Section 1.3 - 1, 3, 7, 9, 15, 17

s'= S(SZ-ZS+1) 15. = S(S-1)(S-1) S=0, S=1 Slopes along hor: Zentel lines ere identical

3.
$$\frac{ds}{de} = |-2y \quad a|^*(-2,1) \cdot s^2 = -1$$

*(91) \(\frac{4}{5} = -1

*(1,0) \(\frac{4}{5} = 1

"S(0)===, "S(0)=== S'(-2)=-18, S'(-1)=4, S'(1)=0, S(0)= The corners do not piss equilibrium shis or other cururs

7. dy = 3y(1-y)

17. d= f(t)

b) y(0)={ Sterts with a near-lineer slope a solution to this DE, as tinverses

a) The function depends only on to Sothe slope field will look : donticol to i and approaches yels the corney: un = th ; to slopes copied our vected lines. b) y(0)= 2 :sshan in blue,: +100 ks

Similar to given just translited up by 1.

9. (q+=)(y+=) b) A trepoint y(0)= = te Curve Solution

Section 1.4 - 3, 7, 15, 21

3,	$\frac{d_5}{dt}$ =	y²-4+, y(0)=0.5, O≤+ 62, △+=0.5		15	
K	$ $ t_{κ}	9k 9k4= 9k+ 2+(y)(+k))	4		+>
0	0	0.5 (0,0.5): 8=0.5 + 0.5(0.52-0) = 0.625, (0.5,0615)		'	, 'E
ſ	0.5	0.625 (0.5,0.625): 8=0.625+0.5(.6252-4(.5))=18, (1,-18)			
2	l	18 (]18), y=18+0.5(-182-4(1)) = -2.2, (1.5,-2.2)		I	•
3		-2.2 (1.5,-2.2); =-22+0.5(-22-4(LS)) = -2.78, (3,-278)		+	
4	2	-2.78		†	

d== (0)=1, OL+64, At=0.5 4 K 10 6E (0,1):1 + O,S,T = 1.5 0 . S I. S (. S I. S): 1. S10, STIS = 2. 11 2-11 (1 2-11): 2-11+0.5/201 = 2.64 2 2.64 (1.5 2.64): 2.64 + 0.5 [2.64 - 3.68]
3.68 (2 3.68): 3.68 + 0.5 [2.68 - 4.64] 3 1.5 Ч 2 2.5 4.64 (2.5 4.64): 4.64 + 0.5 64 = 5.72 3 5.72 (3 5.72): 5.72 + 0.5 64 = 6.23 3.5 6.91 (3.5 6.91): 6.91 + 0.5 64 = 6.23 S 6 4 8.23

I would probet the actual Solution to look like the one above because of the small stop.

$$\frac{2[\frac{dv_{c}}{dt} = V(t) - v_{c}]/RC}{dt} = \frac{v_{c}}{v_{c}(0.5)}, v_{c}(0) = -2, o \le t \le 10, a t = 1, lef v_{c}) = \frac{dv_{c}}{dt}$$

$$\frac{dv_{c}}{dt} = \frac{2c\pi 3t - v_{c}}{v_{c}(0.5)}, v_{c}(0) = -2, o \le t \le 10, a t = 1, lef v_{c}) = \frac{dv_{c}}{dt}$$

$$\frac{k}{t} \frac{t}{v_{c}} \frac{v_{c}}{v_{c}} \frac{k}{t} \frac{t}{v_{c}} \frac{v_{c}}{v_{c}(0.2)} = 0$$

$$0 \frac{1}{t} \frac{1}$$