Лабораторная работа №2

Настройка начальной конфигурации коммутатора

Задачи

- Создать схемы адресации сети.
- Настроить начальную конфигурацию коммутаторов Cisco.
- Проверить конфигурацию устройств и сетевые соединения.

Исходные данные

В этой работе вы выполните настройку следующих параметров клиентского коммутатора Cisco:

- имя узла;
- пароль консоли;
- пароль канала VTY;
- пароль привилегированного режима ЕХЕС;
- секретный пароль привилегированного режима ЕХЕС;
- IP-адрес интерфейса VLAN1;
- шлюз по умолчанию.

Настройку коммутаторов необходимо проводить из командной строки. Настройку других сетевых устройств можно выполнять через графический интерфейс.

Варианты для выполнения заданий:

Вариант	Адрес сети	Маска сети	Количество	Названия устройств	Пароль
Барнант	идрес сети	Wiacka cern	подсетей		
1	192.168.1.0	255.255.255.0	2	1SwitchX, 1PCX	cisco1
2	192.168.2.0	255.255.255.0	3	2SwitchX, 2PCX	cisco2
3	192.168.3.0	255.255.255.0	4	3SwitchX, 3PCX	cisco3
4	192.168.4.0	255.255.255.0	5	4SwitchX, 4PCX	cisco4
5	192.168.5.0	255.255.255.0	6	5SwitchX, 5PCX	cisco5
6	192.168.6.0	255.255.255.0	7	6SwitchX, 6PCX	cisco6
7	192.168.7.0	255.255.255.0	8	7SwitchX, 7PCX	cisco7
8	192.168.8.0	255.255.255.0	9	8SwitchX, 8PCX	cisco8
9	192.168.9.0	255.255.255.0	10	9SwitchX, 9PCX	cisco9
10	192.168.10.0	255.255.255.0	11	10SwitchX, 10PCX	cisco10
11	192.168.11.0	255.255.255.0	12	11SwitchX, 11PCX	cisco11
12	192.168.12.0	255.255.255.0	13	12SwitchX, 12PCX	cisco12
13	192.168.13.0	255.255.255.0	14	13SwitchX, 13PCX	cisco13
14	192.168.14.0	255.255.255.0	15	14SwitchX, 14PCX	cisco14
15	192.168.15.0	255.255.255.0	2	15SwitchX, 15PCX	cisco15
16	192.168.16.0	255.255.255.0	3	16SwitchX, 16PCX	cisco16
17	192.168.17.0	255.255.255.0	4	17SwitchX, 17PCX	cisco17
18	192.168.18.0	255.255.255.0	5	18SwitchX, 18PCX	cisco18

19	192.168.19.0	255.255.255.0	6	19SwitchX, 19PCX	cisco19
20	192.168.20.0	255.255.255.0	7	20SwitchX, 20PCX	cisco20
21	192.168.21.0	255.255.255.0	8	21SwitchX, 21PCX	cisco21
22	192.168.22.0	255.255.255.0	9	22SwitchX, 22PCX	cisco22
23	192.168.23.0	255.255.255.0	10	23SwitchX, 23PCX	cisco23
24	192.168.24.0	255.255.255.0	11	24SwitchX, 24PCX	cisco24
25	192.168.25.0	255.255.255.0	12	25SwitchX, 25PCX	cisco25
26	192.168.26.0	255.255.255.0	13	26SwitchX, 26PCX	cisco26
27	192.168.27.0	255.255.255.0	14	27SwitchX, 27PCX	cisco27
28	192.168.28.0	255.255.255.0	15	28SwitchX, 28PCX	cisco28
29	192.168.29.0	255.255.255.0	2	29SwitchX, 29PCX	cisco29
30	192.168.30.0	255.255.255.0	3	30SwitchX, 30PCX	cisco30

Задание 1: Разработка схемы подсетей.

Разработайте схему подсети на основе адреса сети указанного для вашего варианта задания, которая позволит сети заказчика поддерживать количество подсетей указанное для вашего варианта задания.

	Определите число разрядов, соответствующих подсетя держки требуемого числа подсетей:	м, кс	торое	неоохо	димо для
/	Определите маску подсети для новой схемы адресации:			··_	, или
	— Заполните таблицу, показывающую три первые подсетнания:	и для	сети	вашего	варианта

№	Адрес подсети	Первый IP- адрес	Последний IP- адрес	Широковещательный адрес	Количество узлов в подсети

Подсеть 0 (первая по счету) будет использоваться для предоставления диапазона IP-адресов пользователям, которые подключаются к интерфейсу FastEthernet 0/0 на маршрутизаторе через первый (левый) коммутатор.

Подсеть 1 (вторая по счету) будет использоваться для предоставления диапазона IP-адресов пользователям, которые подключаются к интерфейсу FastEthernet 0/1 на маршрутизаторе через второй (правый) коммутатор.

Задание 2. Создание схемы сети и подключение сетевых устройств.

Постройте схему в программе Packet Tracer согласно примеру и данных вашего варианта задания.

Все устройства должны иметь имена следующего формата: "<номер варианта><название устройства><порядковый номер>".

Подключите сетевые устройства с помощью соответствующих кабелей. Подключите маршрутизатор к первым по порядку интерфейсам коммутаторов (интерфейс FastEthernet 0/1).

Задание 3: Настройка клиентского маршрутизатора и сетевых устройств.

С помощью графического интерфейса или командной строки маршрутизатора задайте IP-адреса интерфейсам FastEthernet. Первый возможный IP-адрес из подсети 0 присвойте интерфейсу FastEthernet 0/0. Первый возможный IP-адрес из подсети 1 присвойте интерфейсу FastEthernet 0/1. Включите оба интерфейса.

Задайте IP-адреса, маску и шлюз по умолчанию (Gateway) соответствующих подсетей для PC1, Server1, PC2, Server2.

Задание 4. Настройка клиентского коммутатора.

- 1. Подключитесь к консоли первого коммутатора с помощью консольного кабеля и программы эмуляции терминала на компьютере PC1.
- 2. Настройте имя узла коммутатора. Задайте имя узла для первого коммутатора "<№варианта>Switch1".
- 3. Настройте пароль и секретный пароль привилегированного режима. Все пароли должны соответствовать "cisco<№варианта>".
- 4. Настройте пароль консоли. В режиме настройки линии задайте пароль "cisco<№варианта>" и укажите, что пароль нужно вводить при каждом входе в систему.
- 5. Настройте пароль канала vty от 0 до 15. В режиме настройки линии задайте пароль "cisco<№варианта>" и укажите, что пароль нужно вводить при каждом входе в систему.

- 6. Настройте IP-адрес интерфейса VLAN1. Назначьте интерфейсу для сети VLAN1 последний возможный IP-адрес и маску из подсети 0 (первой по счету подсети).
- 7. Настройте шлюз по умолчанию. Назначьте шлюзу по умолчанию первый возможный IP-адрес из подсети 0 (первой по счету подсети).
- 8. Убедитесь, что IP-адрес интерфейса управления коммутатора VLAN1 и IP-адрес узла PC1 расположены в одной локальной сети.
- 9. Сохраните текущую конфигурацию в качестве начальной конфигурации коммутатора.
- 10. Повторите пункты 1-9 задания для соответствующего конфигурирования второго коммутатора.

Задание 5. Проверка конфигурации устройств и сетевых соединений.

Воспользуйтесь контрольным списком проверки конфигурации и соединений для проверки IP-конфигурации каждого узла и тестирования сетевых соединений. На экран также будут выведены различные текущие конфигурации и таблицы маршрутизации.

- На PC1 отобразите IP-адрес, маску подсети и основной шлюз.
- Из командной строки PC2 выведите на экран IP-адрес, маску подсети и основной шлюз.
- На маршрутизаторе отобразите статус портов: IP-адреса и маску подсети каждого интерфейса.
- Для проверки правильности настройки коммутатора и маршрутизатора выполните тестирование доступности IP-адреса интерфейса Fa0/0 маршрутизатора (шлюз по умолчанию) с помощью команды ping из командной строки коммутатора 1.
- Для проверки правильности настройки узлов и коммутатора отправьте из узла PC1 эхо-запрос на IP-адрес коммутатора 1.
- Отправьте эхо-запрос от узла РС1 к основному шлюзу.
- Отправьте эхо-запрос от узла РС1 к удаленному узлу РС2.
- Отправьте эхо-запрос от узла PC1 к удаленному серверу Server2.
- Отправьте эхо-запрос от узла PC2 к локальному серверу Server2.
- Отправьте эхо-запрос от узла РС2 к основному шлюзу.
- Отправьте эхо-запрос от узла РС2 к удаленному узлу РС1.
- Отправьте эхо-запрос от узла PC2 к удаленному серверу Server1.

Вопросы для самопроверки

- Помогает ли разделение на подсети уменьшить проблему нехватки IP-адресов? Поясните свой ответ.
- В схеме записей разработчика было указано, что в беспроводной подсети может быть до 30 ПК. Создает ли это ситуацию, когда IP-адреса могли бы использоваться непродуктивно. Важно ли это и почему?

- Есть альтернативные методы разделения на подсети с использованием бесклассовой внутридоменной маршрутизации (CIDR) и сетевых масок переменной длины (VLSM). Явилось бы использование VLSM выгодным вариантом для разделения данной сети?
- Почему нужно назначить IP-адрес именно интерфейсу VLAN1, а не просто любому интерфейсу FastEthernet?
- Какая команда требуется для активизации идентификации с помощью пароля на консоли и в линиях VTY?
- Сколько гигабитных портов доступно на коммутаторе Cisco, который использовался в вашем варианте данной лабораторной работы?
- Выведите на экран таблицу IP-маршрутизации для маршрутизатора. Какие маршруты известны и как они были получены?

Дополнительная информация

Коммутатор (Switch) — это многопортовый цифровой формирователь сигнала, коммутирующий соединения непосредственно между портами, к которым подключены компьютеры отправителя и получателя.

Puc. Устройство Switch 2950-24 - Коммутатор Cisco Catalyst, где 2950 — номер серии устройств, 24 — количество LAN-портов. На рисунке приведено его изображение.

Настроить коммутатор возможно из графического интерфейса, но в данном лабораторном практикуме будет предложено производить настройку устройства с помощью командной строки. Чтобы приблизиться к реальным условиям, предлагается подключиться к коммутатору с помощью стороннего компьютера через консольный кабель (Console).

Для этого выберем любой компьютер (или ноутбук), добавим его в рабочую область. С помощью консольного кабеля соединим вывод Console на коммутаторе с выводом RS 232 на компьютере.

Чтобы подключиться к коммутатору, необходимо зайти в графический интерфейс компьютера, *Desktop – Terminal* – не меняя настроек порта нажимаем "ОК". Если все было проделано верно, то откроется терминал для работы с коммутатором.

В сетевых коммутаторах и маршрутизаторах компании Cisco используется программное обеспечение Cisco IOS (*Internetwork Operating System*). Это многозадачная операционная система, выполняющая функции сетевой организации, маршрутизации, коммутации и передачи данных.

Интерфейс командной строки Cisco IOS включает в себя множество функций, помогающих вызывать команды и получать информацию об использовании и свойствах этих команд. Команды в Cisco IOS имеют иерархическую структуру. Существует несколько режимов настройки сетевого устройства. Рассмотрим основные из них.

Приглашение:	Аббревиатура	Описание
Switch>	U	Пользовательский режим
Switch#	P	Привилегированный режим
Switch(config)#	G	Режим конфигурации
Switch(config-if)#	Ι	Режим конфигурации интерфейса
Switch (config-vlan)#	V	Режим конфигурации VLAN

Для перехода из одного режима в другой используются следующие команды:

Команда	Режим	Описание
enable	U	Пользовательский -> Привилегированный
logout	U	Выход из пользовательского режима
configure <terminal></terminal>	P	Привилегированный -> Режим
		конфигурации
Interface <interface description=""></interface>	G	Режим конфигурации -> Режим
		конфигурации интерфейса
vlan vlan-id	G	Режим конфигурации -> Режим
		конфигурации VLAN
exit	G, R, L, V	Возврат в предыдущий режим

Знание различий между различными режимами (и способов перехода между ними) поможет вам легче настраивать, контролировать или устранять неполадки сетевых устройств. В таблице, приведенной в приложении указаны все основные команды устройств с Cisco IOS (коммутаторов и маршрутизаторов).

Команда	Режим	Описание
show version	U, P	Отображение информации о IOS и роутере.
show interfaces	U, P	Отображение физических атрибутов интерфейсов маршрутизатора.
show ip route	U, P	Отображение текущего состояния таблицы

		маршрутизации.	
show access-lists	P	Отображение текущих настроенных ACL и	
		их содержимого.	
show ip interface brief	P	Отображает сводку состояния для каждого	
		интерфейса.	
show running-config	P	Показать текущую конфигурацию.	
show startup-config	P	Отображение конфигурации при запуске.	
enable	U	Доступ к привилегированному режиму	
config terminal	P	Доступ к режиму конфигурации.	
interface <int></int>	G	Введите конфигурацию интерфейса.	
ip address <ip address=""> <mask></mask></ip>	I	Назначьте IP-адрес указанному интерфейсу.	
shutdown	I	Выключите или включите интерфейс.	
no shutdown		Используйте оба для сброса.	
description <name-string></name-string>	I	Установите описание интерфейса.	
show ip interface <type number=""></type>	U, P	Отображение статуса протоколов для	
		интерфейсов.	
show running-config interface	P	Отображает текущую конфигурацию для	
interface <slot number=""></slot>		интерфейса	
hostname <name></name>	G	Установка имени хоста для устройства	
		Cisco.	
enable secret <password></password>	G	Установка пароля	
copy running-config startup-	P	Сохраняет текущую (работающую)	
config		конфигурацию в начальной конфигурации в	
		NVRAM. Команда сохраняет конфигурацию,	
		поэтому при перезагрузке устройства	
		загружается последний файл конфигурации.	
copy startup-config running-	P	Он сохраняет (перезаписывает) начальную	
config	_	конфигурацию в текущую конфигурацию.	
copy from-location to-location	P	Он копирует файл (или набор файлов) из	
		одного места в другое.	
erase nvram	G	Удаление текущих файлов конфигурации	
		запуска. Команда возвращает устройство к	
1 1		заводским настройкам по умолчанию.	
reload	G	Перезагрузка устройства. NVRAM примет	
		последнюю конфигурацию.	
erase startup-config	G	Очистка файловой системы NVRAM.	
		Команда достигает того же результата, что и	
		«erase nvram».	