del : 2 weeks

2019 Numerical Analysis Computer Project #2

- Generate n+1 sample points p_i in a heart-shape geometry, shown in the bottom figure.
 - A. Let t be the parameter, and x- and y-coordinates of the sample points be functions of t.

y:凼 沙里問與樣性樣

T[i]	t ₀	tı	t ₂	 t _{n-1}	t _n
X[i]	X ₀	X ₁	X ₂	 X _{n-1}	X _n
Y[i]	Y ₀	Y ₁	Y ₂	 Y _{n-1}	Yn

Draw the geometry in a piece of paper and create the sample points by yourselves.

- II. Assign the parametric values t_i of the sample points by using the following 2 methods:
 - A. Chord-length: $l_i = ||p_i p_{i+1}||, i = 0, ..., n-1$. Define $t_0 = 0, t_i = t_{i-1} + l_{i-1}, i = 1, ..., n$.
 - B. Uniform: $t_0 = 0, t_1 = 1,...,t_n = n$.

 $x_i = x(t_i), y_i = y(t_i), i = 0,...,n.$

- III. Try n=5, 11, and 17. (20%)
 - A. Print out the sample points of the 2 data sets. Use the afore-mentioned t=0, t=0.09, t= a 14 ... -t=9 parameterization methods to define t_i .
- IV. Generate two Newton's polynomial from the data sets. (40%) forward divide Lifterace. 在图上额末支
 - A. Print out the coefficients of the polynomial. Use the polynomial to generate 100 points and connect these points to form a geometry. Draw the results.
- V. Answer the following questions and explain your answers. (40%)

ENP/Block A. Which parameterization method is better? Why? Chord - length.

- B. As n increases, will the shape of the geometry improve? Why? 1月季
 - C. Are the locations of the sample points important? 1991, location 怎麼取?(考除不可能?中可变服?)
 - I. Let n=11 and use uniform parameterization to generate a data set, as shown in the figure

below. Generate 4 Cubic Lagrange polynomial by using subsets of the data set: (20%) $S_0(t) \in \{p_0, p_1, p_2, p_3\}, S_1(t) \in \{p_1, p_2, p_3, p_4\}, S_2(t) \in \{p_2, p_3, p_4, p_5\}, S_3(t) \in \{p_3, p_4, p_5, p_6\}.$ Uniformly generate 100 points:

 $t \in [0,2]$, using $S_0(t)$; $t \in [2,3]$ using $S_1(t)$; $t \in [3,4]$ using $S_2(t)$; $t \in [4,6]$, using S₃(t). Generate the other part of the geometry using the same method and draw the results.

可用映射方法,食血择量) 把了一样登上来