Disposition til **Diskret Matematik**

Malthe Munk Karbo '14

11. juni 2017

INDHOLD

1	Hele tal	2
2	Induktion	4
3	Mængdelærer	6
4	Ækvivalensreltationer	9
5	Afbildninger	11
6	Kombinatorik og tællemetoder	13
7	Permutationer	15
8	Ordningsrelationer	17
9	Grupper og modulær aritmetik	19

KAPITEL 1

HELE TAL

Taleplan

- 1. Definer de hele tal
- 2. Definer en divisor
- 3. DFP
- 4. GDFP
- 5. AFS

Beviser

Definition 1.1 (5)

Et helt tal d kaldes en **divisor** i et andet helt tal a, hvis det findes et helt tal q så dq = a. Vi skriver d|a og med det menes der at d går op i a og af er et **multiplum** af d.

Definition 1.2 (11)

Et helt tal $a \ge 2$ kaldes et **primtal** såfremt det ikke har andre divisorer end de trvielle divisorer $\pm a$ og ± 1 .

Definition 1.3 (13)

Hvis d|a og d|b siges d at være en **fælles** divisor for a, b. Den største fælles divisor for $a, b \in \mathbb{Z}$ betegnes (a, b). Hvis (a, b) = 1 siges a og b at være **indbyrdes** primiske.

Proposition 1.4 (26, Det fundamentale primtalslemma)

Hvis a og b er hele tal og p er et primtal, da gælder

$$p|ab \iff p|a \ eller \ p|b.$$

Bevis

Først vises \Leftarrow : Antag af p|a. Da findes $q \in \mathbb{Z}$ sådan at

$$a = pa$$

Og vi ser at
$$ab = pqb \iff \frac{pqb}{p} = qb \in \mathbb{Z}$$

Proposition 1.5 (108, Generelle fundamentale primtalslemma)

Hvis $a_1, \ldots, a_n \in Z$ og p er et primtal, da gælder

$$p|a_1 \cdots a_n \implies p|a_i \text{ for } et1 \le i \le n$$

Bevis.

For n=1 gælder det. antag det gælder for n, altså hvis $a_1,\ldots,a_n\in\mathbb{Z}$ så gælder

$$p|a_1 \cdots a_n \implies p|a_i \text{ for et } 1 \le i \le n.$$

Antag nu at $a_1, \ldots, a_{n+1} \in Z$ og $p|a_1 \cdots a_{n+1} = (a_1 \ldots a_n)a_{n+1}$. Pr. DFP har vi at

$$p|(a_1 \dots a_n)$$
 eller $p|a_{n+1}$

Men per antagelse har vi

$$p|a_1$$
 eller $p|a_2$ eller ... eller $p|a_n$

og vi har da at

 $p|a_i$

for eller and et $1 \leq i \leq n+1$

Proposition 1.6 (30, Aritmetikkens fundamentalsætning)

Ethvert naturligt tal n > 1 har en entydig primtalsopløsning, i.e. $\exists ! p_1 \dots p_s$ s.t.

$$n = p_1 p_2 \cdots p_s$$

KAPITEL 2

INDUKTION

Taleliste

- 1. Peanos axiomsystem
- 2. simpel induktion
- 3. fuldstændig induktion

Beviser

Definition 2.1 (Peanos axiomsystem)

De naturlige tal er en mængde \mathbb{N} med en funktion $S \colon \mathbb{N} \to \mathbb{N}$ s.t.

- 1. $1 \in \mathbb{N}$.
- 2. For $n \in \mathbb{N}$ gælder der $1 \neq S(n)$.
- 3. For $m, n \in \mathbb{N}$ gælder der $m \neq n \implies S(n) \neq S(m)$.
- 4. INDUKTIONSAKSIOMET Hvis $A \subseteq \mathbb{N}$ har egenskaberne $1 \in A$ og $m \in A \implies S(m) \in A$ så gælder $A = \mathbb{N}$.

Proposition 2.2 (Simpel induktion)

Lad p(x) være et prædikat i x som løber over \mathbb{N} . Hvis der gælder for p(x) at

- 1. p(1) er sand,
- 2. for alle $m \in \mathbb{N}$ kan man af p(m) slutte p(m+1),

da gælder p(n) for alle $n \in \mathbb{N}$

Bevis.

Lad p(x) være et prædikat i x over \mathbb{N} . Antag p(1) er sand samt $p(m) \implies p(m+1)$ for alle $m \in \mathbb{N}$. Hvis

$$A = \{n \in \mathbb{N} | p(n) \text{ er sand} \}$$

opfylder $A \subseteq \mathbb{N}$ induktionsaksiomet:

$$1 \in A$$
, $m \in A \implies S(m) = m + 1 \in A$

så $A = \mathbb{N}$ og p(n) er sand for alle $n \in \mathbb{N}$.

Proposition 2.3 (Fuldstændig induktion)

Hvis p(x) er et prædikat i x over \mathbb{N} og

- 1. p(1) er sand
- 2. for alle $m \in \mathbb{N}$ kan man af $p(1), \ldots, p(m)$ slutte p(m+1).

Da er p(n) sand for alle $n \in \mathbb{N}$.

Bevis.

lad p(x) være et prædikat i $x \in \mathbb{N}$ og antag at p(1) er sand og at man af $p(1), \ldots, p(m)$ kan slutte p(m+1). Betragt

$$q(n) = (\forall k \in \mathbb{N} \colon k \le n \implies p(k)).$$

Hvis q(n) er sand for $n \in \mathbb{N}$ har vi at $k \le n$ medfører p(k) er sand for alle $k \in \mathbb{N}$, og da $n \le n$ er p(n) da sand. q(1) er sand da $\forall k \le 1 \implies p(k)$ er sand da $k \le 1 \implies k = 1$ og p(1) er sand. Antag nu er q(m) er sand for m. Da $k \le m$ er sandt for $k = 1, 2, \ldots, m$ har vi p(k) for $k = 1, 2, \ldots, m$. pr. antagelse kan vi nu slutte p(m+1). Men så har vi

$$k \le m+1 \implies p(k)$$

og så har vi q(m+1)

MÆNGDELÆRER

Taleliste

- 1. Definition af ens mængder
- 2. Eksistens og entydighed af den tomme mængde \emptyset
- 3. Distributive love
- 4. De Morgan's love

Beviser

Definition 3.1

Lad A, B være mængder. Da er A = B hvis

$$x \in A \iff x \in B$$
.

Proposition 3.2 (Eksistens og entydighed af den tomme mængde)

Der eksisterer præcist én mængde uden nogen elementer

Bevis.

Lad A, B være tomme mængder. Da er A = B for udsagnene

$$x \in A, \quad x \in B$$

er begge falske for alle x.

Definition 3.3

For $delmængder A, B \subseteq X$ har vi følgende notationer

$$A \cap B := \{x \in X \colon x \in A \text{ and } x \in B\}$$

$$A \cup B := \{x \in X \colon x \in A \text{ or } x \in B\}$$

$$A \subseteq B \text{ hvis } x \in A \Longrightarrow x \in B$$

$$A \backslash B := \{x \in X \colon x \in A \text{ and } x \ni B\}$$

$$A^c := X \backslash A$$

3. Mængdelærer

Proposition 3.4 (Distributive love)

For A, B, C mængder gælder

$$A \cap (B \cup C) = (A \cap B) \cup (A \cap C)$$
$$A \cup (B \cap C) = (A \cup B) \cap (A \cup C)$$

Proposition 3.5 (Distributive lovea)

For en mængde A og end familie af mængder $\{B_i\}_{i\in I}$ gælder

$$A \cap \left(\bigcup_{i \in I} B_i\right) = \bigcup_{i \in I} (A \cap B_i)$$
$$A \cup \left(\bigcap_{i \in I} B_i\right) = \bigcap_{i \in I} (A \cup B_i)$$

Bevis

Viser
$$A \cap \left(\bigcup_{i \in I} B_i\right) = \bigcup_{i \in I} (A \cap B_i)$$
:

$$x \in A \cap \left(\bigcup_{i \in I} B_i\right) \iff (x \in A) \text{ and } (x \in \bigcup_{i \in I} B_i)$$

$$\iff (x \in A) \text{ and } (\exists i \in I : x \in B_i)$$

$$\iff \exists i \in I : (x \in A) \text{ and } (x \in B_i)$$

$$\iff \exists i \in I : x \in A \cap B_i$$

$$\iff x \in \bigcup_{i \in I} (A \cap B_i).$$

Bevises for den anden identitet forløber analogt.

Proposition 3.6 (De morgan's love)

Lad X være en mængde og $\{B_i\}_{i\in I}\subseteq X$ være en familie af delmængder af X. da gælder:

$$X \setminus \left(\bigcup_{i \in I} B_i\right) = \bigcap_{i \in I} (X \setminus B_i)$$
$$X \setminus \left(\bigcap_{i \in I} B_i\right) = \bigcup_{i \in I} (X \setminus B_i).$$

Bevis.

For den første, lad X og $\{B_i\}_{i\in I}\subseteq X$ som antaget. og vi ser

$$x \in X \setminus \left(\bigcup_{i \in I} B_i\right) \iff x \in X \text{ and } x \notin \bigcup_{i \in I} B_i$$

$$\iff x \in X \text{ and } \forall i \in I \colon x \notin B_i$$

$$\iff \forall i \in I \colon x \in X \text{ and } x \notin B_I$$

$$\iff \forall i \in I \colon x \in X \setminus B_i$$

$$\iff x \in \bigcap_{i \in I} (X \setminus B_i)$$

Beviset for den anden identitet forløber analogt.

ÆKVIVALENSRELTATIONER

Taleliste

- 1. En relation som delmængde
- 2. Definition på ækvivalensreltation
- 3. Definition på ækvivalensklasser
- 4. Sætning om entydighed af ækvivalensklasser
- 5. Definition på en klassedeling
- 6. Sætning: $M/_{\sim}$ er en klassedeling for alle \sim ækvivalensrelationer

Beviser

Definition 4.1 (Relation som delmængde af kartesisk produkt)

For to mængde A, B er en relation $R \subseteq A \times B$. Den kan have forskellige egenskaber.

Definition 4.2 (Ækvivalensrelationer)

En relation $\sim \subseteq A \times A$ er en ækvivalensrelation hvis den er **refleksiv**, **symmestrisk** og transitiv, i.e. hvis:

- 1. Refleksiv: $\forall x \in A : x \sim x$.
- 2. Symmetri: $x \sim y \implies y \sim x$.
- 3. Transitivitet: $(x \sim y)$ og $(y \sim z)$ medfører $x \sim z$

Definition 4.3 (Ækvivalensklasser)

 $\mathit{Hvis} \sim \mathit{er} \ \mathit{en} \ \mathit{xkvivalensrelation} \ \mathit{på} \ \mathit{A}. \ \mathit{For} \ \mathit{a} \in \mathit{A} \ \mathit{definerer} \ \mathit{vi} \ \mathit{mængden}$

$$[a] = \{x \in A \colon x \sim a\},\$$

som vi betegner med ækvivalensklassen for a. Dette giver mening, da $\forall a \in A$ gælder der $a \sim a$ så $\forall a \in A$: $[a] \neq \emptyset$.

Proposition 4.4

 $Lad \sim vare \ en \ akvivalensrelation \ på \ en \ mangde \ A. \ For \ a,b \in A \ galder \ der$

$$[a] = [b] \iff a \sim b$$

Revis

"
$$\Rightarrow$$
 ": Antag $[a] = [b]$. Da $a \in [b]$ gælder der $a \sim b$. " \Leftarrow ": Lad $a, b \in A$ med $a \sim b$. Da $a \in [a]$ samt $a \sim b$ gælder $a \in [b]$.

Definition 4.5 (Klassedeling (**Partitioning**))

En familie Ω af ikke tomme delmængder af en mængde M kaldes en **klassedeling** af M hvis elementerne i Ω er parvist disjunkte og foreningen er lig M, i.e.

1.
$$\forall A \in \Omega \colon A \neq \emptyset$$

2.
$$\forall A, B \in \Omega : A = B \ eller \ A \cap B = \emptyset$$

$$3. \bigcup_{A \in \Omega} A = M$$

Proposition 4.6 (Ækvivalensklasser udgør klassedeling)

Lad \sim være en ækvivalensrelation på M. Da udgør ækvivalensklasserne $(M/_{\sim})$ en klassedeling af M.

Bevis.

For $a \in M$ gælder der $a \in [a]$ $(a \sim a)$, så elementerne i $(M/_{\sim})$ er ikke tomme. Pr. tidligere bevis har vi at [a] = [b] eller $[a] \cap [b] = \emptyset$ for alle $a, b \in M$. For at vise $\bigcup_{a \in M} [a] = M$ viser vi inklusion to veje.

$$\forall a \in M : [a] \subset M \implies \bigcup_{a \in M} [a] \subset M.$$

$$a \in M \implies a \in [a] \implies a \in \bigcup_{a \in M} [a]$$

Som ønsket.

AFBILDNINGER

Taleliste

- 1. Definition på en relation
- 2. surjektivitet og injektivitet
- 3. billedmængde
- 4. sætning om billede af forening og billede af fællesmængde
- 5. evt modbeviser til sætningen ovenover

Beviser

Definition 5.1 (Afbildning)

Givet to mængder A, B sige en relation $f \subseteq A \times B$ at være en afbildning hvis

- 1. Hvis $a \in A$ så eksisterer $b \in B$ sådan at afb.
- 2. Hvis $a \in A$ og $b_1, b_2 \in B$ sådan at afb_1 og afb_2 må $b_1 = b_2$.

En relation som opfylder disse skrives $f: A \to B$.

Definition 5.2 (Surjektivitet)

En afbildning $f: A \to B$ siges at være **surjektiv** hvis givet $b \in B$ så eksisterer et $a \in A$ sådan at

$$f(a) = b.$$

Definition 5.3 (injektivitet)

En afbildning $f: A \to B$ siges at være **injektiv** hvis givet der gælder for alle $x, y \in A$ at

$$f(x) = f(y) \implies x = y$$

Definition 5.4 (Bijektivitet)

En afbildning $f: A \to B$ siges at være bijektiv hvis den både er injektiv og surjektiv

Definition 5.5 (Billedmængde)

For en afbildning $f \colon A \to B$ defineres billedmængden for f af en delmængde $M \subseteq A$ ved

$$f(M) := \{ y \in B \colon \exists x \in M \ f(x) = y \}$$

Proposition 5.6 (Billedmængde inklusioner)

For en funktion $f: X \to Y$ og en familie af delmængder $\{T_i\}_{i \in I} \subseteq X$ gælder der

1.
$$f(\bigcup_{i \in I} T_i) = \bigcup_{i \in I} f(T_i)$$
.

2.
$$f(\bigcap_{i \in I} T_i) \subseteq \bigcap_{i \in I} f(T_i)$$
.

Bevis.

(1):

$$y \in f(\bigcup_{i \in I} T_i) \iff \exists x \in X \colon x \in \bigcup_{i \in I} T_i \text{ and } f(x) = y$$
$$\iff \exists x \in X \exists i \in I \colon x \in T_i \text{ and } f(x) = y$$
$$\iff \exists i \in I \exists x \in X \colon x \in T_i \text{ and } f(x) = y$$
$$\iff \exists i \in I \colon y \in f(T_i)$$
$$\iff y \in \bigcup_{i \in I} f(T_i) \colon$$

(2):

$$y \in f(\bigcap_{i \in I} T_i) \iff \exists x \in X : x \in \bigcap_{i \in I} T_i \text{ and } f(x) = y$$

$$\iff \exists x \in X \forall i \in I : x \in T_i \text{ and } f(x) = y$$

$$\iff \forall i \in I \exists x \in X : x \in T_i \text{ and } f(x) = y$$

$$\iff \forall i \in I : y \in f(T_i)$$

$$\iff y \in \bigcap_{i \in I} f(T_i).$$

+ evt. modbevis til (2)

KOMBINATORIK OG TÆLLEMETODER

Taleliste

- 1. Definer kardinalitet
- 2. Sætning om kardinalitet af disjunkte mængder A, B
- 3. Sætning om kardinalitet af $A \times B$ (modificeret bevis)
- 4. Sætning ovenover for $A_1 \times A_2 \times \cdots \times A_n$.

Beviser

Definition 6.1 (Kardinalitet)

For en mængde A skriver vi |A| om A's kardinalitet.

Proposition 6.2 (kardinalitet af disjunkte mængder)

For to endelige mængder A, B som er disjunkte gælder der

$$|A \cup B| = |A| + |B|.$$

Bevis.

For $A,B \mod |A|=n, |B|=m$ er der bijektive afbildninger $f\colon A\to \{1,\ldots,n\}$ og $g\colon B\to \{1,\ldots,m\}$. Sæt

$$h(x) = \begin{cases} f(x) & x \in A \\ m + g(x) & x \in B \end{cases}$$

. $h: A \cup B \to \{1, \dots, n+m\}$ bijektivt.

Proposition 6.3

For to endelige mængder $A \times B$ gælder der

$$|A \times B| = |A||B|$$

Bevis.

Lad |A| = n og |B| = m. Vi ser at

$$A \times B = \bigcup_{1 \le i \le n} \{(a_i, b_k)\}_{1 \le k \le m}$$

Samt at for $k \neq s$ gælder der $\{(a_k, b_j)_{1 \leq j \leq m} \cap \{(a_s, b_j)\}_{1 \leq j \leq m} = \emptyset$. Mængderne er oplagt ikke tomme, da A, B har kardinalitet > 0. Derfor har vi pr. den additive tællemetode for parvist disjunkte mængder, at

$$|A \times B| = \sum_{j=1}^{n} |\{(a_j, b_k)\}_{1 \le k \le m}| = \sum_{j=1}^{n} m = nm = |A||B|$$

PERMUTATIONER

Taleliste

- 1. Definition på en permutation $\sigma \colon A \to A$
- 2. Sætning injektiv iff surjektiv *
- 3. Definition på flytpunkter og fixpunkter
- 4. Definition på en cykel
- 5. Definition på en Bane
- 6. sætning 412 klassedeling baner
- 7. Cykelsætningen*

Beviser

Definition 7.1 (Definition på en permutation)

En bijektiv afbildning $\sigma \colon A \to A$ kaldes en permutation af mængden A

Definition 7.2 (Fix- og flyttepunkter)

For en permutation $\sigma \colon A \to A$ defineres mængderne

$$fix(\sigma) := \{a \in A : a = \sigma(a)\}$$
 $flyt(\sigma) := \{a \in A : a \neq \sigma(a)\}$

Definition 7.3 (Definition på en cykel)

En p-cykel er en permutation σ af længde p hvor

$$\sigma(a_1) = a_2$$

$$\sigma(a_2) = a_3$$

$$\sigma(a_p) = a_1$$

og den noteres med cykelnotation $\sigma = (a_1 \ a_2 \dots a_p)$. Hvis |A| = n > p er $\sigma(a_i) = a_i$ for $p < i \le n$. (TEGNING)

Definition 7.4 (bane)

Lad σ være en permutation på en endelig mængde A. Da defineres banen for a under σ ved

$$B_a = \{a, \sigma(a), \sigma^2(a), \dots\}$$

dvs hvis vi sætter $a := a_1$ så udgør B_a en fælge af p, nemlig $a_1, a_2, a_3, \ldots, a_p$ elementer hvor p er længden af banen. Dertil ses det at en bane B svarer til en cykel γ , nemlig $(a_1 \ a_2 \ \ldots \ a_p)$ med

$$\gamma(a) = \sigma(a) \text{ hvis } a \in B$$

 $\gamma(b) = b \text{ ellers}$

Og vi får ydermere at

$$a \in B_b \iff B_a = B_b$$

Proposition 7.5 (banerne for en permutation udgør en klassedeling på en endelig mængde A)

Lad σ være en permutation på en endelig mængde A. Da udgør banerne for σ en klassedeling af A. Med andre ord

- 1. Banerne er ikke tomme
- 2. Hvis to baner har et element tilfælles er de ens
- 3. foreningsmængden af alle banerne er hele A

Bevis.

(1) og (3) følger direkte fra definitionen af banerne, da $\forall a \in A : a \in B_a$. (2): hvis $c \in B_a$ og $c \in B_b$ da findes $m, n \in \mathbb{N}$ s.t. $c = \sigma^n(a)$ og $c = \sigma^m(b)$. for m = n er vi færdige (injektivitet). Antag uden tab af generelitet at m > n. Da er

$$\sigma^n(a) = \sigma^m(a) = \sigma^{m-n+n}(a) = \sigma^n(\sigma^{m-n}(b))$$

og per injektivitet fås $a = \sigma^{m-n}(b)$ så $a \in B_b$ så $B_a = B_b$

ORDNINGSRELATIONER

Taleliste

- 1. Definition på en ordningsrelation
- 2. Definition på en total ordningsrelation
- 3. Definition på en majorant
- 4. definition på supremum
- 5. Sætning om supremum

Beviser

Definition 8.1 (Partiel ordning)

En reltation $\leq \subseteq M \times M$ siges at være en partiel ordningsrelation hvis den er refleksiv, antisymmetrisk og transitiv, i.e.,

- 1. $\forall a \in M \ gælder \ a \leq a$
- 2. $\forall a, b \in M$ gælder $a \leq b$ og $b \leq a$ medfører a = b
- 3. $\forall a, b, c \in M$ gælder $a \leq b$ og $b \leq c$ medfører $a \leq c$

Definition 8.2 (Totalordning)

 $Hvis \leq er \ en \ partiel \ ordningsrelation \ på \ M \ som \ opfylder$

$$\forall a, b \in M : a \leq b \ eller \ b \leq a$$

 $siges \leq at \ være \ en \ total \ ordning \ på \ M.$

Definition 8.3 (Majorant)

Lad $A \subseteq (M, \leq)$ være en delmængde, da er $x \in M$ en majorant for A hvis

$$\forall a \in A : a \leq x$$

Definition 8.4 (Supremum)

Lad $A \subseteq (M, \leq)$. Et element $b \in M$ er et supremum for A hvis

1. b er en majorant for A

2. b er den mindste majorant for A. (x majorant for A medfører $b \le x$)

Proposition 8.5 (tilstrækkelige betingelser for supremum) Lad $A \subseteq (M, \leq)$ hvor (M, \leq) er totalordnet. Da er $b = \sup A$ hvis og kun hvis

- 1. b er en majorant for A
- 2. $\forall x < b \ \exists a \in A \colon a > x$

Bevis.

(1) følger af antagelse. (2). Vi har

$$B = \sup A \iff (x \text{ er en majorant for } A \implies b \le x)$$

$$\iff (x \text{ er en majorant for } A \implies \neg(x < b)$$

$$\iff (x < b) \implies x \text{ ikke en majorant for } A$$

$$\iff \forall x < b \exists a \in A \colon a > x$$

som ønsket.

hvor der er brugt totalordning samt kontraposition

GRUPPER OG MODULÆR ARITMETIK

Taleliste

- 1. Definer komposition
- 2. Associativitet og kommutivitet for komposition
- 3. Definition gruppe
- 4. $a \equiv b \pmod{n}$ ækvivalens relation på $\mathbb Z$
- 5. $\mathbb{Z}/n\mathbb{Z}$ er en gruppe