COLLE 3 = FONCTIONS USUELLES, PRIMITIVES ET ÉQUATIONS DIFFÉRENTIELLES

Connaître son cours:

- 1. Vérifier pour $x \neq 0$ que : $\arctan x + \arctan \frac{1}{x} = \operatorname{sgn}(x) \frac{\pi}{2}$.
- 2. Pour tout $a, b \in \mathbb{R}$ donner l'expression de min(a, b) et max(a, b) à l'aide de la fonction valeur absolue.
- 3. Soient $n \in \mathbb{N}$ et la fonction $f: x \mapsto -\ln(x)$. Donner les dérivées n-ième $f^{(n)}$ de la fonction f.

Fonctions usuelles:

Exercice 1.

Soit $\alpha \in \mathbb{R}$ et f la fonction définie sur \mathbb{R} par $f(x) = \cos(x) + \cos(\alpha x)$. On veut démontrer que f est périodique si et seulement si $\alpha \in \mathbb{Q}$.

- 1. On suppose que $\alpha = p/q \in \mathbb{Q}$. Démontrer que f est périodique.
- 2. On suppose que $\alpha \notin \mathbb{Q}$. Résoudre l'équation f(x) = 2. En déduire que f n'est pas périodique.

Exercice 2.

Soit f la fonction définie par

$$f(x) = \arcsin\left(2x\sqrt{1-x^2}\right).$$

- 1. Quel est l'ensemble de définition de f?
- 2. En posant $x = \sin t$, simplifier l'écriture de f.

Exercice 3.

Pour $n \in \mathbb{N}$, on pose $f_n(x) = \cos(n \arccos x)$ et $g_n(x) = \frac{\sin(n \arccos x)}{\sqrt{1-x^2}}$. Prouver que f_n et g_n sont des fonctions polynomiales.

Primitives et équations différentielles :

Exercice 4.

1. Résoudre l'équation différentielle $(x^2+1)y'+2xy=3x^2+1 \text{ sur } \mathbb{R}. \text{ Tracer des courbes intégrales. Trouver la solution }$ vérifiant y(0)=3.

Niveau: Première année de PCSI

2. Résoudre l'équation différentielle $y'\sin x - y\cos x + 1 = 0 \text{ sur }]0; \pi[\text{. Tracer des courbes intégrales. Trouver la solution vérifiant } y(\frac{\pi}{4}) = 1.$

Exercice 5.

On considère l'équation différentielle

$$y' - e^x e^y = a$$

Déterminer ses solutions, en précisant soigneusement leurs intervalles de définition, pour

- 1. a = 0
- 2. a = -1 (faire le changement de fonction inconnue z(x) = x + y(x))

Exercice 6.

On considère y'' - 4y' + 4y = d(x).

Résoudre l'équation homogène, puis trouver une solution particulière lorsque $d(x) = e^{-2x}$, puis $d(x) = e^{2x}$. Donner la forme générale des solutions quand $d(x) = \frac{1}{2} \text{ch}(2x)$.