

Team:

Roma_Ololo

Houses. Predict sales prices

Kaggle competition

Задача: предсказать цену домов (задача регресси)

Этапы:

- EDA анализ данных, работа с пропусками, удаление выбросов, кодирование и генерация новых признаков.
- MODEL выбор базовых алгоритмов, настройка параметров
- STACKING and BLENDING самблинг алгоритмов

EDA

- Работа с пропусками:
 - Удалили признаки с пропусками и дисбалансом более 96% плюс незначащие по нашему мнению ('Utilities', 'Street', 'PoolQC', 'MiscFeature', 'Alley', 'Fence', 'GarageYrBlt').
 - В категориальных признаках заменили пропуски модой.
 - В вещесвтенных признаках пропуски заменили медианой.
 - В части признаках пропуски заменили значениями в соответссвии с документацией.

EDA

- Нормализация данных:
 - Прологорифмирволи целевые значения получили распределение близкое к нормальному

• С помощью функции skew () обнаружили сильно скошенные признаки. Двойным преобразование box cox нормализовали часть.

EDA

- Future engineering:
 - Создали новые признаки, свидетельствующие о кач-ве объетка, например наличие камина высший бал, отсутствие низший.
- Удаление выбросов:
 - С помощью sm.OLS () проверили целевые метки и удалили выбросы на уровне значимости 0,01 (использована поправка Холма)
- Кодирование категориальных признаков:
 - Использовали get_dummies()

MODEL

Был использован grid search для поиска оптимальных параметров на 10 фолдах и скорингом r2.

Результаты базорвых алгоритмов ниже (скоринг на валидации - mean_squared_error, число фолдов - 5)

model	mean
ElasticNet	0.101
Lasso	0.101
Xgboost	0.109
LGBM	0.108

STACKING and BLENDING

- Были взяты базовые алгоритмы бустинга и регрессии:
 - ElasticNet, Xgboost, LGBM
- Металгоритм Lasso
- Финальный результат был забленден по формуле:
 - 0.45 * stacking + 0.15 * Xgboost + 0.3 * LGBM + 0.1 * lasso