Congratulations! You passed!

Grade received 80% Latest Submission Grade 80% To pass 80% or higher

Go to next item

1. In logistic regression given the input ${f x}$, and parameters $w\in \mathbb{R}^{n_x}, b\in \mathbb{R}$, how do we generate the output \hat{y} ?

1/1 point

- $\bigcap \tanh(W \mathbf{x} + b)$
- $\bigcirc \sigma(W \mathbf{x})$
- $\bigcirc W \mathbf{x} + b$

∠ Expand

⊘ Correct

Right, in logistic regression we use a linear function $W\mathbf{x}+b$ followed by the sigmoid function σ , to get an output y, referred to as \hat{y} , such that $0<\hat{y}<1$.

2. Suppose that $\hat{y}=0.5$ and y=0. What is the value of the "Logistic Loss"? Choose the best option.

1/1 point

- \bigcirc $+\infty$
- 0.693
- 0.5
- $\bigcirc \quad \mathcal{L}(\hat{y}, y) = -\left(y\,\log\hat{y} + (1-y)\,\log(1-\hat{y})\right)$

∠ Z Expand

Yes. Given the values of \hat{y} and y we get $\mathcal{L}(0.5,0) = -\left(0\,\log 0.5 + 1\,\log(0.5)\right) pprox 0.693.$

3. Suppose img is a (32,32,3) array, representing a 32x32 image with 3 color channels red, green and blue. How do you reshape this into a column vector x?

1/1 point

- x = img.reshape((32*32,3))
- x = img.reshape((32*32*3,1))
- x = img.reshape((1,32*32,3))
- \supset

x = ima.reshape((3.32*32))

⊘ Correct

a = np.random.randn	(3,4) # $a.shape = (3,4)$
---------------------	---------------------------

$$b = np.random.randn(1,4) \, \# \, b.shape = (1,4)$$

$$c = a + b$$

What will be the shape of c?

- c.shape = (1, 4)
- The computation cannot happen because it is not possible to broadcast more than one dimension.
- c.shape = (3, 1)
- c.shape = (3, 4)

⊘ Correct

Yes. Broadcasting is used, so row b is copied 3 times so it can be summed to each row of a.

5. Consider the two following random arrays a and b:

 $a = np.random.randn(4,3) \, \# \, a.shape = (4,3)$

$$b = np.random.randn(1,3) # b.shape = (1,3)$$

$$c = a * b$$

What will be the shape of c?

- c.shape = (4, 3)
- The computation cannot happen because it is not possible to broadcast more than one dimension.
- The computation cannot happen because the sizes don't match.
- c.shape = (1, 3)

✓ Correct

Yes. Broadcasting is invoked, so row b is multiplied element-wise with each row of a to create c.

6. Suppose you have n_x input features per example. Recall that $X=[x^{(1)}x^{(2)}...x^{(m)}]$. What is the dimension of X?

1 / 1 point

1/1 point

- (m,1)
- \bigcirc (1,m)
- \bigcirc (n_x, m)
- \$\$(m,n_x)\$\$

⊘ Correct

7.	Consider the following array:
	a=np.array([[2,1],[1,3]])

0 / 1 point

What is the result of a*a?

- The computation cannot happen because the sizes don't match. It's going to be an "Error"!
- $\bigcirc \quad \begin{pmatrix} 4 & 2 \\ 2 & 6 \end{pmatrix}$
- \bigcirc $\begin{pmatrix} 4 & 1 \end{pmatrix}$

No, recall that * indicates element-wise multiplication, not matrix multiplication.

8. Consider the following code snippet:

1 / 1 point

0 / 1 point

a.shape = (3,4)

b.shape=(4,1)

for i in range(3):

for j in range(4):

 $c[i][j] = a[i][j]^*b[j]$

How do you vectorize this?

- c = a*b.T
- \bigcirc c = np.dot(a,b)
- \bigcirc c = a.T*b
- c = a*b

⊘ Correct

Yes. b.T gives a column vector with shape (1, 4). The result of c is equivalent to broadcasting a*b.T.

9. Consider the following arrays:

$$a=np.array([[1,1],[1,-1]])$$

$$b = np.array([[2],[3]])$$

$$c = a + b$$

Which of the following arrays is stored in c?

- $\begin{pmatrix} 3 & 3 & 3 \\ 3 & 1 & 4 & 4 \\ 5 & 2 & 2 \end{pmatrix}$
- O 3 4
- ∠⁷ Expand
- **⊗** Incorrect

No. The array b is a column vector. This is copied two times and added to the array a to construct the array c.

 $\textbf{10.} \ \ \text{Consider the following computation graph}.$

1/1 point

What is the output J?

- $\bigcirc \quad J = (b-1)*(c+a)$
- $\bigcirc \quad J=(a-1)*(b+c)$
- $\bigcirc \quad J = a*b + b*c + a*c$
- $\bigcirc \quad J = (c-1)*(b+a)$

∠ Z Expand

⊘ Correct

 $\mathrm{Yes.}\, J = u + v - w = a * b + a * c - (b + c) = a * (b + c) - (b + c) = (a - 1) * (b + c).$