Алгебра и геометрия

Лисид Лаконский

November 2022

Содержание

1	Алгебра и геометрия - 23.11.2022			2
	1.1	Прямая в пространстве		
		1.1.1	Уравнения прямой в пространстве	2
		1.1.2	Связь между направляющим вектором и векторами	
			нормали	2
		1.1.3	Косинус угла между двумя прямыми	
		1.1.4	Угол между прямой и плоскостью	2
		1.1.5	Примеры решения задач	3

1 Алгебра и геометрия - 23.11.2022

1.1 Прямая в пространстве

Вектор \overrightarrow{S} , являющийся коллинеарным данной прямой, называется направляющим.

1.1.1 Уравнения прямой в пространстве

 $\frac{x-x_0}{m}=\frac{y-y_0}{n}=\frac{z-z_0}{p},$ где $M_0(x_0;y_0;z_0)$ - фиксированная точка, лежащая на прямой; $\overrightarrow{S}=\{m;n;p\},\ m^2+n^2+p^2\neq 0$ - каноническое уравнение прямой.

 $\frac{x-x_1}{x_2-x_1}=\frac{y-y_1}{y_2-y_1}=\frac{z-z_1}{z_2-z_1}$ - уравнение прямой через две точки $M_1(x_1;y_1;z_1)$ и $M_2(x_2;y_2;z_2)$

Уравнение прямой, заданной **параметрически** $(t \in (-\infty; +\infty))$:

$$\begin{cases} x = x_0 + mt \\ y = y_0 + nt \\ z = z_0 + pt \end{cases}$$
 (1)

Уравнение прямой, полученной в результате **пересечения двух плоскостей** $(\overrightarrow{N_1} = \{A_1; B_1; C_1\} \neq \lambda \overrightarrow{N_2} = \{A_2; B_2; C_2\})$:

$$\begin{cases}
A_1x + B_1y + C_1z + D_1 = 0 \\
A_2x + B_2y + C_2z + D_2 = 0
\end{cases}$$
(2)

1.1.2 Связь между направляющим вектором и векторами нормали

Направляющий вектор \overrightarrow{S} прямой $l\colon\overrightarrow{N_1}=\{A_1;B_1;C_1\}$ и $\overrightarrow{N_2}=\{A_2;B_2;C_2\}\colon S=\overrightarrow{N_1}\times\overrightarrow{N_2}$

1.1.3 Косинус угла между двумя прямыми

Даны две прямые:
$$l_1$$
: $\frac{x-x_1}{m_1}=\frac{y-y_1}{n_1}=\frac{z-z_1}{p_1},\ l_2$: $\frac{x-x_2}{m_2}=\frac{y-y_2}{n_2}=\frac{z-z_2}{p_2}$ $\cos(l_1;l_2)=\pm\frac{\overrightarrow{S_1}*\overrightarrow{S_2}}{|\overrightarrow{S_1}|*|\overrightarrow{S_2}|}=\pm\frac{m_1m_2+n_1n_2+p_1p_2}{\sqrt{m_1^2+n_1^2+p_1^2*\sqrt{m_2^2+n_2^2+p_2^2}}}\geq 0$

1.1.4 Угол между прямой и плоскостью

Даны прямая
$$l \colon \frac{x-x_0}{m} = \frac{y-y_0}{n} = \frac{z-z_0}{p}$$
 и плоскость $\alpha \colon Ax + By + Cz + D = 0$
$$\angle(l;\alpha) = \pm \frac{\overrightarrow{S}*\overrightarrow{N}}{|\overrightarrow{S}|*|\overrightarrow{N}|} = \pm \frac{Am + Bn + Cp}{\sqrt{A^2 + B^2 + C^2}*\sqrt{m^2 + n^2 + p^2}}$$

Примеры решения задач

Пример 1. Составьте канонические и параметрические уравнения высоты l, опущенной на плоскость (BCD) в пирамиде ABCD, если т. A(0;5;-2), T. B(1;2;-1), T. C(4;5;0), T. D(1;1;1)

$$\overrightarrow{BC} = \{3; 3; 1\}, \overrightarrow{BD} = \{0; -1; 2\}, \overrightarrow{S} = \overrightarrow{BC} \times \overrightarrow{BD} = \begin{vmatrix} \overrightarrow{i} & \overrightarrow{j} & \overrightarrow{k} \\ 3 & 3 & 1 \\ 0 & -1 & 2 \end{vmatrix} = \{7; 6; -3\}$$
 Найдем каноническое уравнение:
$$\frac{x - x_0}{m} = \frac{y - y_0}{n} = \frac{z - z_0}{p} \iff \frac{x}{7} = \frac{y - y_5}{-6} = \frac{z + 2}{-3},$$

 $\overrightarrow{S} = \{m; n; p\} = \{7; -6; -3\}, M_0(x_0; y_0; z_0) = A(0; 5; -2)$

Найдем параметрическое уравнение данной прямой:

$$\begin{cases} x = x_0 + mt \\ y = y_0 + nt \\ z = z_0 + pt \end{cases} \iff \begin{cases} x = 0 + 7t \\ y = 5 - 6t \\ z = -2 - 3t \end{cases}$$
 (3)

Пример 2. Составьте канонические и параметрические уравнения прямой, проходящей через точку A(3;2;-1) перпендикулярно плоскости

xOz $j=\{0;1;0\}$ - вспомогательный вектор. Найдем каноническое уравнение: $\frac{x-3}{0}=\frac{y-2}{1}=\frac{z+1}{0}$

Найдем параметрическое уравнение данной прямой:

$$\begin{cases} x = 3 \\ y = 2 + t \\ z = -1 \end{cases}$$

$$(4)$$

Пример 3. Найдите угол между прямыми l_1 : $\frac{x-3}{2} = \frac{y+4}{2} = \frac{z-5}{-1}$ и l_2 :

$$\begin{cases} x + y - 2z - 1 = 0 \\ 2x - z + 8 = 0 \end{cases}$$
 (5)

$$\overrightarrow{N_1} = \{1; 1; -2\}, \ \overrightarrow{N_2} = \{2; 0; -1\}, \ \overrightarrow{S_1} = \{2; 2; -1\},$$

$$\overrightarrow{S_2} = \overrightarrow{N_1} \times \overrightarrow{N_2} = \begin{vmatrix} \overrightarrow{i} & \overrightarrow{j} & \overrightarrow{k} \\ 1 & 1 & -2 \\ 2 & 0 & -1 \end{vmatrix} = \{-1; -3; -2\}$$

$$\cos(l_1; l_2) = \pm \frac{\overrightarrow{S_1} * \overrightarrow{S_2}}{|\overrightarrow{S_1}| * |\overrightarrow{S_2}|} = \pm \frac{-2 + (-6) + 2}{3 * \sqrt{14}} = \frac{2}{\sqrt{14}} \approx 0.535, \ \angle(l_1; l_2) \approx 57.7^{\circ}$$