1.10 Classification of Differential Equations

Classify the following differential equations according to whether they are ordinary or partial. Indicate the dependent and independent variables.

(a)
$$\frac{dx}{dt} + \frac{dy}{dt} + x + y = 0$$
 $x = x(t)$ $y = y(t)$

(b)
$$\frac{\partial f}{\partial x} + \frac{\partial f}{\partial y} + x + y = 0$$
 $f = f(x, y)$

(c)
$$\frac{d}{dt} \left[\frac{\partial f}{\partial x} \right] = 0$$
 $f = x^2 + \frac{dx}{dt}$

(d)
$$\frac{df}{dx} = x$$
 $f = y^2(x) + \frac{dy}{dx}$

Solution:

- (a) Ordinary; independent variable t; dependent variables x and y.
- (b) Partial; independent variables x and y; dependent variable f.
- (c) Since $\frac{\partial f}{\partial x} = 2x$, then $\frac{d}{dt} \left[\frac{\partial f}{\partial x} \right] = 2 \frac{dx}{dt} = 0$, which is an ordinary differential equation independent variable t; dependent variable x
- (d) $\frac{df}{dx} = 2y\frac{dy}{dx} + \frac{d^2y}{dx^2} = x$, which is an ordinary differential equation; independent variable x; dependent variable y.

GPT Answer:

Classify the following differential equations according to whether they are ordinary or partial. Indicate the dependent and independent variables.

- (a) The differential equation $\frac{dx}{dt} + \frac{dy}{dt} + x + y = 0$ x = x(t) y = y(t) is an **ordinary differential equation (ODE)** with dependent variables x and y, both functions of the independent variable t.
- (b) The equation $\frac{\partial f}{\partial x} + \frac{\partial f}{\partial y} + x + y = 0$ f = f(x,y) is a **partial differential equation (PDE)** with the dependent variable f, a function of the independent variables x and y.
- (c) The equation $\frac{d}{dt} \left[\frac{\partial f}{\partial x} \right] = 0$ $f = x^2 + \frac{dx}{dt}$ leans towards an **ordinary differential equation** (**ODE**) with mixed characteristics, having f as the dependent variable, primarily a function of x, and t as the independent variable.
- (d) The equation $\frac{df}{dx} = x$ $f = y^2(x) + \frac{dy}{dx}$ is an **ordinary differential equation (ODE)** with f as the dependent variable, a function of the independent variable x, and indirectly y, as y is a function of x.

Confidence Level: 95%.

Correct

Claude Answer:

- (a) This is an ordinary differential equation (ODE) system. The dependent variables are x and y, and the independent variable is t.
- (b) This is a partial differential equation (PDE). The dependent variable is f, and the independent variables are x and y.
- (c) This is an ordinary differential equation (ODE). The dependent variable is f, and the independent variable is t. Note that although f depends on x, x is not an independent variable in this context.
- (d) This is an ordinary differential equation (ODE). The dependent variable is f, and the independent variable is x. The function y is also dependent on x.

Confidence Level: 95/100

Correct