Times series forecasting Advanced forecasting methods

Julien JACQUES

Université Lumière Lyon 2

Neural network models

Time series regression models

Dynamic regression model

Grouped time series models: VAR models

Neuron

A neuron is a *model*, with p features, which map the p inputs x^1, \ldots, x^p to an output y:

$$y = g\left(\alpha_0 + \sum_{j=1}^p \alpha_j x^j\right)$$

Figure 1: Neuron representation

- \triangleright Σ : linear combination of inputs
- ▶ g: activation function

A specific neuron: linear model

One neuron with linear activation function g(x) = x is the usual *linear model*:

$$y = \alpha_0 + \sum_{j=1}^{p} \alpha_j x^j$$

Figure 2: Neuron representation

Neural networks

A neural network is the association of several neurons, in a more or less complex graph, characterized by:

- ▶ its architecture (layer . . .)
- its complexity (number of neurons, presence of loops)
- activation functions
- the objective: supervised or unsupervised learning . . .

Multilayer perceptron

- A multilayer perceptron is made up of layers
- Layer: set of neurons without connection between them
- It has an input layer, an output layer, and one or more hidden layers
- ► The neurons are all connected at the input to each of the neurons of the previous layer and at the output to each of the neurons of the next layer

Figure 3: Multilayer perceptron with 1 hidden layer

Neural Network Auto-Regression (NNAR)

For non seasonal data:

- \triangleright *NNAR*_{p,k} model:
 - ▶ Inputs: lagged values of the time series $x_{t-1}, ..., x_{t-p}$
 - ▶ 1 hidden layer with k neurons
 - sigmoïd activation function
 - $\blacktriangleright \text{ Rk: } NNAR_{p,0} = AR_p$

Neural Network Auto-Regression (NNAR)

For non seasonal data:

- ► *NNAR_{p,k}* model:
 - ▶ Inputs: lagged values of the time series $x_{t-1}, ..., x_{t-p}$
 - ▶ 1 hidden layer with k neurons
 - sigmoïd activation function

For **seasonal** data (of period T), we add lagged values from the same season as last observed values:

- NNAR $(p,P,k)_T$ model:
 - Inputs: lagged values of the time series

$$X_{t-1}, X_{t-2}, \dots, X_{t-p}, X_{t-T}, X_{t-2T}, \dots, X_{t-PT}$$

- ▶ 1 hidden layer with *k* neurons
- sigmoïd activation function
- Rk: $NNAR_{(p,P,0)_T} = SARIMA_{(p,0,0)(P,0,0)_T}$

nnetar function

Estimation of an $NNAR_{(p,P,k)_T}$ with the forecast package:

- ▶ if p not specified, it is chosen automatically by minimizing AIC of a linear AR_p model
- ightharpoonup if P not specified, P=1 is chosen
- ▶ if k not specified, k = (p + P + 1)/2 is chosen

Other options:

- xreg allows to add external regressors
- ▶ lambda allows to use Box-Cox transformation

Neural Network Auto-Regression (NNAR)

- Advantage over a linear model (AR_p) :
 - more flexible, modeling non-linear relation
- ▶ Dis-advantage over a linear model (AR_p) :
 - none well-defined sochastic model -> prediction interval not direct (need boostrap simulations, option PI=TRUE)
 - not possible to integrate differecing

More Neural Network

More sophisticated neural networks for time series are Recurrent Neural Network, and especially the famous long short-term memory (LSTM) model

Example: sunspots

autoplot(sunspotarea)

No seasonal but **cyclic pattern** \Rightarrow can not be modelized by usual linear SARIMA models

Example: sunspots

```
NNAR_{p,k} model estimation, with automatic choice of p and k:
fit=nnetar(sunspotarea)
print(fit)
## Series: sunspotarea
## Model: NNAR(9,5)
## Call: nnetar(y = sunspotarea)
##
## Average of 20 networks, each of which is
## a 9-5-1 network with 56 weights
## options were - linear output units
##
## sigma^2 estimated as 9577
```

Example: sunspots

Forecasting for next 30 years:

autoplot(forecast(fit, h=30))

asymetric cyclicity as been modelled well

Exercice: San Francisco precipitation

San Fransisco precipitation from 1932 to 1966 are available here: $http://eric.univ-lyon2.fr/\sim jjacques/Download/DataSet/sanfran.dat$

► Try to improve your forecasts obtained with exponential smoothing and SARIMA models with neural network models

Let assume that you want to explain your serie x_t according to k features z_{1t}, \ldots, z_{kt} :

$$x_t = c + \beta_1 z_{1t} + \ldots + \beta_k z_{kt} + \epsilon_t.$$

Usual linear regression model assume that the error ϵ_t are independent and identically distributed according: $\epsilon_t \sim \mathcal{N}(0, \sigma^2)$.

Such model can be estimated with the usual ${\tt lm}$ function or with

?tslm

In addition to the effect of external features, times series often contain:

▶ a **trend**. A linear model including a linear trend can be written:

$$x_t = \underbrace{c + \beta_0 t}_{\text{trend}} + \underbrace{\beta_1 z_{1t} + \ldots + \beta_k z_{kt}}_{\text{covariates}} + \epsilon_t.$$

▶ a **seasonal pattern** of period *T*. Corresponding regression model is:

$$x_t = \underbrace{c + \beta_0 t}_{\text{trend}} + \underbrace{\delta_2 d_{2t} + \ldots + \delta_T d_{Tt}}_{\text{seasonal effect}} + \underbrace{\beta_1 z_t + \ldots + \beta_k z_{kt}}_{\text{covariates}} + \epsilon_t.$$

where d_{2t},\ldots,d_{Tt} are the dummy notations for the T-1 days of the period: $d_{jt}=1$ if j=t and 0 otherwise. Note that the effect of the first day d_{1t} is included in the intercept, so d_{jt} is the additional effet of day j in comparison with day 1.

Let's go back to the uschange time series

library(fpp2)
autoplot(uschange)

We want to predict Consumption using other times series

```
fit=tslm(Consumption-Income+Production+Unemployment+Savings,data=uschange)
summary(fit)
```

```
##
## Call:
## tslm(formula = Consumption ~ Income + Production + Unemployment +
      Savings, data = uschange)
##
## Residuals:
##
       Min
                1Q Median
                                         Max
## -0.88296 -0.17638 -0.03679 0.15251 1.20553
##
## Coefficients:
               Estimate Std. Error t value Pr(>|t|)
##
## (Intercept) 0.26729 0.03721 7.184 1.68e-11 ***
           0.71449 0.04219 16.934 < 2e-16 ***
## Income
## Production 0.04589 0.02588 1.773 0.0778 .
## Unemployment -0.20477 0.10550 -1.941 0.0538 .
## Savings -0.04527 0.00278 -16.287 < 2e-16 ***
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 0.3286 on 182 degrees of freedom
## Multiple R-squared: 0.754, Adjusted R-squared: 0.7486
## F-statistic: 139.5 on 4 and 182 DF, p-value: < 2.2e-16
```

We can add a trend and a seasonnal pattern

```
\label{lem:consumption-Income+Production+Unemployment+Savings+trend+season, \\ \frac{data=}{uschange} summary (fit)
```

```
##
## Call:
## tslm(formula = Consumption ~ Income + Production + Unemployment +
      Savings + trend + season, data = uschange)
##
##
## Residuals:
                10 Median
       Min
## -0.88653 -0.15100 -0.00713 0.14232 1.10178
##
## Coefficients:
               Estimate Std. Error t value Pr(>|t|)
##
## (Intercept) 0.4535889 0.0717294 6.324
                                             26-09 ***
## Income
           0.7093775 0.0419836 16.897 <2e-16 ***
## Production 0.0389018 0.0264104 1.473 0.1425
## Unemployment -0.2396921 0.1096766 -2.185 0.0302 *
## Savings
              -0.0450622 0.0027690 -16.274 <2e-16 ***
## trend
              -0.0010066 0.0004616 -2.181 0.0305 *
             -0.1294052 0.0669461 -1.933 0.0548 .
## season2
            -0.0602444 0.0671966 -0.897 0.3712
## season3
## season4
              -0.1495544 0.0675787 -2.213 0.0282 *
## ---
## Signif, codes: 0 '***' 0.001 '**' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 0.322 on 178 degrees of freedom
## Multiple R-squared: 0.769. Adjusted R-squared: 0.7586
## F-statistic: 74.06 on 8 and 178 DF, p-value: < 2.2e-16
```

Feature selection

As for any multivariate regression model, we have to select which are the best features to include in the model.

Comparison between models can be done with usual criteria (AIC, AICc, BIC, adjusted R^2, \ldots)

Those criterion can be obtained as follows:

```
CV(fit)
```

```
## CV AIC AICc BIC AdjR2
## 0.1141794 -413.0495738 -411.7995738 -380.7384876 0.7585933
```

Feature selection

In the previous model we have seen that Production is not significant in the model.

We can remove it and compare the model to the previous one fit2=tslm(Consumption~Income+Unemployment+Savings+trend+season,data=usc CV(fit)

```
##
             CV
                          AIC
                                       AICc
                                                      BIC
                                                                 AdjR2
      0.1141794 -413.0495738 -411.7995738 -380.7384876
##
                                                             0.7585933
CV(fit2)
##
             CV
                          AIC
                                       AICc
                                                      BIC
                                                                 AdjR2
      0.1136653 -412.7840112 -411.7670620 -383.7040336
                                                             0.7570159
##
```

There is no evident difference between these models (better CV, AIC, AICc and BIC, but worse $AdjR^2$).

Feature selection

Stepwise selection procedure should be used to correctly select the best set of features.

To the best of my knowledge, such procedures are not available for the tslm function.

But you can use the 1m function (with time and season as covariates), and use usual stepwise function for 1m as step or stepAIC.

Checking the residuals

Usual checking of linear model can/should be done:

checkresiduals(fit,test=FALSE,plot=TRUE)

Checking the residuals

including test of non correlation of the residuals

```
checkresiduals(fit,test='LB',plot=FALSE)
```

```
##
## Ljung-Box test
##
## data: Residuals from Linear regression model
## Q* = 23.979, df = 3, p-value = 2.524e-05
##
## Model df: 9. Total lags used: 12
```

Here the residual are correlated, which means that this regression model (which assumes independent residuals) is not appropriated.

We saw in the previous model:

$$x_t = c + \beta_1 z_{1t} + \ldots + \beta_k z_{kt} + \epsilon_t.$$

that the residuals ϵ_t are not independent.

Dynamic regression model modelizes the residuals with an $ARIMA_{p,d,q}$ model

We saw in the previous model:

$$x_t = c + \beta_1 z_{1t} + \ldots + \beta_k z_{kt} + \epsilon_t.$$

that the residuals ϵ_t are not independent.

Dynamic regression model modelizes the residuals with an $ARIMA_{p,d,q}$ model

The choice of the orders p, d, q can be done by examining the residuals or automatically with the auto.arima function.

Let's try for instance an $ARIMA_{1,0,2}$:

```
summary(fit)
## Series: uschange[, "Consumption"]
## Regression with ARIMA(1,0,2) errors
##
## Coefficients:
           ar1
##
                    ma1
                            ma2
                                 intercept
                                             xreg
        0.6922 -0.5758 0.1984
                                    0.5990 0.2028
##
## s.e. 0.1159 0.1301 0.0756
                                   0.0884 0.0461
##
## sigma^2 estimated as 0.3219: log likelihood=-156.95
## ATC=325.91 ATCc=326.37
                             BTC=345.29
##
## Training set error measures:
##
                        ME
                                RMSE
                                          MAE
                                                  MPE
                                                          MAPE
                                                                    MASE
## Training set 0.001714366 0.5597088 0.4209056 27.4477 161.8417 0.6594731
                      ACF1
##
## Training set 0.006299231
```

fit=Arima(uschange[,'Consumption'], xreg=uschange[,'Income'], order=c(1,0,2))

We can now check the residuals:

checkresiduals(fit,test=FALSE)

and test their autocorrelation:

```
checkresiduals(fit,plot=FALSE)
```

```
##
## Ljung-Box test
##
## data: Residuals from Regression with ARIMA(1,0,2) errors
## Q* = 5.8916, df = 3, p-value = 0.117
##
## Model df: 5. Total lags used: 8
```

It seems that all the auto-correlations of the residuals have been modelled with this model.

The model being validated, we can forecast the future !

Warning: since we use covariate, we should have the value of the covariate for the future !

autoplot(forecast(fit,xreg=rep(mean(uschange[,2]),4)))

Exercice: Electricty demand

Try to find the best model for forecasting electricity (using or not covariates) demand

autoplot(elecdaily)

Forecasting efficiency will be evaluated on the last 7 days, and will assume that we dispose of a forecasting of the Temperature for the next 7 days (WorkDay are of course also known).

VAR models

- ▶ Data : bivariate time series $(X_{1,t}, X_{2,t})$.
- We want to forecast both time series
- The idea is that each time series can help in forecasting the other one.
- Vectoriel Auto-Regressive model VAR₁:

$$X_{1,t} = c_1 + \epsilon_{1,t} + a_{1,1}X_{1,t-1} + a_{1,2}X_{2,t-1},$$

$$X_{2,t} = c_2 + \epsilon_{2,t} + a_{2,1}X_{1,t-1} + a_{2,2}X_{2,t-1},$$

► High order model can be also considered VAR_p

Data usconsumption

We will work with data usconsumption

```
library(fpp)
data(usconsumption)
plot(usconsumption)
```

usconsumption

Data usconsumption

We choose two last years as test data

```
us_app=ts(usconsumption[1:156,],start=c(1970,1),end=c(2008,4),frequency = 4)
us_test=ts(usconsumption[157:164,],start=c(2009,1),end=c(2010,4),frequency = 4)
```

VAR_p model

Function VARselect allows to choose the best VAR_p model according to some criteria (among which AIC), for $1 \le p \le lag.max$

```
library(vars)
VARselect(us_app, lag.max=8, type="const",season=4)
```

The option type allows to introduce a trend ("const", "trend", "both", "none"), the option season for a seasonal pattern and exogen for external covariates.

VAR_p model

```
library(vars)
VARselect(us_app, lag.max=8, type="const")
## $selection
## AIC(n) HQ(n) SC(n) FPE(n)
##
##
  $criteria
##
## AIC(n) -1.2314131 -1.217775 -1.2505936 -1.2505388 -1.2690326
## HQ(n) -1.1820445 -1.135494 -1.1354000 -1.1024328 -1.0880142
## SC(n) -1.1099045 -1.015261 -0.9670735 -0.8860130 -0.8235011
## FPE(n) 0.2918831 0.295903 0.2863752 0.2864365 0.2812579
##
                             8
## AIC(n) -1.1932426 -1.1788984
  HQ(n) -0.9463992 -0.8991427
## SC(n) -0.5856995 -0.4903497
## FPE(n) 0.3036602 0.3082446
```

VAR_p model

Estimation of an VAR₅

Sample size: 151

Endogenous variables: consumption, income
Deterministic variables: const

```
## Log Likelihood: -308.714
## Roots of the characteristic polynomial:
```

0.7556 0.7556 0.7317 0.7274 0.7274 0.5929 0.5929 0.5861 0.586

```
##
##
## Estimation results for equation consumption:
```

VAR(y = us app, p = 5, type = "const", exogen = NULL)

consumption = consumption.l1 + income.l1 + consumption.l2 + i

VAR_p model

```
We check that the residual are a white noise
serial.test(var, lags.pt=10, type="PT.asymptotic")

##
## Portmanteau Test (asymptotic)
##
## data: Residuals of VAR object var
## Chi-squared = 13.11, df = 20, p-value = 0.8726
```

VAR_p model

Forecasting

```
fcst <- forecast(var,h=8)
plot(fcst, xlab="Year")</pre>
```

Forecasts from VAR(5)

Data usconsumption

[1] 0.2508865

```
Forecasting efficiency with a VAR_5 print(sqrt(mean(us_test[,1]-fcst$forecast$consumption$mean)^2)) ## [1] 0.03271834 print(sqrt(mean(us_test[,2]-fcst$forecast$income$mean)^2))
```

Data usconsumption

Forecasting of consumption and income separately

```
mod1=auto.arima(us_app[,1])
pred1=forecast(mod1,h =8)
mod2=auto.arima(us_app[,2])
pred2=forecast(mod2,h =8)
print(sqrt(mean(us_test[,1]-pred1$mean)^2))
```

```
## [1] 0.04460754
print(sqrt(mean(us_test[,2]-pred2$mean)^2))
```

```
## [1] 0.6388838
```

Quality of prediction is lower when each times series is used separaterly.

Exercice: Data uschange

Try to find the best forecasting model for the 5 uschange time series autoplot(uschange)

Forecasting efficiency will be evaluated on 2016 data, and compare to forecasting each time series separately.