CONTROL OF THE PAGE

Form Approved
OMB No. 0704-0188

AD-A286 149

tion is estimated to average 1 hour per response, including the time for reviewing instructions, searching existing data sources, pleting and reviewing the collection of information. Send comments regarding this burden estimate or any other aspect of this educing this burden, to Washington Headquarters Services, Directorate for information Operations and Reports, 1215 Jefferson and the Office of Management and Rudget, Paperwork Regulation Project (0704-0188), Washington, DC 20503.

	, and to the Office of Management and I	Budget, Paperwork Reduction Project (070	(0704-0188), Washington, DC 20503.			
	2. REPORT DATE 02/00/92	3. REPORT TYPE AND DA				
4. TITLE AND SUBTITLE		5. FI	UNDING NUMBERS			
4. TITLE AND SUBTITLE IRONDALE CONTROL SYSTEM, ROCK	/ MOUNTAIN ARSENAL, REVIEW OF	F 1989/1990 OPERATIONS				
6. AUTHOR(S)						
		and the grant	•			
7. PERFORMING ORGANIZATION NAM	ME(S) AND ADDRESS(ES)		ERFORMING ORGANIZATION			
MORRISON KNUDSEN CORPORATION DENVER, CO		ON 1 1994	EPORT NUMBER 92090R02			
9. SPONSORING/MONITORING AGEN	CY NAME(S) AND ADDRESS(ES)		PONSORING / MONITORING GENCY REPORT NUMBER			
SHELL OIL COMPANY DENVER, CO						
11. SUPPLEMENTARY NOTES		\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\	-34994			
	•	\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\	-34994 			
12a. DISTRIBUTION / AVAILABILITY ST	ATEMENT		DISTRIBUTION COL			
ADDROUGH FOR BURLES BOY	77.07					
APPROVED FOR PUBLIC REI	LEASE; DISTRIBUTION I	IS UNLIMITED				
		. ,	<u> </u>			
13. ABSTRACT (Maximum 200 words) THIS REPORT SUMMARIZES MOUNTAIN ARSENAL DURING AND 1,2-DIBROMO-3-CHLOR THAT PROVIDE AN OVERALI	G CALENDAR YEARS 1989 ROPROPANE (DBCP) ISOC	O AND 1990. WATER THE CONCENTRATION MAPS HE	ABLE CONTOUR MAPS			
	•	.				
		•	ta.			
94 1	110 10	5Z medanan	mananan 6			
	;					
14. SUBJECT TERMS TCE DATA, DBCP DATA, WATER LEVE	iL .		15. NUMBER OF PAGES			
			16. PRICE CODE			

17. SECURITY CLASSIFICATION UNCLASSIFIED

18. SECURITY CLASSIFICATION OF THIS PAGE

20. LIMITATION OF ABSTRACT

with talk in the management of the ex-

SECURITY CLASSIFICATION OF ABSTRACT

IRONDALE CONTROL SYSTEM ROCKY MOUNTAIN ARSENAL

REVIEW OF 1989/1990 OPERATIONS

Prepared by Morrison Knudsen Corporation Denver, Colorado 80203

Prepared for Shell Oil Company

1	Accesion	For
	NTIS (DTIC Unanno Justifica	TAB (III)
	By	(tion
	A	vailability Codes
	Dist	Avail and for Special
	A-1	

February 1992 🔭

Rocky Mountain Arsenal Information Center Commerce City, Colorado

92090R02 2NDCOPY

TABLE OF CONTENTS

Sec	tion																							Page
EXE	CUTIVE	: st	лмма	RY	•			•		•					•		٠	•			•	•		-7-
1.0	BACKG	RO	סות		•		•								•	•				•			•	-1-
2.0	PURPO	SE	AND	s	cai	PE	٠		•			•	•								•			-3-
3.0	SYSTE	M C	PER	AT	101	NS					•		•										•	-:, -
4.0	DATA	E'	/ALU	AT	IO	N 1 a					•													- " -
	4.2	DE	CP	İs	acc	onc	cer	iti	:a	tio	on	M	aps	;										
5.5	CONC	LUS	HOI	s					•										•					-11-
APPE	NDIX	A	1	wa'	te:	r :	.ev	/e)	. :	1e	15	ure	2.me	nt	: 5									
APPE	NDIX	В	!	DB(CP	Da	113	1																
APPE	NDIX	C	•	TC	ΕΞ	at	: а																	

LIST OF FIGURES

		TER AGE
Figure 1	Location Map of RMA	2
Figure 2	Location Map of DBCP Control System	2
Figure 3	Irondale Extraction and Recharge System	2
Figure 4A	Irondale Well Location Map	2
Figure 4B	Irondale Water Quality Monitoring Wells (1989-1990)	2
Figure 5	Flow Through Adscrbers - 1989 Weekly Average	6
Figure 6	Flow Through Adsorbers - 1390 Weekly Average	6
Figure 7A	Water Table Elevation: January 1939	9
Figure 7B	DBCP Concentrations: January-February 1939	9
Figure 8A	Water Table Elevation: April 1939	9
Figure 8B	DBCP Concentrations: April 1989	9
Figure 9A	Water Table Elevation: July 1989	9
Figure 9B	DBCP Concentrations: July 1989	9
Figure 10A	Water Table Elevation: October 1989	9
Figure 10B	DBCP Concentrations: October 1989	9
Figure 11A	Water Table Elevation: January 1990	9
Figure 11B	DBCP Concentrations: January 1990	9
Figure 12A	Water Table Elevation: April 1990	9
Figure 12B	DBCP Concentrations: April 1990	9
Figure 13A	Water Table Elevation: July 1990	9
Figure 13B	DBCP Concentrations: July 1990	9
Figure 14A	Water Table Elevation: October 1990	9
Figure 14B	DBCP Concentrations: October 1990	9

LIST OF TABLES

Table 1 Total Flow Through Adsorbers, 1989 Weekly Averages

- Table 2 Total Flow Through Adsorbers, 1990 Weekly Averages
- Table 3 Treatment Plant Downtime (1989 1990)
- Table 4 Concentration of DBCP in Irondale Treatment Plant Influent and Effluent During 1989
- Table 5 Concentration of DBCP in Irondale Treatment Plant Influent and Effluent During 1990
- Table 6 Concentration of TCE in Irondale Treatment Plant Influent and Effluent During 1989
- Table 7 Concentration of TCE in Irondale Treatment Plant Influent and Effluent During 1990
- Table A-1 Water Level Measurements: January 1989
- Table A-2 Water Level Measurements: April 1989
- Table A-3 Water Level Measurements: July 1989
- Table A-4 Water Level Measurements: October 1989
- Table A-5 Water Level Measurements: January 1990
- Table A-6 Water Level Measurements: April 1990
- Table A-7 Water Level Measurements: July 1990
- Table A-8 Water Level Measurements: October 1990
- Table B-1 DBCP Sampling Results: January February 1989
- Table B-2 DBCP Sampling Results: April 1989
- Table B-3 DBCP Sampling Results: July 1989
- Table B-4 DBCP Sampling Results: October 1989
- Table B-5 DBCP Sampling Results: January 1990
- Table B-6 DBCP Sampling Results: April 1990

LIST OF TABLES (CONTINUED)

Table B-7 DBCP Sampling Results: July 1990

Table B-8 DBCP Sampling Results: October 1990

Table C-1 TCE Sampling Results: 1989

Table C-2 TCE Sampling Results: 1990

EXECUTIVE SUMMARY

This report summarizes the operation of the Irondale Control System (ICS) on the Rocky Mountain Arsenal (RMA) during calendar years 1989 and 1990. Water table contour maps and 1,2-dibromo-3-chloropropane (DBCP) isoconcentration maps have been prepared that provide an overall depiction of the DBCP plume during the 1980-1990 period.

The alluvial aquifer exhibited similar seasonal fluctuations during the 1989-1990 period as in previous years, except that the water table was slightly lower during the 1989-1990 period, thus reducing the amount of water that could be pumped from the ICS extraction system. The average flowrate pumped to the ICS treatment system declined from 1,221 in 1988 to 1,020 gpm during 1989 and 1,014 gpm during 1990. The water table decline was at least partially due to increased pumping during summer and fall months from South Adams County Water and Sanitation District (SACWSD) wells adjacent to the RMA.

The DBCP plume continues to appear to be decreasing in concentration. Average concentrations of treatment plant influent were about 0.30 ug/l during 1989 and 0.22 ug/l during 1990.

The ICS treatment plant performed very well during 1989 and 1990. Stream factors were above 99.9 percent for each year. The activated carbon treatment plant effectively removed detectable quantities of DBCP.

Very low levels of DBCP (below USATHAMA certified reporting limits) were reported in two SACWSD wells in the spring of 1989 and spring of 1990. These SACWSD wells are connected to a water treatment system that uses granular activated carbon to remove

contaminants. Shell installed five new monitoring wells near the south end of the ICS during March and April, 1990 to evaluate the performance of the system in this area. The new wells were sampled in April, 1990 and the results indicated that a small portion of the DBCP plume was bypassing the system.

Shell immediately began investigations to determine the cause of the bypass, and potential engineering and operational solutions were identified. Bypass was confirmed in additional samples collected in July, 1990. The Army, EPA, Colorado Department of Health (CDH), South Adams County Water and Sanitation District (SACWSD) and Tri-County Health Department (TCH) were notified of the sampling results. Engineering design was completed in the fall of 1990 and the Rail Classification Yard/Motor Pool Area IRA was modified to include the proposed changes to the ICS. The Final Implementation Document for the IRA was issued in January, 1991. All ICS system modifications were completed and in operation by September, 1991.

1.0 BACKGROUND

The Rocky Mountain Arsenal (RMA) covers over 17,000 acres near Denver, Colorado, in Adams County (see Figure 1). Part of the Arsenal was leased for the manufacture of pesticides and herbicides. In March 1980 one of these pesticides, DBCP (1,2-dibromo-3-chloropropane), was discovered in some alluvial wells in the Irondale community along the northwest boundary of the RMA. Chemical and groundwater level data collected after March 1980 indicated that groundwater contaminated with DBCP was flowing off the RMA in the northwest corner of Section 33. The data also indicated that the contaminated groundwater extended northwest from the vicinity of the Rail Classification Yard in Section 3 (see Figure 2).

In order to eliminate the off-post migration of the groundwater containing DBCP, Shell Chemical Company constructed a groundwater control system, known as the Irondale Control System (ICS), in the northwest corner of Section 33 and southwest corner of Section 28 (see Figure 3). The system became operational in 1981. The original system has been modified to include additional extraction and recharge wells and a new adsorber. The ICS was designed to pump the groundwater contaminated with DBCP from the alluvial aquifer, treat the pumped water, then recharge the effluent back into the aquifer. Documents have been previously published that discuss the design of the ICS and modifications to the system that were made prior to 1989. During the 1989-1990 period the system was composed of the following main elements:

• Two rows of extraction wells, 38 total: Row 1 (the front or upgradient row) consisting of 21 wells, and Row 2 (the rear or downgradient row) consisting of 17 wells.

- Three upflow, pulsed bed, granular activated carbon adsorbers (each with a 40,000 lb capacity) arranged in a parallel configuration. Two adsorbers are normally online while the third is available for backup.
- One row of 22 recharge wells adjacent to the RMA boundary.

In addition, a large number of monitoring wells near the ICS and along the DBCP plume (see Figures 4A & 4B) are available for monitoring both the movement of the DBCP plume and the effectiveness of the ICS in intercepting the plume.

0 1/2 1 2

Figure 2

Location Map of Irondale Control System

Prepared by:

MORRISON KNUDSEN CORPORATION ENVIRONMENTAL SERVICES GROUP

MORPEON KALDSEN COPPORATION BINCOLDING BENCOLDER BENCOLDER

Monitoring Well Railroad Buildings

Legend

RMA Boundary

ROCKY MOUNTAIN ARSENAL

Figure 4A

frondale Water Quality

Section Number

33

Monitoring Wells (1989 - 1990)

MORRISON KINLDSEN CORPORATION BANKONASITAL BENEGA GROLF ROCKY MOUNTAIN ARSENAL Irondale Water Quality Monitoring Wells (1989 - 1990) 600 1200 FEET north Figure 48 0 Measurement Wells Monitoring Well Extraction Well Recharge Well Section Boundary Section Number Extraction Well Monitoring Well RMA Boundary Recharge Well Buildings Railroad SACWSD-14 Legend

2.0 PURPOSE AND SCOPE

The purpose of this report is to review 1989 and 1990 operations of the ICS with regard to its effectiveness in preventing groundwater contaminated with DBCP from moving beyond the boundaries of the RMA. Reports presenting evaluations of the ICS from December, 1981 through fiscal year 1986 have been prepared by the U. S. Army Engineer Waterways Experimental Station (WES) (RIC 84065R01 and 85130R01). Reports for calendar years 1987 through 1988 have been prepared and issued by Shell.

The geology and hydrology associated with the system and surrounding area were discussed in the December, 1984 WES report referenced above, and will not be repeated herein.

3.0 SYSTEM OPERATIONS

Tabulated weekly average flow rates through the ICS treatment plant are shown in Tables 1 and 2 for 1989 and 1990, respectively. Weekly average flowrates are shown graphically in Figures 5 and 6. The average flow through the ICS treatment system during 1989 was 1,020 gallons per minute (qpm). varied from a weekly low of 788 gpm to a weekly high of 1,296 gpm. During 1990 the flow through the treatment system was slightly less as it ranged from a weekly low of 714 gpm to a weekly high of 1,287 gpm and averaged 1,014 gpm. These annual average flowrates continued the downward trend exhibited during 1988 when the average flowrate dropped to 1,221 gpm from an average flowrate of 1,339 gpm during 1987. The downward trend is the result of a generally lowering water table in the vicinity of the ICS during the past few years. The existing 38 extraction wells have not been capable of pumping as much water from the thinning aquifer as compared to when the water table was higher. The lowering of the water table is at least partly due to the increased pumping from the South Adams County Water and Sanitation District (SACWSD) water supply wells located south west of the ICS just off the RMA boundary (see Figure 4A). This increased pumping occurs during the summer and fall and is resulting in a growing cone of depression around the SACWSD wells.

The ICS treatment plant operated at stream factors greater than 99.9 percent for both 1989 and 1990. During 1989 the treatment plant was completely down five separate times for a total downtime of only 3 hours and 40 minutes. During 1990 the plant was completely down only three times for a total downtime of 6 hours and 10 minutes. Table 3 itemizes the periods of treatment plant downtime during 1989 and 1990. Downtime periods as short as those experienced by the ICS treatment plant during 1989 and

1990 are not thought to be of much significance relative to interception of the DBCP plume. With the generally small water table gradients within the DBCP plume, the plume could only shift a few inches, at most, during a one or two hour period.

Treatment plant influent and effluent samples were collected and analyzed for DBCP on a biweekly basis during 1989 and 1990. Results of these analyses are contained in Tables 4 and 5. The measured influent concentrations ranged from 0.16 to 0.43 ug/l during 1989 and from 0.17 to 0.26 ug/l during 1990. The average influent concentrations decreased from about 0.30 during 1989 to about 0.22 ug/l during 1990. With one possible exception, no DBCP was detected in the treatment plant effluent during the entire 1989 and 1990 period. The possible exception was on April 9, 1990 when a concentration of 0.21 ug/l was reported for the effluent from Adsorber V-103. However, the value is almost identical to the value for the influent of Adsorber V-103 on the same date, yet the value reported for the influent to Adsorber V-101 was reported to be below detection limits. It appears that the reported concentrations for the V-101 influent and V-103 effluent were transposed for this date. Therefore, this anomaly has been corrected on Table 5.

As stated previously, the adsorbers are arranged in a parallel configuration. During the first part of 1989, Adsorbers V-102 and V-103 were utilized to treat the influent water while Adsorber V-101 was on standby. Beginning August 31, 1989 and throughout the remainder of the 1989-1990 period, Adsorbers V-101 and V-103 were used for water treatment and Adsorber V-102 was shifted to standby status.

Carbon was added to the three adsorbers on several occasions during 1989 and 1990. No carbon was added to Adsorber V-101 during 1989, but 9,600 pounds were added during 1990. Adsorber

V-102 had 20,100 pounds of carbon added during 1989, but none was added during 1990. Adsorber V-103 had 31,300 pounds of carbon added during 1989 and 16,000 pounds added during 1990.

The generally decreasing groundwater extraction rates of the ICS and reports that very low levels of DBCP (below USATHAMA detection limits) were detected in SACWSD wells in the spring of 1989 and spring of 1990 raised questions regarding the effectiveness of the ICS in intercepting all of the DBCP plume. Consequently Shell installed five new monitoring wells (33584, 33585, 33586, 33587, and 33588) near the south end of the ICS during March and April, 1990. The new wells were sampled in April, 1990 and indicated a small amount of DBCP was probably bypassing the south end of the ICS. Shell immediately began investigations to determine how to eliminate all bypass. As part of these investigations, Shell installed totalizing turbine flowmeters on each of the 38 extraction wells during April of 1990.

Bypass of DBCP on the southern end of the ICS was confirmed in samples collected in July 1990. The Army, EPA, Colorado Department of Health (CDH), South Adams County Water and Sanitation District (SACWSD) and Tri-County Health Department (TCH) were notified of the sampling results. Engineering design was completed in the fall of 1990 and with the concurrence of all parties, the Rail Classification Yard/Motor Pool Area IRA was modified to include the proposed improvements to the ICS. All improvements to the system were fully operational by September 1991.

TABLE 1
IRONDALE CONTROL SYSTEM
TOTAL FLOW THROUGH ADSORBERS
1989 WEEKLY AVERAGES

	FLOW		FLOW
WEEK ENDING	(GPM)	WEEK ENDING	(GPM)
01/06/89	1,296	07/07/89	994
01/13/89	1,283	07/14/89	963
01/20/89	1,272	07/21/89	910
01/27/89	1,282	07/28/89	897
02/03/89	1,244	08/04/89	832
02/10/89	1,138	08/11/89	818
02/17/89	1,096	08/18/89	795
02/24/89	1,074	08/25/89	836
03/03/89	1,062	09/01/89	814
03/10/89	1,056	09/08/89	812
03/17/89	1,051	09/15/89	788
03/24/89	1,032	09/22/89	803
03/31/89	1,067	09/29/89	829
04/07/89	1,163	10/06/89	844
04/14/89	1,262	10/13/89	853
04/21/89	1,216	10/20/89	851
04/28/89	1,185	10/27/89	884
05/05/89	1,166	11/03/89	903
05/12/89	1,144	11/10/89	920
05/19/89	1,139	11/17/89	936
05/26/89	1,129	11/24/89	949
06/02/89	1,104	12/01/89	961
06/09/89	1,089	12/08/89	985
06/16/89	1,082	12/15/89	1,015
06/23/89	1,101	12/22/89	1,055
06/30/89	1,052	12/29/89	1,015

TABLE 2
IRONDALE CONTROL SYSTEM
TOTAL FLOW THROUGH ADSORBERS
1990 WEEKLY AVERAGES

	FLOW		FLOW
WEEK ENDING	(GPM)	WEEK ENDING	(GPM)
01/05/90	1,097	07/06/90	858
01/12/90	1,152	07/13/90	813
01/19/90	1,159	07/20/90	770
01/26/90	1,164	07/27/90	804
02/02/90	1,185	03/03/90	797
02/09/90	1,205	08/10/90	790
02/16/90	1,209	08/17/90	769
02/23/90	1,244	08/24/90	756
03/02/90	1,257	08/31/90	759
03/09/90	1,255	09/07/90	7 <i>55</i>
03/16/90	1,270	09/14/90	733
03/23/90	1,243	09/21/90	714
03/30/90	1,234	09/28/90	722
04/06/90	1,236	10/05/90	742
04/13/90	1,194	10/12/90	777
04/20/90	1,158	10/19/90	813
04/27/90	1,136	10/26/90	848
05/04/90	1,181	11/02/90	890
05/11/90	1,287	11/09/90	929
05/18/90	1,202	11/16/90	976
05/25/90	1,098	11/23/90	1,026
06/01/90	1,054	11/30/90	1,080
06/08/90	1,042	12/07/99	1,112
06/15/90	1,003	12/14/90	1,151
06/22/90	943	12/21/90	1,104
06/29/90	207	12/28/90	1,104

Table 3. Downtime of	the ICS Treatment Plant					
Date	Downtime					
1989 April 4 April 10 July 10 August 7 December 24	20 minutes 10 minutes 25 minutes 60 minutes 105 minutes					
1990 August 19 August 24 December 17	95 minutes 140 minutes 135 minutes					

.

•

Table 4. Concentration of DBCP in Irondale Treatment Plant Influent and Effluent during 1989.

	Adsorbe	7 V-1	01	Adsorb	er V-1	.02	Adsorber V-103		
Date	Influent	Eff	luent	Influent	Effi	ient	Influent	Ein	uent
Sampled	(ug/l)	(u	g/l)	(ug/l)	(ug	/1)	(ug/l)	(ug	A)
01/03/89		T		0.31	LT	0.06	0.39		0.06
01/16/89				0.34	LT	0.06	0.39	LT	0.0ი
01/30/89				0.33	LT	0.06	0.34	LT	0.06
02/13/89				0.43	LT	0.06	0.40	LT	0.06
02/27/89				0.42	LT	0.06	0.42	LT	0.06
03/13/89				0.40	LT	0.06	0.39	LT	0.06
03/27/89				0.39	LT	0.06	0.40	LT	0.06
04/10/89				0.34	LT	0.06	0.22	LT	0.06
04/24/89				0.27	LT	0.06	0.29	LT	0.06
05/08/89				0.27	LT	0.06	0.27	LT	0.06
05/22/89		}		0.26	LT	0.06	0.29	LT	0.06
06/05/89				0.28	LT	0.06	0.31	LT	0.06
06/19/89				0.25	LT	0.06	0.28	LT	0.06
07/03/89				0.28	LT	0.06	0.23	LT	0.06
07/17/89				0.32	LT	0.06	0.29	LT	0.06
07/31/89				0.22	LT	0.06	0.32	LT	0.06
08/14/89				0.20	LT	0.06	0.33	LT	0.06
08/28/89				0.25	LT	0.06	0.29	LT	0.06
09/11/89	0.16	LT	0.06]	0.18	LT	0.06
09/25/89	0.26	LT	0.06				0.23	LT	0.06
10/09/89	9.30	LT	0.06				0.27	LT	0.06
10/23/89	0.28	LT	0.06			j	0.36	LT	0.06
11/06/89	0.26	LT	0.06				0.26	LT	0.06
11/20/89	0.32	LT	0.06			1	0.27	LT	0.06
12/18/89	0.21	LT	0.06						
- ···			1989	Summary of	Influe	กเ			
			Con	centrations (ug I)				
				Min	Max	Avg			
			V-101/	V-102 0.16	0.43	0.29			
			V-103	0.18	0.42	0.31			

Table 5. Concentration of DBCP in Irondale Treatment Plant Influent and Effluent during 1990

	Adsorber	V-10	1	T	Adsor	ber V-102		Adsort	oer V-	103
Date	Influent	Eff	uent	Influ	ient	Effluent		Influent	Effi	uent
Sampled	(ug/l)	(u	g/l)	(ug	/1)	(ug/l)		(ug/l)	(ug	/1)
01/15/90	0.22	LT	0.06					0.17	LT	0.06
01/29/90	0.20	LT	0.06				l		LT	0.06
02/12/90	0.19	LT	0.06					0.20	LT	0.06
02/26/90	0.19	LT	0.06			1	i		LT	0.06
03/12/90	0.20	LT	0.06					0.19	LT	0.06
03/26/90	0.18	LT	0.06					0.18	LT	0.06
04/09/90	0.21	LT	0.06				I	0.22	LT	0.06
04/23/90	0.21	LT	0.06					0.21	LT	0.06
05/07/90	0.21	LT	0.06					0.19	LT	0.06
05/21/90	0.24	LT	0.06				1	0.20	LT	0.06
06/04/90	0.24	LT	0.06					0.22	LT	0.06
06/18/90	0.24	LT	0.06				-	0.22	LT	0.06
07/02/90	0.26	LT	0.06					0.24	LT	0.06
07/16/90	0.24	LT	0.06					0.21	LT	0.06
08/13/90	0.21	LT	0.06					0.22	LT	0.06
08/27/90	0.21	LT	0.06					0.20	LT	0.06
09/10/90	0.18	LT	0.06				- 1	0.17	LT	0.06
09/24/90	0.20	LT	0.06					0.20	LT	0.06
10/08/90	0.24	LT	0.06				}		LT	0.06
10/22/90	0.25	LT	0.06						LT	0.06
11/05/90	0.23	LT	0.06					0.24	LT	0.06
11/19/90	0.22	LT	0.06					0.22	LT	0.06
12/03/90	0.23	LT	0.06			"		0.21	LT	0.06
12/17/90	0.18	LT	0.06					0.19	LT	0.06
12/31/90	0.22	LT	0.06					0.19	LT	0.06
					•	nfluent				
					ions (u	<u>e/l)</u>				
				Min	Max	Avg				
			V-101	0.18	0.26	0.22				1
			V-103	0.17	0.25	0.21				

Note: The effluent and influent DBCP concentrations reported for Adsorber V-101 for April 9, 1990 appear to have been transposed, and have been corrected in this table.

4.0 DATA EVALUATION

4.1 Water Table

A quarterly water table monitoring program was conducted during 1989 and 1990. Water level measurements were collected for a large number of wells in the vicinity of the DBCP plume extending from the ICS roughly two miles upgradient to the Rail Classification Yard in Section 3. The water level data were collected during the months of January, April, July, and October of both 1989 and 1990. The water level data (tabulated in Appendix A), have been used in preparing quarterly water table contour maps for the area through which the DBCP plume extends. These maps are contained in Figures 7A through 14A.

The water table maps show that the general flow direction from the Rail Classification Area to the ICS has remained fairly constant. The maps do however show that there is an increasing cone of depression around the South Adams County Water Supply District (SACWSD) wells to the southwest of the ICS. In the summer when the pumping rates of the SACWSD wells reaches a peak, the cone of depression appears to extend into the southern end of the ICS.

4.2 DBCP Isoconcentration Maps

A quarterly water quality monitoring program was conducted during 1989 and 1990. Water quality samples were collected and analyzed for DBCP for a large number of wells in the vicinity of the ICS and along the DBCP plume extending from the ICS roughly two miles upgradient to the Rail Classification Yard in Section 3. The quarterly sampling was conducted during January, April, July, and October of both 1989 and 1990. The DBCP data, which are

tabulated in Appendix B, have been used in preparing quarterly DBCP plume maps which are contained in Figures 7B through 14B.

The highest concentration of DBCP in the groundwater sampling was in Well 03523 in the Rail Classification Area where concentrations were 24 ug/l in the first quarter of 1989. Concentrations along the plume decrease towards the ICS where measured concentrations within the plume were always under 3 ug/l during the 1989-1990 period. Concentrations within the plume appeared to show a general decrease during this period. This decline appears to be consistent with a general decline in concentrations of DBCP within the plume over the past several years.

The DBCP plume maps show that the general plume configuration between the Rail Classification Area and the ICS has remained fairly constant. The 1990 maps however, with the benefit of the five new monitoring wells near the south end of the ICS discussed above, show that a relatively small part of the DBCP-contaminated groundwater probably bypassed the south end of the ICS during the summer of 1990. This appears to be due to the increasing cone of depression around the SACWSD wells to the southwest of the ICS. In the summer, when the pumping rates of the SACWSD wells reached a peak, the cone of depression extended into the southern end of the ICS. Any DBCP drawn into the SACWSD wells would have been created with the SACWSD carbon adsorption systems.

4.3 TCE Data

Treatment plant influent and effluent samples were collected and analyzed for Trichloroethylene (TCE) on a quarterly basis during 1989 and 1990. TCE analysis was conducted at the request of the Army. Results of these analyses are presented in Tables 6 and 7. The measured influent concentrations ranged from 0.32 to 0.70 ug/l during 1989 and from 0.23 to 0.69 ug/l during 1990.

Effluent concentrations were all below detection limits in 1989. A TCE concentration of 0.168 ug/l was reported for the effluent from Adsorber V-101 in October, 1990 which is well below the MCL of 5.0 ug/l. All other effluent concentrations measured in 1990 were below detection limits. Sampling results for TCE in selected monitoring wells are provided in Appendix C.

Table 6. Concentration of TCE in Irondale Treatment Plant Influent and Effluent during 1989.

	Adsorbe	r V-101	Adsort	per V-102	Adsorber V-103		
Date	Influent	Effluent	Influent Effluent		Influent	Effluent	
Sampled	(ug/l)	(ug/l)	(ug/l)	(ug/l)	(ug/l)	(ug/l)	
01/17/89			LT 0.50		0.57		
04/14/89			0.69		0.70		
07/10/89			0.54	LT 0.12	0.47	LT 0.12	
10/11/89	0.368	LT 0.160			0.317	LT 0.160	

Note:

Results given on January 17, 1989 were not specified as to being Influent or Effluent, therefore the assumption was made that they were Influent.

Table 7. Concentration of TCE in Irondale Treatment Plant Influent and Effluent during 1990.

	Adsorber	V-101	Adsor	per V-102	Adsorber V-103		
Date	Influent Effluent		Influent	Effluent	Influent	Effluent	
Sampled	(ug/l)	(ug/l)	(ug/l)	(ug/l)	(ug/l)	(ug/l)	
04/05/90	0.688	LT 0.200			0.668	LT 0.200	
07/06/90	0.226	LT 0.180]	0.234	LT 0.180	
10/04/90	0.293	0.168			0.3	LT 0.121	

į

5.0 CONCLUSIONS

The ICS treatment system performed very well during the 1989-1990 period. The treatment plant stream factors were greater than 99.9 percent for both 1989 and 1990. The treatment plant effectively removed DBCP to below detectable levels.

The DBCP plume continues to appear to decrease in concentration. Average concentrations of treatment plant influent were about 0.30 ug/l during 1989 and 0.22 ug/l during 1990.

The alluvial aquifer exhibited approximately the same general flow patterns in 1989 and 1990 as in previous years. However, increased pumping during the summer and fall from the SACWSD wells adjacent to the RMA appears to be creating a greater cone of depression than in previous years. This is resulting in a generally lower water table in the vicinity of the ICS, and reduces the amount of water that can be pumped from the ICS extraction wells.

Very low levels of DBCP (below USATHAMA certified reporting limits) were reported in two SACWSD wells in the spring of 1989 and spring of 1990. Data from monitoring wells installed during 1990 have indicated that a small amount of DBCP apparently bypassed the ICS on the south, and was being pulled towards the SACWSD production wells. The extremely low levels of DBCP which may have entered the SACWSD system were treated by the adsorbers at the Klein (SACWSD) water treatment plant or prior to October, 1989, at temporary Granular Activated Carbon treatment facilities operated by SACWSD.

When bypass was confirmed, the Army, EPA, Colorado Department of Health (CDH), South Adams County Water and Sanitation District (SACWSD) and Tri-County Health Department (TCH) were notified of

the sampling results. Engineering design, aimed at stopping all bypass, was completed in the fall of 1990. With the concurrence of all parties, the Rail Classification Yard/Motor Pocl Area IRA was modified to include the proposed improvements to the ICS. All improvements to the system were completed and operating in September, 1991.

APPENDIX A

TABLE A-1
WATER LEVEL MEASUREMENTS
JANUARY 12, 1989

WELL NUMBER	DEPTH TO WATER (ft.)	WATER ELEVATION (ft. msl)	TOP OF CASING (ft. msl)	COMMENTS
03001	75.10	5135.20	5210.30	
03002	67.15	5129.27	5196.42	
03005	22.10	5175.11	5197.21	
03008	62.87	5157.71	5220.58	
03009	75.79	5134.95	5210.74	
03010	70.35	5135.87	5206.22	
03516	62.57	5125.33	5187.90	
03517	56.74	5125.40	5182.14	
03518	48.52	5125.61	5174.13	
03519	59.47	- 998.00	5185.42	
03522	71.85	5132.35	5204.20	
03523	66.00	5140.48	5206.48	
03526	62.28	5125.00	5187.28	
04010	68.13	5127.44	5195.57	
04013	69.76	5122.95	5192.71	
04017	63.13	5124.07	5187.20	
04019	62.71	5124.50	5187.21	
04021	70.83	5122.49	5193.32	
04024	70.77	5121.80	5192.57	
04026	65.20	5127.01	5192.21	
04030	65.37	5133.88	5199.25	
04034	61.77	5125.36	5187.13	
04524	60.30	5138.93	5199.23	
04525	61.62	5139.44	5201.06	
04527	63.00	5124.21	5187.21	
04528	68.75	5123.10	5191.85	
04529	70.78	5122.49	5193.27	
04532	64.72	5124.73	5189.45	
28016	45.00	5100.88	5145.88	
28017	44.61 47.45	5101.01	5145.62	
28018 28019	46.05	5101.31 5101.43	5148.76 5147.48	
28019	43.13	5100.73	5147.48	
28021	43.13	5100.73	5144.34	
	35.11	5101.28		
28022			5143.58	
28023	36.46	5097.84	5134.30	
28027	39.82	5100.77	5140.59	

TABLE A-1 Continued

WELL NUMBER	DEPTH TO WATER (ft.)	WATER ELEVATION (ft. msl)	TOP OF CASING (ft. msl)	COMMENTS
28503	48.28	5107.26	5155.54	
28513	37.00	5103.78	5140.78	
33001	54.47	5115.29	5169.76	
33003	53.83	5101.71	5155.54	
33004	48.65	5101.21	5149.86	
33005	48.05	5103.46	5151.51	
33006	53.08	5104.19	5157.27	
33007	50.23	5105.44	5155.67	
33008	50.65	5105.25	5155.90	NO WELL
33009	52.17	5104.66	5156.83	
33010	50.33	5104.79	5155.12	
33011	47.13	5105.06	5152.19	
33012	0.00	-997.00	5164.12	
33014	54.65	5105.57	5160.22	
33017	58.10	5116.92	5175.02	
33018	63.58	5105.12	5168.70	
33025	54.82	5102.05	5156.87	
33030	57.18	5116.90	5174.08	
33033	40.85	5109.75	5150.60	
33038	67.39	5104.16	5171.55	
33039	53.14	5106.27	5159.41	
33040	73.65	5107.35	5181.00	
33041	69.45	5108.43	5177.88	
33042	55.00	5109.88	5164.88	
33043	59.32	5112.07	5171.39	
33044	61.88	5113.21	5175.09	
33045 33046 33047 33051 33055 33056	63.60 58.55 69.57 55.00 54.54	5113.77 5117.41 5120.82 5102.14 5101.82 5101.37	5177.37 5175.96 5190.39 5157.14 5156.36 5153.61	
33057	50.80	5100.90	5151.70	
33058	47.55	5101.09	5148.64	
33059	57.19	5105.61	5162.80	
33060	51.61	5108.93	5160.54	
33062	68.69	5106.67	5175.36	

TABLE A-1 Continued

WELL NUMBER	DEPTH TO WATER (ft.)	WATER ELEVATION (ft. msl)	TOP OF CASING (ft. msl)	COMMENTS
33064	50.90	5112.34	5163.24	
33070	51.38	5103.70	5155.08	
33071	50.37	5102.73	5153.10	
33072	51.40	5101.76	5153.16	
33073	43.79	5101.57	5145.36	
33500	42.17	5109.85	5152.02	
33501	34.00	5117.66	5151.66	•
33502	46.33	5113.22	5159.55	•
33505	62.81	5103.26	5166.07	
33506	45.92	5102.59	5148.51	
33507	43.77	5101.91	5145.68	
33508	0.00	-999.00	5156.29	DRY
33509	46.59	5102.49	5149.08	
33510	47.22	5106.39	5153.61	
33511	46.00	5106.46	5152.46	
33512	48.59	5106.68	5155.27	
33514	56.35	5120.47	5176.82	
33530	53.23	5114.34	5167.57	
33531	52.95	5111.31	5164.26	
33533	43.95	5102.31	5146.76	
33534	56.00	5103.09	5159.09	
33576	37.05	5117.38	5154.43	
33577	48.82	5107.38	5156.20	
33578	48.57	5106.68	5155.25	
33579	52.26	5104.76	5157.02	
33580	52.63	5103.98	5156.61	
33581	54.08	5105.30	5159.38	
33582	48.64	5104.59	5153.23	
33583	45.12 70.27	5109.38 5121.59	5154.50 5191.86	
34002 34005	70.27 67.78	5121.59	5191.86	
34008	55.14	5110.47	5165.61	
34515	46.17	5120.40	5166.57	

Comments are from Shell Field Water Measurement Logs
Water Elevation - 997.00 = see comment
Water Elevation - 998.00 = water below bottom of well screen
Water Elevation - 999.00 = dry well

TABLE A-2
WATER LEVEL MEASUREMENTS
APRIL 4, 1989

WELL NUMBER	DEPTH TO WATER (ft.)	WATER ELEVATION (ft. msl)	TOP OF CASING (ft. msl)	COMMENTS
03001	75.20	5135.10	E210 20	
03002	67.07	5129.35	5210.30 5196.42	
)3005	21.53	5175.68	5196.42	
03008	62.93	5157.65	5220.58	
03009	75.67	5135.07	5210.74	
03010	70.29	5135.07	5210.74	
03516	62.45	5125.45	5187.90	
03517	56.64	5125.50		
03518	48.30	5125.83	5182.14 5174.13	
03519	59.26	- 998.00	5174.13	
03522	71.75	5132.45	5204.20	
03523	66.00	5140.48	5204.20	
03526	61.75	5125.53	5187.28	
04010	68.08	5127.49	5195.57	
04013	69.70	5123.01	5192.71	
04017	63.09	5124.11	5187.20	
04019	62.74	5124.47	5187.21	
04021	70.85	5122.47	5193.32	
04024	70.80	5121.77	5192.57	
04026	65.14	5127.07	5192.21	
04030	65.31	5133.94	5199.25	
04524	60.26	5138.97	5199.23	
04525	61.62	5139.44	5201.06	
04527	62.88	5124.33	5187.21	
04528	68.68	5123.17	5191.85	
04529	70.73	5122.54	5193.27	
04532	64.74	5124.71	5189.45	
28016	45.00	5100.88	5145.88	
28017	44.64	5100.98	5145.62	•
28018	47.59	5101.17	5148.76	
28019	46.16	5101.32	5147.48	
28020	42.41	5101.45	5143.86	
28021	43.30	5101.04	5144.34	
28022	35.11	5108.47	5143.58	
28023	36.53	5097.77	5134.30	
28027	39.83	5100.76	5140.59	
28503	49.23	5106.31	5155.54	
28513	37.47	5103.31	5140.78	

TABLE A-2 Continued

WELL NUMBER	DEPTH TO WATER (ft.)	WATER ELEVATION (ft. msl)	TOP OF CASING (ft. msl)	COMMENTS
33001	54.55	5115.21	5169.76	
33003	54.41	5101.13	5155.54	
33004	49.07	5100.79	5149.86	
33605	48.60	5102.91	5151.51	
33006	53.65	5103.62	5157.27	
33007	51.24	5104.43	5155.67	
33008	51.57	5104.33	5155.90	
33009	53.00	5103.83	5156.83	
33010	51.56	5103.56	5155.12	
33011	48.60	5103.59	5152.19	
33012	0.00	-997.00	5164.12	NO WELL
33014	56.15	5104.07	5160.22	NO WELL
33017	58.03	5116.99	5175.02	
33018	65.17	5103.53	5168.70	
33025	55.40	5101.47	5156.87	
33030	57.37	5116.71	5174.08	
33033	58.40	-998.00	5150.60	
33038	67.51	5104.04	5171.55	
33039	53.28	5106.13	5159.41	
33040	73.79	5107.21	5181.00	
33041	69.70	5108.18	5177.88	
33042	55.47	5109.41	5164.88	
33043	59.40	5111.99	5171.39	
33044 33045	62.34	5112.75	5175.09	
33046	64.09	5113.28	5177.37	
33047	58.71 69.66	5117.25	5175.96	
33051	55.62	5120.73	5190.39	
33055	55.06	5101.52	5157.14	
33056	52.73	5101.30	5156.36	
33057	51.38	5100.88	5153.61	
33058	47.93	5100.32	5151.70	
33059	58.72	5100.71	5148.64	
33060	52.34	5104.08 5108.20	5162.80	
33062	68.61	5106.75	5160.54	
33064	51.36	5111.88	5175.36 5163.24	
33070	51.53	5103.55	5155.08	
33071	50.56	5102.54	5153.10	
	- -		2122.10	

TABLE A-2 Continued

WELL NUMBER	DEPTH TO WATER (ft.)	WATER ELEVATION (ft. msl)	TOP OF CASING (ft. msl)	COMMENTS
33072	51.70	5101.46	5153.16	
33073	43.90	5101.46	5145.36	
33500	43.49	5108.53	5152.02	
33501	35.89	5115.77	5151.66	
33502	48.00	5111.55	5159.55	•
33505	63.00	5103.07	5166.07	
33506	46.00	5102.51	5148.51	
33507	43.76	5101.92	5145.68	
33508	0.00	-999.00	5156.29	DRY
33509	46.61	5102.47	5149.08	
33510	47.25	5106.36	5153.61	
33511	46.00	5106.46	5152.46	
33512	48.52	5106.75	5155.27	
33514	56.45	5120.37	5176.82	
33530	53.26	5114.31	5167.57	
33531	53.46	5110.80	5164.26	
33533	44.GO	5102.76	5146.76	
33534	58.00	5101.09	5159.09	
33576	39.66	5114.77	5154.43	
33577	49.94	5106.26	5156.20	
33578	49.70	5105.55	5155.25	
22579	53.38	5103.64	5157.02	
580	52.85	5103.76	5156.61	
353 81	54.70	5104.68	5159.38	
33582	49.26	5104.00	5153.26	,
33583	46.52	5107.98	5154.50	
34002	70.17	5121.69	5191.86	
34005	67.71	5116.09	5183.80	
34008	55.10	5110.51	5165.61	•
34515	46.12	5120.45	5166.57	

TABLE A-3
WATER LEVEL MEASUREMENTS
JULY 6 & 20, 1989

WELL NUMBER	DEPTH TO WATER (ft.)	WATER ELEVATION (ft. msl)	TOP OF CASING (ft. msl)	COMMENTS
03001	75.26	5135.04	5210.30	
03002	67.30	5129.12	5196.42	
03005	22.26	5174.95	5197.21	
03008	63.10	5157.48	5220.58	
03009	75.86	5134.88	5210.74	
03010	70.47	5135.75	5206.22	
03516	62.71	5125.19	5187.90	
03517	56.91	5125.23	5182.14	
03518	48.57	5125.56	5174.13	
03519	69.56	-998.00	5185.42	
03522	71.00	5133.20	5204.20	•
03523	66.18	5140.30	5206.48	
03526	61.88	5125.40	5187.28	
04010	68.60	5126.97	5195.57	
04013	70.19	5122.52	5192.71	
04017	63.51	5123.69	5187.20	
04019	62.92	5124.29	5187.21	
04021	71.42	5121.90	5193.32	
04024	71.43	5121.14	5192.57	
04026	65.41	5126.80	5192.21	
04030	65.52	5133.73	5199.25	
04524	60.44	5138.79	5199.23	
04525	61.79	5139.27	5201.06	
04527	63.27	5123.94	5187.21	
04528	69.20	5122.65	5191.85	
04529	71.21	5122.06	5193.27	
04532	64.23	5125.22	5189.45	CTOCED
28016 28017	0.00 0.00	-997.00 -997.00	5145.88	CLOSED CLOSED
28017	47.82	5100.94	5145.62 5148.76	CLUSED
28019	0.00	-997.00	5147.48	CLOSED
28020	42.81	5101.05	5143.86	CHOSED
28021	43.79	5100.55	5144.34	
28022	35.20	5108.38	5143.58	
28023	36.36	5097.94	5134.30	
28027	40.05	5100.54	5140.59	
28503	50.53	5105.01	5155.54	
28513	38.00	5102.78	5140.78	

TABLE A-3 Continued

WELL NUMBER	DEPTH TO WATER (ft.)	WATER ELEVATION (ft. msl)	TOP OF CASING (ft. msl)	COMMENTS
33001	54.83	5114.93	5169.76	
33003	54.95	5100.59	5155.54	
33004	49.59	5100.27	5149.86	
33005	49.76	5101.75	5151.51	
33006	55.39	5101.88	5157.27	
33007	0.00	-997.00	5155.67	CLOSED
33008	0.00	-997.00	5155.90	CLOSED
33009	0.00	-997.00	5156.83	CLOSED
33010	0.00	-997.00	5155.12	CLOSED
33011	57.46	5094.73	5152.19	•
33012	0.00	-997.00	5164.12	CLOSED
33014	65.36	5094.86	5160.22	
33017	0.00	-999.00	5175.02	DRY
33018	72.29	-998.00	5168.70	
33025	56.08	5100.79	5156.87	
33030	58.57	5115.51	5174.08	
33033	41.07	5109.53	5150.60	
33038	67.77	5103.78	5171.55	
33039	54.78	5104.63	5159.41	
33040	74.91	5106.09	5181.00	
33041	71.36	5106.52	5177.88	
33042	57.79	5107.09	5164.83	
33043	60.37	5111.02	5171.39	
33044	64.50	5110.59	5175.09	
33045	66.14	5111.23	5177.37	
33046 33047	60.00 70.33	5115.96	5175.96	
33047	56.29	5120.06	5190.39	
33055	55.76	5100.85 5100.60	5157.14	
33056	53.36	5100.80	5156.36 5153.61	
33057	51.83	5099.87	5153.61	
33058	48.47	5100.17	5148.64	
33059	67.43	5095.37	5162.80	
33060	55.86	5104.68	5160.54	
33062	69.22	5104.00	5175.36	
33064	53.91	5109.33	5163.24	
33070	52.88	5102.20	5155.08	
33071	51.37	5101.73	5153.10	

TABLE A-3 Continued

WELL NUMBER	DEPTH TO WATER (ft.)	WATER ELEVATION (ft. msl)	TOP OF CASING (ft. msl)	COMMENTS
33072	52.26	5100.90	5153.16	
33073	44.42	5100.94	5145.36	
33500	46.46	5105.56	5152.02	
33501	37.75	5113.91	5151.66	
33502	49.77	5109.78	5159.55	
33505	63.67	-998.00	5166.07	
33506	46.48	5102.03	5148.51	
33507	44.21	5101.47	5145.68	
33508	0.00	- 999.00	5156.29	DRY
33509	46.87	5102.21	5149.08	
33510	47.84	5105.77	5153.61	
33511	46.49	5105.97	5152.46	
33512	48.76	5106.51	5155.27	
33514	57.00	5119.82	5176.82	
33530	0.00	- 999.00	5167.57	DRY
33531	56.46	5107.80	5164.26	
33533	44.45	5102.31	5146.76	
33534	56.45	5102.64	5159.09	•
33576	45.18	5109.25	5154.43	
33577	52.42	5103.78	5156.20	
33578	52.67	5102.58	5155.25	
33579	56.37	5100.65	5157.02	
33580	54.48	5102.13	5156.61	
33581	58.10	5101.28	5159.38	
33582	51.91	5101.32	5153.23	
33583	49.87	5104.63	5154.50	
34002	70.35	5121.51	5191.86	
34005	67.74	5116.06	5183.80	
34008	55.19	5110.42	5165.61	
34515	46.34	5120.23	5166.57	
M-1	57.84	5103.49	5161.33	
M-2 M-3	55.84	5089.72	5145.56	
M-5	54.06 40.02	5085.85 5094.40	5139.91 5134.42	
M-6	49.00	5102.93	5151.93	

TABLE A-4
WATER LEVEL MEASUREMENTS
OCTOBER 5, 1989

WELL NUMBER	DEPTH TO WATER (ft.)	WATER ELEVATION	TOP OF CASING	
HOMBER	11001	(ft. msl)	<u>(ft. msl)</u>	COMMENTS
03001	75.74	5134.56	5210.30	
03002	67.71	5128.71	5196.42	
03005	22.27	5174.94	5190.42	
03008	63.26	5157.32	5220.58	
03009	76.27	5134.47	5210.74	•
03010	70.91	5135.31	5206.22	
03516	63.21	5124.69	5187.90	
03517	57.28	5124.86	5182.14	
03518	48.90	5125.23	5174.13	
03519	59.89	-998.00	5185.42	
03522	72.26	5131.94	5204.20	
03523	66.61	5139.87	5206.48	
03526	62.45	5124.83	5187.28	
04010	69.31	5126.26	5195.57	
04013	70.72	5121.99	5192.71	
04017	63.89	5123.31	5187.20	
04019	63.36	5123.85	5187.21	
04021	71.93	5121.39	5193.32	
04024	72.00	5120.57	5192.57	
04026	65.86	5126.35	5192.21	
04030	65.91	5133.34	5199.25	
04524	60.84	5138.39	5199.23	
04525	62.10	5138.96	5201.06	
04527	63.78	5123.43	5187.21	
04528	69.65	5122.20	5191.85	
04529	71.78	5121.49	5193.27	
04532 28016	65.70	5123.75	5189.45	
28017	0.00	-997.00	5145.88	CLOSED
28017	0.00 48.76	- 997.00	5145.62	CLOSED
28019	0.00	5100.00	5148.76	
28020	43.80	- 997.00 5100.06	5147.48	CLOSED
28021	45.00	5099.34	5143.86	
28022	35.50	5108.08	5144.34	
28023	36.58	5097.72	5143.58	
28027	40.79	5097.72	5134.30	
28503	51.84	5103.70	5140.59	
	21.04	3103.70	5155.54	

TABLE A-4 Continued

WELL NUMBER	DEPTH TO WATER (ft.)	WATER ELEVATION (ft. msl)	TOP OF CASING (ft. msl)	COMMENTS
28513	39.00	5101.78	5140.78	
33001	55.21	5114.55	5169.76	
33003	0.00	-997.00	5155.54	CLOSED
33004	0.00	-997.00	5149.86	CLOSED
33005	0.00	-997.00	5151.51	CLOSED
33006	0.00	-997.00	5157.27	CLOSED
33007	0.00	-997.00	5155.67	CLOSED
33008	0.00	-997.00	5155.90	CLOSED
33009	0.00	-997.00	5156.83	CLOSED
33010	0.00	-997.00	5155.12	CLOSED
33011	0.00	-997.00	5152.19	CLOSED
33012	0.00	-997.00	5164.12	CLOSED
33014	60.23	5099.99	5160.22	02000
33017	0.000	-999.00	5175.02	DRY
33018	69.36	5099.34	5168.70	
33025	57.00	5099.87	5156.87	
33030	58.78	5115.30	5174.08	
33033	41.31	5109.29	5150.60	
33038	67.82	5103.73	5171.55	
33039	54.84	5104.57	5159.41	
33040	75.19	5105.81	5181.00	
33041	71.46	5106.42	5177.88	
33042	57.52	5107.36	5164.88	
33043	60.73	5110.66	5171.39	
33044	64.40	5110.69	5175.09	
33045	66.08	5111.29	5177.37	
33046	60.26	5115.70	5175.96	
33047	70.90	5119.49	5190.39	
33051	57.24	5099.90	5157.14	
33055	56.67	5099.69	5156.36	
33056	54.28	5099.33	5153.61	
33057	52.66	5099.04	5151.70	
33058	49.24	5099.40	5148.64	
33059	62.58	5100.22	5162.80	
33060	54.82	5105.72	5160.54	
33062	70.50	-998.00 5100.61	5175.36	
33064	53.63	5109.61	5163.24	
33070	53.61	5101.47	5155.08	

TABLE A-4 Continued

	DEPTH TO	WATER	TOP CF	
WELL	WATER	ELEVATION	CASING	
NUMBER	<u>(ft.)</u>	(ft. msl)	(ft. msl)	COMMENTS
33071	52.60	-998.00	5153.10	
33072	53.00	5100.16	5153.16	
33073	45.22	5100.14	5145.36	
33500	47.70	5104.32	5152.02	
33501	38.80	5112.86	5151.66	
33502	49.59	5109.96	5159.55	
33505	0.00	-999.00	5166.07	DRY
33506	47.11	5101.40	5148.71	D.1.2
33507	44.86	5100.82	5145.68	
33508	0.00	-999.00	5156.29	DRY
33509	47.51	5101.57	5149.08	5111
33510	48.25	5105.36	5153.61	
33511	46.75	5105.71	5152.46	
33512	49.00	5106.27	5155.27	
33514	57.39	5119.43	5176.82	
33530	0.00	-999.00	5167.57	DRY
33531	55.81	5108.45	5164.26	
33533	45.05	5101.71	5146.76	
33534	57.20	5101.89	5159.09	
33576	50.45	5103.98	5154.43	
33577	54.00	5102.20	5156.20	
33578	53.90	5101.35	5155.25	
33579	58.79	-998.00	5157.02	
33580	55.07	5101.54	5156.61	
33581	58.00	5101.38	5159.38	
33582	51.38	5101.88	5153.26	
33583	51.82	5102.68	5154.50	
34002	70.64	5121.22	5191.86	
34005	68.00	5115.80	5183.80	
34008	55.48	5110.13	5165.61	
34515	46.66	5119.91	5166.57	

TABLE A-5
WATER LEVEL MEASUREMENTS
JANUARY 4, 1990

WELL NUMBER	DEPTH TO WATER (ft.)	WATER ELEVATION (ft. msl)	TOP OF CASING (ft. msl)	COMMENTS
03001	75.87	5134.43	5210.30	
03002	67.70	5128.72	5196.42	
03005	22.36	5174.85	5197.21	
03008	63.47	5157.11	5220.58	
03009	76.37	5134.37	5210.74	
03010	71.05	5135.17	5206.22	
03516	63.04	5124.86	5187.90	
03517	57.27	5124.87	5182.14	
03518	48.91	5125.22	5174.13	
03519	60.00	- 998.00	5185.42	
03522	72.45	5131.75	5204.20	
03523	66.71	5139.77	5206.48	
03526	63.00	5124.28	5187.28	
04010	69.00	5126.57	5195.57	
04013	70.34	5122.37	5192.71	
04017	63.68	5123.52	5187.20	
04019	63.20	5124.01	5187.21	
04021	71.44	5121.88	5193.32	
04024	71.37	5121.20	5192.57	
04026	65.82	5126.39	5192.21	
04030	66.05	5133.20	5199.25	
04524	61.00	5138.23	5199.23	
04525	62.36	5138.70	5201.06	
04527	63.54	5123.67	5187.21	
04528	69.37	5122.48	5191.85	
04529 04532	71.37	5121.90	5193.27	
28018	65.43 48.00	5124.02 5100.76	5189.45 5148.76	
28020	42.75	5100.76	5143.86	
28021	43.81	5100.53	5144.34	
28022	35.24	5108.34	5143.58	
28023	36.24	5098.06	5134.30	
28027	40.08	5100.51	5140.59	
28503	49.35	5106.19	5155.54	
28513	37.70	5103.08	5140.78	
33001	55.00	5114.76	5169.76	

TABLE A-5 Continued

WELL NUMBER	DEPTH TO WATER (ft.)	WATER ELEVATION (ft. msl)	TOP OF CASING (ft. msl)	COMMENTS
33014 33017	55.05 0.00	5105.17 -999.00	5160.22 5175.02	DRY
33018	63.95	5104.75	5168.70	
33025 33030	55.47 57.74	5101.40 5116.34	5156.87 5174.08	
33033	41.13	5109.47	150.60	
33038	67.84	5103.71	5171.55	
33039	53.52	5105.89	5159.41	
33040	74.04	5106.96	5181.00	
33041	69.85	5108.03	5177.88	
33042	55.56	5109.32	5164.88	
33043	59.84	5111.55	5171.39	
33044	62.55	5112.54	5175.09	
33045	64.21	5113.16	5177.37	
33046	59.27	5116.69	5175.96	
33047	70.25	5120.14	5190.39	
33051	55.63	5101.51	5157.14	
33055	55.13	5101.23	5156.36	
33056	52.78	5100.83	5153.61	
33057	51.34	5100.36	5151.70	
33058	48.08	5100.56	5148.64	
33059	57.59	5105.21	5162.80	
33060	52.11	5108.43	5160.54	
33062	68.86	5106.50	5175.36	
33064	51.49	5111.75	5163.24	
33070	51.89 50.91	5103.19 5102.19	5155.08 5153.10	
33071 33072	52.00	5102.19	5153.16	
33072	44.25	5101.10	5145.36	
33500	44.19	5107.83	5152.02	
33501	35.33	5116.33	5151.66	
33502	46.51	5113.04	5159.55	
33505	63.28	5102.79	5166.07	
33506	46.28	5102.23	5148.51	
33507	44.20	5101.48	5145.68	
33508	0.00	-999.00	5156.29	DRY

TABLE A-5 Continued

	DEPTH TO	WATER	TOP OF	
WELL	WATER	ELEVATION	CASING	
NUMBER	(ft.)	(ft. msl)	<u>(ft. msl)</u>	<u>COMMENTS</u>
33509	46.94	5102.14	5149.08	
33510	47.55	5106.06	5153.61	
33511	46.33	5106.13	5152.46	
33512	48.69	5106.58	5155.27	
33514	57.08	5119.74	5176.82	
33530	0.00	-999.00	5167.57	DRY
33531	53.43	5110.83	5164.26	
33533	44.26	5102.50	5146.76	
33534	56.48	5102.61	5159.09	
33576	41.56	5112.87	5154.43	
33577	50.37	5105.83	5156.20	
33578	50.ù4	5105.21	5155.25	
33579	52.92	5104.10	5157.02	
33580	53.19	5103.42	5156.61	
33581	54.83	5104.55	5159.38	
33582	49.18	5104.08	5153.26	
33583	47.50	5107.00	5154.50	
34002	70.66	5121.20	5191.86	
34005	68.17	5115.63	5183.80	
34008	55.45	5110.16	5165.61	
34515	45.57	5120.00	5166.57	
M-1	56.30	5105.03	5161.33	
M-2	52.90	5092.66	5145.56	
M-3	46.90	5093.01	5139.91	
M-5	38.85	5095.57	5134.42	
M-6	48.23	5103.70	5151.93	

Comments are from Shell Field Water Measurement Logs Water Elevation - 998.00 = water below bottom of well screen Water Elevation - 999.00 = dry well

TABLE A-6
WATER LEVEL MEASUREMENTS
APRIL 2, 1990

and the second of the second o

Company general symmetric management of the company
WELL NUMBER	DEPTH TO WATER _(ft.)	WATER ELEVATION (ft. msl)	TOP OF CASING (ft. msl)	COMMENTS
		ELEVATION	CASING	COMMENTS
28027 28503 28513 33001 33014	39.59 48.00 36.73 54.71 54.13	5101.00 5107.24 5'04.05 5115.05 5106.09	5134.30 5140.59 5155.54 5140.78 5169.76 5160.22	

TABLE A-6 Continued

WELL NUMBER	DEPTH TO WATER (ft.)	WATER ELEVATION (ft. msl)	TOP CF CASING (ft. msl)	COMMENTS
33017	53.45	5121.57	5175.02	
33018	62.93	5105.77	5168.70	
33025	54.48	5102.39	5156.87	
33030	57.29	5116.79	5174.08	
33033	40.85	5109.75	5150.60	
33038	67.29	5104.26	5171.55	
33039	53.11	5106.30	5159.41	
33040	73.61	5107.39	5181.00	
33041	69.39	5108.49	5177.88	
33042	54.96	5109.92	5164.88	
33043	59.26	5112.13	5171.39	
33044	61.93	5113.16	5175.09	
33045	63.54	5113.83	5177.37	
33046	58.70	5117.26	5175,96	
33047	69.81	5120.58	5190.39	
33051	54.66	5102.48	5157.14	
33055	54.19	5102.17	5156.36	
33056	51.82	5101.79	5153.61	
33057	50.47	5101.23	5151.70	
33058	47.20	5101.44	5148.64	
33059	56.65	5106.15	5162.80	
33060	51.36	5109.18	5160.54	
33062	68.35	5107.01	5175.36	
33064	50.84	5112.40	5163.24	
33070	51.45	5103.63	5155.08	
33071	50.27	5102.83	5153.10	
33072	51.20	5101.96	5153.16	
33073	43.39	5101.97	5145.36	
33500 33501	42.10 33.90	5109.92	5152.02	
33502	46.29	5117.76	5151.66	
33505	62.76	5113.26	5159.55	
33506	45.73	5103.31 5102.78	5166.07	
33507	43.63	5102.78	5148.51	
33508	0.00	- 999.00	5145.68	0011
33509	46.33	5102.75	5156.29 5149.08	DRY
33510	47.12	5106.49	5153.61	
			7777.07	

TABLE A-6 Continued

WELL NUMBER	DEPTH TO WATER (ft.)	WATER ELEVATION (ft. msl)	TOP OF CASING (ft. msl)	COMMENTS
33511	45.88	5106.58	5152.46	
33512	48.56	5106.71	5155.27	
33514	56.75	5120.07	5176.82	
33530	33.03	5134.54	5167.57	
33531	52.77	5111.49	5164.26	
33533	43.77	5102.99	5146.76	
33534	55.76	5103.33	5159.09	
33576	36.85	5117.58	5154.43	
33577	48.70	5107.50	5156.20	
33578	48.50	5106.75	5155.25	
33579	52.33	5104.69	5157.02	
33580	52.59	5104.02	5156.61	
33581	54.00	5105.38	5159.38	
33582	48.32	5104.94	5153.26	
33583	44.80	5109.70	5154.50	
33584	55.27	5108.02	5163.29	
33585	47.27	5107.94	5155.21	
33586	54.79	5105.73	5160.52	
33587	50.58	5105.66	5156.24	
33588	49.54	5105.52	5155.06	
34002	70.46	5121.40	5191.86	
34005	68.05	5115.75	5183.80	
34008	55.26	5110.35	5165.61	
34515	46.35	5120.22	5166.57	
M-1	55.00	5106.33	5161.33	
M-2	52.55	5093.01	5145.56	,
M-3	45.08	5094.83	5139.91	
M-5		5095.50	5134.42	
M-6	46.93	5105.00	5151.93	

TABLE A-7
WATER LEVEL MEASUREMENTS
JULY 5, 1990

03001 75.67 5134.63 5210.30	
03002 67.62 5128.80 5196.42	
03005 21.55 5175.66 5197.21	
03008 63.56 5157.02 5220.58	
03009 76.35 5134.39 5210.74	
03010 70.93 5135.29 5206.22	
03516 63.07 5124.83 5187.90	
03517 57.22 5124.92 5182.14	
03518 48.83 5125.30 5174.13	
03519 59.95 -998.00 5185.42	
03522 72.27 5131.93 5204.20	
03523 60.00 5146.48 5206.48	
03526 62.65 5124.63 5187.28	
04010 68.79 5126.78 5195.57	
04013 70.50 5122.21 5192.71	
04017 63.77 5123.43 5187.20	
04019 63.28 5123.93 5187.21	
04021 71.77 5121.55 5193.32	
04024 71.84 5120.73 5192.57	
04026 65.72 5126.49 5192.21	
04030 65.87 5133.38 5199.25	
04524 60.76 5138.47 5199.23	
04525 62.00 5139.06 5201.06	
04527 63.61 5123.60 5187.21	
04528 69.44 5122.41 5191.85 04529 71.66 5121.51 5193.27	
- 	
28022 35.19 5108.39 5143.58 28023 36.31 5097.99 5134.30	
28027 40.13 5100.46 5140.59 28503 51.00 5104.54 5155.54	
28513 38.28 5102.50 5140.78	
33001 55.00 5114.76 5169.76	
33014 68.96 5091.26 5160.22	

TABLE A-7 Continued

WELL NUMBER	DEPTH TO WATER (ft.)	WATER ELEVATION (ft. msl)	TOP OF CASING (ft. msl)	COMMENTS
33017	58.54	5116.48	5175.02	
33018	72.24	-998.00	5168.70	
33025	58.00	5098.87	5156.87	
33030	59.11	5114.97	5174.08	
33033	41.14	5109.46	5150.60	
33038	67.80	5103.75	5171.55	
33039	55.28	5104.13	5159.41	
33040	0.00	-999.00	5181.00	DRY
33041	72.18	5105.70	5177.88	
33042	0.00	-999.00	5164.88	DRY
33043	60.48	5110.91	5171.39	
33044	65.50	5109.59	5175.09	
33045	67.12	5110.25	5177.37	
33046	60.55	5115.41	5175.96	
33047	70.69	5119.70	5190.39	
33051	58.20	5098.94	5157.14	
33055	55.60	5100.76	5156.36	
33056	53.13	5100.48	5153.61	
33057	51.58	5100.12	5151.70	
33058	48.23	5100.41	5148.64	
33059	71.37	5091.43	5162.80	
33060	57.37	5103.17	5160.54	
33062	69.27	5106.09	5175.36	
33064	55.04	5108.20	5163.24	
33070	53.39	5101.69	5155.08	
33071	51.82	5101.28	5153.10	
33072	52.33	5100.83	5153.16	
33073 33500	44.48	5100.88	5145.36	
33501	47.42	5104.60	5152.02	
33501	38.50	5113.16	5151.66	
33505	50.14	5109.41	5159.55	
33506	0.00 46.63	- 999.00	5166.07	DRY
33507	44.38	5101.88	5148.51	
33508	0.00	5101.30	5145.68	
33509	46.83	- 999.00	5156.29	DRY
33510	48.00	5102.25	5149.08	•
22210	45.00	5105.61	5153.61	

TABLE A-7 Continued

WELL NUMBER	DEPTH TO WATER (ft.)	WATER ELEVATION (ft. msl)	TOP OF CASING (ft. msl)	COMMENTS
33511	46.60	5105.86	5152.46	
33512	48.87	5106.40	5155.27	
33514	57.28	5119.54	5176.82	
33530	53.29	5114.28	5167.57	
33531	57.65	5106.61	5164.26	
33533	44.60	5102.16	5146.76	
33534	58.05	5101.04	5159.09	
33576	47.75	5106.68	5154.43	
33577	53.32	5102.88	5156.20	
33578	53.68	5101.57	5155.25	
33579	58.91	- 998.00	5157.02	
33580	55.13	5101.48	5156.61	
33581	59.40	5099.98	5159.38	
33582	53.12	5100.14	5153.26	
33583	50.87	5103.63	5154.50	
33584	63.43	5099.86	5163.29	
33585	54.95	5100.26	5155.21	
33586	63.83	5096.69	5160.52	
33587	58.34	5097.90	5156.24	
33588	58.33	5096.73	5155.06	
34002	70.55	5121.31	5191.86	
34005	68.03	5115.77	5133.30	
34008	55.32	5110.29	5165.61	
34515	46.59	5119.98	5166.57	
M-1	58.10	5103.23	5161.33	
M-2	53.75	5091.81	51456	
M-3 M-5	47.85	5092.06	5139.91	
	39.01	5095.41	5134.42	
M-6	49.47	5102.46	5151.93	

TABLE A-8
WATER LEVEL MEASUREMENTS
OCTOBER 1, 1990

WELL NUMBER	DEPTH TO WATER (ft.)	WATER ELEVATION (ft. msl)	TOP OF CASING (ft. msl)	COMMENTS
03001	76.00 67.95	5134.30	5210.30 5196.42	
03002 03005	22.51	5128.47 5174.70	5197.21	
03003	63.61	5156.97	5220.58	
03009	76.59	5134.15	5210.74	
03010	71.24	5134.98	5206.22	
03516	63.34	5124.56	5187.90	
03517	57.39	5124.75	5182.14	
03518	49.13	5125.00	5174.13	
03519	60.16	-998.00	5185.42	
03522	72.65	5131.55	5204.20	
03523	66.22	5140.26	5206.48	
03526	62.49	5124.79	5187.28	
04010	69.35	5126.22	5195.57	
04013	70.91	5121.80	5192.71	
04017	64.12	5123.08	5187.20	
04019	63.55	5123.66	5187.21	
04021	72.18	5121.14	5193.32	
04024	32.20	5160.37	5192.57	
04026	66.12 66.18	5126.09	5192.21 5199.25	
04030 04524	61.11	5133.07 5138.12	5199.23	
04524	62.37	5138.69	5201.06	
04527	64.00	5123.21	5187.21	
04528	69.87	5121.98	5191.85	
04529	72.00	5121.27	5193.27	
04532	0.00	-999.00	5189.45	DRY
28018	48.63	5100.13	5148.76	
28620	43.70	5100.16	5143.86	•
28021	44.95	5099.39	5144.34	
28022	35.33	5108.25	5143.58	
28023	36.25	5098.05	5134.30	
28027	40.51	5100.08	5140.59	
28503	52.46	5103.08	5155.54	
28513	39.10	5101.68	5140.78	
33001	55.37	5114.39	5169.76	
33014	60.70	5099.52	5160.22	DDV
33017	0.00	-999.00	5175.02	DRY

TABLE A-8 Continued

	DEPTH TO	WATER	TOP OF	
WELL	WATER	ELEVATION	CASING	
NUMBER	(ft.)	(ft. msl)	(ft. msl)	COMMENTS
33018	69.83	5098.87	5168.70	
33025	57.04	5099.83	5156.87	
33030	59.20	5114.88	5174.08	
33033	41.43	5109.17	5150.60	
33038	67.81	5103.74	5171.55	
33039	55.28	5104.13	5159.41	
33040	75.58	5105.42	5181.00	
33041	71.90	5105.98	5177.88	
33042	0.00	- 999.00	5164.88	DRY
33043	60.85	5110.54	5171.39	
33044	64.95	5110.14	5175.09	
33045	66.70	5110.67	5177.37	
33046	60.60	5115.36	5175.96	
33047	71.07	5119.32	5190.39	
33051	57.30	5099.84	5157.14	
33055	56.71	5099.65	5156.36	
33056	54.16	5099.45	5153.51	
33057	52.56	5099.14	5151.70	
33058	49.14	5099.50	5148.64	
33059	63.05	5099.75	5162.80	
33060	55.47	5105.07	5160.54	
33062	69.27	5106.09	5175.36	
33064	54.18	5109.06	5163.24	
33070	54.20	5100.88	5155.08	
33071	52.94	-998.00	5153.10	
33072	53.08	5100.08	5153.16	
33073	45.26	5100.10	5145.36	
33500	47.70	5104.32	5152.02	
33501 33502	39.63	5112.03	5151.66	
	56.50	5103.05	5159.55	
33505	0.00	- 999.00	5166.07	DRY
33506 33507	47.30 44.95	5101.21	5148.51	
33508		5100.73	5145.58	
33509	0.00	-999.00	5156.29	DRY
33510	47.38 48.40	5101.70	5149.08	
33511	46.87	5105.21	5153.61	
33511	49.00	5105.59	5152.46	
33514	57.72	5106.27 5119.10	5155.27	
33530	53.20	5114.37	5176.82	
33531	56.38	5114.37	5167.57	
	33.30	2101.00	5164.26	

TABLE A-8 Continued

WELL NUMBER	DEPTH TO WATER (ft.)	WATER ELEVATION (ft. msl)	TOP OF CASING (ft. msl)	COMMENTS
33533 33534	0.00 57.28	-999.00 5101.81	5146.76 5159.09	DRY
33576 33577	50.79 54.76	5103.64	5154.43	
33578	54.55	5101.44 5100.70	5156.20 5155.25	
33579	57.05	-998.00	5157.02	
33580	55.52	5101.09	5156.61	
33581 33582	58.73 51.88	5100.65 5101.35	5159.38 5153.23	
33583	52.72	5101.33	5154.50	
33584	60.21	5103.08	5163.29	
33585	52.10	5103.11	5155.21	
33586 33587	60.86	5099.66	5160.52	
33588	56.68 55.45	5099.56 5099.61	5156.24 5155.06	-
34002	70.81	5121.05	5191.86	
34005	68.16	5115.64	5183.80	
34008	55.57	5110.04	5165.61	
34515	46.86	5119.71	5166.57	
M-1 M-2	59.30 53.25	5102.03 5092.31	5161.33	
M-3	57.20	5082.71	5145.56 5139.91	•
M-5	38.91	5095.51	5134.42	
M-6	50.58	5102.39	5152.97	

APPENDIX E

.

1

TABLE B-1 DBCP SAMPLING RESULTS JANUARY - FEBRUARY 1989

and the second of
SITE	ID SAM	PLE DATE	CO	NCENTRATION (ug/1)
Extraction Well	s			
33302 33304 33308 33316 33312 33314 33318 33320 33327 33327 33329 33331 33333 33333	17- 17- 17- 17- 17- 17- 17- 17- 17- 17-	jan-1989	LT	0.04 0.395 0.0695 1.65 0.532 0.163 1.24 0.871 1.84 0.479 0.0646 0.0511
33338 33338	16-	jan-1989 jan-1989		
Monitoring Wells	5			
03009 03523 03526 04013 04015 04026 04028	20- 17- 10- 23- 10-	jan-1989 feb-1989 jan-1989 feb-1989 feb-1989 feb-1989	LT	1.49 24 0.04 5.1 2.03 9.9 0.28
04034 04527 04528 04529 28021 28503 28513 33010 33011 33018	17- 20- 20- 10- 31- 22- 22- 24- 23-	jan-1989 feb-1989 feb-1989 jan-1989 feb-1989 feb-1989 jan-1989 jan-1989	LT LT LT LT LT LT LT	0.04 0.051 0.68 0.04 0.04 0.04 0.04 0.04 0.04
33030 33040 33041 33042 33043 33044 33045	23- 26- 31- 31- 26- 26-	feb-1989 jan-1989 jan-1989 jan-1989 jan-1989 jan-1989		2.65 0.499 0.478 2.42 0.478 2.875 0.04

TABLE B-1 (continued)
DBCP SAMPLING RESULTS
JANUARY - FEBRUARY 1989

SITE ID	SAMPLE DATE	CONCENTRATION (ug/1)
33060	25-jan-1989	0.182
33062	26-jan-1989	1.56
33070	23-jan-1989	1.29
33071	23-jan-1989	2.03
33073	23-jan-1989	0.196
33500	21-feb-1989	LT 0.04
33501	21-feb-1989	LT 0.04
33502	22-feb-1989	0.0594
33506	31-jan-1989	0.159
33507	31-jan-1989	0.0556
33510	26-jan-1989	
33514	10-feb-1989	LT 0.04
33531	21-feb-1989	LT 0.04
33533	31-jan-1989	0.0721
33580	23-jan-1989	0.503
33581	21-feb-1989	0.372
33582	21-feb-1989	LT 0.04
С	28-feb-1989	LT 0.04
C-III	28-feb-1989	LT 0.04
M-1	28-feb-1989	LT 0.04
M-4	28-feb-1989	LT 0.04
M-6	22-feb-1989	LT 0.04

TABLE B-2 DBCP SAMPLING RESULTS APRIL 1989

SITE ID	SAMPLE DATE	CONCENTRATION (ug/1)
Extraction Wells		
33302	10 1000	
-	10-apr-1989	0.527
33304	10-apr-1989	LT 0.13
33308	10-apr-1989	LT 0.13
33310	10-apr-1989	LT 0.13
33312 33314	10-apr-1989	LT 0.13
33314	10-apr-1989	LT 0.13
33318	10-apr-1989	1.04
33320	10-apr-1989	0.434
33325	10-apr-1989 10-apr-1989	LT 0.13
33327	10-apr-1989	1.98
33329	10-apr-1989	1.01
33331	10-apr-1989	0.509
33333	10-apr-1989	LT 0.13
33335	10-apr-1989	LT 0.13
33336	10-apr-1989	0.169
33338	10-apr-1989	LT 0.13
Monitoring Wells		
03009	13-apr-1989	0.9
03523	13-apr-1989	23
03526	13-apr-1989	LT 0.13
04013	17-apr-1989	4.6
04015	17-apr-1989	2.7
04026	18-apr-1989	9.8
04028	18-apr-1989	0.316
04028	18-apr-1989	LT 0.13 - Rinse Blank
04527	18-apr-1989	LT 0.13
04528	18-apr-1989	0.677
04529	17-apr-1989	LT 0.13
28021	12-apr-1989	LT 0.13
28503	11-apr-1989	LT 0.13
28513	11-apr-1989	LT 0.13
33011	14-apr-1989	LT 0.13
33018	14-apr-1989	LT 0.13
33030 .	17-apr-1989	1.58
33039	14-apr-1989	0.8
33040	13-apr-1989	0.42
33041	13-apr-1989	0.561
33042	14-apr-1989	2.15
33043	13-apr-1989	0.343
33044	13-apr-1989	1.18
33045	17-apr-1989	LT 0.13

TABLE B-2 (continued) DBCP SAMPLING RESULTS APRIL 1989

SITE ID	SAMPLE DATE	CONCENTRATION (ug/1)
33046	17-apr-1989	LT 0.13
33059	14-apr-1989	LT 0.13
33060	13-apr-1989	LT 0.13
33062	14-apr-1989	1.35
33064	17-apr-1989	LT 0.13
33070	12-apr-1989	0.219
33071	12-apr-1989	0.169
33072	12-apr-1989	0.419
33073	12-apr-1989	LT 0.13
33500	11-apr-1989	LT 0.13
33501	11-apr-1989	LT 0.13
33502	11-apr-1989	LT 0.13
33506	14-apr-1939	LT 0.13
33507	14-apr-1989	LT 0.13
33510	13-apr-1989	LT 0.13
33514	17-apr-1989	LT 0.13
33514	17-apr-1989	LT 0.13 - Rinse Blank
33531	14-apr-1989	LT 0.13
33533	14-apr-1339	
33576	11-apr-1939	LT 0.13
33577	11-apr-1989	LT 0.13
33578	12-apr-1989	
33579	12-apr-1989	LT 0.13
33580	12-apr-1989	0.236
33581	12-apr-1999	0.221
33582	12-apr-1939	LT 0.13
33583	11-apr-1939	LT 0.13
C	19-apr-1939	LT 0.13
C-III	19-apr-1989	LT 0.13
M-1	19-apr-1989	LT 0.13
M-2	19-apr-1989	LT 9.13
M-4	19-apr-1989	LT 0.13
M-6	17-apr-1989	LT 0.13

TABLE B-3 DBCP SAMPLING RESULTS JULY 1969

SITE ID	SAMPLE DATE	CONCENTRATION (ug/1)
Extraction Wells		
33302	10-jul-1989	0.254
33304	13-jul-1989	LT 0.13
33308	13-jul-1989	LT 0.13
33310	10-jul-1989	LT 0.13
33312	10-jul-1939	0.18
33314	10-jul-1989	LT 0.13
33316	13-jul-1989	0.521
33318	13-jul-1989	0.23
33320	13-jul-1989	LT 0.13
33325	10-jul-1989	2.5
33327	10-jul-1989	1.37
33329	10-jul-1989	2.4
33331	13-jul-1989	1.92
33333	10-jul-1989	LT 0.13
33335	10-jul-1989	LT 0.13
33336	10-jul-1989	1.37
33338	13-jul-1989	0.668
Monitoring Wells		
03009	18-jul-1989	1.06
03523	18-jul-1989	13
03526	18-jul-1989	LT 0.13
04013	17-jul-1989	4.4
04015	19-jul-1989	1.91
04026	i9-jul-1989	8.8
04028	19-jul-1989	0.335
04527	18-jul-1989	LT 0.13
04528	18-jul-1939	0.694
04529	17-jul-1989	LT 0.13
23021	17-jul-1989	LT 0.13
28503	18-jul-1989	LT 0.13
28513	18-jul-1989	LT 0.13
33030	17-jul-1989	4.1
33029	14-jul-1989	0.302
13041	14-jul-1989	0.468
33043	13-jul-1989	0.186
33544	13-jul-1989	1.55
33045	17-jul-1989	LT 0.13
33060	13-jul-1989	0.257
33964	17-jul-1989	LT 0.13
33070	14-jul-1989	0.925
33071	14-jul-1989	LT 0.13

TABLE B-3 (continued)
DBCP SAMPLING RESULTS
JULY 1989

SITE ID	SAMPLE DATE	CONCENTRATION (ug/1)
33072	14-jul-1989	LT 0.13
33500	18-jul-1989	
33501	18-jul-1989	
33502	18-jul-1989	
33506	14-jul-1989	
33507	14-jul-1989	
33510	14-jul-1989	LT 0.13
33514	17-jul-1989	LT 0.13
33531	17-jul-1989	
33533	14-jul-1989	
33577	14-jul-1989	LT 0.13
33580	14-jul-1989	0.375
33581	14-jul-1989	
33582	1 8-jul- 1989	0.731
С	20-jul-1989	LT 0.13
CIII	20-jul-1989	LT 0.13
M-1	20-jul-1989	LT 0.13
M-2	20-jul-1989	LT 0.13
	20-jul-1 989	
M-4	20-jul-1989	
M-5	20-jul- 1989	LT 0.13
M-6	13-jul-1989	LT 0.13

TABLE B-4 DBCP SAMPLING RESULTS OCTOBER 1989

SITE	ID	SAMPLE DATE	CONCENTRATION (ug/l)
Extraction' Wel	ls		
3330 3330 3331 3331 3331 3331 3332 3332	4 8 0 2 4 6 6 8 0 5 7 9 1 3 5 6	09-oct-1989 09-oct-1989 09-oct-1989 09-oct-1989 09-oct-1989 09-oct-1989 09-oct-1989 09-oct-1989 09-oct-1989 09-oct-1989 09-oct-1989 09-oct-1989 09-oct-1989 09-oct-1989 09-oct-1989 09-oct-1989 09-oct-1989	LT 0.13 LT 0.13 LT 0.13 0.506 LT 0.13 0.533 0.216 LT 0.13 0.99 1.5 1.27 1.65 0.619 0.346 2.4 2.27
Monitoring Wel	ls		
0300 0352 0352 0401 0401 0402 0452 0452 2852 2851 3301 3303 3304 3304 3304	3 6 3 5 6 8 7 8 9 1 3 3 8 0 9 1 2 3 4 5	12-oct-1989 12-oct-1989 11-oct-1989 11-oct-1989 12-oct-1989 12-oct-1989 11-oct-1989 11-oct-1989 11-oct-1989 11-oct-1989 12-oct-1989 11-oct-1989 11-oct-1989 11-oct-1989 10-oct-1989 10-oct-1989 10-oct-1989 10-oct-1989 11-oct-1989 11-oct-1989	1.22 4.9 LT 0.13 3.3 1.76 7.9 0.287 LT 0.13 0.491 LT 0.13 LT 0.13
3304 3305		11-oct-1989 11-oct-1989	LT 0.13 LT 0.13

TABLE B-4 (continued) DBCP SAMPLING RESULTS OCTOBER 1989

SITE ID	SAMPLE DATE	CONCENTRATION (ug/1)
33060	10-oct-1989	1.09
33064	11-oct-1989	LT 0.13
33070	10-oct-1989	0.248
33071	10-oct-1989	LT 0.13
33072	10-oct-1989	LT 0.13
33073	10-oct-1989	LT 0.13
33500	12-oct-1939	LT 0.13
33501	12-oct-1989	LT 0.13
33502	12-oct-1989	LT 0.13
33506	10-oct-1989	LT 0.13
33507	10-oct-1989	LT 0.13
33510	10-oct-1989	LT 0.13
33514	11-oct-1989	LT 0.13
33533	10-oct-1989	LT 0.13
33576	12-oct-1989	LT 0.13
33577	10-oct-1989	LT 0.13
33578	10-oct-1989	LT 0.13
33579	10-oct-1989	LT 0.13
33580	10-oct-1989	1.64
33581	10-oct-1989	1.16
33582	12-oct-1989	2.23
33583	12-oct-1989	LT 0.13
С	17-oct-1989	LT 0.13
C-III	17-oct-1989	LT 0.13
M-1	17-oct-1989	LT 0.13
M-3	17-oct-1989	LT 0.13
M-3	17-oct-1989	LT 0.13
M-4	17-oct-1989	LT 0.13
M-5	17-oct-1989	LT 0.13
M-6	11-oct-1989	LT 0.13

TABLE B-5 DBCP SAMPLING RESULTS JANUARY 1990

SITE	ID SAMPLE		CENTRATION
Extraction Well	S		
33302 33304 33308 33310 33312 33314 33318 33320 33327 33329 33331 33333 33333 33333 33336 33338	10-jan- 10-jan- 10-jan- 10-jan- 10-jan- 10-jan- 10-jan- 10-jan- 10-jan- 10-jan- 10-jan- 10-jan- 10-jan- 10-jan- 10-jan-	1990 LT 1990 LT 1990 LT 1990 1990 1990 1990 1990 1990 1990 199	0.423 0.13 0.13 0.13 0.3 0.229 0.393 0.13 0.287 1.3 1.9 1.7 0.334 0.179 0.494 0.13
Monitoring Wells	5		
28021 32030 33045 33046 33060 33064 33500 33501 33507 33514 33576 33577 33578 33579 33582 33583 C C-III M-1 M-2 M-3	08-jan- 09-jan- 09-jan- 08-jan- 08-jan- 10-jan- 10-jan- 08-jan- 08-jan- 09-jan- 09-jan- 09-jan- 10-jan- 10-jan- 10-jan-	1990 LT	0.13 3.2 0.13 0.13 0.13 0.13 0.13 0.13 0.13 0.13

TABLE B-5 (continued) DBCP SAMPLING RESULTS JANUARY 1990

SITE ID	SAMPLE DATE	CONCENTRATION (ug/1)
M-4	10-jan-1990	LT 0.13
M-5	10-jan-1990	LT 0.13
M-6	09-jan-1990	LT 0.13

TABLE B-6 DBCP SAMPLING RESULTS APRIL 1990

SITE	ID	SAMPLE	DATE		NCENTRATION 19/1)
Extraction Wel	1 e				
3330		05-apr-	1990		0.324
3330		05-apr-		LT	0.13
3330		05-apr-			0.13
3331		05-apr-			0.13
3331		05-apr-			0.146
3331		05-apr-		LT	0.13
3331		05-apr-			0.637
33318	8	05-apr-			0.252
3332	0	05-apr-		LT	0.13
3332	5	05-apr-	1990		2.1
3332	7	05-apr-	1990		0.675
33329	9	05-apr-	1990		1.39
33333	1	05-apr-	1990		0.445
33533	3	05-apr-	1990	LT	0.13
3333	5	05-apr-		LT	0.13
33336	6	05-apr-			0.13
33338	8	05-apr-	1990	LT	0.13
Monitoring Well	ls				
03009	9	03-apr-	1990		0.838
03523	3	03-apr-			10
04013	3	04-apr-			6.7
04019		04-apr-			1.4
04026		04-apr-			4.6
04028		04-apr-			0.256
04528		03-apr-			0.611
04529		03-apr-			0.13
28023		09-apr-			0.13 0.13
28503		11-apr-			0.13
28513		11-apr-			0.13
33018		06-apr- 04-apr-			0.13
33031 33039		04-apr-		mı	0.658
					0.162
33040 33041		06-apr-			0.198
33042		06-apr-			1.08
33043		06-apr-			0.212
33044		06-apr-			0.372
33045		04-apr-		LT	0.13
33046		04-apr-			0.13
33059		06-apr-			0.13
33060		06-apr-			0.13

TABLE B-6 (continued) DBCP SAMPLING RESULTS APRIL 1990

SITE ID	SAMPLE DATE	CONCENTRATION (ug/1)
33062	06-apr-1990	0.643
33064	04-apr-1990	LT 0.13
33070	09-apr-1990	0.352
33071	09-apr-1990	0.613
33072	09-apr-1990	LT 0.13
33073	09-apr-1990	LT 0.13
33500	11-apr-1990	LT 0.13
33501	11-apr-1990	LT 0.13
33502	11-apr-1990	LT 0.13
33506	06-apr-1990	LT 0.13
33507	09-apr-1990	LT 0.13
33510	06-apr-1990	LT 0.13
33514	03-apr-1990	LT 0.13
33531	04-apr-1990	LT 0.13
33576	11-apr-1990	LT 0.13
33577	09-apr-1990	LT 0.13
33578	09-apr-1990	LT 0.13
33579	09-apr-1990	LT 0.13
33580	09-apr-1990	0.274
33581	09-apr-1990	0.329
33582	11-apr-1990	LT 0.13
33583	11-apr-1990	LT 0.13
33584	11-apr-1990	LT 0.13
33585	11-apr-1990	LT 0.13
33586	11-apr-1990	LT 0.13
33587	11-apr-1990	0.259
33588	11-apr-1990	0.285
C-III	17-apr-1990	LT 0.13
M-1	17-apr-1990	LT 0.13
M-2	17-apr-1990	LT 0.13
M-3	17-apr-1990	LT 0.13
M-4	17-apr-1990	LT 0.13
M-5	17-apr-1990	LT 0.13
M-6	09-apr-1990	LT 0.13

TABLE B-7 DBCP SAMPLING RESULTS JULY 1990

SITE	ID	SAMPLE	DATE	CONCENTRATION (ug/1)
Extraction Wel	ls			
33302 33304 33316 33316 33316 33316 33325 33325 33325 33333 33333 33333		06-jul- 06-jul- 06-jul- 06-jul- 06-jul- 06-jul- 06-jul- 06-jul- 06-jul- 06-jul- 06-jul- 06-jul- 06-jul-	1990 1990 1990 1990 1990 1990 1990 1990	0.399 LT 0.13 1.59 0.933 1.84 1.45 LT 0.13 LT 0.13 LT 0.13
33338 Monitoring Well		06-jul-	1990	1.22
28021 28503 33031 33046 33060 33501 33502 33507 33514 33531 33576 33577 32578 33582 33583 33584 33585		09-jul- 11-jul- 09-jul- 09-jul- 09-jul- 10-jul- 11-jul- 11-jul- 10-jul- 10-jul- 10-jul- 10-jul- 10-jul- 10-jul- 10-jul- 10-jul- 10-jul- 10-jul- 10-jul-	1990 1990 1990 1990 1990 1990 1990 1990	LT 0.13 LT 0.13

TABLE B-7 (continued) DBCP SAMPLING RESULTS JULY 1990

SITE ID	SAMPLE DATE	concentration (ug/1)
C-III	12-jul-1990	LT 0.13
M-1	12-jul-1990	LT 0.13
M-2	12-jul-1990	LT 0.13
M-3	12-jul-1990	LT 0.13
M-4	12~jul-1990	LT 0.13
M-5	12-jul-1990	LT 0.13
M-6	09-jul-1990	LT 0.13

TABLE B-8 DBCP SAMPLING RESULTS OCTOBER 1990

SITE	ID	SAHPLE DATE	CONCENTRATION (ug/1)
Extraction Well	Ls		
33304 33308 33310 33312 33318 33325 33325 33325 33333 33333 33336 33338		03-oct-1990 03-oct-1990 03-oct-1990 03-oct-1990 03-oct-1990 03-oct-1990 03-oct-1990 03-oct-1990 03-oct-1990 03-oct-1990 03-oct-1990 03-oct-1990 03-oct-1990 03-oct-1990 03-oct-1990 03-oct-1990 03-oct-1990 03-oct-1990 03-oct-1990 03-oct-1990	LT 0.13 LT 0.13 LT 0.13 0.209 LT 0.13 0.243 LT 0.13 LT 0.13 0.566 0.353 0.817 1.03 1.701 LT 3.13 1.35 1.92
Monitoring Well	s		
03009 03523 04028 04028 04015 04528 04529 28503 28513 33018 33031 33044 33045 33046 33062		02-oct-1990 02-oct-1990 02-oct-1990 02-oct-1990 03-oct-1990 10-oct-1990 08-oct-1990 09-oct-1990 10-oct-1990 10-oct-1990 11-oct-1990 11-oct-1990 10-oct-1990 10-oct-1990 03-oct-1990 03-oct-1990 03-oct-1990 04-oct-1990 04-oct-1990 05-oct-1990 05-oct-1990 005-oct-1990	1.254 0.19 1.31 0.408 LT 0.13
33070 33071		09-oct-1990 09-oct-1990	LT 0.13

TABLE B-8 (continued) DBCP SAMPLING RESULTS OCTOBER 1990

SITE ID	SAMPLE DATE	CONCENTRATION (ug/1)
33072	09-oct-1990	LT 0.13
33073	09-oct-1990	LT 0.13
33500	08-oct-1990	LT 0.13
33501	08-oct-1990	LT 0.13
33502	09-oct-1990	LT 0.13
33506	11-oct-1990	LT 0.13
33507	11-oct-1990	LT 0.13
33510	10-oct-1990	LT 0.13
33514	03-oct-1990	0.146
33531	10-oct-1990	LT 0.13
33576	08-oct-1990	LT 0.13
33577	08-oct-1990	LT 0.13
33578	09-oct-1990	LT 0.13
33580	09-oct-1990	0.866
33581	09-oct-1990	0.468
33582	05-oct-1990	1.83
33583	08-oct-1990	LT 0.13
33584	04-oct-1990	0.527
33585	04-oct-1990	1.52
33586	04-oct-1990	1.58
33587	04-oct-1990	0.931
33588	04-oct-1990	0.796
C	11-oct-1990	LT 0.13
C-III	11-oct-1990	LT 0.13
M-1	11-oct-1990	LT 0.13
M-3	11-oct-1990	LT 0.13
M-4	11-oct-1990	LT 0.13
M-5	11-oct-1990	LT 0.13
M-6	08-oct-1990	LT 0.13

APPENDIX C

TABLE C-1 TCE SAMPLING RESULTS NOMITORING WELLS 1989

JANUARY

DATA NOT REQUESTED

APRIL

SITE ID SAMPLE DATE CONCENTRATION

(ug/1)

33514 17-apr-1989 LT 0.20

JULY

DATA NOT REQUESTED

OCTOBER

DATA NOT REQUESTED

TABLE C-2 TCE SAMPLING RESULTS MONITORING WELLS 1990

JANUARY

Δ	וס	P 1	ă	١.
•	_			4

APRIL			
	SITE ID	SAMPLE DATE	CONCENTRATION (ug/1)
	33584	11-april-1990	3.75 .
	33585	11-april-1990	3.66
	33586	11-april-1990	٤ 4
	33587	11-april-1990	2.90
	33588	11-april-1990	3.51
JULY			
	SITE ID	SAMPLE DATE	CONCENTRATION
	SILE ID		(ug/1)
	33584	10-july-1990	2.97
	33585	10-july-1990	1.15
	33586	10-july-1990	LT 0.180
	33587	10-july-1990	0.287
	33588	10-july-1990	LT 0.180
OCTOBER			
	SITE ID	SAMPLE DATE	CONCENTRATION (ug/1)
	33584	04-october-1990	2.41
	33585	04-october-1990	0.732
	33586	04-october-1990	0.762
	33587	04-october-1990	1.17
	33588	04-cctober-1990	2.04