Дифференциальные уравнения 3 семестр

Данил Заблоцкий

21 декабря 2023 г.

Оглавление

1	Осн	виткноп эмнао	2
	1.1	Уравнение 1-го порядка	2
	1.2	Уравнения с разделяющимися переменными	4
	1.3	Особые решения	7
2	Методы интегрирования дифференциальных уравнений		
	1-го	порядка	10
	2.1	Однородные уравнения	10
	2.2	Линейные уравнения 1-го порядка	12
	2.3	Уравнение Бернулли	16
	2.4	Уравнения в полных дифференциалах	17
	2.5	Интегрирующий множитель	19
	2.6	Методы построения интегрирующего множителя	20
	2.7	Теорема существования и единственности	24
	2.8	Уравнения, не разрешенные относительно производной	27
	2.9	Интегрирование уравнений, не разрешенных относительно	
		производной	28
	2.10	Уравнения высших порядков	29
	2.11	Линейные уравнения высших порядков	30
	2.12	Построение общего решения уравнения $Ly=0$	33
	2.13	Линейные уравнения с переменными коэффициентами	34
	2.14	Структура общего решения линейного неоднородного урав-	
		нения $Ly=f$	36
	2.15	Линейные уравнения с постоянными коэффициентами	38
		Линейные неоднородные уравнения с правой частью спец.	
		рипо	41

Глава 1

Основные понятия

1.1 Уравнение 1-го порядка

Определение 1.1.1 (дифференциальное уравнение n-го порядка). $\mathcal{A}u\phi$ -ференциальным уравнением n-го порядка называется уравнение вида:

$$F(x, y, y', \dots, y^{(n)}) = 0, \quad x \in (a, b) \subset \mathbb{R},$$
 (1.1)

где $-\infty \leqslant a < b \leqslant +\infty$.

Определение 1.1.2 (дифференциальное уравнение, разрешенное относительно старшей производной). Дифференциальным уравнением, разрешенным относительно старшей производной называется уравнение вида:

$$y^{(n)} = f(x, y, y', \dots, y^{(n-1)}), \quad x \in (a; b)$$
(1.2)

Определение 1.1.3 (решение дифференциального уравнения). *Решением дифференциального уравнения* 1.1 или 1.2 называется n раз дифференцируемая функция $y = \phi(x)$ на интервале (a,b), если при подстановке она обращает уравнение в тождество на этом интервале.

Замечание.

$$y = \frac{1}{x+1}, \quad (-\infty; -1) \cup (-1; -\infty),$$

где $(-\infty;-1)$ – первое решение, а $(-1;-\infty)$ – второе решение.

Предмет дифференциального уравнения:

- 1. Решение дифференциального уравнения.
- 2. Существует ли решение на (a;b)?
- 3. Единственность, $y(x_0) = y_0$ (задача Коши).
- 4. О продолжении.
- 5. Свойства решения:
 - ограниченность
 - монотонность
 - ullet поведение решения вблизи границ $(x \to +\infty)$
 - нули функции на (a; b)

Определение 1.1.4 (дифференциальное уравнение 1-го порядка). Дифференциальным уравнением 1-го порядка называется уравнение вида:

$$F(x, y, y') = 0, \quad x \in (a; b)$$
 (1.3)

(неразрешенное относительно y')

Определение 1.1.5 (дифференциальное уравнение, разрешеноое относительно первой производной). Дифференциальным уравнением 1-го порядка, разрешенным относительно первой производной, называется уравнение вида:

$$y' = f(x, y), \quad x \in (a; b) \tag{1.4}$$

Определение 1.1.6 (решение дифференциального уравнения 1.3 и 1.4). *Решением дифференциального уравнения* 1.3 и 1.4 называется дифференцируемая функция $y = \phi(x)$, обращающая уравнение в тождество на этом интервале.

Пример 1. $y' = -\frac{x}{y}$ имеет решение $x^2 + y^2 = c$, где c - произвольная константа, c > 0.

Определение 1.1.7 (поле направлений). Сопоставим любой точке $(x_0, y_0) \rightarrow y'(x_0) = f(x_0, y_0) = \tan \alpha$ направления l. Семейство (совокупность) направлений l дает *поле направлений*.

Определение 1.1.8 (интегральная кривая). Кривая, касающаяся в каждой своей точке поля направлений, называется *интегральной кривой*:

$$y = \phi(x,c)$$
 – интергральная кривая \equiv график решения

Определение 1.1.9 (изоклины). Кривые, вдоль которых поле направлений постоянно, называется *изоклинами*.

Пример 2. $y' = y - x^2$

Напишем уравнение изоклин: $y - x^2 = c$ (заменяем y' на c)

- 1. $c=0 \implies y-x^2=0 \implies y=x^2$ (уравнение изоклины) $\tan \alpha = 0 \implies \alpha = 0; \quad y \ const.$
- 2. $c = 1 \implies y x^2 = 1 \implies y = x^2 + 1$ $\tan \alpha = 1 \implies \alpha = 45^{\circ}; \quad y \nearrow$
- 3. $c = 2 \implies y x^2 = 2 \implies y = x^2 + 2$ $\tan \alpha = 2 \implies \alpha = \arctan 2; \quad y \nearrow$
- 4. $c = -1 \implies y x^2 = -1 \implies y = x^2 1$ $\tan \alpha = -1 \implies \alpha = -45^\circ; \quad y \searrow$
- 5. $c = -2 \implies y x^2 = -2 \implies y = x^2 2$ $\tan \alpha = -2 \implies \alpha = -\arctan 2; \quad y \searrow$ y' = 0 $y' > 0, \quad y > x^2$ $y' < 0, \quad y < x^2$

Определение 1.1.10 (общее решение). *Общее решение* – совокупность функций, которая содержит все решения уравнения.

Если решение задается функцией $y = \phi(x,c)$ или $\psi(x,y,c) = 0$, то общее решение должно удовлетворять условиям:

- 1. При любом c формула дает решение уравнение.
- 2. Любое решение уравнения находится по формуле при некотором $c=c_0$.

Определение 1.1.11 (частное решение). *Частное решение* определяется из общего при некотором $c = c_0$.

Пример 3. $y' = x \implies y = \frac{x^2}{2} + c$ – общее решение,

$$\left\{ \begin{array}{ll} c=0: & y=rac{x^2}{2}, \\ c=1: & y=rac{x^2}{2}+1 \end{array}
ight.$$
 – частное решение.

1.2 Уравнения с разделяющимися переменными

Определение 1.2.1 (уравнения с разделяющимися переменными). *Уравнениями с разделяющимися переменными* называются уравнения вида:

$$y'=f(x)\cdot g(y)$$
 или $f_1(x)\cdot g_1(y)\cdot dx+f_2(x)\cdot g_2(y)\cdot dy=0,$ где $f,\ f_1,\ f_2$ зависят от $x,\ g,\ g_1,\ g_2$ зависят от y

Алгоритм:

$$\begin{bmatrix} g(y) = 0 & \Longrightarrow y = c \\ g(y) \neq 0 & \Longrightarrow \int \frac{y'dx}{g(y)} = \int f(x)dx \stackrel{dy=y'dx}{\Longrightarrow} \\ \frac{dy=y'dx}{\Longrightarrow} \int \frac{dy}{g(y)} = \int f(x)dx \implies \\ \end{bmatrix}$$

$$\Rightarrow \begin{bmatrix} y = \phi(x,c) \\ \psi(x,y,c) = 0 & \Longleftrightarrow \end{bmatrix} \begin{bmatrix} y = c_1 \\ y = \phi(y,c_2) \\ \psi(x,y,c_2) = 0 \end{bmatrix}$$

Пример 4. $y' = xy^2$

$$\begin{bmatrix} y = 0 \\ \begin{cases} \frac{dy}{y^2} = xdx \\ y \neq 0 \end{bmatrix} \iff \int \frac{dy}{y^2} = \int xdx \implies -\frac{1}{y} = \frac{x^2}{2} + C \implies \\ \implies \begin{bmatrix} y = -\frac{2}{x^2 + 2C}, \ C \in \mathbb{R} \\ y = 0 \end{bmatrix}$$

Теорема 1.2.1 (задача Коши).

$$\begin{cases} y' = f(x,y) \\ y(x_0) = y_0 \end{cases}$$

$$f(x,y) \in C(D), \quad (x_0, y_0) \in D$$

$$(1.5)$$

Пример 5. $y' = \sqrt{y}$

$$\left[\begin{array}{l} y=0 \\ \begin{cases} \frac{dy}{\sqrt{y}} &= \int dx & \Longleftrightarrow \ 2\sqrt{y}=x+C \implies \\ y & \neq 0 \end{array} \right.$$
 $\implies y=\left(\frac{x+c}{2}\right)^2$ при $x+c\geqslant 0$

1. $y = 0 \cup$ парабола AB_1D_1 ;

$$2. \ x_0$$
 на кривой $y=0 \left[egin{array}{l} y=0 \ ABD \ AB_1D_1 \ AB_2D_2 \end{array}
ight.$

Otbet:
$$\begin{bmatrix} y = 0 \\ y = \left(\frac{x+c}{2}\right)^2, & x+c \geqslant 0 \end{bmatrix}$$

Определение 1.2.2 (точка единственности, неединственности решения, особое решение). Точка (x_0, y_0) называется точкой единственности решения $y = \phi(x)$, если через нее не проходит другое решение, не совпадающее с решением $y = \phi(x)$ ни в какой окрестности этой точки.

Остальные точки называются точками неединственности.

Решение, которое содержит точки неединственности, называется *осо- бым решением*.

Теорема 1.2.2 (\exists и !-ть решения задачи Коши). Пусть f(x,y) в 1.5:

1. Определена и непрерывна в прямоугольнике в прямоугольнике:

$$\Pi = \{(x, y) : |x - x_0| \leqslant a, |y - y_0| \leqslant b\}$$

2. Удовлетворяет условию Липшица по у в П:

$$(f_y'(x,y)$$
 непрерывна в П $)$

Тогда \exists ! решение задачи 1.5 в окрестности точки x_0 :

$$(x_0 - h; x_0 + h),$$

 $e \partial e \ h = \min \left(a; \frac{b}{M} \right), \ M = \max |f(x,y)|, \ (x,y) \in \Pi.$

Определение 1.2.3 (функция, удовлетворяющая условию Липшица). f(x,y) удовлетворяет условию Липшица по переменной y, если $\exists L > 0$ такая, что $\forall (x,y_1)$ и (x,y_2) имеет место соотношение:

$$|f(x,y_1) - f(x,y_2)| \leqslant L \cdot |y_1 - y_2|$$

Если $f_y'(x,y)$ — непрерывна в Π , то выполняется условие Липшица: $\forall (x,y_1), \ (x,y_2) \in \Pi, \ \exists \widetilde{y} \in [y_1;y_2]$:

$$\left| f(x,y_1) - f(x,y_2) \right| \leqslant \left| f'_y(x,\widetilde{y}) \cdot (y_1 - y_2) \right| \leqslant \underbrace{\left| f'_y(x,\widetilde{y}) \right|}_{\leqslant L} \cdot |y_1 - y_2| = L \cdot |y_1 - y_2|$$

Пример 6. $y'=\frac{1}{y^2},\ f(x,y)=\frac{1}{y^2},\ f_y'=\frac{2}{y^3}$

$$\int y^2 dy = \int y dx \implies \frac{y^3}{3} = x + c \implies$$

$$\implies \begin{cases} y = \sqrt[3]{3(x+c)} \\ y(x_0) = y_0 \end{cases} \implies y = \sqrt[3]{3(x-x_0)} + y_0^3$$

Пример 7.
$$y' = signx = \begin{cases} 1, & x > 0 \\ 0, & x = 0 \\ -1, & x < 0 \end{cases}$$

Пример 8.
$$y' = y^2 - 2y + 1 = (y - 1)^2$$

$$\begin{bmatrix} y = 1 \\ y \neq 1 \\ \frac{dy}{(y-1)^2} = \int dx & \iff -\frac{1}{y-1} = x + C \implies y = 1 - \frac{1}{x+C} \\ y = 1, \\ y = 1 - \frac{1}{x+C_1}, \ (-\infty; -C_1), \\ y = 1 - \frac{1}{x+C_2}, \ (-C_2; +\infty) \end{bmatrix}$$

1.3 Особые решения

$$\begin{cases} y' = f(y), \ f \in C(D), \ D \subset \mathbb{R}, \\ y(x_0) = y_0 \end{cases}$$

$$\begin{cases} f(y) = 0 \implies y = c - ? \\ \begin{cases} f(y) \neq 0, \\ \int \frac{dy}{f(y)} = \int dx \end{cases} \implies \begin{bmatrix} y = \phi(x, C), \\ \psi(y, x, C) = 0 \end{cases}$$

Для \forall точки $x \in \{y = C\}$ \exists точка (x_1, y_1) и интегральная кривая, проходящая через точку (x_1, y_1) , которая пересекает прямую y = C в точке x $(x \equiv (x, C))$.

Проинтегрируем на отрезке $[x_1; x]$:

$$\int_{y_1}^{C} \frac{dy}{f(y)} = \int_{x_1}^{x} dx \iff \int_{y_1}^{C} \frac{dy}{f(y)} = x - x_1 \iff \underbrace{x}_{\text{конечная}} = x_1 + \underbrace{\int_{y_1}^{C} \frac{dy}{f(y)}}_{\text{конечный}},$$

(несобственный интеграл сходится)

Критерий. Решение y = C дифференциального уравнения $y' = f(y), f \in C(D)$ такое, что f(C) = 0 называется *особым* \iff

$$\iff \int_{y_1}^C \frac{dy}{f(y)} < \infty$$
 (несобственный интеграл сходится)

Пример 9. $y' = 3y^{\frac{2}{3}}$

- 1. Непрерывно.
- 2. $f_y' = 2y^{-\frac{1}{3}}$ разрывна в точке 0 (условие Липшица не выполнено?).

$$\begin{bmatrix} y &= 0 ? \\ \int \frac{dy}{3y^{\frac{2}{3}}} &= \int dx \implies y^{\frac{1}{3}} = x + C \end{bmatrix}$$

$$\int_{y_1}^{0} \frac{dy}{3y^{\frac{2}{3}}} = y^{\frac{1}{3}} \Big|_{y_1}^{0} = 0 - y_1^{\frac{1}{3}} < +\infty \overset{\text{по критерию}}{\Longrightarrow} y = 0 - \text{ особое}$$

Пример 10. Найти особое решение $y' = \left\{ \begin{array}{cc} y \cdot \ln y, & y > 0 \\ 0, & y = 0 \end{array} \right., \; D = [0; +\infty)$:

$$f(y) = \begin{cases} y \cdot \ln y, & y > 0 \\ 0, & y = 0 \end{cases}$$

1. Непрерывно.

$$\lim_{y \to +0} (y \cdot \ln y) = \lim_{y \to +0} \frac{\ln y}{\frac{1}{y}} = \lim_{y \to +0} \frac{\frac{1}{y}}{\frac{1}{y^2}} = -\lim_{y \to +0} = 0$$

2. Условие Липшица:

$$|f(y_1) - f(y_2)| \le L \cdot |y_1 - y_2|, \quad \begin{array}{c} y_1 \in (0; +\infty), \\ y_2 = 0 \end{array}$$

$$|f(y_1) - f(y_2)| = |y_1 \cdot \ln y_1 - 0| \le |y_1| \cdot |\ln y_1| \le |y_1| \cdot L,$$

то есть $|\ln y_1| \leqslant L$.

Для $\forall L>0$ $\exists y_1^*$ близкий к 0 и такой, что $|\ln y_1^*|>L.$

3.
$$f(y) = 0 \implies \begin{bmatrix} y = 0 \\ y = 1 \end{bmatrix}$$

(a) y = 0:

$$\int_{y_1}^{0} \frac{dy}{y \cdot \ln y} = \int_{y_1}^{0} \frac{d(\ln y)}{\ln y} = \ln |\ln y| \Big|_{y_1}^{0} = \infty - \ln |\ln y_1| = \infty \implies$$

 $\implies y = 0$ не является особым.

(b) y = 1:

$$\int_{y_1}^1 \frac{dy}{y \cdot \ln y} = \ln |\ln y| \Big|_{y_1}^1 = -\infty - \ln |\ln y_1| = -\infty \implies$$

 $\implies y = 1$ не является особым.

Пример 11. Найти особое решение $y' = \left\{ \begin{array}{cc} y \cdot \ln^2 y, & y>0 \\ 0, & y=0 \end{array} \right., \; D = [0;+\infty):$

$$f(y) = \begin{cases} y \cdot \ln^2 y, & y > 0 \\ 0, & y = 0 \end{cases}$$

- 1. Непрерывно (аналогично).
- 2. Условие Липшица (аналогично).

3.
$$f(y) = 0 \implies y \cdot \ln^2 y = 0$$
 $\begin{bmatrix} y = 0 \\ y = 1 \end{bmatrix}$

(a) y = 0:

$$\int_{y_1}^{0} \frac{dy}{y \cdot \ln^2 y} = \int_{y_1}^{0} \frac{d(\ln y)}{\ln^2 y} = \frac{1}{\ln y} \Big|_{y_1}^{0} = 0 + \frac{1}{\ln y_1} \implies$$

 $\implies y = 0$ – особое.

(b) y = 1:

$$\int_{y_1}^1 \frac{dy}{y \cdot \ln^2 y} = -\frac{1}{\ln y} \Big|_{y_1}^1 = -\infty + \frac{1}{\ln y_1} - \text{расходится} \quad \Longrightarrow \quad$$

 $\implies y = 1$ не является особым.

Глава 2

Методы интегрирования дифференциальных уравнений 1-го порядка

2.1 Однородные уравнения

Определение 2.1.1 (однородное уравнение первого порядка). *Однородным уравнением первого порядка* называется уравнение вида:

$$y' = f\left(\frac{y}{x}\right), \quad f \in C(D)$$
 (2.1)

или:

$$y' = \frac{P(x,y)}{Q(x,y)},\tag{2.2}$$

где P(x,y) и Q(x,y) являются однородными функциями одного и того же порядка.

Определение 2.1.2 (однородная функция порядка k). Однородной функцией порядка k называется функция:

$$P(\lambda x, \lambda y) = \lambda^k \cdot P(x, y), \quad \lambda \in \mathbb{R}, \ \lambda \neq 0$$

Пример 12. $P(x,y) = x^2 - 2xy + 7y^2$

$$P(\lambda x, \lambda y) = (\lambda x)^2 - 2(\lambda x)(\lambda y) + 7(\lambda y)^2 = \lambda^2(x^2 - 2xy + 7y^2)$$

Пример 13. $x(x^2+y^2)dy = y(y^2-xy+x^2)dx$

$$\underbrace{x^3 + xy^2}_{Q(x,y)}, \quad \underbrace{y^3 - xy^2 + yx^2}_{P(x,y)}$$

Замена переменной: $t = \frac{y}{x} \implies y = t \cdot x$

$$y = t(x) \cdot x \implies y' = t' \cdot x + t$$
 – подставим в 2.1 : $t' \cdot x = f(t) - t$ – уравнение с разделяющей переменной (РП)

$$\frac{dt}{dx}x = f(t) - t$$

$$\begin{cases}
f(t) - t = 0 \\
f(t) - t \neq 0 \\
\int \frac{dt}{f(t) - t} = \int \frac{dx}{x}
\end{cases} \iff
\begin{bmatrix}
t = \phi(x, C) & \Longrightarrow y = x \cdot \phi(x, C) \\
\psi(t, x, C) = 0 & \Longrightarrow \psi(\frac{y}{x}, x, C) = 0
\end{cases}$$

 $t'x=0 \implies t'=0 \implies t=C \implies y=Cx$ – решение при C:f(C)-C=0.

$$f(rac{y}{x})=const$$
 Изоклины: $rac{y}{x}=C\implies f(C)=const$ $y=Cx$ — изоклины уравнения 2.1

1. (а) Уравнение вида $y'=f\left(\frac{a_1x+b_1y+c_1}{a_2x+b_2y+c_2}\right)$ сводится к однородному с помощью замены:

$$\left\{\begin{array}{ll} x=\xi+\alpha\\ y=\eta+\beta \end{array}\right.,\quad (\alpha;\beta) - \text{ решение системы } \left\{\begin{array}{ll} a_1x+b_1y+c_1=0\\ a_2x+b_2y+c_2=0 \end{array}\right.$$

- (b) Прямые параллельны, то есть $a_1x + b_1y = k(a_2x + b_2y)$. Замена переменной $t = a_2x + b_2y$ и привести к уравнению с РП
- 2. Замена переменной $y = t^m$. Подставить эту замену в уравнение и из условия однородности выбрать m.

Пример 14. ydx + x(2xy+1)dy = 0, $ydx + (2x^2 + x)dy = 0$

$$y = t^m \implies t^m dx + (2x^2 t^m + x) \cdot mt^{m-1} dt = 0$$

$$m = 2m + 1 = m$$

$$m = -1 \implies y = t^{-1} = \frac{1}{t}$$

$$\frac{dx}{t} + \left(\frac{2x^2}{t} + x\right)\left(-\frac{1}{t^2}\right)dt = Q \implies$$

$$\implies dx - \frac{x}{t}\left(\frac{2x}{t} + 1\right)dt = 0 - \text{однородное уравнение} \implies$$

$$\implies \frac{dx}{dt} = \frac{x}{t}\left(\frac{2x}{t} + 1\right) \equiv f\left(\frac{x}{t}\right)$$

Замена переменной:
$$u=\frac{x}{t} \implies x=ut \implies dx=udt+tdu$$

$$udt + tdu - u(2u + t)dt = 0$$
$$tdu - 2u^{2}dt = 0, \quad t \neq 0, \ u^{2} \neq 0$$
$$\int \frac{du}{2u^{2}} = \int \frac{dt}{t}$$
$$-\frac{1}{2u} = \ln|t| + C$$

$$\begin{cases} u = \frac{x}{t} \\ t = \frac{1}{y} \end{cases} \implies \begin{cases} u = xy \\ t = \frac{1}{y} \end{cases}, \quad \frac{-\frac{1}{xy} = \ln\left(\frac{1}{y}\right)^2 + C}{-\frac{1}{xy} = \ln y^2 + C}$$
$$\ln y^2 - \frac{1}{xy} = C$$

$$u=0 \implies x \cdot y = 0 \implies \left[\begin{array}{c} x=0 - \mathrm{pemenue} \\ y=0 - \mathrm{pemenue} \end{array} \right]$$

Otbet: $\ln y^2 - \frac{1}{xy} = C$, x = 0, y = 0

2.2 Линейные уравнения 1-го порядка

Определение **2.2.1** (линейное уравнение 1-го порядка). *Линейным уравнением* 1-го порядка называется уравнение вида:

$$a_0(x)y' + a_1(x)y = b(x),$$
 (2.3)

$$a_0(x)y' + a_1(x)y = 0,$$
 (2.4)

где $b(x), a_0(x), a_1 \in C(\alpha; \beta), a_0(x) \neq 0, -\infty \leqslant \alpha \leqslant \beta \leqslant +\infty.$

Задача Коши: $y(x_0) = y_0$

Теорема 2.2.1 (∃ и !).

$$y' = \underbrace{\frac{b(x)}{a_0(x)} - \frac{a_1(x)}{a_0(x)}y}_{f(x,y)}$$

1.
$$f \in C((\alpha; \beta) \times (-\infty; +\infty))$$
.

2.
$$f'_y = -\frac{a_1(x)}{a_0(x)}$$

Однородное уравнение 2.4.

$$y = 0$$
 – peшение: $y = c \cdot e^{-\int \frac{a_1(x)}{a_0(x)} dx}$

Определение 2.2.2 (линейное уравнение 1-го порядка). *Линейным уравнением* 1-го порядка называется уравнение вида:

$$y' + p(x) \cdot y = q(x), \tag{2.5}$$

$$y' + p(x) \cdot y = 0, \tag{2.6}$$

где $p(x), q(x) \in C(\alpha; \beta)$.

Свойства 2.6:

- 1. Пусть $y_1(x)$ решение 2.6 $\implies k \cdot y_1$ решение 2.6, $k \in \mathbb{R}(\mathbb{C})$.
- 2. Если y_1, y_2 решения 2.6 $\implies y_1 + y_2$ решение 2.6 $(k_1y_1 + k_2y_2$ решение).
- 3. y = 0 решение 2.6.

Утверждение 2.2.1. Решения 2.6 образуют линейное пространство:

$$y' + p(x)y = 0$$

$$\frac{dy}{y} = -p(x)dx$$

$$\ln|y| = -\int p(x)dx + \ln|C|$$

$$(\star) \ y = C \cdot e^{-\int p(x)dx}$$

$$\begin{cases} y' + p(x)y = 0 \\ y(x_0) = y_0 \end{cases}, [x_0; x]$$
$$\int_{x_0}^{x} \frac{y'(s)}{y(s)} ds = -\int_{x_0}^{x} p(s) dx$$

$$\int_{y_0}^{y} \frac{dy}{y} = -\int_{x_0}^{x} p(s)dx \implies \ln|y| - \ln|y_0| = -\int_{x_0}^{x} p(x)dx \implies$$

$$(\star \star) \implies y = y_0 \cdot e^{-\int_{x_0}^{x} p(x)dx},$$

 $npu C = y_0.$

4. Если y – частное решение, то $C \cdot y$ – общее решение 2.6.

Структура решений неоднородного линейного уравнения 2.5. Теорема 2.2.2.

$$y_{OH} = y_{OO} + y_{YH}$$
общее реш-е общее реш-е частное реш-е неодн. ур. одн. неодн. ур.

Доказательство. Пусть y_1 – частное решение уравнения 2.5. Рассмотрим $y = y_1 + z$.

Подставим в 2.5:

$$y' + p(x)y = (y_1 + z)'_p(x)(y_1 + z) =$$
 $= y'_1 + p(x)y_1 + z' + p(x)z = q(x) \implies z' + p(x)z = 0 \implies$
 $\Rightarrow z$ – решение однородного дифференциального уравнения

Метод вариации произвольной постоянной (метод Лагранжа).

1. Находим общее решение одногородного уравнения:

$$y + p(x)y = 0$$

$$\begin{cases} y = 0 \\ \begin{cases} \frac{dy}{y} = -p(x) \\ y \neq 0 \end{cases} \iff y_{OO} = C \cdot e^{-\int p(x)dx} \end{cases}$$

2. Решение неоднородного уравнения $y_{\text{OH}} = \underbrace{c(x)}_{\text{диф-мая } \Phi\text{-ция}} \cdot e^{-\int p(x) dx}$

$$+\frac{y'=c'(x)\cdot e^{-\int p(x)dx}+c(x)\left(-p(x)\cdot e^{-\int p(x)dx}\right)}{p(x)y=p(x)\cdot c(x)\cdot e^{-\int p(x)dx}}$$
$$\frac{1}{q(x)=c'(x)\cdot e^{-\int p(x)dx}}$$

$$c'(x) = q(x) \cdot e^{\int p(x)dx}$$

$$c(x) = \int q(x) \cdot e^{\int p(x)dx} dx + C$$

3.

$$y = \left(\int q(x) \cdot e^{\int p(x)dx} dx + C\right) \cdot e^{-\int p(x)dx} =$$

$$= \underbrace{C \cdot e^{-\int p(x)dx}}_{=y_{\text{OO}}} + \underbrace{e^{-\int p(x)dx} \cdot \in q(x) \cdot e^{\int p(x)dx} dx}_{=y_{\text{HH}}}$$

Пример 15. $y' + y = e^{-x}$ (методом Лагранжа)

1.
$$y' + y = 0$$

$$\int \frac{dy}{y} = -\int dx;$$
$$\ln|y| = -x + \ln|C|;$$
$$y = C \cdot e^{-x}$$

2.
$$y = c(x) \cdot e^{-x}$$

$$c'(x) \cdot e^{-x} - c(x) \cdot e^{-x} + c(x) \cdot e^{-x} = e^{-x};$$

$$c'(x) \cdot e^{-x} = e^{-x} \mid : e^{-x};$$

$$c'(x) = 1;$$

$$c(x) = x + C$$

3.
$$y_{\text{OH}} = (x+c) \cdot e^{-x} = \underbrace{c \cdot e^{-x}}_{=y_{\text{OO}}} + x \cdot e^{-x}$$

Метод Бернулли (метод подстановки).

- 1. $y = u(x) \cdot v(x)$, u(x), v(x) неизвестные функции.
- 2. $y' = u'v + uv' \implies$

$$u'v + uv' + p(x) \cdot u \cdot v = q(x);$$

$$u'v + u(v' + p(x) \cdot v) = q(x);$$

$$\begin{cases} u'v = q(x) \\ v' + p(x)v = 0 \iff \frac{dv}{dx} = -p(x)v \iff \end{cases}$$

$$\iff \begin{bmatrix} v = 0 \\ \frac{dv}{v} = -p(x)dx \iff v = C \cdot e^{-\int p(x)dx}, \ C = 1 \end{cases}$$

$$\iff \left[\begin{array}{l} v=0\\ \frac{dv}{v}=-p(x)dx \iff v=C\cdot e^{-\int p(x)dx},\ C=1 \end{array}\right.$$

$$\implies u' \cdot e^{-\int p(x)dx} = q(x).$$

u(x) и u'(x) – аналогичны c(x) и c'(x) (в методе Лагранжа).

$$u' = q(x) \cdot e^{\int p(x)dx};$$

$$u(x) = \int q(x) \cdot e^{\int p(x)dx} + C$$

$$\begin{aligned} y_{\text{OH}} &= y = u \cdot v = \\ &= \left(\int q(x) \cdot e^{p(x)dx} dx + C \right) \cdot e^{-\int p(x)dx} = \\ &= \underbrace{C \cdot e^{-\int p(x)dx}}_{=y_{\text{OO}}} + \underbrace{e^{-\int p(x)dx} \cdot \int q(x) \cdot e^{\int p(x)dx} dx}_{=y_{\text{TH}}} \end{aligned}$$

Пример 16. $y' + y = e^{-x}$ (методом Бернулли)

$$y = uv;$$

$$u'v + uv' + uv = e^{-x};$$

$$\begin{cases} u'v = e^{-x} \\ v' + v = 0 \implies \int \frac{dv}{v} = -\int dx \iff \\ \iff \ln|x| = -x + \underbrace{C}_{=0} \implies v = e^{-x} \end{cases}$$

$$u'e^{-x} = e^{-x} \implies u' = 1 \implies u = x + C \implies y = uv = (x + C)e^{-x}$$

2.3 Уравнение Бернулли

$$y' + p(x) \cdot y = q(x) \cdot y^m, \quad m \neq 1$$

 $y = 0$ – решение при $m > 0$

- 1. Сведение к линейному
- 2. Метод Бернулли
- 1. $y^m \neq 0$

$$\frac{y'}{y^m} + p(x) \cdot \frac{y}{y^m} = q(x);$$

$$z = y^{1-m};$$

$$z' = (1-m) \cdot y^{-m} \cdot y' = (1-m) \cdot \frac{y'}{y^m};$$

$$\frac{z'}{1-m} + p(x) \cdot z = q(x) \mid \cdot (1-m)$$

$$\underbrace{z' + (1-m) \cdot p(x) \cdot z}_{\text{метод Лагранжа}} = \underbrace{(1-m) \cdot q(x)}_{\text{метод Бернулли}}$$

2. Пусть $y = u \cdot v$

$$u' \cdot v + \underbrace{u \cdot v' + p(x) \cdot u \cdot v}_{} = q(x) \cdot u^{m} \cdot v^{m}$$

$$u' \cdot v + u(v' + p(x) \cdot v) = q(x) \cdot u^{m} \cdot v^{m}$$

$$\begin{cases} v' + p(x) \cdot v &= 0 \\ u' &= q(x) \cdot u^{m} \cdot v^{m-1} \end{cases} \Longrightarrow$$

$$\stackrel{u}{\Longrightarrow} \quad u = e^{-\int p(x)dx}_{} = q(x)(e^{-\int p(x)dx})^{m-1} \Longrightarrow u \Longrightarrow y = u \cdot v$$

2.4 Уравнения в полных дифференциалах

Определение 2.4.1 (уравнение в ПД). Уравнение вида:

$$P(x,y)dx + Q(x,y)dy = 0 (2.7)$$

называется уравнением в полных дифференциалах ($\Pi \mathcal{A}$), если левая часть уравнения 2.7 является полным дифференциалом некоторой функции.

$$P, Q, P_x, Q_x, P_y, Q_y \in C(D), \tag{2.8}$$

D – односвязная область в \mathbb{R}^2

Теорема 2.4.1. Если существует такая функция u(x, y): du = Pdx + Qdy, что выполняются условия 2.8, то имеет место в D:

$$\frac{\delta Q}{\delta x} = \frac{\delta P}{\delta y} \tag{2.9}$$

Доказательство. Пусть $\exists u(x,y): du = Pdx + Qdy$

$$du = \frac{\delta u}{\delta x} dx + \frac{\delta u}{\delta y} dy, \quad u \in C^2(x)$$

$$\begin{cases}
\frac{\delta u}{\delta x} = P \\
\frac{\delta u}{\delta y} = Q
\end{cases}
\iff
\frac{\frac{\delta^2 u}{\delta y \delta x}}{\frac{\delta^2 u}{\delta x \delta y}} = \frac{\frac{\delta P}{\delta y}}{\frac{\delta Q}{\delta x}}
\iff
\frac{\delta P}{\delta y} = \frac{\delta Q}{\delta x}$$

Теорема 2.4.2. Для \exists функции u(x,y) такой, что du=Pdx+Qdy при выполнении 2.8 $\iff \frac{\delta Q}{\delta x}=\frac{\delta P}{\delta y}$:

- 1. Pdx + Qdy = 0.
- 2. $du = Pdx + Qdu \implies du = 0$.
- 3. u(x,y) = C.

Общий интеграл – это функция u(x,y), которая равна константе на решении уравнения.

Восстановление функции u(x,y) по ее полному дифференциалу. Пусть выполняется 2.8, D – односвязная область в \mathbb{R}^2 ,

$$du = Pdx + Qdy$$

Задача: найти $u(x,y) \in C^2(D)$.

$$du = \frac{\delta u}{\delta x} dx + \frac{\delta u}{\delta y} dy, \; \left\{ \begin{array}{l} \frac{\delta u}{\delta x} = P(x,y) \\ \frac{\delta u}{\delta y} = Q(x,y) \end{array} \right.$$

Проинтегрируем 1-е уравнение: $(x_0, y_0) \in D$

$$\int_{x_0}^{x} \frac{\delta u}{\delta x} dx = \int_{x_0}^{x} P(x, y) dx$$

$$u(x, y) = u(x_0, y) + \int_{x_0}^{x} P(x, y) dx$$
(2.10)

$$\begin{split} \frac{\delta u}{\delta y} &= \frac{\delta}{\delta y} (u(x_0, y) + \int_{x_0}^x P(x, y) dx) = \\ &= \frac{\delta u(x_0, y)}{\delta y} + \int_{x_0}^x \frac{\delta P(x, y)}{\delta y} dx = \frac{\delta u(x_0, y)}{\delta y} + \int_{x_0}^x \frac{\delta Q}{\delta x} dx = \\ &= \frac{\delta u(x_0, y)}{\delta y} + Q(x, y) - Q(x_0, y) = Q(x, y) \implies \\ &\implies \frac{\delta u(x_0, y)}{\delta y} = Q(x_0, y), \end{split}$$

интегрируем по y:

$$\int_{y_0}^{y} \frac{\delta u(x_0, y)}{\delta y} dy = \int_{y_0}^{y} Q(x_0, y) dy$$

$$u(x_0, y) - u(x_0, y_0) = \int_{y_0}^{y} Q(x_0, y) dy$$

$$u(x, y) = u(x_0, y_0) + \int_{x_0}^{x} P(x, y) dx + \int_{y_0}^{y} Q(x_0, y) dy$$

$$(2.11)$$

$$u(x,y) = u(x_0, y_0) + \int_{x_0}^{x} P(x, y_0) dx + \int_{y_0}^{y} Q(x, y) dy$$

$$du(x, y) = 0, \quad u(x, y) = C$$
(2.12)

Пример 17.
$$ydx + xdy = 0 \iff \frac{dx}{x} = -\frac{dy}{y}$$

1.
$$\frac{\delta Q}{\delta x} = \frac{\delta P}{\delta y} = 1 \implies$$
 уравнение в ПД.

$$d(x \cdot y) = dx \cdot y + xdy = 0, \quad x \cdot y = C$$

2.
$$\begin{cases} \frac{\delta u}{\delta x} = y \implies \int \frac{\delta u}{\delta x} dx = \int y dx \implies u(x,y) = y \cdot x + c(y) \\ \frac{\delta u}{\delta y} = x \implies \frac{\delta u}{\delta y} = \frac{\delta}{\delta y} (y \cdot x + c(y)) = x + c'(y) = x \\ Q \end{cases}$$

$$y(x,y) = y \cdot x + C \implies y \cdot x + C = C_1$$

$$y \cdot x = \widetilde{C}, \quad \widetilde{C} = C_1 - C$$

$$\begin{cases} \frac{\delta u}{\delta x} = y \\ \frac{\delta u}{\delta y} = x \implies \int \frac{\delta u}{\delta y} dy = \int x \cdot dy \implies \\ \implies u(x,y) = x \cdot y + c(x) \text{ в 1-е уравнение} \end{cases}$$

$$\frac{\delta u}{\delta x} = \frac{\delta}{\delta x}(x \cdot y) + c(x) = y + c'(x) = y \implies$$

$$\implies c'(x) = 0 \implies c(x) = C_1 \implies \begin{array}{c} u(x, y) = x \cdot y + C_1 \\ u(x, y) = C_2 \end{array} \implies$$

$$\implies x \cdot y + C_1 = C_2 \implies x \cdot y = C, \quad C = C_2 - C_1$$

2.5 Интегрирующий множитель

$$ydx - xdy = 0 \mid \cdot \frac{1}{y^2}$$

$$\parallel P \quad \parallel Q$$

$$\frac{\delta P}{\delta y} = y'_y = 1$$

$$\frac{\delta Q}{\delta x} = \frac{\delta}{\delta x}(-x) = -1$$

$$\frac{ydx - xdy}{y^2} = 0 \implies d\left(\frac{x}{y}\right) = 0$$

$$\frac{x}{y} = C, \quad y = 0$$

Определение 2.5.1 (интегрирующий множитель). Пусть

$$M(x,y)dx + N(x,y)dy = 0 (2.13)$$

не является уравнением в полных дифференциалах, $M, N \in C^2(D), D$ – односвязная область в \mathbb{R}^2 .

M(x,y) называется *интегрирующим множителем* уравнения 2.13, если

$$\mu(x,y)M(x,y)dx + \mu(x,y)N(x,y)dy$$

является полным дифференциалом некоторой функции $\frac{\delta P}{\delta y} = \frac{\delta Q}{\delta x}$.

$$I.\ \mu(x,y)\in C^2(D)$$

$$\mu(x,y) \cdot M(x,y) = P(x,y), \quad \mu(x,y) \cdot N(x,y) = Q(x,y)$$

$$\frac{\delta \mu(x,y)}{\delta y} M(x,y) + \mu(x,y) \cdot \frac{\delta M(x,y)}{\delta y} = \frac{\delta \mu(x,y)}{\delta x} N(x,y) + \mu(x,y) \cdot \frac{\delta ?}{\delta x}$$

- 1. $\mu = \mu(x)$.
- 2. $\mu = \mu(x)$.
- 3. $\mu = \mu(\omega(x, y))$.

2.6 Методы построения интегрирующего множителя

$$M(x,y)dx + N(x,y)dy = 0$$
 (2.14) $M, N \in C^2(D), \quad \frac{\delta N}{\delta x} \neq \frac{\delta M}{\delta y}, \quad \mu(x,y) \in C^1(D):$ $\mu(x,y) \cdot M(x,y)dx + \mu(x,y) \cdot N(x,y)dy = 0$ – уравнение в ПД?
$$\frac{\|}{P(x,y)} \qquad \frac{\delta Q}{\delta x} = \frac{\delta P}{\delta y}$$
 $\delta N(x,y)$

$$\begin{split} \frac{\delta \mu(x,y)}{\delta x} \cdot N(x,y) + \mu(x,y) \cdot \frac{\delta N(x,y)}{\delta x} &= \\ &= \frac{\delta \mu(x,y)}{\delta y} \cdot M(x,y) + \mu(x,y) \cdot \frac{\delta M(x,y)}{\delta y} \end{split}$$

1.

$$\mu = \mu(x) \implies \frac{\delta \mu}{\delta y} = 0 \implies$$

$$\implies \mu'(x) \cdot N(x, y) + \mu(x) \cdot \frac{\delta N}{\delta x} = \mu(x) \cdot \frac{\delta M}{\delta y}$$

$$\underbrace{\frac{\mu'(x)}{\mu(x)}}_{\text{зависит от }x} = \underbrace{\frac{\delta M}{\delta y} - \frac{\delta N}{\delta x}}_{\text{зависит от }x} = F(x)$$

$$(M \neq 0 \text{ и } N \neq 0)$$

$$\int \frac{\mu'(x)}{\mu(x)} dx = \int F(x) dx$$

$$\ln |\mu(x)| = \ln c + \int F(x)dx, \quad \mu(x) = c \cdot e^{\int F(x)dx} \underset{c=1}{=} e^{\int F(x)dx}$$

2.

$$\mu = \mu(y) \implies \frac{\delta \mu}{\delta x} = 0 \implies$$

$$\implies \mu'(y) \cdot M(x, y) + \mu(y) \cdot \frac{\delta M}{\delta y} = \mu(y) \cdot \frac{\delta N}{\delta x}$$

$$\frac{\mu'(y)}{\mu(y)} = \underbrace{\frac{\delta N}{\delta x} - \frac{\delta M}{\delta y}}_{\text{зависит от } y} = F(y)$$

$$\int \frac{\mu'(y)}{\mu(y)} dy = \int F(y) dy$$

$$\ln |\mu(y)| = \ln c + \int F(y) dy, \quad \mu(y) = c \cdot e^{\int F(y) dy} = e^{\int F(y) dy}$$

$$\mu = \mu(\omega(x, y))$$

$$\frac{\delta \mu}{\delta \omega} \cdot \frac{\delta \omega}{\delta x} \cdot N + \mu \cdot \frac{\delta N}{\delta x} = \frac{\delta \mu}{\delta \omega} \cdot \frac{\delta \omega}{\delta y} \cdot M + \mu \cdot \frac{\delta M}{\delta y}$$

$$\frac{\delta \mu}{\delta \omega} = \frac{\frac{\delta M}{\delta y} - \frac{\delta N}{\delta x}}{N \cdot \frac{\delta \omega}{\delta x} - M \cdot \frac{\delta \omega}{\delta y}} = F(\omega) \implies \mu(\omega) = e^{\int F(\omega) d\omega}$$

Пример 18.

3.

$$\frac{\delta M}{\delta y} = 2y$$

$$\mu = \mu(x) =?, \quad \mu(x^2 + y^2 + x)dx + \mu y dy = 0,$$

$$P = \mu(x^2 + y^2 + x), \quad Q = \mu y,$$

$$\frac{\delta P}{\delta y} = \frac{\delta Q}{\delta x}, \quad \frac{\delta M}{\delta y}(x^2 + y^2 + x) + \mu \cdot 2y = \frac{\delta \mu}{\delta x} \cdot y + \mu \cdot 0,$$

$$\frac{\mu'(x)}{M} = \frac{2y}{y} = 2, \quad \mu(x) = e^{2x},$$

$$e^{2x}(x^2 + y^2 + x)dx + e^{2x} \cdot y dy = 0,$$

$$P = e^{2x}(x^2 + y^2 + x), \quad Q = e^{2x} \cdot y,$$

$$\frac{\delta P}{\delta y} = 2e^{2x} \cdot y = \frac{\delta Q}{\delta x},$$

$$\left\{\begin{array}{c} \frac{\delta u}{\delta x} = e^{2x}(x^2 + y^2 + x) \\ \frac{\delta u}{\delta y} = e^{2x} \cdot y \end{array}\right. \implies u(x, y) = e^{2x} \cdot \frac{y^2}{2} + c(x),$$

$$u'_x = 2e^{2x} \cdot \frac{y^2}{2} + c'(x) = e^{2x}(x^2 + y^2 + x), \quad c'(x) = e^{2x}(x^2 + x)$$

 $(x^2 + y^2 + x)dx + ydy = 0$, $M = x^2 + y^2 + x$, N = y

$$c(x) = \frac{e^{2x}}{2}(x^2+x) - \int \frac{e^{2x}}{2}(2x+1)dx =$$

$$= \frac{e^{2x}}{2}(x^2+x) - \frac{e^{2x}}{4}(2x+1) + \int \frac{e^{2x}}{4} \cdot 2dx =$$

$$= \frac{e^{2x}}{2}(x^2+x) - \frac{e^{2x}}{4}(2x+1) + \frac{e^{2x}}{4} + C$$

$$c(x) = \frac{e^{2x}}{2} \cdot x^2 + C$$

$$u(x,y) = e^{2x} \cdot \frac{x^2+y^2}{2} + C = \widetilde{C}$$

$$e^{2x} \cdot \frac{x^2+y^2}{2} = C - \text{общий интеграл}$$

Свойства интегрирующего множителя (ИМ):

- 1. Если μ_0 ИМ, то $\forall c \in \mathbb{R} \quad \mu_1 = C \cdot \mu_0$ тоже является ИМ.
- 2. Пусть μ_0 ИМ уравнения (1.12), V_0 соответствующий ему интеграл, то есть:

$$\mu_0 \cdot Mdx + \mu_0 \cdot Ndx = dV_0,$$

тогда для произвольной функции $\phi \in C^1(D), \ \phi \neq 0, \ \mu_1 = \mu_0 \cdot \phi(V_0)$ – так же является ИМ.

$$\begin{split} Mdx + Ndy &= 0, \quad \mu_1 \cdot Mdx + \mu_1 \cdot Ndy = \\ &= \mu_0 \cdot \phi(V_0) \cdot Mdx + \mu_0 \cdot \phi(V_0) \cdot Ndy = \\ &= \phi(V_0)(\mu_0 \cdot Mdx + \mu_0 \cdot Ndy) = \phi(V_0)dV_0 = \\ &= d\bigg(\int \phi(V_0)dV_0\bigg) = dV_1, \quad \int \phi(V_0)dV_0 = V_1 \end{split}$$

3. Если μ_1 и μ_2 – интегральные множители уравнения 2.14, тогда:

$$\mu_2 = \mu_1 \cdot \phi(V_1),$$

где ϕ – произвольная функция класса C^1 , V_1 – соответствующий интеграл для μ_1 .

Следствие. Если μ_1 и μ_2 – интегральные множители уравнения 2.14 и $\frac{\mu_1}{\mu_2} \neq const$, тогда $\frac{\mu_1}{\mu_2}$ – является интегралом для уравнения 2.14.

Теорема 2.6.1. Если уравнение 1-го порядка имеет общий интеграл u(x,y) = C, то оно имеет интегрирующий множитель.

Доказательство.

$$u(x,y) = C \begin{cases} Mdx + Ndy = 0 \\ du \equiv \frac{\delta u}{\delta x} dx + \frac{\delta u}{\delta y} dy = 0 \end{cases}$$

(dx, dy) – ненулевое решение если определитель равен 0, то есть

$$\left| \begin{array}{cc} M & N \\ \frac{\delta u}{\delta x} & \frac{\delta u}{\delta y} \end{array} \right| = M \cdot \frac{\delta u}{\delta y} - N \cdot \frac{\delta u}{\delta x} = 0$$

$$\begin{split} M \cdot \frac{\delta u}{\delta y} &= N \cdot \frac{\delta u}{\delta x} \quad \middle| \quad \cdot (MN) \implies \frac{1}{N} \cdot \frac{\delta u}{\delta y} = \frac{1}{M} \cdot \frac{\delta u}{\delta x} \stackrel{?}{=} \mu, \\ \mu \cdot M dx + \mu \cdot N dy &= 0, \quad \frac{1}{M} \frac{\delta u}{\delta x} \cdot M dx + \frac{1}{N} \cdot \frac{\delta u}{\delta y} \cdot N dy = 0, \\ \frac{\delta u}{\delta x} dx + \frac{\delta u}{\delta y} dy &= 0 \implies du = 0 \end{split}$$

Еще один способ построения интегрального множителя:

$$\underbrace{M_1 dx + N_1 dy}_{I} + \underbrace{M_2 dx + N_2 dy}_{II} = 0$$

Пусть μ_1 – интегральный множитель для $I,\ V_1$ – соответствующий ему интеграл, то есть:

$$dV_1 = \mu_1 \cdot M_1 dx + \mu_2 \cdot N_2 dy,$$

 μ_2 – интегральный множитель для $II,\,V_2$ – соответствующий ему интеграл, то есть:

$$dV_2 = \mu_2 \cdot M_2 dx + \mu_2 \cdot N_2 dy,$$

тогда $\exists \phi, \psi \in C^1(D): \quad \mu_1 \cdot \phi(V_1) = \mu_2 \cdot \psi(V_2)$ и $\mu = \mu_1 \cdot \phi(V_1)$ или $\mu = \mu_2 \cdot \psi(V_2)$ – будет интегральным множителем.

Пример 19.

$$(\frac{y}{x} + 3x^2)dx + (1 + \frac{x^3}{y})dy = 0$$

$$(\frac{y}{x} + dy) + (3x^2dx + \frac{x^3}{y}dy) = 0$$

$$\begin{array}{l} \frac{y}{x}dx + dy = 0 \\ \mu_1 = x \\ \mu_2 = y \\ ydx + xdy = 0 \\ d(xy) = 0 \implies xy = C_1 \\ 3x^2ydx + x^3dy = 0 \\ d(x^3y) = 0 \\ u_1 = xy \\ x\phi(xy) = y\psi(x^3y), \quad \phi(t) = t^2, \ \psi(t) = t, \\ x(x^2y^2) = yx^3y = \mu \\ x^3y^2\left(\frac{y}{x} + 3x^2\right)dx + x^3y^2\left(1 + \frac{x^2}{y}\right)dy = 0 \\ \underbrace{(x^2y^3 + 3x^5y^2)}_{P} dx + \underbrace{(x^3y^2 + x^6y)}_{Q} dy = 0 \\ \underbrace{\frac{\delta P}{\delta y}}_{Q} = 3x^2y^2 + 6x^5y \\ \parallel \qquad \Longrightarrow \text{ уравнение в ПД} \\ \frac{\delta Q}{\delta x} = 3x^2y^2 + 6x^5y \\ \underbrace{\begin{cases} \frac{\delta u}{\delta x} = x^2y^3 + 3x^5y^2\\ \frac{\delta u}{\delta y} = x^3y^2 + x^6y \end{cases}}_{Q} \end{array}$$

2.7 Теорема существования и единственности

Задача Коши:

$$y' = f(x, y), \tag{2.15}$$

$$y(x_0) = y_0 (2.16)$$

Теорема 2.7.1 (теорема Пикара). Пусть функция f(x,y) определена и непрерывна по совокупности переменных в прямоугольнике $\Pi = \{(x,y): |x-x_0| \leqslant a, |y-y_0| \leqslant b\}$ и на переменной у удовлетворяет условию Липшица:

$$(f(x,y) \in C(\Pi) \cap Lipy(\Pi))$$

Тогда $\exists !$ решение задачи Коши 2.15, 2.16 в $V_h=(x_0-h;x_0+h)$, где $h=\min\left(a,\frac{b}{M},\frac{1}{L}\right),\ M=\max_{(x,y)\in\Pi}\left|f(x,y)\right|.$

Определение 2.7.1. $f(x,y) \in Lipy$, если $\exists L > 0 : \forall (x,y_1), (x,y_2) \in \Pi$ имеет место:

$$|f(x, y_1) - f(x, y_2)| \le L \cdot |y_1 - y_2|$$

Лемма 2.7.1 (об интегральном уравнении). В предположении теоремы у является решением задачи 2.15, $2.16 \iff$ оно является решением интегрального уравнения:

$$y(x) = y_0 + \int_{x_0}^x f(x, y(s)) ds$$
 (2.17)

Определение 2.7.2 (решение интегрального уравнения 2.17). *Решением интегрального уравнения 2.17* называется непрерывная функция y, обращающая уравнение в тождество.

Доказательство леммы? $\Rightarrow y$ – решение 2.15, 2.16, проинтегрируем 2.15 на $[x_0; x]$:

$$\int_{x_0}^x y'(x)dx = \int_{x_0}^x f\big(s,y(s)\big)ds$$

$$y(x)-y(x_0)=\int_{x_0}^x f\big(s,y(s)\big)ds, \text{ с учетом 2.16},$$

$$y(x)=y_0+\int_{x_0}^x f\big(s,y(x)\big)dx, \quad y(x) \text{ удовлетворяет уравнению 2.17}$$

y(x) непрерывна (следует из дифференцируемости).

• $\Leftarrow y(x)$ – решение 2.17, y(x) – непрерывна, f(x,y) – непрерывна по условию теоремы \Longrightarrow интеграл с переменным верхним пределом можно дифференцировать:

$$y'(x) = f(x, y(x)) \cdot 1$$
, $y(x)$ удовлетворяет уравнению 2.15

$$\frac{d}{d\alpha} \int_{a(\alpha)}^{b(\alpha)} F(x,\alpha) d\alpha =$$

$$= \int_{a(\alpha)}^{b(\alpha)} F_{\alpha}'(x,\alpha) d\alpha + F(b(\alpha),\alpha) \cdot b'(\alpha) - F(a(\alpha),\alpha) \cdot a'(\alpha)$$

$$y(x_0) = y_0 + \int_{x_0}^{x_0} f(s,y(s)) ds, \text{ выполняется условие 2.16}$$

Доказательство теоремы Пикара. 1. Последовательность приближения Пикара:

$$y_0(x) = y_0,$$

$$y_1(x) = y_0 + \int_{x_0}^x f(s, y_0(s)) ds,$$

$$y_2(x) = y_0 + \int_{x_0}^x f(s, y_1(s)) ds,$$

$$\vdots$$

$$y_n(x) = y_0 + \int_{x_0}^x f(s, y_{n-1}(s)) ds$$

25

2. $y_n(x)$ – непрерывна при $|x-x_0| \leqslant h, \ \big(x,y_n(x)\big) \in \Pi.$ По индукции, n=1:

$$|y_1(x) - y_0| \stackrel{?}{\leqslant} b$$

$$\begin{aligned} |y_1(x) - y_0| &= \left| \int_{x_0}^x f(s, y_0(s)) ds \right| \leqslant \\ &\leqslant \left| \int_{x_0}^x \left| f(s, y_0(s)) \right| dx \right| \leqslant M |x - x_0| \leqslant M \cdot h \leqslant M \cdot \frac{b}{M} = b \end{aligned}$$

Пусть $|y_{n-1}(x) - y_0| \le b$, то есть $(x, y_{n-1}(x)) \in \Pi$. Докажем, что $(x, y_n(x)) \in \Pi$:

$$\left| y_n(x) - y_0 \right| \le \left| \int_{x_0}^x \left| f(s, y_{n_1}(s)) \right| \right| \le$$

$$\le M \cdot |x - x_0| \le M \cdot h \le M \cdot \frac{b}{M} = b$$

3. Покажем, что $\{y_n(x)\}_{n=1}^{\infty} \rightrightarrows \overline{y}(x)$.

Составим функциональный ряд:

$$(\star) \underbrace{y_0(x), y_1(x) - y_0(x), y_2(x) - y_1(x), \dots, y_1(x) - y_{n-1}(x), \dots}_{S_0(x)} \underbrace{S_1(x) = y_1(x)}_{S_2(x) = y_2(x)}$$

Нужно дописать.

Лемма 2.7.2 (Гронуолла). Пусть $u(x) \ge 0$ и $u(x) \in C([x_0; x_0 + h])$,

$$(\star)$$
 $u(x) \leqslant a + b \int_{x_0}^x u(t)dt$, $a \geqslant 0$, $b \geqslant 0$

Тогда $u(x) \leqslant a \cdot e^{b(x-x_0)}$ на $[x_0; x_0 + h]$.

Доказательство. $u(x) = e^{b(x-x_0)}v(x)$

На
$$[x_0; x_0+h]: v(x)$$
 – непрерывна и в точке $x_1: v(x_1) = \max_{[x_0; x_0+h]} v(x)$.

$$\begin{split} e^{b(x-x)}v(x_1) &= u(x_1) \leqslant \\ &\leqslant a + b \int_{x_0}^{x_1} u(t)dt = a + b \int_{x_0}^{x_1} e^{b(t-x_0)}v(t)dt \leqslant \\ &\leqslant a + b \cdot v(x_1) \cdot \frac{e^{v(t-x_0)}}{b} \Big|_{x_0}^{x_1} = a + v(x_1) \cdot e^{b(x_1-x_0)} - v(x_1) \implies \\ &\implies 0 \leqslant a - v(x_1) \implies v(x_1) \leqslant a \implies \\ &\implies u(x) = e^{b(x-x_0)}v(x) \leqslant e^{b(x-x_0)}v(x_1) \leqslant a \cdot e^{b(x-x_0)} \end{split}$$

Следствие. Если a = 0, то $u(x) \equiv 0$.

2.8 Уравнения, не разрешенные относительно про- изводной

Определение 2.8.1 (уравнение, не разрешенное относительно производной). *Уравнением, не разрешенным относительно производной* называется уравнение вида:

$$f(x, y, y') = 0 (2.18)$$

Задача Коши: найти прешение 2.18 при условиях:

$$\begin{cases} y(x_0) = y_0 \\ y'(x_0) = y'_0 \end{cases}$$
 (2.19)

Теорема 2.8.1 (\exists и ! задачи Коши). Пусть $f \in C^1(D)$ и в точке $(x_0, y_0, y_0') \in D$,

$$f(x_0, y_0, y_0') = 0 \ u \ f_{y'}'(x_0, y_0, y_0') \neq 0$$

Тогда на достаточно малом отрезке $[x_0 - h; x_0 + h]$ решение задачи Коши 2.18, 2.19 существует и единственно.

Пример 20. $(y')^2 = x^2$

$$\begin{bmatrix} y' = x \\ y' = -x \end{bmatrix} \implies \begin{bmatrix} y = \frac{x^2}{2} + C \\ y = -\frac{x^2}{2} + C \end{bmatrix}$$

Определение 2.8.2 (особое решение, дискриминантная кривая). Решение $y = \phi(x)$ уравнения 2.18 называется *особым*, если через \forall точку

 $y=\phi(x),$ помимо того, проходит другое решение, имеющее ту же касательную, не совпадающее с исходным решением в сколь угодно малой окрестности этой точки.

Особые решения будем искать из системы:

$$\begin{cases}
f(x, y, y') = 0 \\
f'_{y'}(x, y, y') = 0
\end{cases}$$
(2.20)

путем исключения y'.

Кривая, определенная уравнением 2.20 $\psi(x,y)=0$, называется $\partial uc-$ криминантной.

2.9 Интегрирование уравнений, не разрешенных относительно производной

- 1. Выразить, если это возможно, явно $y': (y')_{1,2} = \dots$
- 2. Метод параметра: y' = p

$$x = \Phi(y, y') \tag{2.21}$$

$$y = \Psi(x, y') \tag{2.22}$$

Из 2.21:
$$y' = p \implies dy = pdx$$
, $x = \Phi(y, p)$

$$dx = \frac{\delta\Phi}{\delta y}dy + \frac{\delta\Phi}{\delta p}dp$$
$$\frac{dy}{p} = \frac{\delta\Phi}{\delta y}dy + \frac{\delta\Phi}{\delta p}dp$$

$$\begin{bmatrix}
p = 0 \\
p \neq 0 \\
\frac{dy}{p} = \frac{\delta\Phi}{\delta y}dy + \frac{\delta\Phi}{\delta p}dp \implies \begin{cases}
y = y(p, c) \\
x = \Phi(y(p, c), p)
\end{cases}$$

Из 2.22: $y = \Psi(x, p)$

$$dy = \frac{\delta \Psi}{\delta x} dx + \frac{\delta \Psi}{\delta p} dp$$

$$pdx = \frac{\delta \Psi}{\delta x} dx + \frac{\delta \Psi}{\delta p} dp \implies \begin{cases} x = x(p, c) \\ y = \Psi(x(p, c), p) \end{cases}$$

Уравнение Лагранжа

$$y=x\cdot F(y')+G(y')$$

$$y'=p\implies y=x\cdot F(p)+G(p)$$

$$dy=F(p)dx+x\cdot F'(p)dp+g'(p)dp$$

$$\parallel_{pdx}$$

$$(p-F(p))dx-F'(p)dp\cdot x=G'(p)dp:\ dp\neq 0,\ p-F(p)\neq 0$$

$$\frac{dx}{dp}-\frac{F'(p)}{p-f(p)}\cdot x=\frac{G'(p)}{p-F(p)}$$
 – линейное уравнение относительно x

$$\begin{bmatrix} p - F(p) = 0 \implies p = p_0 \implies y = x \cdot F(p_0) + G(p_0) \implies y = x \cdot C_1 + C_2 \\ & \parallel & \parallel \\ C_1 & C_2 \end{bmatrix}$$

$$\begin{cases} p - F(p) \neq 0 \\ \frac{dx}{dp} - \frac{F'(p)}{p - F(p)} \cdot x = \frac{G'(p)}{p - F(p)} \implies \begin{cases} x = \phi(p, C) \\ y = \phi(p, C) \cdot F(p) + G(p) \end{cases}$$

$$dp = 0 \implies p = C \implies y = x \cdot F(C) + G(C)$$

Уравнение Клеро

2.10 Уравнения высших порядков

Определение 2.10.1 (уравнение *n*-го порядка). *Уравнением порядка п* называется уравнение вида:

$$F(x, y, y', y'', \dots, y^{(n)}) = 0, (2.23)$$

где x — неизвестная, n — наивысший порядок производной:

$$y^{(n)} = f(x, y, y', \dots, y^{(n-1)})$$
(2.24)

Определение 2.10.2 (решение уравнений 2.23 и 2.24). *Решением уравнений 2.23 и 2.24* называется n раз дифференцируемая функция, которая при подстановке в уравнение, обращает его в тождество.

Определение 2.10.3 (задача Коши). *Задача Коши*: найти уравнения 2.24 удовлетворяющему начальным условиям:

$$\begin{cases} y(x_0) = y_0 \\ y'(x_0) = y'_0 \\ \vdots \\ y^{(n-1)}(x_0) = y_0^{n-1} \end{cases} \begin{pmatrix} y_0^{\circ} \\ y_1^{\circ} \\ \vdots \\ y_{n-1}^{\circ} \end{pmatrix}$$
(2.25)

Теорема 2.10.1 (\exists и ! задачи Коши 2.24, 2.25). Пусть $f(x, y_0, y_1, \dots, y_{n-1})$ – непрерывна по совокупности переменных в параллелепипеде:

$$\Pi = \left\{ (x, y_0, y_1, \dots, y_{n-1}) : |x - x_0| \leqslant a, |y_k - y_k^0| \leqslant b, k = \overline{0, n-1} \right\}$$

и удовлетворяет условию Липшица по переменным $y_0, y_1, \ldots, y_{n-1}$

$$\left(rac{\delta f}{\delta y_k}$$
 – nenp., $k=\overline{0,n-1}
ight)$

Тогда в окрестности точки x_0 $(x_0 - h; x_0 + h)$ решение задачи Коши существует и единственно, где:

$$h = \min \left\{ a, \frac{b}{\max\{M_0, M_1, \dots, M_{n-1}\}} \right\}, \quad M_k = \max \left| \frac{\delta f}{\delta y_k} \right|$$

2.11 Линейные уравнения высших порядков

Определение 2.11.1 (линейное неоднородное уравнение порядка n, однородное уравнение). Уравнение вида:

$$a_0(x) \cdot y^{(n)} + a_1(x) \cdot y^{(n-1)} + \ldots + a_{n-1}(x) \cdot y' + a_n(x) \cdot y = f(x), \quad a_0(x) \neq 0$$
(2.26)

называется линейным неоднородным порядка п,

$$a_j(x) \in C(\alpha; \beta), \quad j = \overline{0, n}, \quad f(x) \in C(\alpha, \beta), \quad -\infty \leqslant \alpha < \beta \leqslant +\infty$$

Если f(x) = 0, то уравнение называется однородным.

Пусть $L[y] = Ly \equiv a_0(x) \cdot y^{(n)} + \ldots + a_n(x) \cdot y,$

$$Ly = f (2.27)$$

$$Ly = 0 (2.28)$$

$$y^{(n)} = -\frac{a_1(x)}{a_0(x)} \cdot y^{(n-1)} - \dots - \frac{a_{n-1}(x)}{a_0(x)} \cdot y' - \frac{a_n(x)}{a_0(x)} \cdot y + \frac{f(x)}{a_0(x)}$$
 (2.29)

Теорема 2.11.1 (о существовании и единственности). Пусть для уравнения 2.29 выполняются условия: $a_0(x) \neq 0$, $a_j(x) \in C(\alpha; \beta)$, $f(x) \in C(\alpha, \beta)$. Тогда решение задачи Коши для уравнения 2.29 существует и единственно на (α, β) .

Свойства оператора Ly:

- 1. $L(\alpha y) = \alpha L y, \ \forall \alpha \in \mathbb{R}$ (свойство однородности);
- 2. $L(y_1 + y_2) = Ly_1 = Ly_2$ (свойство аддитивности).

Свойства решений однородного линейного уравнения 2.28 или Ly=0.

- 1. $y \equiv 0$ является решением 2.28;
- 2. Если $y_1(x)$ решение 2.28, то $y(x) \alpha y_1(x)$, $\alpha \in \mathbb{R}$ также ялвяется решением:

$$Ly = L(\alpha y_1) = \alpha L y_1 = 0$$

3. Если $y_1(x)$ и $y_2(x)$ – решения 2.28, то $y(x)=y_1(x)+y_2(x)$ также является решением:

$$Ly = L(y_1 + y_2) = Ly_1 + Ly_2 = 0 + 0 = 0$$

4. Если $y_1(x), \ldots, y_n(x)$ – решения 2.28, то $\forall c_i \in \mathbb{R}, i = \overline{1,n} \ y(x) = c_1 y_1(x) + \ldots + c_n y_n(x)$ так же является решением. $y_1(x), \ldots, y_n(x)$ – линейно независимая система функций $\Longrightarrow \forall y(x) = \sum_{i=1}^n c_i \cdot y_i(x)$ – решение 2.28.

Определение 2.11.2 (линейно зависимая система функций). Система функций $y_1(x), \ldots, y_n(x)$ называется линейно зависимой, если \exists такой набор $\alpha_1, \ldots, \alpha_n \in \mathbb{R}$: $\alpha_1^2 + \alpha_2^2 + \ldots + \alpha_n^2 \neq 0$, что линейная комбинация

$$\alpha_1 y_1(x) + \alpha_2 y_2(x) + \ldots + \alpha_n y_n(x) = 0$$

Определение 2.11.3 (линейно независимая система функций). Система функций $y_1(x), \ldots, y_n(x)$ называется *линейно независимой*, если линейная комбинация этих функций равна 0 в случае, когда

$$\alpha_1 = \alpha_2 = \dots = \alpha_n = 0,$$

$$\alpha_1 y_1(x) + \dots + \alpha_n y_n(x) = 0 \iff \alpha_1 = \dots = \alpha_n = 0.$$

Определение 2.11.4 (определитель Вронского). Определителем Вронского (вронскианом) системы функций $y_1(x), \ldots, y_n(x)$, имеющих производные до порядка (n-1) включительно, называется определитель:

$$W(x) = \begin{vmatrix} y_1(x) & \cdots & y_n(x) \\ y'_1(x) & \cdots & y'_n(x) \\ \vdots & \ddots & \vdots \\ y_1^{(n-1)}(x) & \cdots & y_n^{(n-1)}(x) \end{vmatrix}$$

Теорема 2.11.2. Если система функций $y_1(x), \ldots, y_n(x)$ линейно зависима, то определитель Вронского равен 0, то есть W(x) = 0.

Доказательство. Из линейной зависимости $y_1(x), \ldots, y_n(x) \implies \exists \alpha_1, \ldots, \alpha_n \in \mathbb{R}$:

$$\alpha_1 y_1(x) + \ldots + \alpha_n y_n(x) = 0.$$

Пусть $\alpha_n \neq 0$, тогда:

$$W(x) = -\frac{\alpha_1}{\alpha_n} y_1(x) - \frac{\alpha_2}{\alpha_n} y_2(x) - \dots - \frac{\alpha_{n-1}}{\alpha_n} y_{n-1}(x)$$

$$y'_n(x) = -\frac{\alpha_1}{\alpha_n} y'_1(x) - \frac{\alpha_2}{\alpha_n} y'_2(x) - \dots - \frac{\alpha_{n-1}}{\alpha_n} y'_{n-1}(x)$$

$$\vdots$$

$$y_n^{(n-1)}(x) = -\frac{\alpha_1}{\alpha_n} y_1^{(n-1)}(x) - \frac{\alpha_2}{\alpha_n} y_2^{(n-1)}(x) - \dots - \frac{\alpha_{n-1}}{\alpha_n} y_{n-1}^{(n-1)}(x)$$

$$W(x) = \begin{vmatrix} y_1(x) & \dots & y_{n-1}(x) - \sum_{k=1}^{n-1} \frac{\alpha_k}{\alpha_n} y_k(x) \\ y'_1(x) & \dots & y'_{n-1}(x) - \sum_{k=1}^{n-1} \frac{\alpha_k}{\alpha_n} y'_k(x) \\ \vdots & \ddots & \vdots \\ y_1^{(n-1)}(x) & \dots & y_{n-1}^{(n-1)}(x) - \sum_{k=1}^{n-1} \frac{\alpha_k}{\alpha_n} y'_k(x) \end{vmatrix} = 0$$

П

3амечание. $W(x) = 0 \implies y_1(x), \dots, y_n(x)$ – линейно зависима.

$$y_{1}(x) = \begin{cases} x^{2}, & x \geqslant 0 \\ 0, & x < 0 \end{cases}, \quad y_{2}(x) = \begin{cases} 0, & x \geqslant 0 \\ x^{2}, & x < 0 \end{cases}$$

$$W(x) = \begin{cases} \begin{vmatrix} x^{2} & 0 \\ 2x & 0 \end{vmatrix} = 0, & x \geqslant 0 \\ \begin{vmatrix} 0 & x^{2} \\ 0 & 2x \end{vmatrix} = 0, & x < 0 \end{cases}$$

$$\frac{y_{1}(x)}{y_{2}(x)} = \begin{cases} \infty, & x \geqslant 0 \\ 0, & x < 0 \end{cases}, \quad \frac{y_{1}(x)}{y_{2}(x)} = const \text{ JI3}$$

$$\alpha_{1} \cdot y_{1} + \alpha_{2} \cdot y_{2} = 0, \quad y_{1} = -\frac{\alpha_{2}}{\alpha_{1}} \cdot y_{2}$$

Теорема 2.11.3. Пусть $y_1(x), \ldots, y_n(x)$ — система линейно независимых на $(\alpha; \beta)$ решений уравнения Ly = 0. Тогда $W(x) \neq 0$ ни в какой точке интервала $(\alpha; \beta)$.

Доказательство. От противного. Предположим, что $\exists x_0 \in (\alpha; \beta)$. $W(x_0) = 0$,

$$W(x_0) = \begin{vmatrix} y_1(x_0) & \cdots & y_n(x_0) \\ y'_1(x_0) & \cdots & y'_n(x_0) \\ \vdots & \ddots & \vdots \\ y_1^{(n-1)}(x_0) & \cdots & y_n^{(n-1)}(x_0) \end{vmatrix} = 0, \quad \begin{pmatrix} c_1 \\ c_2 \\ \vdots \\ c_n \end{pmatrix}$$

$$\begin{cases}
c_1 y_1(x_0) + \ldots + c_n y_n(x_0) = 0 \\
c_1 y_1'(x_0) + \ldots + c_n y_n'(x_0) = 0 \\
\vdots \\
c_1 y_1^{(n-1)}(x_0) + \ldots + c_n y_n^{(n-1)}(x_0) = 0
\end{cases}$$
(2.30)

Однородная система линейно алгебраических уравнений, $\det = W(x_0) = 0$, \Longrightarrow система 2.30 имеет нетривиальное решение: $\overrightarrow{c^0} - (c_1^0, c_2^0, \dots, c_n^0)$, $y_1(x), \dots, y_n(x)$ – линейно зависимая?

$$y(x) = c_1^0 \cdot y_1(x) + \ldots + c_n^0 \cdot y_n(x)$$

1. y(x) – решение Ly = 0;

2.
$$\begin{cases} y(x_0) = 0 \\ y'(x_0) = c_1^0 y_1'(x) + \dots + c_n^0 y_n'(x) \Big|_{x=x_0} = 0 \\ \vdots \\ y^{(n-1)}(x_0) = c_1^0 y_1^{(n-1)}(x) + \dots + c_n^0 y_n^{(n-1)}(x) \Big|_{x=x_0} = 0 \end{cases}$$

1. $y \equiv 0 \implies Ly = 0 \implies$ из теоремы существования и единственности $\implies y(x) = \sum_{k=1}^n c_k^0 y_k(x) \equiv 0 \implies y_1, \dots, y_n$ – линейно зависимые \implies противоречие.

Теорема 2.11.4 (Лиувилля-Остроградского $(W(x), W(x_0))$). Пусть задано уравнение:

$$a_0(x) \cdot y^{(n)} + a_1(x) \cdot y^{(n-1)} + \ldots + a_{n-1}(x) \cdot y' + a_n(c) \cdot y = 0,$$

 $a_0(x) \neq 0, \ a_j(x) \in C(\alpha; \beta), \ j = \overline{0, n}, \ -\infty \leqslant \alpha < \beta \leqslant +\infty.$ Тогда:

$$W(x) = W(x_0) \cdot e^{-\int_{x_0}^x \frac{a_1(s)}{a_0(s)} ds}, \quad x_0 \in (\alpha; \beta)$$

Следствие. $Ecnu \exists x_0 \in (\alpha; \beta): W(x_0) = 0 \implies W(x) = 0 \ \forall x \in (\alpha; \beta)$

2.12 Построение общего решения уравнения Ly = 0

Определение 2.12.1 (решение Ly=0). Функция $y=\phi(x,C_1,C_2,\ldots,C_n)$ называется решением Ly=0, если для \forall набора C_1,C_2,\ldots,C_n она является решением Ly=0 и для \forall задачи Коши $y(x_0)=y_0^\circ,\ y'(x_0)=y_1^\circ,\ \ldots,\ y^{(n-1)}(x_0)=y_{n-1}^\circ$ \exists набор $C_1^\circ,C_2^\circ,\ldots,C_n^\circ:\ y=\phi(x,C_1^\circ,\ldots,C_n^\circ)$ является решением Ly=0.

Теорема 2.12.1 (структура решения однородного уравнения). Пусть $y_1(x), \ldots, y_n(x)$ – линейно независимые решения Ly = 0 *n-го порядка.* Тогда:

$$y_{OO} = C_1 y_1(x) + \ldots + C_n y_n(x),$$

 $ede\ C_1,\ldots,C_n$ – произвольные константы.

Определение 2.12.2 (фундаментальная система решений (ФСР)). Любые n линейно независимых решений задачи Коши уравнения Ly=0 называются фундаментальной системой решений (ФСР).

Теорема 2.12.2. ΦCP уравнения Ly = 0 – существует.

Теорема 2.12.3. Любые (n+1) решения задачи Коши для Ly = 0n-го порядка линейно зависимы, то есть $\exists \alpha_1, \ldots, \alpha_{n+1}$:

$$\alpha_1^2 + \ldots + \alpha_{n+1}^2 \neq 0$$
, $\alpha_1 y_1(x) + \alpha_2 y_2(x) + \ldots + \alpha_{n+1} y_{n+1}(x) = 0$

2.13 Линейные уравнения с переменными коэффициентами

Решения линейного однородного уравнения n-го порядка с переменными коэффициентами — линейное пространство размерности n с базисом Φ CP.

Нормированная ФСР – это задача Коши с начальными условиями:

$$(1,0,\ldots,0),(0,1,\ldots,0),\ldots,(0,0,\ldots,1)$$

Если имеем y_1, y_2, \dots, y_n – решений Ly = 0 и $\exists x_0 \in (\alpha; \beta) : W(x_0) \neq 0$, то пытаемся восстановить дифференциальное уравнение.

Пример 21.
$$n = 2$$
, $\{\sin x, \cos x\}$, $w(x) = \begin{vmatrix} \sin x & \cos x \\ \cos x & -\sin x \end{vmatrix} = -1 \neq 0$

$$a_0(x)y'' + a_1(x)y' + a_2(x)y = 0, \quad a_0(x) \neq 0$$

$$y'' + p(x)y' + q(x) \cdot y = 0$$

$$\begin{cases} -\sin x + p(x) \cdot \cos x + q(x) \cdot \sin x = 0 \\ -\cos x - p(x) \cdot \sin x + q(x) \cdot \cos x = 0 \end{cases}$$

$$\begin{pmatrix} \cos x & \sin x \\ -\sin x & \cos x \end{pmatrix} \cdot \begin{pmatrix} p(x) \\ q(x) \end{pmatrix} = \begin{pmatrix} \sin x \\ \cos x \end{pmatrix}$$

$$\Delta = \begin{vmatrix} \cos x & \sin x \\ -\sin x & \cos x \end{vmatrix} = \cos^2 x + \sin^2 x = 1 \neq 0$$

$$\Delta_1 = \begin{vmatrix} \sin x & \sin x \\ \cos x & \cos x \end{vmatrix} = 0$$

$$\Delta_2 = \begin{vmatrix} \cos x & \sin x \\ -\sin x & \cos x \end{vmatrix} = \cos^2 x + \sin^2 x = 1$$

$$p(x) = \frac{\Delta_1}{\Delta} = 0$$

$$q(x) = \frac{\Delta_2}{\Delta} = 1 \implies y'' + y = 0$$

Способы восстановления дифференциального уравнения

1. Способ первый:

$$\begin{cases} y^{(n)} + p_{n-1}(x) \cdot y^{(n-1)} + \dots + p_1(x) \cdot y' + p_0(x) \cdot y = 0 \\ y_1^{(n)} + p_{n-1}(x) \cdot y_1^{(n-1)} + \dots + p_1(x) \cdot y_1' + p_0(x) \cdot y_1 = 0 \\ y_2^{(n)} + p_{n-1}(x) \cdot y_2^{(n-1)} + \dots + p_1(x) \cdot y_2' + p_0(x) \cdot y_2 = 0 \\ \vdots \\ y_n^{(n)} + p_{n-1}(x) \cdot y_n^{(n-1)} + \dots + p_1(x) \cdot y_n' + p_0(x) \cdot y_n = 0 \end{cases}$$

$$\Delta = \begin{vmatrix} y_1 & y_1' & \dots & y_1^{(n-1)} \\ y_2 & y_2' & \dots & y_2^{(n-1)} \\ \vdots & \vdots & \ddots & \vdots \\ y_n & y_n' & \dots & y_n^{(n-1)} \end{vmatrix} \begin{vmatrix} p_0 \\ p_1 \\ \vdots \\ p_n \end{vmatrix} = \begin{vmatrix} y_1 & y_2 & \dots & y_n \\ y_1' & y_2' & \dots & y_n' \\ \vdots & \vdots & \ddots & \vdots \\ y_1^{(n-1)} & y_2^{(n-1)} & \dots & y_n^{(n-1)} \end{vmatrix} = W(x) \neq 0$$

 $(\implies y_1, y_2, \dots, y_n$ – ЛНЗ) \implies система имеет ! решение $p_0(x), p_1(x), \dots, p_{n-1}(x)$, которое выражается через y_1, y_2, \dots, y_n их производные.

2. Способ второй: потерян

Пример 22. По второму способу:

$$y_1=x,\ y_2=x^2,\ W(x)=\left|egin{array}{ccccc} y_1&y_2\\y_1'&y_2' \end{array}
ight|=\left|egin{array}{ccccc} x&x^2\\1&2x \end{array}
ight|=2x^2-x^2=x^2
eq 0,\ \mathrm{при}\ x
eq 0.$$

$$\begin{vmatrix} y_1'' & y_1' & y_1 \\ y_2'' & y_2' & y_2 \\ y_1'' & y_1' & y_1 \end{vmatrix} = 0 \iff \begin{vmatrix} 0 & 1 & x \\ 2 & 2x & x^2 \\ y'' & y' & y \end{vmatrix} = 0 \iff$$

$$\iff y'' \cdot \begin{vmatrix} 2x & x^2 \\ y' & y \end{vmatrix} - y' \cdot \begin{vmatrix} 0 & x \\ 2 & x^2 \end{vmatrix} + y \cdot \begin{vmatrix} 0 & 1 \\ 2 & 2x \end{vmatrix} = 0$$

$$x^2 \cdot y'' - 2x \cdot y' + 2y = 0$$

2.14 Структура общего решения линейного неоднородного уравнения Ly = f

$$Ly = a_0(x) \cdot y^{(n)} + a_1(x) \cdot y^{(n-1)} + \ldots + a_{n-1}(x) \cdot y' + a_n(x) \cdot y = f(x),$$
 (2.31) где $a_0(x) \neq 0, \ a_j(x), \ f(x) \in C(\alpha; \beta), \ j = \overline{0, n}, \ -\infty \leqslant \alpha < \beta \leqslant +\infty$

Теорема 2.14.1. Все решения уравнения вида 2.31 даются формулой:

$$y_{OH} = y_{OO} + y_{2\, YH} \tag{2.32}$$

Доказательство. Пусть y_{2} чн – произвольное частное решение 2.31, то есть

$$L(y_{2H}) = f(x)$$

1. Покажем, что решение 2.32 удовлетворяет 2.31:

$$L(y_{OH}) = L(y_{OO} + y_{2YH}) = L(y_{OO}) + L(y_{2YH}) = 0 + f(x) = f(x)$$

2. Покажем, что формула 2.32 покрывает все решения 2.31:

$$\widetilde{y}$$
 – частное решение 2.31, $L(\widetilde{y}) = f(x)$

$$\widetilde{y} = (\widetilde{y} - y_{\text{YH}}) + y_{\text{YH}}$$

$$\begin{split} L(\widetilde{y}-y_{\text{ЧH}}) &= L(\widetilde{y}) - L(y_{\text{ЧH}}) = f(x) - f(x) = 0 \implies \\ &\implies \widetilde{y} = (\widetilde{y}-y_{\text{ЧH}}) + y_{\text{ЧH}} = y_{\text{OO}} + y_{\text{ЧH}} \end{split}$$

Построение общего решения неоднородного уравнения 2.31

Метод вариации произвольных постоянных

1. y_1, y_2, \dots, y_n – ФСР уравнения 2.31 $\implies y_{OO} = C_1 y_1(x) + \dots + C_n y_n(x)$.

2. $y = y_{\text{OH}} = C_1(x)y_1(x) + \ldots + C_n(x)y_n(x)$. Найдем производные до n-го порядка:

$$a_{n}(x) : C_{1}(x)y_{1}(x) + \dots + C_{n}(x)y_{n}(x)$$

$$a_{n-1}(x) : C_{1}(x)y'_{1}(x) + \dots + C_{n}(x)y'_{n}(x) + \underbrace{C'_{1}(x)y_{1}(x) + \dots + C'_{n}(x)y'_{n}(x)}_{0}$$

$$a_{n-2}(x) : C_{1}(x)y''_{1}(x) + \dots + C_{n}(x)y''_{n}(x) + \underbrace{C'_{1}(x)y'_{1}(x) + \dots + C'_{n}(x)y'_{n}(x)}_{0}$$

$$\vdots \vdots$$

$$a_{1}(x) : C_{1}(x)y_{1}^{(n-1)}(x) + \dots + C_{n}(x)y_{n}^{(n-1)}(x) + \underbrace{C'_{1}(x)y_{1}^{(n-2)}(x) + \dots + C'_{n}(x)y_{n}^{(n-2)}(x)}_{0}$$

$$a_{0}(x) : C_{1}(x)y_{1}^{(n)}(x) + \dots + C_{n}(x)y_{n}^{(n)}(x) + \underbrace{C'_{1}(x)y_{1}^{(n-1)}(x) + \dots + C'_{n}(x)y_{n}^{(n-1)}(x)}_{0}$$

$$C_{1}(x)\underbrace{\left(a_{0}(x)y_{1}^{(n)}(x) + a_{1}(x)y_{1}^{(n-1)}(x) + \dots + a_{n_{1}}(x)y'_{1} + a_{n}(x)y_{1}(x)\right)}_{0}$$

Система n уравенений и n неизвестных $C_1'(x), \ldots, C_n'(x)$, определитель $\Delta = ?$

$$\Delta = \begin{vmatrix} y_1 & \cdots & y_n \\ y'_1 & \cdots & y'_n \\ \vdots & \ddots & \vdots \\ y_1^{(n-1)} & \cdots & y_n^{(n-1)} \end{vmatrix} = W(x) \neq 0$$

Метод вариации произвольных постоянных (продолжение?)

$$y_{\text{OH}} = C_1(x) \cdot y_1 + \dots = C_n(x)y_n$$

$$\begin{cases} C'_1(x)y_1 + \dots + C'_n(x)y_n = 0 \\ C'_1(x)y'_1 + \dots + C'_n(x)y'_n = 0 \\ \vdots \\ C'_1(x)y_1^{(n-2)} + \dots + C'_n(x)y_n^{(n-2)} = 0 \\ C'_1(x)y_1^{(n-1)} + \dots + C'_n(x)y_n^{(n-1)} = \frac{f(x)}{a_0(x)} \end{cases}$$

 $\Delta = W(y_1, y_2, \dots, y_n) \neq 0$, так как y_1, y_2, \dots, y_n – Φ CP \implies система имеет! решение. Найти это решение по формулам Крамера:

$$C'_{k}(x) = \frac{W_{k}(x)}{W(x)}dx + C_{k}, \quad k = \overline{1, n},$$
 (2.33)

где:

$$W(x) = \begin{vmatrix} y_1 & \cdots & y_n \\ y'_1 & \cdots & y'_n \\ \vdots & \ddots & \vdots \\ y_1^{(n-1)} & \cdots & y_n^{(n-1)} \end{vmatrix},$$

$$W_k(x) = \begin{vmatrix} y_1 & \cdots & y_n & 0 & y_{k+1} & \cdots & y_n \\ y'_1 & \cdots & y'_n & 0 & y'_{k+1} & \cdots & y'_n \\ \vdots & \ddots & \vdots & \vdots & \vdots & \ddots & \vdots \\ y_1^{(n-1)} & \cdots & y_n^{(n-1)} & 0 & y_{k+1}^{(n-1)} & \cdots & y_n^{(n-1)} \end{vmatrix}$$

Проинтегрируем 2.33:

$$C_k(x) = \int \frac{W_k(x)}{W(x)} dx + C_k, \quad k = \overline{1, n}, \tag{2.34}$$

$$y(x) = y_{\text{OH}} = \sum_{k=1}^{n} \left(\frac{W_k(x)}{W(x)} dx + C_k \right) y_k = \underbrace{\sum_{k=1}^{n} C_k y_k}_{y_{\text{OO}}} + \underbrace{\sum_{k=1}^{n} y_k \int \frac{W_k(x)}{W(x)} dx}_{y_{\text{TH}}}$$

2.15 Линейные уравнения с постоянными коэффициентами

Рассмотрим:

$$a_0 y^{(n)} + a_1 y^{(n-1)} + \ldots + a_{n-1} y' + a_n y = 0,$$
 (2.35)

где $a_0 \neq 0, \ a_i \in \mathbb{R}$. Теперь $y = e^{\lambda x}, \ y' = \lambda e^{\lambda x}, \ldots, y^{(n)} = \lambda^n e^{\lambda x}$:

$$e^{\lambda x}(a_0\lambda^n + a_1\lambda^{n-1} + \dots + a_{n-1}\lambda + a_n) = 0$$
 (2.36)

 $y=e^{\lambda x}$ – решение уравнения 2.35 $\iff \lambda$ – корень характеристического уравнения $T_n(\lambda)=0,\ T_n(\lambda)=a_0\lambda^n+\ldots+a_{n-1}\lambda+a_n.$

Если $a_i \in \mathbb{R} \implies$ характеристическое уравнение 2.36 имеет ровно n корней, учитывая их кратность. Корни могут быть комплексными.

1.
$$\lambda_i \in \mathbb{R}, \ \lambda_i \neq \lambda_m, \ i \neq m, \ i = \overline{1,n}$$
. Найти y_1, y_2, \dots, y_n – ФСР ?
$$y_1 = e^{\lambda_1 x}, \ y_2 = e^{\lambda_2 x}, \ \dots, \ y_n = e^{\lambda_n x}$$

 $\lambda_1, \lambda_2, \dots, \lambda_n$ – корни характеристического многочлена 2.36.

$$W(x)=0\iff y_1,y_2,\ldots,y_n$$
, так как решения $Ly=0,\, \Im 3$

$$W(x) \neq 0 \implies y_1, \dots, y_n \text{ JH3}$$

$$W(x) = \begin{vmatrix} e^{\lambda_1 x} & e^{\lambda_2 x} & \cdots & e^{\lambda_n x} \\ \lambda_1 e^{\lambda_1 x} & \lambda_2 e^{\lambda_2 x} & \cdots & \lambda_n e^{\lambda_n x} \\ \vdots & \vdots & \ddots & \vdots \\ \lambda_1^{n-1} e^{\lambda_1 x} & \lambda_2^{n-1} e^{\lambda_2 x} & \cdots & \lambda_n^{n-1} e^{\lambda_n x} \end{vmatrix} =$$

$$= e^{\lambda_1 x} e^{\lambda_2 x} \cdots e^{\lambda_n x} \cdot \begin{vmatrix} 1 & 1 & \cdots & 1 \\ \lambda_1 & \lambda_2 & \cdots & \lambda_n \\ \vdots & \vdots & \ddots & \vdots \\ \lambda_1^{n-1} & \lambda_2^{n-1} & \cdots & \lambda_n^{n-1} \end{vmatrix} \neq 0 \text{ при } \lambda_i \neq \lambda m$$

$$\implies y_1, y_2, \dots, y_n \text{ JIH3} \implies$$

$$\implies y_{OO} = C_1 e^{\lambda_1 x} + C_2 e^{\lambda_2 x} + \dots + C_n e^{\lambda_n x}$$

2.
$$\underbrace{\lambda_1 = \lambda_2 = \ldots = \lambda_m}_{\text{кратный}} = \lambda, \quad \underbrace{\lambda_{m+1}, \ldots, \lambda_n}_{\substack{k}} \in \mathbb{R}$$

$$\underbrace{e^{\lambda x}, e^{\lambda x}, \ldots, e^{\lambda x}}_{m} \qquad e^{\lambda_{m+1} x}, \ldots, e^{\lambda_n x}$$

$$e^{\lambda x}, x e^{\lambda x}, \ldots, x^{m-1} e^{\lambda x}$$

$$\parallel \quad \parallel \quad \parallel \quad \parallel$$

$$y_1 \quad y_2 \quad y_m$$

 $y_1, y_2, \dots, y_m - \Phi CP$:

(a) ЛНЗ: $\alpha_1 e^{\lambda x} + \alpha_2 x e^{\lambda x} + \ldots + \alpha x^{m-1} e^{\lambda x} = 0$ $e^{\lambda x} (\alpha_1 + \alpha_2 x + \ldots + \alpha_m x^{m-1}) = 0 \iff \alpha_1 = \alpha_2 = \ldots = \alpha_m = 0$

(b) Является решением 2.35:

$$L(x^{k}e^{\lambda x}) \stackrel{?}{=} 0, \quad k = \overline{0, m - 1}$$

$$L(e^{\lambda x}) = e^{\lambda x} \cdot T_{n}(\lambda) \qquad (2.37)$$

$$\frac{\delta^{k}}{\delta x^{k}} (L(e^{\lambda x})) = \frac{\delta^{k}}{\delta \lambda^{k}} (e^{\lambda x} T_{n}(\lambda)), \quad (u \cdot v)^{(k)} = \sum_{i=0}^{k} C_{k}^{i} u^{(i)} v^{(k-i)}$$

$$L\left(\frac{\delta^{k}}{\delta \lambda^{k}} e^{\lambda x}\right) = \sum_{i=0}^{k} C_{k}^{i} T_{n}^{(i)}(\lambda) \cdot (e^{\lambda x})^{(k-i)}$$

$$L(x^k e^{\lambda x}) = \sum_{i=0}^k C_k^i T_n^{(i)}(\lambda) x^{k-i} e^{\lambda x}$$

Если λ – корень $T_n(\lambda)$ кратности m, то:

$$T_n(\lambda) = T'_n(\lambda) = \dots = T_n^{(m-1)}(\lambda) = 0, \quad T_n^{(m)}(\lambda) \neq 0$$

Правая часть = 0, если $k = \overline{0, m-1} \implies L(x^k e^{\lambda x}) = 0, \ k = \overline{0, m-1},$

$$y_{\text{OO}} = C_1 e^{\lambda x} + C_2 x e^{\lambda x} + \dots + C_m x^{m-1} e^{\lambda x} + C_{m+1} e^{\lambda_m x} + \dots + C_n e^{\lambda_n x}$$

3.
$$\lambda_{1,2} = a \pm b_i, \quad \lambda_3, \dots, \lambda_n$$

$$_{\lambda_{1,2}}$$

$$y_1 = e^{(a+b_i)x} = e^{ax} \cdot e^{ibx} = e^{ax}(\cos bx + i\sin b_x)$$

$$y(x) = u(x) + iv(x), \quad y'(x) = u'(x) + iv'(x)$$

Утверждение 2.15.1. y(x) – решение $Ly = 0 \iff u(x) \ u \ v(x)$ – решения 2.35.

$$Ly(x) = Lu(x) + iLv(x)$$

$$y_2 = e^{(a-bi)x} = e^{ax} \cdot e^{-ibx} = e^{ax}(\cos bx - i\sin bx);$$

$$\widetilde{y_1} = \frac{y_1 + y_2}{2} = e^{ax} \cdot \cos bx;$$

$$\widetilde{y_2} = \frac{y_1 - y_2}{2} = e^{ax} \cdot \sin bx$$

- (a) $\widetilde{y_1}, \widetilde{y_2}$ решения 2.35;
- (b) $\widetilde{y_1}, \widetilde{y_2} \Pi H 3?$

$$\implies \widetilde{y_1}, \widetilde{y_2}, y_3, \dots, y_n - \Phi CP$$
:

$$y_{\text{OO}} = C_1 e^{ax} \cos bx + C_2 e^{ax} \sin bx + C_3 e^{\lambda_3 x} + \dots + C_n e^{\lambda_n x}$$

4.
$$\lambda_{1,2} = \lambda_{3,4} = \dots = \lambda_{2m-1,2m} = a \pm bi, \quad \lambda_{2m+1}, \dots, \lambda_n$$
 $\downarrow \lambda_{1,2}$

$$y_1 = e^{ax} \cos bx$$
, $y_2 = xe^{ax} \cos bx$, ..., $y_m = x^{m-1}e^{ax} \cos bx$,

$$y_{m+1} = e^{ax} \sin bx$$
, $y_{m+2} = xe^{ax} \sin bx$, ..., $y_{2m} = x^{m-1}e^{ax} \sin bx$

$$y_{\text{OO}} = e^{ax} (C_1 \cos bx + C_2 x \cos bx + \dots + C_m x^{m-1} \cos bx) +$$

$$+ e^{ax} \sin bx (C_{m+1} + C_{m+2} x + \dots + C_2 x^{m-1}) +$$

$$+ C_{2m+1}e^{\lambda_{2m}x} + \ldots + C_ne^{\lambda_nx}$$

f(x) — спецального вида

$$b_0 + b_1 x + \ldots + b_m x^m, e^{ax}, \cos bx, \sin bx$$

2.16 Линейные неоднородные уравнения с правой частью спец. вида

$$a_0 y^{(n)} + a_1 y^{(n-1)} + \dots + a_{n-1} y' + a_n y = f(x),$$
 (2.38)

где $a_0 \neq 0$, $a_i \in \mathbb{R}$, $i = \overline{0,n}$

$$a_0 \lambda^n + a_1 \lambda^{n-1} + \ldots + a_{n-1} \lambda + a_n = 0$$
 (2.39)

1. Пусть:

$$f(x) = e^{\alpha x} \left(P_m(x) \cos \beta x + Q_n(x) \sin \beta x \right) \tag{2.40}$$

Тогда частное решение уравнения 2.38 будем искать λ вида:

$$y_{\text{YH}} = e^{\alpha x} (M_k(x) \cos \beta x + N_k(x) \sin \beta x) \cdot x^{\tau},$$

где $k = \max(m, n)$, $M_k(x)$, $N_k(x)$ — многочлены степени k общего вида с неоднородными коэффициентами, τ — кратность числа $\alpha \pm \beta_i$ как корня характеристического уравнения 2.39, если $\alpha \pm \beta i$ не является корнем 2.39, то $\tau = 0$.

2. $f(x) = (b_0 + b_1 x + \ldots + b_m x^m)e^{2x}$. Тогда:

$$y_{\text{ЧH}} = (d_0 + d_1 x + \ldots + d_m x^m) e^{\alpha x} \cdot x^{\tau},$$

где τ – кратность числа α как корня характеристического уравнения 2.39, если λ не является корнем характеристического уравнения 2.39, то $\tau=0$.

- 3. Если $f(x)=f_1(x)+f_2(x)+\ldots+f_p(x)$, где $f_i(x)$ многочлен вида 2.40, то $y_{\mathrm{OH}}=y_{\mathrm{OO}}+y_{\mathrm{UH}}^{(1)}+y_{\mathrm{UH}}^{(2)}+\ldots+y_{\mathrm{UH}}^{(p)}$.
- 4. Если f(x) произвольного вида (отличного от вида 2.40), то $y_{\text{ОН}}$ находим с помощью метода вариаций произольных простоянных.

Уравнение Эйлера.

$$a_0x^ny^{(n)} + a_1x^{n-1}y^{(n-1)} + \dots + a_{n-1}xy' + a_ny = f(x),$$

 $x^k y^{(k)}$ сводится к уравнению с постоянными коэффициентами с помощью замены $x=e^t$ при x>0 ($x=e^t$ при x<0).

Пример 23. $x^3y''' - x^2y'' + 2xy' - 2y = x^3$, $x = e^t$

$$y' = \frac{dy}{dx} = \frac{\frac{dy}{dt}}{\frac{dt}{dt}} = \frac{y'_t}{e^t} = e^{-t}y'_t$$

$$y'' = \frac{dy'}{dx} = \frac{\frac{dy'}{dt}}{\frac{dt}{dt}} = \frac{e^{-t}(y''_t - y'_t)}{e^t} = e^{-2t}(y''_t - y'_t)$$

$$y''' = \frac{dy''}{dx} = \frac{\frac{dy''}{dt}}{\frac{dx}{dt}} = \frac{e^{-2t}(y'''_t - y''_t - 2y''_t + 2y'_t)}{e^t} = e^{-3t}(y'''_t - 3y''_t + 2y'_t)$$

$$e^{3t} \cdot e^{-3t} (y_t''' - 3y_t'' + 2y_t') - e^{2t} \cdot e^{-2t} \cdot (y_t'' - y_t') + 2e^t \cdot e^{-t} y_t' - 2y = e^{3t}$$
$$y_t''' - 4y_t'' + 5y_t' - dy = e^{3t}, \quad \lambda^3 - 4\lambda^2 + 5\lambda - 2 = 0$$

1. Характеристическое уравнение: $x^k y^{(k)} \to \lambda(\lambda - 1) \dots (\lambda - k + 1)$,

$$\lambda(\lambda - 1)(\lambda - 2) - \lambda(\lambda - 1) + 2\lambda - 2 = 0$$
$$(\lambda - 1)(\lambda^2 - 2\lambda - \lambda) + 2(\lambda - 1) = 0$$

$$(\lambda - 1)(\lambda^2 - 3\lambda + 2) = 0 \iff (\lambda - 1)^2(\lambda - 2) = 0 \implies$$
$$\implies \begin{bmatrix} \lambda_1 = \lambda_2 = 1 \\ \lambda_3 = 2 \end{bmatrix} \implies y_{OO} = (C_1 + C_2 t)e^t + C_3 e^{2t}$$

2.
$$\lambda(\lambda^2 - 3\lambda + 2) - \lambda^2 + \lambda + 2\lambda - 2 = 0$$

$$\lambda^{3} - 3\lambda^{2} + 2\lambda - \lambda^{2} + 3\lambda - 2 = 0$$

$$\lambda^{3} - 4\lambda^{2} + 5\lambda - 2 = 0 \implies$$

$$\implies y''' - 4y'' + 5y' - 2y = e^{3t}$$

$$f(t) = e^{3t} \implies \alpha \pm \beta i = 3 \neq \lambda_{1}, \lambda_{2} \implies \tau = 0 \implies y_{\text{YH}} = Ae^{3t}$$

$$27Ae^{3t} - 36Ae^{3t} + 15Ae^{3t} - 2Ae^{3t} = e^{3t}$$

$$4A = 1 \implies A = \frac{1}{4} \implies y_{\text{YH}} = \frac{1}{4}e^{3t}$$

$$y_{\text{OH}} = y_{\text{OO}} + y_{\text{ЧH}} =$$

$$= (C_1 + C_2 t)e^t + C_3 e^{2t} + \frac{1}{4}e^{3t} = (C_1 + C_2 \ln x)x + C_3 x^2 + \frac{1}{4}x^3$$
 $x > 0, \ x = e^t, \ \ln x = t$

Пример 24. $y'' - 3y' + 2y = 9e^{3x}$

1.
$$\lambda^2 - 3\lambda + 2 = 0 \implies \lambda_1 = 1, \ \lambda_2 = 2.$$

2.
$$f(x) = 9e^{3x} \implies \alpha \pm \beta i = 3 \neq \lambda_1, \lambda_2 \implies \tau = 0 \implies y_{\text{HH}} = Ae^{3x} \cdot x^{\circ} = Ae^{3x}$$
.

Пример 25. $y'' + 16y = x \cdot \sin 4x$

1.
$$\lambda^2 + 16 = 0 \implies \lambda_{1,2} = \pm 4i$$
.

2.
$$f(x) = x \sin x \implies \alpha \pm \beta i = 0 \pm 4i = \lambda_1 \implies \tau = 1$$

 $y_{\text{TH}} = x(Ax + B) \sin x + x(Cx + D) \cos x$

1. Характеристическое уравнение:

$$\lambda(\lambda - 1)(\lambda - 2) - \lambda(\lambda - 1) + 2\lambda - 2 = 0$$

$$(\lambda - 1)(\lambda^2 - 2\lambda - \lambda) + 2(\lambda - 1) = 0$$

$$(\lambda - 1)(\lambda^2 - 3\lambda + 2) = 0 \iff (\lambda - 1)^2(\lambda - 2) = 0 \iff \begin{bmatrix} \lambda_1 = \lambda_2 = 1 \\ \lambda_3 = 2 \end{bmatrix} \implies$$

$$y_{OO} = (C_1 + C_2 t)e^t + C_3 e^{2t}$$

Пример 26. $y'' - 8y' + 16y = e^{4x}(1-x)$

1.
$$\lambda^2 - 8\lambda + 16 = 0 \implies (\lambda - 4)^2 = 0 \implies \lambda_1 = \lambda_2 = 4$$
, кратность – 2.

2.
$$f(x) = e^{4x}(1-x) \implies \alpha \pm \beta i = 4 = \lambda_1 \implies \tau = 2.$$

 $y_{\text{YH}} = e^{4x}(Ax + B)x^2 = e^{4x}(Ax^3 + Bx^2)$