Analisis de sensibilidad

Método gráfico

$$\mathrm{Max}Z = 5x_1 + 4x_2$$

$$R_1
ightarrow 6x_1 + 4x_2 \leq 24$$

$$R_2
ightarrow x_1 + 2x_2 \leq 6$$

$$Z=21$$

El análisis de sensibilidad nos permite preveer como mejorar nuestra función objetivo. Para obtener un precio dual, debemos obtener un nuevo valor de Z, manipulando una de las restricciones.

Obtener $\operatorname{Precio} \operatorname{Dual}_{R_1}$

$$R_{1.a} = 6x_1 + 4x_2 = 28$$

Si
$$x_1=0$$
, entonces $x_2=7$

Si
$$x_2 = 0$$
, entonces $x_1 = 4.66$

En $x_1=4, x_2=1$ obtenemos el punto óptimo $Z_B=24$

Precio Dual
$$_{R_1} = \frac{Z_B - Z_A}{P_{1,a} - P_1} = \frac{24 - 21}{28 - 24} = \frac{3}{4}$$

 $\operatorname{Precio} \operatorname{Dual}_{R_1}$ nos indica que al manipular la R_1 en una unidad, varia en $\frac{3}{4}$ en el valor de Z.

Intervalo de factibilidad del $\operatorname{Precio} \operatorname{Dual}_{R_1}$

${\rm Punto~B} \to (0,3)$	$6x_1 + 4x_2 ightarrow 6(0) + 4(3)$	12
$\mathrm{Punto}\:\mathrm{F}\to(6,0)$	$6x_1 + 4x_2 ightarrow 6(6) + 4(0)$	36

El precio dual calculado solo es valido mientras \mathcal{R}_1 se mantenga entre estos valores.

$$12 \leq R_1 \leq 28$$

Obtener $\operatorname{Precio} \operatorname{Dual}_{R_2}$

$$R_{2.a} = x_1 + 2x_2 = 8$$

Si $x_1 = 0$, entonces $x_2 = 4$

Si $x_2 = 0$, entonces $x_1 = 8$

En $x_1=2, x_2=3$ obtenemos el punto óptimo $Z_C=22$

Precio Dual
$$_{R_2} = \frac{Z_C - Z_A}{R_{2,a} - R_2} = \frac{22 - 21}{8 - 6} = \frac{1}{2}$$

 $\operatorname{Precio} \operatorname{Dual}_{R_2}$ nos indica que al manipular la R_2 en una unidad, varia en $\frac{1}{2}$ en el valor de Z.

Intervalo de factibilidad del $\operatorname{Precio} \operatorname{Dual}_{R_2}$

Punto D $ ightarrow$ (4, 0)	$x_1+2x_2\to (4)+2(0)$	4
Punto E $ ightarrow$ (0, 6)	$x_1 + 2x_2 \to (0) + 2(6)$	12

El precio dual calculado solo es valido mientras \mathcal{R}_2 se mantenga entre estos valores.

$$4 \leq R_2 \leq 12$$

La restricción que más afecta es R_1 por lo cual si queremos mejorar el punto óptimo, aumentar esta restricción maximizará el valor.

Intervalo de optimalidad

El intervalo de optimalidad es el intervalo en el cual el punto óptimo se va a mantener al cambiar los valores de los coeficientes. Si la optimalidad se sale de este intervalo, entonces, el punto óptimo cambiará.

Para
$$Z=C_1x_1+C_2x_2$$
 su optimalidad $O=rac{C_1}{C_2}$

De
$$R_i
ightarrow c_{i_1} x_1 + c_{i_2} x_2 \leq Ci$$
 obtenemos $L_i = rac{c_{i_1}}{c_{i_2}}$

Entonces con $L_i \leq L_j$, el intervalo de optimalidad es $L_i \leq O \leq L_j$

$$Z=5x_1+4x_2$$
 entonces $O=rac{5}{4}$

$$R_1
ightarrow 6x_1 + 4x_2 \leq 24$$
 entonces $L_1 = rac{6}{4} = rac{3}{2}$

$$R_2
ightarrow x_1 + 2x_2 \leq 6$$
 entonces $L_2 = rac{1}{2}$

El intervalo de optimalidad de la funcion objetivo es $L_2 \leq O \leq L_1 \to \frac{1}{2} \leq O \leq \frac{3}{2}$

Tarea 2: Como hacer analisis de sensibilidad por el método algebráico.

Método algebraico

$$MaxZ = 5x_1 + 4x_2$$

$$R_1 \rightarrow 6x_1 + 4x_2 + s_1 = 24$$

$$R_2 \rightarrow x_1 + 2x_2 + s_2 = 6$$

V_{NB}	V_B	Valores	PE	$Z=Z=5x_1+4x_2$	¿Factible?
x_1,x_2	s_1,s_2	24,6	A	0	Si
x_1,s_1	x_2,s_2	6, -6	B		No
x_1,s_2	x_2,s_1	3,12	C	12	Si
x_2,s_1	x_1,s_2	4, 2	D	20	Si
x_2,s_2	x_1,s_1	6,-12	E		No
s_1,s_2	x_1,x_2	3, 1.5	F	21	Si

Obtener $\operatorname{Precio} \operatorname{Dual}_{R_1}$

$$R_{1.a} = 6x_1 + 4x_2 = 28$$

Recalculamos el punto óptimo obtenido con la nueva R_1

Punto F

$$s_1,s_2=0$$

$$R_1 o 6x_1 + 4x_2 + s_1 = 28$$

$$R_2 o x_1 + 2x_2 + s_2 = 6$$

$$R_1 o 6x_1 + 4x_2 + (0) = 28$$

$$R_2 o x_1 + 2x_2 + (0) = 6$$

$$R_2
ightarrow x_1 = 6-2x_2$$

$$R_1
ightarrow 6(6-2x_2)+4x_2=28$$

$$R_1
ightarrow 36 - 12x_2 + 4x_2 = 28$$

$$R_1
ightarrow -8x_2=28-36$$

$$R_1
ightarrow x_2 = rac{-8}{-8} = 1$$

$$R_2 o x_1 = 6 - 2(1) = 4$$

En $x_1=4, x_2=1$ obtenemos el punto óptimo con $Z_B=5(4)+4(1)=24$

El resto del procedimiento, es igual al realizado con el método gráfico.

Obtener Precio $Dual_{R_2}$

$$R_{2.a} = x_1 + 2x_2 = 8$$

Recalculamos el punto óptimo obtenido con la nueva \mathcal{R}_1

Punto F

$$s_1,s_2=0$$

$$R_1 o 6x_1 + 4x_2 + s_1 = 24$$

$$R_2 o x_1 + 2x_2 + s_2 = 8$$

$$R_1 o 6x_1 + 4x_2 + (0) = 24$$

$$R_2 o x_1 + 2x_2 + (0) = 8$$

$$R_2
ightarrow x_1 = 8 - 2x_2$$

$$R_1
ightarrow 6(8-2x_2)+4x_2=24$$

$$R_1 o 48 - 12x_2 + 4x_2 = 24$$

$$R_1
ightarrow -8x_2=24-48$$

$$R_1
ightarrow x_2 = rac{-24}{-8} = 3$$

$$R_2 o x_1 = 8 - 2(3) = 2$$

En
$$x_1=2, x_2=3$$
 obtenemos el punto óptimo con $Z_C=5(2)+4(3)=22$

El resto del procedimiento, es igual al realizado con el método gráfico.