CURSUL 8: GRUPURI

G. MINCU

1. Grupuri

Definiția 1. Fie G o mulțime nevidă și "·" o lege de compoziție pe G. Perechea (G, \cdot) se numește **grup** dacă:

A: "·" este asociativă

EN: "·" admite element neutru

TES: Toate elementele lui G sunt simetrizabile în raport cu "·".

Dacă în plus "·" este și comutativă, grupul (G, \cdot) se numește **comutativ** sau **abelian**.

Observația 2. Dacă legea de compoziție "·" este subînțeleasă în context, vom spune frecvent "grupul G" în loc de "grupul (G, \cdot) ". De asemenea, în loc de " (G, \cdot) este grup" vom spune frecvent "G are o structură de grup în raport cu "·"".

Observația 3. Când ne vom referi la grupuri neprecizate vom folosi notația multiplicativă, pentru elementul neutru vom folosi notația e, iar simetricul unui element x va fi desemnat prin x'. Dacă există însă o notație consacrată în context, vom face apel la aceasta.

2. Exemple de grupuri

Exemplul 4. $(\mathbb{Z},+)$, $(\mathbb{Q},+)$, $(\mathbb{R},+)$ și $(\mathbb{C},+)$ sunt grupuri abeliene.

Exemplul 5. Monoizii comutativi (\mathbb{N}, \cdot) , (\mathbb{Z}, \cdot) , (\mathbb{Q}, \cdot) , (\mathbb{R}, \cdot) şi (\mathbb{C}, \cdot) nu sunt grupuri, deoarece elementul 0 nu este simetrizabil în niciunul dintre aceştia.

Observația 6. Datorită faptelor evidențiate în exemplele 4 și 5, ne vom permite uneori să facem referire la "grupul \mathbb{Z} ", "grupul \mathbb{Q} ", "grupul \mathbb{R} " sau "grupul \mathbb{C} " subînțelegând considerarea pe acestea a structurii aditive. Dacă dorim să ne referim la o altă structură de grup pe aceste mulțimi, trebuie să o precizăm explicit.

Exemplul 7. $(\mathcal{M}_{m,n}(\mathbb{C}),+)$ este grup abelian.

Exemplul 8. \mathbb{Z}_n este grup abelian în raport cu adunarea modulo n.

G. MINCU

2

Exemplul 9. \mathbb{Z}_n este, conform cursului 4, monoid comutativ în raport cu înmulţirea modulo n. Acest monoid nu este grup, întrucât elementul $\widehat{0}$ nu este simetrizabil.

Observația 10. Având în vedere exemplele 8 și 9, ne vom permite uneori să facem referire la "grupul \mathbb{Z}_n " subînțelegând considerarea pe acesta a structurii aditive. Dacă dorim să ne referim la o altă structură de grup pe \mathbb{Z}_n , trebuie să o precizăm explicit.

Exemplul 11. Dacă G este un grup (abelian) iar A o mulțime nevidă, atunci G^A are o structură de grup (abelian) în raport cu legea de compoziție definită la exemplul 6 din cursul 4.

Exemplul 12. Fie $(G_i)_{i \in I}$ este o familie de grupuri (în notație multiplicativă). Pe $G \stackrel{\text{def}}{=} \prod_{i \in I} G_i$ introducem legea de compoziție $(a_i)_i \cdot (b_i)_i = (a_i b_i)_i.$

Propoziția 13. Mulțimea G din exemplul 12 are în raport cu operația introdusă acolo o structură de grup. Acest grup este abelian dacă și numai dacă toate grupurile G_i sunt abeliene.

Temă: Demonstrați afirmațiile de la exemplele 5, 7, 8, 9, 11 și propoziția 13!

Definiția 14. Grupul de la exemplul 12 se numește **produsul direct** al familiei de grupuri $(G_i)_{i \in I}$.

Vom folosi frecvent pentru produsul direct al unei familii de grupuri $(G_i)_{i \in I}$ indexate după mulțimea finită $I = \{i_1, i_2, \dots, i_n\}$ notațiile $\prod_{k=1}^n G_{i_k} \text{ sau } G_{i_1} \times G_{i_2} \times \dots \times G_{i_n}.$

Definiția 15. Grupul $\mathbb{Z}_2 \times \mathbb{Z}_2$ se numește grupul lui Klein.

3. Grupul elementelor simetrizabile dintr-un monoid

Fie (M, \cdot) un monoid. **Notăm** cu U(M) mulțimea elementelor simetrizabile ale lui M.

Propoziția 16. a) U(M) este parte stabilă a lui M în raport cu "·". b) U(M) are o structură de grup în raport cu operația indusă de "·".

Demonstrație: a) Fie $x, y \in U(M)$. Atunci $(xy)(y^{-1}x^{-1}) = x(yy^{-1})x^{-1} = e$ și $(y^{-1}x^{-1})(xy) = y^{-1}(x^{-1}x)y = e$, deci $y^{-1}x^{-1} = (xy)^{-1}$, de unde $xy \in U(M)$.

b) Evident.

Corolarul 17. Dacă x și y sunt elemente simetrizabile ale unui monoid (M, \cdot) , atunci $(xy)^{-1} = y^{-1}x^{-1}$.

Aceste considerații ne permit să dăm o nouă serie de exemple de grupuri:

Exemplul 18. (\mathbb{Q}^*,\cdot) , (\mathbb{R}^*,\cdot) și (\mathbb{C}^*,\cdot) sunt grupuri abeliene.

Exemplul 19. $(\{-1,1\},\cdot)$ este grup abelian.

Exemplul 20. $(U(\mathbb{Z}_n),\cdot)$ este grup abelian.

Vom folosi notația $U(\mathbb{Z}_n)$ pentru a desemna grupul elementelor din \mathbb{Z}_n simetrizabile în raport cu înmulțirea modulo n.

Propoziția 21. $U(\mathbb{Z}_n) = \{\widehat{a} \in \mathbb{Z}_n : (a, n) = 1\}.$

Temă: Demonstrați propoziția 21!

Observația 22. Fie A o mulțime nevidă. Elementele simetrizabile ale monoidului (A^A, \circ) sunt exact funcțiile bijective.

Vom folosi notația $S(A) \stackrel{\text{not}}{=} \{ f \in A^A : f \text{ este bijectivă} \}.$

Exemplul 23. $(S(A), \circ)$ este grup.

Observația 24. Vom face frecvent referire la $S(\{1, 2, ..., n\})$; pentru acest grup vom folosi notația S_n .

Observația 25. Elementele simetrizabile ale monoidului $(\mathcal{M}_n(\mathbb{C}), \cdot)$ sunt exact matricile inversabile.

Vom folosi notația $GL_n(\mathbb{C}) \stackrel{\text{not}}{=} \{A \in \mathcal{M}_n(\mathbb{C}) : A \text{ este inversabilă}\}.$

Exemplul 26. $(GL_n(\mathbb{C}), \cdot)$ este grup.

4. Reguli de calcul în grupuri

Fie (G,\cdot) un grup, $x\in G$ și $n\in\mathbb{N}^*$. Vom nota cu x^{-n} elementul $(x^n)'$.

Propoziția 27. Fie (G,\cdot) un grup, $x,y\in G$ și $m,n\in\mathbb{Z}$. Atunci:

- a) $x^{m+n} = x^m \cdot x^n$.
- b) $(x^m)^n = x^{mn}$.
- c) Dacă x și y comută, atunci $(xy)^m = x^m y^m$.

Demonstrație: Se procedează ca în demonstrația propoziției similare din cursul 4, analizând suplimentar cazurile în care m sau n sunt negative. Lăsăm detaliile în grija cititorului. \square

Observația 28. Dacă operația grupului G este notată aditiv, atunci relațiile din propoziția 27 devin:

- a) (m+n)x = mx + nx.
- b) n(mx) = (nm)x.
- c) Dacă x și y comută, atunci m(x+y) = mx + my.

5. Subgrupuri

Definiția 29. Fie G un grup și H o submulțime nevidă a sa. Spunem că H este **subgrup** al lui G dacă:

- i) $\forall x, y \in H \quad xy \in H$.
- ii) $\forall x \in H \quad x' \in H$.

Observația 30. Dacă H este subgrup al lui G, atunci H conține elementul neutru al lui G.

Observația 31. Dacă H este subgrup al lui G, atunci H este grup în raport cu operația indusă.

Vom folosi notația $H \leq G$ pentru a desemna faptul că H este subgrup al lui G.

Propoziția 32. Fie G un grup și H o submulțime nevidă a lui G. Următoarele afirmații sunt echivalente:

- i) $H \leq G$
- ii) $\forall x, y \in H \quad xy' \in H.$

Exemplul 33. G şi $\{e\}$ sunt subgrupuri ale lui G (ele se numesc **subgrupul impropriu**, respectiv **subgrupul trivial** al lui G).

Exemplul 34.
$$(\mathbb{Z}, +) \leq (\mathbb{Q}, +) \leq (\mathbb{R}, +) \leq (\mathbb{C}, +)$$
.

Propoziția 35. Fie H o submulțime nevidă a lui \mathbb{Z} . H este subgrup al lui \mathbb{Z} dacă și numai dacă există $n \in \mathbb{N}$ astfel încât $H = n\mathbb{Z}$.

Demonstrație: "←": Se aplică propoziția 32.

" \Rightarrow ": Dacă $H = \{0\}$, alegem n = 0.

Dacă $H \neq \{0\}$, există $a \in H \setminus \{0\}$. Atunci $|a| \in H \cap \mathbb{N}^*$. Deci $H \cap \mathbb{N}^* \neq \emptyset$. Atunci $H \cap \mathbb{N}^*$ are un cel mai mic element; notăm acest element cu n. Cum $H \leq \mathbb{Z}$, este imediat că $n\mathbb{Z} \subset H$. Fie acum $x \in H$. Conform teoremei de împărțire cu rest, există $q, r \in \mathbb{Z}$, $0 \leq r < n$, așa încât x = nq + r. De aici se obține $r = x - nq \in H$, de unde, conform definiției lui n, r = 0. Prin urmare, $x = nq \in n\mathbb{Z}$, deci $H \subset n\mathbb{Z}$. \square

6. Morfisme de grupuri

Definiția 36. Fie G și Γ două grupuri (în notație multiplicativă). O funcție $f: G \to \Gamma$ se numește **morfism de grupuri** dacă: $\forall x, y \in G \ f(xy) = f(x)f(y)$.

Vom nota cu $\operatorname{Hom}_{\operatorname{Grp}}(G,\Gamma)$ mulţimea morfismelor de grupuri de la G la Γ . În cazul în care este subînţeles faptul că ne referim la structuri de grup vom scrie, pe scurt, $\operatorname{Hom}(G,\Gamma)$.

Propoziția 37. Fie $f: G \to \Gamma$ un morfism de grupuri. Atunci:

- a) $f(e_{G}) = e_{\Gamma}$.
- b) $\forall x \in G \ f(x') = f(x)'$.
- c) $\forall x \in G \ \forall n \in \mathbb{Z} \quad f(x^n) = f(x)^n$.

Temă: Demonstrați propoziția 37!

Exemplul 38. Pentru orice grup G, funcția identică a lui G este morfism de grupuri.

Exemplul 39. Pentru orice două grupuri G şi Γ , funcția $u: G \to \Gamma$, $u(x) = e_{\Gamma}$ este morfism de grupuri.

Exemplul 40. Dacă $H \leq G$, funcția $j: H \rightarrow G$, j(x) = x este morfism de grupuri.

Temă: Demonstrați afirmațiile de la exemplele 38, 39 și 40!

Definiția 41. Morfismul din exemplul 40 se numește injecția canonică a lui H în G.

Propoziția 42. Dacă $f: G \to \Gamma$ şi $g: \Gamma \to \Delta$ sunt morfisme de grupuri, atunci $g \circ f$ este morfism de grupuri.

Temă: Demonstrați propoziția 37!

Definiția 43. Fie G și Γ două grupuri. Un morfism de grupuri $f: G \to \Gamma$ se numește **izomorfism** dacă există un morfism de grupuri $g: \Gamma \to G$ cu proprietatea că $f \circ g = \operatorname{id}_{\Gamma}$ și $g \circ f = \operatorname{id}_{G}$.

Exemplul 44. Pentru orice grup G, funcția identică a lui G este izomorfism de grupuri.

Exemplul 45. Pentru orice izomorfism f de grupuri, f^{-1} este izomorfism de grupuri.

Propoziția 46. $f: G \to \Gamma$ este izomorfism de grupuri dacă și numai dacă f este morfism bijectiv de grupuri.

 $Demonstrație: "\Rightarrow": Evident.$

" \Leftarrow ": Fie $z,t\in \Gamma$. Punem $x=f^{-1}(z)$ și $y=f^{-1}(t)$. Atunci $f^{-1}(zt)=f^{-1}(f(x)f(y))=f^{-1}(f(xy))=xy=f^{-1}(z)f^{-1}(t)$. \square

Definiția 47. Un morfism de grupuri $f:G\to G$ se numește **endomorfism** al lui G.

Vom nota cu $\operatorname{End}_{\operatorname{Grp}}(G)$ mulţimea endomorfismelor de grup ale lui G. În cazul în care este subînţeles faptul că ne referim la structura de grup a lui G vom scrie, pe scurt, $\operatorname{End}(G)$.

6 G. MINCU

Observația 48. $\operatorname{End}_{\operatorname{Grp}}(G) = \operatorname{Hom}_{\operatorname{Grp}}(G, G)$.

Definiția 49. Un izomorfism de grupuri $f: G \to G$ se numește **automorfism** al lui G.

Vom nota cu $\operatorname{Aut}_{\operatorname{Grp}}(G)$ mulţimea automorfismelor de grup ale lui G. În cazul în care este subînţeles faptul că ne referim la structura de grup a lui G vom scrie, pe scurt, $\operatorname{Aut}(G)$.

7. Morfisme şi subgrupuri

Propoziția 50. Fie $f:G\to \Gamma$ un morfism de grupuri, $H\le G$ și $K\le \Gamma$. Atunci:

- a) $f(H) \leq \Gamma$.
- b) $f^{-1}(K) \leq G$.

Demonstrație: a) Fie $y_1, y_2 \in f(H)$. Atunci, există $x_1, x_2 \in H$ astfel încât $y_1 = f(x_1)$ și $y_2 = f(x_2)$. Deducem că $y_1y_2' = f(x_1)f(x_2)' = f(x_1x_2') \in f(H)$.

b) Fie $x_1, x_2 \in f^{-1}(K)$. Atunci $f(x_1x_2') = f(x_1)f(x_2)' \in K$, deci $x_1x_2' \in f^{-1}(K)$. \square

Nucleul și imaginea unui morfism. Considerațiile din acest paragraf se referă la un morfism de grupuri $f: G \to \Gamma$.

Definiția 51. Mulțimea $\{x \in G : f(x) = e_{\Gamma}\}$ se numește **nucleul** lui f și se notează ker f.

Observația 52. Deoarece $\ker f = f^{-1}(\{e_{\scriptscriptstyle \Gamma}\})$, din propoziția 50 deducem $\ker f \leq G$.

Propoziția 53. Morfismul f este injectiv dacă și numai dacă $\ker f = \{e_G\}.$

Demonstrație: "⇒": Dacă $x \in \ker f$, $f(x) = e_{\Gamma} = f(e_G)$; din injectivitatea lui f deducem că $x = e_G$.

" \Leftarrow ": Fie $x_1, x_2 \in G$ astfel ca $f(x_1) = f(x_2)$. Atunci $f(x_1x_2') = e_\Gamma$, de unde $x_1x_2' \in \ker f$. Rezultă că $x_1x_2' = e_G$, deci $x_1 = x_2$. \square

Observația 54. Conform propoziției 50, $\text{Im} f \leq \Gamma$.

Propoziția 55. Morfismul f este surjectiv dacă și numai dacă $\text{Im} f = \Gamma$.

Teorema 56. Fie $f: G \to \Gamma$ un morfism surjectiv de grupuri. Notăm $\mathcal{H} = \{H \leq G: H \supset \ker f\}$ şi $\mathcal{K} = \{K: K \leq \Gamma\}$. Atunci funcțiile $\Phi: \mathcal{H} \to \mathcal{K}, \ \Phi(H) = f(H)$ şi $\Psi: \mathcal{K} \to \mathcal{H}, \ \Psi(K) = f^{-1}(K)$ sunt (bijective şi) inverse una celeilalte şi păstrează incluziunile.

Propoziția 57. Fie H o submulțime nevidă a lui \mathbb{Z}_n . Atunci $H \leq \mathbb{Z}_n$ dacă și numai dacă există $d \in \mathbb{N}$, d|n, astfel încât $H = \hat{d} \cdot \mathbb{Z}_n$.

Bibliografie

- [1] T. Dumitrescu, Algebra, Ed. Universității din București, 2006.
- [2] I. D. Ion, N. Radu, Algebră, Ed. Didactică și Pedagogică, București, 1981.
- [3] C. Năstăsescu, C. Niţă, C. Vraciu, *Bazele algebrei*, Ed. Academiei, Bucureşti, 1986.