

(An Autonomous Institution)

Regulations: A17

Code No: 6HC18 Date: 11-Aug-zuzs (দ মে)
B.Tech II-Year II- Semester External Examination, Aug - 2023 (Supplementary)

PROBABILITY AND STATISTICS (CIVIL, EEE, ME, CSE, IT and BT)

Time: 3 Hours Max.Marks:75

Note: a) No additional answer sheets will be provided.

- b) All sub-parts of a question must be answered at one place only, otherwise it will not be valued.
- c) Missing data can be assumed suitably.

Bloom's Cognitive Levels of Learning (BCLL)

		•			
Remember	L1	Apply	L3	Evaluate	L5
Understand	L2	Analyze	L4	Create	L6

Part - A Max.Marks:25

ANSWER ALL QUESTIONS

ANOTHER ALL GOLDHOIT												
1	State properties of Axiomatic probability.									BCLL L1	CO(s) CO1	Marks [2M]
2	Suppose that X follows Binomial distribution with mean10 and variance 0.25.									L5	CO2	[2M]
	Find $P(X<3)$.											
3	State any five properties of Normal Distribution.										CO3	[2M]
4											CO4	[2M]
5	• •										CO5	[2M]
6	<u> </u>										CO6	[ME]
7	Find the correlation coefficient for the given data.									L5	CO1	[3M]
		Χ	-3	-2	-1	1	2	3				
		У	9	4	1	1	4	9				
8	B Derive the Mean of Poisson distribution.									L4	CO3	[3M]
9	Write formula for χ^2 test goodness of fit and t-test.								L1	CO5	[ME]	
10	,,								L2	CO2	[3M]	

Part – B Max.Marks:50 ANSWER ANY FIVE QUESTIONS. EACH QUESTION CARRIES 10 MARKS.

11.	a)	Suppose 5 men out of 100 and 25 women out of 10,000 are color blind. A	L2	CO(s)	Marks [5M]
	,	color blind person is chosen at random. What is the probability of the			
		person being a male? Assume male and female to be in equal numbers.			
	h)	$f(x) = x_1 x_1(2 - x_2) = 0 < x_1 < 2$	12	CO1	[5]

- b) Find Mean and Variance for $f(x) = y_0 x(2 x)$ $0 \le x \le 2$ and y_0 is L2 CO1 [5M] constant.
- 12. a) 20% of items produced from a factory are defective. Find the probability L5 CO2 [5M] that in a sample of 5 chosen at random (i) none is defective (ii) one is defective
 - (iii) at most 2 defective
 - b) In a sample of 1000 cases, the mean of a certain test is 14 and standard L4 CO2 [5M] deviation is 2.5. Assuming the distribution to be normal, Find
 - (i) how many students' score between 12 and 16
 - (ii) how many score above 17
 - (iii) how many score below 7?

13.		samples of population. (i) Mean of the (ii) S.D of the	size 2 where size 2 when size	hich can b on n ng distributio	ers 2, 3, 6, 8, 11 e drawn with r on of means of means		•	L3	CO3	[10M]
14.	a)	Find the consistion coefficient between x and y form the following data	X	55 56 58 35 38 38		62 45		L5	CO4	[5M]
	b)	Using methodata	od of least s		curve of the for		to the given	L4	CO4	[5M]
15.	a)	Ten 100kg Infollows. 11,14,13,12 Is there any	pags are ex 2,13,12,13,1 reason to b	amined. The 4,11,12. pelieve that	g of nitrate for one percentages of the machine is one at 5% level of the second secon	f nitrate per	bag are as	L3	CO5	[5M]
	b)	to test its effi	Drug No Drug Total sis of the	st typhoid. T Typhoid 200 280 480	00 people out of 3 he results are given No typhoid 300 20 320 we say that the	Total 500 300 800		L5	CO5	[5M]
16.	a) b)								CO6 CO6	[5M] [5M]
17.	a)	'A' can hit the target once in five shots. B can hit two targets in three shots. C can hit one target in four shots. What is the probability that 2 shots hit the target?						L3	CO1	[4M]
	b)	Poisson app (i) 4 fuses w	oroximation vill be defect	to determin tive in a ran	o an arsenal a e the probability dom sample of ² in a random sa	that 100		L3	CO2	[3M]
	c)	State centra	al limit theor	em.				L2	CO3	[3M]
18.	a)	Using method of least squares fit a straight line to the following data $ \begin{array}{c ccccccccccccccccccccccccccccccccccc$							CO4	[4M]
	b)			of hypothes	sis concerning serpretation of m	•		L1 L2	CO5 CO6	[3M] [3M]