Parallel Image Compression & Decompression Using SVD

Kshitij Paliwal (2018201063) Sandeep Kumar Gupta (2018201076) Vishal Bidawatka (2018201004)

Introduction

Principal Component Analysis (PCA) gives the is a statistical procedure that uses an orthogonal transformation to convert a set of observations of possibly correlated variables (entities each of which takes on various numerical values) into a set of values of linearly uncorrelated variables called principal components.

Jacobi Rotation to find SVD

A one-sided Jacobi Rotation involves a sequence of column or row orthogonalizations. Here, we select an index pair (p,q) and determine the Jacobi Rotator such that the columns of AJ(p,q,theta) are orthogonal to each other.

Results after compression

A Image Of Zero 784 features

10% Tolerance
Reconstructed from compressed matrix
With 705 features

20% Tolerance Reconstructed from compressed matrix With 627 features

40% Tolerance
Reconstructed from compressed matrix
With 470 features

60% Tolerance Reconstructed from compressed matrix With 314 features

80% Tolerance
Reconstructed from compressed matrix
With 157 features

90% Tolerance Reconstructed from compressed matrix With 78 features

Similar results for '8'

Number of threads vs Runtime

Number of threads	Runtime (ms)
2	26644
3	18465
4	14121
5	22051
6	18860
7	16780
8	16223
9	18770
Serial Code	326427

Plot of threads vs runtime

Thank you