

LM2904-Q1, LM2904B-Q1

SLOS414J - MAY 2003 - REVISED FEBRUARY 2021

LM2904-Q1, LM2904B-Q1 Industry-Standard Dual Operational Amplifiers for **Automotive Applications**

1 Features

- AEC Q-100 qualified for automotive applications
 - Temperature grade 1: –40°C to +125°C
 - Device HBM ESD classification 2
 - Device CDM ESD classification C5
- Wide supply range of 3 V to 36 V (LM2904B-Q1)
- Supply-current of 300 µA per channel (LM2904B-Q1, typical)
- Unity-gain bandwidth of 1.2 MHz (LM2904B-Q1)
- Common-mode input voltage range includes ground, enabling direct sensing near ground
- Low input offset voltage of 3 mV at 25°C (LM2904B-Q1, maximum)
- Internal RF and EMI filter (LM2904B-Q1)
- **Functional Safety-Capable**
 - Documentation available to aid functional safety system design

2 Applications

- Automotive lighting
- **Body electronics**
- Automotive head unit
- Telematics control unit
- Emergency call (eCall)
- Passive safety: brake system
- Electric vehicle / hybrid electric:
 - Inverter and motor control
 - On-board (OBC) and wireless charger
 - Battery management system (BMS)

3 Description

The LM2904-Q1 and LM2904B-Q1 are industrystandard operational amplifiers that have been qualified for automotive use in accordance to the AEC-Q100 specifications. The LM2904B-Q1 is the next-generation version of the LM2904-Q1, which include two high-voltage (36 V) operational amplifiers (op amps). The LM2904B-Q1 provides outstanding value for cost-sensitive applications, with features including low offset (1 mV, typical), common-mode input range to ground, and high differential input voltage capability.

The LM2904B-Q1 simplifies circuit design with enhanced features such as unity-gain stability, lower offset voltage of 1 mV (typical), and lower quiescent current of 300 µA (typical). High ESD (2 kV, HBM) and integrated EMI and RF filters enable the LM2904B-Q1 devices to be used in the most rugged, environmentally challenging applications for the automotive marketplace.

Device Information

PART NUMBER ⁽¹⁾	PACKAGE	BODY SIZE (NOM)
	SOIC (8)	4.90 mm × 3.90 mm
LM2904B-Q1	TSSOP (8)	3.00 mm × 4.40 mm
	VSSOP (8)	3.00 mm × 3.00 mm
LM2904-Q1	SOIC (8)	4.90 mm × 3.90 mm
LIVI2904-QT	TSSOP (8)	3.00 mm × 4.40 mm

For all available packages, see the orderable addendum at the end of the data sheet.

$$\frac{V_{OUT}}{V_{IN}} = \left(1 + \frac{R_F}{R_G}\right) \left(\frac{1}{1 + sR_1C_1}\right)$$

Single-Pole, Low-Pass Filter

	Table of	Contents	
1 Features	1	9.3 Feature Description	19
2 Applications	1	9.4 Device Functional Modes	
3 Description	1	10 Application and Implementation	20
4 Revision History	2	10.1 Application Information	
5 Device Comparison Table	4	10.2 Typical Application	20
6 Pin Configuration and Functions		11 Power Supply Recommendations	22
7 Specifications	6	12 Layout	
7.1 Absolute Maximum Ratings		12.1 Layout Guidelines	
7.2 ESD Ratings		12.2 Layout Examples	23
7.3 Recommended Operating Conditions	7	13 Device and Documentation Support	
7.4 Thermal Information		13.1 Documentation Support	
7.5 Electrical Characteristics: LM2904B-Q1	8	13.2 Related Links	
7.6 Electrical Characteristics: LM2904-Q1,		13.3 Receiving Notification of Documentation L	Jpdates24
LM2904AV-Q1, LM2904V-Q1	9	13.4 Support Resources	24
7.7 Typical Characteristics	10	13.5 Trademarks	
8 Parameter Measurement Information		13.6 Electrostatic Discharge Caution	24
9 Detailed Description		13.7 Glossary	
9.1 Overview9.2 Functional Block Diagram		14 Mechanical, Packaging, and Orderable Information	25
4 Revision History NOTE: Page numbers for previous revisions i			
Changes from Revision I (June 2020) to Re	evision J (I	ebruary 2021)	Page
 Added Functional Safety-Capable feature 	and link to	d cross-references throughout the document supporting document in <i>Features</i> section but the data sheet	1

Changes from Pavision II (December 2010) to Pavision I (June 2020)

Changes from Revision H (December 2019) to Revision I (June 2020)	Page
Added applications link in Application section	
• Deleted preview tag on TSSOP (8) package in Device Information table	
 Added information on VSSOP-8 package to Device Information table 	1
· Added information on VSSOP-8 package to the Device Comparison Table section	on4
· Deleted preview tag on TSSOP-8 package in the Device Comparison Table sect	tion4
 Deleted preview tag from TSSOP package in Pin Configuration and Functions seems. 	ection5
 Added VSSOP package information in Pin Configuration and Functions section. 	5
Added VSSOP package to Thermal Information table	
· Changed section title from Community Resources to Support Resources in the L	Device and Documentation
Support section	24

C	hanges from Revision G (February 2019) to Revision H (December 2019)	Page
•	Added information on SOT23-8 package to Device Information table	1
•	Added information on SOT23-8 package to the Device Comparison Table	4
•	Added the Typical Characteristics section for the LM2904B-Q1 device	10
•	Added test circuit for THD+N and small-signal step response, G = -1 in the <i>Parameter Measurement</i>	
	Information section	17
•	Changed specific voltages to a Recommended Operating Conditions reference	18

www.ti.com

•	Changed the functional block diagram for LM2904B-Q1 in the <i>Detailed Description</i> section	18
С	hanges from Revision F (April 2008) to Revision G (February 2019)	Page
•	Added Applications section, ESD Ratings table, Feature Description section, Device Functional Modes, Application and Implementation section, Power Supply Recommendations section, Layout section, Devand Documentation Support section, and Mechanical, Packaging, and Orderable Information section Added new device to data sheet	/ice 1 1

5 Device Comparison Table

PART NUMBER	SUPPLY VOLTAGE	AMBIENT TEMPERATURE RANGE	V _{OS} (MAXIMUM AT 25°C)	I _Q / CH (TYPICAL AT 25°C)	INTEGRATED EMI FILTER	PACKAGE
LM2904B-Q1	3 V to 36 V	–40°C to 125°C	3 mV	300 μΑ	Yes	D, DGK, PW
LM2904-Q1	3 V to 26 V	–40°C to 125°C	7 mV	350 μΑ	No	D, PW
LM2904V-Q1	3 V to 32 V	–40°C to 125°C	7 mV	350 μΑ	No	D, PW
LM2904AV-Q1	3 V to 32 V	–40°C to 125°C	2 mV	350 μΑ	No	D, PW

6 Pin Configuration and Functions

Figure 6-1. D, DGK, and PW Package 8-Pin SOIC, VSSOP, and TSSOP Top View

Table 6-1. Pin Functions

	PIN ⁽¹⁾	I/O	DESCRIPTION
NAME	NO.	1/0	DESCRIPTION
IN1-	2	I	Negative input
IN1+	3	I	Positive input
IN2-	6	I	Negative input
IN2+	5	I	Positive input
OUT1	1	0	Output
OUT2	7	0	Output
V-	4	_	Negative (lowest) supply or ground (for single-supply operation)
V+	8	_	Positive (highest) supply

⁽¹⁾ For a listing of which devices are available in what packages, see Section 5.

7 Specifications

7.1 Absolute Maximum Ratings

over operating ambient temperature range (unless otherwise noted)(1)

			MIN	MAX	UNIT
		LM2904B-Q1		40	
Supply voltage, $V_S = ([V+] - [V-])$		LM2904V-Q1, LM2904AV-Q1		32	V
		LM2904-Q1		26	
Differential input voltage, V _{ID} ⁽²⁾		LM2904B-Q1, LM2904V-Q1, LM2904AV-Q1	-32	32	V
, , ,		LM2904-Q1	-26	26	
		LM2904B-Q1	-0.3	40	
Input voltage, V _I	Either input	LM2904V-Q1, LM2904AV-Q1	-0.3	32	V
		LM2904-Q1	-0.3	26	
Duration of output short circuit (one $V_S \le 15 V^{(3)}$	e amplifier) to V– at (or l	pelow) T _A = 25°C,	Unlimited		s
Operating ambient temperature, T _A			-40	125	°C
Dperating virtual-junction temperature, T _J				150	°C
Storage temperature, T _{stg}			-65	150	°C

⁽¹⁾ Stresses beyond those listed under Absolute Maximum Ratings may cause permanent damage to the device. These are stress ratings only, and do not imply functional operation of the device at these or any other conditions beyond those indicated under Recommended Operating Conditions. Exposure to absolute-maximum-rated conditions for extended periods may affect device reliability.

7.2 ESD Ratings

			VALUE	UNIT			
LM2904	M2904B-Q1						
V _(ESD) Electrostatic discharge		Human-body model (HBM), per AEC Q100-002 ⁽¹⁾	±2000	V			
		Charged-device model (CDM), per AEC Q100-011	±750	\ \ \ \			
LM2904	LM2904-Q1, LM2904AV-Q1, AND LM2904V-Q1						
\ <u>'</u>		Human-body model (HBM), per AEC Q100-002 ⁽¹⁾	±1000	V			
V _(ESD)	Electrostatic discharge	Charged-device model (CDM), per AEC Q100-011	±500	V			

(1) AEC Q100-002 indicates that HBM stressing shall be in accordance with the ANSI/ESDA/JEDEC JS-001 specification.

⁽²⁾ Differential voltages are at IN+, with respect to IN-.

⁽³⁾ Short circuits from outputs to the supply pins can cause excessive heating and eventual destruction.

7.3 Recommended Operating Conditions

over operating ambient temperature range (unless otherwise noted)

		·	MIN	MAX	UNIT
		LM2904B-Q1		36	
Vs	Supply voltage, $V_S = ([V+] - [V-])$	LM2904AV-Q1, LM2904V-Q1	3	30	V
		LM2904-Q1	3	26	
V _{CM}	Common-mode voltage		V-	(V+) – 2	V
T _A	Operating ambient temperature		-40	125	°C

7.4 Thermal Information

		LM2904-Q1, LM	2904AV-Q1, LM2904B-Q		
	THERMAL METRIC(1)	D (SOIC)	DGK (VSSOP)	PW (TSSOP)	UNIT
		8 PINS	8 PINS	8 PINS	_
$R_{\theta JA}$	Junction-to-ambient thermal resistance	124.7	186.1	171.7	°C/W
R _{0JC(top)}	Junction-to-case (top) thermal resistance	66.9	77.1	68.8	°C/W
$R_{\theta JB}$	Junction-to-board thermal resistance	67.9	107.7	99.2	°C/W
ΨЈΤ	Junction-to-top characterization parameter	19.2	17.2	11.5	°C/W
ΨЈВ	Junction-to-board characterization parameter	67.2	106.1	97.9	°C/W

For more information about traditional and new thermal metrics, see Semiconductor and IC Package Thermal Metrics. (1)

For a listing of which devices are available in what packages, see Section 5. (2)

7.5 Electrical Characteristics: LM2904B-Q1

 V_S = (V+) - (V-) = 5 V - 36 V (±2.5 V - ±18 V), T_A = 25°C, V_{CM} = V_{OUT} = V_S / 2, R_L = 10k connected to V_S / 2 (unless otherwise noted)

(unies:	s otherwise noted)		TEST COMPLITIONS		MINI	TVD	MAY	LINUT
OFFEET	PARAMETER		TEST CONDITIONS		MIN	TYP	MAX	UNIT
OFFSET	VOLTAGE			1	I		.00	
V_{OS}	Input offset voltage	LM2904B-Q1		T 4000 to 140500		±0.3	±3.0	mV
۹// /۹	Input offset voltage drift			$T_A = -40^{\circ}\text{C to } +125^{\circ}\text{C}$ $T_A = -40^{\circ}\text{C to } +125^{\circ}\text{C}^{(1)}$		±3.5	±4 12	μV/°C
dV _{OS} /d _T PSRR				1 _A = -40 C to +125 C(*)		±3.5 ±2	15	μV/V
FORK	Power supply rejection ratio	f = 1 kHz to 20 kHz					13	μV/V
INDUT V	Channel separation, dc OLTAGE RANGE	I - I KHZ to 20 KHZ				±1		μν/ν
INPUT	OLIAGE RANGE	V _S = 3 V to 36 V			()()		()/+) 1.5	
V_{CM}	Common-mode voltage range	V _S = 5 V to 36 V		T _A = -40°C to +125°C	(V-) (V-)		(V+) - 1.5 (V+) - 2	V
		$V_S = 3 \text{ V to 30 V}$ $(V-) \le V_{CM} \le (V+) - 1.5 \text{ V}$	V = 2 V to 26 V	1 _A = -40 C to +123 C	(v-)	20	100	
CMRR	Common-mode rejection ratio	$(V-) \le V_{CM} \le (V+) - 1.5 V$ $(V-) \le V_{CM} \le (V+) - 2.0 V$		T _A = -40°C to +125°C		25	316	μV/V
INDIIT R	IAS CURRENT	(V-) = V _{CM} = (V+) - 2.0 V	VS = 3 V to 30 V	14 - 40 C to 1123 C			310	
	IAO OURRENT					±10	±35	
I_{B}	Input bias current			$T_A = -40^{\circ}\text{C to } +125^{\circ}\text{C}^{(1)}$		-10	±50	nA
				1A 40 0 to 1120 0		0.5	4	
Ios	Input offset current			$T_A = -40^{\circ}\text{C to } +125^{\circ}\text{C}^{(1)}$			5	nA
dl _{OS} /d _T	Input offset current drift					10		pA/°C
NOISE	input onset current unit			T _A = -40°C to +125°C				pA 0
E _n	Input voltage noise	f = 0.1 to 10 Hz				3		μV _{PP}
e _n	Input voltage noise density	f = 1 kHz				40		nV/√/Hz
	MPEDANCE	I - I KIIZ						1107 1/112
Z _{ID}	Differential					10 0.1		MΩ pF
Z _{IC}	Common-mode					4 1.5		GΩ pF
	OOP GAIN					4 1.5		012 pi
OI LIVE	JOI GAIN				70	140		
A_{OL}	Open-loop voltage gain	V _S = 15 V; V _O = 1 V to 11	V; R _L ≥ 10 k $Ω$, connected to (V –)	T _A = -40°C to +125°C	35			V/mV
FREQUE	NCY RESPONSE			1A 10 0 to 1120 0				
GBW	Gain bandwidth product					1.2		MHz
SR	Slew rate	G = +1				0.5		V/µs
Θ _m	Phase margin	G = +1, R _L = 10 kΩ, C _L =	20 pF			56		0
t _{OR}	Overload recovery time	V _{IN} × gain > V _S	F:			10		μs
t _s	Settling time	To 0.1%, V _S = 5 V, 2-V ste	ep . G = +1. Cı = 100 pF			4		μs
THD+N	Total harmonic distortion + noise		53 V _{RMS} , V _S = 36 V, R _L = 100k, I _{OUT} ≤ ±50	uA. BW = 80 kHz		0.001%		ļ .
OUTPUT		0 1,1 1112,10 0	55 YRMS, 13 55 1, 12 1551, 1001 = 255	p. 1, 211 00 1112				
				Ι _{ΟUT} = 50 μΑ		1.35	1.42	
		Positive rail (V+)		I _{OUT} = 1 mA		1.4	1.48	v
				I _{OUT} = 5 mA ⁽¹⁾		1.5	1.61	
Vo	Voltage output swing from rail			Ι _{ΟυΤ} = 50 μΑ		100	150	mV
		Negative rail (V–)		I _{OUT} = 1 mA		0.75	1	V
			$V_S = 5$ V, RL ≤ 10 kΩ connected to (V–)	T _A = -40°C to +125°C		5	20	mV
		\/ - 15\/:\/ -\/ :		A	-20	-30		
		V _S = 15 V; V _O = V-; V _{ID} = 1 V	Source ⁽¹⁾	T _A = -40°C to +125°C	-10			
Io	Output current	\/ - 15\/:\/ -\/+:			10	20		mA
Ü	•	$V_S = 15 \text{ V}; V_O = V+;$ $V_{ID} = -1 \text{ V}$	Sink ⁽¹⁾	T _A = -40°C to +125°C	5			
		V _{ID} = -1 V; V _O = (V-) + 200 mV		60	100		μA	
I _{SC}	Short-circuit current		$V_{\rm ID} = -1 \text{ V}, V_{\rm O} = (V_{\rm O}) + 200 \text{ m/V}$ $V_{\rm S} = 20 \text{ V}, (V_{\rm O}) = 10 \text{ V}, (V_{\rm O}) = -10 \text{ V}, V_{\rm O} = 0 \text{ V}$			±40	±60	mA
C _{LOAD}	Capacitive load drive	5 - 7,1-7 - 1-3,10	, -, -, -, -, -, -, -, -, -, -, -, -, -,			100		pF
Ro	Open-loop output resistance	f = 1 MHz, I _O = 0 A				300		Ω
	SUPPLY				<u> </u>			
		V _S = 5 V; I _O = 0 A				300	460	
I_{Q}	Quiescent current per amplifier	V _S = 36 V; I _O = 0 A		$T_A = -40^{\circ}\text{C to } +125^{\circ}\text{C}$			800	μA
		1.3 55 1, 10 571	v, I _O = 0 A					

(1) Specified by characterization only.

7.6 Electrical Characteristics: LM2904-Q1, LM2904AV-Q1, LM2904V-Q1

For $V_S = (V+) - (V-) = 5 \text{ V}$, $T_A = 25^{\circ}\text{C}$, $R_1 = 10 \text{ k}\Omega$ connected to V– (unless otherwise noted)

	PARAMETER		TE		MIN	TYP	MAX	UNIT			
OFFSET \	/OLTAGE										
								±3	±7		
					904-Q1, 904V-A1	T _A = -40°C to 125°C		10	±10		
√os	Input offset voltage	$V_S = 5 \text{ V to m}$	$V_S = 5 \text{ V to maximum};$ $V_{CM} = 0 \text{ V}; V_O = 1.4 \text{ V}$			1 _A = -40 C to 125 C		±1	±10	mV	
		· C W - · · · ·	0	LM2	904AV-Q1	T = 40°C to 405°C					
-15.7 /-1	land to the state of the state					$T_A = -40^{\circ}\text{C to } 125^{\circ}\text{C}$ $T_A = -40^{\circ}\text{C to } 125^{\circ}\text{C}$.7	±4		
dV _{OS} /d _T	Input offset voltage drift				±7		μV/°C				
PSRR	Input offset voltage vs power supply $(\Delta V_{IO}/\Delta V_S)$	V _S = 5 V to 3					65	100		dB	
V _{O1} / V _{O2}	Channel separation	f = 1 kHz to 2	0 kHz					120		dB	
INPUT VO	DLTAGE RANGE										
V _{CM}	Common-mode voltage range	V _S = 5 V to m	naximum			T _A = -40°C to 125°C	(V-) (V-)		(V+) - 1.5 (V+) - 2	V	
CMRR	Common-mode rejection ratio	V- = 5 V to m	naximum; V _{CM} = 0 \	1A - 40 0 to 123 0	65	80	(۷.)-2	dB			
	AS CURRENT	VS = 3 V 10 11	iaximum, v _{CM} = 0 v	v						uБ	
INFUI DIA	AS CURRENT								050		
I _B	Input bias current	V _O = (V-) + 1	.4 V			T = 40°C to 125°C		-20	-250 500	nA	
				<u> </u>		T _A = -40°C to 125°C		2	-500		
			LM2	904-Q1	T = 40°C + 405°C		2	50			
Ios	Input offset current	V _O = (V-) + 1	.4 V	<u> </u>		T _A = -40°C to 125°C			300	nA	
					904AV-Q1, 904V-Q1	T 4000 : 1075		2	50		
				LIVIZ	304 V-Q I	T _A = -40°C to 125°C			150		
dl _{OS} /d _T	Input offset current drift					$T_A = -40^{\circ}\text{C to } 125^{\circ}\text{C}$		10		pA/°0	
NOISE											
e _n	Input voltage noise density	f = 1 kHz						40		nV/√ F	
OPEN-LO	OP GAIN										
A _{OL} Open-loop voltage gain			$_{O} = (V-) + 1 V to (V-)$		25	100		V/m\			
, IOL		connected to	(V-)			$T_A = -40^{\circ}C \text{ to } 125^{\circ}C$	15			.,,,,,,	
FREQUEN	NCY RESPONSE										
GBW	Gain bandwidth product							0.7		MHz	
SR	Slew rate	G = +1						0.3		V/µs	
OUTPUT											
			R _L ≥ 10 kΩ				V _S – 1.5				
				V _S = maximum;			4				
			LM2904-Q1	$R_L = 2 k\Omega$		4					
		Positive rail		$V_S = maximu$ $R_L \ge 10 \text{ k}\Omega$	ım;	- T _A = -40°C to 125°C	3	2		V	
V _o	Voltage output swing from rail		LM2904AV-Q1,	$V_S = maximu$ $R_L = 2 k\Omega$	ım;	. _M -0 5 to 125 0	6				
			LM2904V-Q1	V_S = maximum; $R_I \ge 10 \text{ k}\Omega$		1	5	4			
		Negative rail	1	$V_S = 5 V;$ $R_L \le 10 \text{ k}\Omega$		T _A = -40°C to 125°C		5	20	mV	
		+					-20	-30			
		V _S = 15 V; V ₀	$_{D} = V -; V_{ID} = 1 V$	Source		T _A = -40°C to 125°C	-10				
	\/o = 15 \/· \/	= \/+·				10	20		mA		
Output current		$V_S = 15 \text{ V}; V_O = -1 \text{ V}$, v·,	Sink		T _A = -40°C to 125°C	5				
				LM2904-Q1				30			
		$V_{ID} = -1 \ V; \ V$	_O = (V–) + 200 mV		Q1. LM2904\	/-Q1	12	40		μΑ	
I _{sc}	Short-circuit current	$V_S = 10 \text{ V}; V_O = V_S / 2$						±40	±60	mA	
POWER S		1.5 10 4, 4(, , , , _					2-10	200		
JILK	, o, i, E1	V _O = V _S / 2; I	ο = Ο Δ					350	600		
lα	Quiescent current per amplifier		m; V _O = maximum /	/2:1 = 0 ^		T _A = -40°C to 125°C				μA	
		v _S = maximu	ııı, v _o = ınaxımum /	1 2; 10 = U A				500	1000		

⁽¹⁾ All characteristics are measured with zero common-mode input voltage, unless otherwise specified. Maximum V_S for testing purposes is 26 V for LM2904-Q1 and 32 V for LM2904AV-Q1/LM2904V-Q1.

7.7 Typical Characteristics

Figure 7-38. EMIRR (Electromagnetic Interference Rejection Ratio) vs Frequency

8 Parameter Measurement Information

Figure 8-1. Unity-Gain Amplifier

Figure 8-3. Test Circuit, G = -1, for THD+N and Small-Signal Step Response

9 Detailed Description

9.1 Overview

The LM2904-Q1 and LM2904B-Q1 devices consist of two independent, high-gain frequency-compensated operational amplifiers designed to operate from a single supply over a wide range of voltages. Operation from split supplies also is possible if the difference between the two supplies is within the supply voltage range specified in Section 7.3, and V_S is at least 1.5 V more positive than the input common-mode voltage. The low supply-current drain is independent of the magnitude of the supply voltage.

Applications include transducer amplifiers, DC amplification blocks, and all the conventional operational amplifier circuits that now can be implemented more easily in single-supply-voltage systems. For example, these devices can be operated directly from the standard 5-V supply used in digital systems and easily can provide the required interface electronics without additional ±5-V supplies.

9.2 Functional Block Diagram

9.3 Feature Description

9.3.1 Unity-Gain Bandwidth

The unity-gain bandwidth is the frequency up to which an amplifier with a unity gain may be operated without greatly distorting the signal. These devices have a 1.2-MHz unity-gain bandwidth (LM2904B-Q1).

9.3.2 Slew Rate

The slew rate is the rate at which an operational amplifier can change its output when there is a change on the input. These devices have a 0.5-V/µs slew rate (LM2904B-Q1).

9.3.3 Input Common Mode Range

The valid common mode range is from device ground to $V_S - 1.5 \text{ V}$ ($V_S - 2 \text{ V}$ across temperature). Inputs may exceed V_S up to the maximum V_S without device damage. At least one input must be in the valid input common-mode range for the output to be the correct phase. If both inputs exceed the valid range, then the output phase is undefined. If either input more than 0.3 V below V– then input current should be limited to 1 mA and the output phase is undefined.

9.4 Device Functional Modes

The LM2904-Q1 and LM2904B-Q1 devices are powered on when the supply is connected. This device can be operated as a single-supply operational amplifier or dual-supply amplifier, depending on the application.

10 Application and Implementation

Note

Information in the following applications sections is not part of the TI component specification, and TI does not warrant its accuracy or completeness. TI's customers are responsible for determining suitability of components for their purposes. Customers should validate and test their design implementation to confirm system functionality.

10.1 Application Information

The LM2904-Q1 and LM2904B-Q1 operational amplifiers are useful in a wide range of signal conditioning applications. Inputs can be powered before V_S for flexibility in multiple supply circuits. For full application design guidelines related to this family of devices, please refer to the application report *Application design guidelines for LM324/LM358 devices*.

10.2 Typical Application

A typical application for an operational amplifier is an inverting amplifier. This amplifier takes a positive voltage on the input, and makes it a negative voltage of the same magnitude. In the same manner, it also makes negative voltages positive.

Figure 10-1. Application Schematic

10.2.1 Design Requirements

The supply voltage must be chosen such that it is larger than the input voltage range and output range. For instance, this application scales a signal of ± 0.5 V to ± 1.8 V. Setting the supply at ± 12 V is sufficient to accommodate this application.

10.2.2 Detailed Design Procedure

Determine the gain required by the inverting amplifier using Equation 1 and Equation 2:

$$A_{V} = \frac{VOUT}{VIN}$$
 (1)

$$A_{V} = \frac{1.8}{-0.5} = -3.6 \tag{2}$$

Once the desired gain is determined, choose a value for R_I or R_F . Choosing a value in the kilohm range is desirable because the amplifier circuit uses currents in the milliampere range. This ensures the part does not draw too much current. This example uses 10 k Ω for R_I which means 36 k Ω is used for R_F . This was determined by Equation 3.

$$A_{V} = -\frac{RF}{RI}$$
 (3)

10.2.3 Application Curve

Figure 10-2. Input and Output Voltages of the Inverting Amplifier

11 Power Supply Recommendations

CAUTION

Supply voltages larger than specified in the recommended operating region can permanently damage the device (see Section 7.1).

Place 0.1-µF bypass capacitors close to the power-supply pins to reduce errors coupling in from noisy or high-impedance power supplies. For more detailed information on bypass capacitor placement, see Section 12.

12 Layout

12.1 Layout Guidelines

For best operational performance of the device, use good PCB layout practices, including:

- Noise can propagate into analog circuitry through the power pins of the circuit as a whole, as well as the
 operational amplifier. Bypass capacitors are used to reduce the coupled noise by providing low-impedance
 power sources local to the analog circuitry.
 - Connect low-ESR, 0.1-µF ceramic bypass capacitors between each supply pin and ground, placed as close to the device as possible. A single bypass capacitor from V+ to ground is applicable for singlesupply applications.
- Separate grounding for analog and digital portions of circuitry is one of the simplest and most-effective
 methods of noise suppression. One or more layers on multilayer PCBs are usually devoted to ground planes.
 A ground plane helps distribute heat and reduces EMI noise pickup. Make sure to physically separate digital
 and analog grounds, paying attention to the flow of the ground current.
- To reduce parasitic coupling, run the input traces as far away from the supply or output traces as possible. If it is not possible to keep them separate, it is much better to cross the sensitive trace perpendicular as opposed to in parallel with the noisy trace.
- Place the external components as close to the device as possible. Keeping R_F and R_G close to the inverting
 input minimizes parasitic capacitance, as shown in Section 12.2.
- Keep the length of input traces as short as possible. Always remember that the input traces are the most sensitive part of the circuit.
- Consider a driven, low-impedance guard ring around the critical traces. A guard ring can significantly reduce leakage currents from nearby traces that are at different potentials.

12.2 Layout Examples

Figure 12-1. Operational Amplifier Board Layout for Noninverting Configuration

Figure 12-2. Operational Amplifier Schematic for Noninverting Configuration

13 Device and Documentation Support

13.1 Documentation Support

13.1.1 Related Documentation

For related documentation see the following:

Texas Instruments, Application Design Guidelines for LM324/LM358 Devices application report

13.2 Related Links

The table below lists quick access links. Categories include technical documents, support and community resources, tools and software, and quick access to order now.

Table 13-1. Related Links

PARTS	PRODUCT FOLDER	ORDER NOW	TECHNICAL DOCUMENTS	TOOLS & SOFTWARE	SUPPORT & COMMUNITY
LM2904-Q1	Click here	Click here	Click here	Click here	Click here
LM2904B-Q1	Click here	Click here	Click here	Click here	Click here

13.3 Receiving Notification of Documentation Updates

To receive notification of documentation updates, navigate to the device product folder on ti.com. Click on *Subscribe to updates* to register and receive a weekly digest of any product information that has changed. For change details, review the revision history included in any revised document.

13.4 Support Resources

TI E2E™ support forums are an engineer's go-to source for fast, verified answers and design help — straight from the experts. Search existing answers or ask your own question to get the quick design help you need.

Linked content is provided "AS IS" by the respective contributors. They do not constitute TI specifications and do not necessarily reflect TI's views; see TI's Terms of Use.

13.5 Trademarks

TI E2E™ is a trademark of Texas Instruments.

All trademarks are the property of their respective owners.

13.6 Electrostatic Discharge Caution

This integrated circuit can be damaged by ESD. Texas Instruments recommends that all integrated circuits be handled with appropriate precautions. Failure to observe proper handling and installation procedures can cause damage.

ESD damage can range from subtle performance degradation to complete device failure. Precision integrated circuits may be more susceptible to damage because very small parametric changes could cause the device not to meet its published specifications.

13.7 Glossary

TI Glossary

This glossary lists and explains terms, acronyms, and definitions.

14 Mechanical, Packaging, and Orderable Information

The following pages include mechanical packaging and orderable information. This information is the most-current data available for the designated devices. This data is subject to change without notice and without revision of this document. For browser based versions of this data sheet, see the left-hand navigation pane.

www.ti.com

5-Nov-2021

PACKAGING INFORMATION

Orderable Device	Status (1)	Package Type	Package Drawing	Pins	Package Qty	Eco Plan	Lead finish/ Ball material (6)	MSL Peak Temp	Op Temp (°C)	Device Marking (4/5)	Samples
LM2904AVQDRG4Q1	ACTIVE	SOIC	D	8	2500	RoHS & Green	NIPDAU	Level-1-260C-UNLIM	-40 to 125	2904AVQ	Samples
LM2904AVQDRQ1	ACTIVE	SOIC	D	8	2500	RoHS & Green	NIPDAU	Level-1-260C-UNLIM	-40 to 125	2904AVQ	Samples
LM2904AVQPWRG4Q1	ACTIVE	TSSOP	PW	8	2000	RoHS & Green	NIPDAU	Level-1-260C-UNLIM	-40 to 125	2904AVQ	Samples
LM2904AVQPWRQ1	ACTIVE	TSSOP	PW	8	2000	RoHS & Green	NIPDAU	Level-1-260C-UNLIM	-40 to 125	2904AVQ	Samples
LM2904BQDGKRQ1	ACTIVE	VSSOP	DGK	8	2500	RoHS & Green	NIPDAU	Level-1-260C-UNLIM	-40 to 125	27ZB	Samples
LM2904BQDRQ1	ACTIVE	SOIC	D	8	2500	RoHS & Green	NIPDAU	Level-1-260C-UNLIM	-40 to 125	2904BQ	Samples
LM2904BQPWRQ1	ACTIVE	TSSOP	PW	8	2000	RoHS & Green	NIPDAU	Level-1-260C-UNLIM	-40 to 125	2904BQ	Samples
LM2904BTQDGKRQ1	ACTIVE	VSSOP	DGK	8	2500	RoHS & Green	NIPDAU	Level-1-260C-UNLIM	-40 to 125	4BTQ	Samples
LM2904BTQDRQ1	ACTIVE	SOIC	D	8	3000	RoHS & Green	NIPDAU	Level-1-260C-UNLIM	-40 to 125	2904TQ	Samples
LM2904BTQPWRQ1	ACTIVE	TSSOP	PW	8	3000	RoHS & Green	NIPDAU	Level-1-260C-UNLIM	-40 to 125	2904BT	Samples
LM2904QDRG4Q1	ACTIVE	SOIC	D	8	2500	RoHS & Green	NIPDAU	Level-1-260C-UNLIM	-40 to 125	2904Q1	Samples
LM2904QDRQ1	ACTIVE	SOIC	D	8	2500	RoHS & Green	NIPDAU	Level-1-260C-UNLIM	-40 to 125	2904Q1	Samples
LM2904QPWRG4Q1	ACTIVE	TSSOP	PW	8	2000	RoHS & Green	NIPDAU	Level-1-260C-UNLIM	-40 to 125	2904Q1	Samples
LM2904QPWRQ1	ACTIVE	TSSOP	PW	8	2000	RoHS & Green	NIPDAU	Level-1-260C-UNLIM	-40 to 125	2904Q1	Samples
LM2904VQDRG4Q1	ACTIVE	SOIC	D	8	2500	RoHS & Green	NIPDAU	Level-1-260C-UNLIM	-40 to 125	2904VQ	Samples
LM2904VQDRQ1	ACTIVE	SOIC	D	8	2500	RoHS & Green	NIPDAU	Level-1-260C-UNLIM	-40 to 125	2904VQ1	Samples
LM2904VQPWRG4Q1	ACTIVE	TSSOP	PW	8	2000	RoHS & Green	NIPDAU	Level-1-260C-UNLIM	-40 to 125	2904VQ	Samples
LM2904VQPWRQ1	ACTIVE	TSSOP	PW	8	2000	RoHS & Green	NIPDAU	Level-1-260C-UNLIM	-40 to 125	2904VQ	Samples

(1) The marketing status values are defined as follows:

ACTIVE: Product device recommended for new designs.

LIFEBUY: TI has announced that the device will be discontinued, and a lifetime-buy period is in effect.

PACKAGE OPTION ADDENDUM

www.ti.com 5-Nov-2021

NRND: Not recommended for new designs. Device is in production to support existing customers, but TI does not recommend using this part in a new design.

PREVIEW: Device has been announced but is not in production. Samples may or may not be available.

OBSOLETE: TI has discontinued the production of the device.

(2) RoHS: TI defines "RoHS" to mean semiconductor products that are compliant with the current EU RoHS requirements for all 10 RoHS substances, including the requirement that RoHS substance do not exceed 0.1% by weight in homogeneous materials. Where designed to be soldered at high temperatures, "RoHS" products are suitable for use in specified lead-free processes. TI may reference these types of products as "Pb-Free".

RoHS Exempt: TI defines "RoHS Exempt" to mean products that contain lead but are compliant with EU RoHS pursuant to a specific EU RoHS exemption.

Green: TI defines "Green" to mean the content of Chlorine (Cl) and Bromine (Br) based flame retardants meet JS709B low halogen requirements of <=1000ppm threshold. Antimony trioxide based flame retardants must also meet the <=1000ppm threshold requirement.

- (3) MSL, Peak Temp. The Moisture Sensitivity Level rating according to the JEDEC industry standard classifications, and peak solder temperature.
- (4) There may be additional marking, which relates to the logo, the lot trace code information, or the environmental category on the device.
- (5) Multiple Device Markings will be inside parentheses. Only one Device Marking contained in parentheses and separated by a "~" will appear on a device. If a line is indented then it is a continuation of the previous line and the two combined represent the entire Device Marking for that device.
- (6) Lead finish/Ball material Orderable Devices may have multiple material finish options. Finish options are separated by a vertical ruled line. Lead finish/Ball material values may wrap to two lines if the finish value exceeds the maximum column width.

Important Information and Disclaimer: The information provided on this page represents TI's knowledge and belief as of the date that it is provided. TI bases its knowledge and belief on information provided by third parties, and makes no representation or warranty as to the accuracy of such information. Efforts are underway to better integrate information from third parties. TI has taken and continues to take reasonable steps to provide representative and accurate information but may not have conducted destructive testing or chemical analysis on incoming materials and chemicals. TI and TI suppliers consider certain information to be proprietary, and thus CAS numbers and other limited information may not be available for release.

In no event shall TI's liability arising out of such information exceed the total purchase price of the TI part(s) at issue in this document sold by TI to Customer on an annual basis.

OTHER QUALIFIED VERSIONS OF LM2904-Q1, LM2904B-Q1:

Catalog: LM2904, LM2904B

Enhanced Product: LM2904-EP

NOTE: Qualified Version Definitions:

Catalog - TI's standard catalog product

PACKAGE OPTION ADDENDUM

www.ti.com 5-Nov-2021

• Enhanced Product - Supports Defense, Aerospace and Medical Applications

www.ti.com 16-Mar-2022

TAPE AND REEL INFORMATION

TAPE DIMENSIONS KO P1 BO W Cavity AO

	Dimension designed to accommodate the component width
B0	Dimension designed to accommodate the component length
K0	Dimension designed to accommodate the component thickness
W	Overall width of the carrier tape
P1	Pitch between successive cavity centers

QUADRANT ASSIGNMENTS FOR PIN 1 ORIENTATION IN TAPE

*All dimensions are nominal

Device	Package Type	Package Drawing	Pins	SPQ	Reel Diameter (mm)	Reel Width W1 (mm)	A0 (mm)	B0 (mm)	K0 (mm)	P1 (mm)	W (mm)	Pin1 Quadrant
LM2904AVQDRG4Q1	SOIC	D	8	2500	330.0	12.4	6.4	5.2	2.1	8.0	12.0	Q1
LM2904AVQDRG4Q1	SOIC	D	8	2500	330.0	12.5	6.4	5.2	2.1	8.0	12.0	Q1
LM2904AVQDRQ1	SOIC	D	8	2500	330.0	12.5	6.4	5.2	2.1	8.0	12.0	Q1
LM2904AVQPWRG4Q1	TSSOP	PW	8	2000	330.0	12.4	7.0	3.6	1.6	8.0	12.0	Q1
LM2904AVQPWRG4Q1	TSSOP	PW	8	2000	330.0	12.4	7.0	3.6	1.6	8.0	12.0	Q1
LM2904AVQPWRQ1	TSSOP	PW	8	2000	330.0	12.4	7.0	3.6	1.6	8.0	12.0	Q1
LM2904BQDGKRQ1	VSSOP	DGK	8	2500	330.0	12.4	5.3	3.4	1.4	8.0	12.0	Q1
LM2904BQDRQ1	SOIC	D	8	2500	330.0	12.4	6.4	5.2	2.1	8.0	12.0	Q1
LM2904BQPWRQ1	TSSOP	PW	8	2000	330.0	12.4	7.0	3.6	1.6	8.0	12.0	Q1
LM2904BTQDGKRQ1	VSSOP	DGK	8	2500	330.0	12.4	5.3	3.4	1.4	8.0	12.0	Q1
LM2904BTQDRQ1	SOIC	D	8	3000	330.0	12.4	6.4	5.2	2.1	8.0	12.0	Q1
LM2904BTQPWRQ1	TSSOP	PW	8	3000	330.0	12.4	7.0	3.6	1.6	8.0	12.0	Q1
LM2904QDRG4Q1	SOIC	D	8	2500	330.0	12.4	6.4	5.2	2.1	8.0	12.0	Q1
LM2904QDRG4Q1	SOIC	D	8	2500	330.0	12.5	6.4	5.2	2.1	8.0	12.0	Q1
LM2904QDRQ1	SOIC	D	8	2500	330.0	12.5	6.4	5.2	2.1	8.0	12.0	Q1
LM2904QPWRG4Q1	TSSOP	PW	8	2000	330.0	12.4	7.0	3.6	1.6	8.0	12.0	Q1
LM2904QPWRG4Q1	TSSOP	PW	8	2000	330.0	12.4	7.0	3.6	1.6	8.0	12.0	Q1
LM2904QPWRQ1	TSSOP	PW	8	2000	330.0	12.4	7.0	3.6	1.6	8.0	12.0	Q1

www.ti.com 16-Mar-2022

Device	Package Type	Package Drawing		SPQ	Reel Diameter (mm)	Reel Width W1 (mm)	A0 (mm)	B0 (mm)	K0 (mm)	P1 (mm)	W (mm)	Pin1 Quadrant
LM2904VQDRG4Q1	SOIC	D	8	2500	330.0	12.4	6.4	5.2	2.1	8.0	12.0	Q1
LM2904VQDRG4Q1	SOIC	D	8	2500	330.0	12.5	6.4	5.2	2.1	8.0	12.0	Q1
LM2904VQDRQ1	SOIC	D	8	2500	330.0	12.4	6.4	5.2	2.1	8.0	12.0	Q1
LM2904VQDRQ1	SOIC	D	8	2500	330.0	12.5	6.4	5.2	2.1	8.0	12.0	Q1
LM2904VQPWRG4Q1	TSSOP	PW	8	2000	330.0	12.4	7.0	3.6	1.6	8.0	12.0	Q1
LM2904VQPWRG4Q1	TSSOP	PW	8	2000	330.0	12.4	7.0	3.6	1.6	8.0	12.0	Q1
LM2904VQPWRQ1	TSSOP	PW	8	2000	330.0	12.4	7.0	3.6	1.6	8.0	12.0	Q1
LM2904VQPWRQ1	TSSOP	PW	8	2000	330.0	12.4	7.0	3.6	1.6	8.0	12.0	Q1

*All dimensions are nominal

Device	Package Type	Package Drawing	Pins	SPQ	Length (mm)	Width (mm)	Height (mm)
LM2904AVQDRG4Q1	SOIC	D	8	2500	340.5	336.1	25.0
LM2904AVQDRG4Q1	SOIC	D	8	2500	340.5	336.1	25.0
LM2904AVQDRQ1	SOIC	D	8	2500	340.5	336.1	25.0
LM2904AVQPWRG4Q1	TSSOP	PW	8	2000	367.0	367.0	35.0
LM2904AVQPWRG4Q1	TSSOP	PW	8	2000	853.0	449.0	35.0
LM2904AVQPWRQ1	TSSOP	PW	8	2000	853.0	449.0	35.0
LM2904BQDGKRQ1	VSSOP	DGK	8	2500	366.0	364.0	50.0
LM2904BQDRQ1	SOIC	D	8	2500	340.5	336.1	25.0
LM2904BQPWRQ1	TSSOP	PW	8	2000	853.0	449.0	35.0

PACKAGE MATERIALS INFORMATION

www.ti.com 16-Mar-2022

Device	Package Type	Package Drawing	Pins	SPQ	Length (mm)	Width (mm)	Height (mm)
LM2904BTQDGKRQ1	VSSOP	DGK	8	2500	366.0	364.0	50.0
LM2904BTQDRQ1	SOIC	D	8	3000	340.5	338.1	20.6
LM2904BTQPWRQ1	TSSOP	PW	8	3000	853.0	449.0	35.0
LM2904QDRG4Q1	SOIC	D	8	2500	340.5	336.1	25.0
LM2904QDRG4Q1	SOIC	D	8	2500	340.5	336.1	25.0
LM2904QDRQ1	SOIC	D	8	2500	340.5	336.1	25.0
LM2904QPWRG4Q1	TSSOP	PW	8	2000	853.0	449.0	35.0
LM2904QPWRG4Q1	TSSOP	PW	8	2000	853.0	449.0	35.0
LM2904QPWRQ1	TSSOP	PW	8	2000	853.0	449.0	35.0
LM2904VQDRG4Q1	SOIC	D	8	2500	340.5	336.1	25.0
LM2904VQDRG4Q1	SOIC	D	8	2500	340.5	336.1	25.0
LM2904VQDRQ1	SOIC	D	8	2500	340.5	336.1	25.0
LM2904VQDRQ1	SOIC	D	8	2500	340.5	336.1	25.0
LM2904VQPWRG4Q1	TSSOP	PW	8	2000	367.0	367.0	35.0
LM2904VQPWRG4Q1	TSSOP	PW	8	2000	853.0	449.0	35.0
LM2904VQPWRQ1	TSSOP	PW	8	2000	853.0	449.0	35.0
LM2904VQPWRQ1	TSSOP	PW	8	2000	853.0	449.0	35.0

SMALL OUTLINE INTEGRATED CIRCUIT

- 1. Linear dimensions are in inches [millimeters]. Dimensions in parenthesis are for reference only. Controlling dimensions are in inches. Dimensioning and tolerancing per ASME Y14.5M.
- 2. This drawing is subject to change without notice.
- 3. This dimension does not include mold flash, protrusions, or gate burrs. Mold flash, protrusions, or gate burrs shall not exceed .006 [0.15] per side.
- 4. This dimension does not include interlead flash.
- 5. Reference JEDEC registration MS-012, variation AA.

SMALL OUTLINE INTEGRATED CIRCUIT

NOTES: (continued)

6. Publication IPC-7351 may have alternate designs.

7. Solder mask tolerances between and around signal pads can vary based on board fabrication site.

SMALL OUTLINE INTEGRATED CIRCUIT

NOTES: (continued)

- 8. Laser cutting apertures with trapezoidal walls and rounded corners may offer better paste release. IPC-7525 may have alternate design recommendations.
- 9. Board assembly site may have different recommendations for stencil design.

DGK (S-PDSO-G8)

PLASTIC SMALL-OUTLINE PACKAGE

- A. All linear dimensions are in millimeters.
- B. This drawing is subject to change without notice.
- Body length does not include mold flash, protrusions, or gate burrs. Mold flash, protrusions, or gate burrs shall not exceed 0.15 per end.
- Body width does not include interlead flash. Interlead flash shall not exceed 0.50 per side.
- E. Falls within JEDEC MO-187 variation AA, except interlead flash.

DGK (S-PDSO-G8)

PLASTIC SMALL OUTLINE PACKAGE

- A. All linear dimensions are in millimeters.
- B. This drawing is subject to change without notice.
- C. Publication IPC-7351 is recommended for alternate designs.
- D. Laser cutting apertures with trapezoidal walls and also rounding corners will offer better paste release. Customers should contact their board assembly site for stencil design recommendations. Refer to IPC-7525 for other stencil recommendations.
- E. Customers should contact their board fabrication site for solder mask tolerances between and around signal pads.

SMALL OUTLINE PACKAGE

- 1. All linear dimensions are in millimeters. Any dimensions in parenthesis are for reference only. Dimensioning and tolerancing per ASME Y14.5M.

 2. This drawing is subject to change without notice.

 3. This dimension does not include mold flash, protrusions, or gate burrs. Mold flash, protrusions, or gate burrs shall not
- exceed 0.15 mm per side.
- 4. This dimension does not include interlead flash. Interlead flash shall not exceed 0.25 mm per side.
- 5. Reference JEDEC registration MO-153, variation AA.

SMALL OUTLINE PACKAGE

NOTES: (continued)

6. Publication IPC-7351 may have alternate designs.

7. Solder mask tolerances between and around signal pads can vary based on board fabrication site.

SMALL OUTLINE PACKAGE

NOTES: (continued)

- 8. Laser cutting apertures with trapezoidal walls and rounded corners may offer better paste release. IPC-7525 may have alternate design recommendations.
- 9. Board assembly site may have different recommendations for stencil design.

IMPORTANT NOTICE AND DISCLAIMER

TI PROVIDES TECHNICAL AND RELIABILITY DATA (INCLUDING DATA SHEETS), DESIGN RESOURCES (INCLUDING REFERENCE DESIGNS), APPLICATION OR OTHER DESIGN ADVICE, WEB TOOLS, SAFETY INFORMATION, AND OTHER RESOURCES "AS IS" AND WITH ALL FAULTS, AND DISCLAIMS ALL WARRANTIES, EXPRESS AND IMPLIED, INCLUDING WITHOUT LIMITATION ANY IMPLIED WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE OR NON-INFRINGEMENT OF THIRD PARTY INTELLECTUAL PROPERTY RIGHTS.

These resources are intended for skilled developers designing with TI products. You are solely responsible for (1) selecting the appropriate TI products for your application, (2) designing, validating and testing your application, and (3) ensuring your application meets applicable standards, and any other safety, security, regulatory or other requirements.

These resources are subject to change without notice. TI grants you permission to use these resources only for development of an application that uses the TI products described in the resource. Other reproduction and display of these resources is prohibited. No license is granted to any other TI intellectual property right or to any third party intellectual property right. TI disclaims responsibility for, and you will fully indemnify TI and its representatives against, any claims, damages, costs, losses, and liabilities arising out of your use of these resources.

TI's products are provided subject to TI's Terms of Sale or other applicable terms available either on ti.com or provided in conjunction with such TI products. TI's provision of these resources does not expand or otherwise alter TI's applicable warranties or warranty disclaimers for TI products.

TI objects to and rejects any additional or different terms you may have proposed.

Mailing Address: Texas Instruments, Post Office Box 655303, Dallas, Texas 75265 Copyright © 2022, Texas Instruments Incorporated