Transcriptomics (I)

BBMS 3009: Genome Science (First Semester, 2021)

Dr. Yuanhua Huang School of Biomedical Sciences & Department of Statistics and Actuarial Science

Today's learning objectives

- Transcriptome: what and why?
- Additional layer of complexity: RNA splicing
- 3. Technologies to measure transcriptome? pros vs cons
- 4. RNA-seq: QC, alignment, assembly / quantification

Reading list

- 1) Stark, Grzelak, Hadfield. RNA sequencing: the teenage years. Nat Rev Gen, 2019
- 2) A survey of best practices for RNA-seq data analysis, Genome Biology, 2016
- 3) Alberts et al. Molecular Biology of The Cell (Chapter 6 & 7): https://www.ncbi.nlm.nih.gov/books/NBK21054/
- 4) Wikipedia: https://en.wikipedia.org/wiki/Transcriptomics_technologies

What is transcriptome?

- Central dogma of molecular biology & information flow via RNAs
- Transcriptome: all RNA transcripts, including coding and non-coding, in an individual or a population of cells

TABLE 6-1 Principal Types of RNAs Produced in Cells				
Type of RNA	Function			
mRNAs	Messenger RNAs, code for proteins			
rRNAs	Ribosomal RNAs, form the basic structure of the ribosome and catalyze protein synthesis			
tRNAs	Transfer RNAs, central to protein synthesis as adaptors between mRNA and amino acids			
snRNAs	Small nuclear RNAs, function in a variety of nuclear processes, including the splicing of pre-mRNA			
snoRNAs	Small nucleolar RNAs, help to process and chemically modify rRNAs			
miRNAs	MicroRNAs, regulate gene expression by blocking translation of specific mRNAs and cause their degradation			
siRNAs	Small interfering RNAs, turn off gene expression by directing the degradation of selective mRNAs and the establishment of compact chromatin structures			
piRNAs	Piwi-interacting RNAs, bind to piwi proteins and protect the germ line from transposable elements			
IncRNAs	Long noncoding RNAs, many of which serve as scaffolds; they regulate diverse cell processes, including X-chromosome inactivation			

Alberts et al. Molecular Biology of The Cell. Six Edition

Gene annotation

GENCODE annotation v35 on human transcriptome https://www.gencodegenes.org

Total No of Genes		Total No of Transcripts	229580
Protein-coding genes		Protein-coding transcripts	84485
Long non-coding RNA genes		- full length protein-coding	58390
Small non-coding RNA genes		- partial length protein-coding	26095
Pseudogenes	14767	Nonsense mediated decay transcripts	16495
- processed pseudogenes	10671	Long non-coding RNA loci transcripts	48684
- unprocessed pseudogenes	3557		
- unitary pseudogenes	235		
- polymorphic pseudogenes	49		
- pseudogenes	18	Total No of distinct translations	62514
Immunoglobulin/T-cell receptor gene segments		Genes that have more than one distinct translations	13697
- protein coding segments	408		
- pseudogenes	237		

GENCODE annotation since 2003; Transcriptome still not perfect even on human and human

Many more species: no good gene annotations

Alternative splicing

- One gene produces multiple transcripts (i.e., splicing isoforms)
- May increase the complexity in analysis

SLC25A3 > >>>>> $\longrightarrow \longrightarrow \longrightarrow \longrightarrow \longrightarrow \longrightarrow \longrightarrow \longrightarrow \longrightarrow$ 98593591 98595692 98597794 98599895 98601997 Genomic coordinate (chr12), "+" strand

Transcriptome: cell differentiation & cell type

Identical DNA but completely different cellular functions and morphology

Immune cell expression profiles (subset genes)

Fig from Scanpy tutorial on PBMC

https://en.wikipedia.org/wiki/Cellular differentiation

Transcriptome: cell reprogramming?

Change key regulatory genes may reprogram the cells

Key factors

- Oct3/4, Sox2, c-Myc, and Klf4
- Takahashi & Yamanaka, 2006, Cell

Transcriptome is precisely regulated in a complex way.

https://en.wikipedia.org/wiki/Induced pluripotent stem cell

Transcriptomics: biomarker discovery

- Pair-wise comparison MYCN-amplified and single-copy tumours
 - 223 genes significantly differentially expressed
 - Schramm et al., 2013
- Transcriptomics analysis in multiple ASD mouse models
 - several recurrent target genes associated with Autism Spectrum Disorder
 - Duan et al. Autism Research, 2020
- Time-series transcriptomics across 48h
 - over 3000 circadian genes in liver
 - Zhang, et al. PNAS, 2014

Hypothesis minimal (or free) discovery?

Gene regulatory network

- Transcription factor: sequence-specific DNA-binding factor
- Gene pairs: co-expression; exclusive expression
- Protein physical interaction
 - Human: 365,000 edges across ~20,000 genes
 - Yeast: 131,000 edges across ~6,000 genes

Today's learning objectives

- 1. Transcriptome: what and why?
 - All RNAs in a cell: mRNA, rRNA, etc
 - Alternative splicing: additional layer of complexity
 - Characters of cells: cell types, states, tissues
 - Hypothesis free discovery: marker genes for disease
- 2. Technologies to measure transcriptome? Pros vs cons
- 3. RNA-seq and computational process: challenges and solutions
 - QC, alignment, assembly / quantification

Technology history on gene expression

- Before transcriptomics
 - Sanger sequencing (popular in 1980s): ESTs, SAGE
 - Individual transcripts: RT-qPCR, Northern blotting, etc.
- cDNA microarrays
- RNA-seq
- Long reads: PacBio / Nanopore

ESTs: expressed sequence tags

SAGE: serial analysis of gene expression

https://en.wikipedia.org/wiki/Transcriptomics_technologies

Before transcriptomics

- RT-qPCR (qPRC)
 - Gold standard measurement
 - laborious & usually a tiny subsection of a transcriptome
 - viral RNAs, e.g., HBV, SARS-CoV-19
- Sanger sequencing
 - First generation sequencing
 - Invented in 1977 by Frederick Sanger and colleagues
 - ESTs, SAGE

cDNA microarrays

- Since mid 1990s
- A set of transcripts in a sample, followed by fluorescent labelling
- Hybridization to an array of complementary probes
- Require known sequences first
- Common probes:
 - spotted oligonucleotide arrays
 - Affymetrix high-density arrays

Cells A Cells B mRNA labelled mRNA labelled with Cy5 With Cy3 Competitive hybridization **†** DNA microarray Laser scanning Cy3 Cy5 image image Ratio image

Oligonucleotides: short nucleic acid polymers, often 13~35 nt

RNA-seq

- Next generation sequencing
- Library preparation
 - RNA extraction
 - Enrichment or depletion (rRNA)
 - cDNA synthesis and preparation
- Sequencing
 - Library size: 10-100 million reads
 - Single-end vs paired-end
 - RNA Fragmentation
- Computational processing
 - Multiple steps
 - Depending on the purpose

RNA-seq parameters (w/ budget constraint)

- Paired-end (vs single-end)
 - Pro: longer range to better cover splicing junctions
 - Con: waste half of the reads if only caring about gene level
- Sequencing depths (vs number of samples)
 - Read length: 75bp, 100bp, 150bp, (possibly) 250 bp
 - Rough pricing: 2x150 bp & 300 million reads: 2,500 USD
 - Balance between number of samples and depths
 - 2x150 bp: 100 million x 3 samples
 - 2x150 bp: 25 millions x 12 samples
 - 1x150 bp: 50 millions x 12 samples

RNA-seq variates

- 4tU- or 4sU labelling for nascent RNAs (usually time-series)
- Poly-A selection, rRNA depletion, specific targeted
- UPF1 depletion to protect mis-spliced transcripts from NMD

Strategy	Type of RNA	Ribosomal RNA content	Unprocessed RNA content	Genomic DNA content	Isolation method
Total RNA	All	High	High	High	None
PolyA selection	Coding	Low	Low	Low	Hybridization with poly(dT) oligomers
rRNA depletion	Coding, noncoding	Low	High	High	Removal of oligomers complementary to rRNA
RNA capture	Targeted	Low	Moderate	Low	Hybridization with probes complementary to desired transcripts

Long reads: PacBio and nanopore

Long-read cDNA or direct RNA

Pros

- Long reads: 1-50 kb
- May capture full transcript
- Good for transcript assembly

Cons

- High error rate: 1~10%
- Low throughput: not sensitive to detect lowly expressed genes

Technology comparison

- RT-qPCR (not really transcriptome)
 - A handful of transcripts; known sequence required (primer, Oligonucleotides)
 - Gold standard in terms of accuracy: validation & viral RNAs
- cDNA Microarrays (less popular now)
 - Thousands of RNAs; known sequences required (probes, Oligonucleotides)
- RNA-seq (versatile)
 - High throughput; return whole transcriptome in principle (can be enriched)
 - Experiment design requires optimization: paired- / single-end; depths, etc.
 - Computational analysis can be complex (industrial-standard software exist)
- Long-reads sequencing
 - Benefits in genome and transcriptome assembly
 - High error rate and low throughput (not sensitive to lowly expressed genes)

Today's learning objectives

- 1. Transcriptome: what and why?
- 2. Technologies to measure transcriptome? Pros vs cons
 - Before transcriptomics: RT-qPCR, Sanger sequencing
 - cDNA Microarrays
 - RNA-seq
 - Long reads sequencing
- 3. RNA-seq & computational process: challenges and solutions
 - QC, alignment, assembly / quantification

Complexity from (alternative) RNA splicing

Gene level quantification vs transcript level quantification

- Transcript level: detect differential transcript usage between conditions
- Gene level: simplify the analysis, but may miss information

RNA-seq analysis options

- Map to genome
 - Mostly used
 - Gene discovery
 - Novel splicing variants
- Map to transcriptome
 - Transcriptome available
 - Mouse and human
 - Faster
- Transcriptome assembly
 - with genome or without genome reference (de novo)
 - Challenging

Option 1: Read alignment to genome

- Genome reference: each chromosome is a sequence
- Reads aligner: gap aware (mature & industrial standard now)
 - STAR, HISAT, and others
- Gene level counting (straightforward)
 - Feature-count: http://bioinf.wehi.edu.au/featureCounts/
 - HTseq-count: https://htseq.readthedocs.io
- Transcript level quantification: ambiguous reads
 - MISO: https://miso.readthedocs.io
 - Cufflinks: http://cole-trapnell-lab.github.io/cufflinks/
 - DICE-seq / BRIE (myself): https://brie.readthedocs.io
 - Mixture model: EM algorithm, MCMC sampling

Splicing quantification (MISO/BRIE model)

Estimate the proportions for 2 isoforms

- ✓ Direct method: count junction reads $\psi = \text{exon1}_{\text{exon2}} / (\text{exon1}_{\text{exon2}} + \text{exon1}_{\text{exon3}}) = 2 / 5$
- ✓ Probabilistic method: identity I_n for each read $L(R_{1:N} | \Psi) = \prod_{n=1}^N P(R_n | \Psi) = \prod_{n=1}^N \sum_{I_n=1}^2 \{P(R_n | I_n)P(I_n | \Psi)\}$ Maximize the likelihood on Ψ (mixture model)
- ✓ Bayesian method (posterior distribution) $P(\Psi|R_{1:N}) \sim P(\Psi|\pi) \times L(R_{1:N}|\Psi)$

Option 2: Reads align to transcriptome

- Transcriptome reference: each transcript is a sequence
- Reads aligner: no require on gap (mature & industrial standard now)
 - Bowtie2, and others
 - Large fraction of reads have multiple alignment (multiple transcripts share exons)
- Statistical quantifications (relatively mature now)
 - BitSeq, RSEM, and many more
 - Mixture model: EM algorithm, MCMC sampling, variational inference
- Alternative strategy: combine alignment and quantification
 - Pseudo-alignment
 - Kallisto & Salmon

Kallisto: pseudo-alignment (de Bruijn graph)

- Not where in transcript the read comes from
- But whether it can come from the transcript

de Bruijn graph

b d

Largely speed up

Option 3: Transcriptome assembly

- De-novo or reference based
 - De-novo method based on de Bruijn graph
- Reference based is generally more accurate
 - Aligning reads to known genome reference first
 - Large assembly --> many smaller assembly
 - Often starting from generating splicing graph (with junction reads)
 - Whole genome sequencing to make genome reference first

Experiment designs

- High coverage and paired-end help
- Benefits from long-read sequencing from PacBio or Nanopore

Questions

- Transcriptome: what and why?
- Additional layer of complexity: RNA splicing
- 3. Technologies to measure transcriptome? pros vs cons
- 4. RNA-seq: QC, alignment, assembly / quantification

Reading list

- 1) Stark, Grzelak, Hadfield. RNA sequencing: the teenage years. Nat Rev Gen, 2019
- 2) A survey of best practices for RNA-seq data analysis, Genome Biology, 2016
- 3) Alberts et al. Molecular Biology of The Cell (Chapter 6 & 7): https://www.ncbi.nlm.nih.gov/books/NBK21054/
- 4) Wikipedia: https://en.wikipedia.org/wiki/Transcriptomics_technologies

