Linear Algebra

Simple Matrix Rules, Eigenvalues & Eigenvectors

Cornelius Weber, WTM

Matrix Computations

The elements of a matrix C = AB are obtained as:

$$c_{mn} = \sum_{q}^{Q} a_{mq} b_{qn}$$

In matrix notation:

$$\left(\begin{array}{ccc} & Q \\ & A \end{array}\right) \left(\begin{array}{ccc} & B & N \\ Q & & \end{array}\right) = \left(\begin{array}{ccc} & N \\ & C & \end{array}\right)$$

columns of A = # rows of B

Special Cases of Matrix Computations 1/2

Dot product

$$AB = ec{a}^{\mathsf{T}} ec{b} = (a_1, \dots, a_Q) \quad \left(egin{array}{c} b_1 \ dots \ b_Q \end{array}
ight) = c \quad (\mathsf{scalar})$$

Tensor product

$$AB = \vec{a}\vec{b}^{\mathsf{T}} = \left(egin{array}{c} a_1 \ dots \ a_M \end{array}
ight) \; \left(b_1, \ldots, b_N
ight) = \left(egin{array}{c} & N \ C \end{array}
ight)$$

Simple Matrix Rules

$$A + B = B + A$$

$$AB \neq BA$$
 (in general)

$$(AB)^{\mathsf{T}} = B^{\mathsf{T}}A^{\mathsf{T}}$$
 (mind the order!)

Special Cases of Matrix Computations 2/2

 \triangleright Scalar a as a 1×1 -matrix

$$\vec{c} = \vec{b}a$$
 or $\vec{c}^T = a\vec{b}^T$

Linear combination of column-vectors

$$A\vec{x} = \begin{pmatrix} \begin{pmatrix} \cdot \\ \vec{a}_1 \\ \cdot \end{pmatrix} \cdots \begin{pmatrix} \cdot \\ \vec{a}_Q \\ \cdot \end{pmatrix} \end{pmatrix} \begin{pmatrix} x_1 \\ \cdot \\ x_Q \end{pmatrix}$$
$$= \begin{pmatrix} \cdot \\ \vec{a}_1 \\ \cdot \end{pmatrix} x_1 + \ldots + \begin{pmatrix} \cdot \\ \vec{a}_1 \\ \cdot \end{pmatrix} x_Q$$

$$A\vec{x} = 0$$
 with $\vec{x} \neq 0$

 \Rightarrow column vectors of A linearly dependent

Implication for a square $N \times N$ -matrix: column vectors do **not** span N-dimensional space.

This is equivalent to that the determinant det(A) = 0.

The determinant of a square matrix is the area of the parallelogram spanned by its row (or column-) vectors (neglecting the sign).

Symmetric Matrix

The Eigenvalue Equation

V is a M-dimensional vector space \mathbb{R} .

A: $V \rightarrow V$ is a linear function ($\approx M \times M$ -matrix).

A real number λ_m is an eigenvalue of A, if there exists a vector $\vec{v}_m \in V$ with $\vec{v}_m \neq 0$, so that:

$$A\vec{v}_m = \lambda_m \vec{v}_m$$

The \vec{v}_m are those vectors which are scaled by A, but not rotated.

 \vec{v}_m is eigenvector $\Rightarrow c \vec{v}_m$ is eigenvector

The Eigenvalue Equation in Matrix Notation

for all M eigenvalues and eigenvectors:

$$AU = U\Lambda$$

or

$$\begin{pmatrix} A \end{pmatrix} \begin{pmatrix} \vec{v}_1 \\ \cdot \\ \cdot \end{pmatrix} \cdots \begin{pmatrix} \vec{v}_M \\ \cdot \\ \cdot \end{pmatrix} \end{pmatrix}$$

$$= \begin{pmatrix} \begin{pmatrix} \vec{v}_1 \\ \cdot \\ \cdot \end{pmatrix} \cdots \begin{pmatrix} \vec{v}_M \\ \cdot \\ \cdot \end{pmatrix} \end{pmatrix} \begin{pmatrix} \lambda_1 & 0 \\ & \ddots \\ & & \lambda_M \end{pmatrix}$$

The Eigenvalue Equation in Matrix Notation

for all M eigenvalues and eigenvectors:

$$AU = U\Lambda$$

- Λ is a diagonal matrix, with the eigenvalues on the diagonal.
- U is a matrix, with the eigenvectors as its columns.
- Mind the order on both sides of the equation!
- M eigenvectors. Reasonable, because in an M-dimensional vector space there are maximally M linear independent vectors.

Let U^{-1} be the inverse matrix of U (i.e. $U^{-1}U = 1$):

$$U^{-1}AU = \Lambda \quad \Leftrightarrow \quad AU = U\Lambda \quad \Leftrightarrow \quad A = U\Lambda U^{-1}$$

Relevance of the Eigenvalue Equation

We have:
$$\vec{y} = A\vec{x}$$

We want:
$$\tilde{y} = \Lambda \tilde{x}$$
 (basis system of eigenvectors)

- ► How to get there: $\vec{y} = U \Lambda U^{-1} \vec{x}$
- ► Left-multiply by U^{-1} : $U^{-1}\vec{y} = \Lambda U^{-1}\vec{x}$
- ▶ Define: $\tilde{y} := U^{-1}\vec{y}$ and $\tilde{x} := U^{-1}\vec{x}$
- ▶ Back-transform: $\vec{y} = U\tilde{y}$ and $\vec{x} = U\tilde{x}$

Symmetric Matrix

orthogonal eigenvectors

Non-Symmetric Matrix

non-orthogonal eigenvectors

Arbitrary Matrix Operation

one positive, one negative eigenvalue

Rotation Matrix

no eigenvector

Orthonormal Vectors 1/2

M vectors $\in \mathbb{R}^M$ are orthonormal if

$$\vec{\mathbf{v}}^i \cdot \vec{\mathbf{v}}^j = \delta_{ij}$$

In matrix notation:

$$\left(\begin{array}{c} (\ldots \vec{v}^1\ldots) \\ \vdots \\ (\ldots \vec{v}^M\ldots) \end{array}\right) \left(\left(\begin{array}{c} \vec{v}^1 \\ \vdots \\ \cdot \end{array}\right) \cdots \left(\begin{array}{c} \vec{v}^2 \\ \vdots \\ \cdot \end{array}\right)\right) = \left(\begin{array}{cc} 1 & & 0 \\ & \ddots & \\ 0 & & 1 \end{array}\right)$$

Orthonormal Vectors 2/2

same as

$$SS^{\mathsf{T}} = \mathbf{1}_{M}$$

equivalent to (by left-multiplying with S^{-1})

$$S^{\mathsf{T}} = S^{-1}$$

Orthogonal eigenvectors may always be scaled to be orthonormal. Relevant for our eigenvectors, whether they span an orthogonal base of \mathbb{R}^M .

A Symmetric Matrix has Orthogonal Eigenvectors

Let $A\vec{v}_j = \lambda_j \vec{v}_j$ and $A\vec{v}_i = \lambda_i \vec{v}_i$ Then:

$$\lambda_j \vec{v}_i^\mathsf{T} \vec{v}_j = \vec{v}_i^\mathsf{T} \lambda_j \vec{v}_j = \vec{v}_i^\mathsf{T} A \vec{v}_j = (A^\mathsf{T} \vec{v}_i)^\mathsf{T} \vec{v}_j \stackrel{\mathsf{symm}}{=} (A \vec{v}_i)^\mathsf{T} \vec{v}_j = \lambda_i \vec{v}_i^\mathsf{T} \vec{v}_j$$

If $\lambda_j \neq \lambda_i$ then it has to be $\vec{v}_i^\mathsf{T} \vec{v}_j = 0$.

Finding the Eigenvalues – in Theory

The eigenvalue equation:

$$(A - \lambda_m \mathbb{1}) \vec{v}_m = 0$$

- ightharpoonup System of equations for \vec{v}_m
- Non-trivial solutions (i.e. $\vec{v}_m \neq 0$) can only exist if

$$det(A - \lambda_m 1) = 0$$

- ▶ Computing this determinant results in a polynomial in λ_m , the characteristic polynomial of A.
- lts solutions are the eigenvalues $\{\lambda_m\}$ of A.

Finding the Eigenvectors – in Theory

Assume we have found the Eigenvalues. For each eigenvalue λ_m solve for \vec{v}_m :

$$(A - \lambda_m \mathbf{1}) \vec{v}_m = 0$$

- ightharpoonup System of equations for \vec{v}_m
- $ightharpoonup det = 0 \Rightarrow$ solution not unique
- direction but not length of eigenvectors given

Finding Eigenvalues & Eigenvectors – Practical Example

```
python
import numpy
A = \text{numpy.array}([[1,2,3],[3,2,1],[1,0,-1]])
w, v = numpy.linalg.eig(A)
W
array([ 4.316624e+00, -2.316624e+00, 1.930415e-17])
V
array([[ 0.58428153, 0.73595785, 0.40824829],
        [0.80407569, -0.38198836, -0.81649658],
        [0.10989708, -0.55897311, 0.40824829]])
```

Towards Principal Component Analysis (PCA)

Given N random values $\{x_n\}$ with mean μ . The variance is:

$$\sigma^2 = \frac{1}{N} \sum_{n=1}^{N} (x_n - \mu)^2$$

Given N random M-dimensional vectors \vec{x}_n with mean $\vec{\mu}$. The covariance between coordinate axes i and j is:

$$Cov_{ij} = \frac{1}{N} \sum_{n=1}^{N} (x_{in} - \mu_i) \cdot (x_{jn} - \mu_j)$$

All covariances make up the covariance matrix:

$$Cov := \frac{1}{N} \sum_{n=1}^{N} (\vec{x}_n - \vec{\mu}) (\vec{x}_n - \vec{\mu})^T$$

In the following, let's assume for simplicity: $\vec{\mu} = 0$.

PCA - Cov Eigenvectors Form an Orthonormal Basis

The covariance matrix is symmetric, i.e. $Cov_{ij} = Cov_{ji}$.

 \Rightarrow Cov has orthogonal eigenvectors.

Let us normalize every eigenvector to length 1.

 \Rightarrow Arranging as column vectors to form an orthonormal matrix U.

The eigenvalue equation is (assume as solved):

Cov
$$U = U \Lambda$$

The diagonal matrix Λ has the eigenvalues of Cov on the diagonal.

The column vectors of U are the orthonormal eigenvectors of Cov.

PCA - Express Data in Orthonormal Basis

The normalized eigenvectors $\{\hat{v}_m\}$ set up an orthonormal base.

Each data vector \vec{x}_n can be expressed by coordinates f_{mn} on the coordinate axes \hat{v}_m .

The coordinate on axis m is obtained by a projection (dot product) of the data point onto this axis:

$$f_{mn} = \hat{v}_m^T \vec{x}_n$$

This may be done for all coordinates:

$$\vec{f}_n = U^{\mathsf{T}} \vec{x}_n$$

and the backtransform is $\vec{x}_n = U\vec{f}_n$. $(U^{-1} = U^T \text{ for orthonormal matrices.})$

PCA: Eigenvalues = Variances along the Principal Axes

Let's compute the variance of the data along an axis \hat{v}_m :

$$\sigma_{\hat{v}_{m}}^{2} = \frac{1}{N} \sum_{n} f_{mn}^{2}$$

$$= \frac{1}{N} \sum_{n} (\vec{x}_{n}^{\mathsf{T}} \hat{v}_{m}) (\vec{x}_{n}^{\mathsf{T}} \hat{v}_{m})$$

$$= \frac{1}{N} \sum_{n} \hat{v}_{m}^{\mathsf{T}} \vec{x}_{n} \vec{x}_{n}^{\mathsf{T}} \hat{v}_{m}$$

$$= \hat{v}_{m}^{\mathsf{T}} \left(\frac{1}{N} \sum_{n} \vec{x}_{n} \vec{x}_{n}^{\mathsf{T}} \right) \hat{v}_{m}$$

$$= \hat{v}_{m}^{\mathsf{T}} Cov \hat{v}_{m}$$

$$= \lambda_{m} \hat{v}_{m}^{\mathsf{T}} \hat{v}_{m}$$

$$= \lambda_{m}$$

We used: \hat{v}_m is eigenvector of Cov with eigenvalue λ_m .

Z-score Data Normalization

Many data-driven algorithms suffer from unequal ranges of individual data variables.

As simple solution apply Z-score normalization:

$$\vec{x} \mapsto \frac{\vec{x} - \vec{\mu}}{\sigma}$$

But variables are still highly correlated!

Figure source: http://cs231n.github.io/neural-networks-2/

Data Whitening

PCA provides us the eigendecomposition $Cov = U \wedge U^{-1}$.

 $U^{-1} = U^T$ projects into the coordinate system of eigenvectors. There, covariances for $\hat{v}_m \neq \hat{v}_k$ are zero: variables are decorrelated.

Then divide by corresponding variance (= eigenvalue) for each axis.

The full whitening transform is (to be read from back to front):

$$\vec{x} \mapsto \Lambda^{-1} U^T (\vec{x} - \vec{\mu})$$

Figure source: http://cs231n.github.io/neural-networks-2/