Measuring Local Shear Stresses in Wormlike Micelle Flow

Kevin Liu, Steven Hudson, and Paul Salipante

Fluid Flow

 Layers of fluid are sliding past each other

- Shear stress (Pa) is a function of torque (N·m)
- Shear rate (s⁻¹) is a function of Ω , the angular velocity (rad·s⁻¹)

•
$$\gamma = K_{\dot{\gamma}} * \Omega$$

Shear rate is NOT equivalent to flow rate

TA Instruments

Wormlike Micelles (WLM)

- Self-assembled aggregates of surfactants
- Shampoo, skin care creams, drag-reducing agents
- WLM used was cetylpyridinium chloride-sodium salicylate (CPyCl-NaSal)
 - 100 mM CPyCl and 60 mM NaSal

Wormlike Micelles (WLM)

Non-monotonic stress curve

• Test conducted by increasing shear rate 100

How can we see more of the model?

CPyCl/NaSal (100 mM/60 mM)

WLM Jetting

Traction Force Microscopy

- Shear stress can be calculated from the displacement of fluorescent beads near the surface
- Similar to Hookes' Law: F = ku

Soft Matter, 2014, 10, 4047

Local Stress and Flow Measurements

Beads on surface are pulled by the flow stress

Bonakdar, 2014

Can quickly switch between tracers in flow and tracers in gel by changing filter

Bead Displacement Analysis

Final Channel Design

- Made out of double-sided sticky tape
- 50 microns thick
- Created jetting with WLM

Channel Components

- Bottom: plexiglass base
- Middle: tape with channel shape
- Top: elastic PDMS gel
 - Seeded with evenly distributed fluorescent tracers on surface
 - Glass cover on very top

Validation Tests with Water (Newtonian)

Area of interest is 0.8 mm by 0.8 mm

Water Shear Stress Maps

200 mbar

Water Shear Stress Maps

1200 mbar

Water Shear Stress Maps

2300 mbar

WLM Jetting

 Takes time before jet "settles" in a single location

• Is the stress different between jetting and non-jetting regions?

Tracers in flow

10 times actual speed

WLM Shear Stress Map

Stress map of gel surface

Tracers in flow

6 times actual speed

System Limitations

- Various measurement and analysis errors
 - Stage drift
 - Particle location
- How to identify jetting without looking at fluid flow?

Conclusion

- Developed working system for local shear stresses in rectangular channels
 - Reusable and durable channel
 - Can be easily adapted to other fluids
- Qualitatively, jetting region exhibits lower shear stresses compared to non-jetting region

Future Direction

- Improve local shear stress calculations and minimize error
- Quantitative understanding of local shear stresses

Acknowledgements

- Steven Hudson
- Paul Salipante
- SURF Program Directors