计算机问题求解 - 论题2-13 - Hashing方法

2014年06月10日

Hashing

所谓"Hashing"方法是 用来解决什么问题的?

Hashing: the Idea

问题2: Collision是什么意思? 它是如何产生的?

问题3:

假设分配的存储区为k个单元,插入n个键值。对于某个特定位置,落到该位置的对象的期望值是多少?为什么?

顺便问一下, 只插入2个键值, 发生碰撞的概率是多大? 模型:将插入n个对象看作n个独立试验的序列。每个试验的结果是{1,2,...,k}中的一个值。

假设:每个实验的结果是任意一个允许值的概率是一样的。
(uniformly distributed)

In hashing n items into a hash table of size k, the expected number of items that hash to any one location is n/k.

→ α: loading factor(负载因子)

现在考虑特定单元为空的概率

- 同样的independent trials process,可以根据需要指定不同的outcomes:
 - □ *k*个不同的outcomes: 单元1,2,...,*k*
 - □ 2个outcomes: 单元*i*, 非单元*i*

问题4:

插入n个对象后,单 元i仍然是空的,概 率是多少?

问题4':

插入n个对象后,空单 元的期望是多少?为 什么?

$$-(1-1/k)^{n}$$

一个概率悖论

假设有n个存储单元,在插入n个对象后

· 第i个单元已放入对象数期望值是:

$$\frac{n}{n}=1$$
 换句话说,没有空的单元(?)

• 整个存储区内空单元的期望数是:

$$n\left(1 - \frac{1}{n}\right)^n = \frac{n}{e} \approx 0.368n$$

问题5。

你能解释这个"悖论"吗?

冲突: 可能性有多大?

在1个单元的存储区内插入1个对象:

$$E(\text{collisions}) = n - E(\text{occupied locations})$$

= $n - k + E(\text{empty locations})$.

In hashing n items into a hash table with k locations, the expected number of collisions is $n - k + k(1 - 1/k)^n$.

找一点感觉:

假如在100个单元的存储区内插入100个对象,发生的碰撞数的期望值就是大约37次。

没有空单元:需要插入多少对象?

先考虑一个"子问题":使得被占单元数从达到 i-1 增加到达到 i, 需要插入多少对象(期望)?

$$E(X_1) = 1, E(X_2) = k/(k-1), \dots$$

In general, we have that X_i counts the number of trials until success in an independent trials process with probability of success (k - i + 1)/k, and thus, the expected number of steps until the first success is k/(k - i + 1), which is the expected value of X_i .

$$E(X) = \sum_{j=1}^{k} E(X_j) = \sum_{j=1}^{k} \frac{k}{k-j+1} = k \sum_{j=1}^{k} \frac{1}{k-j+1} = k \sum_{k-j+1=1}^{k} \frac{1}{k-j+1} = k \sum_{i=1}^{k} \frac{1}{i}$$

$$\Theta(k \log k)$$

给你一点感觉: 当k=10000, 这个值大约是98000。

问题6:

上面的讨论与实际的 Hashing有什么差别?

选择好的Hashing函数很重要!

两种设计Hashing函数的简单方法

In the *division method* for creating hash functions, we map a key k into one of m slots by taking the remainder of k divided by m. That is, the hash function is

 $h(k) = k \mod m$.

The *multiplication method* for creating hash functions operates in two steps. First, we multiply the key k by a constant A in the range 0 < A < 1 and extract the fractional part of kA. Then, we multiply this value by m and take the floor of the result. In short, the hash function is

$$h(k) = \lfloor m (kA \bmod 1) \rfloor ,$$

问题7:

为什么在除法方法中,应该避免m是2的整次幂,而在避免m是2的整次幂,而在乘法方法中却往往选择m的值为2的整次幂?

问题9:

"Hashing by division and Hashing by multiplication are heuristic in nature."

这是什么意思?

Collision Resolution by Chaining

CHAINED-HASH-INSERT (T, x)

1 insert x at the head of list T[h(x.key)]

Closed addressing

CHAINED-HASH-SEARCH(T, k)

1 search for an element with key k in list T[h(k)]

CHAINED-HASH-DELETE (T, x)

1 delete x from the list T[h(x.key)]

问题10:

采用Hashing by Chaining,不成功搜索的平均代价是多少?为什么?

Hashing by Chaining: 不成功搜索

- Assumption: simple uniform hashing:
 - □ for j=0,1,2,...,k-1, the average length of the list at E[j] is $n/k = \alpha$.
- The average cost of an unsuccessful search:
 - Any key that is not in the table is equally likely to hash to any of the k addresses. The average cost to determine that the key is not in the list E[h(k)] is the cost to search to the end of the list, which is α . So, the total cost is $\Theta(1+\alpha)$.

问题11:

采用Hashing by Chaining 计算成功搜索与不成功搜索 的代价有什么不同?

Hashing by Chaining: 成功搜索

- For successful search: (assuming that x_i is the *i*th element inserted into the table, i=1,2,...,n)
 - \Box For each *i*, the probability of that x_i is searched is 1/n.
 - For a specific x_i , the number of elements examined in a successful search is t+1, where t is the number of elements inserted into the same list as x_i , after x_i has been inserted. And for any j, the probability of that x_j is inserted into the same list of x_i is 1/m. So, the cost is:

Cost for computing hashing

$$\frac{1}{n} \sum_{i=1}^{n} \left(1 + \left(\sum_{j=i+1}^{n} \frac{1}{m} \right) \right)$$

Expected number of elements in front of the searched one in the same linked list.

Hashing by Chaining: 成功搜索

- The average cost of a successful search:
 - □ Define $\alpha = n/k$ as **load factor**,

The average cost of a successful search is:

$$\frac{1}{n} \sum_{i=1}^{n} \left(1 + \sum_{j=i+1}^{n} \frac{1}{m} \right) = 1 + \frac{1}{nm} \sum_{i=1}^{n} (n-i) = 1 + \frac{1}{nm} \sum_{i=1}^{n-1} i$$

$$= 1 + \frac{n-1}{2m} = 1 + \frac{\alpha}{2} - \frac{\alpha}{2n} = \Theta(1+\alpha)$$
Number of elements in from

Cost for computing hashing

Number of elements in front of the searched one in the same linked list.

另一种冲突处理方法: Open Addressing

- All elements are stored in the hash table, no linked list is used. So, α , the load factor, can not be larger than 1.
- Collision is settled by "rehashing": a function is used to get a new hashing address for each collided address, i.e. the hash table slots are *probed* successively, until a valid location is found.
- The probing sequence can be seen as a permutation of (0,1,2,...,m-1)
 - $\neg < h(k,0), h(k,1),..., h(k,m-1) >$

Linear Probing: an Example

问题12:

Open Addressing方法 为什么不适合用于支持 删除操作的结构?

Commonly Used Probing

Linear probing:

Given an ordinary hash function h', which is called an auxiliary hash function, the hash function is: (clustering may occur)

$$h(k,i) = (h'(k)+i) \mod m \quad (i=0,1,...,m-1)$$

Quadratic Probing:

Given auxiliary function h' and nonzero auxiliary constant c_1 and c_2 , the hash function is: (secondary clustering may occur)

$$h(k,i) = (h'(k)+c_1i+c_2i^2) \mod m \quad (i=0,1,...,m-1)$$

Double hashing:

Given auxiliary functions h_1 and h_2 , the hash function is:

$$h(k,i) = (h_1(k) + ih_2(k)) \mod m \quad (i=0,1,...,m-1)$$

问题13:

一般如何判断一种 probing方法的好称?

Equally Likely Permutations

Assumption: each key is equally likely to have any of the m! permutations of (1,2...,m-1) as its probe sequence.

■ Note: both linear and quadratic probing have only *m* distinct probe sequence, as determined by the first probe.

Analysis for Open Address Hash

Assuming uniform hashing, what is the average number of probes in an unsuccessful search?

Let us

define the random variable X to be the number of probes made in an unsuccessful search

When a random variable X takes on values from the set of natural numbers $\mathbb{N} = \{0, 1, 2, \ldots\}$, we have a nice formula for its expectation:

$$E[X] = \sum_{i=0}^{\infty} i \cdot \Pr\{X = i\}$$

$$= \sum_{i=0}^{\infty} i(\Pr\{X \ge i\} - \Pr\{X \ge i + 1\})$$

$$= \sum_{i=0}^{\infty} \Pr\{X \ge i\} ,$$
(C.25)

Analysis for Open Address Hash

Assuming uniform hashing, the average number of probes in an unsuccessful search is at most $1/(1-\alpha)$ ($\alpha=n/m<1$)

let us also define the event A_i , for i=1,2,..., to be the event that an ith probe occurs and it is to an occupied slot. Then the event $\{X \ge i\}$ is the intersection of events $A_1 \cap A_2 \cap \cdots \cap A_{i-1}$.

$$\Pr\{X \ge i\} = \Pr\{A_1 \cap A_2 \cap \dots \cap A_{i-1}\} = \Pr\{A_1\} \cdot \Pr\{A_2 \mid A_1\} \cdot \Pr\{A_3 \mid A_1 \cap A_2\} \dots \\ \Pr\{A_{i-1} \mid A_1 \cap A_2 \cap \dots \cap A_{i-2}\} .$$

$$= \frac{n}{m} \cdot \frac{n-1}{m-1} \cdot \frac{n-2}{m-2} \cdots \frac{n-i+2}{m-i+2}$$

$$\le \left(\frac{n}{m}\right)^{i-1}$$

$$= \alpha^{i-1}. \qquad \operatorname{E}[X] = \sum_{i=1}^{\infty} \Pr\{X \ge i\} \le \sum_{i=1}^{\infty} \alpha^{i-1} = \sum_{i=0}^{\infty} \alpha^{i} = \frac{1}{1-\alpha}.$$

问题14: 采用Open Addressing,插入一个对象的代价是多少?

Assuming uniform hashing, the average cost of probes in an successful search is at most $\frac{1}{\alpha} \ln \frac{1}{1-\alpha}$ ($\alpha = n/m < 1$)

To search for the (i + 1) th inserted element in the table, the cost is the same as the cost for inserting it when there are just i elements in the table. At that time, $\alpha = i/m$, so, the cost is 1/(1-i/m) = m/(m-i)

So, the cost is:

$$\frac{1}{n} \sum_{i=0}^{n-1} \frac{m}{m-i} = \frac{m}{n} \sum_{i=0}^{n-1} \frac{1}{m-i} = \frac{1}{\alpha} \sum_{i=m-n+1}^{m} \frac{1}{i} \le \frac{1}{\alpha} \int_{m-n}^{m} \frac{dX}{X} = \frac{1}{\alpha} \ln \frac{m}{m-n}$$

$$= \frac{1}{\alpha} \ln \frac{1}{1 - \alpha}$$

For your reference:

Half full: 1.387; 90% full: 2.559

课外作业

- CS pp.321-: prob.8, 11, 14,
- TC pp.261-: ex.11.2-3, 11-2.5, 11-2.6
- TC pp.268-: ex.11-3.3, 11-3.4
- TC pp.277-: ex. 11-4.2, 11-4.3
- TC pp.282-: prob.11.1, 11.2