# Factor Graph Neural Network Meets Max-Sum:

# A Real-Time Route Planning Algorithm for Massive-Scale Trips

Yixuan Li<sup>1</sup>, Wanyuan Wang<sup>1\*</sup>, Weiyi Xu<sup>1</sup>, Yanchen Deng<sup>2</sup>, Weiwei Wu<sup>1</sup>.

- <sup>1</sup> School of Computer Science and Engineering, Southeast University, Nanjing, China
- <sup>2</sup> School of Computer Science and Engineering, Nanyang Technological University, Singapore Email: {yixuanli, wywang, weiweiwu}@seu.edu.cn, wxu79631@gmail.com, ycdeng@ntu.edu.sg







## Backgrounds





- Individual route planning only considers current traffic condition, ignoring other queries.
- Global route planning considers the potential vehicles generated by other user queries.
- The goal of Global Route Planning is to minimize the total travel time for all user queries.

#### **Problem Definition:**

- The travelling time t(e) on each road e:  $t(e) = t_{min}(e) \times (1 + \alpha \times f_e)$ t(e) is affected by  $f_e$ , the number of vehicles on this road.
- The goal of individual route planning is to minimise the travel time for **one** user  $\pi$ :

$$T(\pi) = \sum_{e(v_i, v_j) \in \pi} f(e(v_i, v_j))$$

The goal of Global Route Planning is to minimise the travel time for all the users  $\Pi$ 

$$GT(\Pi) = \sum_{i}^{|\Pi|} T(\pi_i)$$

#### **Existing Methods:**

- Exact algorithm bears exponential time complexity and could not be applied to real-world scenarios.
- Heuristics Methods: greedy algorithms [1],[2], Monte Carlo tree search [3] etc.

**Drawbacks:** low **efficiency** and **accuracy** 

#### **Our Contributions:**

- **Graph Model to solve GRP:** Route-Query Factor Graph
- **Hybrid pruning technique** for Max-Sum
- End to end framework: Route-Query Factor Graph Neural Network

# Problem Formulation - Route-Query Factor Graph

Top-k



**Road Map** 

 $q_1: A \to D$  $q_2: A \to B$ 

 $q_3:A\to C$  $q_4: B \to E$ 

Queries

**Motivation:** From the whole to the parts: Decompose the total travel time by road. **Decision variable:** candidate routes

To simplify the problem, the candidates are the **shortest k** ones

queries  $Q = \{q_1, \dots, q_n\}$ 

Variables  $X = \{x_1, \dots, x_n\}$ Domains  $D = \{D_1, \ldots, D_n\}$ 

Objective function: sum of the user travel times in all candidate roads:

Minimizing total travel time for 4 users

 $F = f_1, \ldots, f_8$  $f(e) = t_{min}(e) \times (1 + \alpha \times f_e)$ **Function** 

Variable |  $x_1 q_1$  $x_2 q_2$  $5(AD) \ 3(AC) \ 6(CD) \ 5(AB) \ 4(CB) \ 4(BC) \ 8(BE) \ 3(DE)$ 

# Max-sum with Hybrid Pruning

Nodes

This model can be solved by message passing algorithm: Max-Sum [4] **Advantages:** 

Parallel computation: each node as a computational unit Distributed computing to rapidly solve and protect privacy Controllable: can stop after any iteration and return results



### **Process of Max-Sum**

- **1. Query Message:** variable nodes → function nodes (which road to take)  $Q_{x_i \to f}^k(x_i) = \sum_{i=1}^k R_{f \to x_i}^{k-1}(x_i) + \alpha_i$
- **2. Response Message:** function  $\rightarrow$ variable nodes (maximum possible cost caused by query nodes)



. **Decision:** The variable nodes use the information to make decision  $\widetilde{d}_i = \underset{x_i \in D_i}{\operatorname{argmin}} \sum_{f' \to x_i} R_{f' \to x_i}^k(x_i)$ 

## **Exponential complexity:**

Response message need to consider all the possible combinations of neighbors, for N neighbors, *K* candidates, the computational complexity is  $O(K^N)$ 



Classification Pruning: Queries can be divided into two categories: passing through the road or not. So finding the optimal value **respectively** can reduce computational complexity to  $O(2^N)$ .

Traversal pruning: greedy method for busy traffic, complexity of O(KN).

#### **End to end Framework** Possible Top-*K* Candidates Motivation **Historical Information:** many closed-related GRP Route 1 Route 2 Route 3 instances must be solved repeatedly. Feature of Variable Node $\delta(x_i)$ Similar Patterns: the same road network and the Road Feature of Edge $\delta(e_{i,i})$ set of candidate paths for each query is invariant. **Computation Process:** the computation process Feature of Function Node $\delta(f_i)$ of Max-Sum is similar to graph neural networks[5]. MLP&Sum $\sum R_{f\to x} + \alpha$ $\max_{Nea(f)} \varphi_{V \to F}(\delta(e), \delta(x), \delta(f))$ $V \rightarrow F$ $\max f(Neg(f)) + \sum_{x \to f} Q_{x \to f}$ $\sum_{r} \varphi_{F \to V}(\delta(e), \delta(x), \delta(f))$ MLP&Max $\operatorname{argmin} \sum_{Neg(f)} Q_{x \to f}$ $max \rightarrow R_{f \rightarrow x}$ Assignment $softmax(\varphi(\delta(x)))$ Massage Passing Max-sum $\delta(x_i) \to \delta(f_i)$ RQ-FGNN $\delta(f_i) \to \delta(x_i)$ Road Network $\delta(x_i) \to \delta(f_i) \ \delta(f_i) \to \delta(x_i)$ Query Feature **Features** Message Passing CDMax-Sum $\tilde{\delta}(f_i)$ $A \rightarrow D$ $Q_1$ Message Passing Label $\delta(x_i) \to \delta(f_i)$ $m \times 1$ $A \rightarrow C$ $Q_3$ From other Multiplication neighbors $B \to D$ $Q_4$ Detail ı Forwardı loss $\delta(f_i)$ Route-query Input: Queries

## Experiments

#### **Experimental Settings Datasets:**

TG: Real-world San Joaquin County Road Network [6], **SG:** Synthetic road network **Metrics:** 

**Factor Graph** 

Global travel time:  $GT(\Pi)$ 

Worst-case travel time:  $GT_{worst}(\Pi)$  as an upper bound of the total travel time for all vehicles caused by queries.

**Baselines:** 

**IND:** Individual-based search algorithm. [7] SBP: Self-aware batch process, the SOTA. [2]







[7] Jiajie Xu et al. Traffic aware route planning in dynamic road networks. DASFAA'12.

[6] https://users.cs.utah.edu/lifeifei/SpatialDataset.htm.



Query Feature

**Output: Routes** 



iteration when query count is 6000.



of methods under different numbers of queries [5] Zhen Zhang et al. Factor Graph Neural Networks. NeurIPS'20

[1] Ke Li et al. Towards Alleviating Traffic Congestion: Optimal Route Planning for Massive-Scale Trips. IJCAI'20. [2] Ke Li et al. Traffic Congestion Alleviation over Dynamic Road Networks: Continuous Optimal Route Combination for Trip Query Streams. IJCAI'21. [3] Guiyang Luo et al. AlphaRoute: Large-Scale Coordinated Route Planning via Monte Carlo Tree Search. AAAI'23. [4] Liel Cohen et al. Governing convergence of Max-sum on DCOPs through damping and splitting. Artificial Intelligence 279, 103212, 2020.