

Application

- Brushed Motor drive applications
- **BLDC Motor drive applications**
- Battery powered circuits
- Half-bridge and full-bridge topologies
- Synchronous rectifier applications
- Resonant mode power supplies
- OR-ing and redundant power switches

HEXFET® Power MOSFET

V _{DSS}	60V
R _{DS(on)} typ.	1.15m Ω
max	1.4mΩ
D (Silicon Limited)	338A①
D (Package Limited)	240A

Benefits

- Improved Gate, Avalanche and Dynamic dV/dt Ruggedness
- Fully Characterized Capacitance and Avalanche SOA
- Enhanced body diode dV/dt and dI/dt Capability
- Lead-Free, RoHS Compliant

G	D	S
Gate	Drain	Source

Base Part Number	Package Type	Standar	Complete Part Number	
		Form	Quantity	
IRFS7530-7PPbF	D2Dak 7DIN	Tube	50	IRFS7530-7PPbF
IRF5/550-/PPDF	D2Pak-7PIN	Tape and Reel Left	800	IRFS7530TRL7PP

Fig 1. Typical On-Resistance vs. Gate Voltage

Fig 2. Maximum Drain Current vs. Case Temperature

Absolute Maximium Rating

Symbol	Parameter	Max.	Units
I_D @ T_C = 25°C	Continuous Drain Current, V _{GS} @ 10V (Silicon Limited)	338 ①	
$I_D @ T_C = 100^{\circ}C$	Continuous Drain Current, V _{GS} @ 10V (Silicon Limited)	239	Δ
I _D @ T _C = 25°C Continuous Drain Current, V _{GS} @ 10V (Wire Bond Limited)		240	Α
I _{DM}	Pulsed Drain Current ②	1450	
P _D @T _C = 25°C	Maximum Power Dissipation	375	W
	Linear Derating Factor	2.5	W/°C
V_{GS}	Gate-to-Source Voltage	± 20	V
T _J	Operating Junction and Storage Temperature Range	-55 to + 175	°C
	Soldering Temperature, for 10 seconds (1.6mm from case)	300	

Avalanche Characteristics

E _{AS (Thermally limited)}	Single Pulse Avalanche Energy ③	526	m l
E _{AS (tested)}	Single Pulse Avalanche Energy Tested Value ®	1000	mJ
I _{AR}	Avalanche Current ②	Coo Fig 14 15 220 22h	Α
E _{AR}	Repetitive Avalanche Energy ②	See Fig 14, 15, 23a, 23b	mJ

Thermal Resistance

Symbol	Parameter	Тур.	Max.	Units
$R_{\theta JC}$	Junction-to-Case ®		0.40	°C/W
$R_{\theta JA}$	Junction-to-Ambient ®		40	

Static @ T_J = 25°C (unless otherwise specified)

Symbol	Parameter	Min.	Тур.	Max.	Units	Conditions
$V_{(BR)DSS}$	Drain-to-Source Breakdown Voltage	60			V	$V_{GS} = 0V, I_{D} = 250\mu A$
$\Delta V_{(BR)DSS}/\Delta T_J$	Breakdown Voltage Temp. Coefficient		33		mV/°C	Reference to 25°C, I _D = 1mA ②
R _{DS(on)}	Static Drain-to-Source On-Resistance		1.15	1.4	mΩ	$V_{GS} = 10V, I_D = 100A$
			1.4		mΩ	$V_{GS} = 6.0V, I_D = 50A$
$V_{GS(th)}$	Gate Threshold Voltage	2.1		3.7	V	$V_{DS} = V_{GS}$, $I_D = 250\mu A$
I _{DSS}	Drain-to-Source Leakage Current			1.0	μA	$V_{DS} = 60 \text{ V}, V_{GS} = 0 \text{V}$
				150		$V_{DS} = 60V, V_{GS} = 0V, T_{J} = 125^{\circ}C$
I_{GSS}	Gate-to-Source Forward Leakage			100	nA	V _{GS} = 20V
	Gate-to-Source Reverse Leakage			-100		V _{GS} = -20V
R_G	Gate Resistance		2.2		Ω	

Notes:

- ① Calculated continuous current based on maximum allowable junction temperature. Bond wire current limit is 240A. Note that current limitations arising from heating of the device leads may occur with some lead mounting arrangements. (Refer to AN-1140)
- ② Repetitive rating; pulse width limited by max. junction temperature.
- $I_{SD} \le 100A$, di/dt $\le 1575A/\mu s$, $V_{DD} \le V_{(BR)DSS}$, $T_{J} \le 175$ °C.
- ⑤ Pulse width $\leq 400\mu s$; duty cycle $\leq 2\%$.
- \odot C_{oss} eff. (TR) is a fixed capacitance that gives the same charging time as C_{oss} while V_{DS} is rising from 0 to 80% V_{DSS}.
- \odot C_{oss} eff. (ER) is a fixed capacitance that gives the same energy as C_{oss} while V_{DS} is rising from 0 to 80% V_{DSS}.
- \otimes R₀ is measured at T_J approximately 90°C.

Dynamic Electrical Characteristics @ $T_J = 25$ °C (unless otherwise specified)

Symbol	Parameter	Min.	Тур.	Max.	Units	Conditions
gfs	Forward Transconductance	249			S	$V_{DS} = 10V, I_{D} = 100A$
Q_g	Total Gate Charge		236	354		I _D = 100A
Q_{gs}	Gate-to-Source Charge		62		nC	V _{DS} = 30V
Q_{gd}	Gate-to-Drain Charge		73		110	V _{GS} = 10V
Q _{sync}	Total Gate Charge Sync. (Qg - Qgd)		163			
$t_{d(on)}$	Turn-On Delay Time		24			V _{DD} = 30V
t _r	Rise Time		102			I _D = 100A
$t_{d(off)}$	Turn-Off Delay Time		168		ns	$R_G = 2.7\Omega$
t _f	Fall Time		79			V _{GS} = 10V⑤
C _{iss}	Input Capacitance		12960			V _{GS} = 0V
C _{oss}	Output Capacitance		1270			V _{DS} = 25V
C_{rss}	Reverse Transfer Capacitance		760		pF	f = 1.0MHz
Coss eff.(ER)	Effective Output Capacitance (Energy Related)		1248			V _{GS} = 0V, V _{DS} = 0V to 48V⑦
Coss eff.(TR)	Output Capacitance (Time Related)		1590			$V_{GS} = 0V, V_{DS} = 0V \text{ to } 48V$

Diode Characteristics

Symbol	Parameter	Min.	Тур.	Max.	Units	Conditions
I _S	Continuous Source Current (Body Diode)①			338①	_	MOSFET symbol showing the
I _{SM}	Pulsed Source Current (Body Diode) ①			1450		integral reverse p-n junction diode.
V_{SD}	Diode Forward Voltage			1.2	V	$T_J = 25^{\circ}C, I_S = 100A, V_{GS} = 0V$ §
dv/dt	Peak Diode Recovery dv/dt⊕		8.5		V/ns	$T_J = 175^{\circ}C, I_S = 100A, V_{DS} = 60V$
t _{rr}	Reverse Recovery Time		48 50		ns	$T_{J} = 25^{\circ}C$ $V_{DD} = 51V$ $T_{J} = 125^{\circ}C$ $I_{F} = 100A$,
Q _{rr}	Reverse Recovery Charge		72 83		nC	$T_J = 25^{\circ}C$ di/dt = 100A/ μ s $T_J = 125^{\circ}C$
I _{RRM}	Reverse Recovery Current		2.5		Α	T _J = 25°C

Fig 3. Typical Output Characteristics

Fig 5. Typical Transfer Characteristics

Fig 7. Typical Capacitance vs.

Fig 4. Typical Output Characteristics

Fig 6. Normalized On-Resistance vs. Temperature

Fig 8. Typical Gate Charge vs. Gate-to-Source Voltage

Fig 9. Typical Source-Drain Diode Forward Voltage

Fig 11. Drain-to-Source Breakdown Voltage

Fig 10. Maximum Safe Operating Area

Fig 12. Typical Coss Stored Energy

Fig 13. Typical On-Resistance vs. Drain Current

Fig 14. Maximum Effective Transient Thermal Impedance, Junction-to-Case

Fig 15. Avalanche Current vs. Pulse Width

Fig 16. Maximum Avalanche Energy vs. Temperature

Notes on Repetitive Avalanche Curves, Figures 14, 15: (For further info, see AN-1005 at www.irf.com)

1. Avalanche failures assumption:

Purely a thermal phenomenon and failure occurs at a temperature far in excess of T_{imax}. This is validated for every

- 2. Safe operation in Avalanche is allowed as long $asT_{\textrm{jmax}}$ is not exceeded.
- 3. Equation below based on circuit and waveforms shown in Figures 23a, 23b.
- 4. P_{D (ave)} = Average power dissipation per single avalanche pulse.
- 5. BV = Rated breakdown voltage (1.3 factor accounts for voltage increase during avalanche).
- 6. I_{av} = Allowable avalanche current.

Submit Datasheet Feedback

7. ΔT = Allowable rise in junction temperature, not to exceed T_{jmax} (assumed as 25°C in Figure 14, 15).

tav = Average time in avalanche.

D = Duty cycle in avalanche = tav ·f

 $Z_{thJC}(D, t_{av})$ = Transient thermal resistance, see Figures 13) PD (ave) = 1/2 ($1.3 \cdot BV \cdot I_{av}$) = $\Delta T / Z_{thJC}$ $I_{av} = 2\Delta T / [1.3 \cdot BV \cdot Z_{th}]$

 $E_{AS (AR)} = P_{D (ave)} \cdot t_{av}$

Fig 17. Threshold Voltage vs. Temperature

Fig 19. Typical Recovery Current vs. dif/dt

 $di_F / dt (A/\mu s)$

Fig 18. Typical Recovery Current vs. dif/dt

Fig 20. Typical Stored Charge vs. dif/dt

Fig 21. Typical Stored Charge vs. dif/dt

Fig 22. Peak Diode Recovery dv/dt Test Circuit for N-Channel HEXFET® Power MOSFETs

Fig 23a. Unclamped Inductive Test Circuit

Fig 24a. Switching Time Test Circuit

Fig 25a. Gate Charge Test Circuit

Fig 23b. Unclamped Inductive Waveforms

Fig 24b. Switching Time Waveforms

Fig 25b. Gate Charge Waveform

D²Pak-7Pin Package Outline (Dimensions are shown in millimeters (inches))

S						
Ň		DIMENSIONS			NOT ES	
S M B O L	MILLIMETERS		INC	INCHES		
Ľ	MIN.	MAX.	MIN.	MAX.	Š	
Α	4.06	4.83	.160	.190		
A1	-	0.254	-	.010		
ь	0.51	0.99	.020	.036		
b1	0.51	0.89	.020	.032	5	
С	0,38	0.74	.015	.029		
c1	0.38	0.58	.015	.023	5	
c2	1.14	1.65	.045	.065		
D	8.38	9.65	.330	.380	3	
D1	6.86	-	.270		4	
E	9.65	10.67	.380	.420	3,4	
E1	6.22	-	.245		4	
e	1,27	BSC	.050	BSC		
н	14.61	15.88	,575	.625		
L	1.78	2.79	,070	.110		
L1	-	1.68	-	.066	4	
L2	-	1.78	-	.070		
L3	0.25	BSC	.010	BSC		
L4	4.78	5.28	.188	.208		

NOTES:

- 1. DIMENSIONING AND TOLERANCING AS PER ASME Y14.5M-1994
- 2. DIMENSIONS ARE SHOWN IN MILLIMETERS [INCHES].
- O.127 [.005"] PER SIDE. THESE DIMENSIONS ARE MEASURED AT THE OUTMOST EXTREMES OF THE PLASTIC BODY AT DATUM H.
- 4. THERMAL PAD CONTOUR OPTIONAL WITHIN DIMENSION E, L1, D1 & E1.
- 5. DIMENSION 61 AND c1 APPLY TO BASE METAL ONLY.
- 6. DATUM A & B TO BE DETERMINED AT DATUM PLANE H.
- 7, CONTROLLING DIMENSION: INCH.
- 8, OUTLINE CONFORMS TO JEDEC OUTLINE TO-263CB.

Note: For the most current drawing please refer to IR website at http://www.irf.com/package/

D²Pak-7Pin Part Marking Information

D2Pak-7Pin Tape and Reel

NOTES, TAPE & REEL, LABELLING:

- 1, TAPE AND REEL,
 - 1.1 REEL SIZE 13 INCH DIAMETER.
 - 1.2 EACH REEL CONTAINING 800 DEVICES,
 - 1.3 THERE SHALL BE A MINIMUM OF 42 SEALED POCKETS CONTAINED IN THE LEADER AND A MINIMUM OF 15 SEALED POCKETS IN THE TRAILER.
 - PEEL STRENGTH MUST CONFORM TO THE SPEC. NO. 71-9667.
 - 1.5 PART ORIENTATION SHALL BE AS SHOWN BELOW.
 - 1.6 REEL WAY CONTAIN A MAXIMUM OF TWO UNIQUE LOT CODE/DATE CODE COMBINATIONS. REWORKED REELS MAY CONTAIN A MAXIMUM OF THREE UNIQUE LOT CODE/DATE CODE COMBINATIONS. HOWEVER, THE LOT CODES AND DATE CODES WITH THEIR RESPECTIVE QUANTITIES SHALL APPEAR ON THE BAR CODE LABEL FOR THE AFFECTED REEL.

- 2. LABELLING (REEL AND SHIPPING BAG).
 - 2.1 CUST. PART NUMBER (BAR CODE): IRFXXXXSTRL-7P
 - 2.2 CUST. PART NUMBER (TEXT CODE): IRFXXXXSTRL-7P
 - 2.3 I.R. PART NUMBER: IRFXXXXSTRL-7P
 - 2.4 QUANTITY:
 - 2.5 VENDOR CODE; IR
 - 2.6 LOT CODE:
 - 2.7 DATE CODE:

Note: For the most current drawing please refer to IR website at http://www.irf.com/package/

Qualification Information[†]

Qualification Level	Industrial (per JEDEC JESD47F) ††			
Moisture Sensitivity Level	D ² Pak-7Pin MSL1			
RoHS Compliant	Yes			

- Qualification standards can be found at International Rectifier's web site: http://www.irf.com/product-info/reliability/ †
- Applicable version of JEDEC standard at the time of product release.

IR WORLD HEADQUARTERS: 101 N. Sepulveda Blvd., El Segundo, California 90245, USA To contact International Rectifier, please visit http://www.irf.com/whoto-call/

Mouser Electronics

Authorized Distributor

Click to View Pricing, Inventory, Delivery & Lifecycle Information:

International Rectifier:

IRFS7530TRL7PP IRFS7530-7PPBF