Moore Yasası - Her 18 ayda bir transistor sayısının 2 katına aikması

Gua Duvari

Clock rate ↑ Power ↓ Sogutma ihtiyacı ↑ Enerjî tüketimi ↑

Ana Bilesen

Bellek Dyvari

L) Bellek (DRAM) hizt, islemci hizina yetisemiyor.

(Intel Coie, X86, System)

(Complex Instruction Set Comp.)

- -> Gok sayıda karmasık buyruk
- (MIPS, ARM, RISC-V) RISC

(Reduced Instruction: Set Computer)

-) Az sayıda basit buyluk

- → Buyruk boyutları değisken
- -> Buyruk boyutları sabit
- Karmasik donanim
- Karmasık derleyici
- -> Bellege erisim herhangi bir buyruk tarafından gerhekleştirilebilir
- → yalnızca load ve store buyrukları bellege erisim gerçeklestirebilir.

- → Gok sayıda adresleme Kîpî
- -> Az sayıda adresleme Kipi

* Bellette bulunan veri üzerinde islem yapmak igin -> veri aktaıma buyrukları (data transfer instructions)

Küqüğü basta -> sayının en küqük, en anlamsız, en sagdaki baytının en kücük adresli bellek konumuna yazılması (RISCVIIn tercihi)

Bûyûğû basta- Sayının en büyük, en anlamlı, en soldaki baytinin en kügük adiesli bellek Konumuna yazılması

Von Neumann mimarisi	Harvard mimarisi
-> Aynı fiziksel bellek uzayında	→ Veri ve buyruklar farklı
hem buyluklar hem de veri	fiziksel bellek uzayında
-> Buyruklar ve veriler aynı	-> Veri hattı ve buyıuk
hattı kullanır.	hattı ayııdır.
→ izlemci buyruklara ve	-) islemci buyıuklara ve
Veriye aynı anda erisemez.	veriye aynı anda erisebilir.
-) 1 buyruğun tamamlanması	→ 1 buyruğun tamamlan-
2 gevilm sürer,	ması 1 aevrim sürer.
-> Penetim biriminin maliyeti	-) Denetim biriminin maliyeti
daha düsüktür.	daha yüksektir.

* Kodun bellege sacılması (code spelling) Litum degiskenler her Zaman yazmaqlarda bulunamaz ? Ly yazmaglara erisim, beliege erisim den hizlidir.

Program Yigiti - o'gelerden son gelenin ilk islem görecek bicimde ust uste yigildiği varsayılan veri yapısı L. yigit bellekte tutulur. Yigitin bellekteki adiesî yigit isaietaisi (stack pointer) île belirtilir.

or (Push -) Yigitin en ústime veri eklemek Pop - digittan en visttekt verlyt aikaimak

RISC-V Adiesleme Kipleri

- 1) Anlik A diesleme (Immediate Addressing)
- 2) Yazmac Adiesleme [Register Addressing).
- 3) Etemeli Adresleme (Base Addressing) yazmaca anlık değer
- 4) Göreceli Adresieme (PC-relative Addressing) Li Dallanma adresi; sayaat anlık değer

îşlemci Tasarım Asamaları

- 1) Buyluk kûmesî mîmarîsî belirlenmesî
- 2) BKM gereksinimleri belirlenmesi
- 3) Verlyolu olusturulmasi
- 4) Denetim brimlerinin olusturulması

* Duragan (Static) Buyruk -> Bellekte duran buyruklar * Dinamik Buyruk -> islemci igerisinde islem gören buyruklar

Bilgisayar Mimarisi Tasarım ilkeleri

- 1) Olagan durumu hizlandir.
- 2) Yalınlık düzenden gelir.
- 3) Küqük olan hizlidir.
- 4) îyî tasarım ödünlesme gerektirir.

Boru Hattında Olusan Sorun

- 1) Yapı Solunu (Structulal Hazard) -> Yeterince donanım Kaynağı bulunmadığı durum
 - Li Kaynak artırılarak gözülebilir (Bellek sayısı artırılır)
- * Tek bellek olsaydı (buyırık tveri) getir asaması ve bellek asaması arasında yapı sorunu olurdu.

Gózűm = Kapi eklemek, ayrı bellek birimleri

- 2) Veri Sorunu (Data Hazard) -> gereten verinin hazır olmaması * Veri bağımlılığı - RAW (read after wite)
 - Gözüm= Yazılım -> veri bağımlılığı olmayacak şekilde kod üretmek X zordur.

Donanim -> Veri yonlendirmesi

- * Yükle-kullan (load-use) veri bağımlılığı (Bellekt Gòz)

 Li Zamanda geri gidilemez, L vurusluk gecikme kacınılmaz?

 Li Boru nattı duraklaması (pipeline stall)
- 3) Denetim Sorunu (Control Hazard) -> islemciye getirilen buyruğun yürütülmesi gereken buyruk olmadığı durum, * Dallanma buyrukları geldiğinde boru hattı duraklatılırsa 2 saat vurusu gecikme olur.
- Gdzüm= 1) Geciktirilmiş Dallanmalar (yazılım)

 -> Dallanma sonucundan bağımsız buyruklar
 dallanma seniasında oluşan bostuğa yerleştirilebilir.
 - 2) Dallanma Öngörüsü (donanım)
 - a) Duragan Dallanma öngörücüleri (hep otlar ya da)
 - b) Devingen Dallanma ongoruculeri
 - -> Bir önceki dallamanın atloyip atlamadiğina bakorak tohmin (Last value prediction)
 - Gift doruklu öngárúcú
 - -> Dallanma Hedef Ara Bellegi (Branch Taiget Buffer)

 *Bir önceki hedef adiesi tutan bir önbellektir.

 (Her dallanma igin)

- -> Yerel geamise dayalı öngörücüler (local history) * Her dallanmanin kendisine ait geamisidir.
- Genel geamise dayalı öngörücüler (global history) * Program igindekt dallanmaların beraber geamisidir.
- Yerel ve genel geamisi beraber kullanmak (G-Share)
- -> Birden gok öngörücüyü beraber kullanmak * En îyî ôngôrûcûyû segen dallanma ôngôrûcûne turnuva ôngôrûcûlerî (tournament predictors) denir.
- * RISC-Vite beklenmedik bir degisime sebep olan olay;
 - Bir buyruktan kaynaklanıyorsa Olağandısu durum (exception)
 - → islemcinin disindan kaynaklanıyorsa → Kesme (interrupt)

Olagandisi Durumlarin üstesinden Gelme

- 1) Duruma yol agan buyruğun adresi SEPC (Supervisor Exception Program Center) yazmacina Kaydedilir.
- 2) isletim sistemi durumun üstesinden gelir.
 - -> programi sonlandirir
 - -> program kaldığı yerden devam eder (SEPCiye ziplar)

* iki bilgiye ihtiyaa var:

- 1) Duruma sebep olan buyruk (SEPCide Kayıtlı)
- 2) Durumun olusma sebebi
 - -> Durumun sebebi SCAUSE (Supervisor Exception Cause Register) yazmacına kaydedilir.
- * RAM -> Random Access Memory -> onbellek * SRAM (Duragan Rastgele Erisimli Bellek) -> erisim daha hızlı, daha büyük, daha fazla transıstör, fiyatları daha yüksek * DRAM (Devingen Rastgele Eissimli Bellek) * > Elektrik kessidiginde igerik kaybedilir. > Ana beliek

- * DRAM, aynı satıra gelen istekleri ara bellekten karsılar (Row-buffer)
 - Herisim zamanını kısaltır, daha hızlı okunur.
- * Program verisini beilekte paralellik olusturacak sekilde saklamaya binistirme denir.

flash Bellek
Manyetik Teker (Disk) } Kalici bellek

Yerellik

- 1) Zamanda Yerellik -> Aynı veriye, aynı adiese belirli bir sure eartinda erisilmesi
- 2) Alanda Yerellik -> Birbirine yakın bellek adreslerine yazılmış verilere erisilmesi (diziler)

Onbeliek Temei Kaviamlar

- 1) Verinin bulunması (hit)
- 2) Verinin bulunmaması (miss)
- 3) Bulma 2amani
- U) Bulamama gecikmesi → Sonraki asama bellege gegip arama

Doğrudan Eslemeli Onbellek

- Bir veri bellekte yalnızca bir yerde olabilir
- * iki adres aynı satıra denk geldiğinde sürekli birbirlerinin verisins onbellekten alkanırlar. - Pinpon Etkisi
- -) onbellek boyutu artırılarak giderilebilir.

Tam iliskili onbellek

- veri bellekte istenilen yere kaydedilir. *Pinpon etkisi oitadan Kalkar.

Kûmeli iliskili onbellek

-> Bir saturda birden fazla verinin adres lenmesi

Doğrudan Eslemeli - Okumak istenen verinin nerede bulunacağı bellidir. Li erisim süresi kisalır.	Tam iliskili
-> Bellekte tutulan etiket daha Kisadir.	-> Adresin bûyûk bir bölûmû etiket clarak saklanmak zorundadır.
-) 1 tane karsılaştırıcıya ihtiyaç duyar.	→ Her satir iain bir kaisilastiriciya ihtiyaq duyar.

Yazma islemi

- * Verinin ne zaman ana bellege yazılacağını tasarım belirler.
 - 1) Doğrudan Yazma (write through) -> bellegin tüm asamalarına o anda yazma -> uzun sürer ve performansı düsürür.
 - 2) Sonradan Yozma (writeback) → sadece önbellege yazı bellege yazma izlemini sonraya bırak. → hızlı ve karmasıktır.
- * ûnbeliekte olmayan bli adiese yazıldığında onun ûnbellege getirilip getirilemeyeceği;
 - 1) Yaz ve yerini ayır (write allocate) yazma izlemi ana bellege yapılır ve veri önbellege getirilir.
 - 2) Yaz ve yerini ayırma (no write allocate) -> Yazma isleminden sonra veri önbelleğe yazılmaz.

Sanal Bellek

- 1) sistemde tüm programların gereksinimlerini karsılayacak kadar büyük bir bellek olmayabilir.
- 2) Programci programin Galisacoği sistemdeki bellek boyutunu bilemez.
- 3) Programer kendi programı yanında hangi programların galisacağını bilemez.

- * ikincil bellek ile ana bellek arasındaki veri akışı sayfalar aracılığıyla yapılır.
- -> Bellege erisim igin sanal adreslerin fizitsel adreslere donusturulmesi gerekir. (Adres donusumu / page translation)
- * Eslesmeler sayfa tablosu (page table) isimli bir yapıda bellekte tutulur.
- * Dönusüm igin islemcide tutulan önbellege Etkin Soyfalar önbellegi (Translation Lookaside Buffer) denir.
 - -> Buyruk ve ven igin farklı önbellekler bulunur.

Soyfa Hatası (Page Foult) - denetim isletim sisteminde

- 1) Fiziksel sayfa ikincil bellektedir.
- 2) Fiziksel sayfa henûz atanmamıştır.
- * önceden hangi sayfalar ikincil bellege alındı?

 Bu sayfalar igin ayrılmış bölüm (bellekte) -> takas dosyası

 (swap space)
- * Dôngù Agilmasi (Loop Unielling)
 - 1) Devingen buyiut soyisinin azalması
 - 2) Dallanma buyruklarının koldırılması
 - 3) Duragan buyruk sayısının artması } -