

DATA MINING

LA SEGMENTATION

CLUSTERING

Equipe Data Mining

TYPES D'APPLICATIONS

DEUX FAMILLES DE TECHNIQUES

Méthodes
Non Supervisées

Analyse en Composantes
Principales
ACP

Méthodes des Centres
Mobiles
K-means

Classification Ascendante
Hiérarchique
CAH

Règles
Associatives

Méthodes

Supervisées

Arbres de Décisions **Analyse Linéaire Discriminante** Régression Linéaire Régression Logistique Réseaux de Neurones Séparateur à Vaste Marge **SVM**

UTILITÉ DE LA SEGMENTATION

Banque / Assurance

- Catégoriser la clientèle : chercher un profil qui représente les membres de chaque classe
- Regrouper les clients selon des critères et caractéristiques communs : cibler « les mailing »

Médecine

- Déterminer des segments de patients susceptibles d'être soumis à des protocoles thérapeutiques déterminés, chaque segment regroupant tous les patients réagissant identiquement
- Retrouver les différents comportements similaires

Biologie – Zoologie – Ethologie – Sciences humaines

- Expliquer les relations entre espèces, races, genres, familles,
- Retrouver de nouvelles répartitions

- Profiling
- Analyse sémantique, sentimentale,
- Analyse et mesure de la tonalité d'un contenu textuel
- Catégorisation des concepts ou des entités nommés
- Construction d'agrégateur synthétique à partir des flux d'actualités

En tant que data-mineurs votre client souhaite détecter des profils homogènes à partir de cette population.

Segmentation démographique

	âge	situation familiale	genre	nationalité	revenus	éducation	etc
1							
2							

Segmentation comportementale

	Type page vues	Durée session	Fréquence utilisation	Type articles achetes	etc
1					
2					

How many clusters?

Six Clusters

Two Clusters

Four Clusters

Deux individus se ressemblent le plus

S

les points qui les représentent dans le nuage sont les plus proches

Nécessité d'une métrique de la distance

Distance Euclidienne Distance de Mahalanobis Distance de Manhattan Distance de Ward

• • •

Deux individus se ressemblent le plus

S

les points qui les représentent dans le nuage sont les plus proches

Nécessité d'une métrique de la distance

Distance Euclidienne Distance de Mahalanobis Distance de Manhattan Distance de Ward

• • • • •

Un critère d'évaluation d'une classification

$$I_{tot} = I_{inter} + I_{intra}$$

Métriques de la distance

Nom	Fonction	Illustration
Distance de watt	$D_{KL} = \frac{\left\ \overline{\mathbf{x}_K} - \overline{\mathbf{x}_L}\right\ ^2}{\frac{1}{N_K} + \frac{1}{N_L}}$	g _A g _{AB}
distance euclidienne	$\sqrt{\sum_{i=1}^n (x_i-y_i)^2}$	Manhattan Euclidean
distance de Manhattan	$\sum_{i=1}^n x_i-y_i $	A Manhattan

Inertie

Si $G=\{e_i:i=\{1:n\}\}$ est un groupe d'individus, de centre de gravité g, partitionné en k classes d'effectifs $n_1,\ n_2,\ \ldots,\ n_k$ qu'on appellera $G_1,\ G_2,\ \ldots,\ G_k$ qui ont pour centres de gravité $g_1,\ g_2,\ \ldots,\ g_k$ alors i

l'inertie totale du nuage est égale à : $I_t = rac{1}{n} \sum_{i=1}^n d(e_i,g)^2$ où \emph{d} est une distance

l'inertie interclasse est égale à :
$$I_e = rac{1}{n} \sum_{i=1}^k n_i imes d(g_i,g)^2$$

l'inertie intraclasse est égale à :
$$I_a = \frac{1}{n} \sum_{i=1}^k \sum_{e \in G_i} d(e,g_i)^2$$

MÉTHODOLOGIES

K-MEANS

MÉTHODE DES CENTRES MOBILES

PRÉSENTATION DU K-MEANS

- ✓ L'algorithme des K-moyennes est un algorithme qui permet de trouver des classes dans des données.
- ✓ les classes qu'il construit n'entretiennent jamais de relations hiérarchiques: une classe n'est jamais incluse dans une autre classe
- ✓ L'algorithme fonctionne en précisant le nombre de classes attendues.
- ✓ L'algorithme calcule les distances Intra-Classe et Inter-Classe.
- ✓ Il travaille sur des **variables continues**.

PRINCIPE ALGORITHMIQUE

Algorithme K-Means

Entrée : k le nombre de groupes cherchés

DEBUT

Choisir aléatoirement les centres des groupes

REPETER

- i. Affecter chaque cas au groupe dont il est le plus proche au son centre
- ii. Recalculer le centre de chaque groupe

```
JUSQU'A (stabilisation des centres)
```

 \underline{OU} (nombre d'itérations = \mathbf{t})

OU (stabilisation de **l'inertie totale** de la population)

<u>FIN</u>

STABILISATION DE L'INERTIE TOTALE DE LA POPULATION

Inertie totale I_{tot} : somme de l'inertie intraclasse I_r et de l'inertie interclasse I_r

$$I_{tot} = I_A + I_C$$

Inertie intraclasse I_A: somme des inerties totales de chaque classe

Inertie interclasse I_c: moyenne (pondérée par la somme des poids de chaque classe) des carrés des distances des barycentres de chaque classe au barycentre global

Y

Choisir **3**Centres de classes
(au hasard)

X

Affecter chaque point à la classe dont le centre est le plus proche

Déplacer chaque centre de classe vers la moyenne de chaque classe

Réaffecter les points qui sont plus proches du centre d'une autre classe

les trois points qui changent de classe

Re-calculer les moyennes des classes

Déplacer les centres des classes vers les moyennes

ILLUSTRATION K-MEANS

- Soit le tableau1 de 7 individus
 caractérisés par 2 variables. Tab.1
- On souhaite construire deux groupes homogènes à partir de ces individus.
- On propose de commencer la construction à partir des deux groupes du tableau 2.
- Continuer la construction des groupes en utilisant la distance euclidienne pour mesurer la similarité entre individus.

d(i,j) =	(/x - x)	$\frac{1}{x^2+x}$	$-x$ 2 $^{+}$	+/x -	$(x \beta^2)$
$u(i,j) - \sqrt{1}$	$(/\lambda_{i1} - \lambda_{j})$	$i_1/ + \lambda_{i2}$	$-x_{j2}/-$	λ τ / λ_{ip} $-$	λ_{jp}/J

Subject	Α	В
1	1.0	1.0
2	1.5	2.0
3	3.0	4.0
4	5.0	7.0
5	3.5	5.0
6	4.5	5.0
7	3.5	4.5

Tab.1

		Mean
	Individual	Vector
		(centroid)
Group 1	1	(1.0, 1.0)
Group 2	4	(5.0, 7.0)

Tab.2

ILLUSTRATION K-MEANS 1

- Soit le tableau1 de 7 individus
 caractérisés par 2 variables. Tab.1
- On souhaite construire deux groupes homogènes à partir de ces individus.
- On propose de commencer la construction à partir des deux groupes du tableau 2.
- Continuer la construction des groupes en utilisant la distance euclidienne pour mesurer la similarité entre individus.

d(i, i) -	$\sqrt{(x-y ^2+ x-y ^2++ x-y ^2)}$	<u> </u>
$a(\iota,J) - \sqrt{}$	$ (/x_{i1} - x_{j1})^2 + /x_{i2} - x_{j2})^2 + + /x_{ip} - x_{jp})^2$)

	Cluster 1		Clus	ter 2
		Mean		Mean
Step	Individual	Vector	Individual	Vector
		(centroid)		(centroid)
1	1	(1.0, 1.0)	4	(5.0, 7.0)
2	1, 2	(1.2, 1.5)	4	(5.0, 7.0)
3	1, 2, 3	(1.8, 2.3)	4	(5.0, 7.0)
4	1, 2, 3	(1.8, 2.3)	4, 5	(4.2, 6.0)
5	1, 2, 3	(1.8, 2.3)	4, 5, 6	(4.3, 5.7)
6	1, 2, 3	(1.8, 2.3)	4, 5, 6, 7	(4.1, 5.4)

	Individual	Mean Vector (centroid)
Cluster 1	1, 2, 3	(1.8, 2.3)
Cluster 2	4, 5, 6, 7	(4.1, 5.4)

ILLUSTRATION K-MEANS 2

- Soit le tableau1 de 7 individus caractérisés par 2 variables.
- On souhaite construire deux groupes homogènes à partir de ces individus.
- On propose de commencer la construction à partir des deux groupes du tableau 2.
- Continuer la construction des groupes en utilisant la distance euclidienne pour mesurer la similarité entre individus.

		_
4 (4)		
d(i, i) - 1	$ f _{\mathcal{V}} = r _{\mathcal{V}} + r _{\mathcal{V}} + r _{\mathcal{V}}$	
$u(\iota, I) - \iota$	$\left(\left \lambda_{i1} - \lambda_{i1} \right + \left \lambda_{i2} - \lambda_{i2} \right + \left \lambda_{in} - \lambda_{in} \right \right)$,
\ '3'	$/(/x_{i1}-x_{j1})^2+/x_{i2}-x_{j2})^2++/x_{ip}-x_{jp})^2$	

	Distance to	Distance to
Individual	mean	mean
mulviduai	(centroid) of	(centroid) of
	Cluster 1	Cluster 2
1	1.5	5.4
2	0.4	4.3
3	2.1	1.8
4	5.7	1.8
5	3.2	0.7
6	3.8	0.6
7	2.8	1.1

	Individual	Mean Vector (centroid)
Cluster 1	1, 2	(1.3, 1.5)
Cluster 2	3, 4, 5, 6, 7	(3.9, 5.1)

POINTS FAIBLES DE K-MEANS

Original Points

K-means (2 Clusters)

POINTS FAIBLES DE K-MEANS

- Le choix du nombre de groupes est subjectif dans le cas où le nombre de classes est inconnu au sein de l'échantillon.
- L'algorithme du K-Means ne trouve pas nécessairement la configuration la optimale correspondant à la fonction objective minimale.
- Les résultats de l'algorithme du K-Means sont sensibles à l'initialisation aléatoires des centres.

CLASSIFICATION ASCENDANTE HIÉRARCHIQUE

PRINCIPE ALGORITHMIQUE

- i. Créer à chaque étape une partition obtenue en agrégeant 2 à 2 les éléments les plus proches ! **Eléments :** individus ou groupe d'individus
- ii. L'algorithme fournit une hiérarchie de partitions : arbre contenant l'historique de la classification et permettant de retrouver **n-1 partitions**.
- iii. Nécessité de se munir d'une **métrique** (distance euclidienne, chi2, Ward...)
- iv. Nécessité de fixer une règle pour agréger un individu et un groupe d'individus (ou bien 2 groupes d'individus)

LE DENDROGRAMME

- Durant les étapes d'un algorithmes de classification hiérarchique, on est en train de construire un dendrogramme.
- Le dendrogramme indique les objets et classes qui ont été fusionnées à chaque itération.
- Le dendrogramme indique aussi la valeur du critère choisi pour chaque partition rencontrée
- Il donne un résumé de la classification hiérarchique
- Chaque palier correspond à une fusion de classes
- Le niveau d'un palier donne une indication sur la qualité de la fusion correspondante
- Toute coupure horizontale correspond à une partition

On construit la matrice de distance entre les n éléments et on regroupe les 2 éléments les plus proches

SIMULATION DES CLASSES

SIMULATION DES CLASSES

EXEMPLE DE DENDROGRAMME

On « coupe » l'arbre là où les branches sont longues

EXEMPLE DE DENDROGRAMME

la hauteur d'une branche est proportionnelle à la perte d'inertie interclasse

DENDROGRAMME -> CLUSTERS ?

Nested Clusters

Dendrogram

APPLICATION PRATIQUE

SIMULATION KMEANS ET CAH SUR R

APPLICATION K-MEANS « IRIS »

Etudier la qualité des résultats de K-means dans la construction de groupes de fleurs selon leurs caractéristiques.

> iris

APPLICATION K-MEANS « IRIS »

> iris_for_kmeans<-iris[,1:4]</pre>

> km <- kmeans(iris_for_kmeans, 3)</pre>

```
K-means clustering with 3 clusters of sizes 62, 50, 38
Cluster means:
 Sepal.Length Sepal.Width Petal.Length Petal.Width
     5.901613
                2.748387
                               4.393548
                                           1.433871
      5.006000
                               1.462000
                                           0.246000
      6.850000
                3.073684
                               5.742105
                                           2.071053
Within cluster sum of squares by cluster:
[1] 39.82097 15.15100 23.87947
(between SS / total SS = 88.4 %)
Available components:
[1] "cluster"
                   "centers"
                                  "totss"
                                                 "withinss"
                                                                "tot.withinss" "betweenss"
                                                                                               "size"
```


APPLICATION K-MEANS « IRIS »

- > plot(iris[,1], iris[,2], col=km\$cluster)
- > points(km\$centers[,c(1,)], col=1:3, pch=8, cex=2)

> table(km\$cluster, iris\$Species)

	setosa	versicolor	virginica
1	0	48	14
2	50	0	0
3	0	2	36

	setosa	versicolor	virginica
Taux de classification	100%	96%	72%
% individus « mal classés »	0%	4%	28%
	10,67 %		

CAH SUR IRIS

Application de la CAH sur la base IRIS en utilisant la distance euclidienne et les 4 variables de longueur et largeur des pétales et des sépales.

- 1. Calcul de la matrice des distances sur les colonnes de 1 à 4
- > d_euc = dist(iris[,1:4], method = 'euc')
- 2. Application de la fonction helust
- > hc = hclust(d_euc,method ='ave')
- > plot (hc)
- 3. Extraire à partir du dendrogramme la classification en 3 groupes :
- > classe<-cutree(hc,3)

Cluster Dendrogram

CAH SUR IRIS

Application de la CAH sur la base IRIS en utilisant la distance euclidienne et les 4 variables de longueur et largeur des pétales et des sépales.

- 1. Calcul de la matrice des distances sur les colonnes de 1 à 4
- > d_euc = dist(iris[,1:4], method = 'euc')
- 2. Application de la fonction helust
- > hc = hclust(d_euc,method ='ave')
- > plot (hc)
- 3. Extraire à partir du dendrogramme la classification en 3 groupes :
- > classe<-cutree(hc,3)

APPLICATION CAH « IRIS »

> table(classe, iris\$Species)

	setosa	versicolor	virginica
1	0	50	14
2	50	0	0
3	0	0	36

	setosa	versicolor	virginica
Taux de classification	100%	100%	72%
% individus « mal classés »	0%	0%	28%
	9,33 %		

Λ	1 1
Н	П

	setosa	versicolor	virginica
1	0	48	14
2	50	0	0
3	0	2	36

	setosa	versicolor	virginica
Taux de classification	100%	96%	72%
% individus « mal classés »	0%	4%	28%
	10,67 %		

Kmeans

AVANTAGES DE LA CAH

- Permet de classer : des individus, des variables, des moyennes de classes obtenues en sortie d'un algorithme des centres mobiles
- si on classe des moyennes, on améliore les résultats si on connaît non seulement les moyennes des classes, mais aussi les inerties intraclasse et les effectifs des classes
- S'adapte aux diverses formes de classes, par le choix de la distance
- Permet de choisir le nombre de classes de façon optimale, grâce à des indicateurs de qualité de la classification en fonction du nombre de classes

INCONVÉNIENTS DE LA CAH

- Complexité algorithmique non linéaire (en n² ou n³, parfois n²log(n))
 - Deux observations placées dans des classes différentes ne sont jamais plus comparées

OBJECTIFS DES TECHNIQUES DESCRIPTIVES

visent à mettre en évidence des informations présentes mais cachées par le volume des données

il n'y a pas de variable « cible » à prédire

projection du nuage de points sur un espace de dimension inférieure pour obtenir une visualisation de l'ensemble des liaisons entre : Individus, Variables... tout en minimisant la perte d'information

trouver dans l'espace de travail des groupes homogènes d'individus ou de variables

détection d'associations entre des objets