1 INTRODUÇÃO

1.1 Origem do Trabalho

A motivação para a produção deste, foi o intuito de tornar portável um sistema de gerenciamento de sensores, como o confeccionado em (PAMPLONA, 2011), escrito em uma linguagem de programação muito utilizada em sistemas operancionais *Linux*. A linguagem utilizada pelo grupo para criar o software foi o Python, por ser robusta, leve, alto nível e facilmente portável para outras arquiteturas de processadores.

O porque de escolher uma liguagem de alto nível para utilização no protótipo é outra vantagem, pois se pode configurar o sistema de forma simples e rápida, implementando rotinas pequenas sem que o administrador precise de um conhecimento mais denso sobre a máquina. Estes tipos de modelos de sistemas podem ser vistos no dia a dia, $Android\ OS$, que faz com que qualquer usuário com conhecimentos básicos em java possa criar suas aplicações ou o Arduino, que lhe proporciona programar o firmware do microcontrolador de 8bits com uma liguagem bem mais simples que o C/C++.

1.2 Área

Neste trabalho, foi realizado o desenvolvimento de um conjunto de ferramentas para utilização em **Instrumentação Eletrônica**. Este conjunto de ferramentas está disposto em um sistema operacional *Linux* básico que pode ser reconfigurável facilemente através de uma linguagem de alto nível.

Devido a vantagem de ser multiplataforma, ele pode ser utilizado em vários equipamentos que portam arquitetura de 32bits. Esta vantagem acaba com o esforço de ter que criar um sistema do zero para uma determinada Pla-

taforma de Medição de Parâmetros.

Através do sistema se pode medir qualquer tipo de variável, seja essa corrente elétrica, sensores de pressão, temperatura, etc. e dependendo do que for configurado no sistema, pode-se até atuar na região com motores ou chaves.

1.3 Problemática

Nos dias de hoje, as maiores dificuldades na implementação de ferramentas de medição (sensores, rede, *interfaces*, etc) são referentes à complexidade em configurar a parte gerencial do sistema, bem como portá-lo para outras plataformas, pois na maioria das vezes o administrador do sistema estaria preso a um técnico especializado no *software* de gerenciamento. Isto pode demandar tempo e custar bastante dinheiro.

Os sistemas de gerenciamento atuais, comumente oferecem uma interface gráfica que conecta o usuário a rede de sensores espalhadas por determinada área como mostra (CAMPOS, 2006) em seu trabalho sobre um sistema de instrumentação para unidades de elevação de petróleo, utilizando o Lab View 8.0 para exibir em "alto nível" os dados recebidos pela rede de sensores, não muito diferente do ponto de partida deste trabalho, o detalhe é que uma licença do Labview tem um elevado custo e não pode ser moldada de forma específica para o seu sistema.

Para diminuir os gastos financeiros, teria que ser feita uma análise de relação custo benefício entre a alternativa de se utilizar um software proprietário ou criar um para determinada aplicação. A segunda alternativa é tão custeosa quanto a primeira, pois haveria de ter um grupo focado em desenvolvimento para produzir a ferramenta. Isto requer um pessoal com um conhecimento denso em **Engenharia de Software** e com certeza é bem

mais caro do que manter uma licença do Lab View.

Alternativas opensource com foco em gerenciamento fácil e hábil vêm surgindo cada vez mais nos dias atuais como o ConnectMe da Digi, que é uma plataforma de 32bits com um sistema operacional Linux, dotado de artifícios, como a linguagem de programação Python, para escrever as rotinas do sistema e acessar os dispositivos externos de forma simples e rápida. Outra alternativa, porêm não opensource, é o sistema do roteador Cisco SFS 3504 da Cisco, que inclui tambem, um sistema operacional Linux com um shell script para configurá-lo. Este modelo de sistemas de gerenciamento torna simples e menos caro qualquer implementação de um projeto de sistema de monitoramento. Assim, os gastos com softwares supervisórios ou com uma dispendiosa equipe de desenvolvedores seriam cortados.

1.4 Justificativas

Como mostra (BUSNARDO , 1999) em seu trabalho sobre um sistema de hardware e software para controle da qualidade de energia elétrica, há várias vantagens em aplicar a Instrumentação Eletrônica à processos industriais como:

- Maior Qualidade: processos controlados de forma automática geram menos erros do que manufaturados;
- Aumento da Produção: máquinas trabalham mais do que pessoas e oferecem menos perdas;
- Aumento da Segurança: garantia de estabilidade nos processos industriais;

portanto se os métodos de gerenciamento dos processos puderem se dispor de forma clara em um GUI - $Graphical\ User\ Interface\ (Interface\ Gráfica\ do$

Usuário), a otimização ou alteração de atividades industrais podem ser feita facilmente.

A primeira ideia do projeto foi a de manter uma pequena distribuição Linux com foco em Automatização de Processos, que pudesse ser facilmente configurada, eliminando ao máximo dependência dos administradores à uma equipe técnica. A segunda foi tentar tornar o sistema de gerenciamento livre e gratuito, sobre uma licença que fornecesse os devidos direitos de implementação a seus usuários. Entre outras vantagens que este projeto pode proporcionar.

1.5 Objetivos do Trabalho