

Majeure IMI — S9

Acquisition, calibrage et reconstruction 3D

Calibrage de caméra

Eric Van Reeth CPE/CREATIS

↑ Bureau I410 ☐ eric.van-reeth@cpe.fr

Introduction

Introduction

Objectif

Le calibrage est une étape préliminaire nécessaire à de nombreux systèmes de vision par ordinateur

Il permet d'établir le lien entre la scène filmée et l'image acquise

source: volvo

source: nintendo

Introduction

Applications

Indispensable pour relier les caractéristiques physiques d'un objet (taille, position) aux pixels de l'image :

- · contrôle non destructif
- chirurgie interventionnelle
- vidéosurveillance
- · réalité augmentée
- photogrammétrie

Contrôle qualité : métrologie

Métrologie

MCE Metrology (Evian - France)

Contrôle qualité : métrologie

Principe

Utilisation d'une caméra calibrée pour les mesures 2D La mesure de la profondeur est assuré par le zoom Précision de l'ordre du micron (selon les objectifs)

5

Contrôle qualité : métrologie portable

Creaform (Fontaine - France)

Contrôle qualité : métrologie portable

Principe

2 caméras calibrées sur un bras rigide

Détection d'un corps rigide constitué de billes réfléchissantes (IR)

Triangulation de marqueurs permettant de remonter à un point 3D unique placé à l'extrémité du corps rigide

Mesure d'un ensemble de points 3D avec une précision $\sim 10\,\mu m$

Chirurgie interventionnelle

NDI (Canada)

Chirurgie interventionnelle

Principe

- Utilisation de 2 caméras calibrées sur un bras rigide
- Détection d'un corps rigide constitué de quelques billes réfléchissantes (IR)
- Triangulation de marqueurs permettant de remonter à un point 3D unique placé à l'extrémité du corps rigide
- Mesure d'un ensemble de points 3D avec une précision $\sim 100\,\mu m$

Chirurgie interventionnelle

HoloSurgical

Architecture

Principe

- Calibrage des distorsions optiques
- Permet de remonter à des informations structurelles en traitant les informations de perspectives (mesures TQC)

GilsMethod

Photogrammétrie

Principe

Acquisition de plusieurs images suivant différents angles de vues Détermination des différentes homographies afin de remonter à une localisation 3D des objets présents dans plusieurs images

Wikipedia

Modélisation d'une caméra

Projection d'une scène 3D sur un plan 2D

Calibrage de caméra

Définition

Trouver la correspondance entre tout point 3D de la scène imagée, et le pixel correspondant sur l'image acquise

Le calibrage repose sur une modélisation du dispositif optique

Dans ce cours : une seule caméra

Modélisation d'une caméra

Calibrage = Estimation paramétrique

La modélisation établi le modèle paramétrique de caméra, puis le calibrage permet d'estimer ces paramètres

On cherche à caractériser la fonction de transfert du système optique

Coordonnées 3D — CAMÉRA — Pixels 2D

Modélisation

Modèle de sténopé (pinhole)

- Un sténopé est un dispositif optique sans lentille qui fait passer la lumière par un trou de très faible diamètre
- Tous les rayons lumineux passant par ce trou projettent une image inversée sur le capteur (comme l'œil)

Modèle de sténopé (pinhole)

En pratique on représentera la formation de l'image sur un plan virtuel situé avant le trou (centre optique)

Paramètres extrinsèques

Ils renseignent sur la position de la caméra par rapport au repère objet :

Soit $\mathcal{R}_o(O, e_1^o, e_2^o, e_3^o)$, le repère lié à l'objet

Soit $\mathcal{R}_c(C, e_1^c, e_2^c, e_3^c)$, le repère lié à la caméra

C est appelé le centre optique (correspond au pinhole)

Repère objet et repère caméra

Les 6 paramètres extrinsèques de la caméra sont alors :

 $(\boldsymbol{o_1^c}, \boldsymbol{o_2^c}, \boldsymbol{o_3^c})$, les coordonnées de O dans \mathcal{R}_c

 (ϕ, γ, ω) : angles d'Euler donnant l'orientation de \mathcal{R}_o par rapport à $\mathcal{R}_{c'}$

Paramètres intrinsèques

- Ils renseignent sur les caractéristiques optiques, géométriques et numériques de la caméra
- Soit $\mathcal{R}_i(I,e_1^i,e_2^i,e_3^c)$, le repère du plan image \mathcal{P}_i , avec e_1^i et e_2^i respectivement parallèles à e_1^c et e_2^c
- On note e_3^c l'axe optique (passant par C et \perp à \mathcal{P}_i)

Repère image et repère caméra

Les 5 paramètres intrinsèques de la caméra sont alors :

f, la distance plan image/centre optique

 (s_1, s_2) , les facteurs d'échelle sur les axes e_1^i et e_2^i c'est à dire la dimension d'un pixel (mm/pixel)

 (i_1, i_2) , les coordonnées en pixels de I i.e. la projection de $C \operatorname{sur} \mathcal{P}_i$

Bilan du modèle sténopé

Il exprime indépendamment le passage objet \rightarrow caméra (extrinsèques), puis caméra \rightarrow image (intrinsèques)

Il est représenté par 11 paramètres : 6 extrinsèques et 5 intrinsèques

Calibrer la caméra revient à déterminer la valeur de ces 11 paramètres

Objectif

Mise en équation de la relation entre les coordonnées objet et les pixels sur lesquels ils sont projetés

Repère objet → repère caméra

Rotation entre \mathcal{R}_o et $\mathcal{R}_{c'}$ (matrice 3×3 : coefficients r_{ij})

Translation entre $\mathcal{R}_{c'}$ et \mathcal{R}_c (vecteur 3 × 1 : coefficients o_i^c)

$$\begin{pmatrix} x_1^c \\ x_2^c \\ x_3^c \end{pmatrix} = \begin{pmatrix} r_{11} & r_{12} & r_{13} \\ r_{21} & r_{22} & r_{23} \\ r_{31} & r_{32} & r_{33} \end{pmatrix} \begin{pmatrix} x_1^o \\ x_2^o \\ x_3^o \end{pmatrix} + \begin{pmatrix} o_1^c \\ o_2^c \\ o_3^c \end{pmatrix}$$

Repère objet et repère caméra

Repère objet → repère caméra

Utilisation des coordonnées homogènes pour exprimer la matrice M_{ext}

$$\begin{pmatrix} x_1^c \\ x_2^c \\ x_3^c \\ 1 \end{pmatrix} = \underbrace{\begin{pmatrix} r_{11} & r_{12} & r_{13} & o_1^c \\ r_{21} & r_{22} & r_{23} & o_2^c \\ r_{31} & r_{32} & r_{33} & o_3^c \\ 0 & 0 & 0 & 1 \end{pmatrix}}_{M_{ext}} \begin{pmatrix} x_1^o \\ x_2^o \\ x_3^o \\ 1 \end{pmatrix}$$

Repère objet → repère caméra

La matrice de rotation (3 \times 3) est le produit des 3 matrices de rotation autour des angles d'Euler

$$\begin{pmatrix} r_{11} & r_{12} & r_{13} \\ r_{21} & r_{22} & r_{23} \\ r_{31} & r_{32} & r_{33} \end{pmatrix} = \mathbf{R} = \mathbf{R}_{\phi} \, \mathbf{R}_{\gamma} \, \mathbf{R}_{\omega}$$

Repère objet → repère caméra

Relation r_{ij} et angles d'Euler

$$\begin{pmatrix} x_1^{c'} \\ x_2^{c'} \\ x_3^{c'} \\ 1 \end{pmatrix} = \begin{pmatrix} 1 & 0 & 0 & 0 \\ 0 & \cos \phi & -\sin \phi & 0 \\ 0 & \sin \phi & \cos \phi & 0 \\ 0 & 0 & 0 & 1 \end{pmatrix} \begin{pmatrix} x_1^o \\ x_2^o \\ x_3^o \\ 1 \end{pmatrix}$$

Relation r_{ij} et angles d'Euler

$$\begin{pmatrix} x_1^{c'} \\ x_2^{c'} \\ x_3^{c'} \\ 1 \end{pmatrix} = \begin{pmatrix} \cos \gamma & 0 & \sin \gamma & 0 \\ 0 & 1 & 0 & 0 \\ -\sin \gamma & 0 & \cos \gamma & \\ 0 & 0 & 0 & 1 \end{pmatrix} \begin{pmatrix} x_1^o \\ x_2^o \\ x_3^o \\ 1 \end{pmatrix}$$

Relation r_{ii} et angles d'Euler

$$\begin{pmatrix} x_1^{c'} \\ x_2^{c'} \\ x_3^{c'} \\ 1 \end{pmatrix} = \begin{pmatrix} \cos \omega & -\sin \omega & 0 & 0 \\ \sin \omega & \cos \omega & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \end{pmatrix} \begin{pmatrix} x_1^o \\ x_2^o \\ x_3^o \\ 1 \end{pmatrix}$$

Identification des r_{ij}

```
r_{11} = \cos \omega \cdot \cos \gamma
r_{12} = -\cos\omega \cdot \sin\gamma
r_{13} = \sin \omega
r_{21} = \sin \phi \cdot \sin \omega \cdot \cos \gamma + \cos \phi \cdot \sin \gamma
r_{22} = -\sin\phi \cdot \sin\omega \cdot \sin\gamma + \cos\phi \cdot \cos\gamma
r_{23} = -\sin\phi \cdot \cos\omega
r_{31} = -\cos\phi.\sin\omega.\cos\gamma + \sin\phi.\sin\gamma
        = \cos \phi \cdot \sin \omega \cdot \sin \gamma + \sin \phi \cdot \cos \gamma
r_{33} = \cos \phi \cdot \cos \omega
```

Repère caméra \rightarrow repère image

On cherche à exprimer les coordonnées (x_1^i, x_2^i) dans \mathcal{R}_c

On cherche à exprimer les coordonnées (x_1^i, x_2^i) dans \mathcal{R}_c

On cherche à exprimer les coordonnées (x_1^i, x_2^i) dans \mathcal{R}_c

Eric Van Reeth Calibrage de caméra 37

Application du théorème de Thalès

En coordonnées homogènes (en posant $\alpha = x_3^c$):

$$\begin{pmatrix} \alpha x_1^i \\ \alpha x_2^i \\ \alpha x_3^i \\ \alpha \end{pmatrix} = \underbrace{\begin{pmatrix} f & 0 & 0 & 0 \\ 0 & f & 0 & 0 \\ 0 & 0 & f & 0 \\ 0 & 0 & 1 & 0 \end{pmatrix}}_{P} \begin{pmatrix} x_1^c \\ x_2^c \\ x_3^c \\ 1 \end{pmatrix}$$

Eric Van Reeth Calibrage de caméra 38

Remarques sur les coordonnées images

La droite de paramètre *t* et d'équation :

$$\begin{cases} x = \frac{x_1^i}{f}t \\ y = \frac{x_2^i}{f}t \\ z = t \end{cases}$$

contient tous les points de l'espace (x, y, z) se projetant sur le même point du plan image (exprimée dans le repère caméra)

Remarques sur les coordonnées images : x^i

Elles s'expriment en m (ex : position sur le capteur CCD)

Le passage du repère caméra au repère image se fait par une simple translation de $\pm f$ le long de x_3^c

Les coordonnées images de I sont (0,0,f) dans \mathcal{R}_c

Repère image → pixels

Modélisation de la numérisation

Modélisation de la numérisation

Soit (i_1, i_2) les coordonnées en pixels de I

Soit (s_1, s_2) les dimensions d'un pixel (en mm/px)

La correspondance pixels/coordonnées s'exprime telle que :

$$\begin{pmatrix} u_1 \\ u_2 \end{pmatrix} = \begin{pmatrix} i_1 + x_1^i/s_1 \\ i_2 + x_2^i/s_2 \end{pmatrix} = \begin{pmatrix} 1/s_1 & 0 \\ 0 & 1/s_2 \end{pmatrix} \begin{pmatrix} x_1^i \\ x_2^i \end{pmatrix} + \begin{pmatrix} i_1 \\ i_2 \end{pmatrix}$$

Attention à la cohérence d'orientation des repères image et pixel!

Repère image \rightarrow pixels

La relation entre les coordonnées image et pixels s'écrit (en coordonnées homogènes) :

$$\begin{pmatrix} u_1 \\ u_2 \\ 1 \end{pmatrix} = \underbrace{\begin{pmatrix} 1/s_1 & 0 & 0 & i_1 \\ 0 & 1/s_2 & 0 & i_2 \\ 0 & 0 & 0 & 1 \end{pmatrix}}_{S} \begin{pmatrix} x_1^i \\ x_2^i \\ x_3^i \\ 1 \end{pmatrix}$$

Repère image \rightarrow pixels

La relation entre \mathcal{R}_c et les pixels s'écrit :

$$\begin{pmatrix} \alpha u_1 \\ \alpha u_2 \\ \alpha \end{pmatrix} = \underbrace{\begin{pmatrix} 1/s_1 & 0 & 0 & i_1 \\ 0 & 1/s_2 & 0 & i_2 \\ 0 & 0 & 0 & 1 \end{pmatrix}}_{S} \underbrace{\begin{pmatrix} f & 0 & 0 & 0 \\ 0 & f & 0 & 0 \\ 0 & 0 & f & 0 \\ 0 & 0 & 1 & 0 \end{pmatrix}}_{P} \begin{pmatrix} x_1^c \\ x_2^c \\ x_3^c \\ 1 \end{pmatrix}$$

$$= \underbrace{\begin{pmatrix} f/s_1 & 0 & i_1 & 0 \\ 0 & f/s_2 & i_2 & 0 \\ 0 & 0 & 1 & 0 \end{pmatrix}}_{M_{int}} \begin{pmatrix} x_1^c \\ x_2^c \\ x_3^c \\ 1 \end{pmatrix}$$

 $M_{int} = S \times P$ contient les paramètres intrinsèques

Du repère objet aux pixels

$$\begin{pmatrix} \alpha u_{1} \\ \alpha u_{2} \\ \alpha \end{pmatrix} = \underbrace{\begin{pmatrix} f/s_{1} & 0 & i_{1} & 0 \\ 0 & f/s_{2} & i_{2} & 0 \\ 0 & 0 & 1 & 0 \end{pmatrix}}_{M_{int}} \cdot \underbrace{\begin{pmatrix} r_{11} & r_{12} & r_{13} & o_{1}^{c} \\ r_{21} & r_{22} & r_{23} & o_{2}^{c} \\ r_{31} & r_{32} & r_{33} & o_{3}^{c} \\ 0 & 0 & 0 & 1 \end{pmatrix}}_{M_{ext}} \cdot \begin{pmatrix} x_{1}^{o} \\ x_{2}^{o} \\ x_{3}^{o} \\ 1 \end{pmatrix}$$

$$\begin{pmatrix} \alpha u_1 \\ \alpha u_2 \\ \alpha \end{pmatrix} = \underbrace{\begin{pmatrix} m_{11} & m_{12} & m_{13} & m_{14} \\ m_{21} & m_{22} & m_{23} & m_{24} \\ m_{31} & m_{32} & m_{33} & m_{34} \end{pmatrix}}_{M} \cdot \begin{pmatrix} x_1^o \\ x_2^o \\ x_3^o \\ 1 \end{pmatrix}$$

Remarques

La connaissance de *M* permet de projeter tout point de l'espace 3D sur l'image

Pour rappel : le paramètre $\alpha = x_3^c = r_{31}x_1^o + r_{32}x_2^o + r_{33}x_3^o + o_3^c$

Ce système n'est pas inversible (matrice 3×4)!

Impossible de remonter aux coordonnées 3D d'un point à partir de ses coordonnées pixel

Besoin d'au moins 2 caméras (cf. reconstruction 3D)

Géométrie épipolaire pour la reconstruction 3D

Géométrie épipolaire

Géométrie épipolaire pour la reconstruction 3D

Principe de la reco 3D

Distorsions optiques

Induites par le système optique

- Pas contenues dans le modèle sténopé simple
- Nécessaire de les inclure pour plusieurs applications (photos, métrologie, \dots)
- Influence de la position du diaphragme :

Distorsions optiques

Exemples de distorsions

source: wikipedia

Distorsions optiques

Passage à un modèle non linéaire

On modélise les distorsions comme des paramètres intrinsèques à la caméra

Exemple de modélisation des déformations radiales :

$$x_1^u = \frac{x_1^i}{1 + K_1 \cdot r^2 + K_2 \cdot r^4 + \dots}$$

$$x_2^u = \frac{x_2^i}{1 + K_1 \cdot r^2 + K_2 \cdot r^4 + \dots}$$

avec $r = \sqrt{(x_1^i)^2 + (x_2^i)^2}$, et en prenant le centre de distorsion à (0,0) et (x_1^u, x_2^u) les coordonnées sans distorsions

Calibrage d'une caméra

Utilisation d'un objet de référence

- Méthode basée sur l'acquisition d'une mire (damier, billes) dont on connaît la disposition spatiale
- Mesure sur l'image acquise des coordonnées (pixels) de la projection de la mire

On connaîtra alors:

$$x^{o^k} = \left(x_1^{o^k}, x_2^{o^k}, x_3^{o^k}, 1\right)'$$
 et $u^k = \left(u_1^k, u_2^k, 1\right)'$
pour $k = 1, \dots, n$

 $vision.caltech.edu/bouguet/calib_doc$

Utilisation de mires

Mire utilisée en TP

Estimation des paramètres du modèle

2 méthodes de résolution

- Identification directe des paramètres m_{ij}
 Résolution d'un système linéaire
 Pas d'a priori physique
- 2. Identification par étapes (TP)
 - Résolution de plusieurs sous-systèmes linéaires Résolution analytique (en partie) A priori physique sur les paramètres estimés

Approche 1 : identification des coefficients de M

Identification de M

$$u = M.x^{o}$$
, avec $u = (\alpha u_{1}, \alpha u_{2}, \alpha)'$, et $x^{o} = (x_{1}^{o}, x_{2}^{o}, x_{3}^{o}, 1)'$

Résolution d'un système linéaire $\rightarrow 3.n$ équations

Nombre d'inconnues : 12 + n

Pour chaque mesure on a : $\alpha^k = m_{31}x_1^{o^k} + m_{32}x_2^{o^k} + \dots$

On a donc besoin d'au moins 6 mesures

Résolution du système

- En pratique, on aura n > 6 pour diminuer l'effet de l'incertitude de mesure
- Résolution d'un système surdéterminé (régression linéaire sur *M*, résolution par moindres carrés, . . .)

$$\begin{pmatrix} \alpha^1 u_1^1 & \dots & \alpha^n u_1^n \\ \alpha^1 u_2^1 & \dots & \alpha^n u_2^n \\ \alpha^1 & \dots & \alpha^n \end{pmatrix} = \begin{pmatrix} m_{11} & m_{12} & m_{13} & m_{14} \\ m_{21} & m_{22} & m_{23} & m_{24} \\ m_{31} & m_{32} & m_{33} & m_{34} \end{pmatrix} \cdot \begin{pmatrix} x_1^{o^1} & \dots & x_1^{o^n} \\ x_2^{o^1} & \dots & x_2^{o^n} \\ x_3^{o^1} & \dots & x_3^{o^n} \\ x_4^{o^1} & \dots & x_4^{o^n} \end{pmatrix}$$

Méthode de Tsai (cf TP)

Pousse au maximum la résolution analytique du problème Méthode stable et efficace en temps de calcul

Principe:

- 1. Résolution d'un système linéaire pour évaluer une première série de paramètres (*L*)
- 2. Résolution analytique de la partie non-linéaire à partir de ${\it L}$
- Résolution d'un second système linéaire pour trouver les paramètres restant

Méthode de Tsai (cf TP)

Ré-écriture des équations du système projectif :

$$\begin{pmatrix} \alpha u_1 \\ \alpha u_2 \\ \alpha \end{pmatrix} = \underbrace{\begin{pmatrix} f/s_1 & 0 & i_1 & 0 \\ 0 & f/s_2 & i_2 & 0 \\ 0 & 0 & 1 & 0 \end{pmatrix}}_{M_{int}} \cdot \underbrace{\begin{pmatrix} r_{11} & r_{12} & r_{13} & o_1^c \\ r_{21} & r_{22} & r_{23} & o_2^c \\ r_{31} & r_{32} & r_{33} & o_3^c \\ 0 & 0 & 0 & 1 \end{pmatrix}}_{M_{out}} \cdot \begin{pmatrix} x_1^o \\ x_2^o \\ x_3^o \\ 1 \end{pmatrix}$$

$$\alpha u_1 = \frac{f}{s_1} (r_{11} x_1^o + r_{12} x_2^o + r_{13} x_3^o + o_1^c) + i_1 (r_{31} x_1^o + r_{32} x_2^o + r_{33} x_3^o + o_3^c)$$

Eric Van Reeth Calibrage de caméra

Méthode de Tsai (cf TP)

$$\alpha u_1 = \frac{f}{s_1} (r_{11} x_1^o + r_{12} x_2^o + r_{13} x_3^o + o_1^c) + i_1 (r_{31} x_1^o + r_{32} x_2^o + r_{33} x_3^o + o_3^c)$$

Or. on a:

$$\alpha = x_3^c = r_{31}x_1^o + r_{32}x_2^o + r_{33}x_3^o + o_3^c$$

D'où:

$$u_1 - i_1 = \frac{f}{s_1} \cdot \frac{r_{11}x_1^o + r_{12}x_2^o + r_{13}x_3^o + o_1^c}{r_{31}x_1^o + r_{32}x_2^o + r_{33}x_3^o + o_3^c}$$

Méthode de Tsai (cf TP)

On pose $\tilde{u}_1 = u_1 - i_1$ et $\tilde{u}_2 = u_2 - i_2$ Ce qui permet d'exprimer :

$$\begin{cases} \tilde{u}_{1} = f_{1} \frac{r_{11}x_{1}^{o} + r_{12}x_{2}^{o} + r_{13}x_{3}^{o} + o_{1}^{c}}{r_{31}x_{1}^{o} + r_{32}x_{2}^{o} + r_{33}x_{3}^{o} + o_{3}^{c}} \\ \tilde{u}_{2} = f_{2} \frac{r_{21}x_{1}^{o} + r_{22}x_{2}^{o} + r_{23}x_{3}^{o} + o_{2}^{c}}{r_{31}x_{1}^{o} + r_{32}x_{2}^{o} + r_{33}x_{3}^{o} + o_{3}^{c}} \end{cases}$$

$$(1)$$

avec $f_1 = f/s_1$ et $f_2 = f/s_2$

Étape 1 : estimation de L

Du système d'équations 1, on tire :

$$\tilde{u}_1 f_2 (r_{21} x_1^o + r_{22} x_2^o + r_{23} x_3^o + o_2^c) = \tilde{u}_2 f_1 (r_{11} x_1^o + r_{12} x_2^o + r_{13} x_3^o + o_1^c)$$

En posant $\beta = f_1/f_2 = s_2/s_1$, on obtient :

$$\tilde{u}_{1} = \tilde{u}_{2} \frac{\beta r_{11}}{o_{2}^{c}} x_{1}^{o} + \tilde{u}_{2} \frac{\beta r_{12}}{o_{2}^{c}} x_{2}^{o} + \tilde{u}_{2} \frac{\beta r_{13}}{o_{2}^{c}} x_{3}^{o} + \tilde{u}_{2} \frac{\beta o_{1}^{c}}{o_{2}^{c}} - \tilde{u}_{1} \frac{r_{21}}{o_{2}^{c}} x_{1}^{o} - \tilde{u}_{1} \frac{r_{22}}{o_{2}^{c}} x_{2}^{o} - \tilde{u}_{1} \frac{r_{23}}{o_{2}^{c}} x_{3}^{o}$$

Étape 1 : estimation de L

On fait apparaître *L*, vecteur qui contient la liste des inconnues :

$$\tilde{u}_1 = (\tilde{u}_2 x_1^o, \tilde{u}_2 x_2^o, \tilde{u}_2 x_3^o, \tilde{u}_2, -\tilde{u}_1 x_1^o, -\tilde{u}_1 x_2^o, -\tilde{u}_1 x_3^o) \cdot L$$

avec, pour $o_2^c \neq 0$:

$$L^{t} = \left(\frac{\beta r_{11}}{o_{2}^{c}}, \frac{\beta r_{12}}{o_{2}^{c}}, \frac{\beta r_{13}}{o_{2}^{c}}, \frac{\beta o_{1}^{c}}{o_{2}^{c}}, \frac{r_{21}}{o_{2}^{c}}, \frac{r_{22}}{o_{2}^{c}}, \frac{r_{23}}{o_{2}^{c}}\right)$$

Étape 1 : estimation de L

Considérons les correspondances de *n* points objet :

$$x^{o^k} = (x_1^{o^k}, x_2^{o^k}, x_3^{o^k}) \rightarrow \tilde{u}^k = (u_1^k - i_1, u_2^k - i_2) \text{ pour } k = 1, \dots, n$$

et $(U_1)^t = (\tilde{u}_1^1, \tilde{u}_1^2, \dots \tilde{u}_1^n)$

On construit la matrice dont les coefficients sont connus :

$$A = \begin{pmatrix} \tilde{u}_{2}^{1}x_{1}^{o^{1}} & \tilde{u}_{2}^{1}x_{2}^{o^{1}} & \tilde{u}_{2}^{1}x_{3}^{o^{1}} & \tilde{u}_{2}^{1}x_{3}^{o^{1}} & \tilde{u}_{2}^{1} & -\tilde{u}_{1}^{1}x_{1}^{o^{1}} & -\tilde{u}_{1}^{1}x_{2}^{o^{1}} & -\tilde{u}_{1}^{1}x_{3}^{o^{1}} \\ \tilde{u}_{2}^{2}x_{1}^{o^{2}} & \tilde{u}_{2}^{2}x_{2}^{o^{2}} & \tilde{u}_{2}^{2}x_{3}^{o^{2}} & \tilde{u}_{2}^{2} & -\tilde{u}_{1}^{2}x_{1}^{o^{2}} & -\tilde{u}_{1}^{2}x_{2}^{o^{2}} & -\tilde{u}_{1}^{2}x_{3}^{o^{2}} \\ \dots & & & & & \\ \tilde{u}_{2}^{n}x_{1}^{o^{n}} & \tilde{u}_{2}^{n}x_{2}^{o^{n}} & \tilde{u}_{2}^{n}x_{3}^{o^{n}} & \tilde{u}_{2}^{n} & -\tilde{u}_{1}^{n}x_{1}^{o^{n}} & -\tilde{u}_{1}^{n}x_{2}^{o^{n}} & -\tilde{u}_{1}^{n}x_{3}^{o^{n}} \end{pmatrix}$$

Étape 1 : estimation de L

Identifier les paramètres revient à résoudre : $AL = U_1$

La solution de ce système, au sens des moindres carrés (c'est à dire en cherchant à minimiser $||AL-U_1||^2$), est donnée par les équations normales :

$$(A^t A) L = A^t U_1$$

Étape 2 : résolution analytique

Une fois *L* connu, on peut trouver certains paramètres du système projectif :

$$|o_{2}^{c}| = \frac{1}{\sqrt{l_{5}^{2} + l_{6}^{2} + l_{7}^{2}}},$$

$$\beta = |o_{2}^{c}| \sqrt{l_{1}^{2} + l_{2}^{2} + l_{3}^{2}},$$

$$o_{1}^{c} = \frac{l_{4}o_{2}^{c}}{\beta},$$

$$r_{11} = l_{1}\frac{o_{2}^{c}}{\beta}, \quad r_{12} = l_{2}\frac{o_{2}^{c}}{\beta}, \quad r_{13} = l_{3}\frac{o_{2}^{c}}{\beta},$$

$$r_{21} = l_{5}o_{2}^{c}, \quad r_{22} = l_{6}o_{2}^{c}, \quad r_{23} = l_{7}o_{2}^{c}.$$

Étape 2 : résolution analytique

De la matrice de rotation, on peut déduire les angles:

$$\phi = -\arctan(\frac{r_{23}}{r_{33}})$$

$$\gamma = -\arctan(\frac{r_{12}}{r_{11}})$$

$$\omega = \arctan(\frac{r_{13}}{-r_{23}\sin\phi + r_{33}\cos\phi})$$

Étape 3 : estimation des paramètres restant

Reste à identifier o_3^c et la focale $f = f_2 s_2$

Pour cela, nous repartons de l'équation initiale :

$$\tilde{u}_2 = f_2 \frac{r_{21} x_1^o + r_{22} x_2^o + r_{23} x_3^o + o_2^c}{r_{31} x_1^o + r_{32} x_2^o + r_{33} x_3^o + o_3^c}$$

Qui peut être mise sous la forme :

$$\tilde{u}_2o_3^c - f_2(r_{21}x_1^o + r_{22}x_2^o + r_{23}x_3^o + o_2^c) = -\tilde{u}_2(r_{31}x_1^o + r_{32}x_2^o + r_{33}x_3^o)$$

Étape 3 : estimation des paramètres restant

On pose alors:

$$B = \begin{pmatrix} \tilde{u}_{2}^{1} & -(r_{21}x_{1}^{o^{1}} + r_{22}x_{2}^{o^{1}} + r_{23}x_{3}^{o^{1}} + o_{2}^{c}) \\ \tilde{u}_{2}^{2} & -(r_{21}x_{1}^{o^{2}} + r_{22}x_{2}^{o^{2}} + r_{23}x_{3}^{o^{2}} + o_{2}^{c}) \\ & \dots \\ \tilde{u}_{2}^{n} & -(r_{21}x_{1}^{o^{n}} + r_{22}x_{2}^{o^{n}} + r_{23}x_{3}^{o^{n}} + o_{2}^{c}) \end{pmatrix}$$

$$R = \begin{pmatrix} -\tilde{u}_{2}^{1}(r_{31}x_{1}^{o^{1}} + r_{32}x_{2}^{o^{1}} + r_{33}x_{3}^{o^{1}}) \\ -\tilde{u}_{2}^{2}(r_{31}x_{1}^{o^{2}} + r_{32}x_{2}^{o^{2}} + r_{33}x_{3}^{o^{2}}) \\ \dots \\ -\tilde{u}_{2}^{n}(r_{31}x_{1}^{o^{n}} + r_{32}x_{2}^{o^{n}} + r_{33}x_{3}^{o^{n}}) \end{pmatrix}$$

Étape 3 : estimation des paramètres restant

On résout le système suivant : $B\begin{pmatrix} o_3^c \\ f_2 \end{pmatrix} = R$

On obtient le système d'équations normales suivant :

$$(B^t B) \begin{pmatrix} o_3^c \\ f_2 \end{pmatrix} = B^t R$$

Résolution avec les mêmes méthodes que précédemment

À ce point, tous les paramètres du modèle sont déterminés, la caméra est donc calibrée

N.B. cette méthode nécessite la connaissance a priori de s_2 pour remonter à la focale de la caméra

Exemple de projet

Projection d'une trace GPS sur photo

Trace GPS: coordonnées 3D du parcours réalisé

