Algoritmos e Estrutura de Dados

Aula 10: Algoritmos de Ordenação

Listas Não Ordenadas e Ordenadas

Operação	Listas Não Ordenadas	Listas Ordenadas
Busca	<pre>O(n): Busca sequencial</pre>	$O(log_2 n)$: Busca binária
Inserção – Sem chaves repetidas	O(n) – Busca para identificar se o elemento já está na lista $O(1)$ – Para inserir Total: $O(n)$	$O(log_2 n)$ – Busca para identificar se o elemento já está na lista O(n) – Para inserir Total: $O(n)$
Inserção – Com chaves repetidas	O(1) – Inserção na primeira posição livre no final da lista	$O(log_2 n)$ – Busca para a posição correta da inserção $O(n)$ – Para inserir Total: $O(n)$
Remoção	O(n) – Busca para identificar a posição do elemento (e se ele está na lista) $O(1)$ – Para remover Total: $O(n)$	$O(log_2 n)$ – Busca para identificar a posição do elemento (e se ele está na lista) $O(n)$ – Para remover Total: $O(n)$

Listas Ordenadas

 Como construir uma lista ordenada a partir de uma lista não ordenada?

- Duas possibilidades:
 - Construir uma lista ordenada, inserindo os elementos da lista um de cada vez.
 - Ordenar a lista usando Algoritmos de Ordenação

Opção 1: Construir uma lista ordenada

```
void Transformar(int L[], int LOrd[], int tam)
{
   int tamOrd = 0;
   for (int i = 0; i < tam; i++)
        InserirOrdenado(LOrd, &tamOrd, L[i]);
}</pre>
```

- ullet São realizadas n inserções em uma lista ordenada.
- Cada inserção, tem custo O(n)
- Logo: a complexidade desse método é $O(n^2)$

Opção 2: Algoritmos de Ordenação

Existe um número muito grande de métodos de ordenação:

- Bogo Sort
- Bubble Sort
- Selection Sort
- Insertion Sort
- Cocktail Sort
- Merge Sort
- Quick Sort
- Heap Sort
- Bucket Sort
- E muitos outros

Antes de continuar...

- Precisamos falar sobre alguns conceitos sobre algoritmos de ordenação:
 - Algoritmos de Ordenação Estável
 - Algoritmos de Ordenação *In-place*
 - Algoritmos de Ordenação Online

Algoritmo de Ordenação Estável

- Um algoritmo de ordenação é dito estável se ele retorna elementos iguais na mesma ordem em que aparecem na entrada. Isso é: o algoritmo não muda a ordem de elementos de mesma chave na lista. A ordem permanece a da entrada.
- Considere um algoritmo para ordenar cartas pelo número, independente do naipe.

Algoritmo de Ordenação In-place

- Algoritmo de ordenação in-place operam diretamente na estrutura de dados de entrada sem exigir espaço extra proporcional ao tamanho de entrada.
- O algoritmo altera os elementos na própria lista, sem criar cópias da estrutura de dados fornecida.

- Essa característica permite avaliar também a complexidade de espaço do algoritmo. Isto é, seu uso de memória.
- Vale observar que o uso de memória para controlar as recursões pode ou não ser contabilizado nesse quesito. Depende da implementação: se essa memória armazenar dados da lista (por exemplo, um valor que deve ocupar uma determinada posição), então ela deve ser contabilizada e o algoritmo é out-of-place.

Algoritmos de Ordenação Online

 Algoritmos online (de ordenação ou não) são métodos capazes de lidar com os dados na ordem e no momento em que eles são fornecidos. Isto é, eles operam sem ter toda a entrada disponível desde o início. A medida que os dados são recebidos, o algoritmo efetua seu processamento.

• Algoritmos de ordenação online são capazes de recuperar a ordenação da lista em tempo linear (O(n)) a cada novo elemento.

Bogo Sort

- Ideia básica: Está ordenado?
 - Sim: Fim do Algoritmo
 - Não: "Bagunce" os números de forma aleatória
- O pior algoritmo de ordenação...
- Conta apenas com a sorte

- Complexidade de Pior Caso: O((n+1)!)
- Complexidade do Melhor Caso: O(n)

Bogo Sort

- Complexidade de pior caso: O(n!)
- Estável: Não
- *In-place*: Sim
- Online: Não

- Esse é o pior algoritmo de ordenação possível.
- Apenas para ilustrar a complexidade.

Bubble Sort – V1

- O método mais simples de ordenação
- Ideia: Vamos percorrer a lista, trocando elementos fora de ordem. No pior caso, vamos precisar de n passagens pela lista

Bubble Sort – V2

- O método mais simples de ordenação
- Ideia: Vamos percorrer a lista, trocando elementos fora de ordem. Paramos quando nenhuma troca for realizada

```
void bubbleSort(int L[], int tam)
   int ord = 0;
   while (ord == 0)
       ord = 1;
       for (int i = 0; i < tam; i++)
            if (L[i] > L[i+1])
                Trocar(&L[i], &L[i+1]);
                ord = 0;
```

Qual é a complexidade?

No pior caso, repete n vezes

Repete n vezes

Operação Dominante: Comparação

$$O(n^2)$$

Mas e se a lista já estiver ordenada?

Bubble Sort

- Complexidade de pior caso:
 - Versão 1: $O(n^2)$
 - Versão 2: $O(n^2)$
- Estável: Sim Como a ordenação começa da esquerda para direita e dois elementos de mesma chave não são trocados, a ordem inicial entre eles permanece.
- In-place: Sim
- Online: Não Se um novo elemento for inserido, ele precisa ser movido ao longo de várias iterações uma posição à frente por iteração.

Selection Sort

 O método de ordenação por seleção é o mais natural dentre os métodos:

- Selecione o menor (ou o maior) elemento.
- Mova para o início (ou para o final) da lista.
- Continue o processo para os demais elementos.

Selection Sort

```
void SelectionSort(int L[], int tam)
    for (int i = 0; i < tam - 1; i++)
        int posMin = i;
        for (int j = i+1; j < tam; j++)
            if (L[j] < L[posMin])</pre>
                 posMin = j;
                                         Qual é a complexidade?
        Trocar(&L[i], &L[posMin]);
```

Selection Sort

• Complexidade de pior caso: $O(n^2)$

- Estável: Sim.
- *In-place*: Sim.
- Online: Não O algoritmo precisa identificar na i-ésima iteração quem é o i-ésimo menor elemento. Se a lista não está completa, isso não é possível.

Insertion Sort

- O algoritmo de ordenação por inserção também é intuitivo:
 - Dado um elemento, varremos a lista buscando um elemento maior do que o atual. Assim que encontramos, inserimos o elemento antes desse maior.
- O método aplica uma outra ideia:
 - Começamos a lista com 1 elemento. Ele está ordenado.
 - Passamos para o segundo. Ele é inserido no lugar, resultando em uma lista com dois elementos ordenada.
 - Passamos para os próximos elementos: Eles são inseridos no lugar correto e resultam em uma lista com +1 elemento.
 - Observe que a lista vai "crescendo" a medida que novos elementos são inseridos. E essa lista está sempre ordenada.
- Esse método aplica a ideia da construção de uma lista ordenada através de n operações de inserção.

Insertion Sort

```
void InsertionSort(int L[], int tam)
    for (int i = 1; i < tam; i++)
        int pos = 0;
        while (pos < i && L[i] > L[pos])
            pos++;
        int aux = L[i];
        for (int j = i; j > pos; j--)
            L[j] = L[j-1];
        L[pos] = aux;
```

Qual é a complexidade?

 $O(n^2)$

Insertion Sort

- Complexidade de pior caso: $O(n^2)$
- Estável: Sim.
- *In-place*: Sim.
- Online: Sim O novo elemento vai ser movido para o seu lugar considerando a lista já fornecida. Isso pode ser feito em O(n), tal como na inserção em listas ordenadas.
- Vale observar que o Insertion Sort é equivalente à primeira forma de transformar listas não ordenadas em listas ordenadas: uma chamada do algoritmo se inserção para cada elemento da lista inicial.

- O algoritmo de ordenação MergeSort é o primeiro que foge a intuição natural da ordenação.
- Ele é baseado na ideia de dividir para conquistar.

- 1. Dividir o vetor ao meio até o ponto em que podemos ordenar de forma trivial (cada vetor tem somente um elemento)
- 2. Conquistar a ordenação, recompondo o vetor original a partir das pares ordenadas, visando manter a ordenação entre elas.

Divisão e Conquista: MergeSort

- Considere um vetor V com n posições.
- O algoritmo consiste das seguintes fases:
 - 1. Dividir V em 2 subcoleções de tamanho $\approx n/2$.
 - 2. Conquistar: ordenar cada subcoleção chamando MergeSort recursivamente;
 - 3. Combinar as subcoleções ordenadas formando uma única coleção ordenada.
- Base: Se uma subcoleção tem apenas um elemento, ela já está ordenada.

```
Algoritmo: Merge Sort
  Entrada: Vetor não ordenado V = \{e_1, e_2, \dots, e_n\} com n elementos
  Saída: Vetor ordenado V
1 Função MergeSort (V, i, f)
     se i < f então
        meio \leftarrow (i+f)/2
        MergeSort (V, i, meio)
        MergeSort (V, meio + 1, fim)
        Merge (V, i, meio, fim)
6
     retorne V
7
  Chamada Inicial: MergeSort(V, 1, n)
```

```
Algoritmo: Merge
   Entrada: Vetor V, Posições ini, meio e fim
   Saída: Vetor V
 1 Função Merge (V, ini, meio, fim)
       n \leftarrow fim - ini + 1; /* n \( \epsilon \) o tamanho do vetor que vamos juntar */
       Seja A um vetor auxiliar com n posições
      p_1 \leftarrow ini p_2 \leftarrow meio + 1
       para i = 1 até n faça
           se p_1 \leq meio \mathbf{E} \ p_2 \leq fim \ \mathbf{então}
               se V[p_1] < V[p_2] então
                  A[i] \leftarrow V[p_1] \qquad p_1 \leftarrow p_1 + 1
               senão
                 A[i] \leftarrow V[p_2] \qquad p_2 \leftarrow p_2 + 1
10
           senão
11
               se p_1 \leq meio então
12
                   A[i] \leftarrow V[p_1] \qquad p_1 \leftarrow p_1 + 1
13
               senão
14
                 A[i] \leftarrow V[p_2] \qquad p_2 \leftarrow p_2 + 1
15
       para i = 1 até n faça
16
         V[ini+i] = A[i]
17
       retorne V
18
```

```
void MergeSort(int L[], int ini, int fim)
    if (ini < fim)</pre>
        int meio = (ini+fim) / 2;
        MergeSort(L, ini, meio);
        MergeSort(L, meio+1,fim);
        Merge(L,ini,meio,fim);
```

MergeSort - Merge

```
void Merge(int L[], int ini, int meio, int fim)
   int tam = fim-ini+1;
   int* auxL = (int*) malloc(tam * sizeof(int));
   int p1 = ini, p2 = meio+1;
   for (int i = 0; i < tam; i++)
       if (p1 <= meio && p2 <= fim)
           if (L[p1] < L[p2]) auxL[i] = L[p1++];
           else
                     auxL[i] = L[p2++];
       else
           if (p1 \leftarrow meio) auxL[i] = L[p1++];
           else auxL[i] = L[p2++];
   for (int i = 0; i < tam; i++) L[ini + i] = auxL[i];
   free(auxL);
```

Para lembrar: p1++ é pós-incremento:

- 1) Acessar o valor em p1
- 2) Incrementar o valor de p1

Motivo: Economia de espaço apenas

5	2	7	1	8	6	4	9
5	2	7	1	8	6	4	9
5	2	7	1	8	6	4	9
5	2	7	1	8	6	4	9
2	5	1	7	6	8	4	9
1	2	5	7	4	6	8	9
1	2	4	5	6	7	8	9

Complexidade Merge Sort

$$T(n) = \begin{cases} T\left(\left\lfloor \frac{n}{2} \right\rfloor\right) + T\left(\left\lceil \frac{n}{2} \right\rceil\right) + \Theta(n), & \text{se } n > 1\\ 1, & \text{caso contrário} \end{cases}$$

- Começamos uma lista com n elementos
- A cada nova chamada, dividimos a lista em duas
- Quantas chamadas podemos fazer até atingir listas de tamanho

Até atingir uma lista de tamanho 1 precisamos efetuar log_2 n divisões

Complexidade Merge Sort

$$T(n) = \begin{cases} T\left(\left\lfloor \frac{n}{2} \right\rfloor\right) + T\left(\left\lceil \frac{n}{2} \right\rceil\right) + \Theta(n), & se \ n > 1 \\ 1, & caso \ contrário \end{cases}$$

- Considerando que o número máximo de divisões possíveis (a altura máxima da árvore de divisões) é $\log_2 n$
- E que para a união de cada nível demanda n comparações
- Complexidade do MergeSort: $\Theta(n \log_2 n)$

- Complexidade: $O(n \log_2 n)$
- Estável: Sim mas depende da implementação (a implementação apresentada é estável). Por que?
- *In-place*: Não ele requer uma lista auxiliar no momento em que as duas metades são unidas.
- Online: Não.

• Curiosidade: Existe uma versão in-place do MergeSort, mas ela apresenta complexidade $O(n^2)$

Quick Sort

- Assim como o MergeSort, segue a ideia da divisão e conquista.
- Para uma lista com n elementos, selecionamos de forma aleatória um elemento chamado pivô.
- Em seguida, movemos todos os elementos seguindo uma regra:
 - Os elementos menores do que o pivô ficam a sua esquerda
 - Os elementos maiores do que o pivô ficam a sua direita
- Depois das movimentações, o pivô estará no seu lugar definitivo
- Para cada parte da lista (esquerda e direita) aplicamos o próprio QuickSort
- Ele só termina quando cada lista tem somente um elemento (e portanto está ordenada)

Quick Sort

- Duas fases:
 - Dividir
 - Escolher um pivô
 - Mover todos os menores do que o pivô para um lado
 - Mover todos os maiores do que o pivô para o outro lado
 - Conquistar
 - Vamos conquistar cada metade usando próprio quicksort

QuickSort

- Escolha do Pivô:
 - A escolha desse elemento que divide a lista é crítica para o funcionamento do algoritmo.
 - Uma escolha ruim, vai reduzir muito a eficiência do algoritmo
 - Como escolher?

- Três alternativas:
 - Escolher o primeiro elemento da lista
 - Escolher o último elemento da lista
 - Escolher o elemento no meio da lista

Como mover os demais elementos?

- Vamos escolher uma posição fixa para o pivô não atrapalhar essa movimentação: Uma vez escolhido, vamos colocar o pivô no final da lista
- 2. Em seguida:
 - Buscar da esquerda para a direita o primeiro elemento maior do que o pivô
 - Buscar da direita para a esquerda o primeiro elemento menor do que o pivô
 - Se o da esquerda não ultrapassou o elemento da direita, vamos trocar e continuar a busca. Caso contrário, terminamos o algoritmo.
- 3. Vamos mover o pivô para o seu local definitivo

QuickSort

```
int pivo = L[(fim+ini) / 2];
Trocar(&L[(fim+ini) / 2], &L[fim]);
int i = ini;
int f = fim - 1;
while (f >= i)
        while (L[i] < pivo) i++;
        while (L[f] > pivo) f--;
        if (f >= i)
                 Trocar(&L[i], &L[f]);
                 i++; f--;
Trocar(&L[fim], &L[i]);
QuickSort(L,ini,i-1);
QuickSort(L,i+1,fim);
```


4	6	1	3	8	2	9	5
---	---	---	---	---	---	---	---

pivô

```
int pivo = L[(fim+ini) / 2];
Trocar(&L[(fim+ini) / 2], &L[fim]);
int i = ini;
int f = fim - 1;
while (f >= i)
        while (L[i] < pivo) i++;
        while (L[f] > pivo) f--;
        if (f >= i)
                 Trocar(&L[i], &L[f]);
                 i++; f--;
Trocar(&L[fim], &L[i]);
QuickSort(L,ini,i-1);
QuickSort(L,i+1,fim);
```



```
int pivo = L[(fim+ini) / 2];
Trocar(&L[(fim+ini) / 2], &L[fim]);
int i = ini;
int f = fim - 1;
while (f >= i)
        while (L[i] < pivo) i++;
        while (L[f] > pivo) f--;
        if (f >= i)
                 Trocar(&L[i], &L[f]);
                 i++; f--;
Trocar(&L[fim], &L[i]);
QuickSort(L,ini,i-1);
QuickSort(L,i+1,fim);
```



```
int pivo = L[(fim+ini) / 2];
Trocar(&L[(fim+ini) / 2], &L[fim]);
int i = ini;
int f = fim - 1;
while (f >= i)
        while (L[i] < pivo) i++;
        while (L[f] > pivo) f--;
        if (f >= i)
                 Trocar(&L[i], &L[f]);
                 i++; f--;
Trocar(&L[fim], &L[i]);
QuickSort(L,ini,i-1);
QuickSort(L,i+1,fim);
```



```
int pivo = L[(fim+ini) / 2];
Trocar(&L[(fim+ini) / 2], &L[fim]);
int i = ini;
int f = fim - 1;
while (f >= i)
        while (L[i] < pivo) i++;
        while (L[f] > pivo) f--;
        if (f >= i)
                 Trocar(&L[i], &L[f]);
                 i++; f--;
Trocar(&L[fim], &L[i]);
QuickSort(L,ini,i-1);
QuickSort(L,i+1,fim);
```



```
int pivo = L[(fim+ini) / 2];
Trocar(&L[(fim+ini) / 2], &L[fim]);
int i = ini;
int f = fim - 1;
while (f >= i)
        while (L[i] < pivo) i++;
        while (L[f] > pivo) f--;
        if (f >= i)
                  Trocar(&L[i], &L[f]);
                  i++; f--;
Trocar(&L[fim], &L[i]);
QuickSort(L,ini,i-1);
QuickSort(L,i+1,fim);
```



```
int pivo = L[(fim+ini) / 2];
Trocar(&L[(fim+ini) / 2], &L[fim]);
int i = ini;
int f = fim - 1;
while (f >= i)
        while (L[i] < pivo) i++;
        while (L[f] > pivo) f--;
        if (f >= i)
                 Trocar(&L[i], &L[f]);
                 i++; f--;
Trocar(&L[fim], &L[i]);
QuickSort(L,ini,i-1);
QuickSort(L,i+1,fim);
```



```
int pivo = L[(fim+ini) / 2];
Trocar(&L[(fim+ini) / 2], &L[fim]);
int i = ini;
int f = fim - 1;
while (f >= i)
        while (L[i] < pivo) i++;
        while (L[f] > pivo) f--;
        if (f >= i)
                 Trocar(&L[i], &L[f]);
                 i++; f--;
Trocar(&L[fim], &L[i]);
QuickSort(L,ini,i-1);
QuickSort(L,i+1,fim);
```



```
int pivo = L[(fim+ini) / 2];
Trocar(&L[(fim+ini) / 2], &L[fim]);
int i = ini;
int f = fim - 1;
while (f >= i)
        while (L[i] < pivo) i++;
        while (L[f] > pivo) f--;
        if (f >= i)
                 Trocar(&L[i], &L[f]);
                 i++; f--;
Trocar(&L[fim], &L[i]);
QuickSort(L,ini,i-1);
QuickSort(L,i+1,fim);
```



```
int pivo = L[(fim+ini) / 2];
Trocar(&L[(fim+ini) / 2], &L[fim]);
int i = ini;
int f = fim - 1;
while (f >= i)
        while (L[i] < pivo) i++;
        while (L[f] > pivo) f--;
        if (f >= i)
                  Trocar(&L[i], &L[f]);
                 i++; f--;
Trocar(&L[fim], &L[i]);
QuickSort(L,ini,i-1);
QuickSort(L,i+1,fim);
```



```
int pivo = L[(fim+ini) / 2];
Trocar(&L[(fim+ini) / 2], &L[fim]);
int i = ini;
int f = fim - 1;
while (f >= i)
        while (L[i] < pivo) i++;
        while (L[f] > pivo) f--;
        if (f >= i)
                 Trocar(&L[i], &L[f]);
                 i++; f--;
Trocar(&L[fim], &L[i]);
QuickSort(L,ini,i-1);
QuickSort(L,i+1,fim);
```



```
int pivo = L[(fim+ini) / 2];
Trocar(&L[(fim+ini) / 2], &L[fim]);
int i = ini;
int f = fim - 1;
while (f >= i)
        while (L[i] < pivo) i++;
         while (L[f] > pivo) f--;
         if (f >= i)
                 Trocar(&L[i], &L[f]);
                 i++; f--;
Trocar(&L[fim], &L[i]);
QuickSort(L,ini,i-1);
QuickSort(L,i+1,fim);
```


Falta colocar pivô em seu lugar

```
int pivo = L[(fim+ini) / 2];
Trocar(&L[(fim+ini) / 2], &L[fim]);
int i = ini;
int f = fim - 1;
while (f >= i)
        while (L[i] < pivo) i++;
        while (L[f] > pivo) f--;
        if (f >= i)
                 Trocar(&L[i], &L[f]);
                 i++; f--;
Trocar(&L[fim], &L[i]);
QuickSort(L,ini,i-1);
QuickSort(L,i+1,fim);
```


Falta colocar pivô em seu lugar

```
int pivo = L[(fim+ini) / 2];
Trocar(&L[(fim+ini) / 2], &L[fim]);
int i = ini;
int f = fim - 1;
while (f >= i)
        while (L[i] < pivo) i++;
        while (L[f] > pivo) f--;
        if (f >= i)
                 Trocar(&L[i], &L[f]);
                 i++; f--;
Trocar(&L[fim], &L[i]);
QuickSort(L,ini,i-1);
QuickSort(L,i+1,fim);
```

ini = 0 e fim = 7

2	1	3	5	8	4	9	6
						1	i I

```
int pivo = L[(fim+ini) / 2];
Trocar(&L[(fim+ini) / 2], &L[fim]);
int i = ini;
int f = fim - 1;
while (f >= i)
        while (L[i] < pivo) i++;
         while (L[f] > pivo) f--;
         if (f >= i)
                 Trocar(&L[i], &L[f]);
                 i++; f--;
Trocar(&L[fim], &L[i]);
QuickSort(L,ini,i-1);
QuickSort(L,i+1,fim);
```


E agora?

Como ordenar as duas metades?

Usando QuickSort!

- E quando a ordenação termina?
 - Quando cada lista possuir somente um único elemento.
 - Listas com somente um elemento estão ordenadas por definição.

```
int pivo = L[(fim+ini) / 2];
Trocar(&L[(fim+ini) / 2], &L[fim]);
int i = ini;
int f = fim - 1;
while (f >= i)
         while (L[i] < pivo) i++;
         while (L[f] > pivo) f--;
         if (f >= i)
                 Trocar(&L[i], &L[f]);
                  i++; f--;
Trocar(&L[fim], &L[i]);
QuickSort(L,ini,i-1);
QuickSort(L,i+1,fim);
```



```
void QuickSort(int L[], int ini, int fim)
          if (ini < fim)</pre>
                     int pivo = L[(fim+ini) / 2];
                     Trocar(&L[(fim+ini) / 2], &L[fim]);
                     int i = ini;
                     int f = fim - 1;
                    while (f >= i)
                               while (L[i] < pivo) i++;
                               while (L[f] > pivo) f--;
                               if (f >= i)
                                         Trocar(&L[i], &L[f]);
                                         i++; f--;
                     Trocar(&L[fim], &L[i]);
                     QuickSort(L,ini,i-1);
                     QuickSort(L,i+1,fim);
```

Se a lista possui só um elemento, então ini = fim. É o fim do algoritmo

Em seguida, selecionamos o pivô e o movemos para o final da lista

Agora vamos arrumar a lista:
Os menores que pivô ficam a sua esquerda
Os maiores que pivô ficam a sua direita

Vamos mover pivô para seu local definitivo

Por último, chamamos QuickSort para ordenar cada metade da lista (os menores que pivô e os maiores que pivô)

E a complexidade?

- Melhor caso:
 - Todo pivô escolhido divide a lista em duas metades iguais.
 - T(n) = T(n/2) + T(n/2) + n ou seja $O(n \log_2 n)$
 - Mas é igual ao MergeSort? Sim... Então os dois tem a mesma "velocidade"?
 - Não:
 - O QuickSort não precisa fazer cópias das listas
 - Assim ele economiza no tempo de copiar as listas e no uso de memória
 - Então o QuickSort é melhor do que o MergeSort?
 - Depende... Vamos analisar o pior caso

E a complexidade?

- Pior caso:
 - Todas as escolhas de pivô são muito ruins e não dividem a lista.

- Quando isso acontece...
 - T(n) = T(1) + T(n-1) + n
 - Quando resolvemos essa expressão, temos que:
 - No pior caso, a complexidade do QuickSort é $O(n^2)$
 - Isso é igual ao BubbleSort
- Mas por que ainda usamos Quick Sort??
 - Porque esse caso é pouco comum

E a complexidade:

• Melhor caso: $O(n \log_2 n)$

• Pior caso: $O(n^2)$

- Mas o caso médio é bem próximo ao melhor caso...
- O pior caso raramente ocorre...
- Dessa forma:
 - O QuickSort é um dos métodos mais usados para ordenação.

- Complexidade de Pior Caso: $O(n^2)$
- Complexidade de Caso Médio: $O(n \log_2 n)$
- Estável: Não o elemento escolhido como pivô a cada iteração pode ser movimentado em relação aos outros elementos de mesma chave.
- *In-place*: Sim.
- Online: Não.

Heap Sort

- Antes de falar do HeapSort, vamos falar de uma estrutura de dados chamada de Heap.
- Uma estrutura (seja ela uma árvore ou uma lista) é um heap se cada elemento satisfaz a Propriedade dos Heaps.
- Propriedade dos Heaps: A chave de um elemento deve ser maior do que a chave de seus filhos.
- Vale observar que essa propriedade é hereditária:
 - Se a chave de um elemento é maior do que a dos filhos
 - E se a chave dos filhos é maior do que a de seus filhos
 - Então: a chave do elemento é maior do que a chave de todos os seus descendentes.
 - Note que essa propriedade não vale entre irmãos ou primos: não existe ordenação entre eles.

- Os Heaps podem ser implementados de duas formas:
 - Como árvores Não chegamos nesse ponto do curso ainda

- Como listas Já sabemos listas (vetores)
 - Mas como armazenar essa estrutura de pais e filhos em um vetor?
 - Simples: Vamos usar o índice dos elementos.

15								
0	1	2	3	4	5	6	7	8

15	08	05						
0	1	2	3	4	5	6	7	8

15	5	08	05	06	02	03	01		
0		1	2	3	4	5	6	7	8

- Considerando o esquema acima, é possível construir uma regra que indique em quais posições estão os filhos de um elemento situado na posição i do vetor?
 - Filho 1: 2i + 1
 - Filho 2: 2i + 2
- Sabendo a posição j do filho é possível encontrar seu pai? Como?
 - Pai: j 1/2

Heap: Verificando se vetor é um Heap

```
int VerificaHeap(int L[], int tam)
    for (int i = 0; i < tam; i++)
        if (2*i + 1 < tam && L[i] < L[2*i+1])
            return 0;
        if (2*i + 2 < tam && L[i] < L[2*i+2])
            return 0;
    return 1;
```

```
void ConstruirHeap(int L[], int tam, int i)
    int posMaior = i;
    if (2 * i + 1 < tam && L[2 * i + 1] > L[posMaior]) posMaior = 2 * i + 1;
    if (2 * i + 2 < tam && L[2 * i + 2] > L[posMaior]) posMaior = 2 * i + 2;
    if (posMaior != i)
        Trocar(&L[i], &L[posMaior]);
        ConstruirHeap(L, tam, posMaior);
for (int i = (tam/2) - 1; i > = 0; i - -) ConstruirHeap(V, tam, i);
```

• O procedimento ConstruirHeap identifica se dentro os filhos de um elemento existe um que apresenta chave maior do que o elemento. Isso violaria a propriedade Heap.

- Se isso for verdade, ele troca as chaves: a maior passa a ocupar a posição do pai.
- Entretanto, isso pode violar a propriedade Heap do filho alterado.
- Para assegurar que esse erro permaneça, chamamos a função ConstruirHeap para o filho alterado.

- Vale observar que a chamada inicial a função ConstruirHeap começa pelo final do Heap.
- Como não faz sentido chamar o procedimento para elementos sem filhos (eles não podem violar a condição heap), começamos a chamada pelo último elemento da lista que possui pelo menos um filho.

Esse elemento ocupa a posição (tam/2) - 1

- Todos os elementos do vetor resultante atendem a propriedade Heap.
- O maior elemento ocupa a primeira posição do vetor.

- Qual é a complexidade da inicialização do Heap?
- 1) São realizadas n/2 chamadas ao procedimento ConstruirHeap.
- 2) Cada chamada ao ConstruirHeap tem complexidade $O(\log n)$
 - Cada chamada gera uma chamada recursiva para um dos filhos do elemento.
 - Como a altura dessa "árvore" é de no máximo $\log_2 n$ e cada chamada faz pelo menos uma comparação, então $O(\log n)$.
- No total: Temos custo de $O(n \log n)$

Transformar em Heap ≠ Ordenar

 Vale observar que transformar um vetor em heap não ordena o vetor.

 Atender a propriedade do Heap só garante que o maior elemento é o primeiro elemento da lista.

Sabendo disso, como usar esses conceitos para ordenar?

Heap: Como usar na ordenação?

- Após construir o Heap, o maior elemento é o primeiro da lista.
- Podemos mover esse elemento para o final do vetor. Essa é sua posição definitiva.
- Precisamos então substituir o primeiro da lista por um outro elemento que atenda a propriedade heap.
- Para isso, vamos substituir o elemento por um outro qualquer.
- E usar a função ConstruirHeap para corrigir a propriedade Heap.
- Ela já faz o trabalho de assegurar que o maior elemento ocupe a primeira posição.
- Vamos repetir essa ideia até que todos os elementos do vetor ocupem suas posições definitivas.

```
void HeapSort(int L[], int tam)
    for (int i = (tam/2) - 1; i >= 0; i --)
        ConstruirHeap(L, tam, i);
    for (int i = tam - 1; i >= 0; i--)
        Trocar(&L[0], &L[i]);
        ConstruirHeap(L, i, 0);
```

```
void HeapSort(int L[], int tam)
    for (int i = (tam/2) - 1; i >= 0; i --)
        ConstruirHeap(L, tam, i);
    for (int i = tam - 1; i >= 0; i--)
        Trocar(&L[0], &L[i]);
        ConstruirHeap(L, i, 0);
```

Importante: O tamanho do Heap precisa ser reduzido ao longo do processo. As últimas posições do vetor não devem mais ser incluídas no Heap, pois já correspondem a posições definitivas da ordenação.

5 7 8 4 6 3 1 2 0 9 5 viola propriedade Heap 8 7 5 4 6 3 1 2 0 9 Heap ajustado 0 7 8 4 6 3 1 2 8 9 8 movido para posição definit 0 viola propriedade Heap 7 6 5 4 0 3 1 2 8 9 Heap ajustado	3	5	1	2	7	8	9	4	0	6	Lista inicial	
5 7 8 4 6 3 1 2 0 9 5 viola propriedade Heap 8 7 5 4 6 3 1 2 0 9 Heap ajustado 0 7 8 4 6 3 1 2 8 9 8 movido para posição definit 0 viola propriedade Heap 7 6 5 4 0 3 1 2 8 9 Heap ajustado	9	7	8	4	6	3	1	2	0	5	Heap Construído	
8 7 5 4 6 3 1 2 0 9 Heap ajustado 0 7 8 4 6 3 1 2 8 9 8 movido para posição definit 0 viola propriedade Heap 7 6 5 4 0 3 1 2 8 9 Heap ajustado	5	7	8	4	6	3	1	2	0	9	9 movido para posição definitiva	
0 7 8 4 6 3 1 2 8 9 8 movido para posição definit 0 viola propriedade Heap 7 6 5 4 0 3 1 2 8 9 Heap ajustado	8	7	5	4	6	3	1	2	0	9	1	
7 8 4 6 3 1 2 8 9 0 viola propriedade Heap 7 6 5 4 0 3 1 2 8 9 Heap ajustado										1] , ,	
	0	7	8	4	6	3	1	2	8	9	1	
	7	6	5	4	0	3	1	2	8	9	Heap ajustado	
	2	6	5	4	0	3	1	7	8	9	7 movido para posição definitiv 2 viola propriedade Heap	
6 4 5 2 0 3 1 7 8 9 Heap ajustado	6	4	5	2	0	3	1	7	8	9	 1	

6	4	5	2	0	3	1	7	8	9	Heap ajustado
1	4	5	2	0	3	6	7	8	9	6 movido para posição definitiva 1 viola propriedade Heap
5	4	3	2	0	1	6	7	8	9	Heap ajustado
1	4	3	2	0	5	6	7	8	9	5 movido para posição definitiva 1 viola propriedade Heap
4	2	3	1	0	5	6	7	8	9	Heap ajustado
0	2	3	1	4	5	6	7	8	9	4 movido para posição definitiva 0 viola propriedade Heap
3	2	0	1	4	5	6	7	8	9	Heap ajustado

3	2	0	1	4	5	6	7	8	9	Heap ajustado
1	2	0	3	4	5	6	7	8	9	3 movido para posição definitiva 1 viola propriedade Heap
2	1	0	3	4	5	6	7	8	9	Heap ajustado
0	1	2	3	4	5	6	7	8	9	2 movido para posição definitiva 0 viola propriedade Heap
1	0	2	3	4	5	6	7	8	9	Heap ajustado
0	1	2	3	4	5	6	7	8	9	1 movido para posição definitiva 0 não viola propriedade Heap
0	1	2	3	4	5	6	7	8	9	Vetor resultante

- Complexidade de Caso Médio: $O(n \log_2 n)$
- Estável: Não a propriedade Heap pode implicar no movimento de elementos de mesma chave.
- *In-place*: Sim.
- Online: Não a aplicação do Heap requer conhecimento do maior elemento.

Algoritmos de tempo $O(n \log_2 n)$

- Observamos três algoritmos de tempo $O(n \log_2 n)$:
 - MergeSort (no pior caso)
 - HeapSort (no pior caso)
 - QuickSort (no caso médio)
- Isso quer dizer que todos tem o mesmo desempenho, considerando tempo de execução em um mesmo computador?
 - Não.
- Na maioria dos casos, o QuickSort é mais rápido do que os demais.
 - MergeSort: Perde tempo com cópias da estrutura auxiliar
 - HeapSort: A construção e sucessivas correções do Heap torna o processo mais demorado.
- Entre HeapSort e MergeSort, o MergeSort é ligeiramente mais rápido.

Algoritmos de tempo $O(n \log_2 n)$

- Existe algum algoritmo de ordenação com complexidade de pior caso inferior a $O(n \log_2 n)$?
 - Se o intervalo dos dados for conhecido, SIM.
 - Caso contrário, NÃO.

• Mas como afirmar com certeza absoluta que $O(n \log_2 n)$ é o limite mínimo para algoritmos de ordenação cujo intervalo de dados é desconhecido?

Limite Mínimo para Ordenação

- Existe um limite mínimo para ordenar um conjunto com n elementos?
- Vamos considerar uma árvore com cada pergunta que precisamos fazer para ordenar os elementos.
- Considerando a ordenação de três elementos a, b e c:


```
def ordenar(a,b,c):
   if a < b:
       if a < c:
           if b < c:
               return (a,b,c)
           else:
                                                     (1, 2, 3) \rightarrow (1, 2, 3)
               return (a,c,b)
       else:
                                                    (1, 3, 2) \rightarrow (1, 2, 3)
           return (c,a,b)
                                                    (2, 1, 3) \rightarrow (1, 2, 3)
    else:
       if b < c:
                                                    (2, 3, 1) \rightarrow (1, 2, 3)
           if a < c:
                                                    (3, 1, 2) \rightarrow (1, 2, 3)
               return (b,a,c)
           else:
                                                    (3, 2, 1) \rightarrow (1, 2, 3)
               return (b,c,a)
       else:
           return (c,b,a)
import itertools
for 1 in list(itertools.permutations([1, 2, 3])):
    print(f"{1} -> {ordernar(1[0],1[1],1[2])}")
```

Árvore de Combinações

• Se temos n itens, existem n! possibilidades (3 itens = 6 permutações)

 A cada nível da árvore de combinações (a cada pergunta realizada) reduzimos as possibilidades de resposta em 50%:

Árvore de Combinações

• Se temos n itens, existem n! possibilidades (3 itens = 6 permutações)

• A cada nível da árvore de combinações (a cada pergunta realizada) reduzimos as possibilidades de resposta em 50%

 Quantas perguntas vamos precisar fazer até conseguir a resposta?

n!	n!	n!	n!		1
	2	$\frac{\overline{4}}{4}$	8		

Limite inferior para ordenação

- Precisamos saber quantos níveis a árvore de combinações vai ter!
- Seja h a altura dessa árvore

$$\bullet \frac{n!}{2^h} = 1 \quad \Rightarrow \quad 2^h = n! \quad \Rightarrow \quad h = \log_2 n!$$

- Aproximando esse resultado, temos que $h \approx n \log_2 n$
- Isto é: Para ordenar n elementos, vamos precisar realizar **no mínimo** $n \log_2 n$ comparações.
- Logo, qualquer algoritmo de ordenação terá complexidade de no mínimo $O(n \log_2 n)$.

Ordenação em Tempo Linear

- É possível ordenar um conjunto com n elementos quaisquer em tempo linear?
- Não! O limite mínimo é $O(n \log_2 n)$.
- Mas e se conhecermos os elementos?
- Por exemplo:
 - Em uma turma com n alunos, onde cada aluno tem uma nota inteira de 0 até 10. Podemos ordenar os alunos por suas notas em tempo linear O(n)?
 - Sim! Mas como?!?
- Quanto o intervalo dos dados é conhecido, podemos usar algoritmos de ordenação de tempo linear.

Bucket Sort (ou ordenação por caixas)

• Em uma turma com n alunos, onde cada aluno tem uma nota inteira de 0 até 10. Podemos ordenar os alunos por suas notas em tempo linear - O(n)?

- Ideia:
- Vamos criar 10 caixas:
 - Caixa para alunos com nota 0
 - Caixa para alunos com nota 1
 - •
 - Caixa para alunos com nota 10
- A cada aluno da turma, identificamos a caixa e inserimos o aluno

Bucket Sort (ou ordenação por caixas)

- Uma vez que cada aluno foi inserido em uma caixa, vamos ordenar a turma.
- Turma = [Alunos da Caixa 0] + [Alunos da Caixa 1] + ... [Alunos da Caixa 10]

```
def Ordenar(listaAlunos):
    caixas = [ [] for i in range(11) ]
    for a in listaAlunos:
        caixas[a.nota].append(a)

    resultado = []
    for i in range(11):
        for a in caixas[i]:
            resultado.append(a)
    return resultado
```

Criar caixas vazias para cada nota de 0 até 10

Para cada aluno:

Inserir o aluno na caixa associada a sua nota

Juntar os alunos armazenados nas caixas Começando da Caixa 0 até a Caixa 10

Retornar a lista ordenada

Bucket Sort (ou ordenação por caixas)

• Importante: A ordenação por caixas (ou qualquer outro método de ordenação em tempo linear) requer um conhecimento prévio dos dados de entrada.

- No exemplo dos alunos: Já sabíamos que existiam apenas 11 categorias (uma para cada nota).
- Se as notas estivessem no universo dos números reais (um infinito de possibilidades de notas), não seria possível utilizar a ordenação por caixas.

Bucket Sort

• Complexidade: O(n)

- Estável: Sim mas depende da implementação.
- *In-place*: Não ele requer uma estrutura auxiliar para armazenar os "baldes".
- Online: Não.

Outros algoritmos de ordenação

- Existem muitos outros algoritmos de ordenação.
- A Wikipedia contém a definição de 46 métodos de ordenação, de vários tipos.
- Vale conhecer mais alguns:
 - RadixSort
 - CountingSort
 - TimSort
 - ShellSort