A Computationally Efficient Spatiotemporal Generalized Linear Model

Ellen Graham

Difficulties with Dependent Data

Mixed Effects Models to the Rescue!

Computing Issues

- Lots of locations means lots of parameters
- Lots of locations means doing linear algebra is complicated

Simplifying Spatial Dependence

 $m \ll n$

- Faster linear algebra
- Only m spatial effects

An Efficient Spatial Linear Mixed Model

$$Y(s) = \beta_0 + \boldsymbol{\beta_1} \boldsymbol{X} + \eta(s)$$

 $\eta(s) = \text{Simplified Spatial Effect}$

An Efficient Spatiotemporal Linear Mixed Model

$$Y(s,t) = \beta_0 + \beta_1 X + \eta(s,t)$$

 $\eta(s,t) = \text{Simplified Spatial Effect} + \text{Simplified Temporal Effect}$

Simulating Data

Evaluate with Credible Intervals

Are we Capturing the Truth: Explanatory Variable

Are we Capturing the Truth: Intercept

Back to the Birds

Model Predictions

Conclusions

- Model provides more reasonable variance estimates
- Takes half as long on this relatively small dataset

Future Steps

- Spatial and temporal effect simplification underestimates variance
- Model fitting issues

Final Remarks

- Dependent data are common, especially in ecology and epidemiology
- Assuming independence leads to wildly reduced variance estimates which can interfere with inference
- Working with spatiotemporal data is hard, especially at scale
- Active area of research, check back in a couple of years!

Special Thanks:

My advisors, Professors Brianna Heggeseth and Alicia Johnson

Professor Holly Barcus

The MSCS Department

All of my friends, especially Conor Broderick