iNext+bird

Biologia Quantitativa 2020/2 Nicole Araújo - 170112110 Paola Freitas - 170122492

O que é o iNEXT?

"iNEXT" significa INterpolação/EXTrapolação É um pacote que foca em três medidas de números Hill (medidas de diversidade de espécies), de ordem q:

- 1- riqueza de espécies (q=0),
- 2- diversidade de Shannon (q=1) 3-diversidade Simpson (q=2).

Basicamente o que ele faz é prover funções simples que plotam as curvas de rarefação e extrapolação das amostras.

Para cada medida de diversidade o iNEXT usa a amostra observada de abundância ou dados de ocorrência (amostra de referência) para computar estimativas de diversidade e intervalos de confiança de 95% para dois tipos de rarefação e extrapolação (R/E): sample-size-based e coverage-based.

Para mais detalhes veja a explicação do pacote: "A Quick Introduction to iNEXT via Examples"

```
vignette ("Introduction","iNEXT")
```

starting httpd help server ... done
Instale e importe os pacotes iNEXT e ggplot2

install.packages("iNEXT", repos = "http://cran.us.r-project.org")

```
## Installing package into 'C:/Users/Nicole/Documents/R/win-library/4.0'
```

```
## (as 'lib' is unspecified)
```

```
## package 'iNEXT' successfully unpacked and MD5 sums checked
##
## The downloaded binary packages are in
## C:\Users\Nicole\AppData\Local\Temp\RtmpE3JknB\downloaded_packages
```

```
library(iNEXT)
library(ggplot2)
```

Vamos testar os comandos com o pacote bird Esse pacote é um dataframe com 41 espécies em dois locais de amostragem: norte e sul

```
data("bird")
summary(bird) #ou
```

```
##
     North.site
                      South.site
##
   Min.
          : 0.000
                    Min.
                           : 0.000
##
   1st Qu.: 0.000
                    1st Qu.: 2.000
   Median : 2.000
                    Median : 5.000
##
##
   Mean
         : 4.927
                    Mean
                           : 7.488
   3rd Qu.: 7.000
                    3rd Qu.:10.000
##
##
  Max.
          :41.000
                    Max.
                           :32.000
```

bird #ou

/202	<u> </u>		live	ext+bird
##		North.site	South.site	
##	Acanthiza_lineata	0	3	
##	Acanthiza_nana	0	18	
##	Acanthiza_pusilla	41	31	
##	Acanthorhynchus_tenuirostris	0	2	
##	Alisterus_scapularis	3	1	
##	Cacatua_galerita	1	2	
##	Cacomantis_flabelliformis	5	5	
##	Calyptorhynchus_funereus	4	1	
##	Colluricincla_harmonica	4	6	
##	Cormobates_leucophaea	11	32	
##	Corvus_coronoides	1	0	
##	Dacelo_novaeguineae	2	0	
##	Eopsaltria_australis	5	5	
##	Gerygone_mouki	12	10	
##	Leucosarcia_melanoleuca	1	1	
##	Lichenostomus_chrysops	0	4	
##	Malurus_cyaneus	0	6	
##	Malurus_lamberti	0	6	
##	Manorina_melanophrys	0	9	
##	Meliphaga_lewinii	11	18	
##	Menura_novaehollandiae	9	5	
##	Monarcha_melanopsis	1	10	
##	Neochmia_temporalis	0	9	
##	Oriolus_sagittatus	1	0	
##	Pachycephala_olivacea	0	2	
##	Pachycephala_pectoralis	16	15	
##	Pachycephala_rufiventris	0	3	
##	Pardalotus_punctatus	15	17	
##	Petroica_rosea	1	1	
##	Phylidonyris_niger	0	2	
##	Platycercus_elegans	2	7	
##	Psophodes_olivaceus	7	7	
##	Ptilonorhynchus_violaceus	2	2	
##	Ptiloris_paradiseus	0	3	
##	Rhipidura_albicollis	18	20	
	Rhipidura_rufifrons	8	14	
##	Sericornis_citreogularis	0	2	
	Sericornis_frontalis	2	6	
	Strepera_graculina	3	4	
	Zoothera_lunulata	0	1	
##	Zosterops_lateralis	16	17	

```
str(bird)
```

```
## 'data.frame': 41 obs. of 2 variables:
## $ North.site: int 0 0 41 0 3 1 5 4 4 11 ...
## $ South.site: int 3 18 31 2 1 2 5 1 6 32 ...
```

O str é uma alternativa ao summary (significa str-ucture); te dá informações sobre o objeto que está sendo analisado.

iNEXT é a função principal do pacote, responsável por fazer a interpolação e extrapolação dos números de Hill

```
speciesrichness <-iNEXT(bird, q=0, datatype="abundance")
shannon <-iNEXT(bird, q=1, datatype="abundance")
simpson <-iNEXT(bird, q=2, datatype="abundance")</pre>
```

O primeiro argumento dessa função é uma matriz, um data frame ou uma lista (neste caso um dataframe) O segundo argumento especifíca a ordem do Hill number Os tipos de dados no argumento de datatype podem ser: "abundance", "incidence_raw" or "incidence_freq".

Para o cálculo de assíntotas estimadas:

```
ChaoRichness (bird, datatype = "abundance", conf = 0.95) #q=\theta
```

```
## Observed Estimator Est_s.e. 95% Lower 95% Upper
## North.site 27 31.478 4.781 27.810 51.746
## South.site 38 40.077 2.499 38.325 51.267
```

```
ChaoShannon (bird, datatype = "abundance", conf = 0.95) #q=1
```

```
## Observed Estimator Est_s.e 95% Lower 95% Upper
## North.site 2.806 2.888 0.074 2.806 3.033
## South.site 3.237 3.305 0.047 3.237 3.397
```

```
ChaoSimpson (bird, datatype = "abundance", conf = 0.95) \#q=2
```

```
## Observed Estimator Est_s.e. 95% Lower 95% Upper
## North.site 0.916 0.920 0.010 0.916 0.939
## South.site 0.949 0.952 0.004 0.949 0.960
```

Aqui, estamos gerando 3 tipos de curvas em cada Chunk: 1- sample-size-based R/E curve 2- Sample completeness curve 3- Coverage-based R/E curve Argumentos: "facet.var"pode separar os gráficos por "site" ou "order" O argumento grey quando verdadeiro plota gráficos em preto e branco, outros argumentos também podem ser usados para mudar o display: xlim(), ylim (), theme() and theme_bw()

PARA Q=0, riqueza de espécies

```
ggiNEXT(speciesrichness, type=1, se=TRUE, facet.var="none", color.var="site", grey=FALSE)
```


ggiNEXT(speciesrichness, type=2, se=TRUE, facet.var="none", color.var="site", grey=FALSE)

ggiNEXT(speciesrichness, type=3, se=TRUE, facet.var="none", color.var="site", grey=FALSE)

PARA Q=1, diversidade Shannon

ggiNEXT(shannon, type=1, se=TRUE, facet.var="none", color.var="site", grey=FALSE)

ggiNEXT(shannon, type=2, se=TRUE, facet.var="none", color.var="site", grey=FALSE)

ggiNEXT(shannon, type=3, se=TRUE, facet.var="none", color.var="site", grey=FALSE)

PARA Q=2, diversidade Simpson

ggiNEXT(simpson, type=1, se=TRUE, facet.var="none", color.var="site", grey=FALSE)

ggiNEXT(simpson, type=2, se=TRUE, facet.var="none", color.var="site", grey=FALSE)

ggiNEXT(simpson, type=3, se=TRUE, facet.var="none", color.var="site", grey=FALSE)

Para plotar q=0,1,2 em um mesmo gráfico, dividido por locais ("site"):

```
out <- iNEXT(bird, q=c(0, 1, 2), datatype="abundance", endpoint=500)
ggiNEXT(out, type=1, facet.var="site")</pre>
```


Certo! Agora, para usar os dados das listas de Mackinnon: importamos o csv data exportados de uma planilha (Excel) usando a função "read_csv" ou File-> Import Dataset