

Capítulo 4: Introducción a redes conmutadas

Routing y switching

Cisco Networking Academy® Mind Wide Open™

Capítulo 4

- 1.0 Introducción
- 1.1 Diseño de LAN
- 1.2 El entorno conmutado
- 1.3 Resumen

Capítulo 4: Objetivos

- Describir la convergencia de datos, voz y video en el contexto de las redes conmutadas.
- Describir una red conmutada en una pequeña a mediana empresa.
- Explicar el proceso de reenvío de tramas en una red conmutada.
- Comparar un dominio de colisiones con un dominio de difusión.

Complejidad creciente de las redes

- El mundo digital está cambiando.
- Se debe acceder a la información desde cualquier lugar del mundo.
- Las redes deben ser seguras, confiables y de alta disponibilidad.

Elementos de una red convergente

- La colaboración es un requisito.
- Para admitir la colaboración, las redes emplean soluciones convergentes.
- Servicios de datos, como los sistemas de voz, los teléfonos IP, los gateways de voz, la compatibilidad con video y las videoconferencias.
- El control de llamadas, la mensajería de voz, la movilidad y el contestador automático también son funciones comunes.

Elementos de una red convergente

- Las ventajas de las redes convergentes incluyen lo siguiente:
 - Varios tipos de tráfico y una sola red para administrar
 - Ahorros sustanciales en instalación, y la administración de redes de voz, video y datos independientes
 - Integra la administración de TI

Redes conmutadas sin fronteras

- Cisco Borderless Network es una arquitectura de red que permite que las organizaciones se conecten con cualquier persona, en cualquier lugar, en cualquier momento y en cualquier dispositivo de forma segura, confiable y sin inconvenientes.
- Está diseñada para enfrentar los desafíos comerciales y de TI, como la admisión de redes convergentes y el cambio de los patrones de trabajo.

Jerarquía en las redes conmutadas sin fronteras

Las pautas de diseño de las redes conmutadas sin fronteras se basan en los siguientes principios:

Jerárquico

Modularidad

Capacidad de recuperación

Flexibilidad

Núcleo/

Acceso

Características

	Jerárquico	Modularidad	Capacidad de recuperación	Flexibilidad
Permite que la red siempre sea accesible.				
Permite que las redes se expandan y proporcionen servicios a pedido.				
Contribuye a que cada dispositivo de cada nivel cumpla una función específica.				
Usa todos los recursos de red disponibles para compartir la carga de tráfico de datos.				

Núcleo, distribución y acceso

Contribuye a que las aplicaciones funcionen en la red conmutada de forma más segura.

Proporciona una conectividad directa y de red conmutada al usuario

Capa de distribución

Admite dominios de difusión de capa 2 y límites de routing de capa 3.

Interactúa con el backbone y los usuarios para proporcionar switching, routing y seguridad inteligentes.

Incluye la redundancia como característica importante para el acceso a las redes conmutadas.

Permite que los datos fluyan en rutas de switching de igual costo al backbone.

Capa núcleo

Área backbone de red para el switching.

Proporciona aislamiento de fallas y conectividad backbone de switch de alta velocidad.

Puede combinarse con la capa de distribución para proporcionar un diseño contraído.

Función de las redes conmutadas

- La función de las redes conmutadas evolucionó.
- Las LAN conmutadas brindan más flexibilidad y administración de tráfico.
- También admite características como calidad de servicio, seguridad adicional, compatibilidad con la tecnología inalámbrica, compatibilidad con la telefonía IP y servicios de movilidad.

Factores de forma

Consideraciones para seleccionar un switch

- Costo
- Densidad de puertos
- Alimentación
- Confiabilidad
- Velocidad del puerto
- Buffers para tramas
- Escalabilidad

Tipos de switch

Fijo

Las características y las opciones se limitan a aquéllas que originalmente vienen con el switch.

Tipos de switch

Modulares

El chasis acepta tarjetas de línea que contienen los puertos.

Tipos de switch

Apilable

Los switches apilables, conectados por un cable especial, operan con eficacia como un gran switch.

Switching como concepto general

- Toma una decisión según dos criterios:
 - ✓ Puerto de entrada
 - ✓ Dirección de destino
- Mantienen una tabla que usan para determinar cómo reenviar el tráfico a través del switch.
- Los switches LAN Cisco reenvían tramas de Ethernet según la dirección MAC de destino de las tramas.

Completado dinámico de la tabla de direcciones MAC de un switch

Dirección MAC	Interfaz
0005.5E45.9738	Fa0/1
00E0.F727.64B4	Fa0/2
0001.C759.5034	Fa0/3
00D0BAE903E3	Fa0/4

?	1	6	6	2	46-1500	1 4
Preámbulo	Inicio de delimitador de trama	Dirección Destino	Dirección Origen	Tipo	Datos	Secuencia de verificación de trama

Conmutación por almacenamiento y envío

- 1.- recibe toda la trama
- 2.- calcula el CRC
- 3.- verifica la longitud de la trama
- 4.- Si el CRC y la longitud de la trama son validadas
 - se busca la dirección MAC destino en la tabla
 - se determina la interfaz de salida
 - se envía la información

de otra forma

se descarta

Desventaja:

Mayor latencia

Conmutación por método de corte

- 1. recibe la trama
- 2. busca la dirección MAC destino en la tabla
- se determina la interfaz de salida
- 4. se envía la información

Ventaja:

Menor latencia

Desventajas:

- no descarta la mayoría de las tramas no válidas
- obstruye el ancho de banda con las tramas dañadas y no válidas.

	Almacenamiento y envío	Método de corte
Almacena las tramas en buffer hasta que el switch recibe la trama completa.	*	
Revisa la trama para detectar errores antes de liberarla por los puertos del switch. Si no se recibió la trama completa, el switch la descarta.		
El switch no realiza ninguna verificación de errores de la trama antes de liberarla a través de los puertos.		*
 Un excelente método para conservar el ancho de banda en la red. 		
 Con este método de reenvío de tramas, la tarjeta de interfaz de red (NIC) de destino descarta cualquier trama incompleta. 		*
 Es el método de switching más rápido, pero puede producir más errores de integridad de los datos; por lo tanto, es posible que se consuma más ancho de banda. 		*

Ejemplo 1

Catalyst 2950 series

Fa9 Fa10 Fa11 Fa12

Hub

Ejemplo 2

Catalyst 2950 series

Fa9 Fa10 Fa11 Fa12

Ejemplo 3

Catalyst 2950 server

Dominios de colisiones

- El dominio de colisiones es el segmento donde los dispositivos deben competir para comunicarse.
- Todos los puertos de un hub pertenecen al mismo dominio de colisiones.
- Cada puerto de switch es un dominio de colisiones en sí mismo.
- El switch y router divide el segmento en dominios de colisiones más pequeños, lo que facilita la competencia del dispositivo.

Dominios de difusión

- El dominio de difusión es la distancia de la red a la que se puede escuchar una trama de difusión.
- Todos los puertos de un switch (con su configuración predeterminada) pertenecen al mismo dominio de difusión.
- Si hay dos o más switches conectados, las difusiones se reenvían a todos los puertos de todos los switches (excepto al puerto que recibió originalmente la difusión).
- El router divide el dominio de difusión.

Ejemplos

¿Cuántos dominios de difusión hay en cada esquema?

¿Cuántos dominios de colisión hay en cada esquema?

Dominios de switching **Ejemplo**

Dominios de difusión:

Dominios de colisión:

Alivio de la congestión en la red

Los switches ayudan a aliviar la congestión en la red de la siguiente manera:

- Facilitan la segmentación de una LAN en dominios de colisiones independientes.
- Brindan una comunicación full-duplex entre los dispositivos.
- Aprovechan su alta densidad de puertos.
- Almacenan en búfer tramas grandes.
- Emplean puertos de alta velocidad.
- Aprovechan su proceso interno rápido de switching.
- Tienen un bajo costo por puerto.

Capítulo 4: Resumen

- Control de llamadas
- Mensajería de voz
- Movilidad
- Contestador automático
- Cisco Borderless Networks
- Capa de acceso
- Capa de distribución
- Capa núcleo

Capítulo 4: Resumen

- Switches de configuración fija
- Switches de configuración modular
- Switches de configuración apilable
- Dirección MAC
- Tabla de memoria de contenido direccionable (CAM)
- Método de corte
- Almacenamiento y envío
- Dominio de colisiones
- Dominio de difusión

Cisco | Networking Academy® | Mind Wide Open™

Modificado por: M. en C. Gabriela Azucena Campos García