Wydział Elektroniki i Technik Informacyjnych Politechnika Warszawska

Projektowanie układów sterowania (projekt grupowy)

Sprawozdanie z projektu nr 5, zadanie nr 5

Kamil Gabryjelski, Paweł Rybak, Paweł Walczak

Spis treści

1.	DMC	2
	1.1. Dobór horyzontów predykcji i sterowania	2
2.	Parametry λ i ψ	13
	2.1. Parametr λ	13
	2.2. Parametr ψ	20

Na podstawie analizy odpowiedzi skokowych przyjęliśmy horyzont dynamiki D=80. Przez E_i oznaczyliśmy wartość wskaźnika błędu dla wyjścia i, natomiast E jest sumą błędów dla wszystkich wyjść obiektu.

1.1. Dobór horyzontów predykcji i sterowania

Dobór horyzontów przeprowadzaliśmy korzystając z parametrów ψ i λ równymi 1. Rozpoczeliśmy od nastaw $N=N_u=D=80$. Dla tych parametrów błędy wynosiły:

```
-E_1 = 45,0725
```

- $-E_2 = 45,9624$
- $-E_3 = 24,6561$
- -E = 115,6910

Przebieg wyjść obiektu przedstawia wykres 1.1, a sterowań wykres 1.2.

Postanowiliśmy skrócić horyzonty do wartości $N=N_u=50$. Otrzymane błędy wyniosły:

- $-E_1 = 45,0726$
- $-E_2 = 45,962$
- $-E_3 = 24,6562$
- -E = 115,6908

Błędy regulacji były więc praktycznie jednakowe jak dla dłuższych horyzontów. Przebiegi wyjść i sterowań przedstawiają wykresy 1.3 i 1.4.

W kolejnym kroku skróciliśmy horyzont predykcji do wartości N=40, a sterowania $N_u=10$. Taka zmiana przyniosła niewielką poprawę wskaźników błędu:

```
-E_1 = 45,0801
```

- $-E_2 = 45,933$
- $-E_3 = 24,6021$
- -E = 115,6152

Przebieg wyjść obiektu przedstawiają wykresy 1.5 i 1.6.

Jak się okazało, dalsze skracanie horyzontu sterowania przyniosło znacznie bardziej wymierne rezultaty - dla $N_u=5$ wskaźniki błędów zmalały do wartości:

```
-E_1 = 44,4289
```

- $-E_2 = 44,1988$
- $-E_3 = 23,0761$
- -E = 111,7038

Przebieg wyjść obiektu przedstawiają wykresy 1.7 i 1.8.

Dalsze skracanie horyzontu predykcji nie przyniosło pozytywnych rezultatów. Dla $N_u=2$ wskaźniki błędów wyniosły:

```
-E_1 = 46,6684
```

- $-E_2 = 50,4711$
- $-E_3 = 27,023$
- -E = 124,1625

Można więc przypuszczać, że jeszcze mniejsze wartości horyzontu sterowania przyniosłyby pogorszenie jakości regulacji. Przebieg wyjść obiektu przedstawiają wykresy 1.9 i 1.10.

W kolejnych zadaniach używane będą horyzonty N=40 i $N_u=5$.

Rys. 1.1. Przebiegi wyjść obiektu dla horyzontów predykcji i sterowania $N=80,\,N_u=80.$

Rys. 1.2. Przebiegi sterowań obiektu dla horyzontów predykcji i sterowania $N=80,\,N_u=80.$

Rys. 1.3. Przebiegi wyjść obiektu dla horyzontów predykcji i sterowania $N=50,\,N_u=50.$

Rys. 1.4. Przebiegi sterowań obiektu dla horyzontów predykcji i sterowania $N=50,\,N_u=50.$

Rys. 1.5. Przebiegi wyjść obiektu dla horyzontów predykcji i sterowania $N=40,\,N_u=10.$

Rys. 1.6. Przebiegi sterowań obiektu dla horyzontów predykcji i sterowania $N=40,\,N_u=10.$

Rys. 1.7. Przebiegi wyjść obiektu dla horyzontów predykcji i sterowania $N=40,\,N_u=5.$

Rys. 1.8. Przebiegi sterowań obiektu dla horyzontów predykcji i sterowania $N=40,\,N_u=5.$

Rys. 1.9. Przebiegi wyjść obiektu dla horyzontów predykcji i sterowania $N=40,\,N_u=5.$

Rys. 1.10. Przebiegi sterowań obiektu dla horyzontów predykcji i sterowania $N=40,\,N_u=2.$

2.1. Parametr λ

W wyniku testowania różnych wartości współczynnika λ zaobserwowaliśmy, że błąd regulacji jest najmniejszy dla bardzo małych wartości λ . Trzeba jednak zauważyć, że niskie wartości parametru powodują, że przebieg sterowania jest znacznie "ostrzejszy", występują duże i nagłe skoki u przy zmianach wartości zadanej. W przypadku rzeczywistego obiektu, zjawisko to mogłoby mieć negatywny efekt, na przykład uszkodzenie części sterujących. Staraliśmy się więc doprowadzić do kompromisu między niskim wskaźnikiem błędu a łagodnym przebiegiem sterowania.

Testując różne wartości parametru λ , przyjęliśmy długości horyzontów N=40 i $N_u=5$, a parametry $\psi=1$.

Próba zwiększenia wartości parametrów λ okazała się przynosić znacznie wyższe współczynniki błędu.

```
-E_1 = 49,4821
```

 $-E_2 = 49,361$

 $-E_3 = 28,0998$

-E = 126,9428

Zdecydowaliśmy więc w kolejnych testach skupić się na parametrach λ poniżej 1. Przebiegi wyjść i sterowań przedstawiają wykresy 2.1 i 2.2.

Ustawienie parametrów na wartości $\lambda_1 = \lambda_2 = \lambda_3 = \lambda_4 = 0,2$ dało w rezultacie bardzo dużą poprawę wskaźników błędu regulacji.

```
-E_1 = 37,0136
```

 $-E_2 = 37,5058$

 $-E_3 = 14,446$

-E = 88,9654

Charakterystykę sterowania uznaliśmy za akceptowalną. Przebiegi wyjść i sterowań przedstawiają wykresy 2.3 i 2.4.

Parametry λ o wartościach 0,1 dały w rezultacie jeszcze mniejsze wskaźniki błędów. Można jednak dostrzec, że skoki sterowania na torach 1 i 4 mają znacznie większe wartości, niż na torach 2 i 3. Tor sterowania 3 natomiast ma łagodniejszy przebieg niż pozostałe. Z tego powodu przetestujemy, jak zachowuje się obiekt w przypadku, gdy parametry λ_1 i λ_4 mają wyższe wartości niż λ_2 , a λ_3 ma niższą wartość.

Przyjęliśmy parametry o następujących wartościach:

```
-\lambda_1 = 0.3
```

 $--\lambda_2=0.2$

 $-\lambda_3 = 0.1$

 $--\lambda_4 = 0.3$

Błędy regulacji:

 $-E_1 = 36,357$

 $-E_2 = 38,3743$

 $-E_3 = 16,2287$

-E = 90,9600

Jak widać odnotowaliśmy nieznaczne pogorszenie jakości regulacji. Można jednak zaobserwować na wykresie sterowań 2.6, że tory 1 i 4 mają łagodniejsze przebiegi. Uznaliśmy więc, że te wartości λ są w naszym przypadku optymalne. Przebiegi wyjść przedstawia wykres 2.5.

W kolejnych testach używane będą parametry λ o wartościach:

- $--\lambda_1=0.3$

- $\lambda_{2} = 0.2$ $\lambda_{3} = 0.1$ $\lambda_{4} = 0.3$

Rys. 2.1. Przebiegi wyjść obiektu dla $\lambda_1=2,\,\lambda_2=2,\,\lambda_3=2$ i $\lambda_4=2.$

Rys. 2.2. Przebiegi sterowań obiektu dla $\lambda_1=2,\,\lambda_2=2,\,\lambda_3=2$ i $\lambda_4=2.$

Rys. 2.3. Przebiegi wyjść obiektu dla $\lambda_1=0,\!2,\,\lambda_2=0,\!2,\,\lambda_3=0,\!2$ i $\lambda_4=0,\!2.$

Rys. 2.4. Przebiegi sterowań obiektu dla $\lambda_1=0,\!2,\,\lambda_2=0,\!2,\,\lambda_3=0,\!2$ i $\lambda_4=0,\!2.$

Rys. 2.5. Przebiegi wyjść obiektu dla $\lambda_1=0,\!3,\,\lambda_2=0,\!2,\,\lambda_3=0,\!1$ i $\lambda_4=0,\!3.$

Rys. 2.6. Przebiegi sterowań obiektu dla $\lambda_1=0,\!3,\,\lambda_2=0,\!2,\,\lambda_3=0,\!1$ i $\lambda_4=0,\!3.$

2.2. Parametr ψ

W wyniku testowania różnych wartości współczynnika ψ zaobserwowaliśmy, że błąd regulacji jest najmniejszy dla duzych wartości ψ . Podobnie jednak jak w przypadku dobierania λ zauważamy, że wysokie wartości parametru powodują, że przebieg sterowania jest znacznie "ostrzejszy", występują duże i nagłe skoki u przy zmianach wartości zadanej. W przypadku rzeczywistego obiektu, zjawisko to mogłoby mieć negatywny efekt, na przykład uszkodzenie części sterujących. Staraliśmy się więc doprowadzić do kompromisu między niskim wskaźnikiem błędu a łagodnym przebiegiem sterowania.

Testując różne wartości parametru psi, przyjęliśmy długości horyzontów N=40 i $N_u=5$ oraz współczynniki $\lambda_1=0,3,\ \lambda_2=0,2,\ \lambda_3=0,1,\ \lambda_4=0,3.$

Próba ustawienia parametrów ψ na wartość poniżej 1 dała w rezultacie wyższe błędy regulacji. Próba zmniejszenia wartości parametrów psi do 0,8 okazała się przynosić wyższe współczynniki błędu.

```
E_1 = 36,9114

E_2 = 39,0784

E_3 = 17,3408
```

-E = 93,3306

Zdecydowaliśmy więc, że kolejne testy przeprowadzane będą na wartościach ψ powyżej 1. Przebiegi wyjść i sterowań przedstawiają wykresy 2.7 i 2.7.

Zwiększenie współczynników ψ do wartości 5 dało w rezultacie bardzo dużą poprawę błędu regulacji.

```
-E_1 = 34,6604
-E_2 = 34,131
-E_3 = 9,0736
-E = 78,8650
```

Należy jednak odnotować, że przebieg sterowania jest teraz znacznie ostrzejszy, co jest szczególnie widoczne na torze sterowania 4 (wykres 2.10). Zmiana ψ nie miała dużego wpływu na pozostałe tory. Spróbujemy więc, manipulując parametrami ψ , złagodzić sterowanie na torze 4, zachowując jednocześnie poprawę błędu regulacji. Wyjścia obiektu przedstawia wykres 2.9.

W wyniku eksperymentów dowiedzieliśmy się, że najbardziej na sterowanie na torze czwartym wpływa parametr ψ_3 . Postanowiliśmy więc zmniejszyć ψ_3 , jednocześnie zwiększająć ψ_1 i ψ_2 . Przetestowaliśmy działanie obiektu na wartościach $\psi_1=6,5,\ \psi_2=7,\ \psi_3=2$. Jak widać na wykresie 2.12, sterowanie zostało nieco złagodzone, choć w rezultacie nieznacznie pogorszył się wskaźnik błedu regulacji.

```
-E_1 = 34,584
-E_2 = 35,2223
-E_3 = 10,3634
-E = 80,1697
```

Uznaliśmy jednak, że takie nastawy dają dobry kompromis między jakością regulacji a łagodnym sterowaniem. Przebiegi wyjść obiektu przedstawia wykres 2.11.

Rys. 2.7. Przebiegi wyjść obiektu dla $\psi_1=0.8,\,\psi_2=0.8,\,\psi_3=0.8.$

Rys. 2.8. Przebiegi sterowań obiektu dla $\psi_1=0,\!8,\,\psi_2=0,\!8,\,\psi_3=0,\!8.$

Rys. 2.9. Przebiegi wyjść obiektu dla $\psi_1=5,\,\psi_2=5,\,\psi_3=5.$

Rys. 2.10. Przebiegi sterowań obiektu dla $\psi_1=5,\,\psi_2=5,\,\psi_3=5.$

Rys. 2.11. Przebiegi wyjść obiektu dla $\psi_1=6,5,\,\psi_2=7,\,\psi_3=2.$

Rys. 2.12. Przebiegi sterowań obiektu dla $\psi_1=6,\!5,\,\psi_2=7,\,\psi_3=2.$