Web scraping

Week 13

AEM 2850 / 5850 : R for Business Analytics Cornell Dyson Spring 2023

Announcements

Only two full weeks left!

Group project graded, will discuss at end of class

Remaining deadlines:

- Lab 13 will be due Monday
- Lab 14 will be our example in class next Thursday
- Prelim 2 on May 9 in class (two weeks from today)
 - o I will give more guidance on this soon

Questions before we get started?

Plan for today

Prologue

Web scraping basics

Web scraping with rvest

- Cornell sports
- College rankings

Group project debrief

Prologue

Creative answers to Lab 11, Question 8

Several people looked at the relationship between price and location:

Creative answers to Lab 11, Question 8

Some people looked at other listing characteristics:

Creative answers to Lab 11, Question 8

A few people branched out to other ideas and data:

Web scraping basics

What is web scraping?

Getting data or "content" off the web and onto our computers

We get content off the web all the time!

- Copy and paste
- Read and take notes
- Screenshot

The goal of web **scraping** is to write computer code to help us automate this process and store the results in a machine-readable format

Why would we want to scrape data?

When is web scraping useful?

- When the data is publicly available
- When you can't get the data in a more convenient format

When is web scraping not useful?

- When data is publicly available in other formats (e.g., csv)
- When the site owner offers a way to access data directly

Web scraping is time consuming and costly (for both you and "them")

Server-side vs client-side content

1. Server-side

- Host server "builds" site and sends HTML code that our browser renders
- All the information is embedded in the website's HTML

2. Client-side

- Site contains an empty template of HTML and CSS
- When we visit, our browser sends a request to the host server
- The server sends a response script that our browser uses to populate the HTML template with information we want

We will focus on server-side web scraping due to time constraints

HTML stands for "HyperText Markup Language" and looks like this:

```
<html>
<head>
  <title>Page title</title>
</head>
<body>
  <h1 id='first'>A heading</h1>
  Some text &amp; <b>some bold text.</b>
  <img src='myimg.png' width='100' height='100'>
</body>
```

HTML has a hierarchical structure formed by **elements** that consist of:

- 1. a start tag
 - optional attributes
- 2. an end tag
- 3. contents in between tags

HTML has a hierarchical structure formed by elements that consist of:

```
1. a start tag (e.g., <h1>)
o optional attributes (e.g., id='first')
2. an end tag (e.g., </h1>)
3. contents in between tags (e.g., A heading)
```

Elements

- There are over 100 HTML elements
- Google tags to learn about them as needed

Contents

- Most elements can have content in between start and end tags
- Content can be text or more elements (as children)

Attributes

- Attributes like id and class are used with CSS to control page appearance
- These attributes are useful for scraping data

What is CSS?

CSS stands for Cascading Style Sheets

Tool for defining visual appearance of HTML

CSS selectors help identify what we want to scrape

We will learn by example using the extension/bookmarklet SelectorGadget

Web scraping with rvest

The rvest package

rvest (as in "harvest") is part of the tidyverse

```
library(rvest) # installed with tidyverse but needs to be loaded
```

We will cover several functions that make it easy to scrape data from web pages:

- read_html reads HTML, much like read_csv reads .csv files
- html_element(s) find HTML elements using CSS selectors or XPath expressions
- html_text2 retrieves text from HTML elements
- html_table parses HTML tables into data frames

Let's learn these commands by working through two examples

Example 1: Cornell Big Red on Wikipedia

How could we scrape a list of varsity sports?

Option 1: use dt tag to get headings

Championship teams [edit] Baseball Main article: Cornell Big Red baseball • lvv 1972, 1977, 1979, 1982, 2012 • EIBL 1939, 1940, 1952, 1972, 1977^[6] Men's basketball Main article: Cornell Big Red men's basketball • lvy 1988,^[7] 2008, 2009,^[8] 2010^[9] Women's basketball Poster illustration of a Cornell Main article: Cornell Big Red women's basketball baseball player, 1908. lvv 2008^[10] **Men's sports Women's sports** Men's cross country Baseball Basketball Heptagonal Champions 1939, 1940, 1953, 1954, 1955, 1957, 1961, 1963, 1993 Ivy Champions 1957, 1961, 1963, 1992, 1993^[11] Basketball Cross country Women's cross country Cross country Equestrian Heptagonal Champions 1991, 1992, 1993, 1998, 2011, 2012^[12] Football Fencing Football Field hockey Golf Main article: Cornell Big Red foot Clear (77) **Toggle Position** Help XPath National 1915, 1921, 1922, 1939 ICE HOCKE

Scraping text using dt tag

Step 1: use read_html() to read in html from the url of interest

```
big_red <- read_html("https://en.wikipedia.org/wiki/Cornell_Big_Red")

## {html_document}

## <html class="client-nojs vector-feature-language-in-header-enabled vector-feature-language-in-main-page
## [1] <head>\n<meta http-equiv="Content-Type" content="text/html; charset=UTF-8 ...
## [2] <body class="skin-vector skin-vector-search-vue mediawiki ltr sitedir-ltr ...</pre>
```

Scraping text using dt tag

Step 2: use html_elements() to extract every instance of a dt tag

```
big_red <- read html("https://en.wikipedia.org/wiki/Cornell Big_Red")</pre>
big red |>
  html_elements("dt") |> # dt tag is for terms in a description list
  head(8)
## {xml_nodeset (8)}
## [1] <dt>Baseball</dt>
## [2] <dt>Men's basketball</dt>
## [3] <dt>Women's basketball</dt>
## [4] <dt>Men's cross country</dt>
## [5] <dt>Women's cross country</dt>
## [6] <dt>Football</dt>
## [7] <dt>Sprint football</dt>
## [8] <dt>Field Hockey</dt>
```

Scraping text using dt tag

Step 3: use html_text2() to convert the sports to a data frame

```
big_red <- read html("https://en.wikipedia.org/wiki/Cornell Big_Red")</pre>
big red text <- big red |>
  html_elements("dt") |> # dt tag is for terms in a description list
                # convert html to text
  html text2()
head(big_red_text) # looks good!
## [1] "Baseball"
                              "Men's basketball"
                                                     "Women's basketball"
## [4] "Men's cross country"
                            "Women's cross country" "Football"
length(big red text) # hmm...
                                        tail(big red text) # uh-oh...
## [1] 80
                                       ## [1] "MRDA" "USARL" "NARL" "MLR" "USAR" "WTT"
```

What went wrong?

1. Got irrelevant data

What went wrong?

- 1. Got irrelevant data
- 2. Didn't get relevant data

Volleyball

Ivy 1991, 1992, 1993, 2004, 2005, 2006

Men's wrestling^[30]

Main article: Cornell Big Red wrestling
See also: Collegiate wrestling, Eastern Ir

- EIWA champions 1910, 1912–1917, 192;
- Ivy League champions 1957–1960, 1962
- NCAA Runner-up 2010, 2011^[34]

Other teams [edit]

- Equestrian
- Women's Fencing
- Men's Golf
- Gymnastics
- Men's Squash

Option 2: use .wikitable tag to get table

Ivv 2008^[10]

Men's cross country

- Heptagonal Champions 1939, 1940, 1953, 1954, 1955, 1957, 1961, 1963, 1993
- Ivy Champions 1957, 1961, 1963, 1992, 1993^[11]

Women's cross country

Heptagonal Champions 1991, 1992, 1993, 1998, 2011, 2012^[12]

Football

Main article: Cornell Big Red football

- National 1915, 1921, 1922, 1939^{[13][14]}
- lvv 1971, 1988, 1990

Sprint football

CSFL 1975(Co-Champs), 1978, 1982, 1984(Tri-Champs), 1986(Tri-Champs), 2006

Field Hockey

Ivv 1991

Men's ice hockey

Main article: Cornell Big Red men's ice hockey

- NCAA 1967, 1970
- ECAC 1967, 1968, 1969, 1970, 1973, 1980, 1986, 1996, 1997, 2003, 2005, 2010
- lvy 1966, 1967, 1968, 1969, 1970, 1971, 1972, 1973, 1977, 1978, 1983, 1984*, 1985*, 1996, 1997, 2002, 2003, 2004*, 2005, 2012, 2014, 2018, 2019, 2020^[15] (*shared title)
- Ned Harkness Cup 2003, 2005, 2008, 2013

Women's ice hockey

Main article: Cornell Big Red women's ice hockey

- NCAA Frozen Four 2010, 2011, 201
- ECAC 2010, 2011, 2013, 2014

.wikitable

Toggle Position

XPath Help X

Men's sports	Women's sports	
Baseball	Basketball	
Basketball	Cross country	
Cross country	Equestrian	
Football	Fencing	
Golf	Field hockey	
Ice hockey	Gymnastics	
Lacrosse	Ice hockey	
Polo	Lacrosse	
Rowing (heavyweight)	Polo	
Rowing (lightweight)	Rowing	
Soccer	Sailing	
Sprint Football	Soccer	
Squash	Softball	
Swimming & diving	Squash	
Tennis	Swimming & diving	
Track and field [†]	Tennis	
Wrestling	Track and field [†]	
	Volleyball	
† – Track and field includes both indoor and outdoor.		

Scraping tables using .wikitable tag

Step 1: use read_html() to read in html from the url of interest

```
big_red <- read_html("https://en.wikipedia.org/wiki/Cornell_Big_Red")</pre>
```

Step 2: use html_element() to extract the first table element

```
big_red |>
   html_element(".wikitable") # extract the first .wikitable

## {html_node}

## 
## [1] \n\n
```

Scraping tables using .wikitable tag

Step 3: use html_table() to convert the table into a data frame

```
big red_table <- big red |>
  html element(".wikitable") |> # extract the first .wikitable
  html table()
                               # convert html to a data frame
head(big_red_table, 8)
## # A tibble: 8 × 2
  `Men's sports` `Women's sports`
           <chr>
    <chr>
## 1 Baseball Basketball
## 2 Basketball Cross country
## 3 Cross country Equestrian
## 4 Football
                   Fencing
## 5 Golf
                  Field hockey
                  Gymnastics
## 6 Ice hockey
## 7 Lacrosse
                  Ice hockey
## 8 Polo
                   Lacrosse
```

```
tidy_big_red <- big_red_table |>
  pivot_longer(c(1,2), names_to = "pronoun", values_to = "sport") |>
  filter(sport != "" & !str_detect(sport, "^†")) # remove things that aren't sports

tidy_big_red
```

```
## # A tibble: 35 × 2
##
     pronoun
             sport
##
  <chr> <chr>
## 1 Men's sports
                   Baseball
## 2 Women's sports Basketball
## 3 Men's sports
                   Basketball
   4 Women's sports Cross country
   5 Men's sports Cross country
   6 Women's sports Equestrian
  7 Men's sports Football
  8 Women's sports Fencing
   9 Men's sports Golf
## 10 Women's sports Field hockey
## # ... with 25 more rows
```

What function could we use to determine how many pronoun-sport pairs there are in tidy_big_red?

```
tidy_big_red |>
   nrow()
```

[1] 35

(Or we could have gone back one slide to look at the tibble header...)

What function could we use to determine how many distinct sports there are in tidy_big_red?

```
tidy_big_red |>
  pull(sport) |>
  n_distinct()
```

[1] 25

What function could we use to determine how many distinct sports are there for each pronoun?

Example 2: College rankings on Wikipedia

How could we scrape college rankings?

Use .wikitable tag to get the first table

```
rankings <- read_html("https://en.wikipedia.org/wiki/College_and_university_rankings_in_the_United_S
first_table <- rankings |>
   html_element(".wikitable") |> # extract the first .wikitable
   html_table() # convert html to a data frame

first_table
```

```
## # A tibble: 21 × 5
                                             `2022 rank` ``
##
     `Top national universities[13]`
                                                                Top liberal...¹ 2022 ...²
      <chr>
                                                    <int> <lgl> <chr>
##
                                                                                 <int>
   1 Princeton University
                                                        1 NA
                                                                Williams Col...
##
   2 Columbia University
                                                        2 NA
                                                                Amherst Coll...
   3 Harvard University
                                                        2 NA
                                                                Swarthmore C...
##
   4 Massachusetts Institute of Technology
                                                                Pomona Colle...
                                                        2 NA
                                                                Wellesley Co...
   5 Yale University
                                                        5 NA
   6 Stanford University
                                                        6 NA
                                                                Bowdoin Coll...
   7 University of Chicago
                                                        6 NA
                                                                United State...
   8 University of Pennsylvania
                                                        8 NA
                                                                Claremont Mc...
   9 California Institute of Technology
                                                        9 NA
                                                                Carleton Col...
## 10 Duke University
                                                                Middlebury C...
                                                        9 NA
## # ... with 11 more rows, and abbreviated variable names
```

How does Cornell stack up?

How could we find it within a table with many other schools?

What if CSS selectors match multiple tables?

Top national universities ^[13]	2022 rank
Princeton University	1
Columbia University	2
Harvard University	2
Massachusetts Institute of Technology	2
Yale University	5
Stanford University	6
University of Chicago	6
University of Pennsylvania	8
California Institute of Technology	9

University +	Parents' Dream College Ranking
Stanford University	1
Princeton University	2
Massachusetts Institute of Technology	3
Harvard University	4
New York University	5
University of Pennsylvania	6
University of Michigan	7
Duke University	8
University of California, Los Angeles	9
Cornell University	10

What if CSS selectors match multiple tables?

Multiple options:

- 1. Tweak CSS selectors to uniquely identify element (if possible)
- 2. Scrape all of them, then use familiar R tools to extract data

Let's try option 2

Scrape all the tables

Use html_elements() to extract all matching elements

```
all_tables <- rankings |>
  html_elements(".wikitable") |> # extract all the .wikitables
  html_table()  # convert html to a data frame

class(all_tables) # we get a list of tables

## [1] "list"

length(all_tables) # 11 tables, to be exact

## [1] 11
```

How could we extract individual tables?

```
## # A tibble: 3 × 2
     `Top national universities[13]` `2022 rank`
##
     <chr>
                                            <int>
## 1 Princeton University
## 2 Columbia University
## 3 Harvard University
## # A tibble: 3 × 2
                                            `Students' Dream College Ranking`
    University
     <chr>
                                                                          <int>
## 1 Stanford University
## 2 Harvard University
## 3 University of California, Los Angeles
## # A tibble: 3 × 2
                                            `Parents' Dream College Ranking`
    University
##
     <chr>
                                                                         <int>
## 1 Stanford University
## 2 Princeton University
## 3 Massachusetts Institute of Technology
                                                                             3
```

String matching again!

```
# use str_detect() to search for tables with "Parents"
str_detect(all_tables, "Parents")

## [1] FALSE FALSE FALSE FALSE FALSE FALSE TRUE FALSE FALSE FALSE

# or use str_which() to get position of matching object(s)
str_which(all_tables, "Parents")

## [1] 8
```

You are fulfilling your parents' dreams

```
# now extract table(s) with "Parents"
all_tables[str_detect(all_tables, "Parents")]
## [[1]]
## # A tibble: 10 × 2
                                            `Parents' Dream College Ranking`
##
     University
    <chr>
##
                                                                        <int>
   1 Stanford University
   2 Princeton University
   3 Massachusetts Institute of Technology
   4 Harvard University
   5 New York University
   6 University of Pennsylvania
   7 University of Michigan
   8 Duke University
   9 University of California, Los Angeles
## 10 Cornell University
                                                                           10
```

Group project

Overall feedback

Overall we were pleased with everyone's work

This assignment was meant to push you, and it was cool to see everyone take different approaches to solve new problems

Grading

Average grade was 89%

We will post these scores along with feedback on canvas

Please contact Hui if you have questions about grading, see math errors, etc.

If you have follow-up questions after speaking with Hui, please contact me

Specific feedback

Common challenges:

- Graph labels that were unclear, unreadable, or absent
- Incorrect calculations
 - Portfolio returns that exceed returns for every stock in the portfolio
- Not submitting code
- Overall presentation
 - Including the Logistics and Expectations for our perusal

Keep these in mind for the rest of the semester and for your future work!