Task 6: Organic Chemistry – Structures, Properties and Reactions Test

[55 Marks]

										[33 Marks
Nam	e:		u M	AZKINO	f KE	4		,, 		
Teac	her:					·-		-		
Answ	vers to	M/C qu	estions	(Please ir	ndicate with	a cross, X	, the corr	ect cho	ice)	(13 marks)
1.	a)	Ø	c)	d)						
2.	a)	b)	> 0	d)						
3.	'adi	b)	c)	d)						
4.	a)	b)	c)	M						
5.	a)	b)	00	d)						
6.	a)	b)	c)	d)						
7.	a)	b)	c)	**						
8.	M	b)	c)	d)						
9.	a)	b)	×	d)						
10.	X ()	b)	c)	d)						
11.	a)) (0)	c)	d)						
12.	30	b)	c)	d)						

13. a) b) c)

Part 2: Short Answer Questions

(37 Marks)

1. For each of the following organic compounds, draw its <u>full</u> structural formula, showing <u>all</u> bonds.

(4 marks)

(i) 3,4,4,4-tetraiodobutan-1-ol

(ii) 3-ethyl-4-methylpentanal

(iii) 1-bromohexan-3-one

(iv) 2-chloro-4-methylbenzoic acid

2.	Give th	(4 marks)							
	(i)	(CH ₃) ₃ CCH ₂ CHO							
		Name: 3,3-dimethylbutanal (
	(ii)	CH ₃ CH ₂ CONH ₂							
		Name: <u>proponauide</u>							
	(iii)	CH ₃ (CH ₂) ₃ CH(NH ₂)COOH							
		Name: 2-aminohexanoic acid							
	(iv)	CH ₃ (CH ₂) ₂ COO(CH ₂) ₂ CH ₃							
		Name: propyl butanoate							
3.	One of	the main esters found in ripe pineapple is "pentylbutanoate".							
	(i)	Draw the <u>full structural formula</u> of this ester.	(1 mark)						
		H-C-C-C-C-C-C-C-H H H H H H H H H H H H H H H H H H H H							
	(ii)	Draw and name the two major organic compounds needed to make this ester.							
		CH3 CH2	(4 marks)						

4.	(K ₂ C ₁ oxidiz be ox:	nols can be oxidized by strong oxidizing agents like acidified potassium dic r ₂ O ₇), to form a range of different organic products. Primary (1°) alcohols c zed to aldehydes or fully oxidized to carboxylic acids. Secondary (2°) alcoholized to ketones. If and name the products of each of the following alcohols when they are treatibed below.	an be partially ols can only
	(i)	Propan-1-ol is partially oxidised by K ₂ Cr ₂ O ₇	(2 marks)
		CH3 CH2 C=0 propanal (1)	
	(ii)	The product of (i) above is then further oxidised with more K ₂ Cr ₂ O ₇	(2 marks)
		CH3 CH2 COH () propanoic acid ())
	(iii)	Pentan-2-ol is oxidised by K ₂ Cr ₂ O ₇	(2 marks)
		Olls E CH2 CH3 CH3 pentan-2-one (1)	
5.		der the following substances; butanal (CH ₃ CH ₂ CH ₂ CHO), butanoic acid CH ₂ CH ₂ COOH) and ethyl ethanoate (CH ₃ CH ₂ OOCCH ₃).	l j
	(i)	State the most significant type of intermolecular forces that would be presthe substances above.	sent in each of
		Butanal: Dipole -dipole O	(3 marks)
		Butanoic acid: Ethyl ethanoate: Dipole-dipole Dipole	
	(ii)	Using relevant chemical theory, explain which one of the substances listed would be expected to have the highest boiling point.	
		Butanoic acid has the highest B.P ((2 marks)
		H-bonding I-M. Forces which is stronger the dipole-dipole exhibited by the other two	an the (
		* Accept similar explainti	â.

- 2-aminobutanoic acid has the molecular formula C₄H₉NO₂. 6.
 - (i) Draw the full structural formula for this amino acid.

(1 mark)

(ii) Glycene is an amino acid commonly forming the building block of many proteins. It has the molecular formula NH₂CH₂COOH. Glycene is able to readily form a charged, (but overall neutral), structure called a "Zwitterion". Draw the full structure of this "ion" and show how it is then able to behave as a buffer, upon the addition of some dilute base like NaOH.

(3 marks)

H + N-CH2 C + OH -> H/N-CH2 C 0- + H2O

I so water usletable or other minor

Examine the polypeptide structure drawn below. 7.

 $C\dot{H}_3$ $\dot{\mathsf{CH}}_2$ OH

With reference to the structure shown above, complete the primary sequence of the amino acids (i) in the spaces below using the standard three letter abbreviations, as given on the Chemistry Data Booklet. (One is done for you).

ala - Ma - Ser

(2 marks)

(ii)	On the same diagram above, clearly indicate the location of <u>one</u> peptide bond by <u>circling</u> the relevant section on the molecule drawn. In the space below, also write a clear description of a peptide bond.
	(3 marks)
	A peptide bond is the "Link" that forms when
	the nitropan atom in the omino group links to
	the carbon of the carboxyl group and a water
	molecule is eliminated.
8.	Using 1,3-propandiol (CH ₂ OHCH ₂ CH ₂ OH) and oxalic acid (HOOCCOOH)) as monomer units,
	(i) draw the structure of the polymer that can be formed. (Show at least two units of one monomer and one unit of the other in the structure that you have drawn).
	(3 marks)
	() - CH2CH2CH2-0-C-C-0-CH2CH2CH2-0-)
OB	(0, e-e-0-cHeCHeCHe-0-e-e-)
	(ii) What type of polymerisation process is this? <u>[oudensation</u> . (1 mark)