

SRM Institute of Science and Technology Ramapuram Campus

Department of Mathematics

Year / Sem: I / II

Branch: Common to ALL Branches of B.Tech. except B.Tech. (Business Systems)

UNIT III - LAPLACE TRANSFORMS

Part – A

1.	$L[t] =$ $(A) \frac{1}{s}$ $(C) s$	(B) $\frac{1}{s^2}$ (D) s^2	ANS B	(CLO-3, Apply)
2.	$L[\cos t] =$ $(A) \frac{1}{s^2 - 1}$ $(C) \frac{s}{s^2 - 1}$	(B) $\frac{1}{s^2 + 1}$ (D) $\frac{s}{s^2 + 1}$	ANS D	(CLO-3, Apply)
3.	$L[e^{3t}] =$ $(A) \frac{1}{s-3}$ $(C) \frac{1}{s-\log 9}$	(B) $\frac{s}{s^2+9}$ (D) $\frac{9}{s}$	ANS A	(CLO-3, Apply)
4.	If $L[f(t)] = F(s)$, then $L[e^{at} f(t)] =$ (A) $F(s + a)$ (C) $e^{as}F(s)$	(B) $F(s - a)$ (D) $e^{-as}F(s)$	ANS B	(CLO-3, Remember)
5.	L[f(t) * g(t)] = (A) $F(s) - G(s)$ (C) $F(s)$ $G(s)$	(B) $F(s) + G(s)$ (D) $F(s) \div G(s)$	ANS C	(CLO-3, Remember)
6.	$L[\sin t] =$ $(A) \frac{1}{s^2 - 1}$ $(C) \frac{s}{s^2 - 1}$	(B) $\frac{1}{s^2 + 1}$ (D) $\frac{s}{s^2 + 1}$	ANS B	(CLO-3, Apply)

7.	$L[e^{-3t}] =$ $(A) \frac{1}{s+3}$ $(C) \frac{1}{s-\log 3}$	(B) $\frac{s}{s^2+9}$ (D) $\frac{3}{s}$	ANS A	(CLO-3, Apply)
8.	$L^{-1} \left[\frac{1}{s} \right] =$ (A) t (C) 1	(B) s (D) δ(t)	ANS C	(CLO-3, Apply)
9.	$L^{-1}\left[\frac{1}{s^2+9}\right] =$ $(A)\frac{\cos 3t}{3}$ $(C)\sin 3t$	(B) $\frac{\sin 3t}{3}$ (D) $\cos 3t$	ANS B	(CLO-3, Apply)
10.	$L^{-1} \left[\frac{s}{s^2 + 9} \right] =$ $(A) \frac{\cos 3t}{3}$ $(C) \sin 3t$	$(B) \frac{\sin 3t}{3}$ $(D) \cos 3t$	ANS D	(CLO-3, Apply)
11.	If $L[f(t)] = F(s)$, then $L[e^{-at} f(t)] =$ (A) $F(s + a)$ (C) $e^{as}F(s)$	(B) $F(s - a)$ (D) $e^{-as}F(s)$	ANS A	(CLO-3, Remember)
12.	$L[t^2] =$ $(A) \frac{1}{s}$ $(C) \frac{2}{s^3}$	(B) $\frac{1}{s^2}$ (D) $\frac{1}{s^3}$	ANS C	(CLO-3, Apply)
13.	$L[1] = (A) \frac{1}{s} (C) \frac{2}{s^3}$	(B) $\frac{1}{s^2}$ (D) $\frac{1}{s^3}$	ANS A	(CLO-3, Apply)
14.	$L[e^{-2t}] =$ $(A) \frac{1}{s+2}$ $(C) \frac{1}{s-\log 4}$	(B) $\frac{s}{s^2 + 4}$ (D) $\frac{4}{s}$	ANS A	(CLO-3, Apply)

	$L[\sin 3t] =$			
15.	(A) $\frac{1}{s^2 - 9}$ (C) $\frac{s}{s^2 - 9}$	(B) $\frac{3}{s^2 + 9}$ (D) $\frac{s}{s^2 + 9}$	ANS B	(CLO-3, Apply)
16.	$L[\sinh 2t] =$ (A) $\frac{2}{s^2 - 4}$ (C) $\frac{1}{s^2 - 4}$	(B) $\frac{2}{s^2 + 4}$ (D) $\frac{s}{s^2 + 4}$	ANS A	(CLO-3, Apply)
17.	$L[2^t] =$ $(A) \frac{1}{s-2}$ $(C) \frac{1}{s-\log 2}$	(B) $\frac{s}{s^2 + 4}$ (D) $\frac{2}{s}$	ANS C	(CLO-3, Apply)
18.	$L[t e^{2t}] =$ (A) $\frac{1}{s-2}$ (C) $\frac{2}{(s-2)^3}$	(B) $\frac{1}{(s-2)^2}$ (D) $\frac{1}{s^3}$	ANS B	(CLO-3, Apply)
19.	If $L[f(t)] = F(s)$, then $L[f(at)] =$ $(A) \frac{1}{a} F\left(\frac{s}{a}\right)$ $(C) F(s+a)$	(B) $F\left(\frac{s}{a}\right)$ (D) $F(s-a)$	ANS A	(CLO-3, Remember)
20.	$L^{-1} \left[\frac{s-2}{s^2 - 4s + 13} \right] =$ (A) $e^{-2t} \sin 3t$ (C) $e^{2t} \sin 3t$	(B) $e^{-2t}\cos 3t$ (D) $e^{2t}\cos 3t$	ANS D	(CLO-3, Apply)
21.	If $L[f(t)] = F(s)$, then $L\left[\int_0^t f(u)du\right] =$ $(A)\frac{F(s)}{s}$ $(C)\frac{f(t)}{t}$	(B) $F\left(\frac{s}{a}\right)$ (D) $F(u)$	ANS A	(CLO-3, Remember)
22.	$L^{-1} [1] =$ (A) $\frac{1}{s}$ (C) 1	(B) s (D) $\delta(t)$	ANS D	(CLO-3, Apply)

23.	$L^{-1} \left[\frac{s-3}{s^2 - 6s + 13} \right] =$ (A) $e^{-3t} \cos 3t$ (C) $e^{3t} \cos 2t$	(B) $e^{2t}\cos 3t$ (D) $e^{-2t}\cos 2t$	ANS C	(CLO-3, Apply)
24.	$L[4^t] =$ $(A) \frac{1}{s-4}$ $(C) \frac{1}{s-\log 4}$	(B) $\frac{s}{s^2 + 4}$ (D) $\frac{4}{s}$	ANS C	(CLO-3, Apply)
25.	$L[\cosh 3t] =$ $(A) \frac{s}{s^2 + 9}$ $(C) \frac{s}{s^2 - 9}$	(B) $\frac{1}{s^2 - 9}$ (D) $\frac{s}{s^2 + 9}$	ANS C	(CLO-3, Apply)
26.	$L[t\cos at] =$ (A) $\frac{s^2 + a^2}{(s^2 - a^2)^2}$ (C) $\frac{s^2 - a^2}{(s^2 + a^2)^2}$	(B) $\frac{s^2 - a^2}{(s^2 - a^2)^2}$ (D) $\frac{s}{s^2 + 9}$	ANS C	(CLO-3, Apply)
27.	$L[t \sin 2t] =$ (A) $\frac{4 s}{(s^2 + 4)^2}$ (C) $\frac{s}{(s^2 + 4)^2}$	(B) $\frac{4 s}{(s^2 - 4)^2}$ (D) $\frac{4 s}{(s^2 - 4)^2}$	ANS A	(CLO-3, Apply)
28.	$L[t e^{t}] =$ $(A) \frac{1}{s-1}$ $(C) \frac{1}{(s-1)^{2}}$ $L[2 e^{-3 t}] =$	(B) $\frac{1}{(s-2)^2}$ (D) $\frac{1}{(s-1)^3}$	ANS C	(CLO-3, Apply)
29.	$L[2 e^{-3 t}] =$ (A) $\frac{2}{s+3}$ (C) $\frac{1}{(s-3)^2}$	(B) $\frac{2}{(s-3)^2}$ (D) $\frac{2}{(s-1)^3}$	ANS A	(CLO-3, Apply)
30.	$L[3] =$ (A) $\frac{1}{s-3}$ (C) $\frac{1}{s+3}$	(B) $\frac{s}{s^2 + 9}$ (D) $\frac{3}{s}$	ANS D	(CLO-3, Apply)

31.	$L[\sin 5t] =$ $(A) \frac{5}{s^2 + 29}$	(B) $\frac{5}{s^2 + 25}$	ANS	(CLO-3,
	(C) $\frac{1}{s^2 + 29}$ $L[\cos 2t] =$	(D) $\frac{s^2 + 25}{s^2 + 29}$	В	Apply)
32.	$ \begin{array}{c c} L[\cos 2t] - \\ (A) \frac{1}{s^2 - 4} \\ (C) \frac{s}{s^2 - 4} \end{array} $	(B) $\frac{1}{s^2 + 4}$ (D) $\frac{s}{s^2 + 4}$	ANS D	(CLO-3, Apply)
33.	$L[\cosh 2t] =$ $(A) \frac{s}{s^2 + 4}$ $(C) \frac{s}{s^2 - 4}$	(B) $\frac{1}{s^2 - 4}$ (D) $\frac{s}{s^2 + 4}$	ANS C	(CLO-3, Apply)
34.	$L^{-1}\left[\frac{1}{s-3}\right] =$ (A) e^{3t} (C) $\cos 3t$	(B) e^{-3t} (D) $\sin 3t$	ANS A	(CLO-3, Apply)
35.	$L^{-1} \left[\frac{s}{s^2 - 9} \right] =$ (A) $\cos 3t$ (C) $\cosh 3t$	(B) sin 3 <i>t</i> (D) sinh 3 <i>t</i>	ANS C	(CLO-3, Apply)
36.	$L^{-1} \left[\frac{1}{(s-1)^2} \right] =$ $(A) t e^t$ $(C) e^{-t}$	(B) e^t (D) $t e^{-t}$	ANS A	(CLO-3, Apply)

* * * * *