Feuille d'exercice n°1

Solutions des exercices

Exercice 1.

1) Soit $r \in \mathbf{R}$ et

$$f: \begin{cases} \mathbf{R} \longrightarrow \mathbf{R} \\ t \mapsto e^{rt} \end{cases}$$

Alors f est deux fois dérivable, et pour $t \in \mathbf{R}$,

$$\begin{cases} f'(t) = re^{rt} \\ f''(t) = r^2 e^{rt} \end{cases}$$

Donc f est solution de y''-2y'+y=0 si et seulement si, pour tout $t \in \mathbb{R}$, $(r^2-2r+1)e^{rt}=0$, c'est à dire r=1.

Donc une solution de (E) est donnée par $t \mapsto e^t$.

2) Soit $\varphi: J \to \mathbf{R}$ une solution de (E); c'est-à-dire :

 $\begin{cases} I \text{ est un intervalle non-vide, non réduit à un point} \\ \varphi \text{ est deux fois dérivable} \\ \forall t \in J, \ \varphi''(t) - 2\varphi'(t) + \varphi(t) = 0 \end{cases}$

Soit:

$$g: \begin{cases} J \longrightarrow \mathbf{R} \\ t \mapsto \varphi(t)e^{-t} \end{cases}$$

g est deux fois dérivable (car φ l'est) et pour tout $t \in J$,

$$\begin{cases} g'(t) = \varphi'(t)e^{-t} - \varphi(t)e^{-t} \\ g''t() = 0 \end{cases}$$

Or, si g'' = 0 sur J un intervalle, alors il existe $\lambda, \mu \in \mathbf{R}$ tels que pour tout $t \in J$, $g(t) = \lambda t + \mu$.

Ainsi, pour tout $t \in J$, $\varphi(t) = (\lambda t + \mu)e^t$ et φ est restriction à J de

$$\phi_{\lambda,\mu}: \begin{cases} \mathbf{R} \longrightarrow \mathbf{R} \\ t \mapsto (\lambda t + \mu) e^t \end{cases}$$

Réciproquement, pour $\lambda, \mu \in \mathbf{R}$, $\phi_{\lambda,\mu}$ est solution de μ . (vérification directe) Finalement, les solutions maximales de (E) sont les $\phi_{\lambda,\mu}$.

Remarque: Toutes les autres solutions sont des restrictions de celles-çi.

Exercice 2.

1)

(S):
$$\begin{cases} y' = |t|^{2/3} \\ y(0) = 0 \end{cases} \iff \begin{cases} y' = f(t, y) \\ y(0) = 0 \end{cases}$$

Nous allons utiliser le *Théorème de* CAUCHY-LIPSCHITZ, *première version*. Il est clair que f est continue, de plus

$$\forall t \in \mathbf{R}, \ \forall x, y \in \mathbf{R} \ |f(t, x) - f(t, y)| = ||t|2/3| - |t^{2/3}|| = 0 \le 1 \times |x - y|$$

et f est globalement lipschitzienne par rapport à la seconde variable.

Donc (*S*) rendre dans le cadre du théorème. Ainsi, (*S*) admet une unique solution maximale et cette solution est définie sur **R**.

- 2) Notons $\varphi : \mathbf{R} \longrightarrow \mathbf{R}$ la solution maximale de (S). ALors φ est dérivable et pour tout $t \in \mathbf{R}$, $\varphi'(t) = |t|^{2/3}$ et $\varphi(0) = 0$. Nous allons distinguers plusieurs cas :
 - Si t > 0, alors $\varphi'(t) = t^{2/3}$ et donc $\varphi(t) = \frac{3}{5}t^{5/3} + c$, avec la condition initiale (en prenant la limite à droite), on trouve c = 0.
 - Si t < 0, alors $\varphi'(t) = (-t)^{2/3}$ et de la même façon, on trouve $\varphi(t) = -\frac{36}{(}-t)^{5/3}$ Ainsi,

$$\varphi(t) = \begin{cases} \frac{3}{5}t^{5/3} & \text{si } t > 0\\ 0 & \text{si } t = 0\\ -\frac{3}{5}(-t)^{5/3} & \text{si } t < 0 \end{cases}$$

Exercice 3.

(S):
$$\begin{cases} y' = |y| + |t| = f(t, y) \\ y(0) = 0 \end{cases}$$

Alors f est continue et globalement lipschitzienne par rapport à la seconde variable par l'inégalité triangulaire, donc, pas CL, S) admet une unique solution maximale et cette solution est définie sur \mathbf{R} . Notons la φ . Alors φ est dérivable, $\varphi(0) = 0$ et, pour tout réel t, $\varphi'(t) = \varphi(t)|+|t|$. De plus, $\varphi'(t) \ge 0$, donc φ est croissante, or $\varphi(0) = 0$, ainsi

$$\begin{cases} \varphi \ge 0 \text{ sur } [0, +\infty[\\ \varphi \le 0 \text{ sur }] -\infty, 0[\end{cases}$$

Distinguons les deux cas.

— Sur $[0,+\infty[$:

 $\forall t \ge 0$, $\varphi'(t) = \varphi(t) + t$, donc φ est solution sur $[0, +\infty[$ de $\gamma' - \gamma = t (E_+)$.

Or, les solutions maximales de (E_+) sont les

$$\phi_{\lambda}: \begin{cases} \mathbf{R} \longrightarrow \mathbf{R} \\ t \mapsto -t - 1 + \lambda e^{t} \end{cases}$$

Recherche d'une solution particulière :

On a: a(t) = -1, donc A(t) = -t et $e^{-A(t)} = e^{t}$ et b(t) = t.

$$\int b(t)e^{A(t)}dt = \dots = -(t+1)e^{-t}$$

Donc $e^{(t+1)}e^{-t}e^{-A(t)} = -t-1$ est solution particulière.

Ainsi, il existe un réel λ tel que $\varphi = \phi_{\lambda|[0,+\infty[}$, c'est-à-dire, pour tout $t \in [0, = \infty[$, $\varphi(t) = -\gamma - 1 + \lambda e^t$.

Or $0 = \varphi(0) = \lambda - 1$ donc $\lambda = 1$. donc sur $[0, +\infty[, \varphi(t) = -t - 1 + e^t]$.

— Sur $]-\infty,0]$;

Par le même raisonnement, on trouve $\varphi(t) = -t + 1 - e^{-t}$. À faire au moins une fois!

Exercice 4.

- 1) C'est une vérification directe.
- 2) Si (*S*) entrait dans le cadre du théorème, alors il aurait une unique solution maximale. Or l'identité est une autre solution maximale.
- 3) Commençons par un rapport de cours. Soit $F : \mathbf{R} \to \mathbf{R}$ une fonction. Si $\varphi(t)$ est solution de y' = F(y), alors pour tout réel $a, t \to \varphi(t+a)$ est également solution. En effet :

$$(\varphi(t+1))' = \varphi'(t+a) = F(\varphi(t+a))$$

Pour $a \ge 0$, considérons :

$$\phi_a : \begin{cases} \mathbf{R} \longrightarrow \mathbf{R} \\ t \mapsto \phi_a(t) = \begin{cases} 0 \text{ si } t \leq a \\ \left(\frac{t-a}{3}\right) \text{ si } t > a \end{cases}$$

Rappel: Soit $f:I\to I$, I un intervalle et $a\in I$. On suppose que f est continue sur I, dérivable (resp \mathscr{C}^1) sur $I\setminus\{a\}$ et que f' possède une limite finie en a. ALors f est dérivable (resp \mathscr{C}^1) sur $I\setminus\{a\}$ et f'(a)=l

Dans notre cas, on peut vérifier assez facilement (distinguer les cas autour de a) que ϕ_a est continue sur \mathbf{R} , \mathscr{C}^1 sur $\mathbf{R} \setminus \{a\}$ et que pour tout $t \in \mathbf{R} \setminus \{a\}$, $\phi_a(t) = 0$ si t < a et $\left(\frac{t-a^2}{3}\right)$ si t > a. De plus, $\phi_a'(t)$ tend vers 0 en a. Donc ϕ_a est \mathscr{C}^1 sur \mathbf{R} et on vérifie aisément que $\phi_a(0) = 0$ et que ϕ_a vérifie le système. La conclusion suit.

Exercice 5.

1) Le système équivaut à (après simples vérifications) :

(S):
$$\begin{cases} y' + \frac{2t+1}{1+t+t^2}y = 1+t+t^2\\ y(0) = 0 \end{cases}$$

2) Soit

$$\psi: t \in \mathbf{R} \longrightarrow \frac{\frac{t^5}{5} + \frac{t^4}{2}}{1 + t + t^2} = t$$

Alors ψ est dérivable sur **R** et pour tout $t \in \mathbf{R}$,

$$(1+t+t^2)\psi'(t) = (2t+1)\psi(t) = \left((1+t+t^2)\psi(t)\right)' = \dots = (1+t+t^2)^2$$

Donc ψ est solution du système.

3) Puis que l'équation différentielle est linéaire du premier degré, le système admet une unique solution maximale. C'est-à-dire ψ .

Exercice 6.

$$Y = \begin{pmatrix} x \\ y \end{pmatrix} \quad Y' = \begin{pmatrix} -4x - 2y + 2e^t \\ 6x + 3y62e^t \end{pmatrix}$$

Donc Y' = AY + b(t) où:

$$A = \begin{pmatrix} -4 & -2 \\ 6 & 3 \end{pmatrix} \in \mathcal{M}_2(\mathbf{R})$$
$$\left(\mathbf{R} \to \mathbf{R}^2 \right)$$

$$b: \begin{cases} \mathbf{R} \to \mathbf{R}^2 \\ t \mapsto b(t) = \begin{pmatrix} 2e^t \\ -2e^t \end{pmatrix} \end{cases}$$

Puisque b est continue, l'ensemble des solutions (maximales) de Y' = AY + b(t) est un espace affine de dimension 2.

2) Indication: Il faut déterminer (au brouillon) une solution de la forme

$$\begin{cases} x(t) = \alpha e^t \\ y(t) = \beta e^t \end{cases}$$

On en déduit que $\psi: t \to \begin{pmatrix} 0 \\ e^t \end{pmatrix}$ est une solution particulière car :

$$-\psi\in\mathscr{C}^1$$

$$-- A\psi(t) + b(t) = \psi'(t)$$

3) Les solutions maximales de Y' = AY + b(t) sont les

$$\begin{cases} R \longrightarrow \mathbf{R} \\ t \mapsto \psi(t) + e^{tA} X_0 \end{cases}$$

Calculons e^{tA} . A est diagonalisable, on peut montrer que $e^{tA} = Pe^{\begin{pmatrix} 0 & 0 \\ 0 & -t \end{pmatrix}}P^{-1}$ et on calcule

$$e^{tA}X_0 = \begin{pmatrix} -3a - 2b + (4a + 2b)e^{-t} \\ 6a + 4b - (6a + 3b)e^{-t} \end{pmatrix}$$

Ainsi, les solutions maximales du systèmes sont :

$$\psi_{a,b}: \begin{cases} \mathbf{R} \longrightarrow \mathbf{R}^2 \\ t \mapsto \begin{pmatrix} -3a - 2b + (4a + 2b)e^{-t} \\ 6a + 4b - (6a + 3b)e^{-t} \end{pmatrix} \end{cases}$$

Exercice 7. Notons $Y = \begin{pmatrix} x \\ y \end{pmatrix}$. ALors

$$(S) \iff Y' = AY + b \begin{pmatrix} 4 & 3 \\ 3 & -4 \end{pmatrix} b = \begin{pmatrix} -7 \\ 1 \end{pmatrix}$$

Remarque : A et b ne dépendant pas de t. On peut déterminer une solution particulière constance égale à C :

$$0 = AC + b \iff AC = -b \iff C = -A^{-1}b$$

On remarque que A est bien inversible. L'application $\psi:t\mapsto c\in\mathbf{R}^2$ est solution particulière de (S) (vérification).

Si
$$C = \begin{pmatrix} \alpha \\ \beta \end{pmatrix}$$
 est solution de $AC = -b$ donc $\alpha = \beta = 1$.

ENsuite, on calcule e^{tA} et on a l'ensemble des solutions maximales.