UFRGS - INSTITUTO DE MATEMÁTICA Departamento de Matemática Pura e Aplicada MAT01168 - Turma A - 2022/1Prova da área I

1-5	6	7	Total

Nome:	Cartão:	

Regras Gerais:

- Não é permitido o uso de calculadoras, telefones ou qualquer outro recurso computacional ou de comunicação.
- $\bullet\,$ Trabalhe individualmente e sem uso de material de consulta além do fornecido.
- Devolva o caderno de questões preenchido ao final da prova.

Regras para as questões abertas

- Seja sucinto, completo e claro.
- Justifique todo procedimento usado.
- Indique identidades matemáticas usadas, em especial, itens da tabela.
- Use notação matemática consistente.

Tabela do operador $\vec{\nabla}$:

f = f(x, y, z) e g = g(x, y, z) são funções escalares; $\vec{F} = \vec{F}(x, y, z)$ e $\vec{G} = \vec{G}(x, y, z)$ são funções vetoriais.

	(101)
1.	$\vec{\nabla} \left(f + g \right) = \vec{\nabla} f + \vec{\nabla} g$
2.	$\vec{\nabla} \cdot \left(\vec{F} + \vec{G} \right) = \vec{\nabla} \cdot \vec{F} + \vec{\nabla} \cdot \vec{G}$
3.	$\vec{\nabla} \times \left(\vec{F} + \vec{G} \right) = \vec{\nabla} \times \vec{F} + \vec{\nabla} \times \vec{G}$
4.	$\vec{\nabla}\left(fg\right) = f\vec{\nabla}g + g\vec{\nabla}f$
5.	$\vec{ abla}\cdot\left(f\vec{F} ight)=\left(\vec{ abla}f ight)\cdot\vec{F}+f\left(\vec{ abla}\cdot\vec{F} ight)$
6.	$\vec{ abla} imes \left(f \vec{F} ight) = \vec{ abla} f imes \vec{F} + f \vec{ abla} imes \vec{F}$
7.	$\vec{\nabla} \cdot \vec{\nabla} f = \vec{\nabla}^2 f = \frac{\partial^2 f}{\partial x^2} + \frac{\partial^2 f}{\partial y^2} + \frac{\partial^2 f}{\partial z^2},$
	onde $\vec{\nabla}^2 = \frac{\partial^2}{\partial x^2} + \frac{\partial^2}{\partial y^2} + \frac{\partial^2}{\partial z^2}$ é o operador laplaciano
8.	$ec{ abla} imes\left(ec{ abla}f ight)=0$
9.	$\vec{\nabla} \cdot \left(\vec{\nabla} \times \vec{F} \right) = 0$
10.	$ec{ abla} imes\left(ec{ abla} imesec{F} ight)=ec{ abla}\left(ec{ abla}\cdotec{F} ight)-ec{ abla}^2ec{F}$
11.	$\vec{\nabla} \cdot \left(\vec{F} \times \vec{G} \right) = G \cdot \left(\vec{\nabla} \times \vec{F} \right) - F \cdot \left(\vec{\nabla} \times \vec{G} \right)$
12.	$\vec{\nabla} \times \left(\vec{F} \times \vec{G} \right) = \left(\vec{G} \cdot \vec{\nabla} \right) \vec{F} - \vec{G} \left(\vec{\nabla} \cdot \vec{F} \right) - \left(\vec{F} \cdot \vec{\nabla} \right) \vec{G} + \vec{F} \left(\vec{\nabla} \cdot \vec{G} \right)$
13.	
14.	$\vec{\nabla}\varphi(r) = \varphi'(r)\hat{r}$

Curvatura, torção e aceleração:

Curvatura, torção e aceleração:				
Nome	Definição			
Curvatura	$\kappa = \left\ \frac{d\vec{T}}{ds} \right\ = \left\ \frac{\frac{d\vec{T}}{dt}}{\frac{ds}{dt}} \right\ = \frac{\ \vec{r}'(t) \times \vec{r}''(t)\ }{\ \vec{r}'(t)\ ^3}$			
Torção	$\tau = -\frac{d\vec{B}}{ds} \cdot \vec{N} = \frac{(\vec{r}'(t) \times \vec{r}''(t)) \cdot \vec{r}'''(t)}{\ \vec{r}'(t) \times \vec{r}''(t)\ ^2}$			
Módulo da Torção	$ au = \left\ rac{d ec{B}}{ds} ight\ = \left\ rac{d ec{B}}{rac{ds}{dt}} ight\ $			
Aceleração normal	$a_N = \frac{\ \vec{a} \times \vec{v}\ }{v} = \frac{v^2}{r} = \kappa v^2$			
Aceleração tangencial	$a_T = \frac{\vec{a} \cdot \vec{v}}{v} = \frac{dv}{dt}$			

Equações de Frenet-Serret:

$\frac{d\vec{T}}{ds}$	=		$\kappa ec{N}$	
$\frac{d\vec{N}}{ds}$	=	$-\kappa\vec{T}$		$+ au \vec{B}$
$\frac{d\vec{B}}{ds}$	=		$-\tau \vec{N}$	

• Questão 1a (0.5 ponto cada item) Considere a trajetória parametrizada pela seguinte função vetorial:

$$\vec{r}(t) = \operatorname{sen}(2t)\vec{i} + \cos(t)\vec{j}, \quad t \ge 0$$

Seja t_0 o primeiro instante positivo em que a trajetória passa pela origem.

Assinale na primeira coluna o valor de t_0 . Na segunda coluna assinale o vetor tangente unitário à trajetória neste instante:

O parâmetro t_0 :

Tangente unitário em t_0 :

$$(\quad)\quad \frac{\sqrt{5}}{5}\,\left(2\vec{i}+\vec{j}\right)$$

$$(\)\ \frac{\pi}{8}$$

$$(\quad)\quad \frac{\sqrt{5}}{5}\left(2\vec{i}-\vec{j}\right)$$

$$(X) = \frac{7}{6}$$

$$() \frac{\sqrt{5}}{5} \left(-2\vec{i} + \vec{j} \right)$$

$$\frac{2}{3\pi}$$

$$(X) \frac{\sqrt{5}}{5} \left(-2\vec{i} - \vec{j} \right)$$

() Nenhuma das anteriores

• Questão 1b (0.5 ponto cada item) Considere a mesma trajetória da questão anterior. Assinale na primeira coluna os vetores binormais unitários, respectivamente, $t_1 := 0$ $t_2 := \pi$. Na segunda coluna, assinale o valor da curvatura nesses pontos, que são idênticos:

$$\vec{B}(0) \in \vec{B}(\pi)$$
:

$$\kappa(0) = \kappa(\pi)$$
:

()
$$\vec{k} \in \vec{k}$$

()
$$\vec{k} e - \vec{k}$$

$$(X) - \vec{k} e \vec{k}$$

()
$$-\vec{k} e - \vec{k}$$

$$() -k e -k$$

- () Nenhuma das anteriores
- A trajetória passa pela origem quando sen(2t) = 0 e cos(t) = 0. Da segunda condição, temos $t = \frac{\pi}{2} + k\pi$ Da primeira condição, temos $t=n\frac{\pi}{2}$. O primeiro instante positivo que satisfaz ambas as condições é $t_0=\frac{\pi}{2}$. Para obter o vetor tangente, calculamos a derivada:

$$\vec{r}'(t) = 2\cos(2t)\vec{i} - \sin(t)\vec{j}$$

$$\vec{r}'(\pi/2) = -2\vec{i} - \vec{j}$$

$$\vec{T}(\pi/2) = \frac{-2\vec{i} - \vec{j}}{\sqrt{2^2 + 1^2}} = \frac{\sqrt{5}}{5} \left(-2\vec{i} - \vec{j} \right)$$

Do gráfico, é fácil a orientação do vetor tangente nos pontos dados. Para a curvatura condireramos as duas derivadas:

$$\vec{r}''(t) = 2\cos(2t)\vec{i} - \sin(t)\vec{j}$$

$$\vec{r}''(t) = -4\sin(2t)\vec{i} - \cos(t)\vec{j}$$

$$\vec{r}'(0) = 2\vec{i}$$

$$\vec{r}''(0) = -\vec{j}$$

Assim:

$$\kappa(0) = \frac{\|\vec{r}'(t) \times \vec{r}''(t)\|}{\|\vec{r}'(t)\|^3} = \frac{\|-2\vec{k}\|}{\|2\vec{i}\|^3} = \frac{1}{4}$$

 \bullet Questão 2 (0.5 ponto cada item) Considere a trajetória dada pela parametrização a seguir:

$$\vec{r}(t) = \cos(t)\vec{i} + \sin(t)\vec{j} + \frac{1}{2}t^2\vec{k}$$

Assinale as alternativas que indicam respectivamente a norma da velocidade e a torção no ponto $t=\pi$. () $\frac{\pi}{\pi^2+1}$

- $() \pi^2 + 1$
- $(\)\ \pi^2 + 2$
- (X) $\sqrt{\pi^2 + 1}$
- $(X) \frac{\pi}{\pi^2 + 2}$ $() \frac{\pi}{\pi^2 1}$ $() \frac{\pi}{\pi^2 2}$ $(\)\ \sqrt{\pi^2+2}$ () N. d. a.

A norma da velocidade é $v(\pi)=\|\vec{r}'(\pi)\|=\sqrt{1+\pi^2}.$ A torção é dada por:

$$\tau(\pi) = \frac{\left(-\vec{i} + \pi \vec{j} + \vec{k}\right) \cdot \vec{j}}{\parallel - \vec{i} + \pi \vec{j} + \vec{k} \parallel^2} = \frac{\pi}{2 + \pi^2}$$

ullet Questão 3 (0.5 ponto cada item) A temperatura em um ponto P(x,y) de uma placa é dada por:

$$T(x,y) = \frac{xy}{1+xy}$$

As dimensões da placa são $0 \le x, y \le 4$. Em relação ao ponto (1,2), assinale na primeira coluna o vetor unitário \vec{u} na direção e sentido da maior taxa de variação da temperatura e na segunda coluna, a intensidade dessa maior taxa de variação:

()
$$\frac{\sqrt{5}}{5}(\vec{i}+2\vec{j})$$
 () $\frac{\sqrt{5}}{5}$

(X)
$$\frac{\sqrt{5}}{5}(2\vec{i}+\vec{j})$$
 () $\frac{\sqrt{3}}{9}$

$$(\)\ \frac{\sqrt{5}}{5}(\vec{i}-2\vec{j})$$
 $(\)\ \frac{\sqrt{5}}{45}$

()
$$\frac{\sqrt{5}}{5}(-2\vec{i}+\vec{j})$$
 () $\frac{\sqrt{15}}{45}$

$$(\)\ \frac{\sqrt{5}}{5}(-\vec{i}+2\vec{j})$$

()
$$\frac{\sqrt{5}}{5}(2\vec{i}-\vec{j})$$
 (X) $\frac{\sqrt{5}}{9}$

e na segunda coluna, a intensidade dessa maior taxa de variação:

Solução: Primeiro calculamos o gradiente. A intensidade da maior taxa de variação é a norma do gradiente e a direção é a própria direção do gradiente.

$$\vec{\nabla} T(x,y) = \frac{y\vec{i} + x\vec{j}}{(1 + xy)^2}$$

$$\vec{\nabla} T(1,2) = \frac{2\vec{i} + \vec{j}}{9}$$

$$\|\vec{\nabla} T(1,2)\| = \frac{\sqrt{2^2 + 1^2}}{9} = \frac{\sqrt{5}}{9}$$

$$\vec{u} = \frac{\vec{\nabla} T(1,2)}{\|\vec{\nabla} T(1,2)\|} = \frac{2\vec{i} + \vec{j}}{\sqrt{5}} = \frac{\sqrt{5}}{5} (2\vec{i} + \vec{j})$$

• Questão 4 (0.5 ponto cada item) Seja o campo vetorial conservativo $\vec{F}(x,y,z) = ye^z\vec{i} + xe^z\vec{j} + xye^z\vec{k}$. Assinale na primeira coluna um potencial φ para \vec{F} e na segunda coluna o valor de $W := \int_C \vec{F} \cdot d\vec{r}$, onde C é curva parametrizada por:

$$\vec{r}(t) = 2^t \vec{i} + t^2 \vec{j} + \ln(1+t) \vec{k}, \quad 1 \le t \le 3.$$

O potencial φ :

() $\varphi(x,y,z) = xe^z + C$

W:() -288

() $\varphi(x,y,z) = ye^z + C$

() -284

(X) $\varphi(x, y, z) = xye^z + C$

() -147

() $\varphi(x,y,z) = xze^y + C$

() 147

() $\varphi(x,y,z) = zye^x + C$

(X) 284

() 288

() $\varphi(x,y,z)=xye^x+C$ O potencial é $\varphi(x,y,z)=xye^z+C.$ Vemos que:

$$\vec{r}(1) = 2\vec{i} + \vec{j} + \ln(2)\vec{k}$$

$$\vec{r}(3) = 8\vec{i} + 9\vec{j} + \ln(4)\vec{k}$$

$$W = \varphi(8, 9, \ln(4)) - \varphi(1, 0, 0)$$

$$= 8 \cdot 9 \cdot e^{\ln 4} - 2 \cdot 1 \cdot e^{\ln 2}$$

$$= 72 \cdot 4 - 2 \cdot 2 = 284$$

 \bullet Questão 5 (1.0 ponto) Considere o campo $\vec{F}(x,y,z) = f(x,y)\vec{i} + g(x,y)\vec{j}$ esboçado na figura ao lado e os caminhos C_1 , C_2 e C_3 que começam no ponto (4,4,0) e terminam no ponto (-2,-2,0). Defina $W_1 = \int_{C_1} \vec{F} \cdot d\vec{r}$, $W_2 = \int_{C_2} \vec{F} \cdot d\vec{r}$ e $W_3 = \int_{C_3} \vec{F} \cdot d\vec{r}$.

Assinale as alternativas corretas:

- () $0 = W_1 = W_2 = W_3$
- () $\vec{\nabla} \times \vec{F} = \vec{0}$ em todos os pontos.
- () $0 = W_1 < W_2 = W_3$
- () $\vec{i} \cdot \vec{\nabla} \times \vec{F} > 0$ em todos pontos.
- () $0 < W_1 = W_2 = W_3$
- () $\vec{i} \cdot \vec{\nabla} \times \vec{F} < 0$ em todos pontos.
- () $0 < W_1 < W_2 = W_3$
- (X) $\vec{j} \cdot \vec{\nabla} \times \vec{F} = 0$ em todos pontos.
- $(X) 0 = W_1 < W_2 < W_3$
- () $\vec{k} \cdot \vec{\nabla} \times \vec{F} = 0$ em todos pontos.

• Questão 6 (2 pontos): Considere o campo vetorial dado por

$$\vec{F} = z^2 \vec{k}$$

e a região V limitada superiormente por

$$z = 1$$

e inferiormente por $x^2+y^2-z=0$. Calcule o fluxo de \vec{F} através da superfície S que limita V orientada para fora usando: • Item a) (1.0) Calcule o fluxo Φ via parametrização direta da superfície (sem usar o Teorema da Divergência).

- Item b) (1.0) Calcule o fluxo Φ usando o Teorema da Divergência.

Solução do item a: Para integral na porção inferior:

$$G(x, y, z) = z - x^2 - y^2 \Longrightarrow \vec{\nabla}G(x, y, z) = -2x\vec{i} - 2y\vec{j} + \vec{k}.$$

Assim

$$\vec{F} \cdot \vec{\nabla} G(x, y, z) = z^2 = (x^2 + y^2)^2$$

$$\begin{split} \Phi_t &= \pm \iint_S \vec{F} \cdot \vec{n} dS \\ &= -\iint \vec{F} \cdot \vec{\nabla} G(x,y,z) dA \\ &= -\iint (x^2 + y^2)^2 dA \\ &= -\int_0^{2\pi} \int_0^1 (r^4) r dr d\theta \\ &= -\int_0^{2\pi} \int_0^1 r^5 dr d\theta \\ &= -\frac{\pi}{3} \end{split}$$

Para a integral da porção superior, escrevemos:

$$\begin{array}{rcl} \Phi_b & = & \displaystyle \iint_S \vec{F} \cdot \vec{n} dS \\ \\ & = & \displaystyle \iint_S (z^2 \vec{k}) \cdot (\vec{k}) dA \\ \\ & = & \displaystyle \iint_S dA = \pi \end{array}$$

Portanto:

$$\Phi = \Phi_t + \Phi_b = \frac{2}{3}\pi$$

Solução do item b: O divergente de \vec{F} é dado por:

$$\vec{\nabla} \cdot \vec{F} = 2z.$$

Assim:

$$\Phi = \int_{V} \vec{\nabla} \cdot \vec{F} dV
= \int_{0}^{2\pi} \int_{0}^{1} \int_{r^{2}}^{1} (2z) r dz dr d\theta
= 2\pi \int_{0}^{1} r \left(\int_{r^{2}}^{1} 2z dz \right) dr
= 2\pi \int_{0}^{1} r (1 - r^{4}) dr
= 2\pi \int_{0}^{1} (r - r^{5}) dr
= 2\pi \left(\frac{r^{2}}{2} - \frac{r^{6}}{6} \right) \Big|_{0}^{1}
= \frac{2\pi}{3}$$

• Questão 7 (2 pontos) Considere o campo dado por $\vec{F} = 2xye^z\vec{i} - x^2\cos(z)\vec{j} + \cos(xyz)\vec{k}$ e caminho C que contorna no sentido **horário** a porção do plano xy limitada pelos eixos ordenados, a reta x=2, a reta y=2 e a hipérbole xy=1.

Calcule a integral de linha $\int_C \vec{F} \cdot d\vec{r}$, esboçando a região de integração. Usamos o teorema de Stokes:

$$W = \oint \vec{F} \cdot d\vec{r} = \iint \vec{\nabla} \times \vec{F} \cdot \vec{n} dS = -\iint \vec{\nabla} \times \vec{F} \cdot \vec{k} dS$$

$$-\vec{k} \cdot \vec{\nabla} \times \vec{F} = \begin{vmatrix} 0 & 0 & -1 \\ \frac{\partial}{\partial x} & \frac{\partial}{\partial y} & \frac{\partial}{\partial z} \\ \\ 2xye^z & -x^2\cos(z) & \cos(xyz) \end{vmatrix}$$

$$= 2x\cos(z) + 2xe^z = 4x$$
, em $z = 0$

Agora calulamos:

$$W = \iint (4x)dS = 4 \int_0^{1/2} \int_0^2 x dy dx + 4 \int_{1/2}^2 \int_0^{1/x} x dy dx$$
$$= 8 \int_0^{1/2} x dx + 4 \int_{1/2}^2 dx = 1 + 6 = 7$$

