复

文件及变量命名

MATLAB变量命名的规则是:

- ①以字母开头,后面可以跟字母、数字或下划线。
- ②不超过63个字符。
- ③字符间不可以留空格。
- ④区分大小写。
- ⑤不要同名与系统变量名和特殊函数名。

Matlab 变量

- □ 系统预定义变量
- ◆pi 圆周率π,其值为 imag(log(-1))
- ♦ inf/Inf 无穷大
- ◆ nan/NaN 一个不定值,如 0/0或inf/inf
- ◆ eps 浮点运算相对精度,即系统运算时所确定的极小值。
- **◆i/j** 虚部单位,即 √-1

应尽量避免给系统预定义变量重新赋值!

□ 特殊变量 ans

数学函数

函数名	含义	函数名	含义
abs(x)	x的绝对值	atant(x)	x的反正切
sqrt(x)	x的平方根	cot(x)	x的余切
exp(x)	e的x次方	acot(x)	x的反余切
sin(x)	x的正弦	log(x)	x的自然对数
cos(x)	x的余弦	log10(x)	x的常用对数
asin(x)	x的反正弦	sinh(x)	双曲正弦
acos(x)	x的反余弦	cosh(x)	双曲余弦
tan(x)	x的正切		

特殊函数

函数名	含义	函数名	含义
mond(m,n) rem(m,n)	计算m除以n 的余数	ceil(x)	取超过x的最近整数
round(x)	取距离x最 近的整数	fix(x)	取x的整数部分
floor(x)	取不超过x 的最近整数		

MATLAB中基本代数运算符

运算	符号	举例
加法	+	5+3
减法		5-3
乘法	*	5*3
除法	1	48/4
乘幂 a^b	^	5^2=25

MATLAB中的符号函数

1. 用syms命令声明符号变量,再建立符号函数表达式

syms x y n %声明x,y,n均为符号变量 z=x^2+sin(x*y^n) %建立符号函数z=x²+sin(xyⁿ)

2. 直接用sym命令定义符号函数(表达式)

f=sym('z=x^2+sin(x*y^n)')

符号函数的求值

```
syms x y
f=1/2+1/3-x*y^2;
x=2;y=3;
eval(f)
```

```
bds=sym('2006+sqrt(2005) ')
zhi=numeric(bds)
```

MATLAB中的符号运算

1: 求极限

wu9

syms x

fx = 1/(1 + exp(-1/x))

limit(fx,x,0, 'right')

limit(fx,x,0, 'left')

limit(fx,x,inf, 'left')

%求fx:x->0右极限

%求fx:x->0左极限

%求fx:x->+∞极限

MATLAB中的符号运算

2: 求导数

wu10

```
syms a b c x %定义符号变量 f=a*x^2+b*x+c %定义符号函数 df=diff(f) %求导数,默认变量为x d2f=diff(f,2) %求二阶导数 daf=diff(f,a) %对变量a求导数 daf2=diff(f,a,2) %求变量a求二阶导数 x=2; eval(df) %求f在x=2处的导数
```

变量及数组输入

- · MATLAB的变量及数组均是以向量或矩阵 方式存储的,输入时遵循以下原则:
 - (1) 所有矩阵元素用 "[]"括起来;
 - (2) 同行的不同元素之间用空格或逗号","间隔;
 - (3) 行与行之间用分号";"或回车符分隔;
 - (4) 元素可以是数值、变量、函数、表达式.

MATLAB中数组、矩阵基本运算符

运算

意义

加法: a+b 两矩阵相加,数与矩阵相加

减法: a-b 两矩阵相减,数与矩阵相加

乘法: a*b 两矩阵相乘,数与矩阵相乘

a.*b 两矩阵对应元素相乘

除法: a/b (a/b) a*inv(b) (inv(a)*b)

a./b 两矩阵对应元素相除,数a除以矩阵 b中每个元素

幂 a^n 矩阵的幂

a.^n 矩阵的每个元素的幂

1: 直接输入方式

```
%以向量(数组)方式给x赋值
x=[1,2,3,4,5]
                 %每个元素开方
y=sqrt(x)
                                     wu11
z=(x(3)+x(5))/2*x(4) %调用x中的元素
                 %向量x的转置赋给t
t=x'
            %向量的内积(u为向量x的模的平方)
u=x*t
              A=[1,2,3;4,5,6;1,0,1]
              B=[-1\ 2\ 0]
                113
                2 1 1]
                                     wu12
              he=A+B
              Ji=A*B
              dianji=A.*B
              hanglieshi=det(A)
              ni=inv(A)
```

2: 步长输入方式

A=1:10

X=(0:0.1:2)*pi

y=1:2:8

wu13

3: 线性等分输入方式 linspace(a,b,n)

X=linspace(0,pi,11) wu14

4: 利用函数创建方式

eye(5) ones(3,4) rand(4,5)

P11

例1 随机生成一个6*6矩阵A,实践下面的操作

```
A=rand(6,6)
c = A(2,3)
d = A(3,:)
A(4,6)
                         wu15
f=diag(A)
D=A'
                %求A的转置
                 %求A的行列式
H=det(A)
                 %求A的逆矩阵
Q=inv(A)
                 %产生一个空矩阵
K=[]
                 %矩阵的拼接
P=[A,D]
                 %矩阵的 三角分解
[L,U]=Iu(A)
                 %取A的最后一行
A(end,:)
```

MATLAB中的逻辑与判断操作

& 与、和

Ⅰ 或

~ 否、非

逻辑真,运算结果为1逻辑假,运算结果为0

逻辑判断运算符

运算符	说明	运算符	说明
<	小于	<=	小于或等于
>	大于	>=	大于或等于
==	等于	~=	不等于

逻辑运算表

执行操作命令	执行结果
3&0	0
3&4	1
0&0	0
~1	0
~0	1

执行操作命 令	执行结 果
0/1	1
2/1	1
0/0	0
(3&2)/(0&1)	1

isprime %若为质数,则为真

MATLAB中数值函数的建立

Matlab建立数值函数通常有两种方式:

(1) 数组建立 x=a:n:b; y=f(x)

x=-2:1:2; y=x.^2-3 ans= 1 -2 -3 -2 1

(2) 使用inline命令

f=inline('x.^2-3') %建立一元函数 $f = x^2 - 3$

 $g=inline('x.^y-3','x','y')$ %建立二元函数 $g=x^y-3$

(3) 使用function定义M-函数

在编辑窗口中,有function语句引导建立M-函数,基本格式为:建立一个函数

function[输出变量列表]=函数名(输入变量列表)

function y=f1(x) %声明建立一个名为f1的函数 y=x.^2-3 %建立函数 $f = x^2 - 3$, x可以为向量

建立多个函数的格式

如,建立同时计算 $y_1 = (a+b)^n$, $y_2 = (a-b)^n$ 的函数 function[y1,y1]=funname(a,b,n) y1=(a+b).^n; y2=(a-b).^n;

存盘时,要求用funname作为函数名,从而形成一个函数文件funname可以调用.

MATLAB中数值函数的运算

1.求函数值

```
x=-2:1:2;
y=x.^2-3;
y0=y(3)
```

当一个函数通过用inline或function命令建立后, 就可以求解一些相关的问题,如求函数值、函数的零点、 积分、极值、作函数图象.

```
f=inline('x.^2-3') %建立一元函数 f = x^2 - 3 f(0) ans=
-3 f([1 2 3]) ans=
-2 1 6
```

```
g=inline('x.^y-3','x','y') %建立二元函数g = x^y - 3
g(2,3)
ans=
5
 function[y1,y1]=funname(a,b,n)
 y1=(a+b).^n;
 y2=(a-b).^n;
 funname([1,3,2])
 ans=
 64 - 8
```

2.求数值函数的零点

当一个函数 f(x)与x 轴相交时,交点(又称为函数的零点)是方程f(x)=0的一个实根. 求函数的零点,matlab 提供了一个命令fzero, 其用法有两种:

(1) 求函数 f(x)在x0 附近的零点c, 格式:

c=fzero(f,x0)

(2) 求函数 f(x)在[a,b]内的零点c,格式:

c=fzero(f,[a,b])

注意: 这里要求 f 在区间端点处的函数值要异号.

3.求数值函数的最值

求一元和多元函数的最值问题是数学上经常遇到的问题. 求最大值和最小值,Matlab提供了相应的命令,fminbnd(一元)和fminsearch(多元).

格式: x=fminbnd(f,a,b)

[x,y]=fminbnd(f,a,b)

求一元函数f(x)在区间[a,b]上的最小值点x及最小值y.

x=fminsearch(f,x0)

[X,y]=fminsearch(f,X0)

求多元函数f(X)在区间X0点附近上的最小值点X及最小值y. 这里X和X0均为向量.

MATLAB中数值函数的作图

- 1. 二维数值函数图形
- (1) 通过数组来实现 plot,格式:

x=a:n:b; y=f(x); plot(x,y)

例: 设函数
$$y = \frac{1}{(x-0.3)^2 + 0.01} + \frac{1}{(x-0.9)^2 + 0.04} - 6$$
. 试画出

函数在[0,2]上的图像.

图形的比较显示----在同一窗口绘制多图

```
0.8
                                  0.6
                                  0.4
x=0:pi/10:2*pi;
                                  0.2
y1=sin(x);
                                  -0.2
y2=cos(x);
                                  -0.4
plot(x,y1,'bo-',x,y2,'R*:')
                                  -0.6
                                  -0.8
xlabel('x')
ylabel('y')
title('Sine and Cosine Curve')
gtext('y=sinx')
gtext('y=cosx')
```


P21图形标识命令和坐标轴控制命令

图形的比较显示----在同一窗口绘制多图

```
x=0:pi/10:2*pi;
y1=sin(x);
y2=cos(x);
y3=x;
y4=log(x+eps);
plot(x,y1,'bo-',x,y2,'R*:')
hold on
plot(x,y3,'g+')
plot(x,y4,'mp')
```


(2) 通过 fplot 函数来实现 fplot(f,[a,b])

f=inline('1./((x-0.3).^2+0.01)+1./((x-0.9).^2+0.04)-6'); fplot(f,[0,2])

grid

(3) 通过 ezplot 函数来实现 ezplot('f',[a,b])

ezplot多用于画隐函数和参数方程图像

ezplot('f(x,y)',[a,b,c,d])

ezplot('x(t)','y(t)',[a,b])

- 2. 三维数值函数图形
 - (a) 三维曲线
 - (1) 通过命令 plot3来实现

plot3(x,y,z,'s') %画一条曲线

plot3(x1,y1,z1,'s1',x2,y2,z2,'s2') %同一窗口画 两条曲线

(2) 通过命令 ezplot3来实现

ezplot3('cos(t),'sin(t)','t',[0,5*pi])

(b) 三维曲面

```
(1)用meshgrid
[X,Y]=meshgrid(x,y)
Z=f(X,Y)
mesh(X,Y,Z)
surf(X,Y,Z)
(2)用ezsurf('f(x,y)',[a,b,c,d])
```

(3)简捷绘制

sphere, cylinder, ellipsoid

M-文件中循环控制命令(for命令)

• 格式: for i=n1:(step):n2 commands; end

• 作用: i从n1开始,执行命令集commands,遇到end,i=i+step,重复执行,直到i> n2.

· 省略格式: for i=n1:n2 这里step=1.

M-文件中条件循环命令(while命令)

格式: while (condition is true)
 commands;
 i=i+1;
 end

• 作用: 当条件成立时,执行命令集 commands,直到条件不成立.

M-文件中选择控制命令

一、单项选择控制

• 格式: if (condition is true) commands;

end

• 作用: 若条件成立,则执行命令集 commands. 否则,不执行。

M-文件中选择控制命令

二、多项选择控制(1)

• 格式: if (condition is true) commands-1; else

commands-2;

end

commands-3

作用: 若条件成立,则执行命令集1,然后执行命令集3
 否则,执行命令集2,然后执行命令集3。

M-文件中选择控制命令

多项选择控制(2)

```
    格式: if (condition1 is true)

            commands-1;
         elseif (condition2 is true)
            commands-2;
         else
            commands-3;
         end
         commands-4
```

 作用: 若条件1成立,则执行命令集1,然后执行命令集4 否则,若条件2是否成立,则执行命令2,然后执行命令集4;否则,执行命令集3,然后执行命令集4.

怎样计算

 π α

的值?

实验八 无理数的近似计算

实验目的

- 1. 掌握泰勒级数在近似计算中的应用,从而理解数值逼近思想.
- 2. 了解圆周率的计算历史,掌握近似计算圆周率的多种方法.
- 3. 了解无理数e和欧拉常数C的由来历史.
- 4. 利用幂级数展开式计算无理数e和欧拉常数C的近似值.

π 的计算历史

- 1.1609年,德国Ludolph Van Ceulen, 35位.
- 2.1761年, Lambert, 证明了圆周率是无理数.
- 3.1874年,William Shanks, 707位.
- 4.1999年,日本人,利用高速计算机,206158430000位.

无论用什么样的软件得到的圆周率的近似值,后台程序都对应了一个较为有效的计算圆周率的算法,我们的目的不是为了获得小数点后面更多的精确位数,而是了解一些相关的近似计算的方法。

π —— 圆周率 $\pi = 3.1415926535$

用matlab容易 π 求出到几百位.

```
>> digits(100)
```

>> vpa(pi)

ans =

3.141592653589793238462643

3832795028841971693993751

0582097494459230781640628

6208998628034825342117068

控制精度运算的两个函数 digits 和vpa

digits是控制精度的,vpa是显示精度的

>>vpa(pi,100)

但你会计算π的值吗?你又能用几种方法计算?

方法一: 刘徽割圆法

从正六边形开始,逐步求边长与面积

递推法

设边数为 $6\cdot 2^n$ 的正多边形边长为 a_n =AB

$$AC^{2} = AD^{2} + DC^{2} = AD^{2} + (OC - OD)^{2}$$

$$a_{n+1} = \sqrt{\left(\frac{a_n}{2}\right)^2 + \left[1 - \sqrt{1 - \left(\frac{a_n}{2}\right)^2}\right]^2} = \sqrt{\frac{a_n^2}{2} - \sqrt{4 - a_n^2}}$$

$$S_{n+1} = \frac{1}{2}OC \cdot AD = \frac{1}{4}a_n \qquad \pi \approx 6 \cdot 2^{n+1} \cdot S_{n+1} = 3 \cdot 2^n a_n$$

刘徽小数点后面 3位

祖冲之小数点后面7位

```
a=1;

for i=1:10

a=sqrt(2-sqrt(4-a^2));

end

pai=3*2^10*vpa(a,19)

pai =

3.14159251658815488
```

SUBS(S,NEW) replaces the free symbolic variable in S with NEW.

```
syms a;

for i=1:10

a=sqrt(2-sqrt(4-a^2));

end

a=subs(a,1);

pai=3*2^10*vpa(a,19)
```

方法二: 利用幂级数计算

1.Taylor 展开

taylor(f,n)

%求函数f的n-1阶Maclaurin展开式

taylor(f,n,a)

%求函数f在x=a处的n-1阶Maclaurin展开式

例1 求函数 $y = \frac{x^2}{1+x}$ 在x=1处的7阶taylor展开式.

syms x y=x^2/(1+x) taylor(y,8,1)

```
ans = -1/4+3/4*x+1/8*(x-1)^2-1/16*(x-1)^3+1/32*(x-1)^4-1/64*(x-1)^5+1/128*(x-1)^6-1/256*(x-1)^7
```

```
syms x
y=x^2/(1+x)
y1=taylor(y,8,1)
subs(y1,1) 0.5000
```

syms x y=x^2/(1+x) y1=taylor(y,8,1) x=-1:0.1:1 y2=subs(y1,x) plot(y2,x)

2.0000 -0.0039 0.5000


```
syms x
y=x^2/(1+x)
y1=taylor(y,8,1)
y2=[];
for x=-1:0.1:1
y=[y2,eval(y1)]
end
x=-1:0.1:1
plot(x,y)
```


 Θ^2 求函数 $y=\sin x$ 的Maclaurin展开式,画图观察分别用不同 次数的泰勒多项式近似代替函数 $y=\sin x$ 的近似程度,并计算 $\sin \frac{\pi}{z}$ 的近似值.

```
syms x
y1=\sin(x);
y2=taylor(y1,3);
y3=taylor(y1,5);
y4=taylor(y1,7);
y5=taylor(y1,9);
x = -pi:0.1:pi;
y1=subs(y1,x)
y2=subs(y2,x)
y3=subs(y3,x)
y4=subs(y4,x)
y5=subs(y5,x)
```


例3 完成下面的实验任务:

- (1) 用matlab软件计算函数arctanx的Maclaurin展开式,计算 π 的近似值;
- (2) 利用下面的等式计算 π 的近似值,并与(1)比较.

$$(a)\frac{\pi^2}{8} = \sum_{n=1}^{\infty} \frac{1}{(2n-1)^2}$$
 $(b)\frac{\pi^2}{12} = \sum_{n=1}^{\infty} \frac{(-1)^{n-1}}{n^2}$

$$(c)\frac{\pi^2}{32} = \sum_{n=1}^{\infty} \frac{(-1)^{n-1}}{(2n-1)^3}$$

$$(d)\frac{\pi(\pi-1)}{8} = \sum_{n=1}^{\infty} \frac{\sin(2n-1)}{(2n-1)^3}$$

$$\frac{1}{1+x^2} = 1-x^2+x^4-\cdots+(-1)^{n-1}x^{2n-2}+\cdots$$

$$\arctan x = x - \frac{x^3}{3} + \frac{x^5}{5} - \dots + \left(-1\right)^{n-1} \frac{x^{2n-1}}{2n-1} + \dots$$

$$x = 1, \frac{\pi}{4} = 1 - \frac{1}{3} + \frac{1}{5} - \dots + (-1)^{n-1} \frac{1}{2n-1} + \dots$$

方法三: 利用数值积分计算

1.矩形公式
$$\int_a^b f(x) dx \approx \sum_{i=1}^n f(x_i) \Delta x_i,$$

$$\int_a^b f(x) dx \approx \sum_{i=1}^n f(x_{i-1}) \Delta x_i.$$

2. 梯形公式
$$\int_a^b f(x) dx \approx \sum_{i=1}^n \frac{y_i + y_{i-1}}{2} \Delta x_i,$$

3.抛物线形公式
$$\int_a^b f(x) dx = \sum_{i=1}^n \int_{x_{2i-2}}^{x_{2i}} f(x) dx$$

$$\approx \frac{b-a}{6n} \sum_{i=1}^{n} (y_{2i-2} + 4y_{2i-1} + y_{2i}).$$

例4 利用定积分 $\int_0^1 \frac{1}{1+r^2} dx = \frac{\pi}{4}$ 计算圆周率 π 的近似值.

$$\int_{0}^{1} \frac{1}{1+x^{2}} dx = \lim_{d \to 0} \sum_{i=1}^{n} f(\xi_{i}) \Delta x_{i} = \lim_{n \to \infty} \sum_{i=1}^{n} f(\xi_{i}) \cdot \frac{1}{n}$$

$$\approx \sum_{i=1}^{n} \frac{1}{1 + \left(\frac{x_{k-1} + x_k}{2}\right)^2} \cdot \frac{1}{n} \approx \sum_{i=1}^{n} \frac{1}{1 + \left(\frac{k-1}{n} + \frac{k}{n}\right)^2} \cdot \frac{1}{n}$$

format long n=1000:

s=0;

for k=1:n

3.14159248692313 $s=s+(1/n)*(1/(1+((k-1)/n)^2)+1/(1+(k/n)^2))/2;$

ans =

end 4*s

方法四: 利用繁分数计算

$$\pi \approx \frac{31415926535}{10000000000}$$

$$\pi = 3 + \frac{1}{7 + \frac{1}{15 + \frac{1}{1 + \frac{1}{292 + \frac{1}{1 + \frac{1}{2 + \frac{1}{1 + \frac{1}{3 + L}}}}}}}$$

方法五: 利用蒙特卡罗模拟方法

1/4圆的面积是 $\pi/4$.

考虑:在单位正方形区域内等概率地随意各处取点,所取点落入1/4单位圆的概率应该是1/4单位圆的面积与正方形的面积之比,即 $\pi/4$.

在正方形区域内随机取点,对满足 $x^2 + y^2 \le 1$ 的点进行计数,则落在1/4圆内的点数m与落在正方形区域内的点数n的比值

就是 $\pi/4$. 从而有 $\pi \approx 4\frac{m}{n}$.


```
format short

cs=0;n=500;

for i=1:n

a=rand(1,2);

if a(1)^2+a(2)^2<=1

cs=cs+1;

end

end

4*cs/n
```

```
n=500, n=5000 n=10000 n=500000 ans = ans = ans = 3.1200 3.1760 3.1492 3.1435
```

蒙特卡罗模拟方法收敛速度很慢,实验次数较少时,误差很大;但该方法简单易行,在精度要求不高的情况下,具有一定的实用价值。

无理数e的发现

无理数e和欧拉常数的发现者——欧拉

欧拉(1707-1783),瑞士自然科学家,是数学史上最多产的数学家,不但为数学界做出重大贡献,而且把数学推至整个物理领域.

无理数e的有趣事例

假设人在银行存款1000元,银行的利率是一年100%.期间可以 按实存时间计算,仍然保持年利率不变.请你帮忙替储户计算, 分别按年存取、按月存取、按天存取按小时存取、按分钟存取, 一年后,储户应得本息是多少?

若按年存取
$$A_0(1+a)$$

若按月存取
$$A_0 \left(1 + \frac{a}{12}\right)^{12}$$

若按天存取
$$A_0 \left(1 + \frac{a}{365}\right)^{365}$$

若按天存取
$$A_0 \left(1 + \frac{a}{365}\right)^{365}$$
 若按小时存取 $A_0 \left(1 + \frac{a}{365 * 24}\right)^{365 * 24}$

若按分钟存取
$$A_0 \left(1 + \frac{a}{365 * 24 * 60}\right)^{365 * 24 * 60}$$

```
digits(28)
accout_y=vpa(1000*(1+1),20)
accout_hy=vpa(1000*(1+1/2)^2,20)
accout_m=vpa(1000*(1+1/12)^12,20)
accout_d=vpa(1000*(1+1/(12*365))^{(12*365),20}
accout_h=vpa(1000*(1+1/(12*365*24))^(12*365*24),20)
accout_min=vpa(1000*(1+1/(12*365*24*60))^(12*365*24*60),20)
>>
accout_y = 2000.
accout_hy = 2250.
accout_m = 2613.0352902246759186
                                     一年后,储户存款不会
accout d = 2717.9715872424990266
                                     超过3000元。
accout h = 2718.2688991729828558
accout_min =2718.2816136905216808
```

假设本金为x,一年内存取时间段数为n,则一年后本金和为 $x\left(1+\frac{1}{n}\right)^n$ $\lim_{n\to\infty} x\left(1+\frac{1}{n}\right)^n = xe$

无理数e和欧拉常数的近似计算

无理数e和欧拉常数c的发现

无理数e

$$\lim_{n\to\infty} \left(1 + \frac{1}{n}\right)^n = e$$

欧拉常数c

$$S_n = 1 + \frac{1}{2} + \frac{1}{3} + \dots + \frac{1}{n}$$

$$\ln(n+1) < S_n < \ln(n+1) + 1$$

$$0 < S_n - \ln(n+1) < 1$$

 $\{Sn-\ln(n+1)\}$ 有界,且单调增,故收敛。

$$C = \lim_{n \to \infty} \left(S_n - \ln(n+1) \right)$$

1. 无理数e的幂级数计算方法

$$e^{x} = 1 + x + \frac{1}{2}x^{2} + \frac{1}{3!}x^{3} + \dots + \frac{1}{n!}x^{n} + \dots$$

$$e = 1 + 1 + \frac{1}{2} + \frac{1}{3!} + \dots + \frac{1}{n!} + \dots$$

哪种收敛快呢?

$$\lim_{n\to\infty} \left(1+\frac{1}{n}\right)^n = e$$

2. 无理数e的繁分数计算方法

 $e \approx \frac{2718281828}{1000000000}$

$$e = 2 + \cfrac{1}{1 + \cfrac{1}{2 + \cfrac{1}{1 + \cdots}}}}}}}$$

```
a=[];b=[];n=4;
for k=1:3*n; %每三次运算出现重复
a=[a,2*k] %2,4,6,8.....
a=[a,1];
a=[a,1]; %和1拼成[2,1,1,4,1,1,6,1,1....]
end
i=length(a);
b=a(i-2:-1:1); %倒序排成[...,6,1,1,4,1,1,2]
b=[b,1];
b=[b,1]; %拼接成[...,6,1,1,4,1,1,2,1,1]
length(b)
x=2*3*n; %估计初始值
for i=1:length(b)
 x=b(i)+1/x; %矩阵b的每一个元素与1/x相加
end
                                ans =
vpa(1+x,10)
                                2.718281828
```

3. 无理数e的数值模拟方法

通过蒲丰投针,得到了pi的统计估计;通过匹配实验,可以得到无理数e的统计估计。匹配实验:n封不同的信与n个不同地址的信封匹配,是服从泊松分布的。

$$A = \{$$
表示没有一封信装对地址 $\}$,则 $P(A) = \frac{1}{e}$
$$\bar{A} = \{$$
表示至少一次信封和地址匹配 $\}$,则 $P(A) = 1 - \frac{1}{e}$

有人用扑克牌做实验,共进行了2500次实验,有对子的是922次,

$$1 - \frac{1}{e} = \frac{922}{2500} \Rightarrow e \approx 2.7115$$

4.欧拉常数c的计算方法

$$c = \lim_{n \to \infty} \left[\left(1 + \frac{1}{2} + \frac{1}{3} + \dots + \frac{1}{n} \right) - \ln(n+1) \right]$$

本次上机任务:

(1)读懂P140-142页示例1,示例2,;

(2)读懂P148页示例3。

完成P144第1,2,3题, P152-153页第1,2,5题. P158页第1,3题.