Introduction to machine learning

Performance criteria

Mathilde Mougeot

ENSIIE

2018

Performances criteria

confusion matrix & co.

Machine learning for binary classification

A Classification machine, M, has been calibrated with historical data base

For one new observation, x_{new} , the machine computes and attributes a binary label $\hat{y}_{new}\{0,1\}$

- Supervized learning : If the target has been previously observed y_{new} , If the (x_{new}, y_{new}) couple is available.
- Evaluation of the answer of the machine M :
 - Correct answers : $\hat{y}_{new} = y$
 - Error : $\hat{y}_{new} \neq y$

Confusion matrix

Performances for a set of labeled data

$g(x) = \hat{y}$	y = 0	y = 1
g(x)=0	OK/0	False Negative
g(x)=1	False Positive	OK/1
	n_0	n_1

- Criteria : Global Performance (accuracy) , Global Error
- False Positive : wrong diagnose $\hat{Y} = 1$ instead of Y = 1.
- False Negative : wrong diagnose $\hat{Y} = 0$ instead of Y = 0.
- Sensitivity : Ability to diagnose $\hat{Y} = 1$ for Y = 1
- Specificity : Ability to diagnose les $\hat{Y} = 0$ for Y = 0

Challenge: To find a trade-off between Sensibility and Specificity

Standard Error for binary classification

Reality	y=0	y = 1	
Decision			
$\hat{y} = 0$	TN	FN	
$\hat{y} = 1$	FP	TP	#(predicted P)
		#(real P)	

- Accuracy = $\frac{TP + TN}{TP + TN + FP + FN}$ What is the global performance?
- Recall = $\frac{TP}{\#(real P)} = \frac{TP}{FN+TP}$ How may relevant items are selected?
- Precision = $\frac{TP}{\#(predicted\ P)} = \frac{TP}{FP+TP}$ How may selected items are relevant?
- F-score= 2 Precision × Recall Precision + Recall

 ${\sf Rem.} : {\sf Recall} = {\sf sensitivity}.$

False-Discovery Rate (FDR)= 1-Precision.

Confusion matrix

Computed on a test data set (2 classes)

Credit risk (1 : pb of credit).

Data set : n = 200, $n_0 = 120 \{0\}$, $n_1 = 80 \{1\}$ (pb of credit)

$g(x) = \hat{y}$	{0}	{1}	TOTAL
prediction {0}	110	10	120
prediction $\{1\}$	10	70	80
TOTAL	120	80	200

- Performance : $\frac{110+70}{200} = \frac{180}{200}$. Taux d' Erreur $= \frac{10+10}{200} = \frac{20}{200} = 10\%$
- Sensitivity (Recall) = 70/80
- Specificity = 110/120
- False Positive rate = $\frac{10}{120}$ = 8,33%
- False Negative rate $=\frac{10}{80}=12,5\%$

Performance Criteria

ROC curve

Classifier performance: ROC curve

The machine M computes a score, a probability of obtaining Y = 1.

An Observation i is affected to class Y = 1

if $\hat{\eta}(x_i) > S$, (S : Threshod, MAP Threshold =0.5)

ROC: acronyme de Receiver Operating System

- For 2 classes classification problem
- used for comparison of several models
- used to adjust the threshold (for sensibility and False positive rate)
- Sensitivity (recall)
 - If score(x) > S then $\hat{Y} = 1$, "Event detected"
 - $\alpha(s) = P(score(x) > S/x = evenement)$
 - $\alpha(s) = P(\hat{Y} = 1/Y = 1)$
- False Positive rate = 1 Specificity
 - $P(\hat{Y} = 1/Y = 0) = 1 \beta(s)$ with $\beta = P(\hat{Y} = 0/Y = 0)$
 - False Positive rate $1 \beta(s) = P(score(s) > s/x = non evenement)$

ROC curve. Model performances

- Sensitivity (True Positive Rate) : to be able to well detect an Event
- Specificity: to be able to well detect a non-Event
- Graphique Roc : y : Sensibility(c); x : 1-Specificity(c)

The Area under the ROC curve (AUC) is a measure of the "Predictive Power" of the model.

ROC curve, illustration

We suppose here that $score(x) = g(x) = x_2$ (very bad choice)

seuilH	α	β	$1 - \beta$
0.5	1.00	0.00	1.00
1.5	1.00	0.25	0.75
2.5	0.75	0.25	0.75
3.5	0.75	0.50	0.50
4.5	0.50	0.50	0.50
5.5	0.50	0.75	0.25
6.5	0.25	0.75	0.25
7.5	0.25	1.00	0.00
8.5	0.00	1.00	0.00

ROC curve, illustration

We suppose here that $score(x) = g(x) = x_1$ (very smart choice)

seuilV α β $1-\beta$	3
0.5 1.00 0.00 1.00	
1.5 1.00 0.25 0.75	
2.5 1.00 0.50 0.50	
3.5 1.00 0.75 0.25	
4.5 1.00 1.00 0.00	
5.5 0.75 1.00 0.00	
6.5 0.50 1.00 0.00	
7.5 0.25 1.00 0.00	
8.5 0.00 1.00 0.00	

ROC curve, illustration

The Gold Standard for Scoring : the ROC curve (k=2)

ROC Curve

- Diagonal ROC curve: the performance of the model is like a "random model".
- The more the curve is upper on the left, the better is the model
- The ROC curves let to compare different models (globally with AUC) et locally (around a threshold)
- This curve is independent of Y = 0 and Y = 1.

Machine learning

Predictive Power

The goal of machine learning is to built machines with capacities of Generalization . The predictive power is compute on Test data *independent* of the Train data.

Cross-validation

- · Generalization is the goal of supervised learning
- A trained classifier has to be generalizable. It must be able to work on other data than the training dataset
- Generalizable means "works without over fitting"
- This can be achieved using cross-validation
- There is no machine learning without cross-validation atsome point!
- In the case of penalization, we need to choose a penalizationparameter C that generalizes

Cross-validation

- Cross-validation : $\mathcal{D}_n = \mathcal{D}_{\mathsf{Train}} + \mathcal{D}_{\mathsf{Test}}$
 - \mathcal{D}_{Train} calibration of the parameters of model (model selection)
 - $\mathcal{D}_{\mathsf{Test}}$ Performance evaluation

Problem: Possible impact of the Train or the Test set on the performances, depending on the chosen data.

The data are often chosen at random.

- K-Fold cross validation
- Leave One Out

Figure on the black board

Notations : $\mathcal{D}_n = \{(x_i, y_i) | i = 1, \dots, n, y_i \in \mathcal{X}, x_i \in \mathbb{R}^p\}$

K-Fold cross validation

- K validations with K different data sets for Train and Test.
- Kfold :
 - $\mathcal{D}_n = \mathcal{D}_{\mathsf{Train}_k} + \mathcal{D}_{\mathsf{Test}_k}$
 - $\mathcal{D}_{\mathsf{Test}_k} = \mathcal{D}_n \mathcal{D}_{\mathsf{Train}_k}$

=1		Train			
=2					
		_			
				Test	
=K		Train			Test

Generalization vs Model Complexity

