

Claims

What is claimed is:

1. A compound having Formula II:

5 or pharmaceutically acceptable salts, stereoisomers, hydrates or pro-drugs thereof, wherein,

the ring formed by T, U, V is

Z is O, S, nitro, or NR₄;

10 R₁, R₂, or R₅ each independently is:

1) hydrogen, hydroxyl, halo, nitro, or cyano;

2) C₁-C₈ alkyl;

3) C₂-C₈ alkenyl;

4) C₂-C₈ alkynyl;

5) C₁-C₈ alkoxy;

6) C₃-C₈ cycloalkyl or heterocyclyl;

7) C₄-C₈ cycloalkylalkyl or heterocyclylalkyl;

8) C₃-C₁₀ aryl;

9) C₅-C₁₀ aralkyl;

20 10) C₆-C₁₀ aryloxy;

11) NH₂, NHR₇, or NR₇R₇; or

12) -SO₂R₇,

wherein R₇ is independently H, hydroxyl, halo, C₁-C₆ alkyl optionally substituted with at least one R₁₀, C₁-C₆ alkoxy optionally substituted with at least one R₁₀, C₃-C₈ cycloalkyl optionally substituted with at least one R₁₀, C₄-C₈ heterocycloalkyl optionally substituted with at least one R₁₀, C₃-C₁₀ aryl optionally substituted with at least one R₁₀, NH₂, NHR₁₀, NR₁₀R₁₀, or SO₂R₁₀, wherein R₁₀ is independently halo, cyano, nitro, C₁-C₄

alkyl, C₁-C₄ alkoxy, or NH₂; optionally, R₁ and R₂ taken together form a ring structure including cycloalkyl, heterocyclyl, or aryl ring;

R₃ is:

- 1) hydrogen;
- 2) C₁-C₈ alkyl;
- 3) C₂-C₈ alkenyl;
- 4) C₂-C₈ alkynyl;
- 5) C₁-C₈ alkoxy;
- 6) C₃-C₁₀ cycloalkyl or heterocyclyl;
- 7) C₄-C₁₀ cycloalkylalkyl or heterocyclylalkyl;
- 8) C₃-C₁₀ aryl;
- 9) C₄-C₁₀ aralkyl;
- 10) carbonyl; or
- 11) -SO₂R₈, -CO₂R₈, -SR₈, or -SOR₈;

wherein R₈ is independently H, halo, cyano, nitro, C₁-C₄ alkyl optionally substituted with at least one R₁₁, C₁-C₄ alkoxy optionally substituted with at least one R₁₁, C₃-C₈ cycloalkyl optionally substituted with at least one R₁₁, C₃-C₈ heterocyclyl optionally substituted with at least one R₁₁, C₆-C₁₀ aryl optionally substituted with at least one R₁₁, C₆-C₁₀ aralkyl optionally substituted with at least one R₁₁, NH₂, NHR₁₁, NR₁₁R₁₁, or SO₂R₁₁, wherein R₁₁ is independently halo, cyano, nitro, C₁-C₄ alkyl, C₁-C₄ alkoxy, C₆-C₁₀ aryl, C₃-C₈ aralkyl, C₃-C₈ heterocyclyl, or NH₂,

R₄ is:

- 1) hydrogen;
- 2) C₁-C₈ alkyl;
- 3) C₂-C₈ alkenyl;
- 4) C₂-C₈ alkynyl;
- 5) C₃-C₈ cycloalkyl or heterocyclyl;
- 6) C₄-C₈ cycloalkylalkyl or heterocyclylalkyl;
- 7) C₃-C₁₀ aryl;
- 8) C₅-C₁₀ aralkyl;
- 9) carbonyl; or
- 10) -SO₂R₁₂, or -SOR₁₂;

wherein R₁₂ is independently H, halo, cyano, nitro, C₁-C₆ alkyl optionally substituted with at least one R₁₃, C₁-C₄ alkoxy optionally substituted with at least one R₁₃,

C₃-C₈ cycloalkyl optionally substituted with at least one R₁₃, C₂-C₈ heterocyclyl
optionally substituted with at least one R₁₃, C₃-C₁₀ aryl optionally substituted with at least
one R₁₃, NH₂, NHR₁₃, NR₁₃R₁₃, or SO₂R₁₃, wherein R₁₃ is independently halo, cyano,
nitro, C₁-C₄ alkyl, C₁-C₄ alkoxy, C₃-C₉ aryl, C₃-C₈ heterocyclylalkyl, or NH₂; optionally,

5 R₃ and R₄ are taken together to form a C₄-C₆ heterocyclyl optionally substituted with R₁₃,
or aryl; and

R₆ is:

- 1) C₁-C₈ alkyl;
- 2) C₂-C₈ alkenyl;
- 10 3) C₂-C₈ alkynyl;
- 4) C₁-C₈ alkoxy;
- 5) C₃-C₁₀ cycloalkyl or heterocyclyl;
- 6) C₄-C₁₀ cycloalkylalkyl or heterocyclylalkyl;
- 7) C₄-C₁₀ aryl;
- 15 8) C₅-C₁₀ aralkyl; or
- 9) NH₂, NHR₉ or NR₉R₉,

wherein R₉ is independently hydroxyl, halo, nitro, C₁-C₆ alkyl optionally
substituted with at least one R₁₄, C₂-C₆ alkynyl optionally substituted with at least one
R₁₄, C₁-C₆ alkoxy optionally substituted with at least one R₁₄, C₃-C₁₀ cycloalkyl
20 optionally substituted with at least one R₁₄, C₂-C₈ heterocyclyl optionally substituted with
at least one R₁₄, C₄-C₈ cycloalkylalkyl optionally substituted with R₁₄, heterocyclylalkyl
optionally substituted with R₁₄, C₄-C₁₀ aryl optionally substituted with at least one R₁₄,
C₅-C₁₀ aralkyl optionally substituted with at least one R₁₄, -NH₂, -NHR₁₄, -NR₁₄R₁₄, or -
SO₂-R₁₄, wherein R₁₄ is independently halo, cyano, nitro, C₁-C₆ alkyl, C₁-C₆ alkoxy, C₄-
25 C₉ cycloalkyl, C₄-C₉ heterocycloalkyl, C₄-C₁₀ aryl, -SO₂(C₆-C₁₀ aryl), -NH₂, -NH[(C₁-C₄)
alkyl], -N[(C₁-C₄) alkyl]₂, -NH(C₅-C₈ heterocyclylalkyl), -NH(C₆-C₈ aryl), or -NH(C₆-C₈
heterocyclyl).

30 2. The compounds according to claim 1, wherein Z is O or NH.

3. The compounds according to claim 1, wherein R₁, R₂, or R₅ is substituted with
R₇, wherein R₇ is independently hydroxyl, halo, C₁-C₆ alkyl optionally substituted with at
least one R₁₀, C₁-C₆ alkoxy optionally substituted with at least one R₁₀, C₃-C₈ cycloalkyl

optionally substituted with at least one R₁₀, C₄-C₈ heterocycloalkyl optionally substituted with at least one R₁₀, C₃-C₁₀ aryl optionally substituted with at least one R₁₀, NH₂, NHR₁₀, NR₁₀R₁₀, or SO₂R₁₀, wherein R₁₀ is independently halo, cyano, nitro, C₁-C₄ alkyl, C₁-C₄ alkoxy, or NH₂.

5

4. The compounds according to claim 1, wherein R₁ and R₂ taken together form a ring structure including cycloalkyl, heterocyclyl or aryl rings.

5. The compound according to claim 1, wherein R₃ is substituted with R₈ wherein
10 R₈ is independently halo, cyano, nitro, C₁-C₄ alkyl optionally substituted with at least one R₁₁, C₁-C₄ alkoxy optionally substituted with at least one R₁₁, C₃-C₈ cycloalkyl optionally substituted with at least one R₁₁, C₃-C₈ heterocyclyl optionally substituted with at least one R₁₁, C₆-C₁₀ aryl optionally substituted with at least one R₁₁, C₆-C₁₀ aralkyl optionally substituted with at least one R₁₁, NH₂, NHR₁₁, NR₁₁R₁₁, or SO₂R₁₁, wherein R₁₁ is
15 independently halo, cyano, nitro, C₁-C₄ alkyl, C₁-C₄ alkoxy, C₆-C₁₀ aryl, C₃-C₈ aralkyl, C₃-C₈ heterocyclyl, or NH₂.

6. The compound according to claim 1, wherein R₄ is substituted with R₁₂ wherein R₁₂ is independently halo, cyano, nitro, C₁-C₆ alkyl optionally substituted with at
20 least one R₁₃, C₁-C₄ alkoxy optionally substituted with at least one R₁₃, C₃-C₈ cycloalkyl optionally substituted with at least one R₁₃, C₂-C₈ heterocyclyl optionally substituted with at least one R₁₃, C₃-C₁₀ aryl optionally substituted with at least one R₁₃, NH₂, NHR₁₃, NR₁₃R₁₃, or SO₂R₁₃, wherein R₁₃ is independently halo, cyano, nitro, C₁-C₄ alkyl, C₁-C₄ alkoxy, C₃-C₉ aryl, C₃-C₈ heterocyclylalkyl, or NH₂.

25

7. The compound according to claim 1, wherein R₆ is substituted with R₉ wherein R₉ is independently hydroxyl, halo, nitro, C₁-C₆ alkyl optionally substituted with at least one R₁₄, C₂-C₆ alkynyl optionally substituted with at least one R₁₄, C₁-C₆ alkoxy optionally substituted with at least one R₁₄, C₃-C₁₀ cycloalkyl optionally substituted with at least one R₁₄, C₂-C₈ heterocyclyl optionally substituted with at least one R₁₄, C₄-C₈ cycloalkylalkyl optionally substituted with R₁₄, heterocyclylalkyl optionally substituted with R₁₄, C₄-C₁₀ aryl optionally substituted with at least one R₁₄, C₅-C₁₀ aralkyl optionally substituted with at least one R₁₄, -NH₂, -NHR₁₄, -NR₁₄R₁₄, or -SO₂-R₁₄, wherein R₁₄ is independently halo, cyano, nitro, C₁-C₆ alkyl, C₁-C₆ alkoxy, C₄-C₉ cycloalkyl, C₄-C₉

C₃-C₈ cycloalkyl optionally substituted with at least one R₁₃, C₂-C₈ heterocyclyl
optionally substituted with at least one R₁₃, C₃-C₁₀ aryl optionally substituted with at least
one R₁₃, NH₂, NHR₁₃, NR₁₃R₁₃, or SO₂R₁₃, wherein R₁₃ is independently halo, cyano,
nitro, C₁-C₄ alkyl, C₁-C₄ alkoxy, C₃-C₉ aryl, C₃-C₈ heterocyclylalkyl, or NH₂; optionally,
5 R₃ and R₄ are taken together to form a C₄-C₆ heterocyclyl optionally substituted with R₁₃,
or aryl; and

R₆ is:

- 1) C₁-C₈ alkyl;
- 2) C₂-C₈ alkenyl;
- 10 3) C₂-C₈ alkynyl;
- 4) C₁-C₈ alkoxy;
- 5) C₃-C₁₀ cycloalkyl or heterocyclyl;
- 6) C₄-C₁₀ cycloalkylalkyl or heterocyclylalkyl;
- 7) C₄-C₁₀ aryl;
- 15 8) C₅-C₁₀ aralkyl; or
- 9) NH₂, NHR₉ or NR₉R₉,

wherein R₉ is independently hydroxyl, halo, nitro, C₁-C₆ alkyl optionally
substituted with at least one R₁₄, C₂-C₆ alkynyl optionally substituted with at least one
R₁₄, C₁-C₆ alkoxy optionally substituted with at least one R₁₄, C₃-C₁₀ cycloalkyl
20 optionally substituted with at least one R₁₄, C₂-C₈ heterocyclyl optionally substituted with
at least one R₁₄, C₄-C₈ cycloalkylalkyl optionally substituted with R₁₄, heterocyclylalkyl
optionally substituted with R₁₄, C₄-C₁₀ aryl optionally substituted with at least one R₁₄,
C₅-C₁₀ aralkyl optionally substituted with at least one R₁₄, -NH₂, -NHR₁₄, -NR₁₄R₁₄, or -
SO₂-R₁₄, wherein R₁₄ is independently halo, cyano, nitro, C₁-C₆ alkyl, C₁-C₆ alkoxy, C₄-
25 C₉ cycloalkyl, C₄-C₉ heterocycloalkyl, C₄-C₁₀ aryl, -SO₂(C₆-C₁₀ aryl), -NH₂, -NH[(C₁-C₄)
alkyl], -N[(C₁-C₄) alkyl]₂, -NH(C₅-C₈ heterocyclylalkyl), -NH(C₆-C₈ aryl), or -NH(C₆-C₈
heterocyclyl).

9. The compound according to claim 8, wherein Z is O or NR₄.

30 10. The compound according to claim 8, wherein R₁, R₂, or R₅ is substituted with
R₇ wherein R₇ is independently hydroxyl, halo, C₁-C₆ alkyl optionally substituted with at
least one R₁₀, C₁-C₆ alkoxy optionally substituted with at least one R₁₀, C₃-C₈ cycloalkyl
optionally substituted with at least one R₁₀, C₄-C₈ heterocycloalkyl optionally substituted

with at least one R_{10} , $C_3\text{-}C_{10}$ aryl optionally substituted with at least one R_{10} , NH_2 , NHR_{10} , $NR_{10}R_{10}$, or SO_2R_{10} , wherein R_{10} is independently halo, cyano, nitro, $C_1\text{-}C_4$ alkyl, $C_1\text{-}C_4$ alkoxy, or NH_2 .

5 11. The compound according to claim 8, wherein when taken together R_1 and R_2 form a ring structure including cycloalkyl, heterocyclyl, or aryl.

12. The compound according to claim 8, wherein R_3 is substituted with R_8 10 wherein R_8 is independently halo, cyano, nitro, $C_1\text{-}C_4$ alkyl optionally substituted with at least one R_{11} , $C_1\text{-}C_4$ alkoxy optionally substituted with at least one R_{11} , $C_3\text{-}C_8$ cycloalkyl optionally substituted with at least one R_{11} , $C_3\text{-}C_8$ heterocyclyl optionally substituted with at least one R_{11} , $C_6\text{-}C_{10}$ aryl optionally substituted with at least one R_{11} , $C_6\text{-}C_{10}$ aralkyl optionally substituted with at least one R_{11} , NH_2 , NHR_{11} , $NR_{11}R_{11}$, or SO_2R_{11} , wherein 15 R_{11} is independently halo, cyano, nitro, $C_1\text{-}C_4$ alkyl, $C_1\text{-}C_4$ alkoxy, $C_6\text{-}C_{10}$ aryl, $C_3\text{-}C_8$ aralkyl, $C_3\text{-}C_8$ heterocyclyl, or NH_2 .

13. The compound according to claim 8, wherein R_4 is substituted with R_{12} 20 wherein R_{12} is independently halo, cyano, nitro, $C_1\text{-}C_6$ alkyl optionally substituted with at least one R_{13} , $C_1\text{-}C_4$ alkoxy optionally substituted with at least one R_{13} , $C_3\text{-}C_8$ cycloalkyl optionally substituted with at least one R_{13} , $C_2\text{-}C_8$ heterocyclyl optionally substituted with at least one R_{13} , $C_3\text{-}C_{10}$ aryl optionally substituted with at least one R_{13} , NH_2 , NHR_{13} , $NR_{13}R_{13}$, or SO_2R_{13} , wherein R_{13} is independently halo, cyano, nitro, $C_1\text{-}C_4$ alkyl, $C_1\text{-}C_4$ alkoxy, $C_3\text{-}C_9$ aryl, $C_3\text{-}C_8$ heterocyclylalkyl, or NH_2 .

25 14. The compound according to claim 8, wherein R_6 is substituted with R_9 wherein R_9 is independently hydroxyl, halo, nitro, $C_1\text{-}C_6$ alkyl optionally substituted with at least one R_{14} , $C_2\text{-}C_6$ alkynyl optionally substituted with at least one R_{14} , $C_1\text{-}C_6$ alkoxy optionally substituted with at least one R_{14} , $C_3\text{-}C_{10}$ cycloalkyl optionally substituted with at least one R_{14} , $C_2\text{-}C_8$ heterocyclyl optionally substituted with at least one R_{14} , $C_4\text{-}C_8$ 30 cycloalkylalkyl optionally substituted with R_{14} , heterocyclylalkyl optionally substituted with R_{14} , $C_4\text{-}C_{10}$ aryl optionally substituted with at least one R_{14} , $C_5\text{-}C_{10}$ aralkyl optionally substituted with at least one R_{14} , $-NH_2$, $-NHR_{14}$, $-NR_{14}R_{14}$, or $-SO_2R_{14}$, wherein R_{14} is independently halo, cyano, nitro, $C_1\text{-}C_6$ alkyl, $C_1\text{-}C_6$ alkoxy, $C_4\text{-}C_9$ cycloalkyl, $C_4\text{-}C_9$

heterocycloalkyl, C₄-C₁₀ aryl, -SO₂(C₆-C₁₀ aryl), -NH₂, -NH[(C₁-C₄) alkyl], -N[(C₁-C₄) alkyl]₂, -NH(C₅-C₈ heterocyclalkyl), -NH(C₆-C₈ aryl), or -NH(C₆-C₈ heterocyclyl).

15. A method for treating cancer comprising administering a therapeutically
 5 effective amount of a compound of Formula II to a subject in need of such treatment,
 wherein the compound of Formula II has the formula:

or pharmaceutically acceptable salts, stereoisomers, hydrates or pro-drugs thereof,
 wherein,

the ring formed by T, U, V is

10

Z is O, S, nitro, or NR₄;

R₁, R₂, or R₅ each independently is:

- 1) hydrogen, hydroxyl, halo, nitro, or cyano;
 - 2) C₁-C₆ alkyl;
 - 3) C₂-C₆ alkenyl;
 - 4) C₂-C₆ alkynyl;
 - 5) C₁-C₆ alkoxy;
 - 6) C₃-C₈ cycloalkyl or heterocyclyl;
 - 7) C₄-C₈ cycloalkylalkyl or heterocyclalkyl;
 - 8) C₄-C₁₀ aryl;
 - 9) C₅-C₁₀ aralkyl;
 - 10) C₆-C₁₀ aryloxy;
 - 11) NH₂, NHR₇, or NR₇R₇; or
 - 12) -SO₂R₇,
- 25 wherein R₇ is independently H, hydroxyl, halo, C₁-C₄ alkyl optionally substituted with at least one R₁₀, C₁-C₄ alkoxy optionally substituted with at least one R₁₀, C₃-C₈ cycloalkyl optionally substituted with at least one R₁₀, C₄-C₈ heterocycloalkyl optionally

substituted with at least one R₁₀, C₆-C₁₀ aryl optionally substituted with at least one R₁₀, NH₂, NHR₁₀, NR₁₀R₁₀, or SO₂R₁₀, wherein R₁₀ is independently halo, cyano, nitro, C₁-C₄ alkyl, C₁-C₄ alkoxy, or NH₂, wherein when taken together R₁ and R₂ form a ring structure including heterocyclyl or aryl rings;

5 R₃ is:

- 1) hydrogen;
- 2) C₁-C₆ alkyl;
- 3) C₂-C₆ alkenyl;
- 4) C₂-C₆ alkynyl;
- 5) C₁-C₆ alkoxy;
- 6) C₃-C₁₀ cycloalkyl or heterocyclyl;
- 7) C₄-C₁₀ cycloalkylalkyl or heterocyclylalkyl;
- 8) C₄-C₁₀ aryl;
- 9) C₄-C₁₀ aralkyl;
- 10) carbonyl; or
- 11) -SO₂R₈, -CO₂R₈, -SR₈, or -SOR₈;

wherein R₈ is independently H, halo, cyano, nitro, C₁-C₄ alkyl optionally

substituted with at least one R₁₁, C₁-C₄ alkoxy optionally substituted with at least one R₁₁, C₃-C₈ cycloalkyl optionally substituted with at least one R₁₁, C₃-C₈ heterocyclyl

20 optionally substituted with at least one R₁₁, C₆-C₁₀ aryl optionally substituted with at least one R₁₁, C₆-C₁₀ aralkyl optionally substituted with at least one R₁₁, NH₂, NHR₁₁, NR₁₁R₁₁, or SO₂R₁₁, wherein R₁₁ is independently halo, cyano, nitro, C₁-C₄ alkyl, C₁-C₄ alkoxy, C₆-C₁₀ aryl, C₃-C₈ aralkyl, C₃-C₈ heterocyclyl, or NH₂,

R₄ is:

- 25 1) hydrogen;
- 2) C₁-C₆ alkyl;
- 3) C₂-C₆ alkenyl;
- 4) C₂-C₆ alkynyl;
- 5) C₃-C₈ cycloalkyl or heterocyclyl;
- 6) C₄-C₈ cycloalkylalkyl or heterocyclylalkyl;
- 7) C₄-C₁₀ aryl;
- 8) C₅-C₁₀ aralkyl;
- 9) carbonyl; or
- 10) -SO₂R₁₂, or -SOR₁₂;

wherein R₁₂ is independently H, halo, cyano, nitro, C₁-C₆ alkyl optionally substituted with at least one R₁₃, C₁-C₄ alkoxy optionally substituted with at least one R₁₃, C₃-C₈ cycloalkyl optionally substituted with at least one R₁₃, C₂-C₈ heterocyclyl optionally substituted with at least one R₁₃, C₆-C₁₀ aryl optionally substituted with at least one R₁₃, NH₂, NHR₁₃, NR₁₃R₁₃, or SO₂R₁₃, wherein R₁₃ is independently halo, cyano, nitro, C₁-C₄ alkyl, C₁-C₄ alkoxy, C₃-C₉ aryl, C₃-C₈ heterocyclylalkyl, or NH₂; and

5 R₆ is:

- 1) C₁-C₆ alkyl;
- 2) C₂-C₆ alkenyl;
- 10 3) C₂-C₆ alkynyl;
- 4) C₁-C₆ alkoxy;
- 5) C₃-C₈ cycloalkyl or heterocyclyl;
- 6) C₄-C₈ cycloalkylalkyl or heterocyclylalkyl;
- 7) C₄-C₁₀ aryl;
- 15 8) C₅-C₁₀ aralkyl; or
- 9) -NH₂, -NHR₉, or -NR₉R₉,

wherein R₉ is independently hydroxyl, halo, nitro, C₁-C₄ alkyl optionally substituted with at least one R₁₄, C₂-C₄ alkynyl optionally substituted with at least one R₁₄, C₁-C₄ alkoxy optionally substituted with at least one R₁₄, C₃-C₈ cycloalkyl optionally substituted with at least one R₁₄, C₂-C₈ heterocyclyl optionally substituted with at least one R₁₄, C₆-C₁₀ aryl optionally substituted with at least one R₁₄, C₅-C₁₀ aralkyl optionally substituted with at least one R₁₄, -NH₂, -NHR₁₄, -NR₁₄R₁₄, or -SO₂-R₁₄, wherein R₁₄ is independently halo, cyano, nitro, C₁-C₆ alkyl, C₁-C₆ alkoxy, C₄-C₉ cycloalkyl, C₆-C₁₀ aryl, C₄-C₉ heterocycloalkyl, -SO₂(C₆-C₁₀ aryl), NH₂, -NH[(C₁-C₄) alkyl], -N[(C₁-C₄) alkyl]₂, -NH(C₅-C₉ heterocyclylalkyl), -NH(C₆-C₈ aryl), or -NH(C₆-C₈ heterocyclyl) or a pharmaceutically acceptable salt, hydrate or pro-drug thereof, in combination with a pharmaceutically acceptable carrier.

16. The method according to claim 15, wherein Z is O or NH.

30

17. The method according to claim 15, wherein R₁, R₂, or R₅ is substituted with R₇ wherein R₇ is independently hydroxyl, halo, C₁-C₆ alkyl optionally substituted with at least one R₁₀, C₁-C₆ alkoxy optionally substituted with at least one R₁₀, C₃-C₈ cycloalkyl optionally substituted with at least one R₁₀, C₄-C₈ heterocycloalkyl optionally substituted

with at least one R₁₀, C₃-C₁₀ aryl optionally substituted with at least one R₁₀, NH₂, NHR₁₀, NR₁₀R₁₀, or SO₂R₁₀, wherein R₁₀ is independently halo, cyano, nitro, C₁-C₄ alkyl, C₁-C₄ alkoxy, or NH₂.

5 18. The method according to claim 15, wherein R₁ and R₂ taken together form a ring structure including cycloalkyl, heterocyclyl, or aryl.

10 19. The method according to claim 15, wherein R₃ is substituted with R₈ wherein R₈ is independently halo, cyano, nitro, C₁-C₄ alkyl optionally substituted with at least one R₁₁, C₁-C₄ alkoxy optionally substituted with at least one R₁₁, C₃-C₈ cycloalkyl optionally substituted with at least one R₁₁, C₃-C₈ heterocyclyl optionally substituted with at least one R₁₁, C₆-C₁₀ aryl optionally substituted with at least one R₁₁, C₆-C₁₀ aralkyl optionally substituted with at least one R₁₁, NH₂, NHR₁₁, NR₁₁R₁₁, or SO₂R₁₁, wherein R₁₁ is independently halo, cyano, nitro, C₁-C₄ alkyl, C₁-C₄ alkoxy, C₆-C₁₀ aryl, C₃-C₈ aralkyl, 15 C₃-C₈ heterocyclyl, or NH₂.

20 20. The method according to claim 15, wherein R₄ is substituted with R₁₂ wherein R₁₂ is independently halo, cyano, nitro, C₁-C₆ alkyl optionally substituted with at least one R₁₃, C₁-C₄ alkoxy optionally substituted with at least one R₁₃, C₃-C₈ cycloalkyl optionally substituted with at least one R₁₃, C₂-C₈ heterocyclyl optionally substituted with at least one R₁₃, C₃-C₁₀ aryl optionally substituted with at least one R₁₃, NH₂, NHR₁₃, NR₁₃R₁₃, or SO₂R₁₃, wherein R₁₃ is independently halo, cyano, nitro, C₁-C₄ alkyl, C₁-C₄ alkoxy, C₃-C₉ aryl, C₃-C₈ heterocyclylalkyl, or NH₂.

25 21. The method according to claim 15, wherein R₆ is substituted with R₉ wherein R₉ is independently hydroxyl, halo, nitro, C₁-C₆ alkyl optionally substituted with at least one R₁₄, C₂-C₆ alkynyl optionally substituted with at least one R₁₄, C₁-C₆ alkoxy optionally substituted with at least one R₁₄, C₃-C₁₀ cycloalkyl optionally substituted with at least one R₁₄, C₂-C₈ heterocyclyl optionally substituted with at least one R₁₄, C₄-C₈ cycloalkylalkyl optionally substituted with R₁₄, heterocyclylalkyl optionally substituted with R₁₄, C₄-C₁₀ aryl optionally substituted with at least one R₁₄, C₅-C₁₀ aralkyl optionally substituted with at least one R₁₄, -NH₂, -NHR₁₄, -NR₁₄R₁₄, or -SO₂-R₁₄, wherein R₁₄ is independently halo, cyano, nitro, C₁-C₆ alkyl, C₁-C₆ alkoxy, C₄-C₉ cycloalkyl, C₄-C₉

heterocycloalkyl, C₄-C₁₀ aryl, -SO₂(C₆-C₁₀ aryl), -NH₂, -NH[(C₁-C₄) alkyl], -N[(C₁-C₄) alkyl]₂, -NH(C₅-C₈ heterocyclalkyl), -NH(C₆-C₈ aryl), or -NH(C₆-C₈ heterocyclyl).

22. The method according to claim 15, wherein the dosage form is a tablet,
5 caplet, troche, lozenge, dispersion, suspension, suppository, solution, capsule, or patch.

23. The method according to claim 15, wherein the compound is administered in
about 0.001 mg/kg to about 100 mg/kg.

10 24. The method according to claim 15, wherein the compound is administered by
oral administration.