	Student			
Name	ID	Signature	Mark	
	Number			

- 1. This is an **open-book** in-class test, but the open-book materials are for the candidates' personal use only.
- 2. There are **TEN** single-choice questions (**Q1-Q10**) in this test and the test duration is **15-mins**.
- 3. Electronic devices are not allowed except non-programmable calculators.
- 4. Total marks available are 10, with 1 mark for each question. This test will count for 5% in the overall grade of this module.
- 5. Please write your answer directly in the bracket before the question number (any answer written somewhere else will not be considered), e.g.:
- (A) Q0. The email address of INT202 module leader this semester is:
- A. R.Yang@xjtlu.edu.cn
- B. Rui.Yang@xjtlu.edu.cn
- C. None of above

START OF IN-CLASS TEST 1

f(n) =		denotes the running time of algome complexity of $\mathrm{f}(n)$ is:	orithm on input of size n , and
A. 0(n)		B. $\Omega(n)$	C. None of above
f(n) =) Q2. Let function $f(n) = \log n + \log \log n$, the time	denotes the running time of algome complexity of $f(n)$ is:	orithm on input of size n and
A. Θ(lc	$\log n$)	B. $\Theta(\log \log n)$	C. None of above
() Q3. The height of a (2	, 4) tree storing n items is:	
A. Θ(lc	$\log n$)	B. $\Theta(n)$	C. None of above
() Q4. How many binary	search trees composed of the ne	odes {3, 5, 8, 12} can be formed?
A. 10		B. 14	C. None of above
() Q5. The answer of the	expression given in postfix nota	ntion "5 7 * 3 4 1 + * -" is:
A. 151		B. 20	C. None of above
() Q6. Where can an iter	n with largest key be stored in a	min-heap?
A. Roo	t	B. Any external node	C. None of above
() Q7. The array [20 15 1	.8 7 9 5 12 3 8 2] forms:	
A. A m	ax-heap	B. A min-heap	C. None of above

() Q8. Is the given binary tree in Fig. 1 an AVL tree?

Fig. 1

A. Yes

B. No

C. None of above

() Q9. For the following instance of the 0-1 Knapsack Problem with four items shown in Table 1 with the maximum allowed weight is W = 10, the optimal solution is:

Table 1

i	1	2	3	4
b_i	25	15	20	36
$ w_i $	7	2	3	6

A. 51

B. 61

C. None of above

() Q10. Let S = {a,b,c,d,e,f,g} denote a set of objects with weights and benefits as given in the Table 2 below. What is an optimal solution to the fractional Knapsack problem for S assuming that we have a knapsack that can hold objects with total weight 18?

Table 2

item	a	b	С	d	e	f	g
benefit	12	10	8	11	14	7	9
weight	4	6	5	7	3	1	6

A. 49.4

B. 49.5

C. None of above

END OF IN-CLASS TEST 1