Universidade Federal de Mato Grosso do Sul

Curso de Ciência da Computação Disciplina: Laboratório de Hardware

Professor: Ricardo Santos

Lista de Exercícios No. 02

1) Um ULA que manipula funções de lógica e aritmética é representada pela Figura 1 e tem seu funcionamento determinado pela Tabela 1.

Figura 1: Unidade de Lógica e Aritmética.

sel	Operação	Função	Unidade	
0000	y<=a	Transfere o valor de a	Aritmética	
0001	$y \le a+1$	Incrementa a	Aritmética	
0010	$y \le a-1$	Decrementa a	Aritmética	
0011	y<=b	Transfere o valor de b	Aritmética	
0100	$y \le b+1$	Incrementa b	Aritmética	
0101	$y \le b-1$	Decrementa b	Aritmética	
0110	$y \le a + b$	Soma a e b	Aritmética	
0111	$y \le a + b + cin$	Soma a e b com carry	Aritmética	
1000	y<=NOT a	Complementa a	Lógica	
1001	$y \le NOT b$	Complementa b	Lógica	
1010	$y \le a$ AND b	AND de a com b	Lógica	
1011	$y \le a OR b$	OR de a com b	Lógica	
1100	$y \le a NAND b$	NAND de a com b	Lógica	
1101	$y \le a$ NOR b	NOR de a com b	Lógica	
1110	$y \le x XOR b$	XOR de a com b	Lógica	
1111	y<=a XNOR b	XNOR de a com b	Lógica	

Tabela 1: Operações da ULA.

Projetar e implementar a ULA apresentada em VHDL. C e simule a solução verificando se funciona conforme esperado.

2) Projetar e implementar em VHDL o circuito digital que funcione como um vector shifter. Nesse tipo de circuito, a saída deve ser o valor deslocado para a esquerda do valor de entrada. O tamanho da saída é 2x o tamanho da entrada. A saída deve ser escolhida por um valor de entrada (sel). A Tabela 2 apresenta o funcionamento de um vector shifter com uma entrada de tamanho 4 bits e com valor "1111". A saída será uma das linhas (row) escolhida de acordo com uma entrada.

row(0):	0	0	0	0	1	1	1	1
row(1):	0	0	0	<u>1</u>	1	1	1	0
row(2):	0	0	1	1	1	1	0	0
row(3):	0	1	1	1	1	0	0	0
row(4):	1	1	1	1	0	0	0	0

Tabela 2: Operação de um vector shifter.

- deslocada de uma posição à esquerda. A saída é determinada por um valor de entrada (sel) e corresponderá a uma das linhas.
- 3) Toda entrada de um circuito digital, quando fornecida por chaves ou botões, é acompanhada por algumas oscilações nos momentos de transição. A onda desejada reflete a entrada durante os momentos de estabilidade do sinal e, para garantir essa estabilidade, existe um pequeno atraso que só é utilizado para garantir a estabilidade. Gerar uma onda estabilizada com base numa onda com oscilações é chamado debounce. Para implementá-lo, é necessário um clock com frequência alta o suficiente para que a entrada seja amostrada várias vezes antes de garantirmos uma saída estável. Isso significa que estamos interessados num "zoom" do sinal de entrada, especificamente nos momentos de oscilações. A Figura 2 apresenta o funcionamento de um circuito de debounce. O circuito de debounce só considera como estável um sinal quando o sinal é lido pela terceira vez com o mesmo valor (observe o momento exato da transição).

Figura 2: Circuito de debounce.

Implemente em VHDL um circuito que receba como entrada um sinal w e forneça como saída o sinal z, que é a entrada w com debounce de 3 ciclos de clock (conforme o exemplo da Figura 2. Sua entidade principal deve ser chamada debounce. Gere uma forma de onda de entrada e simule o circuito. Procure simular diversas situações para garantir que seu circuito esteja funcionando adequadamente.