Delhivery Casestudy

Problem statement

Delhivery, India's leading integrated commmerce player in Fiscal in 2021, aims to increase the efficiency and profitability of the business based on data insights. The challenge includes cleaning and manipulating raw data, extracting meaningful features, and supporting the data science team in developing forecasting models.

Installing Packages

```
import pandas as pd
import numpy as np
import seaborn as sns
import matplotlib.pyplot as plt
import seaborn as sns

from scipy.stats import norm
from scipy.stats import ttest_1samp, ttest_ind

pd.set_option("display.max_columns",None)
```

Loading Dataset

```
data1 = pd.read_csv("/content/drive/MyDrive/Scaler_case_study/delhivery_data.csv")
data = data1.copy()
data.head()
```

	data	trip_creation_time	route_schedule_uuid	route_type	trip_uuid	source_center	source_name	destination_cente
0	training	2018-09-20 02:35:36.476840	thanos::sroute:eb7bfc78- b351-4c0e-a951- fa3d5c3	Carting	trip- 153741093647649320	IND388121AAA	Anand_VUNagar_DC (Gujarat)	IND388620AA
1	training	2018-09-20 02:35:36.476840	thanos::sroute:eb7bfc78- b351-4c0e-a951- fa3d5c3	Carting	trip- 153741093647649320	IND388121AAA	Anand_VUNagar_DC (Gujarat)	IND388620A4
2	training	2018-09-20 02:35:36.476840	thanos::sroute:eb7bfc78- b351-4c0e-a951- fa3d5c3	Carting	trip- 153741093647649320	IND388121AAA	Anand_VUNagar_DC (Gujarat)	IND388620A4
3	training	2018-09-20 02:35:36.476840	thanos::sroute:eb7bfc78- b351-4c0e-a951- fa3d5c3	Carting	trip- 153741093647649320	IND388121AAA	Anand_VUNagar_DC (Gujarat)	IND388620A4
4	training	2018-09-20 02:35:36.476840	thanos::sroute:eb7bfc78- b351-4c0e-a951- fa3d5c3	Carting	trip- 153741093647649320	IND388121AAA	Anand_VUNagar_DC (Gujarat)	IND388620AA

Analysing shape and structure of data

```
data.shape (144867, 24)
```

• There are 144867 rows and 24 columns

· Time columns are in the type object. It need to be converted into type datetime

```
data["trip_creation_time"] = pd.to_datetime(data["trip_creation_time"])
data["od_start_time"] = pd.to_datetime(data["od_start_time"])
data["od_end_time"] = pd.to_datetime(data["od_end_time"])
data["cutoff_timestamp"] = pd.to_datetime(data["cutoff_timestamp"])
```

Missing value Detection

```
data.isnull().sum()
    trip creation time
    route_schedule_uuid
     route_type
    trip_uuid
    source_center
                                  293
     source_name
    destination_center
destination_name
    od_start_time
    od_end_time
    start_scan_to_end_scan
    is_cutoff
     cutoff_factor
    cutoff_timestamp
    actual_distance_to_destination
     actual_time
    osrm_time
    osrm distance
    factor
     segment_actual_time
     segment_osrm_time
     segment_osrm_distance
     segment_factor
```

There are 293 and 261 missing values in source_name and destination_name respectively

Handling the missing values

· Drop the null values as it has only very less data

```
data.dropna(inplace = True)
data.isnull().sum()
     data
                                         0
     trip_creation_time
     route_schedule_uuid
     route_type
     trip_uuid
     source_center
     \verb"source_name"
     destination_center
     destination_name
     od start time
     od_end_time
     start_scan_to_end_scan
     is cutoff
     {\tt cutoff\_factor}
     cutoff_timestamp
     actual_distance_to_destination actual_time
     osrm_time
     osrm_distance
     factor
     segment_actual_time
     segment_osrm_time
     segment_osrm_distance
     segment\_factor
     dtype: int64
```

What are range of dates available in the dataset for the delivery

```
print(data["trip_creation_time"].max()-data["trip_creation_time"].min())
print(data["trip_creation_time"].max())
print(data["trip_creation_time"].min())

21 days 23:59:26.165951
   2018-10-03 23:59:42.701692
   2018-09-12 00:00:16.535741
```

• There is 21 days of data available in the dataset from 12th september 2018 to 3rd Oct 2018

```
data["trip_creation_time"].dt.month_name().value_counts()

September    126932
    October    17384
    Name: trip_creation_time, dtype: int64
```

Unique trip in the dataset

```
data.nunique()
```

```
trip_creation_time
                                 14787
route_schedule_uuid
                                  1497
route_type
                                 14787
trip_uuid
source_center
                                  1496
                                  1496
source_name
destination_center
                                  1466
destination name
                                  1466
od_start_time
                                 26223
od end time
                                 26223
start_scan_to_end_scan
                                  1914
is_cutoff
                                     2
cutoff_factor
                                   501
cutoff_timestamp
                                 92894
actual_distance_to_destination
                                143965
actual_time
```

```
      osrm_time
      1531

      osrm_distance
      137544

      factor
      45588

      segment_actual_time
      746

      segment_osrm_time
      214

      segment_osrm_distance
      113497

      segment_factor
      5663

      dtype: int64
```

- There are 14787 unique trip are available
- No of source center and destination center are 1496 and 1466 respectively
- There are 1497 unique routes are available

Visual Analysis

```
num_col = data.select_dtypes(include=np.number).columns.tolist()
fig, ax = plt.subplots(11,2,figsize = (10,50))

for i in range(len(num_col)):
    sns.histplot(data[num_col[i]], kde=True, ax=ax[i, 0],bins=25)
    ax[i,0].set_title(f"Distribution of {num_col[i]}")
    sns.boxplot(data[num_col[i]],ax = ax[i,1])
    ax[i,1].set_title(f"Boxplot of {num_col[i]}")
plt.show()
```


Feature Creation

Extract the Source and Destination city name, state name and pincode from source and destination column

```
# Retrieving city name
data["source_city"] = data["source_name"].str.split(" ",expand = True,n=1)[0].str.split("_",n=1,expand=True)[0]
data["destination_city"] = data["destination_name"].str.split(" ",expand = True,n=1)[0].str.split("_",n=1,expand=True)[0]

# Retrieving state name
data["source_state"] = data["source_name"].str.split(" ",expand = True,n=1)[1].str.replace("(","").str.replace(")","")
data["destination_state"] = data["destination_name"].str.split(" ",expand = True,n=1)[1].str.replace("(","").str.replace(")","")

# Retrieving pincode
data["source_pin"] = data["source_center"].apply(lambda x:x[3:9])
data["destination_pin"] = data["destination_center"].apply(lambda x:x[3:9])
```

<ipython-input-16-9ec46a8e132d>:6: FutureWarning: The default value of regex will change from True to False in a future version. In addi
 data["source_state"] = data["source_name"].str.split(" ",expand = True,n=1)[1].str.replace("(","").str.replace(")","")
<ipython-input-16-9ec46a8e132d>:7: FutureWarning: The default value of regex will change from True to False in a future version. In addi
 data["destination_state"] = data["destination_name"].str.split(" ",expand = True,n=1)[1].str.replace("(","").str.replace(")","")

Convert time from minutes to hours

```
data["start_scan_to_end_scan"] = data["start_scan_to_end_scan"]/60
data["actual_time"] = data["actual_time"]/60
data["osrm_time"] = data["osrm_time"]/60
data["segment_actual_time"] = data["segment_actual_time"]/60
data["segment_osrm_time"] = data["segment_osrm_time"]/60
```

data.head()

	data	trip_creation_time	route_schedule_uuid	route_type	trip_uuid	soı
0	training	2018-09-20 02:35:36.476840	thanos::sroute:eb7bfc78- b351-4c0e-a951- fa3d5c3	Carting	trip- 153741093647649320	INI
1	training	2018-09-20 02:35:36.476840	thanos::sroute:eb7bfc78- b351-4c0e-a951- fa3d5c3	Carting	trip- 153741093647649320	INI
2	training	2018-09-20 02:35:36.476840	thanos::sroute:eb7bfc78- b351-4c0e-a951- fa3d5c3	Carting	trip- 153741093647649320	INI
3	training	2018-09-20 02:35:36.476840	thanos::sroute:eb7bfc78- b351-4c0e-a951- fa3d5c3	Carting	trip- 153741093647649320	INI
4	training	2018-09-20 02:35:36.476840	thanos::sroute:eb7bfc78- b351-4c0e-a951- fa3d5c3	Carting	trip- 153741093647649320	INI

Indepth Analysis and Feature Engineering

data.info()

<class 'pandas.core.frame.DataFrame'> Int64Index: 144316 entries, 0 to 144866 Data columns (total 30 columns):

#	Column	Non-Null Count	Dtype
0	data	144316 non-null	object
1	trip_creation_time	144316 non-null	datetime64[ns]
2	route_schedule_uuid	144316 non-null	object
3	route_type	144316 non-null	object
4	trip_uuid	144316 non-null	object
5	source_center	144316 non-null	object
6	source_name	144316 non-null	object
7	destination_center	144316 non-null	object
8	destination_name	144316 non-null	object
9	od_start_time	144316 non-null	datetime64[ns]
10	od_end_time	144316 non-null	datetime64[ns]
11	start_scan_to_end_scan	144316 non-null	float64
12	is_cutoff	144316 non-null	bool
13	cutoff_factor	144316 non-null	int64
14	cutoff_timestamp	144316 non-null	datetime64[ns]
15	<pre>actual_distance_to_destination</pre>	144316 non-null	float64
16	actual_time	144316 non-null	float64
17	osrm_time	144316 non-null	float64
18	osrm_distance	144316 non-null	float64
19	factor	144316 non-null	float64
20	segment_actual_time	144316 non-null	float64
21	segment_osrm_time	144316 non-null	float64
22	segment_osrm_distance	144316 non-null	float64
23	segment_factor	144316 non-null	float64
24	source_city	144316 non-null	object
25	destination_city	144316 non-null	object
26	source_state	144316 non-null	object

```
28 source_pin 144316 non-null object
29 destination_pin 144316 non-null object
dtypes: bool(1), datetime64[ns](4), float64(10), int64(1), object(14)
memory usage: 33.2+ MB

data["source_state"] = data["source_state"].replace({"Road Punjab":"Punjab","Hub Maharashtra":"Maharashtra","Layout PC Karnataka":"Karnataka
```

data["destination_state"] = data["destination_state"].replace({"Delhi Delhi":"Delhi","West_Dc Maharashtra":"Maharashtra","Road Punjab":"Punj

144316 non-null object

Creating a feature with city and State

27 destination_state

```
data["source_city_state"] = data["source_city"]+" "+data["source_state"]
data["destination_city_state"] = data["destination_city"]+" "+data["destination_state"]
data.head()
```

	data	trip_creation_time	route_schedule_uuid	route_type	trip_uuid	source_center	source_name	destination_cente
0	training	2018-09-20 02:35:36.476840	thanos::sroute:eb7bfc78- b351-4c0e-a951- fa3d5c3	Carting	trip- 153741093647649320	IND388121AAA	Anand_VUNagar_DC (Gujarat)	IND388620AA
1	training	2018-09-20 02:35:36.476840	thanos::sroute:eb7bfc78- b351-4c0e-a951- fa3d5c3	Carting	trip- 153741093647649320	IND388121AAA	Anand_VUNagar_DC (Gujarat)	IND388620AA
2	training	2018-09-20 02:35:36.476840	thanos::sroute:eb7bfc78- b351-4c0e-a951- fa3d5c3	Carting	trip- 153741093647649320	IND388121AAA	Anand_VUNagar_DC (Gujarat)	IND388620AA
3	training	2018-09-20 02:35:36.476840	thanos::sroute:eb7bfc78- b351-4c0e-a951- fa3d5c3	Carting	trip- 153741093647649320	IND388121AAA	Anand_VUNagar_DC (Gujarat)	IND388620AA
4	training	2018-09-20 02:35:36.476840	thanos::sroute:eb7bfc78- b351-4c0e-a951- fa3d5c3	Carting	trip- 153741093647649320	IND388121AAA	Anand_VUNagar_DC (Gujarat)	IND388620AA

Check any difference between start_scan_to_end_scan and Time taken from od_start_time to od_end_time

```
{\tt data["diff\_od\_start\_end\_time"] = (data["od\_end\_time"] - data["od\_start\_time"]).dt.total\_seconds()/3600}
```

Dropping Unnecessary columns

Merging of rows and aggregation of fields

· Since the trip may include different source and destination, we need to aggregate to finds the feature of unique trip id

```
start_scan_to_end_scan = df.groupby("trip_uuid")["start_scan_to_end_scan"].agg(lambda x: sum(set(x))).reset_index()

diff_od_start_end_time = df.groupby("trip_uuid")["diff_od_start_end_time"].agg(lambda x: sum(set(x))).reset_index()

actual_time = df.groupby(["trip_uuid","start_scan_to_end_scan"])["actual_time"].max().reset_index().groupby("trip_uuid")["actual_time"].sum()

osrm_time = df.groupby(["trip_uuid","start_scan_to_end_scan"])["osrm_time"].max().reset_index().groupby("trip_uuid")["osrm_time"].sum().rese

osrm_distance = df.groupby(["trip_uuid","start_scan_to_end_scan"])["osrm_distance"].max().reset_index().groupby("trip_uuid")["osrm_distance"]

actual_distance_to_destination = df.groupby(["trip_uuid","start_scan_to_end_scan"])["actual_distance_to_destination"].max().reset_index().groupby("trip_uuid")["segment_osrm_time"].sum().reset_index()

segment_osrm_time = df.groupby("trip_uuid")["segment_osrm_time"].sum().reset_index()

segment_osrm_distance = df.groupby("trip_uuid")["segment_osrm_distance"].sum().reset_index()
```

Merging time and distance

merged_time = start_scan_to_end_scan.merge(diff_od_start_end_time.merge(diff_od_start_end_time.merge(actual_time.merge(osrm_time.merge(segment_osrm_distance), on="trip_uuid")
merged_distance = osrm_distance.merge(actual_distance_to_destination.merge(segment_osrm_distance), on="trip_uuid")

Merging Location

df.head()

data	trip_creation_time	route_schedule_uuid	route_type	trip_uuid	start_scan_to_end_scan	is_cutoff	cutoff_factor	а
0 training	2018-09-20 02:35:36.476840	thanos::sroute:eb7bfc78- b351-4c0e-a951- fa3d5c3	Carting	trip- 153741093647649320	1.433333	True	9	
1 training	2018-09-20 02:35:36.476840	thanos::sroute:eb7bfc78- b351-4c0e-a951- fa3d5c3	Carting	trip- 153741093647649320	1.433333	True	18	
2 training	2018-09-20 02:35:36.476840	thanos::sroute:eb7bfc78- b351-4c0e-a951- fa3d5c3	Carting	trip- 153741093647649320	1.433333	True	27	
3 training	2018-09-20 02:35:36.476840	thanos::sroute:eb7bfc78- b351-4c0e-a951- fa3d5c3	Carting	trip- 153741093647649320	1.433333	True	36	
4 training	2018-09-20 02:35:36.476840	thanos::sroute:eb7bfc78- b351-4c0e-a951- fa3d5c3	Carting	trip- 153741093647649320	1.433333	False	39	

```
route_type = df.groupby("trip_uuid")["route_type"].unique().reset_index()

df2 = merged_time.merge(merged_distance.merge(route_type),on="trip_uuid")
df2
```

	trip_uuid	start_scan_to_end_scan	diff_od_start_end_time	actual_time
0	trip- 153671041653548748	37.650000	37.668497	26.033333
1	trip- 153671042288605164	3.000000	3.026865	2.383333
2	trip- 153671043369099517	65.550000	65.572709	55.783333
3	trip- 153671046011330457	1.666667	1.674916	0.983333
4	trip- 153671052974046625	11.950000	11.972484	5.683333
14782	trip- 153861095625827784	4.283333	4.300482	1.383333
14783	trip- 153861104386292051	1.000000	1.009842	0.350000
14784	trip- 153861106442901555	7.016667	7.035331	4.700000
14785	trip- 153861115439069069	5.783333	5.808548	4.400000
14786	trip- 153861118270144424	5.883333	5.906793	4.583333

14787 rows × 11 columns

df3 = df[["trip_uuid", "source_city", "destination_city", "source_state", "destination_state"]]

df4 = df3.merge(df2,on="trip_uuid")
df4

	trip_uuid	source_city	destination_city	source_state	destination_sta
0	trip- 153741093647649320	Anand	Khambhat	Gujarat	Guja
1	trip- 153741093647649320	Anand	Khambhat	Gujarat	Guja
2	trip- 153741093647649320	Anand	Khambhat	Gujarat	Guja
3	trip- 153741093647649320	Anand	Khambhat	Gujarat	Guja
4	trip- 153741093647649320	Anand	Khambhat	Gujarat	Guja
144311	trip- 153746066843555182	Sonipat	Gurgaon	Haryana	Hary
144312	trip- 153746066843555182	Sonipat	Gurgaon	Haryana	Harya
144313	trip- 153746066843555182	Sonipat	Gurgaon	Haryana	Hary
144314	trip- 153746066843555182	Sonipat	Gurgaon	Haryana	Hary
144315	trip- 153746066843555182	Sonipat	Gurgaon	Haryana	Hary

144316 rows × 15 columns

Hypothesis Test

1. Compare the difference between diff_od_start_end_time and start_scan_to_end_scan. Do hypothesis testing/ Visual analysis to check.

Visual Test

```
plt.subplot(1,2,1)
sns.distplot((start_scan_to_end_scan["start_scan_to_end_scan"]))
plt.subplot(1,2,2)
plt.title("start_scan_to_end_scan")
sns.distplot(diff_od_start_end_time["diff_od_start_end_time"],kde=True)
plt.title("diff_od_start_end_time")
plt.show()
     <ipython-input-47-24f0fcc52033>:2: UserWarning:
     `distplot` is a deprecated function and will be removed in seaborn v0.14.0.
     Please adapt your code to use either `displot` (a figure-level function with
     similar flexibility) or `histplot` (an axes-level function for histograms).
     For a guide to updating your code to use the new functions, please see
     https://gist.github.com/mwaskom/de44147ed2974457ad6372750bbe5751
       sns.distplot((start_scan_to_end_scan["start_scan_to_end_scan"]))
     <ipython-input-47-24f0fcc52033>:5: UserWarning:
     `distplot` is a deprecated function and will be removed in seaborn v0.14.0.
     Please adapt your code to use either `displot` (a figure-level function with
     similar flexibility) or `histplot` (an axes-level function for histograms).
     For a guide to updating your code to use the new functions, please see
     https://gist.github.com/mwaskom/de44147ed2974457ad6372750bbe5751
```

sns.distplot(diff_od_start_end_time["diff_od_start_end_time"],kde=True)

Hypothesis test

- H0: Mean of time taken from start to end time and start_scan_to_end_scan are equal
- Ha: Mean of time taken from start to end time and start_scan_to_end_scan are not equal

```
alpha = 0.05
t, p = ttest_ind(diff_od_start_end_time["diff_od_start_end_time"],start_scan_to_end_scan["start_scan_to_end_scan"])
t,p
```

print("Fail to reject Ho: The distribution is same.")

(0.20369692885937926, 0.8385917439108145)

Fail to reject Ho: The distribution is same.

- Conclusion: Mean of time taken from start to end time and start_scan_to_end_scan are equal
- 2. Do hypothesis testing/ visual analysis between actual_time aggregated value and OSRM time aggregated value (aggregated values are the values you'll get after merging the rows on the basis of trip_uuid)

Visual Test

```
plt.subplot(1,2,1)
sns.distplot((actual_time["actual_time"]))
plt.subplot(1,2,2)
plt.title("actual_time")
sns.distplot(osrm_time["osrm_time"],kde=True)
plt.title("osrm_time")
plt.show()
     <ipython-input-50-27cfefb9b0f1>:2: UserWarning:
     `distplot` is a deprecated function and will be removed in seaborn v0.14.0.
     Please adapt your code to use either `displot` (a figure-level function with
     similar flexibility) or `histplot` (an axes-level function for histograms).
     For a guide to updating your code to use the new functions, please see
     https://gist.github.com/mwaskom/de44147ed2974457ad6372750bbe5751
       sns.distplot((actual_time["actual_time"]))
     <ipython-input-50-27cfefb9b0f1>:5: UserWarning:
     `distplot` is a deprecated function and will be removed in seaborn v0.14.0.
     Please adapt your code to use either `displot` (a figure-level function with
     similar flexibility) or `histplot` (an axes-level function for histograms).
     For a guide to updating your code to use the new functions, please see
     https://gist.github.com/mwaskom/de44147ed2974457ad6372750bbe5751
```


Hypothesis test

- H0: Mean of time taken from actual_time and osrm_time are equal
- Ha: Mean of time taken from actual_time and osrm_time are not equal

- Conclusion: Mean of time taken from actual_time and osrm_time are not equal
- 3. Do hypothesis testing/ visual analysis between actual_time aggregated value and
- segment actual time aggregated value (aggregated values are the values you'll get after merging the rows on the basis of trip_uuid)

Visual Test

```
plt.subplot(1,2,1)
sns.distplot((actual_time["actual_time"]))
plt.subplot(1,2,2)
plt.title("actual_time")
sns.distplot(segment_actual_time["segment_actual_time"],kde=True)
plt.title("segment_actual_time")
plt.show()
```

```
<ipython-input-53-909ec77722de>:2: UserWarning:
```

`distplot` is a deprecated function and will be removed in seaborn v0.14.0.

Please adapt your code to use either `displot` (a figure-level function with similar flexibility) or `histplot` (an axes-level function for histograms).

For a guide to updating your code to use the new functions, please see https://gist.github.com/mwaskom/de44147ed2974457ad6372750bbe5751

```
sns.distplot((actual_time["actual_time"]))
<ipython-input-53-909ec77722de>:5: UserWarning:
```

`distplot` is a deprecated function and will be removed in seaborn v0.14.0.

Please adapt your code to use either `displot` (a figure-level function with similar flexibility) or `histplot` (an axes-level function for histograms).

For a guide to updating your code to use the new functions, please see https://gist.github.com/mwaskom/de44147ed2974457ad6372750bbe5751

sns.distplot(segment_actual_time["segment_actual_time"],kde=True)

Hypothesis test

- H0: Mean of time taken from actual_time and segment_actual_time are equal
- Ha: Mean of time taken from actual_time and segment_actual_time are not equal

• Conclusion: Mean of time taken from actual_time and segment_actual_time are equal

- 4. Do hypothesis testing/ visual analysis between osrm distance aggregated value
- and segment osrm distance aggregated value (aggregated values are the values you'll
 get after merging the rows on the basis of trip_uuid)

Visual Test

```
plt.subplot(1,2,1)
sns.distplot((osrm_distance["osrm_distance"]))
plt.subplot(1,2,2)
plt.title("osrm_distance")
sns.distplot(segment_osrm_distance["segment_osrm_distance"],kde=True)
plt.title("segment_osrm_distance")
     <ipython-input-56-ae87b053458d>:2: UserWarning:
     `distplot` is a deprecated function and will be removed in seaborn v0.14.0.
     Please adapt your code to use either `displot` (a figure-level function with
     similar flexibility) or `histplot` (an axes-level function for histograms).
     For a guide to updating your code to use the new functions, please see
     https://gist.github.com/mwaskom/de44147ed2974457ad6372750bbe5751
       sns.distplot((osrm_distance["osrm_distance"]))
     <ipython-input-56-ae87b053458d>:5: UserWarning:
     `distplot` is a deprecated function and will be removed in seaborn v0.14.0.
     Please adapt your code to use either `displot` (a figure-level function with
     similar flexibility) or `histplot` (an axes-level function for histograms).
     For a guide to updating your code to use the new functions, please see
     https://gist.github.com/mwaskom/de44147ed2974457ad6372750bbe5751
```

sns.distplot(segment_osrm_distance["segment_osrm_distance"],kde=True)

Hypothesis test

- H0: Mean of time taken from osrm_distance and segment_osrm_distance are equal
- · Ha: Mean of time taken from osrm_distance and segment_osrm_distance are not equal

```
alpha = 0.05
t, p = ttest_ind(osrm_distance["osrm_distance"],segment_osrm_distance["segment_osrm_distance"])
t,p
```

```
(-3.994945182743642, 6.486579656555584e-05)

if p < alpha:
    print("Reject Ho: The distribution are different.")

else :
    print("Fail to reject Ho: The distribution is same.")

    Reject Ho: The distribution are different.</pre>
```

- Conclusion: Mean of time taken from osrm_distance and segment_osrm_distance are not equal
- 5. Do hypothesis testing/ visual analysis between osrm time aggregated value and
 segment osrm time aggregated value (aggregated values are the values you'll get after merging the rows on the basis of trip_uuid)

Visual Test

```
plt.subplot(1,2,1)
sns.distplot((osrm_time["osrm_time"]))
plt.subplot(1,2,2)
plt.title("osrm_time")
sns.distplot(segment_osrm_time["segment_osrm_time"],kde=True)
plt.title("segment_osrm_time")
plt.show()
```

```
<ipython-input-59-9659f7003fab>:2: UserWarning:
```

`distplot` is a deprecated function and will be removed in seaborn v0.14.0.

Please adapt your code to use either `displot` (a figure-level function with similar flexibility) or `histplot` (an axes-level function for histograms).

For a guide to updating your code to use the new functions, please see https://gist.github.com/mwaskom/de44147ed2974457ad6372750bbe5751

```
sns.distplot((osrm_time["osrm_time"]))
<ipython-input-59-9659f7003fab>:5: UserWarning:
```

`distplot` is a deprecated function and will be removed in seaborn v0.14.0.

Please adapt your code to use either `displot` (a figure-level function with similar flexibility) or `histplot` (an axes-level function for histograms).

For a guide to updating your code to use the new functions, please see https://gist.github.com/mwaskom/de44147ed2974457ad6372750bbe5751

sns.distplot(segment_osrm_time["segment_osrm_time"],kde=True)

Hypothesis test

- H0: Mean of time taken from osrm_time and segment_osrm_time are equal
- Ha: Mean of time taken from osrm_time and segment_osrm_time are not equal

• Conclusion: Mean of time taken from osrm_time and segment_osrm_time are not equal

Cleaned Data

	trip_uuid	source_city	destination_city	source_state	destination_state
0	trip- 153741093647649320	Anand	Khambhat	Gujarat	Gujarat
5	trip- 153741093647649320	Khambhat	Anand	Gujarat	Gujarat
10	trip- 153768492602129387	Bhiwandi	Pune	Maharashtra	Maharashtra
15	trip- 153693976643699843	LowerParel	Mumbai	Maharashtra	Maharashtra
17	trip- 153687145942424248	Bangalore	Bengaluru	Karnataka	Karnataka

data_merged.shape

(25927, 15)

Outlier Detection

```
plt.figure(figsize = (20,10))
plt.subplot(121)
data_merged[['segment_osrm_time', 'osrm_time', 'segment_actual_time', 'actual_time', 'diff_od_start_end_time', 'start_scan_to_end_scan']].boxplot
plt.xticks(rotation =90)
plt.subplot(122)
data_merged[['segment_osrm_distance', 'actual_distance_to_destination', 'osrm_distance']].boxplot()
plt.xticks(rotation =90)
plt.show()
```


Outlier treatment

```
data_merged_otl = data_merged.copy()
column_names = data_merged_otl[['segment_osrm_time', 'osrm_time', 'segment_actual_time', 'actual_time', 'diff_od_start_end_time', 'start_scan_
from scipy import stats

for column_name in column_names:
    z_scores = stats.zscore(data_merged_otl[column_name])
    threshold = 3
    outliers = data_merged_otl[abs(z_scores) > threshold]
        data_merged_otl[column_name] = np.where(abs(z_scores) > threshold, data_merged_otl[column_name].mean(), data_merged_otl[column_name])

data_merged_otl.head()
```

0	trip- 153741093647649320	Anand	Khambhat	Gujarat	Gujarat
5	trip- 153741093647649320	Khambhat	Anand	Gujarat	Gujarat
10	trip- 153768492602129387	Bhiwandi	Pune	Maharashtra	Maharashtra
15	trip- 153693976643699843	LowerParel	Mumbai	Maharashtra	Maharashtra
17	trip- 153687145942424248	Bangalore	Bengaluru	Karnataka	Karnataka

```
data_merged_otl["route_type"].value_counts()
```

['FTL'] 13797 ['Carting'] 12130

Name: route_type, dtype: int64

data_merged_otl["destination_state"].value_counts()

Karnataka	3460	
Maharashtra	3421	
Tamil Nadu	2067	
Haryana	2014	
Uttar Pradesh	1787	
Telangana	1531	
West Bengal	1399	
Gujarat	1381	
Andhra Pradesh	1308	
Rajasthan	1166	
Punjab	1132	
Bihar	1053	
Kerala	746	
Madhya Pradesh	713	
Delhi	693	
Assam	455	
Uttarakhand	367	
Jharkhand	306	
Orissa	259	
Himachal Pradesh	241	
Chandigarh	123	
Goa	78	
Arunachal Pradesh	55	
Chhattisgarh	52	
Jammu & Kashmir	45	
Pondicherry	31	
Dadra and Nagar Haveli	17	
Meghalaya	13	
Mizoram	10	
Tripura	2	
Daman & Diu	1	
Nagaland	1	
Name: destination_state,	dtype:	int64

Handling categorical values

```
from sklearn.preprocessing import LabelEncoder
label_encoder = LabelEncoder()

# Fit and transform the categorical column
data_merged["route_type-1"] = label_encoder.fit_transform(data_merged["route_type"])
data_merged
```

[:] f_od_start_end_time	actual_time	osrm_time	segment_osrm_time	segment_actual_time	osrm_distance	actual_distance_to_destination	segme
3.256447	2.833333	1.483333	1.466667	2.783333	107.4515	82.981842	
3.256447	2.833333	1.483333	1.466667	2.783333	107.4515	82.981842	
5.039540	3.050000	1.583333	1.766667	3.000000	129.3519	100.708423	
1.816370	1.000000	0.266667	0.266667	1.000000	18.7941	16.431273	
17.194261	13.416667	8.100000	8.366667	13.316667	524.7155	371.458435	
14.505827	10.416667	7.050000	8.450000	10.283333	518.8885	377.878467	
6.564614	5.733333	0.516667	0.600000	5.733333	33.7957	23.034042	
10.239925	4.816667	1.583333	1.850000	4.800000	129.1588	100.562078	
1.947858	1.400000	0.550000	0.516667	1.366667	36.7672	31.698687	
7.128106	7.100000	1.633333	3.083333	7.050000	111.2709	73.680667	

One hot encoder for state column

from sklearn.preprocessing import OneHotEncoder
enc = OneHotEncoder()
enc.fit(data_merged[["source_state"]])

▼ OneHotEncoder OneHotEncoder()

feature_names = enc.get_feature_names_out(['source_state'])
encoded_data = enc.transform(data_merged[["source_state"]]).toarray()
encoded_df = pd.DataFrame(encoded_data, columns=feature_names)
encoded_df

ram	source_state_Nagaland	source_state_Orissa	source_state_Pondicherry	source_state_Punjab	source_state_Rajasthan	source_state_Tamil Nadı
0.0	0.0	0.0	0.0	0.0	0.0	0.0
0.0	0.0	0.0	0.0	0.0	0.0	0.0
0.0	0.0	0.0	0.0	0.0	0.0	0.0
0.0	0.0	0.0	0.0	0.0	0.0	0.0
0.0	0.0	0.0	0.0	0.0	0.0	0.0
0.0	0.0	0.0	0.0	0.0	0.0	0.0
0.0	0.0	0.0	0.0	0.0	0.0	0.0
0.0	0.0	0.0	0.0	0.0	0.0	0.0
0.0	0.0	0.0	0.0	0.0	0.0	1.0
0.0	0.0	0.0	0.0	0.0	0.0	0.0