Counting integer points in polyhedra

Siddharth Bhat

June 22nd, 2018

Proof outline

- ▶ Algbra of polyhedra, $P(\mathbb{Q}^d)$
- $\blacktriangleright []: \mathbb{Q}^d \to P(\mathbb{Q}^d)$
- ▶ Existence of $\mathcal{F}: P(\mathbb{Q}^d) \to \mathbb{C}(x)$, such that:
 - ▶ F is linear
 - ▶ P is a polyhedra, then $\mathcal{F}([P]) = \sum_{\vec{m} \in P \cap \mathbb{Z}^d} (x^{\vec{m}})$
 - ▶ $\mathcal{F}([line]) = 0$
- $ightharpoonup \mathcal{F}(P)(1) = \text{number of points in } P$
- reduction: F for cones gives full F
- reduction: F for simple cones gives F for cones

Caveats

- ▶ Do not understand subtleties of convergence arguments (how is evaluating at $\vec{1}$ correct?).
- ▶ No intuition for LLL, Lattice reduction.

Assuming \mathcal{F} for cones, derive full \mathcal{F} : Part 1 (Polytopes)

FIGURE 66. A polytope $P \subset \mathbb{R}^d$ and a cone $K \subset \mathbb{R}^{d+1}$ based on P.

- ▶ Write polytope as intersection of hyperplane + cone.
- $ightharpoonup \mathcal{F}(\mathsf{polytope}) = (rac{d}{d\mathsf{x}_{d+1}}\mathcal{F}(\mathsf{cone}))(\langle \vec{1}^d, 0 \rangle)$
- ▶ $\mathcal{F}(cone) = x_{d+1}^{0}(...) + x_{d+1}(POLYTOPE) + x_{d+1}^{2}(...) + ...$
- ▶ $\frac{d}{dx_d}\mathcal{F}(\mathsf{cone}) = 0 + 0 \cdot (\ldots) + 1 \cdot \mathsf{POLYTOPE} + 2x_{d+1}(\ldots) + \ldots$
- ▶ $\frac{d}{dx_d}\mathcal{F}(\mathsf{cone})(\langle \vec{1}^d, 0 \rangle) = \mathsf{POLYTOPE}(\vec{1}) + 2 \cdot 0 \cdot (\ldots) + \ldots$
- $\frac{d}{dx_d}\mathcal{F}(\mathsf{cone})(\langle \vec{1}^d, 0 \rangle) = \mathsf{POLYTOPE}(\vec{1})$

Assuming \mathcal{F} for cones, derive full \mathcal{F} : Part 2 (Lines)

- ► Line = cone + cone point.
- ▶ Since line can be translated, $\forall \vec{x} \in L, L = \vec{x} + L$
 - $\forall x \in L, \mathcal{F}(L) = \mathcal{F}(L) + \mathcal{F}(\vec{x})$
 - $ightharpoonup \mathcal{F}(L) = 0$

Assuming ${\mathcal F}$ for simple cone, derive for cone

▶ inclusion exclusion: decompose cone into simple cones.

References

- ► Lattice Points, Polyhedra, and Complexity: Alexander Barvinok
- ▶ Integer points in polyhedra: Alexander Barvinok

Thanks!

Questions?

Assuming \mathcal{F} for cones, derive full \mathcal{F} : Part 1.2 (Polytopes)

FIGURE 36. Representing the interior of a polytope as the sum of the interiors of its tangent cones at the vertices modulo polyhedra with lines.