MSO 202A: Complex Variables August-September 2022 Assignment-5

Throughout C_R will denote the circle of radius R around origin, oriented counterclockwise. and $C_1 = C$.

1. (T) Find the max value of |f| on $|z| \le 1$ where $f(z) = z^2 + 3z - 1$. Where is it attained? Solution:

By the Maximum modulus principle the max value of |f| is attained on the boundary |z|=1. Putting $z=e^{it}$ we have $|f|^2=11-2\cos 2t$, which is maximum for $t=\pi/2, 3\pi/2$. Hence max value of |f| on $|z|\leq 1$ is $\sqrt{13}$ attained at e^{it} for $t=\pi/2, 3\pi/2$.

2. Analytic functions satisfies Mean Value Property. Let f be holomorphic function on a an open set containing the closed disc $|z - z_0| \le r$. Show that u satisfies:

$$f(z_0) = \frac{1}{2\pi} \int_0^{2\pi} f(z_0 + re^{it}) dt.$$

(Remark: $\frac{1}{2\pi} \int_0^{2\pi} f(z_0 + re^{it}) dt$ called the **Mean Value of** f over the circle $|z - z_0| = r$.) **Solution:**

Use Cauchy's integral formula. Done in class in the proof of Maximum Modulus principle.

3. (T)Harmonic functions satisfies Mean Value Property. Let u be Harmonic function on a an open set Ω containing the closed disc $|z - z_0| \le r$. Show that u satisfies .

$$u(z_0) = \frac{1}{2\pi} \int_0^{2\pi} u(z_0 + re^{it}) dt.$$

Solution:

We can find a r' > r such that $\mathbb{D}_{r'}(z_0) : |z - z_0| < r' \subset \Omega$. Since $\mathbb{D}_{r'}(z_0)$ is simply connected, u admits a harmoninc conjugate on $\mathbb{D}_{r'}(z_0)$. So there exist an holomorphic function f = u + iv on $\mathbb{D}_{r'}(z_0)$. Apply the previous exercise and take the real part.

4. Find the mean value of the function $u(x,y) = x^2 - y^2 + x$ on the circle |z - i| = 2.

Solution:

Note that u is harmonine on \mathbb{C} . So by the mean value property, we have the Mean value = u(i) = u(0,1) = -1.

5. (**T**)Let f be a nowhere zero, entire function. Prove that there exists an entire function g such that $\exp(g) = f$.

Solution:

The function f'/f is entire. By Cauchy's Theorem, it has a primitive g that is g' = f/f'. Now $\frac{d}{dz}(fe^{-g}) = f'e^{-g} - fe^{-g}g' = 0$. Thus $fe^{-g} = constant = e^c$. So $f = e^{g+c}$.

6. Find out all entire functions f such that $f(x) = e^x$ for $x \in \mathbb{R}$.

Solution:

- $f(z) = e^z$ is one such function. If g is any such function then $\mathbb{R} \subseteq \{z : f(z) = g(z)\}$. Each point of \mathbb{R} is a limit point of the set $\{z : f(z) = g(z)\}$. Hence by Identity Princple f = g.
- 7. Find out the order of the all zeros for

(T)(a)
$$f(z) = z^2(e^{z^2} - 1)$$
 (b) $z \sin z$. (c) $\sin^3(z)/z$

Solution:

- (a) Order of the zero z=0 is 4 since the Taylor series about 0 start with z^4 . Other zeros of f(z) are given by $e^{z^2}=1$ i.e $z^2=2k\pi i$. These are of order 1 since f' does not vanish at these points.
- (b) Zeros are $z = k\pi$ with $k \in \mathbb{Z}$. The zero z = 0 is of order 2 are other zeros are simple zero, i.e. have order 1.
- (c) The function is not defined at z=0. The zeros of the function are given by $\sin z=0$ that is $z=k\pi$ where $k=\pm 1,\pm 2,\cdots$. All these are zeros of order 3.
- 8. (T)Does there exist a holomorphic function f on \mathbb{D} such that $Z_f = \{z \in \mathbb{D} : f(z) = 0\}$ is equal to the following set? Justify your answer.
 - (a) $S_1 = \{1/n : n \in \mathbb{N}\}.$ (b) $S_2 = \{1 1/n : n \in \mathbb{N}\}.$ (c) $S_1 = \{z \in \mathbb{D} : \text{Re}(z) = 0\}$
 - (d) $S_4 = \{ z \in \mathbb{D} : -1/2 < y < 1/2 \}.$

Solution:

- (a) If such a function f exist, then the zero set $Z_f = \{z : f(z) = 0\}$ has a limit point z = 0 which is in \mathbb{D} . So f = 0.
- (b) $f(z) = \sin \frac{\pi}{z-1}$
- (c) In this case $Z_f = \{z: f(z) = 0\}$ has a limit point in \mathbb{D} and so f = 0.
- (d) In this case $Z_f = \{z: f(z) = 0\}$ has a limit point in \mathbb{D} and so f = 0.
- 9. (T) Evaluate $\int_{\Gamma} \frac{1}{z^4} dz$ where Γ is the part of clockwise oriented ellipse $\frac{(x-3)^2}{1} + \frac{y^2}{4} = 1$ lying on the upper half plane y > 0.

Solution: Let Γ^* be the clockwise oriented closed curve consisting of the part of the given ellipse in the upper half plane and the line segment L with initial point (4,0)

and end point (2,0). Since the function $1/z^4$ is analytic inside and on Γ *, we have by Cauchy's theorem

$$\int_{\Gamma^*} \frac{1}{z^4} dz = \int_{\Gamma} \frac{1}{z^4} dz + \int_{L} \frac{1}{z^4} dz = 0$$

So
$$\int_{\Gamma} \frac{1}{z^4} dz = \int_{-L} \frac{1}{z^4} dz = \int_{2}^{4} \frac{1}{x^4} dx = 7/192.$$

10. (**T**)Write down the power series expansion $\sum a_n(z-z_0)^n$ of the function $Log(z) = \log_{-\pi}(z)$ around $z_0 = -1 + \iota$.

What is the radius of convergence of the power series?

For which values of z, we have $Log(z) = \sum a_n(z-z_0)^n$?

Solution:

$$f(z) = Log z$$
. So $f'(z) = 1/z$, $f''(z) = -1/z^2$, \cdots , $f^{(n)}(z) = (-1)^{n-1}(n-1)!/z^{n+1}$
 $a_n = f^{(n)}(z_0)/n! = (-1)^{n-1} \frac{1}{nz_0^{n+1}}$

Therefore by Ratio test the radius of convergence of the Taylor series is $R = \lim |a_n|/|a_{n+1}| = |z_0| = \sqrt{2}$. So the power series is convergent for $|z - z_0| \le \sqrt{2}$.

The function Log z is analytic on the domain $\Omega = \mathbb{C}$ -nonpositive x axis. The largest disc in Ω with center at z_0 is $|z - z_0| < 1$. Thus

$$Log z = \sum (-1)^{n-1} \frac{1}{n z_0^{n+1}} (z - z_0)^n$$
, for $|z - z_0| < 1$.

- 11. (**T**)Evaluate the following integrals on the square γ , oriented on the counterclockwise direction with sides $x = \pm 2, y = \pm 2$.
 - (a) $\int_{\gamma} \frac{\cos z}{z(z^2+8)} dz$ (b) $\int_{\gamma} \frac{\cosh z}{z^4} dz$.

Solution:

- (a) Given integral = $\int_C \frac{\cos z/(z^2+8)}{z} dz = 2\pi i \cos z/(z^2+8)|_{z=0} = \pi i/4$.
- (b) Given integral = $\frac{2\pi i}{3!} \frac{d^3}{dz^3} (\cosh z)|_{z=0} = 0$
- 12. Find out

$$\int_C \frac{2z^3 + z^2 + 4}{z^4 + 4z^2}; \quad C: |z - 2| = 4$$

Solution:

The given integral = $\int_C \left(\frac{1}{z^2} + \frac{1}{z+2i} + \frac{1}{z-2i}\right) dz = 4\pi i$.