Harmful Content Detection

By 夏之未至 Jul. 27, 2025

Outline

- Clarifying Requirements
- Frame the Problem as an ML Task
- Data Preparation
- Model Development
- Evaluation
- Serving

Clarifying Requirements

- Definition of harmful content
 - Harmful content: Posts that contain violence, nudity, self-harm, hate speech, etc. (*)
 - To be discussed: violence, nudity, hate speech
 - Too complex, out of range: misinformation
 - Bad acts/bad actors: Fake accounts, spam, phishing, organized unethical activities, and other unsafe behaviors.

- Input

- content format
 - text, image, video or combination
- Language
- Label Data availability: 500 million posts/ day, annotate 10,000/day
 - Annotation: expensive, time consuming
 - User reports

- Output

- Classification & explanation
- Latency
 - Real-time: detect and block immediately
 - Batch: detect offline hourly/daily

Frame the Problem as an ML Task

Predicts probability → classification

- Multiple format of input → multimodalities
 - Fusion of different modalities
 - Early fusion: left
 - Late fusion: right

Frame the Problem as an ML Task

Aspect	Late Fusion	Early Fusion √		
Model Independence	train/evaluate/ improve independently	Single model, all modalities trained together		
Data Requirement	separate training data for each modality (time-consuming, expensive)	Unified training data needed for the joint model		
Detection of Harmful Combinations	May fail: If each modality is benign, combined output can miss harmful interactions	Can detect: Model considers all modalities jointly, so can capture harmful combinations		
Training Complexity	Simpler	More complex; model learn relationships between modalities		
Data Sufficiency	Works even with limited data	Large data to learn complex cross-modal relationships		
When Preferred	When modalities are independent, data is scarce, or separate improvement is needed	When harmfulness arises from cross-modal interaction and plenty of data is available		
Example	Individual meme image/text models miss harmful memes	Detect harmful memes where image and text are benign alone but harmful together		
Preferred in This Case	Not recommended due to inability to capture cross-modal harm	Recommended, since ample data allows model to learn complex, harmful cross-modal patterns		

Frame the Problem — right ML category

Approach	Pros	Cons
Single Binary Classifier	Simple; easy to implement	Cannot explain class of harm; cannot track class-wise errors; poor for actionable feedback
One Binary Classifier per Class	Explains which class caused removal; can monitor/improve models independently	Training/maintaining many models is costly and time-consuming
Multi-label Classifier	Only one model to train/maintain; predicts all classes at once	Shared features may not fit all classes equally; may need different input transforms
Multi-task Classifier	Shares learning across classes; efficient with computation and data	More complex architecture; may require more tuning and careful task balancing

Multi-task classifier overview

- Shared layers: transform input features into new ones
- Task-specific layers

Pros

- Efficient Training & Maintenance as a single model
- Shared Feature Transformation
- Data Efficiency: good for limited data

Data Preparation

- Users

ID	Username	Age	Gender	City	Country	Email

- Posts

Post ID	Author ID	On-device	Timestamp	Textual content	Images or videos	Links
1	1	73.93.220.240	1658469431	Today, I am starting my diet.	http: //cdn.mysite.com/u1.jpg	250

User posts interactions

User ID	Post ID	Interaction type	Interaction value	Timestamp
11	6	Impression	-	1658450539
4	20	Like		1658451341

- Posts
 - Textual content
 - Text preprocessing
 - Vectorization
 - Fast & easy: BoW or TF-IDF but no semantic info
 - Pretrained LLM: DistilmBERT, an efficient variant of BERT to handle the latency and multilingual words embeddings
 - Image or video
 - Preprocessing: decode, resize, and normalize the data.
 - Feature extraction: CLIP or SimCLR, VideoMoCo: unstructured data→ feature vector

- User reactions to the post
 - The number of likes, shares, comments, and reports: scale these numerical values to speed up convergence during model training.
 - Comments: pre-trained model → word embeddings → aggregate(eg: avg) to get the embedding for the comment

- Author
 - Author's violation history
 - Number of violations
 - Total user reports
 - Profane words rate: profane words are predefined.
 - Author's demographics
 - Age: one of most important predictive features
 - Gender: 1-hot
 - City and country: embedding layer, not 1-hot since sparse.
 - Account information
 - Number of followers and followings
 - Account age

- Contextual information
 - Time of day:
 - bucket:
 - morning, noon, afternoon, evening or night
 - 1-hot embedding
 - Device: 1-hot embedding

Model Development — Constructing the dataset

Labeling Method	Description	Pros	Cons	Usage
Hand Labeling	Human contractors manually label posts	Accurate labels	Expensive, time-consuming	Evaluation data
Natural Labeling	Uses user reports for automatic labeling	Fast labeling	Noisier, less accurate	Training data

Model Development – loss function selection

- Binary classification loss for each task
 - Eg: cross entropy
- Overall task: combining task-specific losses
 - Eg: sum of each loss
- Challenge
 - Learning speed difference among modalities and one dominates
 - Resolution
 - Gradient blending
 - Focal loss

Evaluation

- Offline
 - PR-RoC trade-off between precision and recall (better for imbalanced data)
 - ROC curve.
- Online
 - Prevalence. This metric measures the ratio of harmful posts which we didn't prevent and all posts on the platform.

 Prevalence = Number of harmful posts we didn't prevent

 Total number of posts on the platform
 - Harmful impressions.
 - Valid appeals

 Appeals = Number of reversed appeals

 Number of harmful posts detected by the system
 - Proactive rate

```
Proactive rate = Number of harmful posts detected by the system

Number of harmful posts detected by the system + reported by users
```

User reports per harmful class.

Serving

- Harmful content detection service
 - predicts the probability of harm
- Violation enforcement service
 - immediately takes down a high confidence harmful post by detection service
- Demoting service
 - Demote the low confidence harmful post
 - Store it in the storage for manual review

Additional topics to talk

- Handle biases introduced by human labeling
- Adapt the system to detect **trending** harmful classes (e.g., Covid-19, elections)
- How to build a harmful content detection system that leverages temporal information such as users' sequence of actions.
- How to effectively select post samples for human review
- How to detect authentic and fake accounts
- How to deal with **borderline contents** [25], i.e., types of content that are not prohibited by guidelines, but come close to the red lines drawn by those policies.
- How to make the harmful content detection system **efficient**, so we can deploy it **on-device**
- How to substitute Transformer-based architectures with linear Transformers to create a more efficient system.