RYERSON UNIVERSITY

Department of Electrical & Computer Engineering

MID-TERM Examination

Course Nam	e: Electronic Circuits
Course Num	ber: ELE 404
Examiners:	Prof. D. Androutsos Prof. A. Kabbani
DATE: DURATION TOTAL MA	
EXAMINATIO	ON INSTRUCTIONS:
2. The ex equally	a closed-book examination. No aids other than basic calculators are permitted. amination paper contains 9 pages and is comprised of FOUR questions worth 100 marks, and are not weighted. stions are allowed during the examination time. If in doubt, state your assumptions.
INFORMATIO	N:
is limit (b) Note:- (c) The did differen	IPS are assumed to be ideal, unless stated otherwise. The maximum output voltage of any OP-AMP ed by its power-supply voltages, +/- Vcc. Symbols "V" or "v' stand for Volts; "k" stands for kilo-Ohms; and "mA" stands for milli-Amps. de current (I_D) in the forward-bias mode is given as: $I_D = I_S \exp (V_D/nV_T)$, and the voltage ace between two operating points for a forward-bias diode can be expressed as: $I_{D1} = 2.3 nV_T \log (I_{D2}/I_{D1})$.
NAME:	SOLUTION NUMBER:
SECTION #:	

 $\mathbf{Q}\mathbf{1}$

Q2

Q3

20

Q4

27

TOTAL

100

Q1(a). [15 marks] An amplifier has the small-signal a.c. equivalent circuit as shown below. (i) Find the voltage gain A_v , (v_0/v_i) and current gain A_i , (i_0/i_i) of the amplifier; and (ii) if this amplifier draws 1mA from a single 10V d.c. supply when $v_i = 100$ mV r.m.s., determine the signal input power, P_{in} , signal output power, P_{out} , and the power efficiency, η , of the amplifier.

$$\frac{V_0}{V_i} = \frac{-4v}{100mV} = -40 \frac{v}{v}$$

$$\frac{i_0}{i_1} = \frac{-0.2 \text{ mA}}{0.01 \text{ mA}} = -\frac{20 \text{ A/A}}{4}$$

$$i_0 = \frac{4V}{20K} = -0.2 \text{ mA rms}$$

$$i_0 = \frac{-4V}{20K} = -0.2 \text{ mA rms}$$

$$i_1 = \frac{100 \text{ mV}}{10K} = 0.01 \text{ mA rms}$$

A _v	A _i	Pin	Pout	η
-401/	-20 A/A	0.001mW	0.8 mW	8%

Q1(a). [15 marks] An amplifier has the small-signal a.c. equivalent circuit as shown below. (i) Find the voltage gain A_v , (v_o/v_i) and current gain A_i , (i_o/i_i) of the amplifier; and (ii) if this amplifier draws 1mA from a single 10V d.c. supply when $v_i = 100$ mV r.m.s., determine the signal input power, P_{in} , signal output power, P_{out} , and the power efficiency, η , of the amplifier.

η	Pout	P _{in}	A _i	A_{v}
8%	0.8 mb)	0.00lmW	-70 A/A	-40 1/1

Q1(b). [10 marks] For Op-AMP amplifier circuit shown, determine the voltages and current as

$$I_1 = I_2$$

$$\frac{3-V_1}{10k}=\frac{V_1-1}{10k}$$

$$V_3 = 2V\left(\frac{20k}{10k}\right) = -4V$$

Can now solve the following using superposition:

$$\frac{V_2 - V_n}{10k} = \frac{V_n - V_0}{20k}$$

$$\frac{2 - V_n}{10k} = \frac{V_n + 10}{20k}$$

V_1	V_2	V ₂ V ₃		$\mathbf{v_o}$	
2V	2V	-4V	0.4mA	-10V	

Q1(b). [10 marks] For Op-AMP amplifier circuit shown, determine the voltages and current as indicated.

$\mathbf{v_o}$	I_X	I _X V ₃		V ₁
-10 V	0.4mA	-4V	2V	2V

Q2(a). [13 marks] Assume all diodes exhibit a *constant 0.7 volt drop in forward bias mode*. Find I_1 , I_2 , I_3 , I_4 & V_0 as indicated and the state of the diodes.

$$I_1 = \frac{10 - 0.7}{1k} = 9.3 \text{ mA}$$

$$I_3 = \frac{0.7 - 0.7 - (-10)}{2k} = 5 \text{ mA}$$

$$I_4 = \frac{0.7 - 0.7 - (-5)}{5k} = I_{mA}$$

$$I_1 = I_2 + I_3 + I_4$$

$$T_{1} \downarrow \begin{cases} 1k \\ 93mA \end{cases}$$

$$T_{2} \downarrow \begin{cases} 0.7V \\ 3.3mA \end{cases}$$

$$T_{3} \downarrow \begin{cases} 2k \cdot \Omega \\ 1mA \end{cases}$$

$$T_{4} \downarrow \begin{cases} 1k \\ 1mA \end{cases}$$

$$T_{3} \downarrow \begin{cases} 1k \\ 1mA \end{cases}$$

All diodes are forward biased and all currents are flowing into the amodes of all diodes.

I ₁	I ₂	I ₃	I ₄	D1	D2	D3	V _o
92	20 4		1. 4	(On)	On)	On	0.71
1.3mA	33mA)mA	ImA	Off	Off	Off	0, 70

Q2(a). [13 marks] Assume all diodes exhibit a constant 0.7 volt drop in forward bias mode. Find I_1 , I_2 , I_3 , I_4 & V_0 as indicated and the state of the diodes.

$\mathbf{V_o}$		D2	i	I ₄	I_3	I_2	I ₁
071/	(On)	On)	On)	10	5,000	22 4	9.3mA
0.71	Off	Off	Off	IMA)WN	2.7mH	7.3mH

Q2(b). [15 marks] For the circuit shown, assume all diodes to be *ideal*. The Zener diode has a reverse breakdown voltage, $V_z = 4V$, and acts as an ideal diode in forward bias. Determine, and neatly sketch on the graph provided, the transfer characteristic $(V_O \ vs \ V_I)$ of the circuit. Label all the *breakpoints* on both axes and *slopes* of the transfer characteristic.

Q3(a). [8 marks] For the circuit shown below, assume the Op-AMP and all components to be ideal. Develop the expression for the transfer function, $T(j\omega)$ [= $v_o(j\omega)/v_i(j\omega)$]. What function does this circuit perform?

1 Ohm

$$V_{i}^{\dagger} = V_{i}(j_{i}) \left(\frac{j_{i}}{j_{i}}\right)^{2}$$
 $V_{o}(t)$
 $V_{o} = V_{i}^{\dagger} \left(1 + \frac{J_{i}^{2}}{J_{i}^{2}}\right) = 2V_{i}^{\dagger}$
 $V_{o}(j_{i}) = 2\left(V_{i}(j_{i})\left(\frac{j_{i}}{J_{i}^{2}}\right)\right)^{2}$
 $V_{o}(j_{i}) = 2\left(V_{i}(j_{i})\left(\frac{j_{i}}{J_{i}^{2}}\right)\right)^{2}$

This civalities a Low-PASS filter

Q3(b). [12 marks] For the circuit shown below, assume the Op-AMP and all components to be ideal. (i) Find the differential gain $A_{id} = V_o/V_{id}$, (ii) Find the labeled currents and voltages, V_1 , I_1 , I_2 and I_3 , if V_{id} =6V (iii) Find R_{in} .

Since
$$I_5 = I_1 = 0$$
,
 $V_0 = V_1$
 $V_1 = I_2 (100 \text{k} \cdot \Omega) = (0.3 \text{mA})(100 \text{k})$
 $V_1 = 30 \text{V} = V_0$
 $V_1 = 30 \text{V} = V_0$

Rin	I ₃	I ₂	\mathbf{I}_1	$\mathbf{V_1}$	A _{id}
20k-a	-03m A	0.3onA	0	30V	5 V/V

Q3(b). [12 marks] For the circuit shown below, assume the Op-AMP and all components to be ideal. (i) Find the differential gain $A_{id} = V_o/V_{id}$, (ii) Find the labeled currents and voltages, V_1 , I_1 , I_2 and I_3 , if V_{id} =6V (iii) Find R_{in} .

A _{id}	V ₁	I ₁	I ₂	I_3	R _{in}	
51/	30V	0	0.3mA	-03mA	2KA	

Q4(a). [15 marks] For the circuit shown below, assume each diode exhibits a 0.7V constant-voltage-drop in the forward-bias mode. For $V_I = -1V$, determine all voltages and currents as indicated, and the status of each diode (On or OFF).

DI ON, DZ OFF,
$$I_1 = \frac{O-(-1)}{1k} = 1mA$$
, $I_2 = 0$
 $V_{0_1} = 0$, $V_{A_1} = V_{D_1} = 0.7V$

D3 off, D4 oN,
$$I_3 = 0$$
, $I_4 = \frac{0 - (-1)}{1k} = 1 \text{ mA}$

$$V_{02} = -1 \left(-\frac{3}{1} \right) = 3V$$

$$V_{A2} = V_{02} + V_D = 3.7V$$

$$I_X = 2 \left(\frac{1}{1k} \right) = 2 \text{ mA}$$

V _I	I _X	I ₁	I ₂	V_{A1}	V _{O1}	I ₃	I4	V _{A2}	V _{O2}	$\mathbf{D_1}$	$\mathbf{D_2}$	D_3	D ₄
- IV	2 A	I I A	0	1 a V	0	0	1 1	2 2.4	0.1	On)	On	On	(On)
- IV	CMM	IVVIPT		0.7 •	U	0	IMH	3.7V	'3V	Off	Off	Off	Off

Q4(a). [15 marks] For the circuit shown below, assume each diode exhibits a **0.7V** constant-voltage-drop in the forward-bias mode. For $V_I = +1V$, determine all voltages and currents as indicated, and the status of each diode (On or OFF).

DI OFF, DZ ON,
$$I_2 = -\frac{1}{1k} = -ImA$$

 $V_{01} = V_i \left(-\frac{k_2}{I} \right) = -2V$
 $V_{A_1} + V_{02} - \left(I_2 \right) 2 = 0 \Rightarrow V_{A_1} = -0.7 - (1)(2) = -2.7V$

D3 ON, D4 OFF,
$$\Rightarrow V_{02} = 0$$
, $V_{A2} = -V_{03} = -0.7V$

$$I_{4} = 0$$
, $I_{3} = I = \frac{1}{1k} = ImA$

$$I_{x} = -(2I) = -2mA$$

V_{I}	D ₄	\mathbf{D}_3	D ₂	$\mathbf{D_1}$	V _{O2}	V _{A2}	I ₄	I ₃	V _{O1}	V _{A1}	I ₂	I ₁	Ix
	On	On	(On)	On						22.			
1V	(Off)	Off	Off	Off)	0	-0.70	0	IMA	-2V	- CitY	-ImA	0	-2 mA

Q4(b). [12 marks] For the circuit shown below, assume the diodes to be *identical*. The diode characteristic is such that it has a forward-bias voltage of 0.7V at 1mA current and its voltage changes by 0.1V per decade change in current (note: $2.3nV_T = 0.1V$). Find the voltages as indicated.

$$V_1 = V_0 - V_{02}$$
, $\Rightarrow V_{02} = 0.7 + 0.1 \log \frac{4}{1} = 0.76 V$

$$V_2 = V_0 - V_{03} \Rightarrow V_{03} = 0.7 + 0.1 \log \frac{0.1}{1} = 0.6V$$

$$V_7 = 0.79 - 0.6 = 0.19V$$

Vo	V_2	V_1
0.79V	0.19 V	0.03V

Q4(b). [12 marks] For the circuit shown below, assume the diodes to be *identical*. The diode characteristic is such that it has a forward-bias voltage of 0.7V at 1mA current and its voltage changes by 0.1V per decade change in current (note: $2.3nV_T = 0.1V$). Find the voltages as indicated.

V_1	V_2	V_{o}
0.03√	0.19V	0,79V

BLANK PAGE