Computer Systems Organization

Lecture 2

Everything is bits

- Each bit is 0 or 1 (binary digits)
- Form basis of digital revolution
- Why bits? Electronic Implementation
 - Storing/performing computations is simple/reliable
 - Easy to store with bistable elements
 - Reliably transmitted on noisy and inaccurate wires

Everything is bits

- Single bit may not be useful but bit patterns do (groups of bits)
- 3 important representations of numbers
 - Unsigned encodings based on binary notation
 - Two's complement encoding to represent signed integers
 - Floating point encoding are base-2 version for representing real numbers
- Limited number of bits to encode numbers can have surprising effects e.g., 200 * 300 * 400 * 500 yields -884901888 (32 bit representation)

Binary representation

- Base 2 Number Representation
 - Represent 15213₁₀ as 11101101101101₂
 - Represent 1.20₁₀ as 1.001100110011[0011]...₂
 - Represent 1.5213 X 10^4 as 1.1101101101 101_2 X 2^{13}

How to convert

- $11 = (1011)_2 = 2^3*1 + 2^2*0 + 2^1*1 + 2^0*1$
- 11/2 = 5(1)
- 5/2 = 2(1)
- 2/2 = 1(0)
- 1/2 = 0 (1)
- $12 = (1100)_2 = 2^3*1 + 2^2*1 + 2^1*0 + 2^0*0$
- 12/2 = 6(0)
- 6/2 = 3(0)
- 3/2 = 1(1)
- 1/2 = 0(1)

How to convert (fraction)

- Convert 0.8125
- .8125 * 2 = 1.6250 (1)
- .6250 * 2 = 1.250 (1)
- .250 * 2 = 0.5(0)
- .5 * 2 = 1.0 (1)
- 0 * 2 = 0 (0)
- Soln: 0.11010
- Converting back: $1*2^-1 + 1*2^-2 + 0 + 1*2^-3 + 0 = .5 + .25 + 0 + .0625 + 0 = 0.8125$

Encoding Byte Values

- Byte = 8 bits
 - Binary 00000000₂ to 11111111₂
 - Decimal: 0₁₀ to 255₁₀
 - Hexadecimal 00₁₆ to FF₁₆
 - Base 16 number representation
 - Use characters '0' to '9' and 'A' to 'F'
 - Write FA1D37B₁₆ in C as
 - 0xFA1D37B
 - 0xfa1d37b

		You Ismi
He	t Dec	Binary 0000
0 1 2 3 4 5 6 7 8	0	0000
1	1	0001
2	2	0010
3	3	0011
4	4	0100
5	5	0101
6	6	0110
7	0 1 2 3 4 5 6 7 8	0111
8	8	1000
	9	1001
A	10	1010
В	11	1011
A B C D	12	1100
D	13	1101
E	14	1110
F	15	1111

Hex Notation

- 314156 = 19634.16 + 12
- 19634 = 1227.16 + 2
- 1227 = 76.16 + 11
- 76 = 4.16 + 12
- 4 = 0.16 + 4
- Hence 0x4CB2C
- What is binary and hex notation for 158?
- What is 0x605c + 0x5?
- Please practice...

Data sizes

- Each computer has word size indicating nominal size of pointer data
- Virtual address is encoded by such a word, hence word size determines size of virtual address space
- For machine with w-bit word size, virtual address can range from 0 to 2^w-1, giving program access to at most 2^w bytes
- 32 bit word size limits virtual address space to 4GB
 [4*10^9 bytes] while 64 bit leads to 16 exabytes i.e.,
 1.84 * 10^19 bytes
- Most 64-bit machines can run programs compiled to use for 32-bit machines i.e., backward compatible
- 32 bit vs. 64 bit programs [rather than machine distinction lies in how the program is compiled]

Typical Data Representations in C

C Data Type	Typical 32-bit	Typical 64-bit
char	1	1
short	2	2
int	4	4
long	4	8
float	4	4
double	8	8
long double	-	-
pointer	4	8

Most data types encode signed values unless prefixed by unsigned

Exception for char – need to declare signed char

Addressing and Byte Ordering

- In almost all machines, a multi-byte object stored as a contiguous sequence of bytes
 - E.g., variable x of type int has address 0x100 i.e., address expression &x is 0x100. Assuming int is 4 bytes, x would be stored in location 0x100, 0x101, 0x102 and 0x103.
- Two notations big endian vs. little endian
- Number 0x01234567 stored as {01}{23}{45}{67} in big endian notation while stored as {67}{45}{23}{01} in little endian notation for the addresses 0x100, 0x101, 0x102, 0x103.
- Most intel compatible machines are little endian while most IBM/Oracle machines are big endian

Integer vs. Floating point

- Have different byte patterns e.g., 12345
 represented as
 - 0x00003039 for integer
 - 0x4640E400 for floating point
- We will look into this later
- Use show_int and show_float operations to determine representations

Representing code

Consider the following C function:

```
int sum(int x, int y) {
    Return x + y;
}
```

- Following machine code generated when compiled
- Linux 32: 55 89 e5 8b 45 0c 03 45 08 c9 c3
- Windows: 55 89 e5 8b 45 0c 03 45 08 5d c3
- Instruction codings can be different binary code is seldom portable across combinations of machines + OS
- From perspective machine program is simply a sequence of bytes and has no/minimal information of original source program

Boolean Algebra

- Developed by George Boole in 19th Century
 - Algebraic representation of logic
 - Encode "True" as 1 and "False" as 0

And

■ A&B = 1 when both A=1 and B=1

Or

■ A | B = 1 when either A=1 or B=1

	&	0	
	0	0	_
Not	1	0	

■ ~A = 1 when A=0

	_ I _	0	
(0	0	
	Exclusive-Or (Xor)	1	

■ A^B = 1 when either A=1 or B=1, but not both

General Boolean Algebras

 Operate on Bit Vectors (strings of 0's and 1's of fixed length w) - operations applied bitwise

```
01101001 01101001 01101001

& 01010101 | 01010101 ^ 01010101 ~ 01010101

01000001 01111101 00111100 1010101
```

- All of the Properties of Boolean Algebra Apply
- Let a and b denote bit vectors [a_w-1, a_w-2, ..., a_0] and [b_w-1, b_w-2, ..., b_0].
- a&b would be a bit vector of length w, where the ith element would be a_i&b_i

Representing & Manipulating Sets

Representation

- Can encode any subset {0, ..., w-1} with a bit vector [a_w-1, a_w-2, ..., a_0]
- represents subsets of Width w
- $-a_j = 1 \text{ if } j \in A$
 - 01101001 { 0, 3, 5, 6 }
 - 76543210
 - 01010101 { 0, 2, 4, 6 }
 - 76543210

Operations

- &	Intersection	01000001	{ 0, 6 }
-	Union	01111101	{ 0, 2, 3, 4, 5, 6 }
_ ^	Symmetric difference	00111100	{ 2, 3, 4, 5 }
_ ~	Complement	10101010	{ 1, 3, 5, 7 }

Bit-Level Operations in C

- Operations & (AND), | (OR), ~ (NOT), ^ (Exclusive-OR) Available in C
 - Apply to any "integral" data type
 - long, int, short, char, unsigned
 - View arguments as bit vectors
- Examples (Char data type)
 - $\sim 0x41$ is 0xBE
 - ~01000001₂ is 10111110₂
 - $\sim 0x00$ is 0xFF
 - ~000000002 is 1111111112
 - 0x69 & 0x55 is 0x41
 - 01101001₂ & 01010101₂ is 01000001₂
 - $0x69 \mid 0x55 \text{ is } 0x7D$
 - 01101001₂ | 01010101₂ is 01111101₂

Contrast: Logic Operations in C

- Contrast to Logical Operators
 - && (AND), || (OR
 - View 0 as "False"
 - Anything nonzero as "
 - Always return
- Examples (ch
 - !0x41 is 0x00
 - !0x00 is 0x01

 - 0x69 && 0x55
 - 0x69 || 0x55 is 0x01
 - p && *p avoids null pointer access since logical operators do not evaluate second argument if result can be determined with first
 - Similarly a && 5/a will never cause a division by 0

• Early termina Watch out for && vs. & (and | | vs.

)... logical vs. bit level operators

one of the more common oopsies in

- !!0x41 is 0x01 C programming

Shift Operations

- Left Shift: x << y
 - Shift bit-vector x left y positions
 - Throw away extra bits on left
 - Fill with o's on right
- Right Shift: x >> y
 - Shift bit-vector x right y positions
 - Throw away extra bits on right
 - Logical shift
 - Fill with o's on left
 - Arithmetic shift
 - Replicate most significant bit on left
- Undefined Behavior
 - Shift amount < 0 or ≥ word size</p>

Argument x	01100010
<< 3	00010 <i>000</i>
Log. >> 2	00011000
Arith. >> 2	00011000

Argument x	10100010
<< 3	00010 <i>000</i>
Log. >> 2	<i>00</i> 101000
Arith. >> 2	<i>11</i> 101000

Integer Representations: Encoding Integers

Unsigned

$$B2U(X) = \sum_{i=0}^{w-1} x_i \cdot 2^i$$

Two's Complement

$$B2T(X) = -x_{w-1} \cdot 2^{w-1} + \sum_{i=0}^{w-2} x_i \cdot 2^i$$

short int
$$x = 15213$$
;
short int $y = -15213$;

Sign Bit

C short 2 bytes long

	Decimal	Hex	Binary
x	15213	3B 6D	00111011 01101101
У	-15213	C4 93	11000100 10010011

- Sign Bit
 - For 2's complement, most significant bit indicates sign
 - 0 for nonnegative
 - 1 for negative

Two's-complement Encoding Example

x = 15213: 00111011 01101101y = -15213: 11000100 10010011

Weight	152	13	-152	213
1	1	1	1	1
2	0	0	1	2
4	1	4	0	0
8	1	8	0	0
16	0	0	1	16
32	1	32	0	0
64	1	64	0	0
128	0	0	1	128
256	1	256	0	0
512	1	512	0	0
1024	0	0	1	1024
2048	1	2048	0	0
4096	1	4096	0	0
8192	1	8192	0	0
16384	0	0	1	16384
-32768	0	0	1	-32768
Sum		15213		-15213

Numeric Ranges

Unsigned Values

$$- UMin = 0
000...0
- UMax = 2w - 1
111...1$$

• Two's Complement Values

$$- TMin = -2^{w-1}$$

$$100...0$$

$$- TMax = 2^{w-1} - 1$$

$$011...1$$

- Other Values
 - Minus 1111...1

Values for w = 16 bits

	Decimal	Hex	Binary
UMax	65535	FF FF	11111111 11111111
TMax	32767	7F FF	01111111 11111111
TMin	-32768	80 00	10000000 000000000
-1	-1	FF FF	11111111 11111111
0	0	00 00	00000000 00000000

Values for Different Word Sizes

			W	
	8	16	32	64
UMax	255	65,535	4,294,967,295	18,446,744,073,709,551,615
TMax	127	32,767	2,147,483,647	9,223,372,036,854,775,807
TMin	-128	-32,768	-2,147,483,648	-9,223,372,036,854,775,808

Observations

$$- |TMin| = TMax + 1$$

• Asymmetric range

$$-UMax = 2 * TMax + 1$$

C Programming

- #include limits.h>
- Declares constants, e.g.,
 - ULONG_MAX
 - LONG_MAX
 - LONG_MIN
- Values platform specific

Unsigned & Signed Numeric Values

Χ	B2U(<i>X</i>)	B2T(<i>X</i>)
0000	0	0
0001	1	1
0010	2	2
0011	3	3
0100	4	4
0101	5	5
0110	6	6
0111	7	7
1000	8	-8
1001	9	- 7
1010	10	-6
1011	11	- 5
1100	12	-4
1101	13	-3
1110	14	-2
1111	15	-1

- Equivalence
 - Same encodings for nonnegative values
- Uniqueness
 - Every bit pattern represents unique integer value
 - Each representable integer has unique bit encoding
- ⇒ Can Invert Mappings
 - $U2B(x) = B2U^{-1}(x)$
 - Bit pattern for unsigned integer
 - $T2B(x) = B2T^{-1}(x)$
 - Bit pattern for two's comp integer

Mapping Between Signed & Unsigned

Mappings between unsigned and two's complement numbers:
 Keep bit representations and reinterpret

Mapping Signed ↔ Unsigned

Bits
0000
0001
0010
0011
0100
0101
0110
0111
1000
1001
1010
1011
1100
1101
1110
1111

Unsigned
0
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15

Mapping Signed ↔ Unsigned

Bits
0000
0001
0010
0011
0100
0101
0110
0111
1000
1001
1010
1011
1100
1101
1110
1111

Relation between Signed & Unsigned

Large negative weight becomes

Large positive weight

Add 2^w if x < 0, otherwise remains same

Conversion Visualized

Signed vs. Unsigned in C

- Constants
 - By default are considered to be signed integers
 - Unsigned if have "U" as suffix4294967259U
- Casting
 - Explicit casting between signed & unsigned same as U2T and T2U

```
int tx, ty;
unsigned ux, uy;
tx = (int) ux;
uy = (unsigned) ty;
```

Implicit casting also occurs via assignments and procedure calls

```
tx = ux; /* cast to signed */
uy = ty; /* cast to unsigned */
```

Casting Surprises

- Expression Evaluation
 - If there is a mix of unsigned and signed in single expression,
 - signed values implicitly cast to unsigned
 - —Including comparison operations <, >, ==, <=, >=
 - -Examples for W = 32: TMIN = -2,147,483,648, TMAX = 2,147,483,647

Casting Surprises

Constant ₁	Constant ₂	Relation	Evaluation
0	0U	==	Unsigned
-1	0	<	Signed
-1	0 U	>	Unsigned
2147483647	-2147483647-1	>	Signed
2147483647U	-2147483647-1	<	Unsigned
-1	-2	>	Signed
(unsigned)-1	-2	>	Unsigned
2147483647	2147483648U	<	Unsigned
2147483647	(int) 2147483648U	>	signed

Summary: Casting Signed ↔ Unsigned: Basic Rules

- Bit pattern is maintained
- But reinterpreted
- Can have unexpected effects: adding or subtracting 2^w
- Expression containing signed and unsigned int
 - int is cast to unsigned!!

Sign Extension

- Task:
 - Given w-bit signed integer x
 - Convert it to w+k-bit integer with same value
- Rule:
 - Make k copies of sign bit:

Sign Extension Example

```
short int x = 15213;

int ix = (int) x;

short int y = -15213;

int iy = (int) y;
```

	Decimal	Нех	Binary
X	15213	3B 6D	00111011 01101101
ix	15213	00 00 3B 6D	00000000 00000000 00111011 01101101
У	-15213	C4 93	11000100 10010011
iy	-15213	FF FF C4 93	11111111 11111111 11000100 10010011

- Converting from smaller to larger integer data type
- C automatically performs sign extension

Truncation of number

- When truncating a w bit number to a k-bit number, we drop the high order w-k bits
- Result: $x' = x \mod 2^k$
- While similar property holds for twoscomplement, it converts the most significant bit into a sign bit

```
int x = 53191

short sx = (short) x /* -12345 */

int y = sx; /* -12345 */
```

Truncation of number

- Summary:
- B2Uk([xk-1, xk-1, ..., x0]) = B2Uk([xw-1, xw-2, ..., x0]) mod 2^k
- B2Tk([xk-1, xk-1, ..., x0]) = U2Tk(B2U([xw-1, xw-2, ..., x0]) mod 2^k)

Summary: Expanding, Truncating: Basic Rules

- Expanding (e.g., short int to int)
 - Unsigned: zeros added
 - Signed: sign extension
 - Both yield expected result
- Truncating (e.g., unsigned to unsigned short)
 - Unsigned/signed: bits are truncated
 - Result reinterpreted
 - Unsigned: mod operation
 - Signed: similar to mod
 - For small numbers yields expected behavior