Основные направления и перспективы работ в области искусственного интеллекта

Г.С. Осипов ECCAL EurAl Fellow

Федеральный исследовательский центр «Информатика и управление» Российской академии наук

14 ноября 2016 - Skolkovo.Al

gos@isa.ru

Как это случилось

- 1954 г. аналитики *Рэнд Корпорейшн, А. Ньюэлл, Дж.* Шоу и *Г.Саймон* решили написать программу игры в шахматы. В этой затее им вызвались помочь *А. Тьюринг* и *К. Шеннон*, а также группа голландских психологов.
- 1957 г. программа для игры в шахматы (NSS) таки была написана. В основе работы NSS лежали эвристики правила выбора в отсутствие теоретических оснований.

Перспективы ИИ

Что произошло дальше

- **1960** г. GPS («универсальный решатель задач»): вычисление неопределенных интегралов, головоломки и некоторые другие задачи. Программы автоматического доказательства теорем из планиметрии, решения алгебраических задач.
- 1960 г. возникновение эвристического программирования.
- 1963 г. Джон Маккарти ЛИСП. Возникновение функционального программирования.

- **1964** г. В.Н. Пушкин и Д.А. Поспелов модельная гипотеза мышления versus лабиринтной; методы решения переборных задач человеком.
- **1964** г. *С.Ю. Маслов* метод автоматического поиска доказательства теорем в исчислении предикатов (обратный метод).
- 1965 г. Дж.А. Робинсон метод автоматического поиска доказательства теорем в исчислении предикатов (метод резолюций).
- 1968 г. возникновение логического программирования.
- **1971** г. А. Колменрауэр язык **Пр**олог.

Современный ИИ

- Середина 70-х гг. качественный скачок в работах по искусственному интеллекту.
- Появление первых прикладных систем, использующих знания для решения различных всё более сложных задач.

Искусственный интеллект — организационная структура

Европейская ассоциация искусственного интеллекта (EurAI), возглавляемая координационным комитетом (ECCAI), который, в свою очередь, состоит из выборных членов (members) и постоянных (fellows).

- Каждые два года (по четным годам) проводится
 Европейская конференция по искусственному интеллекту (ECAI).
- ECAI 2016 состоялась в Гааге. Обычно в этих конференциях принимает участие от 500 до 700 исследователей из разных (не только европейских) стран.

Конференции

- Наша ассоциация принимала участие в организации ECAI 1996, ECAI 1998, ECAI 2000, ECAI 2006 и ряде иных общеевропейских мероприятий.
- Ежегодно проходит Международная объединённая конференция по искусственному интеллекту (IJCAI), организуемая совместно Европейской и Американской ассоциациями искусственного интеллекта. В этом году она проходила в Нью-Йорке. В ней приняли участие два моих ученика.
- Ежегодно в разных странах проходит JCKBSE, впервые организованная РАИИ; и по сей день мы принимаем участие в её организации и научной программе.

Российская ассоциация искусственного интеллекта

- Общероссийская общественная организация 261 индивидуальный член, 45 региональных отделений.
- По четным годам (совместно с рядом академических организаций и вузов) проводится Национальная конференция по искусственному интеллекту. В этом году — 15я Национальная конференция, Смоленск, 131 доклад, около 200 участников.

Искусственный интеллект и принятие решений

- Журнал с таким названием издаётся РАН совместно с РАИИ.
- 6 номеров в год: 4 на русском и два на английском (Шпрингер).
- Сайт журнала aidt.ru.

Приобретение знаний, анализ данных и автоматическое порождение гипотез

Цель: создание методологий, технологий и программных средств обнаружения и переноса компетентности в базы знаний.

Методы приобретения знаний:

Машинное обучение и обучение по примерам (методы построения деревьев решений, индуктивные методы построения правил; статистические методы, в частности, Байесовские сети; метод ближайших соседей, искусственные нейронные сети)

Приобретение знаний из текстов

Прямые методы приобретения знаний (автоматизированный диалог с экспертами)

Представление знаний

Немного истории

Предмет: разработка языков и программных средств для описания экспертных и эмпирических знаний.

Содержание:

- семантические сети, системы фреймов, системы правил (продукционные системы) и их гибриды;
- логики пространства и времени;
- онтологии способ обмена знаниями;
- дескриптивные логики (теория баз знаний и онтологий).

Автоматизация рассуждений

Немного истории

Методы индукции, абдукции и аналогии, аргументации, рассуждения на основе прецедентов, на основе ограничений, рассуждения о действиях и изменениях, рассуждения с неопределенностью, немонотонные рассуждения.

Немонотонные рассуждения связаны с поиском эмпирических зависимостей в данных, обучением по примерам и рассуждениями в эмпирических теориях. Выделились в самостоятельный раздел логики.

Рассуждения о действиях исследуют связь действий и эффектов действий (результатов действий).

Рассуждения с неопределенностью — использование Байесовского формализма в моделях рассуждений.

Многоагентные системы

Немного истории

Изучаются интеллектуальные программные агенты, их коалиции и поведение.

Интеллектуальный программный агент — программная система, обладающая автономностью, социальными чертами, реактивностью и активностью.

Основные проблемы: коммуникация интеллектуальных агентов, разработка языков для этой цели, координация поведения агентов, распределение ролей в коалициях агентов, коллективное поведение агентов.

Перспективы ИИ

Учиться лучше вместе

Немного истории

Экспериментальным результатом исследования обучения агентов явилось то, что группа агентов лучше обучается решению сложных задач, чем индивидуально на тех же самых примерах.

Роботы и автономные системы

- Диалоговое взаимодействие коалиций мобильных роботов.
- Интерпретация команд, поступающих от человека.
- Качественные логики пространства-времени.
- Рассуждения, основанные на оценках.

Интеллектуальные динамические системы и автоматическое планирование поведения

Результат интеграции методов искусственного интеллекта с теорией динамических систем:

- планирование,
- моделирование,
- управление.

Обработка естественного языка, интерфейс и модели пользователя

- Семантический поиск в больших массивах текстов:
 - поиск документов (в полнотекстовой БД, в локальных и глобальных телекоммуникационных сетях);
 - извлечение данных из текстов; извлечение знаний из текстов.
- Обработка текстов: сегментация, классификация, кластеризация, аннотирование или реферирование текстов.
 Перевод.
- Диалоговые системы:
 - интеллектуальные вопросно-ответные системы;
 - системы общения конечных пользователей с БД, предоставляющие различные услуги (выполнение банковских операций по телефону, заказ товаров по каталогам);
 - голосовое управление техникой, кооперативное решение проблем (человек плюс интеллектуальная система).
- Автоматическое обучение анализу текстов.

Нечеткие модели и мягкие вычисления

- Нечеткие схемы вывода по аналогии;
- теория нечетких мер;
- модели геометрических объектов:
- алгоритмы эволюционного моделирования с динамическими параметрами (например, время жизни и размер популяции);
- методы решения оптимизационных задач с использованием технологий генетического поиска, гомеостатических и синергетических принципов и элементов самоорганизации.

Вклад ИИ в другие науки

Немного истории

Развитие ИИ привело к возникновению самостоятельных областей:

- эвристическое программирование,
- функциональное программирование,
- логическое программирование,
- объектно-ориентированное программирование,
- теория немонотонных рассуждений и немонотонные логики.
- инженерия знаний,
- технология программирования, основанная на знаниях,
- прикладная семиотика.

В инженерном направлении:

экспертные системы.

Перспективные направления ИИ

- Рассуждения, основанные на прецедентах.
- Рассуждения о пространстве возрастающее значение для автономных мобильных устройств, анализа изображений (в частности, аэрофотоснимков), синтеза текстовых описаний по изображениям.
- Методы машинного обучения и автоматического формирования гипотез — решение практических задач: от обнаружения закономерностей в данных до повышения степени адаптивности различных технических устройств.
- Подходы, основанные на технологии интеллектуальных агентов перспективны при разработке больших программных систем.

Перспективные направления ИИ

- Влияние идей и методов ИИ на машинный анализ текстов на естественном языке коснется семантического анализа и методов синтаксического анализа в этой области оно проявится в учете модели мира и использовании знаний о предметной области для уменьшения переборов на более ранних стадиях анализа.
- Понимание текста.
- Автоматическое планирование и управление поведением. Область применения - от бытовой техники до беспилотных аппаратов для исследования глубокого космоса.

Перспективные направления ИИ

- Управление подготовкой к пуску ракет космического назначения.
- Автономные мобильные средства ведения боевых операций.
- Моделирование бизнес процессов на основе систем бизнес-правил.
- Банковские системы, например, анализ транзакций с целью выявления сомнительных операций и мошенничества или обнаружение так называемого layering (лээринга) действия покупателя пакета акций, направленные на снижение цены этих акций посредством создания фиктивного предложения больших пакетов этих акций;
- и ряд других приложений в этой сфере.

Проблемы

- Переход от моделирования структурной организации к моделированию ментальных представлений, в частности, когнитивных функций, иначе говоря,от искусственного интеллекта — к искусственному сознанию.
- Автоматическое (или полуавтоматическое) формирование интеллектуальными агентами модели мира, включая зрительные и слуховые образы предметов и их назначение.

Некоторые результаты коллективов-членов РААИ

- Получены результаты сравнительного анализа систем аргументации. Предложено использовать механизмы аргументации для обнаружения и разрешения внутренних противоречий в базе знаний ИСППР.
- Введены степени обоснования, что значительно расширяет класс задач, решаемых с помощью системы аргументации, а также использует системы аргументации как мощное средство для обнаружения и разрешения конфликтов в базах знаний. (МЭИ)

ИПУ РАН

- Разработана программная система «Канва» для поддержки принятия решений в слабоструктурированных ситуациях.
- Разработан комплекс моделей поддержки принятия решений в конфликтных ситуациях с использованием когнитивных карт.

ГосНИИАС

- Для модели летательного аппарата «Этап» разработана теория бортовых интеллектуальных систем тактического уровня (БИС-Т/У), решающих задачи оперативного целеполагания и конструирования способа достижения оперативно назначенной цели.
- Для пилотируемых летательных аппаратов эти системы создаются в форме бортовых оперативно советующих экспертных систем (БОСЭС-целеполагание и БОСЭС-типовой ситуации полета).

• Созданы роботы, архитектура системы управления

НИЦ «Курчатовский институт»

- которых включает эмоциональную компоненту. Поведение такого робота определяется комплексом эмоций, испытываемым им в зависимости от текущих потребностей и оценкой возможности их (потребностей) удовлетворения. Развитием этого направления стало создание механизма темперамента робота. В зависимости от задаваемых параметров, можно определить поведение робота как холерическое, сангвиническое, флегматическое и меланхолическое.
- Определены условия, при которых та или иная организация темперамента поведения является наиболее выгодной для робота.

ИПМ РАН

Немного истории

• Разработаны технологии поддержки интеллектуальных роботов-манипуляторов, способных автоматически принимать решения непосредственно во время работы. Технологии позволяют управлять поведением робота-манипулятора МанГо во время логической игры; рассмотрены настольные игры типа Го или Гомогу.

ИПМ РАН

Немного истории

• Разработана подсистема зрения робоавтомобиля АвтоНИВА. Система зрения работает с цветными телевизионными изображениями. Подсистема основана на новом, специальном сжатом описании каждого кадра, которое позволяет решать задачи нахождения и распознавания объектов в реальном времени, минимизируя обращения к исходному массиву изображения на стандартном персональном компьютере. Описана система выделения препятствий на пути движения автомобиля по дальномерным данным.

ФИЦ ИУ РАН

- Создана семантическая поисковая машина нового поколения EXACTUS. Машина работает с запросами на естественном языке.
- Неоднократно занимала первые места по релевантности поиска на соревнованиях поисковых машин www.exactus.ru.

Перспективы ИИ

- Создана система прогнозирования социального стресса на основе анализа социальных медиа.
- Созданы системы
 - EXACTUS EXPERT для семантического поиска и анализа качества научных публикаций,
 - EXACTUS PATENT для семантического поиска и анализа патентной информации.

ФИЦ ИУ РАН

Немного истории

Уровень качества данного научно-технического текста равен 5 (0..5).

Индекс соответствия текста формальным требованиям: 5 (0..5).

- Текст содержит 35% общенаучной лексики. Рекомендуемо более 16%, допустимо от 7%.
- Текст содержит 0% ненаучной лексики. Рекомендуемо менее 2%, допустимо до 4%.
- Список литературы присутствует. • Постановка проблемы присутствует. Коэффициент достоверности: 0.90 (0..1).
- Описание методов присутствует. Коэффициент достоверности: 0.87 (0..1).
- Выводы присутствуют. Коэффициент достоверности: 0.83 (0..1).

Степень логической и семантической правильности (отсутствие дефектов): 4 (0..5).

- Количество нарушений падежного согласования: 0 (0..5).
- Низкая степень нарушения синтаксической связности.
- Количество нарушений согласования однородных существительных и управляющего слова: 4.
- Содержание плеоназмов умеренное.

Результаты:

- 1. В настоящем проекте будет исследовано взаимодействие синтаксиса и семантики и решена задача их интеграции в рамках единого семантико-синтаксического анализатора.
- 2. В частности. будут исследованы методы автоматического семантико-синтаксического анализа текста на естественном языке и реализованы экспериментальные программные средства автоматического семантико-
- синтаксического анализа текста на естественном языке. 3. В настоящем проекте будет исследовано взаимодействие синтаксиса и семантики и решена задача их
- интеграции в рамках единого семантико-синтаксического анализатора.. 4. Для получения правил установления значений синтаксем и связей между ними будет исследован метод
- автоматического порождения правил из размеченных корпусов на основе индуктивного метода машинного обучения. Разработаны методы построения реляционно-ситуационной модели на основе анализа текстов...
- 6. Исследован метод индуктивного обнаружения лингвистических правил установления значений синтаксем. повышающие точность анализа текста.
- 7. На этой основе разработан метод автоматического порождения правил, основанный на модификации ДСМметода машинного обучения, не имеющего зарубежных аналогов.. 8. Созданы оригинальные методы компьютерной обработки больших коллекций текстов, включая методы
- семантического поиска, классификации, кластеризации текстов, поиска близких по смыслу текстов... 9. Создана интеллектуальная поисково-аналитическая система Exactus, реализующая в себе разработанные методы.

Термины:

1. В число падежей представляющихся необходимыми, входят Агентив — падеж обычно одушевленного инициатора действия идентифицируемого с глаголом. Инструменталис — падеж неодушевленной силы или предмета, который включен в действие или состояние, называемое *глаголом*, в качестве его причины. Датив - падеж одушевленного существа, которое затрагивается состоянием или действием, называемым глаголом. Фактитив — падеж предмета или существа, которое возникает в результате действия или состояния. называемого глаголом, или которое понимается как часть значения глагола. Локатив — падеж, которым

ФИЦ ИУ РАН

- EXACTUS LIKE для обнаружения близких текстов и вычисления степени семантической близости;
- TEXT Appliance информационно-аналитическая система анализа неструктурированной информации.
- ТЕХТ Appliance куплена национальным цифровым ресурсом Руконт и используется десятками вузов и компанией Инфра-М.

Спасибо за внимание!

ФИЦ ИУ РАН

gos@isa.ru