The variables x and θ satisfy the differential equation

$$x\cos^2\theta \frac{\mathrm{d}x}{\mathrm{d}\theta} = 2\tan\theta + 1,$$

for
$$0 \le \theta < \frac{1}{2}\pi$$
 and $x > 0$. It is given that $x = 1$ when $\theta = \frac{1}{4}\pi$.

(i) Show that $\frac{d}{d\theta}(\tan^2 \theta) = \frac{2 \tan \theta}{\cos^2 \theta}$.

(ii) Solve the differential equation and calculate the value of x when $\theta = \frac{1}{3}\pi$, giving your answer correct to 3 significant figures. [7]