Assignment #: Silver Springs Model

Timmy Nguyen

March~8,~2017

1 A Brief Introduction

In this model,

2 Results

2.0.1 Compartment Model

2.0.2 Flow vs Time

2.1 Reservoir level Over Time

$2.2 \quad Ksb > Ksa$

2.3 Ksb < Ksa

3 Conclusion

From my observations, when the graph of S intersects with a graph from either A or B, it presents an equilibrium of the two compartment volume. When the K_{sb} value is greater than the K_{sa} , compartment B fills up at a faster pace. When the K_{sb} value is less than the K_{sa} , compartment A will have a higher volume than B up to when the graph of A intersects with the graph of A in conclusion, when A decreases both graph of A and A increases; however, the graph of A will began to decrease when it intersects with A.

4 Appendix

```
{Top model}

{Reservoirs}

d/dt (S) = - Jsa - Jsb

INIT S = 1000

d/dt (A) = + Jsa

INIT A = 0

d/dt (B) = + Jsb

INIT B = 0

{Flows}

Jsa = Ksa * ( S - A)

Jsb = Ksb * S

{Functions}

Ksa = 0.2
```

Ksb = 0.2

{End Globals}

{Globals}