

Cristo Daniel Alvarado

23 de enero de 2025

Índice general

1. Modelos de geometría hiperbólica	2
Construcción del plano hiperbólico	2
Grupos Fuchsianos	4
Superfices de género g	8
Propieadades de los grupos Fuchsianos	9
Hiperbólicidad y δ -hiperbolicidad	10
1.5.1. Espacios Hiperbólicos	10
1.5.2. Hiperbolicidad de \mathbb{H}^2	11
1.5.3. Geodésicas	12

Capítulo 1

Modelos de geometría hiperbólica

§1.1 CONSTRUCCIÓN DEL PLANO HIPERBÓLICO

En esta sección se construirá un modelo del plano hiperbólico a partir de una variedad Riemanniana.

Definición 1.1.1 (Plano superior)

Escribimos:

$$H = \left\{ (x, y) \in \mathbb{R}^2 \middle| y > 0 \right\} \subseteq \mathbb{R}^2$$

para el **plano superior**.

Observación 1.1.1

Dependiendo del contexto, veremos a H como subconjunto de \mathbb{C} , haciendo las identificaciones:

$$H \to \left\{ z \in \mathbb{C} \middle| \Im z > 0 \right\}$$

con la aplicación biyectiva $(x, y) \mapsto x + iy$.

Definición 1.1.2 (Haz tangente)

Sea M una variedad C^k -diferenciable. El **fibrado tangente** o **haz tangente** es la unión disjunta de los espacios tangentes a cada punto de la variedad, dado por:

$$TM = \bigsqcup_{p \in M} T_p M = \bigcup_{p \in M} \{p\} \times T_p M$$

donde T_pM denota el espacio tangente a M en el punto $p \in M$.

Como el conjunto H es abierto y subconjunto de \mathbb{R}^2 , entonces este hereda la estructura de variedad suave de \mathbb{R}^2 . Además, como el haz tangente a $p \in \mathbb{R}^2$ es trivial, se sigue también que el haz tangente a H es trivial y por ende, podemos identificar de forma natural al espacio T_zH como el espacio tangente de $x \in H$.

Además, como $T_zH\cong\mathbb{R}^2$, haremos la identificación de estos dos espacios como el mismo.

Definición 1.1.3 (Métrica Riemanniana)

Una **métrica Riemanniana** en una variedad C^k -diferenciable M es una aplicación bilineal simétrica $g_p: T_pM \times T_pM \to \mathbb{R}$ en cada uno de los espacios tangentes T_pM de M.

Observación 1.1.2

De la definición anterior se sigue que para cada $p \in M$ se satisface:

- (1) $g_p(u,v) = g_p(v,u)$ para todo $u,v \in T_pM$.
- (2) $g_p(u, u) \ge 0$ para todo $u \in T_pM$.
- (3) $g_p(u, u) = 0$ si y sólo si u = 0.

Definición 1.1.4 (Plano Hiperbólico)

El plano hiperbólico \mathbb{H}^2 es la variedad Riemanniana (H, g_H) , donde:

- $H \subseteq \mathbb{R}^2$ hereda la estructura suave de \mathbb{R}^2 .
- Consideramos la métrica Riemanniana $g_{H,p}: T_pH \times T_pH = \mathbb{R}^2 \times \mathbb{R}^2 \to \mathbb{R}$ dada por:

$$g_{H,(x,y)}(u,v) = \frac{1}{y^2} \langle u, v \rangle, \quad \forall u, v \in \mathbb{R}^2$$

para todo $(x,y) \in H$, donde $\langle \cdot | \cdot \rangle$ denota el producto interno usual de \mathbb{R}^2 . Más aún, escribiremos $\langle \cdot | \cdot \rangle_{H,z}$ en vez de $g_{H,z}$ y a la norma inducida se le denotará por $\| \cdot \|_{H,z}$.

Nuestro interés ahora será hablar de las isometrías de \mathbb{H}^2 , para lo cual tendremos que construír una métrica en este espacio.

Definición 1.1.5 (Longitud hiperbólica de una curva)

Sea $\gamma:[a,b]\to H$ una curva suave. Se define la longitud hiperbólica de γ por:

$$L_{\mathbb{H}^2}(\gamma) = \int_a^b \|\dot{\gamma}(t)\|_{H,\gamma(t)} dt = \int_a^b \frac{\sqrt{\dot{\gamma_1}^2(t) + \dot{\gamma_2}^2(t)}}{\gamma_2(t)} dt$$

siendo $\gamma = (\gamma_1, \gamma_2)$.

Proposición 1.1.1

La función $d_H: H \times H \to \mathbb{R}_{\geq 0}$ dada por:

$$(z,z')\mapsto\inf\Big\{L_{\mathbb{H}^2}(\gamma)\Big|\gamma$$
 es una curva suave en H que une a z con $z'\Big\}$

es una métrica en H.

Demostración:

La simetría es inmediata, la desigualdad del triángulo se sigue de la definición.

Proposición 1.1.2

Sea $\gamma:[a,b]\to H$ una curva suave. Entonces:

$$L_{\mathbb{H}^2}(\gamma) = L_{(H,d_H)}(\gamma)$$

3

donde $L_{(H,d_H)}$ es llamada la **longitud métrica** y está dada por:

$$L_{(H,d_H)} = \sup \left\{ \sum_{j=0}^{k-1} d_H(\gamma(t_j), \gamma(t_{j+1})) \middle| k \in \mathbb{N}, t_0, t_1, ..., t_k \in [a, b], t_0 < t_1 < \dots < t_k \right\}$$

Conociendo la métrica de este espacio, nos interesa conocer ahora las geodésicas del mismo. Para ello, primero veremos quiénes son las isometrías de este espacio.

Definición 1.1.6 (Grupo de isometrías Riemanniano)

Una isometría Riemanniana de \mathbb{H}^2 es un difeomorfismo suave $f: H \to H$ que satisface:

$$\forall z \in H, \forall v, v' \in T_z H, \quad \langle (Df)_z(v) | (Df)_z(v') \rangle_{H,f(z)} = \langle v | v' \rangle_{H,z}$$

Proposición 1.1.3 (Isometrías Riemannianias son isometrías)

Toda isometría Riemanniana de \mathbb{H}^2 es una isometría métrica de (H, d_H) . En particular, existe un monomorfismo de grupos:

$$\operatorname{Isom}\left(\mathbb{H}^2\right) \to \operatorname{Isom}\left(H, d_H\right)$$

Demostración:

§1.2 Grupos Fuchsianos

Definición 1.2.1

 $\mathrm{SL}\left(n,\mathbb{A}\right)$ denota al espacio de todas las matrices 2×2 con entradas en $\mathbb{A}\subseteq\mathbb{C}$ tales que:

$$det(A) = 1, \quad \forall A \in A$$

Definición 1.2.2 (Transformaciones de Möbius)

Para la matriz 2×2 :

$$\left(\begin{array}{cc} a & b \\ c & d \end{array}\right) \in \mathrm{SL}\left(2,\mathbb{R}\right)$$

definimos la transformación de Möbius asociada $f_A: H \to H$, dada por:

$$z\mapsto \frac{a\cdot z+b}{c\cdot z+d}$$

Observación 1.2.1

Toda transformación de Möbius está bien definida, ya que como H es el plano superior, entonces la parte real de z nunca será un número con parte imaginaria cero, así que $c \cdot z + d \neq 0$ para todo $z \in H$.

Ejemplo 1.2.1

La función $z \mapsto z$ es una transformación de Möbius. Al igual que la función $z \mapsto \frac{1}{z}$. En particular, todas las funciones lineales de H en H son transformaciones de Möbius.

Proposición 1.2.1

Se tiene lo siguiente:

- (1) f_A está bien definido y es un difeomorfismo C^{∞} (o suave).
- (2) Para todo $A, B \in SL(2, \mathbb{R})$ se tiene que $f_{A \cdot B} = f_A \circ f_B$.
- (3) $f_A = f_{-A}$ para todo $A \in SL(2, \mathbb{R})$.

Demostración:

De (1) y (2): Son inmediatas.

De (3): Si

$$A = \begin{pmatrix} a & b \\ c & d \end{pmatrix} \in \mathrm{SL}(2, \mathbb{R})$$

entonces,

$$f_A(z) = \frac{a \cdot z + b}{c \cdot z + d} = \frac{-a \cdot z + -b}{-c \cdot z + -d} = f_{-A}(z)$$

para todo $z \in H$.

Ejemplo 1.2.2 (Generadores $SL(2,\mathbb{R})$)

Tenemos los siguientes dos tipos de transformaciones de Möbius:

• Sea $b \in \mathbb{R}$. Entonces, la transformación de Möbius asociada a la matriz:

$$\left(\begin{array}{cc} 1 & b \\ 0 & 1 \end{array}\right) \in \mathrm{SL}\left(2, \mathbb{R}\right)$$

es la traslación horizontal $z \mapsto z + b$ en H por un factor b se denotará por T_b .

• La transformación de Möbius asociada a la matriz:

$$\left(\begin{array}{cc} 0 & 1\\ -1 & 0 \end{array}\right) \in \mathrm{SL}\left(2, \mathbb{R}\right)$$

es la función $z \mapsto \frac{1}{z}$ se denotará por In.

Se tiene que el grupo $SL(2,\mathbb{R})$ es generado por:

$$\left\{ \left(\begin{array}{cc} 0 & 1 \\ -1 & 0 \end{array} \right) \right\} \cup \left\{ \left(\begin{array}{cc} 1 & b \\ 0 & 1 \end{array} \right) \middle| b \in \mathbb{R} \right\}$$

Demostración:

Notemos que:

$$\left(\begin{array}{cc} 0 & 1 \\ -1 & 0 \end{array}\right) \cdot \left(\begin{array}{cc} 1 & b \\ 0 & 1 \end{array}\right) \cdot \left(\begin{array}{cc} 0 & 1 \\ -1 & 0 \end{array}\right) = \left(\begin{array}{cc} 1 & 0 \\ -b & 1 \end{array}\right)$$

para todo $b \in \mathbb{R}$. Así que todas las matrices de la forma:

$$\begin{pmatrix} 1 & 0 \\ a & 1 \end{pmatrix}$$

está en el grupo generado por el conjunto anterior. Para terminar, basta notar que toda matriz en $SL(2,\mathbb{R})$ admite una descomposición LU o UL, dependiendo del caso.

5

Proposición 1.2.2 (Transformaciones de Möbius son isometrías)

Si $A \in SL(2,\mathbb{R})$, entonces la transformación de Möbius asociada $f_A : H \to H$ es una isometría Riemanniana de \mathbb{H}^2 . En particular, tenemos un monomorfismo de grupos:

$$\operatorname{PSL}(2,\mathbb{R}) = \operatorname{SL}(2,\mathbb{R}) / \{I, -I\} \to \operatorname{Isom}(H, d_H)$$

dado por $[A] \mapsto f_A$.

Demostración:

Por el ejemplo anterior basta con ver que T_b y In son isometrías Riemannianas de \mathbb{H}^2 , ya que la composición de isometrías Riemannianias sigue siendo una isometría Riemanniana. Analicemos los dos casos:

Teorema 1.2.1 (El grupo de isometrías hiperbólicas)

El grupo Isom (H, d_H) es generado por:

$$\left\{ f_A \middle| A \in \mathrm{SL}(2,\mathbb{R}) \right\} \cup \left\{ z \mapsto -\overline{z} \right\}$$

En particular, toda isometría de (H, d_H) es una isometría Riemanniana suave y, Isom (H, d_H) = Isom (\mathbb{H}^2) . Además, la función:

$$\operatorname{PSL}(2,\mathbb{R}) \to \operatorname{Isom}(H, d_H)^+$$
$$A \mapsto f_A$$

es un isomorfismo, siendo Isom $(H, d_H)^+$ al grupo de todas las isometrías que preservan orientación de Isom (H, d_H) .

Demostración:

¿Para qué nos sirven las transformaciones de Möbius?

Proposición 1.2.3 (Acción de $SL(2,\mathbb{R})$ en H)

Se tiene lo siguiente:

- (1) El grupo $SL(2,\mathbb{R})$ actúa en H vía transformaciones de Möbius, más aún, esta acción es transitiva.
- (2) El grupo estabilizador de i respecto a esta acción es SO (2).
- (3) Para todo $z, z' \in H$ existe $A \in SL(2, \mathbb{R})$ tal que:

$$f_A(z) = i$$
 y $\Re(f_A(z')) = 0, \Im(f_A(z')) > 1$

Demostración:

De (1): Es inmediato que el grupo actúa via transformaciones de Möbius con la acción dada por:

$$(A, z) \mapsto A \cdot z = f_A(z), \quad \forall A \in \mathrm{SL}(2, \mathbb{R}), \forall z \in H$$

Veamos que esta acción es transitiva. Basta probar que para todo $z \in H$ existe un $A_z \in SL(2,\mathbb{R})$ tal que:

$$f_{A_z}(z) = i$$

Tomemos $x = \Re(z)$ y $y = \Im(z)$. Entonces la transformación de Möbius asociada a la matriz:

$$A_z = \left(\begin{array}{cc} 0 & -x \\ y & 0 \end{array}\right)$$

es tal que:

$$A_z \cdot z = f_{A_z}(z) = \frac{z - x}{y} = i$$

Con lo que la acción es transitiva.

De (2): Se tiene que:

$$\operatorname{SL}(2,\mathbb{R})_{i} = \left\{ A \in \operatorname{SL}(2,\mathbb{R}) \middle| A \cdot i = i \right\}$$

$$= \left\{ \begin{pmatrix} a & b \\ c & d \end{pmatrix} \in \operatorname{SL}(2,\mathbb{R}) \middle| a = d \text{ y } c = -b \right\}$$

$$= \left\{ \begin{pmatrix} a & -c \\ c & a \end{pmatrix} \in \mathcal{M}_{2 \times 2}(\mathbb{R}) \middle| a^{2} + c^{2} = 1 \right\}$$

$$= \operatorname{SO}(2)$$

De (3): Inmediato del inciso (1).

Resulta que podemos dotar al grupo $\mathrm{PSL}(2,\mathbb{R})$ con una topología. Para ello, notemos que la función:

$$f_A \mapsto (a, b, c, d)$$

es una función suprayectiva de $PSL(2, \mathbb{R})$ en el subconjunto:

$$\left\{ (a, b, c, d) \in \mathbb{R}^4 \middle| ad - bc = 1 \right\}$$

y, es una función biyectiva al espacio cociente:

$$\left\{ (a, b, c, d) \in \mathbb{R}^4 \middle| ad - bc = 1 \right\} / \left\{ (a, b, c, d) \sim (-a, -b, -c, -d) \right\}$$

Dotando al subespacio $\{(a,b,c,d) \in \mathbb{R}^4 | ad - bc = 1\}$ con la norma usual de \mathbb{R}^4 resulta que el cociente también se puede dotar de una norma, así que el grupo PSL $(2,\mathbb{R})$ tiene una norma inducida por la norma del espacio cociente, a saber:

$$||f_A|| = \sqrt{a^2 + b^2 + c^2 + d^2}$$

donde

$$A = \left(\begin{array}{cc} a & b \\ c & d \end{array}\right)$$

Proposición 1.2.4

 $PSL(2,\mathbb{R})$ es un grupo topológico con la métrica inducida por la norma:

$$||f_A|| = \sqrt{a^2 + b^2 + c^2 + d^2}$$

Demostración:

Definición 1.2.3

Un subgrupo $H < \text{Isom } (2, \mathbb{R})$ es llamado **discreto** si la topología del subespacio H coincide con la topología discreta.

Definición 1.2.4

Un subgrupo discreto de Isom (\mathbb{H}) es llamado **grupo Fuchsiano** si todo elemento del grupo es una transformación que preserva el orden.

En otras palabras, un grupo Fuchsiano es un subgrupo discreto de $PSL(2, \mathbb{R})$

$\S1.3$ Superfices de género q

Resulta que existe una relación profunda entre los subgrupos de isometrías del plano hiperbólico y el grupo fundamental de superficies de género g.

Teorema 1.3.1

Sea X un espacio conexo, localmente arco-conexo y semilocalmente simplemente conexo. Entonces X tiene admite una cubierta universal.

Definición 1.3.1

Una superficie de Riemann es un espacio topológico conexo Hausdorff M junto con una colección de cartas $\{(U_{\alpha}, \phi_{\alpha})\}_{\alpha \in I}$ tales que:

- $\{U_{\alpha}\}_{{\alpha}\in I}$ es una cubierta abierta de M.
- Para todo $\alpha \in I$, $\phi_{\alpha} : U_{\alpha} \to V_{\alpha} \subseteq \mathbb{C}$ es un homeomorfismo, donde V_{α} es un abierto de \mathbb{C} .
- Si $U_{\alpha} \cap U_{\beta}$ para algunos $\alpha, \beta \in I$, entonces la función $\phi_{\alpha\beta} = \phi_{\beta} \circ \phi_{\alpha}^{-1} : \phi_{\alpha}(U_{\alpha} \cap U_{\beta}) \to \phi_{\beta}(U_{\alpha} \cap U_{\beta})$ es una homeomorfismo analítico complejo.

Ejemplo 1.3.1

 \mathbb{C} es una superficie de Riemann con carta $\{(\mathbb{C}, \mathbb{1}_{\mathbb{C}})\}.$

Ejemplo 1.3.2

La esfera $\mathbb{S}^2 \cong \hat{\mathbb{C}} = \mathbb{C} \cup \{\infty\}$ es una superficie de Riemann (recuerde la proyección estereográfica).

Eiemplo 1.3.3

El plano hiperbólico \mathbb{H}^2 es una superficie de Riemann. En efecto, basta con ver que el plano hiperbólico es un subconjunto de \mathbb{C} , por lo que hereda toda la estructura de variedad de Riemann.

Ejemplo 1.3.4

Toda superficie de género $g \ge 0$ es una superficie de Riemann.

Proposición 1.3.1

Toda superficie de género $g \ge 0$ tiene como cubriente universal a alguno de los siguientes:

 \bullet El plano complejo: $\mathbb C.$

■ La esfera de Riemann; Ĉ.

• El plano hiperbólico: \mathbb{H}^2 .

Nos interesa conocer los cubrientes universales de estas superficies de Riemann. Para llegar a ello, recordemos el siguiente teorema:

Teorema 1.3.2 (Teorema de uniformización de Riemann)

Toda superficie de Riemann simplemente conexa es conformemente equivalente a alguna de las tres:

■ El plano complejo: ℂ.

■ La esfera de Riemann; Ĉ.

• El plano hiperbólico: \mathbb{H}^2 .

Con este teorema, resulta que podemos caracterizar los cubrientes universales de todas las superficies de género $g \ge 0$:

Demostración:

Sea S_g una superficie de género g. Se tienen tres casos:

- g = 0, en cuyo caso se sigue que $S_g \cong \mathbb{S}^2 \cong \hat{\mathbb{C}}$ el cual es simplemente conexo, por lo que $\hat{\mathbb{C}}$ es su cubriente universal.
- g = 1, en cuyo caso se sigue que $S_g \cong \mathbb{T}^2 \cong \mathbb{S}^1 \times \mathbb{S}^1$, por lo que un cubriente universal es el plano $\mathbb{R}^2 \cong \mathbb{C}$.
- $g \geq 2$. Consultar libro: Resulta que S_g tiene como cubriente universal a \mathbb{H}^2 .

§1.4 Propieadades de los grupos Fuchsianos

Definición 1.4.1

Sea $A \in PSL(2, \mathbb{R})$, con:

$$A = \left(\begin{array}{cc} a & b \\ c & d \end{array}\right)$$

- Si Tr(A) < 2, entonces A es llamada **elíptica**.
- Si Tr(A) = 2, entonces A es llamada parabólica.

• Si Tr(A) > 2, entonces A es llamada hiperbólica.

§1.5 Hiperbólicidad y δ -hiperbolicidad

Estudiaremos la propiedad de hiperbolicidad, que más adelante resutará de utilidad para estudiar invariantes cuasi-isométricos.

1.5.1. Espacios Hiperbólicos

Definición 1.5.1

Sea (X, d) un espacio métrico. Para cada $\delta > 0$ y para cada $A \subseteq X$ se define el conjunto:

$$B_{\delta}^{(X,d)}(A) = \left\{ x \in X \middle| \exists a \in A \text{ tal que } d(x,a) \le \delta \right\}$$

Definición 1.5.2 (Triángulos geodésicos δ -delgados)

Sea (X, d) un espacio métrico.

1 Un triángulo geodésico en X es una tripleta $(\gamma_0, \gamma_1, \gamma_2)$ de geodésicas $\gamma_i : [0, L_i] \to X$ en X tales que:

$$\gamma_0(L_0) = \gamma_1(0), \quad \gamma_1(L_1) = \gamma_2(0), \quad \gamma_2(L_2) = \gamma_0(0)$$

2 Un triángulo geodésico es δ -delgado si:

$$\operatorname{im}(\gamma_0) \subseteq B_{\delta}^{(X,d)}(\operatorname{im}(\gamma_1) \cup \operatorname{im}(\gamma_2)),$$

$$\operatorname{im}(\gamma_1) \subseteq B_{\delta}^{(X,d)}(\operatorname{im}(\gamma_0) \cup \operatorname{im}(\gamma_2)),$$

$$\operatorname{im}(\gamma_2) \subseteq B_{\delta}^{(X,d)}(\operatorname{im}(\gamma_0) \cup \operatorname{im}(\gamma_1))$$

Ejemplo 1.5.1

Definición 1.5.3 (Espacios hiperbólicos)

Sea (X, d) un espacio métrico.

- (1) Sea $\delta \mathbb{R}_{\geq 0}$. Decimos que (X, d) es δ -hiperbólico si X es geodésico y todos los triángulos geodésicos de X son δ -delgados.
- (2) (X, d) es **hiperbólico** si existe $\delta \in \mathbb{R}_{>0}$ tal que (X, d) es δ -hiperbólico.

Ejemplo 1.5.2

Todo espacio métrico geodésico X de diámetro finito es diam(X)-hiperbólico.

Ejemplo 1.5.3

La recta real $\mathbb R$ es 0-hiperbólico ya que cada triángulo geodésico en $\mathbb R$ es degenerado, pues estos se ven simplemente como líneas rectas.

Ejemplo 1.5.4

El plano euclideano \mathbb{R}^2 no es hiperbólico.

Resulta que la hiperbolicidad es un invariante cuasi-isométrico. Para llegar a tal cosa, debemos debilitar la definición de hiperbolicidad:

Definición 1.5.4 (Triángulos cuasi-geodésicos δ -delgados)

Sea (X, d) un espacio métrico.

1 Un triángulo cuasi-geodésico en X es una tripleta $(\gamma_0, \gamma_1, \gamma_2)$ de (c, b)-cuasi-geodésicas $\gamma_i : [0, L_i] \to X$ en X tales que:

$$\gamma_0(L_0) = \gamma_1(0), \quad \gamma_1(L_1) = \gamma_2(0), \quad \gamma_2(L_2) = \gamma_0(0)$$

2 Un triángulo (c, b)-cuasi-geodésico es δ -delgado si:

$$\operatorname{im}(\gamma_0) \subseteq B_{\delta}^{(X,d)}(\operatorname{im}(\gamma_1) \cup \operatorname{im}(\gamma_2)),$$

$$\operatorname{im}(\gamma_1) \subseteq B_{\delta}^{(X,d)}(\operatorname{im}(\gamma_0) \cup \operatorname{im}(\gamma_2)),$$

$$\operatorname{im}(\gamma_2) \subseteq B_{\delta}^{(X,d)}(\operatorname{im}(\gamma_0) \cup \operatorname{im}(\gamma_1))$$

Observación 1.5.1

De esta definición es inmediato que todo triángulo geodésico es triángulo cuasi-geodésico.

Definición 1.5.5 (Espacios cuasi-hiperbólicos)

Sea (X, d) un espacio métrico.

(1) Sean $c, b \in \mathbb{R}_{>0}$, $\delta \in \mathbb{R}_{>0}$. Decimos que el espacio (X, d) es (c, b, δ) -cuasi-hiperbólico si

1.5.2. Hiperbolicidad de \mathbb{H}^2

Nuestro objetivo en esta subsección será probar el siguiente resultado:

Proposición 1.5.1

El plano hiperbólico H² es un espacio métrico hiperbólico en el sentido de la definición anterior.

Antes de llegar a ello, probaremos algunos resultados adicionales y enunciaremos algunas definciones fundamentales.

Definición 1.5.6 (Área hiperbólica)

Sea $f: H \to \mathbb{R}_{>0}$ una función Lebesgue integrable. Se define la **integral de** f **sobre** \mathbb{H}^2 como:

$$\int_{H} f \, dV_{H} = \int_{H} f(x, y) \sqrt{\det(G_{H,(x,y)})} \, dx dy$$

$$= \int_{H} \frac{f(x, y)}{y^{2}} \, dx dy$$

donde:

$$G_{H,(x,y)} = \begin{pmatrix} g_{H,(x,y)}(e_1, e_1) & g_{H,(x,y)}(e_1, e_2) \\ g_{H,(x,y)}(e_2, e_1) & g_{H,(x,y)}(e_2, e_2) \end{pmatrix} = \begin{pmatrix} 1/y^2 & 0 \\ 0 & 1/y^2 \end{pmatrix}$$

siendo $e_1, e_2 \in T_{(x,y)}H = \mathbb{R}^2$ los vectores coordenados usuales.

Si $A \subseteq H$ es un conjunto Lebesgue medible, definimos el **área hiperbólica de** A por:

$$\mu_{\mathbb{H}^2}(A) = \int_H \chi_A \, dV_H$$

siendo χ_A la función característica de A.

Proposición 1.5.2 (Las isometrías preservan el área)

Sea $A \subseteq H$ un conjunto Lebesgue medible y tomemos $f \in \text{Isom}(H, d_H)$. Entonces, f(A) es medible y:

$$\mu_{\mathbb{H}^2}(A) = \mu_{\mathbb{H}^2}(f(A))$$

1.5.3. Geodésicas

Teorema 1.5.1 (Caracterización de las geodésicas)

Sean $z, z' \in H$ distintos.

- (1) Existe una única geodésica en (H, d_H) que une a z con z'. En particular, el espacio métrico es geodésico.
- (2) Hasta reparametrizaciones en \mathbb{R} , existe una única linea geodésica en (H, d_H) que contiene a z y z'.

Más precisamente, si $A \in SL(2, \mathbb{R})$ con $\Re(f_A(z)) = 0 = \Re(f_A(z'))$, entonces la función $f_A \circ t \mapsto i \cdot e^t$ es una línea geodésica que une a z con z' y la geodésica que va de z a z' genera esta línea.

Demostración:

Observación 1.5.2

Usando la descripción anterior de las geodésicas nos permite obtener una fórmula explícita para la métrica d_H en H:

$$d_H(z, z') = \operatorname{arcosh}\left(1 + \frac{|z - z'|^2}{2 \cdot \Im z \cdot \Im z}\right)$$

siendo arcosh : $\mathbb{R}_{>1} \to \mathbb{R}$ la función:

$$x \mapsto \ln\left(x + \sqrt{x^2 - 1}\right)$$

Proposición 1.5.3 (Crecimiento exponencial del área hiperbólica)

Para todo $r \in \mathbb{R}_{>10}$ tenemos que:

$$\mu_{\mathbb{H}^2}(B_r^{(H,d_H)}(i)) \ge e^{\frac{r}{10}}(1 - e^{-\frac{r}{2}})$$

Demostración:

Sea $r \in \mathbb{R}_{>10}$. Se tiene que el conjunto:

$$Q_r = \left\{ x + iy \middle| x \in [0, e^{r/10}], y \in [1, e^{r/2}] \right\}$$

está contenido en $B_r^{(H,d_H)}(i)$. En particular, obtenemos que:

$$\mu_{\mathbb{H}^2}(B_r^{(H,d_H)}(i)) \ge \mu_{\mathbb{H}^2}(Q_r)$$

$$= \int_0^{e^{r/10}} \int_1^{e^{r/2}} \frac{dxdy}{y^2}$$

$$= e^{\frac{r}{10}} (1 - e^{-\frac{r}{2}})$$

Definición 1.5.7

Sea Δ un triángulo geodésico en (H, d_H) . Se define el **área de** Δ como:

$$\mu_{\mathbb{H}^2}(\Delta) = \mu_{\mathbb{H}^2}(A_\Delta)$$

siendo $A_{\Delta} \subseteq H$ el conjunto compacto encerrado por las geodésicas de Δ .

Teorema 1.5.2 (Teorema de Gauß-Bonnet para triángulos hiperbólicos)

Sea Δ un triángulo geodésico en (H, d_H) con ángulos α, β, γ y suponga que la imagen de Δ no está contenida en una sola línea geodésica. Entonces:

$$\mu_{\mathbb{H}^2}(\Delta) = \pi - (\alpha + \beta + \gamma)$$

En particular, la suma de los ángulos de un triángulo geodésico es menor que π y el área hiperbólica está acotada por π .

Teorema 1.5.3 (Triángulos son delgados)

Existe una constante $C \in \mathbb{R}_{\geq 0}$ tal que todo triángulo geodésico en (H, d_H) es C-delgado.

Demostración:

Por la proposición anterior, existe C > 0 tal que:

$$\mu_{\mathbb{H}^2}(B_C^{(H,d_H)}(i)) \ge 4 \cdot \pi$$

(por ejemplo, tomemos C=26). Tomemos $\Delta=(\gamma_0,\gamma_1,\gamma_2)$ un triángulo geodésico en (H,d_H) y sea $x\in \mathrm{im}\,(\gamma_0)$.

Sin pérdida de generalidad, podemos suponer que el triángulo geodésico Δ no está contenido en una sola línea geodésica. Por el inciso (3) de la Proposición (1.2.3) se sigue que podemos trasladar los puntos x a i y el final de la geodésica a un punto tal que:

$$f_A(z) = ci, \quad c > 1$$

Luego, del Teorema (1.5.1) y la Proposición () se sigue que la geodésica γ_0 es un segmento vertical que yace sobre el eje y.

Supongamos que no existe $y \in \operatorname{im}(\gamma_1) \cup \operatorname{im}(\gamma_2)$ tal que $d_H(x,y) \leq C$. Se tiene entonces que:

$$B_c^{(H,d_H)}(i) \subseteq A_\Delta \cup \operatorname{im}(\gamma_0) \cup f(A_\Delta)$$

siendo A_{Δ} el conjunto encerrado por las geodésicas de Δ y $f: H \to H$ la isometría $z \mapsto -\overline{z}$.

Por tanto:

$$4 \cdot \pi \leq \mu_{\mathbb{H}^{2}}(B_{C}^{(H,d_{H})}(i))
\leq \mu_{\mathbb{H}^{2}}(A_{\Delta} \cup \operatorname{im}(\gamma_{0}) \cup f(A_{\Delta}))
= \mu_{\mathbb{H}^{2}}(A_{\Delta}) + \mu_{\mathbb{H}^{2}}(\operatorname{im}(\gamma_{0})) + \mu_{\mathbb{H}^{2}}(f(A_{\Delta}))
= \mu_{\mathbb{H}^{2}}(\Delta) + \mu_{\mathbb{H}^{2}}(D)
< 2 \cdot \pi$$

lo cual es una contradicción. Por lo cual existe $y \in \operatorname{im}(\gamma_1) \cup \operatorname{im}(\gamma_2)$ tal que $d(x,y) \leq C$. En particular se sigue que:

$$\operatorname{im}(y_0) \subseteq \bigcup_{y \in \operatorname{im}(\gamma_1) \cup \operatorname{im}(\gamma_2)} B_C^{(H,d_H)}(y) \subseteq B_C^{(H,d_H)}(\operatorname{im}(\gamma_1) \cup \operatorname{im}(\gamma_2))$$

el procedimiento anterior se puede repetir para las otras geodésicas, resultando en que:

$$\operatorname{im}(\gamma_0) \subseteq B_C^{(H,d_H)}(\operatorname{im}(\gamma_1) \cup \operatorname{im}(\gamma_2)),$$

$$\operatorname{im}(\gamma_1) \subseteq B_C^{(H,d_H)}(\operatorname{im}(\gamma_0) \cup \operatorname{im}(\gamma_2)),$$

$$\operatorname{im}(\gamma_2) \subseteq B_C^{(H,d_H)}(\operatorname{im}(\gamma_0) \cup \operatorname{im}(\gamma_1))$$

así que C es un triángulo geodésico C-delgado. Como el Δ triángulo geodésico fue arbitrario se sigue que el plano hiperbólico es C-hiperbólico, es decir que es hiperbólico en el sentido de espacio métrico.

Figura 1. Caption.