Feature extraction of speech with Mel frequency cepstral coefficients (MFCCs)

Generic audio classifier

Short-term speech processing

The source and the filter

Intuition to cepstral processing

In cepstral processing, we are interested in the "frequency content" of the magnitude spectrum. We apply Fourier techniques to the magnitude spectrum, just like we usually apply them to time-domain signals.

From theory to practice

→ The inverse Fourier transform is replaced by the discrete cosine transform (DCT)

depends on the distance to microphone, the

vocal effort of the speaker, etc.

```
% frame is a short-term chunk of speech
NFFT = 2^nextpow2(length(frame));
frame = filter([1, -0.97],[1],frame);
frame = frame .* hamming(length(frame));
spectrum = fft(frame,NFFT);
logmagspec = log(abs(spectrum(1:NFFT/2+1))+eps);
cepstrum = dct(logmagspec);
cepstrum = cepstrum(2:numcoefficients+1);
We retain only a few of the lowest coefficients. Note that we
drop c[0] since it is proportional to log-energy and therefore
```

Matlab demo: Reconstruction of spectra from cepstral coefficients

Mel-frequency cepstral coefficients (MFCCs)

- A combination of a psycho-acoustically motivated mel-frequency warped filterbank and cepstrum

Mel-scale filterbank

$$c_i = \sqrt{\frac{2}{N}} \sum_{j=1}^{N} m_j \cos\left(\frac{\pi i}{N}(j-0.5)\right)$$

Typical MFCC parameters

- 25 or 30 msec frame, 50% frame overlap
- FFT size 512, 1024 or 2048
- P=24 to P=30 filters in the Mel bank
- Retain ≈ P/2 cepstral coefficients
- Delta and double delta coefficients and cepstral mean subtraction (CMS)

How do the MFCCs look like?

The energy of the cepstral coefficients is concentrated on the low coefficients (low "quefrencies")

MFCCs – the Swiss Army Knife of Speech and Audio Signal Processing

Speech classification

- Automatic speech recognition
- Speaker identification
- Language identification
- Emotion recognition

Music information retrieval

- Musical instrument recognition
- Music genre identification
- Singer identification

Speech synthesis, coding, conversion

- Statistical parametric speech synthesis
- Speaker conversion
- Speech coding

Others

- Speech pathology classification
- Identification of cell phone models
- etc ...

Example MFCC implementations

- Voicebox (Matlab)
 <u>http://www.ee.ic.ac.uk/hp/staff/dmb/voicebox/voicebox/voicebox.html</u>
- Rastamat (Matlab)
 http://labrosa.ee.columbia.edu/matlab/rastamat/
- Bob toolkit
 http://idiap.github.io/bob/
- Hidden Markov model (HTK) toolkit <u>http://htk.eng.cam.ac.uk/</u>

Recommended literature

- X. Huang, A. Acero, H.-W. Hon, Spoken Language Processing:
 A Guide to Theory, Algorithm and System Development.

 Prentice Hall, 2001.
- R. M. Schafer, "Homomorphic systems and cepstrum analysis of speech". In J. Benesty, M. Sandhi, Y. Huang (Eds), Springer Handbook of speech processing, pp. 161—180.