Úvod do komplexní analýzy

doc. RNDr. Roman Lávička, Ph.D.

15. října 2020

Obsah

1	Zavedení základních pojmů Lineární zobrazení				
2					
3	Diferencovatelnost	3			
4	Elementární funkce v $\mathbb C$	5			
	4.1 Exponenciála	5			
	4.2 Logaritmus	6			
	4.3 Obecná mocnina				
	4.4 Hyperbolické funkce	7			
	4.5 Goniometrické funkce	7			
5	Křivkový integrál	8			
6	Mocninné řady	1 6			
7	Riemannova sféra	18			

1 Zavedení základních pojmů

 \mathbb{R}^2 je reálný vektorový prostor dimenze 2. Definujeme v něm $\mathit{Euklidovskou\ normu}$ a $\mathit{metriku}$:

- $|z| = \sqrt{x^2 + y^2}, z = (x, y) \in \mathbb{R}^2$
- $\rho(z,w) := |z-w|, z,w \in \mathbb{R}^2$

Definice 1.1. Prostor \mathbb{C} je prostor \mathbb{R}^2 , v němž definujeme navíc:

- násobení (x,y).(u,v) = (xu yv, xv + yu)
- ztotožňujeme $(x,0)\cong$, neboli $\mathbb{R}\subset\mathbb{C}$
- značíme i = (0,1)

Vlastnosti 1.2.

Vlastnosti \mathbb{C} . Necht $z = (x, y) \in \mathbb{C}$.

- Potom z = x + iy a $(\pm i)^2 = -1$.
- Násobení v $\mathbb C$ zahrnuje násobení v $\mathbb R$ i násobení skalárem v $\mathbb R^2.$

Značení 1.3. Nechť z = x + iy, kde $x, y \in \mathbb{R}$. Potom

- $\overline{z} := x iy$ je komplexně sdružené číslo k z,
- Re(z) := x je reálná část z, Im(z) := y je imaginární část z,
- $|z| = \sqrt{x^2 + y^2}$ je modul nebo absolutní hodnota z.

Dále platí

- $\bullet \ |z|^2=z\overline{z}, \ \overline{zw}=\overline{z}.\overline{w}, \ |zw|=|z|.|w|, \ z+\overline{z}=2.Re(z), \ z-\overline{z}=2i.Im(z),$
- $\frac{1}{z} = \frac{\overline{z}}{|z|^2}$, je-li $z \neq 0$,
- C je těleso.

Pozor, \mathbb{C} nelze $rozumn\check{e}$ upořádat!

- $i > 0 \implies -1 = i^2 > 0$,
- $i < 0 \implies -1 = i^2 > 0$.

2 Lineární zobrazení

Definice 2.1. \mathbb{R}^2 je *reálný vektorový prostor* dimenze 2, jeho báze je $((1,0)^T, (0,1)^T)$. Obecné \mathbb{R} -lineární zobrazení $L: \mathbb{R}^2 \to \mathbb{R}^2$ má tvar

$$\begin{pmatrix} x \\ y \end{pmatrix} \longmapsto \begin{pmatrix} a & c \\ b & d \end{pmatrix} \begin{pmatrix} x \\ y \end{pmatrix}, \tag{1}$$

kde $a,b,c,d\in\mathbb{R}$. \mathbb{C} je komplexní vektorový prostor dimenze 1, jeho báze je 1. Obecné \mathbb{C} -lineární zobrazení $L:\mathbb{C}\to\mathbb{C}$ má tvar $Lz=wz,z\in\mathbb{C}$, kde $w\in\mathbb{C}$. Nechť z=(x+iy), w=(a+ib). Potom

$$Lz = (a+ib)(x+iy) = (ax-by, bx+ay) = \begin{pmatrix} a & -b \\ b & a \end{pmatrix} \begin{pmatrix} x \\ y \end{pmatrix}.$$

Pozorování 2.2. \mathbb{R} -lineární zobrazení (1) je \mathbb{C} -lineární, právě když d=a, c=-b.

Poznámka 2.3. C-lineární zobrazení jsou velmi specifická R-lineární zobrazení.

Úmluva 2.4. Nebude-li řečeno něco jiného, funkce znamená komplexní funkci komplexní proměnné. Na $f: \mathbb{C} \to \mathbb{C}$ se můžeme vždy dívat jako na $f: \mathbb{R}^2 \to \mathbb{R}^2$, protože $\mathbb{C} \approx \mathbb{R}^2$. Nechť f je funkce z \mathbb{C} do \mathbb{C} . Spojitost a limita se definuje stejně jako v základním kurzu matematické analýzy.

Definice 2.5. Pro $z_0 \in \mathbb{C}, \delta > 0$ značíme $U(z_0, \delta) := \{z \in \mathbb{C} : |z - z_0| < \delta\}$ a nazýváme ji okolí z_0 . Dále $P(z_0, \delta) := U(z_0, \delta) \setminus \{z_0\}$ nazýváme prstencové okolí. Pokud δ není důležité, budeme často psát jen $U(z_0)$, $P(z_0)$. Potom definujeme

- $\lim_{z\to x_0} f(z) = L$, pokud $\forall \varepsilon > 0 \; \exists \delta > 0 : z \in P(x_0, \delta) \implies f(z) \in U(L, \varepsilon)$
- f je spojitá v x_0 , pokud $\lim_{x\to x_0} f(x) = f(x_0)$.

3 Diferencovatelnost

Definice 3.1. Funkce f je v x_0 \mathbb{R} -diferencovatelná, pokud existuje \mathbb{R} -lineární zobrazení $L: \mathbb{R}^2 \to \mathbb{R}^2$ takové, že

$$\lim_{h \to 0} \frac{f(x_0 + h) - f(x_0) - L(h)}{|h|} = 0.$$

Poznámka 3.2. Potom $df(x_0) := L$ je tzv. totální diferenciál f v x_0 a platí, že

$$df(x_0)h := \begin{pmatrix} \frac{\partial f_1}{\partial x}(x_0) & \frac{\partial f_1}{\partial y}(x_0) \\ \frac{\partial f_2}{\partial x}(x_0) & \frac{\partial f_2}{\partial y}(x_0) \end{pmatrix} h, \ h \in \mathbb{R}^2,$$

kde $f(x,y) = (f_1(x,y), f_2(x,y))$. (Ta matice se nazývá Jacobiho matice.)

Definice 3.3. Řekneme, že funkce f je v x_0 \mathbb{C} -diferencovatelná, pokud existuje konečná limita

$$f'(x_0) := \lim_{h \to 0} \frac{f(x_0 + h) - f(x_0)}{h}.$$

Číslo $f'(x_0)$ nazýváme komplexní derivací $f \vee x_0$.

Poznámka 3.4. Jako pro reálnou funkci reálné proměnné platí $(f \pm g)'$, (f.g)', (f/g)' a $(f \circ g)'$.

Příklad 3.5.

• $(z^n)' = n.z^{n-1}, z \in \mathbb{C} \text{ a } n \in \mathbb{N}.$

• $f(z) = \overline{z}$ není nikde v \mathbb{C} \mathbb{C} -diferencovatelná, ale f(x,y) = (x,-y) je všude \mathbb{R} -diferencovatelná. Skutečně, máme

$$\lim_{h \to 0} \frac{f(x_0 + h) - f(x_0)}{h} = \lim_{h \to 0} \frac{\overline{h}}{h},$$

avšak poslední limita neexistuje.

Věta 3.6 (Cauchy-Riemannova). Nechť f je funkce diferencovatelná na okolí $z_0 \in \mathbb{C}$. Pak následující tvrzení jsou ekvivalentní:

- 1. Existuje $f'(z_0)$
- 2. Existuje $df(z_0)$ a $df(z_0)$ je \mathbb{C} -lineární
- 3. Existuje $df(z_0)$ a v z_0 platí tzv. Cauchy-Riemannovy podmínky.

Cauchy-Riemannovy podmínky:

$$\frac{\partial f_1}{\partial x} = \frac{\partial f_2}{\partial y},
\frac{\partial f_1}{\partial y} = -\frac{\partial f_2}{\partial x},$$
(CR)

 $kde\ f(x,y) = (f_1(x,y), f_2(x,y)).$

 $D\mathring{u}kaz$. (2. \iff 3.) plyne z pozorování pro lineární zobrazení (1. \iff 2.) Z definice $w = f'(z_0)$ znamená, že

$$0 = \lim_{h \to 0} \frac{f(z_0 + h) - f(z_0) - wh}{h}.$$
 (2)

Po vynásobení výrazu v limitě h/|h| dostaneme, že

$$0 = \lim_{h \to 0} \frac{f(z_0 + h) - f(z_0) - wh}{|h|},\tag{3}$$

což je ekvivalentní tomu, že d $f(z_0)h = wh$, $h \in \mathbb{C}$. Z (3) plyne (2) vynásobením |h|/h.

Poznámka 3.7.

- Existuje-li $f'(z_0)$, potom $df(z_0)h = f'(z_0)h, h \in \mathbb{C}$ a $f'(z_0) = \frac{\partial f}{\partial x}(z_0)$
- Platí, že (CR) $\iff \frac{\partial f}{\partial x} = -i \frac{\partial f}{\partial y}$

Důkaz.

- $\mathrm{d}f(z_0)1 = \frac{\partial f_1}{\partial x}z_0 + i\frac{\partial f_2}{\partial x}(z_0) =: \frac{\partial f}{\partial x}(z_0)$
- zřejmé

Příklad 3.8. Nechť $f(z) = \overline{z}$, pak f'(x,y) = (x,-y). Dále

$$\frac{\partial f_1}{\partial x} = 1, \ \frac{\partial f_1}{\partial y} = 0, \ \frac{\partial f_2}{\partial x} = 0, \ \frac{\partial f_2}{\partial y} = -1.$$

Máme, že $f \in C^{\infty}(\mathbb{R}^2)$, ale v žádném $z \in \mathbb{C}$ nesplňuje (CR), proto není nikde \mathbb{C} -diferencovatelná.

Definice 3.9. Necht $G \subset \mathbb{C}$ je otevřená a $f: G \to \mathbb{C}$. Potom říkáme, že f je na G holomorfní, pokud f je \mathbb{C} -diferencovatelná v každém $z_0 \in G$. Značíme $\mathcal{H}(G)$ prostor všech holomorfních funkcí $f: G \to \mathbb{C}$. Říkáme, že funkce F je celá, pokud $F \in \mathcal{H}(\mathbb{C})$.

Příklad 3.10.

- Polynom $p(z) = a_0 z^n + a_1 z^{n-1} + ... + a_n, z \in \mathbb{C}$ je celá funkce.
- Nechť R = P/Q, kde P, Q jsou polynomy, které nemají společné kořeny a $Q \not\equiv 0$. Potom racionální funkce R je holomorfní na $\mathbb{C} \setminus Q^{-1}(\{0\})$, kde $Q^{-1}(\{0\})$ je konečná množina.

4 Elementární funkce v \mathbb{C}

4.1 Exponenciála

Definice 4.1. $\exp(z)$: $= e^x(\cos y + i\sin y), z = x + iy \in \mathbb{C}$

Vlastnosti 4.2.

- exp $|_{\mathbb{R}}$ je reálná exponenciála
- $\exp(z+w) = \exp(z)\exp(w)$
- $\exp'(z) = \exp(z), z \in \mathbb{C}$ $f(z) = \exp(z),$ $f_1(x,y) = e^x \cos y,$ $f_2(x,y) = e^x \sin y,$ $\frac{\partial f_1}{\partial x} = e^x \cos y = \frac{\partial f_2}{\partial y},$ $\frac{\partial f_2}{\partial x} = e^x \sin y = -\frac{\partial f_1}{\partial y}$

Tedy $f \in \mathcal{C}^{\infty}(\mathbb{R}^2)$ a (CR) platí všude v $\mathbb{R}^2 \cong \mathbb{C}$. Z CR-věty a **poznámky 3.7** máme $f'(z) = \exp(z), z \in \mathbb{C}$

- $\exp(z) = \sum_{n=0}^{\infty} \frac{z^n}{n!}, z \in \mathbb{C}.$
- $\exp(\mathbb{C}) = \mathbb{C} \setminus \{0\}$
- exp není prostá na \mathbb{C} , je $2\pi i$ -periodická a platí dokonce: $\exp(z) = \exp(w) \iff \exists k \in \mathbb{Z} \colon w = z + 2k\pi i$
- Nechť $P := \{z \in \mathbb{C} \mid \text{Im } z \in (-\pi, \pi]\}$. Potom $\exp |_P$ je prostá a $\exp(P) = \mathbb{C} \setminus \{0\}$.

Definice 4.3. Nechť z = x + iy je komplexní číslo, pak se na něj můžeme dívat jako na bod v rovině určený kartézskými souřadnicemi x a y. Polární (Goniometrický) tvar komplexního čísla získám tak, že si body <math>x a y vyjádřím v polárních souřadnicích a ty pak dosadím do rovnice udávající z. Tedy

 $x = r\cos\varphi$, $y = r\sin\varphi$, $z = x + iy = r(\cos\varphi + i\sin\varphi) = |z|e^{i\varphi}$, kde r = |z| a φ je argument z. Polární souřadnice nám říkají jak je daleko od počátku r a v jakém směru $\angle\varphi$ se bod z nachází.

Značení 4.4. Nechť $z \in \mathbb{C} \setminus \{0\}$. Potom položme $\operatorname{Arg}(z) := \{\varphi \in \mathbb{R} \mid z = |z|e^{i\varphi}\}$ Je-li $\operatorname{Arg}(z) \cap (-\pi, \pi] = \{\varphi_0\}$, potom $\operatorname{arg}(z) := \varphi_0$ je tzv. hlavní hodnota argumentu z.

Platí:

- $\operatorname{Arg}(z) := \{ \arg(z) + 2k\pi \mid k \in \mathbb{Z} \},$
- funkce arg: $\mathbb{C}\setminus\{0\}\to(-\pi,\pi]$, kde arg je surjektivní a navíc je konstantní na polopřímkách vycházejících z 0. Dále je arg spojitá na $\mathbb{C}\setminus(-\infty,0]$, ale není spojitá v žádném $z\in(-\infty,0]$

4.2 Logaritmus

Pro dané $z \in \mathbb{C}$ řešíme rovnici $e^w = z$.

- Pro z = 0 nemáme řešení.
- Pro $z \neq 0$ je $z = |z|e^{i\arg(z)} = e^{\log|z| + i\arg(z)} = e^w \iff \exists \ k \in \mathbb{Z} \colon w = \log|z| + i\arg(z) + 2k\pi i$.

Definice 4.5. Nechť $z \in \mathbb{C} \setminus \{0\}$. Položme

- Log z: = $\{w \in \mathbb{C} \mid e^w = z\}$
- $\log z$: = $\log |z| + i \arg z$, tzv. hlavní hodnota logaritmu z.

Vlastnosti 4.6.

Nechť $z \in \mathbb{C} \setminus \{0\}$.

- Log $z = \{ \log z + 2k\pi i \mid k \in \mathbb{Z} \}$ a log = $(\exp |_P)^{-1}$, kde P známe z vlastností exponenciály.
- log není spojitá v žádném $z \in (-\infty, 0]$, ale log $\in \mathcal{H}(\mathbb{C} \setminus (-\infty, 0])$. Navíc log' $z = \frac{1}{z}, \ z \in \mathbb{C} \setminus (-\infty, 0]$.
- $\log(1-z) = -\sum_{n=1}^{\infty} \frac{z^n}{n}, |z| < 1$

Pozor na počítání s komplexním logaritmem!

- $\exp(\log z) = z$, $\log(\exp z) \neq z$, z toho, že exponenciála je $2\pi i$ -periodická
- $\log(zw) \neq \log(z) + \log(w)$

např. $0 = \log 1 = \log((-1)(-1)) \neq 2\log(-1) = 2\pi i$

4.3 Obecná mocnina

Definice 4.7. Necht $z \in \mathbb{C} \setminus \{0\}$ a $\alpha \in \mathbb{C}$. Potom *hlavní hodnotu* α -té mocniny z definujeme z^{α} : $= \exp(\alpha \log z)$. Položme $m_{\alpha}(z)$: $= \{\exp(\alpha w) \mid w \in \operatorname{Log} z\}$.

Vlastnosti 4.8.

- $e^z = \exp(z \log e) = \exp(z)$
- Je-li z > 0 a $\alpha \in \mathbb{R}$, potom z^{α} je v souladu s definicí z MA.
- $m_{\alpha}(z) = \{z^{\alpha}e^{2k\pi i\alpha} \mid k \in \mathbb{Z}\}, z \neq 0$

 $D\mathring{u}kaz. \ w \in \text{Log} z \iff w = \log z + 2k\pi i$

- $(z^{\alpha})' = \alpha z^{\alpha-1}, z \in \mathbb{C} \setminus (-\infty, 0])$ a $\alpha \in \mathbb{C}$
- $(1+z)^{\alpha} = \sum_{n=0}^{\infty} {n \choose n} z^n$, |z| < 1, kde ${n \choose n} := \frac{\alpha(\alpha-1)\cdots(\alpha-n+1)}{n!}$.

Pozorování 4.9. Nechť $z \in \mathbb{C} \setminus \{0\}$.

• Nechť $\alpha \in \mathbb{Z}$. Potom $m_{\alpha}(z) = \{z^{\alpha}\}.$

- Nechť $\alpha \in \mathbb{Q}$ a $\alpha = p/q$, kde $q \in \mathbb{N}$, $p \in \mathbb{Z}$ a p,q jsou nesoudělná. Potom $m_{\frac{p}{q}}(z) = \{z^{\frac{p}{q}}e^{\frac{2K\pi ip}{q}} \mid K = \{0,1,\cdots,q-1\}\}$ tvoří vrcholy pravidelného q-úhelníka vepsaného do kružnice se středem v počátku a poloměrem $z^{\frac{p}{q}}$.
- Nechť $\alpha \in \mathbb{C} \setminus \mathbb{Q}$. Potom je $m_{\alpha}(z)$ nekonečné.

Příklad 4.10. • $\sqrt{-1} = e^{\frac{\pi i}{2}} = i, m_{\frac{1}{2}}(-1) = \{\pm i\}$

- $\sqrt[3]{-1}=e^{\frac{\pi i}{3}}$ (nesouhlasí s definicí z MA!), $m_{\frac{1}{2}}(-1)=\{e^{\frac{\pi i}{3}},e^{\frac{-\pi i}{3}},-1\}$
- $i^i = e^{\frac{-\pi}{2}}, \ m_i(i) = \{e^{\frac{-\pi}{2} + 2k\pi} \mid k \in \mathbb{Z}\}$

Pozor na počítání s mocninami!

• $(zw)^{\alpha} \neq z^{\alpha}w^{\alpha}$ např. $1 = \sqrt{1} = \sqrt{(-1)(-1)} \neq \sqrt{-1}\sqrt{-1} = i^2 = -1$

Poznámka 4.11. Je-li $f: \mathbb{C} \to \mathbb{C}$, potom $f(z) = \frac{f(z) + f(-z)}{2} + \frac{f(z) - f(-z)}{2} = \text{sudá část} + \text{lichá část}$.

4.4 Hyperbolické funkce

 $e^z = \cosh(z) + \sinh(z)$, kde

Definice 4.12.

$$\cosh(z) := \frac{e^z + e^{-z}}{2}, \ z \in \mathbb{C}$$

$$\sinh(z):=\frac{e^z-e^{-z}}{2},\,z\in\mathbb{C}$$

Vlastnosti 4.13.

- $\cosh' z = \sinh z$, $\sinh' z = \cosh z$
- $\cosh z = \sum_{n=0}^{\infty} \frac{z^{2n}}{(2n)!}$, $\sinh z = \sum_{n=0}^{\infty} \frac{z^{2n+1}}{(2n+1)!}$

4.5 Goniometrické funkce

$$e^{iz} = \cos(z) + i\sin(z)$$
, kde

Definice 4.14.

$$\cos(z):=\frac{e^{iz}+e^{-iz}}{2}, z\in\mathbb{C}$$

$$\sin(z):=\frac{e^{iz}-e^{-iz}}{2i}, z\in\mathbb{C}$$

Vlastnosti 4.15. • cos a sin jsou rozšířením příslušných reálných funkcí z \mathbb{R} do \mathbb{C} .

- $\sin'(z) = \cos(z)$, $\cos'(z) = -\sin(z)$
- sin i cos jsou 2π -periodické, ale nejsou omezené na \mathbb{C} . Platí, že $\sin(\mathbb{C}) = \mathbb{C} = \cos(\mathbb{C})$
- i na C platí součtové vzorce, atd.
- $\sin(z) = \sum_{n=0}^{\infty} (-1)^n \frac{z^{2n+1}}{(2n+1)!}, \cos(z) = \sum_{n=0}^{\infty} (-1)^n \frac{z^{2n}}{(2n)!}$

5 Křivkový integrál

Definice 5.1. Necht $\varphi : [\alpha, \beta] \to \mathbb{C}$. Potom

- 1. φ je *křivka*, pokud je φ spojitá
- 2. φ je regulární křivka, pokud je φ po částech spojitě diferencovatelná, tzn. φ je spojitá na $[\alpha, \beta]$ a existuje dělení $\alpha = t_0 < t_1 < \dots < t_n = \beta$ takové, že $\varphi|_{[t_i, t_{i+1}]}$ je spojitě diferencovatelné pro každé $i = 0, \dots, n-1$.

Definice 5.2 (Úsečka). Nechť $a,b \in \mathbb{C}$. Potom $\varphi(t) := a + t(b-a), \ t \in [0,1]$ je úsečka z a do b. Značíme [a;b].

Definice 5.4 (Lomenná čára). Řekneme, že regulární křivka φ je lomenná čára v \mathbb{C} , existují-li $z_1, z_2, \cdots, z_k \in \mathbb{C}$ taková, že $\varphi = [z_1; z_2] \dotplus [z_2; z_3] \dotplus \cdots \dotplus [z_{k-1}; z_k]$.

Definice 5.5 (Kružnice). Nechť $z_0 \in \mathbb{C}$ a r > 0. Potom $\varphi(t) := z_0 + re^{it}$, $t \in [0, 2\pi]$ je kružnice probíhaná v kladném směru (proti směru hodinových ručiček).

Poznámka 5.6. Pro křivku φ může být její graf $\langle \varphi \rangle := \varphi([\alpha, \beta])$ například čtverec (Peanova křivka).

Úmluva 5.7. Pokud neřekneme něco jiného, $k\check{r}ivkou$ budeme rozumět $regul\acute{a}rn\acute{i}$ $k\check{r}ivku$ v \mathbb{C} .

Připomenutí 5.8. Jako v MA definujeme

1. Vše po složkách, například:

$$\varphi'(t) = \varphi_1'(t) + i\varphi_2'(t),$$
$$\int_{\alpha}^{\beta} \varphi(t) dt = \int_{\alpha}^{\beta} \varphi_1(t) dt + i \int_{\alpha}^{\beta} \varphi_2(t) dt,$$

mají-li pravé strany smysl. Zde $\varphi(t) = (\varphi_1(t), \varphi_2(t)) = \varphi_1(t) + i\varphi_2(t)$

2. Délka křivky:

$$V(\varphi) := \int_{\alpha}^{\beta} |\varphi'(t)| \, \mathrm{d}t,$$

je-li φ regulární.

Definice 5.9. Nechť $\varphi: [\alpha, \beta] \to \mathbb{C}$ je regulární křivka a $f: \langle \varphi \rangle \to \mathbb{C}$ je spojitá. Potom definujeme

$$\int_{\varphi} f := \int_{\alpha}^{\beta} f(\varphi(t)) \varphi'(t) dt \tag{4}$$

Poznámka 5.10.

- 1. Křivkový integrál (4) existuje vždy jako Riemannův.
- 2. Píšeme také $\int_{\Omega} f(z) dz$

Základní vlastnosti 5.11.

1. Je-li φ křivka, f a g jsou spojité funkce na $\langle \varphi \rangle$ a $A, B \in \mathbb{C}$, potom

$$\int_{\varphi} (Af + Bg) = A \int_{\varphi} f + B \int_{\varphi} g.$$

2. Je-li φ křivka a fje spojitá funkce na $\langle \varphi \rangle,$ potom $\left| \int_{\varphi} f \right| \leq \max_{\langle \varphi \rangle} |f| \cdot V(\varphi).$

 $D\mathring{u}kaz$. Označíme $M:=\max_{\langle \varphi \rangle} |f|$. Potom máme

$$\left| \int_{\varphi} f \right| = \left| \int_{\alpha}^{\beta} f(\varphi(t)) \varphi'(t) \, \mathrm{d}t \right| \le \int_{\alpha}^{\beta} \left| f(\varphi(t)) \right| \left| \varphi'(t) \right| \, \mathrm{d}t$$

$$\le \int_{\alpha}^{\beta} M \left| \varphi'(t) \right| \, \mathrm{d}t = M \int_{\alpha}^{\beta} \left| \varphi'(t) \right| \, \mathrm{d}t = M \cdot V(\varphi)$$

3. Nechť $\varphi: [\alpha, \beta] \to \mathbb{C}, \ \psi: [\gamma, \delta], \to \mathbb{C}$ jsou křivky a $\varphi(\beta) = \psi(\gamma)$. Potom

$$\int_{\varphi + \psi} f = \int_{\varphi} f + \int_{\psi} f$$
a
$$\int_{\dot{\varphi}} f = -\int_{\varphi} f,$$

kde $(-\varphi)(t) := \varphi(-t), t \in [-\beta, -\alpha]$ je opačná křivka k φ .

4. Křivkový integrál nezávisí na parametrizaci křivky. Nechť $\varphi : [\alpha, \beta] \to \mathbb{C}$ je křivka, $\omega : [\gamma, \delta] \xrightarrow{\text{na}} [\alpha, \beta]$ je spojitě diferencovatelné s $\omega' > 0$ a $\psi := \varphi \circ \omega$. Potom

$$\int_{\varphi} f = \int_{\psi} f.$$

Důkaz.

$$\int_{\psi} f = \int_{\gamma}^{\delta} f(\varphi(\omega(t))) \varphi'(\omega(t)) \omega'(t) dt$$

$$= \int_{\gamma}^{\delta} f(\varphi(\omega(t))) \psi'(t) dt \stackrel{\text{subst.}}{=} \int_{\alpha}^{\beta} f(\varphi(\tau)) \varphi'(\tau) d\tau = \int_{\varphi} f.$$

Definice 5.12. Řekneme, že funkce f má na otevřené $G \subset \mathbb{C}$ primitivní funkci F, pokud F' = f na G.

Příklad 5.13. $\frac{z^{n+1}}{n+1}$ je primitivní funkcí k z^n $\begin{cases} \text{na } \mathbb{C} & \text{pro } n=0,1,2,3,\dots\\ \text{na } \mathbb{C}\setminus\{0\} & \text{pro } n=-2,-3,-4,\dots \end{cases}$

Věta 5.14 (O výpočtu křivkového integrálu pomocí PF). Nechť $G \subset \mathbb{C}$ je otevřená a f má na G primitivní funkci F. Nechť $\varphi : [\alpha, \beta] \to G$ je křivka a f je spojitá^(*) na $\langle \varphi \rangle$. Potom

1.
$$\int_{\varphi} f = F(\varphi(\beta)) - F(\varphi(\alpha))$$

2. $\int_{\varphi}f=0,\; je\text{-}li\; \varphi$ uzavřená, $tzn. \; \varphi(\alpha)=\varphi(\beta)$

Poznámka 5.15. (*) Ukážeme si později, že funkce f, která má na G primitivní funkci, je na G holomorfní, tudíž i spojitá.

Důkaz. Z Cauchy-Riemannovy věty plyne, že

$$\frac{\mathrm{d}}{\mathrm{d}t}\Big(F\big(\varphi(t)\big)\Big) = \frac{\partial F}{\partial x}\varphi_1' + \frac{\partial F}{\partial y}\varphi_2' = F'\varphi_1' + iF'\varphi_2' = F'\big(\varphi(t)\big)\varphi'(t).$$

Tato rovnost platí až na konečně mnoho $t \in [\alpha \beta]$, neboli $F \circ \varphi$ je zobecnění PF k integrandu. Máme tedy

$$\int_{\mathcal{C}} f = \int_{\alpha}^{\beta} f(\varphi(t)) \varphi'(t) dt = \int_{\alpha}^{\beta} \frac{d}{dt} (F(\varphi(t))) dt = F(\varphi(\beta)) - F(\varphi(\alpha)).$$

Příklad 5.16.

• $\frac{1}{z}$ je holomorfní na $\mathbb{C}\setminus\{0\}$, ale na $\mathbb{C}\setminus\{0\}$ nemá primitivní funkci, neboť víme

$$\int_{\varphi} \frac{\mathrm{d}z}{z} = 2\pi i \neq 0 \text{ pro } \varphi(t) = e^{it}, t \in [0, 2\pi].$$

• $\frac{1}{z}$ má na $\mathbb{C} \setminus (-\infty, 0]$ primitivní funkci $\log(z)$.

$$\log'(z) = \frac{1}{z}.$$

Připomenutí 5.17 (Souvislost). Nechť $G \subset \mathbb{C}(\mathbb{R}^n)$ otevřená. Následující tvrzení jsou ekvivalentní:

- (a) G je souvislá, tj. G je oblast.
- (b) G je $k\check{r}ivkov\check{e}$ souvislá, tzn. pro každé $z_1,z_2\in G$ existuje spojitá křivka $\varphi:[\alpha,\beta]\to G$ taková, že $\varphi(\alpha)=z_1$ a $\varphi(\beta)=z_2$.
- (c) Pro každé $z_1, z_2 \in G$ existuje lomenná čára $\varphi : [\alpha, \beta] \to G$ taková, že $\varphi(\alpha) = z_1$ a $\varphi(\beta) = z_2$.

 $D\mathring{u}kaz.$ $(a) \iff (b)$: víte z MA; $(c) \Rightarrow (b)$: jasné; $(a) \Rightarrow (c)$: ukáže se podobně jako $(a) \Rightarrow (b)$

Věta 5.18. Funkce f je konstatní na oblasti $G \subset \mathbb{C}$, právě když f' = 0 na G.

 $D\mathring{u}kaz. \Rightarrow Jasn\'e.$

 \Leftarrow Nechť $z,w\in G$ a φ je lomenná čára v G spojující z a w. Potom $f(w)-f(z)=\int_{\varphi}f'=0$, protože f je primitivní funkcí k f' na G.

Důsledek 5.19. Jsou-li F_1, F_2 primitivní funkce k f na oblasti $G \subset \mathbb{C}$, potom existuje $c \in \mathbb{C}$ tak, že $F_2 = F_1 + c$.

Důkaz.

$$(F_2 - F_1)' = F_2' - F_1' = f - f = 0.$$

Věta 5.20 (O existenci PF). Nechť $G \subset \mathbb{C}$ je oblast a f je spojitá na G. NTJE:

1. f má na G primitivní funkci.

- 2. $\int_{\varphi} f = 0$ pro každou uzavřenou křivku φ v G.
- 3. $\int_{\varphi} f$ nezávisí v G na křivce φ , tzn. pro každé dvě křivky $\varphi: [\alpha, \beta] \to G$, $\psi: [\gamma, \delta] \to G$ takové, ze $\varphi(\alpha) = \psi(\gamma)$ a $\varphi(\beta) = \psi(\delta)$, platí $\int_{\varphi} f = \int_{\psi} f$.

Poznámka 5.21. Přípomíná větu o potenciálu z MA (?)

Důkaz věty 5.20.

- $1. \Rightarrow 2$. Víme z věty o výpočtu integrálu pomocí PF
- $2. \Rightarrow 3.$ Položme $\tau := \varphi \dotplus (\dot{-} \psi).$ Potom je τ uzavřená a z 2. dostaneme

$$0 = \int_{\mathcal{T}} f = \int_{\mathcal{Q}} f - \int_{\psi} f.$$

 $3. \Rightarrow 1.$ Volme $z_0 \in G$ pevně. Pro každé $z \in G$ najděme lomenou čáru φ_z v G, která začíná v z_0 a končí v z. Definujeme $F(z) := \int_{\varphi_z} f, \ z \in G$. Definice F je korektní, nezávislá na volbě φ_z , protože předpokládáme 3. Ukážeme, že F je hledaná PF k f na G. Nechť $z_1 \in G$. Dokážeme, že $F'(z_1) = f(z_1)$. Volme r > 0, aby $U(z_1, r) \subset G$. Je-li |h| < r, potom

$$F(z_1 + h) - F(z_1) \stackrel{3.}{=} \int_{\varphi_{z_1} + u} f - \int_{\varphi_{z_1}} f = \int_u f,$$

kde $u = [z_1; z_1 + h]$ je úsečka, tzn. $u(t) = z_1 + t \cdot h$, $t \in [0, 1]$. Tedy

$$F(z_1+h)-F(z_1) = \int_u f = \int_0^1 f(z_1+th)h \,dt,$$

tudíž

$$\frac{F(z_1+h)-F(z_1)}{g}-f(z_1)=\int_0^1 \left(f(z_1+th)-f(z_1)\right)\mathrm{d}t.$$

To se blíží k nule pro $h \to 0$, protože

$$\left| \int_0^1 \left(f(z_1 + th) - f(z_1) \right) dt \right| \le \max_{z \in [z_1; z_1 + h]} |f(z) - f(z_1)| \xrightarrow{h \to 0} 0$$

ze spojitosti f v z_1 . Máme, že $F'(z_1) = f(z_1)$.

Značení 5.22.

1. Řekneme, že $m \subset \mathbb{C}$ je $hv\check{e}zdovit\acute{a}$, pokud existuje $z_0 \in M$ (tzv. $st\check{r}ed\ hv\check{e}zdovitosti$), pro který $[z_0;z] \subset M$ pro každé $z \in M$.

Poznámka. Konvexní ⊊ hvězdicovitá.

2. Řekneme, že $\triangle \subset \mathbb{C}$ je trojúhelník s vrcholy $a,b,c \in \mathbb{C}$, pokud

$$\triangle := \{ \alpha a + \beta b + \gamma c \mid \alpha, \beta, \gamma > 0, \alpha + \beta + \gamma = 1 \}$$

 $(konvexni\ obal\ a,b,c)$ a značíme $\partial \triangle := [a;b] \dotplus [b;c] \dotplus [c;a]$. Připouštíme i degenerované \triangle , tzn. a,b,c mohou ležet na jedné přímce nebo body a,b,c mohou splývat...

Dodatek 5.23. Necht f je spojitá funkce na hvězdicovité oblasti $G \subset \mathbb{C}$. Je-li

$$\int_{\partial \wedge} f = 0, \tag{5}$$

pro každý trojúhelník $\triangle \subset G$, potom f má na G primitivní funkci.

 $D\mathring{u}kaz$. Nechť z_0 je střed hvězdovitosti G, Pro každé $z \in G$ položme $\varphi_z := [z_0; z]$ a $F(z) := \int_{\varphi_z} f$. Rozmyslíme si, že důkaz F' = f na G je zcela analogický $3 \Rightarrow 1$ předchozí věty, když místo 3 uvažujeme 5.

Poznámka 5.24. Cauchyho věta – Nechť $G \subset \mathbb{C}$ je otevřená, $f \in \mathcal{H}(G)$ a φ je uzavřená křivka v G. Potom Cauchyho věty nám říkají za jakých podmínek na G a φ je $\int_{\mathcal{A}} f = 0$.

Věta 5.25 (Gousartovo lemma – "Cauchyho věta pro \triangle "). Nechť $G \subset \mathbb{C}$ je otevřená, $f \in \mathcal{H}(G)$ a \triangle je trojúhelník v G. Potom

$$\int_{\partial \wedge} f = 0. \tag{6}$$

 $D\mathring{u}kaz$. Označme $\varphi_0 := \partial \triangle$. Sporem: Předpokládejme, že $|\int_{\varphi_0} f| =: K > 0$. Zřejmě \triangle je nedegenerovaný. V \triangle veďme střední příčky a označme $\psi_1, \ \psi_2, \ \psi_3, \ \psi_4$ obvody čtyř vzniklých trojúhelníků (ψ_4 je obvod vnitřního trojúhelníka). Obvody vnitřních trojúhelníků ψ_1 (vlevo dole), ψ_2 (vpravo dole), ψ_3 (nahore) a ψ_4 (uprostřed) probíháme proti směru hodinových ručiček. Potom $\int_{\varphi_0} f = \int_{\psi_1} f + \int_{\psi_2} f + \int_{\psi_3} f + \int_{\psi_4} f$. Ex. $j_1 = 1, \ldots, 4$ tak, že $|\int_{\psi_{j_1}} f| \ge \frac{K}{4}$ a $V(\psi_{j_1}) = \frac{V(\varphi)}{2}$. Označme $\varphi_1 = \psi_{j_1}$. Indukcí sestrojíme posloupnost (uzavřených) trojúhelníků, tž $\triangle \psi_{j_1}$ zase rozdělíme na 4 menší \triangle y středními příčkami a proces opakujeme. $\triangle_0 := \triangle \supset \triangle_1 \supset \triangle_2 \supset \ldots$ s obvody $\varphi_0, \ \varphi_1, \ \varphi_2, \ldots$ takové, že $(a)|\int_{\varphi_j} f| \ge \frac{K}{4^j}$ a $V(\varphi_j) = \frac{V(\varphi)}{2^j}$. Máme, že $\bigcap_{j=0}^{\infty} \triangle_j = \{z_0\} \subset G$, protože diam $(\triangle_j) \to 0$. Položme

$$\varepsilon(z) := \frac{f(z) - f(z_0)}{z - z_0} - f'(z_0), \ z \in G \setminus \{z_0\};$$

:= 0, z = z₀.

Potom ε je spojitá na G a máme pro $j \in \mathbb{N}_0$

(b)
$$\int_{\varphi_j} f(z) dz = \int_{\varphi_j} (f(z_0) + f'(z_0)(z - z_0)) dz + \int_{\varphi_j} \varepsilon(z)(z - z_0) dz$$
,

kde první integrand má PF na \mathbb{C} a první integrál je roven 0. Pro každé $j \in \mathbb{N}_0$ z (a), (b) dostaneme

$$\frac{K}{4^j} \le \left| \int_{\varphi_j} f \right| \stackrel{(b)}{=} \left| \int_{\varphi_j} \varepsilon(z)(z - z_0) \right| \le V^2(\varphi_j) \max_{\langle \varphi_j \rangle} |\varepsilon| = \frac{V^2(\varphi)}{4^j} \cdot \max_{\langle \varphi_j \rangle} |\varepsilon|,$$

kde druhá nerovnost platí díky tomu, že $|z-z_0| \leq V(\varphi_j)$. Z předchozího tedy máme (po vynásobení 4^j): $0 < K \leq V^2(\varphi) \cdot \max_{<\varphi_j>} |\varepsilon| \to 0$, protože ε je spojitá v z_0 a $\varepsilon(z_0) = 0$. Což je spor.

Věta 5.26 (Cauchyho věta pro hvězdovité oblasti). Nechť $G \subset \mathbb{C}$ je hvězdovitá oblast a $f \in \mathcal{H}(G)$. Potom f má na G primitivní funkci. Ekvivalentně: platí, že $\int_{\varphi} f = 0$ pro každou uzavřenou křivku φ v G.

 $D\mathring{u}kaz$. Z Goursartova lemmatu a dodatku k větě o existenci PF.

Poznámka 5.27. Gousartovo lemma a tedy i předchozí věta platí i pro funkci f, která je spojitá na G a holomorfní na $G \setminus \{z_0\}$ pro nějaké $z_0 \in G$.

 $D\mathring{u}kaz$. Skutečně, nechť \triangle je nedegenerovaný trojúhelník v G. Potom

1. Nechť $z_0 \notin \Delta$. Potom $\int_{\partial \Delta} f = 0$. Tady nám bude stačit použít obyčejné Gousartovo lemmma

- 2. Nechť z_0 je vrchol \triangle . Nechť \triangle_{ε} je trojúhelník podobný s \triangle , $\triangle_{\varepsilon} \subset \triangle$ a z_0 je jeho vrcholem. Poměr stran \triangle ku \triangle_{ε} je roven ε . \triangle' , \triangle'' jsou trojúhelníky vzniklé rozdělením \triangle na tři trojúhelníky (\triangle_{ε} , \triangle' , \triangle''). Obvody vzniklých vnitřních trojúhelníků procházíme proti směru hodinových ručiček. Potom $\int_{\partial \triangle} f = \int_{\partial \triangle_{\varepsilon}} f + \int_{\partial \triangle'} f + \int_{\partial \triangle''} f$, kde poslední dva integrály jsou rovny 0 podle bodu 1. Tudíž $|\int_{\partial \triangle} f| = |\int_{\partial \triangle_{\varepsilon}} f| \le \varepsilon \cdot V(\partial \triangle) \cdot \max_{\triangle} |f| \xrightarrow{\varepsilon \to 0+} 0$. Tedy $\int_{\partial \triangle} f = 0$.
- 3. Nechť z_0 leží uvnitř strany \triangle . Potom \triangle rozříznu na dva menší trojúhelníky \triangle' a \triangle'' se společným vrcholem v z_0 . Jejich obvody procházím proti směru hodinových ručiček. Potom $\int_{\partial\triangle} f = \int_{\partial\triangle'} f + \int_{\partial\triangle''} f$, kde oba integrály na pravé straně jsou rovny 0 podle bodu 1. Tudíž $\int_{\partial\triangle} f = 0$.
- 4. Nechť z_0 leží uvnitř \triangle . Potom \triangle rozříznu na tři menší trojúhelníky \triangle' a \triangle'' , \triangle''' se společným vrcholem v z_0 . Jejich obvody procházím proti směru hodinových ručiček. Potom $\int_{\partial\triangle} f = \int_{\partial\triangle'} f + \int_{\partial\triangle''} f + \int_{\partial\triangle'''} f$, kde jsou všechny tři integrály na pravé straně rovny 0 podle bodu 1. Tudíž $\int_{\partial\triangle} f = 0$.

Věta 5.28 (O derivování podle komplexního parametru). Nechť φ je křivka $v \mathbb{C}$ a $\Omega \subset \mathbb{C}$ je otevřená. Nechť F(z,s) a komplexní derivace $\frac{\partial F}{\partial s}(z,s)$ jsou spojité komplexní funkce na $\langle \varphi \rangle \times \Omega$. Pro každé $s \in \Omega$ položme $\phi(s) := \int_{\varphi} F(z,s) dz$. Potom $\phi \in \mathcal{H}(\Omega)$ a $\phi' = \int_{\varphi} \frac{\partial F}{\partial s}(z,s) dz$, $s \in \Omega$.

 $D\mathring{u}kaz$. Pro $s=s_1+is_2=(s_1,\ s_2)\in\Omega$ máme $\phi(s)=\int_{\alpha}^{\beta}F(\varphi(t),s_1,s_2)\varphi'(t)dt$, pokud $\varphi\colon [\alpha,\beta]\to\mathbb{C}$. Podle vět o spojitosti a derivování integrálu závislího na reálných parametrech $\frac{\partial\phi}{\partial s_j}(s)=\int_{\varphi}\frac{\partial F}{\partial s_j}(z,s)dz$, $s\in\Omega$ a j=1,2 tyto parciální derivace $\frac{\partial\phi}{\partial s_j}(s)$, j=1,2 jsou spojité a splnují (CR)-podmínky. To je vidět z toho, že $\frac{\partial F}{\partial s_j}(z,s)$, j=1,2 jsou spojité a splnují (CR)-podmínky. Z (CR) dostanu, že funkce φ je komplexně diferencovatelná a komplexní derivace se rovná derivaci vzhledem k té první proměnné. Odtud plyne věta.

Definice 5.29. Nechť je φ uzavřená křivka v \mathbb{C} a $s \in \mathbb{C} \setminus \langle \varphi \rangle$. Potom číslo $ind_{\varphi}s := \frac{1}{2\pi i} \int_{\varphi} \frac{dz}{z-s}$ nazveme $indexem\ bodu\ vzhledem\ ke\ křivce\ \varphi$

Poznámka 5.30. Ukážeme si, že $ind_{\varphi}s$ se rovná počtu oběhů φ kolem s v kladném směru (tzn. proti směru hodinových ručiček).

Věta 5.31 (o základních vlastnostech indexu). Nechť φ je uzavřená křivka v \mathbb{C} a $G := \mathbb{C} \setminus \langle \varphi \rangle$. Potom je G otevřená, funkce $s \to ind_{\varphi}s$ je konstantní na každé komponentě G a na jediné její neomezené komponentě je nulová.

- $D\mathring{u}kaz$. (i) Podle předchozí věty je $\phi(s):=\frac{1}{2\pi i}\int_{\varphi}\frac{dz}{z-s},\ s\in G$ holomorfní a pro každé $s\in G$ je $\phi'(s)=\frac{1}{2\pi i}\int_{\varphi}\frac{dz}{(z-s)^2}=0$, protože $f(z):=\frac{1}{(z-s)^2}$ má PF na $\mathbb{C}\backslash\{s\}$. Tedy ϕ je konstantní na každé komponentě G.
 - (ii) Volím R>0, aby $\langle \varphi \rangle \subset U(0,R)$. Potom $\mathbb{C}\backslash U(0,R)$ je obsaženo v jediné neomezené komponentě G_0 množiny G. Navíc pro $s\in \mathbb{C}\backslash U(0,R)$ je funkce $g(z):=\frac{1}{z-s},\ z\in U(0,R)$ holomorfní a dle Cauchyho věty pro hvězdovitou oblast je $\phi(s)=0$

Příklad 5.32. Necht $z_0 \in \mathbb{C}$, r > 0 a $\varphi(t) := z_0 + re^{it}$, $t \in [0, 2\pi]$. Potom

$$ind_{\varphi}s = \begin{cases} 0 & \text{pro } |s - z_0| < r, \\ 1 & \text{pro } |s - z_0| > r. \end{cases}$$

Spočetli jsme, že $ind_{\varphi}z_0=\frac{1}{2\pi i}\int_{\varphi}\frac{dz}{z-z_0}=1.$ Zbytek plyne z předchozí věty.

Věta 5.33 (Cauchyův vzorec pro kruh). Nechť $G \subset \mathbb{C}$ je otevřená a $f \in \mathcal{H}(G)$. Nechť $\overline{U(z_0,r)} \subset G$ a $\varphi t := z_0 + r.e^{it}$, $t \in [0,2\pi]$ (*). Potom platí TBA

$$\frac{1}{2\pi i} \int_{\varphi} \frac{f(z)}{z-s} dz = \begin{cases} f(s), & |s-z_0| < r \\ 0, & |s-z_0| > r \end{cases}$$

 $D\mathring{u}kaz$. (i) Existuje R > r tak, že $U(z_0, R) \subset G$. Necht $|s - z_0| < r$. Definujme

$$h(z) := \begin{cases} \frac{f(z) - f(s)}{z - s}, & z \neq s \ a \ z \in G \\ f'(s), & z = s. \end{cases}$$

Potom $h \in \mathcal{H}(U(z_0,R) \setminus \{s\})$ a spojitá na hvězdovité oblasti $U(z_0,R)$. Potom z Cauchyho věty

$$0 = \frac{1}{2\pi i} \int_{\varphi} h = \frac{1}{2\pi i} \int_{\varphi} \frac{f(z)}{z - s} dz - f(s) \cdot \underbrace{\frac{1}{2\pi i} \int_{\varphi} \frac{dz}{z - s}}_{=ind,s=1}$$

(ii) Nechť $|s-z_0| > r$. Volme $R' \in (r, |s-z_0|)$, aby $U(z_0, R') \subset G$. Potom f(z)/(z-s) je holomorfní funkce na $U(z_0, R')$ a z Cauchyho věty je

$$\frac{1}{2\pi i} \int_{\mathcal{Q}} \frac{f(z)}{z-s} dz = 0.$$

Důsledek 5.34. Nechť $G \subset \mathbb{C}$ je otevřená a $f \in \mathcal{H}(G)$. Potom f má komplexní derivaci všech řádů všude na G. Nechť $\overline{U(z_0,r)} \subset G$ a φ je jako v (*). Potom TBA

$$\frac{k!}{2\pi i} \int_{\varphi} \frac{f(z)}{(z-s)^{k+1}} dz = f^{(k)}(s), \quad |s-z_0| < r \ a \ k = 0, 1, 2, 3, \dots$$

 $Zde\ f^{(0)}=f\ a\ k$ -tá komplexní derivace $f^{(k)}$ je definovaná jako $f^{(k)}=(f^{(k-1)})',$ má-li pravá strana smysl.

 $D\mathring{u}kaz$. Z věty o derivaci integrálu dle komplexního parametru a (CV_z) , protože

$$\frac{d^k}{ds^k}\left(\frac{1}{z-s}\right) = \frac{k!}{(z-s)^{k+1}}, \ \ z \neq s.$$

Věta 5.35 (Morera). Nechť f je spojitá funkce na otevřené $G \subset \mathbb{C}$. Potom $f \in \mathcal{H}(G)$, právě když TBA

$$\int_{\partial \triangle} f = 0 \quad pro \ ka\check{z}d\acute{y} \ troj\acute{u}heln\acute{u}k \ \triangle \subset G.$$

 $D\mathring{u}kaz$. " \Rightarrow ": Goursatovo lemma

" \Leftarrow ": Nechť $\mathcal{U} := U(z_0, R)$ je libovolný kruh v G. Protože f je spojitá na \mathcal{U} , \mathcal{U} je hvězdicovitá oblast a

$$\int_{\partial \triangle} f = 0$$

pro každý trojúhelník $\triangle \subset \mathcal{U}$, má f na \mathcal{U} primitivní funkci F, to znamená, že f = F' na \mathcal{U} . Protože $F \in \mathcal{H}(\mathcal{U})$, máme f' = F'' na \mathcal{U} , tudíž f je holomorfní na \mathcal{U} . Protože \mathcal{U} byl libovolný kruh v G, je $f \in \mathcal{H}(G)$.

Věta 5.36 (Cachyho odhady). Nechť $z_0 \in \mathbb{C}$, $r \in (0, +\infty)$ a f je holomorní funkce na otevřené množině obsahující $\overline{U(z_0, r)}$. Potom pro každé k = 0, 1, 2, ... je TBA

$$\forall s \in \mathcal{U} := U(z_0, r) : \quad |f^{(k)}(s)| \le \frac{r \cdot k!}{(d(s))^{k+1}} \cdot \max_{\partial \mathcal{U}} |f|,$$

 $kde\ d(s) := dist(s, \partial \mathcal{U}) \stackrel{def.}{:=} \min_{z \in \partial \mathcal{U}} |s - z|$

$$\forall s \in U\left(z_0, \frac{r}{2}\right): |f^{(k)}(s)| \le \frac{k! \cdot 2^{k+1}}{r^k} \cdot \max_{\partial U} |f|,$$
$$|f^{(k)}(z_0)| \le \frac{k!}{r^k} \cdot \max_{\partial U} |f|.$$

 $D\mathring{u}kaz$. (CO_1) dostaneme z $(CV_z^{(k)})$, protože

$$|f^{(k)}(s)| = \left|\frac{k!}{2\pi i} \int_{\omega} \frac{f(z)}{(z-s)^{k+1}} dz\right| \leq \frac{k!}{2\pi} \cdot 2\pi r \cdot \frac{1}{(d(s))^{k+1}} \cdot \max_{\partial \mathcal{U}} |f|$$

a $|z-s| \ge d(s)$, $z \in \partial \mathcal{U} = \langle \varphi \rangle$, zde $\varphi(t) = z_0 + r.e^{it}$, $t \in [0, 2\pi]$. (CO_2) plyne z (CO_1) , protože $d(s) \ge \frac{r}{2} \ \forall s \in U(z_0, r/2)$. (CO_3) plyne z (CO_1) , protože $d(z_0) = r$.

Věta 5.37 (Liouville). Je-li f holomorfní a omezená na \mathbb{C} , potom je f konstantní.

 $D\mathring{u}kaz$. Ukážeme, že f'=0 na \mathbb{C} . Označme $M:=\sup_{\mathbb{C}}|f|<+\infty$. Nechť $z_0\in\mathbb{C}$. Z (CO_3) dostaneme pro každé r>0

$$|f'(z_0)| \le \frac{1}{r} \max_{\partial U(z_0,r)} |f| \le \frac{M}{r} \underset{r \to +\infty}{\longrightarrow} 0,$$

tudíž $f'(z_0) = 0$.

Důsledek 5.38 (Základní věta algebry). $V \mathbb{C}$ má polynom stupně aspoň 1 vždy aspoň jeden kořen.

 $D\mathring{u}kaz$. Necht $p(z) = a_0 z^n + a_1 z^{n-1} + ... + a_n$, kde $a_j \in \mathbb{C}$, $a_0 \neq 0$ a $n \geq 1$.

Sporem: Předpokládejme, že $p \neq 0$ na \mathbb{C} . Položme f := 1/p. Potom f je holomorfní a omezená na \mathbb{C} , tudíž dle Liouvilleovy věty je f i p konstantní. Tedy p' = 0 a $0 = p^{(n)} = n!a_0$, což je spor. Omezenost f: Máme

$$|f(z)| = \left| \frac{1}{z_n \cdot \left(a_0 + \frac{a_1}{z} + \dots + \frac{a_n}{z^n} \right)} \right| \le \frac{1}{r^n} \cdot \frac{1}{|a_0| - \frac{|a_1|}{r} - \dots - \frac{|a_n|}{r^n}} \longrightarrow 0$$

pro $r = |z| \to +\infty$

Existuje $r_0 \in (0, +\infty)$ tak, že $|f(z)| \le 1$, je-li $|z| > r_0$. Funkce f je omezená na $\overline{U(0, r_0)}$, protože je tam spojitá.

Lemma 5.39. Nechť φ je křivka v \mathbb{C} , f_n jsou spojité funkce na $\langle \varphi \rangle$ pro n = 1, 2, 3, ... a $f_n \rightrightarrows f$ na $\langle \varphi \rangle$. Potom f je spojitá na $\langle \varphi \rangle$ a

$$\int_{\varphi} f_n \longrightarrow \int_{\varphi} f.$$

Důkaz. Máme

$$0 \le \left| \int_{\varphi} f_n - \int_{\varphi} f \right| = \left| \int_{\varphi} (f_n - f) \right| \le V(\varphi) \cdot \max_{\langle \varphi \rangle} |f_n - f| \stackrel{n \to \infty}{\longrightarrow} 0.$$

Věta 5.40 (Weierstrass). Nechť $G \subset \mathbb{C}$ je otevřená, $f_n \in \mathcal{H}(G)$ pro $n \in \mathbb{N}$ a $f_n \stackrel{loc}{\rightrightarrows} f$ na G. Potom $f \in \mathcal{H}(G)$ a $f_n^{(k)} \stackrel{loc}{\rightrightarrows} f^{(k)}$ na G pro každé $k \in \mathbb{N}$.

 $D\mathring{u}kaz.$ (1) Zřejmě je fspojitá. Nech
t \triangle je trojúhelník v G. Potom

$$0 = \int_{\partial \wedge} f_n \stackrel{Lemma}{\longrightarrow} \int_{\partial \wedge} f = 0$$

Z Morerovy věty je $f \in \mathcal{H}(G)$.

② Nechť $k \in \mathbb{N}$ a $z_0 \in G$. Volme r > 0, aby $\overline{U(z_0,r)} \subset G$. Potom z (CO_2) máme:

$$\forall s \in U\left(z_0, \frac{r}{2}\right) : \quad \left|f_n^{(k)}(s) - f^{(k)}(s)\right| = \left|\left(f_n - f\right)^{(k)}(s)\right| \leq \frac{k! \cdot 2^{k+1}}{r^k} \cdot \max_{\partial U(z_0, r)} \left|f_n - f\right| \overset{n \to +\infty}{\longrightarrow} 0$$

6 Mocninné řady

Definice 6.1. Necht $\{a_n\}_{n=0}^{\infty} \subset \mathbb{C}$ a $z_0 \in \mathbb{C}$. Potom TBA

$$\sum_{n=0}^{\infty} a_n \cdot (z - z_0)^n, \quad z \in \mathbb{C}$$

je mocninná řada o středu z_0 s koeficienty $\{a_n\}_{n=0}^{\infty}$.

Vlastnosti 6.2.

① Konvergence (na cvičení)

Existuje jediné $R \in [0, +\infty]$ takové, že

- řada TBA konverguje absolutně a lokálně stejnoměrně na $U(z_0,R):=\{z\in\mathbb{C}:|z-z_0|< R\},$
- řada TBA diverguje pro $|z z_0| > R$.

Číslo R se nazývá poloměr konvergence TBA a platí, že

$$R = \frac{1}{\limsup_{n \to +\infty} \sqrt[n]{|a_n|}},$$

kde položíme $\frac{1}{0} = +\infty$, $\frac{1}{+\infty} = 0$.

② Označíme-li součet TBA na $U(z_0,R)$ jako f, potom je $f \in \mathcal{H}(U(z_0,R))$ a

$$\forall k \in \mathbb{N}_0 \ \forall z \in U(z_0, R): \quad f^{(k)}(z) = \sum_{n=k}^{+\infty} a_n \cdot n \cdot (n-1) \dots (n-k+1) (z-z_0)^{n-k},$$

speciálně $a_k = \frac{f^{(k)}(z_0)}{k!}$

Poznámka 6.3. Mocninnou řadu derivujeme "člen po členu", můžeme na $U(z_0,r)$ zaměnit sumu a komplexnou derivaci.

Důkaz. Užijeme Weierstrassovu větu na

$$S_n(z) := \sum_{n=0}^{N} a_n (z - z_0)^n, \quad z \in U(z_0, R)$$

Dosadíme-li do TBA $z = z_0$, máme $f^{(k)}(z_0) = a_k \cdot k!$

Věta 6.4 (O rozvoji holomorfní funkce na kruhu do mocninné řady). Nechť $R \in (0, +\infty]$ a $f \in (U(z_0, R))$. Potom existuje jediná mocninná řada $\sum_{n=0}^{\infty} a_n (z - z_0)^n$, která má na $U(z_0, R)$ součet f. Navíc platí, že $a_n = \frac{f^{(n)}(z_0)}{n!}$, $n \in \mathbb{N}_0$.

 $D\mathring{u}kaz$. 1. jednoznačnost: Zřejmě z toho, že $a_n = \frac{f^{(n)}(z_0)}{n!}, n \in \mathbb{N}_0$.

2. existence: Nechť $z \in U(z_0,R)$. Volme r>0, aby $|z-z_0| < r < R$. Potom z (CV_z) je (1) $f(z) = \frac{1}{2\pi i} \int_{\varphi} \frac{f(w)}{w-z} \, \mathrm{d}w, \text{ kde } \varphi(t) = z_0 + re^{it}, \ t \in [0,2\pi].$ Pro každé $w \in \langle \varphi \rangle$ máme

(2)
$$\frac{1}{w-z} = \frac{1}{(w-z_0) - (z-z_0)} = \frac{1}{w-z_0} \cdot \frac{1}{1 - \frac{z-z_0}{w-z_0}} = \sum_{n=0}^{\infty} \frac{(z-z_0)^n}{(w-z_0)^{n+1}}.$$

Kde $|\frac{z-z_0}{w-z_0}|=1$ a suma konverguje stejnoměrně pro $w\in\langle\varphi\rangle$. Dosadíme (2) do (1). Potom

$$f(z) = \frac{1}{2\pi i} \int_{\varphi} \sum_{n=0}^{\infty} \frac{(z - z_0)^n}{(w - z_0)^{n+1}} f(w) dw = \sum_{n=0}^{\infty} (z - z_0)^n \frac{1}{2\pi i} \int_{\varphi} \frac{f(w)}{(w - z_0)^{n+1}} dw$$
$$= \sum_{n=0}^{\infty} (z - z_0)^n \frac{f^{(n)}(z_0)}{n!} z (CV_z^{(n)}).$$

Příklad 6.5. $e^z = \sum_{n=0}^{\infty} \frac{z^n}{n!}, \ z \in \mathbb{C}, \text{ protože } \exp \in \mathcal{H}(\mathbb{C}) \text{ a } \exp^{(n)}(0) = \exp(0) = 1.$

Věta 6.6 (O nulovém bodě). Nechť f je holomorfní funkce na okolí $z_0 \in \mathbb{C}$ a $f(z_0) = 0$. Potom buď

- 1. existuje r > 0, že f = 0 na $U(z_0, r)$, anebo
- 2. existuje r > 0, že $f \neq 0$ na $P(z_0, r) := U(z_0, r) \setminus \{z_0\}$.

V případě 2. existuje jediné $p \in \mathbb{N}$ takové, že (0) $f(z_0) = f'(z_0) = \ldots = f^{(p-1)}(z_0) = 0$, $f(p)(z_0) \neq 0$. Číslo p nazýváme násobnost nulového bodu z_0 funkce f.

Poznámka 6.7. Navíc z_0 je nulový bod f násobnosti p, právě když existuje r > 0 a $g \in \mathcal{H}(U(z_0,r))$ tak, že $\forall z \in U(z_0,r)$: $(\triangle) \ g(z) \neq 0$ a $f(z) = (z-z_0)^p g(z)$.

 $D\mathring{u}kaz$. Máme, že $f(z)=\sum\limits_{n=0}^{\infty}a_n(z-z_0)^n,\,z\in U(z_0,r)$. Pokud nenastane 1., potom existuje $n\in\mathbb{N},$ že $0\neq a_n=\frac{f^{(n)}(z_0)}{n!}$. Zvolme nejmenší $p\in\mathbb{N},$ aby $a_p\neq 0$. Potom platí (0) a $\forall z\in U(z_0,r)$: $f(z)=a_p(z-z_0)^p+\ldots=(z-z_0)^p\cdot\sum\limits_{n=p}^{\infty}a_n(z-z_0)^{n-p}$. Dále g(z) definujeme jako poslední sumu.Protože $g(z_0)=a_p\neq 0$, existuje r>0, že $g\neq 0$ na $U(z_0,r)$ a $f(z)=(z-z_0)^pg(z)\neq 0$ na $P(z_0,r)$. Obrácené tvrzení plyne snadno.

Věta 6.8 (O jednoznačnosti pro holomorfní funkce). Nechť $\emptyset \neq G \subset \mathbb{C}$ je oblast a $f,g \in \mathcal{H}(G)$. Pak jsou následující tvrzení ekvivalentní:

- 1. $f = g \ na \ G$;
- 2. $mno\check{z}ina\ M := \{z \in G | f(z) = g(z)\}\ m\'a\ v\ G\ hromadn\'y\ bod,\ tj.\ existuje\ z_0 \in G\ takov\'y,\ \check{z}e\ M \cap P(z_0,r) \neq \emptyset\ \forall r > 0;$

3. existuje $z_0 \in G$, že $f^{(k)}(z_0) = g^{(k)}(z_0) \ \forall k \in \mathbb{N}_0$.

 $D\mathring{u}kaz$. BÚNO $g \equiv 0$ na G (jinak uvažme f - g).

 $1\Rightarrow 2,\, 2\Rightarrow 3$ Nechť $z_0\in G$ je hromadný bod $M:=\{z\in G|f(z)=0\}.$ Z věty o nulovém bodě je f=0 na nějakém okolí z_0 , tudíž platí 3.

 $3 \Rightarrow 1$ Nechť $N := \{z \in G | \forall k \in \mathbb{N}_0 : f^{(k)}(z_0) = 0\}$. Potom $\emptyset \neq N$, N je uzavřená v G, protože všechny $f^{(k)}$ jsou spojité. Navíc N je otevřená. Nechť $z_1 \in \mathbb{N}$. Podle věty o nulovém bodě existuje r > 0, že f = 0 na $U(z_1, r)$. Tedy $U(z_1, r) \subset N$. Protože G je oblast, dostaneme N = G a speciálně 1.

Příklad 6.9. Vzoreček $\sin(2z) = 2\sin(z)\cos(z)$, $z \in \mathbb{C}$ dostaneme z věty o jednoznačnosti, protože obě strany rovnosti jsou celé funkce a víme, že rovnost platí na \mathbb{R} (tzn. platí 2).

Poznámka 6.10. Podobně lze řadu vzorečků bez počítání zobecnit z \mathbb{R} do $\mathbb{C}!$

Věta 6.11 (Princip maxima modulu). Nechť $G \subset \mathbb{C}$ je oblast a $f \in \mathcal{H}(G)$. Potom je f konstantní na G, pokud |f| nabývá na G lokální maximum, tzn. existuje $z_0 \in G$ a r > 0 tak, že $\forall z \in U(z_0, r) \subset G : |f(z)| \leq |f(z_0)|$. (+)

 $\begin{array}{ll} D\mathring{u}kaz. \ \ \mathrm{Nechf} \ \ \mathrm{plati} \ \ (+). \ \ \mathrm{Potom} \ \ f(z) = \sum\limits_{n=0}^{\infty} a_n (z-z_0)^n, \ z \in U(z_0,r). \ \ \mathrm{Pro} \ \ 0 < \rho < r \ \ \mathrm{plati}, \ \ \check{z}e \\ |a_0|^2 = |f(z_0)|^2 \geq \frac{1}{2\pi} \int_0^{2\pi} |f(z_0 + \rho e^{it})|^2 \, \mathrm{d}t = \frac{1}{2\pi} \int_0^{2\pi} (\sum\limits_{n=0}^{\infty} a_n \rho^n e^{int}) (\sum\limits_{m=0}^{\infty} \overline{a_m} \rho^m e^{-imt}) \, \mathrm{d}t = \sum\limits_{n=0}^{\infty} \sum\limits_{m=0}^{\infty} a_n \cdot \overline{a_m} \rho^{n+m} \frac{1}{2\pi} \int_0^{2\pi} e^{it(n-m)} \, \mathrm{d}t = \sum\limits_{n=0}^{\infty} |a_n|^2 \rho^{2n}, \ \ \mathrm{nebot} \ \ \frac{1}{2\pi} \int_0^{2\pi} e^{it(n-m)} \, \mathrm{d}t = 0, \ \ \mathrm{pro} \ \ n \neq m \ \ a \\ \frac{1}{2\pi} \int_0^{2\pi} e^{it(n-m)} \, \mathrm{d}t = 1, \ \ \mathrm{pro} \ \ n = m. \ \ \mathrm{Nebo-li} \ \ |a_0|^2 \geq |a_0|^2 + |a_1|^2 \rho^2 + \cdots, \ \ \mathrm{tud\acute{i}}\check{z} \ \ 0 = a_1 = a_2 = \cdots. \\ \mathrm{Dost\acute{a}v\acute{a}me}, \check{z}e \ \ f = a_0 \ \ \mathrm{na} \ \ U(z_0,r) \ \ \mathrm{a} \ \ \mathrm{z} \ \ \mathrm{v\acute{e}ty} \ \ \mathrm{o} \ \mathrm{jednozna\check{c}nosti} \ \ f = a_0 \ \ \mathrm{na} \ \ G. \end{array}$

7 Riemannova sféra

Rozšíříme \mathbb{C} o nekonečno. Položíme $\$ = \mathbb{C} \cup \{\infty\}$, kde $\infty \notin \mathbb{C}$, a zavedeme okolí kolem ∞ $P(\infty,\epsilon) := \{z \in \mathbb{C} \mid |z| > \frac{1}{\epsilon}\}, \ \epsilon > 0, \ U(\infty,\epsilon) := P(\infty,\epsilon) \cup \{\infty\}.$

Definice 7.1. Řekneme, že $z_n \to z_0$ v \$, pokud $\forall \epsilon > 0 \exists n_0 \in \mathbb{N} \ \forall n \geq n_0 : z_n \in U(z_0, \epsilon)$.

Poznámka 7.2. Z definice plyne:

- $z_n \to z_0 \vee \$$ a $z_0 \in \mathbb{C} \Leftrightarrow z_n \to z_0 \vee \mathbb{C}$.
- $z_n \to \infty \Leftrightarrow |z_n| \to +\infty \Leftrightarrow \frac{1}{z_n} \to \cdot$. Zde $\frac{1}{\infty} := 0$ a $|\infty| := +\infty$.

Poznámka 7.3. \$ je jednobodová kompaktifikace topologického prostoru C.

Vlastnosti 7.4.

Na \$ zavedeme metriku ρ (není jediná), tž. (*) $z_n \to z_0$ v \$ $\Leftrightarrow \rho(z_n, z_0) \to 0$. Navíc (\$, ρ) bude izometrický s jednotkovou sférou $S^2 := \{(\alpha, \beta, \gamma) \in \mathbb{R}^3 \mid \alpha^2 + \beta^2 + \gamma^2 = 1\}$, kterou chápeme jako metrický podprostor \mathbb{R}^3 . Speciálně (\$, ρ) je kompaktní.

• Definujeme stereografickou projekci $\phi: \mathbb{C} \to S^2 \setminus \{N\}$ jako na obrázku, kde N = (0,0,1).

Položme $\phi(\infty) := N$. Pro $z \in \mathbb{C}$ je $\{\phi(z)\} = (S \setminus \{N\}) \cap p_z$, kde p_z je polopřímka z N procházející bodem $z \in \mathbb{C}$. Potom $\phi : \$ \xrightarrow{na} S^2$ je bijekce.

Cvičení 7.5. (CV)

$$\begin{array}{l} - \ \phi(z) := (\frac{2x}{x^2 + y^2 + 1}, \frac{2y}{x^2 + y^2 + 1}, \frac{x^2 + y^2 - 1}{x^2 + y^2 + 1}), \ z = x + iy \in \mathbb{C}. \\ - \ \phi^{-1}(\alpha, \beta, \gamma) := (\frac{\alpha}{1 - \gamma}, \frac{\beta}{1 - \gamma}), \ (\alpha, \beta, \gamma) \in S^2 \smallsetminus \{N\} \end{array}$$

- Položme $\rho(\not z,w):=|\phi(z)-\phi(w)|,\ z,w\in\$,$ kde $|\cdot|_S$ je Eukleidovská norma v $\mathbb{R}^3.(\phi$ je izometrie $(\$,\rho)$ na $S^2)$
- Platí (*). Skutečně z předchozího bodu a z cvičení máme: $\rho(z_n, z_0) \to 0 \Leftrightarrow \phi(z_n \to \phi(z_0) \Leftrightarrow z_n \to z_0 v$, protože ϕ i ϕ^{-1} jsou spojité.

Příklad 7.6. Necht $z_n \in \mathbb{C}$ a $z_n \to \infty$. Potom $|z_n| \to +\infty \Rightarrow \phi(z_n) \in S^2$; $\phi_3(z_n) \to 1 \Rightarrow \phi(z_n) \to N := (0,0,1)$

Příklad 7.7. Necht $(\alpha, \beta, \gamma) \in S^2 \setminus \{N\}$ a $(\alpha, \beta, \gamma) \to N$. Potom $|\phi^{-1}(\alpha_n, \beta_n, \gamma_n)|^2 = \frac{1 - \gamma_n^2}{(1 - \gamma_n)^2} = \frac{1 + \gamma_n}{1 - \gamma_n} \to +\infty \Rightarrow \phi^{-1}(\alpha_n, \beta_n, \gamma_n) \to \infty$

Poděkování:

Tyto poznámky byly vytexány společnou prací několika studentů 3. ročníku bakalářského studia obecné matematiky. Bez jejich iniciativy by tyto poznámky nevznikly.

Kateřina Lipavská, Stanislav Mosný, Tereza Poláková a Petr Sedláček