Sprawozdanie z ćw 84 WYZNACZANIE DŁUGOŚCI FALI ŚWIETLNEJ ZA POMOCĄ SIATKI DYFRAKCYJNEJ

Michał Puchyr

22 marca 2023

1 Cel ćwiczenia

- Wyznaczenie długości fali emisji lasera lub innego źródła światła monochromatycznego
- Wyznaczenie stałej siatki dyfrakcyjnej

2 Opis ćwiczenia

2.1 Wstęp teoretyczny

Działanie siatki dyfrakcyjnej polega na wykorzystaniu zjawiska dyfrakcji i interferencji światła do uzyskania jego widma. W tym celu pomiędzy źródłem światła a ekranem umieszcza się siatkę dyfrakcyjną. Na ekranie uzyskuje się w ten sposób widmo światła.

Przyrządy i materiały wykorzystane do pomiarów :

- Transmisyjne siatki dyfrakcyjne (S): typ "A" -50 linii na milimetr oraz typ "B"
- Laser emitujący zielone światło (PM)
- Ekran ze skalą milimetrową (E)
- Ława optyczna ze skalą milimetrową
- Szczelina (O)

Schemat układu eksperymentalnego

3 Pomiary układu

Wyniki pomiarów dla wyznaczenia dł. fali linii monochromatycznej źródła						
$L_i(mm)$	$\mathrm{u}(\mathrm{L}_i)(\mathrm{mm})$	n	$x_{lni}(mm)$	$u(x_{lni})(mm)$	$x_{lpi}(mm)$	$u(\mathbf{x}_{lpi})(\mathbf{mm})$
300	0,58	1	8	2	8	2
	0,58	2	17	2	17	2
	0,58	3	24	2	24	2
350	0,58	1	9	2	9	2
	0,58	2	19	2	19	2
	0,58	3	28	2	28	2
400	0,58	1	11	2	11	2
	0,58	2	22	2	22	2
	0,58	3	33	2	32	2
450	0,58	1	13	2	13	2
	0,58	2	24	2	24	2
	0,58	3	37	2	37	2
500	0,58	1	14	2	14	2
	0,58	2	27	2	26	2
	0,58	3	40	2	40	2

Wyniki pomiarów dla wyznaczenia stałej siatki dyfrakcyjnej					
$L_i(mm)$	$\mathrm{u}(\mathrm{L}_i)(\mathrm{mm})$	$x_{li}(mm)$	$u(\mathbf{x}_{li})(\mathbf{mm})$	$x_{pi}(mm)$	$u(\mathbf{x}_{pi})(\mathbf{mm})$
50	0,58	32	2	32	2
80	0,58	49	2	49	2
110	0,58	69	2	69	2
140	0,58	87	2	87	2
170	0,58	105	2	106	2
200	0,58	125	2	125	2
230	0,58	143	2	144	2
260	0,58	162	2	162	2
290	0,58	181	2	181	2
320	0,58	200	2	200	2
350	0,58	218	2	217	2
380	0,58	237	2	238	2
410	0,58	255	2	255	2
440	0,58	275	2	275	2
470	0,58	295	2	295	2

Wyniki obliczeń dla wyznaczenia dł. fali linii monochromatycznej źródła						
$L_{n,i}(mm)$	$\mathrm{u}(\mathrm{L}_{n,i})(\mathrm{mm})$	$\overline{x}_{n,i}$	$u(\overline{x}_{ini})(mm)$	$\sin\Theta$	$u(\sin\Theta)$	$\lambda(nm)$
300	0,58	8	2	0,027	0,007	540,00
300	0,58	17	2	0,057	0,007	570,00
300	0,58	24	2	0,080	0,007	533,34
350	0,58	9	2	0,026	0,006	520,00
350	0,58	19	2	0,055	0,006	550,00
350	0,58	28	2	0,080	0,006	533,34
400	0,58	11	2	0,028	0,005	560,00
400	0,58	22	2	0,055	0,005	550,00
400	0,58	33	2	0,081	0,005	540,00
450	0,58	13	2	0,029	0,005	580,00
450	0,58	24	2	0,054	0,005	540,00
450	0,58	37	2	0,082	0,005	546,67
500	0,58	14	2	0,028	0,004	560,00
500	0,58	27	2	0,053	0,004	530,00
500	0,58	40	2	0,080	0,004	533,34
Wartość średnia: $\overline{\lambda}(nm) =$						545,78
Odchylenie standardowe: $u(\overline{\lambda})(nm) =$					58,58	

4 Wyniki obliczeń

4.1 Przykładowe obliczenia

Obliczenie średniej wartości odległości linii dyfrakcyjnej od pozycji zerowego rzędu dyfrakcji :

Wyniki obliczeń dla wyznaczenia stałej siatki dyfrakcyjnej						
$L_i(mm)$	$\overline{x}_i(\text{mm})$	$\mathrm{u}(\overline{x}_i)(\mathrm{mm})$	$\sin\Theta$	$u_c(\sin\Theta)$		
50	32	2	0,540	0,025		
80	49	2	0,523	0,016		
110	69	2	0,532	0,012		
140	87	2	0,528	0,009		
170	106	2	0,530	0,008		
200	125	2	0,530	0,007		
230	144	2	0,531	0,006		
260	162	2	0,529	0,005		
290	181	2	0,530	0,005		
320	200	2	0,530	0,004		
350	218	2	0,529	0,004		
380	238	2	0,531	0,004		
410	255	2	0,529	0,004		
440	275	2	0,530	0,003		
470	295	2	0,532	0,003		
Wartość	średnia : s	0,530				
Odchyler	nie standa	0,008				
$d(\mu m)$		1029,26				
$u_c(d)(\mu n)$	n) =	111,47				

$$\overline{x}_{n,i} = \frac{x_{nli} + x_{npi}}{2} = \frac{17 + 17}{2} = 17[mm]$$
$$u(\overline{x}_{n,i}) = \frac{u(x_{nli}) + u(x_{npi})}{2} = \frac{2+2}{2} = 2[mm]$$

Obliczenie sinusa kąta ugięcia :

$$\sin \Theta_{n,i} = \frac{\overline{x}_{n,i}}{\sqrt{\overline{x}_{n,i}^2 + L_i^2}} = \frac{8}{\sqrt{8^2 + 300^2}} = 0.02665 \approx 0,027$$

$$u_c(\sin \Theta_{n,i}) = \sqrt{\left(\frac{L_i \overline{x}_{n,i}}{(L_i^2 + \overline{x}_{n,i})^{\frac{3}{2}}}\right)^2 u^2(L) + \left(\frac{L_i^2}{(L_i^2 + \overline{x}_{n,i}^2)^{\frac{3}{2}}}\right)^2 u^2(\overline{x}_{n,i})} =$$

$$= \sqrt{()}$$