2016 春答案

一. 填空题

$$2. e^{-2\lambda}$$

1. 0.35 2.
$$e^{-2\lambda}$$
 3. 0.8 4. $P\{\widehat{\theta}_1 < \theta < \widehat{\theta}_2\} \ge 0.95$

5.
$$C_1 = \frac{1}{3}$$
 $C_2 = \frac{2}{3}$ 6. $-\frac{1}{3}$

6.
$$-\frac{1}{3}$$

二. 选择题 BADDCB

三. 简答题

(1) 有分布函数的定义知

$$F_Y(y) = P(Y \le y) = P\{\frac{X - \mu}{\sigma} \le y\}$$

$$= P\{X \le \sigma y + \mu\} = \int_{-\infty}^{\sigma y + \mu} \frac{1}{\sqrt{2\pi}\sigma} e^{-\frac{(x-\mu)^2}{2\sigma^2}} dx$$

$$\xrightarrow{\frac{x-\mu}{\sigma}=t} = \int_{-\infty}^{y} \frac{1}{\sqrt{2\pi}} e^{-\frac{t^2}{2}} dt$$

即 $Y \sim N(0,1)$

(2) 边缘概率密度为

$$f_X(x) = \begin{cases} 3x^2, & 0 < x < 1 \\ 0, & \cancel{\sharp} \, \stackrel{\sim}{\boxtimes} \end{cases} \qquad f_Y(y) = \begin{cases} \frac{3}{2}(1 - y^2), & 0 < y < 1 \\ 0, & \cancel{\sharp} \, \stackrel{\sim}{\boxtimes} \end{cases}$$

$$f_{Y}(y) = \begin{cases} \frac{3}{2}(1 - y^{2}) \\ 0, \end{cases}$$

根据条件概率的定义,得

对于 $\forall y \in (0,1)$

$$f_{X|Y}(y|x) = \frac{f(x,y)}{f_Y(y)} = \begin{cases} \frac{2x}{1-y^2}, & 0 < y < x < 1\\ 0, & \sharp \dot{\Xi} \end{cases}$$

对于 $\forall x \in (0,1)$

$$f_{Y|X}(y|x) = \frac{f(x,y)}{f_X(x)} = \begin{cases} \frac{1}{x}, & 0 < y < x < 1\\ 0, & \cancel{X} : \end{aligned}$$

(3)
$$X_1 - 2X_2 \sim N(0.5) \frac{X_1 - 2X_2}{\sqrt{5}} \sim N(0.1)$$

$$3X_3 - 4X_4 \sim N(0.25)$$
 $\frac{3X_3 - 4X_4}{5} \sim N(0.1)$

即
$$a = \frac{1}{5}$$
 $b = \frac{1}{25}$ 自由度为 2

四. 综合题

(1) θ的极大似然估计量为 $\hat{\theta} = X_{(n)} = \max\{X_1, X_2 \cdots X_n\}$

$$X$$
 的分布函数为: $F(x) = \begin{cases} 0, & x < 0 \\ \frac{x}{\theta}, & 0 \le x < \theta \\ 1, & x \ge \theta \end{cases}$

$$X_{(n)}$$
 的分布函数 $F_{(n)}(x) = (F(x))^n = \begin{cases} 0, & x < 0 \\ (\frac{x}{\theta})^n, & 0 \le x < \theta \\ 1, & x \ge \theta \end{cases}$

$$f_n(x) = F_{(n)}(x) = \begin{cases} \frac{nx^{n-1}}{\theta^n}, & 0 \le x < \theta \\ 0, & \sharp \dot{\Xi} \end{cases}$$

要使
$$E(C\hat{\theta}) = CE(X_{(n)}) = \frac{nC}{n+1}\theta = \theta$$
 即 $C = \frac{n+1}{n}$

(2) 1> 任意一封信投入第i号信箱都是等可能的概率为 $\frac{1}{3}$

Y/X
 0
 1
 2

 0

$$\frac{1}{9}$$
 $\frac{2}{9}$
 $\frac{1}{9}$
 X
 0
 1
 2
 Y
 0
 1
 2

 1
 $\frac{2}{9}$
 $\frac{2}{9}$
 0
 0
 $\frac{4}{9}$
 $\frac{4}{9}$

 $P(X = 2, Y = 1) \neq P(X = 2)P(Y = 1)$ 即不独立

2>
$$D(X-Y) = DX + DY - 2COV(X,Y)$$
 $EX = \frac{2}{3}$ $EX^2 = \frac{8}{9}$ $DX = \frac{4}{9}$ $DY = \frac{4}{9}$ $COV(X,Y) = E(XY) - EX \cdot EY$ $E(XY) = \frac{2}{9}$ $COV(X,Y) = -\frac{2}{9}$ $D(X-Y) = \frac{4}{3}$

一、填空题(共6小题,每小题4分,共24分) 1. 三批产品,第一批优质品率为0.2,第二批优质品率为0.5,第三批优质品率为0.35,现从这三批中任取一批再从该批中任取一件产品,则取到优质品的概率为。
2. 设离散型随机变量 X 的分布律为 $P\{X=i\}=a\frac{(2\lambda)^i}{i!}$ $(\lambda>0)$ $i=0,1,2,3,\cdots$ 则
a =
3. 设X的分布律为 $\binom{X}{p}$ 0.3 0.5 0.2, 其分布函数为 $F(x)$,则 $F(1.5) =$
4. 设随机变量%的所有可能取值为1 和 α , 且 $P\{X=1\}=0.4$, $E(X)=0.2$, 则 $\alpha=$
5. 设 $\widehat{\theta_1}$ 和 $\widehat{\theta_2}$ 都是总体 X 的样本 X_1, X_2, \cdots, X_n 的函数,如果满足则称随机区
间 $\left[\widehat{\theta_1},\widehat{\theta_2}\right]$ 是未知参数 θ 的 95% 的置信区间。
6. 设 $\widehat{\theta}_1$ 和 $\widehat{\theta}_2$ 是 θ 的 2 个独立的无偏估计量,且假定 $D(\widehat{\theta}_1) = 2D(\widehat{\theta}_2)$,令 $\widehat{\theta} = C_1\widehat{\theta}_1 + C_2\widehat{\theta}_2$,
若 $\hat{\theta}$ 为 θ 的无偏估计量,又使 $D(\hat{\theta})$ 达到最小,则 $C_1 = __C_2 = __$
二、单项选择题(共 6 小题,每小题 4 分,共 24 分) 1. 随机事件 A 和 B ,适合 $B \subset A$,则以下各式错误的是()。
A. $P(A \cup B) = P(A)$ B. $P(B \setminus A) = P(B)$ C. $P(\overline{AB}) = P(\overline{A})$ D. $P(B) \le P(A)$
2. 当随机变量 X 的取值范围为区间()时,则 $f(x) = \cos x$ 为随机变量 X 的分布密度函数。

$$A. \quad \left[0, \frac{\pi}{2}\right]$$

B.
$$\left[\frac{\pi}{2}, \pi\right]$$

C.
$$[0,\pi]$$

A.
$$\left[0, \frac{\pi}{2}\right]$$
 B. $\left[\frac{\pi}{2}, \pi\right]$ C. $\left[0, \pi\right]$ D. $\left[\frac{3\pi}{4}, \frac{7\pi}{4}\right]$

3. 每次试验成功的概率为p(0 ,则在三次重复独立试验中至多失败两次的概率为

A.
$$3p(1-p)$$

A.
$$3p(1-p)^2$$
 B. $3p^2(1-p)$ C. $1-p^3$ D. $1-(1-p)^3$

$$C. 1-p$$

$$D. 1-(1-p)^3$$

4. 函数
$$F(x) = \begin{cases} 0, & x < 0 \\ \sin x, & 0 \le x \le \pi \\ 1, & x \ge \pi \end{cases}$$
 是()。

A 某一离散型随机变量的分布函数 B 某一连续性随机变量的分布函数

C.既不是连续性也不是离散型随机变量的分布函数 D 不可能为某一随机变量的分布函数。

5. 设随机变量 X 的数学期望 $E(X) = \mu$, 方差 $D(X) = \sigma^2$, 则由切比雪夫不等式, 有

 $P\{|X-\mu| \ge 3\sigma\} \le ()$.

$$A.\frac{1}{6}$$

B.
$$\frac{1}{3}$$

$$C.\frac{1}{9}$$

$$A.\frac{1}{6}$$
 $B.\frac{1}{3}$ $C.\frac{1}{9}$ $D.\frac{1}{27}$

6. 假设检验中,显著性水平 α 表示()。

 $A H_o$ 为假,但接受 H_o 的假设的概率 $B H_o$ 为真,但拒绝 H_o 的假设的概率

C Mo为假,但拒绝Mo的假设的概率 D 可信度

三、简答题(共3小题,共25分)

- 1. (7分) X 服从正态分布 $N(\mu, \sigma^2)$, 试证明 $Y = \frac{X \mu}{\sigma}$ 服从正态分布 N(0.1)。
- 2. (10 分) 已知 (X,Y) 的概率密度函数为 $f(x,y) = \begin{cases} 3x, & 0 < x < 1, 0 < y < x \\ 0, & 其它 \end{cases}$,

(1) X,Y 的边缘概率密度;

试求:

(2) X和Y的条件概率密度函数。

3. $(8\,
m eta)$ 设 X_1, X_2, X_3, X_4 是来自正态总体 N(0,1) 的样本,设 $X = a(X_1 - 2X_2)^2 + b(3X_3 - 4X_4)^2 \ \
m 为 \ \chi^2 \ \
m 分布的自由度$

 $X = a(X_1 - 2X_2)^2 + b(3X_3 - 4X_4)^2$ 为 χ^2 分布,试求 a,b 的值,并说明该 χ^2 分布的自田度是多少?

四、综合题(共2小题,共27分)

- (-) $(12 \, eta)$ 设随机变量 X 在区间 $[0, \; \theta]$ 上服从均匀分布,其中 θ 未知,并设 X_1, X_2, \cdots, X_n ,是来自总体 X 的一个样本,试求
- (1) θ 的极大似然估计;
- (2) 确定常数 C, 使 $C\hat{\theta}$ 为 θ 的无偏估计。
- (二)(15分)将两封信投入3个编号分别为1,2,3的信筒,设X.¥分别表示投入第1,2号信筒的数目,试求
- (1) 二维随机变量(X,Y)的联合分布,并判断X和Y的独立性;
- (2) 方差 D(X-Y);
- (3) $U = \max\{X, Y\}$ 的分布律。

一. 填空题

1. 事件 A、 B 相互独立,且 P(B) = 0.5, P(B - A) = 0.2 则 P(A - B) = ()。

2. 随机变量 X 服从标准正态分布。 则 $E[(Xe^{2X}] = ($)。

3. 设X服从 $N(\mu, \sigma^2)$; $X_1, X_2, ..., X_n$ 是取自总体X的简单随机样本,

则检验问题 $H_0:\sigma^2=1;\quad H_1:\sigma^2\neq 1$ 通常所用的统计量为 ()。

- 4. 随机变量 $X \times Y$ 的方差分别为 1 和 4; 相关系数为 -0.5,则随机变量 3X Y 的方差为 ()。
- 5. 设 $X_1, X_2, \dots, X_n (n > 1)$ 为来自总体 $N(0, \sigma^2)$ 的简单随机样本,

记统计量
$$Y = \sum_{i=1}^{n} X_i^2$$
 , 则 $D(Y) = ($)。

6.设(X, Y)服从正态分布N(1,0;4,4;0), 则 $E(X^2Y^2) = ($)

二. 单项选择题

1. 设 $f_1(x)$ 、 $f_2(x)$ 分别为 X_1, X_2 的概率分布密度,则下列选项中一定为某一随机变量概率分布密度的是()。

(A)
$$f_1(x)f_2(x)$$
; (B) $2f_1(x) - f_2(x)$; (C) $f_1(x) + f_2(x)$; (D) $\frac{1}{3}f_1(x) + \frac{2}{3}f_2(x)$

2. 设 X_1, X_2 的概率分布列都为: $\begin{pmatrix} 0 & 1 \\ \frac{1}{3} & \frac{2}{3} \end{pmatrix}$,且 $Cov(X_1, X_2) = -\frac{1}{9}$

则概率 $P\{X_1^2 + X_2^2 = 1\} = ($)。

(A)0; (B)
$$\frac{1}{3}$$
; (C)1; (D) $\frac{2}{3}$.

3. 随机变量 $X \sim b(3, p)$, $Y \sim b(2, p)$ 。如果 $P\{X \ge 1\} = \frac{19}{27}$

则
$$P{Y = 1} = ($$
)。

(A)	$\frac{2}{9}$;	(B) $\frac{1}{3}$;	(C)	$\frac{4}{9}$;	(D)	$\frac{5}{9}$	o	
1. 设	总体	X 服,	从 $N(0, \sigma$	²), X	$_{1},X_{2},$, X	,是来	自总位	本 <i>X</i>	的简单随机机	羊本,
则主	≝ <i>n</i> −	→∞肟	f , $Y_n =$	$\frac{1}{n} \sum_{i=1}^{n} x_i$	X_i^3 依木	既率也	女敛于	()。	
(A)	0:		(B) σ^2 ;	((C) σ	τ ³ :	([)) 1.			

5. 总体 X 服从区间[$1-\theta$, $\theta+1$]上的均匀分布, $\theta>0$ 为未知参数;

 X_1, X_2, \dots, X_n 是来自总体的简单随机样本。

则下面选项中**不是统计量**的是()。

(A)
$$\overline{X} + 2$$
; (B) $\sum_{i=1}^{n} X_i^2 - D(X)$; (C) $n(\overline{X})^2$; (D) $\overline{X} + E(X)$

6. 一批产品共 10 件,其中 2 件次品,从中随机抽取 3 次,每次抽 1 件,抽后不放回,则第 3 次才抽到正品的概率为 ()。

(A)
$$\frac{1}{45}$$
 ; (B) 0.2 ; (C) $\frac{7}{45}$; (D) 1.

三. 计算题

(一) 设X 的分布列为 $P\{X = 1\} = P\{X = 2\} = 0.5$; 在X = k的条件下,Y服从区间[0, k]上的均匀分布(k = 1,2), 试求Y的分布函数 $F_{v}(y)$ 和Y概率分布密度 $f_{v}(y)$ 。

(二)设二维随机变量(X,Y)的密度函数为

$$f(x, y) = \begin{cases} cxe^{-y}, & 0 < x < 1,0 < y < +\infty, \\ 0, & \sharp \dot{\Xi}. \end{cases}$$

1.求常数c 2. 求出X、Y的边际分布密度

3,说明X、Y是否独立,为什么? 4. 求 $E(X^2Y)$

(三) 总体 X 的概率分布函数为:

$$F(x) = \begin{cases} 1 - e^{-\frac{(x-b)}{\theta}}, & x \ge b \\ 0, & \text{其它}. \end{cases}$$

 X_1, X_2, \cdots, X_n 为来自总体 X 的简单随机样本。

- 1. 当b = 0时,求参数 θ 的矩估计 $\hat{\theta}$ 。
- 2. 当 $\theta = 1$ 时,求参数b的极大似然估计 \hat{b} 。
- 3. 当 $\theta = 1$ 时,求出极大似然估计 \hat{b} 的概率密度函数。
- 四. 总体 X 服从 $N(0,3^2)$, X_1,X_2,\cdots,X_{18} 为来自总体 X 的简单随机样本

记
$$Y = \frac{(X_1^2 + X_2^2 + \dots + X_9^2)}{(X_{10} + X_{11} + \dots + X_{18})^2}$$
。证明: Y 服从 $F(9,1)$

2016 秋答案

一. 填空题

1. 0.3; 2.
$$2e^2$$
; 3. $(n-1)S^2$; 4. 19; 5. $2n\sigma^4$; 6. 20

二. 单选题

三.(一)解:据题意

一)解: 佑趣意
$$X = 1 \text{ 时} : P\{Y \le y | X = 1\} = \begin{cases} 0 & y < 0 \\ y & 0 \le y < 1 \\ 1 & y \ge 1 \end{cases}$$

$$X = 2 \text{ 时} : P\{Y \le y | X = 2\} = \begin{cases} 0 & y < 0 \\ \frac{y}{2} & 0 \le y < 2 \\ 1 & y \ge 2 \end{cases}$$

$$P\{Y \le y\} = \sum_{i=1}^{2} P\{X = i\} P\{Y \le y | X = i\}$$

$$= \frac{1}{2} P\{Y \le y | X = 1\} + \frac{1}{2} P\{Y \le y | X = 2\}$$

$$F_{Y}(y) = \begin{cases} 0 & y < 0 \\ \frac{3}{4} & y < 0 \\ 0 \le y < 1 \\ \frac{1}{2} + \frac{y}{4} & 1 \le y < 2 \\ 2 \le y \end{cases}$$

$$f_{Y}(y) = \begin{cases} \frac{3}{4} & 0 < y < 1 \\ \frac{1}{4} & 1 < y < 2 \end{cases}$$

(二)解

(2)
$$X$$
 的边际分布密度 $f_X(x) = \int_{-\infty}^{+\infty} f(x, y) dy = \begin{cases} 2x & 1 > x > 0 \\ 0 &$ 其它

Y的边际分布密度

$$f_{Y}(y) = \int_{-\infty}^{+\infty} f(x, y) dx = \begin{cases} e^{-y} & y > 0 \\ 0 & \text{ } \sharp \text{ } \end{cases}$$

(3) : $f(x, y) = f_X(x)f_Y(y)$ 所以 $X \setminus Y$ 独立,

(4)
$$E(X^2Y) = EX^2EY = \frac{1}{2}$$

(三)

解: 1. 当 b = 0时,X的分布函数

$$F(x) = \begin{cases} 1 - e^{-\frac{x}{\theta}}, & x \ge 0 \\ 0, & \text{ } \not\exists \text{ } \vec{\text{ }} \vec{\text{ }} \vec{\text{ }} \vec{\text{ }} \end{cases} > 0,$$

$$X$$
 密度函数 $f(x) = \begin{cases} \frac{1}{\theta} e^{-\frac{x}{\theta}}, & x \ge 0 \\ 0, & 其它。 \end{cases}$ $\theta > 0$

$$EX = \theta$$
 : $\hat{\theta} = \overline{X}$ 为 θ 的矩估计

2. 当 $\theta = 1$ 时,X的分布函数

$$X$$
密度函数 $f(x) = \begin{cases} e^{-(x-b)}, x \ge b \\ 0, 其它。 \end{cases}$

似然函数
$$L(b) = \begin{cases} e^{-\sum_{i=1}^{n} x_i + nb} \\ 0 \end{cases}$$
 $b \leq \min(x_1, x_2, \dots, x_n)$

 \therefore b的极大似然估计 $\hat{b} = \min(X_1, X_2, \dots, X_n)$

3. 当 $\theta = 1$ 时,X的分布函数

$$\hat{b} = \min(X_1, X_2, \cdots, X_n)$$

 \hat{b} 的分布函数

$$\hat{b}$$
 的概率密度函数 $f_{\hat{b}}(x) = \begin{cases} ne^{-n(x-b)} & x > b \\ 0 &$ 其它

四.证明: 略

2017春

一. 填空题

- 1. 已知P(A) = 0.6 , $P(A\bar{B}) = P(\bar{A}B)$, 则P(B) = (
- 2. 随机变量X服从标准正态分布,则 $E(X^2e^{2X})=($
- 3. 设X 服从 $N(\mu, \sigma^2)$; σ^2 未知, $X_1, X_2, ..., X_n$ 是取自总体X 的简单随机样本, 则检验问题 $H_0: \mu = 1$; $H_1: \mu \neq 1$ 通常所用的统计量为()。
- 4. 随机变量 $X \times Y$ 的方差分别为 4 和 9; 相关系数为 -0.5,则随机变量 2X - Y 的方差为(
- 5. 设 $X_1, X_2, \dots, X_n (n > 1)$ 为来自总体 $N(0, \sigma^2)$ 的简单随机样本, \overline{X} 、 S^2 分别为样本 均值和样本方差,则 $Cov(\bar{X},S) = ($)。
- 6. 从分别写有自然数 1 到 9 的九张卡片中,无放回的任取四张,则第三张取到偶数的 概率为(

单项选择题

- 1. 设 $f_1(x)$ 、 $f_2(x)$ 分别为 X_1, X_2 的分布函数,则下列选项中一定为某一随机变量 概率分布函数的是(
- (A) $f_1(x)f_2(x)$; (B) $2f_1(x) f_2(x)$; (C) $f_1(x) + f_2(x)$; (D) $f_1(x) f_2(x)$.
- 2. 设 X_1 、 X_2 的概率分布列都为 $\begin{pmatrix} -1 & 0 & 1 \\ \frac{1}{4} & \frac{1}{2} & \frac{1}{4} \end{pmatrix}$,且 $P(X_1X_2 = 0) = 1$,则概率

$$P(X_1 + X_2 = 1) = ($$
).

- (A) 0; (B) $\frac{1}{2}$; (C) 1; (D) $\frac{1}{4}$.
- 3. 随机变量X的分布函数为 $F(x) = \begin{cases} 0 & x \leq 0 \\ 0.7x^2 & 0 < x < 1, 则概率<math>P(X = 1) = (1, 1) \end{cases}$

- (A) 1; (B) 0.7; (C) 0.5; (D) 0.3.

- 4. 设总体X服从参数为的 θ 泊松分布, $X_1, X_2, ..., X_n$ 是来自总体 X 的简单随机样本,则当 $n \to \infty$ 时,则 \bar{X} 依概率收敛于()。
 - (A) 0; (B) θ^2 ; (C) θ ; (D) 1.
- 5. 总体X 服从区间[$\theta-1$, $\theta+1$]上的均匀分布, $\theta>0$ 为未知参数; X_1,X_2,\cdots,X_n 是来自总体的简单随机样本。则下面选项中**不是**统计量的是()。

(A)
$$\overline{X} + 2$$
; (B) $\sum_{i=1}^{n} X_i^2 - D(X)$; (C) $n(\overline{X})^2$; (D) $\overline{X} + E(X)$

- 6.随机变量X、Y的相关系数为 1,已知 $X \sim U[-1, 1]$, EY = 2, DY = 3 则()。
 - (A) $Y \sim U[-1,5]$; (B) $Y \sim N(2,9)$; (C) $Y \sim U[1,3]$; (D) $Y \sim N(2,3)$.

三. 计算题

- (一) 设 X 的分布列为 $P\{X=1\}=P\{X=2\}=0.5$; $Y\sim U[0,1]$ 且 X、 Y 相互独立, Z=X+Y,试求出 Z 的分布密度函数 $f_Z(z)$ 。
- (二)设二维随机变量(X,Y)的密度函数为

- 1. 求常数 c;
- 2. 求出 $X \times Y$ 的边际分布密度;
- 3. 分别求出关于 $X \times Y$ 的 条件密度函数;
- 4. 求 $P\{X + Y < 2\}$.
- (Ξ) 总体 X 的概率分布密度函数为:

$$f(x;\beta) = \begin{cases} 2e^{-2(x-\beta)}, & x > \beta, \\ 0, &$$
其它,

其中β为实数。 X_1, X_2, \cdots, X_n 为来自总体X的简单随机样本。

- 1. 求参数β的矩估计 $\widehat{\beta_1}$;
- 2. 求参数β的极大似然估计 $\widehat{\beta_2}$;
- 3. 矩估计 $\widehat{\beta_1}$,极大似然估计 $\widehat{\beta_2}$ 是不是参数 β 的无偏估计,为什么?
- 四. 总体 X 服从 $N(0,\sigma^2)$, X_1,X_2,\cdots,X_{18} 为来自总体 X 的简单随机样本,记 $Y=\frac{X_1+X_2+\cdots+X_9}{(X_{10}^2+X_{11}^2+\cdots+X_{18}^2)^{0.5}}$ 。证明: Y 服从自由度为 9 的 t 分布。

2017 春答案

一. 填空题

1.
$$0.6$$
; 2. $5e^2$; 3. $\frac{\sqrt{n}(\bar{X}-1)}{S}$; 4. 37; 5.0; 6. $\frac{4}{9}$

二. 单选题

= .

(一)解:据题意

$$F_Z(z) = P\{X + Y \le z\} = P(X = 1)P(X + Y \le z | X = 1) + P(X = 2)P(X + Y \le z | X = 2)$$
$$= 0.5P(Y \le z - 1) + 0.2P(Y \le z - 2)$$

$$=0.5F_Y(z-1)+0.5F_Y(z-2)$$

所以分布密度为 $f_Z(z)=0.5f_Y(z-1)+0.5f_Y(z-2)$

所以
$$f_Z(z) = \begin{cases} \frac{1}{2} & z \in [1, 3] \\ 0 & 其它 \end{cases}$$

(二)解
$$(1) \quad : \int_{-\infty}^{+\infty} \int_{-\infty}^{+\infty} f(x, y) dx dy = 1$$

$$c = 1 \quad ,$$

(2)
$$X$$
 的边际分布密度
$$f_X(x) = \int_{-\infty}^{+\infty} f(x,y) dy = \begin{cases} e^{-x} & x > 0 \\ 0 & x \le 0 \end{cases}$$
 Y 的边际分布密度
$$f_Y(y) = \int_{-\infty}^{+\infty} f(x,y) dx = \begin{cases} ye^{-y} & y > 0 \\ 0 & y \le 0 \end{cases}$$

(3) 当
$$x > 0$$
时, $f_{(Y|X)}(y|x) = \frac{f(x,y)}{f_X(x)} = \begin{cases} e^{-(y-x)} & y > x \\ 0 & 其它 \end{cases}$

当
$$y > 0$$
时, $f_{(X|Y)}(x|y) = \frac{f(x,y)}{f_Y(y)} = \begin{cases} \frac{1}{y} & y > x > 0\\ 0 & 其它 \end{cases}$

(4)
$$P{X + Y < 2} = \int_0^1 dx \int_x^{2-x} e^{-y} d = 1 - 2e^{-1} + e^{-2}$$

(三)解: 1. X 密度函数

$$f(x;\beta) = \begin{cases} 2e^{-2(x-\beta)} & x > \beta \\ 0 & \not\exists \vec{E} \end{cases}$$

 $E(X) = \beta + 0.5$ 所以参数β的矩估计 $\widehat{\beta_1} = \overline{X} - 0.5$

2.

似然函数
$$L(\beta) = \begin{cases} 2^n e^{-2\sum_{i=1}^n (x_i - \beta)} & x_i > \beta \ i = 1, \cdots n \\ 0 & \cancel{\cancel{\cancel{\mu}}} \not c \end{cases}$$

$$= \begin{cases} 2^n e^{-2\sum_{i=1}^n (x_i - \beta)} & \beta < \min\{x_1, x_2, \cdots x_n\} \\ 0 & \cancel{\cancel{\cancel{\mu}}} \not c \end{cases}$$
参数 β 的极大似然估计 $\widehat{\beta_2} = Min\{X_1, \cdots, X_n\}$

3.
$$X$$
 其分布函数为 $F(x) = \begin{cases} 1 - e^{-2(x-\beta)} & x > \beta \\ 0 &$ 其它

$$\widehat{\beta_2} = Min\{X_1, \cdots, X_n\}$$
的分布函数 $G(x) = 1 - [1 - F(x)]^n$

$$=\begin{cases} 1 - e^{-2n(x-\beta)} & x > \beta \\ 0 & \not\exists \vec{E} \end{cases}$$

概率密度函数
$$g(x;\beta) = \begin{cases} 2ne^{-2n(x-\beta)} & x > \beta \\ 0 & \pm \zeta \end{cases}$$

$$E(\bar{X} - 0.5) = \beta \quad E(Min(X_1 \dots, X_n)) = \beta + \frac{1}{2n}$$

矩估计 $\widehat{\beta_1}$ 是参数 β 的无偏估计, $\widehat{\beta_2}$ 不是参数 β 的无偏估计

四.证明: 略

2017 秋

一. 填空题

- 1. 已知 P(B) = 0.4 , $P(A\bar{B}) = P(\bar{A}B)$, 则 $P(\bar{A}) = ($
- 2. 随机变量X服从标准正态分布。 则 $E[(X+1)^2e^X]=($)。
- 3. 设X 服从 $N(\mu, \sigma^2)$; σ^2 未知, $X_1, X_2, ..., X_n$ 是取自总体X 的简单随机 样本,则检验问题 $H_0: \mu = 0$; $H_1: \mu \neq 0$ 通常所用的统计量(
- 4. 随机变量 $X \times Y$ 的方差分别为 1 和 4; 相关系数为-0.25,则随机变量 2X + Y 的方差为(
- 5. 设 $X_1, X_2, \dots, X_n (n > 1)$ 为来自总体 $N(0, \sigma^2)$ 的简单随机样本, \bar{X} 、 S^2 分别 为样本均值和样本方差,则 $Cov(\bar{X}, S^2) = ($
- 6.从分别写有自然数1到10的十张卡片中,无放回的任取三次,每次取一张。 则第三次才取到偶数的概率为()。

二. 单项选择题

- 1. 设 $f_1(x)$ 、 $f_2(x)$ 分别为 X_1,X_2 的概率分布函数,则下列选项中一定为某一 随机变量概率分布函数的是().
- (A) $f_1^2(x)f_2(x)$; (B) $2f_1(x) f_2(x)$; (C) $f_1(x) + f_2(x)$; (D) $f_1^2(x) + f_2(x)$.
- 2. 设 X_1 、 X_2 的概率分布列都为: $\begin{pmatrix} -1 & 0 & 2 \\ \frac{1}{a} & \frac{1}{2} & \frac{1}{a} \end{pmatrix}$,且 $P(X_1X_2=0)=1$, 则概率

 $P(X_1 + X_2 = 1) = ($

- (A) 0; (B) $\frac{1}{2}$; (C) 1; (D) $\frac{1}{4}$.

- 3. 随机变量 X 的分布函数为 $F(x) = \begin{cases} 0 & x \le 0 \\ 0.6x^2 & 0 < x < 1, 则概率<math>P(X < 1) = (1, 1) \end{cases}$)。
 - (A) 1; (B) 0.4; (C) 0.6; (D) 0.5 a

- 4. 设总体X服从参数为的 θ 泊松分布, $X_1, X_2, ..., X_n$ 是来自总体 X 的简单随机样本,则当 $n \to \infty$ 时,则(\overline{X}) 2 依概率收敛于()。
 - (A) 0;
- (B) θ^2 ;
- (C) θ ;
- (**D**) 1.

)。

5. 总体X 服从区间[1 - θ , θ + 1]上的均匀分布, θ > 0 为未知参数;

 X_1, X_2, \cdots, X_n 是来自总体的简单随机样本。则下面选项中**不是统计量**的是(

(A)
$$\overline{X} + 2$$
; (B) $\sum_{i=1}^{n} X_{i}^{2} - D(X)$; (C) $n(\overline{X})^{2}$; (D) $\overline{X} + E(X)_{\circ}$

- 6.随机变量X、Y的相关系数为 1,已知 $X \sim U[0, 2], EY = 2, DY = 3 则$
 - (A) $Y \sim U[-1,5]$; (B) $Y \sim N(-2,4)$; (C) $Y \sim N(2,3)$; (D) $Y \sim U[-1,4]$.

三. 计算题

(一)) 设 X 的分布列为 $P\{X = 1\} = P\{X = 2\} = 0.5$; Y的分布密度函数

为
$$f_Y(y) = \begin{cases} 2y & 0 < y < 1 \\ 0 & 其它 \end{cases}$$
,且 X 、 Y 相互独立, $Z = X + Y$.

试求出 Z 的分布密度函数 $f_Z(z)$

(二)设二维随机变量(X,Y)的概率密度函数为

$$f(x,y) = \begin{cases} cye^{-x} & 0 < x < +\infty, \quad 0 < y < x \\ 0 & \cancel{\cancel{1}}\cancel{\cancel{2}} \end{cases}$$

- 1.求常数 c
- 2. 求出X、Y的边际分布密度
- 3,分别求出关于 X 、 Y 的条件密度函数 4. 求 EX

第2页共3页 +

(三) 总体 X 的概率分布函数为:

$$F(x;\beta) = \begin{cases} 1 - e^{-(x-\beta)} & x > \beta \\ 0 & \cancel{\sharp} \cancel{c} \end{cases}, \beta \cancel{\S} \cancel{\S}$$

 X_1, X_2, \cdots, X_n 为来自总体 X 的简单随机样本。

- 1. 求参数β的矩估计 $\widehat{\beta_1}$.
- 2. 求参数β的极大似然估计 $\widehat{\beta_2}$ 。
- 3. 求出极大似然估计 $\widehat{\beta_2}$ 的概率分布密度函数。
- 4. 令 $\widehat{\beta_3} = \widehat{\beta_2} \frac{1}{n}$ 验证它是参数 β 的无偏估计。
- 四. 总体 X 服从 $N(1,\sigma^2)$, X_1,X_2,X_3,X_4 为来自总体 X 的简单随机样本

记
$$Y = \frac{X_1 - X_2}{|X_3 + X_4 - 2|}$$
 。证明: Y 服从自由度为 1 的 t 分布

2017 秋答案

一. 填空题

1.
$$0.6$$
; 2. $5e^{0.5}$; 3. $\frac{\sqrt{n}(\bar{X})}{s}$; 4. 6 ; 5. 0 ; 6. $\frac{5}{36}$

二. 单选题

 \equiv .

(一) 解: 据题意

$$F_Z(z) = P\{X + Y \le z\} = P(X = 1)P(X + Y \le z | X = 1) + P(X = 2)P(X + Y \le z | X = 2)$$

$$= 0.5P(Y \le z - 1) + 0.5P(Y \le z - 2)$$

$$= 0.5F_Y(z - 1) + 0.5F_Y(z - 2)$$

所以分布密度为 $f_Z(z) = 0.5 f_Y(z-1) + 0.5 f_Y(z-2)$

所以
$$f_Z(z) = \begin{cases} (z-1) & 1 < z < 2 \\ (z-2) & 2 < z < 3 \\ 0 & 其它 \end{cases}$$

(二)解

$$(1) \qquad \because \int_{-\infty}^{+\infty} \int_{-\infty}^{+\infty} f(x, y) dx dy = 1$$

$$c = 1 ,$$

$$f(x, y) = \begin{cases} ye^{-x} & 0 < x < +\infty, & 0 < y < x \\ 0 & \text{ #E} \end{cases}$$

(2)
$$X$$
 的边际分布密度 $f_X(x) = \int_{-\infty}^{+\infty} f(x,y) dy = \begin{cases} 0.5x^2e^{-x} & x > 0 \\ 0 & x \le 0 \end{cases}$ Y 的边际分布密度 $f_Y(y) = \int_{-\infty}^{+\infty} f(x,y) dx = \begin{cases} ye^{-y} & y > 0 \\ 0 & y \le 0 \end{cases}$

当
$$y > 0$$
时, $f_{(X|Y)}(x|y) = \frac{f(x,y)}{f_Y(y)} = \begin{cases} e^{-(x-y)} & x > y \\ 0 & 其它 \end{cases}$

(4) EX = 3

(三)

解: 1. X 密度函数

$$f(x;\beta) = \begin{cases} e^{-(x-\beta)} & x > \beta \\ 0 & \# \Xi \end{cases}$$

 $E(X) = \beta + 1$ 所以参数β的矩估计 $\widehat{\beta_1} = \overline{X} - 1$

似然函数
$$L(\beta) = \begin{cases} e^{-\sum_{i=1}^{n}(x_i-\beta)} & x_i > \beta \ i=1,\cdots n \\ 0 & \underline{\sharp c} \end{cases}$$

$$= \begin{cases} e^{-\sum_{i=1}^{n}(x_i-\beta)} & \beta < \min\{x_1, x_2, \cdots x_n\} \\ 0 & \underline{\sharp c} \end{cases}$$
参数 β 的极大似然估计 $\widehat{\beta_2} = Min\{X_1, \cdots, X_n\}$

3.
$$X$$
 其分布函数为 $F(x) = \begin{cases} 1 - e^{-(x-\beta)} & x > \beta \\ 0 &$ 其它

 $\widehat{\beta_2} = Min\{X_1, \cdots, X_n\}$ 的分布函数 $G(x) = 1 - [1 - F(x)]^n$

$$=\begin{cases} 1 - e^{-n(x-\beta)} & x > \beta \\ 0 & \not\exists \dot{\Xi} \end{cases}$$

概率密度函数
$$g(x; \beta) = \begin{cases} ne^{-n(x-\beta)} & x > \beta \\ 0 & \# c \end{cases}$$

4.
$$E(Min(X_1 \cdots, X_n) = \beta + \frac{1}{n}$$
 $E\beta_3 = \beta$ 所以 $\widehat{\beta_3}$ 是参数 β 的无偏估计

四.证明: 略

一、填空题

- 1. 已知 P(A) = 0.5, $P(A \cup B) = 0.8$, A 和 B 相互独立,则 P(B) = 0.8
- 2. 将不同的两封信随机地投入3个邮筒中,则第一个邮筒中有一封信的概率是 ...
- 3. 随机变量 X 服从期望是 2 的指数分布,则 P(X < 1) = .
- 4. 设随机变量 X 服从正态分布 N(1,4) , Y 服从 N(2,1) , 且 X 和 Y 相互独立,则 2X 3Y服从 分布(要求分布包括参数).
- 5. 设总体 X 服从正态 N(0,1), X_1, X_2, X_3, X_4 是来自总体 X 的简单随机样本,统计量

$$Y = \frac{X_1 + X_2}{\sqrt{X_3^2 + X_4^2}}$$
 服从______分布(要求包括自由度).

6. 设总体 X 服从正态分布 $N(\mu,1)$,样本容量 n=16,样本均值的观察值为 5. 2,则 μ 的置 信水平为 0.95 的置信区间为______(已知 $z_{0.025} = 1.96, t_{0.025}(15) = 2.1315$).

二、单项选择题

1. 下列函数中,可作为随机变量的概率密度函数的是(

(A)
$$f(x) = \begin{cases} x^2, 0 < x < 1, \\ 0, 其他 \end{cases}$$

(B)
$$f(x) = \begin{cases} \cos x, 0 < x < \pi, \\ 0, 其他 \end{cases}$$

(C)
$$f(x) = \begin{cases} \sin x, 0 < x < \frac{\pi}{2} \\ 0, 其他 \end{cases}$$

(C)
$$f(x) = \begin{cases} \sin x, 0 < x < \frac{\pi}{2}, \\ 0, \text{ i.e.} \end{cases}$$
 (D) $f(x) = \begin{cases} \sin x, -\frac{\pi}{2} < x < \frac{\pi}{2}, \\ 0, \text{ i.e.} \end{cases}$

2. 设随机变量 $X \sim N(0,1)$, $Y = e^X$, 关于 Y 的概率密度函数, 正确的是().

$$\text{(A)} \quad f_{Y}(y) = \begin{cases} \frac{1}{\sqrt{2\pi}y}e, & y > 0\\ \frac{1}{\sqrt{2\pi}y}e^{-\frac{(\ln y)^{2}}{2}}, & y \leq 0 \end{cases}$$
 \tag{(B)} \quad f_{Y}(y) = \left\{ \frac{1}{\sqrt{2\pi}y}}e^{-\frac{(\lny)^{2}}{2}}, & y > 0 \\ 0, & y \leq 0 \end{array}

(B)
$$f_{Y}(y) = \begin{cases} \frac{1}{\sqrt{2\pi y}} e^{-\frac{(\ln y)^{2}}{2}}, & y > 0\\ 0, & y \le 0 \end{cases}$$

(C)
$$f_{Y}(y) = \begin{cases} \frac{1}{\sqrt{2\pi}} e^{-\frac{(\ln y)^{2}}{2}}, & y > 0\\ 0, & y \le 0 \end{cases}$$

(C)
$$f_Y(y) = \begin{cases} \frac{1}{\sqrt{2\pi}} e^{\frac{-(\ln y)^2}{2}}, & y > 0 \\ 0, & y \le 0 \end{cases}$$
 (D) $f_Y(y) = \begin{cases} 0, & y > 0 \\ \frac{1}{\sqrt{2\pi} y} e^{\frac{-(\ln y)^2}{2}}, & y \le 0 \end{cases}$

----- 概率统计 ------

3. 若方差 $D(X+Y) = D(X) + D(Y)$,	则下列一定正确的是().	
(A) $D(XY) = D(X)D(Y)$	(B) <i>X</i> 与 <i>Y</i> 相互独立	

4. 随机的掷 6 个骰子,利用切比雪夫不等式估计, 6 个骰子出现点数之和在 15 点到 27 点之间的概率不小于().

(D) E(XY) = E(X)E(Y)

(A)
$$\frac{37}{72}$$
 (B) $\frac{53}{72}$ (C) $\frac{25}{36}$ (D) $\frac{29}{36}$

5. 设 $\Phi(x)$ 是标准正态分布函数, $X_i = \begin{cases} 1, & \text{事件A发生} \\ 0, & \text{否则} \end{cases}$, $i=1,2,\cdots$,100,且P(A)=0.8,

 X_1 , X_2 ,…, X_{100} 相互独立。令 $Y = \sum_{i=1}^{100} X_i$, 则由中心极限定理知, $P(Y \le y)$ 的值近似于().

(A)
$$\Phi(\frac{y-80}{4})$$
 (B) $\Phi(y)$ (C) $\Phi(16y+80)$ (D) $\Phi(\frac{y-80}{16})$

- 6. 在假设检验问题中,显著性水平 α 的意义是().
 - (A) 原假设 H_0 成立,经检验被拒绝的概率 (B) 原假设 H_0 成立,经检验被接受的概率
 - (C) 原假设 H_0 不成立,经检验被拒绝的概率 (D) 原假设 H_0 不成立,经检验被接受的概率

三、 计算题

1. 某人去外地参加会议,乘火车、轮船、汽车、飞机的概率分别为 0.3、0.2、0.1 和 0.4,若乘飞机不会迟到,乘火车、轮船、汽车迟到的概率分别为 0.25、0.5 和 0.5,求

(1) 此人迟到的概率.

(C) X与Y不相互独立

(2) 若此人迟到, 求他乘火车去开会的概率.

2. 设随机变量
$$X$$
 和 Y 的联合概率密度 $f(x,y) = \begin{pmatrix} 6, x^2 < y < x \\ 0, 其他 \end{pmatrix}$

- (1) 求X和Y的边缘概率密度 $f_X(x), f_Y(y)$.
- (2) 判断 X 和 Y 是否相互独立, 并说明原因.

+------ 概率统计 ------ 第2页 共3页 +

3. 随机变量
$$X$$
 的分布律为 $\begin{pmatrix} X & -1 & 1 \\ & \frac{1}{2} & \frac{1}{2} \end{pmatrix}$,随机变量 Y 的概率密度是

$$f(y) = \begin{cases} 2y, & 0 < y < 1, \\ 0, & 其它. \end{cases}$$
, $X = Y 相互独立$, $Z = XY$, 求

- (1) Y 的分布函数 . (2) 概率 $P\{Y < E(Y)\}$. (3) 协方差 Cov(X, Z) .
- 4. 设总体 X 的概率密度为 $f(x,\theta) = \begin{pmatrix} \frac{1}{\theta-1}, 1 \le x \le \theta \\ 0, \quad &$ 其中 θ 为未知参数,

 X_1, X_2, \dots, X_n 为来自总体 X 的简单随机样本。求:

- $\hat{\theta}$ (1) 求 θ 的矩估计 $\hat{\theta}$, 并判断 $\hat{\theta}$, 是否为无偏估计, 说明原因.
- (2) 求 θ 的最大似然估计 θ_2 , 并求 θ_2 的概率密度函数.
- 5. 设某次考试的考生成绩服从期望是μ的正态分布。从中随机地抽取 36 位考生的成绩, 算得这 36 位考生的平均成绩为 66.5 分, 样本标准差为 15 分。在显著水平 0.05 下, 试检验假设:

$$H_0: \mu = 70, \quad H_1: \mu \neq 70.$$
 ($\Box \text{ in } t_{0.025}(35) = 2.0301; t_{0.05}(35) = 1.6896;$

$$t_{0.025}(36) = 2.0281; t_{0.05}(36) = 1.6883$$
).

四、证明题

设总体 X 服从正态分布 $N(0,\sigma^2)$, X_1 , X_2 , \cdots , X_n 是来自总体 X 的一组简单随机样本。记

$$\hat{\sigma}^2 = \frac{1}{n} \sum_{i=1}^n X_i^2, \quad S^2 = \frac{1}{n-1} \sum_{i=1}^n (X_i - \overline{X})^2,$$

证明 σ^2 和 S^2 都是 σ^2 的无偏估计。

+------ 概率统计 ------ 第3页 共3页 +

2018 春答案

-, 0.6;
$$\frac{4}{9}$$
; $1-e^{-\frac{1}{2}}$; $N(-4,25)$; $t(2)$; $(4.71,5.69)$

二、CBDAAA

三、

1. (1) 设迟到记为事件 A,乘火车、轮船、汽车、飞机分别记为事件 B_1, B_2, B_3, B_4 由全

概率公式,
$$P(A) = \sum_{i=1}^{4} P(B_i) P(A \mid B_i) = 0.3 \times 0.25 + 0.2 \times 0.5 + 0.1 \times 0.5 = 0.225$$

(2) 由贝叶斯公式,
$$P(B_1|A) = \frac{P(AB_1)}{P(A)} = \frac{0.3 \times 0.25}{0.225} = \frac{1}{3}$$

2

(1)
$$f_X(x) = \begin{cases} 6(x-x^2), 0 < x < 1 \\ 0, \quad \text{其它} \end{cases}$$
; $f_Y(y) = \begin{cases} 6(\sqrt{y}-y), \quad 0 < y < 1 \\ 0, \quad \text{其它} \end{cases}$

(2) $f_X(x)f_Y(x) \neq f(x,y)$, 不独立;

3.

(1).
$$F(y) = \begin{cases} 0, y < 0 \\ \int_0^y 2t dt = y^2, 0 < y < 1 \\ 1, y > 1 \end{cases}$$

(2)
$$E(Y) = \int_0^1 2y^2 dy = 2\frac{y^3}{3}\Big|_0^1 = \frac{2}{3}$$

 $P\{Y < E(Y)\} = P\{Y < \frac{2}{3}\} = F(\frac{2}{3}) = \frac{4}{9}$

(3)
$$Cov(X, Z) = Cov(X, XY) = E(X^2Y) - E(X)E(XY)$$

$$EX = 0, EX^2 = 1$$

$$\Rightarrow$$
 Cov(X,Z) = E(X²Y) = E(X²) E(Y) = $\frac{2}{3}$

4.

$$(1)\overline{X} = EX = \frac{1+\theta}{2} \Rightarrow \hat{\theta}_1 = 2\overline{X} - 1$$
;

$$E[\hat{\theta}_1] = 2E[\overline{X}] - 1 = 2 \times \frac{1+\theta}{2} - 1 = \theta$$
,是无偏估计

$$(2) \quad \stackrel{\wedge}{\theta_2} = \max_{1 \le i \le n} \{ \mathbf{X}_i \}$$

$$\begin{split} F_{X_i}(\mathbf{x}) &= \begin{cases} 0, \mathbf{x} \leq 1 \\ \frac{x-1}{\theta-1}, 1 < x < \theta \Rightarrow F_{\hat{\theta}_2}(\mathbf{x}) = \begin{cases} 0, \mathbf{x} \leq 1 \\ (\frac{x-1}{\theta-1})^n, 1 < x < \theta \\ 1, x \geq \theta \end{cases} \\ \Rightarrow f_{\hat{\theta}_2}(\mathbf{x}) &= \begin{cases} \frac{n}{\theta-1} (\frac{x-1}{\theta-1})^{n-1}, 1 < x < \theta \\ 0, & \nexists \\ \vdots \end{cases} \\ = \begin{cases} \frac{n}{(\theta-1)^n} (x-1)^{n-1}, 1 < x < \theta \\ 0, & \nexists \\ \end{cases} \end{split}$$

5. 由题意知, 样本均值为x = 66.6,样本标准差s = 15,样本容量n = 36

$$H_0: \mu = 70$$
 $H_1: \mu \neq 70$

检验统计量
$$t = \frac{\overline{X} - 70}{S / \sqrt{n}}$$

临界点为 $\pm t_{0.025}(35) = \pm 2.0301$; 拒绝域为 $(2.0301, +\infty) \cup (-\infty, -2.0301)$

代入观察值, 计算得 $t = \frac{\bar{x} - 70}{s/\sqrt{n}} = \frac{66.5 - 70}{15/\sqrt{36}} = -1.4$, 没有落在拒绝域内, 不能拒绝原假设。

四、证:
$$E(\frac{1}{n}\sum_{i=1}^{n}X_{i}^{2}) = \frac{1}{n}\sum_{i=1}^{n}EX_{i}^{2} = \frac{1}{n}\sum_{i=1}^{n}\sigma^{2} = \sigma^{2};$$

$$\frac{(n-1)S^2}{\sigma^2} \sim \chi^2(n-1) \Rightarrow E[\frac{(n-1)S^2}{\sigma^2}] = n-1 \Rightarrow E(S^2) = \sigma^2 \text{ 或者}$$

$$\begin{split} E[S^{2}] &= E[\frac{1}{n-1}\sum_{i=1}^{n}(X_{i}-\overline{X})^{2}] = E[\frac{1}{n-1}(\sum_{i=1}^{n}X_{i}^{2}-n\overline{X}^{2})] = \frac{1}{n-1}[\sum_{i=1}^{n}E(X_{i}^{2})-nE(\overline{X}^{2})] \\ &= \frac{1}{n-1}[n\sigma^{2}-n\frac{\sigma^{2}}{n}] = \sigma^{2} \end{split}$$