

Campus Rio Verde

Modelo Entidade-Relacionamento

Curso: Ciências da computação

Disciplina

Banco de Dados

A Modelagem Conceitual é uma etapa muito importante no planejamento de uma aplicação de BD;

- Aplicação de BD:
 - □ BD
 - Aplicativos relacionados ao BD;

Modelo Entidade-Relacionamento

Modelo Entidade-Relacionamento

- Apresentado inicialmente por Peter Chen em 1976, esse modelo se baseia em representar dados do "mundo real" por meio da definição de conjuntos de entidades e o relacionamento entre esses conjuntos de entidades
- É um modelo de dados de alto nível conceitual utilizado no projeto de um BD;
- É baseado em uma percepção do mundo real representada por um conjunto de objetos denominados ENTIDADES e pelo conjunto dos relacionamentos entre estes objetos

Entidade

Entidade

- O objeto básico que o MER representa é uma entidade e que pode ser identificado de forma unívoca em relação a todos os outros objetos;
- Uma entidade pode ser (representar):
 - □ Concreta (existência física): pessoa, casa, carro, funcionário, etc;
 - ☐ Abstrata (existência conceitual): empréstimo, empresa, trabalho, curso, etc;

Conjuntos de Entidades

- Conjunto de todas as entidades de um mesmo tipo, que possuem as mesmas propriedades: atributos
 - Exemplo:
 - Empregado Conjunto de todas as pessoas que são empregadas de uma empresa
 - Empresa Conjunto de todas as empresas que são cadastradas de um bd

NOME DO TIPO ENTIDADE: **EMPREGADO EMPRESA** Nome, Idade, Salario Nome, Sede Administrativa, Presidente 01 . C1 . (John Smith, 55, 80k) (Sunco Oil, Houston, John Smith) e2 . C2 . CONJUNTO DE ENTIDADE: (Fast Computer, Dallas, Bob King) (Fred Brown, 40, 30K) (EXTENSÃO) e3 . (Judy Clark, 25, 20K)

Conjuntos de Entidades

- Uma entidade pode fazer parte de mais de um conjunto de entidades (CEs)
 - □ Exemplo:
 - Entidade Pessoa:
 - Conjunto de Entidades Funcionário
 - Conjunto de Entidades Cliente

CEs Cliente

Jaqueline	321-54-987	Av. Olegário Maciel, 390	Mairiporã
Bruno	451-47-855	Av. Castelo Branco, 405	Taubaté
Benedito	123-45-789	Travessa Rafael, 55	Mairiporã
João Alves	111-25-478	Rua Jaques Felix, 23	Mairiporã
Sandra	452-44-855	R. das Flores, 21	Mairiporã

CEs Conta

6061-1	R\$ 50,00		
6061-2	R\$ 1000,00		
6061-3	R\$ 12,00		
6061-4	R\$ 340,00		
6061-5	R\$ 33000,00		
6061-6	R\$ 1200,00		
6061-7	R\$ 15000,00		

Atributos

São propriedades que descrevem cada entidade de um CEs

- empregado e₁
- lacksquare empresa $oldsymbol{c}_1$

e seus atributos.

Atributos

- Uma entidade é representada por um conjunto de atributos distintos
 - □ Exemplo:
 - Cliente: Cliente_nome, Seguro_social
- Cada entidade pode ter seu próprio valor em cada atributo
 - ☐ Exemplo:
 - João Alves, do CE Cliente, com n.º de seguro 111-25-478

Atributos

- Uma outra forma de se representar os atributos de uma entidade é descrita por um conjunto de pares (atributos, valores dos atributos)
 - □ Exemplo:
 - Entidade Cliente
 - □ **C**₁.
 - {(Cliente_nome, Emílio), (RG, 111-25-478), (Cliente_rua, Rua do Sapo), (Cliente_cidade, Jataí)}
 - □ C₂.
 - {(Cliente_nome, Odi), (RG, 333-51-171), (Cliente_rua, Av. Goiás), (Cliente_cidade, Jataí)}

Tipos de Atributos

- Simples ou Compostos
 - ☐ Simples (atômicos)
 - Não são divididos em partes
 - Exemplo: Cliente_cidade
 - Compostos
 - Podem ser divididos em outros atributos
 - Exemplo: Cliente_endereço pode ser dividido em Cliente logradouro e Cliente logradouro número

Tipos de Atributos

- Monovalorados ou Multivalorados
 - □ Monovalorados
 - Os atributos possuem um único valor para uma única entidade
 - □ Exemplo: Empréstimo_número, Idade, etc
 - □ Multivalorados
 - O atributo possui um conjunto de valores para uma única entidade
 - Exemplo: Dependente_nome, Cor de um carro que possui mais de uma cor, etc

Tipos de Atributos

Nulo

- É usado quando uma entidade não possui ou desconhece o valor de um determinado atributo
 - Um funcionário que não possua dependentes terá o valor do atributo Dependente_nome nulo
 - O número de um apartamento para um endereço de uma casa também terá um valor nulo

Derivado

- O valor desse atributo pode ser derivado de outros atributos ou entidades a ele relacionadas
 - Exemplo: tempo de casa.
 - □ Tempo_de_casa = data_corrente data_contratação

Domínio do Atributo

- Para cada atributo há um conjunto de valores possíveis, chamado domínio, do atributo
 - □ Exemplo:
 - Conta_número é um atributo, cujo domínio é o conjunto de todos os strings de um certo tamanho
- Representação Matemática: $A: E \rightarrow P(V)$
 - □ Indica que um atributo A, de uma entidade E, cujo valor é V, pode ser definido com uma função de E para o power set P⁷(V);

Domínio do Atributo

- O power set P(V) é um conjunto de subconjuntos de V.
- Seja uma entidade e pertencente ao CE E. Dado um atributo A. Uma forma de se referir a este atributo desta entidade é:
 - □ A(e)
- Um valor nulo é representado por um conjunto vazio;
- Para um atributo monovalorado, A(e) é um singleton set, ou seja, um conjunto de apenas um elemento (valor), para cada entidade e em E;
- Para um atributo multivalorado não existe restrição;

Domínio do Atributo

Para um atributo composto A, o conjunto de valor de V é o produto cartesiano de P(V₁), P(V₂),.., P(V_n), em que V₁, V₂,.., V_n são os conjuntos dos valores componentes dos atributos que formam A:

$$\square V = P(V_1) \times P(V_2) \times ... \times P(V_n)$$

Relacionamentos

- Um relacionamento é uma associação entre uma ou várias entidades
 - ☐ Exemplo:
 - O relacionamento do cliente Alves com a conta 6061-2
- Conjunto de relacionamentos (CRs)
 - Conjunto de todos os relacionamentos de um mesmo tipo

CEs Cliente

Jaqueline	321-54-987	Av. Olegário Maciel, 390	Mairiporã
Bruno	451-47-855	Av. Castelo Branco, 405	Taubaté
Benedito	123-45-789	Travessa Rafael, 55	Mairiporã
João Alves	111-25-478	Rua Jaques Felix, 23	Mairiporã
Sandra	452-44-855	R. das Flores, 21	Mairiporã

CEs Conta

6061-1	R\$ 50,00		
6061-2	R\$ 1000,00		
6061-3	R\$ 12,00		
6061-4	R\$ 340,00		
6061-5	R\$ 33000,00		
6061-6	R\$ 1200,00		
6061-7	R\$ 15000,00		

CRs ClienteConta

Jaqueline	321-54-987	Av. Olegário Maciel, 390	Mairiporã		6061-1	R\$ 50,00
Bruno	451-47-855	Av. Castelo Branco, 405	Taubaté /		6061-2	R\$ 1000,00
Benedito	123-45-789	Travessa Rafael, 55	Mairiporã		6061-3	R\$ 12,00
João Alves	111-25-478	Rua Jaques Felix, 23	Mairiporã	K// `	6061-4	R\$ 340,00
Sandra	452-44-855	R. das Flores, 21	Mairiporã		6061-8	R\$ 700,00
Eduardo	654-33-142	Av. Independência	Caçapava			

Papel de uma Entidade

- É a função que uma entidade desempenha em um relacionamento
- É implícito, já que os CEs, que participam de um CRs, são em geral distintos
- Entretanto são úteis quando o significado de um relacionamento precisa ser esclarecido
 - ☐ Exemplo:
 - O mesmo CEs participa de um CRs mais de uma vez
- Este tipo de CRs é chamado de <u>conjunto de</u> <u>relacionamentos recursivos</u>

CRs Recursivos

- Nomes explícitos de papéis são necessários para especificar como uma entidade participa de uma instância de relacionamento
 - ☐ Exemplo:
 - CEs Funcionário
 - CRs trabalha_para: ordena os pares de entidades Funcionário
 - O primeiro Funcionário de um par tem um papel de gerente e o segundo de Funcionário
 - Todos os relacionamentos de trabalha_para são caracterizados pelos pares (gerente, Funcionário)
 - Os pares (Funcionário, gerente) são excluídos

Relacionamentos

 Um relacionamento pode possuir atributos descritivos

□ Exemplo:

- O relacionamento ClienteConta é descrito pelo atributo Data_acesso
- O relacionamento entre as entidades cliente Alves e conta 6061-2 é descrito por {(Data_acesso, 04 de maio de 2007)}

Relacionamentos

- Binário → envolvem dois conjuntos de entidades
 - Exemplo:
 - Relacionamento ClienteConta
- Não-binários → associam mais de dois conjuntos de entidades
 - ☐ Exemplo:
 - relacionamento ternário entre as entidades do cliente Alves, conta 6061-2 e agência Centro
 - Cliente Alves, conta 6061-2 e agência Centro é uma instância do relacionamento CCA
- O número de CEs que participa de um CRs é também o grau desse CRs
 - ☐ Um CRs binário tem grau dois
 - Um CRs ternário tem grau três

CEs ou Atributos?

- Conjunto de entidades Funcionário → Funcionário_nome, Funcionário_rg e Funcionário_telefone
- Redefinindo o conjunto de entidades Funcionário temse:
 - □ Conjunto de entidades Funcionário → Funcionário_nome e Funcionário_rg
 - Conjunto de entidades Telefone → Telefone_número e Telefone_local
 - Conjunto de relacionamentos FuncionárioTelefone, que faz a associação entre os funcionários e seus números de telefone

CEs ou CRs?

- Exemplo:
 - □ Relacionamento entre os CEs: Cliente e Agência
 - ☐ Atributos descritivos: empréstimo_número e conta_número
 - Cada empréstimo é representado por um relacionamento entre um cliente e uma agência
 - □ Empréstimo de 1 cliente para 1 agência
- Representação inadequada para relacionamentos N para M
 - Replicação de dados, causando desperdício de memória.
 - ☐ Atualizações podem levar a dados inconsistentes

Como distinguir entre um CEs e um CRs?

- Recorrer ao CRs para descrever uma ação que ocorre entre entidades
 - □ Exemplo:
 - Ces: Cliente e Empréstimo
 - CRs: Devedor

Mapeamento de Restrições

Mapeamento das Cardinalidades

- É o número de entidades associadas a uma outra entidade através de um conjunto de relacionamentos
- É mais útil na descrição de conjuntos de relacionamentos binários
- □ Pode ser dos seguintes tipos:
 - Um para um
 - Um para muitos
 - Muitos para um
 - Muitos para muitos

Relacionamento Um para Um

Uma entidade em A está associada no máximo a uma entidade em B, e uma entidade em B está associada a no máximo uma entidade em A

Relacionamento Um para Muitos

Uma entidade em A está associada a várias entidades em B. Entretanto, uma entidade em B, deve estar associada a no máximo uma

entidade em A

Relacionamento Muitos para Um

Uma entidade em A está associada no máximo a uma entidade em B. Uma entidade em B, entretanto, pode estar associada a um número qualquer de entidades em A

Relacionamento Muitos para Muitos

Uma entidade em A está associada a um número qualquer de entidades em B, e uma entidade em B está associada a um número qualquer de entidades em A

(a) (b)

Dependência de Existência

- Define que se uma entidade x depende da existência de uma entidade y, então x é uma entidade subordinada e y é uma entidade dominante
- Se a entidade y for apagada, a entidade x também será
 - ☐ Exemplo:
 - entidade Funcionário → entidade dominante
 - entidade Dependente → entidade subordinada

Participação Total e Parcial

- A participação de um CEs E no CRs R é dita:
 - □ Total: se todas as entidades em E participam do relacionamento R
 - □ Parcial: se somente algumas entidades em E participam do relacionamento R

Chaves

Super chave

- É um conjunto de um ou mais atributos, que permite identificar univocamente uma entidade em um conjunto de entidades
 - Exemplo:
 - □ RG → é uma super chave
 - □ Cliente_nome e RG \rightarrow é uma super chave
 - □ Cliente_nome \rightarrow não é uma super chave

Chaves

Chave candidata

São super chaves que não possuem nenhum subconjunto que seja uma super chave

Exemplo:

- \square RG \rightarrow é uma chave candidata
- □ Cliente_nome e Cliente_rua → não é uma chave candidata
- □ RG e Cliente_nome → não é uma chave candidata

Chaves

Chave primária

- É uma chave candidata cuja principal função é identificar uma entidade como única dentro de um conjunto de entidades
 - Exemplo:
 - □ RG → é uma chave primária
 - □ Cliente_nome → não é uma chave primária

Composição da Chave Primária para Conjuntos de Relacionamentos

Seja R um relacionamento. A chave primária de R depende do mapeamento da cardinalidade do conjunto de relacionamentos.

Exemplo

- Cliente → chave primária RG
- Conta → chave primária Conta_número
- Se o relacionamento ClienteConta não possui atributos descritivos e o mapeamento da cardinalidade do relacionamento é do tipo:
 - ☐ MUITOS PARA MUITOS: então sua superchave é {RG, Conta_número}
 - □ MUITOS PARA UM: então sua chave primária é {RG}
 - ☐ UM PARA MUITOS: então sua chave primária é {Conta_número}
 - □ UM PARA UM: então sua chave primária pode ser {RG} ou {Conta_número}

Exemplo

- Cliente → chave primária RG
- Conta → chave primária Conta_número
- Se o relacionamento ClienteConta possui o atributo descritivo Data_acesso e o mapeamento da cardinalidade do relacionamento é do tipo:
 - MUITOS PARA MUITOS: então sua superchave é {RG, Conta_número, Data_acesso}
 - MUITOS PARA UM: então sua superchave é {RG, Data_acesso}.
 - UM PARA MUITOS: então sua superchave é {Conta_número, Data_acesso}
 - UM PARA UM: então sua superchave pode ser {RG, Data_acesso} ou {Conta_número, Data_acesso}

Diagrama Entidade-Relacionamento (E-R)

- Contém os seguintes componentes:
 - □ Retângulos → representam conjuntos de entidades
 - □ Elipses → representam atributos
 - □ Losangos → representam conjuntos de relacionamentos
 - □ Linhas → ligam conjuntos de entidades a atributos e conjuntos de entidades aos conjuntos de relacionamentos
 - ☐ Elipses duplas → representam atributos multivalorados
 - □ Linhas duplas → indicam participação total de uma entidade em um conjunto de relacionamentos

DER - Relacionamento Muitos para Muitos ClienteConta

Os atributos de um CEs que são membros de uma chave primária devem ser sublinhados

DER - Relacionamento Um para Muitos

Para distinguir a cardinalidade de um relacionamento, deve-se desenhar uma linha direcionada (→) ou não direcionada (−) entre o conjunto de relacionamentos e o conjunto de entidades em questão

DER - Relacionamento Muitos para Um

DER - Relacionamento Um para Um

DER com Indicadores de Papéis

Para indicar papéis em um diagrama E-R, devese rotular as linhas que conectam retângulos a

DER com Relacionamento Ternário

CEs Fracas

- É o conjunto de entidades que não possui atributos suficientes para constituir uma chave primária
- Um conjunto de entidades fracas deve participar de um relacionamento do tipo um para muitos
 - □ Exemplo:
 - Dependente → conjunto de entidades fracas
- Um membro de um CEs fracas é uma entidade subordinada

CEs Fortes

- É o conjunto de entidades que possui uma chave primária
 - □ Exemplo:
 - Funcionário → conjunto de entidades fortes
- Um membro de um CEs fortes é uma entidade dominante

Identificador (Chave parcial)

- É um conjunto de atributos que fornece a distinção entre as entidades fracas de uma entidade forte em particular.
 - ☐ Exemplo:
 - Dependente-nome → é um identificador
- A chave primária para um conjunto de entidades fracas é constituída pela chave primária do seu conjunto de entidades fortes e por seu identificador
 - ☐ Exemplo:
 - Funcionário-rg e Dependente-nome → é uma chave primária para o conjunto de entidades fracas Dependente

CEs Fracas

 São identificadas em um DER pela linha dupla usada no retângulo e no losango do relacionamento correspondente

O identificador de um CEs fracas é sublinhado com uma

Referência Bibliográfica

[1] Silberschatz, A.; Korth, H. F. e Sudarshan, S. Sistema de Banco de Dados. São Paulo: MAKRON *Books*, 1999.