Université de Saint Etienne L1 MISPIC

Arithmétique Année 2024/2025

TD 2 : Arithmétique dans $\mathbb Z$

Légende: F: Exercice Fondamental (à comprendre impérativement),

- * demande un peu de raisonnement,
- ** demande un peu plus de raisonnement,
- *** volontairement plus coriace.

Exercice 1 (F) Réaliser le crible d'Eratosthène pour les nombres jusqu'à 50. On pourra directement le faire directement dans le tableau ci-dessous :

	2	3	4	5	6	7	8	9	10
11	12	13	14	15	16	17	18	19	20
21	22	23	24	25	26	27	28	29	30
31	32	33	34	35	36	37	38	39	40
41	42	43	44	45	46	47	48	49	50

Exercice 2 (F) Décomposer en produit de facteurs premiers les nombres

$$a = 5544, \qquad b = 2352, \qquad c = 5940$$

Exercice 3 (F) Soient a, b, c trois entiers tels que a + b = c.

- 1. Montrer que, si a et b sont multiples de 17, alors c l'est également.
- 2. Montrer que, si a et c sont multiples de 17, alors b l'est également.
- 3. Montrer que, si a est multiple de 17 et b ne l'est pas, alors c n'est pas multiple de 17.
- 4. Peut-on avoir c multiple de 17 sans que a et b ne le soient?

Exercice 4 (F) Faire la division euclidienne de a par b pour les couples (a,b) suivants :

$$(10,3), (556,5), (-10,3), (12,3), (-12,3), (3,10)$$

Puis, pour $c \in \mathbb{N}^*$, (c+1,c), (c^2+3c+1,c) (*) et $(c^2+3c+1,c+1)$ (**) suivant la valeur de c

Exercice 5 (F)

- 1. Calculer avec l'algorithme d'Euclide : PGCD(84,129), PGCD(112,-147), PGCD(256,70)
- 2. Calculer: PPCM(52,120), PPCM(121,55), PPCM(2520,462)

Exercice 6 (F) Trouver une relation de Bézout pour les paires de nombres suivants :

$$(84, 129), (112, -147), (256, 70)$$

Exercice 7 (F) Dans \mathbb{Z}^2 , résoudre les équations diophantiennes suivantes :

- 1. 11u + 25v = 1
- 2. 14u + 105v = 7
- 3.35u + 20v = 1
- 4. 84u + 129v = 6

Exercice 8 (*) Montrer que pour tout $a, b, c \in \mathbb{Z}^*$, on a

- 1. PGCD(a, b) = PGCD(|a|, |b|)
- 2. PGCD(ac, bc) = |c|PGCD(a, b)

Exercice 9 (F) Trouver le pgcd et le ppcm des deux nombres suivants :

 $a = 2^3 \times 5^2 \times 7 \times 11^2 \times 17$ et $b = 2^2 \times 5 \times 73 \times 11 \times 13$.

Idem pour : $a = 2^2 \times 5^2 \times 13 \times 19^2$ et $b = 2 \times 5^3 \times 7 \times 13$.

Exercice 10 (*) Déterminer le nombre de diviseurs de 660.

Exercice 11 (*) Soient a et b deux entiers relatifs premiers entre eux. Montrer que a et a + b sont premiers entre eux.

Exercice 12 (*) Trouver a et b dans \mathbb{N}^* dans les deux cas suivants :

- 1. PGCD(a, b) = 18 et a + b = 360.
- 2. PGCD(a, b) = 7 et PPCM(a, b) = 504.

Exercice 13 (*) Montrer qu'il n'existe pas d'entiers m et n tels que m + n = 101 et PGCD(m, n) = 3.

Exercice 14 (*) Démontrer que deux nombres entiers consécutifs sont premiers entre eux.

Exercice 15 (*)

- 1. Déterminer le PGCD de 2873 et 1001, ainsi que deux entiers relatifs u et v tels que 2873u + 1001v = PGCD(2873, 1001)
- 2. Décomposer 2873 et 1001 en facteurs premiers.
- 3. Existe-t-il des entiers relatifs u et v vérifiant 2873u + 1001v = 15 ?

Exercice 16 1. (*) Dans un jeu de ballon ovale, on ne peut marquer que 3 ou 5 points suivant les actions.

- (a) Montrer que l'on peut atteindre les scores 8, 9, 10
- (b) Montrer que l'on peut atteindre tout score n supérieur ou égal à 8.
- 2. Dans un autre jeu de ballon, on ne peut marquer que a ou b points suivant les actions $(a,b \in \mathbb{N}^* \text{ fixés})$. On suppose que PGCD(a,b) = 1.
 - (a) (*) Soit $(u, v) \in \mathbb{Z}^2$ donnant une relation de Bézout entre a et b. Montrer que $(u \leq 0 \text{ et } v \geq 0)$ ou $(u \geq 0 \text{ et } v \leq 0)$
 - (b) (**) On suppose $u \leq 0$. Montrer que -au et -au + 1 sont des scores accessibles.
 - (c) (***) Montrer qu'il existe $N \in \mathbb{N}$, tel que tout $n \ge N$ est un score accessible.