Closest String Problem

Aleksa Kojadinović 130/2017

Uvod

Postavka problema:

Dato je n niski $s_1, s_2, \ldots s_n$ dužine m.

Naći nisku s dužine m koja minimizuje d gde je

$$d = \max\{d_H(s, s_i) | i = 1, \dots n\}$$

- primer:
 - Azbuka {A, C, T, G}, m = 4, n = 3
 - Niske 'ACCT', 'AAGT', 'CAGT'
 - Optimalno rešenje:
 - s = 'GCGT',
 - d_opt = 2
 - Provera:
 - d(GCGT, ACCT) = 2, d(GCGT, AAGT) = 2, d(GCGT, CAGT) = 2
 - $max{2, 2, 2} = 2$

Rešenja > Brute Force > DFS

 pretragom u dubinu naći sve moguće niske dužine m nad datom azbukom i izabrati najbolju

Rešenja > Brute Force > DFS sa odsecanjem

 vrši se odsecanje kada string određenog prefiksa već premašuje dosadašnji najbolji rezultat

Brute Force vs Odsecanje

	Brute Force Solver		Pruning Solver	
m	RT	S	RT	S
2	0	1	0	1
3	0	2	0	2
4	0	2	0	2
5	0	2	0	2
6	0	3	0	2 3 3
7	0	3	0	3
8	0	4	0	4
9	0	4	0	4
10	0.01	4	0	4
11	0.02	5	0	5
12	0.04	5	0	5
13	0.08	5	0.01	5
14	0.16	6	0.02	6
15	0.34	5	0	5
16	0.69	6	0.02	6
17	1.45	7	0.05	7
18	3.39	6	0.03	6
19	6.62	7	0.16	7
20	15.11	8	0.35	8

Rešenja > Metaheuristike > Genetski algoritam

- Inicijalna populacija veličine P nasumične niske iz date azbuke dužine m
- Selekcija bira se P/2 niski iz populacije na osnovnu njihvih kvaliteta
- **Ukrštanje** odabir nasumične pozicije i razmena odgovarajućih delova:

Mutacije – promena nasumičnog slova

Elitistički pristup – samo najbolje jedinke opstaju u sledećoj generaciji

Rešenja > Metaheuristike > Kolonija mrava

Matrica feromona

pozicija/ slovo	а	b	С
1	0.25	0.25	0.5
2	0.33	0.25	0.42
3	0.11	0.8	0.09
4	0.2	0.5	0.3
5	0.4	0.2	0.4

Rešenja > Metaheuristike > Kolonija mrava

Evaporacija

sprečava zaglavljivanje u lokalnim optimumima

$$M_{j,\alpha}^{\text{new}} = M_{j,\alpha}^{\text{old}} \times (1 - \rho)$$

Rešenja > Metaheuristike > Kolonija mrava

Elitistički pristup

samo najbolji mrav u iteraciji ima pravo da ažurira trag

$$M_{j,\alpha}^{\text{new}} = M_{j,\alpha}^{\text{old}} + \left(1 - \frac{lb}{m}\right)$$

Rešenja > PTAS

• Osnovna ideja je svođenje nekog potproblema početnog problema na **problem celobrojnog programiranja.** $\min d$

$$\sum_{lpha \in \Sigma} x_{j,lpha} = 1, \quad j=1,...,m$$
 svaka pozicija mora imati tačno jedno slovo

$$x_{j,\alpha} \in \{0,1\} \quad (\forall j)(\forall \alpha)$$
 celobrojnost

Rešenja > PTAS

Pravimo potproblem

$$s1, s2 = \operatorname{argmax}_{i \neq j} d_H(s_i, s_j)$$
$$d_H(s_1, s_2) = k$$

- Optimizaciju vršimo nad onim pozicijama gde se s1 i s2 ne slažu
- U zavisnosti od kompleksnosti dobijenog problema rešavamo ga:
 - LP relaksacijom
 - Odbacimo uslov celobrojnosti. Za svaku poziciju dobijamo raspodelu verovatnoća za svako slovo
 - grubom silom

Eksperimentalni rezultati > n

• Povećavanje broja ulaznih niski (*n*)

Eksperimentalni rezultati > m

• Povećavanje dužina niski (*m*)

Eksperimentalni rezultati > veličina azbuke

• Povećavanje veličine azbuke $|\Sigma|$

Zaključak

- Najbolje sveukupno ponašanje pokazuje ACO
 - često prednjači i u kvalitetu i u vremenu izvršavanja
- Genetski algoritam
 - pokazao se vremenski bolji u slučaju povećanja *m* i azbuke
 - po kvalitetu blizu ACO
- PTAS ima najbolji kvalitet kod povećanja azbuke
 - ali vremena izvršavanja su neprihvatljiva