

ELTE TTK

DINAMIKUS NANO- ÉS MIKROKEMÉNYSÉG MÉRÉSE

Olar Alex

Tartalomjegyzék

I.	Elméleti összefoglaló, mérési eszközök	2
II.	Kiértékelés	2
\mathbf{II}	I. Összegzés	6

I. Elméleti összefoglaló, mérési eszközök

A mérés során egy keménységmérő eszközt ismertünk meg, amely Vickers-fejjel végezte el a méréseket. Ezek során tiszta anyagok (Ni, Cu, Al, Ag) keménységét mértük meg, valamint Al, Mg különböző ötvözeteit vizsgáltuk. Feladatunk volt még a plasztikus instabilitás kvalitatív vizsgálata is a kiértékelés utolsó részében.

II. Kiértékelés

A Vickers-fej mellett a minta keménysége az alkalmazott erő és a hatékony felület hányadosa, $HV = \frac{F}{A}$. A mérés során dinamikus mérést végzünk, hiszen egy F-h, azaz erő-benyomódás görbét vizsgálunk. A görbe alatti terület lehetőséget ad a disszipált energia kiszámítására, valamint a görbéből folyáshatárra, Young-modulusra és a mért anyagok egyéb rugalmas tulajdonságaira következtethetünk.

A maximális erőhöz tartozó benyomódás h_{max} szükséges a további számolásokhoz. A szükséges korrigált mélységet az alábbi egyenlet adja:

$$h_c = h_m - 0.75 \frac{F_m}{\frac{dF}{dh}|_{h_m}}$$

, amit azért kell alkalmazni, mert a statikus és dinamikus esetben a benyomódás eltér és a következő korrekció szükséges annak visszanyeréséhez.

A kiértékelés során a terheletlen szakaszra egyenest illesztettünk és annak meredekségét használtuk $\frac{dF_m}{dh}|_{h_m}$ kiszámításához. Míg F_{max} -ot az adatsorból meghatározva a hozzá tartozó h_{max} -al automatikusan adott volt. Így:

Anyag	$h_{max}[\mu m]$	$F_{max}[N]$
Al	5.186	0.191
Cu	2.233	0.192
Ni	1.604	0.192
Ag	3.298	0.191
acél	2.364	0.191
Al - 0.47% Mg	4.156	0.192
Al - 0.93% Mg	4.056	0.191
Al - 1.25% Mg	3.743	0.192
Al - 1.45% Mg	3.481	0.191
Al - 2.7% Mg	3.416	0.191
Al - 4.5% Mg	2.878	0.191
Al - 7.3% Mg	2.484	0.192

 h_{max} hibáját 0.05 μm -re becsültem, mivel ez sokkal nagyobb volt, mint h_c -nek az illesztésből származó hibája, így $\delta h_c = \delta h_{max}$. Valamint az illesztések közötti eltérésekből sokkal nagyobb hibákat lehetett kapni.

Anyag	$h_c[\mu m]$	$\Delta h_C[\mu m]$
Al	5.065	0.156
Cu	2.125	0.102
Ni	1.49	0.109
Ag	3.195	0.102
acél	2.19	0.102
Al - 0.47% Mg	4.045	0.024
Al - 0.93% Mg	3.885	0.012
Al - 1.25% Mg	3.645	0.121
Al - 1.45% Mg	3.365	0.127
Al - 2.7% Mg	3.32	0.1
Al - 4.5% Mg	2.77	0.085
Al - 7.3% Mg	2.325	0.012

Jól látható, hogy a korrekció olyan kicsi, hogy a benyomódás csak nagyon kis mértéken belül változott.

A Vickers-fej tulajdonsága, hogy az érintkező felület pedig:

$$A = 24.5h_c^2$$

A felületek kiszámolva h_c -ből:

Anyag	$A[\mu m^2]$	$\Delta A[\mu m^2]$
Al	629.795	30.0616
Cu	111.113	2.194
Ni	54.433	3.5897
Ag	250.429	2.6939
acél	117.623	24.1628
Al - 0.47% Mg	401.651	4.4579
Al - 0.93% Mg	369.785	2.6066
Al - 1.25% Mg	325.702	21.1994
Al - 1.45% Mg	277.358	12.47
Al - 2.7% Mg	269.728	15.5807
Al - 4.5% Mg	188.556	11.5862
Al - 7.3% Mg	132.255	0.3621

A redukált modulus E_r egyből számolható a korábbiak ismeretében, ugyanis:

$$E_r = \frac{\sqrt{\pi} \frac{dF}{dh} |_{h_{max}}}{2\beta \sqrt{A}}$$

Ahol $\beta=1.012$, és a fentebbire azért van szükség egyáltalán, mivel maga a mérőfej is rugalmas anyag, így deformálódik. Azonban innen, a mért anyag Poisson-számának ismeretében már származtatható annak Young-modulusa.

$$\frac{1}{E_r} = \frac{1 - \nu^2}{E} + \frac{1 - \nu_i^2}{E_i}$$

Ahol $E_i=1070GPa$ a fej Young-modulusa, $\nu_i=0.17$ szintén a fejre jellemző Poisson-szám.

Ebből a megfelelő ν paramétert helyettesítve már egyből az anyagok Young-modulusát számoltam:

Anyag	E[GPa]	$\Delta E[GPa]$
Al	39.2	0.247
Cu	114.433	1.254
Ni	159.316	1.636
Ag	74.996	1.001
acél	64.483	0.676
Al - 0.47% Mg	56.074	1.388
Al - 0.93% Mg	34.692	0.272
Al - 1.25% Mg	67.698	1.153
Al - 1.45% Mg	61.61	0.711
Al - 2.7% Mg	78.782	1.28
Al - 4.5% Mg	84.378	0.748
Al - 7.3% Mg	63.765	0.365

A továbbiakban az Al, Mg ötvözetek keménységének meghatározása volt a cél. Erre:

$$HV = HV_0 + Bc^m$$

ahol m kitevő modellfüggő. Ezen kívül még vizsgálnunk kellett a plasztikus instabilitást, melyhez alacsony sebességű benyomásnál az F-h görbe 'fogazottságát' kellfigyelmesebben megvizsgálnunk.

A keménységet $\frac{F}{A}$ -ból származtatva az összes anyagra:

Anyag	HV[MPa]	$\Delta HV[MPa]$
Al	303.751	14.781
Cu	1724.955	42.468
Ni	3526.273	246.624
Ag	763.56	10.838
acél	1656.145	19.883
Al - 0.47% Mg	476.997	8.064
Al - 0.93% Mg	516.511	5.56
Al - 1.25% Mg	590.588	38.803
Al - 1.45% Mg	689.047	31.634
Al - 2.7% Mg	711.05	44.124
Al - 4.5% Mg	1017.217	59.226
Al - 7.3% Mg	1447.985	14.572

Ebből az Al, Mg ötvözetekre $HV = HV_0 + Bc^m$ görbét illesztve:

Ahol az illesztési paraméterek értékei a következők:

$$HV_0 = (10273.02 \pm 2245.52) \ MPa$$
 $B = (337.92 \pm 35.82) \ MPa$ $m = 0.85 \pm 0.09$

Ezután a különböző sebességeknél való benyomást vizsgálva, kivonva a mért erőt az illesztettből a fogazottság a következőképpen alakult:

Jól látható, hogy ahogy vártuk, a fogazottság legnagyobb mértékben kis sebességeknél jelenik meg. Az illesztett görbék $(f(h) = A \cdot h^m)$ paraméterei a következők:

- 1 mN/s: $A = (29.52 \pm 0.13) \ mN/(\mu m)^m, \ m = 1.311 \pm 0.004$
- 2 mN/s: $A = (34.99 \pm 0.10) \ mN/(\mu m)^m, \ m = 1.362 \pm 0.003$
- 20 mN/s (1): $A = (31.64 \pm 0.21) \ mN/(\mu m)^m, \ m = 1.457 \pm 0.006$
- 20 mN/s (2): $A = (28.70 \pm 0.21) \ mN/(\mu m)^m, \ m = 1.489 \pm 0.007$

III. Összegzés

A kiértékelésünket többször ellenőrizve, arra a következtetésre jutottunk, hogy a Cu, Ni minták valószínűleg nem tiszta anyagok, mert az irodalmi értéktől a keménységük nagyban eltért.