1주차 2차시 통신프로토콜과 네트워크 계층구조 모델

[학습목표]

- 1. 통신프로토콜을 이해하기 위한 용어들을 설명할 수 있다.
- 2. 네트워크 계층구조 모델에서 대표적인 OSI 7계층에 대해 계층별로 설명할 수 있다.

학습내용1: 통신프로토콜

- 정보 교환을 위하여 정한 다양한 규칙과 방법에 대한 약속을 통신 규약이라고 하며, 이를 통하여 효과적인 통신이 가능하도록 함. 대표적인 것으로는 TCP/IP 프로토콜을 들 수 있음.
- 대표적 통신 프로토콜로 IBM에서 사용된 폐쇄형 망 구조에서의 SNA(System Network Architecture) 프로토콜과 개방형 망 구조의 대표적인 프로토콜인 ISO/OSI와 TCP/IP를 들 수 있음.
- TCP/IP의 경우, 응용 계층에 적용된 대표적인 프로토콜로는 SMTP, FTP, SNMP, HTTP 등이 있음.

1. 프로토콜 구성 요소

- ① 구문 (Syntax)
- 데이터, 즉 전송할 정보가 어떠한 구조와 순서로 표현되는지를 나타냄
- 형식(format), 부호화(coding), 신호레벨(signal level) 등을 나타냄
- 예) 어떤 프로토콜에서 데이터의 처음 8비트가 송신지 주소인지 또는 상대방 주소인지를 정의함
- ② 의미 (Semantics)
- 각각의 비트가 가지는 의미를 나타냄
- 해당 패턴에 대한 해석과 그 해석에 따른 전송오류, 오류수정 등에 관한 제어정보를 규정하는 영역
- 예) 프로토콜의 주소부분 데이터는 메시지가 전달될 경로 또는 상대방 최종 목적지를 나타냄
- ③ 타이밍 (Timing)
- 두 객체간의 통신속도를 조정하거나 메시지의 전송 시간 및 전송 순서 등에 대한 특성을 가리킴
- 예) 송신자가 데이터를 10Mbps의 속도로 전송하는데 수신자가 이를 1Mbps의 속도로 수신한다면, 이때 두 객체간의 타이밍이 맞지 않아 데이터의 유실이 발생될 수 있음.

2. 프로토콜 기능

- (1) 단편화와 재결합 (Fragmentation and Reassembly)
- ① 단편화(Fragmentationj): 응용 계층에서는 데이터 전송의 논리적 단위를 메시지라 하며, 응용 개체에서 이것을 연속적인 비트스트림으로 보내면, 하위 계층에서는 이 데이터를 임의의 작은 블록으로 잘라야 하는데, 이 작업을 단편화(Fragmentation)라 하며, 임의의 크기인 메시지는 일정한 데이터 단위인 패킷(packet)으로 나뉘고, 최종적으로 프레임(frame)으로 변환되어 물리매체를 통해 전송됨

② 재결합(Reassembly): 단편화의 반대 개념으로, 어떤 계층에서 단편화하여 전송된 데이터를 상대방과 동등한 계층에서 수신하고 이를 다시 하나로 합치는 기능임.

(2) 연결 제어 (Connection Control)

- 한 개체에서 다른 개체로 데이터를 전송하는 방법으로는 비연결형 데이터 전송(예: 데이터그램 방식)과 연결형 데이터 전송(예: 가상회선)으로 나뉨.
- 이 때, 연결의 설정, 해제, 조정기능 등을 총칭하여 연결제어라 함.

(3) 흐름제어 (Flow Control)

- 송수신 개체 간에 전송하고자 하는 데이터의 양이나 속도를 조절하는 기능
- 통신을 할 때, 송신측과 수신측의 속도차이나 네트워크 내부 문제 등으로 인해 수신측에서 데이터의 일부분을 수신하지 못하는 정보의 손실을 발생한 경우, 이를 제어해야 하는데 이러한 제어 기능을 흐름 제어라 함.

* 종류

- ① 정지-대기(Stop-and-Wait) 흐름제어 기법 수신측으로부터 확인신호를 받기 전에는 송신측에서 데이터를 전송할 수 없게 하는 기법
- ② 전송률-기반(Rate-Based) 흐름제어 기법 확인신호를 수신하기 전에 데이터의 양을 미리 정해주는 기법
- ③ 슬라이딩 윈도우(Sliding Windows) 기법 여러 개의 프레임을 동시에 전송할 수 있도록 하는 기법

(4) 오류 제어 (Error Control)

- 정보 전송 시 채널이나 네트워크 요소의 불안정성으로 데이터나 제어정보가 파손되는 경우 이를 처리하는 기법
- 대부분의 오류제어 기법은 프레임의 순서를 검사하여 오류를 찾고, 프로토콜 데이터 단위(PDU: Protocol Data Unit)를 재전송하는 형태를 취함.

* 종류

- ① 패리티 검사-코드(Parity Check) 방식 패리티 비트를 이용하여 수신 측에서 패리티 비트의 이상 유무를 검출하는 방식
- ② 순환-잉여도-검사(Cvclic Redundancy Check) 방식 다항식 코드를 이용하여 오류를 검출하는 방식

(5) 동기화 (Synchronization)

- 프로토콜 개체 사이에 정보를 송수신할 때 초기화 상태, 종료 상태 등의 동작 단계를 잘 맞추어야 하는데, 이러한 동작을 동기화라 함.
- 예: 송수신 간에 서로 한 비트의 시간 길이가 다르다면 전송 받은 신호를 유효한 정보로 변환할 수 없게 됨. 따라서 정보의 정확한 전송을 위해서는 동기화 과정이 필수적으로 필요함.

(6) 순서화 (Sequencing)

- 데이터들의 보내진 순서를 명시하는 기능으로, 연결형 데이터 전송에 주로 사용됨.
- 순서에 맞는 전달과 순서번호를 이용한 오류 검출이 주된 목적으로, 흐름제어나 오류제어를 위해서도 필요함.
- 예: TCP/IP 네트워크에서 TCP 계층의 순서번호(Sequence Number)를 예로 생각해 볼 수 있음.

학습내용2 : 네트워크 계층구조 모델

- 일반 사용자는 OSI 7계층 맨 위에 있는 응용계층을 통해 데이터의 송수신을 요청하게 되는데, 이 요청은 하위 계층으로 순차적으로 전달되어 맨 아래에 있는 물리 계층을 통해 상대 호스트에 전송됨.
- 요청이 각 계층으로 하달되는 과정에서 계층별로 담당하는 기능을 수행해 데이터를 안전하게 원하는 위치로 전달하는 구조
- 1. OSI 7계층 모델의 계층별 기능

L7	응용 계층 (Application Layer)
L6	표현 계층 (Presentation Layer)
L5	세션 계층 (Session Layer)
L4	전송 계층 (Transport Layer)
L3	네트워크 계층 (Network Layer)
L2	데이터 링크 계층 (Data Link Layer)
L1	물리 계층 (Physical Layer)

[OSI 7-Layer]

- * 1계층 물리 계층 : 네트워크에서 호스트가 데이터를 전송하기 위해서는 반드시 전송 매체로 연결되어 있어야 하며, 물리 계층은 호스트를 전송 매체와 연결하기 위한 인터페이스 규칙과 전송 매체의 특성을 다룸.
- * 2계층 데이터링크 계층 : 물리 계층으로 데이터를 전송하는 과정에서 노이즈(Noise)와 같은 여러 외부 요인에 의해 물리적 오류가 발생할 수 있으며, 데이터링크 계층은 물리적 전송 오류를 감지하는 기능을 제공해 송수신 호스트에 오류 인지할 수 있도록 함.
- * 3계층 네트워크 계층 : 데이터가 올바른 경로를 선택할 수 있도록 지원하는 계층으로, 라우터 등의 장비가 수행하는 기능에 해당됨.
- * 4계층 전송 계층 : 송신 프로세스와 수신 프로세스 간의 연결 기능을 제공하기 때문에 프로세스 사이의 안전한 데이터 전송을 지원함. 4계층까지의 기능은 운영체제에서 시스템 콜(System Call) 형태로 상위 계층에 제공하며, 5~7계층의 기능은 사용자 프로그램으로 작성됨.
- * 5계층 세션 계층 : 전송 계층의 연결과 유사한 세션 연결을 지원하지만 이보다 더 상위의 논리적 연결을 의미함. 즉, 응용 환경에서의 사용자 간의 대화(Dialog) 개념의 연결로 사용되므로 전송 계층의 연결과는 구분됨.

- * 6계층 표현 계층 : 전송되는 데이터의 의미(Semantic)를 잃지 않도록 올바르게 표현하는 방법(Syntax)을 다룸. 즉, 정보를 교환하는 시스템이 표준화된 방법으로 데이터를 인식할 수 있도록 해주는 역할. 표현계층의 주요 기능은 압축과 암호화임.
- * 7계층 응용 계층 : 사용자의 다양한 네트워크 응용 환경을 지원함, 응용 프로그램과 가장 밀접한 관계를 가짐.

[학습정리]

- 1. 통신 프로토콜이란 정보 교환을 위하여 정한 다양한 규칙과 방법에 대한 약속을 통신 규약이라고 하며, 이를 통하여 효과적인 통신이 가능하도록 한다. 대표적인 것으로는 TCP/IP 프로토콜을 들 수 있다.
- 2. 대표적 네트워크 계층구조 모델로는 OSI 7계층과 TCP/IP 계층 모델이 있다.
- 3. TCP/IP의 경우, 응용 계층에 적용된 대표적인 프로토콜로는 SMTP, FTP, SNMP, HTTP 등이 있다.
- 4. 프로토콜의 구성 요소로는 구문, 의미, 타이밍이 있다.
- 5. 프로토콜의 기능은 단편화와 재결합, 연결제어, 흐름제어, 오류제어, 동기화, 순서화 등을 들 수 있다.