Housing Price Structure

September 14, 2023

```
[99]: import pandas as pd
       import numpy as np
       import seaborn as sns
       import math
       import matplotlib.pyplot as plt
       import statsmodels.api as sm
       from sklearn.model_selection import train_test_split, GridSearchCV, KFold,
        ⇔cross val score
       from sklearn.linear_model import LinearRegression
       from sklearn.metrics import mean_squared_error
       from sklearn.metrics import classification_report
[100]: # Creating a function to print output in green and bold
       # ANSI escape code for green color and bold font
       GREEN_BOLD = '\033[1;32m']
       # ANSI escape code to reset colors and font style
       RESET = ' \033[Om']
       def print_green_bold(*args):
           text = ' '.join(str(arg) for arg in args)
           print(GREEN_BOLD + text + RESET)
```

1 Housing Price Structure

The file MidCity.xls contains data on 128 recent sales of houses in a town. For each sale, the file shows the neighborhood in which the house is located, the number of offers made on the house, the squarefootage, whether the house is made out of brick, the number of bathrooms, the number of bedrooms, and the sellingprice. Neighborhoods 1 and 2 are more traditional whereas 3 is a more modern, newer and more prestigious part of town. Use regression models to estimate the pricing structure ofhouses in this town and answer the following questions:

1. Is there a premium for brick houses everything else being equal?

```
[170]: cdata=pd.read_csv('MidCity.csv')
cdata.head()
```

```
[170]:
         Home Nbhd Offers SqFt Brick Bedrooms Bathrooms
                                                               Price
            1
                  2
                          2 1790
                                                           2 114300
      0
                                     No
                                                2
            2
                  2
      1
                          3 2030
                                     No
                                                4
                                                           2 114200
      2
            3
                  2
                          1 1740
                                     No
                                                3
                                                           2 114800
                  2
      3
            4
                          3 1980
                                                3
                                                           2
                                                               94700
                                     No
                  2
      4
            5
                          3 2130
                                     No
                                                3
                                                           3 119800
[171]: # One-hot encoding on Nbhd and Brick variables
      cdata_1 = pd.get_dummies(cdata, columns=['Nbhd', 'Brick'], drop_first=True)
      cdata_1.head()
         Home Offers SqFt Bedrooms Bathrooms
                                                   Price Nbhd_2 Nbhd_3 Brick_Yes
[171]:
      0
            1
                    2 1790
                                    2
                                               2 114300
                                                                       0
                                                               1
      1
                    3 2030
                                    4
                                               2 114200
                                                               1
                                                                       0
                                                                                  0
            3
      2
                    1 1740
                                    3
                                               2 114800
                                                               1
                                                                       0
                                                                                  0
      3
            4
                    3 1980
                                    3
                                               2
                                                   94700
                                                               1
                                                                       0
                                                                                  0
            5
                    3 2130
                                    3
                                               3 119800
                                                                       0
                                                                                  0
                                                               1
[172]: # Independent variables
      X_cols_cdata = ['Offers', 'SqFt', 'Nbhd_2', 'Nbhd_3', 'Brick_Yes', 'Bedrooms', |
       # Dependent variable
      y_cdata=cdata_1['Price']
      # Adding a constant term
      X_cdata= sm.add_constant(cdata_1[X_cols_cdata])
      # Fit the multiple linear regression model
      mlr_model_cdata = sm.OLS(y_cdata, X_cdata)
      mlr_results_cdata = mlr_model_cdata.fit()
      # Print the regression summary
      print_green_bold(mlr_results_cdata.summary())
```

OLS Regression Results

Dep. Variable:		Price		R-sq	uared:	0.869	
Model:			OLS	Adj.	R-squared:		0.861
Method:		Least Squ	ares	F-sta	atistic:		113.3
Date:		Sun, 30 Jul	2023	Prob	(F-statisti	c):	8.25e-50
Time:		15:2	24:49	Log-l	Likelihood:		-1356.7
No. Observ	ations:		128	AIC:			2729.
Df Residua	ls:		120	BIC:			2752.
Df Model:			7				
Covariance	Type:	nonro	bust				
	coef	std err		t	P> t	[0.025	0.975]
					0.808		
Offers	-8267.4883	1084.777	-7.	621	0.000	-1.04e+04	-6119.706
SqFt	52.9937	5.734	9.	242	0.000	41.640	64.347
Nbhd_2	-1560.5791	2396.765	-0.	651	0.516	-6306.008	3184.850
Nbhd_3	2.068e+04	3148.954	6.	568	0.000	1.44e+04	2.69e+04
Brick_Yes	1.73e+04	1981.616	8.	729	0.000	1.34e+04	2.12e+04
Bedrooms	4246.7939	1597.911	2.	658	0.009	1083.042	7410.546
Bathrooms	7883.2785	2117.035	3.	724	0.000	3691.696	1.21e+04
Omnibus:			3.026		======== in-Watson:	=======	1.921
Prob(Omnibus):			0.220		ie-Bera (JB)	2.483	
Skew:					(JB):	0.289	
Kurtosis:			3.421	Cond			2.03e+04

Notes:

- [1] Standard Errors assume that the covariance matrix of the errors is correctly specified.
- [2] The condition number is large, 2.03e+04. This might indicate that there are strong multicollinearity or other numerical problems.

We note that the Brick_Yes dummy variable has a positive coefficient and a very low p-value (<0.001). This means that the Brick_Yes variable has a positive impact on Prices and this impact is statistically significant. This implies that, on average, brick houses have a higher price compared to non-brick houses when taking into account the other factors included in the model. Thus, we can conclude that there is a premium for brick houses when everything else is equal.

2. Is there a premium for houses in neighborhood 3?

Similar to the Brick_Yes dummy variable, the Nbhd_3 dummy has a positive coefficient with a very low p-value. This means it has a positive and statistically significant impact on Price and thus, there is a premium for houses in neighbourhood 3.

3. Is there an extra premium for brick houses in neighborhood 3?

To determine if there is an extra premium for brick houses in neighborhood 3, we need to look at the interaction effect between the Brick_Yes variable and the Nbhd_3 variable. In order to do this, we run a regression model with an additional interaction term added.

OLS Regression Results

=======================================						
Dep. Variable:	Price		R-squared:			
Model:	OL	S Adj. H	Adj. R-squared:			
Method:	Least Square	s F-stat	F-statistic:			
Date: Sur	n, 30 Jul 202	3 Prob	Prob (F-statistic):			
Time:	15:25:04		Log-Likelihood:			
No. Observations:	128		AIC:			
Df Residuals:	119		BIC:			
Df Model:	del: 8					
Covariance Type:	nonrobust					
				======		
========		-+-1	_	DS I+I	[0, 00F	
0.975]	coef	std err	t	P> t	[0.025	
0.975]						
const	3009.9934	8706.264	0.346	0.730	-1.42e+04	
2.02e+04						
Offers	-8401.0879	1064.370	-7.893	0.000	-1.05e+04	
-6293.529						
SqFt	54.0648	5.636	9.593	0.000	42.905	
65.225						
Nbhd_2	-673.0283	2376.477	-0.283	0.778	-5378.691	
4032.634						
Nbhd_3	1.724e+04	3391.347	5.084	0.000	1.05e+04	
2.4e+04						
Brick_Yes	1.383e+04	2405.556	5.748	0.000	9063.223	
1.86e+04						
Bedrooms	4718.1634	1577.613	2.991	0.003	1594.333	
7841.994						
Bathrooms	6463.3650	2154.264	3.000	0.003	2197.708	
1.07e+04						
<pre>Interaction_Brick_Nbhd3</pre>	1.018e+04	4165.274	2.444	0.016	1933.918	
1.84e+04						

The coefficient for the interaction term is positive with a statistically significant p-value of 0.016. This suggests that, on average, houses that are both brick houses and located in neighborhood 3 have a higher price when taking into account the other factors included in the model. This positive coefficient indicates that there is an additional premium for brick houses in neighborhood 3 beyond the individual effects of being in neighborhood 3 or having a brick house.

4. For the purposes of prediction could you combine the neighborhoods 1 and 2 into a single "older" neighborhood?

OLS Regression Results

					=======	
Dep. Variable:	p. Variable: Pric		R-squared:			
Model:	OLS	Adj. R-sq	uared:		0.862	
Method:	Least Squares	F-statist	F-statistic:			
Date:	Sun, 30 Jul 2023	Prob (F-s	statistic):		8.44e-51	
Time:	15:25:09	Log-Likel	ihood:		-1356.9	
No. Observations:	128	AIC:			2728.	
Df Residuals:	121	BIC:			2748.	
Df Model:	6					
Covariance Type:	ype: nonrobust					
			:=======			
========						
	coef	std err	t	P> t	[0.025	
0.975]						
const	2.501e+04	9658.403	2.589	0.011	5883.686	
4.41e+04						
Offers	-8019.0028	1013.011	-7.916	0.000	-1e+04	
-6013.480						
SqFt	52.1492	5.572	9.359	0.000	41.117	
63.181						
Older_Neighbourhood_	flag -2.194e+04	2482.393	-8.837	0.000	-2.69e+04	
-1.7e+04						
Brick_Yes	1.706e+04	1942.805	8.780	0.000	1.32e+04	
2.09e+04						
Bedrooms	4070.0049	1570.921	2.591	0.011	959.952	
7180.058						
Bathrooms	7810.6983	2109.060	3.703	0.000	3635.257	
1.2e+04						
			.=======			
Omnibus:	Omnibus: 2.787		tson:		1.902	
<pre>Prob(Omnibus):</pre>	0.248	$J_{ t arque-Be}$	era (JB):		2.238	
Skew:	0.270	Prob(JB):			0.327	

Kurtogia.

The coefficient for the Older_Neighbourhood_flag is negative, with a very low p-value which indicates that the coefficient is statistically significant. Since the coefficient is negative, it suggests that on average, houses in older neighborhoods have a lower price compared to houses in newer neighborhoods when taking into account the other factors included in the model. This is in line with what we observed previously in part 2, where houses in Neighborhood 3 (a new neighborhood) were more expensive.

[]: