

Segundo examen parcial 2020-2

fisica1 (Universidad de San Carlos de Guatemala)

Pregunta **1**Sin contestar
Puntaje de
10.00

Código V4

La viga horizontal de la figura pesa W, y su centro de gravedad está en su centro.

Encuentre la magnitud en N de la reacción en el apoyo (fuerza ejercida por la pared sobre la viga).

Eje X a lo largo de la viga y el eje Y a lo largo de la pared.

Dato	Unidad	Magnitud
W	N	250.0

Respuesta:

La respuesta correcta es: 580.3

Pregunta **2**Sin contestar
Puntaje de
10.00

Código S1

Una tubería de plástico transporta agua para llenar un depósito. La tubería transporta un caudal Q en litros por segundo, dados los datos de dos puntos en la tubería.

Encontrar la altura que tiene la sección 2 con respecto al nivel de referencia.

Considerar que una 1 atmósfera $=1.015\times 10^5$ Pa, $g=9.8~m/s^2$ y densidad del agua de $1,000.0~kg/m^3$.

Dato	Unidad	Punto 1	Punto 2
Altura respecto nivel de referencia	metros	15.0	H?
Presión interior absoluta	Atmósferas	3.0	2.0
Sección	cm^2	10.0	25.0
Caudal	lt/s	8.0	8.0

Respuesta:

Pregunta **3**Sin contestar
Puntaje de
10.00

Código X2

Una varilla de 4.00 m de longitud con peso despreciable está sostenida en sus extremos por dos cables A y B de igual longitud **L**. La longitud, áreas y módulos de las varillas están en la tabla. El peso de **W** que soporta la viga esta localizado a 1.00 m de A.

Encontrar la deformación en m que tiene el cable B.

Utilizar W = 60,000.0 N

Dato	Unidad	Cable A	Cable B
L	m	1.5	1.5
Área	cm^2	0.045	0.020
Módulo de elasticidad	N/m^2	2×10^{11}	1.5×10^{11}

La respuesta correcta es: 0.075

Pregunta **4**Sin contestar
Puntaje de

10.00

Código Z2

Un objeto decorativo está construido de varillas ligeras, cuerdas ligeras y recuerdos de playa, como se muestra en la figura. Determine la tensión T_3 en N en la cuerda que está colgando del techo, si el peso del pescado en el extremo inferior es $\bf W$ = 18.0 N

Respuesta:

La respuesta correcta es: 245

Pregunta **5**Sin contestar
Puntaje de
10.00

Código P3

Un trozo de hierro pesa **W1** en el aire y **W2** en el agua. Encuentre el volumen en m^3 de las cavidades dentro del trozo de hierro. $g = 9.8 m/s^2$

W1	52,500.0	N
W2	40,000.0	N
Densidad del hierro	5,750.0	kg/m^3
Densidad del agua	1,000.0	kg/m^3

Respuesta:	
------------	--

La respuesta correcta es: 0.3438

Pregunta **6**Sin contestar
Puntaje de
10.00

Código W3

Se emplea un cable de acero de longitud L y sección de $2 cm^2$, para subir una carga de W de peso. Si la carga se sube con una aceleración de $1.5 m/s^2$. Hallar la longitud en m que se estira el cable. No considerar el peso del cable.

$$g = 9.8 \, m/s^2$$

Dato	Unidad	Magnitud
L	m	100.0
W	N	25,000.0
Módulo de elasticidad del acero	N/m^2	2×10^{11}

Respuesta:	

La respuesta correcta es: 0.072

Pregunta **7**Sin contestar
Puntaje de
10.00

Código Q1

Un globo de aire caliente tiene un volumen V. La tela del globo (la envoltura) pesa W1. La canasta con su equipo y tanques de propano llenos pesan W2, los pasajeros, el desayuno y champán pesan W3. El globo está flotando sin bajar o subir a una altura de 100.0 m. Calcule la densidad media en kg/m^3 de los gases calientes en el interior del globo.

V	2,500.0	m^3
W1	1,000.0	N
W2	1,500.0	N
W3	3,500.0	N
Densidad del aire exterior	1.25	kg/m^3

Respuesta:	
Respuesta.	

La respuesta correcta es: 1.01

Pregunta **8**Sin contestar
Puntaje de
10.00

Código Y2

En el fondo de un tanque de agua, está completamente sumergido un cubo de madera de $\bf L$ de lado, encontrar la densidad del cubo en kg/m^3 , si para evitar que flote hay un cable con una tensión $\bf T$.

 $g = 9.8 \, m/s^2$

Dato	Unidad	Magnitud
L	m	0.30
Т	N	40.0
Densidad del agua	kg/m ³	1,000.0

Respuesta:

La respuesta correcta es: 848.828

Pregunta **9**Sin contestar
Puntaje de
10.00

Código T2

Un tanque cilíndrico lleno de agua, cerrado, muy grande, tiene una presión interior de $\bf P$ atmósferas de presión absoluta, presión interna entre la parte superior del tanque y la superficie de agua. Se le hace un orificio de $2.0~cm^2$ en la pared lateral, si por este sale agua la cual llena un tonel de $0.5~m^3$ en un de tiempo $\bf t$ en segundos.

Encontrar la altura **H** en m, medida a partir de la superficie de agua a la posición donde está el orificio.

Considerar que una 1 atmósfera = $1.015 \times 10^5 \ Pa$, $g = 9.8 \ m/s^2$ y densidad del agua de $1,000.0 \ kg/m^3$.

Р	1.5	Atmósferas
t	150.0	S
Densidad del agua	1,000.0	kg/m ³

Respuesta:

La respuesta correcta es: 8.99

Pregunta **10**Sin contestar
Puntaje de
10.00

Código R4

Un tubo U de área de sección transversal uniforme, abierto a la atmósfera, se encuentra parcialmente lleno de mercurio. Se vierte líquido en ambos extremos. Si la configuración de tubo es como se muestra en la figura, si tenemos la altura H_2 , encuentrar en metros el valor de la altura H_1 .

 $g = 9.8m/s^2$

H_2	0.06	m
Densidad del mercurio	13,600.0	kg/m^3
Densidad del líquido	1,250.0	kg/m^3

Respuesta:

La respuesta correcta es: 0.59

Pregunta Sin contestar Puntaje de 15.00

Código F.1 15 puntos Un planeta tiene una masa Mp y un radio Rp, se tiene un satélite de masa de 3,745.88 kg, que gira a una altura de 1,000.00 km sobre superficie del planeta.

El satélite tiene una energia mecánica de -1.250 X 10¹¹ Joules. Determine:

a) La velocidad tangencial en m/s del satélite

(3 puntos)

b) La energia potencial gravitacional en J que tiene el satélite

(3 puntos)

c) El período en segundos que tiene el satélite alredeor del planeta

(3 puntos)

d) El valor del campo gravitacional ejercido por el planeta a la altura de órbita. (3 puntos)

e) Si se le proporciona al satélite una cantidad energia igual a la cuarta parte

de la energia cinética que tiene inicialmente, cuántos kilómetros sobre la superficie tendrá la nueva altura de órbita.

(3 puntos)

Masa planeta (Mp)	5.00x10 ²⁴	kg
Radio planeta (Rp)	4,000.0	km

a)

b)

 $\times 10^{11}$

c)

d)

Pregunta Sin contestar Puntaje de 15.00

Código H.3

En una linea recta tenemos a lo largo del eje X tenemos 3 masas puntuales. Encontrar:

15 puntos

a) La fuerza gravitacional en N sobre la masa 1 en dirección X, por la acción de las M2 y M3 (respuesta: sería el coeficiente antes de 10⁻¹¹).

(5 puntos)

b) La energía necesaria en J para separar las tres masas una distancia infinita. (respuesta: sería el coeficiente antes de 10⁻¹⁰).

(5 puntos)

c) La posición x en metros de una cuarta masa M4, para que la fuerza neta resultante por la acción de las 3 masas sobre la masa M1, sea nula:

(5 puntos)

Particula	masa (kg)	x (m)
M1	2.00	1.0
M2	6.00	-3.0
M3	1.00	3.0
M4	2.00	?

a)

 $\times 10^{-11}$

b)

 $\times 10^{-10}$