## Que: 11.10.3.17

## Nikam Pratik Balasaheb (EE21BTECH11037)

## 1 Problem

In triangle ABC with vertices  $\mathbf{A} = \begin{pmatrix} 2 \\ 3 \end{pmatrix}$ ,  $\mathbf{B} = \begin{pmatrix} 4 \\ -1 \end{pmatrix}$ and  $C = \begin{pmatrix} 1 \\ 2 \end{pmatrix}$ , Find the equation and length of altitude from vertex A

## 2 Solution

1) Direction vevtor of side BC

$$\mathbf{m} = \mathbf{B} - \mathbf{C} \tag{2.0.1}$$

$$= \begin{pmatrix} 3 \\ -3 \end{pmatrix} \tag{2.0.2}$$

Direction vector of side BC is normal of altitude from A

2) Equation of the altitude

$$\mathbf{m}^{\mathsf{T}} \left( \mathbf{x} - \mathbf{A} \right) = 0 \tag{2.0.3}$$

$$(3 -3)\mathbf{x} = -3 \tag{2.0.4}$$

$$(3 -3)\mathbf{x} = -3$$
 (2.0.4)  
 $(1 -1)\mathbf{x} = -1$  (2.0.5)

(2.0.6)

|  | ( | / |  |
|--|---|---|--|
|  |   |   |  |
|  |   |   |  |
|  |   |   |  |
|  |   |   |  |

3) Normal vector of line BC

$$\mathbf{n} = \begin{pmatrix} 1 \\ 1 \end{pmatrix} \tag{2.0.7}$$

4) Equation of line BC

$$\mathbf{n}^{\mathsf{T}} \left( \mathbf{x} - \mathbf{B} \right) = 0 \tag{2.0.8}$$

$$\begin{pmatrix} 1 & 1 \end{pmatrix} \mathbf{x} = 3 \tag{2.0.9}$$

(2.0.10)

ON comparing with  $\mathbf{n}^{\mathsf{T}}\mathbf{x} = c$ ,

$$c = 3$$
 (2.0.11)

5) Length of altitude

$$length = \frac{\left|\mathbf{n}^{\mathsf{T}}\mathbf{A} - c\right|}{\|\mathbf{n}\|}$$
 (2.0.12)

$$=\sqrt{2}$$
 (2.0.13)



TABLE 5: Table



Fig. 5: Figure