1

Let $\varepsilon > 0$, and let $N = \frac{1/\varepsilon + 3}{2}$. Then for any n > N,

$$\left| \frac{1}{2n-3} \right| < \left| \frac{1}{2N-3} \right|$$

$$= \left| \frac{1}{2\left(\frac{1/\varepsilon+3}{2}\right) - 3} \right|$$

$$= |\varepsilon|$$

$$= \varepsilon$$

and so, indeed, $a_n \to 0$, as desired.

 $\mathbf{2}$

We claim the limit is $b=\frac{3}{2}$. Note first that $\left|\frac{3n^2+4n+5}{2n^2+6n+7}-\frac{3}{2}\right|=\left|\frac{5+11/2n}{2n+6+7/n}\right|$. Let $\varepsilon>0$, and let $N=\max\left\{7,\frac{3}{\varepsilon}\right\}$. If n>7, then $5+\frac{11}{2n}<6$ and $2n+6+\frac{7}{n}<2n+7$. Then for any n>N,

$$\left| \frac{5+11/2n}{2n+6+7/n} \right| < \left| \frac{6}{2n+6+7/n} \right|$$

$$< \left| \frac{6}{2n+7} \right|$$

$$< \left| \frac{3}{n} \right|$$

$$< \left| \frac{3}{N} \right|$$

$$= \left| \frac{3}{3/\varepsilon} \right|$$

$$= \varepsilon$$

and so $b_n \to \frac{3}{2}$, as desired.

3

Let M > 0. $y_n \to \infty$, so we know there is some N such that $y_n > \frac{M}{\inf\{a_n\}}$ for any n > N. Then $\inf\{a_n\} y_n > M$, so $a_n y_n > M$, and thus $a_n y_n \to \infty$, as desired.

4

We claim the limit is 0. Let $\varepsilon > 0$, and let $N = \max\left\{\frac{5}{\varepsilon}, \frac{1}{\sqrt[5]{\varepsilon}}\right\}$. Then for any n > N: if n is even, then $|s_n| = \left|\frac{5}{n}\right| < \left|\frac{5}{N}\right| \le \left|\frac{5}{5/\varepsilon}\right| = \varepsilon$, and if n is odd, then $|s_n| = \left|\frac{1}{n^5}\right| < \left|\frac{1}{N^5}\right| \le \left|\frac{1}{1/\sqrt[5]{\varepsilon}}\right| = \varepsilon$. Thus $s_n \to 0$, as desired.

5

We claim the limit is 0. Let $\varepsilon > 0$, and let $N = \frac{1}{2\varepsilon}$. Then

$$\left|\sqrt{n} - \sqrt{n-1}\right| = \left|\frac{1}{\sqrt{n} + \sqrt{n-1}}\right|$$

$$< \left|\frac{1}{2\sqrt{n}}\right|$$

$$< \left|\frac{1}{2n}\right|$$

$$< \left|\frac{1}{2N}\right|$$

$$= \left|\frac{1}{2/2\varepsilon}\right|$$

$$= \varepsilon$$

and so $u_n \to \infty$, as desired.

6

We claim the sequence converges to ∞ . Let M>0, and let $N=\max\left\{3,M^2\sqrt{32}\right\}$. If n>3, then $3+\frac{3}{n}+\frac{1}{n^2}<4$.

$$\left| (n+1)^{3/2} - n^{3/2} \right| = \left| \frac{(n+1)^3 - n^3}{(n+1)^{3/2} + n^{3/2}} \right|$$

$$= \left| \frac{n^3 + 3n^2 + 3n + 1 - n^3}{(n+1)^{3/2} + n^{3/2}} \right|$$

$$= \left| \frac{3n^2 + 3n + 1}{(n+1)^{3/2} + n^{3/2}} \right|$$

and so $v_n \to \infty$, as desired.

7

We know that $x_n \to \infty$, so for any $\varepsilon > 0$, there is some N such that $|x_n - 15| < \varepsilon$ for all n > N. If we take ε to be less than 5, then all $|x_n|$, n > N, will lie between 10 and 20. This means that all x_n lying outside this range occur before N. All x_n with $|x_n| > 20$ will clearly be a subset of these. More formally, $\{n \mid |x_n| > 20\} \subseteq \{n \mid n \le N\}$, and thus is finite, as desired.

8

8.a

Suppose it did, and let N be such a number that the condition holds. Let $\varepsilon = \frac{1}{N+2}$. It is clearly not the case that $|s_n| < \varepsilon$ for all n > N, since N+1 > N, but $s_{N+1} = \frac{1}{N+1} \ge \varepsilon$. Thus forms a contradiction, and so it is not the case that $s \leadsto 0$.

8.b

Let N be a number satisfying the conditions for $s_n \rightsquigarrow s$, and let $\varepsilon > 0$. By the definition of $s_n \rightsquigarrow s$, if n > N, then $|s_n - s| < \varepsilon$, so indeed $s_n \to s$, as desired.

8.c

Let
$$a_n = \begin{cases} 1 & \text{if there is a solution to } x^n + y^n = z^n \\ 0 & \text{otherwise} \end{cases}$$

It is the case that $a_n \leadsto 0$. I have a truly marvelous proof this, which this homework is too narrow to contain.

8.d

The condition $s_n \leadsto s$ holds when s_n eventually becomes constant. That is, there is some N such that $s_N = s_{N+1} = \cdots = s$