Outline of the course contents

Computation

Example:
$$f(x) = x^3$$

$$f(x) = x^3$$

temporary memory

$$f(x) = x^3$$

$$z = 2 * 2 = 4$$

$$f(x) = z * 2 = 8$$

input

$$x = 2$$

output

Program memory

compute x * x

CPU

compute $x^2 * x$

temporary memory

$$f(x) = x^3$$

$$z = 2*2 = 4$$

 $f(x) = z*2 = 8$

$$x = 2$$

f(x) = 8

Program memory

compute
$$x * x$$

compute $x^2 * x$

CPU

Automaton

Automaton

Different Kinds of Automata

Automata are distinguished by the temporary memory

• Finite Automata: no temporary memory

· Pushdown Automata: stack

• Turing Machines: random access memory

Finite Automaton

Example: Elevators, Vending Machines (small computing power)

Pushdown Automaton

Example: Compilers for Programming Languages (medium computing power)

Turing Machine

Examples: Any Algorithm

(highest computing power)

Power of Automata

Simple problems

More complex problems

Hardest problems

Finite
Automata

Pushdown Automata

Turing

Machine

Less power

More power

Solve more

computational problems

Turing Machine is the most powerful computational model known

Question: Are there computational problems that a Turing Machine cannot solve?

Answer: Yes (unsolvable problems)