	Sets	
Set	Convex?	Comments
Convex hull:	Yes	• conv C will be the smallest convex set that contains C .
• conv $C = \left\{ \sum_{i=1}^k \theta_i \mathbf{x}_i \mid \mathbf{x}_i \in C, 0 \leq \boldsymbol{\theta} \leq 1, 1^T \boldsymbol{\theta} = 1 \right\}$		
		• conv C will be a finite set as long as C is also finite.
Affine hull:	Yes.	
• aff $C = \left\{ \sum_{i=1}^k \theta_i \mathbf{x}_i \mid \mathbf{x}_i \in C \text{ for } i = 1, \dots, k, 1^T \boldsymbol{\theta} = 1 \right\}$		• A will be the smallest affine set that contains C.
		• Different from the convex set, θ_i is not restricted between 0 and 1
		• aff C will always be an infinite set. If aff C contains the origin, it
		is also a subspace.
Conic hull:	Yes.	
• $A = \left\{ \sum_{i=1}^k \theta_i \mathbf{x}_i \mid \mathbf{x}_i \in C, \theta_i > 0 \text{ for } i = 1, \dots, k \right\}$		• A will be the smallest convex conic that contains C.
		• Different from the convex and affine sets, θ_i does not need to sum up 1.
		ap 1.
Hyperplane:	Yes.	
$\bullet \ \mathcal{H} = \left\{ \mathbf{x} \mid \mathbf{a}^T \mathbf{x} = b \right\}$		• It is an infinite set $\mathbb{R}^{n-1} \subset \mathbb{R}^n$ that divides the space into two halfspaces.
$ullet \mathcal{H} = ig\{ \mathbf{x} \mid \mathbf{a}^T (\mathbf{x} - \mathbf{x}_0) = 0 ig\}$		• $a^{\perp} = \{ \mathbf{v} \mid \mathbf{a}^{T} \mathbf{v} = 0 \}$ is the set of vectors perpendicular to \mathbf{a} . It
$\bullet \mathcal{H} = \mathbf{x}_0 + a^{\perp}$		passes through the origin.
		• a^{\perp} is offset from the origin by \mathbf{x}_0 , which is any vector in \mathcal{H} .
Halfspaces:	Yes.	
$\bullet \ \mathcal{H}_{-} = \left\{ \mathbf{x} \mid \mathbf{a}^T \mathbf{x} \leq b \right\}$		$ullet$ They are infinite sets of the parts divided by ${\mathcal H}.$
$\bullet \ \mathcal{H}_{+} = \left\{ \mathbf{x} \mid \mathbf{a}^{T} \mathbf{x} \geq b \right\}$		
	77	
Euclidean ball:	Yes.	• $B(\mathbf{x}_c, r)$ is a finite set as long as $r < \infty$.
$\bullet \ B(\mathbf{x}_c, r) = \{\mathbf{x} \mid \ \mathbf{x} - \mathbf{x}_c\ _2 \le r\}$		• \mathbf{x}_c is the center of the ball.
$\bullet B(\mathbf{x}_c, r) = \left\{ \mathbf{x} \mid (\mathbf{x} - \mathbf{x}_c)^T (\mathbf{x} - \mathbf{x}_c) \le r \right\}$		 r is its radius.
• $B(\mathbf{x}_c, r) = {\mathbf{x}_c + r \mathbf{u} \mid \mathbf{u} \le 1}$		I is its radius.
Ellipsoid:	Yes.	
$\bullet \mathcal{E} = \{ \mathbf{x} \mid (\mathbf{x} - \mathbf{x}_c)^T \mathbf{P}^{-1} (\mathbf{x} - \mathbf{x}_c) \le 1 \}$		$ullet$ E is a finite set as long as ${f P}$ is a finite matrix.
• $\mathcal{E} = \{\mathbf{x}_c + \mathbf{A}\mathbf{u} \mid \mathbf{u} \le 1\}$, where $\mathbf{A} = \mathbf{P}^{1/2}$.		• P is symmetric and positive definite, that is, $\mathbf{P} = \mathbf{P}^{T} \succ 0$.
		• \mathbf{x}_c is the center of the ellipsoid.
		• The lengths of the semi-axes are given by $\sqrt{\lambda_i}$.
		$ullet$ A is invertible. When it is not, we say that ${\mathcal E}$ is a degenerated
		ellipsoid (degenerated ellipsoids are also convex).
Norm cone:	Yes.	
$\bullet C = \left\{ [x_1, x_2, \cdots, x_n, t]^T \in \mathbb{R}^{n+1} \mid \mathbf{x} \in \mathbb{R}^n, \mathbf{x} _p \le t \right\} \subseteq \mathbb{R}^{n+1}$		• Although it is named "Norm cone", it is a set, not a scalar.
		\bullet The cone norm increases the dimension of ${\bf x}$ in 1.
		• For $p=2$, it is called the second-order cone, quadratic cone,
		Lorentz cone or ice-cream cone.
Polyhedra:	Yes.	
$\bullet \mathcal{P} = \left\{ \mathbf{x} \mid \mathbf{a}_j^T \mathbf{x} \le b_j, j = 1, \dots, m, \mathbf{a}_j^T \mathbf{x} = d_j, j = 1, \dots, p \right\}$		• Polyhedron is the intersection of <i>m</i> halfspaces.
$\bullet \mathcal{P} = \{\mathbf{x} \mid \mathbf{A}\mathbf{x} \leq \mathbf{b}, \mathbf{C}\mathbf{x} = \mathbf{d}\}, \text{ where } \mathbf{A} = \begin{bmatrix} \mathbf{a}_1 & \mathbf{a}_2 & \dots & \mathbf{a}_m \end{bmatrix}^T \text{ and } \mathbf{C} = \mathbf{c}$		• The polyhedron may or may not be an infinite set.
$egin{bmatrix} egin{bmatrix} \mathbf{c}_1 & \mathbf{c}_2 & \dots & \mathbf{c}_m \end{bmatrix}^T$		• Subspaces, hyperplanes, lines, rays line segments, and halfspaces are all polyhedra.
		• The nonnegative orthant, \mathbb{R}^n_+ = $\{\mathbf{x} \in \mathbb{R}^n \mid x_i \leq 0 \text{ for } i = 1, \dots n\}$ = $\{\mathbf{x} \in \mathbb{R}^n \mid \mathbf{I}\mathbf{x} \succeq 0\}$, is a special polyhedron.
Simplex:	Yes.	
• $S = \text{conv } \{\mathbf{v}_m\}_{m=0}^k = \left\{\sum_{i=0}^k \theta_i \mathbf{v}_i \mid 0 \leq \boldsymbol{\theta} \leq 1, 1^T \boldsymbol{\theta} = 1\right\}$		• Simplexes are another family of polyhedra.
$\bullet \ \mathcal{S} = \left\{ \mathbf{x} \mid \mathbf{A}_1 \mathbf{x} \leq \mathbf{A}_1 \mathbf{v}_0, \mathbf{A}_2 \mathbf{x} = \mathbf{A}_2 \mathbf{v}_0, 1^T \mathbf{A}_1 \mathbf{x} \leq 1 + 1^T \mathbf{A}_1 \mathbf{v}_0 \right\}$		• Also called k-dimensional Simplex in \mathbb{R}^n .
• $\mathcal{S} = \{\mathbf{x} \mid \mathbf{A}_1\mathbf{x} \leq \mathbf{A}_1\mathbf{v}_0, \mathbf{A}_2\mathbf{x} = \mathbf{A}_2\mathbf{v}_0, 1 \mid \mathbf{A}_1\mathbf{x} \leq 1 + 1 \mid \mathbf{A}_1\mathbf{v}_0\}$ • $\mathcal{S} = \{\mathbf{x} \mid \mathbf{A}_1\mathbf{x} \prec \mathbf{b}, \mathbf{C}\mathbf{x} = \mathbf{d}\}$ (Polyhedra form), where $\mathbf{b} = \mathbf{A}_1\mathbf{v}_0, \mathbf{C} = \mathbf{A}_2, \mathbf{d} = \mathbf{A}_2\mathbf{v}_0$		• The set $\{\mathbf{v}_m\}_{m=0}^k$ is a affinely independent set.
$\mathbf{v} = \mathbf{v} - \mathbf{v} + \mathbf{A}_1 \mathbf{v} - \mathbf{v}$, $\mathbf{v} = \mathbf{a}_1 \mathbf{v}_0$, $\mathbf{v} = \mathbf{A}_2 \mathbf{v}_0$		

• Superlevel set (a set) 3.3.6, all convex functions have all convex α sub-level set, but not all functions that have convex α sub-level set are convex (see slide 3.11).

 $\bullet\,$ All convex set is quasiconvex, but not all quasiconvex is convex.

 $C = A \cup B$ $C = A \cap B$

• It is possible to solve quasiconvex functions, even if it is not convex (see Algorithm 4.1). But not all quasiconvex functions that are nonconvex can be solved(?).