Calculus: single

The Robert Ghrist Approach Mark

Relearn

Contents

1	Func	ctions	1
	1.1	e, sin, and cos	1
	1.2	Taylor	2
	1.3	Hyperbolic Trigonometric Functions	3
	1.4	Tricks	4
	1.5	Binomial Theorem and Series	5
	1.6	Limits	5
		1.6.1 L'Hopital's Rule	6
2	Differentiation		
	2.1	Newton's Method	6
	2.2	Optimization	7
		2.2.1 Second Derivative Test	
3	Integration		8
4	4 Series		8

1 Functions

1.1 e, sin, and cos

Euler's Formula $e^{ix} = \cos(x) + i\sin(x)$ for now take as a fact

Define e^x using Taylor as

$$e^{x} = 1 + x + \frac{x^{2}}{2!} + \frac{x^{2}}{2!} + \frac{x^{2}}{2!} + \dots$$
$$= \sum_{k=0}^{\infty} \frac{x^{k}}{k!}.$$

also sometimes defined as $e^x = \lim_{n \to \infty} (1 + x/n)^n$.

By Euler's Formula,

$$\begin{split} e^{ix} &= 1 + ix + \frac{(ix)^2}{2!} + \frac{(ix)^3}{3!} + \dots \\ &= 1 - \frac{x^2}{2!} + \frac{x^4}{4!} + \dots + i(x - \frac{x^3}{3!} + \frac{x^5}{5!} - \dots) \\ &= \cos(x) + i\sin(x). \end{split}$$
 (breaking up real and imaginary)

1.2 Taylor

The **Taylor Series** of a function f at x = 0 is

$$f(x) = f(0) + \frac{f'(0)}{1!}x + \frac{f''(0)}{2!}x^2 + \frac{f'''(0)}{3!}x^3 + \dots$$

*Taylor series can be differented term by term! At any other point a it's

$$f(x) = f(a) + f'(a)(x - a) + \frac{f^{(2)}}{2!}(x - a)^2 + \dots$$

(remember, a must be inside the domain of convergece for the Taylor Poly)

Does Taylor exist for every function?

NO, more on this later

Geometric Series
$$1+r+r^2+r^3+r^4+\cdots=\frac{1}{1-r} \qquad \qquad \text{(for } |r|<1\text{)}$$
 proof: $s_n=1+r+r^2+r^3+\cdots+r^n$ Then, $s_n-rs_n=1-r^{n+1} \implies s_n=\frac{1-r^{n+1}}{1-r}$ (as $n\to\infty$, this becomes $\frac{1}{1-r}$ if $|r|<1$)

e.g., A neat example is the **Bessel function** used to describe the waves in water when a stone drops:

$$J_0(x) = \sum_{k=0}^{\infty} (-1)^k \frac{x^{2k}}{2^{2k} (k!)^2}$$
$$= 1 - \frac{1}{2^2} x^2 + \frac{1}{2^4 (2!)^2} x^4 - \frac{1}{2^6 (3!)^2} x^6 + \dots$$

note the Bessel function is defined by its Taylor series.

It's a decaying cosine-like wave, since the denominator grows faster than cosine's.

Orders of Growth and Error Size

Big-O: "not faster than"

• f(x) = O(1) if $|f(x)| \le c * 1$ as $x \to \infty$ (for some c)

• f(x) = O(g(x)) if $|f(x)| \le c * |g(x)|$ as $x \to \infty$ (for some c)

Can be equivalently defined for $x \to 0$ to describe how quickly a function decays. **Little-o**: "ultimately smaller than"

• f(x)=o(g(x)) means $\frac{f(x)}{g(x)}\to 0$ as $g(x)\to 0$. equivalent to $f(x)\le c*g(x)$, for all c

A Linear Approximation of a function, aka first order Taylor approximation about x=a is $f(x)\approx f(a)+f'(a)(x-a)$.

idea: you approximate the function by its tangent.

You can use linear approximations to estimate values like $\sqrt{250}$ and π^{20} .

We know $\sqrt{256}=16$. So, we can linearly approximate $\sqrt{250}$: $\sqrt{250}\approx\sqrt{256}+1/2(256)^{-1/2}(250-256)=16-6/32=15.8$

1.3 Hyperbolic Trigonometric Functions

These fuctions have similar algebraic properties to \sin, \cos and similarities in their taylor expansions.

(Taylor is the same without alternating signs-all +) **Define**

$$\sinh(x) = \frac{e^x - e^{-x}}{2}$$
$$\cosh(x) = \frac{e^x + e^{-x}}{2}$$

A variation of the Pythagorean Theorem holds:

$$\cosh^2(x) - \sinh^2(x) = 1$$

Geometrically, \cosh and \sinh give x,y coordinates on the hyperbola $x^2-y^2=1$ (similar to \sin , \cos with the unit circle).

What are hyperbolas?

They are two parabolas approaching approaching asymptotes (facing up/down or right/left):

$$\frac{(x-h)^2}{a^2} - \frac{(y-k)^2}{b^2} = 1$$

(negative sign on x, instead of y, for up/down)

1.4 Tricks

Multiplying Taylor Polynomials

$$\cos(x)\cos(x) = \left(1 - \frac{1}{2!}x^2 + \frac{1}{4!}x^4 - \dots\right)\left(1 - \frac{1}{2!}x^2 + \frac{1}{4!}x^4 - \dots\right)$$
$$= 1 + \left(-\frac{1}{2!} - \frac{1}{2!}\right)x^2 + \left(\frac{1}{4!} + \frac{1}{2!}\frac{1}{2!} + \frac{1}{4!}\right)x^4 + \dots$$

idea: what are the coefficients of x^4

Limits

General trick for limits is to factor, taylor expand, or rewrite and cancel troublesome terms.

1.5 Binomial Theorem and Series

Binomial Series

For |x| < 1 and any $\alpha \in \mathbb{C}$,

$$(1+x)^{\alpha} = 1 + \alpha x + \frac{\alpha(\alpha-1)}{2!}x^2 + \frac{\alpha(\alpha-1)(\alpha-2)}{3!}x^3 + \dots$$
$$= \sum_{k=0}^{\infty} {\alpha \choose k} x^k.$$

by computing derivatives and using Taylor Expansion

The Binomial Theorem refer to a slightly different case

Binomial Theorem

$$(x+y)^n = \sum_{k=0}^n \binom{n}{k} x^{n-k} y^k$$

*note here $n \in \mathbb{N}$

Exercises

- 1. Find the Taylor Expansion of $\ln(1+x)$ using $\ln(1+x)=\int \frac{1}{1+x}\,dx$ and the geometric series.
- 2. Similarly find the Taylor Expansion of $\arctan(x)$ using $\arctan(x) = \int \frac{1}{1+x^2} dx$ and the geometric series.

Summarizing, using Geometric + Taylor Expansion we have: ONLY FOR |x|<1, based on geometric series convergence

•
$$\ln(1+x) = x - \frac{x^2}{2} + \frac{x^3}{3} - \dots$$

•
$$\arctan(x) = x - \frac{x^3}{3} + \frac{x^5}{5} - \frac{x^7}{7} + \dots$$

1.6 Limits

The limit as x approaches a of f(x) **exists** if for all x close, but NOT equal to a, f(x) is close to the value of the limit.

5

A limit may not exist at a discontinuity, blow-up, or oscillation.

A function is **continuous** at a if $\lim_{x\to a} f(x) = f(a)$.

If
$$\lim_{x\to a} f(x) = l$$
 and $\lim_{x\to a} g(x) = m$, then

•
$$\lim_{x \to a} f(x) + g(x) = l + m$$

•
$$\lim_{x \to a} f(x)g(x) = lm.$$

• "root of a limit"
$$\lim_{x \to a} \sqrt[n]{f(x)} = \sqrt[n]{\lim_{x \to a} f(x)}$$
.

If a function is continuous, then you can evaluate a limit by simply plugging in the value a.

1.6.1 L'Hopital's Rule

If $\lim_{x\to a} \frac{f(x)}{g(x)}$ is of the form

$$\frac{0}{0}$$
 or $\frac{\infty}{\infty}$

, the limit is equivalent to $\lim_{x\to a} \frac{f'(x)}{g'(x)}$, provided it exists.

*careful: l'hopital's **can't** be used to show a limit doesn't exist.

Exercises

1. Evaluate $\lim_{x\to 0} \frac{\sin(x)}{x}$. use Taylor (about x=0), since we are interested in $\sin(x)$ as x approaches 0

Differentiation 2

Sometimes the derivative is written as $\dot{y} = \frac{dy}{dx}$

An alternate definition of the derivative is

$$f(a+h) = f(a) + f'(a)h + O(h^2)$$

6

indicating the derivative gies a first-order approximation.

An **operator** is a mapping from one vector space (or module) to another.

The **curvature** of a function is defined as

$$\frac{f''}{(1+(f')^2)^{3/2}}$$

Newton's Method 2.1

A good way to approximate the root of a function that's differentiable.

Idea: improve guess based on tangent line (linear approximation)

Method: 1. Guess a root a_0

2. Improve by seeing where tangent intersects x-axis:

i.e.,
$$a_1 = a_0 - \frac{f(x)}{f'(x)}$$
,

from $0 = f(a_0) + f'(a_0)(a_1 - a_0)$, line approximation of zero

3. Now consider a linear approximation of f(x) at a_1 , repeat

Caveat: If the sequence is defined, meaning $f'(a_n) \neq 0$, and it converges, then it's guaranteed to converge to a root of f. Otherwise, all bets are off!

Derivative of a^x

To find $\frac{d}{dx}a^x$:

$$y = a^x \implies ln(y) = xln(a)$$

 $\frac{d}{dx}ln(y) = 1/y\frac{dy}{dx} = ln(a)$

Thus, $dy/dx = yln(a) = a^x ln(a)$.

2.2 Optimization

A **critical point** is an input where f(x) has a derivative of zero or the *derivative* is undefined; critical points include max/min points. (max/min \implies critical point)

Why? if f' exist and isn't zero at a max, then you can move left/right to reach a higher value for f

Critical point \implies max/min since you can have an **inflection point**:

Inflection

the derivative is zero, but the function is neither at a max nor min.

In addition the second derivative, looking at whether f'>0 the left and right of a critical point determines max/min.

Global max/min occur at a critical point or end points!

2.2.1 Second Derivative Test

$$f''(a) > 0 \implies \min(f''(a)) = 0$$
 says nothing)

Exercises

- 1. Find $\frac{dy}{dx}$ from $y^2 y = sin(2x)$. implicity differentiation—ask what's the derivative of the left hand side and the right hand side with respect to x. Then solve for $\frac{dy}{dx}$.
- 2. Show $\lim_{x\to\infty} (1+a/x)^x = e^a$. Idea: take ln of both sides to work with variable x in exponent.

$$y=(1+\frac{a}{x})^x \implies \lim_{x\to\infty}xln(y)=\lim_{x\to\infty}xln(1+\frac{a}{x})$$
 Using the Taylor expansion of $ln(1+z)$ (note $|z|<1$, since $x\to\infty$) $\lim_{x\to\infty}x(a/x-(a/x)^2/2+(a/x)^3/3+\dots)=\lim_{x\to\infty}a-0=a.$ So, $\lim_{x\to\infty}x\ln(y)=a\implies$ solution.

3. Find $\frac{d}{dy}$ of $y=x^{x^x}$. same idea of implicity differentiation with clever redefinition of function as $y=x^y$ (recursive!).

3 Integration

4 Series

Curiosities

Striling's Approximation

Gives a good asymptotic (as n gets bigger) approximation for n!:

$$n! \sim \sqrt{2\pi n} (\frac{n}{e})^n$$

Typically written as ln(n!) = n ln(n) - n + O(ln(n)).

Resources

Calculus succintly and rigorously summarized in 10 pages