Documentación Técnica:

Meditador de Bolsillo v0.9

Heartenic - 2025

1. Microcontrolador

Plataforma Base

• Microcontrolador: ESP32-C3 SuperMini

• Proveedor: Cualquier genérico de Aliexpress (compatibles con ESP32-C3)

• Arquitectura: RISC-V

 Conectividad: WiFi + Bluetooth BLE (no se utiliza aún en el PMV, pero es posible extender en el futuro)

Alimentación y Potencia

• Fuente de alimentación: Lipo (tamaño y capacidad variable)

• Capacidad estimada: 150 mAh - 650 mAh (por ahora reutilizadas de vapes)

• **BMS**: TP4056 (con protección de carga y descarga)

Protección de carga: 4.1VProtección de descarga: 2.5V

- \(\Lambda \) Nota: El voltaje de protección de descarga es muy bajo (peligroso para la salud de las celdas). Idealmente debería ser 3.0V.
- \circ No carga con cables USB C \rightarrow USB C
- Conexión de alimentación:
 - El BMS alimenta directamente al puerto USB-C del ESP32-C3.
 - El ESP32-C3 regula a 3.3V, y esta línea de 3.3V alimenta el motor y el OLED.

2. Display

Pantalla OLED

Tipo: OLED monocromoTamaño: 0.96 pulgadasResolución: 128x64 px

Driver: SSD1306Interfaz: I2C

• Pines de conexión:

SDA: GPIO 7
 SCL: GPIO 9
 Alimentación: 3.3V

Estabilización eléctrica:

• Capacitor: uf4007 conectado al OLED para mayor estabilidad de imagen.

3. Interfaz de usuario

Botón único

Número de botones: 1
Interfaz: Entrada digital
Pin de conexión: GPIO 0

• Función: Navegación de modos e interacción completa (se detalla en la

sección de UX)

4. Retroalimentación háptica

Motor de vibración

• **Tipo:** Motor listado para cepillos de dientes eléctricos.

• Alimentación: 3.3V directa.

• Control: A través de un circuito discreto de transistor.

• Pin de control: GPIO 1

Circuito de control del motor

Resistor: 2kΩTransistor: S8050Capacitor: uf4007

• Función: Controla el encendido/apagado del motor mediante señal digital.

• A **Problema identificado:** El circuito genera ruido audible (probablemente interferencia electromagnética o vibraciones mecánicas inducidas).

5. Asignación de Pines (Resumen)

Componente	Pin (ESP32-C3)
Botón	GPIO 0
Motor	GPIO 1
OLED SDA	GPIO 7
OLED SCL	GPIO 9

6. Consumo estimado

Estado	Consumo estimado
Modem Sleep (WiFi/BT apagados, 40MHz)	~10 mA
Motor + OLED activo	~85 mA
Apagado físico	0 A (teórico)

Apagado físico

• El dispositivo cuenta con un switch físico que corta directamente la corriente al ESP32-C3.

Como referencia: Una LiPo de 500mAh debería durar unas 40 horas sin apagado físico asumiendo un 5/95 de uso.

Falta definir una capacidad y proveedor de LiPos fijo para poder definir oficialmente el tiempo uso con carga completa.

7. Interacción y UX: Diseño centrado en lo esencial

Filosofía de Interacción

El **respirador de bolsillo** no es un gadget más, es una invitación a la calma. Su diseño es intencionalmente minimalista, eliminando cualquier barrera entre el usuario y la práctica de respiración. Un solo botón es todo lo que se necesita, evitando distracciones y decisiones innecesarias. El dispositivo se siente **satisfactorio al tacto**, con un cuerpo **ergonómico impreso en 3D** que invita a sostenerlo y usarlo de forma natural.

Interacciones y Flujos

Acción	Resultado	
Un clic	Inicia el ejercicio breve de 3 respiraciones guiadas	
Tres clics rápidos	Entra al modo meditación indefinida	
Un clic (durante meditación)	Detiene la meditación	
Mantener presionado	Muestra estadísticas del dispositivo: ciclos totales completados y nivel de usuario	

Display y Retroalimentación

- Pantalla OLED 0.96" muestra únicamente la información esencial: indicador visual (círculo que se llena/vacía), ciclos completados (modo meditación), indicadores y temporizadores de estado (modo ejercicio).
- Motor de vibración acompaña las respiraciones (durante la inhalación y exhalación) para que el dispositivo sea usable sin mirar la pantalla.
- El diseño está pensado para ser **empalmado**, pensado para usarse con el botón en la parte superior, facilitando un agarre cómodo y clics intuitivos.

Parámetros de Respiración

Modo Meditación (indefinido, hasta 99 ciclos o interrupción)

Fase	Duración (ms)
Inhalar	2700
Sostener	800
Exhalar	2700
Descansar	800

• Máximo: 99 ciclos o interrupción manual.

Modo Ejercicio Breve (3 ciclos)

Fase	Duración (ms)
Inhalar	4000
Sostener	3000
Exhalar	4000
Descansar	1500

• Total: 3 ciclos.

Registro y Persistencia

- Cada vez que finaliza un ejercicio breve, se suman 3 ciclos al contador total.
- En modo meditación, al finalizar o al ser interrumpido, se suman al contador todos los ciclos completados.
- El contador de ciclos está guardado en la **NVS (Non-Volatile Storage)** de la ESP32-C3.

Consideración Técnica

- El ESP32-C3 tiene un límite estimado de 100,000 ciclos de escritura por celda en la NVS.
- Con el diseño actual (solo guardando al final de ejercicios o meditaciones), el desgaste es mínimo.
- Incluso con un uso extremo (10 sesiones diarias por 10 años), seguiría dentro del rango seguro de durabilidad de la memoria flash.

8. Código de Arduino

Todo el código se encuentra disponible en el siguiente repositorio de GitHub:

https://github.com/Heartenic/Meditador-Arduino