利用分子动力学方法计算热导率

高雪健 12302010047 13 级物理系

摘要: 该模拟实验通过分子动力学方法,利用 Muller-Plathe、Green-Kubo 及 NEMD 等方法,模拟计算固态 Ar 的热传导率;并通过改变模拟体系的参数,研究不同参数对固态 Ar 的热传导率的计算值的影响。

一. 模拟方法简介

1. Muller-Plathe 方法

在热传导方向上每隔相同的一段距离分别设置高温区和低温区,每隔一段时间,将高温区能量最低粒子与低温区能量最高粒子做交换,经历一段模拟时间后到达稳态,即在高温区与低温区间建立一个温度缓变区,通过线性拟合可以得到温度梯度 ∇T : 而通过对两个区域交换的能量做时间平均,利用连续性条件,可以得到两个区域间的热流 j = P/(2S),从而可以求出模拟体系的热导率为 $\kappa = j/\nabla T$.

2. Green-Kubo 方法

根据 Fluctuation dissipation theorem,可以通过计算热平衡体系下的热流的时间关联函数,来收敛得到体系的热导率。公式为:

$$\kappa_{\mu\nu}(\tau_m) = \frac{1}{\Omega k_n T^2} \int_0^{\tau_m} \langle J_{\mu}(\tau) J_{\nu}(0) \rangle d\tau$$

3. NEMD 方法

在热传导方向上分别设置两个相同大小的低温区和高温区,分别施加低温热浴和高温热浴(控制 NVT 不变)。经历一段模拟时间后到达稳态,即在高温区与低温区间建立一个温度缓变区,再利用与 Muller-Plathe 中类似的计算方法,求出体系的热导率。

二. 模拟过程

1. 分别利用三种方法对同参数体系进行模拟 模拟条件:

温度T = 85.92K, 粒子密度 $\rho^* = 0.844$ (相当于固体 Ar 面心立方的晶格常数为 a =

5.71Å)。Muller-Plathe 方法和 NEMD 方法的体系大小都为 10a×10a×20a(高温区与低温区间的间距为 10a),Green-Kubo 方法的体系大小为 10a×10a。

模拟结果如下所示。

Fig.1 Muller-Plathe(mp)方法

1) Muller-Plathe 方法

(见 Fig.1)前 10000 步模拟所计算出的 kappa 值呈连续的下降趋势,是由于体系尚在建立平衡的过程中,还未到达平衡;利用 10000-40000 步的模拟结果,可以计算出体系热导率为 (0.132 ± 0.007) W/ $(m\cdot K)$ *

*关于热导率的计算,由于模拟计算中采用的是 lj unit,需要对输出结果进行单位换算。换算过程简述如下:

输出结果中的量(Ij 单位制)用 E^* 、 x^* 、 T^* 等表示,而真实值用 E、x、T 表示。Lj 单位制中的量与国际标准制的量之间的关系为:

 $x^*=x/sigma;$ $t^*=t$ (epsilon / m / sigma^2)^1/2; $E^*=E$ / epsilon; $T^*=T$ Kb / epsilon 等; 对于 Ar 原子,相应的 sigma 和 epsilon 的值为 $\varepsilon=1.67\times10^{-21}$ 、 $\sigma=3.405\times10^{-10}$,

$$m = 6.633 \times 10^{-26}$$
, $k_B = 1.38 \times 10^{-23}$

则 kappa 在两种单位制之间的转换关系为

$$\kappa_{\text{(W/mK)}} = \frac{\text{E}^* \cdot \Delta z^*}{2(x^*)^2 \cdot \Delta T^*} \cdot \frac{\varepsilon^{1/2} k_B}{m^{1/2} \sigma^2} = \frac{\text{E}^* \cdot \Delta z^*}{2(x^*)^2 \cdot \Delta T^*} \cdot 1.889 \times 10^{-2} = \kappa^* \cdot 1.889 \times 10^{-2}$$

2)NEMD方法

NEMD 方法,即 langevin 方法,在有关热流量的输出结果中已不包含前 10000 步模拟的信息,故上图中计算的 kappa 值并未出现 mp 方法中的 kappa 值一开始下降的现象。对各 kappa 值求平均可得体系热导率为 (0.125 ± 0.001) W/ $(m\cdot K)$

3) Green-Kubo 方法

采用不同的 seed,在同一条件下模拟 15 次(图中绿线),并对所得的 kappa 值求平均(图中蓝线),该平均值随模拟步数的增加逐渐趋向一稳定值。对 40000-50000 步模拟内的 kappa 值求平均,可得体系的热传导系数为(0.1235 ± 0.0005)W/(m·K)

2. 温度对模拟体系热传导系数的影响

利用 Green-Kubo 方法无体系温度梯度即可测量热传导率的性质,可以研究体系温度对热传导系数的影响。由于时间和计算条件的限制,本模拟仅对 30K、60K、85.9K(略低于Ar 的熔点)、100K、150K 在同一条件下各进行了 8 次模拟(取不同的 seed),所得结果如下图所示:

Fig.4 不同温度下的 Green-Kubo 模拟结果

对不同温度下 40000-50000 步模拟内的 kappa 值求平均,可得温度与热传导值的关系如下表及下图所示:

温度(K)	30	60	85.9	100	150
热导率(W*m ⁻¹ K ⁻¹)	0.137	0.130	0.124	0.122	0.134
不确定度(W*m ⁻¹ K ⁻¹)	0.005	0.005	0.005	0.004	0.004

从图中可以看出温度对热传导率的影响并不显著,30-150K的温度变化范围内的热导率变化与热导率的不确定度在同一量级。

3. 验证连续性方程

根据热流定义 $\vec{J} = \frac{1}{v} \frac{d}{dt} \sum_i e_i \vec{r_i} = \frac{1}{v} \left[\sum_i e_i \vec{v_i} - \sum_i S_i \vec{v_i} \right]$,在 Muller-Plathe 方法的输入文件中加入一段代码用于计算每个 chunk 处的热流大小,并对时间做平均,可以得到下图:

Fig.6 验证连续性方程: 热流&温度—chunk number

平均得到正向和反向的热流量分别为: 0.1578 和 -0.1712; 而将冷、热源之间交换的能量换算成热流量的大小为 $\frac{7454.8558}{2\times20000}$ = 0.1864. 正向及反向的热流量略小于冷热源之间能

量交换换算成热流量,可能是由于体系在一开始时并未达到平衡,温度梯度并未建立,体系内的热流量本来就小于冷热源间的能量交换率。为验证这一猜想,取最后 10000 step 的数据做平均,可以得到正向和反向的热流量分别为: 0.1680 和 -0.1771; 而将冷、热源之间交换的能量换算成热流量的大小为 7454.8558-3729.3435 = 0.1863. 可以看出,相较之前,

正向和反向的热流量的值更加接近了冷热源之间能量交换率。可以猜想,在经历足够长的 timesteps 模拟之后,体系完全达到动态平衡,此时正向和反向的热流量应等于冷热源之间 能量交换率,即热流的连续性条件。

4. 体系长度对热导率计算的影响

利用 mp 方法, x、y 方向都取 10a 的长度, z 方向长度分别取 20a、30a、40a、50a、60a、80a、100a、120a, 延长模拟步数至 100,000 步(120a 长度的体系取 120,000 模拟步数), 所得结果如表所示:

可以看出,随着模拟步数的增加,计算所得的 kappa 值逐渐减小,并最终趋向一恒定值,这代表了体系逐渐趋向于稳定的过程。此外,随着体系长度的增加,体系达到稳定所需的模拟步数也逐渐增加,这导致了对于大 Lz 体系,需要用更长的 timestep 去模拟。

为验证公式 $\frac{1}{\kappa} = \frac{1}{\kappa_{\infty}} + \frac{a}{Lz}$,对 $\frac{1}{\kappa} \sim \frac{1}{Lz}$ 进行线性拟合,所得结果如 Fig.7 所示(拟合斜率为5.6±0.3, $R^2=0.738$),拟合结果并不好,可能是由于 Lz=80a、100a、120a 的体系并未完全达到动态稳定。故去掉这 3 个点,再次进行线性拟合,所得结果如 Fig.8 所示。此时拟合斜率为6.38±0.16, $R^2=0.844$. 利用此数据计算得 $\kappa_{\infty}=0.157\pm0.04W/(m\cdot K)$

Fig. 7 1/kappa—1/Lz 线性拟合结果(1)

Fig. 8 1/kappa—1/Lz 线性拟合结果(2)