

МИНОБРНАУКИ РОССИИ

федеральное государственное бюджетное образовательное учреждение

высшего образования

«Московский государственный технологический университет «СТАНКИН»

(ФГБОУ ВО «МГТУ «СТАНКИН»)

Кафедра «Прикладная математика»

Виноградова Ю. А.

Лекции по дисциплине «Математика», 2 семестр

для студентов МГТУ «СТАНКИН», обучающихся по направлениям 12.03.01 «Приборостроение», 27.03.01 «Стандартизация и метрология», 27.03.02 «Управление качеством», 27.03.03 «Управление в технических системах»

Москва 2021 г.

Лекция 1

Возрастание и убывание функции

Теорема (необходимое и достаточное условие постоянства функции на интервале (отрезке)). Пусть функция y = f(x) определена и непрерывна на интервале (a,b)(или отрезке [a,b]) и дифференцируема на интервале (a,b). Функция y = f(x) является постоянной на интервале (a,b)(или отрезке [a,b]) тогда и только тогда $f'(x) = 0 \ \forall x \in (a,b)$.

◄Доказательство. Достаточность. Зафиксируем точку $x_0 \in (a,b)$. Пусть $x \in (a,b)$ (или $x \in [a,b]$). По теореме Лагранжа $f(x) - f(x_0) = f'(c)(x - x_0) = 0$, поскольку $f'(x) = 0 \ \forall x \in (a,b)$. Следовательно, $f(x) = f(x_0) \ \forall x \in (a,b)$ (или $\forall x \in [a,b]$).

Необходимость. Если $f(x) = C, C = \text{const}, \forall x \in (a,b)$ (или $\forall x \in [a,b]$), то $f'(x) = 0 \ \forall x \in (a,b)$ по определению производной.

Теорема (достаточное условие возрастания (убывания) функции на интервале (отрезке)). Пусть функция y = f(x) определена и непрерывна на интервале (a,b) (или отрезке [a,b]) и дифференцируема на интервале (a,b). Если f'(x) > 0 $\forall x \in (a,b)$, то функция f(x) возрастает на интервале (a,b) (отрезке [a,b]). Если $f'(x) < 0 \ \forall x \in (a,b)$, то функция f(x) убывает на интервале (a,b) (отрезке [a,b]).

◄Доказательство. Пусть $x_1 \in (a,b), x_2 \in (a,b), x_1 < x_2$. Если f'(x) > 0 $\forall x \in (a,b)$, то по теореме Лагранжа $f(x_2) - f(x_1) = f'(c)(x_2 - x_1) > 0$. Значит, $f(x_2) > f(x_1)$. Аналогично, если $f'(x) < 0 \ \forall x \in (a,b)$, то по теореме Лагранжа $f(x_2) - f(x_1) = f'(c)(x_2 - x_1) < 0$ и $f(x_2) < f(x_1)$. ▶

Замечание. Если функция f(x) возрастает на интервале (a,b) (отрезке [a,b]), то $f'(x) \ge 0 \ \forall x \in (a,b)$. Если функция f(x) убывает на интервале (a,b) (отрезке [a,b]), то $f'(x) \le 0 \ \forall x \in (a,b)$.

Доказательство. Пусть функция $f\left(x\right)$ возрастает на интервале $\left(a,b\right)$. Зафиксируем точку $x_{0}\in\left(a,b\right)$. Если $x>x_{0}$, то $f\left(x\right)>f\left(x_{0}\right)$, $f'\left(x_{0}\right)=\lim_{x\to x_{0}}\frac{\Delta y}{\Delta x}=\lim_{x\to x_{0}}\frac{f\left(x\right)-f\left(x_{0}\right)}{x-x_{0}}\geq0$. Если $x< x_{0}$, то $f\left(x\right)< f\left(x_{0}\right)$, $f'\left(x_{0}\right)=\lim_{x\to x_{0}}\frac{\Delta y}{\Delta x}=\lim_{x\to x_{0}}\frac{f\left(x\right)-f\left(x_{0}\right)}{x-x_{0}}\geq0$.

Пример. Функция $y = x^3$ возрастает на [-1,1], но производная $y' = 3x^2 \ge 0$

•

Правило Лопиталя

Рассмотрим вычисление предела $\lim_{x\to a} \frac{f(x)}{g(x)}$, где $a\in\mathbb{R}, a=\infty, -\infty, +\infty$ и

либо
$$\lim_{x\to a} g(x) = 0$$
, $\lim_{x\to a} f(x) = 0$, либо $\lim_{x\to a} g(x) = \infty$, $\lim_{x\to a} f(x) = \infty$.

Речь идет о раскрытии неопределенностей $\frac{0}{0}$ и $\frac{\infty}{\infty}$. Сформулируем несколько утверждений.

Теорема. Пусть функции f(x) и g(x) дифференцируемы в проколотой окрестности $\dot{U}(a)$ точки $a \in \mathbb{R}$, причем $g'(x) \neq 0$. Пусть $\lim_{x \to a} g(x) = 0$, f'(x)

 $\lim_{x \to a} f(x) = 0$. Тогда, если существует конечный предел $\lim_{x \to a} \frac{f'(x)}{g'(x)} = A$, $A \in \mathbb{R}$, то

существует и $\lim_{x \to a} \frac{f(x)}{g(x)} = A$.

Короткая запись:
$$\lim_{x \to a} \frac{f(x)}{g(x)} = \lim_{x \to a} \frac{f'(x)}{g'(x)} = A.$$

extstyle ex

$$a: f(a) = \lim_{x \to a} f(x) = 0$$
, $g(a) = \lim_{x \to a} g(x) = 0$. Поскольку $\lim_{x \to a} \frac{f'(x)}{g'(x)} = A$, то $\forall \varepsilon > 0$

найдется окрестность $U_1(a) \subset U(a)$ такая, что $\left| \frac{f'(x)}{g'(x)} - A \right| < \varepsilon \quad \forall x \in U_1(a)$.

Функции f(x) и g(x) непрерывны на [a,x] и дифференцируемы на(a,x), $g'(x) \neq 0$. Следовательно, соблюдены все условия применимости теоремы Коши:

$$\frac{f(x)-f(a)}{g(x)-g(a)} = \frac{f'(c)}{g'(c)},$$
 где c расположена между a и x .

Так как
$$f(a) = g(a) = 0$$
, то $\frac{f(x)}{g(x)} = \frac{f'(c)}{g'(c)}$. Если $x \in U_1(a)$, то и $c \in U_1(a)$.

Следовательно,
$$\left| \frac{f'(c)}{g'(c)} - A \right| < \varepsilon$$
 и $\left| \frac{f(x)}{g(x)} - A \right| < \varepsilon$. Это и означает, что $\lim_{x \to a} \frac{f(x)}{g(x)} = A$

Замечание. В теореме допустимо $A = \infty, -\infty, +\infty$.

Пример. Вычислить $\lim_{x\to 0} \frac{e^x - e^{-x} - 2x}{x - \sin x}$.

Применим теорему 1 несколько раз:

$$\lim_{x \to 0} \frac{e^x - e^{-x} - 2x}{x - \sin x} = \lim_{x \to 0} \frac{e^x + e^{-x} - 2}{1 - \cos x} = \left(\frac{0}{0}\right) = \lim_{x \to 0} \frac{e^x - e^{-x}}{\sin x} = \left(\frac{0}{0}\right) = \lim_{x \to 0} \frac{e^x + e^{-x}}{\cos x} = 2.$$

Теорема. Пусть функции f(x) и g(x) дифференцируемы на интервале $(M, +\infty)$, M > 0, причем $g'(x) \neq 0$. Пусть $\lim_{x \to +\infty} g(x) = 0$, $\lim_{x \to +\infty} f(x) = 0$. Тогда, если существует конечный предел $\lim_{x \to +\infty} \frac{g'(x)}{f'(x)} = A$, $A \in \mathbb{R}$, то существует и предел

$$\lim_{x \to +\infty} \frac{g(x)}{f(x)} = A.$$

⊲Доказательство. Сделаем замену переменной x = 1/t, t = 1/x. Если $x \in (M, +\infty)$, то $t \in (0, 1/M)$. Положим u(t) = f(1/t), v(t) = g(1/t). Тогда $\lim_{t \to 0} u(t) = 0$, $\lim_{t \to 0} v(t) = 0$. Применим теорему 1 к функциям u(t) и v(t). Заметим, что $u'(t) = f'(1/t) \cdot (-1/t^2), v'(t) = g'(1/t) \cdot (-1/t^2), v'(t) \neq 0$. Получаем

$$\lim_{x\to +\infty} \frac{f(x)}{g(x)} = \lim_{t\to 0} \frac{u(t)}{v(t)} = \lim_{t\to 0} \frac{u'(t)}{v'(t)} = \lim_{x\to +\infty} \frac{f'(x)}{g'(x)} = A, \text{ ч.т.д.} \blacktriangleright$$

Замечание. В теореме можно рассматривать пределы при $x \to -\infty$. **Замечание.** В теореме допустимо $A = \infty, -\infty, +\infty$.

Пример. Найти $\lim_{x\to +\infty} \frac{\pi - 2 \operatorname{arctg} x}{e^{3/x} - 1}$.

Неопределенность $\frac{0}{0}$. Применим теорему:

$$\lim_{x \to +\infty} \frac{\pi - 2 \arctan x}{e^{3/x} - 1} = \lim_{x \to +\infty} \frac{-2 \frac{1}{1 + x^2}}{e^{3/x} \cdot \left(-\frac{3}{x^2}\right)} = \frac{2}{3} \lim_{x \to +\infty} \frac{x^2}{1 + x^2} \lim_{x \to +\infty} \frac{1}{e^{3/x}} = \frac{2}{3}.$$

Теорема. Пусть функции f(x) и g(x) дифференцируемы в проколотой окрестности $\dot{U}(a)$ точки $a \in \mathbb{R}$, причем $g'(x) \neq 0$. Пусть $\lim_{x \to a} g(x) = \infty$,

 $\lim_{x\to a} f(x) = \infty$. Тогда, если существует конечный предел $\lim_{x\to a} \frac{f'(x)}{g'(x)} = A$, $A \in \mathbb{R}$, то

существует и $\lim_{x \to a} \frac{f(x)}{g(x)} = A$.

Замечание. В теореме можно рассматривать односторонние пределы.

Замечание. В теореме допустимо $A = \infty, -\infty, +\infty$.

Теорема. Пусть функции f(x) и g(x) дифференцируемы на интервале $(M, +\infty)$, M>0, причем $g'(x)\neq 0$. Пусть $\lim_{x\to +\infty}g(x)=\infty$, $\lim_{x\to +\infty}f(x)=\infty$. Тогда, если существует конечный предел $\lim_{x\to +\infty}\frac{f'(x)}{g'(x)}=A$, $A\in\mathbb{R}$, то существует и

$$\lim_{x \to +\infty} \frac{f(x)}{g(x)} = A.$$

Замечание. В теореме можно рассматривать пределы при $x \to -\infty$.

Замечание. В теореме допустимо $A = \infty, -\infty, +\infty$.

Примеры.

1) Показать, что $\lim_{x \to +\infty} \frac{x^p}{a^x} = 0$, a > 1, p > 0.

 \blacktriangleleft Очевидно, $\lim_{x\to +\infty} x^p = +\infty$, $\lim_{x\to +\infty} a^x = +\infty$. Неопределенность $\frac{\infty}{\infty}$.

Пусть $n-1 , <math>n \in \mathbb{N}$. Применим n раз правило Лопиталя:

$$\lim_{x \to +\infty} \frac{x^{p}}{a^{x}} = \lim_{x \to +\infty} \frac{px^{p-1}}{a^{x} \cdot \ln a} = \dots = \frac{p(p-1)\dots(p-n+1)}{(\ln a)^{n}} \lim_{x \to +\infty} \frac{x^{p-n}}{a^{x}} = 0.$$

Пусть p = n, $n \in \mathbb{N}$. Применим n раз правило Лопиталя:

$$\lim_{x \to +\infty} \frac{x^n}{a^x} = \lim_{x \to +\infty} \frac{nx^{n-1}}{a^x \cdot \ln a} = \dots = \frac{n(n-1)\dots 1}{(\ln a)^n} \lim_{x \to +\infty} \frac{1}{a^x} = 0. \blacktriangleright$$

- 2) Показать, что $\lim_{x\to +\infty} \frac{\ln x}{x^p} = 0$, p > 0. Неопределенность $\frac{\infty}{\infty}$.
 - $\operatorname{d}\lim_{x\to+\infty}\frac{\ln x}{x^p}=\lim_{x\to+\infty}\frac{1/x}{px^{p-1}}=\lim_{x\to+\infty}\frac{1}{px^p}=0.$
- 3) Найти $\lim_{x\to +0} x \cdot \ln x$. Неопределенность $0\cdot \infty$.

$$\blacktriangleleft \lim_{x \to +0} x \cdot \ln x = \lim_{x \to +0} \frac{\ln x}{1/x} = \left(\frac{\infty}{\infty}\right) = \lim_{x \to +0} \frac{1/x}{-1/x^2} = -\lim_{x \to +0} x = 0.$$

- 4) Найти $\lim_{x\to +0} x^x$. Неопределенность 0^0 .
 - **◄**Прологарифмируем функцию: $\ln x^x = x \ln x$. Уже нашли $\lim_{x \to +0} x \cdot \ln x = 0$.

Следовательно,
$$\lim_{x \to +0} x^x = \lim_{x \to +0} e^{x \ln x} = e^{\lim_{x \to +0} x \ln x} = e^0 = 1.$$

5) Найти $\lim_{x\to +\infty} (x-\ln^3 x)$.

$$\blacktriangleleft \lim_{x \to +\infty} \left(x - \ln^3 x \right) = \lim_{x \to +\infty} x \left(1 - \frac{\ln^3 x}{x} \right).$$

$$\lim_{x \to +\infty} \frac{\ln^3 x}{x} = 0, \lim_{x \to +\infty} \left(1 - \frac{\ln^3 x}{x} \right) = 1, \lim_{x \to +\infty} x \left(1 - \frac{\ln^3 x}{x} \right) = +\infty \blacktriangleright$$

Замечание. Из существования $\lim_{x\to a} \frac{f(x)}{g(x)}$ не следует существование $\lim_{x\to a} \frac{f'(x)}{g'(x)}$

.

Пример.
$$\lim_{x \to +\infty} \frac{x - \sin x}{x} = \lim_{x \to +\infty} \left(1 - \frac{\sin x}{x}\right) = 1 - \lim_{x \to +\infty} \frac{\sin x}{x} = 1 - 0 = 1.$$

Однако, $\lim_{x\to +\infty} \frac{1-\cos x}{1} = \lim_{x\to +\infty} (1-\cos x)$ не существует.