Cheat sheet Neuro oder auch der "Das musste können, um stabil zu bestehen" - Zettel

Schaut euch die Probeklausuren an !!!:

https://ovidius.uni-tuebingen.de/ilias3/goto.php?target=file 3333073 download&client id=pr 02

https://ovidius.uni-tuebingen.de/ilias3/goto.php?target=file_3333073_download&client_id=pr <u>02</u>

VOKABELTEIL:					
(elementare Begriffe, die in einem bis zwei sätzen kompakt erklärt werden sollen)					
Tipp: Fangt mit der Aufgabe als erstes an! Die gibt schnell einige Punkte.					
Formuliert detailliert, aber knapp.					
☐ Kinesin bzw. axonaler Transport					
☐ Gliazellen (3 Typen Funktion kurz erklären)					
☐ aktive vs. passive & saltatorische Erregungsleitung					
 Ruhe- und Aktionspotential (Natrium-Kalium-Pumpe, Refraktärzeit, Alles-oder-Nichts-Prinzip, Hebb-Regel etc.) 					
☐ Gastrulation und Neurulation (Gastrula, Blastula, Neurulation (vielleicht kurz erklären))					
☐ Symmetrie- & Körperachsen					
 Auge (Fovea centralis, vollständiges und unvollständiges Chiasma Opticum, rezeptives Feld, pax-6-Gen, Simple-, Complex-Zellen, Parvo-, Magnozellulär, Hyperkolumne (mit all seinen Spezifitäten), Okulardominanzstreifen, etc.) 					
☐ Chem. und mechan. Sinne (Bulbus olfactorius, Mitralzelle, Barrel Cortex)					
 Akustischer Sinn (Impedanzwandlung, Seitenlinienorgan, Cortisches Organ, Endo- & Perilymphe) 					
 Muskel (Sarkomer, Muskelspindel, motorische Endplatte, reziproke Hemmung, zentraler Mustergenerator) 					
☐ Verhalten (nichtassoziatives/assoziatives Lernen, Habituation, Sensitivierung, latentes Lernen, circadiane & circannuale Rhythmen)					

☐ Evolution (Homologie vs. Analogie von Merkmalen)

AUFGABENTEIL:

NEURONEN

- 1. Zeichne und beschrifte eine Pyramidenzelle
- 2. Zeichne und beschrifte Synapse und erkläre Funktion
- 3. Erkläre synaptische Plastizität (Rezeptoren, LTP)
- 4. Erkläre den Signalfluss entlang des Axons bzw. der Dendriten (aktive & passive Erregungsleitung)
- 5. Erkläre knapp das Ruhepotential (Tabelle)
- 6. Erkläre knapp das Aktionspotential

NERVENSYSTEM

- 1. Gastrulation und Neurulation (Welche Abschnitt werden zu welchen Teilen im Gehirn bzw. im Körper später?)
- 2. Abschnitte des Gehirn und seine Bestandteile (bunte Tabelle, <u>dasgehirn.info</u> <u>3D-Gehirn</u>) (auch für Vokabelteil notwendig)
- 3. Erkläre den Säulenaufbau Rückenmarks

SEHEN

- 1. Male und beschrifte horizontalschnitt Auge (dasgehirn.info 3D-Gehirn)
- 2. Erkläre die Akkomodation des Auges
- 3. Beschreibe und oder zeichnen Sehbahn
- 4. Erkläre das Augenbewegungssystem (Versionen, Vergenzen)

HÖREN

1. Male und beschrifte Ohr (Flüssigkeits- oder Luftgefüllt ?) (dasgehirn.info 3D-Gehirn)

MUSKEL

Erkläre die folgenden Vorgänge:

- 1. Querbrückzylus
- 2. Kniesehnenreflex
- 3. Regelkreis der Muskelsteuerung

(Achtung Achtung ab hier kommen die LÖSUNGEN!

→ Aber Vorsicht, auch wir können Fehler machen. Bitte melden, falls euch was auffällt.)

Neuronen

1. Aufbau einer Pyramidenzelle

2. Die chemische Synapse

Erregungsübertragung von Prä- zur Postsynapse über synaptische Spalt:

- Präsynapse: **Umwandlung** elektrischen Signals in chemisches Signal mithilfe **Neurotransmitter**
- Postsynapse: Umwandlung chemische Signal wieder zu elektrischen Signal über Rezeptoren

3. Synaptische Plastizität

- A Vergrößerung der synaptischen Membran & mehr Transmitterauschüttung
- B Präsynaptsiche **Modulation** (durch andere Synapsen Interneuronenmodultion)
- C Bildung neuer Synapsen & dendritische Spines
- D Verdrängung wenig benutzter Spines durch aktivere Nachbarn

LTP:

- Synchrone Stimulation der prä- und postsynaptischen Zelle
 - → erhöhtes EPSP ("Bahnung") der Synapse (long term potentiation, LTP)
- Asynchrone Stimulation:
 - → verringerte EPSP-Amplitude (long term depression, LDP)

Frühe Reaktion:

- Einbau zusätzlicher AMPA Rezeptoren
- evtl. retrograde Signale

Späte Reaktion:

- Genaktivierung bei starker Erregung bzw.Ca2+-Konzentration
- Synapsenwachstum (Längerfristige Lerneffekte)
- 4. passive Erregungsleitung: alleine durch Ionenbewegung und ohne neue APs

- a. An Selle der Stramzukluhr wird Nembron lokall depolanisiert (weniger negativ)
- b. dangestrom bliebt in Faser beidseitig ab und Bühnt obst au Depolarisation
- c. Nembranpolentical fallt exponentiell vom Rojzat weg als durch...
 - ... 1) dectatrame durdy Nembran (siehe Wasserschlaudy Amalogie)
 - 2) Umladen des in der Nembran enthalteren Vandensattos

aktive Erregungsleitung: regelmäßiges auslösen neuer APs

saltatorische Erregungsleitung: schnellere & energiesparende Leitung durch springen zwischen ranvierschen Schnürringen (Siehe auch ÜB 03 Aufgabe 2)

- 5. **Ruhepotential**: Membranpotential einer erregbaren Zelle im Ruhezustand Aufrechterhaltung (der ca. -65mV):
 - Na+-Leckströme nach innen würden zu einem Konzentrationsausgleich führen, da nun auch mehr K+ aus der Zelle strömen kann
 - **3 Na+** nach **außen** und **2 Ka+** nach **innen** gegen das Konzentrationsgefälle unter Energieverbrauch transportiert

Gleichgewichtspotential:

- chemischer Gradient, dadurch Konzentrationsausgleich per Diffusion
 - → K+-Ionen strömen aus (Permeabilität hoch)
 - → Zellinnere negativer & Membran-Außenseite positiver
- elektrische Potential als Gegenkraft
- → Kräftegleichgewicht zwischen nach außen treibender Diffusionskraft & nach inne treibender elektrostatischer Kraft

6. Aktionspotential

Ablauf:

- **1. Ruhezustand** (Na+/K+ Kanäle geschlossen, Ruhepotential, Axon erregbar, Inaktivierungstore der Na+ Kanäle geöffnet)
- **2. Depolarisation** (Überschreitung des Schwellenwerts durch eintreffenden Reiz, spannungsabhängige Na+ Kanäle öffnen sich, Na+ Einstrom erhöht die Depolarisation, Na+ Einstrom erhöht sich lawinenartig, innen positiv außen negativ)
- **3. Repolarisation** (Na+ Kanäle schließen zeitabhängig, K+ Kanäle öffnen sich verzögert, sind langsamer als Na+ Kanäle, K+ Ausstrom schwillt an, Membranpotential sinkt und nähert sich dem Ruhepotential)
- **4. Hyperpolarisation** (lange Öffnungszeit der K+ Kanäle führt zu einem übernegativen Potentialwert, Wiederherstellung des Ruhepotentials durch Na+/K+ Pumpe)
- **5. Refraktärzeit** (geschlossene Na+ Kanäle sind zeitabhängig blockiert, kein neues AP kann vorübergehend ausgelöst werden

Kanäle

NA+ KANÄLE (mit ball-chain gate)

- nach Überschreitung eines Schwellenwert: offen
- Refraktärzeit: geschlossen (nicht aktivierbar)
- nach gewisser Zeit: geschlossen (aktivierbar)

K+ KANÄLE

- öffnen zeitabhängig
- schließen spannungsabhängig

NERVENSYSTEM

1. Gastrulation und Neurulation

→ siehe Dokument im Google Docs Ordner

2. Abschnitte des Gehirn und seine Bestandteile

- Das Telencephalon bildet 2 Bläschen aus denen die Großhimnemisphäten enslehen
- Oie Wand dieser Bläschen heißt Rallium (= Mantel) und dessen Wenengewebe Cartex cerebn
- Die Hemisphären überwachsen "ttimstamm"
- Milkhim bildet die Vierhögelregion (= colliculi superiores et inferiores)
- Raulengehim bildet (cleinhim (= Cerebællum) und die Raulengrube

"Bahhh Neeeiiieeeennn die eklige Tabelle schon wieder! Ihhhh !!!"

Name (Abschnitt)			wichtige Teile	Ventrikel
Pros- ence- phalon	Telencephalon	Endhirn (= Großhirn)	Bulbus olfactorius Großhirnrinde, Basalganglien, Limbisches System	I, II (rechter, linker Ventrikel)
	Diencephalon	Zwischen- hirn	Thalamus, Hypothalamus, Neurohypophyse, Epiphyse, Chiasma opticum (Auge)	Ventrikel III
Mes- ence- phalon	Mesencephalon	Mittelhirn	Tectum opticum (= Colliculi superiores) Tori semicircules (= Colliculi inferiores), Tegmentum, Formatio reticularis	Aquaeduct
Rhomb- ence- phalon	Metencephalon	Hinterhirn	Cerebellum (Kleinhirn), Pons (Brücke)	Ventrikel IV (Rauten- grube)
	Myelencephalon	Nachhirn	Medulla oblongata (verlängertes Mark)	

3. Erkläre den Säulenaufbau des Rückenmarks

- Stmethringsfirmige grave Eubstanz ist umgeben von weiber Substanz und durchdrungen vom Zentralkonal
- Die Flügdplatte Gossol) empfängt sensonische Reize von...
 - ... außeren Organen an der comalosenschiednen Region
 - ... inneren Organon an oler viscerosensorischen Region
- Die Grundplatte (ventral) sendet motorische Reize an ...
 - ... <u>Oubere Orane</u> an der sonalamalarischen Region
 - ... invere Organe an der visceromalarischen Region
 - ... und sleved so bewegingen und Roize.

SEHEN

1. 1. Horizontalschnitt Auge

2. Akkomodation des Auges

→ Siehe Dokument im Google docs Ordner

3. Sehbahn

- → Retina
- → Chiasma Opticum: Visuelle Information von kontralateralen Gesichtsfeld im optischen Trakt vereint
- → Corpus geniculatum laterale: Sortierung nach contra- & ipsilateral bzw. magno- & parvozellulär
- → primärer visueller Cortex: visuelle Verarbeitung in 4 Schichten

4. Augenbewegungssystem (Versionen, Vergenzen)

Die binokulare Augenbewegung ist getrennt programmiert in:

- a. Versionen: gleichsinnige Bewegung
- b. Vergenzen: gegensinnige Bewegung

HÖREN

1. Anatomie des Ohrs

Auberes Ohr: dufligeballt Hillelohr: dufligeballt Jonnenchr: Flosbigkeitageballt

MUSKEL

1. Querbrückenzyklus

> lost amerbrichansyldus aus

- 1) Ap trifft und löst Ausschüllung von Go²¹ins Schoplasma aus, welche duffeundlieft
- Ca²⁺ lager sich an Troponin des Althallaments an juvelones dazu Rinh das Tropomyosin die Bindungssielle für Nyasin am Astin Brögilot.
- 3) M-vapithen richlet sich unter ATP-Hydratyse auf k docken an Actinfiliament an ②
- 4) Alagabe von anorganischen Thasphal führt eu "umklappen"des Nyasintäpfchens (60°) und ADP-Alagabe 3
- 5) Adinfilament wird durch ,, modelularen Ruderschlag " nach Links geschoben \hookrightarrow Kustelleantraktion 0
- 6) M-Vapithen bindet nuwes ATP & modit sich von Adin los = "Lieichmodrerfunktion" 🛇 🌡 🕡

2. Kniesehnenreflex

Eigenreflex: Wirth auf demselloen Organ wa Reflex ausgeläst wurde.

Sensorische & molarische kampanente gebich)

Shedeer des lenies (H. quaduiceps) wird durch Schlag auf die Rukllarsehne gedehnt

Dehnung wird auf die Muskelspindeln überhagen, die ${\sf den}({\sf das})$ das Bein noch hinten genutscht ist

Neldel das über la-Axon ans Rückenmark

Sensorisches Neutran erregt in einem monosynaptischen Rullex ein $\[\mathbb{R} - \mathbb{N} d \]$

Notoneum energh Sheden, der darauchin uchtrahlert (Far Kuskelspindel also Sollwer wieder hergestellt)

- bei aktiver Dehnung der Sehne durch eine Beinbewegung wird bein Refeex ausgeläst, da die kuskellspindel eine Sollwertverstellung varnimmt

3. Regelkreis der Muskelsteuerung

Regelstrecke = Muskeldehnung

Messglied = Muskelspindel

→ liefed 1st-wed acur Debrung & DebrugesClwindig/keit

Regelglied = Moloneurone im Rückenmore.

Stellglied = Muskel Stellglied introdusal introdusal 8- Noticeuronen

Soliwer-verstellung = Kontraktion der Intrakusculen Fasem in der Muskelsbindel