

Motivation

b. Fit on withheld set

- Authors modeled electrolyte conductivity as a function of
 - Li salt loading
 - Fraction of propylene carbonate in electrolyte
 - Temperature
- Basically conductivity = f(salt loading, PC fraction) at a given temperature
- Approach predicted good trends overall
 - Unable to capture the trends at low temperature

Possible explanation for trends

Ionic association ~ coagulation -> falls with lower temperature

How does conductivity vary with salt loading and PC fraction at 243K?

- Zoomed in on the conductivity scale
 - Clearly defined trend with Li salt loading
 - Haphazard behaviour with PC fraction

Proposed corrections

Method	Rationale	Package	Name
Fit a high (≥2)degree polynomial in c, force through zero	Behaviour at constant temperature is essentially dependent on c and not r	MATLAB Curve Fitting Toolbox	polynomial fitting
Train a symbolic regression model in the lower temperature regime	Possible need to change weights due	Python Autofeat	symbolic regression, low T
Use features from Flores et al but update weights in a linear combination, force through zero	to shallow trends at higher concentration	Python ski-kitlearn	updated weights

- c = lithium salt loading, mol kg-1
- r = fraction of propylene carbonate in electrolyte solvent (along with ethylene carbonate and ethyl methyl carbonate)
- *T* = temperature (constant for this study)

Comparing different approaches

How do the fitted coefficients change?

$$\kappa = \beta_1 c + \beta_2 T + \beta_3 r^{\frac{1}{2}} c^{\frac{5}{2}} + \beta_4 T^2 c^{\frac{1}{4}}$$

Not implemented since we're considering constant temperature

Coefficient	Flores et al	Current effort
eta_1	-5.11	-2.804
eta_2	-0.04	0
eta_3	-0.35	-0.059
eta_4	2.73x10 ⁻⁴	7.437x10 ⁻⁵

- The higher value of β_1 moves the curve upwards
- Lower values for β_3 and β_4 help "shallow" the curve