

Solving 3D frictional contact problems: Formulations and comparisons of numerical methods.

RESEARCH

REPORT

N° 123456789

October 4, 2017

Project-Team Bipop

Solving 3D frictional contact problems: Formulations and comparisons of numerical methods.

Project-Team Bipop

Abstract: TBW

Key-words: Multibody systems, nonsmooth Mechanics, unilateral constraints, Coulomb fric-

tion, impact, numerical methods

RESEARCH CENTRE GRENOBLE – RHÔNE-ALPES

Inovallée

655 avenue de l'Europe Montbonnot

38334 Saint Ismier Cedex

Sur la résolution du problème de frottement tridimensionnel. Formulations and comparaisons des méthodes numériques.

Résumé: TBW

Mots-clés : Systèmes multi-corps, Mécanique non régulière, contraintes unilatérales, frottement de Coulomb, impact, Schémas numériques de résolution

Contents

1	Numerical methods for VI: FP-DS, FP-VI-* and FP-EG-*	3		
2	Splitting based algorithms: NSGS- \star and PSOR- \star			
	2.1 Comparison of NSN-* algorithms	7		
	2.2 Comparison of PPA-NSN-AC algorithm with respect to the step-size parameter σ,μ	7		
	2.3 Comparison of optimization-based algorithms	7		
3	Comparison of different families of solvers.	7		
4	LMGC_100_PR_PerioBox precision 1.0e-04 timeout 100	19		
	4.1 Comments	27		
5	LMGC_945_SP_Box_PL precision 1.0e-04 timeout 100	2 9		
	5.1 Comments	37		
6	LMGC Aqueduc PR precision 1.0e-04 timeout 200	38		
	6.1 Comments	46		
7	LMGC Bridge PR precision 1.0e-04 timeout 100	47		
8	LMGC LowWall FEM precision 1.0e-04 timeout 400	55		
9	LMGC Cubes H8 precision 1.0e-04 timeout 100	63		
10	Capsules precision 1.0e-08 timeout 50	71		
11	Chain precision 1.0e-08 timeout 50	7 9		
12	BoxesStack1 precision 1.0e-08 timeout 100	87		
13	KaplasTower precision 1.0e-04 timeout 100	95		
14	Chute_1000 precision 1.0e-04 timeout 200	103		
15	Chute_4000 precision 1.0e-04 timeout 200	111		
16	Chute_local_problems precision 1.0e-04 timeout 10	119		
1	Numerical methods for VI: FP-DS, FP-VI-* and FP-EG-*			
2	Splitting based algorithms: NSGS- \star and PSOR- \star			

Figure 1: Comparison of numerical method for VI FP-DS, FP-VI-⋆ and FP-EG-⋆

Figure 2: Influence of the local solver in NSGS- \star algorithms.

Figure 3: Influence of the tolerance of the local solver $\mathsf{tol}_\mathsf{local}$ in NSGS-FP-VI-UPK algorithms.

Influence of the tolerance of the local solver $\mathsf{tol}_\mathsf{local}$ in NSGS-FP-VI-UPK algorithms

Influence of the tolerance of the local solver $\mathsf{tol}_\mathsf{local}$ in NSGS-AC-GP algorithms.

Influence of the choice of the parameters $\rho_{\rm N}, \rho_{\rm T}$ in the local solver of the NSGS-AC algorithms

Influence of the contacts order in NSGS algorithms

Comparison of PSOR algorithm with respect to the relaxation parameter ω

- 2.1 Comparison of NSN-* algorithms
- 2.2 Comparison of PPA-NSN-AC algorithm with respect to the step-size parameter $\sigma,\,\mu$
- 2.3 Comparison of optimization-based algorithms
- 3 Comparison of different families of solvers.

Figure 4: Influence of the tolerance of the local solver $\mathsf{tol}_\mathsf{local}$ in NSGS-FP-NSN-AC-GP algorithms.

Figure 5: Influence of the choice of the parameters $\rho_{\text{\tiny N}}, \rho_{\text{\tiny T}}$ in the local solver of the NSGS-AC algorithms

Figure 6: Influence of the contacts order in NSGS algorithms.

Figure 7: Effect of relation coefficient ω in PSOR-AC-GP algorithm.

Figure 8: Comparison of $NSN-\star$ algorithms.

Figure 9: Comparison of internal solvers in PPA-* algorithms.

Figure 10: Effect of the step-size parameter $\sigma,\,\mu$ in PPA-NSN-AC algorithm

Figure 11: Effect of the step-size parameter σ , μ in PPA-NSN-AC algorithm

Figure 12: Effect of the step-size parameter $\sigma,\,\mu$ in PPA-NSN-AC algorithm

Figure 13: Comparison of the optimization based solvers

Figure 14: Comparison of the solvers between families

$4 \quad LMGC_100_PR_PerioBox\ precision\ 1.0e\text{-}04\ timeout\ 100$

Figure 15: LMGC_100_PR_PerioBox time VI/UpdateRule

Figure 16: LMGC_100_PR_PerioBox_time NSGS/LocalSolver

Figure 17: LMGC _100 _PR _PerioBox $\,$ time NSGS/LocalSolverHybrid

Figure 18: LMGC_100_PR_PerioBox time NSGS/LocalTol

Figure 19: LMGC_100_PR_PerioBox $\,$ time NSGS/LocalTol-VI

Figure 20: LMGC_100_PR_PerioBox $\,$ time NSGS/Shuffled

Figure 21: LMGC_100_PR_PerioBox time PSOR

Figure 23: LMGC_100_PR_PerioBox_time PROX/InternalSolvers

Figure 24: LMGC_100_PR_PerioBox time PROX/Parametric studies $\nu=0.5$

Figure 25: LMGC_100_PR_PerioBox time PROX/Parametric studies $\nu=1.0$

Figure 26: LMGC_100_PR_PerioBox time PROX/Parametric studies $\nu=2.0$

Figure 27: LMGC_100_PR_PerioBox $\,$ time PROX/Regularized problem

Figure 29: LMGC_100_PR_PerioBox $\,$ time COMP/large

Figure 30: LMGC_100_PR_PerioBox $% \frac{1}{2}$ time COMP/zoom

4.1 Comments

1. VI solvers:

- (a) The EG-VI solvers are better than FP-VI solvers.
- (b) The local update rule UPK vs. UPTS is not important
- (c) The update in the loop improves greatly the convergence rate.

2. NSGS Solvers:

(a) Local solvers

- i. NSN local solvers without line-search are the best solvers. Note that the choice of $\rho_N = \rho_T = 1$ does not degrade the performance.
- ii. GP line-search method is slowing a bit the efficiency of the solver. Since all the problems are solved without line-search procedure, there is no interest in that case to use it to improve the robustness of the NSN local solvers.
- iii. Quite surprisingly, the local solvers based on FP-VI-UPK are also efficient, especially when we limit the number of iteration or the local tolerance of the local algorithm.
- iv. The exact solver is the efficient solver but not robust at all.
- v. The use of hybrid solvers are also not very attractive since all the problems are solved by NSN methods.
- (b) Local Tolerances: The study of the local tolerances of the local solvers shows two differents tendancies for two classes of solvers:
 - i. NSN local solvers are not influenced by the local tolerances. We guessed that the problems are sufficiently easy such that the Newton solver converge to tight tolerances in few iterations.
 - ii. For the NSGS-FP-VI-UPK, a limited tolerance improves the efficiency without reducing the robustness
- (c) Shuffling techniques: The shuffling of contact does not improve the convergence.

3. PSOR Solvers.

- (a) For the values of the relaxation parameters ω in [1.3, 1.5], the relaxation increases the efficiency of the solver but decreases the robustness
- (b) For low values of the relaxation parameters ω in [0.5, 0.8], the relaxation increases the the robustness but decreases the efficiency
- 4. NSN and PROX solvers. The direct Newton techniques on such rigid-body test set are inefficient. (link to the distribution of ranks of the matrices)

5. OPTI solvers. On this problem, the ACLM and TRESCA approaches do not improve the efficiency. The problems are also better solved by the SOCLCP technique. Convexification is working well.

$5 \quad LMGC_945_SP_Box_PL \ precision \ 1.0e\text{-}04 \ timeout \ 100$

Figure 31: LMGC_945_SP_Box_PL time VI/UpdateRule

Figure 32: LMGC_945_SP_Box_PL time NSGS/Local Solver

Figure 33: LMGC_945_SP_Box_PL time NSGS/LocalSolver Hybrid

Figure 34: LMGC_945_SP_Box_PL time NSGS/LocalTol

Figure 35: LMGC_945_SP_Box_PL time NSGS/LocalTol-VI

Figure 36: LMGC_945_SP_Box_PL $\,$ time NSGS/Shuffled

Figure 37: LMGC_945_SP_Box_PL time PSOR

Figure 39: LMGC_945_SP_Box_PL time PROX/Internal Solvers

Figure 40: LMGC_945_SP_Box_PL time PROX/Parametric studies $\nu=0.5$

Figure 41: LMGC_945_SP_Box_PL time PROX/Parametric studies $\nu=1.0$

Figure 42: LMGC_945_SP_Box_PL time PROX/Parametric studies $\nu=2.0$

Figure 45: LMGC_945_SP_Box_PL time COMP/large

Figure 46: LMGC_945_SP_Box_PL $% \frac{1}{2}$ time COMP/zoom

5.1 Comments

- 1. VI solvers: difficult to draw conclusions since a lot of solvers are not able to converge within timeout
- 2. NSGS Solvers:
 - (a) Local solvers
 - i. NSGS-FP-VI-UPK are the best solvers.
 - ii. NSGS-NSN suffers from huge robustness problem.
 - iii. GP line-search method improves a bit the efficiency of the solver
 - iv. Hybrid solvers seems to succeed but it is difficult to say if the Newton method helps to improve results
 - (b) Local Tolerances: For the NSGS-FP-VI-UPK, a limited tolerance improves the efficiency without reducing the robustness
 - (c) Shuffling techniques: The shuffling of contact does not improve the convergence.
- 3. PSOR Solvers. No conclusion due to robustness problems
- 4. NSN and PROX solvers. The direct Newton techniques on such rigid-body test set are inefficient. (link to the distribution of ranks of the matrices)
- 5. OPTI solvers. On this problem, the TRESCA approach improves a lot the efficiency. The problems are also better solved by the SOCLCP technique/ Convexification is working well.

6 LMGC Aqueduc PR precision 1.0e-04 timeout 200

Figure 47: LMGC Aqueduc PR $\,$ time $\,$ VI/UpdateRule

Figure~48:~LMGC~Aqueduc~PR~time~NSGS/Local Solver

Figure 49: LMGC Aqueduc PR time NSGS/LocalSolverHybrid

Figure 50: LMGC Aqueduc PR $\,$ time NSGS/LocalTol

 $Figure \ 51: \ LMGC \ Aqueduc \ PR \quad time \ NSGS/LocalTol-VI$

Figure 52: LMGC Aqueduc PR $\,$ time NSGS/Shuffled

Figure 53: LMGC Aqueduc PR time PSOR

Figure~55:~LMGC~Aqueduc~PR~time~PROX/Internal Solvers

Figure 56: LMGC Aqueduc PR $\;$ time PROX/Parametric studies $\nu=0.5$

Figure 57: LMGC Aqueduc PR $\,$ time PROX/Parametric studies $\nu=1.0$

Figure 58: LMGC Aqueduc PR $\;$ time PROX/Parametric studies $\nu=2.0$

Figure 59: LMGC Aqueduc PR $\,$ time PROX/Regularized problem

Figure 60: LMGC Aqueduc PR $\,$ time OPTI $\,$

Figure 61: LMGC Aqueduc PR $\,$ time COMP/large

Figure 62: LMGC Aqueduc PR $\,$ time COMP/zoom

6.1 Comments

- 1. VI solvers: difficult to draw conclusions since a lot of solvers are not able to converge within timeout
- 2. NSGS Solvers:
 - (a) Local solvers
 - i. NSGS-NSN-*-GP are the best solvers. Line search improves efficiency of the solvers.
 - ii. Hybrid solvers do not bring new advantages which is not surprising since NSGS-NSN solvers are the best
 - (b) Local Tolerances:
 - (c) Shuffling techniques: The shuffling of contact does not improve the convergence.
- 3. PSOR Solvers. The relaxation is not interesting in this example
- 4. NSN and PROX solvers. The direct Newton techniques on such rigid-body test set are inefficient. (link to the distribution of ranks of the matrices)
- 5. OPTI solvers. On this problem, the ACLM approach improves a lot the efficiency and the robustness. The problems are also better solved by the SOCLCP technique. Convexification is working well.

7 LMGC Bridge PR precision 1.0e-04 timeout 100

Figure 63: LMGC Bridge PR time VI/UpdateRule

Figure 64: LMGC Bridge PR time NSGS/LocalSolver

Figure 65: LMGC Bridge PR time NSGS/LocalSolverHybrid

Figure 66: LMGC Bridge PR time NSGS/LocalTol

 $Figure \ 67: \ LMGC \ Bridge \ PR \quad time \ NSGS/LocalTol-VI$

Figure 68: LMGC Bridge PR $\,$ time NSGS/Shuffled

Figure 69: LMGC Bridge PR time PSOR

Figure 71: LMGC Bridge PR time PROX/InternalSolvers

Figure 72: LMGC Bridge PR $\;$ time PROX/Parametric studies $\nu=0.5$

Figure 73: LMGC Bridge PR $\,$ time PROX/Parametric studies $\nu=1.0$

Figure 74: LMGC Bridge PR $\;$ time PROX/Parametric studies $\nu=2.0$

Figure 75: LMGC Bridge PR $\,$ time PROX/Regularized problem

RR n° 123456789

Figure 77: LMGC Bridge PR $\,$ time COMP/large

Figure 78: LMGC Bridge PR $\,$ time COMP/zoom

8 LMGC LowWall FEM precision 1.0e-04 timeout 400

Figure 79: LMGC LowWall FEM $\,$ time $\,$ VI/UpdateRule

Figure 80: LMGC LowWall FEM $^{\circ}$ time NSGS/LocalSolver

Figure 81: LMGC LowWall FEM $\,$ time NSGS/LocalSolverHybrid

Figure 82: LMGC LowWall FEM time NSGS/LocalTol

Figure 83: LMGC LowWall FEM $\,$ time NSGS/LocalTol-VI

Figure 84: LMGC LowWall FEM time NSGS/Shuffled

Figure 85: LMGC LowWall FEM time PSOR

Figure 87: LMGC LowWall FEM time PROX/InternalSolvers

Figure 88: LMGC LowWall FEM $\,$ time PROX/Parametric studies $\nu=0.5$

Figure 89: LMGC LowWall FEM $\,$ time PROX/Parametric studies $\nu=1.0$

Figure 90: LMGC LowWall FEM $\,$ time PROX/Parametric studies $\nu=2.0$

Figure 91: LMGC LowWall FEM $\,$ time PROX/Regularized problem

Figure 92: LMGC LowWall FEM $\,$ time OPTI $\,$

Figure 93: LMGC LowWall FEM $\,$ time COMP/large

Figure 94: LMGC LowWall FEM $\,$ time COMP/zoom

9 LMGC Cubes H8 precision 1.0e-04 timeout 100

Figure 95: LMGC Cubes H8 time VI/UpdateRule

Figure 96: LMGC Cubes H8 time NSGS/LocalSolver

Figure 97: LMGC Cubes H8 time NSGS/LocalSolverHybrid

Figure 98: LMGC Cubes H8 time NSGS/LocalTol

Figure 99: LMGC Cubes H8 time NSGS/LocalTol-VI

Figure 100: LMGC Cubes H8 $\,$ time NSGS/Shuffled

Figure 101: LMGC Cubes H8 time PSOR

Figure 103: LMGC Cubes H8 $\,$ time PROX/InternalSolvers

Figure 104: LMGC Cubes H8 time PROX/Parametric studies $\nu=0.5$

Figure 105: LMGC Cubes H8 time PROX/Parametric studies $\nu=1.0$

Figure 106: LMGC Cubes H8 time PROX/Parametric studies $\nu=2.0$

Figure 107: LMGC Cubes H8 $\,$ time PROX/Regularized problem

Figure 109: LMGC Cubes H8 $\,$ time COMP/large

Figure 110: LMGC Cubes H8 $\,$ time COMP/zoom

10 Capsules precision 1.0e-08 timeout 50

Figure 111: Capsules time VI/UpdateRule

Figure 112: Capsules time NSGS/LocalSolver

Figure 113: Capsules time NSGS/LocalSolverHybrid

Figure 114: Capsules time NSGS/LocalTol

Figure 115: Capsules time NSGS/LocalTol-VI

Figure 116: Capsules time NSGS/Shuffled

Figure 117: Capsules time PSOR

Figure 119: Capsules time PROX/InternalSolvers

Figure 121: Capsules time PROX/Parametric studies $\nu=1.0$

Figure 124: Capsules time OPTI

Figure 125: Capsules time COMP/large

Figure 126: Capsules $time\ COMP/zoom$

11 Chain precision 1.0e-08 timeout 50

Figure 127: Chain time VI/UpdateRule

Figure 128: Chain time NSGS/LocalSolver

Figure 129: Chain time NSGS/LocalSolverHybrid

Figure 130: Chain time NSGS/LocalTol

Figure 131: Chain $% \left(1,0\right) =1$ time NSGS/LocalTol-VI

Figure 132: Chain time NSGS/Shuffled

Figure 133: Chain time PSOR

Figure 135: Chain time PROX/InternalSolvers

Figure 136: Chain time PROX/Parametric studies $\nu=0.5$

Figure 137: Chain time PROX/Parametric studies $\nu = 1.0$

Figure 138: Chain time PROX/Parametric studies $\nu=2.0$

Figure 141: Chain time COMP/large

Figure 142: Chain time COMP/zoom

12 BoxesStack1 precision 1.0e-08 timeout 100

Figure 143: BoxesStack1 time VI/UpdateRule

Figure 144: BoxesStack1 time NSGS/LocalSolver

Figure 145: BoxesStack1 time NSGS/LocalSolverHybrid

Figure 146: BoxesStack1 time NSGS/LocalTol

Figure 147: BoxesStack1 time NSGS/LocalTol-VI

Figure 148: BoxesStack1 time NSGS/Shuffled

Figure 149: BoxesStack1 time PSOR

Figure 151: BoxesStack1 time PROX/InternalSolvers

Figure 152: BoxesStack1 time PROX/Parametric studies $\nu=0.5$

Figure 153: BoxesStack1 time PROX/Parametric studies $\nu=1.0$

Figure 154: BoxesStack1 time PROX/Parametric studies $\nu=2.0$

Figure 155: BoxesStack1 time PROX/Regularized problem

Figure 156: BoxesStack1 $\,$ time OPTI

Figure 157: BoxesStack1 time COMP/large

Figure 158: BoxesStack1 time COMP/zoom

13 KaplasTower precision 1.0e-04 timeout 100

Figure 160: KaplasTower time NSGS/LocalSolver

Figure 161: KaplasTower time NSGS/LocalSolverHybrid

Figure 165: KaplasTower time PSOR

Figure~167:~KaplasTower~time~PROX/InternalSolvers

Figure 168: Kaplas Tower time PROX/Parametric studies $\nu=0.5$

Figure 169: Kaplas Tower time PROX/Parametric studies $\nu=1.0$

Figure 170: Kaplas Tower time PROX/Parametric studies $\nu=2.0$

Figure 172: KaplasTower time OPTI

Figure 173: KaplasTower time COMP/large

Figure 174: Kaplas Tower $% \left(1,...,N\right) =1.00$ time COMP/zoom

14 Chute_1000 precision 1.0e-04 timeout 200

Figure 175: Chute_1000 time VI/UpdateRule

Figure 176: Chute_1000 time NSGS/LocalSolver

Figure 177: Chute_1000 time NSGS/LocalSolverHybrid

Figure 178: Chute_1000 time NSGS/LocalTol

Figure 179: Chute_1000 time NSGS/LocalTol-VI

Figure 180: Chute_1000 $\,$ time NSGS/Shuffled

Figure 181: Chute $_1000$ time PSOR

Figure 183: Chute_1000 time PROX/InternalSolvers

Figure 184: Chute_1000 time PROX/Parametric studies $\nu=0.5$

Figure 185: Chute_1000 time PROX/Parametric studies $\nu=1.0$

Figure 186: Chute_1000 time PROX/Parametric studies $\nu=2.0$

Figure 187: Chute_1000 $\,$ time PROX/Regularized problem

Figure 188: Chute_1000 time OPTI

Figure 189: Chute_1000 $\,$ time COMP/large

Figure 190: Chute_1000 time COMP/zoom

15 Chute_4000 precision 1.0e-04 timeout 200

Figure 191: Chute $_4000$ time VI/UpdateRule

Figure 192: Chute $_4000$ time NSGS/LocalSolver

 $Figure~193:~Chute_4000~time~NSGS/LocalSolverHybrid$

Figure 194: Chute_4000 time NSGS/LocalTol

Figure 195: Chute $_4000$ time NSGS/LocalTol-VI

Figure 196: Chute_4000 $\,$ time NSGS/Shuffled

Figure 197: Chute $_4000$ time PSOR

Figure 199: Chute_4000 time PROX/InternalSolvers

Figure 200: Chute_4000 time PROX/Parametric studies $\nu=0.5$

Figure 201: Chute_4000 time PROX/Parametric studies $\nu = 1.0$

Figure 202: Chute_4000 time PROX/Parametric studies $\nu=2.0$

Figure 203: Chute_4000 $\,$ time PROX/Regularized problem

Figure 204: Chute_4000 time OPTI

Figure 205: Chute_4000 $\,$ time COMP/large

Figure 206: Chute_4000 $\,$ time COMP/zoom

16 Chute_local_problems precision 1.0e-04 timeout 10

Figure 207: Chute_local_problems time VI/UpdateRule

Figure 208: Chute_local_problems time NSGS/LocalSolver

 $Figure~209:~Chute_local_problems~time~NSGS/LocalSolverHybrid\\$

Figure 210: Chute_local_problems time NSGS/LocalTol

 $Figure~211:~Chute_local_problems~time~NSGS/LocalTol-VI$

Figure 212: Chute_local_problems $% \frac{1}{2}$ time NSGS/Shuffled

Figure 213: Chute_local_problems time PSOR

Figure 215: Chute_local_problems time PROX/InternalSolvers

Figure 216: Chute_local_problems time PROX/Parametric studies $\nu=0.5$

Figure 217: Chute local problems time PROX/Parametric studies $\nu=1.0$

Figure 218: Chute_local_problems time PROX/Parametric studies $\nu=2.0$

Figure 219: Chute_local_problems $% \left(\frac{1}{2}\right) =\frac{1}{2}\left(\frac{1}{2}\right) =$

RR n° 123456789

Figure 221: Chute_local_problems $% \left(\frac{1}{2}\right) =\frac{1}{2}\left(\frac{1}{2}\right) =$

Figure 222: Chute_local_problems time COMP/zoom

RESEARCH CENTRE GRENOBLE – RHÔNE-ALPES

Inovallée

655 avenue de l'Europe Montbonnot

38334 Saint Ismier Cedex

Publisher Inria Domaine de Voluceau - Rocquencourt BP 105 - 78153 Le Chesnay Cedex inria.fr