Examen 2 - Operaciones matemáticas básicas

Solución

M. en C. Gustavo Contreras Mayén

10 de abril de 2018

Interpolación

Interpolación

Cálculo de raíces

Interpolación

Cálculo de raíces

Dados los puntos

Calcula y en x=0 usando: a) el método de Neville y b) el método de Lagrange.

Dados los puntos

Calcula y en x=0 usando: a) el método de Neville y b) el método de Lagrange.

La raíz en ambos métodos, vale 6.0

Encontrar la raíz de y(x) a partir de los siguientes datos:

$$x$$
0
0.5
1
1.5
2
2.5
3

 y
1.8421
2.4694
2.4921
1.9047
0.8509
-0.4112
-1.5727

Usando la interpolación de Lagrange sobre a) tres puntos, y b) sobre cuatro puntos vecinos más cercanos.

Encontrar la raíz de y(x) a partir de los siguientes datos:

Usando la interpolación de Lagrange sobre a) tres puntos, y b) sobre cuatro puntos vecinos más cercanos. El valor de la raíz es: 2.3397

Resultado

La función y(x) del problema anterior, tiene un máximo en x=0.7679. Calcular el valor máximo con el método de interpolación de Neville usando cuatro puntos vecinos.

La función y(x) del problema anterior, tiene un máximo en x=0.7679. Calcular el valor máximo con el método de interpolación de Neville usando cuatro puntos vecinos.

El valor máximo de la función es: 2.5568

Resultado

La viscosidad cinemática μ_k del agua varía con la temperatura T de la siguiente manera:

Interpolar μ_k para $T=10^\circ, 30^\circ, 60^\circ$ y 90° .

Solución al Problema 4

Temperatura	Densidad		
10	1.621		
30	0.842		
60	0.457		
90	0.333		

Solución al Problema 4

La siguiente tabla muesta como la densidad relativa ρ del aire varía con la altitud h. Calcula la densidad relativa del aire en $10.5~{\rm km}$.

h(km)	0	1.525	3.050	4.575	6.10	7.625	9.150
ρ	1	0.8617	0.7385	0.6292	0.5328	0.4481	0.3741

La siguiente tabla muesta como la densidad relativa ρ del aire varía con la altitud h. Calcula la densidad relativa del aire en $10.5~{\rm km}$.

$$h(km)$$
 0
 1.525
 3.050
 4.575
 6.10
 7.625
 9.150

 ρ
 1
 0.8617
 0.7385
 0.6292
 0.5328
 0.4481
 0.3741

La densidad del aire en 10.5 km es de 0.3177

Solución Problema 5

Interpolación

Cálculo de raíces

Encuentra todas las raíces positivas de las siguientes ecuaciones mediante el método de bisección, con una tolerancia de 0.001.

$$\bullet \ \tan(x) - x + 1 = 0; \qquad 0 < x < 3\pi$$

$$\sin(x) - 0.3 \exp(x) = 0; x > 0$$

$$-x^3 + x + 1 = 0$$

$$16x^5 - 20x^3 + x^2 + 5x - 0.5 = 0$$

Inciso 6-a)

$$\tan(x) - x + 1 = 0;$$
 $0 < x < 3\pi$

Examen 2 - Operaciones matemáticas básicas

Inciso 6-b)

$$\sin(x) - 0.3 \exp(x) = 0;$$
 $x > 0$

Examen 2 - Operaciones matemáticas básicas

Inciso 6-c)

$$-x^3 + x + 1 = 0$$

Examen 2 - Operaciones matemáticas básicas

Inciso 6-d)

$$16x^5 - 20x^3 + x^2 + 5x - 0.5 = 0$$

Examen 2 - Operaciones matemáticas básicas

Determina las raíces de las siguientes ecuaciones mediante el método de la falsa posición modificada:

•
$$f(x) = 0.5 \exp(\frac{x}{3}) - \sin(x);$$
 $x > 0$

$$g(x) = \log(1+x) - x^2$$

$$f(x) = \exp(x) - 5x^2$$

$$h(x) = x^3 + 2x - 1 = 0$$

5
$$f(x) = \sqrt{x+2}$$

Inciso 7-a)

4
$$f(x) = 0.5 \exp(\frac{x}{3}) - \sin(x);$$
 $x > 0$

Examen 2 - Operaciones matemáticas básicas

Inciso 7-b)

$$g(x) = \log(1+x) - x^2$$

Examen 2 - Operaciones matemáticas básicas

Inciso 7-c)

$$f(x) = \exp(x) - 5x^2$$

Examen 2 - Operaciones matemáticas básicas

Inciso 7-d)

$$h(x) = x^3 + 2x - 1 = 0$$

Examen 2 - Operaciones matemáticas básicas

Inciso 7-e)

$$f(x) = \sqrt{x+2}$$

Examen 2 - Operaciones matemáticas básicas

Dado que ya conocen las raíces de las funciones, esperaríamos que reportaran un valor casi idéntico, y hasta con un error relativo.

Identifica el intervalo para las raíces de las siguientes ecuaciones y calcula después las raíces mediante el método de la secante, con una tolerancia de 0.001:

$$0.1x^3 - 5x^2 - x + 4 + \exp(-x) = 0$$

$$\ln(x) - 0.2x^2 + 1 = 0$$

Inciso 9-a)

$$0.1x^3 - 5x^2 - x + 4 + \exp(-x) = 0$$

Examen 2 - Operaciones matemáticas básicas

Inciso 9-b)

$$\ln(x) - 0.2x^2 + 1 = 0$$

Examen 2 - Operaciones matemáticas básicas

Inciso 9-c)

$$x + \frac{1}{(x+3)x} = 0$$

Examen 2 - Operaciones matemáticas básicas

Considera la siguiente imagen:

Lo que hay que encontrar es una función que represente el contorno del pato en el primer cuadrante, para ello debes:

- Definir un conjunto de puntos (entre 15-20 puntos)
- Usar la técnica de interpolación de Lagrange para revisar si la función de interpolación, representa debidamente el contorno.
- Usar la técnica de interpolación con splines.

Gráfica de la interpolación usando Lagrange

Gráfica de la interpolación usando splines

