MATERIAŁY POMOCNICZE DO WYKŁADU Z PODSTAW ZASTOSOWAŃ ULTRADŹWIĘKÓW W MEDYCYNIE

(wyłącznie do celów dydaktycznych – zakaz rozpowszechniania)

3. Przenikanie ultradźwięków przez ośrodki warstwowe. Fala stojąca. Systematyka zjawisk. Ciśnienie promieniowania. Kawitacja.

S2-3. Przenikanie ultradźwięków przez ośrodki warstwowe (Talarczyk E. Podstawy techniki ultradźwięków, Wrocław, 1990)

Energetyczne (natężeniowe) wsp. odbicia i przenikania

$$R_{1} = \frac{\left(m^{2}-1\right)^{2}}{4m^{2}\mathrm{ctg}^{2}\left(\frac{2\pi d}{\lambda_{2}}\right) + \left(m^{2}+1\right)^{2}}$$

$$R_{1} = \frac{\left(m^{2}-1\right)^{2}}{4m^{2}\mathrm{ctg}^{2}\left(\frac{2\pi d}{\lambda_{2}}\right) + \left(m^{2}+1\right)^{2}}$$

$$gdzie \quad m = \frac{Z_{1}}{Z_{2}} = \frac{\rho_{1}c_{1}}{\rho_{2}c_{2}}$$

$$R_{\max} = \frac{\left(m^{2}-1\right)^{2}}{\left(m^{2}+1\right)^{2}} \quad dla \quad \mathrm{ctg}\left(\frac{2\pi d}{\lambda_{2}}\right) = 0 \qquad \text{dla ctg min i max}$$

$$wtedy: \frac{2\pi d}{\lambda_{2}} = (2n+1) \cdot \frac{\pi}{2} \quad czyli \quad d = (2n+1) \cdot \frac{\lambda_{2}}{4} \quad dla \quad n = 0,1,2,\dots$$

$$D_{\max} = 1 \quad dla \quad R_{\min} \quad dla \quad \operatorname{ctg}\left(\frac{2\pi d}{\lambda_2}\right) = \pm \infty$$

$$wiel_2 \text{krotnosc polowy dlugosci fali}$$

$$wtedy: \frac{2\pi d}{\lambda_2} = n \cdot \pi \quad czyli \quad d = n \cdot \frac{\lambda_2}{2} \qquad dla \quad n = 0, 1, 2, \dots$$

S4. Przenikanie ultradźwięków przez ośrodki warstwowe (Talarczyk E. Podstawy techniki ultradźwięków, Wrocław, 1990)

prytika z pieki i aluminium w wuzie - przemikame

S5-6. Przenikanie ultradźwięków przez ośrodki warstwowe (Talarczyk E. Podstawy techniki ultradźwięków, Wrocław, 1990)

3 środowiska

$$D = \frac{8}{4 + (m_{12} + m_{21})(m_{23} + m_{32}) + (m_{12} - m_{21})(m_{23} - m_{32})\cos\left(\frac{4\pi d}{\lambda_2}\right)} gdzie m_{ik} = \frac{Z_i}{Z_k} = \frac{\rho_i c_i}{\rho_k c_k}$$

$$(m_{12} - m_{21})(m_{23} - m_{32}) > 0 Z_1 > Z_2 > Z_3 \text{lub } Z_1 < Z_2 < Z_3$$

$$D_{\text{max}} = \frac{4}{2 + \frac{Z_1 Z_3}{Z_2^2} + \frac{Z_2^2}{Z_1 Z_3}} dla d = (2n+1)\frac{\lambda_2}{4}$$

$$D_{\text{max}} = 1$$

$$Z_2 = \sqrt{Z_1 \cdot Z_3}$$

$$Z_2 = \sqrt{Z_1 \cdot Z_3}$$

$$(m_{12} - m_{21})(m_{23} - m_{32}) < 0 Z_1 < Z_2 > Z_3 lub Z_1 > Z_2 < Z_3$$

$$D_{\text{max}} = \frac{4m_{13}}{(1 + m_{13})^2} dla d = n\frac{\lambda_2}{2}$$

S7. Fale stojące (Obraz J., Ultradźwięki w technice pomiarowej, WNT, Warszawa, 1983)

$$p_e = P_e \sin(\omega t - \beta_1 l) = \rho_1 c_1 v_e$$

$$p_r = P_r \sin(\omega t + \beta_1 l) = -\rho_1 c_1 v_r$$

Obie fale interferuja ze soba.

Powstaje pole o nierównomiernym rozkładzie ciśnienia:

- sumowanie ciśnień w zgodnej fazie (maksima),
- odejmowanie ciśnień w fazie przeciwnej (minima),
- maksima i minima występują w tych samych miejscach: powstaje fala stojąca.

Gdy $R < 1 \rightarrow$ część energii przechodzi przez przeszkodę (fala stojąca + biegnąca) Gdy $R = 1 \rightarrow$ tylko fala stojąca

S8. Fale stojace (Obraz J., Ultradźwięki w technice pomiarowej, WNT, Warszawa, 1983)

$$\rho_1 c_1 << \rho_2 c_2$$

$$\rho_1 c_1 << \rho_2 c_2 \qquad \qquad m \approx 0 \Rightarrow \quad R' = \frac{1-m}{1+m} \approx 1 \qquad R'' = -\frac{1-m}{1+m} \approx -1$$

$$\mathbf{Z''} = -\frac{1 - m}{1 - m} \approx -1$$

$$D' = \frac{2}{1+m} \approx 2 \qquad D'' = \frac{2m}{1+m} \approx 0$$

W głab przeszkody doskonale sztywnej wnika fala ciśnienia o podwójnej amplitudzie.

$$P_d = P_e + P_r \implies P_d \approx 2P_r$$
 $V_d = V_e + V_r \implies V_d \approx 0$

$$V_d = V_e + V_r \implies V_d \approx 0$$

Energia fali za przeszkoda = $0 (D = D' \cdot D'')$

S9. Fale stojące (Obraz J., Ultradźwięki w technice pomiarowej, WNT, Warszawa, 1983) predkosc odbija sie w

$$\rho_1 c_1 >> \rho_2 c_2$$

$$m \rightarrow \infty =$$

$$\rho_1 c_1 >> \rho_2 c_2 \qquad m \to \infty \Rightarrow \qquad \begin{array}{c} \text{cisnienia odbija sie w przeciwfazie} \\ R' = \frac{1-m}{1+m} \approx -1 \qquad R'' = -\frac{1-m}{1+m} \approx 1 \end{array}$$

$$D' = \frac{2}{1+m} \approx 0 \qquad D'' = \frac{2m}{1+m} \approx 2$$
cisnienie nie wnika

podwoja anplituda predkości

energia ze przeszkoda = 0

W głab przeszkody doskonale podatnej wnika fala predkości o podwójnej amplitudzie.

$$P_d = P_e + P_r \implies P_d \approx 0$$

$$V_d = V_e + V_r \implies V_d \approx 2V_r$$

Energia fali za przeszkodą = $0 (D = D' \cdot D'')$

S10-13. Systematyka zjawisk ultradźwiękowych (wg Spenglera) (Matauschek J., Technika Ultradźwieków, WNT, Warszawa, 1957): ZJAWISKA PIERWOTNE

zjawiska pierwotne

Zmienne ciśnienie i zmienny przepływ

zmiany temperaturowe raczej adiabatyczne(bez wymiany ciepa) dzieja sie zbyt szybko i zmiany sa zbyt male rzedu 1deg.C

Fale cieplne (temperaturowe)

Stały przepływ ośrodka (wiatr kwarcowy, strumień akustyczny)

ze wzgledu na skladowa stala strumienia, osrodek porusza sie, np woda predkosc przepływu wzrasta z oddalaniem sie od zrodla

Zjawisko Riemanna (zniekształcenie czoła fali)

obrazowanie nieharmoniczne piy

Tarcie na powierzchni granicznej

Absorpcja (pochłanianie)

S14-21. Systematyka zjawisk ultradźwiękowych (wg Spenglera) (Matauschek J., Technika Ultradźwięków, WNT, Warszawa, 1957): ZJAWISKA WTÓRNE

Zjawiska mechaniczne

Zjawiska kierunkowe:	
Separacja:	
Hydrodynamiczne siły przyciagania:	
Koagulacja:	
Odgazowanie cieczy i stopów:	
Dyspersja (hydrozole, emulsje, aerozo	ole):
	Zjawiska cieplne

Zjawiska elektryczne

Sonoluminescencja:

Zjawisko elektrokinetyczne:

Zjawisko Debeye'a:

Zjawiska optyczne

Zjawiska biologiczne

S22-24. Ciśnienie promieniowania (Talarczyk E. Podstawy techniki ultradźwięków, Wrocław, 1990)

$$p_r = \frac{1}{T} \int_0^T p \, dt \qquad p_r = w = \frac{I}{c}$$

$$p_r = w_1 - w_2 = \frac{I_1}{c_1} - \frac{I_2}{c_2}$$

Kierunek działania: od większej do mniejszej gęstości energii

$$p_r = w_1 - w_2 = \frac{I_1}{c_1} - \frac{I_2}{c_2} \approx I \left(\frac{1}{c_1} - \frac{1}{c_2} \right)$$

$$p_r = w_1 - w_2 = \frac{I_1}{c_1} - \frac{I_2}{c_2}$$

S25. Ciśnienie promieniowania (Talarczyk E. Podstawy techniki ultradźwięków, Wrocław, 1990)

Wzór ogólny

$$p_r = I\left(\frac{(1+R)\cdot\cos^2\alpha}{c_1} - \frac{1-R}{c_2}\sqrt{1 - \frac{{c_2}^2}{{c_1}^2}\cdot\sin^2\alpha}\cdot\cos\alpha\right)$$

S26-27. Ciśnienie promieniowania (Talarczyk E. Podstawy techniki ultradźwięków, Wrocław, 1990)

Zastosowanie

$$p_r = \frac{2I}{c_1} \cdot \cos^2 \alpha$$

$$F_{p_r} = \frac{2P_a}{c_1} \cdot \cos^2 \alpha$$

Ciśnienie promieniowania jest niezależne od częstotliwości.

Mierząc p_r określamy energię przenoszoną przez wiązkę przez daną powierzchnię \rightarrow natężenie dźwieku.

Znając moc elektryczną można wyznaczyć sprawność przetwornika.

S28. Kawitacja ultradźwiękowa (Talarczyk E. Podstawy techniki ultradźwięków, Wrocław, 1990)

Rozrywanie sprężystej cieczy poddanej działaniom dynamicznym:

- powstawanie jam kawitacyjnych;
- wymaga pokonania sił kohezji (spójności) cząstek cieczy;
- w czystej potrzebne ciśnienia rzędu MPa;
- zarodniki kawitacji obszary o zmniejszonej spoistości (tam siły przylegania adhezji są mniejsze niż siły spoistości);
- fazy kawitacji (ciśnienie hydrostatyczne, lepkość cieczy, zawartość i promienie pęcherzyków gazu, inne).

S29-31. Kawitacja ultradźwiękowa (Talarczyk E. Podstawy techniki ultradźwięków, Wrocław, 1990)

Pęcherzyki gazu w cieczy

$$R_{rez} > R > R_{kr}$$

$$R_{kr}^{3} + \frac{2\sigma}{P_{o}}R_{kr}^{2} - \frac{32\sigma^{3}}{27P_{o}(P_{o} - p)} = 0$$

$$f = \frac{1}{2\pi R_{rez}} \sqrt{\frac{3\kappa}{\rho} \left(P_o + \frac{2\sigma}{R_{rez}}\right)}$$

$$f \approx \frac{0.0136 \cdot c_w}{2\pi a_p}$$
 $f \approx \frac{3.3 \text{ [Hz·m]}}{a_p}$

S32-34. Kawitacja ultradźwiękowa (Talarczyk E. Podstawy techniki ultradźwięków, Wrocław, 1990)

Fazy kawitacji

I – wstępna faza kawitacji: stopniowy wzrost pęcherzyka przez kilkadziesiąt okresów

II – krytyczna faza kawitacji: asynchroniczny przebieg wzrostu i kurczenia pęcherzyka do zmian ciśnienia

Rys. 1.40. Przebieg wzrostu i zaniku jamy kawitacyjnej

przy zaniku pęcherzyka (implozji)

↓
fala udarowa (energia)
↓
niszczenie obiektów stałych
organizmów żywych (bakterie, drobnoustroje)

$$p_{\text{max}} \approx \frac{3}{2} R_{\text{max}}^2 \rho \kappa^{\kappa/(\kappa-1)}$$

Rys. 1.41. Przebieg ciśnienia p. promienia pęcherzyka R, prędkości Ř, przyspieszenia R podczas kawitacji

S35-36. Kawitacja ultradźwiękowa (Talarczyk E. Podstawy techniki ultradźwięków, Wrocław, 1990)

Oscylacje i implozje pęcherzyków (niszczące działanie, mikro-wybuchy, widmo kawitacji – szum kawitacyjny)

S37-38. Kawitacja ultradźwiękowa (Talarczyk E. Podstawy techniki ultradźwięków, Wrocław, 1990) Próg kawitacji

Rodzaj cieczy (niewielki wpływ);

Czystość cieczy (duży wpływ);

ightharpoonup Ciśnienie hydrostatyczne cieczy P_o (wzrost \rightarrow większa efektywność kawitacji);

➤ Ciśnienie akustyczne *p* (ma wpływ);

Czas nadźwiękawiania (związany z *I* (czyli z *p*));

> Częstotliwość ultradźwiękowa

(decydujący wpływ, nieliniowy):

20 kHz \rightarrow 1 W/cm² 200 kHz \rightarrow 10 W/cm² 500 kHz \rightarrow 200 W/cm² 3 MHz \rightarrow 50 kW/cm²

Dotychczas nie udało się wytworzyć kawitacji dla f > 5 MHz.

