Report No: CCIS15080064304

FCC REPORT

Applicant: HUNG WAI PRODUCTS LIMITED

Address of Applicant: Unit 11, 12/F., New Commerce Centre, 19 On Sum Street,

Shatin, Hong Kong

Equipment Under Test (EUT)

Product Name: 13.3" Android non-touch LCD Media Player

Model No.: DT133-AS4-720, 502-1019ATM

FCC ID: 2AB6Z-DT133-AS4

Applicable standards: FCC CFR Title 47 Part 15 Subpart E Section 15.407

Date of sample receipt: 13 Aug., 2015

Date of Test: 13 Aug., to 10 Sep., 2015

Date of report issued: 14 Sep., 2015

Test Result: PASS*

* In the configuration tested, the EUT complied with the standards specified above.

Authorized Signature:

Bruce Zhang Laboratory Manager

This report details the results of the testing carried out on one sample. The results contained in this test report do not relate to other samples of the same product and does not permit the use of the CCIS product certification mark. The manufacturer should ensure that all products in series production are in conformity with the product sample detailed in this report.

This report may only be reproduced and distributed in full. If the product in this report is used in any configuration other than that detailed in the report, the manufacturer must ensure the new system complies with all relevant standards.

This document cannot be reproduced except in full, without prior written approval of the Company. Any unauthorized alteration, forgery or falsification of the content or appearance of this document is unlawful and offenders may be prosecuted to the fullest extent of the law. Unless otherwise stated the results shown in this test report refer only to the sample(s) tested and such sample(s) are retained for 90 days only.

2 Version

Version No.	Date	Description
00	14 Sep., 2015	Android player Main board with wireless module (FCC ID: 2AB6Z-1859ATMB) and same antenna were used by the device, only conducted emission and Radiated emission were re-tested.

Tested by:	Viki Zhul	Date:	14 Sep., 2015
	Test Engineer		

Reviewed by:

One Open Date: 14 Sep., 2015

Project Engineer

3 Contents

			Page
1	COV	/ER PAGE	1
2	VER	SION	2
3	CON	ITENTS	3
4		T SUMMARY	
5	GEN	IERAL INFORMATION	5
	5.1	CLIENT INFORMATION	5
	5.2	GENERAL DESCRIPTION OF E.U.T.	
	5.3	TEST ENVIRONMENT AND MODE	
	5.4	LABORATORY FACILITY	
	5.5	LABORATORY LOCATION	
	5.6	TEST INSTRUMENTS LIST	
6	TES	T RESULTS AND MEASUREMENT DATA	9
	6.1	ANTENNA REQUIREMENT	9
	6.2	CONDUCTED EMISSION	10
	6.3	CONDUCTED OUTPUT POWER	13
	6.4	OCCUPY BANDWIDTH	14
	6.5	Power Spectral Density	15
	6.6	BAND EDGE	16
	6.7	Spurious Emission	21
	6.7.	Restricted Band	21
	6.7.2		
	6.8	FREQUENCY STABILITY	37
7	TES	T SETUP PHOTO	38
R		CONSTRUCTIONAL DETAILS	30

4 Test Summary

Test Item	Section in CFR 47	Result
Antenna requirement	15.203/15.407 (g)	Pass
AC Power Line Conducted Emission	15.207	Pass
Conducted Peak Output Power	15.407 (a)	Pass*
26dB Occupied Bandwidth	15.407 (a)	Pass*
6dB Emission Bandwidth	15.407(e)	Pass*
Power Spectral Density	15.407 (a)	Pass*
Band Edge	15.407(b)	Pass*
Spurious Emission	15.205/15.209	Pass
Frequency Stability	15.407(g)	Pass*

Pass: The EUT complies with the essential requirements in the standard.

Pass*: The test data refer to FCC ID: 2AB6Z-1859ATMB.

Remark: Test according to ANSI C63.4-2009

5 General Information

5.1 Client Information

Applicant:	HUNG WAI PRODUCTS LIMITED
Address of Applicant:	Unit 11, 12/F., New Commerce Centre, 19 On Sum Street, Shatin, Hong Kong
Manufacturer:	HUNG WAI ELECTRONICS (HUIZHOU) LTD.
Address of Manufacturer:	3 rd floor, NO. 3, Minfeng Road, Huinan High and New Technology Industry Park, Huiao Avenue, Huizhou City, Guangdong, China

5.2 General Description of E.U.T.

<u> </u>	
Product Name:	13.3" Android non-touch LCD Media Player
Model No.:	DT133-AS4-720, 502-1019ATM
Operation Frequency:	Band 1: 5180MHz-5240MHz Band 4: 5745MHz-5825MHz
Operation mode:	Indoor used
Channel numbers:	Band 1: 802.11a/802.11n20: 4, 802.11n40: 2 Band 4: 802.11a/802.11n20: 5, 802.11n40: 2
Channel separation:	802.11a/802.11n20: 20MHz, 802.11n40: 40MHz
Modulation technology: (IEEE 802.11a)	BPSK, QPSK,16-QAM, 64-QAM
Modulation technology: (IEEE 802.11n)	BPSK, QPSK, 16-QAM, 64-QAM
Data speed(IEEE 802.11a)	6Mbps, 9Mbps,12Mbps,18Mbps, 24Mbps,36Mbps,48Mbps, 54Mbps
Data speed (IEEE 802.11n20):	MCS0: 6.5Mbps, MCS1:13Mbps, MCS2:19.5Mbps, MCS3:26Mbps, MCS4:39Mbps, MCS5:52Mbps, MCS6:58.5Mbps, MCS7:65Mbps
Data speed (IEEE 802.11n40):	MCS0:15Mbps, MCS1:30Mbps, MCS2:45Mbps, MCS3:60Mbps, MCS4:90Mbps, MCS5:120Mbps, MCS6:135Mbps, MCS7:150Mbps
Antenna Type:	Omni-directional
Antenna gain:	2.5 dBi
AC Adapter:	MODEL: PS24A120K2000UD Input: AC 100-240V 50/60Hz 1.0A Output: DC 12V, 2000mA

Operation Frequency each of channel

Band 1					
802.11a/	802.11n20	802.11n40			
Channel	Frequency	Channel	Frequency		
36	5180MHz	39	5190MHz		
40	5200MHz	45	5230MHz		
44	5220MHz	5220MHz			
48 5240MHz					
	Bai	nd 4			
802.11a/	802.11n20	802.11n40			
Channel	Frequency	Channel	Frequency		
149	5745MHz	151	5755MHz		
153	153 5765MHz 159		5795MHz		
157	157 5785MHz				
161	5805MHz				
165	5825MHz		_		

Note:

In section 15.31(m), regards to the operating frequency range over 10 MHz, the Lowest frequency, the middle frequency, and the highest frequency of channel were selected to perform the test, and the selected channel see below:

Band 1						
802.11a/802	2.11n20	802.11n	40			
Channel	Frequency	Channel	Frequency			
The lowest channel	5180MHz	The lowest channel	5190MHz			
The middle channel	5200MHz	The highest channel	5230MHz			
The highest channel 5240MHz						
	Band 4					
802.11a/802	2.11n20	802.11n40				
Channel	Channel Frequency		Frequency			
The lowest channel 5745MHz		The lowest channel	5755MHz			
The middle channel 5785MHz		The highest channel	5795MHz			
The highest channel	5825MHz					

5.3 Test environment and mode

Operating Environment:				
Temperature:	24.0 °C			
Humidity:	54 % RH			
Atmospheric Pressure:	1010 mbar			
Test mode:				
Continuously transmitting mode	Keep the EUT in 100% duty cycle transmitting with modulation.			

We have verified the construction and function in typical operation. All the test modes were carried out with the EUT in transmitting operation, which was shown in this test report and defined as follows:

Per-scan all kind of data rate in lowest channel, and found the follow list which it was worst case.				
Mode	Data rate			
802.11a	6 Mbps			
802.11n20	6.5 Mbps			
802.11n40	13 Mbps			

Final Test Mode:

According to ANSI C63.4 standards, the test results are both the "worst case" and "worst setup" 6 Mbps for 802.11a, 6.5 Mbps for 802.11n20 and 13 Mbps for 802.11n40. All test items for 802.11a and 802.11n were performed with duty cycle above 98%, meet the requirements of KDB789033.

5.4 Laboratory Facility

The test facility is recognized, certified, or accredited by the following organizations:

● FCC - Registration No.: 817957

Shenzhen Zhongjian Nanfang Testing Co., Ltd. EMC Laboratory has been registered and fully described in a report filed with the (FCC) Federal Communications Commission. The acceptance letter from the FCC is maintained in out files. Registration 817957, February 27, 2012.

● IC - Registration No.: 10106A-1

The 3m Semi-anechoic chamber of Shenzhen Zhongjian Nanfang Testing Co., Ltd. has been Registered by Certification and Engineering Bureau of Industry Canada for radio equipment testing with Registration No.: 10106A-1.

CNAS - Registration No.: CNAS L6048

Shenzhen Zhongjian Nanfang Testing Co., Ltd. is accredited to ISO/IEC 17025:2005 General Requirements for the Competence of Testing and Calibration laboratories for the competence of testing. The Registration No. is CNAS L6048.

5.5 Laboratory Location

Shenzhen Zhongjian Nanfang Testing Co., Ltd.

Address: No. B-C, 1/F., Building 2, Laodong No.2 Industrial Park, Xixiang Road,

Bao'an District, Shenzhen, Guangdong, China

Tel: +86-755-23118282 Fax: +86-755-23116366

Shenzhen Zhongjian Nanfang Testing Co., Ltd.
No. B-C, 1/F., Building 2, Laodong No.2 Industrial Park, Xixiang Road,
Bao'an District, Shenzhen, Guangdong, China
Telephone: +86 (0) 755 23118282 Fax: +86 (0) 755 23116366

Project No.: CCIS150800643RF

Report No: CCIS15080064304

5.6 Test Instruments list

Radia	ated Emission:					
Item	Test Equipment	Manufacturer	Model No.	Inventory No.	Cal. Date (mm-dd-yy)	Cal. Due date (mm-dd-yy)
1	3m Semi - Anechoic Chamber	SAEMC	9(L)*6(W)* 6(H)	CCIS0001	08-23-2014	08-22-2017
2	BiConiLog Antenna	SCHWARZBECK MESS-ELEKTRONIK	VULB9163	CCIS0005	03-28-2015	03-28-2016
3	Double -ridged waveguide horn	SCHWARZBECK MESS-ELEKTRONIK	BBHA9120D	CCIS0006	03-28-2015	03-28-2016
4	EMI Test Software	AUDIX	E3	N/A	N/A	N/A
5	Amplifier (10kHz-1.3GHz)	HP	8447D	CCIS0003	04-01-2015	03-31-2016
6	Amplifier (1GHz-18GHz)	Compliance Direction Systems Inc.	PAP-1G18	CCIS0011	04-01-2015	03-31-2016
7	Pre-amplifier (18-26GHz)	Rohde & Schwarz	AFS33-18002 650-30-8P-44	GTS218	04-01-2015	03-31-2016
8	Horn Antenna	ETS-LINDGREN	3160	GTS217	04-01-2015	03-31-2016
9	Printer	HP	HP LaserJet P1007	N/A	N/A	N/A
10	Positioning Controller	UC	UC3000	CCIS0015	N/A	N/A
11	Spectrum analyzer 9k-30GHz	Rohde & Schwarz	FSP	CCIS0023	03-28-2015	03-28-2016
12	EMI Test Receiver	Rohde & Schwarz	ESPI	CCIS0022	03-28-2015	03-28-2016
13	Loop antenna	Laplace instrument	RF300	EMC0701	04-01-2015	03-31-2016
14	Universal radio communication tester	Rhode & Schwarz	CMU200	CCIS0069	03-28-2015	03-28-2016
15	Signal Analyzer	Rohde & Schwarz	FSIQ3	CCIS0088	04-08-2015	04-08-2016

Conducted Emission:						
Item	Test Equipment	Manufacturer	Model No.	Inventory No.	Cal. Date (mm-dd-yy)	Cal. Due date (mm-dd-yy)
1	Shielding Room	ZhongShuo Electron	11.0(L)x4.0(W)x3.0(H)	CCIS0061	11-10-2012	11-09-2015
2	EMI Test Receiver	Rohde & Schwarz	ESCI	CCIS0002	03-28-2015	03-28-2016
3	LISN	CHASE	MN2050D	CCIS0074	03-28-2015	03-28-2016
4	Coaxial Cable	CCIS	N/A	CCIS0086	04-01-2015	03-31-2016
5	EMI Test Software	AUDIX	E3	N/A	N/A	N/A

6 Test results and Measurement Data

6.1 Antenna requirement

Standard requirement:

FCC Part15 E Section 15.203 /407(a)

15.203 requirement:

An intentional radiator shall be designed to ensure that no antenna other than that furnished by the responsible party shall be used with the device. The use of a permanently attached antenna or of an antenna that uses a unique coupling to the intentional radiator, the manufacturer may design the unit so that a broken antenna can be replaced by the user, but the use of a standard antenna jack or electrical connector is prohibited.

This requirement does not apply to carrier current devices or to devices operated under the provisions of §15.211, § 15.213, § 15.217, § 15.219, or § 15.221. Further, this requirement does not apply to intentional radiators that must be professionally installed, such as perimeter protection systems and some field disturbance sensors, or to other intentional radiators which, in accordance with § 15.31(d), must be measured at the installation site. However, the installer shall be responsible for ensuring that the proper antenna is employed so that the limits in this part are not exceeded.

E.U.T Antenna:

The antenna of EUT is a reverse-SMA connector, which cannot be replaced by end-user. And the antenna gain is 2.5 dBi.

6.2 Conducted Emission

Test Requirement:	FCC Part15 C Section 15.207								
Test Method:	ANSI C63.4: 2009								
Test Frequency Range:	150 kHz to 30 MHz								
Class / Severity:	Class B								
Receiver setup:	RBW=9 kHz, VBW=30 kHz		1						
Limit:	Frequency range (MHz) Limit (dBuV) Quasi-peak Average								
	0.15-0.5								
	0.5-5	56	46						
	5-30	50							
	* Decreases with the logarithm	of the frequency.							
Test procedure	 The E.U.T and simulators are connected to the main power through a line impedance stabilization network (L.I.S.N.). It provides a 50ohm/50uH coupling impedance for the measuring equipment. The peripheral devices are also connected to the main power through a LISN that provides a 50ohm/50uH coupling impedance with 50ohm termination. (Please refer to the block diagram of the test setup and photographs). Both sides of A.C. line are checked for maximum conducted interference. In order to find the maximum emission, the relative positions of equipment and all of the interface cables must be changed according to ANSI C63.4: 2009 on conducted measurement. 								
Test setup:	Referen	nce Plane							
	AUX Equipment E.U Test table/Insulation plan Remark E.U.T: Equipment Under Test LISN: Line Impedence Stabilization Test table height=0.8m	EMI Receiver	r —— AC power						
Test Instruments:	Refer to section 5.6 for details								
Test mode:	Refer to section 5.3 for details.								
Test results:	Passed								

Measurement Data

Site

Condition

EUT

Test Mode : 5G-WIFI mode
Power Rating : AC 120V/60Hz
Environment : Temp: 23 °C Huni:56% Atmos:101KPa
Test Engineer: Viki
Remark Model

•								
	Read	LISN	Cable		Limit	Over		
Freq	Level	Factor	Loss	Level	Line	Limit	Remark	
MHz	dBu∜	<u>dB</u>	₫B	dBu∀	dBu₹	<u>dB</u>		-
0.155	28.83	0.27	10.78	39.88	55.74	-15.86	Average	
0.170	43.32	0.27	10.77	54.36	64.94	-10.58	QP	
0.170	28.72	0.27	10.77	39.76	54.94	-15.18	Average	
0.195	37.00	0.28	10.76	48.04	63.80	-15.76	QP	
0.230	33.38	0.27	10.75	44.40	62.44	-18.04	QP	
0.230	21.66	0.27	10.75	32.68	52.44	-19.76	Average	
0.255	31.67	0.27	10.75	42.69	61.60	-18.91	QP	
0.255	18.16	0.27	10.75	29.18	51.60	-22.42	Average	
0.431	17.15	0.28	10.73	28.16	47.24	-19.08	Average	
0.505	30.04	0.29	10.76	41.09	56.00	-14.91	QP	
0.521	22.55	0.28	10.76	33.59	46.00	-12.41	Average	
6.454	26.31	0.31	10.81	37.43	60.00	-22.57	QP	
	Freq MHz 0.155 0.170 0.170 0.195 0.230 0.230 0.255 0.255 0.431 0.505 0.521	Read Level MHz dBuV 0.155 28.83 0.170 43.32 0.170 28.72 0.195 37.00 0.230 33.38 0.230 21.66 0.255 31.67 0.255 31.67 0.255 18.16 0.431 17.15 0.505 30.04 0.521 22.55	Read LISN Freq Level Factor MHz dBuV dB 0.155 28.83 0.27 0.170 43.32 0.27 0.170 28.72 0.27 0.195 37.00 0.28 0.230 33.38 0.27 0.250 21.66 0.27 0.255 18.16 0.27 0.255 18.16 0.27 0.431 17.15 0.28 0.505 30.04 0.29 0.521 22.55 0.28	Read LISN Loss Cable Level Factor Cable Loss MHz dBuV dB dB 0.155 28.83 0.27 10.78 0.170 43.32 0.27 10.77 0.195 37.00 0.28 10.76 0.230 33.38 0.27 10.75 0.255 31.67 0.27 10.75 0.255 18.16 0.27 10.75 0.431 17.15 0.28 10.73 0.505 30.04 0.29 10.76 0.521 22.55 0.28 10.76	Read LISN Loss Cable Level Freq dBuV dB dB dBuV 0.155 28.83 0.27 10.78 39.88 0.170 43.32 0.27 10.77 54.36 0.170 28.72 0.27 10.77 39.76 0.195 37.00 0.28 10.76 48.04 0.230 33.38 0.27 10.75 32.68 0.255 31.67 0.27 10.75 32.68 0.255 18.16 0.27 10.75 29.18 0.431 17.15 0.28 10.73 28.16 0.505 30.04 0.29 10.76 41.09 0.521 22.55 0.28 10.76 33.59	Read LISN Cable Lost Limit Line Limit Line Line	Read LISN Cable Limit Over	Read LISN Cable Limit Over Limit Remark

Neutral:

Trace: 19

Site

Condition

: CCIS Shielding Room : FCC PART15 B QP LISN NEUTRAL : 13.3" And 700 EUT

: DT133-AS4-720 Model Test Mode : 5G-WIFI mode Power Rating : AC 120V/60Hz

Environment : Temp: 23 °C Huni:56% Atmos:101KPa Test Engineer: Viki

Remark

TOMALK	Freq	Read Level	LISN Factor	Cable Loss	Level	Limit Line	Over Limit	Remark
	MHz	dBu∀	<u>dB</u>	dB	dBu₹	dBu₹	dB	
1	0.150	43.22	0.25	10.78	54.25	66.00	-11.75	QP
2	0.170	42.07	0.25	10.77	53.09	64.94	-11.85	QP
3	0.170	27.65	0.25	10.77	38.67	54.94	-16.27	Average
4	0.190	38.12	0.25	10.76	49.13	64.02	-14.89	QP
2 3 4 5 6 7	0.230	24.30	0.25	10.75	35.30	52.44	-17.14	Average
6	0.264	32.94	0.26	10.75	43.95	61.29	-17.34	QP
7	0.264	20.04	0.26	10.75	31.05	51.29	-20.24	Average
8 9	0.396	17.09	0.25	10.72	28.06	47.95	-19.89	Average
9	0.444	17.43	0.27	10.74	28.44	46.98	-18.54	Average
10	0.510	31.86	0.28	10.76	42.90	56.00	-13.10	QP
11	0.510	22.30	0.28	10.76	33.34	46.00	-12.66	Average
12	6.352	26.26	0.27	10.81	37.34	60.00	-22.66	QP

Notes:

- 1. An initial pre-scan was performed on the live and neutral lines with peak detector.
- 2. Quasi-Peak and Average measurement were performed at the frequencies with maximized peak emission.
- 3. Final Level = Receiver Read level + LISN Factor + Cable Loss

6.3 Conducted Output Power

Test Requirement:	FCC Part15 E Section 15.407 (a) (1) (ii) & (a) (3)				
Test Method:	ANSI C63.10: 2009, KDB 789033				
Limit:	Band 1: 1 W (For an indoor access point operating in the band 5.15-5.25 GHz, the maximum conducted output power over the frequency band of operation shall not exceed 1 W provided the maximum antenna gain does not exceed 6 dBi.); Band 4: 1W.				
Test setup:					
	Spectrum Analyzer E.U.T Non-Conducted Table Ground Reference Plane				
Test Instruments:	Refer to section 5.6 for details				
Test mode:	Refer to section 5.3 for details				
Test results:	Refer to FCC ID: 2AB6Z-1859ATMB				

6.4 Occupy Bandwidth

FCC Part15 E Section 15.407 (a) (5) and Section 15.407 (e)					
ANSI C63.10:2009 and KDB 789033					
Band 1: N/A(26dB Emission Bandwidth and 99% Occupy Bandwidth) Band 4: N/A(26dB Emission Bandwidth and 99% Occupy Bandwidth) Band 4: >500kHz(6dB Bandwidth)					
Spectrum Analyzer E.U.T Non-Conducted Table Ground Reference Plane					
Refer to section 5.6 for details					
Refer to section 5.3 for details					
Refer to FCC ID: 2AB6Z-1859ATMB					

6.5 Power Spectral Density

Test Requirement:	FCC Part15 E Section 15.407 (a) (1) (ii) & (a) (3)				
Test Method:	ANSI C63.10:2009, KDB 789033				
Limit:	Band 1: 17 dBm/MHz (The maximum power spectral density shall not exceed 17 dBm in any 1 megahertz band. If transmitting antennas of directional gain greater than 6 dBi are used, both the maximum conducted output power and the maximum power spectral density shall be reduced by the amount in dB that the directional gain of the antenna exceeds 6 dBi.); Band 4: 30dBm/500kHz				
Test setup:	Spectrum Analyzer E.U.T Non-Conducted Table Ground Reference Plane				
Test Instruments:	Refer to section 5.6 for details				
Test mode:	Refer to section 5.3 for details				
Test results:	Refer to FCC ID: 2AB6Z-1859ATMB				

6.6 Band Edge

Test Requirement:	FCC Part15 E Section 15.407 (b)					
Test Method:	ANSI C63.4:2009 , KDB 789033					
Receiver setup:	Detector Quasi-peak RMS	RBW 120kHz 1MHz	VBW 300kHz 3MHz	kHz Quasi-peak Value		
Limit:	TAVIO	11111112	JIVII IZ	Average van	uc	
Littlit.				BuV/m @3m) 68.20	Remark Peak Value	
	Band	1		54.00	Average Value	
	Rand 4 78.20 Peak Value					
	Band 4 54.00 Average Value					
	2. Band 4 limit	= EIRP[dBm] t:			R[dBm]= -27dBm. R[dBm]= -17dBm.	
Test Procedure:	the ground to determin. 2. The EUT wantenna, whower. 3. The antennathe ground Both horizon make the make the maters and to find the nate of the EUT have 10dB.	at a 3 mete e the position as set 3 meterich was me a height is a to determinantal and vertices and the easurement is pected enter the anteriche the rota taken aximum receiver system and width we wide ion level of ecified, then would be remargin would in the position of the system and in the position is a set of the system and in the position is a set of the system in the position in the system is a set of the system in the system in the system is a set of the system in the system in the system is a set of the system in the system is a set of the system in the system is a set of the system in the system is a set of the system in the system is a set of the system in the system is a set of the system in the system is a set of the system in the system is a set of the system is a set of the system in the system is a set of the system in the system is a set of the system in the system is a set of the system in the system is a set of the system in the system in the system is a set of the system in the system is a set of the system in the system in the system is a set of the system in the system in the system is a set of the system in the system in the system in the system is a system in the sy	r camber. Ton of the higher saway founted on to waried from the maximatical polarizat. Initial polarizat. In	The table was roghest radiation. Irom the interfer he top of a variation one meter to formum value of the zations of the arranged to heights from 0 degrees to Peak Detect med Mode. The peak mode was all do be stopped an erwise the emissisted one by one	our meters above e field strength. Intenna are set to aged to its worst from 1 meter to 4 ees to 360 degrees	
Test setup:	EUT Turn Table 0.8m A	4m	H Sp	Antenna Tower forn Antenna ectrum nalyzer Amplifier		
Test Instruments:	Refer to section	5.6 for deta	ils			
Test mode:	Refer to section	5.3 for deta	nils			
Test results:	Passed					

Band 1:

	802.11a								
Test c	hannel		Lowest		Le	vel	F	Peak	
Frequency (MHz)	Read Level (dBuV/m)	Antenna Factor (dB)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	Polarization	
5150.00	35.26	32.07	9.13	40.06	36.40	68.20	-31.80	Horizontal	
5150.00	34.18	32.07	9.13	40.06	35.32	68.20	-32.88	Vertical	
	802.11a								
Test c	hannel		Lowest		Le	vel	Av	erage	
Frequency (MHz)	Read Level (dBuV/m)	Antenna Factor (dB)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	Polarization	
5150.00	25.04	32.07	9.13	40.06	26.18	54.00	-27.82	Horizontal	
5150.00	23.55	32.07	9.13	40.06	24.69	54.00	-29.31	Vertical	
				802.11a					
Test c	hannel		Highest		Le	vel	F	Peak	
Frequency (MHz)	Read Level (dBuV/m)	Antenna Factor (dB)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	Polarization	
5350.00	38.04	31.78	9.15	40.18	38.79	68.20	-29.41	Horizontal	
5350.00	38.26	31.78	9.15	40.18	39.01	68.20	-29.19	Vertical	
				802.11a					
Test c	hannel		Highest		Le	vel	Av	erage	
Frequency (MHz)	Read Level (dBuV/m)	Antenna Factor (dB)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	Polarization	
5350.00	25.47	31.78	9.15	40.18	26.22	54.00	-27.78	Horizontal	
5350.00	25.09	31.78	9.15	40.18	25.84	54.00	-28.16	Vertical	

	802.11n-HT20								
Toot o	hannal	T .		002.1111-11120	10	val	-	Dook	
	hannel I		Lowest		Level			Peak	
Frequency	Read Level	Antenna	Cable	Preamp	Level	Limit Line	Over	Polarization	
(MHz)	(dBuV/m)	Factor (dB)	Loss (dB)	Factor (dB)	(dBuV/m)	(dBuV/m)	Limit (dB)	1 Glanzation	
5150.00	38.46	32.07	9.13	40.06	39.60	68.20	-28.60	Horizontal	
5150.00	38.09	32.07	9.13	40.06	39.23	68.20	-28.97	Vertical	
			8	02.11n-HT20					
Test c	hannel		Lowest		Le	vel	Av	erage	
Frequency	Read Level	Antenna	Cable	Preamp	Level	Limit Line	Over	5	
(MHz)	(dBuV/m)	Factor (dB)	Loss (dB)	Factor (dB)	(dBuV/m)	(dBuV/m)	Limit (dB)	Polarization	
5150.00	26.57	32.07	9.13	40.06	27.71	54.00	-26.29	Horizontal	
5150.00	26.39	32.07	9.13	40.06	27.53	54.00	-26.47	Vertical	
			8	302.11n-HT20					
Test c	hannel		Highest		Le	vel	F	Peak	
Frequency	Read Level	Antenna	Cable	Preamp	Level	Limit Line	Over	D 1	
(MHz)	(dBuV/m)	Factor (dB)	Loss (dB)	Factor (dB)	(dBuV/m)	(dBuV/m)	Limit (dB)	Polarization	
5350.00	35.26	31.78	9.15	40.18	36.01	68.20	-32.19	Horizontal	
5350.00	35.07	31.78	9.15	40.18	35.82	68.20	-32.38	Vertical	
			8	02.11n-HT20					
Test c	hannel		Highest		Le	vel	Av	erage	
Frequency	Read Level	Antenna	Cable	Preamp	Level	Limit Line	Over	Polarization	
(MHz)	(dBuV/m)	Factor (dB)	Loss (dB)	Factor (dB)	(dBuV/m)	(dBuV/m)	Limit (dB)	i olanzation	
5350.00	26.58	31.78	9.15	40.18	27.33	54.00	-26.67	Horizontal	
5350.00	27.44	31.78	9.15	40.18	28.19	54.00	-25.81	Vertical	

802.11n-HT40									
Test c	hannel		Lowest		Le	vel	F	Peak	
Frequency (MHz)	Read Level (dBuV/m)	Antenna Factor (dB)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	Polarization	
5150.00	36.28	32.07	9.13	40.06	37.42	68.20	-30.78	Horizontal	
5150.00	35.18	32.07	9.13	40.06	36.32	68.20	-31.88	Vertical	
802.11n-HT40									
Test c	hannel		Lowest		Le	vel	Av	erage	
Frequency (MHz)	Read Level (dBuV/m)	Antenna Factor (dB)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	Polarization	
5150.00	25.44	32.07	9.13	40.06	26.58	54.00	-27.42	Horizontal	
5150.00	25.06	32.07	9.13	40.06	26.20	54.00	-27.80	Vertical	
			8	02.11n-HT40					
Test c	hannel		Highest		Le	vel	F	Peak	
Frequency (MHz)	Read Level (dBuV/m)	Antenna Factor (dB)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	Polarization	
5350.00	35.87	31.78	9.15	40.18	36.62	68.20	-31.58	Horizontal	
5350.00	35.29	31.78	9.15	40.18	36.04	68.20	-32.16	Vertical	
			8	02.11n-HT40					
Test c	hannel		Highest		Le	vel	Av	erage	
Frequency (MHz)	Read Level (dBuV/m)	Antenna Factor (dB)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	Polarization	
5350.00	25.08	31.78	9.15	40.18	25.83	54.00	-28.17	Horizontal	
5350.00	25.16	31.78	9.15	40.18	25.91	54.00	-28.09	Vertical	

Remark:

- 1. Final Level =Receiver Read level + Antenna Factor + Cable Loss Preamplifier Factor
- 2. The emission levels of other frequencies are very lower than the limit and not show in test report.

Band 4:

	802.11a								
Test c	hannel		Lowest		Le	vel	F	Peak	
Frequency (MHz)	Read Level (dBuV/m)	Antenna Factor (dB)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	Polarization	
5725.00	41.58	32.27	9.30	40.54	42.61	78.20	-35.59	Horizontal	
5725.00	41.06	32.27	9.30	40.54	42.09	78.20	-36.11	Vertical	
				802.11a					
Test c	hannel		Lowest		Le	vel	Av	erage	
Frequency (MHz)	Read Level (dBuV/m)	Antenna Factor (dB)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	Polarization	
5725.00	29.96	32.27	9.30	40.54	30.99	54.00	-23.01	Horizontal	
5725.00	29.87	32.27	9.30	40.54	30.90	54.00	-23.10	Vertical	
				802.11a					
Test c	hannel		Highest		Le	vel	F	Peak	
Frequency (MHz)	Read Level (dBuV/m)	Antenna Factor (dB)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	Polarization	
5850.00	41.55	32.71	9.37	40.69	42.94	78.20	-35.26	Horizontal	
5850.00	40.67	32.71	9.37	40.69	42.06	78.20	-36.14	Vertical	
				802.11a					
Test c	hannel		Highest		Le	vel	Av	erage	
Frequency (MHz)	Read Level (dBuV/m)	Antenna Factor (dB)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	Polarization	
5850.00	28.47	32.71	9.37	40.69	29.86	54.00	-24.14	Horizontal	
5850.00	29.03	32.71	9.37	40.69	30.42	54.00	-23.58	Vertical	

	802.11n-HT20									
Test channel Lowest Level								Peak		
	Read Level	Antonno	Cable	Droome	Level	Limit Line	Over	ean		
Frequency (MHz)	(dBuV/m)	Antenna Factor (dB)	Loss (dB)	Preamp Factor (dB)	(dBuV/m)	(dBuV/m)	Limit (dB)	Polarization		
5725.00	41.57	32.27	9.30	40.54	42.60	78.20	-35.60	Horizontal		
5725.00	41.26	32.27	9.30	40.54	42.29	78.20	-35.91	Vertical		
802.11n-HT20										
Test c	hannel		Lowest		Le	vel	Av	erage		
Frequency (MHz)	Read Level (dBuV/m)	Antenna Factor (dB)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	Polarization		
5725.00	29.63	32.27	9.30	40.54	30.66	54.00	-23.34	Horizontal		
5725.00	29.57	32.27	9.30	40.54	30.60	54.00	-23.40	Vertical		
			8	302.11n-HT20						
Test c	hannel		Highest		Le	vel	F	Peak		
Frequency (MHz)	Read Level (dBuV/m)	Antenna Factor (dB)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	Polarization		
5850.00	39.85	32.71	9.37	40.69	41.24	78.20	-36.96	Horizontal		
5850.00	39.77	32.71	9.37	40.69	41.16	78.20	-37.04	Vertical		
			8	302.11n-HT20						
Test c	hannel		Highest		Le	vel	Av	erage		
Frequency (MHz)	Read Level (dBuV/m)	Antenna Factor (dB)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	Polarization		
5850.00	28.74	32.71	9.37	40.69	30.13	54.00	-23.87	Horizontal		
5850.00	27.68	32.71	9.37	40.69	29.07	54.00	-24.93	Vertical		

			8	02.11n-HT40					
Test c	hannel		Lowest		Le	vel	F	Peak	
Frequency (MHz)	Read Level (dBuV/m)	Antenna Factor (dB)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	Polarization	
5725.00	39.85	32.27	9.30	40.54	40.88	78.20	-37.32	Horizontal	
5725.00	39.67	32.27	9.30	40.54	40.70	78.20	-37.50	Vertical	
	802.11n-HT40								
Test c	hannel		Lowest		Le	vel	Av	erage	
Frequency (MHz)	Read Level (dBuV/m)	Antenna Factor (dB)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	Polarization	
5725.00	28.56	32.27	9.30	40.54	29.59	54.00	-24.41	Horizontal	
5725.00	28.19	32.27	9.30	40.54	29.22	54.00	-24.78	Vertical	
			8	02.11n-HT40					
Test c	hannel		Highest	Level			F	Peak	
Frequency (MHz)	Read Level (dBuV/m)	Antenna Factor (dB)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	Polarization	
5850.00	41.57	32.71	9.37	40.69	42.96	78.20	-35.24	Horizontal	
5850.00	40.28	32.71	9.37	40.69	41.67	78.20	-36.53	Vertical	
			8	02.11n-HT40					
Test c	hannel		Highest		Le	vel	Av	rerage	
Frequency (MHz)	Read Level (dBuV/m)	Antenna Factor (dB)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	Polarization	
5850.00	29.63	32.71	9.37	40.69	31.02	54.00	-22.98	Horizontal	
5850.00	28.55	32.71	9.37	40.69	29.94	54.00	-24.06	Vertical	

Remark:

- 1. Final Level =Receiver Read level + Antenna Factor + Cable Loss Preamplifier Factor
- 2. The emission levels of other frequencies are very lower than the limit and not show in test report.

6.7 Spurious Emission

6.7.1 Restricted Band

Test Requirement: FCC Part15 E Section 15.407(b) Test Method: ANSI C63.4: 2009 Band 1: 4.5 GHz to 5.15 GHz and 5.35GHz to 5.46GHz Band 4: 5.35 GHz to 5.46 GHz Receiver setup: Frequency Detector RBW VBW Remark Above 1GHz Peak 1MHz 3MHz Peak Value Above 1GHz Frequency Limit (dBuV/m @3m) Remark Above 1GHz Frequency Test the peak Value Test Procedure: Test	<u>6.7.1</u>	Restricted Band									
Test Frequency Range: Band 1: 4.5 GHz to 5.46 GHz Test site: Measurement Distance: 3m Receiver setup: Frequency Detector RBW VBW Remark Above 1GHz Peak 1MHz 3MHz Peak Value RMS 1MHz 3MHz Average Value Limit: Frequency Limit (dBuV/m @3m) Remark Above 1GHz 74.00 Peak Value Above 1GHz Test procedure: Test Setup: Test Procedure: Test Procedure: Test Setup: Test Instruments: Test Setup: Test Instruments: Test Setup: Test Instruments: Test Setup: Test Procedure: Test Setup: Test Instruments: Test Setup: Test Instruments: Test Setup: Test Setup: Test Instruments: Test Setup: Test Instruments: Test Setup: Test Instruments: Test Setup: Test Set		Test Requirement:	FCC Part15 E Section 15.407(b)								
Receiver setup: Frequency		Test Method:	ANSI C63.4: 20	009							
Frequency Detector RBW VBW Remark Above 1GHz Peak 1MHz 3MHz Peak Value RMS 1MHz 3MHz Average Value RMS 1MHz 3MHz Average Value Above 1GHz T4.00 Peak Value Above 1GHz T4.00 Average Value Above 1GHz T4.00 Average Value Above 1GHz T4.00 Average Value Average Value T6.00 Average Value T		Test Frequency Range:	Band 4: 5.35 GHz to 5.46 GHz								
Frequency Detector RBW VBW Remark Above 1GHz Peak 1MHz 3MHz Nerage Value Limit: Frequency Limit (dBuV/m @3m) Remark Above 1GHz 74.00 Peak Value Above 1GHz 74.00 Average Value 7. The EUT was placed on the top of a rotating table 0.8 meters above the ground at a 3 meter camber. The table was rotated 360 egrees to determine the position of the highest radiation. 8. The EUT was placed on the top of a variable-height antenna tower. 9. The antenna height is varied from one meter to four meters above the ground to determine the maximum value of the field strength. Both horizontal and vertical polarizations of the antenna are set to make the measurement. 10. For each suspected emission, the EUT was arranged to its worst case and then the antenna was tuned to heights from 1 meter to 4 meters and the rotat table was turned from 0 degrees to 360 degrees to find the maximum reading. 11. The test-receiver system was set to Peak Detect Function and Specified Bandwidth with Maximum Hold Mode. 12. If the emission level of the EUT in peak mode was 10dB lower than the limit specified, then testing could be stopped and the peak values of the EUT would be reported. Otherwise the emissions that did not have 10dB margin would be re-tested one by one using peak, quasipeak or average method as specified and then reported in a data sheet. Test setup: Refer to section 5.6 for details Refer to section 5.3 for details		Test site:	Measurement [Distance: 3m							
Above 1GHz Peak 1MHz 3MHz Peak Value RMS 1MHz 3MHz Average Value		Receiver setup:									
Limit: Frequency			Frequency								
Limit: Frequency			Above 1GHz								
Frequency Above 1GHz A		Limit:	TAMO TIMEZ OMITZ TAVORAGO VO								
Test Procedure: 7. The EUT was placed on the top of a rotating table 0.8 meters above the ground at a 3 meter camber. The table was rotated 360 degrees to determine the position of the highest radiation. 8. The EUT was set 3 meters away from the interference-receiving antenna, which was mounted on the top of a variable-height antenna tower. 9. The antenna height is varied from one meter to four meters above the ground to determine the maximum value of the field strength. Both horizontal and vertical polarizations of the antenna are set to make the measurement. 10. For each suspected emission, the EUT was arranged to its worst case and then the antenna was tuned to heights from 1 meter to 4 meters and the rota table was turned from 0 degrees to 360 degrees to find the maximum reading. 11. The test-receiver system was set to Peak Detect Function and Specified Bandwidth with Maximum Hold Mode. 12. If the emission level of the EUT in peak mode was 10dB lower than the limit specified, then testing could be stopped and the peak values of the EUT would be reported. Otherwise the emissions that did not have 10dB margin would be re-tested one by one using peak, quasipeak or average method as specified and then reported in a data sheet. 7 Test setup: Refer to section 5.6 for details Refer to section 5.3 for details			Freque	ency	Limit (dBuV/	m @3m)	Remark				
Test Procedure: 7. The EUT was placed on the top of a rotating table 0.8 meters above the ground at a 3 meter camber. The table was rotated 360 degrees to determine the position of the highest radiation. 8. The EUT was set 3 meters away from the interference-receiving antenna, which was mounted on the top of a variable-height antenna tower. 9. The antenna height is varied from one meter to four meters above the ground to determine the maximum value of the field strength. Both horizontal and vertical polarizations of the antenna are set to make the measurement. 10. For each suspected emission, the EUT was arranged to its worst case and then the antenna was tuned to heights from 1 meter to 4 meters and the rota table was turned from 0 degrees to 360 degrees to find the maximum reading. 11. The test-receiver system was set to Peak Detect Function and Specified Bandwidth with Maximum Hold Mode. 12. If the emission level of the EUT in peak mode was 10dB lower than the limit specified, then testing could be stopped and the peak values of the EUT would be reported. Otherwise the emissions that did not have 10dB margin would be re-tested one by one using peak, quasipeak or average method as specified and then reported in a data sheet. Test setup: Refer to section 5.6 for details Refer to section 5.3 for details			Above 1	GHz							
the ground at a 3 meter camber. The table was rotated 360 degrees to determine the position of the highest radiation. 8. The EUT was set 3 meters away from the interference-receiving antenna, which was mounted on the top of a variable-height antenna tower. 9. The antenna height is varied from one meter to four meters above the ground to determine the maximum value of the field strength. Both horizontal and vertical polarizations of the antenna are set to make the measurement. 10. For each suspected emission, the EUT was arranged to its worst case and then the antenna was tuned to heights from 1 meter to 4 meters and the rota table was turned from 0 degrees to 360 degrees to find the maximum reading. 11. The test-receiver system was set to Peak Detect Function and Specified Bandwidth with Maximum Hold Mode. 12. If the emission level of the EUT in peak mode was 10dB lower than the limit specified, then testing could be stopped and the peak values of the EUT would be reported. Otherwise the emissions that did not have 10dB margin would be re-tested one by one using peak, quasipeak or average method as specified and then reported in a data sheet. Test setup: Refer to section 5.6 for details Refer to section 5.3 for details			7,5070	0112	54.0	0	Average Value				
Test Instruments: Refer to section 5.6 for details Test mode: Refer to section 5.3 for details			the ground to determine to determine to determine the EUT of antenna, we tower. 9. The antenna the ground Both horize make the part of the test-result of the EUT have 10dE peak or avertime to determine the second to the EUT have 10dE peak or avertime to determine the second to the EUT have 10dE peak or avertime to determine the second to d	d at a 3 meter ne the position was set 3 meter which was more and height is very d to determine ontal and very measurements suspected eme then the anter d the rota tab maximum rea eceiver syster Bandwidth with sion level of the pecified, then would be rep	camber. The n of the higher ters away from bunted on the trailed from one of the maximun tical polarization. The end was turned ading. The was set to Fith Maximum Fithe EUT in peatesting could I ported. Otherwld be re-tested.	table was rest radiation. If the interfer op of a variation of the analysis of the emit one by one	rence-receiving able-height antenna our meters above he field strength. Intenna are set to happen to its worst from 1 meter to 4 rees to 360 degrees. Function and his 10dB lower than and the peak values issions that did not be using peak, quasi-				
Test mode: Refer to section 5.3 for details		ι σοι οσιαμ.	EUT Am Spectrum Analyzer Turn 0.8m Im								
		Test Instruments:	Refer to section	n 5.6 for detai	ils						
Test results: Passed		Test mode:	Refer to section	n 5.3 for detai	ils						
		Test results:	Passed								

Band 1:

802.11a

Test c	hannel		Lowest		Le	vel	F	Peak
Frequency (MHz)	Read Level (dBuV/m)	Antenna Factor (dB)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	Polarization
4500.00	35.48	30.72	8.54	40.67	34.07	74.00	-39.93	Horizontal
4500.00	36.74	30.72	8.54	40.67	35.33	74.00	-38.67	Vertical
Test c	hannel		Lowest		Le	vel	Av	erage
Frequency (MHz)	Read Level (dBuV/m)	Antenna Factor (dB)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	Polarization
4500.00	25.88	30.72	8.54	40.67	24.47	54.00	-29.53	Horizontal
4500.00	26.33	30.72	8.54	40.67	24.92	54.00	-29.08	Vertical
Test c	hannel		Highest		Level		F	Peak
Frequency (MHz)	Read Level (dBuV/m)	Antenna Factor (dB)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	Polarization
5460.00	36.47	31.99	9.16	40.23	37.39	74.00	-36.61	Horizontal
5460.00	34.75	31.99	9.16	40.23	35.67	74.00	-38.33	Vertical
Test c	hannel		Highest		Le	vel	Av	erage
Frequency (MHz)	Read Level (dBuV/m)	Antenna Factor (dB)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	Polarization
5460.00	24.65	31.99	9.16	40.23	25.57	54.00	-28.43	Horizontal
5460.00	23.99	31.99	9.16	40.23	24.91	54.00	-29.09	Vertical

Remark:

- 1. Final Level =Receiver Read level + Antenna Factor + Cable Loss Preamplifier Factor
- 2. The emission levels of other frequencies are very lower than the limit and not show in test report.

802.11n-HT20

Test c	hannel		Lowest		Le	vel	F	Peak
Frequency (MHz)	Read Level (dBuV/m)	Antenna Factor (dB)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	Polarization
4500.00	37.84	30.72	8.54	40.67	36.43	74.00	-37.57	Horizontal
4500.00	35.88	30.72	8.54	40.67	34.47	74.00	-39.53	Vertical
Test c	hannel		Lowest		Le	vel	Av	erage
Frequency (MHz)	Read Level (dBuV/m)	Antenna Factor (dB)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	Polarization
4500.00	25.74	30.72	8.54	40.67	24.33	54.00	-29.67	Horizontal
4500.00	25.08	30.72	8.54	40.67	23.67	54.00	-30.33	Vertical
Test c	hannel		Highest		Level		F	Peak
Frequency (MHz)	Read Level (dBuV/m)	Antenna Factor (dB)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	Polarization
5460.00	35.08	31.99	9.16	40.23	36.00	74.00	-38.00	Horizontal
5460.00	36.19	31.99	9.16	40.23	37.11	74.00	-36.89	Vertical
Test c	hannel		Highest		Le	vel	Av	erage
Frequency (MHz)	Read Level (dBuV/m)	Antenna Factor (dB)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	Polarization
5460.00	25.09	31.99	9.16	40.23	26.01	54.00	-27.99	Horizontal
5460.00	26.53	31.99	9.16	40.23	27.45	54.00	-26.55	Vertical

Remark:

- 1. Final Level =Receiver Read level + Antenna Factor + Cable Loss Preamplifier Factor
- 2. The emission levels of other frequencies are very lower than the limit and not show in test report.

802.11n-HT40

Test c	hannel		Lowest		Le	vel	F	eak
Frequency (MHz)	Read Level (dBuV/m)	Antenna Factor (dB)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	Polarization
4500.00	36.74	30.72	8.54	40.67	35.33	74.00	-38.67	Horizontal
4500.00	34.94	30.72	8.54	40.67	33.53	74.00	-40.47	Vertical
Test c	hannel		Lowest		Le	vel	Av	erage
Frequency (MHz)	Read Level (dBuV/m)	Antenna Factor (dB)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	Polarization
4500.00	25.46	30.72	8.54	40.67	24.05	54.00	-29.95	Horizontal
4500.00	25.96	30.72	8.54	40.67	24.55	54.00	-29.45	Vertical
Test c	hannel		Highest		Level		F	Peak
Frequency (MHz)	Read Level (dBuV/m)	Antenna Factor (dB)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	Polarization
5460.00	33.59	31.99	9.16	40.23	34.51	74.00	-39.49	Horizontal
5460.00	35.12	31.99	9.16	40.23	36.04	74.00	-37.96	Vertical
Test c	hannel		Highest		Level		Average	
Frequency (MHz)	Read Level (dBuV/m)	Antenna Factor (dB)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	Polarization
5460.00	26.33	31.99	9.16	40.23	27.25	54.00	-26.75	Horizontal

Remark:

- 1. Final Level =Receiver Read level + Antenna Factor + Cable Loss Preamplifier Factor
- 2. The emission levels of other frequencies are very lower than the limit and not show in test report.

Band 4:

802.11a

Test c	hannel		Lowest		Le	vel	F	eak
Frequency (MHz)	Read Level (dBuV/m)	Antenna Factor (dB)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	Polarization
5350.00	44.08	31.78	9.15	40.18	44.83	74.00	-29.17	Horizontal
5460.00	44.56	31.99	9.16	40.23	45.48	74.00	-28.52	Horizontal
5350.00	43.75	31.78	9.15	40.18	44.50	74.00	-29.50	Vertical
5460.00	43.88	31.99	9.16	40.23	44.80	74.00	-29.20	Vertical
Test c	hannel		Lowest		Level		Av	erage
Frequency (MHz)	Read Level (dBuV/m)	Antenna Factor (dB)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	Polarization
5350.00	32.48	31.78	9.15	40.18	33.23	54.00	-20.77	Horizontal
5460.00	31.48	31.99	9.16	40.23	32.40	54.00	-21.60	Horizontal
5350.00	30.77	31.78	9.15	40.18	31.52	54.00	-22.48	Vertical
5460.00	31.96	31.99	9.16	40.23	32.88	54.00	-21.12	Vertical

802.11n-HT20

002:1111-11120									
Test c	hannel		Lowest		Le	vel	F	Peak	
Frequency (MHz)	Read Level (dBuV/m)	Antenna Factor (dB)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	Polarization	
5350.00	42.18	31.78	9.15	40.18	42.93	74.00	-31.07	Horizontal	
5460.00	40.75	31.99	9.16	40.23	41.67	74.00	-32.33	Horizontal	
5350.00	41.96	31.78	9.15	40.18	42.71	74.00	-31.29	Vertical	
5460.00	44.50	31.99	9.16	40.23	45.42	74.00	-28.58	Vertical	
Test c	hannel		Lowest		Level		Av	erage	
Frequency (MHz)	Read Level (dBuV/m)	Antenna Factor (dB)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	Polarization	
5350.00	31.07	31.78	9.15	40.18	31.82	54.00	-22.18	Horizontal	
5460.00	30.44	31.99	9.16	40.23	31.36	54.00	-22.64	Horizontal	
5350.00	31.06	31.78	9.15	40.18	31.81	54.00	-22.19	Vertical	
5460.00	32.04	31.99	9.16	40.23	32.96	54.00	-21.04	Vertical	

Remark:

- 1. Final Level = Receiver Read level + Antenna Factor + Cable Loss Preamplifier Factor
- 2. The emission levels of other frequencies are very lower than the limit and not show in test report.

802.11n-HT40

Test c	hannel		Lowest		Le	vel	F	Peak
Frequency (MHz)	Read Level (dBuV/m)	Antenna Factor (dB)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	Polarization
5350.00	41.07	31.78	9.15	40.18	41.82	74.00	-32.18	Horizontal
5460.00	42.55	31.99	9.16	40.23	43.47	74.00	-30.53	Horizontal
5350.00	40.96	31.78	9.15	40.18	41.71	74.00	-32.29	Vertical
5460.00	41.27	31.99	9.16	40.23	42.19	74.00	-31.81	Vertical
Test c	hannel		Lowest		Level		Av	erage
Frequency (MHz)	Read Level (dBuV/m)	Antenna Factor (dB)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	Polarization
5350.00	31.07	31.78	9.15	40.18	31.82	54.00	-22.18	Horizontal
5460.00	30.15	31.99	9.16	40.23	31.07	54.00	-22.93	Horizontal
5350.00	30.28	31.78	9.15	40.18	31.03	54.00	-22.97	Vertical
5460.00	31.22	31.99	9.16	40.23	32.14	54.00	-21.86	Vertical

Remark:

- 1. Final Level =Receiver Read level + Antenna Factor + Cable Loss Preamplifier Factor
- 2. The emission levels of other frequencies are very lower than the limit and not show in test report.

6.7.2 Unwanted Emissions in the Restricted Bands

Test Requirement:	FCC Part15 C S	Section 15.209 a	and 15.205						
Test Method:	ANSI C63.10:20	ANSI C63.10:2009							
Test Frequency Range:	30MHz to 40GH	lz							
Test site:	Measurement D	istance: 3m							
Receiver setup:									
	Frequency	Detector	RBW	VBW	Remark				
	30MHz-1GHz	Quasi-peak	100kHz	300kHz	Quasi-peak Value				
	Above 1GHz Peak 1MHz			3MHz	Peak Value				
Limit:									
	Freque	Remark							
	30MHz-8		40.0		Quasi-peak Value				
	88MHz-21		43.5		Quasi-peak Value				
	216MHz-9		46.0		Quasi-peak Value				
	960MHz-	1GHz	54.0)	Quasi-peak Value				
	Freque	ncv	Limit (dBn	n/MHz)	Remark				
		-	68.2	•	Peak Value				
	Above 1	GHz	54.0		Average Value				
Test Procedure:	1. The EUT w	RP[dBm] + 95.2= ras placed on th	ne top of a r	otating table	e 0.8 meters above				
	 The EUT was placed on the top of a rotating table 0.8 meters above the ground at a 3 meter camber. The table was rotated 360 degrees to determine the position of the highest radiation. The EUT was set 3 meters away from the interference-receiving antenna, which was mounted on the top of a variable-height antenna tower. The antenna height is varied from one meter to four meters above the ground to determine the maximum value of the field strength. Both horizontal and vertical polarizations of the antenna are set to make the measurement. For each suspected emission, the EUT was arranged to its worst case and then the antenna was tuned to heights from 1 meter to 4 meters and the rota table was turned from 0 degrees to 360 degrees to find the maximum reading. The test-receiver system was set to Peak Detect Function and Specified Bandwidth with Maximum Hold Mode. If the emission level of the EUT in peak mode was 10dB lower than the limit specified, then testing could be stopped and the peak values of the EUT would be reported. Otherwise the emissions that did not have 								

Below 1GHz

Horizontal:

THEORY									
	Freq		Antenna Factor						
	MHz	dBu∜			<u>dB</u>	$\overline{dBuV/m}$	$\overline{dBuV/m}$	<u>dB</u>	
1	191.745	38.87	10.56	1.37	28.89	21.91	43.50	-21.59	QP
2	239.987	36.93	12.09	1.58	28.59	22.01	46.00	-23.99	QP
3	336.035	37.09	13.99	1.89	28.53	24.44	46.00	-21.56	QP
4 5 6	463.970	40.14	15.71	2.30	28.89	29.26	46.00	-16.74	QP
5	699.305	37.00	18.80	2.91	28.67	30.04	46.00	-15.96	QP
6	771.449	41.85	19.72	3.10	28.36	36.31	46.00	-9.69	QP

Vertical:

Site

: 3m chamber : FCC PART15 CLASS B 3m VULB9163(30M1G) VERTICAL : 13.3" Android non-touch LCD Media Player : DT133-AS4-720 Condition

EUT

Test mode : 5G-WIFI mode
Power Rating : AC120V/60Hz
Environment : Temp:25.5°C Huni:55% 101KPa
Test Engineer: Viki
REMARK :

x_{11}									
	Freq		Antenna Factor						
_	MHz	dBu∇	dB/m		<u>d</u> B	$\overline{dBuV/m}$	dBuV/m	<u>dB</u>	
1	423.540	39.10	15.49	2.18	28.82	27.95	46.00	-18.05	QP
2	463.970	39.94	15.71	2.30	28.89	29.06	46.00	-16.94	QP
2 3 4	636.134	37.31	18.59	2.75	28.82	29.83	46.00	-16.17	QP
4	654.232	38.84	18.65	2.80	28.77	31.52	46.00	-14.48	QP
5	704.226	38.90	18.86	2.92	28.65	32.03	46.00	-13.97	QP
6	776.878	40.67	19.77	3.11	28.32	35.23	46.00	-10.77	QP

Above 1GHz:

Band 1:

	802.11a mode Lowest channel (Peak Value)										
Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	polarization			
10360.00	44.09	39.23	13.84	41.34	55.82	68.20	-12.38	Vertical			
10360.00	43.52	39.23	13.84	41.34	55.25	68.20	-12.95	Horizontal			
		802.11a	a mode Lowe	est channe	I (Average V	alue)					
Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	polarization			
10360.00	31.47	39.23	13.84	41.34	43.20	54.00	-10.80	Vertical			
10360.00	32.56	39.23	13.84	41.34	44.29	54.00	-9.71	Horizontal			

	802.11a mode Middle channel (Peak Value)									
Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	polarization		
10400.00	45.26	39.36	13.85	41.27	57.20	68.20	-11.00	Vertical		
10400.00	45.78	39.36	13.85	41.27	57.72	68.20	-10.48	Horizontal		
		802.11	a mode Mido	dle channel	(Average V	alue)				
Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	polarization		
10400.00	33.26	39.36	13.85	41.27	45.20	54.00	-8.80	Vertical		
10400.00	33.45	39.36	13.85	41.27	45.39	54.00	-8.61	Horizontal		

	802.11a mode Highest channel (Peak Value)										
Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	polarization			
10480.00	42.85	39.56	13.90	41.06	55.25	68.20	-12.95	Vertical			
10480.00	41.96	39.56	13.90	41.06	54.36	68.20	-13.84	Horizontal			
		802.11a	a mode High	est channe	l (Average \	/alue)					
Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	polarization			
10480.00	32.15	39.56	13.90	41.06	44.55	54.00	-9.45	Vertical			
10480.00	31.47	39.56	13.90	41.06	43.87	54.00	-10.13	Horizontal			

Remark:

- 1. Final Level =Receiver Read level + Antenna Factor + Cable Loss Preamplifier Factor
- 2. The emission levels of other frequencies are very lower than the limit and not show in test report.

		802.11	n20 mode Lo	owest char	nel (Peak V	alue)		
Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	polarization
10360.00	42.56	39.23	13.84	41.34	54.29	68.20	-13.91	Vertical
10360.00	42.08	39.23	13.84	41.34	53.81	68.20	-14.39	Horizontal
		802.11n2	20 mode Lov	vest chann	el (Average	Value)		
Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	polarization
10360.00	33.46	39.23	13.84	41.34	45.19	54.00	-8.81	Vertical
10360.00	33.18	39.23	13.84	41.34	44.91	54.00	-9.09	Horizontal

	802.11n20 mode Middle channel (Peak Value)									
Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	polarization		
10400.00	44.69	39.36	13.85	41.27	56.63	68.20	-11.57	Vertical		
10400.00	43.85	39.36	13.85	41.27	55.79	68.20	-12.41	Horizontal		
		802.11n	20 mode Mic	ldle chann	el (Average	Value)				
Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	polarization		
10400.00	33.57	39.36	13.85	41.27	45.51	54.00	-8.49	Vertical		
10400.00	33.06	39.36	13.85	41.27	45.00	54.00	-9.00	Horizontal		

	802.11n20 mode Highest channel (Peak Value)									
Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	polarization		
10480.00	42.75	39.56	13.90	41.06	55.15	68.20	-13.05	Vertical		
10480.00	42.96	39.56	13.90	41.06	55.36	68.20	-12.84	Horizontal		
		802.11n2	20 mode Higl	hest chann	el (Average	Value)				
Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	polarization		
10480.00	31.47	39.56	13.90	41.06	43.87	54.00	-10.13	Vertical		
10480.00	30.58	39.56	13.90	41.06	42.98	54.00	-11.02	Horizontal		

Remark:

- 1. Final Level =Receiver Read level + Antenna Factor + Cable Loss Preamplifier Factor
- 2. The emission levels of other frequencies are very lower than the limit and not show in test report.

Shenzhen Zhongjian Nanfang Testing Co., Ltd.
No. B-C, 1/F., Building 2, Laodong No.2 Industrial Park, Xixiang Road,
Bao'an District, Shenzhen, Guangdong, China
Telephone: +86 (0) 755 23118282 Fax: +86 (0) 755 23116366

	802.11n40 mode Lowest channel (Peak Value)									
Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	polarization		
10380.00	44.75	39.29	13.84	41.31	56.57	68.20	-11.63	Vertical		
10380.00	45.02	39.29	13.84	41.31	56.84	68.20	-11.36	Horizontal		
		802.11n4	40 mode Lov	vest chann	el (Average	Value)				
Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	polarization		
10380.00	30.40	39.29	13.84	41.31	42.22	54.00	-11.78	Vertical		
10380.00	30.18	39.29	13.84	41.31	42.00	54.00	-12.00	Horizontal		

	802.11n40 mode Highest channel (Peak Value)										
Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	polarization			
10460.00	44.29	39.54	13.88	41.17	56.54	68.20	-11.66	Vertical			
10460.00	43.57	39.54	13.88	41.17	55.82	68.20	-12.38	Horizontal			
		802.11n ²	10 mode Higl	hest chann	el (Average	Value)					
Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	polarization			
10460.00	31.47	39.54	13.88	41.17	43.72	54.00	-10.28	Vertical			
10460.00	30.96	39.54	13.88	41.17	43.21	54.00	-10.79	Horizontal			

Remark:

- 1. Final Level =Receiver Read level + Antenna Factor + Cable Loss Preamplifier Factor
- 2. The emission levels of other frequencies are very lower than the limit and not show in test report.

Band 4:

Dana 4.		802.1	1a mode Lov	west chann	nel (Peak Val	lue)		
Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	polarization
11490.00	44.08	40.25	13.82	40.75	57.40	68.20	-10.80	Vertical
11490.00	43.27	40.25	13.82	40.75	56.59	68.20	-11.61	Horizontal
		802.11	a mode Lowe	est channe	I (Average V	'alue)		
Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	polarization
11490.00	29.56	40.25	13.82	40.75	42.88	54.00	-11.12	Vertical
11490.00	29.07	40.25	13.82	40.75	42.39	54.00	-11.61	Horizontal

		802.1	1a mode Mid	ddle chann	el (Peak Val	ue)		
Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	polarization
11570.00	45.26	40.17	13.78	40.91	58.30	68.20	-9.90	Vertical
11570.00	45.03	40.17	13.78	40.91	58.07	68.20	-10.13	Horizontal
		802.11	a mode Mido	dle channe	(Average V	alue)		
Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	polarization
11570.00	30.17	40.17	13.78	40.91	43.21	54.00	-10.79	Vertical
11570.00	29.98	40.17	13.78	40.91	43.02	54.00	-10.98	Horizontal

	802.11a mode Highest channel (Peak Value)										
Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	polarization			
11650.00	45.26	39.89	13.74	41.06	57.83	68.20	-10.37	Vertical			
11650.00	44.87	39.89	13.74	41.06	57.44	68.20	-10.76	Horizontal			
		802.11a	a mode High	est channe	I (Average \	'alue)					
Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	polarization			
11650.00	32.47	39.89	13.74	41.06	45.04	54.00	-8.96	Vertical			
11650.00	33.06	39.89	13.74	41.06	45.63	54.00	-8.37	Horizontal			

Remark:

Final Level = Receiver Read level + Antenna Factor + Cable Loss - Preamplifier Factor
 The emission levels of other frequencies are very lower than the limit and not show in test report.

	802.11n20 mode Lowest channel (Peak Value)									
Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	polarization		
11490.00	45.28	40.25	13.82	40.75	58.60	68.20	-9.60	Vertical		
11490.00	45.09	40.25	13.82	40.75	58.41	68.20	-9.79	Horizontal		
		802.11n2	20 mode Lov	vest chann	el (Average	Value)				
Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	polarization		
11490.00	31.47	40.25	13.82	40.75	44.79	54.00	-9.21	Vertical		
11490.00	30.58	40.25	13.82	40.75	43.90	54.00	-10.10	Horizontal		

		802.11n20 mode Middle channel (Peak Value)									
Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	polarization			
11570.00	44.16	40.17	13.78	40.91	57.20	68.20	-11.00	Vertical			
11570.00	43.98	40.17	13.78	40.91	57.02	68.20	-11.18	Horizontal			
		802.11n	20 mode Mid	ddle chann	el (Average	Value)					
Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	polarization			
11570.00	29.56	40.17	13.78	40.91	42.60	54.00	-11.40	Vertical			
11570.00	29.36	40.17	13.78	40.91	42.40	54.00	-11.60	Horizontal			

802.11n20 mode Highest channel (Peak Value)								
Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	polarization
11650.00	45.27	39.89	13.74	41.06	57.84	68.20	-10.36	Vertical
11650.00	45.18	39.89	13.74	41.06	57.75	68.20	-10.45	Horizontal
802.11n20 mode Highest channel (Average Value)								
Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	polarization
11650.00	31.45	39.89	13.74	41.06	44.02	54.00	-9.98	Vertical
11650.00	31.02	39.89	13.74	41.06	43.59	54.00	-10.41	Horizontal

Remark:

- Final Level = Receiver Read level + Antenna Factor + Cable Loss Preamplifier Factor
 The emission levels of other frequencies are very lower than the limit and not show in test report.

802.11n40 mode Lowest channel (Peak Value)								
Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	polarization
11510.00	40.28	40.26	13.83	40.77	53.60	68.20	-14.60	Vertical
11510.00	41.33	40.26	13.83	40.77	54.65	68.20	-13.55	Horizontal
802.11n40 mode Lowest channel (Average Value)								
Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	polarization
11510.00	28.56	40.26	13.83	40.77	41.88	54.00	-12.12	Vertical
11510.00	28.74	40.26	13.83	40.77	42.06	54.00	-11.94	Horizontal

802.11n40 mode Highest channel (Peak Value)								
Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	polarization
11590.00	40.36	40.08	13.77	40.95	53.26	68.20	-14.94	Vertical
11590.00	41.52	40.08	13.77	40.95	54.42	68.20	-13.78	Horizontal
802.11n40 mode Highest channel (Average Value)								
Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	polarization
11590.00	28.66	40.08	13.77	40.95	41.56	54.00	-12.44	Vertical
11590.00	28.45	40.08	13.77	40.95	41.35	54.00	-12.65	Horizontal

Remark:

- 1. Final Level =Receiver Read level + Antenna Factor + Cable Loss Preamplifier Factor
- 2. The emission levels of other frequencies are very lower than the limit and not show in test report.

6.8 Frequency stability

Test Requirement:	FCC Part15 E Section 15.407 (g)				
Limit:	Manufacturers of U-NII devices are responsible for ensuring frequency stability such that an emission is maintained within the band of operation under all conditions of normal operation as specified in the user's manual.				
Test setup:	Temperature Chamber				
	Spectrum analyzer EUT Att. Variable Power Supply				
	Note: Measurement setup for testing on Antenna connector				
Test procedure:	 The EUT is installed in an environment test chamber with external power source. Set the chamber to operate at 50 centigrade and external power source to output at nominal voltage of EUT. A sufficient stabilization period at each temperature is used prior to each frequency measurement. When temperature is stabled, measure the frequency stability. The test shall be performed under -30 to 50 centigrade and 85 to 115 percent of the nominal voltage. Change setting of chamber and external power source to complete all conditions. 				
Test Instruments:	Refer to section 5.6 for details				
Test mode:	Refer to section 5.3 for details, and all channels have been tested, only shows the worst channel data in this report.				
Test results:	Refer to FCC ID: 2AB6Z-1859ATMB				