DUALITY IN CATEGORY THEORY

Lecture 2

1 Introduction

First, we'll talk about about some of the hom-set stuff we didn't really get much time to touch on last time.

1.1 Hom-Sets

Hi here have a hom-set

2 Duality

We start with some definitions:

Definition 1: Atomic Statements

Let \mathcal{C} be a category. Then if $a, b \in \text{ob}(\mathcal{C})$, $f, g \in \text{hom}(\mathcal{C})$, an atomic statement is a statement of the form:

- (a) a = dom(f) or b = cod(f)
- (b) id_a is the identity map on a
- (c) g can be composed with f to yield $h = g \circ f$.

That is, an atomic statement is just a statement about the axiomatic properties of categories.

From these, we can build phrases of *statements* in Σ , using the formal grammar defined by propositional logic.

Definition 2: Sentences

A sentence is a statement (see above) in which we have no free variables; that is every variable is "bound" or "defined." For instance, the statement "for all $f \in \text{hom}(\mathcal{C})$ there exists $a,b \in \text{ob}(\mathcal{C})$ with $f:a \to b$ " forms a sentence, while "For all $b, f:a \to b$ " does not. In the latter, we can't be sure what a,f are referring to.

Test of theorem

Theorem 2.1. Let \mathcal{B}, \mathcal{C} , and \mathcal{D} be categories. For all objects $c \in ob(\mathcal{C})$ and $b \in ob(\mathcal{B})$, let

$$\mathcal{L}_c: \mathcal{B} \to \mathcal{D}, \qquad \mathcal{M}_b: \mathcal{C} \to \mathcal{D}$$

be functors such that $\mathcal{M}_b(c) = \mathcal{L}_c(b)$ for all b and c. Then there exists a bifunctor $S: \mathcal{B} \times \mathcal{C} \to \mathcal{D}$ with $S(-,c) = \mathcal{L}_c$ for all c and $S(b,-) = \mathcal{M}_b$ for all b if and only if for every pair of arrows $f: b \to b'$ and $g: c \to c'$ one has

$$\mathcal{M}_{b'}(g) \circ \mathcal{L}_c(f) = \mathcal{L}_{c'}(f) \circ \mathcal{M}_b(g) \tag{1}$$

These equal arrows (1) in \mathcal{D} are then the value $\mathcal{S}(f,g)$ of the arrow function of \mathcal{S} at f and g.