

01.112 Machine Learning, Spring 2018 Homework 5

Due 20 Apr 2018, 5pm

Sample Solutions

In this homework, we would like to look at the Bayesian Networks. You are given a Bayesian network as below. All nodes can take 2 different values: $\{1, 2\}$.

Question 1. Without knowing the actual value of any node, are node X_1 and X_6 independent of each other? What if we know the value of node X_7 and X_{10} ? (5 points)

Answer Without knowing the actual value of any node, node X_1 and X_6 are independent of each other. This is because there does not exist any path from X_1 to X_6 that is open. Based on the Bayes' ball algorithm, X_1 and X_6 are independent of each other.

If we know the value of node X_7 and X_{10} , then the two variables X_1 and X_6 become dependent. This is because there exist a path connecting X_1 and X_6 that is open: $X_1 - X_2 - X_3 - X_4 - X_5 - X_8 - X_9 - X_{10} - X_9 - X_6$ or $X_1 - X_2 - X_3 - X_4 - X_5 - X_7 - X_5 - X_8 - X_9 - X_{10} - X_9 - X_6$. Based on the Bayes' ball algorithm, X_1 and X_6 are dependent.

Question 2. What is the *effective* number of parameters needed to for this Bayesian network? What would be the *effective* number of parameters for the same network if node X_3 and X_9 can take 4 different values: $\{1, 2, 3, 4\}$, and all other nodes can only take 3 different values: $\{1, 2, 3\}$? (5 points)

Answer The number of parameters correspond to the number of entries in the probability table of each node in the Bayesian network. Assume the number of values for node k to take is r_k . For a node i with parents pa_i , the number of rows is $\prod_{j\in pa_i} r_j$. The number of columns is r_i . However the values in the last column can be uniquely determined from the other columns since the values of each row sum to 1. This means for the node i there are $(r_i-1)\prod_{j\in pa_i} r_j$ free/independet/effective parameters involved.

0		2 .5	X ₁ 1 2	1 0.2 0.3	2 0.8 0.7		1 2	1 0.3 0.3	$\frac{2}{0.7}$		X ₃ 1 2	1 0.1 0.5	C	2 0.9 0.5	X ₄ 1 2	0. 0.		2 0.5 0.4		1 0.6	2 0.4
							X ₆	3 X	 -7 -	X ₈	0.8		2								
	X	7			\mathbf{X}_{8}		1	1		2	0.1).9			\mathbf{X}_1	0			X	-11
\mathbf{X}_5	1	2	\mathbf{X}_{5}	, 1		2	1	2	2	1	0.9) ().1	\mathbf{X}_9	1		2	$\ \mathbf{X} \ $	10	1	2
1	0.2	0.8	1	0.	8 0	.2	1	2	2	2	0.7	7 (0.3	1	0.	8	0.2	1		0.7	0.3
2	0.3	0.7	2	0.	7 0	.3	2	1	[1	0.3	3 ().7	2	0.	8	0.2	2	2	0.8	0.2
							2	1	[2	0.2	2 (8.0								
							2	2	2	1	0.2	2 (8.0								
							2	2	2	2	0.9) ().1								

Therefore in the initial Bayesian network, the number of free parameters is:

$$1(X_1) + 2 \times 1(X_2) + 2 \times 1(X_3) + 2 \times 1(X_4) + 2 \times 1(X_5) + 1(X_6) + 2 \times 1(X_7) + 2 \times 1(X_8) + 2 \times 2 \times 2 \times 1(X_9) + 2 \times 1(X_{10}) + 2 \times 1(X_{11}) = 26$$

If node X_3 and X_9 can take 4 different values: 1, 2, 3, 4, and all other nodes can only take 3 different values: 1, 2, 3, the number of free parameters is:

$$2(X_1) + 3 \times 2(X_2) + 3 \times 3(X_3) + 4 \times 2(X_4) + 3 \times 2(X_5) + 2(X_6) + 3 \times 2(X_7) + 3 \times 2(X_8) + 3 \times 3 \times 3 \times 3(X_9) + 4 \times 2(X_{10}) + 3 \times 2(X_{11}) = 140$$

Question 3. If we have the following probability tables for the nodes. Compute the following probabilities. Clearly write down all the necessary steps.

(a) Calculate the following conditional probability:

$$P(\mathbf{X}_3 = 2 | \mathbf{X}_4 = 1)$$

(6 points)

Answer One standard approach is to start by computing the following marginal probability:

$$P(X_3, X_4) = \sum_{X_1, X_2} P(X_1) P(X_2 | X_1) P(X_3 | X_2) P(X_4 | X_3)$$

Compute $P(X_3 = 1, X_4 = 1)$ and $P(X_3 = 2, X_4 = 1)$ respectively, and then compute $P(X_4 = 1) = P(X_3 = 1, X_4 = 1) + P(X_3 = 2, X_4 = 1)$. The conditional probability $P(X_3 = 2 | X_4 = 1) = P(X_3 = 2, X_4 = 1) / P(X_4 = 1)$.

$$\begin{split} P(X_3 = 1, X_4 = 1) &= P(X_1 = 1)P(X_2 = 1|X_1 = 1)P(X_3 = 1|X_2 = 1)P(X_4 = 1|X_3 = 1) \\ &+ P(X_1 = 1)P(X_2 = 2|X_1 = 1)P(X_3 = 1|X_2 = 2)P(X_4 = 1|X_3 = 1) \\ &+ P(X_1 = 2)P(X_2 = 1|X_1 = 2)P(X_3 = 1|X_2 = 1)P(X_4 = 1|X_3 = 1) \\ &+ P(X_1 = 2)P(X_2 = 2|X_1 = 2)P(X_3 = 1|X_2 = 2)P(X_4 = 1|X_3 = 1) \\ &= 0.5 \times 0.2 \times 0.3 \times 0.1 + 0.5 \times 0.9 \times 0.3 \times 0.1 + 0.5 \times 0.3 \times 0.3 \times 0.1 \\ &+ 0.5 \times 0.7 \times 0.3 \times 0.1 = 0.003 + 0.0135 + 0.0045 + 0.0105 = 0.0315 \end{split}$$

$$\begin{split} P(X_3 = 2, X_4 = 1) &= P(X_1 = 1)P(X_2 = 1|X_1 = 1)P(X_3 = 2|X_2 = 1)P(X_4 = 1|X_3 = 2) \\ &+ P(X_1 = 1)P(X_2 = 2|X_1 = 1)P(X_3 = 2|X_2 = 2)P(X_4 = 1|X_3 = 2) \\ &+ P(X_1 = 2)P(X_2 = 1|X_1 = 2)P(X_3 = 2|X_2 = 1)P(X_4 = 1|X_3 = 2) \\ &+ P(X_1 = 2)P(X_2 = 2|X_1 = 2)P(X_3 = 2|X_2 = 2)P(X_4 = 1|X_3 = 2) \\ &= 0.5 \times 0.2 \times 0.7 \times 0.5 + 0.5 \times 0.9 \times 0.7 \times 0.5 + 0.5 \times 0.3 \times 0.7 \times 0.5 \\ &+ 0.5 \times 0.7 \times 0.7 \times 0.5 = 0.035 + 0.1575 + 0.0525 + 0.1225 = 0.3675 \end{split}$$

$$P(X_3 = 2|X_4 = 1) = \frac{P(X_3 = 2, X_4 = 1)}{P(X_4 = 1)} = \frac{0.3675}{0.0315 + 0.3675} \approx 0.921$$
(1)

(b) Calculate the following conditional probability:

$$P(\mathbf{X}_5 = 2 | \mathbf{X}_3 = 1, \mathbf{X}_{11} = 2, \mathbf{X}_1 = 1)$$

(9 points)

(Hint: find a short answer. The values in some of the probability tables may reveal some useful information.)

Answer We can have the following two observations from the tables:

- Distribution of X_3 doesn't change no matter what values X_2 takes.
- Distribution of X_10 doesn't change no matter what values X_9 takes.

Thus, we have X_2 and X_3 are independent, X_9 and X_{10} are independent. There is no path connecting X_1 to X_5 and X_5 to X_{11} .

$$P(X_5|X_3, X_{11}, X_1) = P(X_5|X_3)$$

$$= \frac{P(X_3, X_5)}{P(X_3)}$$

$$= \frac{\sum_{X_4} P(X_3) P(X_4|X_3) P(X_5|X_4)}{P(X_3)}$$

$$= \sum_{X_5} P(X_4|X_3) P(X_5|X_4)$$

$$P(X_5 = 2|X_3 = 1, X_{11} = 2, X_1 = 1) = P(X_4 = 1|X_3 = 1)P(X_5 = 2|X_4 = 1)$$

 $+ P(X_4 = 2|X_3 = 1)P(X_5 = 2|X_4 = 2)$
 $= 0.1 \times 0.5 + 0.9 \times 0.4 = 0.41$

Question 4.

(a) Now, assume we do not have any knowledge about the probability tables for the nodes in the network, but we have the following 12 observations/samples. Find a way to estimate the probability tables associated with the nodes X_3 and X_9 respectively. (6 points)

\mathbf{X}_1	\mathbf{X}_2	\mathbf{X}_3	\mathbf{X}_4	\mathbf{X}_5	\mathbf{X}_6	\mathbf{X}_7	\mathbf{X}_8	\mathbf{X}_9	\mathbf{X}_{10}	\mathbf{X}_{11}
1	1	2	2	2	1	1	1	1	1	1
1	2	1	1	2	1	1	1	1	1	2
2	2	2	1	2	2	1	1	2	2	1
1	1	2	1	2	1	1	2	1	2	2
1	2	1	1	1	1	2	2	2	1	1
2	2	1	2	1	2	2	1	1	1	2
2	1	2	2	1	2	1	2	2	2	1
2	2	2	1	2	1	2	2	1	2	2
1	1	1	1	2	2	1	1	1	1	1
1	1	1	1	2	1	1	1	2	1	2
1	2	1	2	2	1	2	1	2	1	2
2	2	1	2	1	2	2	2	1	1	1

Answer We can use the maximum likelihood estimation to find the optimal model parameters.

$$\theta_{X_3}(1) = \frac{\text{Count}(X_2 = 1, X_3 = 1)}{\text{Count}(X_2 = 1)} = 2/5$$

$$\theta_{X_3}(2) = \frac{\text{Count}(X_2 = 1, X_3 = 2)}{\text{Count}(X_2 = 1)} = 3/5$$

$$\theta_{X_3}(1) = \frac{\text{Count}(X_2 = 2, X_3 = 1)}{\text{Count}(X_2 = 2)} = 5/7$$

$$\theta_{X_3}(2) = \frac{\text{Count}(X_2 = 2, X_3 = 2)}{\text{Count}(X_2 = 2)} = 2/7$$

$$\theta_{X_9}(1) = \frac{\text{Count}(X_6 = 1, X_7 = 1, X_8 = 1, X_9 = 1)}{\text{Count}(X_6 = 1, X_7 = 1, X_8 = 1)} = 2/3$$

$$\theta_{X_9}(2) = \frac{\text{Count}(X_6 = 1, X_7 = 1, X_8 = 1, X_9 = 2)}{\text{Count}(X_6 = 1, X_7 = 1, X_8 = 1)} = 1/3$$

$$\theta_{X_9}(1) = \frac{\text{Count}(X_6 = 1, X_7 = 1, X_8 = 2, X_9 = 1)}{\text{Count}(X_6 = 1, X_7 = 1, X_8 = 2, X_9 = 2)} = 0$$

$$\theta_{X_9}(2) = \frac{\text{Count}(X_6 = 1, X_7 = 1, X_8 = 2, X_9 = 2)}{\text{Count}(X_6 = 1, X_7 = 1, X_8 = 2, X_9 = 2)} = 0$$

$$\theta_{X_9}(1) = \frac{\text{Count}(X_6 = 1, X_7 = 1, X_8 = 2, X_9 = 2)}{\text{Count}(X_6 = 1, X_7 = 2, X_8 = 1, X_9 = 1)} = 0$$

$$\theta_{X_9}(2) = \frac{\text{Count}(X_6 = 1, X_7 = 2, X_8 = 1, X_9 = 2)}{\text{Count}(X_6 = 1, X_7 = 2, X_8 = 1, X_9 = 2)} = 1/2$$

$$\theta_{X_9}(1) = \frac{\text{Count}(X_6 = 1, X_7 = 2, X_8 = 2, X_9 = 2)}{\text{Count}(X_6 = 1, X_7 = 2, X_8 = 2, X_9 = 2)} = 1/2$$

$$\theta_{X_9}(2) = \frac{\text{Count}(X_6 = 1, X_7 = 2, X_8 = 2, X_9 = 2)}{\text{Count}(X_6 = 2, X_7 = 1, X_8 = 1)} = 1/2$$

$$\theta_{X_9}(1) = \frac{\text{Count}(X_6 = 2, X_7 = 1, X_8 = 1, X_9 = 1)}{\text{Count}(X_6 = 2, X_7 = 1, X_8 = 1)} = 1/2$$

$$\theta_{X_9}(2) = \frac{\text{Count}(X_6 = 2, X_7 = 1, X_8 = 2, X_9 = 2)}{\text{Count}(X_6 = 2, X_7 = 1, X_8 = 2)} = 1$$

$$\theta_{X_9}(1) = \frac{\text{Count}(X_6 = 2, X_7 = 1, X_8 = 2, X_9 = 2)}{\text{Count}(X_6 = 2, X_7 = 1, X_8 = 2)} = 1$$

$$\theta_{X_9}(1) = \frac{\text{Count}(X_6 = 2, X_7 = 1, X_8 = 2, X_9 = 2)}{\text{Count}(X_6 = 2, X_7 = 1, X_8 = 2)} = 1$$

$$\theta_{X_9}(2) = \frac{\text{Count}(X_6 = 2, X_7 = 2, X_8 = 1, X_9 = 1)}{\text{Count}(X_6 = 2, X_7 = 2, X_8 = 1, X_9 = 1)} = 1$$

$$\theta_{X_9}(2) = \frac{\text{Count}(X_6 = 2, X_7 = 2, X_8 = 1, X_9 = 1)}{\text{Count}(X_6 = 2, X_7 = 2, X_8 = 1, X_9 = 1)} = 1$$

$$\theta_{X_9}(2) = \frac{\text{Count}(X_6 = 2, X_7 = 2, X_8 = 1, X_9 = 1)}{\text{Count}(X_6 = 2, X_7 = 2, X_8 = 1, X_9 = 1)} = 1$$

$$\theta_{X_9}(2) = \frac{\text{Count}(X_6 = 2, X_7 = 2, X_8 = 2, X_9 = 1)}{\text{Count}(X_6 = 2, X_7 = 2, X_8 = 2, X_9 = 1)} = 0$$

$$\theta_{X_9}$$

The resulting probability tables for X_3 and X_9 are:

						X	Z 9
			X_6	X_7	X_8	1	2
			1	1	1	2/3	1/3
	λ	ζ_3	1	1	2	1	0
X_2	1	2	1	2	1	0	1
1	2/5	3/5	1	2	2	1/2	1/2
2	5/7	2/7	2	1	1	1/2	1/2
			2	1	2	0	1
			2	2	1	1	0
			2	2	2	1	0

(b) Based on the above observations, you would like to find a good Bayesian network structure to model the data. You started with the initial structure shown on the previous page, and decided to delete the edge between \mathbf{X}_{10} and \mathbf{X}_{11} . Is the resulting new structure (after deleting the single edge between \mathbf{X}_{10} and \mathbf{X}_{11} from the original graph) better than the original structure in terms of BIC score? Clearly explain the reason. (9 points)

(Hint: Try to find a short answer.)

Answer Deletion of the edge between X_{10} and X_{11} will only change the probability table of the node X_{11} . Now let's see what happens to the probability table of node X_{11} .

Before deletion:

	X_{11}					
X_{10}	1	2				
1	1/2	1/2				
2	1/2	1/2				

After deletion:

$$\begin{array}{c|cc} & X_{11} \\ & 1 & 2 \\ \hline & 1/2 & 1/2 \\ \end{array}$$

This means deleting this edge does not affect the Bayesian network's log-likelihood (when the model parameters are estimated using MLE from the data). However, the BIC scores for the two networks are different now. Specifically the new Bayesian network needs 1 less free parameters. Therefore the resulting new structure has a better (higher) BIC score.

6