\left(a + \sqrt{1 + a^2}\right).$$

#### 25. Formula lui Froullani

Fie 0 < a < b și fie  $f:[0,\infty) \mapsto R$  o funcție continuă și mărginită astfel încât integrala  $\int\limits_{1}^{\infty} \frac{f(t)}{t} dt$  este convergentă. Să se demonstreze egalitatea:

$$\int_0^\infty \frac{f(bx) - f(ax)}{x} dx = f(0) \ln \frac{a}{b}.$$

#### Soluție

Vom demonstra mai întâi egalitatea:

$$\int_{u}^{\infty} \frac{f(bx) - f(ax)}{x} dx = \int_{bu}^{au} \frac{f(t)}{t} dt , \forall u > 0. \quad (*)$$

Fie u>0 ; cu schimbarea de variabilă bx=t, obținem:

$$\int_{u}^{\infty} \frac{f(bx)}{x} dx = \int_{bu}^{\infty} \frac{f(t)}{t} dt.$$

Analog, se demonstrează și egalitatea:

$$\int_{u}^{\infty} \frac{f(ax)}{x} dx = \int_{au}^{\infty} \frac{f(t)}{t} dt.$$

Prin scăderea membru cu membru a celor două egalități rezultă egalitatea (\*). Demonstrăm acum formula lui Froullani; folosind egalitatea (\*), avem:

$$\int_0^\infty \frac{f(bx) - f(ax)}{x} dx = \lim_{u \to 0} \int_u^\infty \frac{f(bx) - f(ax)}{x} dx = \lim_{u \to 0} \int_{bu}^{au} \frac{f(t)}{t} dt.$$

Pentru a calcula ultima integrală considerăm funcția

$$h(u) = \sup_{t \in [au,bu]} |f(t) - f(0)|.$$

Din continuitatea funcției f, rezultă  $\lim_{u\to 0} h(u) = 0$ . Evident, avem:

$$\int_{bu}^{au} \frac{f(t)}{t} dt = \int_{bu}^{au} \frac{f(t) - f(0)}{t} dt + \int_{bu}^{au} \frac{f(0)}{t} dt.$$

Prima integrală tinde la 0 pentru  $u \mapsto 0$ :

$$\left| \int_{bu}^{au} \frac{f(t) - f(0)}{t} dt \right| \le \int_{bu}^{au} \frac{|f(t) - f(0)|}{t} dt \le$$

$$\leq \int_{bu}^{au} \frac{h(u)}{t} dt = h(u) \ln \frac{a}{b} \mapsto 0$$
 atunci când  $u \mapsto 0$ .

În concluzie:

$$\int_0^\infty \frac{f(bx) - f(ax)}{x} dx = \lim_{u \to 0} \int_{bu}^{au} \frac{f(t)}{t} dt = \lim_{u \to 0} \int_{bu}^{au} \frac{f(0)}{t} dt = f(0) \ln \frac{a}{b}.$$

**26.** Fie 
$$0 < a < b$$
; să se calculeze integralele:  
**a.**  $\int_0^\infty \frac{e^{-ax} - e^{-bx}}{x} dx$ .  
**b.**  $\int_0^\infty \frac{\cos ax - \cos bx}{x} dx$ .

Se aplică formula lui Froullani.

177

27. Să se calculeze, folosind funcțiile  $\Gamma$  și B, integralele:

$$\mathbf{a.} \int_{0}^{\infty} e^{-x^{p}} dx, p > 0.$$

**b.** 
$$\int_{0}^{\infty} \frac{x^{\frac{1}{4}}}{(x+1)^2} dx$$
.

$$\mathbf{c.} \int\limits_{0}^{\infty} \frac{dx}{x^3 + 1} \, dx.$$

# Soluție

a. Cu schimbarea de variabilă  $x^p=y,$ obţinem:

$$\int_0^\infty e^{-x^p} dx = \int_0^\infty \frac{1}{p} y^{\frac{1-p}{p}} e^{-y} dy = \frac{1}{p} \Gamma\left(\frac{1}{p}\right) = \Gamma\left(\frac{1}{p}+1\right).$$

În cazul particular p = 2, obținem:

$$\int_0^\infty e^{-x^2} dx = \Gamma\left(\frac{3}{2}\right) = \frac{\sqrt{\pi}}{2}.$$

b. Folosind proprietățile funcțiilor lui Euler, obținem:

$$\int_0^\infty \frac{x^{\frac{1}{4}}}{(x+1)^2} dx = B\left(\frac{5}{4}, \frac{3}{4}\right) = \frac{\Gamma\left(\frac{5}{4}\right) \Gamma\left(\frac{3}{4}\right)}{\Gamma(2)} = \frac{1}{4} \Gamma\left(\frac{1}{4}\right) \Gamma\left(\frac{3}{4}\right) = \frac{\pi\sqrt{2}}{4}.$$

**c.** Cu schimbarea de variabilă  $x^3 = y$ ,<br/>obținem:

$$\int_0^\infty \frac{dx}{x^3 + 1} = \frac{1}{3} \int_0^\infty \frac{y^{-\frac{2}{3}}}{1 + y} dy = \frac{1}{3} B\left(\frac{1}{3}, \frac{2}{3}\right) = \frac{2\sqrt{3}\pi}{9}.$$

28. Să se calculeze integralele:

**a.** 
$$\int_{0}^{\frac{\pi}{2}} \sin^{p} x \cos^{q} x \, dx, p > -1, q > -1.$$

**b.** 
$$\int_{0}^{1} x^{p+1} (1-x^{m})^{q-1} dx, p > 0, q > 0, m > 0.$$

**c.** 
$$\int_{0}^{\infty} x^{p} e^{-x^{q}} dx, p > -1, q > 0.$$

$$\mathbf{d.} \int_{0}^{1} \ln^{p} \left(\frac{1}{x}\right) dx, p > -1.$$

**e.** 
$$\int_{0}^{1} \frac{dx}{(1-x^n)^{\frac{1}{n}}}, n \in N.$$

# Soluție

a. Cu schimbarea de variabilă  $\sin^2 x = y$ , obținem:

$$\int_0^{\frac{\pi}{2}} \sin^p x \cos^q x dx = \frac{1}{2} \int_0^1 y^{\frac{p-1}{2}} (1-y)^{\frac{q-1}{2}} dy = \frac{1}{2} B\left(\frac{p+1}{2}, \frac{q+1}{2}\right).$$

**b.** Cu schimbarea de variabilă  $x^m = y$ , obținem:

$$\int_0^1 x^{p+1} (1 - x^m)^{q-1} dx = \frac{1}{m} B\left(\frac{p+2}{m}, q\right).$$

c. Cu schimbarea de variabilă  $x^q = y$ , obținem:

$$\int_0^\infty x^p e^{-x^q} dx = \frac{1}{q} \int_0^\infty y^{\frac{p+1}{q}-1} e^{-y} dy = \frac{1}{q} \Gamma\left(\frac{p+1}{q}\right).$$

**d.** Cu schimbarea de variabilă  $\ln(\frac{1}{x}) = y$ , obținem:

$$\int_0^1 \ln^p \left(\frac{1}{x}\right) dx = \int_0^\infty y^p e^{-y} dy = \Gamma(p+1).$$

e. Cu schimbarea de variabiă  $x^n = y$ , obținem:

$$\int_0^1 \frac{dx}{(1-x^n)^{\frac{1}{n}}} = \frac{1}{n} \int_0^1 y^{\frac{1}{n}-1} (1-y)^{-\frac{1}{n}} dy = \frac{1}{n} B\left(\frac{1}{n}, 1-\frac{1}{n}\right) = \frac{\pi}{n \sin\frac{\pi}{n}}.$$

**29.** Să se calculeze integrala 
$$\int_{0}^{\infty} e^{-x^{2}} \cos x dx.$$

#### Soluție

Folosind dezvoltarea în serie de puteri (în jurul lui 0) a funcției cos și teorema de integrare termen cu termen a seriilor de puteri, obținem:

$$\int_0^\infty e^{-x^2} \cos x dx = \sum_{n \ge 0} \frac{(-1)^n}{(2n)!} \int_0^\infty e^{-x^2} x^{2n} dx =$$

$$= \sum_{n \ge 0} \frac{(-1)^n}{(2n)!} \int_0^\infty \frac{1}{2} y^{n - \frac{1}{2}} e^{-y} dy = \sum_{n \ge 0} \frac{(-1)^n}{(2n)!} \frac{1}{2} \Gamma\left(n + \frac{1}{2}\right) =$$

# 5.3. INTEGRALE CU PARAMETRI

179

$$=\sum_{n>0}\frac{(-1)^n}{(2n)!}\frac{1\cdot 3\cdot 5...(2n-1)}{2^{n+1}}\sqrt{\pi}=\frac{\sqrt{\pi}}{2}\sum_{n>0}\frac{1}{n!}\left(-\frac{1}{4}\right)^{-n}=\frac{\sqrt{\pi}}{2}e^{-\frac{1}{4}}.$$

**30.** Să se calculeze în funcție de B integralele:

$$I = \int_0^1 \frac{dx}{\sqrt{1 - x^3}} \text{ si } J = \int_1^\infty \frac{dx}{\sqrt{x^3 - 1}}.$$

### Soluție

Pentru I se face schimbarea de variabilă  $x = t^{\frac{1}{3}}$ ; rezultă:

$$I = \frac{1}{3} \int_0^1 t^{-\frac{2}{3}} (1-t)^{-\frac{1}{2}} dt = \frac{1}{3} B\left(\frac{1}{3}, \frac{1}{2}\right).$$

Pentru calculul lui J se face schimbarea de variabilă  $\dot{\mathbf{x}} = t^{-\frac{1}{3}}$ ; rezultă:

$$J = \frac{1}{3} \int_0^1 t^{-\frac{5}{6}} (1-t)^{-\frac{1}{2}} dt = \frac{1}{3} B\left(\frac{1}{6}, \frac{1}{2}\right).$$

31. Să se calculeze integralele lui Fresnel:

$$I = \int_0^\infty \cos x^2 dx \, \operatorname{si} J = \int_0^\infty \sin x^2 dx.$$

# Soluție

Convergența celor două integrale rezultă din criteriul lui Abel și cu schimbarea de variabilă  $x^2 = y$ . Calculăm acum:

$$J - iI = \int_0^\infty e^{-ix^2} dx.$$

Cu schimbarea de variabilă  $x^2=-it^2$  și folosind relația  $\Gamma(1)=1,$  obținem  $I=J=\frac{1}{2}\sqrt{\frac{\pi}{2}}.$ 

# Capitolul 6

# Măsură și integrală

# 6.1 Noțiuni teoretice

### Spaţii măsurabile

Fie X o mulțime nevidă și fie  $\mathcal{P}(X)$  mulțimea părților lui X. O submulțime  $\mathcal{A} \subseteq \mathcal{P}(X)$  se numește  $\sigma-$  algebră pe X dacă verifică următoarele proprietăți:

i.  $X \in \mathcal{A}$ .

ii. dacă  $A \in \mathcal{A}$  atunci  $X \setminus A \in \mathcal{A}$ .

iii. dacă  $A_n \in \mathcal{A}, \forall n \in N \text{ atunci } \cup_{n \in N} A_n \in \mathcal{A}.$ 

În acest caz (X, A) se numește spațiu măsurabil iar elementele  $\sigma$ -algebrei A se numesc mulțimi măsurabile.

Dacă  $\mathcal{A}$  este o  $\sigma$ -algebră pe X, atunci:

i.  $\emptyset \in \mathcal{A}$ .

ii. dacă  $A, B \in \mathcal{A}$  atunci  $A \bigcup B \in \mathcal{A}, A \cap B \in \mathcal{A}, A \setminus B \in \mathcal{A}$ .

iii. dacă 
$$A_n \in \mathcal{A}, \forall n \in \mathbb{N} \text{ atunci } \bigcap_{n \in \mathbb{N}} A_n \in \mathcal{A}.$$

iv. dacă  $(A)_{i \in J}$  sunt  $\sigma$ -algebre pe X atunci intersecția  $\bigcup_{i \in J} A_i$  este  $\sigma$ -algebră pe X.

Dacă  $\mathcal{C}\subseteq\mathcal{P}(X)$  atunci  $\sigma$ -algebra generată de  $\mathcal{C}$  se notează  $\mathcal{A}_{\mathcal{C}}$  și este definită prin

$$\mathcal{A}_{\mathcal{C}} = \bigcap \{ \mathcal{B} \mid \mathcal{B} \text{ este } \sigma - \text{algebră pe } X, \text{ $\$$i $\mathcal{B} \supseteq \mathcal{C}$} \}.$$

Dacă (Y, d) este un spațiu metric, atunci  $\sigma$ -algebra mulțimilor Boreliene pe Y este  $\sigma$ -algebra generată de familia mulțimilor deschise din Y.

În cazul particular Y = R,  $\sigma$ -algebra mulțimilor Boreliene (pe R) coincide

cu  $\sigma$ -algebra generată de oricare din următoarele tipuri de intervale:

 $C_1 = \{(-\infty, b) \mid b \in R\}$ 

 $\mathcal{C}_2 = \{(a, \infty) \mid a \in R\}$ 

 $C_3 = \{(a, b) \mid a, b \in R\},\$ 

de<br/>oarece orice mulțime deschisă din R este reuniune cel mult numărabilă de intervale deschise.

### Funcții măsurabile

Fie  $(X, \mathcal{A})$  un spaţiu cu măsură şi (Y, d) un spaţiu metric; o aplicaţie  $f: X \mapsto Y$  se numeşte măsurabilă dacă  $f^{-1}(B) \in \mathcal{A}$ ,  $\forall B$  mulţime Boreliană din Y.

Dacă  $A\subseteq X$ , atunci funcția caracteristică  $\chi_A:X\mapsto R$  este măsurabilă dacă și numai dacă  $A\in\mathcal{A}$ .

O aplicație  $s: X \mapsto R$  se numește simplă (sau etajată) dacă mulțimea s(X) este finită, sau, echivalent, dacă există  $A_1, A_2, ..., A_n \in \mathcal{P}(X)$  și  $\alpha_1, \alpha_2, ..., \alpha_n \in \mathcal{P}(X)$ 

R astfel încât  $s=\sum_{i=1}^n \alpha_i \chi_{A_i}$ . Evident, s este măsurabilă dacă și numai dacă

mulţimile  $A_1, A_2, ..., A_n$  sunt măsurabile.

Are loc următorul rezultat de aproximare:

Orice funcție măsurabilă și pozitivă este limita punctuală a unui șir crescător de funcții simple măsurabile și pozitive.

### Spaţii cu măsură

Fie  $(X, \mathcal{A})$  un spațiu măsurabil; o aplicație

$$\mu: \mathcal{A} \mapsto [0, \infty]$$

se numeşte măsură (pe X) dacă:

- **i.**  $\mu(\emptyset) = 0$
- ii. pentru orice  $(A_n)_{n\in\mathbb{N}}\subseteq\mathcal{A}$  astfel încât  $A_n\cap A_m=\emptyset,\,\forall n\neq m$  rezultă

$$\mu\left(\bigcup_{n\in\mathbb{N}}A_{n}\right)=\sum_{n\in\mathbb{N}}\mu\left(A_{n}\right).$$

 $(X, \mathcal{A}, \mu)$  se numește spațiu cu măsură. Proprietatea **ii** de mai sus se numește numărabil-aditivitate.

Dacă  $(X, \mathcal{A}, \mu)$  este un spațiu cu măsură, atunci:

- i.  $\forall A, B \in \mathcal{A}, A \subseteq B \Rightarrow \mu(A) \leq \mu(B)$ . (monotonie).
- ii. pentru orice  $(A_n)_{n\in\mathbb{N}}\subseteq\mathcal{A}$  rezultă

$$\mu\left(\bigcup_{n\in N}A_{n}\right)\leq\sum_{n\in N}\mu\left(A_{n}\right)\ \ (\text{numărabil-subaditivitate}).$$

### Egalitate aproape peste tot

O mulțime măsurabilă  $A \in \mathcal{A}$  se numește de măsură nulă dacă  $\mu(A) = 0$ . Două funcții măsurabile se numesc egale aproape peste tot (se notează f = g(a.p.t.) dacă mulțimea  $\{x \in X \mid f(x) \neq g(x)\}$  este de măsură nulă. Relația de egalitate aproape peste tot este relație de echivalență pe mulțimea funcțiilor măsurabile.

### Funcții integrabile

Fie  $(X, \mathcal{A}, \mu)$  un spațiu cu măsură și  $s: X \mapsto [0, \infty], s = \sum_{i=1}^{n} \alpha_i \chi_{A_i}$  o funcție simplă, pozitivă, măsurabilă. Integrala lui s în raport cu măsura  $\mu$  este, prin definiție:

$$\int_X s d\mu = \sum_{i=1}^n \alpha_i \mu(A_i).$$

Dacă  $f: X \mapsto [0, \infty]$  este o funcție măsurabilă pozitivă atunci integrala lui f în raport cu măsura  $\mu$  este:

$$\int_X f d\mu = \sup \{ \int_X s d\mu \mid s \text{ funcție simpla măsurabilă}, \ 0 \le s \le f \}.$$

Dacă  $f: X \mapsto [0, \infty]$  este o funcție măsurabilă pozitivă și dacă  $A \in \mathcal{A}$ , atunci integrala lui f pe multimea A în raport cu măsura  $\mu$  este:

$$\int_{A} f d\mu = \int_{X} f \cdot \chi_{A} d\mu.$$

Fie  $(X,\mathcal{A},\mu)$  un spațiu cu măsură; o funcție măsurabilă  $f:X\mapsto C$  se numește integrabilă dacă  $\int_X |f|d\mu<\infty.$ 

Multimea funcțiilor integrabile este spațiu vectorial cu operațiile uzuale de adunare și inmulțire cu scalari.

Fie  $f: X \mapsto C$  o funcție integrabilă; atunci f = u + iv, unde u și v sunt funcții măsurabile reale; descompunând  $u=u^+-u^-,\ v=v^+-v^-$  (aici  $u^+, v^+ \neq u^-, v^- = v^- = v^-$  sunt părțile pozitive şi respectiv negative ale lui  $u \neq v$ , atunci integrala lul f în raport cu măsura  $\mu$  este

$$\int_X f d\mu = \int_X u^+ d\mu - \int_X u^- d\mu + i \left( \int_X v^+ - \int_X v^- d\mu \right).$$

Integrala astfel definită are proprietățile: 
$$\mathbf{i.}\ \int_X \left(\alpha f + \beta g\right) d\mu = \alpha \int_X f d\mu + \beta \int_X g d\mu, \, \forall f,g \text{ integrabile și } \forall \, \alpha,\beta \in C.$$

ii. 
$$\left| \int_X f d\mu \right| \leq \int_X |f| d\mu$$
,  $\forall f$  integrabilă.

# Teorema de convergență monotonă a lui Lebesgue

Fie  $(X, \mathcal{A}, \mu)$  un spațiu cu măsură și fie  $f_n : X \mapsto [0, \infty]$  un șir crescător de funcții măsurabile:  $f_n \leq f_{n+1}, \forall n \in \mathbb{N}$ . Dacă f este limita punctuală a șirului  $f_n$ , atunci

$$\lim_{n \to \infty} \int_X f_n d\mu = \int_X f d\mu.$$

În particular, dacă  $f_n: X \mapsto [0, \infty]$ , atunci:

$$\int_{X} \sum_{n \in N} f_n d\mu = \sum_{n \in N} \int_{X} f_n d\mu.$$

### Teorema de convergență dominată a lui Lebesgue

Fie  $(X, \mathcal{A}, \mu)$  un spațiu cu măsură și fie  $f_n: X \mapsto C$  un șir de funcții măsurabile cu proprietățile:

i.  $f_n$  converge punctual la funcția f.

ii. există g o funcție integrabilă astfel încât  $|f_n| \leq g$ .

Atunci f este funcție integrabilă și  $\lim_{n\to\infty}\int_X f_n d\mu = \int_X f d\mu$ .

# Spații de funcții p-integrabile

Fie  $(X, \mathcal{A}, \mu)$  un spațiu cu măsură și fie  $1 \leq p < \infty$ . Considerăm mulțimea:

$$\mathcal{L}^p(X,\mu) = \{f: X \mapsto C \mid f \text{ măsurabilă și } \int_X |f|^p d\mu < \infty \}.$$

Evident, pentru p=1 se obține mulțimea funcțiilor integrabile.  $\mathcal{L}^p(X,\mu)$  este spațiu vectorial, iar aplicația

$$\parallel f \parallel_p = \left( \int_X |f|^p d\mu \right)^{\frac{1}{p}}$$

este o seminormă pe  $\mathcal{L}^p(X,\mu)$ . Din relația  $\parallel f \parallel_p = 0$  rezultă f = 0 (a.p.t.); fie  $L^p(X,\mu)$  mulțimea claselor de echivalență în raport cu relația de egalitate a.p.t. Atunci  $(L^p(X,\mu),\parallel \parallel_p)$  este spațiu normat (spațiul funcțiilor p-integrabile). În plus, se demonstrează că  $(L^p(X,\mu),\parallel \parallel_p)$  este spațiu Banach.

### Exemple de spații de funcții integrabile

i. Dacă pe mulțimea numerelor naturale, N, se consideră măsura de numărare (a se vedea exercițiul 1 din acest capitol), atunci, în acest caz, spațiul funcțiilor p-integrabile este spațiul șirurilor p-absolut sumabile (a se vedea și exemplele de spații normate din capitolul 2):

$$\ell^p(N) = \{x : N \mapsto C \mid \sum_{n \in N} |x(n)|^p < \infty \}.$$

Analog se definește spațiul  $\ell^p(Z)$  al şirurilor bilaterale p-absolut sumabile; evident, norma în aceste cazuri este:

$$||x||_p = \left(\sum_{n \in N} |x(n)|^p\right)^{\frac{1}{p}}, \ \forall x \in \ell^p(N).$$

ii. Dacă pe mulțimea numerelor reale, R, se consideră măsura Lebesgue (construcția acestei măsuri se găsește în capitolul următor), atunci notăm:

$$L^p(R) = \{ f : R \mapsto C \mid f \text{ măsurabilă și } \int_{-\infty}^{\infty} |f(x)| dx < \infty \}.$$

Norma în acest caz este

$$\parallel f \parallel_p = \left( \int_{-\infty}^{\infty} |f(x)| \, dx \right)^{\frac{1}{p}}, \, \forall \, f \in L^p(R).$$

Analog, se pot considera intervale  $(a,b)\subset R$  și se obțin spațiile  $L^p(a,b)$  corespunzătoare.

iii. Un caz particular remarcabil este spațiul funcțiilor periodice (de perioadă  $2\pi$  definite pe R) de pătrat integrabil, definit după cum urmează; dacă  $\mathcal{P}$  este mulțimea funcțiilor periodice  $f: R \mapsto C$ , f de perioadă  $2\pi$ ,  $f(x) = f(x+2\pi), \forall x \in R$ , atunci:

$$L^2[0,2\pi] = \{ f \in \mathcal{P} \mid f \text{ măsurabilă și} \quad \int_0^{2\pi} |f(t)| dt < \infty \},$$

integrala fiinds în raport cu măsura Lebesgue. Evident, în locul intervalului  $[0,2\pi]$  se poate lua orice interval de lungime  $2\pi$ ; o altă alegere uzuală este intervalul  $[-\pi,\pi]$ . Norma pe spațiul  $L^2[0,2\pi]$  este:

$$|| f ||_2 = \sqrt{\frac{1}{2\pi} \int_0^{2\pi} |f(t)|^2 dt}, \ \forall f \in L^2[0, 2\pi].$$

Analog se definește spațiul funcțiilor periodice (de perioadă  $2\pi$ ) integrabile:

$$L^1[0,2\pi] = \{ f \in \mathcal{P} \ | \ f \text{ măsurabilă și} \quad \int_0^{2\pi} |f(t)| \, dt \, < \, \infty \}.$$

Norma pe spațiul  $L^1[0, 2\pi]$  este:

$$|| f ||_1 = \frac{1}{2\pi} \int_0^{2\pi} |f(t)| dt, \, \forall f \in L^1[0, 2\pi].$$

# Spațiul funcțiilor esențial mărginite

Fie  $(X, \mathcal{A}, \mu)$  un spațiu cu măsură și fie  $f: X \mapsto [0, \infty]$  o funcție măsurabilă; considerăm mulțimea

$$M = \{ t \in R \mid \mu(f^{-1}(t, \infty)) = 0 \}.$$

Prin definiție, supremumul esențial al lui f este:

esssup
$$f = \infty$$
 dacă  $M = \emptyset$  și esssup $f = \inf M$  dacă  $M \neq \emptyset$ .

Notăm  $||f||_{\infty} = \text{esssup}|f|$ ; funcția f se numește esențial mărginită dacă  $||f||_{\infty} < \infty$ . Mulțimea funcțiilor esențial mărginite se notează  $L^{\infty}(X,\mu)$  și este spațiu Banach cu norma  $|| ||_{\infty}$ .

Şi în acest caz putem particulariza spațiul cu măsură  $(X, \mathcal{A}, \mu)$ , obținânduse (ca mai sus) spațiile  $(\ell^{\infty}(N), \| \|_{\infty}), (L^{\infty}(R), \| \|_{\infty}), (L^{\infty}[0, 2\pi], \| \|_{\infty}).$ 

### Spații Hilbert și serii Fourier

Fie H un spațiu vectorial (complex sau real); o aplicație

$$<,>: H \times H \mapsto C \text{ (respectiv } R)$$

se numește produs scalar dacă pentru orice  $x,y,z\in H$  și orice  $\alpha,\beta\in C$  sunt adevărate relațiile:

i. 
$$< \alpha x + \beta y, z > = \alpha < x, z > + \beta < y, z >$$
;

ii. 
$$\langle x, y \rangle = \overline{\langle y, x \rangle};$$

**iii.** 
$$< x, x > \ge 0;$$

iv. 
$$\langle x, x \rangle = 0 \Leftrightarrow x = 0$$
.

Perechea (H, <, >) se numește spațiu cu produs scalar.

Aplicația  $\| \ \| \colon H \mapsto H, \ \| \ x \ \| = \sqrt{< x, x>}$  este normă pe H și verifică inegalitatea lui Schwarz:

$$|\langle x, y \rangle| \le ||x|| ||y||, \forall x, y \in H.$$

Reciproc, un spațiu normat  $(H, \| \ \|)$  este spațiu cu produs scalar dacă și numai dacă este verificată legea paralelogramului:

$$||x + y||^2 + ||x - y||^2 = 2(||x||^2 + ||y||^2), \forall x, y \in H.$$

Spaţiul (H, <, >) se numeşte spaţiu Hilbert dacă orice şir Cauchy este convergent (spaţiul normat  $(H, \|\ \|)$  este complet).

În cele ce urmează (H, <, >) este un spațiu Hilbert.

### 187

### Exemple de spații Hilbert

i. Spațiul Banach  $\mathbb{C}^n$  (cu norma euclidiană) este spațiu Hilbert cu produsul scalar:

$$\langle x, y \rangle = \sum_{j=1}^{n} x_j \overline{y_j},$$

pentru orice  $x=(x_1,x_2,...,x_n)$  și  $y=(y_1,y_2,...,y_n)$  vectori din  $\mathbb{C}^n$ . Analog și pentru  $\mathbb{R}^n$ .

ii. Spațiul Banach al șirurilor de pătrat sumabil,

$$\ell^2(N) = \{x : N \mapsto C \mid \sum_{n \in N} |x(n)|^2 < \infty \}$$

este spațiu Hilbert cu produsul scalar:

$$\langle x, y \rangle = \sum_{n \in N} x(n) \overline{y(n)},$$

pentru orice şiruri  $x,y\in \ell^2(N)$ . Analog şi pentru spaţiul şirurilor bilaterale (definite pe Z),  $\ell^2(Z)$ .

iii. Dintre toate spațiile de funcții p-integrabile,  $L^p(X, \mathcal{A}, \mu)$ , numai spațiul funcțiilor de pătrat integrabil,  $L^2(X, \mathcal{A}, \mu)$  este spațiu Hilbert, produsul scalar fiind:

$$\langle f, g \rangle = \int_X f \, \overline{g} \, d\mu, \, \forall f, g \in L^2(X, \mathcal{A}, \mu).$$

### Ortogonalitate

Doi vectori  $x,y\in H$  se numesc ortogonali (sau perpendiculari; notăm  $x\perp y$ ) dacă < x,y>=0. Ortogonalul unei mulțimi nevide  $M\subseteq H$  este, prin definiție, mulțimea (subspațiul închis)  $M^{\perp}=\{x\in H\mid x\perp y,\,\forall y\in M\}$ . Următorul rezultat este esențial în studiul spațiilor Hilbert:

# Teorema proiecției

Fie H un spațiu Hilbert și fie  $M\subseteq H$  o mulțime nevidă, înhisă și convexă. Atunci există un unic vector  $x_M\in M$  astfel încât

$$||x_M|| = \inf\{||x|| \mid x \in M\}.$$

O consecintă importantă este generalizarea descompunerii după direcții perpendiculare din geometria euclidiană:

### Descompunerea ortogonală

Fie  $K \subseteq$  un subspaţiu închis şi fie  $K^{\perp}$  ortogonalul său. Atunci, pentru vector  $x \in H$  există (şi sunt unici)  $y \in K$  şi  $z \in K^{\perp}$  astfel încât x = y + z.

### Baze ortonormale, serii Fourier

Fie H un spaţiu Hilbert; o submulţime  $\mathcal{B} = \{\varepsilon_i\}_{i \in J}$  se numeşte bază ortonormală în H dacă:

i.  $\langle \varepsilon_i, \varepsilon_j \rangle = \delta_{ij}$  (simbolul lui Kronecker),  $\forall i, j \in J$ ;

ii. subspațiul vectorial generat de  $\mathcal{B}$  este dens în H.

Spaţiul Hilbert H se numeşte separabil dacă admite baze ortonormale cel mult numărabile. În continuare vom considera numai spaţii Hilbert separabile.

Fie H un spaţiu Hilbert (separabil), fie  $\mathcal{B} = \{\varepsilon_n\}_{n \in \mathbb{N}}$  o bază ortonormală (fixată) și fie  $x \in H$  un vector fixat; coeficienții Fourier ai lui x (în baza  $\mathcal{B}$ ) sunt  $\widehat{x}_n = \langle x, \varepsilon_n \rangle, \forall n \in \mathbb{N}$ , iar seria  $\sum_{n \in \mathbb{N}} \widehat{x}_n \varepsilon_n$  se numește seria Fourier asociată lui x. Aplicația

$$H \ni x \mapsto (\widehat{x}_n)_n \in \ell^2(N)$$

se numește transformarea Fourier (pe spațiul H).

# Proprietățile seriei Fourier

i. Pentru orice  $x \in H$ , seria Fourier asociată,  $\sum_{n \in N} \widehat{x}_n \varepsilon_n$ , converge la x;

ii. 
$$||x||^2 = \sum_{n \in N} |\widehat{x}_n|^2$$
 (identitatea lui Parseval);

iii. transformarea Fourier este un izomorfism (izometric) de spații Hilbert.

### Serii trigonometrice

Un caz particular remarcabil de serie Fourier este seria trigonometrică. Considerăm spațiul Hilbert al funcțiilor periodice (de perioadă  $2\pi$ ) de pătrat integrabil (a se vedea exemplele de spații p-integrabile):

$$L^2[0,2\pi]=\{f:[0,2\pi]\mapsto C\mid f\text{ măsurabilă şi }\int_0^{2\pi}|f(t)|^2dt<\infty\}.$$

Produsul scalar este

$$\langle f,g \rangle = \frac{1}{2\pi} \int_0^{2\pi} f(t) \overline{g(t)} dt,$$

iar norma 
$$||f||_2 = \sqrt{\frac{1}{2\pi} \int_0^{2\pi} |f(t)|^2 dt}.$$

Pentru orice  $n \in \mathbb{Z}$ , fie  $\omega_n(t) = e^{int}$ . Un rezultat clasic de analiză afirmă că mulțimea (sistemul trigonometric)  $\mathcal{B} = \{\omega_n \mid n \in \mathbb{Z}\}$  este bază ortonormală în  $L^2[0, 2\pi]$ . Pentru orice funcție  $f \in L^2[0, 2\pi]$ , coeficienții Fourier (în

raport cu baza fixată mai sus), sunt

$$\widehat{f}_n = \langle f, \omega_n \rangle = \frac{1}{2\pi} \int_0^{2\pi} f(t) e^{-int} dt, \forall n \in \mathbb{Z},$$

iar seria Fourier (sau seria trigonometrică) asociată funcției f este  $\sum_{n\in Z} \widehat{f}_n \omega_n$ ;

sumele parțiale ale seriei,  $P_n = \sum_{k=-n}^n \widehat{f}_k \omega_k$ , se numesc polinoame trigonometrice și  $\lim_{n\to\infty} P_n = f$  în spațiul  $L^2[0,2\pi]$ , sau, echivalent:

$$\lim_{n\to\infty} \|P_n - f\|_2 = 0.$$

Identitatea lui Parseval devine în acest caz:

$$\frac{1}{2\pi} \int_0^{2\pi} |f(t)|^2 dt = ||f||_2^2 = \sum_{n \in \mathbb{Z}} |\widehat{f}_n|^2.$$

Folosind egalitatea  $e^{int} = \cos nt + i \sin nt, \forall t \in R$ , seria Fourier asociată funcției f se poate scrie sub forma:

$$\frac{a_0}{2} + \sum_{n=1}^{\infty} (a_n \cos nt + b_n \sin nt),$$

unde coeficienții trigonometrici (clasici)  $a_n$  și  $b_n$  sunt:

$$a_n = \frac{1}{\pi} \int_0^{2\pi} f(t) \cos nt dt, \, \forall \, n \ge 0,$$

$$b_n = \frac{1}{\pi} \int_0^{2\pi} f(t) \sin nt dt, \, \forall \, n \ge 1.$$

Legătura dintre coeficienții  $\hat{f}_n, a_n$  și  $b_n$  este:

$$\widehat{f}_0 = \frac{a_0}{2}, \ \widehat{f}_n = \frac{a_n - ib_n}{2}, \ \widehat{f}_{-n} = \frac{a_n + ib_n}{2}, \ \forall \, n = 1, 2, \dots$$

Lema lui Riemann afirmă că dacă funcția f este integrabilă, atunci:

$$\lim_{n \to \infty} a_n = \lim_{n \to \infty} b_n = 0.$$

În legătură cu convergența punctuală a seriei Fourier, are loc următorul rezultat clasic:

### Teorema lui Dirichlet

Dacă  $f:R\mapsto R$  este o funcție periodică de perioadă  $2\pi$ , măsurabilă, mărginită, având cel mult un număr finit de discontinuități de speța intâi și având derivate laterale în orice punct, atunci seria Fourier asociată funcției f converge în fiecare punct  $x\in R$  la

$$\frac{1}{2}(f(x+0) + f(x-0)).$$

În particular, dacă funcția f este continuă (și verifică celelalte ipoteze din teorema lui Dirichlet), atunci are loc descompunerea:

$$f(t) = \frac{a_0}{2} + \sum_{n=1}^{\infty} (a_n \cos nt + b_n \sin nt).$$

### Convergența uniformă a seriei Fourier

Condiții suficiente pentru convergența uniformă a seriei Fourier sunt date în teorema următoare:

Dacă  $f: R \mapsto C$  este o funcție continuă, de clasă  $\mathcal{C}^1$  pe porțiuni și periodică de perioadă  $2\pi$ , atunci seria sa Fourier este absolut și uniform convergentă, iar suma este f.

Numărul  $\frac{a_0}{2} = \frac{1}{2\pi} \int_0^{2\pi} f(x) dx$  este media semnalului f, primul termen

$$a_1 \cos x + b_1 \sin x$$

este oscilația principală (în jurul valorii medii), iar termenul

$$a_n \cos nt + b_n \sin nt, \ n \ge 2$$

este armonica de ordinul n a funcției f. Perioada armonicei de ordinul n este  $\frac{2\pi}{n}$ , iar amplitudinea  $A_n = \sqrt{|a_n|^2 + |b_n|^2}$ ; conform lemei lui Riemann rezultă  $\lim_{n \to \infty} A_n = 0$ .

În cazul în care funcția f are perioada  $T=2\ell, (\ell>0)$ , atunci toate rezultatele de mai sus sunt în continuare adevărate, cu adaptările corespunzătoare; baza ortonormală este

$$\{\epsilon_n \mid n \in Z\}, \text{ cu } \epsilon_n(x) = e^{i\frac{n\pi x}{\ell}},$$

iar coeficienții Fourier sunt:

$$\widehat{f}_n = \frac{1}{2\ell} \int_0^{2\ell} f(x) e^{-i\frac{n\pi x}{\ell}} dx, \, \forall \, n \in \mathbb{Z},$$

$$a_n = \frac{1}{\ell} \int_0^{2\ell} f(x) \cos \frac{n\pi x}{\ell} dx, \, \forall \, n = 0, 1, 2, ...,$$

$$b_n = \frac{1}{\ell} \int_0^{2\ell} f(x) \sin \frac{n\pi x}{\ell}, \, \forall \, n = 1, 2, ...$$

Teorema lui Dirichlet se scrie:

$$\frac{1}{2}(f(x+0) + f(x-0)) = \frac{a_0}{2} + \sum_{n=1}^{\infty} \left( a_n \cos \frac{n\pi x}{\ell} + b_n \sin \frac{n\pi x}{\ell} \right) =$$
$$= \sum_{n=-\infty}^{\infty} \widehat{f}_n e^{i\frac{n\pi x}{\ell}}, \forall x \in R.$$

Identitatea lui Parseval devine acest caz:

$$\frac{|a_0|^2}{2} + \sum_{n>1} \left( |a_n|^2 + |b_n|^2 \right) = \frac{1}{\ell} \int_0^{2\ell} |f(t)|^2 dt.$$

Evident, toate rezultatele de mai sus rămân adevărate dacă înlocuim intervalul  $[0,2\ell]$  cu orice alt interval de lungime  $2\ell$ , de exemplu,  $[-\ell,\ell]$ .

### Serii de sinusuri și cosinusuri

Fie  $f:[0,\ell]\mapsto R$ , o funcție integrabilă și fie  $\tilde{f}:R\mapsto R$ , periodică de perioadă  $2\ell$ , definită prin:

$$\tilde{f}(x) = \begin{cases} f(x) &, & x \in [0, \ell] \\ f(-x) &, & x \in (-\ell, 0) \end{cases}$$

Dacă funcția  $\tilde{f}$  satisface condițiile teoremei lui Dirichlet, atunci, dezvoltând  $\tilde{f}$  în serie Fourier, rezultă:

$$\frac{1}{2}(f(x+0) + f(x-0)) = \frac{a_0}{2} + \sum_{n=1}^{\infty} a_n \cos \frac{\pi nx}{\ell}, \ \forall x \in (0,\ell),$$

$$f(0+0) = \frac{a_0}{2} + \sum_{n=1}^{\infty} a_n, \ f(\ell-0) = \frac{a_0}{2} + \sum_{n=1}^{\infty} (-1)^n a_n,$$

coeficienții  $a_n$  fiind coeficienții Fourier reali asociați funcției  $\tilde{f}$ . Formula de mai sus se numește dezvoltarea în serie de cosinusuri a lui f. Analog, dacă funcția (impară):

$$\tilde{f}(x) = \begin{cases} f(x) &, x \in [0, \ell] \\ -f(-x) &, x \in (-\ell, 0) \end{cases}$$

satisface condițiile teoremei lui Dirichlet, atunci dezvoltarea în serie de sinusuri a funcției f este:

$$\frac{1}{2}(f(x+0) + f(x-0)) = \sum_{n=1}^{\infty} b_n \sin \frac{\pi nx}{\ell}, \ \forall x \in (0, \ell),$$

coeficienții  $b_n$  fiind coeficienții Fourier reali asociați funcției  $\tilde{f}$ .

# Operatori pe spații Hilbert

Acestă secțiune continuă paragraful din capitolul 2 referitor la operatori liniari și continui pe spații normate.

În continuare (H, <, >) este un spațiu Hilbert, iar  $\mathcal{L}(H)$  este spațiul Banach al operatorilor liniari și continui pe H. În legătură cu dualul unui spațiu Hilbert, are loc următorul rezultat:

### Teorema lui Riesz

i. Pentru orice  $y \in H$ , aplicația

$$f_y: H \mapsto C, f_y(x) = \langle x, y \rangle$$

este funcțională liniară și continuă.

ii. Reciproc, dacă f este o funcțională liniară și continuă pe H, atunci există  $y \in H$  astfel încât  $f = f_y$ .

### Adjunctul unui operator

Pentru orice  $T \in \mathcal{L}(H)$ , se demonstrează că există un unic operator  $T^* \in \mathcal{L}(H)$  astfel încât:

$$\langle Tx, y \rangle = \langle x, T^*y \rangle, \ \forall x, y \in H.$$

Proprietățile lui  $T^*$  (numit adjunctul lui T) sunt:

i. 
$$(\alpha T + \beta S)^* = \overline{\alpha} T^* + \overline{\beta} S^*, \forall \alpha, \beta \in C, \forall T, S \in \mathcal{L}(H).$$

ii.  $(T^*)^* = T, \ \forall T \in \mathcal{L}(H).$ 

iii.  $(TS)^* = S^*T^*, \forall T, S \in \mathcal{L}(H).$ 

iv.  $||T^*T|| = ||T||^2$ ,  $\forall T \in \mathcal{L}(H)$ .

v. Dacă  $T \in \mathcal{L}(H)$  este inversabil, atunci  $(T^{-1})^* = (T^*)^{-1}$ .

Fie  $T \in \mathcal{L}(H)$  un operator fixat. T se numește autoadjunct dacă  $T = T^*$ ; operatorul T se numește unitar dacă este inversabil și  $T^{-1} = T^*$ ; operatorul T se numește normal dacă  $TT^* = T^*T$ .

# 6.2 Funcții integrabile

- 1. Să se demonstreze că următoarele aplicații sunt măsuri:
- a. Fie  $X \neq \emptyset$ , fie  $\mathcal{P}(X)$  multimea părților lui X și fie  $a \in X$ , un element

193

arbitrar fixat. Măsura Dirac concentrată în punctul a este, prin definiție:

$$\delta_a: \mathcal{P}(X) \mapsto [0, \infty), \ \delta_a(A) = \begin{cases} 1 & \text{dacă} & a \in A \\ 0 & \text{dacă} & a \notin A \end{cases}$$

**b.** Măsura de numărare pe X este, prin definiție:

$$\mu_c: \mathcal{P}(X) \mapsto [0, \infty], \ \mu_c(A) = \begin{cases} \operatorname{card} A & \operatorname{dacă} & A \text{ este finită} \\ \infty & \operatorname{dacă} & A \text{ este infinită} \end{cases}$$

**c.** Presupunem în plus că mulțimea X este finită. Măsura de probabilitate pe X este, prin definiție:

$$P: \mathcal{P}(X) \mapsto [0,1], \ P(A) = \frac{\operatorname{card}(A)}{\operatorname{card}(X)}.$$

**d.** Un exemplu remarcabil de măsură este măsura Lebesgue (pe spațiul  $\mathbb{R}^n$ ); construcția ei este dată în capitolul următor.

### Soluție

Se verifică direct axiomele măsurii.

**2.a.** Fie  $\delta_a$  măsura Dirac (cf. exercițiului 1) și fie  $f:X\mapsto R$ . Să se demonstreze că:

$$\int_X f d\delta_a = f(a).$$

**b.** Fie  $\mu_c$  măsura de numărare (cf. exercițiului 1) pe N și fie  $f: N \mapsto R$ . Să se demonstreze că

$$\int_{N} f d\mu_{c} = \sum_{n \in N} f(n),$$

în ipoteza că seria din membrul drept are o sumă (eventual  $\infty$ ).

**c.** Fie P măsura de probabilitate (cf exercițiului 1) și fie  $f:X\mapsto R.$  Să se demonstreze că

$$\int_X f dP = \frac{\sum_{x \in X} f(x)}{\operatorname{card}(X)}.$$

### Soluție

Se aplică definiția integralei, (mai întâi pentru funcții simple).

**3.** Fie  $(X, \mathcal{A}, \mu)$  un spațiu cu măsură și fie  $f: X \mapsto [0, \infty)$  o funcție măsurabilă. Să se demonstreze că dacă  $\int_X f d\mu = 0$ , atunci f = 0 (a.p.t.).

### Soluţie

Pentru orice  $n \in N$ , fie

$$A_n = \{x \in X ; f(x) > \frac{1}{n}\}.$$

Mulţimile  $A_n$  sunt măsurabile pentru că  $A_n = f^{-1}\left(\left(\frac{1}{n},\infty\right)\right)$ . Mai mult, avem:

$$\bigcup_{n \in N} A_n = \{ x \in X \; ; \; f(x) \neq 0 \} \, .$$

Vom demonstra că  $\mu(A_n) = 0, \forall n \in \mathbb{N}$ . Integrând pe  $A_n$  inegalitatea:

$$\frac{1}{n} < f(x), \forall x \in A_n,$$

obţinem (folosim şi  $f(x) \ge 0$ ):

$$\frac{1}{n}\mu(A_n) \le \int_{A_n} f d\mu \le \int_X f d\mu = 0,$$

deci  $\mu(A_n) = 0, \forall n \in \mathbb{N}$ . Avem deci:

$$\mu(\{x \in X ; f(x) \neq 0\}) = \mu(\bigcup_{n \in N} A_n) \le \sum_{n \in N} \mu(A_n) = 0.$$

**4.** Fie  $(a_{ij})_{i,j\in N}$  un şir dublu indexat astfel încât  $a_{ij} \geq 0, \forall i,j\in N$ . Să se demonstreze că:

$$\sum_{i \in N} \sum_{j \in N} a_{ij} = \sum_{j \in N} \sum_{i \in N} a_{ij}.$$

Facem mențiunea că membrii egalității pot fi și  $\infty$ .

# Soluţie

Vom aplica teorema de convergență monotonă. Considerăm spațiul cu măsură  $(N, \mu_c)$  și șirul de funcții

$$f_i: N \mapsto [0, \infty), f_i(j) = a_{ij}.$$

Atunci, conform teoremei de convergență monotonă, avem:

$$\int_{N} \sum_{i \in N} f_i d\mu_c = \sum_{i \in N} \int_{N} f_i d\mu_c,$$

adică (aplicând exercițiul 2(b)):

$$\sum_{j \in N} \sum_{i \in N} a_{ij} = \sum_{i \in N} \sum_{j \in N} a_{ij}.$$

### 5. Funcții convexe, inegalitatea lui Jensen

O funcție  $\phi:(a,b)\mapsto R$  se numește convexă dacă:

$$\phi((1-\lambda)x + \lambda y) \le (1-\lambda)\phi(x) + \lambda\phi(y), \forall x, y \in (a,b), \ \forall \lambda \in [0,1],$$

sau, echivalent:

$$\frac{\phi(t) - \phi(s)}{t - s} \le \frac{\phi(u) - \phi(t)}{u - t}, \ \forall a < s < t < u < b.$$

Se demonstrează fără dificultate că o funcție convexă pe un interval deschis este continuă. Un exemplu remarcabil de funcție convexă pe R este funcția exponențială,  $\phi(x) = e^x$ .

Inegalitatea lui Jensen Fie  $(X,\mathcal{A},\mu)$  un spațiu cu măsură astfel încât  $\mu(X)=1$  și fie  $a,b\in\overline{R},\ a< b.$  Atunci, pentru orice funcție integrabilă  $f:X\mapsto (a,b)$  și pentru orice funcție convexă  $\phi:(a,b)\mapsto R,$  are loc inegalitatea:

$$\phi\left(\int_{Y} f d\mu\right) \leq \int_{Y} (\phi \circ f) d\mu.$$

Soluție

Fie  $t=\int_X f d\mu\in R$  și fie  $\alpha=\sup_{s\in[a,t]}\frac{\phi(t)-\phi(s)}{t-s}.$  Propunem ca exercițiu inegalitatea:

$$\phi(s) \ge \phi(t) + \alpha(s-t), \forall s \in (a,b).$$

In particular, pentru s = f(x), obţinem:

$$\phi(f(x)) \ge \phi(t) + \alpha(f(x) - t), \forall x \in X.$$

Integrând ultima inegalitate pe X în raport cu măsura  $\mu$ , obținem:

$$\int_X (\phi \circ f) d\mu \ge \int_X \phi(t) d\mu + \alpha \left( \int_X f d\mu - t \right),$$

adică:

$$\int_X (\phi \circ f) d\mu \ge \phi \left( \int_X f d\mu \right).$$

**6.** Fie  $(X, \mathcal{A}, \mu)$  ca în exercițiul 5 și fie  $f: X \mapsto R, g: X \mapsto [0, \infty)$ , două funcții integrabile; să se demonstreze inegalitățile:

**a.** 
$$e^{\int_X f \ d\mu} \le \int_X e^f \ d\mu$$
.

**b.** 
$$e^{\int_X \ln g \ d\mu} \le \int_X g \ d\mu$$
.

# Soluţie

Se aplică inegalitatea lui Jensen funcției convexe  $\phi(t) = e^t$ .

### 7. Inegalitatea mediilor

Fie  $n \in N$ . Să se demonstreze că pentru orice numere reale nenegative  $x_1, x_2, ..., x_n$ , are loc inegalitatea mediilor:

$$(x_1 \cdot x_2 \cdot ... x_n)^{\frac{1}{n}} \le \frac{x_1 + x_2 + ... + x_n}{n}.$$

### Soluție

Evident, putem presupune că  $x_1, x_2, ..., x_n$  sunt strict pozitive.

Fie  $X = \{p_1, p_2, ..., p_n\}$  o mulțime cu n elemente și fie

 $P: \mathcal{P}(X) \mapsto [0, \infty)$ , măsura de probabilitate, deci

$$P({p_j}) = \frac{1}{n}, \forall j = 1, 2, ..., n.$$

Fie  $f: X \mapsto R, f(p_j) = \ln x_j$  şi fie  $\phi(x) = e^x$ . Aplicând inegalitatea lui Jensen (sau exercițiul 6a), obținem:

$$e^{\frac{1}{n}\sum_{j=1}^{n}f(p_j)} \le \frac{1}{n}\sum_{j=1}^{n}e^{f(p_j)},$$

adică 
$$(x_1 \cdot x_2 \cdot ... x_n)^{\frac{1}{n}} \leq \frac{x_1 + x_2 + ... + x_n}{n}$$
.

# 8. Inegalitatea lui Holder

Fie p>0 și q>0 astfel încât  $\frac{1}{p}+\frac{1}{q}=1;$  p și q se numesc în acest caz conjugate.

**a.** Fie  $(X, \mathcal{A}, \mu)$  un spațiu cu măsură. Atunci, pentru orice funcții măsurabile  $f, g: X \mapsto [0, \infty)$ , are loc inegalitatea lui Holder:

$$\int_X fg \ d\mu \le \left(\int_X f^p \ d\mu\right)^{\frac{1}{p}} \left(\int_X g^q \ d\mu\right)^{\frac{1}{q}}.$$

**b.** Fie  $a_1, a_2, ..., a_n$  şi  $b_1, b_2, ..., b_n$  numere reale pozitive; atunci:

$$a_1b_1 + a_2b_2 + \dots + a_nb_n \le (a_1^p + a_2^p + \dots + a_n^p)^{\frac{1}{p}} \cdot (b_1^q + b_2^q + \dots + b_n^q)^{\frac{1}{q}}$$
.

Soluție

a. Fie  $A=\left(\int_X f^p\,d\mu\right)^{\frac{1}{p}}$  şi  $B=\left(\int_X g^q\,d\mu\right)^{\frac{1}{q}}$ . Dacă  $A=\infty$  sau  $B=\infty$ , atunci inegalitatea este evidentă. Dacă A=0 sau B=0, atunci, conform exercițiului 3, f=0(a.p.t.) sau g=0(a.p.t.) şi deci fg=0(a.p.t.) şi inegalitatea este iarăși evidentă. Presupunem acum  $A,B\in(0,\infty)$ ; fie  $F=\frac{f}{A}$  şi  $G=\frac{g}{B}$ . Fie  $x\in X$ ; deoarece F(x)>0 şi G(x)>0, există  $s,t\in R$  astfel încât  $F(x)=e^{\frac{s}{p}}$  şi  $G(x)=e^{\frac{t}{q}}$ . Folosind convexitatea funcției exponențiale, avem:

$$F(x)G(x) = e^{\frac{1}{p}s + \frac{1}{q}t} \le \frac{1}{p}e^s + \frac{1}{q}e^t = \frac{1}{p}F^p(x) + \frac{1}{q}G^q(x).$$

Integrând ultima inegalitate, obținem:

$$\int_X FG \ d\mu \le \frac{1}{p} \int_X F^p \ d\mu + \frac{1}{q} \int_X G^q \ d\mu = \frac{1}{p} + \frac{1}{q} = 1,$$

ceea ce încheie demonstrația.

**b.** Se aplică inegalitatea lui Holder pentru un spațiu de probabilitate (a se vedea demonstrația de la inegalitatea mediilor).

# 9. Inegalitatea lui Minkovski

Fie p > 1 și fie  $(X, \mathcal{A}, \mu)$  un spațiu cu măsură; pentru orice funcții măsurabile  $f, g: X \mapsto [0, \infty)$ , are loc inegalitatea:

$$\left(\int_X (f+g)^p d\mu\right)^{\frac{1}{p}} \leq \left(\int_X f^p d\mu\right)^{\frac{1}{p}} + \left(\int_X g^p d\mu\right)^{\frac{1}{p}}.$$

Cazul particular p=2 este cunoscut sub numele de inegalitatea lui Schwarz. Soluție

Integrând egalitatea:

$$(f+g)^p = f(f+g)^{p-1} + g(f+g)^{p-1},$$

obţinem:

$$\int_X (f+g)^p = \int_X f(f+g)^{p-1} d\mu + \int_X g(f+g)^{p-1} d\mu.$$

Aplicând inegalitatea lui Holder celor doi termeni din membrul drept al egalității de mai sus, obținem (alegem q conjugat cu p):

$$\int_{X} f(f+g)^{p-1} d\mu \le \left( \int_{X} f^{p} d\mu \right)^{\frac{1}{p}} \left( \int_{X} (f+g)^{(p-1)q} d\mu \right)^{\frac{1}{q}}, \text{ si}$$

$$\int_{X} g(f+g)^{p-1} d\mu \le \left( \int_{X} g^{p} d\mu \right)^{\frac{1}{p}} \left( \int_{X} (f+g)^{(p-1)q} d\mu \right)^{\frac{1}{q}}.$$

Însumând cele două inegalități și folosind egalitatea (p-1)q=p, obținem inegalitatea:

$$\int_X (f+g)^p d\mu \leq \left(\int_X (f+g)^p d\mu\right)^{\frac{1}{q}} \left(\left(\int_X f^p d\mu\right)^{\frac{1}{p}} + \left(\int_X g^p d\mu\right)^{\frac{1}{p}}\right) \quad (*).$$

Folosind convexitatea funcției putere cu exponent supraunitar,  $\phi(t)=t^p$ , obținem:

 $\left(\frac{f+g}{2}\right)^p \le \frac{1}{2}(f^p + g^p),$ 

ceea ce arată că dacă membrul stâng al inegalității (\*) este  $\infty$ , atunci și membrul drept este  $\infty$ . Putem deci presupune că  $\int_X (f+g)^p d\mu < \infty$ .

Demonstrația se încheie împărțind inegalitatea (\*) cu  $\left(\int_X (f+g)^p d\mu\right)^{\frac{1}{q}}$ .

 ${\bf 10.}$ Să se studieze convergența punctuală, uniformă și în norma  $\|\cdot\|_1$ a șirului de funcții

$$f_n: [0,1] \mapsto R, \ f_n(x) = \frac{1}{1+nx}.$$

### Soluție

Fie  $f(x) = 0, \forall x \in (0,1]$  și f(0) = 1. Atunci  $f_n$  converge punctual la f, dar nu converge uniform; în norma  $\|\cdot\|_1$ , șirul  $f_n$  converge la funcția nulă:

$$|| f_n ||_1 = \int_0^1 |f_n(x)| dx = \frac{1}{n} \ln(1+n) \to 0.$$

11. Să se demonstreze incluziunile:

$$\ell^1(Z) \subset \ell^2(Z)$$
 și  $L^2[0,2\pi] \subset L^1[0,2\pi].$ 

### Soluţie

Incluziunile rezultă din următoarele două inegalități:

$$\parallel x \parallel_2 \le \parallel x \parallel_1, \ \forall x \in \ell^2(Z)$$
 şi

$$|| f ||_1 \le || f ||_2, \ \forall f \in L^1[0, 2\pi].$$

Prima inegalitate este evidentă:

$$||x||_2^2 = \sum_{n \in \mathbb{Z}} |x(n)|^2 \le \left(\sum_{n \in \mathbb{Z}} |x(n)|\right)^2 = ||x||_1^2.$$

Pentru cea de-a doua inegalitate să obsevăm mai întâi că funcția constantă  $\mathbf{1}(t) = 1$  este și în  $L^1[0, 2\pi]$  și în  $L^2[0, 2\pi]$ :

$$\|\mathbf{1}\|_1 = \|\mathbf{1}\|_2 = 1.$$

Fie acum  $f:[0,2\pi]\mapsto C$  o funcție măsurabilă (și periodică). Aplicăm inegalitatea lui Holder (exercițiul 8) funcțiilor |f| și 1; obținem:

$$|| f ||_1 = \frac{1}{2\pi} \int_0^{2\pi} |f(t)| \mathbf{1}(t) dt \le$$

$$\le \frac{1}{2\pi} \left( \int_0^{2\pi} |f(t)|^2 dt \right)^{\frac{1}{2}} \left( \int_0^{2\pi} |\mathbf{1}(t)|^2 dt \right)^{\frac{1}{2}} = || f ||_2.$$

12. Fie  $L^1(R)$  spațiul Banach al funcțiilor integrabile pe R în raport cu măsura Lebesgue și fie  $f \in L^1(R)$ .

a. Să se demonstreze că pentru orice  $t \in R$ , funcția  $h(x) = e^{-itx} f(x)$  este în spațiul  $L^1(R)$ .

Putem defini deci:

$$\hat{f}: R \mapsto C, \ \hat{f}(t) = \int_{R} e^{-ixt} f(x) \ dx.$$

Funcția  $\hat{f}$  se numește transformata Fourier a funcției f; să se demonstreze următoarele proprietăți:

- **b.** Dacă  $\phi(x) = f(x)e^{isx}$ , atunci  $\widehat{\phi}(t) = \widehat{f}(t-s), \forall s, t \in \mathbb{R}$ .
- **c.** Dacă  $\psi(x) = f(x-s)$ , atunci  $\widehat{\psi}(t) = \widehat{f}(t)e^{-ist}$ ,  $\forall s, t \in R$ .
- **d.** Dacă  $\eta(x) = \overline{f(-x)}$ , atunci  $\widehat{\eta}(t) = \widehat{f}(t), \forall t \in R$ .

### Soluție

a. Cu notațiile din enunț:

$$||h||_1 = \int_R |e^{-ixt} f(x)| dt = ||f||_1 < \infty,$$

 $\operatorname{deci} h \in L^1(R).$ 

**b.** Fie  $s, t \in R$ ; atunci:

$$\widehat{\psi}(t) = \int_R e^{-ixt} f(x)e^{ixs} dx = \int_R e^{-ix(t-s)} f(x) dx = \widehat{f}(t-s).$$

**c.** Pentru orice  $t, s \in R$  avem:

$$\widehat{\psi}(t) = \int_{R} e^{-ixt} f(x - s) \, dx = \int_{R} e^{-i(s+u)t} f(u) \, du =$$

$$= e^{-ist} \int_{R} e^{-iut} f(u) \, du = e^{-ist} \widehat{f}(t),$$

unde, în prima integrală s-a făcut schimbarea de variabilă x-s=u.

**d.** Pentru orice  $t \in R$  avem:

$$\widehat{g}(t) = \int_{R} e^{-ixt} \, \overline{f(-x)} \, dx =$$

$$= \int_{R} e^{ixt} f(-x) \, dx = \int_{R} e^{-ixt} f(x) \, dx = \overline{\widehat{f}(t)}.$$

13. Fie  $f\in L^1(R)$  și fie g(x)=-ixf(x). Dacă  $g\in L^1(R)$ , atunci funcția  $\widehat{f}$  este diferențiabilă și  $\left(\widehat{f}\right)'=\widehat{g}$ .

### Soluție

Pentru orice  $t \in R$ , avem:

$$\lim_{u \to 0} \frac{\hat{f}(t+u) - \hat{f}(t)}{u} = \lim_{u \to 0} \int_{R} e^{-ixt} f(x) \, \frac{e^{-ixu} - 1}{u} dx.$$

Propunem ca exercițiu inegalitatea:

$$\left| e^{-ixt} f(x) \left| \frac{e^{-ixu} - 1}{u} \right| \le |xf(x)|, \forall u \ne 0.$$

Din ipoteză, funcția  $R \ni x \mapsto xf(x) \in R$  este integrabilă și deci putem aplica teorema de convergență dominată a lui Lebesgue:

$$\lim_{u \to 0} \frac{\widehat{f}(t+u) - \widehat{f}(t)}{u} = \int_{R} e^{-ixt} f(x) \left( \lim_{u \to 0} \frac{e^{-ixu} - 1}{u} \right) dx =$$
$$= \int_{R} e^{-ixt} f(x) (-ix) dx = \widehat{g}(t),$$

ceea ce încheie demonstrația.

14. Fie  $f \in L^1(R)$  o funcție de clasă  $\mathcal{C}^1(R)$  astfel încât  $\lim_{|x| \to \infty} f(x) = 0$ . Atunci  $f' \in L^1(R)$  și  $\widehat{f}'(t) = it\widehat{f}(t), \, \forall \, t \in R$ .

201

### Soluție

Pentru orice  $t \in R$ , aplicând formula de integrare prin părți, avem:

$$\widehat{f}'(t) = \int_{-\infty}^{\infty} e^{-ixt} f'(x) dx =$$

$$= e^{-ixt} f(x) \Big|_{-\infty}^{\infty} + it \int_{-\infty}^{\infty} e^{-ixt} f(x) dx = it \widehat{f}(t).$$

# 6.3 Serii Fourier

15. Să se demonstreze egalitățile:

$$1 + \cos x + \cos 2x + \dots + \cos nx = \frac{\sin \frac{(n+1)x}{2} \cos \frac{nx}{2}}{\sin \frac{x}{2}},$$

$$\sin \frac{(n+1)x}{2} \sin \frac{nx}{2}$$

$$\sin x + \sin 2x + \dots + \sin nx = \frac{\sin \frac{(n+1)x}{2} \sin \frac{nx}{2}}{\sin \frac{x}{2}},$$

 $\forall n \in N^\star, \, \forall \, x \in R, x \neq 2k\pi, k \in Z.$ 

# Soluție

Se înmulțește membrul drept cu  $2\sin\frac{x}{2}$  și se transformă produsele în diferențe. Altă metodă: notăm cu S prima suma și a doua cu T și calculăm S+iT; notând  $z=\cos x+i\sin x$ , se obține o progresie geometrică.

16. Să se dezvolte în serie Fourier funcția

$$f(x) = |x|, x \in [-\pi, \pi],$$

prelungită prin periodicitate la întregul R. Să se deducă apoi suma seriei numerice:

$$\frac{1}{1^2} + \frac{1}{3^2} + \frac{1}{5^2} + \dots$$

### Soluție

Funcția este continuă; calculăm coeficienții Fourier reali:

$$a_0 = \frac{1}{\pi} \int_{-\pi}^{\pi} |x| \, dx = \frac{2}{\pi} \int_{0}^{\pi} x \, dx = \pi.$$

$$a_n = \frac{1}{\pi} \int_{-\pi}^{\pi} |x| \cos nx \, dx = \frac{2}{\pi} \int_{0}^{\pi} x \,$$

$$= \frac{2}{\pi} \left( \frac{1}{n} x \sin nx \Big|_{0}^{\pi} - \frac{1}{n} \int_{0}^{\pi} \sin nx \, dx \right) =$$

$$= \frac{2}{\pi n^{2}} \cos nx \Big|_{0}^{\pi} = \frac{2}{\pi n^{2}} \left( (-1)^{n} - 1 \right), \ \forall n \ge 1.$$

$$b_{n} = \frac{1}{\pi} \int_{-\pi}^{\pi} |x| \sin nx \, dx = 0, \forall n \ge 1.$$

Rezultă seria Fourier (conform teoremei lui Dirichlet):

$$|x| = \frac{\pi}{2} + \sum_{n>1} \frac{2((-1)^n - 1)}{n^2} \cos nx, \forall x \in [-\pi, \pi],$$

sau, echivalent:

$$|x| = \frac{\pi}{2} + \sum_{m>0} \frac{-4}{\pi(2m+1)^2} \cos(2m+1)x, \, \forall \, x \in [-\pi, \pi].$$

În particular, pentru x = 0, se obţine:

$$\frac{1}{1^2} + \frac{1}{3^2} + \frac{1}{5^2} + \dots = \frac{\pi^2}{8}.$$

### 17. Să se determine seria Fourier asociată funcției

$$f(x) = x, \forall x \in (-\pi, \pi],$$

prelungită prin periodicitate la R. Notând cu S suma acestei serii, să se determine S(x).

#### Solutie

Din periodicitate, rezultă că  $f(-\pi)=f(\pi)=\pi$ , deci funcția nu este continuă în punctele  $k\pi, k\in Z$  și:

$$\frac{1}{2}\left(f(-\pi+0) + f(\pi-0)\right) = 0.$$

Calculăm acum coeficienții Fourier:

$$a_n = \frac{1}{\pi} \int_{-\pi}^{\pi} x \cos nx \, dx = 0, \forall n \ge 0.$$

$$b_n = \int_{-\pi}^{\pi} x \sin nx \, dx = \frac{2}{\pi} \int_{0}^{\pi} x \sin nx \, dx =$$

$$= \frac{2}{\pi} \left( -\frac{x}{n} \cos nx \Big|_{0}^{\pi} + \frac{1}{n} \int_{0}^{\pi} \cos nx \, dx \right) = \frac{2}{n} (-1)^{n+1}, \, \forall \, n \ge 1.$$

Rezultă seria Fourier:

$$S(x) = \sum_{n=1}^{\infty} \frac{2(-1)^{n+1}}{n} \sin nx.$$

Conform teoremei lui Dirichlet rezultă :

$$S(x) = f(x), \, \forall \, x \in (-\pi, \pi),$$

iar în punctele  $\pm \pi$  rezultă:

$$S(\pi) = S(-\pi) = \frac{1}{2} \left( f(-\pi + 0) + f(\pi - 0) \right) = 0.$$

În particular, pentru  $x=\frac{\pi}{2},$  se obține seria lui Leibniz:  $\sum_{k\geq 0}\frac{(-1)^k}{2k+1}=\frac{\pi}{4}.$ 

18. Să se determine seria Fourier asociată funcției

$$f(x) = x^2, x \in (-\pi, \pi],$$

prelungită prin periodicitate la R.

Să se calculeze apoi sumele seriilor de numere:

$$\sum_{n\geq 0} \frac{1}{n^2} \,, \ \sum_{n\geq 1} \frac{(-1)^{n-1}}{n^2} \,, \ \sum_{n\geq 1} \frac{1}{n^4} .$$

### Soluție

Evident, funcția este continuă; calculăm coeficienții Fourier:

$$a_0 = \frac{1}{\pi} \int_{-\pi}^{\pi} x^2 dx = \frac{2}{3} \pi^2.$$

$$a_n = \frac{1}{\pi} \int_{-\pi}^{\pi} x^2 \cos nx = \frac{2}{n\pi} x^2 \sin nx \Big|_{0}^{\pi} - \frac{4}{n\pi} \int_{0}^{\pi} x \sin nx dx =$$

$$= \frac{4}{n^2 \pi} x \cos nx \Big|_{0}^{\pi} - \frac{4}{n^2 \pi} \int_{0}^{\pi} \sin nx dx = 4 \frac{(-1)^n}{n^2}.$$

Evident,  $b_n = 0, \forall n \geq 1$ . Rezultă dezvoltarea:

$$x^{2} = \frac{\pi^{2}}{3} + \sum_{n>1} 4 \frac{(-1)^{n}}{n^{2}} \cos nx, \ \forall x \in [0, \pi].$$

Pentru a calcula suma primei serii, particularizăm în identitatea de mai sus  $x=\pi;$  rezultă:

$$\sum_{n \ge 1} \frac{1}{n^2} = \frac{\pi^2}{6}.$$

Pentru suma celei de-a doua serii, luăm x = 0; se obține:

$$\sum_{n>1} \frac{(-1)^n}{n^2} = \frac{\pi^2}{12}.$$

Pentru a calcula suma celei de-a treia serii, scriem mai întâi identitatea lui Parseval pentru seria trigonometrică de mai sus; rezultă:

$$\frac{1}{\pi} \int_{-\pi}^{\pi} x^4 dx = ||f||_2^2 = \frac{a_0^2}{2} + \sum_{n \ge 1} a_n^2.$$

Se obtine:

$$\sum_{n \ge 1} \frac{1}{n^4} = \frac{1}{16} \left( -\frac{2\pi^4}{9} + \frac{2}{\pi} \int_0^{\pi} x^4 \, dx \right) = \frac{\pi^4}{90}.$$

**19.** Fie  $a \in R^*$ .

- a. Să se determine seria Fourier asociată funcției  $f(x) = e^{ax}, x \in (-\pi, \pi].$
- b. Să se deducă sumele seriilor de numere:

$$\sum_{n>1} \frac{1}{n^2 + a^2} \text{ si } \sum_{n>1} \frac{(-1)^n}{n^2 + a^2}$$

c. Să se deducă dezvoltările în serie Fourier ale funcțiilor  $\operatorname{ch}(ax)$  și  $\operatorname{sh}(ax)$ , pe intervalul  $(-\pi,\pi)$ .

### Soluție

a. Calculăm coeficienții Fourier:

$$a_0 = \frac{1}{\pi} \int_{-\pi}^{\pi} e^{ax} \, dx = \frac{e^{a\pi} - e^{-a\pi}}{a\pi} = 2 \frac{\sinh(a\pi)}{a\pi}$$

$$a_n = \frac{1}{\pi} \int_{-\pi}^{\pi} e^{ax} \cos nx \, dx = \frac{e^{ax} (a \cos nx + n \sin nx)}{\pi (a^2 + n^2)} \Big|_{-\pi}^{\pi} =$$

$$= (-1)^n \frac{2a \sin(a\pi)}{\pi (a^2 + n^2)}, \, \forall \, n \ge 1.$$

$$b_n = \frac{1}{\pi} \int_{-\pi}^{\pi} e^{ax} \sin nx \, dx = \frac{e^{ax} (a \sin nx - n \cos nx)}{\pi (a^2 + n^2)} \Big|_{-\pi}^{\pi} =$$

$$= (-1)^{n-1} \frac{2n \operatorname{sh} (a\pi)}{\pi (a^2 + n^2)}, \, \forall \, n \ge 1.$$

Rezultă formula:

$$e^{ax} = \frac{2 \operatorname{sh} (a\pi)}{\pi} \left( \frac{1}{2a} + \sum_{n \ge 1} \frac{(-1)^n}{a^2 + n^2} (a \cos nx - b \sin nx) \right), \, \forall \, x \in (-\pi, \pi).$$

**b.** În punctele  $\pm \pi$  funcția (prelungită prin periodicitate) nu este continuă; în aceste puncte suma seriei trigonometrice este:

$$\frac{f(\pi+) + f(\pi-)}{2} = \frac{e^{a\pi} + e^{-a\pi}}{2} = \frac{2\sin(a\pi)}{\pi} \left(\frac{1}{2a} + \sum_{n \ge 1} \frac{a}{a^2 + n^2}\right).$$

Din egalitatea de mai sus rezultă suma primei serii cerute:

$$\sum_{n>1} \frac{1}{a^2 + n^2} = \frac{\pi(e^{a\pi} + e^{-a\pi})}{2a(e^{a\pi} - e^{-a\pi})} - \frac{1}{2a^2}.$$

Pentru a calcula suma celei de-a doua serii, se ia x=0 în dezvoltarea funcției f; se obține:

$$\sum_{n>1} \frac{(-1)^n}{a^2 + n^2} = \frac{\pi}{2a \operatorname{sh}(a\pi)} - \frac{1}{2a^2}.$$

c. Din definiție și din dezvoltarea obținută la punctul a, rezultă:

$$\operatorname{ch}(ax) = \frac{e^{ax} + e^{-ax}}{2} =$$

$$= \frac{\operatorname{sh}(a\pi)}{a\pi} + \sum_{n \ge 1} (-1)^n \frac{2a \operatorname{sh}(a\pi)}{a^2 + n^2} \cos nx, \, \forall x \in (-\pi, \pi).$$

Formula de mai sus este adevărată și în  $\pm \pi$ , deorece funcția ch (prelungită prin periodicitate) este continuă.

Analog, se obtine:

$$\operatorname{sh}(ax) = \frac{e^{ax} - e^{-ax}}{2} =$$

$$= \sum_{n>1} (-1)^{n-1} \frac{2n \operatorname{sh}(a\pi)}{a^2 + n^2} \sin nx, \, \forall \, x \in (-\pi, \pi).$$

20. Să se demonstreze formula:

$$\frac{\pi - x}{2} = \sum_{n \ge 1} \frac{\sin nx}{n}, \, \forall x \in (0, 2\pi).$$

# Soluţie

Fie  $f(x) = \frac{\pi - x}{2}$ ,  $x \in [0, 2\pi)$ , prelungită prin periodicitate la R; calculăm coeficienții Fourier:

$$a_0 = \frac{1}{\pi} \int_0^{2\pi} \frac{\pi - x}{2} dx = \frac{1}{2\pi} \left( \pi x - \frac{x^2}{2} \right) \Big|_0^{2\pi} = 0.$$

$$a_n = \frac{1}{\pi} \int_0^{2\pi} \frac{\pi - x}{2} \cos nx dx =$$

$$= \frac{(\pi - x) \sin nx}{2n\pi} \Big|_0^{2\pi} - \frac{1}{2n\pi} \int_0^{2\pi} \sin nx dx = 0, \forall n \ge 1.$$

$$b_n = \frac{1}{\pi} \int_0^{2\pi} \frac{\pi - x}{2} \sin nx dx =$$

$$= \frac{-(\pi - x) \cos nx}{2n\pi} \Big|_0^{2\pi} - \frac{1}{2n\pi} \int_0^{2n\pi} \cos nx dx = \frac{1}{n}, \forall n \ge 1.$$

Aplicând teorema lui Dirichlet, rezultă:

$$\frac{\pi - x}{2} = \sum_{n \ge 1} \frac{\sin nx}{n}, \, \forall x \in (0, 2\pi).$$

În punctele x=0 şi  $x=2\pi$  funcția f nu este continuă; în aceste puncte seria trigonometrică asociată ei are suma 0.

21. Să se demonstreze egalitatea:

$$\sum_{n \ge 1} \frac{\sin 2nx}{2n} = \frac{\pi}{4} - \frac{x}{2}, \, \forall \, x \in (0, \pi).$$

# Soluţie

Din formula:

$$\frac{\pi - x}{2} = \sum_{n \ge 1} \frac{\sin nx}{n}, \, \forall x \in (0, 2\pi),$$

demonstrată în exercițiul precedent, înlocuind pe x cu 2x, rezultă identitatea:

$$\frac{\pi - 2x}{2} = \sum_{n \ge 1} \frac{\sin 2nx}{n}, \, \forall \, x \in (0, \pi).$$

Împărțind acum cu 2, rezultă egalitatea cerută.

22. Să se demonstreze identitățile:

$$\sum_{n>1} \frac{\sin(2n-1)x}{2n-1} = \frac{\pi}{4}, \, \forall x \in (0,\pi)$$

$$\sum_{n>1} \frac{\sin(2n-1)x}{2n-1} = -\frac{\pi}{4}, \, \forall x \in (-\pi, 0).$$

Să se calculeze apoi suma seriei:

$$1 - \frac{1}{5} + \frac{1}{7} - \frac{1}{11} + \frac{1}{13} - \dots$$

# Soluţie

Pentru prima identitate se scad membru cu membru cele două egalități demonstrate în exercițiile 20 și 21; a doua identitate rezultă din prima și din imparitatea funcției sinus. Pentru a calcula suma seriei numerice date, se ia  $x=\frac{\pi}{3}$  în prima egalitate și obținem:

$$\frac{\pi}{4} = \sum_{n>1} \frac{\sin\frac{(2n-1)\pi}{3}}{2n-1},$$

de unde rezultă:  $1 - \frac{1}{5} + \frac{1}{7} - \frac{1}{11} + \frac{1}{13} - \dots = \frac{\pi\sqrt{3}}{6}$ .

# 23. Fenomenul Gibbs

În jurul unui punct de discontinuitate al unei funcții date, seria Fourier asociată ei converge doar punctual (nu neapărat uniform). Acest fapt conduce la un defect de convergență (aparent paradox) al șirului sumelor parțiale asociat seriei trigonometrice date, numit fenomenul Gibbs. Dăm în continuare un exemplu în acest sens.

Considerăm restricția funcției signum la intervalul  $(-\pi, \pi)$ ,

$$\operatorname{sgn}: (-\pi, \pi) \mapsto R, \, \operatorname{sgn}(x) = \begin{cases} -1, & x \in (-\pi, 0) \\ 0, & x = 0 \\ 1, & x \in (0, \pi) \end{cases}$$

In exercițiul anterior s-a demonstrat egalitatea:

$$sgn(x) = \frac{4}{\pi} \sum_{n \ge 1} \frac{\sin(2n-1)x}{2n-1}, \, \forall \, x \in (-\pi, \pi).$$

Notăm cu  $S_n$  șirul sumelor parțiale:

$$S_n(x) = \frac{4}{\pi} \sum_{k=1}^n \frac{\sin(2k-1)x}{2k-1}, \, \forall \, x \in (-\pi, \pi).$$

În punctul x=0 funcția sgn nu este continuă; seria sa Fourier converge (conform teoremei lui Dirichlet) la  $\frac{1}{2}(-1+1)=0=\mathrm{sgn}(0)$ ; convergența  $\lim_{n\to\infty}S_n(x)=\mathrm{sgn}(x),\,\forall\,x\in(-\pi,\pi)$  este punctuală, nu și uniformă.

a. Šă se demonstreze egalitatea:

$$S_n(x) = \frac{2}{\pi} \int_0^x \frac{\sin 2nt}{\sin t} dt, \, \forall \, x \in (-\pi, \pi).$$

**b.** Să se arate că funcția  $S_n$  are un maxim în punctul  $x = \frac{\pi}{2n}$  și:

$$\lim_{n \to \infty} S_n\left(\frac{\pi}{2n}\right) = \frac{2}{\pi} \int_0^{\pi} \frac{\sin t}{t} dt \approx 1{,}1789.$$

c. Să se calculeze

$$\lim_{n\to\infty} \left| S_n\left(\frac{\pi}{2n}\right) - \operatorname{sgn}(0+) \right|.$$

### Soluție

a. Calculăm mai întâi suma

$$A = \cos x + \cos 3x + \dots + \cos(2n - 1)x, \, \forall \, x \neq k\pi, \, k \in \mathbb{Z}.$$

Pentru aceasta, considerăm și suma  $B = \sin x + \sin 3x + ... + \sin (2n-1)x$  și calculăm:

$$A + iB =$$

$$= (\cos x + i \sin x) + (\cos 3x + i \sin 3x) + \dots + (\cos(2n-1)x + i \sin(2n-1)x) =$$

$$= z^2 \frac{z^{2n} - 1}{z^2 - 1},$$

unde am notat  $z = \cos x + i \sin x$ . După calcule, rezultă:

$$A + iB = \frac{\sin nx}{\sin x} (\cos nx + i\sin nx),$$

și deci:

$$\cos x + \cos 3x + \dots + \cos(2n-1)x = \frac{\sin 2nx}{2\sin x}, \, \forall \, x \neq k\pi, \, k \in \mathbb{Z}.$$

Integrând de la 0 la x, rezultă:

$$\sum_{k=1}^{n} \frac{\sin(2k-1)x}{2k-1} = \int_{0}^{x} \frac{\sin 2nt}{2\sin t} dt,$$

sau, înmulțind cu  $\frac{4}{\pi}$ :

$$S_n(x) = \frac{2}{\pi} \int_0^x \frac{\sin 2nt}{\sin t} dt, \, \forall \, x \in (-\pi, \pi).$$

b. Din cele demonstrate la punctul precedent rezultă că

$$S_n'(x) = \frac{2\sin 2nx}{\pi \sin x}$$

și deci $\frac{\pi}{2n}$ este punct critic al lui  $S_n;$  într-o vecinătate a lui  $\frac{\pi}{2n}$  avem:

$$S'_n(x) = \frac{2\sin 2nx}{\pi \sin x} > 0, \ x < \frac{\pi}{2n},$$

$$S'_n(x) = \frac{2\sin 2nx}{\pi \sin x} < 0, x > \frac{\pi}{2n}$$

Rezultă că  $x = \frac{\pi}{2n}$  este punct de maxim al funcției  $S_n$ . Calculăm acum:

$$S_n\left(\frac{\pi}{2n}\right) = \frac{2}{\pi} \int_0^{\frac{\pi}{2n}} \frac{\sin 2nt}{\sin t} dt = \frac{2}{\pi} \int_0^{\pi} \frac{\sin u}{\sin\left(\frac{u}{2n}\right)} \frac{du}{2n} = \frac{1}{n} \int_0^{\pi} \frac{\sin u}{\sin\left(\frac{u}{2n}\right)} du.$$

Rezultă:

$$\lim_{n \to \infty} S_n\left(\frac{\pi}{2n}\right) = \frac{2}{\pi} \int_0^{\pi} \frac{\sin u}{u} \, du.$$

Ultima integrală se aproximează dezvoltând funcția sinus în serie de puteri:

$$\int_0^{\pi} \frac{\sin u}{u} du = \int_0^{\pi} \left( \sum_{n \ge 1} \frac{(-1)^n}{(2n-1)!} x^{2n-2} \right) du =$$

$$= \sum_{n>1} \frac{(-1)^n}{(2n-1)!(2n-1)} x^{2n-1} \Big|_0^{\pi} = \sum_{n>1} \frac{(-1)^n \pi^{2n-1}}{(2n-1)!(2n-1)}.$$

Seria fiind alternată, eroarea este mai mică decât primul termen neglijat. Cu o eroare mai mică decât  $10^{-3}$ , se obţine

$$\lim_{n \to \infty} S_n\left(\frac{\pi}{2n}\right) \approx 1,1789.$$

**c.** Rezultă: 
$$\lim_{n\to\infty} \left| S_n\left(\frac{\pi}{2n}\right) - \operatorname{sgn}(0+) \right| \approx 0,1789.$$

24. Să se dezvolte în serie Fourier funcția:

$$f(x) = \begin{cases} 0 & , & x \in (-2, 0] \\ \frac{x}{2} & , & x \in (0, 2] \end{cases},$$

prelungită prin periodicitate (perioadă 4) la R.

### Solutie

Cu notațiile uzuale,  $\ell=2$  și deci coeficienții Fourier sunt:

$$a_0 = \frac{1}{2} \int_{-2}^2 f(x) \, dx = \frac{1}{2} \int_0^2 \frac{x}{2} \, dx = \frac{1}{2}.$$

$$a_n = \frac{1}{2} \int_0^2 \frac{x}{2} \cos \frac{n\pi x}{2} \, dx = \begin{cases} 0 & \text{dacă} & n \text{ par, } n \ge 2\\ -\frac{2}{\pi^2 n^2} & \text{dacă} & n \text{ impar, } n \ge 1 \end{cases}$$

$$b_n = \frac{1}{2} \int_0^2 \frac{x}{2} \sin \frac{n\pi x}{2} \, dx = \frac{(-1)^{n-1}}{\pi n}, \, \forall \, n \ge 1.$$

Rezultă dezvoltarea:

$$\frac{a_0}{2} + \sum_{n \ge 1} \left( a_n \cos \frac{n\pi x}{2} + b_n \sin \frac{n\pi x}{2} \right) = f(x), \, \forall \, x \in (-2, 2),$$

deci:

$$\frac{1}{4} + \sum_{n \ge 1} \left( -\frac{2}{\pi^2 (2n-1)^2} \cos \frac{(2n-1)\pi x}{2} + \frac{(-1)^{n-1}}{\pi n} \sin \frac{n\pi x}{2} \right) =$$

$$= \begin{cases} 0 & , & x \in (-2,0] \\ \frac{x}{2} & , & x \in (0,2) \end{cases}$$

În particular, pentru x = 1 rezultă identitatea (obținută și în exercițiul 17):

$$\sum_{n>1} \frac{(-1)^{n-1}}{2n-1} = \frac{\pi}{4}.$$

În x=2 funcția nu este continuă, deci seria Fourier nu converge în acest punct la f(2)=1, ci, conform teoremei lui Dirichlet, la  $\frac{f(2-)+f(2+)}{2}=\frac{1}{2}$ ; rezultă identitatea (obținută și în exercițiul 16):

$$\sum_{n\geq 1} \frac{1}{(2n-1)^2} = \frac{\pi^2}{8}.$$

211

**25.** Fie funcția  $f:[0,\pi]\mapsto R,\ f(x)=x.$ 

a. Să se dezvolte f în serie de cosinusuri.

**b.** Să se dezvolte f în serie de sinusuri.

### Soluţie

a. Calculăm coeficienții dezvoltării în serie de cosinusuri (coeficienții Fourier ai prelungirii pare a funcției f la intervalul  $(-\pi,\pi)$ ):

$$a_0 = \frac{2}{\pi} \int_0^{\pi} x \, dx = \pi,$$

$$a_n = \frac{2}{\pi} \int_0^{\pi} x \cos nx \, dx = \frac{2x \sin nx}{\pi n} \Big|_0^{\pi} - \frac{2}{n\pi} \int_0^{\pi} \sin nx \, dx =$$

$$= \frac{2((-1)^n - 1)}{n^2 \pi}, \, \forall n \ge 1.$$

Rezultă dezvoltarea în serie de cosinusuri:

$$x = \frac{\pi}{2} - \sum_{n>1} \frac{4}{\pi (2n-1)^2} \cos(2n-1)x, \, \forall \, x \in [0,\pi],$$

egalitatea fiind adevărată în punctele x=0 și  $x=\pi$  deoarece prelungirea pară este continuă.

**b.** Calculăm coeficienții dezvoltării în serie de sinusuri (coincid cu coeficienții Fourier ai prelungirii impare a funcției f):

$$b_n = \frac{2}{\pi} \int_0^{\pi} x \sin nx \, dx = \frac{2}{\pi} \left( -\frac{1}{n} x \cos nx \Big|_0^{\pi} + \frac{1}{n} \int_0^{\pi} \cos nx \, dx \right) =$$
$$= \frac{2(-1)^{n-1}}{n}, \, \forall \, n \ge 1.$$

Rezultă dezvoltarea în serie de sinusuri:

$$x = \sum_{n \ge 1} \frac{2(-1)^{n-1}}{n} \sin nx, \, \forall \, x \in [0, \pi).$$

**26.** Fie  $a \in R^*$ ; să se dezvolte funcția  $f:[0,\pi) \mapsto R$ ,  $f(x)=e^{ax}$ :

a. în serie de cosinusuri;

**b.** în serie de sinusuri.

### Soluție

Se calculează coeficienții (a se vedea și exercițiul 19) și rezultă dezvoltările:

$$e^{ax} = \frac{e^{a\pi} - 1}{a\pi} + \sum_{n>1} \frac{2a((-1)^n e^{a\pi} - 1)}{\pi(a^2 + n^2)} \cos nx \,\,\forall \, x \in [0, \pi).$$

$$e^{ax} = \sum_{n \ge 1} \frac{2n(1 - (-1)^n e^{a\pi})}{\pi(a^2 + n^2)} \sin nx, \ \forall x \in (0, \pi).$$

**27.** Să se determine coeficienții Fourier complecși (spectrul în frecvență) ai funcției de perioadă  $2\pi$ ,

$$f(t) = e^{|t|}, t \in [-\pi, \pi].$$

### Soluție

Pentru orice  $n \in \mathbb{Z}$ , coeficienții Fourier sunt:

$$\widehat{f}_n = \frac{1}{2\pi} \int_{-\pi}^{\pi} f(t)e^{-int} dt =$$

$$= \frac{1}{2\pi} \int_{-\pi}^{\pi} e^{|t|} e^{-int} dt = \frac{1}{2\pi} \int_{-\pi}^{0} e^{-t(1+in)} dt + \frac{1}{2\pi} \int_{0}^{\pi} e^{t(1-in)} dt =$$

$$= \frac{-1}{2\pi(1+in)} e^{-t(1+in)} \Big|_{-\pi}^{0} + \frac{1}{2\pi(1-in)} e^{t(1+in)} \Big|_{0}^{\pi} =$$

$$= \frac{(-1)^n}{\pi(n^2+1)} \left( in \operatorname{sh}(\pi) + \operatorname{ch}(\pi) + (-1)^{n+1} \right).$$

**28.** Să se determine coeficienții Fourier complecși și seria Fourier pentru funcția periodică

$$f(x) = \begin{cases} -1 & , & x \in (-\pi, 0) \\ 1 & , & x \in [0, \pi] \end{cases}$$

# Soluție

Calculăm coeficienții Fourier; evident,  $\hat{f}_0 = 0$ . Pentru  $n \in \mathbb{Z}^*$ , avem:

$$\widehat{f}_n = \frac{1}{2\pi} \left( -\int_{-\pi}^0 e^{-int} dt + \int_0^{\pi} e^{-int} dt \right) =$$

$$= \frac{1}{2\pi i n} \left( e^{-int} \Big|_{-\pi}^0 - e^{-int} \Big|_0^{\pi} \right) = \frac{i}{\pi n} \left( (-1)^n - 1 \right).$$

Din teorema lui Dirichlet, rezultă:

$$\sum_{n \in \mathbb{Z}} \widehat{f}_{2n+1} e^{i(2n+1)t} = \sum_{n \in \mathbb{Z}} \frac{-2i}{(2n+1)\pi} e^{i(2n+1)\pi}, \ \forall t \in (-\pi, 0) \cup (0, \pi).$$

**29.** Să se determine seria Fourier complexă a funcției de perioadă  $2\pi$ :

$$f(x) = \frac{x}{2} - \frac{x^2}{4\pi}, \ x \in (0, 2\pi].$$

Să se demonstreze că seria converge uniform pe R.

### Solutie

Calculăm mai întâi coeficienții Fourier; pentru orice  $n \in \mathbb{Z}^*$ :

$$\widehat{f}_n = \frac{1}{2\pi} \int_0^{2\pi} \left( \frac{x}{2} - \frac{x^2}{4\pi} \right) e^{-inx} dx =$$

$$= \frac{1}{2\pi i n} \int_0^{2\pi} \left( \frac{1}{2} - \frac{x}{2\pi} \right) e^{-inx} dx = \frac{1}{2\pi n^2} \left( \frac{1}{2} - \frac{x}{2\pi} \right) e^{-inx} \Big|_0^{2\pi} = -\frac{1}{2\pi n^2}.$$

Prin calcul direct,  $\hat{f}_0 = \frac{\pi}{6}$ .

Funcția f este continuă, periodică și de clasă  $\mathcal{C}^1$  pe porțiuni (funcția nu este de clasă  $\mathcal{C}^1$  în punctele  $2k\pi$ ,  $\forall k \in \mathbb{Z}$ ), deci seria Fourier asociată converge uniform la f pe R:

$$\frac{\pi}{6} + \sum_{n \in \mathbb{Z}^*} \frac{-1}{2\pi n^2} e^{inx} = \frac{x}{2} - \frac{x^2}{4\pi}, \ \forall \ x \in \mathbb{R}.$$

# 6.4 Operatori pe spații Hilbert

**30.** Fie  $T \in \mathcal{L}(C^n)$  cu matricea asociată (în baza canonică)  $M_T = (a_{ij})_{i,j}$ . a. Să se demonstreze că matricea adjunctului  $T^*$  este  $M_{T^*} = (b_{ij})_{ij}$ , unde,

$$b_{ij} = \overline{a_{ji}}, \forall i, j \in \{1, 2, ..., n\}.$$

**b.** Să se demonstreze că operatorul T este autoadjunct dacă și numai dacă  $a_{ij}=\overline{a_{ji}},\,\forall i,j\in\{1,2,...,n\}.$ 

**c.** Să se demonstreze că operatorul T este unitar dacă și numai dacă  $M_T$  este matrice ortogonală.

### Soluție

**a.** Fie  $\{e_1, e_2, ..., e_n\}$  baza canonică din  $\mathbb{R}^n$ ; atunci, din definiție,

$$a_{ij} = \langle Te_j, e_i \rangle, \forall i, j \in \{1, 2, ..., n\}.$$

Pentru orice  $i, j \in \{1, 2, ..., n\}$ , avem:

$$b_{ij} = < T^* e_j, e_i > = < e_j, (T^*)^* e_i > = < e_j, Te_i > = \overline{< Te_i, e_j >} = \overline{a_{ji}}.$$

Celelalte afirmații sunt consecințe directe ale definițiilor și ale punctului a.

**31.** Fie (H, <, >) un spațiu Hilbert și fie  $T \in \mathcal{L}(H)$ . Notăm  $\operatorname{Ker}(T)$  și  $\operatorname{Im}(T)$  nucleul și, respectiv, imaginea operatorului T:

$$Ker(T) = \{x \in H \mid Tx = 0\}, Im(T) = \{Tx \mid x \in H\}.$$

Să se demonstreze egalitățile:

**a.** 
$$Ker(T) = (Im(T^*))^{\perp}$$
.

**b.** 
$$Im(T) = (Ker(T^*))^{\perp}$$
.

### Soluție

**a.** Fie  $x \in \text{Ker}(T)$  și fie  $y \in H$ ; atunci:

$$< T^* y, x > = < y, Tx > = 0$$

și deci $x \perp \operatorname{Im}(T^*)$ . Pentru incluziunea inversă, fie  $x \in (\operatorname{Im}(T^*))^{\perp}$ ; atunci, pentru orice  $y \in H$ , avem:

$$< Tx, y > = < x, T^*y > = 0$$

şi deciTx = 0, adică $x \in \text{Ker}(T)$ .

**b.** Este o consecință a egalității  $(T^{\star})^{\star} = T$  și a egalității de la punctul a.

### 32. Operatorul diagonal

**a.** Să se demonstreze că pentru orice  $\alpha \in \ell^{\infty}(Z)$  și pentru orice  $x \in \ell^{2}(Z)$ , șirul produs  $\alpha x : Z \mapsto C$ ,  $(\alpha x)(n) = \alpha(n)x(n)$  este în spațiul  $\ell^{2}(Z)$ .

**b.** Fie  $\alpha \in \ell^{\infty}(Z)$ ; să se demonstreze că operatorul:

$$D_{\alpha}: \ell^{2}(Z) \mapsto \ell^{2}(Z), \ D_{\alpha}x = \alpha x$$

este liniar și continuu și ||  $D_\alpha$  ||=||  $\alpha$  || $_\infty$  . Operatorul  $D_\alpha$  se numește operator diagonal.

c. Să se calculeze adjunctul operatorului  $D_{\alpha}$  și să se caracterizeze operatorii diagonali autoadjuncți și cei unitari.

**d.** Să se demonstreze că  $D_{\alpha}$  este inversabil dacă și numai dacă:

$$\alpha(n) \neq 0, \forall n \in \mathbb{Z}$$
 și 0 nu este punct limită al șirului  $\alpha$ ,

sau, într-o formulare echivalentă,  $0 \notin \overline{\{\alpha(n) \mid n \in Z\}}$ , unde, bara înseamnă, în acest caz, închiderea (în C) a mulțimii respective.

e. Să se determine spectrul operatorului diagonal.

### Soluție

**a.** Pentru orice  $\alpha \in \ell^{\infty}(Z)$  și  $x \in \ell^{2}(X)$ , avem:

$$\parallel \alpha x \parallel_2 = \sqrt{\sum_{n \in \mathbb{Z}} |\alpha(n)x(n)|^2} \le \parallel \alpha \parallel_{\infty} \parallel x \parallel_2,$$

deci  $\alpha x \in \ell^2(Z)$ .

b. Liniaritatea este imediată. Din inegalitatea:

$$\| D_{\alpha} x \|_{2} = \sqrt{\sum_{n \in \mathbb{Z}} |\alpha(n) x(n)|^{2}} \le \| \alpha \|_{\infty} \| x \|_{2},$$

rezultă că  $D_{\alpha}$  este continuu şi în plus  $||D_{\alpha}|| \le ||\alpha||_{\infty}$ . Pentru a demonstra inegalitatea inversă, fie, pentru orice  $m \in \mathbb{Z}$ , şirul

$$\sigma: Z \mapsto C, \ \sigma_m(n) = \delta_m^n,$$

unde,  $\delta_m^n$  este simbolul lui Kronecker.

Evident,  $\| \sigma_m \|_2 = 1$  și  $D_{\alpha} \sigma_m = \alpha(m) \sigma_m$ ; rezultă:

$$|\alpha(m)| = ||\alpha(m)\sigma_m||_2 = ||D_{\alpha}\sigma_m||_2 \le ||D_{\alpha}|| ||\sigma_m||_2 = ||D_{\alpha}||.$$

Din inegalitatea obținută, luând supremumul (după  $m \in \mathbb{Z}$ ), rezultă:

$$\sup_{m \in Z} |\alpha(m)| \le ||D_{\alpha}||,$$

şi deci  $\|\alpha\|_{\infty} \leq \|D_{\alpha}\|$ .

**c.** Să notăm  $\overline{\alpha}$  şirul definit prin  $\overline{\alpha}(n) = \overline{\alpha(n)}, \forall n \in \mathbb{Z}$ . Pentru orice şiruri  $x, y \in \ell^2(\mathbb{Z})$ , avem:

$$< D_{\alpha} x, y > = \sum_{n=-\infty}^{\infty} \alpha(n) x(n) \overline{y(n)} =$$

$$=\sum_{n=-\infty}^{\infty}x(n)\left(\overline{\overline{\alpha(n)}y(n)}\right)=< x, \overline{\alpha}y>=< x, D_{\overline{\alpha}}y>,$$

ceea ce arată că  $D_{\alpha}^{\star} = D_{\overline{\alpha}}$ . De aici rezultă următorele caracterizări:

$$D_{\alpha}$$
 este autoadjunct  $\Leftrightarrow \alpha(n) \in R, \forall n \in Z.$ 

$$D_{\alpha}$$
 este unitar  $\Leftrightarrow |\alpha(n)| = 1, \forall n \in \mathbb{Z}.$ 

**d.** Să presupunem mai întâi că șirul  $\alpha \in \ell^{\infty}(Z)$  are proprietățile din enunț, adică:

$$\alpha(n) \neq 0$$
 și 0 nu este punct limită al lui  $\alpha$ .

Rezultă că șirul definit prin:

$$\beta: Z \mapsto C, \, \beta(n) = \frac{1}{\alpha(n)}$$

este mărginit, deci putem considera operatorul  $D_{\beta}x = \beta x$ . Rezultă imediat că  $D_{\beta}$  este inversul lui  $D_{\alpha}$ , deci  $D_{\alpha}$  este în acest caz inversabil şi  $D_{\alpha}^{-1} = D_{\beta}$ . Reciproc, să presupunem acum că operatorul  $D_{\alpha}$  este inversabil şi fie  $D_{\alpha}^{-1}$  inversul său; atunci:

$$\sigma_n = D_{\alpha}^{-1}(D_{\alpha}\sigma_n) = D_{\alpha}^{-1}(\alpha(n)\sigma_n) = \alpha(n)D_{\alpha}^{-1}\sigma_n,$$

216

deci

$$D_{\alpha}^{-1}\sigma_n = \frac{1}{\alpha(n)}\sigma_n, \ \forall n \in \mathbb{Z}.$$

Considerând normele ambilor membri în egalitatea de mai sus, obținem:

$$\| \frac{1}{\alpha(n)} \sigma_n \|_2 = \| D_{\alpha}^{-1} \sigma_n \|_2 \le \| D_{\alpha}^{-1} \| \| \sigma_n \|_2 = \| D_{\alpha}^{-1} \| .$$

Rezultă deci că șirul  $\frac{1}{\alpha}$  este mărginit:

$$\left|\frac{1}{\alpha(n)}\right| \le \parallel D_{\alpha}^{-1} \parallel,$$

ceea ce încheie demonstrația.

e. Fie  $\lambda \in C$  și fie 1 șirul constant 1; aplicând rezultatul de la punctul anterior operatorului  $D_{\alpha} - \lambda I = D_{\alpha-1}$ , rezultă:

 $\lambda \in \sigma(D_\alpha) \ \Leftrightarrow \ \exists \, n \in Z \text{ cu } \lambda = \alpha(n) \text{ sau } \lambda \text{ este punct limită al lui } \alpha.$ 

În concluzie,  $\sigma(D_{\alpha}) = \overline{\{\alpha(n) \mid n \in Z\}}$ , bara desemnând închiderea.

33. Fie H un spațiu Hilbert și fie  $T \in \mathcal{L}(H)$ . Să se demonstreze implicația:

$$\lambda \in \sigma_p(T^*) \Rightarrow \overline{\lambda} \in \sigma(T).$$

### Soluție

Dacă  $\lambda \in \sigma_p(T^*)$ , atunci , prin definiție, există  $x \in H$ ,  $x \neq 0$  astfel încât  $T^*x = \lambda x$ ; avem deci (aplicăm exercițiul 31):

$$\{0\} \neq \operatorname{Ker}(\lambda I - T^{\star}) = (\operatorname{Im}((\lambda I - T^{\star})^{\star}))^{\perp} = (\operatorname{Im}(\overline{\lambda}I - T))^{\perp},$$

ceea ce arată că  $\operatorname{Im}(\overline{\lambda}I - T) \neq H$ , deci operatorul  $\overline{\lambda}I - T$  nu este surjectiv; rezultă  $\overline{\lambda} \in \sigma(T)$ .

# 34. Operatorul de translație unilateral

Pe spațiul Hilbert  $\ell^2(N)$  considerăm operatorul:

$$V: \ell^2(N) \longrightarrow \ell^2(N), (Vx)(0) = 0$$
 și  $(Vx)(n) = x(n-1), \forall n \ge 1.$ 

Este evident că definiția este corectă  $(Vx \in \ell^2(N))$ . Operatorul V se numește operatorul de translație unilateral. Să se demonstreze următoarele proprietăți:

 $\mathbf{a}$ . V este liniar și continuu.

**b.** V este o izometrie:  $||Vx||_2 = ||x||_2$ ,  $\forall x \in \ell^2(N)$ . De aici rezultă, în particular, că ||V|| = 1.

- $\mathbf{c}$ . V nu este operator inversabil (nu este surjectiv).
- **d.**  $(V^*x)(n) = x(n+1), \forall x \in \ell^2(N), \forall n \in N \text{ si } ||V^*|| = 1.$
- e.  $V^*V = I \operatorname{dar} VV^* \neq I$ .
- **f.** Operatorul V nu are valori proprii:  $\sigma_p(V) = \emptyset$ .
- **g.**  $\sigma_p(V^*) = \{\lambda \in C; |\lambda| < 1\}$  și  $\sigma(V) = \sigma(V^*) = \{\lambda \in C; |\lambda| \le 1\}.$

În legătură cu afirmațiile de la punctele b şi c să observăm că pe spații finit dimensionale nu există endomorfisme injective care să nu fie surjective ( de fapt operatorul V este mai mult decât injectiv, este o izometrie); dimpotrivă,în cazul finit dimensional orice operator injectiv este şi surjectiv ( în plus, orice izometrie este operator unitar). Este de asemenea de reținut faptul că V nu are valori proprii, în timp ce în cazul unui operator definit pe un spațiu finit dimensional spectrul este format numai din valori proprii. Solutie

Prin definiție, V acționează astfel:

$$\ell^2(N) \ni x = (x(0), x(1), x(2), ...) \to (0, x(0), x(1), ...) = Vx \in \ell^2(N).$$

**a,b,c.** Liniaritatea o lăsăm ca exercițiu. Este evident (din schema de mai sus) că  $\parallel Vx \parallel_2 = \parallel x \parallel_2$ , și deci V este izometrie. Operatorul V nu este surjectiv deoarece  $\mathrm{Im}(V) = \{x \in \ell^2(N) \, ; \, x(0) = 0\} \neq \ell^2(N)$  de exemplu, nu există  $x \in \ell^2(N)$  astfel încât  $Vx = \sigma_0$ .

**d.** Pentru orice  $x, y \in \ell^2(N)$ , avem:

$$\langle Vx, y \rangle = \sum_{n=0}^{\infty} (Vx)(n)\overline{y(n)} = \sum_{n=1}^{\infty} x(n-1)\overline{y(n)} = \sum_{n=0}^{\infty} x(n)\overline{y(n+1)},$$

ceea ce arată că adjunctul lui V este:

$$\ell^2(N)\ni y=(y(0),y(1),y(2),..)\to V^\star y=(y(1),y(2),y(3),..)\in \ell^2(N).$$

Este evident că pentru orice  $x \in \ell^2(N)$  avem  $\parallel V^\star x \parallel_2 \leq \parallel x \parallel_2$ , deci  $\parallel V^\star \parallel \leq 1$ . Dar  $\parallel V^\star \sigma_1 \parallel_2 = \parallel \sigma_o \parallel_2 = 1$ , deci  $\parallel V^\star \parallel = 1$ .

- e. Este clar că  $V^*V=I$  ; dar, pentru orice  $x\in \ell^2(N)$  cu proprietatea că  $x(0)\neq 0$  , avem  $VV^*x\neq x$  .
- **f.** Arătăm acum că V nu are valori proprii. Fie , prin absurd ,  $\lambda \in C$  astfel încât există  $x \in \ell^2(N)$  ,  $x \neq 0$  , cu proprietatea  $Vx = \lambda x$  , adică:

$$(0, x(0), x(1), x(2), ...) = (\lambda x(0), \lambda x(1), \lambda x(2), ...).$$

De aici rezultă x(n)=0,  $\forall n\in N$ , contradicție cu  $x\neq 0$ . Am demonstrat deci că  $\sigma_p(V)=\emptyset$ .

**g.** Deoarece  $\parallel V \parallel = \parallel V^{\star} \parallel = 1$ , rezultă că spectrele operatorilor V și  $V^{\star}$  sunt incluse în discul unitate închis. Vom arăta mai întâi că

$$\sigma_p(V^*) = \{ \lambda \in C \, ; \, |\lambda| < 1 \}.$$

Din egalitatea  $V^{\star}x = \lambda x$ , rezultă:

$$(x(1), x(2), x(3), ...) = (\lambda x(0), \lambda x(1), \lambda x(2), ...),$$

și deci $x(n+1)=\lambda^n x(0)$ ,  $\forall n\in N$ . Dacăx(0)=0, atuncix=0. Rezultă deci că vectorii proprii x asociați valorii proprii  $\lambda$  sunt de forma:

$$x = (x(0), \lambda x(0), \lambda^2 x(0), \lambda^3 x(0), \dots)$$
, cu condiția  $x(0) \neq 0$ .

Există însă restricția  $x \in \ell^2(N)$ , ce<br/>ea ce este echivalent cu  $|\lambda| < 1$ . Am demonstrat deci că:

$$\sigma_p(V^*) = \{ \lambda \in C ; |\lambda| < 1 \}.$$

Din exercițiul anterior, rezultă că  $\sigma(V) \supseteq \sigma_p(V^*)$ . În concluzie, spectrele operatorilor V și  $V^*$  conțin discul unitate deschis și sunt conținute în discul unitate închis. Cum spectrul este mulțime închisă, rezultă că spectrele celor doi operatori sunt egale cu discul unitate închis.

**35.** Fie H un spațiu Hilbert și fie  $T \in \mathcal{L}(H)$ . Mulțimea

$$\sigma_{pa}(T) = \{\lambda \in C \mid \exists \, x_n \in H \text{ cu } \parallel x_n \parallel = 1, \forall n \in N \text{ și } \lim_{n \to \infty} (\lambda I - T) x_n = 0\}$$

se numește spectrul punctual aproximativ al lui T. Să se demonstreze incluziunile:

$$\sigma_p(T) \subseteq \sigma_{pa}(T) \subseteq \sigma(T)$$
.

#### Soluție

Pentru prima incluziune, fie  $\lambda \in \sigma_p(T)$  și fie  $x \in H$  un vector propriu de normă 1 asociat lui  $\lambda$ . Atunci șirul constant  $x_n = x, \forall n \in N$  satisface condițiile:  $\parallel x_n \parallel = 1$  și  $(\lambda I - T)x_n = 0, \forall n \in N$ , deci  $\lambda \in \sigma_{pa}(T)$ . Incluziunea  $\sigma_{pa}(T) \subseteq \sigma(T)$  se demonstrează prin reducere la absurd: presupunem că  $\lambda \in \sigma_{pa}(T)$  și  $\lambda \notin \sigma(T)$ . Atunci există un șir  $x_n$  cu proprietățile  $\parallel x_n \parallel = 1, \forall n \in N$  și  $\lim_{n \to \infty} (\lambda I - T)x_n = 0$ ; de asemenea, există operatorul  $(\lambda I - T)^{-1}$ . Aplicând acest operator egalității  $\lim_{n \to \infty} (\lambda I - T)x_n = 0$ , rezultă  $\lim_{n \to \infty} x_n = 0$ , contradicție cu  $\parallel x_n \parallel = 1, \forall n \in N$ .

219

**36.** Fie H un spațiu Hilbert și fie  $T \in \mathcal{L}(H)$ .

**a.** Dacă T este inversabil, atunci  $\sigma(T^{-1}) = \{\lambda^{-1} \mid \lambda \in \sigma(T)\}.$ 

**b.** Dacă T este unitar, atunci  $\sigma(T) \subseteq \{\lambda \in C \mid |\lambda| = 1\}.$ 

#### Soluție

a. Egalitatea cerută este echivalentă cu dubla implicație:

$$\lambda \in C \setminus \sigma(T) \Leftrightarrow \lambda^{-1} \in C \setminus \sigma(T^{-1}).$$

Fie  $\lambda \in C \setminus \sigma(T)$ ,  $\lambda \neq 0$ ; atunci există  $(\lambda I - T)^{-1}$  și, în plus, el comută cu T, deci:

$$I = (\lambda I - T)(\lambda I - T)^{-1} = (T^{-1} - \lambda^{-1}I) \lambda T (\lambda I - T)^{-1} =$$
$$= (T^{-1} - \lambda^{-1}I) (\lambda I - T)^{-1} \lambda T,$$

ceea ce arată că operatorul  $\lambda^{-1}I - T^{-1}$  este inversabil, deci:

$$\lambda^{-1} \in C \setminus \sigma(T^{-1}).$$

Implicația inversă rezultă datorită simetriei între T și  $T^{-1}$ . Demonstrația se încheie observând că  $0 \in (C \setminus \sigma(T)) \cap (C \setminus \sigma(T^{-1}))$ .

**b.** Presupunem că T este operator unitar, deci  $T^* = T^{-1}$ . Demonstrăm mai întâi că  $\parallel T \parallel = 1$ :

$$\parallel T\parallel^2=\parallel TT^\star\parallel=\parallel I\parallel=1.$$

Evident, din egalitatea (adevărată în general, nu numai pentru operatori unitari),  $(T^*)^{-1} = (T^{-1})^*$ , rezultă că și  $T^{-1}$  este operator unitar, deci

$$\parallel T\parallel = \parallel T^{-1}\parallel = 1.$$

Fie acum  $\lambda \in \sigma(T)$ ; conform punctului precedent, rezultă că  $\lambda^{-1} \in \sigma(T^{-1})$ . Dar  $|\lambda| \leq ||T|| = 1$  și  $|\lambda^{-1}| \leq ||T^{-1}|| = 1$ , deci  $|\lambda| = 1$ .

#### 37. Operatorul de translație bilateral

Pe spațiul Hilbert  $\ell^2(Z)$  considerăm aplicația:

$$W: \ell^2(Z) \to \ell^2(Z), (Wx)(n) = x(n-1), \forall n \in Z.$$

 ${\cal W}$  se numește operatorul de translație bilateral. Să se demonstreze următoarele proprietăți:

 $\mathbf{a}$ . W este liniar şi continuu.

**b.** Adjunctul lui W este  $(W^*x)(n) = x(n+1)$ ,  $\forall n \in \mathbb{Z}$ .

- **c.** W este operator unitar:  $WW^* = W^*W = I$ ; în particular,  $\parallel W \parallel = \parallel W^* \parallel = 1$ .
- **d.** Operatorii W şi  $W^*$  nu au valori proprii.
- **e.**  $\sigma(W) = \sigma_{pa}(W) = \sigma(W^*) = \sigma_{pa}(W^*) = \{ \lambda \in C \; ; \; |\lambda| = 1 \}.$

Reamintim că  $\sigma_{pa}$  este spectrul punctual aproximativ (cf. exercițiul 35).

#### Soluție

a. Liniaritatea este imediată; continuitatea rezultă din relația evidentă:

$$|| Wx ||_2 = || x ||_2$$
.

**b.** Pentru orice  $x, y \in \ell^2(Z)$ , avem:

$$\langle Wx, y \rangle = \sum_{n \in \mathbb{Z}} x(n-1)\overline{y(n)} = \sum_{n \in \mathbb{Z}} x(n)\overline{y(n+1)},$$

şi deci într-adevăr  $(W^*x)(n) = x(n+1), \forall n \in \mathbb{Z}.$ 

- c. Egalitățile  $WW^* = W^*W = I$  sunt evidente.
- **d.** Vom demonstra că W nu are valori proprii (analog se arată și pentru  $W^*$ ). Presupunem prin absurd că există  $\lambda \in C$  și  $x \in \ell^2(Z)$ ,  $x \neq 0$  astfel încât  $Wx = \lambda x$ , adică

$$x(n-1) = \lambda x(n), \forall n \in \mathbb{Z}.$$

Rezultă deci că  $x(n) = \lambda^{-n}x(0)$ ,  $\forall n \in \mathbb{Z}$ . Dar  $x \in \ell^2(\mathbb{Z})$  și deci seriile geometrice:

$$\sum_{n=-\infty}^{0} |x(0)|^2 |\lambda|^{-2n} \operatorname{si} \sum_{n=0}^{\infty} |x(0)|^2 |\lambda|^{-2n}$$

trebuie să fie simultan convergente; acest lucru este posibil numai dacă x(0)=0, adică x=0, contradicție.

e. Spectrele operatorilor W şi  $W^*$  sunt incluse în cercul unitate pentru că sunt operatori unitari (exercițiul 36).

Demonstrăm că spectrul punctual aproximativ al lui W este egal cu cercul unitate. Fie  $\lambda = e^{it}$  și fie  $x_n \in \ell^2(Z)$ , șirul definit prin:

$$x_n(k) = (2n+1)^{-\frac{1}{2}}e^{-ikt}$$
 pentru  $|k| \le n$  și  $x_n(k) = 0$  în rest.

Propunem cititorului să arate că  $||x_n||_2 = 1$  și:

$$\lim_{n\to\infty} \| (\lambda I - W) x_n \|_2 = 0.$$

Analog se calculează și  $\sigma_{pa}(W^*)$ . Cum  $\sigma(W)$  și  $\sigma(W^*)$  sunt incluse în cercul unitate, demonstrația este încheiată.

#### 38. Operatorul integral

Fie spaţiul Hilbert  $(L^2[0,1], || ||_2)$  al funcţiilor de pătrat integrabil pe intervalul [0,1] în raport cu măsura Lebesgue. Fie  $K:[0,1]\times[0,1]\to C$  o funcţie de pătrat integrabil pe  $[0,1]\times[0,1]$  şi fie:

$$||K||_2 = \sqrt{\int_0^1 \int_0^1 |K(x,y)|^2 dx dy}.$$

**a.** Să se demonstreze că pentru orice funcție  $f \in L^2[0,1]$ , funcția g definită prin egalitatea:

$$g(x) = \int_0^1 K(x, y) f(y) dy$$

este în  $L^{2}[0,1]$ .

Rezultă deci că putem defini aplicația:

$$T_K: L^2(0,1) \to L^2(0,1), (T_K f)(x) = \int_0^1 K(x,y) f(y) dy.$$

Operatorul  $T_K$  se numește operatorul integral definit de nucleul K.

**b.** Să se demonstreze că  $T_K$  este liniar și continuu și  $\parallel T_K \parallel \leq \parallel K \parallel_2$ .

c. Fie  $T_K$  şi  $T_H$  doi operatori integrali cu nucleele K şi respectiv H. Să se demonstreze că operatorul  $T_KT_H$  este operator integral şi are nucleul definit prin  $G(x,y)=\int_0^1 K(x,z)H(z,y)dz$ , deci:

$$(T_K T_H f)(x) = \int_0^1 \left( \int_0^1 K(x, z) H(z, y) dz \right) f(y) dy.$$

În cazul particular K = H, obținem:

$$(T_K^2 f)(x) = \int_0^1 \left( \int_0^1 K(x, z) K(z, y) dz \right) dx.$$

**d.** Dacă şirul de nuclee  $K_n$  converge în spațiul Hilbert  $L^2([0,1] \times [0,1])$  la funcția K, atunci şirul de operatori integrali  $T_{K_n}$  converge în spațiul  $(\mathcal{L}(L^2[0,1]), \| \| )$  la operatorul integral  $T_K$ .

e. Adjunctul operatorului  $T_K$  este operatorul integral  $T_{\widetilde{K}}$ , cu nucleul

$$\widetilde{K}(x,y) = \overline{K(y,x)}$$

În particular,  $T_K$  este autoadjunct dacă și numai dacă nucleul K are proprietatea  $K(x,y) = \overline{K(y,x)}$  (un astfel de nucleu se numește simetric).

#### Soluție

a. Avem (folosim inegalitatea lui Schwarz):

$$\|g\|_{2}^{2} = \int_{0}^{1} \left| \int_{0}^{1} K(x, y) f(y) \, dy \right|^{2} \, dx \le$$

$$\le \int_{0}^{1} \left( \int_{0}^{1} |K(x, y)|^{2} dy \right) \left( \int_{0}^{1} |f(y)|^{2} dy \right) dx = \|f\|_{2}^{2} \|K\|_{2}^{2}.$$

- **b.** Liniaritatea este imediată; continuitatea rezultă din punctul precedent și în plus  $||T_K|| \le ||K||_2$ .
- **c.** Pentru orice  $f \in L^2[0,1]$ , avem:

$$(T_K T_H f)(x) = \int_0^1 K(x, y) (T_H f) (y) dy =$$

$$= \int_0^1 \int_0^1 K(x, y) H(y, z) f(z) dz dy = \int_0^1 \left( \int_0^1 K(x, y) H(y, z) dy \right) f(z) dz =$$

$$= \int_0^1 G(x, z) f(z) dz = (T_G f)(x).$$

d. Demonstrația este o consecință imediată a inegalității dintre normele operatorului integral și a nucleului său:

$$\parallel T_{K_n} - T_K \parallel \leq \parallel K_n - K \parallel_2 \rightarrow 0.$$

**e.** Pentru orice  $f, g \in L^2[0, 1]$ , avem:

$$\langle T_K f, g \rangle = \int_0^1 (T_K f)(x) \overline{g(x)} dx =$$

$$= \int_0^1 \left( f(y) \int_0^1 K(x, y) \overline{g(x)} dx \right) dy =$$

$$= \int_0^1 f(y) \overline{\left( \int_0^1 \widetilde{K}(y, x) g(x) dx \right)} dy = \langle f, T_{\widetilde{K}} g \rangle.$$

#### 39. Operatorul Volterra

Un operator integral  $T_K$  (a se vedea exercițiul precedent) se numește operator de tip Volterra dacă nucleul K are proprietatea: K(x,y) = 0,  $\forall x < y$ . Rezultă că un operator Volterra este definit prin:

$$(T_K f)(x) = \int_0^x K(x, y) f(y) dy, \, \forall f \in L^2[0, 1].$$

Analogia cu teoria matricelor este evidentă: operatorii de tip Volterra sunt analogul operatorilor asociați matricelor inferior triunghiulare. Se știe că dacă o matrice A este strict inferior triunghiulară, atunci ea este nilpotentă, adică există  $m \in N$  astfel încât  $A^m = O$ . Scopul acestui exercițiu este de a demonstra o proprietate asemănătoare și pentru operatorii Volterra definiți de nuclee mărginite; o consecință va fi calculul spectrului unui astfel de operator.

Fie  $K \in L^2([0,1] \times [0,1])$  un nucleu Volterra mărginit, deci  $||K||_{\infty} < \infty$ ; atunci, operatorul Volterra asociat,  $T_K$ , are proprietățile:

a.  $\lim_{n\to\infty} (\parallel T_K^n \parallel)^{\frac{1}{n}} = 0.$ b.  $\sigma(T_K) = \{0\}$ ; un operator cu această proprietate se numește cvasinilpo-

#### Solutie

a. Vom demonstra mai întâi că produsul a doi operatori de tip Volterra  $T_K$ și  $T_H$  este un operator de același tip. Ținând cont de cele demonstrate în exercițiul precedent (punctul c), este suficient să arătăm implicația:

$$K(x,y) = H(x,y) = 0, \forall x < y \Rightarrow G(x,y) = 0, \forall x < y,$$

unde, conform exercițiului precedent (punctul c):

$$G(x,y) = \int_{0}^{1} K(x,z)H(z,y)dz.$$

Într-adevăr, dacă x < y, atunci orice  $z \in [0,1]$  trebuie să verifice cel puțin una din inegalitățile: x < z sau z < y; în primul caz, avem K(x, z) = 0, iar în al doilea H(z,y) = 0, deci oricum G(x,y) = 0. Dacă  $x \ge y$ , atunci:

$$G(x,y) = \int_{y}^{x} K(x,z)H(z,y).$$

Să presupunem acum că H=K și să notăm în acest caz

$$K^{[2]}(x,y) = G(x,y) = \int_0^1 K(x,z)K(z,y)dz,$$

și în general pentru  $n \in N$ :

$$K^{[n]}(x,y) = \int_0^1 K(x,z)K^{[n-1]}(z,y)dz.$$

Pentru orice  $0 \le y \le x \le 1$ , avem:

$$|K^{[2]}(x,y)| = \left| \int_{y}^{x} K(x,z)K(z,y)dz \right| \le ||K||_{\infty}^{2} (x-y).$$

Prin inducție rezultă că pentru orice  $n \in N$  și  $y \leq x$ , avem:

$$|K^{[n]}(x,y)| \le \frac{\|K\|_{\infty}^n}{(n-1)!} (x-y)^{n-1} \le \frac{\|K\|_{\infty}^n}{(n-1)!}.$$

Rezultă deci că:

$$(\parallel T_K^n \parallel)^{\frac{1}{n}} \le \left( \parallel K^{[n]} \parallel_{\infty} \right)^{\frac{1}{n}} \le \frac{\parallel K \parallel_{\infty}}{(n-1)!^{\frac{1}{n}}} \longrightarrow 0,$$

pentru  $n \longrightarrow \infty$ , ceea ce încheie demonstrația.

**b.** Reamintim că raza spectrală a unui operator T este:

$$r(T) = \sup\{|\lambda|; \lambda \in \sigma(T)\} = \lim_{n \to \infty} ||T^n||^{\frac{1}{n}}.$$

Din definiția razei spectrale rezultă în mod evident că dacă r(T) = 0, atunci  $\sigma(T) = \{0\}$ . Din cele demonstrate la punctul precedent, rezultă că  $r(T_K) = 0$ , deci  $\sigma(T_K) = \{0\}$ .

- **40.** Fie  $L^{\infty}[0, 2\pi]$  spațiul Banach al funcțiilor esențial mărginite cu norma  $\|\cdot\|_{\infty}$ .
- **a.** Să se arate că pentru orice  $\phi \in L^{\infty}[0, 2\pi]$  şi  $f \in L^2[0, 2\pi]$ , funcția produs  $\phi f$  este în  $L^2[0, 2\pi]$ .
- **b.** Pentru orice  $\phi \in L^{\infty}[0, 2\pi]$ , fixată definim operatorul:

$$M_{\phi}: L^{2}[0, 2\pi] \mapsto L^{2}[0, 2\pi], \ M_{\phi}(f) = \phi f.$$

Să se demonstreze că  $M_{\phi}$  este operator liniar şi continuu.

Operatorul  $M_{\phi}$  se numește operatorul de înmulțire cu funcția  $\phi$ .

- **c.** Să se demonstreze că  $||M_{\phi}|| = ||\phi||_{\infty}$ .
- **d.** Să se demonstreze că  $M_{\phi}^{\star} = M_{\overline{\phi}}$ , unde,  $\overline{\phi}(t) = \overline{\phi(t)}$ ,  $\forall t \in [0, 2\pi]$ . Să se caracterizeze apoi operatorii de înmulțire autoadjuncți și cei unitari.

#### Soluţie

**a.** Pentru orice  $\phi \in L^{\infty}[0, 2\pi]$  şi  $f \in L^2[0, 2\pi]$ , avem:

$$\| \phi f \|_{2} = \sqrt{\int_{0}^{2\pi} |\phi(t)f(t)|^{2} dt} \le \| \phi \|_{\infty} \| f \|_{2} < \infty.$$

b. Liniaritatea aplicației  $M_{\phi}$  este evidentă; continuitatea este echivalentă cu existența unei constante k>0 cu proprietatea

$$|| M_{\phi} f ||_{2} \le k || f ||_{2}, \forall f \in L^{2}[0, 2\pi].$$

Din calculul făcut la punctul a, rezultă că putem lua  $k=\parallel \phi \parallel_{\infty}$ , ceea ce încheie demonstrația.

**c.** Prin definiție, norma  $\parallel M_{\phi} \parallel$  este:

$$|| M_{\phi} || = \inf\{k > 0 ; || M_{\phi}f ||_{2} \le k || f ||_{2}, \forall f \in L^{2}[0, 2\pi]\}.$$

Inegalitatea  $\parallel M_{\phi} \parallel \leq \parallel \phi \parallel_{\infty}$  a fost demonstrată la punctul b; demonstrăm acum inegalitatea inversă. Pentru orice  $n \in N$  considerăm mulțimea:

$$A_n = \{t \in [0, 2\pi] \; ; \; |\phi(t)| \ge \|\phi\|_{\infty} - \frac{1}{n}\}.$$

Din definiția normei  $\|\cdot\|_{\infty}$  rezultă că măsura Lebesgue a mulțimii  $A_n$  este nenulă (și finită, deoarece măsură întregului cerc este finită). Fie  $\chi_n$  funcția caracteristică a mulțimii  $A_n$ ; evident  $\chi_n \in L^2[0, 2\pi]$  și:

$$|| M_{\phi} \chi_n ||_2 = \sqrt{\int_0^{2\pi} |\phi(t)\chi(t)|^2 dt} \ge$$

$$\geq \sqrt{\int_0^{2\pi} \left( \parallel \phi \parallel_{\infty} - \frac{1}{n} \right)^2 |\chi_n(t)|^2 dt} \geq \left( \parallel \phi \parallel_{\infty} - \frac{1}{n} \right) \parallel \chi_n \parallel_2, \, \forall n \in \mathbb{N}.$$

Rezultă inegalitatea:

$$\parallel M_{\phi} \parallel \geq \parallel \phi \parallel_{\infty} -\frac{1}{n}, \forall n \in \mathbb{N},$$

deci  $\parallel M_{\phi} \parallel \geq \parallel \phi \parallel_{\infty}$ .

**d.** Dacă  $f, g \in L^2[0, 2\pi]$ , atunci:

$$< M_{\phi} f, g > = \frac{1}{2\pi} \int_{0}^{2\pi} (\phi(t) f(t)) \ \overline{g(t)} \ dt =$$

$$= \frac{1}{2\pi} \int_0^{2\pi} f(t) \ \overline{(\overline{\phi(t)} \ g(t))} \ dt = < f, M_{\overline{\phi}} g >,$$

şi deci  $(M_{\phi})^* = M_{\overline{\phi}}$ . Rezultă imediat următoarele caracterizări:  $M_{\phi}$  este autoadjunct dacă și numai dacă  $\phi(t) \in R, \forall t \in [0, 2\pi]$ .  $M_{\phi}$  este unitar dacă și numai dacă  $|\phi(t)| = 1, \forall t \in [0, 2\pi]$ .

41. În spațiul Hilbert  $L^2[0,2\pi]$  considerăm submulțimea:

$$H^2[0, 2\pi] = \{ f \in L^2[0, 2\pi] \mid \widehat{f}_k = 0, \forall k \in \mathbb{Z}, k \le -1 \}.$$

- a. Să se demonstreze că  $H^2[0,2\pi]$  este subspațiu vectorial în  $L^2[0,2\pi]$ .
- **b.** Să se demonstreze că  $H^2[0,2\pi]$  este subspațiu închis în  $L^2[0,2\pi]$ .
- c. Fie funcția  $\omega_1(t)=e^{it}, \forall\,t\in[0,2\pi]$  și fie  $M_{\omega_1}$  operatorul de înmulțire cu funcția  $\omega_1\colon M_{\omega_1}f=\omega_1f, \forall\,f\in L^2[0,2\pi]$  (cf. exercițiului precedent). Să se demonstreze că  $H^2[0,2\pi]$  este subspațiu invariant pentru operatorul  $M_{\omega}$ , adică  $M_{\omega_1}h\in H^2[0,2\pi], \forall\,h\in H^2[0,2\pi]$ .

#### Solutie

În acest exercițiu (și în următorul) vom nota coeficienții Fourier ai unei funcții f cu  $\widehat{f}(n)$ .

**a.** Pentru orice  $f, g \in H^2[0, 2\pi]$  și  $\alpha, \beta \in C$ , avem:

$$(\alpha \widehat{f} + \beta g)(k) = \alpha \widehat{f}(k) + \beta \widehat{g}(k) = 0, \forall k \in \mathbb{Z}, k \le -1,$$

deci  $H^2[0, 2\pi]$  este subspațiu în  $L^2[0.2\pi]$ .

**b.** Fie  $f_n \in H^2[0, 2\pi]$  un şir de funcţii şi fie  $f \in L^2[0, 2\pi]$ . Trebuie să demonstrăm că dacă  $f_n$  converge în norma  $\|\cdot\|_2$  la f, atunci  $f \in H^2[0, 2\pi]$ . Pentru aceasta, fie  $k \in \mathbb{Z}, k \leq -1$ ; calculăm:

$$\widehat{f}(k) = \frac{1}{2\pi} \int_0^{2\pi} f(t)e^{-ikt}dt =$$

$$= \frac{1}{2\pi} \int_0^{2\pi} e^{-ikt} (f(t) - f_n(t))dt + \frac{1}{2\pi} \int_0^{2\pi} f_n(t)e^{-ikt}dt =$$

$$= \frac{1}{2\pi} \int_0^{2\pi} e^{-ikt} (f(t) - f_n(t)) dt.$$

Ultima integrală tinde la 0 când  $n \to \infty$ :

$$\left| \int_0^{2\pi} e^{-ikt} \left( f_n - f(t) \right) dt \right| \le \int_0^{2\pi} \left| e^{ikt} \left( f_n(t) - f(t) \right) \right| dt =$$

$$= 2\pi \| f_n - f \|_1 \le 2\pi \| f_n - f \|_2 \to 0,$$

unde, ultima inegalitate a fost demonstrată în exercițiul 11. Rezultă  $\widehat{f}(k) = 0, \forall k \in \mathbb{Z}, k \leq -1$ , și deci $f \in H^2[0, 2\pi]$ . c. Fie  $k \in \mathbb{Z}, k \leq -1$  și  $h \in H^2[0, 2\pi]$ ; atunci:

$$(\widehat{M_{\omega_1}}h)(k) = \frac{1}{2\pi} \int_0^{2\pi} h(t) e^{it} e^{-ikt} dt =$$

$$= \frac{1}{2\pi} \int_0^{2\pi} h(t) e^{-i(k-1)t} dt = \widehat{h}(k-1) = 0,$$

ceea ce încheie demonstrația.

**42.** Fie  $W: \ell^2(Z) \mapsto \ell^2(Z)$ , (Wx)(n) = x(n-1), operatorul de translație bilateral (a se vedea exercițiul 37) și fie, pentru orice  $k \in Z$ , operatorul:

$$(W^k x)(n) = x(n-k), \, \forall x \in \ell^2(Z).$$

Fie, pentru orice  $k \in \mathbb{Z}$  funcția  $\omega_k(t) = e^{ikt}, \forall t \in [0, 2\pi]$  și fie  $M_{\omega_k}$  operatorul de înmulțire asociat, adică (cf. exercițiului 40):

$$(M_{\omega_k}f)(t) = \omega_k(t)f(t) = e^{ikt}f(t), \forall f \in L^2[0, 2\pi].$$

Să se demonstreze egalitatea:

$$(\widehat{M_{\omega_k}}f)(n) = (W^k\widehat{f})(n), \forall f \in L^2[0, 2\pi], \forall k \in \mathbb{Z}, \forall n \in \mathbb{Z}.$$

#### Soluție

Cu notațiile din enunț, avem:

$$(\widehat{M_{\omega_k}}f)(n) = \frac{1}{2\pi} \int_0^{2\pi} \omega_k(t) f(t) e^{-int} dt =$$

$$= \frac{1}{2\pi} \int_0^{2\pi} f(t) e^{-i(n-k)t} dt = \widehat{f}(n-k) = (W^k \widehat{f})(n),$$

ceea ce încheie demonstrația.

# Capitolul 7

# Integrale duble şi triple

### 7.1 Noțiuni teoretice

#### Măsura Lebesgue

Fie  $R^k$  spațiul euclidian k-dimensional și fie  $-\infty \le a_i \le b_i \le \infty$ ,  $\forall i = 1, 2..., k$ . Un paralelipiped în  $R^k$  este orice mulțime de forma:

$$P = \{(x_1, x_2, ..., x_k) \mid a_i \le x_i \le b_i, \forall i = 1, 2, ..., k\}.$$

Inegalitățile nestricte pot fi înlocuite și de inegalități stricte. Prin definiție, mulțimea vidă și  $\mathbb{R}^k$  sunt paralelipipede.

Măsura (Lebesgue) a unui paralelipiped este definită prin:

$$\mu(P) = \prod_{i=1}^{n} (b_i - a_i).$$

În cazurile particulare k=1,2,3 se obțin noțiunile uzuale de lungime, arie, volum.

O submulțime  $E\subseteq R^k$  se numește elementară dacă există  $P_1,P_2,...,P_n$  paralelipipede astfel încât  $E=\bigcup_{i=1}^n P_i$ .

Notăm cu  $\mathcal{E}$  familia mulțimilor elementare din  $\mathbb{R}^k$ .

Orice mulțime elementară se poate scrie ca reuniune de paralelipipede disjuncte două câte două. Dacă  $E=\bigcup_{i=1}^n P_i$  este o astfel de descompunere,

atunci măsura Lebesgue a lui E este:  $\mu(E) = \sum_{i=1}^{n} \mu(P_i)$ . Se poate arăta că  $\mu(E)$  nu depinde de descompunerea considerată.

Proprietățile aplicației  $\mu$  pe familia mulțimilor elementare sunt:

i. dacă  $A, B \in \mathcal{E}$  atunci  $A \cup B, A \cap B, A \setminus B$  sunt mulțimi elementare.

ii. dacă  $A, B \in \mathcal{E}$  astfel încât  $A \cap B = \emptyset$  atunci  $\mu(A \cup B) = \mu(A) + \mu(B)$ .

iii. pentru orice  $A \in \mathcal{E}$  și  $\varepsilon > 0$  există  $F, G \in \mathcal{E}$ , F închisă și G deschisă astfel încât:

$$F \subseteq A \subseteq G$$
 
$$\mu(G) - \varepsilon < \mu(A) < \mu(F) + \varepsilon.$$

Aplicația  $\mu$  se prelungește la toate părțile lui  $R^k$ ; fie  $A \subseteq R^k$  și fie

$$\mu^{\star}(A) = \inf\{\sum_{n \in N} \mu(A_n) \mid A \subseteq \bigcup_{n \in N} A_n, \ A_n \in \mathcal{E}, \ A_n \text{ deschisă } \forall n \in N\}.$$

Aplicația  $\mu^*$  se numește măsură exterioară; principalele proprietăți sunt:

i.  $\mu^*(A) \geq 0, \forall A \subseteq R^k$ .

ii. dacă  $A_1 \subseteq A_2$  atunci  $\mu^*(A_1) \le \mu^*(A_2)$ . iii. dacă  $E \in \mathcal{E}$  atunci  $\mu^*(E) = \mu(E)$ .

iv. 
$$\mu^* \left( \bigcup_{n \in N} A_n \right) \le \sum_{n \in N} \mu^*(A_n), \, \forall A_n \subseteq R^k.$$

Se demonstrează că există o  $\sigma$ -algebră de părți ale lui  $\mathbb{R}^k$ , notată  $\mathcal{M}$  astfel încât restricția  $\mu^*: \mathcal{M} \mapsto [0, \infty]$  este măsură. Măsura astfel obținută (notată  $\mu$ ) se numește măsura Lebesgue (în  $\mathbb{R}^k$ ), iar elementele lui  $\mathcal{M}$  se numesc mulțimi măsurabile Lebesgue.

Principalele proprietăți ale spațiului cu măsură  $(R^k, \mathcal{M}, \mu)$  sunt:

i.  $\mathcal{M}$  contine multimile Boreliene.

ii. dacă  $A \in \mathcal{M}$  atunci  $\mu(A) = \inf \{ \mu(D) \mid D \text{ deschisă şi } D \supseteq A \}.$ 

iii. dacă  $A \in \mathcal{M}$  atunci  $\mu(A) = \sup\{\mu(K) \mid K \text{ compactă și } K \subseteq A\}.$ 

iv orice multime compactă are măsură Lebesgue finită.

**v.** dacă  $A \in \mathcal{M}$ ,  $\mu(A) = 0$  și  $B \subseteq A$  atunci  $B \in \mathcal{M}$  și  $\mu(B) = 0$ .

vi. dacă  $A \in \mathcal{M}$  atunci pentru orice  $x \in \mathbb{R}^k$  multimea (translatată)  $A + x = \{a + x \mid a \in A\}$  este măsurabilă Lebesgue și  $\mu(A + x) = \mu(A)$ .

#### Integrala Lebesgue

Dacă f este o funcție integrabilă în raport cu măsura Lebesgue (în  $\mathbb{R}^k$ ), atunci integrala corespunzătoare (pe o mulțime A) se notează

$$\int_{A} f(x_1, x_2, ..., x_k) dx_1 dx_2 ... dx_k.$$

În cazurile particulare (uzuale) k = 1, 2, 3 se folosesc notațiile:

$$\int_A f(x)dx, \int \int_A f(x,y)dxdy, \int \int \int_A f(x,y,z)dxdydz.$$

#### Legătura cu integrabilitatea în sens Riemann

i. Dacă  $f:[a,b] \mapsto R$  este o funcție integrabilă Riemann (pe intervalul compact [a,b]), atunci f este și integrabilă în raport cu măsura Lebesgue și cele două integrale sunt egale.

ii. Dacă  $f:[a,b] \mapsto R$  este o funcție mărginită atunci ea este integrabilă Riemann dacă și numai dacă mulțimea punctelor sale de discontinuitate are măsura Lebesgue nulă (se spune că f este continuă a.p.t.).

iii. Există funcții care sunt integrabile Lebesgue dar nu sunt integrabile Riemann; de exemplu, funcția lui Dirichlet (pe intervalul [0,1]) nu este integrabilă Riemann dar este integrabilă Lebesgue (integrala sa este 0, pentru că funcția este nulă a.p.t.).

iv. Dacă  $\int_a^b f(x)dx$  este o integrală Riemann improprie absolut convergentă atunci f este integrabilă Lebesgue și integralele sunt egale.

Există însă integrale Riemann improprii convergente  $\int_a^b f(x)dx$  (dar nu absolut convergente) pentru care funcția f nu este integrabilă Lebesgue; de exemplu  $f(x) = \frac{\sin x}{x}$  pe intervalul  $(0, \infty)$ .

#### Teorema lui Fubini

În continuare notăm  $(x,y) \in R^{k+p}$ , măsura Lebesgue în  $R^k$  cu dx, măsura Lebesgue în  $R^p$  cu dy și măsura Lebesgue în  $R^{k+p}$  cu dxdy.

Fie  $f: \mathbb{R}^{k+p} \mapsto \mathbb{R}$  o funcție integrabilă Lebesgue; atunci:

$$\int_{R^k} \left( \int_{R^p} f(x, y) dy \right) = \int_{R^{k+p}} f(x, y) dx dy = \int_{R^p} \left( \int_{R^k} f(x, y) dx \right) dy.$$

Următoarele cazuri particulare ale rezultatului de mai sus sunt frecvent utilizate în aplicații.

i. Fie  $\varphi, \phi: [a,b] \mapsto R$  două funcții continue astfel încât  $\varphi \leq \phi$  și fie mulțimea

$$K = \{(x, y) \in \mathbb{R}^2 \mid x \in [a, b], \, \varphi(x) \le y \le \phi(x)\}.$$

Dacă  $f:K\mapsto R$  este o funcție continuă, atunci f este integrabilă Lebesgue pe K și:

$$\int \int_K f(x,y) dx dy = \int_a^b \left( \int_{\varphi(x)}^{\varphi(x)} f(x,y) dy \right) dx.$$

În particular, aria mulțimii K este:

$$\mu(K) = \int \int_{K} dx dy = \int_{a}^{b} (\phi(x) - \varphi(x)) dx.$$

ii. Fie  $D \subseteq \mathbb{R}^2$  o mulţime compactă, fie  $\varphi, \phi: D \mapsto \mathbb{R}$  două funcții continue astfel încât  $\varphi < \phi$  și fie

$$\Omega = \{(x, y, z) \in \mathbb{R}^3 \mid (x, y) \in D, \ \varphi(x, y) \le z \le \phi(x, y)\}.$$

Dacă  $f: \Omega \rightarrow R$  este o funcție continuă, atunci f este integrabilă Lebesgue pe  $\Omega$  și:

$$\iint \int \int_{\Omega} f(x, y, z) dx dy dz = \iint \int_{D} \left( \int_{\varphi(x, y)}^{\phi(x, y)} f(x, y, z) dz \right) dx dy.$$

În particular, volumul lui  $\Omega$  este:

$$\mu(\Omega) = \int \int \int_{\Omega} dx dy dz = \int \int_{D} (\phi(x, y) - \varphi(x, y)) dx dy.$$

#### Formula schimbării de variabile

Fie  $A \subseteq \mathbb{R}^n$  o mulțime deschisă și fie  $\Lambda : A \mapsto \Lambda(A) \subseteq \mathbb{R}^n$  un difeomorfism. Pentru orice funcție continuă  $f: \Lambda(A) \mapsto R$ , avem:

$$\int_{\Lambda(A)} f(x)dx = \int_{A} (f \circ \Lambda)(y) |J_{\Lambda}(y)| dy,$$

unde  $J_{\Lambda}$  este iacobianul difeomorfismului  $\Lambda$ .

#### 7.2 Integrale duble

1. Să se calculeze următoarele integrale duble:

**a.** 
$$\int_{\Omega} \int_{D} xy^2 dx dy$$
, unde  $D = [0, 1] \times [2, 3]$ .

**b.** 
$$\int \int_{D}^{\infty} xy dx dy$$
, unde  $D = \{(x, y) \in \mathbb{R}^2 : y \in [0, 1], y^2 \le x \le y\}$ .

c. 
$$\int \int_D y dx dy$$
, unde  $D = \{(x,y) \in R^2 ; (x-2)^2 + y^2 \le 1\}$ . Solutie

**a.** 
$$\int \int_D xy^2 dx dy = \int_0^1 dx \int_2^3 xy^2 dy = \int_0^1 \frac{19}{3} x dx = \frac{19}{6}.$$

**b.** 
$$\int \int_{D}^{2} xy dx dy = \int_{0}^{1} \int_{y^{2}}^{y} xy dx = \frac{1}{2} \int_{0}^{1} (y^{3} - y^{5}) dy = \frac{1}{24}.$$

**c.** 
$$\int \int_D y dx dy = \int_1^3 dx \int_{-\sqrt{1-(x-2)^2}}^{\sqrt{1-(x-2)^2}} y dy = 0.$$

2. Să se calculeze integralele duble:

a. 
$$\int \int_D (x+3y) dx dy$$
,  $D$  fiind mulţimea plană mărginită de curbele de ecuații

$$y = x^2 + 1$$
,  $y = -x^2$ ,  $x = -1$ ,  $x = 3$ .

**b.** 
$$\int \int_D e^{|x+y|} dx dy$$
,  $D$  fiind mulţimea plană măginită de curbele de ecuații

$$x + y = 3$$
,  $x + y = -3$ ,  $y = 0$ ,  $y = 3$ .

c. 
$$\int \int_D x dx dy$$
,  $D$  fiind mulţimea plană mărginită de curba de ecuație

$$x^2 + y^2 = 9, \ x \ge 0.$$

#### Solutii

**a.** 
$$\int \int_{D} (x+3y) dx dy = \int_{-1}^{3} dx \int_{-x^{2}}^{x^{2}+1} (x+3y) dy.$$
**b.** Fie  $D_{1} = \{(x,y) \in D ; x+y \leq 0\}$  şi  $D_{2} = D \setminus D_{1}.$ 

**b.** Fie 
$$D_1 = \{(x,y) \in D \; ; \; x+y \leq 0\}$$
 şi  $D_2 = D \setminus D_1$ 

Atunci  $D = D_1 \cup D_2$  şi:

$$\int \int_{D} e^{|x+y|} dx dy = \int \int_{D_1} e^{-x-y} dx dy + \int \int_{D_2} e^{x+y} dx dy =$$

$$= \int_{0}^{3} dy \int_{-3-y}^{-y} e^{-x-y} dx + \int_{0}^{3} dy \int_{-y}^{3-y} e^{x+y} dx.$$

**c.** 
$$\int \int_D x dx dy = \int_{-3}^3 dy \int_0^{\sqrt{9-y^2}} x dx.$$

**3.** Folosind coordonatele polare, să se calculeze integralele:   
**a.** 
$$\int \int_D e^{x^2+y^2} dx dy$$
,  $D = \{(x,y) \in R^2 ; x^2+y^2 \leq 1\}$ .

**b.** 
$$\int \int_D \left(1 + \sqrt{x^2 + y^2}\right) dx dy, D = \{(x, y) \in \mathbb{R}^2 ; x^2 + y^2 - y \le 0, x \ge 0\}.$$

c. 
$$\iint_D \ln(1+x^2+y^2)dxdy$$
, D fiind mărginit de curbele de ecuații

$$x^{2} + y^{2} = e^{2}, y = x\sqrt{3}, x = y\sqrt{3}, x \ge 0.$$

#### Soluție

Coordonatele polare sunt  $x = \rho \cos \varphi$ ,  $y = \rho \sin \varphi$ , iacobianul este  $\rho$ , iar domeniul maxim pentru coordonatele  $\rho$  și  $\varphi$  este  $(\rho, \varphi) \in [0, \infty) \times [0.2\pi)$ .

a. In coordonate polare domeniul de integrare este dreptunghiul  $(\rho, \varphi) \in [0, 2\pi) \times [0, 1]$ , și deci:

$$\int \int_D e^{x^2+y^2} dx dy = \int_0^{2\pi} d\varphi \int_0^1 \rho e^{\rho^2} d\rho = \frac{1}{2} \int_0^{2\pi} e^{\rho^2} \Big|_0^1 d\varphi = \pi(e-1).$$

**b.** Înlocuind pe x și y în condițiile ce definesc domeniul D, obținem

$$\rho \le \sin \varphi, \ \cos \varphi \ge 0$$

și deci

$$\varphi \in [0, \frac{\pi}{2}), \ \rho \in [0, \sin \varphi].$$

Rezultă:

$$\int \int_{D} \left( 1 + \sqrt{x^2 + y^2} \right) dx dy = \int_{0}^{\frac{\pi}{2}} d\varphi \int_{0}^{\sin \varphi} \rho (1 + \rho) d\rho = \frac{\pi}{8} + \frac{2}{9}.$$

**c.** Domeniul de integrare în coordonate polare este dreptunghiul  $(\rho, \varphi) \in [0, e] \times \left[\frac{\pi}{6}, \frac{\pi}{3}\right]$ , deci:

$$\int \int_D \ln(1+x^2+y^2) dx dy = \int_0^e d\rho \int_{\frac{\pi}{6}}^{\frac{\pi}{3}} \rho \ln(1+\rho^2) d\varphi =$$
$$= \frac{\pi(1+e^2)}{12} \left( \ln(1+e^2) - 1 \right) + \frac{\pi}{12}.$$

4. Să se calculeze cu o eroare mai mică decât  $10^{-2}$  integralele:

**a.** 
$$\int \int_A \frac{dxdy}{1+xy}$$
,  $A = [0, \frac{1}{2}] \times [0, 1]$ .

**b.** 
$$\int \int_{B} \frac{\ln(x^2 + y^2)}{\sqrt{(x^2 + y^2 - 1)(x^2 + y^2)}}, dxdy$$
, unde:

$$B = \{(x, y); 1 \le x^2 + y^2 \le (e - 1)^2\}.$$

### Soluţii

a.

$$\int \int_A \frac{dxdy}{1+xy} = \int_0^{\frac{1}{2}} dx \int_0^1 \frac{dy}{1+xy} = \int_0^{\frac{1}{2}} \frac{\ln(1+xy)}{x} \Big|_0^1 dx =$$

$$= \int_0^{\frac{1}{2}} \frac{\ln(1+x)}{x} dx = \int_0^{\frac{1}{2}} \sum_{n>0} \frac{(-1)^n}{n+1} x^n dx = \sum_{n>0} \frac{(-1)^n}{(n+1)^2 2^{n+1}} \cong \frac{65}{144}.$$

235

**b.** Folosim coordonatele polare:

$$\int \int_{B} \frac{\ln(x^{2} + y^{2})}{\sqrt{(x^{2} + y^{2} - 1)(x^{2} + y^{2})}} = 4\pi \int_{1}^{e-1} \frac{\ln \rho}{\rho - 1} d\rho =$$

$$= 4\pi \int_{0}^{e-2} \frac{\ln(1+u)}{u} du = 4\pi \int_{0}^{e-2} \sum_{n \ge 0} \frac{(-1)^{n}}{n+1} \rho^{n} d\rho =$$

$$= 4\pi \sum_{n \ge 0} \frac{(-1)^{n} (e-2)^{n+1}}{(n+1)^{2}}.$$

În continuare se aproximează suma seriei alternate obținute.

5. Fie  $D\subseteq R^2$  și fie  $f:D\mapsto [0,\infty)$  o funcție continuă. Să se calculeze volumul mulțimii

$$\Omega = \{(x, y, z) \in \mathbb{R}^3 : (x, y) \in D, \ 0 \le z \le f(x, y)\},\$$

în următoarele cazuri:

**a.** 
$$D = \{(x,y) \in \mathbb{R}^2 : x^2 + y^2 \le 2y\}, \ f(x,y) = x^2 + y^2.$$

**b.** 
$$D = \{(x, y) \in \mathbb{R}^2 : x^2 + y^2 \le x, y > 0\}, f(x, y) = xy$$

**a.** 
$$D = \{(x,y) \in R : x^2 + y^2 \le 2y\}, \ f(x,y) = x^2 + y^2$$
.  
**b.**  $D = \{(x,y) \in R^2 : x^2 + y^2 \le x, \ y > 0\}, \ f(x,y) = xy$ .  
**c.**  $D = \{(x,y) \in R^2 : x^2 + y^2 \le 2x + 2y - 1\}, \ f(x,y) = y$ .

### Soluție

Volumul mulțimii  $\Omega$  este dat de formula

$$\operatorname{vol}(\Omega) = \int \int_{D} f(x, y) dx dy$$

a. Trecând la coordonate polare, se obține:

$$\operatorname{vol}(\Omega) = \int \int_D (x^2 + y^2) dx dy = \int_0^{\pi} d\varphi \int_0^{2\sin\varphi} \rho^3 d\rho = \frac{3}{2}\pi.$$

b. Cu aceeași metodă, se obține:

$$\operatorname{vol}(\Omega) = \int \int_{D} xy dx dy = \int_{0}^{\frac{\pi}{2}} d\varphi \int_{0}^{\cos \varphi} \rho^{3} \cos \varphi \sin \varphi d\rho = \frac{1}{24}.$$

c. Cu schimbarea de variabile:

$$x = 1 + \rho \cos \varphi, \ y = 1 + \rho \sin \varphi, \ (\rho, \varphi) \in [0, 1] \times [0.2\pi),$$

rezultă:

$$\operatorname{vol}(\Omega) = \int \int_D y dx dy = \int_0^{2\pi} d\varphi \int_0^1 \rho (1 + \rho \sin \varphi) d\rho = \pi.$$

6. Să se calculeze ariile mulțimilor plane D mărginite de curbele de ecuatii:

**a.** 
$$\frac{x^2}{a^2} + \frac{y^2}{b^2} = 1, a$$
 şi  $b$  fiind două constante pozitive.

**b.** 
$$(x^2 + y^2)^2 = a^2(x^2 - y^2), x > 0, a$$
 fiind o constantă pozitivă.

c. 
$$(x^2 + y^2)^2 = 2a^2xy$$
, a fiind o constantă pozitivă.

#### Soluţii

**a.** Ecuația elipsei în coordonate polare generalizate,  $x = a\rho\cos\varphi$ ,  $y = b\rho\sin\varphi$ , este  $\rho = 1$  și deci obținem:

$$aria(D) = \int \int_D dx dy = \int_0^{2\pi} d\varphi \int_0^1 ab\rho d\rho = \pi ab.$$

**b.** Ecuația curbei în coordonate polare este  $\rho^2 = a^2(\cos^2\varphi - \sin^2\varphi)$ , sau  $\rho = a\sqrt{\cos 2\varphi}$ , și deci domeniul de integrare în coordonate polare este

$$\varphi \in \left(-\frac{\pi}{4}, \frac{\pi}{4}\right), \, \rho \in (0, a\sqrt{\cos 2\varphi}).$$

Rezultă:

$$\mathrm{aria}(D) = \int \int_D dx dy = \int_{-\frac{\pi}{4}}^{\frac{\pi}{4}} d\varphi \int_0^{a\sqrt{\cos 2\varphi}} \rho d\rho = \frac{a^2}{2}.$$

**c.** Ecuația lemniscatei în coordonate polare este  $\rho^2=2a^2\cos\varphi\sin\varphi$ . Domeniul de integrare este  $\varphi\in(0,\frac{\pi}{2})\cup(\pi,\frac{3\pi}{2}),\;\rho\in(0,a\sqrt{\sin2\varphi});$  obținem:

$$\operatorname{aria}(D) = \int \int_D dx dy = 2 \int_0^{\frac{\pi}{2}} d\varphi \int_0^{a\sqrt{\sin 2\varphi}} \rho d\rho = a^2.$$

7. Fie  $\alpha \in R$  și fie D discul unitate închis. Să se calculeze integralele:

a. 
$$I = \int \int_{D} \frac{dxdy}{(x^2 + y^2)^{\alpha}}$$
b. 
$$J = \int \int_{R^2 \setminus D} \frac{dxdy}{(x^2 + y^2)^{\alpha}}.$$

Soluție

$$I = \int_0^{2\pi} d\varphi \int_0^1 \frac{d\rho}{\rho^{2\alpha - 1}} = \begin{cases} \frac{\pi}{1 - \alpha} & \text{dacă} & \alpha < 1 \\ \infty & \text{dacă} & \alpha \ge 1 \end{cases}$$
$$J = \int_0^{2\pi} d\varphi \int_1^{\infty} \frac{d\rho}{\rho^{2\alpha - 1}} = \begin{cases} \frac{\pi}{\alpha - 1} & \text{dacă} & \alpha > 1 \\ \infty & \text{dacă} & \alpha \le 1 \end{cases}$$

### 7.3 Integrale triple

8. Fie multimea:

$$\Omega = \{(x, y, z) \in \mathbb{R}^3 \; ; \; x^2 + \frac{y^2}{4} \le 1, \; x^2 + y^2 \ge 1, \; x \ge 0, \; y \ge 0, \; 0 \le z \le 5 \}$$

Să se calculeze integrala  $\int \int \int_{\Omega} \frac{yz}{\sqrt{x^2+y^2}} \, dx dy dz$  prin două metode:

a. proiectând  $\Omega$  pe planul xoy și

**b.** folosind coordonatele cilindrice.

Soluție

a. Proiecția mulțimii  $\Omega$  pe planul xoy este

$$D = \{(x, y) \in \mathbb{R}^2 : x \in [0, 1], \sqrt{1 - x^2} \le y \le 2\sqrt{1 - x^2} \}$$

Obţinem:

$$\iint \int_{\Omega} \frac{yz}{\sqrt{x^2 + y^2}} dx dy dz = \iint_{D} dx dy \int_{0}^{5} \frac{yz}{\sqrt{x^2 + y^2}} dz =$$

$$= \frac{25}{2} \iint_{D} \frac{y}{\sqrt{x^2 + y^2}} dx dy,$$

integrală care se calculează folosind coordonate polare.

**b.** Coordonatele cilindrice sunt  $x = \rho \cos \varphi$ ,  $y = \rho \sin \varphi$ , z = z, domeniul maxim fiind  $(\rho, \varphi, z) \in [0, \infty) \times [0, 2\pi) \times R$ , iar iacobianul  $J = \rho$ . Pentru  $\Omega$ , domeniul de integrare în coordonate cilindrice este  $z \in [0, 5], \ \varphi \in [0, \frac{\pi}{2}], \ \rho \in [1, \frac{2}{\sqrt{3\cos^2 \varphi + 1}}]$  şi deci:

$$\int \int \int_{\Omega} \frac{yz}{\sqrt{x^2 + y^2}} \, dx \, dy \, dz = \int_0^5 dz \int_0^{\frac{\pi}{2}} \, d\varphi \int_1^{\frac{2}{\sqrt{3}\cos^2\varphi + 1}} \frac{z\rho\sin\varphi}{\rho} \rho \, d\rho =$$

$$= \frac{25}{2} \int_0^{\frac{\pi}{2}} \frac{3(1 - \cos^2\varphi)}{3\cos^2\varphi + 1} \sin\varphi \, d\varphi = \frac{25}{18} (4\sqrt{3}\pi - 9).$$

9. Să se calculeze integralele:

$$\begin{aligned} \mathbf{a.} & \int \int \int_{\Delta} (y-x) \, dx dy dz, \\ \Delta &= \{ (x,y,z) \in R^3 \, ; \, x^2 + y^2 + z^2 \leq 1, \, y > 0 \} \\ \mathbf{b.} & \int \int \int_{\Omega} \left( 1 - x^2 - \frac{y^2}{9} - \frac{z^2}{4} \right)^{\frac{3}{2}} \, dx dy dz, \\ \Omega &= \{ (x,y,z) \in R^3 \, ; \, y \geq 0, \, z \geq 0, \, x^2 + \frac{y^2}{9} + \frac{z^2}{4} \leq 1 \}. \end{aligned}$$

c. 
$$\int \int \int_{\Pi} z \, dx dy dz$$
,  
 $\Pi = \{(x, y, z) \in \mathbb{R}^3 ; x^2 + y^2 + (z - 1)^2 \le 1\}$ .

#### Soluție

Coordonatele sferice sunt

$$x = \rho \sin \theta \cos \varphi$$
,  $y = \rho \sin \theta \sin \varphi$ ,  $z = \rho \cos \theta$ ,

domeniul maxim fiind:

$$(\rho, \theta, \varphi) \in [0, \infty) \times [0, \pi] \times [0, 2\pi),$$

iar iacobianul  $J = \rho^2 \sin \theta$ .

a. Pentru  $\Delta$ , domeniul în coordonate sferice este

$$\rho \in [0,1],\, \theta \in [0,\pi],\, \varphi \in [0,\pi]$$

și avem:

$$\int \int \int_{\Delta} (y - x) dx dy dz =$$

$$= \int_{0}^{1} d\rho \int_{0}^{\pi} d\theta \int_{0}^{\pi} \rho^{3} \sin^{2} \theta (\sin \varphi - \cos \varphi) d\varphi = \frac{\pi}{4}.$$

**b.** Coordonatele sferice generalizate sunt:

$$x = a\rho \sin\theta \cos\varphi, y = b\rho \sin\theta \sin\varphi, z = c\rho \cos\theta,$$

având acelaşi domeniu maxim ca mai sus şi iacobianul  $J = abc\rho^2 \sin \theta$ . Pentru domeniul  $\Omega$  vom lua a = 1, b = 3, c = 2, şi onţinem:

$$\int \int \int_{\Omega} \left( 1 - x^2 - \frac{y^2}{9} - \frac{z^2}{4} \right)^{\frac{3}{2}} dx dy dz =$$

$$= \int_0^1 d\rho \int_0^{\frac{\pi}{2}} d\theta \int_0^{\pi} 6\rho^2 \left( 1 - \rho^2 \right)^{\frac{3}{2}} \sin\theta d\varphi = 6\pi \int_0^1 \rho^2 (1 - \rho^2)^{\frac{3}{2}} d\rho =$$

$$= 6\pi \int_0^{\frac{\pi}{2}} \sin^2 t \cos^4 t dt = 6\pi \int_0^{\infty} \frac{u^2}{(1 + u^2)^4} du =$$

$$= 3\pi \left( -\frac{u}{3(1 + u^2)^3} \Big|_0^{\infty} + \int_0^{\infty} \frac{du}{3(1 + u^2)^3} \right) = \pi \int_0^{\infty} \frac{du}{(1 + u^2)^3} =$$

$$= \pi \left( \int_0^{\infty} \frac{du}{(1 + u^2)^2} - \int_0^{\infty} \frac{u^2}{(1 + u^2)^3} du \right) = \frac{3}{4}\pi \int_0^{\infty} \frac{du}{(1 + u^2)^2} = \frac{3}{16}\pi.$$

 $\mathbf{c}$ . Pentru  $\Pi$ , domeniul în coordonate sferice este

$$\varphi \in [0, 2\pi), \, \theta \in [0, \frac{\pi}{2}], \, \rho \in [0, 2\cos\theta)$$

și deci:

$$\iint \int_{\Pi} z dx dy dz = \int_0^{2\pi} d\varphi \int_0^{\frac{\pi}{2}} d\theta \int_0^{2\cos\theta} \rho^3 \sin\theta \cos\theta \, d\rho =$$

$$8\pi \int_0^{\frac{\pi}{2}} \cos^5\theta \, \sin\theta \, d\theta = \frac{4}{3}\pi.$$

10. Fie 0 < k < R; să se calculeze volumul mulțimii:

$$\Omega = \{(x, y, z) \in \mathbb{R}^3 \mid x^2 + y^2 + z^2 \le \mathbb{R}^2, \ z \ge k\}.$$

#### Soluție

Multimea  $\Omega$  este interiorul calotei sferice situate "deasupra" planului z = k. Pentru a calcula volumul, trecem la coordonate sferice. Fie  $\theta_0 \in [0, \frac{\pi}{2}]$  astfel încât  $R\cos\theta_0 = k$ , deci  $\cos\theta_0 = \frac{k}{R}$ ; rezultă domeniul (pentru coordonatele sferice):

$$\varphi \in [0, 2\pi), \ \theta \in [0, \theta_0], \ \rho \in \left[\frac{k}{\cos \theta}, R\right].$$

Se obtine:

$$\int \int \int_{\Omega} dx dy dz = \int_0^{2\pi} d\varphi \int_0^{\theta_0} d\theta \int_{\frac{k}{\cos \theta}}^R \rho^2 \sin \theta \, d\rho =$$

$$\frac{2\pi}{3} \int_0^{\theta_0} \left( R^3 - \frac{k^3}{\cos^3 \theta} \right) d\theta = \frac{2\pi}{3} \left( -R^3 \cos \theta - \frac{k^3}{2 \cos^2 \theta} \right) \Big|_0^{\theta_0} =$$

$$= \frac{2\pi}{3} \left( R^3 - \frac{3}{2} r^2 k + \frac{k^3}{2} \right).$$

11. Să se calculeze volumele mulțimilor  $\Omega$  mărginite de suprafețele de

**a.** 
$$2x^2 + y^2 + z^2 = 1$$
,  $2x^2 + y^2 - z^2 = 0$ ,  $z \ge 0$ .

**b.** 
$$z = x^2 + y^2 - 1$$
,  $z = 2 - x^2 - y^2$ .

**c.** 
$$z = 4 - x^2 - y^2$$
,  $2z = 5 + x^2 + y^2$ .

**d.** 
$$x^2 + y^2 = 1$$
,  $z^2 = x^2 + y^2$ ,  $z \ge 0$ .

ecuații:   
**a.** 
$$2x^2+y^2+z^2=1$$
,  $2x^2+y^2-z^2=0$ ,  $z\geq 0$ .  
**b.**  $z=x^2+y^2-1$ ,  $z=2-x^2-y^2$ .  
**c.**  $z=4-x^2-y^2$ ,  $2z=5+x^2+y^2$ .  
**d.**  $x^2+y^2=1$ ,  $z^2=x^2+y^2$ ,  $z\geq 0$ .  
**e.**  $x^2+y^2=4a^2$ ,  $x^2+y^2-2ay=0$ ,  $x+y+z=3$ ,  $x\geq 0$ ,  $z\geq 0$ ,  $a\in (0,1)$ .  
**f.**  $x^2+y^2+z^2=1$ ,  $y^2+z^2=x^2$ ,  $x\geq 0$ .

**f.** 
$$x^2 + y^2 + z^2 = 1$$
,  $y^2 + z^2 = x^2$ ,  $x \ge 0$ .

#### Soluție

a. Curba de intersecție dintre elipsoid și con este elipsa de ecuații

$$4x^2 + 2y^2 = 1, \ z = \frac{1}{\sqrt{2}}.$$

Proiecția pe planul xoy a lui  $\Omega$  este

$$D = \{(x, y); 4x^2 + 2y^2 \le 1\}.$$

Rezultă:

$$\begin{aligned} \operatorname{vol}(\Omega) &= \int \int \int_{\Omega} dx dy dz = \int \int_{D} dx dy \int_{\sqrt{2x^{2} + y^{2}}}^{\sqrt{1 - 2x^{2} - y^{2}}} dz = \\ &= \int \int_{D} \left( \sqrt{1 - 2x^{2} - y^{2}} - \sqrt{2x^{2} + y^{2}} \right) dx dy = \\ &= \int_{0}^{1} d\rho \int_{0}^{2\pi} \left( \sqrt{1 - \frac{1}{2}\rho^{2}} - \sqrt{\frac{1}{2}\rho^{2}} \right) \frac{1}{2\sqrt{2}} \rho \, d\varphi = \frac{\pi}{3} (\sqrt{2} - 1). \end{aligned}$$

b. Curba de intersecție a celor doi paraboloizi este cercul de ecuații

$$x^2 + y^2 = \frac{3}{2}, z = \frac{1}{2}.$$

Proiecția pe planul xOy a lui  $\Omega$  este

$$D = \{(x,y); x^2 + y^2 \le \frac{3}{2}\},\$$

și deci obținem:

$$vol(\Omega) = \int \int \int_{\Omega} dx dy dz = \int \int_{D} dx dy \int_{x^{2} + y^{2} - 1}^{2 - x^{2} - y^{2}} dz =$$
$$= \int_{0}^{\sqrt{\frac{3}{2}}} d\rho \int_{0}^{2\pi} (3 - \rho^{2}) \rho d\varphi.$$

c. Curba de intersecție dintre cei doi paraboloizi este cercul  $x^2+y^2=1$  situat în planul z=3. Notând cu  $D=\{(x,y)\in R^2\mid x^2+y^2\leq 1\}$ , rezultă:

$$vol(\Omega) = \int \int \int_{\Omega} dx dy dz = \int \int_{D} dx dy \int_{\frac{1}{2}(1+x^{2}+y^{2})}^{4-x^{2}-y^{2}} dz =$$

$$= \int \int_{D} \frac{3}{2} (1 - x^2 - y^2) \, dx dy = \frac{3}{2} \int_{0}^{1} d\rho \int_{0}^{2\pi} (1 - \rho^2) \rho \, d\varphi = \frac{3}{4} \pi.$$

**d.** Curba de intersecție dintre cilindru și con este cercul  $x^2+y^2=1$  situat în planul z=1. Notând cu  $D=\{(x,y)\in R^2\ |\ x^2+y^2\le 1\}$ , rezultă:

$$\operatorname{vol}(\Omega) = \int \int \int_{\Omega} dx dy dz = \int \int_{D} dx dy \int_{\sqrt{x^2 + y^2}}^{1} dz =$$

$$= \int \int_{D} \left( 1 - \sqrt{x^2 + y^2} \right) dx dy = \int_{0}^{1} d\rho \int_{0}^{2\pi} (1 - \rho) \rho d\varphi = \frac{\pi}{3}.$$

e. Proiectia lui  $\Omega$  pe planul xOy este

$$D = \{(x, y); x^2 + y^2 \le 4a^2, x^2 + (y - a)^2 \ge a^2, x > 0\},\$$

și deci obținem:

$$\operatorname{vol}(\Omega) = \int \int \int_{\Omega} dx dy dz = \int \int_{D} dx dy \int_{0}^{3-x-y} dz =$$
$$= \int_{0}^{\pi} d\varphi \int_{2a\sin\varphi}^{2a} \rho (3 - \rho\cos\varphi - \rho\sin\varphi) d\rho.$$

**f.** Curba de intersecție dintre sferă și con este cercul  $y^2+z^2=\frac{1}{2},$  situat în planul  $x=\frac{\sqrt{2}}{2}$ . Proiecția mulțimii  $\Omega$  pe planul yOz este discul  $D=\{(y,z)\in R^2\mid y^2+z^2\leq \frac{1}{2}\}$ ; rezultă:

$$\text{vol} = \int \int \int_{\Omega} dx dy dz = \int \int_{D} dy dz \int_{\sqrt{y^{2} + z^{2}}}^{\frac{\sqrt{2}}{2}} dx =$$

$$= \int \int_{D} \left( \frac{\sqrt{2}}{2} - \sqrt{y^{2} + z^{2}} \right) dy dz = \frac{\sqrt{2}}{4} \pi - \int_{0}^{\frac{\sqrt{2}}{2}} d\rho \int_{0}^{2\pi} \rho^{2} d\varphi = \frac{\sqrt{2}}{12} \pi.$$

12. Să se calculeze volumele mulțimilor  $\Omega$  mărginite de suprafețele de

**a.** 
$$(x^2 + y^2 + z^2)^3 = x$$
.

**b.** 
$$(x^2 + y^2)^3 = z^2$$
,  $z = 0$ ,  $z = 8$ 

ecuain:  
**a.** 
$$(x^2 + y^2 + z^2)^3 = x$$
.  
**b.**  $(x^2 + y^2)^3 = z^2, z = 0, z = 8$ .  
**c.**  $\frac{x^2}{a^2} + \frac{y^2}{b^2} = \frac{z^2}{c^2}, 0 \le z \le c, a > 0, b > 0, c > 0$ .

a. Folosim coordonatele sferice. Obţinem domeniul:

$$\theta \in [0, \pi], \ \varphi \in [-\frac{\pi}{2}, \frac{\pi}{2}], \ \rho \in [0, \sqrt[5]{\sin \theta \cos \varphi}]$$
 şi deci:

$$\operatorname{vol}(\Omega) = \int \int \int_{\Omega} dx dy dz = \int_{0}^{\pi} d\theta \int_{-\frac{\pi}{\alpha}}^{\frac{\pi}{2}} d\varphi \int_{0}^{5\sqrt{\sin\theta\cos\varphi}} \rho^{2} \sin\theta \, d\rho =$$

$$=\frac{1}{3}\int_0^\pi d\theta \int_{-\frac{\pi}{2}}^{\frac{\pi}{2}}\sin\theta\,\sin^{\frac{3}{5}}\theta\,\cos^{\frac{3}{5}}\varphi\,d\varphi = \frac{1}{3}\left(\int_0^\pi\sin^{\frac{8}{5}}\theta\,d\theta\right)\,\left(\int_{-\frac{\pi}{2}}^{\frac{\pi}{2}}\cos^{\frac{3}{5}}\varphi\,d\varphi\right).$$

Calculăm prima integrală; mai întâi, observăm că:

$$\int_0^{\pi} \sin^{\frac{8}{5}} \theta \ d\theta = \int_0^{\frac{\pi}{2}} \sin^{\frac{8}{5}} \theta \ d\theta + \int_{\frac{\pi}{2}}^{\pi} \sin^{\frac{8}{5}} \theta \ d\theta = 2 \int_0^{\frac{\pi}{2}} \sin^{\frac{8}{5}} \theta \ d\theta,$$

cu schimarea de variabilă  $t=\theta-\pi$  în a doua integrală. Vom calcula acum integrala  $\int_0^{\frac{\pi}{2}}\sin^{\frac{8}{5}}\theta\ d\theta$  folosind funcția B a lui Euler (a se vedea și exercițiul 28(a) din capitolul 5). Cu schimbarea de variabilă  $\sin^2\theta=y$ , rezultă:

$$\int_0^{\frac{\pi}{2}} \sin^{\frac{8}{5}} \theta \ d\theta = \int_0^1 \frac{y^{\frac{4}{5}}}{2\sqrt{y}\sqrt{1-y}} \, dy =$$
$$= \frac{1}{2} \int_0^1 y^{\frac{3}{10}} (1-y)^{-\frac{1}{2}} \, dy = \frac{1}{2} B\left(\frac{13}{10}, \frac{1}{2}\right).$$

Calculăm acum integrala  $\int_{-\frac{\pi}{2}}^{\frac{\pi}{2}}\cos^{\frac{3}{5}}\varphi\ d\varphi$  cu aceeași metodă: fie  $\sin^2\varphi=y$ ; rezultă:

$$\int_{-\frac{\pi}{2}}^{\frac{\pi}{2}} \cos^{\frac{3}{5}} \varphi \ d\varphi = 2 \int_{0}^{\frac{\pi}{2}} \cos^{\frac{3}{5}} \varphi \ d\varphi = 2 \int_{0}^{1} \frac{(1-y)^{\frac{3}{10}}}{2\sqrt{y}\sqrt{1-y}} \ dy =$$

$$= \int_{0}^{1} (1-y)^{-\frac{1}{5}} y^{-\frac{1}{2}} \ dy = B\left(\frac{4}{5}, \frac{1}{2}\right).$$

În concluzie, volumul cerut este:

$$\operatorname{vol}(\Omega) = B\left(\frac{13}{10}, \frac{1}{2}\right) + B\left(\frac{4}{5}, \frac{1}{2}\right).$$

**b.** Folosim coordonatele cilindrice; obţinem:

$$\operatorname{vol}(\Omega) = \int \int \int_{\Omega} dx dy dz = \int_{0}^{8} dz \int_{0}^{2\pi} d\varphi \int_{0}^{\sqrt[3]{z}} \rho d\rho = 32\pi.$$

c. Folosim coordonate cilindrice generalizate:

$$x = a\rho\cos\varphi, \ y = b\rho\sin\varphi, \ z = z$$

și obținem:

$$\operatorname{vol}(\Omega) = \int \int \int_{\Omega} dx dy dz = \int_{0}^{c} dz \int_{0}^{2\pi} d\varphi \int_{0}^{\frac{z}{c}} ab\rho d\rho = \frac{\pi}{3} abc.$$

## Capitolul 8

# Integrale curbilinii și de suprafață

### 8.1 Noțiuni teoretice

#### Drumuri parametrizate

Fie J un interval real; se numește drum parametrizat pe J cu valori în  $\mathbb{R}^n$  orice aplicație continuă  $\gamma: J \mapsto \mathbb{R}^n$ .

Dacă notăm  $\gamma(t) = (\gamma_1(t), \gamma_2(t), ..., \gamma_n(t))$ , atunci relațiile

$$x_1 = \gamma_1(t), x_2 = \gamma_2(t), ..., x_n = \gamma_n(t)$$

se numesc ecuațiile parametrice ale drumului  $\gamma$ .

Dacă J=[a,b], atunci  $\gamma(a)$  și  $\gamma(b)$  se numesc capetele (extremitățile) drumului. Drumul se numește închis dacă  $\gamma(a)=\gamma(b)$ .

Opusul drumului  $\gamma: [a,b] \mapsto \mathbb{R}^n$  este, prin definiție,

$$\gamma^-: [a,b] \mapsto R^n, \ \gamma^-(t) = \gamma(a+b-t).$$

Evident,  $\gamma$  şi  $\gamma^-$  au aceeaşi imagine.

Dacă  $\gamma_1:[a,b]\mapsto R^n$  și  $\gamma_2:[b,c]\mapsto R^n$  sunt două drumuri parametrizate, atunci drumul concatenat  $\gamma_1\cup\gamma_2:[a,c]\mapsto R^n$  este definit prin

$$\gamma_1 \cup \gamma_2(t) = \begin{cases} \gamma_1(t), & t \in [a, b] \\ \gamma_2(t), & t \in [b, c] \end{cases}$$

Imaginea lui  $\gamma_1 \cup \gamma_2$  este reuniunea imaginilor drumurilor  $\gamma_1$  şi  $\gamma_2$ .

Un drum  $\gamma: J \mapsto \mathbb{R}^n$  se numește neted dacă aplicația  $\gamma$  este de clasă  $\mathcal{C}^1$  și  $\gamma'(t) \neq 0, \forall t \in J$ .

Un drum se numește neted pe porțiuni dacă este concatenarea unui număr finit de drumuri netede.

Două drumuri  $\gamma_1: I \mapsto R^n$  şi  $\gamma_2: J \mapsto R^n$  se numesc echivalente cu aceeaşi orientare (notăm  $\gamma_1 \sim \gamma_2$ ) dacă există un difeomorfism strict crescător  $\phi: I \mapsto J$  astfel încât  $\gamma_1 = \gamma_2 \circ \phi$ . Dacă difeomorfismul de mai sus este strict descrescător, atunci cele două drumuri se numesc echivalente cu orientări opuse.

În cazurile particulare n=2 (plan) și n=3 (spațiu) notațiile uzuale sunt  $\gamma(t)=(x(t),y(t))$  și respectiv  $\gamma(t)=(x(t),y(t),z(t))$ . Lungimea unui drum neted  $\gamma:[a,b]\mapsto R^3$  este:

$$L(\gamma) = \int_{a}^{b} \sqrt{(x'(t))^{2} + (y'(t))^{2} + (z'(t))^{2}} dt.$$

#### Integrala curbilinie de prima speță

Fie  $\gamma:[a,b]\mapsto R^3$  un drum neted și fie  $f:D\mapsto R$  o funcție continuă astfel încât  $D\supseteq \gamma([a,b])$ . Integrala curbilinie de prima speță a funcției f pe drumul  $\gamma$  este, prin definiție:

$$\int_{\gamma} f(x,y,z) ds = \int_{a}^{b} f(x(t),y(t),z(t)) \sqrt{\left(x'(t)\right)^{2} + \left(y'(t)\right)^{2} + \left(z'(t)\right)^{2}} dt.$$

Dacă  $\gamma_1$  şi  $\gamma_2$  sunt două drumuri parametrizate echivalente (indiferent de orientare) atunci  $\int_{\gamma_1} f ds = \int_{\gamma_2} f ds$ .

#### **Aplicații**

i. Dacă f este funcția constantă 1, atunci se obține lungimea drumului  $\gamma$ .

ii. Dacă imaginea lui  $\gamma$  este un fir material având densitatea f, atunci masa M și coordonatele centrului de greutate G sunt date de formulele:

$$\mathbf{M}=\int_{\gamma}fds,$$
 
$$x_{G}=\frac{1}{M}\int_{\gamma}xfds,\,y_{G}=\frac{1}{M}\int_{\gamma}yfds,\,z_{G}=\frac{1}{M}\int_{\gamma}zfds.$$

### Integrala curbilinie de speța a doua

Fie  $\alpha = Pdx + Qdy + Rdz$  o 1-formă diferențială cu funcțiile P,Q,R continue pe un deschis  $D \subseteq R^3$  și fie

$$\gamma: [a, b] \mapsto R^3, \, \gamma(t) = (x(t), y(t), z(t))$$

un drum parametrizat neted cu imaginea inclusă în D. Integrala curbilinie a formei diferențiale  $\alpha$  de-a lungul drumului  $\gamma$  este, prin definiție:

$$\int_{\gamma} \alpha = \int_{a}^{b} \left( P(\gamma(t)) x'(t) + Q(\gamma(t)) y'(t) + R(\gamma(t)) z'(t) \right) dt.$$

Definiția se generalizează evident la n variabile. De exemplu, în două variabile:

$$\int_{\gamma} Pdx + Qdy = \int_{a}^{b} \left( P(\gamma(t))x'(t) + Q(\gamma(t))y'(t) \right) dt.$$

Dacă  $\gamma_1$  și  $\gamma_2$  sunt două drumuri parametrizate echivalente cu aceeași orientare, atunci integralele corespunzătoare sunt egale:

$$\int_{\gamma_1} \alpha = \int_{\gamma_2} \alpha.$$

Dacă cele două drumuri parametrizate sunt echivalente dar cu orientări opuse, atunci integralele corespunzătoare diferă prin semn.

#### Notații vectoriale

Unei 1-forme diferențiale  $\alpha = Pdx + Qdy + Rdz$  i se asociază (în mod canonic) câmpul de vectori  $\overline{V}: D \mapsto R^3, \overline{V} = (P,Q,R)$ . Dacă  $\gamma$  este un drum parametrizat neted (cu imaginea inclusă în D) atunci integrala  $\int_{\gamma} \alpha$  se mai notează și  $\int_{\gamma} \overline{V} d\overline{r}$ , numindu-se circulația câmpului  $\overline{V}$  de-a lungul drumului  $\gamma$ . În particular, dacă  $\overline{V} = \overline{F}$  este un câmp de forțe, atunci circulația

 $\int_{\gamma} \overline{F} d\overline{r}$  este lucrul mecanic efectuat de forța  $\overline{F}$  pe drumul  $\gamma$ .

#### Forme diferențiale exacte

O 1-formă diferențială  $\alpha = Pdx + Qdy + Rdz$  se numește exactă pe mulțimea D dacă există f o funcție (numită potențial scalar sau primitivă) de clasă  $\mathcal{C}^1(D)$  astfel încât  $Df = \alpha$ , sau, echivalent:

$$\frac{\partial f}{\partial x} = P, \ \frac{\partial f}{\partial y} = Q, \ \frac{\partial f}{\partial z} = R,$$

în orice punct din D. Câmpul de vectori  $\overline{V}=(P,Q,R)$  asociat formei diferențiale  $\alpha$  se numește în acest caz câmp de gradienți.

246

O 1-formă diferențială  $\alpha = Pdx + Qdy + Rdz$  se numește închisă pe D dacă sunt verificate (în orice punct din D) egalitățile:

$$\frac{\partial P}{\partial y} = \frac{\partial Q}{\partial x}, \, \frac{\partial Q}{\partial z} = \frac{\partial R}{\partial y}, \, \frac{\partial R}{\partial x} = \frac{\partial P}{\partial z}.$$

Definițiile de mai sus se generalizează în mod evident la n variabile.

Importanța formelor diferențiale exacte este dată de următorul rezultat:

#### Independența de drum a integralei curbilinii

Fie  $\alpha = Df$  o 1-formă diferențială exactă pe D și fie  $\gamma$  un drum parametrizat neted cu imaginea inclusă în D având extremitățile  $p, q \in D$ ; atunci:

i. 
$$\int_{\gamma} Df = f(q) - f(p).$$

ii. dacă în plus drumul  $\gamma$  este închis, atunci  $\int_{\gamma} Df = 0$ .

Din teorema de simetrie a lui Schwarz rezultă că orice formă diferențială exactă (cu potențialul scalar de clasă  $C^2$ ) este în mod necesar și închisă; reciproca acestei afirmații este, în general, falsă. De exemplu, forma diferențială

$$\alpha = \frac{-y}{x^2 + y^2} dx + \frac{x}{x^2 + y^2} dy$$

este închisă pe  $\mathbb{R}^2 \setminus \{(0,0)\}$  dar nu este exactă pe această mulțime.

Are loc totuşi următorul rezultat fundamental:

#### Teorema lui Poincare

Fie  $\alpha$  o 1-formă diferențială de clasă  $\mathcal{C}^1$  inchisă pe deschisul  $D\subseteq R^n$ . Atunci pentru orice  $x\in D$  există o vecinătate deschisă a sa  $U\subseteq D$  și o funcție  $f\in\mathcal{C}^1$  astfel încât  $Df=\alpha$  pe U.

Într-o formulare succintă teorema afirmă că orice 1-formă diferențială închisă este local exactă.

Există mulțimi pe care teorema de mai sus este adevărată global. De exemplu, dacă mulțimea D este stelată (adică există un punct  $x_0 \in D$  cu proprietatea că segmentul  $[x_0, x] \subseteq D, \forall x \in D$ ) atunci orice 1-formă diferențială închisă pe D este exactă pe D.

#### Pânze parametrizate

Fie  $D\subseteq R^2$  o mulțime deschisă și conexă; o pânză parametrizată pe D este orice aplicație de clasă  $\mathcal{C}^1,\,\Phi:D\mapsto R^3.$ 

Pânza parametrizată  $\Phi$  se numește simplă dacă aplicația  $\Phi$  este injectivă. Două pânze parametrizate  $\Phi_1:D_1\mapsto R^3$  și  $\Phi_2:D_2\mapsto R^3$  se numesc echivalente dacă există un difeomorfism  $\theta:D_1\mapsto D_2$  astfel încât  $\Phi_1=\Phi_2\circ\theta$ .

Se spune că difeomorfismul  $\theta$  păstrează orientarea dacă iacobianul său este pozitiv; în acest caz se spune  $\Phi_1$  și  $\Phi_2$  au aceeași orientare; în caz contrar se spune că pânzele parametrizate au orientări opuse. Evident, două pânze parametrizate echivalente au aceeași imagine (în  $R^3$ ), numită simplu pânză (sau porțiune de suprafață).

Fie  $\Phi:D\mapsto R^3$ ,  $\Phi(u,v)=(X(u,v),Y(u,v),Z(u,v))$  o pânză parametrizată; pânza  $\Phi$  se numește regulată dacă vectorii  $\frac{\partial\Phi}{\partial u}$  și  $\frac{\partial\Phi}{\partial v}$  sunt liniari independenți în orice punct din D. În acest caz planul generat de ei se numește planul tangent la pânză (în punctul respectiv); vectorul normal la pânză în punctul  $\Phi(u,v)$  indus de parametrizarea  $\Phi$  este:

$$N_{\Phi}(u,v) = \frac{\partial \Phi}{\partial u} \times \frac{\partial \Phi}{\partial v}.$$

Dacă  $\Phi_1$  și  $\Phi_2$  sunt două pânze parametrizate simple, regulate echivalente cu aceeași orientare, atunci versorii normalelor induse coincid:

$$n_{\Phi_1}(u,v) = \frac{1}{\parallel N_{\Phi_1}(u,v) \parallel} \cdot N_{\Phi_1}(u,v) = \frac{1}{\parallel N_{\Phi_2}(u,v) \parallel} \cdot N_{\Phi_2}(u,v) = n_{\Phi_2}(u,v).$$

#### Integrala de suprafață de prima speță

Fie  $\Phi: D \mapsto R^3$  o pânză parametrizată, fie  $\Sigma = \Phi(D)$  imaginea ei şi fie  $F: U \mapsto R$  o funcție continuă pe imaginea pânzei. Integrala de suprafață de prima speță a lui F pe  $\Sigma$  este, prin definiție:

$$\int_{\Sigma} F(x, y, z) d\sigma = \int \int_{D} F(\Phi(u, v)) \parallel \frac{\partial \Phi}{\partial u} \times \frac{\partial \Phi}{\partial v} \parallel du dv.$$

Dacă pânza este parametrizată cartezian,  $z = f(x, y), (x, y) \in D \subseteq \mathbb{R}^2$ , atunci formula de mai sus devine:

$$\int_{\Sigma} F(x, y, z) d\sigma = \int \int_{D} F(x, y, f(x, y)) \sqrt{\left(\frac{\partial f}{\partial x}\right)^{2} + \left(\frac{\partial f}{\partial y}\right)^{2}} dx dy.$$

Dacă  $\Phi_1$  și  $\Phi_2$  sunt două parametrizări echivalente (nu neapărat cu aceeași orientare) atunci integralele corespunzătoare sunt egale.

#### **Aplicatii**

i. În cazul particular F=1 se obține aria suprafeței  $\Sigma$ :

$$\operatorname{aria}(\Sigma) = \int_{\Sigma} d\sigma.$$

248

ii. Dacă  $F \geq 0$  reprezintă densitatea unei plăci  $\Sigma$ , atunci masa ei este:

$$M = \int_{\Sigma} F d\sigma,$$

iar coordonatele centrului de greutate sunt:

$$x_G = \frac{1}{M} \int_{\Sigma} x F d\sigma, \ y_G = \frac{1}{M} \int_{\Sigma} y F d\sigma, \ z_G = \frac{1}{M} \int_{\Sigma} z F d\sigma.$$

iii. Fie  $\overline{V}$  un câmp vectorial și fie  $\overline{n}$  versorul normalei indus de pânza parametrizată fixată; fluxul câmpului  $\overline{V}$  prin suprafața  $\Sigma$  în raport cu orientarea aleasă (dată de versorul  $\overline{n}$ ) este, prin definiție:

$$\mathcal{F}_{\Sigma}(\overline{V}) = \int_{\Sigma} \overline{V} \cdot \overline{n} \, d\sigma.$$

#### Integrala de suprafață de speța a doua

Prin definiție, dacă

$$\omega = P dy \wedge dz + Q dz \wedge dx + R dx \wedge dy$$

este o 2-formă diferențială și

$$\Phi: D \mapsto R^3, \ \Phi(u, v) = (X(u, v), Y(u, v), Z(u, v))$$

este o pânză parametrizată, atunci integrala pe suprafața (orientată)  $\Sigma$  a formei diferențiale  $\omega$  este:

$$\int_{\Sigma}\omega=\int\int_{D}\biggl((P\circ\Phi)\frac{D(Y,Z)}{D(u,v)}+(Q\circ\Phi)\frac{D(Z,X)}{D(u,v)}+(R\circ\Phi)\frac{D(X,Y)}{D(u,v)}\biggr)dudv,$$

unde,  $\frac{D(Y,Z)}{D(u,v)}$ ,  $\frac{D(Z,X)}{D(u,v)}$ ,  $\frac{D(X,Y)}{D(u,v)}$  sunt iacobienii funcțiilor X,Y,Z în raport cu variabilele u și v.

Dacă  $\Phi_1$  și  $\Phi_2$  sunt două pânze parametrizate echivalente cu aceeași orientare, atunci integralele corespunzătoare sunt egale; dacă parametrizările au orientări opuse, atunci integralele diferă prin semn.

#### Notații vectoriale

Unei 2-forme diferențiale  $\omega = Pdy \wedge dz + Qdz \wedge dx + Rdx \wedge dy$  i se asociază (în mod canonic) câmpul de vectori  $\overline{V} = (P,Q,R)$ ; dacă  $\Phi: D \mapsto R^3$  este o pânză parametrizată cu imaginea  $\Sigma$  (orientată cu versorul normalei  $\overline{n}$ ), atunci:

$$\int_{\Sigma} \omega = \int_{\Sigma} \overline{V} \cdot \overline{n} \ d\sigma.$$

#### 249

#### 8.2 Integrale curbilinii

**1.** Fie  $a \in R$  si fie  $P, Q : R^2 \mapsto R$ ,  $P(x, y) = x^2 + 6y$ , Q(x, y) = 3ax - 4y. Să se afle a astfel încât  $\omega = Pdx + Qdy$  să fie o 1-formă diferențială exactă pe  $R^2$  și apoi să se determine  $f \in \mathcal{C}^1(R^2)$  cu proprietatea  $df = \omega$ .

#### Solutie

Spațiul  $R^2$  este mulțime stelată, deci este suficient ca  $\omega$  să fie 1-formă diferențială închisă, adică  $\frac{\partial P}{\partial u} = \frac{\partial Q}{\partial x}$ ; rezultă a = 2. O primitivă (potențial

scalar) a lui  $\omega$  se calculează fie integrând sistemul  $\frac{\partial f}{\partial x} = P$ ,  $\frac{\partial f}{\partial u} = Q$ , fie

direct cu formula  $f(x,y)=\int_{x_o}^x P(x,y_o)dx+\int_{y_o}^y Q(x,y)dy, \text{ unde } x_o \text{ și } y_o \text{ sunt arbitrari fixați;}$ obţinem  $f(x,y) = \frac{x^3}{3} + 6xy - 2y^2 + k, k \in \mathbb{R}$ .

**2.** Fie  $P, Q: \mathbb{R}^2 \mapsto \mathbb{R}$ , definite prin:

$$P(x,y) = \sqrt{\sqrt{x^2 + y^2} - x}, \ Q(x,y) = \sqrt{\sqrt{x^2 + y^2} + x}$$

și fie  $\omega = Pdx + Qdy$ . Să se găsească un domeniu maximal pe care forma diferențială  $\omega$  să fie exactă.

#### Soluție

Funcțiile P și Q sunt de clasă  $C^1$  pe  $R^2 \setminus \{(0,0)\}$  și:

$$\frac{\partial Q}{\partial x} = \frac{\sqrt{x + \sqrt{x^2 + y^2}}}{2\sqrt{x^2 + y^2}}, \ \frac{\partial P}{\partial y} = \frac{y}{|y|} \frac{\partial Q}{\partial x}.$$

Mulţimea  $D = \{(x, y) \in \mathbb{R}^2 ; y > 0\}$  este stelată şi  $\frac{\partial Q}{\partial x} = \frac{\partial P}{\partial y}$  pe D; evident, D este maximală cu aceste proprietăți.

3. Folosind definiția, să se calculeze următoarele integrale curbilinii (orientarea curbei nu este precizată):

**a.** 
$$\int_{\Gamma} (x+y)dx + (x-y)dy$$
,  $\Gamma = \{(x,y) \mid x^2 + y^2 = 4, y \ge 0\}$ .

**b.** 
$$\int_{\Gamma} \frac{y}{x+1} dx + dy$$
,  $\Gamma$  este triunghiul  $ABC$ ,  $A(2,0)$ ,  $B(0,0)$ ,  $C(0,2)$ .

c. 
$$\int_{\Gamma} x dy - y dx$$
,  $\Gamma = \{(x, y) \mid \frac{x^2}{a^2} + \frac{y^2}{b^2} = 1\}$ . Soluţie

a. Cu parametrizarea  $x(t)=2\cos t,\,y(t)=2\sin t,\,t\in[0,\pi]$  obținem:

$$\int_{\Gamma} (x+y)dx + (x-y)dy = \int_{0}^{\pi} (4\cos 2t - 4\sin 2t) = 0.$$

**b.**  $\Gamma = [AC] \cup [CB] \cup [BA]$ ; parametrizăm fiecare segment:

$$[AC]: x(t) = 2 - t, y(t) = t, t \in [0, 2]$$

$$[CB]: x(t) = 0, y(t) = 2 - t, t \in [0, 2]$$

$$[BA]: x(t) = t, y(t) = 0, t \in [0, 2];$$

obtinem:

$$\int_{\Gamma} \frac{y}{x+1} dx + dy = \int_{0}^{2} \left( \frac{t}{t-3} + 1 \right) dt - \int_{0}^{2} dt = 2 - 3 \ln 3.$$

c. Parametrizarea canonică a elipsei de semiaxe a și b este

$$x(t) = a \cos t, \ y(t) = b \sin t, \ t \in [0, 2\pi);$$

obtinem:

$$\int_{\Gamma} x dy - y dx = \int_{0}^{2\pi} ab dt = 2\pi ab.$$

**4.** Fie 
$$P(x,y) = e^{-x^2+y^2}\cos(2xy), \ Q(x,y) = e^{-x^2+y^2}\sin(2xy)$$
 și fie 
$$\omega = Pdx + Qdy.$$

а. Să se arate că  $\int_{\Gamma}\omega=0$  pentru orice curbă închisă  $\Gamma.$ b. Fie  $\alpha\in R.$  Să se calculeze integrala

$$\int_0^\infty e^{-t^2} \cos(2\alpha t) dt,$$

aplicând rezultatul de la punctul a dreptunghiului  $\Gamma = ABCD$ , unde

$$A(0,0), B(a,0), C(a,\alpha), D(0,\alpha).$$

Soluţie

a. Deoarece  $\frac{\partial P}{\partial u} = \frac{\partial Q}{\partial x}$ , rezultă că  $\omega$  este 1-formă diferențială închisă pe  $R^2$ 

și deci și exactă; în consecință,  $\int_{\Gamma}\omega=0$ , pentru orice curbă închisă  $\Gamma.$ 

**b.** Parametrizând  $\Gamma = [AB] \cup [BC] \cup [CD] \cup [DA]$ , obţinem:

$$0 = \int_{\Gamma} \omega = \int_{0}^{a} e^{-t^{2}} dt + \int_{0}^{\alpha} e^{-a^{2} + t^{2}} \sin(2at) dt - \int_{0}^{a} e^{-t^{2} + \alpha^{2}} \cos(2\alpha t) dt.$$

Pentru  $a \to \infty$ , obtinem:

$$\int_0^\infty e^{-t^2} \cos(2\alpha t) dt = \frac{\sqrt{\pi}}{2} e^{-\alpha^2},$$

deoarece

$$\int_0^\infty e^{-t^2} dt = \frac{\sqrt{\pi}}{2} \operatorname{si} \lim_{a \to \infty} \int_0^\alpha e^{-a^2 + t^2} \sin(2\alpha t) dt = 0.$$

5. Să se calculeze  $\int_{\Gamma} \omega$  în următoarele cazuri:

a.  $\omega = x^2yzdx + xy^2zdy + xyz^2dz$ , iar  $\Gamma$  este intersecția suprafețelor

$$x = 1, y^2 + z^2 = 1.$$

**b.**  $\omega = z(z-y)dx + xzdy - xydz$ ,  $\Gamma = \Gamma_1 \cup \Gamma_2 \cup \Gamma_3$ , unde  $\Gamma_1$ ,  $\Gamma_2$  şi  $\Gamma_3$  sunt intersecțiile conului  $x^2 + y^2 = (z-1)^2$  cu planele x = 0, y = 0, şi, respectiv, z = 0, cu restricțiile  $x \ge 0$ ,  $y \ge 0$ ,  $z \ge 0$ .

c.  $\omega = (y-2z)dx + (x-z)dy + (2x-y)dz$ ,  $\Gamma$  find intersectia suprafetelor

$$x^{2} + y^{2} + z^{2} = r^{2}, x - y + z = 0.$$

**d.**  $\omega = ydx + (x+z)dy + x^2dz$ ,  $\Gamma$  find intersectia suprafețelor

$$x^2 + y^2 - 2x = 0, x + z = 4.$$

#### Soluție

Integralele se calculează cu definiția.

a.  $\Gamma$  este un cerc situat în planul x=1; o parametrizare este:

$$x = 1, y = \cos t, z = \sin t, t \in [0, 2\pi).$$

Rezultă:

$$\int_{\Gamma} \omega = \int_{0}^{2\pi} \left( -\cos^2 t \sin^2 t + \cos^2 t \sin^2 t \right) dt = 0.$$

**b.** În planul x=0 obținem dreapta de ecuație y+z=1, în planul y=0 obținem dreapta x+z=1, iar în planul z=0 obținem sfertul de cerc

 $x^2 + y^2 = 1, x > 0, y > 0$ . Rezultă parametrizările:

 $\Gamma_1: x(t) = 0, y(t) = 1 - t, z(t) = t, t \in [0, 1].$ 

$$\Gamma_2: x(t) = t, \ y(t) = 0, \ z(t) = 1 - t, \ t \in [0, 1].$$

$$\Gamma_3: x(t) = \cos t, \ y(t) = \sin t, \ z(t) = 0, \ t \in [0, \frac{\pi}{2}).$$

În continuare se aplică definiția.

**c.** Curba este o elipsă situată în planul x-y+z=0; înlocuind z=y-x în ecuația sferei obținem:  $x^2+y^2+(y-x)^2=r^2$ . Pentru a aduce ecuația acestei conice la forma canonică, facem schimbarea de variabile:  $x-y=u, \ x+y=v$ ; obținem ecuația:

$$\frac{u^2}{\left(\sqrt{\frac{2}{3}}r\right)^2} + \frac{v^2}{\left(\sqrt{2}r\right)^2} = 1.$$

Rezultă parametrizarea:

$$u(t) = x(t) - y(t) = \sqrt{\frac{2}{3}} r \cos t,$$

$$v(t) = x(t) + y(t) = \sqrt{2} r \sin t,$$

$$z(t) = y(t) - x(t) = -\sqrt{\frac{2}{3}} r \cos t, t \in [0, 2\pi).$$

Se obtine:

$$x(t) = \frac{1}{2} r \left( \sqrt{\frac{2}{3}} \cos t + \sqrt{2} \sin t \right),$$
  
$$y(t) = \frac{1}{2} r \left( \sqrt{2} \sin t - \sqrt{\frac{2}{3}} \cos t \right),$$
  
$$z(t) = -\sqrt{\frac{2}{3}} r \cos t, t \in [0, 2\pi).$$

În continuare se aplică definiția.

**d.** Ecuația canonică a cilindrului este  $(x-1)^2 + y^2 = 1$  și deci

$$x(t) - 1 = \cos t, \ y(t) = \sin t, \ z(t) = 3 - \cos t, \ t \in [0, 2\pi).$$

În continuare se aplică definiția.

6. Să se calculeze  $\int_{\Gamma} y dx + x dy$  pe un drum cu capetele A(2,1) și B(1,3). Soluție

Forma diferențială  $\alpha = ydx + xdy$  este închisă pe  $R^2$  și deci este exactă. Rezultă că integrala este independentă de drumul particular care unește punctele A și B. Integrala se calculează pe un drum particular, de exemplu pe segmentul [AB], a cărui parametrizare este:

$$x(t) = \frac{5-t}{2}, y(t) = t, t \in [1,3].$$

O altă metodă constă în a determina un potențial scalar f pentru 1-forma diferențială  $\alpha$ :

$$f(x,y) = \int_{x_0}^{x} y_0 dx + \int_{y_0}^{y} x dy = xy + k,$$

k fiind o constantă arbitrară. Integrala cerută în enunț este:

$$\int_{\Gamma} \alpha = f(B) - f(A) = 1,$$

 $\Gamma$  fiind un drum arbitrar având capetele A și B.

7. Fie 
$$P,Q,R:\Omega=\{(x,y,z)\,;\,y>0,z\geq 0\}\mapsto R,$$
 
$$P(x,y,z)=x^2-yz+\frac{y}{x^2+y^2},$$
 
$$Q(x,y,z)=y^2-zx-\frac{x}{x^2+y^2},$$
 
$$R(x,y,z)=z^2-xy.$$

Notând cu  $\omega = Pdx + Qdy + Rdz$ , să se calculeze  $\int_{\Gamma} \omega$ , unde  $\Gamma$  este un drum parametrizat arbitrar (inclus în  $\Omega$ ) ce unește punctele A(1,1,0) și B(-1,1,0).

#### Soluție

Observăm că  $\omega$  este o 1-formă diferențială închisă:

$$\frac{\partial P}{\partial y} = \frac{x^2 - y^2}{(x^2 + y^2)^2} - z = \frac{\partial Q}{\partial x},$$
$$\frac{\partial R}{\partial x} = -y = \frac{\partial P}{\partial z},$$
$$\frac{\partial Q}{\partial z} = -x = \frac{\partial R}{\partial y}.$$

Domeniul  $\Omega$  este stelat, așadar  $\omega$  este exactă pe  $\Omega$ . Rezultă că  $\int_{\Gamma} \omega$  nu depinde de drumul parametrizat  $\Gamma$ , ci doar de extremitățile A și B și de

orientare (de la A către B).

Fie parametrizarea  $x(t)=-t,\,y(t)=1,\,z(t)=0,\,t\in[-1,1];$  obținem:

$$\int_{\Gamma} \omega = -\int_{-1}^{1} \left( t^2 + \frac{1}{t^2 + 1} \right) dt = -\frac{2}{3} - \frac{\pi}{2}.$$

Să mai facem observația că raționamentul de mai sus nu mai este corect dacă drumul nu ar fi inclus în  $\Omega$ , deoarece, pe un astfel de domeniu  $\omega$  nu ar mai fi exactă și deci integrala nu ar mai fi independentă de drum.

De exemplu, să considerăm punctele C(1,-1,0), D(-1,-1,0) și drumul  $\Gamma_1$  format prin concatenarea segmentelor (orientate)  $[AC] \cup [CD] \cup [DB]$ .

Atunci  $\int_{\Gamma_1} \omega \neq \int_{\Gamma} \omega$ . Într-adevăr, cu parametrizarea:

$$[AC]: x(t) = 1, y(t) = -t, z(t) = 0, t \in [-1, 1],$$

$$[CD]: x(t) - t, y(t) = -1, z(t) = 0, t \in [-1, 1],$$

$$[DB]: x(t) = -1, y(t) = t, z(t) = 0, t \in [-1, 1].$$

se obține:

254

$$\int_{\Gamma_1} \omega = \frac{\pi}{2} - \frac{2}{3} + \frac{\pi}{2} - \frac{2}{3} + \frac{\pi}{2} + \frac{2}{3} = -\frac{2}{3} + 3\frac{\pi}{2}.$$

**8.** Fie 
$$P, Q: R^2 \setminus \{(x,y) \mid xy = -1\} \mapsto R$$
,

$$P(x,y) = \frac{y}{1+xy}, \ Q(x,y) = \frac{x}{1+xy}$$

şi fie  $\alpha = Pdx + Qdy$ . Să se calculeze integrala  $\int_{\Gamma} \alpha$ , unde  $\Gamma$  este un drum arbitrar având capetele A(-1,-1) şi B(3,3) şi nu intersectează hiperbola xy = -1.

# Soluţie

Forma diferențială  $\alpha$  este închisă:

$$\frac{\partial P}{\partial y} = \frac{1}{(1+xy)^2} = \frac{\partial Q}{\partial x}, \forall (x,y) \in \mathbb{R}^2, xy \neq -1.$$

Mulţimea  $\Omega=\{(x,y)\in R^2\mid xy>-1\}$  este stelată, deci pe  $\Omega$   $\alpha$  este exactă. Rezultă că integrala este independentă de drumul particular (inclus în  $\Omega$ ) care unește punctele A și B. Un potențial scalar pentru  $\alpha$  pe mulţimea  $\Omega$  este:

$$f(x,y) = \int_{x_0}^{x} \frac{y_0}{1+xy_0} dx + \int_{y_0}^{y} \frac{x}{1+xy} dy = \ln(1+xy) + k, xy > -1,$$

și deci integrala este:

$$\int_{\Gamma} \alpha = f(B) - f(A) = \ln 5.$$

9. Să se calculeze circulația câmpului de vectori  $\overline{V}$  de-a lungul curbei  $\Gamma$ în următoarele cazuri:

a. 
$$\overline{V} = -(x^2 + y^2)\overline{i} - (x^2 - y^2)\overline{j}$$
,  
 $\Gamma = \{(x, y) \in R^2; x^2 + y^2 = 4, \ y < 0\} \cup \{(x, y) \in R^2; x^2 + y^2 - 2x = 0, y \ge 0\}$ .  
b.  $\overline{V} = x\overline{i} + xy\overline{j} + xyz\overline{k}$ ,  
 $\Gamma = \{(x, y, z) \in R^3; x^2 + y^2 = 1\} \cap \{(x, y, z) \in R^3; x + z = 3\}$ .

# Solutie

Câmpului de vectori  $\overline{V} = P\overline{i} + Q\overline{j} + R\overline{k}$  i se asociază, prin definiție, 1-forma diferențială  $\omega = Pdx + Qdy + Rdz$ ; circulația lui  $\overline{V}$  de-a lungul lui  $\Gamma$  este, prin definiție integrala curbilinie:  $\int_{\Gamma} \overline{V} d\overline{r} = \int_{\Gamma} \omega$ .

a. Notăm:

$$\Gamma_1 = \{(x, y) \in R^2; x^2 + y^2 = 4, \ y < 0\},$$
  
$$\Gamma_2 = \{(x, y) \in R^2; x^2 + y^2 - 2x = 0, \ y \ge 0\}.$$

O parametrizare (în sens trigonometric pozitiv) pentru  $\Gamma$  se obține astfel:

$$\Gamma_1 : x(t) = 2\cos t, \ y(t) = 2\sin t, \ t \in [\pi, 2\pi),$$

$$\Gamma_2 : x(t) = 1 + \cos t, \ y(t) = \sin t, \ t \in [0, \pi].$$

- **b.** Parametrizarea este:  $x(t) = \cos t$ ,  $y(t) = \sin t$ ,  $z(t) = 3 \cos t$ ,  $t \in [0, 2\pi)$ .

10. Să se calculeze următoarele integrale curbilinii de prima speță: a. 
$$\int_{\Gamma} y ds, \ \Gamma: x(t) = \ln(\sin t) - \sin^2 t, \ y(t) = \frac{1}{2} \sin 2t, \ t \in [\frac{\pi}{6}, \frac{\pi}{4}].$$
 b. 
$$\int_{\Gamma} xy ds, \ \Gamma: x(t) = |t|, \ y(t) = \sqrt{1-t^2}, \ t \in [-1,1].$$
 c. 
$$\int_{\Gamma} |x-y|, \ \Gamma: x(t) = |\cos t|, \ y(t) = \sin t, \ t \in [0,\pi].$$

a. Cu definiția, obținem:

$$\int_{\Gamma} y ds = \int_{\frac{\pi}{6}}^{\frac{\pi}{4}} \frac{1}{2} \sin 2t \sqrt{(\operatorname{ctg}t - \sin 2t)^2 + \cos^2 2t} \, dt =$$

$$= \int_{\frac{\pi}{6}}^{\frac{\pi}{4}} (2 \cos^2 t - 1) \sin t \, dt = \frac{\sqrt{2}}{3} - \frac{5}{12}.$$

**b.** Integrala se descompune într-o sumă de două integrale:

$$\int_{\Gamma} xy ds = \int_{-1}^{0} -t dt + \int_{0}^{1} t dt = 1.$$

c. Aplicând definiția, obținem:

$$\int_{\Gamma} |x - y| \ ds = \int_{0}^{\pi} ||\cos t| - \sin t| \ dt = 4(\sqrt{2} - 1).$$

11. Să se calculeze lungimea L a arcului de parabolă

$$x = \frac{p}{2} - \frac{y^2}{2p}, y \in [-p, p].$$

## Solutie

256

Cu parametrizarea

$$y(t) = t, x(t) = \frac{p}{2} - \frac{t^2}{2p}, t \in [-p, p],$$

avem:

$$\begin{split} L &= \int_{\Gamma} ds = \int_{-p}^{p} \sqrt{1 + \frac{t^2}{p^2}} dt = \frac{2}{p} \int_{0}^{p} \sqrt{t^2 + p^2} \, dt = \\ &= \frac{2}{p} \int_{0}^{p} \frac{t^2 + p^2}{\sqrt{t^2 + p^2}} \, dt = 2p \int_{0}^{p} \frac{dt}{\sqrt{t^2 + p^2}} + \frac{2}{p} \int_{0}^{p} \frac{t^2}{\sqrt{t^2 + p^2}} \, dt = \\ &= 4p \ln \left( 1 + \sqrt{2} \right) + \frac{2}{p} \int_{0}^{p} t \cdot \frac{t}{\sqrt{t^2 + p^2}} \, dt = \\ &= 4p \ln \left( 1 + \sqrt{2} \right) + \frac{2}{p} \left( t \sqrt{t^2 + p^2} \big|_{0}^{p} - \int_{0}^{p} \sqrt{t^2 + p^2} \, dt \right). \end{split}$$

Rezultă:

$$L = p\left(\sqrt{2} + 2\ln(1+\sqrt{2})\right).$$

12. Să se calculeze coordonatele centrului de greutate al unui arc de cerc de rază R și de măsură  $\alpha \in (0, \pi)$ , presupus omogen.

#### Soluție

Coordonatele centrului de greutate G ale unei curbe plane  $\Gamma$  omogene sunt:

$$x_G = \frac{1}{L} \int_{\Gamma} x ds, \ y_G = \frac{1}{L} \int_{\Gamma} ds,$$

unde L este lungimea firului. Considerăm originea axelor de coordonate în centrul cercului și fie A și B două puncte simetrice față de axa Ox cu măsura

arcului AB egală cu  $\alpha$ .

Cu parametrizarea  $x(t)=R\cos t,\,y(t)=R\sin t,\,t\in(-\frac{\alpha}{2},\frac{\alpha}{2}),$  obținem:

$$x_G = \frac{1}{\alpha} \int_{-\frac{\alpha}{2}}^{\frac{\alpha}{2}} R \cos t dt = \frac{2R}{\alpha} \sin \frac{\alpha}{2}, \ y_G = 0.$$

13. Să se calculeze masa firului material  $\Gamma$  de ecuații parametrice:

$$x(t) = t, y(t) = \frac{1}{2}t^2, z(t) = \frac{1}{3}t^3, t \in [0, 1],$$

și având densitatea  $F(x, y, z) = \sqrt{2y}$ .

# Soluţie

Conform formulei masei:

$$\begin{split} \mathbf{M} &= \int_{\Gamma} F(x,y,z) ds = \int_{\Gamma} \sqrt{2y} \, ds = \int_{0}^{1} \sqrt{t^{2} \left(1 + t^{2} + t^{4}\right)} \, dt = \\ &= \int_{0}^{1} t \sqrt{1 + t^{2} + t^{4}} \, dt = \int_{0}^{1} t \sqrt{\left(t^{2} + \frac{1}{2}\right)^{2} + \frac{3}{4}} \, dt = \\ &= \frac{1}{2} \int_{\frac{1}{2}}^{\frac{3}{2}} \sqrt{u^{2} + \frac{3}{4}} \, du = \\ &= \frac{1}{2} \int_{\frac{1}{2}}^{\frac{3}{2}} \frac{u^{2} + \frac{3}{4}}{\sqrt{u^{2} + \frac{3}{4}}} \, du = \frac{3}{8} \int_{\frac{1}{2}}^{\frac{3}{2}} \frac{du}{\sqrt{u^{2} + \frac{3}{4}}} + \frac{1}{2} \int_{\frac{1}{2}}^{\frac{3}{2}} \frac{u^{2}}{\sqrt{u^{2} + \frac{3}{4}}} \, du = \\ &= \frac{3}{8} \ln \left( u + \sqrt{u^{2} + \frac{3}{4}} \right) \Big|_{\frac{1}{2}}^{\frac{3}{2}} + \frac{1}{2} u \sqrt{u^{2} + \frac{3}{4}} \Big|_{\frac{1}{2}}^{\frac{3}{2}} - \frac{1}{2} \int_{\frac{1}{2}}^{\frac{3}{2}} \sqrt{u^{2} + \frac{3}{4}} \, du. \end{split}$$

Ultima integrală este M, deci (după calcule) se obține:

$$M = \frac{3}{8} \ln \frac{3 + 2\sqrt{3}}{3} + \frac{1}{4} \left( 3\sqrt{3} - 1 \right).$$

14. Să se calculeze masa și coordonatele centrului de greutate ale firului material  $\Gamma$  cu parametrizarea:

$$x(t) = t, y(t) = \text{ch}t, t \in [0, 1]$$

258

și densitatea f(x,y) = y.

# Soluţie

Masa firului este:

$$M = \int_{\Gamma} y ds = \int_{0}^{1} \operatorname{ch} t \sqrt{1 + \operatorname{sh}^{2} t} dt = \int_{0}^{1} \operatorname{ch}^{2} t dt =$$

$$= \frac{1}{2} \int_{0}^{1} (1 + \operatorname{ch} 2t) dt = \frac{1}{2} \left( t + \frac{1}{2} \operatorname{sh} 2t \right) \Big|_{0}^{1} = \frac{1}{4} (2 + \operatorname{sh} 2).$$

Coordonatele centrului de greutate:

$$x_G = \frac{1}{M} \int_0^1 t \, \mathrm{ch}^2 t dt = \frac{1}{2M} \int_0^1 (t + t \, \mathrm{ch} 2t) \, dt =$$

$$= \frac{1}{2M} \left( \frac{t^2}{2} \Big|_0^1 + \frac{1}{2} t \, \mathrm{sh} 2t \Big|_0^1 - \frac{1}{2} \int_0^1 \mathrm{sh} 2t dt \right) = \frac{1}{8M} \left( 3 + 2 \, \mathrm{sh} 2 - \mathrm{ch} 2 \right).$$

$$y_G = \frac{1}{M} \int_0 \mathrm{ch}^3 t dt = \frac{1}{M} \int_0^1 \left( 1 + \mathrm{sh}^2 t \right) \, \mathrm{sh} t dt =$$

$$= \frac{1}{M} \left( \mathrm{sh} t + \frac{1}{3} \mathrm{sh}^3 t \right) \Big|_0^1 = \frac{1}{M} \left( \mathrm{sh} 1 + \frac{1}{3} \mathrm{sh}^3 1 \right).$$

# 8.3 Integrale de suprafață

**15.** În fiecare din exemplele următoare se dă o pânză parametrizată  $D \ni (u,v) \mapsto \Phi(u,v) = (X(u,v),Y(u,v),Z(u,v)) \in \mathbb{R}^3$ . Să se calculeze vectorii tangenți la suprafață și versorul normalei la suprafață.

Să se găsească în fiecare caz și ecuația în coordonate carteziene.

**a.** Sfera; fie R > 0;  $\Phi : [0, \pi] \times [0, 2\pi) \mapsto R^3$ ,

$$\Phi(\theta, \varphi) = (R \sin \theta \cos \varphi, R \sin \theta \sin \varphi, R \cos \theta).$$

**b.** Paraboloidul; fie a > 0, h > 0;  $\Phi : [0, h] \times [0, 2\pi) \mapsto R^3$ ,

$$\Phi(u, v) = (au\cos v, au\sin v, u^2).$$

**c.** Elipsoidul; fie a > 0, b > 0, c > 0;  $\Phi : [0, \pi] \times [0, 2\pi) \mapsto R^3$ ,

$$\Phi(\theta, \varphi) = (a \sin \theta \cos \varphi, b \sin \theta \sin \varphi, c \cos \theta).$$

# 8.3. INTEGRALE DE SUPRAFAȚĂ

259

**d.** Conul; fie h > 0;  $\Phi : [0, 2\pi) \times [0, h] \mapsto R^3$ ,

$$\Phi(u, v) = (v \cos u, v \sin u, v).$$

**e.** Cilindrul; fie  $a > 0, 0 \le h_1 \le h_2$ ;  $\Phi : [0, 2\pi) \times [h_1, h_2] \mapsto R^3$ ,

$$\Phi(\varphi, z) = (a\cos\varphi, a\sin\varphi, z).$$

**f.** Parametrizare carteziană; fie  $D \subset R^2$  și fie  $f: D \mapsto R, f \in \mathcal{C}^1(D)$ .

$$\Phi: D \mapsto R^3, \ \Phi(x,y) = (x, y, f(x,y)).$$

g. Suprafață de rotație în jurul axei Oz:

Fie  $0 < r_1 < r_2$  şi fie  $f : [r_1, r_2] \mapsto R, f \in C^1(D)$ .

$$\Phi: [r_1, r_2] \times [0, 2\pi) \mapsto R^3, \ \Phi(r, \varphi) = (r \cos \varphi, r \sin \varphi, f(r)).$$

**h.** Torul; fie 0 < a < b;  $\Phi : [0, 2\pi) \times [0, 2\pi) \mapsto R^3$ ,

$$\Phi(u,v) = ((a+b\cos u)\cos v, (a+b\cos u)\sin v, b\sin u).$$

# Soluție

Vectorii tangenţi la suprafaţă sunt  $\frac{\partial \Phi}{\partial u}$  şi  $\frac{\partial \Phi}{\partial v}$ , iar versorul normalei este

$$\frac{1}{\|\frac{\partial \Phi}{\partial u} \times \frac{\partial \Phi}{\partial v}\|} \frac{\partial \Phi}{\partial u} \times \frac{\partial \Phi}{\partial v}.$$

**16.** În continuare,  $\omega = Pdy \wedge dz + Qdz \wedge dx + Rdx \wedge dy$  este o 2-formă diferențială iar  $\Sigma$  este imaginea unei pânze parametrizate; să se calculeze integrala de suprafață  $\int_{\Sigma} \omega$ .

**a.**  $\omega = ydy \wedge dz + zdz \wedge dx + xdx \wedge dy$ ,

 $\Sigma: X(u,v) = u\cos v, Y(u,v) = u\sin v, Z(u,v) = cv,$ 

 $(u,v) \in [a,b] \times [0,2\pi).$ 

**b.**  $\omega = xdy \wedge dz + ydz \wedge dx + zdx \wedge dy$ ,  $\Sigma : x^2 + y^2 + z^2 = R^2$ .

c.  $\omega = yzdy \wedge dz + zxdz \wedge dx + xydx \wedge dy$ ,  $\Sigma : \frac{x^2}{a^2} + \frac{y^2}{b^2} + \frac{z^2}{c^2} = 1.$ d.  $\omega = xdy \wedge dz + ydz \wedge dx$ ,  $\Sigma : x^2 + y^2 = z^2, z \in [1, 2].$ 

e.  $\omega = (y+z)dy \wedge dz + (x+y)dx \wedge dy$ ,  $\Sigma : x^2 + y^2 = a^2, z \in [0,1]$ .

#### Soluție

Aplicăm definiția integralei de suprafață de speța a doua.

a. Iacobienii:

$$\frac{D(Y,Z)}{D(u,v)} = c\sin v, \ \frac{D(Z,X)}{D(u,v)} = -c\cos v, \ \frac{D(X,Y)}{D(u,v)} = u,$$

și deci:

$$\int_{\Sigma} \omega = \int_a^b du \int_0^{2\pi} \left( cu \sin^2 v - c^2 v \cos v + u^2 \cos v \right) dv = \frac{1}{2} \pi c \left( b^2 - a^2 \right)$$

**b.** Parametrizăm sfera de centru O și rază R:

 $X(\theta,\varphi)=R\sin\theta\cos\varphi,\,Y(\theta,\varphi)=R\sin\theta\sin\varphi,\,Z(\theta,\varphi)=R\cos\theta,$ domeniul parametrizării  $(\theta,\varphi)\in D=[0,\pi]\times[0,2\pi).$ 

$$\frac{D(Y,Z)}{D(\theta,\varphi)} = R^2 \sin^2 \theta \cos \varphi,$$
$$\frac{D(Z,X)}{D(\theta,\varphi)} = R^2 \sin^2 \theta \sin \varphi,$$
$$\frac{D(X,Y)}{D(\theta,\varphi)} = R^2 \sin \theta \cos \theta$$

Rezultă  $\int_{\Sigma} \omega = 4\pi R^3$ .

c. Parametrizarea canonică a elipsoidului este:

$$X(\theta,\varphi) = aR\sin\theta\cos\varphi, Y(\theta,\varphi) = bR\sin\theta\sin\varphi, Z(\theta,\varphi) = cR\cos\theta,$$
$$\theta \in [0,\pi], \ \varphi \in [0,2\pi).$$

În continuare calculul este asemănător cu cel de la punctul anterior.

d. Parametrizarea canonică a conului este:

$$X(u, v) = v \cos u, \ Y(u, v) = v \sin u, \ Z(u, v) = v,$$
  
 $(u, v) \in D = [0, 2\pi) \times [1, 2].$ 

Iacobienii:

$$\frac{D(Y,Z)}{D(u,v)} = v \cos u, \ \frac{D(Z,X)}{D(u,v)} = v \sin u, \ \frac{D(X,Y)}{D(u,v)} = -v.$$

261

Rezultă integrala:

$$\int_{\Sigma} \omega = \int \int_{D} \left( v^2 \cos^2 u + v^2 \sin^2 u \right) du dv = \frac{14}{3} \pi.$$

e. Parametrizarea canonică a cilindrului este:  $(\varphi, z) \in D = [0, 2\pi) \times [0, 1],$ 

$$X(\varphi, z) = a\cos\varphi, \ Y(\varphi, z) = a\sin\varphi, \ Z(\varphi, z) = z,.$$

Iacobienii:

$$\frac{D(Y,Z)}{D(\varphi,z)} = a\cos\varphi, \ \frac{D(Z,X)}{D(\varphi,z)} = a\sin\varphi, \ \frac{D(X,Y)}{D(\varphi,z)} = 0.$$

Rezultă integrala:

$$\int_{\Sigma} \omega = \int \int_{D} (a \sin \varphi + z) \ a \cos \varphi \ d\varphi dz = 0.$$

17. Să se calculeze integralele de suprafață:

**a.** 
$$\int_{\Sigma} xz dy \wedge dz + yz dz \wedge dx + (x+y) dx \wedge dy,$$
$$\Sigma = \{(x, y, z); x^2 + y^2 = a^2, x > 0, y > 0, 0 < z < h\}.$$

$$\Sigma = \{(x, y, z); x^2 + y^2 = a^2, x > 0, y > 0, 0 < z < h\}.$$

**b.** 
$$\int_{\Sigma} x dy \wedge dz + y dz \wedge dx + z dx \wedge dy$$

**b.** 
$$\int_{\Sigma} x dy \wedge dz + y dz \wedge dx + z dx \wedge dy,$$
$$\Sigma = \{(x, y, z); x^2 + y^2 + z^2 = R^2, x > 0, y > 0, z > 0\}.$$

a. Parametrizarea lui  $\Sigma$  (o submultime a unui cilindru) este:

$$X(\varphi, z) = a\cos\varphi, Y(\varphi, z) = a\sin\varphi, Z(\varphi, z) = z,$$

domeniul parametrizării fiind  $(\varphi, z) \in D = (0, \frac{\pi}{2}) \times (0, h)$ . Rezultă:

$$\int_{\Sigma} xzdy \wedge dz + yzdz \wedge dx + (x+y)dx \wedge dy = \int_{D} a^{2}zd\varphi dz = \frac{a^{2}h^{2}}{4}\pi.$$

**b.** Portiunea de sferă  $\Sigma$  are parametrizarea:

$$X(\theta, \varphi) = R \sin \theta \cos \varphi, Y(\theta, \varphi) = R \sin \theta \sin \varphi, Z(\theta, \varphi) = R \cos \theta,$$

domeniul parametrizării  $(\theta, \varphi) \in D = [0, \frac{\pi}{2}] \times [0, \frac{\pi}{2}).$ 

În continuare calculul este similar cu cel din exercițiul anterior (punctul b).

18. Să se calculeze integrala de suprafață de prima speță

$$\int_{\Sigma} F(x, y, z) d\sigma$$

în următoarele cazuri:

**a.** 
$$F(x,y,z) = |xyz|, \Sigma : z^2 = x^2 + y^2, z \in [0,1].$$

**a.** 
$$F(x,y,z) = |xyz|, \Sigma: z^2 = x^2 + y^2, z \in [0,1].$$
  
**b.**  $F(x,y,z) = y\sqrt{z}, \Sigma: x^2 + y^2 = 6z, z \in [0,2].$ 

**c.** 
$$F(x,y,z) = z^2$$
,  $\Sigma = \{(x,y,z); z = \sqrt{x^2 + y^2}, x^2 + y^2 - 6y \le 0.\}$ .

# Soluție

Se aplică definiția integralei de suprafață de prima speță.

a. Parametrizarea carteziană a conului este:

$$z = f(x,y) = \sqrt{x^2 + y^2}, D = \{(x,y); x^2 + y^2 \le 1\}.$$

Rezultă:

$$\begin{split} \int_{\Sigma} |xyz| d\sigma &= \int \int_{D} |xy| \sqrt{x^2 + y^2} \sqrt{1 + \frac{x^2}{x^2 + y^2} + \frac{y^2}{x^2 + y^2}} dx dy = \\ &= \sqrt{2} \int \int_{D} |xy| \sqrt{x^2 + y^2} dx dy = \frac{4\sqrt{2}}{5}. \end{split}$$

b. Parametrizarea carteziană a paraboloidului este:

$$z = f(x,y) = \frac{1}{6}(x^2 + y^2), D = \{(x,y) \in \mathbb{R}^2 \mid x^2 + y^2 \le 12\}.$$

Rezultă:

$$\int_{\Sigma} y \sqrt{z} d\sigma = \int \int_{D} y \sqrt{\frac{1}{6} (x^{2} + y^{2})} \sqrt{1 + \frac{1}{9} (x^{2} + y^{2})} dx dy =$$

$$= \frac{1}{\sqrt{6}} \int_{0}^{2\pi} d\varphi \int_{0}^{\sqrt{12}} \rho^{3} \sqrt{1 + \frac{\rho^{2}}{9}} \sin \varphi = 0.$$

c. Cu parametrizarea carteziană

$$z = \sqrt{x^2 + y^2}, \ (x, y) \in D = \{(x, y) \mid x^2 + y^2 \le 6y\}.$$

rezultă:

$$\begin{split} &\int_{\Sigma} z^2 d\sigma = \int \int_{D} (x^2 + y^2) dx dy = \\ &= \int_{0}^{\pi} d\varphi \int_{0}^{6\sin\varphi} \rho^3 d\rho = \frac{243}{2}\pi. \end{split}$$

# 8.3. INTEGRALE DE SUPRAFAȚĂ

263

19. Să se calculeze ariile suprafețelor:

**a.** sfera de rază R.

**b.** conul  $z^2 = x^2 + y^2$ ,  $z \in [0, h]$ . **c.** paraboloidul  $z = x^2 + y^2$ ,  $z \in [0, h]$ .

## Soluții

a. Parametrizarea canonică a sferei este:

$$X(\theta, \varphi) = R \sin \theta \cos \varphi, Y(\theta, \varphi) = R \sin \theta \sin \varphi, Z(\theta, \varphi) = R \cos \theta,$$

domeniul parametrizării  $(\theta, \varphi) \in D = [0, \pi] \times [0, 2\pi)$ . Notând  $\Phi(\theta, \varphi) = (X(\theta, \varphi), Y(\theta, \varphi), Z(\theta, \varphi))$ , rezultă:

$$\frac{\partial \Phi}{\partial \theta} \times \frac{\partial \Phi}{\partial \varphi} =$$

 $= (R\cos\theta\cos\varphi, R\cos\theta\sin\varphi, -R\sin\theta) \times (-R\sin\theta\sin\varphi, R\sin\theta\cos\varphi, 0) =$  $= \left( R^2 \sin^2 \theta \cos \varphi, R^2 \sin^2 \theta \sin \varphi, R^2 \sin \theta \cos \theta \right).$ 

Elementul de suprafață este:

$$\parallel \frac{\partial \Phi}{\partial \theta} \times \frac{\partial \Phi}{\partial \varphi} \parallel = R^2 \sin \theta.$$

Rezultă aria sferei  $S_R$ 

$$\int_{S_R} d\sigma = \int \int_D r^2 \sin\theta \, d\theta d\varphi = 4\pi R^2.$$

**b.** Parametrizarea carteziană a conului este:

$$z = \sqrt{x^2 + y^2}, (x, y) \in D = \{(x, y) \in \mathbb{R}^2 \mid x^2 + y^2 \le h^2\}.$$

Rezultă aria conului  $C_h$ :

$$\int_{C_h} d\sigma = \int \int_D \sqrt{2} dx dy = \sqrt{2}\pi h^2.$$

c. Parametrizarea carteziană a paraboloidului este:

$$z = x^2 + y^2, (x, y) \in D = \{(x, y) \in \mathbb{R}^2 \mid x^2 + y^2 \le h\}.$$

Rezultă aria paraboloidului  $P_h$ :

$$\int_{P_1} d\sigma = \int \int_{P_2} \sqrt{1 + 4x^2 + 4y^2} dx dy =$$

$$= \int_0^{2\pi} d\varphi \int_0^{\sqrt{h}} \rho \sqrt{1 + 4\rho^2} d\rho = \frac{\pi}{6} \left( \sqrt{(1 + 4h)^3} - 1 \right).$$

**20.** Să se calculeze aria  $\mathcal{A}$  a suprafeței  $\Sigma$  în următoarele cazuri:

**a.** 
$$\Sigma$$
:  $2z = 4 - x^2 - y^2$ ,  $z \in [0, 1]$ .

**b.**  $\Sigma$  este submulțimea de pe sfera  $x^2 + y^2 + z^2 = 1$ , situată în interiorul conului  $x^2 + y^2 = z^2$ .

c.  $\Sigma$  este submulțimea de pe sfera  $x^2 + y^2 + z^2 = R^2$ , situată în interiorul cilindrului  $x^2 + y^2 - Ry = 0$ .

**d.**  $\Sigma$  este submulțimea de pe paraboloidul  $z=x^2+y^2$  situată în interiorul cilindrului  $x^2 + y^2 = 2y$ .

**e.**  $\Sigma$  este torul.

# Soluție

Aria suprafeței  $\Sigma$  este  $\mathcal{A} = \int_{\Sigma} d\sigma$ .

a. 
$$A = \int \int_{D} \sqrt{1 + x^2 + y^2} dx dy$$
,  $D = \{(x, y); 2 \le x^2 + y^2 \le 4\}$ .  
b.  $A = 2 \int \int_{D} \frac{1}{\sqrt{1 - x^2 - y^2}} dx dy$ ,  $D = \{(x, y) \in R^2 \mid x^2 + y^2 \le \frac{1}{2}\}$ .  
c.  $A = 2 \int \int_{D} \frac{R}{\sqrt{R^2 - x^2 - y^2}} dx dy$ ,  $D = \{(x, y); x^2 + y^2 \le Ry\}$ .  
d.  $A = \int \int_{D} \sqrt{1 + 4x^2 + 4y^2} dx dy$ ,  $D = \{(x, y); x^2 + y^2 \le 2y\}$ .

**e.** 
$$\mathcal{A} = \int_{D}^{3D} \int_{D}^{3D} (a + b \cos u) du dv, D = [0, 2\pi] \times [0, 2\pi].$$

**21.** Să se calculeze fluxul câmpului de vectori  $\overline{V}$  prin suprafața  $\Sigma$  în următoarele cazuri:

a. 
$$\overline{V}=x\overline{i}+y\overline{j}+z\overline{k},\,\Sigma:\,z^2=x^2+y^2,z\in[0,1]$$

**b.** 
$$\overline{V} = y\overline{i} - x\overline{j} + z^2\overline{k}, \ \Sigma : z = x^2 + y^2, \ z \in [0, 1].$$

a. 
$$\overline{V} = x\overline{i} + y\overline{j} + z\overline{k}$$
,  $\Sigma : z^2 = x^2 + y^2$ ,  $z \in [0, 1]$ .  
b.  $\overline{V} = y\overline{i} - x\overline{j} + z^2\overline{k}$ ,  $\Sigma : z = x^2 + y^2$ ,  $z \in [0, 1]$ .  
c.  $\overline{V} = \frac{1}{\sqrt{x^2 + y^2}} \left( y\overline{i} - x\overline{j} + \overline{k} \right)$ ,  $\Sigma : z = 4 - x^2 - y^2$ ,  $z \in [0, 1]$ .

# Solutie

Fluxul câmpului de vectori  $\overline{V}$  prin suprafața  $\Sigma$  în raport cu normala  $\overline{n}$  este, prin definiție,  $\mathcal{F}_{\Sigma}(\overline{V}) = \int_{\Sigma} \overline{V} \overline{n} d\sigma$ ,  $\overline{n}$  fiind versorul normalei la suprafața  $\Sigma$ .

Dacă  $\Phi: D \mapsto R^3$  este o parametrizare a lui  $\Sigma$ , atunci fluxul este:

$$\mathcal{F}_{\Sigma}(\overline{V}) = \int_{\Sigma} \overline{V} \overline{n} d\sigma = \int \int_{D} (\overline{V} \circ \Phi) \left( \frac{\partial \Phi}{\partial u} \times \frac{\partial \Phi}{\partial v} \right) du dv =$$
$$= \int \int_{D} \left( \overline{V} \circ \Phi, \frac{\partial \Phi}{\partial u}, \frac{\partial \Phi}{\partial v} \right) du dv,$$

265

ultima paranteză fiind produsul mixt al vectorilor  $\overline{V} \circ \Phi$ ,  $\frac{\partial \Phi}{\partial u}$  și  $\frac{\partial \Phi}{\partial v}$ .

a. Considerând parametrizarea carteziană  $z = \sqrt{x^2 + y^2}$ , obținem

$$\overline{n} = \frac{1}{\sqrt{2(x^2 + y^2)}} \left( -x\overline{i} - y\overline{j} + \sqrt{x^2 + y^2}\overline{k} \right)$$

şi deci fluxul este 0 deoarece vectorii  $\overline{V}$  şi  $\overline{n}$  sunt ortogonali.

b. Considerând parametrizarea carteziană

$$z = x^2 + y^2$$
,  $D = \{(x, y); x^2 + y^2 \le 1\}$ ,

obtinem:

$$\mathcal{F}_{\Sigma}(\overline{V}) = \int \int_{D} (x^{2} + y^{2})^{2} dx dy = \int_{0}^{1} d\rho \int_{0}^{2\pi} \rho^{5} d\varphi = \frac{\pi}{3}.$$

c. Cu parametrizarea carteziană

$$z = 4 - x^2 - y^2$$
,  $D = \{(x, y); 3 \le x^2 + y^2 \le 4\}$ ,

obţinem:

$$\mathcal{F}_{\Sigma}(\overline{V}) = \int \int_{D} \frac{1}{\sqrt{x^2 + y^2}} dx dy = \int_{\sqrt{3}}^{2} d\rho \int_{0}^{2\pi} d\varphi = 2\pi (2 - \sqrt{3}).$$

**22.** Fie a < b două numere reale și  $f, g : [a, b] \mapsto R$  două funcții continue astfel încât  $f(t) \ge 0, \, \forall \, t \in [a, b]$ . Fie  $\Gamma$  o curbă (situată în planul y = 0) de parametrizare

$$x(t) = f(t), y(t) = 0, z(t) = g(t)$$

și fie  $\Sigma$  suprafața de rotație obținută prin rotirea curbei  $\Gamma$  în jurul axei Oz. Să se calculeze aria suprafeței  $\Sigma$ .

#### Soluție

Parametrizarea suprafeței  $\Sigma$  este

$$\Phi(u,v) = (f(u)\cos v, f(u)\sin v, g(u)), (u,v) \in [a,b] \times [0,2\pi]$$

și deci aria este:

$$\mathcal{A}(\Sigma) = \int_{\Sigma} d\sigma = \int_{0}^{2\pi} dv \int_{a}^{b} |f(u)| \sqrt{(f'(u))^{2} + (g'(u))^{2}} du =$$

$$= 2\pi \int_{a}^{b} f(u) \sqrt{(f'(u))^{2} + (g'(u))^{2}} du.$$

266

Abscisa centrului de greutate al curbei (omogene)  $\Gamma$  este

$$x_G = \frac{\int_{\Gamma} x ds}{\int_{\Gamma} ds} = \frac{1}{L} \int_a^b f(u) \sqrt{(f'(u))^2 + (g'(u))^2} du,$$

unde, L este lungimea lui  $\Gamma$ . Rezultă deci  $\mathcal{A}(\Sigma) = 2\pi Lx_G$ .

**23.** Să se calculeze masa şi coordonatele centrului de greutate ale unei semisfere  $\mathcal{S}$  de rază R şi având densitatea constantă c.

# Soluţie

Masa este dată de formula  $M = \int_{\mathcal{S}} cd\sigma$ , iar coordonatele centrului de greutate sunt:

$$x_G = \frac{1}{M} \int_{\mathcal{S}} cx \, d\sigma, \, y_G = \frac{1}{M} \int_{\mathcal{S}} cy d\sigma, \, z_G = \frac{1}{M} \int_{\mathcal{S}} cz d\sigma.$$

Considerând semisfera cu centrul în origine și situată în semiplanul z>0, parametrizarea este:

$$\begin{split} X(\theta,\varphi) &= R\sin\theta\,\cos\varphi,\\ Y(\theta,\varphi) &= R\sin\theta\,\cos\varphi,\\ Z(\theta,\varphi) &= R\cos\theta,\ (\theta,\varphi) \in\ [0,\frac{\pi}{2}] \times\ [0,2\pi]. \end{split}$$

Rezultă:

$$M = \int_{\mathcal{S}} c \, d\sigma = \int_0^{2\pi} d\varphi \int_0^{\frac{\pi}{2}} cR^2 \sin\theta \, d\theta = 2\pi R^2 c.$$

Din motive de simetrie (sau calcul direct) rezultă  $x_G = y_G = 0$ .

$$z_G = \frac{1}{M} \int_{\mathcal{S}} cz \, d\sigma = \frac{1}{M} \int_0^{2\pi} d\varphi \int_0^{\frac{\pi}{2}} cR^3 \sin\theta \, \cos\theta \, d\theta = \frac{R}{2}.$$

# Capitolul 9

# Formule integrale

# 9.1 Noțiuni teoretice

#### Formula Green-Riemann

Fie  $(K, \partial K)$  un compact cu bord orientat inclus în  $\mathbb{R}^2$  (orientarea pe  $\partial K$  este sensul trigonometric pozitiv) și fie

$$\alpha = Pdx + Qdy$$

o 1-formă diferențială de clasă  $\mathcal{C}^1$  pe o vecinătate a lui K; atunci:

$$\int_{\partial K} P dx + Q dy = \int \int_{K} \left( \frac{\partial Q}{\partial x} - \frac{\partial P}{\partial y} \right) dx dy.$$

Dacă  $\overline{V}=P\overline{i}+Q\overline{j}$  este câmpul vectorial asociat (în mod canonic) formei diferențiale  $\alpha$ , atunci formula se scrie sub forma:

$$\int_{\partial K} \overline{V} d\overline{r} = \int \int_K \left( \frac{\partial Q}{\partial x} - \frac{\partial P}{\partial y} \right) dx dy.$$

O consecință este următoarea formulă pentru arie (notațiile și orientarea pe bordul  $\partial K$  sunt cele de mai sus):

$$\operatorname{aria}(K) = \frac{1}{2} \int_{\partial K} x dy - y dx.$$

# Formula Gauss-Ostrogradski

Fie  $K \subset \mathbb{R}^3$  un compact cu bord orientat ( bordul  $\partial K$  orientat după normala exterioară). Atunci, pentru orice 2-formă diferențială

$$\omega = Pdy \wedge dz + Qdz \wedge dx + Rdx \wedge dy$$

de clasă  $\mathcal{C}^1$  pe o vecinătate a lui K, are loc egalitatea:

$$\int_{\partial K} P dy \wedge dz + Q dz \wedge dx + R dx \wedge dy = \int \int \int_{K} \left( \frac{\partial P}{\partial x} + \frac{\partial Q}{\partial y} + \frac{\partial R}{\partial z} \right) dx dy dz.$$

Dacă notăm cu  $\overline{V} = P\overline{i} + Q\overline{j} + R\overline{k}$  câmpul vectorial asociat (în mod canonic) 2-formei diferențiale  $\omega$ , atunci formula de mai sus se scrie:

$$\int_{\partial K} \overline{V} \overline{n} d\sigma = \int \int \int_{K} \operatorname{div}(\overline{V}) dx dy dz,$$

unde,  $\overline{n}$  este normala exterioară la  $\partial K$ , iar  $\operatorname{div}(\overline{V}) = \frac{\partial P}{\partial x} + \frac{\partial Q}{\partial y} + \frac{\partial R}{\partial z}$  este divergența lui  $\overline{V}$ . Observăm că membrul stâng este fluxul câmpului  $\overline{V}$  prin suprafața  $\partial K$ , de aceea formula Gauss-Ostrogradski se mai numește și formula flux-divergență.

#### Formula lui Stokes

Fie  $(\Sigma, \partial \Sigma)$  o suprafață bordată orientată (orientarea pe  $\Sigma$  este compatibilă cu orientarea pe bordul  $\partial \Sigma$ ) și fie  $\alpha = Pdx + Qdy + Rdz$  o 1-formă diferențială de clasă  $\mathcal{C}^1$  pe o vecinătate a lui  $\Sigma$ ; atunci:

$$\int_{\partial \Sigma} P dx + Q dy + R dz =$$

$$= \int_{\Sigma} \left( \frac{\partial R}{\partial y} - \frac{\partial Q}{\partial z} \right) dy \wedge dz + \left( \frac{\partial P}{\partial z} - \frac{\partial R}{\partial x} \right) dz \wedge dx + \left( \frac{\partial Q}{\partial x} - \frac{\partial P}{\partial y} \right) dx \wedge dy.$$

Dacă  $\overline{V}=P\overline{i}+Q\overline{j}+R\overline{k}$  este câmpul vectorial asociat (în mod canonic) formei diferențiale  $\alpha$ , atunci formula lui Stokes se scrie:

$$\int_{\partial \Sigma} \overline{V} d\overline{r} = \int_{\Sigma} (\operatorname{rot} \overline{V}) \, \overline{n} \, d\sigma,$$

orientările pe curba (închisă)  $\partial \Sigma$  și pe suprafața  $\Sigma$  fiind compatibile.

În exercițiile care urmează, se subînțelege, atunci când este cazul, că orientările pe curbe și suprafețe sunt compatibile, adică sunt îndeplinite ipotezele formulelor de mai sus.

# 9.2 Formula Green-Riemann

1. Să se calculeze direct și aplicând formula Green-Riemann integrala curbilinie  $\int_{\Gamma} \alpha$  în următoarele cazuri:

**a.**  $\alpha = y^2 dx + x dy$ ,

 $\Gamma$  este pătratul cu vârfurile A(0,0), B(2,0), C(2,2), D(0,2).

**b.**  $\alpha = ydx + x^2dy$ , Γ este cercul cu centrul în origine și de rază 2.

**c.**  $\alpha = ydx - xdy$ ,  $\Gamma$  este elipsa de semiaxe a și b și de centru O.

# Soluţie

Calculul direct al integralelor îl lăsăm ca exercițiu. Calculăm integralele aplicând formula Green-Riemann; notăm cu K compactul mărginit de  $\Gamma$ .

a. Compactul K este interiorul pătratului:

$$\int y^2 dx + x dy = \int \int_K (1 - 2y) dx dy = \int_0^2 dx \int_0^2 (1 - 2y) dy = -4.$$

**b.** Compactul K este discul de centru O și rază 2; pentru calculul integralei duble folosim coordonatele polare  $(\rho, \varphi)$ :

$$\int_{\Gamma} y dx + x^2 dy = \int \int_{K} (2x - 1) dx dy = \int_{0}^{2} d\rho \int_{0}^{2\pi} (2\rho \cos \varphi - 1) \rho d\varphi = -4\pi.$$

 $\mathbf{c}$ . Compactul K este interiorul elipsei; pentru calculul integralei duble folosim coordonatele polare generalizate:

$$\int_{\Gamma} y dx - x dy = \int \int_{K} 2 dx dy = \int_{0}^{1} d\rho \int_{0}^{2\pi} 2ab\rho d\varphi = 2\pi ab.$$

**2.** Fie 
$$\alpha = \frac{-y}{x^2 + y^2} dx + \frac{x}{x^2 + y^2} dy$$
.

a. Să se calculeze integrala curbilinie  $\int_{\mathcal{C}(O,R)} \alpha$ , unde, am notat cu  $\mathcal{C}(O,R)$  cercul de centru O și rază R>0.

**b.** Să se calculeze  $\int_{\Gamma} \alpha$ , unde, Γ este o curbă arbitrară închisă astfel încât  $O \notin \Gamma$ .

#### Solutie

a. Să observăm, mai întâi că  $\alpha \in \mathcal{C}^1(R^2 \setminus \{O\})$ , deci pentru calculul integralei de la punctul a nu se poate aplica formula Green-Riemann. Folosim definiția integralei curbilinii; parametrizăm cercul:

$$x(t) = R\cos t, \, y(t) = R\sin t, \, t \in [0, 2\pi)$$

și obținem:

$$\int_{\mathcal{C}(O,R)} \alpha = \int_0^{2\pi} dt = 2\pi.$$

**b.** Notăm cu K compactul mărginit de curba  $\Gamma$ . Distingem două cazuri: dacă  $O \notin K$  (se poate aplica formula Green-Riemann) sau dacă  $O \in K$  (nu se poate aplica formula Green-Riemann).

Presupunem mai întâi că  $O \notin K$ ; atunci:

$$\int_{\Gamma} \alpha = \int \int_{K} \left( \frac{\partial}{\partial x} \left( \frac{x}{x^2 + y^2} \right) - \frac{\partial}{\partial y} \left( -\frac{y}{x^2 + y^2} \right) \right) dx dy = 0.$$

Presupunem acum că  $O \in K$ ; fie R > 0 astfel încât  $\mathcal{C}(O, R)$  este inclus în interiorul lui K. Notăm cu D(O, R) discul deschis de centru O și rază R. Fie A compactul  $A = K \setminus D(O, R)$ . Bordul orientat al lui A este reuniunea  $\partial A = \Gamma \cup \mathcal{C}(O, R)$ , sensul pe cerc fiind sensul trigonometric negativ. Deoarece  $O \notin A$ , avem:

$$\int_{\partial A} \alpha = \int \int_{A} 0 dx dy = 0.$$

Rezultă:

$$\int_{\Gamma} \alpha = \int_{\mathcal{C}(O,R)} \alpha = 2\pi.$$

3. Fie  $\alpha=\frac{x-y}{x^2+y^2}\,dx+\frac{x+y}{x^2+y^2}\,dy$ . Să se calculeze integrala curbilinie  $\int_{\Gamma}\alpha,\,\text{unde }\Gamma\text{ este o curbă arbitrară închisă cu }O\not\in\Gamma.$ 

#### Solutie

Observăm că  $\alpha$  este o 1-formă diferențială închisă. În continuare aplicăm raționamentul de la exercițiul precedent.

4. Să se calculeze următoarele integrale curbilinii direct şi aplicând formula Green-Riemann:

**a.** 
$$\int_{\Gamma} e^{\frac{x^2}{a^2} + \frac{y^2}{b^2}} (-ydx + xdy), \ \Gamma = \{(x,y) \mid \frac{x^2}{a^2} + \frac{y^2}{b^2} = 1\}.$$

**b.** 
$$\int_{\Gamma} xydx + \frac{x^2}{2}dy,$$

$$\Gamma = \{(x,y) \mid x^2 + y^2 = 1, x \le 0 \le y\} \cup \{(x,y) \mid x+y = -1, x \le 0, y \le 0\}.$$

#### Solutie

Pentru calculul direct se parametrizează cele două curbe și se aplică definiția integralei curbilinii. Vom calcula acum integralele cu ajutorul formulei Green-Riemann.

a. Elipsa  $\Gamma$  este închisă iar 1-forma diferențială este de clasă  $\mathcal{C}^1$  pe  $R^2$ ,

deci putem aplica formula Green-Riemann (notăm K mulțimea compactă mărginită de  $\Gamma$ ):

$$\int_{\Gamma} e^{\frac{x^2}{a^2} + \frac{y^2}{b^2}} \left( -y dx + x dy \right) = \int \int_{K} 2e^{\frac{x^2}{a^2} + \frac{y^2}{b^2}} \left( 1 + \frac{x^2}{a^2} + \frac{y^2}{b^2} \right) dx dy,$$

integrala dublă calculându-se cu coordonate polare generalizate.

**b.** Curba  $\Gamma$  nu este închisă, deci nu putem aplica direct formula Green-Riemann. Fie A(0,-1) și B(0,1) și fie [AB] segmentul orientat (de la A către B) determinat de aceste puncte. Fie  $\Lambda = \Gamma \cup [AB]$ ; atunci  $\Lambda$  este o curbă închisă și deci, aplicând formula Green-Riemann, obținem (notăm cu K compactul mărginit de  $\Lambda$ ):

$$\int_{\Lambda} xydx + \frac{x^2}{2}dy = \int \int_{K} 0dxdy = 0.$$

Rezultă deci:

$$\int_{\Gamma} xy dx + \frac{x^2}{2} dy = -\int_{[AB]} xy dx + \frac{x^2}{2} dy = 0,$$

ultima integrală curbilinie calculându-se imediat cu definiția.

5. Să se calculeze aria mulțimii mărginite de curba  $\Gamma$  în următoarele cazuri:

cazuri:   
**a.** 
$$\frac{x^2}{a_2^2} + \frac{y^2}{b_2^2} = 1$$
,  $(a > 0, b > 0)$ .

**b.** 
$$x^{\frac{2}{3}} + y^{\frac{2}{3}} = 1.$$

# Soluție

Aria mulțimii mărginite de curba  $\Gamma$  este  $\mathcal{A} = \frac{1}{2} \int_{\Gamma} x dy - y dx$ .

a. Cu parametrizarea  $x(t) = a \cos t$ ,  $y(t) = b \sin t$ ,  $t \in [0, 2\pi)$ , obţinem:

$$\mathcal{A} = \frac{1}{2} \int_{\Gamma} ab \left( \cos^2 t + \sin^2 t \right) dt = \pi ab.$$

**b.** Cu parametrizarea  $x(t) = \cos^3 t, y(t) = \sin^3 t, t \in [0, 2\pi),$  obţinem:

$$\mathcal{A} = \frac{1}{2} \int_{\Gamma} x dy - y dx = \frac{3}{2} \int_{0}^{2\pi} \sin^{2} t \cos^{2} t dt = \frac{3}{8}\pi.$$

**6. a.** Fie  $\rho = \rho(t), t \in [a, b]$  ecuația în coordonate polare a unei curbe închise  $\Gamma$ . Să se demonstreze că aria interiorului lui  $\Gamma$  este  $\mathcal{A} = \frac{1}{2} \int_{a}^{b} \rho^{2}(t) dt$ . Fie a > 0, b > 0; să se calculeze ariile multimilor mărginite de curbele de ecuații (în coordonate polare):

**b.** 
$$\rho(t) = \frac{ab}{\sqrt{a^2 \sin^2 t + b^2 \cos^2 t}}, t \in [0, 2\pi].$$
**c.**  $\rho(t) = a(1 + \cos t), t \in [0, \pi].$ 

**c.** 
$$\rho(t) = a(1 + \cos t), t \in [0, \pi].$$

a. Cu parametrizarea  $x(t) = \rho(t) \cos t$ ,  $y(t) = \rho(t) \sin t$ ,  $t \in [a, b]$ , obţinem:

$$\mathcal{A} = \frac{1}{2} \int_{\Gamma} x dy - y dx = \frac{1}{2} \int_{a}^{b} \rho^{2}(t) dt.$$

**b.** 
$$\mathcal{A} = \frac{1}{2} \int_0^{2\pi} \frac{a^2 b^2}{a^2 \sin^2 t + b^2 \cos^2 t} dt = 2a^2 b^2 \int_0^{\infty} \frac{du}{a^2 u^2 + b^2} = \pi a b.$$
**c.** Analog.

7. Să se calculeze circulația câmpului de vectori  $\overline{V}$  pe curba  $\Gamma$  în cazurile:

$$\mathbf{a.} \ \overline{V} = y^2 \overline{i} + xy \overline{j},$$

$$\Gamma = \{(x,y); x^2 + y^2 = 1, y > 0\} \cup \{(x,y); y = x^2 - 1, y \le 0\}.$$
**b.**  $\overline{V} = e^x \cos y\overline{i} - e^x \sin y\overline{j}.$ 

**b.** 
$$\overline{V} = e^x \cos y\overline{i} - e^x \sin y\overline{j}$$
.

 $\Gamma$  este o curbă arbitrară conținută în semiplanul superior care unește punctele A(1,0) şi B(-1,0), sensul fiind de la A către B.

a. Vom aplica formula Green-Riemann; notând cu K interiorul curbei  $\Gamma$ , obţinem:

$$\int_{\Gamma} \overline{V} d\overline{r} = \int \int_{K} -y dx dy = - \int_{-1}^{1} dx \int_{x^{2}-1}^{\sqrt{1-x^{2}}} y dy.$$

**b.** Curba nu este închisă; fie [BA] segmentul orientat (de la B către A) și fie curba închisă  $\Lambda = \Gamma \cup [BA]$ . Calculăm circulația lui  $\overline{V}$  pe curba  $\Lambda$  cu ajutorul formulei Green-Riemann (notăm cu K compactul mărginit de  $\Lambda$ ):

$$\int_{\Lambda} \overline{V} d\overline{r} = \int \int_{K} 0 dx dy = 0,$$

deci circulația pe curba  $\Gamma$  este egală cu circulația pe segmentul orientat [AB]:

$$\int_{\Gamma} \overline{V} d\overline{r} = \int_{[AB]} \overline{V} d\overline{r} = -\int_{0}^{1} e^{t} dt = 1 - e.$$

8. Fie a < b, fie  $\gamma : [a,b] \mapsto R^2$ ,  $\gamma(t) = (x(t),y(t))$ , un drum parametrizat închis  $(\gamma(a) = \gamma(b))$ , orientat în sens trigonometric pozitiv și fie K compactul mărginit de imaginea lui  $\gamma$ . Într-un punct arbitrar  $\gamma(t) = (x(t),y(t))$ , considerăm vectorul normal la  $\gamma$ ,  $\overline{n}(t) = (y'(t), -x'(t))$ . Să se demonstreze că pentru orice câmp de vectori  $\overline{V}$  de clasă  $\mathcal{C}^1$  pe o vecinătate a lui K, avem:

$$\int_{a}^{b} \overline{V}(\gamma(t)) \overline{n}(t) dt = \int \int_{K} \operatorname{div}(\overline{V}) dx dy.$$

#### Soluție

Din definiția integralei curbilinii, rezultă:

$$\int_{a}^{b} \overline{V}(\gamma(t))\overline{n}(t)dt = \int_{\gamma} Pdy - Qdx.$$

Aplicând ultimei integrale curbilinii formula Green-Riemann, obținem:

$$\int_{a}^{b} \overline{V}(\gamma(t))\overline{n}(t)dt = \int_{\gamma} Pdy - Qdx =$$

$$= \int \int_{K} \left(\frac{\partial P}{\partial x} + \frac{\partial Q}{\partial y}\right) dxdy = \int \int_{K} \operatorname{div}(\overline{V}) dxdy.$$

## 9. Formula de medie pentru funcții armonice

O funcție  $f:U\subseteq R^2\mapsto R$  se numește armonică pe U dacă

$$\Delta f = \frac{\partial^2 f}{\partial x^2} + \frac{\partial^2 f}{\partial y^2} = 0 \,\mathrm{pe}\, U.$$

Fie f o funcție armonică pe discul unitate. Atunci:

$$f((0,0)) = \frac{1}{2\pi} \int_0^{2\pi} f(\rho \cos t, \rho \sin t) dt, \, \forall \rho \in (0,1),$$

egalitate numită formula de medie pentru funcții armonice.

#### Soluție

Fie  $\rho \in (0,1)$  și fie

$$g(\rho) = \frac{1}{2\pi} \int_0^{2\pi} f(\rho \cos t, \rho \sin t) dt.$$

Vom demonstra că funcția g este constantă.

Pentru aceasta, calculăm derivata sa:

$$g'(\rho) = \frac{1}{2\pi} \int_0^{2\pi} \left( \frac{\partial f}{\partial x} (\rho \cos t, \rho \sin t) \cos t + \frac{\partial f}{\partial y} (\rho \cos t, \rho \sin t) \sin t \right) dt =$$

$$=\frac{1}{2\pi\rho}\int_{0}^{2\pi}\left(\frac{\partial f}{\partial x}(\rho\cos t,\rho\sin t),\frac{\partial f}{\partial y}(\rho\cos t,\rho\sin t)\right)\cdot\left(\rho\cos t,\rho\sin t\right)dt.$$

Vom aplica acum rezultatul exercițiului 8 de mai sus.

Vectorul  $\overline{n} = (\rho \cos t, \rho \sin t)$  este vectorul normal (exterior) la cercul de centru O şi rază  $\rho$ , iar câmpul vectorial  $\overline{V} = \frac{\partial f}{\partial x}\overline{i} + \frac{\partial f}{\partial y}\overline{j}$ . Obţinem (notăm cu K discul de centru O și rază  $\rho$ ):

$$g'(\rho) = \frac{1}{2\pi\rho} \int \int_{K} \Delta f dx dy = 0.$$

Rezultă deci că funcția g este constantă pe intervalul (0,1); în consecință, avem:

$$\frac{1}{2\pi} \int_0^{2\pi} f(\rho \cos t, \rho \sin t) dt = g(\rho) = \lim_{\rho \to 0} g(\rho) =$$
$$= \frac{1}{2\pi} \int_0^{2\pi} f((0,0)) = f((0,0)).$$

#### 9.3 Formula Gauss-Ostrogradski

10. Să se calculeze integrala de suprafață  $\int_{\Sigma} \omega$  în următoarele cazuri:

**a.** 
$$\omega = x^2 dy \wedge dz - 2xy dz \wedge dx + z^3 dx \wedge dy$$
.  
 $\Sigma = \{(x, y, z); x^2 + y^2 + z^2 = 9\}.$ 

$$\Sigma = \{(x, y, z) : x^2 + y^2 + z^2 = 9\}.$$

**b.** 
$$\omega = yzdy \wedge dz - (x+z)dz \wedge dx + (x^2 + y^2 + 3z)dx \wedge dy$$
.

$$\Sigma = \{(x, y, z); x^2 + y^2 = 4 - 2z, z \ge 1\} \cup \{(x, y, z); x^2 + y^2 \le 4 - 2z, z = 1\}.$$

$$\mathbf{c.} \ \omega = x(z+3)dy \wedge dz + yzdz \wedge dx - (z+z^2)dx \wedge dy.$$

$$\Sigma = \{(x, y, z); x^2 + y^2 + z^2 = 1, z \ge 0\}.$$

**c.** 
$$\omega = x(z+3)dy \wedge dz + yzdz \wedge dx - (z+z^2)dx \wedge dy$$

$$\Sigma = \{(x, y, z); x^2 + y^2 + z^2 = 1, z \ge 0\}.$$

## Soluție

**a.** Fie 
$$K = \{(x, y, z); x^2 + y^2 + z^2 \le 9\};$$

aplicând formula Gauss-Ostrogradski (sunt verificate ipotezele), obţinem:

$$\int_{\Sigma} x^2 dy \wedge dz - 2xy dz \wedge dx + z^3 dx \wedge dy = \int \int \int_{K} 3z^2 dx dy dz,$$

integrala triplă calculându-se folosind coordonate sferice.

**b.** Fie K compactul mărginit de suprafața (închisă)  $\Sigma$  și fie

 $D = \{(x,y); x^2 + y^2 \le 2\}$  proiecția lui K pe planul xOy; aplicând formula Gauss-Ostrogradski, obţinem:

$$\int_{\Sigma}\omega=\int\int\int_{K}3dxdydz=3\int\int_{D}dxdy\int_{1}^{2-\frac{1}{2}(x^{2}+y^{2})}dz.$$

 ${\bf c.}$  Suprafața  $\Sigma$  nu este închisă, deci formula Gauss-Ostrogradski nu se poate aplica.

Fie  $D=\{(x,y,z)\,;\,x^2+y^2\leq 1,\,z=0\}$  și fie  $S=\Sigma\cup D$ , orientată cu normala exterioară (pe D normala este  $-\overline{k}$ ). Fie K compactul al cărui bord (orientat) este suprafața (închisă) S. Aplicând formula Gauss-Ostrogradski, obținem:

$$\int_{S} x(z+3)dy \wedge dz + yzdz \wedge dx - (z+z^{2})dx \wedge dy = \int \int \int_{K} 2dxdydz = \frac{4\pi}{3}.$$

Rezultă deci:

$$\int_{\Sigma} x(z+3)dy \wedge dz + yzdz \wedge dx - (z+z^2)dx \wedge dy =$$

$$= \frac{4\pi}{3} - \int_{D} x(z+3)dy \wedge dz + yzdz \wedge dx - (z+z^2)dx \wedge dy.$$

Calculând ultima integrală de suprafață cu definiția, obținem:

$$\int_D x(z+3)dy\wedge dz+yzdz\wedge dx-(z+z^2)dx\wedge dy=-\int\int_D 0dxdy=0,$$
 şi deci $\int_\Sigma \omega=\frac{4\pi^3}{3}.$ 

11. Să se calculeze integrala de suprafață  $\int_{\Sigma}\omega$  direct și folosind formula Gauss-Ostrogradski în următoarele cazuri:

**a.** 
$$\omega = x(y-z)dy \wedge dz + y(z-x)dz \wedge dx + z(x-y)dx \wedge dy$$
.  
 $\Sigma = \{(x,y,z); z = 1 - x^2 - y^2, z > 0\} \cup \{(x,y,z) \ x^2 + y^2 \le 1, z = 0\}.$   
**b.**  $\omega = x^2(y-z)dy \wedge dz + y^2(z-x)dz \wedge dx + z^2(x-y)dx \wedge dy.$   
 $\Sigma = \{(x,y,z); z^2 = x^2 + y^2, 0 < z \le 1\}.$ 

#### Soluţie

Analog cu exercițiul anterior; în cazul b trebuie să reunim la  $\Sigma$  discul  $D=\{(x,y,z); x^2+y^2\leq 1, z=1\}$ , orientat după normala  $\overline{k}$ . Obținem  $\int_{\Sigma}\omega=-\int_0^1d\rho\int_0^{2\pi}\rho^2(\cos\varphi-\sin\varphi)d\varphi=0.$ 

12. Fie a,b,c trei numere strict pozitive. Să se calculeze fluxul câmpului vectorial:

$$\overline{V} = x(xy + az)\overline{i} - y(xy - az)\overline{j} + z^3\overline{k}$$

prin suprafața  $\Sigma$  de ecuație:

$$\left(\frac{x^2}{a^2} + \frac{y^2}{b^2}\right)^2 + \frac{z^2}{c^2} = 1.$$

#### Soluție

Ecuația suprafeței  $\Sigma$  se poate scrie sub forma echivalentă:

$$\frac{x^2}{a^2} + \frac{y^2}{b^2} = \sqrt{1 - \frac{z^2}{c^2}},$$

deci  $z \in [-c,c]$ . Intersecțiile suprafeței  $\Sigma$  cu plane orizontale (z= constant) sunt elipsele S(z) de ecuații:

$$\frac{x^2}{\left(a\sqrt[4]{1-\frac{z^2}{c^2}}\right)^2} + \frac{y^2}{\left(b\sqrt[4]{1-\frac{z^2}{c^2}}\right)^2} = 1.$$

Semiaxele acestor elipse sunt

$$a\sqrt[4]{1-\frac{z^2}{c^2}}$$
 şi  $b\sqrt[4]{1-\frac{z^2}{c^2}}$ .

Fie D(z) mulţimea (din planul orizontal z = constant) mărginită de elipsa S(z); atunci aria lui D(z) este:

$$\mathcal{A}(z) = \pi a b \sqrt{1 - \frac{z^2}{c^2}}.$$

Pentru calculul fluxului se poate aplica formula Gauss-Ostrogradski; fie  $\overline{n}$  normala exterioară la  $\Sigma$  și fie  $\Omega$  compactul mărginit de  $\Sigma$ ; atunci:

$$\int_{\Sigma} \overline{V} \overline{n} \, d\sigma = \int \int \int_{\Omega} \operatorname{div}(\overline{V}) \, dx dy dz = \int_{-c}^{c} dz \int \int_{D(z)} (2az + 3z^{2}) \, dx dy =$$

$$= \pi ab \int_{-c}^{c} (2az + 3z^{2}) \sqrt{1 - \frac{z^{2}}{c^{2}}} \, dz = 3\pi ab \int_{-c}^{c} z^{2} \sqrt{1 - \frac{z^{2}}{c^{2}}} \, dz =$$

$$= 6\pi ab \int_{0}^{c} z^{2} \sqrt{1 - \frac{z^{2}}{c^{2}}} \, dz = 6\pi ab \int_{0}^{\frac{\pi}{2}} (c\sin t)^{2} \sqrt{1 - \sin^{2} t} \, c\cos t \, dt =$$

$$= \frac{3}{2}\pi abc^{3} \int_{0}^{\frac{\pi}{2}} \sin^{2} 2t \, dt = \frac{3}{8}\pi^{2} abc^{3}.$$

# 13. Legea lui Gauss

Pentru orice q > 0, considerăm câmpul scalar

$$f(x, y, z) = \frac{q}{4\pi\sqrt{x^2 + y^2 + z^2}} = \frac{q}{4\pi r}$$

și fie câmpul de gradienți:

$$\overline{E} = -\operatorname{grad} f$$
.

Câmpul scalar f reprezintă potențialul electric (sau potențial Newtonian) asociat sarcinei electrice q plasate în O, iar  $\overline{E}$  este câmpul electric generat (sau câmp Newtonian).

**a.** Să se expliciteze  $\overline{E}$  și să se demonstreze că este câmp solenoidal, adică:  ${\rm div}\overline{E}=0.$ 

**b.** Să se demonstreze că fluxul câmpului  $\overline{E}$  prin orice suprafață închisă ce nu conține originea în interior este nul.

c. Să se demonstreze că fluxul câmpului  $\overline{E}$  prin orice suprafață închisă ce conține originea în interior este q, (legea lui Gauss).

## Soluție

a. Putem calcula  $\overline{E}$  direct cu definiția, sau aplicând proprietățile gradientului; obținem:

$$\overline{E} = -\operatorname{grad} f = \frac{q}{4\pi} \frac{\overline{r}}{r^3}.$$

Arătăm acum că  $\overline{E}$  este solenoidal:

$$\operatorname{div}\overline{E} = -\operatorname{grad}(\operatorname{div} f) = -\Delta f = \frac{q}{4\pi r^6} \left( 3r^3 - 3r(x^2 + y^2 + z^2) \right) = 0.$$

**b.** Fie  $\Sigma$  o suprafață închisă ce nu conține originea în interior. Deoarece câmpul electric  $\overline{E}$  este de clasă  $\mathcal{C}^1$  pe  $R^3 \setminus \{O\}$ , sunt îndeplinite ipotezele formulei Gauss-Ostrogradski și deci, (notăm cu K compactul mărginit de  $\Sigma$  și cu  $\overline{n}$  versorul normalei exterioare la  $\Sigma$ ), obținem:

$$\mathcal{F}_{\Sigma}(\overline{E}) = \int_{\Sigma} \overline{E} \, \overline{n} d\sigma = \int \int \int_{K} \operatorname{div} \overline{E} dx dy dz = 0.$$

c. Fie acum  $\Sigma$  o suprafață închisă ce conține originea în interior. Deoarece  $\overline{E}$  nu este de clasă  $\mathcal{C}^1$  pe compactul K mărginit de  $\Sigma$ , ( $\overline{E}$  nefiind de clasă  $\mathcal{C}^1$  în origine), nu putem aplica formula Gauss-Ostrogradski pentru a calcula fluxul lui  $\overline{E}$  prin  $\Sigma$ . Fie R>0 astfel încât sfera de centru O și rază R (notată în continuare cu S), să fie inclusă în interiorul lui  $\Sigma$ . Fie suprafața (închisă)  $\Sigma_1 = \Sigma \cup S$ , orientată după normala exterioară (deci pe S este normala interioară la sferă). Fie  $K_1$  mulțimea compactă mărginită de  $\Sigma_1$ . Deoarece  $O \not\in K_1$ , fluxul lui  $\overline{E}$  prin  $\Sigma_1$  este nul (conform (b)). Rezultă că fluxul lui  $\overline{E}$  prin  $\Sigma$  este egal cu fluxul lui  $\overline{E}$  prin S (orientată după normala exterioară  $\overline{n} = \frac{\overline{r}}{R}$  la sferă):

$$\mathcal{F}_{\Sigma}(\overline{E}) = \int_{S} \overline{E} \, \overline{n} d\sigma = \frac{q}{4\pi} \int_{0}^{2\pi} d\varphi \int_{0}^{\pi} \sin\theta \, d\theta = q.$$

**14.** Fie  $n \in N$  şi fie  $q_i > 0$ ,  $\forall i \in \{1, 2, ..., n\}$ . Fie  $A_i$ ,  $i \in \{1, 2, ..., n\}$ , n puncte în  $R^3$  de coordonate  $(x_i, y_i, z_i)$ . Notăm cu  $\overline{r_i}$  vectorul de poziție al punctului  $A_i$ . Potențialul electric generat de sarcinile electrice  $q_i$  plasate în punctele  $A_i$  este

$$f(x, y, z) = \frac{1}{4\pi} \sum_{i=1}^{n} \frac{q_i}{\|\overline{r} - \overline{r_i}\|},$$

unde,  $\|\cdot\|$  este norma euclidiană în  $R^3$ . Fie  $\overline{E}=-\mathrm{grad} f$  câmpul electric asociat potențialului f. Să se demonstreze că fluxul câmpului electric  $\overline{E}$  printr-o suprafață arbitrară închisă ce conține toate punctele  $A_i$  în interiorul ei este egal cu  $\sum_{i=1}^n q_i$ .

#### Soluție

Se aplică raționamentul din exercițiul anterior.

# 15. Legea lui Arhimede

Considerăm un recipient (conținut în semispațiul z < 0) în care s-a turnat un lichid având densitatea constantă c.

Scufundăm în lichid un corp pe care îl asimilăm cu un compact cu bord orientat  $(K, \partial K)$ . Presupunând că presiunea exercitată de lichid asupra corpului scufundat crește proporțional cu adâncimea, obținem pentru câmpul presiunilor formula  $\overline{V} = cz\overline{k}$ . Forța ascensională pe care lichidul o exercită asupra corpului scufundat este, prin definiție, egală cu fluxul câmpului presiunilor prin suprafața (bordul)  $\partial K$ , în raport cu normala exterioară,  $\overline{n}$ . Aplicând formula Gauss-Ostrogradski, obținem:

$$\mathcal{F}_{\partial K}(\overline{V}) = \int_{\partial K} \overline{V} \, \overline{n} d\sigma =$$

$$= \int \int \int_{K} \operatorname{div} \overline{V} \, dx dy dz = \int \int \int_{K} c dx dy dz = c \operatorname{vol}(K),$$

adică forța ascensională este egală cu masa lichidului dezlocuit de corpul scufundat.

16. Fie  $\Sigma$  o suprafață închisă și fie K compactul mărginit de  $\Sigma$ . Să se demonstreze că:

$$\frac{1}{3} \int_{\Sigma} \overline{r} \, \overline{n} d\sigma = \text{vol}(K),$$

unde,  $\overline{n}$  este normala exterioară la  $\Sigma$ .

#### Soluție

Se aplică formula Gauss-Ostrogradski:

$$\frac{1}{3} \int_{\Sigma} \overline{r} \, \overline{n} d\sigma = \frac{1}{3} \int \int \int_{K} \operatorname{div}(\overline{r}) \, dx dy dz = \int \int \int_{K} \, dx dy dz = \operatorname{vol}(K).$$

17. Fie câmpul vectorial 
$$\overline{V} = \overline{r} + \frac{\overline{k} \, \overline{r}}{r^4} \, \overline{r}$$
 și fie suprafața

$$\Sigma = \{(x, y, z); z = 3 - x^2 - y^2, 1 \le z\} \cup \{(x, y, z); x^2 + y^2 \le 2, z = 1\}.$$

Să se calculeze fluxul lui  $\overline{V}$  prin $\Sigma$  (orientată după normala exterioară). Soluție

Se aplică formula Gauss-Ostrogradski; pentru aceasta, calculăm

$$\begin{split} \operatorname{div} \overline{V} &= \operatorname{div} \left( \overline{r} + \frac{\overline{k} \, \overline{r}}{r^4} \overline{r} \right) = 3 + \left( \frac{\overline{k} \, \overline{r}}{r^4} \right) \operatorname{div} \overline{r} + \overline{r} \operatorname{grad} \left( \frac{\overline{k} \, \overline{r}}{r^4} \right) = \\ &= 3 + 3 \frac{\overline{k} \, \overline{r}}{r^4} + \overline{r} \left( \frac{1}{r^4} \operatorname{grad} (\overline{k} \, \overline{r}) + (\overline{k} \, \overline{r}) \operatorname{grad} r^{-4} \right) = \\ &= 3 + 3 \frac{\overline{k} \, \overline{r}}{r^4} + \overline{r} \left( \frac{\overline{k}}{r^4} - 4 \frac{(\overline{k} \, \overline{r})}{r^6} \overline{r} \right) = 3. \end{split}$$

Notând cu K compactul mărginit de suprafața  $\Sigma$ , rezultă:

$$\mathcal{F}_{\Sigma}(\overline{V}) = \int_{\Sigma} \overline{V} \, \overline{n} d\sigma = \int \int \int_{K} 3dx dy dz = 3 \text{vol}(K).$$

- **18.** Să se calculeze fluxul câmpului vectorial  $\overline{V} = \frac{1}{r} (\overline{r} \times \overline{k})$  prin:
- a. O suprafață închisă arbitrară ce nu conține originea în interior.
- **b.** Sfera de centru O și rază R.

#### Soluție

- a. În primul caz se poate aplica formula Gauss-Ostrogradski; fluxul este nul deoarece  $\operatorname{div} \overline{V} = 0$ .
- **b.** În cazul al doilea, fluxul se calculează cu definiția integralei de suprafață (nu sunt îndeplinite ipotezele formulei Gauss-Ostrogradski); și în acest caz fluxul este tot 0 deoarece vectorii  $\overline{V}$  și normala exterioară la sferă sunt ortogonali.

# 19. Formulele lui Green

Fie  $(K, \partial K)$  un compact cu bord orientat din  $R^3$ . Fie  $\overline{n}$  normala exterioară la  $\partial K$  și fie f, g două funcții de clasă  $\mathcal{C}^2$  pe o vecinătate a lui K. Să se demonstreze formulele lui Green:

demonstreze formulele lui Green:

**a.** 
$$\int_{\partial K} f(\operatorname{grad} g) \, \overline{n} \, d\sigma = \int \int \int_K \left( f \, \Delta g + (\operatorname{grad} f)(\operatorname{grad} g) \right) dx dy dz.$$
**b.** 
$$\int_{\partial K} \left( f(\operatorname{grad} g) - g(\operatorname{grad} f) \right) \overline{n} \, d\sigma = \int \int \int_K \left( f \, \Delta g - g \, \Delta f \right) dx dy dz.$$
**Solution**

a. Pentru prima formulă se aplică formula Gauss-Ostrogradski câmpului de vectori  $\overline{V}=f$  gradg:

$$\begin{split} &\int_{\partial K} f\left(\operatorname{grad} g\right) \overline{n} \, d\sigma = \int \int \int_K \operatorname{div}(f \operatorname{grad} g) \, dx dy dz = \\ &= \int \int \int_K \biggl( f \operatorname{div}(\operatorname{grad} g) + (\operatorname{grad} g) \left(\operatorname{grad} f\right) \biggr) \, dx dy dz = \\ &= \int \int \int_K \biggl( f \Delta g + (\operatorname{grad} g) \left(\operatorname{grad} f\right) \biggr) \, dx dy dz. \end{split}$$

b. A doua formulă rezultă direct din prima.

**20.** Fie  $(K, \partial K)$  un compact cu bord orientat din  $R^3$  și fie  $\overline{n}$  versorul normalei exterioare la suprafața  $\partial K$ . Fie h o funcție armonică pe o vecinătate a lui K și fie  $\frac{dh}{d\overline{n}}$  derivata după direcția  $\overline{n}$  a lui h. Să se demonstreze egalitățile:

a. 
$$\int_{\partial K} \frac{dh}{d\overline{n}} \, d\sigma = 0.$$
b. 
$$\int_{\partial K} h \, \frac{dh}{d\overline{n}} \, d\sigma = \int \int \int_{K} \| \operatorname{grad} h \|^{2} \, dx dy dz.$$
 Soluție

a. Se aplică prima formulă a lui Green pentru: f=1 şi g=h; o altă metodă este de a aplica formula Gauss-Ostrogradski câmpului  $\overline{V}=\operatorname{grad}h$ :

$$\int_{\partial K} \frac{dh}{d\overline{n}} d\sigma = \int_{\partial K} (\operatorname{grad} h) \, \overline{n} \, d\sigma =$$

$$= \int \int \int_K \operatorname{div}(\operatorname{grad} h) \, dx dy dz = \int \int \int_K \Delta h = 0.$$

**b.** Se aplică a doua formulă a lui Green pentru f = g = h; o altă metodă constă în a aplica formula Gauss-Ostrogradski pentru  $\overline{V} = h \operatorname{grad} h$ :

$$\int_{\partial K} h \, \frac{dh}{d\overline{n}} \, d\sigma = \int \int \int_{K} h \operatorname{grad} h \, \overline{n} \, d\sigma =$$

$$= \int \int \int_K \operatorname{div}(h \operatorname{grad} h) \ dx dy dz =$$

$$= \int \int \int_K \left( h \operatorname{div}(\operatorname{grad} h) + (\operatorname{grad} h) (\operatorname{grad} h) \right) dx dy dz =$$

$$= \int \int \int_K \left( h \Delta g + \| \operatorname{grad} h \|^2 \right) dx dy dz = \int \int \int_K \| \operatorname{grad} h \|^2 \ dx dy dz.$$

#### Formula lui Stokes 9.4

21. Să se calculeze, folosind formula lui Stokes, integrala curbilinie  $\int_{\Gamma} \alpha$  în următoarele cazuri:

**a.** 
$$\alpha = (y-z)dx + (z-x)dy + (x-y)dz$$
.  
 $\Gamma : z = x^2 + y^2, z = 1$ .

$$\Gamma : z = x^2 + y^2, z = 1.$$

$$\mathbf{b.} \ \alpha = ydx + zdy + xdz,$$

**b.** 
$$\alpha = ydx + zdy + xdz$$
,  
 $\Gamma : x^2 + y^2 + z^2 = 1$ ,  $x + y + z = 0$ .

a. Fie suprafața  $\Sigma = \{(x,y,z); z = x^2 + y^2 + z^2, z \leq 1\}$ ; atunci  $\Gamma$  este bordul lui  $\Sigma$  și aplicând formula lui Stokes obținem (lăsăm ca exercițiu verificarea compatibilității orientărilor):

$$\int_{\Gamma} (y-z)dx + (z-x)dy + (x-y)dz = \int_{\Sigma} -2(dy \wedge dz + dz \wedge dx + dx \wedge dy) =$$
$$= -2 \int_{D} \int_{D} (-2x - 2y + 1)dxdy,$$

unde D este discul unitate.

**b.** Fie  $\theta$  unghiul făcut de planul x + y + z = 0 cu planul xOy; atunci:

$$\cos \theta = \frac{1}{\sqrt{3}} \left( \overline{i} + \overline{j} + \overline{k} \right) \cdot \overline{k} = \frac{\sqrt{3}}{3}.$$

Intersecția dintre sferă și plan este un cerc mare al sferei, notat  $\Gamma$ . Considerăm drept suprafață  $\Sigma$  porțiunea din planul x + y + z = 0 situată în interiorul sferei  $x^2 + y^2 + z^2 = 1$ . Evident, aria lui  $\Sigma$  este  $\pi$ . Fie D proiecția lui  $\Sigma$  pe planul xOy. Aria lui D (care este interiorul unei elipse) este:

$$aria(D) = aria(\Sigma) \cdot \cos \theta = \pi \frac{\sqrt{3}}{3}.$$

Rezultă:

$$\int_{\Gamma} y dx + z dy + x dz = -\int_{\Sigma} (dy \wedge dz + dz \wedge dx + dx \wedge dy) =$$

$$= -\int \int_D 3dxdy = -3\operatorname{aria}(D) = -\sqrt{3}\pi.$$

22. Să se calculeze circulația câmpului vectorial

$$\overline{V} = (y^2 + z^2)\overline{i} + (x^2 + z^2)\overline{j} + (x^2 + y^2)\overline{k}$$

pe curba  $\Gamma : x^2 + y^2 + z^2 = R^2, ax + by + cz = 0.$ 

#### Soluție

Curba  $\Gamma$  este un cerc mare al sferei (intersecția sferei cu un plan ce trece prin centrul sferei); considerăm drept suprafață  $\Sigma$  oricare din cele două semisfere determinate de plan pe sferă. Aplicând formula lui Stokes, obținem:

$$\int_{\Gamma} \overline{V} \, d\overline{r} = \int_{\Sigma} (\operatorname{rot} \overline{V}) \, \overline{n} \, d\sigma =$$

$$= \int_{\Sigma} (2(y-z)\overline{i} + 2(z-x)\overline{j} + 2(x-y)\overline{k}) \cdot \frac{1}{R} (x\overline{i} + y\overline{j} + z\overline{k}) \, d\sigma = 0,$$

de<br/>oarece versorul normalei (exterioare) la sferă,  $\overline{n}=\frac{1}{R}\overline{r}$  și ro<br/>t $\overline{V}$  sunt perpendiculari.

23. Să se calculeze, folosind formula lui Stokes, integralele:

**a.** 
$$\int_{\Gamma} y(y+2z)dx + 2x(y+z)dy + 2xydz$$
,  $\Gamma: z^2 = x^2 + y^2$ ,  $x^2 + y^2 = 2x$ .

**b.** 
$$\int_{\Gamma} 2z dx - x dy + x dz$$
,  $\Gamma : z = y + 1$ ,  $x^2 + y^2 = 1$ .

#### Solutie

**a.** Integrala este 0.

**b.** Considerând  $\Sigma$  porțiunea din planul z=y+1 situată în interiorul cilindrului  $x^2+y^2=1$ , și aplicând formula lui Stokes, obținem:

$$\int_{\Gamma} 2z dx - x dy + x dz = \int_{\Sigma} dz \wedge dx - dx \wedge dy = \int_{D} -2 dx dy = -2\pi,$$

unde, D este discul unitate (proiecția suprafeței  $\Sigma$  pe planul xOy).

24. Să se calculeze direct și cu formula lui Stokes integrala curbilinie

$$\int_{\Gamma} (y^2 - z^2) dx + (z^2 - x^2) dy + (x^2 - y^2) dz,$$

unde  $\Gamma$  este poligonul de intersecție dintre cubul  $[0,1] \times [0,1] \times [0,1]$  și planul  $x+y+z=\frac{3}{2}.$ 

# Soluție

 $\Gamma$ este un hexagon regulat. Pentru a calcula integrala cu definiția trebuie parametrizate laturile hexagonului; de exemplu, latura din planul xOy are parametrizarea:

$$x(t)=t, y(t)=\frac{3}{2}-t,\, t\in \left\lceil \frac{1}{2},1\right\rceil.$$

Calculăm acum integrala aplicând formula lui Stokes. Fie  $\Sigma$  porțiunea din planul  $x+y+z=\frac{3}{2}$  situată în interiorul cubului (interiorul hexagonului). Proiecția lui  $\Sigma$  pe planul xOy este mulțimea

$$D = \{(x,y); \frac{1}{2} \le x + y \le \frac{3}{2}, \ 0 \le x \le 1, \ 0 \le y \le 1\},\$$

a cărei arie este  $\frac{3}{4}$ . O parametrizare (carteziană) a suprafeței  $\Sigma$  este

$$z = \frac{3}{2} - x - y, (x, y) \in D.$$

Aplicând formula lui Stokes, obținem:

$$\int_{\Gamma} (y^2 - z^2) dx + (z^2 - x^2) dy + (x^2 - y^2) dz =$$

$$= -2 \int_{\Sigma} (x + y) dx \wedge dy + (y + z) dy \wedge dz + (z + x) dz \wedge dx =$$

$$= -2 \int_{D} 3 dx dy = -6 \operatorname{aria}(D) = -\frac{9}{2}.$$

25. Să se calculeze direct și aplicând formula lui Stokes integrala

$$\int_{\Gamma} x dx + (x+y)dy + (x+y+z)dz,$$

pe curba  $\Gamma$  de ecuații:

$$x^2 + y^2 = R^2$$
,  $z = x + y$ .

#### Soluție

Pentru a calcula integrala direct parametrizăm

$$\Gamma : x(t) = R\cos t, y(t) = R\sin t, z(t) = R(\cos t + \sin t), t \in [0, 2\pi).$$

Pentru a aplica formula lui Stokes, considerăm suprafața  $\Sigma$  porțiunea din planul z = x + y situată în interiorul cilindrului  $x^2 + y^2 = R^2$ . Proiecția lui  $\Sigma$ pe planul xOy este discul de centru O și rază R, notat D. O parametrizare carteziană pentru  $\Sigma$  este  $z=x+y, (x,y)\in D$ . Aplicând formula lui Stokes, obtinem:

$$\int_{\Gamma} x dx + (x+y)dy + (x+y+z)dz = \int_{\Sigma} dx \wedge dy + dy \wedge dz - dz \wedge dx =$$

$$= \int_{D} dx dy = \pi R^{2}.$$

**26.** Să se calculeze circulația câmpului de vectori  $\overline{V} = \frac{1}{r}(\overline{k} \times \overline{r})$  pe curba

$$\Gamma_1 = \{(x, y, z); x^2 + y^2 = 1, z = 0, x > 0, y > 0\}$$

$$\Gamma = \Gamma_1 \cup \Gamma_2 \cup \Gamma_3, \text{ unde:}$$

$$\Gamma_1 = \{(x, y, z); x^2 + y^2 = 1, z = 0, x > 0, y > 0\}$$

$$\Gamma_2 = \{(x, y, z); y^2 + z^2 = 1, x = 0, y > 0, z > 0\}$$

$$\Gamma_3 = \{(x, y, z); z^2 + x^2 = 1, y = 0, z > 0, x > 0\}$$

$$\Gamma_3 = \{(x, y, z); z^2 + x^2 = 1, y = 0, z > 0, x > 0\}.$$

## Soluție

Vom aplica formula lui Stokes; pentru aceasta, calculăm mai întâi rotorul câmpului  $\overline{V}$ :

$$\operatorname{rot} \overline{V} = \frac{1}{r} \operatorname{rot}(\overline{k} \times \overline{r}) - (\overline{k} \times \overline{r}) \operatorname{grad} \frac{1}{r} =$$

$$=\frac{1}{r}\left(\overline{k}\operatorname{div}\overline{r}-\overline{r}\operatorname{div}\overline{k}+\frac{d\overline{k}}{d\overline{r}}-\frac{d\overline{r}}{d\overline{k}}\right)+\left(\overline{k}\times\overline{r}\right)\frac{\overline{r}}{r^{3}}=\frac{2\overline{k}}{r}.$$

Fie suprafața  $\Sigma = \{(x, y, z); x^2 + y^2 + z^2 = 1, x > 0, y > 0, z > 0\}$ ; evident, bordul lui  $\Sigma$  este  $\Gamma$ . Aplicând formula lui Stokes, obținem:

$$\int_{\Gamma} \overline{V} \, d\overline{r} = \int_{\Sigma} \operatorname{rot} \overline{V} \overline{n} d\sigma,$$

unde,  $\overline{n} = \overline{r}$  este versorul normalei exterioare la  $\Sigma$ . Pentru a calcula integrala de suprafață, putem folosi atât parametrizarea carteziană cât și coordonatele sferice; se obţine  $\int_{\overline{V}} \overline{V} d\overline{r} = \frac{\pi}{2}$ .

**27.** Fie a > 0, b > 0, c > 0, şi fie punctele A(a,0,0), B(0,b,0) şi C(0,0,c). Fie  $\Gamma$  reuniunea segmentelor  $[AB] \cup [BC] \cup [CA]$  (cu acest sens). Să se calculeze  $\int_{\Gamma} (z-y)dx + (x-z)dy + (y-x)dz$ .

# Soluție

Vom calcula integrala aplicând formula lui Stokes (lăsăm ca exercițiu calculul direct). Fie  $\Sigma$  interiorul triunghiului ABC; obținem:

$$\int_{\Gamma} (z-y)dx + (x-z)dy + (y-x)dz = \int_{\Sigma} 2dx \wedge dy + 2dy \wedge dz + 2dz \wedge dx.$$

Proiecția lui  $\Sigma$  pe planul xOy este interiorul triunghiului OAB, iar parametrizarea carteziană este

$$z = c\left(1 - \frac{x}{a} - \frac{y}{b}\right).$$

Rezultă:

$$\int_{\Gamma} (z-y)dx + (x-z)dy + (y-x)dz = 2 \int \int_{OAB} \left(\frac{c}{a} + \frac{c}{b} + 1\right) dxdy =$$

$$= ab + bc + ca.$$

**28.** Fie 
$$\overline{V} = (x^2 + y - 4)\overline{i} + 3xy\overline{j} + (2xz + z^2)\overline{k}$$
 și fie semisfera 
$$\Sigma = \{(x, y, z) \in R^3 \mid x^2 + y^2 + z^2 = 16, \ z \ge 0\}.$$

Să se calculeze fluxul câmpului rot $(\overline{V})$  prin $\Sigma,$ orientată cu normala exterioară (la sferă).

#### Soluție

Fluxul cerut este:

$$\mathcal{F}_{\Sigma}(\operatorname{rot}(\overline{V})) = \int_{\Sigma} \operatorname{rot}(\overline{V}) \cdot \overline{n} \, d\sigma,$$

unde,  $\overline{n}$  este normala exterioară la  $\Sigma$ . Integrala de suprafață se poate calcula atât direct (cu definiția) cât și cu formula lui Stokes; pentru aceasta, fie  $\Gamma$  cercul de intersecție dintre  $\Sigma$  și planul xOy. Ecuațiile lui  $\Gamma$  sunt:

$$x^2 + y^2 = 16$$
,  $z = 0$ .

Orientarea pe  $\Gamma$  este orientarea pozitivă a cercului în planul xOy. Aplicând formula lui Stokes, rezultă:

$$\int_{\Sigma} \cot(\overline{V}) \cdot \overline{n} \, d\sigma = \int_{\Gamma} \overline{V} \, d\overline{r} =$$

$$= \int_{0}^{2\pi} \left( (16\cos^{2}t + 4\sin t - 4)(-4\sin t) + (48\sin t \cos^{2}t) \right) \, dt = -16\pi.$$

**29.** Fie  $a>0,\,b>0$  și fie  $\Gamma$  intersecția cilindrului  $x^2+y^2=a^2$  cu planul  $\frac{x}{a}+\frac{z}{b}=1$ . Să se calculeze, (aplicând formula lui Stokes), circulația câmpului vectorial  $\overline{V}=x\,\overline{i}+(y-x)\,\overline{j}+(z-x-y)\,\overline{k}$  de-a lungul curbei  $\Gamma$  (orientarea pe  $\Gamma$  nu este precizată).

## Soluție

Fie  $\Sigma$  porțiunea din planul  $\frac{x}{a} + \frac{z}{b} = 1$  din interiorul cilindrului  $x^2 + y^2 = a^2$ :

$$\Sigma = \{(x, y, z) \in \mathbb{R}^3 \mid \frac{x}{a} + \frac{z}{b} = 1, \ x^2 + y^2 \le a^2\}.$$

Atunci, conform formulei lui Stokes, rezultă:

$$\int_{\Gamma} \overline{V} \, d\overline{r} = \int_{\Sigma} \operatorname{rot}(\overline{V}) \cdot \overline{n} \, d\sigma,$$

orientările pe  $\Gamma$  și  $\Sigma$ fiind compatibile. Parametrizăm cartezian  $\Sigma$ :

$$z = b\left(1 - \frac{x}{a}\right), (x, y) \in D = \{(x, y) \in \mathbb{R}^2 \mid x^2 + y^2 \le a^2\}.$$

Rezultă vectorii tangenți la  $\Sigma$ :

$$\left(1,0,-\frac{b}{a}\right)$$
 şi  $(0,1,0),$ 

și deci versorul normalei la  $\Sigma$  indus de parametrizarea aleasă este  $\overline{n}=\frac{b}{a}$   $\overline{i}+\overline{k}$ . Rotorul câmpului  $\overline{V}$  este rot $\overline{V}=-\overline{i}+\overline{j}-\overline{k}$ . Rezultă circulația:

$$\int_{\Gamma} \overline{V} \, \overline{r} = \int_{\Sigma} \operatorname{rot}(\overline{V}) \cdot \overline{n} \, d\sigma = -\pi a^2 \left( 1 + \frac{b}{a} \right).$$

**30.** Fie  $(\Sigma, \partial \Sigma)$  o suprafață cu bord orientat, fie  $\overline{n}$  versorul normalei la  $\Sigma$  și fie  $\overline{c}$  un vector constant. Să se demonstreze că circulația câmpului vectorial  $\overline{V} = (\overline{c}\,\overline{r})\,\overline{r}$  pe curba  $\partial \Sigma$  este egală cu  $\int_{\Sigma} \overline{c}\,(\overline{r} \times \overline{n})\,d\sigma$ .

# Soluție

Aplicăm formula lui Stokes:

$$\int_{\partial \Sigma} (\overline{c}\,\overline{r})\,\overline{r}\,d\overline{r} = \int_{\Sigma} \operatorname{rot}\left((\overline{c}\,\overline{r})\,\overline{r}\right)\overline{n}\,d\sigma =$$

$$= \int_{\Sigma} \left( (\overline{c}\,\overline{r}) \operatorname{rot}\overline{r} - \overline{r} \times \operatorname{grad}(\overline{c}\,\overline{r}) \right) \overline{n} \, d\sigma = \int_{\Sigma} (\overline{c} \times \overline{r}) \, \overline{n} \, d\sigma = \int_{\Sigma} \overline{c} (\overline{r} \times \overline{n}) d\sigma.$$

**31.** Fie  $(\Sigma, \partial \Sigma)$  o suprafață cu bord orientat, fie  $\overline{n}$  versorul normalei la  $\Sigma$  și fie f și g două funcții de clasă  $\mathcal{C}^2$  pe o vecinătate a lui  $\Sigma$ . Să se demonstreze relațiile:

$$\begin{split} \int_{\partial\Sigma} f \operatorname{grad} g \, d\overline{r} &= \int_{\Sigma} \left( (\operatorname{grad} f) \times (\operatorname{grad} g) \right) \overline{n} d\sigma. \\ \int_{\partial\Sigma} \left( f \frac{\partial g}{\partial x} + g \frac{\partial f}{\partial x} \right) dx + \left( f \frac{\partial g}{\partial y} + g \frac{\partial f}{\partial y} \right) dy + \left( f \frac{\partial g}{\partial z} + g \frac{\partial f}{\partial z} \right) dz = 0. \end{split}$$

# Soluţie

Se aplică formula lui Stokes. Pentru prima egalitate:

$$\int_{\partial \Sigma} f \operatorname{grad} g \, d\overline{r} = \int_{\Sigma} \operatorname{rot}(f \cdot (\operatorname{grad} g)) \cdot \overline{n} \, d\sigma =$$

$$= \int_{\Sigma} \left( f \cdot \operatorname{rot}(\operatorname{grad} g) - \operatorname{grad} g \times \operatorname{grad} f \right) \cdot \overline{n} \, d\sigma =$$

$$= \int_{\Sigma} \left( (\operatorname{grad} f) \times (\operatorname{grad} g) \right) \overline{n} d\sigma.$$

Pentru a doua egalitate, calculăm rotorul:

$$\operatorname{rot}\left(\left(f\frac{\partial g}{\partial x} + g\frac{\partial f}{\partial x}\right)\overline{i} + \left(f\frac{\partial g}{\partial y} + g\frac{\partial f}{\partial y}\right)\overline{j} + \left(f\frac{\partial g}{\partial z} + g\frac{\partial f}{\partial z}\right)\overline{k}\right) = 0,$$

deci circulația este nulă (s-a folosit teorema de simetrie a lui Schwartz).

- **32.** Fie  $(\Sigma, \partial \Sigma)$  o suprafață cu bord orientat și fie  $\overline{n}$  versorul normalei la suprafața  $\Sigma.$
- **a.** Dacă f este o funcție de clasă  $\mathcal{C}^1$  pe  $(0,\infty)$ , să se calculeze circulația câmpului vectorial  $\overline{V} = f(r)\overline{r}$  pe curba  $\partial \Sigma$ .
- **b.** Dacă g este o funcție de clasă  $\mathcal{C}^1$  pe o vecinătate a lui  $\Sigma$  și  $\overline{c}$  este un vector constant, să se demonstreze că circulația câmpului de vectori  $\overline{W}(x,y,z)=g(x,y,z)\,\overline{c}$  pe curba  $\partial\Sigma$  este

$$\int_{\Sigma} \overline{c} \left( \overline{n} \times \operatorname{grad} g \right) d\sigma.$$

#### Solutie

a. Aplicăm formula lui Stokes; pentru aceasta, calculăm

$$\operatorname{rot} \overline{V} = f(r)\operatorname{rot} \overline{r} - \overline{r} \times \operatorname{grad} f(r) = -\overline{r} \times \frac{f'(r)}{r} \overline{r} = \overline{0},$$

deci circulația este nulă.

**b.** Aplicăm formula lui Stokes; calculând rotorul câmpului  $\overline{W}$ , obținem

$$rot\overline{W} = -\overline{c} \times \operatorname{grad} g,$$

ceea ce conduce la rezultatul cerut.

**33.** Fie  $(\Sigma, \partial \Sigma)$  o suprafață cu bord orientat, fie  $f \in \mathcal{C}^1(R)$ ,  $a \in R^3$  și fie  $\overline{V} = (\overline{a} \operatorname{grad} f(r)) \overline{r}$ , unde,  $\overline{r}$  este vectorul de poziție. Să se demonstreze:

$$\int_{\partial \Sigma} \overline{V} \ d\overline{r} = \int_{\Sigma} \frac{\overline{a} \times \overline{r}}{r} f'(r) \ \overline{n} \ d\sigma,$$

unde,  $\overline{n}$  este versorul normalei la  $\Sigma$ .

#### Soluție

Se aplică formula lui Stokes:

$$\int_{\partial \Sigma} \overline{V} \ d\overline{r} = \int_{\Sigma} \frac{\overline{a} \times \overline{r}}{r} f'(r) \overline{n} \ d\sigma = \int_{\Sigma} \operatorname{rot} \left( (\overline{a} \ \operatorname{grad} f(r)) \overline{r} \right) \overline{n} \ d\sigma.$$

Calculăm acum rotorul lui  $\overline{V}$ ; pentru aceasta, calculăm mai întâi:

$$\operatorname{grad} f(r) = f'(r)\operatorname{grad} r = f'(r)\frac{\overline{r}}{r}.$$

Obţinem:

$$\operatorname{rot}\left(\left(\overline{a}\operatorname{grad}f(r)\right)\overline{r}\right) = \operatorname{rot}\left(\frac{\left(\overline{a}\ \overline{r}\right)}{r}f'(r)\cdot\overline{r}\right) =$$

$$= \frac{\left(\overline{a}\ \overline{r}\right)}{r}f'(r)\operatorname{rot}\overline{r} - \overline{r}\times\operatorname{grad}\left(\frac{\left(\overline{a}\ \overline{r}\right)}{r}f'(r)\right)$$

$$= -\overline{r}\times\left(f'(r)\operatorname{grad}\left(\frac{\left(\overline{a}\ \overline{r}\right)}{r}\right) + \frac{\left(\overline{a}\overline{r}\right)}{r}\operatorname{grad}f'(r)\right) =$$

$$= -\overline{r}\times\left(f'(r)\frac{r\,\overline{a} - \left(\overline{a}\,\overline{r}\right)\,\overline{r}}{r^2} + \frac{\left(\overline{a}\ \overline{r}\right)}{r}f''(r)\,\overline{r}\right) =$$

$$= \frac{f'(r)}{r}\left(\overline{a}\times\overline{r}\right),$$

ceea ce încheie demonstrația.

# Capitolul 10

# Exemple de teste pentru examen

#### 10.1 Analiză matematică I

#### Testul 1.

**I.** Este spaţiul  $(R^2, || \|_2)$  complet ? Justificare.

II. Să se studieze convergența seriilor:

$$\sum_{n>1} \frac{\sqrt[3]{n^3 + n^2 - n}}{n^2}, \quad \sum_{n>1} n! \left(\frac{a}{n}\right)^n, a \in R$$

 $\sum_{n\geq 1} \frac{\sqrt[3]{n^3+n^2}-n}{n^2}, \quad \sum_{n\geq 1} n! \left(\frac{a}{n}\right)^n, a\in R$  III. Să se construiască un șir al aproximațiilor succesive care să conveargă la soluția reală a ecuației  $x^3 + 12x - 1 = 0$ .

 $\mathbf{IV.}$ Să se studieze convergența punctuală și uniformă a șirului de funcții  $f_n: [0,1] \mapsto R, f_n(x) = x^n - x^{n+1}.$ 

**V.** Să se studieze existența derivatelor parțiale și a diferențialei (în origine) pentru funcția: 
$$f(x,y) = \begin{cases} \frac{x^2y}{x^2+y^2}, & (x,y) \neq (0,0) \\ 0, & (x,y) = (0,0) \end{cases}$$

**VI.** Să se determine maximul şi minimul funcției  $f(x,y) = x^2 + y^2 - 3x - 2y + 1$ pe mulțimea  $K = \{(x, y) \in \mathbb{R}^2 \mid x^2 + y^2 \le 1\}.$ 

# Testul 2.

- I. Sunt următoarele afirmații adevărate? Justificare.
- a. Orice funcție de clasă  $\mathcal{C}^1(\mathbb{R}^2)$  este diferențiabilă.
- **b.** Dacă  $f: \mathbb{R}^2 \to \mathbb{R}$  are derivate parțiale în origine, atunci ea este diferențiabilă în origine.

290

II. Să se studieze convergența uniformă a seriei:  $\sum_{n\geq 1} \frac{\sin nx}{n^2}, x \in R$ . Se poate deriva seria termen cu termen (pe R)?

III. Să se afle extremele locale ale funcției  $f(x,y)=x^2ye^{2x+3y}$ , pe  $R^2$ .

IV. Să se calculeze aproximarea liniară a funcției  $f(x,y,z) = \sqrt{\frac{x+1}{(y+1)(z+1)}}$ în vecinătatea originii.

V. Fie  $\overline{r}$  vectorul de poziție și fie  $f \in \mathcal{C}^1(R)$ . Să se calculeze laplacianul funcțiilor  $g(x, y, z) = f\left(\frac{1}{r}\right)$  și h(x, y, z) = f(r).

VI. Pe spațiul Banach  $(\mathcal{C}[a,b], \| \|_{\infty})$  al funcțiilor continue (reale) considerăm aplicația  $J: \mathcal{C}[a,b] \mapsto R, J(f) = \int_a^b f(t)dt$ . Este J funcțională liniară? Dar continuă?

#### Testul 3.

I. Teorema contracției.

II. Să se studieze convergența și convergența absolută seriilor:  $\sum_{n\geq 1}\frac{n(2+i)^n}{3^n}\ ,\ \sum_{n\geq 2}\frac{(-1)^n}{\ln n}.$ 

$$\sum_{n\geq 1} \frac{n(2+i)^n}{3^n} \ , \ \sum_{n\geq 2} \frac{(-1)^n}{\ln n}.$$

III. În spațiul metric R, mulțimea  $\{(-1)^n \frac{n-1}{n+1} \mid n \in N\} \cup \{-1,1\}$  este închisă sau deschisă? Justificare.

IV. Să se dezvolte în serie de puteri centrate în zero funcțiile  $f(x) = \sin 2x$ 

şi 
$$g(x) = \ln(1+2x)$$
. Să se calculeze apoi suma seriei  $\sum_{n\geq 1} \frac{(-1)^{n+1}}{n}$ .  
V. Fie funcția  $f(x,y) = \begin{cases} xy\sin\frac{x^2-y^2}{x^2+y^2} & \text{dacă} & (x,y) \neq (0,0) \\ 0 & \text{dacă} & (x,y) = (0,0) \end{cases}$ 

a. Să se arate că f este de clasă  $\mathcal{C}^1$  pe  $\mathbb{R}^2$ 

**b.** Să se arate că f are derivate parțiale mixte de ordinul al doilea în orice punct și să se calculeze  $\frac{\partial^2 f}{\partial x \partial y}$  și  $\frac{\partial^2 f}{\partial y \partial x}$  în origine; este f de clasă  $\mathcal{C}^2$  pe  $R^2$ ? **VI.** Să se afle extremele funcției y = y(x) definite implicit de ecuația  $x^3 + y^3 - 2xy = 0$ .

## Testul 4.

I. Teorema lui Taylor. Este adevărat că orice funcție  $f \in \mathcal{C}^{\infty}(R)$  se poate dezvolta în serie Taylor în vecinătatea oricărui punct?

II. Să se calculeze rotorul câmpului vectorial  $\overline{V} = \frac{1}{\pi}(\overline{k} \times \overline{r})$ .

III. Să se aproximeze cu o eroare mai mică decât  $10^{-3}$  soluția reală a ecuației

$$x^3 + 4x - 1 = 0.$$

 ${\bf IV.}$ Să se determine valorile extreme ale produsului xy când x și y sunt coordonatele unui punct de pe elipsa de ecuație  $x^2 + 2y^2 = 1$ .

**V.** Să se studieze convergența punctuală și uniformă a șirului  $u_n: R \mapsto R$ ,  $u_n(x) = \sqrt{x^2 + \frac{1}{n^2}}, n > 0.$ 

**VI.** Să se studieze convergența seriei  $\sum_{n\geq 0} \frac{n!}{(a+1)(a+2)\dots(a+n)}, \ a>-1.$ 

#### Testul 5.

I. Spaţiul metric al funcţiilor continue  $(\mathcal{C}[a,b], \| \|_{\infty})$  este complet? Justi-

III. Să se calculeze cu o eroare mai mică decât 
$$10^{-2}$$
 integrala  $\int_0^1 \frac{\sin x}{x} \, dx$ .

III. Fie funcția  $f(x,y) = \begin{cases} \frac{xy}{\sqrt{x^2 + y^2}} & \text{dacă} \quad (x,y) \neq (0,0) \\ 0 & \text{dacă} \quad (x,y) = (0,0) \end{cases}$ 
Să se studieze continuitatea, existența derivatelor parțiale de ordinul întâi

și diferențiabilitatea în origine.

IV. Să se determine extremele locale ale functiei:

 $f:(0,2\pi)\times(0,2\pi)\mapsto R, f(x,y)=\sin x\sin y\sin(x+y).$ 

**V.** Fie  $g \in \mathcal{C}^1(R^2)$  și fie funcția z = z(x,y) definită implicit de ecuația  $g(y^2 - x^2, z - xy) = 0$ . Să se calculeze expresia  $E = y \frac{\partial z}{\partial x} + x \frac{\partial z}{\partial y}$ .

**VI.** Se poate deriva termen cu termen seria  $\sum_{n=1}^{\infty} \frac{\sin nx}{2^n}, x \in \mathbb{R}$ ?

# Testul 6.

- I. Considerăm pe Q și C metrica uzuală: d(x,y) = |x-y|. Să se stabilească dacă următoarele afirmații sunt adevărate sau false. Justificare.
- **a.** Spațiul metric (Q, d) este complet.
- **b.** Spatiul metric (C, d) este complet.
- III. Să se studieze convergența seriei  $\sum_{n\geq 1} \left(\frac{an+1}{bn+1}\right)^n, \ a>0, \ b>0.$

III. Să se determine mulțimea de convergență (în R) a seriei de puteri:

$$\sum_{n=1}^{\infty} \frac{n!}{(a+1)(a+2)...(a+n)} x^n , a > 0.$$

IV. Să se calculeze divergența câmpului vectorial  $\overline{V} = \overline{r} + \frac{k \overline{r}}{r^4} \overline{r}$ , unde  $\overline{k}$  este versorul axei Oz, iar  $\overline{r}$  este vectorul de poziție.

**V.** Să se determine valorile extreme ale funcției  $f: \mathbb{R}^3 \mapsto \mathbb{R}$ ,

292

 $f(x, y, z) = 2x^2 + y^2 + 3z^2$  pe mulțimea  $\{(x, y, z) \in R^3 | x^2 + y^2 + z^2 = 1\}.$ **VI.** Fie  $f:(0,1]\mapsto R$ ,  $f(x)=\sin\frac{1}{x}$ . Să se studieze dacă f este uniform continuă.

#### Testul 7.

I. Serii de puteri, teorema lui Abel.

II. Să se dezvolte în serie în jurul originii funcția  $f(x) = \operatorname{arctg} x$  și să se calculeze cu o eroare mai mică decât  $10^{-2}$  integrala  $\int_0^{\frac{1}{2}} \frac{\operatorname{arctg}_x}{x} dx$ .

**III.** Fie  $f: R^3 \mapsto R$ ;  $f(x,y,z) = x^2 + yz - xy$  şi a = (1,1,2). Să se determine versorul s stiind că  $\frac{df}{ds}(a)$  este maxim.

IV. Să se determine extremele funcției z = z(x,y), definite implicit de ecuația  $z^3 + z + 20(x^2 + y^2) - 8(xy + x + y) = 0.$ 

V. Să se caracterizeze șirurile Cauchy și cele convergente într-un spațiu metric discret.

**VI.** Să se afle  $f \in \mathcal{C}^2(R)$  știind că funcția  $u(x,y) = f(x^2 - y^2)$  este armonică pe  $\mathbb{R}^2$ .

#### Testul 8.

I. Să se enunțe și să se demonstreze trei criterii de convergență pentru serii cu termeni pozitivi.

II. Fie  $a, b \in R, a < b$ . Să se demonstreze că  $d_1(f, g) = \int_a^b |f(x) - g(x)| dx$ 

este distanță pe mulțimea funcțiilor continue  $\mathcal{C}[a,b]$ . III. Să se calculeze suma seriei numerice  $\sum_{n\geq 0} \frac{(-1)^n}{3n+1}$ , folosind seria de puteri

$$\sum_{n \ge 0} \frac{(-1)^n}{3n+1} x^{3n+1}.$$

$$\sum_{n\geq 0} \frac{(-1)^n}{3n+1} x^{3n+1}.$$
 IV. Să se studieze continuitatea și existența derivatelor parțiale în origine ale funcției  $f(x,y) = \begin{cases} e^{-\left(\frac{x^2}{y^2} + \frac{y^2}{x^2}\right)} & \text{dacă} \quad xy \neq 0 \\ 0 & \text{dacă} \quad xy = 0 \end{cases}$  V. Fie  $F \in C^2(R^2)$ . Funcția  $y = y(x)$  este definită implicit de ecuația

V. Fie  $F \in C^2(\mathbb{R}^2)$ . Funcția y = y(x) este definită implicit de ecuația

$$F(\sin x + y, \cos y + x) = 0.$$

Să se determine y'' în punctele critice ale lui y.

**VI.** Fie ecuația diferențială  $x^2 \frac{d^2y}{dx^2} + x \frac{dy}{dx} + 2y = 0$ . Ce devine ecuația dacă

se face schimbarea de variabile  $(x,y)\mapsto (t,y)$ , unde  $x=e^t$  ?

#### Testul 9.

- I. În R (cu distanța uzuală) orice şir Cauchy este convergent? Justificare.
- II. Să se studieze convergența și convergența absolută a seriei  $\sum_{n\geq 1} \frac{(-1)^n}{\ln n}$ .
- III. Să se dezvolte în serie de puteri centrate în zero funcția  $f(x) = \arcsin x \text{ și apoi să se calculeze suma seriei } 1 + \sum_{n \geq 1} \frac{1 \cdot 3 \cdot 5 \dots \cdot (2n-1)}{2 \cdot 4 \cdot 6 \dots (2n)} \cdot \frac{1}{2n+1}.$
- IV. Folosind dezvoltări limitate să se calculeze limita:  $\lim_{x\to 0} \frac{1-\cos x^2}{x^2\sin x^2}$ .
- V. Fie funcţia:  $f(x,y) = \begin{cases} \frac{xy^3}{x^2 + y^2} & \text{dacă} \quad (x,y) \neq (0,0) \\ 0 & \text{dacă} \quad (x,y) = (0,0) \end{cases}$ a. Să se arate că f este de clasă  $\mathcal{C}^1$  pe  $R^2$ .
- b. Să se arate f are derivate parțiale mixte de ordinul al doilea în origine și să se calculeze  $\frac{\partial^2 f}{\partial x \partial y}$  și  $\frac{\partial^2 f}{\partial y \partial x}$  în origine; este funcția f de clasă  $\mathcal{C}^2$  pe  $R^2$ ? VI. Fie  $a, b, c \in R$ ,  $a^2 + b^2 + c^2 \neq 0$ ; să se determine valorile extreme ale
- funcției  $f: R^3 \mapsto R$ , f(x,y,z) = ax + by + cz, pe mulțimea  $D = \{(x,y,z) \in R^3 \mid x^2 + y^2 + z^2 = r^2\}.$

#### Testul 10.

- I. Derivarea și integrarea termen cu termen a șirurilor de funcții. II. Să se studieze convergența absolută pentru seria  $\sum_{n\geq 2} \frac{(-1)^n}{n\ln^2 n}$ .
- III. Pe spațiul Banach complex  $(\mathcal{C}[a,b], \| \|_{\infty})$  considerăm operatorul:  $(Mf)(x) = xf(x), \ \forall f \in \mathcal{C}[a,b], \ \forall x \in [a,b].$
- a. Să se demonstreze că M este liniar și continuu și ||M|| = |b|.
- **b.** Să se demonstreze că spectrul lui M este :  $\sigma(M) = [a, b]$ .
- c. Să se determine mulțimea valorilor proprii.
- IV. Să se calculeze mulțimea de convergență (în C) a seriei  $\sum_{n\geq 1}\frac{z^n}{n},\,z\in C.$
- **V.** Este funcția  $g: R^2 \mapsto R, g(x,y) = x\sqrt{x^2 + y^2}$  de clasă  $C^1(R^2)$ ?
- VI. Să se determine punctele de extrem local ale funcției:

$$f(x,y) = 3xy^2 - x^3 - 15x - 36x + 9, (x,y) \in \mathbb{R}^2.$$

294

#### Analiză matematică II 10.2

#### Testul 1.

I. Să se enunțe și să se demonstreze două criterii de convergență absolută pentru integrala Riemann improprie.

II. Să se calculeze 
$$\int_{0}^{\infty} \frac{x^{\frac{1}{4}}}{(x+1)^{2}} dx$$
.

III. Să se calculeze integrala:

$$\begin{split} &\int_D \left(1+\sqrt{x^2+y^2}\right) dx dy, \ D=\{(x,y)\in R^2\,;\, x^2+y^2-y\leq 0,\, x\geq 0\}.\\ &\mathbf{IV.} \text{ Fie } 0< k< R; \text{ să se calculeze volumul mulţimii:}\\ &\Omega=\{(x,y,z)\in R^3\mid x^2+y^2+z^2\leqq R^2,\, z\,\geq\, k\}. \end{split}$$

$$\Omega = \{(x, y, z) \in R^3 \mid x^2 + y^2 + z^2 \le R^2, \ z \ge k\}.$$

**V.** Fie câmpul vectorial 
$$\overline{V} = \overline{r} + \frac{\overline{k}\,\overline{r}}{r^4}\,\overline{r}$$
 și fie suprafața:  $\Sigma = \{(x,y,z); z = 3 - x^2 - y^2, 1 \le z\} \cup \{(x,y,z); x^2 + y^2 \le 2, z = 1\}.$ 

Să se calculeze fluxul lui  $\overline{V}$  prin  $\Sigma$  (orientată după normala exterioară).

VI. Ce relații de incluziune sunt între mulțimile:

**i.** 
$$\ell^1(Z)$$
 și  $\ell^2(Z)$ ,

ii.  $L^{1}[0, 2\pi]$  și  $L^{2}[0, 2\pi]$ ? Justificare.

## Testul 2.

I. Formula Green-Riemann.

II. Să se studieze continuitatea funcției 
$$F(y) = \int_0^\infty \frac{\sin xy}{1+x^2} dx, \forall y \in R.$$

III. Pe spațiul Hilbert  $\ell^2(N)$  considerăm operatorul:

$$V:\ell^2(N)\longrightarrow \ell^2(N)\,,\,(Vx)(0)=0$$
 și  $(Vx)(n)=x(n-1)\,,\,\forall n\geq 1.$  Să se calculeze valorile proprii ale lui  $V.$ 

IV. Să se calculeze aria mulțimii plane D mărginite de curba de ecuație:  $\frac{x^2}{a^2} + \frac{y^2}{b^2} = 1$ , a și b fiind două constante pozitive. **V.** Să se calculeze aria submulțimii de pe sfera  $x^2 + y^2 + z^2 = 1$ , situate în

interiorul conului  $x^2 + y^2 = z^2$ .

VI. Să se calculeze direct și aplicând formula lui Stokes integrala

$$\int_{\Gamma} x dx + (x+y)dy + (x+y+z)dz \ , \Gamma : \ x^2 + y^2 = R^2, \ z = x+y.$$

# 295

#### Testul 3.

I. Formula Gauss-Ostrogradski.

II. Să se calculeze integrala:  $J(\alpha) = \int_{0}^{\frac{\pi}{2}} \frac{\arctan(\alpha tgx)}{tgx} dx, \alpha > 0, \alpha \neq 1.$ 

III. Să se calculeze integrala dublă:

 $\int\int_D (x+3y)dxdy,\,D$  fiind mulțimea plană mărginită de curbele de ecuații  $y=x^2+1,\,y=-x^2,\,x=-1,\,x=3.$ 

IV. Să se calculeze aria paraboloidul  $z = x^2 + y^2, z \in [0, h]$ .

**V.** Să se calculeze coordonatele centrului de greutate al unui arc de cerc de rază R și de măsură  $\alpha \in (0, \pi)$ , presupus omogen.

**VI.** Să se calculeze fluxul câmpului vectorial  $\overline{V} = \frac{1}{r} (\overline{r} \times \overline{k})$  printr-o suprafață închisă arbitrară ce nu conține originea în interior.

#### Testul 4.

I. Teorema lui Poincare.

II. Să se studieze convergența integralei  $\int_{1}^{\infty} \frac{\ln x}{\sqrt{x^3-1}} dx$ 

III. Să se dezvolte în serie Fourier funcția  $f(x) = |x|, x \in [-\pi, \pi]$ , prelungită prin periodicitate la întregul R. Să se deducă apoi suma seriei numerice:  $\frac{1}{1^2} + \frac{1}{3^2} + \frac{1}{5^2} + \dots$ 

**IV.** Fie  $\alpha = \frac{x-y}{x^2+y^2} dx + \frac{x+y}{x^2+y^2} dy$ . Să se calculeze integrala curbilinie  $\int_{\Gamma} \alpha$ , unde Γ este o curbă arbitrară închisă cu  $O \notin \Gamma$ .

**V.** Fie  $a>0,\ b>0,\ c>0,$  şi fie punctele A(a,0,0),B(0,b,0) şi C(0,0,c). Fie Γ reuniunea segmentelor  $[AB]\cup [BC]\cup [CA]$  (cu acest sens). Să se calculeze  $\int_{\Gamma}(z-y)dx+(x-z)dy+(y-x)dz$  direct şi aplicând formula lui Stokes.

**VI.** Să se calculeze fluxul câmpului de vectori  $\overline{r}=x\overline{i}+y\overline{j}+z\overline{k}$ , prin suprafața de ecuație  $z^2=x^2+y^2,z\in[0,1].$ 

Testul 5.

I. Formula lui Stokes.

296

- II. Să se calculeze integrala  $\int\limits_{n}^{1} \frac{dx}{(1-x^n)^{\frac{1}{n}}}, n \in N.$
- III. Să se determine seria Fourier asociată funcției  $f(x) = e^{ax}, x \in (-\pi, \pi]$  și apoi să se calculeze suma seriei de numere:  $\sum_{n\geq 1} \frac{1}{n^2+a^2}, a\neq 0.$
- IV. Să se calculeze volumul mulțimii mărginite de suprafețele de ecuații  $z = 4 - x^2 - y^2$ ,  $2z = 5 + x^2 + y^2$ .
- V. Să se calculeze fluxul câmpului de vectori  $\overline{V} = y\overline{i} x\overline{j} + z^2\overline{k}$ , prin suprafața de ecuație  $z = x^2 + y^2, z \in [0, 1].$
- VI. Să se calculeze masa firului material de ecuații parametrice:
- $x(t) = t, y(t) = \frac{1}{2}t^2, z(t) = \frac{1}{3}t^3, t \in [0, 1],$  cu densitatea  $F(x, y, z) = \sqrt{2y}$ .

#### Testul 6.

- I. Baze ortonormale în spații Hilbert și serii Fourier.
- II. Să se calculeze integrala  $\int_{0}^{1} \ln^{p} \left(\frac{1}{x}\right) dx, p > -1.$
- III. Să se calculeze aria mulțimii plane mărginite de curba de ecuație  $(x^2 + y^2)^2 = 2a^2xy$ , a fiind o constantă pozitivă.
- **IV.** Fie  $\alpha = \frac{-y}{x^2 + y^2} dx + \frac{x}{x^2 + y^2} dy$ .
- a. Să se calculeze integrala curbilinie  $\int_{\mathcal{C}(O,R)} \alpha$ , unde, am notat cu  $\mathcal{C}(O,R)$ cercul de centru O și rază R > 0.
- **b.** Să se calculeze  $\int_{\Gamma} \alpha$ , unde,  $\Gamma$  este o curbă arbitrară închisă astfel încât  $O \notin \Gamma$ .
- V. Să se calculeze volumul mulțimii mărginite de suprafețele de ecuații  $x^{2} + y^{2} + z^{2} = 1, y^{2} + z^{2} = x^{2}, x \ge 0.$
- ${f VI.}$  Să se calculeze, folosind formula lui Stokes, integrala:

$$\int_{\Gamma} y(y+2z)dx + 2x(y+z)dy + 2xydz$$

 $\int_{\Gamma}y(y+2z)dx+2x(y+z)dy+2xydz\;,$   $\Gamma$  fiind curba de ecuații  $\Gamma:\,z^2=x^2+y^2,\,x^2+y^2=2x.$ 

#### Testul 7.

I. Serii trigonometrice.

II. Fie 
$$\alpha > 0$$
. Să se calculeze  $\int_{0}^{\infty} \frac{\sin \alpha x}{x} dx$ .

**III.** Să se calculeze integrala dublă  $\int \int_D \ln(1+x^2+y^2) dx dy, \ D$  fiind mărginit de curbele de ecuații  $x^2 + y^2 = e^2$ ,  $y = x\sqrt{3}$ ,  $x = y\sqrt{3}$ ,  $x \ge 0$ .

**IV.** Fie 1-forma diferențială  $\alpha = ydx + xdy, (x, y) \in \mathbb{R}^2$ .

i. Este  $\alpha$  închisă? Dar exactă?

ii. Să se calculeze  $\int_{\Gamma} \alpha$  pe un drum cu capetele A(2,1) și B(1,3). V. Să se calculeze spectrul și norma operatorului diagonal:

$$D_{\alpha}: \ell^{2}(N) \mapsto \ell^{2}(N), \ (D_{\alpha}x)(n) = \alpha(n)x(n), \text{ unde } \alpha(n) = \frac{1}{n^{2}+1}.$$
 Este operatorul  $D_{\alpha}$  inversabil?

**VI.** Să se calculeze integrala de suprafață  $\int_{\Sigma} x^2 dy \wedge dz - 2xy dz \wedge dx + z^3 dx \wedge dy,$ unde,  $\Sigma = \{(x, y, z); x^2 + y^2 + z^2 = 9\}.$ 

#### Testul 8.

I. Integrale cu parametri.

II. Să se calculeze integrala:  $F(y) = \int_0^{\frac{\pi}{2}} \ln\left(\cos^2 x + y^2 \sin^2 x\right) dx$ ,  $\forall y > 0$ .

III. Să se calculeze volumul mulțimii:

$$\begin{split} \Omega &= \{(x,y,z) \in R^3 \, ; \, (x,y) \in D, \, 0 \leq z \leq f(x,y) \}, \\ \text{dacă } D &= \{(x,y) \in R^2 \, ; \, x^2 + y^2 \leq 2y \}, \, \Si \, f(x,y) = x^2 + y^2. \end{split}$$

IV. Să se calculeze masa și coordonatele centrului de greutate ale unei semisfere S de rază R și având densitatea constantă c.

**V.** Fie 
$$\overline{V} = (x^2 + y - 4)\overline{i} + 3xy\overline{j} + (2xz + z^2)\overline{k}$$
 şi fie semisfera  $\Sigma = \{(x,y,z) \in R^3 \mid x^2 + y^2 + z^2 = 16, \ z \geq 0\}.$ 

$$\Sigma = \{(x, y, z) \in R^3 \mid x^2 + y^2 + z^2 = 16, \ z \ge 0\}.$$

Să se calculeze fluxul câmpului rot  $(\overline{V})$  prin  $\Sigma$ , orientată cu normala exterioară (la sferă).

**VI.** Să se determine seria Fourier asociată funcției  $f(x) = x^2, x \in (-\pi, \pi],$ prelungită prin periodicitate la R. Să se calculeze apoi sumele seriilor de

numere: 
$$\sum_{n\geq 0}^{\infty} \frac{1}{n^2}$$
,  $\sum_{n\geq 1}^{\infty} \frac{(-1)^{n-1}}{n^2}$ ,  $\sum_{n\geq 1}^{\infty} \frac{1}{n^4}$ .

#### 298

#### Testul 9.

- I. Măsura și integrala Lebesgue.
- II. Să se calculeze integrala:  $F(a) = \int_{a}^{2} \ln\left(\frac{1+a\cos x}{1-a\cos x}\right) \frac{dx}{\cos x}, |a| < 1.$
- III. Să se calculeze:  $\int \int_D e^{x^2+y^2} dx dy$ ,  $D = \{(x,y) \in \mathbb{R}^2 : x^2 + y^2 \le 1\}$ .

IV. Să se calculeze norma și valorile proprii ale operatorului

$$W: \ell^2(Z) \to \ell^2(Z), (Wx)(n) = x(n-1), \forall n \in Z.$$

V. Fie 
$$P, Q, R : \Omega = \{(x, y, z) : y > 0, z \ge 0\} \mapsto R,$$
  
 $P = x^2 - yz + \frac{y}{x^2 + y^2}, \ Q = y^2 - zx - \frac{x}{x^2 + y^2}, \ R = z^2 - xy.$ 

$$P = x^2 - yz + \frac{y}{x^2 + y^2}, \ Q = y^2 - zx - \frac{x}{x^2 + y^2}, \ R = z^2 - xy.$$

Notând cu  $\omega = Pdx + Qdy + Rdz$ , să se calculeze  $\int_{\Gamma} \omega$ , unde  $\Gamma$  este un drum parametrizat arbitrar (inclus în  $\Omega$ ) ce unește punctele A(1,1,0) și B(-1,1,0).

**VI.** Fie  $\Sigma$  o suprafață închisă și fie K compactul mărginit de  $\Sigma$ . Să se demonstreze că:  $\frac{1}{3} \int_{\Sigma} \overline{r} \, \overline{n} \, d\sigma = \text{vol}(K)$ ,  $\overline{n}$  fiind normala exterioară la  $\Sigma$ .

### Testul 10.

- I. Funcțiile lui Euler.
- II. Fie  $f:[0,1]\times(0,\infty)\mapsto R,\, f(x,y)=\frac{x}{y^2}\;e^{-\left(\frac{x}{y}\right)^2}$  și fie integrala parametru  $F(y)=\int_0^1 f(x,y)\,dx$ . Să se calculeze:  $\lim_{y\to 0}\int_0^1 f(x,y)$  și  $\int_0^1 \lim_{y\to 0} f(x,y)\,dx$ . **III.** Să se calculeze volumul mulțimii mărginite de suprafețele de ecuații

 $x^2 + y^2 = 1$ ,  $z^2 = x^2 + y^2$ ,  $z \ge 0$ .

IV. Să se calculeze aria submulțimii de pe paraboloidul  $z=x^2+y^2$  situat în interiorul cilindrului  $x^2 + y^2 = 2y$ .

**V.** Să se calculeze, aplicând formula Green-Riemann,  $\int_{\Gamma} xydx + \frac{x^2}{2} dy$ ,

 $\Gamma = \{(x,y) \mid x^2 + y^2 = 1, x \le 0 \le y\} \cup \{(x,y) \mid x + y = -1, x \le 0, y \le 0\}.$  **VI.** Să se calculeze integrala de suprafață:

$$\int_{\Sigma} x^2 (y-z) dy \wedge dz + y^2 (z-x) dz \wedge dx + z^2 (x-y) dx \wedge dy,$$
 unde  $\Sigma = \{(x,y,z); z^2 = x^2 + y^2, 0 < z \le 1\}.$ 

# Bibliografie

# Lucrări teoretice

# 1. I. Colojoară

Analiză matematică, Ed. Didactică și pedagogică, București, 1983.

#### 2. R. Courant

Differential and Integral Calculus, vol. 1,2, Nordeman Publishing Co, 1945.

# 3. G.M. Fihtengolţ

Curs de calcul diferențial și integral, vol.1,2,3, Ed. Tehnică, 1965.

# 4. P. Flondor, O. Stănăşilă

Lecții de analiză matematică, Ed. ALL, 1993.

#### 5. L.V. Kantorovici, G.P. Akilov

Analiză funcțională, Ed. Științifică și enciclopedică, 1986

#### 6. M. Olteanu

Curs de analiză funcțională, Ed. Printech 2000.

# 7. C. P. Niculescu

Fundamentele analizei matematice, Ed. Academiei Române, 1996.

#### 8. W. Rudin

Principles of mathematical analysis, Mc Graw Hill, N.Y. 1964.

#### 9. O. Stănăşilă

Analiză liniară și geometrie, Ed. ALL, 2000

# 10. O. Stănăşilă

Matematici speciale, Ed. ALL, 2001.

## Culegeri de probleme

#### 11. C.M. Bucur, M. Olteanu, Roxana Vidican

Calcul diferențial - caiet de seminar, Ed. Printech, 2000.

# 12. N. Donciu, D. Flondor

Algebră și analiză matematică, Ed. Did. Ped., București, 1979.

# 13. Ioana Luca, Gh. Oprişan

Matematici avansate, Ed. Printech, 2001.

# 14. Ana Niţă, Tatiana Stănăşilă

1000 de probleme rezolvate și exerciții fundamentale, Ed. ALL, 1997.