

Friday, August 27th Calc III Notes

Operations on Vectors:

① Magnitude (Vector \rightarrow Real # ≥ 0)

"length of a segment"

② Addition (vector + vector \rightarrow Vector)

"head to tail", Addition is done via the "parallelogram law"

③ Subtraction (Vector - Vector \rightarrow Vector)

"tip to tip"

④ Negation (Vector \rightarrow Vector)

$-\vec{v}$ is obtained from \vec{v} by "flipping it"

⑤ Scalar Multiplication (Scalar * Vector \rightarrow Vector)

$c \vec{u} * c$ if $c > 1$, vector gets stretched

if $0 < c < 1$, vector gets squished

if $c < 0$, vector gets flipped

Every vector has a unique representation with tail at origin

x component $(6-4) = 2$, y component $(7-5) = 2$
(zero vector has components of 0)

Vector Operations rewritten with components

(Let \vec{u} be $\langle u_1, u_2, u_3 \rangle$, \vec{v} be $\langle v_1, v_2, v_3 \rangle$)

① Magnitude: $|\vec{v}| = \sqrt{v_1^2 + v_2^2 + v_3^2}$

derived from distance formula

② Addition: $\vec{u} + \vec{v} = \langle u_1 + v_1, u_2 + v_2, u_3 + v_3 \rangle$

③ Subtraction: $\vec{u} - \vec{v} = \langle u_1 - v_1, u_2 - v_2, u_3 - v_3 \rangle$

④ Negation: $-\vec{u} = \langle -u_1, -u_2, -u_3 \rangle$

⑤ Scalar Multiplication: $c \cdot \vec{u} = \langle cu_1, cu_2, cu_3 \rangle$

Theorem (Properties of Vector Operations)

① $(\vec{u} + \vec{v}) + \vec{w} = \vec{u} + (\vec{v} + \vec{w})$ Associative Property

② $\vec{u} + \vec{v} + \vec{w} = \vec{v} + \vec{w} + \vec{u}$ Commutative Property

③ $\vec{0} + \vec{u} = \vec{u}$ Identity Property

④ $\vec{v} - \vec{v} = \vec{0}$

⑤ $a(b\vec{v}) = (ab)\vec{v}$

⑥ $(a+b)\vec{v} = a\vec{v} + b\vec{v}$

⑦ $a(\vec{v} + \vec{u}) = a\vec{v} + b\vec{u}$

⑧ $0\vec{v} = \vec{0}, 1\vec{v} = \vec{v}$

Note: Have to be bound to same plane ($\mathbb{R}^2, \mathbb{R}^3$, etc)

$\langle -1, 2 \rangle + \langle 0, 1, 2 \rangle$ is nonsense

Note: Scalar multiplication NEEDS scalar quantity

Direction:

Given a vector \vec{v}

Standard basis in \mathbb{R}^3

$$\hat{i} = \langle 1, 0, 0 \rangle$$

$$\hat{j} = \langle 0, 1, 0 \rangle$$

$$\hat{k} = \langle 0, 0, 1 \rangle$$

Every vector $\vec{v} = \langle v_1, v_2, v_3 \rangle$

$$= \langle v_1, 0, 0 \rangle + \langle 0, v_2, 0 \rangle + \langle 0, 0, v_3 \rangle$$