《通信基础》基本概念

日期: 2024年10月16日

知识总览

- 信源、信宿、信号、信道
- 码元、码率、波特
- 带宽(Hz)

信源、信宿、信号、信道

• 信源: 信号的来源 (即数据的发送方)

• 信宿:数据的"归宿"(即数据的接收方)

• 数据: 即信息的实体(如文字、声音、图像), 在计算机内部数据通常是二进制

• 信道: 信号的通道

o 注: 一条物理线路通常包含两条信道, 即**发送信道**、接收信道

• 信号: 数据的载体

数字信号:信号值是离散的模拟信号:信号值是连续的

数字信号、模拟信号

从数学函数的角度理解信号值

码元的概念

- 例: 在一个"信号周期"内,有可能出现<u>2 种信号</u>,每种信号对应一个<u>2 进制数</u>,每一个信号就是一个<u>码元</u>
- 可以把"信号周期"称为"码元宽度"
- 如果一个信号周期内可能出现 4 种信号,那么每个信号就可以对应一个 4 进制数(2bit)
 - o 2V-00
 - o 1V-01
 - o -1V-10
 - o -2V-11
 - **优点**:每个信号周期可以传输更多信息。换句话说,每个**码元**可以携带更多信息
 - · 代价: 需要加强信号功率, 并且对信道的要求更高
 - 。 如果一个码元(即一个信号)可能有 4 种状态,那么可以称其为**4 进制码元**(一个码元携带 2bit 数据)
 - 类似的,如果一个码元(即一个信号)可能有8种状态,那么可以称其为8进制码元(一个码元 携带3bit数据)
 - o
 - 。 如果一个码元(即一个信号)可能有 k 种状态,那么可以称其为**k 进制码元**(一个码元携带 log_2k bit 数据)

用模拟信号设计 4 进制码元

!!! 重要: 码元和比特的关系

- 如果一个"周期"内可能出现 K 种信号,则:
 - 。 1 码元 = log_2K bit

速率

- 波特率: 每秒传输的码元个数, 单位是波特
 - 。 每秒传输几个码元
 - 单位: 码元/秒, 或波特(Baud)
- 比特率(码率): 每秒传输的比特个数, 单位是比特/秒 (bps)
 - 。 每秒传输几个比特
 - 单位: bit/s, 或b/s, bps
- 注: 若一个码元携带 n 比特的信息量,则波特率 M Baud 对应的比特率为 M*n bps
 - 或1 波特 = $\log_2 K$ bps