CS 3640: Introduction to Networks and Their Applications

Fall 2023, Lecture 6: Error handling in the link layer

Instructor: Rishab Nithyanand

Teaching Assistant: Manisha Keim

Coming up

Assignment 2 releasing on Thursday.

Today's class

1.

Recap: Role of the link layer

2.

Error handling in the link layer

3.

Overview of medium access control protocols

Recap: Overview of the link layer

- What are the functions of the link layer?
 - Write bits to and read bits from the network interface.
 - How does the link layer perform error detection and correction?
 - How do multiple devices share a link?
- The link layer protocol can be different things on different devices.
 - Can be Ethernet on one hop, WiFi on the next.
 - They are usually implemented on an "adapter" or Network Interface Card (NIC).

Recap: Overview of the link layer

- How do adapters communicate?
 - At the sender's side:
 - Link layer gets a datagram from Network layer.
 - Figures out which interface to use for the network layer destination.
 - Encapsulates datagram with link layer header. (Frame)
 - Adds error checking (or, correction) data to header so the receiver may identify if errors occurred.
 - Writes frame to link.

Recap: Overview of the link layer

- How do adapters communicate?
 - At the receiver's side:
 - Link layer gets a frame from the link.
 - Looks for errors that may have occurred during transmission (i.e., only errors introduced by the link layer) and corrects them if required/possible.
 - Strips link layer headers and passes the datagram up to the network layer.

Elements in a link-layer header

- MAC source and MAC destination: These are basically link-layer "addresses" for devices connected to the same medium. Every NIC has a unique 48-bit MAC address. [more next week]
- Payload length: The size of the data being transported in the frame (includes headers from above layers). Different link-layer protocols have different restrictions on max size of frame.
- Error correction data: Usually a 32-bit sequence aimed at identifying when errors may have occurred in the payload. [more in this lecture]

Today's class

1.

Recap: Role of the link layer

2.

Error handling in the link layer

3.

Overview of medium access control protocols

- The link layer may perform error detection and correction on frames when possible and if asked to do so.
- Why?
 - The physical world is inherently noisy. E.g., interference from radio transmissions and microwaves.
 - Discuss: Is this a violation of the end-to-end principle? When is it OK?

- Discuss: How would you detect errors in frames?
 - Hint: Redundancy might help.

- A simple solution: Send multiple copies of each frame. An error has occurred if copy 1 != copy 2 != ... != copy n.
- Problems
 - Overhead!
 - n transmissions for each frame.

- A better idea: Parity bits
 - Add extra bits to make sure number of 1s is even.
 - Example: 7-bit ASCII chars. Make 8th bit the parity bit.
 - If number of 1s in any 8bit sequence is odd, error occurred.
 - Overhead: 1 parity bit for every 7 frame bits (14%).
- Problem?
 - Discuss: What's the minimum number of bits that need to change for this error detection mechanism to fail? Can it be used for error correction?

- A better idea: Two-dimensional parity bits
 - Imagine your frame as a two-dimensional array of bits.
 - Add one parity bit for each row and for each column.
 - Can detect most errors with only marginally higher overhead
 - **Discuss:** What's the minimum number of bits that need to change for this error detection mechanism to fail? Can it be used for error correction?

- An even better idea: Checksums
 - What if you summed up all the bytes in your frame.
 - Included the sum in the frame.
 - Requires only 16 bits overhead for the whole frame! (~1% overhead)

- This is used in the transport layer and IP layer.
- Problem: Still can have errors because of sum collisions.
 - Example (data): 10000000 + 01111111 = 111111111
 - Error: 11000000 + 00111111 = 11111111

- What we actually use in the link layer: Cyclic Redundancy Check (CRC)
 - A more complicated version of checksum.
 - **Idea**: Perform a series of mathematical operations on the frames data bits to get a semi-unique value. E.g., compute a cryptographic hash of all the data bits.
 - Typically, 32 bit overhead per frame.
 - Chance of error = chance of hash collisions for a given frame $\sim 1/2^{32}$
 - Very cheap to implement in hardware.
 - Very quick.

Signaling errors to the sender

- How does a sender know if a frame was:
 - Received error free?
 - Received at all?
 - Discuss: How do you do this IRL?

Signaling errors to the sender

The Stop and Wait protocol

- I'll wait for an ACK before I send the next frame. If I don't get an ACK in x ms, I'll resend the frame.
 - Used by Bluetooth and other low power/bandwidth protocols.
- Problem: Poor efficiency. At best, only one frame every RTT seconds.
- Discuss: How would you improve the efficiency of this protocol.

Signaling errors to the sender

- The Sliding Window Protocol
 - We can allow multiple frames to be unacknowledged.
 - This is the "window".
 - Better efficiency: Can allow n frames per RTT.

Today's class

1.

Recap: Role of the link layer

2.

Error handling in the link layer

3.

Overview of medium access control protocols

Medium Access Control (MAC) protocols

What is a MAC protocol?

- A transmission medium can be shared by many devices.
- If everyone talks at the same time, we have "collisions" and unintelligible data.
- MAC: Rules for sharing a common transmission medium.

Medium Access Control (MAC) protocols

General strategies for MAC protocols

- Idea 1: Partition the transmission channel so each host has its share.
 - We briefly saw this Time and Frequency division. Each host has a fixed share (time or frequency band) in the medium.
 - What if a host has nothing to send?
- Idea 2: Pass a "transmit now" token to hosts.
 - Like me cold-calling someone to answer a question. (I'm giving you the token).
 - What if multiple people really want to give an answer?
- Problem: Transmission channel utilization isn't great.

Medium Access Control (MAC) protocols

- General strategies for MAC protocols
 - Idea 3: Allow collisions, we'll figure out how to recover data.
 - Allows much higher utilization.
 - Now we have new problems:
 - How to identify when a collision has occurred.

(Ethernet, WiFi, etc)

- How to recover from a collision.
- This strategy is called "Random access MAC" or "Contention-based MAC".
- Used by Ethernet, mobile transmission protocols, and others.

The ALOHA MAC protocol (circa 1970)

ALOHA: Additive Links On-line Hawaii Area (developed at UHawaii)

- Idea: Send a frame as soon as you need to.
 - If you receive a frame while transmitting, a collision has occurred.
 - Remember everyone using the same medium will receive all transmissions on that medium.
 - Wait for some random time and transmit again.
 - Eventually, a frame will get transmitted without collisions.

Assumptions:

- All frames are equally sized.
- Errors (collisions) are detectable.
- **Problem**: For successful transmissions, no other frame from any other host should start within T time before or after you.
 - Sensitive transmission period: 2T for each frame.
 - Scales terribly. (Theoretical maximum throughput for large number of hosts with random transmission times: 18%).

The Slotted ALOHA MAC protocol (circa 1970)

- Idea: If we allow transmissions only at certain time points, the "sensitive" period for transmissions reduces.
 - Transmissions on the channel can occur only every T seconds.
 - The channel is divided into slots, but anyone can send in any slot.
 - Sensitive transmission period: T for each frame.
 - If a collision occurs, wait some random number of time slots and retransmit.

Assumptions:

- All frames are equally sized.
- All host clocks are synchronized (!!!)
- Errors (collisions) are detectable.
- Sensitive period reduced from 2T to T.
 - Theoretical maximum throughput is doubled to 36%.
 - Still not great.

What you should remember from this lecture

- What is the role of the link layer? Where is it implemented?
- How is error detection/correction done at the link layer?
 - What are the different approaches?
 - General ideas and considerations for selection of an approach.
 - When is it not violating the end-to-end principle?
- Why is stop-and-wait less efficient than the sliding window?
- What function do MAC protocols provide?
 - Why is slotted ALOHA better than ALOHA?
- There is a general theme of: "We can take care of the worstcase later".
 - The Internet is a best-effort service.

