MODELO DE GEMELOS DIGITALES PARA EL ESTUDIO DEL FENÓMENO DEL DESPOBI AMIENTO EN CANTABRIA

Trabajo de Fin de Máster

Jesús Octavio Raboso

Tutor: Pablo Martínez Ruiz del Árbol

UC - UIMP Máster Interuniversitario en Ciencia de Datos

23 de septiembre de 2022

- 1 Introducción
- 2 Marco teórico para la dinámica migratoria
- 3 Descripción del modelo y aplicación
- 4 Conclusiones y trabajo futuro
- 6 Bibliografía seleccionada

- 1 Introducción
- 2 Marco teórico para la dinámica migratoria
- 3 Descripción del modelo y aplicación
- 4 Conclusiones y trabajo futuro
- Bibliografía seleccionada

Introducción

Despoblamiento en Cantabria

Definición: Despoblamiento

Pérdida masiva de habitantes de un espacio geográfico debida a causas vegetativas y migratorias.

Figura: Municipios cántabros según su riesgo de despoblamiento.

Introducción Gemelos digitales [VM21]

Definición: Gemelo Digital ó Digital Twin

Representación virtual de una realidad física, junto con su entorno y procesos asociados, que se actualiza a través del intercambio de información entre la realidad física y la representación virtual.

Figura: Componentes de un Gemelo Digital.

Introducción Objetivos

- Software.
- Simulación de las dinámicas vegetativas y migratorias municipales.
- Individuo como unidad de decisión y motor de cambio.
- Agentes como representación idealizada y virtual del individuo.
- Agentes heterogéneos, autónomos y capaces de interactuar.
- Ofrecer pronósticos.

- 1 Introducción
- 2 Marco teórico para la dinámica migratoria
- 3 Descripción del modelo y aplicación
- 4 Conclusiones y trabajo futuro
- Bibliografía seleccionada

Marco teórico

Modelo de Coleman [Col86]

Figura: Modelo de Coleman y el problema micro-macro.

- (1) Sociedad en la que el individuo está emplazado.
- (2) Influencia de la sociedad en el individuo.
- (3) El individuo, sus percepciones y su capacidad de decisión.
- (4) Mecanismo de decisión de los individuos.
- (5) Acción escogida.
- (6) Influencia del individuo en la sociedad.
- (7) Actualización de la sociedad como resultado de las acciones individuales.

Marco teórico

Teoría del Comportamiento Planeado [Ajz91]

Definición: Actitud

- Razones explícitas que llevan a que el individuo decida migrar.
- Si resido cerca de una estación de tren, tendré más movilidad.

Definición: Norma Subjetiva

- Apoyo de la red social del individuo.
- Mis amigos siguen en el barrio y quiero estar a su lado.

Definición: Control del Comportamiento Percibido

- Autoeficacia y confianza.
- Estoy seguro de que encontraré trabajo si me mudo.

Definición: Intención

- Ponderación de los elementos anteriores.
- Cuán atractivo es cada emplazamiento para cada agente.

Marco teórico Usos y beneficios

- ✓ Laboratorio computacional para contruir sociedades virtuales.
- Cuantificar la influencia de factores concretos en la dinámica del sistema y evaluar la efectividad de la implantación de medidas.
- Monitorización.
- No determinismo.
- X Disponibilidad de datos.
- X No existe un estándar.

Marco teórico

Ejemplo: Game of Life [Gar70]

Game of Life de Conway:

- Si el agente está muerto y posee exactamente 3 vecinos vivos, entonces nace.
- Si el agente está vivo y posee 2 ó 3 vecinos vivos, entonces sigue vivo. En otro caso, muere.

Figura: Ejemplo de secuencia en Game of Life.

- Introducción
- 2 Marco teórico para la dinámica migratoria
- 3 Descripción del modelo y aplicación
- 4 Conclusiones y trabajo futuro
- Bibliografía seleccionada

Descripción del modelo y aplicación Dominio espacio-temporal

- Temporal. Periodo de train: 2010 2021.
 1 iteración ≡ 1 año real.
- Espacial. Delimitación comarcal.

Figura: Propuesta de delimitación comarcal de Cantabria.

Descripción del modelo y aplicación Arquitectura

Figura: Arquitectura del modelo.

Descripción del modelo y aplicación Dinámica vegetativa

- Natalidad: ¿cuántos nuevos agentes deben nacer en cada municipio en cada iteración?
- **Mortalidad:** ¿cuántos agentes deben *morir* en cada municipio en cada iteración?

Submodelos de redes neuronales, regresión lineal y vecinos cercanos dependientes del número de habitantes por quinquenio y sexo:

MODELO	MAE	MSE	R2
ANN	5,303922	76,519608	0,997218
Reg Lineal	1,587646	32,511720	0,997740
KNN	2,700133	2.653,392452	0,815577

MODELO	MAE	MSE	R2
ANN	6.411765	108.509804	0.997097
Reg Lineal	3.177355	137.138434	0.994417
KNN	6.413092	7423.108654	0.697825

Cuadro: Resultados: modelo de natalidad.

Cuadro: Resultados: modelo de mortalidad.

Descripción del modelo y aplicación Dinámica migratoria

Figura: Posibles movimientos migratorios en el modelo.

Dinámica migratoria

Figura: Proceso de toma de decisiones de los agentes en la dinámica migratoria.

Resultados: curva de población

Comparación de POBLACIÓN en Reinosa

Figura: Comparación de la curva de población en Reinosa. 2010 – 2021.

Resultados: evolución vegetativa

Figura: Comparación de la evolución vegetativa en Reinosa. 2010 – 2021.

Resultados: evolución migratoria

Figura: Comparación de la evolución migratoria en Reinosa. 2010 – 2021.

Resultados: grafo para flujos migratorios

Figura: Grafo interactivo para visualizar flujos migratorios.

Resultados: pirámide de población

Comparación de PIRÁMIDE POBLACIONAL de Reinosa en 2021

Figura: Comparación de la pirámide poblacional en Reinosa. 2021.

- Introducción
- Marco teórico para la dinámica migratoria
- 3 Descripción del modelo y aplicación
- 4 Conclusiones y trabajo futuro
- Bibliografía seleccionada

Conclusiones y trabajo futuro

- Calibración.
- Análisis de sensibilidad: parámetros libres y variables en la toma de decisiones.
- El doble despoblamiento de Cantabria: municipios rurales y efecto donut en los grandes núcleos tradicionales.
- Puesta en valor de Cantabria y lucha efectiva contra el despoblamiento.

- Introducción
- 2 Marco teórico para la dinámica migratoria
- 3 Descripción del modelo y aplicación
- 4 Conclusiones y trabajo futuro
- 6 Bibliografía seleccionada

Bibliografía seleccionada I

Icek Ajzen. "The theory of planned behavior". En: Organizational Behavior and Human Decision Processes 50.2 (1991). Theories of Cognitive Self-Regulation, págs. 179-211. ISSN: 0749-5978. DOI: https://doi.org/10.1016/0749-5978(91)90020-T. URL: https://www.sciencedirect.com/science/article/pii/074959789190020T (vid. pág. 9).

James S Coleman. "Social theory, social research, and a theory of action". En: *American journal of Sociology* 91.6 (1986), págs. 1309-1335 (vid. pág. 8).

Martin Gardner. "The Fantastic Combinations of Jhon Conway's New Solitaire Game'Life". En: Sc. Am. 223 (1970), págs. 20-123 (vid. pág. 11).

Dominic R Kniveton, Christopher D Smith y Richard Black. "Emerging migration flows in a changing climate in dryland Africa". En: *Nature Climate Change* 2.6 (2012), págs. 444-447.

Hung Nguyen. "Studying socio-economic problems in the Mekong Delta, Vietnam: an agent-based modelling approach". Tesis doct. Mayo de 2020.

Bibliografía seleccionada II

Eric VanDerHorn y Sankaran Mahadevan. "Digital Twin: Generalization, characterization and implementation". En: *Decision Support Systems* 145 (2021), pág. 113524 (vid. pág. 5).