DIIT

Cuerpo rígido | Ecuaciones de Euler

1. Engranaje inclinado Un engranaje de masa de $10\,\mathrm{kg}$ está montado con una inclinación de 10° en un eje de masa despreciable. Los cojinetes A y B sostienen el eje que gira con velocidad angular constante. El A es de empuje, por lo que provee reacción también en la dirección longitudinal al eje en tanto que el B solo lo hace en las direcciones transversales. Los momentos de inercia del engranaje son $I_z=0.1\,\mathrm{kg}\,\mathrm{m}^2$ y el $I_y=0.05\,\mathrm{kg}\,\mathrm{m}^2$.

a) Determine las reacciones que deben proveer los cojinetes para el instante en que el sistema en rotación presenta la disposición que se ilustra.

- a) Determine las reacciones que proveen los cojinetes.
- 3. Rotación fuera de eje Un cilindro homogéneo de masa m, radio R y altura H gira con velocidad angular constante $\vec{\omega}$ en torno a un eje que forma un ángulo de 30° con el \hat{z} y que pasa por su centro de masa.

a) Calcular el torque que debe aplicarse al cilindro para mantener tal movimiento.

Resultado:
$$\vec{\tau} = \begin{bmatrix} \frac{\sqrt{3}m\omega^2(-H^2+3R^2)}{48} \\ 0 \\ 0 \end{bmatrix}$$

4. Barra en rotación La barra delgada AB tiene una masa m y está conectada al soporte por medio de un pasador en A. El soporte está rígidamente montado en la flecha. Determine la velocidad angular constante requerida ω de la flecha, para que la barra forme un ángulo θ con la vertical.

5. Cilindro desbalanceado Un cilindro de altura D y masa M gira apoyado en dos cojinetes P y Q con velocidad angular ω . En un eje imaginario en un ángulo φ del eje de rotación, y a una distancia a de su centro, tiene colocadas dos pesas de igual masa, m.

a) Calcular la fuerza que aplican los cojinetes. Resultado: $F=\frac{ma^2\omega^2}{D}\sin(\varphi)\cos(\varphi)$.

Mecánica Analítica Computacional

6. "Flecha" sobre cojinetes La flecha se construyó con una barra cuya masa por unidad de longitud es de 2 kg m^{-1} . Determine las componentes x, y, z de la reacción en los cojinetes A y B si en el instante que se muestra la flecha gira libremente a una velocidad angular de $\omega = 30 \text{ s}^{-1}$ (radianes por segundo). ¿Cuál es la aceleración angular de la flecha en este instante? El cojinete A es capaz de soportar una componente de fuerza en la dirección y mientras que el cojinete B no.

7. Aceleración angular constante El cilindro de 15 libras rota alrededor del eje AB con $\vec{\omega} = -4\,\mathrm{s}^{-1}\hat{x}$ (radianes por segundo). El cojinete A no soporta fuerza en el sentido de x de lo que se ocupa el B. El eje que parte del soporte en su punto C, que parte del reposo, está sometido a una aceleración $\vec{\alpha}_C = \dot{\vec{\omega}} = 12\,\mathrm{s}^{-2}\hat{Z}$ (radianes por segundo cuadrado), siendo \hat{z} que \hat{Z} incluye a \overline{AC} y es paralelo a \hat{z} .

- a) Convierta los datos en unidades imperiales (pies, libras) en unidades del Sistema Internacional.
- b) Determine las reacciones que deben proveer los cojinetes.

$$\text{Resultado:} \begin{bmatrix} A_y \\ A_z \\ B_x \\ B_y \\ B_z \end{bmatrix} = \begin{bmatrix} -5,79 \\ 21,1t+33,4 \\ 0 \\ 5,79 \\ 33,4-21,1t \end{bmatrix}$$

8. **Trituradora de roca** Una trituradora de roca se compone de un disco delgado grande el cual está conectado por medio de un pasador a un eje horizontal. Si éste gira a una velocidad constante de 8 s⁻¹ (radianes por segundo), determine la fuerza normal que el disco ejerce en las piedras. Suponga que el disco rueda sin deslizarse y que su masa es de 25 kg. Ignore la masa del eje.

