<u>1° InstallFest do LEF</u>

minicurso: gnuplot>

Dias 6 e 7 de novembro de 2007 16h às 18h Sala 206 — LEF — IFSC

Gerson J. Ferreira gersonjr@ifsc.usp.br

gnuplot>

linguagem de script para gerar gráficos em 2D e 3D pela linha de comando;

Primeira parte:

Sobre o gnuplot

- x Pra que serve? Quando usar?
- Origin vs gnuplot e outras alternativas

Comandos básicos

- x plot (2D) e splot (3D)
- x funções analíticas
- x arquivo de dados, barras de erro;

• Personalizando o gráfico

x cores, legendas, títulos, eixos, escalas, etc...

Usando scripts

- x para simplificar a edição de um gráfico
- x diversos gráficos semelhantes

Segunda parte:

Multiplot

- x diversos gráficos numa janela
- Salvando em arquivos
 - x formatos: JPEG, GIF, PNG, EPS
- Ajustando curvas a dados experimentais
 - x funções de ajuste personalizáveis

Animações

- x acompanhamento dos resultados
- x simulações dinâmicas

Apoio

UNIVERSIDADE DE SÃO PAULO

Instituto de Física de São Carlos

http://www.lef.ifsc.usp.br/installfest

Sobre o gnuplot e o Origin

gnuplot não é exatamente um substituto do Origin (opinião pessoal);

E quanto ao Origin?

- WYSWYG, gerenciado pelo mouse, cansativo se repetitivo;
- figuras preparadas individualmente;
- não dá para acoplar a simulações

Vantagens do gnuplot

- é linguagem de script para gráficos
- elimina o uso do mouse (90%)
- formatação via scripts
 - x vários gráficos com a mesma formatação;
- fácilmente integrável a simulações
 x acompanhamento de resultados
 - x animações;

Desvantagens do gnuplot

- figuras complexas são difíceis de formatar:
- recursos avançados como ajuste de múltiplos picos não são automatizados (requer script extra);
- faltam recursos de planilha eletrônica;

Grace

http://plasma-gate.weizmann.ac.il/Grace/

qtiPlot

http://soft.proindependent.com/qtiplot.html

labPlot

http://labplot.sourceforge.net/

SciGraphica

scigraphica.sourceforge.net/

Visitem estes endereços...

Página oficial:

http://www.gnuplot.info

Tutorial gnuplot com comentários:

http://t16web.lanl.gov/Kawano/gnuplot/index-e.html

Comandos básicos - plot (2D)

Syntax:

opções

range: intervalo dos eixos datafile: arquivo de dados axes: eixos (x1, x2, y1, y2)

title-spec: legenda

with <style>: personaização definitions: muitas opções...

plot sin(x), cos(x)

Comandos básicos - splot (3d)

opções

range: intervalo dos eixos datafile: arquivo de dados axes: eixos (x1, x2, y1, y2)

title-spec: legenda

with <style>: personaização definitions: muitas opções...

splot $exp((-x^{**}2-y^{**}2)/15)$

Funções matemáticas

principais

abs(x)	módulo
acos(x)	arco-cosseno
asin(x)	arco-seno
atan(x)	arco-tangente
cos(x)	cosseno
cosh(x)	cosseno hiperbólico
erf(x)	função erro
exp(x)	exponencial
log(x)	log na base e
log10(x)	log na base 10
sgn(x)	sinal de x
sin(x)	seno
sinh(x)	seno hiperbólico
sqrt(x)	raiz quadrada
tan(x)	tangente
tanh(x)	tangente hiperbólica

help expressions functions

abs asin atanh besyl cosh exists gprintf int lgamma rand sinh strlen	acos asinh besj0 ceil defined exp ibeta inverf log real sprintf strstrt	acosh atan besj1 column erf floor igamma invnorm log10 sgn sqrt substr	arg atan2 besy0 cos erfc gamma imag lambertw norm sin stringcolumn system
sinh	sprintf	sqrt	stringcolumn

exponenciação (Fortran-like)
$$x^2 = x **2$$

Para definir uma função e parâmetros:

$$f(x,w) = \sin(w*x)**2;$$

plot $f(x,1), f(x,3)$

a parametrização será usada para ajustar curvas usando o comando fit (help fit)

Aprendendo com exemplos

comandos para introduzir: eixos, legendas, título, cores, etc...

consulte também...

```
> set key x,y
> set [no]log (x|y)
> set autoscale (x|y)
> test
```

detalhes...

```
lt = line type
lw = line width
title = "" : não aparece na legenda
```

Aprendendo com exemplos

gráficos com pontos e outros detalhes...

consulte também...

```
> set style function linespoints
> help plotting styles
```

Aprendendo com exemplos

comandos para introduzir: eixos, legendas, título, cores, etc...

```
> sinc(t)=sin(t)/t
                                                exemplo03.qnuplot
> splot [-3:3][-3:3] sinc(x*x+y*y)
> set isosamples 40,40; replot;
> set hidden3d; replot;
> set xlabel "eixo x"
> set ylabel "eixo y"; replot
> set pm3d at b; replot
> unset hidden3d; replot
> set pm3d at s; replot
> set hidden3d; replot
> set isosamples 10,10; replot
> set isosamples 50,50; replot
> set contour base; replot
> set cntrparam levels 25; replot notitle
> unset clabel; replot
> set pm3d map; replot
```

Arquivos de dados

Formatos para arquivos... em colunas (plot 2d ou 3d)

2	4	-0.1
3	9	0.2
4	16	0.1
5	25	-0.1
6	36	-0.2
<u>arquivo</u>	"pt2	2.dat"
coluna: 1	2	3

arquivo "pt1.dat"

0.1

coluna: 1 2

Colunas:

- por padrão o plot usa as colunas 1 e 2 e o splot as colunas 1, 2 e 3;
- o número de colunas é livre, basta indicar quais você quer usar;

arquivo "pt2.dat"				
coluna:	1	2	3	
	0	2	1	
	1	1	2	
	2	0	3	
	1	-1	4	
	0	-2	5	
	-1	-1	6	
	- 2	0	7	
	-1	1	8	
	0	2	9	

Arquivos de dados

Formatos para arquivos... em matriz (plot 3d)

```
exemplo05.gnuplot
Eixos indicam o elemento de matriz
> set style data linespoints
> splot "pt3.dat" matrix
> set xtics ("100" 0, "200" 1, "300" 2)
> set hidden3d; replot;
> set pm3d at s; replot;
> set contour base; replot
> set cntrparam levels 25; replot;
> unset clabel; replot;

Usando os mesmos dados no formato coluna
> splot "pt4.dat" u 1:2:3
```

- Neste plot 3d o formato coluna deve ser organizado de forma a ter o mesmo número de elementos em todos os blocos;
- Uma única linha em branco (!!) deve separar os blocos referentes a cada trecho do gráfico;

<u>arquivo</u>		"pt3.dat"		
0	1	4	9	
1	2	5	10	
4	5	8	13	
9	10	13	18	
16	17	20	25	
25	26	29	34	

<u>arquivo</u> "pt4.dat"	0 0 0 0 0	0 1 2 3 4 5	0 1 4 9 16 25	
mesmo resultado no formato de coluna	1 1 1 1 1	0 1 2 3 4 5	1 2 5 10 17 26	
	2 2 2 2 2 2	0 1 2 3 4 5	4 5 8 13 20 29	
	3 3 3 3 3	0 1 2 3 4 5	9 10 13 18 25 34	

Eixos secundários

usando mais de um eixo x (ou y):

```
> plot x lt 1 lw 2, x**2 lt 1 lw 2 axes x1y2
```

- > set arrow 1 from 0,0 to -5,0 head lt 1 lw 2 size 0.5,30 filled
- > set arrow 2 from 5, second 25 to 8, second 25 head 1t 2 lw 2 size 0.5,30 filled
- > set key top center
- > replot

> set y2tics

No comando plot : > plot x axes x1y2

Comandos que precisam de coordenadas: set arrow 1 from 5, second 25 to 8 second 25

O padrão são os eixo x1y1;

Scripts

Simplificando a edição...

```
script01.gnuplot
> cor=3
> tamanho=4
> set xrange [-15:15]
> set yrange [*:*]
> set xlabel "eixo x"
> set ylabel "eixo y"
> set title "funcao sinc(x) = sin(x)/x"
> f(x) = \sin(x)/x
> set terminal jpeq
> set output "figura1.jpg"
> plot f(x) title "sinc(x)"
> set terminal x11
> set output
```

para rodar o script:

Scripts

Fazendo animações...

```
> max=2*pi
> f(x)=sin(x)
> dx = max/100
> set xrange[0:max]

> ix = ix + dx
> set object 1 rectangle at ix,f(ix) size 0.1,0.05;
> plot f(x)
> pause 0.1

> if (ix < max) reread</pre>
```

para rodar o script:

```
neste caso a variável "ix"
deve ser inicializada:
> ix = 0
> load "script02.gnuplot"
```

<u>1° InstallFest do LEF</u>

minicurso: gnuplot>

Dias 6 e 7 de novembro de 2007 16h às 18h Sala 206 — LEF — IFSC

Gerson J. Ferreira gersonjr@ifsc.usp.br

gnuplot>

linguagem de script para gerar gráficos em 2D e 3D pela linha de comando;

Primeira parte:

Sobre o gnuplot

- x Pra que serve? Quando usar?
- Origin vs gnuplot e outras alternativas

Comandos básicos

- x plot (2D) e splot (3D)
- x funções analíticas
- x arquivo de dados, barras de erro;

• Personalizando o gráfico

x cores, legendas, títulos, eixos, escalas, etc...

Usando scripts

- x para simplificar a edição de um gráfico
- x diversos gráficos semelhantes

Segunda parte:

Multiplot

- x diversos gráficos numa janela
- Salvando em arquivos
 - x formatos: JPEG, GIF, PNG, EPS
- Ajustando curvas a dados experimentais
 - x funções de ajuste personalizáveis

Animações

- x acompanhamento dos resultados
- x simulações dinâmicas

Apoio

UNIVERSIDADE DE SÃO PAULO

Instituto de Física de São Carlos

http://www.lef.ifsc.usp.br/installfest

Multiplot

Dois gráficos alinhados na vertical

```
exemplo06.qnuplot
> reset
> unset key
> set multiplot
> dx = 1.0/1
> dy = 1.0/2
> set size dx, dy
> f(t)=\sin(t)/t
> set hidden3d
> unset colorbox
> set isosamples 80,80
> set view 40,45,1,1
> set origin 0*dx,0*dy
> set pm3d at s
> splot [-3:3][-3:3]f(x*x+y*y)
> set origin 0*dx,1*dy
> unset pm3d
> splot [-3:3][-3:3]f(x*x+y*y)
> unset multiplot
```

Dois plots (2d) ao lado de um splot (3d)

```
exemplo07.qnuplot
> reset
> unset key
> set multiplot
> dx = 1.0/2
> dv = 1.0/2
> set size dx, dy
> f(t)=t*sin(t)
> q(t) = exp(-t*t)
> set hidden3d
> set origin 0*dx,0*dy
> plot [-6:6] g(x)
> set origin 0*dx,1*dy
> plot [-10:10][-10:10] f(x)
> set origin 1*dx,0*dy
> set size dx, 2*dy
> set isosamples 100,100
> set pm3d at s
> unset colorbox
> set view 10,0,1,1
> splot [-10:10][-10:10] g(x-f(y))
> unset multiplot
```

Exportando os resultados

(x11, jpeg, png e eps) outros formatos: help set terminal

```
> reset
                                   exemplo08.qnuplot
> f(x)=x*sin(x)
> set xrange [-20:20]
> set yrange [-20:20]
> set samples 300,300
> set terminal x11
> set output
> plot f(x)
> set output "figura08.jpg"
> set terminal jpeg size 800,600 crop
> plot f(x)
> set output "figura08.png"
> set terminal png transparent size 800,600 nocrop
> plot f(x)
> set output "figura08.eps"
> set terminal postscript eps color
> plot f(x)
```

versão 4.2
terminal padrão: wxt

introduz uma interface
gráfica para alguns
comandos;

animações: terminal gif

eu prefiro fazer em formato MPEG usando o mencoder (mplayer) ou visualizar no próprio terminal X11;

Ajustando curvas (fitting) 2D e 3D

Ajuste a curva 2D

```
> reset
                                   exemplo09.qnuplot
> set key top left
                                              pt5.dat
> plot "pt5.dat" w p ps 3 lt 1 pt 6
                                                 1
                                                0.6
                                               2 3
> f(x) = fa*x + fb
                                               3 10
> fit f(x) "pt5.dat" via fa,fb
                                                14
> replot f(x) lt 2 lw 2 title "fit 01"
                                                 25
                                                34
                                               7 47
> q(x) = qa*x**2 + qb*x + qc
                                                 68
> fit q(x) "pt5.dat" via qa,qb,qc
                                                 85
                                               10 90
> replot g(x) lt 3 lw 2 title "fit 02"
```

final do "help fit"

"Nonlinear fitting is an art!"

Ajuste a curva 3D

não dá para fazer fit 3D usando o formato de matriz

pt6.dat

Animações: script no gnuplot

Via script quuplot (reread): poucos recursos, não é a melhor opção

```
> max=2*pi
> f(x)=sin(x)
> dx = max/100
> set xrange[0:max]

> ix = ix + dx
> set object 1 rectangle at ix,f(ix) size 0.1,0.05;
> plot f(x)
> pause 0.1

> if (ix < max) reread</pre>
```

para rodar o script:

```
neste caso a variável "ix"
deve ser inicializada:
> ix = 0
> load "script02.gnuplot"
```

scripts BASH, PERL ou integração com a saída de programas (C, Fortran) são mais interessantes (requer programação específica)

- reread: roda novamente todo o script carregado;
- não há loops (while, for) implementados;
- variáveis devem ser inicializadas manualmente;

Animações: via pipes

Neste exemplo uso um script em BASH

```
#!/bin/bash
                                                                     pipe x11.sh
                                                                     script BASH
PI=3.1415926535897932384626433832795
MTN=0
MAX= dc -e "10 k 2 $PI * p"
DX = dc - e "10 k $MAX $MIN - 100.0 / p"
echo "reset;"
echo "f(x)=\sin(x);"
echo "set xrange[$MIN:$MAX];"
x=$MIN
while [[ x < MAX ]]; do
    echo "set object 1 rectangle at $x,f($x) size 0.1,0.05;"
    echo "plot f(x)"
    echo "pause 0.1"
    x=\dc -e "10 k $x $DX + p"
done
```

Para executar:

```
$ ./pipe_x11.sh | gnuplot
```

neste exemplo uso o **terminal x11**, mas podemos usar qualquer saída, basta indicar no inicio do script.

Animações: formato GIF (p/ internet)

Formato GIF: script BASH adaptado (mudanças em negrito)

```
#!/bin/bash
                                               pipe qif.sh
                                                                    apenas
                                               script BASH
PI=3.1415926535897932384626433832795
                                                                    versão
MTN=0
                                                                       4.2
MAX= dc -e "10 k 2 $PI * p"
DX = dc - e "10 k $MAX $MIN - 100.0 / p"
echo "reset;"
echo "f(x)=\sin(x);"
echo "set xrange[$MIN:$MAX];"
echo "set terminal qif animate delay 5 optimize crop"
echo "set output \"animacao.gif\""
x=$MIN
while [[ $x < $MAX ]]; do
    echo "set object 1 rectangle at $x,f($x) size 0.1,0.05;"
    echo "plot f(x)"
    echo "pause 0.1" : terminal gif controla o delay
   x=\dc -e "10 k $x $DX + p"
                                                      Para executar:
done
                                                      $ ./pipe gif.sh | gnuplot
echo "set output"
echo "set terminal x11"
```

Animações: video MPEG

Formato MPEG: figuras codificadas via mplayer (mencoder)

```
#!/bin/bash
                                                                 pipe mpeg.sh
                                                                  script BASH
PI=3.1415926535897932384626433832795
MTN=0
MAX= dc -e "10 k 2 $PI * p"
                                                       Para executar:
DX = dc - e "10 k $MAX $MIN - 100.0 / p"
                                                       $ ./pipe mpeg.sh | gnuplot
echo "reset;"
                                                       $ ./gera video.sh
echo "f(x)=\sin(x);"
echo "set xrange[$MIN:$MAX];"
echo "set terminal jpeg size 320,200 crop"
x=$MIN
i=10000
while [[ x < MAX ]]; do
    echo "set output \"mpeg-$i.jpg\""
    echo "set object 1 rectangle at $x,f($x) size 0.1,0.05;"
    echo "plot f(x)"
    x=\dc -e "10 k $x $DX + p"
    i=`dc -e "$i 1 + p"`
done
```

mencoder: codifica as imagens em formato de vídeo (pacote MPlayer)

```
$ mencoder mf://mpeg*.jpg -mf w=320:h=200:fps=25:type=jpg -ovc lavc
-lavcopts vcodec=mpeg4:mbd=2:trell -oac copy -o animacao.mpeg
```

Interface via linguagem C

```
#include <stdio.h>
#include <unistd.h>
#define gplot path "/usr/local/bin/qnuplot"
int main(void) {
  FILE *qp;
 double xmin, xmax, dx, x;
 gp = popen(gplot path, "w");
  xmin = 0;
 xmax = 2.0 * 3.141592;
 dx = (xmax-xmin)/100.0;
 fprintf(qp, "reset\n");
 fprintf(qp, "f(x)=sin(x)\n");
 fprintf(qp, "set xrange [%q:%q]\n", xmin, xmax);
 fflush(qp);
 for (x=xmin; x \le xmax; x+=dx) {
    fprintf(gp, "set object 1 rectangle at f,f(f) size 0.1,0.05\n", x,x);
    fprintf(qp, "plot f(x)\n");
   fflush(gp);
   usleep(50000);
  }
 pclose(gp);
  return(0);
```

iface.c

exemplo simples de integração do gnuplot com linguagem C:

comando popen(...):

executa o comando indicado criando um stream de saída integrado ao novo comando via pipe

Para executar:

\$ gcc iface.c -o iface.out

\$./iface.out

<u>1° InstallFest do LEF</u>

minicurso: gnuplot>

Dias 6 e 7 de novembro de 2007 16h às 18h Sala 206 — LEF — IFSC

Gerson J. Ferreira gersonjr@ifsc.usp.br

gnuplot>

linguagem de script para gerar gráficos em 2D e 3D pela linha de comando;

Primeira parte:

Sobre o gnuplot

- x Pra que serve? Quando usar?
- Origin vs gnuplot e outras alternativas

Comandos básicos

- x plot (2D) e splot (3D)
- x funções analíticas
- x arquivo de dados, barras de erro;

• Personalizando o gráfico

x cores, legendas, títulos, eixos, escalas, etc...

Usando scripts

- x para simplificar a edição de um gráfico
- x diversos gráficos semelhantes

Segunda parte:

Multiplot

- x diversos gráficos numa janela
- Salvando em arquivos
 - x formatos: JPEG, GIF, PNG, EPS
- Ajustando curvas a dados experimentais
 - x funções de ajuste personalizáveis

Animações

- x acompanhamento dos resultados
- x simulações dinâmicas

Apoio

UNIVERSIDADE DE SÃO PAULO

Instituto de Física de São Carlos

http://www.lef.ifsc.usp.br/installfest

Resumo dos principais comandos

Comandos estudados neste curso introdutório:

```
• fit....: para ajustar funções parametrizadas a dados de um arquivo. Pode
ser usado para ajusar funções 2D e 3D, mas no caso 3D os dados não podem
estar no formato de matriz;
• help....: sistema de ajuda bastante completo, mas deve ser usado apenas como
consulta de sintaxe - não é fácil achar os comandos sem saber o que esta
procurando;
• pause...: interrompe a execução pelo tempo indicado e continua na seqüência
- usado em animações;
• plot....: comando básico para fazer gráficos 2D;
• replot..: faz um novo plot sem apagar o anterior;
• reset...: limpa todas as definições modificadas pelo usuário/script;
• set....: define características de outros comandos (mais detalhes adiante);
• splot...: comando básico para fazer gráficos 3D;
• test....: mostra uma janela com exemplos de cores/comandos que podem ser
usados (bom para escolher a cor do gráfico e forma dos símbolos);
• unset...: desfaz os ajustes do comando set;
```

Use o comando **help** para ver mais detalhes de cada um dos comandos acima (e.g., "> help set").

Resumo dos principais comandos

Detalhes do comando: set

```
• set arrow: para definir setas;
• set autoscale: define escala automática para as variáveis x, y e z; cada
dimensão pode ser ajustada individualmente;
• set clabel: define o formato da legenda em gráficos 3D com contornos (set
contour);
• set cntrparam: controle dos detalhes dos contornos em gráficos 3D (splot);
• set colorbox: define posição, tamanho, etc da barra da escala de cores;
• set contour: ativa e define a exibição de contornos (splot); ver cntrparam;
• set hidden3d: esconde o que esta atrás da superfície 3D (splot);
• set isosamples: número de linhas no gráfico 3D (grade);
• set key: controle da legenda: tipo, tamanho, cor, etc;
• set label: para escrever textos no gráfico;
• set log: escala logaritmica;
• set multiplot: inicia o modo de vários gráficos (lado a lado, inset, etc);
• set object: exibe um objeto no gráfico 2D (plot) - apenas na versão 4.2, por
enquanto apenas o retângulo esta implementado;
```

• set origin: (multiplot) indica a origem do gráfico no modo multiplot;

Resumo dos principais comandos

Detalhes do comando: set

```
• set output: define o arquivo para saída de dados (deixar em branco se for
usar o terminal X11 ou WXT);
• set pm3d: ativa modo de mapa de cores para gráficos 3D e 4D;
• set pointsize: define o tamanho do ponto nos gráficos (na linha do comando
plot pode ser redefinido pelo parâmetro "ps <n>");
• set samples: número de pontos a ser usado nas curvas do plot (para splot
veia set isosamples);
• set size: define o tamanho do plot com relação a janela (multiplot);
• set style: define o estilo dos plots: set style data para arquivos; e set
style function para expressões analíticas (entre outros...);
• set terminal: interface de saida (X11 e WXT: janela gráfica; jpeg, png, gif,
postscript: arquivos);
• set title: título do gráfico;
• set view: ângulo de visão e dimensões para visualização de gráficos 3D
(splot);
• set xlabel: texto do eixo x (idem para y e z);
• set xrange: intervalo do eixo x (idem para y e z);
• set xtics: numeração da escala do eixo x (idem para y e z);
```

Outros comandos...

Comandos importantes que não tivemos tempo de ver no curso

- cbrange, cblabel, cbtics, etc: controle dos parametros do ColorBox;
- palette: escala de cores para pm3d;
- parametric: para curvas paramétricas (e.g., x**2+y**2=R**2);
- plot "dado.dat" index <n>: grupos de dados podem ser separados em um arquivo por duas linhas em branco, o parâmetro index indica qual destes blocos será usado (n >= 0) é útil para fazer animações;
- plot "dado.dat" every <...>: semelhante ao index, mas permite o uso de mais de um grupo de dados simultaneamente;
- coordinates: definição do sistema de coordenadas usado em comandos que indicam uma posição (e.g., set arrow veja abaixo);

Demonstrações

Na pasta "demo" vocês podem acessar vários scripts com exemplos de comandos do gnuplot.

Para acessá-los abra o gnuplot nesta pasta e use o comando "load" para carregar os arquivos com extensão .dem.

Note o exemplo all.dem. Este script executa todos os outros scripts da pasta, é interessante rodar este exemplo para ter uma visão geral.

Compilação do gnuplot

Não é difícil compilar o gnuplot mais novo a partir do código-fonte, mas é importante incluir algumas bibliotecas de desenvolvimento. No debian/ubuntu os pacotes que devem ser instalados são (pelo menos estas):

libreadline5-dev libcairo2-dev libgd2-xpm-dev libpango1.0-dev

Quem tiver dificuldades para compilar pode me procurar.