65-я Всероссийская научная конференция МФТИ

ЛФИ - Секция «Фундаментальные взаимодействия и космология»

1. Магнитооптическая структура отводных каналов ByPass в синхротроне NICA для поиска ЭДМ в режиме накопительного кольца

2. Рассмотрение адаптированной структуры Nuclotron для поиска EDM

65 всероссийская научная конференция Докладчик: Колокольчиков С. (kolokolchikov@inr.ru)

Со-авторы: Сеничев Ю.

Институт Ядерных Исследований РАН, Москва, Россия

Долгопрудный, 3 апреля 2023 г.

65-я Всероссийская научная конференция МФТИ

ЛФИ - Секция «Фундаментальные взаимодействия и космология»

1. Магнитооптическая структура отводных каналов ByPass в синхротроне NICA для поиска ЭДМ в режиме накопительного кольца

65 всероссийская научная конференция Докладчик: Колокольчиков С. (kolokolchikov@inr.ru)

Со-авторы: Сеничев Ю.

Институт Ядерных Исследований РАН, Москва, Россия

Долгопрудный, 3 апреля 2023 г.

TABLE OF CONTENTS

☐ EDM Search – «Frozen Spin» – «Quasi-Frozen Spin» Optics Modernization **□** Experiment parameters ■ ByPass Optics Design - 3 quadrupoles - 5 quadrupoles

- Real

□ Spin Tracking

CP-violation

Motivation for EDM Search

<u>First message</u> to search for <u>Electric Dipole Moments</u> (EDM) of fundamental particles: it came to understand the **CP violation**

<u>Second message</u> for <u>EDM</u> of fundamental particles:

the baryon asymmetry of the Universe that represents the fact of the prevalence of matter over antimatter

In 1967 A.Sakharov has shown three necessary conditions for baryogenesis (initial creation of baryons)

- Baryon number violation;
- C-symmetry and <u>CP-symmetry violation</u>;
- Interactions out of thermal equilibrium.

The analysis done by Sakharov, showed that this <u>CP-violation is absolutely necessary</u> to explain why in the visible universe there is a <u>MATTER</u>, but there is practically no <u>ANTIMATTER</u>.

Neutrons EDM

EDM Search: T-BMT Equations

The spin is a quantum value, but in the classical physics representation the "spin" means an expectation value of a quantum mechanical spin operator:

T-BMT Equations

$$\begin{split} \frac{d\vec{S}}{dt} &= \vec{S} \times \left(\overrightarrow{\Omega}_{MDM} + \overrightarrow{\Omega}_{EDM} \right), \\ \overrightarrow{\Omega}_{MDM} &= \frac{q}{m\gamma} \bigg\{ (\gamma G + 1) \overrightarrow{B}_{\perp} + (G + 1) \overrightarrow{B}_{\parallel} - \left(\gamma G + \frac{\gamma}{\gamma + 1} \right) \frac{\overrightarrow{\beta} \times \overrightarrow{E}}{c} \bigg\}, \\ \overrightarrow{\Omega}_{EDM} &= \frac{q\eta}{2m} \bigg(\overrightarrow{\beta} \times \overrightarrow{B} + \frac{\overrightarrow{E}}{c} \bigg), \qquad G = \frac{g-2}{2}, \quad - \text{particle magnetic anomaly} \\ d &= \eta \frac{q}{2mc} s \quad - \text{EDM factor} \end{split}$$

MDM term

Depend on both electric & magnetic field

EDM Search: «Frozen Spin» for protons

«Frozen Spin» for protons

- 1) B = 0;
- 2) «magic» energy.

T-BMT Equations

$$\begin{split} \frac{d\vec{S}}{dt} &= \vec{S} \times \left(\overrightarrow{\Omega}_{MDM} + \overrightarrow{\Omega}_{EDM} \right), \\ \overrightarrow{\Omega}_{MDM} &= \frac{q}{m\gamma} \left\{ (\gamma G + 1) \overrightarrow{B}_{\perp} + (G + 1) \overrightarrow{B}_{\parallel} - \left(\gamma G + \frac{\gamma}{\gamma + 1} \right) \frac{\overrightarrow{\beta} \times \overrightarrow{E}}{c} \right\}, \\ \overrightarrow{\Omega}_{EDM} &= \frac{q\eta}{2m} \left(\overrightarrow{\beta} \times \overrightarrow{B} + \frac{\overrightarrow{E}}{c} \right), \qquad G &= \frac{g-2}{2}, \end{split}$$

EDM Search: «Frozen Spin» for protons

In the **method** the beam is injected in the **purely electrostatic ring** with the spin directed along momentum $S \parallel p$ and $S_{\perp}E$; $S=\{0,0,S_z\}$ and $E=\{E_x,0,0\}$

T-BMT Equations

$$\begin{split} \frac{d\vec{S}}{dt} &= \vec{S} \times (\vec{\Omega}_{MDM} + \vec{\Omega}_{EDM}), \\ \vec{\Omega}_{MDM} &= \frac{q}{m\gamma} \{ - \} \\ \vec{\Omega}_{EDM} &= \frac{q\eta}{2m} (- + \frac{\vec{E}}{c}), \qquad G = \frac{g-2}{2}, \end{split}$$

Spin retains its orientation during the entire time of rotation in the ring in «Frozen Spin»

EDM Search: «Frozen Spin» for deutrons

T-BMT Equations

$$\begin{split} \frac{d\vec{S}}{dt} &= \vec{S} \times \left(\overrightarrow{\Omega}_{MDM} + \overrightarrow{\Omega}_{EDM} \right), \\ \overrightarrow{\Omega}_{MDM} &= \frac{q}{m\gamma} \left\{ (\gamma G + 1) \overrightarrow{B}_{\perp} + \underbrace{ - \left(\gamma G + \frac{\gamma}{\gamma + 1} \right) \frac{\vec{\beta} \times \vec{E}}{c}} \right\}, \\ \overrightarrow{\Omega}_{EDM} &= \frac{q\eta}{2m} \left(\vec{\beta} \times \vec{B} + \frac{\vec{E}}{c} \right), \qquad G = \frac{g-2}{2}, \end{split}$$

Deutron $G_d = -0.1429$ Proton $G_p = +1.7928$

The spin of the reference particle is always oriented along the momentum

Frozen spin lattice for deuteron based on the «B+E» elements

$$\Omega_{MDM} = G\overrightarrow{B_y} + \left(\frac{1}{\gamma^2 - 1} - G\right)\left(\frac{\overrightarrow{\beta_z}}{c} \times \overrightarrow{E_x}\right) = 0 \implies E_x \approx GB_y c\beta \gamma^2$$

EDM Search: «Frozen Spin»

EDM Search: «Quasi-Frozen Spin»

$$\Phi_{arc}^{B} = \pi$$

Spin Rotation in arc by magnetic field
$$B$$

$$\Phi_S^{arc} = \gamma G \cdot \Phi_{arc}^B$$

Spin Rotation in Wien Filter by
$$E$$
, B field

$$\Phi_S^E = -\left(\gamma G + \frac{\gamma}{\gamma + 1}\right)\beta^2 \cdot \Phi_{SS}^E$$

$$\Phi_S^B = (\gamma G + 1) \cdot \Phi_{SS}^B$$

$$\Phi_{SS}^E = \Phi_{SS}^B$$

$$\Phi_S^B + \Phi_S^E = \Phi_S^{arc}$$

Spin <u>does not</u> retain orientation throughout the entire period of circulation BUT restores orientation on a straight section

EDM Search: Electrical Deflectors

EDM Search: Wien Filters

Experiment parameters

Energy of experiment

- «Magic» energy only for electrostatic machines.
 - NICA has magnetic arcs!
- Particles magnetic moment anomaly deutron $G_d=-0.1429$, proton $G_p=1.7928$ $\pi\cdot\gamma G_d/2{\sim}0.25$ at 240 MeV ($\gamma=1.129$)
- The largest scattering cross-section at 270 MeV

Gold
$$A_g := 197$$

$$Z_g := 79$$

$$W_g := 4500 \quad \frac{MeV}{u}$$

$$E_{kin.g} := W_g \cdot \frac{A_g}{Z_g} = 1.122 \times 10^4$$

$$\gamma_g := \frac{(m + W_g)}{m} = 5.831$$

$$\beta_g := \sqrt{1 - \frac{1}{\gamma_g^2}} = 0.985$$

$$p_{0g} := m \cdot \beta_g \cdot \gamma_g = 5.351 \times 10^3 \quad \frac{MeV}{u}$$

$$E_g := \sqrt{\left(m \cdot \frac{A_g}{Z_g}\right)^2 + W_g^2} = 5.064 \times 10^3$$

$$Br_g := \frac{A_g}{Z_g} \cdot \frac{p_{0g}}{c} \cdot 10^6 = 44.479$$

$$B_{dip.g} := \frac{2\pi \cdot Br_g}{L_{din} \cdot N_{din}} = 1.801$$

Deutrons

$$A_{\mathbf{d}} := 2$$

$$Z_{\mathbf{d}} := 1$$

$$W_{\mathbf{d}} := 120 \frac{\text{MeV}}{\mathbf{u}}$$

$$E_{kin.d} := W_d \cdot \frac{A_d}{Z_d} = 240$$

$$\gamma_{\mathbf{d}} := \frac{\left(\mathbf{m} + \mathbf{W}_{\mathbf{d}}\right)}{\mathbf{m}} = 1.129$$

$$\beta_{\mathbf{d}} := \sqrt{1 - \frac{1}{\gamma_{\mathbf{d}}^2}} = 0.464$$

$$p_{0d} := m \cdot \beta_d \cdot \gamma_d = 487.809$$
 $\frac{\text{MeV}}{m}$

$$E_d := \sqrt{\left(m \cdot \frac{A_d}{Z_d}\right)^2 + W_d^2} = 1.867 \times 10^3$$

$$Br_{d} := \frac{A_{d}}{Z_{d}} \cdot \frac{p_{0d}}{c} \cdot 10^{6} = 3.252$$

$$B_{\text{dip.d}} := \frac{2\pi \cdot Br_{\text{d}}}{L_{\text{dip}} \cdot N_{\text{dip}}} = 0.132$$

NICA Complex

NICA Complex IRL

Optics Modernization

- Initial Straight Section contains
 MPD and SPD detectors and other
- 2. Storage Ring mode to get $T_{SC} \sim 1000 \, \mathrm{s}$

Ion mode of NICA

ByPass Optics Design

Geometry of arcs is planned to remain unchanged

use NICA for various experiments

$$L_{acc} = 503.04 \text{ m}$$

 $L_{arc} = 142.15 \text{ m}$
 $L_{SS} = 109.6 \text{ m}$

For beam deflection

$$lpha=9^{\circ}$$
 $L_{dip}^{BP}=50~\mathrm{cm}$
 $B_{BP}=1~\mathrm{T}$

ByPass 3 quadrupoles

Schematic diagram

$$L_{x_SS} = 109,424$$

- 3 quadrupoles
- Symmetrical straight section to arc
- Deflection by 1 m in alternative straight section
- M1 and M2 matching sections identical
- Total length $L_{3quad}^{acc} = 503.46 \text{ m}$

ByPass 3 quadrupole Twiss-functions

ByPass 5 quadrupoles

Schematic diagram

- <u>5</u> quadrupoles
- Symmetrical straight section to arc
- Deflection by <u>1.46</u> m in alternative straight section
- M1 and M2 matching sections identical
- Total length $L_{5quad}^{acc} = 510.02 \text{ m}$

ByPass 5 quadrupoles Twiss-functions

ByPass REAL

Schematic diagram

- 5 quadrupoles
- Regular straight section
- Deflection by 1.46 m in alternative straight section
- M1 and M2 matching sections different
- Total length $L_{real}^{acc} = 503.5 \text{ m}$

ByPass REAL Twiss

SPIN TRACKING

Spin Tracking in 1/2 of ByPass NICA Storage Ring

Vertically polarized particle $\overrightarrow{S_0} \sim (0, 0, 1)$

CONCLUSIONS

- Use NICA as a Storage Ring for EDM experiments.
- Considered modernization by creation of an alternative straight sections parallel to the native ones by using ByPass channels.
- Special elements Wien Filters at straight section to compensate spin rotation in the arcs.
- Considered 2 principals schemes of ByPass channel.
- Got the most realistic case, where straight section is fully regular.
- As arcs remain unchanged, this allows to use NICA in various experiments.
- Spin Tracking simulations shows that ByPass NICA restore spin orientation.

65-я Всероссийская научная конференция МФТИ

ЛФИ - Секция «Фундаментальные взаимодействия и космология»

2. Рассмотрение адаптированной структуры Nuclotron для поиска EDM

65
ВСЕРОССИЙСКАЯ
НАУЧНАЯ
КОНФЕРЕНЦИЯ
МФТИ

Докладчик: Колокольчиков С. (kolokolchikov@inr.ru)

Со-авторы: Сеничев Ю.

Институт Ядерных Исследований РАН, Москва, Россия

Долгопрудный, 3 апреля 2023 г.

NICA Complex

Nuclotron Complex

Nuclotron Complex

Основные задачи

В этой работе мы рассмотрели магнитооптическую структуру Нуклотрона адаптированную для поиска электрического дипольного момента дейтрона (dEDM).

При решении этой задачи необходимо было решить четыре проблемы:

- реализовать концепцию «квази-замороженного спина в предлагаемой оптике,
- увеличения длин прямых промежутков между арками,
- обеспечения нулевой дисперсии на прямых участках,
- сохранение длины кольца ускорителя с учетом размещения требуемого оборудования.

Для реализации:

- первая проблема, увеличение прямых участков до требуемой длины, решается за счет увеличения максимального магнитного поля в поворотных магнитах до величины 1.8 Тесла,
- Подавление дисперсии решается выбором набега фазы радиальных колебаний на арках,
- в структуру вводятся дополнительные электростатические дефлекторы с отрицательной кривизной, что позволяет в интеграле сохранять направление спина вдоль импульса во всем кольце в рамках концепции «квази-замороженного спина» в ускорителе.

Модернизация одного суперпериода Нуклотрона

Nuclotron: Before and After

EDM Search: T-BMT Equations

The spin is a quantum value, but in the classical physics representation the "spin" means an expectation value of a quantum mechanical spin operator:

T-BMT Equations

$$\begin{split} \frac{d\vec{S}}{dt} &= \vec{S} \times \left(\overrightarrow{\Omega}_{MDM} + \overrightarrow{\Omega}_{EDM} \right), \\ \overrightarrow{\Omega}_{MDM} &= \frac{q}{m\gamma} \bigg\{ (\gamma G + 1) \overrightarrow{B}_{\perp} + (G + 1) \overrightarrow{B}_{\parallel} - \left(\gamma G + \frac{\gamma}{\gamma + 1} \right) \frac{\overrightarrow{\beta} \times \overrightarrow{E}}{c} \bigg\}, \\ \overrightarrow{\Omega}_{EDM} &= \frac{q\eta}{2m} \bigg(\overrightarrow{\beta} \times \overrightarrow{B} + \frac{\overrightarrow{E}}{c} \bigg), \qquad G = \frac{g - 2}{2}, \quad - \text{ particle magnetic anomaly} \\ d &= \eta \frac{q}{2mc} s \quad - \text{EDM factor} \end{split}$$

MDM term

Depend on both electric & magnetic field

Основные соотношения

Нормализованная частота прецессии спина в горизонтальной плоскости в <u>электрическом</u> дефлекторе относительно направления движения:

$$\nu_s^E = \left(\frac{1}{\gamma^2 - 1} - G\right) \cdot \gamma \beta^2$$

Нормализованная частота прецессии спина в горизонтальной плоскости в магнитном дефлекторе относительно направления движения:

$$\nu_s^B = \gamma G$$
.

Угол осцилляции вектора спина при движении по орбите

$$v_S^B \cdot (\frac{2\pi}{N} + 2\alpha) = v_S^E \cdot 2\alpha$$

$$\alpha = \frac{1}{v_S^E/v_S^B - 1} \frac{2\pi}{N}, \text{ where N=8}$$

При энергии <u>W= 270 MeV</u>: α =0.026 π и требуемая длина электростатического канала=7.3 м При этом величина ЕДМ сигнала $S_{EDM}=1-\alpha^2/4\approx$ 0.998

CONCLUSION

В итоге мы можем потенциально рассматривать возможность исследования электрического дипольного момента дейтрона в Нуклотроне

65-я Всероссийская научная конференция МФТИ

ЛФИ - Секция «Фундаментальные взаимодействия и космология»

1. Магнитооптическая структура отводных каналов ByPass в синхротроне NICA для поиска ЭДМ в режиме накопительного кольца

2. Рассмотрение адаптированной структуры Nuclotron для поиска EDM

65 всероссийская научная конференция мфти Докладчик: Колокольчиков С. (kolokolchikov@inr.ru)

Со-авторы: Сеничев Ю.

Институт Ядерных Исследований РАН, Москва, Россия

Долгопрудный, 3 апреля 2023 г.

