Histograms

To best understand histograms, it's helpful to contrast them first with bar charts.

Bar charts show the number of rows belonging to a given category. The more rows in each category, the taller the bar.

- Bar charts provide a visual representation of the frequency of values in a categorical column.
- There's no strict numerical way to order these bars, but **sometimes there's an order** that makes sense. For example, bars for the sales of different t-shirt sizes might be presented in order of smallest to largest shirt.

Histograms show the number of rows that fall within certain intervals, or "bins", on a horizontal axis. The more rows that fall within a particular "bin", the taller the bar.

- Histograms provide a visual representation of the frequencies (or relative frequencies) of values in a quantitative column.
- Quantitative data can always be ordered, so the bars of a histogram always progress from smallest (on the left) to largest (on the right).
- When dealing with histograms, it's important to select a good bin size. If the bins are too small or too large, it is difficult to see the shape of the dataset. Choosing a good bin size can take some trial and error!

The **shape** of a data set tells us which values are more or less common.

- In a symmetric data set, values are just as likely to occur a certain distance above the mean as below the mean.
- A data set that is **skewed left** and/or has low outliers has a few values that are unusually low. The histogram for a skewed left dataset has a few data points that are stretched out to the left (lower) end of the x-axis.
- A data set that is **skewed right** and/or high outliers means there are a few values that are unusually high. The histogram for a skewed right dataset has a few data points that are stretched out to the right (higher) end of the x-axis.
- One way to visualize the difference between a histogram of data that is **skewed left** or **skewed right** is to think about the lengths of our toes on our left and right feet. Much like a histogram that is "skewed left", our left feet have smaller toes on the left and a bigger toe on the right. Our right feet have the big toe on the left and smaller toes on the right, more closely resembling the shape of a histogram of "skewed right" data.