Introdução à Ciência da Computação Introdução à Engenharia de Computação

Conceitos Básicos

Profa. Ana Marilza Pernas Fleishmann Profa. Lisane Brisolara de Brisolara Prof. Giovani Farias Prof. Rafael Iankowski Soares

O que é informação ?

Informação

 Tudo aquilo que permite representar conhecimento

Em um ambiente computacional, o conhecimento deve ser representado de acordo com lógicas e regras de uma linguagem específica, a fim de que se permita sua utilização para solução de problemas de forma eficiente e eficaz.

Oliveira, 2008 – Technical Report, UFG, Março 2008

- Informática
 - Ciência que estuda a informação, sua dinâmica e seus processos
- Origem da palavra:
 - Informatique (information automatique)

O que é um computador ?

Computador

Um computador é uma máquina (conjunto de partes eletrônicas) capaz de sistematicamente coletar, manipular e fornecer os resultados da manipulação de dados para um ou mais objetivos.

Processamento de Dados

- Processamento de Dados
 - Consiste em uma série de atividades ordenadamente realizadas, com o objetivo de produzir um arranjo determinado de informações a partir de dados obtidos inicialmente.
 - Informações iniciais: DADOS
 - Produto acabado: INFORMAÇÃO

Processamento de Dados

- Exemplos:
 - Controle de estoque de uma empresa
 - Outros exemplos ?

Programação

A Lógica de Programação

- Para que uma tarefa seja bem sucedida é necessário que a máquina seja capaz de desempenhar cada uma das etapas constituintes do processo
- Para que um computador possa desempenhar uma tarefa é necessário que esta esteja bem detalhada passo a passo, numa forma compreensível pela máquina, utilizando o que se chama de programa
- Para que se possa entender como construir um programa, faz-se necessário entender primeiro como é a lógica de programação através do uso de algoritmos

- Toda informação introduzida em um computador ...
 - (sejam dados que serão processados ou instruções de um programa) precisam ser entendidas pela máquina, para que possa corretamente interpretá-la e processá-la
 - Informações mais usadas :
 - Caracteres alfabéticos
 - Caracteres numéricos
 - Sinais de pontuação
 - Outras informações: imagens, sons, desenhos ...

Computador

- Equipamento eletrônico que armazena e movimenta dados internamente de forma eletrônica.
 - Este dado pode ser representada por um valor de tensão ou corrente
- Representar eletricamente todos os símbolos utilizados na linguagem humana seriam necessários 100 valores diferentes de tensão (ou corrente)
 - Uma máquina assim dificilmente seria construída

- O computador digital só consegue processar duas informações: a **presença** ou **ausência** de energia
- Computadores digitais reconhecem dois estados físicos distintos, ligado ou desligado
 - Representam as informações usando um número fixo (discreto) de dígitos/algarismos

- Os computadores DIGITAIS
 - Trabalham com valores discretos
 - São totalmente binários
 - Projeto de circuitos eletrônicos com apenas dois diferentes níveis de tensão obrigatórios.
 - Toda informação introduzida no computador é convertida para forma binária, através do emprego de um código qualquer de armazenamento

Um diagrama de tempo mostra em que estado (1 ou 0) está o sistema, em qualquer momento. Eixo x é o tempo e eixo y é a tensão.

Aponta, também, o momento exato em que ocorre uma mudança de estado.

- Para o computador, tudo são números
- Todas as informações, como textos, imagens, etc., são codificadas internamente através de um código numérico
- Código mais comum BINÁRIO

Por que é utilizado o sistema binário?

 Como os computadores representam as informações utilizando apenas dois estados possíveis - eles são totalmente adequados para números binários

O – desligado

1 – ligado

BIT

- É a menor unidade de informação armazenável em um computador
- É um algarismo do sistema binário de numeração ou dígito binário
- BIT (Blnary digiT)
- Um BIT pode possuir assumir os valores 0 ou 1

- Necessidade para representar números e outros símbolos, como os caracteres e os sinais de pontuação que usamos nas linguagens escritas, precisamos de mais de 1 BIT!
- Precisamos ter bits suficientes para representar todos os símbolos que queremos suportar:
 - Dígitos numéricos
 - Letras maiúsculas e minúsculas do alfabeto
 - Sinais de pontuação
 - Símbolos matemáticos e assim por diante...

Necessidade de representar:

Caracteres alfabéticos maiúsculos	26
Caracteres alfabéticos minúsculos	26
Algarismos	10
Sinais de pontuação e outros símbolos	32
Caracteres de controle	24
Total	118

Capacidade de representação: 2^{Número de bits}

Bits	Símbolos
2	
3	
4	
5	
6	
7	
8	
9	
10	

Capacidade de representação: 2^{Número de bits}

Bits	Símbolos
2	4
3	8
4	16
5	32
6	64
7	128
8	256
9	512
10	1024

BYTE (Blnary TErm)

- Grupo ordenado de 8 bits, para efeito de manipulação interna mais eficiente
- Tratado de forma individual, como unidade de armazenamento e transferência
- Unidade de memória usada no passado para representar 1 caractere
- Com 8 bits, podemos arranjar 256 configurações diferentes:
 - 256 caracteres ou
 - números de 0 a 255, ou de -128 a 127, por exemplo

Palavra (word)

- Grupo ordenado de bytes
- Tratado de forma individual, como unidade de armazenamento e transferência
- Uma palavra está associada a interação entre o processador e memória.
 - Quantos bits são lidos da memória por vez?
- Existem diversos tamanho de palavras:
 - 32 bits
 - 64 bits
 - 128 bits

Arquivo

• É um conjunto de informações formada por dados de um mesmo tipo ou para uma mesma aplicação

Registro

 Cada arquivo é constituído por itens individuais de informação chamados registros

 Associação (entre o computador e a linguagem humana):

Menor granularidade

- BIT
- Byte
- Palavra
- Registro
- Arquivo

Caractere (menor parte de uma palavra)
Palavra

Frases

Textos

Livros

Maior granularidade

 1 byte = 8 bits = 1 caractere (letra, número ou símbolo)

Representação da Informação: Códigos

- Qualquer informação, seja numérica ou alfabética, deve ser representada por bits, ou seja codificada.
- Codificação é o mapeamento de símbolos para uma representação binária (em bits)
- Códigos binários:
 - Números sem e com sinal
 - Alfanuméricos (letras, números e outros símbolos)
 - Ex: código ASCII

- Todas as letras, números e outros caracteres são codificados e decodificados pelos equipamentos através dos bytes que os representam, permitindo, dessa forma, a comunicação entre o usuário e a máquina
- Sistemas mais comum para representar símbolos com números binários (bits):
 - ASCII (American Standard Code for Information Interchange – Código padrão americano para o Intercâmbio de Informações)

ASCII

- Padrão definido pela organização ANSI (American National Standards Institute)
- Código de 7 bits (128 combinações de caracteres)
- No PC existe o ASCII Estendido (utiliza outros 128 códigos para símbolos gráficos, e línguas diferentes do inglês)

Alguns caracteres ASCII:

Utiliza 8 bits -> oitavo bit é 0

Binário	Caractere
0100 0001	А
0100 0010	В
0110 0001	а
0110 0010	b
0011 1100	<
0011 1101	=
0001 1011	ESC
0111 1111	DEL

Legenda: Tabela com código de 8 bits e ao lado caractere correspondente.

Tabela ASCII

Tabela ASCII (só símbolos mais usados), incluindo na primeira coluna o código binário de 8 bits, depois código decimal, código hexa e o símbolo/caractere correspondente

Binário	Decimal	Hexa	Glifo	
0010 0000	32	20		
0010 0001	33	21	!	
0010 0010	34	22	"	
0010 0011	35	23	#	
0010 0100	36	24	\$	ı
0010 0101	37	25	%	
0010 0110	38	26	&	
0010 0111	39	27		
0010 1000	40	28	(
0010 1001	41	29)	
0010 1010	42	2A	*	
0010 1011	43	2B	+	
0010 1100	44	2C	,	
0010 1101	45	2D	-	
0010 1110	46	2E	-	
0010 1111	47	2F	1	
0011 0000	48	30	0	
0011 0001	49	31	1	
0011 0010	50	32	2	
0011 0011	51	33	3	
0011 0100	52	34	4	
0011 0101	53	35	5	
0011 0110	54	36	6	
0011 0111	55	37	7	
0011 1000	56	38	8	
0011 1001	57	39	9	
0011 1010	58	3A	:	
0011 1011	59	3B	÷	
0011 1100	60	3C	<	
0011 1101	61	3D	=	
0011 1110	62	3E	>	ĺ,
0011 1111	63	3F	?	ŀ
				ž.

Binário	Decimal	Hexa	Glifo
0100 0000	64	40	@
0100 0001	65	41	Α
0100 0010	66	42	В
0100 0011	67	43	С
0100 0100	68	44	D
0100 0101	69	45	Е
0100 0110	70	46	F
0100 0111	71	47	G
0100 1000	72	48	Н
0100 1001	73	49	-1
0100 1010	74	4A	J
0100 1011	75	4B	K
0100 1100	76	4C	L
0100 1101	77	4D	M
0100 1110	78	4E	N
0100 1111	79	4F	0
0101 0000	80	50	Р
0101 0001	81	51	Q
0101 0010	82	52	R
0101 0011	83	53	S
0101 0100	84	54	Т
0101 0101	85	55	U
0101 0110	86	56	V
0101 0111	87	57	W
0101 1000	88	58	Х
0101 1001	89	59	Υ
0101 1010	90	5A	Z
0101 1011	91	5B	[
0101 1100	92	5C	Λ.
0101 1101	93	5D]
0101 1110	94	5E	٨
<mark>0101 1111</mark>	95	5F	_

Binário	Decimal	Hexa	Glifo
0110 0000	96	60	•
0110 0001	97	61	а
0110 0010	98	62	b
0110 0011	99	63	С
0110 0100	100	64	d
0110 0101	101	65	е
0110 0110	102	66	f
0110 0111	103	67	g
0110 1000	104	68	h
0110 1001	105	69	i
0110 1010	106	6A	j
0110 1011	107	6B	k
0110 1100	108	6C	- 1
0110 1101	109	6D	m
0110 1110	110	6E	n
0110 1111	111	6F	0
0111 0000	112	70	р
0111 0001	113	71	q
0111 0010	114	72	r
0111 0011	115	73	S
0111 0100	116	74	t
0111 0101	117	75	u
0111 0110	118	76	V
0111 0111	119	77	w
0111 1000	120	78	х
0111 1001	121	79	У
0111 1010	122	7A	z
0111 1011	123	7B	{
0111 1100	124	7C	- 1
0111 1101	125	7D	}
0111 1110	126	7E	~

Tabela ASCII Completa

- Tabela ASCII com código em decimal, hexadecimal e caracter correspondente
- Os primeiros 128
 elementos,
 restantes no
 próximo slide

_	_		_	_		_	_		_	_		
Dec	Hex	Char	Dec	Нех	Char	Dec	Hex	Char	Dec	Hex	Char	Г
0		Null	32	20	Space	64	40	0	96	60	`	
1		Start of heading	33	21	!	65	41	A	97	61	a	
2	02	Start of text	34	22	"	66	42	В	98	62	b	
3	03	End of text	35	23	#	67	43	С	99	63	c	
4		End of transmit	36	24	Ş	68	44	D	100	64	d	
5		Enquiry	37	25	*	69	45	E	101	65	e	
6	06	Acknowledge	38	26	٤	70	46	F	102	66	£	
7	07	Audible bell	39	27	1	71	47	G	103	67	g	
8	08	Backspace	40	28	(72	48	H	104	68	h	
9	09	Horizontal tab	41	29)	73	49	I	105	69	i	
10	OA	Line feed	42	2A	*	74	4A	J	106	6A	j	
11	OB	Vertical tab	43	2 B	+	75	4B	K	107	6B	k	
12	oc.	Form feed	44	2 C	,	76	4C	L	108	6C	1	
13	OD	Carriage return	45	2 D	-	77	4D	M	109	6D	m	
14	OE	Shift out	46	2 E		78	4E	N	110	6E	n	
15	OF	Shift in	47	2 F	/	79	4F	0	111	6F	0	
16	10	Data link escape	48	30	0	80	50	P	112	70	р	
17	11	Device control 1	49	31	1	81	51	Q	113	71	đ	
18	12	Device control 2	50	32	2	82	52	R	114	72	r	
19	13	Device control 3	51	33	3	83	53	S	115	73	s	
20	14	Device control 4	52	34	4	84	54	Т	116	74	t	
21	15	Neg. acknowledge	53	35	5	85	55	U	117	75	u	
22	16	Synchronous idle	54	36	6	86	56	V	118	76	v	
23	17	End trans, block	55	37	7	87	57	W	119	77	w	
24	18	Cancel	56	38	8	88	58	X	120	78	x	
25	19	End of medium	57	39	9	89	59	Y	121	79	У	
26	1A	Substitution	58	3A	:	90	5A	Z	122	7A	z	
27	1B	Escape	59	3 B	;	91	5B	[123	7B	{	
28	1C	File separator	60	3 C	<	92	5C	١	124	7C	I	
29	1D	Group separator	61	ЗD	=	93	5D]	125	7D	}	
30	1E	Record separator	62	3 E	>	94	5E	^	126	7E	~	L
31	1F	Unit separator	63	3 F	?	95	5F		127	7F		

Tabela ASCII Completa

- Tabela ASCII com código em decimal, hexadecimal e caracter
- Os 128 elementos restantes

Dec	Hex	Char	Dec	Hex	Char	Dec	Hex	Char	Dec	Hex	Char	
128	80	Ç	160	A0	á	192	CO	L	224	EO	CX	1
129	81	ü	161	A1	í	193	C1	土	225	E1	ß	
130	82	é	162	A2	ó	194	C2	т	226	E2	Г	
131	83	â	163	A3	ú	195	C3	F	227	E 3	п	
132	84	ä	164	A4	ñ	196	C4	_	228	E4	Σ	
133	85	à	165	A5	Ñ	197	C5	+	229	E5	σ	
134	86	å	166	A6	2	198	C6	F	230	E6	μ	
135	87	ç	167	A7	۰	199	C7	⊩	231	E7	τ	
136	88	ê	168	A8	ć	200	C8	L	232	E8	Φ	
137	89	ë	169	A 9	_	201	C9	F	233	E9	0	
138	8A	è	170	AA	¬	202	CA	ᄟ	234	EA	Ω	
139	8B	ï	171	AB	1∕2	203	CB	īF	235	EB	δ	
140	8C	î	172	AC	¹ ď	204	CC	ŀ	236	EC	ω	
141	8 D	ì	173	AD	i	205	CD	=	237	ED	Ø	
142	8 E	Ä	174	AE	«	206	CE	#	238	EE	ε	
143	8 F	Å	175	AF	»	207	CF	±	239	EF	Π	
144	90	É	176	BO		208	DO	Ш	240	FO	=	
145	91	æ	177	B1	******	209	D1	ᆕ	241	F1	±	
146	92	Æ	178	B2		210	D2	т	242	F2	≥	
147	93	ô	179	В3	1	211	DЗ	L	243	F3	≤	
148	94	ö	180	В4	4	212	D4	L	244	F4	ſ	
149	95	ò	181	B5	4	213	D5	F	245	F5	J	
150	96	û	182	В6	1	214	D6	Г	246	F6	÷	
151	97	ù	183	В7	П	215	D7	#	247	F7	×	
152	98	ÿ	184	В8	₹	216	D8	+	248	F8	•	
153	99	Ö	185	В9	4	217	D9	٦	249	F9	•	
154	9A	Ü	186	BA		218	DA	Г	250	FA	·	
155	9B	¢	187	BB	₹	219	DB		251	FB	4	
156	9C	£	188	BC	귀	220	DC	=	252	FC	T	
157	9D	¥	189	BD	П	221	DD	ı	253	FD	z	
158	9E	R.	190	BE	Ŧ	222	DE	ı	254	FE	-	
159	9F	f	191	BF	٦	223	DF	-	255	FF		

Representação da Informação: Unidades

- Unidades de Medida de Informação
 - Informação se mede por bits ou bytes!

Volumes grandes:

Se usava Mega, Giga, Tera, etc (padrão SI)

Isso criava algumas confusões, pois o Kilo era usado na Computação como 2¹⁰ (ao invés do 10³)!

Polêmica das Unidades

Por que usar o 2¹⁰ como kilo(K) para memória?

- O tamanho da memória é dado pelos endereços de memória que estarão em binário
 - Cada posição (ou endereço) de memória é dada por um número que no máximo equivale a uma potência de 2 exata menos 1
 - Então, tamanho de memória tem de ser representado por 2ⁿ
 - Por isso, capacidade de memória é medida por potências de
 2.

Outras Unidades (SI)

Prefixo de unidade de medidas

- Pico (p): $1 \times 10^{-12} = 0,000\,000\,000\,001$
- Nano (n): $1x10^{-9} = 0,000 000 001$
- Micro (μ): $1 \times 10^{-6} = 0,000 001$
- Mili (m): $1 \times 10^{-3} = 0,001$
- Kilo (K): $1x10^3 = 1000$
- Mega (M): $1 \times 10^6 = 1000 000$
- **Giga (G):** $1 \times 10^9 = 1000\ 000\ 000$
- Tera (T): $1 \times 10^{12} = 1000\ 000\ 000\ 000$

Polêmica das Unidades

- KiloByte no passado era usado como
 - 1024 Bytes (só para tamanho de memória)
 - Ou 1000 Bytes (mas alguns usavam o padrão SI)
 - Isso porque Kilo, Mega, Giga já eram unidades no padrão SI e correspondiam as potências de 10 (10³, 10⁶, 10⁶)!

 $500 \text{ MegaHz} = 500 \times 10^6$

Solução: Definição de novos prefixos binários

Unidades de Medida de Informação (padrão IEC)

```
2<sup>10</sup>
                                                    = (1024)^{1}

    Kibibyte

                       = KiB =
                                           2<sup>20</sup>

    Mebibyte

                                                    = (1024)^2
                       = MiB =
                                           2<sup>30</sup>
                                                    = (1024)^3

    Gibibyte

                       = GiB =
                                           2<sup>40</sup>

    Tebibyte

                                                    = (1024)^4
                        = TiB =
                                           2<sup>50</sup>
                                                    = (1024)^5

    Pebibyte

                        = PiB =
```

Estes prefixos binários foram definidos para memória apenas!

Representação da Informação: Unidades

- Unidades de Medida de Informação (padrão IEC)
 - 1 **Kibibyte** = $1 \times 2^{10} = 1024$ bytes
 - 1 **Mebibyte** = $1 \times 2^{20} = 1024$ Kibibytes = 1.048.576 bytes
 - 1 **Gibibyte** = $1 \times 2^{30} = 1024$ Mebibytes = 1024×1024 Kibibytes = $(1024)^3$ bytes = 1.073.741.824

IEC 80000-13:2008

Conversões

• 256 Kibibytes = ? Bytes

• 64 Mebibytes = ? Bytes

Como fica em bytes?

Conversões

• 256 Kibibytes = 256 x 1024= 262.144 bytes

64 Mebibytes = 64 x 1024x 1024= 65.535
 Kibibytes = 67.108.864 bytes

Conversões

- 5000 Micro segundos = Mili segundos (ms)?
 - $5000 \times 10^{-6} = 0,005000 = 5 \times 10^{-3} = 5 \text{ ms}$
- 3500 Giga flops = Tera flops?
 - 3500 x 10^9 = 3500 000 000 000 = 3,5 x 10^{12} = 3,5 Tera flops

FLOPS: Operações de ponto flutuante por segundo

Outras Unidades (SI)

- Kilo (K): $1 \times 10^3 = 1000$
- Mega (M): $1 \times 10^6 = 1000000$
- Giga (G): $1 \times 10^9 = 1000\ 000\ 000$
- Tera (T): $1 \times 10^{12} = 1000\ 000\ 000\ 000$

Estes unidades NÃO devem mais ser usados para armazenamento de memória!

Onde aprender mais?

- MONTEIRO, M. A. Introdução à Organização de Computadores. Rio de Janeiro: Livros Técnicos e Científicos, 1996.
- WEBER, Raul F. **Fundamentos de Arquiteturas de Computadores**. Porto Alegre: Sagra-Luzzato, 2000.
- TANENBAUM, A. S. **Structured Computer Organization**. Upper Saddle River: Prentice Hall, 1990.
- PATTERSON, D. & HENNESSY, J. Computer Architecture: A Quantative Approach. San Francisco: Morgan Kaufmann, 1996.
- http://blog.forret.com/2005/02/binary-confusion-kilobytes-and-kibibytes/

https://pt.wikipedia.org/wiki/Kibibyte