

PROCESS DYNAMICS - CPN321

EXAM

Chemical Engineering Engineering and the Built Environment

Examiner: Carl Sandrock

November 2015

(180 minutes)

Instructions - Read carefully

• Answer all the questions on the paper on side 1 of the multiple choice form or in the blocks provided. • This is an open book test. You may bring any information you need into the exam venue. • Only the work written in the blocks provided will count toward your mark.

ANOTHER STUDY* FOUND

NOW A STUDY* CLAIMS THAT

HUMANS IN PRE-INDUSTRIAL

1 Multiple choice

Answer this section on side 1 of the multiple choice form. Each question counts 5 marks.

1. In the following process (a well-mixed tank with a heating coil), choose a correct assignment of controlled, manipulated and disturbance variable:

- 2. Choose a correct statement about the numeric solution of differential equations:
 - a. All differential equations can be solved using Euler's method to arbitrary accuracy, given a small enough time step
 - b. Euler's method is the most reliable integration method
 - c. Euler's method may become unstable with large time steps
 - d. Euler's method has stability guaranteed, even with large time steps
 - e. Higher order methods like the Runge-Kutta method will always take longer to solve to a given accuracy than Euler's method
- 3. A flash drum with three components (and two phases) is being operated on a plant. Select the correct statement.
 - a. According to Gibbs' phase rule, there are 2 degrees of freedom.
 - b. According to the Ideal Gas Law, temperature and pressure cannot be controlled independently.
 - c. Due to phase equilibrium in the drum, temperature and pressure cannot be specified independently once the feed is fully specified.
 - d. The level in the tank can be controlled without affecting the equilibrium.
 - e. The degrees of freedom calculated by subtracting the number of equations from the number of variables must be the same as the number calculated by Gibbs' phase rule.
- 4. Select a true statement about the approximation of dead time by a rational function if an analytic step response is to be obtained
 - a. It is always necessary
 - b. It is necessary if the dead time appears in the numerator of the transfer function
 - c. It is necessary if the dead time appears in the denominator of the transfer function
 - d. It is necessary if the dead time is added to terms without dead time
 - e. It is never necessary

5. Choose the correct expression for the signal shown below:

a.
$$f(t) = u(t-1) \cdot (t-1) - u(t-3) \cdot (t+1)$$

b.
$$f(t) = 1 + u(t-1) - u(t-3) \cdot (t+1)$$

c.
$$f(t) = 1 + u(t-1) \cdot (t-1) - u(t-3) \cdot (t-1)$$

d.
$$F(s) = \frac{e^{-s}}{s} - \frac{e^{-3s}}{s^2}$$

e.
$$F(s) = \frac{1}{s} \left(1 + e^{-s} - \frac{e^{-3s}}{s} \right)$$

6. The following diagram shows a qualitative system response of a the system described by y = Gu. Assume u is an ideal unit step. Select the plot of the poles on the s-plane that best matches this response.

Im(s)

e.

Im(s)

- 7. Select a true statement regarding the relationship between state space and transfer functions
 - a. Any transfer function can be written in state space form
 - b. Any state space model can be written as a transfer function
 - c. Any rational transfer function can be written in state space form
 - d. Only state space models with single outputs can be written in transfer function form
 - e. None of the above
- 8. Choose a correct statement regarding discrete time models. Discrete time models . . .
 - a. ...can exactly predict the output of a continuous system at the sampling intervals only if the input is piecewise constant
 - b. ... can only approximate the step response of continuous time models at the sampling intervals
 - c. ... must be simulated with small time steps to avoid errors
 - d. ...can exactly predict the output of a continuous system at the sampling intervals only if the input is smooth
 - e. None of the above
- 9. Select a true statement:
 - a. The output of any system subjected to a sinusoidal input will be exactly sinusoidal with the same frequency
 - b. The output of a linear system subjected to a sinusoidal input will be exactly sinusoidal with the same frequency
 - c. The output of a linear system subjected to a sinusoidal input will be approximately sinusoidal with the same frequency
 - d. If the output of a system is exactly sinusoidal, the input had to have been sinusoidal
 - e. If the output of a system is exactly sinusoidal, the system had to have been linear
- 10. Select a true statement about aliasing. Due to aliasing ...
 - a. . . . digital signals are always less accurate than analog ones
 - b. ...good digital filters must be used to distinguish between high and low frequency sinusoids after sampling
 - c. ... analog filters must be used to remove high frequency components before sampling
 - d. ... process noise can appear as real process data in sampled data
 - e. ... sampling must be done at approximately 100 times the dominant time constant

2 Higher order dynamics

2.1 Inverse

Consider the following system:

$$\frac{Y_1}{U_1} = G_1 = \frac{K(s+a)}{(s+b)(s+c)}, \quad 0 < b < c$$
 (1)

Find the conditions (in terms of inequalities concerning K , a , b and c) under which $y_1(t)$
will exhibit a minimum or maximum value which is different from the value as $t \to \infty$ if
u(t) is a unit step. (15)

2.2 Poles and zeros

Sketch the impulse response of the system for $K > 0$, $a < $ reference to the poles and zeros of the process. $\boxed{5}$	0. Explain your sketch with

(20)

3 State space

Consider the following state space realisation:

$$A = \begin{bmatrix} 1 & \alpha \\ 2 & 3 \end{bmatrix} \qquad B = \begin{bmatrix} \beta \\ 0 \end{bmatrix}$$

$$C = \begin{bmatrix} 1 & 1 \end{bmatrix} \qquad D = 1$$

$$(2)$$

$$C = \begin{bmatrix} 1 & 1 \end{bmatrix} \qquad D = 1 \tag{3}$$

Conversion 3.1

Find the	the (SISO) transfer function representation of the	nis process 5	
0.0	A 1		
3.2	Analysis		
Under	Analysis what conditions will the system exhibit oscillent of the model to answer this question. (15)	atory response?	Use the state-space
Under	what conditions will the system exhibit oscillar	atory response?	Use the state-space
Under	what conditions will the system exhibit oscillar	atory response?	Use the state-space
Under	what conditions will the system exhibit oscillar	atory response?	Use the state-space
Under	what conditions will the system exhibit oscillar	atory response?	Use the state-space
Under	what conditions will the system exhibit oscillar	atory response?	Use the state-space
Under	what conditions will the system exhibit oscillar	atory response?	Use the state-space
Under	what conditions will the system exhibit oscillar	atory response?	Use the state-space
Under	what conditions will the system exhibit oscillar	atory response?	Use the state-space
Under	what conditions will the system exhibit oscillar	atory response?	Use the state-space

(20)

4 Higher order system

Consider the transfer function below:

$$\frac{Y_2}{U_2} = G_2(s) = \frac{1-s}{(10s+1)(5s+1)(s+1)^2} \tag{4}$$

4.1 Padé approximation

Find a $1/1$ Padé approximation of G_2 . (10)	

4.2 Higher-order systems

•	•		J							
Approxima	te G_2	by a firs	t-order-	plus-dead	ltime mod	del using	Skogesta	d's half r	rule. [5	5

4.3 Comparison

Sketch the step response of the two approximations above (Padé and half-rule) on the attached graph showing the step response of G_2 . Indicate which is which clearly. $\boxed{5}$

(20)

4.4 Bode diagram

Sketch an asymptotic Bode diagram of G_2 on the graph paper provided. Make sure you annotate your graph with your major construction points. Note: A sketch showing only the Bode diagram without the asymptote lines will gain no marks. (20)

Show your working in the box provided below:	
	20
5 Identification	
Use the step response of G_2 in the attached figure to answer these questions.	
Assume that the process was sampled once every five seconds $(T=5)$. Consider	a model
of the form $y_2(kT) = (1 - e^{-T/\tau})Ku_2[(k-2)T] + e^{-T/\tau}y_2[(k-2)T]$	(5)
$g_2(kT) = \begin{pmatrix} 1 & c & jH w_2[(k-2)T] + c & g_2[(k-2)T] \end{pmatrix}$	(0)
5.1 Least squares	
Assume that the model predictions can be written in the form	
$Y = X\beta + \epsilon$	(6)
where β is a vector of coefficients	
5.2 Matrix construction	
Find the matrices Y and X which would be used in linear regression to find β . Write only the first 4 rows of each matrix, but you must specify the full size.	You may

5.3 Application
Find the value of β . $\boxed{15}$
(15)
6 Digonata greatares
6 Discrete systems
6.1 z-transform
Rewrite equation 5 in discrete transfer function form $(z \text{ domain})$. $\boxed{5}$
6.2 Sampling
Suppose we have a discrete transfer function given by $G_6(z) = \frac{y(z)}{u(z)} = \frac{z^{-1}}{1-0.3z^{-1}}$. Suppose a continuous step signal $u(t)$ is sampled with $\delta t = 1$, processed by G_6 and then sent to a zero order hold device (H) to yield a signal $w(t)$. This signal is then filtered by a first order filter with a time constant of 2 seconds to yield a filtered signal $f(t)$.
6.2.1 Block diagram
Draw a block diagram showing this setup. 5

6.2.2	Response
Sketch	w(t) and $f(t)$ on the same graph. Use 10 time steps. 15
6.3	Analytic result
If $f(t)$	were now sampled at the same time instances as $u(t)$, find a z domain expression for
f(z)	10)
	(35)

Full Marks (180)

DATASHEET: CPN321/CPB410

Compiled on October 31, 2013

General solution of 1st order DE:

$$\dot{x} + P(t)x = Q(t)$$
 \Rightarrow $x = \frac{1}{F_I} \int Q(t)F_I dt + c_1$ with $F_I = \exp\left(\int P(t)dt\right)$

Taylor Series expansion near point x = a:

$$f(x) = \sum_{n=0}^{\infty} \frac{f^n(a)}{n!} (x - a)^n$$

$$f(x_1, \dots, x_d) = \sum_{n_1=0}^{\infty} \dots \sum_{n_d=0}^{\infty} \frac{(x_1 - a_1)^{n_1} \dots (x_d - a_d)^{n_d}}{n_1! \dots n_d!} \left(\frac{\partial^{n_1 + \dots + n_d} f}{\partial x_1^{n_1} \dots \partial x_d^{n_d}} \right) (a_1, \dots, a_d)$$

Linear approximation around point $\mathbf{x} = \mathbf{0}$, where $f(\mathbf{x}) = \mathbf{0}$:

$$f(\mathbf{x}) \approx \nabla f(\mathbf{0}) \cdot \mathbf{x}$$
$$f(x_1, x_2, \dots, x_d) \approx \frac{\partial f}{\partial x_1}(0)x_1 + \frac{\partial f}{\partial x_2}(0)x_2 + \dots + \frac{\partial f}{\partial x_d}(0)x_d$$

Partial fraction expansion (for strictly proper rational functions of s)

$$F(s) = \frac{(s-z_1)(s-z_2)(s-z_3)\cdots}{(s-p_1)^n(s-p_2)(s-p_3)\cdots} = \underbrace{\sum_{m=0}^{n-1} \frac{A_m}{(s-p_1)^{n-m}}}_{\text{repeated roots}} + \frac{B}{s-p_2} + \frac{C}{s-p_3}\cdots$$

$$A_m = \lim_{s \to p_1} \left\{ \frac{\mathrm{d}^m}{\mathrm{d}s^m} \left[(s - p_1)^n F(s) \right] \right\} \frac{1}{m!}$$
$$B = \lim_{s \to p_2} \left[(s - p_2) F(s) \right]$$

Euler identity:

$$e^{i\theta} = \cos\theta + i\sin\theta$$
 $\therefore e^{-i\theta} = \cos\theta - i\sin\theta$ and $e^{i\pi} - 1 = 0$

(1,1) Padé approximation of dead time:

$$e^{-Ds} \approx \frac{1 - \frac{D}{2}s}{1 + \frac{D}{2}s}$$

PID controller:

$$m = K_C \left(\varepsilon + \frac{1}{\tau_I} \int_0^t \varepsilon dt + \tau_D \frac{d\varepsilon}{dt} \right) \qquad \frac{m}{\varepsilon}(s) = K_C \left(1 + \frac{1}{\tau_I s} + \tau_D s \right)$$

Tuning rules:

	Ziegler-Nichols			Cohen-Coon (with $\phi = \frac{t_D}{\tau_P}$)			
	K_C	$ au_I$	$ au_D$	K_C	$ au_I$	$ au_D$	
Р	$\frac{K_u}{2}$			$\frac{\phi+3}{3K_P\phi}$			
ΡΙ	$\frac{K_u}{2.2}$	$\frac{P_u}{1.2}$		$\frac{5\phi + 54}{60K_P\phi}$	$t_D \frac{30 + 3\phi}{9 + 20\phi}$		
PID	$\frac{K_u}{1.7}$	$\frac{P_u}{2}$	$\frac{P_u}{8}$	$\frac{3\phi + 16}{12K_P\phi}$	$t_D \frac{32 + 6\phi}{13 + 8\phi}$	$\frac{4}{11 + 2\phi}$	

Time domain	Laplace-transform	z-transform $(b = e^{-aT})$
Impulse: $\delta(t)$	1	1
Unit step: $u(t)$	$\frac{1}{s}$	$\frac{1}{1-z^{-1}}$
Ramp: t	$\frac{1}{s^2}$	$\frac{Tz^{-1}}{(1-z^{-1})^2}$
t^n	$\frac{n!}{s^{n+1}}$	$\lim_{a \to 0} (-1)^n \frac{\partial^n}{\partial a^n} \frac{1}{1 - bz^{-1}}$
e^{-at}	$\frac{1}{s+a}$	$\frac{1}{1 - bz^{-1}}$
te^{-at}	$\frac{1}{(s+a)^2}$	$\frac{Tbz^{-1}}{(1 - bz^{-1})^2}$
t^2e^{-at}	$\frac{2}{(s+a)^3}$	$\frac{T^2bz^{-1}(1+bz^{-1})}{(1-bz^{-1})^3}$
$\sin(\omega t)$	$\frac{\omega}{s^2 + \omega^2}$	$\frac{z^{-1}\sin(\omega T)}{1 - 2z^{-1}\cos(\omega T) + z^{-2}}$
$\cos(\omega t)$	$\frac{s}{s^2 + \omega^2}$	$\frac{1 - z^{-1}\cos(\omega T)}{1 - 2z^{-1}\cos(\omega T) + z^{-2}}$
$1 - e^{-at}$	$\frac{a}{s(s+a)}$	$\frac{(1-b)z^{-1}}{(1-z^{-1})(1-bz^{-1})}$
$e^{-at}\sin(\omega t)$	$\frac{\omega}{(s+a)^2 + \omega^2}$	$\frac{z^{-1}b\sin(\omega T)}{1 - 2z^{-1}b\cos(\omega T) + b^2z^{-2}}$
$e^{-at}\cos(\omega t)$	$\frac{s+a}{(s+a)^2+\omega^2}$	$\frac{1 - z^{-1}b\cos(\omega T)}{1 - 2z^{-1}b\cos(\omega T) + b^2z^{-2}}$
Initial value theorem: $\lim_{t\to 0} f(t)$	$\lim_{s \to \infty} sF(s)$	$\lim_{z \to \infty} F(z)$
Final value theorem: $\lim_{s\to\infty} f(t)$	$\lim_{s \to 0} sF(s)$	$\lim_{z \to 1} \left[\left(1 - z^{-1} \right) F(z) \right]$
Translation: $f(t-D)u(t-D)$	$e^{-Ds}F(s)$	$F(z)z^{-n}$ where $D = nT$
Derivative: $\frac{\mathrm{d}^n f(t)}{\mathrm{d}t^n} = f^n(t)$	$s^{n}F(s) - \sum_{k=1}^{n} s^{k-1}f^{n-k}(0)$	
Integral: $\int_0^t f(t) dt$	$\frac{1}{s}F(s)$	
Zero th order hold	$H(s) = \frac{1 - e^{-Ts}}{s}$	