Probability Theory Notes

Carsen Grote

December 2024

1 Introduction

This document serves as a place to list important theorems and concepts that I learned in my graduate probability theory class (Math 733) taught by Timo Seppäläinen at UW-Madison in Fall 2024. The main text for the class is Durrett's Probability: Theory and Examples.

2 Measure Theory

2.1 Sigma Algebras

Definition 1 (Sigma Algebra). Given a space X, a σ -algebra on X is a collection A of subsets of X that satisfy

- $\emptyset \in A$
- $B \in A$, then $B^c \in A$
- $\{A_k\}_{k=1}^{\infty} \subset A$, then $\bigcup_{k=1}^{\infty} A_k \in A$

We see that X contains the empty set, is closed under compliment and countable unions.

Definition 2 (Measure). A measure is a function on a sigma algebra, $\mu: A \to [0, \infty]$, such that

- $\mu(\emptyset) = 0$
- $\mu(\cup_k A_k) = \sum_k \mu(A_k)$ for a disjoint sequence $\{A_k\} \subset \mathcal{A}$

A pair (X, \mathcal{A}) is a measurable space while the triplet (X, \mathcal{A}, μ) is a measure space. Now we can define a probability space $(\Omega, \mathcal{A}, \mathbb{P})$ as a measure space where $\mathbb{P}(\Omega) = 1$.

Definition 3 (Measurable Function). Let (X, \mathcal{A}) and (Y, \mathcal{B}) be measurable spaces and $f: X \to Y$ a function. Then, f is a measurable function if for every measurable set $B \in \mathcal{B}$,

$$f^{-1}(B) = \{x \in X : f(x) \in B\} \in \mathcal{A}$$
 (1)

is measurable.

We can now list a theorem concerning measurable functions.

Theorem 4. Given measurable spaces (Ω, \mathcal{F}) and (S, \mathcal{S}) , and function X, if $\{\omega : X(\omega) \in A\} \in \mathcal{F}$ for all $A \in \mathcal{A}$ and \mathcal{A} generates \mathcal{S} , then X is measurable.

Writing $\{X \in B\}$ as shorthand for $\{\omega : X(\omega) \in B\}$, it follows from above that the set $\{\{X \in B\} : B \in \mathcal{S}\}$ is a σ -field. Further, it is the smallest σ -field on Ω that makes X a measurable map and is called the σ -field generated by X.

Definition 5 (Push Forward). Given (X, \mathcal{A}, μ) , (Y, \mathcal{B}) , and measurable function $f : (X, \mathcal{A}, \mu) \to (Y, \mathcal{B})$ we define the push forward of μ as the measure ν on (Y, \mathcal{B})

$$\nu(B) = \mu(f^{-1}(B))$$

Definition 6 (Absolute Continuity). Let μ, λ be measures on on (X, A). Then μ is absolutely continuous with respect to λ if $\lambda(A) = 0 \implies \mu(A) = 0$ for all $A \in A$. This is abbreviated by $\mu \ll \lambda$.

If $\mu \ll \lambda$, then there exists a measurable function $f: X \to \mathbb{R}_{\geq 0}$ such that

$$\mu(A) = \int_{A} f d\lambda \quad \forall A \in \mathcal{A}. \tag{2}$$

Here f is the Radon-Nikodym derivative and derivative given by

$$f(x) = \frac{d\mu(x)}{d\lambda} \tag{3}$$

3 Random Variables

A random variable is a measurable function,

$$X: (\Omega, \mathcal{A}) \to (\mathbb{R}, \mathcal{B}_{\mathbb{R}}),$$
 (4)

where $\mathcal{B}_{\mathbb{R}}$ denotes the Borel subsets of \mathbb{R} .

Definition 7 (Distribution). The distribution of X is the push forward $\mu = \mathbb{P} \circ (X^{-1})$, where

$$\mu(B) = \mathbb{P}\{\omega \in \Omega : X(\omega) \in B\}$$

Definition 8 (CDF). The CDF of X is the function F on \mathbb{R} defined by

$$F(x) = \mathbb{P}(X \le x) = \mu((-\infty, x])$$

Definition 9 (Expectation). The expectation of a random variable X is defined as

$$\mathbb{E}X = \int_{\Omega} X d\mathbb{P}$$

For functions of random variables, we can define their expectation as

$$\mathbb{E}[f(X)] := \int_{\Omega} f(X)d\mathbb{P} = \int_{\mathbb{R}} f(x)d\mu. \tag{5}$$

Here μ is the distribution of X, $\mu = \mathbb{P} \circ X^{-1}$, and $f : \mathbb{R} \to \mathbb{R}$ is a Borel function. We are also using the notation $f(x)d\mu = f(x)\mu(dx)$.

Lemma 1. Given that X > 0 and p > 0, then

$$\mathbb{E}[X^p] = \int_0^\infty pX^{p-1}\mathbb{P}(X>s)ds. \tag{6}$$

When p = 1 this provides that

$$\mathbb{E}[X] = \int_0^\infty \mathbb{P}(X > s) ds. \tag{7}$$

3.1 Independence

Generally we know that events A and B are independent if $\mathbb{P}(A \cap B) = \mathbb{P}(A)\mathbb{P}(B)$. Now we rigorously extend this idea to sigma algebras and random variables.

Definition 10 (Independent σ -algebras). Let $(\Omega, \mathcal{F}, \mathbb{P})$ be a probability space. Let $\mathcal{F}_1, ..., \mathcal{F}_n$ be σ -algebras contained in \mathcal{F} . Then $\mathcal{F}_1, ..., \mathcal{F}_n$ are independent if for all $A_1 \in \mathcal{F}_1, ..., A_n \in \mathcal{F}_n$,

$$\mathbb{P}\left(\bigcap_{i=1}^{n} A_i\right) = \prod_{i=1}^{n} \mathbb{P}(A_i).$$

We can apply a similar definition for the independence of random variables

Definition 11 (Independent Random Variables). The random variables $X_1, ..., X_n$ are independent if the σ -algebras $\sigma(X_1), \sigma(X_2), ..., \sigma(X_n)$ are independent. Equivalently, for all measurable sets in the range spaces,

$$\mathbb{P}\left(\bigcap_{i=1}^{n} \{X_i \in B_i\}\right) = \prod_{i=1}^{n} \mathbb{P}\{X_i \in B_i\}.$$

From this definition it follows that if $X_1, ..., X_n$ are independent, then so are the functions $f(X_1), ..., f(X_n)$.

Theorem 12. Let $A_1, A_2, ..., A_n$ be collection of subsets of Ω . Assume that each A_i is closed under intersection and $\Omega \in A_i$. Further assume that $\mathbb{P}(\cap_{i=1}^n A_i) = \prod_{i=1}^n \mathbb{P}(A_i)$ for all $A_i \in A_i$. Then the σ -algebras $\sigma(A_1), ..., \sigma(A_n)$ are independent.

The tool for proving the theorem is Dynkin's $\lambda - \pi$ theorem.

Definition 13 ($\lambda - \pi$ Systems). Let \mathcal{A} be a collection of subsets of Ω .

- 1. A is a π -system if it is closed under intersections.
- 2. A is a $\lambda \pi$ system if it satisfies:
 - (a) $\Omega \in \mathcal{A}$
 - (b) $A, B \in \mathcal{A}$ and $A \subset B$, then $B \setminus A \in \mathcal{A}$
 - (c) If $A_1 \subset A_2 \subset \cdots \subset A_n \subset \cdots$ and each each $A_i \in \mathcal{A}$ then $\bigcup_{i=1}^{\infty} A_i \in \mathcal{A}$

With the definitions of π and $\lambda - \pi$ systems we can now state the $\lambda - \pi$ theorem.

Theorem 14 (Dynkin's $\lambda - \pi$ theorem). If \mathcal{P} is a π -system, \mathcal{L} is a λ -system, and $\mathcal{P} \subset \mathcal{L}$, then $\sigma(\mathcal{P}) \subset \mathcal{L}$.

Lastly, a corollary to the above theorems on independence of random variables is that $X_1, ..., X_n$ are independent if and only if $\mathbb{P}(\bigcap_{i=1}^n \{X_i \leq s_i\}) = \prod_{i=1}^n \mathbb{P}\{X_i \leq s_i\}$ for all $s_i \in (-\infty, \infty]$.

4 Product Measures

Definition 15 (Product Measure Space). Suppose $(X_1, A_1, \mu_1), ..., (X_n, A_n, \mu_n)$ are σ -finite measure spaces. A product measure space (X, A, μ) is then defined as

$$X = \prod_{i=1}^{n} X_i,$$

where A is the product σ -algebra,

$$\mathcal{A} = \bigotimes_{i=1}^{n} \mathcal{A}_i = \sigma\{A_1 \times \cdots \times A_n : A_i \in \mathcal{A}_i\},\,$$

and μ is the product measure $\mu = \bigotimes_{i=1}^n \mu_i$ which is by definition the unique measure μ on A such that

$$\mu(A_1 \times \cdots \times A_n) = \prod_{i=1}^n \mu_i(A_i) \quad \forall A_i \in \mathcal{A}_i.$$

For the case in which (X, \mathcal{A}, μ) is the product of two measure spaces, $(X_1, \mathcal{A}_1, \mu_1)$ and $(X_2, \mathcal{A}_2, \mu_2)$, we have the following theorem of integration.

Theorem 16 (Fubini's Theorem). If $f \ge 0$ or $\int |f| < \infty$, then

$$\int_{X_1} \int_{X_2} f(x, y) \mu_2(dy) \mu_1(dx) = \int_{X_1 \times X_2} f d\mu$$

Theorem 17. Let $X_1,...,X_n$ be random variables on the same probability space with $\mu_i(B) = \mathbb{P}(X_i \in B)$, $B \in \mathcal{B}_{\mathbb{R}}$. Take $X = (X_1,...,X_n)$ as the random vector with probability measure μ on \mathbb{R}^n . Then, $X_1,...,X_n$ are independent if and only if $\mu = \bigotimes_{i=1}^n \mu_i$.

A corollary to the above is that if $X = (X_1, ..., X_n)$, where f_i are the associated PDFs of the X_i s and f is the PDF of X, then $X_1, ..., X_n$ are independent if and only if $f(x_1, ..., x_n) = \prod_i^n f_i(x_i)$ for all $(x_1, ..., x_n) \in \mathbb{R}^n$.

Theorem 18. Let X and Y be independent RVs with distributions μ and ν , respectively. Then the random variable X + Y has distribution $\mu + \nu$.

4.1 Construction of Independent Random Variables

Given a finite number of distribution functions, F_i , we can construct independent random variables $X_1, X_2, ... X_n$ with $\mathbb{P}(X_i \leq x_i) = F_i(x_i)$. We take $\Omega = \mathbb{R}^n$, $\mathcal{F} = \mathcal{R}^n$, $X_i(\omega_1, ..., \omega_n) = \omega_i$, and \mathbb{P} the measure on \mathcal{R}^n such that

$$\mathbb{P}((a_1, b_1] \times (a_2, b_2] \times \dots \times (a_n, b_n]) = ((F_1(b_1) - F_1(a_1)) \cdot \dots \cdot (F_n(b_n) - F_n(a_n)). \tag{8}$$

Theorem 19 (Kolmogorov's extension theorem). Given consistent probability measures ν_i on $(\mathbb{R}^i, \mathcal{B}_{\mathbb{R}^i})$. Let $\Omega = \mathbb{R}^{z \geq 0} = \{\omega = (x_i)_{i=1}^{\infty} : x_i \in \mathbb{R}\}$ and $\mathcal{F} = \sigma\{A_1 \times \cdots \times A_n, A_1, \dots A_n \in \mathcal{B}_{\mathbb{R}}\}$. This is the smallest sigma algebra on Ω under which each $X_i : \Omega \to \mathbb{R}$ is measurable. Then, there exists a unique probability measure \mathbb{P} on Ω such that

$$\mathbb{P}\{\omega \in \Omega : (X_1(\omega), \dots, X_n(\omega)) \in B\} = \nu_n(B), \tag{9}$$

for all integers n > 0 and $B \in \mathcal{B}_{\mathbb{R}}$.

4.2 Borel-Cantelli Lemmas

Definition 20 (Infinitely often). Let $\{A_n\}$ be a sequence of events in $(\Omega, \mathcal{F}, \mathbb{P})$. The events that appear in A_n infinitely often are given as

$$\{A_n \ i.o.\} = \{\omega : \omega \in A_n \ for \ infinitely \ many \ n\},$$
 (10)

$$= \bigcap_{m \ge 1} \bigcup_{n \ge m} A_n. \tag{11}$$

We note that the definition of the set $\{A_n \ i.o.\}$ is equivalent to the lim sup of the sequence A_n , denoted $\limsup_{n\to\infty} A_n$. We have a similar definition for the lim inf of a sequence of sets A_n ,

Definition 21. Let $\{A_n\}$ be a sequence of events in $(\Omega, \mathcal{F}, \mathbb{P})$. The events that appear in all but finitely many sets in A_n are given as

$$\liminf_{n \to \infty} A_n = \{ \omega : \omega \notin A_n \text{ for finitely many } n \},$$
(12)

$$= \bigcup_{m \ge 1} \bigcap_{n \ge m} A_n. \tag{13}$$

Now we can state the first and second Borel-Cantelli Lemmas.

Theorem 22 (1st Borel-Cantelli Lemma). Given the sequence of events $\{A_n\}$,

$$\sum_{n=1}^{\infty} \mathbb{P}(A_n) < \infty \implies \mathbb{P}(A_n \ i.o.) = 0. \tag{14}$$

The lemma simply states that if the sum of the probabilities of all the events converges, then the number of events that occur is guarenteed to be finite.

Theorem 23 (2nd borel-Cantelli Lemma). If $\{A_n\}$ are independent, then

$$\sum_{n=1}^{\infty} \mathbb{P}(A_n) = \infty \implies \mathbb{P}(A_n \ i.o.) = 1. \tag{15}$$

Here we have that if the sum of the probabilities of events diverges, then they will occur infinitely often.

4.3 Convergence

Definition 24 (Almost surely convergence). Given a sequence of random variables X_n , we say that X_n converges to X almost surely if

$$\mathbb{P}\{\omega \in \Omega : \lim_{n \to \infty} X_n(\omega) = X(\omega)\} = 1$$
 (16)

Definition 25 (Convergence in probability). Given a sequence of random variables X_n , we say that X_n converges to X in probability if

$$\lim_{n \to \infty} \mathbb{P}(|X_n - X| \ge \varepsilon) = 0 \quad \forall \varepsilon > 0.$$
 (17)

Almost sure convergence is the stronger statement of the two, and implies convergence in probability.

Theorem 26. X_n converges to X in probability if and only if every sub-sequence of X_n has a further sub-sequence that converges almost surely to X.

5 Laws of Large Numbers

Theorem 27 (Weak law of large numbers). Let X_i be IID random variables with $EX_i = \mu$ and finite variance. If $S_n = X_1 + \cdots + X_n$, then S_n/n converges to μ in probability.

Theorem 28 (Strong law of large numbers). Let X_i be IID random variables with $EX_i = \mu$ and finite variance. If $S_n = X_1 + \cdots + X_n$, then S_n/n converges to μ almost surely as $n \to \infty$.

We see that the weak law provides convergence in probability while the strong law gives almost surely convergence.

Theorem 29 (Chebyshev's inequality). If X is a random variable with finite variance then,

$$\mathbb{P}(|X - EX| \ge a) \le \frac{var(X)}{a^2} \tag{18}$$

Lemma 2. To apply the SLLN, it is enough to prove that T_n/n converges almost surely to EX_1 , where

$$T_n = \sum_{k=1}^n Y_k \tag{19}$$

$$Y_k = X_k \cdot 1_{|X_k| \le k} \tag{20}$$

5.1 Empirical Distributions

Definition 30. We define the empirical distribution function as

$$F_n(x) = \frac{1}{n} \sum_{k=1}^n 1_{X_k \le x}.$$
 (21)

As $n \to \infty$, by the SLLN $F_n(x)$ converges almost surely to $\mathbb{P}(X \le x) = F(x)$.

5.2 Tail σ -Algebras

Definition 31. Let $\{X_k\}$ be RVs on $(\Omega, \mathcal{F}, \mathbb{P})$, $S_n = \sum_{k=1}^n X_k$ and define the σ -algebras $\mathcal{F}_n = \sigma\{X_1, \ldots, X_n\}$ and $\mathcal{F}'_n = \sigma\{X_n, X_{n+1}, \ldots\}$. Then the tail sigma algebra \mathcal{T} is defined as

$$\mathcal{T} = \bigcap_{n>1}^{\infty} \mathcal{F}_n' \tag{22}$$

Intuitively, $A \in \mathcal{T}$ if and only if changing a finite number of values does not affect the occurrence of the event. We note as an example that $\limsup X_n$ is \mathcal{T} measurable.

Theorem 32 (Kolmogorov's 0-1 law). Let $\{X_k\}$ be independent, then every tail event $A \in \mathcal{T}$ satisfies

$$\mathbb{P}(A) \in \{0, 1\} \tag{23}$$

5.3 Weak convergence

Definition 33. Let $\{\mu_n\}$ and μ be Borel probability measures on S. Then $\mu_n \to \mu$ weakly if

$$\int_{S} f d\mu_n \to \int_{S} f d\mu \quad \forall f \in C_b(S). \tag{24}$$

We note that converging in distribution is the same as converging weakly.

Theorem 34 (Portmateau theorem). Let $\{\mu_n\}$, μ be probability measures on (S, ρ) . Then the following are equivalent.

- 1. $\mu_n \implies \mu$
- 2. $\int f d\mu_n \to \int f d\mu \quad \forall f \in C_b(S)$
- 3. $\int f d\mu_n \to \int f d\mu \quad \forall \text{ bounded lipschitz functions } f: S \to \mathbb{R}$.
- 4. For closed sets $F \subset S$, $\limsup_{n \to \infty} \mu_n(F) \leq \mu(F)$
- 5. For open sets $G \subset S$, $\liminf_{n \to \infty} \mu_n(G) \ge \mu(G)$
- 6. If $A \in \mathcal{B}_S$ and $\mu(bdd A) = 0$, then $\mu_n(A) \to \mu(A)$
- 7. If $f: S \to \mathbb{R}$ is a bounded Borel function and $\mu(D_f) = 0$ where $D_f = \{x \in S : f \text{ is discontinuous at } x \}$, then $\int f d\mu_n = \int f d\mu$

Portmateau provides a range of statements that are equal. It also follows that if $\int f d\nu = \int f d\mu$ for all $f \in C_b(S)$ then $\nu = \mu$.

Definition 35 (Convergence in distribution). We say that a sequence of RVs converges in distribution to a RV if the corresponding distributions converge in distribution.

Lemma 3 (Fatou's lemma). Let g > 0 be continuous. If $X_n \implies X$ then

$$\liminf_{n \to \infty} \mathbb{E}[g(X_n)] \ge \mathbb{E}[g(X)] \tag{25}$$

An example of convergence in distribution is the Central Limit Theorem.

Theorem 36 (Central Limit Theorem). Let X_i be iid with $EX_1 = \mu$ and $\sigma^2 = Var(X_1) < \infty$. Then with the random variable $S_n = X_1 + \cdots + X_n$, we have

$$\frac{S_n - n\mu}{\sqrt{n\sigma^2}} \implies \mathcal{N}(0, 1),\tag{26}$$

where N is the standard normal distribution with mean zero and variance 1.

Theorem 37 (Continuous mapping theorem). Let g be measurable and $\mathbb{P}(X \in D_g) = 0$. If $X_n \implies X$ in distribution, then $g(X_n) \implies g(X)$.

From the continuous mapping theorem it follows that X_n converges to X if and only if $F_n(x)$ converges to F(x) for all continuity points of F.

Theorem 38 (Glivenko Cantelli). Let X_i be iid and define

$$F_n(x) = \frac{1}{n} \sum_{i=1}^n 1_{X_i \le x}.$$
 (27)

Then $F_n(x)$ converges almost surely to F(x).

Theorem 39. Assume that $X_n \implies X$ in distribution. Then we can find Y_n , Y on the same probability space such that $Y_n = X_n$ and Y = X in distribution while $Y_n \to Y$ almost surely.

6 Cumulative distribution functions

Theorem 40 (Helly's selection theorem). Let $\{F_n\}$ be a sequence of of CDFs. Then there exists a subsequence $\{F_{n_k}\}$ and a nondecreasing, right continuous function F such that $F_{n_k}(x) \to F(x)$ at each continuity point of F.

Definition 41. A sequence μ_n of probability measures on \mathbb{R} is tight if for all $\varepsilon > 0$ there exists a m > 0 such that

$$\inf_{n} \mu_n[-m, m] \ge 1 - \varepsilon. \tag{28}$$

Equivalently, the CDFs $\{F_n\}$ are tight if for all $\varepsilon > 0$ there exists a $m < \infty$ such that $F_n(m) - F_n(-m) \ge 1 - \varepsilon$ for all n.

Theorem 42. Let $\{F_n\}$ be a sequence of CDFs on \mathbb{R} . Then every subsequential limit $F_{n_k}(x) \to F(x)$ at each continuity point of F gives a CDF if and only if $\{F_n\}$ is tight.

Corollary 1. Suppose $\{\mu_n\}$ is a tight sequence of probability measures \mathbb{R} . Then every subsequence $\{\mu_{n_k}\}$ has a further subsequence $\{\mu_{n_{k_i}}\}$ that converges weakly to a probability measure on \mathbb{R} .

Weak convergence of probability measures $\mu_n \to \mu$ follows from showing that

- 1. $\{\mu_n\}$ is tight, and
- 2. Every convergent subsequence $\{\mu_{n_k}\}$ has the same limit μ

7 Characteristic Function

Definition 43. The characteristic function $\rho(t)$ of a random variable X with distribution μ is defined as

$$\rho(t) = \mathbb{E}[e^{itX}] = \int e^{itX} \mu(dx) \tag{29}$$

Properties of the characteristic function include that $\rho(0) = 1$, $|\rho(t)| \le 1$, ρ is uniformly continuous, and if X and Y are independent then $\rho_{X+Y} = \rho_X(t)\rho_Y(t)$. Given the characteristic function $\rho_X(t)$, there exists a general formula to derive the distribution μ of X from $\rho_X(t)$. The consequence of this is that a characteristic function uniquely determines the distribution of a random variable.

Theorem 44 (Continuity Theorem). Let $\{\mu_n\}_{n\geq 1}$ be a sequence of probability measures on \mathbb{R} where μ_n has characteristic function $\rho_n(t)$. Then,

- 1. If $\mu_n \implies \mu_\infty$ weakly, then $\rho_n(t) \to \rho_\infty(t)$ as $n \to \infty$ for all $t \in \mathbb{R}$.
- 2. If the limit of $\rho_n(t)$ as $n \to \infty$ exists for all $t \in \mathbb{R}$ and ρ is continuous at 0, then ρ is the characteristic function of a probability measure μ and μ_n converges to μ weakly.

8 Central Limit Theorems

Theorem 45 (CLT for iid sequences). Let X_1, \ldots be iid with $\mathbb{E}X_i = \mu$, $var(X_i) = \sigma^2 \in (0, \infty)$. If $S_n = X_1 + \cdots + X_n$ then

$$\frac{S_n - n\mu}{\sigma n^{1/2}} \implies \chi,\tag{30}$$

where χ has the standard normal distribution and the convergence is in distribution (weakly).

Theorem 46 (Lindeberg-Feller theorem). For each n, let $X_{n,m}$, $1 \le m \le n$ be independent random variables with $E[X_{n,m}] = 0$. Let $S_n = \sum_{m=1}^n X_{n,m}$ and suppose the following hold,

- 1. $\sum_{m=1}^{n} E[X_{n,m}^2] \to \sigma^2 > 0$
- 2. For all $\varepsilon > 0$, $\lim_{n \to \infty} \sum_{m=1}^{n} E[X_{n,m}^2 1_{\{|X_{n,m}| > \varepsilon\}}] = 0$

Then $S_n \implies \sigma \chi$ where $\chi \sim \mathcal{N}(0,1)$.

It's important to note here that we are not assuming that $X_{n,m}$ are identically distributed. In words, the theorem says that a sum of a large number of small independent effects has approximately a normal distribution. The proof of Lindeberg-Feller shows that the characteristic function of S_n converges to the characteristic function of $\sigma \mathcal{N}$. It uses the following lemmas.

Lemma 4. For all n > 0, $t \in \mathbb{R}$,

$$\left| e^{it} - \sum_{k=0}^{n} \frac{(it)^k}{k!} \right| \le \min\left(\frac{2|t|^n}{n!}, \frac{|t|^{n+1}}{(n+1)!}\right)$$
 (31)

Lemma 5. Let z_1, \ldots, z_n and w_1, \ldots, w_n be complex numbers of modulus $\leq \theta$. Then

$$\left| \prod_{m=1}^{n} z_m - \prod_{m=1}^{n} w_m \right| \le \theta^{n-1} \sum_{m=1}^{n} |z_m - w_m| \tag{32}$$

In general we have that if $\{X_k\}$ are iid, $S_n = X_1 + \cdots + X_n$, $a = \mathbb{E}X_i$, and $\sigma^2 = Var(X_i) < \infty$, then the SLLN and CLT provide that

- 1. SLLN: $S_n/n \to a$ with probability 1.
- 2. CLT:

$$\mathbb{P}\left(\frac{S_n - na}{\sigma\sqrt{n}} \in A\right) \implies \int_A \frac{e^{-t^2/2}}{\sqrt{2\pi}} dt \tag{33}$$

for all intervals A.

8.1 Asymptotics of S_n

The asymptotics of S_n fit into four regimes around the expected value:

- 1. Average behavior
- 2. Fluctuations $O(n^{1/2})$
- 3. Moderate deviations $O(n^{\gamma})$, where $1/2 < \gamma < 1$
- 4. Large deviations O(n)

The Central Limit Theorem states that in the limit you get a Gaussian on the scale of $n^{1/2}$ about the expected value.

Theorem 47 (Moderate deviations principle). As $n \to \infty$,

$$n^{1-2\gamma}\log \mathbb{P}(S_n > na + xn^{\gamma}) \to \frac{-x^2}{2\sigma^2}.$$
 (34)

Theorem 48 (Large deviations principle). Let x > 0, Assume that there exist a $\delta > 0$, and $\mathbb{E}[e^{\delta|X|}] < \infty$. Then as $n \to \infty$,

$$\frac{1}{n}\log \mathbb{P}(S_n > na + nx) \to -I(x),\tag{35}$$

where I(x) is the rate function

Our last theorem here concerns the speed of convergence in the CLT.

Theorem 49 (Convergence in CLT). Let $\{X_k\}$ be iid with mean zero and finite variance. Let $\varphi = \mathbb{E}[|X_k|^3] < \infty$ be the third moment. Let

$$F_n(x) = \mathbb{P}\left(\frac{S_n}{\sigma\sqrt{n}} \le x\right), \quad \Phi(x) = \int_{-\infty}^x \frac{e^{-t^2/2}}{\sqrt{2n}} dt.$$
 (36)

Then,

$$\sup_{x \in \mathbb{R}} |F_n(x) - \Phi(x)| \le \frac{3\varphi}{\sigma^3 \sqrt{n}}$$
(37)

9 Poisson Convergence

Recall that if $X \sim \text{Poisson}(\alpha)$, then $\mathbb{P}(X = k) = (e^{-\alpha}\alpha^k)/k!$.

Theorem 50. For each n, let $\{X_{n,m}\}_{1\leq m\leq n}$ be independent random variables such that

$$p_{nm} = \mathbb{P}(X_{nm} = 1) = 1 - \mathbb{P}(X_{nm} = 0). \tag{38}$$

Assume that

1.
$$\sum_{m=1}^{n} p_{nm} \to \lambda \in (0, \infty)$$
 as $n \to \infty$.

2. $\max_{1 \le m \le n} p_{nm} \to 0 \text{ as } n \to \infty$.

Then as $n \to \infty$ we have

$$S_n = \sum_{m=1}^n X_{nm} \implies Z \sim Poisson(\lambda). \tag{39}$$

The convergence here is in distribution.

Definition 51 (Homogeneous Poisson Process). Let $\lambda \in (0, \infty)$. A rate λ homogeneous Poisson process $\{N_t : t \in \mathbb{R}_{\geq 0}\}$ is a stochastic process with properties

- 1. $N_0 = 0$.
- 2. For s < t, $N_t N_s \sim Poisson(\lambda(t s))$.
- 3. For $0 = t_0 < \cdots < t_m$, $\{N_{t_i} N_{t_{i-1}}\}_{1 \le i \le m}$ are independent.

Theorem 52. Let $\lambda \in (0, \infty)$. Let $\{Y_k\}$ be iid with $Y_k \sim exp(\lambda)$. Define $T_0 = 0$, $T_n = \sum_{k=1}^n Y_k$ and let $N_t = \max\{n : T_n \leq t\}$, then $\{N_t\}_{t\geq 0}$ is a rate λ Poisson process.

10 Conditional Expectation

Recall that given events A and B, the probability of event A given that event B has occurred is

$$\mathbb{P}(A|B) = \frac{\mathbb{P}(A \cap B)}{\mathbb{P}(B)}.$$
(40)

Similarly we can define the discrete and continuous versions of the conditional expectation of a random variable X as

$$\mathbb{E}[X|A] = \sum_{x} x \mathbb{P}(X = x|A) \tag{41}$$

$$\mathbb{E}[X|Y=y] = \int_{\mathbb{R}} x f_{X|Y}(x,y) dx, \tag{42}$$

where Y is a random variable and $f_{X|Y}$ is the conditional pdf of X given Y, i.e.

$$f_{X|Y} = \frac{f(x,y)}{f_Y(y)},$$
 (43)

with f the joint pdf of X and Y. We now extend these definitions to their measure theory versions.

10.1 Measure Theory Conditional Expectation

Definition 53. Let $(\Omega, \mathcal{F}, \mathbb{P})$ be a probability space, $\mathcal{A} \subset \mathcal{F}$ be a sub-sigma-algebra of \mathcal{F} , and $X \in L^1(\mathbb{P})$ a random variable. The conditional expectation of X given \mathcal{A} is a random variable Y on Ω which satisfies

- 1. Y is A-measurable $(Y \in A)$
- 2. for all $A \in \mathcal{A}$, $\int_A X d\mathbb{P} = \int_A Y d\mathbb{P}$

Without proof we note that the conditional expectation Y exists and is unique. For notation, we normally write $\mathbb{E}[X|\mathcal{A}] = Y$.

Theorem 54 (Radon-Nikodym theorem). Let $t \mu$ and ν be σ -finite measures on (Ω, \mathcal{F}) . If $\nu \ll \mu$, then there is a function $f \in \mathcal{F}$ such that for all $A \in \mathcal{F}$,

$$\int_{A} f d\mu = \nu(A). \tag{44}$$

f is usually denoted as the Radon-Nikodym derivative, $d\nu/d\mu$. We note two extreme cases of conditional probability. If $X \in \mathcal{F}$ where \mathcal{F} is a sigma-algebra, then $\mathbb{E}[X|\mathcal{F}] = X$ (i.e. if we know X, then our best guess is X). This is equivalent to knowing everything we're interested in. On the other hand we can know nothing. If X is independent of \mathcal{F} , then $\mathbb{E}[X|\mathcal{F}] = \mathbb{E}[X]$.

10.2 Properties

Property 1. Suppose X and Y have joint pdf f(x,y) and let g(X) be such that $\mathbb{E}|g(X)| < \infty$. Then E(g(X)|Y) = h(Y) where

$$h(y) = \frac{\int g(x)f(x,y)dx}{\int f(x,y)dx} = \int g(x)\mathbb{P}(X=x|Y=y)dx. \tag{45}$$

Property 2. Recall that we have $\mathbb{E}[Z\mathbb{E}[X|\mathcal{A}]] = \mathbb{E}[ZX]$ for all bounded \mathcal{A} measurable X and Z. Thus given $\psi(Y)$, we have

$$\mathbb{E}[X\psi(Y)] = \mathbb{E}[\mathbb{E}[X|Y]\psi(Y)] = \mathbb{E}[g(Y)\psi(Y)] = \int_{\mathbb{R}} g(y)\psi(y)\mu_Y(dy). \tag{46}$$

Property 3. Suppose that $A \subset D \subset \mathcal{F}$ are σ -algebras, then

$$\mathbb{E}[\mathbb{E}(X|\mathcal{A})|\mathcal{D}] = \mathbb{E}[X|\mathcal{A}] = \mathbb{E}[\mathbb{E}(X|\mathcal{D})|\mathcal{A}],\tag{47}$$

where the equality is almost surely. Further, we have that

$$\mathbb{E}[1_A \mathbb{E}(X|\mathcal{D})] = \mathbb{E}[1_A \mathbb{E}(X|\mathcal{A})]. \tag{48}$$

Property 4. If Z is A-measurable, X and $XZ \in L^1$, then

$$\mathbb{E}[XZ|\mathcal{A}] = Z\mathbb{E}(X|\mathcal{A})a.s. \tag{49}$$

This shows us that A-measurable random variables behave like constants in $\mathbb{E}[\cdot|A]$.

Property 5. Suppose X and Y are independent and $\mathbb{E}|\varphi(X,Y)| < \infty$ for a Borel function $\varphi : \mathbb{R}^2 \to \mathbb{R}$. Let $g(x) = \mathbb{E}[\varphi(x,Y)] = \int_{\Omega} \varphi(x,Y) \mu_Y(dy)$. Then,

$$\mathbb{E}[\varphi(X,Y)|X] = g(X(\omega)) = \int_{\Omega} \varphi(X(\omega), Y(\tilde{\omega})) \mathbb{P}(d\tilde{\omega}). \tag{50}$$

Property 6 (Jensen's Inequality). Let φ be a convex function, assume $X \in L^1$, and $\varphi(X) \in L^1$. Then,

$$\varphi(\mathbb{E}(X|\mathcal{A})) \le \mathbb{E}[\varphi(X)|\mathcal{A}] \quad a.s. \tag{51}$$

Theorem 55. Let $X \in L^1$, thus $\mathbb{E}(X|\mathcal{A}) \in L^2$. Then for all $Y \in L^2(\Omega, \mathcal{A}, \mathbb{P})$ we have

$$\mathbb{E}[(X-Y)^2] \ge \mathbb{E}[(X-\mathbb{E}(X|\mathcal{A}))^2],\tag{52}$$

where the equality holds if and only if $Y = \mathbb{E}[X|\mathcal{A}]$ a.s.

Definition 56 (Regular conditional distribution). Let $(\Omega, \mathcal{F}, \mathbb{P})$ be a probability space, $X : (\Omega, \mathcal{F}) \to (S, \mathcal{S})$ a measurable map, and \mathcal{G} a σ -field $\subset \mathcal{F}$. Then $\mu : \Omega \times \mathcal{S} \to [0,1]$ is a regular conditional distribution for X given \mathcal{G} if

- 1. For each $A, \omega \to \mu(\omega, A)$ is a version of $\mathbb{P}(X \in A|\mathcal{G})$
- 2. For a.e. $\omega, A \to \mu(\omega, A)$ is a probability measure on (S, \mathcal{S})

When $S = \Omega$ and X is the identity map then μ is called a regular conditional probability.

Theorem 57. For any $\psi: S \to \mathbb{R}$ bounded such that $\mathbb{E}[\psi(X)]$ exists and is finite, then we have

$$\mathbb{E}[\psi(X)|\mathcal{A}](\omega) = \int_{S} \psi(x)\mu(x,dw) \ a.s. \tag{53}$$

Definition 58 (Stochastic Kernel). If (S, A) and (T, B) are measurable spaces then a stochastic kernel π from (S, A) to (T, B) is a function $\pi: S \times B \to [0, 1]$ such that

- 1. $x \to \pi(x, \mathcal{B})$ is a measurable function on (S, \mathcal{A})
- 2. $B \to \pi(x, \mathcal{B})$ is a probability measure on (T, \mathcal{B}) for all $x \in S$.

11 Martingales

Definition 59 (Filtration). In a probability space $(\Omega, \mathcal{F}, \mathbb{P})$, a filtration is a sequence of σ -algebras $\{\mathcal{F}_n\}_{n\geq 0}$ that satisfy $\mathcal{F}_0 \subset \mathcal{F}_1 \subset \cdots$ and each $\mathcal{F}_n \subset \mathcal{F}$.

Definition 60. A stochastic process $\{X_n\}_{n\geq 0}$ on $(\Omega, \mathcal{F}, \mathbb{P})$ is adapted to the filtration $\{\mathcal{F}_n\}_{n\geq 0}$ if X_n is \mathcal{F}_n measurable for each n.

Definition 61 (Martingale). If X_n is a sequence with

- 1. $E|X_n| < \infty$,
- 2. X_n is adapted to \mathcal{F}_n ,
- 3. $E(X_{n+1}|\mathcal{F}_n) = X_n$ for all n,

then X_n is said to be a martingale. If in the last definition = is replaced with \leq or \geq , then X is said to be a supermartingale or submartingale, respectively.

Theorem 62 (Martingale Convergence Theorem). Let $\{X_n\}_{n\geq 0}$ be a submartingale and $\sup E(X_n^+) < \infty$. Then there exists a random variable X such that $X_n \to X$ almost surely and $E|X| < \infty$.

This gives us that if (X_n) is a martingale related to \mathcal{F}_n then it is also a martingale related to $\mathcal{F}_n = \sigma\{X_0,\ldots,X_n\}$.

Theorem 63. Let X_n be adapted to \mathcal{F}_n and φ a function such that $\varphi(X) \in L^1 \ \forall n$. Then,

- 1. If X_n is a martingale and φ is convex then $\varphi(X_n)$ is a sub-martingale
- 2. If X_n is a submartingale and φ is convex, nondecreasing then $\varphi(X_n)$ is a submartingale

Theorem 64. Suppose $(X_n)_{n\geq 0}$ is a supermartingale with respect to the filtration $(\mathcal{F}_n)_{n\geq 0}$, and suppose $(H_n)_{n\geq 1}$ is a predictable process. Assume that each $H_n\geq 0$ and bounded. Define $H\cdot X$ by $(H\cdot X)_0=0$ and

$$(H \cdot X)_n = \sum_{m=1}^n H_m(X_m - X_{m-1}), \tag{54}$$

for $n \geq 1$. Then $H \cdot X$ is a supermartingale.

It's also worth noting from the above that if X_n is a submartingale then $H \cdot X$ is a submartingale and similarly if X_n is a martingale.

Definition 65 (Stopping Time). $A \mathbb{Z} \cup \{\infty\}$ -valued random variable N is a stopping time if for all integers $n \geq 0$ we have $\{\omega : N(\omega) = n\} \in \mathcal{F}_n$ where \mathcal{F} is a filtration.

This definition means that "N cannot peek into the future."

Theorem 66. If N is a stopping time and X_n is a supermartingale then $X_{N \wedge n}$ is also a supermartingale where

$$X_{N \wedge n}(\omega) = \begin{cases} X_{N(\omega)}, & n > N(\omega) \\ X_{n}(\omega), & n \leq N(\omega) \end{cases}$$
(55)

Definition 67 (Upcrossings). Let $N_0 = 0$, k > 1, and X_n be a submartingale. Then define

$$N_{2k-1} = \inf\{m > N_{2k-2} : x_m \le a\}$$
$$N_{2k} = \inf\{m > N_{2k-1} : x_m \ge b\}$$

The N_j are stopping times and $\{N_{2k-1} < m \le N_{2k}\} = \{N_{2k-1} \le m-1\} \cap \{N_{2k} \le m-1\}^c \in \mathcal{F}_{m-1}$, so

$$H_m = \begin{cases} 1, & N_{2k-1} < m \le N_{2k} \text{ for some } k \\ 0, & else \end{cases}$$

defines a predictable sequence. We have that $X(N_{2k-1}) \leq a$ and $X(N_{2k}) \geq b$, so between times N_{2k-1} and N_{2k} , X_m crosses from below a to above b. Let $U_n = \sup\{k : N_{2k} \leq n\}$ be the number of "upcrossingss" completed by time n.

Theorem 68 (Upcrossing inequality). If X_m , $m \ge 0$ is a submartingale then

$$(b-a)\mathbb{E}[U_n] \le \mathbb{E}[(X_n - a)^+] - \mathbb{E}[(X_0 - a)^+]$$
(56)

Theorem 69 (Martingale convergence theorem). Let X_n be a submartingale, with $\sup \mathbb{E}[X_n^+] < \infty$. Then there exists a random variable X such that $X_n \to X$ almost surely and $\mathbb{E}[X] < \infty$.

Lemma 6. Let $X_n \geq 0$ be a supermartingale. Then there exists an almost surely limit $X = \lim_n X_n$ with $0 \leq \mathbb{E}X \leq \mathbb{E}X_0$.

Theorem 70. If X_n is a submartingale, $k \in \mathbb{Z}_{>0}$, N a stopping time such that $\mathbb{P}(0 \le N \le k) = 1$ then

$$\mathbb{E}[X_0] \le E[X_N] \le \mathbb{E}[X_k]. \tag{57}$$

Theorem 71 (Doob's Inequality). Let X_n be a submartingale, $\lambda > 0$, and define

$$A = \max_{0 \le m \le n} X_m > \lambda. \tag{58}$$

Then we have that

$$\mathbb{P}(A) \le \frac{1}{\lambda} \mathbb{E}[X_n 1_A] \le \frac{1}{\lambda} \mathbb{E}[X_n^+] \tag{59}$$

Theorem 72 (L^p Maximum inequality). Let X_n be a submartingale with 1 . Define

$$\bar{X}_n = \max_{0 < m < n} X_m^+. \tag{60}$$

Then we have that

$$\mathbb{E}[\bar{X}_n^p] \le \left(\frac{p}{p-1}\right)^p \mathbb{E}[(X_n^+)^p]. \tag{61}$$

Theorem 73 (L^p convergence theorem). Let X_n be a martingale that satisfies L^p boundedness,

$$\sup_{n} \mathbb{E}[|X_n|^p] < \infty. \tag{62}$$

Then $X_n \to X$ almost surely in L^p .

Theorem 74 (Kolmogorov's Inequality). Let $\{X_k\}_k$ be independent with $\mathbb{E}[X_k] = 0$ and $Var(X_k) < \infty$. Then,

$$\mathbb{P}(\max_{1 \le m \le n} |S_n| \ge \lambda) \le \frac{\mathbb{E}[S_n^2]}{\lambda^2}.$$
 (63)

Theorem 75. Let $\{X_k\}_k$ be independent with $\mathbb{E}[X_k] = 0$ and $Var(X_k) < \infty$. Then, S_n is a martingale and

$$\sum_{k=1}^{\infty} Var(X_k) < \infty \implies \sum_{k=1}^{\infty} X_k \text{ converges to a finite limit.}$$
 (64)

We have that if $Var(S_n)$ converges to a finite limit then S_n converges to a finite limit as $n \to \infty$.

11.1 Uniform Integrability

Theorem 76 (Single random variable uniform integrability). The following are equivalent,

- 1. $\mathbb{E}|X| < \infty \ (L^1 \ boundedness)$
- 2. $\lim_{m\to\infty} \mathbb{E}[|X|1_{|X|\geq m}] = 0$

Definition 77 (Uniform integrability of a collection of random variables). A collection of random variables $X_i, i \in I$ is said to be uniformly integrable if

$$\lim_{M \to \infty} \left(\sup_{i \in I} \mathbb{E}[|Xi|; |X_i| > M] \right) = 0. \tag{65}$$

Theorem 78. Let $\varphi \geq 0$ be any function with $\varphi(x)/x \to \infty$ as $x \to \infty$. If $\mathbb{E}[\varphi(|X_i|)] \leq C$ for all $i \in I$, then $\{X_i : i \in I\}$ is uniformly integrable.

Theorem 79. Let $X \in L^1(\Omega, \mathcal{F}, \mathbb{P})$. Then the family $\{\mathbb{E}[X|\mathcal{A}] : \mathcal{A} \subset \mathcal{F}, \mathcal{A} \text{ is a sigma-algebra}\}$ is uniformly integrable.

Theorem 80. Let $\{X_n\}$ be a sequence such that $X_n \in L^1$ and $X_n \to X$ in probability. Then the following are equivalent,

- 1. $\{X_n\}_{n\geq 1}$ are uniformly integrable
- 2. $X \in L^1$ and $X_n \to X$ in L^1
- 3. $\mathbb{E}|X_n| \to \mathbb{E}|X| < \infty$

Theorem 81. Let X_n be a submartingale, then the following are equivalent

- 1. $\{X_n\}$ is uniformly integrable
- 2. There exists a random variable X such that $X_n \to X$ almost surely and in L^1
- 3. There exists a random variable X such that $X_n \to X$ in L^1

Lemma 7. If X_n is a martingale and $X_n \to X$ in L^1 then $X_n = \mathbb{E}[X|\mathcal{F}_n] \ \forall n$.

Theorem 82. Let X_n be a martingale. Then the following are equivalent

- 1. $\{X_n\}$ is uniformly integrable
- 2. $X_n \to X$ almost surely and in L^1
- 3. $X_n \to X$ in L^1
- 4. There exists an $X \in L^1$ such that $X_n = \mathbb{E}[X|\mathcal{F}_n] \ \forall n$

Definition 83. If $\{\mathcal{F}_n\}$ is a filtration then $\mathcal{F}_n \uparrow \mathcal{F}_\infty$ means that $\mathcal{F}_\infty = \sigma(\cup_n \mathcal{F}_n)$.

Theorem 84. Let $\mathcal{F}_n \uparrow \mathcal{F}_{\infty}$ and $X \in L^1$. Then $\mathbb{E}[X|\mathcal{F}_n] \to \mathbb{E}[X|\mathcal{F}_{\infty}]$ almost surely and in L^1 .

Theorem 85 (Levy's 0-1 law). Let $\mathcal{F}_n \uparrow \mathcal{F}_{\infty}$. Then $A \in \mathcal{F}_{\infty}$ implies that $\mathbb{E}[1_A | \mathcal{F}_n] \to 1_A$ almost surely in L^1 .