UNCLASSIFIED	<u> </u>	, DTIC FILE COPY			
REPORT				rm Approved 18 No. 0704-0188	
Tal REPORT SECURITY CONSTITUTION	LECTE NO	15 RESTRICTIVE		E REPORT	
AD-A218 552	B 2 7 1990	Approved	for publication is unl	release;	(3)
	२(ऽ)	S MONITORING ORGANIZATION REPORT NUMBER(S) AFOSR TR 90 - 0189			
6a NAME OF PERFORMING ORGANIZATION M I T	6b. OFFICE SYMBOL (If applicable)	73 NAME OF MONITORING ORGANIZATION AFOSR/NC			
6c. ADDRESS (City, State, and ZIP Code)	7b ADDRESS (City, State, and ZIP Code)				
Cambridge, MA 02139	Building 410, Bolling AFB DC 20332-6448				
8a. NAME OF FUNDING SPONSORING ORGANIZATION	8b OFFICE SYMBOL (If applicable) NC	9 PROCUREMENT INSTRUMENT IDENTIFICATION NUMBER			
AFOSR	F49620-86-C-0003 10 SOURCE OF FUNDING NUMBERS				
8c. ADDRESS (City, State, and ZIP Code)		PROGRAM	PROJECT	TASK	WORK UNIT
Building 410, Bolling AFB DC 20332-6448		ELEMENT NO. 61102F	NO. 2303	NO B1	ACCESSION NO
11. TITLE (Include Security Classification)		<u> </u>			
(U) REACTIONS OF LASER-GENE	RATED - FREE - RAD	CALS AT SE	MIGONDUCTO	R SURFACE	S.,
12. PERSONAL AUTHOR(S)					
J.I. Steinfeld 13a. TYPE OF REPORT 13b. TIME CO		4. DATE OF REPO		•	E COUNT
Final FROM 10/1/85 to12/31/89 22 J			1990	6	
16. SUPPLE VIEWIART NOTATION			i deser 😑		•
17. COSATI CODES	ontinue on reverse	if necessary and	didentify by blo	ock number)	
FIELD GROUP SUB-GROUP	īstry,		rocarbon c		
laser photochemistry, silicon hydrides					
19. STRACT (Continue on reverse if necessary					
Reactions of laser-generated free radicals at semiconductor surfaces have been investi- gated by photoelectron spectroscopy of adsorbed surface layers and by laser-induced					
fluorescence detection of the gas-phase species. Systems investigated include dissociative					
chemisorption of XeF2 and CF3 of	j Si(ITT); IR mu	ltiple-photo	n dissociat	ion of alk	ylsilanes
and characterization of the Silliron carbonyl. From these expe					
reactivity of fluorocarbon radio	cals at silicon	surfaces, in			
excited SiH $_2$, and formation of r	netallic films.\				· · · · · · · · · · · · · · · · · · ·
	•				· •
	er en		ير، يند د بردموست س	er seasor t	print tennes or manager commences
			क्ट राम भू	ng perental and a	
20. DISTRIBUTION/AVAILABILITY OF ABSTRACT	21 ABSTRACT SECURITY ELASSIFICATION				
UNCLASSIFIED/UNLIMITED SAME AS R	UNCLASSIFIED 225 TELEPHONE (Include Area Code) 22c OFFICE SYMBOL				
L P DAVIS, MAJOR, USA		- 767-4963		OSR/NC	
DD Form 1473, JUN 36 Previous editions are obsolete: SECURITY CLASSIFICATION OF T- 1					

FINAL REPORT

to the

AIR FORCE OFFICE OF SCIENTIFIC RESEARCH

on

Contract F49620-86-C-0003

"Reactions of Laser-Generated Free Radicals at Semiconductor Surfaces"

by

Jeffrey I. Steinfeld Professor of Chemistry Massachusetts Institute of Technology Cambridge, Massachusetts 02139

(22 January 1990)

Introduction

The reactions of neutral fluorocarbon free radicals at silicon-containing surfaces are an important component of the mechanism of reactive etching of such surfaces during the production of microelectronic devices; however, isolating such reactions in a plasma environment is difficult or impossible, because of the simultaneous presence of other reactive species such as energetic ions and electrons. For this reason, we have used photolytic methods for selective generation of such radicals and subsequent investigation of their reactions with semiconductor surfaces, such as silicon and silicon oxides.

Reactions of Laser-Generated Fluorocarbon Radicals at Silicon-containing Surfaces.

The radicals CF3 and CF2 have been produced by infrared multiphoton dissociation (IRMPD) or u.v. photodissociation, respectively, of perfluorinated precursor species, and the overlayers resulting from reaction of these radicals with adjacent silicon-containing surfaces have been examined by X-ray Photoelectron Spectroscopy. Auger Electron Spectroscopy, and Thermal Desorption Spectrometry [11, 15, 16, and 17]*. On the basis of these results, and complementary experiments using molecular fluorinating agents such as XeF₂ [4, 10] and NF₃ [18,19], we have proposed a simple theoretical model based on the strengths of chemical bonds made and broken at the reacting surface, which appears to account satisfactorily for most of the observed behavior [16,18]. The CF₃ radical can bind to dangling bonds on the Si(111) or Si(100) surface, but does not do so readily on the SiO₂ surface because breaking the surface Si-O bond requires more energy than is returned by forming a Si-C bond. The SiO₂ surface must first be disrupted e.g., by argon-ion bombardment, to create binding sites for CF3. On a Si surface, a bound CF3 will transfer at least some of its fluorine atoms because of the greater binding energy of Si-F vs. C-F. On a SiO₂ surface, such transfer is inhibited because both a C-F and a Si-O bond must be broken in order to produce the Si-F bond. CF₂ appears to bind more readily to SiO₂ than does CF₃; this can be understood on the basis of the divalent carbon producing a new Si-C and a C-O bond, which compensates for the energy required in the Si-O bond breaking step. In the case of valence-saturated species, such as XeF2 on SiO2, there appears to be a substantial barrier to dissociative chemisorption.

Related experiments were also carried out to characterize the IRMPD process utilized for production of CF₃ radicals [3, 5], and the product-state distribution and surface loss coefficient of CF₂ radicals produced by u.v. photodissociation of C₂F₄ [6, 21].

^{*} Numbers in brackets refer to the list of publications which follows.

Laser-Initiated Chemical Vapor Deposition

Laser-initiated dissociation of gas-phase precursors can also lead to deposition of thin films, e.g. of amorphous silicon [7, 20] or metallic materials. In the IRMPD of organosilanes and silicon hydrides, silylene has been postulated as a key intermediate leading to deposition of silicon films. The SiH₂ fragment so produced has been detected by laser-induced fluorescence (LIF) [1]. A remarkable variation in the fluorescence lifetimes of individual rovibronic levels of the \tilde{A}^1B_1 state of SiH₂ is observed, with decay rates varying by over two orders of magnitude between neighboring transitions [8]. This variation is attributed to mixing of the \tilde{A} state with high vibrational levels of the \tilde{X}^1A_1 state and/or nearby triplet states, such as the \tilde{a}^3B_1 or the 3A_2 , and with the dissociative continuum of Si(3P)+H₂. The distribution of lifetimes has been examined from an information-theoretic point of view, in collaboration with Professor R.D. Levine and his co-workers at the Hebrew University [9, 14]. The measured distribution is well fitted by a maximal-entropy expression for the decay rates, which in turn implies that the level spacings distribution at ca. 18,000 cm⁻¹ total energy in the neighboring triplet and \tilde{X}^1A states is chaotic and uniformly samples its available phase space.

By extending the LIF measurements to higher vibrational levels in the (0v₂0)manifold, including the region at which calculations by Francisco and co-workers indicate that the $Si(^1D_2)$ dissociation channel becomes available [12], we are able to establish the location of the $Si(^1D_2) + H_2$ dissociation channel. Its position, between v_2 '=6 and 7, allows us to determine the standard heat of formation of $SiH_2(g)$ as $\Delta H_f^\circ = (65.4 \pm 1.6)$ kcal mole⁻¹. [13].

Experiments have also been undertaken to characterize the processes occurring in deposition of metallic films from u.v. photolysis of metal carbonyls such as Fe(CO)₅. From XPS and Auger analysis of the deposited films, and measurements of their growth rate, we have developed a model which includes both gas-phase initiation and subsequent dissociation (thermally and/or photochemically driven) of the photodeposited material [22].

Although a satisfying portion of the work originally proposed was accomplished during this research program, with a number of significant finding ported in the process, there still remain many further important unresolved questions concerning the dynamics of laser-initiated gas-surface reactions. It is clear, for example, that the thermochemical model developed for radical -surface reactions [16] cannot account satisfactorily for reactions in which there is a substantial energy barrier in the dissociative chemisorption channel. More accurate ab initio or semi-empirical models of adsorbate-surface interaction energies are now beginning to appear, and should be applied to the systems we have studied. There are also intriguing suggestions, both in our work [6, 20] and results from other laboratories, that the reactivity of radicals at surfaces depends strongly on their vibrational energy content. State-resolved optical

diagnostics, such as LIF and REMPI, afford the possibility of investigating such dependences. Finally, our results on photodeposition of metallic films from carbonyls [22] suggests the possibility of photodissociation processes occurring in the freshly deposited materials which differ substantially from analogous gas-phase processes. All of these questions have interesting implications for molecular dynamics, as well as addressing practical issues of improved efficiency and control for photon-driven processes in microelectronic device fabrication. It is thus regrettable that this research program has not been continued.

Cumulative List of Publications (10/1/85 - 12/31/89)

- *1. J.W. Thoman, Jr. and J.I. Steinfeld, "Laser Excited Fluorescence Detection of SiH₂ Produced in IRMPD of Organosilanes," Chem. Phys. Letts. <u>124</u>, 35 (1986).
- *2. K Suzuki, K. Ninomiya, S. Nishimatsu, J.W. Thoman, Jr., and J.I. Steinfeld, "AnalyticalInvestigation of Plasma and Electrode Potentials in a Diode Type RF Discharge," Japanese J. Appl. Phys. <u>25</u>, 1569 (1986).
- *3. J.S. Francisco and J.I. Steinfeld, "Photochemistry, Photophysics, and Spectroscopy of Molecular Infrared Multiple Photon Excitation," <u>Advances in Multiphoton Processes and Spectroscopy</u>, Vol. 2 (S.H. Lin, ed.), World Scientific Publishing Pte Ltd., Singapore (1986), pp. 79-173.
- 4. B. Roop, S. Joyce, J.C. Schultz, and J.I. Steinfeld, "Comparison of Si(100) and Si(111) Surfaces After Moderate to High Exposures of XeF₂," Surf. Sci. <u>173</u>, 455 1986).
- 5. E.L. Schweitzer and J.I. Steinfeld, "Vibrational Population Distributions in Infrared Multiple-Photon Excitation Probed by Coherent Anti-Stokes Raman Spectroscopy," Chem. Phys. 108, 343 (1986).
- 6. J.W. Thoman, Jr., K. Suzuki, S.H. Kable, and J.I. Steinfeld, "Laser-Induced Fluorescence Measurement and Analytical Model for the Reaction Probability of CF₂ on Si," J. Appl. Phys. <u>60</u>, 2775 (1986).
- *7. J.S. Francisco and J.I. Steinfeld, "Reactions of Organosilanes Initiated by Infrared Multiple Photon Excitation", Spectrochim. Acta 43A, 207 (1987).
- *8. J.W. Thoman, Jr., J.I. Steinfeld, R.I. McKay, and A.E.W. Knight, "Wide Fluctuations in Fluorescence Lifetimes of Individual Rovibronic Levels in SiH₂(A¹B₁)" J. Chem. Phys. <u>86</u>, 5909 (1987).
- 9. Y.M. Engel, R.D. Levine, J.W. Thoman, Jr., J.I. Steinfeld, and R.I. McKay, "Quantal Fluctuations in Fluorescence Lifetimes of Individual Rovibronic Levels", J. Chem. Phys. 86, 6561 (1987).
- 10. S. Joyce, J. Langan, and J.I. Steinfeld, "Reactions of XeF₂ with Thermally Grown SiO₂", Surf. Sci. <u>195</u>, 270 (1988).
- 11. S. Joyce, J. Langan, and J.I. Steinfeld, "Chemisorption of Fluorocarbon Free Radicals on Silicon and SiO₂", J. Chem. Phys. <u>88</u>, 2027 (1988).
- 12. J.S. Francisco, R. Barnes, and J.W. Thoman, Jr., "Dissociation Dynamics of Low-Lying Electronic States of SiH₂", J. Chem. Phys. <u>88</u>, 2334 (1988).
- 13. C. Van Zoeren, J.W. Thoman, Jr., J.I. Steinfeld, and M. Rainbird, "Production of Si(¹D₂) from Electronically Excited SiH₂", J. Phys. Chem. <u>92</u>, 9 (1988).

- 14. Y.M. Engel, R.D. Levine, J.W. Thoman, Jr., J.I. Steinfeld, and R.I. McKay, Information Theoretic Analysis of Quantal Fluctuations in Fluorescence Lifetimes", J. Phys. Chem. <u>92</u>, 5497 (1988).
- 15. J. Langan, Xu Xin, and J.I. Steinfeld, "Reactions of Laser-Generated CF₂ on Silicon Oxide Surfaces", Surf. Science., <u>207</u>, 344 (1989).
- 16. J.I. Steinfeld, "Reactions of Photogenerated Free Radicals at Semiconductor Surfaces", Chem. Reviews. 89, 1291 (1989)
- *17. J. Langan, J.A. Shorter, Xu Xin, and J.I. Steinfeld, "Reactions of Photogenerated CF₂ and CF₃ on Silicon and Silicon Oxide Surfaces", Proc. Materials Research Society Fall Meeting (Boston, Massachusetts, November 1988).
- 18. J.A. Shorter and J.I. Steinfeld, "Reactions of Photogenerated Neutral Free Radicals at Semiconductor Surfaces", Proc. SPIE-OE/LASE Symposium on <u>Photochemistry in Thin Films</u> (Los Angeles, California, January 1989).
- 19. J.A. Shorter, J. Langan, and J.I. Steinfeld, "Reactions of NF₃ at Silicon and Silicon Oxide Surfaces", Surf. Sci. Lett. <u>219</u>, L560 (1989).
- 20. J.I. Steinfeld, "Reactions of Laser-Generated Free Radicals in Silicon Deposition Processes", Spectrochim. Acta A, in press.
- 21. O. Suto and J.I. Steinfeld, "Time-Resolved Diode Laser Absorption Spectroscopy of CF₂ Produced in u.v. photodissociation of C₂F₄ and measurement of the v₃ absorption band strength," submitted to Chem. Phys. Letts.
- *22. Xu Xin and J.I. Steinfeld, "Gas-phase and surface dissociation mechanisms in u.v. laser Photodeposition of iron films from Fe(CO)₅", manuscript in preparation.
- 23. J.I. Steinfeld, "Reactions of Laser-Generated Free Radicals at Semiconductor Surfaces", Final Technical Report.

(* reprint not available)