Documentation Complète

Dataset Forest Digital Twin Écosystèmes Forestiers du Maroc

Système de Surveillance et d'Analyse des Écosystèmes Forestiers Marocains

Date: 22 août 2025

Table des matières

1	vue	d'ensemble	3
2	Stru	icture des fichiers	3
	2.1	Fichiers d'échantillonnage spatial (11 fichiers)	3
		2.1.1 Régions principales (3 fichiers)	3
		2.1.2 Haut Atlas subdivisé (4 fichiers)	3
		2.1.3 Argan subdivisé (4 fichiers)	3
	2.2	Fichiers de séries temporelles (5 fichiers)	3
3	Ban	des Spectrales Sentinel-2	4
	3.1	Bandes du Spectre Visible (400-700 nm)	4
	3.2	Bandes Red Edge (700-800 nm)	4
	3.3	Bandes Proche Infrarouge (800-1000 nm)	5
	3.4	Bandes SWIR (1100-2200 nm)	5
4	Indi	ices de Végétation	6
	4.1	NDVI - Normalized Difference Vegetation Index	6
	4.2	EVI - Enhanced Vegetation Index	6
	4.3	NDMI - Normalized Difference Moisture Index	7
	4.4	NBR - Normalized Burn Ratio	7
	4.5	GNDVI - Green Normalized Difference Vegetation Index	7
	4.6	SAVI - Soil Adjusted Vegetation Index (Argan uniquement)	8
5	Séri	ie Temporelle NDVI (2020-2024)	8
	5.1	Variables temporelles annuelles	8
	5.2	Métriques dérivées calculables	8
6	Vari	iables Topographiques	9
	6.1	Elevation (Altitude)	9
	6.2	Slope (Pente)	9
	6.3	Aspect (Orientation)	9
7	Vari	iables Climatiques	10
	7.1	Temperature (Température moyenne de l'air)	10
	7.2	Precipitation (Précipitations cumulées)	10
8	Rég	ions Géographiques	10
	8.1	Rif (34.5°N - 35.5°N, 5.5°W - 4.0°W)	10
	8.2	Moyen Atlas (33.0°N - 34.0°N, 5.5°W - 4.0°W)	11
	8.3	Haut Atlas (30.5°N - 32.0°N, 8.0°W - 5.0°W)	11
	8.4	Mamora (34.0°N - 34.3°N, 6.7°W - 6.2°W)	11
	8.5	Argan (30.0°N - 31.0°N, 9.5°W - 8.0°W)	11

9	Guide d'Interprétation	12
	9.1 Forêt en Bonne Santé	. 12
	9.2 Forêt sous Stress Modéré	
	9.3 Forêt en Danger Critique	
	9.4 Syndromes de Dégradation	
10	Seuils d'Alerte	13
	10.1 Seuils critiques par région	. 13
	10.2 Système d'alerte multi-niveaux	
11	Applications Machine Learning	14
	11.1 Features de base (Variables principales)	. 14
	11.2 Features ingénierie avancée	
	11.3 Modèles recommandés par objectif	
12	Spécifications Techniques	15
	12.1 Sources et traitements	. 15
	12.2 Contrôle qualité	
	12.3 Standards et formats	1.5

1 Vue d'ensemble

Ce dataset contient des données géospatiales multi-sources pour la surveillance et l'analyse de la santé des écosystèmes forestiers marocains. Il combine des observations satellitaires Sentinel-2, des données climatiques et topographiques pour créer une base de connaissances complète sur 5 régions forestières principales.

Caractéristiques du Dataset

- **Période d'observation :** Mars 2024 Octobre 2024
- **Série temporelle :** 2020 2024 (NDVI)
- **Résolution spatiale :** 30 mètres
- Système de coordonnées : EPSG :4326 (WGS84)
- Total des échantillons : ~2,900 points géoréférencés
- Couverture: Principales forêts du Maroc (Rif, Atlas, Mamora, Argan)

2 Structure des fichiers

2.1 Fichiers d'échantillonnage spatial (11 fichiers)

2.1.1 Régions principales (3 fichiers)

- samples_rif_2024.csv ~500 points Chaîne du Rif (forêts méditerranéennes)
- samples_moyen_atlas_2024.csv ~500 points Moyen Atlas (forêts de montagne)
- samples_mamora_2024.csv ~500 points Forêt de Mamora (chêne-liège)

2.1.2 Haut Atlas subdivisé (4 fichiers)

- samples_haut_atlas_ouest_2024.csv ~200 points Partie occidentale
- samples_haut_atlas_est_2024.csv ~200 points Partie orientale
- samples_haut_atlas_nord_2024.csv ~200 points Versant nord
- samples_haut_atlas_sud_2024.csv ~200 points Versant sud

2.1.3 Argan subdivisé (4 fichiers)

- samples_argan_nord_ouest_2024.csv ~150 points Secteur nord-ouest
- samples_argan_nord_est_2024.csv ~150 points Secteur nord-est
- samples_argan_sud_ouest_2024.csv ~150 points Secteur sud-ouest
- samples_argan_sud_est_2024.csv ~150 points Secteur sud-est

2.2 Fichiers de séries temporelles (5 fichiers)

- timeseries_samples_rif_2024.csv Évolution NDVI 2020-2024 Rif
- timeseries_samples_moyen_atlas_2024.csv Évolution NDVI 2020-2024 Moyen Atlas

- timeseries_samples_mamora_2024.csv Évolution NDVI 2020-2024 Mamora
- timeseries_samples_haut_atlas_2024.csv Évolution NDVI 2020-2024 Haut Atlas
- timeseries_samples_argan_2024.csv Évolution NDVI 2020-2024 Argan

3 Bandes Spectrales Sentinel-2

3.1 Bandes du Spectre Visible (400-700 nm)

Bande	Longueur d'onde	Résolution	Description	Utilité forestière
B2	490 nm (Bleu)	10m	Diffusion at- mosphérique	Détection de l'eau Discrimination végétation/sol Calcul de l'EVI
В3	560 nm (Vert)	10m	Pic de réflectance verte	 Vigueur de la végétation Contenu en chlorophylle Base du GNDVI
B4	665 nm (Rouge)	10m	Absorption chlorophylle	 — Photosynthèse active — Base du NDVI — Stress végétal

3.2 Bandes Red Edge (700-800 nm)

Bande	Longueur d'onde	Résolution	Description	Utilité forestière
B5	705 nm (RE1)	20m	Début red edge	
				Détection
				précoce du
				stress
				 Contenu en azote
				— État physiolo-
				gique

Bande	Longueur d'onde	Résolution	Description	Utilité forestière
B6	740 nm (RE2)	20m	Centre red edge	 Concentration LAI Biomasse Santé foliaire
B 7	783 nm (RE3)	20m	Fin red edge	Contenu en eau des feuillesSénescenceMaladies

3.3 Bandes Proche Infrarouge (800-1000 nm)

Bande	Longueur d'onde	Résolution	Description	Utilité forestière
B8	842 nm (NIR)	10m	NIR principal	 Structure cellulaire Densité végétale Base indices végétation
B8A	865 nm	20m	NIR étroit	 Vapeur d'eau atmosphérique Classification espèces Biomasse

3.4 Bandes SWIR (1100-2200 nm)

Bande	Longueur d'onde	Résolution	Description	Utilité forestière
B11	1610 nm (SWIR1)	20m	Humidité	
				Stress hydriqueContenu en eauBase du NDMI

Bande	Longueur d'onde	Résolution	Description	Utilité forestière
B12	2190 nm (SWIR2)	20m	Zones brûlées	
				 Détection incendies Minéraux du sol Base du NBR
				— Base du NBR

4 Indices de Végétation

4.1 NDVI - Normalized Difference Vegetation Index

Formule et Caractéristiques

Formule : NDVI = $\frac{B8-B4}{B8+B4}$

Plage: -1 à +1

Interprétation écologique :

- < 0 : Eau, neige, nuages
- **0 0.2**: Sol nu, roches, zones urbaines
- **0.2 0.4** : Végétation clairsemée ou stressée
- **0.4 0.6** : Végétation modérément dense
- **0.6 0.8** : Végétation dense et saine
- > **0.8**: Végétation très dense (forêt tropicale)

Applications forestières:

- Suivi de la déforestation
- Détection de stress (sécheresse, maladies)
- Estimation de la biomasse
- Phénologie et saisonnalité

4.2 EVI - Enhanced Vegetation Index

Formule et Caractéristiques

Formule : EVI = $2.5 \times \frac{B8 - B4}{B8 + 6 \times B4 - 7.5 \times B2 + 1}$

Plage: -1 à +1

Avantages sur NDVI:

- Moins sensible à la saturation en zones denses
- Correction des effets atmosphériques et du sol
- Meilleur pour les forêts denses du Rif et Moyen Atlas
- Plus sensible aux variations de structure végétale

4.3 NDMI - Normalized Difference Moisture Index

Formule et Caractéristiques

Formule : NDMI = $\frac{B8-B11}{B8+B11}$

Plage: -1 à +1

Interprétation hydrique :

- < **-0.2** : Stress hydrique extrême
- -0.2 0 : Stress hydrique modéré à sévère
- **0 0.2**: Hydratation normale
- **0.2 0.4** : Bonne hydratation
- -->0.4: Saturation en eau

Applications critiques:

- Prédiction du risque d'incendie
- Détection précoce de la sécheresse
- Monitoring stress hydrique en zones arides (Argan)
- Vulnérabilité aux parasites et maladies

4.4 NBR - Normalized Burn Ratio

Formule et Caractéristiques

Formule : NBR = $\frac{B8 - B12}{B8 + B12}$

Plage: -1 à +1

Classification des brûlures :

- < -0.2 : Zone récemment brûlée (destruction sévère)
- -0.2 0.1 : Sol nu ou zones brûlées anciennes
- **0.1 0.3**: Végétation basse/repousse post-incendie
- > 0.3 : Végétation non brûlée

4.5 GNDVI - Green Normalized Difference Vegetation Index

Formule et Caractéristiques

Formule : GNDVI = $\frac{B8-B3}{B8+B3}$

Plage: -1 a + 1

Spécificités:

- Plus sensible à la chlorophylle que NDVI
- Détection précoce du stress nutritionnel
- Discrimination fine des espèces forestières
- Monitoring de la phénologie automnale

4.6 SAVI - Soil Adjusted Vegetation Index (Argan uniquement)

Formule et Caractéristiques

Formule : SAVI = $\frac{B8-B4}{B8+B4+0.5} \times 1.5$

Plage: -1.5 à + 1.5

Adaptation aux zones arides :

- Correction de l'influence du sol nu
- Spécialement calibré pour l'écosystème arganier
- Améliore la précision en zone de couverture végétale faible

5 Série Temporelle NDVI (2020-2024)

5.1 Variables temporelles annuelles

Variable	Description			Contexte climatique Maroc		
NDVI_2020	NDVI	moyen	année	Année de référence, pluviométrie		
	2020			normale		
NDVI_2021	NDVI	moyen	année	Début de période de sécheresse		
	2021			_		
NDVI_2022	NDVI	moyen	année	Pic de sécheresse historique au Ma-		
	2022			roc		
NDVI_2023	NDVI	moyen	année	Récupération partielle, plu-		
	2023			viométrie irrégulière		
NDVI_2024	NDVI	moyen	année	État actuel, monitoring continu		
	2024					

5.2 Métriques dérivées calculables

Listing 1 – Calcul des métriques temporelles

6 Variables Topographiques

6.1 Elevation (Altitude)

— Unité : Mètres au-dessus du niveau de la mer

— **Source:** SRTM 30m Global DEM

— **Plage Maroc :** 0 - 4,165m (Jbel Toubkal)

Zonation altitudinale forestière :

— **<800m**: Forêts thermophiles (chêne-liège, arganier, oléastre)

— **800-1500m**: Forêts mésophiles (chêne vert, thuya, caroubier)

— **1500-2500m**: Forêts montagnardes (cèdre de l'Atlas, sapin du Maroc)

— **2500-3200m**: Limite forestière (genévriers, épineux)

— >3200m : Végétation alpine clairsemée

6.2 Slope (Pente)

— Unité : Degrés (0-90°)

— Calcul: Dérivée de l'élévation SRTM

Classification géomorphologique :

— **0-5**°: Terrain plat (vallées, plateaux)

— **5-15**°: Pente douce (coteaux, piémonts)

— **15-30°**: Pente modérée (versants)

— **30-45°**: Pente forte (escarpements)

— >45°: Pente très forte (falaises, ravins)

6.3 Aspect (Orientation)

— **Unité :** Degrés azimutaux (0-360°)

— **Référence :** 0°/360°=Nord, 90°=Est, 180°=Sud, 270°=Ouest

Orientation	Angle	Ensoleillement	Humidité	Végétation	
				typique	
Nord	315-45°	Faible	Élevée	Cèdre, sapin,	
				hêtre	
Est	45-135°	Matinal	Modérée	Forêts mixtes	
Sud	135-225°	Maximum Faible		Chêne vert, pin,	
				thuya	
Ouest 225-315°		Après-midi	Variable	Formations de	
				transition	

7 Variables Climatiques

7.1 Temperature (Température moyenne de l'air)

— Unité : Kelvin (conversion : $^{\circ}$ C = K - 273.15)

— **Source :** ERA5 Daily (ECMWF)

— **Résolution :** 0.25° (~27km)

— **Période :** Moyenne mars-octobre 2024

Zonation thermique forestière Maroc:

— <10°C: Étage montagnard supérieur

— **10-15°C** : Étage montagnard moyen

— 15-20°C : Étage montagnard inférieur/méditerranéen

— **20-25**°C : Étage thermo-méditerranéen

— >25°C : Étage aride/semi-aride

7.2 Precipitation (Précipitations cumulées)

— **Unité :** Millimètres (mm)

— **Source :** CHIRPS Daily v2.0

— **Résolution :** 0.05° (~5km)

— **Période :** Cumul mars-octobre 2024

Isohyète	Régime	Bioclimat	Formations forestières
<200mm/an	Aride	Saharien	Acacias épineux,
			steppes
200-400mm/an	Semi-aride	Steppique	Arganier, alfa, jujubier
400-600mm/an	Sub-humide	Méditerranéen	Thuya, chêne vert,
			oléastre
600-800mm/an	Humide	Méditerranéen humide	Chêne-liège, chêne
			zéen
>800mm/an	Très humide	Méditerranéen perhumide	Cèdre, sapin, chêne tau-
			zin

8 Régions Géographiques

8.1 Rif $(34.5^{\circ}N - 35.5^{\circ}N, 5.5^{\circ}W - 4.0^{\circ}W)$

Caractéristiques biogéographiques :

— Écosystème : Forêts méditerranéennes humides

— **Espèces dominantes :** Chêne-liège (*Quercus suber*), Pin maritime (*Pinus pinaster*)

— **Altitude**: 200 - 2,000m

— Climat: Méditerranéen humide (600-1200mm/an)

— **Sols**: Schistes, grès, calcaires

— **Menaces**: Incendies, surpâturage, dépérissement du chêne-liège

8.2 Moyen Atlas $(33.0^{\circ}\text{N} - 34.0^{\circ}\text{N}, 5.5^{\circ}\text{W} - 4.0^{\circ}\text{W})$

Caractéristiques biogéographiques :

- Écosystème : Forêts de montagne continentales
- Espèces dominantes : Cèdre de l'Atlas (*Cedrus atlantica*), Chêne vert (*Quercus ilex*)
- **Altitude**: 800 3,000m
- Climat: Continental montagnard (400-800mm/an)
- **Sols**: Calcaires, basaltes, marnes
- Menaces: Dépérissement du cèdre, sécheresse, surexploitation

8.3 Haut Atlas $(30.5^{\circ}\text{N} - 32.0^{\circ}\text{N}, 8.0^{\circ}\text{W} - 5.0^{\circ}\text{W})$

Caractéristiques biogéographiques :

- Écosystème : Forêts de haute montagne arides
- Espèces dominantes: Thuya (Tetraclinis articulata), Genévrier (Juniperus phoenicea)
- **Altitude :** 1,000 4,000m
- Climat: Montagnard aride (200-600mm/an)
- **Sols**: Calcaires, schistes, conglomérats
- **Menaces**: Érosion, surpâturage, changement climatique

8.4 Mamora $(34.0^{\circ}\text{N} - 34.3^{\circ}\text{N}, 6.7^{\circ}\text{W} - 6.2^{\circ}\text{W})$

Caractéristiques biogéographiques :

- Écosystème : Forêt de plaine subéreuse
- **Espèces dominantes :** Chêne-liège (*Quercus suber*) en monoculture
- **Altitude**: 0 200m
- **Climat :** Méditerranéen atlantique (400-600mm/an)
- **Sols**: Sables, argiles, limons
- **Menaces**: Dépérissement, urbanisation, gestion intensive

8.5 Argan $(30.0^{\circ}\text{N} - 31.0^{\circ}\text{N}, 9.5^{\circ}\text{W} - 8.0^{\circ}\text{W})$

Caractéristiques biogéographiques :

- Écosystème : Forêt aride endémique (Réserve de Biosphère UNESCO)
- **Espèces dominantes :** Arganier (*Argania spinosa*) endémique
- **Altitude**: 0 1,500m
- Climat: Aride à semi-aride (150-400mm/an)
- **Sols**: Calcaires, schistes, alluvions
- Menaces: Surexploitation, défrichement, sécheresse

9 Guide d'Interprétation

9.1 Forêt en Bonne Santé

Signatures spectrales et indicateurs temporels

Signatures spectrales:

- -NDVI > 0.6
- NDMI > 0.2
- EVI > 0.4
- NBR > 0.3

Indicateurs temporels:

- Tendance NDVI stable ou positive
- Faible variabilité interannuelle (CV < 0.1)
- Récupération rapide post-stress

9.2 Forêt sous Stress Modéré

Signatures spectrales et indicateurs temporels

Signatures spectrales:

- NDVI: 0.4 0.6
- NDMI: 0 0.2
- EVI: 0.2 0.4

Indicateurs temporels:

- Tendance NDVI légèrement négative (-0.01 à -0.05/an)
- Variabilité modérée (CV: 0.1 0.2)
- Récupération lente

9.3 Forêt en Danger Critique

Signatures spectrales et indicateurs temporels

Signatures spectrales:

- NDVI < 0.4
- -- NDMI < 0
- NBR < 0.1

Indicateurs temporels:

- Tendance NDVI fortement négative (<-0.05/an)
- Forte variabilité (CV > 0.2)
- Absence de récupération

9.4 Syndromes de Dégradation

Syndrome	NDVI	NDMI	NBR	EVI	Cause probable
Sécheresse chronique	+	++	\rightarrow	+	Déficit hydrique
					prolongé
Post-incendie récent	++	+	+ +	$\downarrow\downarrow$	Combustion
					récente
Maladie/Parasites	+	\rightarrow	\rightarrow	+	Agents pa-
					thogènes
Déforestation	++	+	+	+ +	Coupe/défrichemen
Surpâturage	+	+	\rightarrow	+	Pression pasto-
					rale

10 Seuils d'Alerte

10.1 Seuils critiques par région

Région	NDVI critique	NDMI critique	EVI critique	Action recom-
				mandée
Rif	< 0.5	< 0.1	< 0.3	Surveillance in-
				cendies renforcée
Moyen Atlas	< 0.45	< 0.05	< 0.25	Monitoring
				dépérissement
				cèdre
Haut Atlas	< 0.4	< 0	< 0.2	Lutte anti-érosive
Mamora	< 0.4	< 0	< 0.2	Diagnostic sani-
				taire

10.2 Système d'alerte multi-niveaux

Niveau	Couleur	Condition	Action
Normal	Vert	Tous indices >seuils	Monitoring de
			routine
Attention	Jaune	1 indice <seuil< th=""><th>Surveillance ren-</th></seuil<>	Surveillance ren-
			forcée
Alerte	Orange	2+ indices < seuils	Investigation ter-
			rain
Critique	Rouge	Tous indices < seuils	Intervention ur-
			gente

11 Applications Machine Learning

11.1 Features de base (Variables principales)

Listing 2 – Features principales pour ML

```
features_spectral = ['B2', 'B3', 'B4', 'B5', 'B6', 'B7', 'B8', 'B8A', 'B11'
    , 'B12']
features_indices = ['NDVI', 'EVI', 'NDMI', 'NBR', 'GNDVI', 'SAVI']
features_topo = ['elevation', 'slope', 'aspect']
features_climate = ['temperature', 'precipitation']
features_temporal = ['NDVI_2020', 'NDVI_2021', 'NDVI_2022', 'NDVI_2023', 'NDVI_2024']
```

11.2 Features ingénierie avancée

Listing 3 – Ingénierie des features

```
# Ratios spectraux
B8_B4_ratio = B8 / B4 # V g tation index simple
B11_B8_ratio = B11 / B8 # Moisture content
B12_B11_ratio = B12 / B11 # Burn sensitivity
# Indices temporels
ndvi\_trend = (NDVI\_2024 - NDVI\_2020) / 4
ndvi_volatility = np.std([NDVI_2020, NDVI_2021, NDVI_2022, NDVI_2023,
drought_impact = (NDVI_2020 - NDVI_2022) / NDVI_2020
resilience_index = (NDVI_2024 - NDVI_2022) / NDVI_2022
# Interactions topographiques
slope_aspect_north = slope * np.cos(np.radians(aspect)) # Northness
slope_aspect_east = slope * np.sin(np.radians(aspect))
                                                         # Eastness
elevation_precipitation_ratio = elevation / precipitation
topographic_wetness_index = np.log((precipitation + 1) / (slope + 0.1))
# Indices composites
forest_health_score = (NDVI + NDMI) / 2
stress_index = 1 - (NDMI + 1) / 2 # 0=no stress, 1=max stress
fire_risk_index = (1 - NDMI) * (1 - NBR) * temperature / 300
```

11.3 Modèles recommandés par objectif

Objectif	Features priori-	Algorithme	Métriques
	taires		
Classification	Indices + Tempo-	Random	F1-score, Ac-
santé	rel	Forest	curacy
Détection incen-	NDMI, NBR,	XGBoost	Précision,
dies	Météo		Rappel
Prédiction stress	NDMI, Ten-	LSTM/GRU	RMSE, MAE
	dances		
Segmentation	Red Edge, Topo	CNN	IoU, Dice
espèces			
Analyse ten-	Série temporelle	Prophet,	MAPE, R ²
dances		ARIMA	

12 Spécifications Techniques

12.1 Sources et traitements

Donnée	Source	Résolution	Prétraitement
Imagerie	Sentinel-2 L2A	10-20m	Composite médian,
	(ESA)		masquage nuages
Météo	ERA5 Daily	0.25°	Moyenne temporelle
	(ECMWF)		
Précipitations	CHIRPS v2.0	0.05°	Cumul période
	(UCSB)		
Topographie	SRTM GL1 v3	30m	Dérivées (pente, expo-
	(NASA)		sition)

12.2 Contrôle qualité

— **Précision géospatiale :** ±15m (Sentinel-2)

— Complétude temporelle : >90%

— Validation radiométrique : Cohérence inter-bandes

— Filtrage atmosphérique : Algorithme Sen2Cor

— **Détection nuages/ombres :** QA60 quality flags

12.3 Standards et formats

— **Projection :** EPSG :4326 (WGS84 Geographic)

— Format fichiers : CSV (UTF-8)

— **Encodage numérique :** Float64 (variables continues)

— **Métadonnées :** ISO 19115-2 (géospatial)

— Interopérabilité : OGC Standards (WMS, WFS)