Solution of Assignment-2

Principles of Physics-I, PHY111

Sunday, August 1, 2021 9:32 AM

1. A 15 kg box frame is sliding down a 20° incline plane with a 10 kg steel sphere suspended inside the box as shown in Fig. 1. Consider the coefficient of kinetic friction between the box and the incline is 0.15.

Fig. 1

- (a) (2 marks) Draw a free body diagram of the forces on the box and on the sphere.
- (b) (3 marks) What is the acceleration of the box?
- (c) (5 marks) Calculate the tension in each of the supporting wires A and B.

And,	
	$= \frac{(m+m')}{9} \frac{6}{6} \frac{1}{20} - Ma N = \frac{(m+m')}{20} a$ $= \frac{25}{25} \frac{1}{6} \frac{1}{10} \frac{20}{10} - \frac{0.15}{20} \times \frac{230.22}{25}$
© sphere	= 1.97 Wsv Awa
	$= T_A (0.45^\circ + T_B (0.45^\circ - wg (0.20^\circ = 0))$
	$T_A + T_B = 130.23 \text{ N}$ $\Delta nl. \Sigma F_A = ma$
	$7 T_{B} \sin 45^{\circ} - T_{A} \sin 45^{\circ} + w_{9} \sin 20^{\circ} = w_{0} \cos 20^{\circ}$ $T_{B} - T_{A} = -17^{\circ} 54$
	Su. $T_A = 74'88N$ and $T_B = 55'34N$ Am

- 2. The strings AB and AC connect the 200 g ball to the vertical shaft as shown in Fig. 2. The shaft rotates at a constant angular speed ω and the ball travels in a horizontal circle with the strings inclined at $\alpha = 30^{\circ}$ to the shaft. Given that the tension in string AC is 4 N.
 - (a) (2 marks) Draw a free body diagram of the forces on the ball.
 - (b) (3 marks) Calculate the radial acceleration of the ball.
 - (c) (4 marks) Find the alue of the angular speed ω .
 - (d) (1 marks) What is the tangential acceleration of the ball?

Nns	2 Fg = mac	
		- IM Ga
	= TABSin30 + TAESin30	
	= Tab Sin 30 + Tac	$\frac{8 \times 30}{25.65} = 25.65 \text{ m/s}$
	=) \[\alpha_c = 25.65 \text{w/s}^{\text{\chi}} \]	Aw
(c) NW	, ac= WY	30.4
	J W = Jac	(Here, Y = 0.4 8 in 30°
		Y= 0.4 8'n 30"
	$3 \mathcal{O} = \sqrt{\frac{25.68}{0.2}}$	
	= W = 11.32 rays	
@ T	mantial ruleration	on is zero. Since it
	valation at a convolu	nt avorabar speed.
		AWA_