Chapter 2: outline

- 2.1 principles of network applications
- 2.2 Web and HTTP
- 2.3 electronic mail
 - SMTP, POP3, IMAP
- **2.4 DNS**

- 2.5 P2P applications
- 2.6 video streaming and content distribution networks
- 2.7 socket programming with UDP and TCP

Socket programming

goal: learn how to build client/server applications that communicate using sockets

socket: door between application process and endend-transport protocol

Socket programming

Two socket types for two transport services:

- UDP: unreliable datagram
- TCP: reliable, byte stream-oriented

Application Example:

- client reads a line of characters (data) from its keyboard and sends data to server
- 2. server receives the data and converts characters to uppercase
- 3. server sends modified data to client
- 4. client receives modified data and displays line on its screen

Socket programming with UDP

UDP: no "connection" between client & server

- no handshaking before sending data
- sender explicitly attaches IP destination address and port # to each packet
- receiver extracts sender IP address and port# from received packet

UDP: transmitted data may be lost or received out-of-order

Application viewpoint:

 UDP provides unreliable transfer of groups of bytes ("datagrams") between client and server

Client/server socket interaction: UDP

Example app: UDP client

```
Python UDPClient
include Python's socket
                     from socket import *
library
                       serverName = 'hostname'
                       serverPort = 12000
create UDP socket for _____clientSocket = socket(AF INET,
server
                                              SOCK DGRAM)
get user keyboard
input _____ message = raw_input('Input lowercase sentence:')
Attach server name, port to clientSocket.sendto(message.encode(),
message; send into socket
                                              (serverName, serverPort))
read reply characters from → modifiedMessage, serverAddress =
socket into string
                                              clientSocket.recvfrom(2048)
print out received string — print modifiedMessage.decode()
and close socket
                       clientSocket.close()
```

Example app: UDP server

Python UDPServer

```
from socket import *
                      serverPort = 12000
create UDP socket ———— serverSocket = socket(AF_INET, SOCK_DGRAM)
                    serverSocket.bind((", serverPort))
                      print ("The server is ready to receive")
```

loop forever while True:

bind socket to local port

Read from UDP socket into

number 12000

message, clientAddress = serverSocket.recvfrom(2048) message, getting client's address (client IP and port) modifiedMessage = message.decode().upper() serverSocket.sendto(modifiedMessage.encode(), send upper case string back to this client clientAddress)

Socket programming with TCP

client must contact server

- server process must first be running
- server must have created socket (door) that welcomes client's contact

client contacts server by:

- Creating TCP socket, specifying IP address, port number of server process
- when client creates socket:
 client TCP establishes
 connection to server TCP

- when contacted by client, server TCP creates new socket for server process to communicate with that particular client
 - allows server to talk with multiple clients
 - source port numbers used to distinguish clients (more in Chap 3)

application viewpoint:

TCP provides reliable, in-order byte-stream transfer ("pipe") between client and server

Client/server socket interaction: TCP

Example app: TCP client

Python TCPClient from socket import * serverName = 'servername' serverPort = 12000create TCP socket for server, remote port 12000 →clientSocket = socket(AF_INET(SOCK_STREAM) clientSocket.connect((serverName,serverPort)) sentence = raw input('Input lowercase sentence:') No need to attach server -clientSocket.send(sentence.encode()) name, port modifiedSentence = clientSocket.recv(1024) print ('From Server:', modifiedSentence.decode()) clientSocket.close()

Example app:TCP server

Python TCPServer

from socket import * serverPort = 12000create TCP welcoming serverSocket = socket(AF_INET,SOCK_STREAM) socket serverSocket.bind((",serverPort)) server begins listening for serverSocket.listen(1) incoming TCP requests print 'The server is ready to receive' loop forever while True: server waits on accept() connectionSocket, addr = serverSocket.accept() for incoming requests, new socket created on return → sentence = connectionSocket.recv(1024).decode() read bytes from socket (but capitalizedSentence = sentence.upper() not address as in UDP) connectionSocket.send(capitalizedSentence. close connection to this client (but not welcoming encode()) socket) connectionSocket.close()

Application Layer 2-11