

SAE J1979-DA OCT2011

Issued 2010-09 Revised 2011-10

Equivalent to J1979 SEP2010

J1979-DA, Digital Annex of E/E Diagnostic Test Modes

RATIONALE

This document has been issued to make available the initial version of J1979-DA. This Digital Annex contains exactly the same data as Appendices A through G of the J1979 document which was published September 2010. The intent is to eventually provide this document as an excel document with more frequent updates than the base J1979 document. J1979-DA is referenced by both SAE and ISO standards.

1. SCOPE

On-Board Diagnostic (OBD) regulations require passenger cars, and light and medium duty trucks, to support communication of a minimum set of diagnostic information to off-board "generic" test equipment. This document specifies the diagnostic data which may be required to be supported by motor vehicles and external test equipment for diagnostic purposes which pertain to motor vehicle emission-related data.

SAE J1979 was originally developed to meet U.S. OBD requirements for 1996 and later model year vehicles. ISO 15031-5 was based on SAE J1979 and was intended to combine the U.S. requirements with European OBD requirements for 2000 and later model year vehicles.

2. NOTES

2.1 Marginal Indicia

A change bar (I) located in the left margin is for the convenience of the user in locating areas where technical revisions, not editorial changes, have been made to the previous issue of this document. An (R) symbol to the left of the document title indicates a complete revision of the document, including technical revisions. Change bars and (R) are not used in original publications, nor in documents that contain editorial changes only.

PREPARED BY THE SAE VEHICLE E E SYSTEM DIAGNOSTIC STANDARDS COMMITTEE

SAE Technical Standards Board Rules provide that: "This report is published by SAE to advance the state of technical and engineering sciences. The use of this report is entirely voluntary, and its applicability and suitability for any particular use, including any patent infringement arising therefrom, is the sole responsibility of the user."

SAE reviews each technical report at least every five years at which time it may be reaffirmed, revised, or cancelled. SAE invites your written comments and suggestions. Copyright © 2011 SAE International

All rights reserved. No part of this publication may be reproduced, stored in a retrieval system or transmitted, in any form or by any means, electronic, mechanical, photocopying, recording, or otherwise, without the prior written permission of SAE.

TO PLACE A DOCUMENT ORDER:

Tel: 877-606-7323 (inside USA and Canada)
Tel: +1 724-776-4970 (outside USA)

Fax: 724-776-0790

Email: CustomerService@sae.org

http://www.sae.org

SAE values your input. To provide feedback on this Technical Report, please visit http://www.sae.org/technical/standards/J1979DA/201110

APPENDIX A - (NORMATIVE) PID (PARAMETER ID)/OBDMID (ON-BOARD DIAGNOSTIC MONITOR ID)/ TID (TEST ID)/INFOTYPE SUPPORTED DEFINITION

This Appendix specifies standardized hex values to be used in the request message for Services \$01, \$02, \$05, \$06, \$08, and \$09 to retrieve supported PIDs, OBDMIDs, TIDs, and INFOTYPEs.

TABLE A1 - SUPPORTED PID/OBDMID/TID/INFOTYPE DEFINITION

Supported PID/OBDMID/ TID/INFOTYPE (Hex)	Data	Number of I A - D or B	ing/Bit Data Bytes = 4 - E: Bit Evaluation DTYPE Supported (Hex)	External Test Equipment SI (Metric) / English Display
00	Data A bit 7 Data A bit 6 : Data D bit 0	01 02 : 20	0 = not supported 1 = supported	SAE J1978 specifies the behavior of the external test equipment for how to interpret the data received to identify supported PIDs/OBDMIDs/TIDs/
20	Data A bit 7 Data A bit 6 : Data D bit 0	21 22 : 40	0 = not supported 1 = supported	INFOTYPEs for each ECU. For all protocols except ISO 14230-4, the ECU shall not respond to unsupported PID/OBDMID/TID/InfoType ranges unless
40	Data A bit 7 Data A bit 6 : Data D bit 0	41 42 : 60	0 = not supported 1 = supported	subsequent ranges have a supported PID/OBDMID/TID/InfoType. For ISO 14230-4, the ECU can either not respond or send a negative response (see Table
60	Data A bit 7 Data A bit 6 : Data D bit 0	61 62 : 80	0 = not supported 1 = supported	6).
80	Data A bit 7 Data A bit 6 : Data D bit 0	81 82 : A0	0 = not supported 1 = supported	
A0	Data A bit 7 Data A bit 6 : Data D bit 0	A1 A2 : C0	0 = not supported 1 = supported	
C0	Data A bit 7 Data A bit 6 : Data D bit 0	C1 C2 : E0	0 = not supported 1 = supported	
E0	Data A bit 7 Data A bit 6 : Data D bit 1 Data D bit 0	E1 E2 : FF ISO/SAE reserved (set to 0)	0 = not supported 1 = supported	

APPENDIX B - (NORMATIVE) PIDS (PARAMETER ID) FOR SERVICES \$01 AND \$02 SCALING AND DEFINITION

B.1 NOMENCLATURE

This Appendix uses the following nomenclature for numbering and units for the U.S., European notation, and External Test Equipment display. Table B1 includes an example.

TABLE B1 - NUMBERING AND UNITS FOR THE U.S. NOTATION, EUROPEAN NOTATION AND EXTERNAL TEST EQUIPMENT DISPLAY

Appendix Example	U.S. Notation	European Notation	External Test Equipment Display
4750.75 min ⁻¹	4750.75 min ⁻¹	4750.75 min⁻¹	4750.75 min⁻¹

B.2 SIGNALS RECEIVED VIA DISTRIBUTED NETWORKS

In distributed network architectures, certain OBD devices may be hardwired to other ECUs or be independent OBD mechatronic devices, e.g. smart sensor/actuator, connected through a network from another ECU (both referred to as remote OBD devices). When remote OBD devices are not hardwired to the OBD ECU and the data is *not* received over the data bus from the specific remote OBD device, this may occur for two reasons:

- The remote ECU is not functioning and sending any data.
- The OBD device that is hardwired to the remote ECU has failed and the remote ECU is sending a message with invalid data for the OBD remote device.

In either one of these cases the following applies:

- The primary OBD ECU shall report Service \$01 and Service \$02 data parameters as the minimum or maximum value to indicate that the signal has not been received. A PID which includes this invalid data (no signal) shall either be reported with a minimum value (\$00 or \$0000) or maximum value (\$FF or \$FFFF), e.g. PID \$0D "Vehicle Speed Sensor" = \$FF = 255 km/h, PID \$2F "Fuel Level Input" = \$00 = 0.0 %. The reported value shall be determined by the manufacturer based on system design and network architecture to represent the least likely value to be expected under normal conditions.
- The OBD ECU may store a network communication DTC after appropriate filtering, if the ECU detects that any remote OBD signal is completely missing. It shall set a DTC for "Lost Communication with 'X' Control Module".
- The OBD ECU may store a network communication DTC after appropriate filtering, if the ECU detects that any remote OBD signal is unavailable or invalid. This means that the remote ECU is still sending a message, but the OBD device hardwired to it is faulted and the data is indicated to be invalid or contains default data. It shall set a DTC for "Invalid Data Received from 'X' Control Module".

Figure B1 is an example of Fuel Level Sending Unit input via network message illustrates a possible configuration of providing Fuel Level and Vehicle Speed information to the external test equipment.

The network communication DTCs shall be obtained from SAE J2012 and/or SAE J2012 DA.

B.3 INFERRED SIGNALS

In some cases, PID data can be inferred from one or more available signals in the OBD ECU. For example, BARO can be inferred using mass air flow, engine RPM and throttle position rather than being directly read from a BARO pressure sensor. If one or more of the inputs used to infer the data are faulted and the PID data is unavailable, the PID shall indicate default value currently being used by the OBD ECU.

Key Fuel Level Sending Unit connected to Instrument Cluster via A/D hardwire link

2 Body CAN bus

3 IC sends fuel level data to BCM 4 IC sends fuel level data to CGW

5 Powertrain CAN bus

6 7 ECM sends wheel speed data to CGW

ABS sends wheel speed data to ECM via Powertrain CAN bus

8 Wheel Speed Sensor connected to ABS (networked Wheel Speed read for ECM)

9 Diagnostic CAN bus

ABS Anti-lock Brake Control Module

BCM **Body Control Module**

CAN-B Body CAN Powertrain CAN CAN-P CAN-D Diagnostic CAN CGW Central Gateway ECM **Engine Control Module** FLSU Fuel Level Sending Unit

IC Instrument Cluster WSS Wheel Speed Sensor

FIGURE B1 - EXAMPLE OF FUEL LEVEL SENDING UNIT INPUT VIA NETWORK MESSAGE

B.4 PID STRUCTURE

Many PIDs starting with PID \$65 incorporate a new bit-mapped structure that creates duplicate PIDs e.g. \$05 - Engine Coolant Temperature and \$67 - Engine Coolant Temperature. In general, it is recommended that manufacturers support only one PID; however, there may be cases where some older tools and applications, e.g. a telematic unit, may not have been updated to read the new bit-mapped PIDs. As a result, there may be manufacturers that want to support both the old and new bit-mapped PIDs for backward compatibility. Using these duplicate PIDs to display the same ECU data is allowed unless otherwise specified in the PID description.

J1979 PIDs have a defined length. When using PIDs that support multiple data items, all specified bytes must be used even if not all the data is supported. For example, PID \$66 supports two MAF sensors, however, if only MAF A sensor is supported, the PID must still contain three bytes of data including data byte C for the unsupported MAF B sensor. The data for the unsupported sensor is not specified in this document; however, it is recommended that unsupported data bytes be filled with \$00 or \$0000.

Figure B2 - Sensor and actuator definitions and locations provides the reference to the sensor and actuator data definitions in the Appendices of this document.

FIGURE B2 - SENSOR AND ACTUATOR DEFINITIONS AND LOCATIONS

B.5 PID DEFINITIONS

TABLE B2 - PID \$01 DEFINITION

D ex)	Description	Data Byte	Scaling/Bit	External Test Equipment SI (Metric) / English Display			
<u>/^/</u>	Monitor status since DTCs cleared	Dyte	odamig/Dit	Or (Motrio) / English Biopidy			
	The bits in this PID shall report two pieces of i – monitor status since DTCs were last cleared – monitors supported on this vehicle.	nd					
	Number of emission-related DTCs and MIL status	A (bit)	byte 1 of 4	DTC and MIL status:			
	# of DTCs stored in this ECU	0-6	hex to decimal	DTC_CNT: xxd			
	Number of confirmed emission-related DTCs NOTE: Vehicles compliant with WWH-OBD re \$90/\$91) The default value reported for Data A	gulation A shall b	ns using ISO 27145 shall not suppoe \$00.	oort this data. (WWH-OBD uses PIDs			
	Malfunction Indicator Lamp (MIL) Status	7	0 = MIL OFF; 1 = MIL ON	MIL: OFF or ON			
	The MIL status shall indicate "OFF" during the the MIL has also been commanded "ON" for a confirmed DTCs stored that are currently illumare currently blinking or illuminating the MIL (e NOTE: Vehicles compliant with WWH-OBD re \$90/\$91) The default value reported for Data A	detecte inating e.g. cata gulation	ed malfunction. The "ON" status s the MIL and, at the option of the r llyst damaging misfire). Is using ISO 27145 shall not supp	hall reflect whether there are any nanufacturer, any pending DTCs that			
	Supported monitors (may be continuous or once per trip)	B (bit)	byte 2 of 4 (Low Nibble)	Support status of monitors:			
	Misfire monitoring supported	0	0 = monitor not supported (NO) 1 = monitor supported (YES)	MIS_SUP: NO or YES			
	Shall be supported on vehicles that utilize a m	iefira m	11 , ,				
	Fuel system monitoring supported	1	0 = monitor not supported (NO) 1 = monitor supported (YES)	FUEL_SUP: NO or YES			
	Shall be supported on vehicles that utilize close system Comprehensive component monitoring supported		0 = monitor not supported (NO)	loop control of the fuel injection delivery CCM_SUP: NO or YES			
	Ob-III be a superior of a superior of the standard superior of the stan		1 = monitor supported (YES)				
	Shall be supported on vehicles that utilize con Compression ignition monitoring supported	nprenen 3	 	Not displayed by external test			
	Compression ignition monitoring supported	3	0 = Spark ignition monitors supported 1 = Compression ignition	Not displayed by external test equipment			
	Indicates support of spark ignition or compression ignition monitors and data labels within Data Bytes C and D of PID \$01. The status of Bit 3 is not relevant for ECUs that only support Comprehensive Component Monitoring (Data B bit 2 = 1) because Data B bits 2 and 6 for Comprehensive Components are defined identically in both cases. Typical examples are a TCM or a BECM. All ECUs on a vehicle supporting more than just Comprehensive Components need to ensure that they are reporting the same status for Bit 3 and that it is appropriate for the vehicle.						
	Status of monitors since DTC cleared:	B (bit)	byte 2 of 4 (High Nibble)	Completion status of monitors since DTC cleared:			
	Misfire monitoring ready	4	0 = monitor complete, or not applicable (YES) 1 = monitor not complete (NO)	MIS_RDY: YES or NO			
	Misfire monitoring shall always indicate compl compression-ignition vehicles after the misfire			nitoring shall indicate complete for			
	Fuel system monitoring ready	5	0 = monitor complete, or not applicable (YES) 1 = monitor not complete (NO)	FUEL_RDY: YES or NO			
	Fuel system monitoring shall always indicate of system monitors required by regulation to be of more non-continuous fuel system monitors (e. shall indicate complete only after all non-continuous fuel system monitors).	continuo g cylin	ous. For spark-ignition and compreder air-fuel imbalance or injection	ession ignition vehicles that have one or quantity/timing), fuel system monitoring			

TABLE B2 - PID \$01 DEFINITION (CONTINUED)

DID	T	Data	`	Fortonial Toat Foreigns and	
PID (hex)	Description	Data Byte	Scaling/Bit	External Test Equipment SI (Metric) / English Display	
(Hex)					
01	Comprehensive component monitoring ready	6	0 = monitor complete, or not applicable (YES)	CCM_RDY: YES or NO	
	leady		1 = monitor not complete		
			(NO)		
	Comprehensive component monitoring s	hall alw	ays indicate complete on all v	vehicles.	
	NOTE: While there are many individual n				
	or may take a while to complete, it is gen	erally a	assumed that most of these m	onitors will have run by the time	
	other readiness monitors (e.g., catalyst, on number of individual monitors within com				
	the individual diagnostics have not yet ru				
	Accordingly, this bit should be set to always	ays indi	cate "complete".		
	ISO/SAE reserved (bit shall be reported	7		_	
	as "0")		tions for Buton Cond Done	4a ha waad	
			tions for Bytes C and D are k ignition vehicles only.	to be used	
	Supported tests run at least once	С	byte 3 of 4	Support status of non-	
	per trip	(bit)	-	continuous monitors:	
	Catalyst monitoring supported	0		CAT_SUP: NO or YES	
	Heated catalyst monitoring supported	1		HCAT_SUP: NO or YES	
	Evaporative system monitoring	2		EVAP_SUP: NO or YES	
	supported NOTE: Evap system monitoring shall				
	be indicated as supported only for				
	those vehicles that utilize an				
	evaporative system leak check to meet the evap system monitoring		0 = monitor not supported		
	requirements.		(NO)		
	Secondary air system monitoring	3	1 = monitor supported	AIR_SUP: NO or YES	
	supported		(YES)		
	ISO/SAE reserved (bit shall be reported	4		_	
	as "0")	_		OSC CLID: NO or VEC	
	Oxygen sensor monitoring supported	5		O2S_SUP: NO or YES	
	Oxygen sensor heater monitoring supported	6		HTR_SUP: NO or YES	
	EGR and/or VVT system monitoring	7		EGR SUP: NO or YES	
	supported		-	_	
	Status of tests run at least once per	D (bit)	byte 4 of 4	Completion status of non-continuous monitors since	
	trip	(bit)		DTCs cleared:	
	Catalyst monitoring ready	0	0 = monitor complete	CAT_RDY: YES, NO or N/A	
	Heated catalyst monitoring ready	1	(YES)	HCAT_RDY: YES, NO or N/A	
	Evaporative system monitoring ready	2	0 = monitor not applicable	EVAP_RDY: YES, NO or N/A	
	Secondary air system monitoring ready	3	(N/A)	AIR_RDY: YES or NO	
	ISO/SAE reserved (bit shall be reported	4	1 = monitor not complete (NO)	_	
	as "0")	_	NOTE: any monitor	000 000 000 000	
	Oxygen sensor monitoring ready	5	reported as 'not supported'	O2S_RDY: YES, NO or N/A	
	Oxygen sensor heater monitoring ready	6	in Data Byte C shall be	HTR_RDY: YES, NO or N/A	
	EGR and/or VVT system monitoring	7	reported as not applicable (N/A) in Data Byte D	EGR_RDY: YES, NO or N/A	
	ready		((, Data D) to D		

TABLE B2 - PID \$01 DEFINITION (CONTINUED)

PID (hex)	Description	Data Byte	Scaling/Bit	External Test Equipment SI (Metric) / English Display
01	The following d	lescrip	tions for Bytes C and D are ssion ignition vehicles only	to be used
	Supported tests run at least once per trip	C (bit)	byte 3 of 4	Support status of non- continuous monitors:
	NMHC catalyst monitoring supported	0		HCCATSUP: NO or YES
	NOx/SCR aftertreatment monitoring supported	1		NCAT_SUP: NO or YES
	ISO/SAE reserved (bit shall be reported as "0")	2		_
	Boost pressure system monitoring supported	3	0 = monitor not supported (NO)	BP_SUP: NO or YES
	ISO/SAE reserved (bit shall be reported as "0")	4	1 = monitor supported (YES)	_
	Exhaust gas sensor monitoring supported PM filter monitoring supported			EGS_SUP: NO or YES
				PM_SUP: NO or YES
	EGR and/or VVT system monitoring supported	7		EGR_SUP: NO or YES
	Status of tests run at least once per trip	D (bit)	byte 4 of 4	Completion status of non-continuous monitors since DTCs cleared:
	NMHC catalyst monitoring ready	0		HCCATRDY: YES, NO or N/A
	NOx/SCR aftertreatment monitoring ready	1	0 = monitor complete (YES)	NCAT_RDY: YES, NO or N/A
	ISO/SAE reserved (bit shall be reported as "0")	2	0 = monitor not applicable (N/A)	_
	Boost pressure system monitoring ready	3	1 = monitor not complete (NO)	BP_RDY: YES, NO or N/A
	ISO/SAE reserved (bit shall be reported as "0")	4	NOTE: any monitor reported as 'not supported'	_
	Exhaust gas sensor monitoring ready	5	in Data Byte C shall be	EGS_RDY: YES, NO or N/A
	PM filter monitoring ready	6	reported as not applicable (N/A) in Data Byte D	PM_RDY: YES, NO or N/A
	EGR and/or VVT system monitoring ready	7	(ivity iii bata byte b	EGR_RDY: YES, NO or N/A

TABLE B3 - PID \$02 DEFINITION

PID		Data	Min.	Max.		External Test Equipment		
(hex)	Description	Byte	Value	Value	Scaling/Bit	SI (Metric) / English Display		
02	DTC that caused required	A, B	00 00	FF FF	Hexadecimal	DTCFRZF: Pxxxx, Cxxxx,		
	freeze frame data storage				e.g. P01AB	Bxxxx, Uxxxx		
	\$0000 indicates no stored freeze frame data. DTC format and DTCs are defined in SAE J2012 and/or							
	SAE J2012 DA.							

TABLE B4 - PID \$03 DEFINITION

PID (hex)	Description	Data Byte	Min. Value	Max. Value
03	Fuel system 1	A	byte 1 of 2	FUELSYS1:
	status:	(bit)	,	
	(Unused bits shall be reported as '0';	0	1 = Open loop - has not yet satisfied conditions to go closed loop	OL
	no more than one bit at a time can be set	1	1 = Closed loop - using oxygen sensor(s) as feedback for fuel control	CL
	to a '1' of that bank.)	2	1 = Open loop due to driving conditions (e.g. power enrichment, deceleration enleanment)	OL-Drive
		3	1 = Open loop - due to detected system fault	OL-Fault
		4	1 = Closed loop, but fault with at least one oxygen sensor - may be using single oxygen sensor for fuel control	CL-Fault
		5-7	ISO/SAE reserved (bits shall be reported as '0')	_

Fuel system status shall be supported by spark ignition vehicles that use closed loop feedback control of air/fuel ratio.

NOTE: Fuel systems 1 and 2 do not normally refer to injector banks. Fuel systems 1 and 2 are intended to represent completely different fuel systems that can independently enter and exit closed-loop fuel. Banks of injectors on a V-engine are generally not independent and share the same closed-loop enablement criteria. If the engine is off and the ignition is on, all bits in Data Byte A and Data Byte B shall be reported as '0'. For vehicles that employ engine shutoff strategies (e.g. engine shutoff at idle) all bits in Data Byte A and Data Byte B shall be reported as '0', when the engine is turned off by the vehicle control system

Fuel system 2	В	byte 2 of 2	FUELSYS2:
status:	(bit)		
(Unused bits shall	0	1 = Open loop - has not yet satisfied	OL
be reported as '0';		conditions to go closed loop	
no more than one bit	1	1 = Closed loop - using oxygen sensor(s) as	CL
at a time can be set		feedback for fuel control	
to a '1' of that bank.)	2	1 = Open loop due to driving conditions (e.g.	OL-Drive
		power enrichment, deceleration enleanment)	
	3	1 = Open loop - due to detected system fault	OL-Fault
	4	1 = Closed loop, but fault with at least one	CL-Fault
		oxygen sensor - may be using single oxygen	
		sensor for fuel control	
	5-7	ISO/SAE reserved (bits shall be reported as	_
		(0')	

Fuel system status shall be supported by spark ignition vehicles that use closed loop feedback control of air/fuel ratio.

NOTE: Fuel systems 1 and 2 do not normally refer to injector banks. Fuel systems 1 and 2 are intended to represent completely different fuel systems that can independently enter and exit closed-loop fuel. Banks of injectors on a V-engine are generally not independent and share the same closed-loop enablement criteria. If the engine is off and the ignition is on, all bits in Data Byte A and Data Byte B shall be reported as '0'. For vehicles that employ engine shutoff strategies (e.g. engine shutoff at idle) all bits in Data Byte A and Data Byte B shall be reported as '0', when the engine is turned off by the vehicle control system

TABLE B5 - PID \$04 DEFINITION

I	PID		Data	Min.	Max.		External Test Equipment
	(hex)	Description	Byte	Value	Value	Scaling/Bit	SI (Metric) / English Display
Ī	04	Calculated LOAD Value	Α	0 %	100 %	100/255 %	LOAD_PCT: xxx.x %

Percent of maximum available engine torque

Vehicles which utilize spark ignition and compression ignition engines for propulsion shall use the following definition for calculating LOAD_PCT:

LOAD_PCT = [current engine torque] / [(peak engine torque @STP as a function of rpm) * (BARO/29.92) * SQRT(298/(AAT+273))]

Alternatively, vehicles with spark ignition engines can use the following definition:

LOAD_PCT = [current airflow] / [(peak airflow at WOT@STP as a function of rpm) * (BARO/29.92) * SQRT(298/(AAT+273))]

Where:

- STP = Standard Temperature and Pressure = 25 °C, 29.92 in Hg BARO,
- SQRT = square root;
- WOT = wide open throttle;
- AAT = Ambient Air Temperature and is in °C

Characteristics of LOAD_PCT:

- Reaches 100 % at WOT/Wide Open Pedal at any altitude, temperature or rpm for both naturally aspirated and boosted engines.
- Indicates percent of peak available torque during normal, fault-free conditions.
- For spark ignition engines, linearly correlated with engine vacuum at MBT spark and stoichiometry.
 Note that hybrid engine controls can independently control torque.
- Compression-ignition engines (diesels) shall support this PID using torque.

NOTE: At engine off and ignition on the LOAD_PCT = 0 %. If engine torque is negative, LOAD_PCT shall be reported as 0%.

For hybrid vehicles, LOAD_PCT reflects the torque produced only by the internal combustion engine, not the torque being delivered by the entire powertrain.

All vehicles with internal combustion engines used for propulsion shall support PID \$04. See PID \$43 for an additional definition of engine LOAD.

TABLE B6 - PID \$05 DEFINITION

PID (hex)	Description	Data Byte	Min. Value	Max. Value	Scaling/Bit	External Test Equipment SI (Metric) / English Display			
05	Engine Coolant Temperature	А	– 40 °C	+215 °C	– 40 °C	ECT: xxx °C (xxx °F)			
	ECT shall display engine coolant temperature derived from an engine coolant temperature sensor or a cylinder head temperature sensor.								

Figure B3 indicates the method to determine how many data bytes will be reported for Service \$01, PIDs \$06 to \$09 and PIDs \$55 to \$58. The number of data bytes to be reported will depend on the data content of the "Location of Oxygen Sensor" PIDs \$13 and \$1D. Bank support is defined for the vehicle, not for each ECU.

Determination of usage of Byte B in addition to Byte A for Service \$01 PIDs \$06 to \$09 and PIDs \$55 to \$58

FIGURE B3 - DETERMINATION OF NUMBER OF DATA BYTES FOR PIDS \$06 TO \$09 AND \$55 TO \$58

TABLE B7 - PID \$06 DEFINITION

PID		Data	Min.	Max.		External Test Equipment
(hex)	Description	Byte	Value	Value	Scaling/Bit	SI (Metric) / English Display
06	Short Term Fuel Trim - Bank 1	Α	-100 %	+99.22 %		SHRTFT1: xxx.x %
	(use if only 1 fuel trim value)		(lean)	(rich)	(0 % at 128)	SHRTFT3: xxx.x %
	Short Term Fuel Trim - Bank 3	В	, ,			SHR1F13. XXX.X %

Short Term Fuel Trim shall be supported by spark ignition vehicles that use closed loop feedback control of air/fuel ratio.

Short Term Fuel Trim Bank 1/3 shall indicate the correction currently being utilized by the closed-loop fuel algorithm. If the fuel system is in open loop, SHRTFT1/3 shall report 0 % correction.

Data B shall only be included in the response to a PID \$06 request if PID \$1D (Location of Oxygen Sensors) indicates an oxygen sensor is present in Bank 3 for the vehicle. The external test equipment can determine length of the response message based on the data content of PID \$13 or \$1D. In no case shall an ECU send an unsupported data byte A if data byte B is supported. See Figure B3 for an explanation of the method to determine how many data bytes will be reported.

TABLE B8 - PID \$07 DEFINITION

PID (hex)	Description	Data Byte	Min. Value	Max. Value	Scaling/Bit	External Test Equipment SI (Metric) / English Display
07	Long Term Fuel Trim – Bank 1	A	-100 %	+99.22 %	100/128 %	LONGFT1: xxx.x %
	(use if only 1 fuel trim value) Long Term Fuel Trim – Bank 3	В	(lean)	(rich)	(0 % at 128)	LONGFT3: xxx.x %

Long Term Fuel Trim shall be supported by spark ignition vehicles that use closed loop feedback control of air/fuel ratio.

Fuel trim correction for Bank 1/3 stored in Non-volatile RAM or Keep-alive RAM. LONGFT shall indicate the correction currently being utilized by the fuel control algorithm at the time the data is requested, in both open-loop and closed-loop fuel control. If no correction is utilized in open-loop fuel, LONGFT shall report 0 % correction. If long-term fuel trim is not utilized at all by the fuel control algorithm, the PID shall not be supported.

Data B shall only be included in the response to a PID \$07 request if PID \$1D (Location of Oxygen Sensors) indicates an oxygen sensor is present in Bank 3 for the vehicle. The external test equipment can determine length of the response message based on the data content of PID \$13 or \$1D. In no case shall an ECU send an unsupported data byte A if data byte B is supported. See Figure B3 for an explanation of the method to determine how many data bytes will be reported.

TABLE B9 - PID \$08 DEFINITION

PID (hex)	Description	Data Byte	Min. Value	Max. Value	Scaling/Bit	External Test Equipment SI (Metric) / English Display
08	Short Term Fuel Trim - Bank 2	Α	-100 %			SHRTFT2: xxx.x %
	(use if only 1 fuel trim value)		(lean)	(rich)	(0 % at 128)	SHRTFT4: xxx.x %
	Short Term Fuel Trim - Bank 4	В	, ,			SHRIF14. XXX.X 70

Short Term Fuel Trim shall be supported by spark ignition vehicles that use closed loop feedback control of air/fuel ratio.

Short Term Fuel Trim Bank 2/4 shall indicate the correction currently being utilized by the closed-loop fuel algorithm. If the fuel system is in open-loop, SHRTFT24 shall report 0 % correction.

Data B shall only be included in the response to a PID \$08 request if PID \$1D (Location of Oxygen Sensors) indicates an oxygen sensor is present in Bank 4 for the vehicle. The external test equipment can determine length of the response message based on the data content of PID \$13 or \$1D. In no case shall an ECU send an unsupported data byte A if data byte B is supported. See Figure B3 for an explanation of the method to determine how many data bytes will be reported.

TABLE B10 - PID \$09 DEFINITION

PID		Data	Min.	Max.		External Test Equipment
(hex)	Description	Byte	Value	Value	Scaling/Bit	SI (Metric) / English Display
09	Long Term Fuel Trim – Bank 2	Α	-100 %			LONGFT2: xxx.x %
	(use if only 1 fuel trim value)		(lean)	(rich)	(0 % at 128)	LONGFT4: xxx.x %
	Long Term Fuel Trim - Bank 4	В	, ,			LONGF 14. XXX.X %

Long Term Fuel Trim shall be supported by spark ignition vehicles that use closed loop feedback control of air/fuel ratio.

Fuel trim correction for Bank 2/4 stored in Non-volatile RAM or Keep-alive RAM. LONGFT shall indicate the correction currently being utilized by the fuel control algorithm at the time the data is requested, in both open-loop and closed-loop fuel control. If no correction is utilized in open-loop fuel, LONGFT shall report 0 % correction. If long-term fuel trim is not utilized at all by the fuel control algorithm, the PID shall not be supported.

Data B shall only be included in the response to a PID \$09 request if PID \$1D (Location of Oxygen Sensors) indicates an oxygen sensor is present in Bank 4 for the vehicle. The external test equipment can determine length of the response message based on the data content of PID \$13 or \$1D if data byte B is supported. See Figure B3 for an explanation of the method to determine how many data bytes will be reported.

TABLE B11 - PID \$0A DEFINITION

PID (hex)	Description	Data Byte	Min. Value	Max. Value	Scaling/Bit	External Test Equipment SI (Metric) / English Display
0A	Fuel Pressure (gauge)	Α	0 kPa (gauge)	765 kPa (gauge)	3 kPa per bit (gauge)	FP: xxx kPa (xx.x psi)
	FP shall display fuel pressur	e wher	n the readir	ng is refere	nced to atmos	sphere (gauge pressure).

TABLE B12 - PID \$0B DEFINITION

PID		Data	Min.	Max.		External Test Equipment
(hex)	Description	Byte	Value	Value	Scaling/Bit	SI (Metric) / English Display
0B	Intake Manifold Absolute	Α	0 kPa	255 kPa	1 kPa	MAP: xxxx.x kPa (xxx.x inHg)
	Pressure		(absolute)	(absolute)	per bit	
					(absolute)	

MAP shall display manifold pressure derived from a Manifold Absolute Pressure sensor, if a sensor is utilized. If a vehicle uses both a MAP and MAF sensor, both the MAP and MAF PIDs shall be supported.

If PID \$4F is not supported for this ECU, or if PID \$4F is supported and includes \$00 for Intake Manifold Absolute Pressure, the external test equipment shall use the scaling values included in this table for those values. If PID \$4F is supported for this ECU and Data D of \$4F contains a value greater than \$00, the external test equipment shall calculate scaling and range for this PID as explained in the PID \$4F Data D definition.

TABLE B13 - PID \$0C DEFINITION

PID (hex)	Description	Data Byte	Min. Value	Max. Value	Scaling/Bit	External Test Equipment SI (Metric) / English Display	
(Hex)	Description	Буце	value	value	Scalling/bit	Si (Wethic) / Eligiish Display	
0C	Engine RPM	A, B	0 min ⁻¹	16383.75	1/4 rpm	RPM: xxxxx min-1	
	min-1 per bit						
	Engine RPM shall display revolutions per minute of the engine crankshaft.						

TABLE B14 - PID \$0D DEFINITION

PID		Data	Min.	Max.		External Test Equipment
(hex)	Description	Byte	Value	Value	Scaling/Bit	SI (Metric) / English Display
0D	Vehicle Speed Sensor	Α	0 km/h	255 km/h	1 km/h	VSS: xxx km/h (xxx mph)
					per bit	
	VSS shall display vehicle road calculated by the ECU using obus.					n a vehicle speed sensor, ehicle serial data communication

TABLE B15 - PID \$0E DEFINITION

PID		Data	Min.	Max.		External Test Equipment	
(hex)	Description	Byte	Value	Value	Scaling/Bit	SI (Metric) / English Display	
0E	Ignition Timing Advance	Α	- 64	63.5	1/2 with	SPARKADV: xx.x	
	for #1 Cylinder				0 at 128		
	Ignition timing advance shall be supported by spark ignition vehicles.						
	Ignition timing spark advance mechanical advance).	in deg	rees before	e top dead	center (BTE	OC) for #1 cylinder (not including	

TABLE B16 - PID \$0F DEFINITION

PID (hex)	Description	Data Byte	Min. Value	Max. Value	Scaling/Bit	External Test Equipment SI (Metric) / English Display
0F	Intake Air Temperature	Α	– 40 °C	+215 °C	1 °C with – 40 °C offset	IAT: xxx °C (xxx °F)
	IAT shall display intake manifor be inferred by the control strate.				e obtained di	rectly from a sensor, or may

TABLE B17 - PID \$10 DEFINITION

PID		Data	Min.	Max.		External Test Equipment
(hex)	Description	Byte	Value	Value	Scaling/Bit	SI (Metric) / English Display
10	Air Flow Rate from Mass	A, B	0 g/s	655.35	0.01 g/s	MAF: xxxx.xx g/s (xxxx.x lb/min)
	Air Flow Sensor			g/s	(1/100)	

MAF shall display the airflow rate as measured by a vehicle that utilizes a MAF sensor or an equivalent source. If the engine is off and the ignition is on, the actual sensor value reading shall be reported. If the actual sensor reading can not be reported, the MAF value shall be reported as 0.00 g/s.

If PID \$50 is not supported for this ECU, or if PID \$50 is supported and includes \$00 for Air Flow Rate from Mass Air Flow Sensor, the external test equipment shall use the scaling values included in this table for those values. If PID \$50 is supported for this ECU and Data A of PID \$50 contains a value greater than \$00, the external test equipment shall calculate scaling and range for this PID as explained in the PID \$50 Data A definition.

TABLE B18 - PID \$11 DEFINITION

PID (hex)	Description	Data Byte	Min. Value	Max. Value	Scaling/Bit	External Test Equipment SI (Metric) / English Display		
						` / U . ,		
11	Absolute Throttle Position	Α	0 %	100 %		TP: xxx.x %		
	Absolute throttle position (no	ot "relat	tive" or "lea	rned" throt	tle position) sl	hall be displayed as a normalized		
	value, scaled from 0 to 100 of	%. For	example, it	f a 0 to 5.0	volt sensor is	used (uses a 5.0 volt reference		
	voltage), and the closed thro	ttle po	sition is at	1.0 volts, T	P shall displa	y (1.0 / 5.0) = 20 % at closed		
	throttle and 50 % at 2.5 volts. Throttle position at idle will usually indicate greater than 0 %, and throttle							
	position at wide open throttle					ato grouter triair o 70, arra trii ottio		
	Poolaon at wide open anotale	, w ac	sadily illaio	ato 1000 tili	an 100 /0.			
	For systems where the output is proportional to the input voltage, this value is the percent of maximum input reference voltage. For systems where the output is inversely proportional to the input voltage, this value is 100 % minus the percent of maximum input reference voltage.							
	A single throttle plate could I system could have up to fou					A, B and C. A dual throttle plate		
	NOTE: See PID \$45 for a defini	tion of I	Relative Thr	ottle Positio	n.			

TABLE B19 - PID \$12 DEFINITION

PID (hex)	Description	Data Byte	Scaling/Bit	External Test Equipment SI (Metric) / English Display
12	Commanded Secondary Air Status	A (bit)	byte 1 of 1	AIR_STAT:
	(If supported, one, and only one bit at a time can be set to a 1.)	0 1 2 3 4-7	1 = upstream of first catalytic converter 1 = downstream of first catalytic converter inlet 1 = atmosphere / off 1 = pump commanded on for diagnostics ISO/SAE reserved (Bits shall be reported	AIR_STAT: UPS AIR_STAT: DNS AIR_STAT: OFF AIR_STAT: DIAG —
			as '0'.)	

TABLE B20 - PID \$13 DEFINITION (1 OR 2 BANKS)

PID		Data		External Test Equipment
(hex)	Description	Byte	Scaling/Bit	SI (Metric) / English Display
13	Location of Oxygen	Α	byte 1 of 1	O2SLOC:
	Sensors	(bit)		
		0	1 = Bank 1 - Sensor 1 present at that location	O2S11
		1	1 = Bank 1 - Sensor 2 present at that location	O2S12
		2	1 = Bank 1 - Sensor 3 present at that location	O2S13
		3	1 = Bank 1 - Sensor 4 present at that location	O2S14
		4	1 = Bank 2 - Sensor 1 present at that location	O2S21
		5	1 = Bank 2 - Sensor 2 present at that location	O2S22
		6	1 = Bank 2 - Sensor 3 present at that location	O2S23
		7	1 = Bank 2 - Sensor 4 present at that location	O2S24

Location of Oxygen Sensors, where sensor 1 is closest to the engine. Each bit indicates the presence or absence of an oxygen sensor at the following location.

NOTE: PID \$13 shall only be supported by a given vehicle if PID \$1D is not supported. In no case shall a vehicle support both PIDs. PID \$13 is recommended for 1 or 2 bank O2 sensor engine configurations, and never for 3 or 4 bank O2 sensor engine configurations. See Figure B3 for an explanation of how this PID will be used to determine how many data bytes will be reported when short term or long term fuel trim values are reported with PIDs \$06 to \$09 and PIDs \$55 to \$58.

TABLE B21 - PID \$14 - \$1B DEFINITION (1 OR 2 BANKS)

PID (hex)	Description Use if PID \$13 is Supported!	Data Byte	Min. Value	Max. Value	Scaling/Bit	External Test Equipment SI (Metric) / English Display
14	Bank 1 – Sensor 1		PIDs \$14 - \$	1B shall be	used for a	
15	Bank 1 – Sensor 2		· · · · · · · · · · · · · · · · · · ·		oxygen sensor.	
16	Bank 1 – Sensor 3		Any sensor v			
17	Bank 1 – Sensor 4		value shall be	e normalize	d to provide	
18	Bank 2 – Sensor 1				3 (200 decimal).	
19	Bank 2 – Sensor 2		Wide-range/l			
1A	Bank 2 – Sensor 3		use PIDs \$24	1 to \$2B or I	PIDs \$34 to	
1B	Bank 2 – Sensor 4		\$3B.			
	Oxygen Sensor Output Voltage (Bx-Sy)	Α	0 V	1.275 V	0.005 V	O2Sxy: x.xxx V
	Short Term Fuel Trim (Bx-Sy) associated with this sensor. (reported as \$FF if this sensor is not used in the calculation or if SHRTFT is not applicable.)	В	- 100.00 % (lean)	99.22 % (rich)	100/128 % (0 % at 128)	SHRTFTxy: xxx.x %
	NOTE: The PIDs listed in this tal	ble only	y apply if PID	\$13 is used	to define the oxy	ygen sensor location.

TABLE B22 - PID \$14 - \$1B DEFINITION (3 OR 4 BANKS)

PID	Description	Data	Min.	Max.	0 II /Di4	External Test Equipment
(hex)	Use if PID \$1D is Supported!	Byte	Value	Value	Scaling/Bit	SI (Metric) / English Display
14	Bank 1 – Sensor 1		PIDs \$14 - \$	1B shall be	e used for a	
15	Bank 1 – Sensor 2		conventional			
16	Bank 2 – Sensor 1		sensor. Any			
17	Bank 2 – Sensor 2		,		normalized to	
18	Bank 3 – Sensor 1		provide nom			
19	Bank 3 – Sensor 2		(200 decima			
1A	Bank 4 – Sensor 1		oxygen sens			
1B	Bank 4 – Sensor 2		to \$2B or PII	Os \$34 to \$	3B.	
	Oxygen Sensor Output Voltage (Bx-Sy)	Α	0 V	1.275 V	0.005 V	O2Sxy: x.xxx V
	Short Term Fuel Trim (Bx-Sy) associated with this sensor (reported as \$FF if this sensor is not used in the calculation or if SHRTFT is not applicable.)	В	- 100.00 % (lean)	99.22 % (rich)	100/128 % (0 % at 128)	SHRTFTxy: xxx.x %
	NOTE: The PIDs listed in this tab	le only	apply if PID \$	1D is used	to define the o	xygen sensor location.

TABLE B23 - PID \$1C DEFINITION

PID		Data		External Test Equipment
(hex)	Description	Byte	Scaling/Bit	SI (Metric) / English Display
1C	OBD requirements to which vehicle or engine	Α	byte 1 of 1	OBDSUP:
	is certified.	(hex)	(State Encoded	
			Variable)	
	Data may be reported for the vehicle by a single the MIL.	ECU or r	nay be reported b	y any OBD ECU that activates
	OBD II (California ARB) - California-only (including other "CAA Sec. 177" states) OBD II certified systems. "Certified to California OBDII" should only be included if the actual test group is intended for certification by CARB.	01		OBD II
	OBD (US Federal EPA) - US Federal only OBD-certified (including vehicles using US Federal allowance to certify to California OBD II but then turn off/disable 0.020" evap leak detection)	02		OBD
	OBD and OBD II - US 50-state certified or non- California vehicles certified to California OBD II requirements (including 0.020" evap leak detection) in lieu of US Federal OBD.	03		OBD and OBD II
	OBD I - Certified to California OBD I requirements (pre-1996 model year California certified vehicles)	04		OBD I
	Not OBD compliant - Not certified to any OBD requirements (e.g., US Federal pre-1996 model year, Canadian pre-1997 model year, non-street legal applications, US Federal 8500-14000 vehicles not in phase-ins of 2004-2008 US Federal OBD)	05		NO OBD

TABLE B23 - PID \$1C DEFINITION (CONTINUED)

) ()	Description	Data Byte	Scaling/Bit	External Test Equipment SI (Metric) / English Displa
	EOBD (Euro OBD)	06	•	EOBD
	EOBD and OBD II	07		EOBD and OBD II
	EOBD and OBD	08		EOBD and OBD
	EOBD, OBD and OBD II	09		EOBD, OBD and OBD II
	JOBD (Japan OBD)	0A		JOBD
	JOBD and OBD II	0B		JOBD and OBD II
	JOBD and EOBD	0C		JOBD and EOBD
	JOBD, EOBD, and OBD II	0D		JOBD, EOBD, and OBD II
	ISO/SAE reserved	0E		, ,
	ISO/SAE reserved	0F		
	ISO/SAE reserved	10		
	Engine Manufacturer Diagnostics (EMD) - Heavy-duty vehicles (>14,000) certified to EMD under title 13, CCR section 1971 (e.g., 2007-2009 model year diesel and gasoline engines)	11		EMD
	Engine Manufacturer Diagnostics Enhanced (EMD+) - Heavy-duty engines (>14,000) certified to EMD+ under title 13, CCR section 1971.1 (e.g., 2010-2012 model year diesel and gasoline engines not certified to HD OBD, 2013-2019 model year alternate fuel engines)	12		EMD+
	Heavy Duty On-Board Diagnostics (Child/Partial) - Heavy-duty engines (>14,000) certified to HDOBD as an extrapolated/child rating under title 13, CCR section 1971.1(d)(7.1.2) or (7.2.3) (e.g., 2010-2015 model year diesel and gasoline engines that are subject to HDOBD but are not the full OBD/parent rating)	13		HD OBD-C
	Heavy Duty On-Board Diagnostics - Heavy-duty engines (>14,000) certified to HDOBD as a full OBD/parent rating under title 13, CCR section 1971.1(d)(7.1.1) or (7.2.2) (e.g., 2010 and beyond model year diesel and gasoline engines that are subject to full HDOBD)	14		HD OBD
	World Wide Harmonized OBD	15		WWH OBD
	SAE/ISO reserved	16		SAE/ISO reserved
	Heavy Duty Euro OBD Stage I without NOx control	17		HD EOBD-I
	Heavy Duty Euro OBD Stage I with NOx control	18		HD EOBD-I N
	Heavy Duty Euro OBD Stage II without NOx control	19		HD EOBD-II
	Heavy Duty Euro OBD Stage II with NOx control	1A		HD EOBD-II N
	ISO/SAE reserved	1B		
	Brazil OBD Phase 1	1C		OBDBr-1
	Brazil OBD Phase 2	1D		OBDBr-1
	Korean OBD	1E		KOBD
	India OBD I	1F		IOBD I
	India OBD I	20		IOBD II
	Heavy Duty Euro OBD Stage VI	21		HD EOBD-VI
	ISO/SAE reserved	22 - FA		TID LODD-VI
		FB - FF		SAE 11030 special magnine
	ISO/SAE - Not available for assignment PID \$1C may be reported for the vehicle by a single EC		l	SAE J1939 special meaning

PID \$1C may be reported for the vehicle by a single ECU or may be reported by any OBD ECU that activates the MIL. If PID \$1C is supported by multiple ECUs on a vehicle, the reported values do not have to be identical for all reporting ECUs, however, each ECU shall accurately report its OBD compliance level. For example, on a vehicle designed to meet OBD II, an ECM reporting \$01 (OBD II) and a TCM reporting \$03 (OBD and OBD II) would be an acceptable combination but an ECM reporting \$01 (OBD II) and a TCM reporting \$04 (OBD I) would not.

TABLE B24 - PID \$1D DEFINITION (3 OR 4 BANKS)

PID (hex)	Description	Data Byte	Scaling/Bit	External Test Equipment SI (Metric) / English Display
1D	Location of oxygen	A (b.:4)	byte 1 of 1	O2SLOC:
	sensors	(bit)		
		0	1 = Bank 1 - Sensor 1 present at that location	O2S11
		1	1 = Bank 1 - Sensor 2 present at that location	O2S12
		2	1 = Bank 2 - Sensor 1 present at that location	O2S21
		3	1 = Bank 2 - Sensor 2 present at that location	O2S22
		4	1 = Bank 3 - Sensor 1 present at that location	O2S31
		5	1 = Bank 3 - Sensor 2 present at that location	O2S32
		6	1 = Bank 4 - Sensor 1 present at that location	O2S41
		7	1 = Bank 4 - Sensor 2 present at that location	O2S42

Location of oxygen sensors, where sensor 1 is closest to the engine. Each bit indicates the presence or absence of an oxygen sensor at the following location.

NOTE: PID \$1D shall only be supported by a given vehicle if PID \$13 is not supported. In no case shall a vehicle support both PIDs. PID \$1D is recommended for 3 or 4 bank O2 sensor engine configurations, and never for 1 or 2 bank O2 sensor engine configurations. See Figure B3 for an explanation of how this PID will be used to determine how many data bytes will be reported when short term or long term fuel trim values are reported with PIDs \$06 to \$09 and PIDs \$55 to \$58.

TABLE B25 - PID \$1E DEFINITION

PID		Data		External Test Equipment
(hex)	Description	Byte	Scaling/Bit	SI (Metric) / English Display
1E	Auxiliary Input Status	Α	byte 1 of 1	Auxiliary Input Status
		(bit)		
	Power Take Off (PTO)	0	0 = PTO not active (OFF);	PTO_STAT: OFF or ON
	Status		1 = PTO active (ON).	
		1-7	ISO/SAE reserved (Bits shall be	_
			reported as '0'.)	

TABLE B26 - PID \$1F DEFINITION

PID (hex)	Description	Data Byte	Min. Value	Max. Value	Scaling/ Bit	External Test Equipment SI (Metric) / English Display
1F	Time Since Engine Start	A, B	0 sec.	65535 sec.	_	RUNTM: xxxxx sec.
					per count	

For non-hybrid vehicles, RUNTM shall increment after the ignition switch is turned to the on position and the engine is running. RUNTM shall be reset to zero during every control module power-up and when entering the key-on, engine off position. RUNTM is limited to 65535 seconds and shall not wrap around to zero.

For hybrid vehicles or for vehicles that employ engine shutoff strategies (e.g. engine shutoff at idle), RUNTM shall increment after the ignition switch is turned to the on position and the engine is running, or, if the vehicle can be started in electric-only mode, RUNTM shall increment after the ignition switch is turned to the on position and the vehicle starts to move. It shall continue to increment even if the engine is turned off by the vehicle control system. RUNTM shall be reset to zero during every control module power-up and when entering the key-on, engine off position. RUNTM is limited to 65535 seconds and shall not wrap around to zero.

TABLE B27 - PID \$21 DEFINITION

PID (hex)	Description	Data Byte	Min. Value	Max. Value	Scaling/ Bit	External Test Equipment SI (Metric) / English Display
21	Distance Traveled While MIL is Activated	A, B	0 km	65535 km	1 km per count	MIL_DIST: xxxxx km (xxxxx miles)

Data may be reported for the vehicle by a single ECU or may be reported by each OBD ECU that activates the MIL.

Conditions for "Distance traveled" counter:

- reset to \$0000 when MIL state changes from deactivated to activated;
- accumulate counts in km if MIL is activated (ON);
- do not change value while MIL is not activated (OFF);
- reset to \$0000 if diagnostic information is cleared either by service \$04 or at least 40 warm-up cycles without MIL activated;
- do not wrap to \$0000 if value is \$FFFF.

TABLE B28 - PID \$22 DEFINITION

PID		Data	Min.	Max.		External Test Equipment
(hex)	Description	Byte	Value	Value	Scaling/Bit	SI (Metric) / English Display
22	Fuel Pressure relative	A, B	0 kPa	5177.27 kPa	0.079 kPa	FP: xxxx.x kPa (xxx.x PSI)
	to manifold vacuum				(5178/65535)	
					per bit unsigned,	
					1 kPa =	
					0.1450377 PSI	
	FP shall display fuel pres	sure when	the read	ding is reference	ed to manifold va	cuum (relative pressure).

TABLE B29 - PID \$23 DEFINITION

PID		Data	Min.	Max.		External Test Equipment			
(hex)	Description	Byte	Value	Value	Scaling/Bit	SI (Metric) / English Display			
23	Fuel Rail Pressure	A, B	0 kPa	655350 kPa	10 kPa per bit unsigned,	FRP: xxxxxx kPa (xxxxx.x PSI)			
				Kra	,				
					1 kPa =				
					0.1450377 PSI				
	FRP shall display fuel rail pressure at the engine when the reading is referenced to atmosphere (gauge								
	pressure). This PID is intended			essure ar	id gasoline direct	t injection systems that have a			
	higher pressure range than PII	Os \$0A an	d \$22.						

TABLE B30 - PID \$24 - \$2B DEFINITION (1 OR 2 BANKS)

PID (hex)	Description Use if PID \$13 is Supported!	Data Byte	Min. Value	Max. Value	Scaling/Bit	External Test Equipment SI (Metric) / English Display
24	Bank 1 – Sensor 1 (wide range O2S)					
25	Bank 1 – Sensor 2 (wide range O2S)					
26	Bank 1 – Sensor 3 (wide range O2S)					
27	Bank 1 – Sensor 4 (wide range O2S)					
28	Bank 2 – Sensor 1 (wide range O2S)					
29	Bank 2 – Sensor 2 (wide range O2S)					
2A	Bank 2 – Sensor 3 (wide range O2S)					
2B	Bank 2 – Sensor 4 (wide range O2S)					
	Equivalence Ratio (lambda) (Bx-Sy)	A, B	0	1.999	0.0000305	LAMBDAxy: xxx.xxx
					(2/65535)	
	Oxygen Sensor Voltage (Bx-Sy)	C, D	0 V	7.999 V	0.000122 V	O2Sxy: xxx.xxx V
					(8/65535)	

PIDs \$24 to \$2B shall be used for linear or wide-ratio Oxygen Sensors when equivalence ratio and voltage are displayed.

If PID \$4F is not supported for this ECU, or if PID \$4F is supported and includes \$00 for either Equivalence Ratio or Maximum Oxygen Sensor Voltage, the external test equipment shall use the scaling values included in this table for those values. If PID \$4F is supported for this ECU and Data A or Data B of PID \$4F contains a value greater than \$00, the external test equipment shall calculate scaling and range for these PIDs as explained in the PID \$4F definition.

NOTE: LAMBDA is preferred for External Test Equipment Display instead of EQ_RAT in previous versions of this document.

NOTE: The PIDs listed in this table only apply if PID \$13 is used to define the oxygen sensor location.

TABLE B31 - PID \$24 - \$2B DEFINITION (3 OR 4 BANKS)

PID (box)	Description Use if PID \$1D is Supported!	Data	Min.	Max.	Scaling/Bit	External Test Equipment	
(hex)		Byte	Value	Value	Scaling/bit	SI (Metric) / English Display	
24	Bank 1 - Sensor 1 (wide range O2S)						
25	Bank 1 - Sensor 2 (wide range O2S)						
26	Bank 2 - Sensor 1 (wide range O2S)						
27	Bank 2 - Sensor 2 (wide range O2S)						
28	Bank 3 - Sensor 1 (wide range O2S)						
29	Bank 3 - Sensor 2 (wide range O2S)						
2A	Bank 4 - Sensor 1 (wide range O2S)						
2B	Bank 4 - Sensor 2 (wide range O2S)						
	Equivalence Ratio (lambda) (Bx-Sy)	A, B	0	1.999	0.0000305	LAMBDAxy: xxx.xxx	
					(2/65535)		
	Oxygen Sensor Voltage (Bx-Sy)	C, D	0 V	7.999 V	0.000122 V	O2Sxy: xxx.xxx V	
					(8/65535)		
	PIDs \$24 to \$2B shall be used for linear or wide-ratio Oxygen Sensors when equivalence ratio and voltage are displayed.						
	See the explanation of scaling values for PIDs \$24 to \$2B for 1 or 2 bank systems in the previous table.						
	NOTE: The PIDs listed in this table or	ily apply	if PID \$	S1D is use	ed to define th	ne oxygen sensor location.	

TABLE B32 - PID \$2C DEFINITION

PID (hex)	Description	Data Byte	Min. Value	Max. Value	Scaling/Bit	External Test Equipment SI (Metric) / English Display
2C	Commanded EGR	Α	0 %	100 %	100/255 %	EGR_PCT: xxx.x %
			(no flow)	(max. flow)		

Commanded EGR displayed as a percent. EGR_PCT shall be normalized to the maximum EGR commanded output control parameter. EGR systems use a variety of methods to control the amount of EGR delivered to the engine.

- 1) If an on/off solenoid is used, EGR_PCT shall display 0% when the EGR is commanded off, 100% when the EGR system is commanded on.
- 2) If a vacuum solenoid is duty cycled, the EGR duty cycle from 0 to 100% shall be displayed.
- 3) If a linear or stepper motor valve is used, the fully closed position shall be displayed as 0%; the fully open position shall be displayed as 100%. Intermediate positions shall be displayed as a percent of the full-open position. For example, a stepper-motor EGR valve that moves from 0 to 128 counts shall display 0% at zero counts, 100% at 128 counts and 50% at 64 counts.
- 4) Any other actuation method shall be normalized to display 0% when no EGR is commanded and 100% at the maximum commanded EGR position.

TABLE B33 - PID \$2D DEFINITION

PID (hex)	Description	Data Byte	Min. Value	Max. Value	Scaling/Bit	External Test Equipment SI (Metric) / English Display
2D	EGR Error	Α	– 100 %	+99.22 %	100/128 %	EGR_ERR: xxx.x %
			(less than	(more than	(0 % at 128)	_
			commanded)	commanded)		

EGR error is a percent of commanded EGR. Often, EGR valve control outputs are not in the same engineering units as the EGR feedback input sensors. For example, an EGR valve can be controlled using a duty-cycled vacuum solenoid; however, the feedback input sensor is a position sensor. This makes it impossible to display "actual" versus "commanded" in the same engineering units. EGR error solved this problem by displaying a normalized (non-dimensional) EGR system feedback parameter. EGR error is defined to be

((EGR actual - EGR commanded) / EGR commanded) * 100%

For example, if 10% EGR is commanded and 5 % is delivered to the engine, the EGR_ERR is ((5% - 10%) / 10%) * 100% = -50% error.

EGR_ERR may be computed using various control parameters such as position, steps, counts, etc. All EGR systems must react to quickly changing conditions in the engine; therefore, EGR_ERR will generally show errors during transient conditions. Under steady condition, the error will be minimized (not necessarily zero, however) if the EGR system is under control.

If the control system does not use closed loop control, EGR ERR shall not be supported.

When commanded EGR is 0%, EGR error is technically undefined. In this case EGR error should be set to 0% when actual EGR = 0% or EGR error should be set to 99.2% when actual EGR > 0%.

TABLE B34 - PID \$2E DEFINITION

PID (hex)	Description	Data Byte	Min. Value	Max. Value	Scaling/Bit	External Test Equipment SI (Metric) / English Display
2E	Commanded Evaporative	Α	0 %	100 %	100/255 %	EVAP_PCT: xxx.x %
	Purge		no flow	max. flow		

Commanded evaporative purge control valve displayed as a percent. EVAP_PCT shall be normalized to the maximum EVAP purge commanded output control parameter.

- 1) If an on/off solenoid is used, EVAP_PCT shall display 0% when purge is commanded off, 100% when purge is commanded on.
- 2) If a vacuum solenoid is duty-cycled, the EVAP purge valve duty cycle from 0 to 100% shall be displayed.
- 3) If a linear or stepper motor valve is used, the fully closed position shall be displayed as 0%, and the fully open position shall be displayed as 100%. Intermediate positions shall be displayed as a percent of the full-open position. For example, a stepper-motor EVAP purge valve that moves from 0 to 128 counts shall display 0% at 0 counts, 100% at 128 counts and 50% at 64 counts.
- 4) Any other actuation method shall be normalized to display 0% when no purge is commanded and 100% at the maximum commanded purge position/flow.

TABLE B35 - PID \$2F DEFINITION

PID		Data	Min.	Max.		External Test Equipment
(hex)	Description	Byte	Value	Value	Scaling/Bit	SI (Metric) / English Display
2F	Fuel Level Input	Α	0 %	100 %	100/255 %	FLI: xxx.x %
			no fuel	max. fuel		
				capacity		

FLI shall indicate nominal fuel tank liquid fill capacity as a percent of maximum. FLI may be obtained directly from a sensor, may be obtained indirectly via the vehicle serial data communication bus, or may be inferred by the control strategy using other sensor inputs. Vehicles that use gaseous fuels shall display the percent of useable fuel capacity. If there are two tanks in a bi-fuel car, one for each fuel type, the Fuel Level Input reported shall be from the tank, which contains the fuel type the engine is running on.

TABLE B36 - PID \$30 DEFINITION

PID (hex)	Description	Data Bvte	Min. Value	Max. Value	Scaling/Bit	External Test Equipment SI (Metric) / English Display
30	Number of warm-ups since DTCs cleared	A	0	255	1 warm-up per count	WARM_UPS: xxx

Number of OBD warm-up cycles since all DTCs were cleared (via external test equipment or possibly, a battery disconnect). A warm-up is defined in the OBD regulations to be sufficient vehicle operation such that coolant temperature rises by at least 22 °C (40 °F) from engine starting and reaches a minimum temperature of 70 °C (160 °F) (60 °C (140 °F) for diesels). This PID is not associated with any particular DTC. It is simply an indication for I/M, of the last time external test equipment was used to clear DTCs. If greater than 255 warm-ups have occurred, WARM_UPS shall remain at 255 and not wrap to zero. Data may be reported for the vehicle by a single ECU or may be reported by each OBD ECU that activates the MIL.

TABLE B37 - PID \$31 DEFINITION

PID (hex)	Description	Data Byte	Min. Value	Max. Value	Scaling/Bit	External Test Equipment SI (Metric) / English Display
31	Distance traveled since DTCs cleared	A, B	0 km	65535 km	1 km per count	CLR_DIST: xxxxx km (xxxxx miles)

This is distance accumulated since DTCs were cleared (via external test equipment or possibly, a battery disconnect). This PID is not associated with any particular DTC. It is simply an indication for I/M (Inspection/Maintenance) of the last time external test equipment was used to clear DTCs. If greater than 65535 km has occurred, CLR_DIST shall remain at 65535 km and not wrap to zero. Data may be reported for the vehicle by a single ECU or may be reported by each OBD ECU that activates the MIL.

TABLE B38 - PID \$32 DEFINITION

PID		Data	Min.	Max.		External Test Equipment
(hex)	Description	Byte	Value	Value	Scaling/Bit	SI (Metric) / English Display
32	Evap System Vapor	A, B	(\$8000)	(\$7FFF)	0.25 Pa	EVAP_VP: xxxx.x Pa (xx.xxx
	Pressure		-8192 Pa	8191.75 Pa,	(1/4) per bit	in H ₂ O)
			(-32.8878	(32.8868 in	signed	
			inH2O)	H2O)		

This is evaporative system vapor pressure. The pressure signal is normally obtained from a sensor located in the fuel tank (FTP – Fuel Tank Pressure) or a sensor in an evaporative system vapor line. If a wider pressure range is required, PID \$54 scaling allows for a wider pressure range than PID \$32.

For systems supporting Evap System Vapor Pressure, one of the following two PIDs is required: \$32 or \$54. Support for more than one of these PIDs is not allowed.

TABLE B39 - PID \$33 DEFINITION

PID		Data	Min.	Max.		External Test Equipment				
(hex)	Description	Byte	Value	Value	Scaling/Bit	SI (Metric) / English Display				
33	Barometric Pressure	Α	0 kPa	255 kPa	1 kPa per bit	BARO: xxx kPa (xx.x inHg)				
			(absolute)	(absolute)	(absolute)					
	Barometric pressure. BARO is normally obtained from a dedicated BARO sensor, from a MAP sensor at key-									
	on and during certain modes of	driving	, or inferred	from a MAF	sensor and oth	er inputs during certain modes				
	of driving. The control module shall report BARO from whatever source it is derived from.									
	NOTE 1: Some weather service	es repo	ort local BAR	O values adj	usted to sea lev	vel. In these cases, the reported				
	value may not match the displayed value on the external test equipment.									
	NOTE 2: If BARO is inferred while driving and stored in non-volatile RAM or Keep-alive RAM, BARO may not									
	be accurate after a ba	attery d	isconnect or	total memor	y clear.	•				

TABLE B40 - PID \$34 - \$3B DEFINITION (1 OR 2 BANKS)

PID		Data	Min.	Max.		External Test Equipment SI (Metric) / English
(hex)	Description	Byte	Value	Value	Scaling/Bit	Display
34	Bank 1 – Sensor 1 (wide range O2S)					
35	Bank 1 – Sensor 2 (wide range O2S)					
36	Bank 1 – Sensor 3 (wide range O2S)					
37	Bank 1 – Sensor 4 (wide range O2S)					
38	Bank 2 – Sensor 1 (wide range O2S)					
39	Bank 2 – Sensor 2 (wide range O2S)					
3A	Bank 2 – Sensor 3 (wide range O2S)					
3B	Bank 2 – Sensor 4 (wide range O2S)					
	Equivalence Ratio (lambda) (Bx-Sy)	A, B	0	1.999	0.0000305	LAMBDAxy: xxx.xxx
					(2/65535)	
	Oxygen Sensor Current (Bx-Sy)	C, D	– 128	127.996	0.00390625 mA	O2Sxy: xxx.xx mA
	, ,,,		mA	mA	(128/32768)	-
					(\$8000 = 0 mA)	

PIDs \$34 to \$3B shall be used for linear or wide-ratio Oxygen Sensors when equivalence ratio and current are displayed.

If PID \$4F is not supported for this ECU, or if PID \$4F is supported and includes \$00 for either Equivalence Ratio or Maximum Oxygen Sensor Current, the external test equipment shall use the scaling values included in this table for those values. If PID \$4F is supported for this ECU and Data A or Data C of PID \$4F contains a value greater than \$00, the external test equipment shall calculate scaling and range for these PIDs as explained in the PID \$4F definition.

NOTE: LAMBDA is preferred for External Test Equipment Display instead of EQ_RAT in previous versions of this document.

NOTE: The PIDs listed in this table only apply if PID \$13 is used to define the oxygen sensor location.

TABLE B41 - PID \$34 - \$3B DEFINITION (3 OR 4 BANKS)

PID (hex)	Description	Data Byte	Min. Value	Max. Value	Scaling/Bit	External Test Equipment SI (Metric) / English Display
34	Bank 1 – Sensor 1 (wide range O2S)					
35	Bank 1 – Sensor 2 (wide range O2S)					
36	Bank 2 – Sensor 1 (wide range O2S)					
37	Bank 2 – Sensor 2 (wide range O2S)					
38	Bank 3 – Sensor 1 (wide range O2S)					
39	Bank 3 – Sensor 2 (wide range O2S)					
3A	Bank 4 – Sensor 1 (wide range O2S)					
3B	Bank 4 – Sensor 2 (wide range O2S)					
	Equivalence Ratio (lambda) (Bx-Sy)	A, B	0	1.999	0.0000305 (2/65535)	LAMBDAxy: xxx.xxx
	Oxygen Sensor Current (Bx-Sy)	C, D	– 128 mA	127.996 mA	0.00390625 mA (128/32768) (\$8000 = 0 mA)	O2Sxy: xxx.xx mA

PIDs \$34 to \$3B shall be used for linear or wide-ratio Oxygen Sensors when equivalence ratio and current are displayed.

See the explanation of scaling values for PIDs \$34 to \$3B for 1 or 2 bank systems in the previous table.

NOTE: The PIDs listed in this table only apply if PID \$1D is used to define the oxygen sensor location.

TABLE B42 - PID \$3C DEFINITION

PID (hex)	Description	Data Byte	Min. Value	Max. Value	Scaling/Bit	External Test Equipment SI (Metric) / English Display
3C	Catalyst Temperature Bank 1, Sensor 1	A, B	– 40 °C	+ 6513.5 °C	0.1 °C / bit with – 40 °C offset	CATEMP11: xxxx °C (xxxx °F)
	CATEMP11 shall display cataly				•	

CATEMP11 shall display catalyst temperature for a bank 1 catalyst or the Bank 1, Sensor 1 catalyst temperature sensor. CATEMP11 may be obtained directly from a sensor or may be inferred by the control strategy using other sensor inputs.

TABLE B43 - PID \$3D DEFINITION

PID		Data	Min.	Max.		External Test Equipment				
(hex)	Description	Byte	Value	Value	Scaling/Bit	SI (Metric) / English Display				
3D	Catalyst Temperature Bank 2,	A, B	– 40 °C	+ 6513.5 °C	0.1 °C / bit	CATEMP21: xxxx °C (xxxx °F)				
	Sensor 1				with – 40 °C					
					offset					
	CATEMP21 shall display cataly	st tempe	erature for	a bank 2 cata	lyst or the Ba	nk 2, Sensor 1 catalyst				
	temperature sensor. CATEMP21 may be obtained directly from a sensor or may be inferred by the control									
	strategy using other sensor inpu	uts.								

TABLE B44 - PID \$3E DEFINITION

PID		Data	Min.	Max.		External Test Equipment			
(hex)	Description	Byte	Value	Value	Scaling/Bit	SI (Metric) / English Display			
3E	Catalyst Temperature Bank 1,	A, B	– 40 °C	+ 6513.5 °C	0.1 °C / bit	CATEMP12: xxxx °C (xxxx °F)			
	Sensor 2				with – 40 °C				
					offset				
	CATEMP12 shall display catalyst temperature for an additional bank 1 catalyst or the Bank 1, Sensor 2 catalyst temperature sensor. CATEMP12 may be obtained directly from a sensor or may be inferred by the								
	control strategy using other sen		•	obtained direc	suy ironi a sen	sol of may be interred by the			

TABLE B45 - PID \$3F DEFINITION

PID	-	Data	Min.	Max.		External Test Equipment
(hex)	Description	Byte	Value	Value	Scaling/Bit	, , ,
3F	Catalyst Temperature Bank 2,	A, B	– 40 °C	+ 6513.5 °C	0.1 °C / bit	CATEMP22: xxxx °C (xxxx °F)
	Sensor 2				with – 40 °C	
					offset	
	CATEMP22 shall display catalyst catalyst temperature sensor. CA control strategy using other sen	ATEMP2	22 may be			

TABLE B46 - PID \$41 DEFINITION

PID		Data		External Test Equipment
(hex)	Description	Byte	Scaling/Bit	SI (Metric) / English Display
41	Monitor status this driving cycle			

The bit in this PID shall report two pieces of information for each monitor:

- 1) Monitor enable status for the current driving cycle. This bit shall indicate when a monitor is disabled in a manner such that there is no easy way for the driver to operate the vehicle to allow the monitor to run. Typical examples are:
 - engine-off soak not long enough (e.g., cold start temperature conditions not satisfied);
 - monitor maximum time limit or number of attempts/aborts exceeded;
 - ambient air temperature too low or too high;
 - BARO too low (high altitude).
 - monitor disabled due to sensor failure.

The monitor shall not indicate "disabled" for operator-controlled conditions such as rpm, load, and throttle position. The monitor shall not indicate "disabled" from key-on because minimum time limit has not been exceeded or engine warm-up conditions have not been met, since these conditions will eventually be met as the vehicle continues to be driven.

NOTE: If the operator drives the vehicle to a different altitude or ambient air temperature conditions, monitor status may change from enabled to disabled. The monitor status for this PID shall not change from disable to enable even if the conditions change back and the monitor is actually enabled. This could result in a monitor status showing "disabled" but eventually showing "complete".

2) Monitor completion status for the current driving/monitoring cycle. Monitor completion criteria is the same as for PID \$01 except that the status shall be reset to "not complete" upon starting a new monitoring cycle. Note that some monitoring cycles can include various engine-operating conditions; other monitoring cycles begin after the ignition key is turned off. Some status bits on a given vehicle can utilize engine-running monitoring cycles while others can utilize engine-off monitoring cycles. Resetting the bits to "not complete" upon starting the engine will accommodate most engine-running and engine-off monitoring cycles; however, manufacturers are free to define their own monitoring cycles.

PID \$41 bits shall be utilized for all non-continuous monitors which are supported, and change completion status in PID \$01. If a non-continuous monitor is not supported or always shows "complete", the corresponding PID \$41 bits shall indicate disabled and complete. PID \$41 bits may be utilized at the vehicle manufacturer's discretion for all continuous monitors which are supported, with the exception of data byte B bit 2 which shall always show CCM (Comprehensive Component Monitoring) as enabled for spark-ignition and compression-ignition vehicles.

TABLE B46 - PID \$41 DEFINITION (CONTINUED)

PID		Data		External Test Equipment					
(hex)	Description	Byte	Scaling/Bit	SI (Metric) / English Display					
41	2000p	A	byte 1 of 4	or (means):g					
• • •		(bit)	2910 1 01 4						
	Reserved – shall be reported as \$00	0-7		_					
	Enable status of continuous monitors	В	byte 2 of 4 (Low Nibble)						
	this monitoring cycle:	(bit)	,						
	Misfire monitoring enabled	0	See PID \$01 to determine	MIS_ENA: NO, YES or N/A					
	Fuel system monitoring enabled	1	which monitors are	FUEL_ENA: NO, YES or N/A					
	Comprehensive component monitoring	2	supported.	CCM_ENA: NO, YES or N/A					
	enabled	_	0 = monitor disabled for rest of this monitoring	OOM_ENV. 140, 120 01 14// (
			cycle (NO)						
			0 = monitor not supported						
			(N/A)						
			1 = monitor enabled for						
			this monitoring cycle						
			(YES)						
	Enable status of continuous monitors this								
	means not supported in PID \$01; YES me Compression ignition monitoring								
	supported	3	0 = Spark ignition monitors supported	Not displayed by external test equipment					
	Supported		1 = Compression ignition	Cquipment					
			monitors supported						
	Indicates support of spark ignition or comp	tes support of spark ignition or compression ignition monitors and data labels within Data Bytes C and I							
	PID \$41.								
	Completion status of continuous	В	byte 2 of 4 (High Nibble)						
	monitors this monitoring cycle:	(bit)							
	Misfire monitoring completed	4	See PID \$01 to determine	MIS_CMPL: YES, NO or N/A					
	Fuel system monitoring completed	5	which monitors are	FUELCMPL: YES, NO, or N/A					
	Comprehensive component monitoring completed	6	supported.	CCM_CMPL: YES, NO or N/A					
	Completed		0 = monitor complete this						
			monitoring cycle (YES)						
			0 = monitor not supported (N/A)						
			1 = monitor not complete						
			this monitoring cycle						
			(NO)						
	ISO/SAE reserved (Bit shall be reported	7		_					
	as '0')								
			tions for Bytes C and D are k ignition vehicles only.	to be used					
	Enable status of non-continuous	oi spai C	byte 3 of 4	Enable status of non-continuous					
	monitors this monitoring cycle:	(bit)	Dyle o or T	monitors this monitoring cycle:					
	Catalyst monitoring	0	See PID \$01 to determine	CAT_ENA: NO, YES or N/A					
	Heated catalyst monitoring	1	which monitors are	HCAT ENA: NO, YES or N/A					
	Evaporative system monitoring	2	supported.	EVAP ENA: NO, YES or N/A					
	Secondary air system monitoring	3	0 = monitor disabled for	AIR ENA: NO, YES, or N/A					
	ISO/SAE reserved (bit shall be reported	4	rest of this monitoring						
	as "0")		cycle (NO)						
	Oxygen sensor monitoring	5	0 = monitor not supported	O2S_ENA: NO, YES or N/A					
	Oxygen sensor heater monitoring	6	(N/A) 1 = monitor enabled for	HTR_ENA: NO, YES or N/A					
	EGR and/or VVT system monitoring	7	this monitoring cycle	EGR_ENA: NO, YES or N/A					
		7	(YES)						
			(120)	l .					

TABLE B46 - PID \$41 DEFINITION (CONTINUED)

PID		Data		External Test Equipment
(hex)	Description	Byte	Scaling/Bit	SI (Metric) / English Display
41	Completion status of non-continuous monitors this monitoring cycle:	D (bit)	byte 4 of 4	Completion status of non- continuous monitors this monitoring cycle:
	Catalyst monitoring completed	0	See PID \$01 to determine	CAT_CMPL: YES, NO or N/A
	Heated catalyst monitoring completed	1	which monitors are	HCATCMPL: YES, NO or N/A
	Evaporative system monitoring	2	supported.	EVAPCMPL: YES, NO or N/A
	completed Secondary air system monitoring completed	3	0 = monitor complete this monitoring cycle (YES) 0 = monitor not supported	AIR_CMPL: YES, NO or N/A
	ISO/SAE reserved (bit shall be reported as "0")	4	(N/A) 1 = monitor not complete	
	Oxygen sensor monitoring completed	5	this monitoring cycle	O2S_CMPL: YES, NO or N/A
	Oxygen sensor heater monitoring completed	6	(NO)	HTR_CMPL: YES, NO or N/A
	EGR and/or VVT system monitoring completed	7		EGR_CMPL: YES, NO or N/A
			tions for Bytes C and D are	
			ssion ignition vehicles only.	Enable status of non-continuous
	Enable status of non-continuous monitors this monitoring cycle:	C (bit)	byte 3 of 4	monitors this monitoring cycle:
	NMHC catalyst monitoring	0	See PID \$01 to determine	HCCATENA: NO, YES or N/A
	NOx/SCR aftertreatment monitoring	1	which monitors are	NCAT_ENA: NO, YES or N/A
	ISO/SAE reserved (bit shall be reported as "0")	2	supported. 0 = monitor disabled for	
	Boost pressure system monitoring	3	rest of this monitoring	BP_ENA: NO, YES or N/A
	ISO/SAE reserved (bit shall be reported as "0")	4	cycle (NO) 0 = monitor not supported (N/A)	
	Exhaust gas sensor monitoring	5	1 = monitor enabled for	EGS_ENA: NO, YES or N/A
	PM filter monitoring	6	this monitoring cycle	PM_ENA: NO, YES or N/A
	EGR and/or VVT system monitoring	7	(YES)	EGR_ENA: NO, YES or N/A
	Completion status of monitors this monitoring cycle:	D (bit)	byte 4 of 4	Completion status of monitors this monitoring cycle:
	NMHC catalyst monitoring completed	0	See PID \$01 to determine	HCCATCMP: YES, NO or N/A
	NOx/SCR aftertreatment monitoring completed	1	which monitors are supported.	NCATCMPL: YES, NO or N/A
	ISO/SAE reserved (Bit shall be reported as '0'.)	2	0 = monitor complete this	
	Boost pressure system monitoring completed	3	monitoring cycle (YES) 0 = monitor not supported (N/A)	BP_CMPL: YES, NO or N/A
	ISO/SAE reserved (bit shall be reported as "0")	4	1 = monitor not complete this monitoring cycle	
	Exhaust gas sensor monitoring completed	5	(NO)	EGS_CMPL: YES, NO or n/A
	PM filter monitoring completed	6		PM CMPL: YES, NO or N/A
	EGR and/or VVT system monitoring completed	7		EGR_CMPL: YES, NO or N/A

TABLE B47 - PID \$42 DEFINITION

PID (hex)	Description	Data Byte	Min. Value	Max. Value	Scaling/Bit	External Test Equipment SI (Metric) / English Display
42	Control module voltage	A, B	0 V	65.535 V	0.001 V (1/1000) per bit	VPWR: xx.xx V

VPWR – power input to the control module. VPWR is normally battery voltage, less any voltage drop in the circuit between the battery and the control module.

NOTE: 42-volts vehicles may utilize multiple voltages for different systems on the vehicle. VPWR represents the voltage at the control module; it may be significantly different than battery voltage.

TABLE B48 - PID \$43 DEFINITION

PID		Data	Min.	Max.		External Test Equipment
(hex)	Description	Byte	Value	Value	Scaling/Bit	SI (Metric) / English Display
43	Absolute Load Value	A, B	0 %	25700 %	100/255 %	LOAD ABS: xxxxx.x %

LOAD_ABS is the normalized value of air mass per intake stroke displayed as a percent.

The absolute load value has some different characteristics than the LOAD_PCT defined in PID \$04. Vehicles which utilize spark or compression ignition engines for propulsion shall use the following definition for calculating LOAD ABS:

LOAD_ABS = [air mass (g / intake stroke)] / [1.184 (g / liter) * cylinder displacement (liters / intake stroke)]

Derivation:

- air mass (g / intake stroke) = [total engine air mass (g/sec)] / [rpm (revs/min)* (1 min / 60 sec) * (1/2 # of cylinders (intake strokes / rev)];
- LOAD_ABS = [air mass (g)/intake stroke] / [maximum air mass (g)/intake stroke at WOT@STP at 100 % volumetric efficiency] * 100 %.

Where:

- STP = Standard Temperature and Pressure = 25 °C, 29.92 in Hg (101.3 kPa) BARO,
- WOT = wide open throttle.
- The quantity (maximum air mass (g)/intake stroke at WOT@STP at 100 % volumetric efficiency) is a constant for a given cylinder swept volume. The constant is 1.184 (g/liter) * cylinder displacement (liters/intake stroke) based on air density at STP.

Characteristics of LOAD_ABS:

- ranges from 0 % to approximately 95 % for naturally aspirated engines, 0 % to 400 % for boosted engines;
- linearly correlated with engine indicated and brake torque;
- often used to schedule spark and EGR rates;
- peak value of LOAD ABS correlates with volumetric efficiency at WOT;
- indicates the pumping efficiency of the engine for diagnostic purposes.

NOTE: At engine off and ignition on the LOAD ABS = 0 %.

All vehicles with spark-ignition engines used for propulsion are required to support PID \$43.

See PID \$04 for an additional definition of engine LOAD.

TABLE B49 - PID \$44 DEFINITION

PID (hex)	Description	Data Byte	Min. Value	Max. Value	Scaling/Bit	External Test Equipment SI (Metric) / English Display
44	Fuel/Air Commanded Equivalence Ratio	A, B	0	1.999	0.0000305 (2/65535)	LAMBDA: xxx.xxx

Spark ignition fuel control systems that utilize conventional (not wide-range/linear) oxygen sensor shall display the commanded open loop F/A equivalence ratio (also known as lambda) while the fuel control system is in open loop. LAMBDA shall indicate 1.000 while in closed-loop fuel. Fuel systems that utilize wide-range/linear oxygen sensors shall display the commanded F/A equivalence ratio (lambda) in both open-loop and closed-loop operation.

NOTE:

other sensor inputs, e.g. IAT.

A/F Equivalence Ratio (AFR) = (Stoichiometric A/F Ratio) / (Actual A/F Ratio); > 1 is rich, < 1 is lean Lambda (λ) = (Actual A/F Ratio) / (Stoichiometric A/F Ratio); > 1 is lean, < 1 is rich Lambda is the inverse of A/F equivalence ratio

F/A Equivalence Ratio (FAR) = (Stoichiometric F/A Ratio) / (Actual F/A Ratio); > 1 is lean, < 1 is rich Lambda is same as F/A equivalence ratio

To obtain the actual A/F ratio being commanded, multiply the stoichiometric A/F ratio by the inverse of the equivalence ratio (lambda). For example, for gasoline, stoichiometric is a ratio of 14.64:1. If the fuel control system was commanding a 0.95 LAMBDA, the commanded A/F ratio to the engine would be 14.64 * 0.95 = 13.9 A/F.

If PID \$4F is not supported for this ECU, or if PID \$4F is supported and includes \$00 for Equivalence Ratio, the external test equipment shall use the scaling value included in this table. If PID \$4F is supported for this ECU and Data A of PID \$4F contains a value greater than \$00, the external test equipment shall calculate scaling for this PID as explained in the PID \$4F definition.

TABLE B50 - PID \$45 DEFINITION

PID		Data	Min.	Max.		External Test Equipment
(hex)	Description	Byte	Value	Value	Scaling/Bit	SI (Metric) / English Display
45	Relative Throttle Position	Α	0 %	100 %	100/255 %	TP_R: xxx.x %

Relative or "learned" throttle position shall be displayed as a normalized value, scaled from 0 to 100 %. TP_R should display a value of 0 % at the "learned" closed-throttle position. For example, if a 0 to 5.0 volt sensor is used (uses a 5.0 volt reference voltage), and the closed-throttle position is at 1.0 volts, TP shall display (1.0 - 1.0 / 5.0) = 0 % at closed throttle and 30 % at 2.5 volts. Because of the closed-throttle offset, wide-open throttle will usually indicate substantially less than 100 %.

For systems where the output is proportional to the input voltage, this value is the percent of maximum input reference voltage. For systems where the output is inversely proportional to the input voltage, this value is 100 % minus the percent of maximum input reference voltage. See PID \$11 for a definition of Absolute Throttle Position.

TABLE B51 - PID \$46 DEFINITION

PID		Data	Min.	Max.		External Test Equipment
(hex)	Description	Byte	Value	Value	Scaling/Bit	SI (Metric) / English Display
46	Ambient air temperature (same scaling as IAT - \$0F)	Α	– 40 °C	+ 215 °C	1 °C with – 40 °C offset	AAT: xxx °C / xxx °F
	AAT shall display ambient air indirectly via the vehicle seria					om a sensor, may be obtained by the control strategy using

TABLE B52 - PID \$47 DEFINITION

PID (hex)	Description	Data Byte	Min. Value	Max. Value	Scaling/Bit	External Test Equipment SI (Metric) / English Display		
47	Absolute Throttle Position B	A	0 %	100 %		TP_B: xxx.x %		
						all be displayed as a normalized		
	value, scaled from 0 to 100 %					•		
	voltage), and the closed-throt							
	throttle and 50 % at 2.5 volts.					reater than 0 %, and throttle		
	position at wide-open throttle	wiii usua	ily indicat	e iess than	100 %.			
	For systems where the output	t is propo	rtional to	the input ve	oltage, this value	e is the percent of maximum		
	input reference voltage. For systems where the output is inversely proportional to the input voltage, this							
	value is 100 % minus the percent of maximum input reference voltage.							
	A single throttle plate could ha	ave up to	three thr	ottle positio	n sensors, A, B	and C. A dual throttle plate		
	system could have up to four	throttle p	osition se	ensors, A, E	B, C and G.	·		

TABLE B53 - PID \$48 DEFINITION

PID (hex)	Description	Data Byte	Min. Value	Max. Value	Scaling/Bit	External Test Equipment SI (Metric) / English Display		
48	Absolute Throttle Position C	A	0 %	100 %	_	TP_C: xxx.x %		
	Absolute throttle position C, (not "relative" or "learned" throttle position) shall be displayed as a normalized value, scaled from 0 to 100 %. For example, if a 0 to 5.0 volt sensor is used (uses a 5.0 volt reference voltage), and the closed-throttle position is at 1.0 volts, TP_C shall display (1.0 / 5.0) = 20 % at closed throttle and 50 % at 2.5 volts. Throttle position at idle will usually indicate greater than 0 %, and throttle position at wide-open throttle will usually indicate less than 100 %.							
	For systems where the output is proportional to the input voltage, this value is the percent of maximum input reference voltage. For systems where the output is inversely proportional to the input voltage, this value is 100 % minus the percent of maximum input reference voltage.							
	A single throttle plate could have up to four			•		and C. A dual throttle plate		

TABLE B54 - PID \$49 DEFINITION

PID		Data	Min.	Max.		External Test Equipment			
(hex)	Description	Byte	Value	Value	Scaling/Bit	SI (Metric) / English Display			
49	Accelerator Pedal Position D	Α	0 %	100 %	100/255 %	APP_D: xxx.x %			
						hall be displayed as a normalized			
	value, scaled from 0 to 100 %	. For exa	ample, if a	a 0 to 5.0 v	olt sensor is us	ed (uses a 5.0 volt reference			
	voltage), and the closed-pedal position is 1.0 volt, APP_D shall display (1.0 / 5.0) = 20 % at closed pedal								
	and 50 % at 2.5 volts. Pedal p				licate greater th	an 0 %, and pedal position at			
	wide-open pedal will usually in	ndicate le	ess than	100 %.					
	For systems where the output is proportional to the input voltage, this value is the percent of maximum input reference voltage. For systems where the output is inversely proportional to the input voltage, this value is 100 % minus the percent of maximum input reference voltage.								
						AE J2012 and/or SAE J2012 DA. Pedal sensor designations are D,			

E and F.

TABLE B55 - PID \$4A DEFINITION

PID		Data	Min.	Max.		External Test Equipment
(hex)	Description	Byte	Value	Value	Scaling/Bit	SI (Metric) / English Display
4A	Accelerator Pedal Position E	Α	0 %	100 %	100/255 %	APP_E: xxx.x %
						nall be displayed as a normalized
	value, scaled from 0 to 100 %	. For exa	ample, if a	a 0 to 5.0 v	olt sensor is use	ed (uses a 5.0 volt reference
						.0 / 5.0) = 20 % at closed pedal
	and 50 % at 2.5 volts. Pedal p				licate greater th	an 0 %, and pedal position at
	wide-open pedal will usually in	ndicate le	ess than	100 %.		
	For systems where the output	is propo	rtional to	the input v	oltage, this valu	ue is the percent of maximum
						tional to the input voltage, this
	value is 100 % minus the perd					, J
	The designation "E" shall mat	ob tho di	aanaatia	trouble coc	la dafinad in CA	E 12012 and/or SAE 12012 DA
						E J2012 and/or SAE J2012 DA. Pedal sensor designations are D,
	In additional DTOS are defined	i, ii iose s	niouid ille	21011 IIIIS FI	D designation, i	reuai serisoi designations are D,

TABLE B56 - PID \$4B DEFINITION

PID (hex)	Description	Data Byte	Min. Value	Max. Value	Scaling/Bit	External Test Equipment SI (Metric) / English Display			
4B	Accelerator Pedal Position F	A	0 %	100 %	100/255 %	APP_F: xxx.x %			
						nall be displayed as a normalized			
	value, scaled from 0 to 100 %	. For exa	ample, if a	a 0 to 5.0 v	olt sensor is us	ed (uses a 5.0 volt reference			
	voltage), and the closed-pedal position is 1.0 volt, APP_F shall display (1.0 / 5.0) = 20 % at closed pedal and 50 % at 2.5 volts. Pedal position at idle will usually indicate greater than 0 %, and pedal position at wide-open pedal will usually indicate less than 100 %.								
	For systems where the output is proportional to the input voltage, this value is the percent of maximum input reference voltage. For systems where the output is inversely proportional to the input voltage, this value is 100 % minus the percent of maximum input reference voltage.								
			_			E J2012 and/or SAE J2012 DA. Pedal sensor designations are D,			

TABLE B57 - PID \$4C DEFINITION

PID (hex)	Description	Data Byte	Min. Value	Max. Value	Scaling/Bit	External Test Equipment SI (Metric) / English Display
4C	Commanded Throttle	Α	0 %	100 %	100/255 %	TAC_PCT: xxx.x %
	Actuator Control		(closed	(wide-open		
			throttle)	throttle)		

Commanded TAC displayed as a percent. TAC_PCT shall be normalized to the maximum TAC commanded output control parameter. TAC systems use a variety of methods to control the amount of throttle opening:

- 1) If a linear or stepper motor is used, the fully closed throttle position shall be displayed as 0 %, and the fully open throttle position shall be displayed as 100 %. Intermediate positions shall be displayed as a percent of the full-open throttle position. For example, a stepper-motor TAC that moves the throttle from 0 to 128 counts shall display 0 % at 0 counts, 100 % at 128 counts and 50 % at 64 counts.
- 2) Any other actuation method shall be normalized to display 0 % when the throttle is commanded closed and 100 % when the throttle is commanded open.

TABLE B58 - PID \$4D DEFINITION

PID		Data	Min.	Max.		External Test Equipment
(hex)	Description	Byte	Value	Value	Scaling/Bit	SI (Metric) / English Display
4D	Engine run time while MIL is	A, B	0 min	65 535 min	1 min per	MIL_TIME: xxxx hrs, xx min
	activated				count	
	Conditions for "Engine run time wh	nile MIL	is activ	ated" counte	r:	
	 reset to \$0000 when MIL state of this ECU; accumulate counts in minutes if do not change value while MIL i reset to \$0000 if diagnostic infor or at least 40 warm-up cycles w do not wrap to \$0000 if value is For hybrid vehicles or for vehicles (e.g. engine shutoff at idle), the increment: after the ignition switch is tur running, if the vehicle can be started if switch is turned to the on position. 	MIL is so not a semation it hout I \$FFFF that engine ned to n election an	activated ctivated is clear MIL activated representation from the on process of the version of t	leactivated to ed (ON); (OFF); red either by vated; ngine shutoff er for MIL act position and to mode, after to thicle starts to	service \$04 strategies civation shall the engine is the ignition or move.	

TABLE B59 - PID \$4E DEFINITION

PID (hex)	Description	Data	Min. Value	Max. Value	Scaling/Bit	External Test Equipment SI (Metric) / English Display			
(Hex)	Description	Byte	value	value	Scaling/Bit	Si (Metric) / Eligiisti Display			
4E	Engine run time since DTCs	A, B	0 min	65 535 min	1 min per	CLR_TIME: xxxx hrs, xx min			
	cleared				count				
	Engine run time accumulated since DTCs were cleared (via external test equipment or possibly a battery								
	disconnect). This PID is not asso	ciated v	with any p	particular DTC	. It is simply a	n indication for I/M			
	(Inspection/Maintenance) of the I	ast time	external	test equipme	nt was used to	clear DTCs. If greater than			
	65535 min has occurred, CLR T	ME sha	all remain	at 65535 mir	and not wrap	to zero.			

TABLE B60 - PID \$4F DEFINITION

DID	ı	D-1-	NA:			Fortament Total Foundations and		
PID (hex)	Description	Data Byte	Min. Value	Max. Value	Scaling/Bit	External Test Equipment SI (Metric) / English Display		
4F	External Test Equipment	Буце	value	value	Scalling/Bit	Si (Metric) / Eligiisii Display		
46	Configuration Information #1							
	These values shall be used by the	evternal	tact aquir	ment to ca	lculate scaling fa	actors for PIDs that are different		
	from the values in the PID definition					actors for Fibs that are different		
	Maximum value for Equivalence	A	0	255	1	These values are not intended for		
	Ratio	, ,	Ü	200	•	display to the service technician.		
	Data A shall be used by the extern to \$3B, and PID \$44. If Data A is n Equivalence Ratio" included in the in Data A of PID \$4F is greater that use to display Equivalence Ratio. and PID \$44.)	eported a original f in \$00, th	is \$00, the PID defini at value s	e external to tion (1.999 shall be divi	est equipment sh / 65535 = 0.0000 ded by 65535 to	nall use the "Maximum value for 0305 per bit). If the value reported calculate the scaling per bit to		
	The following is an example to cale example, a manufacturer needs a range of 0 to 4 and sets Data A = 4	range of						
	EXAMPLE: LAMBDA11 _(PID24) = DATA_A_B _(PID24) * (DATA_A _(PID4F) / 65535) New scaling per bit for PID \$24 = DATA_A _(PID4F) / 65535 = $4_{(10)}$ / 65535 ₍₁₀₎ = 0.0000610 per bit DATA_A_B _(PID24) = \$7D00 = 32000 ₁₀ = value reported by vehicle ECU LAMBDA11 _{PID24} = 32000 * (4 / 65535) = 1.953							
	Maximum value for Oxygen Sensor Voltage	В	0 V	255 V	1 V	These values are not intended for display to the service technician.		
	Data B shall be used by the extern	al test ec	uipment	to calculate	the scaling per			
	Data B shall be used by the external test equipment to calculate the scaling per bit of PIDs \$24 to \$2B. If PIDs \$24 to \$2B are supported by this ECU and Data B is reported as \$00, the external test equipment shall use the "Maximum value for Oxygen Sensor Voltage" included in the original PID definition (7.999 V / 65535 bits = 0.000122 V per bit). If the value reported in Data B of PID \$4F is greater than \$00, that value shall be divided by 65535 to calculate the scaling per bit to use to display Oxygen Sensor Voltage.							
	If PIDs \$34 to \$3B are supported to	by this EC	CU, this va	alue shall be	e reported as \$0	0.		
	The following is an example to cale example, a manufacturer needs a to 16 V and sets Data A = 16.							
	EXAMPLE: $O2S11_{(PID24)} = DATA_$ New scaling per bit fo 0.000244 V per bit $DATA_C_D_{(PID24)} = 9 $O2S11_{(PID24)} = 40000$	r PID \$24 0C40 = 40	$\dot{\mathbf{I}} = \mathbf{DATA}$ $0000_{10} = \mathbf{V}$	_B _(PID4F) * 1	$V / 65535 = 16_{(1)}$			

TABLE B60 - PID \$4F DEFINITION (CONTINUED)

PID (hex)	Description	Data Byte	Min. Value	Max. Value	Scaling/Bit	External Test Equipment SI (Metric) / English Display
4F	Maximum value for Oxygen Sensor Current	С	0 mA	255 mA	1 mA	These values are not intended for display to the service technician.

Data C shall be used by the external test equipment to calculate the scaling per bit of PIDs \$34 to \$3B.

If PIDs \$34 to \$3B are supported by this ECU and Data C is reported as \$00, the external test equipment shall use the "Maximum value for Oxygen Sensor Current" included in the original PID definition (128 mA / 32768 bits = 0.00390625 mA per bit). If the value reported in Data C of PID \$4F is greater than \$00, that value shall be divided by 32768 (oxygen sensor current range is ½ of 65536 because both negative and positive currents can be represented) to calculate the scaling per bit to use to display Oxygen Sensor Current.

If PIDs \$24 to \$2B are supported by this ECU, this value shall be reported as \$00.

The following is an example to calculate PID \$34 with PID \$4F supported and including a non-zero value. In this example, a manufacturer doesn't need a range of -128 to 127.996 milliamps and wishes to increase the resolution. The manufacturer only needs a range of - 64 to +64 mA and sets Data C = 64 mA.

EXAMPLE: O2S11 $_{(PID34)}$ = DATA_C_D $_{(PID34)}$ * (DATA_C $_{(PID4F)}$ * 1 mA / 32768) New scaling per bit for PID \$34 = DATA_C $_{(PID4F)}$ * 1 mA / 32768 = 64 $_{(10)}$ mA / 32768 $_{(10)}$ = 0.001953 mA per bit

Positive value reported by vehicle ECU:

DATA_C_D_(PID34) = \$9C40 (applying the appropriate offset \$9C40 - \$8000) = $7232_{(10)}$ $O2S11_{(PID34)} = 7232 * (64 mA / 32768) = +14.125 mA$

Negative value reported by vehicle ECU:

DATA C $D_{(PID34)}$ = \$5C40 (applying the appropriate offset \$5C40 - \$8000) = -9152₍₁₀₎ $O2S11_{(PID34)} = -9152 * (64 mA / 32768) = -17.875 mA$

Maximum value for Intake	D	0 kPa	2550 kPa	10 kPa	These values are not intended
Manifold Absolute Pressure					for display to the service
					technician.

Data D shall be used by the external test equipment to calculate the scaling per bit of PID \$0B.

If Data D is reported as \$00, the external test equipment shall use the "Intake Manifold Absolute Pressure" included in the original PID definition (255 kPa / 255 bits = 1 kPa per bit). If the value reported in Data D of PID \$4F is greater than \$00, that value shall be multiplied by 10 kPa per bit and then divided by 255 to calculate the scaling per bit to use to display Intake Manifold Absolute Pressure.

The following is an example to calculate PID \$0B with PID \$4F supported and including a non-zero value. In this example, a manufacturer needs a range of pressure larger than 0 to 255 kPa. The manufacturer needs a range of 0 to 765 kPa and sets Data A = 77, the closest value possible to 76.5.

EXAMPLE: $MAP_{(PID0B)} = DATA_A_{(PID0B)}^* (DATA_D_{(PID4F)}^* 10 \text{ kPa per bit / 255})$ New scaling per bit for PID \$0B = DATA_D_{(PID4F)}^* 10 kPa / 255 = 77₍₁₀₎ *10 kPa / 255 = 3.0196 kPa

DATA_ $A_{(PID0B)}$ = \$7F = 127₍₁₀₎ = value reported by vehicle ECU

 $MAP_{(PID0B)} = 127 * (770 kPa / 255) = 383.5 kPa$

TABLE B61 - PID \$50 DEFINITION

PID		Data	Min.	Max.		External Test Equipment		
(hex)	Description	Byte	Value	Value	Scaling/Bit	SI (Metric) / English Display		
50	External Test Equipment							
	Configuration Information #2							
	These values shall be used by the	e extern	al test ed	quipment to	calculate scalir	ng factors for PIDs that are		
	different from the values in the P							
	Maximum value for Air Flow	Α	0 g/s	2550 g/s	10 g/s	These values are not intended		
	Rate from Mass Air Flow					for display to the service		
	Sensor	1				technician.		
	Data A shall be used by the external too							
	reported as \$00, the external tes included in the original PID defini							
	Data A of PID \$50 is greater than							
	calculate the scaling per bit to use to display Air Flow Rate from Mass Air Flow Sensor.							
	The following is an example to ca							
	this example, a manufacturer need needs a range of 0 to 1000 g/s a				arger than 0 to t	555.35 g/s. The manufacturer		
	EXAMPLE: $MAF_{(PID10)} = DATA_$							
	New scaling per bit				, * 10 g/s / 6553	5 =		
	100 ₍₁₀₎ * 10 g/s / 65					. =0.1.*/		
	DATA_A_B _(PID10) = $\frac{1}{2}$					le ECU */		
	$MAF_{(PID10)} = 58000$		J/S / 6553	35) = 885.0	2 g/s			
	Reserved for future	В						
	expansion – report as \$00	0						
	Reserved for future	С						
	expansion – report as \$00	1						
	Reserved for future	D						
	expansion – report as \$00							

TABLE B62 - PID \$51 DEFINITION

PID		Data		External Test Equipment
(hex)	Description	Byte	Scaling	SI (Metric) / English Display
51	Type of fuel currently being	A (bay)	byte 1 of 1	FUEL_TYP
	utilized by the vehicle	(hex)	(State Encoded Variable) Not available	NONE
		00		NONE
		01	Gasoline/petrol	GAS
				METH
		03	Ethanol	ETH
		04	Diesel	DSL
		05	Liquefied Petroleum Gas (LPG)	LPG
		06	Compressed Natural Gas (CNG)	CNG
		07	Propane	PROP
		08	Battery/electric	ELEC
		09	Bi-fuel vehicle using gasoline	BI_GAS
		0A	Bi-fuel vehicle using methanol	BI_METH
		0B	Bi-fuel vehicle using ethanol	BI_ETH
		0C	Bi-fuel vehicle using LPG	BI_LPG
		0D	Bi-fuel vehicle using CNG	BI_CNG
		0E	Bi-fuel vehicle using propane	BI_PROP
		0F	Bi-fuel vehicle using battery	BI_ELEC
		10	Bi-fuel vehicle using battery and	BI_MIX
			combustion engine	
		11	Hybrid vehicle using gasoline	HYB_GAS
			engine	
		12	Hybrid vehicle using gasoline	HYB_ETH
			engine on ethanol	
		13	Hybrid vehicle using diesel	HYB_DSL
			engine	
		14	Hybrid vehicle using battery	HYB_ELEC
		15	Hybrid vehicle using battery and	HYB_MIX
			combustion engine	
		16	Hybrid vehicle in regeneration	HYB_REG
			mode	
		17	Bi-fuel vehicle using diesel	BI_DSL
		18 – FF	ISO/SAE reserved	_

SAE

Page 38 of 143

TABLE B62 - PID \$51 DEFINITION (CONTINUED)

PID		Data		External Test Equipment
(hex)	Description	Byte	Scaling	SI (Metric) / English Display

51 The following definitions apply when utilizing this PID:

Single-fuel engines are capable of running on only one fuel.

Bi-fuel engines are capable of running on two fuels. On internal combustion engines, one fuel is typically gasoline or diesel, and the other is an alternate fuel such as natural gas (CNG), LPG, or hydrogen. The two fuels are stored in separate tanks and the engine runs on one fuel at a time. Bi-fuel vehicles have the capability to switch back and forth from gasoline or diesel to the other fuel, manually or automatically.

Flexible-fuel vehicles (FFVs) have engines that are capable of running on a mixture of two fuels. FFVs store the two different fuels mixed together (in potentially any ratio) in the same fuel tank, and the fuel system supplies the resulting blend to the combustion chamber. The most commonly used fuels by FFVs today are unleaded gasoline and ethanol fuel; E85 in North America and E100 in South America. Ethanol FFVs can run on pure gasoline (E0), an ethanol/gasoline mix (E85), pure ethanol (E100) or any combination of these fuels.

Dual fuel vehicles are engines capable of running on two different fuels at the same time. For example, on a diesel engine, the primary fuel may be natural gas or LPG, but the engine is designed to operate with diesel as the ignition source. As the engine goes to full load, an increasing amount of CNG or LPG replaces the diesel fuel. Another example is a gasoline turbocharged engine with separate gasoline and ethanol (E85) fuel injectors for each cylinder. The gasoline system mixes fuel and air in the intake manifold using port fuel injection. The second system uses direct injection to introduce small amounts of ethanol directly into the combustion chamber to control premature detonation, or knock, which results from the high temperature and pressure of the turbocharged engine. There are currently no FUEL TYPE definitions for dual fuel vehicles.

Hybrid electric vehicles combine a conventional internal combustion engine propulsion system with an electric propulsion system. Hybrid electric vehicles can be classified according to the way in which power is supplied to the drivetrain, the degree of hybridization as well as provisions for charging the batteries using an external power source (plug in hybrids).

This PID shall be utilized by all vehicles. On non-hybrid vehicles, this PID is not intended to indicate whether the engine is running or not and should not reflect Start/Stop engine operation or Decel Fuel Cut Off operation.

For a single-fuel vehicle, this PID shall report static data (i.e., always report the fuel that it is designed to be operated on).

For an FFV, this PID shall report static data (e.g., \$03 Ethanol (FFV)) regardless of what blend of fuel it is currently operating on. It shall be used in conjunction with PID \$52 which reports the percentage of alcohol in the fuel currently being used.

For a bi-fuel vehicle, this PID shall report the FUEL_TYPE corresponding to the fuel currently in use. For example, a gasoline/CNG bi-fuel vehicle would report \$09 while running on gasoline and \$0D while running on CNG.

NOTE: For bi-fuel and hybrid vehicles, "not available" (\$00) may be used during initial ignition on conditions where no fuel is being utilized and the vehicle cannot determine which fuel will be used at engine or vehicle start. Alternatively, the data may reflect the fuel type used by the vehicle at the previous shut down and be updated after the vehicle starts and the fuel type can be determined.

TABLE B63 - PID \$52 DEFINITION

PID		Data	Min.	Max.		External Test Equipment
(hex)	Description	Byte	Value	Value	Scaling/Bit	SI (Metric) / English Display
52	Alcohol Fuel Percentage	Α	0 %	100 %	100/255 %	ALCH_PCT: xxx.x %
			no alcohol	max. alcohol		

Flexible-fuel vehicles (FFVs) have engines that are capable of running on a mixture of two fuels. FFVs store the two different fuels mixed together (in potentially any ratio) in the same fuel tank, and the fuel system supplies the resulting blend to the combustion chamber. The most commonly used fuels by FFVs today are unleaded gasoline and ethanol fuel; E85 in North America and E100 in South America. Ethanol FFVs can run on pure gasoline (E0), an ethanol/gasoline mix (E85), pure ethanol (E100) or any combination of these fuels.

ALCH_PCT shall indicate the percentage of alcohol (ethanol or methanol) in the fuel blend supplied to the combustion chamber.. For example, ethanol fuel in the US (E85) normally contains 85 % ethanol, in which case ALCH_PCT shall display 85.0 % when the vehicle is being fueled solely with E85 fuel. Alcohol percentage can be determined using a sensor or can be inferred by the fuel control software.

This PID shall be utilized on flexible fuel vehicles (FFVs) that are designed to run on any blend of gasoline and ethanol, or methanol (up to 85% or 100%). This PID is not required on single fuel vehicles, including gasoline vehicles, which run on gasoline fuels that can contain 10% or even higher percentages of ethanol.

TABLE B64 - PID \$53 DEFINITION

PID (hex)	Description	Data	Min. Value	Max. Value	Scaling/Bit	External Test Equipment SI (Metric) / English Display				
(nex)	Description	Byte	value	value	Scaling/bit	Si (Wetric) / English Display				
53	Absolute Evap System Vapor	A, B	0 kPa	327.675	0.005 kPa	EVAP_VPA: xxx.xxx kPa				
	Pressure		(0.00	kPa	(1/200),	(xxxx.xx inH ₂ O)				
			inH ₂ O)	(1315.49	unsigned					
	inH ₂ O)									
	Absolute evaporative system vapor pressure. The pressure signal is normally obtained from a sensor									
	located in the fuel tank (FTP -			•	•	•				

TABLE B65 - PID \$54 DEFINITION

PID (hex)	Description	Data Byte	Min. Value	Max. Value	Scaling/Bit	External Test Equipment SI (Metric) / English Display
54	Evap System Vapor Pressure	A, B	(\$8000) - 32768	(\$7FFF) 32767 Pa	1 Pa, signed	EVAP_VP: xxxxx Pa (xxx.xx inH ₂ O)
			Pa	(131.55 inH ₂ O)		

Evaporative system vapor pressure. The pressure signal is normally obtained from a sensor located in the fuel tank (FTP – Fuel Tank Pressure) or a sensor in an evaporative system vapor line. PID \$54 scaling allows for a wider pressure range than PID \$32.

For systems supporting Evap System Vapor Pressure, one of the following 2 PIDs is required: \$32, or \$54. Support for more than one of these PIDs is not allowed.

TABLE B66 - PID \$55 DEFINITION

PID (hex)	Description	Data Byte	Min. Value	Max. Value	Scaling/Bit	External Test Equipment SI (Metric) / English Display
55	Short Term Secondary O2 Sensor Fuel Trim – Bank 1 (use if only 1 fuel trim value)	Α	- 100 % (lean)	+ 99.22 % (rich)	100/128 % (0 % at 128)	STSO2FT1: xxx.x %
	Short Term Secondary O2 Sensor Fuel Trim – Bank 3	В				STSO2FT3: xxx.x %

Short Term Secondary Fuel Trim shall be supported by spark ignition vehicles that use secondary closed loop feedback control of air/fuel ratio.

Short Term Secondary O2 Sensor Fuel Trim Bank 1/3 shall indicate the correction currently being utilized by the closed-loop fuel algorithm. If the fuel system is in open loop, STSO2FT shall report 0 % correction.

Data B shall only be included in the response to a PID \$55 request if PID \$1D (Location of Oxygen Sensors) indicates an oxygen sensor is present in Bank 3. The external test equipment can determine length of the response message based on the data content of PID \$13 or \$1D. See Figure B3 for an explanation of the method to determine how many data bytes will be reported.

TABLE B67 - PID \$56 DEFINITION

PID (hex)	Description	Data Byte	Min. Value	Max. Value	Scaling/Bit	External Test Equipment SI (Metric) / English Display
56	Long Term Secondary O2 Sensor Fuel Trim – Bank 1 (use if only 1 fuel trim value)	Α	- 100 % (lean)	+ 99.22 % (rich)	100/128 % (0 % at 128)	LGSO2FT1: xxx.x %
	Long Term Secondary O2 Sensor Fuel Trim – Bank 3	В				LGSO2FT3: xxx.x %

Long Term Secondary Fuel Trim shall be supported by spark ignition vehicles that use secondary closed loop feedback control of air/fuel ratio.

Secondary O2 Sensor Fuel trim correction for Bank 1/3 stored in Non-volatile RAM or Keep-alive RAM. LGSO2FT shall indicate the correction currently being utilized by the fuel control algorithm at the time the data is requested, in both open-loop and closed-loop fuel control. If no correction is utilized in open-loop fuel, LGSO2FT shall report 0 % correction. If secondary O2 sensor long-term fuel trim is not utilized at all by the fuel control algorithm, the PID shall not be supported.

Data B shall only be included in the response to a PID \$56 request if PID \$1D (Location of Oxygen Sensors) indicates an oxygen sensor is present in Bank 3. The external test equipment can determine length of the response message based on the data content of PID \$13 or \$1D. See Figure B3 for an explanation of the method to determine how many data bytes will be reported.

TABLE B68 - PID \$57 DEFINITION

PID (hex)	Description	Data Byte	Min. Value	Max. Value	Scaling/Bit	External Test Equipment SI (Metric) / English Display
57	Short Term Secondary O2 Sensor Fuel Trim - Bank 2 (use if only 1 fuel trim value)	A	- 100 % (lean)	+ 99.22 % (rich)	100/128 % (0 % at 128)	STSO2FT2: xxx.x %
	Short Term Secondary O2 Sensor Fuel Trim - Bank 4	В				STSO2FT4: xxx.x %

Short Term Secondary Fuel Trim shall be supported by spark ignition vehicles that use secondary closed loop feedback control of air/fuel ratio.

Short Term Secondary O2 Sensor Fuel Trim Bank 2/4 shall indicate the correction currently being utilized by the closed-loop fuel algorithm. If the fuel system is in open loop, STSO2FT shall report 0 % correction.

Data B shall only be included in the response to a PID \$57 request if PID \$1D (Location of Oxygen Sensors) indicates an oxygen sensor is present in Bank 4. The external test equipment can determine length of the response message based on the data content of PID \$13 or \$1D. See Figure B3 for an explanation of the method to determine how many data bytes will be reported.

TABLE B69 - PID \$58 DEFINITION

PID (hex)	Description	Data Byte	Min. Value	Max. Value	Scaling/Bit	External Test Equipment SI (Metric) / English Display
58	Long Term Secondary O2 Sensor Fuel Trim – Bank 2 (use if only 1 fuel trim value)	Α	- 100 % (lean)	+ 99.22 % (rich)	100/128 % (0 % at 128)	LGSO2FT2: xxx.x %
	Long Term Secondary O2 Sensor Fuel Trim - Bank 4	В				LGSO2FT4: xxx.x %

Long Term Secondary Fuel Trim shall be supported by spark ignition vehicles that use secondary closed loop feedback control of air/fuel ratio.

Secondary Sensor Fuel trim correction for Bank 2/4 stored in Non-volatile RAM or Keep-alive RAM. LGSO2FT shall indicate the correction currently being utilized by the fuel control algorithm at the time the data is requested, in both open-loop and closed-loop fuel control. If no correction is utilized in open-loop fuel, LGSO2FT shall report 0 % correction. If post O2 sensor long-term fuel trim is not utilized at all by the fuel control algorithm, the PID shall not be supported.

Data B shall only be included in the response to a PID \$58 request if PID \$1D (Location of Oxygen Sensors) indicates an oxygen sensor is present in Bank 4. The external test equipment can determine length of the response message based on the data content of PID \$13 or \$1D. See Figure B3 for an explanation of the method to determine how many data bytes will be reported.

TABLE B70 - PID \$59 DEFINITION

			Value	Value	Scaling/Bit	SI (Metric) / English Display
59 Fuel Ri (absolu	ail Pressure ute)	A, B	0 kPa	655350 kPa	10 kPa per bit unsigned, 1 kPa = 0.1450377 PSI	FRP: xxxxxx kPa (xxxxx.x PSI)

FRP shall display fuel rail pressure at the engine when the reading is absolute. This PID is intended for diesel fuel-pressure and gasoline direct-injection systems that have a higher pressure range than PIDs \$0A and \$22.

TABLE B71 - PID \$5A DEFINITION

PID (hex)	Description	Data Byte	Min. Value	Max. Value	Scaling/Bit	External Test Equipment SI (Metric) / English Display
5A	Relative Accelerator Pedal Position	Α	0 %	100 %	100/255 %	APP_R: xxx.x %

Relative or "learned" pedal position shall be displayed as a normalized value, scaled from 0 to 100 %. APP_R should display a value of 0 % at the "learned" closed-pedal position. For example, if a 0 to 5.0 volt sensor is used (uses a 5.0 volt reference voltage), and the closed-pedal position is at 1.0 volts, APP_R shall display (1.0 - 1.0 / 5.0) = 0.0 % at closed pedal and 30.0 % at 2.5 volts. Because of the closed-pedal offset, wide-open pedal will usually indicate substantially less than 100.0 %. In many cases, APP_R will be the average of multiple pedal sensor values.

For systems where the output is proportional to the input voltage, this value is the percent of maximum input reference voltage. For systems where the output is inversely proportional to the input voltage, this value is 100.0 % minus the percent of maximum input reference voltage. See PID \$49 for a definition of Absolute Pedal Position.

TABLE B72 - PID \$5B DEFINITION

PID		Data	Min.	Max.		External Test Equipment	
(hex)	Description	Byte	Value	Value	Scaling/Bit	SI (Metric) / English Display	
5B	Hybrid/EV Battery Pack Remaining Charge	Α	0 %	100 %	100/255 %	BAT_PWR: xxx.x%	
	BAT_PWR shall display the percent remaining level of charge for the hybrid battery pack, expressed as a percentage of full charge, commonly referred to as State Of Charge (SOC).						

TABLE B73 - PID \$5C DEFINITION

PID		Data	Min.	Max.		External Test Equipment			
(hex)	Description	Byte	Value	Value	Scaling/Bit	SI (Metric) / English Display			
5C	Engine Oil Temperature	Α	-40 °C	215 °C	1 °C with	EOT: xxx °C (xxx °F)			
					-40 °C offset				
	EOT shall display engine oil temperature. EOT may be obtained directly from a sensor, or may be								
	inferred by the control stra	tegy usi	ng other s	sensor inpu	ıts.				

TABLE B74 - PID \$5D DEFINITION

PID		Data	Min.	Max.		External Test Equipment			
(hex)	Description	Byte	Value	Value	Scaling/Bit	SI (Metric) / English Display			
5D	Fuel Injection Timing	A,B	-210.00	301.992	1/128 with 0 at 26880	FUEL_TIMING: xxx.xx			
	FUEL_TIMING shall display the start of the main fuel injection relative to Top Dead Center (TDC). Positive degrees indicate Before TDC, negative degrees indicate After TDC.								

TABLE B75 - PID \$5E DEFINITION

PID		Data	Min.	Max.		External Test Equipment				
(hex)	Description	Byte	Value	Value	Scaling/Bit	SI (Metric) / English Display				
5E	Engine Fuel Rate A,B 0 L/h 3,276.75 0.05 L/h per FUEL_RATE: xxx.xx									
	L/h bit									
	FUEL_RATE shall indicate the amount of fuel consumed by engine per unit of time in liters per hour. FUEL_RATE shall be calculated as the average fuel rate over a one second time period.									
	(Liters of Fuel used over 1 second block)/(1 hour/3600 seconds) = xxx.xx L/h									
	NOTE: FUEL RATE shall	indicate	zero L/h	when the e	engine is not re	unning.				

TABLE B76 - PID \$5F DEFINITION

PID		Data		External Test Equipment					
(hex)	Description	Byte	Scaling	SI (Metric) / English Display					
5F	Emission requirements to which vehicle is	Α	State Encoded	EMIS_SUP:					
	designed	(hex)	Variable						
	ISO/SAE reserved	00 – 0D							
	Heavy Duty Vehicles (EURO IV) B1	0E		EURO IV B1					
	Heavy Duty Vehicles (EURO V) B2	0F		EURO V B2					
	Heavy Duty Vehicles (EURO EEV) C	10		EURO C					
	ISO/SAE reserved	11 - FF							
	NOTE: This data was previously contained in PID \$1C.								

TABLE B77 - PID \$61 DEFINITION

PID (hex)	Description	Data Byte	Min. Value	Max. Value	Scaling/Bit	External Test Equipment SI (Metric) / English Display				
61	Driver's Demand Engine -	Α	-125%	130%	1%/bit with	TQ_DD: xxx.x %				
	Percent Torque -125 offset									
	TQ_DD shall display the requested torque output of the engine by the driver. It is based on input from									
	the following requestors external to the engine: operator (via the accelerator pedal), cruise control									
						Q_DD are (1) dynamic commands				
						high speed engine governing, and				
						on control, ABS, transmission, etc.				
	The data is transmitted as a									
	NOTE: The data is transmitted in indicated torque. To obtain the flywheel equivalent of TQ_DD, subtract									
				61). TQ_DI	D will be appro	ximately zero at idle with zero				
	vehicle speed (no driver den	nand tor	que).							

TABLE B78 - PID \$62 DEFINITION

PID)	Data	Min.	Max.		External Test Equipment						
(hex	Description	Byte	Value	Value	Scaling/Bit	SI (Metric) / English Display						
62	Actual Engine - Percent	Α	-125%	130%	1%/bit with	TQ_ACT: xxx.x %						
	Torque				-125 offset	_						
	TQ_ACT shall display the calculated output torque of the engine; also known as indicated torque											
	(torque developed in the cylinders). Indicated Torque is defined as the sum of Net Brake Torque and											
		Friction Torque. The data is transmitted as indicated torque as a percent of engine reference torque										
	(see PID \$63). The engine percent torque value will not be less than zero and it includes the torque											
	developed in the cylinders required to overcome friction.											
	_	NOTE:										
						d" engine. A fully equipped engine						
						ended service. This includes, but is						
		_	_		• • •	mps, plus intake air system,						
						noise control. Accessories which e mounted, are not considered part						
	of a fully equipped engine.											
						ng, brakes, and suspensions.						
	When these accessories are integral with the engine, the torque/power absorbed in an unloaded condition may be determined and added to the net brake torque. (Refer to SAE J1349.)											
	deliance in may be determine	ou unu i		o not blu		5.6. 15 5.12 5.15 15.1						
	Net Brake Torque is calcul	ated by	subtracti	ng Friction	Torque (PID \$	S8E) from Indicated Torque (PID						
I	The Bland Forque to delection by cubic config. Hotel Forque (Fib.											

\$62) for the purposes of this document..

TABLE B79 - PID \$63 DEFINITION

PID (hex)	Description	Data Byte	Min. Value	Max. Value	Scaling/Bit	External Test Equipment SI (Metric) / English Display				
63	Engine Reference Torque	A,B	0 Nm	65,535 Nm	1 Nm/bit	TQ_REF: xxx.x Nm				
	TQ_REF shall display engine reference torque. This PID is the 100% reference value for all defined indicated engine torque parameters. It is only defined once and doesn't change if a different engine torque map becomes valid.									

TABLE B80 - PID \$64 DEFINITION

PID		Data	Min.	Max.		External Test Equipment			
(hex)	Description	Byte	Value	Value	Scaling/Bit	SI (Metric) / English Display			
64	Engine Percent Torque Data								
	This map describes the stationary behavior of the engine and the speed dependent available indicated torque. This map should reflect the effect of changes due to barometric pressure, engine temperature, and any other stationary changes (sensor failures, etc.) which influence the engine torque curve more than 10%. This map is only valid for maximum boost pressure. At low boost pressures the torque limit may be much lower. It is required that one of these points (3, 4, or 5) indicate the peak torque point for the current engine torque map. Points 3, 4, and 5 lie between idle (point 1) and point 2.								
	Engine Percent Torque At	Α	-125%	130%	1%/bit with	TQ_MAX1: xxx.x %			
	Idle, Point 1				-125 offset	_			
	The torque limit that indicates t								
	speed. This parameter may be								
	changes (calibration offsets, se	ensor fail	lures, etc	. The data	is transmitted in	indicated torque as a percent of			
	the reference engine torque.	В	-125%	130%	1%/bit with	TO MAY2: you y 0/			
	Engine Percent Torque At Point 2	Ь	-123%	130%	-125 offset	TQ_MAX2: xxx.x %			
	The torque limit that indicates the available engine torque which can be provided by the engine at poir								
	of the engine map. Point 2 is de								
	transmitted in indicated torque a								
	Engine Percent Torque At	С	-125%	130%	1%/bit with	TQ_MAX3: xxx.x %			
	Point 3				-125 offset				
						ovided by the engine at point 3			
	of the engine map. The data is								
	Engine Percent Torque At	D	-125%	130%	1%/bit with	TQ_MAX4: xxx.x %			
	Point 4		<u> </u>		-125 offset				
						ovided by the engine at point 4			
	of the engine map. It is required torque map.	i that one	e or these	points indi	cate the peak tor	que point for the current engine			
	Engine Percent Torque At	Е	-125%	130%	1%/bit with	TQ MAX5: xxx.x %			
	Point 5	_	12570	10070	-125 offset	TQ_IVI/V\0. XXX.X /0			
		he availa	able engi	ne torque		ovided by the engine at point 5			
	of the engine map. It is required								
	torque map.								

TABLE B81 - PID \$65 DEFINITION

D x)	Description	Data Byte	Min. Value	Max. Value	Scaling/Bit	External Test Equipment SI (Metric) / English Display			
5	Auxiliary Inputs / Outputs								
	Auxiliary Inputs / Outputs Supported	A (bit)	Byte 1 c	of 2					
	Power Take Off (PTO) Status Supported	A, bit 0	0	1	1 = PTO status data supported				
-	Auto Trans Neutral Drive Status Supported	A, bit 1	0	1	1 = Auto Trans Neutral/Drive status data supported				
	Manual Trans Neutral Gear Status Supported	A, bit 2	0	1	1 = Manual Trans Neutral/Gear status data supported				
=	Glow Plug Lamp Status Supported	A, bit 3	0	1	1 = Glow Plug Lamp Status data supported				
	reserved (bits shall be reported as '0')	A, bits 4 - 7	0	0					
	Auxiliary Inputs / Outputs Status	B (bit)	Byte 2 c	of 2					
;	Power Take Off (PTO) Status	B, bit 0	0	1	0 = PTO not active (OFF); 1 = PTO active (on)	PTO_STAT: OFF or ON			
	Power Take Off status shall display whether the PTO is active (On) or not active (Off)								
•	Auto Trans Neutral Drive Status	B, bit 1	0	1	0 = Auto Trans in Park/Neutral, 1 = Auto Trans in Forward/ Reverse Gear	N/D_STAT: NEUT or DRIVE			
	Automatic transmission Neurneutral) or in a forward/rever					nsmission is in Park/Neutral (in			
-	Manual Trans Neutral Gear Status	B, bit 2	0	1	0 = Manual Trans in Neutral and/or clutch depressed, 1 = Manual Trans in Gear	N/G_STAT: NEUT or GEAR			
	Manual transmission Neutral				vhether the transr	nission is in neutral (clutch			
-	depressed and/or trans in ne Glow Plug Lamp Status	B, bit 3	0	1 1	0 = Glow Plug Lamp Off, 1 = Glow Plug Lamp ("Wait to Start") On	GPL_STAT: OFF or ON			
	off.	ndicate	whether	the glow pl		To Start" lamp is illuminated) or			
	reserved (bits shall be reported as '0')	B, bits 4 - 7	0	0					

TABLE B82 - PID \$66 DEFINITION

PID		Data	Min.	Max.		External Test Equipment		
(hex)	Description	Byte	Value	Value	Scaling/Bit	SI (Metric) / English Display		
66	Mass Air Flow Sensor							
	Support of Mass Air Flow	Α	Byte 1 c	of 5				
	Sensor Data	(bit)						
	MAF Sensor A supported	A, bit 0	0	1	1 = MAF			
					Sensor A data			
					supported			
	MAF Sensor B supported	A, bit 1	0	1	1 = MAF			
					Sensor B data			
					supported			
	reserved (bits shall be	A, bits	0	0				
	reported as '0')	2 - 7						
	Mass Air Flow Sensor A	B,C	0 g/s	2047.96875	0.03125 g/s	MAFA: xxx.xx g/s (xxxx.x		
				g/s		lb/min)		
						MAF sensor or an equivalent		
	source. If the engine is off ar							
	two MAF sensors should use				iaii be reported a	as 0.00 g/s. Vehicles that utilize		
				1	0.02125.2/2	MACD: you you alo (young y		
	Mass Air Flow Sensor B	D,E	0 g/s	2047.96875	0.03125 g/s	MAFB: xxx.xx g/s (xxxx.x lb/min)		
	MAE B shall display the sirfly	ow roto o	o mogoli	g/s	lo that utilizas a	/		
		ow rate as measured by a vehicle that utilizes a MAF sensor or an equivalent nd the ignition is on, the actual sensor value reading shall be reported. If the						
						as 0.00 g/s. Vehicles that utilize		
	two MAF sensors should use				iaii be reported (33 0.00 g/s. Veriloles triat utilize		
	two war sensors should use	NAL A	and MAI	г Б.				

TABLE B83 - PID \$67 DEFINITION

PID		Data	Min.	Max.		External Test Equipment				
(hex)	Description	Byte	Value	Value	Scaling/Bit	SI (Metric) / English Display				
67	Engine Coolant Temperature									
	Support of Engine Coolant Temperature Sensor Data	A (bit)	Byte 1 c	of 3						
	ECT Sensor 1 supported	A, bit 0	0	1	1 = ECT 1 data supported					
	ECT Sensor 2 supported	A, bit 1	0	1	1 = ECT 2 data supported					
	reserved (bits shall be reported as '0')	A, bits 2 - 7	0	0						
	Engine Coolant Temperature 1	В	-40 °C	215 °C	1 °C with -40 °C offset	ECT 1: xxx °C (xxx °F)				
	ECT 1 shall display engine cools cylinder head temperature sense	ECT 1 shall display engine coolant temperature derived from an engine cool cylinder head temperature sensor.								
	Engine Coolant Temperature 2	С	-40 °C	215 °C	1 °C with -40 °C offset	ECT 2: xxx °C (xxx °F)				
	ECT 2 shall display engine coola cylinder head temperature sense		erature d	lerived fror	n an engine coola	ant temperature sensor or a				

TABLE B84 - PID \$68 DEFINITION

PID		Data	Min.	Max.		External Test Equipment
(hex)	Description	Byte	Value	Value	Scaling/Bit	SI (Metric) / English Display
68	Intake Air Temperature Sensor	_				
	Support of Intake Air	Α	Byte 1 c	of 7		
	Temperature Sensor Data	(bit)				
	IAT Bank 1, Sensor 1	A, bit 0	0	1	1 = IAT Bank 1,	
	supported				Sensor 1 data	
	IAT Donk 4. Concer 0	A h:+ 4	0	4	supported	
	IAT Bank 1, Sensor 2 supported	A, bit 1	0	1	1 = IAT Bank 1, Sensor 2 data	
	Supported				supported	
	IAT Bank 1, Sensor 3	A, bit 2	0	1	1 = IAT Bank 1,	
	supported	71, DIL 2		•	Sensor 3 data	
					supported	
	IAT Bank 2, Sensor 1	A, bit 3	0	1	1 = IAT Bank 2,	
	supported				Sensor 1 data	
					supported	
	IAT Bank 2, Sensor 2	A, bit 4	0	1	1 = IAT Bank 2,	
	supported				Sensor 2 data	
	IAT Donk O. Concer 2	A b:4.5	0	4	supported	
	IAT Bank 2, Sensor 3 supported	A, bit 5	0	1	1 = IAT Bank 2, Sensor 3 data	
	supported				supported	
	reserved (bits shall be reported	A, bits	0	0	Supported	
	as '0')	6 - 7		ŭ		
	Intake Air Temperature Bank 1,	В	-40 °C	215 °C	1 °C with	IAT 11: xxx °C (xxx °F)
	Sensor 1				-40 °C offset	, ,
	IAT Bank 1, Sensor 1 shall displa					e obtained directly from a
	sensor, or may be inferred by the					
	Intake Air Temperature Bank 1,	С	-40 °C	215 °C	1 °C with	IAT 12: xxx °C (xxx °F)
	Sensor 2	L			-40 °C offset	
	IAT Bank 1, Sensor 2 shall displa					LIAT 40
	Intake Air Temperature Bank 1,	D	-40 °C	215 °C	1 °C with	IAT 13: xxx °C (xxx °F)
	Sensor 3	ov intoko	manifold	d air tampa	-40 °C offset	
	IAT Bank 1, Sensor 3 shall displa Intake Air Temperature Bank 2,	ау іпіаке Е	-40 °C	215 °C	1 °C with	IAT 21: xxx °C (xxx °F)
	Sensor 1		- 4 0 C	213 0	-40 °C offset	[A1 21. XXX C (XXX F)
	IAT Bank 2, Sensor 1 shall displa	av intake	manifold	d air tempe		
	Intake Air Temperature Bank 2,	F	-40 °C	215 °C	1 °C with	IAT 22: xxx °C (xxx °F)
	Sensor 2				-40 °C offset	
	IAT Bank 2, Sensor 2 shall displa	ay intake	manifold	d air tempe		
	Intake Air Temperature Bank 2,	Ğ	-40 °C	215 °C	1 °C with	IAT 23: xxx °C (xxx °F)
	Sensor 3				-40 °C offset	, ,
	IAT Bank 2, Sensor 3 shall displa	ay intake	manifold	d air tempe	rature.	-

TABLE B85 - PID \$69 DEFINITION

PID		Data	Min.	Max.		External Test Equipment
(hex)	Description	Byte	Value	Value	Scaling/Bit	SI (Metric) / English Display
69	Commanded EGR and EGR Error					
	Support of EGR System Data	A (bit)	Byte 1 of 7			
	Commanded EGR A Duty Cycle/Position Supported	A, bit 0	0	1	1 = Cmd EGR A Duty Cycle/Position data supported	
	Actual EGR A Duty Cycle/Position Supported	A, bit 1	0	1	1 = Actual EGR A Duty Cycle/Position data supported	
	EGR A Error Supported	A, bit 2	0	1	1 = EGR A Error data supported	
	Commanded EGR B Duty Cycle/Position Supported	A, bit 3	0	1	1 = Cmd EGR B Duty Cycle/Position data supported	
	Actual EGR B Duty Cycle/Position Supported	A, bit 4	0	1	1 = Actual EGR B Duty Cycle/Position data supported	
	EGR B Error Supported	A, bit 5	0	1	1 = EGR B Error data supported	
	reserved (bits shall be reported as '0')	A, bits 6 - 7	0	0		
	Commanded EGR A Duty Cycle/Position	В	0% (no flow)	100% (max flow)	100/255 %	EGR_A_CMD: xxx.x%

Commanded EGR displayed as a percent. EGR_A_CMD shall be normalized to the maximum EGR commanded output control parameter. EGR systems use a variety of methods to control the amount of EGR delivered to the engine.

- 1) If an on/off solenoid is used, EGR_A_CMD shall display 0% when the EGR is commanded off, 100% when the EGR system is commanded on.
- 2) If a vacuum solenoid is duty cycled, the EGR duty cycle from 0 to 100% shall be displayed.
- 3) If a linear or stepper motor valve is used, the fully closed position shall be displayed as 0%; the fully open position shall be displayed as 100%. Intermediate positions shall be displayed as a percent of the full-open position. For example, a stepper-motor EGR valve that moves from 0 to 127 counts shall display 0% at 0 counts (report \$00), 100% at 127 counts (report \$FF) and 50.2% at 64 counts (report \$80).
- 4) Any other actuation method shall be normalized to display 0% when no EGR is commanded and 100% at the maximum commanded EGR position.

and maximum dominant doc 2011 postulom									
Actual EGR A Duty	С	0%	100%	100/255 %	EGR_A_ACT: xxx.x%	٦			
Cycle/Position		(no flow/	(max flow/						
_		closed)	full open)						

TABLE B85 - PID \$69 DEFINITION (CONTINUED)

	TABLE B85 - PID \$69 DEFINITION (CONTINUED)									
PID (box)	Description	Data	Min.	Max. Value	Seeling/Dit	External Test Equipment				
(hex) 69	Description Actual EGR displayed as a pe	Byte	Value		Scaling/Bit	SI (Metric) / English Display				
	systems use a variety of method									
	1) If an on/off solenoid is used, EGR_A_ACT shall display 0% when the EGR is commanded off, 100% when the EGR system is commanded on.									
	2) If a vacuum solenoid is duty	2) If a vacuum solenoid is duty cycled, the EGR duty cycle from 0 to 100% shall be displayed.								
	3) If a linear or stepper motor valve is used, the fully closed position shall be displayed as 0%; the fully open position shall be displayed as 100%. Intermediate positions shall be displayed as a percent of the full-open position. For example, a stepper-motor EGR valve that moves from 0 to 127 counts shall display 0% at 0 counts (report \$00), 100% at 127 counts (report \$FF) and 50.2% at 64 counts (report \$80).									
	4) Any other actuation method shall be normalized to display 0% when no EGR is commanded and 100% at the maximum commanded EGR position.									
	EGR A Error	D	-100 % (less than cmd.)	+99.22 % (more than cmd.)	100/128 % (0% at 128)	EGR_A_ERR: xxx.x%				
	EGR_A_ERR, EGR error, as a percent of commanded EGR. Often, EGR valve control outputs are not in the same engineering units as the EGR feedback input sensors. For example, an EGR valve can be controlled using a duty-cycled vacuum solenoid; however, the feedback input sensor is a position sensor. This makes it impossible to display "actual" versus "commanded" in the same engineering units. EGR error solved this problem by displaying a normalized (non-dimensional) EGR system feedback parameter. EGR error is defined to be:									
	((EGR actual - EGR command	led) / EG	SR Commar	nded) * 100%	6					
	For example if 10% EGR is co	mmande	ed and 5% i	s delivered t	o the engine, the	EGR_A_ERR is				
	((5% - 10%) / 10%) * 100% = -	-50% err	or.							
	EGR_A_ERR may be compute systems must react to quickly errors during transient condition however) if the EGR system is	changing ons. Und	g conditions er steady c	s in the engir	ne; therefore, EGF					
	If the control system does not	use clos	ed loop cor	ntrol, EGR_A	_ERR shall not b	e supported.				
	When commanded EGR is 0% when actual EGR = 0% or EG					EGR error should be set to 0% > 0%.				
	Commanded EGR B Duty Cycle/Position	E	0% (no flow)	100% (max flow)	100/255 %	EGR_B_CMD: xxx.x%				
	Commanded EGR displayed as a percent. EGR_B_CMD shall be normalized to the maximum EGR commanded output control parameter. EGR systems use a variety of methods to control the amount of EGR delivered to the engine.									
	1) If an on/off solenoid is used, EGR_B_CMD shall display 0% when the EGR is commanded off, 100% when the EGR system is commanded on.									
	2) If a vacuum solenoid is duty	cycled,	the EGR d	uty cycle fror	m 0 to 100% shall	be displayed.				
	3) If a linear or stepper motor position shall be displayed as position. For example, a stepp	100%. Ir er-moto	ntermediate r EGR valve	positions she that moves	all be displayed a from 0 to 127 co	as a percent of the full-open unts shall display 0% at 0				

4) Any other actuation method shall be normalized to display 0% when no EGR is commanded and 100% at the maximum commanded EGR position.

counts (report \$00), 100% at 127 counts (report \$FF) and 50.2% at 64 counts (report \$80).

TABLE B85 - PID \$69 DEFINITION (CONTINUED)

PID (hex)	Description	Data Byte	Min. Value	Max. Value	Scaling/Bit	External Test Equipment SI (Metric) / English Display
69	Actual EGR B Duty	F	0%	100%	100/255 %	EGR_B_ACT: xxx.x%
	Cycle/Position		(no flow/	(max flow/		
			closed)	full open)		

Actual EGR displayed as a percent. EGR_B_ACT shall be normalized to the maximum EGR output. EGR systems use a variety of methods to control the amount of EGR delivered to the engine.

- 1) If an on/off solenoid is used, EGR_B_ACT shall display 0% when the EGR is commanded off, 100% when the EGR system is commanded on.
- 2) If a vacuum solenoid is duty cycled, the EGR duty cycle from 0 to 100% shall be displayed.
- 3) If a linear or stepper motor valve is used, the fully closed position shall be displayed as 0%; the fully open position shall be displayed as 100%. Intermediate positions shall be displayed as a percent of the full-open position. For example, a stepper-motor EGR valve that moves from 0 to 127 counts shall display 0% at 0 counts (report \$00), 100% at 127 counts (report \$FF) and 50.2% at 64 counts (report \$80).
- 4) Any other actuation method shall be normalized to display 0% when no EGR is commanded and 100% at the maximum commanded EGR position.

EGR B Error	G	-100 %	+99.22 %	100/128 %	EGR_B_ERR: xxx.x%	
		(less than	(more	(0% at 128)		
		cmd.)	than cmd.)			

EGR_B_ERR, EGR error, as a percent of commanded EGR. Often, EGR valve control outputs are not in the same engineering units as the EGR feedback input sensors. For example, an EGR valve can be controlled using a duty-cycled vacuum solenoid; however, the feedback input sensor is a position sensor. This makes it impossible to display "actual" versus "commanded" in the same engineering units. EGR error solved this problem by displaying a normalized (non-dimensional) EGR system feedback parameter. EGR error is defined to be:

((EGR actual - EGR commanded) / EGR Commanded) * 100%

For example if 10% EGR is commanded and 5% is delivered to the engine, the EGR_B_ERR is ((5% - 10%) / 10%) * 100% = -50% error.

EGR_B_ERR may be computed using various control parameters such as position, steps, counts, etc. All EGR systems must react to quickly changing conditions in the engine; therefore, EGR_B_ERR will generally show errors during transient conditions. Under steady condition, the error will be minimized (not necessarily zero, however) if the EGR system is under control.

If the control system does not use closed loop control, EGR B ERR shall not be supported.

When commanded EGR is 0%, EGR error is technically undefined. In this case EGR error should be set to 0% when actual EGR = 0% or EGR error should be set to 99.2% when actual EGR > 0%.

TABLE B86 - PID \$6A DEFINITION

PID		Data	Min.	Max.		External Test Equipment
(hex)	Description	Byte	Value	Value	Scaling/Bit	SI (Metric) / English Display
6A	Commanded Diesel Intake Air Flow Control and Relative Intake Air Flow Position					
	Support of Intake Air Flow Control System Data	A (bit)	Byte 1 of	5		
	Commanded Intake Air Flow A Control supported	A, bit 0	0	1	1 = Cmd Intake Air Flow A Control data supported	
	Relative Intake Air Flow A Position supported	A, bit 1	0	1	1 = Relative Intake Air Flow A Position data supported	
	Commanded Intake Air Flow B Control supported	A, bit 2	0	1	1 = Cmd Intake Air Flow B Control data supported	
	Relative Intake Air Flow B Position supported	A, bit 3	0	1	1 = Relative Intake Air Flow B Position data supported	
	reserved (bits shall be reported as '0')	A, bits 4 - 7	0	0		
	Commanded Intake Air Flow A Control	В	0 % (closed throttle)	100 % (wide open throttle)	100/255 %	IAF_A_CMD: xxx.x%

Commanded Intake Air Flow displayed as a percent. Intake Air Flow is also known as EGR Throttle on compression ignition vehicles. Intake air flow controls are typically used to induct EGR into a compression ignition engine. IAF_A_CMD shall be normalized to the maximum IAF commanded output control parameter. IAF systems can use different methods to control the throttle plate angle.

- 1) If a linear or stepper motor valve is used, the fully closed position (minimum, normally 0 degree throttle angle) shall be displayed as 0%, the fully open position (maximum, normally 90 degrees throttle angle) shall be displayed as 100%. Intermediate positions shall be displayed as a percent of the full-open position. For example, a stepper-motor that moves from 0 to 127 counts shall display 0% at 0 counts (report \$00), 100% at 127 counts (report \$FF) and 50.2% at 64 counts (report \$80).
- 2) Any other actuation method shall be normalized to display 0% when no IAF is commanded and 100% at the maximum commanded IAF position.

Relative Intake Air Flow A	С	0 %	100 %	100/255 %	IAF_A_REL: xxx.x %
Position					

Actual Intake Air Flow position displayed as a percent. Intake Air Flow position is also known as EGR Throttle Position on compression ignition vehicles. Intake air flow controls are typically used to induct EGR into a compression ignition engine.

Relative or "learned" IAF_A_REL position shall be displayed as a normalized value, scaled from 0 to 100%. IAF_A_REL should display a value of 0% at the "learned closed-throttle position. For example, if a 0 to 5.0 volt sensor is used (uses a 5.0 volt reference voltage), and the closed throttle position is at 1.0 volts, IAF_A_REL shall display (1.0 - 1.0 / 5.0) = 0% at closed throttle and 30% at 2.5 volts. Because of the closed-throttle offset, wide open throttle will usually indicate less than 100%.

For systems where the output is proportional to the input voltage, this value is the percent of maximum input reference voltage. For systems where the output is inversely proportional to the input voltage, this value is 100% minus the percent of maximum input reference voltage.

TABLE B86 - PID \$6A DEFINITION (CONTINUED)

PID (hex)	Description	Data Byte	Min. Value	Max. Value	Scaling/Bit	External Test Equipment SI (Metric) / English Display
6A	Commanded Intake Air Flow	D	0 %	100 %	100/255 %	IAF_B_CMD: xxx.x%
	B Control		(closed	(wide open		
			throttle)	throttle)		

Commanded Intake Air Flow displayed as a percent. Intake Air Flow is also known as EGR Throttle on compression ignition vehicles. Intake air flow controls are typically used to induct EGR into a compression ignition engine. IAF_B_CMD shall be normalized to the maximum IAF commanded output control parameter. IAF systems can use different methods to control the throttle plate angle.

- 1) If a linear or stepper motor valve is used, the fully closed position (minimum, normally 0 degree throttle angle) shall be displayed as 0%, the fully open position (maximum, normally 90 degrees throttle angle) shall be displayed as 100%. Intermediate positions shall be displayed as a percent of the full-open position. For example, a stepper-motor that moves from 0 to 127 counts shall display 0% at 0 counts (report \$00), 100% at 127 counts (report \$FF) and 50.2% at 64 counts (report \$80).
- 2) Any other actuation method shall be normalized to display 0% when no IAF is commanded and 100% at the maximum commanded IAF position.

Relative Intake Air Flow B	E	0 %	100 %	100/255 %	IAF_B_REL: xxx.x %
Position					

Actual Intake Air Flow position displayed as a percent. Intake Air Flow position is also known as EGR Throttle Position on compression ignition vehicles. Intake air flow controls are typically used to induct EGR into a compression ignition engine.

Relative or "learned" IAF_B_REL position shall be displayed as a normalized value, scaled from 0 to 100%. IAF_B_REL should display a value of 0% at the "learned closed-throttle position. For example, if a 0 to 5.0 volt sensor is used (uses a 5.0 volt reference voltage), and the closed throttle position is at 1.0 volts, IAF_B_REL shall display (1.0 - 1.0 / 5.0) = 0% at closed throttle and 30% at 2.5 volts. Because of the closed-throttle offset, wide open throttle will usually indicate less than 100%.

For systems where the output is proportional to the input voltage, this value is the percent of maximum input reference voltage. For systems where the output is inversely proportional to the input voltage, this value is 100% minus the percent of maximum input reference voltage.

TABLE B87 - PID \$6B DEFINITION

						External Test Equipment
PID		Doto	Min.	Max.		SI (Metric) /
(hex)	Description	Data Byte	Value	Wax. Value	Scaling/Bit	English Display
6B	Exhaust Gas Recirculation	Dyte	Value	Value	ocanng/bit	Display
OB	Temperature					
	Support of EGR	Α	Byte 1	of 5		
	Temperature Sensor Data	(bit)				
	EGR Temperature Sensor	A, bit 0	0	1	1 = EGR Temp Sensor A Bank	
	A (Bank 1, Sensor 1)				1, Sensor 1 data supported,	
	supported				1 °C with -40 °C offset scaling	
	EGR Temperature Sensor	A, bit 1	0 1		1 = EGR Temp Sensor C Bank	
	C (Bank 1, Sensor 2)				1, Sensor 2 data supported,	
	supported				1 °C with -40 °C offset scaling	
	EGR Temperature Sensor	A, bit 2	0 1		1 = EGR Temp Sensor B Bank	
	B (Bank 2, Sensor 1)				2, Sensor 1 data supported,	
	supported EGR Temperature Sensor	A, bit 3	0	1	1 °C with -40 °C offset scaling 1 = EGR Temp Sensor D Bank	
	D (Bank 2, Sensor 2)	A, bit 3	0 1		2, Sensor 2 data supported,	
	supported				1 °C with -40 °C offset scaling	
	EGR Temperature Sensor	A, bit 4	0 1		1 = EGR Temp Sensor A Bank	
	A (Bank 1, Sensor 1) Wide	7 1, 210			1, Sensor 1 data supported,	
	Range supported				4 °C with -40 °C offset scaling	
	EGR Temperature Sensor	A, bit 5	0 1		1 = EGR Temp Sensor C Bank	
	C (Bank 1, Sensor 2) Wide				1, Sensor 2 data supported,	
	Range supported				4 °C with -40 °C offset scaling	
	EGR Temperature Sensor	A, bit 6	0	1	1 = EGR Temp Sensor B Bank	
	B (Bank 2, Sensor 1) Wide				2, Sensor 1 data supported,	
	Range supported				4 °C with -40 °C offset scaling	
	EGR Temperature Sensor	A, bit 7	0	1	1 = EGR Temp Sensor D Bank	
	D (Bank 2, Sensor 2) Wide				2, Sensor 2 data supported,	
	Range supported Exhaust Gas Recirculation	В	-40 °C	215 °C or	4 °C with -40 °C offset scaling 1 °C or 4 °C with	EGRTA: xxx °C
	Temp Sensor A (Bank 1,	В	- 4 0 C	980 °C	-40 °C offset	(xxx °F)
	Sensor 1)			300 0	-40 0 011301	(^^)
	EGRTA shall display EGR g	as tempe	erature.			
	Exhaust Gas Recirculation	C	-40 °C	215 °C or	1 °C or 4 °C with	EGRTC: xxx °C
	Temp Sensor C (Bank 1,			980 °C	-40 °C offset	(xxx °F)
	Sensor 2)					,
	EGRTC shall display EGR g	as tempe				
	Exhaust Gas Recirculation	D	-40 °C	215 °C or	1 °C or 4 °C with	EGRTB: xxx °C
	Temp Sensor B (Bank 2,			980 °C	-40 °C offset	(xxx °F)
	Sensor 1)					
	EGRTC shall display EGR g			0.45.05	100 100 111	EODES SS
	Exhaust Gas Recirculation	E	-40 °C	215 °C or	1 °C or 4 °C with	EGRTD: xxx °C
	Temp Sensor D (Bank 2,			980 °C	-40 °C offset	(xxx °F)
	Sensor 2)	oo tomr	rotura			1
	EGRTD shall display EGR g	as tempe	erature.			

TABLE B88 - PID \$6C DEFINITION

	TABLE BOO - FID SOC DEFINITION									
PID	.	Data	Min.	Max.	0 II (D)(External Test Equipment				
(hex)	Description	Byte	Value	Value	Scaling/Bit	SI (Metric) / English Display				
6C	Commanded Throttle Actuator Control and Relative Throttle Position									
	Support of Throttle Actuator Control System Data	Α	Byte 1 of	5						
	Commanded Throttle Actuator A Control supported	A, bit 0	0	1	1 = Cmd Throttle Actuator A Control data supported					
	Relative Throttle A Position supported	A, bit 1	0	1	1 = Relative Throttle A Position data supported					
	Commanded Throttle Actuator B Control supported	A, bit 2	0	1	1 = Cmd Throttle Actuator B Control data supported					
	Relative Throttle B Position supported	A, bit 3	0	1	1 = Relative Throttle B Position data supported					
	reserved (bits shall be reported as '0')	A, bits 4 - 7	0	0						
	Commanded Throttle Actuator A Control	В	0 % (closed throttle)	100 % (wide open throttle)	100/255 %	TAC_A_CMD: xxx.x%				
	Commanded TAC displayed a output control parameter. TAC 1) If a linear or stepper motor i throttle position shall be displa open throttle position. For example, at 0 counts (report \$00), 10	s used, t yed as 1 mple, a s	s use a value of the fully close of the fully close of the fully close of the full of the	riety of methonsed throttle rmediate posotor TAC that	ods to control the a position shall be displications shall be displications the throttle	splayed as 0%, the fully open layed as a percent of the full-0 to 127 counts shall display				
	2) Any other actuation method 100% when the throttle is com			ed to display	0% when the thrott	le is commanded closed and				
	Relative Throttle A Position	С	0 %	100 %	100/255 %	TP_A_REL: xxx.x %				
	Relative or "learned" throttle position shall be displayed as a normalized value, scaled from 0 to 100%. TP_A_REL should display a value of 0% at the "learned closed-throttle position. For example, if a 0 to 5.0 volt sensor is used (uses a 5.0 volt reference voltage), and the closed throttle position is at 1.0 volts, TP_A_REL shall display (1.0 – 1.0 / 5.0) = 0% at closed throttle and 30% at 2.5 volts. Because of the closed-throttle offset, wide open throttle will usually indicate substantially less than 100%.									
	reference voltage. For systems	stems where the output is proportional to the input voltage, this value is the percent of maximum input ice voltage. For systems where the output is inversely proportional to the input voltage, this value is minus the percent of maximum input reference voltage. See PID \$11 for a definition of Absolute Throttle								
	Commanded Throttle Actuator B Control	D	0 % (closed throttle)	100 % (wide open throttle)	100/255 %	TAC_B_CMD: xxx.x%				

SAE

Page 55 of 143

TABLE B88 - PID \$6C DEFINITION (CONTINUED)

PID		Data	Min.	Max.		External Test Equipment				
(hex)	Description	Byte	Value	Value	Scaling/Bit	SI (Metric) / English Display				
6C	Commanded TAC displayed as a percent. TAC_B_CMD shall be normalized to the maximum TAC commanded output control parameter. TAC systems use a variety of methods to control the amount of throttle opening.									
	1) If a linear or stepper motor is used, the fully closed throttle position shall be displayed as 0%, the fully open throttle position shall be displayed as 100%. Intermediate positions shall be displayed as a percent of the full-open throttle position. For example, a stepper-motor TAC that moves the throttle from 0 to 127 counts shall display 0% at 0 counts (report \$00), 100% at 127 counts (report \$FF) and 50.2% at 64 counts (report \$80).									
	2) Any other actuation method shall be normalized to display 0% when the throttle is commanded closed and 100% when the throttle is commanded open.									
	Relative Throttle B Position	E	0 %	100 %	100/255 %	TP_B_REL: xxx.x %				
	Relative or "learned" throttle position shall be displayed as a normalized value, scaled from 0 to 100%. TP_B_REL should display a value of 0% at the "learned closed-throttle position. For example, if a 0 to 5.0 volt sensor is used (uses a 5.0 volt reference voltage), and the closed throttle position is at 1.0 volts, TP_B_REL shall display (1.0 – 1.0 / 5.0) = 0% at closed throttle and 30% at 2.5 volts. Because of the closed-throttle offset, wide open throttle will usually indicate substantially less than 100%.									
	For systems where the output reference voltage. For systems 100% minus the percent of ma Position.	where t	the output	is inversely	proportional to the i	nput voltage, this value is				

TABLE B89 - PID \$6D DEFINITION

PID nex)	Description	Data Byte	Min. Value	Max. Value	Scaling/Bit	External Test Equipment SI (Metric) / English Display				
6D	Fuel Pressure Control System									
	Support of Fuel Pressure	Α	Byte 1 c	of 11						
	Control System Data	(bit)								
	Commanded Fuel Rail	A, bit 0	0	1	1 = Commanded					
	Pressure A supported				Fuel Rail Pressure					
					A data supported					
	Fuel Rail Pressure A	A, bit 1	0	1	1 = Fuel Rail					
	supported				Pressure A data					
					supported					
	Fuel Temperature A	A, bit 2	0	1	1 = Fuel					
	supported				Temperature A					
					data supported					
	Commanded Fuel Rail	A, bit 3	0	1	1 = Commanded					
	Pressure B supported				Fuel Rail Pressure					
					B data supported					
	Fuel Rail Pressure B	A, bit 4	0	1	1 = Fuel Rail					
	supported				Pressure B data					
					supported					
	Fuel Temperature B	A, bit 5	0	1	1 = Fuel					
	supported				Temperature B					
ļ					data supported					
	reserved (bits shall be	A, bits	0	0						
ļ	reported as '0')	6 - 7								
	Commanded Fuel Rail	B,C	0 kPa	655350	10 kPa per bit	FRP_A_CMD: xxxxxx kPa				
	Pressure A			kPa	unsigned, 1 kPa =	(xxxxx.x PSI)				
	EDD A OMD at all discussions		f l !!		0.1450377 PSI					
	FRP_A_CMD shall display commanded fuel rail pressure when the reading is referenced to atmosphere (gauge pressure).									
	Fuel Rail Pressure A	D,E	0 kPa	655350	10 kPa per bit	FRP_A: xxxxxx kPa (xxxxx.x				
				kPa	unsigned, 1 kPa =	PSI)				
					0.1450377 PSI					
	FRP_A shall display fuel rail pro									
	Fuel Rail Temperature A	F	-40 °C	215 °C	1 °C with -40 °C offset	FRT_A: xxx °C (xxx °F)				
	FRT_A shall display fuel rail ter	nperatur	e.							
	Commanded Fuel Rail	G,H	0 kPa	655350	10 kPa per bit	FRP_B_CMD: xxxxxx kPa				
	Pressure B			kPa	unsigned, 1 kPa =					
					0.1450377 PSI					
	FRP_B_CMD shall display com (gauge pressure).	nmanded	fuel rail	pressure v	when the reading is r	eferenced to atmosphere				
	Fuel Rail Pressure B	I,J	0 kPa	655350	10 kPa per bit	FRP_B: xxxxxx kPa (xxxxx.x				
		.,•		kPa	unsigned, 1 kPa =					
				🗸	0.1450377 PSI					
	FRP_B shall display fuel rail pre	essure w	hen the	reading is		phere (gauge pressure).				
ŀ	Fuel Rail Temperature B	K	-40 °C	215 °C	1 °C with	FRT B: xxx °C (xxx °F)				
	•			2.00	-40 °C offset	<u>.</u> 5.700 5 (AAA 1)				
	FRT_B shall display fuel rail ter	nperatur	e.							

TABLE B90 - PID \$6E DEFINITION

PID		Data	Min.	Max.		External Test Equipment
(hex)	Description	Byte	Value	Value	Scaling/Bit	SI (Metric) / English Display
6E	Injection Pressure Control System					
	Support of Injection Pressure Control System Data	A (bit)	Byte 1 c			
	Commanded Injection Control Pressure A supported	A, bit 0	0	1	1 = Commanded Injection Control Pressure A data supported	
	Injection Control Pressure A supported	A, bit 1	0	1	1 = Injection Control Pressure A data supported	
	Commanded Injection Control Pressure B supported	A, bit 2	0	1	1 = Commanded Injection Control Pressure B data supported	
	Injection Control Pressure B supported	A, bit 3	0	1	1 = Injection Control Pressure B data supported	
	reserved (bits shall be reported as '0')	A, bits 4 - 7	0	0	.,	
	Commanded Injection Control Pressure A	B,C	0 kPa	655350 kPa	10 kPa per bit unsigned, 1 kPa = 0.1450377 PSI	ICP_A_CMD: xxxxxx kPa (xxxxx.x PSI)
	ICP_A_CMD shall display comr	manded	injection	control pre	essure.	
	Injection Control Pressure A	D,E	0 kPa	655350 kPa	10 kPa per bit unsigned, 1 kPa = 0.1450377 PSI	ICP_A: xxxxxx kPa (xxxxx.x PSI)
	ICP_A shall display injection co	ntrol pre	ssure.			
	Commanded Injection Control Pressure B	F,G	0 kPa	655350 kPa	10 kPa per bit unsigned, 1 kPa = 0.1450377 PSI	ICP_B_CMD: xxxxxx kPa (xxxxx.x PSI)
	ICP_B_CMD shall display com	manded	injection	control pre	essure.	
	Injection Control Pressure B	H,I	0 kPa	655350 kPa	10 kPa per bit unsigned, 1 kPa = 0.1450377 PSI	ICP_B: xxxxxx kPa (xxxxx.x PSI)
	ICP_B shall display injection co	ntrol pre	ssure.		•	

TABLE B91 - PID \$6F DEFINITION

PID		Data	Min.	Max.		External Test Equipment
(hex)	Description	Byte	Value	Value	Scaling/Bit	SI (Metric) / English Display
6F	Turbocharger Compressor Inlet Pressure					
	Support of Turbocharger Compressor Inlet Pressure Sensor Data	A (bit)	Byte 1 of 3			
	Turbocharger Compressor Inlet Pressure Sensor A supported	A, bit 0	0	1	1=Turbocharger Compressor Inlet Pressure Sensor A supported, 1 kPa per bit scaling	
	Turbocharger Compressor Inlet Pressure Sensor B supported	A, bit 1	0	1	1=Turbocharger Compressor Inlet Pressure Sensor B supported, 1 kPa per bit scaling	
	Turbocharger Compressor Inlet Pressure Sensor A Wide Range supported	A, bit 2	0	1	1=Turbocharger Compressor Inlet Pressure Sensor A supported, 8 kPa per bit scaling	
	Turbocharger Compressor Inlet Pressure Sensor B Wide Range supported	A, bit 3	0	1	1=Turbocharger Compressor Inlet Pressure Sensor B supported, 8 kPa per bit scaling	
	reserved (bits shall be reported as '0')	A, bits 4 - 7	0	0		
	Turbocharger Compressor Inlet Pressure Sensor A	В	0 kPa (absolute)	255 kPa or 2040 kPa (absolute)	1 kPa per bit or 8 kPa per bit	TCA_CINP: xxx kPa (xx.x inHg)
	TCA_CINP shall display t	urbochar	ger A compr	essor inlet pre	ssure.	
	Turbocharger Compressor Inlet Pressure Sensor B	С	0 kPa (absolute)	255 kPa or 2040 kPa (absolute)	1 kPa per bit or 8 kPa per bit	TCB_CINP: xxx kPa (xx.x inHg)
	TCB_CINP shall display t	urbochar	ger B compr	essor inlet pre	ssure.	

TABLE B92 - PID \$70 DEFINITION

PID (box)	Description	Data	Min.	Max. Value	Cooling/Dit	External Test Equipment		
(hex) 70	Description Boost Pressure Control	Byte	Value	value	Scaling/Bit	SI (Metric) / English Display		
70	Support of Boost Pressure Control Data	A (bit)	Byte 1 c	of 10				
	Commanded Boost Pressure A supported	A, bit 0	0	1	1 = Cmd Boost Pressure Control A data supported			
	Boost Pressure Sensor A supported	A, bit 1	0	1	1 = Boost Pressure Sensor A data supported			
	Boost Pressure A Control Status supported	A, bit 2	0	1	1 = Boost Pressure A Control Status supported			
	Commanded Boost Pressure B supported	A, bit 3	0	1	1 = Cmd Boost Pressure Control B data supported			
	Boost Pressure Sensor B supported	A, bit 4	0	1	1 = Boost Pressure Sensor B data supported			
	Boost Pressure B Control Status supported	A, bit 5	0	1	1 = Boost Pressure B Control Status supported			
	reserved (bits shall be reported as '0')	A, bits 6 - 7	0	0				
	Commanded Boost Pressure A	B,C	0 kPa	2047.968 75 kPa	0.03125 kPa/bit	BP_A_CMD xxx.xx kPa (xx.xx PSI)		
	BP_A_CMD shall display tur	bocharge	er/superd	charger A co				
	Boost Pressure Sensor A	D,E	0 kPa	2047.968 75 kPa	0.03125 kPa/bit	BP_A_ACT xxx.xx kPa (xx.xx PSI)		
	BP_A_ACT shall display act directly from a sensor, or ma					BP_A_ACT may be obtained		
	Commanded Boost Pressure B	F,G	0 kPa	2047.968 75 kPa	0.03125 kPa/bit	BP_B_CMD xxx.xx kPa (xx.xx PSI)		
	BP_B_CMD shall display tur	bocharge	er/superd	charger B co	ommanded boost pres	sure.		
	Boost Pressure Sensor B	H,I	0 kPa	2047.968 75 kPa	0.03125 kPa/bit	BP_B_ACT xxx.xx kPa (xx.xx PSI)		
	BP_B_ACT shall display act directly from a sensor, or ma	y be infe	rred by t	he control s				
	Boost Pressure Control Status	J	Byte 10					
	Boost Pressure A Control Status	J, bits 0 – 1	00	11	00 = reserved, not defined 01 = Open Loop (no fault present) 10 = Closed Loop (no fault present)	BP_A_OL BP_A_CL		
					11 = Fault present (boost data unreliable)	BP_A_FAULT		

TABLE B92 - PID \$70 DEFINITION (CONTINUED)

PID (hex)	Description	Data Byte	Min. Value	Max. Value	Scaling/Bit	External Test Equipment SI (Metric) / English Display
70	Boost Pressure B Control Status	J, bits 2 - 3	00	11	00 = reserved, not defined 01 = Open Loop (no fault present) 10 = Closed Loop (no fault present) 11 = Fault present (boost data unreliable)	BP_B_OL BP_B_CL BP_B_FAULT
	reserved (bits shall be reported as '0')	J, bits 4 - 7	00	00	00 = reserved, not defined	

TABLE B93 - PID \$71 DEFINITION

PID		Data	Min.	Max.		External Test Equipment
(hex)	Description	Byte	Value	Value	Scaling/Bit	SI (Metric) / English Display
71	Variable Geometry Turbo (VGT) Control					
	Support of Variable Geometry Turbo Control Data	A (bit)	Byte 1 of 6			
	Commanded VGT A Position supported	A, bit 0	0	1	1 = Commanded VGT A Position data supported	
	VGT A Position supported	A, bit 1	0	1	1 = VGT A Position data supported	
	VGT A Control Status supported	A, bit 2	0	1	1 = VGT A Control Status supported	
	Commanded VGT B Position supported	A, bit 3	0	1	1 = Commanded VGT B Position data supported	
	VGT B Position supported	A, bit 4	0	1	1 = VGT B Position data supported	
	VGT B Control Status supported	A, bit 5	0	1	1 = VGT B Control Status supported	
	reserved (bits shall be reported as '0')	A, bits 6 - 7	0	0		

TABLE B93 - PID \$71 DEFINITION (CONTINUED)

PID		Data	Min.	Max.		External Test Equipment		
(hex)	Description	Byte	Value	Value	Scaling/Bit	SI (Metric) / English Display		
71	Commanded Variable	В	0% (vanes	100% (not	100/255 %	VGT_A_CMD: xxx.x%		
	Geometry Turbo A Position		bypassed)	bypassed)				
	VGT_A_CMD shall display variable geometry turbocharger commanded vane position as a percent.							
	VGT_A_CMD shall be normalized to the maximum VGT commanded output control parameter.							
	VGT systems use a variety of methods to control vane position, hence boost pressure.							
	1) If a linear or stepper moto	r is use	d, the fully by	passed vane	e position shall be o	displayed as 0%, the fully		
						e displayed as a percent of the		
						rottle from 0 to 127 counts shall		
	display 0% at 0 counts (repo	ort \$00),	100% at 127	counts (rep	ort \$FF) and 50.2%	at 64 counts (report \$80).		
	2) Any other actuation methor	od shall	be normalize	ed to display	0% when the vane	s are fully bypassed and 100%		
	when the vanes are fully util	ized.						
	Variable Geometry Turbo	С	0% (vanes	100%	100/255 %	VGT_A_ACT: xxx.x%		
	A Position		bypassed)	(vanes not				
	\(\text{\text{\$\sigma}}\)			bypassed)		1 1/07 1 107 1 11		
	VGT_A_ACT shall display variable geometry turbocharger actual vane position as a percent. VGT_A_ACT shall be normalized to the maximum VGT commanded output parameter. Vane position shall be normalized to							
	display 0% when the vanes							
	Commanded Variable	D D	0% (vanes	100% Wile	100/255 %	VGT B CMD: xxx.x%		
	Geometry Turbo B Position		bypassed)	(vanes not	100/200 /0	VOI_B_GIVIB: XXX.X70		
			,	bypassed)				
	VGT_B_CMD shall display v	/ariable	geometry tur	bocharger co	ommanded vane po	osition as a percent.		
	VGT_B_CMD shall be norm							
	VGT systems use a variety of	of metho	ods to contro	l vane positio	n, hence boost pre	ssure.		
	1) If a linear or stepper motor	r is use	d, the fully by	passed vane	position shall be o	displayed as 0%, the fully		
						e displayed as a percent of the		
	fully utilized vane position. F	or exam	iple, a stepp	er-motor VG7	Tthat moves the th	rottle from 0 to 127 counts shall		
	display 0% at 0 counts (repo	ort \$00),	100% at 127	7 counts (rep	ort \$FF) and 50.2%	at 64 counts (report \$80).		
	2) Any other actuation method	od shall	be normalize	ed to display	0% when the vanes	s are fully bypassed and 100%		
	when the vanes are fully utilized.							
	Variable Geometry Turbo E 0% (vanes 100% 100/255 % VGT_B_ACT: xxx.							
	B Position bypassed) (vanes not							
	bypassed)							
	VGT_B_ACT shall display variable geometry turbocharger actual vane position as a percent. VGT_B_ACT shall							
	be normalized to the maximum VGT commanded output parameter. Vane position shall be normalized to							
	display 0% when the vanes are fully bypassed and 100% when the vanes are fully utilized.							

TABLE B93 - PID \$71 DEFINITION (CONTINUED)

PID (hex)	Description	Data	Min. Value	Max. Value	Scaling/Bit	External Test Equipment SI (Metric) / English Display
	•	Byte		value	Scalling/bit	Si (Metric) / Eligiisti Display
71	VGT Control Status	F	Byte 6 of 6		1	
	VGT A Control Status	F, bits	00	11	00 = reserved,	
		0 – 1			not defined	
					01 = Open Loop	VGT_A_OL
					(no fault present)	
					10 = Closed	VGT_A_CL
					Loop (no fault	
					present)	
					11 = Fault	VGT_A_FAULT
					present (VGT	
					data unreliable)	
	VGT B Control Status	F, bits	00	11	00 = reserved,	
		2 - 3			not defined	
					01 = Open Loop	VGT_B_OL
					(no fault present)	
					10 = Closed	VGT_B_CL
					Loop (no fault	
					present)	
					11 = Fault	VGT_B_FAULT
					present (VGT	
					data unreliable)	
	reserved (bits shall be	F, bits	00	00	00 = reserved,	
	reported as '0')	4 - 7			not defined	

TABLE B94 - PID \$72 DEFINITION

PID		Data	Min.	Max.		External Test Equipment
(hex)	Description	Byte	Value	Value	Scaling/Bit	SI (Metric) / English Display
72	Wastegate Control					
	Support of Wastegate	Α	Byte 1 of 5			
	Control Data	(bit)				
	Commanded Wastegate A	A, bit 0	0	1	1 =	
	Position supported				Commanded	
					Wastegate A	
					Position data	
					supported	
	Wastegate A Position	A, bit 1	0	1	1 = Wastegate	
	supported				A Position data	
					supported	
	Commanded Wastegate B	A, bit 2	0	1	1 =	
	Position supported				Commanded	
					Wastegate B	
					Position data	
					supported	
	Wastegate B Position	A, bit 3	0	1	1 = Wastegate	
	supported				B Position data	
					supported	
	reserved (bits shall be	A, bits	0	0		
	reported as '0')	4 - 7				

TABLE B94 - PID \$72 DEFINITION (CONTINUED)

PID (hex)	Description	Data Byte	Min. Value	Max. Value	Scaling/Bit	External Test Equipment SI (Metric) / English Display
72	Commanded Wastegate A	В	0%	100%	100/255 %	WG_A_CMD: xxx.x%
	Position		(no flow/	(max flow/		
			closed)	full open)		

WG_A_CMD shall display wastegate commanded position as a percent. WG_A_CMD shall be normalized to the maximum wastegate commanded output control parameter.

Wastegate systems use a variety of methods to control wastegate position, hence boost pressure.

- 1) If an on/off solenoid is used, WG_A_CMD shall display 0% when the WG is commanded off (allow full boost), 100% when the WG system is commanded on (dump boost).
- 2) If a vacuum solenoid is duty cycled, the WG duty cycle from 0 to 100% shall be displayed.
- 3) If a linear or stepper motor valve is used, the fully closed position (full boost) shall be displayed as 0%, the fully open position (dump boost) shall be displayed as 100%. Intermediate positions shall be displayed as a percent of the full-open position.
- 4) Any other actuation method shall be normalized to display 0% when the WG is commanded off and 100% when the WG is commanded on.

Wastegate A Position	С	0%	100%	100/255 %	WG_A_ACT: xxx.x%
		(no flow/	(max flow/		
		closed)	full open)		

WG_A_ACT shall display wastegate actual position as a percent. WG_A_ACT shall be normalized to the maximum wastegate commanded output control parameter.

Wastegate systems use a variety of methods to control wastegate position, hence boost pressure.

- 1) If an on/off solenoid is used, WG_A_ACT shall display 0% when the WG is commanded off (allow full boost), 100% when the WG system is commanded on (dump boost).
- 2) If a vacuum solenoid is duty cycled, the WG duty cycle from 0 to 100% shall be displayed.
- 3) If a linear or stepper motor valve is used, the fully closed position (full boost) shall be displayed as 0%, the fully open position (dump boost) shall be displayed as 100%. Intermediate positions shall be displayed as a percent of the full-open position.
- 4) Any other actuation method shall be normalized to display 0% when the WG is commanded off and 100% when the WG is commanded on.

Commanded Wastegate B	D	0%	100%	100/255 %	WG_ B_CMD: xxx.x%
Position		(no flow/	(max flow/		
		closed)	full open)		

WG_B_CMD shall display wastegate commanded position as a percent. WG_B_CMD shall be normalized to the maximum wastegate commanded output control parameter.

Wastegate systems use a variety of methods to control wastegate position, hence boost pressure.

- 1) If an on/off solenoid is used, WG_B_CMD shall display 0% when the WG is commanded off (allow full boost), 100% when the WG system is commanded on (dump boost).
- 2) If a vacuum solenoid is duty cycled, the WG duty cycle from 0 to 100% shall be displayed.
- 3) If a linear or stepper motor valve is used, the fully closed position (full boost) shall be displayed as 0%, the fully open position (dump boost) shall be displayed as 100%. Intermediate positions shall be displayed as a percent of the full-open position.
- 4) Any other actuation method shall be normalized to display 0% when the WG is commanded off and 100% when the WG is commanded on.

TABLE B94 - PID \$72 DEFINITION (CONTINUED)

PID (hex)	Description	Data Byte	Min. Value	Max. Value	Scaling/Bit	External Test Equipment SI (Metric) / English Display
72	Wastegate B Position	Е	0%	100%	100/255 %	WG_B_ACT: xxx.x%
			(no flow/	(max flow/		
			closed)	full open)		

WG_B_ACT shall display wastegate actual position as a percent. WG_B_ACT shall be normalized to the maximum wastegate commanded output control parameter.

Wastegate systems use a variety of methods to control wastegate position, hence boost pressure.

- 1) If an on/off solenoid is used, WG_B_ACT shall display 0% when the WG is commanded off (allow full boost), 100% when the WG system is commanded on (dump boost).
- 2) If a vacuum solenoid is duty cycled, the WG duty cycle from 0 to 100% shall be displayed.
- 3) If a linear or stepper motor valve is used, the fully closed position (full boost) shall be displayed as 0%, the fully open position (dump boost) shall be displayed as 100%. Intermediate positions shall be displayed as a percent of the full-open position.
- 4) Any other actuation method shall be normalized to display 0% when the WG is commanded off and 100% when the WG is commanded on.

TABLE B95 - PID \$73 DEFINITION

PID		Data	Min.	Max.		External Test Equipment
(hex)	Description	Byte	Value	Value	Scaling/Bit	SI (Metric) / English Display
73	Exhaust Pressure					
	Support of Exhaust	Α	Byte 1 c	of 5		
	Pressure Sensor Data	(bit)				
	Exhaust Pressure Sensor	A, bit 0	0	1	1 = Exhaust	
	Bank 1 supported				Pressure	
					Sensor Bank 1	
					data supported	
	Exhaust Pressure Sensor	A, bit 1	0	1	1 = Exhaust	
	Bank 2 supported				Pressure	
					Sensor Bank 2	
				_	data supported	
	reserved (bits shall be reported as '0')	A, bits 2 - 7	0	0		
	Exhaust Pressure Sensor	B,C	0 kPa	655.35	0.01 kPa per bit	EP_1: xxxx.xx kPa (xx.xxx PSI)
	Bank 1	5,0	o iti u	kPa	0.01 Ki a poi bit	
	EP_1 shall display Bank 1 ex	xhaust pi	essure.			
	Exhaust Pressure Sensor	D,E	0 kPa	655.35	0.01 kPa per bit	EP_2: xxxx.xx kPa (xx.xxx PSI)
	Bank 2			kPa	·	,
	EP_2 shall display Bank 2 ex	xhaust pi	essure.			

TABLE B96 - PID \$74 DEFINITION

PID (hex)	Description	Data Byte	Min. Value	Max. Value	Scaling/Bit	External Test Equipment SI (Metric) / English Display	
74	Turbocharger RPM		raido	7 4140		c. (c)gccpia,	
	Support of Turbocharger RPM Data	A (bit)	Byte 1 c	of 5			
	Turbo A RPM supported	A, bit 0	0	1	1 = Turbo A RPM data supported		
	Turbo B RPM supported	A, bit 1	0	1	1 = Turbo B RPM data supported		
	reserved (bits shall be reported as '0')	A, bits 2 - 7	0	0			
	Turbocharger A RPM	B,C	0 min ⁻¹	655,350 min ⁻¹	10 rpm per bit	TCA_RPM: xxxxx min ⁻¹	
	TCA_RPM shall display revo	lutions p	per minute of the engine turbocharger A.				
	Turbocharger B RPM	D,E	0 min ⁻¹	655,350 min ⁻¹	10 rpm per bit	TCB_RPM: xxxxx min ⁻¹	
	TCB_RPM shall display revo	lutions p	er minut	e of the en	gine turbocharger B	j	

TABLE B97 - PID \$75 DEFINITION

PID		Data	Min.	Max.		External Test Equipment				
(hex)	Description	Byte	Value	Value	Scaling/Bit	SI (Metric) / English Display				
75	Turbocharger A Temperature									
	Support of Turbocharger	Α	Byte 1 c	of 7						
	Temperature Data	(bit)								
	Turbo A Compressor Inlet	A, bit 0	0	1	1 = Turbo A					
	Temperature supported				Compressor Inlet					
					Temperature					
					data supported					
	Turbo A Compressor Outlet	A, bit 1	0	1	1 = Turbo A					
	Temperature supported				Compressor					
					Outlet					
					Temperature					
					data supported					
	Turbo A Turbine Inlet	A, bit 2	0	1	1 = Turbo A					
	Temperature supported				Turbine Inlet					
					Temperature					
					data supported					
	Turbo A Turbine Outlet	A, bit 3	0	1	1 = Turbo A					
	Temperature supported				Turbine Outlet					
					Temperature					
					data supported					
	reserved (bits shall be	A, bits	0	0						
	reported as '0')	4 - 7								
	Turbocharger A Compressor	В	-40 °C	215 °C	1 °C with	TCA_CINT: xxx °C (xxx °F)				
	Inlet Temperature				-40 °C offset					
	TCA_CINT shall display turbo					<u></u>				
	Turbocharger A Compressor	С	-40 °C	215 °C	1 °C with	TCA_COUTT: xxx °C (xxx °F)				
	Outlet Temperature				-40 °C offset					
	TCA_COUTT shall display turk									
	Turbocharger A Turbine Inlet	D,E	-40 °C	6513.5 °C		TCA_TINT: xxx °C (xxx °F)				
	Temperature				-40 °C offset					
	TCA_TINT shall display turboo	charger A								
	Turbocharger A Turbine	F,G	-40 °C	6513.5 °C		TCA_TOUTT: xxx °C (xxx °F)				
	Outlet Temperature				-40 °C offset					
	TCA_TOUTT shall display turk	oocharge	r A turbi	ne outlet ter	mperature.					
	1101_10011 shall display turbonarger A turbine outlet temperature.									

TABLE B98 - PID \$76 DEFINITION

PID (hex)			MILE	Max.		External Test Equipment
(110/1)	Description	Data Byte	Min. Value	Value	Scaling/Bit	SI (Metric) / English Display
	Turbocharger B Temperature	Dyto	Value	Value	oounig/Dit	or (moure) / English Biopiay
	Support of Turbocharger	Α	Byte 1 c	of 7		
	Temperature Data	(bit)	Dyte i c	,, ,		
	Turbo B Compressor Inlet	A, bit 0	0	1	1 = Turbo B	
	Temperature supported	7 t, Dit 0	O	•	Compressor Inlet	
	Temperature supported				Temperature	
					data supported	
-	Turbo B Compressor Outlet	A, bit 1	0	1	1 = Turbo B	
	Temperature supported	, ב		•	Compressor	
					Outlet	
					Temperature	
					data supported	
	Turbo B Turbine Inlet	A, bit 2	0	1	1 = Turbo B	
7	Temperature supported	,			Turbine Inlet	
					Temperature	
					data supported	
	Turbo B Turbine Outlet	A, bit 3	0	1	1 = Turbo B	
7	Temperature supported				Turbine Outlet	
					Temperature	
					data supported	
	reserved (bits shall be	A, bits	0	0		
	reported as '0')	4 - 7				
	Turbocharger B Compressor	В	-40 °C	215 °C	1 °C with	TCB_CINT: xxx °C (xxx °F)
	Inlet Temperature				-40 °C offset	
	TCB_CINT shall display turboo	charger E				
	Turbocharger B Compressor	С	-40 °C	215 °C	1 °C with	TCB_COUTT: xxx °C (xxx °F)
	Outlet Temperature				-40 °C offset	
	TCB_COUTT shall display turb					
	Turbocharger B Turbine Inlet	D,E	-40 °C	6513.5 °C	0.1 °C / bit with	TCB_TINT: xxx °C (xxx °F)
	Temperature				-40 °C offset	
	TCB_TINT shall display turboc					
	Turbocharger B Turbine	F,G	-40 °C	6513.5 °C	0.1 °C / bit with	TCB_TOUTT: xxx °C (xxx °F)
	Outlet Temperature				-40 °C offset	
	TCB_TOUTT shall display turb	ocharge	r B turbir	ne outlet tem	perature.	

TABLE B99 - PID \$77 DEFINITION

- -	Description Charge Air Cooler Temperature (CACT) Support of Charge Air Cooler	Byte	Value	Value	Scaling/Bit	External Test Equipment SI (Metric) / English Display	
- -	Temperature (CACT) Support of Charge Air Cooler			•			
- -	Temperature (CACT) Support of Charge Air Cooler					, , , , , , , , , , , , , , , , , , , ,	
_							
	Tomporatura Data	Α	Byte 1 c	of 5			
	Temperature Data	(bit)		_			
- (CACT Bank 1, Sensor 1	A, bit 0	0	1	1 = CACT Bank		
5	supported				1, Sensor 1		
					data supported		
(CACT Bank 1, Sensor 2	A, bit 1	0	1	1 = CACT Bank		
5	supported				1, Sensor 2		
					data supported		
	CACT Bank 2, Sensor 1	A, bit 2	0	1	1 = CACT Bank		
	supported				2, Sensor 1		
					data supported		
(CACT Bank 2, Sensor 2	A, bit 3	0	1	1 = CACT Bank		
5	supported				2, Sensor 2		
					data supported		
	reserved (bits shall be	A, bits	0	0			
<u> r</u>	reported as '0')	4 - 7					
(Charge Air Cooler	В	-40 °C	215 °C	1 °C with	CACT 11: xxx °C (xxx °F)	
-	Temperature Bank 1, Sensor 1				-40 °C offset		
(CACT Bank 1, Sensor 1 shall di	splay ch	arge air	cooler tem	perature.		
	Charge Air Cooler	С	-40 °C	215 °C	1 °C with	CACT 12: xxx °C (xxx °F)	
	Temperature Bank 1, Sensor 2				-40 °C offset		
(CACT Bank 1, Sensor 2 shall di	or 2 shall display charge air cooler temperature.					
[Charge Air Cooler	D	-40 °C	215 °C	1 °C with	CACT 21: xxx °C (xxx °F)	
_	Temperature Bank 2, Sensor 1				-40 °C offset		
[CACT Bank 2, Sensor 1 shall di	splay ch	arge air	cooler tem	perature.		
(Charge Air Cooler	Ē	-40 °C	215 °C	1 °C with	CACT 22: xxx °C (xxx °F)	
-	Temperature Bank 2, Sensor 2				-40 °C offset	,	
(CACT Bank 2, Sensor 2 shall di	splay ch	arge air	cooler tem	perature.		

TABLE B100 - PID \$78 DEFINITION

PID		Data	Min.	Max.		External Test Equipment
(hex)	Description	Byte	Value	Value	Scaling/Bit	SI (Metric) / English Display
78	Exhaust Gas Temperature					
	(EGT) Bank 1					
	Support of Exhaust Gas	Α	Byte 1 c	of 9		
	Temperature Sensor Data	(bit)				
	EGT Bank 1, Sensor 1	A, bit 0	0	1	1 = EGT Bank	
	supported				1, Sensor 1	
					data supported	
	EGT Bank 1, Sensor 2	A, bit 1	0	1	1 = EGT Bank	
	supported				1, Sensor 2	
					data supported	
	EGT Bank 1, Sensor 3	A, bit 2	0	1	1 = EGT Bank	
	supported				1, Sensor 3	
					data supported	
	EGT Bank 1, Sensor 4	A, bit 3	0	1	1 = EGT Bank	
	supported				1, Sensor 4	
					data supported	
	reserved (bits shall be	A, bits	0	0		
	reported as '0')	4 - 7				
	Exhaust Gas Temperature	B,C	-40 °C	6513.5 °C		EGT11: xxxx.x °C (xxxx.x °F)
	Bank 1, Sensor 1				-40 °C offset	
						may be obtained directly from a
	sensor, or may be inferred b					
	Exhaust Gas Temperature	D,E	-40 °C	6513.5 °C		EGT12: xxxx.x °C (xxxx.x °F)
	Bank 1, Sensor 2				-40 °C offset	
						may be obtained directly from a
	sensor, or may be inferred b					
	Exhaust Gas Temperature	F,G	-40 °C	6513.5 °C		EGT13: xxxx.x °C (xxxx.x °F)
	Bank 1, Sensor 3		<u> </u>		-40 °C offset	
	EG113 shall display exhaust sensor, or may be inferred b					may be obtained directly from a .
	Exhaust Gas Temperature	H,I				EGT14: xxxx.x °C (xxxx.x °F)
	Bank 1, Sensor 4	,			-40 °C offset	,
		gas tem	perature	for bank 1,	sensor 4. EGT14	may be obtained directly from a
	sensor, or may be inferred b	y the cor	ntrol strat	egy using of	ther sensor inputs	

TABLE B101 - PID \$79 DEFINITION

PID		Data	Min.	Max.		External Test Equipment
(hex)	Description	Byte	Value	Value	Scaling/Bit	SI (Metric) / English Display
79	Exhaust Gas Temperature	Dyto	Value	Value	oouning/Dit	or (metrio) / Englien Biopiay
13	(EGT) Bank 2					
	Support of Exhaust Gas	Α	Byte 1 c	of 9		
	Temperature Sensor Data	(bit)	,			
	EGT Bank 2, Sensor 1	A, bit 0	0	1	1 = EGT Bank	
	supported				2, Sensor 1	
					data supported	
	EGT Bank 2, Sensor 2	A, bit 1	0	1	1 = EGT Bank	
	supported				2, Sensor 2	
					data supported	
	EGT Bank 2, Sensor 3	A, bit 2	0	1	1 = EGT Bank	
	supported				2, Sensor 3	
					data supported	
	EGT Bank 2, Sensor 4	A, bit 3	0	1	1 = EGT Bank	
	supported				2, Sensor 4	
					data supported	
	reserved (bits shall be	A, bits	0	0		
	reported as '0')	4 - 7	40.00	0540.5.00	0.4.00 / 1.11 .111	50704
	Exhaust Gas Temperature	B,C	-40 °C	6513.5 °C		EGT21: xxxx.x °C (xxxx.x °F)
	Bank 2, Sensor 1			f 0	-40 °C offset	and the state of t
						may be obtained directly from a
	sensor, or may be inferred b Exhaust Gas Temperature	D,E				EGT22: xxxx.x °C (xxxx.x °F)
	Bank 2, Sensor 2	υ,⊏	-4 0 C	0313.5 C	-40 °C offset	EG122. XXXX.X C (XXXX.X F)
		age tom	noraturo	for bank 2		may be obtained directly from a
	sensor, or may be inferred b					
	Exhaust Gas Temperature	F,G				EGT23: xxxx.x °C (xxxx.x °F)
	Bank 2, Sensor 3	1,0	10 0	0010.0	-40 °C offset	
		gas tem	perature	for bank 2.		may be obtained directly from a
	sensor, or may be inferred b					
	Exhaust Gas Temperature	H,I				EGT24: xxxx.x °C (xxxx.x °F)
	Bank 2, Sensor 4				-40 °C offset	,
						may be obtained directly from a
	sensor, or may be inferred b	y the cor	itrol strat	egy using o	ther sensor inputs	S.

<u>SAE</u>

TABLE B102 - PID \$7A DEFINITION

PID		Data	Min.	Max.		External Test Equipment
(hex)	Description	Byte	Value	Value	Scaling/Bit	SI (Metric) / English Display
7A	Diesel Particulate Filter (DPF) Bank 1					
	Support of DPF System Data	A (bit)	Byte 1 of	f 7		
	DPF Bank 1 Delta Pressure Supported	A, bit 0	0	1	1 = DPF Bank 1 Delta Pressure data supported	
	DPF Bank 1 Inlet Pressure Supported	A, bit 1	0	1	1 = DPF Bank 1 Inlet Pressure data supported	
	DPF Bank 1 Outlet Pressure Supported	A, bit 2	0	1	1 = DPF Bank 1 Outlet Pressure data supported	
	reserved (bits shall be reported as '0')	A, bits 3 - 7	0	0		
	Diesel Particulate Filter Bank 1 Delta Pressure	B,C	(\$8000) -327.68 kPa	(\$7FFF) 327.67 kPa	0.01 kPa per bit signed	DPF1_DP: xxxx.xx kPa (xx.xxx PSI)
	DPF1_DP shall display DPF	Bank 1	delta pres	sure.		
	Diesel Particulate Filter Bank 1 Inlet Pressure	D,E	0 kPa	655.35 kPa	0.01 kPa per bit	DPF1_INP: xxxx.xx kPa (xx.xxx PSI)
	DPF1_INP shall display DPF	Bank 1	inlet pres	sure.	_	
	Diesel Particulate Filter Bank 1 Outlet Pressure	F,G	0 kPa	655.35 kPa	0.01 kPa per bit	DPF1_OUTP: xxxx.xx kPa (xx.xxx PSI)
	DPF1_OUTP shall display D	PF Bank	1 outlet	oressure.		

TABLE B103 - PID \$7B DEFINITION

PID		Data	Min.	Max.		External Test Equipment
(hex)	Description	Byte	Value	Value	Scaling/Bit	SI (Metric) / English Display
7B	Diesel Particulate Filter (DPF) Bank 2					
	Support of DPF System Data	A (bit)	Byte 1 of	7		
	DPF Bank 2 Delta Pressure Supported	A, bit 0	0	1	1 = DPF Bank 2 Delta Pressure data supported	
	DPF Bank 2 Inlet Pressure Supported	A, bit 1	0	1	1 = DPF Bank 2 Inlet Pressure data supported	
	DPF Bank 2 Outlet Pressure Supported	A, bit 2	0	1	1 = DPF Bank 2 Outlet Pressure data supported	
	reserved (bits shall be reported as '0')	A, bits 3 - 7	0	0		
	Diesel Particulate Filter Bank 2 Delta Pressure	B,C	(\$8000) -327.68 kPa	(\$7FFF) 327.67 kPa	0.01 kPa per bit signed	DPF2_DP: xxxx.xx kPa (xx.xxx PSI)
	DPF2_DP shall display DPF	Bank 2	delta press	sure.		
	Diesel Particulate Filter Bank 2 Inlet Pressure	D,E	0 kPa	655.35 kPa	0.01 kPa per bit	DPF2_INP: xxxx.xx kPa (xx.xxx PSI)
	DPF2_INP shall display DPF	Bank 2	inlet press	ure.		
	Diesel Particulate Filter Bank 2 Outlet Pressure	F,G	0 kPa	655.35 kPa	0.01 kPa per bit	DPF2_OUTP: xxxx.xx kPa (xx.xxx PSI)
	DPF2_OUTP shall display D	PF Bank	2 outlet p	ressure.		

TABLE B104 - PID \$7C DEFINITION

PID		Data	Min.	Max.		External Test Equipment		
(hex)	Description	Byte	Value	Value	Scaling/Bit	SI (Metric) / English Display		
7C	Diesel Particulate Filter							
	(DPF) Temperature							
	Support of DPF	Α	Byte 1 c	of 9				
	Temperature Data	(bit)		_				
	DPF Bank 1 Inlet	A, bit 0	0	1	1 = DPF Bank 1			
	Temperature Supported				Inlet Temperature			
					data supported			
	DPF Bank 1 Outlet	A, bit 1	0	1	1 = DPF Bank 1			
	Temperature Supported				Outlet Temperature			
					data supported			
	DPF Bank 2 Inlet	A, bit 2	0	1	1 = DPF Bank 2			
	Temperature Supported				Inlet Temperature			
					data supported			
	DPF Bank 2 Outlet	A, bit 3	0	1	1 = DPF Bank 2			
	Temperature Supported				Outlet Temperature			
					data supported			
	reserved (bits shall be	A, bits	0	0				
	reported as '0')	4 - 7						
	DPF Bank 1 Inlet	B,C	-40 °C	6513.5 °C	0.1 °C / bit with	DPF1_INT: xxxx.x °C		
	Temperature Sensor				-40 °C offset	(xxxx.x °F)		
	DPF1_INT shall display DPF NOTE: It is preferable to use sensor numbering convention	EGT se			\$98 and \$99 to prese	erve the standard exhaust gas		
	DPF Bank 1 Outlet	D,E	-40 °C	6513.5 °C	0.1 °C / bit with	DPF1 OUTT: xxxx.x °C		
	Temperature Sensor	_,_			-40 °C offset	(xxxx.x °F)		
	DPF1 OUTT shall display D	PF Bank	1 outlet	temperature		(**************************************		
						erve the standard exhaust gas		
	sensor numbering conventio			, , ,	•	Ğ		
	DPF Bank 2 Inlet	F,G	-40 °C	6513.5 °C	0.1 °C / bit with	DPF2_INT: xxxx.x °C		
	Temperature Sensor	,			-40 °C offset	(xxxx.x °F)		
	DPF2 INT shall display DPF	Bank 2	inlet tem	perature.				
	NOTE: It is preferable to use	EGT se	nsor PID	s \$78, \$79,	\$98 and \$99 to prese	erve the standard exhaust gas		
	sensor numbering convention.							
	DPF Bank 2 Outlet	H,I	-40 °C	6513.5 °C	0.1 °C / bit with	DPF2_OUTT: xxxx.x °C		
	Temperature Sensor				-40 °C offset	(xxxx.x °F)		
	DPF2_OUTT shall display D							
			nsor PID	s \$78, \$79,	\$98 and \$99 to prese	erve the standard exhaust gas		
	sensor numbering convention	n.						

TABLE B105 - PID \$7D DEFINITION

PID		Data	Min.	Max.		External Test Equipment			
	Description		Value	Value	Scaling/Dit				
(hex)	Description	Byte			Scaling/Bit	SI (Metric) / English Display			
7D	NOx NTE control area status	Α	Byte 1 c	of 1					
		(bit)							
	Inside NOx control area	A, bit 0	0	1	1 = inside	NNTE: IN			
					control area				
	Indicates that engine is operating inside the NOx control area								
	Outside NOx control area	A, bit 1	0	1	1 = outside	NNTE: OUT			
					control area				
	Indicates that engine is operating outside the NOx control area								
	Inside manufacturer-specific	A, bit 2	0	1	1 = inside	NNTE: CAA			
	NOx NTE carve-out area				manufacturer-				
					specific NOx				
					NTE carve-out				
					area				
	Indicates that engine is operat	ing insid	e the ma	nufacturer-	-specific NOx NTE	carve-out area			
	NTE deficiency for NOx	A, bit 3	0	1	1 = NTE	NNTE: DEF			
	active area				deficiency for				
					NOx active area				
	Indicates that engine is operat	ing insid	e the NT	E deficiend	cy for NOx active a	area			
	reserved (bits shall be	A, bits	0	0					
	reported as '0')	4 - 7							

TABLE B106 - PID \$7E DEFINITION

PID		Data	Min.	Max.		External Test Equipment			
(hex)	Description	Byte	Value	Value	Scaling/Bit	SI (Metric) / English Display			
7E	PM NTE control area status	Α	Byte 1 c	of 1					
		(bit)							
	Inside PM control area	A, bit 0	0	1	1 = inside	PNTE: IN			
					control area				
	Indicates that engine is operating inside the PM control area								
	Outside PM control area	A, bit 1	0	1	1 = outside	PNTE: OUT			
					control area				
	Indicates that engine is operat		ide the P	M control a	area				
	Inside manufacturer-specific	A, bit 2	0	1	1 = inside	PNTE: CAA			
	PM NTE carve-out area				manufacturer-				
					specific PM NTE				
					carve-out area				
	Indicates that engine is operat		e the ma	nufacturer	· •				
	NTE deficiency for PM active	A, bit 3	0	1	1 = NTE	PNTE: DEF			
	area				deficiency for				
					PM active area				
	Indicates that engine is operat	ling insid	e the NT	E deficiend	cy for PM active ar	ea			
	reserved (bits shall be	A, bits	0	0					
	reported as '0')	4 - 7							

TABLE B107 - PID \$7F DEFINITION

PID		Data	Min.	Max.		External Test Equipment
(hex)	Description	Byte	Value	Value	Scaling/Bit	SI (Metric) / English Display
7F	Engine Run Time					
	Support of Engine Run	Α	Byte 1 c	of 13		
	Time	(bit)				
	Total Engine Run Time	A, bit 0	0	1	1 = Total Engine	
	supported				Run Time	
					supported	
	Total Idle Run Time	A, bit 1	0	1	1 = Total Idle	
	supported				Run Time	
					supported	
	Total Run Time With PTO	A, bit 2	0	1	1 = Total Run	
	Active supported				Time With PTO	
					Active supported	
	reserved (bits shall be	A, bits	0	0		
	reported as '0')	3 - 7				
	Total Engine Run Time	B,C,D,E	0 sec	4,294,967,295	1 sec/bit	RUN_TIME: xxxxxxx hrs,
				sec		xx min
	RUN_TIME shall display the		jine run t	ime. RUN_TIME	shall increment wh	nile the engine is running. It
	shall freeze if the engine sta					
	Total Idle Run Time	F,G,H,I	0 sec	4,294,967,295	1 sec/bit	IDLE_TIME: xxxxxxx hrs,
				sec		xx min
						E_TIME shall increment while
	the accelerator pedal is rele					
						s equipped with an automatic
						kph (1 mph) or engine speed
		m above ı	normal w	armed-up idle. It	shall freeze if the	engine stalls or the engine is
	no longer at idle.	.				
	Total Run Time With PTO	J,K,L,M	0 sec	4,294,967,295	1 sec/bit	PTO_TIME: xxxxxxx hrs,
	Active			sec		xx min
	PTO_TIME shall display the					
	engine is running with PTO					
						et occurs (e.g., reprogramming
						ng when a scan tool (generic
						e individual counters reach the
	maximum value, all counter	s shall be	divided	by two before an	y are incremented	again to avoid overflow
	problems.					

TABLE B108 - PID \$81 DEFINITION

PID		Data	Min.	Max.		External Test Equipment
(hex)	Description	Byte	Value	Value	Scaling/Bit	SI (Metric) / English Display
81	Engine Run Time for AECD #1 - #5					
	Support of Run Time for AECD #1 - #5	A (bit)	Byte 1 of	41		
	Total run time with EI-AECD #1 active supported	A, bit 0	0	1	1 = Total run time with EI-AECD #1 active supported	
	Total run time with EI-AECD #2 active supported	A, bit 1	0	1	1 = Total run time with EI-AECD #2 active supported	
	Total run time with EI-AECD #3 active supported	A, bit 2	0	1	1 = Total run time with EI-AECD #3 active supported	
	Total run time with EI-AECD #4 active supported	A, bit 3	0	1	1 = Total run time with EI-AECD #4 active supported	
	Total run time with EI-AECD #5 active supported	A, bit 4	0	1	1 = Total run time with EI-AECD #5 active supported	
	Reserved (bits shall be reported as '0')	A, bits 5 - 7	0	0		
	Total run time with EI-AECD #1 Timer 1 active	B1,B2, B3,B4	0 sec	4,294,967,295 sec	1 sec/bit	AECD1_TIME1: xxxxxxxx hrs, xx min
	Total run time with EI-AECD #1 Timer 2 active	C1,C2, C3,C4	0 sec	4,294,967,295 sec	1 sec/bit	AECD1_TIME2: xxxxxxxx hrs, xx min
	Total run time with EI-AECD #2 Timer 1 active	D1,D2, D3,D4	0 sec	4,294,967,295 sec	1 sec/bit	AECD2_TIME1: xxxxxxxx hrs, xx min
	Total run time with EI-AECD #2 Timer 2 active	E1,E2, E3,E4	0 sec	4,294,967,295 sec	1 sec/bit	AECD2_TIME2: xxxxxxxx hrs, xx min
	Total run time with EI-AECD #3 Timer 1 active	F1,F2, F3,F4	0 sec	4,294,967,295 sec	1 sec/bit	AECD3_TIME1: xxxxxxxx hrs, xx min
	Total run time with EI-AECD #3 Timer 2 active	G1,G2, G3,G4	0 sec	4,294,967,295 sec	1 sec/bit	AECD3_TIME2: xxxxxxxx hrs, xx min
	Total run time with EI-AECD #4 Timer 1 active	H1,H2, H3,H4	0 sec	4,294,967,295 sec	1 sec/bit	AECD4_TIME1: xxxxxxxx hrs, xx min
	Total run time with EI-AECD #4 Timer 2 active	11,12, 13,14	0 sec	4,294,967,295 sec	1 sec/bit	AECD4_TIME2: xxxxxxxx hrs, xx min
	Total run time with EI-AECD #5 Timer 1 active	J1,J2, J3,J4	0 sec	4,294,967,295 sec	1 sec/bit	AECD5_TIME1: xxxxxxxx hrs, xx min
	Total run time with EI-AECD #5 Timer 2 active	K1,K2, K3,K4	0 sec	4,294,967,295 sec	1 sec/bit	AECD5_TIME2: xxxxxxxx hrs, xx min

The following reporting criteria and description of the operation of the timers specified in this PID also apply to the timers specified in PIDs \$82, \$89, and \$8A.

AECDx_TIME1 shall display the total engine run time with Emission Increasing Auxiliary Emission Control Device #x active. AECDx_TIME1 shall increment while the engine is running with El-AECD #x active. It shall freeze if the engine stalls. For El-AECDs requiring only a single timer, Timer 1 shall be used to report the total engine run time for the El-AECD. For El-AECDs requiring two timers, Timer 1 shall report the total engine hours when the El-AECD is commanding reduced emission control effectiveness up to but not including 75 percent of the maximum reduced emission control effectiveness of that El-AECD.

AECDx_TIME2 shall display the total engine run time with Emission Increasing Auxiliary Emission Control Device #x active. AECDx_TIME2 shall increment while the engine is running with EI-AECD #x active. It shall freeze if the engine stalls. For EI-AECDs requiring only a single timer, Timer 2 shall be reported as "Not Available" using the value 4,294,967,295 seconds. For EI-AECDs requiring two timers, Timer 2 shall report the total engine hours when the EI-AECD is commanding reduced emission control effectiveness of 75 percent or more of the maximum reduced emission control effectiveness of that EI-AECD.

NOTE: Each number shall be reset to zero only when a non-volatile memory reset occurs (e.g., reprogramming event). Numbers may not be reset to zero under any other circumstances including when a scan tool (generic or enhanced) command to clear fault codes or reset KAM is received. If any of the individual counters reach the maximum value, all counters shall be divided by two before any are incremented again to avoid overflow problems.

TABLE B109 - PID \$82 DEFINITION

PID		Data	Min.	Max.		External Test Equipment
(hex)	Description	Byte	Value	Value	Scaling/Bit	SI (Metric) / English Display
82	Engine Run Time for AECD #6 - #10	-				
	Support of Run Time for AECD #6 - #10	A (bit)	Byte 1 c	of 41		
	Total run time with EI-AECD #6 active supported	A, bit 0	0	1	1 = Total run time with EI-AECD #6 active supported	
	Total run time with EI-AECD #7 active supported	A, bit 1	0	1	1 = Total run time with EI-AECD #7 active supported	
	Total run time with EI-AECD #8 active supported	A, bit 2	0	1	1 = Total run time with EI-AECD #8 active supported	
	Total run time with EI-AECD #9 active supported	A, bit 3	0	1	1 = Total run time with EI-AECD #9 active supported	
	Total run time with EI-AECD #10 active supported	A, bit 4	0	1	1 = Total run time with EI-AECD #10 active supported	
	reserved (bits shall be reported as '0')	A, bits 5 - 7	0	0		
	Total run time with EI-AECD #6 Timer 1 active	B1,B2, B3,B4	0 sec	4,294,967,295 sec	1 sec/bit	AECD6_TIME1: xxxxxxxx hrs, xx min
	Total run time with EI-AECD #6 Timer 2 active	C1,C2, C3,C4	0 sec	4,294,967,295 sec	1 sec/bit	AECD6_TIME2: xxxxxxxx hrs, xx min
	Total run time with EI-AECD #7 Timer 1 active	D1,D2, D3,D4	0 sec	4,294,967,295 sec	1 sec/bit	AECD7_TIME1: xxxxxxxx hrs, xx min
	Total run time with EI-AECD #7 Timer 2 active	E1,E2, E3,E4	0 sec	4,294,967,295 sec	1 sec/bit	AECD7_TIME2: xxxxxxxx hrs, xx min
	Total run time with EI-AECD #8 Timer 1 active	F1,F2, F3,F4	0 sec	4,294,967,295 sec	1 sec/bit	AECD8_TIME1: xxxxxxxx hrs, xx min
	Total run time with EI-AECD #8 Timer 2 active	G1,G2, G3,G4	0 sec	4,294,967,295 sec	1 sec/bit	AECD8_TIME2: xxxxxxxx hrs, xx min
	Total run time with EI-AECD #9 Timer 1 active	H1,H2, H3,H4	0 sec	4,294,967,295 sec	1 sec/bit	AECD9_TIME1: xxxxxxx hrs, xx min
	Total run time with EI-AECD #9 Timer 2 active	11,12, 13,14	0 sec	4,294,967,295 sec	1 sec/bit	AECD9_TIME2: xxxxxxxx hrs, xx min
	Total run time with EI-AECD #10 Timer 1 active	J1,J2, J3,J4	0 sec	4,294,967,295 sec	1 sec/bit	AECD10_TIME1: xxxxxxxx hrs, xx min
	Total run time with EI-AECD #10 Timer 2 active	K1,K2, K3,K4	0 sec	4,294,967,295 sec	1 sec/bit	AECD10_TIME2: xxxxxxx hrs, xx min
	NOTE: See PID \$81 for the re		teria and		ne operation of the ti	I.

TABLE B110 - PID \$83 DEFINITION

PID		Data	Min.	Max.		External Test Equipment
(hex)	Description	Byte	Value	Value	Scaling/Bit	SI (Metric) / English Display
83	NOx Sensor					
	Support of NOx Sensor Data	Α	Byte 1 c	of 9		
		(bit)	_			
	NOx Sensor Concentration	A, bit 0	0	1	1 = NOx Sensor	
	Bank 1 Sensor 1 supported				concentration	
					Bank 1 Sensor	
					1 supported	
	NOx Sensor Concentration	A, bit 1	0	1	1 = NOx Sensor	
	Bank 1 Sensor 2 supported				concentration	
					Bank 1 Sensor	
					2 supported	
	NOx Sensor Concentration	A, bit 2	0	1	1 = NOx Sensor	
	Bank 2 Sensor 1 supported				concentration	
					Bank 2 Sensor	
					1 supported	
	NOx Sensor Concentration	A, bit 3	0	1	1 = NOx Sensor	
	Bank 2 Sensor 2 supported				concentration	
					Bank 2 Sensor	
	and the standard by	A 1-14-	0	0	2 supported	
	reserved (bits shall be	A, bits	0	0		
	reported as '0')	4 - 7	0	05505	4	NOV44
	NOx Sensor Concentration	B,C	0 ppm	65535	1 part per	NOX11: xxxxx ppm
	Bank 1 Sensor 1		. f D	ppm	million/bit	
	NOX11 shall display NOx con					NOV40
	NOx Sensor Concentration	D,E	0 ppm	65535	1 part per	NOX12: xxxxx ppm
	Bank 1 Sensor 2		. f D	ppm	million/bit	
	NOX12 shall display NOx con-					Nova
	NOx Sensor Concentration	F,G	0 ppm	65535	1 part per	NOX21: xxxxx ppm
	Bank 2 Sensor 1	t t'	- (D	ppm	million/bit	
	NOX21 shall display NOx con-					Nove
	NOx Sensor Concentration	H,I	0 ppm	65535	1 part per	NOX22: xxxxx ppm
	Bank 2 Sensor 2			ppm	million/bit	
	NOX22 shall display NOx con-	centratio	n tor Bar	ik 2 Senso	r 2.	

TABLE B111 - PID \$84 DEFINITION

PID (hex)	Description	Data byte	Min. value	Max. value	Scaling/bit	External test equipment SI (Metric) / English display			
84	Manifold Surface Temperature	A	– 40 °C	+215 °C	1 °C with – 40 °C offset	MST: xxx °C (xxx °F)			
	MST shall display intake manifold surface temperature. MST may be obtained directly from a sensor, or may be inferred by the control strategy using other sensor inputs.								

TABLE B112 - PID \$85 DEFINITION

PID		Data	Min.	Max.		External Test Equipment				
(hex)	Description	Byte	Value	Value	Scaling/Bit	SI (Metric) / English Display				
85	NOx Control System	Dyte	Value	Value	ocannig/Dit	or (metric) / English Display				
0.5	Support of NOx Reagent	Α	Byte 1 o	f 10						
	System Data	(bit)	Dyte i o	1 10						
	Average Reagent	A, bit 0	0	1	1 = Average					
	Consumption Supported	71, 510			Reagent					
					Consumption					
					Supported					
	Average Demanded	A, bit 1	0	1	1 = Average					
	Reagent Consumption	,			Demanded					
	Supported				Reagent					
					Consumption					
					Supported					
	Reagent Tank Level	A, bit 2	0	1	1 = Reagent					
	Supported				Tank Level					
					Supported					
	Minutes run by the engine	A, bit 3	0	1	1 = Minutes run					
	while NOx warning mode is				by the engine					
	activated supported				while NOx					
					warning mode					
					is activated					
		A la:4-	0	_	supported					
	reserved (bits shall be	A, bits	0	0						
	reported as '0')	4 - 7 B,C	0 L/h	327.675	0.005 L/b par bit	REAG_RATE: xxx.xx L/h				
	Average Reagent Consumption	В,C	U L/II	327.075 L/h	0.005 L/II per bit	REAG_RATE. XXX.XX L/II				
	REAG_RATE shall indicate average reagent consumption in liters per hour by the engine system either									
	over the previous complete 4									
						G_RATE shall indicate zero L/h				
	when the engine is not runnir		,		90					
	Average Demanded	D,E	0 L/h	327.675	0.005 L/h per bit	REAG DEMD: xxx.xx L/h				
	Reagent Consumption	,		L/h		_				
	REAG_DEMD shall indicate	average (demande	d reagent o	consumption in lite	rs per hour by the engine				
	system either over the previo									
	demanded reagent consump	tion of at	least 15 l	iters, which	never is longer. No	OTE: REAG_DEMD shall				
	indicate zero L/h when the er	ngine is n	ot running	g.						
	Reagent Tank Level	F	0%	100%	100/255 %	REAG_LVL: xxx.x %				
			(no	(max						
			reagent)							
		<u> </u>		cap.)	<u> </u>					
	REAG_LVL shall indicate no									
						b), REAG_LVL shall indicate the				
	actual level at each discreet									
						n operating between 100% and				
	and urea liquid between two					ems with discrete level sensors				
	consumption.	uisci ete f	טווונט, אב	LAG_LVL (an also be calcula	aleu naseu on ulea				
	Total run time by the engine	G,H,I,J	0 sec	4,294,967	205 sec	NWI TIME: xxxxxxx hrs,				
	while NOx warning mode is	G,11,1,J	0.360	7,234,307	at 1 sec/bit					
	activated				at 1 360/bit	AA 111111				
	451.74104			l						

TABLE B112 - PID \$85 DEFINITION (CONTINUED)

PID		Data	Min.	Max.		External Test Equipment
(hex)	Description	Byte	Value	Value	Scaling/Bit	SI (Metric) / English Display
85	NOx Warning Indicator Time Conditions for "Total run time - reset to \$00000000 when v - accumulate counts in secon - do not change value while v - reset to \$00000000 if warn operation - do not wrap to \$00000000 - counter shall not be erasab	run by the varning in the varning in the varning in the value is the value in the value is the value in the value is the value in the value in the value in the value is the value in the value in the value in the value in the value is the value in the v	ndicator s rning indicator i ndicator i ator has n	tate change cator is active s not active ot been act	es from deactivate ivated (ON) ated (OFF) tivated for 400 day	ed to activated.

TABLE B113 - PID \$86 DEFINITION

PID		Data	Min.	Max.		External Test Equipment	
(hex)	Description	Byte	Value	Value	Scaling/Bit	SI (Metric) / English Display	
86	Particulate Matter (PM) Sensor						
	Support of PM Sensor Data	Α	Byte 1 o	f 5			
		(bit)					
	PM Sensor Mass	A, bit 0	0	1	1 = PM Sensor		
	Concentration Bank 1 Sensor 1				Mass		
	supported				Concentration		
					Bank 1 Sensor 1		
					supported		
	PM Sensor Mass	A, bit 1	0	1	1 = PM Sensor		
	Concentration Bank 2 Sensor 1				Mass		
	supported				Concentration		
					Bank 2 Sensor 1		
					supported		
	reserved (bits shall be reported	A, bits	0	0			
	as '0')	2 - 7				3	
	PM Sensor Mass	B,C	0	819.1875	0.0125 per bit	PM11: xxx.xx mg/m ³	
	Concentration Bank 1 Sensor 1		mg/m ³	mg/m ³			
	PM11 shall display PM mass co		on for Bai			7	
	PM Sensor Mass	D,E	0	819.1875	0.0125 per bit	PM21: xxx.xx mg/m ³	
Concentration Bank 2 Sensor 1 mg/m³ mg/m³							
	PM21 shall display PM mass co	ncentratio	on for Bar	nk 2 Sensor	· 1.		

TABLE B114 - PID \$87 DEFINITION

PID		Data	Min.	Max.		External Test Equipment			
(hex)	Description	Byte	Value	Value	Scaling/Bit	SI (Metric) / English Display			
87	Intake Manifold Absolute								
	Pressure								
	Support of Intake Manifold	Α	Byte 1 of 5						
	Absolute Pressure Data	(bit)							
	Intake Manifold Absolute	A, bit 0	0	1	1 = Intake				
	Pressure A supported				Manifold				
					Absolute				
					Pressure A				
					supported				
	Intake Manifold Absolute	A, bit 1	0	1	1 = Intake				
	Pressure B supported				Manifold				
					Absolute				
					Pressure B				
					supported				
	reserved (bits shall be	A, bits	0	0					
	reported as '0')	2 - 7							
	Intake Manifold Absolute	B,C	0 kPa	2047.9687		MAP_A xxx.xx kPa (xx.xx PSI)			
	Pressure A			_	t 0.03125 kPa/bit				
	MAP_A shall display manifold								
			P and MAF sensor, both the MAP and MAF PIDs shall be support						
	Intake Manifold Absolute	D,E	0 kPa 2047.96875 kPa MAP_B xxx.xx kPa (xx.xx F						
	Pressure B		at 0.03125 kPa/bit						
	MAP_B shall display manifold								
	utilized. If a vehicle uses both	a MAP a	nd MAF	sensor, bo	th the MAP and M	IAF PIDs shall be supported.			

TABLE B115 - PID \$88 DEFINITION

PID (hex)	Description	Data Byte	Min. Value	Max. Value	Scaling/Bit	External Test Equipment SI (Metric) / English Display					
88	SCR inducement system actual state	A(bit)	Value	Value	- County Dit	SCR_INDUCE_SYSTEM:					
		0	0	1	1 = reagent level too low	LEVEL_LOW					
		1	0	1	1 = incorrect reagent	INCORR_REAG					
		2	0	1	1 = deviation of reagent consumption	CONSUMP_DEVIATION					
		3	0	1	1 = NOx emissions too high	NOx_LEVEL					
	reserved (bits shall be reported as '0')	4-6									
		7	0	1	1 = inducement system active	ACTIVE					
	Conditions for "SCR inducement system actual state": indicate if system is currently activated using bit 7 indicate reason(s) for current activation (bit 0 - 3) all bits shall indicate 0 when inducement system is not active										
	SCR inducement system state 10K history (0 – 10,000 km)	B(bit)				SCR_INDUCE_SYSTEM_HIS T1:					
		0	0	1	1 = reagent level too low	LEVEL_LOW1					
		1	0	1	1 = incorrect reagent	INCORR_REAG1					
		2	0	1	1 = deviation of reagent consumption	CONSUMP_D EVIATION1					
		3	0	1	1 = NOx emissions too high	NOx_LEVEL1					
	SCR inducement system state 20K history (10,000 – 20,000 km)	B (bit)				SCR_INDUCE_SYSTEM_HIS T2:					
		4	0	1	1 = reagent level too low	LEVEL_LOW2					
		5	0	1	1 = incorrect reagent	INCORR_REAG2					
		6	0	1	1 = deviation of reagent consumption	CONSUMP_DEVIATION2					
		7	0	1	1 = NOx emissions too high	NOx_LEVEL2					
	Conditions for "SCR inducement system state history": indicate reason(s) for activation (bit 0 - 3) do not reset bit 0 - 3 when reason(s) disappear(s) do not reset upon code clearing (Service\$04)										

Page 83 of 143

TABLE B115 - PID \$88 DEFINITION (CONTINUED)

PID		Data	Min.	Max.		External Test Equipment			
hex)	Description	Byte	Value	Value	Scaling/Bit	SI (Metric) / English Display			
88		0	0	1	1 = reagent level	LEVEL_LOW3			
					too low				
		1	0	1	1 = incorrect	INCORR_REAG3			
					reagent				
		2	0	1	1 = deviation of	CONSUMP_DEVIATION3			
					reagent	_			
					consumption				
		3	0	1	1 = NOx	NOx_LEVEL3			
					emissions too				
					high				
	SCR inducement system state	C(bit)				SCR_INDUCE_SYSTEM_HIS			
	40K history (30,000 – 40,000					T4:			
	km)								
		4	0	1	1 = reagent level	LEVEL_LOW4			
					too low	_			
		5	0	1	1 = incorrect	INCORR_REAG4			
					reagent	_			
		6	0	1	1 = deviation of	CONSUMP_DEVIATION4			
					reagent	_			
					consumption				
		7	0	1	1 = NOx	NOx_LEVEL4			
					emissions too				
					high				
Conditions for "SCR inducement system state history":									
	indicate reason(s) for activation (bit 0 - 3)								
	do not reset bit 0 - 3 when reaso	n(s) dis	appear(s)					

do not reset bit 0 - 3 when reason(s) disappear(s)

do not reset upon code clearing (Service\$04)

TABLE B115 - PID \$88 DEFINITION (CONTINUED)

PID (hex)	Description	Data Byte	Min. Value	Max. Value	Scaling/Bit	External Test Equipment SI (Metric) / English Display
88	Distance travelled while inducement system active in current 10K block (0 – 10,000 km)	D,E	0 km	65535 km	1 km per count	SCR_IND_DIST_1N: xxxxx km (xxxxx miles)
	Distance travelled in current 10 K block (0 - 10,000 km block)	F,G	0 km	65535 km	1 km per count	SCR_IND_DIST_1D: xxxxx km (xxxxx miles)
	Distance travelled while inducement system active in 20K block (10 – 20,000 km)	H,I	0 km	65535 km	1 km per count	SCR_IND_DIST_2N: xxxxx km (xxxxx miles)
	Distance travelled while inducement system active in 30K block (20 – 30,000 km)	J,K	0 km	65535 km	1 km per count	SCR_IND_DIST_3N: xxxxx km (xxxxx mi les)
	Distance travelled while inducement system active in 40K block (30 – 40,000 km)	L,M	0 km	65535 km	1 km per count	SCR_IND_DIST_4N: xxxxx km (xxxxx miles)

Conditions for inducement system numerator and denominator counters:

Initial values for numerators and denominators are zero.

Accumulate counts in km

After every km, increment the denominator, SCR_IND_DIST_1D

If the inducement system is active, increment the numerator, SCR IND DIST 1N

If the inducement system is not active, freeze SCR_IND_DIST_1N.

Do not reset any bits in the status history. If the inducement system is active, set the appropriate bit for the SCR_INDUCE_SYSTEM_HISTORY1 (NOTE: if the reasons change, multiple bits will be set).

When SCR_IND_DIST_1D reaches 10,000 km, freeze the values for the numerator and history, and copy each set of data (SCR_IND_DIST_xD and SCR_INDUCE_SYSTEM_HISTORYX) into the next older set of data (SCR_IND_DIST_x+1D and SCR_INDUCE_SYSTEM_HISTORYx+1).

The denominators for SCR_IND_DIST_2N, SCR_IND_DIST_3N and SCR_IND_DIST_4N would always 10,000 km and do not need to be calculated or displayed.

If the data in the oldest block (SCR_IND_DIST_4N and SCR_INDUCE_SYSTEM_HISTORY4) is displaced by new data, it can be discarded.

Reset SCR_IND_DIST_1D and SCR_INDUCE_SYSTEM_HISTORY1 and begin accumulating mileage and inducement status again for the current 10,000 block register.

Do not reset any values upon code clearing (Service \$04) or battery disconnect

NOTE: Each number shall be reset to zero only when a non-volatile memory reset occurs (e.g., reprogramming event). Data may not be reset to zero under any other circumstances, including when a scan tool (generic or enhanced) command to clear fault codes or reset KAM is received.

TABLE B116 - PID \$89 DEFINITION

PID		Data	Min.	Max.		External Test Equipment
(hex)	Description	Byte	Value	Value	Scaling/Bit	SI (Metric) / English Display
89	Engine Run Time for AECD #11 - #15					
	Support of Run Time for AECD #11 - #15	A (bit)	Byte 1 c	of 41		
	Total run time with EI-AECD #11 active supported	A, bit 0	0	1	1 = Total run time with EI-AECD #11	
	Total run time with EI-AECD #12 active supported	A, bit 1	0	1	active supported 1 = Total run time with EI-AECD #12 active supported	
	Total run time with EI-AECD #13 active supported	A, bit 2	0	1	1 = Total run time with EI-AECD #13 active supported	
	Total run time with EI-AECD #14 active supported	A, bit 3	0	1	1 = Total run time with EI-AECD #14 active supported	
	Total run time with EI-AECD #15 active supported	A, bit 4	0	1	1 = Total run time with EI-AECD #15 active supported	
	Reserved (bits shall be reported as '0')	A, bits 5 - 7	0	0		
	Total run time with EI-AECD #11 Timer 1 active	B1,B2, B3,B4	0 sec	4,294,967,295 sec	1 sec/bit	AECD11_TIME1: xxxxxxx hrs, xx min
	Total run time with EI-AECD #11 Timer 2 active	C1,C2, C3,C4	0 sec	4,294,967,295 sec	1 sec/bit	AECD11_TIME2: xxxxxxx hrs, xx min
	Total run time with EI-AECD #12 Timer 1 active	D1,D2, D3,D4	0 sec	4,294,967,295 sec	1 sec/bit	AECD12_TIME1: xxxxxxx hrs, xx min
	Total run time with EI-AECD #12 Timer 2 active	E1,E2, E3,E4	0 sec	4,294,967,295 sec	1 sec/bit	AECD12_TIME2: xxxxxxx hrs, xx min
	Total run time with EI-AECD #13 Timer 1 active	F1,F2, F3,F4	0 sec	4,294,967,295 sec	1 sec/bit	AECD13_TIME1: xxxxxxx hrs, xx min
	Total run time with EI-AECD #13 Timer 2 active	G1,G2, G3,G4	0 sec	4,294,967,295 sec	1 sec/bit	AECD13_TIME2: xxxxxxx hrs, xx min
	Total run time with EI-AECD #14 Timer 1 active	H1,H2, H3,H4	0 sec	4,294,967,295 sec	1 sec/bit	AECD14_TIME1: xxxxxxx hrs, xx min
	Total run time with EI-AECD #14 Timer 2 active	11,12, 13,14	0 sec	4,294,967,295 sec	1 sec/bit	AECD14_TIME2: xxxxxxx hrs, xx min
	Total run time with EI-AECD #15 Timer 1 active	J1,J2, J3,J4	0 sec	4,294,967,295 sec	1 sec/bit	AECD15_TIME1: xxxxxxx hrs, xx min
	Total run time with El-AECD #15 Timer 2 active	K1,K2, K3,K4	0 sec	4,294,967,295 sec	1 sec/bit	AECD15_TIME2: xxxxxxx hrs, xx min
	NOTE: See PID \$81 for the re		iteria and		he operation of the t	

TABLE B117 - PID \$8A DEFINITION

PID (hex)	Description	Data Byte	Min. Value	Max. Value	Scaling/Bit	External Test Equipment SI (Metric) / English Display
8A	Engine Run Time for AECD	Бую	Value	Value	Ocannig/Bit	Or (Metric) / English Display
0/1	#16 - #20					
	Support of Run Time for	Α	Byte 1 of 41			
	AECD #16 - #20	(bit)		•	1	
	Total run time with EI-AECD	A, bit 0	0	1	1 = Total run time	
	#16 active supported				with EI-AECD #16	
	Tatal man time a with ELAEOD	A 1-11-4		4	active supported	
	Total run time with El-AECD	A, bit 1	0	1	1 = Total run time	
	#17 active supported				with EI-AECD #17	
	Total run time with El-AECD	A, bit 2	0	1	active supported 1 = Total run time	
	#18 active supported	A, DIL Z	U	'	with El-AECD #18	
	# 10 active supported				active supported	
	Total run time with El-AECD	A, bit 3	0	1	1 = Total run time	
	#19 active supported	A, bit 5		'	with EI-AECD #19	
	"To dolly o supported				active supported	
	Total run time with EI-AECD	A, bit 4	0	1	1 = Total run time	
	#20 active supported	,		·	with EI-AECD #20	
					active supported	
	reserved (bits shall be	A, bits	0	0	.,	
	reported as '0')	5 - 7				
	Total run time with EI-AECD	B1,B2,	0 sec	4,294,967,295	1 sec/bit	AECD16_TIME1: xxxxxxx hrs,
	#16 Timer 1 active	B3,B4		sec		xx min
	Total run time with EI-AECD	C1,C2,	0 sec	4,294,967,295	1 sec/bit	AECD16_TIME2: xxxxxxx hrs,
	#16 Timer 2 active	C3,C4		sec		xx min
	Total run time with EI-AECD	D1,D2,	0 sec	4,294,967,295	1 sec/bit	AECD17_TIME1: xxxxxxx hrs,
	#17 Timer 1 active	D3,D4		sec		xx min
	Total run time with EI-AECD	E1,E2,	0 sec	4,294,967,295	1 sec/bit	AECD17_TIME2: xxxxxxx hrs,
	#17 Timer 2 active	E3,E4		sec		xx min
	Total run time with El-AECD	F1,F2,	0 sec	4,294,967,295	1 sec/bit	AECD18_TIME1: xxxxxxx hrs,
	#18 Timer 1 active	F3,F4		sec	4 // //	xx min
	Total run time with El-AECD	G1,G2,	0 sec	4,294,967,295	1 sec/bit	AECD18_TIME2: xxxxxxx hrs,
	#18 Timer 2 active	G3,G4	0.000	Sec	1 000/bit	xx min
	Total run time with El-AECD	H1,H2,	0 sec	4,294,967,295	1 sec/bit	AECD19_TIME1: xxxxxxxx hrs,
	#19 Timer 1 active Total run time with EI-AECD	H3,H4	0.000	Sec	1 sec/bit	xx min AECD19_TIME2: xxxxxxx hrs,
	#19 Timer 2 active	11,12, 13,14	0 sec	4,294,967,295	i sec/bit	xx min
	Total run time with El-AECD		0 sec	sec 4,294,967,295	1 sec/bit	AECD20 TIME1: xxxxxxx hrs,
	#20 Timer 1 active	J1,J2, J3,J4	0.560	4,294,967,295 sec	i Sec/Dit	xx min
	Total run time with El-AECD	K1,K2,	0 sec	4,294,967,295	1 sec/bit	AECD20_TIME2: xxxxxxxx hrs,
	#20 Timer 2 active	K1,K2, K3,K4	0 360	sec	i acomi	xx min
	NOTE: See PID \$81 for the re		teria and		ne oneration of the t	
	THE TE. COOT ID WOT TO THE TO	porting on	toria aric	accomplication of the	is operation of the t	intore apcoince in tille i ib.

TABLE B118 - PID \$8B DEFINITION

PID (hex)	Description	Data Byte	Min. Value	Max. Value	Scaling/Bit	External Test Equipment SI (Metric) / English Display
8B	Diesel Aftertreatment Status		7 0.110.10	1 0.10.0	9 July 210	2.00.03
02	Diesel Aftertreatment Status Supported	A (bit)	Byte 1 o	f 7		
	Diesel Particulate Filter (DPF) Regen Status Supported	A, bit 0	0	1	1 = DPF regen status data supported	
	Diesel Particulate Filter (DPF) Regen Type Supported	A, bit 1	0	1	1 = DPF regen type data supported	
	NOx Adsorber Regen Status Supported	A, bit 2	0	1	1 = NOx adsorber regen data supported	
	NOx Adsorber Desulfurization Status Supported	A, bit 3	0	1	1 = NOx adsorber desulfurization data supported	
	Normalized trigger for DPF regen supported	A, bit 4	0	1	1 = Normalized trigger for DPF regen supported	
	Average time between DPF regens supported	A, bit 5	0	1	1 = Average time between DPF regens supported	
	Average distance between DPF regens supported	A, bit 6	0	1	1 = Average distance between DPF regens supported	
	Reserved (bits shall be reported as '0')	A, bit 7	0	0		
	Diesel Aftertreatment Status	B (bit)	Byte 2 o	of 7		
	Diesel Particulate Filter (DPF) Regen Status	B, bit 0	0	1	1 = DPF Regen in progress; 0 = DPF Regen not in progress	DPF_REGEN: YES or NO
	Diesel Particulate Filter (DPF) Regen Type	B, bit 1	0	1	1 = Active DPF Regen; 0 = Passive DPF Regen	DPF_REGEN: ACTIVE or PASSIVE
	NOx Adsorber Regen Status	B, bit 2	0	1	1 = Desorption (regen) in progress, 0 = Adsorption in progress (no regen)	NOX_ADS_REGEN: YES or NO
	NOx Adsorber Desulfurization Status	B, bit 3	0	1	1 = Desulfurization in progress; 0 = Desulfurization not in progress	NOX_ADS_DESULF: YES or NO
	Reserved (bits shall be reported as '0')	B, bits 4 - 7	0	0		
	Normalized Trigger for DPF Regen	С	0 %	100 %	100/255 %	DPF_REGEN_PCT: xxx.x %

TABLE B118 - PID \$8B DEFINITION (CONTINUED)

PID		Data	Min.	Max.		External Test Equipment SI (Metric) / English			
(hex)	Description	Byte	Value	Value	Scaling/Bit	Display			
8b	DPF_REGEN_PCT shall indicate the normalized DPF loading, time, distance, drive cycles or other criteria before the next DPF regen where 0% means the DPF is clean (a complete regen just occurred) and 100% means the DPF is ready to be regenerated. When there are multiple criteria to trigger a regen, the one that is closest to triggering the regen shall be displayed.								
	Average Time Between DPF Regens	D,E	0 min		1 min per count	DPF_REGEN_AVGT: xxxx hrs, xx min			
	DPF_REGEN_AVGT shall indicate the EWMA filtered time between successful, active triggered DPF regens. The weighting factor shall be chosen to produce a representative value after 6 regen cycles (~0.5)								
	Average Distance Between DPF Regens	F,G	0 km	65535 km	1 km per count	DPF_REGEN_AVGD: xxxxx km (xxxxx miles)			
	DFF_REGEN_AVGD shall indicate the EWMA filtered distance between successful, active triggered DFF regens. The weighting factor shall be chosen to produce a representative value after 6 regen cycles (~0.5)								

TABLE B119 - PID \$8C DEFINITION

()	Description	Data Byte	Min. Value	Max. Value	Scaling/Bit	External Test Equipmer SI (Metric) / English Display
	O2 Sensor (Wide Range)					
	Support of O2 Sensor Data	A (bit)	Byte 1 o	f 17		
	O2 Sensor Concentration Bank 1 Sensor 1 supported	A, bit 0	0	1	1 = O2 Sensor Concentration Bank 1 Sensor 1 supported	
	O2 Sensor Concentration Bank 1 Sensor 2 supported	A, bit 1	0	1	1 = O2 Sensor Concentration Bank 1 Sensor 2 supported	
	O2 Sensor Concentration Bank 2 Sensor 1 supported	A, bit 2	0	1	1 = O2 Sensor Concentration Bank 2 Sensor 1 supported	
	O2 Sensor Concentration Bank 2 Sensor 2 supported	A, bit 3			1 = O2 Sensor Concentration Bank 2 Sensor 2 supported	
	O2 Sensor Lambda Bank 1 Sensor 1 supported	A, bit 4			1 = O2 Sensor Lambda Bank 1 Sensor 1 supported	
	O2 Sensor Lambda Bank 1 Sensor 2 supported	A, bit 5			1 = O2 Sensor Lambda Bank 1 Sensor 2 supported	
	O2 Sensor Lambda Bank 2 Sensor 1 supported	A, bit 6			1 = O2 Sensor Lambda Bank 2 Sensor 1 supported	
	O2 Sensor Lambda Bank 2 Sensor 2 supported	A, bit 7	0	1	1 = O2 Sensor Lambda Bank 2 Sensor 2 supported	
	O2 Sensor Concentration Bank 1 Sensor 1	B,C	0%	100%	0.001526 %/bit	O2S11_PCT xxx.xxxxxx %
	O2S11 shall display O2 concer	ntration fo	Bank 1	Sensor 1.		
	O2 Sensor Concentration Bank 1 Sensor 2	D,E	0%	100%	0.001526 %/bit	O2S12_PCT xxx.xxxxxx %
	O2S12 shall display O2 concer	ntration fo	Bank 1	Sensor 2.		
	O2 Sensor Concentration Bank 2 Sensor 1	F,G	0%	100%	0.001526 %/bit	O2S21_PCT xxx.xxxxxx %
	O2S21 shall display O2 concer	ntration fo	Bank 2			
	O2 Sensor Concentration Bank 2 Sensor 2	H,I	0%	100%	0.001526 %/bit	O2S22_PCT xxx.xxxxxx %
	O2S22 shall display O2 concer		Bank 2			<u>, </u>
	O2 Sensor Lambda Bank 1 Sensor 1	J,K	0	7.99	0.000122 lambda//bit	LAMBDA11: x.xxx
	O2S11 shall display O2 Lambd	a for Ban	k 1 Senso			
	O2 Sensor Lambda Bank 1 Sensor 2	L,M	0	7.99	0.000122 lambda//bit	LAMBDA12: x.xxx
	O2S12 shall display O2 Lambd		k 1 Senso	or 2.		
	O2 Sensor Lambda Bank 2 Sensor 1	N,O	0	7.99	0.000122 lambda//bit	LAMBDA21: x.xxx
Ī	O2S21 shall display O2 Lambd	a for Ban	k 2 Senso	or 1.		
	O2 Sensor Lambda Bank 2 Sensor 2	P,Q	0	7.99	0.000122 lambda//bit	LAMBDA22: x.xxx

PIDs \$8C shall be used for linear or wide-ratio oxygen sensors on compression ignition vehicles that can be stand-alone sensors or part of the NOx sensor (See PID \$83 for NOx PIDs).

The O2S outputs can be Lambda (typically 0 to 4 for a compression ignition engine) and/or O2 concentration (typically 0 to 25%)

NOTE: Compression ignition vehicles do not use the O2 sensor location PIDs \$13 or \$1D to define the oxygen sensor location.

Page 90 of 143

TABLE B120 - PID \$8D DEFINITION

PID (hex)	Description	Data Byte	Min. Value	Max. Value	Scaling/Bit	External Test Equipment SI (Metric) / English Display
8D	Absolute Throttle Position G	Ā	0 %	100 %	100/255 %	TP_G: xxx.x %

Absolute throttle position G, if utilized by the control module, (not "relative" or "learned" throttle position) shall be displayed as a normalized value, scaled from 0 to 100 %. For example, if a 0 to 5.0 volt sensor is used (uses a 5.0 volt reference voltage), and the closed-throttle position is at 1.0 volts, TP_G shall display (1.0 / 5.0) = 20 % at closed throttle and 50 % at 2.5 volts. Throttle position at idle will usually indicate greater than 0 %, and throttle position at wide-open throttle will usually indicate less than 100 %.

For systems where the output is proportional to the input voltage, this value is the percent of maximum input reference voltage. For systems where the output is inversely proportional to the input voltage, this value is 100 % minus the percent of maximum input reference voltage.

A single throttle plate could have up to three throttle position sensors, A, B and C. A dual throttle plate system could have up to four throttle position sensors, A, B, C and G.

TABLE B121 - PID \$8E DEFINITION

PID (hex)	Description	Data Byte	Min. Value	Max. Value	Scaling/Bit	External Test Equipment SI (Metric) / English Display
8E	Engine Friction - Percent	Α	-125%	130%	1%/bit with	TQ_FR: xxx.x %
	Torque				-125 offset	

TQ_FR shall display the friction torque of the engine. Friction Torque is the torque required to drive the engine alone as "fully equipped". The data is transmitted as friction torque as a percent of engine reference torque (see PID \$63). The friction percent torque value will not be less than zero.

NOTE:

Net Brake Torque is the torque (or power output) of a "fully equipped" engine. A fully equipped engine is an engine equipped with accessories necessary to perform its intended service. This includes, but is not restricted to, the basic engine, including fuel, oil, and cooling pumps, plus intake air system, exhaust system, cooling system, alternator, starter, emissions, and noise control. Accessories which are not necessary for the operation of the engine, but may be engine mounted, are not considered part of a fully equipped engine. These items include, but are not restricted to, power steering pump systems, vacuum pumps, and compressor systems for air conditioning, brakes, and suspensions. When these accessories are integral with the engine, the torque/power absorbed in an unloaded condition may be determined and added to the net brake torque. (Refer to SAE J1349.)

Net Brake Torque is calculated by subtracting Friction Torque (PID \$8E) from Indicated Torque (PID \$62) for the purposes of this document.

TABLE B122 - PID \$8F DEFINITION

PID (hex)	Description	Data Byte	Min. Value	Max. Value	Scaling/Bit	External Test Equipment SI (Metric) / English Display
8F	Particulate Matter (PM) Sensor Output					
	Support of PM Sensor Data	A (bit)	Byte 1 of 7			
	PM Sensor operating status Bank 1 Sensor 1 supported	A, bit 0	0	1	1 = PM sensor status Bank 1 Sensor 1 supported	
	PM Sensor signal Bank 1 Sensor 1 supported	A, bit 1	0	1	1 = PM Sensor signal Bank 1 Sensor 1 supported	
	PM Sensor operating status Bank 2 Sensor 1 supported	A, bit 2	0	1	1 = PM sensor status Bank 2 Sensor 1 supported	
	PM Sensor signal Bank 2 Sensor 1 supported	A, bit 3	0	1	1 = PM Sensor signal Bank 2 Sensor 1 supported	
	reserved (bits shall be reported as '0')	A, bits 4 - 7	0	0		
	PM Sensor operating status Bank 1 Sensor 1	В				
	PM Sensor active status Bank 1 Sensor 1	B, bit 0	0	1	1 = Sensor actively measuring (YES)	PM11_ACTIVE (YES or NO)
	PM Sensor regen status Bank 1 Sensor 1	B, bit 1	0	1	1 = Sensor regenerating (YES)	PM11_REGEN (YES or NO)
	Reserved (bits shall be reported as 0)	B, bits 2-7	0	0		
	PM Sensor normalized output value Bank 1 Sensor 1	C,D	-327.68%	327.67 %	0.01 per bit	PM11: xxx.xx %
	PM11 shall display normalized PM output signal (e.g. voltage, resista sensor soot load level when sensor	nce, curi	ent, impeda	nce etc.). 10	00% shall represent m	anufacturer defined
	PM Sensor operating status Bank 2 Sensor 1	E				
	PM Sensor active status Bank 2 Sensor 1	E, bit 0	0	1	1 = Sensor actively measuring (YES)	PM21_ACTIVE (YES or NO)
	PM Sensor regen status Bank 2 Sensor 1	E, bit 1	0	1	1 = Sensor regenerating (YES)	PM21_REGEN (YES or NO)
	Reserved (bits shall be reported as 0)	E, bits 2-7	0	0	, , , , , , , , , , , , , , , , , , ,	,
	PM Sensor normalized output value Bank 2 Sensor 1	F,G	-327.68%	327.67 %	0.01 per bit	PM21: xxx.xx %
	PM21 shall display normalized PN output signal (e.g. voltage, resista sensor soot load level when sensor	nce, curi	ent, impeda	nce etc.). 10	00% shall represent m	anufacturer defined

TABLE 123 - PID \$90 DEFINITION

PID (hex)	Description	Data Byte	Min. Value	Max. Value	Scaling/Bit	External Test Equipment SI (Metric) / English Display					
90	WWH-OBD Vehicle OBD System Information										
	Discriminatory/non- discriminatory display strategy	A, bits 0, 1	00	11	00 – All ECUs employ a non- discriminatory MI display strategy 01 – All ECUs employ a discriminatory MI display strategy 10 – Reserved 11 – Not available/Not required of this vehicle	MI_DISP_VOBD					
	This data indicates the WWH-OBD display strategy utilized by the vehicle. It shall be supported for WWH-OBD use case 1 (scan tool road worthiness check).										
					0000 – MI Activation Mode 1 (MI Off) 0001 – MI Activation Mode 2 (On Demand MI) 0010 – MI Activation Mode 3 (Short MI) 0011 – MI Activation Mode 4 (Continuous MI) 0100 – 1101 Reserved 1110 – Error 1111 – Not available/Not required for this vehicle e vehicle. It shall reflect the status of the tentor with the status of the tentor of the status of the tentor with the status of the tentor of the tentor with the status of the tentor of the tentor with the status of the tentor o						
					monitors not complete" us of the vehicle. It shall be supported	for WWH-OBD use					
	case 1 (scan tool checks reserved (bits shall be	for roa	d worthin 0	ess chec 0	k). 						
	reported as '0')	7									
	Number of engine operating hours that the continuous MI was active. (Continuous MI counter)	B, C	0	65535	1h/bit	VOBD_MI_TIME					
		ted for	WWH-O	BD use ca	g hours that the continuous MI was ac ase 1 (scan tool road worthiness chec or this counter.						

TABLE 124 - PID \$91 DEFINITION

PID		Data	Min.	Max.		External Test Equipment SI (Metric) /
(hex)	Description	Byte	Value	Value	Scaling/Bit	English Display
91	WWH-OBD ECU OBD System Information	,			•	
	ECU Malfunction Indication status	A, bits 0, 1, 2, 3	0000	1111	0000 – MI Activation Mode 1 (MI Off) 0001 – MI Activation Mode 2 (On Demand MI) 0010 – MI Activation Mode 3 (Short MI) 0011 – MI Activation Mode 4 (Continuous MI) 0100 – 1101 Reserved 1110 – Error 1111 – Not available/Not required for this vehicle	MI_MODE_ECU
	the MI lamp displayed to	the veh	icle ope	rator.	t be supported and always reported as \$	
	reserved (bits shall be reported as '0')	A, bits 4-7	0	0	. 20 cupported and amaje reperted as \$	90.
	Number of engine operating hours that the continuous MI was active. (Continuous MI counter)	B, C	0	65535	1h/bit	OBD_MI_TIME
	This data indicates the nuactive) for an individual ENOTE: Specific regulator	CU.	Ū	·	ng hours that the continuous MI was acti	ve (or is still
	Highest ECU B1 D, E 0 65535 1h/bit counter					OBD_B1_TIME
		s count	er shall i	ncremer	e operating hours during which a class B'nt any time the ECU detects a class B1 m	

TABLE B125 - PID \$92 DEFINITION

PID (hex)	Description	Data Byte	Min. Value	Max. Value	Scaling/Bit	External Test Equipment SI (Metric) / English Display
92	Fuel System Control Status	•				. ,
	(Compression Ignition) Support of Fuel System 1 Control Status	A (bit)	Byte 1 of	2		
	Fuel Pressure Control 1 supported	A, bit	0	1	1 = Fuel Pressure Control 1 data supported	
	Fuel Injection Quantity Control 1 supported	A, bit 1	0	1	1= Fuel Injection Quantity Control 1 data supported	
	Fuel Injection Timing Control 1 supported	A, bit 2	0	1	1= Fuel Injection Timing Control 1 data supported	
	Idle Fuel Balance/Contribution Control 1 supported	A, bit 3	0	1	1 = Idle Fuel Balance/Contribution Control 1 data supported	
	Fuel Pressure Control 2 supported	A, bit 4	0	1	1 = Fuel Pressure Control 2 data supported	
	Fuel Injection Quantity Control 2 supported	A, bit 5	0	1	1= Fuel Injection Quantity Control 2 data supported	
	Fuel Injection Timing Control 2 supported	A, bit 6	0	1	1= Fuel Injection Timing Control 2 data supported	
	Idle Fuel Balance/Contribution Control 2 supported	A, bit 7	0	1	1 = Idle Fuel Balance/Contribution Control 2 data supported	
	Fuel System Status	В				FUELSYS
	Fuel Pressure Control 1 Status	B, bit 0	0	1	1 = Fuel Pressure 1 in closed loop control	FP1_CL
	Fuel Injection Quantity Control 1 Status	B, bit 1	0	1	1 = Fuel Injection Quantity 1 in closed loop control	FIQ1_CL
	Fuel Injection Timing Control 1 Status	B, bit 2	0	1	1 = Fuel Injection Timing 1 in closed loop control	FIT1_CL
	Idle Fuel Balance/Contribution Control 1 Status	B, bit 3	0	1	1 = Idle Fuel Balance/Contribution Control 1 in closed loop	IFB1_CL
	Fuel Pressure Control 2 Status	B, bit	0	1	1 = Fuel Pressure 2 in closed loop control	FP2_CL
	Fuel Injection Quantity Control 2 Status	B, bit 5	0	1	1 = Fuel Injection Quantity 2 in closed loop control	FIQ2_CL
	Fuel Injection Timing Control 2 Status	B, bit	0	1	1 = Fuel Injection Timing 2 in closed loop control	FIT2_CL
	Idle Fuel Balance/Contribution Control 2 Status	B, bit 7	0	1	1 = Idle Fuel Balance/Contribution Control 2 in closed loop	IFB2_CL

Fuel system control status shall be supported by compression ignition engines that use any of the closed loop feedback control functions listed. More than one function system can be in closed loop at a time, e.g. fuel pressure control and fuel balance/contribution control in closed loop at the same time.

If the engine is off and the ignition is on, all bits in Data Byte B shall be reported as '0'. For vehicles that employ engine shutoff strategies (e.g. engine shutoff at idle) all bits in Data Byte B shall be reported as '0', when the engine is turned off by the vehicle control system.

Fuel systems 1 and 2 do not normally refer to injector banks. Fuel systems 1 and 2 are intended to represent completely different fuel systems that can independently enter and exit closed-loop fuel functions.

TABLE B126 - PID \$93 DEFINITION

PID (hex)	Description	Data Byte	Min. Value	Max. Value	Scaling/Bit	External Test Equipment SI (Metric) / English Display
93	WWH-OBD Vehicle OBD Counters				-	
	WWH-OBD Vehicle counters supported	A (bit)	Byte 1 c	of 3		
	Cumulative continuous MI counter supported	A, bit 0	0	1	1 = Cumulative continuous MI counter data supported	
	reserved (bits shall be reported as '0')	A, bits 1 - 7	0	0		
	Cumulative continuous MI counter	B,C	0 h	65535 h	1bit /h	MI_TIME_CUM
	which the continuous MI was					

This data indicates the cumulative number of engine operating hours during which the continuous MI was activated. This counter shall increment at any time the vehicle MI is in the on state. This counter shall not be reset.

TABLE B127 - PID \$94 DEFINITION

PID (hex)	Description	Data Byte	Min. Value	Max. Value	Scaling/Bit	External Test Equipment SI (Metric) / English Display
94	NOx control - driver inducement system status and counters					
	NOx warning and inducement systems supported	A (bit)	Byte 1 c	of 12		
	NOx warning system activation status supported	A, bit 0	0	1	1 = NOx warning system activation status supported	
	Reagent quality counter supported	A, bit 1		0 1 1 = Reagent quality counter supported		
	Reagent consumption counter supported	A, bit 2	0	1	1 = Reagent consumption counter supported	
	Absence of reagent dosing counter supported	A, bit 3	0	1	1 = Absence of reagent dosing counter supported	
	EGR valve counter supported	A, bit 4	0	1	1 = EGR valve counter supported	
	Malfunction of NOx control monitoring system counter supported	nction of NOx control A, bit 5 0 1 1 = Malfunction of NOx cooring system counter monitoring system cour		1 = Malfunction of NOx control monitoring system counter supported		
	reserved (bits shall be reported as '0')	A, bits 6 – 7		0 0		
	System Status	B (bit)	•	Byte 2 of 12		
	NOx warning system activation status	B, bit 0	0	1	0 - Warning system inactive 1- Warning system active	NOX_WARN_ACT: YES or NO
	NOx warning and inducement			· ·		<u> </u>
	Level one inducement status	B, bit 1,2	00	11	00 - Level one inducement inactive 01 - Level one inducement enabled 10 - Level one inducement active 11 - Level one inducement not supported	INDUC_L1
					cement using torque reduction). Sta	tus can be inactive
	(normal operation), enabled (i. Level two inducement status	e. trigger B, bit 3,4	ed for ac 00	11	00 - Level two inducement inactive 01 - Level two inducement enabled 10 - Level two inducement active 11 - Level two inducement not supported	INDUC_L2
	Level two inducement current (normal operation), enabled (i.				ment using torque reduction). Statu	s can be inactive
	Level three inducement status	B, bit 5,6	00	11	00 - Level three inducement inactive 01 - Level three inducement enabled 10 - Level three inducement active 11- Level three inducement not supported	INDUC_L3

TABLE B127 - PID \$94 DEFINITION (CONTINUED)

ID ex)	Description	Data Byte	Min. Value	Max. Value	Scaling/Bit	External Test Equipment SI (Metric) / English Display		
4					vehicle creep mode, engine shut divation but not yet active) or active			
	reserved (bits shall be reported as '0')	B, bit	0	0	,			
	Reagent quality counter	C,D	C,D 0 h 6553		1h/bit	REAG_QUAL_TIME		
	The reagent quality counter shall count the number of engine operating hours with an incorrect reagent. Refer to the appropriate OBD or emission legislation for direction on incrementing, decrementing or clearing the counter, including values to be utilized after a scan tool clear. Note that the defined range of the counter greatly exceeds the range need to meet the legislated requirements. Value of 65534 hours may be reported when the counter is at its maximum legislated range. A value of 65535							
	hours shall be reported if the c Reagent Consumption				1h/bit	REAG_CON_TIME		
	counter, including values to be Note that the defined range of	utilized a the count eported v ounter is	after a so ter greatl when the	an tool c ly exceed counter	direction on incrementing, decremented in the legistic at its maximum legislated range. 1h/bit	slated requirements. A		
		G,H		h				
	The dosing activity counter shall count the number of engine operating hours which occur with an interruption the reagent dosing activity Refer to the appropriate OBD or emission legislation for direction on incrementing, decrementing or clearing the counter, including values to be utilized after a scan tool clear. Note that the defined range of the counter greatly exceeds the range need to meet the legislated requirements value of 65534 hours may be reported when the counter is at its maximum legislated range. A value of 65535 hours shall be reported if the counter is not supported.							
	EGR valve counter I,J 0 h 65534 1h/bit EGR_TIME							
	impeded EGR valve is confirm Refer to the appropriate OBD counter, including values to be	ed and a or emissio utilized a	ctive. on legisla after a sc	of engine ation for o	operating hours when the DTC as direction on incrementing, decreme ear.	enting or clearing the		

Note that the defined range of the counter greatly exceeds the range need to meet the legislated requirements. A value of 65534 hours may be reported when the counter is at its maximum legislated range. A value of 65535 hours shall be reported if the counter is not supported.

TABLE B127 - PID \$94 DEFINITION (CONTINUED)

PID (hex)	Description	Data Byte	Min. Value	Max. Value	Scaling/Bit	External Test Equipment SI (Metric) / English Display
94	Monitoring System Counter	K,L	0 h	65534	1h/bit	NOX DTC TIME
94	Monitoring System Counter	1,∟	011	00004	111/01	INOX_DIO_IIIVIL

The monitoring system counter shall count the number of engine operating hours when a DTC associated with a malfunction of the NOx control or monitoring system is confirmed and active.

Refer to the appropriate OBD or emission legislation for direction on incrementing, decrementing or clearing the counter, including values to be utilized after a scan tool clear.

Note that the defined range of the counter greatly exceeds the range need to meet the legislated requirements. A value of 65534 hours may be reported when the counter is at its maximum legislated range. A value of 65535 hours shall be reported if the counter is not supported.

TABLE B128 - PID \$98 DEFINITION

- DID		-				
PID	Decembration	Data	Min.	Max.	O a alim au/Dit	External Test Equipment
(hex)	Description	Byte	Value	Value	Scaling/Bit	SI (Metric) / English Display
98	Exhaust Gas Temperature					
	(EGT) Bank 1					
	Support of Exhaust Gas	Α	Byte 1 c	of 9		
	Temperature Sensor Data	(bit)			 	
	EGT Bank 1, Sensor 5	A, bit 0	0	1	1 = EGT Bank	
	supported				1, Sensor 5	
					data supported	
	EGT Bank 1, Sensor 6	A, bit 1	0	1	1 = EGT Bank	
	supported				1, Sensor 6	
					data supported	
	EGT Bank 1, Sensor 7	A, bit 2	0	1	1 = EGT Bank	
	supported				1, Sensor 7	
					data supported	
	EGT Bank 1, Sensor 8	A, bit 3	0	1	1 = EGT Bank	
	supported				1, Sensor 8	
					data supported	
	reserved (bits shall be	A, bits	0	0		
	reported as '0')	4 - 7				
	Exhaust Gas Temperature	B,C	-40 °C	6513.5 °C		EGT15: xxxx.x °C (xxxx.x °F)
	Bank 1, Sensor 5				-40 °C offset	
						may be obtained directly from a
	sensor, or may be inferred by	y the cor	trol strat			
	Exhaust Gas Temperature	D,E	-40 °C	6513.5 °C		EGT16: xxxx.x °C (xxxx.x °F)
	Bank 1, Sensor 6				-40 °C offset	
	EGT16 shall display exhaust	gas tem	perature	for bank 1,	sensor 6. EGT16	may be obtained directly from a
	sensor, or may be inferred by	y the cor				
	Exhaust Gas Temperature	F,G	-40 °C	6513.5 °C	0.1 °C / bit with	EGT17: xxxx.x °C (xxxx.x °F)
	Bank 1, Sensor 7				-40 °C offset	
	EGT17 shall display exhaust	gas tem	perature	for bank 1,	sensor 7. EGT17	may be obtained directly from a
	sensor, or may be inferred b	y the cor	ntrol strat			
	Exhaust Gas Temperature	H,I	-40 °C	6513.5 °C	0.1 °C / bit with	EGT18: xxxx.x °C (xxxx.x °F)
	Bank 1, Sensor 8				-40 °C offset	
	EGT18 shall display exhaust	gas tem	perature	for bank 1,	sensor 8. EGT18	may be obtained directly from a
	sensor, or may be inferred b	y the cor	ntrol strat	egy using of	ther sensor inputs	

TABLE B129 - PID \$99 DEFINITION

PID		Data	Min.	Max.		External Test Equipment
(hex)	Description	Byte	Value	Value	Scaling/Bit	SI (Metric) / English Display
99	Exhaust Gas Temperature	Dyte	Value	Value	Gouinig/Dit	or (metrio) / English Display
99	(EGT) Bank 2					
	Support of Exhaust Gas	Α	Byte 1 c	of 9		
	Temperature Sensor Data	(bit)				
	EGT Bank 2, Sensor 5	A, bit 0	0	1	1 = EGT Bank	
	supported				2, Sensor 5	
					data supported	
	EGT Bank 2, Sensor 6	A, bit 1	0	1	1 = EGT Bank	
	supported				2, Sensor 6	
					data supported	
	EGT Bank 2, Sensor 7	A, bit 2	0	1	1 = EGT Bank	
	supported				2, Sensor 7	
					data supported	
	EGT Bank 2, Sensor 8	A, bit 3	0	1	1 = EGT Bank	
	supported				2, Sensor 8	
					data supported	
	reserved (bits shall be	A, bits	0	0		
	reported as '0')	4 - 7				
	Exhaust Gas Temperature	B,C	-40 °C	6513.5 °C		EGT25: xxxx.x °C (xxxx.x °F)
	Bank 2, Sensor 5				-40 °C offset	
	EGT25 shall display exhaust sensor, or may be inferred b					may be obtained directly from a
	Exhaust Gas Temperature	D,E				EGT26: xxxx.x °C (xxxx.x °F)
	Bank 2, Sensor 6	₽,⊏	-4 0 C	0513.5 C	-40 °C offset	EG120. XXXX.X C (XXXX.X F)
		age tom	noraturo	for bank 2		may be obtained directly from a
	sensor, or may be inferred b					
	Exhaust Gas Temperature	F,G				EGT27: xxxx.x °C (xxxx.x °F)
	Bank 2, Sensor 7	,			-40 °C offset	,
		gas tem	perature	for bank 2,	sensor 7. EGT27	may be obtained directly from a
	sensor, or may be inferred b					
	Exhaust Gas Temperature	H,I				EGT28: xxxx.x °C (xxxx.x °F)
	Bank 2, Sensor 8	,			-40 °C offset	` '
	EGT28 shall display exhaust	gas tem	perature	for bank 2,	sensor 8. EGT28	may be obtained directly from a
	sensor, or may be inferred b					

TABLE B130 - PID \$9C DEFINITION

) x)	Description	Data Byte	Min. Value	Max. Value	Scaling/Bit	External Test Equipmen SI (Metric) / English Display
;	O2 Sensor (Wide Range)					
	Support of O2 Sensor Data	A (bit)	Byte 1 o	f 17		
	O2 Sensor Concentration Bank 1 Sensor 3 supported	A, bit 0	0	1	1 = O2 Sensor Concentration Bank 1	
L					Sensor 3 supported	
	O2 Sensor Concentration Bank 1 Sensor 4 supported	A, bit 1	0	1	1 = O2 Sensor Concentration Bank 1 Sensor 3 supported	
	O2 Sensor Concentration Bank 2 Sensor 3 supported	A, bit 2	0	1	1 = O2 Sensor Concentration Bank 2 Sensor 3 supported	
	O2 Sensor Concentration Bank 2 Sensor 4 supported	A, bit 3			1 = O2 Sensor Concentration Bank 2 Sensor 4 supported	
	O2 Sensor Lambda Bank 1 Sensor 3 supported	A, bit 4			1 = O2 Sensor Lambda Bank 1 Sensor 3 supported	
	O2 Sensor Lambda Bank 1 Sensor 4 supported	A, bit 5			1 = O2 Sensor Lambda Bank 1 Sensor 4 supported	
	O2 Sensor Lambda Bank 2 Sensor 3 supported	A, bit 6			1 = O2 Sensor Lambda Bank 2 Sensor 3 supported	
	O2 Sensor Lambda Bank 2 Sensor 4 supported	A, bit 7	0	1	1 = O2 Sensor Lambda Bank 2 Sensor 4 supported	
	O2 Sensor Concentration Bank 1 Sensor 3	B,C	0%	100%	0.001526 %/bit	O2S13_PCT xxx.xxxxxx %
	O2S13 shall display O2 concent O2 Sensor Concentration Bank 1 Sensor 4	D,E	0%	100%	0.001526 %/bit	O2S14_PCT xxx.xxxxxx %
-	O2S14 shall display O2 concen	tration fo	r Bank 1 :	Sensor 2		
-	O2 Sensor Concentration Bank 2 Sensor 3	F,G	0%	100%	0.001526 %/bit	O2S23_PCT xxx.xxxxxx %
	O2S23 shall display O2 concen	tration fo	Bank 2	Sensor 1.		
	O2 Sensor Concentration Bank 2 Sensor 4	H,I	0%	100%	0.001526 %/bit	O2S24_PCT xxx.xxxxxx %
L	O2S24 shall display O2 concen	tration fo	r Bank 2	Sensor 2.		
	O2 Sensor Lambda Bank 1 Sensor 3	J,K	0	7.99	0.000122 lambda//bit	LAMBDA13: x.xxx
-	O2S13 shall display O2 Lambd	a for Ban	k 1 Senso			
	O2 Sensor Lambda Bank 1 Sensor 4	L,M	0	7.99	0.000122 lambda//bit	LAMBDA14: x.xxx
	O2S14 shall display O2 Lambd	a for Ban	k 1 Senso	or 2.		
	O2 Sensor Lambda Bank 2 Sensor 3	N,O	0	7.99	0.000122 lambda//bit	LAMBDA23: x.xxx
-	O2S23 shall display O2 Lambd	a for Ban	k 2 Senso			
	O2 Sensor Lambda Bank 2 Sensor 4	P,Q	0	7.99	0.000122 lambda//bit	LAMBDA24: x.xxx

PIDs \$9C shall be used for linear or wide-ratio oxygen sensors on compression ignition vehicles that can be stand-alone sensors or part of the NOx sensor (See PID \$83 for NOx PIDs).

The O2S outputs can be Lambda (typically 0 to 4 for a compression ignition engine) and/or O2 concentration (typically 0 to 25%)

NOTE: Compression ignition vehicles do not use the O2 sensor location PIDs \$13 or \$1D to define the oxygen sensor location.

SAE

TABLE B131 - PID \$8E - \$FF DEFINITION

PID (hex)	Description	Data Byte	Min. Value	Max. Value	Scaling/Bit	External Test Equipment SI (Metric) / English Display
95, 96, 97, 9A, 9B, 9D – FF	ISO/SAE reserved	_	_	1	_	_

APPENDIX C - (NORMATIVE) TIDS (TEST ID) SCALING DESCRIPTION

Table C1 defines standardized Test IDs. Applies only to SAE J1850, ISO 9141-2, and ISO 14230-2.

TABLE C1 - TEST ID SCALING DESCRIPTION

Test ID	Description	Min. (\$00)	Max. (\$FF)	Scaling/Bit
\$01	Rich to lean sensor threshold voltage (constant)	0 V	1.275 V	0.005 V
\$02	Lean to rich sensor threshold voltage (constant)	0 V	1.275 V	0.005 V
\$03	Low sensor voltage for switch time calculation (constant)	0 V	1.275 V	0.005 V
\$04	High sensor voltage for switch time calculation (constant)	0 V	1.275 V	0.005 V
\$05	Rich to lean sensor switch time (calculated)	0 s	1.02 s	0.004 s
\$06	Lean to rich sensor switch time (calculated)	0 s	1.02 s	0.004 s
\$07	Minimum sensor voltage for test cycle (calculated)	0 V	1.275 V	0.005 V
\$08	Maximum sensor voltage for test cycle (calculated)	0 V	1.275 V	0.005 V
\$09	Time between sensor transitions (calculated)	0 s	10.2 s	0.04 s
\$0A	Sensor period (calculated)	0 s	10.2 s	0.04 s
\$0B	Not applicable for SAE J1850, ISO 9141-2, and 14230-2			
\$0C	Not applicable for SAE J1850, ISO 9141-2, and 14230-2			
\$0D-\$1F	ISO/SAE reserved			
\$21-\$2F	manufacturer Test ID description	0 s	1.02 s	0.004 s
\$30-\$3F	:	0 s	10.2 s	0.04 s
\$41-\$4F	:	0 V	1.275 V	0.005 V
\$50-\$5F	:	0 V	12.75 V	0.05 V
\$61-\$6F	:	0 Hz	25.5 Hz	0.1 Hz
\$70-\$7F	:	0 counts	255 counts	1 count
\$81-\$9F	manufacturer Test ID description	manufacture	r specific valu	ies / units
\$A1-\$BF	:	:	•	
\$C1-\$DF	:	:		
\$E1-\$FE	:	:		
\$FF	ISO/SAE reserved			

Table C2 defines standardized Test IDs. Applies only to ISO 15765-4.

TABLE C2 - TEST ID SCALING DESCRIPTION

Test ID	Description	Min. (\$0000)	Max. (\$FFFF)	Scaling/Bit
\$01	Rich to lean sensor threshold voltage (constant)	0 V	7.999 V	0.122 mV
\$02	Lean to rich sensor threshold voltage (constant)	ον	7.999 V	0.122 mV
\$03	Low sensor voltage for switch time calculation (constant)	ον	7.999 V	0.122 mV
\$04	High sensor voltage for switch time calculation (constant)	ον	7.999 V	0.122 mV
\$05	Rich to lean sensor switch time (calculated)	0 s	65.535 s	1.0 ms
\$06	Lean to rich sensor switch time (calculated)	0 s	65.535 s	1.0 ms
\$07	Minimum sensor voltage for test cycle (calculated)	0 V	7.999 V	0.122 mV
\$08	Maximum sensor voltage for test cycle (calculated)	0 V	7.999 V	0.122 mV
\$09	Time between sensor transitions (calculated)	0 s	65.535 s	1.0 ms
\$0A	Sensor period (calculated)	0 s	65.535 s	1.0 ms
	(Use scaling ID \$0A for voltage, Scaling ID \$10 for time)			
\$0B	EWMA (Exponential Weighted Moving Average) misfire	0 counts	65535	1 count/bit
	counts for previous driving cycles (calculated, rounded to		counts	
	an integer value)			
	General EWMA calculation: 0.1 * (current misfire counts)			
	+ 0.9 * (previous misfire counts average)			
	Initial value for (previous misfire counts average) = 0			
	NOTE: Internal ECU calculation registers with precision higher than one count must be used and retained to			
	calculate the contents of registers \$0B and \$0C to prevent rounding errors. If this is not done, these registers			
	will never count back down to zero after misfire stops.			
	The calculations must be done using the high-precision			
	registers, and then rounded to the nearest integer value			
	to be output as register \$0B and \$0C.			
	High_Precision_EWMA_Misfire_Counts current = Rounded			
	[(0.1) * High_Precision_Misfire_Counts current + (0.9) *			
	High_Precision_EWMA_Misfire_Counts previous]			
	Where: Rounded means rounded to the nearest integer.			
	The high-precision values are never reported, they are			
	only used for internal calculations.			
	This TEST ID shall be reported with OBD Monitor IDs			
	\$A2 – \$AD (refer to Appendix D and/or SAE J1979-DA)			
	and the Scaling ID \$24 (refer to Appendix E and/or SAE			
* 00	J1979-DA). (Use Scaling ID \$24)	0.00:::::	GEEGE	1 001:04/6:4
\$0C	Misfire counts for last/current driving cycles (calculated,	0 counts	65535	1 count/bit
	rounded to an integer value) This TEST ID shall be reported with OBD Monitor IDs		counts	
	\$A2 – \$AD (refer to Appendix D and/or SAE J1979-DA)			
	and the Scaling ID \$24 (refer to Appendix E and/or SAE			
	J1979-DA). (Use Scaling ID \$24)			
\$0D-\$7F	Reserved for future standardization			
\$80 - \$FE	Manufacturer Defined Test ID range — This parameter is			
,	an identifier for the test performed within the On-Board			
	Diagnostic Monitor.			
\$FF	ISO/SAE reserved			

$\label{eq:condition} \mbox{APPENDIX D - (NORMATIVE)} \\ \mbox{OBDMIDS (ON-BOARD DIAGNOSTIC MONITOR ID) DEFINITION FOR SERVICE $06 \\ \mbox{}$

This Appendix only applies to ISO 15765-4.

TABLE D1 - STANDARD ON-BOARD DIAGNOSTIC MONITOR ID DEFINITION

OBDMID (Hex)	On-Board Diagnostic Monitor ID Name
00	OBD Monitor IDs supported (\$01 - \$20)
01	Exhaust Gas Sensor Monitor Bank 1 – Sensor 1
02	Exhaust Gas Sensor Monitor Bank 1 – Sensor 2
03	Exhaust Gas Sensor Monitor Bank 1 – Sensor 3
04	Exhaust Gas Sensor Monitor Bank 1 – Sensor 4
05	Exhaust Gas Sensor Monitor Bank 2 – Sensor 1
06	Exhaust Gas Sensor Monitor Bank 2 – Sensor 2
07	Exhaust Gas Sensor Monitor Bank 2 – Sensor 3
08	Exhaust Gas Sensor Monitor Bank 2 – Sensor 4
09	Exhaust Gas Sensor Monitor Bank 3 – Sensor 1
0A	Exhaust Gas Sensor Monitor Bank 3 – Sensor 2
0B	Exhaust Gas Sensor Monitor Bank 3 – Sensor 3
0C	Exhaust Gas Sensor Monitor Bank 3 – Sensor 4
0D	Exhaust Gas Sensor Monitor Bank 4 – Sensor 1
0E	Exhaust Gas Sensor Monitor Bank 4 – Sensor 2
0F	Exhaust Gas Sensor Monitor Bank 4 – Sensor 3
10	Exhaust Gas Sensor Monitor Bank 4 – Sensor 4
11 – 1F	ISO/SAE reserved
20	OBD Monitor IDs supported (\$21 – \$40)
21	Catalyst Monitor Bank 1
22	Catalyst Monitor Bank 2
23	Catalyst Monitor Bank 3
24	Catalyst Monitor Bank 4
25 – 30	ISO/SAE reserved
31	EGR Monitor Bank 1
32	EGR Monitor Bank 2
33	EGR Monitor Bank 3
34	EGR Monitor Bank 4
35	VVT Monitor Bank 1
36	VVT Monitor Bank 2
37	VVT Monitor Bank 3
38	VVT Monitor Bank 4
39	EVAP Monitor (Cap Off / 0.150")
3A	EVAP Monitor (0.090")
3B	EVAP Monitor (0.040")
3C	EVAP Monitor (0.020")
3D	Purge Flow Monitor
3E – 3F	ISO/SAE reserved
40	OBD Monitor IDs supported (\$41 – \$60)
41	Exhaust Gas Sensor Heater Monitor Bank 1 – Sensor 1
42	Exhaust Gas Sensor Heater Monitor Bank 1 – Sensor 2
43	Exhaust Gas Sensor Heater Monitor Bank 1 – Sensor 3
44	Exhaust Gas Sensor Heater Monitor Bank 1 – Sensor 4
45	Exhaust Gas Sensor Heater Monitor Bank 2 – Sensor 1
46	Exhaust Gas Sensor Heater Monitor Bank 2 – Sensor 2

TABLE D1 - STANDARD ON-BOARD DIAGNOSTIC MONITOR ID DEFINITION (CONTINUED)

OBDMID (Hex)	On-Board Diagnostic Monitor ID Name
47	Exhaust Gas Sensor Heater Monitor Bank 2 – Sensor 3
48	Exhaust Gas Sensor Heater Monitor Bank 2 – Sensor 4
49	Exhaust Gas Sensor Heater Monitor Bank 2 - Sensor 1
4A	Exhaust Gas Sensor Heater Monitor Bank 3 – Sensor 2
4B	Exhaust Gas Sensor Heater Monitor Bank 3 – Sensor 3
4C	Exhaust Gas Sensor Heater Monitor Bank 3 – Sensor 4
4D	Exhaust Gas Sensor Heater Monitor Bank 4 – Sensor 1
4E	Exhaust Gas Sensor Heater Monitor Bank 4 – Sensor 2
4E 4F	Exhaust Gas Sensor Heater Monitor Bank 4 – Sensor 3
50	Exhaust Gas Sensor Heater Monitor Bank 4 – Sensor 4
51 – 5F	ISO/SAE reserved
60	
61	OBD Monitor IDs supported (\$61 – \$80)
62	Heated Catalyst Monitor Bank 1
	Heated Catalyst Monitor Bank 2
63	Heated Catalyst Monitor Bank 3
64	Heated Catalyst Monitor Bank 4
65 – 70	ISO/SAE reserved
71	Secondary Air Monitor 1
72	Secondary Air Monitor 2
73	Secondary Air Monitor 3
74	Secondary Air Monitor 4
75 – 7F	ISO/SAE reserved
80	OBD Monitor IDs supported (\$81 – \$A0)
81	Fuel System Monitor Bank 1
82	Fuel System Monitor Bank 2
83	Fuel System Monitor Bank 3
84	Fuel System Monitor Bank 4
85	Boost Pressure Control Monitor Bank 1
86	Boost Pressure Control Monitor Bank 2
87 – 8F	ISO/SAE reserved
90	NOx Adsorber Monitor Bank 1
91	NOx Adsorber Monitor Bank 2
92 – 97	ISO/SAE reserved
98	NOx/SCR Catalyst Monitor Bank 1
99	NOx/SCR Catalyst Monitor Bank 2
9A – 9F	ISO/SAE reserved
A0	OBD Monitor IDs supported (\$A1 – \$C0)
A1	Misfire Monitor General Data
A2	Misfire Cylinder 1 Data
A3	Misfire Cylinder 2 Data
A4	Misfire Cylinder 3 Data
A5	Misfire Cylinder 4 Data
A6	Misfire Cylinder 5 Data
A7	Misfire Cylinder 6 Data
A8	Misfire Cylinder 7 Data
A9	Misfire Cylinder 8 Data
AA	Misfire Cylinder 9 Data
AB	Misfire Cylinder 10 Data
AC	Misfire Cylinder 11 Data
AD	Misfire Cylinder 12 Data

TABLE D1 - STANDARD ON-BOARD DIAGNOSTIC MONITOR ID DEFINITION (CONTINUED)

OBDMID (Hex)	On-Board Diagnostic Monitor ID Name
AE	Misfire Cylinder 13 Data
AF	Misfire Cylinder 14 Data
В0	Misfire Cylinder 15 Data
B1	Misfire Cylinder 16 Data
B2	PM Filter Monitor Bank 1
B3	PM Filter Monitor Bank 2
B4 - BF	ISO/SAE reserved
C0	OBD Monitor IDs supported (\$C1 – \$E0)
C1 – DF	ISO/SAE reserved
E0	OBD Monitor IDs supported (\$E1 – \$FF)
E1 – FF	Vehicle manufacturer defined OBDMIDs

The following figures are examples of sensor and catalyst configurations. The cylinder most remote of the flywheel is defined as cylinder number 1. Bank 1 contains cylinder number1.

FIGURE D1 - V6/V8/V12 CYLINDER ENGINE WITH 2 EXHAUST BANKS AND 4 CATALYSTS EXAMPLE

FIGURE D2 - V6V8/V12 CYLINDER ENGINE WITH 2 EXHAUST BANKS AND 3 CATALYSTS EXAMPLE

FIGURE D3 - L4 CYLINDER ENGINE WITH 1 EXHAUST BANK AND 2 CATALYSTS EXAMPLE

FIGURE D4 - L4 CYLINDER ENGINE WITH 1 EXHAUST BANK AND 1 CATALYST EXAMPLE

APPENDIX E - (NORMATIVE) UNIT AND SCALING DEFINITION FOR SERVICE \$06

This Appendix only applies to ISO 15765-4. The Unit and Scaling IDs are separated into two ranges; \$01 - \$7F are unsigned Scaling Identifiers, and \$80 - \$FE are signed Scaling Identifiers. Unit and Scaling IDs \$00 and \$FF are ISO/SAE reserved for future definition and shall not be defined as Unit and Scaling Identifiers.

Bit 7 =	Bit 7 = '0' unsigned Scaling Identifier range									
Bit 7 =	'1'	signed Scaling Identifier range								
7	6	5 4 3 2 1 0								

FIGURE E1 - UNSIGNED/SIGNED SCALING IDENTIFIER RANGE ENCODING

E.1 UNSIGNED UNIT AND SCALING IDENTIFIERS DEFINITION

TABLE E1 - UNIT AND SCALING ID \$01 DEFINITION

Unit and			Min.	Min. Value Max. Value		External Test Equipment	
Scaling ID (hex)	Description	Scaling/Bit	(hex) (dec.)		(hex)	(dec.)	SI (Metric) Display
01	Raw Value	1 per bit	0000 0		FFFF	65535	xxxxx
		hex to decimal	Data Rang		nge examples:		Display examples:
		unsigned	\$0000		0		0
			\$F	FFF	+	65535	65535

TABLE E2 - UNIT AND SCALING ID \$02 DEFINITION

Unit and			Min.	Min. Value		c. Value	External Test Equipment
Scaling ID (hex)	Description	Scaling/Bit	(hex) (dec.)		(hex)	(dec.)	SI (Metric) Display
02	Raw Value	0.1 per bit	0000	0000 0		6553.5	xxxx.x
		hex to decimal		Data Rang		nples:	Display examples:
		unsigned	\$0000		0		0.0
			\$F	FFF	+ 6	5553.5	6553.5

TABLE E3 - UNIT AND SCALING ID \$03 DEFINITION

Unit and			Min.	Min. Value		k. Value	External Test Equipment
Scaling ID (hex)	Description	Scaling/Bit	(hex) (dec.)		(hex)	(dec.)	SI (Metric) Display
03	Raw Value	0.01 per bit	0000 0		FFFF	655.35	xxx.xx
		hex to decimal		Data Rang		nples:	Display examples:
		unsigned	\$0000		0		0.00
			\$F	\$FFFF		655.35	655.35

TABLE E4 - UNIT AND SCALING ID \$04 DEFINITION

Unit and			Min.	Min. Value		c. Value	External Test Equipment
Scaling ID (hex)	Description	Scaling/Bit	(hex) (dec.)		(hex)	(dec.)	SI (Metric) Display
04	Raw Value	0.001 per bit	0000 0		FFFF	65.535	xx.xxx
		hex to decimal		Data Rang		ples:	Display examples:
		unsigned	\$0000		0		0.000
			\$F	FFF	+ (55.535	65.535

TABLE E5 - UNIT AND SCALING ID \$05 DEFINITION

Unit and			Min.	Value	Max	k. Value	External Test Equipment
Scaling ID (hex)	Description	Scaling/Bit	(hex)	(dec.)	lec.) (hex) (dec.)		SI (Metric) Display
05	Raw Value	0.0000305	0000	0000 0 FFF		1.999	x.xxxxxx
		per bit		Data Range examples:		Display examples:	
		hex to decimal	\$0	\$0000		0	0.000000
		unsigned	\$F	FFF	+ 1.	.999969	1.9999695

TABLE E6 - UNIT AND SCALING ID \$06 DEFINITION

Unit and			Min.	. Value	Max	k. Value	External Test Equipment
Scaling ID (hex)	Description	Scaling/Bit	(hex) (dec.)		(hex)	(dec.)	SI (Metric) Display
06	Raw Value	0.000305 per bit	0000	0000 0		19.988	xx.xxxxx
		hex to decimal		Data Rang		nples:	Display examples:
		unsigned	\$0000		0		0.00000
			\$F	\$FFFF		9.988	19.988175

TABLE E7 - UNIT AND SCALING ID \$07 DEFINITION

Unit and			Min.	Min. Value Max. Value		x. Value	External Test Equipment
Scaling ID (hex)	Description	Scaling/Bit	(hex)	(dec.)	(hex)	(dec.)	SI (Metric) Display
07	rotational	0.25 rpm per bit	0000	0 rpm	FFFF	16384 rpm	xxxxx.xx rpm
	frequency	unsigned	Data Ran		ge exa	mples:	Display examples:
			\$0000		0 rpm		0.00 rpm
			\$0	002	+	0.5 rpm	0.50 rpm
			\$F	FFC	+ 16	383 rpm	16383.00 rpm
			\$FFFD		+ 163	383.25 rpm	16383.25 rpm
			\$FFFE		+ 16383.50 rpm		16383.50 rpm
			\$F	FFF	+ 163	383.75 rpm	16383.75 rpm

TABLE E8 - UNIT AND SCALING ID \$08 DEFINITION

Unit and			Min.	Value	Max. Value		External Test Equipment	
Scaling ID (hex)	Description	Scaling/Bit	(hex)) (dec.) (hex) (dec.)		SI (Metric) Display		
08	Speed	0.01 km/h per bit	0000 0 km/h		FFFF	655.35 km/h	xxx.xx km/h	(xxx.xx mph)
		unsigned	Data Rar		nge examples:		Display e	examples:
	Conversion	n km/h -> mph:	\$0	0000	0 km/h		0.00 km/h	(0.00 mph)
	1 km/h =	0.62137 mph	\$0	\$0064		+ 1 km/h	1.00 km/h	(0.62 mph)
			\$03E7		+ 9.99 km/h		9.99 km/h	(6.21 mph)
			\$F	FFF	+ 655.35 km/h		655.35 km/h	(407.21 mph)

TABLE E9 - UNIT AND SCALING ID \$09 DEFINITION

Unit and			Min. Value		Ma	ax. Value	External Tes	st Equipment
Scaling ID (hex)	Description	Scaling/Bit	(hex)	(dec.)	(hex)	(dec.)	SI (Metric) Display	
09	Speed	1 km/h per bit	0000 0 km/h		FFFF	65535 km/h	xxxxx km/h	(xxxxx mph)
		unsigned		Data Rar	nge examples:		Display 6	examples:
	Conversion	km/h -> mph:	\$(0000		0 km/h	0 km/h	(0 mph)
	1 km/h = 0).62137 mph	\$0	\$0064		100 km/h	100 km/h	(62 mph)
			\$03E7		+ 5	999 km/h	999 km/h	(621 mph)
			\$F	FFF	+ 6	5535 km/h	65535 km/h	(40721 mph)

TABLE E10 - UNIT AND SCALING ID \$0A DEFINITION

Unit and			Min	n. Value Max. Value		c. Value	External Test Equipment
Scaling ID (hex)	Description	Scaling/Bit	(hex)	(dec.)	(hex)	(dec.)	SI (Metric) Display
0A	Voltage	0.122 mV per bit	0000	0000 0 V		7.99 V	x.xxxxxx V
		unsigned	Data Range		e examples:		Display examples:
	Convers	sion mV -> V:	\$0000		0 mV		0.000000 V
	1000	mV = 1 V	\$(\$0001		122 mV	0.000122 V
			\$2004		+ 1000.488 mV		1.000488 V
			\$1	FFFF	+ 79	999 mV	7.999878 V

TABLE E11 - UNIT AND ScALING ID \$0B DEFINITION

Unit and			Min.	Min. Value		k. Value	External Test Equipment
Scaling ID (hex)	Description	Scaling/Bit	(hex)	(hex) (dec.)		(dec.)	SI (Metric) Display
0B	Voltage	0.001 V per bit	0000	0000 0 V		65.535 V	xx.xxx V
		unsigned		Data Rang	ge examples:		Display examples:
	Conversion	on mV -> V:	\$0000		0 mV		0.000 V
	1000 r	nV = 1 V	\$0001		+ 1 mV		0.001 V
			\$F	FFF	+ 65535 mV		65.535 V

TABLE E12 - UNIT AND SCALING ID \$0C DEFINITION

Unit and			Min.	Min. Value		k. Value	External Test Equipment
Scaling ID (hex)	Description	Scaling/Bit	(hex)	(hex) (dec.)		(dec.)	SI (Metric) Display
0C	Voltage	0.01 V per bit	0000	0000 0 V		655.35 V	xxx.xx V
		unsigned		ata Rang	ge exam	nples:	Display examples:
	Conversion	on mV -> V:	\$0	0000	() mV	0.00 V
	1000 r	nV = 1 V	\$0001		+ 10 mV		0.01 V
			\$F	FFF	+ 65	5350 mV	655.35 V

TABLE E13 - UNIT AND SCALING ID \$0D DEFINITION

Unit and			Min.	Min. Value		ax. Value	External Test Equipment
Scaling ID (hex)	Description	Scaling/Bit	(hex)	(dec.)	(hex)	(dec.)	SI (Metric) Display
0D	Current	0.00390625 mA	0000	0 A	FFFF	255.996 mA	xxx.xxxxxxx mA
		per bit, unsigned		Data Rar	nge exa	imples:	Display examples:
			\$0	000		0 mA	0.00000000 mA
			\$0	001	0.004 mA		0.00390625 mA
			\$8000		+	128 mA	128.0000000 mA
			\$F	\$FFFF		55.996 mA	255.9960938 mA

TABLE E14 - UNIT AND SCALING ID \$0E DEFINITION

Unit and			Min.	Min. Value		c. Value	External Test Equipment
Scaling ID (hex)	Description	Scaling/Bit	(hex)	(hex) (dec.)		(dec.)	SI (Metric) Display
0E	Current	0.001 A per bit	0000	0000 0 A		65.535 A	xx.xxx A
		unsigned		Data Rang	je exam	iples:	Display examples:
	Conversion	on mA -> A:	\$0	0000		0 A	0.000 A
	1000 r	nA = 1 A	\$8000		+ 3	2.768 A	32.768 A
			\$F	FFF	+ 65.535 A		65.535 A

TABLE E15 - UNIT AND SCALING ID \$0F DEFINITION

Unit and			Min.	Min. Value		x. Value	External Test Equipment
Scaling ID (hex)	Description	Scaling/Bit	(hex)	(hex) (dec.)		(dec.)	SI (Metric) Display
0F	Current	0.01 A per bit	0000	0 A	FFFF	655.35 A	xxx.xx A
		unsigned		Data Rang	je exan	nples:	Display examples:
	Conversion	on mA -> A:	\$0	0000	0 mA		0.00 A
	1000 r	nA = 1 A	\$0001		+	10 mA	0.01 A
			\$F	FFF	+ 65	5350 mA	655.35 A

TABLE E16 - UNIT AND SCALING ID \$10 DEFINITION

Unit and			Min.	Min. Value		x. Value	External Test Equipment
Scaling ID (hex)	Description	Scaling/Bit	(hex)	(hex) (dec.)		(dec.)	SI (Metric) Display
10	Time	1 ms per bit	0000	0000 0 ms		65535 ms	xx.xxx s (x min, xx s)
		unsigned		Data Ra	ange examples:		Display examples:
	Conversion	s -> min -> h:	\$000	00	0	ms	0.000 s (0 min, 0 s)
	60 s	= 1 min	\$800	00	+ 32768 ms		32.768 s (0 min, 33 s)
	60 mi	in = 1 h	\$EA	60 +	60000	ms (1 min)	60.000 s (1 min, 0 s)
			\$FFI	FF + 6	5535 m	s (1 min, 6 s)	65.535 s (1 min, 6 s)

TABLE E17 - UNIT AND SCALING ID \$11 DEFINITION

Unit and			Min. Value		Max. Value		External Test Equipment
Scaling ID (hex)	Description	Scaling/Bit	(hex) (dec.)		(hex)	(dec.)	SI (Metric) Display
11	Time	100 ms per bit	0000	0 s	FFFF	6553.5 s	xxxx.x s (x h, x min, xx s)
		unsigned		Data Ra	nge exa	imples:	Display examples:
	Conversion	s -> min -> h:	\$0000		0	S	0.000 s (0 h, 0 min, 0 s)
	60 s	= 1 min	\$8000		+ 327	6.8 s	3276.8 s (0 h, 54 min, 37 s)
	60 m	in = 1 h	\$EA60 + 6		6000 s (1 h 40 min)		6000 s (1 h, 40 min, 0 s)
			\$FFFF	+ 655	3.5 s (1h	, 49 min 13 s)	6553.5 s (1 h, 49 min, 13 s)

TABLE E18 - UNIT AND SCALING ID \$12 DEFINITION

Unit and			Min.	Min. Value		. Value	External Test Equipment
Scaling ID (hex)	Description	Scaling/Bit	(hex)	(hex) (dec.)		(dec.)	SI (Metric) Display
12	Time	1 second per bit	0000	0000 0 s		65535 s	xxxxx s (xx h, xx min xx s)
		unsigned		Data Ran	inge examples:		Display examples:
	Conversion	n s -> min -> h:	\$0	0000		0 s	0 s (0 h, 0 min, 0 s)
	60 s	= 1 min	\$003C		+ 60 s		60 s (0 h, 1 min, 0 s)
	60 n	nin = 1 h	\$0)E10	+ 3600 s		3600 s (1 h, 0 min, 0 s)
			\$F			65535 s (18 h, 12 min, 15 s)	

TABLE E19 - UNIT AND SCALING ID \$13 DEFINITION

Unit and			Min	Min. Value		x. Value	External Test Equipment
Scaling ID (hex)	Description	Scaling/Bit	(hex)	(hex) (dec.)		(dec.)	SI (Metric) Display
13	Resistance	1 mOhm per bit unsigned	0000	0000 0 mOhm F		65535 mOhm	xx.xxx Ohm
	Conversion r	nOhm -> Ohm:		Data Rang	e exam	ples:	Display examples:
	1000 mOl	nm = 1 Ohm	\$	0000	0	mOhm	0.000 Ohm
			\$	0001	+ 1 mOhm		0.001 Ohm
			\$8000		+ 32768 mOhm		32.768 Ohm
			\$	FFFF	+ 655	35 mOhm	65.535 Ohm

TABLE E20 - UNIT AND SCALING ID \$14 DEFINITION

Unit and			Min.	Value	alue Max. Value		External Test Equipment
Scaling ID (hex)	Description	Scaling/Bit	(hex) (dec.)		(hex)	(dec.)	SI (Metric) Display
14	Resistance	1 Ohm per bit	0000	0000 0 Ohm		65535 Ohm	xx.xxx kOhm
		unsigned		Data Rai	nge exa	amples:	Display examples:
	Conversion (Ohm -> kOhm:	\$0	0000		0 Ohm	0.000 kOhm
	1000 Ohr	n = 1 kOhm	\$0	0001	+	- 1 Ohm	0.001 kOhm
			\$8	\$8000		2768 Ohm	32.768 kOhm
			\$F	FFF	+ 6	5535 Ohm	65.535 kOhm

TABLE E21 - UNIT AND SCALING ID \$15 DEFINITION

Unit and			Min	Min. Value		. Value	External Test Equipment
Scaling ID (hex)	Description	Scaling/Bit	(hex)	(hex) (dec.)		(dec.)	SI (Metric) Display
15	Resistance	1 kOhm per bit	0000	0000 0 kOhm		65535	xxxxx kOhm
		-				kOhm	
		unsigned	Data Rang		ge examples:		Display examples:
			\$(0000	0 kOhm		0 kOhm
			\$0	\$0001		kOhm	1 kOhm
			\$8000		+ 32768 kOhm		32768 kOhm
			\$FFFF		+ 655	35 kOhm	65535 kOhm

TABLE E22 - UNIT AND SCALING ID \$16 DEFINITION

Unit and			Min	Min. Value		ax. Value	External Test Equipmer	
Scaling ID (hex)	Description	Scaling/Bit	(hex) (dec.)		(hex)	(dec.)	SI (Metric) Display	
16	Temperature	(0.1 °C per bit) -	0000	0000 - 40 °C		+ 6513.5 °C	xxxx.x °C (xxxxx.x °F)	
		40 °C	Data Ran		ige examples:		Display examples:	
		unsigned	\$	\$0000		− 40 °C	- 40.0 °C	(− 40.0 °F)
	Convers	ion °C -> °F:	\$	0001	_	39.9 °C	– 39.9 °C	(- 39.8 °F)
	°F = °C *	1.8 + 32 °C	\$00DC		− 18.0 °C		– 18.0 °C	(− 0.4 °F)
			\$	0190	0 °C		0.0 °C	(32.0 °F)
			\$1	FFFF	+ 6	6513.5 °C	6513.5 °C	(11756.3 °F)

TABLE E23 - UNIT AND SCALING ID \$17 DEFINITION

Unit and			Min. Value		Max. Value		External Test Equipme	
Scaling ID (hex)	Description	Scaling/Bit	(hex)	(dec.)	(hex)	(dec.)	SI (Metric	c) Display
17	Pressure	0.01 kPa per bit	0000	0 kPa	FFFF	655.35 kPa	xxx.xx kP	a (Gauge)
	(Gauge)	unsigned					(xx.x	PSI)
Conversion kPa -> PSI:			Data Range examples			mples:	Display e	xamples:
	1 kPa (10 HPa) = 0.1450377 PSI			\$0000 0 kPa		0.00 kPa	(0.0 PSI)	
Add	litional Convers	sions:	\$0001 + 0.01 kPa			0.01 kPa	0.01 kPa	(0.0 PSI)
1 kPa = 4.014630	9 inH2O		\$F	FFF	+ 65	55.35 kPa	655.35 kPa	(95.1 PSI)
1 kPa = 101.9716	1 kPa = 101.9716213 mmH2O (millimeter of water)							
	1 kPa = 7.5006151 mmHg (millimeter of mercury)							
1 kPa = 0.010 bar	r							

TABLE E24 - UNIT AND SCALING ID \$18 DEFINITION

Unit and			Min.	Min. Value Max. V		x. Value	External Tes	t Equipment
Scaling ID (hex)	Description	Scaling/Bit	(hex)	(dec.)	(hex)	(dec.)	SI (Metric	c) Display
18	Pressure	0.0117 kPa per	0000	0 kPa	FFFF	766.76 kPa	XXX.XXX	kPa (Air)
	(Air pressure)	bit unsigned					(xxx.)	(PSI)
Conversion kPa -> PSI:			Data Range examples:			Display examples:		
	1 kPa (10 HPa) = 0.1450377 PSI			0000	0 kPa		0.0000 kPa	(0.0 PSI)
Add	litional Conversion	ons:	\$0001 + 0.0117 kPa			0.0117 kPa	(0.0 PSI)	
1 kPa = 4.014630	1 kPa = 4.0146309 inH2O			\$FFFF + 766.7595 kPa		766.7595	(111.2 PSI)	
1 kPa = 101.9716213 mmH2O (millimeter of water)							kPa	
1 kPa = 7.5006151 mmHg (millimeter of mercury)								
1 kPa = 0.010 bar	•							

TABLE E25 - UNIT AND SCALING ID \$19 DEFINITION

Unit and			Min.	Min. Value Max. Valu		. Value	External Test	Equipment
Scaling ID (hex)	Description	Scaling/Bit	(hex)	(dec.)	(hex)	(dec.)	SI (Metric)	Display
19	Pressure (Fuel	0.079 kPa per bit	0000	0 kPa	FFFF	5177.27	xxxx.xxx kPa	a (Gauge)
	pressure)	unsigned				kPa	(xxx.x	PSI)
Conversion kPa -> PSI:			Data Range examples:			Display examples:		
	1 kPa (10 HPa)) = 0.1450377 PSI	\$0	\$0000 0 kPa		0.000 kPa	(0.0 PSI)	
Add	ditional Conversi	ons:	\$0	0001	+ 0.0)79 kPa	0.079 kPa	(0.0 PSI)
1 kPa = 4.014630	1 kPa = 4.0146309 inH2O			FFF	+ 5177	7.265 kPa	5177.265 kPa	(750.9 PSI)
1 kPa = 101.9716213 mmH2O (millimeter of water)								
1 kPa = 7.5006151 mmHg (millimeter of mercury)								
1 kPa = 0.010 bar	r							

TABLE E26 - UNIT AND SCALING ID \$1A DEFINITION

Unit and			Min.	Value	Ма	x. Value	External Te	st Equipment
Scaling ID (hex)	Description	Scaling/Bit	(hex)	(dec.)	(hex)	(dec.)	SI (Metr	ic) Display
1A	Pressure	1 kPa per bit	0000	0 kPa	FFFF	65535 kPa	xxxxx kF	Pa (Gauge)
	(Gauge)	unsigned					(xxx)	(.x PSI)
Conversion kPa -> PSI:			Data Range examples:			mples:	Display examples:	
	1 kPa (10 HP	a) = 0.1450377 PSI	\$0000 0 kPa		0 kPa	(0.0 PSI)		
Add	litional Convers	sions:	\$0	001	+	- 1 kPa	1 kPa	(0.1 PSI)
1 kPa = 4.014630	1 kPa = 4.0146309 inH2O			FFF	+ 6	5535 kPa	65535 kPa	(9505.0 PSI)
1 kPa = 101.9716213 mmH2O (millimeter of water)								
1 kPa = 7.5006151 mmHg (millimeter of mercury)								
1 kPa = 0.010 bar	-							

TABLE E27 - UNIT AND SCALING ID \$1B DEFINITION

Unit and			Min.	/lin. Value Max. Value		External Te	st Equipment	
Scaling ID (hex)	Description	Scaling/Bit	(hex)	(dec.)	(hex)	(dec.)	SI (Metri	ic) Display
1B	Pressure (Diesel	10 kPa per bit	0000	0 kPa	FFFF	655350	xxxxxx kl	Pa (Gauge)
	pressure)	unsigned				kPa	(xxxx	x.x PSI)
	Conversion kPa ->: PSI			Data Range examples:			Display examples:	
	1 kPa (10 HPa) =	0.1450377 PSI	\$0	0000	0 kPa		0 kPa	(0.0 PSI)
Add	ditional Conversions	3:	\$0	0001	+ 10 kPa		10 kPa	(1.5 PSI)
1 kPa = 4.014630	9 inH2O		\$F	FFF	+ 655350 kPa		655350 kPa	(95050.5 PSI)
1 kPa = 101.9716213 mmH2O (millimeter of water)								
1 kPa = 7.5006151 mmHg (millimeter of mercury)								
1 kPa = 0.010 bar	ſ							

TABLE E28 - UNIT AND SCALING ID \$1C DEFINITION

Unit and			Min. Value		Max	. Value	External Test Equipment
Scaling ID (hex)	Description	Scaling/Bit	(hex)	(dec.)	(hex)	(dec.)	SI (Metric) Display
1C	Angle	0.01 ° per bit	0000	0 °	FFFF	655.35 °	xxx.xx °
		unsigned	С	ata Rang	e exam	ples:	Display examples:
			\$(0000		0 °	0.00 °
			\$(0001	+ (0.01 °	0.01 °
			\$8	BCA0	+	360 °	360.00 °
			\$F	FFFF	+ 6	55.35 °	655.35 °

TABLE E29 - UNIT AND SCALING ID \$1D DEFINITION

Unit and			Min. Value		Max. Value		External Test Equipment
Scaling ID (hex)	Description	Scaling/Bit	(hex)	(dec.)	(hex)	(dec.)	SI (Metric) Display
1D	Angle	0.5 ° per bit	0000	0 °	FFFF	32767.5°	xxxxx.x °
		unsigned		Data Rang	je exan	nples:	Display examples:
			\$0	0000	0 °		0.0 °
			\$0001		0.5 °		0.5 °
			\$F	FFF	32	767.5 °	32767.5 °

TABLE E30 - UNIT AND SCALING ID \$1E DEFINITION

Unit and			Min. Value		Max. Value		External Test Equipment
Scaling ID (hex)	Description	Scaling/Bit	(hex)	(dec.)	(hex)	(dec.)	SI (Metric) Display
1E	Equivalence	0.0000305	0000	0	FFFF	1.999	x.xxxxxxx lambda
	ratio (lambda)	per bit		Data Ran	ige examples:		Display examples:
		unsigned	\$0	0000		0	0.0000000 lambda
	measured Air/Fue	el ratio divided by	\$8	3013		1	1.0005798 lambda
	the stoichiomet	ric Air/Fuel ratio	\$F	FFF		1.999	1.9999695 lambda
	(14.64 for	gasoline)					

TABLE E31 - UNIT AND SCALING ID \$1F DEFINITION

Unit and			Min. Value		Ма	x. Value	External Test Equipment
Scaling ID (hex)	Description	Scaling/Bit	(hex)	(dec.)	(hex)	(dec.)	SI (Metric) Display
1F	Air/Fuel	0.05 per bit	0000	0	FFFF	3276.75	xxxx.xx A/F ratio
	Ratio	unsigned		Data Rang		mples:	Display examples:
	measured Air/	Fuel ratio NOT	\$0	000		0	0.00 A/F ratio
	divided by the	stoichiometric	\$0	001		0.05	0.05 A/F ratio
	Air/Fuel ratio (14	.64 for gasoline)	\$0	\$0014		1.00	1.00 A/F ratio
			\$0126			14.7	14.70 A/F ratio
			\$F	FFF	3	276.75	3276.75 A/F ratio

TABLE E32 - UNIT AND SCALING ID \$20 DEFINITION

Unit and			Min.	Min. Value Max. Value		x. Value	External Test Equipment
Scaling ID (hex)	Description	Scaling/Bit	(hex)	(dec.)	(hex)	(dec.)	SI (Metric) Display
20	Ratio	0.00390625 per bit	0000	0	FFFF	255.993	xxx.xxxxxx
		unsigned		Data Range examp			Display examples:
			\$0	0000		0	0.0000000
			\$0001		0.0	039062	0.0039063
			\$F	FFF	2	55.993	255.9960938

TABLE E33 - UNIT AND SCALING ID \$21 DEFINITION

Unit and			Min	Min. Value		c. Value	External Test Equipment
Scaling ID (hex)	Description	Scaling/Bit	(hex)	(dec.)	(hex)	(dec.)	SI (Metric) Display
21	Frequency	1 mHz per bit	0000	0	FFFF	65.535	xx.xxx Hz
		unsigned		Data Rang	ge exam	ples:	Display examples:
	Conversion mh	lz -> Hz -> kHz:	\$0	\$0000		mHz	0.000 Hz
	1000 mF	lz = 1 Hz	\$8000		32768 mHz		32.768 Hz
			\$F	FFF	655	35 mHz	65.535 Hz

TABLE E34 - UNIT AND SCALING ID \$22 DEFINITION

Unit and			Min. Value		Max	x. Value	External Test Equipment
Scaling ID (hex)	Description	Scaling/Bit	(hex)	(dec.)	(hex)	(dec.)	SI (Metric) Display
22	Frequency	1 Hz per bit	0000	0 Hz	FFFF	65535 Hz	xxxxx Hz
		unsigned		Data Rang	ge exan	nples:	Display examples:
	Conversion Hz	-> KHz -> MHz:	\$0	\$0000		0 Hz	0 Hz
	1000 Hz	= 1 KHz	\$8000		32768 Hz		32768 Hz
	1000 KHz	z = 1 MHz	\$F	FFFF	65	535 Hz	65535 Hz

TABLE E35 - UNIT AND SCALING ID \$23 DEFINITION

Unit and			Min. Value		Max. Value		External Test Equipment
Scaling ID (hex)	Description	Scaling/Bit	(hex)	(dec.)	(hex)	(dec.)	SI (Metric) Display
23	Frequency	1 KHz per bit	0000	0 KHz	FFFF	65535 KHz	xx.xxx MHz
		unsigned		Data Rar	ge exa	mples:	Display examples:
	Conversion Hz	-> KHz -> MHz:	\$0000		0 KHz		0.000 MHz
	1000 Hz	= 1 KHz	\$8000		32768 KHz		32.768 MHz
	1000 KHz	z = 1 MHz	\$F	FFF	65	535 KHz	65.535 MHz

TABLE E36 - UNIT AND SCALING ID \$24 DEFINITION

Unit and			Min	Min. Value		c. Value	External Test Equipment
Scaling ID (hex)	Description	Scaling/Bit	(hex)	(dec.)	(hex)	(dec.)	SI (Metric) Display
24	Counts	1 count per bit	0000	0 counts	FFFF	65535	xxxxx counts
		unsigned		Data Range		ples:	Display examples:
			\$0000		0 counts		0 counts
			\$1	FFFF	6553	5 counts	65535 counts

TABLE E37 - UNIT AND SCALING ID \$25 DEFINITION

Unit and			Min. Value		Max. Value		External Te	st Equipment
Scaling ID (hex)	Description	Scaling/Bit	(hex)	(dec.)	(hex)	(dec.)	SI (Metr	ic) Display
25	Distance	1 km per bit	0000 0 FFFF 6		65535	xxxxx km	(xxxxx miles)	
		unsigned		Data Range		nples:	Display	examples:
	Conversion	n km -> mile:	\$0000		(0 km	0 km	(0 miles)
	1 km = 0.6	32137 miles	\$F	FFF	65	535 km	65535 km	(40721 miles)

TABLE E38 - UNIT AND SCALING ID \$26 DEFINITION

Unit and			Min. Value Max. Value		External Test Equipment		
Scaling ID (hex)	Description	Scaling/Bit	(hex)	(dec.)	(hex)	(dec.)	SI (Metric) Display
26	Voltage per	0.1 mV/ms per	0000	0 V/ms	FFFF	6.5535	x.xxxx V/ms
	time	bit unsigned				V/ms	
	Conversion n	nV/ms -> V/ms:		Data Range		nples:	Display examples:
	1000 mV/ı	ms = 1 V/ms	\$(\$0000		mV/ms	0.0000 V/ms
			\$0001		0.1 mV/ms		0.0001 V/ms
			\$F	•		3.5 mV/ms	6.5535 V/ms

TABLE E39 - UNIT AND SCALING ID \$27 DEFINITION

Unit and			Min. Value		Max. Value		External Te	st Equipment
Scaling ID (hex)	Description	Scaling/Bit	(hex)	(dec.)	(hex)	(dec.)	SI (Metri	c) Display
27	Mass per	0.01 g/s per bit	0000	0 g/s	FFFF	655.35 g/s	xxx.xx g/s	(x.xxx lb/s)
	time	unsigned		Data Ran	ge exar	Display of	examples:	
	Conversio	n g/s -> lb/s:	\$0	0000		0 g/s	0.00 g/s	(0.000 lb/s)
	1 g/s = 0.0	0022046 lb/s	\$0001		+	0.01 g/s	0.01 g/s	(0.000 lb/s)
			\$F	FFF	+ 6	55.35 g/s	655.35 g/s	(1.445 lb/s)

TABLE E40 - UNIT AND SCALING ID \$28 DEFINITION

Unit and			Min.	Min. Value		x. Value	External Te	st Equipment
Scaling ID (hex)	Description	Scaling/Bit	(hex) (dec.) ((hex)	(dec.)	SI (Metric) Display	
28	Mass per	1 g/s per bit	0000 0 g/s		FFFF	65535 g/s	xxxxx g/s	(xxx.xx lb/s)
	time	unsigned		ata Rang	je exan	nples:	Display	examples:
	Conversio	n g/s -> lb/s:	\$0	\$0000		0 g/s	0 g/s	(0.00 lb/s)
	1 g/s = 0.0	022046 lb/s	\$0001		+ 1 g/s		1 g/s	(0.00 lb/s)
			\$F	FFF	+ 6	5535 g/s	65535 g/s	(144.48 lb/s)

TABLE E41 - UNIT AND SCALING ID \$29 DEFINITION

Unit and			Min.	Value	Max.	Value	External Test	Equipment
Scaling ID (hex)	Description	Scaling/Bit	(hex)	(dec.)	(hex)	(dec.)	SI (Metric)	Display
29	Pressure per	0.25 Pa/s per	0000	0 kPa/s	FFFF		xx.xxxx kPa	`
	time	bit unsigned				kPa/s	inH20	D/s)
	Conversion: in	H2O/s -> kPa/s	Da	ta Range	exampl	es:	Display ex	amples:
	1 inH2O/s = 0.	2490889 kPa/s	\$0000	0 Pa/s	0 inl	120/s	0.0000 kPa/s	(0.000
								inH2O/s)
(inch of wate	er) 1 inH2O = 24	9.0889 Pa	\$0004	+ 1 Pa/s	+ 4	.015	0.0010 kPa/s	(4.015
					inH	20/s		inH2O/s)
(millimeter of w	ater) 1 mmH2O	= 9.80665 Pa	\$FFFF	+ 16384	+ 65	,5348	16.3838	(65.775
(millimeter of me	ercury) 1 mmHg	= 133.3224 Pa		Pa/s	inH	20/s	kPa/s	inH2O/s)

TABLE E42 - UNIT AND SCALING ID \$2A DEFINITION

Unit and			Min	Min. Value Max. Valu		c. Value	External Test Equipment
Scaling ID (hex)	Description	Scaling/Bit	(hex)	(dec.)	(hex)	(dec.)	SI (Metric) Display
2A	Mass per time	0.001 kg/h per	0000	0 kg/h	FFFF	65.535	xx.xxx kg/h
		bit unsigned				kg/h	
	Conversion	lbs/s -> kg/h:		Data Range		ıples:	Display examples:
	1 lbs/s = 0.4	535924 kg/h	\$(\$0000		kg/h	0.000 kg/h
		_	\$0	\$0001		001 kg/h	0.001 kg/h
			\$F	FFFF	+ 65.	535 kg/h	65.535 kg/h

TABLE E43 - UNIT AND SCALING ID \$2B DEFINITION

Unit and			Min.	Min. Value		x. Value	External Test Equipment
Scaling ID (hex)	Description	Scaling/Bit	(hex)	(dec.)	(hex)	(dec.)	SI (Metric) Display
2B	Switches	hex to decimal	0000	0	FFFF	65535	xxxxx switches
		unsigned	Data Rang		nge examples:		Display examples:
			\$0	\$0000		witches	0 switches
			\$0001		+ 1 switches		1 switches
			\$F	FFF	+ 6553	35 switches	65535 switches

TABLE E44 - UNIT AND SCALING ID \$2C DEFINITION

Unit and			Min	Min. Value		k. Value	External Test Equipment
Scaling ID (hex)	Description	Scaling/Bit	(hex)	(dec.)	(hex)	(dec.)	SI (Metric) Display
2C	mass per	0.01 g/cyl per	0000	0 g/cyl	FFFF	655.35	xxx.xx g/cyl
	cylinder	bit unsigned				g/cyl	
				Data Range ex		nples:	Display examples:
			\$(\$0000		g/cyl	0.00 g/cyl
			\$0001		+ 0.01 g/cyl		0.01 g/cyl
			\$F	FFF	+ 655	5.35 g/cyl	655.35 g/cyl

TABLE E45 - UNIT AND SCALING ID \$2D DEFINITION

Unit and			Min	Min. Value		x. Value	External Test Equipment
Scaling ID (hex)	Description	Scaling/Bit	(hex)	(dec.)	(hex)	(dec.)	SI (Metric) Display
2D	Mass per	0.01 mg/stroke	0000	0	FFFF	655.35	xxx.xx mg/stroke
	stroke	unsigned		mg/stroke		mg/stroke	-
				Data Range	e examples:		Display examples:
			9	\$0000		g/stroke	0.00 mg/stroke
			9	\$0001		mg/stroke	0.01 mg/stroke
			\$FFFF		+ 655.35		655.35 mg/stroke
					mg	g/stroke	

TABLE E46 - UNIT AND SCALING ID \$2E DEFINITION

Unit and			Min.	Min. Value		k. Value	External Test Equipment
Scaling ID (hex)	Description	Scaling/Bit	(hex)	(dec.)	(hex)	(dec.)	SI (Metric) Display
2E	True/False	state encoded	0000	false	0001	True	
		unsigned		Data Range		nples:	Display examples:
			\$0000		False		false
			\$0	0001	•	True	true

TABLE E47 - UNIT AND SCALING ID \$2F DEFINITION

Unit and			Min. Value		Max. Value		External Test Equipment
Scaling ID (hex)	Description	Scaling/Bit	(hex)	(dec.)	(hex)	(dec.)	SI (Metric) Display
2F	Percent	0.01 % per bit	0000	0 %	FFFF	655.35 %	xxx.xx %
		unsigned	Data Rang		je examples:		Display examples:
			\$0	\$0000		0 %	0.00 %
			\$0001		+ 0.01 %		0.01 %
			\$2710		+ 100 %		100.00 %
			\$F	FFF	+ 6	55.35 %	655.35 %

TABLE E48 - UNIT AND SCALING ID \$30 DEFINITION

Unit and			Min	Min. Value		x. Value	External Test Equipment
Scaling ID (hex)	Description	Scaling/Bit	(hex)	(dec.)	(hex)	(dec.)	SI (Metric) Display
30	Percent	0.001526 %	0000	0 %	FFFF	100.00 %	xxx.xxxxxx %
		per bit, unsigned					
			Data Rang		ge examples:		Display examples:
			\$(\$0000		0 %	0.000000 %
			\$0001		+ 0.001526 %		0.001526 %
			\$F	FFF	+ 100	0.00641 %	100.006410 %

TABLE E49 - UNIT AND SCALING ID \$31 DEFINITION

Unit and			Min.	Min. Value		k. Value	External Test Equipment
Scaling ID (hex)	Description	Scaling/Bit	(hex)	(dec.)	(hex)	(dec.)	SI (Metric) Display
31	volume	0.001 L per bit,	0000	0 L	FFFF	65.535 L	xx.xxx L
		unsigned		ata Rang	ge exan	nples:	Display examples:
			\$0000			0 L	0.000 L
			\$0001		+ 0.001 L		0.001 L
			\$F	FFF	+ 6	5.535 L	65.535 L

TABLE E50 - UNIT AND SCALING ID \$32 DEFINITION

Unit and			Min.	Min. Value		x. Value	External Test Equipment
Scaling ID (hex)	Description	Scaling/Bit	(hex)	(dec.)	(hex)	(dec.)	SI (Metric) Display
32	length	0.0000305 inch	0000	0 inch	FFFF	1.999 inch	xx.xxxxxxx mm (x.xxx inch)
		per bit, unsigned	[Data Ran	ge exan	nples:	Display examples:
	1 inch	= 25.4 mm	\$0000		0 inch		0.0000000 mm (0.000 inch)
				:		:	:
			\$0	010	+ 0.00	004883 inch	0.0124023 mm (0.000 inch)
			\$0011		+ 0.0005188 inch		0.0131775 mm (0.001 inch)
			\$F	FFF	+ 1.99	99695 inch	50.7992249 mm (1.999
							inch)

TABLE E51 - UNIT AND SCALING ID \$33 DEFINITION

Unit and			Min. Value		Max. Value		External Test Equipment
Scaling ID (hex)	Description	Scaling/Bit	(hex)	(dec.)	(hex)	(dec.)	SI (Metric) Display
33	Equivalence	0.00024414	0000	0	FFFF	15.99976	xx.xxxxxxxx lambda
	ratio (lambda)	per bit, unsigned		ata Ran	ge exar	nples:	Display examples:
	measured	red Air/Fuel ratio		\$0000		0	0.00000000 lambda
		e stoichiometric	\$0	001		0.00	0.00024414 lambda
	Air/Fuel ratio (1	4.64 for gasoline)	\$1000		1.00		1.00000000 lambda
			\$E5BE		14.36		14.3588867 lambda
			\$F	FFF		16.00	15.99975586 lambda

TABLE E52 - UNIT AND SCALING ID \$34 DEFINITION

Unit and			Min. Value		Max. Value		External Test Equipment
Scaling ID (hex)	Description	Scaling/Bit	(hex)	(dec.)	(hex)	(dec.)	SI (Metric) Display
34	Time	1 minute per bit	0000	0	FFFF	65535	xx days, xx h, xx min
		unsigned	Data Range		je examples:		Display examples:
	Conversion	s -> min -> h:	\$00	000	0 min		0 days, 0 h, 0 min
	60 m	in = 1 h	\$003C		+ 60 min		0 days, 1 h, 0 min
	24 h	= 1 day	\$0E10		+ 3,600 min		2 days, 12 h, 0 min
			\$FF	FFF	+ 65,535 min		45 days, 12 h, 15 min

TABLE E53 - UNIT AND SCALING ID \$35 DEFINITION

Unit and			Min. Value		Max. Value		External Test Equipment
Scaling ID (hex)	Description	Scaling/Bit	(hex)	(dec.)	(hex)	(dec.)	SI (Metric) Display
35	Time	10 ms per bit	0000	0	FFFF	655,350	xxx.xx s (x min, xx s)
		unsigned	Da	ata Rang	ge exam	ples:	Display examples:
	Conversion	s -> min -> h:	\$0000)	0 m	S	0.00 s (0 min, 0 s)
	60 s	= 1 min	\$8000)	+ 327,680 ms		327.68 s (5 min, 28 s)
	60 m	in = 1 h	\$EA60)	+ 600,000 ms		600.00 s (10 min, 0 s)
			\$FFFF	=	+ 655,350 ms		655.35 s (10 min, 55 s)

TABLE E54 - UNIT AND SCALING ID \$36 DEFINITION

Unit and			Min. \	Min. Value		Value	External Test Equipment
Scaling ID (hex)	Description	Scaling/Bit	(hex)	(dec.)	(hex)	(dec.)	SI (Metric) Display
36	Weight	0.01 g per bit	0000	0	FFFF	655.35	xxx.xx g (x.xxx lbs)
		unsigned	Da	ita Rang	e examples:		Display examples:
	Conversi	on g -> lbs:	\$00	\$0000) g	0.00 g (0.000 lbs)
	1 lbs	= 453 g	\$00	\$0052		.82 g	0.82 g (0.002 lbs)
			\$0E21		+ 36.17 g		36.17 g (0.079 lbs)
			\$FF	FF	+ 65	5.35 g	655.35 g (1.447 lbs)

TABLE E55 - UNIT AND SCALING ID \$37 DEFINITION

Unit and			Min.	Min. Value		Value	External Test Equipment
Scaling ID (hex)	Description	Scaling/Bit	(hex)	(dec.)	(hex)	(dec.)	SI (Metric) Display
37	Weight	0.1 g per bit	0000	0	FFFF	6553.5	xxxx.x g (xx.xxx lbs)
		unsigned	Data Rang		e examp	oles:	Display examples:
	Conversion	on g -> lbs:	\$00	000	0 g		0.0 g (0.000 lbs)
	1 lbs :	= 453 g	\$00	\$0052		.20 g	8.2 g (0.018 lbs)
			\$0E21		+ 361.7 g		361.7 g (0.798 lbs)
			\$FF	FF	+ 65	53.5 g	6553.5 g (14.467 lbs)

TABLE E56 - UNIT AND SCALING ID \$38 DEFINITION

Unit and			Min. \	Min. Value		Value	External Test Equipment
Scaling ID (hex)	Description	Scaling/Bit	(hex)	(dec.)	(hex)	(dec.)	SI (Metric) Display
38	Weight	1 g per bit	0000	0	FFFF	65535	xxxxx g (xxx.xx lbs)
		unsigned	Da	ata Rang	e examp	les:	Display examples:
	Conversi	on g -> lbs:	\$00	000	C) g	0 g (0.00 lbs)
	1 lbs :	= 453 g	\$00	\$0052		32 g	82 g (0.18 lbs)
			\$0E21		+ 3617 g		3617 g (7.98 lbs)
			\$FF	FF	+ 65	535 g	65535 g (144.67 lbs)

TABLE E57 - UNIT AND SCALING ID \$39 DEFINITION

Unit and			Mi	n. Value	Ma	ax. Value	External Test Equipment
Scaling ID (hex)	Description	Scaling/Bit	(hex)	(dec.)	(hex)	(dec.)	SI (Metric) Display
39	Percent	0.01% per bit	0000	- 327.68 %	FFFF	+ 327.67 %	xxx.xx %
		unsigned		Data Range	e exam	ples:	Display examples:
	Conversion H =	E*100 – 32768		\$0000	- 3	327.68 %	- 327.68 %
				\$58F0		100.00%	– 100.00 %
			!	\$7FFF	_	0.01 %	- 0.01 %
				\$8000		0 %	0.00 %
				\$8001	+	0.01 %	+ 0.01 %
				\$A710	+	- 100 %	+ 100.00 %
			,	\$FFFF	+ 3	327.67 %	+ 327.67 %

TABLE E58 - UNIT AND SCALING ID \$3A DEFINITION

Unit and			Min. Value		Max. Value		External Test Equipment
Scaling ID (hex)	Description	Scaling/Bit	(hex)	(dec.)	(hex)	(dec.)	SI (Metric) Display
3A	Weight	0.001 g per bit	0000	0	FFFF	65.535	xx.xxx g (x.xxxx lbs)
		unsigned	Da	ta Rang	e examp	les:	Display examples:
	Conversi	on g -> lbs:	\$0000		0 g		0.000 g (0.0000 lbs)
	1 lbs	= 453 g	\$0052		+ 0.082 g		0.082 g (0.0002 lbs)
			\$0E21		+ 3.617 g		3.617 g (0.0079 lbs)
			\$FF	FF	+ 65	.535 g	65.535 g (0.1447 lbs)

TABLE E59 - UNIT AND SCALING ID \$3B DEFINITION

Unit and			Min. Value		Max. Value		External Test Equipment
Scaling ID (hex)	Description	Scaling/Bit	(hex)	(dec.)	(hex)	(dec.)	SI (Metric) Display
3B	Weight	0.0001 g per bit	0000	0	FFFF	6.5535	x.xxxx g (x.xxxxx lbs)
		unsigned	Da	ata Rang	e examples:		Display examples:
	Conversi	ion g -> lbs:	\$0000		0 g		0.0000 g (0.00000 lbs)
	1 lbs	= 453 g	\$0052		+ 0.0082 g		0.0082 g (0.00002 lbs)
			\$0E21		+ 0.3617 g		0.3617 g (0.00079 lbs)
			\$FF	FF	+ 6.5	535 g	6.5535 g (0.01447 lbs)

TABLE E60 - UNIT AND SCALING ID \$3C DEFINITION

Unit and			Min. Value		Max. Value		External Test Equipment
Scaling ID (hex)	Description	Scaling/Bit	(hex)	(dec.)	(hex)	(dec.)	SI (Metric) Display
3C	Time	0.1 µs per bit	0000	0 µs	FFFF	6553.5 µs	xxxx.x µs
		unsigned		Data Ra	inge exa	Display examples:	
	Conversion	on s -> min:	\$0000		0 μs		0.0 µs
	60 s	= 1 min	\$8000		+ 3276	6.8 µs	3276.8 µs
			\$EA60		+ 6000).0 μs	6000.0 µs
			\$FFFF		+ 6553	3.5 µs	6553.5 µs

TABLE E61 - UNIT AND SCALING ID \$3D DEFINITION

Unit and			Min. Value		Max. Value		External Test Equipment
Scaling ID (hex)	Description	Scaling/Bit	(hex)	(dec.)	(hex)	(dec.)	SI (Metric) Display
3D	Current	0.01 mA per	0000	0 mA	FFFF	655.35	xxx.xx mA
		bit				mA	
		unsigned		Data Rang	ge exan	nples:	Display examples:
	Conversion	on mA -> A:	\$0	\$0000) mA	0.00 mA
	1000 n	nA = 1 A	\$0001		+0.01 mA		0.01 mA
			\$F	FFF	+ 655.35 mA		655.35 mA

TABLE E62 - UNIT AND SCALING ID \$3E DEFINITION

Unit and			Min. Value		Max. Value		External Test Equipment
Scaling ID (hex)	Description	Scaling/Bit	(hex)	(dec.)	(hex)	(dec.)	SI (Metric) Display
3E	Area	0.00006103516	0000	0	FFFF	3.999939	x.xx mm2
		mm2 per bit		mm2		mm2	
		unsigned		ata Ran	ige exan	nples:	Display examples:
			\$0000		0 mm	12	0.00 mm2
			\$8000	1.9	999948	8 mm2	2.00 mm2
			\$FFFF	3	.999939	mm2	4.00 mm2

TABLE E63 - UNIT AND SCALING ID \$3F DEFINITION

Unit and			Min. Value		Max. Value		External Test Equipment
Scaling ID (hex)	Description	Scaling/Bit	(hex)	(dec.)	(hex)	(dec.)	SI (Metric) Display
3F	volume	0.01 L per bit,	0000	0 L	FFFF	655.35 L	xxx.xx L
		unsigned		ata Rang	ge exan	nples:	Display examples:
			\$0	0000	0 L		0.00 L
			\$0	0001	+ 0.01 L		0.01 L
			\$F	FFF	+ 655.35 L		655.35 L

TABLE E64 - UNIT AND SCALING ID \$40 DEFINITION

Unit and			Min. Value		Max. Value		External Test Equipment
Scaling ID (hex)	Description	Scaling/Bit	(hex)	(dec.)	(hex)	(dec.)	SI (Metric) Display
40	part per	1 ppm per bit	0000	0 ppm	FFFF	65535	xxxxx ppm
	million					ppm	
		unsigned		Data Rang	ge examples:		Display examples:
			\$0	0000	0 ppm		0 ppm
			\$F	FFF	65535 ppm		65535 ppm

TABLE E65 - UNIT AND SCALING ID \$41 DEFINITION

Unit and			Min. Value		Max. Value		External Test Equipment
Scaling ID (hex)	Description	Scaling/Bit	(hex)	(dec.)	(hex)	(dec.)	SI (Metric) Display
41	Current	0.01 microA per bit	0000	0 μΑ	FFFF	655.35 μΑ	ххх.хх µА
		unsigned		Data Ran	ge examples:		Display examples:
	Conversion	microA -> A:	\$0	\$0000		0 μΑ	0.00 μΑ
	1000000 r	nicroA = 1 A	\$0001		+0.01 μA		0.01 μΑ
			\$F	FFF	+ 655.35 μA		655.35 μΑ

Unit And Scaling Identifiers in the unsigned range of \$01 through \$7F, which are not specified, are ISO/SAE reserved. Additional Scaling Identifiers shall be submitted to the SAE Vehicle E/E System Diagnostic Standards Committee or ISO/TC22/SC3/WG1 to consider for implementation in this document.

E.2 SIGNED UNIT AND SCALING IDENTIFIERS DEFINITION

TABLE E66 - UNIT AND SCALING ID \$81 DEFINITION

Unit and			Min. Value		Max. Value		External Test Equipment
Scaling ID (hex)	Description	Scaling/Bit	(hex)	(dec.)	(hex)	(dec.)	SI (Metric) Display
81	Raw Value	1 per bit	8000	- 32768	7FFF	+ 32767	xxxxx
		hex to decimal		Data Rang	ge examples:		Display examples:
		signed	\$8	\$8000		32768	– 32768
			\$1	FFFF		– 1	– 1
			\$0	\$0000		0	0
			\$0001			+ 1	1
			\$7	7FFF	+	32767	32767

TABLE E67 - UNIT AND SCALING ID \$82 DEFINITION

Unit and			Min	Min. Value		x. Value	External Test Equipment
Scaling ID (hex)	Description	Scaling/Bit	(hex)	(dec.)	(hex)	(dec.)	SI (Metric) Display
82	Raw Value	0.1 per bit	8000	- 3276.8	7FFF	+ 3276.7	xxxx.x
		hex to decimal		Data Range		ples:	Display examples:
		signed	\$	00083	- 3276.8		– 3276.8
			\$	FFFF	- 0.1		- 0.1
			\$	\$0000		0	0.0
			\$0001		+ 0.1		0.1
			\$	7FFF	+ :	3276.7	3276.7

TABLE E68 - UNIT AND SCALING ID \$83 DEFINITION

Unit and			Min	Min. Value		x. Value	External Test Equipment
Scaling ID (hex)	Description	Scaling/Bit	(hex)	(dec.)	(hex)	(dec.)	SI (Metric) Display
83	Raw Value	0.01 per bit	8000	- 327.68	7FFF	+ 327.67	xxx.xx
		hex to decimal		Data Rang	e exam	ıples:	Display examples:
		signed	\$	\$8000		327.68	– 327.68
			\$	FFFF	- 0.01		- 0.01
			\$	\$0000		0	0.00
			\$0001		+ 0.01		0.01
			\$	7FFF	+ :	327.67	327.67

TABLE E69 - UNIT AND SCALING ID \$84 DEFINITION

Unit and			Min. Value		Max. Value		External Test Equipment
Scaling ID (hex)	Description	Scaling/Bit	(hex)	(dec.)	(hex)	(dec.)	SI (Metric) Display
84	Raw Value	0.001 per bit	8000	-32.768	7FFF	+ 32.767	xx.xxx
		hex to decimal		Data Rang		nples:	Display examples:
		signed	\$8	\$8000		32.768	- 32.768
			\$F	FFF	-0.001		- 0.001
			\$0	\$0000		0	0.000
			\$0	\$0001		0.001	0.001
			\$7	7FFF	+ :	32.767	32.767

TABLE E70 - UNIT AND SCALING ID \$85 DEFINITION

Unit and			Min.	Min. Value		k. Value	External Test Equipment
Scaling ID (hex)	Description	Scaling/Bit	(hex)	(dec.)	(hex)	(dec.)	SI (Metric) Display
85	Raw Value	0.0000305	8000	-0.999	7FFF	0.999	x.xxxxxxx
		per bit		ata Rang	ge exan	nples:	Display examples:
		hex to decimal	\$8	\$8000		999995	- 0.999995
		signed	\$F	FFF	-0.0000305		-0.0000305
			\$0	\$0000		0	0.000000
			\$0001		+ 0.0000305		0.0000305
			\$7	'FFF	+ 0.9	9999690	0.999690

TABLE E71 - UNIT AND SCALING ID \$86 DEFINITION

Unit and			Min.	Min. Value		k. Value	External Test Equipment
Scaling ID (hex)	Description	Scaling/Bit	(hex)	(dec.)	(hex)	(dec.)	SI (Metric) Display
86	Raw Value	0.000305 per bit	8000	- 9.994	7FFF	9.994	x.xxxxx
		hex to decimal		Data Rang	je exan	nples:	Display examples:
		signed	\$8	\$8000		.999995	- 10.000000
			\$F	FFFF	-0.000305		-0.000305
			\$0	0000		0	0.00000
			\$0	0001	+ 0.	.000305	0.000305
			\$7	7FFF	+ 9	.99969	9.999969

TABLE E72 - UNIT AND SCALING ID \$87 DEFINITION

Unit and			Min. Value		Max. Value		External Test Equipment
Scaling ID (hex)	Description	Scaling/Bit	(hex)	(dec.)	(hex)	(dec.)	SI (Metric) Display
87	part per	1 ppm per bit	8000	- 32768	7FFF	+ 32767	xxxxx ppm
	million			ppm		ppm	
		hex to decimal	Data Rang		ge examples:		Display examples:
		signed	\$8	8000	 32768 ppm 		– 32768 ppm
			\$F	FFFF	– 1 ppm		– 1 ppm
			\$0000		C) ppm	0 ppm
			\$0001		+ 1 ppm		1 ppm
			\$7	7FFF	+ 32	767 ppm	32767 ppm

TABLE E73 - UNIT AND SCALING ID \$8A DEFINITION

Unit and			Mii	Min. Value		k. Value	External Test Equipment
Scaling ID (hex)	Description	Scaling/Bit	(hex)	(dec.)	(hex)	(dec.)	SI (Metric) Display
8A	Voltage	0.122 mV per	8000	- 3.9977 V	7FFF	3.9976 V	x.xxxxx V
		bit signed		Data Range e		es:	Display examples:
	Conversion	on mV -> V:	\$8	- 0000	- 3999.998 mV		- 3.999998 V
	1000 r	nV = 1 V	\$F	FFF	- 0.122 mV		- 0.000122 V
			\$0000		0 mV		0.000000 V
			\$0001		0.122 mV		0.000122 V
			\$7	FFF -	+ 3999.	876 mV	3.999876 V

TABLE E74 - UNIT AND SCALING ID \$8B DEFINITION

Unit and			Min. Value		Max	. Value	External Test Equipment
Scaling ID (hex)	Description	Scaling/Bit	(hex)	(dec.)	(hex)	(dec.)	SI (Metric) Display
8B	Voltage	0.001 V	8000	- 32.768 V	7FFF	32.767 V	xx.xxx V
		per bit, signed		Data Range	e examples:		Display examples:
	Conversion	on mV -> V:		\$8000	- 32768 mV		– 32.768 V
	1000 r	nV = 1 V	;	\$FFFF	_	1 mV	– 0.001 V
				\$0000) mV	0.000 V
			\$0001		1 mV		0.001 V
				\$7FFF	+ 32767 mV		32.767 V

TABLE E75 - UNIT AND SCALING ID \$8C DEFINITION

Unit and			Min. Value		Max. Value		External Test Equipment
Scaling ID (hex)	Description	Scaling/Bit	(hex)	(dec.)	(hex)	(dec.)	SI (Metric) Display
8C	Voltage	0.01 V	8000	- 327.68 V	7FFF	327.67 V	xxx.xx V
		per bit, signed		Data Range		examples: Display examples:	
	Conversion	on mV -> V:	\$8000		- 327680 mV		– 327.68 V
	1000 r	nV = 1 V	\$F	FFFF	– 10 mV		– 0.01 V
			\$0	\$0000		mV	0.00 V
			\$0001		+ 10 mV		0.01 V
			\$7FFF + 327670 mV		670 mV	327.67 V	

TABLE E76 - UNIT AND SCALING ID \$8D DEFINITION

Unit and			Min. Value		Max. Value		External Test Equipment
Scaling ID (hex)	Description	Scaling/Bit	(hex)	(dec.)	(hex)	(dec.)	SI (Metric) Display
8D	Current	0.00390625 mA	8000	- 128.0	7FFF	127.996 mA	xxx.xxxxxxxx mA
		per bit, signed		mA			
			Data Rar		ige examples:		Display examples:
			\$8	8000	– 128 mA		– 128.0000000 mA
			\$F	FFFF	- 0.00390625 mA		- 0.00390625 mA
			\$0000		+ 0 mA		0.00000000 mA
			\$0001		0.00390625 mA		0.00390625 mA
			\$7	7FFF	+ 12	27.996 mA	127.99609375 mA

TABLE E77 - UNIT AND SCALING ID \$8E DEFINITION

Unit and			Min. Value		Max	k. Value	External Test Equipment		
Scaling ID (hex)	Description	Scaling/Bit	(hex)	(dec.)	(hex)	(dec.)	SI (Metric) Display		
8E	Current	0.001 A	8000	- 32.768 A	7FFF	32.767 A	xx.xxx A		
		per bit, signed		Data Range	examples:		Display examples:		
	Conversion	on mA -> A:	;	\$8000	- 32768 mA		– 32.768 A		
	1000 r	nA = 1 A	5	\$FFFF	_	1 mA	– 0.001 A		
			;	\$0000		0 mA	0.000 A		
			\$0001		\$0001 + 1 mA		+ 1 mA		0.001 A
			0,	\$7FFF + 3276		2767 mA	32.767 A		

TABLE E78 - UNIT AND SCALING ID \$90 DEFINITION

Unit and			Min	Min. Value		c. Value	External Test Equipmen
Scaling ID (hex)	Description	Scaling/Bit	(hex)	(hex) (dec.)		(dec.)	SI (Metric) Display
90	Time	1 ms	8000	- 32.768 s	7FFF	+ 32.767 s	xx.xxx s
		per bit, signed		Data Range	examp	es:	Display examples:
			9	\$8000	- 32768 ms		– 32.768 s
			\$0001		1 + 1 ms		+ 0.001 s
			\$	S7FFF	+ 32	2767 ms	+ 32.767 s

TABLE E79 - UNIT AND SCALING ID \$96 DEFINITION

Unit and			Mi	Min. Value		ax. Value	External Test Equipment	
Scaling ID (hex)	Description	Scaling/Bit	(hex) (dec.)		(hex)	(dec.)	SI (Metri	ic) Display
96	Temperature	0.1 °C	8000 - 3276.8 °C		7FFF	+ 3276.7 °C	xxxx.x °C	S (xxxx.x °F)
		per bit, signed						
			Data Range		e examp	oles:	Display	examples:
	Conversion	n °C -> °F:	\$8000		− 3276.8 °C		− 3276.8 °C	(- 5886.2 °F)
	°F = °C *	1.8 + 32 °C		\$FE70	− 40 °C		− 40.0 °C	(− 40.0 °F)
			9	\$FFFF	-	- 0.1 °C	-0.1 °C	(31.8 °F)
			\$0000		0 °C		0.0 °C	(32.0 °F)
			\$0001		+ 0.1 °C		0.1 °C	(32.2 °F)
			\$4E20		+ 2000 °C		2000.0 °C	(3632.0 °F)
			\$	7FFF	+ 3	3276.7 °C	3276.7 °C	(5930.1 °F)

TABLE E80 - UNIT AND SCALING ID \$99 DEFINITION

Unit and			Min	. Value	Max	. Value	External Test Equipme	
Scaling ID (hex)	Description	Scaling/Bit	(hex)	(dec.)	(hex)	(dec.)	SI (Metri	ic) Display
99	Pressure	0.1 kPa per bit	8000	- 3276.8	7FFF	3276.7	XXXX	c.x kPa
		signed		kPa		kPa	(xxx.	xx PSI)
Conversion kPa -> PSI:				Data Range	e examp	oles:	Display	examples:
1 kPa (10 HPa) = 0.1450377			\$	8000	- 327	76.8 kPa	- 3276.8	(-475.26 PSI)
PŚI					kPa			
			\$	FFFF	- 0	.1 kPa	– 0.1 kPa	(-0.15 PSI)
			\$0000 0 kPa		0.0 kPa	(0.00 PSI)		
Addi	tional Conversio	ns:	\$	\$0001 + 0.1 kPa			0.1 kPa	(0.15 PSI)
1 kPa = 4.014630	1 kPa = 4.0146309 inH2O			7FFF	+ 327	76.7 kPa	+ 3276.7	(475.25 PSI)
1 kPa = 101.9716213 mmH2O (millimeter of							kPa	
water)								
1 kPa = 7.500615	kPa = 7.5006151 mmHg (millimeter of mercury)							
1 kPa = 0.010 bar								

TABLE E81 - UNIT AND SCALING ID \$9C DEFINITION

Unit and			Mi	Min. Value		k. Value	External Test Equipment
Scaling ID (hex)	Description	Scaling/Bit	(hex)	(hex) (dec.)		(dec.)	SI (Metric) Display
9C	Angle	0.01°	8000	– 327.68 °	7FFF	327.67 °	xxx.xx °
		per bit, signed		Data Range	examp	oles:	Display examples:
			\$3	\$8000		7.68 °	− 327.68 °
			\$1	F060	− 40 °		− 40.00 °
			\$1	FFFF	– 0.01 °		– 0.01 °
			\$(\$0000) °	0.00 °
			\$0	\$0FA0		40 °	+ 40.00 °
			\$7	\$7FFF		7.67 °	+ 327.67 °

TABLE E82 - UNIT AND SCALING ID \$9D DEFINITION

Unit and			Min. Value		Max	x. Value	External Test Equipment
Scaling ID (hex)	Description	Scaling/Bit	(hex)	(dec.)	(hex)	(dec.)	SI (Metric) Display
9D	Angle	0.5°	8000	-16384 °	7FFF	16383.5 °	xxxxx.x °
		per bit, signed	[Data Rang	e exan	nples:	Display examples:
			\$	8000	– 16384 °		– 16384.0 °
			\$1	FF60	− 80 °		− 80.0 °
			\$1	FFFF	_	0.5 °	− 0.5 °
			\$(0000	0 °		0.0 °
			\$0001		+	· 0.5 °	0.5 °
			\$0	0A00	+	- 80 °	80.0 °
			\$7	7FFF	+ 16	6383.5°	16383.5 °

TABLE E83 - UNIT AND SCALING ID \$A8 DEFINITION

Unit and			Min	Min. Value		x. Value	External Tes	st Equipment
Scaling ID (hex)	Description	Scaling/Bit	(hex)	(dec.)	(hex)	(dec.)	SI (Metri	c) Display
A8	Mass per	1 g/s	8000	- 32768	7FFF	+ 32767	+ 32767 xxxxx g/s (xx.xx	
	time	per bit, signed	g/s			g/s		
			Data Rang		e examples:		Display 6	examples:
	Conversio	n g/s -> lb/s:	\$	8000	- 32	2768 g/s	- 32768 g/s	(- 72.24 lb/s)
	1 g/s = 0.0	0022046 lb/s	\$	FFFF	– 1 g/s		– 1 g/s	(- 0.00 lb/s)
			\$0000		0 g/s		0 g/s	(0.00 lb/s)
			\$0001		+ 1 g/s		1 g/s	(0.00 lb/s)
			\$	7FFF	+ 32	2767 g/s	32767 g/s	(72.24 lb/s)

TABLE E84 - UNIT AND SCALING ID \$A9 DEFINITION

Unit and			Min.	Value	Max. Value		External Test Equipment		
Scaling ID (hex)	Description	Scaling/Bit	(hex)	(dec.)	(hex)	(dec.)	SI (Met	ric) Display	
A9	Pressure per	0.25 Pa/s per	8000	- 819	7FFF 8191.75		xxxx.xx Pa/s	(xx.xxx inH2O/s)	
	time	bit signed		2 Pa/s		Pa/s			
Conversion Pa -> inH2O			Da	ata Rang	ge exar	nples:	Display examples:		
	1 Pa = 0.0040146309 inH2O		\$8	000	- 8192 Pa/s		- 8192.00 Pa/s	(- 32.888 inH2O/s)	
			\$F	FFC	– 1 Pa/s		– 1.00 Pa/s	(-0.004 inH2O/s)	
			\$0	000	0 Pa/s		0.00 Pa/s	(0.000 inH2O/s)	
			\$0	004	+ 1 Pa/s		1.00 Pa/s	(0.004 inH2O/s)	
			\$7	FFF	+ 819	1.75 Pa/s	8191.75 Pa/s	(32.887 inH2O/s)	

TABLE E85 - UNIT AND SCALING ID \$AD DEFINITION

Unit and			Min. Value		Ma	x. Value	External Test Equipment
Scaling ID (hex)	Description	Scaling/Bit	(hex)	(dec.)	(hex)	(dec.)	SI (Metric) Display
AD	Mass per stroke	0.01 mg/stroke signed	8000 -327.68 mg/stroke		7FFF 327.67 mg/stroke		xxx.xx mg/stroke
			Data Range examples:				Display examples:
			9	00083	-327.68		-327.68 mg/stroke
			\$	FFFF	- 0.01 mg/stroke		- 0.01 mg/stroke
				0000	0 mg/stroke		0.00 mg/stroke
			\$0001		+ 0.01	mg/stroke	0.01 mg/stroke
			\$7FFF		+ 327.67		327.67 mg/stroke
					mg	g/stroke	

TABLE E86 - UNIT AND SCALING ID \$AE DEFINITION

Unit and			Min. Value		Max. Value		External Test Equipment
Scaling ID (hex)	Description	Scaling/Bit	(hex)	(dec.)	(hex)	(dec.)	SI (Metric) Display
AE	Mass per	0.1 mg/stroke	8000	-3276.8	7FFF	3276.7	xxxx.x mg/stroke
	stroke	signed		mg/stroke		mg/stroke	_
				Data Range	e exam	Display examples:	
			\$	0008	-3	3276.8	-3276.8 mg/stroke
					•	g/stroke	
			\$	FFFF	- 0.1	mg/stroke	- 0.1 mg/stroke
			\$	0000	0 m	ıg/stroke	0.00 mg/stroke
			\$	\$0001 + 0.1 mg/stroke		0.1 mg/stroke	
			\$	\$7FFF + 3276.7		3276.7 mg/stroke	
					mg	g/stroke	

TABLE E87 - UNIT AND SCALING ID \$AF DEFINITION

Unit and			Mi	n. Value	Ma	ax. Value	External Test Equipment
Scaling ID (hex)	Description	Scaling/Bit	(hex)	(hex) (dec.)		(dec.)	SI (Metric) Display
AF	Percent	0.01 %	8000	- 327.68 %	7FFF	+ 327.67 %	xxx.xx %
		per bit, signed		Data Range	e exam	Display examples:	
			\$8000		- 327.68 %		– 327.68 %
				\$D8F0	– 100 %		– 100.00 %
				\$FFFF	- 0.01 %		– 0.10 %
				\$0000	0 %		0.00 %
				\$0001	+	- 0.01 %	0.10 %
				\$2710	+ 100 %		100.00 %
				\$7FFF	+ ;	327.67 %	+ 327.67 %

TABLE E88 - UNIT AND SCALING ID \$80 DEFINITION

Unit and			Min. Value		Max. Value		External Test Equipment
Scaling ID (hex)	Description	Scaling/Bit	(hex)	(dec.)	(hex)	(dec.)	SI (Metric) Display
В0	Percent	0.003052 %	8000	– 100.01 %	7FFF	+ 100.00 %	xxx.xxxxxx %
		per bit, signed	Data Range examples:				Display examples:
				\$8000	- 100	0.007936 %	- 100.007936 %
			;	\$FFFF	– 0.	003052 %	0.000000 %
				\$0000		0 %	0.000000 %
				\$0001	+ 0.	003052 %	0.003052 %
				\$7FFF	+ 100	0.004884 %	+ 100.004884 %

TABLE E89 - UNIT AND SCALING ID \$B1 DEFINITION

Unit and			Min. Value		Max. Value		External Test Equipment
Scaling ID (hex)	Description	Scaling/Bit	(hex)	(dec.)	(hex)	(dec.)	SI (Metric) Display
B1	Voltage per	2 mV/s per bit	8000	- 65536	7FFF	65534	xxxxx mV/s
	time	signed		mV/s		mV/s	
			Data Rang		e examples:		Display examples:
			\$	8000	- 65536 mV/s		- 65536 mV/s
			\$1	FFFF	– 2 mV/s		− 2 mV/s
			\$0000		0	mV/s	0 mV/s
			\$0001		+ 2 mV/s		+ 2 mV/s
			\$	7FFF	+ 65	534 mV	+ 65534 mV

TABLE E90 - UNIT AND SCALING ID \$FC DEFINITION

Unit and			Min. Value		Max. Value		External Test Equipment
Scaling ID (hex)	Description	Scaling/Bit	(hex)	(dec.)	(hex)	(dec.)	SI (Metric) Display
FC	Pressure	0.01 kPa per	8000	8000 - 327.68		+ 327.67	xxx.xx kPa
		bit, signed		kPa		kPa	
			Data Rang		ge examples:		Display examples:
			\$8000		- 327.68 kPa		– 327.68 kPa
			\$0001		+ 0.01 kPa		+ 0.01 kPa
			\$	7FFF	+ 327.67 kPa		+ 327.67 kPa

TABLE E91 - UNIT AND SCALING ID \$FD DEFINITION

Unit and			Min. Value		Max. Value		External Test Equipment
Scaling ID (hex)	Description	Scaling/Bit	(hex)	(dec.)	(hex)	(dec.)	SI (Metric) Display
FD	Pressure	0.001 kPa per	8000	- 32.768	7FFF	+ 32.767	xx.xxx kPa
		bit, signed		kPa		kPa	
				Data Rang	e examples:		Display examples:
			\$8000		- 32.768 kPa		– 32.768 kPa
			\$0001		+ 0.001 kPa		+ 0.001 kPa
			\$	7FFF	+ 32.767 kPa		+ 32.767 kPa

TABLE E92 - UNIT AND SCALING ID \$FE DEFINITION

Unit and			Min. Value Max. Value		External Test Equipment			
Scaling ID (hex)	Description	Scaling/Bit	(hex)	(dec.)	(hex)	(dec.)	SI (Met	ric) Display
FE	Pressure	0.25 Pa per bit	8000	- 8192	7FFF	8191.75	xxxx.xx Pa	(xx.xxx inH2O)
		signed		Pa		Pa		
	Conversion Pa -> inH2O			ata Rang	ge examples: Display examples:			y examples:
	1 Pa = 0.0040146309 inH2O		\$8	000	– 8192 Pa		- 8192.00 Pa	(- 32.888 inH2O)
			\$F	FFC	– 1 Pa		– 1.00 Pa	(-0.004 inH2O)
				000	0 Pa		0.00 Pa	(0.000 inH2O)
			\$0004 + 1		1 Pa	1.00 Pa	(0.004 inH2O)	
			\$7	FFF	+ 819	91.75 Pa	8191.75 Pa	(32.887 inH2O)

Unit And Scaling Identifiers in the signed range of \$80 through \$FE, which are not specified, are ISO/SAE reserved. Additional Scaling identifiers shall be submitted to the SAE Vehicle E/E System Diagnostic Standards Committee or ISO/TC22/SC3/WG1 to consider for implementation in this document.

$\begin{array}{c} \text{APPENDIX F - (NORMATIVE)} \\ \text{TIDS (TEST ID) FOR SERVICE $08 SCALING AND DEFINITION} \end{array}$

TABLE F1 - TEST ID DESCRIPTION

Test ID #	Description
\$01	Evaporative system leak test
	For ISO 9141-2, ISO 14230-4 and SAE J1850, DATA_A - DATA_E should be set to \$00 for a request and response message. If the conditions are not proper to run the test, the vehicle may either not respond to the request, or may respond with a manufacturer-specified value as DATA_A which corresponds to the reason the test cannot be run.
	For ISO 15765-4 protocol, DATA_A - DATA_E shall not be included in the request and response message. If the conditions are not proper to run the test, the vehicle shall respond with a negative response message with a response code \$22 – conditionsNotCorrect.
	This service enables the conditions required to conduct an evaporative system leak test, but does not actually run the test. An example is to close a purge solenoid, preventing leakage if the system is pressurized. The vehicle manufacturer is responsible to determine the criteria to automatically stop the test (open the solenoid in the example) such as engine running, vehicle speed greater than zero, or exceeding a specified time period.
\$02	Diesel Particulate Filter Regeneration
	For ISO 9141-2, ISO 14230-4 and SAE J1850, DATA_A - DATA_E should be set to \$00 for a request and response message. If the conditions are not proper to run the test, the vehicle may either not respond to the request, or may respond with a manufacturer-specified value as DATA_A which corresponds to the reason the test cannot be run.
	For ISO 15765-4 protocol, DATA_A - DATA_E shall not be included in the request and response message. If the conditions are not proper to run the test, the vehicle shall respond with a negative response message with a response code \$22 – conditionsNotCorrect. This service requests the vehicle to initiate a DPF regeneration. The vehicle manufacturer is responsible to determine the criteria to enable, start and stop the test, such as engine running, vehicle speed, or engine rpm.
\$03 – \$FF	ISO/SAE reserved

APPENDIX G - (NORMATIVE) INFOTYPES FOR SERVICE \$09 SCALING AND DEFINITION

TABLE G1 - MESSAGECOUNT VIN DATA BYTE DESCRIPTION

Vehicle Information Data Byte Description	Scaling	Mnemonic
MessageCount VIN Number of messages to report Vehicle Identification Number (VIN) — For ISO 9141-2, ISO 14230-4 and SAE J1850, the message count in the response shall always be \$05, and shall be reported for consistency in the use of this service. For ISO 15765-4, support for this parameter is not recommended/required for the ECU and the external test	1 byte unsigned numeric	MC_VIN
r r	Number of messages to report Vehicle Identification Number VIN) — For ISO 9141-2, ISO 14230-4 and SAE J1850, the message count in the response shall always be \$05, and shall be eported for consistency in the use of this service. For SO 15765-4, support for this parameter is not	Number of messages to report Vehicle Identification Number VIN) — For ISO 9141-2, ISO 14230-4 and SAE J1850, the message count in the response shall always be \$05, and shall be reported for consistency in the use of this service. For SO 15765-4, support for this parameter is not recommended/required for the ECU and the external test

TABLE G2 - VEHICLE IDENTIFICATION NUMBER DATA BYTE DESCRIPTION

InfoType (Hex)	Description	Scaling	External Test Equipment SI (Metric) / English Display
02	Vehicle Identification Number	17 ASCII characters	VIN: XXXXXXXXXXXXXXXXXX
	For vehicles that provide electronic acce		
	format for ease of use by the external te		
	Inspection/Maintenance programs. Each		
	letters in the set: [ABCDEFGHJKLMNPF a numeral in the set: [0123456789] (\$30		\$4A - \$4E, \$50, \$52 - \$5A), or
	`	,	
	For ISO 9141-2, ISO 14230-4 and SAE – Message #1 shall contain three (3) filli – Message #2 shall contain VIN charact – Message #3 shall contain VIN charact – Message #4 shall contain VIN charact – Message #5 shall contain VIN charact	ng bytes of \$00, followed the sets #2 to #5 inclusive; ers #6 to #9 inclusive; ers #10 to #13 inclusive;	
	For ISO 15765-4, there is only one responsy filling bytes.	onse message, which conf	ains all VIN characters without

TABLE G3 - MESSAGECOUNT CALID DATA BYTE DESCRIPTION

InfoType (Hex)	Vehicle Information Data Byte Description	Scaling	Mnemonic
03	MessageCount CALID	1 byte unsigned	MC_CALID
	Number of messages to report calibration identifications — For ISO 9141-2, ISO 14230-4 and SAE J1850, the message count in the response shall always be a multiple of four (4) because four (4) messages are used to report each calibration identification. For ISO 15765-4, support for this parameter is not recommended/required for the ECU and the external test equipment because the message count is always one.	numeric	

TABLE G4 - CALIBRATION IDENTIFICATIONS DATA BYTE DESCRIPTION

InfoType			External Test Equipment		
(Hex)	Description	Scaling	SI (Metric) / English Display		
04	Calibration Identifications	16 ASCII characters	CALID: XXXXXXXXXXXXXXXXX		
	Multiple calibration identifications may be reported for a controller, depending on the software architecture. Calibration identifications can include a maximum of sixteen (16) characters. Each calibration identification can contain only printable ASCII characters (\$20 through \$7E), and will be reported as ASCII values. Any unused data bytes shall be reported as \$00 and filled at the end of the calibration identification.				
	Calibration identifications shall uniquely identify the software installed in the ECU. If regulations require calibration identifications for emission-related software, those shall be reported in a standardized format.				
		entity other than the vehicle manufacturer shall also contain unique cate that a calibration is installed in the vehicle that is different from manufacturer.			
	Vehicle controllers that contain calibration ASCII-character calibration identification. This will allow modified calibration IDs to	is, even though they may r	not use all sixteen (16) characters.		

TABLE G5 - MESSAGECOUNT CVN DATA BYTE DESCRIPTION

InfoType (Hex)	Vehicle Information Data Byte Description	Scaling	Mnemonic
05	MessageCount CVN Number of messages to report Calibration Verification Numbers — For ISO 9141-2, ISO 14230-4 and SAE J1850, the message count in the response shall be the number of CVNs to report, because one message is required to report each CVN. For ISO 15765-4, support for this parameter is not recommended/required for the ECU and the external test equipment because the message count is always one.	1 byte unsigned numeric	MC_CVN

TABLE G6 - CALIBRATION VERIFICATION NUMBERS DATA BYTE DESCRIPTION

InfoType	Description	Cooling	External Test Equipment
(Hex)	Description Calibration Verification Numbers	Scaling	SI (Metric) / English Display
06	Calibration Verification Numbers	4 byte hex (most significant byte reported as Data A)	CVN: XXXXXXXX
	A Calibration Verification Number (CVN vehicle manufacturer is responsible for CVNs are calculated, e.g. checksum, ar regulations require calibration verification reported in a standardized format. Each (InfoType \$04), shall also have at least centire ECU is not programmable. The C reported in the same order as the CALIE	determining how many CVNs and the areas of memory to be n numbers for emission-relation calibration, as identified by a cone unique calibration verification (or group of CVNs) assigned are reported to the externation	are required and how the included in each calculation. If ed software, those shall be a calibration ID number eation number (CVN) unless the ned to a CALID shall be all test equipment.
	Two (2) response methods to report the to be implemented in the vehicle is speci- Method #1: The CVN(s) shall not be of once per trip. A trip shall be of reason be stored in NVM (Non Volatile Memora Once the computation is completed for a battery disconnect, the results shall the engine is running. If the CVN(s) are response message with response coordinates be sent by the ECU(s) until the positive ISO 15765-4 protocols. For ISO 9141 and ECU(s) shall behave as specified — Method #2: If method #1 does not approved to the complete positive response message RequestCorrectlyReceived-Response response message is available for the and SAE J1850 protocols, the externation SAE J1850 protocols, the externation shall be some stage of the collibrations developed by any entity other calibration verification number that is different developed by the vehicle manufacturer.	effied by the applicable regular computed on demand, but instable length (e.g. 5 to 10 min) bry) for immediate access by or the first time after a reprograte be made available to the extra requested before they have the \$78 - RequestCorrectlyRefer eresponse message is available. 2 and SAE J1850 protocols, in 5.2.4.3.2 and Figure 11. Dry, the on-board software of a request message. If the ECI are a negative response message Pending shall be sent by the eresponse message and ISO 1576 all test equipment and ECU(s) there than the vehicle manufact	tions. tead shall be computed at least . The computed CVN(s) shall the external test equipment. ramming event of the ECU(s) or ernal test equipment, even if e been computed, a negative received-ResponsePending shall able for the ISO 14230-4 and the external test equipment the ECU(s) shall compute the U(s) are not able to send an age with response code \$78 – ECU(s) until the positive 5-4 protocols. For ISO 9141-2 shall behave as specified in urer will generally have a
	If the calculation technique does not use with \$00.	e all four (4) bytes, the CVN s	hall be right justified and filled

TABLE G7 - MESSAGECOUNT IPT DATA BYTE DESCRIPTION FOR SPARK AND COMPRESSION IGNITION VEHICLES

InfoType (Hex)	Vehicle Information Data Byte Description	Scaling	Mnemonic
07	Number of messages to report In-use Performance Tracking using InfoType \$08 for spark ignition vehicles and InfoType \$08 for compression ignition vehicles. — For ISO 9141-2, ISO 14230-4 and SAE J1850, the message count in the response shall be \$08 if sixteen (16) values are required to be reported, \$09 if eighteen (18) values are required to be reported, and \$0A if twenty (20) values are required to be reported (one message is required to report two values). For ISO 15765-4, support for this parameter is not recommended/required for the ECU and the external test equipment because the message count is always one.	1 byte unsigned numeric	MC_IPT

TABLE G8 - IN-USE PERFORMANCE TRACKING DATA BYTE DESCRIPTION FOR SPARK IGNITION VEHICLES

InfoType (Hex)	Description	# of Data Bytes	External Test Equipment SI (Metric) / English Display	
08	In-use Performance Tracking: 16 or 20 counters	32 or 40	IPT:	
	Scaling: unsigned numeric (most significant byte reported as	Data A).		
	This data is used to support possible regulatory requirements for In-use Performance Tracking for spark ignition vehicles and compression ignition vehicles prior to 2010 MY. Manufacturers are required to implement software algorithms that track in-use performance for each of the following components: catalyst bank 1, catalyst bank 2, primary oxygen sensor bank 1, primary oxygen sensor bank 2, evaporative 0.020" leak detection system, EGR system, and secondary air system, and secondary oxygen sensor bank 1 and secondary oxygen sensor bank 2 for 2010 MY and beyond.			
	The numerator for each component or system shall track the a specific monitor to detect a malfunction have been encounted		es that all conditions necessary for	
	The denominator for each component or system shall track the operated in the specified conditions. These conditions are specified to the conditions are specified to the conditions are specified to the conditions.			
	The ignition counter shall track the number of times that the e	ngine has bee	n started.	
	All data items of the In-use Performance Tracking record sha	ll be reported in	n the order as listed in this table.	
	Data values, which are not implemented (e.g. bank 2 of the careported as \$0000.	atalyst monitor	of a 1-bank system) shall be	
	If a vehicle utilizes Variable Valve Timing (VVT) in place of EGR, the VVT in-use data shall be reported in place of the EGR in-use data. If a vehicle utilizes both an EGR system and a VVT system, the ECU shall track the in-use performance data for both monitors, but shall report only the data for the system with the lowest numerical ratio.			
	If a vehicle utilizes an evaporative system monitor that is certi requirements, the ECU shall report the 0.040" monitor in-use performance data.			
	OBD Monitoring Conditions Encountered Counts	2 bytes	OBDCOND: xxxxx cnts	
OBD Monitoring Conditions Encountered Counts displays the number of times that the vehicle operated in the specified OBD monitoring conditions (general denominator).			es that the vehicle has been	
	Ignition Cycle Counter		IGNCNTR: xxxxx cnts	
	Ignition Cycle Counter displays the count of the number of time			
	Catalyst Monitor Completion Counts Bank 1	2 bytes	CATCOMP1: xxxxx cnts	
	Catalyst Monitor Completion Counts Bank 1 displays the num detect a catalyst system bank 1 malfunction have been encou			
	Catalyst Monitor Conditions Encountered Counts		CATCOND1: xxxxx cnts	
	Bank 1	I 41		
	Catalyst Monitor Conditions Encountered Counts Bank 1 disp been operated in the specified catalyst monitoring conditions			
	Catalyst Monitor Completion Counts Bank 2	2 bytes	CATCOMP2: xxxxx cnts	
	Catalyst Monitor Completion Counts Bank 2 displays the num			
	detect a catalyst system bank 2 malfunction have been encou			
	Catalyst Monitor Conditions Encountered Counts Bank 2	2 bytes	CATCOND2: xxxxx cnts	
	Catalyst Monitor Conditions Encountered Counts Bank 2 disp been operated in the specified catalyst monitoring conditions			
	O2 Sensor Monitor Completion Counts Bank 1		O2SCOMP1: xxxxx cnts	
	O2 Sensor Monitor Completion Counts Bank 1 displays the n	umber of times	that all conditions necessary to	
	detect an oxygen sensor bank 1 malfunction have been enco	untered (nume	rator).	

TABLE G8 - IN-USE PERFORMANCE TRACKING DATA BYTE DESCRIPTION FOR SPARK IGNITION VEHICLES (CONTINUED)

InfoType (Hex)	Description	# of Data Bytes	External Test Equipment SI (Metric) / English Display
08	O2 Sensor Monitor Conditions Encountered Counts Bank 1	2 bytes	O2SCOND1: xxxxx cnts
	O2 Sensor Monitor Conditions Encountered Counts Bank 1 dis	plays the numb	per of times that the vehicle has
	been operated in the specified oxygen sensor monitoring condi-	tions (denomin	ator).
	O2 Sensor Monitor Completion Counts Bank 2	2 bytes	O2SCOMP2: xxxxx cnts
	O2 Sensor Monitor Completion Counts Bank 2 displays the nur		
	detect an oxygen sensor bank 2 malfunction have been encour	tered (numera	
	O2 Sensor Monitor Conditions Encountered Counts Bank 2	2 bytes	O2SCOND2: xxxxx cnts
	O2 Sensor Monitor Conditions Encountered Counts Bank 2 dispeen operated in the specified oxygen sensor monitoring conditions.		
	EGR and/or VVT Monitor Completion Condition Counts	2 bytes	EGRCOMP: xxxxx cnts
	EGR and/or VVT Monitor Completion Condition Counts displays	•	
	necessary to detect an EGR/VVT system malfunction have bee		
	EGR and/or VVT Monitor Conditions Encountered Counts	2 bytes	EGRCOND: xxxxx cnts
	EGR and/or VVT Monitor Conditions Encountered Counts displ	ays the numbe	er of times that the vehicle has
	been operated in the specified EGR/VVT system monitoring col	nditions (denor	minator).
	AIR Monitor Completion Condition Counts	2 bytes	AIRCOMP: xxxxx cnts
	(Secondary Air)	-	
	AIR Monitor Completion Condition Counts (Secondary Air) disp necessary to detect an AIR system malfunction have been enco		
	AIR Monitor Conditions Encountered Counts	2 bytes	AIRCOND: xxxxx cnts
	(Secondary Air)	2 bytes	AINCOND. XXXXX CITS
	AIR Monitor Conditions Encountered Counts (Secondary Air) di	i Isplays the nun	nber of times that the vehicle
	has been operated in the specified AIR system monitoring cond		
	EVAP Monitor Completion Condition Counts	2 bytes	EVAPCOMP: xxxxx cnts
	EVAP Monitor Completion Condition Counts displays the numb		
	detect a 0.020" (or 0.040") EVAP system leak malfunction have		
	EVAP Monitor Conditions Encountered Counts	2 bytes	EVAPCOND: xxxxx cnts
	EVAP Monitor Conditions Encountered Counts displays the nur		
	operated in the specified EVAP system leak malfunction monitor		
	Secondary O2 Sensor Monitor Completion Counts Bank 1	2 bytes	SO2SCOMP1: xxxxx cnts
	Secondary O2 Sensor Monitor Completion Counts Bank 1 displ	ays the number	er of times that all conditions
	necessary to detect a secondary oxygen sensor bank 1 malfund	ction have bee	n encountered (numerator).
	Secondary O2 Sensor Monitor Conditions Encountered Counts Bank 1	2 bytes	SO2SCOND1: xxxxx cnts
	Secondary O2 Sensor Monitor Conditions Encountered Counts		
	vehicle has been operated in the specified secondary oxygen s		
	Secondary O2 Sensor Monitor Completion Counts Bank 2	2 bytes	SO2SCOMP2: xxxxx cnts
	Secondary O2 Sensor Monitor Completion Counts Bank 2 displ		
	necessary to detect a secondary oxygen sensor bank 2 malfund	ctions nave be	en encountered (numerator).

TABLE G8 - IN-USE PERFORMANCE TRACKING DATA BYTE DESCRIPTION FOR SPARK IGNITION VEHICLES (CONTINUED)

InfoType (Hex)	Description	# of Data Bytes	External Test Equipment SI (Metric) / English Display		
	Secondary O2 Sensor Monitor Conditions Encountered Counts Bank 2	2 bytes	SO2SCOND2: xxxxx cnts		
	Secondary O2 Sensor Monitor Conditions Encountered Counts Bank 2 displays the number of times that the vehicle has been operated in the specified secondary oxygen sensor monitoring conditions (denominator).				

TABLE G9 - MESSAGECOUNT ECU NAME DATA BYTE DESCRIPTION

InfoType (Hex)	Vehicle Information Data Byte Description	Scaling	Mnemonic
	MessageCount ECUNAME	1 byte unsigned	MC_ECUNM
	Number of messages to report the ECU's/module's acronym and text name — For ISO 9141-2, ISO 14230-4 and SAE J1850, the message count in the response shall always be five (5). For ISO 15765-4, support for this parameter is not recommended/required for the ECU and the external test equipment because the message count is always one.	Numeric	

TABLE G10 - ECU NAME DATA BYTE DESCRIPTION

InfoType (Hex)	Description	Scaling	External Test Equipment SI (Metric) / English Display	
0A	ECUNAME	20 ASCII characters	ECU: XXXX ECUNAME: YYYYYYYYYYYYYYY	
	external test equipment to display the action that device. A maximum of printable name of the ECU/module. The format shor delimiter, and 15 characters for text neach string (acronym and text name) if there is only one ECU, no ECU numbers numbered sequentially in ascending order Defined field assignment: — Data bytes 1-4, "XXXX", contains ECU than one ECU of that type; — Data byte 5, "-", (\$2D) contains delimit	ne reporting of the ECU's/module's acronym and text name to enable the play the acronym and text name of the ECU/module with the data retriev of printable 20 ASCII characters shall be used to report the acronym and e format shall be a defined field of four characters for acronym, one chars for text name. One character for ECU number can be added to the entrange) if the vehicle is equipped with more than one ECU of that type. If U number shall be used. If there is more than one ECU, ECUs shall be ending order starting with the number 1.		
All bytes in each field are available for use, but any unused bytes shall be filled with \$00. The filler bytes shall extend to the end of each field for ECU acronym and name. Each ECU name only printable ASCII characters, and these characters shall spell acronyms and names in the language. All non-zero hex bytes (displaying valid text based information) are left justified with				
	EXAMPLE #1: \$45 43 4D 00 2D 45 6E 67 69 6E 65 4	3 6F 6E 74 72 6F 6C 00 00	translates to "ECM-EngineControl"	
	EXAMPLE #2: \$41 42 53 31 2D 41 6E 74 69 4C 6F 63 6B 42 72 61 6B 65 31 00 translates to "ABS1-AntiLockBrake1"			
	This will benefit the technician to better u	ınderstand which ECU/modu	ule provides the requested data.	

TABLE G10 - ECU NAME DATA BYTE DESCRIPTION (CONTINUED)

I (MAX)	Possintian		Sooling	External Test Equipment
(Hex)	Description	Scaling		SI (Metric) / English Display
		s), if emissions-related, shall report the extern table is not complete and emissions-related lefinition		
	External test equipment			External test equipment
	reported acronym	Full nam	e of Control Module/ECU	reported name and ECU
	(max 1 – 4 chars)			number
	,			(max 14 chars + 1 optional digit)
	ABS, ABS1, ABS2	Anti-Lock Bra	ake System (ABS) Control	AntiLockBrake
	AFCM, AFC1, AFC2	Alternative F	uel Control Module	AltFuelCtrl
I	AHCM, AHC1, AHC2	Auxiliary Hea	ater Control Module	AuxHeatCtrl
	APCM, APC1, APC2	Air Pump Co		AirPumpCtrl
	AWDC, AWD1, AWD2	All Wheel Dri	ive Control Module	AllWhlDrvCtrl
1	BCCM, BCC1, BCC2	Battery Char	ger Control Module	B+ChargerCtrl
	BECM, BEC1, BEC2	Battery Energ	gy Control Module	B+EnergyCtrl
1	BSCM,BSC1, BSC2	Brake Syster	n Control Module	BrakeSystem
1	CHCM, CHC1, CHC2	Chassis Con	trol Module	ChassisCtrl
	CRCM, CRC1, CRC2	Cruise Contro	ol Module	CruiseControl
1	CTCM, CTC1, CTC2	Coolant Tem	perature Control Module	CoolTempCtrl
1	DCDC, DCD1, DCD2	DC/DC Conv	rerter Control Module	DCDCConvCtrl
1	DMCM, DMC1, DMC2	Drive Motor (Control Module	DriveMotorCtrl
	EACC, EAC1, EAC2	Electric A/C (Compressor Control Module	ElecACCompCtrl
 [ECCI, ECC1, ECC2	Emissions Ci	ritical Control Information	EmisCritInfo
	ECM, ECM1, ECM2	Engine Contr	rol Module	EngineControl
	FACM. FAC1, FAC2	Fuel Additive	Control Module	FuelAddCtrl
	FICM, FIC1, FIC2	Fuel Injector	Control Module	FuelInjCtrl
	FPCM, FPC1, FPC2	Fuel Pump C	Control Module	FuelPumpCtrl
	4WDC, 4WD1, 4WD2	Four-Wheel [Drive Clutch Control Module	4WhIDrvClCtrl
	GPCM, GPC1, GPC2	Glow Plug Co	ontrol Module	GlowPlugCtrl
	GSM, GSM1, GSM2	Gear Shift Co	ontrol Module	GearShiftCtrl
	HVAC, HVA1, HVA2	HVAC Contro	ol Module	HVACCtrl
	HPCM, HPC1, HPC2	Hybrid Powe	rtrain Control Module	HybridPtCtrl
	IPC, IPC1, IPC2	Instrument Pa	anel Cluster (IPC) Control	InstPanelClust
 	PCM, PCM1, PCM2	Powertrain C	ontrol Module	PowertrainCtrl
[RDCM, RDC1, RDC2	Reductant Co	ontrol Module	ReductantCtrl
	SGCM, SGC1, SGC2	Starter / Gen	erator Control Module	Start/GenCtrl
	TACM, TAC1, TAC2	Throttle Actu	ator Control Module	ThrotActCtrl
	TCCM, TCC1, TCC2	Transfer Cas	e Control Module	TransfCaseCtrl
	TCM, TCM1, TCM2	Transmission	n Control Module	TransmisCtrl

TABLE G11 - IN-USE PERFORMANCE TRACKING DATA BYTE DESCRIPTION FOR COMPRESSION IGNITION VEHICLES

a specific monitor to detect a malfunction have been encountered. The denominator for each component or system shall track the number of times that the vehicle has operated in the specified conditions. These conditions are specified for each monitored component. The ignition counter shall track the number of times that the engine has been started. All data items of the In-use Performance Tracking record shall be reported in the order as listed in the specified for each monitored component.	it track in- adsorber			
This data is used to support regulatory requirements for In-use Performance Tracking for compress vehicles for 2010 MY and beyond. Manufacturers are required to implement software algorithms the use performance for each of the following components: NMHC catalyst, NOx catalyst monitor, NOx monitor, PM filter monitor, exhaust gas sensor monitor, EGR/VVT monitor, boost pressure monitor system monitor for 2013 MY and beyond. The numerator for each component or system shall track the number of times that all conditions nere a specific monitor to detect a malfunction have been encountered. The denominator for each component or system shall track the number of times that the vehicle has operated in the specified conditions. These conditions are specified for each monitored component. The ignition counter shall track the number of times that the engine has been started. All data items of the In-use Performance Tracking record shall be reported in the order as listed in the Data values, which are not implemented (e.g. bank 2 of the catalyst monitor of a 1-bank system) sh reported as \$0000. If a vehicle utilizes Variable Valve Timing (VVT) in place of EGR, the VVT in-use data shall be reported as \$0000. If a vehicle utilizes Variable Valve Timing (VVT) in place of EGR, system and a VVT system, the ECU the in-use performance data for both monitors, but shall report only the data for the system with the numerical ratio. OBD Monitoring Conditions Encountered Counts OBD Monitoring Conditions Encountered Counts Description Cycle Counter Ignition Cycle Counter Ignition Cycle Counter Ignition Cycle Counter displays the count of the number of times that the vehicle has operated in the specified OBD monitoring Condition Counts NMHC Catalyst Monitor Completion Condition Counts NMHC Catalyst Monitor Completion Condition Counts NMHC Catalyst Monitor Conditions Encountered Counts NMHC Catalyst Monitor Conditions Encountered Counts Supposed the remaindent of times that the vehicle been operated in the specified NMHC ca	it track in- adsorber			
vehicles for 2010 MY and beyond. Manufacturers are required to implement software algorithms the use performance for each of the following components: NMHC catalyst, NOx catalyst monitor, NOx monitor, PM filter monitor, exhaust gas sensor monitor, EGR/ VVT monitor, boost pressure monitor system monitor for 2013 MY and beyond. The numerator for each component or system shall track the number of times that all conditions nere a specific monitor to detect a malfunction have been encountered. The denominator for each component or system shall track the number of times that the vehicle has operated in the specified conditions. These conditions are specified for each monitored component. The ignition counter shall track the number of times that the engine has been started. All data items of the In-use Performance Tracking record shall be reported in the order as listed in the Data values, which are not implemented (e.g. bank 2 of the catalyst monitor of a 1-bank system) shoreported as \$0000. If a vehicle utilizes Variable Valve Timing (VVT) in place of EGR, the VVT in-use data shall be reported as the in-use performance data. If a vehicle utilizes both an EGR system and a VVT system, the ECU the in-use performance data for both monitors, but shall report only the data for the system with the numerical ratio. OBD Monitoring Conditions Encountered Counts OBD Monitoring Conditions Encountered Counts Ignition Cycle Counter 2 bytes IGNCNTR: xxxxx cnt Ignition Cycle Counter Ignition Cycle Counter (Ignition Condition Counts) NMHC Catalyst Monitor Completion Condition Counts displays the number of times that all condition necessary to detect an NMHC catalyst system malfunction have been encountered (numerator). NMHC Catalyst Monitor Conditions Encountered Counts (Ignition have been encountered (numerator).	it track in- adsorber			
a specific monitor to detect a malfunction have been encountered. The denominator for each component or system shall track the number of times that the vehicle has operated in the specified conditions. These conditions are specified for each monitored component. The ignition counter shall track the number of times that the engine has been started. All data items of the In-use Performance Tracking record shall be reported in the order as listed in the Data values, which are not implemented (e.g. bank 2 of the catalyst monitor of a 1-bank system) shall reported as \$0000. If a vehicle utilizes Variable Valve Timing (VVT) in place of EGR, the VVT in-use data shall be reported as \$0000. If a vehicle utilizes Variable Valve Timing (VVT) in place of EGR, the VVT in-use data shall be reported in the in-use performance data for both monitors, but shall report only the data for the system with the numerical ratio. OBD Monitoring Conditions Encountered Counts OBD Monitoring Conditions Encountered Counts OBD Monitoring Conditions Encountered Counts displays the number of times that the vehicle has operated in the specified OBD monitoring conditions (general denominator). Ignition Cycle Counter 2 bytes IGNCNTR: xxxxx cnt Ignition Cycle Counter displays the count of the number of times that the engine has been started. NMHC Catalyst Monitor Completion Condition Counts 2 bytes HCCATCOMP: xxxxx NMHC Catalyst Monitor Conditions Encountered Counts 2 bytes HCCATCOND: xxxxx NMHC Catalyst Monitor Conditions Encountered Counts displays the number of times that the vehicle necessary to detect an NMHC catalyst system malfunction have been encountered (numerator). NMHC Catalyst Monitor Conditions Encountered Counts displays the number of times that the vehicle necessary to detect an NMHC catalyst system malfunction have been encountered (numerator).				
operated in the specified conditions. These conditions are specified for each monitored component The ignition counter shall track the number of times that the engine has been started. All data items of the In-use Performance Tracking record shall be reported in the order as listed in t Data values, which are not implemented (e.g. bank 2 of the catalyst monitor of a 1-bank system) sh reported as \$0000. If a vehicle utilizes Variable Valve Timing (VVT) in place of EGR, the VVT in-use data shall be reported place of the EGR in-use data. If a vehicle utilizes both an EGR system and a VVT system, the ECU the in-use performance data for both monitors, but shall report only the data for the system with the numerical ratio. OBD Monitoring Conditions Encountered Counts OBD Monitoring Conditions Encountered Counts displays the number of times that the vehicle has operated in the specified OBD monitoring conditions (general denominator). Ignition Cycle Counter Ignition Cycle Counter displays the count of the number of times that the engine has been started. NMHC Catalyst Monitor Completion Condition Counts NMHC Catalyst Monitor Completion Condition Counts displays the number of times that all condition necessary to detect an NMHC catalyst system malfunction have been encountered (numerator). NMHC Catalyst Monitor Conditions Encountered Counts displays the number of times that the vehicle operated in the specified NMHC catalyst monitoring conditions (denominator).	The numerator for each component or system shall track the number of times that all conditions necessary for a specific monitor to detect a malfunction have been encountered.			
All data items of the In-use Performance Tracking record shall be reported in the order as listed in to Data values, which are not implemented (e.g. bank 2 of the catalyst monitor of a 1-bank system) sh reported as \$0000. If a vehicle utilizes Variable Valve Timing (VVT) in place of EGR, the VVT in-use data shall be reported place of the EGR in-use data. If a vehicle utilizes both an EGR system and a VVT system, the ECU the in-use performance data for both monitors, but shall report only the data for the system with the numerical ratio. OBD Monitoring Conditions Encountered Counts OBD Monitoring Conditions Encountered Counts displays the number of times that the vehicle has operated in the specified OBD monitoring conditions (general denominator). Ignition Cycle Counter Ignition Cycle Counter displays the count of the number of times that the engine has been started. NMHC Catalyst Monitor Completion Condition Counts 2 bytes HCCATCOMP: xxxxx NMHC Catalyst Monitor Conditions Encountered Counts 2 bytes HCCATCOMP: xxxxx NMHC Catalyst Monitor Conditions Encountered Counts displays the number of times that all condition necessary to detect an NMHC catalyst system malfunction have been encountered (numerator). NMHC Catalyst Monitor Conditions Encountered Counts displays the number of times that the vehibeen operated in the specified NMHC catalyst monitoring conditions (denominator).				
Data values, which are not implemented (e.g. bank 2 of the catalyst monitor of a 1-bank system) she reported as \$0000. If a vehicle utilizes Variable Valve Timing (VVT) in place of EGR, the VVT in-use data shall be reported place of the EGR in-use data. If a vehicle utilizes both an EGR system and a VVT system, the ECU the in-use performance data for both monitors, but shall report only the data for the system with the numerical ratio. OBD Monitoring Conditions Encountered Counts OBD Monitoring Conditions Encountered Counts displays the number of times that the vehicle has operated in the specified OBD monitoring conditions (general denominator). Ignition Cycle Counter Ignition Cycle Counter displays the count of the number of times that the engine has been started. NMHC Catalyst Monitor Completion Condition Counts NMHC Catalyst Monitor Completion Condition Counts displays the number of times that all condition necessary to detect an NMHC catalyst system malfunction have been encountered (numerator). NMHC Catalyst Monitor Conditions Encountered Counts Description 1 conditions 1 conditions are provided by the number of times that the vehicle has no perated in the specified NMHC catalyst monitoring conditions (denominator).				
reported as \$0000. If a vehicle utilizes Variable Valve Timing (VVT) in place of EGR, the VVT in-use data shall be repo place of the EGR in-use data. If a vehicle utilizes both an EGR system and a VVT system, the ECU the in-use performance data for both monitors, but shall report only the data for the system with the numerical ratio. OBD Monitoring Conditions Encountered Counts OBD Monitoring Conditions Encountered Counts displays the number of times that the vehicle has operated in the specified OBD monitoring conditions (general denominator). Ignition Cycle Counter Ignition Cycle Counter ounts of the number of times that the engine has been started. NMHC Catalyst Monitor Completion Condition Counts NMHC Catalyst Monitor Completion Condition Counts displays the number of times that all condition necessary to detect an NMHC catalyst system malfunction have been encountered (numerator). NMHC Catalyst Monitor Conditions Encountered Counts 2 bytes HCCATCOND: xxxxx NMHC Catalyst Monitor Conditions Encountered Counts 2 bytes HCCATCOND: xxxxx NMHC Catalyst Monitor Conditions Encountered Counts displays the number of times that the vehibeen operated in the specified NMHC catalyst monitoring conditions (denominator).	nis table.			
place of the EGR in-use data. If a vehicle utilizes both an EGR system and a VVT system, the ECU the in-use performance data for both monitors, but shall report only the data for the system with the numerical ratio. OBD Monitoring Conditions Encountered Counts OBD Monitoring Conditions Encountered Counts displays the number of times that the vehicle has operated in the specified OBD monitoring conditions (general denominator). Ignition Cycle Counter Ignition Cycle Counter displays the count of the number of times that the engine has been started. NMHC Catalyst Monitor Completion Condition Counts Ignition Cycle Counter displays the count of the number of times that the engine has been started. NMHC Catalyst Monitor Completion Condition Counts Ignition Cycle Counter displays the count of the number of times that all condition necessary to detect an NMHC catalyst system malfunction have been encountered (numerator). NMHC Catalyst Monitor Conditions Encountered Counts Ignition Cycle Counter displays the number of times that all condition necessary to detect an NMHC catalyst system malfunction have been encountered (numerator). NMHC Catalyst Monitor Conditions Encountered Counts Ignition Cycle Counter displays the number of times that the vehibeen operated in the specified NMHC catalyst monitoring conditions (denominator).	Data values, which are not implemented (e.g. bank 2 of the catalyst monitor of a 1-bank system) shall be			
OBD Monitoring Conditions Encountered Counts displays the number of times that the vehicle has operated in the specified OBD monitoring conditions (general denominator). Ignition Cycle Counter Ignition Cycle Counter displays the count of the number of times that the engine has been started. NMHC Catalyst Monitor Completion Condition Counts NMHC Catalyst Monitor Completion Condition Counts displays the number of times that all condition necessary to detect an NMHC catalyst system malfunction have been encountered (numerator). NMHC Catalyst Monitor Conditions Encountered Counts NMHC Catalyst Monitor Conditions Encountered Counts displays the number of times that the vehibeen operated in the specified NMHC catalyst monitoring conditions (denominator).	shall track			
operated in the specified OBD monitoring conditions (general denominator). Ignition Cycle Counter Ignition Cycle Counter displays the count of the number of times that the engine has been started. NMHC Catalyst Monitor Completion Condition Counts NMHC Catalyst Monitor Completion Condition Counts displays the number of times that all condition necessary to detect an NMHC catalyst system malfunction have been encountered (numerator). NMHC Catalyst Monitor Conditions Encountered Counts NMHC Catalyst Monitor Conditions Encountered Counts displays the number of times that the vehibeen operated in the specified NMHC catalyst monitoring conditions (denominator).				
Ignition Cycle Counter displays the count of the number of times that the engine has been started. NMHC Catalyst Monitor Completion Condition Counts NMHC Catalyst Monitor Completion Condition Counts displays the number of times that all condition necessary to detect an NMHC catalyst system malfunction have been encountered (numerator). NMHC Catalyst Monitor Conditions Encountered Counts 2 bytes HCCATCOND: xxxxx NMHC Catalyst Monitor Conditions Encountered Counts displays the number of times that the vehibeen operated in the specified NMHC catalyst monitoring conditions (denominator).				
NMHC Catalyst Monitor Completion Condition Counts 2 bytes HCCATCOMP: xxxxx NMHC Catalyst Monitor Completion Condition Counts displays the number of times that all condition necessary to detect an NMHC catalyst system malfunction have been encountered (numerator). NMHC Catalyst Monitor Conditions Encountered Counts 2 bytes HCCATCOND: xxxxx NMHC Catalyst Monitor Conditions Encountered Counts displays the number of times that the vehibeen operated in the specified NMHC catalyst monitoring conditions (denominator).	;			
NMHC Catalyst Monitor Completion Condition Counts displays the number of times that all condition necessary to detect an NMHC catalyst system malfunction have been encountered (numerator). NMHC Catalyst Monitor Conditions Encountered Counts 2 bytes HCCATCOND: xxxxx NMHC Catalyst Monitor Conditions Encountered Counts displays the number of times that the vehibeen operated in the specified NMHC catalyst monitoring conditions (denominator).				
necessary to detect an NMHC catalyst system malfunction have been encountered (numerator). NMHC Catalyst Monitor Conditions Encountered Counts				
NMHC Catalyst Monitor Conditions Encountered Counts 2 bytes HCCATCOND: xxxxx NMHC Catalyst Monitor Conditions Encountered Counts displays the number of times that the vehibeen operated in the specified NMHC catalyst monitoring conditions (denominator).	1S			
NMHC Catalyst Monitor Conditions Encountered Counts displays the number of times that the vehi been operated in the specified NMHC catalyst monitoring conditions (denominator).	onte			
been operated in the specified NMHC catalyst monitoring conditions (denominator).				
	ic rido			
110x1001t outditor completion condition counts 2 bytes 110x11001111 : 200000	nts			
NOx Catalyst Monitor Completion Condition Counts displays the number of times that all conditions	necessary			
to detect a NOx catalyst system malfunction have been encountered (numerator).				
NOx/SCR Catalyst Monitor Conditions 2 bytes NCATCOND: xxxxx 0	nts			
Encountered Counts	h h			
NOx Catalyst Monitor Conditions Encountered Counts displays the number of times that the vehicle operated in the specified NOx catalyst monitoring conditions (denominator).	nas been			
NOx Adsorber Monitor Completion Condition Counts 2 bytes NADSCOMP: xxxxx 0	,			
NOx Adsorber Monitor Completion Counts displays the number of times that all conditions necessary	nte			
detect a NOx adsorber system malfunction have been encountered (numerator).				
NOx Adsorber Monitor Conditions Encountered Counts 2 bytes NADSCOND: xxxxx				
NOx Adsorber Monitor Conditions Encountered Counts displays the number of times that the vehicle	ry to			
been operated in the specified NOx adsorber monitoring conditions denominator).	ry to ents			

TABLE G11 - IN-USE PERFORMANCE TRACKING DATA BYTE DESCRIPTION FOR COMPRESSION IGNITION VEHICLES (CONTINUED)

InfoType		# of	External Test Equipment		
(Hex)	Description	Data Bytes	SI (Metric) / English Display		
0B	PM Filter Monitor Completion Condition Counts	2 bytes	PMCOMP: xxxxx cnts		
	PM Filter Monitor Completion Counts displays the number of ti		nditions necessary to detect a		
	PM filter system malfunction have been encountered (numerator).				
	PM Filter Monitor Conditions Encountered Counts	2 bytes	PMCOND: xxxxx cnts		
	PM Filter Monitor Conditions Encountered Counts displays the operated in the specified PM filter monitoring conditions denom		es that the vehicle has been		
	Exhaust Gas Sensor Monitor Completion	2 bytes	EGSCOMP: xxxxx cnts		
	Condition Counts				
	Exhaust Gas Sensor Monitor Completion Counts displays the r		,		
	detect an exhaust gas sensor malfunction have been encounted	•			
	Exhaust Gas Sensor Monitor Conditions	2 bytes	EGSCOND: xxxxx cnts		
	Encountered Counts				
	Exhaust Gas Sensor Monitor Conditions Encountered Counts displays the number of times that the vehicle				
	has been operated in the specified exhaust gas sensor monitor		EGRCOMP: xxxxx cnts		
	EGR and/or VVT Monitor Completion Condition Counts	2 bytes			
	EGR and/or VVT Monitor Completion Condition Counts displays the number of times that all conditions necessary to detect an EGR/VVT system malfunction have been encountered (numerator).				
	EGR and/or VVT Monitor Conditions Encountered Counts		EGRCOND: xxxxx cnts		
	EGR and/or VVT Monitor Conditions Encountered Counts displays the number of times that the vehicle has been operated in the specified EGR/VVT system monitoring conditions (denominator).				
	Boost Pressure Monitor Completion Condition Counts	2 bytes	BPCOMP: xxxxx cnts		
	Boost Pressure Monitor Completion Condition Counts displays	the number o	f times that all conditions		
	necessary to detect a boost pressure system malfunction have been encountered (numerator).				
	Boost Pressure Monitor Conditions Encountered Counts	2 bytes	BPCOND: xxxxx cnts		
	Boost Pressure Monitor Conditions Encountered Counts displays the number of times that the vehicle has				
	been operated in the specified boost pressure system monitori		·		
	Fuel Monitor Completion Condition Counts	2 bytes	FUELCOMP: xxxxx cnts		
	Fuel System Monitor Completion Condition Counts displays the number of times that all conditions necessary				
	to detect a fuel system malfunction have been encountered (nu				
	Fuel Monitor Conditions Encountered Counts	2 bytes	FUELCOND: xxxxx cnts		
	Fuel System Monitor Conditions Encountered Counts displays the number of times that the vehicle has been				
	operated in the specified fuel system monitoring conditions (de	nominator).			

TABLE G12 - MESSAGECOUNT ESN DATA BYTE DESCRIPTION

InfoType (Hex)	Vehicle Information Data Byte Description	Scaling	Mnemonic
0C	MessageCount ESN Number of messages to report Engine Serial Number (ESN) — For ISO 9141-2, ISO 14230-4 and SAE J1850, the message count in the response shall always be \$05, and shall be reported for consistency in the use of this service. For ISO 15765-4, support for this parameter is not recommended/required for the ECU and the external test equipment because the message count is always one.	1 byte unsigned numeric	MC_ESN

TABLE G13 - ENGINE SERIAL NUMBER DATA BYTE DESCRIPTION

InfoType			External Test Equipment
(Hex)	Description	Scaling	SI (Metric) / English Display
0D	Engine Serial Number	17 ASCII characters	ESN: XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX
	For vehicles that provide electronic access to the ESN, it is recommended to report it using this format for ease of use by the external test equipment intended either for vehicle diagnostics or Inspection/Maintenance programs. The length and format of the ESN are not specified, however, ESN shall be reported by always using up to 17 printable ASCII characters, preceded by any fill bytes of \$00, followed by the ESN characters. Manufacturers should use the same format for ESN as for VIN. Each of the ESN characters should be one of the letters in the set: [ABCDEFGHJKLMNPRSTUVWXYZ] (\$41 - \$48, \$4A - \$4E, \$50, \$52 - \$5A), or a numeral in the set: [0123456789] (\$30 - \$39).		
	For ISO 9141-2, ISO 14230-4 and SAE J1850, the response consists of the following message: – Message #1 shall contain up to four filling bytes of \$00 or ESN characters; – Message #2 shall contain up to four filling bytes of \$00 or ESN characters; – Message #3 shall contain up to four filling bytes of \$00 or ESN characters; – Message #4 shall contain up to four filling bytes of \$00 or ESN characters; – Message #5 shall contain up to three filling bytes of \$00, followed by any ESN characters; For ISO 15765-4, there is only one response message, which contains 17 characters starting way fill bytes of \$00, followed by the ASCII ESN characters.		haracters; haracters; haracters; haracters;
			tains 17 characters starting with

TABLE G14 - MESSAGECOUNT EROTAN DATA BYTE DESCRIPTION

InfoType (Hex)	Vehicle Information Data Byte Description	Scaling	Mnemonic
0E	MessageCount EROTAN Number of messages to report Exhaust Regulation Or Type Approval Number (EROTAN) — For ISO 9141-2, ISO 14230-4 and SAE J1850, the message count in the response shall always be \$05, and shall be reported for consistency in the use of this service. For ISO 15765-4, support for this parameter is not recommended/required for the ECU and the external test equipment because the message count is always one.	1 byte unsigned numeric	MC_EROTA N

TABLE G15 - EXHAUST REGULATION OR TYPE APPROVAL NUMBER

InfoType			External Test Equipment	
(Hex)	Description	Scaling	SI (Metric) / English Display	
0F	Exhaust Regulation Or Type Approval	17 ASCII	EROTAN: XXXXXXXXXXXXXXXXXX	
	Number	characters		
	The Exhaust Regulation Or Type Approval Nu			
	accordance with the Type Approval registration			
	displacement, number of cylinders, engine po			
	electronic access to the EROTAN, it is recomi			
	external test equipment intended either for Ty			
	Inspection/Maintenance. The length and formath shall be reported by always using up to 17 prints.			
	followed by the EROTAN characters. Each of			
	set: [ABCDEFGHJKLMNPRSTUVWXYZ] (\$47			
	[0123456789] (\$30 - \$39) or a special charact			
	\$2A, \$2D, \$2E, \$2F).			
	,	the response sonsi	ata of the following meanages:	
	For ISO 9141-2, ISO 14230-4 and SAE J1850, the response consists of the following messages: – Message #1 shall contain up to four filling bytes of \$00 or EROTAN characters;			
	- Message #1 shall contain up to four filling by			
	Message #2 shall contain up to four filling by Message #3 shall contain up to four filling by			
	Message #4 shall contain up to four filling by			
	Message #5 shall contain up to three filling it.			
	For ISO 15765-4, there is only one response in bytes of \$00, followed by the ASCII EROTAN		ains 17 characters starting with any iii	
	Only one EROTAN value shall be reported for	an ECU.		

TABLE G16 – PROTOCOL IDENTIFICATION

InfoType (Hex)	Description	Scaling	Mnemonic
10	Protocol Identification This piece of information is used to identify the type of protocol supported by the ECU. It is required for the initialization sequence specified in ISO 15765-4	1 byte unsigned numeric	
	0x00 reserved 0x01 ISO 27145-4		
	0x02 - 0xFF reserved		

TABLE G17 – WWH-OBD GTR NUMBER

InfoType (Hex)	Description	Scaling	External Test Equipment SI (Metric) / English Display	
11	WWH-OBD GTR Number	11 ASCII	GTR_XXX.XXX	
		characters		
	This data is used to identify the GTR revision the WWH-OBD vehicle is compliant with. XXX is the 3 character main GTR version and xxx is the 3 character minor GTR version. All 11 ASCII characters shall always be reported. (Zeros are ASCII \$30)			
	Example of the ASCII string used to report: GTR_005.000 is:			
\$47,\$54, \$52, \$5F, \$35, \$30, \$30, \$2E, \$30, \$30, \$30				
	For ISO 15765-4, there is only one response relative shall be reported for an ECU.	nessage, which cont	ains 11 characters. Only one GTR	

TABLE G18 - ISO/SAE RESERVED

Info	Туре			
(H	lex)	Vehicle Information Data Byte Description	Scaling	Mnemonic
10	– FF	ISO/SAE reserved.		_

APPENDIX H - REVISION REQUEST FORM FOR SAE J1979-DA

To ensure that your request is accepted for voting and incorporation into SAE J1979-DA please download the revision request form from the SAE Web Site and supply the following information consistent with the naming procedure as defined in this document.

Perform the following steps to download the revision request form:

a. Go to the J1979 Task Force area on the SAE Web Site:

http://www.sae.org/servlets/works/committeeHome.do?comtID=TEVDS14,

- b. Enter "SAE J1979-DA" in search field,
- c. Press "Enter" button,
- Select "SAE_J1979-DA_Revision_Request_Form.doc" document and download to your computer,
- e. Fill out the revision request form with your request;

Please send e-mail with completed revision request form as attachment to:

SAE Headquarters 755 West Big Beaver Road Suite 1600 Troy, MI 48084-4093, USA Fax: +1 (248) 273-2494

Fax: +1 (248) 273-2494 Email: saej1979@sae.org