

STUDENT ID NO								

MULTIMEDIA UNIVERSITY

FINAL EXAMINATION

TRIMESTER 2, 2019/2020

EMF3066 – ANTENNA AND PROPAGATION (TE)

9 March 2020 9:00 A.M. – 11:00 A.M. (2 Hours)

INSTRUCTIONS TO STUDENTS

- 1. This Question paper consists of 4 pages with 5 Questions only.
- 2. Attempt ALL FIVE questions.
- 3. Please print all your answers in the Answer Booklet provided.

Question 1

(a) The radiation intensity of an antenna is given by:

 $U(\theta, \emptyset) = U_m \sin \theta$

Calculate the directivity in this case. Note that U_m is the maximum radiation intensity and (θ, \emptyset) is the spherical coordinate system.

[10 marks]

- (b) Give the definition of the following terms as applied to antennas:
 - (i) Half-power beamwidth
 - (ii) Directivity
 - (iii) Gain
 - (iv) Radiation intensity
 - (v) Radiation resistance

[10 marks]

Question 2

Figure Q2

An array is constructed with two half-wave dipoles spaced half-wavelength apart $(d=\lambda/2)$. The dipoles are arranged along the Z-axis, with the dipole oriented parallel to the X-axis, as shown in Figure Q2. The dipoles are fed with equal power and have a progressive phase shift (α) of 45° between elements.

(a) Determine the array factor for this arrangement.

[6 marks]

(b) Calculate the pattern nulls and pattern maximum for this array.

[6 marks]

(c) Sketch the total pattern.

[8 marks]

Continued

Question 3

(a) With the help of a diagram, explain the construction and operation of a Yagi-Uda antenna.

[11 marks]

(b) Based on the definition of smart antenna, one can define "levels of Intelligence". Name three types of "levels of Intelligence" and explain them with the aid of diagrams.

[9 marks]

Question 4

(a) With the aid of diagram, illustrate the FIVE (5) layers found in the earth's atmosphere.

[7 marks]

(b) In a free-space propagation of radio wave, state the propagation mechanisms that can affect it.

[5 marks]

(c) Given that a transmitting antenna has a gain of 50 dBi and radiates at 15 W at a frequency of 8 GHz. Find the received power at a distance of 20 km if similar antenna is used as receiving antenna.

[8 marks]

Question 5

(a) Derive an expression for the Doppler frequency shift, f_d of an opening target (target motion is away from radar) in terms of radar-target velocity, v and wavelength λ .

[9 marks]

- (b) In a pulse radar with pulse repetition frequency (PRF) of 300Hz, determine the following:
 - (i) Maximum unambiguous range.
 - (ii) Corresponding inter pulse period (IPP).

[4 marks]

Continued

(c) A tracking radar system that operates at 3.0 GHz is capable of detecting objects up to 150 km away. The radar transmitter has a peak pulse power of 2.0 MW. The receiver sensitivity of the radar is 0.3 pW. A paraboloid antenna with a diameter of 2.4 m and an efficiency of 75 % is used in the radar. The atmospheric losses is 0.01dB/100km. What is the smallest radar cross-section of an object that can be detected by this radar?

[7 marks]

Appendix – Useful Formulas

Physical Constants and Units

Constant	Symbol	Value (mks units)
Speed of light in vacuum	c	$3 \times 10^8 \mathrm{m/s}$
Electron charge	q	$1.602 \times 10^{-19} \mathrm{C}$
Boltzmann's constant	$ar{k_B}$	$1.38 \times 10^{-23} \text{ J/K}$
Permittivity of free space	$arepsilon_0$	$8.8542 \times 10^{-12} \text{ F/m}$
Permeability of free space	μ_0	$4\pi \times 10^{-7} \text{ N/A}^2$
Electron volt	eV	$1 \text{ eV} = 1.602 \times 10^{-19} \text{ J}$
Planck's constant	h	$6.626 \times 10^{-34} \text{J} \cdot \text{s}$
Electron rest mass	m	9.11 × 10 ⁻³¹ kg
Effective electron mass	m_e	0.068m
Effective hole mass	m_h	0.56 <i>m</i>