CSIS734-01 Data Mining & Predictive Analytics **Garth Mortensen**, <u>mort0052@stthomas.edu</u>

Graduate Program in Software CSIS 734-01: Data Mining & Predictive Analytics

Assignment #7 (100 points)

<u>Due Date: April 28th, 2018</u>

Following table has the training data for our classification task.

ID	Α	В	C	D	class
1	0	0	1	1	Υ
2	0	0	1	1	Υ
3	1	1	0	0	Υ
4	1	1	0	0	Υ
5	1	0	1	0	X
6	1	1	0	1	Χ
7	0	1	0	0	Υ
8	0	1	0	0	Υ
9	0	1	1	0	X
10	0	1	0	1	Χ
R1	1	0	1	1	?
R2	0	1	1	1	?

We want to predict the classes of the following two records:

$$R1 = \{A = 1, B = 0, C = 1, D = 1\}, and$$

$$R2 = \{A = 0, B = 1, C = 1, D = 1\}.$$

Use Naïve Bayes Theorem to determine the classes of the two records. Please include your calculations.

ID	Α	В	С	D	Class	
1	0	1	0	1	N	
2	0	1	1	0	N	
3	1	0	1	0	N	
4	1	1	0	1	N	
5	0	0	1	1	Υ	
6	0	0	1	1	Υ	
7	0	1	0	0	Υ	
8	0	1	0	0	Υ	
9	1	1	0	0	Υ	
10	1	1	0	0	Υ	10 Total observations
R1	1	0	1	1	?	
R2	0	1	1	1	?	
Count 1	4	7 -	4	4		6 total Ys
Count 0	6	3	6	6		4 total Ns
Count	О	3	О	0)	4 LULAI INS

Given d = (S, C, H, W) as a new instance.

Probability that the new instance d belong to class Yes.

 $P(Y | d) = (P(d | Yes) \times P(Y)) / (P(d))$

P(Y | d) = Posterior probability d belongs to class Yes, if d has attributes (sunny, cool, high humidity, windy)?

(P(d | Ye Likelihood our trainings have attributes like d (sunny, cool, high humidity, windy) & belong to class Yes?

P(Y) = Prior probability of trainings belong to class Yes in our training set.

P(d) = Predictor prior probability

Step 1 - Solve numerators

Step 2 - Sum numerators

Sum 0.007 0.013 = 0.020

Step 3 - Normalization

$$P(Yes | d) = 0.007 / P(r1) * 1/sum = 0.372$$

 $P(No | d) = 0.013 / P(r1) * 1/sum = 0.628$ greater

63% probability No. Class

R1 1 0 1 1 N

Assumption: Observations are independent and attributes are uncorrelated.

r2

a b c d
0 1 1 1

Step 1 - Solve numerators

Step 2 - Sum numerators

Sum 0.03 0.038 = 0.067

Step 3 - Normalization

$$P(Yes | d) = 0.030 / P(r1) * 1/sum = 0.441$$

 $P(No | d) = 0.038 / P(r1) * 1/sum = 0.559$ greater

 56%
 probability No.
 Class

 R2
 0
 1
 1
 N

Assumption: Observations are independent and attributes are uncorrelated.