Exercise 6. Use exercises 1 and 5 to prove the following:

Theorem. The maximum principle is equivalent to the well-ordering theorem.

Proof. Suppose that the maximum principle holds. If X has at most one element, then it is vacuously well-ordered. Otherwise, X has at least 2 elements x and y. The subset $\{x\}$ (resp. $\{x,y\}$) of X is well-ordered by the relation \varnothing (resp. $\{(x,y)\}$), so the collection $\mathscr A$ of exercise 5 and the relation \prec are well-defined and $\mathscr A$ is nonempty. There exists a maximal chain C in $\mathscr A$ that is linearly ordered by \prec . Suppose that there exists $x_0 \in X$ such that for all $A \in C$, $x_0 \notin A$. For all $A \in C$, define a relation $<'_A$ by

$$\forall y \in A, \quad x_0 <_A' y$$

$$\forall x, y \in A, x <_A' y \iff x <_A y$$

where $<_A$ is the order relation on A, as in the hypotheses from exercise 5. The set $A' = \{x_0\} \cup A$ is well-ordered by $<'_A$, and if $A, B \in \mathscr{A}$ satisfy $(A, <_A) \prec (B, <_B)$, then $(A', <'_A) \prec (B', <'_B)$ (since x_0 is the smallest element of $(A', <'_A)$ and of $(B', <'_B)$). Thus by adding the set $\{x_0\}$ to the family C, we create a new family C' that is linearly ordered by \prec , and strictly contains C. This contradicts the hypothesis that C is maximal; therefore $x_0 \in B'$ (as defined in exercise 5), from which we conclude that B' = X.

Therefore the order relation <' from exercise 5 makes X well-ordered, so that the maximum principle implies the well-order theorem.

Suppose now that the well-ordering theorem holds, and let X be a set. If X has at most one element, then the only strict partial order on X is \emptyset , and the maximum principle holds vacuously.

Otherwise, let \prec be a strict partial order on X, and let < be a well-order on X. For all $\alpha \in X$, let $S_{\alpha} = \{\beta \in X \mid \beta < \alpha\}$.

Define a relation \mathcal{R} on X by

$$x\mathcal{R}y \iff x \prec y \text{ or } y \prec x$$

and, for all $A \subset X$,

$$\mathcal{R}(A) = \{ y \in X \mid x\mathcal{R}y \text{ for all } x \in A \}$$

Let x_0 be an element of X, and let $C = \{0,1\}$. With the notations from

exercise 1, define

$$\rho \colon \mathscr{F} \to C$$

$$(f \colon S_{\alpha} \to C) \mapsto \begin{cases} 0 & \text{if } \alpha = x_0 \\ 0 & \text{if } \alpha \in \mathscr{R} \left(\{x_0\} \cup f^{-1} \left(\{0\} \right) \right) \\ 1 & \text{otherwise} \end{cases}$$

and

$$h \colon X \to C$$

 $\alpha \mapsto \rho(h|S_{\alpha})$

From exercise 1 we know that h is well-defined and unique. We have $h(x_0) = 0$, so $H = h^{-1}(\{0\})$ is nonempty. The set H is simply ordered by \prec : this is trivial if H has only one element. Otherwise let $\alpha, \beta \in h^{-1}(\{0\})$ be distinct elements of H such that that $\alpha < \beta$. If either of them equals x_0 , then they are comparable by definition of h. Otherwise, β is comparable with every element of $(h|S_{\beta})^{-1}(\{0\}) = h^{-1}(\{0\}) \cap S_{\beta}$, which contains α . The same reasoning holds in the case $\beta < \alpha$.

The set H is maximal for \prec . Suppose that there exists $B \subset X$ that is simply ordered by \prec and strictly contains H, and let α be the smallest element of B-H for \prec . Then $S_{\alpha} \subset H$; furthermore, $\alpha \mathscr{R} x_0$ since $x_0 \in B$. We also have $\alpha \in \mathscr{R}(\{x_0\} \cup (H \cap S_{\alpha}))$. From this we deduce that $h(\alpha) = 0$, a contradiction.

From the above we conclude that the well-ordering theorem implies the maximum principle.