# More progress on PM characterization with X-ray techniques

#### Artur Braun

University of Kentucky, Department of Chemical and Materials Engineering, and Consortium for Fossil Fuel Science, Lexington KY

Email: abraun@lbl.gov

### Contributors

- •Artur Braun, UK
- •Frank E. Huggins, UK
- •Naresh Shah, UK
- •Yuanzhi Chen, UK
- •Gerald P. Huffman, UK
- •Kerry E. Kelly, Utah
- •Adel F. Sarofim, Utah
- •Sue Wirick, SUNY
- Christopher Jacobsen, SUNY
- •Henry Francis, UK, KGS

- •Simon B. Mun, LBNL
- Jan Ilavsky, APS
- Peter Jemian, APS
- Alena Kubatova, UNDEERC
- •Stefano di Stasio, Istituto Motori
- •Takashi Ida, Nagoya Tech
- Soenke Seifert, APS
- Matti Maricq, Ford
- •Jake McDonald, LRRI

### Carbon XANES

Last year: X-ray absorption (XANES) of **single** diesel soot **particles** with microscope (STXM), published in *FUEL*.

Then: Conventional, faster bulk XANES (not single particles, but powder, pellets), to confirm STXM results.

- Utah diesel soot
- Ford diesel soot
- LRRI wood smoke
- Ethylene soot

- ambient Whalen PM
- NIST 1650 standard diesel soot
- ambient ceiling fan dust
- Jet PM

Then: STXM on the extracts (sub-critical water, 25°C – 300°C) of Utah diesel soot

#### Assignment of carbon K-shell absorption peaks (attempted!)

Assignment of peaks not trivial. Significant number of reference spectra from organics and inorganics required for meaningful catalogue.

Has not been done yet.



#### Ethylene /air flame soot vs. diesel soot, graphite...





Soot, carbon black, and graphite have much in common in terms of their NEXAFS spectra.

# Oxidation of glassy carbon



Oxidation removes aromatic C=C bond material; enhances phenol and carboxyl

# XANES of oil, diesel, soot



#### XANES of some organic reference materials



## More XANES







#### Woodsmoke and ambient PM samples



- Indoor/Dust from ceiling fan
- Whalen ambient PM
- LRRI wood smoke

Show a remarkable similarity; area here rich in limestone; maybe CaCO3? Ca absorption edges present in all these samples at 350 eV. Carbonate shows a peak 290 eV; Carbonyl at 289 eV.

# Soot from a Ford passenger vehicle electron yield vs. sample current detection mode

1998 diesel, 1.9 1/4 cyl, turbo, injection, cat, 1998 CA emission standards





# Comparison of "old" Utah diesel soot

1\_7



#### Soot from ferrocene treated diesel fuel





Ferrocene reduces C=C bonds, but aliphatic and carboxyl groups increase.

#### EELS vs. NEXAFS

Many electron microscopes come with an electron spectrometer, and the EELS spectra come thus "for free".

EELS = popular, many applications, many publications, incl. carbon.

But: we find EELS is blind for some key features in the molecular structure, which are visible for XANES!





### NEXAFS of diesel soot extracts

Extraction with sub-critical water; extracts measured with STXM; Particular points on dried extract selected and measured; some inhomogenity found. Analysis in progress.





# Recall from previous meeting Scanning Transmission X-ray Micro-spectroscopy - "STXM"

Contrast-variation between aromatic and aliphatic carbon due to different X-ray absorption







# Wide-angle X-ray scattering of soot



WAXS/XRD studies well known for coal

Aromaticity can be obtained from WAXS

Problem: soot contains volatiles; difficult to distinguish solid soot core from volatiles

Extraction by sub-critical water, then WAXS

WAXS is almost everywhere available; good candidate for organic/black carbon determination

### Elasticity of soot probed by USAXS





- Diesel soot from idle and load engine was studied as 1) powder, 2) pressed pellets, and 3) in acetone with USAXS.
- Soot aggregates become more compact when pressure increases, as evidenced by Kratky plot.
- This is a novel approach to remove scattering contamination from aggregate structures, and opens path to identify primary particles.
- Quantitative analysis permits to assign a Hooke's *constant*, which is a linear function of applied pressure.
- Size and elastic properties of soot may be useful thermodynamic parameters (heat-capacity) for energy inventory calculations and modeling.
- Scattering curves from soot can be well modeled/fitted with form factors of star polymers, revealing structural for Form of soot and star-polymers.



## Propane/air soot USAXS









# Unified USAXS fit



### Do soot primary particles have porosity?



Referee raised question whether soot has porosity or not, i.e. the primary particles. Comparison of USAXS data from soot and glassy carbon, which has a high micro porosity.