MATH4425 (T1A) – Tutorial 1

Kazovskaia Anastasiia

February, 8

Important information

- Today's tutorial is conducted by **HO Ho Yi Alexis**. Next tutorials will be conducted by **Kazovskaia Anastasiia (Ana)**
- T1A: Thursday 19:00 19:50 (Rm 2610, Lift 31-32)
- Office hours: TBA. Please vote, today's the last chance to do that
- Any questions to be addressed to akazovskaia@connect.ust.hk

1 Overview

Definition: A time series (TS) is a sequence of random variables labeled by time t:

$$\{Z_1, Z_2, \ldots, Z_t, \ldots\}$$

or

$$\{\ldots, Z_{-1}, Z_0, Z_1, Z_2, \ldots, Z_t, \ldots\}$$

Denote them by $\{Z_t\}_{t\in\mathbb{N}}$ or $\{Z_t\}_{t\in\mathbb{Z}}$, respectively. For a shorter notation – $\{Z_t\}$.

In case of continuous time (i.e. $t \in \mathbb{R}$), TS is not actually a *series*. Instead, this more complicated concept is usually referred to as a **stochastic process**.

Time series **data** are observations of TS $\{Z_t\}$.

One of the most native examples from the lecture:

Example: Let Z_t =weather on the tth day.

Weather=
$$29^{\circ}$$
 30° 9° \cdots Date t= 1 2 3 \cdots Notation $Z_1=29^{\circ}$ $Z_2=30^{\circ}$ $Z_3=9^{\circ}$ \cdots

Another example to compare:

- 1) Daily temperature measurements of the *same* patient (Time series)
- 2) Temperature measurements of all patients at the same time (Independent samples)

Main objective of TS analysis is to be able to *predict* (in some sense) possible future of TS according to its observable past:

Past data (available TS observations) \Longrightarrow Appropriate model for TS r.v. $Z_t \Longrightarrow$ Future of TS:

- $\mathbb{E}(Z_{n+l}|y_1,\ldots,y_n)$
- $\mathbb{P}(a \leq Z_{n+l} \leq b | y_1, \dots, y_n)$ for some a < b

2 Fundamental Concepts

2.1 Strict stationarity and weak stationarity

Definition: Let Z_t be a TS

1) When $t = t_1$, we have:

$$Z_{t_1} \to \mathbb{P}(Z_{t_1} \le z).$$

When $t = t_1 + k$, we have:

$$Z_{t_1+k} \to \mathbb{P}(Z_{t_1+k} \le z).$$

If $\mathbb{P}(Z_{t_1} \leq z) = \mathbb{P}(Z_{t_1+k} \leq z)$ for $\forall t_1, k, z$, we say: $\{Z_t\}$ is first order stationary in distribution.

2) When $t = (t_1, t_2)$, we have:

$$(Z_{t_1}, Z_{t_2}) \to \mathbb{P}(Z_{t_1} \le z_1, Z_{t_2} \le z_2).$$

When $t = (t_1 + k, t_2 + k)$, we have:

$$(Z_{t_1+k}, Z_{t_2+k}) \to \mathbb{P}(Z_{t_1+k} \le z_1, Z_{t_2+k} \le z_2).$$

If $\mathbb{P}(Z_{t_1} \leq z_1, Z_{t_2} \leq z_2) = \mathbb{P}(Z_{t_1+k} \leq z_1, Z_{t_2+k} \leq z_2)$ for $\forall t_1, t_2, k$ and (z_1, z_2) , we say: $\{Z_t\}$ is **second order stationary in distribution**.

Please, pay attention that distribution \mathbb{P} still depends on t_1, t_2 . WLOG $t_1 \leq t_2$ and $t_2 = t_1 + (t_2 - t_1) = t_1 + \Delta$. Then

$$\mathbb{P}(Z_{t_1} \leq z_1, Z_{t_2} \leq z_2) = \mathbb{P}(Z_{t_1} \leq z_1, Z_{t_1 + \Delta} \leq z_2) = \mathbb{P}(Z_0 \leq z_1, Z_{\Delta} \leq z_2)$$

Basically, it means that \mathbb{P} only depends on time difference Δ .

3) When $t = t_1, \ldots, t_n$, we have:

$$(Z_{t_1},\ldots,Z_{t_n})\to \mathbb{P}(Z_{t_1}\leq z_1,\ldots,Z_{t_n}\leq z_n).$$

When $t = t_1 + k, \dots, t_n + k$, we have:

$$(Z_{t_1+k},\ldots,Z_{t_n+k})\to \mathbb{P}(Z_{t_1+k}\leq z_1,\ldots,Z_{t_n+k}\leq z_n)$$

If $\mathbb{P}(Z_{t_1} \leq z_1, \dots, Z_{t_n} \leq z_n) = \mathbb{P}(Z_{t_1+k} \leq z_1, \dots, Z_{t_n+k} \leq z_n)$ for $\forall t_1, \dots, t_n, k$ and (z_1, \dots, z_n) and n, we say: $\{Z_t\}$ is **strictly stationary**.

Definition: Let Z_t be a TS

- Mean function of $\{Z_t\}$: $\mu_t = \mathbb{E}Z_t$
- Variance function of $\{Z_t\}$: $\sigma_t^2 = \mathbb{E}(Z_t \mu_t)^2$
- Covariance function between Z_{t_1} and Z_{t_2} :

$$\gamma(t_1, t_2) = \mathbb{E}[(Z_{t_1} - \mu_{t_1})(Z_{t_2} - \mu_{t_2})]$$

• Correlation function between Z_{t_1} and Z_{t_2} :

$$\rho(t_1, t_2) = \frac{\gamma(t_1, t_2)}{\sqrt{\sigma_{t_1}^2} \sqrt{\sigma_{t_2}^2}}$$

Definition: Let Z_t be a TS. If

$$\mu_t = \mu < \infty,$$

$$\sigma_t^2 = \sigma^2 < \infty,$$

$$\gamma(t, t + k) = \gamma_k$$

for any t, then $\{Z_t\}$ is said (second-order) weakly stationary. Usually, we call it simply a stationary TS.

Property: Assume $\{Z_t\}$ is strictly stationary

- If $\mathbb{E}|Z_t| < \infty$, then $\mu_t = \mu < \infty$
- If $\mathbb{E}Z_t^2 < \infty$, then $\sigma_t^2 = \sigma^2 < \infty$
- Furthermore $\gamma(t, t + k) = \gamma_k$ and $\rho(t, t + k) = \rho_k$

Thus, if $\mathbb{E}Z_t^2 < \infty$, then the property holds. So, strict stationarity \Longrightarrow second-order weakly stationarity.

The opposite is **not** necessarily true: Let

$$Z_{2t} \sim^{iid} U[-\sqrt{3}; \sqrt{3}]$$

$$Z_{2t+1} \sim^{iid} \mathcal{N}(0,1)$$

be independent r.v.s. Then

$$\mu_t = \mathbb{E}Z_t = 0$$

$$\sigma_t^2 = \operatorname{var}(Z_t) = 1$$

$$\gamma_k = 0$$
, if $k > 0$

So, $\{Z_t\}$ is second-order weakly stationary but **not** strictly stationary.

Example 2.2: Consider the following time sequence

$$Z_t = A\sin(\omega t + \theta),$$

where A is a r.v. with:

- $\mathbb{E}A = 0$
- $\mathbb{E}A^2 = 1$,

 $\theta \sim U[-\pi, \pi]$ is independent of A, and ω is a constant.

Then we have:

$$\mu_t = \mathbb{E}(Z_t) = [\text{due to independence}] = \mathbb{E}A \times \mathbb{E}[\sin(\omega t + \theta)] = 0 = \mu < \infty$$

$$\gamma(t, t + k) = \mathbb{E}(Z_t Z_{t+k}) = \mathbb{E}[A^2 \sin(\omega t + \theta) \sin[\omega(t + k) + \theta] = [\text{independence}] = \mathbb{E}A^2 \times \mathbb{E}\left[\frac{1}{2}[\cos(\omega k) - \cos(\omega(2t + k) + 2\theta)]\right] = [\mathbb{E}A^2 = 1, \omega \text{ is a constant}] = 0$$

$$\frac{1}{2}\cos(\omega k) - \frac{1}{2}\mathbb{E}\cos(\omega(2t+k) + 2\theta) = [\theta \sim U[-\pi, \pi]] =$$

$$\frac{1}{2}\cos(\omega k) - \frac{1}{2}\int_{-\pi}^{\pi}\cos(\omega(2t+k) + 2\theta)\frac{1}{2\pi}d\theta = [y := \omega(2t+k) + 2\theta] =$$

$$\frac{1}{2}\cos(\omega k) - \frac{1}{8\pi}\int_{\omega(2t+k) - 2\pi}^{\omega(2t+k) + 2\pi}\cos y \, dy =$$

$$\frac{1}{2}\cos(\omega k) - \frac{1}{8\pi}\sin y\bigg|_{\omega(2t+k) - 2\pi}^{\omega(2t+k) + 2\pi} = \frac{1}{2}\cos(\omega k) - \frac{1}{8\pi}[\sin(\omega(2t+k)) - \sin(\omega(2t+k))] =$$

$$\frac{1}{2}\cos(\omega k) = \gamma_k$$

Also, notice that

$$\sigma_t^2 = \gamma(t, t) = \gamma_0 = \frac{1}{2}\cos(\omega \times 0) = \frac{1}{2} = \sigma^2 < \infty$$

Hence, the process is second-order weakly stationary.

2.2 Autocovariance and autocorrelation functions

Let $\{Z_t\}$ be a sequence of stationary TS r.v.s. Then $\mathbb{E}Z_t = \mu$, a constant. And

$$\gamma_k = \text{cov}(Z_t, Z_{t+k}) = \mathbb{E}[(Z_t - \mu)(Z_{t+k} - \mu)]$$

only depends on k.

Definition: γ_k is called **autocovariance** (ACV) of $\{Z_t\}$.

Let

$$\rho_k = \frac{\text{cov}(Z_t, Z_{t+k})}{\sqrt{\text{var}(Z_t)}\sqrt{\text{var}(Z_{t+k})}} = \frac{\gamma_k}{\gamma_0}$$

only depends on k, too.

Definition: ρ_k is called **autocorrelation function (ACF)** of $\{Z_t\}$.

Properties of γ_k and ρ_k :

- $\gamma_0 = \sigma^2, \rho_0 = 1$
- $\bullet \ \gamma_k = \gamma_{-k}, \rho_k = \rho_{-k}$
- $\gamma_k \le |\gamma_k| \le \gamma_0, \rho_k \le |\rho_k| \le 1$

Important point: The smaller ρ_k , the less (linear) dependency between Z_t and Z_{t+k} .

Intuitively, as $k \to \infty$, $\rho_k \to 0$, generally.

In general, $\rho_k \neq 0$. This is an important feature of TS r.v.s.

2.3 Partial Autocorrelation function (PACF)

Definition: Let $\{Z_t\}$ be a stationary (reminder: (second order) weakly stationary) TS

The conditional correlation

$$\phi_{kk} := \operatorname{corr}(Z_t, Z_{t+k} | Z_{t+1}, \dots, Z_{t+k-1}) = \frac{\mathbb{E}[(Z_t - \hat{Z}_t)(Z_{t+k} - \hat{Z}_{t+k})]}{\sqrt{\operatorname{var}(Z_t - \hat{Z}_t)} \sqrt{\operatorname{var}(Z_{t+k} - \hat{Z}_{t+k})}},$$

where $\hat{Z}_t = \mathbb{E}(Z_t|Z_{t+1},\ldots,Z_{t+k-1})$, is called the **partial autocorrelation function PACF** of Z_t and Z_{t+k} .

Formula:
$$\phi_{11} = \rho_1$$
,
$$\phi_{kk} = \begin{bmatrix}
1 & \rho_1 & \rho_2 & \cdots & \rho_{k-2} & \rho_1 \\ \rho_1 & 1 & \rho_1 & \cdots & \rho_{k-3} & \rho_2 \\ & & \cdots & & \\ & & & \cdots & & \\ \rho_{k-1} & \rho_{k-2} & \rho_{k-3} & \cdots & \rho_1 & \rho_k \\
\hline
1 & \rho_1 & \rho_2 & \cdots & \rho_{k-2} & \rho_{k-1} \\ \rho_1 & 1 & \rho_1 & \cdots & \rho_{k-3} & \rho_{k-2} \\ & & \cdots & & \\ & & & \cdots & & \\ \rho_{k-1} & \rho_{k-2} & \rho_{k-3} & \cdots & \rho_1 & 1
\end{bmatrix}$$

2.4 White noise process

Definition: A process $\{a_t\}$ is called a white noise process if

- 1) $\mathbb{E}a_t = 0$
- 2) $\operatorname{var}(a_t) = \mathbb{E}a_t^2 = \sigma_a^2$
- 3) $\gamma_k = \text{cov}(a_t, a_{t+k}) = 0$, if $k \neq 0$

Properties:

1) (ACV)

$$\gamma_k = \begin{cases} \sigma_a^2, & k = 0\\ 0, & k \neq 0 \end{cases}$$

2) (ACF)

$$\rho_k = \begin{cases} 1, & k = 0 \\ 0, & k \neq 0 \end{cases}$$

3) (PACF)

$$\phi_{kk} = \begin{cases} 1, & k = 0 \\ 0, & k \neq 0 \end{cases}$$

2.5 Estimation of ACV and ACF

Given Z_1, Z_2, \ldots, Z_n , how to estimate μ , σ^2 , γ_k and ρ_k ?

2.5.1 Sample mean

Definition:

$$\bar{Z} = \frac{1}{n} \sum_{t=1}^{n} Z_t,$$

is called the **sample mean** of Z_t .

 \bar{Z} is the estimator of the mean μ . Is this estimator valid?

1) \bar{Z} is an unbiased estimator of μ , i.e.

$$\mathbb{E}\bar{Z} = \mu$$

2) \bar{Z} is an L_2 -consistent estimator of μ , i.e.

$$\frac{1}{n} \sum_{t=1}^{n} Z_t \xrightarrow[n \to \infty]{L^2} \mu,$$

if $\rho_k \to 0$ as $k \to \infty$ (Ergodic property)

2.5.2 Sample ACV

Definition:

$$\hat{\gamma}_k = \frac{1}{n-k} \sum_{t=1}^{n-k} (Z_t - \bar{Z})(Z_{t+k} - \bar{Z})$$

is called the **sample ACV** of Z_t .

 $\hat{\gamma}_k$ are the estimators of γ_k . Are these estimators valid?

1) $\hat{\gamma}_k$ is biased estimator of γ_k , i.e.

$$\mathbb{E}\hat{\gamma}_k \neq \gamma_k$$

2) $\hat{\gamma}_k$ is an L_2 -consistent estimator of γ_k , i.e.

$$\hat{\gamma}_k \xrightarrow[n \to \infty]{L^2} \gamma_k,$$

if
$$\rho_k \to 0$$
 as $k \to \infty$

In particular,

$$\hat{\sigma}_n^2 = \hat{\gamma_0} = \frac{1}{n} \sum_{t=1}^n (Z_t - \bar{Z})^2 = \frac{1}{n} \sum_{t=1}^n Z_t^2 - \bar{Z}^2,$$

is called the **sample variance** of Z_t .

 $\hat{\sigma}_n^2$ is an L_2 -consistent estimator of σ^2 , if $\rho_k \to 0$ as $k \to \infty$.

2.5.3 Sample ACF

Definition:

$$\hat{\rho}_k = \frac{\hat{\gamma}_k}{\hat{\gamma}_0}$$

is called the **sample ACF** of Z_t .

 $\hat{\rho}_k$ is the L_2 -consistent estimator of ρ_k , if $\rho_k \to 0$ as $k \to \infty$.

Bartlett (1946) showed that

$$\operatorname{var}(\hat{\rho}_k) \approx \frac{1}{n} \sum_{i=-\infty}^{\infty} (\rho_i^2 + \rho_{i+k}\rho_{i-k} - 4\rho_k\rho_i\rho_{i-k} + 2\rho_k^2\rho_i^2)$$

For processes in which $\rho_k=0$ for k>m, Bartlett's approximation becomes

$$\operatorname{var}(\hat{\rho}_k) \approx \frac{1}{n} (1 + 2\rho_1^2 + 2\rho_2^2 + \dots + 2\rho_m^2)$$

In particular, when $Z_t = a_t$ is a white noise, we have

$$\operatorname{var}(\hat{\rho}_k) \approx \frac{1}{n}$$

How to check whether Z_t is a white noise or not?

Let

$$S_{\hat{\rho}_k} = \sqrt{\frac{1}{n}(1 + 2\hat{\rho}_1^2 + \dots + 2\hat{\rho}_m^2)},$$

where m is a fixed integer.

If Z_t is a white noise, $S_{\hat{\rho}_k} \approx \sqrt{\frac{1}{n}}$.

2.5.4 Sample PACF

Definition:

$$\hat{\phi}_{11} = \hat{\rho}_1,$$

$$\hat{\phi}_{kk} = \frac{\begin{vmatrix} 1 & \hat{\rho}_1 & \hat{\rho}_2 & \cdots & \hat{\rho}_{k-2} & \hat{\rho}_1 \\ \hat{\rho}_1 & 1 & \hat{\rho}_1 & \cdots & \hat{\rho}_{k-3} & \hat{\rho}_2 \\ & & \cdots & & \\ & & \ddots & & \\ \hline \frac{\hat{\rho}_{k-1} & \hat{\rho}_{k-2} & \hat{\rho}_{k-3} & \cdots & \hat{\rho}_1 & \hat{\rho}_k \\ \hline 1 & \hat{\rho}_1 & \hat{\rho}_2 & \cdots & \hat{\rho}_{k-2} & \hat{\rho}_{k-1} \\ \hat{\rho}_1 & 1 & \hat{\rho}_1 & \cdots & \hat{\rho}_{k-3} & \hat{\rho}_{k-2} \\ & & \cdots & & \\ & & \cdots & & \\ & \hat{\rho}_{k-1} & \hat{\rho}_{k-2} & \hat{\rho}_{k-3} & \cdots & \hat{\rho}_1 & 1 \end{vmatrix}}$$

is called the sample PACF of Z_t .

 $\hat{\phi}_{kk}$ is an L_2 -consistent estimator of ϕ_{kk} .

2.6 Moving average and autoregressive representations of time series processes

Definition: Moving average representation (MA) of Z_t is

$$Z_t = \mu + a_t + \psi_1 a_{t-1} + \psi_2 a_{t-2} + \dots = \mu + \sum_{j=0}^{\infty} \psi_j a_{t-j},$$

where $\psi_0 = 1$, a_t is a white noise, $\sum_{j=0}^{\infty} \psi_j^2 < \infty$ (called **Wold's representation** or linear process).

Notation: Backshift operator: $B^j x_t = x_{t-j}$.

Thus, Z_t can be written as

$$Z_t = \mu + B^0 a_t + \psi_1 B^1 a_t + \psi_2 B^2 a_t + \dots$$

$$= \mu + \sum_{j=0}^{\infty} \psi_j B^j a_t$$

$$= \mu + \left(\sum_{j=0}^{\infty} \psi_j B^j\right) a_t$$

Denote $\dot{Z}_t = Z_t - \mu$ and $\psi(B) = \sum_{j=0}^{\infty} \psi_j B^j$. Then $\dot{Z}_t = \psi(B) a_t$.

Some properties:

$$\mathbb{E}Z_t = \mu$$
$$\operatorname{var}(Z_t) = \sigma_a^2 \sum_{j=0}^{\infty} \psi_j^2$$
$$\mathbb{E}(a_t Z_{t-j}) = \begin{cases} \sigma_a^2, & \text{if } j = 0\\ 0, & \text{if } j > 0 \end{cases}$$

$$\gamma_k = \mathbb{E}(\dot{Z}_t \dot{Z}_{t-k}) = \sigma_a^2 \sum_{i=0}^{\infty} \psi_i \psi_{i+k}$$
$$\rho_k = \frac{\sum_{i=0}^{\infty} \psi_k \psi_{i+k}}{\sum_{i=0}^{\infty} \psi_i^2}.$$

Definition: Autoregressive representation (AR) of Z_t is

$$\dot{Z}_t = \pi_1 \dot{Z}_{t-1} + \pi_2 \dot{Z}_{t-2} + \dots + a_t = \sum_{j=1}^{\infty} \pi_j \dot{Z}_{t-j} + a_t,$$

where $\dot{Z}_t = Z_t - \mu$, $1 + \sum_{j=1}^{\infty} |\pi_j| < \infty$.

Notation: $\pi(B) = 1 - \sum_{j=1}^{\infty} \pi_j B^j$.

Then $\pi(B)\dot{Z}_t = a_t$.

Relationship of MA and AR representations:

1) If all roots of $\pi(z) = 0$ lie outside the unit circle, then

$$\pi(B)\dot{Z}_t = a_t \Longrightarrow \dot{Z}_t = (\pi(B))^{-1}a_t = \psi(B)a_t$$

2) If all roots of $\psi(z) = 0$ lie outside the unit circle, then

$$\dot{Z}_t = \psi(B)a_t \Longrightarrow a_t = (\psi(B))^{-1}\dot{Z}_t = \pi(B)\dot{Z}_t$$

2.7 Time Series Models

Let $\ldots, Z_{-t}, \ldots, Z_{-1}, Z_0, Z_1, \ldots, Z_t, \ldots$ be a sequence of TS r.v.

How to describe the relationship between Z_t and the past data Z_{t-1}, Z_{t-2}, \dots ?

$$Z_t = f(Z_{t-1}, Z_{t-2}, \dots) + a_t$$

It is called the time series model.

1. Autoregressive (AR(1)) model:

$$Z_t = \phi Z_{t-1} + a_t,$$

where ϕ is a constant and called the **parameter**

2. AR(p) model:

$$Z_t = \phi_1 Z_{t-1} + \dots + \phi_p Z_{t-p} + a_t,$$

where ϕ_p is a constant and called the **parameter**, and p is called the **order** of the AR(p) model

3. $AR(\infty)$ model:

$$Z_t = \sum_{i=1}^{\infty} \phi_i Z_{t-i} + a_t$$

4. Moving-average (MA) model:

$$Z_t = \mu + a_t + \psi_1 a_{t-1} + \psi_2 a_{t-2} + \dots$$

5. ARMA model

- 6. Threshold AR model (Tong 1977)
- 7. Long memory model (Granger (1980) and Hosking (1981))
- 8. GARCH model (Engle, 1982) and (Bolleslev, 1986)
- 9. ARMA-GARCH model
- 10. Vector ARMA-GARCH model

. . .

3 Problems

Problem 1

Let

$$Z_t := U_t \sin(2\pi t) + V_t \cos(2\pi t),$$

where $U_t, V_t \sim^{iid} \mathcal{N}(0; 1)$.

- (a) Is Z_t strictly stationary?
- (b) Is Z_t stationary?

Solution

1) Since $t \in \mathbb{Z}$, actually, we simply have

$$\forall t \ Z_t = V_t$$

2) Note that

$$\mathbb{P}(Z_{t_1} \le z_1, \dots, Z_{t_n} \le z_n) = [\text{independence}] =$$

$$\mathbb{P}(V_{t_1} \le z_1) \times \dots \times \mathbb{P}(V_{t_n} \le z_n) = \Phi(z_1) \times \dots \times \Phi(z_n)$$

Similarly,

$$\mathbb{P}(Z_{t_1+k} \le z_1, \dots, Z_{t_n+k} \le z_n) = \mathbb{P}(V_{t_1+k} \le z_1) \times \dots \times \mathbb{P}(V_{t_n+k} \le z_n) = \Phi(z_1) \times \dots \times \Phi(z_n)$$

Since

$$\mathbb{P}(Z_{t_1} \le z_1, \dots, Z_{t_n} \le z_n) = \mathbb{P}(Z_{t_1+k} \le z_1, \dots, Z_{t_n+k} \le z_n)$$

for $\forall t_1, \ldots, t_n, k$ and (z_1, \ldots, z_n) and $n, \{Z_t\}$ is strictly stationary.

3) Moreover,

$$\mathbb{E}Z_t^2 = \mathbb{E}V_t^2 = 1 < \infty$$

By property of strictly stationary TS, $\{Z_t\}$ is **stationary**.

Problem 2

Is the following a valid autocorrelation function for some real-valued stationary TS? Why?

$$\rho_k = \begin{cases} 1, & \text{if } k = 0\\ \phi, & \text{if } |k| = 1\\ 0, & \text{if } |k| \ge 2 \end{cases}$$

where $\frac{1}{2} < |\phi| < 1$.

Solution

- 1) $\rho_0 = 1$ by the definition of ρ_0
- 2) a) $\rho_1 = \rho_{-1} = \phi$ by the definition of $\rho_{\pm 1}$
 - b) If $|k| \geq 2$, then $\rho_k = \rho_{-k} = 0$ by the definition of function ρ_k
- 3) $|\rho_k| \leq 1$ by the definition of function ρ_k

Thus, ρ_k is a valid ACF.

4 Supplementary materials

Problem

Given a sequence of iid $\{\epsilon_t\}_{t\in\mathbb{N}_0}^1$ with $\mathbb{E}\epsilon_t=0$ and distribution P_{ϵ} which is absolutely continuous with respect to Lebesgue measure λ on \mathbb{R} (i.e. $\mathbb{P}(\epsilon_t\in A)=P_{\epsilon}(A)=\int_A f_{\epsilon}(x)\ d\lambda(x)$ for any «reasonable» $^2A\subset\mathbb{R}$), let $\{Z_t\}_{t\in\mathbb{N}_0}$ be the AR(1) process defined by:

$$Z_t := \theta Z_{t-1} + \epsilon_t, \ t \ge 0,$$

where $\theta \in \mathbb{R}$.

Show that if P_{ϵ} has a positive dense over \mathbb{R} (i.e. $f_{\epsilon}(x) > 0 \ \forall x \in \mathbb{R}$), then

$$\forall B: \lambda(B) > 0 \ \forall x \in \mathbb{R} \quad \mathbb{P}(Z_{t+1} \in B \mid Z_t = x) > 0$$

Asymptotic independence and Mixing

Sometimes there is no linear dependence between r.v. Z_t and Z_{t+k} . Although, there might be a more complicated dependence. To characterise the behaviour (in dependence) when past and future become far apart, mixing coefficients are introduced. Therefore, mixing assumptions (Rosenblatt, 1956) are used to convey different ideas of asymptotic independence between the past and the future of a TS. Most popular mixing coefficients are α -mixing and β -mixing coefficients.

 $^{^{1}\}mathbb{N}_{0}:=\mathbb{N}\cup\{0\}$

²Rigorously, $A \in \mathcal{B}(\mathbb{R})$ – Borel sigma-field of \mathbb{R} .