Lista 3 de Teoria da Computação - 2021.01 (COS700)

Data de entrega: 24/06/2021

Observação. A resolução de cada questão deve ser iniciada em uma nova folha de papel. Além disso, antes do início de cada questão, deve-se incluir o número da questão e o nome completo do aluno.

- 1. Considere a gramática não ambígua com conjunto de símbolos terminais $\{id, +, *, (,)\}$, conjunto de variáveis $\{S, X, Y\}$, símbolo inicial S e conjunto de regras $\{S \to S + X \mid X, X \to X * Y \mid Y, Y \to (S) \mid id\}$.
 - (i) Esboce as árvores de derivação das expressões id + (id + id) * id e de (id * id + id * id).
- (ii) Dê uma derivação à esquerda e uma derivação à direita da expressão (id*id+id*id).
- **2.** Seja G = (T, V, S, R) a gramática tal que $T = \{0, 1\}$, $V = \{S, A, B\}$, e R é definido pelas seguintes regras: $S \to 1A \mid 0B$; $A \to 0 \mid 0S \mid 1AA$; $B \to 1 \mid 1S \mid 0BB$. Mostre que G é ambígua.
- 3. Utilizando o lema do bombeamento, mostre que nenhuma das linguagens abaixo é livre de contexto.
 - (i) $\{1^{2^n} : n \text{ \'e primo}\}$
- (ii) $\{0^{n!} : n \ge 1\}$
- 4. Para cada uma das linguagens a seguir, sobre os alfabetos $\{0,1\}$ e $\{0,1,\sigma\}$, respectivamente, descreva um autômato de pilha não-determinístico que a aceite.
 - (i) $\{0^n 1^m : n, m \ge 0 \text{ e } n \ne m\}$
- 5. Qualquer autômato finito não-determinístico que aceite a linguagem expressa por 0.0*.1.0 deve possuir ao menos quatro estados. Construa um autômato de pilha não-determinístico com apenas dois estados que aceite esta linguagem.
- 6. Para cada uma das linguagens a seguir, sobre o alfabeto $\{0,1\}$, construa uma gramática livre de contexto que a gere, e construa um autômato de pilha não-determinístico que a aceite.
 - (i) $\{0^m 1^n : 0 < n < m < 2n\}$

(ii) $\{0^{i+3}1^{2i+1}: i > 0\}$