Adaptive Accelerated Gradient Converging Method under Hölderian Error Bound Condition

Mingrui Liu, Tianbao Yang

Department of Computer Science, The University of Iowa

Problem of Interest

Smooth Composite Optimization Problem:

$$\min_{\mathbf{x} \in \mathbb{R}^d} F(\mathbf{x}) \triangleq f(\mathbf{x}) + g(\mathbf{x}) \tag{1}$$

- $f(\mathbf{x})$: continuously differentiable convex with L-Lipschitz continuous gradient
- $g(\mathbf{x})$: proper lower semi-continuous convex
- proximal mapping: $P_g(\mathbf{u}) = \operatorname{argmin}_{\mathbf{x} \in \mathbb{R}^d} \frac{1}{2} \|\mathbf{x} \mathbf{u}\|_2^2 + g(\mathbf{x})/L$.
- proximal gradient $G(\mathbf{x}) = L(\mathbf{x} P_q(\mathbf{x} \nabla f(\mathbf{x})/L))$.

Accelerated Proximal Gradient Methods:

Nesterov's APG:

$$\mathbf{x}_{\tau+1} = P_q(\mathbf{y}_{\tau} - \nabla f(\mathbf{y}_{\tau})/L), \ \mathbf{y}_{\tau+1} = \mathbf{x}_{\tau+1} + \beta_{\tau}(\mathbf{x}_{\tau+1} - \mathbf{x}_{\tau}).$$

- $\beta_{\tau} = \frac{\tau}{\tau + 3}$: iteration complexity (IC): $O(1/\sqrt{\epsilon})$
- if $f(\mathbf{x})$ is α -strongly convex: $\beta_{\tau} = \frac{\sqrt{L} \sqrt{\tau}}{\sqrt{L} \sqrt{\tau}}$, IC: $O(\sqrt{L/\alpha} \log(1/\epsilon))$
- if $g(\mathbf{x})$ is α -strongly convex: Nesterov's ADG, same IC as above

Algorithm 1 ADG

- 1: $\mathbf{x}_0 \in \Omega$, $A_0 = 0$, $\mathbf{v}_0 = \mathbf{x}_0$
- 2: **for** t = 0, ..., T **do**
- 3: Find a_{t+1} from quadratic equation $\frac{a^2}{A_{t+a}} = 2\frac{1+\alpha A_t}{L}$
- 4: Set $A_{t+1} = A_t + a_{t+1}$
- 5: Set $\mathbf{y}_t = \frac{A_t}{A_{t+1}} \mathbf{x}_t + \frac{a_{t+1}}{A_{t+1}} \mathbf{v}_t$
- 6: Compute $\mathbf{x}_{t+1} = P_q(\mathbf{y}_t \nabla f(\mathbf{y}_t)/L)$
- 7: Compute $\mathbf{v}_{t+1} = \arg\min_{\mathbf{x}} \sum_{\tau=1}^{t+1} a_{\tau} \nabla f(\mathbf{x}_{\tau})^{\mathsf{T}} \mathbf{x} + A_{t+1} g(\mathbf{x}) + \frac{1}{2} \|\mathbf{x} \mathbf{x}\|_{t+1}$
- 8: end for

Recent Advances

Linear Convergence under weaker conditions, e.g., quadratic error bound condition (QEB, or quadratic growth condition).

$$\operatorname{dist}(\mathbf{x}, \Omega_*) \leq c(F(\mathbf{x}) - F_*)^{1/2},$$

Examples: LASSO

$$\min_{\mathbf{x} \in \mathbb{R}^d} \frac{1}{n} \|A\mathbf{x} - \mathbf{y}\|_2^2 + \lambda \|\mathbf{x}\|_1$$

- PG [4]: IC = $O(Lc^2 \log(1/\epsilon))$
- a restarting version of APG [3]: IC = $O(\sqrt{Lc^2 \log(1/\epsilon)})$ provided that the value of c is known.
- Issue: the value of c is usually unknown

Questions: how to develop algorithms with improved IC when c is unknown? What if considering a weaker condition than QEB?

Hölderian Error Bound (HEB)

Definition 1: A function $F(\mathbf{x})$ is said to satisfy a Hölderian error bound condition on ξ -sublevel set if there exist $\theta \in (0,1]$ and 0 < c < 0 ∞ such that for any $\mathbf{x} \in \mathcal{S}_{\xi}$,

$$\operatorname{dist}(\mathbf{x}, \Omega_*) \leq c(F(\mathbf{x}) - F_*)^{\theta},$$

where Ω_* denotes the set of optimal solution.

- closely related to the Kurdyka Łojasiewicz (KL) inequality in real algebraic geometry.
- when functions are semi-algebraic and continuous, the above inequality is known to hold on any compact set
- $\theta = 0$ can be considered as a special case

PG and restarting APG under HEB

Algorithm 2 PG under HEB

- 1: Input: $\mathbf{x}_0 \in \Omega$ such that $F(\mathbf{x}_0) F(\mathbf{x}_*) \le \epsilon_0$
- 2: **for** $\tau = 1, ..., t$ **do**
- 3: $\mathbf{x}_{\tau+1} = P_q(\mathbf{x}_{\tau} \nabla f(\mathbf{x}_{\tau})/L)$
- 4: end for
- 5: Option I: return \mathbf{x}_{t+1}
- 6: Option II: return \mathbf{x}_k s.t. $G(\mathbf{x}_k) = \min_{\tau} \|G(\mathbf{x}_{\tau})\|_2$
- Option I for achieving $F(\mathbf{x}_t) F_* \leq \epsilon$,
- IC is $O(\max\{\frac{Lc^2}{\epsilon^{1-2\theta}}, Lc^2\log(\frac{\epsilon_0}{\epsilon})\})$ if $\theta \le 1/2$, and $O(Lc^2\epsilon_0^{2\theta-1})$ ow.
- Option II is for achieving $G(\mathbf{x}_k) \leq \epsilon$
- IC is $O\left(Lc^{\frac{1}{1-\theta}}\max\left\{\frac{1}{\frac{1-2\theta}{\epsilon}},\log(\frac{\epsilon_0}{\epsilon})\right\}\right)$ if $\theta \leq 1/2$, and is $O(c^2L\epsilon_0^{2\theta-1})$

Algorithm 3 restarting APG (rAPG) under HEB

- 1: **Input**: the number of stages K and $\mathbf{x}_0 \in \Omega$
- 2: **for** k = 1, ..., K **do**
- 3: Apply t_k steps of APG starting from \mathbf{x}_{k-1}
- 4: Let $\mathbf{x}_k = \mathbf{x}_{t_k+1}^k$
- 5: end for
- 6: Output: \mathbf{x}_K
- Set $t_k = \left[2\sqrt{L}c(\frac{\epsilon_0}{2^{k-1}})^{\theta-1/2}\right]$, for achieving $F(\mathbf{x}_K) F_* \le \epsilon$
- IC is $O(\max\{\frac{c\sqrt{L}}{\epsilon^{1/2-\theta}}, c\sqrt{L}\log(\frac{\epsilon_0}{\epsilon})\})$ if $\theta \le 1/2$.
- IC is $O(\sqrt{L}c\epsilon_0^{1/2-\theta})$ if $\theta > 1/2$,
- rAPG requires the knowledge of c.

Adaptive Accelerated Gradient Converging Methods (adaAGC)

Algorithm 4 adaAGC

- 1: Input: $\mathbf{x}_0 \in \Omega$ and c_0 and $\gamma > 1$ 2: Let $c_e = c_0$ and $\epsilon_0 = \|G(\mathbf{x}_0)\|_2$,
- 3: **for** k = 1, ..., K **do** 4: Let δ_k be given in (2) and $g_{\delta_k}(\mathbf{x}) = g(\mathbf{x}) + \frac{\delta_k}{2} \|\mathbf{x} - \mathbf{x}_{k-1}\|_2^2$
- 5: $\mathbf{x}_1^k = \mathbf{x}_{k-1} \text{ and } \mathbf{y}_1 = \mathbf{x}_{k-1}$
- 6: **for** s = 1, ... **do for** $\tau = 1, ...$ **do**
- Apply one step of ADG to $f(\mathbf{x}) + g_{\delta_k}(\mathbf{x})$ to generate $\mathbf{x}_{\tau+1}^k$ if $||G(\mathbf{x}_{\tau+1}^k)||_2 \le \epsilon_{k-1}/2$ then
- let $\mathbf{x}_k = \mathbf{x}_{\tau+1}^k$ and $\epsilon_k = \epsilon_{k-1}/2$.
- break the two enclosing for loops
- else if $\tau = \left| 2\sqrt{\frac{L+\delta_k}{\delta_k}} \log \frac{\sqrt{L(L+\delta_k)}}{\delta_k} \right|$ then
- let $c_e = \gamma c_e$ and break the enclosing for loop end if
- end for
- 16: end for 17: end for
- 18: Output: \mathbf{x}_K

Why does the Algorithm Work?

Adaptive Regularization:

$$\delta_{k} = \begin{cases} \min\left(\frac{L}{32}, \frac{\varepsilon_{k-1}^{\frac{1-2\theta}{1-\theta}}}{16c_{e}^{1/(1-\theta)}2^{\frac{\theta}{1-\theta}}}\right) & \text{if } \theta \in (0, 1/2] \\ \min\left(\frac{L}{32}, \frac{1}{32c_{e}^{2}\epsilon_{0}^{2\theta-1}}\right) & \text{if } \theta \in (1/2, 1] \end{cases}$$

- Conditional Restarting:
- Condition I: $||G(\mathbf{x}_{\tau+1}^k)||_2 \le \epsilon_{k-1}/2$
- Condition II: $\tau = \left[2\sqrt{\frac{L+\delta_k}{\delta_k}} \log \frac{\sqrt{L(L+\delta_k)}}{\delta_k} \right]$
- If Condition II becomes true before Condition I, then $c_e < c$
- Reasoning: ADG guarantees that

$$||G(\mathbf{x}_{\tau+1}^k)||_2 \le \left(\sqrt{L(L+\delta_k)}\left(1+\sqrt{\frac{\delta_k}{2L}}\right)^{-\tau} + 2\sqrt{2}\delta_k\right) ||\mathbf{x}_{k-1}-\mathbf{x}_*||_2.$$

Our Key Lemma: Assume HEB for any $\mathbf{x} \in \mathcal{S}_{\xi}$ with $\theta \in (0, 1]$.

$$\|\mathbf{x} - \mathbf{x}_*\|_2 \le \frac{2}{L} \|G(\mathbf{x})\|_2 + c^{\frac{1}{1-\theta}} 2^{\frac{\theta}{1-\theta}} \|G(\mathbf{x})\|_2^{\frac{\theta}{1-\theta}}, \ \theta \in (0, 1/2]$$

$$\|\mathbf{x} - \mathbf{x}_*\|_2 \le \left(\frac{2}{L} + 2c^2 \xi^{2\theta - 1}\right) \|G(\mathbf{x})\|_2, \ \theta \in (1/2, 1)$$

Main Theorem: Suppose $F(\mathbf{x}_0) - F_* \le \epsilon_0$, $F(\mathbf{x})$ satisfies HEB on S_{ϵ_0} and $c_0 \le c$. Let $\varepsilon_0 = \|G(\mathbf{x}_0)\|_2$, $K = \lceil \log_2(\frac{\varepsilon_0}{\epsilon}) \rceil$, $p = (1 - 2\theta)/(1 - \theta)$ for $\theta \in (0, 1/2]$. The IC of adaAGC for having $||G(\mathbf{x}_K)||_2 \le \epsilon$ is (where $\widetilde{O}(\cdot)$ suppresses a log term depending on c, c_0, L, γ)

$$IC = \begin{cases} \widetilde{O}\left(\sqrt{L}c^{\frac{1}{2(1-\theta)}}\max(\frac{1}{\epsilon^{p/2}},\log(\varepsilon_0/\epsilon)\right) \text{ if } \theta \in (0,1/2) \\ \widetilde{O}\left(\sqrt{L}c\log(\varepsilon_0/\epsilon)\right) & \text{if } \theta = 1/2 \\ \widetilde{O}(\sqrt{L}c\epsilon_0^{\theta-1/2}) & \theta \in (1/2,1] \end{cases}$$

Table 1: Summary of iteration complexities in this work under the HEB condition with $\theta \in (0, 1/2]$, where $G(\mathbf{x})$ denotes the proximal gradient, $C(1/\epsilon^{\alpha}) = 1/2$ $\max(1/\epsilon^{\alpha}, \log(1/\epsilon))$ and $\widetilde{O}(\cdot)$ suppresses a logarithmic term. If $\theta > 1/2$, all algorithms can converge with finite steps of proximal mapping. rAPG stands for restarting APG. * mark results available for certain subclasses of problems.

algo.	PG	rAPG	adaAGC
$F(\mathbf{x}) - F_* \le \epsilon$	$= O\left(c^2 L \mathcal{C}\left(\frac{1}{\epsilon^{1-2\theta}}\right)\right)$	$O\left(c\sqrt{L}\mathcal{C}\left(\frac{1}{\epsilon^{1/2- heta}} ight)$) $O\left(c\sqrt{L}\mathcal{C}\left(\frac{1}{\epsilon^{1/2-\theta}}\right)\right)^*$
$ G(\mathbf{x}) _2 \le \epsilon$	$O\left(c^{rac{1}{1- heta}}L\mathcal{C}\left(rac{1}{\epsilon^{rac{1-2 heta}{1- heta}}} ight) ight)$	_	$\widetilde{O}\left(c^{\frac{1}{2(1-\theta)}}\sqrt{L}\mathcal{C}\left(\frac{1}{\epsilon^{\frac{1-2\theta}{2(1-\theta)}}}\right)\right)$
requires θ	No	Yes	Yes
requires c	No	Yes	No

Applications and Experimental Results

Applications: Consider the regularized problems with a smooth

$$\min_{\mathbf{x} \in \mathbb{R}^d} \frac{1}{n} \sum_{i=1}^n \ell(\mathbf{x}^\mathsf{T} \mathbf{a}_i, b_i) + \lambda R(\mathbf{x}), \tag{3}$$

where $(\mathbf{a}_i, b_i), i = 1, \dots, n$ denote a set of training examples, $R(\mathbf{x})$ is the regularizer.

Examples of $\theta = 1/2$: piecewise quadratic convex function [1]

- square loss, squared hinge loss, huber loss
- ℓ_1 , ℓ_{∞} norm, Huber norm and $\ell_{1,\infty}$ norm.

Examples of $\theta = 1/2$: structured smooth composite functions

- $f(\mathbf{x}) = h(A\mathbf{x})$: h is smooth and strongly convex on any compact
- $g(\mathbf{x})$ is a polyhedral function (e.g., ℓ_1 norm)

Examples of $\theta < 1/2$: ℓ_1 constrained ℓ_p regression: $\theta = 1/p$

$$\min_{\|\mathbf{x}\|_{1} \le s} F(\mathbf{x}) \triangleq \frac{1}{n} \sum_{i=1}^{n} (\mathbf{a}_{i}^{\mathsf{T}} \mathbf{x} - b_{i})^{p}, \quad p \in 2\mathbb{N}.$$
 (4)

Experimental Results:

Table 2: squared hinge loss with ℓ_1 norm (left) and ℓ_{∞} norm (right) regularization on splice data

	<u>-</u>							
Algorithm	$\epsilon = 10^{-4}$	$\epsilon = 10^{-5}$	$\epsilon = 10^{-6}$	$\epsilon = 10^{-7}$	$\epsilon = 10^{-4}$	$\epsilon = 10^{-5}$	$\epsilon = 10^{-6}$	$\epsilon = 10^{-7}$
PG	2040	2040	2040	2040	3514	3724	3724	3724
FISTA	1289	1289	1289	1289	5526	5526	5526	5526
urFISTA	1666	2371	2601	3480	1674	2379	2605	3488
adaAGC	1410	1410	1410	1410	2382	2382	2382	2382
FISTA > adaAGC > PG > urFISTA					adaAGC > urFISTA > PG > FISTA			

Table 3: square loss with ℓ_1 norm (left) and ℓ_{∞} norm (right) regularization on cpusmall data

9298	150000						
	159908	170915	170915	139505	204120	210874	210874
781	16387	23779	23779	6610	16418	20082	20082
3278	26706	35173	43603	18276	26704	35169	43601
571	12623	13575	13575	9881	13033	13632	13632
)	278 571	278 26706 571 12623	278 26706 35173 571 12623 13575	278 26706 35173 43603 571 12623 13575 13575	278 26706 35173 43603 18276 571 12623 13575 13575 9881	278 26706 35173 43603 18276 26704 571 12623 13575 13575 9881 13033	781 16387 23779 23779 6610 16418 20082 278 26706 35173 43603 18276 26704 35169 571 12623 13575 13575 9881 13033 13632

Table 4: ℓ_1 regularized huber loss (left) and ℓ_1 constrained square loss (right) on bodyfat

(Jala								
	Algorithm	$\epsilon = 10^{-4}$	$\epsilon = 10^{-5}$	$\epsilon = 10^{-6}$	$\epsilon = 10^{-7}$	$\epsilon = 10^{-4}$	$\epsilon = 10^{-5}$	$\epsilon = 10^{-6}$	$\epsilon = 10^{-7}$
	PG	258723	423181	602043	681488	1006880	1768482	2530085	2632578
	FISTA	6630	25020	74416	124261	15805	66319	180977	181176
	urFISTA	6855	12662	17994	23933	138359	235081	331203	426341
	adaAGC	16976	16980	23844	25697	23054	33818	44582	48127
	urFIS	$\overline{TA} > ada$	$\overline{AGC > 1}$	FISTA >	PG	adaAG0	C> FISTA	> urFIST	A > PG

Table 5: ℓ_1 constrained ℓ_p norm regression on bodyfat data ($\epsilon = 10^{-3}$)

Algorithm	p = 2	p = 4	p = 6	<i>p</i> = 8
PG	250869 (1)	979401 (3.90)	1559753 (6.22)	4015665 (16.00
adaAGC	8710 (1)	17494 (2.0)	22481 (2.58)	33081 (3.80)

Remark:

- For comparison of urFISTA [2] and adaAGC, we use the same initial estimate of the unknown Hölderian constant c.
- In Table 4, the numbers in parenthesis indicate the increasing factor in the number of proximal mappings compared to the base case p = 2, which is consistent with theory.

References:

[1] G. Li. Global error bounds for piecewise convex polynomials. Math. Program., 137(1-2):37-64. 2013.

[2] O. Fercoq and Z. Qu. Restarting accelerated gradient methods with a rough strong convexity estimate.arXiv preprint arXiv:1609.07358, 2016. [3] I. Necoara, Y. Nesterov, and F. Glineur. Linear convergence of first order methods for nonstrongly convex optimization. CoRR, abs/1504.06298, 2015.

[4]. H. Karimi, J. Nutini, and M. W. Schmidt. Linear convergence of gradient and proximal gradient methods under the Polyak - Łojasiewicz condition. In ECML-PKDD, 2016.