Лабораторная работа № 1 «Проверка статистических гипотез»

студента Розинко Е.Д.	группы <u> Б21-524</u>	Дата сдачи: <u>05.11.23</u>
Ведущий преподаватель:	1.0	

Вариант № 4

Цель работы: изучение функций Statistics and Machine Learning ToolboxTM MATLAB / Python SciPy.stats для проверки статистических гипотез.

1. Исходные данные

Характеристики наблюдаемых случайных величин:

_	1 1	: ····· · · · · · · · · · · · · · · · ·				
	СВ	Распределение	Параметры	Математическое ожидание, m_i	Дисперсия, σ_i^2	
	X_1	R(5,15)	R(a, b)	10	8,3	
	X_2	N(10, 5)	N(m, σ)	10	25	

Указание: для генерации случайных чисел использовать функции rand, randn, chi2rnd (scipy.stats: uniform.rvs, norm.rvs, chi2.rvs)

Выборочные характеристики:

СВ	Среднее, \overline{x}_i	Оценка дисперсии, s_i^2	Оценка с.к.о., s_i	Объем выборки, n_i
X_1	9.959	8.555	2.925	300
X_2	10.179	24.118	4.911	100
Pooled	10.014	12.426	6.213	400

 $\mathit{Указаниe}$: для расчета использовать функции **mean, var, std (scipy.stats: describe)**

2. Однопараметрические критерии

Для случайной величины X_1 :

1 2					
Тест	Стат. гипотеза, H_0	Выборочное значение статистики критерия	p-value	Стат. решение при $\alpha = 0{,}05$	Ошибка стат. решения
z-test	m = 10,02	-0.375	0.708	H_0 принимается	нет
t-test	m = 9,89	0.411	0.681	H_0 принимается	нет
χ²-test (m – изв)	$\sigma = 3$	285.205	0.557	H_0 принимается	нет
χ²-test (m – не изв)	$\sigma = 2,8$	326.250	0.267	<i>H</i> ₀ принимается	нет

Указание: для проверки гипотез использовать функции ztest, ttest, vartest (scipy.stats: ttest_1samp, chisquare)

3. Двухвыборочные критерии

Для случайных величин X_1, X_2 :

Тест	Стат. гипотеза, H_0	Выборочное значение статистики критерия	p-value	Стат. решение при $\alpha = 0.05$	Ошибка стат. решения
2-sample t-test	m ₁ = m ₂	-0.538	0.590	H_0 принимается	нет
2-sample F-test (m – изв)	$\sigma_1 = \sigma_2$	0.354	0	H_0 отклоняется	нет
2-sample F-test (m – не изв)	$\sigma_1 = \sigma_2$	0.355	0	H_0 отклоняется	нет

Указание: для проверки гипотез использовать функции ttest2, vartest2 (scipy.stats: ttest_ind, chisquare)

4. Исследование распределений статистик критерия

Статистическая гипотеза: H_0 : $m_1 = m_2$ (σ_1 , σ_2 – не изв.)

Формула расчёта статистики критерия $Z: \frac{\overline{X_1} - \overline{X_2}}{\sqrt{\frac{S_1^2 + S_2^2}{n_1 + n_2}}}$

Формула расчёта статистики P-value: $p = 2 * \min(F_z(z), 1 - F_z(z))$

Число серий экспериментов N = 1000

Теоретические характеристики:

СВ	Распределение в условиях <i>H</i> ₀	Параметры	Математическое ожидание	Дисперсия	С.к.о.
Z	T(398)	T(n ₁ + n ₂ - 2)	m = 0	$\sigma^2 = 0,000192$	$\sigma = 0.0138$
P-value	R(0, 1)	R(a,b)	m = 0,5	$\sigma^2 = 0.08$	$\sigma = 0.29$

Выборочные характеристики:

=	Shoope misic napaktephe man.						
	СВ	Среднее	Оценка дисперсии	Оценка с.к.о.			
	Z	-0.066	1.299	1.14			
	P-value	0.45	0.089	0.298			

Указание: при расчете выборочных значений статистики критерия использовать функции norminv, tinv, chi2inf, finv (scipy.stats: norm.ppf, t.ppf, chi2.ppf, f.ppf)

Гистограмма частот статистики Z и теоретическая функция $f_z(z|H_0)$:

Гистограмма частот статистики P-value и теоретическая функция $f_p(p|H_0)$:

Указание: для построения гистограмм и теоретических функций плотности использовать функции hist, normpdf, tpdf, chi2pdf, fpdf (scipy.stats: norm.pdf, t.pdf, chi2.pdf, f.pdf, histogram; matplotlib.pyplot: hist)