MATH3332 Quiz 2

- 1. (30 pts) Consider the polynomial kernel $K(\boldsymbol{x}, \boldsymbol{y}) = (\boldsymbol{x}^T \boldsymbol{y})^2$ for all $\boldsymbol{x}, \boldsymbol{y} \in \mathbb{R}^2$. Find an explicit feature map $\phi : \mathbb{R}^2 \to \mathbb{R}^3$ satisfying $\langle \phi(\boldsymbol{x}), \phi(\boldsymbol{y}) \rangle = K(\boldsymbol{x}, \boldsymbol{y})$, where the inner product the standard inner product in \mathbb{R}^3 .
- 2. Let V be the space of all continuously differentiable real valued functions on [a, b].
 - (a) (20 pts) Define $\langle f, g \rangle = \int_a^b f(t)g(t)dt + \int_a^b f'(t)g'(t)dt$, show $\langle \cdot, \cdot \rangle$ is an inner product. (hint: check the conditions in the definition of inner product.)
 - (b) (20 pts) Define that $||f|| = \int_a^b |f(t)| dt + \int_a^b |f'(t)| dt$. Prove that this defines a norm on V
- 3. (30 pts) Recall we say a function $K(\cdot, \cdot): \mathbb{R}^n \times \mathbb{R}^n \to \mathbb{R}$ is symmetric positive semi-definite (SPSD) if
 - $K(\boldsymbol{x}, \boldsymbol{y}) = K(\boldsymbol{y}, \boldsymbol{x})$ for all $\boldsymbol{x}, \boldsymbol{y} \in \mathbb{R}^n$
 - For any m and vectors $\mathbf{y}_1, \dots, \mathbf{y}_m \in \mathbb{R}^n$, the matrix

$$egin{bmatrix} K(oldsymbol{y}_1,oldsymbol{y}_1) & \dots & K(oldsymbol{y}_1,oldsymbol{y}_m) \ dots & \ddots & \ K(oldsymbol{y}_m,oldsymbol{y}_1) & K(oldsymbol{y}_m,oldsymbol{y}_m) \end{bmatrix}$$

is symmetric positive semi-definite.

Now let $K_1, \ldots, K_d : \mathbb{R}^n \times \mathbb{R}^n \to \mathbb{R}$ be SPSD functions, show $\sum_{i=1}^d K_i$ is also a SPSD function.