Q1. Let a_1, a_2, a_3, \ldots be a G.P. of increasing positive terms. If $a_1a_5 = 28$ and $a_2 + a_4 = 29$, then a_6 is equal to:

(1)628

- (3) 526 ngo /// mathongo /// mathongo (4) 784 athongo /// mathongo /// mathongo

Q2. Let x = x(y) be the solution of the differential equation $y^2 dx + \left(x - \frac{1}{y}\right) dy = 0$. If x(1) = 1, then $x\left(\frac{1}{2}\right)$ is:

 $(1) \frac{1}{2} + e$

 $(3) \ 3 - e$

 $(4) \frac{3}{2} + e$

Q3. Two balls are selected at random one by one without replacement from a bag containing 4 white and 6 black balls. If the probability that the first selected ball is black, given that the second selected ball is also black, is $\frac{m}{n}$, where gcd(m, n) = 1, then m + n is equal to :

- $^{\prime\prime}$ mathongo $^{\prime\prime\prime}$ mathongo $^{\prime\prime\prime}$ mathongo $^{\prime\prime\prime}$ mathongo
- (3) 13

Q4. The product of all solutions of the equation $e^{5(\log_e x)^2 + 3} = x^8, x > 0$, is:

(1) $e^{8/5}$

- $(3) e^{2}$
- ///. mathongo ///. mathongo ///. mathongo ///. mathongo

Q5. Let the triangle PQR be the image of the triangle with vertices (1,3),(3,1) and (2,4) in the line x+2y=2. If the centroid of $\triangle PQR$ is the point (α, β) , then $15(\alpha - \beta)$ is equal to :

- mathongo /// mathongo (2) (2) (2) (4) (2) (2) (3) (4) (2) (4) (2) (4) (2) (4)

Q6. Let for $f(x) = 7 \tan^8 x + 7 \tan^6 x - 3 \tan^4 x - 3 \tan^2 x$, $I_1 = \int_0^{\pi/4} f(x) dx$ and $I_2 = \int_0^{\pi/4} x f(x) dx$. Then $7I_1 + 12I_2$ is equal to : (1) $2_{\rm hongo}$ //// mathongo /// mathongo (2) $1_{\rm mathongo}$ /// mathongo /// mathongo /// mathongo

Q7. Let the parabola $y = x^2 + px - 3$, meet the coordinate axes at the points P, Q and R. If the circle C with centre at (-1, -1) passes through the points P, Q and R, then the area of $\triangle PQR$ is :

- (1) 7 nongo /// mathongo /// mathongo (2) 4 mathongo /// mathongo /// mathongo

(3)6

 $(4)\ 5$

Q8. Let $L_1: \frac{x-1}{2} = \frac{y-2}{3} = \frac{z-3}{4}$ and $L_2: \frac{x-2}{3} = \frac{y-4}{4} = \frac{z-5}{5}$ be two lines. Then which of the following points lies on the line of the shortest distance between L_1 and L_2 ? $(2)\left(-\frac{5}{3},-7,1\right)$ mathongo mathongo

(1) $\left(\frac{14}{3}, -3, \frac{22}{3}\right)$

 $(3) (2, 3, \frac{1}{3})$

(4) $(\frac{8}{3}, -1, \frac{1}{3})$

Q9. Let f(x) be a real differentiable function such that f(0) = 1 and f(x + y) = f(x)f'(y) + f'(x)f(y) for all $x,y\in\mathbf{R}$. Then $\sum_{\mathrm{n=1}}^{100}\log_{\mathrm{e}}f(\mathrm{n})$ is equal to :

(1) 2525

(2) 5220

(3) 2384

(4) 2406

Q10. From all the English alphabets, five letters are chosen and are arranged in alphabetical order. The total number of ways, in which the middle letter is 'M', is:

(1) 36

(3) 37

JEE Main 2025 Jan	uary			watnone
(1) 5148 (3) 4356		(2) 6084 mongo (4) 14950		
	ncipal values of the inverse trigonor $\left(\left(\sec^{-1}x\right)^2+\left(\csc^{-1}x\right)^2\right)$ is :	metric functions, the sum	of the maximum ar	nd the minimum
(1) $24\pi^2$ (3) $31\pi^2$	mathongo /// mathon	(2) $22\pi^2$ (4) $18\pi^2$		
Q12. Let $f: \mathbf{R} \rightarrow$	R be a twice differentiable function			
f'(0)=4a a	f nd f satisfies $f''(x) - 3af'(x) - f$ f f f f f f f f f			
(1) $e^2 - 1$ (3) $e^4 + 1$		(2) $e^2 + 1$ (4) $e^4 - 1$		
Q13. The area of the	he region, inside the circle $(x-2)$	$(\overline{3})^2 + y^2 = 12$ and outside	le the parabola $y^2 =$	$=2\sqrt{3}x$ is : hongo
$(1) 3\pi + 8$		(2) $6\pi - 16$		
$(3) 3\pi - 8$		(4) $6\pi - 8$ ongo		
Q14. Let the foci of latus-rectum	of a hyperbola be $(1,14)$ and $(1,-1)$ is:	2). If it passes through th	e point (1, 6), then	the length of its
$(1) \frac{24}{5}$		$(2) \frac{25}{6}$		
$(3) \frac{144}{5}$		(4) $\frac{288}{5}$ athongo		
Q15. If $\sum_{r=1}^{n} T_r =$	$=\frac{(2n-1)(2n+1)(2n+3)(2n+5)}{64}$, then $\lim_{n \to \infty} \frac{(2n-1)(2n+1)(2n+3)(2n+5)}{64}$	$\rightarrow \infty \sum_{r=1}^{n} \left(rac{1}{T_r} ight)$ is equal	to: mathongo	
(1) 0		$(2) \frac{2}{3}$		
/// n(3) 1 ongo		go (4) $\frac{1}{3}$ mathongo		
/// mathana	sed three times. Let X denote the nuriance of X , then the value of 64 $(\mu$	go /// mathanga	ws a head. If μ and	
(1) 51		(2) 64		
(3) 32		(4) 48 athongo		
O17. The number	of non-empty equivalence relations	on the set $\{1, 2, 3\}$ is:		
(1) 6	mathongo /// mathon	(2) 5		
(3) 7		(4) 4		
	/// mathongo /// mathon			mathongo
circle that ha	Fradius 2 lies in the second quadrants centre at the point $(2, 5)$ and intersections of r is the interval (α, β) , then 3β	sects the circle C at exact		
(3) 12		(4) 14		
Q19. Let $A=\{1,2\}$	$\{2,3,\ldots,10\}$ and $B=ig\{rac{m}{n}:m,n\in$	$\in A, m < n ext{ and } \gcd(m, n)$	$n)=1\}.$ Then $n(B)$	is equal to:

(2) 31

(4) 29

Q20. Let z_1, z_2 and z_3 be three complex numbers on the circle |z|=1 with $\arg(z_1)=\frac{-\pi}{4}$, $\arg(z_2)=0$ and $\arg(z_3) = \frac{\pi}{4}$. If $|z_1\overline{z}_2 + z_2\overline{z}_3 + z_3\overline{z}_1|^2 = \alpha + \beta\sqrt{2}$, $\alpha, \beta \in \mathbf{Z}$, then the value of $\alpha^2 + \beta^2$ is :

- n(1).24ngo ///. mathongo ///. mathongo (2).29nathongo ///. mathongo ///. mathongo

(3) 41

(4) 31

Q21. Let A be a square matrix of order 3 such that $\det(A) = -2$ and $\det(3\operatorname{adj}(-6\operatorname{adj}(3A))) = 2^{m+n} \cdot 3^{mn}, m > n$. Then 4 m + 2 n is equal to

Q23. Let \vec{c} be the projection vector of $\vec{b} = \lambda \hat{i} + 4\hat{k}$, $\lambda > 0$, on the vector $\vec{a} = \hat{i} + 2\hat{j} + 2\hat{k}$. If $|\vec{a} + \vec{c}| = 7$, then the

area of the region enclosed by y=f(x) and the line y=-20 is $\alpha+\beta\sqrt{3}, \alpha, \beta\in Z$, then the value of $\alpha+\beta$ is

Q25. Let $L_1: \frac{x-1}{3} = \frac{y-1}{-1} = \frac{z+1}{0}$ and $L_2: \frac{x-2}{2} = \frac{y}{0} = \frac{z+4}{\alpha}$, $\alpha \in \mathbf{R}$, be two lines, which intersect at the point B. If P is the foot of perpendicular from the point A(1,1,-1) on L_2 , then the value of 26α (PB)² is ____

Q26. An electron is made to enter symmetrically between two parallel and equally but oppositely charged metal plates, each of 10 cm length. The electron emerges out of the electric field region with a horizontal component of velocity 10⁶ m/s. If the magnitude of the electric field between the plates is 9.1 V/cm, then the vertical component of velocity of electron is (mass of electron = 9.1×10^{-31} kg and charge of electron $= 1.6 \times 10^{-19} \mathrm{C}$

- (1) $0_{\rm ong}$ // mathong // mathong (2) 1×10^6 m/s // mathong // mathong (3) 16×10^6 m/s (4) 16×10^4 m/s
- (3) $16 \times 10^6 \text{ m/s}$

Q27. Given below are two statements: Statement-I: The equivalent emf of two nonideal batteries connected in parallel is smaller than either of the two emfs. Statement-II: The equivalent internal resistance of two nonideal batteries connected in parallel is smaller than the internal resistance of either of the two batteries. In the light of the above statements, choose the correct answer from the options given below.

- (1) Both Statement-I and Statement-II are false (2) Statement-I is false but Statement-II is true of thomselves
- (3) Both Statement-I and Statement-II are true
- (4) Statement-I is true but Statement-II is false

Q28. A uniform circular disc of radius 'R' and mass 'M' is rotating about an axis perpendicular to its plane and passing through its centre. A small circular part of radius R/2 is removed from the original disc as shown in