Problem Statement

Linear Regression

Import Libraries

```
import numpy as np
import pandas as pd
import matplotlib.pyplot as plt
import seaborn as sns

import sead_csv("fitness.csv")
a
```

Out[2]:		Row Labels	Sum of Jan	Sum of Feb	Sum of Mar	Sum of Total Sales
	0	А	5.62%	7.73%	6.16%	75
	1	В	4.21%	17.27%	19.21%	160
	2	С	9.83%	11.60%	5.17%	101
	3	D	2.81%	21.91%	7.88%	127
	4	E	25.28%	10.57%	11.82%	179
	5	F	8.15%	16.24%	18.47%	167
	6	G	18.54%	8.76%	17.49%	171
	7	Н	25.56%	5.93%	13.79%	170
	8	Grand Total	100.00%	100.00%	100.00%	1150

To display top 10 rows

```
In [3]: c=a.head(15) c
```

Out[3]:		Row Labels	Sum of Jan	Sum of Feb	Sum of Mar	Sum of Total Sales
	0	А	5.62%	7.73%	6.16%	75
	1	В	4.21%	17.27%	19.21%	160
	2	С	9.83%	11.60%	5.17%	101
	3	D	2.81%	21.91%	7.88%	127
	4	Е	25.28%	10.57%	11.82%	179
	5	F	8.15%	16.24%	18.47%	167
	6	G	18.54%	8.76%	17.49%	171
	7	Н	25.56%	5.93%	13.79%	170

	Row Labels	Sum of Jan	Sum of Feb	Sum of Mar	Sum of Total Sales
8	Grand Total	100.00%	100.00%	100.00%	1150

To find Missing values

```
In [4]:
         c.info()
        <class 'pandas.core.frame.DataFrame'>
        RangeIndex: 9 entries, 0 to 8
        Data columns (total 5 columns):
           Column
                               Non-Null Count Dtype
         0
           Row Labels
                               9 non-null
                                               object
             Sum of Jan
                               9 non-null
                                              object
                               9 non-null
9 non-null
9 non-null
             Sum of Feb
                                               object
             Sum of Mar
                                                object
         4 Sum of Total Sales 9 non-null
                                                int64
        dtypes: int64(1), object(4)
        memory usage: 488.0+ bytes
```

To display summary of statistics

```
In [5]:
          a.describe()
                 Sum of Total Sales
Out[5]:
                          9.000000
          count
          mean
                        255.55556
            std
                        337.332963
                         75.000000
           min
           25%
                        127.000000
           50%
                        167.000000
           75%
                        171.000000
                       1150.000000
           max
```

To display column heading

Pairplot

```
In [7]: s=a.dropna(axis=1)
s
```

Out[7]:		Row Labels	Sum of Jan	Sum of Feb	Sum of Mar	Sum of Total Sales
	0	А	5.62%	7.73%	6.16%	75
	1	В	4.21%	17.27%	19.21%	160
	2	С	9.83%	11.60%	5.17%	101
	3	D	2.81%	21.91%	7.88%	127
	4	Е	25.28%	10.57%	11.82%	179
	5	F	8.15%	16.24%	18.47%	167
	6	G	18.54%	8.76%	17.49%	171
	7	Н	25.56%	5.93%	13.79%	170
	8	Grand Total	100.00%	100.00%	100.00%	1150

```
In [8]: s.columns
Out[8]: Index(['Row Labels', 'Sum of Jan', 'Sum of Feb', 'Sum of Mar',
```

```
In [9]: sns.pairplot(a)
```

Out[9]: <seaborn.axisgrid.PairGrid at 0x1c5a1213be0>

Distribution Plot

```
In [10]: sns.distplot(c['Sum of Total Sales'])
```

C:\ProgramData\Anaconda3\lib\site-packages\seaborn\distributions.py:2557: FutureWarn
ing: `distplot` is a deprecated function and will be removed in a future version. Pl
ease adapt your code to use either `displot` (a figure-level function with similar f
lexibility) or `histplot` (an axes-level function for histograms).
 warnings.warn(msg, FutureWarning)

Out[10]: <AxesSubplot:xlabel='Sum of Total Sales', ylabel='Density'>

Correlation

Train the model - Model Building

```
In [11]:
            b=a[['Row Labels', 'Sum of Jan', 'Sum of Feb', 'Sum of Mar',
                     'Sum of Total Sales']]
            sns.heatmap(b.corr())
Out[11]: <AxesSubplot:>
                                                                -1.100
                                                                - 1.075
                                                               - 1.050
                                                               - 1.025
                                                               - 1.000
           Sum of Total Sales
                                                                0.975
                                                                0.950
                                                                0.925
                                                                0.900
                             Sum of Total Sales
In [12]:
            g=c[['Sum of Total Sales']]
            h=c['Sum of Total Sales']
```

To split dataset into training end test

```
from sklearn.model_selection import train_test_split
g_train,g_test,h_train,h_test=train_test_split(g,h,test_size=0.6)
```

To run the model

Coeffecient

Best Fit line

To find score

Import Lasso and ridge

```
In [20]: from sklearn.linear_model import Ridge,Lasso
```

Ridge

```
In [21]:    ri=Ridge(alpha=5)
    ri.fit(g_train,h_train)

Out[21]: Ridge(alpha=5)

In [22]:    ri.score(g_test,h_test)

Out[22]:    0.9956420479115011

In [23]:    ri.score(g_train,h_train)

Out[23]:    0.9960609933299487
```

Lasso