大学物理(王少杰教材)第1套阶段训练题目 热学(9-10章)

一、填空题(共30分)

1. (本题 3 分) 如题 1 图所示,一定量的理想气体从同一初态 $a(P_0, V_0)$ 开始,分别经历定体过程 $a \rightarrow b$ 和定压过程 $a \rightarrow c$,b 点的压强为 $5P_0$,c 点的体积为 $4V_0$,若两个过程中系统吸收热量相同,则摩尔热容比y等于_____。

2. (本题 3 分) 0.1 kg 氯气 (可视为理想气体) 在等压膨胀情况下, 系统对外做功与从外界吸收热量的比值为____。

3.(本题 3 分)理想气体经历如题 3 图所示的循环过程, $a \rightarrow b$ 为等体过程, $b \rightarrow c$ 和 $d \rightarrow a$ 为绝热过程, $c \rightarrow d$ 为等压过程, 已知各点的温度为 T_a 、 T_b 、 T_c 、 T_d ,摩尔热容比为 γ ,则此循环的效率 η 为

4.(本题 3 分)如题 4 图所示,物质的量为 ν 的理想气体进行了一次 X 过程,在 P-V 图上将 X 过程向下平移 P_0 后,恰好与温度为 T_0 的等温曲线重合,则 X 过程中 V 与 T 的关系为_____。

- 6. (本题 3 分) 一容器内储有三种理想气体,处于平衡态,a 种气体的分子数密度为 n_1 ,产生的压强为 P_0 ,b 种和 c 种气体的分子数密度分别为 $3n_1$ 和 $5n_1$,则混合气体的压强为
- 7. (本题 3 分) 有一刚性绝热容器被隔板分为两部分,其中 1/4 充有 1 mol 理想 气体,另外的 3/4 为真空。现将隔板抽去,使气体自由膨胀到整个容器中,则该 气体的熵变为_____。
- 8. (本题 6 分) 质量均为 m、比热均为 c 的 7 个物体,其中 A 的温度为 T_0 ,其余物体的温度均为 $2T_0$ 。通过物体与物体相互接触中发生的热传导使物体 A 温度升高,假设接触过程与外界绝热,则物体 A 可达到的最高温度为_______,它的熵增量为

二、推导证明题(共8分)

9. (本题 8 分) 题 9 图显示了克劳修斯循环过程,其 Pf中 $a \rightarrow b$ 、 $c \rightarrow d$ 和 $e \rightarrow f$ 是等温过程,温度分别为 T_1 、 T_2 和 T_3 , $b \rightarrow c$ 、 $d \rightarrow e$ 和 $f \rightarrow a$ 是绝热过程。设系统是一定量的理想气体,在 $c \rightarrow d$ 过程吸收的热量和 $e \rightarrow f$ 过程中放出的热量相等,证明此循环的效率为

$$\eta = 1 - \frac{T_2 T_3}{T_2 T_3 + T_1 \left(T_2 - T_3 \right)}$$

三、计算题(共56分)

10. (本题 6 分) 某容器内有 3 L 的氮气 (可视为理想气体), 其内能为 978 J。(1) 求气体的压强; (2) 设分子总数为 4.6×10^{22} , 求分子的平均平动动能及气体的温度。

11. (本题 10 分) 如题 11 图所示,设某种气体分子的速率分布函数为

$$f(v) = \begin{cases} a(-2v^4 + v_0v^3 + v_0^2v^2)(0 \le v \le v_0) \\ 0 & (v > v_0) \end{cases}$$

求: (1) 常量 a 与 v_0 的关系; (2) 分子的最概然速率 v_p ; (3) $0\sim v_0$ 区间内分子的平均速率; (4) $0\sim v_p$ 区间内分子的平均速率; (5) $0\sim v_p$ 区间内的分子占总分子数的百分比。

12. (本题 10 分) 如题 12 图所示,容积为 100 L 的绝热容器,中间用一绝热板隔开。绝热板可无摩擦自由滑动, A、B 两部分各装有 1 mol 氦气(可视为理想气体)。最初压强是 2×10⁴ Pa,隔板停在中间,现通过 B 中电阻对其缓慢加热,直到 A 部分气体体积缩小到原来的一半为止。求:(1) B 中气体的过程方程;(2) 两部分气体的各自最后温度;(3) B 中气体吸收的热量。

14. (本题 8 分) 一封闭绝热筒,被一个与绝热筒密接而无摩擦的导热活塞分为两部分,体积均为 $V_0 = 2$ L。将活塞固定在正中间,一边充以 $T_0 = 400$ K、 $P_0 = 10^5$ Pa 的空气,另一边充以 400 K、 3×10^5 Pa 的空气。然后活塞被释放,并在新的位置达到平衡,求平衡后气体的温度、压强以及熵的增加值。

15. (本题 10 分) 质量为 2 kg、温度为-15 ℃的冰,在压强为 1.013×10⁵ Pa、温度为 25 ℃下熔解变成水,整个过程分为: (a) -15 ℃的固态冰在定压条件下从周围环境吸热,成为 0 ℃的固态冰; (b) 0 ℃的固态冰等温地吸热熔解为 0 ℃的液态水; (c) 0 ℃的水定压吸热,成为 25 ℃的水。求: (1) 此过程中的熵变(整个过程中周围环境温度不变); (2) 在 0 ℃时冰变成 0 ℃的水时,水的微观状态数与冰的微观状态数之比。已知:水的定压比热容 $c_{pv} = 4.22 \times 10^3$ J/(kg·K),冰的定压比热容 $c_{pi} = 2.09 \times 10^3$ J/(kg·K),冰的熔解热 $L = 3.34 \times 10^5$ J/kg。

四、设计应用题(共6分)

16. (本题 6 分) 如题 16 图所示,安装在转轮 上的记忆合金弹簧在高于其"转变温度"的 水中缩短,在空气中伸长。这就使得弹簧组 对转轮中心的力矩不为零,在此力矩的作用 下,转轮便转动起来了。若在下面放上热水, 转轮能否不停地转动而形成第二类永动机 (忽略空气和水的阻力)?并解释原因。

题 16 图