0.1 H31 数学 A

 $\boxed{1}$ $(1)^{\forall}\varepsilon > 0, \exists N \in \mathbb{N}, \forall n \geq N, \forall x \in \mathbb{R}, |f_n(x) - f(x)| < \varepsilon$ である。また f_N は連続であるから、 $\forall \varepsilon > 0, \exists \delta > 0, \forall x \in \mathbb{R}, |x - x_0| < \delta \Rightarrow |f_N(x) - f_N(x_0)| < \varepsilon$ である。以上より、 $\forall x_* \in \mathbb{R}, \forall \varepsilon > 0, \exists \delta > 0, \exists N \in \mathbb{N}, \forall x \in \mathbb{R}, |x - x_*| < \delta \Rightarrow |f(x) - f(x_*)| \leq |f(x) - f_N(x)| + |f_N(x) - f_N(x_*)| + |f_N(x_*) - f(x_*)| < 3\varepsilon$ であるから、f は連続である。

 $(2)a \geq x > 0$ のとき,平均値の定理から $u\left(\frac{x}{n}\right) - u(0) = \frac{x}{n}u'(\alpha_n), u(-\frac{x}{n}) - u(0) = -\frac{x}{n}u'(\beta_n)$ となる $-\frac{x}{n} < \beta_n < 0 < \alpha_n < \frac{x}{n}$ が存在する.よって $u_n(x) = \frac{x}{n}(u'(\alpha_n) - u'(\beta_n))$ である.平均値の定理から $u'(\alpha_n) - u'(\beta_n) = u''(\gamma_n)(\alpha_n - \beta_n)$ となる $-\frac{x}{n} < \beta_n < \gamma_n < \alpha_n < \frac{x}{n}$ が存在する.よって $u_n(x) = \frac{x}{n}(u''(\gamma_n)(\alpha_n - \beta_n))$ である. $\alpha_n - \beta_n \leq \frac{2x}{n}$ であり,また u'' は [-a,a] 上連続であるから,有界である.よって $\forall n, u''(\gamma_n) < M$ とできる M > 0 が存在する.以上より $|u_n(x)| \leq \frac{2x^2}{n}|u''(\gamma_n)| \leq \frac{2a^2M}{n^2}$ である.よって $\sum |f_n(x)| \leq 2a^2M\sum_{n=1}^{1} < \infty$ である.これは $-a \leq x < 0$ でも成立し,また x = 0 なら $u_n(x) = 0$ であるから x = 0 でも成立する.ワイエルシュトラスの M 判定法より, $u_n(x)$ は絶対一様収束する.また(1)より収束先の関数は連続である.

2 $(1)N^2 \neq O$ より $N^2u \neq 0$ なる $u \in \mathbb{C}^3$ が存在する.この u について $c_1u + c_2Nu + c_3N^2u = 0$ とすると, N^2 を左からかけれ, $c_1N^2u = 0$ より $c_1 = 0$ である.よって N をかければ $c_2N^2u = 0$ より $c_2 = 0$ である.よって $c_3 = 0$ である.よって u, Nu, N^2u は一次独立である.

$$(2)(1) \ \mathcal{O} \ P = \begin{pmatrix} N^2 u & N u & u \end{pmatrix} \ \texttt{とすれば} \ P \ \texttt{は正則 } \mathcal{O} \ J := P^{-1} N P = \begin{pmatrix} 0 & 1 & 0 \\ 0 & 0 & 1 \\ 0 & 0 & 0 \end{pmatrix}$$
である.

 $g\colon V \to V$ を g(X) = JX - XJ とする. $f(PXP^{-1}) = NPXP^{-1} - PXP^{-1}N = Pg(X)P^{-1}$ である. $f^2(PXP^{-1}) = f(Pg(X)P^{-1}) = Pg(g(X))P^{-1} = Pg^2(X)P^{-1}$ である. 繰り返して $f^k(PXP^{-1}) = Pg^k(X)P^{-1}$ である. P は正則であるから、 $f^k = 0 \Leftrightarrow g^k = 0$ である. また $g^k = 0$ ならば $g^{k+1} = 0$ である.

 $g^2(X) = J(JX - XJ) - (JX - XJ)J = J^2X - 2JXJ + XJ^2, g^3(X) = J^2(JX - XJ) - 2J(JX - XJ)J + (JX - XJ)J^2 = -3J(JX - XJ)J, g^4(X) = -3J(J^2 - 2JXJ + XJ^2)J = 6J^2XJ^2, g^5(X) = 6J^2(JX - XJ)J^2 = 0$ である. よって $g^5 = 0$ である.

かる。よって
$$g^3=0$$
 である。 $X=\begin{pmatrix} 0 & 0 & 0 \\ 0 & 0 & 0 \\ 1 & 0 & 0 \end{pmatrix}$ とすると $J^2XJ^2=\begin{pmatrix} 0 & 0 & 1 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \end{pmatrix} \neq O$ であるから, $g^4\neq 0$ である。よって $g^k=0$ となる最

小のkは5である.

- $\boxed{3}$ (1) $d: A \times A \to \mathbb{R}$ が距離関数であるとは次の条件を満たすことである.
- $(i)^{\forall} x, y \in A, d(x, y) = 0 \Leftrightarrow x = y$
- $(ii)^{\forall} x, y \in A, d(x, y) = d(y, x)$
- $(iii)^{\forall} x, y, z \in A, d(x, z) \le d(x, y) + d(y, z)$
- (2) 任意の異なる二点 $x,y \in A$ について d(x,y) > 0 である. $\varepsilon = d(x,y)/2$ とすれば, $x \in B(x,\varepsilon) := \{a \in A \mid d(x,a) < \varepsilon\}, y \in B(y,\varepsilon), B(x,\varepsilon) \cap B(y,\varepsilon) = \emptyset$ である. よって A はハウスドルフ空間である.
- $(3)x \in A$ を一つ固定する。 $S = \{B(x,n) \mid n \in \mathbb{N}\}$ は A の開被覆である。コンパクトであるから,有限部分集合 $\{B(x,n_i) \mid i=1,\cdots,m\}$ が存在して, $A \subset \bigcup_{i=1}^m B(x,n_i)$ となる。 $n = \max_{i=1,\cdots,m} n_i$ とすれば $A \subset B(x,n)$ である。したがって任意の二点 $y,z \in A$ について $d(y,z) \leq d(y,x) + d(x,z) < 2n$ である。
 - $(4)x \in U_{x,y}, y \in V_{x,y}, U_{x,y} \cap V_{x,y} = \emptyset$ となる開集合対 $(U_{x,y}, V_{x,y})$ を各 $(x,y) \in C_1 \times C_2$ ごとに定める. $S_y = \{U_{x,y} \mid x \in C_1\}$ は C_1 の 開 被 覆 で あるから,有限部分集合 $C_{1,y} \subset C_1$ が存在して, $S_y' = C_1$

 $\{U_{x,y}\mid x\in C_{1,y}\}$ が C_1 の開被覆となる.また $V_y=\bigcap_{x\in C_{1,y}}V_{x,y}$ とする.有限個の共通部分であるから V_y は 開集合である.

 $T = \{V_y \mid y \in C_2\}$ は C_2 の開被覆であるから,有限部分集合 $C_2' \subset C_2$ が存在して, $T' = \{V_y \mid y \in C_2'\}$ が C_2 の開被覆となる. $U = \bigcap_{y \in C_2'} (\bigcup_{s_y'} U_{x,y}), V = \bigcup_{y \in C_2'} V_y$ とする. C_2' は有限集合であるから,U, V は開集合である。

 S_y' は C_1 の開被覆であるから, $C_1 \subset U$ であり,また $C_2 \subset V$ も明らか. $z \in U \cap V$ とすると,ある $y' \in C_2'$ について $z \in V_{y'} \subset V_{x,y'}$ ($\forall x \in C_{1,y'}$)である.また $z \in U$ より $\forall y \in C_2'$ について $z \in \bigcup_{S_y'} U_{x,y}$ である.とくに $z \in \bigcup_{S_{y'}'} U_{x,y'}$ である.したがってある $x' \in C_{1,y'}$ について $z \in U_{x',y'}$ である.よって $z \in U_{x',y'} \cap V_{x',y'}$ となり 矛盾.よって $U \cap V = \emptyset$ である.

 $\boxed{4}$ (1)zf(z) は z=0 で正則であるから,z=0 は f の一位の極である. よって $\lim_{z\to 0}zf(z)=\frac{1}{a^2}$ より主要部は $\frac{1}{a^2z}$ である.

 $(2)f(z)-rac{1}{a^2z}$ は原点近傍で有界である. よって $\int_{C_r}f(z)-rac{1}{a^2z}dz o 0$ (r o 0) である. よって $\lim_{r o 0}\int_{C_r}f(z)dz=\lim_{r o 0}\int_{C_r}rac{1}{a^2z}dz=\lim_{r o 0}\int_0^\pirac{1}{a^2re^{i heta}}rie^{i heta}d\theta=rac{i\pi}{a^2}$ である.

$$\left|\int_{C_r} f(z)dz\right| = \left|\int_0^\pi \frac{\exp\left(ie^{i\theta}\right)}{re^{i\theta}(r^2e^{2i\theta}+a^2)}rie^{i\theta}d\theta\right| \leq \int_0^\pi \left|\frac{\exp(-\sin\theta)}{(r^2e^{2i\theta}+a^2)}\right|d\theta \leq \int_0^\pi \frac{1}{|r^2-a^2|}d\theta = \frac{\pi}{|r^2-a^2|} \to 0 \quad (r\to\infty)$$

 $(3)D_{r,R}$ の内部に f は z=ia を特異点にもち, z=ia を除いて f は $D_{r,R}$ で正則であるから留数定理より $\int_{\partial D_{r,R}} f(z) dz = 2\pi i \operatorname{Res}(f,ia)$ である. $\lim_{z \to ia} (z-ia) f(z) = \frac{e^{iia}}{ia(ia+ia)} = -\frac{1}{2a^2e^a}$ より $\int_{\partial D_{r,R}} f(z) dz = -\frac{\pi i e^{-a}}{a^2}$ である.

 $(4)\partial D_{r,R}$ と実軸の正の部分との共通部分を α_1 , 負の部分との共通部分を α_2 とする。向きは $\partial D_{r,R}$ と同じ向きを入れる。 $\int_{\alpha_1} f(z)dz = \int_r^R \frac{e^{ix}}{x(x^2+a^2)}dx = \int_r^R \frac{\cos x + i \sin x}{x(x^2+a^2)}dx$ である。また $\int_{\alpha_2} f(z)dz = \int_{-R}^{-r} \frac{e^{ix}}{x(x^2+a^2)}dx = \int_R^r \frac{e^{-ix}}{x(x^2+a^2)}(-1)dx = \int_r^R \frac{e^{-ix}}{x(x^2+a^2)}dx$ である。よって

$$\begin{split} -\frac{\pi i e^{-a}}{a^2} &= \lim_{r \to 0, R \to \infty} \int_{\partial D_{r,R}} f(z) dz = \lim_{r \to 0, R \to \infty} \left(\int_{-C_r} f(z) dz + \int_{\alpha_1} f(z) dz + \int_{\alpha_2} f(z) dz \right) \\ &= -\frac{i\pi}{a^2} + \lim_{r \to 0, R \to \infty} \left(\int_r^R \frac{2i \sin x}{x(x^2 + a^2)} dx \right) = -\frac{i\pi}{a^2} + 2i \int_0^\infty \frac{\sin x}{x(x^2 + a^2)} dx \\ &\int_0^\infty \frac{\sin x}{x(x^2 + a^2)} dx = \frac{\pi}{2a^2} (1 - e^{-a}) \end{split}$$