

# Applied Machine Learning in Engineering

Lecture 02 summer term 2025

Prof. Merten Stender

Cyber-Physical Systems in Mechanical Engineering, Technische Universität Berlin

www.tu.berlin/cpsme merten.stender@tu-berlin.de

# Recap: Lecture 01



#### **Least Squares Linear Regression**

- Scalar variable x and scalar target value  $y \rightarrow \text{find } f(x) = \theta_0 + \theta_1 x$
- Generating process  $y_i = \theta_0 + \theta_1 x_i + \epsilon_i$  with  $\mathbf{x} = [1, x_i]^{\mathsf{T}}$   $y_i = \mathbf{x}_i^{\mathsf{T}} \theta + \epsilon_i$  i = 1, ..., N (unobserved random variable  $\epsilon$  causing deviations from a perfectly linear relationship)
- Prediction:

$$\hat{y} = f(x)$$

Sum of squared errors:

$$\mathcal{L}_{SSE} = \sum_{i} (y_i - \hat{y}_i)^2, i = 1, ... N$$

• Solution for  $\theta_0$  and  $\theta_1$ : vanishing gradient of  $\mathcal{L}_{\text{SSE}}$ 

$$\frac{\partial \mathcal{L}_{\text{SSE}}}{\partial \theta_0} = 0$$
 and  $\frac{\partial \mathcal{L}_{\text{SSE}}}{\partial \theta_1} = 0$ 



# Recap: Lecture 01



Loss for scalar setting:

$$\mathcal{L} = \sum_{i} (y_i - \hat{y}_i)^2 = \sum_{i} (y_i - \theta_0 - \theta_1 x_i)^2$$

 $\blacksquare$  Vanishing gradient of  $\mathcal L$ 

$$\frac{\partial \mathcal{L}}{\partial \theta_0} = -2\sum_i (y_i - \theta_0 - \theta_1 x_i) = 0$$

$$\frac{\partial \mathcal{L}}{\partial \theta_1} = -2\sum_i (y_i - \theta_0 - \theta_1 x_i) x_i = 0$$

Normal equation

$$\begin{bmatrix} N & \sum_{i} x_{i} \\ \sum_{i} x_{i} & \sum_{i} x_{i}^{2} \end{bmatrix} \begin{bmatrix} \theta_{0} \\ \theta_{1} \end{bmatrix} = \begin{bmatrix} \sum_{i} y_{i} \\ \sum_{i} y_{i} x_{i} \end{bmatrix}$$

$$\mathbf{A}\mathbf{x} = \mathbf{b}$$

 $\rightarrow$  Solve for  $\theta$  to find optimal parameters  $\theta^*$ 



## Recap: Lecture 01



• Measuring the goodness of fit for regression problems: coefficient of determination ( $R^2$  value)

$$R^2 = 1 - \frac{\sum_i (y_i - \hat{y}_i)^2}{\sum_i (y_i - \bar{y})^2}, \ i = 1, ..., N,$$

sample mean  $\bar{y} = \frac{1}{N} \sum_{i} y_{i}$ 

Residual sum of squares  $\sum_{i}(y_{i}-\hat{y}_{i})^{2}$ Total sum of squares  $\sum_{i}(y_{i}-\bar{y})^{2}$ 







## Recap: Exercise 01



Model parameter estimation using Least Squares Linear Regression

Implementation of the normal form

Solution using np.linalg.solve

Return of the coefficients

```
def lin regress(x: np.ndarray, y: np.ndarray) -> list:
     # assuming x and y being 1-dim np.arrays of
     # length N (number of training data samples)
     # number of training samples
    N = x.shape[0]
     # normal form: A=[N, sum(x); sum(x), sum(x^2)]; b=[sum(y); sum(y*x)]
    A = np.array([[N, np.sum(x)], [np.sum(x), np.sum(x ** 2)]])
    b = np.expand dims(np.array([np.sum(y), np.sum(y * x)]), axis=-1)
     \# solve Ax = b
     theta = np.linalq.solve(A, b).flatten()
    return theta[0], theta[1]
```

## Recap: Exercise 01



# Model parameter estimation using Least Squares Linear Regression

• 
$$P_{\text{engine}} = v(F_{\text{wind}} + F_{\text{roll}})$$

• 
$$P_{\mathrm{roll}} = P_{\mathrm{engine}} - vF_{\mathrm{wind}}$$
, assuming  $\alpha = 0$ ,  $v_{\mathrm{rel}} = v$ 

• 
$$P_{\text{engine}} - P_{\text{wind}} = c_r \cdot mg \cdot v = P_{\text{roll}}$$

#### takes the form of $y = \theta_0 + \theta_1 x$

```
linear regression model: y = 1191.6353 + 0.0177 * x rolling resistance cR = 0.0177
```

```
data = np.genfromtxt("driving data.csv", delimiter=",")
velocity = data[:, 0] # m/s
power = data[:, 1] # W
# some constants as given in the exercise sheet
CW, A, RHO, G, M = 0.4, 1.5, 1.2, 9.81, 2400
def wind resistance(v:np.ndarray) -> np.ndarray:
     return CW * A * (RHO * v ** 2) / 2
power roll = power - velocity * wind resistance(v=velocity)
f roll = power wo wind / velocity
y = np.expand dims(power roll, axis=1)
X = np.expand dims(velocity * M * G, axis=1)
# Least-squares lin. regression
theta = lin regress(x=X, y=y)
theta 0, theta 1 = \text{theta}[0], theta[1]
print(f'\nlinear regression model: \ty = {theta 0:.4f} +
{theta 1:.4f} * x')
print(f'rolling resistance \t\t\tcR = {theta 1:.4f}')
```

#### Recap: Exercise 01



#### Python take aways

- Function definition including type hints
- Importing functions from different files
- '\_\_name\_\_' == '\_\_main\_\_' idiom
- Vectors and matrices in numpy
- Test-driven development
- Raising of error

```
import numpy as np
import unittest
from my_r2_score import r2_score

class TestR2Score(unittest.TestCase):
    def test_perfect_pred(self) -> None:
        y_true = np.random.randn(100)
        y_pred = y_true
        self.assertAlmostEqual(r2_score(y_true, y_pred), 1.0)

    def test_mean_pred(self) -> None:
        y_true = np.random.randn(100)
        y_pred = np.ones_like(y_true) * np.mean(y_true)
        self.assertEqual(r2_score(y_true, y_pred), 0.0)

...

if __name__ == "__main__":
    unittest.main()
```

# Agenda



- Attribute types
- Type conversion and encoding
- Python: object-oriented programming

## Learning outcomes



#### Learn to ...

- Characterize different attributes by their type
- Represent categorical data in a computer-readable form
- Differentiate functional and object-oriented programming

#### Know about ...

- Computational operations valid for specific attribute types
- Variance inflation and the dummy variable trap
- Class attributes and methods



# Data Types

# Data Types



Most common data types of relevance for this class in Python

| data type                    | Python type | description            | examples         |
|------------------------------|-------------|------------------------|------------------|
| integer                      | int         | whole numbers          | -1, 0, 42        |
| floating point number (real) | float       | fractional numbers     | -3.14, 0.0, 10.1 |
| string                       | str         | sequence of characters | Hello world!     |
| boolean                      | bool        | logical: true or false | True, False      |

Consider type-hinting when implementing functions and methods!

#### **Attributes**



**Definition**: An attribute is a property or characteristic of an object that may vary, either from

one data object to another or from one time to another.

[Tan, Introduction to Data Mining]

■ Example: data object weather conditions

#### Attributes

Current temperature [°C]

Current wind speed [m/s]

Current wind direction {N, W, S, E}

Current humidity [%]

Current rain fall {yes, no}

Current location [city name]



- Attributes can have different types
- Understanding types is crucial for data science and machine learning
  - The attribute type defines the set of <u>valid operations</u>
- Operations:
  - Distinctness (= and ≠)
  - Order  $(<, \le, >, \ge)$
  - Addition and multiplication (+, -, \*, /)
- Four types of attributes:
  - 1. Nominal
  - 2. Ordinal
  - 3. Interval
  - 4. Ratio

#### Nominal data



- Observation from a set of mutually exclusive values, classes or categories
- Can be expressed in words or in numbers
- There is no meaningful order of the labels
- Arithmetic operations cannot be performed on nominal data
- Examples:
  - City names
  - Student identity number
  - Political preferences
  - Binary variables (true / false)

#### Ordinal data



- Observation from a set values, classes or categories that have a natural rank order
- Can be expressed in words or in numbers
- There is a meaningful order of the labels
- Arithmetic operations cannot be performed on ordinal data, but sorting can be performed
- Distances between categories can be uneven or undefined
- Examples:
  - Frequencies {never, rarely, sometimes, often}
  - Colors from a specific color palette
  - University grades {1.0, 1.3, ...}
  - Skill levels {beginner, experienced user, expert}

#### Interval data



- Observation measured on a numerical interval scale with ...
- ... equal distances between adjacent values
- No true zero, i.e. value=0 is arbitrary and does not indicate the absence of a variable
- There is a meaningful order of the labels
- Arithmetic operations (+ , ) can be performed

- Examples:
  - Temperatures in [°C] and [F]
  - Time on a 12-hour clock
  - IQ test scores

#### Ratio data



- Observation measured on a numerical interval scale with ...
- ... equal distances between adjacent values
- There is a true zero, i.e. value=0 indicates the absence of a variable
- There is a meaningful order of the labels
- Arithmetic operations (+ , -, /, \*) can be performed

- Examples:
  - Temperatures in [K]
  - Speed, height, mass
  - Age

# Types of Attributes: Permissible Operations



|                              |  | Туре     | Description                                                                                                    | Example                                                      | Operations                                            |
|------------------------------|--|----------|----------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------|-------------------------------------------------------|
| orical /                     |  | Nominal  | value corresponds to a set of mutually exclusive values, classes or categories                                 | eye color, city name,<br>brand name, class name,<br>booleans | = and ≠                                               |
| categorical /<br>qualitative |  | Ordinal  | values from a set of distinct values, can be put into an order                                                 | house numbers, study semester, grades                        | = and ≠<br>(<, ≤, >, ≥)                               |
| numeric /<br>quantitative    |  | Interval | values from a continuous set of equally spaced values, unit of measurement exists, no true zero                | temperature °C, time on<br>12-hour clock, IQ test<br>results | = and $\neq$ (<, $\leq$ , >, $\geq$ ) (+, -)          |
|                              |  | Ratio    | values from a continuous set of equally spaced values, unit of measurement exists, true zero indicates absence | age, velocity, height                                        | = and $\neq$ (<, $\leq$ , $>$ , $\geq$ ) (+, -, *, /) |

# Types of Attributes: Levels of Measurement



- Levels of measurement (framework for: how much mathematical meaning your data holds.):
  - metric for precision of data recording and how one can analyze the data
  - the higher, the more complex the recording, and the more options for analysis

|               | Nominal | Ordinal | Interval | Ratio |
|---------------|---------|---------|----------|-------|
| Categories    | yes     | yes     | yes      | yes   |
| Rank order    |         | yes     | yes      | yes   |
| Equal spacing |         |         | yes      | yes   |
| True zero     |         |         |          | yes   |



■ Example: data object weather conditions

Exercise: fill in types

- Attributes
  - interval Current temperature [°C] ratio Current wind speed [m/s]{N, W, S, E} nominal Current wind direction  $\rightarrow$ ratio Current humidity [%] nominal Current rain fall {yes, no}  $\rightarrow$ nominal [city name] Current location  $\rightarrow$

Ideas for ordinal?

Current quarter of the year

→ ordinal



- Why does it matter so much?
- Computers cannot work with qualitative data (nominal, ordinal) directly
  - A numeric representation of qualitative data is required
  - Numbers may lead to wrong operations on the originally qualitative data
- Example 1: predicting student's final grades based on participation and study hours

#### Ordinal data as numeric data

Model prediction:  $y = 1.801 \rightarrow$  which grade?

Solution: rounding to nearest valid value  $\rightarrow$  1.7



- Why does it matter so much?
- Computers cannot work with qualitative data (nominal, ordinal) directly
  - A numerical representation of qualitative data is required
  - Numerics may lead to wrong operations on the originally qualitative data
- Example 2: recognizing traffic participants in a video stream



#### Nominal data as numeric data (naïve approach)

Pedestrian $\rightarrow$  1Crosswalk $\rightarrow$  2Stop sign $\rightarrow$  3Car $\rightarrow$  4

Model prediction:  $y = 1.801 \rightarrow \text{interpretation?}$ 

Wrong assumption of order and existing distance!



# Data Encoding

# **One-Hot Encoding**



Making qualitative (categorical) data readable to a computer

■ One-Hot Encoding  $y \in \{v_1, ..., v_k\} \mapsto y \in \mathbb{R}^k, \in \{0, 1\}, k$ : number of distinct values / classes

- Traffic example:
  - 4 classes: pedestrian, crosswalk, stop sign, car

■ pedestrian  $\rightarrow \begin{bmatrix} 1 & 0 & 0 & 0 \end{bmatrix}^T$ ■ crosswalk  $\rightarrow \begin{bmatrix} 0 & 1 & 0 & 0 \end{bmatrix}^T$ 

• stop sign  $\rightarrow [0 \ 0 \ 1 \ 0]^{\mathsf{T}}$ 

• car  $\rightarrow [0 \quad 0 \quad 0 \quad 1]^{\mathsf{T}}$ 

**Do not use for ordinal data**, as order gets lost!

(almost) no ML algorithm does create an implicit relationship or order between neighboring values in an output array such as an OHE vector

■ Model prediction  $y = \begin{bmatrix} 0.95 & 0 & 0 & 0.05 \end{bmatrix}^T \rightarrow$  to 95% a pedestrian, to 5% a car

# One-Hot Encoding vs. Multicollinearity



Example: two-class problem: age over 18 (adult) / age under 18 (child)

■ Classical OHE: adult  $\rightarrow$  [1 0], child  $\rightarrow$  [0 1]

→ perfect collinearity



#### Solution:

- 1. Delete one of the colinear columns
- 2. Select a reference variable, and create a (K-1)-dim vector for K categorical variables
  - Reference variable maps to vector of zeros (attention with NN output layer activation softmax)
  - Remaining variables are one-hot encoded (all zeros except for one entry)

 $y \in \{v_1, ..., v_k\} \mapsto \tilde{y} \in \mathbb{R}^{K-1}, \in \{0, 1\}, K$ : number of distinct values / classes

# Multicollinearity (dummy variable trap)



- One feature dimension can be approximated from ≥ 1 other feature dimension(s) using a linear model
  - → feature columns are linearly dependent
- Large variations in regression model coefficients for small changes to the data set
  - → variance inflation
- No direct effect on model quality, but
  - → poor interpretability of importance of individual feature attributes
- Example:  $\tilde{y} = f(x, \theta) = \theta_0 + \theta_1 x_1 + \theta_2 x_2$ 
  - if  $x_1 \approx \alpha_0 + \alpha_1 x_2$ , then different  $\beta$  build models of equal quality, e.g. for slightly different  $X_{\text{train}}$
  - $X = [x_1, x_2]$  does not have full rank
  - Check variance inflation factor (VIF)!

# **Example: Variance Inflation**



- A model can be very sensitive to the actual training data when that data contains linearly correlated feature vectors
- Example:  $y = 2 + 2x_1 + x^2 + N(0,1)$ , highly correlated features  $x_2 = 2x_1 + N(0,0.1)$ , 100 samples (N(0,1)): normal distribution with 0 mean and unit standard deviation)
- Linear regression model  $\hat{y} = \theta_0 + \theta_1 x_1 + \theta_2 x_2$
- Experiment:
- 1. Loop 200 times:
  - 1. Take 90 out of 100 samples of y, X
  - 2. Train linear regression model  $\mathcal{M}: X \mapsto y$
  - 3. Read model parameters **9**
- 2. Display histogram of model parameters
- 3. Observe great variability → variance inflation



# Variance Inflation Factor (VIF)!



- VIF: metric used to detect multicollinearity among the input (independent) variables in tabular data, especially in regression models.
  - If two or more features are highly correlated, they provide redundant information.
  - Highly correlated features may confuse models and deteriorate performance.

#### Calculation:

- 1. For a given feature  $x_i$ , regress it linearly against all the other features  $x_j$ ,  $i \neq j$  and compute the coefficient of determination  $R_i^2$
- 2. VIF for  $x_i$  is calculated as: VIF =  $\frac{1}{1-R_i^2}$

#### Interpretation

- VIF = 1.0:  $x_i$  not correlated to any other feature
- VIF > 1.0: some correlation exists
- VIF > 5: high correlation, usually considered problematic.

# Integer (Label) Encoding for Ordinal data



- Encoding ordinal data requires keeping an order
- Simplistic encoding: assign an integer to each category, start with 0 for the first category
- **Example**: satisfaction rating for this class
  - 5 classes with natural rank order ("extremely dislike", "dislike", "neutral", "like", "extremely like")

■ Integer encoding: extremely dislike → 0

dislike → 1

neutral → 2

. . .

- Caution! Integer encoding keeps the order but pretends a measure of (equal) distances!
  - Strictly speaking, a model prediction  $\tilde{y} = 1.8$  is not meaningful, and rounding may be wrong
  - Decoding strategy is highly case-specific!
  - Some models might assume distances between values (e.g., SVM, linear regression)

#### Common Mistakes



#### **Averaging Nominal Data**

- Mistake(s): Taking the average of nominal categories after integer-encoding them.
- Example: Suppose you encode colors as:
  - Red = 1
  - Green = 2
  - Blue = 3
- Result: If you compute the mean color over 100 samples and get "2.3", what does that mean? Nothing! There's no real numeric relationship between Red, Green, and Blue.

#### Common Mistakes



#### **Assuming Equal Distances in Ordinal Data**

- Mistake(s): Treating ordinal data as if the distances between categories are equal.
- Example: Survey question: "How satisfied are you?" (rated 1 to 5)
  - 1 = Very Unsatisfied
  - 2 = Neutral
  - 3 = Satisfied
- Result: Someone might assume the emotional gap between "Neutral" and "Satisfied"  $(3 \rightarrow 4)$  is the same as between "Unsatisfied" and "Neutral"  $(2 \rightarrow 3)$ , and then perform linear regression on these values
- Why it's wrong: The numerical labels imply an order but not equal intervals. The satisfaction difference between "Neutral" and "Satisfied" might be smaller or larger than between "Unsatisfied" and "Neutral".



# Python: object-oriented programming

# Object-oriented programming



• Main reason for using classes and object-oriented programming in the context of ML:

#### Uniting the location of methods (functionalities) and attributes (data)

- Therefore, class instances have
  - Methods (functions): perform actions on attributes and external inputs self.my\_attribute(self, x):
  - Attributes (variables): assign values to self.my attribute
- Example Class EmailServer:
  - Methods: fetch\_new\_mails(); check\_for\_spam(); ...
  - Attributes: sent mails; free space; num of mails; ...

## Object-oriented programming



- Definition of a class
- Constructor (initialization)
- Attributes (variables)
- Methods (functions)
- Hiding class attributes from user
- Class instantiation

```
class MyClass:
   def init (self, some value='hello'):
       self.my attribute = some value
       self. hidden attribute = 42
   def a method(self, some argument='world'):
       print(f'{self.my attribute}, {some argument}')
   def hidden method(self):
       print(f'some hidden function')
if name == " main ":
   class instance = MyClass()
   class instance.a method()
   print(class instance.my attribute)
```

## OOP: linear regression example



```
def fit(x: np.ndarray, y: np.ndarray) -> tuple[float, float]:
     N = x.shape[0] # number of training samples
      # normal form # A = [N, sum(x); sum(x), sum(x^2)]
      \# b = [sum(y); sum(y*x)]
     A = np.array([[N, np.sum(x)], [np.sum(x), np.sum(x ** 2)]])
      b = np.expand dims(np.array([np.sum(y), np.sum(y * x)]),
                        axis=-1
      # solve Ax = b
      theta = np.linalg.solve(A, b).flatten()
      return (theta[0], theta[1])
def predict(theta: tuple, x: np.ndarray) -> np.ndarray:
      # expects model parameters (theta 0, theta 1) and query
      points x
      # evaluate model at query points
      return theta[0] + theta[1] * x
# fit model and make a prediction
theta = fit(x=x, y=y)
y hat = predict(theta=theta, x=x pred)
```

```
class LinRegressor:
      def init (self):
            self.theta: tuple
            self.x train: np.ndarray
            self.y train: np.ndarray
           self.N train: int
      def fit(self, x, y):
            self.x train = x
            self.y train = y
            self.N train = self.x train.shape[0]
            # normal form: A = [N, sum(x); sum(x), sum(x^2)];
           \# b = [sum(y); sum(y*x)]
           A = np.array([[self.N train, np.sum(self.x train)],
            [np.sum(self.x train), np.sum(self.x train ** 2)]])
           b = np.expand dims(np.array([np.sum(self.y train),
           np.sum(self.y train * self.x train)]), axis=-1)
            # solve Ax = b
           self.theta = np.linalg.solve(A, b).flatten()
      def predict(self, x):
           return self.theta[0] + self.theta[1] * x
# fit and evaluate lin. regress. model using OOP
regressor = LinRegressor()
regressor.fit(x=x, y=y)
y hat = regressor.predict(x=x pred)
```



# Exercise 02



Bing Image Generator

# Exercise 02: One-Hot Encoding



 Compare functional and object-oriented programming for implementing one-hot encoding

Example: One-Hot Encoding categorical data into

numeric representation

• Functions / methods:

- Fit (on some training data)
- Encode nominal data
- Decode numerical data

Test data: bearing failure modes

| 1  | Α               | В       | С |
|----|-----------------|---------|---|
| 1  | true brinelling |         |   |
| 2  | excessive       | load    |   |
| 3  | contamina       | ation   |   |
| 4  | loose fits      |         |   |
| 5  | loose fits      |         |   |
| 6  | normal fat      | tigue   |   |
| 7  | normal fat      | tigue   |   |
| 8  | excessive load  |         |   |
| 9  | normal fat      | tigue   |   |
| 10 | false brine     | elling  |   |
| 11 | misalignm       | nent    |   |
| 12 | false brine     | elling  |   |
| 13 | lubricant f     | failure |   |
| 14 | excessive       | load    |   |
| 15 | overheati       | ng      |   |





# Questions?