Project Planning Phase

Project Planning Template (Product Backlog, Sprint Planning, Stories, Story points)

Date	22 september 2022				
Team ID	PNT2022TMID51209				
Project Name	FERTILIZERS RECOMMENDATION SYSTEM FOR DISEASE				
	PREDICTION				
Maximum Marks	8 Marks				

Product Backlog, Sprint Schedule, and Estimation (4 Marks)

Use the below template to create product backlog and sprint schedule

Sprint	Functional Requirement (Epic)	User Story Number	User Story / Task	Story Points	Priority	Team Members
Sprint- 1	Data collection	USN-1	Collect and create the data set related to the objective	10	High	T.Gayathri,J.Flora, S.Vijaya rama Lakshmi, B.Pradeeba, P.yamuna
Sprint- 1	Image processing	USN-2	Process the images	10	High	J.Flora, S.Vijaya rama Lakshmi, B.Pradeeba, P.yamuna
Sprint- 2	Model Building for fruit disease prediction	USN-3	Import libraries	2	Low	S.Vijaya rama Lakshmi, B.Pradeeba, T.Gayathri
Sprint- 2	Model Building for fruit disease prediction	USN-4	Initializing the model	2	Low	T.Gayathri,J.Flora, B.Pradeeba, P.yamuna
Sprint- 2	Model Building for fruit disease prediction	USN-5	Adding layers	2	Low	J.Flora, S.Vijaya rama Lakshmi, B.Pradeeba, P.yamuna
Sprint- 2	Model Building for fruit disease prediction	USN-6	Train and save the model for fruits	7	High	T.Gayathri,J.Flora, S.Vijaya rama Lakshmi,
Sprint- 2	Model Building for vegetable disease prediction	USN-7	Train and save the model for vegetable	7	High	T.Gayathri,J.Flora, B.Pradeeba, P.yamuna
Sprint- 3	Test both model	USN-8	Testing the built model	5	Medium	T.Gayathri,J.Flora, S.Vijaya rama Lakshmi

Sprint- 4	Application building	USN-9	Build python code	5	Medium	T.Gayathri,J.Flora, P.yamuna
Sprint- 4	Application building	USN-10	Build HTML code	5	Medium	T.Gayathri,S.Vijaya rama Lakshmi, B.Pradeeba,
Sprint- 4	Application building	USN-11	Run the code	10	High	T.Gayathri,J.Flora, S.Vijaya rama Lakshmi, B.Pradeeba,
Sprint- 3	Train the model on IBM	USN-12	Register cloud account	5	Medium	T.Gayathri,J.Flora, S.Vijaya rama Lakshmi, B.Pradeeba, P.yamuna
Sprint- 3	Train the model on IBM	USN-13	Train the model on IBM	10	High	T.Gayathri,J.Flora, S.Vijaya rama Lakshmi, B.Pradeeba

Project Tracker, Velocity & Burndown Chart: (4 Marks)

Sprint	Total Story Points	Duration	Sprint Start Date	Sprint End Date (Planned)	Story Points Completed (as on Planned End Date)	Sprint Release Date (Actual)
Sprint- 1	20	6 Days	24 Oct 2022	29 Oct 2022	20	29 Oct 2022
Sprint- 2	20	6 Days	31 Oct 2022	05 Nov 2022	20	05 Nov 2022
Sprint-	20	6 Days	07 Nov 2022	12 Nov 2022	20	12 Nov 2022
Sprint- 4	20	6 Days	14 Nov 2022	19 Nov 2022	20	19 Nov 2022

Velocity:

Imagine we have a 10-day sprint duration, and the velocity of the team is 20 (points per sprint). Let's calculate the team's average velocity (AV) per iteration unit (story points per day)

$$AV = \frac{sprint\ duration}{velocity} = \frac{20}{10} = 2$$

Burndown chart:

