Portable Building Applications

WoT Use Case

```
Gabe Fierro
Colorado School of Mines / NREL
gtfierro@mines.edu
https://qtf.fyi
```

Increasing Amounts of Data Available for Buildings

- Large sensor/actuators networks:
 - thousands, 10s of thousands of data streams and control points
 - Increasing #s of IoT devices available
- Opportunity for wide-scale data-driven analytics and control:
 - AFDD
 - Virtual metering
 - Performance measurement
 - Automated regulatory reporting
 - MPC and advanced controls/sequence-of-operations
 - Demand response
- **Issue**: complex, heterogenous configuration:
 - Every building is a unique, one-off collection of "data silos"
 - Implementing software, extracting data, defining control surfaces is **site-specific**, **error-prone** and **time consuming**

...but that data is increasingly hard to use

- "Data-rich but information-poor"
 - Plenty of phenomena, but none of the context

- Understanding this data is a significant bottleneck
 - ~40% of consultant/data-scientist time spent understanding metadata
 - Manual, time-consuming, error-prone, expensive task

- Costs impede adoption of sustainable practices
 - 2004 NIST report estimates lack of interop @ \$15.8 billion/year
 - 2016 PNNL report: existing work focuses on connectivity, with data semantics still lacking
 - 2018 study: 70% of commercial buildings have digital controls, but only 4% have automated fault detection

Point: a source of data from a cyber-physical system

10s or 100s of thousands of points in a typical system

Building Management System (BMS): the "operating system" for your building

Deploying Cyber-Physical Applications at Scale

Deploying Cyber-Physical Applications at Scale

Goal: Write one implementation, run it everywhere without any* manual configuration

Architecture of a Self-Adapting Application

How WoT Fits In

- Brick ontology defines the data sources and their context w.r.t. the building subsystem
- Assumes the data is already in a regular format
 - Outsources the "lifting" to the data ingester
- Does not handle the discovery of device capability
 - Assumes this is already modeled

```
PREFIX brick: <http://brickschema.org/schema/Brick#>
SELECT ?term ?zone ?sat ?sp WHERE {
    ?term
                brick: Terminal Unit .
    ?zone
                brick:HVAC Zone .
                brick:Supply_Air_Temperature_Sensor .
    ?sat
               brick: Supply_Air_Temperature_Setpoint .
    ?sp
            brick:feeds
    2term
                            ?zone .
    ?term
            brick:hasPoint
                            ?sat, ?sp .
```

How WoT Fits In

It is not enough to model the capability of a device

- Where* is the device?
- What is it connected to?
- What do its actions affect?
- WoT standardizes repr. of/access to the I/O capabilities of the IoT devices providing/receiving data
- Abstract over (legacy) industrial control protocols:
 - BACnet, OPC, LonTalk, Modbus, ...

Future Brick Work? (The work we don't want to do...)

- Starting to think about the "network/instrumentation view":
 - How are devices connected; how do they communicate?
 - Joel Bender (Cornell, BacPypes, ASHRAE, 223P) working on SHACL representation of BACnet objects
- Standard enumerations of device properties:
 - Thermostat modes, staged equipment, etc
 - Aid in data interpretability
- Schedules of operation:
 - Investigating schema.org-style schedules; RRULE; etc
 - Want to express device behavior in terms of schedules (nighttime setbacks, etc)