

| NOMBRE Y APELLIDOS:                                                                                                                                                                    | NIA:                      |
|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------|
| Examen de Sistemas Operativos<br>11 de Septiembre de 2010                                                                                                                              |                           |
| NOTAS:  * Para la realización del presente examen se dispondrá de 2 ho  * No se pueden utilizar libros ni apuntes, ni usar móvil (o simi  * Responda cada pregunta en hojas distintas. |                           |
| Teoría . (2,5 ptos)                                                                                                                                                                    |                           |
| a ¿Qué es la MMU ? Indica brevemente que función realiza                                                                                                                               |                           |
|                                                                                                                                                                                        |                           |
|                                                                                                                                                                                        |                           |
|                                                                                                                                                                                        |                           |
| <b>b</b> Indica 3 de las responsabilidades del SO respecto a l secundario                                                                                                              | a E/S y el almacenamiento |
|                                                                                                                                                                                        |                           |
|                                                                                                                                                                                        |                           |
|                                                                                                                                                                                        |                           |
|                                                                                                                                                                                        |                           |
| c En que consiste la semántica UNIX de coutilización de arc                                                                                                                            | hivos                     |
|                                                                                                                                                                                        |                           |
|                                                                                                                                                                                        |                           |
|                                                                                                                                                                                        |                           |
|                                                                                                                                                                                        |                           |



| NOMBRE Y APELLIDOS: |                               | NIA: |  |
|---------------------|-------------------------------|------|--|
|                     | Examen de Sistemas Operativos |      |  |

#### Examen de Sistemas Operativos 11 de Septiembre de 2010

### Ejercicio 2. (2,5 ptos)

Realizar una aplicación en lenguaje C que conste de 1 padre y 2 hijos.

- \* El padre crea los 2 hijos y después lee números de teclado hasta que lea el 0
- \* Los números pares se los pasa al hijo 0 y los impares al hijo 1 mediante pipes.
- \* Cuando lea el 0 lo enviará a ambos hijos y esperará la finalización de éstos antes de terminar la ejecución.
- \* Los hijos sumarán los números recibidos del padre y cuando lean el 0 mostrarán la suma total y finalizarán su ejecución

Suponga que las librerías necesarias ya se han importado mediante los include necesarios

## **Ejercicio 3.** (2,5 ptos)

Escribe en lenguaje de programación C un programa que :

- Cree 20 threads que simulan los vehículos que desean entrar a un parking de 2 plantas. En cada planta caben 5 vehículos.
- Los coches sólo pueden entrar en el parking si hay, al menos, 1 plaza libre en alguna de las plantas, sino deben esperar a que salga un coche.
- Cada vez que un coche entra en el parking mostrará un mensaje indicándolo. En el mensaje se indicará su identificador de thread y la planta en la que ha entrado.
- Si hay plazas en la planta 1 se elegirá ésta, sino se elegirá la planta 2.
- Una vez dentro esperará un tiempo aleatorio entre 1 y 10 segundos y abandonará el parking indicándolo con un mensaje similar al de la entrada.
- El programa principal debe esperar a que todos los vehículos salgan del parking antes de finalizar

Suponga que las librerías necesarias ya se han importado mediante los include necesarios

#### Ejercicio 4. (2,5 ptos)

- a) Se tiene un disco de 20 GB con sistema de ficheros ext2 con las siguientes características:
  - Tamaño del bloque de 8 KBytes.
  - Direcciones de los bloques: 4 bytes.
  - Estructura del i-nodo:
    - 10 punteros directos.
    - 1 puntero indirecto simple.
    - 1 puntero indirecto doble.
    - 1 puntero indirecto triple.



| NOMBRE Y APELLIDOS: _ |                               | NIA: |  |
|-----------------------|-------------------------------|------|--|
|                       | Examen de Sistemas Operativos |      |  |
|                       | 11 de Septiembre de 2010      |      |  |

Indica cuál es el número de bloques que ocupa un fichero de 100 MBytes, incluyendo tanto los bloques de datos como los de direcciones.

- b) Rellena la siguiente tabla de i-nodos y del contenido de los bloques de datos para que reflejen la situación de un disco en el que sólo hay un directorio DIR que contiene 1 fichero con 2 nombres f1 y f2 y, un enlace simbólico f3 al fichero f1 El orden en el que se han creado los diferentes elementos es:
  - 1°. El directorio DIR
  - 2°. f1
  - 3°. f2
  - 4°. f3

#### Tabla de I-nodos:

| Nº Inodo            | 1 | 2 | 3 | 4 | 5 |
|---------------------|---|---|---|---|---|
| Tipo                |   |   |   |   |   |
| Contador            |   |   |   |   |   |
| <b>Enlaces Fis.</b> |   |   |   |   |   |
| Dirección           |   |   |   |   |   |
| <b>Bloque Datos</b> |   |   |   |   |   |
|                     |   |   |   | _ |   |

## Bloques de datos:

| Nº Bloque | 1 | 2 | 3 | 4 | 5 |
|-----------|---|---|---|---|---|
|           |   |   |   |   |   |
|           |   |   |   |   |   |
|           |   |   |   |   |   |
| Contenido |   |   |   |   |   |
|           |   |   |   |   |   |



| NOMBRE Y APELLIDOS: |            |  |    | NIA: |
|---------------------|------------|--|----|------|
|                     | <br>1 C! 4 |  | 4. |      |

## Examen de Sistemas Operativos 11 de Septiembre de 2010

# **SOLUCIÓN**

#### Teoría 1.

- La MMU (memory management unit) traduce las direcciones virtuales en físicas
- La MMU produce un fallo de página (trap) cuando la dirección no está en memoria principal

#### Teoría 2.

El SO tiene la responsabilidad de gestionar los siguientes aspectos de la E/S y el almacenamiento secundario:

- Traducir peticiones a formato de manejador.
- Copiar memoria de/a memoria a/de controlador.
- Controlar operaciones por DMA.
- Controlar dispositivos de E/S serie: teclado, ratón, etc.
- Asignación y liberación de espacio.
- Planificación de accesos a los dispositivos.

#### Teoría 3.

- Semántica de coutilización UNIX
  - Las escrituras son inmediatamente visibles para todos los procesos con el archivo abierto.
  - Los procesos pueden compartir archivos. Si existe relación de parentesco pueden compartir el puntero.
  - La coutilización afecta también a los metadatos.

## Ejercicio 2:

```
#include <stdio.h>
#include <stdlib.h>

void hijo (int n,int fd[]) {
  int suma=0,num;

do {
  read (fd[0],&num, sizeof(int));
  suma+=num;
} while (num != 0);
```



NOMBRE Y APELLIDOS: \_\_\_\_\_\_ NIA: \_\_\_\_\_

# Examen de Sistemas Operativos 11 de Septiembre de 2010

```
if (n==0)
 printf ("suma de los pares=%d\n", suma);
 printf ("suma de los impares=%d\n", suma);
exit(0);
main (){
int fd0[2], fd1[2]; //Tuberías para el hijo 0 y para el hijo 1
int pidh0,pidh1;
int num,cont=0,pidhm;
pipe (fd0);
if ((pidh0 = fork()) == 0){
 close (fd0[1]);
 hijo(0,fd0);
}else
 if (pidh0 == -1) exit(1);
close (fd0[0]);
pipe (fd1);
if ((pidh1 = fork()) == 0){
 close (fd1[1]);
 hijo(1,fd1);
}else
 if (pidh1 == -1) exit(2);
close (fd1[0]);
do {
 printf ("Dar número :");
 scanf ("%d", &num);
 if (num %2==0)
  write (fd0[1], &num, sizeof(int));
  write (fd1[1], &num, sizeof(int));
\} while (num != 0);
write (fd1[1], &num, sizeof(int)); //escribo el 0 también para los impares
do {
 pidhm=wait(NULL);
 if (pidhm== pidh1 || pidhm== pidh0)
  cont++;
\} while (cont == 2);
printf ("Fin de la aplicación\n");
```



NOMBRE Y APELLIDOS: \_\_\_\_\_\_ NIA: \_\_\_\_\_

# Examen de Sistemas Operativos 11 de Septiembre de 2010

```
Ejercicio 3:
/* José Manuel Pérez Lobato */
#include <pthread.h>
#include <stdio.h>
#include <stdlib.h>
#define MAX
                        /* Numero máximo*/
                  20
#define TRUE
                  1
#define FALSE
                   0
pthread_mutex_t mutex; /* mutex para controlar el acceso compartido */
pthread_cond_t esperaplaza; /* controla la espera */
int plazaslibresP1=5;
int plazaslibresP2=5;
int espera=1;
void *coche(void *p) {
int plantaelegida=0;
 srandom(pthread_self());
   pthread_mutex_lock(&mutex);
    while (plazaslibresP1 ==0 && plazaslibresP2 ==0)
       pthread_cond_wait(&esperaplaza, &mutex);
       if (plazaslibresP1 >0) {
        plazaslibresP1--;
        plantaelegida=1;
       else {
        plazaslibresP2--;
        plantaelegida=2;
       printf ("Entra %u en la planta %d\n", pthread_self(),plantaelegida);
   pthread_mutex_unlock(&mutex);
   sleep (5+ random()%10);
   pthread_mutex_lock(&mutex);
    if(plantaelegida==1)
        plazaslibresP1++;
    else
        plazaslibresP2++;
       printf ("Sale %u de la planta %d\n", pthread_self(),plantaelegida);
    pthread_cond_signal(&esperaplaza);
   pthread_mutex_unlock(&mutex);
  pthread_exit(0);
```



NOMBRE Y APELLIDOS: \_\_\_\_\_\_ NIA: \_\_\_\_\_

# Examen de Sistemas Operativos 11 de Septiembre de 2010

```
main(int argc, char *argv[]){
  pthread_t th[MAX];
  pthread_attr_t attr;
  int i, afila;

  pthread_mutex_init(&mutex, NULL);
  pthread_cond_init(&esperaplaza, NULL);
  pthread_attr_init(&attr);
  for (i=0; i<MAX; i++){
     pthread_create(&th[i], &attr, coche, NULL);
  }
  for (i=0; i<MAX; i++)
     pthread_join(th[i], NULL);

  pthread_mutex_destroy(&mutex);
  pthread_cond_destroy(&esperaplaza);

  exit(0);
}</pre>
```

## Ejercicio 4:

a)

En cada bloque de direcciones caben 2048 direcciones de bloque: 8KBytes /4 bytes =2048 posiciones.

Los 10 apuntadores simples apuntarán a los 80 primeros Kbyte del fichero. Cada bloque de direcciones que se necesite apuntará a 2048 apuntadores\*8Kbytes= 16 Mbyte del fichero

Por tanto para llegar a 100 Mbyte necesitamos 7 bloques de direcciones.

El primero lo obtenemos del apuntador indirecto simple, que apunta directamente a uno de ellos. Para los 6 restantes necesitamos del apuntador indirecto doble que apuntará a 1 bloque de direcciones que apuntará a esos 6 bloques de direcciones necesarios.

Luego se necesitan 7 + 1 = 8 bloques de direcciones

El tamaño en bloques de datos del fichero es de : 100 Mbyte / 8 Kbytes = 102400 / 8 = 12800 bloques

Luego el tamaño total son 12808 bloques más el inodo.

b)

# Tabla de I-nodos:

| Nº Inodo                 | 1          | 2          | 3       | 4                   |  |
|--------------------------|------------|------------|---------|---------------------|--|
| Tipo                     | Directorio | Directorio | Fichero | Enlace<br>Simbólico |  |
| Contador<br>Enlaces Fis. | 3          | 2          | 2       | 1                   |  |



| NOMBRE Y AI               | PELLIDOS: |                                                           |    | 1  | NIA: |  |
|---------------------------|-----------|-----------------------------------------------------------|----|----|------|--|
|                           |           | Examen de Sistemas Operativos<br>11 de Septiembre de 2010 |    |    |      |  |
| Dirección<br>Bloque Datos | 11        | 12                                                        | 13 | 14 |      |  |
|                           |           |                                                           |    |    |      |  |

# Bloques de datos:

| Nº Bloque | 11  |   | 12 |   | 13         | 14 |  |
|-----------|-----|---|----|---|------------|----|--|
|           |     | 1 |    | 2 |            | f1 |  |
|           | ••  | 1 |    | 1 | Datos del  |    |  |
|           | DIR | 2 | f1 | 3 | Fichero f1 |    |  |
| Contenido |     |   | f2 | 3 |            |    |  |
|           |     |   | f3 | 4 |            |    |  |