Exercise 1

We first load a dataset and examine its dimensions.

```
In [1]: # If you are running this on Google Colab, uncomment and run the following lines; ot
    # from google.colab import drive
    # drive.mount('/content/drive')
In [2]: import math
    import numpy as np
    xy_data = np.load('Ex1_polyreg_data.npy')
    # If running on Google Colab change path to '/content/drive/MyDrive/IB-Data-Science/
    np.shape(xy_data)
Out[2]: (70, 2)
```

The matrix xy_data contains 70 rows, each a data point of the form (x_i,y_i) for $i=1,\ldots,70$.

1a) Plot the data in a scatterplot.

```
import matplotlib.pyplot as plt

x = xy_data[:,0]
y = xy_data[:,1]

plt.scatter(x,y,s=2)
plt.show()
```


1b) Write a function polyreg to fit a polynomial of a given order to a dataset.

The inputs to the function are a data matrix of dimension $N \times 2$, and $k \ge 0$, the order of the polynomial. The function should compute the coefficients of the polynomial

 $\beta_0 + \beta_1 x + \ldots + \beta_k x^k$ via least squares regression, and should return the coefficient vector, the fit, and the vector of residuals.

If specified the degree k is greater than or equal to N, then the function must fit an order (N-1) polynomial and set the remaining coefficients to zero.

NOTE: You are *not* allowed to use the built-in function <code>np.polyfit</code> .

```
def polyreg(data_matrix, k):
In [20]:
                                                    """Polynomial fit using Least Squares
                                                   data_matrix: N x 2 array
                                                   k: degree of polynomial
                                                   NOTE: beta-vector is calculated as: (X.T X )-1 X.T y
                                                   assert data matrix.shape[1] == 2
                                                   N = data matrix.shape[0]
                                                   degree = N-1 if k > N else k # Ensure degree of polynomial is less than numbe
                                                   # print(f"Degree of polynomial: {degree}")
                                                                                                                                   # Get x values
                                                   x = data matrix[:,0]
                                                                                                                                     # y
                                                   y = data_matrix[:,1]
                                                   X = \text{np.column stack}([x^*i \text{ for } i \text{ in } \text{range}(k+1)]) \# \text{Create } X \text{ column } matrix
                                                   beta = np.linalg.inv(X.T.dot(X)).dot(X.T).dot(y)
                                                                                                                                                                                                                                       # Least squares
                                                   fit = X.dot(beta)
                                                                                                                                                                                                                                                # Fit
                                                   beta = beta if k <= N else np.append(beta, [0 for _ in range(k - N + 1)]) # Ad
                                                   return beta, fit, y-fit
                                                   \# The function should return the the coefficient vector beta, the fit, and the 	extstyle 	ex
```

Use the tests below to check the outputs of the function you have written:

```
# Some tests to make sure your function is working correctly
In [21]:
          xcol = np.arange(-1, 1.05, 0.1)
          ycol = 2 - 7*xcol + 3*(xcol**2) # We are generating data according to y = 2 - 7x + 1
          test_matrix = np.transpose(np.vstack((xcol,ycol)))
          test_matrix.shape
          beta_test = polyreg(test_matrix, k=2)[0]
          assert((np.round(beta\_test[0], 3) == 2) and (np.round(beta\_test[1], 3) == -7) and (np.round(beta\_test[1], 3) == -7)
          # We want to check that using the function with k=2 recovers the coefficients exactl
          # Now check the zeroth order fit, i.e., the function gives the correct output with k
          beta_test = polyreg(test_matrix, k=0)[0]
          res_test = polyreg(test_matrix, k=0)[2] #the last output of the function gives the v
          assert(np.round(beta_test, 3) == 3.1)
          assert(np.round(np.linalg.norm(res_test), 3) == 19.937)
In [22]: | # Check for k > 3
          n = len(test_matrix)
          res = polyreg(test_matrix, k=19)
```

1c) Use polyreg to fit polynomial models for the data in xy_data for k=2,3,4:

• Plot the fits for the three cases on the same plot together with the scatterplot of the data. The plots should be labelled and a legend included.

- Compute and print the SSE and \mathbb{R}^2 coefficient for each of the three cases.
- Which of the three models you would choose? Briefly justify your choice.

```
In [23]:
          # Plot points
          plt.scatter(x,y,s=2)
          SSE_0 = len(y) * np.var(y) # N * Variance
          # Plot fits
          for k in range(2,5):
              beta, fit, resid = polyreg(xy_data, k)
              plt.plot(x, fit, label=f"k={k}")
              SSE_k = sum(resid**2)
              print(f"k: {k}\tSSE: {SSE_k:.3g}\tR2: {1 - SSE_k/SSE_0:.3g}")
          plt.legend()
          plt.title("Plot of polynomial fits")
          plt.show()
         k: 2
                 SSE: 172
                                  R2: 0.888
```

```
k: 2 SSE: 172 R2: 0.888
k: 3 SSE: 152 R2: 0.901
k: 4 SSE: 151 R2: 0.901
```

Plot of polynomial fits

State which model you choose and briefly justify your choice.

Without knowing what the data is about, it is difficult tell what level of precision is required. A cubic seems to give the best middle groudn in terms of computation vs accuracy as it has R2 > 0.9. Interestingly, k=3 gives a better guassian distribution of residuals

1d) For the model you have chosen in the previous part (either k=2/3/4):

- Plot the residuals in a scatter plot.
- Plot a histogram of the residuals along with a Gaussian pdf with zero mean and the same standard deviation as the residuals.

```
In [27]: from scipy.stats import norm
In [32]: # Get fit with k = 3
beta, fit, resid = polyreg(xy_data, k=3)
```

```
print(f'Residuals: Mean={np.mean(resid):.3f}, Var={np.var(resid):.3f}')

# Plot normed histogram of the residuals
n, bins, patches = plt.hist(resid, bins=20, density=True, facecolor='green')

# Plot Gaussian pdf with same mean and variance as the residuals
res_stdev = np.std(resid) #standard deviation of residuals
xvals = np.linspace(-3*res_stdev,3*res_stdev,1000)
plt.plot(xvals, norm.pdf(xvals, loc=0, scale=res_stdev), 'r')
plt.show()
```

Residuals: Mean=0.000, Var=2.177


```
In []:
```