COLLE 2 = SOMMES, PRODUITS ET FONCTIONS USUELLES

Connaître son cours:

- 1. Donner et démontrer la formule de Bernoulli qui permet de factoriser l'expression $a^{n+1} b^{n+1}$.
- 2. Pour tout $a, b \in \mathbb{R}$ donner l'expression de min(a, b) et max(a, b) à l'aide de la fonction valeur absolue.
- 3. Soient $n \in \mathbb{N}$ et la fonction $f: x \mapsto -\ln(x)$. Donner les dérivées n-ième $f^{(n)}$ de la fonction f.

Sommes et produits:

Exercice 1.

Soit $n \ge 1$ et x_1, \ldots, x_n des réels vérifiant

$$\sum_{k=1}^{n} x_k = n \text{ et } \sum_{k=1}^{n} x_k^2 = n.$$

Démontrer que, pour tout k dans $\{1, \ldots, n\}$, $x_k = 1$.

Exercice 2.

Soient n, p des entiers naturels avec $n \ge p$.

Démontrer que

$$\sum_{k=p}^{n} \binom{k}{p} = \binom{n+1}{p+1}.$$

Exercice 3.

Calculer $(1+i)^{4n}$.

En déduire les valeurs de

$$\sum_{p=0}^{2n} (-1)^p \binom{4n}{2p}$$

$$\sum_{p=0}^{2n-1} (-1)^p \binom{4n}{2p+1}.$$

Fonctions usuelles:

Exercice 4.

Soit $\alpha \in \mathbb{R}$ et f la fonction définie sur \mathbb{R} par $f(x) = \cos(x) + \cos(\alpha x)$. On veut démontrer que f est périodique si et seulement si $\alpha \in \mathbb{Q}$.

Niveau: Première année de PCSI

- 1. On suppose que $\alpha = p/q \in \mathbb{Q}$. Démontrer que f est périodique.
- 2. On suppose que $\alpha \notin \mathbb{Q}$. Résoudre l'équation f(x) = 2. En déduire que f n'est pas périodique.

Exercice 5.

Soit f la fonction définie par

$$f(x) = \arcsin\left(2x\sqrt{1-x^2}\right).$$

- 1. Quel est l'ensemble de définition de f?
- 2. En posant $x = \sin t$, simplifier l'écriture de f.

Exercice 6.

Pour $n \in \mathbb{N}$, on pose $f_n(x) = \cos(n \arccos x)$ et $g_n(x) = \frac{\sin(n \arccos x)}{\sqrt{1-x^2}}$. Prouver que f_n et g_n sont des fonctions polynomiales.