

COMSATS University Islamabad, Lahore Campus Department of Electrical and Computer Engineering

Mid Term Examination – SPRING 2023

Course Title:	Digital Image Processing				Course Code	e:	CPE 415	Credit Hours:	4(3,1)
Course	Dr. Ikramullah Khosa				Program Name: BE Comp		outer Engineering		
Semester:	8 th	Batch:	FA19-BCE	Section:	A/B Date:		Date:	03-05-2023	
Time Allowed:	90 Minutes				Maximum Marks:			25	
Student's Name:					Reg. No.	CIIT	/	/LHF	λ .
Important Instructions / Guidelines:									
 This is a closed-book, closed-notes examination. 									

Question 1 (CLO-1, PLO-1, C3)

(08 Marks)

Apply the concepts of image fundamentals and image enhancement to solve the following questions.

A. A sample row consisting gray levels of four pixels is shown. Compute the value of new samples by performing linear interpolation at 1/4 pixel. (Round-off the answer to nearest integer value) (6 *Marks*)

B. A CCD chip of dimension 14×14 mm and having 2048×2048 elements is focused on a square, flat area, located 0.5 m away. How many line pairs per mm will this camera be able to resolve? The camera is equipped with a 35 mm lens. (2 *Marks*)

Question 2 (CLO-1, PLO-1, C3)

(17 Marks

Relate the concepts of image enhancement in spatial and frequency domain to solve the following questions.

A. Following row represents the gray levels of a 3-bit gray scale image. Produce the first and second derivative. Also show the mathematical expression used for computation of derivatives. (6 Marks)

B. The gray level probabilities of a 3-bit image are shown in the following table. Show the gray level probability histogram. Perform histogram equalization. Compute and show the equalized histogram. Also show the transformation function. (5 *Marks*)

r_k	n_k	$p_r(r_k) = n_k/MN$
$r_0 = 0$	790	0.19
$r_1 = 1$	1023	0.25
$r_2 = 2$	850	0.21
$r_3 = 3$	656	0.16
$r_4 = 4$	329	0.08
$r_5 = 5$	245	0.06
$r_6 = 6$	122	0.03
$r_7 = 7$	81	0.02

C. Show that subtracting a Laplacian from an image is proportional to unsharp masking i.e. (4 Marks)

$$f(x,y) - \nabla^2 f(x,y) \sim f(x,y) - \overline{f}(x,y)$$

D. Consider a checkerboard image in which each square is 0.5×0.5 mm. Assuming that the image extends infinity in both coordinate directions, what is the minimum sampling rate (sample/mm) required to avoid Aliasing? (2 Marks)