Information Retrieval + Q&A (SNLP Tutorial 12)

Vilém Zouhar, Awantee Deshpande, Julius Steuer

13th July, 15th July

Evaluation metrics

- Documents D, queries Q
- System: $Q \to \mathcal{P}(D)$
- For $q \in Q$: retrieved (output), relevant (gold)
- Recall | retrieved | relevant | | relevant |
- Precision | retrieved | retrieved |

How to cheat so that...

- precision is high?
- recall is high?

$\{Precision, Recall\}@k : Retrieve k documents (top k scoring)$

- Recall@ $k \frac{|\text{retrieved}@k \cap \text{relevant}|}{|\text{relevant}|}$
- Precision@ $k \frac{|\text{retrieved@}k \cap \text{relevant}|}{|\text{retrieved@}k|} = \frac{|\text{retrieved@}k \cap \text{relevant}|}{k}$

Evaluation metrics

- Average precision: $AveP(q) = \frac{\sum_{k} P@k \times rel(k)}{|relevant|}$
- $rel(k) = \begin{cases} 1 & k\text{-th document relevant} \\ 0 & otherwise \end{cases}$
- Mean average precision $MAP(Q) = \frac{\sum_{q \in Q} AveP(q)}{|Q|}$
- F-score $2 \cdot \frac{P \cdot R}{P+R}$

Evaluation metrics

- Taking the rank into consideration: Mean Reciprocal Rank
- $MRR(Q) = \frac{1}{|Q|} \sum_{q \in Q} \frac{1}{rank_q}$ rank_q = position of the first relevant document

document	rank	relevant
a	4	+
b	1	
С		
d		+
е	2	+
f	3	

•
$$Q = \{\text{example}\}, MRR(Q) = \frac{1}{\text{rank}_{example}} = \frac{1}{2}$$

	Information Retrieval $+$ Q&A
7-13	
21-0	└─Evaluation metrics
202	Evaluation metrics

$\Sigma_{aro} \frac{1}{\cos a}$	leration: Mea		
	document	rank	relevant
	a	4	+
	ь	1	
	c		
	d		+
		2	+

Lots of others, accuracy, r-precision etc. Papers (as compared to MT) usually use a lot of different metrics.

Information retriveal - preprocessing

- Stemming ($going \rightarrow go$, $studies \rightarrow studi$)
- - Not always: query becomes stressed vs. becom stress
- Lemmatization ($going \rightarrow go$, $studies \rightarrow study$)
- - Not always: query becomes stressed vs. become stress
- Stop words (for, of, and, or)
- - Not always: query Wizard of Oz vs. Wizard Oz
- Typo correction (Wizzard → Wizard)
- - Not always: query Tokyo vs. Tokio

Always depends on the task.

Document Retrieval - example

- Query: Goethe, devil
- Document:
 - A: Wolfgang's idea of the demon Mephistopheles who makes a bet with God
 - B: Faust is Wolfgang Goethe's play in German about a pact with the devil
 - C: **Devil**ishly good lasagne
 - D: The impact of **Goethe**'s demon play on the German literature
- How to rank them?
 - B (contains the two key words)
 - D (Goethe)
 - A (Wolfgang Goethe, Mephistopheles devil)
 - C (unrelated context)
- Can these inferences be made automatically?

Solution 1 (counts)

• Solution: vector with counts of words:
 (<the>, <a>, <dog>, , president>, ...)
(57, 68, 0, 2, ...)

- Issue: representation vectors are enormous
- Issue: longer documents have naturally higher counts
- Issue: useless stop words

Solution 2 (tf)

- Issue: some words naturally occur with higher frequency but don't contribute to document meaning (<thing>)
- Issue: how do we know which words are useful?

Term Frequency - Inverse Document Frequency

TF-IDF

$$tf(\textit{term}, \textit{doc}) = \frac{\textit{count}_{\textit{doc}}(\textit{term})}{|\textit{doc}|}$$

$$\textit{df}(\textit{term}) = \frac{|\{\textit{doc}|\textit{term} \in \textit{doc}, \textit{doc} \in D\}|}{|D|}$$

$$\textit{idf}'(\textit{term}) = \frac{|D|}{\textit{df}(\textit{term})}, \textit{idf}(\textit{term}) = \log_2\left(\frac{|D|}{\textit{df}(\textit{term})}\right)$$

$$\textit{tf} - \textit{idf}(\textit{term}, \textit{doc}) = \textit{tf}(\textit{term}, \textit{doc}) \times \textit{idf}(\textit{term})$$

Augmented TF

$$tf'(term, doc) = 0.5 + 0.5 \cdot \frac{count_{doc}(term)}{max_{term'}\{count_{doc}(term')\}}$$

Information Retrieval + Q&A

—Term Frequency - Inverse Document Frequency

- Probability that i-th term occurs k times in the document: $p_{\lambda_i}(k) = e^{-\lambda_i} \frac{\lambda_i^k}{k!}$ (λ_i parameter of the distribution)
- Expected value of occurrence: $N \cdot E_i(k) = N \cdot \lambda_i = \text{collection frequency}_i$
- Term present at least once: $N \cdot (1 P_{\lambda_i}(0)) = \text{document frequency}_i$

Solution 3 (tf-idf)

- Solution: vector of tf-idf
- Ranking: Cosine similarity between query and document vectors
- Good metrics to determine the significance of a term in a document collection
- Issue: still enormous vectors
- Issue: demon Mephistopheles are equally separate concepts as devil lasagne
- Issue: independent terms assumption

Document Retrieval - Probabilistic Retrieval

- Goal: Find P[R|d,q]
- Ranking: Proportional to relevance odds

$$O(R|d,q) = \frac{P[R|d,q]}{P[\bar{R}|d,q]}$$

 Different probabilistic models calculate these probabilities differently e.g. Binary Independence model, Poisson model, BM25

For Poisson,
$$P[d|\lambda] = \prod_{t \in V} \frac{e^{-\lambda_t \cdot \lambda_t^{d_t}}}{d_t!}$$

Document Retrieval - Statistical Language Model

- Pretend the query was generated by a LM based on the document
- Ranking: Proportional to query likelihood
- $argmax_d \ p(d|q) = argmax_d \ \frac{p(q|d) \cdot p(d)}{p(q)} = argmax_d \ p(q|d) \cdot p(d)$ $\approx argmax_d \ p_{LM}(q|d) \cdot p(d)$ $p(d) \approx \frac{1}{|D|} \text{ or } p(d) \text{ is query independent}$ $\approx argmax_d \ p_{LM}(q|d)$
- Unigram: $p(d|q) \approx \prod_i p_{LM}(q_i|d)$
- LMs can be smoothed, as you remember e.g. Interpolation, Dirichlet smoothing
- Jelinek-Mercer smoothing: $p(q_i|d,D) = \lambda \cdot p(q_i|d) + (1-\lambda) \cdot p(q_i|D)$ High λ : documents with all query words (conjunctive) Low λ : suitable for long queries (disjunctive)
- Issue: Without word embeddings, no word relatedness Query: Goethe, devil
 - A: Wolfgang's idea of the demon Mephistopheles who makes a bet with God
- Can we model word co-occurence for a topic?

Information Retrieval + Q&A

Document Retrieval - Statistical Language Model

Document Retrieval - Statistical Language Model . Pretend the miery was generated by a LM based on the document

- a Ranking: Proportional to query likelihood * $argmax_d \ p(d|q) = argmax_d \ \frac{p(d) \cdot p(d)}{p(q)} = argmax_d \ p(q|d) \cdot p(d)$
- $\approx \operatorname{argmax}_{d} p_{lM}(q|d) \cdot p(d)$ $p(d) \approx \frac{1}{2}$ or p(d) is query independent
- Unigram: $p(d|q) \approx \prod_i p_{iM}(q_i|d)$ Low \(\lambda\): suitable for long queries (disjunctive)

≈ aremax, p, u(q|d)

- . I Ms can be smoothed as you remember e.e. Internolation. Dirichlet smoothing a Jelinek-Mercer smoothing: $\rho(a|d,D) = \lambda \cdot \rho(a|d) + (1-\lambda) \cdot \rho(a|D)$ High \(\lambda\): documents with all query words (conjunctive)
- # Issue: Without word embeddings, no word relatedness Query Goethe devil
- A: Wolfgang's idea of the demon Mephistopheles who makes a bet with God u Can we model word co-occurence for a topic?
- Other smoothing schemas exist, like discounting, adding epsilon or linear interpolation between multiple LMs, including zerogram
- Other improvements, such as special grammar, prior knowledge of the document (length), list of synonyms, etc

Solution 4 (Latent Semantic Analysis)

- Assumption: Documents are composed of *k* latent topics.
- ullet Solution: Perform dimensionality reduction o eigenvalues, singular value decomposition
- $A_{i,j} = \#$ occurences of term t_i in document d_j

	d_1	d_2	d_3	d_4
Wolfgang	1	1	0	0
Mephistopheles	1	0	0	0
Faust	0	1	0	0
Goethe	0	1	0	1
devil	0	1	1	0
demon	1	0	0	1
lasagne	0	0	1	0
German	0	1	0	1

—Solution 4 (Latent Semantic Analysis)

nption: Documents are composed of ion: Perform dimensionality reduction foccurences of term t; in documents	on →	eiger			ngular value decomposition
	d_1	d ₂	d_3	ds	
Wolfgang	1	1	0	0	
Mephistopheles	1	0	0	0	
Faust	0	1	0	0	
Goethe	0	1	0	1	
devil	0	1	1	0	

Solution 4 (Latent Semantic Analysis)

The example uses counts, but for better representation of term importance in the document, one would use tf-idf.

Approximation of A

d_1	d_2	d ₃	d ₄
1	1	0	0
1	1	0	1
1	1	0	0
1	1	0	0
1	1	0	1
1	1	0	1
0	0	1	0
1	1	0	0
	1 1 1 1 1 1	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	1 1 0 1 1 0 1 1 0 1 1 0 1 1 0 1 1 0

	c_1	<i>c</i> ₂	<i>c</i> ₃
Wolfgang	1	0	0
Mephistopheles	0	1	0
Faust	1	0	0
Goethe	1	0	0
devil	0	1	0
demon	0	1	0
lasagne	0	0	1
German	1	0	0

3 latent concepts:

{Goethe (Wolfgang, Faust, German), devil (Mephistopheles, demon), lasagne}

$$d_1 = 1 \times c_1 + 1 \times c_2$$

3
⊣
0
Ξ.
Ξ
\sim
\approx
. 4

 \square Approximation of A

Information Retrieval + Q&A

	d_1	d_2	d_3	di		c_1	c_2	c
Wolfgang	1	1	0	0	Wolfgang	1	0	0
Mephistopheles	1	1	0	1	Mephistopheles	0	1	0
Faust	1	1	0	0	Faust	1	0	0
Goethe	1	1	0	0	Goethe	1	0	0
devil	1	1	0	1	devil	0	1	0
demon	1	1	0	1	demon	0	1	0
lasagne	0	0	1	0	lasagne	0	0	1
German	1	1	0	0	German	1	0	0

Given k concepts, we try to find such a matrix A', that's as close to the original one, but with every document being a combination of k independent vectors.

Approximation of A

- Given: A, k
- $A' = argmin_{A'rankk} ||A A'||$ Distance e.g. Frobenius $(\sqrt{\sum_{i,j} a_{i,j}})$

Singular Value Decomposition

Figure 1: SVD for LSA

- U = eigenvectors of $A^T A$ (# intersection of documents d_i and d_j)
- V = eigenvectors of AA^T (# documents in which both terms t_i and t_j occur)
- $S = \text{roots of corresponding eigenvalues of } A^T A$
- $A = USV^T$

Eigen{vector,value}

Nonzero $v \in \mathbb{R}^n, \lambda \in \mathbb{R}$

Eigenvector

$$Av = \lambda v$$
 $Av = \lambda Iv$ $(A - \lambda I)v = 0$ $ker(A - \lambda I)$

"Directions (v) which A only scales."

Eigenvalue

$$Av = \lambda v$$

"The stretch (λ) of eigenvector v by A."

SVD

Proof sketch

$$A = USV^T, A^T = VSU^T, S$$
 diagonal $U^TU = VV^T = I$ orthogonal $AA^TU = US^2 \rightarrow U$ eigenvectors of AA^T, S root of eigenvalues $(\forall i: AA^TU_{i,*} = U_{i,*} \cdot S_{i,i}^2)$ $A^TAV = VS^2 \rightarrow V$ eigenvectors of A^TA, S root of eigenvalues $(\forall i: A^TAV_{i,*} = V_{i,*} \cdot S_{i,i}^2)$

LSA

- Order eigenvalues by descending values $(S_{i,i} > S_{i+1,i+1} \ge 0)$ (proof next slide)
- Take top-k eigenvectors + values (or all above threshold)
- Term \rightarrow latent representation: $U_k S_k$
- Document \rightarrow latent representation: $(S_k V_k^T)^T = V_k S_k^T = V_k S_k$

Information Retrieval + Q&A

Onto a generation by descending values $(S_2 > S_{3,1,1,1} \ge 0)$ part and each of the second second

- We are free to permute the eigenvalues, so we can order them (together with the vectors) and also we know that the eigenvalues are non-negative
- Therefore we can just take the top-k eigenvalues and replace the rest with zero.
- Essentially this crops the neighbouring matricies to first k columns and first k rows of V^T.

Properties of S

Descending

$$U' = U$$
 +swapped i, j column, $S' = S$ +swapped i, j values, ${V'}^T = V^T$ +swapped i, j row $U' = U \times C(i, j), S' = S \times C(i, j), {V'}^T = V^T \times R(i, j)$ $U'S' = (US)$ with swapped i, j columns, $U'S' = (US) \times C(i, j)$ $U'S'V'^T = (US) \times C(i, j) \times V^T \times R(i, j) = (US) \times C(i, j) \times C(i, j) V^T = USV^T$

Non-negative

$$A^T A$$
 is positive semidefinite $\Rightarrow S_{i,i} \ge 0$
 $\forall x \ne \overrightarrow{0} : x^T A^T A x = (Ax)^T (Ax) = ||Ax|| \ge 0$

LSA Concepts

- $U_k S_k$ maps terms to latent "concepts" $(m \to k)$
- $V_k S_k$ maps documents to "concepts" $(n \to k)$

If U_kS_k maps terms to latent "concepts" $(m \rightarrow k)$ If V_kS_k maps throughout to "concepts" $(n \rightarrow k)$

LSA Concents

LSA Concepts

- The k then becomes obvious is the number of concepts
- We don't specify the concepts, they are determined by SVD
- From our point of view, they are latent

LSA Example

	d_1	d_2	d ₃	d_4
Wolfgang	1	1	0	0
Mephistopheles	1	0	0	0

- Choose k=2
- Representation of Goethe: fourth row of U_k $(m \times k \to 1 \times 2)$ scaled by S_k : $[0.13, -0.13]^T$
- Representation of devil: fifth row of $U_{\underline{k}}$ $(m \times k \to 1 \times 2)$ scaled by S_k : $[0.58, -0.01]^T$
- Representation of d_1 : first column of V_k^T $(k \times n \to 2 \times 1)$ scaled first by S_k : $r_d = [0.3, 0.02]^T$
- Map query to our topic space: $q o U_k^t \cdot q = q' = [0.355, -0.07]^T$
- Query-document match: dot product, cosine similarity: $\frac{r_q \cdot r_d}{|r_q| \cdot |r_d|} = \frac{0.01205}{0.10879} \approx 0.11$

	Information Retrieval +
7-13	
21-0	LSA Example
202	L3A Lxample

Volfgang	1	1	0	0
Rephistopheles	1	0	0	0

• Choose k = 2

LSA Example

- Representation of Goethe: fourth row of U_k (m × k → 1 × 2) scaled by S_k: [0.13, -0.13]^T
 Representation of devi1: fifth row of U_k (m × k → 1 × 2) scaled by S_k: [0.58, -0.01]^T
- Representation of d₂: first column of V_k^T (k × n → 2 × 1) scaled first by S_k: _k = [0.3, 0.02]^T
- $r_d = [0.3, 0.02]^T$ • Map query to our topic space: $q \rightarrow U_t^t \cdot q = q' = [0.355, -0.07]^*T$ • Query-document match: dot product, cosine similarity: $\frac{q_1^2}{\sqrt{1/2}} = \frac{0.0000}{0.0000} \approx 0.11$

- Whether that's a good match or not depends on the ranking and/or threshold

LSA Graphics

Figure 2: Term-document matrix, no ordering, k = 5; Source [6]

LSA Graphics

Figure 3: Term-document matrix, group documents, k = 5; Source [6]

LSA Graphics

Figure 4: Term-document matrix, group documents+terms, k = 5; Source [6]

LSA Code

```
from sklearn.decomposition import TruncatedSVD
from sklearn.feature extraction.text import TfidfVectorizer
vectorizer = TfidfVectorizer(stop_words='english',
    max_features= 1000,
    \max df = 0.5,
    smooth_idf=True)
X = vectorizer.fit_transform(documents)
svd model = TruncatedSVD(n components=20)
svd model.fit(X)
                     Compression: m \times n \rightarrow m \times k + n \times k + k \times k
```

LSA Code

Code
kklearn.decomposition import TruncatedSVD kklearn.feature_extraction.text import TfidfVectorizer
rizer = TfidfVectorizer(stop_words='emglish', x_features= 1000, x_df = 0.5, cotorizer.fit_transform(documents)
del = TruncatedSVD(n_components=20)
Compression: $m \times n \rightarrow m \times k + n \times k + k \times k$

ISA (

avd_mo

- max features takes to top 1000 terms, max df removes all words which appear in at least half the documents.
- smooth idf adds one to ever seen term
- The reason it's called Truncated SVD is because it can be used for matrix compression. Instead of transmitting $m \times n$ matrix, we can just transmit the three separate matricies.

Considerations

Pros:

- Easy to implement
- Explainable terms
- Quite fast runtime
- Handles synonymy of words

Cons:

- Only surface dependencies
- Determination of k
- SVD difficult to update

Dense Vectors

TODO

Resources

- Python code: https://medium.com/acing-ai/what-is-latent-semantic-analysis-lsa-4d3e2d18417a
- $\textbf{@} \ \, \mathsf{Comprehensive} \ \, \mathsf{tutorial} \ \, \mathsf{for} \ \, \mathsf{LSA+SVD} \colon \mathsf{https:}//\mathsf{www.engr.uvic.ca}/\sim \mathsf{seng474/svd.pdf}$
- SVD example: http://web.mit.edu/be.400/www/SVD/Singular_Value_Decomposition.htm
- Computation: https://en.wikipedia.org/wiki/Singular_value_decomposition#Calculating_the_SVD
- $\verb| Omputation: https://www.cs.utexas.edu/users/inderjit/public_papers/HLA_SVD.pdf| \\$
- $\textbf{ 0} \ \ \ Visualization: \ https://topicmodels.west.uni-koblenz.de/ckling/tmt/svd_ap.html \\$
- $\hbox{ \emptyset Computation: $https://en.wikipedia.org/wiki/Jacobi_eigenvalue_algorithm} \\$
- Option code: https://www.analyticsvidhya.com/blog/2018/10/stepwise-guide-topic-modeling-latent-semantic-analysis/
- ① Jelinek-Mercer: http://ctp.di.fct.unl.pt/~jmag/ir/slides/a05%20Language%20models.pdf
- @ LSI: https://nlp.stanford.edu/IR-book/html/htmledition/latent-semantic-indexing-1.html