Computer Automated log P Calculations Based on an Extended Group Contribution Approach

Gilles Klopman, Ju-Yun Li, Shaomeng Wang, and Mario Dimayuga t Department of Chemistry, Case Western Reserve University, Cleveland, Ohio 44106

Received September 27, 1993®

A program for the automatic calculation of the logarithm of the partition coefficient between n-octanol and water (log P) for organic compounds was developed. The log P model was derived from a multivariate regression analysis based on a database consisting of 1663 organic molecules with diverse structures. The parameters used in the model are basic functional groups and correction factors which were automatically identified by the Computer Automated Structure Evaluation (CASE) program. The CASE program was used to identify the correction terms for members of each congeneric series with large deviations. This approach was found to be better than our previously reported methodologies and accurate enough to give good log P estimations, even for the most complex molecules.

INTRODUCTION

The logarithm of the partition coefficient between n-octanol and water (log P) has often been used to represent molecular lipophilicity, which seems to be a key factor related to the transport process through cell membranes and to many other biological events.¹⁻⁴ Indeed, log P has been found to be a crucial parameter in many quantitative structure-bioactivity relationship (QSBR) studies and has been widely used in the practice of today's rational drug design methods. 5,6 Therefore, accessibility to accurate log P values for compounds of interest may be essential for the correct prediction of their biological activity. The experimental determination of the log P value of a compound is a relatively easy task, although it may be time consuming. However, it was found that there is an increasing need for reliable estimates of log P values for new compounds often not synthesized as yet, particularly for drug design purposes.

Several approaches for the estimations of log P values have been proposed;⁷ all of them are directly or indirectly based on the chemical structure of the compounds. One of the earliest approaches with wide applicability is known as the fragmental constant method pioneered by Rekker et al. and based on the assumption that log P has an additive-constitutive nature.8 These authors used a "reductionist approach" to derive the fragmental contribution to calculate the log P values. Leo and Hansch developed a similar method based on fragment constants by a "constructionist approach" at about the same time.^{9,10} These approaches work well for many simple compounds but have limitations for a number of complex compounds where correction factors have to be introduced. Thus, major efforts have been made to include a large number of correction factors to improve the accuracy of the calculations.11,12

Meanwhile, both Klopman's 13,14 and Crippen's 15,16 groups have been using atomic and group contributions for the calculations of log P values. Their approaches employ multiple regression analysis to establish a statistical model based on a learning database. An example of this approach was recently published by Klopman and Wang, who used the Computer Automated Structure Evaluation (CASE) program to develop a model for the calculations of log P, in which simple atomic

types and star centered fragments were used as descriptors. Good results were obtained for a database consisting of 935 organic compounds ($r^2 = 0.93$, SD = 0.39).

Molecular properties have also been used as descriptors to correlate with log P values. Klopman and Iroff used atomic charges as parameters to estimate the log P values for simple organic compounds.¹⁷ Bodor et al. have recently developed two log P estimation models in which charge densities, molecular surfaces, molecular volumes, ovalities, molecular weights, dipoles of molecules, etc., were used as regression parameters. 18,19 In their recent publication, a nonlinear equation was obtained with 18 molecular parameters for a database of 302 compounds. Good results were obtained (r²) = 0.978, SD = 0.31), although the applicability of this approach needs to be verified outside the relatively small database used in the study.

An attempt to estimate the log P values of some simple organic compounds using Monte Carlo simulation has been also reported. 20-22 This approach demands a great amount of computer time and is difficult to parametrize for the n-octanol/water system. Although this approach is not practical at the present time, it is a promising approach for the future.

Among all the current log P estimation approaches, the group contribution approach shows several advantages. It is conceptually simple and able to give fast and rather accurate estimations for many organic compounds. Poor estimations for certain compounds using group contribution alone were found to be primarily due to the interaction between groups in these compounds. Therefore, the inclusion of some correction factors representing group interactions should improve the accuracy of the log P estimation. Identification of these interactions (correction factors) normally requires detailed studies on the chemical structures and is somewhat ad hoc, as demonstrated by Leo and Hansch.^{9,11}

In this paper, we employed the CASE program^{23,24} to automatically identify these correction factors. Then, we combined the basic group parameters and correction factors to develop a log P estimation model.

METHODS

The establishment of an error free learning database is extremely important for the developmment of a reliable log Pestimation model. The log P values reported in the literature were determined by various methods under different exper-

^{*} To whom all correspondence should be addressed.

[†] Present address: Laboratory of Medicinal Chemistry, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892.

† Present address: Biofor, Inc., P.O. Box 629, Waverly, PA 18471.

^{*} Abstract published in Advance ACS Abstracts, March 15, 1994.

imental conditions. Therefore, some care has to be taken in the process of selecting entries for the learning database. Factors such as the solvent system, buffer solutions, and consistency of data have to be considered. For example, in cases where the experimental log P value of the same compound is reported by different sources, the deviation should not be greater than 0.4 log unit.

The predictive ability and applicability of a log *P* estimation model is strongly affected by the size of the learning database. Hence, we extended our previous database of 935 compounds to 1663 compounds. These compounds mainly came from Hansch and Leo's compilation^{9,10} with the addition of a number of compounds from the collection of Suzuki and Kudo²⁵ and Viswanadhan et al.^{28,29}

The molecular structures were encoded using the Klopman Line Notation (KLN) code.²⁶ A set of basic group parameters were defined, and a program was developed to automatically identify the occurrence of each group parameter in the compounds. The basic group parameters consist of two fundamental types: (1) heavy atoms with both their hybridization and the number of hydrogen(s) attached to them and (2) fundamental functional groups (OH, CHO, COOH, COO, $CONH_2$, CONH, CON, CON, CO, CS, NO, NO_2 , PO, SO, SO₂, NH₂, NH, CN, SH, etc.). In some cases, the nearest heavy atoms are also specified. The log P values and occurrence of the group parameters for all the compounds of the database were then submitted to a multivariate linear regression analysis. An equation correlating the log P values to the basic group parameters was obtained in the form of eq 1,

$$\log P = a + \sum b_i B_i \tag{1}$$

where a is a constant, b_i is the contribution coefficient of the *i*th group, and B_i is the number of occurrences of the *i*th group. This equation implies that the effects of interactions between groups are negligible. The significance of each parameter and the equation resulting from their use was evaluated by our analysis of their statistical t and F values, respectively.

Although eq 1 gave reasonably good $\log P$ retrofit values for many compounds of the database, there still was a significant number of compounds showing unacceptably high deviations. This was interpreted as an indication that the interactions between some groups in these compounds have a substantial effect on their $\log P$ values. We postulated that most of these effects could be due to substructures not represented by our set of basic group parameters. The CASE methodology²⁴ then could be used to identify these substructures which may be responsible for the large error when eq 1 is used.

The CASE methodology has been described on a number of occasions.^{23,24} Basically, the CASE program is an artificial intelligence system capable of identifying structural descriptors that may be associated with the properties of the molecules which are examined, such as biological activity or physicochemical property. A general scheme of the program is shown in Figure 1.

Molecular structures and the index of activity are required by the program as the input. A break-point activity value is chosen between the active and inactive molecules of the learning set to ensure a suitable distribution between active and inactive molecules in the data set for the discriminant analysis. Specifically, CASE takes each molecule of the learning set and breaks it into all possible linear fragments of 2–10 connected heavy atoms. These fragments are labeled as active or inactive, depending on whether or not the parent molecule is active. The occurrence of these fragments then

Figure 1. General scheme of the CASE program.

is submitted to a series of statistical analyses to identify those whose distribution is significantly skewed toward either actives or inactives in the entire database. Furthermore, these significant fragments are used as descriptors in a quantitative structure—activity relationship (QSAR) analysis to yield a linear regression equation that best describes the activity of the compounds in the database.

In this study, we are interested in finding substructures responsible for the calculation error in eq 1 using the CASE program. To do so, we took the difference between the log Pvalue estimated from eq 1 and the experimental value entered as input for the CASE analysis. Subsequently, in the fragment generation step, the fragments are labeled as active if they originate from compounds with positive error or inactive if they originate from compounds with negative error. The significant fragments identified by the CASE analysis were subsequently used for the development of the final log P estimation model in addition to the basic group parameters. These additional substructure parameters enable the new log P model to account for effects of group interaction and serve as correction features. Hence, the final log P estimation model obtained is of the form

$$\log P = a + \sum b_i B_i + \sum c_j C_j \tag{2}$$

where a, b_i , and c_j are regression coefficients, B_i is the number of occurrences of the ith basic group, and C_j is the number of occurrences of the jth correction factor identified by the CASE program.

RESULTS AND DISCUSSION

(1) log P Estimation Model Using Group Contribution Alone. Our log P calculation model was established on the basis of a learning database of 1663 compounds with diverse structures. A graphics program GMK^{27} was used to ensure that the structures entered in the program were correct.

The initial model was established on the basis of the basic group contribution parameters alone. There are 68 fundamental group parameters, as shown in Table 1. Of these, 64 were found significant enough to be used in the linear regression analysis. The model generated a r^2 value equal to 0.838 and showed a standard deviation equal to 0.577. The standard error of 0.58 is fairly good considering the size of the database and the number of parameters used.

The 1663 compounds were divided into 12 classes on the basis of their chemical structure. The log P estimation error for each class of compounds is listed in Table 2, and a histogram

Table 1. List of Fundamental Group Parameters

param	remarks	param	remarks
1CH ₃		35C*OO-	
2CH ₂		36. –CONH ₂	
3CH<		37. -CONH-	
4. >C<		38. -CON<	
$5. = CH_2$		39. –CON ==	
6. CH-	not in -CHO	40. –CO–	not in -COOH, -COO-, -CONH _{2(1,0)} -
7. = C<	not in -CO-, -CS-	41. – C*O –	not in -C*OO-
8. -C-		42. –NO	not in -NO ₂
9. –C≡CH	including HC=CH	43. –PO	not in -PO ₄
10. –C ==	not in -C=N, -C=CH	44. –SO –	not in -SO ₂
11C*H ₂ -		45. –NH ₂	primary
12C*H<		46. –NH ₂	secondary, tertiary
13. >C*<		47. –NH ₂	aniline
14. = C*H-		48. –NH ₂	the other, not in CONH ₂
15. =C*<		49. –NH–	not in -CONH-
16. – F	connected to Carom	50. –N<	not in -CON<
17. – F	not connected to Carom	51. -N*H-	not in -CON*H-
18. –Cl	connected to Carom	52. –N*<	not in -CON*<
19. –Cl	not connected to Carom	53. -C≔N	connected to Carom
20. –Br	connected to Carom	54C≔N	not connected to Carom
21. –Br	not connected to Carom	55. NH	
22. –I	connected to Carom	56. N-	
23. –I	not connected to Carom	57. N*-	including aromatic N
24. –OH	primary alcohol	58. –NO ₂	connected to Carom
25. –OH	secondary alcohol	59. –NO ₂	not connected to Carom
26. –OH	tertiary alcohol	60. – SH	
27. –OH	phenol	61. -S -	
28. –OH	the others	62. S*- -	
29. –O*–	not in ester	63. S	not in -N=C=S
30. –O –	not in ester	64. – CS –	
31. –CHO	aldehyde	65. – SO ₂	
32. –COOH	connected to Carom	66. –S*O₂	
33. –COOH	not connected to Carom	67. – P ==	not in −P==O
34COO-		68. -P≔ (<)	

^a An asterisk indicates the atom in a ring system; C_{arom} refers to an aromatic carbon atom; the symbol in the parentheses indicates the open valence, not filled by hydrogen.

Table 2. Estimation Result for Different Classes of Compounds

		std dev	,
compd class	no. of compds	group contribution	final model
aliphatic hydrocarbon	28	1.14	0.28
aromatic hydrocarbon	52	0.77	0.20
alcohol, ether, phenol	74	0.36	0.31
ketone, aldehyde	27	0.33	0.31
acid, ester	43	0.32	0.30
amine, nitrile	66	0.62	0.38
amide, anilide	23	0.59	0.39
sulfur-containing hydrocarbon	9	0.54	0.36
nitro-containing hydrocarbon	18	0.35	0.35
amino acid	10	1.03	0.24
halogen hydrocarbon	54	0.39	0.43
multifunctional compounds	1259	0.58	0.40
all	1663	0.58	0.38

of the estimation error between the experimental and calculated log P values is shown in Figure 2. As can be seen in Figure 2, there are a number of compounds with unacceptable deviations. Table 2 shows that the compounds with the largest errors are primarily aliphatic and aromatic hydrocarbons, amino acids, and chemicals with multiple functional groups.

The contributions of the basic groups used in our $\log P$ model were obtained without consideration of the interactions between these groups. Our results show that $\log P$ calculations using basic group contribution alone are usually satisfactory for simple compounds, such as monofunctional compounds. However, when this model is applied to compounds containing multiple functional groups, correction factors need to be included to account for the possible interactions between these groups.

Figure 2. Estimation error distribution.

(2) Final log P Estimation Model. The CASE program identified 25 statistically significant fragments (parameters 69–93) responsible for the large estimation errors. Besides the CASE correction factors, five other additional correction parameters (parameters 94–98) were included in our model to account for the large estimation errors seen in alkanes, unsaturated hydrocarbons, and compounds with folding capability.

Estimation error

The $\log P$ program automatically tabulated the 98 parameters, as shown in Table 3. Since four basic group parameters have zero occurrence in our database, their $\log P$ contribution

Table 3. Contribution Values to the log P of the Basic Group Set and the Correction Factors^a

param	no. of compds	freq of occurrence	contribution	remarks
1. –CH ₃	855	1391	0.661	
2. –CH ₂ –	610	1180	0.415	
3CH<	138	169	0.104	
i. >C<	99	107	-0.107	
5. =CH ₂	31	37	0.553	
5. = CH-	70	108	0.315	not in -CHO
7. C<	39	39	0.470	not inCO-,CS-
3. =C=	21	22	1.748	
)C≡CH	4	4	0.262	including HC≡CH
0. –C≡	2	4	0.131	not in −C≡N, −C≡CH
1C*H ₂	148	420	0.360	,
2. –C*H<	107	287	0.104	
3. >C*<	27	31	0.064	
4. =C*H-	1331	5946	0.380	
5. =C*<	1322	3065	0.129	not in -C*O-
5. –F	36	45	0.468	connected to Carom
7. – F	81	212	0.487	not connected to Carom
3. –Cl	147	214	0.905	connected to Carom
	47	108	0.713	not connected to Carom
9. –Cl				
), -Br	58 22	79 26	1.088	connected to Carom
1. –Br	23	25	1.021	not connected to C _{arom}
2. –I	25	26	1.442	connected to Carom
3. –I	6	6	1.209	not connected to C _{arom}
4OH	118	120	-0.681	primary alcohol
5. –OH	65	78	-0.575 0.415	secondary alcohol
6. –OH	8	9	-0.415	tertiary alcohol
7. – OH	185	196	0.135	phenol
3. – OH	16	16	-0.190	the others
9. –Q* –	67	73	0.103	not in ester
00-	235	270	-0.402	not in ester
1. – CHO	15	15	0.009	aldehyde
2. –COOH	72	73	0.467	connected to Carom
3. –COO H	141	148	-0.263	not connected to Carom
4COO	195	199	-0.414	
5. –C*00–	7	8	0.874	
6. –CONH ₂	86	92	-0.795	
7. –CONH–	239	325	-1.006	
8CON<	94	109	-1.283	
9CON=	17	18	-1.661	
), -CO-	68	70	-0.493	not in -COOH, -COO-, -CONH ₂₍₁
1, -C*O-	28	41	-0.187	not in -C*OO-
2. –NO	36	39	-0.469	not in -NO ₂
3. –PO	50	37	0.107	not in -PO ₄
4. –SO–	5	5	-1.320	not in -SO ₂
5. –NH ₂	36	36	-0.894	primary
6. –NH ₂	21	21	-0.759	secondary, tertiary
7. –NH ₂	132	139	-0.402	aniline
3. –NH ₂	70	73	0.050	the other, not in -CONH ₂
9. –NH	70 94	95	0.030	not in -CONH-
0. –N<	42	44	-0.937	not in -CON<
	73	77	-0.160	not in -CON*H-
IN*H- N N*≠<				
2. –N*<	111	122	-1.027	not in -CON*<
3. –C≡N	28	28	-0.067	connected to Carom
I, -C≡N : -N⊔	43	45	0.072	not connected to C _{arom}
5. =NH	71	7.4	0.730	
5. =N- 	71	74	0.739	to allo ditural anno 1991 - NT
7. =N*_	63	102	-0.034	including aromatic N
3. –NO ₂	140	160	0.220	connected to Carom
9. –NO ₂	9	9	0.079	not connected to Carom
). –SH	.5	5	0.875	
I. –S–	37	38	0.485	
2. -S* -	24	24	0.812	
3. =S	_			not in -N = C = S
1CS	9	9	-0.042	
5. –SO ₂	50	50	-0.818	
5. –S*O ₂	3	3	-0.984	
7. –P 				not in -P-O
3P=(<)	4	4	-0.450	
9. HO–Č − N−	5	5	-1.133	
). HO-CO-C-N-	3	3	-3.578	
NH-N=CH-X	7	7	0.363	X not N=
2. HCO-X	12	12	0.736	X not C
3. NH _{2(1,0)} -CO-NH _{2(1,0)}	89	182	0.510	
S. OH ₍₀₎ -CO-NH _{2(1,0)}	82	83	0.652	
5. –CO–NH ₍₀₎ –CO–	46	116	0.541	
5CH _{2(1,0)} -NH-CH _{2(1,0)} -	35	72	-0.367	
7CH _{2(1,0)} -O-CH _{2(1,0)} -	69	148	-0.121	
	0,	170	70.121	
8. $-N = C(NH_{2(1)}) - N =$	16	24	-0.185	

Table 3. (Continued)

param	no. of compds	freq of occurrence	contribution	remarks
80. HO-C=C-CO-	27	27	0.730	
81. HO-CO-CH ₂₍₁₎ -NH ₂₍₁₎	13	13	-1.846	
82. $=NH(0)-N=N-N=$	14	15	0.326	including $=NH_{(0)}-N=N-CH_{(0)}-$,
				$=NH_{(0)}-N=CH_{(0)}-N=$
83. $-C-N(-NH_2)-C=N$	7	7	0.178	ν, ν-,
84. HO-CO-CH ₂ -O-	67	67	0.261	
85. NH ₂₍₁₎ CH ₂ CH ₂ OH	16	17	-0.324	
86. NH ₂₍₁₎ CO-N-NO	8	8	0.704	
87N=CH ₍₀₎ -CH ₍₀₎ =C-OH	10	12	-0.494	
88. NO ₂ -C=CH ₍₀₎ -CH ₍₀₎ =C-OH	3	4	0.302	
89. NO_2 -C= $CH_{(0)}$ - $CH_{(0)}$ = $C-NH_2$	8	14	0.185	
90. NH2-C=CH ₍₀₎ -CH ₍₀₎ =C-CO-OH	23	47	-0.530	including NH ₂ -C=CH ₍₀₎ -C-CO-OH
91. $NH_{2(1)}$ -C= $CH_{(0)}$ - $CH_{(0)}$ =C- SO_2 - $NH_{2(1)}$	14	28	-0.466	. (-/
92CO-NH-C=CH ₍₀₎ -CH ₍₀₎ =C-OH	16	32	-0.187	
93. CH ₃ -CH ₂ -CH ₂ -CH ₂ -CH ₂ -CH ₂ -	14	14	0.824	not in the alkane
94. OH-(CH ₂) _n -pyridine	9	12	-0.650	$n \ge 3$
95. NH ₂ -(CH ₂) _n -pyridine	9	12	0.545	$n \ge 3$
96. NH ₂ -CO-(CH ₂) _n -pyridine	12	16	-0.903	$n \ge 2$
97. no. of atoms in alkane	13	13	0.095	including cycloalkane
98. unsaturated hydrocarbon	67	67	0.872	
constant			-0.703	

^a An asterisk indicates the atom in a ring system; C_{arom} refers to an aromatic carbon atom; a symbol in the parentheses indicates the open valence, not filled by hydrogen; a number in the parentheses indicates the acceptable number of hydrogen atoms.

Experimental Log P

Figure 3. Correlation between the experimental and calculated log

values could not be evaluated. The final log P estimation model was obtained by correlating the remaining 94 parameters with the log P values through a multivariate linear-regression analysis (n = 1663, $r^2 = 0.928$, SD = 0.3817, F(94, 1568) = 217.77). The standard deviation of 0.38 is within the experimental error range of 0.4 in spite of the fact that a relatively small number of parameters were used in our model for such a large database.

A plot of the experimental $\log P$ values vs the calculated $\log P$ values for all the compounds in the database is shown in Figure 3. This figure shows good agreement between the experimental and calculated $\log P$ values for the 1663 compounds with diverse structures. The histogram of estimation errors is shown in Figure 4, where a near-Gausian error distribution curve centered at zero is seen.

The experimental and calculated log P values of the 1663 compounds, as well as the estimation errors, have been summarized in Table 4. There are 71 compounds showing deviations greater than or equal to 0.8 log unit, as shown in Table 5. To improve the calculation for these outliers will require the development of new correction factors. We found

Figure 4. Distribution of estimation error.

that each of these 71 outliers contain at least one unique fragment in its structure. The inclusion of these unique fragments would definitely improve the accuracy of the log P estimation. However, we did not include these unique fragments in our final log P model because (1) they are not statistically significant and their value based on one compound may not lead to a stable correlation and (2) in some compounds, a number of unique fragments exists, which makes it difficult to decide which of these should be used as the correction factor. Nevertheless, in the future when more compounds containing these unique fragments become available, their contribution to the log P values may be evaluated and hence be included in our log P model.

Estimation error

Table 2 also shows the average deviation for the 12 classes of compounds, as defined before, in the final model. As can be seen, the final model gives accurate $\log P$ values not only for the simple compounds but also for the complex ones. Comparing these values in Table 2, it can be seen that the accuracy of the calculated $\log P$ values for amino acids, hydrocarbons, and multifunctional compounds was greatly improved by the inclusion of these correction factors. Overall, the standard deviation has been reduced by about 0.2 log unit from 0.58 to 0.38, and the r^2 value has been increased from 0.84 to 0.93.

Table 4. Experimental, Calculated log P Values, and Estimation Error

formula	name	log $P_{\rm e}^a$	log P_{c}^{b}	log P
	Aliphatic F	Iydrocarbons		
1. C ₂ H ₄	ethylene	1.13	1.27	0.14
2. C ₂ H ₆	ethane	1.81	1.38	-0.43
3. C ₃ H ₄	propyne	0.94	1.09	0.13
4. C ₃ H ₆	propylene	1.77	1.70	-0.07
5. C ₃ H ₆	cyclopropane	1.72	1.23	-0.49
6. C₃H ₈	propane	2.36	2.08	-0.28
7. C ₄ H ₆	1,3-butadiene	1.99	1.90	-0.09
8. C₄H ₆	2-butyne	1.46	1.75	0.29
9. C₄H ₈	isobutylene	2.34	2.51	0.1
10. C₄H ₈	2-butene	2.31	2.12	-0.19
11. C ₄ H ₈	1-butene	2.40	2.11	-0.29
12. C ₄ H ₁₀	isobutane	2.76	2.71	-0.03
13. C ₄ H ₁₀	butane	2.89	2.78	-0.13
14. C ₅ H ₈	1-pentyne	1.98	1.92	-0.00
15. C ₅ H ₁₀	cyclopentane	3.00	2.52	-0.48
16. C ₅ H ₁₂	neopentane	3.11	3.45	0.34
17. C ₅ H ₁₂	pentane	3.62	3.48	-0.14
18. C ₆ H ₈	1,4-cyclohexadiene	2.30	2.41	0.1
19. C ₆ H ₈	1,3-cyclohexadiene	2.47	2.41	-0.00
20. C ₆ H ₁₀	cyclohexene	2.86	2.37	-0.49
21. C ₆ H ₁₀	1.5-hexadiene	2.45	2.73	0.28
22. C ₆ H ₁₂	cyclohexane	3.44	3.16	-0.28
22. C ₆ H ₁₂ 23. C ₆ H ₁₄	n-hexane	4.11	4.18	0.00
	n-nexane 2,3-dimethylbutane	3.85	4.18	0.0
24. C ₆ H ₁₄	2,3-dimethylbutane 2,2-dimethylbutane	3.82		
25. C ₆ H ₁₄	· ·	5.18	4.15	0.33
26. C ₈ H ₁₈	n-octane		5.57	0.39
27. C ₁₀ H ₈	azulene	3.20	3.47	0.27
28. C ₁₄ H ₁₀	diphenylacetylene	4.78	4.49	-0.29
	Aromatic F	Iydrocarbons		
29. C ₆ H ₆	benzene	2.13	2.45	0.32
30. C ₇ H ₈	toluene	2.69	2.86	0.17
31. C ₈ H ₆	ethynylbenzene	2.53	2.46	-0.0
32. C ₈ H ₈	styrene	3.16	3.06	-0.10
33. C ₈ H ₁₀	ethylbenzene	3.15	3.27	0.12
34. C ₈ H ₁₀	p-xylene	3.18	3.27	0.09
35. C ₈ H ₁₀	m-xylene	3.20	3.27	0.0
36. C ₈ H ₁₀	o-xylene	3.13	3.27	0.14
37. C ₉ H ₈	indene	2.92	3.07	0.1:
38. C ₉ H ₁₀	indane	3.33	3.03	-0.30
39. C ₉ H ₁₀	1-phenyl-1-propene	3.35	3.49	0.14
40. C ₉ H ₁₀	cyclopropylbenzene	3.27	3.02	-0.25
	allylbenzene	3.27	3.48	
41. C ₉ H ₁₀ 42. C ₉ H ₁₂	1,3,5-trimethylbenzene	3.42	3.68	0.25
	• • •	3.53	3.68	0.26
43. C ₉ H ₁₂	1-ethyl-2-methylbenzene			0.13
44. C ₉ H ₁₂	1,2,3-trimethylbenzene	3.55	3.68	0.13
45. C ₉ H ₁₂	propylbenzene	3.68	3.69	0.01
46. C ₉ H ₁₂	isopropylbenzene	3.66	3.62	-0.04
47. C ₉ H ₁₂	1,2,4-trimethylbenzene	3.65	3.68	0.03
48. C ₁₀ H ₈	naphthalene	3.35	3.47	0.12
49. C ₁₀ H ₁₄	1,2,4,5-tetramethylbenzene	4.00	4.09	0.09
50. C ₁₀ H ₁₄	tert-butylbenzene	4.11	4.07	-0.04
51. C ₁₀ H ₁₄	p-cymene	4.10	4.03	-0.07
52. C ₁₀ H ₁₄	butylbenzene	4.26	4.10	-0.10
53. C ₁₁ H ₁₀	2-methylnaphthalene	3.86	3.88	0.02
54. C ₁₁ H ₁₀	1-methylnaphthalene	3.87	3.88	0.01
55. C ₁₂ H ₈	acenaphthylene	4.03	3.72	-0.31
56. C ₁₂ H ₁₀	acenaphthene	3.92	3.68	-0.24
57. C ₁₂ H ₁₀	biphenyl	4.09	4.23	0.14
58. C ₁₂ H ₁₂	2,6-dimethylnaphthalene	4.31	4.29	-0.02
59. C ₁₂ H ₁₂	2,3-dimethylnaphthalene	4.40	4.29	-0.1
60. C ₁₂ H ₁₂	1,8-dimethylnaphthalene	4.26	4.29	0.03
61. C ₁₂ H ₁₂	1,7-dimethylnaphthalene	4.44	4.29	-0.1:
62. C ₁₂ H ₁₂	1,5-dimethylnaphthalene	4.38	4.29	-0.13 -0.09
63. C ₁₂ H ₁₂	1,4-dimethylnaphthalene	4.37	4.29	-0.08 -0.08
	1,4-dimethylnaphthalene			
64. C ₁₂ H ₁₂		4.42	4.29	-0.13
65. C ₁₂ H ₁₂	1,2-dimethylnaphthalene	4.31	4.29	-0.02
66. C ₁₂ H ₁₂	2-ethylnaphthalene	4.38	4.29	-0.09
67. C ₁₂ H ₁₂	1-ethylnaphthalene	4.39	4.29	-0.10
68. C ₁₂ H ₁₈	hexamethylbenzene	4.31	4.91	0.60
69. C ₁₃ H ₁₀	fluorene	4.18	4.08	-0.10
70. C ₁₃ H ₁₂	diphenylmethane	4.14	4.64	0.50
71. C ₁₃ H ₁₄	1,4,5-trimethylnaphthalene	4.90	4.70	0.20
72. C ₁₃ H ₁₄	2,3,6-trimethylnaphthalene	4.73	4.70	-0.03
73. C ₁₄ H ₁₀	phenanthrene	4.57	4.48	-0.09
74. C ₁₄ H ₁₀	anthracene	4.54	4.48	-0.06
75. C ₁₄ H ₁₂ 76. C ₁₄ H ₁₂	1-methylfluorene	4.97	4.49 4.85	-0.48 0.04

Table 4 (Continued)

formula	name	$\log P_{\rm e}^a$	$\log P_{c}^{b}$	$\log P_{\rm r}^{c}$
0 11	Aromatic Hy			
77. C ₁₄ H ₁₂	9,10-dihydroanthracene	4.25	4.44	0.19
78. C ₁₄ H ₁₄	diphenylethane	4.80	5.05	0.25
79. C ₁₆ H ₁₀	pyrene	5.18	4.74	-0.44
80. $C_{18}H_{12}$	benz[a]anthracene	5.61	5.50	-0.11
	Alcohols, Ether		•	
81. CH ₄ O	methanol	-0.66	-0.72	-0.06
82. C₂H₄O	ethylene oxide	-0.30	-0.12	0.18
83. C₂H ₆ O	dimethyl ether	0.10	-0.02	-0.12
84. C ₂ H ₆ O	ethanol	-0.31	-0.31	0.00
85. C ₃ H ₆ O	allyl alcohol	0.17	-0.10	-0.27
86. C ₃ H ₈ O	2-propanol	0.05	0.15	0.10
87. C₃H ₈ O	1-propanol	0.34	0.11	-0.23
88. C ₄ H ₄ O	furan	1.34	0.92	-0.42
89. C₄H ₆ O	2,5-dihydrofuran	0.46	0.64	0.18
90. C₄H ₈ O	ethylvinyl ether	1.04	0.84	-0.20
91. C ₄ H ₈ O	tetrahydrofuran	0.41	0.60	0.19
92. C ₄ H ₁₀ O	diethyl ether	0.89	0.81	-0.08
93. C ₄ H ₁₀ O	tert-butyl alcohol	0.37	0.76	0.39
	sec-butyl alcohol	0.61	0.56	-0.05
94. C ₄ H ₁₀ O				
95. C ₄ H ₁₀ O	isobutyl alcohol	0.65	0.46	-0.19
96. C ₄ H ₁₀ O	butanol	0.88	0.52	-0.36
97. C ₅ H ₁₂ O	2-methyl-2-butanol	0.89	1,17	0.28
98. C ₅ H ₁₂ O	2,2-dimethylpropanol	1.36	0.91	-0.45
99. C ₅ H ₁₂ O	isopentyl alcohol	1.42	0.87	-0.55
100. C ₅ H ₁₂ O	3-pentanol	1.21	0.98	-0.23
100. C ₅ H ₁₂ O 101. C ₅ H ₁₂ O	pentanol	1.40	0.94	-0.23 -0.46
102. C ₅ H ₁₂ O	3-methyl-2-butanol	1.28	0.91	-0.37
103. C ₆ H ₆ O	phenol	1.46	1.46	0.00
104. C ₆ H ₁₂ O	cyclohexanol	1.23	0.63	-0.60
105. C ₆ H ₁₄ O	butyl ethyl ether	2.03	1.64	-0.39
106. C ₆ H ₁₄ O	dipropyl ether	2.03	1.64	-0.39
107. C ₆ H ₁₄ O	3,3-dimethyl-2-butanol	1.48	1.36	-0.12
108. C ₆ H ₁₄ O	hexanol	2.03	2.18	0.15
109. C ₇ H ₈ O	anisole	2.10	1.58	-0.51
110. C ₇ H ₈ O	p-cresol	1.94	1.87	-0.07
111. C ₇ H ₈ O	o-cresol	1.95	1.87	-0.08
112. C ₇ H ₈ O	m-cresol	1.96	1.87	-0.09
113. C ₇ H ₈ O	benzyl alcohol	1.10	1.06	-0.04
114. C ₈ H ₆ O	benzofuran	2.67	1.94	-0.73
		2.51	2.00	-0.73 -0.51
115. C ₈ H ₁₀ O	ethoxybenzene			
116. C ₈ H ₁₀ O	p-methylbenzyl alcohol	1.59	1.47	-0.12
117. $C_8H_{10}O$	o-methylbenzyl alcohol	1.58	1.47	-0.11
118. C ₈ H ₁₀ O	m-methylbenzyl alcohol	1.60	1.47	-0.13
119. C ₈ H ₁₀ O	p-ethylphenol	2.26	2.29	0.03
120. C ₈ H ₁₀ O	o-ethylphenyl	2.47	2.29	-0.18
121. C ₈ H ₁₀ O	m-ethylphenol	2.40	2.29	-0.11
	2-phenyl-1-ethanol	1.36	1.47	0.11
122. C ₈ H ₁₀ O				
123. C ₈ H ₁₀ O	3,5-dimethylphenol	2.35	2.28	-0.07
124. C ₈ H ₁₀ O	3,4-dimethylphenol	2.23	2.28	0.05
125. C ₈ H ₁₀ O	2,6-dimethylphenol	2.36	2.28	-0.08
126. C ₈ H ₁₀ O	2,5-dimethylphenol	2.33	2.28	-0.05
127. C ₈ H ₁₀ O	2,4-dimethylphenol	2.30	2.28	-0.02
128. C ₈ H ₁₀ O	benzyl methyl ether	1.35	1.76	0.41
129. C ₈ H ₁₈ O	octanol	3.15	3.01	-0.14
	cinnamyl alcohol	1.95	1.69	-0.14 -0.26
130. C ₉ H ₁₀ O				
131. C ₉ H ₁₀ O	allyl phenyl ether	2.94	2.21	-0.73
132. C ₉ H ₁₂ O	phenyl propyl ether	3.18	2.41	-0.77
133. C ₉ H ₁₂ O	2-prop-2-yl-1-phenol	2.88	2.64	-0.24
134. C ₉ H ₁₂ O	2-prop-1-yl-1-phenol	2.93	2.70	-0.23
135. C ₉ H ₁₂ O	γ-phenylpropyl alcohol	1.85	1.89	0.04
136. C ₁₀ H ₈ O	2-naphthol	2.84	2.48	-0.36
137. C ₁₀ H ₈ O	1-naphthol	2.98	2.48	-0.50 -0.50
	phenylcyclopropylcarbinol	1.95	1.68	-0.30 -0.27
138. C ₁₀ H ₁₂ O				
139. C ₁₀ H ₁₄ O	1-methoxy-3-phenylpropane	2.70	2.59	-0.11
140. C ₁₀ H ₁₄ O	o-(1-methylpropyl)phenol	3.27	3.05	-0.22
141. C ₁₀ H ₁₄ O	p-(1,1-dimethylethyl)phenol	2.94	3.09	0.15
142. C ₁₀ H ₁₄ O	thymol	3.30	3.05	-0.25
143. C ₁₀ H ₁₄ O	δ-phenylbutyl alcohol	2.35	2.30	-0.05
144. C ₁₀ H ₁₄ O	thymol	3.30	3.05	-0.25
145. C ₁₀ H ₁₄ O	o-(1,1-dimethylethyl)phenol	3.31	3.09	-0.22
	1-hydroxyladamantane	2.14	1.42	-0.72 -0.72
146. C ₁₀ H ₁₆ O				
147. C ₁₂ H ₁₀ O	p-phenylphenol	3.20	3.24	0.04
148. C ₁₂ H ₁₀ O	o-phenylphenol	3.09	3.24	0.15
149. C ₁₂ H ₁₀ O	m-phenylphenol	3.23	3.24	0.01
	1-dodecanol	5.13	4.67	0.46
150. C ₁₂ H ₂₆ O	1-4040041101			
150. C ₁₂ H ₂₆ O 151. C ₁₃ H ₁₂ O	diphenylmethyl alcohol	2.67	2.88	0.21

Table 4 (Continued)

formula	name	$\log P_{\rm e}^a$	$\log P_{\rm c}^{b}$	log P
162 C.H.O	Alcohols, Ethers, and		2.20	^.
153. C ₁₄ H ₁₄ O	phenyl-p-tolylcarbinol	3.13	3.29	0.1
154. C ₁₄ H ₁₄ O	phenyl-o-tolylcarbinol	3.06	3.29	0.2
155 0 11 0	Aldehydes and Ke		0.37	
155. C₃H ₆ O	propionaldehyde	0.59	0.36	-0.2
156. C₃O ₆ O	acetone	-0.24 0.88	0.13	0.3
157. C ₄ H ₈ O 158. C ₄ H ₈ O	butyaldehyde 2-butanone	0.88	0.78 0.54	-0.10 0.2
159. C ₅ H ₁₀ O	2-pentanone	0.29	0.96	0.0
160. C ₆ H ₈ O	1-hexyn-5-one	0.58	0.56	-0.0
161. C ₆ H ₁₀ O	1-hexen-5-one	1.02	1.16	0.1
162. C ₆ H ₁₀ O	cyclohexanone	0.81	0.91	0.10
163. C ₆ H ₁₂ O	2-hexanone	1.38	1.37	-0.0
164. C ₆ H ₁₂ O	hexaldehyde	1.78	1.61	-0.1
165. C ₇ H ₆ O	benzaldehyde	1.48	1.32	-0.1
166. C ₇ H ₁₂ O	4-cyclopropyl-2-butanone	1.50	1.12	-0.3
167. C ₇ H ₁₄ O	2-heptanone	1.98	1.79	-0.19
168. C ₈ H ₈ O	acetophenone	1.58	1.49	-0.0
169. C ₈ H ₈	phenylacetaldehyde	1.78	1.73	-0.0
170. C ₈ H ₈ O	o-methylbenzaldehyde	2.26	1.73	-0.5
171. C ₈ H ₁₆ O	2-octanone	2.76	3.03	0.2
172. C ₉ H ₈ O	cinnamaldehyde	1.90	1.95	0.0
173. C ₉ H ₈ O	acrylophenone	1.88	1.70	-0.13
174. C ₉ H ₁₀ O	propiophenone	2.19	1.91	-0.2
175. C ₉ H ₁₀ O	p-methylacetophenone	2.28	1.90	0.3
176. C ₉ H ₁₈ O	2-nonanone	3.18	3.44	0.20
177. C ₁₀ H ₁₀ O	methyl styryl ketone	2.07	2.12	0.0
178. C ₁₁ H ₁₄ O	5-phenyl-2-pentanone	2.42	2.74	0.3
179. C ₁₃ H ₈ O 180. C ₁₃ H ₁₀ O	9-fluorenone benzophenone	3.58 3.18	2.66 2.86	-0.99 -0.33
	benzalacetophenone	3.18	2.86 3.49	
181. $C_{15}H_{12}O$	•		3.49	0.4
	Acids and Ester			
182. CH ₂ O ₂	formic acid	-0.54	-0.23	0.3
183. C ₂ H ₄ O ₂	acetic acid	-0.17	-0.30	-0.13
184. C ₃ H ₆ O ₂	methyl acetate	0.18	0.21	0.0
185. C ₃ H ₆ O ₂	propionic acid	0.33	0.11	-0.2
186. C₄H ₆ O ₂	crotonic acid	0.72	0.32	-0.4
187. C ₄ H ₈ O ₂	propyl formate	0.83	1.11	0.2
188. C ₄ H ₈ O ₂	ethyl acetate	0.73	0.62	-0.1
189. C ₄ H ₈ O ₂	butyric acid	0.79	0.53	-0.20
190. C ₅ H ₁₀ O ₂	ethyl propionate hexanoic acid	1.21	1.04	-0.1
191. C ₆ H ₁₂ O ₂		1.88	1.36	-0.5
192. C ₇ H ₆ O ₂ 193. C ₇ H ₆ O ₂	phenyl formate benzoic acid	1.26 1.81	1.65	0.39 -0.00
194. C ₈ H ₈ O ₂	p-toluic acid	2.27	1.79 2.20	-0.0. -0.0'
195. C ₈ H ₈ O ₂	m-toluic acid	2.37	2.20	-0.0 -0.1
196. C ₈ H ₈ O ₂	benzoic acid methyl ester	2.12	1.57	-0.5
197. C ₈ H ₈ O ₂	acetic acid phenyl ester	1.49	1.57	0.0
198. C ₈ H ₈ O ₂	phenylacetic acid	1.41	1.48	0.0
199. C ₈ H ₁₆ O ₂	valproic acid	2.75	2.12	-0.63
200. C ₉ H ₈ O ₂	cinnamic acid	2.08	1.69	-0.39
201. C ₉ H ₁₀ O ₂	m-tolyl acetate	2.09	1.98	-0.1
202. C ₉ H ₁₀ O ₂	p-tolyl acetate	2.11	1.98	-0.1
203. C ₉ H ₁₀ O ₂	ethyl benzoate	2.64	1.99	-0.6
204. C ₉ H ₁₀ O ₂	acetic acid benzyl ester	1.96	1.99	0.0
205. C ₉ H ₁₀ O ₂	phenylacetic acid methyl ester	1.83	1.99	0.10
206. C ₉ H ₁₀ O ₂	(p-methylphenyl)acetic acid	1.86	1.89	0.0
207. C ₉ H ₁₀ O ₂	o-tolyl acetate	2.11	1.98	-0.13
208. C ₉ H ₁₀ O ₂	3-phenylpropionic acid	1.84	1.89	0.0
209. C ₁₀ H ₁₀ O ₂	cinnamic acid methyl ester	2.62	2.20	-0.42
210. C ₁₀ H ₁₂ O ₂	β -phenylpropionic acid methyl ester	2.32	2.40	0.0
211. C ₁₀ H ₁₂ O ₂	phenylacetic acid ethyl ester	2.42	2.40	-0.02
212. C ₁₀ H ₁₂ O ₂	4-ethylphenyl acetate	2.56	2.40	-0.10
213. C ₁₀ H ₁₂ O ₂	2-ethylphenyl acetate	2.42	2.40	-0.02
214. C ₁₀ H ₁₂ O ₂	4-phenylbutyric acid	2.42	2.31	-0.1
215. C ₁₀ H ₁₂ O ₂	acetic acid β -phenylethyl ester	2.30	2.40	0.10
216. C ₁₀ H ₂₀ O ₂	decanoic acid	4.09	3.84	-0.2
217. C ₁₁ H ₈ O ₂	1-naphthonic acid	3.10	2.81	-0.29
218. C ₁₁ H ₁₂ O ₂	cinnamic acid ethyl ester	2.99	2.62	-0.3
219. C ₁₁ H ₁₄ O ₂	2-isopropylphenyl acetate	2.78	2.75	-0.03
220. C ₁₁ H ₁₄ O ₂	4-phenylbutyric acid methyl ester	2.77	2.82	0.0
221. C ₁₂ H ₂₄ O ₂	dodecanoic acid	4.20	4.67	0.4
222. C ₁₃ H ₁₀ O ₂	phenyl benzoate	3.59	2.94	-0.6
223. C ₁₄ H ₁₂ O ₂	diphenylacetic acid	3.05	3.19	0.14
224. C ₁₄ H ₁₂ O ₂	benzyl benzoate	3.97	3.35	-0.62
***	Amines and Nitri			_
225. CH₅N	methylamine	-0.57	-0.94	-0.3
226. C ₂ H ₃ N	acetonitrile	-0.34	0.03	0.3

Table 4 (Continued)

formula	name	log Pea	$\log P_{\rm c}^{\ b}$	log P _r
228. C₃H₅N	Amines and N	itriles 0.16	0.45	0.29
229. C ₃ H ₇ N	allylamine	0.03	-0.31	-0.34
230. C ₃ H ₉ N	trimethylamine	0.03	0.34	0.07
231. C ₃ H ₉ N	isopropylamine	-0.03	-0.03	0.07
		-0.03 0.48	-0.03 -0.11	
232. C ₃ H ₉ N	propylamine			-0.59
233. C ₃ H ₉ N	methylethylamine	0.15	0.32	0.17
234. C ₄ H ₁₁ N	diethylamine	0.57	0.74	0.17
235. C ₄ H ₁₁ N	butylamine	0.81	0.31	-0.50
236. C ₄ H ₁₁ N	ethyldimethylamine	0.70	0.76	0.06
237. C ₄ H ₁₁ N	sec-butylamine	0.74	0.38	-0.36
238. C ₄ H ₁₁ N	isobutylamine	0.88	0.24	0.64
239. C₄H ₁₁ N	tert-butylamine	0.40	0.42	0.02
240. C ₅ H ₁₁ N	ethylallylamine	0.81	0.94	0.13
241. C ₅ H ₁₃ N	butylmethylamine	1.33	1.15	-0.18
242. C ₅ H ₁₃ N	amylamine	1.45	0.72	-0.73
243. C ₆ H ₇ N	aniline	0.90	0.92	0.02
244. C ₆ H ₁₁ N	diallylamine	1.11	1.15	0.04
245. C ₆ H ₁₃ N	propylallylamine	1.33	1.36	0.03
246. C ₆ H ₁₃ N	cyclohexylamine	1.49	0.44	-1.05
	triethylamine	1.44		
247. C ₆ H ₁₅ N			1.59	0.15
248. C ₆ H ₁₅ N	butyldimethylamine	1.70	1.59	-0.11
249. C ₆ H ₁₅ N	dipropylamine	1.73	1.57	-0.16
250. C ₆ H ₁₅ N	hexylamine	2.06	1.96	-0.10
251. C ₇ H ₅ N	benzonitrile	1.56	1.26	-0.30
252. C ₇ H ₉ N	N-methylaniline	1.82	2.01	0.19
253. C ₇ H ₉ N	p-toluidine	1.39	1.33	-0.06
254. C ₇ H ₉ N	o-toluidine	1.29	1.33	0.04
255. C ₇ H ₉ N	m-toluidine	1.42	1.33	-0.09
256. C ₇ H ₉ N	benzylamine	1.09	0.85	-0.24
257. C ₇ H ₁₇ N	propylbutylamine	2.12	1.98	-0.14
		1.91		
258. C ₇ H ₁₇ N	propyl-sec-butylamine		1.92	0.01
259. C ₇ H ₁₇ N	propylisobutylamine	2.07	1.92	-0.15
260. C ₇ H ₁₇ N	heptylamine	2.57	2.38	-0.19
261. C ₈ H ₇ N	phenylacetonitrile	1.56	1.81	0.25
262. C ₈ H ₁₁ N	2-ethylaniline	1.74	1.75	0.01
263. C ₈ H ₁₁ N	N,N-dimethylaniline	2.31	1.71	-0.60
264. C ₈ H ₁₁ N	N-ethylaniline	2.16	2.42	0.26
265. C ₈ H ₁₁ N	β -phenylethylamine	1.41	1.26	-0.15
266. C ₈ H ₁₁ N	N-methyl-o-toluidine	2.16	2.42	0.26
267. C ₈ H ₁₁ N	N-methyl-p-toluidine	2.15	2.42	0.27
268. C ₈ H ₁₁ N	methylbenzylamine	1.52	1.69	0.17
269. C ₈ H ₁₉ N	dibutylamine	2.68	2.40	-0.28
	2-ethylhexylamine	2.82	2.04	-0.28 -0.78
270. C ₈ H ₁₉ N	ethyldiisopropylamine	2.68	2.04	-0.78 -0.39
271. C ₈ H ₁₉ N				
272. C ₉ H ₇ N	cinnamonitrile	1.96	2.03	0.07
273. C ₉ H ₁₃ N	amphetamine	1.76	1.75	-0.01
274. C ₉ H ₁₃ N	N-propylaniline	2.45	2.84	0.39
275. C ₉ H ₁₃ N	γ -phenylpropylamine	1.83	1.68	-0.15
276. C ₉ H ₁₃ N	N,N-dimethyl-o-toluidine	2.85	2.12	-0.73
277. C ₉ H ₁₃ N	N,N-dimethyl-m-toluidine	2.80	2.12	-0.68
278. C ₉ H ₁₃ N	N,N-dimethyl-p-toluidine	2.61	2.12	-0.49
279. C ₉ H ₂₁ N	tripropylamine	2.79	2.83	0.04
280. C ₉ H ₂₁ N	2-ethylhexylamine	2.68	2.32	-0.36
281. C ₁₀ H ₉ N	1-naphthamine	2.25	1.94	-0.31
	2-naphthamine	2.28	1.94	-0.31 -0.34
282. C ₁₀ H ₉ N	•	3.31	2.54	
283. C ₁₀ H ₁₅ N	N,N-diethylaniline			-0.77
284. C ₁₀ H ₁₅ N	δ-phenylbutylamine	2.40	2.09	-0.31
285. C ₁₁ H ₁₇ N	γ -phenylpropyl-dimethylamine	2.73	2.96	0.23
286. C ₁₂ H ₁₁ N	2-aminobiphenyl	3.34	2.70	-0.64
287. $C_{12}H_{11}N$	diphenylamine	3.50	3.37	-0.13
288. C ₁₃ H ₁₃ N	N-benzylaniline	3.13	3.79	0.66
289. C ₁₃ H ₁₃ N	diphenylmethylamine	3.16	3.08	-0.08
290. C ₁₄ H ₁₅ N	N-methyl-N-benzylaniline	4.22	3.49	-0.73
	Amides and Ar			
291. C ₃ H ₇ ON	N-methylacetamide	-1.05	-0.39	0.66
292. C ₄ H ₉ ON	butylamide	-0.21	-0.01	0.20
293. C ₄ H ₉ ON	N,N-dimethylacetamide	-0.77	0.00	0.77
294. C ₇ H ₇ ON	benzamide	0.64	0.53	-0.11
295. C ₇ H ₇ ON	formanilide	1.15	1.05	-0.10
296. C ₈ H ₉ ON	acetanilide	1.16	0.98	-0.18 -0.18
	N-methylformanilide	1.09	1.44	0.35
297. C ₈ H ₉ ON	p-methylformanilide	1.61	1.47	-0.14
298, C ₈ H ₉ ON				
299. C ₈ H ₉ ON	m-methylbenzamide	1.18	0.94	-0.24
	phenylacetamide	0.45	0.94	0.49
300. C ₈ H ₉ ON				^ -
300. C ₈ H ₉ ON 301. C ₈ H ₁₅ ON 302. C ₈ H ₁₇ ON	allylisopropylacetamide propylisopropylacetamide	1.14 1.48	1.32 1.52	0.18 0.04

Table 4 (Continued)

formula	name	$\log P_{\rm e}^a$	log P_{c}^{b}	$\log P_{\rm r}^{c}$
	Amides and Anil			
304. C ₉ H ₁₁ ON	propionanilide	1.61	1.40	-0.21
305. C ₉ H ₁₁ ON	γ -phenylpropionamide	1.03	1.36	0.33
306. C ₉ H ₁₁ ON	N,N-dimethylbenzamide	0.62	1.37	0.75
		1.07		
307. C ₉ H ₁₁ ON	N-methylacetanilide		1.37	0.30
308. C ₉ H ₁₃ ON	p-methoxy- N , N -dimethylaniline	1.42	1.72	0.30
309. C ₁₀ H ₁₃ ON	<i>p</i> -isopropylbenzamide	2.14	1.71	-0.43
310. C ₁₀ H ₁₃ ON	butyranilide	2.05	1.81	-0.24
		2.02		-0.27
311. C ₁₀ H ₁₃ ON	isobutyranilide		1.75	
312. C ₁₃ H ₁₁ ON	benzanilide	2.70	2.35	-0.35
313. C ₁₅ H ₁₃ ON	cinnamanilide	3.61	2.98	-0.63
	S-Containing Hydro	carbons		
314. C ₄ H ₄ S	thiophene	1.81	1.63	-0.18
315. C₄H ₁₀ S	butanethiol	2.28	2.08	-0.20
316. C ₄ H ₁₀ S	diethyl sulfide	1.95	1.93	-0.02
		2.52	2.20	-0.32
317. C ₆ H ₆ S	thiophenol			
318. C ₇ H ₈ S	methylthiobenzene	2.74	2.47	-0.27
319. C ₈ H ₆ S	benzothiophene	3.12	2.65	-0.47
320. C ₈ H ₁₀ S	phenylethyl sulfide	3.20	2.89	-0.31
321. C ₁₀ H ₈ S	2-phenylthiophene	3.74	3.41	-0.33
$322. C_{12}H_{10}S$	diphenyl sulfide	4.45	3.84	-0.61
	Nitro Hydrocarb			
323. CH ₃ O ₂ N	nitromethane	0.08	0.04	-0.04
324. C ₂ H ₅ O ₂ N	nitroethane	0.18	0.45	0.27
325. C ₃ H ₇ O ₂ N	nitropropane	0.65	0.87	0.22
	2-methyl-2-nitropropane	1.01	1.25	0.24
326. C ₄ H ₉ O ₂ N				
327. C ₄ H ₉ O ₂ N	nitrobutane	1.47	1.28	-0.19
328. C ₅ H ₁₁ O ₂ N	nitropentane	2.01	1.70	-0.31
329. C ₆ H ₅ O ₂ N	nitrobenzene	1.85	1.54	-0.31
330. C ₇ H ₇ O ₂ N	p-nitrotoluene	2.37	1.95	-0.42
	•			
331. C ₇ H ₇ O ₂ N	o-nitrotoluene	2.30	1.95	-0.35
332. C ⁷ H ₇ O ₂ N	m-nitrotoluene	2.45	1.95	-0.50
333. C ₇ H ₇ O ₂ N	α -nitrotoluene	1.75	1.96	0.21
334. C ₈ H ₇ O ₂ N	β-nitrostyrene	2.24	2.17	-0.07
335. C ₈ H ₉ O ₂ N	1,3-dimethyl-2-nitrobenzene	2.95	2.37	-0.58
336. C ₈ H ₉ O ₂ N	β -nitroethylbenzene	2.08	2.37	0.29
337. C ₉ H ₉ O ₂ N	4-methyl- β -nitrostyrene	2.66	2.58	-0.08
338. C ₉ H ₉ O ₂ N	2-methyl-β-nitrostyrene	2.63	2.58	-0.05
339. C ₉ H ₉ O ₂ N	β -methyl- β -nitrostyrene	2.52	2.99	0.47
340. $C_{10}H_7O_2N$	1-nitronaphthalene	3.19	2.56	-0.63
	Amino Acids			
341. C ₂ H ₅ O ₂ N	glycine	-3.00	-3.29	-0.29
342. C ₃ H ₇ O ₂ N	alanine	-2.83	-2.80	0.03
343. C ₅ H ₁₁ O ₂ N	valine	-2.10	-2.04	0.06
344. C ₅ H ₁₁ O ₂ NS	methionine	-1.87	-1.49	0.38
345. $C_5H_{12}O_2N_2$	ornithine	-2.89	-3.12	-0.23
346. C ₆ H ₉ O ₂ N ₃	histidine	-2.52	-2.32	0.20
347. C ₆ H ₁₃ O ₂ N	isoleucine	-1.69	-1.62	0.07
348. C ₆ H ₁₃ O ₂ N	leucine	-1.57	-1.62	-0.05
349. C ₆ H ₁₄ O ₂ N ₂	lysine	-2.82 1.43	-2.70 1.02	0.12
350. $C_9H_{11}O_2N$	phenylalanine	-1.43	-1.02	0.41
251 00	Halogenated Hydro			
351. CCl ₄	carbon tetrachloride	2.83	2.04	-0.79
352. CHCl ₃	chloroform	1.97	1.54	-0.43
353. CH ₂ F ₂	difluoromethane	0.20	0.69	0.49
	dichloromethane	1.25	1.14	-0.11
354, CH ₂ Cl ₂	WATER OF CASE			
354. CH ₂ Cl ₂	mathul fluorida	0.51	0.44	-0.07
355. CH₃F	methyl fluoride		0.47	0.24
355. CH₃F 356. CH₃Cl	methyl chloride	0.91	0.67	-0.24
355. CH₃F		0.91 1.19	0.98	-0.24 -0.21
355. CH ₃ F 356. CH ₃ Cl 357. CH ₃ Br	methyl chloride methyl bromide	1.19	0.98	-0.21
355. CH₃F 356. CH₃Cl 357. CH₃Br 358. CH₃I	methyl chloride methyl bromide methyl iodide	1.19 1.51	0.98 1.17	-0.21 -0.34
355. CH ₃ F 356. CH ₃ Cl 357. CH ₃ Br 358. CH ₃ I 359. C ₂ HCl ₃	methyl chloride methyl bromide methyl iodide trichloroethylene	1.19 1.51 2.29	0.98 1.17 2.22	-0.21 -0.34 -0.07
355. CH ₃ F 356. CH ₃ Cl 357. CH ₃ Br 358. CH ₃ I 359. C ₂ HCl ₃ 360. C ₂ H ₂ F ₂	methyl chloride methyl bromide methyl iodide trichloroethylene 1,1-difluoroethylene	1.19 1.51 2.29 1.24	0.98 1.17 2.22 1.29	-0.21 -0.34 -0.07 0.05
355. CH ₃ F 356. CH ₃ Cl 357. CH ₃ Br 358. CH ₃ I 359. C ₂ HCl ₃	methyl chloride methyl bromide methyl iodide trichloroethylene	1.19 1.51 2.29	0.98 1.17 2.22	-0.21 -0.34 -0.07 0.05
355. CH ₃ F 356. CH ₃ Cl 357. CH ₃ Br 358. CH ₃ I 359. C ₂ HCl ₃ 360. C ₂ H ₂ F ₂ 361. C ₂ H ₃ Cl ₃	methyl chloride methyl bromide methyl iodide trichloroethylene 1,1-difluoroethylene 1,1,1-trichloroethane	1.19 1.51 2.29 1.24 2.49	0.98 1.17 2.22 1.29 1.99	-0.21 -0.34 -0.07 0.05 -0.05
355. CH ₃ F 356. CH ₃ Cl 357. CH ₃ Br 358. CH ₃ I 359. C ₂ HCl ₃ 360. C ₂ H ₂ F ₂ 361. C ₂ H ₃ Cl ₃ 362. C ₂ H ₃ Br	methyl chloride methyl bromide methyl iodide trichloroethylene 1,1-difluoroethylene 1,1,1-trichloroethane vinyl bromide	1.19 1.51 2.29 1.24 2.49 1.57	0.98 1.17 2.22 1.29 1.99 1.19	-0.21 -0.34 -0.07 0.05 -0.05 -0.38
355. CH₃F 356. CH₃Cl 357. CH₃Br 358. CH₃l 359. C₂HCl₃ 360. C₂H₂F₂ 361. C₂H₃Cl₃ 362. C₂H₃Br 363. C₂H₄F₂	methyl chloride methyl bromide methyl iodide trichloroethylene 1,1-difluoroethylene 1,1,1-trichloroethane vinyl bromide 1,1,difluoroethane	1.19 1.51 2.29 1.24 2.49 1.57 0.75	0.98 1.17 2.22 1.29 1.99 1.19 1.04	-0.21 -0.34 -0.07 0.05 -0.05 -0.38 0.29
355. CH ₃ F 356. CH ₃ Cl 357. CH ₃ Br 358. CH ₃ I 359. C ₂ HCl ₃ 360. C ₂ H ₂ F ₂ 361. C ₂ H ₃ Cl ₃ 362. C ₂ H ₃ Br 363. C ₂ H ₄ F ₂ 364. C ₂ H ₄ Cl ₂	methyl chloride methyl bromide methyl iodide trichloroethylene 1,1-difluoroethylene 1,1,1-trichloroethane vinyl bromide 1,1-difluoroethane 1,2-dichloroethane	1.19 1.51 2.29 1.24 2.49 1.57 0.75 1.48	0.98 1.17 2.22 1.29 1.99 1.19 1.04 1.55	-0.21 -0.34 -0.07 0.05 -0.05 -0.38 0.29 0.07
355. CH₃F 356. CH₃Cl 357. CH₃Br 358. CH₃l 359. C₂HCl₃ 360. C₂H₂F₂ 361. C₂H₃Cl₃ 362. C₂H₃Br 363. C₂H₄F₂	methyl chloride methyl bromide methyl iodide trichloroethylene 1,1-difluoroethylene 1,1,1-trichloroethane vinyl bromide 1,1,difluoroethane	1.19 1.51 2.29 1.24 2.49 1.57 0.75	0.98 1.17 2.22 1.29 1.99 1.19 1.04	-0.21 -0.34 -0.07 0.05 -0.05 -0.38 0.29
355. CH ₃ F 356. CH ₃ Cl 357. CH ₃ Br 358. CH ₃ I 359. C ₂ HCl ₃ 360. C ₂ H ₂ F ₂ 361. C ₂ H ₃ Cl ₃ 362. C ₂ H ₃ Br 363. C ₂ H ₄ F ₂ 364. C ₂ H ₄ Cl ₂ 365. C ₂ H ₄ Cl ₂	methyl chloride methyl bromide methyl iodide trichloroethylene 1,1-difluoroethylene 1,1,1-trichloroethane vinyl bromide 1,1-difluoroethane 1,2-dichloroethane 1,2-dichloroethane 1,1-dichloroethane	1.19 1.51 2.29 1.24 2.49 1.57 0.75 1.48 1.79	0.98 1.17 2.22 1.29 1.99 1.19 1.04 1.55	-0.21 -0.34 -0.07 0.05 -0.05 -0.38 0.29 0.07 -0.30
355. CH₃F 356. CH₃Cl 357. CH₃Br 358. CH₃I 359. C₂HCl₃ 360. C₂H₂F₂ 361. C₂H₃Cl₃ 362. C₂H₃Br 363. C₂H₄F₂ 364. C₂H₄Cl₂ 365. C₂H₄Cl₂ 366. C₂H₅Cl	methyl chloride methyl bromide methyl iodide trichloroethylene 1,1-difluoroethylene 1,1,1-trichloroethane vinyl bromide 1,1-difluoroethane 1,2-dichloroethane 1,2-dichloroethane 1,1-dichloroethane 1,1-dichloroethane	1.19 1.51 2.29 1.24 2.49 1.57 0.75 1.48 1.79	0.98 1.17 2.22 1.29 1.99 1.19 1.04 1.55 1.49 1.09	-0.21 -0.34 -0.07 0.05 -0.05 -0.38 0.29 0.07 -0.30 -0.34
355. CH₃F 356. CH₃Cl 357. CH₃Br 358. CH₃I 359. C₂HCl₃ 360. C₂H₂F₂ 361. C₂H₃Cl₃ 362. C₂H₃Br 363. C₂H₄F₂ 364. C₂H₄Cl₂ 365. C₂H₄Cl₂ 366. C₂H₅Cl 367. C₂H₃Br	methyl chloride methyl bromide methyl iodide trichloroethylene 1,1-difluoroethylene 1,1,1-trichloroethane vinyl bromide 1,1-difluoroethane 1,2-dichloroethane 1,1-dichloroethane ethyl chloride ethyl bromide	1.19 1.51 2.29 1.24 2.49 1.57 0.75 1.48 1.79 1.43 1.61	0.98 1.17 2.22 1.29 1.99 1.19 1.04 1.55 1.49 1.09 1.39	-0.21 -0.34 -0.07 0.05 -0.05 -0.38 0.29 0.07 -0.30 -0.34
355. CH ₃ F 356. CH ₃ Cl 357. CH ₃ Br 358. CH ₃ I 359. C ₂ HCl ₃ 360. C ₂ H ₂ F ₂ 361. C ₂ H ₃ Cl ₃ 362. C ₂ H ₃ Br 363. C ₂ H ₄ F ₂ 364. C ₂ H ₄ Cl ₂ 365. C ₂ H ₄ Cl ₂ 366. C ₂ H ₅ Cl 367. C ₂ H ₅ Br 368. C ₂ H ₅ I	methyl chloride methyl bromide methyl iodide trichloroethylene 1,1-difluoroethylene 1,1,1-trichloroethane vinyl bromide 1,1-difluoroethane 1,2-dichloroethane 1,1-dichloroethane ethyl chloride ethyl bromide ethyl bromide ethyl iodide	1.19 1.51 2.29 1.24 2.49 1.57 0.75 1.48 1.79 1.43 1.61 2.00	0.98 1.17 2.22 1.29 1.99 1.19 1.04 1.55 1.49 1.09 1.39 1.58	-0.21 -0.34 -0.07 0.05 -0.05 -0.38 0.29 0.07 -0.30 -0.34 -0.22
355. CH₃F 356. CH₃Cl 357. CH₃Br 358. CH₃I 359. C₂HCl₃ 360. C₂H₂F₂ 361. C₂H₃Cl₃ 362. C₂H₃Br 363. C₂H₄F₂ 364. C₂H₄Cl₂ 365. C₂H₄Cl₂ 366. C₂H₅Cl 367. C₂H₃Br	methyl chloride methyl bromide methyl iodide trichloroethylene 1,1-difluoroethylene 1,1,1-trichloroethane vinyl bromide 1,1-difluoroethane 1,2-dichloroethane 1,1-dichloroethane ethyl chloride ethyl bromide	1.19 1.51 2.29 1.24 2.49 1.57 0.75 1.48 1.79 1.43 1.61	0.98 1.17 2.22 1.29 1.99 1.19 1.04 1.55 1.49 1.09 1.39	-0.21 -0.34 -0.07 0.05 -0.05 -0.38 0.29 0.07 -0.30 -0.34
355. CH ₃ F 356. CH ₃ Cl 357. CH ₃ Br 358. CH ₃ I 359. C ₂ HCl ₃ 360. C ₂ H ₂ F ₂ 361. C ₂ H ₃ Cl ₃ 362. C ₂ H ₃ Br 363. C ₂ H ₄ F ₂ 364. C ₂ H ₄ Cl ₂ 365. C ₂ H ₄ Cl ₂ 366. C ₂ H ₅ Cl 367. C ₂ H ₅ Br 368. C ₂ H ₅ I 369. C ₃ H ₅ Br	methyl chloride methyl bromide methyl iodide trichloroethylene 1,1-difluoroethylene 1,1,1-trichloroethane vinyl bromide 1,1-difluoroethane 1,2-dichloroethane 1,1-dichloroethane ethyl chloride ethyl bromide ethyl bromide allyl bromide	1.19 1.51 2.29 1.24 2.49 1.57 0.75 1.48 1.79 1.43 1.61 2.00 1.79	0.98 1.17 2.22 1.29 1.99 1.19 1.04 1.55 1.49 1.09 1.39 1.58 1.60	-0.21 -0.34 -0.07 0.05 -0.05 -0.38 0.29 0.07 -0.30 -0.34 -0.22 -0.42 -0.19
355. CH ₃ F 356. CH ₃ Cl 357. CH ₃ Br 358. CH ₃ I 359. C ₂ HCl ₃ 360. C ₂ H ₂ F ₂ 361. C ₂ H ₃ Cl ₃ 362. C ₂ H ₃ Br 363. C ₂ H ₄ F ₂ 364. C ₂ H ₄ Cl ₂ 365. C ₂ H ₄ Cl ₂ 366. C ₂ H ₅ Cl 367. C ₂ H ₃ Br 368. C ₂ H ₅ I 369. C ₃ H ₅ Br 370. C ₃ H ₆ Cl ₂	methyl chloride methyl bromide methyl iodide trichloroethylene 1,1-difluoroethylene 1,1,1-trichloroethane vinyl bromide 1,1-difluoroethane 1,2-dichloroethane 1,1-dichloroethane ethyl chloride ethyl bromide ethyl bromide ethyl iodide allyl bromide 1,3-dichloropropane	1.19 1.51 2.29 1.24 2.49 1.57 0.75 1.48 1.79 1.43 1.61 2.00 1.79 2.00	0.98 1.17 2.22 1.29 1.99 1.19 1.04 1.55 1.49 1.09 1.39 1.58 1.60 1.97	-0.21 -0.34 -0.07 0.05 -0.05 -0.38 0.29 0.07 -0.30 -0.34 -0.22 -0.42 -0.19 -0.03
355. CH ₃ F 356. CH ₃ Cl 357. CH ₃ Br 358. CH ₃ I 359. C ₂ HCl ₃ 360. C ₂ H ₂ F ₂ 361. C ₂ H ₃ Cl ₃ 362. C ₂ H ₃ Br 363. C ₂ H ₄ F ₂ 364. C ₂ H ₄ Cl ₂ 365. C ₂ H ₄ Cl ₂ 366. C ₂ H ₅ Cl 367. C ₂ H ₅ Br 368. C ₂ H ₅ I 369. C ₃ H ₅ Br 370. C ₃ H ₆ Cl ₂ 371. C ₃ H ₇ Cl	methyl chloride methyl bromide methyl iodide trichloroethylene 1,1-difluoroethylene 1,1,1-trichloroethane vinyl bromide 1,1-difluoroethane 1,2-dichloroethane 1,2-dichloroethane ethyl chloride ethyl bromide ethyl bromide ethyl iodide allyl bromide 1,3-dichloropropane 2-chloropropane	1.19 1.51 2.29 1.24 2.49 1.57 0.75 1.48 1.79 1.43 1.61 2.00 1.79 2.00 1.90	0.98 1.17 2.22 1.29 1.99 1.19 1.04 1.55 1.49 1.09 1.39 1.58 1.60 1.97	-0.21 -0.34 -0.07 0.05 -0.05 -0.38 0.29 0.07 -0.30 -0.34 -0.22 -0.42 -0.19 -0.03
355. CH ₃ F 356. CH ₃ Cl 357. CH ₃ Br 358. CH ₃ I 359. C ₂ HCl ₃ 360. C ₂ H ₂ F ₂ 361. C ₂ H ₃ Cl ₃ 362. C ₂ H ₃ Br 363. C ₂ H ₄ F ₂ 364. C ₂ H ₄ Cl ₂ 365. C ₂ H ₄ Cl ₂ 366. C ₂ H ₅ Cl 367. C ₂ H ₅ Br 368. C ₂ H ₅ I 369. C ₃ H ₅ Br 370. C ₃ H ₆ Cl ₂ 371. C ₃ H ₇ Cl 372. C ₃ H ₇ Cl	methyl chloride methyl bromide methyl iodide trichloroethylene 1,1-difluoroethylene 1,1,1-trichloroethane vinyl bromide 1,1-difluoroethane 1,2-dichloroethane 1,2-dichloroethane 1,1-dichloroethane ethyl chloride ethyl bromide ethyl iodide allyl bromide 1,3-dichloropropane 2-chloropropane 1-bromopropane	1.19 1.51 2.29 1.24 2.49 1.57 0.75 1.48 1.79 1.43 1.61 2.00 1.79 2.00 1.90 2.10	0.98 1.17 2.22 1.29 1.99 1.19 1.04 1.55 1.49 1.09 1.39 1.58 1.60 1.97 1.44 1.81	-0.21 -0.34 -0.07 0.05 -0.05 -0.38 0.29 0.07 -0.30 -0.34 -0.22 -0.42 -0.19 -0.03 -0.46 -0.29
355. CH ₃ F 356. CH ₃ Cl 357. CH ₃ Br 358. CH ₃ I 359. C ₂ HCl ₃ 360. C ₂ H ₂ F ₂ 361. C ₂ H ₃ Cl ₃ 362. C ₂ H ₃ Br 363. C ₂ H ₄ F ₂ 364. C ₂ H ₄ Cl ₂ 365. C ₂ H ₄ Cl ₂ 366. C ₂ H ₅ Cl 367. C ₂ H ₅ Br 368. C ₂ H ₅ I 369. C ₃ H ₅ Br 370. C ₃ H ₆ Cl ₂ 371. C ₃ H ₇ Cl	methyl chloride methyl bromide methyl iodide trichloroethylene 1,1-difluoroethylene 1,1,1-trichloroethane vinyl bromide 1,1-difluoroethane 1,2-dichloroethane 1,2-dichloroethane ethyl chloride ethyl bromide ethyl bromide ethyl iodide allyl bromide 1,3-dichloropropane 2-chloropropane	1.19 1.51 2.29 1.24 2.49 1.57 0.75 1.48 1.79 1.43 1.61 2.00 1.79 2.00 1.90 2.10 2.04	0.98 1.17 2.22 1.29 1.99 1.19 1.04 1.55 1.49 1.09 1.39 1.58 1.60 1.97 1.44 1.81 1.50	-0.21 -0.34 -0.07 0.05 -0.05 -0.38 0.29 0.07 -0.30 -0.34 -0.22 -0.42 -0.19 -0.03 -0.03
355. CH ₃ F 356. CH ₃ Cl 357. CH ₃ Br 358. CH ₃ I 359. C ₂ HCl ₃ 360. C ₂ H ₂ F ₂ 361. C ₂ H ₃ Cl ₃ 362. C ₂ H ₃ Br 363. C ₂ H ₄ F ₂ 364. C ₂ H ₄ Cl ₂ 365. C ₂ H ₄ Cl ₂ 366. C ₂ H ₅ Cl 367. C ₂ H ₅ Br 368. C ₂ H ₅ I 369. C ₃ H ₅ Br 370. C ₃ H ₆ Cl ₂ 371. C ₃ H ₇ Cl 372. C ₃ H ₇ Cl	methyl chloride methyl bromide methyl iodide trichloroethylene 1,1-difluoroethylene 1,1,1-trichloroethane vinyl bromide 1,1-difluoroethane 1,2-dichloroethane 1,2-dichloroethane 1,1-dichloroethane ethyl chloride ethyl bromide ethyl iodide allyl bromide 1,3-dichloropropane 2-chloropropane 1-bromopropane	1.19 1.51 2.29 1.24 2.49 1.57 0.75 1.48 1.79 1.43 1.61 2.00 1.79 2.00 1.90 2.10	0.98 1.17 2.22 1.29 1.99 1.19 1.04 1.55 1.49 1.09 1.39 1.58 1.60 1.97 1.44 1.81	-0.21 -0.34 -0.07 0.05 -0.05 -0.38 0.29 0.07 -0.30 -0.34 -0.22 -0.42 -0.19 -0.03 -0.46 -0.29

Table 4 (Continued)

formula	name	$\log P_{\rm e}^a$	log Pcb	log P
27. O II E	Halogenated Hydrocarbons	2 22	2.10	0.00
376. C ₅ H ₁₁ F	1-fluoropentane	2.33	2.10	-0.23
377. C ₅ H ₁₁ Br	1-bromopentane	3.37	2.64	-0.73
378. C ₆ F ₆	hexafluorobenzene	2.22	2.88	0.66
379. C ₆ H₄Cl ₂	p-dichlorobenzene	3.39	2.88	-0.51
380. C ₆ H ₄ Cl ₂	o-dichlorobenzene	3.38	2.88	-0.50
381. C ₆ H ₄ Cl ₂	m-dichlorobenzene	3.38	2.88	-0.50
382. C ₆ H ₄ Br ₂	o-dibromobenzene	3.64	3.25	-0.39
383. C ₆ H ₄ Br ₂	m-dibromobenzene	3.75	3.25	-0.50
384. C ₆ H ₅ F	fluorobenzene	2.27	1.79	-0.48
385. C ₆ H₅Cl	chlorobenzene	2.84	2.23	-0.61
386. C ₆ H ₅ Br	bromobenzene	2.99	2.41	-0.58
387. C ₆ H ₆ Cl ₆	hexachlorocyclohexane	3.72	4.19	0.47
388. C ₆ H ₁₃ Br	1-bromohexane	3.80	3.88	0.08
389. C ₇ H ₅ F ₃	α, α, α -trifluorotoluene	2.79	2.68	-0.11
390. C ₇ H ₅ Cl ₃	α, α, α -trichlorotoluene	2.92	3.36	0.44
391. C ₇ H ₇ Cl	p-chlorotoluene	3.33	2.64	-0.69
392. C ₇ H ₇ Cl	o-chlorotoluene	3.42	2.64	-0.78
393. C ₇ H ₇ Cl	m-chlorotoluene	3.42	2.64	-0.78
394. C ₇ H ₇ Br	α-bromotoluene	2.92	2.76	-0.16
	** ************************************	4.04	4.14	0.10
395. C ₇ H ₉ Cl ₅	1-methylpentachlorocyclohexane			
396. C ₈ H ₉ Cl	2-chloro-1-ethylbenzene	2.95	2.87	-0.08
397. C ₈ H ₉ Br	β -phenylethyl bromide	3.09	3.18	0.09
398. C ₉ H ₁₁ F	γ-phenylpropyl fluoride	2.95	3.06	0.11
399. C₀H₁₁Cl	γ-phenylpropyl chloride	3.55	3.28	-0.27
400. C ₉ H ₁₁ Br	γ -phenylpropyl bromide	3.72	3.59	-0.13
401. C ₁₀ H ₉ Cl ₃	α -(2,2,2-trichloroethyl)styrene	4.56	4.39	-0.17
402. C ₁₂ H ₉ Cl	4-chlorobiphenyl	4.61	4.01	-0.60
403, C ₁₂ H ₉ Cl	3-chlorobiphenyl	4.71	4.01	-0.70
404. C ₁₂ H ₉ Cl	2-chlorobiphenyl	4.59	4.01	-0.58
	Nucleosides			
405. C ₁₀ H ₁₃ O ₄ N ₅	Ado	-1.23	-2.13	-0.90
406. C ₁₀ H ₁₃ O ₃ N ₅	dAdo	-0.54	-1.29	-0.75
407. C ₁₀ H ₁₃ O ₂ N ₅	ddAdo	-0.21	-0.46	-0.25
408. C ₁₀ H ₁₁ O ₂ N ₅	ddeAdo	-0.35	-0.42	-0.07
409. C ₁₀ H ₁₂ O ₂ N ₅ F	FddAdo	0.08	-0.23	-0.31
410. C ₁₀ H ₁₃ O ₅ N ₅	Guo	-1.89	-3.09	-1.20
411. C ₁₀ H ₁₃ O ₃ N ₅	dGuo	-1.30	-2.26	-0.96
	ddGuo	-1.00	-2.26 -1.43	-0.43
412. C ₁₀ H ₁₃ O ₃ N ₅	ddeGuo	-1.00 -1.21	-1. 4 5 -1.39	-0.43 -0.18
413. C ₁₀ H ₁₁ O ₃ N ₅		-0.52		-0.16 -0.86
414. C ₁₀ H ₁₆ O ₃ N ₆	dDAPR		-1.38	
415. C ₁₀ H ₁₆ O ₂ N ₆	ddDAPR	-0.46	-0.55	-0.09
416. $C_{10}H_{15}O_2N_6F$	FddDAPR	0.05	-0.32	0.37
417. C ₉ H ₁₂ O ₆ N ₂	Urd	-1.71	-2.28	-0.57
418. C ₉ H ₁₂ O ₅ N ₂	dUrd	-1.50	-1.44	0.06
419. C ₉ H ₁₂ O ₄ N ₂	ddUrd	-0.88	-0.61	0.27
420. C ₉ H ₁₀ O ₄ N ₂	ddeUrd	-1.07	-0.57	0.50
421. C ₉ H ₁₁ O ₄ N ₂ F	FddUrd	-0.48	-0.38	0.10
422. C ₁₀ H ₁₄ O ₅ N ₂	dThd	-1.17	-1.03	0.14
423. C ₁₀ H ₁₄ O ₄ N ₂	ddThd	-0.63	-0.20	0.43
424. C ₁₀ H ₁₂ O ₄ O ₂	ddeThd	-0.81	-0.16	0.65
425. C ₁₀ H ₁₃ O ₄ N ₂ F	FddThd	-0.27	0.03	0.30
	Cyd	-0.27 -2.51	-2.86	-0.35
426. C ₉ H ₁₃ O ₅ N ₃	dCyd	-2.31 -1.77	-2.86 -2.03	-0.33 -0.26
427. C ₉ H ₁₃ O ₄ N ₃				
428. C ₉ H ₁₃ O ₃ N ₃	ddCyd	-1.30	-1.20	0.10
429. C ₉ H ₁₁ O ₃ N ₃	ddeCyd	-1.42	-1.16	0.26
430. C ₉ H ₁₂ O ₃ N ₃ F	FddCyd	-0.91	-0.97	-0.06
431. C ₁₀ H ₁₃ O ₂ N ₄ F	F6ddP	0.00	0.28	0.28
432. C ₁₀ H ₁₄ O ₂ N ₅ F	F62AddP	-0.05	-0 .11	-0.06
433. C ₁₀ H ₁₃ O ₂ N ₄ Br	Br6ddP	0.35	0.81	0.46
434. C ₁₀ H ₁₄ O ₂ N ₅ Br	Br62AddP	0.33	0.42	0.09
435. C ₁₀ H ₁₃ O ₂ N ₄ Cl	Cl6ddP	0.23	0.50	0.27
436. C ₁₀ H ₁₄ O ₂ N ₅ Cl	Cl62AddP	0.21	0.11	-0.10
437. C ₁₀ H ₁₃ O ₂ N ₄ I	I6ddP	0.52	1.00	0.48
438. C ₁₀ H ₁₄ O ₂ N ₅ I	I62AddP	0.52	0.61	0.09
439. C ₁₀ H ₁₂ O ₃ N ₄	ddI	-1.24	-1.55	-0.31
	Nucleobases			
440. C5H5N5	adenine	-0.09	0.23	0.32
441. C4H4N6	adenine, 8Aza	-0.96	-0.11	0.85
442. C ₈ H ₁₁ N ₅	9-propyladenine	0.74	0.50	-0.24
443. C ₉ H ₁₃ N ₅	9-butyladenine	1.25	0.92	-0.33
444. C ₁₀ H ₁₅ N ₅	9-pentyladenine	1.79	1.33	-0.46
445. C ₁₀ H ₁₅ ON ₅	9-(1-(hydroxymethyl)butyl))adenine	0.66	0.34	-0.32
446. C ₄ H ₅ ON ₃	cytosine	-1.73	-1.45	0.28
447. C5H7ON5	guanine	-0.91	-1.43 -1.17	-0.26
448. C ₄ H ₄ ON ₆	guanine guanine, 8Aza	-0.71 -0.71	-1.17 -1.14	-0.43
1 1 V V V 4 A A 4 V L T D				
449. C5H4ON4	hypoxanthine	-1.11	0.89	0.22

Table 4 (Continued)

formula	name	log Pea	log Pcb	log F
461 0 11 21 0	Nucleobases	0.07	0.27	^ -
451. C ₅ H ₇ N ₅ S	thioguanine	-0.07 0.63	-0.37 0.45	-0.3
452. C ₅ H ₆ O ₂ N ₂	thymine	-0.62	-0.45	0.1
453. C ₄ H ₄ O ₂ N ₂	uracil	-1.07	-0.86	0.2
454. C ₃ H ₃ O ₂ N ₃	uracil, 5Aza	-1.87	-1.91	-0.0
455. C ₃ H ₃ O ₂ N ₃	uracil, 6Aza	-0.59	-0.91	-0.3
456. C ₄ H ₃ O ₂ N ₂ F	5-fluorouracil	-0.95	-0.62	0.3
457. C ₄ H ₃ O ₂ N ₂ Cl	5-chlorouracil	-0.35	-0.40	-0.0
458. C ₄ H ₃ O ₂ N ₂ Br	5-bromouracil	-0.21	-0.09	0.1
	2-thiouracil	-0.28	-0.30	-0.0
459. C ₄ H ₄ ON ₂ S				
460. C ₅ H ₆ O ₂ N ₂	1-methyluracil	-1.20	-0.48	0.7
461. C₅H₄O₃N₂	5-formyluracil	-1.03	-1.12	-0.0
462. C ₆ H ₈ O ₂ N ₂	1,3-dimethyluracil	0.00	-0.37	-0.3
463. C ₅ H ₇ O ₂ N ₃	5-ethyl-6-azauracil	0.22	-0.45	-0.6
	Multifunctional Compour			
464. CH ₄ O ₂ N ₂	hydroxyurea	-1.27	-1.67	-0.4
465. C ₂ F ₄ Cl ₂	1,2-dichloro-1,1,2,2-tetrafluoroethane	2.82	2.46	-0.3
466. C ₂ HN ₃ Br ₂	4,5-dibromo-1,2,3-triazole	2.44	1.90	-0.5
467. C ₂ HN ₃ Br ₂	3,5-dibromo-1,2,4-triazole	2.24	1.90	-0.3
	trifluoroacetamide	0.12	-0.14	-0.2
468. C ₂ H ₂ ONF ₃				
469. C ₂ H ₂ ONCl ₃	2,2,2-trichloroacetamide	1.04	0.53	-0.5
470. C ₂ H ₃ OF ₃	2,2,2-trifluoroethanol	0.32	0.38	0.0
471. C ₂ H ₃ OCl ₃	2.2.2-trichloroethanol	1.35	1.06	-0.29
472. C ₂ H ₃ O ₂ Br	bromoacetic acid	0.41	0.47	0.0
		-1.05	-0.60	0.0
473. C ₂ H₄ONF	fluoroacetamide			
474. C₂H₄ONCl	chloroacetamide	-0.53	-0.37	0.1
475. C ₂ H ₄ ONBr	bromoacetamide	-0.52	-0.06	0.4
476. C ₂ H ₄ ONI	iodoacetamide	-0.19	0.12	0.3
477. C ₂ H ₄ O ₂ S	mercaptoacetic acid	0.09	0.32	0.2
478. C ₂ H ₄ O ₃	hydroxyacetic acid	-1.11	-1.23	-0.1
479. C ₂ H₅ON	acetaldoxime	-0.12	0.82	0.9
480. C ₂ H ₅ OF	2-fluoroethanol	-0.92	0.07	0.8
481. C ₂ H ₅ OCl	2-chloroethanol	0.03	0.16	0.13
482. C ₂ H ₅ OBr	2-bromoethanol	0.23	0.47	0.2
$483. C_2H_5O_2N_3$	1-methyl-1-nitrosourea	-0.10	-0.13	-0.0
484. C ₂ H ₅ O ₃ N	2-nitroethanol	-0.42	-0.48	-0.0
485. C ₂ H ₆ S ₂	dimethyl disulfide	1.77	1.59	-0.13
486. C ₂ H ₆ OS	methyl sulfoxide	-1.35	-0.70	0.6
487. C ₂ H ₆ N ₂	N-nitrosodimethylamine	-0.57	-0.05	0.5
$488. C_2H_6O_2N_2$	1-methyl-1-hydroxyurea	-0.46	-1.29	0.8
489. C ₂ H ₇ ON	2-hydroxylethylamine	-1.31	-1.77	-0.4
490. C ₃ HN ₂ Br ₃	2,4,5-tribromoimidazole	1.96	2.79	0.83
491. C ₃ H ₄ N ₂	imidazole	-0.08	0.28	0.30
492. C ₃ H ₄ N ₂	pyrazole	0.13	0.64	0.5
				-
493. C₃H₀ON	1-amino-2-propanol	-0.96	-1.32	-0.3
494. C ₃ H ₈ O ₂	dimethoxymethane	0.00	-0.25	-0.2
495. C ₃ H ₃ NS	thiazole	0.44	1.25	0.8
496. C ₃ H ₃ N ₂ I	4-iodopyrazole	1.70	1.83	0.13
497. C ₃ H ₃ ON	isoxazole	0.08	0.54	0.4
498. C ₃ H ₃ OF ₅	2,2,3,3,3-pentafluoropropanol	1.23	1.25	0.0
499. C ₃ H ₃ O ₂ N ₃	4-nitropyrazole	0.59	0.61	0.03
500. C ₃ H ₃ O ₂ N ₃	5-nitroimidazole	-0.16	0.24	0.40
501. C ₃ H ₄ O ₂ N ₂	hydantoin	-1.69	-1.26	0.4
502. C ₃ H ₅ NS	ethyl isothiocyanate	1.47	2.12	0.6
	1.1.1-trifluoro-2-propanol	0.71		
503. C ₃ H ₅ OF ₃			0.84	0.13
504. C ₃ H ₅ O ₂ Br	lpha-bromopropionic acid	0.92	0.82	-0.1
505. C ₃ H ₆ N ₂ S	ethylenethiourea	-0.66	-0.35	0.3
506. C ₃ H ₆ O ₂ S	3-mercaptopropionic acid	0.43	0.74	0.3
507. C ₃ H ₆ O ₂ N ₃ Cl	1-(2-chloroethyl)-1-nitrosourea	0.57	0.76	0.1
508. C ₃ H ₆ O ₃	hydroxypropionic acid	-0.62	-0.82	-0.0
509. C ₃ H ₇ O ₂ N	methyl N-methylcarbamate	-0.06	-0.15	-0.09
510. C ₃ H ₇ O ₂ N	urethane	-0.15	-0.18	-0.03
511. C ₃ H ₈ ON ₂	N-ethylurea	-0.74	-0.41	0.3
512. C ₃ H ₈ O ₂ N ₂	1-ethyl-1-hydroxyurea	-0.10	-0.87	-0.7
513. C ₃ H ₈ O ₂ N ₂	3-ethyl-1-hydroxyurea	-0.76	-0.81	-0.0
514. C ₃ H ₈ O ₃	glycerol	-1.79	-1.71	0.0
515. C₃H ₉ O₄P	trimethyl phosphate	-0.52	-0.43	0.0
516. C ₄ H ₃ N ₃	4-cyanopyrazole	0.24	0.32	0.0
517. C ₄ H ₅ N	pyrrole	0.75	0.66	-0.0
	* *			
518. C ₄ H ₄ N ₂	pyrazine	-0.22	0.82	1.0
519. C ₄ H ₄ N ₂	pyrimidine	-0.40	0.82	1.2
520. C ₄ H ₄ ON ₂	pyrazin-2-one	−1.49	-1.31	0.13
521. C ₄ H ₄ ON ₂	2-pyrimidone	-1.62	-1.95	-0.3
522. C ₄ H ₄ ON ₂	4-pyrimidone	-1.02 -1.38	-1.35 -1.31	
				0.0
	barbituric acid	-1.44	-1.18	0.2
523. C ₄ H ₄ O ₃ N ₂ 524. C ₄ H ₅ N ₃	2-aminopyrazine	-0.07	0.16	0.2.
	2-aminopyrazine 2-aminopyrimidine	-0.07 -0.22	0.16 0.21	0.2: 0.0:

Table 4 (Continued)

formula	name	$\log P_{\mathrm{e}}^{a}$	$\log P_{\rm c}^{\ b}$	$\log P_{\rm r}^c$
	Multifunctional Compounds			
527. C ₄ H ₅ ON ₃ S	3-(methylthio)-4-amino-1.2.4-triazin-5-one	0.38	-0.15	-0.53
528. C ₄ H ₅ O ₂ F ₃	2,2,2-trifluoroethyl acetate	1.18	1.31	0.13
529. C ₄ H ₅ O ₂ N ₃	2-methylimidazole	0.49	0.66	0.17
530. C₄H ₆ OS	γ -thiobutyrolactone	0.60	1.00	0.40
531. C ₄ H ₆ O ₂	γ -butyrolactone	-0.64	-0.50	0.14
532. C ₄ H ₆ O ₃ N ₄ S ₂	2-(acetylamino)-1,3,4-thiadiazole-5-sulfamide	-0.26	-0.75	-0.49
533. C ₄ H ₆ O ₄	succinic acid	-0.59	-0.40	0.19
534. C ₄ H ₆ O ₅	malic acid	-1.26	-1.28	-0.02
535. C ₄ H ₇ NS	2-azacyclopentathione	-0.05	0.17	0.22
536. C ₄ H ₇ OCl ₃	β,β,β -trichloro- <i>tert</i> -butyl alcohol	2.03	2.13	0.10
537. C ₄ H ₇ O ₂ Br	α -bromobutyric acid	1.42	1.24	-0.18
538. C ₄ H ₇ O ₄ PCl ₂	dichlorovinyl phosphate-O,O-dimethyl	1.40	1.12	-0.28
539. C ₄ H ₈ N ₂	2-methyl-2-imidazoline	0.52	0.61	0.09
540. C ₄ H ₈ ONBr	N-ethylbromoacetamide	0.34	0.80	0.46
541. C ₄ H ₈ ON ₂	N-nitrosopyrrolidine	-0.19	-0.02	0.17
542. C ₄ H ₈ ON ₂ S	N-nitroso-4-thiomorpholine	0.40	0.79	0.39
543. C ₄ H ₈ O ₂	1,4-dioxane	-0.27	0.46	0.73
544. C ₄ H ₈ O ₂ N ₂	N-nitrosomorpholine	-0.44	-0.16	0.28
545. C ₄ H ₈ O ₂ N ₄	N,N'-dinitrosopiperazine	-0.85	-0.78	0.07
546. C₄H ₈ O ₃	lpha-hydroxybutyric acid	-0.36	-0.36	0.00
547. C₄H ₉ N	pyrrolidine	0.46	-0.16	-0.62
548. C₄H9ON	morpholine	-1.08	-0.30	0.78
549. C ₄ H ₉ O ₂ N ₃	1-nitroso-1,3,3-trimethylurea	0.36	0.71	0.35
550. C ₄ H ₁₀ N ₂	piperazine	-1.17	-1.05	0.12
551. C ₄ H ₁₀ ON ₂	N-nitrosodiethylamine	0.48	0.78	0.30
552. C ₄ H ₁₀ O ₂	2,3-butanediol	-0.92	-0.32	0.60
553. C ₄ H ₁₀ O ₂	2-ethoxyethanol	-0.54	-0.12	0.42
554. C ₄ H ₁₁ O ₂ N	bis(2-hydroxyethyl)amine	-1.43	-1.77	-0.34
555. C ₄ H ₁₀ O ₂ N ₂	1-hydroxy-3-propylurea	-0.22	-0.39	-0.17
556. C5BCl5	2,3,4,5,6-pentachloropyridine	3.53	4.47	0.94
557. C ₅ H ₃ NCl ₂	2,3-dichloropyridine	2.11	2.50	0.39
558. C ₅ H ₃ NCl ₂	2,5-dichloropyrimidine	2.40	2.50	0.10
559. C ₅ H ₃ NCl ₂	2,6-dichloropyridine	2.15	2.50	0.35
560. C ₅ H ₃ NCl ₂	3,5-dichloropyridine	2.56	2.50	-0.06
561. C ₅ H ₄ NCl	2-chloropyridine	1.28	1.85	0.57
562. C ₅ H ₄ NCl	3-chloropyridine	1.33	1.85	0.52
563. C ₅ H ₄ NBr	2-bromopyridine	1.42	2.03	0.61
564. C ₅ H ₄ NBr	3-bromopyridine	1.60	2.03	0.43
565. C ₅ H ₄ NBr	4-bromopyrdine	1.54	2.03	0.49
566. C ₅ H ₄ ON ₄	hypoxanthine	-1.31	-1.21	0.10
567. C ₅ H ₄ O ₂ N ₂	2-nitropyridine	0.48	1.16	0.68
568. C ₅ H ₄ O ₂ N ₂	3-nitropyridine	0.60	1.16	0.56
569. C ₅ H ₄ O ₃ N ₄	uric acid	-2.92	-2.35	0.57
570. C ₅ H ₅ N	pyridine	0.64	1.20	0.56
571. C ₅ H ₅ ON	2-hydroxypyridine	-0.58	-0.05	0.53
572. C ₅ H ₅ ON	pyridine 1-oxide	-1.30	-0.23	1.07
573. C ₅ H ₅ O ₂ F ₅	pentafluoropropionic acid ethyl ester	2.12	2.18	0.06
574. C ₅ H ₆ N ₂	2-aminopyridine	0.58	0.54	-0.04
575. C ₅ H ₆ N ₂	2-minopyriume 2-methylpyrazine	0.23	1.23	1.00
576. C ₅ H ₆ N ₂	3-aminopyridine	0.11	0.54	0.43
577. C ₅ H ₆ N ₂	4-aminopyridine	0.28	0.54	0.43
578. C ₅ H ₇ O ₃ N ₃	1-methyl-2-(hydroxymethyl)-5-nitroimidazo	-0.03	-0.48	-0.45
579. C ₅ H ₈ ON ₄ S	3-methylthio-4-amino-6-methyl-1,2,4-triazin-5-one	-0.16	0.24	0.40
580. C ₅ H ₈ O ₂	acetylacetone	0.34	0.05	-0.29
	8-valerolactone	-0.35	-0.14	0.29
581. C ₅ H ₈ O ₂ 582. C ₅ H ₈ O ₂ N ₂	N-nitroso-4-piperidone	-0.47	-0.14 -0.21	0.21
583. C ₅ H ₈ O ₃ N ₂	1,3-diacetylurea	-0.68	-0.21 -0.22	0.46
	butyl thiocyanate	2.03	1.76	-0.27
584. C ₅ H ₉ NS 585. C ₅ H ₁₀ ON ₂	N-nitrosopiperidine	0.63	0.34	-0.29
	3-hydroxy-N-nitrosopiperidine	-0.47	-0.49	-0.29 -0.02
586. C ₅ H ₁₀ O ₂ N ₂ 587. C ₅ H ₁₀ O ₂ N ₂	4-hydroxy-N-nitrosopiperidine	-0.47 0.89	-0.49 -0.49	0.40
588. C ₅ H ₁₀ O ₂ N ₄	2-methyl-N,N'-dinitrosopiperazine	-0.28	-0.37	-0.09
589. C ₅ H ₁₀ O ₅	D-ribose	-2.32	-2.42	-0.10
590. C ₅ H ₁₀ O ₅	L-arabinose	-3.02	-2.37	0.65
591. C ₅ H ₁₁ N	piperidine	0.85	0.20	-0.65
592. C ₅ H ₁₁ ON	4-methylmorpholine	-0.33	0.23	0.56
593. C ₅ H ₁₂ ON ₂	N-butylurea	0.41	0.42	0.01
594. C ₅ H ₁₁ ON ₃	4-methyl-N-nitrosopiperazine	0.20	-0.39	-0.59
595. C ₅ H ₁₁ O ₂ N	propyl N-methylcarbamate	0.95	0.68	-0.27
596. C ₅ H ₁₂ O ₂	1-isopropoxyethanol	0.05	0.23	0.18
597. C ₅ H ₁₂ O ₂	diethoxymethane	0.84	0.58	-0.26
598. C ₅ H ₁₂ O ₂ N ₂	1-hydroxy-3-butylurea	0.32	0.02	-0.30
599. C ₆ HOF ₅	pentafluorophenol	3.23	2.55	-0.68
600. C ₆ HOCl ₅	pentarhaoi ophenoi	5.12	4.73	-0.39
601. C ₆ H ₂ OCl ₄	2,3,4,6-tetrachlorophenol	4.10	4.08	-0.02
		3.72	3.42	-0.30
602. C ₆ H ₃ OCl ₃	2,4,5-trichlorophenol	3.12		-11.111

formula	name	log Pea	$\log P_{\rm c}^{\ b}$	log P,
604 C H OD-	Multifunctional Com		2.07	
604. C ₆ H ₃ OBr ₃	2,4,6-tribromophenol	3.96 4.37	3.97	0.01
605. C ₆ H ₃ O ₂ Br ₃	2,4,6-tribromoresorcinol	4.37 2.94	3.86	-0.51
606. C ₆ H ₃ O ₃ NCl ₂	2,6-dichloro-4-nitrophenol		3.11	0.17
607. C ₆ H ₃ O ₃ NBr ₂	2,6-dibromo-4-nitrophenol	3.05	3.47	0.42
608. C ₆ H ₃ O ₆ B ₃	1,3,5-trinitrobenzene	1.18 0.50	1.48	0.30
609. C ₆ H ₄ N ₂	2-cyanopyridine		0.88	0.38
610. C ₆ H ₄ N ₂	3-cyanopyridine	0.36	0.88	0.52
611. C ₆ H ₄ N ₂	4-cyanopyridine	0.46	0.88	0.42
612. C ₆ H ₄ OCl ₂	2,5-dichlorophenol	3.20	2.77	-0.43
613. C ₆ H ₄ OCl ₂	2,4-dichlorophenol	3.30	2.77	-0.53
614. C ₆ H ₄ OBr ₂	2,4-dibromophenol	3.22	3.13	-0.09
615. C ₆ H ₄ O ₂	quinone	0.20	0.44	0.24
616. C ₆ H₄O ₂ NCl	p-chloronitrobenzene	2.39	2.20	0.19
617. C ₆ H₄O ₂ NCl	3-chloro-1-nitrobenzene	2.46	2.20	-0.26
618. C ₆ H ₄ O ₂ NCl	2-chloro-1-nitrobenzene	2.24	2.20	-0.04
619. C ₆ H ₄ O ₂ NBr	4-bromo-1-nitrobenzene	2.55	2.38	-0.17
620. C ₆ H ₄ O ₂ NBr	3-bromo-1-nitrobenzene	2.64	2.38	-0.26
621. C ₆ H ₄ O ₂ NI	3-iodonitrobenzene	2.94	2.74	-0.20
622. C ₆ H ₄ O ₄ N ₂	m-dinitrobenzene	1.49	1.51	0.02
623. C ₆ H ₄ O ₄ N ₂	o-dinitrobenzene	1.58	1.51	-0.07
624. C ₆ H ₄ O ₄ N ₂	p-dinitrobenzene	1.49	1.51	0.02
		2.32	1.77	-0.55
625. C ₆ H ₄ O ₅ N ₂	3,5-dinitrophenol			
626. C ₆ H ₄ O ₅ N ₂	2,4-dinitrophenol	1.51	1.77	0.26
627. C ₆ H ₄ O ₅ N ₂	2,6-dinitrophenol	1.25	1.40	0.15
628. C ₆ H₄O ₅ N ₂	2,5-dinitrophenol	1.75	1.58	-0.17
629. C ₆ H ₅ N ₃	benzotriazole	1.34	1.24	-0.10
630. C ₆ H ₅ I	iodobenzene	3.25	2.77	-0.48
631. C ₆ H ₅ NCl ₂	2,3-dichloroaniline	2.78	2.23	-0.55
632. C ₆ H ₅ NCl ₂	3,4-dichloroaniline	2.69	2.23	-0.46
633. C ₆ H ₅ OF	p-fluorophenol	1.79	1.68	-0.11
634. C ₆ H ₅ OF	m-fluorophenol	1.93	1.68	-0.25
635. C ₆ H ₅ OF	o-fluorophenol	1.71	1.68	-0.03
636. C ₆ H ₅ OCl	p-chlorophenol	2.35	2.11	-0.24
	o-chlorophenol	2.15	2.11	-0.24 -0.04
637. C ₆ H ₅ OCl				
638. C ₆ H ₅ OCl	m-chlorophenol	2.50	2.11	-0.39
639. C ₆ H ₅ OBr	o-bromophenol	2.35	2.30	-0.05
640. C ₆ H ₅ OBr	p-bromophenol	2.43	2.30	-0.13
641. C ₆ H₅OBr	<i>m</i> -bromophenol	2.63	2.30	-0.33
642. C ₆ H ₅ OI	m-iodophenol	2.93	2.65	-0.28
643. C ₆ H ₅ OI	o-iodophenol	2.65	2.65	0.00
644. C ₆ H ₅ OI	p-iodophenol	2.91	2.65	-0.26
645. C ₆ H ₅ O ₂ N	N-hydroxybenzoquinone	1.08	1.31	0.23
646. C ₆ H ₅ O ₂ N	picolinic acid	-1.98	-2.17	-0.19
647. C ₆ H ₅ O ₂ NSCl ₂	3,4-dichlorobenzenesulfonamide	1.44	1.86	0.42
648. C ₆ H ₅ O ₃ N	3-hydroxypicolinic acid	-1.27	-1.86	-0.59
649. C ₆ H ₅ O ₃ N	m-nitrophenol	2.01	1.61	-0.40
650. C ₆ H ₅ O ₃ N	o-nitrophenol	1.79	1.43	-0.36
651. C ₆ H ₅ O ₃ N	p-nitrophenol	1.91	1.80	-0.11
652. C ₆ H ₅ O ₄ N	2-nitropienol	1.36	1.31	-0.05
	m-fluoroaniline			
653. C ₆ H ₆ NF		1.30	1.14	-0.16
654. C ₆ H ₆ NF	o-fluoroaniline	1.26	1.14	-0.12
655. C ₆ H ₆ NF	p-fluoroaniline	1.15	1.14	-0.01
656. C ₆ H ₆ NCl	m-chloroaniline	1.88	1.58	-0.30
657. C ₆ H ₆ NCl	o-chloroaniline	1.90	1.58	-0.32
658. C ₆ H ₆ NCl	p-chloroaniline	1.83	1.58	-0.25
659. C ₆ H ₆ NBr	m-bromoaniline	2.10	1.76	0.34
660. C ₆ H ₆ NBr	o-bromoaniline	2.29	1.76	0.53
661. C ₆ H ₆ NBr	p-bromoaniline	2.26	1.76	-0.50
662. C ₆ H ₆ ON ₂	nicotinamide	-0.37	0.15	0.52
663. C ₆ H ₆ ON ₃ F	2-fluoroisoniazide	-0.11	0.21	0.32
664. C ₆ H ₆ ON ₃ Cl	2-chloroisoniazide	0.11	0.64	0.53
665. C ₆ H ₆ O ₂	p-dihydroxybenzene	0.59	1.34	0.75
666. C ₆ H ₆ O ₂	<i>p</i> -dihydroxybenzene <i>m</i> -dihydroxybenzene	0.80	1.34	0.73
	o-dihydroxybenzene	0.88	1.34	
667. C ₆ H ₆ O ₂				0.46
668. C ₆ H ₆ O ₂ N ₂	3-hydroxypicolinamide	0.65	0.76	0.11
669. C ₆ H ₆ O ₂ N ₂	m-nitroaniline	1.37	1.19	-0.18
670. C ₆ H ₆ O ₂ N ₂	o-nitroaniline	1.44	0.89	-0.55
671. C ₆ H ₆ O ₂ N ₂	p-nitroaniline	1.39	1.49	0.10
672. C ₆ H ₆ O ₂ NSCl	m-chlorobenzenesulfonamide	1.29	1.21	-0.08
673. C ₆ H ₆ O₂NSCl	o-chlorobenzenesulfonamide	0.74	1.21	0.47
674. C ₆ H ₆ O₂NSCl	p-chlorobenzenesulfonamice	0.84	1.21	0.37
675. C ₆ H ₆ O ₂ NSBr	p-bromobenzenesulfonamide	1.36	1.39	0.03
676. C ₆ H ₆ O ₄ N ₂ S	o-nitrobenzenesulfonamide	0.34	0.53	0.19
677. C ₆ H ₆ O ₄ N ₂ S	p-nitrobenzenesulfonamide	0.64	0.53	-0.11
678. C ₆ H ₆ O ₄ N ₂ S	m-nitrobenzenesulfonamide	0.55	0.53	-0.02
679. C ₆ H ₇ N	2-methylpyridine	1.11	1.61	0.50
- · · · · · · · · · · · · · · · · · · ·				
680. C ₆ H ₇ N	3-methylpyridine	1.20	1.61	0.41

Table 4 (Continued)

formula	name	log P_{e}^{a}	$\log P_{\rm c}^b$	$\log P_{\rm r}^c$
682 C.U.O	Multifunctional Compounds N-phenylhydroxyamine	0.79	1.16	0.27
682. C ₆ H ₇ O 683. C ₆ H ₇ ON	m-aminophenol	0.17	0.81	0.37 0.64
684. C ₆ H ₇ ON	α -pyridylmethanol	0.17	0.68	0.62
685. C ₆ H ₇ ON	β -pyridylmethanol	-0.02	0.68	0.70
686. C ₆ H ₇ ON	γ -pyridylmethanol	0.06	0.68	0.62
687. C ₆ H ₇ ON	o-aminophenol	0.57	0.81	0.02
688. C ₆ H ₇ ON	p-aminophenol	0.04	0.81	0.77
689. C ₆ H ₇ ON ₃	6-aminonicotinamide	0.70	-0.50	-1.20
690. C ₆ H ₇ ON ₃	isoniazid	-1.14	-0.01	1.13
691. C ₆ H ₇ OCl ₅	1-hydroxypentachlorocyclohexane	2.54	2.91	0.37
692. C ₆ H ₇ O ₂ NS	benzenesulfonamide	0.31	0.56	0.25
693. C ₆ H ₇ O ₃ NS	p-phenoisulfonamide	0.06	0.44	0.38
694. C ₆ H ₈ N ₂	2-amino-4-picoline	0.56	0.95	0.39
695. C ₆ H ₈ N ₂	α -pyridilmethylamine	-0.21	0.47	0.68
696. C ₆ H ₈ N ₂	β -pyridylmethylamine	-0.21 -0.32	0.47	0.79
697. C ₆ H ₈ N ₂	γ -pyridylmethylamine γ -pyridylmethylamine	-0.32 -0.38	0.47	0.85
698. C ₆ H ₈ N ₂	2-amino-5-methylpyridine	1.02	0.95	-0.07
699. C ₆ H ₈ N ₂	4,6-dimethylpyrimidine	0.62	1.64	1.02
	o-diaminobenzene	0.02		
700. C ₆ H ₈ N ₂	m-aminobenzenesulfonamide		0.27	0.12
701. C ₆ H ₈ O ₂ N ₂ S		-1.20	-0.10	1.10
702. C ₆ H ₈ O ₂ N ₂ S	N-phenylsulfamide	0.40	0.58	0.18
03. C ₆ H ₈ O ₂ N ₂ S	sulfanilamide	0.78	-1.03	-0.25
04. C ₆ H ₈ O ₄ N ₄	romidazole	-0.38	-0.16	0.22
705. C ₆ H ₈ O ₇	citric acid	-1.72	-1.18	0.54
06. C ₆ H ₉ O ₃ N	trimethadione	-0.37	-0.36	0.01
07. C ₆ H ₉ O ₃ N ₃	metronidazole	-0.10	-0.06	0.04
708. C ₆ H ₁₀ O ₃	4-ketovaleric acid methyl ester	-0.13	0.54	0.67
09. C ₆ H ₁₀ O ₄	adipic acid	0.08	0.43	0.35
10. C ₆ H ₁₁ NS	2-azacycloheptanthion	0.75	0.90	0.15
711. C ₆ H ₁₁ ON	2-azacycloheptanone	-0.19	0.09	0.28
712. C ₆ H ₁₁ O ₂ N ₂ Cl	α -chloroisovalerylurea	1.00	0.84	-0.16
13. C ₆ H ₁₂ ON ₂	2-methyl-N-nitrosopiperidine	0.71	0.75	0.04
14. C ₆ H ₁₂ ON ₂	3-methyl-N-nitrosopiperidine	0.99	0.75	-0.24
15. C ₆ H ₁₂ ON ₂	4-methyl-N-nitrosopiperidine	1.05	0.75	-0.30
16. C ₆ H ₁₃ O ₂ N	pentyl carbamate	1.35	1.06	-0.29
117. C ₆ H ₁₃ O ₂ N	tert-pentyl carbamate	0.94	1.03	0.09
18. C ₆ H ₁₂ O ₂ N ₂	2,6-dimethyl-N-nitrosomorpholine	0.32	0.65	0.33
19. C ₆ H ₁₂ O ₂ N ₄	2,6-dimethyl-N,N'-dinitrosopiperazine	0.08	0.03	-0.05
20. C ₆ H ₁₃ O ₂ N ₃	1-nitroso-3,3-diethyl-1-methylurea	1.11	1.54	0.43
21. C ₆ H ₁₄ O ₂	2-butoxyethanol	0.83	0.71	-0.12
22. C ₆ H ₁₄ O ₂	diethylacetal	0.84	0.93	0.09
23. C ₆ H ₁₄ ON ₂	1-nitrosodiisopropylamine	1.63	1.46	-0.17
24. C ₆ H ₁₄ ON ₂	N-nitrosodipropylamine	1.63	1.61	-0.02
25. C ₆ H ₁₆ N ₂	N.N.N'.N'-tetramethylethylenediamine	0.30	0.90	0.60
26. C ₇ HN ₂ Cl ₅	2,4,5,6,7-pentachlorobenzimidazole	4.53	4.56	0.03
27. C ₇ H ₄ NSBr	p-bromophenyl isothiocyanate	4.03	3.91	-0.12
28. C ₇ H ₄ N ₄	phenylenetetrazole	0.14	0.50	0.36
29. C ₇ H ₄ O ₂ N ₂	3-cyano-1-nitrobenzene	1.17	1.23	0.06
30. C ₇ H ₄ O ₂ N ₂	4-cyano-1-nitrobenzene	1.19	1.23	0.04
31. C ₇ H ₄ O ₂ N ₂ S	4-nitrophenyl isothiocyanate	3.62	3.04	-0.58
32. C ₇ H ₄ O ₃ I ₂	3,5-diiodosalicylic acid	4.56	4.48	-0.08
33. C ₇ H ₅ NS	phenyl isothiocyanate	3.28	3.07	-0.21
34. C ₇ H ₅ NS	phenyl thiocyanate	2.54	1.88	-0.66
35. C ₇ H ₅ NS	benzothiazole	2.02	2.27	0.25
36. C ₇ H ₅ F ₃ S	trifluoromethylthiobenzene	3.57	3.16	-0.41
'37. C ₇ H ₅ N₄Cl	1-phenyl-4-chlorotetrazole	1.48	1.98	0.50
⁷ 38. C ₇ H ₅ SCl ₃	trichloromethylthiobenzene	3.78	3.84	0.06
739. C ₇ H₅ON	o-cyanophenol	1.61	1.14	-0.47
740. C ₇ H ₅ ON	m-cyanophenol	1.70	1.14	-0.56
41. C ₇ H ₅ ON	p-cyanophenol	1.60	1.14	-0.46
742. C7H5ON2Cl	zoxazolamine	2.46	1.56	-0.90
743. C ₇ H ₅ OF ₃	trifluoromethoxybenzene	3.17	2.28	-0.89
744. C ₇ H ₅ OF ₃	m-trifluoromethylphenol	2.95	2.56	-0.39
745. C ₇ H ₅ OF ₃	o-trifluoromethylphenol	2.80	2.56	-0.24
746. C ₇ H ₅ O ₂ F	m-fluorobenzoic acid	2.15	2.01	-0.14
747. C ₇ H ₅ O ₂ F	p-fluorobenzoic acid	2.07	2.01	-0.06
748. C ₇ H ₅ O ₂ Cl	m-chlorobenzoic acid	2.68	2.45	-0.23
749. C7H5O2Cl	o-chlorobenzoic acid	1.98	2.45	0.47
750. C ₇ H ₅ O ₂ Cl	p-chlorobenzoic acid	2.65	2.45	-0.20
751. C ₇ H ₅ O ₂ Br	m-bromobenzoic acid	2.87	2.63	-0.24
752. C ₇ H ₅ O ₂ Br	p-bromobenzoic acid	2.86	2.63	-0.23
753. C ₇ H ₅ O ₂ I	m-iodobenzoic acid	3.13	2.98	-0.15
754. C ₇ H ₅ O ₂ I	o-iodobenzoic acid	2.40	2.98	0.58
755. C ₇ H ₅ O ₂ I	p-iodobenzoic acid	3.02	2.98	-0.0 4
756. C ₇ H ₅ O ₂ F ₃ S	phenyl trifluoromethyl sulfone	2.68	1.86	-0.82
757. C ₇ H ₅ O ₃ Br	5-bromosalicylic acid	2.87	2.93	0.06
				0.00
758. C7H5O3B1	m-nitrobenzoic acid	1.83	1.76	-0.07

Table 4 (Continued)

formula	name	log Pea	log Pcb	log P _r
	Multifunctional Con			
760. C ₇ H ₅ O ₅ N	5-nitrosalicylic acid	2.34	2.43	0.09
761. C ₇ H ₅ O ₅ N ₃	3,5-dinitrobenzamide	0.83	0.47	-0.3
762. C ₇ H ₆ NF ₃	p-trifluoromethylaniline	1.95	2.03	0.08
763. C ₇ H ₆ N ₂	7-azaindole	1.82	1.29	-0.53
764. C ₇ H ₆ N ₂	benzimidazole	1.46	1.29	-0.17
765. C ₇ H ₆ N ₂	4-cyano-2-methylpyridine	0.81	1.29	0.48
766. C ₇ H ₆ N ₂	2-cyano-6-methylpyridine	0.84	1.29	0.45
767. C ₇ H ₆ N ₂	indazole	1.82	1.66	-0.16
768. C ₇ H ₆ N ₂ S	o-phenylenethiourea	1.66	0.71	-0.95
769. C ₇ H ₆ N ₄	1-phenyltetrazole	1.09	1.00	-0.09
770. C ₇ H ₆ ONF	m-fluorobenzamide	0.91	0.75	-0.16
771. C ₇ H ₆ ONF	p-fluorobenzamide	0.91	0.75	-0.16
772. C ₇ H ₆ ONCl	m-chlorobenzamide	1.51	1.18	-0.33
773. C ₇ H ₆ OBCl	p-chlorobenzamide	1.51	1.18	-0.33
744. C ₇ H ₆ ONBr	m-bromobenzamide	1.65	1.37	-0.28
775. C ₇ H ₆ ONBr	p-bromobenzamide	1.76	1.37	-0.39
776. C ₇ H ₆ ONI	p-iodobenzamide	1.99	1.72	-0.27
777. C ₇ H ₆ O ₂	1,2-methylenedioxybenzene	2.08	1.64	-0.44
778. C ₇ H ₆ O ₂	o-hydroxybenzaldehyde	1.70	1.93	0.23
		0.53		
779. C ₇ H ₆ O ₂	tropolone		0.95	0.42
780. C ₇ H ₆ O ₂ NF	2-fluoro-4-aminobenzoic acid	0.46	0.29	-0.17
781. C ₇ H ₆ O ₂ NF	3-fluoro-4-aminobenzoic acid	0.58	0.29	-0.29
782. C ₇ H ₆ O ₂ NCl	2-chloro-4-aminobenzoic acid	0.50	0.73	0.23
783. C ₇ H ₆ O ₂ NCl	3-chloro-4-aminobenzoic acid	1.52	0.73	-0.79
784. C ₇ H ₆ O ₂ NBr	2-bromo-4-aminobenzoic acid	0.66	0.92	0.26
785. C ₇ H ₆ O ₂ NBr	3-bromo-4-aminobenzoic acid	1.40	0.92	-0.48
786. C ₇ H ₆ O ₂ NI	2-iodo-4-aminobenzoic acid	0.82	1.27	0.45
787. C ₇ H ₆ O ₂ NI	3-iodo-4-aminobenzoic acid	1.53	1.27	-0.26
788. C ₇ H ₆ O ₂ N ₂ S	p-cyanobenzenesulfonamide	0.23	0.24	0.01
789. C ₇ H ₆ O ₃	salicylic acid	2.26	2.09	-0.17
790. C ₇ H ₆ O ₃	m-hydroxybenzoic acid	1.50	1.68	0.18
	· · · · · · · · · · · · · · · · · · ·	1.58	1.68	0.10
791. C ₇ H ₆ O ₃	p-hydroxybenzoic acid			
792. C ₇ H ₆ O ₃ N ₂	m-nitrobenzamide	0.77	0.50	-0.27
793. C ₇ H ₆ O ₃ N ₂	p-nitrobenzamide	0.82	0.50	-0.32
794. C ₇ H ₆ O ₃ N ₂	<i>p</i> -nitroformanilide	1.43	1.02	-0.41
795. C ₇ H ₆ O ₄	2,4-dihydroxybenzoic acid	1.44	1.98	0.54
796. C ₇ H ₆ O ₄	2,6-dihydroxybenzoic acid	2.20	2.40	0.20
797. C ₇ H ₆ O ₄	2,5-dihydroxybenzoic acid	1.74	1.98	0.24
798. C ₇ H ₆ O ₄ N ₂	2,4-dinitrotoluene	1.98	1.92	-0.06
799. C ₇ H ₆ O ₄ N ₂	2-nitro-4-aminobenzoic acid	0.38	0.35	-0.03
800. C ₇ H ₇ NS	thiobenzamide	1.49	1.33	-0.16
801. C ₇ H ₇ N ₃	1-methylbenzotriazole	1.13	1.03	-0.10
802. C ₇ H ₇ ON	2-acetylpyridine	0.83	1.11	0.28
803. C ₇ H ₇ ON	4-acetylpyridine	0.54	1.11	0.57
804. C ₇ H ₇ ON	3-acetylpyridine	0.43	1.11	0.68
805. C ₇ N ₇ ON	benzaldoxime	1.75	2.19	0.44
806. C ₇ H ₇ OCl	2-methyl-4-chlorophenol	2.78	2.52	-0.26
807. C ₇ H ₇ OCl	3-methyl-4-chlorophenol	3.10	2.52	-0.58
	m-chlorobenzyl alcohol	1.94		
808. C ₇ H ₇ OCl			1.71	-0.23
809. C ₇ H ₇ OCl	p-chlorobenzyl alcohol	1.96	1.71	-0.25
810. C ₇ H ₇ O ₂ N	isonicotinic acid methyl ester	0.87	1.19	0.32
811. C ₇ H ₇ O ₂ N	nicotinic acid methyl ester	0.81	1.19	0.38
812. $C_7H_7O_2N$	m-hydroxybenzamide	0.39	0.41	0.02
$813. C_7H_7O_2N$	p-hydroxybenzamide	0.25	0.41	0.16
814. C ₇ H ₇ O ₂ N	benzohydroxamic acid	0.26	0.13	-0.13
815. C ₇ H ₇ O ₂ N	salicylamide	0.89	1.14	0.25
816. C ₇ H ₇ O ₂ N	p-aminobenzoic acid	0.68	0.08	-0.60
817. C ₇ H ₇ O ₂ N	o-aminobenzoic acid	1.21	1.14	-0.07
818. C ₇ H ₇ O ₂ FS	p-fluorosulfonyltoluene	2.74	1.40	-1.34
819. C ₇ H ₇ O ₃ N	3-hydroxy-4-aminobenzoic acid	-0.32	-0.04	0.28
820. C ₇ H ₇ O ₃ N	p-aminosalicylic acid	0.87	0.38	-0.49
821. C ₇ H ₇ O ₃ N	m-nitrobenzyl alcohol	1.21	1.03	-0.47 -0.18
	•	1.26		
822. C ₇ H ₇ O ₃ N	p-nitrobenzyl alcohol		1.03	-0.23
823. C ₇ H ₇ O ₃ N	p-nitroanisole	2.03	1.55	-0.48
824. C ₇ H ₇ O ₃ N	m-nitroanisole	2.16	1.55	-0.61
825. C ₇ H ₈ ON ₂	m-aminobenzamide	0.33	-0.12	-0.45
826. C ₇ H ₈ ON ₂	p-aminobenzamide	0.02	-0.12	-0.14
827. C ₇ H ₈ ON ₂	benzoylhydrazine	0.19	0.37	0.18
828. C ₇ H ₈ ON ₂	2-acetaminopyridine	0.61	0.60	-0.01
829. C ₇ H ₈ ON ₂	3-acetaminopyridine	0.41	0.60	0.19
830. C ₇ H ₈ ON ₂	4-acetaminopyridine	0.59	0.60	0.01
831. C ₇ H ₈ ON ₂	α-pyridylethanamide	-0.65	-0.34	0.31
832. C ₇ H ₈ ON ₂	β -pyridylethanamide	-0.71	-0.34	0.37
833. C ₇ H ₈ ON ₂	γ -pyridylethanamide	-0.65	-1.24	-0. 5 9
834. C ₇ H ₈ ON ₂	phenylurea	0.82	0.54	-0.28
835. C ₇ H ₈ ON ₂ S	phenylthiourea	0.73	1.03	0.30
V/110V172U				
836. C ₇ H ₈ OS	methyl phenyl sulfoxide	0.55	0.67	0.12

Table 4 (Continued)

formula	name	$\log P_{\mathrm{e}}^{a}$	$\log P_{\rm c}^{b}$	log Pr
838. C ₇ H ₈ O ₂	Multifunctional Compounds m-hydroxybenzyl alcohol	0.49	0.94	0.45
839. C ₇ H ₈ O ₂	o-hydroxybenzyl alcohol	0.73	0.94	0.43
840. C ₇ H ₈ O ₂	p-hydroxybenzyl alcohol	0.25	0.94	0.69
841. C ₇ H ₈ O ₂	o-methoxyphenol	1.32	1.47	0.15
842. C ₇ H ₈ O ₂	m-methoxyphenol	1.58	1.47	-0.11
843. C ₇ H ₈ O ₂	p-methoxyphenol	1.34	1.47	0.13
844. C ₇ H ₈ O ₂ N ₂	2,4-diaminobenzoic acid	-1.14	-0.58	0.56
845. C ₇ H ₈ O ₂ N ₂	3,4-diaminobenzoic acid	-0.70 2.04	-1.11	-0.41
846. C ₇ H ₈ O ₂ N ₂ 847. C ₇ H ₈ O ₂ S	p-nitro-N-methylaniline methyl phenyl sulfone	2.0 4 0.47	1.98 1.17	-0.06 0.70
848. C ₇ H ₈ O ₂ S	2-carboxylic acid ethyl thiophene	2.33	2.04	-0.29
849. C ₇ H ₈ O ₂ N ₄	3,7-dimethylxanthine	-0.78	-1.24	-0.46
850. C ₇ H ₈ O ₃	furoic acid ethyl ester	1.52	1.33	-0.19
851. C ₇ H ₉ N	2-ethylpyridine	1.69	2.02	0.33
852. C ₇ H ₉ N	2,6-lutidine	1.68	2.02	0.34
853. C ₇ H ₉ NS	m-(methylthio)aniline	1.45	1.82	0.37
854. C ₇ H ₉ NS	o-(methylthio)aniline	1.20	1.82	0.62
855. C ₇ H ₉ SCl ₅	1-(methylthio)pentachlorocyclohexane	3.75	4.63	0.88
856. C ₇ H ₉ ON	2-(α-pyridyl)ethanol	0.12	1.09	0.97
857. C ₇ H ₉ ON	2-(β-pyridyl)ethanol	0.12 0.10	1.09	0.97 0.99
858. C ₇ H ₉ ON	2-(γ-pyridyl)ethanol m-aminobenzyl alcohol	-0.05	1.09 0.41	0.99
859. C ₇ H ₉ ON 860. C ₇ H ₉ ON	m-methoxyaniline	0.93	0.93	0.00
861. C ₇ H ₉ ON	o-methoxyaniline	0.95	0.93	-0.02
862. C ₇ H ₉ ON	p-methoxyaniline	0.95	0.93	-0.02
863. C ₇ H ₉ ON ₃	2-methylisoniazide	-0.37	0.40	0.77
864. C7H9OCl5	1-hydroxy-1-methyl-2,3,4,5,6-pentachlorocyclohexane	2.94	3.69	0.75
865. C ₇ H ₉ O ₂ N ₃	2-methoxyisoniazide	-0.10	0.00	0.10
866. C ₇ H ₉ O ₂ NS	m-methylbenzenesulfonamide	0.85	0.97	0.12
867. C ₇ H ₉ O ₂ NS	o-methylbenzenesulfonamide	0.84	0.97	0.13
868. C ₇ H ₉ O ₂ NS	p-methylbenzenesulfonamide	0.82	0.97	0.15
869. C ₇ H ₁₀ N ₂	$2-(\alpha-pyridyl)$ ethylamine	0.08	0.88	0.80
870. C ₇ H ₁₀ N ₂	2-(β-pyridyl)ethylamine	0.00	0.88	0.88
871. C ⁷ H ₁₀ N ₂	1-(γ-pyridyl)ethylamine	-0.01 2.99	0.88	0.89 0.05
872. C ₇ H ₁₀ OCl ₄ 873. C ₇ H ₁₁ O ₂ N ₃	2-methoxy-3,4,5,6-tetrachlorocyclohexane ipromidazole	1.06	3.04 1.22	0.03
874. C ₇ H ₁₀ O ₃ N ₃ Cl	ormidazole	0.60	0.75	0.15
875. C ₇ H ₁₁ O ₄ N ₃	DA3838	-0.63	-0.53	0.10
876. C ₇ H ₁₂ ON ₂	1,3-diallylurea	0.64	0.87	0.23
877. C ₇ H ₁₂ ON ₄ S	3-(methylthio)-4-amino-6-prop-1-yl-1,2,4-triazine-5-one	1.01	1.07	0.06
878. C ₇ H ₁₂ O ₂ N ₄	3-methoxy-4-amino-6-isopropyl-1,2,4-triazine-5-one	-0.06	0.12	0.18
879. C ₇ H ₁₃ N	quinuclidine	1.20	0.53	-0.67
880. C ₇ H ₁₃ NS	2-azacyclooctanethione	1.00	1.26	0.26
881. C ₇ H ₁₃ ON	2-azacyclooctanone	0.24	0.45	0.21
882. C ₇ H ₁₃ O ₂ N ₂ Br	carbromal	1.54	1.66	0.12
883. C ₇ H ₁₄ ON ₂	2,6-dimethyl-N-nitrosopiperidine	1.36	1.15	-0.21
884. C ₇ H ₁₄ ON ₂	3,5-dimethyl-N-nitrosopiperidine	1.53	1.15	-0.38
885. C ₇ H ₁₅ O ₃ N ₃	1-nitrosotriethylurea 4,5,6,7-tetrachloro-2-trifluoromethylbenzimidazole	1.54 3.97	1.06 5.01	-0.48 1.04
886. C ₈ HN ₂ F ₃ Cl ₄ 887. C ₈ HN ₂ F ₃ Br ₄	4,5,6,7-tetrabromo-2-trifluoromethylbenzimidazole	4.81	5.75	0.94
888. C ₈ H ₂ N ₂ F ₃ Cl ₃	4,5,7-trichloro-2-trifluoromethylbenzimidazole	3.78	4.36	0.58
889. C ₈ H ₂ N ₂ F ₃ Br ₃	4,5,6-tribromo-2-trifluoromethylbenzimidazole	4.08	4.91	0.83
890. C ₈ H ₃ N ₂ F ₃ Cl ₂	4,7-dichloro-2-trifluoromethylbenzimidzole	2.87	3.70	0.83
891. C ₈ H ₃ N ₂ F ₃ Cl ₂	4,5-dichloro-2-trifluoromethylbenzimidazole	3.49	3.70	0.21
892. C ₈ H ₃ N ₂ F ₃ Cl ₂	4,6-dichloro-2-trifluoromethylbenzimidazole	3.49	3.70	0.21
893. C ₈ H ₃ N ₂ F ₃ Cl ₂	5,6-dichloro-2-trifluoromethylbenzimidazole	3.99	3.70	-0.29
894. C ₈ H ₃ N ₂ F ₃ Br ₂	5,6-dibromo-2-trifluoromethylbenzimidazole	4.15	4.07	-0.08
895. C ₈ H ₃ O ₂ N ₃ F ₃ Cl	5-chloro-6-nitro-2-trifluoromethylbenzimidazole	3.21	3.02	-0.19
896. C ₈ H ₄ N ₂ F ₃ Cl	5-chloro-2-trifluoromethylbenzimidazole	3.39	3.05	-0.34
897. C ₈ H ₄ N ₂ F ₃ Cl	4-chloro-2-trifluoromethylbenzimidazole	2.93	3.05	0.12
898. C ₈ H ₄ N ₂ F ₃ Br 899. C ₈ H ₄ O ₂ N ₃ F ₃	5-bromo-2-trifluoromethylbenzimidazole 5-nitro-2-trifluoromethylbenzimidazole	3.57 2.68	3.23 2.37	-0.34 -0.31
900. C ₈ H ₄ O ₃	phthalic anhydride	-0.62	-0.67	-0.05
901. C ₈ H ₅ N ₂ Cl	2-chloroquinoxaline	2.23	2.49	0.26
902. C ₈ H ₅ N ₂ Cl	5-chloroquinoxaline	1.75	2.49	0.74
903. C ₈ H ₅ N ₂ Cl	6-chloroquinoxaline	2.10	2.49	0.39
904. C ₈ H ₅ N ₂ F ₃	2-trifluoromethylbenzimidazole	2.67	2.40	-0.27
905. C ₈ H ₅ ONF ₃ Br	p-trifluoroacetamide bromobenzene	3.34	2.51	-0.83
906. C ₈ H ₅ OF ₃	trifluoroacetophenone	2.15	2.19	0.04
907. C ₈ H ₅ O ₂ N	m-cyanobenzoic acid	1.48	1.47	-0.01 -0.09
908. C ₈ H ₅ O ₂ N 909. C ₈ H ₅ O ₂ NS	p-cyanobenzoic acid 4-carboxyphenyl isothiocyanate	1.56 3.52	1.47 3.29	-0.09 -0.23
910. C ₈ H ₅ O ₂ F ₃	m-trifluoromethylbenzoic acid	2.95	2.90	-0.25 -0.05
911. C ₈ H ₅ O ₂ NCl ₂	2,4-dichloro-β-nitrostyrene	3.26	3.48	0.22
912. C ₈ H ₅ O ₃ Cl ₃	2,4,5-trichlorophenoxyacetic acid	3.36	3.30	-0.06
		2.23	2.80	0.57
913. C ₈ H ₅ O ₄ N ₂ Cl	2-chloro-5-nitro-β-nitrostyrene		2.00	0.57
913. C ₈ H ₅ O ₄ N ₂ Cl 914. C ₈ H ₆ NBr 915. C ₈ H ₆ N ₂	2-chloro-5-nitro-β-nitrostyrene 5-bromoindole quinoxaline	3.00 1.32	2.51 1.83	-0.49 0.51

formula	name	$\log P_{\mathrm{e}}^{a}$	$\log P_{\mathrm{c}}^{b}$	log F
	Multifunctional Compou			
916. C ₈ H ₆ ONF ₃	p-trifluoromethylbenzamide	1.71	1.63	-0.0
917. C ₈ H ₆ ONF ₃	trifluoroacetanilide	2.21	1.67	-0.5
918. C ₈ H ₆ ON ₂	cinnoin-4-one	0.82	1.25	0.4
919. C ₈ H ₆ ON ₂	m-cyanobenzamide	0.52	0.21	-0.3
920. C ₈ H ₆ ON ₂	p-cyanobenzamide	0.48	0.21	-0.2
921. C ₈ H ₆ ON ₂	p-cyanoformanilide	1.08	0.74	-0.3
922. C ₈ H ₆ ON ₂	quinazolin-4-one	0.77	0.41	-0.3
923. C ₈ H ₆ O ₂ N ₂	quinazoline-2,4-dione	0.55	0.16	-0.3
924. C ₈ H ₆ O ₂ N ₂	quinazoline-2,3-dione	0.20 2.44	1.07	0.8
925. C ₈ H ₆ O ₂ NCl 926. C ₈ H ₆ O ₂ NCl	4-chloro-β-nitrostyrene 3-chloro-β-nitrostyrene	2.44 2.57	2.83 2.83	0.3 0.2
927. C ₈ H ₆ O ₂ NCl	4-chloro-β-nitrostyrene	2.85	2.83	-0.2 -0.0
928. C ₈ H ₆ O ₃	piperonal	1.05	1.38	-0.0 0.3
929. C ₈ H ₆ O ₃ FCl	3-chloro-5-flurophenoxyacetic acid	2.20	2.21	0.0
930. C ₈ H ₆ O ₃ Cl ₂	2,4-dichlorophenoxyacetic acid	2.81	2.64	-0.1
931. C ₈ H ₆ O ₃ Cl ₂	3,4-dichlorophenoxyacetic acid	2.81	2.64	-0.1 -0.1
932. C ₈ H ₆ O ₃ ClBr	3-bromo-4-chlorophenoxyacetic acid	2.75	2.83	0.0
933. C ₈ H ₆ O ₃ FI	3-iodo-5-fluorophenoxyacetic acid	2.42	2.74	0.3
934. C ₈ H ₆ O ₃ ClI	3-iodo-4-chlorophenoxyacetic acid	3.10	3.18	0.0
935. C ₈ H ₆ O ₄	m-phthalic acid	1.66	2.01	0.3
936. C ₈ H ₆ O ₄ N ₂	$2,\beta$ -dinitrostyrene	1.80	2.14	0.3
937. C ₈ H ₆ O ₄ N ₂	3,β-dinitrostyrene	1.82	2.14	0.3
938. C ₈ H ₆ O ₄ N ₂	4,β-dinitrostyrene	1.89	2.14	0.2
939. C ₈ H ₆ O ₅ NCl	3-nitro-4-chlorophenoxyacetic acid	1.85	1.96	0.1
940. C ₈ H ₇ N	indole	2.14	1.67	-0.4
941. C ₈ H ₇ NS	benzyl isothiocyanate	2.83	3.49	0.6
942. C ₈ H ₇ NS	benzyl thiocyanate	1.99	2.30	0.3
943. C ₈ H ₇ NS	4-methylphenyl isothiocyanate	3.92	3.48	-0.4
944. C ₈ H ₇ N ₂ SCl	5-chloro-2-methylthiobenzimidazole	3.22	2.84	-0.3
945. C ₈ H ₇ ON ₃	2-aminoquinazolin-4-one	0.60	0.21	-0.3
946. C ₈ H ₇ OCl	p-chloroacetophenone	2.35	2.15	-0.2
947. C ₈ H ₇ OBr	p-bromoacetophenone	2.43	2.33	-0.1
948. C ₈ H ₇ O ₂ F	2-fluorophenyl acetate	1.76	1.79	0.0
949. C ₈ H ₇ O ₂ F	3-fluorophenyl acetate	1.74	1.79	0.0
950. C ₈ H ₇ O ₂ F	m-flurophenylacetic acid	1.65	1.69	0.0
951. C ₈ H ₇ O ₂ F	o-flurophenylacetic acid	1.50	1.69	0.1
952. C ₈ H ₇ O ₂ F	p-flurophenylacetic acid	1.55	1.69	0.1
953. C ₈ H ₇ O ₂ Cl	3-chlorophenyl acetate	2.32	2.23	-0.0
954. C ₈ H ₇ O ₂ Cl	p-chlorophenylacetic acid	2.12	2.13	0.0
955. C ₈ H ₇ O ₂ Cl	m-chlorophenylacetic acid	2.09	2.13	0.0
956. C ₈ H ₇ O ₂ Cl	2-chlorophenyl acetate	2.18	2.23	0.0
957. C ₈ H ₇ O ₂ Br	2-bromophenyl acetate	2.20	2.41	0.2
958. C ₈ H ₇ O ₂ Br	m-bromophenylacetic acid	2.37	2.31	-0.0
959. C ₈ H ₇ O ₂ Br 960. C ₈ H ₇ O ₂ I	p-bromophenylacetic acid 2-iodophenyl acetate	2.31 2.55	2.31	0.0
961. C ₈ H ₇ O ₂ I	m-iodophenoxylacetic acid	2.62	2.76	0.2
962. C ₈ H ₇ O ₂ I	p-iodophenoxylacetic acid	2.64	2.67 2.67	0.0
963. C ₈ H ₇ O ₂ NCl ₂	2,3-dichlorophenyl N-methylcarbamate	2.48	2.53	0.0 0.0
964. C ₈ H ₇ O ₂ NCl ₂	2,5-dichlorophenyl N-methylcarbamate	2.44	2.53	0.0
965. C ₈ H ₇ O ₂ NCl ₂	3,4-dichlorophenyl N-methylcarbamate	2.80	2.53	-0.2
966. C ₈ H ₇ O ₂ NCl ₂	3,5-dichlorophenyl N-methylcarbamate	3.03	2.53	-0.2 -0.5
967. C ₈ H ₇ O ₂ Br ₃	2-(2,4,6-tribromophenoxy)ethanol	3.42	3.58	0.1
968. C ₈ H ₇ O ₃ N	m-acetylnitrobenzene	1.42	1.46	0.0
969. C ₈ H ₇ O ₃ N	p-acetylnitrobenzene	1.49	1.46	-0.0 -0.0
970. C ₈ H ₇ O ₃ N	3-hydroxy-β-nitrostyrene	2.07	2.06	-0.0
971. C ₈ H ₇ O ₃ N	4-hydroxy-β-nitrostyrene	2.12	2.06	-0.0
972. C ₈ H ₇ O ₃ F	m-flurophenoxyacetic acid	1.48	1.55	0.0
973. C ₈ H ₇ O ₃ F	o-flurophenoxyacetic acid	1.26	1.55	0.2
974. C ₈ H ₇ O ₃ F	p-flurophenoxyacetic acid	1.41	1.55	0.1
975. C ₈ H ₇ O ₃ Cl	m-chlorophenoxyacetic acid	2.03	1.99	-0.0
976. C ₈ H ₇ O₃Cl	o-chlorophenoxyacetic acid	2.02	1.99	-0.0
977. C ₈ H ₇ O₃Cl	p-chlorophenoxyacetic acid	1.99	1.99	0.0
978. C ₈ H ₇ O₃Br	2-bromophenoxyacetic acid	2.10	2.17	0.0
979. C ₈ H ₇ O₃Br	3-bromophenoxyacetic acid	2.22	2.17	-0.0
980. C ₈ H ₇ O ₃ Br	4-bromophenoxyacetic acid	2.45	2.17	-0.2
981. C ₈ H ₇ O ₃ I	2-iodophenoxyacetic acid	2.44	2.53	0.0
982. C ₈ H ₇ O ₃ I	3-iodophenoxyacetic acid	2.19	2.53	0.3
983. C ₈ H ₇ O ₃ I	4-iodophenoxyacetic acid	2.69	2.53	-0.1
984. C ₈ H ₇ O ₄ N	2-nitrophenyl acetate	1.55	1.54	-0.0
985. C ₈ H ₇ O ₄ N	3-nitrophenyl acetate	1.82	1.54	-0.2
986. C ₈ H ₇ O ₄ N	4-nitrophenyl acetate	1.49	1.54	0.0
987. C ₈ H ₇ O ₄ N	m-nitrophenylacetic acid	1.45	1.45	0.0
988. C ₈ H ₇ O ₄ N	p-nitrophenylacetic acid	1.39	1.45	0.0
989. C ₈ H ₇ O ₄ FS 990. C ₈ H ₇ O ₅ N	p-(fluorosulfonyl)phenylacetic acid m-nitrophenoxyacetic acid	1.84	0.90	-0.9
990. C ₈ H ₇ O ₅ N 991. C ₈ H ₇ O ₅ N	m-nitrophenoxyacetic acid o-nitrophenoxyacetic acid	1.37 1.22	1.30	-0.0
991. C ₈ H ₇ O ₅ N 992. C ₈ H ₇ O ₅ N	p-nitrophenoxyacetic acid	1.48	1.30 1.30	0.03 0.13

Table 4 (Continued)

formula	name	log $P_{\rm e}^a$	log P _c ^b	$\log P_{\rm r}$
004 C H N	Multifunctional Compounds	1.00	1.65	0.65
994. C ₈ H ₈ N ₄	hydrazaline acetylthiobenzene		1.65	0.65
995. C ₈ H ₈ OS	•	2.23 1.47	1.98	-0.25
996. C ₈ H ₈ ONF	p-fluoroacetanilide		1.20	-0.27
997. C ₈ H ₈ ONCl	p-chloroacetanilide	1.87	1.63	-0.24
998. C ₈ H ₈ ONI	p-iodoacetanilide	2.46	2.17	-0.29
999. C ₈ H ₈ O ₂	m-acetylphenol	1.39	1.38	-0.01
1000. C ₈ H ₈ O ₂	p-acetylphenol	1.35	1.38	0.03
1001. C ₈ H ₈ O ₂	o-hydroxyacetophone	1.92	2.11	0.19
1002. C ₈ H ₈ O ₂	p-methoxybenzaldehyde	1.59	1.32	-0.27
1003. C ₈ H ₈ O ₂	1,4-benzodioxane	2.01	2.00	-0.01
1004. C ₈ H ₈ O ₂ S	phenylthioacetic acid	1.91	1.96	0.05
1005. C ₈ H ₈ O ₂ S	p-(methylthio)benzoic acid	2.74	2.69	-0.05
1006. C ₈ H ₈ O ₂ N ₂	isophthalamide	-0.21	-0.52	-0.31
1007. C ₈ H ₈ O ₂ NF	2-fluorophenyl N-methylcarbamate	1.25	1.44	0.19
1008. C ₈ H ₈ O ₂ NF	3-fluorophenyl N-methylcarbamate	1.48	1.44	-0.04
1000. C ₈ H ₈ O ₂ NF	4-fluorophenyl N-methylcarbamate	1.28	1.44	0.16
		2.01	1.87	
1010. C ₈ H ₈ O ₂ NCl	4-chlorophenyl N-methylcarbamate			-0.14
1011. C ₈ H ₈ O ₂ NCl	2-chlorophenyl N-methylcarbamate	1.64	1.87	0.23
1012. C ₈ H ₈ O ₂ NCl	3-chlorophenyl N-methylcarbamate	2.03	1.87	-0.16
1013. C ₈ H ₈ O ₂ NBr	3-bromophenyl N-methylcarbamate	2.25	2.06	-0.19
1014. C ₈ H ₈ O ₂ NBr	4-bromophenyl N-methylcarbamate	2.17	2.06	-0.11
1015. C ₈ H ₈ O ₂ NBr	2-bromophenyl N-methylcarbamate	1.77	2.06	0.29
1016. C ₈ H ₈ O ₂ NI	2-iodophenyl N-methylcarbamate	1.96	2.41	0.45
1017. C ₈ H ₈ O ₂ NI	3-iodophenyl N-methylcarbamate	2.52	2.41	-0.11
1018. C ₈ H ₈ O ₂ NI	4-iodophenyl N-methylcarbamate	2.46	2.41	-0.05
1019. C ₈ H ₈ O ₃	vanillin	1.31	1.21	-0.10
1020. C ₈ H ₈ O ₃	m-carbomethoxyphenol	1.89	1.46	-0.43
1021. C ₈ H ₈ O ₃	m-hydroxyphenyl acetate	1.23	1.46	0.23
1022. C ₈ H ₈ O ₃	isovanillin	0.97	1.21	0.24
1023. C ₈ H ₈ O ₃	m-methoxybenzoic acid	2.02	1.80	0.22
1024. C ₈ H ₈ O ₃	o-methoxybenzoic acid	1.59	1.80	0.21
1025. C ₈ H ₈ O ₃	p-methoxybenzoic acid	1.96	1.80	-0.16
1026. C ₈ H ₈ O ₃	methyl salicyate	2.46	2.19	-0.27
	o-vanillin	1.37	1.94	0.57
1027. C ₈ H ₈ O ₃				
1028. C ₈ H ₈ O ₃	mandelic acid	0.62	0.59	-0.03
1029. C ₈ H ₈ O ₃	phenoxyacetic acid	1.34	1.34	0.00
1030. C ₈ H ₈ O ₃	3,4-methylenedioxy benzyl alcohol	1.05	1.12	0.07
1031. C ₈ H ₈ O ₃	p-hydroxybenzoic acid methyl ester	1.96	1.46	-0.50
1032. C ₈ H ₈ O ₃	m-hydroxyphenylacetic acid	0.85	1.36	0.51
1033. C ₈ H ₈ O ₃	p-hydroxyphenylacetic acid	1.96	1.36	-0.60
1034. C ₈ H ₈ O ₃ NCl	3-amino-4-chlorophenoxyacetic acid	1.16	1.34	0.18
1035. C ₈ H ₈ O ₃ N ₂	p-nitroacetanilide	1.66	0.95	-0.71
1036. C ₈ H ₈ O ₄	m-hydroxyphenoxyacetic acid	0.76	1.22	0.46
1037. C ₈ H ₈ O ₄	o-hydroxyphenoxyacetic acid	0.85	1.22	0.37
1038. C ₈ H ₈ O ₄	p-hydroxyphenoxyacetic acid	0.65	1.22	0.57
		0.67	1.38	
1039. C ₈ H ₈ O ₄ S	p-methylsulfonylbenzoic acid			0.71
1040. C ₈ H ₈ O ₄ N ₂	2-nitrophenyl N-methylcarbamate	1.02	1.19	0.17
1041. C ₈ H ₈ O ₄ N ₂	3-nitrophenyl N-methylcarbamate	1.39	1.19	-0.20
1042. C ₈ H ₈ O ₄ N ₂	4-nitrophenyl N-methylcarbamate	1.47	1.19	-0.28
1043. C ₈ H ₉ NS	thioacetanilide	1.71	1.96	0.25
1044. C ₈ H ₉ ON	p-aminoacetophone	0.41	0.84	0.43
1045. C ₈ H ₉ ON	ethyl 4-pyridyl ketone	0.77	1.53	0.76
1046. C ₈ H ₉ ON	o-methylbenzaldoxime	2.53	2.60	0.07
1047. C ₈ H ₉ O ₂ N	p-aminophenyl acetate	-0.16	0.92	1.08
1047. C8H9O2N 1048. C8H9O2N	<i>p</i> -animophenyi acetate <i>m</i> -hydroxyacetoanilide	0.73	0.86	0.13
1049. C ₈ H ₉ O ₂ N	o-hydroxyacetoanilide	0.72	0.86	0.14
1050. C ₈ H ₉ O ₂ N	p-hydroxyacetoanilide	0.36	0.49	0.13
1051. C ₈ H ₉ O ₂ N	m-methoxyformanilide	1.25	1.06	-0.19
1052. C ₈ H ₉ O ₂ N	p-methoxyformanilide	1.03	1.06	0.03
1053. C ₈ H ₉ O ₂ N	3-methyl-4-aminobenzoic acid	0.54	0.49	-0.05
1054. C ₈ H ₉ O ₂ N	nicotinic acid ethyl ester	1.32	1.61	0.29
1055. C ₈ H ₉ O ₂ N	isonicotinic acid ethyl ester	1.43	1.61	0.18
1056. C ₈ H ₉ O ₂ N	phenoxyacetamide	0.76	0.54	-0.22
1057. C ₈ H ₉ O ₂ N	picolinic acid ethyl ester	0.87	1.61	0.74
1058. C ₈ H ₉ O ₂ N	phenyl N-methylcarbamate	1.24	1.59	0.35
1059. C ₈ H ₉ O ₂ N	N-phenyl glycine	0.62	-0.35	-0.97
1060. C ₈ H ₉ O ₂ N	2-methyl-4-aminobenzoic acid	0.31	0.49	0.18
	p-methoxybenzamide	0.86	0.54	-0.32
1061. C ₈ H ₉ O ₂ N				
1062. C ₈ H ₉ O ₂ N	o-methoxybenzamide	0.87	0.54	-0.33
1063. C ₈ H ₉ O ₂ N	m-methoxybenzamide	0.94	0.54	-0.40
1064. C ₈ H ₉ O ₂ Cl ₅	1-acetoxy-2,3,4,5,6-pentachlorocyclohexane	3.40	3.73	0.33
1065.C ₈ H ₉ O ₃ N	2-methoxy-4-aminobenzoic acid	-0.38	0.09	0.47
1066. C ₈ H ₉ O ₃ N	p-nitrophenetole	2.53	1.97	-0.56
1067. C ₈ H ₁₀ N ₂ S	1-methyl-1-phenyl-2-thiourea	0.85	1.06	0.21
1068. C ₈ H ₁₀ ON ₂	β -(α -pyridyl)propanamide	-0.27	0.08	0.35
1069. C ₈ H ₁₀ ON ₂	β -(β -pyridyl)propanamide	-0.26	0.08	0.34
	β -(γ -pyridyl)propanamide	-0.25	-0.83	-0.58
1070. C ₈ H ₁₀ ON ₂	D-(y-Dyrigy) jprobanamice	~ U.∠.3		

Table 4 (Continued)

formula	name	log Pea	$\log P_{\rm c}^b$	log A
	Multifunctional Compounds			
072. C ₈ H ₁₀ O ₂	o-dimethoxybenzene	2.21	1.59	-0.6
$1073. C_8H_{10}O_2$	m-ethoxyphenol	1.98	1.88	-0 .1
$1074. C_8H_{10}O_2$	o-ethoxyphenol	1.68	1.88	0.2
1075. C ₈ H ₁₀ O ₂	p-ethoxyphenol	1.81	1.88	0.0
1976. C ₈ H ₁₀ O ₂	o-methoxybenzyl alcohol	1.13	1.07	-0.0
1077. C ₈ H ₁₀ O ₂	p-methoxybenzyl alcohol	1.10	1.07	-0.0
1078. C ₈ H ₁₀ O ₂	2-phenoxyethanol	1.16	1.07	-0.0
1079. C ₈ H ₁₀ O ₂ N ₄	caffeine	-0.07	-0.86	-0.7
1080. C ₈ H ₁₀ O ₃ N ₂ S	sulfanilacetamide	-0.96	-0.53	0.4
1081. C ₈ H ₁₁ N	4-propylpyridine	2.10	2.44	0.3
1082. C ₈ H ₁₁ ON	m-(dimethylamino)phenol	1.57	1.59	0.0
1083. C ₈ H ₁₁ ON	$3-(\alpha$ -pyridyl)propanol	0.58	0.86	0.2
1084. C ₈ H ₁₁ ON	3-(β-pyridyl)propanol	0.60	0.86	0.2
1085. C ₈ H ₁₁ ON	3-(γ-pyridyl)propanol	0.58	0.21	-0.3
$1086. C_8H_{11}O_2NS$	N,N-dimethylbenzenesulfonamide	1.35	0.89	-0.4
$1087. C_8H_{11}O_2NS$	p-ethylbenzenesulfonamide	1.31	1.38	0.0
$1088. C_8H_{12}N_2$	3-(α-pyridyl)propylamine	0.49	0.75	0.2
$1089. C_8H_{12}N_2$	3-(β-pyridyl)propylamine	0.44	0.75	0.3
$1090. C_8H_{12}N_2$	3-(γ-pyridyl)propylamine	0.40	0.21	-0.1
1091. C ₈ H ₁₂ O ₂ Cl ₄	3,6-dimethoxy-1,2,4,5-tetrachlorocyclohexane	3.15	2.81	-0.3
$1092. C_8H_{12}O_3N_2$	barbital	0.65	0.67	0.0
1093. C ₈ H ₁₄ N ₂	4-pentylpyrazole	2.96	2.71	-0.2
1094. C ₈ H ₁₈ ON ₂	N-nitrosodibutylamine	1.92	2.44	0.5
1095. C ₉ H ₅ N ₃	6-cyanoquinoxaline	1.01	1.52	0.5
1096. C9H5O3N2F	8-fluoro-4-nitroquinoline 1-oxide	1.00	0.97	-0.0
1097. C9H5O3N2Cl	6-chloro-4-nitroquinoline 1-oxide	1.41	1.41	0.0
1098. C9H5O5N3	4,5-dinitroquinoline 1-oxide	0.95	0.72	-0.2
1099. C9H5O5N3	4,6-dinitroquinoline 1-oxide	0.90	0.72	-0 .1
1100. C ₉ H ₅ O ₅ N ₃	4,8-dinitroquinoline 1-oxide	0.76	0.72	-0.0
1101. C₀H6NCl	2-chloroquinoline	2.71	2.87	0.1
l 102. C9H6NCl	6-chloroquinoline	2.73	2.87	0.1
1103. C ₉ H ₆ NCl	8-chloroquinoline	2.33	2.87	0.5
104. C ₉ H ₆ NBr	3-bromoquinoline	3.03	3.05	0.0
105. C ₉ H ₆ NBr	6-bromoquinoline	2.83	3.05	0.2
106. C ₉ H ₆ NBr	7-bromoquinoline	2.92	3.05	0.1
1107. C9H6ONCl	4-chloro-8-quinolinol	2.67	2.75	0.0
l 108. C9H6ONCl	4-chloroquinolin 1-oxide	1.08	1.44	0.3
109. C ₉ H ₆ OF ₆	1,1,1,3,3,3-hexafluoro-2-phenyl-2-propanol	3.41	3.51	0.1
1110. C ₉ H ₆ O ₂	coumarin	1.39	0.96	-0.4
111. C ₉ H ₆ O ₂	indanedione	0.61	1.06	0.4
$1112. C_9H_6O_2N_2$	3-nitroquinoline	1.97	2.18	0.2
1113. C ₉ H ₆ O ₂ N ₂	4-nitroquinoline	2.06	2.18	0.1
1114. C ₉ H ₆ O ₂ N ₂	5-nitroquinoline	1.86	2.18	0.3
1115. C ₉ H ₆ O ₂ N ₂	6-nitroquinoline	1.84	2.18	0.3
116. C ₉ H ₆ O ₂ N ₂	7-nitroquinoline	1.82	2.18	0.3
1117. C ₉ H ₆ O ₂ N ₂	8-nitroquinoline	1.40	2.18	0.7
118. C ₉ H ₆ O ₃ NCl	3-cyano-4-chlorophenoxyacetic acid	1.56	1.67	0.1
1119. C ₉ H ₆ O ₃ N ₂	3-nitroquinoline 1-oxide	0.56	0.75	0.1
1120. C ₉ H ₆ O ₃ N ₂	4-nitroquinoline 1-oxide	1.02	0.75	-0.2
121. C ₉ H ₆ O ₃ N ₂	5-nitroquinoline 1-oxide	0.49	0.75	0.2
122. C ₉ H ₆ O ₃ N ₂	6-nitroquinoline 1-oxide	0.39	0.75	0.3
123. C ₉ H ₆ O ₃ N ₂	7-nitroquinoline 1-oxide	0.36	0.75	0.3
1124. C ₉ H ₆ O ₃ N ₂	8-nitroquinoline 1-oxide	0.04	0.75	0.7
125. C ₉ H ₆ O ₄	ninhydrin	0.65	-0.07	-0.7
126. C ₉ H ₇ N	isoquinoline	2.08	2.21	0.1
127. C ₉ H ₇ N	quinoline	2.03	2.21	0.1
128. C ₉ H ₇ ON	quinoline 1-oxide	0.36	0.78	0.4
129. C ₉ H ₇ ON	4-hydroxyquinoline	0.58	1.11	0.5
1130. C ₉ H ₇ ON	2-quinolone	1.26	0.83	-0.4
1131. C ₉ H ₇ ON	2-quinolinol	1.26	0.96	-0.3
.132. C ₉ H ₇ ON	8-quinolinol	2.00	2.10	0.1
133. C ₉ H ₇ O ₂ N	2-cyanophenyl acetate	1.33	1.25	-0.0
134. C ₉ H ₇ O ₂ N	m-cyanophenylacetic acid	1.18	1.16	-0.0
135. C ₉ H ₇ O ₂ N	N-methylindol-2,3-dione	0.58	0.27	-0.3
136. C ₉ H ₇ O ₂ F ₃	3-(trifluoromethyl)phenylacetic acid	2.62	2.58	-0.0
137. C ₉ H ₇ O ₂ F ₃	p-(trifluoromethyl)phenylacetic acid	2.45	2.58	0.1
138. C ₉ H ₇ O ₃ F ₃	m-(trifluoromethyl)phenoxyacetic acid	2.36	2.44	0.0
139. C ₉ H ₇ O ₃ N	4-cyanophenoxyacetic acid	0.93	1.02	0.0
1140. C ₉ H ₇ O ₃ N	3-cyanophenoxyacetic acid	0.95	1.02	0.0
141. C ₉ H ₇ O ₃ F ₃ S	m-(trifluoromethyl)thiophenoxyacetic acid	2.86	2.92	0.0
142. C ₉ H ₇ O ₄ F ₃	m-(trifluoromethoxy)phenoxyacetic acid	2.48	2.04	-0.4
143. C ₉ H ₇ O ₅ F ₃ S	m-(trifluoromethyl)sulfonylphenoxyacetic acid	2.19	1.62	-0.5
144. C ₉ H ₈ N ₂	8-aminoquinoline	1.79	1.56	-0.2
145. C ₉ H ₈ N ₂	2-aminoquinoline	1.87	1.56	-0.3
146. C ₉ H ₈ N ₂	3-aminoquinoline	1.63	1.56	-0.0
147. C ₉ H ₈ N ₂	4-aminoquinoline	1.63 1.28	1.56 1.56	-0.0 0.2
148. C ₉ H ₈ N ₂	6-aminoquinoline			

Table 4 (Continued)

formula	name	$\log P_{\mathrm{e}}^{a}$	log P _c ^b	log P
150. C ₉ H ₈ N ₂	Multifunctional Compounds 5-methylquinoxaline	2.04	2.24	^ ^
150. C9H8N2 151. C9H8N2	2-phenylimidazole	2.0 4 1.88	2.24 2.05	0.2
				0.1
152. C ₉ H ₈ N ₂	5-aminoquinoline	1.16	1.56	0.4
153. C ₉ H ₈ N ₂ S	2-(methylthio)quinoxaline	2.79	2.73	-0.0
154. C ₉ H ₈ ON ₂	4-aminoquinoline 1-oxide	0.05	0.13	0.0
155. C ₉ H ₈ ON ₂	2-methoxyquinoxaline	2.31	1.84	-0.4
156. C ₉ H ₈ ON ₂	3-methylquinazolin-4-one	0.69	0.80	0.1
157. C ₉ H ₈ O ₂ N ₂	4-cyanophenyl N-methylcarbamate	0.95	0.90	-0.0
158. C ₉ H ₈ O ₂ N ₂	3-cyanophenyl N-methylcarbamate	0.97	0.90	-0.0
159. C ₉ H ₈ O ₂ N ₂	2-cyanophenyl N-methylcarbamate	0.86	0.90	0.0
160. C ₉ H ₈ O ₂ N ₂ S	8-sulfonamidoquinoline	0.36	1.19	0.8
161. C ₉ H ₈ O ₂ NSCl ₃	captan	2.35	2.02	-0.3
162. C ₉ H ₈ O ₄	m-carboxyphenylacetic acid	1.14	1.69	0.5
163. C ₉ H ₈ O ₄	p-formylphenoxyacetic acid	0.79	1.08	0.2
164. C ₉ H ₈ O ₄	acetylsalicylic acid	1.23	1.79	0.5
165. C ₉ H ₈ O ₅	m-carboxyphenoxyacetic acid	1.11	1.55	0.4
166. C ₉ H ₉ N	2-methylindole	2.53		
			2.08	-0.4
167. C ₉ H ₉ N	3-methylindole	2.60	2.08	-0.5
168. C ₉ H ₉ N	5-methylindole	2.68	2.08	-0.6
169. C ₉ H ₉ N	eta-phenylethyl cyanide	1.70	2.23	0.5
170. C ₉ H ₉ NS	2-phenethyl isothiocyanate	3.47	3.90	0.4
171. C ₉ H ₉ NS	1-phenethyl isothiocyanate	3.46	3.84	0.3
172. C ₉ H ₉ ON	5-methoxyindole	2.06	1.68	-0.3
173. C ₉ H ₉ O ₂ N	p-acetylformanilide	0.94	0.97	0.0
174. C9H9O2N3S2	sulfathiazole	0.05	0.64	0.5
	o-(acetylamino)benzoic acid			
175. C ₉ H ₉ O ₃ N		1.88	1.20	-0.6
176. C ₉ H ₉ O ₃ N	p-(acetylamino)benzoic acid	1.31	1.20	-0.1
177. C ₉ H ₉ O ₃ N	4-methoxy-β-nitrostyrene	2.20	2.18	-0.0
178. C ₉ H ₉ O ₃ N	3-methoxy-β-nitrostyrene	2.37	2.18	-0.1
179. C ₉ H ₁₀ N ₂	5,6-dimethylbenzimidazole	2.35	2.11	-0.2
180. C ₉ H ₁₀ O ₂	o-hydroxypropiophenone	2.54	2.52	-0.03
181. C ₉ H ₁₀ O ₂	p-hydroxypropiophenone	2.03	1.79	-0.2
182. C ₉ H ₁₀ O ₂	p-methoxyacetophenone	1.82	1.50	-0.3
183. C ₉ H ₁₀ O ₂ N ₂	p-(acetylamino)benzamide	0.01	-0.07	-0.0
		1.54		0.0
184. C ₉ H ₁₀ O ₃	4-methoxyphenyl acetate		1.58	
185. C ₉ H ₁₀ O ₃	m-methoxyphenylacetic acid	1.50	1.49	-0.0
186. C ₉ H ₁₀ O ₃	p-methoxyphenylacetic acid	1.42	1.49	0.0
187. C ₉ H ₁₀ O ₃	m-methylphenoxyacetic acid	1.78	1.75	-0.0
188. C ₉ H ₁₀ O ₃	o-methylphenoxyacetic acid	1.98	1.75	-0.2
189. C ₉ H ₁₀ O ₃	p-methylphenoxyacetic acid	1.86	1.75	-0.1
190. C ₉ H ₁₀ O ₃	2-methoxyphenyl acetate	1.38	1.58	0.20
191. C ₉ H ₁₀ O ₃	p-hydroxybenzoic acid ethyl ester	2.43	1.87	-0.5
192. C ₉ H ₁₀ O ₃ S	3-methylthiophenoxyacetic acid	1.90	2.23	0.3
193. C ₉ H ₁₀ O ₄	2-methoxyphenoxyacetic acid	0.98	1.34	0.3
		1.23		
194. C ₉ H ₁₀ O ₄	4-methoxyphenoxyacetic acid		1.34	0.1
195. C ₉ H ₁₀ O ₄	3-methoxyphenoxyacetic acid	1.38	1.34	-0.0
196. C ₉ H ₁₀ O ₄ N ₂	3-ureidophenoxyacetic acid	0.26	0.30	0.0
197. C ₉ H ₁₁ N	1,2,3,4-tetrahydroquinoline	2.29	1.99	-0.3
198. C₀H₁₁I	γ -phenylpropyliodine	3.90	3.78	-0.13
199. C ₉ H ₁₁ N ₃	1-propylbenzotriazole	2.13	1.86	-0.2
200. C ₉ H ₁₁ N ₃	1-isopropylbenzotriazole	1.98	1.80	-0.13
201. C ₉ H ₁₁ ON ₂ Cl	1,1-dimethyl-3-(m-chlorophenyl)urea	2.00	2.03	0.0
202. C ₉ H ₁₁ ON ₂ Cl	1,1-dimethyl-3-(p-chlorophenyl)urea	1.94	2.03	0.0
,	1,1-dimethyl-3-(p-bromophenyl)urea	2.19	2.03	
203. C ₉ H ₁₁ ON ₂ Br				0.0
204. C ₉ H ₁₁ O ₂ NS	4-(methylthio)phenyl N-methylcarbamate	1.92	2.11	0.19
205. C ₉ H ₁₁ O ₂ NS	2-(methylthio)phenyl N-methylcarbamate	1.51	2.11	0.60
206. C ₉ H ₁₁ O ₂ N	o-tolyl N-methylcarbamate	1.46	1.63	0.1
207. C ₉ H ₁₁ O ₂ N	p-tolyl N-methylcarbamate	1.66	1.63	-0.03
208. C ₉ H ₁₁ O ₂ N	phenyl N,N-dimethylcarbamate	1.69	1.60	-0.0
209. C ₉ H ₁₁ O ₂ N	p-ethoxybenzamide	1.30	0.95	-0.3
210. C ₉ H ₁₁ O ₂ N	o-methoxylacetanilide	0.98	0.99	0.0
211. C ₉ H ₁₁ O ₂ N	p-methoxylacetanilide	1.14	0.99	-0.1
212. C ₉ H ₁₁ O ₂ N	2-methyl-4-hydroxyacetanilide	0.66	0.90	0.2
213. C ₉ H ₁₁ O ₂ N	3-methyl-4-hydroxyacetanilide	1.28	0.90	-0.3
214. C ₉ H ₁₁ O ₂ N	ethyl N-phenylcarbamate	2.30	2.01	-0.2
215. C ₉ H ₁₁ O ₂ N	2-ethoxy-4-aminobenzoic acid	0.16	0.50	0.3
	2-methoxyphenyl N-methylcarbamate	0.16	1.23	0.3
216. C ₉ H ₁₁ O ₃ N				
217. C ₉ H ₁₁ O ₃ N	3-methoxyphenyl N-methylcarbamate	1.30	1.23	-0.0
218. C ₉ H ₁₁ O ₃ N	4-methoxyphenyl N-methylcarbamate	1.20	1.23	0.0
219. C ₉ H ₁₁ O ₃ N ₃	1,1-dimethyl-3-(p-nitrophenyl)urea	1.51	1.35	-0.1
220. C ₉ H ₁₁ O ₄ N	N-maleoyl-3-aminopropionic acid ethyl ester	0.41	0.06	-0.3
221. C ₉ H ₁₁ O ₅ N ₂ F	2'-deoxy-5-fluorouridine	-1.38	-1.21	0.1
222. C ₉ H ₁₁ O ₅ N ₂ Br	2'-deoxy-5-bromouridine	-0.29	-0.67	-0.3
223. C ₉ H ₁₂ ON ₂	m-(dimethylamino)benzamide	0.95	0.66	-0.2
224. C ₉ H ₁₂ ON ₂	p-(dimethylamino)benzamide	1.14	0.66	-0.4
225. C ₉ H ₁₂ ON ₂	1-phenyl-3-ethylurea	1.64	1.41	-0.2
226. C ₉ H ₁₂ ON ₂	1,1-dimethyl-3-phenylurea	1.04	1.38	0.3
220, CQD17O137				

Table 4 (Continued)				
formula	name	$\log P_{\rm e}^a$	$\log P_{\rm c}^{b}$	$\log P_{r^c}$
1000 () II () N	Multifunctional Compounds	0.00	0.40	0.55
1228. C ₉ H ₁₂ ON ₂	γ -(β -pyridyl)butanamide γ -(γ -pyridyl)butanamide	-0.08	0.49	0.57
1229. C ₉ H ₁₂ ON ₂ 1230. C ₉ H ₁₂ O ₂	γ-(γ-pyridy))outaliamide ο-isopropoxyphenol	-0.09 2.09	-0.41 2.23	-0.32 0.14
1231. C ₉ H ₁₂ O ₃	phenylglycerol	0.70	0.12	-0.58
1232. C ₉ H ₁₂ O ₃	1,2,3-trimethoxybenzene	1.53	1.60	0.07
1233. C ₉ H ₁₂ O ₃ N ₂	5-allyl-5-ethylbarbituric acid	0.95	0.88	-0.07
1234, C ₉ H ₁₂ O ₃ N ₂ S	N-ethyl-4-sulfamylbenzamide	0.03	0.38	0.35
1235. C ₉ H ₁₃ ON	N,N-dimethyl-o-anisidine	1.63	1.72	0.09
1236. C ₉ H ₁₃ ON	4-(α-pyridyl)butanol	0.86	1.27	0.41
1237. C ₉ H ₁₃ ON 1238. C ₉ H ₁₃ ON	$4-(\beta-pyridyl)$ butanol $4-(\gamma-pyridyl)$ butanol	0.92 0.90	1.27 0.62	0.35 0.28
1239. C ₉ H ₁₃ O ₂ NS	p-propylbenzenesulfonamide	1.64	1.80	0.16
1240. C ₉ H ₁₄ N ₂	$4-(\alpha-pyridyl)$ butylamine	0.86	1.17	0.10
1241. C ₉ H ₁₄ N ₂	4-(β-pyridyl)butylamine	0.88	1.17	0.29
1242. C ₉ H ₁₄ N ₂	4-(γ-pyridyl)butylamine	0.86	0.62	-0.24
1243. C ₉ H ₁₄ O ₃ N ₂	probarbital	0.97	1.02	0.05
1244. C ₉ H ₁₄ O ₃ N ₂	N-methyl-5-butylbarbituric acid	1.10	0.57	-0.53
1245. C ₉ H ₁₄ O ₃ N ₄	nimorazole	0.07	0.48	0.41
1246. C ₉ H ₁₆ ON ₄ S	3-(methylthio)-4-amino-6-isopentyl-1,2,4-triazin-5-one	1.85	1.84	-0.01
1247. C ₉ H ₁₆ ON ₄ S	3-(propylthio)-4-amino-6-isopropyl-1,2,4-triazin-5-one	2.12	1.84	-0.28
1248. C ₉ H ₁₆ ON ₄ S 1249. C ₉ H ₁₆ O ₂ N ₃ Cl	3-(isopropylthio)-4-amino-6-isorpopyl-1,2,4-triazin-5-one 1-(2-chloroethyl)-3-cyclohexyl-1-nitrosourea	2.06 2.83	1.77 2.45	-0.29 -0.38
1250. C ₉ H ₁₆ O ₃ N ₃ Cl	1-(2-chloroethyl)-3-(4-hydroxycyhexyl)-1-nitrosourea	1.05	1.62	-0.38 0.57
1251. C ₉ H ₁₆ O ₄	azelaic acid	1.57	1.68	0.11
1252. C ₉ H ₁₈ ON ₂	4-tert-butyl-N-nitrosopiperidine	1.96	1.96	0.00
1253. C ₉ H ₁₈ ON ₂	2,2,6,6-tetramethyl-N-nitrosopiperidine	2.49	2.39	-0.10
1254. C ₉ H ₁₈ O ₄ N ₂	meprobamate	0.70	1.06	0.36
1255. C ₉ H ₂₀ ON ₂	1,3-dibutyrylurea	1.40	2.12	0.72
1256. C ₁₀ H ₅ O ₂ Cl	2-chloro-1,4-naphthoquinone	2.15	1.92	-0.23
1257. C ₁₀ H ₆ NF ₃	7-(trifluoromethyl)quinoline	3.02	3.32	0.30
1258. C ₁₀ H ₆ NF ₃	8-(trifluromethyl)quinoline	2.50	3.32	0.82
1259. C ₁₀ H ₆ N ₂	benzal malononitrile 4-hydroxy-7-(trifluroethyl)quinoline	2.12 2.05	2.25	0.13
1260. C ₁₀ H ₆ ONF ₃ 1261. C ₁₀ H ₆ O ₂	4-nydroxy-7-(triffuroetnyr)quinonne 1,4-naphthoquinone	2.03 1.78	2.21 1.46	0.16 0.32
1262. C ₁₀ H ₆ O ₂ NCl	2-chloro-3-amino-1,4-naphthoquinone	2.12	1.72	-0.32 -0.40
1263. C ₁₀ H ₆ O ₂ N ₃ Cl ₃	1-(2,4,5-trichlorophenylhydrazono)-1-cyanoacetic acid methyl ester	5.15	4.84	-0.31
1264. C ₁₀ H ₆ O ₂ N ₃ Cl ₃	1-(3,4,5-trichlorophenylhydrazone)-1-cyanoacetic acid methyl ester	5.22	4.84	-0.38
1265. C ₁₀ H ₆ O ₃	2-hydroxy-1,4-naphthoquinone	1.38	1.02	-0.36
1266. C ₁₀ H ₇ ON ₃ Cl ₂	1-(3,4-dichlorophenylhydrazone)-1-cyanoacetone	4.56	4.10	-0.46
1267. C ₁₀ H ₇ ON ₃ Cl ₂	1-(3,5-dichlorophenylhydrazone)-1-cyanoacetone	4.68	4.10	-0.58
1268. C ₁₀ H ₇ O ₂ N	2-nitroso-1-naphthol	2.57	2.50	-0.07
1269. C ₁₀ H ₇ O ₂ N	1-nitroso-2-naphthol	2.28	2.50	0.22
1270. C ₁₀ H ₇ O ₂ N ₃ Cl ₂	1-(3,5-dichlorophenylhydrazone)-1-cyanoacetic acid methyl ester	4.50	4.18	-0.32
1271. C ₁₀ H ₇ O ₅ N ₅ 1272. C ₁₀ H ₈ ON ₂	1-(2,4-dinitrophenylhydrazone)-1-cyanoacetone N-formyl-p-cyanostyrlamine	3.41 1.58	2.73 1.37	-0.68 -0.21
1273. C ₁₀ H ₈ ON ₃ Cl	1-(4-chlorophenylhydrazono)-1-cyanoacetone	4.13	3.45	-0.68
1274. C ₁₀ H ₈ ON ₃ Cl	1-(2-chlorophenylhydrazono)-1-cyanoacetone	4.01	3.45	-0.56
1275. C ₁₀ H ₈ ON ₃ Cl	1-(3-chlorophenylhydrazono)-1-cyanoacetone	3.91	3.45	-0.46
1276. C ₁₀ H ₈ O ₂ N ₃ Cl	1-(3-chlorophenylhydrazono)-1-cyanoacetic acid methyl ester	3.56	3.53	-0.03
1277. C ₁₀ H ₈ O ₃	hymecromone	1.58	1.25	-0.33
1278. C ₁₀ H ₈ O ₃ N ₂	2-methyl-4-nitroquinoline 1-oxide	1.25	1.16	-0.09
1279. C ₁₀ H ₈ O ₃ N ₂	3-methyl-4-nitroquinoline 1-oxide	1.06	1.16	0.10
1280. C ₁₀ H ₈ O ₃ N ₂	5-methyl-4-nitroquinoline 1-0xide	1.36	1.16	-0.20
1281. C ₁₀ H ₈ O ₃ N ₂ 1282. C ₁₀ H ₈ O ₃ N ₂	6-methyl-4-nitroquinoline 1-oxide 7-methyl-4-nitroquinoline 1-oxide	1.43 1.42	1.16 1.16	0.27 0.26
1283. C ₁₀ H ₈ O ₃ N ₂	8-methyl-4-nitroquinoline 1-oxide	1.59	1.16	-0.20 -0.43
1284. C ₁₀ H ₉ N	8-methylquinoline	2.60	2.62	0.02
1285. C ₁₀ H ₉ N	7-methylquinoline	2.47	2.62	0.15
1286. C ₁₀ H ₉ N	8-methylquinoline	2.60	2.62	0.02
1287. C ₁₀ H ₉ N	2-methylquinoline	2.59	2.62	0.03
1288. C ₁₀ H ₉ N	6-methylquinoline	2.57	2.62	0.05
1289. C ₁₀ H ₉ ON	7-methoxyquinoline	2.37	2.22	-0.15
1290. C ₁₀ H ₉ ON	N-methyl-α-quinolone	1.45	1.21	-0.24
1291. C ₁₀ H ₉ ON	N-methyl-4-quinolone 4-methyl-8-quinolinol	0.44	1.28	0.84
1292. C ₁₀ H ₉ ON 1293. C ₁₀ H ₉ ON	5-methyl-8-quinolinol	2.36 2.37	2.01 2.01	-0.35 -0.36
1294. C ₁₀ H ₉ ON	2-methyl-8-quinolinol	2.33	2.01	-0.30 -0.32
1295. C ₁₀ H ₉ ON	6-methoxyquinoline	2.20	2.22	0.02
1296. C ₁₀ H ₉ ON	8-methoxyquinoline	1.84	2.22	0.38
1297. C ₁₀ H ₉ O ₂ N	indole-3-acetic acid	1.41	1.57	0.16
1298. C ₁₀ H ₉ O ₂ N	5-methoxyl-8-quinolinol	2.06	1.61	-0.45
1299. C ₁₀ H ₉ O ₂ N	4-methyl-5,8-dihydroxyquinoline	1.59	1.90	0.31
1300. C ₁₀ H ₉ O ₂ N ₃	1-phenylhydrazono-1-cyanoacetic acid methyl ester	2.59	2.87	0.28
1301. C ₁₀ H ₉ O ₂ N ₂ F 1302. C ₁₀ H ₉ O ₂ N ₂ SCl	3-fluorobenzalmalonamide 3-cyclopropyl-2,4-benzothiadiazine 1,1-dioxide	0.10 1.98	0.48 1.50	0.38 0.48
1303. C ₁₀ H ₉ O ₄ N ₃ S	2-N,N-dimethylamino-6-(5-NO ₂ -2-furyl)-1,3-thiazin-4-one	0.55	0.78	0.48
1303, ChilleO21433				V.2J
1304. C ₁₀ H ₉ O ₄ N ₂ F ₃	1-(2-trifluoroacetamido)-2-(p-nitrophenyl)ethanol	1.46	1.59	0.13

Table 4 (Continued)

formula	name	$\log P_{\rm e}^{a}$	$\log P_{\rm c}^{\ b}$	$\log P_r^c$
100 TO II ON	Multifunctional Compounds	1.50	1.12	0.30
306.TC ₁₀ H ₁₀ ON ₂	benzalcyanoacetamide 3-(methylthio)-4-amino-6-phenyl-1,2,4-triazin-5-one	1.50 1.66	1.12 1.61	-0.38 -0.05
307. C ₁₀ H ₁₀ ON ₄ S 308. C ₁₀ H ₁₀ O ₂ N ₂	N,N-dimethylquinoxaline-2,3-dione	0.08	0.17	-0.03 -0.25
309. C ₁₀ H ₁₀ O ₂ N ₂	benzalmalonamide	-0.13	0.52	0.65
310. $C_{10}H_{10}O_2N_6$	azanidazole	0.85	0.66	-0.19
311. C ₁₀ H ₁₀ O ₂ N ₄ S	sulfadiazine	-0.08	-0.16	-0.08
312. C ₁₀ H ₁₀ O ₃ N ₆	DA3839	-0.30	0.10	0.40
313. C ₁₀ H ₁₀ O ₃ N ₃ SCl	1,2,4-benzothiadiazine-1,1-O ₂ -3-Me-6-NH	0.53	0.75	0.22
314. C ₁₀ H ₁₀ O ₄	4-acetylphenoxyacetic acid	0.87	1.25	0.38
315. C ₁₀ H ₁₀ O ₄	3-acetylphenoxyacetic acid	0.98	1.25	0.27
316. C ₁₀ H ₁₀ O ₄	2-acetylphenoxyacetic acid	1.25	1.25	0.00
317. C ₁₀ H ₁₀ O ₄ NCl	3-acetamido-4-chlorophenoxyacetic acid	0.67	1.39	0.72
318. C ₁₀ H ₁₀ O ₅ N ₂	p-nitromethyl hippurate	0.98	0.95	-0.03
319. C ₁₀ H ₁₁ N	1,2-dimethylindole	2.82	1.88	-0.94
320. C ₁₀ H ₁₁ N	γ-phenylpropyl cyanide	2.21	2.64	0.43
321. C ₁₀ H ₁₁ N	1,2-dimethylindole	2.82	2.49	-0.33
322. C ₁₀ H ₁₁ ON	N -methyl- α -quinoline	1.45	1.17	-0.28
323. C ₁₀ H ₁₁ ON ₂ F ₃	1,1-dimethyl-3-(m-(trifluoromethyl)phenyl)urea	2.36	2.48	0.12
324. C ₁₀ H ₁₁ O ₂ N	2-nitro-1-butenylbenzene	2.86	2.99	0.13
325. C ₁₀ H ₁₁ O ₂ N	β -ethyl- β -nitrostyrene	2.86	3.41	0.55
326. C ₁₀ H ₁₁ O ₃ N	3-allyloxy-4-aminobenzoic acid	0.42	0.71	0.29
327. C ₁₀ H ₁₁ O ₃ N	3-acetylphenyl N-methylcarbamate	0.90	1.14	0.24
328. C ₁₀ H ₁₁ O ₃ N	4-acetylphenyl N-methylcarbamate	1.01	1.14	0.13
329. C ₁₀ H ₁₁ O ₃ N	methyl hippurate	0.82	0.98	0.16
330. C ₁₀ H ₁₁ O ₃ N ₃ S	sulfamethoxazole	0.88	0.34	-0.54
331. C ₁₀ H ₁₁ O ₄ N	3-carbomethoxyphenyl N-methylcarbamate	1.42	1.21	-0.21
332. C ₁₀ H ₁₁ O ₄ N	4-carbomethoxyphenyl N-methylcarbamate	1.50	1.21	-0.29
333. C ₁₀ H ₁₁ O ₄ N	m-acetamidophenoxyacetic acid	0.48	0.74	0.26
334. C ₁₀ H ₁₂ ON ₂	2-(γ-hydroxylpropyl)benzimidazole	1.25	1.61	0.36
335. C ₁₀ H ₁₂ ON ₄	1-(3-carbamylpropyl)benzotriazole	0.37	0.82	0.45
336. C ₁₀ H ₁₂ O ₂ N ₂	m-diacetamidobenzene	0.50	0.39	-0.11
337. C ₁₀ H ₁₂ O ₂ N ₂	4-dimethylamino-β-nitrostyrene	2.67	2.31	0.36
338. C ₁₀ H ₁₂ O ₂ N ₂ S	1,2,4-benzothiadiazine	1.25	1.51	0.26
339. C ₁₀ H ₁₂ O ₂ NCl	2,5-dimethyl-4-chlorophenyl N-methylcarbamate	2.95	2.69	-0.26
340. C ₁₀ H ₁₂ O ₃	4-ethoxyphenyl acetate	1.95	2.00	0.05
341. C ₁₀ H ₁₂ O ₃	ethyl mandelate	0.91	1.52	0.61
342. C ₁₀ H ₁₂ O ₃	p-hydroxybenzoic acid propyl ester	3.04	2.29	-0.75
343. C ₁₀ H ₁₂ O ₃	o-methylphenoxyacetic acid methyl ester	2.08	2.00	-0.08
344. C ₁₀ H ₁₂ O ₃	3-ethylphenoxyacetic acid	2.25	2.16	-0.09
345. C ₁₀ H ₁₂ O ₃	2-ethylphenoxyacetic acid	2.65	2.16	-0.49
346. C ₁₀ H ₁₂ O ₃ N ₂	<i>p</i> -aminohippurate	-0.23	0.33	0.56
347. C ₁₀ H ₁₂ O ₃ N ₂	diallylbarbituric acid	1.07	1.08	0.01
348. C ₁₀ H ₁₃ N ₃	1-sec-butylbenzotriazole	2.31	2.22	-0.09
349. C ₁₀ H ₁₃ ON	m-tolyl N-methylcarbamate	1.70	1.78	0.08
350. C ₁₀ H ₁₃ ON	o-tolyl N-methylcarbamate	1.46	1.78	0.32
351. C ₁₀ H ₁₃ ON	p-tolyl N-methylcarbamate	1.66	1.78	0.12
352. C ₁₀ H ₁₃ ON	4-phenylbutyramide	1.41	1.77	0.36
353. C ₁₀ H ₁₃ ON	N-phenylmorpholine	1.36	1.60	0.24
354. C ₁₀ H ₁₃ O ₂ N	4-ethoxyacetanilide	1.58	1.40	-0.18
355. C ₁₀ H ₁₃ O ₂ N	N,N-dimethylphenoxyacetamide	0.77	1.38	0.61
356. C ₁₀ H ₁₃ O ₂ N	fusaric acid	-1.29	-0.51	0.78
357. C ₁₀ H ₁₃ O ₂ N	m-methoxy-N,N-dimethylbenzamide	1.00	1.37	0.37
358. C ₁₀ H ₁₃ O ₂ N	o-methoxy-N,N-dimethylbenzamide	0.71	1.37	0.66
359. C ₁₀ H ₁₃ O ₂ N	p-methoxy-N,N-dimethylbenzamide	0.96	1.37	0.41
360. C ₁₀ H ₁₃ O ₂ N	2,3-dimethyl-4-hydroxyacetanilide	1.06	1.31	0.25
361. C ₁₀ H ₁₃ O ₂ N	2,5-dimethyl-4-hydroxyacetanilide	1.09	1.31	0.22
362. C ₁₀ H ₁₃ O ₂ N	2,6-dimethyl-4-hydroxyacetanilide	0.80	1.31	0.51
363. C ₁₀ H ₁₃ O ₂ N	3,5-dimethyl-4-hydroxyacetanilide	1.60	1.31	-0.29
364. C ₁₀ H ₁₃ O ₂ N	3-ethyl-4-hydroxyacetanilide	1.79	1.32	-0.47
365. C ₁₀ H ₁₃ O ₂ N	2-ethylphenyl N-methylcarbamate	1.93	2.04	0.11
366. C ₁₀ H ₁₃ O ₂ N	2,3-dimethylphenyl N-methylcarbamate	1.95	2.04	0.09
367. C ₁₀ H ₁₃ O ₂ N	2,5-dimethylphenyl N-methylcarbamate	2.03	2.04	0.01
368. C ₁₀ H ₁₃ O ₂ N	3-ethylphenyl N-methylcarbamate	2.20	2.04	-0.16
369. C ₁₀ H ₁₃ O ₂ N	3,4-methylphenyl N-methylcarbamate	2.09	2.04	-0.05
370. C ₁₀ H ₁₃ O ₂ N	3,5-methylphenyl N-methylcarbamate	2.23	2.04	-0.19
371. C ₁₀ H ₁₃ O ₂ N	4-ethylphenyl N-methylcarbamate	2.23 2.05	2.04	-0.19
372. C ₁₀ H ₁₃ O ₂ N	m-tolyl N,N-dimethylcarbamate	2.05 1.86	2.01 2.01	-0.04 0.15
373. C ₁₀ H ₁₃ O ₂ N	o-tolyl N,N-dimethylcarbamate p-tolyl N,N-dimethylcarbamate	2.03	2.01	-0.13 -0.02
374. C ₁₀ H ₁₃ O ₂ N		2.03 2.47	2.52	0.02
375. C ₁₀ H ₁₃ O ₂ NS	3-methyl-4-methylthiophenyl N-methylcarbamate 3-methoxyphenyl N,N-dimethylcarbamate	1.60	2.52 1.61	0.03
376. C ₁₀ H ₁₃ O ₃ N	4-methoxyphenyl N,N-dimethylcarbamate	1.53	1.61 1.61	0.01
377. C ₁₀ H ₁₃ O ₃ N 378. C ₁₀ H ₁₃ O ₃ N	2-ethoxyphenyl N-methylcarbamate	1.24	1.64	0.40
379. C ₁₀ H ₁₃ O ₃ N	3-ethoxyphenyl N-methylcarbamate	1.75	1.64	-0.11
380. C ₁₀ H ₁₃ O ₃ N	4-ethoxyphenyl N-methylcarbamate	1.63	1.64	0.01
381. C ₁₀ H ₁₃ O ₃ N	2-propoxy-4-aminobenzoic acid	0.70	0.92	0.01
	- brobowl , mirringonizara nara	U., U		
382. C ₁₀ H ₁₃ O ₄ NS	4-sulfamonylbenzoic acid propyl ester	1.75	1.38	-0.37

Table 4 (Continued)

formula	name	$\log P_{\rm e}^a$	$\log P_c^b$	log Pr
1004 C II N	Multifunctional Compounds		1.54	0.50
1384. C ₁₀ H ₁₄ N ₂ 1385. C ₁₀ H ₁₄ ON ₂	nicotine 1,1-dimethyl-p-tolylurea	1.17 1.98	1.76 1.79	0.59 0.19
1386. C ₁₀ H ₁₄ ON ₂	γ -(α -pyridyl)pentamide	-0.01	0.84	0.85
1387. C ₁₀ H ₁₄ ON ₂	δ -(α -pyridyl)pentamide	0.39	0.91	0.52
1388. C ₁₀ H ₁₄ ON ₂	δ - $(\beta$ -pyridyl)pentamide	0.40	0.91	0.51
1389. C ₁₀ H ₁₄ ON ₂	δ-(γ-pyridyl)pentamide	0.42	0.00	-0.42
1390. C ₁₀ H ₁₄ O ₂	camphorquinone	1.52	1.86	0.34
1391. C ₁₀ H ₁₄ O ₂ N ₂ 1392. C ₁₀ H ₁₄ O ₂ NBr	3-(dimethylamino)phenyl N-methylcarbamate 3,5-dimethoxy-4-bromophenethylamine	1.43 2.03	1.73 2.11	0.30 0.08
1393. C ₁₀ H ₁₄ O ₃	3-(2-tolyloxy)-1,2-propanediol	1.41	1.01	-0.40
1394. C ₁₀ H ₁₄ O ₄ N ₂	N-isopropyl-3-(5-NO ₂ -2-furyl)acrylamide	1.34	1.69	0.35
1395. C ₁₀ H ₁₄ O ₆ NP	p-oxon	1.69	1.74	0.05
1396. C ₁₀ H ₁₅ ON	$5-(\alpha-pyridyl)$ pentanol	1.28	1.69	0.41
1397. C ₁₀ H ₁₅ ON	5-(β-pyridyl)pentanol	1.41	1.69	0.28 0.35
1398. C ₁₀ H ₁₅ ON 1399. C ₁₀ H ₁₅ ON	5-(\gamma-pyridyl)pentanol ephedrine	1.39 1.56	1.04 1.57	0.01
1400. C ₁₀ H ₁₅ O ₂ NS	p-butylbenzenesulfonamide	2.45	2.21	-0.24
1401. C ₁₀ H ₁₅ O ₄ P	O,O-diethyl O-phenyl phosphate	1.64	1.77	0.13
1402. C ₁₀ H ₁₆ N ₂	5-(α-pyridyl)pentylamine	1.32	1.58	0.26
$1403. C_{10}H_{16}N_2$	5-(β-pyridyl)pentylamine	1.41	1.58	0.17
1404. C ₁₀ H ₁₆ N ₂	5-(γ-pyridyl)pentylamine	1.40	1.04	-0.36
1405. C ₁₀ H ₁₆ O ₂ N ₃ Cl	3-(2-norbornyl)-1-(2-chloroethyl)nitrosoruea	2.98	2.30	-0.68
1406. C ₁₀ H ₁₆ O ₃ N ₂ 1407. C ₁₀ H ₁₇ O ₂ N ₅	5-butyl-5-ethylbarbituric acid DA3804	1.89 -0.33	1.50 0.25	-0.39 0.58
1408. C ₁₀ H ₁₈ O ₂ N ₃ Cl	1-(2-chloroethyl)-3-(4-methylcyclohexyl)-1-nitrosourea	3.30	2.85	-0.45
1409. C ₁₀ H ₁₉ O ₂ N ₅	3-morpholino-4-amino-6-isopropyl-1,2,4-triazin-5-one	0.49	-0.03	-0.52
1410. C ₁₁ H ₆ O ₂ N ₃ F ₃ Cl ₂	1-(2,6-dichloro-4-(trifluoromethyl)phenylhydrazono)-1-cyanoacetic acid methyl ester	4.36	5.29	0.93
1411. C ₁₁ H ₇ NS	1-isothiocyanonaphthalene	4.34	4.09	-0.25
1412. C ₁₁ H ₇ NS	2-isothiocyanonaphthalene	4.34	4.09	-0.25
1413. C ₁₁ H ₇ ON ₃ F ₃ Cl	1-(2-chloro-5-(trifluoromethyl)phenylhydrazono)-1-cyanoacetone	5.08	4.55	-0.53
1414. C ₁₁ H ₇ O ₂ N ₃ F ₃ Cl	1-(4-chloro-2-(trifluoromethyl)phenylhydrazono)-1-cyanoacetic acid methyl ester 1-(2-chloro-5-(trifluoromethyl)phenylhydrazono)-1-cyanoacetic acid methyl ester	4.66 4.42	4.63 4.63	-0.03 0.21
1415. C ₁₁ H ₇ O ₂ N ₃ F ₃ Cl 1416. C ₁₁ H ₇ O ₄ N ₄ F ₃	1-(2-nitro-5-(trifluoromethyl)phenylhydrazono)-1-cyanoacetic acid methyl ester	3.44	3.95	0.21
1417. C ₁₁ H ₈ ONCl	4-acetyl-7-chloroquinoline	2.62	2.78	0.16
1418. C ₁₁ H ₈ ON ₃ F ₃ S	1-(4-(trifluoromethyl)thiophenylhydrazono)-1-cyanoacetone	5.04	4.38	-0.66
1419. C ₁₁ H ₈ O ₂	6-methyl-1,4-naphthoquinone	2.10	1.87	-0.23
$1420. C_{11}H_8O_2N_3F_3$	1-(3-(trifluoromethyl)phenylhydrazono)-1-cyanoacetic acid methyl ester	3.78	3.98	0.20
1421. C ₁₁ H ₈ O ₂ N ₃ F ₃	1-(2-(trifluoromethyl)phenylhydrazono)-1-cyanoacetic acid methyl ester	3.72	3.98	0.26
1422. C ₁₁ H ₈ O ₂ N ₃ F ₂ Cl 1423. C ₁₁ H ₈ O ₂ N ₃ F ₃ S	1-(4-chloro-3-(difluoromethyl)phenylhydrazono)-1-cyanoacetic acid methyl ester 1-(4-(trifluoromethyl)thiophenylhydrazono)-1-cyanoacetic acid methyl ester	3.83 4.27	4.36 4.46	0.53 0.19
424. C ₁₁ H ₈ O ₂ N ₃ Cl ₃	1-(3,4,5-trichlorophenylhydrazono)-1-cyanoacetic acid ethyl ester	5.03	5.25	0.19
1425. C ₁₁ H ₈ O ₂ N ₃ Cl ₃	1-(2,4,5-trichlorophenylhydrazono)-1-cyanoacetic acid ethyl ester	5.21	5.25	0.04
426. C ₁₁ H ₈ O ₃	2-methyl-3-hydroxyl-1,4-naphthoquinone	1.20	1.43	0.23
427. C ₁₁ H ₈ O ₄ N ₃ F ₃ S	1-(4-[(trifluoromethyl)sulfonyl]phenylhydrazono)-1-cyanoacetic acid methyl ester	4.22	3.16	-1.06
1428. C ₁₁ H ₉ N	4-phenylpyridine	2.45	2.97	0.52
1429. C ₁₁ H ₉ N	2-phenylpyridine 1-(3,4-dichlorophenylhydrazono)-1-cyanoacetic acid ethyl ester	2.63	2.97	0.34
1430. C ₁₁ H ₉ O ₂ N ₃ Cl ₂ 1431. C ₁₁ H ₉ O ₂ N ₃ Cl ₂	1-(3,5-dichlorophenylhydrazono)-1-cyanoacetic acid ethyl ester	4.66 3.82	4.60 4.60	0.06 0.78
1432. C ₁₁ H ₉ O ₂ N ₃ SCl ₂	N-(3,5-dichloro-2-pyridyl)sulfanilamide	1.97	1.90	-0.07
433. C ₁₁ H ₉ O ₂ N ₃ SBr ₂	N-(3,5-dibromo-2-pyridyl)sulfanilamide	2.74	2.27	-0.47
$434. C_{11}H_{10}N_2$	α -methylbenzalmalononitrile	2.10	2.34	0.24
435. C ₁₁ H ₁₀ O ₂ N ₃ Cl	1-(4-chloro-2-methylphenylhydrazono)-1-cyanoacetic acid methyl ester	4.28	3.94	-0.34
1436. C ₁₁ H ₁₀ O ₂ N ₃ Cl	1-(3-chlorophenylhydrazono)-1-cyanoacetic acid ethyl ester	3.94	3.94	0.00
1437. C ₁₁ H ₁₀ O ₂ N ₃ SBr	N-(3-bromo-2-pyridyl)sulfanilamide 4,5-dimethyl-8-quinolinol	1.24 2.71	1.43	0.19
1438. C ₁₁ H ₁₁ ON 1439. C ₁₁ H ₁₁ O ₂ N	4-methyl-5-methoxy-8-quinolinol	2.75	2.92 2.52	0.21 -0.23
440. C ₁₁ H ₁₁ O ₂ N ₃ S	sulfapyridine	0.00	0.59	0.59
441. C ₁₁ H ₁₁ O ₅ N ₂ Br ₃	tribromamphenicol	2.17	2.61	0.44
442. C ₁₁ H ₁₂ N ₂	7-(dimethylamino)quinoline	2.71	2.35	-0.36
443. C ₁₁ H ₁₂ ON ₂	antipyrine	0.23	0.85	0.62
1444. C ₁₁ H ₁₂ O ₂ N ₂	5-ethyl-5-phenylhydantoin	1.53	1.55	0.02
1445. C ₁₁ H ₁₂ O ₂ N ₄ S	sulfaperine sulfamerazine	0.34	0.25	-0.09
446. C ₁₁ H ₁₂ O ₂ N ₄ S 447. C ₁₁ H ₁₂ O ₂ N ₂	tryptophan	0.14 -1.04	0.25 0.93	0.11 0.11
1448. C ₁₁ H ₁₂ O ₃	indanoxylacetic acid	2.33	1.91	-0.42
449. C ₁₁ H ₁₂ O ₅ N ₂ F ₂	difluoramamphenicol	0.42	0.73	0.31
450. C ₁₁ H ₁₂ O ₅ N ₂ Cl ₂	chloramphenicol	1.14	1.18	0.04
451. C ₁₁ H ₁₃ ON	1-phenyl-2-acetamidocyclopropane	1.43	1.55	0.12
.452. C ₁₁ H ₁₃ O ₂ N ₃	1-(4-carboxybutyl)benzotriazole	0.93	1.77	0.84
.453. C ₁₁ H ₁₃ O ₃ N .454. C ₁₁ H ₁₃ O ₃ N	2-acetylphenyl N,N-dimethylcarbamate 3-acetylphenyl N,N-dimethylcarbamate	0.93 1.18	1.52 1.52	0.59 0.34
455. C ₁₁ H ₁₃ O ₃ N	4-propionylphenyl N-methylcarbamate	1.15	1.55	0.00
456. C ₁₁ H ₁₃ O ₃ N	3-propionylphenyl N-methylcarbamate	1.49	1.55	0.06
457. C ₁₁ H ₁₄ ON ₂	4-phenyl-N-nitrosopiperidine	2.59	2.11	-0.48
	2	0.40	066	0.26
458. C ₁₁ H ₁₄ O ₂ N ₂	3-methylbenzalmalonamide	0.40	0.66	
	3-isopropylphenoxyacetic acid 4-isopropylphenoxyacetic acid	2.59 2.69	2.51 2.51	-0.08 -0.18

Table 4 (Continued)

formula	name	$\log P_{\mathrm{e}}^{a}$	$\log P_{\rm c}^{b}$	$\log P_{\rm r}$
	Multifunctional Compounds			
1462. C ₁₁ H ₁₄ O ₃	o-isopropylphenoxyacetic acid	2.84	2.51	-0.33
1463. C ₁₁ H ₁₄ O ₃	p-hydroxybenzoic acid butyl ester	3.57	2.70	-0.87
1464. C ₁₁ H ₁₄ O ₃ N ₂	3-methoxylbenzalmalonamide	0.01	0.26	0.25
1465. C ₁₁ H ₁₅ N	N-phenylpiperidine	2.78	2.10	-0.68
1466. C ₁₁ H ₁₅ N ₃	1-pentylbenzotriazole	3.22	2.69	-0.53
1467. C ₁₁ H ₁₅ O ₂ N	3-isopropyl-4-hydroxyacetanilide	2.20	1.67	-0.53
1468. C ₁₁ H ₁₅ O ₂ N	2,4,5-trimethyl-N-methylphenylcarbamate	2.52	2.45	-0.07
1469. C ₁₁ H ₁₅ O ₂ N	2,3,5-trimethyl-4-hydroxyacetanilide	1.30	1.72	0.42
1470. C ₁₁ H ₁₅ O ₂ N	2,3,6-trimethyl-4-hydroxyacetanilide	1.24	1.72	0.48
1471. C ₁₁ H ₁₅ O ₂ N	2-amino-5-phenylvaleric acid	-0.36	-0.19	0.17
1472. C ₁₁ H ₁₅ O ₂ N	4-butoxybenzamide	2.48	1.78	-0.70
1473. C ₁₁ H ₁₅ O ₃ N	2-butoxy-4-aminobenzoic acid	1.24	1.33	0.09
1474. C ₁₁ H ₁₅ O ₃ N	baygon	1.58	1.99	0.41
1475. C ₁₁ H ₁₅ O ₃ N	3-isopropoxyphenyl N-methylcarbamate	1.96	1.99	0.03
1476. C ₁₁ H ₁₆ O ₃ N ₂	5-allyl-5-butylbarbituric acid	1.35	1.71	0.36
1477. C ₁₁ H ₁₆ O ₃ N ₂	INPEA	1.28	1.63	0.35
1478. C ₁₁ H ₁₇ N	p-hexylpyridine	4.35	4.51	0.16
	p-(diethylamino)benzyl alcohol	2.29	2.02	-0.27
1479. C ₁₁ H ₁₇ ON	2,3-dimethoxyamphetamine	1.49	1.76	0.27
1480. C ₁₁ H ₁₇ O ₂ N		1.75	1.76	0.27
1481. C ₁₁ H ₁₇ O ₂ N	2,4-dimethoxyamphetamine			
1482. C ₁₁ H ₁₇ O ₂ N	2,5-dimethoxyamphetamine	1.88	1.76	-0.12
$1483. C_{11}H_{17}O_2N$	3,4-dimethoxyamphetamine	1.00	1.76	0.76
1484. C ₁₁ H ₁₇ O ₃ N	mescaline	0.78	1.29	0.51
1485. C ₁₁ H ₁₈ O ₃ N ₂	5-amyl-5-ethylbarbituric acid	2.24	1.92	-0.32
1486. C ₁₁ H ₁₈ O ₃ N ₂	amobarbital	2.07	1.85	-0.22
1487. C ₁₁ H ₁₈ O ₃ N ₂	pentobarbital	2.03	1.85	-0.18
488. C ₁₂ N ₈ N ₂	1,7-phenanthroline	2.51	2.85	0.34
489. C ₁₂ H ₈ N ₂	4,7-phenanthroline	2.05	2.85	0.80
490. C ₁₂ H ₈ N ₂	phenazine	2.84	2.85	0.01
491. C ₁₂ H ₉ N	carbazol	3.72	2.69	-1.03
1492. C ₁₂ H ₉ NS	phenothiazine	3.78	3.50	-0.28
	4-benzoylpyridine	1.98	2.48	0.50
493. C ₁₂ H ₉ ON		1.29	0.86	-0.43
1494. C ₁₂ H ₉ O ₃ N	2-acetamido-1,4-naphthoquinone	2.78	2.59	-0.43 -0.19
1495. C ₁₂ H ₁₀ O ₂	naphthalene-1-acetoxy			
1496. C ₁₂ H ₁₀ O ₂	6,7-dimethyl-1,4-naphthoquinone	2.49	2.28	-0.21
$1497. C_{12}H_{10}ON_2$	diphenylnitrosoamine	3.13	2.69	-0.44
498. C ₁₂ H ₁₀ O ₂ S	diphenyl sulfone	2.40	2.54	0.14
1499. C ₁₂ H ₁₀ O ₃	2-naphthoxyacetic acid	2.53	2.35	-0.18
500. C ₁₂ H ₁₀ OS	phenyl sulfoxide	2.06	2.03	-0.03
$1501. C_{12}H_{11}O_2N$	carbaryl	2.34	2.24	-0.10
502. C ₁₂ H ₁₁ NS	1-naphthylmethyl isothiocyanate	4.42	4.45	0.03
503. C ₁₂ H ₁₁ ON	o-phenoxyaniline	2.46	2.30	-0.16
504. C ₁₂ H ₁₁ ON	p-phenoxyaniline	2.36	2.30	-0.06
505. C ₁₂ H ₁₂ N ₂	benzidine	1.34	2.05	0.71
506. C ₁₂ H ₁₂ N ₂	hydrazobenzene	2.94	3.39	0.45
507. C ₁₂ H ₁₂ ON ₂	harmalol	2.19	2.53	0.34
508. C ₁₂ H ₁₂ O ₂ N ₂ S	dapsone	0.97	1.23	0.26
509. C ₁₂ H ₁₃ O ₂ NS	vitavax	2.14	2.87	0.73
510. C ₁₂ H ₁₄ O ₂ N ₄ S	sulfamethazine	0.27	0.66	0.39
511. C ₁₂ H ₁₆ O ₃	o-tert-butylphenoxyacetic acid	3.33	2.96	-0.37
	4-sec-butylphenoxyacetic acid	3.12	2.93	-0.19
512. C ₁₂ H ₁₆ O ₃	o-sec-butylphenoxyacetic acid	3.32	2.93	-0.19 -0.39
513. C ₁₂ H ₁₆ O ₃		3.18	2.93	
514. C ₁₂ H ₁₆ O ₃	3-butylphenoxyacetic acid			-0.19
515. C ₁₂ H ₁₆ O ₇	arbutin	-1.35	-0.80	0.55
516. C ₁₂ H ₁₇ O ₂ N	3-tert-butyl-4-hydroxyacetanilide	2.85	2.12	-0.73
517. C ₁₂ H ₁₇ O ₂ N	3,5-diethyl-4-hydroxyacetanilide	2.36	2.14	-0.22
$518. C_{12}H_{17}O_2N$	2-sec-butylphenyl N-methylcarbamate	2.78	2.81	0.03
519. C ₁₂ H ₁₇ O ₂ N	2-tert-butylphenyl N-methylcarbamate	2.65	2.84	0.19
520. C ₁₂ H ₁₇ O ₂ N	3-methyl-4-isopropylphenyl N-methylcarbamate	3.11	2.80	-0.31
521. C ₁₂ H ₁₇ O ₂ N	3-methyl-5-isopropylphenyl N-methylcarbamate	3.10	2.80	-0.30
522. C ₁₂ H ₁₇ O ₂ N	3-methyl-6-isopropylphenyl N-methylcarbamate	2.84	2.80	0.04
523. C ₁₂ H ₁₇ O ₂ N	3-tert-butylphenyl N-methylcarbamate	2.93	2.84	-0.09
524. C ₁₂ H ₁₇ O ₂ N	4-sec-butylphenyl N-methylcarbamate	3.20	2.81	-0.39
525. C ₁₂ H ₁₇ O ₂ N	4-tert-butylphenyl N-methylcarbamate	3.06	2.84	-0.22
526. C ₁₂ H ₁₇ O ₂ N	2,3,5,6-tetramethyl-4-hydroxyacetamide	1.44	2.13	0.69
527. C ₁₂ H ₁₇ O ₂ NS	N-methyl-2-butylthiophenylcarbamate	2.98	3.36	0.38
528. C ₁₂ H ₁₇ O ₃ N	bufexamac	1.47	1.80	0.33
529. C ₁₂ H ₁₇ O ₃ N	3-butoxyphenyl N-methylcarbamate	2.96	2.47	-0.49
530. C ₁₂ H ₁₇ O ₃ N	4-butoxypheny; N-methylcarbamate	2.86	2.47	-0.39
531. C ₁₂ H ₁₇ O ₃ N	2-pentoxy-4-aminobenzoic acid	1.55	1.75	0.20
532. C ₁₂ H ₁₇ O ₃ N	2-isopentoxy-4-aminobenzoic acid	1.47	1.68	0.21
1533. C ₁₂ H ₁₈ O ₃ N ₂ S	butamidotolylsulfonamide	2.34	1.83	-0.51
534. C ₁₂ H ₁₉ N	p-heptylpyridine	5.00	4.92	-0.08
535. C ₁₃ H ₈ OS	thioxanthon	3.99	3.48	-0.51
.535. C ₁₃ H ₈ OS .536. C ₁₃ H ₉ N	acridine	3.40	3.23	-0.17
	4-biphenyl isothiocyanate	4.66	4.85	0.19
537. C ₁₃ H ₉ NS		4.75	4.45	-0.30
1538. C ₁₃ H ₉ ONS	4-isothiocyanodiphenyl ether	4.73 4.40	3.53	-0.30 -0.87
1539. C ₁₃ H ₉ ONS ₂	4-isothiocyanodiphenyl sulfoxide			

Table 4 (Continued)

formula	name	log Pea	$\log P_c^b$	log P
	Multifunctional Compounds	*···		
540. C ₁₃ H ₁₀ N ₂ S	4-isothiocyanodiphenylamine	4.94	4.87	-0.0
541. C ₁₃ H ₁₀ N ₂	1-aminoacridine	2.47	2.58	0.11
542. C ₁₃ H ₁₀ N ₂	2-aminoacridine	2.62	2.58	-0.04 0.39
543. C ₁₃ H ₁₀ N ₂ 544. C ₁₃ H ₁₀ N ₂	3-aminoacridine 4-aminoacridine	2.19 3.26	2.58 2.58	-0.6
545. C ₁₃ H ₁₀ N ₂	9-aminoacridine	2.74	2.58	-0.1
546. C ₁₃ H ₁₀ ON ₂ Cl ₂	1-(3,4-dichlorophenyl)-3-phenylurea	4.70	3.67	-1.0
547. C ₁₃ H ₁₀ O ₂	o-hydroxybenzophenone	3.52	3.47	0.0
548. C ₁₃ H ₁₀ O ₂	p-hydroxybenzophenone	3.07	2.74	-0.3
549. C ₁₃ H ₁₀ O ₃	o-phenoxybenzoic acid	2.84	3.17	0.3
550. C ₁₃ H ₁₀ O ₃	p-phenoxybenzoic acid	3.21	3.17	-0.0
551. C ₁₃ H ₁₀ O ₃ NF	4-aminosalicylic acid 4-fluorophenyl ester	3.27	3.12	0.1
552. C ₁₃ H ₁₀ O ₃ NF	4-aminosalicylic acid 2-fluorophenyl ester	3.29	3.12	-0.1
553. C ₁₃ H ₁₀ O ₃ NF	4-aminosalicylic acid 3-fluorophenyl ester 4-aminosalicylic acid 4-chlorophenyl ester	3.42 3.60	3.12 3.55	-0.3 -0.0
554. C ₁₃ H ₁₀ O ₃ NCl 555. C ₁₃ H ₁₀ O ₃ NCl	4-aminosalicylic acid 2-chlorophenyl ester	3.72	3.55	-0.1
556. C ₁₃ H ₁₀ O ₃ NCl	4-aminosalicylic acid 3-chlorophenyl ester	3.90	3.55	-0.3
557. C ₁₃ H ₁₀ O ₃ NBr	4-aminosalicylic acid 4-bromophenyl ester	3.46	3.74	0.2
558. C ₁₃ H ₁₀ O ₃ NBr	4-aminosalicylic acid 2-bromophenyl ester	3.74	3.74	0.0
559. C ₁₃ H ₁₀ O ₃ NBr	4-aminosalicylic acid 3-bromophenyl ester	3.84	3.74	-0.1
560. C ₁₃ H ₁₁ N ₃	3,6-diaminoacridine	1.10	1.92	0.8
$561. C_{13}H_{11}O_2N$	N-phenylanthranilic acid	4.36	3.59	-0.7
$562. C_{13}H_{11}O_2N$	salicylanilide	3.27	2.96	-0.3
$563. C_{13}H_{11}O_3N$	phenyl 4-aminosalicylate	3.15	2.90	-0.2
564. C ₁₃ H ₁₂ O ₂	(4,4'-dihydroxydiphenyl)methane	2.91	3.54	0.6
565. C ₁₃ H ₁₂ O ₂	o-phenoxyanisole	2.92	2.96	0.0
566. C ₁₃ H ₁₄ O ₂ N ₂ S	N'-(4-methylphenyl)sulfanilamide	2.00	1.83	-0.1
567. C ₁₃ H ₁₄ O ₃ N ₂ S	N'-(2-methoxyphenyl)sulfanilamide N'-(4-methoxyphenyl)sulfanilamide	1.56 1.51	1.43 1.43	0.1 0.0
568. C ₁₃ H ₁₄ O ₃ N ₂ S 569. C ₁₃ H ₁₉ O ₄ NS	probenecid	3.21	2.77	-0.4 -0.4
570. C ₁₃ H ₁₆ O ₃	benzylacetoacetic acid ethyl ester	2.52	2.74	0.2
571. C ₁₄ H ₁₆ O ₃	4-cyclopentylphenoxyacetic acid	3.41	2.63	-0.7
572. C ₁₃ H ₁₈ O ₂	ibuprofen	3.51	3.42	-0.0
573. C ₁₃ H ₁₉ O ₂ N	2-sec-butylphenyl N,N-dimethylcarbamate	3.31	3.19	-0.1
574. C ₁₃ H ₁₉ O ₂ N	3-methyl-4-tert-butylphenyl N-methylcarbamate	3.38	3.26	-0.1
575. C ₁₃ H ₁₉ O ₂ N	3-methyl-5-tert-butylphenyl N-methylcarbamate	3.35	3.26	-0.0
$576. C_{13}H_{19}O_2N$	3-methyl-6-tert-butylphenyl N-methylcarbamate	3.14	3.26	0.1
$577. C_{13}H_{19}O_2N$	2-methyl-5-tert-butyl-4-hydroxyacetamide	2.67	2.53	-0.1
578. C ₁₃ H ₂₀ O ₂ N ₂	procaine	1.92	2.30	0.3
579. C ₁₃ H ₂₁ N	p-octylpyridine	5.42	5.34	-0.0
580. C ₁₃ H ₂₁ ON ₃	procainamide timolol	1.39 1.91	1.71 1.44	0.3 0.4
581. C ₁₃ H ₂₄ O ₃ N ₄ S 582. C ₁₄ H ₈ N ₂ S ₂	4,4'-diisothiocyanatobiphenyl	5.50	6.35	0.8
583. C ₁₄ H ₉ ONS	4-isothiocyanatosiphenyi	4.88	4.36	-0.5
584. C ₁₄ H ₉ O ₂ NS	4-isothiocyanophenyl benzoate	4.90	4.44	_0.4 _0.4
585. C ₁₄ H ₁₀ O ₂	benzil	3.38	2.37	-1.0
586. C ₁₄ H ₁₀ O ₂ NF ₃	N-(3-(trifluoromethyl)phenyl)anthranilic acid	5.62	4.69	-0.9
587. C ₁₄ H ₁₁ NS	(4-isothiocyanophenyl)phenylmethane	4.40	5.26	0.8
588. C ₁₄ H ₁₂ O ₃	m-phenylphenoxyacetic acid	3.18	3.11	-0.0
589. C ₁₄ H ₁₂ O ₃	o-phenylphenoxyacetic acid	2.83	3.11	0.2
590. C ₁₄ H ₁₃ ON ₃ F ₃ Cl	1-(2-(trifluoromethyl)-4-chlorophenylhydrazono)-1-cyano-3,3-dimethylacetone	5.67	5.77	0.1
591. C ₁₄ H ₁₃ ON ₃ F ₃ Cl	1-(2-chloro-5-(trifluoromethyl)phenylhydrazono)-1-cyano-3,3-dimethylacetone	5.31	5.77	0.4
592. C ₁₄ H ₁₃ O ₃ N	4-aminosalicylic acid 2-tolyl ester	3.14	3.31	0.1
593. C ₁₄ H ₁₃ O ₃ N	4-aminosalicylic acid 4-tolyl ester	3.38	3.31	-0.0
594. C ₁₄ H ₁₃ O ₃ N	4-aminosalicylic acid 3-tolyl ester	3.64 2.88	3.31 2.91	0.3
595. C ₁₄ H ₁₃ O ₄ N	4-aminosalicylic acid 2-methoxyphenyl ester 4-aminosalicylic acid 4-methoxyphenyl ester	3.07	2.91	0.0 -0.1
596. C ₁₄ H ₁₃ O ₄ N 597. C ₁₄ H ₁₃ O ₄ N	4-aminosalicylic acid 3-methoxyphenyl ester	3.07	2.91	-0.1 -0.3
598. C ₁₄ H ₁₃ O ₅ N ₃	DA3832	2.03	2.00	-0.0 -0.0
599. C ₁₄ H ₁₄ O ₃	naproxen	3.18	2.85	-0.3
500. C ₁₄ H ₁₆ ON ₃ Cl	1-(2-methyl-4-chlorophenylhydrazono)-1-cyano-3,3-dimethylacetone	4.31	5.08	0.7
501. C ₁₄ H ₁₈ O ₃	4-cyclohexylphenoxyacetic acid	3.79	2.99	-0.8
602. C ₁₄ H ₁₈ O ₃ N ₄	trimethoprim(9624)	0.91	1.36	0.4
$603. C_{14}H_{20}O_2N_2$	pindolol	1.92	1.77	-0.1
504. C ₁₄ H ₂₀ O ₃	p-hydroxybenzoic acid heptyl ester	4.83	4.77	0.0
$605. C_{14}H_{21}O_2N$	3,5-dipropyl-4-hydroxyacetanilide	3.16	2.97	-0.1
606. C ₁₄ H ₂₂ ON ₂	lidocaine	2.90	2.77	-0.1
507. C ₁₄ H ₂₂ O ₃ N ₂	practolol	0.79	1.07	0.2
608. C ₁₄ H ₂₂ O ₃ N ₂	atenolol 2-isothiocyanoanthrancene	0.16 5.70	1.04 5.11	0.8 -0.5
609. C ₁₅ H ₉ NS 610. C ₁₅ H ₁₀ O ₂	2-phenylindanedione	3.70 2.90	2.83	_0.0 _0.0
611. C ₁₅ H ₁₀ O ₂ N ₂ Cl ₂	lorazepam	2.38	3.03	-0.0 0.6
612. C ₁₅ H ₁₁ N	2-phenylquinoline	3.90	3.99	0.0
613. C ₁₅ H ₁₁ ON ₂ F	1-methyl-4-phenyl-6-fluoroquinazolin-2-one	1.87	2.15	0.2
614. C ₁₅ H ₁₁ ON ₂ Cl	1-methyl-4-phenyl-7-chloroquinazolin-2-one	2.36	2.59	0.2
615. C ₁₅ H ₁₁ ON ₂ Cl	1-methyl-4-phenyl-6-chloroquinazolin-2-one	2.38	2.59	0.2
	oxazepam	2.17	2.37	0.2 0.4
616. C ₁₅ H ₁₁ O ₂ N ₂ Cl 617. C ₁₅ H ₁₁ O ₃ N ₃	· · · ·			

Table 4 (Continued)

formula	name	log Pea	$\log P_{\rm c}^b$	$\log P_{\rm r}$
	Multifunctional Compounds			
1618. C ₁₅ H ₁₂ O ₂	9-carboxy-9,10-dihydroanthracene	2.67	3.05	0.38
1619. C ₁₅ H ₁₂ ON ₂	1-methyl-4-phenylquinazolin-2-one	1.79	1.94	0.15
1620. C ₁₅ H ₁₂ O ₂ N ₂	1-methyl-4-phenyl-6-hydroxyquinazolin-2-one	1.72	1.82	0.10
1621. C ₁₅ H ₁₃ O ₄ N	3-benzamidophenoxyacetic acid	1.99	2.11	0.12
1622. C ₁₅ H ₁₅ O ₃ N	2,6-dimethyl-4-aminosalicylic acid	3.38	3.72	0.34
1623. C ₁₅ H ₁₆ ON ₂	1,1-diphenyl-3,3-dimethylurea	2.80	3.13	0.33
1624. C ₁₅ H ₁₆ O ₂	bisphenol A(1311)	3.32	4.34	1.02
1625. C ₁₅ H ₁₈ O ₄	helenalin(4542)	0.87	1.37	0.50
1626. C ₁₅ H ₂₁ O ₂ N ₃	physostigmine	1.58	1.53	-0.05
1627. C ₁₅ H ₂₃ O ₂ N	alprenolol	3.10	2.70	-0.40
1628. C ₁₅ H ₂₃ O ₃ N	oxprenolol	2.37	2.30	-0.07
1629. C ₁₅ H ₂₃ O ₄ N	cycloheximide	0.55	1.30	0.75
1630. C ₁₅ H ₂₅ O ₃ N	metoprolol	2.34	2.27	-0.07
1631. C ₁₆ H ₁₃ ON ₂ Cl	diazepam	2.66	3.59	0.93
1632. C ₁₆ H ₁₅ N ₂ Cl	medazepam	4.05	4.21	0.16
1633. C ₁₆ H ₁₇ ON ₂ Cl	tetrazepam	2.76	3.51	0.75
1634. C ₁₆ H ₁₈ O ₄ N ₂ S	benzyl penicillin	1.83	1.70	-0.13
1635. C ₁₆ H ₁₈ O ₅ N ₂ S	phenoxymethyl penicillin	2.09	1.30	-0.79
1636. C ₁₆ H ₁₈ O ₅ N ₂ S	α-hydroxybenzyl penicillin	1.40	0.81	-0.59
1637. C ₁₆ H ₂₁ O ₂ N	propranolol	3.14	2.69	-0.45
1638. C ₁₆ H ₂₁ O ₃ N	atropine	1.76	1.77	0.01
1639. C ₁₇ H ₁₃ N	2,6-diphenylpyridine	4.82	4.75	-0.07
1640. C ₁₇ H ₁₈ O ₆ N ₂ S	carbenicillin	1.13	1.13	0.00
1641. C ₁₇ H ₁₉ N ₂ SCl	chlorpromazine	5.35	4.92	-0.43
1642. C ₁₇ H ₂₀ O ₅ N ₂ S	α -phenoxyethyl penicillin	2.28	1.65	-0.63
1643. C ₁₇ H ₂₀ O ₆ N ₂ S	methicillin	1.30	1.30	0.00
1644. C ₁₇ H ₂₁ ON	diphenhydramine	3.40	4.03	0.63
1645. C ₁₇ H ₂₁ O ₄ N	1-scopolamine	1.24	1.48	0.24
1646. C ₁₇ H ₂₁ O ₄ N	cocaine	2.09	2.29	0.20
1647. C ₁₇ H ₂₃ ON ₃	mepyramine	2.85	3.67	0.82
1648. C ₁₇ H ₂₃ O ₃ N	atropine	1.79	2.13	0.34
1649. C ₁₇ H ₂₅ O ₃ N	levbunolol	2.40	2.51	0.11
1650. C ₁₈ H ₂₂ N ₂	desipramine	4.90	3.74	-1.16
1651. C ₁₈ H ₂₈ O ₄ N ₂	acebutolol	1.77	1.82	0.05
1652. C ₁₈ H ₂₂ N ₂ S	trimeprazine(9617)	3.44	4.62	1.18
1653. C ₁₉ H ₁₇ ON ₂ Cl	prazepam	3.72	4.17	0.45
1654. C ₁₉ H ₂₄ N ₂	imipramine	4.62	4.17	-0.45
1655. C ₁₉ H ₂₄ O ₃ N ₂	labetalol	2.51	3.42	0.91
1656. C ₁₉ H ₃₁ O ₂ N	fenbutolol	4.15	4.15	0.00
1657. C ₁₉ H ₂₈ O ₂	testosterone(9109)	3.32	3.79	0.47
1658. C ₂₀ H ₂₃ N	amitriptyline(504)	4.92	5.23	0.31
1659. C ₂₀ H ₂₅ N ₃ S	perazine(7108)	2.90	3.93	1.03
1660. C ₂₀ H ₂₇ O ₄ N	bevantolol	3.00	3.53	0.53
1661. C ₂₁ H ₃₀ O ₂	progesterone(7783)	3.87	4.53	0.66
1662. C ₂₁ H ₃₀ O ₂ N ₃ F	pipamperone	2.40	2.75	0.35
1663. C ₂₃ H ₂₀ O ₃ N ₂ S	sulfinpyrazone	2.30	2.43	0.13

 $a \log P_e$ is the experimental value. $b \log P_c$ is the calculated value. $c \log P_r$ is the estimation error.

A cross-validation test was then used to evaluate the predictive ability of our final model. Approximately 5% of the compounds were randomly selected from the original database as a test set, while the other 95% remained as the training set. A log P calculation model was then developed on the basis of the training set, and a prediction was made for the compounds in the test set. The results of 15 such cross-validation tests are shown in Table 6. As can be seen, the r^2 value and standard deviation remained almost the same for each training set. The average predictive r^2 value and standard deviation of the 15 cross-validation tests are 0.926 and 0.404, respectively. This cross-validation test demonstrates the outstanding predictive power of our log P model.

It can be seen from Table 3 that the carbon fragment types, $-CH_3$, $-CH_2$ -, and -CH<, are hydrophobic, while the >C< atom is slightly hydrophilic. In our definition of basic group types, the hydrogen atom was not defined as one basic group, rather it was always expressed along with the heavy atom (C, N, O, S, P, etc.) to which it is directly attached. However, the contribution of the hydrogen atom can be estimated from those of the basic groups 1-15 in Table 3. The calculated value is found to be about 0.18, which is the same as that

reported by Rekker, but slightly less than that (0.23) reported by Leo.9

The presence of fluorine, chlorine, bromine, iodine, and sulfur increases the hydrophobicity (positive contribution to the $\log P$) of compounds, while the presence of nitrogen and oxygen groups in general decreases hydrophobicity (negative contribution to the $\log P$). The hydrophilic characteristics of the nitrogen and oxygen groups are probably due to the strong hydration effects of these groups. It is interesting to note that, as was also observed by Rekker, some groups (-F, -OH, -COOH, -NH₂, etc.) become more hydrophobic when they are directly attached to aromatic ring systems.

A close examination of the correction fragments identified by the CASE program shows some analogy with the correction factors proposed by Leo¹¹ and Ghose et al.¹⁶ Our correction fragments can be classified in several categories.

(a) Tautomerization Effects. Correction factors of this type (parameters 69, 87) have often been found in pyridine analogs. In the tautomeric equilibrium shown in Figure 5, solvation effects play an important role and subsequently determine the distribution ratio of the two tautomers. If the dominant form is not the entered structure for the calculation, the result will not be satisfactory. Some fragments related

Table 5. List of Compounds with Large Estimation log P Error

formula	name	log Pea	$\log P_{\rm c}^{b}$	$\log P_r$
79. C ₁₃ H ₈ O	9-fluorenone	3.58	2.66	-0.92
46. C ₆ H ₁₃ N	cyclohexylamine	1.49	0.44	-1.05
05. C ₁₀ H ₁₃ O ₄ N ₅	Ado	-1.23	-2.13	-0.90
10. C ₁₀ H ₁₃ O ₅ N ₅	Guo	-1.89	-3.09	-1.20
11. C ₁₀ H ₁₃ O ₄ N ₅	dGuo	-1.30	-2.26	-0.96
14. C ₁₀ H ₁₆ O ₃ N ₆	dDAPR	-0.52	-1.38	-0.86
41. C ₄ H ₄ N ₆	adenine, 8Aza	-0.96	-0.11	0.85
50. C ₅ H ₄ N ₄	purine	-0.37	0.53	0.90
79. C ₂ H ₅ OH	acetaldoxime	-0.12	0.82	0.94
80. C ₂ H ₅ OF	2-fluoroethanol	-0.92	-0.07	0.85
$88. C_2H_6O_2N_2$	1-methyl-1-hydroxyurea	-0.46	-1.29	-0.83
90. C ₃ NH ₂ Br ₃	2,4,5-tribromoimidazole	1.96	2.79	0.83
95. C ₃ H ₃ NS	thiazole	0.44	1.25	0.81
18. C ₄ H ₄ N ₂	pyrazine	-0.22	0.82	1.04
19. C₄H₄N₂	pyrimidine	-0.40	0.82	1.22
56. C ₅ NCl ₅	2,3,4,5,6-pentachloropyridine	3.53	4.47	0.94
72. C5H5ON	pyridine 1-oxide	-1.30	-0.23	1.07
75. C₅H ₆ N ₂	2-methylpyrazine	0.23	1.23	1.00
89. C ₆ H ₇ NO ₃	6-aminonicotinamide	0.70	-0.50	-1.20
90. C ₆ H ₇ ON ₃	isoniazid	-1.14	-0.01	1.13
97. C ₆ H ₈ N ₂	γ -pyridylmethylamine	-0.38	0.47	0.83
99. C ₆ H ₈ N ₂	4,6-dimethylpyrimidine	0.62	1.64	1.03
01. $C_6H_8O_2N_2S$	m-aminobenzenesulfonamide	-1.20	-0.10	1.10
42. C7H5ON2Cl	zoxazolamide	2.46	1.56	-0.90
43. C ₇ H ₅ OF ₃	trifluoromethoxybenzene	3.17	2.28	-0.89
56. C ₇ H ₅ O ₂ F ₃ S	phenyl-trifluoromethyl sulfone	2.68	1.86	-0.83
68. C ₇ H ₆ N ₂ S	o-phenylenethiourea	1.66	0.71	-0.9
318. C ₇ H ₇ O ₂ FS	p-(fluorosulfonyl)toluene	2.74	1.40	-1.3
55. C ₇ H ₉ SCl ₅	1-(methylthio)pentachlorocyclohexane	3.75	4.63	0.8
56. C7H9ON	2-(α-pyridyl)ethanol	0.12	1.09	0.9
57. C ₇ H ₉ ON	2-(β-pyridiyl)ethanol	0.12	1.09	0.9
58. C7H9ON	2-(γ-pyridyl)ethanol	0.10	1.09	0.99
69. C ₇ H ₁₀ N ₂	2-(α-pyridyl)ethylamine	0.08	0.88	0.80
70. C ₇ H ₁₀ N ₂	2-(β-pyridyl)ethylamine	0.00	0.88	0.88
71. $C_7H_{10}N_2$	2-(γ-pyridyl)ethylamine	-0.01	0.88	0.89
86. C ₈ HN ₂ F ₃ Cl ₄	4,5,6,7-tetrachloro-2-(trifluoromethyl)benzimidazole	3.97	5.01	1.04
87. C ₈ NH ₂ F ₃ Br ₄	4,5,6,7-tetrabromo-2-(trifluoromethyl)benzimidazole	4.81	5.75	0.94
89. C ₈ H ₂ N ₂ F ₃ Br ₃	4,5,6-tribromo-2-(trifluoromethyl)benzimidazole	4.08	4.91	0.83
90. C ₈ H ₃ N ₂ F ₃ Cl ₂	4,7-dichloro-2-trifluoromethyl benzimidazole	2.87	3.70	0.83
05. C ₈ H ₅ ONF ₃ Br	p-trifluoroacetamide bromobenzene	3.34	2.51	-0.8
24. C ₈ H ₆ O ₂ N ₂	quinazoline-2,3-dione	0.20	1.07	0.8
89. C ₈ H ₇ O ₄ FS	p-(fluorosulfonyl)phenoxyacetic acid	1.84	0.90	-0.9
47. C ₈ H ₉ O ₂ N	p-aminophenylacetate	-0.16	0.92	1.0
59. C ₈ H ₉ O ₂ N	N-phenylglycine	0.62	-0.35	-0.9
60. C ₉ H ₈ O ₂ N ₂ S	8-sulfonamidoquinoline	0.36	1.19	0.83
58. C ₁₀ H ₆ NF ₃	8-trifluoromethylquinoline	2.50	3.32	0.82
91. C ₁₀ H ₉ ON	N-methyl-4-quinolone	0.44	1.28	0.84
19. C ₁₀ H ₁₁ N	1,2-dimethylindole	2.82	1.88	-0.9
86. C ₁₀ H ₁₄ ON ₂	γ -(α -pyridyl)pentamide	-0.01	0.84	0.8
10. C ₁₁ H ₆ O ₂ N ₃ F ₃ Cl ₂	1-(2,6-dichloro-4-(trifluoromethyl)phenylhydrazono)-1-cyanoacetic acid methyl ester	4.36	5.29	0.9
27. C ₁₁ H ₈ O ₄ N ₃ F ₃ S	1-(4-[(trifluoromethyl)sulfonyl]phenylhydrazono)-1-cyanoacetic acid methyl ester	4.22	3.16	-1.06
52. C ₁₁ H ₁₃ O ₂ N ₃	1-(4-carboxybutyl)benzotriazole	0.93	1.77	0.8
63. C ₁₁ H ₁₄ O ₃	p-hydroxybenzoic acid butyl ester	3.57	2.70	-0.8
89. C ₁₂ H ₈ N ₂	4,7-phenanthroline	2.05	2.85	0.8
91. C ₁₂ H ₉ N	carbazol	3.72	2.69	-1.0
39. C ₁₃ H ₉ ONS ₂	(4-isothiocyanophenyl) phenyl sulfoxide	4.40	3.53	-0.8
46. C ₁₃ H ₁₀ ON ₂ Cl ₂	1-(3,4-dichlorophenyl)-3-phenylurea	4.70	3.67	-1.0
60. C ₁₃ H ₁₁ N ₃	3,6-diaminoacridine	1.10	1.92	0.8
82. C ₁₄ H ₈ N ₂ S ₂	4,4'-diisothiocyanatebiphenyl	5.50	6.35	0.8
85. C ₁₄ H ₁₀ O ₂	benzil	3.38	2.37	-1.0
86. C ₁₄ H ₁₀ O ₂ NF ₃	N-(3-(trifluoromethyl)phenyl)anthranilic acid	5.62	4.69	-0.9
87. C ₁₄ H ₁₁ NS	(4-isothiocyanophenyl)phenylmethane	4.40	5.26	0.8
01. C ₁₄ H ₁₈ O ₃	4-cyclohexylphenoxyacetic acid	3.79	2.99	-0.8
08. C ₁₄ H ₂₂ O ₃ N ₂	atenolol	0.16	1.04	0.8
24. C ₁₅ H ₁₆ O ₂	bisphenol A(1311)	3.32	4.34	1.0
31. C ₁₆ H ₁₃ ON ₂ Cl	diazepam	2.66	3.59	0.9
47. C ₁₇ H ₂₃ ON ₃	mepyramine	2.85	3.67	0.8
50. C ₁₈ H ₂₂ N ₂	desipramine	4.90	3.74	-1.1
52. C ₁₈ H ₂₂ N ₂ S	trimeprazine (9617)	3.44	4.62	1.1
55. C ₁₉ H ₂₄ O ₃ N ₂	labetalol	2.51	3.42	0.9
	perazine (7108)	2.90	3.93	1.0

 $^{^{}a}\log P_{c}$ is the experimental value. $^{b}\log P_{c}$ is the calculated value. $^{c}\log P_{r}$ is the estimation error.

to the tautomerization effect have been identified and are included in our $\log P$ calculation model.

(b) Dipolar Ion Effect (Zwitterion Effect). The $\log P$ values for compounds such as amino acids are largely underestimated

by the model using group contribution alone. This is because a large fraction of these compounds in water is not in a neutral form, but rather exists in a dipolar ion form. This dipolar ion effect has been identified by the CASE program (parameters

Table 6. Cross-Validation Test Results for a Database of 1624 Compounds

	learning set			test set		
no.	no. of compds	r ²	SD	no. of compds	r ²	SD
1	1592	0.929	0.380	71	0.914	0.430
2	1585	0.929	0.382	78	0.927	0.406
3	1578	0.930	0.381	85	0.912	0.414
4	1590	0.929	0.391	73	0.924	0.419
5	1582	0.929	0.383	81	0.903	0.382
6	1575	0.929	0.383	88	0.919	0.381
7	1584	0.929	0.381	89	0.931	0.419
8	1590	0.928	0.384	71	0.946	0.350
9	1601	0.929	0.382	62	0.933	0.409
10	1580	0.929	0.383	83	0.928	0.374
11	1593	0.930	0.380	70	0.908	0.434
12	1595	0.929	0.382	68	0.906	0.412
13	1573	0.929	0.381	90	0.926	0.413
14	1598	0.929	0.382	65	0.925	0.399
15	1580	0.929	0.381	73	0.924	0.419
mean	1586	0.929	0.383	87	0.926	0.404

70, 81, and 90) and was included in our log P model.

(c) Proximity Effect. In aromatic systems, the interactions between two polar substituents ortho to each other were found to have a large effect on the log P values. For instance, in salicylic acid, the interaction between COOH and OH groups (the proximity effect) was found to be an important factor for the evaluation of its partition coefficient. Therefore, this effect should be included in an accurate log P model. Parameters 79 and 80 were identified by the CASE program to represent this effect. These parameters reflect the intramolecular hydrogen bonding between two polar ortho substituents. In aliphatic systems, compounds with structures such as X-CH₂-CH₂Y also show a proximity effect, when X and Y have strong intermolecular interaction. Parameter 85 has been identified to represent this effect.

(d) Conjugated Multiheteroatomic Effect. The CASE program has identified some significant correction effects such as parameters 71, 78, 82, 83, 88, and 89 related to conjugated multi-heteroatomic interaction.

In our study, we found that a large systematic error for the hydrocarbon compounds arises when group contributions are used alone. This is probably due to the flexibility of the carbon chain in alkanes. We found, however, that the molecular weight (parameter 97) is a very effective correction factor for alkanes. Finally, an indicator parameter (parameter 98) was used to correct for the systematic error observed for the unsaturated hydrocarbons.

Using the group contribution alone, $\log P$ values were overestimated for compounds with structure such as CH_6 - $(CH_2)_nX$ and pyridine- $(CH_2)_nX$, where X is a polar group $(X = OH, NH_2, COOH, CONH_2, F, etc.)$ and $n \ge 2$. We found that this overestimation is probably caused by a folding effect; 13 i.e. when a molecule with this type of structure folds, the polar group at the end of the side chain interacts with the π cloud of the atomatic ring. A molecular dipole $(Ar^{\delta+}X^{\delta-})$ is developed which may reduce the lipophilicity of the molecule. Thus, we included parameters 94–96 in our $\log P$ estimation model to account for this folding effect.

Two examples are shown below to illustrate the calculation procedure. The log P values calculated by using CLOGP, developed by Leo et al., 11 are also listed for comparison. Example 1. δ -Valerolactone $C_5H_8O_2$

Table 7. Experimental (LOGP) and Calculated log P Values Using Four Methods

2 dAdo	-2.13 -1.29 -0.46 -0.42 -0.23 -3.09 -2.26 -1.43 -1.39 -1.38 -0.55	-1.240 -0.630 -0.190 0.040 -0.020 -1.630 -1.010 -0.580 -0.350 -0.910	-2.941 -2.531 -1.116 -1.600 -1.273 -3.923 -3.338 -1.923 -2.407 -2.592	0.182 0.356 0.406 0.379 0.522 -0.210 -0.013 0.177 0.115
3 ddAdo	-0.46 -0.42 -0.23 -3.09 -2.26 -1.43 -1.39 -1.38 -0.55	-0.190 0.040 -0.020 -1.630 -1.010 -0.580 -0.350 -0.910	-1.116 -1.600 -1.273 -3.923 -3.338 -1.923 -2.407	0.406 0.379 0.522 -0.210 -0.013 0.177
4 ddeAdo	-0.42 -0.23 -3.09 -2.26 -1.43 -1.39 -1.38 -0.55	0.040 -0.020 -1.630 -1.010 -0.580 -0.350 -0.910	-1.600 -1.273 -3.923 -3.338 -1.923 -2.407	0.379 0.522 -0.210 -0.013 0.177
5 FddAdo 0.08 - 6 Guo -1.89 - 7 dGuo -1.30 - 8 ddGuo -1.00 - 9 ddeGuo -1.21 - 10 dDAPR -0.52 -	-0.23 -3.09 -2.26 -1.43 -1.39 -1.38 -0.55	-0.020 -1.630 -1.010 -0.580 -0.350 -0.910	-1.273 -3.923 -3.338 -1.923 -2.407	0.522 -0.210 -0.013 0.177
6 Guo -1.89 - 7 dGuo -1.30 - 8 ddGuo -1.00 - 9 ddeGuo -1.21 - 10 dDAPR -0.52 -	-3.09 -2.26 -1.43 -1.39 -1.38 -0.55	-1.630 -1.010 -0.580 -0.350 -0.910	-3.923 -3.338 -1.923 -2.407	-0.210 -0.013 0.177
7 dGuo -1.30 - 8 ddGuo -1.00 - 9 ddeGuo -1.21 - 10 dDAPR -0.52 -	-2.26 -1.43 -1.39 -1.38 -0.55	-1.010 -0.580 -0.350 -0.910	-3.338 -1.923 -2.407	-0.013 0.177
8 ddGuo -1.00 - 9 ddeGuo -1.21 - 10 dDAPR -0.52 -	-1.43 -1.39 -1.38 -0.55	-0.580 -0.350 -0.910	-1.923 -2.407	0.177
9 ddeGuo -1.21 - 10 dDAPR -0.52 -	-1.39 -1.38 -0.55	-0.350 -0.910	-2.407	
10 dDAPR -0.52 -	-1.38 -0.55	-0.910		0 114
	-0.55		_2 502	
11 44D ADD 044				-0.101
	A 22	-0.470	0.067	0.067
	-0.32	-0.300	-1.333	0.249
	-2.28	-1.590	-2.560	0.085
	-1.44	-0.980	-2.090	0.456
	-0.61	-0.540	-0.675	0.667
	-0.57	-0.320	-1.159	0.645
	-0.38	-0.370	-0.832	0.912
	-1.03	-0.820	-1.591	0.817
	-0.20	-0.390	-0.176	1.042
	-0.16	-0.160	-0.660	0.999
21 FddThd -0.27	0.03	-0.220	-0.333	1.269
	-2.86	-1.420	-3.111	0.113
	-2.03	-0.810	-2.549	0.478
	-1.20	-0.370	-1.133	0.619
	-1.16	-0.140	-1.617	0.571
	-0.97	-0.200	-1.290	0.775
27 F6ddP 0.00	0.28	0.490	0.906	0.247
	-0.11	0.210	-0.970	0.375
29 Br6ddP 0.35	0.81	1.080	-0.356	0.798
30 Br62AddP 0.33	0.42	0.800	-0.420	0.765
31 C16ddP 0.23	0.50	0.780	-0.386	0.489
32 Cl62AddP 0.21	0.11	0.500	-0.450	0.545
33 I6ddP 0.52	1.00	1.080	0.074	1.011
34 I62AddP 0.52	0.61	0.800	0.010	0.996
	-1.55	-0.950	-1.755	-0.335
	-0.86	-0.720	-1.060	-0.585
	-0.11	-0.670	-0.063	-0.034
	-1.14	-1.060	-1.004	-0.836
	-1.45	-0.550	-1.846	-0.769
40 adenine -0.09	0.23	-0.360	-0.426	0.036
	-0.37	-0.020	-1.824	0.308
42 adenine, 9Ppl 0.74	0.50	0.690	0.437	1.327
	-0.91	-0.490 0.750	-0.593	-1.013
	-1.17	-0.750	-1.264	-0.891
,	-0.45	-0.560	-0.557	-0.130
	-0.89	-0.880	-1.260	-0.873
47 purine -0.37	0.53	-0.280	-0.290	-0.139

Figure 5. Equilibrium of tautomerization.

Example 2. Oxazepam C₁₅H₁₁ClN₂O₂

(3) Comparison. Viswanadhan et al. have published a paper recently, in which they systematically evaluated three methods for their ability to accurately predict the log P for nucleosides. ²⁹ The three methods used in their report are (1) the atomic constant approach of Viswanadhan and co-workers (ALOGP), (2) the molecular orbital approach of Bodor and co-workers (BLOGP), and (3) the fragmental constant approach of Leo and co-workers (CLOGP). A set of 47 nucleosides and nucleobases have been chosen for the comparison. It includes 35 nucleosides and analogs and 12 nucleobases and derivatives.

Table 8. Statistical Results Using ALOGP, BLOGP, CLOGP, and **KLOGP Methods**

		$r (SD)^b$	
method ^a	all	nucleosides	bases
KLOGP	0.89 (0.46)	0.91 (0.47)	0.77 (0.46)
BLOGP	0.40 (1.20)	0.43 (1.37)	0.81 (0.53)
CLOGP	0.71 (0.93)	0.75 (1.02)	0.60 (0.63)
ALOGP	0.84 (0.51)	0.87 (0.55)	0.80 (0.42)

^a The abbreviations used here are explained in the method. ^b r is the correlation coefficient; SD is the standard deviation.

In this study, we calculate the $\log P$ values for the same 47 compounds using our final model (KLOGP). Table 7 lists the experimental and calculated log P values using four different methods. As can be seen in Table 8, the overall correlation (r) of 0.89 with standard deviation (SD) of 0.46 calculated by KLOGP is the best among the four methods. For nucleosides only, it yields also the best correlation of 0.91 with SD = 0.47. However, for nucleobases, ALOGP has a better correlation of 0.80 with SD = 0.42 compared to KLOGP with a correlation of 0.77 and SD = 0.46. A close examination of these nucleobases reveals that the relatively large deviation calculated by using KLOGP was caused by only one compound, purine. This comparison shows that KLOGP is a better method than the other methods for this special class of compounds.

CONCLUSION

We have successfully combined the group contribution and the CASE methodology to develop a reliable and accurate log P estimation model (n = 1663, $r^2 = 0.93$, SD = 0.38). The CASE program has been shown to be a very useful tool in identifying the correction factors for log P calculations. The cross-validation experiments demonstrated that our model can give accurate log P predictions for complex compounds as well as for simple molecules. For nucleosides and nucleobases, our model has a better prediction ability than the other methods. In the future, by updating the learning database, the CASE program should be able to identify new correction factors to improve the predictive power of our log P estimation model even more.

REFERENCES AND NOTES

- (1) Leo, A. The Octanol-Water Partition Coefficient of Aromatic Solutes: the Effect of Electronic Interactions, Alkyl Chains, Hydrogen Bonds, and ortho-Substitution, J. Chem. Soc., Perkin Trans. 1983, 2, 825.
- (2) Takacs-Novak, K.; Jozan, M.; Hermecz, I.; Szasz, G. Lipophilicity of Antibacterial Fluoroquinolones. Int. J. Pharm. 1992, 3, 89
- (3) Klopman, G.; Srivastava, S. Computer-Automated Structure Evaluation of Gastric Antiulcer Compounds: Study of Cytoprotective and Antisecretory Imidazo[1,2-a]Pyridines and -Pyrazines. Mol. Pharmacol.
- (4) Hansch, C.; Bjorkroth, J. P.; Leo, A. Hydrophobicity and Central Nervous System Agents: the Principle of Minimal Hydrophobicity in Drug Design. J. Pharm. Sci. 1987, 76, 663.

- (5) Hansch, C.; Muir, R. M. Correlation of Biological Activity of Phenoxyacetic Acids with Hamment Substituent Constants and Partition Coefficients. Nature 1962, 194, 178.
- (6) Watanabe, T.; Matsuhashi, K.; Takayama, S. Placental and Blood-Brain Barrier Transfer following Prenatal and Postnatal Exposure to Neuroactive Drugs: Relationship with Partition Coefficient and Behavioral Teratogenesis. Appl. Pharm. 1990, 105, 66.
- (7) Leo, A. Calculating log Poct from Structure. Chem. Rev. 1993, 30,
- (8) Rekker, R. F. The Hydrophobic Fragmental Constant; Elsevier: New York, 1977.
- (9) Hansch, C.; Leo, A. J. Substituent Constants for Correlation Analysis in Chemistry and Biology; Wiley: New York, 1979.
- (10) Leo, A.; Hansch, C.; Elkins, D. Partition Coefficients and Their Uses. Chem. Rev. 1971, 71, 533.
- (11) Leo, A. J. In Comprehensive Medicinal Chemistry; Ramsden, C. A., Ed.; Pergamon: Oxford, U.K., 1990; Vol. 4, p 295.
- (12) Calvino, R.; Gasco, A.; Leo, A. An Analysis of the Lipophilicity of Furazan and Furoxan Derivatives Using the CLOGP Algorithm. J. Chem. Soc., Perkin Trans. 1992, 2, 1643.
 (13) Klopman, G.; Namboordiri, K.; Schochet, M. Simple Method of
- Computing the Partition Coefficient. J. Comput. Chem. 1985, 6, 28. (14) Klopman, G.; Wang, S. A Computer Automated Structure Evaluation
- (CASE) Approach to Calculation of Partition Coefficient. J. Comput. Chem. 1991, 8, 1025.
- (15) Ghose, A. K.; Crippen, G. M. Atomic Physicochemical Parameters for Three-Dimensional Structure-Directed Quantitative Structure-Activity Relationships I. Partition Coefficients as a Measure of Hydrophobicity. J. Comput. Chem. 1986, 7, 565.
- (16) Ghose, A. K.; Pritchett, A.; Crippen, G. M. Atomic Physicochemical Parameters for Three Dimensional Structure Directed Quantitative Structure-Activity Relationships III. Modeling Hydrophobic Interactions. J. Comput. Chem. 1988, 9, 180.
- (17) Klopman, G.; Iroff, L. Calculation of Partition Coefficients by the Charge Density Method. J. Comput. Chem. 1981, 2, 157
- (18) Bodor, N.; Gabanyi, Z.; Wong, C.-K. A New Method for the Estimation of Partition Coefficient. J. Am. Chem. Soc. 1989, 111, 3783
- (19) Bodor, N.; Huang, M.-J. An Extended Version of a Novel Method for the Estimation of Partition Coefficient. J. Pharm. Sci. 1992, 81, 272.
- (20) Dunn, W. J., III; Nagy, P. I.; Collantes, E. R. A Computer-Assisted Method for Estimation of the Partition Coefficient. Monte Carlo Simulations of the Chloroform / Water log P for Methylamine, Methanol, and Acetonitrile. J. Am. Chem. Sci. 1991, 113, 7898.
- (21) Dunn, W. J., III, Nagy, P. I. Relative Log P and Solution Structure for Small Organic Solutes in the Chloroform/Water System Using Monte
- Carlo Methods. J. Comput. Chem. 1992, 13, 468.

 (22) Jorgensen, W. L.; Briggs, J. M.; Contreras, M. L. Relative Partition Coefficients for Organic Solutes from Fluid Simulations. J. Phys. Chem. 1990, 94, 1683.
- (23) Klopman, G. Artificial Intelligence Approach to Structure-Activity Studies. Computer Automated Structure Evaluation of Biological Activity of Organic Molecules. J. Am. Chem. Soc. 1984, 106, 7315.
- (24) Klopman, G. MULTICASE 1. A hierarchical Computer Automated Structure Evaluation Program. Quant. Struct.-Act. Relat. 1992, 11,
- (25) Suzuki, T.; Kudo, Y. Automated Log P Estimation Based on Combined Additive Modelling Methods. J. Comput.-Aided Mol. Des. 1990, 4,
- (26) Klopman, G.; McGonigal, M. Computer Simulation of Physical-Chemical Properties of Organic Molecules. 1. Molecular System J. Chem. Inf. Comput. Sci. 1981, 21, 48. Identification.
- (27) Dimayuga, M. Structure Activity Relationship Studies of Biological Activities of Chemicals. Doctoral Dissertation, Case Western University.
- Cleveland, OH, 1991; pp 132-144. Viswanadhan, V. N.; Ghose, A. K.; Revankar, G. R.; Robins, R. K. Atomic Physicochemical Parameters for Three-Dimensional Structure Directed Quantitative Structure-Activity Relationships. 4. Additional Parameters for Hydrophobic and Dispersive Interactions and Their Application for an Automated Superposition of Certain Naturally Occurring Nucleoside Antibiotics. J. Chem. Inf. Comput. Sci. 1989, 29, 163.
- Viswanadhan, V. N.; Reddy, M. R.; Bacquet, R. J.; Erion, M. D. Assessment of Methods Used for Predicting Lipophilicity: Application to Nucleosides and Nucleoside Bases. J. Comput. Chem. 1993, 14, 1019.