Сравнение кривых дожития с разными формами цензурирования

Караваева Валерия Андреевна, 422 группа

Санкт-Петербургский Государственный Университет Математико-механический факультет Кафедра статистического моделирования

Научный руководитель— к.ф.-м.н., доц. Н.П. Алексеева Рецензент: к.ф.-м.н., доц. П.В. Шпилёв

Санкт-Петербург 2015г.

Основные определения

Рассматриваем данные типа времени жизни.

- Отказ точечное событие, которое является индикатором конца исследования для объекта.
- Дожитие au_j время до наступления *отказа j*-ого объекта.
- Кривая дожития это $S(t) = \mathbb{P}(\tau > t)$, т. е. вероятность того, что отказ наступит после момента t.

Основные определения

Рассматриваем данные типа времени жизни.

- Отказ точечное событие, которое является индикатором конца исследования для объекта.
- Дожитие au_j время до наступления *отказа j*-ого объекта.
- Кривая дожития это $S(t) = \mathbb{P}(\tau > t)$, т. е. вероятность того, что отказ наступит после момента t.
- Цензурирование это неполное наблюдение за временем ожидания отказа.
- Момент цензурирования для j-ого объекта c_j .
- Задача анализа дожития: оценка кривых дожития и их сравнение для разных групп индивидов.

Формы цензурирования и оценки кривой дожития

• Правостороннее цензурирование

$$Y_j=(ilde{ au_j},\delta_j)$$
, где $ilde{ au_j}=\min(au_j,\ c_j)$, $\delta_j=\mathbb{I}(au_j>c_j)$, $j=1,\ldots,m$. Оценка: Каплана-Мейера (1958).

• Интервальное цензурирование

$$Y_j = (L_j, R_j)$$
, где $au_j \in (L_j, R_j)$, $0 \le L_j < R_j$, $j = 1, \ldots, m$. Оценка: непараметрическая оценка Тёрнбулла (1976).

• Медианное цензурирование

$$Y_i = (\mu_i, n_i)$$
, где μ_i , n_i — выборочная медиана и объём подгруппы i соответственно, $i = 1, \ldots, k$.

Мотивация

Проверка эффективности лечения онкологических больных в России и за рубежом на основании данных с **правым (RR)** и **медианным (FM)** типами цензурирования.

Цели и задачи

Задачи

- Построение оценки кривой дожития в условиях медианного цензурирования параметрическим и непараметрическим методом.
- Сравнение кривых дожития в условиях медианного и правого цензурирования.

Непараметрическая оценка кривой дожития

Утверждение (DasGupta Anirban, 2008)

Пусть $\mu(n)$ выборочная медиана группы объёма n,

$$a_n = \left\lceil \frac{n+1}{2} \right\rceil, b_n = \left\lfloor \frac{n+1}{2} \right\rfloor, \ \mathbb{B}_x(a_n, b_n) = \frac{\int\limits_0^x t^{a_n - 1} (1-t)^{b_n - 1} dt}{\int\limits_0^1 t^{a_n - 1} (1-t)^{b_n - 1} dt},$$

— регуляризованная неполная бета-функция, $x \in [0,1].$

Тогда

$$P\{\mu(n) \le x\} = \Psi_n(x) = \mathbb{B}_x(a_n, b_n).$$

Непараметрическая оценка кривой дожития

Оценка кривой дожития (Ю.А. Матвеева, 2011)

Пусть (μ_i, n_i) , $i=1,\ldots,k$, $\mu_1 \leq \mu_2 \leq \cdots \leq \mu_k$, ν_i — позиция наблюдения μ_i в упорядоченном ряду,

 p_i — вероятностная нагрузка в i-ой точке, $p_i \geq 0$, $\sum\limits_{i=0}^{\kappa} p_i = 1$.

Тогда задача оценивания кривой дожития сводится к максимизации функции правдоподобия в точках $p_1,\dots,p_k.$

$$\sum_{i=1}^{k} \log \left[\Psi_{n_i} \left(\sum_{j \le \nu_i} p_j \right) - \Psi_{n_i} \left(\sum_{j < \nu_i} p_j \right) \right] \to \max.$$

Результаты. Параметрическая оценка кривой дожития

- ullet Функция дожития $S_{n_i}(t; heta_i)$ в i-ой группе объёма n_i ,
- ullet $\hat{ heta}_i$ оценка параметра распределения с помощью (μ_i,n_i) , где $i=0,\dots,k$, $\mu_0=0$, $n_0=0$.

Результаты. Параметрическая оценка кривой дожития

- ullet Функция дожития $S_{n_i}(t; heta_i)$ в i-ой группе объёма n_i ,
- $oldsymbol{\hat{ heta}}_i$ оценка параметра распределения с помощью (μ_i,n_i) , где $i=0,\dots,k$, $\mu_0=0$, $n_0=0$.

Утверждение

Абсолютная частота выбывания на промежутке $[\mu_{j-1},\mu_j)$

$$\Phi([\mu_{j-1}, \mu_j)) = \sum_{i=1}^k n_i \left[S_{n_i} \left(\mu_{j-1}; \ \hat{\theta}_i \right) - S_{n_i} \left(\mu_j; \ \hat{\theta}_i \right) \right].$$

Выбор модели на основании функции риска

Функция интенсивности (риск)

$$h(t) = \lim_{\Delta \to 0} \frac{P(t < \tau < t + \Delta | \tau > t)}{\Delta} = [-\ln(S(t))]'.$$

Выбор модели на основании функции риска

Функция интенсивности (риск)

$$h(t) = \lim_{\Delta \to 0} \frac{P(t < \tau < t + \Delta | \tau > t)}{\Delta} = [-\ln(S(t))]'.$$

Утверждение

Пусть
$$S_{\mathrm{U}}(t;0,\theta)=1-t/\theta,$$
 при $t\in[0,\theta],$
$$S_{\Gamma}(t;\lambda,\theta)=1-\frac{\gamma\left(\lambda,t/\theta\right)}{\Gamma(\lambda)},$$
 где $t\in[0,\infty),$
$$\gamma\left(\lambda,t/\theta\right)=\int\limits_{0}^{t/\theta}e^{-x}x^{\lambda-1}dx,\ \Gamma(\lambda)=\int\limits_{0}^{\infty}e^{-x}x^{\lambda-1}dx.$$

Тогда

$$\bullet$$
 $h_{\Gamma}(t)=1/ heta,$ при $\lambda=1.$

•
$$h'_{\Gamma}(t) < 0$$
, при $\lambda < 1$.

•
$$h'_{II}(t) = 1/(\theta - t)^2 > 0$$
.

•
$$h'_{\Gamma}(t) > 0$$
, при $\lambda > 1$.

Результаты. Параметрическая оценка кривой дожития

Модель	$oldsymbol{\mathcal{O}}$ ценка $\hat{ heta}$	А бсолютная частота выбывания $ au \in [\mu_{j-1}, \mu_j)$
$\operatorname{Exp}[\theta]$	$\frac{\ln 2}{\mu}$	$\sum_{i=1}^{k} n_i \left(e^{-\mu_j \frac{\ln 2}{\mu_i}} - e^{-\mu_{j-1} \frac{\ln 2}{\mu_i}} \right)$
$\mathrm{U}[0, heta]$	2μ	$(\mu_j - \mu_{j-1}) \sum_{i=j}^k \frac{n_i}{2(\mu_i - \mu_0)}$
$\Gamma\big[\lambda,\theta\big]$	$\frac{\gamma\left(\lambda,\frac{\mu}{\hat{\theta}}\right)}{\Gamma(\lambda)} = \frac{1}{2}$	$\sum_{i=1}^{k} \frac{n_i}{\Gamma(\lambda)} \left[\gamma \left(\lambda, \frac{\mu_j}{\hat{\theta}_i} \right) - \gamma \left(\lambda, \frac{\mu_{j-1}}{\hat{\theta}_i} \right) \right]$

Таблица: Оценка кривых дожития при медианном цензурировании.

Результаты. Оценка кривой дожития

Рис.: Модельные данные. $\Gamma\left(\frac{1}{3},4\right)$ — убывающий риск.

Результаты. Выбор модели для данных RR

Диагноз мультиглиобластома.

Сравнение кривых дожития

Задача

Сравнение дожития в двух группах

I:
$$(\tilde{\tau}_1, \delta_1), (\tilde{\tau}_2, \delta_2), \dots, (\tilde{\tau}_m, \delta_m).$$

II: $(\mu_1, n_1), (\mu_2, n_2), \dots, (\mu_k, n_k).$

Преобразование данных I типа к II.

ullet Разделение данных на k подгрупп объёма $m_i = C n_i$ случайным образом, где $i=1,\ldots,k,\ C=const.$

$$\widetilde{\tau_1,\ldots,\tau_{m_1}},\ldots,\widetilde{\tau_{m_1+\cdots+m_{k-1}+1}},\ldots,\overline{\tau_{m_1+\cdots+m_k}}.$$

- ullet $\mu_i^{(1)}$ выборочная медиана i-ой подгруппы.
- Задача сводится к виду

$$\begin{split} &\mathbf{I}_{\xi}: \left(\mu_1^{(1)}, m_1\right), \left(\mu_2^{(1)}, m_2\right), \ldots, \left(\mu_k^{(1)}, m_k\right).\\ &\mathbf{II}: \left(\mu_1^{(2)}, n_1\right), \left(\mu_2^{(2)}, n_2\right), \ldots, \left(\mu_k^{(2)}, n_k\right). \end{split}$$

Сравнение кривых дожития. Основные методы

Классические методы сравнения:

- Логранговый критерий.
- Критерий Гехана.

Проблема использования: медианное цензурирование.

- Преобразование данных $(\mu_j^{(z)}, n_j^{(z)})$, $j=1,\dots,k$, $z=\{1,2\},\ \mu_1^{(z)} \leq \dots \leq \mu_{2k}^{(z)}$ к интервальному цензурированию $\left[\mu_{j-1}^{(z)}, \mu_j^{(z)}\right)$.
- Оценка вероятностной нагрузки.

$$V_j = egin{cases} \Phi\left(\left[\mu_{j-1}^{(z)}, \mu_j^{(z)}
ight)
ight), & ext{в параметрическом,} \ \hat{p}_j \sum\limits_{i=1}^j n_i^{(z)}, & ext{в непараметрическом случае.} \end{cases}$$

 Метод сравнения. Логранговый критерий для интервального цензурирования.

Результаты. Сравнение кривых дожития

Таблица: р-значения логрангового критерия для интервального ценз.

Итоги и планы

Итоги

- Построены параметрическая и непараметрическая оценки для кривых дожития в условии медианного цензурирования.
- Произведено сравнение кривых дожития с разными формами цензурирования.

Итоги и планы

Итоги

- Построены параметрическая и непараметрическая оценки для кривых дожития в условии медианного цензурирования.
- Произведено сравнение кривых дожития с разными формами цензурирования.

Планы

- Оценка формы риска.
- Разработка специализированного метода сравнения кривых дожития для данных с медианным цензурированием.