1 Полугруппы и моноиды

Определение 1.1:

Полугруппа - многообразие заданное множеством

$$(x*y)*z = x*(y*z)$$

Теорема 1.1. Значение терма не зависит от расстановки скобок (Ассоциативный закон)

$$t = t_1 * t_2 = (a_1 a_2 ... a_m)(a_{m+1} ... a_n) = a_1 a_2 ... a_n$$

Доказательство. Индукция по длине t

Базис: n = 1, нет скобок

Шаг: для n-1 верно, тогда

1. m = n - 1

$$t = t_1 * a_n = (a_1 a_2 ... a_m) * a_n = a_1 a_2 ... a_n$$

2. $1 \le m \le n - 1$

$$t = t_1 * t_2 = (a_1 a_2 ... a_m)(a_{m+1} ... a_n) = (a_1 a_2 ... a_m)(a_{m+1} ... a_{n-1})a_n = (a_1 a_2 ... a_{n-1})a_n = a_1 a_2 ... a_n$$

Определение 1.2:

 e_l называется **нейтральным слева** в подгруппе, если $e_l*a=a$ для всех $a,\,e_r$ называется **нейтральным справа** в подгруппе, если $a*e_r=a$ для всех $a,\,e$ - нейтральный слева и справа

Пример 1.1:

Примеры нейтрального элемента:

Теорема 1.2. Если существуют нейтральный слева и нейтральный справа то они равны

Доказательство.

$$e_l = e_l * e_r = e_r$$

Следствие. Если нейтральный элемент существует, то он единственный.

Определение 1.3:

Моноид - подгруппа с нейтральным элементом

Пример 1.2:

Примеры моноидов:

Определение 1.4:

Свободный моноид - моноид, элементами которого являются конечные последовательности (строки) элементов носителя моноида. Свободный моноид на множестве $A \neq \emptyset$ это $\mathcal{A} = (A^*; \&)$

Теорема 1.3. Любой моноид, порождённый элементами множества, на котором есть свободный моноид, является гомоморфным образом этого моноида

Доказательство. Пусть
$$A \neq \emptyset$$
, $\mathcal{A} = (A^*; \&)$, $\mathcal{B} = (\{t^{\mathcal{B}}(a_1, ..., a_n) : a_1, ..., a_n \in A\}; *)$ и $h : \mathcal{A} \to \mathcal{B}$ - Гомоморфизм

$$h(a_1...a_n) = (a_1, ..., a_n)^{\mathcal{B}}$$
$$h(\varepsilon) = e^{\mathcal{B}}$$

Надо доказать свойство гомоморфизма:

$$h(u\&v) = h(u)*h(v)$$

Пусть $u = a_1...a_n$, $v = a'_1...a'_n$, тогда

$$h(u\&v) = h(uv) = h(a_1...a_na'_1...a'_n) = (a_1...a_na'_1...a'_n)^{\mathcal{B}}$$

$$h(u) * h(v) = h(a_1...a_n) * h(a'_1...a'_n) = (a_1...a_n)^{\mathcal{B}} * (a'_1...a'_n)^{\mathcal{B}} = (a_1...a_na'_1...a'_n)^{\mathcal{B}}$$

Из этого следует что h(u&v) = h(u)*h(v)

Пример 1.3:

Примеры свободных моноидов и их гомоморфных образов:

Определение 1.5:

Циклический моноид - моноид порождённый одним элементом. < a > - циклический моноид, порождённый элементом a.

$$e, a, a^1, a^2, a^3, \dots$$
 - элементы моноида $< a >$

- 1. $a^i \neq a^j$ при $i \neq j$ $h :< a > \to (\{a\}^*; \&), h(a^i) = i$ изоморфизм.
- 2. $a^i = a^j$ при $i \neq j$

$$k = i + (k - i) = i + y(j - i) + r$$
$$r = (k - i)mod(j - i)$$
$$r < j - i$$

тогда

$$a^{k} = a^{i} \underbrace{a^{j-i} \dots a^{j-i}}_{y} a^{r} = (a^{i}a^{j-i}) \underbrace{a^{j-i} \dots a^{j-i}}_{y-1} a^{r} \stackrel{(a^{i}a^{j-i} = a^{i+j-i} = a^{j} = a^{i})}{=} a^{i} \underbrace{a^{j-i} \dots a^{j-i}}_{y-1} a^{r} = a^{i}a^{r} = a^{i+r} (r < j - i; i + r < j)$$

Пример 1.4:

Пример циклическокококого моноида: $\langle a \rangle = (\{e, a, ...\}; *)$ Таблица умножения (*) -

	e	a	a^2
e	a	a	a^2
a	a	a^2	a
a^2	a^2	a	a^2

Теорема 1.4. Если j - наименьшее число такое что $a^i = a^j$ для какогото i < j, то < a > codeржит ровно <math>j элементов

Доказательство.

$$\underbrace{e,a^1,...,a^{j-1}}_{\text{нет равных}},\underbrace{a^j=a^i,a^{j+1}=a^{i+1},...}_{\text{повоторя ющиеся}}$$

если j - номер наименьшего повтора, тогда

$$a^{x} * a^{y} = \begin{cases} a^{x+y}, & \text{если } x+y < j \\ a^{i+(x+y-i)mod(j-i)}, & \text{если } x+y \geq i \end{cases}$$

$$x+y=k, \qquad k=i+(k-i\cdot z+r)$$

$$r=(k-i)mod(j-i)$$

$$a^{k}=a^{i+z}$$

$$a^{x+y}=a^{k}=a^{i+(x+y-i)mod(j-i)}$$

Определение 1.6:

Идемпотент - элемент моноида a, такой что $a^2=a$

Пример 1.5:

Примеры идемпотентов:

Определение 1.7:

Моноид типа (i, j - i) - моноид с элементами

227

Теорема 1.5. В моноиде типа (i, j - i), где i > 0 существует идемпотент $b \neq e$

Пример 1.6:

Пример чего-то:

Определение 1.8:

 b_l - левый обратный для элемента a, если $b_l*a=e$, b_r - правый обратный для элемента a, если $a*b_l=e$, b - обратный для элемента a, если b*a=a*b=e

Доказать что множество функций этого вида замкнуты относительно композиции:

$$f(x) = \begin{cases} ax & \text{при } x < b \\ ab & \text{при } x \ge b \end{cases}$$

Доказательство.

Пример 1.7:

Пример изоморфизма: Доказать

$$(P(A \cup B); \cup, \cap) \cong (P(A); \cup, \cap) \times (P(B); \cup, \cap)$$

где P(A) - множество всех подмножеств множества A

Доказательство. Надо доказать

$$h(x_1 \cup x_2) = h(x_1) \cup h(x_2)$$

$$h(x_1 \cap x_2) = h(x_1) \cap h(x_2)$$

и h - биекция

По сути функция h должна выдавать пару, первая часть которой состоит из элементов A, вторая из B

Пример 1.8:

Пример полугруппы: является ли $(\omega, GCD())$ полугруппой

Доказательство. Предположим что является, надо доказать

$$GCD(GCD(x, y), z) = GCD(x, GCD(y, z))$$

1. \Rightarrow Пусть d:d|GCD(x,y),d|zНадо доказать $d|GCD(y,z),\,d|x$

$$\begin{aligned} d|GCD(x,y) &\Rightarrow d|x \\ d|GCD(x,y) &\Rightarrow d|y \\ d|x,d|y &\Rightarrow d|GCD(y,z) \end{aligned}$$

2. ⇐ также

Пример 1.9:

Построить все моноиды из двух элементов $\{e,x\}$

$$A_1 = (\{e, x\}; *_1), A_2 = (\{e, x\}; *_2)$$

Таблица умножения $(*_1)$

	e	x
e	e	x
x	x	e

Таблица умножения $(*_2)$

	e	x
e	e	x
x	x	x

Все остальные или изоморфны или тривиальны

Теорема 1.6. Если в конечном моноиде каждый элемент имеет первый обратимый, то существует правый обратимый

Доказательство. Предположим обратное: Если в конечном моноиде каждый элемент имеет первый обратимый, то хотя бы для одного не существует правый обратимый: $ab_r \neq e$ для всех b_r НЕ ДОКАЗАНО