```
procedure INIT-PDA
{Invoked when the router comes up. }
begin
  Initialize all tables;
  call PDA;
end INIT-PDA
procedure PDA
{Executed at each router i. Invoked when an event occurs}
begin
  (1) call NTU;
  (2) call MTU; /* Updates T^i */
  (3) if (there are changes to T^{i}) then
           Compose an LSU message consisting of topology
           differences using add, delete
           and change link entries;
      end if
  (4) Within a finite amount time, send the
      LSU message to all neighbors;
end PDA
```

procedure NTU begin

- (1) if (LSU message is received from a neighbor k) then
 - (1a) Update neighbor table T_kⁱ. That is, add links, delete links or change links according to the specification of each entry in the LSU;
 - (1b) Run Dijkstra's shortest path algorithm on the resulting topology T_k^i ; /*This results in finding minimum distances from k to all other nodes in T_k^i . Note T_k^i is a tree*/
 - (1c) Update D_{jk}^i with new distances in T_k^i , end if
- (2) if (adjacent link (i, k) is up) then Update I_k and send an LSU message to the neighbor k with link information of all links in its main topology table Tⁱ; endif
- (3) if (cost of an adjacent link (i, k) changed)then Update l_k^i ;

endif

(4) if (adjacent link (i, k) failed)then Update l_k^i and clear the table T_k^i , endif

end NTU

```
procedure MTU at router i
begin
```

- (1) $oldT^i \leftarrow T^i$: /* Save copy */
- (2) if (node j occurs in at least one of T_k^i) then add j to the main topology table T^i end if
- (3) for each node j in T^i do $\begin{aligned} & \textit{MIN} \leftarrow \min \; \{D^i_{jk} + l^i_k | k \in N^i \}; \\ & \text{let } p \; \text{be such that} \; \textit{MIN} = (D^i_{jp} + l^i_p); \end{aligned}$ /* Neighbor p is the preferred neighbor for destination j. Ties are broken in favor of lower address neighbor */ done
- (4) for each j in T^i and its preferred neighbor p do Copy all links (j,n) from T_p^i to T^i , /* i.e., copy all links in T_n^i for which i is the head node */ done
- (5) Update T^i with information of each l_k^i ;
- (6) Run Dijkstra's shortest path algorithm on T^i and remove those links in T^i that are not part of the shortest path tree;
- (7) Update D_jⁱ with new distances in Tⁱ;
 (8) Compare oldTⁱ with Tⁱ and note all differences; end MTU

```
procedure MPDA at router i
{invoked when an event occurs}
begin
      (1) call NTU;
      (2) if (node is in PASSIVE state) then
            (2a) call MTU; /* update T^i and D_i^t */
            (2b) FD_j^i \leftarrow min\{FD_j^i, D_j^i\};
          endif
      (3) if (node is in ACTIVE state and the
                 last ACK is received) then
             (3a) temp_i^i \leftarrow D_i^i, set node to PASSIVE state;
             (3b) call MTU to update T<sup>i</sup>;
             (3c) FD_j^i \leftarrow min\{temp_j^i D_j^i\}
          endif
      (4) S_i^i \leftarrow \{k | D_i^i < F D_i^i\};
      (5) if (changes occur in T^i)then
            Set node to ACTIVE state:
          endif
          if (no changes occur in T^i and the event is
                 the last ACK) then
            Set node to PASSIVE state:
          endif
      (6) if (there are changes to T^{i}) then
              Compose anew LSU with the topology
              changes expressed as add link,
              delete link and change link;
          end if
      (7) if (input event received is an LSU message)then
            Add the ACK entry to newly composed LSU;
          endif
      (8) Send the new LSU message.
end MPDA
```


FIG. 5

cegin
(1)
$$\forall k \in S_j^i \phi_j^i \leftarrow 0$$
,
(2) if $(|S_j^i| = 1)$ then
 $\forall k \in S_j^i \phi_j^i \leftarrow 1$;
endif

(3) if
$$(|S_j^i| > 1)$$
 then

$$1 - \underbrace{\sum_{j_k^i + l_k^i} D_{j_k^i + l_k^i}^i}_{m \in S_j^i} \left(D_j^i + l_m^i \right)$$

$$\phi_{jk}^{i} \leftarrow \frac{\sum_{m \in S_{j}^{i}} m \in S_{j}^{i}}{(|S_{j}^{i}| - 1)}$$
 endif

Procedure AH

(1)
$$D_{min}^{ij} \leftarrow min \{D_{jk}^{i} + I_{i}^{i} | k \in S_{j} \}$$
; (2) let $D_{min}^{ij} = (D_{jk}^{i} - I_{ik}^{i})$ // that is, k_{0} be the neighbor that offers the minimum) (3) foreach $k \in S_{j}^{i}$ do $a_{jk}^{i} \leftarrow D_{jk}^{ij} + I_{k}^{i} - D_{min}^{ij}$; done

 $\text{(4) } \Delta \leftarrow \frac{1}{2} \min \left\{ \frac{\phi_{jk}^{i}}{a_{jk}^{i}} \mid \mathbf{k} \in S_{j}^{i} \wedge a_{jk}^{i} \neq 0 \right\};$

(5) foreach $k \neq k_0 \land k \in S_j$ do $\phi_k^i \leftarrow \phi_k^i - \Delta \times a_{jk}^i$; done

(6) foreach $k = k_0$ do

 $\phi_{jk}^i \leftarrow \phi_{jk}^i + \sum_{q \in S_{jk}} \Delta \times a_{jq}^i$; done

FIG

FIG. 9

1

