Name:

Matr.: _____

Solution

${\bf Cryptography-Question naire~1}$

"One-liners"
Exercise 1.1 2P
Let k be a positive integer and let $K_1 := \{0, 1, 2, 3\}^k$ and $K_2 := \{A \mid A \subseteq \{1, \dots, k\}, A = 5\}$. Give closed-form expressions for $ K_1 $ and $ K_2 $.
Answer: $ K_1 = 4^k$. $ K_2 = {k \choose 5}$.
Exercise 1.2
Often, encryption schemes (ES) are based on block ciphers which can only process inputs of a fixed size l (called the block length). If we want to process messages $m \in \{0,1\}^*$ of arbitrary length, we need to pad the message to a multiple of l in a suitable way. Briefly describe one possible way to do so. (We want to be able to recover m in the end!)
Answer: use $m 10^r$ with r minimal s.t. we get a multiple of l
Exercise 1.3
Briefly state the meaning of the sufficient keyspace principle:
Answer: The keyspace should be large enough such that exhaustive search becomes infeasible.
Exercise 1.4 2P
Name a major disadvantage of publice-key schemes compared to private-key schemes.
Answer: Public-key schemes are slower than private-key schmemes in general.
Exercise 1.5
Name one ES from the lecture that satisfies $Enc_k = Dec_k$ for a given key k .
Answer: One-time pad.