		Answer:	References:
1.	Why the Von	The CPU was to include ALU, memory, and CU components.	Textbook
	Neumann	The control unit read instructions from memory and	p.27
	model is	executed them. A method of handling I/O through the	
	essential in	control unit was also established. The instruction set	
	understanding	contained instructions representing all the essential features	
	computers?	of a modern computer. In other words, von Neumann's	
	1	machine contained every major feature considered essential	
		to modern computer architecture. Modern computer	
		architecture is still referred to as von Neumann architecture.	
2.	Numbers:	(53) ₁₀	
	Please write	= (110101) ₂	
	TWO examples	= (65) ₈	
	representing the	= (35) ₁₆	
	numerical data	= 01000010 01010100 00000000 00000000	
	in any possible		
	base, including	(7030) ₁₀	
	binary,	= (1101101110110) ₂	
	hexadecimal	= (15566) ₈	
	and octal, as	= (1B76) ₁₆	
	well as floating	= 01000101 11011011 10110000 00000000	
	point number		
	notations.		
3.	Data - Please	PNG format is the best-known losslessly compressed	Textbook
	describe any	alternative to GIF. PNG can store up to 48 bits of color per	p.116
	TWO examples	pixel, and additionally can store a transparency percentage	
	representing	value and a correction factor for the color in a monitor or	Textbook
	different	printer. Its compression algorithm is often more efficient	p.123
	formats of data	than that used with GIF. Unlike GIF, PNG stores only a single	
	used for still	image in a file.	
	images (bitmap		
	versus object	MP3 is the predominant digital audio data format for the	
	images), video,	storage and transmission of music. It is characterized by	
	audio and	reasonable audio quality and small file size. MP3 uses a	
	alphanumerical	number of different tactics and options to achieve its small	
	data.	file sizes. These include options for different audio sampling	
		rates, fixed or variable bit rates, and a wide range of bit rates	
		that represent different levels of compression.	
4.	LMC - Explain	There is a series of one hundred mailboxes, a calculator, a	Textbook
	the inner	two-digit hand counter and the Little Man in the Little Man	p.179-181
	workings of the	Computer. There is a three-digit number used as a small	
	Little Man	group of instructions. We can combine some instructions	
	Computer and	into a program to have the Little Man do some useful work.	
	its relation with		
	real life	It is a strength of the original model that it operates so	
	icai iiic		
	computers,	similarly to a real computer that it is still an accurate	

	basics of	representation of the way that computers work more than	
	assembly	45 years after its introduction.	
	instructions.	, i	
5.	CPU-memory	There are two registers including the MAR and the MDR.	Textbook
	– Explain how	There are some cells, each of which can hold a single value,	p.200-204
	the CPU and	and each of which has a single address. The MAR holds the	
	memory	address in the memory and the MDR connects to every cell	
	communicate.	in the memory unit. The CPU copies an address from some	
	Concept of a	register in the CPU to the MAR. Then, the CPU turns on the	
	register	switch that connects the MDR with the register by using the	
	_	activation line, and data will be transferred from the	
	(including	memory to the MDR. Using the MAR, a single row of cells is	
	MAR/MDR).	activate, the MDR has access to the values in that single row.	
6.	Fetch-execute	The fetch–execution instruction cycle is the basis for every	Textbook
0.	- What is the	capability of the computer. The operation of every	p.207
	fetch-	instruction is defined by its fetch—execute instruction cycle.	p.207
	execution?	Ultimately, the operation of a computer as a whole is	
	execution?	defined by the primary operations that can be performed	
		with registers, such as to move data between registers, to	
		add or subtract data to a register, to shift data within a	
		register, and to test the value in a register for certain	
		conditions, such as negative, positive, or zero.	
7	Stack - How	Stack is an excellent method for storing the return addresses	Textbook
/.	the stack is	and arguments from subroutine calls. Program routines that	p.220-222
		are recursive must "call themselves". Suppose the return	μ.220-222
	permanently	address were stored in a fixed location. If the routine is	
	used through	called a second time, from within itself, the original	
	any subroutine	returning address is lost and replaced by the new return	
	call to better	address. The program is stuck in an infinite loop. The return	
	write code?	address is stored on a stack. This time when the routine is	
		again called, the original address is simply pushed down the	
		stack, below the most recent address. We always return	
		from the last called subroutine to the one just previous.	
8.	I/O – Please	Programmed I/O	http://ww
0.	list different	Programmed I/O is a method of transferring data between	w.quora.co
		the CPU and a peripheral. In general, programmed I/O	m/What-is-
	types of	happens when software running on the CPU uses	the-
	Input/Output:	instructions that access I/O address space to perform data	difference-
	Programmed		
	I/O vs	transfers to or from an I/O device.	between-
	Interrupts and	Advantage	<u>programme</u>
	explain how	Easy to program and understand.	d-driven-l-
	they each work,	Disadvantages Slow and inefficient.	O-and-
	as well as their		interrupt-
	advantages and	Interrupts In systems programming, an interrupt is a signal to the	driven-I-O-
	disadvantages.	In systems programming, an interrupt is a signal to the	What-is-
		processor emitted by hardware or software indicating an	one-
		event that needs immediate attention. An interrupt alerts	advantage-

	the management of high majority condition are activities the	and and
	the processor to a high-priority condition requiring the	and-one-
	interruption of the current code the processor is executing.	disadvanta
	The processor responds by suspending its current activities,	ge-of-each
	saving its state, and executing a function called an interrupt	
	handler (or an interrupt service routine, ISR) to deal with the	https://en.
	event. This interruption is temporary, and, after the	wikipedia.o
	interrupt handler finishes, the processor resumes normal	rg/wiki/Int
	activities.	errupt
	Advantage	
	Fast and efficient.	https://en.
	Disadvantage	wikipedia.o
	Can be tricky to write if you are using a low level language.	rg/wiki/Pro
	Can be tough to get the various pieces to work well	grammed_i
	together. Usually done by the hardware manufacturer or the	nput/outpu
	OS maker e.g. Microsoft.	<u>t</u>
9. DMA - How	A DMA contains several processor registers that can be	Textbook
Direct Memory	written and read by the CPU. To carry out an input, output	p.286-288
Access works	or memory-to-memory operation, the host processor	
and when it is	initializes the DMA controller with a count of the number of	https://en.
useful to use it?	words to transfer, and the memory address to use. The CPU	wikipedia.o
aserar to use it.	then sends commands to a peripheral device to initiate	rg/wiki/Dir
	transfer of data. The DMA controller then provides	ect memor
	addresses and read/write control lines to the system	y access
		<u>y_access</u>
	memory.	
	It is useful to use it when the CDU comet keep we with the	
	It is useful to use it when the CPU cannot keep up with the	
	rate of data transfer, or when the CPU needs to perform	
	useful work while waiting for a relatively slow I/O data	
	transfer.	
10. Buses – Please	Parallel Bus	Textbook
list the	Advantages	p.211-213
advantages and	The parallel bus is characterized by high-throughput	
limitations of	capability. Most internal operations and registers are	
different types	parallel.	
of buses (serial	Limitations	
vs parallel with	Parallel buses are expensive and consume a considerable	
-	amount of space. The higher the data rate, the worse the	
many	interference, which ultimately limits the speed at which the	
examples).	parallel bus can operate. There is a slight difference in time	
	'	
	delay on different lines, known as skew, as signals traverse	
	the bus. The cost of fiber optic technology makes a parallel	
	optical cable impractical.	
	Serial Bus	
	Advantages	
	Serial buses are often set up for point-to-point connection;	
	no addressing is required in this case.	
	Limitations	
	<u> </u>	1

HOMEWORK 1 The due date to submit – September 13, 15

	The throughput of a serial bus would be lower than that of a parallel bus theoretically capable of the same per line transfer rate.	
11. Peripherals -	Floppy disk is a disk storage medium composed of a disk of	https://en.
How computer	thin and flexible magnetic storage medium, sealed in a	wikipedia.o
peripherals	rectangular plastic carrier lined with fabric that removes	rg/wiki/Flo
work, including	dust particles. Floppy disks are read and written by a floppy	ppy disk
magnetic disk	disk drive.	
drives (floppy		https://en.
disks, hard	Hard disk drive is a data storage device used for storing and	wikipedia.o
drives), optical	retrieving digital information using one or more rigid rapidly	rg/wiki/Har
disk drives	rotating disks coated with magnetic material. The platters	d disk driv
(CD-R, CD-	are paired with magnetic heads arranged on a moving	<u>e</u>
RW,	actuator arm, which read and write data to the platter	
DVDROM,	surfaces.	https://en.
DVDROW, DVD+R, DVD-		wikipedia.o
R, DVD+RW,	Optical disc drive is a disk drive that uses laser light or	rg/wiki/Opt
DVD-RW),	electromagnetic waves within or near the visible light	ical_disc_dr
displays (CRT	spectrum as part of the process of reading or writing data to	<u>ive</u>
and LCD	or from optical discs.	
monitors) and		https://en.
laser printers	LCD is an electronically modulated optical device made up of	wikipedia.o
and realize why	any number of segments controlling a layer of liquid crystals	rg/wiki/Liq
it is important	and arrayed in front of a light source (backlight) or reflector	<u>uid-</u>
to limit the	to produce images in color or monochrome.	<u>crystal_dis</u>
number of disk-		<u>play</u>
read phases	CRT is a vacuum tube containing one or more electron guns,	
when writing	and a phosphorescent screen used to view images. It has a	https://en.
programs.	means to accelerate and deflect the electron beam(s) onto	wikipedia.o
programs.	the screen to create the images.	rg/wiki/Cat
		hode_ray_t
	Laser printing is an electrostatic digital printing process. It	<u>ube</u>
	produces high-quality text and graphics by repeatedly	1
	passing a laser beam back and forth over a negatively	https://en.
	charged cylindrical drum to define a differentially-charged	wikipedia.o
	image. The drum then selectively collects electrically	rg/wiki/Las
	charged powdered ink (toner), and transfers the image to	<u>er_printing</u>
	paper, which is then heated in order to permanently fuse	Textbook
	the text and/or imagery.	
	It is important to limit the number of disk road phases when	p.297
	It is important to limit the number of disk-read phases when writing programs, because most of the access time specified	
	for secondary storage devices consists of seek time, so even	
	the fastest disks are a million times slower than the slowest	
	memory. It should be apparent that a lot of CPU instructions	
	can be performed while waiting for a disk transfer to take	
	place. The more disk-read phases, the longer waiting time.	
	place. The more disk-read phases, the longer waiting time.	