COUPLAGE FEM/DGM

Analyse des méthodes et proposition de couplage

Mathieu Gaborit

Master 1 Acoustique

Université du Maine

O. Dazel — Enseignant-Chercheur Année 2014-2015

INTRODUCTION

- Méthodes numériques : enjeu majeur pour la simulation de systèmes complexes
- · Grande diversité dans les méthodes disponibles
- · Fortes spécificités pour chaque méthode
- · Méthodes classiques : FEM, DGM, etc...

INTRODUCTION

- Méthodes numériques : enjeu majeur pour la simulation de systèmes complexes
- · Grande diversité dans les méthodes disponibles
- · Fortes spécificités pour chaque méthode
- · Méthodes classiques : FEM, DGM, etc...

Comment combiner deux méthodes pour profiter d'un maximum d'avantages ?

AU MENU

Problème de référence

Méthodes

Couplage

Amélioration de la convergence

Et ensuite?

PROBLÈME DE RÉFÉRENCE

PROBLÈME DE RÉFÉRENCE

Hypothèses

- · Propagation 1D
- · Convention temporelle $e^{j\omega t}$
- · Paroi en x = L infiniment rigide
- · Entrée excitée par une onde plane d'amplitude unitaire
- · Effets visco-thermiques négligés
- $\cdot err = \left| \arg(R) \arg(\hat{R}) \right|^2 / \left| \arg(R) \right|^2$

4

MÉTHODES

MÉTHODE DES ÉLÉMENTS FINIS

$$\left(k^{2}[M] - [K]\right) \mathbb{P} = \int_{\partial \Omega} v \nabla p d\Gamma$$

Généralités

- · Formulation variationnelle de l'équation d'Helmholtz
- · Utilisation d'un maillage non-structuré
- · Bonne modélisation de systèmes détaillés

MÉTHODE DES ÉLÉMENTS FINIS

$$\left(k^{2}[M] - [K]\right) \mathbb{P} = \int_{\partial \Omega} v \nabla p d\Gamma$$

Généralités

- · Formulation variationnelle de l'équation d'Helmholtz
- · Utilisation d'un maillage non-structuré
- · Bonne modélisation de systèmes détaillés

Limites

- · Augmentation du temps de calcul avec le nombre d'éléments
- · Nécessité d'au moins 2 éléments par longueur d'onde

MÉTHODE DES ÉLÉMENTS FINIS

Influence du type d'éléments

Erreur relative en fonction du nombre de degrés de libertés pour des éléments linéaires et quadratiques

MÉTHODE DE GALERKIN DISCONTINUE AVEC ONDES PLANES

$$\int_{\Omega} \vec{\mathbf{v}}^{\mathsf{T}} (j\omega + A\nabla) \, \vec{\mathbf{u}} \mathrm{d}\Gamma = 0$$

Généralité.s

- Basée sur la formulation variationnelle de l'équation d'Helmholtz
- Utilisation des caractéristiques de l'EDP comme champ de test (Gabard & Dazel, 2015, Int. J. Numer. Engng.)
- · Possibilité d'utiliser de grands éléments

Limites

- · Quasi-insensible aux petits détails
- · Incompatibles avec (ou mal adaptés à) certains problèmes

MÉTHODE DE GALERKIN DISCONTINUE AVEC ONDES PLANES

Solution exacte en 1D...

Pression acoustique dans la cavité de référence et calculée

par DGM en fonction de la distance.

COUPLAGE

CONDITIONS LIMITES ET FEM

Classiquement

- · R comme une inconnue
- · Vecteurs et matrices étendues
- · Traduction exacte des équations de continuité

Classiquement

- · R comme une inconnue
- · Vecteurs et matrices étendues
- · Traduction exacte des équations de continuité

$$\begin{pmatrix}
 & & & -jk \\
0 & & & 0 \\
\hline
 & & & & 0 \\
\hline
 & & & & 0
\end{pmatrix}
\begin{pmatrix}
 & & & & & \\
 & & & & & \\
 & & & & & \\
\hline
 & & & & \\
\hline
 & & & & \\
\hline
 & & & & & \\$$

CONDITIONS LIMITES ET FEM

Caractéristiquement...

- · Utilisation des caractéristiques pour exprimer la condition limite en x = 0
- · Besoin des fonctions de forme pour exprimer les champs
- · Nécessité de dériver les fonctions de forme...

Caractéristiquement...

- · Utilisation des caractéristiques pour exprimer la condition limite en x = 0
- · Besoin des fonctions de forme pour exprimer les champs
- · Nécessité de dériver les fonctions de forme...

$$\left. \nabla p \right|_{0} = -jk - \frac{jk}{2} \left[\left(\varphi_{1}(0) + \frac{\varphi_{1}'(0)}{jk} \right) \mathbb{P}_{1} + \left(\varphi_{2}(0) + \frac{\varphi_{2}'(0)}{jk} \right) \mathbb{P}_{2} \right]$$

Dérivation des fonctions de forme : perte d'un ordre de convergence ?

CONDITIONS LIMITES ET FEM

Malheureusement... oui.

Erreur relative en fonction du nombre d'éléments pour la méthode classique et pour des caractéristiques

CONDITIONS LIMITES ET FEM

Malheureusement... oui.

Erreur relative en fonction du nombre d'éléments pour la méthode classique et pour des caractéristiques

Comment éviter ce (gros) désagrément ?

AMÉLIORATION DE LA CONVERGENCE

DÉRIVATION «NATURELLE»?

Question : Existe-t-il une méthode d'interpolation donnant directement accès à la dérivée du champ ?

DÉRIVATION «NATURELLE»?

Question : Existe-t-il une méthode d'interpolation donnant directement accès à la dérivée du champ ?

Réponse : Oui! L'interpolation par splines d'Hermite!

$$p_{e}(x) = \left[\tilde{h_{00}}(x)|\tilde{h_{10}}(x)|\tilde{h_{01}}(x)|\tilde{h_{11}}(x)\right] \begin{cases} p_{1} \\ p'_{1} \\ p_{2} \\ p'_{2} \end{cases}$$

Words are good... show me the curve!

Erreur relative en fonction du nombre de degrés de liberté pour les méthodes classique (- -) et des caractéristiques (—) pour des éléments quadratiques et des spline d'Hermite

Words are good... show me the curve!

Erreur relative en fonction du nombre de degrés de liberté pour les méthodes classique (- -) et des caractéristiques (—) pour des éléments quadratiques et des spline d'Hermite

Ça converge!

Words are good... show me the curve!

Erreur relative en fonction du nombre de degrés de liberté pour les méthodes classique (- -) et des caractéristiques (—) pour des éléments quadratiques et des spline d'Hermite

Ça converge!

Mieux que les éléments quadratiques...

Words are good... show me the curve!

Erreur relative en fonction du nombre de degrés de liberté pour les méthodes classique (- -) et des caractéristiques (—) pour des éléments quadratiques et des spline d'Hermite

Ça converge!

Mieux que les éléments quadratiques...pour les deux méthodes

PISTES POUR LA SUITE

- · Coupler plusieurs éléments DGM et FEM ensemble
- · Analyser le comportement du couplage en 2D
- · Appliquer la méthode à de vrais problèmes
- · Analyser l'évolution du temps de calcul
- · Auto-sélection de la méthode la plus adaptés à certains groupes d'éléments sur un maillage quelconque
- · etc...

CONCLUSION

- · Prise en main et analyse de 2 méthodes de calcul
- · Introduction aux possibilités de couplage ente méthodes
- · Travail sur un sujet de recherche intéressant
- · Possibilités de poursuite du projet

REFERENCES

- · G. Gabard, O. Dazel, A discontinuous Galerkin Method with Plane Waves for Sound Absorbing Materials, 2015, Int. J. Numer. Engng, à paraître
- · G. Gabard, P. Gamallo, T. Huttunen, A comparison of wave-based discontinuous Galerkin, ultra-week and least-square method for wave problems, 2011, *Int. J. Numer. Engng*, vol. 85 no 3
- · Analyse Numérique : une approche mathématique, M. Schatzman

MERCI!

DES QUESTIONS?

mathieu@matael.org