WORLD INTELLECTUAL PROPERTY ORGANIZATION International Bureau

INTERNATIONAL APPLICATION PUBLISHED UNDER THE PATENT COOPERATION TREATY (PCT)

(51) International Patent Classification 7: C12N 15/57, 9/48, C12Q 1/68, C12N

5/10, C07K 16/40, A61K 38/48, 38/55

A2

(11) International Publication Number:

WO 00/09709

(43) International Publication Date:

24 February 2000 (24.02.00)

(21) International Application Number:

PCT/US99/17818

(22) International Filing Date:

6 August 1999 (06.08.99)

(30) Priority Data:

60/096,114 60/119,768 10 August 1998 (10.08.98) 211

11 February 1999 (11.02.99)

(63) Related by Continuation (CON) or Continuation-in-Part (CIP) to Earlier Applications

US

60/096,114 (CIP)

Filed on US

10 August 1998 (10.08.98) 60/119,768 (CIP)

Filed on

11 February 1999 (11.02.99)

(71) Applicant (for all designated States except US): INCYTE PHARMACEUTICALS, INC. [US/US]; 3174 Porter Drive, Palo Alto, CA 94304 (US).

(72) Inventors; and

(75) Inventors/Applicants (for US only): BANDMAN, Olga [US/US]; 366 Anna Avenue, Mountain View, CA 94043 (US). HILLMAN, Jennifer, L. [US/US]; 230 Monroe Drive #12. Mountain View, CA 94040 (US). BAUGHN, Mariah, R. [US/US]; 14244 Santiago Road, San Leandro, CA 94577

(US). AZIMZAI, Yalda [US/US]; 2045 Rock Springs Drive, Hayward, CA 94545 (US). GUEGLER, Karl, J. [CH/US]; 1048 Oakland Avenue, Menlo Park, CA 94025 (US). CORLEY, Neil, C. [US/US]; 1240 Dale Avenue #30, Mountain View, CA 94040 (US). YUE, Henry [US/US]; 826 Lois Avenue, Sunnyvale, CA 94087 (US). TANG, Y., Tom [CN/US]; 4230 Ranwick Court, San Jose, CA 95118 (US). REDDY, Roopa [IN/US]; 1233 W. McKinley Drive, Sunnyvale, CA 94086 (US). PATTERSON, Chandra [US/US]; 490 Sherwood Way #1, Menlo Park, CA 94025 (US). AU-YOUNG, Janice [US/US]; 1419 Kains Avenue, Berkeley, CA 94702 (US). SHIH, Leo, L. [US/US]; Apartment B., 1081 Tanland Drive, Palo Alto, CA 94303 (US). LU, Dyung, Aina, M. [US/US]; 55 Park Belmont Place, San Jose, CA 95136 (US).

- (74) Agents: BILLINGS, Lucy, J. et al.; Incyte Pharmaceuticals, Inc., 3174 Porter Drive, Palo Alto, CA 94304 (US).
- (81) Designated States: AL, AM, AT, AU, AZ, BA, BB, BG, BR, BY, CA, CH, CN, CU, CZ, DE, DK, EE, ES, FI, GB, GD, GE, GH, GM, HR, HU, ID, IL, IN, IS, JP, KE, KG, KP, KR, KZ, LC, LK, LR, LS, LT, LU, LV, MD, MG, MK, MN, MW, MX, NO, NZ, PL, PT, RO, RU, SD, SE, SG, SI, SK, SL, TJ, TM, TR, TT, UA, UG, US, UZ, VN, YU, ZA, ZW, ARIPO patent (GH, GM, KE, LS, MW, SD, SL, SZ, UG, ZW), Eurasian patent (AM, AZ, BY, KG, KZ, MD, RU, TJ, TM), European patent (AT, BE, CH, CY, DE, DK, ES, FI, FR, GB, GR, IE, IT, LU, MC, NL, PT, SE), OAPI patent (BF, BJ, CF, CG, CI, CM, GA, GN, GW, ML, MR, NE, SN, TD, TG).

Published

Without international search report and to be republished upon receipt of that report.

(54) Title: PROTEASES AND ASSOCIATED PROTEINS

(57) Abstract

The invention provides human proteases and associated proteins (PPRG) and polynucleotides which identify and encode PPRG. The invention also provides expression vectors, host cells, antibodies, agonists, and antagonists. The invention also provides methods for diagnosing, treating, or preventing disorders associated with expression of PPRG.

FOR THE PURPOSES OF INFORMATION ONLY

Codes used to identify States party to the PCT on the front pages of pamphlets publishing international applications under the PCT.

AL	Albania	ES	Spain	LS	Lesotho	SI	Slovenia
AM	Armenia	FI	Finland	LT	Lithuania	SK	Slovakia
AT	Austria	FR	France	LU	Luxembourg	SN	Senegal Senegal
ΑU	Australia	GA	Gabon	LV	Latvia	SZ	Swaziland
AZ	Azerbaijan	GB	United Kingdom	MC	Monaco	TD	Chad
BA	Bosnia and Herzegovina	GE	Georgia	MD	Republic of Moldova	TG	Togo
BB	Barbados	GH	Ghana	MG	Madagascar	T.J	Tajikistan
BE	Belgium	GN	Guinea	MK	The former Yugoslav	TM	Turkmenistan
BF	Burkina Faso	GR	Greece		Republic of Macedonia	TR	Turkey
BG	Bulgaria	HU	Hungary	ML	Mali	TT	
BJ	Benin	IE	Ireland	MN	Mongolia	UA	Trinidad and Tobago Ukraine
BR	Brazil	IL	Israel	MR	Mauritania	UG	
BY	Belarus	IS	Iceland	MW	Malawi	US	Uganda United States of America
CA	Canada	IT	Italy	MX	Mexico	UZ	Uzbekistan
CF	Central African Republic	JР	Japan	NE	Niger	VN	
CG	Congo	KE	Kenya	NL	Netherlands	YU	Viet Nam
CH	Switzerland	KG	Kyrgyzstan	NO	Norway	zw	Yugoslavia Zimbabwe
CI	Côte d'Ivoire	KP	Democratic People's	NZ	New Zealand	244	Zimbaowe
CM	Cameroon		Republic of Korea	PL	Poland		
CN	China	KR	Republic of Korea	PT	Portugal		
CU	Cuba	KZ	Kazakstan	RO	Romania		
CZ	Czech Republic	LC	Saint Lucia	RU	Russian Federation		
DE	Germany	LI	Liechtenstein	SD	Sudan		
DK	Denmark	LK	Sri Lanka	SE	Sweden		
EE	Estonia	LR	Liberia	SG	Singapore		
				00			
			•				

PROTEASES AND ASSOCIATED PROTEINS

TECHNICAL FIELD

This invention relates to nucleic acid and amino acid sequences of proteases and associated proteins and to the use of these sequences in the diagnosis, treatment, and prevention of cell proliferative and immune disorders.

BACKGROUND OF THE INVENTION

Proteolytic processing is an essential component of normal cell growth, differentiation, remodeling, and homeostasis. The cleavage of peptide bonds within cells is necessary for the maturation of precursor proteins to their active forms, the removal of signal sequences from targeted proteins, the degradation of incorrectly folded proteins, and the controlled turnover of peptides within the cell. Proteases participate in apoptosis, inflammation, and tissue remodeling during embryonic development, wound healing, and normal growth. They are necessary components of bacterial, parasitic, and viral invasion and replication within a host. Four principal categories of mammalian proteases have been identified based on active site structure, mechanism of action, and overall three-dimensional structure. (See Beynon, R.J. and J.S. Bond (1994) Proteolytic Enzymes: A Practical Approach, Oxford University Press, New York NY, pp. 1-5.)

The serine proteases (SPs) are a large family of proteolytic enzymes that include the digestive enzymes, trypsin and chymotrypsin; components of the complement cascade and of the blood-clotting cascade; and enzymes that control the degradation and turnover of macromolecules of the extracellular matrix. SPs are so named because of the presence of a serine residue in the active site for catalysis of protein cleavage. The active site of an SP is composed of a triad of 25 residues including the aforementioned serine, an aspartate, and a histidine residue. SPs have a wide range of substrate specificities and can be subdivided into subfamilies on the basis of these specificities. The main sub-families are trypases which cleave after arginine or lysine; aspases which cleave after aspartate; chymases which cleave after phenylalanine or leucine; metases which cleavage after methionine; and serases which cleave after serine. Clp protease is a unique member 30 of the serine protease family as its activity is controlled by a regulatory subunit that binds and hydrolyzes ATP. Clp protease was originally found in plant chloroplasts but is believed to be widespread in both prokaryotic and eukaryotic cells (Maurizi, M.R. et al. (1990) J. Biol. Chem. 265:12546-12552). SKD3, a mammalian homolog of the bacterial Clp regulatory subunit, has recently been identified in mouse (Perier, F. et al. (1995) Gene 152:157-163).

5

10

Cysteine proteases are involved in diverse cellular processes ranging from the processing of precursor proteins to intracellular degradation. Mammalian cysteine proteases include lysosomal cathepsins and cytosolic calcium activated proteases, calpains. Of particular note, cysteine proteases are produced by monocytes, macrophages and other cells of the immune system 5 which migrate to sites of inflammation and, in their protective role, secrete various molecules to repair damaged tissue. These cells may overproduce the same molecules and cause tissue destruction in certain disorders. In autoimmune diseases such as rheumatoid arthritis, the secretion of the cysteine protease, cathepsin C, degrades collagen, laminin, elastin and other structural proteins found in the extracellular matrix of bones. The cathepsin family of lysosomal proteases includes the cysteine proteases: cathepsins B, H, K, L, O2, and S; and the aspartyl proteases: cathepsins D and G. Various members of this endosomal protease family are differentially expressed. Some, such as cathepsin D, have a ubiquitous tissue distribution while others, such as cathepsin L, are found only in monocytes, macrophages, and other cells of the immune system.

Aspartic proteases include bacterial penicillopepsin, mammalian pepsin, renin, chymosin, and certain fungal proteases. The characteristic active site residues of aspartic proteases are a pair of aspartic acid residues, for example, Asp33 and Asp213 in penicillopepsin. Aspartic proteases are also called acid proteases because the optimum pH for their activity is between 2 and 3. In this pH range, one of the aspartate residues is ionized and the other is neutral. A potent inhibitor of 20 aspartic proteases is the hexapeptide pepstatin which, in the transition state, resembles normal substrates.

Carboxypeptidases A and B are the principal mammalian representatives of the metalloprotease family. Both are exopeptidases of similar structure and active site configuration. Carboxypeptidase A, like chymotrypsin, prefers C-terminal aromatic and aliphatic side chains of 25 hydrophobic nature, whereas carboxypeptidase B is directed toward basic arginine and lysine residues. Active site components include zinc, which coordinates one histidine and two glutamic acid residues in the protein.

Proteasomes and ubiquitin proteases are both associated with the ubiquitin conjugation system (UCS), a major pathway for the degradation of cellular proteins in eukaryotic cells and 30 some bacteria. Proteasomes are large (~2000 kDa), multisubunit complexes composed of a central catalytic core containing a variety of proteases, and terminal subunits that serve in substrate recognition and regulation of proteasome activity. The UCS mediates the elimination of abnormal proteins and regulates the half-lives of important regulatory proteins that control cellular processes such as gene transcription and cell cycle progression. In the UCS pathway, a protein targeted for

degradation is conjugated to ubiquitin, a small, heat-stable protein. The ubiquitinated protein is then recognized and degraded by a proteasome, and ubiquitin is released by ubiquitin protease for reutilization in the UCS. The UCS is implicated in the degradation of mitotic cyclic kinases, oncoproteins, tumor suppressor genes such as p53, viral proteins, cell surface receptors associated 5 with signal transduction, transcriptional regulators, and mutated or damaged proteins (Ciechanover, A. (1994) Cell 79:13-21). A murine proto-oncogene, Unp, encodes a nuclear ubiquitin protease whose overexpression leads to oncogenic transformation of NIH 3T3 cells, and the human homolog of this gene is consistently elevated in small cell tumors and adenocarcinomas of the lung (Gray, D.A. (1995) Oncogene 10:2179-2183).

Many other proteolytic enzymes do not fit any of the major categories discussed above because their mechanisms of action and/or active sites have not been elucidated. These include the aminopeptidases and signal peptidases. Aminopeptidases catalyze the hydrolysis of amino acid residues from the amino terminus of peptide substrates. Bovine leucine aminopeptidase is a zinc metalloenzyme that utilizes the sulfhydryl groups from at least three reactive cysteine 15 residues at its active site in the binding of metal ions (Cuypers, H.T. et al. (1982) J. Biol. Chem. 257:7086-7091).

Signal peptidases are a specialized class of proteases found in all prokaryotic and eukaryotic cell types that serve in the processing of signal peptides. Signal peptides are amino-terminal sequences which direct the protein from its ribosomal assembly site to a particular 20 cellular or extracellular location. Once the protein has been exported, removal of the signal sequence by a signal peptidase and posttranslational processing activate the protein. Signal peptidases exist as multi-subunit complexes in both yeast and mammals.

Protease inhibitors and other regulators of protease activity control the activity and effects of proteases. Protease inhibitors have been shown to control pathogenesis in animal models of proteolytic disorders (Murphy, G. (1991) Agents Actions Suppl. 35:69-76). Low levels of the cystatins, low molecular weight inhibitors of the cysteine proteases, correlate with malignant progression of tumors. (Calkins, C. et al. (1995) Biol. Biochem. Hoppe Seyler 376:71-80). Also, increases in cysteine protease levels, when accompanied by reductions in inhibitor activity, are correlated with the pathology of arthritis and immunological diseases in humans.

Serpins are inhibitors of mammalian plasma serine proteases. Many serpins serve to regulate the blood clotting cascade and/or the complement cascade in mammals. Sp32 is a positive regulator of the mammalian acrosomal protease, acrosin. Sp32 binds the proenzyme, proacrosin, and thereby aides in packaging the enzyme into the acrosomal matrix (Baba, T. et al. (1994) J. Biol. Chem. 269:10133-10140).

30

The Kunitz family of serine protease inhibitors is characterized by one or more "Kunitz domains" containing a series of cysteine residues that are regularly spaced over approximately 50 amino acid residues and form three intrachain disulfide bonds. Members of this family include aprotinin, tissue factor pathway inhibitor (TFPI-1 and TFPI-2), inter-α-trypsin inhibitor, and bikunin (Marlor, C.W. et al. (1997) J. Biol. Chem. 272:12202-12208). Members of this family are potent inhibitors (in the nanomolar range) against serine proteases such as kallikrein and plasmin.

The discovery of new proteases and associated proteins and the polynucleotides encoding them satisfies a need in the art by providing new compositions which are useful in the diagnosis, prevention, and treatment of cell proliferative and immune disorders.

10

20

SUMMARY OF THE INVENTION

The invention features substantially purified polypeptides, proteases and associated proteins referred to collectively as "PPRG" and individually as "PPRG-1," "PPRG-2," "PPRG-3," "PPRG-4," "PPRG-5," "PPRG-6," "PPRG-7," "PPRG-8," "PPRG-9," "PPRG-10," "PPRG-11," "PPRG-12," "PPRG-13," "PPRG-14," "PPRG-15," "PPRG-16," "PPRG-17," "PPRG-18," "PPRG-19," and "PPRG-20." In one aspect, the invention provides a substantially purified polypeptide comprising an amino acid sequence selected from the group consisting of SEQ ID NO:1-20, and fragments thereof.

The invention further provides a substantially purified variant having at least 90% amino acid identity to at least one of the amino acid sequences selected from the group consisting of SEQ ID NO:1-20 and fragments thereof. The invention also provides an isolated and purified polynucleotide encoding the polypeptide comprising an amino acid sequence selected from the group consisting of SEQ ID NO:1-20 and fragments thereof. The invention also includes an isolated and purified polynucleotide variant having at least 90% polynucleotide sequence identity 25 to the polynucleotide encoding the polypeptide comprising an amino acid sequence selected from the group consisting of SEQ ID NO:1-20 and fragments thereof.

Additionally, the invention provides an isolated and purified polynucleotide which hybridizes under stringent conditions to the polynucleotide encoding the polypeptide comprising an amino acid sequence selected from the group consisting of SEQ ID NO:1-20 and fragments 30 thereof. The invention also provides an isolated and purified polynucleotide having a sequence which is complementary to the polynucleotide encoding the polypeptide comprising the amino acid sequence selected from the group consisting of SEQ ID NO:1-20 and fragments thereof.

The invention also provides a method for detecting a polynucleotide in a sample containing nucleic acids, the method comprising the steps of (a) hybridizing the complement of the

polynucleotide sequence to at least one of the polynucleotides of the sample, thereby forming a hybridization complex; and (b) detecting the hybridization complex, wherein the presence of the hybridization complex correlates with the presence of a polynucleotide in the sample. In one aspect, the method further comprises amplifying the polynucleotide prior to hybridization.

The invention also provides an isolated and purified polynucleotide comprising a polynucleotide sequence selected from the group consisting of SEQ ID NO:21-40, and fragments thereof. The invention further provides an isolated and purified polynucleotide variant having at least 90% polynucleotide sequence identity to the polynucleotide sequence selected from the group consisting of SEQ ID NO:21-40 and fragments thereof. The invention also provides an 10 isolated and purified polynucleotide having a sequence which is complementary to the polynucleotide comprising a polynucleotide sequence selected from the group consisting of SEQ ID NO:21-40 and fragments thereof.

The invention further provides an expression vector containing at least a fragment of the polynucleotide encoding the polypeptide comprising an amino acid sequence selected from the group consisting of SEQ ID NO:1-20 and fragments thereof. In another aspect, the expression vector is contained within a host cell.

The invention also provides a method for producing a polypeptide, the method comprising the steps of: (a) culturing the host cell containing an expression vector containing at least a fragment of a polynucleotide under conditions suitable for the expression of the polypeptide; and (b) recovering the polypeptide from the host cell culture.

The invention also provides a pharmaceutical composition comprising a substantially purified polypeptide having the amino acid sequence selected from the group consisting of SEQ ID NO:1-20 and fragments thereof, in conjunction with a suitable pharmaceutical carrier.

The invention further includes a purified antibody which binds to a polypeptide selected from the group consisting of SEQ ID NO:1-20 and fragments thereof. The invention also provides a purified agonist and a purified antagonist to the polypeptide.

The invention also provides a method for treating or preventing a disorder associated with decreased expression or activity of PPRG, the method comprising administering to a subject in need of such treatment an effective amount of a pharmaceutical composition comprising a substantially purified polypeptide having the amino acid sequence selected from the group consisting of SEQ ID NO:1-20 and fragments thereof, in conjunction with a suitable pharmaceutical carrier.

The invention also provides a method for treating or preventing a disorder associated with increased expression or activity of PPRG, the method comprising administering to a subject in

need of such treatment an effective amount of an antagonist of a polypeptide having an amino acid sequence selected from the group consisting of SEQ ID NO:1-20 and fragments thereof.

BRIEF DESCRIPTION OF THE TABLES

Table 1 shows polypeptide and nucleotide sequence identification numbers (SEQ ID NOs), clone identification numbers (clone IDs), cDNA libraries, and cDNA fragments used to assemble full-length sequences encoding PPRG.

Table 2 shows features of each polypeptide sequence, including potential motifs, homologous sequences, and methods and algorithms used for identification of PPRG.

Table 3 shows the tissue-specific expression patterns of each nucleic acid sequence as determined by northern analysis, diseases, disorders, or conditions associated with these tissues, and the vector into which each cDNA was cloned.

Table 4 describes the tissues used to construct the cDNA libraries from which cDNA clones encoding PPRG were isolated.

Table 5 shows the tools, programs, and algorithms used to analyze PPRG, along with applicable descriptions, references, and threshold parameters.

DESCRIPTION OF THE INVENTION

Before the present proteins, nucleotide sequences, and methods are described, it is

understood that this invention is not limited to the particular machines, materials and methods
described, as these may vary. It is also to be understood that the terminology used herein is for the
purpose of describing particular embodiments only, and is not intended to limit the scope of the
present invention which will be limited only by the appended claims.

It must be noted that as used herein and in the appended claims, the singular forms "a," "an," and "the" include plural reference unless the context clearly dictates otherwise. Thus, for example, a reference to "a host cell" includes a plurality of such host cells, and a reference to "an antibody" is a reference to one or more antibodies and equivalents thereof known to those skilled in the art, and so forth.

Unless defined otherwise, all technical and scientific terms used herein have the same meanings as commonly understood by one of ordinary skill in the art to which this invention belongs. Although any machines, materials, and methods similar or equivalent to those described herein can be used to practice or test the present invention, the preferred machines, materials and methods are now described. All publications mentioned herein are cited for the purpose of describing and disclosing the cell lines, protocols, reagents and vectors which are reported in the publications and which might be used in connection with the invention. Nothing herein is to be

5

10

construed as an admission that the invention is not entitled to antedate such disclosure by virtue of prior invention.

DEFINITIONS

"PPRG" refers to the amino acid sequences of substantially purified PPRG obtained from any species, particularly a mammalian species, including bovine, ovine, porcine, murine, equine, and preferably the human species, from any source, whether natural, synthetic, semi-synthetic, or recombinant.

The term "agonist" refers to a molecule which, when bound to PPRG, increases or prolongs the duration of the effect of PPRG. Agonists may include proteins, nucleic acids, carbohydrates, or any other molecules which bind to and modulate the effect of PPRG.

An "allelic variant" is an alternative form of the gene encoding PPRG. Allelic variants may result from at least one mutation in the nucleic acid sequence and may result in altered mRNAs or in polypeptides whose structure or function may or may not be altered. Any given natural or recombinant gene may have none, one, or many allelic forms. Common mutational changes which give rise to allelic variants are generally ascribed to natural deletions, additions, or substitutions of nucleotides. Each of these types of changes may occur alone, or in combination with the others, one or more times in a given sequence.

"Altered" nucleic acid sequences encoding PPRG include those sequences with deletions, insertions, or substitutions of different nucleotides, resulting in a polynucleotide the same as PPRG 20 or a polypeptide with at least one functional characteristic of PPRG. Included within this definition are polymorphisms which may or may not be readily detectable using a particular oligonucleotide probe of the polynucleotide encoding PPRG, and improper or unexpected hybridization to allelic variants, with a locus other than the normal chromosomal locus for the polynucleotide sequence encoding PPRG. The encoded protein may also be "altered," and may 25 contain deletions, insertions, or substitutions of amino acid residues which produce a silent change and result in a functionally equivalent PPRG. Deliberate amino acid substitutions may be made on the basis of similarity in polarity, charge, solubility, hydrophobicity, hydrophilicity, and/or the amphipathic nature of the residues, as long as the biological or immunological activity of PPRG is retained. For example, negatively charged amino acids may include aspartic acid and glutamic 30 acid, positively charged amino acids may include lysine and arginine, and amino acids with uncharged polar head groups having similar hydrophilicity values may include leucine, isoleucine, and valine; glycine and alanine; asparagine and glutamine; serine and threonine; and phenylalanine and tyrosine.

The terms "amino acid" and "amino acid sequence" refer to an oligopeptide, peptide,

polypeptide, or protein sequence, or a fragment of any of these, and to naturally occurring or synthetic molecules. In this context, "fragments," "immunogenic fragments," or "antigenic fragments" refer to fragments of PPRG which are preferably at least 5 to about 15 amino acids in length, most preferably at least 14 amino acids, and which retain some biological activity or immunological activity of PPRG. Where "amino acid sequence" is recited to refer to an amino acid sequence of a naturally occurring protein molecule, "amino acid sequence" and like terms are not meant to limit the amino acid sequence to the complete native amino acid sequence associated with the recited protein molecule.

"Amplification" relates to the production of additional copies of a nucleic acid sequence.

Amplification is generally carried out using polymerase chain reaction (PCR) technologies well known in the art.

The term "antagonist" refers to a molecule which, when bound to PPRG, decreases the amount or the duration of the effect of the biological or immunological activity of PPRG.

Antagonists may include proteins, nucleic acids, carbohydrates, antibodies, or any other molecules which decrease the effect of PPRG.

The term "antibody" refers to intact molecules as well as to fragments thereof, such as Fab, F(ab')₂, and Fv fragments, which are capable of binding the epitopic determinant. Antibodies that bind PPRG polypeptides can be prepared using intact polypeptides or using fragments containing small peptides of interest as the immunizing antigen. The polypeptide or oligopeptide used to immunize an animal (e.g., a mouse, a rat, or a rabbit) can be derived from the translation of RNA, or synthesized chemically, and can be conjugated to a carrier protein if desired. Commonly used carriers that are chemically coupled to peptides include bovine serum albumin, thyroglobulin, and keyhole limpet hemocyanin (KLH). The coupled peptide is then used to immunize the animal.

The term "antigenic determinant" refers to that fragment of a molecule (i.e., an epitope) that makes contact with a particular antibody. When a protein or a fragment of a protein is used to immunize a host animal, numerous regions of the protein may induce the production of antibodies which bind specifically to antigenic determinants (given regions or three-dimensional structures on the protein). An antigenic determinant may compete with the intact antigen (i.e., the immunogen used to elicit the immune response) for binding to an antibody.

The term "antisense" refers to any composition containing a nucleic acid sequence which is complementary to the "sense" strand of a specific nucleic acid sequence. Antisense molecules may be produced by any method including synthesis or transcription. Once introduced into a cell, the complementary nucleotides combine with natural sequences produced by the cell to form-duplexes and to block either transcription or translation. The designation "negative" can refer to

25

the antisense strand, and the designation "positive" can refer to the sense strand.

The term "biologically active" refers to a protein having structural, regulatory, or biochemical functions of a naturally occurring molecule. Likewise, "immunologically active" refers to the capability of the natural, recombinant, or synthetic PPRG, or of any oligopeptide thereof, to induce a specific immune response in appropriate animals or cells and to bind with specific antibodies.

The terms "complementary" and "complementarity" refer to the natural binding of polynucleotides by base pairing. For example, the sequence "5' A-G-T 3" bonds to the complementary sequence "3' T-C-A 5'." Complementarity between two single-stranded molecules may be "partial," such that only some of the nucleic acids bind, or it may be "complete," such that total complementarity exists between the single stranded molecules. The degree of complementarity between nucleic acid strands has significant effects on the efficiency and strength of the hybridization between the nucleic acid strands. This is of particular importance in amplification reactions, which depend upon binding between nucleic acids strands, and in the design and use of peptide nucleic acid (PNA) molecules.

A "composition comprising a given polynucleotide sequence" and a "composition comprising a given amino acid sequence" refer broadly to any composition containing the given polynucleotide or amino acid sequence. The composition may comprise a dry formulation or an aqueous solution. Compositions comprising polynucleotide sequences encoding PPRG or fragments of PPRG may be employed as hybridization probes. The probes may be stored in freeze-dried form and may be associated with a stabilizing agent such as a carbohydrate. In hybridizations, the probe may be deployed in an aqueous solution containing salts (e.g., NaCl), detergents (e.g., sodium dodecyl sulfate; SDS), and other components (e.g., Denhardt's solution, dry milk, salmon sperm DNA, etc.).

"Consensus sequence" refers to a nucleic acid sequence which has been resequenced to resolve uncalled bases, extended using the XL-PCR kit (Perkin-Elmer, Norwalk CT) in the 5' and/or the 3' direction, and resequenced, or which has been assembled from the overlapping sequences of more than one Incyte Clone using a computer program for fragment assembly, such as the GELVIEW fragment assembly system (GCG, Madison WI). Some sequences have been 30 both extended and assembled to produce the consensus sequence.

The term "correlates with expression of a polynucleotide" indicates that the detection of the presence of nucleic acids, the same or related to a nucleic acid sequence encoding PPRG, by northern analysis is indicative of the presence of nucleic acids encoding PPRG in a sample, and thereby correlates with expression of the transcript from the polynucleotide encoding PPRG.

A "deletion" refers to a change in the amino acid or nucleotide sequence that results in the absence of one or more amino acid residues or nucleotides.

The term "derivative" refers to the chemical modification of a polypeptide sequence, or a polynucleotide sequence. Chemical modifications of a polynucleotide sequence can include, for example, replacement of hydrogen by an alkyl, acyl, or amino group. A derivative polynucleotide encodes a polypeptide which retains at least one biological or immunological function of the natural molecule. A derivative polypeptide is one modified by glycosylation, pegylation, or any similar process that retains at least one biological or immunological function of the polypeptide from which it was derived.

The term "similarity" refers to a degree of complementarity. There may be partial similarity or complete similarity. The word "identity" may substitute for the word "similarity." A partially complementary sequence that at least partially inhibits an identical sequence from hybridizing to a target nucleic acid is referred to as "substantially similar." The inhibition of hybridization of the completely complementary sequence to the target sequence may be examined 15 using a hybridization assay (Southern or northern blot, solution hybridization, and the like) under conditions of reduced stringency. A substantially similar sequence or hybridization probe will compete for and inhibit the binding of a completely similar (identical) sequence to the target sequence under conditions of reduced stringency. This is not to say that conditions of reduced stringency are such that non-specific binding is permitted, as reduced stringency conditions require that the binding of two sequences to one another be a specific (i.e., a selective) interaction. The absence of non-specific binding may be tested by the use of a second target sequence which lacks even a partial degree of complementarity (e.g., less than about 30% similarity or identity). In the absence of non-specific binding, the substantially similar sequence or probe will not hybridize to the second non-complementary target sequence.

The phrases "percent identity" and "% identity" refer to the percentage of sequence similarity found in a comparison of two or more amino acid or nucleic acid sequences. Percent identity can be determined electronically, e.g., by using the MEGALIGN program (DNASTAR, Madison WI) which creates alignments between two or more sequences according to methods selected by the user, e.g., the clustal method. (See, e.g., Higgins, D.G. and P.M. Sharp (1988) 30 Gene 73:237-244.) Parameters for each method may be the default parameters provided by MEGALIGN or may be specified by the user. The clustal algorithm groups sequences into clusters by examining the distances between all pairs. The clusters are aligned pairwise and then in groups. The percentage similarity between two amino acid sequences, e.g., sequence A and sequence B, is calculated by dividing the length of sequence A, minus the number of gap residues

10

in sequence A, minus the number of gap residues in sequence B, into the sum of the residue matches between sequence A and sequence B, times one hundred. Gaps of low or of no similarity between the two amino acid sequences are not included in determining percentage similarity. Percent identity between nucleic acid sequences can also be counted or calculated by other methods known in the art, e.g., the Jotun Hein method. (See, e.g., Hein, J. (1990) Methods Enzymol. 183:626-645.) Identity between sequences can also be determined by other methods known in the art, e.g., by varying hybridization conditions.

"Human artificial chromosomes" (HACs) are linear microchromosomes which may contain DNA sequences of about 6 kb to 10 Mb in size, and which contain all of the elements required for stable mitotic chromosome segregation and maintenance.

The term "humanized antibody" refers to antibody molecules in which the amino acid sequence in the non-antigen binding regions has been altered so that the antibody more closely resembles a human antibody, and still retains its original binding ability.

"Hybridization" refers to any process by which a strand of nucleic acid binds with a complementary strand through base pairing.

The term "hybridization complex" refers to a complex formed between two nucleic acid sequences by virtue of the formation of hydrogen bonds between complementary bases. A hybridization complex may be formed in solution (e.g., C₀t or R₀t analysis) or formed between one nucleic acid sequence present in solution and another nucleic acid sequence immobilized on a solid support (e.g., paper, membranes, filters, chips, pins or glass slides, or any other appropriate substrate to which cells or their nucleic acids have been fixed).

The words "insertion" and "addition" refer to changes in an amino acid or nucleotide sequence resulting in the addition of one or more amino acid residues or nucleotides, respectively, to the sequence found in the naturally occurring molecule.

"Immune response" can refer to conditions associated with inflammation, trauma, immune disorders, or infectious or genetic disease, etc. These conditions can be characterized by expression of various factors, e.g., cytokines, chemokines, and other signaling molecules, which may affect cellular and systemic defense systems.

The term "microarray" refers to an arrangement of distinct polynucleotides on a substrate.

The terms "element" and "array element" in a microarray context, refer to hybridizable polynucleotides arranged on the surface of a substrate.

The term "modulate" refers to a change in the activity of PPRG. For example, modulation may cause an increase or a decrease in protein activity, binding characteristics, or any other biological, functional, or immunological properties of PPRG.

25

The phrases "nucleic acid" or "nucleic acid sequence," as used herein, refer to a nucleotide, oligonucleotide, polynucleotide, or any fragment thereof. These phrases also refer to DNA or RNA of genomic or synthetic origin which may be single-stranded or double-stranded and may represent the sense or the antisense strand, to peptide nucleic acid (PNA), or to any

5 DNA-like or RNA-like material. In this context, "fragments" refers to those nucleic acid sequences which comprise a region of unique polynucleotide sequence that specifically identifies SEQ ID NO:21-40, for example, as distinct from any other sequence in the same genome. For example, a fragment of SEQ ID NO:21-40 is useful in hybridization and amplification technologies and in analogous methods that distinguish SEQ ID NO:21-40 from related polynucleotide sequences. A fragment of SEQ ID NO:21-40 is at least about 15-20 nucleotides in length. The precise length of the fragment of SEQ ID NO:21-40 and the region of SEQ ID NO:21-40 to which the fragment corresponds are routinely determinable by one of ordinary skill in the art based on the intended purpose for the fragment. In some cases, a fragment, when translated, would produce polypeptides retaining some functional characteristic, e.g., antigenicity, or structural domain characteristic, e.g., ATP-binding site, of the full-length polypeptide.

The terms "operably associated" and "operably linked" refer to functionally related nucleic acid sequences. A promoter is operably associated or operably linked with a coding sequence if the promoter controls the translation of the encoded polypeptide. While operably associated or operably linked nucleic acid sequences can be contiguous and in the same reading frame, certain genetic elements, e.g., repressor genes, are not contiguously linked to the sequence encoding the polypeptide but still bind to operator sequences that control expression of the polypeptide.

The term "oligonucleotide" refers to a nucleic acid sequence of at least about 6 nucleotides to 60 nucleotides, preferably about 15 to 30 nucleotides, and most preferably about 20 to 25 nucleotides, which can be used in PCR amplification or in a hybridization assay or microarray. "Oligonucleotide" is substantially equivalent to the terms "amplimer," "primer," "oligomer," and "probe," as these terms are commonly defined in the art.

"Peptide nucleic acid" (PNA) refers to an antisense molecule or anti-gene agent which comprises an oligonucleotide of at least about 5 nucleotides in length linked to a peptide backbone of amino acid residues ending in lysine. The terminal lysine confers solubility to the composition. PNAs preferentially bind complementary single stranded DNA or RNA and stop transcript elongation, and may be pegylated to extend their lifespan in the cell.

The term "sample" is used in its broadest sense. A sample suspected of containing nucleic acids encoding PPRG, or fragments thereof, or PPRG itself, may comprise a bodily fluid; an

extract from a cell, chromosome, organelle, or membrane isolated from a cell; a cell; genomic DNA, RNA, or cDNA, in solution or bound to a substrate; a tissue; a tissue print; etc.

The terms "specific binding" and "specifically binding" refer to that interaction between a protein or peptide and an agonist, an antibody, or an antagonist. The interaction is dependent upon 5 the presence of a particular structure of the protein, e.g., the antigenic determinant or epitope, recognized by the binding molecule. For example, if an antibody is specific for epitope "A," the presence of a polypeptide containing the epitope A, or the presence of free unlabeled A, in a reaction containing free labeled A and the antibody will reduce the amount of labeled A that binds to the antibody.

The term "stringent conditions" refers to conditions which permit hybridization between polynucleotides and the claimed polynucleotides. Stringent conditions can be defined by salt concentration, the concentration of organic solvent, e.g., formamide, temperature, and other conditions well known in the art. In particular, stringency can be increased by reducing the concentration of salt, increasing the concentration of formamide, or raising the hybridization 15 temperature.

The term "substantially purified" refers to nucleic acid or amino acid sequences that are removed from their natural environment and are isolated or separated, and are at least about 60% free, preferably about 75% free, and most preferably about 90% free from other components with which they are naturally associated.

A "substitution" refers to the replacement of one or more amino acids or nucleotides by different amino acids or nucleotides, respectively.

"Substrate" refers to any suitable rigid or semi-rigid support including membranes, filters, chips, slides, wafers, fibers, magnetic or nonmagnetic beads, gels, tubing, plates, polymers, microparticles and capillaries. The substrate can have a variety of surface forms, such as wells, trenches, pins, channels and pores, to which polynucleotides or polypeptides are bound.

"Transformation" describes a process by which exogenous DNA enters and changes a recipient cell. Transformation may occur under natural or artificial conditions according to various methods well known in the art, and may rely on any known method for the insertion of foreign nucleic acid sequences into a prokaryotic or eukaryotic host cell. The method for 30 transformation is selected based on the type of host cell being transformed and may include, but is not limited to, viral infection, electroporation, heat shock, lipofection, and particle bombardment. The term "transformed" cells includes stably transformed cells in which the inserted DNA is capable of replication either as an autonomously replicating plasmid or as part of the host chromosome, as well as transiently transformed cells which express the inserted DNA or RNA for

10

limited periods of time.

10

25

A "variant" of PPRG polypeptides refers to an amino acid sequence that is altered by one or more amino acid residues. The variant may have "conservative" changes, wherein a substituted amino acid has similar structural or chemical properties (e.g., replacement of leucine with isoleucine). More rarely, a variant may have "nonconservative" changes (e.g., replacement of glycine with tryptophan). Analogous minor variations may also include amino acid deletions or insertions, or both. Guidance in determining which amino acid residues may be substituted, inserted, or deleted without abolishing biological or immunological activity may be found using computer programs well known in the art, for example, LASERGENE software (DNASTAR).

The term "variant," when used in the context of a polynucleotide sequence, may encompass a polynucleotide sequence related to PPRG. This definition may also include, for example, "allelic" (as defined above), "splice," "species," or "polymorphic" variants. A splice variant may have significant identity to a reference molecule, but will generally have a greater or lesser number of polynucleotides due to alternate splicing of exons during mRNA processing. The corresponding polypeptide may possess additional functional domains or an absence of domains. Species variants are polynucleotide sequences that vary from one species to another. The resulting polypeptides generally will have significant amino acid identity relative to each other. A polymorphic variant is a variation in the polynucleotide sequence of a particular gene between individuals of a given species. Polymorphic variants also may encompass "single nucleotide polymorphisms" (SNPs) in which the polynucleotide sequence varies by one base. The presence of SNPs may be indicative of, for example, a certain population, a disease state, or a propensity for a disease state.

THE INVENTION

The invention is based on the discovery of new human proteases and associated proteins (PPRG), the polynucleotides encoding PPRG, and the use of these compositions for the diagnosis, treatment, or prevention of cell proliferative and immune disorders.

Table 1 lists the Incyte clones used to assemble full length nucleotide sequences encoding PPRG. Columns 1 and 2 show the sequence identification numbers (SEQ ID NOs) of the polypeptide and nucleotide sequences, respectively. Column 3 shows the clone IDs of the Incyte clones in which nucleic acids encoding each PPRG were identified, and column 4 shows the cDNA libraries from which these clones were isolated. Column 5 shows Incyte clones and their corresponding cDNA libraries. Clones for which cDNA libraries are not indicated were derived from pooled cDNA libraries. The clones in column 5 were used to assemble the consensus nucleotide sequence of each PPRG and are useful as fragments in hybridization technologies.

PCT/US99/17818 WO 00/09709

The columns of Table 2 show various properties of each of the polypeptides of the invention: column 1 references the SEQ ID NO; column 2 shows the number of amino acid residues in each polypeptide; column 3 shows potential phosphorylation sites; column 4 shows potential glycosylation sites; column 5 shows the amino acid residues comprising signature sequences and motifs; column 6 shows the identity of each polypeptide; and column 7 shows analytical methods used to identify each polypeptide through sequence homology and protein motifs.

The columns of Table 3 show the tissue-specificity and diseases, disorders, or conditions associated with nucleotide sequences encoding PPRG. The first column of Table 3 lists the nucleotide SEQ ID NOs. Column 2 lists tissue categories which express PPRG as a fraction of total tissue categories expressing PPRG. Column 3 lists diseases, disorders, or conditions associated with those tissues expressing PPRG. Column 4 lists the vectors used to subclone the cDNA library. Of particular note is the kidney-specific expression of SEQ ID NO:29 in 5 out of 7 libraries (71%). Also of note is expression of SEQ ID NO:34 in cervical tumor libraries (60%).

The columns of Table 4 show descriptions of the tissues used to construct the cDNA libraries from which cDNA clones encoding PPRG were isolated. Column 1 references the nucleotide SEQ ID NOs, column 2 shows the cDNA libraries from which these clones were isolated, and column 3 shows the tissue origins and other descriptive information relevant to the cDNA libraries in column 2.

The following fragments of the nucleotide sequences encoding PPRG are useful, for example, in hybridization or amplification technologies to identify SEQ ID NO:21-40 and to distinguish between SEQ ID NO:21-40 and related polynucleotide sequences. The useful fragments include the fragment of SEQ ID NO:21 from about nucleotide 1 to about nucleotide 56; the fragment of SEQ ID NO:22 from about nucleotide 161 to about nucleotide 213; the fragment of SEQ ID NO:23 from about nucleotide 110 to about nucleotide 158; the fragment of SEQ ID NO:24 from about nucleotide 117 to about nucleotide 174; the fragment of SEQ ID NO:25 from about nucleotide 191 to about nucleotide 245; the fragment of SEQ ID NO:26 from about nucleotide 204 to about nucleotide 269; the fragment of SEQ ID NO:27 from about nucleotide 181 to about nucleotide 221; the fragments of SEQ ID NO:28 from about nucleotide 509 to about 30 nucleotide 553, and from about nucleotide 1751 to about nucleotide 1795; the fragment of SEQ ID NO:29 from about nucleotide 326 to about nucletide 370; the fragment of SEQ ID NO:30 from about nucleotide 1190 to about nucleotide 1234; the fragment of SEQ ID NO:31 from about nucleotide 283 to about nucleotide 324; the fragment of SEQ ID NO:32 from about nucleotide 380 to about nucleotide 424; the fragments of SEQ ID NO:33 from about nucleotide 272 to about

15

nucleotide 316, and from about nucleotide 1784 to about nucleotide 1831; the fragment of SEQ ID NO:34 from about nucleotide 217 to about nucleotide 261; the fragment of SEQ ID NO:35 from about nucleotide 2397 to about nucleotide 2441; the fragment of SEQ ID NO:36 from about nucleotide 218 to about nucleotide 262; the fragments of SEQ ID NO:37 from about nucleotide 165 to about nucleotide 209, and from about nucleotide 651 to about nucleotide 695; the fragment of SEQ ID NO:38 from about nucleotide 812 to about nucleotide 856; the fragment of SEQ ID NO:39 from about nucleotide 541 to about nucleotide 585; and the fragment of SEQ ID NO:40 from about nucleotide 163 to about nucleotide 207. The polypeptides encoded by these fragments are useful, for example, as immunogenic peptides.

The invention also encompasses PPRG variants. A preferred PPRG variant is one which has at least about 80%, more preferably at least about 90%, and most preferably at least about 95% amino acid sequence identity to the PPRG amino acid sequence, and which contains at least one functional or structural characteristic of PPRG.

The invention also encompasses polynucleotides which encode PPRG. In a particular embodiment, the invention encompasses a polynucleotide sequence comprising a sequence selected from the group consisting of SEQ ID NO:21-40, which encodes PPRG.

The invention also encompasses a variant of a polynucleotide sequence encoding PPRG. In particular, such a variant polynucleotide sequence will have at least about 80%, more preferably at least about 90%, and most preferably at least about 95% polynucleotide sequence identity to the 20 polynucleotide sequence encoding PPRG. A particular aspect of the invention encompasses a variant of a polynucleotide sequence comprising a sequence selected from the group consisting of SEQ ID NO:21-40 which has at least about 80%, more preferably at least about 90%, and most preferably at least about 95% polynucleotide sequence identity to a nucleic acid sequence selected from the group consisting of SEQ ID NO:21-40. Any one of the polynucleotide variants described above can encode an amino acid sequence which contains at least one functional or structural characteristic of PPRG.

It will be appreciated by those skilled in the art that as a result of the degeneracy of the genetic code, a multitude of polynucleotide sequences encoding PPRG, some bearing minimal similarity to the polynucleotide sequences of any known and naturally occurring gene, may be produced. Thus, the invention contemplates each and every possible variation of polynucleotide sequence that could be made by selecting combinations based on possible codon choices. These combinations are made in accordance with the standard triplet genetic code as applied to the polynucleotide sequence of naturally occurring PPRG, and all such variations are to be considered as being specifically disclosed.

10

Although nucleotide sequences which encode PPRG and its variants are preferably capable of hybridizing to the nucleotide sequence of the naturally occurring PPRG under appropriately selected conditions of stringency, it may be advantageous to produce nucleotide sequences encoding PPRG or its derivatives possessing a substantially different codon usage, e.g., inclusion of non-naturally occurring codons. Codons may be selected to increase the rate at which expression of the peptide occurs in a particular prokaryotic or eukaryotic host in accordance with the frequency with which particular codons are utilized by the host. Other reasons for substantially altering the nucleotide sequence encoding PPRG and its derivatives without altering the encoded amino acid sequences include the production of RNA transcripts having more desirable properties, such as a greater half-life, than transcripts produced from the naturally occurring sequence.

The invention also encompasses production of DNA sequences which encode PPRG and PPRG derivatives, or fragments thereof, entirely by synthetic chemistry. After production, the synthetic sequence may be inserted into any of the many available expression vectors and cell systems using reagents well known in the art. Moreover, synthetic chemistry may be used to introduce mutations into a sequence encoding PPRG or any fragment thereof.

Also encompassed by the invention are polynucleotide sequences that are capable of hybridizing to the claimed polynucleotide sequences, and, in particular, to those shown in SEQ ID NO:21-40 and fragments thereof under various conditions of stringency. (See, e.g., Wahl, G.M. 20 and S.L. Berger (1987) Methods Enzymol. 152:399-407; Kimmel, A.R. (1987) Methods Enzymol. 152:507-511.) For example, stringent salt concentration will ordinarily be less than about 750 mM NaCl and 75 mM trisodium citrate, preferably less than about 500 mM NaCl and 50 mM trisodium citrate, and most preferably less than about 250 mM NaCl and 25 mM trisodium citrate. Low stringency hybridization can be obtained in the absence of organic solvent, e.g., formamide, while 25 high stringency hybridization can be obtained in the presence of at least about 35% formamide, and most preferably at least about 50% formamide. Stringent temperature conditions will ordinarily include temperatures of at least about 30°C, more preferably of at least about 37°C, and most preferably of at least about 42°C. Varying additional parameters, such as hybridization time, the concentration of detergent, e.g., sodium dodecyl sulfate (SDS), and the inclusion or exclusion 30 of carrier DNA, are well known to those skilled in the art. Various levels of stringency are accomplished by combining these various conditions as needed. In a preferred embodiment, hybridization will occur at 30°C in 750 mM NaCl, 75 mM trisodium citrate, and 1% SDS. In a more preferred embodiment, hybridization will occur at 37°C in 500 mM NaCl, 50 mM trisodium citrate, 1% SDS, 35% formamide, and 100 µg/ml denatured salmon sperm DNA (ssDNA). In a

most preferred embodiment, hybridization will occur at 42°C in 250 mM NaCl, 25 mM trisodium citrate, 1% SDS, 50 % formamide, and 200 μ g/ml ssDNA. Useful variations on these conditions will be readily apparent to those skilled in the art.

The washing steps which follow hybridization can also vary in stringency. Wash stringency conditions can be defined by salt concentration and by temperature. As above, wash stringency can be increased by decreasing salt concentration or by increasing temperature. For example, stringent salt concentration for the wash steps will preferably be less than about 30 mM NaCl and 3 mM trisodium citrate, and most preferably less than about 15 mM NaCl and 1.5 mM trisodium citrate. Stringent temperature conditions for the wash steps will ordinarily include temperature of at least about 25°C, more preferably of at least about 42°C, and most preferably of at least about 68°C. In a preferred embodiment, wash steps will occur at 25°C in 30 mM NaCl, 3 mM trisodium citrate, and 0.1% SDS. In a more preferred embodiment, wash steps will occur at 42°C in 15 mM NaCl, 1.5 mM trisodium citrate, and 0.1% SDS. In a most preferred embodiment, wash steps will occur at 68°C in 15 mM NaCl, 1.5 mM trisodium citrate, and 0.1% SDS.

15 Additional variations on these conditions will be readily apparent to those skilled in the art.

Methods for DNA sequencing are well known in the art and may be used to practice any of the embodiments of the invention. The methods may employ such enzymes as the Klenow fragment of DNA polymerase I, SEQUENASE (US Biochemical, Cleveland OH), Taq polymerase (Perkin-Elmer), thermostable T7 polymerase (Amersham Pharmacia Biotech, Piscataway NJ), or combinations of polymerases and proofreading exonucleases such as those found in the ELONGASE amplification system (Life Technologies, Gaithersburg MD). Preferably, sequence preparation is automated with machines such as the Hamilton MICROLAB 2200 (Hamilton, Reno NV), Peltier thermal cycler 200 (PTC200; MJ Research, Watertown MA) and the ABI CATALYST 800 (Perkin-Elmer). Sequencing is then carried out using either ABI 373 or 377 DNA sequencing systems (Perkin-Elmer), the MEGABACE 1000 DNA sequencing system (Molecular Dynamics, Sunnyvale CA), or other systems known in the art. The resulting sequences are analyzed using a variety of algorithms which are well known in the art. (See, e.g., Ausubel, F.M. (1997) Short Protocols in Molecular Biology, John Wiley & Sons, New York NY,

The nucleic acid sequences encoding PPRG may be extended utilizing a partial nucleotide sequence and employing various PCR-based methods known in the art to detect upstream sequences, such as promoters and regulatory elements. For example, one method which may be employed, restriction-site PCR, uses universal and nested primers to amplify unknown sequence

unit 7.7; Meyers, R.A. (1995) Molecular Biology and Biotechnology, Wiley VCH, New York NY,

pp. 856-853.)

from genomic DNA within a cloning vector. (See, e.g., Sarkar, G. (1993) PCR Methods Applic. 2:318-322.) Another method, inverse PCR, uses primers that extend in divergent directions to amplify unknown sequence from a circularized template. The template is derived from restriction fragments comprising a known genomic locus and surrounding sequences. (See, e.g., Triglia, T. et al. (1988) Nucleic Acids Res. 16:8186.) A third method, capture PCR, involves PCR amplification of DNA fragments adjacent to known sequences in human and yeast artificial chromosome DNA. (See, e.g., Lagerstrom, M. et al. (1991) PCR Methods Applic. 1:111-119.) In this method, multiple restriction enzyme digestions and ligations may be used to insert an engineered double-stranded sequence into a region of unknown sequence before performing PCR. Other methods which may be used to retrieve unknown sequences are known in the art. (See, e.g., Parker, J.D. et al. (1991) Nucleic Acids Res. 19:3055-3060). Additionally, one may use PCR, nested primers, and PROMOTERFINDER libraries (Clontech, Palo Alto CA) to walk genomic DNA. This procedure avoids the need to screen libraries and is useful in finding intron/exon junctions. For all PCR-based methods, primers may be designed using commercially available software, such as OLIGO 4.06 Primer Analysis software (National Biosciences, Plymouth MN) or another appropriate program, to be about 22 to 30 nucleotides in length, to have a GC content of about 50% or more, and to anneal to the template at temperatures of about 68°C to 72°C.

When screening for full-length cDNAs, it is preferable to use libraries that have been size-selected to include larger cDNAs. In addition, random-primed libraries, which often include sequences containing the 5' regions of genes, are preferable for situations in which an oligo d(T) library does not yield a full-length cDNA. Genomic libraries may be useful for extension of sequence into 5' non-transcribed regulatory regions.

Capillary electrophoresis systems which are commercially available may be used to analyze the size or confirm the nucleotide sequence of sequencing or PCR products. In particular, capillary sequencing may employ flowable polymers for electrophoretic separation, four different nucleotide-specific, laser-stimulated fluorescent dyes, and a charge coupled device camera for detection of the emitted wavelengths. Output/light intensity may be converted to electrical signal using appropriate software (e.g., GENOTYPER and SEQUENCE NAVIGATOR, Perkin-Elmer), and the entire process from loading of samples to computer analysis and electronic data display may be computer controlled. Capillary electrophoresis is especially preferable for sequencing small DNA fragments which may be present in limited amounts in a particular sample.

In another embodiment of the invention, polynucleotide sequences or fragments thereof which encode PPRG may be cloned in recombinant DNA molecules that direct expression of PPRG, or fragments or functional equivalents thereof, in appropriate host cells. Due to the

inherent degeneracy of the genetic code, other DNA sequences which encode substantially the same or a functionally equivalent amino acid sequence may be produced and used to express PPRG.

The nucleotide sequences of the present invention can be engineered using methods generally known in the art in order to alter PPRG-encoding sequences for a variety of purposes including, but not limited to, modification of the cloning, processing, and/or expression of the gene product. DNA shuffling by random fragmentation and PCR reassembly of gene fragments and synthetic oligonucleotides may be used to engineer the nucleotide sequences. For example, oligonucleotide-mediated site-directed mutagenesis may be used to introduce mutations that create new restriction sites, alter glycosylation patterns, change codon preference, produce splice variants, and so forth.

In another embodiment, sequences encoding PPRG may be synthesized, in whole or in part, using chemical methods well known in the art. (See, e.g., Caruthers, M.H. et al. (1980) Nucleic Acids Symp. Ser. 7:215-223; Horn, T. et al. (1980) Nucleic Acids Symp. Ser. 7:225-232.)

Alternatively, PPRG itself or a fragment thereof may be synthesized using chemical methods. For example, peptide synthesis can be performed using various solid-phase techniques. (See, e.g., Roberge, J.Y. et al. (1995) Science 269:202-204.) Automated synthesis may be achieved using the ABI 431A peptide synthesizer (Perkin-Elmer). Additionally, the amino acid sequence of PPRG, or any part thereof, may be altered during direct synthesis and/or combined with sequences from other proteins, or any part thereof, to produce a variant polypeptide.

The peptide may be substantially purified by preparative high performance liquid chromatography. (See, e.g, Chiez, R.M. and F.Z. Regnier (1990) Methods Enzymol. 182:392-421.) The composition of the synthetic peptides may be confirmed by amino acid analysis or by sequencing. (See, e.g., Creighton, T. (1984) <u>Proteins, Structures and Molecular Properties, WH</u> Freeman, New York NY.)

In order to express a biologically active PPRG, the nucleotide sequences encoding PPRG or derivatives thereof may be inserted into an appropriate expression vector, i.e., a vector which contains the necessary elements for transcriptional and translational control of the inserted coding sequence in a suitable host. These elements include regulatory sequences, such as enhancers, constitutive and inducible promoters, and 5' and 3' untranslated regions in the vector and in polynucleotide sequences encoding PPRG. Such elements may vary in their strength and specificity. Specific initiation signals may also be used to achieve more efficient translation of sequences encoding PPRG. Such signals include the ATG initiation codon and adjacent sequences, e.g. the Kozak sequence. In cases where sequences encoding PPRG and its initiation

codon and upstream regulatory sequences are inserted into the appropriate expression vector, no additional transcriptional or translational control signals may be needed. However, in cases where only coding sequence, or a fragment thereof, is inserted, exogenous translational control signals including an in-frame ATG initiation codon should be provided by the vector. Exogenous translational elements and initiation codons may be of various origins, both natural and synthetic. The efficiency of expression may be enhanced by the inclusion of enhancers appropriate for the particular host cell system used. (See, e.g., Scharf, D. et al. (1994) Results Probl. Cell Differ. 20:125-162.)

Methods which are well known to those skilled in the art may be used to construct

expression vectors containing sequences encoding PPRG and appropriate transcriptional and translational control elements. These methods include in vitro recombinant DNA techniques, synthetic techniques, and in vivo genetic recombination. (See, e.g., Sambrook, J. et al. (1989)

Molecular Cloning, A Laboratory Manual, Cold Spring Harbor Press, Plainview NY, ch. 4, 8, and 16-17; Ausubel, F.M. et al. (1995) Current Protocols in Molecular Biology, John Wiley & Sons,

New York NY, ch. 9, 13, and 16.)

A variety of expression vector/host systems may be utilized to contain and express sequences encoding PPRG. These include, but are not limited to, microorganisms such as bacteria transformed with recombinant bacteriophage, plasmid, or cosmid DNA expression vectors; yeast transformed with yeast expression vectors; insect cell systems infected with viral expression vectors (e.g., baculovirus); plant cell systems transformed with viral expression vectors (e.g., cauliflower mosaic virus, CaMV, or tobacco mosaic virus, TMV) or with bacterial expression vectors (e.g., Ti or pBR322 plasmids); or animal cell systems. The invention is not limited by the host cell employed.

In bacterial systems, a number of cloning and expression vectors may be selected

depending upon the use intended for polynucleotide sequences encoding PPRG. For example, routine cloning, subcloning, and propagation of polynucleotide sequences encoding PPRG can be achieved using a multifunctional <u>E. coli</u> vector such as PBLUESCRIPT (Stratagene, La Jolla CA) or pSPORT1 plasmid (Life Technologies). Ligation of sequences encoding PPRG into the vector's multiple cloning site disrupts the *lacZ* gene, allowing a colorimetric screening procedure for identification of transformed bacteria containing recombinant molecules. In addition, these vectors may be useful for <u>in vitro</u> transcription, dideoxy sequencing, single strand rescue with helper phage, and creation of nested deletions in the cloned sequence. (See, e.g., Van Heeke, G. and S.M. Schuster (1989) J. Biol. Chem. 264:5503-5509.) When large quantities of PPRG are needed, e.g. for the production of antibodies, vectors which direct high level expression of PPRG

may be used. For example, vectors containing the strong, inducible T5 or T7 bacteriophage promoter may be used.

Yeast expression systems may be used for production of PPRG. A number of vectors containing constitutive or inducible promoters, such as alpha factor, alcohol oxidase, and PGH promoters, may be used in the yeast Saccharomyces cerevisiae or Pichia pastoris. In addition, such vectors direct either the secretion or intracellular retention of expressed proteins and enable integration of foreign sequences into the host genome for stable propagation. (See, e.g., Ausubel, 1995, supra; Grant et al. (1987) Methods Enzymol. 153:516-54; and Scorer, C. A. et al. (1994) Bio/Technology 12:181-184.)

Plant systems may also be used for expression of PPRG. Transcription of sequences 10 encoding PPRG may be driven viral promoters, e.g., the 35S and 19S promoters of CaMV used alone or in combination with the omega leader sequence from TMV (Takamatsu, N. (1987) EMBO J. 6:307-311). Alternatively, plant promoters such as the small subunit of RUBISCO or heat shock promoters may be used. (See, e.g., Coruzzi, G. et al. (1984) EMBO J. 3:1671-1680; Broglie, R. et al. (1984) Science 224:838-843; and Winter, J. et al. (1991) Results Probl. Cell Differ. 17:85-105.) These constructs can be introduced into plant cells by direct DNA transformation or pathogen-mediated transfection. (See, e.g., The McGraw Hill Yearbook of Science and Technology (1992) McGraw Hill, New York NY, pp. 191-196.)

In mammalian cells, a number of viral-based expression systems may be utilized. In cases where an adenovirus is used as an expression vector, sequences encoding PPRG may be ligated into an adenovirus transcription/translation complex consisting of the late promoter and tripartite leader sequence. Insertion in a non-essential E1 or E3 region of the viral genome may be used to obtain infective virus which expresses PPRG in host cells. (See, e.g., Logan, J. and T. Shenk (1984) Proc. Natl. Acad. Sci. U.S.A. 81:3655-3659.) In addition, transcription enhancers, such as 25 the Rous sarcoma virus (RSV) enhancer, may be used to increase expression in mammalian host cells. SV40 or EBV-based vectors may also be used for high-level protein expression.

Human artificial chromosomes (HACs) may also be employed to deliver larger fragments of DNA than can be contained in and expressed from a plasmid. HACs of about 6 kb to 10 Mb. are constructed and delivered via conventional delivery methods (liposomes, polycationic amino polymers, or vesicles) for therapeutic purposes. (See, e.g., Harrington, J.J. et al. (1997) Nat. Genet. 15:345-355.)

For long term production of recombinant proteins in mammalian systems, stable expression of PPRG in cell lines is preferred. For example, sequences encoding PPRG can be transformed into cell lines using expression vectors which may contain viral origins of replication

and/or endogenous expression elements and a selectable marker gene on the same or on a separate vector. Following the introduction of the vector, cells may be allowed to grow for about 1 to 2 days in enriched media before being switched to selective media. The purpose of the selectable marker is to confer resistance to a selective agent, and its presence allows growth and recovery of cells which successfully express the introduced sequences. Resistant clones of stably transformed cells may be propagated using tissue culture techniques appropriate to the cell type.

Any number of selection systems may be used to recover transformed cell lines. These include, but are not limited to, the herpes simplex virus thymidine kinase and adenine phosphoribosyltransferase genes, for use in tk or apr cells, respectively. (See, e.g., Wigler, M. et 10 al. (1977) Cell 11:223-232; Lowy, I. et al. (1980) Cell 22:817-823.) Also, antimetabolite, antibiotic, or herbicide resistance can be used as the basis for selection. For example, dhfr confers resistance to methotrexate; neo confers resistance to the aminoglycosides neomycin and G-418; and als or pat confer resistance to chlorsulfuron and phosphinotricin acetyltransferase, respectively. (See, e.g., Wigler, M. et al. (1980) Proc. Natl. Acad. Sci. U.S.A. 77:3567-3570; 15 Colbere-Garapin, F. et al. (1981) J. Mol. Biol. 150:1-14.) Additional selectable genes have been described, e.g., trpB and hisD, which alter cellular requirements for metabolites. (See, e.g., Hartman, S.C. and R.C. Mulligan (1988) Proc. Natl. Acad. Sci. U.S.A. 85:8047-8051.) Visible markers, e.g., anthocyanins, green fluorescent proteins (GFP; Clontech), ß glucuronidase and its substrate \(\beta \)-glucuronide, or luciferase and its substrate luciferin may be used. These markers can be used not only to identify transformants, but also to quantify the amount of transient or stable protein expression attributable to a specific vector system. (See, e.g., Rhodes, C.A. (1995) Methods Mol. Biol. 55:121-131.)

Although the presence/absence of marker gene expression suggests that the gene of interest is also present, the presence and expression of the gene may need to be confirmed. For example, if the sequence encoding PPRG is inserted within a marker gene sequence, transformed cells containing sequences encoding PPRG can be identified by the absence of marker gene function. Alternatively, a marker gene can be placed in tandem with a sequence encoding PPRG under the control of a single promoter. Expression of the marker gene in response to induction or selection usually indicates expression of the tandem gene as well.

In general, host cells that contain the nucleic acid sequence encoding PPRG and that express PPRG may be identified by a variety of procedures known to those of skill in the art.

These procedures include, but are not limited to, DNA-DNA or DNA-RNA hybridizations, PCR amplification, and protein bioassay or immunoassay techniques which include membrane, solution, or chip based technologies for the detection and/or quantification of nucleic acid or

protein sequences.

Immunological methods for detecting and measuring the expression of PPRG using either specific polyclonal or monoclonal antibodies are known in the art. Examples of such techniques include enzyme-linked immunosorbent assays (ELISAs), radioimmunoassays (RIAs), and

5 fluorescence activated cell sorting (FACS). A two-site, monoclonal-based immunoassay utilizing monoclonal antibodies reactive to two non-interfering epitopes on PPRG is preferred, but a competitive binding assay may be employed. These and other assays are well known in the art. (See, e.g., Hampton, R. et al. (1990) Serological Methods, a Laboratory Manual, APS Press, St. Paul MN, Sect. IV; Coligan, J.E. et al. (1997) Current Protocols in Immunology, Greene Pub.

10 Associates and Wiley-Interscience, New York NY; and Pound, J.D. (1998) Immunochemical Protocols, Humana Press, Totowa NJ).

A wide variety of labels and conjugation techniques are known by those skilled in the art and may be used in various nucleic acid and amino acid assays. Means for producing labeled hybridization or PCR probes for detecting sequences related to polynucleotides encoding PPRG include oligolabeling, nick translation, end-labeling, or PCR amplification using a labeled nucleotide. Alternatively, the sequences encoding PPRG, or any fragments thereof, may be cloned into a vector for the production of an mRNA probe. Such vectors are known in the art, are commercially available, and may be used to synthesize RNA probes in vitro by addition of an appropriate RNA polymerase such as T7, T3, or SP6 and labeled nucleotides. These procedures may be conducted using a variety of commercially available kits, such as those provided by Amersham Pharmacia Biotech, Promega (Madison WI), and US Biochemical. Suitable reporter molecules or labels which may be used for ease of detection include radionuclides, enzymes, fluorescent, chemiluminescent, or chromogenic agents, as well as substrates, cofactors, inhibitors, magnetic particles, and the like.

Host cells transformed with nucleotide sequences encoding PPRG may be cultured under conditions suitable for the expression and recovery of the protein from cell culture. The protein produced by a transformed cell may be secreted or retained intracellularly depending on the sequence and/or the vector used. As will be understood by those of skill in the art, expression vectors containing polynucleotides which encode PPRG may be designed to contain signal sequences which direct secretion of PPRG through a prokaryotic or eukaryotic cell membrane.

In addition, a host cell strain may be chosen for its ability to modulate expression of the inserted sequences or to process the expressed protein in the desired fashion. Such modifications of the polypeptide include, but are not limited to, acetylation, carboxylation, glycosylation, phosphorylation, lipidation, and acylation. Post-translational processing which cleaves a "prepro"

form of the protein may also be used to specify protein targeting, folding, and/or activity. Different host cells which have specific cellular machinery and characteristic mechanisms for post-translational activities (e.g., CHO, HeLa, MDCK, HEK293, and WI38), are available from the American Type Culture Collection (ATCC, Bethesda MD) and may be chosen to ensure the correct modification and processing of the foreign protein.

In another embodiment of the invention, natural, modified, or recombinant nucleic acid sequences encoding PPRG may be ligated to a heterologous sequence resulting in translation of a fusion protein in any of the aforementioned host systems. For example, a chimeric PPRG protein containing a heterologous moiety that can be recognized by a commercially available antibody 10 may facilitate the screening of peptide libraries for inhibitors of PPRG activity. Heterologous protein and peptide moieties may also facilitate purification of fusion proteins using commercially available affinity matrices. Such moieties include, but are not limited to, glutathione S-transferase (GST), maltose binding protein (MBP), thioredoxin (Trx), calmodulin binding peptide (CBP), 6-His, FLAG, c-myc, and hemagglutinin (HA). GST, MBP, Trx, CBP, and 6-His enable purification 15 of their cognate fusion proteins on immobilized glutathione, maltose, phenylarsine oxide, calmodulin, and metal-chelate resins, respectively. FLAG, c-myc, and hemagglutinin (HA) enable immunoaffinity purification of fusion proteins using commercially available monoclonal and polyclonal antibodies that specifically recognize these epitope tags. A fusion protein may also be engineered to contain a proteolytic cleavage site located between the PPRG encoding sequence and the heterologous protein sequence, so that PPRG may be cleaved away from the heterologous moiety following purification. Methods for fusion protein expression and purification are discussed in Ausubel (1995, supra, ch 10). A variety of commercially available kits may also be used to facilitate expression and purification of fusion proteins.

In a further embodiment of the invention, synthesis of radiolabeled PPRG may be
achieved in vitro using the TNT rabbit reticulocyte lysate or wheat germ extract systems
(Promega). These systems couple transcription and translation of protein-coding sequences
operably associated with the T7, T3, or SP6 promoters. Translation takes place in the presence of
a radiolabeled amino acid precursor, preferably 35S-methionine.

Fragments of PPRG may be produced not only by recombinant production, but also by direct peptide synthesis using solid-phase techniques. (See, e.g., Creighton, <u>supra</u>, pp. 55-60.)

Protein synthesis may be performed by manual techniques or by automation. Automated synthesis may be achieved, for example, using the ABI 431A peptide synthesizer (Perkin-Elmer). Various fragments of PPRG may be synthesized separately and then combined to produce the full length molecule.

THERAPEUTICS

10

Chemical and structural similarity, e.g., in the context of sequences and motifs, exists between regions of PPRG and proteases and associated proteins. In addition, the expression of PPRG is closely associated with cell proliferative conditions, including cancer, and with inflammation and the immune response. Therefore, PPRG appears to play a role in cell proliferative and immune disorders. In the treatment of cell proliferative and immune disorders associated with increased PPRG expression or activity, it is desirable to decrease the expression or activity of PPRG. In the treatment of the above conditions associated with decreased PPRG expression or activity, it is desirable to increase the expression or activity of PPRG.

Therefore, in one embodiment, PPRG or a fragment or derivative thereof may be administered to a subject to treat or prevent a disorder associated with decreased expression or activity of PPRG. Examples of such disorders include, but are not limited to, a cell proliferative disorder such as actinic keratosis, arteriosclerosis, atherosclerosis, bursitis, cirrhosis, hepatitis, mixed connective tissue disease (MCTD), myelofibrosis, paroxysmal nocturnal hemoglobinuria, polycythemia vera, psoriasis, primary thrombocythemia, and cancers including adenocarcinoma, leukemia, lymphoma, melanoma, myeloma, sarcoma, teratocarcinoma, and, in particular, cancers of the adrenal gland, bladder, bone, bone marrow, brain, breast, cervix, gall bladder, ganglia, gastrointestinal tract, heart, kidney, liver, lung, muscle, ovary, pancreas, parathyroid, penis, prostate, salivary glands, skin, spleen, testis, thymus, thyroid, and uterus; and an immune disorder 20 such as acquired immunodeficiency syndrome (AIDS), Addison's disease, adult respiratory distress syndrome, allergies, ankylosing spondylitis, amyloidosis, anemia, asthma, atherosclerosis, autoimmune hemolytic anemia, autoimmune thyroiditis, autoimmune polyenodocrinopathycandidiasis-ectodermal dystrophy (APECED), bronchitis, cholecystitis, contact dermatitis, Crohn's disease, atopic dermatitis, dermatomyositis, diabetes mellitus, emphysema, episodic lymphopenia 25 with lymphocytotoxins, erythroblastosis fetalis, erythema nodosum, atrophic gastritis, glomerulonephritis, Goodpasture's syndrome, gout, Graves' disease, Hashimoto's thyroiditis, hypereosinophilia, irritable bowel syndrome, multiple sclerosis, myasthenia gravis, myocardial or pericardial inflammation, osteoarthritis, osteoporosis, pancreatitis, polymyositis, psoriasis, Reiter's syndrome, rheumatoid arthritis, scleroderma, Sjögren's syndrome, systemic anaphylaxis, systemic lupus erythematosus, systemic sclerosis, thrombocytopenic purpura, ulcerative colitis, uveitis, Werner syndrome, complications of cancer, hemodialysis, and extracorporeal circulation, viral, bacterial, fungal, parasitic, protozoal, and helminthic infections, and trauma.

In another embodiment, a vector capable of expressing PPRG or a fragment or derivative thereof may be administered to a subject to treat or prevent a disorder associated with decreased

expression or activity of PPRG including, but not limited to, those described above.

In a further embodiment, a pharmaceutical composition comprising a substantially purified PPRG in conjunction with a suitable pharmaceutical carrier may be administered to a subject to treat or prevent a disorder associated with decreased expression or activity of PPRG including, but not limited to, those provided above.

In still another embodiment, an agonist which modulates the activity of PPRG may be administered to a subject to treat or prevent a disorder associated with decreased expression or activity of PPRG including, but not limited to, those listed above.

In a further embodiment, an antagonist of PPRG may be administered to a subject to treat or prevent a disorder associated with increased expression or activity of PPRG. Examples of such disorders include, but are not limited to, those described above. In one aspect, an antibody which specifically binds PPRG may be used directly as an antagonist or indirectly as a targeting or delivery mechanism for bringing a pharmaceutical agent to cells or tissue which express PPRG.

In an additional embodiment, a vector expressing the complement of the polynucleotide encoding PPRG may be administered to a subject to treat or prevent a disorder associated with increased expression or activity of PPRG including, but not limited to, those described above.

In other embodiments, any of the proteins, antagonists, antibodies, agonists, complementary sequences, or vectors of the invention may be administered in combination with other appropriate therapeutic agents. Selection of the appropriate agents for use in combination therapy may be made by one of ordinary skill in the art, according to conventional pharmaceutical principles. The combination of therapeutic agents may act synergistically to effect the treatment or prevention of the various disorders described above. Using this approach, one may be able to achieve therapeutic efficacy with lower dosages of each agent, thus reducing the potential for adverse side effects.

An antagonist of PPRG may be produced using methods which are generally known in the art. In particular, purified PPRG may be used to produce antibodies or to screen libraries of pharmaceutical agents to identify those which specifically bind PPRG. Antibodies to PPRG may also be generated using methods that are well known in the art. Such antibodies may include, but are not limited to, polyclonal, monoclonal, chimeric, and single chain antibodies, Fab fragments, and fragments produced by a Fab expression library. Neutralizing antibodies (i.e., those which inhibit dimer formation) are especially preferred for therapeutic use.

For the production of antibodies, various hosts including goats, rabbits, rats, mice, humans, and others may be immunized by injection with PPRG or with any fragment or oligopeptide thereof which has immunogenic properties. Depending on the host species, various

15

adjuvants may be used to increase immunological response. Such adjuvants include, but are not limited to, Freund's, mineral gels such as aluminum hydroxide, and surface active substances such as lysolecithin, pluronic polyols, polyanions, peptides, oil emulsions, KLH, and dinitrophenol. Among adjuvants used in humans, BCG (bacilli Calmette-Guerin) and Corynebacterium parvum are especially preferable.

It is preferred that the oligopeptides, peptides, or fragments used to induce antibodies to PPRG have an amino acid sequence consisting of at least about 5 amino acids, and, more preferably, of at least about 10 amino acids. It is also preferable that these oligopeptides, peptides, or fragments are identical to a portion of the amino acid sequence of the natural protein and contain the entire amino acid sequence of a small, naturally occurring molecule. Short stretches of PPRG amino acids may be fused with those of another protein, such as KLH, and antibodies to the chimeric molecule may be produced.

Monoclonal antibodies to PPRG may be prepared using any technique which provides for the production of antibody molecules by continuous cell lines in culture. These include, but are not limited to, the hybridoma technique, the human B-cell hybridoma technique, and the EBV-hybridoma technique. (See, e.g., Kohler, G. et al. (1975) Nature 256:495-497; Kozbor, D. et al. (1985) J. Immunol. Methods 81:31-42; Cote, R.J. et al. (1983) Proc. Natl. Acad. Sci. U.S.A. 80:2026-2030; and Cole, S.P. et al. (1984) Mol. Cell Biol. 62:109-120.)

In addition, techniques developed for the production of "chimeric antibodies," such as the splicing of mouse antibody genes to human antibody genes to obtain a molecule with appropriate antigen specificity and biological activity, can be used. (See, e.g., Morrison, S.L. et al. (1984) Proc. Natl. Acad. Sci. U.S.A. 81:6851-6855; Neuberger, M.S. et al. (1984) Nature 312:604-608; and Takeda, S. et al. (1985) Nature 314:452-454.) Alternatively, techniques described for the production of single chain antibodies may be adapted, using methods known in the art, to produce PPRG-specific single chain antibodies. Antibodies with related specificity, but of distinct idiotypic composition, may be generated by chain shuffling from random combinatorial immunoglobulin libraries. (See, e.g., Burton D.R. (1991) Proc. Natl. Acad. Sci. U.S.A. 88:10134-10137.)

Antibodies may also be produced by inducing <u>in vivo</u> production in the lymphocyte population or by screening immunoglobulin libraries or panels of highly specific binding reagents as disclosed in the literature. (See, e.g., Orlandi, R. et al. (1989) Proc. Natl. Acad. Sci. U.S.A. 86: 3833-3837; Winter, G. et al. (1991) Nature 349:293-299.)

Antibody fragments which contain specific binding sites for PPRG may also be generated. For example, such fragments include, but are not limited to, F(ab')2 fragments produced by

pepsin digestion of the antibody molecule and Fab fragments generated by reducing the disulfide bridges of the F(ab')2 fragments. Alternatively, Fab expression libraries may be constructed to allow rapid and easy identification of monoclonal Fab fragments with the desired specificity. (See, e.g., Huse, W.D. et al. (1989) Science 246:1275-1281.)

Various immunoassays may be used for screening to identify antibodies having the desired specificity. Numerous protocols for competitive binding or immunoradiometric assays using either polyclonal or monoclonal antibodies with established specificities are well known in the art. Such immunoassays typically involve the measurement of complex formation between PPRG and its specific antibody. A two-site, monoclonal-based immunoassay utilizing monoclonal antibodies reactive to two non-interfering PPRG epitopes is preferred, but a competitive binding assay may also be employed (Pound, supra).

Various methods such as Scatchard analysis in conjunction with radioimmunoassay techniques may be used to assess the affinity of antibodies for PPRG. Affinity is expressed as an association constant, K_a, which is defined as the molar concentration of PPRG-antibody complex divided by the molar concentrations of free antigen and free antibody under equilibrium conditions. The K_a determined for a preparation of polyclonal antibodies, which are heterogeneous in their affinities for multiple PPRG epitopes, represents the average affinity, or avidity, of the antibodies for PPRG. The K_a determined for a preparation of monoclonal antibodies, which are monospecific for a particular PPRG epitope, represents a true measure of affinity. High-affinity antibody preparations with K_a ranging from about 10° to 10¹2 L/mole are preferred for use in immunoassays in which the PPRG-antibody complex must withstand rigorous manipulations. Low-affinity antibody preparations with K_a ranging from about 10° to 10² L/mole are preferred for use in immunopurification and similar procedures which ultimately require dissociation of PPRG, preferably in active form, from the antibody (Catty, D. (1988) Antibodies, Volume 1: A Practical Approach, IRL Press, Washington, DC; Liddell, J.E. and Cryer, A. (1991) A Practical Guide to Monoclonal Antibodies, John Wiley & Sons, New York NY).

The titer and avidity of polyclonal antibody preparations may be further evaluated to determine the quality and suitability of such preparations for certain downstream applications. For example, a polyclonal antibody preparation containing at least 1-2 mg specific antibody/ml, preferably 5-10 mg specific antibody/ml, is preferred for use in procedures requiring precipitation of PPRG-antibody complexes. Procedures for evaluating antibody specificity, titer, and avidity, and guidelines for antibody quality and usage in various applications, are generally available. (See, e.g., Catty, supra, and Coligan et al. supra.)

In another embodiment of the invention, the polynucleotides encoding PPRG, or any

fragment or complement thereof, may be used for therapeutic purposes. In one aspect, the complement of the polynucleotide encoding PPRG may be used in situations in which it would be desirable to block the transcription of the mRNA. In particular, cells may be transformed with sequences complementary to polynucleotides encoding PPRG. Thus, complementary molecules or fragments may be used to modulate PPRG activity, or to achieve regulation of gene function. Such technology is now well known in the art, and sense or antisense oligonucleotides or larger fragments can be designed from various locations along the coding or control regions of sequences encoding PPRG.

Expression vectors derived from retroviruses, adenoviruses, or herpes or vaccinia viruses, or from various bacterial plasmids, may be used for delivery of nucleotide sequences to the targeted organ, tissue, or cell population. Methods which are well known to those skilled in the art can be used to construct vectors to express nucleic acid sequences complementary to the polynucleotides encoding PPRG. (See, e.g., Sambrook, supra; Ausubel, 1995, supra.)

Genes encoding PPRG can be turned off by transforming a cell or tissue with expression

vectors which express high levels of a polynucleotide, or fragment thereof, encoding PPRG. Such
constructs may be used to introduce untranslatable sense or antisense sequences into a cell. Even
in the absence of integration into the DNA, such vectors may continue to transcribe RNA
molecules until they are disabled by endogenous nucleases. Transient expression may last for a
month or more with a non-replicating vector, and may last even longer if appropriate replication
elements are part of the vector system.

As mentioned above, modifications of gene expression can be obtained by designing complementary sequences or antisense molecules (DNA, RNA, or PNA) to the control, 5', or regulatory regions of the gene encoding PPRG. Oligonucleotides derived from the transcription initiation site, e.g., between about positions -10 and +10 from the start site, are preferred.

Similarly, inhibition can be achieved using triple helix base-pairing methodology. Triple helix pairing is useful because it causes inhibition of the ability of the double helix to open sufficiently for the binding of polymerases, transcription factors, or regulatory molecules. Recent therapeutic advances using triplex DNA have been described in the literature. (See, e.g., Gee, J.E. et al. (1994) in Huber, B.E. and B.I. Carr, Molecular and Immunologic Approaches, Futura Publishing,

30 Mt. Kisco NY, pp. 163-177.) A complementary sequence or antisense molecule may also be designed to block translation of mRNA by preventing the transcript from binding to ribosomes.

Ribozymes, enzymatic RNA molecules, may also be used to catalyze the specific cleavage of RNA. The mechanism of ribozyme action involves sequence-specific hybridization of the ribozyme molecule to complementary target RNA, followed by endonucleolytic cleavage. For

example, engineered hammerhead motif ribozyme molecules may specifically and efficiently catalyze endonucleolytic cleavage of sequences encoding PPRG.

Specific ribozyme cleavage sites within any potential RNA target are initially identified by scanning the target molecule for ribozyme cleavage sites, including the following sequences:

5 GUA, GUU, and GUC. Once identified, short RNA sequences of between 15 and 20 ribonucleotides, corresponding to the region of the target gene containing the cleavage site, may be evaluated for secondary structural features which may render the oligonucleotide inoperable. The suitability of candidate targets may also be evaluated by testing accessibility to hybridization with complementary oligonucleotides using ribonuclease protection assays.

Complementary ribonucleic acid molecules and ribozymes of the invention may be prepared by any method known in the art for the synthesis of nucleic acid molecules. These include techniques for chemically synthesizing oligonucleotides such as solid phase phosphoramidite chemical synthesis. Alternatively, RNA molecules may be generated by in vitro and in vivo transcription of DNA sequences encoding PPRG. Such DNA sequences may be incorporated into a wide variety of vectors with suitable RNA polymerase promoters such as T7 or SP6. Alternatively, these cDNA constructs that synthesize complementary RNA, constitutively or inducibly, can be introduced into cell lines, cells, or tissues.

RNA molecules may be modified to increase intracellular stability and half-life. Possible modifications include, but are not limited to, the addition of flanking sequences at the 5' and/or 3' ends of the molecule, or the use of phosphorothioate or 2' O-methyl rather than phosphodiesterase linkages within the backbone of the molecule. This concept is inherent in the production of PNAs and can be extended in all of these molecules by the inclusion of nontraditional bases such as inosine, queosine, and wybutosine, as well as acetyl-, methyl-, thio-, and similarly modified forms of adenine, cytidine, guanine, thymine, and uridine which are not as easily recognized by endogenous endonucleases.

Many methods for introducing vectors into cells or tissues are available and equally suitable for use in vivo, in vitro, and ex vivo. For ex vivo therapy, vectors may be introduced into stem cells taken from the patient and clonally propagated for autologous transplant back into that same patient. Delivery by transfection, by liposome injections, or by polycationic amino polymers may be achieved using methods which are well known in the art. (See, e.g., Goldman, C.K. et al. (1997) Nat. Biotech. 15:462-466.)

Any of the therapeutic methods described above may be applied to any subject in need of such therapy, including, for example, mammals such as dogs, cats, cows, horses, rabbits, monkeys, and most preferably, humans.

An additional embodiment of the invention relates to the administration of a pharmaceutical or sterile composition, in conjunction with a pharmaceutically acceptable carrier, for any of the therapeutic effects discussed above. Such pharmaceutical compositions may consist of PPRG, antibodies to PPRG, and mimetics, agonists, antagonists, or inhibitors of PPRG. The compositions may be administered alone or in combination with at least one other agent, such as a stabilizing compound, which may be administered in any sterile, biocompatible pharmaceutical carrier including, but not limited to, saline, buffered saline, dextrose, and water. The compositions may be administered to a patient alone, or in combination with other agents, drugs, or hormones.

The pharmaceutical compositions utilized in this invention may be administered by any number of routes including, but not limited to, oral, intravenous, intramuscular, intra-arterial, intramedullary, intrathecal, intraventricular, transdermal, subcutaneous, intraperitoneal, intranasal, enteral, topical, sublingual, or rectal means.

In addition to the active ingredients, these pharmaceutical compositions may contain suitable pharmaceutically-acceptable carriers comprising excipients and auxiliaries which facilitate processing of the active compounds into preparations which can be used pharmaceutically. Further details on techniques for formulation and administration may be found in the latest edition of Remington's Pharmaceutical Sciences (Maack Publishing, Easton PA).

Pharmaceutical compositions for oral administration can be formulated using pharmaceutically acceptable carriers well known in the art in dosages suitable for oral administration. Such carriers enable the pharmaceutical compositions to be formulated as tablets, pills, dragees, capsules, liquids, gels, syrups, slurries, suspensions, and the like, for ingestion by the patient.

Pharmaceutical preparations for oral use can be obtained through combining active compounds with solid excipient and processing the resultant mixture of granules (optionally, after grinding) to obtain tablets or dragee cores. Suitable auxiliaries can be added, if desired. Suitable excipients include carbohydrate or protein fillers, such as sugars, including lactose, sucrose, mannitol, and sorbitol; starch from corn, wheat, rice, potato, or other plants; cellulose, such as methyl cellulose, hydroxypropylmethyl-cellulose, or sodium carboxymethylcellulose; gums, including arabic and tragacanth; and proteins, such as gelatin and collagen. If desired, disintegrating or solubilizing agents may be added, such as the cross-linked polyvinyl pyrrolidone, agar, and alginic acid or a salt thereof, such as sodium alginate.

Dragee cores may be used in conjunction with suitable coatings, such as concentrated sugar solutions, which may also contain gum arabic, talc, polyvinylpyrrolidone, carbopol gel, polyethylene glycol, and/or titanium dioxide, lacquer solutions, and suitable organic solvents or

solvent mixtures. Dyestuffs or pigments may be added to the tablets or dragee coatings for product identification or to characterize the quantity of active compound, i.e., dosage.

Pharmaceutical preparations which can be used orally include push-fit capsules made of gelatin, as well as soft, sealed capsules made of gelatin and a coating, such as glycerol or sorbitol.

Push-fit capsules can contain active ingredients mixed with fillers or binders, such as lactose or starches, lubricants, such as talc or magnesium stearate, and, optionally, stabilizers. In soft capsules, the active compounds may be dissolved or suspended in suitable liquids, such as fatty oils, liquid, or liquid polyethylene glycol with or without stabilizers.

Pharmaceutical formulations suitable for parenteral administration may be formulated in aqueous solutions, preferably in physiologically compatible buffers such as Hanks' solution, Ringer's solution, or physiologically buffered saline. Aqueous injection suspensions may contain substances which increase the viscosity of the suspension, such as sodium carboxymethyl cellulose, sorbitol, or dextran. Additionally, suspensions of the active compounds may be prepared as appropriate oily injection suspensions. Suitable lipophilic solvents or vehicles include fatty oils, such as sesame oil, or synthetic fatty acid esters, such as ethyl oleate, triglycerides, or liposomes. Non-lipid polycationic amino polymers may also be used for delivery. Optionally, the suspension may also contain suitable stabilizers or agents to increase the solubility of the compounds and allow for the preparation of highly concentrated solutions.

For topical or nasal administration, penetrants appropriate to the particular barrier to be permeated are used in the formulation. Such penetrants are generally known in the art.

The pharmaceutical compositions of the present invention may be manufactured in a manner that is known in the art, e.g., by means of conventional mixing, dissolving, granulating, dragee-making, levigating, emulsifying, encapsulating, entrapping, or lyophilizing processes.

The pharmaceutical composition may be provided as a salt and can be formed with many acids, including but not limited to, hydrochloric, sulfuric, acetic, lactic, tartaric, malic, and succinic acids. Salts tend to be more soluble in aqueous or other protonic solvents than are the corresponding free base forms. In other cases, the preferred preparation may be a lyophilized powder which may contain any or all of the following: 1 mM to 50 mM histidine, 0.1% to 2% sucrose, and 2% to 7% mannitol, at a pH range of 4.5 to 5.5, that is combined with buffer prior to use.

After pharmaceutical compositions have been prepared, they can be placed in an appropriate container and labeled for treatment of an indicated condition. For administration of PPRG, such labeling would include amount, frequency, and method of administration.

Pharmaceutical compositions suitable for use in the invention include compositions

wherein the active ingredients are contained in an effective amount to achieve the intended purpose. The determination of an effective dose is well within the capability of those skilled in the art.

For any compound, the therapeutically effective dose can be estimated initially either in cell culture assays, e.g., of neoplastic cells or in animal models such as mice, rats, rabbits, dogs, or pigs. An animal model may also be used to determine the appropriate concentration range and route of administration. Such information can then be used to determine useful doses and routes for administration in humans.

A therapeutically effective dose refers to that amount of active ingredient, for example 10 PPRG or fragments thereof, antibodies of PPRG, and agonists, antagonists or inhibitors of PPRG, which ameliorates the symptoms or condition. Therapeutic efficacy and toxicity may be determined by standard pharmaceutical procedures in cell cultures or with experimental animals, such as by calculating the ED₅₀ (the dose therapeutically effective in 50% of the population) or LD₅₀ (the dose lethal to 50% of the population) statistics. The dose ratio of toxic to therapeutic 15 effects is the therapeutic index, which can be expressed as the LD₅₀/ED₅₀ ratio. Pharmaceutical compositions which exhibit large therapeutic indices are preferred. The data obtained from cell culture assays and animal studies are used to formulate a range of dosage for human use. The dosage contained in such compositions is preferably within a range of circulating concentrations that includes the ED₅₀ with little or no toxicity. The dosage varies within this range depending upon the dosage form employed, the sensitivity of the patient, and the route of administration.

The exact dosage will be determined by the practitioner, in light of factors related to the subject requiring treatment. Dosage and administration are adjusted to provide sufficient levels of the active moiety or to maintain the desired effect. Factors which may be taken into account include the severity of the disease state, the general health of the subject, the age, weight, and gender of the subject, time and frequency of administration, drug combination(s), reaction sensitivities, and response to therapy. Long-acting pharmaceutical compositions may be administered every 3 to 4 days, every week, or biweekly depending on the half-life and clearance rate of the particular formulation.

Normal dosage amounts may vary from about 0.1 μ g to 100,000 μ g, up to a total dose of about 1 gram, depending upon the route of administration. Guidance as to particular dosages and methods of delivery is provided in the literature and generally available to practitioners in the art. Those skilled in the art will employ different formulations for nucleotides than for proteins or their inhibitors. Similarly, delivery of polynucleotides or polypeptides will be specific to particular cells, conditions, locations, etc.

DIAGNOSTICS

In another embodiment, antibodies which specifically bind PPRG may be used for the diagnosis of disorders characterized by expression of PPRG, or in assays to monitor patients being treated with PPRG or agonists, antagonists, or inhibitors of PPRG. Antibodies useful for diagnostic purposes may be prepared in the same manner as described above for therapeutics. Diagnostic assays for PPRG include methods which utilize the antibody and a label to detect PPRG in human body fluids or in extracts of cells or tissues. The antibodies may be used with or without modification, and may be labeled by covalent or non-covalent attachment of a reporter molecule. A wide variety of reporter molecules, several of which are described above, are known in the art and may be used.

A variety of protocols for measuring PPRG, including ELISAs, RIAs, and FACS, are known in the art and provide a basis for diagnosing altered or abnormal levels of PPRG expression. Normal or standard values for PPRG expression are established by combining body fluids or cell extracts taken from normal mammalian subjects, preferably human, with antibody to PPRG under conditions suitable for complex formation. The amount of standard complex formation may be quantitated by various methods, preferably by photometric means. Quantities of PPRG expressed in subject, control, and disease samples from biopsied tissues are compared with the standard values. Deviation between standard and subject values establishes the parameters for diagnosing disease.

In another embodiment of the invention, the polynucleotides encoding PPRG may be used for diagnostic purposes. The polynucleotides which may be used include oligonucleotide sequences, complementary RNA and DNA molecules, and PNAs. The polynucleotides may be used to detect and quantitate gene expression in biopsied tissues in which expression of PPRG may be correlated with disease. The diagnostic assay may be used to determine absence, presence, and excess expression of PPRG, and to monitor regulation of PPRG levels during therapeutic intervention.

In one aspect, hybridization with PCR probes which are capable of detecting polynucleotide sequences, including genomic sequences, encoding PPRG or closely related molecules may be used to identify nucleic acid sequences which encode PPRG. The specificity of the probe, whether it is made from a highly specific region, e.g., the 5' regulatory region, or from a less specific region, e.g., a conserved motif, and the stringency of the hybridization or amplification (maximal, high, intermediate, or low), will determine whether the probe identifies only naturally occurring sequences encoding PPRG, allelic variants, or related sequences.

Probes may also be used for the detection of related sequences, and should preferably

have at least 50% sequence identity to any of the PPRG encoding sequences. The hybridization probes of the subject invention may be DNA or RNA and may be derived from the sequence of SEQ ID NO:21-40 or from genomic sequences including promoters, enhancers, and introns of the PPRG gene.

Means for producing specific hybridization probes for DNAs encoding PPRG include the cloning of polynucleotide sequences encoding PPRG or PPRG derivatives into vectors for the production of mRNA probes. Such vectors are known in the art, are commercially available, and may be used to synthesize RNA probes in vitro by means of the addition of the appropriate RNA polymerases and the appropriate labeled nucleotides. Hybridization probes may be labeled by a variety of reporter groups, for example, by radionuclides such as ³²P or ³⁵S, or by enzymatic labels, such as alkaline phosphatase coupled to the probe via avidin/biotin coupling systems, and the like.

Polynucleotide sequences encoding PPRG may be used for the diagnosis of disorders associated with expression of PPRG. Examples of such disorders include, but are not limited to, a cell proliferative disorder such as actinic keratosis, arteriosclerosis, atherosclerosis, bursitis, cirrhosis, hepatitis, mixed connective tissue disease (MCTD), myelofibrosis, paroxysmal nocturnal hemoglobinuria, polycythemia vera, psoriasis, primary thrombocythemia, and cancers including adenocarcinoma, leukemia, lymphoma, melanoma, myeloma, sarcoma, teratocarcinoma, and, in particular, cancers of the adrenal gland, bladder, bone, bone marrow, brain, breast, cervix, gall bladder, ganglia, gastrointestinal tract, heart, kidney, liver, lung, muscle, ovary, pancreas, parathyroid, penis, prostate, salivary glands, skin, spleen, testis, thymus, thyroid, and uterus; and an immune disorder such as acquired immunodeficiency syndrome (AIDS), Addison's disease, adult respiratory distress syndrome, allergies, ankylosing spondylitis, amyloidosis, anemia, asthma, atherosclerosis, autoimmune hemolytic anemia, autoimmune thyroiditis, autoimmune polyenodocrinopathy-candidiasis-ectodermal dystrophy (APECED), bronchitis, cholecystitis, contact dermatitis, Crohn's disease, atopic dermatitis, dermatomyositis, diabetes mellitus, emphysema, episodic lymphopenia with lymphocytotoxins, erythroblastosis fetalis, erythema nodosum, atrophic gastritis, glomerulonephritis, Goodpasture's syndrome, gout, Graves' disease, Hashimoto's thyroiditis, hypereosinophilia, irritable bowel syndrome, multiple sclerosis, myasthenia gravis, myocardial or pericardial inflammation, osteoarthritis, osteoporosis, pancreatitis, polymyositis, psoriasis, Reiter's syndrome, rheumatoid arthritis, scleroderma, Sjögren's syndrome, systemic anaphylaxis, systemic lupus erythematosus, systemic sclerosis, thrombocytopenic purpura, ulcerative colitis, uveitis, Werner syndrome, complications of cancer, hemodialysis, and extracorporeal circulation, viral, bacterial, fungal, parasitic, protozoal, and helminthic infections, and trauma. The polynucleotide sequences encoding PPRG may be used in

Southern or northern analysis, dot blot, or other membrane-based technologies; in PCR technologies; in dipstick, pin, and multiformat ELISA-like assays; and in microarrays utilizing fluids or tissues from patients to detect altered PPRG expression. Such qualitative or quantitative methods are well known in the art.

In a particular aspect, the nucleotide sequences encoding PPRG may be useful in assays that detect the presence of associated disorders, particularly those mentioned above. The nucleotide sequences encoding PPRG may be labeled by standard methods and added to a fluid or tissue sample from a patient under conditions suitable for the formation of hybridization complexes. After a suitable incubation period, the sample is washed and the signal is quantitated 10 and compared with a standard value. If the amount of signal in the patient sample is significantly altered in comparison to a control sample then the presence of altered levels of nucleotide sequences encoding PPRG in the sample indicates the presence of the associated disorder. Such assays may also be used to evaluate the efficacy of a particular therapeutic treatment regimen in animal studies, in clinical trials, or to monitor the treatment of an individual patient.

In order to provide a basis for the diagnosis of a disorder associated with expression of PPRG, a normal or standard profile for expression is established. This may be accomplished by combining body fluids or cell extracts taken from normal subjects, either animal or human, with a sequence, or a fragment thereof, encoding PPRG, under conditions suitable for hybridization or amplification. Standard hybridization may be quantified by comparing the values obtained from 20 normal subjects with values from an experiment in which a known amount of a substantially purified polynucleotide is used. Standard values obtained in this manner may be compared with values obtained from samples from patients who are symptomatic for a disorder. Deviation from standard values is used to establish the presence of a disorder.

Once the presence of a disorder is established and a treatment protocol is initiated, 25 hybridization assays may be repeated on a regular basis to determine if the level of expression in the patient begins to approximate that which is observed in the normal subject. The results obtained from successive assays may be used to show the efficacy of treatment over a period ranging from several days to months.

With respect to cancer, the presence of an abnormal amount of transcript (either under- or 30 overexpressed) in biopsied tissue from an individual may indicate a predisposition for the development of the disease, or may provide a means for detecting the disease prior to the appearance of actual clinical symptoms. A more definitive diagnosis of this type may allow health professionals to employ preventative measures or aggressive treatment earlier thereby preventing the development or further progression of the cancer.

5

Additional diagnostic uses for oligonucleotides designed from the sequences encoding PPRG may involve the use of PCR. These oligomers may be chemically synthesized, generated enzymatically, or produced in vitro. Oligomers will preferably contain a fragment of a polynucleotide encoding PPRG, or a fragment of a polynucleotide complementary to the polynucleotide encoding PPRG, and will be employed under optimized conditions for identification of a specific gene or condition. Oligomers may also be employed under less stringent conditions for detection or quantitation of closely related DNA or RNA sequences.

Methods which may also be used to quantify the expression of PPRG include radiolabeling or biotinylating nucleotides, coamplification of a control nucleic acid, and interpolating results from standard curves. (See, e.g., Melby, P.C. et al. (1993) J. Immunol. Methods 159:235-244; Duplaa, C. et al. (1993) Anal. Biochem. 212:229-236.) The speed of quantitation of multiple samples may be accelerated by running the assay in an ELISA format where the oligomer of interest is presented in various dilutions and a spectrophotometric or colorimetric response gives rapid quantitation.

In further embodiments, oligonucleotides or longer fragments derived from any of the polynucleotide sequences described herein may be used as targets in a microarray. The microarray can be used to monitor the expression level of large numbers of genes simultaneously and to identify genetic variants, mutations, and polymorphisms. This information may be used to determine gene function, to understand the genetic basis of a disorder, to diagnose a disorder, and to develop and monitor the activities of therapeutic agents.

Microarrays may be prepared, used, and analyzed using methods known in the art. (See, e.g., Brennan, T.M. et al. (1995) U.S. Patent No. 5,474,796; Schena, M. et al. (1996) Proc. Natl. Acad. Sci. U.S.A. 93:10614-10619; Baldeschweiler et al. (1995) PCT application WO95/251116; Shalon, D. et al. (1995) PCT application WO95/35505; Heller, R.A. et al. (1997) Proc. Natl. Acad. Sci. U.S.A. 94:2150-2155; and Heller, M.J. et al. (1997) U.S. Patent No. 5,605,662.)

In another embodiment of the invention, nucleic acid sequences encoding PPRG may be used to generate hybridization probes useful in mapping the naturally occurring genomic sequence. The sequences may be mapped to a particular chromosome, to a specific region of a chromosome, or to artificial chromosome constructions, e.g., human artificial chromosomes

(HACs), yeast artificial chromosomes (YACs), bacterial artificial chromosomes (BACs), bacterial P1 constructions, or single chromosome cDNA libraries. (See, e.g., Harrington, J.J. et al. (1997)

Nat. Genet. 15:345-355; Price, C.M. (1993) Blood Rev. 7:127-134; and Trask, B.J. (1991) Trends Genet. 7:149-154.)

Fluorescent in situ hybridization (FISH) may be correlated with other physical

15

chromosome mapping techniques and genetic map data. (See, e.g., Heinz-Ulrich, et al. (1995) in Meyers, supra, pp. 965-968.) Examples of genetic map data can be found in various scientific journals or at the Online Mendelian Inheritance in Man (OMIM) site. Correlation between the location of the gene encoding PPRG on a physical chromosomal map and a specific disorder, or a 5 predisposition to a specific disorder, may help define the region of DNA associated with that disorder. The nucleotide sequences of the invention may be used to detect differences in gene sequences among normal, carrier, and affected individuals.

In situ hybridization of chromosomal preparations and physical mapping techniques, such as linkage analysis using established chromosomal markers, may be used for extending genetic 10 maps. Often the placement of a gene on the chromosome of another mammalian species, such as mouse, may reveal associated markers even if the number or arm of a particular human chromosome is not known. New sequences can be assigned to chromosomal arms by physical mapping. This provides valuable information to investigators searching for disease genes using positional cloning or other gene discovery techniques. Once the disease or syndrome has been crudely localized by genetic linkage to a particular genomic region, e.g., ataxia-telangiectasia to 11q22-23, any sequences mapping to that area may represent associated or regulatory genes for further investigation. (See, e.g., Gatti, R.A. et al. (1988) Nature 336:577-580.) The nucleotide sequence of the subject invention may also be used to detect differences in the chromosomal location due to translocation, inversion, etc., among normal, carrier, or affected individuals.

In another embodiment of the invention, PPRG, its catalytic or immunogenic fragments, or oligopeptides thereof can be used for screening libraries of compounds in any of a variety of drug screening techniques. The fragment employed in such screening may be free in solution, affixed to a solid support, borne on a cell surface, or located intracellularly. The formation of binding complexes between PPRG and the agent being tested may be measured.

Another technique for drug screening provides for high throughput screening of compounds having suitable binding affinity to the protein of interest. (See, e.g., Geysen, et al. (1984) PCT application WO84/03564.) In this method, large numbers of different small test compounds are synthesized on a solid substrate. The test compounds are reacted with PPRG, or fragments thereof, and washed. Bound PPRG is then detected by methods well known in the art. 30 Purified PPRG can also be coated directly onto plates for use in the aforementioned drug screening techniques. Alternatively, non-neutralizing antibodies can be used to capture the peptide and immobilize it on a solid support.

In another embodiment, one may use competitive drug screening assays in which neutralizing antibodies capable of binding PPRG specifically compete with a test compound for

20

binding PPRG. In this manner, antibodies can be used to detect the presence of any peptide which shares one or more antigenic determinants with PPRG.

In additional embodiments, the nucleotide sequences which encode PPRG may be used in any molecular biology techniques that have yet to be developed, provided the new techniques rely on properties of nucleotide sequences that are currently known, including, but not limited to, such properties as the triplet genetic code and specific base pair interactions.

Without further elaboration, it is believed that one skilled in the art can, using the preceding description, utilize the present invention to its fullest extent. The following preferred specific embodiments are, therefore, to be construed as merely illustrative, and not limitative of the remainder of the disclosure in any way whatsoever.

The disclosures of all patents, applications, and publications mentioned above and below, in particular U.S. Ser. No. 60/096,114 and U.S. Ser. No. 60/119,768, are hereby expressly incorporated by reference.

15

EXAMPLES

I. Construction of cDNA Libraries

RNA was purchased from Clontech or isolated from tissues described in Table 4. Some tissues were homogenized and lysed in guanidinium isothiocyanate, while others were homogenized and lysed in phenol or in a suitable mixture of denaturants, such as TRIZOL (Life Technologies), a monophasic solution of phenol and guanidine isothiocyanate. The resulting lysates were centrifuged over CsCl cushions or extracted with chloroform. RNA was precipitated from the lysates with either isopropanol or sodium acetate and ethanol, or by other routine methods.

Phenol extraction and precipitation of RNA were repeated as necessary to increase RNA purity. In some cases, RNA was treated with DNase. For most libraries, poly(A+) RNA was isolated using oligo d(T)-coupled paramagnetic particles (Promega), OLIGOTEX latex particles (QIAGEN, Chatsworth CA), or an OLIGOTEX mRNA purification kit (QIAGEN). Alternatively, RNA was isolated directly from tissue lysates using other RNA isolation kits, e.g., the POLY(A)PURE mRNA purification kit (Ambion, Austin TX).

In some cases, Stratagene was provided with RNA and constructed the corresponding cDNA libraries. Otherwise, cDNA was synthesized and cDNA libraries were constructed with the UNIZAP vector system (Stratagene) or SUPERSCRIPT plasmid system (Life Technologies),

PCT/US99/17818 WO 00/09709

using the recommended procedures or similar methods known in the art. (See, e.g., Ausubel, 1997, supra, units 5.1-6.6.) Reverse transcription was initiated using oligo d(T) or random primers. Synthetic oligonucleotide adapters were ligated to double stranded cDNA, and the cDNA was digested with the appropriate restriction enzyme or enzymes. For most libraries, the cDNA 5 was size-selected (300-1000 bp) using SEPHACRYL S1000, SEPHAROSE CL2B, or SEPHAROSE CL4B column chromatography (Amersham Pharmacia Biotech) or preparative agarose gel electrophoresis. cDNAs were ligated into compatible restriction enzyme sites of the polylinker of a suitable plasmid, e.g., PBLUESCRIPT plasmid (Stratagene), pSPORT1 plasmid (Life Technologies), or pINCY (Incyte Pharmaceuticals, Palo Alto CA). Recombinant plasmids 10 were transformed into competent E. coli cells including XL1-Blue, XL1-BlueMRF, or SOLR from Stratagene or DH5\alpha, DH10B, or ElectroMAX DH10B from Life Technologies.

II. **Isolation of cDNA Clones**

Plasmids were recovered from host cells by in vivo excision, using the UNIZAP vector system (Stratagene) or cell lysis. Plasmids were purified using at least one of the following: a 15 Magic or WIZARD Minipreps DNA purification system (Promega); an AGTC Miniprep purification kit (Edge Biosystems, Gaithersburg MD); and QIAWELL 8 Plasmid, QIAWELL 8 Plus Plasmid, QIAWELL 8 Ultra Plasmid purification systems or the R.E.A.L. PREP 96 plasmid purification kit from QIAGEN. Following precipitation, plasmids were resuspended in 0.1 ml of distilled water and stored, with or without lyophilization, at 4°C.

Alternatively, plasmid DNA was amplified from host cell lysates using direct link PCR in a high-throughput format (Rao, V.B. (1994) Anal. Biochem. 216:1-14). Host cell lysis and thermal cycling steps were carried out in a single reaction mixture. Samples were processed and stored in 384-well plates, and the concentration of amplified plasmid DNA was quantified fluorometrically using PICOGREEN dye (Molecular Probes, Eugene OR) and a Fluoroskan II 25 fluorescence scanner (Labsystems Oy, Helsinki, Finland).

III. Sequencing and Analysis

cDNA sequencing reactions were processed using standard methods or high-throughput instrumentation such as the ABI CATALYST 800 (Perkin-Elmer) thermal cycler or the PTC-200 thermal cycler (MJ Research) in conjunction with the HYDRA microdispenser (Robbins 30 Scientific) or the MICROLAB 2200 (Hamilton) liquid transfer system. cDNA sequencing reactions were prepared using reagents provided by Amersham Pharmacia Biotech or supplied in ABI sequencing kits such as the ABI PRISM BIGDYE Terminator cycle sequencing ready reaction kit (Perkin-Elmer). Electrophoretic separation of cDNA sequencing reactions and detection of labeled polynucleotides were carried out using the MEGABACE 1000 DNA

sequencing system (Molecular Dynamics); the ABI PRISM 373 or 377 sequencing systems (Perkin-Elmer) in conjunction with standard ABI protocols and base calling software; or other sequence analysis systems known in the art. Reading frames within the cDNA sequences were identified using standard methods (reviewed in Ausubel, 1997, supra, unit 7.7). Some of the cDNA sequences were selected for extension using the techniques disclosed in Example V.

The polynucleotide sequences derived from cDNA sequencing were assembled and analyzed using a combination of software programs which utilize algorithms well known to those skilled in the art. Table 5 summarizes the tools, programs, and algorithms used and provides applicable descriptions, references, and threshold parameters. The first column of Table 5 shows the tools, programs, and algorithms used, the second column provides brief descriptions thereof, the third column presents appropriate references, all of which are incorporated by reference herein in their entirety, and the fourth column presents, where applicable, the scores, probability values, and other parameters used to evaluate the strength of a match between two sequences (the higher the score, the greater the homology between two sequences). Sequences were analyzed using MACDNASIS PRO software (Hitachi Software Engineering, South San Francisco CA) and LASERGENE software (DNASTAR).

The polynucleotide sequences were validated by removing vector, linker, and polyA sequences and by masking ambiguous bases, using algorithms and programs based on BLAST, dynamic programing, and dinucleotide nearest neighbor analysis. The sequences were then queried against a selection of public databases such as the GenBank primate, rodent, mammalian, vertebrate, and eukaryote databases, and BLOCKS to acquire annotation using programs based on BLAST, FASTA, and BLIMPS. The sequences were assembled into full length polynucleotide sequences using programs based on Phred, Phrap, and Consed, and were screened for open reading frames using programs based on GeneMark, BLAST, and FASTA. The full length polynucleotide sequences were translated to derive the corresponding full length amino acid sequences, and these full length sequences were subsequently analyzed by querying against databases such as the GenBank databases (described above), SwissProt, BLOCKS, PRINTS, Prosite, and Hidden Markov Model (HMM)-based protein family databases such as PFAM. HMM is a probabilistic approach which analyzes consensus primary structures of gene families.

30 (See, e.g., Eddy, S.R. (1996) Curr. Opin. Struct. Biol. 6:361-365.)

The programs described above for the assembly and analysis of full length polynucleotide and amino acid sequences were also used to identify polynucleotide sequence fragments from SEQ ID NO:21-40. Fragments from about 20 to about 4000 nucleotides which are useful in hybridization and amplification technologies were described in The Invention section above.

IV. Northern Analysis

Northern analysis is a laboratory technique used to detect the presence of a transcript of a gene and involves the hybridization of a labeled nucleotide sequence to a membrane on which RNAs from a particular cell type or tissue have been bound. (See, e.g., Sambrook, supra, ch. 7;

5 Ausubel, 1995, supra, ch. 4 and 16.)

Analogous computer techniques applying BLAST were used to search for identical or related molecules in nucleotide databases such as GenBank or LIFESEQ (Incyte Pharmaceuticals). This analysis is much faster than multiple membrane-based hybridizations. In addition, the sensitivity of the computer search can be modified to determine whether any particular match is categorized as exact or similar. The basis of the search is the product score, which is defined as:

% sequence identity x % maximum BLAST score

100

The product score takes into account both the degree of similarity between two sequences and the length of the sequence match. For example, with a product score of 40, the match will be exact within a 1% to 2% error, and, with a product score of 70, the match will be exact. Similar molecules are usually identified by selecting those which show product scores between 15 and 40, although lower scores may identify related molecules.

The results of northern analyses are reported as a percentage distribution of libraries in which the transcript encoding PPRG occurred. Analysis involved the categorization of cDNA libraries by organ/tissue and disease. The organ/tissue categories included cardiovascular, dermatologic, developmental, endocrine, gastrointestinal, hematopoietic/immune, musculoskeletal, nervous, reproductive, and urologic. The disease/condition categories included cancer, inflammation/trauma, cell proliferation, neurological, and pooled. For each category, the number of libraries expressing the sequence of interest was counted and divided by the total number of libraries across all categories. Percentage values of tissue-specific and disease- or condition-specific expression are reported in Table 3.

V. Extension of PPRG Encoding Polynucleotides

The full length nucleic acid sequences of SEQ ID NO:21-27 were produced by extension of an appropriate fragment of the full length molecule using oligonucleotide primers designed from this fragment. For each nucleic acid sequence, one primer was synthesized to initiate extension of an antisense polynucleotide, and the other was synthesized to initiate extension of a sense polynucleotide. Primers were used to facilitate the extension of the known sequence "outward" generating amplicons containing new unknown nucleotide sequence for the region of

interest. The initial primers were designed from the cDNA using OLIGO 4.06 (National Biosciences), or another appropriate program, to be about 22 to 30 nucleotides in length, to have a GC content of about 50% or more, and to anneal to the target sequence at temperatures of about 68°C to about 72°C. Any stretch of nucleotides which would result in hairpin structures and primer-primer dimerizations was avoided.

Selected human cDNA libraries (Life Technologies) were used to extend the sequence. If more than one extension is necessary or desired, additional sets of primers are designed to further extend the known region.

High fidelity amplification was obtained by following the instructions for the XL-PCR kit

(Perkin-Elmer) and thoroughly mixing the enzyme and reaction mix. PCR was performed using
the PTC200 thermal cycler (M.J. Research) beginning with 40 pmol of each primer and the
recommended concentrations of all other components of the kit, with the following parameters:

	Step 1	94°C for 1 min (initial denaturation)
	Step 2	65°C for 1 min
15	Step 3	68°C for 6 min
	Step 4	94°C for 15 sec
	Step 5	65°C for 1 min
	Step 6	68°C for 7 min
	Step 7	Repeat steps 4-6 for an additional 15 cycles
20	Step 8	94°C for 15 sec
	Step 9	65°C for 1 min
	Step 10	68°C for 7:15 min
	Step 11	Repeat steps 8-10 for an additional 12 cycles
	Step 12	72°C for 8 min
25	Step 13	4°C (and holding)

A 5 μ l to 10 μ l aliquot of the reaction mixture was analyzed by electrophoresis on a low concentration (about 0.6% to 0.8%) agarose mini-gel to determine which reactions were successful in extending the sequence. Bands thought to contain the largest products were excised from the gel, purified using the QIAQUICK kit (QIAGEN), and trimmed of overhangs using Klenow enzyme to facilitate religation and cloning.

After ethanol precipitation, the products were redissolved in 13 μl of ligation buffer, 1μl T4-DNA ligase (15 units) and 1μl T4 polynucleotide kinase were added, and the mixture was incubated at room temperature for 2 to 3 hours, or overnight at 16°C. Competent E. coli cells (in 40 μl of appropriate media) were transformed with 3 μl of ligation mixture and cultured in 80 μl of SOC medium. (See, e.g., Sambrook, supra, Appendix A, p. 2.) After incubation for one hour at 37°C, the E. coli mixture was plated on Luria Bertani (LB) agar (See, e.g., Sambrook, supra, Appendix A, p. 1) containing carbenicillin (2x carb). The following day, several colonies were randomly picked from each plate and cultured in 150 μl of liquid LB/2x carb medium placed in an

individual well of an appropriate commercially-available sterile 96-well microtiter plate. The following day, 5 μ l of each overnight culture was transferred into a non-sterile 96-well plate and, after dilution 1:10 with water, 5 μ l from each sample was transferred into a PCR array.

For PCR amplification, 18 μl of concentrated PCR reaction mix (3.3x) containing 4 units
of rTth DNA polymerase, a vector primer, and one or both of the gene-specific primers used for
the extension reaction were added to each well. Amplification was performed using the following
conditions:

	Step 1	94°C for 60 sec
	Step 2	94°C for 20 sec
10	Step 3	55°C for 30 sec
	Step 4	72°C for 90 sec
	Step 5	Repeat steps 2-4 for an additional 29 cycles
	Step 6	72°C for 180 sec
	Step 7	4°C (and holding)
10	Step 3 Step 4 Step 5 Step 6	55°C for 30 sec 72°C for 90 sec Repeat steps 2-4 for an additional 29 cycles 72°C for 180 sec

Aliquots of the PCR reactions were run on agarose gels together with molecular weight markers. The sizes of the PCR products were compared to the original partial cDNAs, and appropriate clones were selected, ligated into plasmid, and sequenced.

In like manner, the nucleotide sequence of SEQ ID NO:21-27 are used to obtain 5' regulatory sequences using the procedure above, oligonucleotides designed for 5' extension, and an appropriate genomic library.

The full length nucleic acid sequences of SEQ ID NO:28-40 were produced by extension of an appropriate fragment of the full length molecule using oligonucleotide primers designed from this fragment. One primer was synthesized to initiate 5' extension of the known fragment, and the other primer to initiate 3' extension of the known fragment. The initial primers were designed using OLIGO 4.06 software (National Biosciences), or another appropriate program, to be about 22 to 30 nucleotides in length, to have a GC content of about 50% or more, and to anneal to the target sequence at temperatures of about 68°C to about 72°C. Any stretch of nucleotides which would result in hairpin structures and primer-primer dimerizations was avoided.

Selected human cDNA libraries were used to extend the sequence. If more than one extension was necessary or desired, additional or nested sets of primers were designed.

High fidelity amplification was obtained by PCR using methods well known in the art.

PCR was performed in 96-well plates using the PTC-200 thermal cycler (MJ Research, Inc.). The reaction mix contained DNA template, 200 nmol of each primer, reaction buffer containing Mg²⁺,

(NH₄)₂SO₄, and β-mercaptoethanol, Taq DNA polymerase (Amersham Pharmacia Biotech),

ELONGASE enzyme (Life Technologies), and Pfu DNA polymerase (Stratagene), with the following parameters for primer pair PCI A and PCI B: Step 1: 94°C, 3 min; Step 2: 94°C, 15 sec;

20

Step 3: 60°C, 1 min; Step 4: 68°C, 2 min; Step 5: Steps 2, 3, and 4 repeated 20 times; Step 6: 68°C, 5 min; Step 7: storage at 4°C. In the alternative, the parameters for primer pair T7 and SK+ were as follows: Step 1: 94°C, 3 min; Step 2: 94°C, 15 sec; Step 3: 57°C, 1 min; Step 4: 68°C, 2 min; Step 5: Steps 2, 3, and 4 repeated 20 times; Step 6: 68°C, 5 min; Step 7: storage at 4°C.

The concentration of DNA in each well was determined by dispensing 100 μ l PICOGREEN quantitation reagent (0.25% (v/v) PICOGREEN; Molecular Probes, Eugene OR) dissolved in 1X TE and 0.5 µl of undiluted PCR product into each well of an opaque fluorimeter plate (Corning Costar, Acton MA), allowing the DNA to bind to the reagent. The plate was scanned in a Fluoroskan II (Labsystems Oy, Helsinki, Finland) to measure the fluorescence of the sample and to quantify the concentration of DNA. A 5 μ l to 10 μ l aliquot of the reaction mixture was analyzed by electrophoresis on a 1 % agarose mini-gel to determine which reactions were successful in extending the sequence.

The extended nucleotides were desalted and concentrated, transferred to 384-well plates, digested with CviJI cholera virus endonuclease (Molecular Biology Research, Madison WI), and 15 sonicated or sheared prior to religation into pUC 18 vector (Amersham Pharmacia Biotech). For shotgun sequencing, the digested nucleotides were separated on low concentration (0.6 to 0.8%) agarose gels, fragments were excised, and agar digested with Agar ACE (Promega). Extended clones were religated using T4 ligase (New England Biolabs, Beverly MA) into pUC 18 vector (Amersham Pharmacia Biotech), treated with Pfu DNA polymerase (Stratagene) to fill-in restriction site overhangs, and transfected into competent E. coli cells. Transformed cells were selected on antibiotic-containing media, individual colonies were picked and cultured overnight at 37°C in 384-well plates in LB/2x carb liquid media.

The cells were lysed, and DNA was amplified by PCR using Taq DNA polymerase (Amersham Pharmacia Biotech) and Pfu DNA polymerase (Stratagene) with the following parameters: Step 1: 94°C, 3 min; Step 2: 94°C, 15 sec; Step 3: 60°C, 1 min; Step 4: 72°C, 2 min; Step 5: steps 2, 3, and 4 repeated 29 times; Step 6: 72°C, 5 min; Step 7: storage at 4°C. DNA was quantified by PICOGREEN reagent (Molecular Probes) as described above. Samples with low DNA recoveries were reamplified using the same conditions as described above. Samples were diluted with 20% dimethysulphoxide (1:2, v/v), and sequenced using DYENAMIC energy transfer sequencing primers and the DYENAMIC DIRECT kit (Amersham Pharmacia Biotech) or the ABI PRISM BIGDYE Terminator cycle sequencing ready reaction kit (Perkin-Elmer).

In like manner, the nucleotide sequences of SEQ ID NO:28-40 are used to obtain 5' regulatory sequences using the procedure above, oligonucleotides designed for such extension, and an appropriate genomic library.

VI. Labeling and Use of Individual Hybridization Probes

Hybridization probes derived from SEQ ID NO:21-40 are employed to screen cDNAs, genomic DNAs, or mRNAs. Although the labeling of oligonucleotides, consisting of about 20 base pairs, is specifically described, essentially the same procedure is used with larger nucleotide fragments. Oligonucleotides are designed using state-of-the-art software such as OLIGO 4.06 software (National Biosciences) and labeled by combining 50 pmol of each oligomer, 250 μCi of [γ-³²P] adenosine triphosphate (Amersham Pharmacia Biotech), and T4 polynucleotide kinase (DuPont NEN, Boston MA). The labeled oligonucleotides are substantially purified using a SEPHADEX G-25 superfine size exclusion dextran bead column (Amersham Pharmacia Biotech).

10 An aliquot containing 10⁷ counts per minute of the labeled probe is used in a typical membrane-based hybridization analysis of human genomic DNA digested with one of the following endonucleases: Ase I, Bgl II, Eco RI, Pst I, Xba1, or Pvu II (DuPont NEN).

The DNA from each digest is fractionated on a 0.7% agarose gel and transferred to nylon membranes (Nytran Plus, Schleicher & Schuell, Durham NH). Hybridization is carried out for 16 hours at 40°C. To remove nonspecific signals, blots are sequentially washed at room temperature under increasingly stringent conditions up to 0.1 x saline sodium citrate and 0.5% sodium dodecyl sulfate. Hybridization patterns are visualized using autoradiography and compared.

VII. Microarrays

A chemical coupling procedure and an ink jet device can be used to synthesize array elements on the surface of a substrate. (See, e.g., Baldeschweiler, <u>supra.</u>) An array analogous to a dot or slot blot may also be used to arrange and link elements to the surface of a substrate using thermal, UV, chemical, or mechanical bonding procedures. A typical array may be produced by hand or using available methods and machines and contain any appropriate number of elements. After hybridization, nonhybridized probes are removed and a scanner used to determine the levels and patterns of fluorescence. The degree of complementarity and the relative abundance of each probe which hybridizes to an element on the microarray may be assessed through analysis of the scanned images.

Full-length cDNAs, Expressed Sequence Tags (ESTs), or fragments thereof may comprise the elements of the microarray. Fragments suitable for hybridization can be selected using software well known in the art such as LASERGENE software (DNASTAR). Full-length cDNAs, ESTs, or fragments thereof corresponding to one of the nucleotide sequences of the present invention, or selected at random from a cDNA library relevant to the present invention, are arranged on an appropriate substrate, e.g., a glass slide. The cDNA is fixed to the slide using, e.g., UV cross-linking followed by thermal and chemical treatments and subsequent drying. (See, e.g.,

Schena, M. et al. (1995) Science 270:467-470; Shalon, D. et al. (1996) Genome Res. 6:639-645.) Fluorescent probes are prepared and used for hybridization to the elements on the substrate. The substrate is analyzed by procedures described above.

VIII. Complementary Polynucleotides

Sequences complementary to the PPRG-encoding sequences, or any parts thereof, are used to detect, decrease, or inhibit expression of naturally occurring PPRG. Although use of oligonucleotides comprising from about 15 to 30 base pairs is described, essentially the same procedure is used with smaller or with larger sequence fragments. Appropriate oligonucleotides are designed using OLIGO 4.06 software (National Biosciences) and the coding sequence of PPRG. To inhibit transcription, a complementary oligonucleotide is designed from the most unique 5' sequence and used to prevent promoter binding to the coding sequence. To inhibit translation, a complementary oligonucleotide is designed to prevent ribosomal binding to the PPRG-encoding transcript.

IX. Expression of PPRG

Expression and purification of PPRG is achieved using bacterial or virus-based 15 expression systems. For expression of PPRG in bacteria, cDNA is subcloned into an appropriate vector containing an antibiotic resistance gene and an inducible promoter that directs high levels of cDNA transcription. Examples of such promoters include, but are not limited to, the trp-lac (tac) hybrid promoter and the T5 or T7 bacteriophage promoter in conjunction with the lac 20 operator regulatory element. Recombinant vectors are transformed into suitable bacterial hosts, e.g., BL21(DE3). Antibiotic resistant bacteria express PPRG upon induction with isopropyl beta-D-thiogalactopyranoside (IPTG). Expression of PPRG in eukaryotic cells is achieved by infecting insect or mammalian cell lines with recombinant Autographica californica nuclear polyhedrosis virus (AcMNPV), commonly known as baculovirus. The nonessential polyhedrin gene of baculovirus is replaced with cDNA encoding PPRG by either homologous recombination or bacterial-mediated transposition involving transfer plasmid intermediates. Viral infectivity is maintained and the strong polyhedrin promoter drives high levels of cDNA transcription. Recombinant baculovirus is used to infect Spodoptera frugiperda (Sf9) insect cells in most cases, or human hepatocytes, in some cases. Infection of the latter requires additional genetic modifications to baculovirus. (See Engelhard, E.K. et al. (1994) Proc. Natl. Acad. Sci. U.S.A. 91:3224-3227; Sandig, V. et al. (1996) Hum. Gene Ther. 7:1937-1945.)

In most expression systems, PPRG is synthesized as a fusion protein with, e.g., glutathione S-transferase (GST) or a peptide epitope tag, such as FLAG or 6-His, permitting rapid, single-step, affinity-based purification of recombinant fusion protein from crude cell lysates.

GST, a 26-kilodalton enzyme from Schistosoma japonicum, enables the purification of fusion proteins on immobilized glutathione under conditions that maintain protein activity and antigenicity (Amersham Pharmacia Biotech). Following purification, the GST moiety can be proteolytically cleaved from PPRG at specifically engineered sites. FLAG, an 8-amino acid peptide, enables immunoaffinity purification using commercially available monoclonal and polyclonal anti-FLAG antibodies (Eastman Kodak). 6-His, a stretch of six consecutive histidine residues, enables purification on metal-chelate resins (QIAGEN). Methods for protein expression and purification are discussed in Ausubel (1995, supra, ch 10 and 16). Purified PPRG obtained by these methods can be used directly in the following activity assay.

10 X. Demonstration of PPRG Activity

Protease activity of PPRG is measured by the hydrolysis of appropriate synthetic peptide substrates conjugated with various chromogenic molecules in which the degree of hydrolysis is quantified by spectrophotometric (or fluorometric) absorption of the released chromophore.

(Beynon, R.J. and J.S. Bond (1994) Proteolytic Enzymes: A Practical Approach, Oxford

University Press, New York NY, pp.25-55.) Peptide substrates are designed according to the category of protease activity as endopeptidase (serine, cysteine, aspartic proteases), animopeptidase (leucine aminopeptidase), or carboxypeptidase (Carboxypeptidase A and B, procollagen C-proteinase). Chromogens commonly used are 2-naphthylamine, 4-nitroaniline, and furylacrylic acid. Assays are performed atambient temperature and contain an aliquot of the enzyme and the appropriate substrate in a suitable buffer. Reactions are carried out in an optical cuvette and followed by measurement of the increase/decrease in absorbance of the chromogen released during hydrolysis of the peptide substrate. The change in absorbance is proportional to the enzyme activity in the assay.

Regulation of protease activity (agonism or antagonism) by PPRG is measured using an appropriate protease assay as described above in the presence or absence of PPRG as an agonist or inhibitor of this activity. Protease activity is measured in the absence of PPRG (control activity) and in the presence of varying amounts of PPRG. The change in protease activity compared to the control is proportional to the amount of PPRG in the assay and is a measure of the protease regulatory activity of PPRG.

For example, for inhibitory activity of PPRG-2, the assay is carried out as described above for PPRG using a calcium activated protease, such as calpain, assayed in the absence and in the presence of various concentrations of PPRG-2. Inhibition of calpain protease activity is proportional to the activity of PPRG-2 in the assay. Similarly, for inhibitory activity of PPRG-4 and PPRG-9, assays are carried out as described above for PPRG using pancreatic trypsin assayed

in the absence and in the presence of various concentrations of PPRG-4 or PPRG-9. Inhibition of pancreatic trypsin protease activity is proportional to the activity of PPRG-4 or PPRG-9 in the assay.

XI. **Functional Assays**

5

PPRG function is assessed by expressing the sequences encoding PPRG at physiologically elevated levels in mammalian cell culture systems. cDNA is subcloned into a mammalian expression vector containing a strong promoter that drives high levels of cDNA expression. Vectors of choice include pCMV SPORT (Life Technologies) and pCR3.1 (Invitrogen, Carlsbad CA), both of which contain the cytomegalovirus promoter. 5-10 μ g of 10 recombinant vector are transiently transfected into a human cell line, preferably of endothelial or hematopoietic origin, using either liposome formulations or electroporation. 1-2 μg of an additional plasmid containing sequences encoding a marker protein are co-transfected. Expression of a marker protein provides a means to distinguish transfected cells from nontransfected cells and is a reliable predictor of cDNA expression from the recombinant vector. Marker proteins of choice include, e.g., Green Fluorescent Protein (GFP; Clontech), CD64, or a CD64-GFP fusion protein. Flow cytometry (FCM), an automated, laser optics-based technique, is used to identify transfected cells expressing GFP or CD64-GFP and to evaluate the apoptotic state of the cells and other cellular properties. FCM detects and quantifies the uptake of fluorescent molecules that diagnose events preceding or coincident with cell death. These events include changes in nuclear DNA content as measured by staining of DNA with propidium iodide; changes in cell size and granularity as measured by forward light scatter and 90 degree side light scatter; down-regulation of DNA synthesis as measured by decrease in bromodeoxyuridine uptake; alterations in expression of cell surface and intracellular proteins as measured by reactivity with specific antibodies; and alterations in plasma membrane composition as measured by the binding of fluorescein-conjugated Annexin V protein to the cell surface. Methods in flow cytometry are discussed in Ormerod, M.G. (1994) Flow Cytometry, Oxford, New York NY.

The influence of PPRG on gene expression can be assessed using highly purified populations of cells transfected with sequences encoding PPRG and either CD64 or CD64-GFP. CD64 and CD64-GFP are expressed on the surface of transfected cells and bind to conserved 30 regions of human immunoglobulin G (IgG). Transfected cells are efficiently separated from nontransfected cells using magnetic beads coated with either human IgG or antibody against CD64 (DYNAL, Lake Success NY). mRNA can be purified from the cells using methods well known by those of skill in the art. Expression of mRNA encoding PPRG and other genes of interest can be analyzed by northern analysis or microarray techniques.

PCT/US99/17818 WO 00/09709

Production of PPRG Specific Antibodies XII.

PPRG substantially purified using polyacrylamide gel electrophoresis (PAGE; see, e.g., Harrington, M.G. (1990) Methods Enzymol. 182:488-495), or other purification techniques, is used to immunize rabbits and to produce antibodies using standard protocols.

Alternatively, the PPRG amino acid sequence is analyzed using LASERGENE software (DNASTAR) to determine regions of high immunogenicity, and a corresponding oligopeptide is synthesized and used to raise antibodies by means known to those of skill in the art. Methods for selection of appropriate epitopes, such as those near the C-terminus or in hydrophilic regions are well described in the art. (See, e.g., Ausubel, 1995, supra, ch. 11.)

Typically, oligopeptides 15 residues in length are synthesized using an ABI 431A peptide synthesizer (Perkin-Elmer) using fmoc-chemistry and coupled to KLH (Sigma-Aldrich, St. Louis MO) by reaction with N-maleimidobenzoyl-N-hydroxysuccinimide ester (MBS) to increase immunogenicity. (See, e.g., Ausubel, 1995, supra.) Rabbits are immunized with the oligopeptide-KLH complex in complete Freund's adjuvant. Resulting antisera are tested for antipeptide activity 15 by, for example, binding the peptide to plastic, blocking with 1% BSA, reacting with rabbit antisera, washing, and reacting with radio-iodinated goat anti-rabbit IgG.

Purification of Naturally Occurring PPRG Using Specific Antibodies XIII.

Naturally occurring or recombinant PPRG is substantially purified by immunoaffinity chromatography using antibodies specific for PPRG. An immunoaffinity column is constructed by 20 covalently coupling anti-PPRG antibody to an activated chromatographic resin, such as CNBr-activated SEPHAROSE (Amersham Pharmacia Biotech). After the coupling, the resin is blocked and washed according to the manufacturer's instructions.

Media containing PPRG are passed over the immunoaffinity column, and the column is washed under conditions that allow the preferential absorbance of PPRG (e.g., high ionic strength 25 buffers in the presence of detergent). The column is eluted under conditions that disrupt antibody/PPRG binding (e.g., a buffer of pH 2 to pH 3, or a high concentration of a chaotrope, such as urea or thiocyanate ion), and PPRG is collected.

Identification of Molecules Which Interact with PPRG XIV.

PPRG, or biologically active fragments thereof, are labeled with 125 I Bolton-Hunter reagent. (See, e.g., Bolton, A.E. and W.M. Hunter (1973) Biochem. J. 133:529-539.) Candidate molecules previously arrayed in the wells of a multi-well plate are incubated with the labeled PPRG, washed, and any wells with labeled PPRG complex are assayed. Data obtained using different concentrations of PPRG are used to calculate values for the number, affinity, and association of PPRG with the candidate molecules.

5

Various modifications and variations of the described methods and systems of the invention will be apparent to those skilled in the art without departing from the scope and spirit of the invention. Although the invention has been described in connection with specific preferred embodiments, it should be understood that the invention as claimed should not be unduly limited to such specific embodiments. Indeed, various modifications of the described modes for carrying out the invention which are obvious to those skilled in molecular biology or related fields are intended to be within the scope of the following claims.

Table

Polypeptide SEQ ID NO:	Nucleotide SEQ ID NO:	Clone ID	Library	Fragments
1	21	1220330	NEUTGMT01	1220330H1 (NEUTGMT01), 1220330R6 (NEUTGMT01), 3031706F6 (TLXMNOT05)
2	22	1342493	COLNTUTO3	071068F1 (PLACNOB01), 1321108F6 (BLADNOT04), 1342493F6 (COLNTUT03), 1342493H1 (COLNTUT03), 1345967T6 (PROSNOT11), 1438889F1 (PANCNOT08), 1679890T7 (STOMFET01), 1800338T6 (COLNNOT27), 3217273H1 (TESTNOT07)
ю	23	1698270	BLADTUT05	1698270H1 (BLADTUT05), 1374869H1 (LUNGNOT10), 312647R1 (LUNGNOT02), 386032H1 (THYMNOT02)
4	24	2012492	TESTNOT03	2004918R6 (TESTNOT03), 2004918T6 (TESTNOT03), 2011777H1 (TESTNOT03), 2012492H1 (TESTNOT03)
5	25	2309875	NGANNOT01	1597268F6 (BRAINOT14), 1682605X22C1 (PROSNOT15), 1683253X19C1 (PROSNOT15), 1752982H1 (LIVRTUT01), 2052808F6 (LIVRFET02), 2197089H1 (SPLNFET02), 856284R1 (NGANNOT01), 2309875H1 (NGANNOT01)
9	26	2479394	SMCANOT01	2479394F6 (SMCANOTO1), 2479394H1 (SMCANOTO1), 2623972X42F1 (KERANOTO2), SAEC10649F1, SAEA03168R1, SAEC11168F1, SAEA00641R1, SAEC10266F1, SAEC11328F1
7	27	2613215	SINIUCT01	231698R1 (SINTNOTO2), 1363780F1 (LUNGNOT12), 1546635R6 (PROSTUT04), 1662163F6 (BRSTNOT09), 1859908F6 (PROSNOT18), 2192713X13F1 (THYRTUT03), 2192713X15F1 (THYRTUT03), 2543078X303F1 (UTRSNOT11), 2613215H1 (SINIUCT01)
œ	28	001528	U937NOT01	001528F1 (U937NOT01), 001528H1 (U937NOT01), 001528X5 (U937NOT01), 001528X6 (U937NOT01), 001528X6 (U937NOT01), 443686R6 (MPHGNOT03), 2596612H1 (OVARTUT02), 2888384X12F1 (LUNGFET04), 3598232H1 (FIBPNOT01), 4906930H2 (TLYMNOT08)
6	29	998626	KIDNTUT01	998626H1 (KIDNTUTO1), 998626R6 (KIDNTUTO1), 4073122F6 (KIDNNOT26)

Table 1 (cont.)

lone Library Fragments	193301 THYRNOT03 1393301H1 (THYRNOT03), 2008519T6 (TESTNOT03), SBFA01183F1, SBFA01807F1, SBFA03248F1, SBFA00528F1	144055 THYRNOT03 1444055H1 (THYRNOT03), 1444055R1 (THYRNOT03), 2738343H1 (OVARNOT09)	PROSTUT09 1616250F6 (BRAITUT12), 1616250T6 (BRAITUT12), 1650177F6 1650177H1 (PROSTUT09), 2372255H1 (ADRENOT07), 3286138F6 4012302H1 (MUSCNOT10), SAEA00123F1	02576 OVARNOTO7 1902576H1 (OVARNOTO7), 2909961H1 (KIDNTUT15), SZAP00669V1, SZAP02354V1, SZAP00959V1, SZAP01377V1, SZAP00432V1, SZAP00726V1, SZAP01982V1	24210 KERANOT02 2024210H1 (KERANOT02), 4569479H1 (HELATXT01), 4817326H1 (HFIBATXT02)	BRAITUT21 2523109H1 (BRAITUT21), 3574330H1 3417837H2 (PTHYNOT04), 2309843X13 (ADRENOT07), 2674631F6 (KIDNNOT19 (BRSTNOT07), 5401752H1 (BRAHNOT01 (UTRSNOT10), 3030634T6 (HEARFET02 (BEPINOT01))	38566 LUNGNOT22 2588566H1 (LUNGNOT22), 2588566X303D1 (LUNGNOT22), 2727313T6 (OVARTUT05), 3972055H1 (ADRETTITOS) CENTOCESOCIA
υ	1393301	1444055	1650177	1902576	2024210	2523109	2588566
Nucleotide SEQ ID NO:	30	31	32	33	34	35	36
Polypeptide SEQ ID NO:	10	11	12	13	14	15	16

Table 1 (cont.)

Fragments	102671F1 (ADRENORO1), 102671R1 (ADRENORO1), 678618X16 (UTRSNOT02), 1259309F6 (MENITUT03), 1466058F6 (PANCTUT02), 2740570H1 (BRSTTUT14), 2740570X316D2 (BRSTTUT14), 2740570X319F1 (BRSTTUT14), 3050368H1 (LUNGNOT25), SCJA02363V1	1642163F6 (HEARFET01), 1706505F6 (DUODNOT02), 1742853T6 (HIPONON01), 185345AF6 (LUNGFET03), 1878661F6 (LEUKNOT03), 1878661H1 (LEUKNOT03), 2820384H1 (BRSTNOT14), 2820384X13F1 (BRSTNOT14), 3497393H1 (PROSTUT13), 3633187H1 (LIVRNOT03), 4059719H1 (BRAINOT21), 4144331H1 (BRSTTMT01), 4982538H1 (HELATXT05)	2990692F6 (KIDNFET02), 2990692H1 (KIDNFET02), 2990692X14F1 (KIDNFET02), 2990692X34F1 (KIDNFET02), 4636147H1 (MYEPTXT01)	1487107F6 (UCMCL5T01), 4590384H1 (MASTTXT01), 4918570H1 (LIVRFET05), SANA01269F1
Library	BRSTTUT14	BRSTNOT14	KIDNFET02	MASTTXT01
Clone	2740570	2820384	2990692	4590384
Nucleotide SEQ ID NO:	37	38	68	0.5
Polypeptide Nucleotide SEQ ID NO: SEQ ID NO:	17	18	19	20

Table 2

Analytical Methods	T KS TS	E	KS TS	្រីស្លី ស ស	ຸ ທຸ ທຸ ທ
Ana	BLAST BLOCKS PRINTS	BLAST	BLOCKS	BLAST BLOCKS MOTIFS PRINTS	BLAST BLOCKS MOTIFS PRINTS
Identification	Metalloproteinase	Calpastatin	Protease	Trypsin inhibitor	Ubiquitin specific protease 41
Signature Sequence			Prolyl aminopeptidase: L105 Serine protease: L66	Kunitz family signature: F136	Ubiquitin carboxyl- terminal hydrolase family 2 signature: Y502
Potential Glycosylation Sites		N220 N570	N144 N167		N509 N533
Potential Phosphorylation Sites	T66 S38 T103 T154 S180 T21 T31 T68 T84	S29 T79 S188 S197 T216 T224 T235 T331 S357 T391 S410 T474 S607 S609 S709 T717 T744 S13 S42 T63 S87 S139 S167 S194 S268 T297 T313 T435 T470 S728 S741 T748 S573 T681 T687	S33 S136 S207 T220 S290 S304 S41 T122 S125 Y268	T157	T155 T451 S477 S115 S298 S350 T392 S415 T424 S488 T150 S156 S171 S187 S232 S415 S446 T447 S472 S494 Y195
Amino Acid Residues	206	754	308	164	565
Polypeptide Seg ID NO:	1	2	m	4	ιΩ

Table 2 (cont.)

Analytical Methods	BLAST BLOCKS MOTIFS PRINTS	P BLAST BLOCKS MOTIFS PRINTS	BLAST MOTIFS PFAM	or BLAST MOTIFS SPSCAN	BLAST MOTIFS SPSCAN
Identification	Carboxypeptidase	Aminopeptidase 1	Ubiquitin protease	Trypsin inhibitor	sp32 precursor, proacrosin- binding protein
Signature Sequence	Zinc carboxy- peptidase, zinc- binding region signatures: P172, H308		Ubiquitin hydrolyase: G261-1278, Y846-V883	Signal peptide: M1-A26	Signal peptide: M1-A25
Potential Glycosylation Sites	N260	N132 N446			
Potential Phosphorylation Sites	T90 S210 S284 S290 S346 S365 T401 T411 T165 T194 S321 Y310	T36 S97 T145 S220 T243 S257 S289 S326 S404 S450 T480 S522 T551 S619 T621 T634 S4 T199 S334 T445 S548	S153 S810 T105 S170 T197 S312 S513 T593 S623 S625 S636 S644 S649 T767 T821 T885 S932 T11 S23 S78 T149 S322 T329 T670 T790 Y31 Y578 Y779 Y876	S48 S119	S505 S39 T41 S98 T134 T158 T250 S291 S331 S359 S466 T53 T59 T160 T342 S379 S399 S425 S489 Y481
Amino Acid Residues	421	999	952	166	543
Polypeptide Seq ID NO:	v	7	co	6	10

Table 2 (cont.)

Analytical Methods	BLAST MOTIFS PFAM	BLAST MOTIES PFAM	BLAST BLOCKS MOTIFS PFAM PRINTS	BLAST MOTIFS PFAM PROFILESCAN	BLAST MOTIFS PFAM PRINTS SPSCAN
Identification	Cysteine protease	SKD3, regulator of Clp protease activity	Calcium (cysteine) protease	Protease inhibitor	Paraplegin (metalloprotease)
Signature Sequence	Caspase: D15-P81	ATP/GTP-binding site: G322-T329 Ankyrin repeat: K206-E238 Chaperonins ClpA/B: L138-I592	Cysteine protease: Q67-A78 Calpain: L13-T322	Kazal-type serine protease inhibitor: C30-C80	ATP-dependent Clp protease: A345-A363 Signal peptide: M1-W23 Transmembrane domain:
Potential Glycosylation Sites					
Potential Phosphorylation Sites	S18 S6 S22 S40	S41 S132 T176 T190 T222 T242 T593 T25 S33 S64 S204 T335 T381 S472 S562 T589 S597 T630 Y263 Y310 Y508	S99 T123 S282 S547 S568 T644 T42 T52 T110 T207 S226 T332 T488 S522 T622	S73	S418 T419 T655 S166 T278 T296 S307 S425 T427 T481 S517 S564 S639 S675 T103 S244 S330 T455 S495 S506 T556 Y138
Amino Acid Residues	83	648	672	80	795
Polypeptide Seg ID NO:	11	12	13	14	15

Table 2 (cont.)

Analytical Methods	BLAST MOTIFS	BLAST MOTIFS PFAM	BLAST MOTIFS PFAM	BLAST MOTIFS PFAM	BLAST MOTIFS PFAM PROFILESCAN
Identification	Neutral protease Ealpha subunit	Ubiquitin specific protease N UBP 41	Ubiquitin specific protease NUBP 41	Human endogenous retroviral	Metase (serine protease)
Signature Sequence		Ubiquitin carboxyl- terminal hydrolase: Y378-V415	Ubiquitin carboxyl- terminal hydrolase: Y71-V108	Retroviral aspartyl protease: V111-1193	Trypsin: 134-1258 Serine protease, active site: V70-C75
Potential Glycosylation Sites					
Potential Phosphorylation Sites	S19 S63 T182 S4 T140 T168	S437 S448 T547 T23 T27 S33 S35 S46 S98 S108 T222 S253 T289 S414 S436 T473 S481 S48 T120 S182 S347	S130 T69 S129 T166 S40 S348 X39	T133 T144 T89 S199	S266 S77 S94 T110 S166 S50 S191 S208 T275
Amino Acid Residues	193	663	362	210	283
Polypeptide Seq ID NO:	16	17	18	19	20

Table 3

Vector	PSPORT	pINCY	pINCY	FOT STITE	PSPORT	PINCY	PINCY	PBLUESCRIPT	
Disease or Condition (Fraction of motal)	Inflammation (0.750) Cancer (0.250) Fetal (0.250)	Cancer (0.475) Inflammation (0.245) Fetal (0.152)	Cancer (0.419) Inflammation (0.226) Fetal (0.204)	Inflammation (1.000)	Cancer (0.548) Inflammation (0.242) Fetal (0.129)	Cancer (0.500) Fetal (0.500)	Cancer (0.418) Fetal (0.231) Inflammation (0.154)	Cell proliferation (0.465) Inflammation (0.429)	Cancer (0.857)
Tissue Expression (Fraction of Total)	<pre>Hematopoietic/Immune (0.750) Reproductive (0.250)</pre>	Reproductive (0.255) Gastrointestinal (0.196) Cardiovascular (0.125)	Reproductive (0.258) Cardiovascular (0.129) Gastrointestinal (0.129)	Reproductive (1.00)	Reproductive (0.258) Nervous (0.210) Gastrointestinal (0.161)	Nervous (0.500) Cardiovascular (0.250) Dermatologic (0.250)	Reproductive (0.244) Gastrointestinal (0.179) Developmental (0.141)	Hematopoietic/Immune (0.304) Reproductive (0.232) Cardiovascular (0.107)	Urologic (0.714)
Nucleotide SEQ ID NO:	21	22	23	24	25	26	27	28	29

Table 3 (cont.)

Nucleotide SEQ ID NO:	Tissue Expression (Fraction of Total)	Disease or Condition (Fraction of Total)	Vector
30	Reproductive (0.375) Endocrine (0.125) Hematopoietic/Immune (0.250)	Inflammation (0.500) Cancer (0.375)	pINCY.
31	<pre>Hematopoietic/Immune (0.308) Cardiovascular (0.154) Reproductive (0.154)</pre>	Inflammation (0.616) Cancer (0.385)	pINCY
32	Hematopoietic/Immune (0.261) Musculoskeletal (0.217) Reproductive (0.217)	Cell proliferation (0.565) Inflammation (0.435)	pINCY
33	Reproductive (0.333) Nervous (0.222)	Cell proliferation (0.703) Inflammation (0.148)	pINCY
34	Reproductive (0.600) Dermatologic (0.300) Nervous (0.100)	Cell proliferation (0.800)	PSPORT1
35	Reproductive (0.202) Nervous (0.173) Gastrointestinal (0.135)	Cell proliferation (0.586) Inflammation (0.279)	pINCY
36	Gastrointestinal (0.500) Cardiovascular (0.333) Endocrine (0.167)	Cancer (0.833) Inflammation (0.167)	pINCY
37	Nervous (0.205) Reproductive (0.205) Cardiovascular (0.179)	Cell proliferation (0.538) Inflammation (0.154)	pINCY

Table 3 (cont.)

Vector	PINCY	PINCY	pINCY
Disease or Condition (Fraction of Total)	Cell proliferation (0.600) Inflammation (0.383)	Cell proliferation (0.800) Inflammation (0.400)	Cell proliferation (0.500) Inflammation (0.500)
Tissue Expression (Fraction of Total)	Hematopoietic/Immune (0.267) Reproductive (0.250) Nervous (0.133)	Hematopoietic/Immune (0.400) Developmental (0.200) Gastrointestinal (0.200)	Gastrointestinal (0.500) Hematopoietic/Immune (0.500)
Nucleotide SEQ ID NO:	38	39	40

Table 4

Nucleotide SEQ ID NO:	Library	Library Comment
21	NEUTGMT01	Library was constructed using RNA isolated from peripheral blood granulocytes collected by density gradient centrifugation through Ficoll-Hypaque. The cells were isolated from buffy coat units obtained from 20 unrelated male and female donors. Cells were cultured in 10 nM GM-CSF for 1 hour before washing and harvesting for RNA preparation.
22	COLNTUTO3	Library was constructed using RNA isolated from colon tumor tissue obtained from the sigmoid colon of a 62-year-old Caucasian male during a sigmoidectomy and permanent colostomy. Pathology indicated invasive grade 2 adenocarcinoma. One lymph node contained metastasis with extranodal extension. Patient history included hyperlipidemia, cataract disorder, and dermatitis. Family history included cardoivascular disease and cancer.
23	BLADTUT05	Library was constructed using RNA isolated from bladder tumor tissue removed from a 66-year-old Caucasian male during a radical prostatectomy, radical cystectomy, and urinary diversion. Pathology indicated grade 3 transitional cell carcinoma on the anterior wall of the bladder. Patient history included lung neoplasm and tobacco abuse in remission. Family history included a malignant breast neoplasm, tuberculosis, cerebrovascular disease, atherosclerotic coronary artery disease, and lung cancer.
24	TESTNOT03	Library was constructed using polyA RNA isolated from testicular tissue removed from a 37-year-old Caucasian male who died from liver disease. Patient history included cirrhosis, jaundice, and liver failure.
25	NGANNOT01	Library was constructed using RNA isolated from tumorous neuroganglion tissue removed from a 9-year-old Caucasian male during a soft tissue excision of the chest wall. Pathology indicated a ganglioneuroma. Family history included asthma.
26	SMCANOT01	Library was constructed using RNA isolated from an aortic smooth muscle cell line derived from the explanted heart of a male during a heart transplant.

Table 4 (cont.)

Ž	Nucleotide	Library	
S	SEQ ID NO:	LIDIALY	Library Comment
	27	SINIUCT01	Library was constructed using RNA isolated from ileum tissue obtained from a 42-year-old Caucasian male during a total intra-abdominal colectomy and endoscopic jejunostomy. Previous surgeries included polypectomy, colonoscopy, and spinal canal exploration. Family history included cerebrovascular disease, benign hypertension, atherosclerotic coronary artery disease, and type II diabetes.
	28	U937NOT01	Library was constructed at Stratagene (STR937207), using RNA isolated from the U937 monocyte-like cell line. This line (ATCC CRL1593) was established from malignant cells obtained from the pleural effusion of a 37-year-old Caucasian male with diffuse histiocytic lymphoma.
-64	29	KIDNTUT01	Library was constructed using RNA isolated from kidney tumor tissue removed from an 8-month-old female during nephroureterectomy. Pathology indicated Wilms' tumor (nephroblastoma), which involved 90 percent of the renal parenchyma. Prior to surgery, the patient was receiving heparin anticoagulant therapy.
	30	THYRNOT03	Library was constructed using RNA isolated from thyroid tissue removed from the left thyroid of a 28-year-old Caucasian female during a complete thyroidectomy. Pathology indicated a small nodule of adenomatous hyperplasia present in the left thyroid. Pathology for the associated tumor tissue indicated dominant follicular adenoma forming a well-encapsulated mass in the left thyroid.
	31	THYRNOT03	Library was constructed using RNA isolated from thyroid tissue removed from the left thyroid of a 28-year-old Caucasian female during a complete thyroidectomy. Pathology indicated a small nodule of adenomatous hyperplasia present in the left thyroid. Pathology for the associated tumor tissue indicated dominant follicular adenoma forming a well-encapsulated mass in the left thyroid.

Table 4 (cont.)

Library Comment	Library was constructed using RNA isolated from prostate tumor tissue removed from a 66-year-old Caucasian male during a radical prostatectomy, radical cystectomy, and urinary diversion. Pathology indicated grade 3 transitional cell carcinoma. The patient presented with prostatic inflammatory disease. Patient history included lung neoplasm, and benign hypertension. Family history included a malignant breast neoplasm, tuberculosis, cerebrovascular disease, atherosclerotic coronary artery disease and lung cancer.	Library was constructed using RNA isolated from left ovarian tissue removed from a 28-year-old Caucasian female during a vaginal hysterectomy and removal of the fallopian tubes and ovaries. The tissue was associated with multiple follicular cysts, endometrium in a weakly proliferative phase, and chronic cervicitis of the cervix with squamous metaplasia. Family history included benign hypertension, hyperlipidemia, and atherosclerotic coronary artery disease.	Library was constructed using RNA isolated from epidermal breast keratinocytes (NHEK). NHEK (Clontech #CC-2501) is human breast keratinocyte cell line derived from a 30-year- old black female during breast-reduction surgery.	Library was constructed using RNA isolated from brain tumor tissue removed from the midline frontal lobe of a 61-year-old Caucasian female during excision of a cerebral meningeal lesion. Pathology indicated subfrontal meningothelial meningioma with no atypia. One ethmoid and mucosal tissue sample indicated meningioma. Family history included cerebrovascular disease, senile dementia, hyperlipidemia, benign hypertension, atherosclerotic coronary artery disease, congestive heart failure, and breast cancer.	Library was constructed using RNA isolated from lung tissue removed from a 58-year-old Caucasian female. The tissue sample used to construct this library was found to have tumor contaminant upon microscopic examination. Pathology for the associated tumor tissue indicated a caseating granuloma. Family history included congestive heart failure, breast cancer, secondary bone cancer, acute myocardial infarction and atherosclerotic coronary artery disease.
Library	PROSTUT09	OVARNOT07	KERANOT02	BRAITUT21	LUNGNOT22
Nucleotide SEQ ID NO:	32	33	34	35	36

Table 4 (cont.)

Nucleotide Library SEQ ID NO: 37 BRSTTUT14 BRSTNOT14 39 KIDNFET02 40 MASTTXT01
I I

Table:

Program	Description	Reference	Parameter Threshold
ABI FACTURA	A program that removes vector sequences and masks ambiguous bases in nucleic acid sequences.	Perkin-Elmer Applied Biosystems, Foster City, CA.	
ABI/PARACEL FDF	A Fast Data Finder useful in comparing and annotating amino acid or nucleic acid sequences.	Perkin-Elmer Applied Biosystems, Foster City, CA; Paracel Inc., Pasadena, CA.	Mismatch <50%
ABI AutoAssembler	A program that assembles nucleic acid sequences.	Perkin-Elmer Applied Biosystems, Foster City, CA.	
BLAST	A Basic Local Alignment Search Tool useful in sequence similarity search for amino acid and nucleic acid sequences. BLAST includes five functions: blastp, blastn, blastx, tblastn, and tblastx.	Altschul, S.F. et al. (1990) J. Mol. Biol. 215:403-410; Altschul, S.F. et al. (1997) Nucleic Acids Res. 25: 3389-3402.	ESTs: Probability value= 1.0E-8 or less Full Length sequences: Probability value= 1.0E-10 or less
FASTA	A Pearson and Lipman algorithm that searches for similarity between a query sequence and a group of sequences of the same type. FASTA comprises as least five functions: fasta, tfasta, fastx, and ssearch.	Pearson, W.R. and D.J. Lipman (1988) Proc. Natl. Acad Sci. 85:2444-2448; Pearson, W.R. (1990) Methods Enzymol. 183: 63-98; and Smith, T.F. and M. S. Waterman (1981) Adv. Appl. Math. 2:482-489.	ESTs: fasta E value=1.06E-6 Assembled ESTs: fasta Identity= 95% or greater and Match length=200 bases or greater; fastx E value=1.0E-8 or less Full Length sequences: fastx score=100 or greater
BLIMPS	A BLocks IMProved Searcher that matches a sequence against those in BLOCKS and PRINTS databases to search for gene families, sequence homology, and structural fingerprint regions.	Henikoff, S and J.G. Henikoff, Nucl. Acid Res., 19:6565-72, 1991. J.G. Henikoff and S. Henikoff (1996) Methods Enzymol. 266:88-105, and Attwood, T.K. et al. (1997) J. Chem. Inf. Comput. Sci. 37: 417-424.	Score=1000 or greater; Ratio of Score/Strength = 0.75 or larger; and Probability value= 1.0E-3 or less
РҒАМ	A Hidden Markov Models-based application useful for protein family search.	Krogh, A. et al. (1994) J. Mol. Biol., 235:1501-1531; Sonnhammer, E.L.L. et al. (1988) Nucleic Acids Res. 26:320-322.	Score=10-50 bits, depending on individual protein families

Table 5 cont.

Program	Description	Reference	Parameter Threshold
ProfileScan	An algorithm that searches for structural and sequence motifs in protein sequences that match sequence patterns defined in Prosite.	Gribskov, M. et al. (1988) CABIOS 4:61-66; Gribskov, et al. (1989) Methods Enzymol. 183:146-159; Bairoch, A. et al. (1997) Nucleic Acids Res. 25: 217-221.	Score= 4.0 or greater
Phred	A base-calling algorithm that examines automated sequencer traces with high sensitivity and probability.	Ewing, B. et al. (1998) Genome Res. 8:175-185; Ewing, B. and P. Green (1998) Genome Res. 8:186- 194.	
Phrap	A Phils Revised Assembly Program including SWAT and CrossMatch, programs based on efficient implementation of the Smith-Waterman algorithm, useful in searching sequence homology and assembling DNA sequences.	Smith, T.F. and M. S. Waterman (1981) Adv. Appl. Math. 2:482-489; Smith, T.F. and M. S. Waterman (1981) J. Mol. Biol. 147:195-197; and Green, P., University of Washington, Seattle, WA.	Score= 120 or greater; Match length= 56 or greater
Consed	A graphical tool for viewing and editing Phrap assemblies	Gordon, D. et al. (1998) Genome Res. 8:195-202.	
SPScan	A weight matrix analysis program that scans protein sequences for the presence of secretory signal peptides.	Nielson, H. et al. (1997) Protein Engineering 10:1-6; Claverie, J.M. and S. Audic (1997) CABIOS 12: 431-439.	Score≈5 or greater
Motifs	A program that searches amino acid sequences for pattems that matched those defined in Prosite.	Bairoch et al. <u>supra</u> ; Wisconsin Package Program Manual, version 9, page M51-59, Genetics Computer Group, Madison, WI.	

What is claimed is:

1. A substantially purified polypeptide comprising an amino acid sequence selected from the group consisting of SEQ ID NO:1-20, and fragments thereof.

5

- 2. A substantially purified variant having at least 90% amino acid sequence identity to the amino acid sequence of claim 1.
 - 3. An isolated and purified polynucleotide encoding the polypeptide of claim 1.

10

- 4. An isolated and purified polynucleotide variant having at least 90% polynucleotide sequence identity to the polynucleotide of claim 3.
- 5. An isolated and purified polynucleotide which hybridizes under stringent conditions to the polynucleotide of claim 3.
 - 6. An isolated and purified polynucleotide having a sequence which is complementary to the polynucleotide of claim 3.

20

- 7. A method for detecting a polynucleotide, the method comprising the steps of:
- (a) hybridizing the polynucleotide of claim 6 to at least one nucleic acid in a sample, thereby forming a hybridization complex; and
- (b) detecting the hybridization complex, wherein the presence of the hybridization complex correlates with the presence of the polynucleotide in the sample.

- 8. The method of claim 7 further comprising amplifying the polynucleotide prior to hybridization.
- An isolated and purified polynucleotide comprising a polynucleotide sequence
 selected from the group consisting of SEQ ID NO:21-40, and fragments thereof.
 - 10. An isolated and purified polynucleotide variant having at least 90% polynucleotide sequence identity to the polynucleotide of claim 9.

- 11. An isolated and purified polynucleotide having a sequence which is complementary to the polynucleotide of claim 9.
- 12. An expression vector comprising at least a fragment of the polynucleotide of 5 claim 3.
 - 13. A host cell comprising the expression vector of claim 12.
 - 14. A method for producing a polypeptide, the method comprising the steps of:
 - a) culturing the host cell of claim 13 under conditions suitable for the expression of the polypeptide; and
 - b) recovering the polypeptide from the host cell culture.
- 15. A pharmaceutical composition comprising the polypeptide of claim 1 in conjunction with a suitable pharmaceutical carrier.
 - 16. A purified antibody which specifically binds to the polypeptide of claim 1.
 - 17. A purified agonist of the polypeptide of claim 1.

20

10

- 18. A purified antagonist of the polypeptide of claim 1.
- 19. A method for treating or preventing a disorder associated with decreased expression or activity of PPRG, the method comprising administering to a subject in need of such
 25 treatment an effective amount of the pharmaceutical composition of claim 15.
 - 20. A method for treating or preventing a disorder associated with increased expression or activity of PPRG, the method comprising administering to a subject in need of such treatment an effective amount of the antagonist of claim 18.

SEQUENCE LISTING

<110> INCYTE PHARMACEUTICALS, INC. BANDMAN, Olga HILLMAN, Jennifer L. BAUGHN, Mariah R. AZIMZAI, Yalda GUEGLER, Karl J. CORLEY, Neil C. YUE, Henry TANG, Y. Tom REDDY, Roopa PATTERSON, Chandra AU-YOUNG, Janice SHI, Leo L. LU, Dyung Aina M. <120> PROTEASES AND ASSOCIATED PROTEINS <130> PF-0569 PCT <140> To Be Assigned <141> Herewith <150> 60/096,114; 60/119,768 <151> 1998-08-10; 1999-02-11 <160> 40 <170> PERL Program <210> 1 <211> 206 <212> PRT <213> Homo sapiens <220> <221> misc_feature <223> Incyte Clone No: 1220330 <400> 1 Met Pro Ser Arg Arg Arg Asp Ala Ile Lys Val Met Gln Arg Phe 1 5 10 Ala Gly Leu Pro Glu Thr Gly Arg Met Asp Pro Gly Thr Val Ala Thr Met Arg Lys Pro Arg Cys Ser Leu Pro Asp Val Leu Gly Val 35 40 Ala Gly Leu Val Arg Arg Arg Arg Tyr Ala Leu Ser Gly Ser 50 55 Val Trp Lys Lys Arg Thr Leu Thr Trp Arg Val Arg Ser Phe Pro 65 70 Gln Ser Ser Gln Leu Ser Gln Glu Thr Val Arg Val Leu Met Ser 80 85 Tyr Ala Leu Met Ala Trp Gly Met Glu Ser Gly Leu Thr Phe His 100 Glu Val Asp Ser Pro Gln Gly Gln Glu Pro Asp Ile Leu Ile Asp

```
110
                                     115
Phe Ala Arg Ala Phe His Gln Asp Ser Tyr Pro Phe Asp Gly Leu
                125
                                     130
Gly Gly Thr Leu Ala His Ala Phe Phe Pro Gly Glu His Pro Ile
                                     145
Ser Gly Asp Thr His Phe Asp Asp Glu Glu Thr Trp Thr Phe Gly
Ser Lys Ala Ser Gln Gln Leu Glu Gln Glu Leu Ala Gly Gly Ser
               . 170
                                    175
Pro Val Asp Glu Glu Leu Gly Phe Ser Arg Gly Trp Arg Val Asn
                185
                                    190
Pro Leu Gly Pro Gly Ser Pro Glu Arg Leu Ser
                200
```

<210> 2 <211> 754 <212> PRT <213> Homo sapiens <220> <221> misc feature

<223> Incyte Clone No: 1342493

<400> 2 Met Ala Phe Ala Ser Trp Trp Tyr Lys Thr His Val Ser Glu Lys Thr Ser Glu Ser Pro Ser Lys Pro Gly Glu Lys Lys Gly Ser Asp Glu Lys Lys Ala Ala Ser Leu Gly Ser Ser Gln Ser Ser Arg Thr Tyr Ala Gly Gly Thr Ala Ser Ala Thr Lys Val Ser Ala Ser Ser 55 Gly Ala Thr Ser Lys Ser Ser Ser Met Asn Pro Thr Glu Thr Lys 65 70 Ala Val Lys Thr Glu Pro Glu Lys Lys Ser Gln Ser Thr Lys Leu 80 Ser Val Val His Glu Lys Lys Ser Gln Glu Gly Lys Pro Lys Glu 100 His Thr Glu Pro Lys Ser Leu Pro Lys Gln Ala Ser Asp Thr Gly 110 115 Ser Asn Asp Ala His Asn Lys Lys Ala Val Ser Arg Ser Ala Glu 125 130 Gln Gln Pro Ser Glu Lys Ser Thr Glu Pro Lys Thr Lys Pro Gln 140 145 Asp Met Ile Ser Ala Gly Gly Glu Ser Val Ala Gly Ile Thr Ala 155 160 Ile Ser Gly Lys Pro Gly Asp Lys Lys Lys Glu Lys Lys Ser Leu 170 175 Thr Pro Ala Val Pro Val Glu Ser Lys Pro Asp Lys Pro Ser Gly 190 Lys Ser Gly Met Asp Ala Ala Leu Asp Asp Leu Ile Asp Thr Leu 205 Gly Gly Pro Glu Glu Thr Glu Glu Glu Asn Thr Thr Tyr Thr Gly 220 Pro Glu Val Ser Asp Pro Met Ser Ser Thr Tyr Ile Glu Glu Leu 230 235 240

Gly Lys Arg Glu Val Thr Ile Pro Pro Lys Tyr Arg Glu Leu Leu 245 250 Ala Lys Lys Glu Gly Ile Thr Gly Pro Pro Ala Asp Ser Ser Lys 260 265 Pro Ile Gly Pro Asp Asp Ala Ile Asp Ala Leu Ser Ser Asp Phe 275 280 Thr Cys Gly Ser Pro Thr Ala Ala Gly Lys Lys Thr Glu Lys Glu 290 Glu Ser Thr Glu Val Leu Lys Ala Gln Ser Ala Gly Thr Val Arg Ser Ala Ala Pro Pro Gln Glu Lys Lys Arg Lys Val Glu Lys Asp 320 325 Thr Met Ser Asp Gln Ala Leu Glu Ala Leu Ser Ala Ser Leu Gly 340 335 Thr Arg Gln Ala Glu Pro Glu Leu Asp Leu Arg Ser Ile Lys Glu 350 355 Val Asp Glu Ala Lys Ala Lys Glu Glu Lys Leu Glu Lys Cys Gly 365 370 Glu Asp Asp Glu Thr Ile Pro Ser Glu Tyr Arg Leu Lys Pro Ala 380 385 Thr Asp Lys Asp Gly Lys Pro Leu Leu Pro Glu Pro Glu Glu Lys 395 400 Pro Lys Pro Arg Ser Glu Ser Glu Leu Ile Asp Glu Leu Ser Glu 410 415 Asp Phe Asp Arg Ser Glu Cys Lys Glu Lys Pro Ser Lys Pro Thr 430 425 Glu Lys Thr Glu Glu Ser Lys Ala Ala Pro Ala Pro Val Ser 440 445 Glu Ala Val Cys Arg Thr Ser Met Cys Ser Ile Gln Ser Ala Pro 460 Pro Glu Pro Ala Thr Leu Lys Gly Thr Val Pro Asp Asp Ala Val Glu Ala Leu Ala Asp Ser Leu Gly Lys Lys Glu Ala Asp Pro Glu 490 Asp Gly Lys Pro Val Met Asp Lys Val Lys Glu Lys Ala Lys Glu Glu Asp Arg Glu Lys Leu Gly Glu Lys Glu Glu Thr Ile Pro Pro 515 Asp Tyr Arg Leu Glu Glu Val Lys Asp Lys Asp Gly Lys Pro Leu 535 530 Leu Pro Lys Glu Ser Lys Glu Gln Leu Pro Pro Met Ser Glu Asp 545 550 Phe Leu Leu Asp Ala Leu Ser Glu Asp Phe Ser Gly Pro Gln Asn 560 565 Ala Ser Ser Leu Lys Phe Glu Asp Ala Lys Leu Ala Ala Ile 575 580 Ser Glu Val Val Ser Gln Thr Pro Ala Ser Thr Thr Gln Ala Gly 590 595 Ala Pro Pro Arg Asp Thr Ser Gln Ser Asp Lys Asp Leu Asp Asp 605 610 Ala Leu Asp Lys Leu Ser Asp Ser Leu Gly Gln Arg Gln Pro Asp 625 620 Pro Asp Glu Asn Lys Pro Met Glu Asp Lys Val Lys Glu Lys Ala 640 Lys Ala Glu His Arg Asp Lys Leu Gly Glu Arg Asp Asp Thr Ile 655 Pro Pro Glu Tyr Arg His Leu Leu Asp Asp Asn Gly Gln Asp Lys

```
665
                                      670
                                                           675
 Pro Val Lys Pro Pro Thr Lys Lys Ser Glu Asp Ser Lys Lys Pro
 Ala Asp Asp Gln Asp Pro Ile Asp Ala Leu Ser Gly Asp Leu Asp
                                      700
 Ser Cys Pro Ser Thr Thr Glu Thr Ser Gln Asn Thr Ala Lys Asp
                                      715
 Lys Cys Lys Lys Ala Ala Ser Ser Ser Lys Ala Pro Lys Asn Gly
                  725
                                      730
 Gly Lys Ala Lys Asp Ser Ala Lys Thr Thr Glu Glu Thr Ser Lys
                  740
                                      745
 Pro Lys Asp Asp
 <210> 3
 <211> 308
 <212> PRT
 <213> Homo sapiens
 <220>
 <221> misc_feature
 <223> Incyte Clone No: 1698270
 <400> 3
 Met Gly Glu Ile Lys Val Ser Pro Asp Tyr Asn Trp Phe Arg Gly
 Thr Val Pro Leu Lys Lys Ile Ile Val Asp Asp Asp Ser Lys
                                      25
 Ile Trp Ser Leu Tyr Asp Ala Gly Pro Arg Ser Ile Arg Cys Pro
Leu Ile Phe Leu Pro Pro Val Ser Gly Thr Ala Asp Val Phe Phe
                  50
                                      55
Arg Gln Ile Leu Ala Leu Thr Gly Trp Gly Tyr Arg Val Ile Ala
                  65
                                      70
Leu Gln Tyr Pro Val Tyr Trp Asp His Leu Glu Phe Cys Asp Gly
                  80
                                      85
Phe Arg Lys Leu Leu Asp His Leu Gln Leu Asp Lys Val His Leu
                  95
                                     100
Phe Gly Ala Ser Leu Gly Gly Phe Leu Ala Gln Lys Phe Ala Glu
                 110
                                     115
Tyr Thr His Lys Ser Pro Arg Val His Ser Leu Ile Leu Cys Asn
                 125
                                     130
Ser Phe Ser Asp Thr Ser Ile Phe Asn Gln Thr Trp Thr Ala Asn
                140
                                     145
Ser Phe Trp Leu Met Pro Ala Phe Met Leu Lys Lys Ile Val Leu
                155
                                     160
Gly Asn Phe Ser Ser Gly Pro Val Asp Pro Met Met Ala Asp Ala
                170
                                     175
Ile Asp Phe Met Val Asp Arg Leu Glu Ser Leu Gly Gln Ser Glu
                                    190
Leu Ala Ser Arg Leu Thr Leu Asn Cys Gln Asn Ser Tyr Val Glu
                200
                                    205
Pro His Lys Ile Arg Asp Ile Pro Val Thr Ile Met Asp Val Phe
                215
                                    220
Asp Gln Ser Ala Leu Ser Thr Glu Ala Lys Glu Glu Met Tyr Lys
                230
                                    235
```

Leu Tyr Pro Asn Ala Arg Arg Ala His Leu Lys Thr Gly Gly Asn

```
245
                                    250
Phe Pro Tyr Leu Cys Arg Ser Ala Glu Val Asn Leu Tyr Val Gln
                260
                                    265
Ile His Leu Leu Gln Phe His Gly Thr Lys Tyr Ala Ala Ile Asp
                275
                                    280
Pro Ser Met Val Ser Ala Glu Glu Leu Glu Val Gln Lys Gly Ser
                290
                                    295
Leu Gly Ile Ser Gln Glu Gln
<210> 4
<211> 164
<212> PRT
<213> Homo sapiens
<220>
<221> misc feature
<223> Incyte Clone No: 2012492
Met Lys Thr Gln Asp Gly Gly Ile His Ser Glu Gly Ala Ala Ala
Glu His Ser Lys Phe Gly Asn His Gln Lys Gly Trp Pro Leu Phe
                 20
                                     25
Asn Met Gly Ser Ser Gly Leu Leu Ser Leu Leu Val Leu Phe Val
                                     40
Leu Leu Ala Asn Val Gln Gly Pro Gly Leu Thr Asp Trp Leu Phe
                 50
                                     55
Pro Arg Arg Cys Pro Lys Ile Arg Glu Glu Cys Glu Phe Gln Glu
                                     70
                 65
Arg Asp Val Cys Thr Lys Asp Arg Gln Cys Gln Asp Asn Lys Lys
                 80
                                     85
Cys Cys Val Phe Ser Cys Gly Lys Lys Cys Leu Asp Leu Lys Gln
                 95
                                    100
Asp Val Cys Glu Met Pro Lys Glu Thr Gly Pro Cys Leu Ala Tyr
                110
                                    115
Phe Leu His Trp Trp Tyr Asp Lys Lys Asp Asn Thr Cys Ser Met
                                    130
Phe Val Tyr Gly Gly Cys Gln Gly Asn Asn Asn Asn Phe Gln Ser
                                    145
                                                         150
Lys Ala Asn Cys Leu Asn Thr Cys Lys Asn Lys Arg Phe Pro
<210> 5
<211> 565
<212> PRT
<213> Homo sapiens
<220>
<221> misc_feature
<223> Incyte Clone No: 2309875
<400> 5
Met Pro Gln Ala Ser Glu His Arg Leu Gly Arg Thr Arg Glu Pro
                                     10
Pro Val Asn Ile Gln Pro Arg Val Gly Ser Lys Leu Pro Phe Ala
```

```
20
                                       25
 Pro Arg Ala Arg Ser Lys Glu Arg Arg Asn Pro Ala Ser Gly Pro
 Asn Pro Met Leu Arg Pro Leu Pro Pro Arg Pro Gly Leu Pro Asp
                   50
 Glu Arg Leu Lys Lys Leu Glu Leu Gly Arg Gly Arg Thr Ser Gly
 Pro Arg Pro Arg Gly Pro Leu Arg Ala Asp His Gly Val Pro Leu
                                       85
 Pro Gly Ser Pro Pro Pro Thr Val Ala Leu Pro Leu Pro Ser Arg
                                      100
 Thr Asn Leu Ala Arg Ser Lys Ser Val Ser Ser Gly Asp Leu Arg
                  110
                                      115
 Pro Met Gly Ile Ala Leu Gly Gly His Arg Gly Thr Gly Glu Leu
                  125
                                      130
 Gly Ala Ala Leu Ser Arg Leu Ala Leu Arg Pro Glu Pro Pro Thr
                  140
                                      145
 Leu Arg Arg Ser Thr Ser Leu Arg Arg Leu Gly Gly Phe Pro Gly
                  155
                                      160
 Pro Pro Thr Leu Phe Ser Ile Arg Thr Glu Pro Pro Ala Ser His
                 170
                                      175
 Gly Ser Phe His Met Ile Ser Ala Arg Ser Ser Glu Pro Phe Tyr
                 185
                                     190
 Ser Asp Asp Lys Met Ala His His Thr Leu Leu Gly Ser Gly
                 200
                                     205
 His Val Gly Leu Arg Asn Leu Gly Asn Thr Cys Phe Leu Asn Ala
                 215
                                     220
 Val Leu Gln Cys Leu Ser Ser Thr Arg Pro Leu Arg Asp Phe Cys
                 230
                                     235
Leu Arg Arg Asp Phe Arg Gln Glu Val Pro Gly Gly Gly Arg Ala
                 245
Gln Glu Leu Thr Glu Ala Phe Ala Asp Val Ile Gly Ala Leu Trp
                 260
                                     265
His Pro Asp Ser Cys Glu Ala Val Asn Pro Thr Arg Phe Arg Ala
                                     280
Val Phe Gln Lys Tyr Val Pro Ser Phe Ser Gly Tyr Ser Gln Gln
                                     295
Asp Ala Gln Glu Phe Leu Lys Leu Met Glu Arg Leu His Leu
                 305
                                     310
Glu Ile Asn Arg Arg Gly Arg Arg Ala Pro Pro Ile Leu Ala Asn
                 320
                                     325
Gly Pro Val Pro Ser Pro Pro Arg Arg Gly Gly Ala Leu Leu Glu
                 335
                                     340
Glu Pro Glu Leu Ser Asp Asp Asp Arg Ala Asn Leu Met Trp Lys
                 350
                                     355
Arg Tyr Leu Glu Arg Glu Asp Ser Lys Ile Val Asp Leu Phe Val
                365
                                     370
Gly Gln Leu Lys Ser Cys Leu Lys Cys Gln Ala Cys Gly Tyr Arg
                380
Ser Thr Thr Phe Glu Val Phe Cys Asp Leu Ser Leu Pro Ile Pro
                395
Lys Lys Gly Phe Ala Gly Gly Lys Val Ser Leu Arg Asp Cys Phe
Asn Leu Phe Thr Lys Glu Glu Glu Leu Glu Ser Glu Asn Ala Pro
                425
                                    430
Val Cys Asp Arg Cys Arg Gln Lys Thr Arg Ser Thr Lys Lys Leu
                440
                                    445
                                                         450
```

```
Thr Val Gln Arg Phe Pro Arg Ile Leu Val Leu His Leu Asn Arg
                                    460
                455
Phe Ser Ala Ser Arg Gly Ser Ile Lys Lys Ser Ser Val Gly Val
                470
                                    475
Asp Phe Pro Leu Gln Arg Leu Ser Leu Gly Asp Phe Ala Ser Asp
                485
                                    490
Lys Ala Gly Ser Pro Val Tyr Gln Leu Tyr Ala Leu Cys Asn His
                500
                                    505
Ser Gly Ser Val His Tyr Gly His Tyr Thr Ala Leu Cys Arg Cys
                                    520
                515
Gln Thr Gly Trp His Val Tyr Asn Asp Ser Arg Val Ser Pro Val
                                    535
Ser Glu Asn Gln Val Ala Ser Ser Glu Gly Tyr Val Leu Phe Tyr
Gln Leu Met Gln Glu Pro Pro Arg Cys Leu
                560
```

<210> 6 <211> 421 <212> PRT <213> Homo sapiens

<220>

<221> misc_feature

<223> Incyte Clone No: 2479394

<400> 6

Cys Gly Gln Glu Lys Phe Phe Gly Asp Gln Val Leu Arg Ile Asn 20 25 Val Arg Asn Gly Asp Glu Ile Ser Lys Leu Ser Gln Leu Val Asn 40 Ser Asn Asn Leu Lys Leu Asn Phe Trp Lys Ser Pro Ser Ser Phe 55 Asn Arg Pro Val Asp Val Leu Val Pro Ser Val Ser Leu Gln Ala Phe Lys Ser Phe Leu Arg Ser Gln Gly Leu Glu Tyr Ala Val Thr 85 Ile Glu Asp Leu Gln Ala Leu Leu Asp Asn Glu Asp Asp Glu Met 100 Gln His Asn Glu Gly Gln Glu Arg Ser Ser Asn Asn Phe Asn Tyr 110 115 Gly Ala Tyr His Ser Leu Glu Ala Ile Tyr His Glu Met Asp Asn 130 Ile Ala Ala Asp Phe Pro Asp Leu Ala Arg Arg Val Lys Ile Gly 140 145 His Ser Phe Glu Asn Arg Pro Met Tyr Val Leu Lys Phe Ser Thr 155 160 Gly Lys Gly Val Arg Arg Pro Ala Val Trp Leu Asn Ala Gly Ile 170 175 His Ser Arg Glu Trp Ile Ser Gln Ala Thr Ala Ile Trp Thr Ala 185 190 Arg Lys Ile Val Ser Asp Tyr Gln Arg Asp Pro Ala Ile Thr Ser 200 205 Ile Leu Glu Lys Met Asp Ile Phe Leu Leu Pro Val Ala Asn Pro

Met Arg Trp Ile Leu Phe Ile Gly Ala Leu Ile Gly Ser Ser Ile

10

```
215
                                     220
                                                         225
Asp Gly Tyr Val Tyr Thr Gln Thr Gln Asn Arg Leu Trp Arg Lys
                 230
Thr Arg Ser Arg Asn Pro Gly Ser Ser Cys Ile Gly Ala Asp Pro
                                     250
Asn Arg Asn Trp Asn Ala Ser Phe Ala Gly Lys Gly Ala Ser Asp
                 260
                                     265
Asn Pro Cys Ser Glu Val Tyr His Gly Pro His Ala Asn Ser Glu
                275
                                     280
Val Glu Val Lys Ser Val Val Asp Phe Ile Gln Lys His Gly Asn
                290
                                     295
Phe Lys Gly Phe Ile Asp Leu His Ser Tyr Ser Gln Leu Leu Met
                305
                                     310
Tyr Pro Tyr Gly Tyr Ser Val Lys Lys Ala Pro Asp Ala Glu Glu
                320
                                    325
Leu Asp Lys Val Ala Arg Leu Ala Ala Lys Ala Leu Ala Ser Val
                335
Ser Gly Thr Glu Tyr Gln Val Gly Pro Thr Cys Thr Thr Val Tyr
                350
                                     355
Pro Ala Ser Gly Ser Ser Ile Asp Trp Ala Tyr Asp Asn Gly Ile
                                     370
                                                         375
Lys Phe Ala Phe Thr Phe Glu Leu Arg Asp Thr Gly Thr Tyr Gly
Phe Leu Leu Pro Ala Asn Gln Ile Ile Pro Thr Ala Glu Glu Thr
                                    400
Trp Leu Gly Leu Lys Thr Ile Met Glu His Val Arg Asp Asn Leu
                410
                                    415
Tyr
```

<210> 7

<211> 666

<212> PRT

<213> Homo sapiens

<220>

<221> misc_feature

<223> Incyte Clone No: 2613215

<400> 7

Met Ala Ala Ser Arg Lys Pro Pro Arg Val Arg Val Asn His Gln Asp Phe Gln Leu Arg Asn Leu Arg Ile Ile Glu Pro Asn Glu Val 20 Thr His Ser Gly Asp Thr Gly Val Glu Thr Asp Gly Arg Met Pro Pro Lys Val Thr Ser Glu Leu Leu Arg Gln Leu Arg Gln Ala Met Arg Asn Ser Glu Tyr Val Thr Glu Pro Ile Gln Ala Tyr Ile Ile 70 Pro Ser Gly Asp Ala His Gln Ser Glu Tyr Ile Ala Pro Cys Asp 80 Cys Arg Arg Ala Phe Val Ser Gly Phe Asp Gly Ser Ala Gly Thr 95 100 Ala Ile Ile Thr Glu Glu His Ala Ala Met Trp Thr Asp Gly Arg 110 115 Tyr Phe Leu Gln Ala Ala Lys Gln Met Asp Ser Asn Trp Thr Leu

				125					130					135
Met	Lys	Met	Gly	-	Lys	Asp	Thr	Pro		Gln	Glu	Asp	Trp	
Val	Ser	Val	Leu		Glu	Gly	Ser	Arg		Gly	Val	Asp	Pro	
Ile	Ile	Pro	Thr		Tyr	Trp	Lys	Lys		Ala	Lys	Val	Leu	
Ser	Ala	Gly	His		Leu	Ile	Pro	Val		Glu	Asn	Leu	Val	
Lys	Ile	Trp	Thr		Arg	Pro	Glu	Arg		Cys	Lys	Pro	Leu	
Thr	Leu	Gly	Leu		Tyr	Thr	Gly	Ile		Trp	Lys	Asp	Lys	
Ala	Asp	Leu	Arg		Lys	Met	Ala	Glu		Asn	Val	Met	Trp	
Val	Val	Thr	Ala		Asp	Glu	Ile	Ala		Leu	Phe	Asn	Leu	
Gly	Ser	Asp	Val		His	Asn	Pro	Val		Phe	Ser	Tyr	Ala	
Ile	Gly	Leu	Glu		Ile	Met	Leu	Phe		Asp	Gly	Asp	Arg	_
Asp	Ala	Pro	Ser		Lys	Glu	His	Leu		Leu	Asp	Leu	Gly	
Glu	Ala	Glu	Tyr		Ile	Gln	Val	His		Tyr	Lys	Ser	Ile	
Ser	Glu	Leu	Lys	Ala 320	Leu	Cys	Ala	Asp	Leu 325	Ser	Pro	Arg	Glu	Lys 330
Val	Trp	Val	Ser	Asp 335	Lys	Ala	Ser	Tyr	Ala 340	Val	Ser	Glu	Thr	Ile 345
Pro	Lys	Asp	His	Arg 350	Cys	Cys	Met	Pro	Tyr 355	Thr	Pro	Ile	Cys	Ile 360
Ala	Lys	Ala	Val	Lys 365	Asn	Ser	Ala	Glu	Ser 370	Glu	Gly	Met	Arg	Arg 375
Ala	His	Ile	Lys	Asp 380	Ala	Val	Ala	Leu	Cys 385	Glu	Leu	Phe	Asn	Trp 390
Leu	Glu	Lys	Glu	Val 395	Pro	Lys	Gly	Gly	Val 400	Thr	Glu	Ile	Ser	Ala 405
	_	_		410			Arg		415					420
7				425			Ser		430	_			_	435
				440		•	Pro		445					450
				455			Asp		460					465
_			_	470			Thr		475					480
				485			Thr		490					495
				500			Pro		505		_	_		510
	_			515			Ala		520	_		_		525
_			_	530			Gly		535					540
His	Glu	GLY	Pro	Cys 545	Gly	Ile	Ser	Tyr	Lys 550	Thr	Phe	ser	Asp	Glu 555

```
Pro Leu Glu Ala Gly Met Ile Val Thr Asp Glu Pro Gly Tyr Tyr
                 560
                                     565
Glu Asp Gly Ala Phe Gly Ile Arg Ile Glu Asn Val Val Leu Val
                575
                                     580
Val Pro Val Lys Thr Lys Tyr Asn Phe Asn Asn Arg Gly Ser Leu
                                     595
Thr Phe Glu Pro Leu Thr Leu Val Pro Ile Gln Thr Lys Met Ile
                605
                                     610
Asp Val Asp Ser Leu Thr Asp Lys Glu Cys Asp Trp Leu Asn Asn
                620
                                     625
Tyr His Leu Thr Cys Arg Asp Val Ile Gly Lys Glu Leu Gln Lys
                635
                                    640
Gln Gly Arg Gln Glu Ala Leu Glu Trp Leu Ile Arg Glu Thr Gln
                650
                                    655
Pro Ile Ser Lys Gln His
                665
```

<210> 8 <211> 952 <212> PRT <213> Homo sapiens

<220>
<221> misc_feature
<223> Incyte Clone No: 001528

<400> 8 Met Ala Glu Gly Gly Ala Ala Asp Leu Asp Thr Gln Arg Ser Asp Ile Ala Thr Leu Leu Lys Thr Ser Leu Arg Lys Gly Asp Thr Trp 25 Tyr Leu Val Asp Ser Arg Trp Phe Lys Gln Trp Lys Lys Tyr Val Gly Phe Asp Ser Trp Asp Lys Tyr Gln Met Gly Asp Gln Asn Val 50 55 Tyr Pro Gly Pro Ile Asp Asn Ser Gly Leu Leu Lys Asp Gly Asp 65 70 Ala Gln Ser Leu Lys Glu His Leu Ile Asp Glu Leu Asp Tyr Ile 80 Leu Leu Pro Thr Glu Gly Trp Asn Lys Leu Val Ser Trp Tyr Thr 95 100 Leu Met Glu Gly Gln Glu Pro Ile Ala Arg Lys Val Val Glu Gln 110 115 Gly Met Phe Val Lys Arg Cys Lys Val Glu Val Tyr Leu Thr Glu 125 Leu Lys Leu Cys Glu Asn Gly Asn Met Asn Asn Val Val Thr Arg 140 145 Arg Phe Ser Lys Ala Asp Thr Ile Asp Thr Ile Glu Lys Glu Ile 160 Arg Lys Ile Phe Ser Ile Pro Asp Glu Lys Glu Thr Arg Leu Trp 170 175 Asn Lys Tyr Met Ser Asn Thr Phe Glu Pro Leu Asn Lys Pro Asp 190 Ser Thr Ile Gln Asp Ala Gly Leu Tyr Gln Gly Gln Val Leu Val 200 205 Ile Glu Gln Lys Asn Glu Asp Gly Thr Arg Pro Arg Gly Pro Ser

				215					220					225
Thr	Pro	Asn	Val	Lys 230	Asn	Ser	Asn	Tyr	Cys 235	Leu	Pro	Ser	Tyr	Thr 240
Ala	Tyr	Lys	Asn	Tyr 245	Asp	Tyr	Ser	Glu	Pro 250	Gly	Arg	Asn	Asn	Glu 255
Gln	Pro	Gly	Leu	Cys 260	Gly	Leu	Ser	Asn		Gly	Asn	Thr	Cys	
Met	Asn	Ser	Ala	Ile 275	Gln	Cys	Leu	Ser		Thr	Pro	Pro	Leu	
Glu	Tyr	Phe	Leu	Asn 290	Asp	Lys	Tyr	Gln		Glu	Leu	Asn	Phe	
Asn	Pro	Leu	Gly	Met 305	Arg	Gly	Glu	Ile	Ala 310	Lys	Ser	Tyr	Ala	
Leu	Ile	Lys	Gln	Met 320	Trp	Ser	Gly	Lys	Phe 325	Ser	Tyr	Val	Thr	
Arg	Ala	Phe	Lys	Thr 335	Gln	Val	Gly	Arg	Phe 340	Ala	Pro	Gln	Phe	
Gly	Tyr	Gln	Gln	Gln 350	Asp	Cys	Gln	Glu	Leu 355	Leu	Ala	Phe	Leu	
Asp	Gly	Leu	His	Glu 365	Asp	Leu	Asn	Arg	Ile 370	Arg	Lys	Lys	Pro	Tyr 375
Ile	Gln	Leu	Lys	Asp 380	Ala	Asp	Gly	Arg	Pro 385	Asp	Lys	Val	Val	Ala 390
				395					400		_		Ile	405
				410					415				Cys	420
				425					430			_	Tyr	435
				440					445				Val	450
				455					460			_	Lys	465
				470					475		-		Ala	480
				485					490				Thr	495
				500					505				Glu	510
				515			_	_	520	_			Glu	525
				530					535				Pro	540
				545					550				His	555
				560					565				Pro	570
				575					580				Arg	585
				590					595				Glu	600
				605					610				Gly	615
				620					625				Thr	630
GIU	PEO	Asp	Asp	635	ser	ser	GIN	Asp	Gln 640	Glu	ьeu	Pro	Ser	Glu 645

```
Asn Glu Asn Ser Gln Ser Glu Asp Ser Val Gly Gly Asp Asn Asp
                  650
                                      655
 Ser Glu Asn Gly Leu Cys Thr Glu Asp Thr Cys Lys Gly Gln Leu
                  665
                                      670
 Thr Gly His Lys Lys Arg Leu Phe Thr Phe Gln Phe Asn Asn Leu
                                      685
 Gly Asn Thr Asp Ile Asn Tyr Ile Lys Asp Asp Thr Arg His Ile
                  695
                                     . 700
 Arg Phe Asp Asp Arg Gln Leu Arg Leu Asp Glu Arg Ser Phe Leu
                                      715
 Ala Leu Asp Trp Asp Pro Asp Leu Lys Lys Arg Tyr Phe Asp Glu
                  725
                                     730
 Asn Ala Ala Glu Asp Phe Glu Lys His Glu Ser Val Glu Tyr Lys
                 740
                                      745
 Pro Pro Lys Lys Pro Phe Val Lys Leu Lys Asp Cys Ile Glu Leu
                 755
                                     760
 Phe Thr Thr Lys Glu Lys Leu Gly Ala Glu Asp Pro Trp Tyr Cys
                 770
                                     775
Pro Asn Cys Lys Glu His Gln Gln Ala Thr Lys Lys Leu Asp Leu
                 785
                                     790
Trp Ser Leu Pro Pro Val Leu Val Val His Leu Lys Arg Phe Ser
                 800
                                                          810
Tyr Ser Arg Tyr Met Arg Asp Lys Leu Asp Thr Leu Val Asp Phe
                 815
                                    820
Pro Ile Asn Asp Leu Asp Met Ser Glu Phe Leu Ile Asn Pro Asn
                 830
                                     835
Ala Gly Pro Cys Arg Tyr Asn Leu Ile Ala Val Ser Asn His Tyr
                 845
Gly Gly Met Gly Gly His Tyr Thr Ala Phe Ala Lys Asn Lys
                                     865
Asp Asp Gly Lys Trp Tyr Tyr Phe Asp Asp Ser Ser Val Ser Thr
                                                         870
                                     880
Ala Ser Glu Asp Gln Ile Val Ser Lys Ala Ala Tyr Val Leu Phe
                                     895
Tyr Gln Arg Gln Asp Thr Phe Ser Gly Thr Gly Phe Phe Pro Leu
                905
                                     910
Asp Arg Glu Thr Lys Gly Ala Ser Ala Ala Thr Gly Ile Pro Leu
                920
                                    925
Glu Ser Asp Glu Asp Ser Asn Asp Asn Asp Asn Asp Ile Glu Asn
                935
                                    940
Glu Asn Cys Met His Thr Asn
                950
```

```
<210> 9
```

<400> 9

Met Leu His Pro Glu Thr Ser Pro Gly Arg Gly His Leu Leu Ala 1 5 10 15 Val Leu Leu Ala Leu Leu Gly Thr Ala Trp Ala Glu Val Trp Pro

<211> 166

<212> PRT

<213> Homo sapiens

<220>

<221> misc_feature

<223> Incyte Clone No: 998626

```
20
                                     25
Pro Gln Leu Gln Glu Gln Ala Pro Met Ala Gly Ala Leu Asn Arg
                 35
                                     40
Lys Glu Ser Phe Leu Leu Ser Leu His Asn Arg Leu Arg Ser
                 50
                                     55
Trp Val Gln Pro Pro Ala Ala Asp Met Arg Arg Leu Asp Trp Ser
Asp Ser Leu Ala Gln Leu Ala Gln Ala Arg Ala Ala Leu Cys Gly
                                     85
Ile Pro Thr Pro Ser Leu Ala Ser Gly Leu Trp Arg Thr Leu Gln
                                    100
Val Gly Trp Asn Met Gln Leu Leu Pro Ala Gly Leu Ala Ser Phe
                110
                                    115
Val Glu Val Val Ser Leu Trp Phe Ala Glu Gly Gln Arg Tyr Ser
                125
                                  130
His Ala Ala Gly Glu Cys Ala Arg Asn Ala Thr Cys Thr His Tyr
                140
                                   145
Thr Gln Leu Val Trp Ala Thr Ser Ser Gln Leu Gly Cys Gly Arg
                155
                                    160
His
```

<210> 10

<211> 543

<212> PRT

<213> Homo sapiens

<220>

<221> misc_feature

<223> Incyte Clone No: 1393301

<400> 10

Met Arg Lys Pro Ala Ala Gly Phe Leu Pro Ser Leu Leu Lys Val Leu Leu Pro Leu Ala Pro Ala Ala Gln Asp Ser Thr Gln Ala Ser Thr Pro Gly Ser Pro Leu Ser Pro Thr Glu Tyr Glu Arq Phe Phe Ala Leu Leu Thr Pro Thr Trp Lys Ala Glu Thr Thr Cys 50 55 Arg Leu Arg Ala Thr His Gly Cys Arg Asn Pro Thr Leu Val Gln 65 70 Leu Asp Gln Tyr Glu Asn His Gly Leu Val Pro Asp Gly Ala Val 80 85 Cys Ser Asn Leu Pro Tyr Ala Ser Trp Phe Glu Ser Phe Cys Gln 95 100 Phe Thr His Tyr Arg Cys Ser Asn His Val Tyr Tyr Ala Lys Arg 110 115 Val Leu Cys Ser Gln Pro Val Ser Ile Leu Ser Pro Asn Thr Leu 125 130 Lys Glu Ile Glu Ala Ser Ala Glu Val Ser Pro Thr Thr Met Thr 140 145 Ser Pro Ile Ser Pro His Phe Thr Val Thr Glu Arg Gln Thr Phe 155 Gln Pro Trp Pro Glu Arg Leu Ser Asn Asn Val Glu Glu Leu Leu 175 Gln Ser Ser Leu Ser Leu Gly Gly Gln Glu Gln Ala Pro Glu His

```
185
                                     190
 Lys Gln Glu Gln Gly Val Glu His Arg Gln Glu Pro Thr Gln Glu
 His Lys Gln Glu Glu Gly Gln Lys Gln Glu Glu Glu Glu Glu
                                     220
 Gln Glu Glu Gly Lys Gln Glu Glu Gly Gln Gly Thr Lys Glu
                                     235
 Gly Arg Glu Ala Val Ser Gln Leu Gln Thr Asp Ser Glu Pro Lys
                 245
                                     250
 Phe His Ser Glu Ser Leu Ser Ser Asn Pro Ser Ser Phe Ala Pro
                                     265
 Arg Val Arg Glu Val Glu Ser Thr Pro Met Ile Met Glu Asn Ile
                 275
                                     280
 Gln Glu Leu Ile Arg Ser Ala Gln Glu Ile Asp Glu Met Asn Glu
                 290
                                   . 295
 Ile Tyr Asp Glu Asn Ser Tyr Trp Arg Asn Gln Asn Pro Gly Ser
                 305
                                     310
 Leu Leu Gln Leu Pro His Thr Glu Ala Leu Leu Val Leu Cys Tyr
                 320
                                     325
 Ser Ile Val Glu Asn Thr Cys Ile Ile Thr Pro Thr Ala Lys Ala
                 335
                                     340
Trp Lys Tyr Met Glu Glu Glu Ile Leu Gly Phe Gly Lys Ser Val
Cys Asp Ser Leu Gly Arg Arg His Met Ser Thr Cys Ala Leu Cys
Asp Phe Cys Ser Leu Lys Leu Glu Gln Cys His Ser Glu Ala Ser
                                     385
Leu Gln Arg Gln Gln Cys Asp Thr Ser His Lys Thr Pro Phe Val
                                    400
Ser Pro Leu Leu Ala Ser Gln Ser Leu Ser Ile Gly Asn Gln Val
                410
                                    415
Gly Ser Pro Glu Ser Gly Arg Phe Tyr Gly Leu Asp Leu Tyr Gly
                425
                                    430
Gly Leu His Met Asp Phe Trp Cys Ala Arg Leu Ala Thr Lys Gly
                440
                                    445
Cys Glu Asp Val Arg Val Ser Gly Trp Leu Gln Thr Glu Phe Leu
                455
                                    460
Ser Phe Gln Asp Gly Asp Phe Pro Thr Lys Ile Cys Asp Thr Asp
                470
                                    475
Tyr Ile Gln Tyr Pro Asn Tyr Cys Ser Phe Lys Ser Gln Gln Cys
                485
                                    490
Leu Met Arg Asn Arg Asn Arg Lys Val Ser Arg Met Arg Cys Leu
                500
                                    505
Gln Asn Glu Thr Tyr Ser Ala Leu Ser Pro Gly Lys Ser Glu Asp
                515
                                    520
Val Val Leu Arg Trp Ser Gln Glu Phe Ser Thr Leu Thr Leu Gly
                530
                                    535
Gln Phe Gly
```

<210> 11

<211> 83

<212> PRT

<213> Homo sapiens

<220>

<221> misc_feature

<223> Incyte Clone No: 1444055

<400> 11 Met Ile Gly Trp Asp Ser Leu Arg Leu Ile Leu Gly Asn Thr Asp 10 Asn Val Ser Arg Arg Asp Ser Thr Arg Gly Ser Ile Phe Ile Thr 20 25 Gln Leu Ile Ala Cys Phe Gln Arg Tyr Ser Trp Arg Cys His Leu 35 40 Glu Glu Val Phe Trp Lys Val Gln Gln Ala Phe Glu Ser Pro Glu 50 55 Ala Thr Val Gln Met Pro Thr Ile Glu Arg Val Ser Met Thr Arg 65 70 Tyr Phe Tyr Leu Phe Pro Gly Asn

<210> 12 <211> 648 <212> PRT <213> Homo sapiens

<220>
<221> misc_feature
<223> Incyte Clone No: 1650177

200

<400> 12 Met Leu Gly Ser Leu Val Leu Arg Arg Lys Ala Leu Ala Pro Arg 10 Leu Leu Leu Arg Leu Leu Arg Ser Pro Thr Leu Arg Gly His Gly 20 25 Gly Ala Ser Gly Arg Asn Val Thr Thr Gly Ser Leu Gly Glu Pro 35 40 Gln Trp Leu Arg Val Ala Thr Gly Gly Arg Pro Gly Thr Ser Pro 50 Ala Leu Phe Ser Gly Arg Gly Ala Ala Thr Gly Gly Arg Gln Gly 65 Gly Arg Phe Asp Thr Lys Cys Leu Ala Ala Ala Thr Trp Gly Arg Leu Pro Gly Pro Glu Glu Thr Leu Pro Gly Gln Asp Ser Trp Asn 100 Gly Val Pro Ser Arg Ala Gly Leu Gly Met Cys Ala Leu Ala Ala 110 115 Ala Leu Val Val His Cys Tyr Ser Lys Ser Pro Ser Asn Lys Asp 125 Ala Ala Leu Leu Glu Ala Ala Arg Ala Asn Asn Met Gln Glu Val 140 145 Ser Ser Val Val Gln Val Leu Leu Ala Ala Gly Ala Asp Pro Asn 155 160 Leu Gly Asp Asp Phe Ser Ser Val Phe Lys Thr Ala Lys Glu Gln 170 175 Gly Ile His Ser Leu Glu Val Leu Ile Thr Arg Glu Asp Asp Phe 185 190 Asn Asn Arg Leu Asn Asn Arg Ala Ser Phe Lys Gly Cys Thr Ala

Leu His Tyr Ala Val Leu Ala Asp Asp Tyr Arg Thr Val Lys Glu

15/42

205

220

Let	ı Le	u Asj	o Gl	y Gly 230	/ Ala	Asn	Pro	Leu	Glr 235		J Ası	ı Glı	ı Met	Gly 240
His	Th	r Pro) Let	. Asp 245	Tyr	Ala	Arg	Glu		glı Glı	ı Val	L Met	Lys	Leu 255
Lev	a Arg	Thi	r Sei	Gli 260	ı Ala	Lys	Tyr	Gln		Lys	Glr	a Arg	g Lys	Arg
Glu	ı Ala	a Glı	ı Glu		, Arg	Arg	Phe	Pro	Leu	Glu	Glr	Arg	, Leu	270 Lys
Glu	His	s Ile	e Ile		, Gln	Glu	Ser	Ala		Ala	Thr	· Val	Gly	285 Ala
Ala	Ile	e Arg	J Arg	, Lys	Glu	Asn	Gly	Trp		Asp	Glu	Glu	His	300 Pro
Leu	va]	Phe	e Lev	305 Phe	Leu	Gly	Ser	Ser		Ile	Gly	' Lys	Thr	315 Glu
Leu	Ala	Lys	Glr	320 Thr	Ala	Lys	Tyr	Met		Lys	Asp	Ala	Lys	330 Lys
Gly	Phe	· Ile	Arg	335 Leu	Asp	Met	Ser	Glu	340 Phe		Glu	Arg	His	345 Glu
Val	Ala	Lys	Phe	350 Ile	Gly	Ser	Pro	Pro	355 Gly		Val	Gly	His	360 Glu
C1	C1.	- (1)	. 01-	365		_	_	_	370					375
GIU	. Сту	GIY	GIN	380	Thr	гÀг	Lys	Leu	Lys 385	Gln	Cys	Pro	Asn	
Val	Val	Leu	Phe		Glu	Val	Asp	Lys		His	Pro	Asp	Val	390 Leu
				395					400					405
Thr	Ile	Met	Leu	Gln	Leu	Phe	Asp	Glu		Arg	Leu	Thr	Asp	Gly
Lys	Glv	Lvs	Thr	410 Ile	Asp	Cvs	Lve	Aen	415	т1 о	Dho	T1.0	M	420
				425					430					435
Ser	Asn	Val	Ala	Ser	Asp	${\tt Glu}$	Ile	Ala	Gln	His	Ala	Leu	Gln	Leu
				440					445					450
Arg	GIII	GIU	АТА	455	Glu	мет	ser	Arg	Asn 460	Arg	Ile	Ala	Glu	
Leu	Gly	Asp	Val		Ile	Ser	Asp	Lys		Thr	Ile	Ser	Lvs	465 Asn
				470					475					480
Pne	rys	GLu	Asn	Val 485	Ile	Arg	Pro	Ile		Lys	Ala	His	Phe	
Arg	Asp	Glu	Phe		Gly	Arq	Ile	Asn	490 Glu	Tle	Val	ጥኒታ	Phe	495
				500					505					510
Pro	Phe	Cys	His	Ser	Glu	Leu	Ile	Gln		Val	Asn	Lys	Glu	Leu
Asn	Phe	Tro	Ala	515 Lvs	Arg	Δ1 a	Laro	C1 ~	520	774 -	2	T1 -		525
			212.02	530	ALG	ALA	цув	GIII	535	HIS	Asn	TTE	Thr	Leu 540
Leu	Trp	Asp	Arg	Glu	Val	Ala	Asp	Val	Leu	Val	Asp	Gly	Tyr	Asn
				545					550					555
vai	HIS	Tyr	GIĀ	560	Arg	Ser	Ile	Lys	His 565	Glu	Val	Glu	Arg	
Val	Val	Asn	Gln		Ala	Ala	Ala	Tvr	Glu	Gln	Asp	Leu	T.em	570 Pro
				575					580					585
Gly	Gly	Cys	Thr	Leu	Arg	Ile	Thr	Val		Asp	Ser	Asp	Lys	Gln
Leu	Leu	Lvs	Ser	590 Pro	Glu	T.ess	Dro	Ser	595 Dro	C1 n	71-	01	•	600
		-,0	001	605	O.L.	Dea	PIO	SEI	610	GIII	Ala	GIU	rys	Arg 615
Leu	Pro	Lys	Leu	Arg	Leu	Glu	Ile	Ile		Lys	Asp	Ser	Ļys	Thr
				620					625					630
wr.d	arg	ьеи	Asp	11e	Arg	Ala	Pro			Pro	Glu	Lys	Val	
Asn	Thr	Ile							640					645

```
<210> 13
 <211> 672
 <212> PRT
 <213> Homo sapiens
 <220>
 <221> misc_feature
 <223> Incyte Clone No: 1902576
<400> 13
Met Arg Ala Gly Arg Gly Ala Thr Pro Ala Arg Glu Leu Phe Arg
Asp Ala Ala Phe Pro Ala Ala Asp Ser Ser Leu Phe Cys Asp Leu
Ser Thr Pro Leu Ala Gln Phe Arg Glu Asp Ile Thr Trp Arg Arg
                                      40
Pro Gln Glu Ile Cys Ala Thr Pro Arg Leu Phe Pro Asp Asp Pro
                                      55
Arg Glu Gly Gln Val Lys Gln Gly Leu Leu Gly Asp Cys Trp Phe
                                      70
Leu Cys Ala Cys Ala Ala Leu Gln Lys Ser Arg His Leu Leu Asp
                 80
                                      85
Gln Val Ile Pro Pro Gly Gln Pro Ser Trp Ala Asp Gln Glu Tyr
                 95
                                     100
Arg Gly Ser Phe Thr Cys Arg Ile Trp Gln Phe Gly Arg Trp Val
                110
                                     115
Glu Val Thr Thr Asp Asp Arg Leu Pro Cys Leu Ala Gly Arg Leu
                125
                                     130
Cys Phe Ser Arg Cys Gln Arg Glu Asp Val Phe Trp Leu Pro Leu
                140
                                     145
Leu Glu Lys Val Tyr Ala Lys Val His Gly Ser Tyr Glu His Leu
                155
                                     160
Trp Ala Gly Gln Val Ala Asp Ala Leu Val Asp Leu Thr Gly Gly
                170
                                     175
Leu Ala Glu Arg Trp Asn Leu Lys Gly Val Ala Gly Ser Gly Gly
                                     190
Gln Gln Asp Arg Pro Gly Arg Trp Glu His Arg Thr Cys Arg Gln
Leu Leu His Leu Lys Asp Gln Cys Leu Ile Ser Cys Cys Val Leu
                                     220
Ser Pro Arg Ala Gly Ala Arg Glu Leu Gly Glu Phe His Ala Phe
                230
                                    235
Ile Val Ser Asp Leu Arg Glu Leu Gln Gly Gln Ala Gly Gln Cys
                245
                                    250
Ile Leu Leu Arg Ile Gln Asn Pro Trp Gly Arg Arg Cys Trp
                260
                                    265
Gln Gly Leu Trp Arg Glu Gly Glu Gly Trp Ser Gln Val Asp
                275
                                    280
Ala Ala Val Ala Ser Glu Leu Leu Ser Gln Leu Gln Glu Gly Glu
                290
                                    295
Phe Trp Val Glu Glu Glu Phe Leu Arg Glu Phe Asp Glu Leu
                305
                                    310
Thr Val Gly Tyr Pro Val Thr Glu Ala Gly His Leu Gln Ser Leu
                320
                                    325
Tyr Thr Glu Arg Leu Leu Cys His Thr Arg Ala Leu Pro Gly Ala
                335
                                    340
```

```
Trp Val Lys Gly Gln Ser Ala Gly Gly Cys Arg Asn Asn Ser Gly
                 350
Phe Pro Ser Asn Pro Lys Phe Trp Leu Arg Val Ser Glu Pro Ser
                                     370
Glu Val Tyr Ile Ala Val Leu Gln Arg Ser Arg Leu His Ala Ala
                                     385
Asp Trp Ala Gly Arg Ala Arg Ala Leu Val Gly Asp Ser His Thr
                 395
                                     400
Ser Trp Ser Pro Ala Ser Ile Pro Gly Lys His Tyr Gln Ala Val
                 410
                                     415
Gly Leu His Leu Trp Lys Val Glu Lys Arg Arg Val Asn Leu Pro
                 425
                                     430
Arg Val Leu Ser Met Pro Pro Val Ala Gly Thr Ala Cys His Ala
                 440
                                     445
Tyr Asp Arg Glu Val His Leu Arg Cys Glu Leu Ser Pro Gly Tyr
                455
                                     460
Tyr Leu Ala Val Pro Ser Thr Phe Leu Lys Asp Ala Pro Gly Glu
                470
Phe Leu Leu Arg Val Phe Ser Thr Gly Arg Val Ser Leu Ser Ala
                 485
Ile Arg Ala Val Ala Lys Asn Thr Ala Pro Gly Ala Ala Leu Pro
Ala Gly Glu Trp Gly Thr Val Gln Leu Arg Gly Ser Trp Arg Val
                                     520
Gly Gln Thr Ala Gly Gly Ser Arg Asn Phe Ala Ser Tyr Pro Thr
                                     535
Asn Pro Cys Phe Pro Phe Ser Val Pro Glu Gly Pro Gly Pro Arg
                545
                                     550
Cys Val Arg Ile Thr Leu His Gln His Cys Arg Pro Ser Asp Thr
                560
                                     565
Glu Phe His Pro Ile Gly Phe His Ile Phe Gln Val Pro Glu Gly
                575
                                    580
Gly Arg Ser Gln Asp Ala Pro Pro Leu Leu Leu Gln Glu Pro Leu
                590
                                    595
Leu Ser Cys Val Pro His Arg Tyr Ala Gln Glu Val Ser Arg Leu
                605
                                    610
Cys Leu Leu Pro Ala Gly Thr Tyr Lys Val Val Pro Ser Thr Tyr
                620
                                    625
Leu Pro Asp Thr Glu Gly Ala Phe Thr Val Thr Ile Ala Thr Arg
                635
                                    640
Ile Asp Arg Pro Ser Ile His Ser Gln Glu Met Leu Gly Gln Phe
                650
                                    655
Leu Gln Glu Val Ser Val Met Ala Val Met Lys Thr
```

```
<210> 14
<211> 80
<212> PRT
<213> Homo sapiens
<220>
<221> misc feature
```

<223> Incyte Clone No: 2024210

<400> 14 Met Lys Leu Ser Gly Met Phe Leu Leu Ser Leu Ala Leu Phe

<210> 15 <211> 795 <212> PRT <213> Homo sapiens

<220>

<221> misc feature

<223> Incyte Clone No: 2523109

<400> 15

Gly Pro Gly Pro Arg Pro Leu Trp Gly Pro Gly Pro Ala Trp Ser Pro Gly Phe Pro Ala Arg Pro Gly Arg Gly Arg Pro Tyr Met Ala 35 40 Ser Arg Pro Pro Gly Asp Leu Ala Glu Ala Gly Gly Arg Ala Leu 50 55 Gln Ser Leu Gln Leu Arg Leu Leu Thr Pro Thr Phe Glu Gly Ile 70 Asn Gly Leu Leu Lys Gln His Leu Val Gln Asn Pro Val Arg 85 Leu Trp Gln Leu Leu Gly Gly Thr Phe Tyr Phe Asn Thr Ser Arg Leu Lys Gln Lys Asn Lys Glu Lys Asp Lys Ser Lys Gly Lys Ala Pro Glu Glu Asp Glu Glu Glu Arg Arg Arg Glu Arg Asp Asp 125 130 Gln Met Tyr Arg Glu Arg Leu Arg Thr Leu Leu Val Ile Ala Val 140 145 Val Met Ser Leu Leu Asn Ala Leu Ser Thr Ser Gly Gly Ser Ile 160 Ser Trp Asn Asp Phe Val His Glu Met Leu Ala Lys Gly Glu Val 170 175 Gln Arg Val Gln Val Val Pro Glu Ser Asp Val Val Glu Val Tyr 185 190 Leu His Pro Gly Ala Val Val Phe Gly Arg Pro Arg Leu Ala Leu 200 205 Met Tyr Arg Met Gln Val Ala Asn Ile Asp Lys Phe Glu Glu Lys 215 220 Leu Arg Ala Ala Glu Asp Glu Leu Asn Ile Glu Ala Lys Asp Arg 230 235 Ile Pro Val Ser Tyr Lys Arg Thr Gly Phe Phe Gly Asn Ala Leu 250

Met Ala Val Leu Leu Leu Leu Arg Ala Leu Arg Arg Gly Pro

```
Tyr Ser Val Gly Met Thr Ala Val Gly Leu Ala Ile Leu Trp Tyr
                  260
                                      265
  Val Phe Arg Leu Ala Gly Met Thr Gly Arg Glu Gly Gly Phe Ser
 Ala Phe Asn Gln Leu Lys Met Ala Arg Phe Thr Ile Val Asp Gly
                                      295
 Lys Met Gly Lys Gly Val Ser Phe Lys Asp Val Ala Gly Met His
                                      310
 Glu Ala Lys Leu Glu Val Arg Glu Phe Val Asp Tyr Leu Lys Ser
                  320
                                      325
 Pro Lys Arg Phe Leu Gln Leu Gly Ala Lys Val Pro Lys Gly Ala
                  335
                                      340
 Leu Leu Gly Pro Pro Gly Cys Gly Lys Thr Leu Leu Ala Lys
                  350
                                      355
 Ala Val Ala Thr Glu Ala Gln Val Pro Phe Leu Ala Met Ala Gly
                  365
                                      370
 Pro Glu Phe Val Glu Val Ile Gly Gly Leu Gly Ala Ala Arg Val
                  380
                                      385
 Arg Ser Leu Phe Lys Glu Ala Arg Ala Arg Ala Pro Cys Ile Val
                  395
 Tyr Ile Asp Glu Ile Asp Ala Val Gly Lys Lys Arg Ser Thr Thr
                 410
 Met Ser Gly Phe Ser Asn Thr Glu Glu Glu Gln Thr Leu Asn Gln
 Leu Leu Val Glu Met Asp Gly Met Gly Thr Thr Asp His Val Ile
 Val Leu Ala Ser Thr Asn Arg Ala Asp Ile Leu Asp Gly Ala Leu
                                     460
 Met Arg Pro Gly Arg Leu Asp Arg His Val Phe Ile Asp Leu Pro
                                     475
 Thr Leu Gln Glu Arg Arg Glu Ile Phe Glu Gln His Leu Lys Ser
                                     490
Leu Lys Leu Thr Gln Ser Ser Thr Phe Tyr Ser Gln Arg Leu Ala
                 500
                                     505
Glu Leu Thr Pro Gly Phe Ser Gly Ala Asp Ile Ala Asn Ile Cys
                 515
                                     520
Asn Glu Ala Ala Leu His Ala Ala Arg Glu Gly His Thr Ser Val
                 530
                                     535
His Thr Leu Asn Phe Glu Tyr Ala Val Glu Arg Val Leu Ala Gly
                 545
                                     550
Thr Ala Lys Lys Ser Lys Ile Leu Ser Lys Glu Glu Gln Lys Val
                 560
                                     565
Val Ala Phe His Glu Ser Gly His Ala Leu Val Gly Trp Met Leu
                 575
                                     580
Glu His Thr Glu Ala Val Met Lys Val Ser Ile Thr Pro Arg Thr
                590
                                     595
Asn Ala Ala Leu Gly Phe Ala Gln Met Leu Pro Arg Asp Gln His
                605
                                     610
Leu Phe Thr Lys Glu Gln Leu Phe Glu Arg Met Cys Met Ala Leu
                620
Gly Gly Arg Ala Ser Glu Ala Leu Ser Phe Asn Glu Val Thr Ser
                                     640
Gly Ala Gln Asp Asp Leu Arg Lys Val Thr Arg Ile Ala Tyr Ser
                650
                                    655
Met Val Lys Gln Phe Gly Met Ala Pro Gly Ile Gly Pro Ile Ser
                665
                                     670
Phe Pro Glu Ala Gln Glu Gly Leu Met Gly Ile Gly Arg Arg Pro
```

```
680
                                    685
                                                        690
Phe Ser Gln Gly Leu Gln Gln Met Met Asp His Glu Ala Arg Leu
                695
                       . 700
Leu Val Ala Lys Ala Tyr Arg His Thr Glu Lys Val Leu Gln Asp
                710
                                    715
Asn Leu Asp Lys Leu Gln Ala Leu Ala Asn Ala Leu Leu Glu Lys
                725
                                    730
Glu Val Ile Asn Tyr Glu Asp Ile Glu Ala Leu Ile Gly Pro Pro
                740
                                    745
Pro His Gly Pro Lys Lys Met Ile Ala Pro Gln Arg Trp Ile Asp
                755
Ala Gln Arg Glu Lys Gln Asp Leu Gly Glu Glu Glu Thr Glu Glu
                770
                                    775
Thr Gln Gln Pro Pro Leu Gly Gly Glu Glu Pro Thr Trp Pro Lys
                                 790
<210> 16
<211> 193
<212> PRT
<213> Homo sapiens
<220>
<221> misc_feature
<223> Incyte Clone No: 2588566
<400> 16
Met Pro Asp Ser Asp Arg His Leu Ser Ser His Phe Asn Leu Arg
                                    10
Met Lys Gly Ser Pro Ser Glu His Gly Ser Gln Gln Ser Ile Phe
                 20
Asn Arg Tyr Ala Gln Gln Arg Leu Asp Ile Asp Ala Thr Gln Leu
Gln Gly Leu Leu Asn Gln Glu Leu Leu Thr Gly Pro Pro Gly Asp
Met Phe Ser Leu Asp Glu Cys Arg Ser Leu Val Ala Leu Met Glu
Leu Lys Val Asn Gly Arg Leu Asp Gln Glu Glu Phe Ala Arg Leu
Trp Lys Arg Leu Val His Tyr Gln His Val Phe Gln Lys Val Gln
                 95
                                   100
Thr Ser Pro Gly Val Leu Leu Ser Ser Asp Leu Trp Lys Ala Ile
                110
                                   115
Glu Asn Thr Asp Phe Leu Arg Gly Ile Phe Ile Ser Arg Glu Leu
                125
                                   130
Leu His Leu Val Thr Leu Arg Tyr Ser Asp Ser Val Gly Arg Val
                140
                                   145
Ser Phe Pro Ser Leu Val Cys Phe Leu Met Arg Leu Glu Ala Met
               155
                                   160
Ala Lys Thr Phe Arg Asn Leu Ser Lys Asp Gly Lys Gly Leu Tyr
               170
                                   175
Leu Thr Glu Met Glu Trp Met Ser Leu Val Met Tyr Asn
               185
```

<210> 17 <211> 663

<212> PRT <213> Homo sapiens <220> <221> misc feature <223> Incyte Clone No: 2740570 <400> 17 Met Asp Leu Leu His Glu Glu Leu Lys Glu Gln Val Met Glu Val Glu Glu Asp Pro Gln Thr Ile Thr Thr Glu Glu Thr Met Glu Glu 25 Asp Lys Ser Gln Ser Asp Val Asp Phe Gln Ser Cys Glu Ser Cys Ser Asn Ser Asp Arg Ala Glu Asn Glu Asn Gly Ser Arg Cys Phe 50 55 Ser Glu Asp Asn Asn Glu Thr Thr Met Leu Ile Gln Asp Asp Glu 65 70 Asn Asn Ser Glu Met Ser Lys Asp Trp Gln Lys Glu Lys Met Cys 80 Asn Lys Ile Asn Lys Val Asn Ser Glu Gly Glu Phe Asp Lys Asp 95 100 Arg Asp Ser Ile Ser Glu Thr Val Asp Leu Asn Asn Gln Glu Thr 110 115 Val Lys Val Gln Ile His Ser Arg Ala Ser Glu Tyr Ile Thr Asp 125 Val His Ser Asn Asp Leu Ser Thr Pro Gln Ile Leu Pro Ser Asn 140 Glu Gly Val Asn Pro Arg Leu Ser Ala Ser Pro Pro Lys Ser Gly Asn Leu Trp Pro Gly Leu Ala Pro Pro His Lys Lys Ala Gln Ser 170 Ala Ser Pro Lys Arg Lys Lys Gln His Lys Lys Tyr Arg Ser Val 190 Ile Ser Asp Ile Phe Asp Gly Thr Ile Ile Ser Ser Val Gln Cys 205 Leu Thr Cys Asp Arg Val Ser Val Thr Leu Glu Thr Phe Gln Asp 215 220 Leu Ser Leu Pro Ile Pro Gly Lys Glu Asp Leu Ala Lys Leu His 230 235 Ser Ser Ser His Pro Thr Ser Ile Val Lys Ala Gly Ser Cys Gly 245 250 Glu Ala Tyr Ala Pro Gln Gly Trp Ile Ala Phe Phe Met Glu Tyr 260 265 Val Lys Arg Phe Val Val Ser Cys Val Pro Ser Trp Phe Trp Gly 275 280 Pro Val Val Thr Leu Gln Asp Cys Leu Ala Ala Phe Phe Ala Arg 290 295 Asp Glu Leu Lys Gly Asp Asn Met Tyr Ser Cys Glu Lys Cys Lys 305 310 Lys Leu Arg Asn Gly Val Lys Phe Cys Lys Val Gln Asn Phe Pro 320 325 Glu Ile Leu Cys Ile His Leu Lys Arg Phe Arg His Glu Leu Met 335 340 Phe Ser Thr Lys Ile Ser Thr His Val Ser Phe Pro Leu Glu Gly 355 Leu Asp Leu Gln Pro Phe Leu Ala Lys Asp Ser Pro Ala Gln Ile

```
370
Val Thr Tyr Asp Leu Leu Ser Val Ile Cys His His Gly Thr Ala
                380
                                     385
Ser Ser Gly His Tyr Ile Ala Tyr Cys Arg Asn Asn Leu Asn Asn
                395
                                     400
Leu Trp Tyr Glu Phe Asp Asp Gln Ser Val Thr Glu Val Ser Glu
                410
                                     415
Ser Thr Val Gln Asn Ala Glu Ala Tyr Val Leu Phe Tyr Arg Lys
                425
Ser Ser Glu Glu Ala Gln Lys Glu Arg Arg Arg Ile Ser Asn Leu
                                     445
Leu Asn Ile Met Glu Pro Ser Leu Leu Gln Phe Tyr Ile Ser Arg
Gln Trp Leu Asn Lys Phe Lys Thr Phe Ala Glu Pro Gly Pro Ile
                                    475
Ser Asn Asn Asp Phe Leu Cys Ile His Gly Gly Val Pro Pro Arg
                485
                                     490
Lys Ala Gly Tyr Ile Glu Asp Leu Val Leu Met Leu Pro Gln Asn
                500
                                    505
Ile Trp Asp Asn Leu Tyr Ser Arg Tyr Gly Gly Pro Ala Val
                515
                                    520
Asn His Leu Tyr Ile Cys His Thr Cys Gln Ile Glu Ala Glu Lys
                530
                                    535
Ile Glu Lys Arg Arg Lys Thr Glu Leu Glu Ile Phe Ile Arg Leu
                545
                                    550
Asn Arg Ala Phe Gln Lys Glu Asp Ser Pro Ala Thr Phe Tyr Cys
                560
                                    565
Ile Ser Met Gln Trp Phe Arg Glu Trp Glu Ser Phe Val Lys Gly
                575
                                    580
Lys Asp Gly Asp Pro Pro Gly Pro Ile Asp Asn Thr Lys Ile Ala
                590
                                    595
Val Thr Lys Cys Gly Asn Val Met Leu Arg Gln Gly Ala Asp Ser
                605
                                    610
Gly Gln Ile Ser Glu Glu Thr Trp Asn Phe Leu Gln Ser Ile Tyr
                620
                                    625
Gly Gly Gly Pro Glu Val Ile Leu Arg Pro Pro Val Val His Val
                                    640
Asp Pro Asp Ile Leu Gln Ala Glu Glu Lys Ile Glu Val Glu Thr
Arg Ser Leu
```

<210> 18

<211> 362

<212> PRT

<213> Homo sapiens

<220>

<221> misc_feature

<223> Incyte Clone No: 2820384

<400> 18

 Met
 Tyr
 Ser
 Cys
 Glu
 Arg
 Cys
 Lys
 Leu
 Arg
 Asn
 Gly
 Val
 Lys

 1
 5
 5
 10
 10
 15

 Tyr
 Cys
 Lys
 Val
 Leu
 Arg
 Leu
 Pro
 Glu
 Ile
 Leu
 Cys
 Ile
 His
 Leu

 Lys
 Arg
 Phe
 Arg
 His
 Glu
 Val
 Met
 Tyr
 Ser
 Phe
 Lys
 Ile
 Asn
 Ser

```
35
 His Val Ser Phe Pro Leu Glu Gly Leu Asp Leu Arg Pro Phe Leu
                  50
 Ala Lys Glu Cys Thr Ser Gln Ile Thr Thr Tyr Asp Leu Leu Ser
 Val Ile Cys His His Gly Thr Ala Gly Ser Gly His Tyr Ile Ala
                                      85
 Tyr Cys Gln Asn Val Ile Asn Gly Gln Trp Tyr Glu Phe Asp Asp
                                     100
 Gln Tyr Val Thr Glu Val His Glu Thr Val Val Gln Asn Ala Glu
                 110
                                     115
 Gly Tyr Val Leu Phe Tyr Arg Lys Ser Ser Glu Glu Ala Met Arg
                 125
                                     130
 Glu Arg Gln Gln Val Val Ser Leu Ala Ala Met Arg Glu Pro Ser
                 140
                                    145
 Leu Leu Arg Phe Tyr Val Ser Arg Glu Trp Leu Asn Lys Phe Asn
                 155
                                     160
Thr Phe Ala Glu Pro Gly Pro Ile Thr Asn Gln Thr Phe Leu Cys
                 170
                                     175
Ser His Gly Gly Ile Pro Pro His Lys Tyr His Tyr Ile Asp Asp
                 185
Leu Val Val Ile Leu Pro Gln Asn Val Trp Glu His Leu Tyr Asn
                 200
                                     205
Arg Phe Gly Gly Pro Ala Val Asn His Leu Tyr Val Cys Ser
                 215
Ile Cys Gln Val Glu Ile Glu Ala Leu Ala Lys Arg Arg Ile
                 230
Glu Ile Asp Thr Phe Ile Lys Leu Asn Lys Ala Phe Gln Ala Glu
                                     250
Glu Ser Pro Gly Val Ile Tyr Cys Ile Ser Met Gln Trp Phe Arg
                                    265
Glu Trp Glu Ala Phe Val Lys Gly Lys Asp Asn Glu Pro Pro Gly
                275
                                    280
Pro Ile Asp Asn Ser Arg Ile Ala Gln Val Lys Gly Ser Gly His
                290
                                    295
Val Gln Leu Lys Gln Gly Ala Asp Tyr Gly Gln Ile Ser Glu Glu
                305
                                    310
Thr Trp Thr Tyr Leu Asn Ser Leu Tyr Gly Gly Pro Glu Ile
                320
                                    325
Ala Ile Arg Gln Ser Val Ala Gln Arg Trp Ala Gln Arg Thr Cys
                335
                                    340
Thr Gly Ser Arg Arg Ser Lys Pro Arg Arg Gly Pro Cys Asp Leu
                350
                                    355
                                                        360
Leu Gly
```

```
<210> 19
<211> 210
<212> PRT
<213> Homo sapiens
<220>
```

<220>
<221> misc_feature
<223> Incyte Clone No: 2990692

<400> 19 Met Val Ser Leu Leu Pro Gly Glu Pro Pro Gln Lys Ile Pro Arg

```
10
Gly Val Tyr Gly Pro Leu Pro Glu Gly Arg Val Gly Leu Ile Leu
                 20
                                     25
Gly Arg Ser Ser Leu Asn Leu Lys Gly Val Gln Ile His Thr Gly
                                     40
Val Ile Tyr Ser Asp Tyr Lys Gly Gly Ile Gln Leu Val Ile Ser
                 50
                                     55
Ser Thr Val Pro Trp Ser Ala Asn Pro Gly Asp Arg Ile Ala Gln
                                     70
Leu Leu Leu Pro Tyr Val Lys Ile Gly Glu Asn Lys Thr Glu
Arg Thr Gly Gly Phe Gly Ser Thr Asn Pro Ala Gly Lys Ala Thr
                                    100
Tyr Trp Ala Asn Gln Val Ser Glu Asp Arg Pro Val Cys Thr Val
                110
                                    115
Thr Ile Pro Gly Lys Glu Phe Glu Gly Leu Val Asp Thr Gln Ala
                125
                                    130
Asp Val Ser Ile Ile Gly Ile Gly Thr Ala Ser Glu Val Tyr Gln
                                    145
Ser Ala Met Ile Leu His Cys Leu Gly Ser Asp Asn Gln Glu Ser
               155
                                    160
Thr Val Gln Pro Met Ile Thr Ser Ile Pro Ile Asn Leu Trp Gly
                170
                                    175
Arg Asp Leu Leu Gln Gln Trp His Ala Glu Ile Thr Ile Pro Ala
               185
                                    190
Ser Leu Tyr Ser Pro Arg Asn Gln Lys Ile Met Thr Lys Met Gly
```

<210> 20

<211> 283

<212> PRT

<213> Homo sapiens

<220>

<221> misc_feature

<223> Incyte Clone No: 4590384

<400> 20

Met Gly Leu Gly Leu Arg Gly Trp Gly Arg Pro Leu Leu Thr Val Ala Thr Ala Leu Met Leu Pro Val Lys Pro Pro Ala Gly Ser Trp 20 25 Gly Ala Gln Ile Ile Gly Gly His Glu Val Thr Pro His Ser Arg Pro Tyr Met Ala Ser Val Arg Phe Gly Gly Gln His His Cys Gly 55 Gly Phe Leu Leu Arg Ala Arg Trp Val Val Ser Ala Ala His Cys 65 70 Phe Ser His Arg Asp Leu Arg Thr Gly Leu Val Val Leu Gly Ala 80 85 His Val Leu Ser Thr Ala Glu Pro Thr Gln Gln Val Phe Gly Ile 95 100 Asp Ala Leu Thr Thr His Pro Asp Tyr His Pro Met Thr His Ala 110 115 Asn Asp Ile Cys Leu Leu Arg Leu Asn Gly Ser Ala Val Leu Gly 130

```
Pro Ala Val Gly Leu Leu Arg Leu Pro Gly Arg Arg Ala Arg Pro
                  140
                                      145
  Pro Thr Ala Gly Thr Arg Cys Arg Val Ala Gly Trp Gly Phe Val
                  155
                                      160
  Ser Asp Phe Glu Glu Leu Pro Pro Gly Leu Met Glu Ala Lys Val
                  170
                                      175
 Arg Val Leu Asp Pro Asp Val Cys Asn Ser Ser Trp Lys Gly His
                  185
                                      190
 Leu Thr Leu Thr Met Leu Cys Thr Arg Ser Gly Asp Ser His Arg
                  200
                                      205
 Arg Gly Phe Cys Ser Ala Asp Ser Gly Gly Pro Leu Val Cys Arg
                  215
                                      220
 Asn Arg Ala His Gly Leu Val Ser Phe Ser Gly Leu Trp Cys Gly
                  230
                                      235
 Asp Pro Lys Thr Pro Asp Val Tyr Thr Gln Val Ser Ala Phe Val
                  245
                                      250
 Ala Trp Ile Trp Asp Val Val Arg Arg Ser Ser Pro Gln Pro Gly
                  260
                                      265
                                                          270
 Pro Leu Pro Gly Thr Thr Arg Pro Pro Gly Glu Ala Ala
                  275
                                      280
 <210> 21
 <211> 896
 <212> DNA
 <213> Homo sapiens
 <220>
 <221> unsure
 <222> 660
 <223> a or g or c or t, unknown, or other
 <220>
 <221> misc_feature
 <223> Incyte Clone No: 1220330
<400> 21
atgccatcgc gccggcgcga tgccatcaaa gtcatgcaga ggttcgcggg gctgccggag 60
aceggeegea tggacecagg gacagtggee accatgegta ageceegetg etecetgeet 120
gacgtgctgg gcgtggcggg gctggtcagg cggcgtcgtc ggtacgctct gagcggcagc 180
gtgtggaaga agcgaaccct gacatggagg gtacgttcct tcccccagag ctcccagctg 240
agccaggaga ccgtgcgggt cctcatgagc tatgccctga tggcctgggg catggagtca 300
ggcctcacat ttcatgaggt ggattccccc cagggccagg agcccgacat cctcatcgac 360
tttgecegeg cettecacca ggacagetac ceettegacg ggttgggggg caccetagee 420
catgccttct tccctgggga gcaccccatc tccggggaca ctcactttga cgatgaggag 480
acctggactt ttgggtcaaa ggcctctcag cagctggagc aggagctggc aggcggctca 540
ccggttgatg aggagctggg cttcagccgg ggctggcgtg tgaatcctct gggtcctggc 600
agteetgage geetgagetg aatacagagg gaagaggetg ggageaagge egggtgetgn 660
ggcccgcagg cctgtgttct gagagtgcct gctacgagga gctctgtggt tccccaagga 720
gatgggaggg aagacctggg ggttgggggg ttggtacagg gggtaggggc agaaggaagg 780
gggcaagaag gcttgttgaa ccaaggggaa gaattggggg gaagggggg aattggaatg 840
gacetteaaa gggggttggt taaagggggt taattgggee ttttaaggga aggggg
<210> 22
<211> 4906
<212> DNA
<213> Homo sapiens
```

<220> <221> misc feature <223> Incyte Clone No: 1342493 <400> 22 ttgggatgtg cggagtcagt gccagcccgg tcccggccaa gcggagtgtg agcccggcgc 60 ctccaacgca acaccccgcg ccctcgccgg ctcccccgcc gtgcggatcg gagccagccg 120 gttgttgcca tggcattcgc cagctggtgg tacaagacgc atgtcagtga aaaaaccagt 180 gaatcgcctt ccaaaccagg agaaaagaaa ggatcagatg agaaaaaagc agcaagcctc 240 ggcagcagtc aatcctccag aacctatgct ggtggaacag cctcggccac caaggtgtca 300 gcttcctctg gtgcaaccag caagtcttcc agtatgaatc ccacagaaac caaggctgta 360 aaaacagaac ctgagaagaa gtcacagtca accaagctgt ctgtggttca tgagaaaaaa 420 tcccaagaag gaaagccaaa agaacacaca gagccaaaaa gcctacccaa gcaggcatca 480 gatacaggaa gtaacgatgc tcacaataaa aaagcagttt ccagatcagc tgaacagcag 540 ccatcagaga aatcaacaga accaaagact aaaccacaag acatgatttc tgctggtgga 600 aaatcattaa ccccagctgt gccagttgaa tctaaaccgg ataaaccatc gggaaagtca 720 ggcatggatg ctgctttgga tgacttaata gatactttag gaggacctga agaaactgaa 780 gaagaaaata caacgtatac tggaccagaa gtttcagatc caatgagttc cacctacata 840 gaggaattgg gtaaaagaga agtcacaatt cctccaaaat atagggaact attggctaaa 900 aaggaaggga tcacagggcc tcctgcagac tcttcgaaac ccatagggcc agatgatgct 960 atagacgcct tgtcatctga cttcacctgt gggtcgccta cagctgctgg aaagaaact 1020 gaaaaagagg aatctacaga agttttaaaa gctcagtcag cagggacagt cagaagtgct 1080 getecacece aagagaagaa aagaaaggtg gagaaggata caatgagtga teaagcacte 1140 gaggetetgt eggetteact gggeaceegg caageagaac etgagetega ceteegetea 1200 attaaggaag tegatgagge aaaagetaaa gaagaaaaae tagagaagtg tggtgaggat 1260 gatgaaacaa tcccatctga gtacagatta aaaccagcca cggataaaga tggaaaacca 1320 ctattgccag agcctgaaga aaaacccaag cctcggagtg aatcagaact cattgatgaa 1380 ctttcagaag attttgaccg gtctgaatgt aaagagaaac catctaagcc aactgaaaag 1440 acagaagaat ctaaggccgc tgctccagct cctgtgtcgg aggctgtgtg tcggacctcc 1500 atgtgtagta tacagtcagc accecetgag ceggetacet tgaagggcae agtgecagat 1560 gatgctgtag aagccttggc tgatagcctg gggaaaaagg aagcagatcc agaagatgga 1620 aaacctgtga tggataaagt caaggagaag gccaaagaag aagaccgtga aaagcttggt 1680 gaaaaagaag aaacaattcc tcctgattat agattagaag aggtcaagga taaagatgga 1740 aagccactcc tgccaaaaga gtctaaggaa cagcttccac ccatgagtga agacttcctt 1800 ctggatgctt tgtctgagga cttctctggt ccacaaaatg cttcatctct taaatttgaa 1860 gatgctaaac ttgctgctgc catctctgaa gtggtttccc aaaccccagc ttcaacgacc 1920 caagetggag ceceaceeg tgataceteg cagagtgaca aagacetega tgatgeettg 1980 gataaactct ctgacagtct aggacaaagg cagcctgacc cagatgagaa caaaccaatg 2040 gaagataaag taaaggaaaa agctaaagct gaacatagag acaagcttgg agaaagagat 2100 gacactatec caectgaata cagacatete etggatgata atggacagga caaaccagtg 2160 aagccaccta caaagaaatc agaggattca aagaaacctg cagatgacca agaccccatt 2220 gatgetetet caggagatet ggacagetgt ceetecacta cagaaacete acagaacaca 2280 gcaaaggata agtgcaagaa ggctgcttcc agctccaaag cacctaagaa tggaggtaaa 2340 gcgaaggatt cagcaaagac aacagaggaa acttccaagc caaaagatga ctaaagaaat 2400 acaagttaag gtatctggta tctgcatgta aaatcttcag ctggtggatg gtgacttttg 2460 aagaacaaaa ggctttggca acagaaaaca attgttctgg gtgatttcta gaatggtttt 2520 tgttgagtct ctgaacatcc taaatattgg tttgttattc ttttccagaa agaaaatgaa 2580 tttgactggt tcacctgtgt actgagtatt gataaacttt gaatttttt aattgccttc 2640 aattgggaga gaaagcttta tatttgtaag aaatatattt gataaagttt cttaaagcaa 2700 caccaaaaaa acaaaagaaa agctaagtga atttttgcac attctacaca cagtgcctgt 2760 aaatctcatt tgtattttca gtttgccctt aatttttttt gttagtgttt agaaaacaat 2820 gttttaaaca ttcttcagtg ttctgatttc ttattacccc ctttcctctt gggcttttga 2880 actgtatttg atgttgcttt gggataatgt ttataagtca aacataagat attgtacatt 2940 gggcacatat ctcctcttgg gctgctaata ataaattaat aacaggtaac ctggacaaac 3000 caggaagcac caaacccctt ttcagtttga actcttcttt gccaggtgtg aggacttctg 3060 catcttacag tcagcacaga acacactgag acttgaatca agtcagcaac agagcaaaat 3120

```
aaaggttaga taagtccttg tgtagcaaat ttcgagcata agaaataaaa tctaattaat 3180
  tcttagggta ctcatctgac ttgaactctg ttggtttact gtgttagtaa actgtgcttt 3240
  ctattatcta tacataaaac ctgagcagca actgtgtctt tagagctatt gccacattag 3300
  cctttgcact gtatagcgtc tggctttatg gaacttaagt ttaccaaata taaaaagaaa 3360
  cttctgcttt taaaaaaatt atatatat atattaaatt tgaaacctgc atttctccca 3420
  cagcaatgta agaagtaggc tetgatgtee taccaetttg aatggtttte taatatetta 3480
  atgaatagtt cctgaacatt gcactgatat catcgattag aattttgata tttaatttca 3540
  tctttatttc ctggtagaga atgcaggaaa agatgtcagg tacataacat aaaacagatt 3600
  gggaatttat tgtttccaaa gggcatggcc ttccttagca tcagtttgaa gcttttgtta 3660
  tgacttagct gacttgtggc agcggggcaa gcaaaaacaa taacactgct tataaatggc 3720
  accacatett gttaacetee eececaaata etetetgaaa gteatgeaca tacetatggg 3780
  attttacaca ccaccagett aaaatgetat gtetetatee atcagaaata gteattatte 3840
  tatttttaag gcagcaacaa gaaaagaaaa aacacttttc ctgagggatt tctaaccatg 3900
  tatctaatcc tcccattttg ggcagtatag gtgtttgctt ttttgttttc ttttttaag 3960
 aaaaaccttg aaacctttga cactgacaga tgtgtttgca aggatacggc tgcagtatta 4020
 ctaatttcca tgtgtatctg gaagtatttt taaatggcat accaaaatcc agaagtttaa 4080
 agatgcctat aaaagtaaac aacatttatt taaaaagaac tctgaatatg ccttctttt 4140
 taattagaaa tatcttcgag acttgggtgt ttgttaataa ctaataactg gagtaagcta 4200
 caggatetaa ageageeett tttacagtet agttaggaga gagaaaataa ttgcaaatat 4260
 ccacttagag gcaaagaaca atttttatt atcaaaaagg tttctgcaca ttgttgtggc 4320
 aatattgtat ctgtttagaa aatgggcttt tccaaaagca aacaaagata ggttcctcag 4380
 gtgaccaaaa ctgaaaatca atatttccat gtttcattaa tcaaggcata aaatacaatt 4440
 aaagcaaaat attttacatt aaaatcttgg ttgtgtattt ttttaaaaga agggaaatag 4500
 tttagtttgg ggtggaaatt accagtgatt tctattttta ttaaaccatt cactacaaca 4560
 aataagtata aaaattccaa ttccactttt atacctattt atttgttgta gtgaatggtt 4620
 taataaatgg cagatttatg tccagaagtc actctatttt gtcgtgtatt agaggaacac 4680
 attttgacat ttttcgtatc aatcatcaat catattccct tatcttgaag tttttgcctt 4740
 cttatattca aaaagttcag tttgaattct cctttgccag gtgtgaggat ttccgcacct 4800
 tagagtcagc gcaaacacg ctgcaacttg aatcaatcaa gtcagcaaca gagcacaccg 4860
 gacgcgtggg cggacgcgtg ggcggacgcg tgggcggacg cgtggg
 <210> 23
 <211> 1641
 <212> DNA
 <213> Homo sapiens
 <220>
 <221> misc_feature
 <223> Incyte Clone No: 1698270
<400> 23
geegeeteca eggeeegege tegtaetgga gegaagageg geeteetgaa ggaggggaag 60
ggacgtgggg gcggccacgg caggattaac ctccatttca gctaatcatg ggagagatta 120
aagtetetee tgattataae tggtttagag gtacagttee eettaaaaag attattgtgg 180
atgatgatga cagtaagata tggtcgctct atgacgcggg cccccgaagt atcaggtgtc 240
ctctcatatt cotgccccct gtcagtggaa ctgcagatgt ctttttccgg cagattttgg 300
ctctgactgg atggggttac cgggttatcg ctttgcagta tccagtttat tgggaccatc 360
togagttotg tgatggatto agaaaacttt tagaccattt acaattggat aaagttoato 420
tttttggcgc ttctttggga ggctttttgg cccagaaatt tgctgaatac actcacaaat 480
ctcctagagt ccattcccta atcctctgca attccttcag tgacacctct atcttcaacc 540
aaacttggac tgcaaacagc ttttggctga tgcctgcatt tatgctcaaa aaaatagttc 600
ttggaaattt ttcatctggc ccggtggacc ctatgatggc tgatgccatt gatttcatgg 660
tagacagget agaaagtttg ggtcagagtg aactggette aagaettace ttgaattgte 720
aaaattetta tgtggaacet cataaaatte gggacatace tgtaactatt atggatgtgt 780
ttgatcagag tgcgctttca actgaagcta aagaagaaat gtacaagctg tatcctaatg 840
cccgaagagc tcatctgaaa acaggaggca atttcccata cctgtgcaga agtgcagagg 900
tcaatcttta tgtacagata catttgctgc aattccatgg aaccaaatac gcggccattg 960
```

```
acccatcaat ggtcagtgcc gaggagcttg aggtgcagaa aggcagcctt ggcatcagcc 1020
aggaggagca gtagtgtgtc tctcgctgtc aatgatgagt tgacccggtg tgttcttgta 1080
tagtcagtgg catcagcacc cgtcagccgg ccttttcctt caggttcgtc aggctcaccg 1140
gttctcactg tgtctgggaa gtaggactga tggtcatctt catgacaggc ggcatctcca 1200
ctaagcctgt gtaactgttc cctctttggt tttcttagct tttgaatttg aagaagtact 1260
tttgaagact cccattttaa gaaccgtgca gattttgcta ccaaaagtct tcaccactgt 1320
gttcttaagt gaatgttaat ttctgaggtt tgggactttg tggtggtttt tttcttcttt 1380
tottttccat tottctttct ttottttat gttgtttgct gtaaatgctg cacatccaga 1440
ttgcatatca ggacattggt tattttatgc tttcttggat ataaccatga tcagagtgcc 1500
atggccacta ccccactgtt tgctctcctg caaatcaact gcttttaatt tacacttaaa 1560
caaattgttt tgagtgttag ctactgcctt tctagatatt agtcatttgg aataaaaatt 1620
caatttcact gaaaaaaaa a
<210> 24
<211> 849
<212> DNA
<213> Homo sapiens
<220>
<221> misc feature
<223> Incyte Clone No: 2012492
<400> 24
aaaatgaatg aagaatgagg acattccacc actctccaag ttatcaagat gaagacccaa 60
gatggtggca ttcactctga aggtgcagca gctgagcatt ccaaattcgg gaaccaccag 120
aaaggetgge etetetteaa eatgggatet tetggaettt tgageeteet ggtgetatte 180
gtcctcttag cgaatgtcca gggacctggt ctgactgatt ggttatttcc caggagatgt 240
cccaaaatca gagaagaatg tgaattccaa gaaagggatg tgtgtacaaa ggacagacaa 300
tgccaggaca acaagaagtg ttgtgtcttc agctgcggaa aaaaatgttt agatctcaaa 360
caagatgtat gcgaaatgcc aaaagaaact ggcccctgcc tggcttattt tcttcattgg 420
tggtatgaca agaaagataa tacttgctcc atgtttgtct atggtggctg ccagggaaac 480
aataacaact tecaatecaa agecaactge etgaacacet geaagaataa aegettteee 540
tgattggata aggatgcact ggaagaactg ccagaatgtg gctcatgctc tgagtactgt 600
tectgtacet gaeggatget ceagaetgge ttecagttte acteteagea ttecaagate 660
ttagcccttc ccagaacaga acgcttgcat ctacctcctc ttcctccatc tttggctctt 720
ttgatgcaca atatccatcc gttttgattt catctttatg tcccctttat ctccaacttc 780
tagaactccc agtttatacc tgtgtcactc tcaatttttt ccagtaaagt acttgatgta 840
aaaaaaaa
<210> 25
<211> 2166
<212> DNA
<213> Homo sapiens
<220>
<221> misc_feature
<223> Incyte Clone No: 2309875
<400> 25
ggaccaacaa agatggcggc ggcccctgcg gcgggagcga tctgggcaac ggctgcggct 60
aaagctgcag ccgggcccac gggggggctg cacgggggta gtagggggtg gccctgaact 120
ggggcctggc cctggctggc ctctcccgcc gcctcactgg gggacaggtc cagcctgtgg 180
tgtccacaat gccccaggcc tctgagcacc gcctgggccg tacccgagag ccacctgtta 240
atatecagee eegagtggga tecaagetae catttgeece eagggeeege ageaaggage 300
gcagaaaccc agcctctggg ccaaacccca tgttacgacc tctgcctccc cggccaggtc 360
tgcctgatga acggctcaag aaactggagc tgggacgggg acggacctca ggccctcgtc 420
ccagaggccc ccttcgagca gatcatgggg ttcccctgcc tggctcacca cccccaacag 480
```

```
tggctttgcc tctcccatct cggaccaact tagcccgttc caagtctgtg agcagtgggg 540
  acttgcgtcc aatggggatt gccttgggag ggcaccgtgg caccggagag cttggggctg 600
  cactgagecg cttggecete eggeetgage cacceaettt gagaegtage aettetetee 660
  geogectagg gggettteet ggacececta ecetgtteag cataeggaca gageecectg 720
  cttcccatgg ctccttccac atgatatccg cccggtcctc tgagcctttc tactctgatg 780
  acaagatggc tcatcacaca ctccttctgg gctctggtca tgttggcctt cgaaacctgg 840
  gaaacacgtg cttcctgaat gctgtgctgc agtgtctgag cagcactcga cctcttcggg 900
  acttetgtet gagaagggae tteeggeaag aggtgeetgg aggaggeega geecaagage 960
  tcactgaage ctttgcagat gtgattggtg ecetetggca ecetgaetee tgegaagetg 1020
 tgaatcetac tegatteega getgtettee agaaatatgt teeeteette tetggataca 1080
 gccagcagga tgcccaagag ttcctgaagc tcctcatgga gcggctacac cttgaaatca 1140
 acegeegagg eegeeggget ceaeegatae ttgeeaatgg teeagtteee teteeaeeee 1200
 gccgaggagg ggctctgcta gaagaacctg agttaagtga tgatgaccga gccaacctaa 1260
 tgtggaaacg ttacctggag cgagaggaca gcaagattgt ggacctgttt gtgggccagt 1320
 tgaaaagttg tetcaagtge caggeetgtg ggtategete cacgacette gaggtttttt 1380
 gtgacctgtc cctgcccatc cccaagaaag gatttgctgg gggcaaggtg tctctgcggg 1440
 attgtttcaa ccttttcact aaggaagaag agctagagtc ggagaatgcc ccagtgtgtg 1500
 acegatgteg geagaaaet egaagtaeea aaaagttgae agtaeaaaga tteeetegaa 1560
 tectegtget ceatetgaat egattttetg eeteeegagg eteeateaaa aaaagtteag 1620
 taggtgtaga ctttccactg cagcgactga gcctagggga ctttgccagt gacaaagccg 1680
 gaagteetgt ataccagetg tatgeeettt geaaceacte aggeagegte cactatggee 1740
 actacacage cetgtgeegg tgeeagactg gttggeatgt ctacaatgae tetegtgtet 1800
 cccctgtcag tgaaaaccag gtggcatcca gcgagggcta cgtgctgttc taccaactga 1860
 tgcaggagcc accccggtgc ctgtgacacc tctaagctct ggcacctgtg aagcccttta 1920
 aacaccctta agccccaggc tccccgttta cctcagagac gtctattttt gtgtcttttt 1980
 aatcggggag gggggagggg gtggttgtag ctccattatt ttttttatta aaaaataccc 2040
 ttccacctgg aggetecett gteteceage eccatgtaca aageteacea ageecetgee 2100
 catgtacage ceccagacee tetgeaatat caetttttgt gaataaattt attaagaaaa 2160
 <210> 26
 <211> 2069
 <212> DNA
 <213> Homo sapiens
 <220>
 <221> misc_feature
 <223> Incyte Clone No: 2479394
gacttgagtc actctcagac tctttataaa tacagcttga ctcagccact gtatgactga 60
ctccccgggg acatgaggtg gatactgttc attggggccc ttattgggtc cagcatctgt 120
ggccaagaaa aattttttgg ggaccaagtt ttgaggatta atgtcagaaa tggagacgag 180
atcagcaaat tgagtcaact agtgaattca aacaacttga agctcaattt ctggaaatct 240
ccctcctcct tcaatcggcc tgtggatgtc ctggtcccat ctgtcagtct gcaggcattt 300
aaatccttcc tgagatccca gggcttagag tacgcagtga caattgagga cctgcaggcc 360
cttttagaca atgaagatga tgaaatgcaa cacaatgaag ggcaagaacg gagcagtaat 420
aacttcaact acggggctta ccattccctg gaagctattt accacgagat ggacaacatt 480
geogragact tteetgacet ggegaggagg gtgaagattg gacattegtt tgaaaaccgg 540
ccgatgtatg tactgaagtt cagcactggg aaaggcgtga ggcggccggc cgtttggctg 600
aatgcaggca tccattcccg agagtggatc tcccaggcca ctgcaatctg gacggcaagg 660
aagattgtat ctgattacca gagggatcca gctatcacct ccatcttgga gaaaatggat 720
attttettgt tgeetgtgge caateetgat ggatatgtgt ataeteaaac teaaaacega 780
ttatggagga agacgcggtc ccgaaatcct ggaagctcct gcattggtgc tgacccaaat 840
agaaactgga acgctagttt tgcaggaaag ggagccagcg acaacccttg ctccgaagtg 900
taccatggac cccacgccaa ttcggaagtg gaggtgaaat cagtggtaga tttcatccaa 960
aaacatggga atttcaaggg cttcatcgac ctgcacagct actcgcagct gctgatgtat 1020
```

```
ccatatgggt actcagtcaa aaaggcccca gatgccgagg aactcgacaa ggtggcgagg 1080
cttgcggcca aagctctggc ttctgtgtcg ggcactgagt accaagtggg tcccacctgc 1140
accactgtct atccagctag cgggagcagc atcgactggg cgtatgacaa cggcatcaaa 1200
tttgcattca catttgagtt gagagatacc gggacctatg gcttcctcct gccagctaac 1260
cagatcatcc ccactgcaga ggagacgtgg ctggggctga agaccatcat ggagcatgtg 1320
cgggacaacc tetactagge gatggetetg etetgtetac atttatttgt acceacacgt 1380
geacgeactg aggecattgt taaaggaget ettteetace tgtgtgagte agagecetet 1440
gggtttgtgg agcacacagg cctgcccctc tccagccagc tccctggagt cgtgtgtcct 1500
ggcggtgtcc ctgcaagaac tggttctgcc agcctgctca attttggtcc tgctgttttt 1560
gatgageett ttgtetgttt eteetteeae eetgetgget gggeggetge aeteageate 1620
acceptact gggtggcatg teteteteta ceteattttt agaaccaaag aacatetgag 1680
atgattetet acceteatee acatetagee aageeagtga cettgetetg gtggcactgt 1740
gggagacacc acttgtcttt aggtgggtct caaagatgat gtagaatttc ctttaatttc 1800
togcagtott cotggaaaat attttoottt gagcagcaaa tottgtaggg atatcagtga 1860 .
aggictetce eteceteete teetgittit tittittiga gacagagitt tgetetigit 1920
gcccaggctg gagtttaagg gcccgatctg ggctcaccaa aacctttgcc tccggggttc 1980
aagaaatttt cctgcctaag ccttttgagt accttggttt aaaggggcat tcaacaatgc 2040
ctgggaaatt ttgggttttt agaagaaaa
                                                                   2069
<210> 27
<211> 2490
<212> DNA
<213> Homo sapiens
<220>
<221> misc_feature
<223> Incyte Clone No: 2613215
<400> 27
ccgcgggtga tcagctggtc tgcgctcccc tgacgtgggc tggggcacgt caccgccgaa 60
tggcagcctc cagaaagcca ccgcgagtaa gggtgaatca ccaggatttt caactgagaa 120
atttaagaat aattgaacct aacgaggtga cacactcagg agacacaggt gtggaaacag 180
acggcagaat gcctccaaag gtgacttcag agctgcttcg gcagctgaga caagccatga 240
ggaactetga gtatgtgace gaaccgatee aggeetacat cateccateg ggagatgete 300
atcagagtga gtatattgct ccatgtgact gtcggcgggc ttttgtctct ggattcgatg 360
gctctgcggg cacagccatc atcacagaag agcatgcagc catgtggact gacgggcgct 420
actttctcca ggctgccaag caaatggaca gcaactggac acttatgaag atgggtctga 480
aggacacacc aactcaggaa gactggctgg tgagtgtgct tcctgaaggg tccagggttg 540
gtgtggaccc cttgatcatt cctacagatt attggaagaa aatggccaaa gttctgagaa 600
gtgccggcca tcacctcatt cctgtcaagg agaacctcgt tgacaaaatc tggacagacc 660
gtcctgagcg cccttgcaag cctctcctca cactgggcct ggattacaca ggcatctcct 720
ggaaggacaa ggttgcagac cttcggttga aaatggctga gaggaacgtc atgtggtttg 780
tggtcactgc cttggatgag attgcgtggc tatttaatct ccgaggatca gatgtggagc 840
acaatccagt atttttctcc tacgcaatca taggactaga gacgatcatg ctcttcattg 900
atggtgaccg catagacgcc cccagtgtga aggagcacct gcttcttgac ttgggtctgg 960
aagccgaata caggatccag gtgcatccct acaagtccat cctgagcgag ctcaaggccc 1020
tgtgtgctga cctctcccca agggagaagg tgtgggtcag tgacaaggcc agctatgctg 1080
tgagcgagac catccccaag gaccaccgct gctgtatgcc ttacaccccc atctgcatcg 1140
ccaaagctgt gaagaattca gctgagtcag aaggcatgag gcgggctcac attaaagatg 1200
ctgttgctct ctgtgaactc tttaactggc tggagaaaga ggttcccaaa ggtggtgtga 1260
cagagatete agetgetgae aaagetgagg agtttegeag geaacaggea gaetttgtgg 1320
acctgagett eccaacaatt tecagtaegg gacecaaegg egecateatt eactaegege 1380
cagtccctga gacgaatagg accttgtccc tggatgaggt gtaccttatt gactcgggtg 1440
ctcaatacaa ggatggcacc acagatgtga cgcggacaat gcattttggg acccctacag 1500
cctacgagaa ggaatgcttc acatatgtcc tcaagggcca catagctgtg agtgcagccg 1560
ttttcccgac tggaaccaaa ggtcaccttc ttgactcctt tgcccgttca gctttatggg 1620
attcaggcct agattacttg cacgggactg gacatggtgt tgggtctttt ttgaatgtcc 1680
```

```
atgagggtcc ttgcggcatc agttacaaaa cattctctga tgagcccttg gaggcaggca 1740
 tgattgtcac tgatgagccc gggtactatg aagatggggc ttttggaatt cgcattgaga 1800
 atgttgtcct tgtggttcct gtgaagacca agtataattt taataaccgg ggaagcctga 1860
 cctttgaacc tctaacattg gttccaattc agaccaaaat gatagatgtg gattctctta 1920
 cagacaaaga gtgcgactgg ctcaacaatt accacctgac ctgcagggat gtgattggga 1980
 aggaattgca gaaacagggc cgccaggaag ctctcgagtg gctcatcaga gagacgcaac 2040
 ccatctccaa acagcattaa taaatacctc cccggttttg tttttgtaaa atgctctgga 2100
 ctcccctttt tactttagac tttaagaaga acagaaaatc ttcttatcct ctttgatatt 2220
 ttattgcaaa cactcagtct tttatgattt tttaattgtt gagaacaagc caagaataaa 2280
 attgctgcac cagaaggagg gtccctccaa agttgaacac ttggtgaaag gaagatgccc 2340
 cgacttettt ggccagtgat ggggaatcag tgagtgetee atgatggtea tgttecaggt 2400
 gctagtacat cattcatgat caccttaatg ctcatgagac tatatttatg atcagtgaat 2460
 aaaaatgtca gaactgtgaa aaaaaaaaa
 <210> 28
 <211> 3148
 <212> DNA
 <213> Homo sapiens
 <220>
 <221> misc_feature
 <223> Incyte Clone No: 001528
 <400> 28
gaagatggcg gaaggcggag cggcggatct ggacacccag cggtctgaca tcgcgacgct 60
gctcaaaacc tcgctccgga aaggggacac ctggtaccta gtcgatagtc gctggttcaa 120
acagtggaaa aaatatgttg gctttgacag ttgggacaaa taccagatgg gagatcaaaa 180
tgtgtatcct ggacccattg ataactctgg acttctcaaa gatggtgatg cccagtcact 240
taaggaacac cttattgatg aattggatta catactgttg ccaactgaag gttggaataa 300
acttgtcagc tggtacacat tgatggaagg tcaagagcca atagcacgaa aggtggttga 360
acagggtatg tttgtaaagc actgcaaagt agaagtatat ctcacagaat tgaagctatg 420
tgaaaatgga aacatgaata atgttgtaac tcgaagattt agcaaagctg acacaataga 480
tacaattgaa aaggaaataa gaaaaatctt cagtattcca gatgaaaagg agaccagatt 540
gtggaacaaa tacatgagta acacatttga accactgaat aaaccagaca gcaccattca 600
ggatgctggt ttataccaag gacaggtatt agtgatagaa cagaaaaatg aagatggaac 660
acggccaagg ggtccttcta ctcctaatgt gaaaaactca aattactgtc ttccatcata 720
taccgcttat aagaactatg attattcgga acctggaaga aacaatgaac agccaggcct 780
ctgtggccta agtaacttgg gaaatacgtg tttcatgaac tcagctattc agtgtttgag 840
caacacacct ccacttactg agtatttcct caatgataag tatcaagaag aactgaattt 900
tgacaatccc ttaggaatga gaggtgaaat agctaaatct tatgccgaac tgatcaagca 960
aatgtggtct ggaaagttta gctacgtcac cccaagagcc tttaagacac aggtaggacg 1020
ttttgcacct cagttctctg gatatcagca gcaagactgt caagaactgt tagctttcct 1080
attagatgga ttacatgagg atttgaatag aattaggaaa aaaccatata tacaattaaa 1140
agatgcagat ggaaggccag ataaggtggt tgccgaagaa gcctgggaaa accatttaaa 1200
acgaaatgat totatoatag tagatatatt toatggcott ttoaaatcaa otttagtttg 1260
tectgagtgt getaagattt cagtaacatt tgateetttt tgttaettga caetteeatt 1320
gcccatgaaa aaagaacgca ccttggaagt ttacttagtt agaatggatc cacttaccaa 1380
acctatgcag tacaaagtgg ttgtccccaa aattggaaac atattagatc tttgtacagc 1440
attgtctgct ttgtcaggaa tacctgcaga taagatgata gttactgata tatacaatca 1500
tagatttcac agaatattcg ctatggatga aaaccttagt agtattatgg aacgggatga 1560
tatttatgtg tttgaaatta acatcaatag gacagaagat acagagcacg tgattattcc 1620
tgtttgccta agagaaaaat tcagacactc gagttatacc caccatactg gttcttcact 1680
ttttggtcag ccctttctta tggctgtacc acgaaacaat actgaagaca aactttataa 1740
teteetgete ttgagaatgt geegatatgt caaaatatet actgaaactg aagaaactga 1800
aggateceta caetgetgta aggaceaaaa tattaatggg aatggeecaa atggeataca 1860
tgaagaaggc tcaccaagtg aaatggaaac agatgagcca gatgatgaat ccagccagga 1920
```

```
tcaagaactt ccctcagaga atgaaaacag tcagtctgaa gattcagttg gaggagataa 1980
tgattctgaa aatggattat gtactgagga tacttgcaaa ggtcaactca cgggacacaa 2040
aaaacgattg tttacattcc agttcaacaa cttaggcaat actgatatca actacatcaa 2100
agatgatacc aggcatataa gatttgatga taggcagctt aggctagatg aaagatcttt 2160
tcttgctttg gattgggatc ctgatttgaa aaaaagatat tttgatgaaa atgctgctga 2220
ggactttgaa aaacatgaaa gtgtggagta taaacctcct aaaaaaccct ttgtgaaatt 2280
aaaagattgc attgaacttt ttacaacaaa agaaaagcta ggtgctgaag atccctggta 2340
ttgtccgaat tgtaaagaac atcagcaagc cacaaagaaa ttggatttat ggtccctgcc 2400
tccagtactt gtagtacatc tcaagcgatt ttcttacagt cgatacatga gagacaagtt 2460
ggatacctta gttgattttc ctatcaatga cttggatatg tcggaattct taattaatcc 2520
aaatgcaggt cettgccgct ataatctgat tgctgtttcc aaccactatg gagggatggg 2580
aggaggacac tatactgctt ttgcaaaaaa taaagatgat ggaaaatggt actattttga 2640
tgacagtagt gtctccactg catctgaaga ccaaattgtg tccaaagcag catatgtact 2700
cttctaccag agacaagaca ctttcagtgg aactggcttt tttcctcttg accgagaaac 2760
taaaggtgct tcagctgcca ctggcatccc attagaaagt gatgaagata gcaatgataa 2820
tgacaatgat atagaaaatg aaaactgtat gcacactaac taatgaaagt cctagaagcc 2880
ataaaagaga cactttcctg ctggtggtat ctatggaaat gatgaagtta cccaccacat 2940
taaaacaaaa gtctgagatg gggagtttca gataaccgaa tgtaaatcct ttatcagatt 3000
ttaacttgtg cagtacttga agtgaaacac aatgaaaact ttaacagaaa ttgtctctta 3060
atacatttac agtottgtat ttacaagcta aatatatata ggaaatcaca aataaatccc 3120
ttttaagttt gctgctgttt tgattaaa
<210> 29
<211> 855
<212> DNA
<213> Homo sapiens
<220>
<221> unsure
<222> 747
<223> a or g or c or t, unknown, or other
<220>
<221> misc feature
<223> Incyte Clone No: 998626
caggcaggca tcccccggag ttgtctcttt tcatgccagc gccaacagga ggctgtctgg 60
acacactgat tactcactca ccagcctcct tettttgtcc accagccccc ctettttgtc 120
caccagecea geetgactee tggagattgt gaatagetee atecageetg agaaacaage 180
cgggtggctg agccaggctg tgcacggagc gcctgacggg cccaacagac ccatgctgca 240
tecagagace teceetggee gggggeatet cetggetgtg etectggeee teettggeac 300
cgcctgggca gaggtgtggc caccccagct gcaggagcag gctccgatgg ccggagccct 360
gaacaggaag gagagtttet tgeteetete eetgeacaac egeetgegea getgggteea 420
gccccctgcg gctgacatgc ggaggctgga ctggagtgac agcctggccc aactggctca 480
agccagggca gccctctgtg gaatcccaac cccgagcctg gcgtccggcc tgtggcgcac 540
cctgcaagtg ggctggaaca tgcagctgct gcccgcgggc ttggcgtcct ttgttgaagt 600
ggtcagccta tggtttgcag aggggcagcg gtacagccac gcggcaggag agtgtgctcg 660
caacgccacc tgcacccact acacgcagct cgtgtgggcc acctcaagcc agctgggctg 720
tgggcggcac tagtgtctgc aggccangag catagaagct ttgtctgtgc tactccccgg 780
aggcactggg agtcacggga gacatcatcc tataagaggg tgctgtgtcg tctgacagca 840
tgttcagctg ctcaa
<210> 30
<211> 1912
<212> DNA
<213> Homo sapiens
```

```
<220>
 <221> misc feature
 <223> Incyte Clone No: 1393301
 <400> 30
 agaattegge acgagggtta gaggeggett gtgtecaegg gaegegggeg gatettetee 60
 ggccatgagg aagccagccg ctggcttcct tccctcactc ctgaaggtgc tgctcctgcc 120
 tetggeacet geegeageee aggattegae teaggeetee actecaggea geeetetete 180
 tectacegaa tacgaacget tettegeact getgacteea acetggaagg cagagactae 240
 ctgccgtctc cgtgcaaccc acggctgccg gaatcccaca ctcgtccagc tggaccaata 300
 tgaaaaccac ggcttagtgc ccgatggtgc tgtctgctcc aacctccctt atgcctcctg 360
 gtttgagtct ttctgccagt tcactcacta ccgttgctcc aaccacgtct actatgccaa 420
 gagagteetg tgtteecage cagtetetat teteteacet aacaetetea aggagataga 480
 agetteaget gaagteteae eeaceaegat gaeeteeeee ateteaeeee aetteaeagt 540
 gacagaacgc cagaccttcc agccctggcc tgagaggctc agcaacaacg tggaagagct 600
 ectacaatee teettgteee tgggaggeea ggageaageg ceagageaca ageaggagea 660
 aggagtggag cacaggcagg agccgacaca agaacacaag caggaagagg ggcagaaaca 720
 ggaagagcaa gaagaggaac aggaagagga gggaaagcag gaagaaggac aggggactaa 780
 ggagggacgg gaggctgtgt ctcagctgca gacagactca gagcccaagt ttcactctga 840
 atctctatct tctaaccctt cctcttttgc tccccgggta cgagaagtag agtctactcc 900
 tgaaatatat gatgagaact cctactggag aaaccaaaac cctggcagcc tcctgcagct 1020
gccccacaca gaggcettge tggtgctgtg ctattcgate gtggagaata cctgcatcat 1080
aacccccaca gccaaggeet ggaagtacat ggaggaggag atccttggtt tcgggaagtc 1140
ggtctgtgac agccttgggc ggcgacacat gtctacctgt gccctctgtg acttctgctc 1200
cttgaagctg gagcagtgcc actcagaggc cagcctgcag cggcaacaat gcgacacctc 1260
ccacaagact ccetttgtca gcccettgct tgcctcccag agcctgtcca tcggcaacca 1320
ggtagggtcc ccagaatcag gccgctttta cgggctggat ttgtacggtg ggctccacat 1380
ggacttetgg tgtgcccggc ttgccacgaa aggctgtgaa gatgtccgag tctctgggtg 1440
gctccagact gagttcctta gcttccagga tggggatttc cctaccaaga tttgtgacac 1500
agactatate cagtacecaa actactgtte etteaaaage cageagtgte tgatgagaaa 1560
ccgcaatcgg aaggtgtccc gcatgagatg tctgcagaat gagacttaca gtgcgctgag 1620
ccctggcaaa agtgaggacg ttgtgcttcg atggagccag gagttcagca ccttgactct 1680
aggecagttc ggatgagetg gegtetattc tgcccacacc ccageccaac etgcccaegt 1740
tetetattgt tttgagaece cattgettte aggetgeece ttetgggtet gttactegge 1800
ccctactcac atttccttgg gttggagcaa cagtcccaga gagggccatg gtgggagctg 1860
cgccctcctt aaaagatgac tttacataaa atgttgatct tcaaaaaaaa aa
<210> 31
<211> 768
<212> DNA
<213> Homo sapiens
<220>
<221> misc_feature
<223> Incyte Clone No: 1444055
<400> 31
taagtgttac aatttaaagc caaaggcata ccaaatatta aagcaacaca acataaggaa 60
tcccattcac cacaccat ttaaacacaa atgatggatt ctgttattta tcaaacccat 120
ttaatgtttt gtgtagtgtt ttcatggatt ccaggaatgg cttccctttc tcaaatgatc 180
aatttcaagt cttattctcc atatttccca tctgattcca ctatgagcag tgccattgca 240
tgccctacta gaactgtgga tacgctttaa aacaagtgga agatgatagg gtgggactca 300
ttacgtctaa tcttggggaa cactgataac gtgtccagga gagacagcac aaggggctcc 360
atcttcatca cacaactcat cgcatgcttc cagagatatt cctggcgctg ccacctagag 420
gaagtatttt ggaaggttca gcaagcattt gaaagtccgg aggcaacagt ccaaatgccc 480
accatagaac gagtgtccat gacaagatat ttctacctct ttcctggcaa ctgaaaatgg 540
```

```
ttaagcattg agagttgttg gtggtgtatg aaataaatga aagtgtgata ttggagcagg 600
aaaccacaag cagcccagcc ctcctttatc aacttcaaga aacaccttta ctagtacaga 660
ttgaatgett aacattttga atttcaataa aggtgaagae aaatgaaaaa aataaaaaaa 720
<210> 32
<211> 2069
<212> DNA
<213> Homo sapiens
<220>
<221> misc feature
<223> Incyte Clone No: 1650177
<400> 32
geacagggge eggeaceaeg gggttatega ageagetgte aagatgetgg ggteeetggt 60
gttgaggaga aaagcactgg cgccacggct actcctccgg ctgctcaggt ccccaacgct 120
ccggggccat ggaggtgctt ccggccggaa tgtgactact gggagtctcg gggagccgca 180
gtggctgagg gtagccaccg gggggcgccc tggaacatcg ccggccttgt tctccggacg 240
tggggcagcc accggggggc gccagggagg acgettegat accaaatgcc tegeggetgc 300
ggtccccagc agggccggac tgggcatgtg cgccctggcc gcagcgctgg tggttcattg 420
ctacagcaag agtccgtcca acaaggatgc agccctgttg gaagctgccc gtgccaacaa 480
tatgcaagaa gtcagcagtg tggtacaggt cctgcttgct gctggggctg atccaaacct 540
tggagatgat ttcagcagtg ttttcaagac tgccaaggaa cagggaatcc attctttgga 600
agtectgate accegagagg atgaetteaa caacaggetg aacaacegeg ceagttteaa 660
gggctgcacg gccttgcact atgctgttct tgctgatgac taccgcactg tcaaggagct 720
gettgatgga ggagecaace ceetgeagag gaatgaaatg ggacacacac cettggatta 780
tgcccgagaa ggggaagtga tgaagcttct gaggacttct gaagccaagt accaagagaa 840
gcagcggaag cgtgaggctg aggagcggcg ccgcttcccc ctggagcagc gactaaagga 900
gcacatcatt ggccaggaga gcgccatcgc cacagtgggt gctgcgatcc ggaggaagga 960
gaatggctgg tacgatgaag aacaccctct ggtcttcctc ttcttgggat catctggaat 1020
aggaaaaaca gagctggcca agcagacagc caaatatatg cacaaagatg ctaaaaaggg 1080
cttcatcagg ctggacatgt ccgagttcca ggagcgacac gaggtggcca agtttattgg 1140
gtctccacca ggctacgttg gccatgagga gggtggccag ctgaccaaga agttgaagca 1200
gtgccccaat gctgtggtgc tctttgatga agtagacaag gcccatccag atgtgctcac 1260
catcatgctg cagctgtttg atgagggccg gctgacagat ggaaaaggga agaccattga 1320
ttgcaaggac gccatcttca tcatgacctc caatgtggcc agcgacgaga tcgcacagca 1380
egegetgeag etgaggeagg aagetttgga gatgageegt aacegtattg eegaaaacet 1440
gggggatgtc cagataagtg acaagatcac catctcaaag aacttcaagg agaatgtgat 1500
tcgccctatc ctgaaagctc acttccggag ggatgagttt ctgggacgga tcaatgagat 1560
cgtctacttc ctccccttct gccactcgga gctcatccaa ctcgtcaaca aggaactaaa 1620
cttctgggcc aagagagcca agcaaaggca caacatcacg ctgctctggg accgcgaggt 1680
ggcagatgtg ctggtcgacg gctacaatgt gcactatggc gcccgctcca tcaaacatga 1740
ggtagaacgc cgtgtggtga accagctggc agcagcctat gagcaggacc tgctgccagg 1800
gggctgtact ttgcgcatca cggtggagga ctcagacaag cagctactca aaagcccaga 1860
actgccctca ccccaggctg agaagcgcct ccccaagctg cgtctggaga tcatcgacaa 1920
ggacagcaag actcgcagac tggacatccg ggcaccactg caccctgaga aggtgtgcaa 1980
caccatctag cagccacctg cetgetecta tgtgccctca ccatccaata aaggcccctt 2040
ggctgtggca tggcaaaaaa aaaaaaaaa
<210> 33
<211> 2594
<212> DNA
<213> Homo sapiens
<220>
```

<221> misc_feature <223> Incyte Clone No: 1902576 <400> 33 ccagcacctg cggggccctc gggcttggaa ggctgggccg gacggtgaac ggtcggcgcg 60 ggccggatcg gcggcggctg actcgccttc tctccggggc tgcgaccccg aggcaaccgg 120 ctgcagatgg gagcccgcgg agccgcggat gcgggcgggc cgggggcgcga cgccggcgag 180 ggagetgtte egggaegeeg cetteeeege egeggaetee tegetettet gegaettgte 240 tacgccgctg gcccagttcc gcgaggacat cacgtggagg cggccccagg agatttgtgc 300 cacaccccgg ctgtttccag atgacccacg ggaagggcag gtgaagcagg ggctgctggg 360 ggattgctgg ttcctgtgtg cctgcgccgc gctgcagaag agcaggcacc tcctggacca 420 ggtcattcct ccgggacagc cgagctgggc cgaccaggag taccggggct ccttcacctg 480 tegeatttgg cagtttggac getgggtgga ggtgaccaca gatgacegee tgeegtgeet 540 tgcagggaga ctctgtttct cccgctgcca gagggaggat gtgttctggc tccccttact 600 ggaaaaggtc tacgccaagg tccatgggtc ctacgagcac ctgtgggccg ggcaggtggc 660 ggatgccctg gtggacctga ccggcggcct ggcagaaaga tggaacctga agggcgtagc 720 aggaagegga ggeeageagg acaggeeggg eegetgggag cacaggaett gteggeaget 780 gctccacctg aaggaccagt gtctgatcag ctgctgcgtg ctcagcccca gagcaggtgc 840 ccgggagctg ggggagttcc atgccttcat tgtctcggac ctgcgggagc tccagggtca 900 ggcgggccag tgcatcctgc tgctgcggat ccagaacccc tggggccggc ggtgctggca 960 ggggctctgg agagagggg gtgaagggtg gagccaggta gatgcagcgg tagcatctga 1020 gctcctgtcc cagctccagg aaggggagtt ctgggtggag gaggaggagt tcctcaggga 1080 gtttgacgag ctcaccgttg gctacccggt cacggaggcc ggccacctgc agagcctcta 1140 cacagagagg ctgctctgcc atacgcgggc gctgcctggg gcctgggtca agggccagtc 1200 agcaggaggc tgccggaaca acagcggctt tcccagcaac cccaaattct ggctgcgggt 1260 ctcagaaccg agtgaggtgt acattgccgt cctgcagaga tccaggctgc acgcggcgga 1320 ctgggcaggc cgggcccggg cactggtggg tgacagtcat acttcgtgga gcccagcgag 1380 cateceggge aagcactace aggetgtggg tetgeacete tggaaggtag agaageggeg 1440 ggtcaatctg cctagggtcc tgtccatgcc ccccgtggct ggcaccgcgt gccatgcata 1500 cgaccgggag gtccacctgc gttgtgagct ctcaccgggc tactacctgg ctgtccccag 1560 cacetteetg aaggacgege caggggagtt cetgeteega gtetteteta eegggegagt 1620 ctcccttagc gccatcaggg cagtggccaa gaacaccgcc cccggggcag ccctgcctgc 1680 gggggagtgg gggaccgtgc agctacgggg ttcttggaga gtcggccaga cggcgggggg 1740 cagcaggaac tttgcctcat accccaccaa cccctgcttc cccttctcgg tccccgaggg 1800 ccctggcccc cgctgcgtcc gcatcactct gcatcagcac tgccggccca gtgacaccga 1860 gttccacccc atcggcttcc atatettcca ggtcccagag ggtggaagga gccaggacgc 1920 acccccactg ctgctgcagg agccgctgct gagctgcgtg ccacatcgct acgcccagga 1980 ggtgageegg etetgeetee tgeetgeggg caectacaag gttgtgeeet ceaectacet 2040 geeggacaca gagggggeet teacagtgae categeaace aggattgaea ggeeateeat 2100 tcacagccag gagatgctgg gccagttcct ccaagaggtc tccgtcatgg cagtgatgaa 2160 aacctaacag ggtggccccc tgtgccagct caggtgactg gagcccgagg gcctgacagg 2220 ttcccagcag ctgggccggc cagcettgca ctgtgggggc tggtcctgag tcttggcctg 2280 ceteccagee etgecagggg getgeggeet aggggteeae gggaageete egteaggaga 2340 gacgcagccc tgggggccag ctggtgctgc aaggaagggt gggaagcttg ctggcttctg 2400 ttgcgccact gagacggcag agaccccagg atcccagagc ttcccaggat ccctcccaga 2460 tectetgetg actecatatg gaggeeteac acceagaggg tagggeagea gatettettt 2520 ataactattt attgttcgaa tcacttttag gatgtaactt tataaataaa catgagcgct 2580 gaaaaaaaa aggg 2594 <210> 34 <211> 481 <212> DNA <213> Homo sapiens <220> <221> misc_feature <223> Incyte Clone No: 2024210

```
<400> 34
tgaggtgcga cacacataat tgtcccaatt tttaagattg atggggagca tgaagcattt
ttttaatgtg ttggcaggcc ccattaaatg cataaactgc ataggactca tgtggtctga 120
atgtatttta gggctttctg ggaattgtct tgacagagaa cctcagctgg acaaagcagc 180
cttgatctga gtgagctaac tgacacaatg aaactgtcag gcatgtttct gctcctctct 240
ctggctcttt tctgcttttt aacaggtgtc ttcagtcagg gaggacaggt tgactgtggt 300
gagttecagg acceeaaggt etactgeact egggaateta acceacactg tggetetgat 360
ggccagacat atggcaataa atgtgccttc tgtaaggcca tagtgaaaag tggtggaaag 420
attageetaa ageateetgg aaaatgetga gttaaageea atgtttettg gtgaettgee 480
<210> 35
<211> 3080
<212> DNA
<213> Homo sapiens
<220>
<221> misc feature
<223> Incyte Clone No: 2523109
<400> 35
cgcagcgcgg ctttcaggcc aacatggccg tgctgctgct gctgctccgt gccctccgcc 60
ggggtccagg cccgggtcct cggccgctgt ggggcccagg cccggcctgg agtccagggt 120
teccegecag gecegggagg gggeggeegt acatggecag caggeeteeg ggggaeeteg 180
ccgaggctgg aggccgagct ctgcagagct tacaattgag actgctaacc cctacctttg 240
aagggatcaa cggattgttg ttgaaacaac atttagttca gaatccagtc agactctggc 300
aacttttagg tggtactttc tattttaaca cctcaaggtt gaagcagaag aataaggaga 360
gggacgacca gatgtaccga gagcggctgc gcaccttgct ggtcatcgcg gttgtcatga 480
geeteetgaa tgeteteage accageggag geageattte etggaaegae tttgteeaeg 540
agatgctggc caagggcgag gtgcagcgcg tccaggtggt gcctgagagc gacgtggtgg 600
aagtctacct gcaccctgga gccgtggtgt ttgggcggcc tcggctagcc ttgatgtacc 660
gaatgcaggt tgcaaatatt gacaagtttg aagagaagct tcgagcagct gaagatgagc 720
tgaatatcga ggccaaggac aggatcccag tttcctacaa gcgaacagga ttctttggaa 780
atgecetgta etetgtgggg atgaeggeag tgggeetgge cateetgtgg tatgttttee 840
gtctggccgg gatgactgga agggaaggtg gattcagtgc ttttaatcag cttaaaatgg 900
ctcgtttcac cattgtggat gggaagatgg ggaaaggagt cagcttcaaa gacgtggcag 960
gaatgcacga agccaaactg gaagtccgcg agtttgtgga ttatctgaag agcccaaaac 1020
getteeteea gettggegee aaggteecaa agggegeact getgetegge eeeeeegget 1080
gtgggaagac gctgctggcc aaggcggtgg ccacggaggc tcaggtgccc ttcctggcga 1140
tggccggccc agagttcgtg gaggtcattg gaggcctcgg cgctgcccgt gtgcggagcc 1200
tetttaagga ageeegagee egggeeecet geategteta eategatgag ategaegegg 1260
tgggcaagaa gcgctccacc accatgtccg gcttctccaa cacggaggag gagcagacgc 1320
tcaaccagct tctggtagaa atggatggaa tgggtaccac agaccatgtc atcgtcctgg 1380
cgtccacgaa ccgagctgac attttggacg gtgctctgat gaggccaggc cgactggacc 1440
ggcacgtett cattgatete eccaegetge aggagaggeg ggagattttt gagcageace 1500
tgaagagcct gaagctgacc cagtccagca ccttttactc ccagcgtctg gcagagctga 1560
caccaggatt cagtggggct gacatcgcca acatctgcaa tgaggctgcg ctgcacgcgg 1620
egegggaggg acacacttee gtgcacacte teaacttega gtacgeegtg gagegegtee 1680
tcgcagggac tgccaaaaag agcaagatcc tgtccaagga agaacagaaa gtggttgcgt 1740
ttcatgagtc gggccacgcc ttggtgggct ggatgctgga gcacacggag gccgtgatga 1800
aggtetecat aacceetegg acaaacgeeg ceetgggett tgeteagatg eteceeagag 1860
accagcacct cttcaccaag gagcagctgt ttgagcggat gtgcatggcc ttgggaggac 1920
gggcctcgga agcactgtcc ttcaacgagg tcacttctgg ggcacaggac gacctgagga 1980
aggtcacccg categoctac tocatggtga agcagtttgg gatggcacct ggcatcgggc 2040
ccatctcctt ccctgaggcg caggagggcc tcatgggcat cgggcggcgc cccttcagcc 2100
aaggcctgca gcagatgatg gaccatgaag caagactgct ggtggccaag gcctacagac 2160
```

```
acaccgagaa ggtgctgcag gacaacctgg acaagttgca ggcgctggca aacgcccttc 2220
 tggaaaagga agtgataaac tatgaggaca ttgaggctct cattggcccg ccgccccatg 2280
 ggccgaagaa aatgatcgca ccgcagaggt ggatcgacgc ccagagggag aaacaggact 2340
 tgggcgagga ggagaccgaa gagacccagc agcctccact tggaggcgaa gagccgactt 2400
ggcccaagta gttgggaggt gttggctgca cgtgcgggtg gtccgggaag tgagggctca 2460
 ctcagccacc ctgagttgct tttcagctga ggtttgcact tcctctcgcg gccctcagta 2520
gtccctgcac agtgacttct gagatctgtt gattgatgac ccttttcatg attttaagtt 2580
tetetgeaga aactaetgae ggagteetgt gtttgtgagt egttteeeet atggggaagg 2640
ttatcagtgc ttcccgagtg agcatggaac acttcgagtt cccagggtta tagacagtcg 2700
 ttcccagtgt ggctgaggcc acccagaggc agcagagcat tcagactcca aacagacccc 2760
 tgttcatgcc gacgcttgca cgaccgcccc agttcctgtg gctccctcgg aatgctaagg 2820
ggateggaca tgaaaggace etgtgageeg attgteetat etceagegge eetgteatee 2880
ageteaetea teaatgggge cacacagtea ggeecaggea etgggeteeg gaggaeteae 2940
cactgeeece tgetgeeatg tggaetggtg caagttgagg aettettget ggtetagtea 3000
cgcatgcagt gttggggatg ccttggtttt tactgctctg agaattgttg agatacttta 3060
ctaataaact gtgtagttgg
                                                                 3080
<210> 36
<211> 1154
<212> DNA
<213> Homo sapiens
<220>
<221> misc feature
<223> Incyte Clone No: 2588566
<400> 36
gaactatgtt gtggttgcac agacacggag aaaatcagcg gagttcttgc tccgaatctt 60
cctgtaaatg ccagacagtg acaggcacct gagcagccat ttcaacctca gaatgaaggg 120
aagceettea gaacatgget eecaacaaag catttteaac agatatgete agcagagget 180
ggacattgat gccacccage ttcagggcct tctcaaccag gagcttctaa caggacctcc 240
aggggacatg ttctccttag atgagtgccg cagcttggtg gctctgatgg aactgaaagt 300
gaatgggcgg ctagaccaag aggagtttgc gcgactgtgg aagcgccttg ttcactacca 360
gcatgttttc cagaaggttc agacaagccc tggagtcctc ctgagctcgg acttgtggaa 420
ggccatagag aatacagact tcctcagagg gatcttcatc agccgtgagc tgctgcatct 480
ggtgaccctc aggtacagcg acagcgtcgg cagggtcagc ttccccagcc tggtctgctt 540
cctgatgcgg cttgaagcca tggcaaagac cttccgcaac ctctctaagg atggaaaagg 600
actctacctg acagaaatgg agtggatgag cctggtcatg tacaactgaa gcaaagagga 660
aagcagaccc atggctcagg acaagctccc agtgatcact caagaatctg gctctcattc 720
taagaggetg tgetgeecag tatggtggtt gtgataaate taaaccagee etgeatgaaa 780
cagagtecaa getgtetece aacageetgg gtteggteet tggetggeee aggeeeagtt 840
aagcetgtgg ccaccaagca geteatetga geactttggg atgtatteag cetacgttge 900
gtcccctgtc accagttgga ttcatttctt ggaagagcca gaatgagcca ctttgaccac 1020
cctcgggtgc tatgggtgac acaagagctg tccactgggt gtttgcagaa taattacact 1080
atcttatgtc tggatcctga tgatttcaca gctaaatggc aaaaataaaa catgtttccc 1140
ataaaaaaa aaaa
                                                                 1154
<210> 37
<211> 2827
<212> DNA
<213> Homo sapiens
<220>
<221> unsure
<222> 2811
<223> a or g or c or t, unknown, or other
```

<220> <221> misc_feature <223> Incyte Clone No: 2740570 <400> 37 catttegggg gtatteteag caggatgete aagaatteet tegatgttta atggatttge 60 ttcatgaaga attgaaagag caagtcatgg aagtagaaga agatccgcaa accataacca 120 ctgaggagac aatggaagaa gacaagagcc agtcggatgt agattttcag tcttgtgaat 180 cttgtagcaa cagtgataga gcagaaaatg aaaatggctc tagatgcttt tctgaagata 240 ataatgaaac aacaatgtta attcaggatg atgaaaacaa ttcagaaatg tcaaaggatt 300 ggcaaaaaga gaagatgtgc aataagatta ataaagtaaa ttctgaaggc gaatttgata 360 aagatagaga ctctatatct gaaacagtcg acttaaacaa ccaggaaact gtcaaagtgc 420 aaatacacag cagagettea gaatatatea etgatgteea ttegaatgae etgtetaeae 480 cacagatect tecateaaat gaaggtgtta atecaegttt ateggeaage ceteetaaat 540 caggcaattt gtggccagga ttggcaccac cacacaaaaa agctcagtct gcatctccaa 600 agagaaaaaa acagcacaag aaatacagaa gtgttatttc agacatattt gatggaacaa 660 tcattagttc agtgcagtgt ctgacttgtg acagggtgtc tgtaaccctc gagacctttc 720 aagatetgte ettgecaatt eetggeaagg aagaeettge taagetgeat teatcaagte 780 atccaacttc tatagtcaaa gcaggatcat gtggcgaagc atatgctcca caagggtgga 840 tagetttttt catggaatat gtgaagaggt ttgttgtete atgtgteet agetggtttt 900 ggggtccagt agtaaccttg caagattgtc ttgctgcctt ctttgccaga gatgaactaa 960 aaggtgacaa tatgtacagt tgtgaaaaat gcaaaaagct gagaaatgga gtgaagtttt 1020 gtaaagtaca aaactttcct gagattttgt gcatccacct taaaagattc agacatgaac 1080 taatgttttc caccaaaatc agtacccatg tttcatttcc gctagaaggc ttggatcttc 1140 agccatttct tgctaaggat agtccagctc aaattgtgac atatgatctt ctgtcagtca 1200 tttgccatca tggaactgca agtagtggac actatatagc ctactgccga aacaatctaa 1260 ataatetetg gtatgaattt gatgateaga gtgteaetga agttteagaa tetaetgtae 1320 aaaatgcaga agcttacgtt cttttctata ggaagagcag cgaagaggca caaaaagaga 1380 ggagaaggat atcaaattta ttgaacataa tggaaccaag cctccttcag ttttatattt 1440 ctcgacagtg gcttaataaa tttaagacct ttgccgaacc tggccctatt tcaaataatg 1500 actttctttg tattcatgga ggtgttcctc caagaaaagc tggttatatt gaagacctgg 1560 ttttgatgct gcctcagaac atttgggata acctatatag caggtatggt ggaggaccag 1620 ctgtcaacca tctgtacatt tgtcatactt gccaaattga ggcggagaaa attgaaaaaa 1680 gaagaaaaac tgaattggaa atttttattc ggcttaacag agcgttccaa aaagaggact 1740 ctccagctac tttttattgc atcagtatgc agtggtttag agaatgggaa agttttgtga 1800 agggtaaaga tggagateet eeaggteeta ttgacaatae taagattgea gteactaaat 1860 gtggtaatgt gatgcttagg caaggagcag attctggcca gatttctgaa gaaacatgga 1920 attttctgca gtctatttat ggtggagggc ctgaagttat cctgcgacct ccggttgttc 1980 atgttgatcc agatatactt caagcagaag aaaaaattga agtagaaact cggtctttgt 2040 aatttttagg atgtagagag ttctaatgag gaatcatttt catgtgccct gacatgtaca 2100 catgcgaaaa cattcctaaa agcgtgttta tttgctttat tttttttcat catttatccc 2160 atttatttct tcttagtggg cattatggaa gaatatatta aaatgtgtaa tataccacag 2220 gttggtatat ttagttttaa atacttacca taaagtcttt cagtgtaatt tttttttgag 2280 acagagtett getttgteae eeaggetgga gtgetgtggt gttaceteag etcaetgeag 2340 cetecacete etgggtteaa gegattetee tgeeteagee tetegagtag etgggattae 2400 aggcacctgc caccatgccc ggctaatttt tgtattttag tagagatggg gtttcaccat 2460 gttggccagg ctagtctcaa actcctgacc tcaggtgatc cacccacctg ggcctcccaa 2520 agtgctggga ttacaggtgt gagccacagc gcctggctcg tgttctaagg aaatagctac 2580 ctaaggtatc ttattaaaac aaatgaacaa aaagtttccc aaactgtgtt ctaaggaaat 2640 agctacctat cttattaaaa aaaaaacaaa aacaaagttt tatgctctaa taagtttggg 2700 aaatgctagg ttatacaaag ctaaacatga ttctttccag tgggacatct gagagtcttt 2760 aattagctaa cagtgcattg tgattctgca aaggagttca ataattcacc ngtacgcgtg 2820 gtcgacc 2827 <210> 38 <211> 2987

<212> DNA

```
<213> Homo sapiens
 <220>
 <221> misc_feature
 <223> Incyte Clone No: 2820384
 <400> 38
 tgctcaccta cgcagctcct ctcgcccctg cagccccgtc caccaccacg agggccatgc 60
 caagetgtet ageageeece etegtgeaag eeeegtgagg gtggeaeegt egtacgtget 120
 caagaaagcc caggtattga gtgctggcag ccggaggggt aaggagcagc gctaccgcag 180
 egteatetea gaeatetttg aeggeteeat tettageete gtgeagtgte teacetgtga 240
 ccgggtatcc accacagtgg aaacgttcca ggacttatca ctgcccattc ctggaaagga 300
 ggacetggee aageteeatt cagecateta ecagaatgtg eeggeeaage caggegeetg 360
 tggggacagc tatgccgccc agggctggct ggccttcatt gtggagtaca tccgacggtt 420
 tgtggtatcc tgtacaccca gctggttttg ggggcctgtc gtcaccctgg aagactgcct 480
 tgctgccttc tttgccgctg atgagttaaa gggtgacaac atgtacagct gtgagcggtg 540
 taagaagetg eggaaeggag tgaagtaetg caaagteetg eggttgeeeg agateetgtg 600
 cattcaccta aagcgctttc ggcacgaggt gatgtactca ttcaagatca acagccacgt 660
 ctccttcccc ctcgaggggc tcgacctgcg ccccttcctt gccaaggagt gcacatccca 720
 gateaceace tacgacetee teteggteat etgecaceae ggcaeggeag geagtgggca 780
 ctacatcgcc tactgccaga acgtgatcaa tgggcagtgg tacgagtttg atgaccagta 840
 cgtcacagaa gtccacgaga cggtggtgca gaacgccgag ggctacgtac tcttctacag 900
 gaagagcage gaggaggeca tgcgggageg acagcaggtg gtgtccctgg ccgccatgcg 960
 ggagcccagc ctgctgcggt tctacgtgtc ccgcgagtgg ctcaacaagt tcaacacctt 1020
 cgcagagcca ggccccatca ccaaccagac cttcctctgc tcccacggag gcatcccgcc 1080
 ccacaaatac cactacatcg acgacctggt ggtcatcctg cccagaacg tctgggagca 1140
 cctgtacaac agattcgggg gtggccccgc cgtgaaccac ctgtacgtgt gctccatctg 1200
 ccaggtggag atcgaggcac tggccaagcg caggaggatc gagatcgaca ccttcatcaa 1260
gttgaacaag gccttccagg ccgaggagtc gccgggcgtc atctactgca tcagcatgca 1320
gtggttccgg gagtgggagg cgttcgtcaa ggggaaggac aacgagcccc ccgggcccat 1380
tgacaacagc aggattgcac aggtcaaagg aagcggccat gtccagctga agcagggagc 1440
tgactacggg cagatttcgg aggagacctg gacctacctg aacagcctgt atggaggtgg 1500
ccccgagatt gccatccgcc agagtgtggc gcagcgctgg gcccagagaa cctgcacggg 1560
gagcagaaga tegaageega gaegegggee gtgtgatetg etgggetagt etceecatgt 1620
gccccacccc gcggaaggcg tgtttgtgcc cagaagagag gccgggctgc tgcagaaccc 1680
cgccgtgtaa agaggcagaa aagttggttt ggtttgcagt aacgctgcaa ctagaaaata 1740
tatgcacttc aggcttgttg aaacgaccaa gactctgtga cgttaatttg ggtctttgtc 1800
ctggcagtgc ctctgccagt cactgtcatc gttgtgtccc ccacaactgt cctcttgcta 1860
geteggeeca getttgteec tggageecga tgetaceect gteagacaga ggetgeggee 1920
tgggccagag tcagggagta gctgctgctt cacggcgtct ccactgtgcg attggcccgg 1980
ageceegaag acteggaggg agetgeteag ggeeggtgag egeaceagaa geeetggeea 2040
gtgaggaget cacaggteet ecetggtggt ceegeegeac etetgeatet eetgggegte 2100
accaggaagg ctctgaagtc ccgggctgct ctcagcactt ctcctgcaga ctgaagactc 2160
tggactcatt gctgattgga acaccaggag gaggttggat ttctgccagt gggggatgtt 2220
tctggaggca gctggtcccc cacaccgcgt cctgctgagc ctgcccctg gattggctgt 2280
aatttgcctc gaagttcagc agttcatctt catgggaaat ttgctgagcc cccaccaggg 2340
aaccggatga tgaaacaggg atacctcaca gcttggccat ttgaggcaaa ggcagcttcc 2400
cgagctgatg ctaaagaaga cagactttcc cttcctccca gcagcagcag tgcagagccc 2460
gcctggaggg atgtggggc tgtgcagggt gcagcgctca ggtggatcct gggaagcagc 2520
ctctggatgc tgagtggagg gagccactga gcacagcaag gcaccaaagc ccctggagaa 2580
accgccaggg cgaggtgcga ccatcatcag gatcaaagca gacggggcgt gggtggggaa 2640
ggggctctgg gaccagaccc cccacactac tgcgtctttg tttctatcag tctttgtaga 2700
agcaggtggt ggtggaaatt ccagcaggtg ggtcccgcag aggccctgag gcctcacttt 2760
teggatette tgteccagat cetgetecet ecetgetgag eetggggtte ecetggeatt 2820
ggccccagcc ttctgaaagc cggcgctgca gccagaggcc gcacgctgca ctgtcgcgac 2880
gcagagaggc ttctgtgcag gctgggatcg ggccccatgt ctgtgctgtc tagtttgtgt 2940
tcaaaatgtc agaataaaca cagaataaat gttaaaaaaa aaaaaaa
                                                                  2987
```

```
<210> 39
<211> 1215
<212> DNA
<213> Homo sapiens
<220>
<221> misc_feature
<223> Incyte Clone No: 2990692
<400> 39
agagcacett agtaggeegg atteggetea gatgagtatg cataaggeaa tgetaatgge 60
tcaagcaatg agggggctca ctctaggagg acaagttaga acatttggga aaaaatgtta 120
taattgtggt caaatcggtc atctgaaaag gagttgccca gtcttaaata aacagaatat 180
aataaatcaa gctattacag caaaaaataa aaagccatct ggcctgtgtc caaaatgtgg 240
aaaaggaaaa cattgggcca atcaatgtca ttctaaattt gataaagatg ggcaaccatt 300
gtcgggaaac aggaagaggg gccagcctca ggccccccaa caaactgggg cattcccagt 360
tcaactgttt gttcctcagg gttttcaagg acaacaaccc ctacagaaaa taccaccact 420
tcagggagtc agccaattac aacaatccaa cagctgtccc gcgccacagc aggcagcgcc 480
acagtagatt tatgttccac ccaaatggtc tctttactcc ctggagagcc cccacaaaag 540
attectagag gggtatatgg cccgctgcca gaagggaggg taggccttat tttagggaga 600
tcaagtctaa atttgaaggg agtccaaatt catactgggg taatttattc agattataaa 660
gggggaattc agttagtgat cagetecact gtteeetgga gtgecaatec aggtgataga 720
ggagggtttg gaagtaccaa ccctgcagga aaagccactt attgggctaa tcaggtctca 840
gaggatagac ccgtgtgtac agtcactatt ccagggaaag agtttgaagg attagtggat 900
accoaggetg atgtttctat categgeata ggeacegeet cagaagtgta teaaagtgee 960
atgattttac attgtctagg atctgataat caagaaagta cggttcagcc tatgatcact 1020
tctattccaa tcaatttatg gggccgagac ttgttacaac aatggcatgc agagattact 1080
atcccagcet cectatacag ceccaggaat caaaaaatca tgactaaaat gggatagete 1140
cctaaaaagg gactaggaaa gaatgaagat ggcattaaag tcccaactga ggctgaaaaa 1200
aatcaaaaaa aaaaa
<210> 40
<211> 1037
<212> DNA
<213> Homo sapiens
<220>
<221> misc_feature
<223> Incyte Clone No: 4590384
<400> 40
gccatggggc tcgggttgag gggctgggga cgtcctctgc tgactgtggc caccgccctg 60
atgctgcccg tgaagccccc cgcaggctcc tggggggccc agatcatcgg gggccacgag 120
gtgacccccc actccaggcc ctacatggca tccgtgcgct tcgggggcca acatcactgc 180
ggaggettee tgetgegage cegetgggtg gteteggeeg cecaetgett cagecacaga 240
gacctccgca ctggcctggt ggtgctgggc gcccacgtcc tgagtactgc ggagcccacc 300
cagcaggtgt ttggcatcga tgctctcacc acgcaccctg actaccaccc catgacccac 360
gccaacgaca tetgeetget geggetgaac ggetetgetg teetgggeee tgcagtgggg 420
ctgctgaggc tgccagggag aagggccagg cccccacag cggggacacg gtgccgggtg 480
getggetggg gettegtgte tgaetttgag gagetgeege etggaetgat ggaggeeaag 540
gtccgagtgc tggacccgga cgtctgcaac agctcctgga agggccacct gacacttacc 600
atgetetgea eeegeagtgg ggacageeac agaegggget tetgetegge egacteegga 660
gggcccctgg tgtgcaggaa ccgggctcac ggcctcgttt ccttctcggg cctctggtgc 720
ggcgacccca agacccccga cgtgtacacg caggtgtccg cctttgtggc ctggatctgg 780
gacgtggttc ggcggagcag tccccagccc ggcccctgc ctgggaccac caggccccca 840
ggagaageeg cetgageeac aacettgegg catgeaaatg agatggeege teeaggeetg 900
```

gaatgttccg tggctgggcc ccacgggaag cctgatgttc agggttgggg tgggacgggc 960 agcggtgggg cacacccatt ccacatgcaa agggcagaag caaacccagt aaaatgttaa 1020 ctgacgaaaa aaaaaaa 1037

WORLD INTELLECTUAL PROPERTY ORGANIZATION International Bureau

INTERNATIONAL APPLICATION PUBLISHED UNDER THE PATENT COOPERATION TREATY (PCT)

(51) International Patent Classification 7:

(11) International Publication Number:

WO 00/09709

C12N 15/57, 9/48, C12Q 1/68, C12N 5/10, C07K 16/40, A61K 38/48, 38/55 **A3** (43) International Publication Date:

24 February 2000 (24.02.00)

(21) International Application Number:

PCT/US99/17818

(22) International Filing Date:

6 August 1999 (06.08.99)

(30) Priority Data:

60/096,114 60/119,768 10 August 1998 (10.08.98)

US 11 February 1999 (11.02.99) US

(63) Related by Continuation (CON) or Continuation-in-Part (CIP) to Earlier Applications

> US Filed on

60/096,114 (CIP) 10 August 1998 (10.08.98)

US Filed on

60/119,768 (CIP) 11 February 1999 (11.02.99)

(71) Applicant (for all designated States except US): INCYTE PHARMACEUTICALS, INC. [US/US]; 3174 Porter Drive, Palo Alto, CA 94304 (US).

(72) Inventors; and

(75) Inventors/Applicants (for US only): BANDMAN, Olga [US/US]; 366 Anna Avenue, Mountain View, CA 94043 (US). HILLMAN, Jennifer, L. [US/US]; 230 Monroe Drive #12, Mountain View, CA 94040 (US). BAUGHN, Mariah, R. [US/US]; 14244 Santiago Road, San Leandro, CA 94577

(US). AZIMZAI, Yalda [US/US]; 2045 Rock Springs Drive, Hayward, CA 94545 (US). GUEGLER, Karl, J. [CH/US]; 1048 Oakland Avenue, Menlo Park, CA 94025 (US). CORLEY, Neil, C. [US/US]; 1240 Dale Avenue #30, Mountain View, CA 94040 (US). YUE, Henry [US/US]; 826 Lois Avenue, Sunnyvale, CA 94087 (US). TANG, Y., Tom [CN/US]; 4230 Ranwick Court, San Jose, CA 95118 (US). REDDY, Roopa [IN/US]; 1233 W. McKinley Drive, Sunnyvale, CA 94086 (US). PATTERSON, Chandra [US/US]; 490 Sherwood Way #1, Menlo Park, CA 94025 (US). AU-YOUNG, Janice [US/US]; 1419 Kains Avenue, Berkeley, CA 94702 (US). SHIH, Leo, L. [US/US]; Apartment B., 1081 Tanland Drive, Palo Alto, CA 94303 (US). LU, Dyung, Aina, M. [US/US]; 55 Park Belmont Place, San Jose, CA 95136 (US).

- (74) Agents: BILLINGS, Lucy, J. et al.; Incyte Pharmaceuticals, Inc., 3174 Porter Drive, Palo Alto, CA 94304 (US).
- (81) Designated States: AL, AM, AT, AU, AZ, BA, BB, BG, BR, BY, CA, CH, CN, CU, CZ, DE, DK, EE, ES, FI, GB, GD, GE, GH, GM, HR, HU, ID, IL, IN, IS, JP, KE, KG, KP, KR, KZ, LC, LK, LR, LS, LT, LU, LV, MD, MG, MK, MN, MW, MX, NO, NZ, PL, PT, RO, RU, SD, SE, SG, SI, SK, SL, TJ, TM, TR, TT, UA, UG, US, UZ, VN, YU, ZA, ZW, ARIPO patent (GH, GM, KE, LS, MW, SD, SL, SZ, UG, ZW), Eurasian patent (AM, AZ, BY, KG, KZ, MD, RU, TJ, TM), European patent (AT, BE, CH, CY, DE, DK, ES, FI, FR, GB, GR, IE, IT, LU, MC, NL, PT, SE), OAPI patent (BF, BJ, CF, CG, CI, CM, GA, GN, GW, ML, MR, NE, SN, TD, TG).

Published

With international search report.

(88) Date of publication of the international search report: 8 September 2000 (08.09.00)

(54) Title: PROTEASES AND ASSOCIATED PROTEINS

(57) Abstract

The invention provides human proteases and associated proteins (PPRG) and polynucleotides which identify and encode PPRG. The invention also provides expression vectors, host cells, antibodies, agonists, and antagonists. The invention also provides methods for diagnosing, treating, or preventing disorders associated with expression of PPRG.

FOR THE PURPOSES OF INFORMATION ONLY

Codes used to identify States party to the PCT on the front pages of pamphlets publishing international applications under the PCT.

AL	Albania	ES	Spain	LS	Lesotho	SI	Slovenia
AM	Armenia	FI	Finland	LT	Lithuania	SK	Slovakia
AT	Austria	FR	France	LU	Luxembourg	SN	
AU	Australia	GA	Gabon	LV	Latvia	SZ	Senegal
AZ	Azerbaijan	GB	United Kingdom	MC	Monaco	TD	Swaziland
BA	Bosnia and Herzegovina	GE	Georgia	MD	Republic of Moldova	TG	Chad
BB	Barbados	GH	Ghana	MG	Madagascar	TJ	Togo
BE	Belgium	GN	Guinea	MK	The former Yugoslav	TM	Tajikistan
BF	Burkina Faso	GR	Greece		Republic of Macedonia	TR	Turkmenistan
BG	Bulgaria	HU	Hungary	ML	Mali	TT	Turkey
BJ	Benin	IE	Ireland	MN	Mongolia	UA.	Trinidad and Tobago
BR	Brazil	IL	Israel	MR	Mauritania	UG	Ukraine
BY	Belarus	IS	Iceland	MW	Malawi	US	Uganda
CA	Canada	IT	Italy	MX	Mexico		United States of America
CF	Central African Republic	JP	Јарап	NE	Niger	UZ VN	Uzbekistan
CG	Congo	KE	Kenya	NL	Netherlands		Vict Nam
CH	Switzerland	KG	Kyrgyzstan	NO	Norway	YU	Yugoslavia
CI	Côte d'Ivoire	KP	Democratic People's	NZ	New Zealand	zw	Zimbabwe
CM	Cameroon		Republic of Korea	PL	Poland		
CN	China	KR	Republic of Korea	PT	Portugal		
CU	Cuba	KZ	Kazakstan	RO	Romania		
CZ	Czech Republic	LC	Saint Lucia	RU	Russian Federation		
DE	Germany	LI	Liechtenstein	SD	Sudan		
DK	Denmark	LK	Sri Lanka	SE	Sweden		
EE	Estonia	LR	Liberia	SG	Singapore		

onal Application No PCT/US 99/17818

A. CLASSIFICATION OF SUBJECT MATTER IPC 7 C12N15/57 C12N C12N5/10 C07K16/40 C12N9/48 C12Q1/68 A61K38/55 A61K38/48 According to International Patent Classification (IPC) or to both national classification and IPC B. FIELDS SEARCHED Minimum documentation searched (classification system followed by classification symbols) C12N IPC 7 Documentation searched other than minimum documentation to the extent that such documents are included in the fields searched Electronic data base consulted during the international search (name of data base and, where practical, search terms used) C. DOCUMENTS CONSIDERED TO BE RELEVANT Relevant to claim No. Citation of document, with indication, where appropriate, of the relevant passages Category ° 1-6,9-11 BERNOT ET AL.: "Metalloproteinase" X EMBL SEQUENCE DATABASE. 1 June 1998 (1998-06-01), XP002129490 HEIDELBERG DE 1-16,19, Ac 043923 Y the whole document 1-6,9-11 "Homo sapiens mRNA for -& BERNOT ET AL.: Х metalloproteinase" EMBL SEQUENCE DATABASE, 21 January 1998 (1998-01-21), XP002129491 HEIDELBERG DE 1-16,19,Ac AJ003144 γ 20 the whole document 1-6,9-11 "A transcriptional map -& BERNOT ET AL.: X of the FMF region" GENOMICS, vol. 50, 1998, pages 147-160, XP002090815 1-16,19, page 154, left-hand column Y -/--Patent family members are listed in annex. X

LX	Falmet documents and aged in one	Contanuation	01001	•
° Snov	ciel categories of cited documents :			_

٥	Special	categories	of cited	documents	:
---	---------	------------	----------	-----------	---

- "A" document defining the general state of the art which is not considered to be of particular relevance
- earlier document but published on or after the international filing date
- document which may throw doubts on priority claim(s) or which is cited to establish the publication date of another citation or other special reason (as specified)
- "O" document referring to an oral disclosure, use, exhibition or
- document published prior to the international filing date but later than the priority date claimed
- *T* later document published after the international filing date or priority date and not in conflict with the application but cited to understand the principle or theory underlying the invention
- "X" document of particular relevance; the claimed invention cannot be considered novel or cannot be considered to involve an inventive step when the document is taken alone
- "Y" document of particular relevance; the claimed invention cannot be considered to involve an inventive step when the document is combined with one or more other such documents, such combination being obvious to a person skilled
- "&" document member of the same patent family

Date of the actual completion of the international search

Date of mailing of the international search report 15.5.

3 February 2000

Authorized officer

Name and mailing address of the ISA European Patent Office, P.B. 5818 Patentiaan 2 NL - 2280 HV Riiswijk Tel. (+31-70) 340-2040, Tx. 31 651 epo ni, Fax: (+31-70) 340-3016

CEDER O.

Form PCT/ISA/210 (second sheet) (July 1992)

00

3

Inte .onal Application No PCT/US 99/17818

	ation) DOCUMENTS CONSIDERED TO BE RELEVANT			
Category 3	Citation of document, with indication, where appropriate, of the relevant passages	Relevant to claim No.		
1	WO 96 04387 A (ROUSSEL UCLAF; DIU ANITA (FR); FAUCHEU CHI (FR); HERCEND THIERRY () 15 February 1996 (1996-02-15) page 2, line 31 -page 3, line 15 page 8, line 39 -page 11, line 5 abstract; claims 1-6,11-17	1-16,19, 20		
	•			
,				

Incinational application No.

PCT/US 99/17818

Box I	Observati ns where certain laims were found uns archable (C ntinuation of it m 1 of first sheet)
This Inte	emational Search Report has not been established in respect of certain claims under Article 17(2)(a) for the following reasons:
1. X	Claims Nos.: because they relate to subject matter not required to be searched by this Authority, namely: see FURTHER INFORMATION PCT/ISA/210
2. X	Claims Nos.: because they relate to parts of the International Application that do not comply with the prescribed requirements to such an extent that no meaningful International Search can be carried out, specifically: see FURTHER INFORMATION PCT/ISA/210
3.	Claims Nos.: because they are dependent claims and are not drafted in accordance with the second and third sentences of Rule 6.4(a).
Box II	Observations where unity of invention is lacking (Continuation of item 2 of first sheet)
This Int	ernational Searching Authority found multiple inventions in this international application, as follows:
1.	As all required additional search fees were timely paid by the applicant, this International Search Report covers all searchable claims.
2.	As all searchable claims could be searched without effort justifying an additional fee, this Authority did not invite payment of any additional fee.
3.	As only some of the required additional search fees were timely paid by the applicant, this International Search Report covers only those claims for which fees were paid, specifically claims Nos.:
[7
4. X	No required additional search fees were timely paid by the applicant. Consequently, this International Search Report is restricted to the invention first mentioned in the claims; it is covered by claims Nos.:
	1-16,19-20 ALL PARTIAL
Remai	The additional search fees were accompanied by the applicant's protest.
	No protest accompanied the payment of additional search fees.

FURTHER INFORMATION CONTINUED FROM PCT/ISA/ 210

Continuation of Box I.1

Although claims 19 and 20 are directed to a method of treatment of the human/animal body, the search has been carried out and based on the alleged effects of the compound/composition.

Continuation of Box I.1

Rule 39.1(iv) PCT - Method for treatment of the human or animal body by therapy

Continuation of Box I.2

Claims Nos.: 17 18

Claims 17 and 18, relating to purified agonists/antagonists of the polypeptide of claim 1, could not be searched as its subject-matter was insufficietly disclosed.

The applicant's attention is drawn to the fact that claims, or parts of claims, relating to inventions in respect of which no international search report has been established need not be the subject of an international preliminary examination (Rule 66.1(e) PCT). The applicant is advised that the EPO policy when acting as an International Preliminary Examining Authority is normally not to carry out a preliminary examination on matter which has not been searched. This is the case irrespective of whether or not the claims are amended following receipt of the search report or during any Chapter II procedure.

FURTHER INFORMATION CONTINUED FROM PCT/ISA/ 210

1. Claims: Invention 1: 1-16 19-20 all partial

A substantially purified polypeptide and an isolated and purified polynucleotide encoding it and uses of them, where the polypeptide sequence is SEQ ID NO 1 and the the polynucleotide sequence is SEQ ID NO 21.

2. Claims: Invention 2-20: 1-16 19-20 all partial

Idem as subject 1 but limited to each of the polypeptide sequences as in SEQ ID NOS 2-20 and corresponding polynucleotide sequences SEQ ID NOS 21-40, where invention 2 is limited to SEQ ID NOS 2 and 22, invention 3 is limited to SEQ ID NOS 3 and 23,, invention 20 is limited to SEQ ID NOS 20 and 40.

Information on patent family members

PCT/US 99/17818

Patent document cited in search report		Publication date	Patent family member(s)		Publication date	
WO 9604387	Α	15-02-1996	FR	2723378 A	09-02-1996	
			AU	704426 B	22-04-1999	
			AU	3118095 A	04-03-1996	
•			CA	2196339 A	15-02-1996	
			CN	1158639 A	03-09-1997	
			EP	0774004 A	21-05-1997	
			HΩ	76971 A	28-01-1998	
			JP	10503652 T	07-04-1998	
			US	6020477 A	01-02 - 2000	