

Event Detection on Social Media Streams

Antonia Saravanou, Ph.D. Student

antoniasar@di.uoa.gr, www.di.uoa.gr/~antoniasar KDDLab, dept. of Informatics and Telecommunications, University of Athens, Greece

Motivation

We study the problem of event detection in a social stream

Events could be news, disasters, concerts, sports happenings, etc.

Our goals:

- Identify the event
- Monitor the evolution, the duration and the location of the event
- Inform users

Content-based event detection

Identifying topics in a stream of text

A) Filtering Step:

Create Flood-Related Lexicon & Extract Flood-Related text

- Find areas

K-Means using the GPS coords → Clusters as Voronoi polygons

- Cluster areas

K-Means using:

- 1. *count*(*d*)
- 2. $ratio(d) = count(d) / \Sigma count(d')$, forall d'
- 3. speed(d) = ratio(d) ratio(d-1)

K = 500

Graph-based event detection

Model network as a graph

Building Step: Construct the network graph

- userX posted tweetA
- userY posted tweetD
- tweetD isReplyTo tweetA
- userY repliedTo userX
- userY repliedTo tweetA

B) Filtering Step:

- Large Connected Components indicate large-scale conversations:

 $LCCs \rightarrow event candidates$

prune *spam* LCCs → star graph structure e.g.,

The state of the s

Facet Crawler

To collect data from Twitter, we use our custom made crawler

different queries → different constraints from Twitter API e.g., limited number of queries per 15 min timecap

Our crawler can handle different query types with different parameters

example:

Crawl tweets with *location*:

- 2D bounding box with GPS (green), GPS enabled
- custom geocoding (red) e.g., location in user profile

Geocoding can extract an additional 10%

Experiments on content-based Collection of public tweets from the UK_ > 2.3M geotagged tweets Top 100 areas based on: a) number of all tweets b) number of flood-related tweets ! c) signal-to-noise ratio: **Ground Truth** #flood-related tweets in r **UK MetOffice** #tweets in r Visualization of 2 clusters $\underbrace{likert_score(j)} \longrightarrow [0, 5]$ $value_i =$ Speed feature has better performance Red cluster: mostly unaffected, speed decreases Blue *cluster*: affected, speed increases (b) Grouping regions, cluster 2 (blue

Experiments on graph-based

- Collection of public tweets from London
- ~ 700K geotagged tweets

ground truth:

- automatically from Wikipedia
- manual investigation

data into 15-min segments

Comparison:

- Act: number of tweets
- Sent: negative / positive
- ConCom: our method

		jaccard similarity	precision	recall	f-score
-	Act	0.5	0.42	0.86	0.56
	Sent	0.47	0.23	0.17	0.2
	ConCom	0.72	0.65	0.52	0.58
<u>'</u>					

(c) 1000 clusters