

# Formale Grundlagen der Informatik

8

Berechenbarkeit
Rekursiv aufzählbare und rekursive Mengen





- Ein **Algorithmus** ist eine Folge von Anweisungen, die **Eingabedaten** in **Ausgabedaten** überführt.
- Dabei muss für jede Eingabe eindeutig feststehen:
  - Welche Anweisung wird zuerst ausgeführt?
  - Welche Anweisung folgt auf eine gerade ausgeführte?
  - Wann ist der Algorithmus beendet?
- Der Algorithmus muss für alle (passenden) Eingabedaten die Ausgabedaten korrekt berechnen, ohne dass er angepasst werden muss.
- Ein Algorithmus berechnet eine Funktion.



### Berechenbarkeit

- Eine Funktion heißt (algorithmisch) berechenbar, wenn es einen Algorithmus gibt, der alle ihre Argumente korrekt in die zugehörigen Funktionswerte überführt.
- ➤ Eine Funktion heißt berechenbar, wenn es ein C-/Java-/Python-/...
  Programm gibt, das diese Funktion berechnet.
- Herausforderungen:
  - Nachweis, dass Funktionen <u>nicht</u> berechenbar sind.
  - Begriff der Berechenbarkeit ohne Bezug zu Programmiersprachen. (siehe z.B. das 10. Problem aus dem Vortrag von David Hilbert auf dem Internationalen Mathematikerkongress im Jahr 1900:
     Man gebe ein Verfahren an, ...) → Frage nach der Existenz eines Algorithmus



## Einige Begriffe der Berechenbarkeit

#### WHILE-Berechenbarkeit

Eine Funktion ist berechenbar, wenn sie durch ein WHILE-Programm berechnet werden kann.

#### Partiell-rekursive Funktionen

Eine Funktion ist berechenbar, wenn sie mithilfe gewisser Schemata "rekursiv auf einfachste Funktionen zurückgeführt" werden kann.

#### RAM-Berechenbarkeit

Eine Funktion ist berechenbar, wenn sie durch eine Registermaschine (eine einfache Abstraktion von Assemblersprachen) berechnet werden kann.

#### Turing-Berechenbarkeit

Eine Funktion heißt berechenbar, wenn sie durch eine Turing-Maschine berechnet werden kann.

•••



## **Church-Turing-These**

- Alle Berechenbarkeitsbegriffe sind formal definiert. Ihre Äquivalenz ist nachgewiesen.
- Das betrifft auch die sehr vielen Varianten in der Definition von Turing-Maschinen.
- Church-Turing-These: Die Menge der Turing-berechenbaren Funktionen stimmt mit der Menge der intuitiv berechenbaren Funktionen überein.
  - kann natürlich nicht bewiesen werden
  - bisher alle anerkannten Definitionen der Berechenbarkeit äquivalent
  - ist allgemein anerkannt





- Formales Modell für "schriftliches Rechnen"
  - z.B. schriftliche Addition, Division, Polynomdivision, ...
  - Rechnen "auf kariertem Papier"
- Jede TM definiert einen Algorithmus.
- Eingabedaten: Eingabewort
- Ausgabe (Funktionswert): Bandinhalt nach dem Halten der TM.

## Universitate Para Contraction of the Contraction of

## **Turing-Berechenbarkeit – Definition**

- Sei  $M = (Q, \Sigma, \Gamma, \delta, q_0, *, F)$  eine Turing-Maschine.
- Die von M induzierte Funktion  $f_M: \Sigma^* \to (\Gamma \setminus \{*\})^*$  ist wie folgt definiert:  $f_M(w) = v$  gdw.
  - 1.  $q_0w \vdash v_1pv_2$
  - 2.  $p \in F$
  - 3.  $*^i v *^j = v_1 v_2$  für Zahlen  $i, j \ge 0$ .
- Eine Funktion f heißt **Turing-berechenbar**, wenn es eine Turing-Maschine M gibt mit  $f_M = f$ .
- ➤ Die induzierte Funktion einer Turing-Maschine kann eine *partielle* Funktion sein.





Eingabe: Dezimaldarstellung einer natürlichen Zahl

Ausgabe: Nachfolger dieser Zahl

Seien 
$$\Sigma_{dec} = \{0,1,2,3,4,5,6,7,8,9\}$$
 und 
$$M_{succ} = (\{q_0,+,f\},\Sigma_{dec},\Sigma_{dec} \cup \{*\},\delta_{succ},q_0,*,\{f\}).$$

|       | *         | 0             | 1             | 2             | 3             | 4             | 5             | 6             | 7             | 8             | 9             |
|-------|-----------|---------------|---------------|---------------|---------------|---------------|---------------|---------------|---------------|---------------|---------------|
| $q_0$ | (+,*,L)   | $(q_0, 0, R)$ | $(q_0, 1, R)$ | $(q_0, 2, R)$ | $(q_0, 3, R)$ | $(q_0, 4, R)$ | $(q_0, 5, R)$ | $(q_0, 6, R)$ | $(q_0, 7, R)$ | $(q_0, 8, R)$ | $(q_0, 9, R)$ |
| +     | (f, 1, L) | (f, 1, L)     | (f, 2, L)     | (f, 3, L)     | (f, 4, L)     | (f, 5, L)     | (f, 6, L)     | (f, 7, L)     | (f, 8, L)     | (f, 9, L)     | (+, 0, L)     |



## **Rekursive Mengen - Definition**

- Intuitiv: Eine Menge ist entscheidbar, wenn ein Algorithmus entscheiden kann, ob seine Eingabe ein Element der Menge ist oder nicht.
- Sei  $\Sigma$  ein Alphabet und  $L \subseteq \Sigma^*$ . Die **charakteristische Funktion** von L ist die Funktion  $\varphi_L: \Sigma^* \to \{0,1\}$  vermöge

$$\varphi_L(x) = \begin{cases} 1 & \text{falls } x \in L \\ 0 & \text{falls } x \notin L \end{cases}$$

- Eine Menge ist rekursiv (entscheidbar), wenn ihre charakteristische Funktion Turing-berechenbar ist. → TM hält bei jeder Eingabe!
- > Auf dem Turing-Band muss nach dem Stoppen exakt 0 oder 1 stehen.
  - ➤ Ggf. alles andere löschen vor dem Stoppen!





$$M' = (\{q_0, q_1, q_2, q_3, q_4, f\}, \{a, b\}, \{a, b, *\}, \delta, q_0, *, \{f\})$$

$$\cup \{r, \ell\}$$

|       | а             | b             | *              |                           |
|-------|---------------|---------------|----------------|---------------------------|
| $q_0$ | $(q_1,*,R)$   | (r, 0, R)     | (f,*,R)        | $\rightarrow$ $(f, 1, R)$ |
| $q_1$ | $(q_1, a, R)$ | $(q_1, b, R)$ | $(q_2,*,L)$    |                           |
| $q_2$ | (ℓ, 0, L)     | $(q_3,*,L)$   | $(\ell, 0, L)$ |                           |
| $q_3$ | $(q_3, a, L)$ | $(q_3, b, L)$ | $(q_0,*,R)$    |                           |

Beobachtung:
Wenn die TM M stoppt,
ist das Eingabeband
leer.

$$L(M) = \{ a^n b^n \mid n \ge 0 \}$$





$$M' = (\{q_0, q_1, q_2, q_3, q_4, r, \ell, f\}, \{a, b\}, \{a, b, *\}, \delta, q_0, *, \{f\})$$

|        | а              | b             | *              |
|--------|----------------|---------------|----------------|
| $q_0$  | $(q_1,*,R)$    | (r, 0, R)     | (f, 1, R)      |
| $q_1$  | $(q_1, a, R)$  | $(q_1, b, R)$ | $(q_2,*,L)$    |
| $q_2$  | $(\ell, 0, L)$ | $(q_3,*,L)$   | $(\ell, 0, L)$ |
| $q_3$  | $(q_3, a, L)$  | $(q_3, b, L)$ | $(q_0,*,R)$    |
| r      | (r,*, R)       | (r,*,R)       | (f,*,R)        |
| $\ell$ | (ℓ,∗, L)       | (ℓ,*,L)       | (f,*,L)        |

#### Bei Fehlersituation: Band ist nicht leer!

- ➤ In *r* alles von links nach rechts löschen.
- ➤ In ℓ alles von rechts nach links löschen.

M' berechnet  $\varphi_L$  von  $L = \{ a^n b^n \mid n \geq 0 \} \longrightarrow M'$  entscheidet  $L = \{ a^n b^n \mid n \geq 0 \}$ 





- Bisher:
  - TM als Akzeptoren für Sprachen
  - TM als Algorithmen / zur Berechnung von Funktionen
- Jetzt: TM als Generatoren von Sprachen:
  - 1. TM beginnt auf leerem Eingabeband
  - TM schreibt Wort für Wort die Elemente einer Sprache auf das Band, voneinander getrennt durch #
  - TM zählt die Wörter der Sprache auf (in beliebiger Reihenfolge, ggf. auch wiederholt)
  - $\triangleright$  die von der TM M rekursiv aufgezählte Sprache G(M)



■ Eine Menge L heißt **rekursiv aufzählbar** wenn es eine TM M gibt, so dass G(M) = L.

**Satz 8.1:** Zu jeder rekursiv aufzählbaren Menge L kann eine Turing-Maschine konstruiert werden, die L akzeptiert.

**Beweis:** Sei M eine TM mit G(M) = L. Konstruieren eine TM M' mit L(M') = L:

- 1. Erzeuge ein Trennsymbol \$ hinter dem Eingabewort w.
- 2. Simuliere M hinter \$, bis ein Wort aus G(M) von erzeugt ist.
- 3. Vergleiche das erzeugte Wort mit der Eingabe w.
  - a) Bei Gleichheit halten (also die Eingabe w akzeptieren).
  - b) Bei Ungleichheit das erzeugte Wort löschen und zurück zu Schritt 2.: dort das nächste Wort aus G(M) erzeugen. Bei endlicher Menge G(M): Das zuletzt erzeugte Wort immer wieder erzeugen.



**Satz 8.1:** Zu jeder rekursiv aufzählbaren Menge L kann eine Turing-Maschine konstruiert werden, die L akzeptiert.

#### Fortsetzung des Beweises:

- Zustände von M' sind Paare, erste Komponente ist der aktuelle Zustand von M, zweite Komponente steuert den Ablauf der Arbeit von M'.
- Falls  $w \in G(M)$ , dann  $w \in L(M')$ .
- Falls  $w \notin G(M)$ , dann wird M' nie halten, also  $w \notin L(M')$ .

➤ Gilt die Umkehrung von Satz 8.1?





**Lemma 8.2:** Wenn  $L \subseteq \Sigma^*$  rekursiv ist, dann ist L rekursiv aufzählbar.

**Beweis:** Sei M eine TM, die L entscheidet, also mit  $f_M = \varphi_L$ .

- Sei  $\Sigma = \{a_1, a_2, ..., a_n\}$ . Kanonische Ordnung auf  $\Sigma^*$ :
  - Anordnung der Wörter aufsteigend der Länge nach;
- Z.B. für  $\Sigma = \{0,1\}$ :  $\varepsilon$ , 0, 1, 00, 01, 10, 11, 000, 001, ...
- bei gleicher Länge alphabetisch (bezogen auf eine Anordnung der Buchstaben in  $\Sigma$ ).
- Konstruieren eine TM M' mit G(M') = L wie folgt:

Für alle Wörter w in kanonischer Anordnung:

Simuliere M bei Eingabe w. Falls  $f_M(w) = 1$ , erzeuge w in der Aufzählung.

Problem: Funktioniert so nicht für Sprachen, die von einer TM akzeptiert werden, da M nicht für jedes Wort halten muss.





- Bekannt von der ersten Diagonalisierung, z.B. für Brüche
- Ordne die Paare der Form (i, j) aufsteigend
  - 1. nach ihren Summen i + j und
  - 2. bei gleicher Summe aufsteigend nach *i*. also (1,1), (1,2), (2,1), (1,3), (2,2), (3,1), (1,4), (2,3), (3,2), (4,1), (1,5), ...
- $\succ$  Eine TM  $M_{\mathrm{Paar}}$  kann alle Paare in dieser Anordnung aufzählen.
- $\triangleright$  Jedes Paar (i,j) wird von  $M_{\mathrm{Paar}}$  irgendwann ("nach endlicher Zeit") erzeugt.



**Satz 8.3:** Zu jeder TM M kann eine TM M' konstruiert werden, die die Menge L(M) rekursiv aufzählt.

**Beweis:** Sei  $L(M) \subseteq \Sigma^*$ . Konstruieren TM M' mit geeigneten Tupeln aus Zustände. Solange die TM M' nicht hält, wiederholt sie folgende Schritte:

- 1. Simuliere  $M_{Paar}$ , so dass das nächste Paar (i,j) erzeugt wird
- 2. Erzeuge (hinter (i, j) und einem Trennsymbol) das Wort  $w_i$  in der kanonischen Anordnung auf  $\Sigma$ .
- 3. Simuliere die ersten j Schritte von der TM M auf  $w_i$ . Falls M in dieser Simulation hält, dann gehe ganz nach links und erzeuge  $w_i\#$ .



**Satz 8.3:** Zu jeder TM M kann eine TM M' konstruiert werden, die die Menge L(M) rekursiv aufzählt.

#### Fortsetzung des Beweises:

- Falls  $w \in L(M)$ , dann gibt es ein Paar (i, j), so dass  $w = w_i$  in kanonischer Anordnung und M hält bei Eingabe  $w_i$  nach j Schritten. Dann gilt  $w \in G(M')$ .
- Falls  $w \notin L(M)$  und  $w = w_i$  in kanonischer Anordnung, dann wird M nach keiner Anzahl von Schritten j bei Eingabe  $w_i$  halten.
  - Daher gilt  $w \notin G(M')$ .





**Folgerung 8.4:** Eine Sprache wird genau dann von einer TM akzeptiert, wenn sie rekursiv aufzählbar ist.

- Wir wissen außerdem:
   Wenn eine Sprache rekursiv ist, dann ist sie rekursiv aufzählbar.
- Die Umkehrung gilt nicht (siehe nächste Vorlesung: Unentscheidbarkeit).
- Aber es gilt:

Eine Sprache L ist genau dann rekursiv, wenn sie und ihr Komplement rekursiv aufzählbar sind.



## Komplemente rekursiver Mengen

**Lemma 8.5:** Wenn eine Sprache L rekursiv ist, dann ist ihr Komplement  $\overline{L}$  rekursiv.

**Beweis:** Sei  $L \subseteq \Sigma^*$  rekursiv.

Dann gibt es eine TM M mit  $f_M = \varphi_L$ .

Sei  $\overline{M}$  die TM mit Eingabealphabet  $\Sigma$ , die exakt wie M arbeitet aber 0 ausgibt, wenn M eine 1 ausgibt und 1 ausgibt, wenn M eine 0 ausgibt.

Dann gilt  $f_{\overline{M}} = \varphi_{\overline{L}}$  und somit ist  $\overline{L}$  rekursiv.





## Rekursive vs. rekursiv aufzählbare Mengen

**Satz 8.6:** Eine Sprache L ist genau dann rekursiv, wenn sie und ihr Komplement rekursiv aufzählbar sind.

#### **Beweis:**

- 1. Sei L rekursiv. Dann ist  $\overline{L}$  rekursiv (Lemma 8.5). Dann sind L und  $\overline{L}$  rekursiv aufzählbar (Lemma 82).
- 2. Seien L und  $\overline{L}$  rekursiv aufzählbar. Dann gibt es Turing-Maschinen M und  $\overline{M}$  mit L(M)=L und  $L(\overline{M})=\overline{L}$  (Folgerung 8.4).
  - Konstruieren eine Turing-Maschine N, die L entscheidet:





Konstruieren eine Turing-Maschine N, die L entscheidet:

- i. Kopiere das Eingabewort w hinter ein Trennzeichen.
- ii. Wiederhole:
  - 1. Simuliere den nächsten Schritt von M auf dem Eingabewort w. Falls M in diesem Schritt hält, lösche den Bandinhalt, schreibe 1 und halte.
  - 2. Simuliere den nächsten Schritt von  $\overline{M}$  auf der Kopie von w. Falls  $\overline{M}$  in diesem Schritt hält, lösche den Bandinhalt, schreibe 0 und halte.

Zustände von N sind Tripel, 1. und 2. Komponente sind die aktuellen Zustände von M bzw.  $\overline{M}$ , die 3. Komponente steuert den Ablauf.

Die TM N berechnet somit die charakteristische Funktion  $\varphi_L$  von L.







```
■ \mathcal{L}(REC) = \{ L \mid L \text{ ist rekursiv } \}

■ \mathcal{L}(RE) = \{ L \mid L \text{ ist rekursiv aufzählbar } \}

= \{ L \mid L = G(M) \text{ für eine TM } M \}

= \{ L \mid L = L(M) \text{ für eine TM } M \}
```

Lemma 8.7:  $\mathcal{L}(REG) \subseteq \mathcal{L}(REC)$ 

**Beweis:** Sei  $L \in \mathcal{L}(REG)$ . Dann gibt es einen DEA A mit L(A) = L.

Die TM  $M_A$  simuliere A. Wenn A akzeptiert, gibt  $M_A$  eine 1 aus, sonst 0.







```
■ \mathcal{L}(REC) = \{L \mid L \text{ ist rekursiv }\}
■ \mathcal{L}(RE) = \{L \mid L \text{ ist rekursiv aufzählbar }\}
= \{L \mid L = G(M) \text{ für eine TM } M \}
= \{L \mid L = L(M) \text{ für eine TM } M \}
```

Folgerung 8.7:  $\mathcal{L}(REG) \subseteq \mathcal{L}(REC) \subseteq \mathcal{L}(RE)$ 

```
Teilmenge nach Lemma 8.7; echt wegen { a^nb^n \mid n \ge 0 }
```

Teilmenge nach Lemma 8.2; *Echtheit siehe Vorlesung 9*