Properties of Materials

Theme: Deformation

Lecture 1: Single Crystals

Professor Steve Eichhorn
s.j.eichhorn@bristol.ac.uk
Room 0.115, Queen's Building

Try to relate crystalline (and polycrystalline) mechanics to structure

Plastic Slip

Modulus vs. Strength

- Young's modulus
 - Resistance to small strains
 - Almost constant for steel
- Yield Strength
 - Resistance to permanent 'shear strains'
 - Order of magnitude change

Modulus

Number of bonds per unit area

$$N \approx \frac{1}{a_0^2}$$

Force for one bond

$$F = S(a - a_0)$$

$$\sigma = \frac{F}{A} = NS(a - a_0)$$

$$e = \frac{a - a_0}{a_0} \qquad \sigma = \frac{S}{a_0} e^{-\frac{S}{a_0}}$$

$$\sigma = Ee \longrightarrow E = \frac{3}{a_0}$$

 $a = a_0 + \delta$

Ta₀

Modulus

Bond Type	$S_0 (Nm^{-1})$	E (GPa)
Covalent (e.g. C-C)	50-180	200-1000
Metallic e.g Cu-Cu	15-75	60-300
Ionic e.g. Na-Cl	8-24	32-96
H-bond e.g. water ice	2-3	8-12
Van der Waals e.g. polymers	0.5-1	2-4

$$E = \frac{S}{a_0}$$

Stiff materials have stiff bonds and close packing

All atoms contribute – dominated by host system e.g. Fe

Slip Systems (yielding via shear)

Slip on parallel planes in slip system in single crystal

Slip

Crystals deform by shear and must maintain symmetry after deformation

010 direction

110 direction

Combination of plane + direction = slip system

Ease of Slip

- Easier if distance is short
 - Atoms are closely packed in the direction of slip
- Easier if the plane has lots of room to move
 - Not sitting in dimples of plane below
 - No need to raise up and over atoms
 - High packing in plane = lower packing out of plane
 - Close packed (hexagonal)2D lattice very good

 $Low \tau_c < \tau = \sigma \cos \phi \sin \lambda$

 $High \tau_c < \tau = \sigma \cos \phi \sin \lambda$

Determining slip systems

- 'Rules'
 - Closest packed directions
 - Closest packed planes
 - Slip happens on system with largest resolved shear stress (highest Schmid factor)

Slip Systems

Metals	Slip Plane	Slip Direction	_
	Face-Centered Cubic		<> Means equiv
Cu, Al, Ni, Ag, Au	{111}	$\langle 1\overline{10}\rangle$	directions relat
	Body-Centered Cubic		
α -Fe, W, Mo	{110}	$\langle \overline{1}11 \rangle$	symmetry
α -Fe,W	{211}	$\langle \overline{1}11 \rangle$	
α-Fe, K	{321}	$\langle \overline{1}11 \rangle$	()
	Hexagonal Close-Packed		{} Means equiv
Cd, Zn, Mg, Ti, Be	{0001}	$\langle 11\overline{2}0\rangle$	related by symi
Ti, Mg, Zr	$\{10\overline{1}0\}$	$\langle 11\overline{2}0\rangle$	
Ti, Mg	$\{10\overline{1}1\}$	$\langle 11\overline{2}0\rangle$	

ivalent ted by

valent planes metry

Ignore 4 index notation – not taught any more

What if there is no slip?

Summary

- Slip systems are close packed (planes and directions)
 - Low critical shear stress
- Slip (plasticity) happens on plane and direction with highest resolved shear stress
- If slip is impossible (low resolved shear stress) then get fracture first
 - Brittle materials have few available slip systems or high critical shear stress (next lecture)

Properties of Materials

Theme: Deformation

Lecture 2: Polycrystals

Professor Steve Eichhorn
s.j.eichhorn@bristol.ac.uk
Room 0.115, Queen's Building

Introduction

Strength of polycrystals from single crystals

How do we change strength?

Remember when slip occurs:

'Rules'

- Closest packed directions
- Closest packed planes
- Slip happens on system with largest resolved shear stress (highest Schmid factor)

What if there is no slip?

Summary

- Slip systems are close packed (planes and directions)
 - Low critical shear stress
- Slip (plasticity) happens on plane and direction with highest resolved shear stress
- If slip is impossible (low resolved shear stress) then get fracture first
 - Brittle materials have few available slip systems or high critical shear stress (next lecture)

Polycrystals

Ductile failure in tension - necking

Slip and failure occurring at about 45° to applied load but all the way around sample

Cup and cone fracture

Statistical approach with many random grains

$$\sigma_0 = 3\tau_0$$

Polycrystal slightly stronger than single crystal would suggest

Ductility by Crystal Structure

Crystal	Metal	Slip Plane	Slip Direction	Number /
FCC	Al,Cu,Ni,Ag,Au	{111}	$\langle 1\bar{1}0 \rangle$	12
BCC	Fe,W,Mo	{110}	$\langle 1\bar{1}1 \rangle$	12
	Fe,W	{211}	$\langle 1\bar{1}1 \rangle$	12
	Fe	{321}	$\langle 1\bar{1}1 \rangle$	24
HCP	Zn,Mg,Ti,Mg	(001)	$\langle 1\bar{1}1 \rangle$	3
	Ti,Mg,Zr	{100}	$\langle 1\bar{1}1 \rangle$	3

No need to learn number

This needs lots of slip systems so there is one nearby whatever the orientation

Brittle-Ductile Transition

Dislocations

Why?

Trying to shear whole planes sideways is physically impossible

Dislocation

- Extra half plane of atoms
- Allows and created by plastic deformation
- Explains most strengthening of metals

Without dislocations

With dislocations

Dislocations

1 dislocation = 1 lattice shift on one plane

Many dislocations = macroscopic deformation

The force needed to overcome small forces is *intrinsic* strength of lattice

Dislocation in equilibrium (forces balance)

Dislocation in metaequilibrium (forces balance)

Work hardening

Cold work produces more dislocations

Dislocations restrict each other

Increase in strength – reduction in ductility

Compression Tension

0%CW

24%CW

4%CW

600

500

Solute strengthening

 Strain fields around alloying elements stop dislocations moving easily

Dispersion strengthening

Approach situation

Sub-critical situation

Critical situation

Escape situation

Solid solution hardening (Chemistry)

Precipitation/dispersion hardening (Microstructure)

- We can often produce hard particles in metals
 - Carbides in steel,
 intermetallics in aluminium
 - Stop dislocations moving

Grain size strengthening

Grain size, d (mm)

IMPORTANT:

Usually improves toughness as well – small grains are really desirable

Grain size (diameter)

strength

Tensile yield strength

Intrinsic Constant yield

Combining Strengthening Effects

Uniaxial strength of large grained polycrystal

Uniaxial strength of smaller grained polycrystal

Grain diameter

Steels

Transformer cores

Architectural metalwork

Pressure vessels

Crankshaft

Titanium Applications in Aerospace

Fan Blades for Civil Jet Engines 37% by weight of Ti used for jet engines in commercial aircraft

Fan Blades for Military Jet Engines 24% by weight of Ti used for jet engines in military aircraft

Outer fuel tank sheathing and wings for Space vehicles

Titanium skeleton of Orion space capsule

Single Crystals

$$\eta = 1 - \frac{T_2}{T_1}$$

Efficiency of turbine increased operating at higher turbine temp

- High temperature properties
 - Dominated by grain boundaries (quick diffusion)
 - Solution: remove grain boundaries

Processing to Properties

Summary

- Polycrystals resemble continuum mechanics when there are many grains with lots of slip systems
 - Problems with HCP (few systems)
 - Problems with BCC (when cold the slip systems stop working)
- Strength of polycrystals constructed from strength of single crystals
 - Plasticity due to dislocations if they can't move the strength increases
 - Many mechanisms for increasing strength
 - Polycrystals are stronger than single crystals