1. Постановка задачи.

Пополнить MNIST 11-м классом "не цифры", поместив в него случайно выбранные буквы EMNIST. 11-й класс формируется из представителей всех классов EMNIST.

Используя **PyTorch**, создать и обучить модель нейронной сети для классификации примеров сформированного набора данных.

2. Формирование 11-ого класса MNIST.

а) Для обучающей выборки сначала формируем список из 26 элементов. Элементы списка представляют собой массивы из индексов — массив из индексов для каждой буквы алфавита отдельно.

Формирование:

```
ind = []
for i in range(26):
    ind.append(np.where(emnist ltrn == i)[0])
```

- b) Затем для каждого элемента списка массивов индексов оставляем только по 231 примеру для первых 20-ти классов и по 230 примеров для остальных 6-ти классов.
- с) Затем формируем ещё один список, содержащий непосредственно изображения для каждого класса отдельно.

Формирование:

[out]: (66000,)

```
emnist_train = []
for i in range(26):
    emnist train.append(emnist trn[ind[i]])
```

d) Выводим изображения первого класса – "A, a". Для проверки.

a A a a a A A A A A A A A A

е) Переходим к созданию непосредственно обучающей выборки: изображения и их метки.

Копируем в новый объект изображения из MNIST:

f) Изображения и метки нужно перемешать. Создаём массив из перемешенных индексов:

```
ind = np.random.permutation(x train.shape[0])
```

```
x train = x train[ind]
y train = y train[ind]
```

g) Выводим первые 15 изображений обучающей выборки и их метки:

1504255572666

h) Аналогично действия для проверочной выборки. В проверочную порцию данных 11-го класса добавляются по 38 примеров из первых 20-и классов EMNIST и по 40 из последующих (38 * 20 + 40 * 6 = 1000).

3. Подготовка данных, построение модели и обучение.

Разделим обучающую выборку на пакеты:

```
trn_data = [[x, int(y)] for x, y in zip(x_train, y_train)]
trn loader = DataLoader(trn data, batch size = batch size, shuffle = True)
```

Подготовим проверочные данные:

```
tst data = torch.tensor(x test)
tst_target = torch.tensor(np.array(y_test, dtype = np.int64))
```

Построим модель и распечатаем её:

```
Net(
  (conv1): Conv2d(1, 64, kernel size=(3, 3), stride=(1, 1))
  (conv2): Conv2d(64, 64, kernel size=(3, 3), stride=(1, 1))
  (conv3): Conv2d(64, 128, kernel size=(3, 3), stride=(1, 1))
  (conv4): Conv2d(128, 128, kernel size=(3, 3), stride=(1, 1))
  (conv5): Conv2d(128, 256, kernel size=(3, 3), stride=(1, 1))
  (pool2d1): MaxPool2d(kernel size=2, stride=2, padding=0, dilation=1, ceil mode=False)
  (pool2d2): MaxPool2d(kernel size=2, stride=2, padding=0, dilation=1, ceil mode=False)
  (pool2d3): MaxPool2d(kernel size=2, stride=2, padding=0, dilation=1, ceil mode=False)
  (b norm1): BatchNorm2d(64, eps=1e-05, momentum=0.1, affine=True,
track running stats=True)
  (b norm2): BatchNorm2d(128, eps=1e-05, momentum=0.1, affine=True,
track running stats=True)
  (b norm3): BatchNorm1d(256, eps=1e-05, momentum=0.1, affine=True,
track running stats=True)
  (fc1): Linear(in features=256, out features=512, bias=True)
  (fc2): Linear(in features=512, out features=11, bias=True)
```

Torchsummary:

Layer (type)	Output Shape	Param #
Conv2d-1	[256, 64, 26, 26]	640
Conv2d-2	[256, 64, 24, 24]	36,928
MaxPool2d-3	[256, 64, 12, 12]	0
BatchNorm2d-4	[256, 64, 12, 12]	128
Conv2d-5	[256, 128, 10, 10]	73,856
Conv2d-6	[256, 128, 8, 8]	147,584
MaxPool2d-7	[256, 128, 4, 4]	0
BatchNorm2d-8	[256, 128, 4, 4]	256
Conv2d-9	[256, 256, 2, 2]	295,168
MaxPool2d-10	[256, 256, 1, 1]	0
BatchNorm1d-11	[256, 256]	512
Linear-12	[256, 512]	131,584
Linear-13	[256, 11]	5,643
		========
Total params: 692,299		
Trainable params: 692,299		
Non-trainable params: 0		

Input size (MB): 0.77 Forward/backward pass size (MB): 245.52 Params size (MB): 2.64

Estimated Total Size (MB): 248.93

Обучение с выводом точности:

```
Число эпох 20
Обучение
Эпоха: 1 loss: 0.172161 acc: 0.9512 val loss: 0.066092 val acc: 0.9785
Эпоха: 2 loss: 0.060592 acc: 0.9832 val_loss: 0.213382 val_acc: 0.9336
Эпоха: 3 loss: 0.045192 acc: 0.9872 val_loss: 0.068769 val_acc: 0.9883
Эпоха: 4 loss: 0.035363 acc: 0.9898 val_loss: 0.105414 val_acc: 0.9746
Эпоха: 5 loss: 0.036963 acc: 0.9897 val_loss: 0.032413 val_acc: 0.9883
Эпоха: 6 loss: 0.030561 acc: 0.9917 val_loss: 0.124034 val_acc: 0.9805
Эпоха: 7 loss: 0.029716 acc: 0.9917 val_loss: 0.044146 val_acc: 0.9902
Эпоха: 8 loss: 0.028462 acc: 0.9924 val_loss: 0.128120 val_acc: 0.9688
Эпоха: 9 loss: 0.026496 acc: 0.9930 val loss: 0.142341 val acc: 0.9844
Эпоха: 10 loss: 0.026949 acc: 0.9929 val_loss: 0.075120 val_acc: 0.9824
Эпоха: 11 loss: 0.019992 acc: 0.9949 val_loss: 0.027345 val_acc: 0.9941
Эпоха: 12 loss: 0.025070 acc: 0.9936 val_loss: 0.041374 val_acc: 0.9883
Эпоха: 13 loss: 0.022252 acc: 0.9942 val_loss: 0.093022 val_acc: 0.9922
Эпоха: 14 loss: 0.019349 acc: 0.9951 val_loss: 0.048472 val_acc: 0.9922
Эпоха: 15 loss: 0.021584 acc: 0.9950 val_loss: 0.052928 val_acc: 0.9883
Эпоха: 16 loss: 0.014129 acc: 0.9962 val_loss: 0.069231 val_acc: 0.9844
Эпоха: 17 loss: 0.010998 acc: 0.9972 val_loss: 0.018858 val_acc: 0.9922
Эпоха: 18 loss: 0.017726 acc: 0.9958 val loss: 0.034530 val acc: 0.9902
Эпоха: 19 loss: 0.018033 acc: 0.9958 val loss: 0.031759 val acc: 0.9941
Эпоха: 20 loss: 0.018310 acc: 0.9957 val loss: 0.028579 val acc: 0.9941
```

4. Сохранение модели в файле.

```
if save_model:
          print('Сохранение весов модели')
          torch.save(model.state dict(), fn w)
```

5. Графики обучения.

98.61

6. Загрузка модели из файла, точность проверочного множества по классам.

```
if load model:
    print('Загрузка весов из файла', fn w)
    model.load state dict(torch.load(fn w, map location = torch.device(device)))
Потери: 0.058914
Точность: 0.9917
Точность по классам:
      99.49
1
      99.47
      99.90
      99.80
      99.59
      98.09
      99.27
      98.05
8
      99.49
```

7. Вывод оценки качества модели посредством classification_report из sklearn.metrics.

	precision	recall	f1-score	support
Класс О	0.99	0.99	0.99	980
Класс 1	0.99	0.99	0.99	1135
Класс 2	0.99	1.00	0.99	1032
Класс 3	0.99	1.00	0.99	1010
Класс 4	0.99	1.00	0.99	982
Класс 5	0.99	0.98	0.99	892
Класс 6	0.99	0.99	0.99	958
Класс 7	1.00	0.98	0.99	1028
Класс 8	0.99	0.99	0.99	974
Класс 9	0.99	0.99	0.99	1009
Класс 10	0.99	0.99	0.99	1000
accuracy			0.99	11000
macro avg	0.99	0.99	0.99	11000
weighted avg	0.99	0.99	0.99	11000

8. Вывод неверно классифицированных изображений.

Прогноз | реальный класс

9. Список неверно классифицированных изображений проверочного множества. Список упорядочен по числу ошибок в классе.

Индекс неверно классифицированного изображения | прогноз

Класс: 3

5697 | 5

