Abstract Transport XOR Trick

by Sven Nilsen, 2020

In this paper I show that one can use XOR to simplify proofs where there is some abstraction transport.

In Path Semantical Logic^[1], there are 4 binary relations that transports abstractly^[2]:

The `true₂` relation is the same as not specifying any relation.

When some abstract relation is specified, the relation is one of the following 3 functions:

As a proposition:

some_abstract_relation(a, b) =
$$a=b \le b=>a \le a=>b$$

One can use the following tautology:

$$\forall$$
 a, b { (a=b \leq b=>a \leq a=>b) = (a \leq b) }

Simplified:

some_abstract_relation(a, b) =
$$a \times b$$

For example, one can prove the following:

(a, b) (A, B):
a
$$\vee$$
 b, a(A)=b(B) => (A \neg =B)=>(A=>B \vee B=>A)

References:

- [1] "Path Semantical Logic"
 AdvancedResearch, reading sequence on Path Semantical Logic
 https://github.com/advancedresearch/path_semantics/blob/master/sequences.md#path-semantical-logic
- [2] "Concrete and Abstract Transport"
 Sven Nilsen, 2020
 https://github.com/advancedresearch/path_semantics/blob/master/papers-wip/concrete-and-abstract-transport.pdf