Masimo Corporation

Radical 7C+

Report No. MASI0057.2

Report Prepared By

www.nwemc.com 1-888-EMI-CERT

© 2010 Northwest EMC, Inc

22975 NW Evergreen Parkway Suite 400 Hillsboro, Oregon 97124

Certificate of Test

Last Date of Test: May 5, 2010 Masimo Corporation Model: Radical 7C+

	Emissions		
Test Description	Specification	Test Method	Pass/Fail
Spurious Radiated Emissions	FCC 15.407:2010	ANSI C63.10:2009	Pass
AC Powerline Conducted Emissions	FCC 15.207:2010	ANSI C63.10:2009	Pass

Modifications made to the product
Modifications made to the product
See the Modifications section of this report
dee the modifications section of this report

Test Facility

The measurement facility used to collect the data is located at:

Northwest EMC, Inc. 41 Tesla Ave. Irvine, CA 92618

Phone: (503) 844-4066 Fax: 844-3826

This site has been fully described in a report filed with and accepted by the FCC (Federal Communications Commission) and Industry Canada (Site filing #2834B-2).

Approved By:

Don Facteau, IS Manager

QAIVN

NVLAP Lab Code: 200676-0

This report must not be used to claim product certification, approval, or endorsement by NVLAP, NIST, or any agency of the federal government of the United States of America.

Product compliance is the responsibility of the client, therefore the tests and equipment modes of operation represented in this report were agreed upon by the client, prior to testing. This Report may only be duplicated in its entirety. The results of this test pertain only to the sample(s) tested. The specific description is noted in each of the individual sections of the test report supporting this certificate of test.

Revision History

Revision 06/29/09

Revision Number	Description	Date	Page Number
00	None		

Accreditations and Authorizations

FCC

Accredited by NVLAP for performance of FCC radio, digital, and ISM device testing. Our Open Area Test Sites, certification chambers, and conducted measurement facilities have been fully described in reports filed with the FCC and accepted by the FCC in letters maintained in our files. Northwest EMC has been accredited by ANSI to ISO / IEC Guide 65 as a product certifier. We have been designated by the FCC as a Telecommunications Certification Body (TCB). This allows Northwest EMC to certify transmitters to FCC specifications in accordance with 47 CFR 2.960 and 2.962.

NVLAP

Northwest EMC, Inc. is accredited under the United States Department of Commerce, National Institute of Standards and Technology, and National Voluntary Laboratory Accreditation Program for satisfactory compliance with the requirements of ISO/IEC 17025 for Testing Laboratories. The NVLAP accreditation encompasses Electromagnetic Compatibility Testing in accordance with the European Union EMC Directive 2004/108/EC, and ANSI C63.4. Additionally, Northwest EMC is accredited by NVLAP to perform radio testing in accordance with the European Union R&TTE Directive 1999/5/EEC, the requirements of FCC, and the RSS radio standards for Industry Canada.

NVLAP LAB CODE 200881-0

Industry Canada

Accredited by NVLAP for performance of Industry Canada RSS and ICES testing. Our Open Area Test Sites and certification chambers comply with RSS-Gen, Issue 2 and have been filed with Industry Canada and accepted. Northwest EMC has been accredited by ANSI to ISO / IEC Guide 65 as a product certifier. We have been designated by NIST and recognized by Industry Canada as a Certification Body (CB) per the APEC Mutual Recognition Arrangement (MRA). This allows Northwest EMC to certify transmitters to Industry Canada technical requirements. (Site Filing Numbers - Hillsboro: 2834D-1, 2834D-2, Sultan: 2834C-1, Irvine: 2834B-1, 2834B-2, Brooklyn Park: 2834E-1)

CAB

Designated by NIST and validated by the European Commission as a Conformity Assessment Body (CAB) to conduct tests and approve products to the EMC directive and transmitters to the R&TTE directive, as described in the U.S. - EU Mutual Recognition Agreement.

NEMKO

Assessed and accredited by NEMKO (Norwegian testing and certification body) for European emissions and immunity testing. As a result of NEMKO's laboratory assessment, they will accept test results from Northwest EMC, Inc. for product certification (Authorization No. ELA 119).

Accreditations and Authorizations

Australia/New Zealand

The National Association of Testing Authorities (NATA), Australia has been appointed by the ACA as an accreditation body to accredit test laboratories and competent bodies for EMC standards. Accredited test reports or assessments by competent bodies must carry the NATA logo. Test reports made by an overseas laboratory that has been accredited for the relevant standards by an overseas accreditation body that has a Mutual Recognition Agreement (MRA) with NATA are also accepted as technical grounds for product conformity. The report should be endorsed with the respective logo of the accreditation body (NVLAP).

VCCI

Accepted as an Associate Member to the VCCI, Acceptance No. 564. Conducted and radiated measurement facilities have been registered in accordance with Regulations for Voluntary Control Measures, Article 8. (Registration Numbers. - Hillsboro: C-1071, R-1025, G-84, C-2687, T-1658, and R-2318, Irvine: R-1943, G-85, C-2766, and T-1659, Sultan: R-871, G-83, C-1784, and T-1511, Brooklyn Park: R-3125, G-86, G-141, C-3464, and T-1634).

BSMI

Northwest EMC has been designated by NIST and validated by C-Taipei (BSMI) as a CAB to conduct tests as described in the APEC Mutual Recognition Agreement (US0017). License No.SL2-IN-E-1017.

GOST

Northwest EMC, Inc. has been assessed and accredited by the Russian Certification bodies Certinform VNIINMASH, CERTINFO, SAMTES, and Federal CHEC, to perform EMC and Hygienic testing for Information Technology Products. As a result of their laboratory assessment, they will accept test results from Northwest EMC, Inc. for product certification

KCC

Northwest EMC, Inc is a CAB designated by MRA partners and recognized by Korea. (Assigned Lab Numbers: Hillsboro: US0017, Irvine: US0158, Sultan: US0157)

VIETNAM

Vietnam MIC has approved Northwest EMC as an accredited test lab. Per Decision No. 194/QD-QLCL (dated December 15, 2009), Northwest EMC test reports can be used for Vietnam approval submissions.

SCOPE

For details on the Scopes of our Accreditations, please visit: http://www.nwemc.com/accreditations/

Northwest EMC Locations

Oregon Labs EV01-EV12 22975 NW Evergreen Pkwy Suite 400 Hillsboro, OR 97124 (503) 844-4066 California Labs OC01-OC13 41 Tesla Irvine, CA 92618 (949) 861-8918 Minnesota Labs MN01-MN08 9349 W Broadway Ave. Brooklyn Park, MN 55445 (763) 425-2281 Washington Labs SU01-SU07 14128 339th Ave. SE Sultan, WA 98294 (360) 793-8675 New York Labs WA01-WA04 4939 Jordan Rd. Elbridge, NY 13060 (315) 685-0796

Party Requesting the Test

Company Name:	Masimo Corporation
Address:	40 Parker
City, State, Zip:	Irvine, CA 92618
Test Requested By:	Paul Lewandowski
Model:	Radical 7C+
First Date of Test:	May 3, 2010
Last Date of Test:	May 5, 2010
Receipt Date of Samples:	May 3, 2010
Equipment Design Stage:	Production
Equipment Condition:	No Damage

Information Provided by the Party Requesting the Test

Functional Description of the EUT (Equipment Under Test):

One 802.11a/b/g radio module installed in a medical monitoring device that will be connected to hospital wireless network.

Testing Objective:

Seeking to demonstrate compliance under FCC 15E for operation in the 5.2 band

EUT Photo

Configurations

Revision 9/21/05

CONFIGURATION 1 MASI0057

EUT			
Description	Manufacturer	Model/Part Number	Serial Number
Pulse Oximeter	Masimo	Radical 7C+	E00680

Peripherals in test setup bo	undary		
Description	Manufacturer	Model/Part Number	Serial Number
SpO2 Cable Adapter	Masimo	None	E09H383

Cables					
Cable Type	Shield	Length (m)	Ferrite	Connection 1	Connection 2
Patient Cable	No	4.7m	No	SpO2 Cable Adapter	Unterminated
Patient Cable	No	4.0m	No	SpO2 Cable Adapter	Unterminated
AC Cable	No	1.8m	No	EUT	AC Mains
PA = Cable i	is permanent	ly attached to the de	vice. Shieldi	ng and/or presence of ferrite may	be unknown.

Revision 4/28/03

			Equipment mo	odifications	
Item	Date	Test	Modification	Note	Disposition of EUT
1	5/3/2010	Powerline Conducted Emissions	Tested as delivered to Test Station.	No EMI suppression devices were added or modified during this test.	EUT remained at Northwest EMC following the test.
2	5/5/2010	Spurious Radiated Emissions	Tested as delivered to Test Station.	No EMI suppression devices were added or modified during this test.	Scheduled testing was completed.

SPURIOUS RADIATED EMISSIONS

Testing was performed using the mode(s) of operation and configuration(s) noted within the report. The individuals and/or the organization requesting the test provided the modes, configurations and settings used to complete the evaluation. The actual test parameters are specified in the test data, this includes items such as investigated frequency range (scanned) and test levels. The testing methods and performance specifications, as well as the test site used for the evaluation are indicated in the test data.

CHANNELS INVESTIGATED

Channel 36, 5180 MHz

Channel 48, 5240 MHz

DATA RATES INVESTIGATED

6, 36, 54 Mbps

MODE USED FOR FINAL DATA

Channel 36, 5180 MHz

POWER SETTINGS INVESTIGATED

120VAC/60Hz

POWER SETTINGS USED FOR FINAL DATA

120VAC/60Hz

FREQUENCY RANGE INVESTIGATED

1000 MHz Start Frequency Stop Frequency 40000 MHz

CLOCKS AND OSCILLATORS 5180 MHz, 5240 MHz

SAMPLE CALCULATIONS

Radiated Emissions: Field Strength = Measured Level + Antenna Factor + Cable Factor - Amplifier Gain + Distance Adjustment Factor + External Attenuation

TEST EQUIPMENT					
Description	Manufacturer	Model	ID	Last Cal.	Interval
Signal Generator	Agilent	E8257D	TGU	12/20/2008	24
Antenna, Horn	EMCO	3115	AHA	10/22/2009	24
Power Meter	Hewlett Packard	E4418A	SPA	4/21/2010	13
Antenna, Dipole	EMCO	3121C -DB1, -DB2, -DB3, _DB4	ADF	NCR	0
High Pass Filter	Micro-Tronics	HPM50111	HGC	11/20/2009	13
Pre-Amplifier	Miteq	JS4-26004000-50-5A	AON	8/19/2009	13
Antenna, Horn	EMCÓ	3160-10	AHI	NCR	0
OC floating Cable	N/A	26-40 GHz RE Cable	OCU	8/19/2009	13
Pre-Amplifier	Miteq	AMF-6F-18002650-25-10P	AOI	5/3/2010	13
Antenna, Horn	EMCO	3160-09	AHN	NCR	0
OC floating Cable	N/A	18-26GHz RE Cables	OCK	5/3/2010	13
Pre-Amplifier	Miteq	AMF-6F-12001800-30-10P	AVP	12/21/2009	13
Antenna, Horn	EMCO	3160-08	AHK	NCR	0
Pre-Amplifier	Miteq	AMF-6F-08001200-30-10P	AVL	4/11/2010	13
Antenna, Horn	ETS	3160-07	AHX	NCR	0
OC11 Cables	N/A	12-18GHz RE Cables	OCS	4/11/2010	13
Pre-Amplifier	Miteq	AMF-3D-00100800-32-13P	AVJ	9/10/2009	13
Antenna, Horn	EMCO	3115	AHB	9/11/2009	24
OC11 Cables	N/A	1-8GHz RE Cables	OCR	3/19/2010	13
Pre-Amplifier	Miteq	AM-1551	AOU	2/11/2009	24
Spectrum Analyzer	Agilent	E4440A	AFA	2/9/2010	13

MEASUREMENT	BANDWIDTHS			
	Frequency Range	Peak Data	Quasi-Peak Data	Average Data
	(MHz)	(kHz)	(kHz)	(kHz)
	0.01 - 0.15	1.0	0.2	0.2
	0.15 - 30.0	10.0	9.0	9.0
	30.0 - 1000	100.0	120.0	120.0
	Above 1000	1000.0	N/A	1000.0
	Measurements were ma	de using the bandwidths and	detectors specified. No video filter wa	as used.

MEASUREMENT UNCERTAINTY

A measurement uncertainty estimation has been performed for each test per our internal quality document WP 342. The estimation is used to compare the measured result with its "true" or theoretically correct value. Our measurement data meets or exceeds the measurement uncertainty requirements of CISPR 16-4. The measurement uncertainty estimation is available upon request.

TEST DESCRIPTION

The highest gain of each type of antenna to be used with the EUT was tested. The EUT was configured for low, mid, and high band transmit frequencies. For each configuration, the spectrum was scanned throughout the specified range. In addition, measurements were made in the restricted bands to verify compliance. While scanning, emissions from the EUT were maximized by rotating the EUT on a turntable, adjusting the position of the EUT and the EUT antenna in three orthogonal axis, and adjusting measurement antenna height and polarization, and manipulating the EUT antenna in 3 orthogonal planes (per ANSI C63.10:2009). A preamp and high pass filter were used for this test in order to provide sufficient measurement sensitivity.

SPURIOUS RADIATED EMISSIONS EMC EUT: Radical 7C+ Work Order: MASI0057 Serial Number: E00680 Customer: Masimo Corporation Attendees: None Date: 05/05/10 Temperature: 21.7 Humidity: 41% Barometric Pres.: 1020.5mb Project: None Tested by: Jaemi Suh TEST SPECIFICATIONS Power: 120VAC/60Hz Job Site: OC11 FCC 15.407:2010 TEST PARAMETERS Test Distance (m) Antenna Height(s) (m) 1 - 4 COMMENTS Channel 36, Speed 6 mbps EUT OPERATING MODES Ant 1, Transmit Mode DEVIATIONS FROM TEST STANDARD No deviations. 12 Run# Configuration # 1 Results Pass Signature 80.0 70.0 60.0 50.0 dBuV/m • 40.0 * + 30.0 20.0 10.0 0.0 -15500.000 15510.000 15520.000 15530.000 15540.000 15550.000 15560.000 15570.000 15580.000 15590.000 15600.000 MHz

						External			Distance			Compared to	
Freq	Amplitude	Factor	Azimuth	Height	Distance	Attenuation	Polarity	Detector	Adjustment	Adjusted	Spec. Limit	Spec.	
(MHz)	(dBuV)	(dB)	(degrees)	(meters)	(meters)	(dB)			(dB)	dBuV/m	dBuV/m	(dB)	Comments
15538.950	34.9	3.3	122.0	1.0	3.0	0.0	H-Horn	AV	0.0	38.2	54.0	-15.8	6 Mbps
15539.890	33.7	3.3	118.0	1.0	3.0	0.0	H-Horn	AV	0.0	37.0	54.0	-17.0	36 Mbps
15541.830	33.4	3.3	120.0	1.0	3.0	0.0	H-Horn	AV	0.0	36.7	54.0	-17.3	54 Mbps
15539.910	30.9	3.3	103.0	1.0	3.0	0.0	V-Horn	AV	0.0	34.2	54.0	-19.8	36 Mbps
15541.820	30.3	3.3	101.0	1.0	3.0	0.0	V-Horn	AV	0.0	33.6	54.0	-20.4	6 Mbps
15540.050	30.2	3.3	101.0	1.0	3.0	0.0	V-Horn	AV	0.0	33.5	54.0	-20.5	54 Mbps
15543.040	47.5	3.3	122.0	1.0	3.0	0.0	H-Horn	PK	0.0	50.8	74.0	-23.2	6 Mbps
15542.130	45.9	3.3	118.0	1.0	3.0	0.0	H-Horn	PK	0.0	49.2	74.0	-24.8	36 Mbps
15540.200	45.7	3.3	120.0	1.0	3.0	0.0	H-Horn	PK	0.0	49.0	74.0	-25.0	54 Mbps
15540.770	42.4	3.3	103.0	1.0	3.0	0.0	V-Horn	PK	0.0	45.7	74.0	-28.3	36 Mbps
15540.920	41.9	3.3	101.0	1.0	3.0	0.0	V-Horn	PK	0.0	45.2	74.0	-28.8	6 Mbps
15543,290	41.3	3.3	101.0	1.0	3.0	0.0	V-Horn	PK	0.0	44.6	74.0	-29.4	54 Mbps

NORTHWEST EMC	S	PURIC	ous I	RAD	IATE	D EMI	SSIO	NS				PSA 2008. EMI 2009
	: Radical 7C+								W	ork Order	MASI0	057
Serial Number											05/05/	10
Customer Attendees	: Masimo Corporation								Ter	nperature Humidity	21.7	
Project									Barome	etric Pres.		mb
Tested by	/: Jaemi Suh				Pov	ver: 120VAC				Job Site		
ST SPECIFICAT C 15.407:2010	TIONS					Test Met	hod 3.10:2009					
ST PARAMETE					Took D	istance (m)		2				
tenna Height(s)) (m) 1 - 4				Test D	istance (m)		3				
deviations. n #	M TEST STANDARD							1	1. De			
nfiguration #	1							1				
sults	Pass						Signatu	ire 🔧	1			
80.0												
70.0												
70.0												
70.0												
70.0												
70.0												
70.0 60.0 50.0 40.0 30.0												

Freq	Amplitude	Factor	Azimuth	Height	Distance	External Attenuation	Polarity	Detector	Distance Adjustment	Adjusted	Spec. Limit	Compared to Spec.
(MHz)	(dBuV)	(dB)	(degrees)	(meters)	(meters)	(dB)	•		(dB)	dBuV/m	dBuV/m	(dB)
15719.580	31.5	4.0	124.0	1.0	3.0	0.0	H-Horn	AV	0.0	35.5	54.0	-18.5
15715.790	31.4	4.0	123.0	1.0	3.0	0.0	H-Horn	AV	0.0	35.4	54.0	-18.6
15720.100	30.0	4.0	96.0	1.0	3.0	0.0	H-Horn	AV	0.0	34.0	54.0	-20.0
15723.580	29.6	4.0	126.0	1.0	3.0	0.0	V-Horn	AV	0.0	33.6	54.0	-20.4
15719.750	29.1	4.0	72.0	1.0	3.0	0.0	V-Horn	AV	0.0	33.1	54.0	-20.9
15720.890	29.1	4.0	106.0	1.0	3.0	0.0	V-Horn	AV	0.0	33.1	54.0	-20.9
15719.030	43.3	4.0	124.0	1.0	3.0	0.0	H-Horn	PK	0.0	47.3	74.0	-26.7
15720.000	43.1	4.0	123.0	1.0	3.0	0.0	H-Horn	PK	0.0	47.1	74.0	-26.9
15717.720	41.9	4.0	96.0	1.0	3.0	0.0	H-Horn	PK	0.0	45.9	74.0	-28.1
15717.620	41.4	4.0	106.0	1.0	3.0	0.0	V-Horn	PK	0.0	45.4	74.0	-28.6
15720.290	41.2	4.0	126.0	1.0	3.0	0.0	V-Horn	PK	0.0	45.2	74.0	-28.8
15719.340	40.8	4.0	72.0	1.0	3.0	0.0	V-Horn	PK	0.0	44.8	74.0	-29.2

	RTHWEST		ום ום:	ous i		IAT	ED	EMIS	ROIS	S			A 2008.07.2 MI 2009.8.2
E	MC		PUKI	003	TAD	IAI	כט						WI 2009.8.2
		Radical 7C+								W		MASI0057	
Seri	ial Number:	E00680 Masimo Corporation								Tor	Date: nperature:	05/05/10	
	Attendees:									Tel	Humidity:		
	Project:									Barome		1020.5mb	
		Jaemi Suh				F	ower:	120VAC/6	0Hz		Job Site:		
TEST S	PECIFICATI	ONS						Test Metho	od				
FCC 15.	.407:2010							ANSI C63.	10:2009				
	ARAMETER												
	a Height(s)	(m) 1 - 4				Tes	t Dista	nce (m)	3				
COMME													
	el 48, Speed PERATING N												
	ransmit Mo												
DEVIAT	IONS FROM	TEST STANDARD											
	iations.												
Run#		13								1.0	į.		
	ıration #	1	1							year 12			
Results		Pass	Ī						Signature	10			
			•						<u> </u>				
	0.0												_
	0.0												
	10.0												
	-10.0												
	00.0												
	-20.0												
	00.0												†
NI.	-30.0												
Ÿ													
dBm/MHz	40.0												
È	-40.0												
<u> </u>													
_	50.0												
	-50.0												
	-60.0												
	-00.0												
	-70.0												
	-80.0 ⊥⊥												
		00 15710.000 15720	000 1573	30 000 15	7/10 000	1575) UUU	15760 000	0 15770 O	00 15700	000 1570	0 000 150 <i>0</i>	00 000
	13700.00	707 107 10.000 13720	1373	50.000 107	- 1 0.000	MI		137 30.00	0 10//0.0	10700.	000 1019	0.000 1000	.0.000
	Freq		Azimuth	Height				Polarity	Detector	EIRP	EIRP	Spec. Limit	Compared Spec.
	rreq MHz)		(degrees)	(meters)				i olality	Detector	(Watts)	(dBm.MHz)	(dBm.MHz)	(dB)
()	719.030	<u> </u>	124.0	1.0		_1		H-Horn	PK	1.61E-08	-47.9	-27.0	-20.9
157			123.0	1.0				H-Horn	PK	1.54E-08	-48.1	-27.0	-21.1
	720.000							- '					
157	720.000 717.720		96.0	1.0				H-Horn	PK	1.17E-08	-49.3	-27.0	-22.3
157 157			96.0 106.0	1.0 1.0				H-Horn V-Horn	PK PK	1.17E-08 1.04E-08	-49.3 -49.8	-27.0 -27.0	-22.3 -22.8
157 157 157	717.720												

NORTHWE					,	SP	URI	Ol	JS	R/	٩DI	A	TE	ED	E۱	115	SSI	ON	IS					2008.07 I 2009.8
	EUT:	Rad	ical 7	'C+															V	Vork	Order:	MASI0	057	
Serial No																					Date:	05/05/1		
	tomer:			Corp	oratio	n													Те		ature:			
	ndees:		-																Davass		nidity:			
	roject: ted by:			ıh									Pο	wer.	120V	ΔC/6	0Hz		Barom			1020.5i	nb	
ST SPEC	IFICATI	ONS												WOI.	Test					00	onto.	0011		
C 15.407:	2010														ANSI	C63	.10:20	009						
ST PARA				4	1							To	o4 [Diete	200 (1	2)		1						
enna Hei		(m)		1 -	4							1 e	est L	Jista	nce (r	n)		1						
T OPERA 1. Trans	TING M	IODI de	ES		DARD																			
deviation		115	31 31	AINL	AKD																			
n #				18															Dear In					
nfiguratio	on #			1															Jan					
ults			F	ass													Sigr	nature						
80.																								
70. 60.																								
50.																					•			
W//WB 40.	0																				*			
ਰ 30.	0																							
20.	0																							
10.	0																							
0.	.0 ↓												-											_
:	20700				20750)		2	0800				208 MH				20	900		20	950		2	1000
Freq (MHz)			plitude BuV)		Factor (dB)		Azimuth legrees)		leight neters)		istance meters)		Exter ttenu (dE	ation	Pola	arity	De	tector	Distance Adjustment (dB)		ljusted known units	Spec. Li unknov units	mit	ompare Spec (dB)

Freq (MHz)	Amplitude (dBuV)	Factor (dB)	Azimuth (degrees)	Height (meters)	Distance (meters)	Attenuation (dB)	Polarity	Detector	Adjustment (dB)	Adjusted unknown units	Spec. Limit unknown units	Spec. (dB)	i l
20719.78	41.2	0.3	19.0	1.0	1.0	0.0	H-High Horr	AV	0.0	41.5	54.0	-12.5	
20959.83	38.0	0.3	20.0	1.0	1.0	0.0	H-High Horr	AV	0.0	38.3	54.0	-15.7	
20960.17	37.2	0.3	204.0	1.0	1.0	0.0	√-High Horr	AV	0.0	37.5	54.0	-16.5	
20719.83	36.0	0.3	203.0	1.0	1.0	0.0	√-High Horr	AV	0.0	36.3	54.0	-17.7	
20961.08	54.4	0.3	20.0	1.0	1.0	0.0	H-High Horr	PK	0.0	54.7	74.0	-19.3	
20952.17	49.2	0.3	204.0	1.0	1.0	0.0	√-High Horr	PK	0.0	49.5	74.0	-24.5	
20719.83	49.0	0.3	203.0	1.0	1.0	0.0	√-High Horr	PK	0.0	49.3	74.0	-24.7	
20722.53	48.2	0.3	19.0	1.0	1.0	0.0	H-High Horr	PK	0.0	48.5	74.0	-25.5	

																									P	SA 200	08.07.21
	RTHWEST				5	SPI	JR	10	US	SF	R A	۱D	ΙA	TE	ΞD	E	MIS	SS	101	NS							009.8.29
	MC	Radi	L 70						Ĭ									_				Manla	Order	laga.	21005	,	
Seri	al Number			,+																	<u> </u>	VOIK	Date				
	Customer			orpor	ation	1															Te	empe	rature	21.7	,		
	Attendees																						midity				
	Project Tested by													Do	wor.	120	VAC/	n⊔-	,		Baron		Pres. b Site				
TEST S	PECIFICAT		ii Suii											FU	wei.		t Meth					30	D Site	. JOC			
FCC 15.	407:2010															ANS	SI C63	3.10::	2009								
	ARAMETE																										
Antenna COMME	a Height(s)	(m)		1 - 4									T	est [Dista	nce	(m)			1							
EUT OP Ant 1. T DEVIAT	PERATING Transmit Mo	MODE ode	S		RD																						
No devi	ations.			_																							
Run#	wation #			8 1		-														4	and	1					
Results	ıration #			ISS		-												C:	~~~4	-16							
Results			га	133														SI	gnatur	е							
	0.0																										
	-10.0																										
	-20.0																										
¥	-30.0																										
dBm/MHz	-40.0																										
쁑	-50.0		•																				•				
	-60.0																										
	-70.0																										
	-80.0 2070	<u> </u>		2	0750	<u> </u>			208	00				209	350				20900			20	950			210	000
	2010	J		2	0130	,			200					MI				2	.0300			۷(,330			۷ ۱۱	,,,,
(1	Freq MHz) 961.08					(de	imuth grees)		Heigh (meter	s)							olarity gh Ho		PK	(1	EIRP Watts)	(dB	EIRP m.MHz) 40.5	(dBr	c. Limit m.MHz) 27.0	S	pared to spec. (dB)
20 ⁹	952.17 719.83 722.53					20	04.0 03.0 9.0		1.0 1.0 1.0							V-Hiq V-Hiq	gh Ho gh Ho gh Ho	rr rr	PK PK PK	2.6 2.5	67E-08 55E-08 12E-08	} - } -	45.7 45.9 46.7	-2 -2	27.0 27.0 27.0	 	18.7 18.9 19.7

NORTHWEST				5	PURI	OUS	RADI	ATED	EMIS	SION	S			A 2008. MI 2009
	EUT:	Radic	al 7C-	+							W	ork Order:	MASI0057	
Serial Nun	nber:	E0068	30										05/05/10	
			по Со	rporation							Ter	nperature:		
		None									_	Humidity:		
		None Jaem	Cub					Dower	120VAC/60	ш-	Barome	Job Site:	1020.5mb	
ST SPECIF			Sun					Power	Test Metho			Job Site:	OCTI	
C 15.407:20									ANSI C63.1					
ST PARAM														
tenna Heig MMENTS	ht(s)	(m)	ľ	1 - 4				Test Dista	ance (m)	3	}			
annel 149,	Spee	d 6 mb	ps											
T OPERAT t 2. Transm VIATIONS	it Mo	de		NDARD										
deviations		r IEO												
n #			20								New St			
onfiguration	#		1		1						1			
sults			Pas	ss						Signature				
80.0														_
30.0														
														+
70.0														-
60.0	-													-
														†
50.0	•												+ +	1
E	•													
W//ngp														
40.0	•													1
쁑														
30.0	_													
30.0														
20.0	1													-
10.0	1													1
0.0														
0.0				10555		4			.00.00-		.=			_
1550	0.00	U		16500.	000	17500	0.000	185	00.000	19	9500.000		20500.000	
								MHz						
Freq		Ampli	tude	Factor	Azimuth	Height	Distance	External Attenuation	Polarity	Detector	Distance Adjustment	Adjusted	Spec. Limit	Compa Spe
(MHz)		(dBu		(dB)	(degrees)	(meters)	(meters)	(dB)			(dB)	dBuV/m	dBuV/m	(dl
20719.780		41.		0.3	0.0	1.2	3.0	0.0	√-High Horr	AV	0.0	41.6	54.0	-12
20719.780		41.		0.3	0.0	1.2	3.0	0.0	H-High Horr	AV	0.0	41.5	54.0	-12
15538.950		34.		3.3	122.0	1.0	3.0	0.0	H-Horn	AV	0.0	38.2	54.0	-15
15541.820 15543.040		30. 47.		3.3 3.3	101.0 122.0	1.0 1.0	3.0 3.0	0.0 0.0	V-Horn H-Horn	AV PK	0.0 0.0	33.6 50.8	54.0 74.0	-20 -23
20719.780		50.		0.3	0.0	1.2	3.0	0.0	√-High Horr	PK	0.0	50.5	74.0	-23
20719.780		49.		0.3	0.0	1.2	3.0	0.0	H-High Horr		0.0	50.1	74.0	-23

49.8 41.9

0.3 3.3

0.0 101.0

1.2

3.0

20719.780 15540.920

PK PK

0.0

0.0

V-High Horr H-High Horr V-Horn

74.0 74.0

-23.9 -28.8

50.1 45.2

NORTHWEST				CDI	IDI		C [3 A F	SLA:) E	MIC	CION	10			A 2008.07.
EMC				5 P(UKI	υu	5 i	KAL	JIA	IE	JE	WII 5	SION	15		E	MI 2009.8.
	EUT: Ra	dical 7C	+											1	Nork Order:	MASI0057	
Serial Nun																05/05/10	
	mer: Ma		rporation	on										T	emperature		
	lees: No													D	Humidity		
	ject: No d by: Ja									Daw	120	VAC/60	\U-	Baron	netric Pres.: Job Site:		
ST SPECIF										Powe		t Metho			Job Site:	00011	
C 15.407:20													10:2009				
ST PARAM																	
tenna Heigl	ht(s) (m)		1 - 4						Te	est Dis	stance	(m)	3	3			
OMMENTS nannel 149, s	ING MOD																
t 2. Transm VIATIONS deviations	FROM TE	ST STA	NDARD														
ın #		20												Charle	2		
onfiguration	#	1		_										1			
sults		Pas	ss										Signature				
-10.0																	
-20.0																	
-30.0 PHW/wgp -40.0																	
£ -40.0	1.																
-50.0	•																
-60.0																	
-70.0																	
-80.0 1550	00.000		1650	0.000		1	7500	0.000			8500.0	000	1	9500.000		20500.000	
										ИHz						<u> </u>	Compared
Freq (MHz) 15543.040				(de	zimuth egrees) 22.0	Heig (mete	ers) O				H-	olarity ·Horn	Detector	EIRP (Watts) 3.61E-08		Spec. Limit (dBm.MHz)	Spec. (dB) -17.4
20719.780 20719.780 15540.920)				0.0 0.0 01.0	1.: 1.: 1.0	2				H-Hi	gh Horr gh Horr Horn		3.37E-08 3.07E-08 9.93E-09	3 -45.1	-27.0 -27.0 -27.0	-17.7 -18.1 -23.0

SPURIOUS RADIATED EMISSIONS

SPURIOUS RADIATED EMISSIONS

AC POWERLINE CONDUCTED EMISSIONS

Testing was performed using the mode(s) of operation and configuration(s) noted within the report. The individuals and/or the organization requesting the test provided the modes, configurations and settings used to complete the evaluation. The actual test parameters are specified in the test data, this includes items such as investigated frequency range (scanned) and test levels. The testing methods and performance specifications, as well as the test site used for the evaluation are indicated in the test data.

CHANNELS INVESTIGATED

Channel 36, 5180 MHz

Channel 48, 5240 MHz

DATA RATES INVESTIGATED

6 Mbps

POWER SETTINGS INVESTIGATED

120V/60Hz

CONFIGURATIONS INVESTIGATED

MASI0057-1

SAMPLE CALCULATIONS

Conducted Emissions: Adjusted Level = Measured Level + Transducer Factor + Cable Attenuation Factor + External Attenuator

TEST EQUIPMENT					
Description	Manufacturer	Model	ID	Last Cal.	Interval
LISN	Solar	9252-50-24-BNC	LIA	4/29/2009	13 mo
Attenuator	Pasternack	6N10W-20	AWC	1/27/2010	13 mo
High Pass Filter	TTE	H97-100K-50-720B	HFP	3/8/2010	13 mo
OC06 Cables	N/A	CE Cables	OCM	3/8/2010	13 mo
Receiver	Rohde & Schwarz	ESCI	ARF	3/30/2010	13 mo

EASUREMENT BANDV	VIDTHS			
Fre	quency Range	Peak Data	Quasi-Peak Data	Average Data
	(MHz)	(kHz)	(kHz)	(kHz)
	0.01 - 0.15	1.0	0.2	0.2
	0.15 - 30.0	10.0	9.0	9.0
	30.0 - 1000	100.0	120.0	120.0
	Above 1000	1000.0	N/A	1000.0
Measure	ments were made usir	ng the bandwidths and dete	ctors specified. No video filte	r was used.

MEASUREMENT UNCERTAINTY

A measurement uncertainty estimation has been performed for each test per our internal quality document WP 342. The estimation is used to compare the measured result with its "true" or theoretically correct value. The expanded measurement uncertainty for radiated emissions measurements is less than +/- 4 dB, and for conducted emissions measurements is less than +/- 2.7 dB. Our measurement data meets or exceeds the measurement uncertainty requirements of CISPR 16-4; therefore, the test data can be compared directly to the specification limit to determine compliance. The calculations for measurement uncertainty are available upon request.

TEST DESCRIPTION

Using the mode of operation and configuration noted within this report, conducted emissions tests were performed. The frequency range investigated (scanned), is also noted in this report. Conducted power line measurements are made, unless otherwise specified, over the frequency range from 150 kHz to 30 MHz to determine the line-to-ground radio-noise voltage that is conducted from the EUT power-input terminals that are directly (or indirectly via separate transformer or power supplies) connected to a public power network. Equipment is tested with power cords that are normally used or that have electrical or shielding characteristics that are the same as those cords normally used. Typically those measurements are made using a LISN (Line Impedance Stabilization Network), the 500hm measuring port is terminated by a 500hm EMI meter or a 500hm resistive load. All 500hm measuring ports of the LISN are terminated by 500hm.

0.534

10.7

20.1

30.8

56.0

-25.2

0.534

10.7

20.1

30.8

46.0

-15.2

Quasi Peak Data - vs - Quasi Peak Limit

Average	Data - vs -	Average	Limit

Freq (MHz)	Amplitude (dBuV)	Factor (dB)	Adjusted (dBuV)	Spec. Limit (dBuV)	Compared to Spec. (dB)		Freq (MHz)	Amplitude (dBuV)	Factor (dB)	Adjusted (dBuV)	Spec. Limit (dBuV)	Compared to Spec. (dB)
25.422	14.0	21.3	35.3	60.0	-24.7	·	25.422	9.6	21.3	30.9	50.0	-19.1
23.454	12.3	21.3	33.6	60.0	-26.4		24.532	2.4	21.4	23.8	50.0	-26.2
24.532	11.8	21.4	33.2	60.0	-26.8		23.454	1.8	21.3	23.1	50.0	-26.9
22.928	10.9	21.3	32.2	60.0	-27.8		22.928	1.3	21.3	22.6	50.0	-27.4
1.168	0.4	20.1	20.5	56.0	-35.5		1.168	-4.6	20.1	15.5	46.0	-30.5
0.769	-0.8	20.1	19.3	56.0	-36.7		0.769	-5.2	20.1	14.9	46.0	-31.1

Fre (MH		Factor (dB)	Adjusted (dBuV)	Spec. Limit (dBuV)	Compared to Spec. (dB)		Freq (MHz)	Amplitude (dBuV)	Factor (dB)	Adjusted (dBuV)	Spec. Limit (dBuV)	Compared to Spec. (dB)
24.0	20 24.4	21.4	45.8	60.0	-14.2	_	24.020	24.4	21.4	45.8	50.0	-4.2
23.6	00 24.0	21.3	45.3	60.0	-14.7		23.600	24.0	21.3	45.3	50.0	-4.7
22.9	00 23.9	21.3	45.2	60.0	-14.8		22.900	23.9	21.3	45.2	50.0	-4.8
23.3	20 23.9	21.3	45.2	60.0	-14.8		23.320	23.9	21.3	45.2	50.0	-4.8
24.8	40 23.7	21.3	45.0	60.0	-15.0		24.840	23.7	21.3	45.0	50.0	-5.0
23.7	20 23.5	21.3	44.8	60.0	-15.2		23.720	23.5	21.3	44.8	50.0	-5.2
24.7	90 23.2	21.3	44.5	60.0	-15.5		24.790	23.2	21.3	44.5	50.0	-5.5
24.5	70 23.1	21.4	44.5	60.0	-15.5		24.570	23.1	21.4	44.5	50.0	-5.5
24.9	30 23.1	21.3	44.4	60.0	-15.6		24.980	23.1	21.3	44.4	50.0	-5.6
22.7	50 22.7	21.3	44.0	60.0	-16.0		22.750	22.7	21.3	44.0	50.0	-6.0
23.9	30 22.5	21.4	43.9	60.0	-16.1		23.930	22.5	21.4	43.9	50.0	-6.1
24.2	30 22.5	21.4	43.9	60.0	-16.1		24.280	22.5	21.4	43.9	50.0	-6.1
26.0	30 22.1	21.3	43.4	60.0	-16.6		26.030	22.1	21.3	43.4	50.0	-6.6
25.4	10 21.8	21.3	43.1	60.0	-16.9		25.410	21.8	21.3	43.1	50.0	-6.9
21.0	60 21.7	21.2	42.9	60.0	-17.1		21.060	21.7	21.2	42.9	50.0	-7.1
22.1	70 21.6	21.3	42.9	60.0	-17.1		22.170	21.6	21.3	42.9	50.0	-7.1
5.97	0 22.5	20.3	42.8	60.0	-17.2		5.970	22.5	20.3	42.8	50.0	-7.2
20.4	00 21.6	21.2	42.8	60.0	-17.2		20.400	21.6	21.2	42.8	50.0	-7.2
20.7	40 21.6	21.2	42.8	60.0	-17.2		20.740	21.6	21.2	42.8	50.0	-7.2
21.5	90 21.5	21.3	42.8	60.0	-17.2		21.590	21.5	21.3	42.8	50.0	-7.2

AC Powerline Conducted Emissions

