Corrigé du contrôle continu 3

Exercice 1. (14,5 points)

Soient $P = \{(x, y, z) \in \mathbb{R}^3 : x + 2y + 3z = 0\}$ et $D = \{(x, y, z) \in \mathbb{R}^3 : \frac{x}{3} = \frac{y}{2} = z\}$. On **admet** que P et D sont des sous-espaces vectoriels de \mathbb{R}^3 .

- 1) Calculer une base de P et une base de D. Quelle est la dimension de P? De D? De quels objets géométriques s'agit-il? (2,5 points)
- On a

$$P = \{(x, y, z) \in \mathbb{R}^3 : x + 2y + 3z = 0\} = \{(-2y - 3z, y, z), y, z \in \mathbb{R}\} = \{y \cdot (-2, 1, 0) + z \cdot (-3, 0, 1), y, z \in \mathbb{R}\} = \text{Vect}(\mathcal{F})$$

où $\mathcal{F} = ((-2,1,0),(-3,0,1))$ est une famille libre, car ses deux composantes sont non colinéaires.

Donc \mathscr{F} est une famille génératrice et libre de P, donc $\underline{\mathscr{F}}$ est une base de P. Comme Card(\mathscr{F}) = 2, P est de dimension 2, c'est donc un plan de \mathbb{R}^3 .

• De la même manière, on a

$$D = \left\{ (x, y, z) \in \mathbb{R}^3 : \frac{x}{3} = \frac{y}{2} = z \right\} = \{ (3z, 2z, z), z \in \mathbb{R} \} = \text{Vect}((3, 2, 1))$$

donc comme $(3,2,1) \neq 0_{\mathbb{R}^3}$, *D* est une droite, de dimension 1, de base ((3,2,1)).

2) Montrer que $P \oplus D = \mathbb{R}^3$. (3 points)

On a
$$P \oplus D = \mathbb{R}^3 \Leftrightarrow P \cap D = \{0\}$$
 et $P + D = \mathbb{R}^3$.

• Soit $u = (x, y, z) \in P \cap D$. Puisque $u \in D = \text{Vect}((3, 2, 1))$, on peut trouver $\lambda \in \mathbb{R}$ tel que $u = (3\lambda, 2\lambda, \lambda)$. Or, $u \in P$, donc

$$0 = x + 2y + 3z = 10\lambda$$

de sorte que $\lambda=0$. D'où u=(0,0,0). Ainsi, comme $0_{\mathbb{R}^3}\in P\cap D$ (ce sont des sous-espaces vectoriels de \mathbb{R}^3), on a $P\cap D=\{0\}$.

• On sait que $\dim(P+D) = \dim(P) + \dim(D) - \dim(P\cap D)$ donc selon la question 1) d'une part, et le point précédent d'autre part, on a $\dim(P+D) = 2+1-0 = 3$. Or, P+D est un sous-espace vectoriel de \mathbb{R}^3 , et $\dim(\mathbb{R}^3) = 3$ donc $P+D = \mathbb{R}^3$.

Selon ces deux points, on a $P \oplus D = \mathbb{R}^3$.

3) Soient $(v_1, ..., v_{\dim P})$ et $(u_1, ..., u_{\dim D})$ les bases respectives de P et D calculées à la question 1). Montrer que

$$\mathscr{B} = (v_1, \dots, v_{\dim P}, u_1, \dots, u_{\dim D})$$

est une base de \mathbb{R}^3 . (2 points)

Il y a plusieurs manières de faire cette question. D'une part, on peut remarquer qu'il s'agit d'un résultat du cours, ce qui est accepté à condition de citer précisément ce résultat. D'autre part, on peut simplement écrire concrètement la base $\mathscr B$ dans ce cas précis, qui est donc une famille à 3 éléments de $\mathbb R^3$, et montrer qu'il s'agit d'une famille libre ou génératrice de $\mathbb R^3$, selon la méthode habituelle.

4) Soit f la projection de \mathbb{R}^3 sur P parallèlement à D et $u=(x,y,z)\in\mathbb{R}^3$. Calculer f(x,y,z). (3 points)

Pour pouvoir calculer f(x, y, z), il faut décomposer u sous la forme u = v + w, où $v \in P$ et $w \in D$. On a alors f(u) = v par définition de la projection.

Supposons trouvés de tels v et w.

On a donc $w = (3\lambda, 2\lambda, \lambda)$ pour un certain $\lambda \in \mathbb{R}$. De plus, $v = u - w \in P$ donc

$$0 = x - 3\lambda + 2(y - 2\lambda) + 3(z - \lambda) = x + 2y + 3z - 10\lambda,$$

si bien que $\lambda = \frac{x + 2y + 3z}{10}$. Ainsi,

$$w = \left(\frac{3x + 6y + 9z}{10}, \frac{2x + 4y + 6z}{10}, \frac{x + 2y + 3z}{10}\right) \tag{1}$$

et

$$v = (x, y, z) - w = \left(\frac{7x - 6y - 9z}{10}, \frac{-2x + 6y - 6z}{10}, \frac{-x - 2y + 7z}{10}\right)$$
(2)

Réciproquement, en remontant les calculs, on vérifie que si v et w sont donnés par (1) et (2), $(v, w) \in P \times D$ et u = v + w.

Par suite, selon (2),

$$\forall (x,y,z) \in \mathbb{R}^3, \ f(x,y,z) = \left(\frac{7x - 6y - 9z}{10}, \frac{-2x + 6y - 6z}{10}, \frac{-x - 2y + 7z}{10}\right)$$

5) En déduire la matrice A de f dans la base usuelle de \mathbb{R}^3 . (1 point) Selon la question précédente,

$$f(1,0,0) = \left(\frac{7}{10}, \frac{-1}{5}, \frac{-1}{10}\right), \ f(0,1,0) = \left(\frac{-3}{5}, \frac{3}{5}, \frac{-1}{5}\right) \ \text{et} \ f(0,0,1) = \left(\frac{-9}{10}, \frac{-3}{5}, \frac{7}{10}\right)$$

donc

$$A = \begin{pmatrix} 7/10 & -3/5 & -9/10 \\ -1/5 & 3/5 & -3/5 \\ -1/10 & -1/5 & 7/10 \end{pmatrix}$$

6) Écrire la matrice A' de f dans \mathcal{B} . (1 point)

Je reprends les notations de la question 3). On a $\mathcal{B} = (u_1, u_2, v_1)$ où $u_1, u_2 \in P$ et $v_1 \in D$. Donc par définition de la projection sur P parallèlement à D, on a $f(u_1) = u_1$, $f(u_2) = u_2$ et $f(v_1) = 0$. Donc

$$A' = \operatorname{Mat}_{\mathscr{B}}(f) = \begin{pmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 0 \end{pmatrix}.$$

7) A l'aide de la formule de changement de base, donnez une équation matricielle reliant A et A'. (2 points)

Notons e la base usuelle de \mathbb{R}^3 et $P=P_e^{\mathscr{B}}$ la matrice de passage de e à \mathscr{B} . On a alors par la formule de changement de base

$$\operatorname{Mat}_{\mathscr{B}}(f) = P^{-1}\operatorname{Mat}_{e}(f)P$$
, soit $A' = P^{-1}AP$

De plus, avec la base \mathcal{B} trouvée en 1),

$$P = \begin{pmatrix} -2 & -3 & 3 \\ 1 & 0 & 2 \\ 0 & 1 & 1 \end{pmatrix}.$$

Exercice 2. (9 points)

On définit sur l'espace vectoriel $E = \mathbb{R}_2[X]$

$$\langle P, Q \rangle = \int_0^1 P(t)Q(t)dt.$$

1) Montrer que $\langle \cdot, \cdot \rangle : (P, Q) \mapsto \langle P, Q \rangle$ est un produit scalaire sur E. (2.5 points)

(*Indication*: on pourra utiliser librement le fait que, si $f:[0,1] \to \mathbb{R}$ est une fonction continue et positive, alors $\int_0^1 f(t) dt = 0$ si et seulement si f est la fonction nulle sur [0,1]).

On vérifie les quatre points de la définition de produit scalaire. Soient $P,Q \in E$ et $\lambda \in \mathbb{R}$

- Positivité: On a $\langle P, P \rangle = \int_0^1 P(t)^2 dt \ge 0$ par positivité de l'intégrale car $\forall t \in [0, 1], P(t)^2 \ge 0$.
- *Définie positivité* : Supposons que $\langle P,P\rangle=\int_0^1P(t)^2\mathrm{d}t=0$. Alors $t\mapsto P(t)^2$ est une fonction continue sur [0,1] et positive sur ce segment, de sorte que selon l'indication, on a $\forall t\in [0,1], P(t)^2=0$, soit P(t)=0. En vertu de l'identification entre polynômes et fonctions polynomiales sur un segment, on en déduit que P=0.
- Symétrie: On a

$$\langle Q, P \rangle = \int_0^1 Q(t)P(t)dt = \int_0^1 P(t)Q(t)dt = \langle P, Q \rangle.$$

• Linéarité à droite. Si $Q_1, Q_2 \in E$, on a

$$\langle P, \lambda Q_1 + Q_2 \rangle = \int_0^1 P(t) \left(\lambda Q_1(t) + Q_2(t) \right) dt = \lambda \int_0^1 P(t) Q_1(t) dt + \int_0^1 P(t) Q_2(t) dt$$
$$= \lambda \langle P, Q_1 \rangle + \langle P, Q_2 \rangle$$

par linéarité de l'intégrale.

Selon ces quatre points, $\langle \cdot, \cdot \rangle$ est un produit scalaire sur l'espace vectoriel E.

On note $||P|| = \sqrt{\langle P, P \rangle}$ pour $P \in E$.

- **2) a)** Rappeler (sans justifier) quelle est la dimension de E, donner une base de E. (1 point) Selon le cours, dim E = 3, une base de E est $(1, X, X^2)$.
 - **b)** Soit $i \in \{0,...,4\}$. Justifier brièvement que $\int_0^1 t^i dt = \frac{1}{i+1}$. (0,5 point) On a

$$\int_0^1 t^i dt = \left[\frac{t^{i+1}}{i+1} \right]_0^1 = \frac{1}{i+1}.$$

c) On pose $u_1=1$. Trouver $a,b\in\mathbb{R}$ tels que $u_2:=a+bX$ vérifie $\langle u_1,u_2\rangle=0$ et $\|u_2\|=1$.

On a $\langle u_1, u_2 \rangle = 0 \Leftrightarrow a + \frac{b}{2} = 0 \Leftrightarrow b = -2a \operatorname{car} \langle 1, X \rangle = 1/2 \operatorname{selon} \operatorname{la question} \mathbf{2})\mathbf{b}$

Supposons donc que $u_2 = a(1-2X)$, et cherchons a tel que $||u_2|| = 1$. Par linéarité à droite et à gauche du produit scalaire, on a

$$||u_2||^2 = a^2 \langle 1 - 2X, 1 - 2X \rangle = a^2 (\langle 1, 1 \rangle + 4 \langle X, X \rangle - 4 \langle 1, X \rangle)$$

puisque $\langle 1, X \rangle = \langle X, 1 \rangle$ par symétrie.

Donc selon 2)b),

$$\|u_2\|^2 = a^2 \left(1 + \frac{4}{3} - 2\right) = \frac{a^2}{3}$$

de sorte que $||u_2|| = 1 \Leftrightarrow a^2 = 3 \Leftrightarrow a = \pm \sqrt{3}$.

Ainsi, $u_2 = \sqrt{3} - 2\sqrt{3}X$ vérifie la conclusion voulue.

d) Trouver $c, d, e \in \mathbb{R}$ tels que $u_3 := c + dX + eX^2$ vérifie $\langle u_1, u_3 \rangle = \langle u_2, u_3 \rangle = 0$ et $||u_3|| = 1$. Question quasiment jamais traitée.