

Alzheimer's Disease Classification Using MRIs and Gene Expression Data

Presented By: Abdelrahman HABIB

Introduction

- 60% to 70% of elderly adults with progressive cognitive impairment have Alzheimer's disease (AD) [1].
- There are 3 (macro)-stages for AD:
 - o CTL (Controls): no deficit.
 - MCI (Mild Cognitive Impairment): few defects.
 - AD (Alzheimer's Disease): dementia.
- The objective of this challenge is to build three binary classification solutions to three different datasets, to classify between different stages on data obtained from MRI and Gene Expression data.

Challenge 1: AD vs CTL

- Dataset has been processed and prepared splitted into train, validation and testing (validation and testing to evaluate on training data).
- Top 5 feature has been selected with both correlation and Recursive Feature Elimination.
- SVM model has been used, hyper-tuned and validated using 10-fold cross-validation. The validation and prediction was using the best model.

Selected Features LDHB, DNAJC7, NACA, Caudate_R, Thalamus_R

Performance on the training dataset

	Accuracy	Sensitivity	Prec	F1	AUC	MCC	BA	
AD vs CTL	0.9167	1	1	0.90909	0.9167	0.8451543	0.9166667	

Challenge 2: AD vs MCI

- Various feature selection approaches has been explored for this dataset. Best result has been obtained using Recursive Feature Elimination to select top 10 features.
- Other feature selection approaches like Boruta algorithm has been explored, however, it obtained very low evaluation results.
- Selected features on the train dataset has been trained using a random forest model with repeated Cross-Validation of 10-folds and 5 repeats, with tuning hyper-parameters.

Approach

Selected Features

Right.Middle.Temporal.Gyrus, Left.Angular.Gyrus, Left.Middle.Temporal.Gyrus, Right.Angular.Gyrus, Right.Inferior.Temporal.Gyrus, Right.Parahippocampal.Gyrus, Left.Hippocampus, Left.Supramarginal.Gyrus, Right.Hippocampus, PIP5K2A

Performance on the training dataset

	Accuracy	Sensitivity	Prec	F1	AUC	MCC	BA
AD vs MCI	0.76	0.6667	0.8	0.727272727	0.756410256	0.52297636	0.756410256

Challenge 3: MCI vs CTL

- Various feature selection approaches has been explored for this dataset. Best result has been obtained using both correlation features elimination and Recursive Feature Elimination to select top 10 features.
- Other feature selection approaches like Lasso regularization has been explored, and couldn't obtain the best features based on the evaluation results.
- Both GBM and SVM models has been explored. Selected features on the train dataset has been trained using an SVM model with repeated cross-validation of 10-folds and 3 repeats, with tuning hyper-parameters.

Selected Features SHFM1, LOC728499, S100P, Hippocampus_L, SELPLG, ITPRIPL2, IKZF1

Performance on the training dataset

	Accuracy	Sensitivity	Prec	F1	AUC	MCC	BA
MCI vs CTL	0.8333	0.8824	0.8823529	0.8823529	0.7983	0.5966387	0.7983193

Conclusion

- Among the three challenges, best results were obtained in the ADvsCTL dataset using SVM model and both correlation and RFE feature selection approaches.
- SVM model has shown promising results on other datasets using different feature selection approaches.
- Other models as random forest and GBM has been explored on other datasets, with obtaining close results to the expected evaluation metrics.