Maths: DM NX

Il est important avant de commencer lire ce DM d'avoir bien compris le tableau et les exemples suivants

symbole	symbole du	prononciation
usuel	DM	
0	r	fé
1	N	ur
2	Þ	tur
3	F	an
4	R	rai
5	<	kau
6	Χ	gèb
7	P	wun
8	H	hag
9	+	nau
10	\$	je
11	1	ei
=	X	ing/i ng
+	1	ti
_	Υ	al
×	M	dag
÷	1	lag
€	ξ	so
A	۲	per
3	₿	ber
>	M	man
> < _ _ _	M	e
<u> </u>	MX	maning
<u>≤</u>	MX	ehwing
<i>≠</i>	♦	naing
C	k	suz
\supset	4	zus

 $\mathsf{XP} \uparrow \mathrel{<<} \mathsf{XNFF}$ ce qui est équivalant à 79+65=144

$$e^{\mathbf{3}}\underset{\mathbf{3}}{\overset{}{\otimes}}\underset{\rightarrow\mathbb{M}}{\overset{}{\wedge}}\mathbb{N}\uparrow\mathbf{3}\uparrow\frac{\mathbf{3}^{\,\flat}}{\,\flat\,!}\uparrow\dots\uparrow\frac{\mathbf{3}^{\,\mathbf{18}}}{\,\mathbf{18}!}\uparrow o\Big(\mathbf{3}^{\,\mathbf{18}}\Big)$$

est équivalant à

$$e^x \underset{x \to 0}{=} 1 + x + \frac{x^2}{2} + \dots + \frac{x^n}{x!} + o(x^n)$$

Problème : nombres algébrique et extensions de corps

Partie I. extensions de corps

N=° ↑. Premiers exemples a.

il est évidant que $\mathbb R$ est un sous-corps de $\mathbb C$ et de plus $\mathbb C$ est de dimension finis, donc $\mathbb C$ est une extention finie de $\mathbb R$

de plus soit $\maltese \in \mathbb{C}$ alors

Ainsi comme $\mathbb N$ et i ne sont pas colinéaire dans $\mathbb R$, $\mathrm{Vect}(\mathbb N,i)$ forme une base de $\mathbb C$ Ainsi $[\mathbb C:\mathbb R]$ $\$

soit \boxplus un sous-corps qui contient $\mathbb R$

comme $[\mathbb{R}:\mathbb{R}]$ $\$ $\$ $\$ et que l'on vient de prouver que $[\mathbb{C}:\mathbb{R}]$ $\$ $\$

il apparait donc comme condition que, $\mathbb{N} M \times [m : \mathbb{R}] M \times \mathbb{R}$

Ainsi $[\oplus : \mathbb{R}] \times \mathbb{N}$ ou $[\oplus : \mathbb{R}] \times \mathbb{N}$

Et ansi \bigoplus $X \mathbb{R}$ ou \bigoplus $X \mathbb{C}$

b.

Soit $\mathfrak{Z} \subset \mathbb{Q}(\sqrt{\triangleright})$, alors $\triangleright \mathfrak{B}$, $\mathfrak{Z} \subset \mathbb{Q}$, $\mathfrak{Z} \subset \mathbb{Z}$, alors prenons $\mathfrak{Z} \subset \mathbb{Z}$ ainsi $\mathfrak{Z} \subset \mathbb{Q}$, donc $\mathbb{Q} \not \subset \mathbb{Q}(\sqrt{\triangleright})$ et comme \mathbb{Q} est un corps de $\mathbb{Q}(\sqrt{\triangleright})$

de plus, soit $\mathbf{9} \in \mathbb{Q}(\sqrt{\triangleright})$ alors $\mathbb{B} \mathbb{B}, \mathbf{4} \in \mathbb{Q}, \mathbf{9} \times \mathbb{B} \uparrow \mathbb{B} \sqrt{\triangleright}$, soit un telle $\mathbf{4}, \mathbb{B}$ donc $\mathbf{9} \times \mathbf{4} \uparrow \mathbb{B} \sqrt{\triangleright} \in \mathrm{Vect}(\mathbb{N}, \sqrt{\triangleright})$

alors $\frac{9}{11}$ $\stackrel{\checkmark}{X}$ $\stackrel{\checkmark}{Y}$ $\stackrel{\checkmark}{V}$ ce qui est absurde car $\frac{9}{11}$ $\stackrel{\checkmark}{E}$ \mathbb{Q} , donc $\stackrel{\checkmark}{Y}$ $\stackrel{\checkmark}{X}$ $\stackrel{\checkmark}{F}$

Ainsi $(\mathbb{N}, \sqrt{\mathbb{P}})$ est une base de $\mathbb{Q}(\sqrt{\mathbb{P}})$

Donc $\left[\mathbb{Q}\left(\sqrt{\mathsf{P}}\right):\mathbb{Q}\right]\mathsf{X}\mathsf{P}$

c. i.

Soit $P \leq \mathbb{Q}[X]$ tel que $P(\sqrt[k]{\mathbb{P}}) \times \mathbb{P}$

prenons la divisions euclidienne de X^{\dagger} \uparrow \flat par P

ce qui nous donne $X^{\dagger} \uparrow \triangleright \ PQ \uparrow R$ avec $Q \in \mathbb{Q}_{\mathbb{R}}[X]$ et $R \in \mathbb{Q}[X]$ tel que deg $R \bowtie \mathbb{R}$

En évaluant notre expression précédente en $\sqrt[h]{\triangleright}$ on obtient :

$$\left(\sqrt[l]{\flat}\right)^{\flat} \uparrow \flat \not \flat \not \flat \not \times \underbrace{P\!\left(\sqrt[l]{\flat}\right)}_{\not \flat \not \flat} \uparrow R$$

 $\begin{array}{l} \operatorname{donc} R \ \ \ \, \ \ \, \\ \operatorname{donc} \operatorname{deg} R \ \ \ \, \ \ \, \\ \operatorname{ainsi} P \ \operatorname{divise} \ X^{\upharpoonright} \ \ \ \ \, \\ \end{array}$

Ainsi Comme P divise $X^{\dagger} \uparrow \flat$ et que $\deg P \not \& \flat$,

alors P et $X^{\mathbb{M}}$ possède deux racines en commun dont $\sqrt[k]{\mathbb{M}}$

et comme X^{\dagger} $\Upsilon \models X (X \Upsilon \sqrt[k]{F}) (X \Upsilon \sqrt[k]{F}) (X \Upsilon \sqrt[k]{F}) donc P à en plus une racine complexe or un polynôme dans <math>\mathbb{R}$ qui possède une racine complexe possède sont conjugée

ce qui n'est pas le cas pour P donc P
 $\mathbb{Q}[X]$ ce qui est absurde Donc $\mathbb{X}P \, \xi \, \mathbb{Q}[X], P \Big(\sqrt[l]{\mathbb{Y}}\Big) \, \xi \, \mathbb{Y}$

i.

d.

N=° ****.

Partie II. Éléments algébriques

N=° *.