

Chapter 06. 순환 신경망(RNN)

STEP1. 기본적인 순환 신경망

순차 데이터의 처리

순번	입력			
1	What			
2	time	ightharpoonup	Sequence Data Processor	"It's 10:42."
3	is			
4	it?			

앞서 배웠던 순차 데이터를 어떻게 학습하고 처리할 수 있는지 차근차근 알아보자.

기억시스템 Memory System

올바른 대답을 하려면, 입력을 받을 때 마다 그 내용을 '기억'할 수 있어야 한다. 이전 입력을 기억하지 않는 시스템은 무기억 시스템(Memoryless System)이라 한다.

얕은 신경망 Shallow Neural Network

$$\mathbf{y}_n = a(W_{hy}\mathbf{h}_n + \mathbf{b}_y)$$

$$\boldsymbol{h}_n = a(W_{xh}\boldsymbol{x}_n + \boldsymbol{b}_h)$$

n번째 Time-Step에서의 결과

대표적인 무기억 시스템인 얕은 신경망을 다르게 표현해 보았다.

무기억 시스템이므로 n번째 타입 스텝에 대한 결과가 이전 입력에 영향을 받지 않는다.

기본적인 순환 신경망 Vanilla Recurrent Network

Vanilla RNN의 구조는 얕은 신경망 구조에 '순환'이 추가된 것으로 이해할 수 있다. 기억 시스템이므로, RNN의 출력은 이전의 모든 입력에 영향을 받는다.

STEP1. 기본적인 순환 신경망

다중 계층 순환 신경망 Multi-Layer RNN

n번째 Time-Step에서의 결과

순환 신경망도 심층 신경망처럼 쌓아 올릴 수 있다.

하지만 신경망의 구조가 매우 복잡해지고 학습이 잘 되지 않아, 권장되지 않는다.

