In [1]:

```
import numpy as np
import pandas as pd
import matplotlib.pyplot as plt
import seaborn as sns
from sklearn.model_selection import train_test_split
from sklearn.tree import DecisionTreeClassifier
```

In [3]:

traindf=pd.read_csv(r"C:\Users\shaik\Downloads\Mobile_Price_Classification_train.csv")
traindf

Out[3]:

	battery_power	blue	clock_speed	dual_sim	fc	four_g	int_memory	m_dep	mobile_wt	n_cores	
0	842	0	2.2	0	1	0	7	0.6	188	2	
1	1021	1	0.5	1	0	1	53	0.7	136	3	
2	563	1	0.5	1	2	1	41	0.9	145	5	
3	615	1	2.5	0	0	0	10	8.0	131	6	
4	1821	1	1.2	0	13	1	44	0.6	141	2	
1995	794	1	0.5	1	0	1	2	8.0	106	6	
1996	1965	1	2.6	1	0	0	39	0.2	187	4	
1997	1911	0	0.9	1	1	1	36	0.7	108	8	
1998	1512	0	0.9	0	4	1	46	0.1	145	5	
1999	510	1	2.0	1	5	1	45	0.9	168	6	

2000 rows × 21 columns

4

In [4]:

```
testdf=pd.read_csv(r"C:\Users\shaik\Downloads\Mobile_Price_Classification_test.csv")
testdf
```

Out[4]:

	id	battery_power	blue	clock_speed	dual_sim	fc	four_g	int_memory	m_dep	mobile_wt	 р
0	1	1043	1	1.8	1	14	0	5	0.1	193	 16
1	2	841	1	0.5	1	4	1	61	0.8	191	 1;
2	3	1807	1	2.8	0	1	0	27	0.9	186	 4
3	4	1546	0	0.5	1	18	1	25	0.5	96	 20
4	5	1434	0	1.4	0	11	1	49	0.5	108	 18
995	996	1700	1	1.9	0	0	1	54	0.5	170	 17
996	997	609	0	1.8	1	0	0	13	0.9	186	 :
997	998	1185	0	1.4	0	1	1	8	0.5	80	 1;
998	999	1533	1	0.5	1	0	0	50	0.4	171	 1;
999	1000	1270	1	0.5	0	4	1	35	0.1	140	 1!

1000 rows × 21 columns

In [5]:

traindf.info()

<class 'pandas.core.frame.DataFrame'>
RangeIndex: 2000 entries, 0 to 1999
Data columns (total 21 columns):

Data	COTUMNIS (COCAT	ZI COIUMIIS).	
#	Column	Non-Null Count	Dtype
0	battery_power	2000 non-null	int64
1	blue	2000 non-null	int64
2	clock_speed	2000 non-null	float64
3	dual_sim	2000 non-null	int64
4	fc	2000 non-null	int64
5	four_g	2000 non-null	int64
6	int_memory	2000 non-null	int64
7	m_dep	2000 non-null	float64
8	mobile_wt	2000 non-null	int64
9	n_cores	2000 non-null	int64
10	рс	2000 non-null	int64
11	px_height	2000 non-null	int64
12	px_width	2000 non-null	int64
13	ram	2000 non-null	int64
14	sc_h	2000 non-null	int64
15	SC_W	2000 non-null	int64
16		2000 non-null	int64
17	three_g	2000 non-null	int64
18	touch_screen	2000 non-null	int64
19	wifi	2000 non-null	int64
20	price_range	2000 non-null	int64
dtype	es: float64(2),	int64(19)	
		I/D	

memory usage: 328.2 KB

In [6]:

```
testdf.info()
```

```
RangeIndex: 1000 entries, 0 to 999
Data columns (total 21 columns):
                    Non-Null Count Dtype
 #
    Column
---
                    _____
 0
     id
                    1000 non-null
                                    int64
 1
     battery_power
                   1000 non-null
                                    int64
 2
     blue
                    1000 non-null
                                    int64
 3
     clock_speed
                    1000 non-null
                                    float64
 4
                    1000 non-null
                                    int64
     dual_sim
 5
                    1000 non-null
                                    int64
     fc
     four_g
 6
                    1000 non-null
                                    int64
 7
     int_memory
                    1000 non-null
                                    int64
                    1000 non-null
 8
                                    float64
     m_dep
 9
     mobile_wt
                    1000 non-null
                                    int64
                    1000 non-null
                                    int64
 10
    n_cores
                    1000 non-null
                                    int64
 11
    рс
 12
    px_height
                    1000 non-null
                                    int64
    px_width
 13
                    1000 non-null
                                    int64
                    1000 non-null
 14 ram
                                    int64
 15 sc_h
                                    int64
                    1000 non-null
                    1000 non-null
 16 sc_w
                                    int64
 17 talk_time
                    1000 non-null
                                    int64
 18 three_g
                    1000 non-null
                                    int64
 19 touch_screen
                    1000 non-null
                                    int64
                    1000 non-null
 20 wifi
                                    int64
dtypes: float64(2), int64(19)
memory usage: 164.2 KB
```

<class 'pandas.core.frame.DataFrame'>

In [7]:

```
traindf.shape,testdf.shape
```

Out[7]:

```
((2000, 21), (1000, 21))
```

In [8]:

```
traindf=traindf.head(1000)
traindf
```

Out[8]:

	battery_power	blue	clock_speed	dual_sim	fc	four_g	int_memory	m_dep	mobile_wt	n_cores	
0	842	0	2.2	0	1	0	7	0.6	188	2	
1	1021	1	0.5	1	0	1	53	0.7	136	3	
2	563	1	0.5	1	2	1	41	0.9	145	5	
3	615	1	2.5	0	0	0	10	0.8	131	6	
4	1821	1	1.2	0	13	1	44	0.6	141	2	
						•••		•••			
995	1456	0	1.6	1	5	0	49	0.2	193	3	
996	774	0	0.5	1	2	1	10	0.5	188	2	
997	1068	0	0.5	1	0	1	19	0.9	197	8	
998	1373	1	1.9	1	1	1	29	0.9	141	6	
999	1777	1	3.0	0	3	0	20	0.6	188	6	
1000	1000 rows x 21 columns										

1000 rows × 21 columns

→

In [9]:

```
traindf.shape,testdf.shape
```

Out[9]:

```
((1000, 21), (1000, 21))
```

In [10]:

```
X=testdf
y=traindf['price_range']
X_train,X_test,y_train,y_test=train_test_split(X,y,train_size=0.7,random_state=42)
```

In [11]:

```
from sklearn.ensemble import RandomForestClassifier
rfc=RandomForestClassifier()
rfc.fit(X_train,y_train)
```

Out[11]:

RandomForestClassifier()

In [12]:

```
In [13]:
```

```
from sklearn.model_selection import GridSearchCV
grid_search=GridSearchCV(estimator=rf,param_grid=params,cv=2,scoring="accuracy")
```

In [14]:

```
grid_search.fit(X_train,y_train)
```

Out[14]:

In [15]:

```
grid_search.best_score_
```

Out[15]:

0.2914285714285714

In [16]:

```
rf_best=grid_search.best_estimator_
rf_best
```

Out[16]:

RandomForestClassifier(max_depth=20, min_samples_leaf=20, n_estimators=25)

In [17]:

```
traindf['price_range'].value_counts()
```

Out[17]:

- 3 2762 248
- 2 240
- 0 242
- 1 234

Name: price_range, dtype: int64

In [18]:

```
from sklearn.tree import plot_tree
plt.figure(figsize=(80,40))
plot_tree(rf_best.estimators_[4],feature_names=X.columns,class_names=['3','2','1','0'],filled=True)
```


In [19]:

```
from sklearn.tree import plot_tree
plt.figure(figsize=(80,40))
plot_tree(rf_best.estimators_[5],feature_names=X.columns,class_names=['3','2','1','0'],filled=True)
```


In [20]:

```
rf_best.feature_importances_
```

Out[20]:

```
array([0.06683607, 0.06320588, 0.00550118, 0.07435044, 0. , 0.04132326, 0.01354109, 0.0692836 , 0.04022201, 0.05693953, 0.06601389, 0.06681763, 0.10930151, 0.08267723, 0.07008001, 0.04050325, 0.05253657, 0.03777228, 0.0053751 , 0.01481684, 0.02290263])
```

In [21]:

```
imp_df=pd.DataFrame({"Varname":X_train.columns,"Imp":rf_best.feature_importances_})
```

In [22]:

```
imp_df.sort_values(by="Imp",ascending=False)
```

Out[22]:

	Varname	Imp
12	px_height	0.109302
13	px_width	0.082677
3	clock_speed	0.074350
14	ram	0.070080
7	int_memory	0.069284
0	id	0.066836
11	рс	0.066818
10	n_cores	0.066014
1	battery_power	0.063206
9	mobile_wt	0.056940
16	sc_w	0.052537
5	fc	0.041323
15	sc_h	0.040503
8	m_dep	0.040222
17	talk_time	0.037772
20	wifi	0.022903
19	touch_screen	0.014817
6	four_g	0.013541
2	blue	0.005501
18	three_g	0.005375
4	dual sim	0.000000