

Human dispersal

Humans have been exposed to different environments

Lactase Persistence

Archaic humans

Archaic Admixture

Archaic Humans

Archaic Humans

Recent time scale

Archaic Humans

Ancient Modern Human DNA

The first studies of ancient DNA were published in 2010. Since then, the number of ancient DNA samples that have been sequenced has grown exponentially. Credit: David Reich.

Three waves of migration into Europe

European colonization in the Americas

Population Movements

From Nielsen et al. 2017

Hypothesis

Admixture has played a *central role* in

shaping patterns of genetic variation

Positive Selection

- Beneficial allele rises to high frequency

Positive Selection from standing genetic variation

 Environment changes, some of the existing genetic variation is beneficial

Positive Selection from standing genetic variation

- Timing and strength of selection
- Patterns of genetic variation differ

Test in within a single population.
Can use FST for two populations

Genes involved in Skin pigmentation, local adaptation

local adaptation, 3-population test

50 Tibetan exomes50 Danish Exomes40 Han exomes

Response to high altitude environments in Tibetans

In the 70s, studies showed that Tibetans had a different physiological response

Wu et al. (2005) Journal of Applied Physiology

Higher fertility and lower infant mortality rate in high altitude natives than in acclimatized low altitude natives

Higher fertility and lower infant mortality rate in high altitude natives than in acclimatized low altitude natives

Niermeyer et al. (2009) Arch. Dis. Child.

$$PBS_{High} = T_{High,Low}$$

$$PBS_{High} = T_{High,Low} + T_{High,Outgroup}$$

$$PBS_{High} = T_{High,Low} + T_{High,Outgroup} - T_{Low,Outgroup}$$

$$PBS_{High} = \frac{1}{2} \left[T_{High,Low} + T_{High,Outgroup} - T_{Low,Outgroup} \right]$$

PBS under neutrality

PBS under positive selection

Largest PBS: EPAS1

EPAS1: Hypoxia inducible factor 2

♦ Major Transcription factor that orchestrates response to low oxygen levels

- ♦ Regulates several genes involved in red blood cell production
- ♦ SNPs in EPAS1 have been associated with super-athlete performances
- → Highly expressed in the adult and fetal lung and placenta

EPAS1: large frequency differences.

Significant association with phenotype?

	Tibetan	Mean hemoglobin
Genotype	frequency	concentration
СС	10	178
CG	84	178.9
GG	272	167.5

• Individuals with GG genotypes have *LOWER* hemoglobin concentration

Significant association with phenotype?

	Tibetan	Mean hemoglobin
Genotype	frequency	concentration
CC	10	178
CG	84	178.9
GG	272	167.5

• Individuals with GG genotypes have *LOWER* hemoglobin concentration

Will pattern be different from selection on standing variation?

Admixed haplotypes can have a tremendous evolutionary advantage

EPAS1

Huerta-Sanchez et al. *Nature* (2014) Yi*, Liang*, Huerta-Sanchez* et al. *Science* (2010)

Genetic Differentiation

