TAKE-HOME CLASS QUIZ: DUE NOVEMBER 2: SERIES CONVERGENCE

MATH 153, SECTION 59 (VIPUL NAIK)

Your name (print clearly in capital letters):
 (1) Suppose p is a polynomial that take positive values on all nonnegative integers. Consider the summation ∑_{k=1}[∞] (k²+1)²/3/_{p(k)}. Under what conditions does the summation converge? Note that the degree of p must be a nonnegative integer. (A) The summation converges if and only if the degree of p is at least one (B) The summation converges if and only if the degree of p is at least two (C) The summation converges if and only if the degree of p is at least three (D) The summation converges if and only if the degree of p is at most two (E) The summation converges if and only if the degree of p is at most one
 (2) Suppose p is a polynomial that take positive values on all nonnegative integers. Consider the summation ∑_{k=1}[∞] (-1)^k(k²+1)^{2/3}. Under what conditions does the summation converge? Note that the degree of p must be a nonnegative integer. (A) The summation converges if and only if the degree of p is at least one (B) The summation converges if and only if the degree of p is at least two (C) The summation converges if and only if the degree of p is at least three (D) The summation converges if and only if the degree of p is at most two (E) The summation converges if and only if the degree of p is at most one
(3) Which of the following series converges? Assume for all series that the starting point of summatio is large enough that the terms are well defined. Two years ago: $11/25$ correct (A) $\sum 1/(k \ln(\ln k))$ (B) $\sum 1/(k \ln k)$ (C) $\sum 1/(k (\ln(\ln k))^2)$ (D) $\sum 1/(k (\ln k) (\ln(\ln k)))$ (E) $\sum 1/(k (\ln k) (\ln(\ln k))^2)$ Your answer:
(4) Which of the following series converges? Two years ago: 23/25 correct (A) $\sum \frac{k+\sin k}{k^2+1}$ (B) $\sum \frac{k+\cos k}{k^3+1}$ (C) $\sum \frac{k^2-\sin k}{k+1}$ (D) $\sum \frac{k^3+\cos k}{k^2+1}$ (E) $\sum \frac{k}{\sin(k^3+1)}$ Your answer:

1

(5)	Consider the series $\sum_{k=0}^{\infty}$	$\frac{1}{2^{2^k}}$.	What can	we say	about	the sum	of this series?	Two yea	rs ago:	14/26
	correct	2								

- (A) It is finite and strictly between 0 and 1.
- (B) It is finite and equal to 1.
- (C) It is finite and strictly between 1 and 2.
- (D) It is finite and equal to 2.
- (E) It is infinite.

Your answer:	
--------------	--

- (6) For one of the following functions f on $(0, \infty)$, the integral $\int_0^\infty f(x) dx$ converges but $\int_0^\infty |f(x)| dx$ does not converge. What is that function f? (Note that this is similar to, but not quite the same as, the absolute versus conditional convergence notion for series).
 - (A) $f(x) = \sin x$
 - (B) $f(x) = \sin(\sin x)$
 - (C) $f(x) = (\sin \sqrt{x})/\sqrt{x}$
 - (D) $f(x) = (\sin x)/x$
 - (E) $f(x) = (\sin^3 x)/x^3$

- (7) The series $\sum_{n=1}^{\infty} \frac{1}{n}$ diverges. Since it is a series of positive terms, this means that the partial sums get arbitrarily large. What is the approximate smallest value of N such that $\sum_{n=1}^{N} \frac{1}{n} > 100$? Two years ago: 14/26 correct
 - (A) Between 90 and 110
 - (B) Between 2000 and 3000
 - (C) Between 10^{40} and 10^{50}
 - (D) Between 10^{90} and 10^{110}
 - (E) Between 10^{220} and 10^{250}

Your answer:

(8) Consider the series:

$$1 - \frac{1}{2} + \frac{1}{3} - \frac{1}{4} + \dots$$

Which of the following is **true** about the series?

- (A) Every rearrangement of the series converges to $\pi^2/6$.
- (B) Every rearrangement of the series converges to ln 2.
- (C) The series converges to $\pi^2/6$ and there is a rearrangement of the series that converges to $\ln 2$.
- (D) The series converges to $\ln 2$ and there is a rearrangement of the series that converges to $\pi^2/6$.
- (E) The series does not converge.

Your answer: ____

- (9) Consider a series $\sum a_n$ whose terms have alternating signs, with the first term (i.e., a_1) positive in sign, such that $|a_n|$ form a decreasing sequence and $\lim_{n\to\infty} |a_n| = 1$. Let $b_k = \sum_{n=1}^{2k-1} a_n$ (so these are the sums of odd numbers of initial terms), with $b = \lim_{k\to\infty} b_k$, and $c_k = \sum_{n=1}^{2k} a_n$ (so these are sums of even numbers of initial terms), with $c = \lim_{k\to\infty} c_k$. Which of the following is **true** about the sequences b_k and c_k and the limits b and c? Hint: This is similar to the alternating series theorem. Make a picture of the number line and hop on it.
 - (A) b_k form an increasing sequence, c_k form a decreasing sequence, and b=c.
 - (B) b_k s form an increasing sequence, c_k form a decreasing sequence, and b-c=1
 - (C) b_k form a decreasing sequence, c_k form an increasing sequence, and b-c=1
 - (D) b_k form an increasing sequence, c_k form a decreasing sequence, and c-b=1

	(E) b_k form a decreasing sequence, c_k form an increasing sequence, and $c - b = 1$
	Your answer:
	For the next few questions, let $T: \mathbb{R} \to \mathbb{R}$ be a function defined as follows. For $a \in \mathbb{R}$, define:
	$T(a) := \sum_{n=1}^{\infty} \frac{1}{n^2 + a^2}$
(10)	Note that T is well defined because the summation on the right converges for every a . Which of the following function types does T have? (A) Constant (B) Linear (C) Periodic (D) Odd (E) Even
	Your answer:
(11)	Which of the following is true about T ? (A) T attains its absolute maximum at 0 and has no absolute minimum (B) T attains its absolute maximum at 0 and its absolute minimum at 1 and -1 (C) T attains its absolute minimum at 0 and has no absolute maximum (D) T attains its absolute minimum at 0 and its absolute maximum at 1 and -1 (E) T has no absolute maximum or absolute minimum
	Your answer:
(12)	How can we express the summation:
	$\sum_{n=1}^{\infty} \frac{1}{n^4 + 3n^2 + 2}$

(A)
$$T(1) - T(2)$$

(B) $T(2) - T(1)$

(B)
$$T(2) - T(1)$$

(C)
$$T(1) + T(2)$$

(D)
$$T(1) - T(\sqrt{2})$$

(E)
$$T(\sqrt{2}) - T(1)$$

Your answer: _____