References

- [1] Y. Luo, P. Liu, T. Guan, J. Yu, and Y. Yang, "Significance-Aware Information Bottleneck for Domain Adaptive Semantic Segmentation," in *Proc. of ICCV*, (Seoul, Korea), pp. 6778–6787, Oct. 2019.
- [2] J. Hoffman, E. Tzeng, T. Park, J.-Y. Zhu, P. Isola, K. Saenko, A. A. Efros, and T. Darrell, "CyCADA: Cycle-Consistent Adversarial Domain Adaptation," in *Proc. of ICML*, (Stockholm, Sweden), pp. 1989– 1998, July 2018.
- [3] Z. Wu, X. Han, Y.-L. Lin, M. G. Uzunbas, T. Goldstein, S. N. Lim, and L. S. Davis, "DCAN: Dual Channel-Wise Alignment Networks for Unsupervised Scene Adaptation," in *Proc. of ECCV*, (Munich, Germany), pp. 535–552, Sept. 2019.
- [4] S. Zhao, B. Li, X. Yue, Y. Gu, P. Xu, R. Hu, H. Chai, and K. Keutzer, "Multi-Source Domain Adaptation for Semantic Segmentation," in *Proc. of NeurIPS*, (Vancouver, Canada), pp. 7285–7298, Dec. 2019.
- [5] Z. Wang, M. Yu, Y. Wei, R. Feris, J. Xiong, W. mei Hwu, T. S. Huang, and H. Shi, "Differential Treatment for Stuff and Things: A Simple Unsupervised Domain Adaptation Method for Semantic Segmentation," in *Proc. of CVPR*, (Seattle, WA, USA), pp. 12635–12644, June 2020.
- [6] Y. Yang and S. Soatto, "FDA: Fourier Domain Adaptation for Semantic Segmentation," in *Proc. of CVPR*, (Seattle, WA, USA), pp. 4085–4095, June 2020.
- [7] M. Kim and H. Byun, "Learning Texture Invariant Representation for Domain Adaptation of Semantic Segmentation," in *Proc. of CVPR*, (Seattle, WA, USA), pp. 12975–12984, June 2020.
- [8] J. Choi, T. Kim, and C. Kim, "Self-Ensembling With GAN-based Data Augmentation for Domain Adaptation in Semantic Segmentation," in *Proc. of ICCV*, (Seoul, Korea), pp. 6830–6840, Oct. 2019.

- [9] R. Gong, W. Li, Y. Chen, and L. V. Gool, "DLOW: Domain Flow for Adaptation and Generalization," in *Proc. of CVPR*, (Long Beach, CA, USA), June 2019.
- [10] Y. Li, L. Yuan, and N. Vasconcelos, "Bidirectional Learning for Domain Adaptation of Semantic Segmentation," in *Proc. of CVPR*, (Long Beach, CA, USA), pp. 6936–6945, June 2019.
- [11] C.-Y. Lee, T. Batra, M. H. Baig, and D. Ulbricht, "Sliced Wasserstein Discrepancy for Unsupervised Domain Adaptation," in *Proc. of CVPR*, (Long Beach, CA, USA), June 2019.
- [12] T.-H. Vu, H. Jain, M. Bucher, M. Cord, and P. Perez, "ADVENT: Adversarial Entropy Minimization for Domain Adaptation in Semantic Segmentation," in *Proc. of CVPR*, (Long Beach, CA, USA), June 2019.
- [13] F. Pan, I. Shin, F. Rameau, S. Lee, and I. S. Kweon, "Unsupervised Intra-Domain Adaptation for Semantic Segmentation Through Self-Supervision," in *Proc. of CVPR*, (Seattle, WA, USA), pp. 3764–3773, June 2020.
- [14] M. Chen, H. Xue, and D. Cai, "Domain Adaptation for Semantic Segmentation With Maximum Squares Loss," in *Proc. of ICCV*, (Seoul, Korea), pp. 2090–2099, Oct. 2019.
- [15] D. Hu, J. Liang, Q. Hou, H. Yan, Y. Chen, S. Yan, and J. Feng, "PANDA: Prototypical Unsupervised Domain Adaptation," *arXiv*, Mar. 2020.
- [16] Q. Zhang, J. Zhang, W. Liu, and D. Tao, "Category Anchor-Guided Unsupervised Domain Adaptation for Semantic Segmentation," in *Proc. of NeurIPS*, (Vancouver, Canada), pp. 433–443, Dec. 2019.
- [17] P.-Y. Chen, A. H. Liu, Y.-C. Liu, and Y.-C. F. Wang, "Towards Scene Understanding: Unsupervised Monocular Depth Estimation With Semantic-Aware Representation," in *Proc. of CVPR*, (Long Beach, CA, USA), pp. 2624–2632, June 2019.

	GTA5 -> Cityscapes																					
Model	Feat. Ex.	Class IoU															mIoU	Code				
		Road	Sidewalk	Building	Wall	Fence	Pole	T. Light	T. Sign	Veg.	Terrain	Sky	Person	Rider	Car	Truck	Bus	Train	M.bike	Bicycle		
SIBAN [1]	VGG-16	83.4	13.0	77.8	20.4	17.5	24.6	22.8	9.6	81.3	29.6	77.3	42.7	10.9	76.0	22.8	17.9	5.7	14.2	2.0	34.2	-
CyCADA [2]	VGG-16	85.2	37.2	76.5	21.8	15.0	23.8	22.9	21.5	80.5	31.3	60.7	50.5	9.0	76.9	17.1	28.2	4.5	9.8	0.0	35.4	\checkmark
DCAN [3]	VGG-16	82.3	26.7	77.4	23.7	20.5	20.4	30.3	15.9	80.9	25.4	69.5	52.6	11.1	79.6	24.9	21.2	1.3	17.0	6.7	36.2	\checkmark
MADAN [4]	VGG-16	86.2	37.7	79.1	20.1	17.8	15.5	14.5	21.4	78.5	-	73.4	49.7	16.8	77.8	-	28.3	-	17.7	27.5	41.4	\checkmark
SIM [5]	VGG-16	88.1	35.8	83.1	25.8	23.9	29.2	28.8	28.6	83.0	36.7	82.3	53.7	22.8	82.3	26.4	38.6	0.0	19.6	17.1	42.4	\checkmark
FDA-MBT [6]	VGG-16	86.1	35.1	80.6	30.8	20.4	27.5	30.0	26.0	82.1	30.3	73.6	52.5	21.7	81.7	24.0	30.5	29.9	14.6	24.0	42.2	\checkmark
LTIR [7]	VGG-16	92.5	54.5	83.9	34.5	25.5	31.0	30.4	18.0	84.1	39.6	83.9	53.6	19.3	81.7	21.1	13.6	17.7	12.3	6.5	42.3	\checkmark
TGCF-DA + SE [8]	VGG-16	90.2	51.5	81.1	15.0	10.7	37.5	35.2	28.9	84.1	32.7	75.9	62.7	19.9	82.6	22.9	28.3	0.0	23.0	25.4	42.5	-
DCAN [3]	ResNet-101	88.5	37.4	79.3	24.8	16.5	21.3	26.3	17.4	80.8	30.9	77.6	50.2	19.2	77.7	21.6	27.1	2.70	14.3	18.1	38.5	√
DLOW [9]	ResNet-101	87.1	33.5	80.5	24.5	13.2	29.8	29.5	26.6	82.6	26.7	81.8	55.9	25.3	78.0	33.5	38.7	0.0	22.9	34.5	42.3	\checkmark
SIBAN [1]	ResNet-101	88.5	35.4	79.5	26.3	24.3	28.5	32.5	18.3	81.2	40.0	76.5	58.1	25.8	82.6	30.3	34.4	3.4	21.6	21.5	42.6	-
CyCADA [2, 10]	ResNet-101	86.7	35.6	80.1	19.8	17.5	38.0	39.9	41.5	82.7	27.9	73.6	64.9	19.0	65.0	12.0	28.6	4.5	31.1	42.0	42.7	√ [2] [10]
SWD [11]	ResNet-101	92.0	46.4	82.4	24.8	24.0	35.1	33.4	34.2	83.6	30.4	80.9	56.9	21.9	82.0	24.4	28.7	6.1	25.0	33.6	44.5	\checkmark
ADVENT [12]	ResNet-101	89.4	33.1	81.0	26.6	26.8	27.2	33.5	24.7	83.9	36.7	78.8	58.7	30.5	84.8	38.5	44.5	1.7	31.6	32.4	45.5	\checkmark
IntraDA [13]	ResNet-101	90.6	37.1	82.6	30.1	19.1	29.5	32.4	20.6	85.7	40.5	79.7	58.7	31.1	86.3	31.1	86.3	0.0	30.2	35.8	46.3	\checkmark
MSL [14]	ResNet-101	89.4	43.0	82.1	30.5	21.3	30.3	34.7	24.0	85.3	39.4	78.2	63.0	22.9	84.6	36.4	43.0	5.5	34.7	33.5	46.4	\checkmark
PANDA [15]	ResNet-101	92.4	51.3	82.9	31.8	24.9	32.6	35.8	20.4	84.5	38.7	79.8	60.0	25.8	85.1	33.7	44.1	9.0	27.5	22.6	46.5	-
BDL [10]	ResNet-101	91.0	44.7	84.2	34.6	27.6	30.2	36.0	36.0	85.0	43.6	83.0	58.6	31.6	83.3	35.3	49.7	3.3	28.8	35.6	48.5	\checkmark
SIM [5]	ResNet-101	90.6	44.7	84.8	34.3	28.7	31.6	35.0	37.6	84.7	43.3	85.3	57.0	31.5	83.8	42.6	48.5	1.9	30.4	39.0	49.2	\checkmark
CAG-UDA [16]	ResNet-101	90.4	51.6	83.8	34.2	27.8	38.4	25.3	48.4	85.4	38.2	78.1	58.6	34.6	84.7	21.9	42.7	41.1	29.3	37.2	50.2	\checkmark
LTIR [7]	ResNet-101	92.9	55.0	85.3	34.2	31.1	34.9	40.7	34.0	85.2	40.1	87.1	61.0	31.1	82.5	32.3	42.9	0.3	36.4	46.1	50.2	\checkmark
FDA-MBT [6]	ResNet-101	92.5	53.3	82.4	26.5	27.6	36.4	40.6	38.9	82.3	39.8	78.0	62.6	34.4	84.9	34.1	53.1	16.9	27.7	46.4	50.45	\checkmark
CyCADA [2]	DRN-26	79.1	33.1	77.9	23.4	17.3	32.1	33.3	31.8	81.5	26.7	69.0	62.8	14.7	74.5	20.9	25.6	6.9	18.8	20.4	39.5	√
CrDoCo [17]	DRN-26	95.1	49.2	86.4	35.2	22.1	36.1	40.9	29.1	85.0	33.1	75.8	67.3	26.8	88.9	23.4	19.3	4.3	25.3	13.5	45.1	(✓)