# Programmation dynamique

#### N. TSOPZE

Département d'Informatique - Université de Yaoundé I

## Programmation dynamique

- appliquée aux problèmes d'optimisation;
- nombreuses solutions possibles, ayant une valeur chacune;
- trouver une solution ayant la valeur optimale (minimale ou maximale)
- possibilité d'avoir plusieurs solutions ayant la valeur optimale

### étapes

- Caractériser la structure d'une solution optimale;
- 2 Définir récursivement la valeur d'une solution optimale;
- Calculer la valeur d'une solution optimale de manière ascendante (bottom-up).
- Onstruire une solution optimale à partir des informations calculées.

## programmation dynamique

- 1 Disposer d'un problème de taille n;
- 2 Décomposer en sous problème;
- o résoudre chaque sous problème indépendamment (DPR)

<u>Inconvénient</u>: Possibilité de resoudre un sous problème identique plusieurs fois.

### Idée générale de PD

Décomposer un problème global en sous problèmes, puis résoudre chaque sous exemplaire différent une seule fois

## Programmation dynamique

#### Idée

Eviter de faire le même calcul deux fois

- Utiliser un tableau pour stocker les résultats des sous problèmes
- Remplir le tableau au fur et à mesure

### Principe d'optimalité

Dans une séquence optimale de décisions ou de choix, chaque sous séquence doit aussi être optimale.

### Principe d'optimalité

La solution optimale à un problème est composée de solutions optimales à des sous-problèmes

### Etude de cas

- Calcul de  $C_n^p$
- Suite de Fibonacci
- plus courts chemins (Algo. de Floyd)
- Multiplication chaînée de matrices
- 6 Knapsack

# Etude de cas - Calcul de $C_n^p$

$$\begin{cases}
C_n^n = C_n^0 = C_0^0 = 1 \\
C_n^p = C_{n-1}^{p-1} + C_{n-1}^p
\end{cases}$$

Fonction Comb (n,p)

- Si (n = p) ou (p = 0) alors retourner 1
- **3** Sinon retourner Comb(n-1, p-1) + Comb(n-1, p)
- Fsi
- ⇒ Grand nombre de sous problèmes identiques



### Version PD - Triangle de Pascal

- 1 calcul ligne par ligne, de gauche à droite,
- calculer pour les sous exemplaires les plus simples et sauvegarder les résultats,
- se servir de ces résultats pour la calcul des exemplaires plus grands

### Suite de Fibonacci

$$\begin{cases} f_1 = f_0 = 1 \\ f_n = f_{n-1} + f_{n-2}, n > 1 \end{cases}$$

#### Approche dynamique:

- commencer par les sous problèmes les plus petits ( $f_0$  et  $f_1$ )
- ② calculer les sous problèmes plus complexes  $(f_2, f_3, f_4, ..., f_n)$  en gardant la trace des résultats intermédiaires <u>nécessaires</u> au calcul
- ⇒ Version itérative de l'algorithme = version PD



### plus court chemin

Dans un graphe de n sommets, calculer les longueurs des plus courts chemins entre chaque pair de sommets en utilisant comme sommets intermédiaires, dans l?ordre et de façon successives les sommets  $1, 2, 3 \dots n$ 

#### principe

Si le plus court chemin (chemin optimal) entre deux sommets A et B passe par un sommet intermédiaire C, alors les portions du chemin entre A et C et entre C et B doivent forcément être optimale.

# Algorithme de Floyd

$$\begin{cases} D_0[i,j] = arc(i,j) \\ D_0[i,j] = +\infty \end{cases}$$

Par récurrence 
$$\begin{cases} D_1[i,j] = Min(D_0[i,j], D_0[i,1] + D_0[1,j]) \\ D_k[i,j] = Min(D_{k-1}[i,j], D_{k-1}[i,k] + D_{k-1}[k,j]) \end{cases}$$

## Multiplication matricielle

- ② multiplier  $M_1(p,q)$  par  $M_2(q,r)$  requiert p\*q\*r multiplications élémentaires

#### Problème

trouver le nombre minimal m(1,n) de multiplications élémentaires nécessaire pour multiplier une série de n matrices :  $M_1M_2M_3...M_n$ .

## Multiplication matricielle

- m(i,j) (m(i,i) = 1) nombre minimal de multiplications élémentaires nécessaires pour faire le produit de matrices suivant :  $M_i * M_{i+1} * M_{i+2} ... * M_i$
- ② D[0..n] dimensions d'une matrice  $M_i$  soient données par D[i-1] (nb de lignes) et D[i] (nb de colonnes)
- **③**  $M_i M_{i+1}$  requiert m(i, i+1) = D[i-1] \* D[i] \* D[i+1] multiplications élémentaires

### **Optimalité**

Si pour faire le produit de n matrices avec un nombre minimal d'opérations élémentaires on découpe le produit des n matrices en deux sous produits au niveau de la  $i^e$  matrice :

- $(M_1 * M_2 * ... M_i) * (M_{i+1} * M_{i+2} * ... M_n)$  alors chacun des deux sous produits doit aussi être optimal
- ②  $P_1: (M_1*M_2*...M_i)$  calculé avec m(1,i) opération élémentaires; soit une matrice X de dimensions : D[0]xD[i].
- **1**  $P_2: (M_{i+1}*M_{i+2}*...M_n)$  calculé avec m(i+1,n) opérations élémentaires; soit une matrice Y de dimensions :  $D[i] \times D[n]$ ;
- 4 Le produit final : X \* Y nécessitera alors D[0] \* D[i] \* D[n] multiplications élémentaires.
- $\Rightarrow$  découpe le produit initial au niveau de la  $i^e$  matrice, on pourra écrire : m(1, n) = m(1, i) + m(i + 1, n) + D[0] \* D[i] \* D[n]



### Problème du sac à dos

#### Cas entier

- **1**  $A[i, p] = \text{profit maximal obtenu en prenant un sous-ensemble d'objets de <math>\{1, ..., i\}$  avec un poids total est inférieur ou égal à p.
- ② A[i, p] = 0 s'il n'existe aucun sous-ensemble de  $\{1, ..., i\}$  de poids au plus égal à p;
- $\odot$  gain maximal A[i+1,p]

$$\begin{cases} A[i+1,p] = \max(A[i,p],A[i,p-P_{i+1}] + V_{i+1}) \text{ si } P_{i+1} \leq p \\ A[i+1,p] = A[i,p] \text{ sinon.} \end{cases}$$