International IOR Rectifier

25MT060WF

"FULL-BRIDGE" IGBT MTP

Warp Speed IGBT

Features

- Gen. 4 Warp Speed IGBT Technology
 HEXFRED™ Antiparallel Diodes with UltraSoft Reverse Recovery
- Very Low Conduction and Switching Losses
- · Optional SMT Thermistor
- Aluminum Nitride DBC
- · Very Low Stray Inductance Design for High Speed Operation

50 A $V_{CES} = 600V$

Benefits

- · Optimized for Welding, UPS and SMPS Applications
- Operating Frequencies > 20 kHz Hard Switching, >200 kHz Resonant Mode
- · Low EMI, requires Less Snubbing
- · Direct Mounting to Heatsink
- PCB Solderable Terminals
- Very Low Junction-to-Case Thermal Resistance
 UL Approved E78996 \$\frac{1}{2}\$

Absolute Maximum Ratings

	Parameters		Max	Units
V _{CES}	Collector-to-Emitter Voltage		600	V
I _C	Continuos Collector Current	@ T _C = 25°C	50	А
		@ T _C = 100°C	38	
I _{CM}	Pulsed Collector Current		200	
I _{LM}	Peak Switching Current		200	
I _F	Diode Continuous Forward Current	@ T _C = 100°C	25	
I _{FM}	Peak Diode Forward Current		200	
V _{GE}	Gate-to-Emitter Voltage		± 20	V
V _{ISOL}	RMS Isolation Voltage, Any Terminal to	2500		
P _D	Maximum Power Dissipation	@ T _C = 25°C	250	W
	per single IGBT	@ T _C = 100°C	100	

Electrical Characteristics @ T_J = 25°C (unless otherwise specified)

	Parameters	Min	Тур	Max	Units	Test Conditions
V _{(BR)CES}	Collector-to-Emitter Breakdown Voltage	600			V	V _{GE} = 0V, I _C = 250μA
$\Delta V_{(BR)CES}$	Temperature Coeff. of		+0.6		V/°C	$V_{GE} = 0V, I_{C} = 4mA (25-125^{\circ}C)$
ΔT_J	Breakdown Voltage					
V _{CE(ON)}	Collector-to-Emitter Saturation Voltage		2.22	3.14	V	V _{GE} = 15V, I _C = 25A
			2.43	3.25	İ	V _{GE} = 15V, I _C = 50A
			1.65	1.93		V _{GE} = 15V, I _C = 25A T _J = 150°C
			2.08	2.45	[$V_{GE} = 15V, I_{C} = 50A$ $T_{J} = 150^{\circ}C$
V _{GE(th)}	Gate Threshold Voltage	3		6		$V_{CE} = V_{GE}$, $I_C = 250\mu A$
$\Delta V_{GE(th)}$	Temperature Coeff. of		-17		mV/°C	$V_{CE} = V_{GE}, I_C = 250\mu A (25-125^{\circ}C)$
ΔT_{J}	Threshold Voltage					
g _{fe}	Transconductance		43		S	V_{CE} = 100V, I_{C} = 25A, PW = 80 μ s
I _{CES}	Zero Gate Voltage Collector Current (1)			250	μA	V _{GE} = 0V, V _{CE} = 600V, T _J = 25°C
				10	mA	V _{GE} = 0V, V _{CE} = 600V, T _J = 150°C
I _{GES}	Gate-to-Emitter Leakage Current			±250	nA	V _{GE} = ± 20V
V _{FM}	Diode Forward Voltage Drop		1.36	1.64	V	I _C = 25A
			1.57	1.93		I _C = 50A
			1.19	1.42		I _C = 25A, T _J = 150°C
			1.48	1.80		I _C = 50A, T _J = 150°C

⁽¹⁾ I $_{\mbox{\scriptsize CES}}$ includes also opposite leg overall leakage

Switching Characteristics @ T_J = 25°C (unless otherwise specified)

	Parameters	Min	Тур	Max	Units	Test Conditions
Qg	Total Gate Charge (turn-on)		175	263	nC	I _C = 25A
Qge	Gate-Emitter Charge (turn-on)		27	41		V _{CC} = 480V
Qgc	Gate-Collector Charge (turn-on)		71	107		V _{GE} = 15V
Eon	Turn-On Switching Loss		134	201	μ	$R_g = 5\Omega$, $I_C = 25A$
Eoff	Turn-Off Switching Loss		415	623		V _{CC} = 480V
Ets	Total Switching Loss		549	824		$V_{GE} = \pm 15V$
Eon	Turn-On Switching Loss		391	586	μ	$R_g = 5\Omega$, $I_C = 25A$
E _{off}	Turn-OffSwitchingLoss		492	738		V _{CC} = 480V
Ets	Total Switching Loss		883	1324		$V_{GE} = \pm 15V, T_{J} = 125^{\circ}C$
C _{ies}	Input Capacitance		3610	5415	рF	V _{GE} = 0V
Coes	Output Capacitance		714	1071		V _{CC} = 30V
Cres	Reverse Transfer Capacitance		58	87		f = 1.0 MHz
trr	Diode Reverse Recovery Time		50		ns	$V_R = 200V, I_C = 25A$
Irr	Diode Peak Reverse Current		4.5		Α	di/dt = 200A/µs
Qrr	Diode Recovery Charge		112		nC	
di _(rec) M/ _{dt}	Diode PeakRate of Fall of Recovery During \mathbf{t}_{b}		250		A/µs	

Thermal- Mechanical Specifications

	Parameters		Min	Тур	Max	Units
TJ	Operating Junction Temperature Range		- 40		150	°C
T _{STG}	Storage Temperature Range		- 40		125	-
R _{thJC}	Junction-to-Case IG	BT			0.5	°C/ W
	Di	iode			0.9	
R _{thCS}	Case-to-Sink M	odule		0.06		
	(Heatsink Compound Thermal Conductivity =					
	Clearance (2) (external shortest distance in air between two terminals) Creepage (2) (shortest distance along external surface of the insulating material between 2 terminals) Weight		5.5			mm
			8			mm
				66		g

⁽²⁾ Standard version only i.e. without optional thermistor

Fig. 4 - Maximum Collector Current vs. Case Temperature

Fig. 5 - Typical Collector-to-Emitter Voltage vs. Junction Temperature

Fig. 6a Maximum Transient Thermal Impedance, Junction-to-Case (IGBT)

Fig. 6b Maximum Transient Thermal Impedance, Junction-to-Case (DIODE)

Bulletin I27143 Rev.B 07/03

Fig. 7 - Typical Capacitance vs. Collector-to-Emitter Voltage

Fig. 8 - Typical Gate Charge vs. Gate-to-Emitter Voltage

Fig. 9 - Typical Switching Losses vs. Gate Resistance

Fig. 10 - Typical Switching Losses vs. Junction Temperature

Fig. 11 - Typical Switching Losses vs. Collector-to-Emitter Current

Fig. 12 - Turn-Off SOA

Fig. 13 - Maximum Forward Voltage Drop vs. Instantaneous Forward Current

 $\begin{array}{c} 30 \\ V_R = 200V \\ T_J = 125^{\circ}C \\ T_J = 25^{\circ}C \\ \end{array}$

Fig. 14 - Typical Reverse Recovery vs. di_f/dt

 $\textbf{Fig.\,15}\,\,\text{-}\,\mathsf{Typical}\,\,\mathsf{Recovery}\,\mathsf{Current}\,\mathsf{vs.}\,\,\mathsf{di}_{f}\!/\mathsf{dt}$

Fig. 16 - Typical Stored Charge vs. di_f/dt

Fig. 17 - Typical $di_{(rec)M}/dt$ vs. di_f/dt

Outline Table

International

TOR Rectifier

25MT060WF

Bulletin I27143 Rev.B 07/03

Ordering Information Table

Data and specifications subject to change without notice. This product has been designed and qualified for Industrial Level. Qualification Standards can be found on IR's Web site.

IR WORLD HEADQUARTERS: 233 Kansas St., El Segundo, California 90245, USA Tel: (310) 252-7105
TAC Fax: (310) 252-7309
Visit us at www.irf.com for sales contact information. 07/01