Time series analysis of biomarkers for multiple myeloma

Dianna Kan, Yang Qu, Qingyang Yu, Shujun Yan

Outline

- Motivation
- Research problem
- Data & preprocessing
- Univariate models
 - Background
 - Implementation
 - Result
- Multivariate models
- Next steps

Motivation

Lab values

Time

Multiple Myeloma

Treatment

Research Problem

Univariate and multivariate time series analysis of lab values in the cohort of patients with multiple myeloma

Data & preprocessing

Machine Learning with Multiple Myeloma Research Foundation CoMMpass Dataset (ML-MMRF)

Univariate Models

Background - ARIMA

- Univariate model with 1D array-like time series input
- Autoregressive Integrated Moving Average(ARIMA)) model

$$Y_t = \alpha + \boxed{\phi_1 Y_{t-1} + \ldots + \phi_p Y_{t-p}} + \boxed{\theta_1 \epsilon_{t-1} + \ldots + \theta_q \epsilon_{t-q}} + \epsilon_t$$

- Stationary Assumption: If not, use transformation like difference
- 3 key hyperparameters:
 - p: the number of lags of Y (Order of AR)
 - q: the number of lagged residuals (Order of MA)
 - d: the minimum number of difference for stationary
- Drawbacks:
 - Not consider effect of external variables
 - Only take one time series

Related works

- ARIMAX: ARIMA with exogenous variables

exogenous ARIMA $Y_t = \sqrt{T_t} + \alpha + \phi_1 Y_{t-1} + \ldots + \phi_p Y_{t-p} + \theta_1 \epsilon_{t-1} + \ldots + \theta_q \epsilon_{t-q} + \epsilon_t$

- First point by Prof Rob J Hyndman on his website in 2010
- Application of ARIMAX
 - Thailand Export study: ARIMAX outperforms ARIMA

Exogenous: trade partners' Composite Leading Indicator (CLI)

- Still just one time series analysis

ARMA

Augmented Dickey Fuller test

All patients: p=0.0 < 0.05

1 patient: p=0.016 < 0.05

ARMA - AR

$$Y_t = \left[lpha + \phi_1 \, Y_{t-1} \, + ... + \phi_p \, Y_{t-p} \, \right] + heta_1 \, \epsilon_{t-1} \, + ... + heta_q \, \epsilon_{t-q} \, + \epsilon_t$$

Lab values

ARMA - AR

$$Y_t = \left(\alpha + \phi_1 Y_{t-1} + ... + \phi_p Y_{t-p} \right) + \theta_1 \epsilon_{t-1} + ... + \theta_q \epsilon_{t-q} + \epsilon_t$$

11

$$Y_t = \alpha + \phi_1 Y_{t-1} + ... + \phi_p Y_{t-p} + \theta_1 \epsilon_{t-1} + ... + \theta_q \epsilon_{t-q} + \epsilon_t$$

AR+MA

q e0.1 e0.2 Y0,1 Patient 0 e0,2 Y0,2 e0,1 ... • • • ...

Yn,1

Yn,2

Residual

[

Y0,p+q	 Y0,t
Yn,p+q	 Yn,t

4	Prediction

Y0,p+q	 Y0,t
Yn,p+q	 Yn,t

Patient n

ARMA - MA for Prediction

AR Baseline Treatment MA
$$Y_t = \alpha + \overbrace{\phi_1 Y_{t-1} + \ldots + \phi_p Y_{t-p}}^{\text{AR}} + \overbrace{\beta X}^{\text{Baseline Treatment}} \underbrace{}_{\text{P}} \underbrace{}_$$

- ARMA + Baseline + Most recent treatment at time t-1 (just one timestamp)

- ARMA + Baseline + AR Treatment

Baseline Data

Patient 0

• • •

Model	Number of features	
ARMA	p + q	
BARMA	p+q+8+62	
BARMAX	p + q + p*8 + 62	

Tuning p,q: 5-fold cross validation

Prediction Residual of Lab 15 serum_igm across all patients

Lab 15 serum_igm Prediction of 50th Patient

Results

Test error		RMSE		
lab		ARMA	BARMA	BARMAX
	1	0.15400	0.14794	0.14177
	2	0.05532	0.05700	0.04847
	3	0.11863	0.11875	0.11616
	4	0.75255	0.75260	0.75299
	5	0.07559	0.06896	0.07291
	6	0.05740	0.04911	0.02992
	7	0.14142	0.16013	0.15508
	8	0.11587	0.11166	0.10907
	9	0.07342	0.05100	0.04253
	10	0.14799	0.15495	0.14715
	11	0.02730	0.02805	0.02473
	12	0.14388	0.13982	0.14144
	13	0.22123	0.19199	0.20675
	14	0.06885	0.06964	0.06395
	15	0.09728	0.05065	0.04193
	16	0.33060	0.32582	0.33806
mean		0.16133	0.15488	0.15206

Multivariate Models

Hidden Markov Model- Baseline

Z_i: hidden state at time t Y_i: observed lab values at time t

Transition probability a_{ij} : the probability of moving from state i to state j underlying the Markov chain

Emission probability b_i: the probability of observing the lab values given the hidden state at time i

Hidden Markov Model - Baseline

 Z_1 Z_2 Z_3 ... Z_t Z_{t+1} Z_{t+1} Z_t Z_t

Prediction:

- Predict the hidden state at the next time point
- Compute the mean and variance of each feature at each hidden state
- Draw a sample from Gaussian distribution to be the predicted value

Z: hidden state at time i

- Number of hidden state
 - Tuned based on log-likelihood
 - Choose 12 hidden states

Transition matrix

Hidden Markov Model - Advanced

- Hidden Markov Model Baseline
 - only takes observed lab values into account
- But we have additional information.
 - Treatment data
 - Baseline covariates
- Hidden Markov Model Advanced
 - Modified the baseline model to incorporate with the above information
 - Assume:
 - Treatment and baseline covariates are independent of hidden state
 - Treatment will only affect the next observed lab value

Hidden Markov Model - Advanced

Z_i: hidden state at time i

Y_i: observed lab values at time t

T_i: treatment at time i

X: baseline covariate

Next steps

- Continue to work on implementation of Hidden Markov Model with treatments and baseline covariates
- Compare results between:
 - Baseline Hidden Markov Model
 - Hidden Markov Model with treatments and baseline covariates
- Compare results between univariate vs. multivariate model

Conclusion

Strength:

- Modified ARIMA & Hidden Markov Model to incorporate external variables (baseline covariates, treatment data)
- BARMAX: Good interpretability

Limitations:

- Missing values in the dataset standardization/imputation issue
- Assumption on treatment effect on the lab values at the next time point
- Assumptions in modified Hidden Markov Model

Future Work

BARMAX:

- Independent lag order for treatment
- Regularization
- Toggle treatments to test potential future lab value outcomes

Hidden Markov Model:

Deep Markov Model

Thank you!

