Algorithm: $[A,B] := GJ_{INVERSE_PART1}(A,B)$

Partition
$$A \rightarrow \begin{pmatrix} A_{TL} & A_{TR} \\ A_{BL} & A_{BR} \end{pmatrix}, B \rightarrow \begin{pmatrix} B_{TL} & B_{TR} \\ B_{BL} & B_{BR} \end{pmatrix}$$

where A_{TL} is 0×0 , B_{TL} is 0

while $m(A_{TL}) < m(A)$ do

Repartition

$$\left(\begin{array}{c|cccc}
A_{TL} & A_{TR} \\
\hline
A_{BL} & A_{BR}
\end{array}\right) \rightarrow \left(\begin{array}{c|cccc}
A_{00} & a_{01} & A_{02} \\
\hline
a_{10}^T & \alpha_{11} & a_{12}^T \\
\hline
A_{20} & a_{21} & A_{22}
\end{array}\right), \left(\begin{array}{c|cccc}
B_{TL} & B_{TR} \\
\hline
B_{BL} & B_{BR}
\end{array}\right) \rightarrow \left(\begin{array}{c|cccc}
B_{00} & b_{01} & B_{02} \\
\hline
b_{10}^T & \beta_{11} & b_{12}^T \\
\hline
B_{20} & b_{21} & B_{22}
\end{array}\right)$$

$a_{01} := a_{01}/\alpha_{11}$	$A_{02} := A_{02} - a_{01} a_{12}^T$	$B_{00} := B_{00} - a_{01} b_{10}^T$	$b_{01} := -a_{01}$	
$a_{21} := a_{21}/\alpha_{11}$	$A_{22} := A_{22} - a_{21} a_{12}^T$	$B_{20} := B_{20} - a_{21}b_{10}^T$	$b_{21} := -a_{21}$	

(Note: a_{01} and a_{21} on the left need to be updated first.)

 $a_{01} := 0$ (zero vector)

 $a_{21} := 0$ (zero vector)

Continue with

$$\left(\begin{array}{c|c|c} A_{TL} & A_{TR} \\ \hline A_{BL} & A_{BR} \end{array}\right) \leftarrow \left(\begin{array}{c|c|c} A_{00} & a_{01} & A_{02} \\ \hline a_{10}^T & \alpha_{11} & a_{12}^T \\ \hline A_{20} & a_{21} & A_{22} \end{array}\right), \left(\begin{array}{c|c|c} B_{TL} & B_{TR} \\ \hline B_{BL} & B_{BR} \end{array}\right) \leftarrow \left(\begin{array}{c|c|c} B_{00} & b_{01} & B_{02} \\ \hline b_{10}^T & \beta_{11} & b_{12}^T \\ \hline B_{20} & b_{21} & B_{22} \end{array}\right)$$

endwhile

Algorithm: $[A,B] := GJ_INVERSE_PART2(A,B)$

where A_{TI} is 0×0 , B_{TI} is 0×0

while $m(A_{TL}) < m(A)$ do

Repartition

$$\left(\begin{array}{c|cccc}
A_{TL} & A_{TR} \\
\hline
A_{BL} & A_{BR}
\end{array}\right) \rightarrow \left(\begin{array}{c|cccc}
A_{00} & a_{01} & A_{02} \\
\hline
a_{10}^T & \alpha_{11} & a_{12}^T \\
\hline
A_{20} & a_{21} & A_{22}
\end{array}\right), \left(\begin{array}{c|cccc}
B_{TL} & B_{TR} \\
\hline
B_{BL} & B_{BR}
\end{array}\right) \rightarrow \left(\begin{array}{c|cccc}
B_{00} & b_{01} & B_{02} \\
\hline
b_{10}^T & \beta_{11} & b_{12}^T \\
\hline
B_{20} & b_{21} & B_{22}
\end{array}\right)$$
where α_{11} is 1×1 , β_{11} is 1×1

$$b_{10}^T := b_{10}^T/\alpha_{11}$$

$$\beta_{11}:=\beta_{11}/\alpha_{11}$$

$$b_{12}^T := b_{12}^T / \alpha_{11}$$

 $\alpha_{11} := 1$

Continue with

$$\left(\begin{array}{c|c|c} A_{TL} & A_{TR} \\ \hline A_{BL} & A_{BR} \end{array}\right) \leftarrow \left(\begin{array}{c|c|c} A_{00} & a_{01} & A_{02} \\ \hline a_{10}^T & \alpha_{11} & a_{12}^T \\ \hline A_{20} & a_{21} & A_{22} \end{array}\right), \left(\begin{array}{c|c|c} B_{TL} & B_{TR} \\ \hline B_{BL} & B_{BR} \end{array}\right) \leftarrow \left(\begin{array}{c|c|c} B_{00} & b_{01} & B_{02} \\ \hline b_{10}^T & \beta_{11} & b_{12}^T \\ \hline B_{20} & b_{21} & B_{22} \end{array}\right)$$

endwhile