AMENDMENT

IN THE CLAIMS

Please amend the claims, without prejudice, without admission, without surrender of subject matter, and without any intention of creating any estoppel as to equivalents, as follows.

Claim 1 (original)

1. An acylsulfimide of the formula (I) and salts thereof,

$$\begin{array}{c|c}
R^1 & Y & (O)_m \\
N & S & R^4
\end{array}$$

$$\begin{array}{c|c}
R^2 & (O)_n & (I) &$$

where the symbols and indices are as defined below:

X is CH or N;

Y is O or S;

n is 0 or 1;

m is 0 or 1;

R¹ is C₁-C₆-haloalkyl;

 R^2 , R^3 are identical or different and are H, halogen or a branched or unbranched (C_1 - C_6)-alkyl group, where one or two CH_2 groups may be replaced by -O- or -S- or -N(C_1 - C_6)-alkyl, with the proviso that heteroatoms may not be adjacent to one another;

 R^4 , R^5 are identical or different and are R^6 , $-C(LW)R^7$, $-C(=NOR^7)R^7$,

$$-C(=NNR^{7}_{2})R^{7}$$
, $-C(=W)OR^{7}$, $-C(=W)NR^{7}_{2}$, $-OC(=W)R^{7}$, $-OC(=W)OR^{7}$,

$$-NR^{7}C(=W)R^{7}$$
, $-N[C(=W)R^{7}]_{2}$, $-NR^{7}C(=W)OR^{7}$, $-C(=W)NR^{7}-NR^{7}_{2}$,

$$-C(=W)NR^{7}-NR^{7}[C(=W)R^{7}], -NR^{7}-C(=W)NR^{7}_{2}, -NR^{7}-NR^{7}C(=W)R^{7}_{3},$$

$$-NR^{7}-N[C(=W)R^{7}]_{2}$$
, $-N[(C=W)R^{7}]-NR^{7}_{2}$, $-NR^{7}-NR^{7}[(C=W)WR^{7}]$,

$$-NR^{7}[(C=W)NR_{2}^{7}], -NR^{7}(C=NR^{7})R^{7}, -NR^{7}(C=NR^{7})NR_{2}^{7}, -O-NR_{2}^{7},$$

$$-O-NR^{7}(C=W)R^{7}, -SO_{2}NR^{7}_{2}, -NR^{7}SO_{2}R^{7}, -SO_{2}OR^{7}, -OSO_{2}R^{7}, -OR^{7}_{2}$$

$$-NR_{2}^{7}$$
, $-SR_{2}^{7}$, $-SiR_{3}^{7}$, $-PR_{2}^{7}$, $-P(=W)R_{2}^{7}$, $-SO_{2}R_{3}^{7}$, $-PW_{2}R_{2}^{7}$, $-PW_{3}R_{2}^{7}$;

or

R⁴, R⁵ together with the sulfur to which they are attached form a three- to eight-membered saturated or unsaturated ring system which is optionally mono-or polysubstituted, and which optionally contains 1 to 4 further heteroatoms, where two or more of the substituents optionally form one or more further ring systems;

W is O or S;

are identical or different and are (C_1-C_{20}) -alkyl, (C_2-C_{20}) -alkenyl, (C_2-C_{20}) -alkynyl, (C_3-C_8) -cycloalkyl, (C_4-C_8) -cycloalkenyl, (C_8-C_{10}) -cycloalkynyl, aryl or heterocyclyl, where the radicals mentioned may optionally be mono- or polysubstituted, and

R⁷ is identical or different and is H or R⁶.

Claim 2 (original)

2. An acylsulfimide as claimed in claim 1, where X is CH.

Claim 3 (original)

3. An acylsulfimide as claimed in claim 1, where Y is O.

Claim 4 (original)

4. An acylsulfimide as claimed in claim 1, where n is 0.

Claim 5 (original)

5. An acylsulfimide as claimed in claim 1, where R^1 is (C_1-C_6) -alkyl which is mono- or polysubstituted by F and/or Cl.

Claim 6 (original)

6. An acylsulfimide as claimed in claim 1, where the radicals R⁴, R⁵ are substituted by one or more radicals R⁸ and where R⁸ has the following meaning:

R⁸ are identical or different and are R⁹, or two radicals R⁸ together with the atoms to which they are attached form a three- to eight-membered saturated or unsaturated ring system, optionally substituted by one or more radicals R⁹, which optionally also contains further heteroatoms;

 $R^{9} \text{ are identical or different and are } R^{10}, R^{11}, -C(W)R^{10}, -C(=NOR^{10})R^{10}, -C(=NN R^{10}_{2})R^{10}, -C(=W)OR^{10}, -C(=W)NR^{10}_{2}, -OC(=W)R^{10}, -OC(=W)OR^{10}, -NR^{10}C(=W)R^{10}, -N[C(=W) R^{10}_{2}, -N R^{10}C(=W)R^{10}, -N[C(=W) R^{10}_{2}, -N R^{10}C(=W)R^{10}, -NR^{10}-NR^{10}_{2}, -C(=W)NR^{10}-NR^{10}_{2}, -NR^{10}-NR^{10}-C(=W)NR^{10}_{2}, -N R^{10}-NR^{10}-N[C(=W)R^{10}_{2}, -N[C(=W)R^{10}_{2}, -NR^{10}-N[C(=W)R^{10}_{2}, -N R^{10}-N[C(=W)R^{10}_{2}, -N R^{10}-N[C(=W)R^{10}_{2}, -N R^{10}-N[C(=W)R^{10}_{2}, -N R^{10}-N[C(=W)R^{10}_{2}, -N R^{10}-N R^{10}_{2}, -$

 R^{10} are identical or different and are (C_1-C_6) -alkyl, (C_2-C_6) -alkenyl, (C_2-C_6) -alkynyl, (C_3-C_8) -cycloalkyl, (C_4-C_8) -cycloalkenyl, (C_3-C_8) -cycloalkyl- (C_1-C_4) alkyl, (C_4-C_8) -cycloalkyl- (C_1-C_4) -alkenyl, (C_4-C_8) -cycloalkenyl- (C_2-C_4) -alkenyl, (C_1-C_6) -alkyl- (C_3-C_8) -cycloalkyl, (C_2-C_6) -alkenyl- (C_3-C_8) -cycloalkyl, (C_2-C_6) -alkyl- (C_4-C_8) -cycloalkenyl, (C_2-C_6) -alkenyl- (C_4-C_8) -cycloalkenyl, aryl, heterocyclyl; where the radicals mentioned are optionally-substituted by one or more radicals R^{11} ; and

R¹¹ are identical or different and are halogen, cyano, nitro, hydroxyl, thio, amino, formyl, (C₁-C₆)-alkanoyl, (C₁-C₆)-alkoxy, (C₃-C₆)alkenyloxy, (C₃-C₆)-alkynyloxy, (C₁-C₆)-haloalkyloxy, (C₃-C₆)-haloalkenyloxy, (C₃-C₆)-haloalkenyloxy, (C₃-C₆)-haloalkenyloxy, (C₃-C₆)-halocycloalkoxy, (C₄-C₈)-cycloalkenyloxy, (C₃-C₈-cycloalkyl-(C₁-C₄)-alkoxy, (C₃-C₈)-cycloalkenyl-(C₁-C₄)-alkoxy, (C₃-C₈)-cycloalkyl-(C₂-C₄)-alkenyloxy, (C₄-C₈)-cycloalkenyl-(C₁-C₄)-alkenyloxy, (C₁-C₆)-alkyl-(C₃-C₈)-cycloalkoxy, (C₂-C₆)-alkenyl-(C₃-C₈)-cycloalkoxy, (C₁-C₆)-alkyl-(C₄-C₈)-cycloalkenyloxy, (C₂-C₆)-alkenyl-(C₄-C₈)-cycloalkenyloxy, (C₁-C₆)-alkoxy-(C₁-C₆)-alkoxy-(C₁-C₆)-alkoxy-(C₃-C₆)-alkenyloxy, carbamoyl, (C₁-C₆)-alkoxy-(C₁-C₆)-alkoxy-(C₁-C₆)-alkoxy-(C₃-C₆)-alkenyloxy, carbamoyl, (C₁-C₆)-alkoxy-(C₁-C₆)-alkoxy-(C₁-C₆)-alkoxy-(C₃-C₆)-alkoxy-(C₃-C₆)-alkanoyloxy, (C₁-C₆)-alkanoyloxy, (C₁-C₆)-alkoxy-(C₁-C₆)-alkanoyloxy, (C₁-C₆)-alkanoyloxy, (C₁-C₆)-alkanoyloxy, (C₁-C₆)-alkanowloxy, (C₁-C₆)-alkanowloxy

haloalkynylthio, (C₃-C₈)-cycloalkylthio, (C₄-C₈)-cycloalkenylthio, (C₃-C₈)-halocycloalkylthio, (C_4-C_8) -halocycloalkenylthio, (C_3-C_8) -cycloalkyl- C_1-C_4 -alkylthio, (C_4-C_8) -cycloalkenyl- (C_1-C_4) alkylthio, (C₃-C₈)-cycloalkyl-(C₃-C₄-alkenylthio, (C₃-C₈)-cycloalkenyl-(C₃-C₄)-alkenylthio, (C₁-C₆)-alkyl-(C₃-C₈)-cycloalkylthio, (C₂-C₆)-alkenyl-(C₃-C₈)-cycloalkylthio, (C₂-C₆)-alkynyl-(C₃-C₈)-cycloalkylthio, (C₁-C₆)-alkyl-(C₄-C₈)-cycloalkenylthio, (C₂-C₆)-alkenyl-(C₄-C₈)cycloalkenylthio, (C₁-C₆)-alkylsulfinyl, (C₃-C₆)-alkenylsulfinyl, (C₃-C₆)-alkynylsulfinyl, (C₁- C_6)-haloalkylsulfinyl, (C_3 - C_6)-haloalkenylsulfinyl, (C_3 - C_6)-haloalkynylsulfinyl, (C_3 - C_8)cycloalkylsulfinyl, (C₄-C₈)-cycloalkenylsulfinyl, (C₃-C₈)halocycloalkylsulfinyl, (C₄-C₈)halocycloalkenylsulfinyl, (C_3-C_8) cycloalkyl- (C_1-C_4) -alkylsulfinyl, (C_4-C_8) -cycloalkenyl- (C_1-C_4) alkylsulfinyl), (C₃-C₈)-cycloalkylsulfinyl-(C₃-C₄)-alkenylsulfinyl, (C₃-C₈)-cycloalkenyl-(C₃- C_4)alkenylsulfinyl, (C_1-C_6) -alkyl- (C_3-C_8) -cycloalkylsulfinyl, (C_2-C_6) -alkenyl- (C_3-C_8) cycloalkylsulfinyl, (C₂-C₆)-alkynyl-(C₃-C₈)-cycloalkylsulfinyl, (C₁-C₆-alkyl-(C₄-C₈)cycloalkenylsulfinyl, (C₂-C₆)-alkenyl-(C₄-C₈)-cycloalkenylsulfinyl, (C₁-C₆)-alkylsulfonyl, (C₃- C_6)-alkenylsulfonyl, (C_3 - C_6)-alkynylsulfonyl, (C_1 - C_6)-haloalkylsulfonyl, (C_3 - C_6)haloalkenylsulfonyl, (C₃-C₆)- haloalkynylsulfonyl, (C₃-C₈)-cycloalkylsulfonyl, (C₄-C₈)cycloalkenylsulfonyl, (C₃-C₈)-halocycloalkyls- ulfonyl, (C₄-C₈)-halocycloalkenylsulfonyl, (C₃- C_8)cycloalkyl- (C_1-C_4) -alkylsulfonyl, (C_4-C_8) -cycloalkenyl- (C_1-C_4) -alkylsulfonyl, (C_3-C_8) cycloalkyl- (C_3-C_4) -alkenylsulfonyl, (C_4-C_8) -cycloalkenyl- (C_3-C_4) -alkenylsulfonyl, (C_1-C_6) alkyl-(C₃-C₈)-cycloalkylsulfonyl, (C₂-C₆)-alkenyl-(C₃-C₈)-cycloalkylsulfonyl, (C₂-C₆)-alkenyl-(C_3 - C_8)-cycloalkylsulfonyl, (C_1 - C_6)-alkyl-(C_4 - C_8)-cycloalkenylsulfonyl, (C_2 - C_6)-alkenyl-(C_4 - C_8)cycloalkenylsulfonyl, (C₁-C₆)-dialkylamino, (C₁-C₆)-alkylamino, (C₃-C₆)-alkenylamino, (C₃-C₆)alkynylamino, (C₁-C₆)-haloalkylamino, (C₃-C₆) haloalkenylamino, (C₃-C₆)-haloalkynylamino, (C₃-C₆)-cycloalkylamino, (C₄-C₈)-cycloalkenylamino, (C₃-C₈)-halocycloalkylamino, (C₄-C₈)halocycloalkenylamino, (C_3-C_8) -cycloalkyl- (C_1-C_4) -alkylamino, (C_4-C_8) -cycloalkenyl- (C_1-C_4) alkylamino, (C₃-C₈)-cycloalkyl-(C₃-C₄)-alkenylamino, (C₄-C₈)-cycloalkenyl-(C₃-C₄)alkenylamino, (C₁-C₆)-alkyl-(C₃-C₈)-cycloalkylamino, (C₂-C₆)-alkenyl-(C₃-C₈)-cycloalkylamino, (C_2-C_6) -alkynyl- (C_3-C_8) -cycloalkylamino, (C_1-C_6) -alkyl- (C_4-C_8) -cycloalkenylamino, (C_2-C_6) alkenyl-(C₄-C₈)-cycloalkenylamino, (C₁-C₆)-trialkylsilyl, aryl, aryloxy, arylthio, arylamino, aryl- (C_1-C_4) -alkoxy, aryl- (C_3-C_4) -alkenyloxy, aryl- (C_1-C_4) -alkylthio, aryl- (C_2-C_4) -alkenylthio, aryl- (C_1-C_4) -alkylamino, aryl- (C_3-C_4) -alkenylamino, aryl- (C_1-C_6) -dialkylsilyl, diaryl- (C_1-C_6) alkylsilyl, triarylsilyl and 5- or 6-membered heterocyclyl, the cyclic moiety of the fourteen last-

6

mentioned radicals being optionally substituted by one or more radicals selected from the group consisting of halogen, cyano, nitro, amino, hydroxyl, thio, (C_1-C_4) -alkyl, (C_1-C_4) -haloalkyl, (C_3-C_8) -cycloalkyl, (C_1-C_4) -alkoxy, (C_1-C_4) -haloalkoxy, (C_1-C_4) -alkylthio, (C_1-C_4) -haloalkylthio, (C_1-C_4) -haloalkylamino, formyl and (C_1-C_4) -alkanoyl.

Claim 7 (original)

7. An acylsulfimide as claimed in claim 1, where the unit SR⁴R⁵ is represented through the following structures from the group A to E:

wherein the symbols and indices have the following meanings:

r is 0, 1;

D is a direct bond, (C_1-C_4) -alkylene, branched or unbranched, O, $S(O)_{0,1,2}$, or NR^{11} ;

R⁹ is a substituent as defined in claim 6;

 R^{11} is H, (C_1-C_4) -alkyl, branched or unbranched, (C_1-C_4) -alkanoyl, (C_1-C_4) -alkoxycarbonyl, (C_1-C_4) -alkyl- or -dialkylaminocarbonyl or (C_1-C_4) -alkylsulfonyl;

B.

wherein the symbols and indices have the following meanings:

 R^{12} is (C_1-C_8) -alkyl, optionally substituted by an optionally substituted phenyl radical or (C_3-C_6) -cycloalkyl radical, (C_3-C_6) -cycloalkyl, optionally substituted by or condensed with an optionally substituted phenyl radical;

R₉ is a substituent as defined in claim 6;

a is 0, 1, 2, 3, 4, or 5, preferably 0, 1 or 2;

wherein the symbols and indices have the following meanings:

R⁹ is a substituent as defined in claim 6;

a is 0, 1, 2, 3 or 4, preferably 0, 1 or 2;

R¹³ is a straight chain or branched (C₂-C₈)alkanediyl group, optionally substituted by one or two or condensed with an optionally substituted phenyl radical;

wherein the symbols and indices have the following meanings:

 R^{14} , R^{15} are identical or different and are in each case (C_1 - C_8)-alkyl, optionally substituted by or condensed with an optionally substituted phenyl radical or (C_3 - C_8)-cycloalkyl radical, (C_3 - C_6)-cycloalkyl, optionally substituted by or condensed with an optionally substituted phenyl radical; and

wherein the symbol has the following meaning:

 R^{16} is a straight chain or branched (C_2 - C_8)-alkanediyl group, optionally substituted by one or two or condensed with an optionally substituted phenyl radical.

Claim 8 (original)

8. A process for preparing a compound of formula (I) as claimed in claim 1, wherein Y is oxygen, where a carboxylic acid of the formula (V),

$$R^{2}$$
 N
 R^{3}
 (V)

in which R¹, R², R³, X and n are as defined under formula (I) in the form of an activated derivative of this acid is reacted in the presence of a base with a compound of the formula (VI), in which R⁴, R⁵ and m are as defined under formula (I)

Claim 9 (original)

9. A composition having insecticidal, acaricidal and/or nematicidal action, which comprises at least one compound of the formula (I) as claimed in claim 1.

Claim 10 (original)

10. A composition having insecticidal, acaricidal and/or nematicidal action as claimed in claim 9 in a mixture with carriers and/or surfactants.

Claim 11 (original)

11. The composition as claimed in claim 9, which comprises a further active compound selected from the group consisting of acaricides, fungicides, herbicides, insecticides, nematicides or growth-regulating substances.

Claim 12 (original)

12. A veterinary medicament comprising a compound as claimed in claim 1.

Claim 13 (original)

13. A method for controlling harmful insects, acarids and nematodes, which comprises applying an effective amount of a compound as claimed in claim 1 to the site where the action is desired.

Claim 14 (original)

14. A method for controlling harmful insects, acarids and nematodes, which comprises applying an effective amount of a composition as claimed in claim 9 to the site where the action is desired.

Claim 15 (original)

15. A method for protecting useful plants against the undesirable action of harmful insects, acarids and nematodes, which comprises using at least one of the compounds as claimed in claim 1 for treating the seed of the useful plants.

Claim 16 (original)

16. A method for protecting useful plants against the undesirable action of harmful insects, acarids and nematodes, which comprises using at least one of the composition as claimed in claim 9 for treating the seed of the useful plants.

Claim 17 (currently amended - withdrawn)

17. A process for preparing N-chloro-4-trifluoromethylnicotinamide and salts thereof of the formula (IIIa)

in which A is a non-oxidizable, organic or inorganic anion by chlorination of 4-trifluoromethylnicotinamide with Cl₂ in aqueous acid and optionally and, if appropriate, subsequent anion exchange and/or, if appropriate, reaction with a base, to give N-chloro-4-

trifluoromethylnicotinamide.

Claim 18 (currently amended - withdrawn)

18. A salt of N-chloro-4-trifluoromethylnicotinamide of the formula (IIIa)

in which A is a non-oxidizable, organic or inorganic anion. inorganic anion

Claim 19 (withdrawn)

19. A salt as claimed in claim 18, wherin A is F, HF₂, Cl, BF₄, PF₆, HSO₄, 1/2 SO₄, CH₃COO, CF₃COO, CF₃SO₃, CH₃SO₃, p-CH₃-C₆H₅SO₃ or H₂PO₄.