Thread	ms	
1	4656	
2	2245	
3	1655	
4	1234	
5	1093	
6	946	
7	847	
8	790	
9	706	
10	749	
11	681	
12	561	
13	610	
14	537	
15	553	
16	510	
17	492	
18	523	
19	483	
20	492	
21	484	
22	491	
23	501	

10 physical cores and 16 threads(intel hyper-threading)

Decrescita iniziale significativa:

L'aumento del numero di thread da 1 a circa 8 comporta un miglioramento sostanziale delle prestazioni. Si osserva un passaggio da 4656 ms a circa 790 ms, indicando un'efficace

parallelizzazione dei task su più core.

Diminuzione del beneficio marginale:

Tra 9 e 16 thread, i guadagni in termini di tempo di esecuzione diventano meno marcati. Il tempo scende ancora, ma in maniera meno accentuata. Questo comportamento è tipico quando si raggiunge la saturazione dei core fisici e si inizia a sfruttare l'hyper-threading.

Regione di saturazione (oltre 16 thread):

Oltre i 16 thread (limite dell'hyper-threading su CPU con 10 core fisici e 16 thread logici), le prestazioni si stabilizzano. Il tempo si assesta tra 483 e 523 ms, con variazioni minime, indicando che ulteriori thread non apportano miglioramenti significativi. In alcuni casi, si osservano addirittura lievi peggioramenti dovuti al sovraccarico di gestione dei thread(content switch).

Anomalia locale (thread 10 e 13):

Si notano alcune fluttuazioni non monotone (ad esempio, il tempo a 10 thread è superiore rispetto a 9), che possono essere attribuite a variabili esterne come il carico del sistema operativo, scheduling, o interferenze da altri processi in esecuzione.

Andamento generale:

- All'aumentare dei thread, il tempo di esecuzione diminuisce rapidamente all'inizio.
- Il miglioramento rallenta attorno ai 10 thread, corrispondenti ai core fisici della CPU.
- Intorno ai 16 thread, corrispondenti ai thread logici abilitati tramite
 Hyper-Threading, il tempo continua a migliorare, ma con benefici sempre più marginali.
- Oltre i 16 thread, l'andamento si stabilizza: i tempi oscillano attorno ai **500 ms**, senza più un guadagno significativo.

Aumento ulteriore dei thread:

Aumento dell'overhead di gestione:

- Il sistema operativo deve gestire più thread simultaneamente tramite time-slicing, causando:
 - Switching costante tra thread su core già occupati.
 - o Aumento dell'overhead del context switching.
 - o Degrado delle performance dovuto alla mancanza di locality

Possibile peggioramento delle prestazioni:

- In assenza di sufficiente parallelismo nel carico di lavoro o con risorse condivise (RAM, I/O), thread aggiuntivi non solo **non aiutano**, ma **rallentano l'esecuzione**.
- Questo effetto si osserva in molti benchmark reali: il tempo di esecuzione oscilla o peggiora leggermente oltre un certo numero di thread.

