Reading dataset

Loading loan.csv in a dataframe

Data Overview

Shape of the original dataset: (39717, 111)

A few records from top and bottom of the dataframe:

	id	member_id	loan_amnt	funded_amnt	funded_amnt_inv	term	int_ra
0	1077501	1296599	5000	5000	4975.0	36 months	10.65
1	1077430	1314167	2500	2500	2500.0	60 months	15.27
2	1077175	1313524	2400	2400	2400.0	36 months	15.96
3	1076863	1277178	10000	10000	10000.0	36 months	13.49
4	1075358	1311748	3000	3000	3000.0	60 months	12.69
39712	92187	92174	2500	2500	1075.0	36 months	8.07
39713	90665	90607	8500	8500	875.0	36 months	10.28
39714	90395	90390	5000	5000	1325.0	36 months	8.07
39715	90376	89243	5000	5000	650.0	36 months	7.43
39716	87023	86999	7500	7500	800.0	36 months	13.75

10 rows × 111 columns

This is indeed an extensive dataset with 111 columns and 39717 records.

Datatypes of columns and their respective count:

float64 74 object 24 int64 13 dtype: int64

Detailed information about individual column datatype and count of non-null values present in them:

<class 'pandas.core.frame.DataFrame'>
RangeIndex: 39717 entries, 0 to 39716
Data columns (total 111 columns):

Data	columns (total 111 columns):		
#	Column	Non-Null Count	Dtype
0	id	39717 non-null	int64
1	member_id	39717 non-null	int64
2	loan amnt	39717 non-null	int64
3	funded amnt	39717 non-null	int64
4	funded amnt inv	39717 non-null	float64
5	term	39717 non-null	object
6	int rate	39717 non-null	object
7	installment	39717 non-null	float64
8	grade	39717 non-null	object
9	sub_grade	39717 non-null	object
10	emp_title	37258 non-null	object
11	emp_length	38642 non-null	object
12	home_ownership	39717 non-null	object
13	annual_inc	39717 non-null	float64
14	verification_status	39717 non-null	object
15	issue_d	39717 non-null	object
16	loan status	39717 non-null	object
17	pymnt plan	39717 non-null	object
18	url	39717 non-null	object
19	desc	26777 non-null	object
20	purpose	39717 non-null	object
21	title	39706 non-null	object
22		39717 non-null	object
	zip_code		-
23	addr_state	39717 non-null	object
24	dti	39717 non-null	float64
25	delinq_2yrs	39717 non-null	int64
26	earliest_cr_line	39717 non-null	object
27	inq_last_6mths	39717 non-null	int64
28	<pre>mths_since_last_delinq</pre>	14035 non-null	float64
29	mths_since_last_record	2786 non-null	float64
30	open_acc	39717 non-null	int64
31	pub_rec	39717 non-null	int64
32	revol bal	39717 non-null	int64
33	revol util	39667 non-null	object
34	total acc	39717 non-null	int64
35	initial list status	39717 non-null	object
36	out_prncp	39717 non-null	
37	out_prncp_inv	39717 non-null	
38	total pymnt	39717 non-null	
	<u> </u>		
39	total_pymnt_inv	39717 non-null	float64
40	total_rec_prncp	39717 non-null	float64
41	total_rec_int	39717 non-null	float64
42	total_rec_late_fee	39717 non-null	float64
43	recoveries	39717 non-null	float64
44	collection_recovery_fee	39717 non-null	float64
45	last_pymnt_d	39646 non-null	object
46	last_pymnt_amnt	39717 non-null	float64
47	next_pymnt_d	1140 non-null	object
48	last_credit_pull_d	39715 non-null	object
49	collections 12 mths ex med	39661 non-null	float64
50	mths_since_last_major_derog	0 non-null	float64
51	policy_code	39717 non-null	
52	application type	39717 non-null	
53	annual_inc_joint	0 non-null	float64
	dti joint		
54 55		0 non-null	float64
55	verification_status_joint	0 non-null	float64
56	acc_now_delinq	39717 non-null	
57	tot_coll_amt	0 non-null	float64
58	tot_cur_bal	0 non-null	float64

```
59
                   open acc 6m
                                                                                                                               0 non-null float64
                                                                                                                              0 non-null
   60
                   open il 6m
                                                                                                                                                                                   float64
                                                                                                                             0 non-null
                                                                                                                                                                               float64
                   open_il_12m
   61
                                                                                                               0 non-null float64
                                                                                                                                                                              float64
                   open_il_24m
                                                                                                                            0 non-null
   62
                 mths_since_rcnt_il
   63
                  total_bal_il
   64
   65
                   il util
   66
                   open_rv_12m
   67
                   open_rv_24m
   68
                   max_bal_bc
   69
                   all_util
                total_rev_hi_lim
   70
   71
                  ing fi
   72
                total cu tl
   73
                   ing last 12m
   74
                   acc_open_past_24mths
   75
                   avg cur bal
   76
                    bc open to buy
   77
                   bc util
                   bc_util chargeoff_within_12_mths 39661 non-null float64 deling amnt 39717 non-null int64
   78

        79
        delinq_amnt
        39717 non-null
        int64

        80
        mo_sin_old_il_acct
        0 non-null
        float64

        81
        mo_sin_old_rev_tl_op
        0 non-null
        float64

        82
        mo_sin_rcnt_rev_tl_op
        0 non-null
        float64

        83
        mo_sin_rcnt_rev_tl_op
        0 non-null
        float64

        84
        mort_acc
        0 non-null
        float64

        85
        mths_since_recent_bc
        0 non-null
        float64

        86
        mths_since_recent_inq
        0 non-null
        float64

        87
        mths_since_recent_revol_delinq
        0 non-null
        float64

        89
        num_accts_ever_120_pd
        0 non-null
        float64

        90
        num_actv_bc_tl
        0 non-null
        float64

        91
        num_actv_vev_tl
        0 non-null
        float64

        92
        num_bc_sats
        0 non-null
        float64

        93
        num_bc_sats
        0 non-null
        float64

        94
        num_il_tl
        0 non-null
        float64

        95
        num_op_rev_tl
        0 non-null
        float64

        <
   79
                                                                                                           0 non-null float64
0 non-null float64
0 non-null float64
0 non-null float64
                mo_sin_old_il_acct
mo_sin_old_rev_tl_op
mo_sin_rcnt_rev_tl_op
                mo_sin_old_il acct
   80
   109 total_bc_limit 0 non-null 110 total_il_high_credit_limit 0 non-null
                                                                                                                                                                               float64
                                                                                                                                                                               float64
dtypes: float64(74), int64(13), object(24)
```

memory usage: 33.6+ MB

We have got some basic information about our dataset -

- Dimension
- Column names
- Datatypes
- Non-null count for every column

We observe that this dataset has many column attributes, and therefore, we will filter out some of the columns which are not important for our current objective of determining driving factors (or driver variables) behind loan default. This will enable us to focus on the column attributes that are strong determiners.

Data cleaning

Verifying if id and member_id columns are identifiers

id column an identifier: True
member_id column an identifier: True

Dropping 28 columns from dataframe... Shape of the updated dataframe: (39717, 83)

Inspecting columns with all null values

The following are the columns with all null values:

```
['mths_since_last_major_derog',
 'annual_inc_joint',
 'dti_joint',
 'verification_status_joint',
 'tot_coll_amt',
 'tot_cur_bal',
 'open_acc_6m',
 'open_il_6m',
 'open il 12m',
 'open il 24m',
 'mths since rcnt il',
 'total bal il',
'il_util',
 'open rv 12m',
 'open_rv_24m',
'max bal bc',
'all util',
'total rev hi lim',
'inq fi',
'total_cu_tl',
'inq_last_12m',
 'acc_open_past_24mths',
 'avg_cur_bal',
 'bc_open_to_buy',
 'bc util',
 'mo_sin_old_il_acct',
 'mo_sin_old_rev_tl_op',
 'mo_sin_rcnt_rev_tl_op',
 'mo sin rcnt tl',
 'mort acc',
 'mths since recent bc',
 'mths since recent bc dlq',
 'mths_since_recent_inq',
 'mths since recent revol deling',
 'num_accts_ever_120_pd',
 'num_actv_bc_tl',
 'num_actv_rev_tl',
 'num_bc_sats',
 'num_bc_tl',
 'num_il_tl',
 'num_op_rev_tl',
 'num_rev_accts',
 'num_rev_tl_bal_gt_0',
 'num sats',
 'num_tl_120dpd_2m',
'num tl 30dpd',
'num_tl_90g_dpd_24m',
'num_tl_op_past_12m',
'pct_tl_nvr_dlq',
'percent_bc_gt_75',
'tot_hi_cred_lim',
'total_bal_ex_mort',
 'total_bc_limit',
 'total il high credit limit']
```

Dropping 54 columns having zero non-null values... Shape of the updated dataset: (39717, 29)

Analysing missing values

Missing value percentage in each column:

loan_amnt	0.0
funded_amnt	0.0
funded_amnt_inv	0.0
term	0.0
int_rate	0.0
installment	0.0
grade	0.0
sub_grade	0.0
emp_length	2.7
home_ownership	0.0
annual_inc	0.0
verification_status	0.0
issue_d	0.0
loan_status	0.0
<pre>pymnt_plan</pre>	0.0
purpose	0.0
addr_state	0.0
dti	0.0
mths_since_last_delinq	64.7
mths_since_last_record	93.0
initial_list_status	0.0
next_pymnt_d	97.1
collections_12_mths_ex_med	0.1
policy_code	0.0
acc_now_delinq	0.0
chargeoff_within_12_mths	0.1
delinq_amnt	0.0
<pre>pub_rec_bankruptcies</pre>	1.8
tax_liens	0.1
dtype: float64	

Missing values percentage is varying from 0 to approximately 97% across the columns. Next, we drop any column with more than 60% missing values

```
No. of columns with more than 60% missing values: 3 ['mths_since_last_deling', 'mths_since_last_record', 'next_pymnt_d']
```

Dropping columns with more that 60% missing values

Shape of the updated dataframe: (39717, 26)

Analysing columns with all values as zero

Analysing column tax_liens

Values in tax_liens -

0.0 39678

Name: tax_liens, dtype: int64

Analysing column delinq_amnt

Values in delinq_amnt -

0 39717

Name: delinq_amnt, dtype: int64

Dropping tax_liens and delinq_amnt columns, as they contain only zeros

Shape of the updated dataframe: (39717, 24)

Analysing collections_12_mths_ex_med column

0.0 39661

Name: collections_12_mths_ex_med, dtype: int64

Shape of the updated dataframe: (39717, 23)

Analysing acc_now_delinq column

0 39717

Name: acc_now_deling, dtype: int64

Shape of the updated dataframe: (39717, 22)

Analysing chargeoff_within_12_mths column

0.0 39661

Name: chargeoff_within_12_mths, dtype: int64

Shape of the updated dataframe: (39717, 21)

Analysing and dropping the columns with only one value across all rows, since such columns do not contribute value to our current objective

Analysing initial_list_status

f 39717

Name: initial_list_status, dtype: int64

Shape of the updated dataframe: (39717, 20)

Analysing policy_code column

1 39717

Name: policy_code, dtype: int64

Shape of the updated dataframe: (39717, 19)

Analysing pymnt_plan column

n 39717

Name: pymnt_plan, dtype: int64

Shape of the updated dataframe: (39717, 18)

Analysing loan_status column

Fully Paid 32950 Charged Off 5627 Current 1140

Name: loan_status, dtype: int64

We can drop the rows corresponding to the loan_status as "Current", since we can not perform prescriptive analysis on the ongoing loans

Shape of the updated dataframe: (38577, 18)

Analysing pub_rec_bankruptcies column

```
0.0 36238

1.0 1637

2.0 5

Name: pub_rec_bankruptcies, dtype: int64
```

We note that almost 93.94% of the records have the number of public record bankruptcies as zero. Thus, we choose to drop this column as well.

Shape of the updated dataframe: (38577, 17)

Analysing the grade and sub_grade columns

	grade	sub_grade
0	В	B2
1	С	C4
2	С	C5
3	С	C1
5	Α	A4
6	С	C5
7	Е	E1
8	F	F2
9	В	B5
10	С	C3

Apparantly, both grade and sub_grade are the LC-assigned loan grades, wherein grade is a higher-level classification, with sub_grade not adding any adidtional information as such to our current analysis. Therefore, we have decided to drop column sub_grade.

Shape of the updated dataframe: (38577, 16)

Duplicate data inspection

False

<class 'pandas.core.frame.DataFrame'>
Int64Index: 38577 entries, 0 to 39716
Data columns (total 16 columns):

#	Column	Non-Null Count		Dtype
0	loan_amnt	38577	non-null	int64
1	funded_amnt	38577	non-null	int64
2	funded_amnt_inv	38577	non-null	float64
3	term	38577	non-null	object
4	int_rate	38577	non-null	object
5	installment	38577	non-null	float64
6	grade	38577	non-null	object
7	emp_length	37544	non-null	object
8	home_ownership	38577	non-null	object
9	annual_inc	38577	non-null	float64
10	verification_status	38577	non-null	object
11	issue_d	38577	non-null	object
12	loan_status	38577	non-null	object
13	purpose	38577	non-null	object
14	addr_state	38577	non-null	object
15	dti	38577	non-null	float64
dtypes: float64(4), int64(2), object(10)				

dtypes: float64(4), int64(2), object(10) memory usage: 5.0+ MB

 $file: ///Users/zamber/Learning/src/Lending_Club_Case_Study/sangbeda_das.slides.html \#/Study/sangbeda_das.slides.html #/Study/sangbeda_das.slides.html #/Study/sangbeda_das.slides.html #/Study/sangbeda_das.slides.html #/Study/sangbeda_das.slides.html #/Study/sangb$

We have narrowed down our dataframe to 16 columns and 38577 records.

Fixing Data

Since int_rate is a continous variable, we need to fix datatype of this column from object to float

For convenience and to facilitate analysis, we extract the month and year from the column issue_d, and create two new columns issue_year and issue_month. Subsequently, since the data of issue_d is now available to us in the two new columns, we drop issue_d column

> <class 'pandas.core.frame.DataFrame'>
> Int64Index: 38577 entries, 0 to 39716 Data columns (total 17 columns):

#	Column	Non-Null Count	Dtype		
0	loan_amnt	38577 non-null	int64		
1	funded_amnt	38577 non-null	int64		
2	<pre>funded_amnt_inv</pre>	38577 non-null	float64		
3	term	38577 non-null	object		
4	int_rate	38577 non-null	float64		
5	installment	38577 non-null	float64		
6	grade	38577 non-null	object		
7	emp_length	37544 non-null	object		
8	home_ownership	38577 non-null	object		
9	annual_inc	38577 non-null	float64		
10	verification_status	38577 non-null	object		
11	loan_status	38577 non-null	object		
12	purpose	38577 non-null	object		
13	addr_state	38577 non-null	object		
14	dti	38577 non-null	float64		
15	issue_year	38577 non-null	object		
16	issue_month	38577 non-null	object		
<pre>dtypes: float64(5), int64(2), object(10)</pre>					

memory usage: 5.3+ MB

Variable types

At this point of time we can broadly divide all variables into two types -

- Categorical variables
- Numeric variables

Shape of the updated dataframe after cleaning the data and creating new

columns: (38577, 17)
Number of categorical variables 10 Number of continuous variables 7

Outlier detection

	count	mean	std	min	25%
loan_amnt	38577.0	11047.025430	7348.441646	500.00	5300.00
funded_amnt	38577.0	10784.058506	7090.306027	500.00	5200.00
funded_amnt_inv	38577.0	10222.481123	7022.720644	0.00	5000.00
int_rate	38577.0	11.932219	3.691327	5.42	8.94
installment	38577.0	322.466318	208.639215	15.69	165.74
annual_inc	38577.0	68777.973681	64218.681802	4000.00	40000.00
dti	38577.0	13.272727	6.673044	0.00	8.13

Columns with outliers: ['loan_amnt', 'funded_amnt', 'funded_amnt_inv',
'int_rate', 'installment', 'annual_inc']

Visualizing outliers through boxplots

No outliers noted for dti. We proceed with treating the outliers for loan_amnt, funded_amnt, funded_amnt_inv, int_rate, installment, annual_inc by replacing the values less than the lower threshold by the lower threshold and the values more than the upper threshold by the upper threshold.

FINAL BOXPLOT VISUALIZATION POST REMOVAL OF OUTLIERS

Checking dataframe shape after removal of outliers

Dataframe shape after the treatment of outliers remains the same as that before the treatment of outliers: $(38577,\ 17)$

Univariate, Bivariate, and Multivariate Analyses

To explore individual variables and visualize all the variables for univariate analysis simulatenously, we use subplots, utilizing histograms for numeric variables and bar plots for categorical variables.

While the above plots provide an understanding of the spread, range, and distribution of the individual column variables across the records, it is more meaningful if we visualize the same plots specifically comparing between the defaulters (Charged Off) and non-defaulters (Fully Paid)

The above analysis with respect to the fully paid and charged off loans for each variable reveals the following:

The number of defaulters appears to be more

- for shorter-term loans with a term of 36 months
- · for grades B and C
- for 10 or more years of employment, which is slightly counter-intuitive
- for the home ownership status of 'RENT'
- when the income is not verified by LC
- when the purpose is debt consolidation
- for applicants filing with address as State CA, followed by NY and TX
- towards the last 4 months of the year, peaking in December
- in the loan issue year of 2011
- when the listed amount of the loan applied for by the borrower and the total funded amount committed to that loan at that point in time are around 5000, 10000, 12000, 15000
- when the total amount committed by investors for that loan at that point in time is in the range of 2500-12500 approximately
- when the interest rate is approximately 10-17%
- when the monthly payment or installment is approximately 50-400
- when the annual income is approximately 30000-70000
- dti is below 25 (dti is the ratio calculated using the borrower's total monthly debt payments on the total debt obligations, excluding mortgage and the requested LC loan, divided by the borrower's self-reported monthly income)

The top 10 pairs of variables with the largest absolute correlations: funded_amnt loan amnt 0.982832 installment 0.961555 funded_amnt_inv 0.953377 loan_amnt 0.937448 installment loan_amnt funded_amnt_inv 0.936486 $\verb"installment"$ 0.905209 annual_inc loan_amnt 0.432883 installment 0.428981 funded amnt 0.428814

0.408463

funded_amnt_inv

dtype: float64

Based on the correlation coefficients, it seems that the three variables "funded_amnt", "loan_amnt", and "funded_amnt_inv" are highly correlated with each other. The next highly correlated pair is "installment" and "loan_amnt", followed by "funded_amnt_inv" and "installment".

To understand the inter-relations between the catagorical variables, bar charts are used as shown below.

From the bar charts, the following inferences are drawn:

Most loans are for a term of 36 months.

Loans are mostly given to borrowers with grade A, B, or C.

The largest number of borrowers have been employed for 10+ years.

Majority of the borrowers are living in rented places or in their own dwellings.

There is substantial difference in the status of verification for loans drawn over a term of 36 months, compared with those drawn over 60 months.

Most loans are fully paid.

Debt consolidation is the most common purpose for taking a loan.

CA, NY, and TX are the states with the highest number of loan applicants.

The highest number of loans are issued in the last three months of the year.

Most loans were issued in the years 2011 and 2010 in the current dataset used in this study.

Overall, these inferences only reinforce the findings already drawn above (in particular, the inferences from univariate analysis).

Box plots are used to further visualize the relationships between pairs of categorical and numeric variables

From the box plots, the following inferences are drawn:

The median dti in case of charged-off loan_status is higher than in case of fully paid loan_status

The median annual_inc is greater in case of charged-off loan_status than in case of fully paid loan_status

The median loan_amnt, installment, funded_amnt, and funded_amnt_inv are comparable for both cases of fully paid and charged-off loan_status

The median int_rate is higher in case of charged-off loan_status than in case of fully paid loan_status

The median dti, annual_inc,installment, int_rate, funded_amnt_inv, funded_amnt, and loan_amnt is highest in case of LC-verified profiles compared with source-verified or unverified status.

The median annual_inc varies the most across home_ownership type.

The median annual_inc and funded_amnt_inv vary considerably across the emp_length.

The int_rate is found to vary drastically across the grade.

The loan_amnt and funded_amnt vary slightly across the grade.

The median loan_amnt, funded_amnt, funded_amnt_inv is substantially less for the term of 36 months than 60 months. Nontheless, in case of annual_inc, dti, and installment, this difference is not significant.

The median of loan_amnt, funded_amnt, funded_amnt_inv, and installment vary significantly across different loan purposes.

The median of annual_inc varies significantly across addr_state.

While the median loan_amnt does not vary subtantially across the issue_year, the funded_amnt_inv and int_int show considerable variation.

Our target variable for the analysis is loan_status which has two possible values, "Charged Off" and "Fully Paid". Next, we will concentrate our analysis to find out patterns where borrowers default on their loan.

Influence of the purpose of loan application on loan default

Above bar plot shows that loans taken for the purpose of Small business are extremely risky; $\sim\!27\%$ of such loans have defaulted.

Influence of loan verification on loan default

This is an interesting observation that verified applicants are defaulting more which suggests that LC's verification process is not effective and maybe there are a few loopholes within the process that need to be addressed.

Now, lets find out if this trend is same across all types of loan purpose.

The following are the main observations from this plot:

Loans for educational purpose: These are highly likely to default if loan application profile is not verified.

Loans for Small business: These are most likely to default when income source is verified, compared with when they are not verified or are source-verified. Loan for moving: These are most likely to default when source-verified.

Analyzing the default percentage across different states

We observe that NV has the highest default rate of $\sim\!27\%$

Influence of loan amount on loan default

We observe that the higher-amount loans are more likely to default.

Now let's visulalize this trend against verification_status

The verification process is apparently effective for loans with low and very low amount but not as effective for higher-amount loans. This necessitates revisiting the verification process at a policy level and making the necessary changes to the existing process, such that the loan applicant profiles for a wide-ranging loan amount are thoroughly verified.

Influence of loan term on loan default

As observed here, loans with long tenure are more likely to default. The default rate is double over the 60-months tenure compared with that over the 36-months tenure.

Influence of loan grade on the default rate

The default percent is observed to increase with the progression from grade A to G. The current dataset does not specify the parameters underlying this grade allocation. Perhaps, insight into those underlying parameters will be more revealing pertaining to this trend noted here.

Overall, based on all the preceding analyses and inferences, we summarize this study as follows:

- The median loan amount, installment, funded amount, and the total amount committed by investors for that loan at that point in time are comparable for both cases of fully paid and charged-off (defaulted) loan status.
- The median loan amount, funded amount, the total amount committed by investors for that loan at that point in time, and the installment vary substantially across the purpose underlying the loan.
- The loans drawn for the purpose of small business are extremely risky, and ~27% of such loans have defaulted.
- Loans for educational purpose are highly likely to default if loan application profile is not verified.
- The state NV has the highest default rate of ~27%.
- The higher-amount loans are more likely to default.
- The verification process is apparently effective for loans with low and very low amount but not as effective for higher-amount loans.
- · Loans with long tenure are more likely to default.
- The default percent is observed to increase with the progression from grade A to G.

In particular, it is counter-intuitive that (1) the median annual income is greater in case of defaulted loan status than in case of fully paid loan status, (2) that the number of defaulters is maximum in case of applicants with 10 or more years of experience, and (3) that the default rate is the highest in case of verified profiles.

Overall, based on these observations, we make the following recommendations:

- (1) The verification process needs to be revisited at a policy level. Based on the data, verification seems to be apparently effective for loans with low and very low amount but not as effective for higher-amount loans. Necessary changes are required in the existing verification process, such that the loan applicant profiles encompassing diverse ranges of loan amounts are thoroughly verified.
- (2) Since the default default percent is observed to increase with the progression from grade A to G, a closer look into the parameters underlying this grade allocation could give us more insight pertaining to this trend noted here. The parameters considered during gradation are not provided in the original data file; thus, we could not proceed with further analysis of such parameters. We recommend invetigation of those parameters underlying gradation.
- (3) Since loans characterized by longer terms and higher amounts have shown higher default rates, we recommend deciding on a upper limit on the amount of loan that an applicant can apply for and is sanctioned. Furthermore, shorter terms are recommended.
- (4) We recommend treating the loans filed for from NV with additional verification and caution.
- (5) The loans applied for the purpose of business should also be treated with additional verification and caution. For these types of loans, specifically focusing on income verification of the application is recommended, as it has been observed that such loans are less likely to default upon income verification.
- (6) The loans applied for the purpose of education should be thoroughly verified.

Although by leveraging EDA we have arrived at this stage with the aforementioned inferences and recommendations, to further determine the order of significance and effectiveness of these parameters in predicting loan default, a statistical analysis such as logistic regression or decision tree analysis can be performed. These methods can help identify the most significant predictors of default by assessing the strength of the relationship between each predictor and the outcome variable (default or non-default). After performing the statistical analysis, the parameters can be ranked in order of significance in predicting loan default. This ranking can then be used to develop a predictive model for identifying risky borrowers and mitigating default risk.