CSE 151B Final Project Presentation

Control Z

2022.5.31

Overview

- Team members
- Methodology
 - Data processing
 - Deep learning model and engineering tricks
- Experiment
- Future work

Team **Control Z**

Jianming Geng

3rd Year

Data Science, App. Math

Yacun Wang

3rd Year

Data Science, Prob & Stats

Gao Mo

3rd Year

Data Science

Methodology

Data Processing/Engineering Tricks

- Translation
- Rotation
- Reason: Consistent Scale of Parameters in Linear Layers

Deep Learning Model

MLP Embedding + Transformer Encoder + MLP Decoder

Training and Fine Tuning

- Optimizer: Adam
- Optimizer Scheduler: Plateau Learning Rate with patience 2
- Training Steps:
 - Train on entire dataset (~200K agents in total)
 - Save the model after 100 epochs
 - Load Model and Fine Tune on each city (Idea of Transfer Learning)
- Performance (Private Leaderboard)
 - Train by City: 17.27773
 - After Total Training: 15.09957
 - After Fine Tuning: 15.04929

Sample Results

Experiments

Milestone: Tuned MLP

MLP with Translation, Rotation

Experiments 1: Multi-Layer Perceptron

- Advantages
 - Run time
 - Easy to train (inputs and outputs are flattened)
 - Relatively transparent (for debugging)
- Disadvantages
 - Model is too simple (baseline model, underfitting)
 - Relatively poor model performance
- Temporary Result: Satisfactory

Milestone: Tuned MLP

MLP with Translation, Rotation Transformer Encoder + MLP

Experiments 3: Sequential Output NN Layers

Attempts: Transformer Decoder, LSTM Decoder

- Advantage:
 - Predict 1 time step at each iteration
 - Use predicted information in future predictions
- Main Problem:
 - Teacher Forcing vs Feeding Previous Predictions
 - Severe Overfitting Issue: Train Loss 0.5, Validation Loss 40
 - Very slow training
 - Bad predictions

Experiments 4: Time Series Forecasting

- Main Idea: Autoregression
 - Set a number of predictions on each step (e.g. step = 20)
 - Discard the oldest time steps, concatenate latest prediction
 - High Expectation: Encoder has less burden to predict (e.g. 20 vs 60)
- Main Problem: Similar to Sequential Outputs
 - Inaccurate Information fed when iterating
 - Scattered Predictions
 - Very slow training

Experiment Results

Models	Test MSE (All Cities)
MLP	21.73365
TCN Embedding + Transformer Encoder	19.81492
Transformer Encoder + LSTM Decoder	~49 (Pittsburgh Only)
Transformer Encoder + Transformer Decoder	Failed to Converge
Transformer Encoder + Autoregression	~21.5 (Palo-Alto Only)
MLP Embedding + Transformer Encoder + MLP Decoder	15.04928

Discussion

What have we learned

- Team work
- Look up past models from documentations
- Start simple
- Test models on subsets of data, but the more training data the better
- Improve performance through doing researches on the internet
- Training efficiency matters!
- Attend lectures and ask questions!

Future Work

- Roadmap: Road2Vec, Trajectory2Vec
- Other models (such as Equivariant Neural Networks)

Questions?

References

- https://www.espn.com/mens-college-basketball/team/ /id/28/uc-san-diego-tritons
- https://nsf.gov/discoveries/disc_summ.jsp?cntn_id=303877&org=NSF&from=news
- https://clusterpower.ro/a-neural-network-improves-forecasts-for-severe-storm-hazards/
- https://www.biocatch.com/blog/behavioral-biometrics-primer-dynamic-fraud-detection
- http://techmalinda.lk/projects.php
- https://www.sbdaresearch.com/
- https://www.shiksha.com/mba/articles/students-speak-group-discussion-topics-blogId-30775
- https://www.mdpi.com/2220-9964/6/11/321
- <u>https://austingwalters.com/classify-sentences-via-a-multilayer-perceptron-mlp/</u>
- https://wallpaper.dog/ai-wallpapers