Second Olympiad for NUP team selection

May 2024

Problem 1. (10 points) For any integer $n \geq 2$ and two $n \times n$ matrices with real entries A, B that satisfy the equation

$$A^{-1} + B^{-1} = (A + B)^{-1},$$

prove that det(A) = det(B). Does the same conclusion follow for matrices with complex entries?

Problem 2. (10 points) Let $f:[0;+\infty)\to\mathbb{R}$ be a continuous function such that $\lim_{x\to+\infty} f(x)=L$ exists (it may be finite or infinite). Prove that

$$\lim_{n \to \infty} \int_0^1 f(nx) \, dx = L.$$

Problem 3. (10 points) For a positive integer n, let f(n) be the number obtained by writing n in binary and replacing every 0 with 1 and vice versa. For example, n = 23 is 10111 in binary, so f(23) is 1000 in binary, therefore f(23) = 8. Prove that

$$\sum_{k=1}^{n} f(k) \le \frac{n^2}{4}.$$

When does equality hold?

Problem 4. (10 points) For any positive integer m, denote by P(m) the product of positive divisors of m (e.g. P(6) = 36). For every positive integer n define the sequence

$$a_1(n) = n$$
, $a_{k+1}(n) = P(a_k(n))$ $(k = 1, 2, ..., 2024)$.

Determine whether for every set $S \subseteq \{1, 2, \dots, 2025\}$, there exists a positive integer n such that the following condition is satisfied:

For every k with $1 \le k \le 2025$, the number $a_k(n)$ is a perfect square if and only if $k \in S$.

Problem 5. (10 points) Determine whether or not there exist 15 integers m_1, \ldots, m_{15} such that

$$\sum_{k=1}^{15} m_k \cdot \arctan(k) = \arctan(16).$$