

DIAGRAMA DE ARQUITECTURA

ENTRADAS

Diccionario de bounds

Parámetros del problema que se necesitan optimizar para encontrar la mejor combinación con relación a un objetivo

Número de generaciones

N° de generaciones del proceso genético de optimización

Número de individuos

N° individuos de cada generación

Función de coste

Función de coste que se busca optimizar mediante la mejor combinación de parámetros

Reestricciones de mutuación

Reestricciones de mutuación que hacen que los individuos se reproduzcan según la lógica definida por negocio

Circuitos de aleatoriedad

Circuitos de aleatoriedad cuántica para definir cantidad de individuos a mutar y en cuánto deben mutar sus genes/variables

Criterio de selección de mejores individuos

Política de selección de los mejores individuos de cada generación

MOTOR DE GENERACIONES

POLÍTICAS DE MUTACIÓN

Probabilidad cuántica aleatoria de mutación de los individuos

Define cuáles son los individuos que deben mutar (se puede hacer con un simulador cuántico si el circuito es sencillo)

Cantidad de genes / variables que deben mutar

Cantidad de genes que deben variar en los individuos elegidos gracias a la aleatoriedad cuántica (circuito cuántico)

Intensidad variacional de cada uno de los genes/variables

Indica la fuerza de la mutación de los genes de los individuos (circuito cuántico)

Reestricciones de mutación

Reestricciones de mutación para respetar la lógica de negocio

POLÍTICAS GENERACIONAL

POLÍTICA DE SELECCIÓN DE MEJORES INDIVIDUOS

Política de selección de los mejores individuos de cada generación

Por ejemplo: nos quedamos con los 5 mejores respecto a la función de pérdida, restamos entre sí esos valores, obtenemos un criterio de mejor candidato (x% arriba) y ponderamos las variables teniendo en cuenta esta superioridad

CIRCUITO CUÁNTICO DE OPTIMIZACIÓN

Minimización de la función de coste de forma cuántica

Este circuito recibirá la función de coste y los bounds de cada individuo a fin de reducir la función de coste cuánticamente. Se propone utilizar un QAOA pero estamos abiertos a distintas propuestas

ENTRENAMIENTO DE UN MODELO DE IA U OTRO PROBLEMA GENÉRICO

Modelo de IA

Se podría introducir una capa cuántica a los modelos de ML/DL (Pennylane) que se entrenen en cada generación de individuos

RANKING DE MEJORES INDIVIDUOS

Tabla con los mejores individuos que minimizan la función de coste del problema

Tabla con el ranking de todos los individuos. Se propone guardar todos los bound seleccionados cuánticamente y los resultados de la función de coste