Deep Learning Assignment 0: Checkpoint Yavar Khan (50592324)

Provide brief details about the nature of your dataset. What is it about? What type of data are we encountering? Provide the main statistics about the entries of the dataset (mean, std, number of missing values, etc.)

About the dataset: The **Buffalo Crime Incidents Dataset** contains detailed records of crime incidents reported within the city of Buffalo, NY. The dataset is maintained by local law enforcement and public safety agencies to provide transparency and aid in crime analysis. It includes key information such as incident type, location, date and time, and reporting agency. The dataset helps analyze crime patterns, trends, and hotspot areas, making it useful for public safety initiatives, law enforcement strategies, and urban policy planning.

Main Statistics:

1. Before preprocessing:

1	df.describe()												
		Incident ID	Hour of Day	updated_at									
cou	nt	0.0	318673.000000	0.0									
mean		NaN	11.923122	NaN									
s	td	NaN	7.194647	NaN									
m	in	NaN	0.000000	NaN									
25	%	NaN	6.000000	NaN									
50%		NaN	13.000000	NaN									
75	%	NaN	18.000000	NaN									
ma	ах	NaN	23.000000	NaN									

The statistical summary of the Hour of Day column is shown because many other columns contained irrelevant or empty data that needed preprocessing. The dataset initially lacked proper data type assignments, which required significant cleaning and transformation to make it usable for analysis.

```
1 df.info()
   df.head()
<class 'pandas.core.frame.DataFrame'>
RangeIndex: 318673 entries, 0 to 318672
Data columns (total 31 columns):
    Column
                              Non-Null Count
#
                                                Dtype
0
     Case Number
                              318673 non-null
                                                object
     Incident Datetime
                              318673 non-null
                                                object
     Incident ID
                              0 non-null
                                                float64
    Incident Type Primary
                              318673 non-null
                                                object
     Incident Description
                              318673 non-null
                                                object
     Parent Incident Type
                              318673 non-null
                                                object
    Hour of Day
                              318673 non-null
                                                int64
    Day of Week
                              318673 non-null
                                                object
8
    Address
                              318635 non-null
                                                object
     City
                              318673 non-null
                                                object
10
    State
                              318673 non-null
                                                object
11
    Location
                              312119 non-null
                                                object
12
    Latitude
                              317398 non-null
                                                object
13
    Longitude
                              317398 non-null
                                                object
    Created At
                              74609 non-null
                                                object
15
    updated_at
                              0 non-null
                                                float64
16
    zip_code
                              316014 non-null
17
    neighborhood
                              315050 non-null
    Council District
                              315954 non-null
19
    Council District 2011
                              316014 non-null
                                                object
     Census Tract
                              315050 non-null
                                                object
21
    Census Block Group
                              315050 non-null
    Census Block
                              315050 non-null
                                                object
    2010 Census Tract
                              315050 non-null
                                                object
    2010 Census Block Group
                              315050 non-null
                                                object
     2010 Census Block
                              315050 non-null
                                                object
                              315050 non-null
    Police District
                                                object
27
    TRACTCE20
                              315187 non-null
                                                object
    GE0ID20_tract
                              315187 non-null
                                                object
    GEOID20_blockgroup
                              315187 non-null
                                                object
                              315187 non-null
    GE0ID20_block
                                               obiect
dtypes: float64(2), int64(1), object(28)
memory usage: 75.4+ MB
```

The dataset comprises 31 columns with 318,673 entries, but several columns contained irrelevant or incomplete data, such as Incident ID, updated_at, and other census-related columns.

	Case Number	Incident Datetime	Incident ID	Incident Type Primary	Incident Description	Parent Incident Type	Hour of Day	Day of Week	Address	City	 Census Block Group	Census Block	2010 Census Tract	2010 Census Block Group	C∉ I
0	16- 1660403	06/14/2016 01:20:00 AM	NaN	ASSAULT	ASSAULT	Assault	1	Tuesday	E AMHERST ST & E AMHERST ST	Buffalo	 2	2003	55	2	
1	16- 3480266	12/13/2016 05:00:00 AM	NaN	LARCENY/THEFT	LARCENY/THEFT	Theft	5	Tuesday	1000 Block E LOVEJOY ST	Buffalo	 4	4001	23	4	
2	20- 2010167	07/19/2020 03:09:00 AM	NaN	ASSAULT	Buffalo Police are investigating this report o	Assault	3	Sunday	GRIDER ST & KENSINGTON WB	Buffalo	 NaN	NaN	NaN	NaN	
3	14- 3210732	11/17/2014 08:08:00 AM	NaN	LARCENY/THEFT	LARCENY/THEFT	Theft	8	Monday	2100 Block ELMWOOD AV	Buffalo	 2	2007	56	2	
4	15- 1100268	04/20/2015 10:22:00 AM	NaN	LARCENY/THEFT	LARCENY/THEFT	Theft	10	Monday	2100 Block ELMWOOD AV	Buffalo	 2	2007	56	2	

5 rows × 31 columns

The initial rows of the dataset reveal raw, unprocessed data, with important fields like Incident Datetime, Incident Type Primary, and Day of Week visible. However, due to the presence of

noisy and incomplete columns, preprocessing was essential to extract meaningful insights. For example, the location coordinates and categorical data were standardized for proper analysis.

2. After preprocessing:

	Hour of Day	Day of Week	Latitude	Longitude	zip_code	Census Tract	Census Block Group	Census Block	Year	Mor
count	297014.000000	297014.000000	297014.000000	297014.000000	297014.000000	297014.000000	297014.000000	297014.000000	297014.000000	297014.0000
mean	11.905382	4.008451	42.911723	-78.849840	14210.992738	70.006820	2.231518	2237.559846	2013.620718	6.8082
std	7.274902	1.994915	0.028314	0.031294	5.389089	292.084581	1.228350	1227.033130	5.157585	3.3099
min	0.000000	1.000000	42.828000	-78.910000	14201.000000	1.100000	1.000000	1000.000000	1910.000000	1.0000
25%	6.000000	2.000000	42.893000	-78.878000	14207.000000	33.020000	1.000000	1007.000000	2009.000000	4.0000
50%	13.000000	4.000000	42.913000	-78.849000	14211.000000	47.020000	2.000000	2004.000000	2013.000000	7.0000
75%	18.000000	6.000000	42.935000	-78.821000	14215.000000	67.020000	3.000000	3004.000000	2018.000000	10.0000
max	23.000000	7.000000	42.966000	-78.799000	14225.000000	9805.000000	7.000000	7005.000000	2025.000000	12.0000

1 df.info() <class 'pandas.core.frame.DataFrame'> Index: 297014 entries, 0 to 318672 Data columns (total 18 columns): Column Non-Null Count Dtype Incident Type Primary 297014 non-null object Hour of Day 297014 non-null int64 1 Day of Week 297014 non-null Address 297014 non-null object Latitude 297014 non-null float64 Longitude 297014 non-null zip_code 297014 non-null float64 neighborhood 297014 non-null object Council District 297014 non-null object 297014 non-null Census Tract float64 10 Census Block Group 297014 non-null float64 297014 non-null 11 Census Block float64 12 2010 Census Tract 297014 non-null object 13 Police District 297014 non-null object 14 Year 297014 non-null int32 15 Month 297014 non-null int32 16 Part of Day 297014 non-null object 17 LocationCluster 297014 non-null int32 dtypes: float64(6), int32(3), int64(2), object(7)

memory usage: 39.7+ MB

1	1 df.head()													
	Incident Type Primary	Hour of Day	Latitude	Longitude	neighborhood	Council District	2010 Census Tract	Police District	Year	Month	Part of Day	LocationCluster	Season	Crime Density
0	ASSAULT	1	0.797101	0.189189	Grant-Amherst	NORTH	55	4	2016	6	Night	7	Summer	Medium Crime
1	LARCENY/THEFT	5	0.442029	0.909910	Lovejoy	LOVEJOY	23	3	2016	12	Night	3	Winter	Low Crime
3	LARCENY/THEFT	8	0.913043	0.279279	West Hertel	NORTH	56	4	2014	11	Morning	1	Fall	Medium Crime
4	LARCENY/THEFT	10	0.913043	0.279279	West Hertel	NORTH	56	4	2015	4	Morning	1	Spring	Medium Crime
5	BURGLARY	3	0.615942	0.558559	Masten Park	MASTEN	33.02	3	2015	4	Night	8	Spring	Low Crime

After preprocessing, the dataset shows significant improvements. We fixed incorrect data types, dropped multiple irrelevant and empty columns, and handled incomplete entries to ensure a cleaner dataset. Additionally, several new features were added as part of feature engineering to enhance the dataset's analytical potential. These improvements are evident in the processed metrics and will be discussed in detail in a later section.

What kind of preprocessing techniques have you applied to this dataset?

- 1. Handling Missing Data:
 - Columns with a high percentage of missing values (e.g., Incident ID, updated_at, Created At) were dropped.
 - Rows with missing values in critical columns were removed, while some missing values (e.g., Latitude and Longitude) were filled using the mean of their respective neighborhood.

```
df = df.drop(columns=['Incident ID', 'updated_at'])

#Filling null values of latitude and longitude using neighborhood data

df['Latitude'] = df.groupby('neighborhood')['Latitude'].transform(lambda x: x.fillna(x.mean()))
df['Longitude'] = df.groupby('neighborhood')['Longitude'].transform(lambda x: x.fillna(x.mean()))
```

2. Irrelevant Columns:

 Several columns that were irrelevant for analysis (e.g., Case Number, City, State, Address, GEOID20_block, Council District 2011) were dropped to reduce noise in the dataset.

3. Duplicate Entries:

 Duplicate rows were identified and removed to prevent redundant data from skewing results.

- 4. Data Type Conversion:
 - Object columns like Latitude, Longitude, zip_code, and census-related fields were converted to numeric types.
 - Categorical columns like Day of Week were mapped to numerical values for easier processing.

5. Feature Engineering:

 Datetime Features: Extracted Year and Month from the Incident Datetime column and created a new feature, Season, based on the month.

```
# 1. Creating seasonal feature
# Reason: Crime rates may vary by season (e.g., higher in sum
def assign_season(month):
    if month in [12, 1, 2]:
        return 'Winter'
    elif month in [3, 4, 5]:
        return 'Spring'
    elif month in [6, 7, 8]:
        return 'Summer'
    else:
        return 'Fall'

df['Season'] = df['Month'].apply(assign_season)
```

 Time-Based Feature: Added Part of Day by mapping Hour of Day into categories such as Morning, Afternoon, Evening, and Night.

```
# Adding new feature
 2
   def part_of_day(hour):
 3
        if 6 <= hour < 12:
 5
            return 'Morning'
        elif 12 <= hour < 16:
 6
 7
            return 'Afternoon'
 8
        elif 16 <= hour < 22:
 9
            return 'Evening'
10
            return 'Night'
11
12
13 df['Part of Day'] = df['Hour of Day'].apply(part_of_day)
14
```

 Location Clustering: Applied KMeans clustering on Latitude and Longitude to group locations into clusters (LocationCluster).

Crime Density: Grouped zip_code by crime density into Low Crime, Medium
 Crime, and High Crime categories.

```
def zip_code_density_group(zip_code_counts):
    if zip_code_counts >= 40000:
        return 'High Crime'
    elif zip_code_counts >= 20000:
        return 'Medium Crime'
    else:
        return 'Low Crime'

zip_code_counts = df['zip_code'].value_counts()
df['Crime Density'] = df['zip_code'].map(zip_code_counts).apply(zip_code_density_group)
```

- 6. Data Normalization and Standardization:
 - Normalized Latitude and Longitude values using Min-Max Scaling to bring them to a uniform range.

```
# Normalising Latitude and Longitude

from sklearn.preprocessing import MinMaxScaler

# Initialize scaler
scaler = MinMaxScaler()

# Apply Min-Max Scaling
df[["Latitude", "Longitude"]] = scaler.fit_transform(df[["Latitude", "Longitude"]])
```

7. Correlation-Based Feature Reduction:

Dropped highly skewed or less meaningful features, such as Census Block,
 Census Tract, and 2010 Census Block Group, based on correlation analysis.

8. Filtering Outliers:

 Removed older data before 2000 to focus on recent crime patterns for meaningful insights.

9. Categorical Encoding:

 Converted categorical variables (e.g., neighborhood, Council District, Season, Crime Density) into numerical labels using Label Encoding.

10. Removing Noise and Unknown Values:

o Rows containing "UNKNOWN" or "NaN" in any column were removed.

```
# Removing rows where any column has the value "UNKNOWN"

df = df[~df.isin(["UNKNOWN"]).any(axis=1)]

df = df[~df.isin(["NaN"]).any(axis=1)]

print(df.info())
```

<u>Provide at least 5 visualization graphs with a brief description for each graph, e.g. discuss if there are any interesting patterns or correlations.</u>

1.

This histogram with a density plot shows the frequency of crime incidents across different hours of the day. A sharp peak is observed at midnight (Hour 0), indicating that a significant number of crimes occur late at night. The frequency gradually decreases during the early morning hours and picks up again during the afternoon and evening. This suggests that nighttime is a critical period for crime prevention.

2.

This line plot shows the distribution of different crime types throughout the day. Larceny/Theft dominates as the most frequent crime type, particularly at midnight. Other crimes like Assault and Burglary show peaks during specific times, such as late evenings and nights, suggesting a temporal dependency for different crime types.

3.

This bar plot illustrates the number of incidents across different seasons. Summer has the highest crime rate, likely due to increased outdoor activity and gatherings, which create opportunities for certain crimes. Fall and Spring have moderate crime rates, while Winter sees the least crime, possibly due to weather conditions keeping people indoors.

4.

This scatter plot visualizes the geographical distribution of incidents using KMeans clustering. Each cluster represents a high-crime zone, with centroids marked in red. The clustering highlights distinct hotspots, allowing for targeted interventions in specific areas to reduce crime.

5.

The heatmap displays the correlation between numerical and categorical variables. Notable insights include a strong correlation between Latitude and Police District, indicating geographical clustering of law enforcement zones. Crime Density shows a moderate correlation with Latitude and Council District, suggesting crime hotspots are influenced by geographical and administrative factors. Additionally, the correlation matrix was instrumental in identifying highly correlated features, such as Census Block and Census Tract, which were dropped during preprocessing to avoid redundancy and improve the dataset's usability. Features with low or no correlation to the target variables were also excluded to simplify the dataset without losing critical information.

Provide brief details and mathematical representation of the ML methods you have used. What are the key features? What are the advantages/disadvantages?

1. Logistic Regression

Mathematical Formula:

$$P(y = 1|X) = \frac{1}{1 + e^{-(\beta_0 + \beta_1 X_1 + \beta_2 X_2 + \dots + \beta_n X_n)}}$$

Where, P(y=1|X) is the probability of the positive class, and β_0 is the bias term, and β_1 , β_2 ... β_n are feature weights.

Characteristics:

- Simple and interpretable.
- Best suited for data that is linearly separable.

Pros:

- Quick to train and evaluate.
- Provides probabilities for classifications.

Cons:

- Limited in handling non-linear relationships.
- Assumes independence between predictors and log-odds.

2. Gradient Boosting

Mathematical Formula:

$$F_m(x) = F_{m-1}(x) + \eta . h_m(x)$$

Where, $F_m(x)$ is the current model, $F_{m-1}(x)$ is the previous model, η is learning rate and $h_m(x)$ is a newly added weak learner.

Characteristics:

- Captures non-linear patterns effectively.
- Performs well on complex datasets.

Pros:

- High accuracy and adaptability.
- Robust to class imbalance.

Cons:

- Computationally demanding.
- Overfitting can occur without careful tuning

3. Naive Bayes:

Mathematical Formula:

$$P(C|X) = \frac{P(X|C)P(C)}{P(CX)}$$

Where P(C|X) -> Posterior probability, $P(X|C) \rightarrow$ likelihood, $P(C) \rightarrow$ prior, and P(X) is the evidence

Characteristics:

- Performs well with categorical features.
- Simplifies computations due to independence assumption.

Pros:

- Extremely fast and efficient.
- Effective on small datasets.

Cons:

Assumes feature independence, which is rarely true in real-world scenarios.

4. Neural Networks:

Mathematical Formula:

$$y = f(W_2 \cdot f(W_1 \cdot X + b_1) + b_2)$$

Where, W_1 and W_2 are weights, b_1 and b_2 are biases, f is the activation function, and y is the output.

Characteristics:

- Highly flexible for learning non-linear relationships.
- Scalable to large datasets.

Pros:

- Can model intricate data patterns.
- Adaptable to a variety of tasks.

Cons:

- Resource-intensive.
- Risk of overfitting if not properly regularized.

Provide brief details of the NN model you have used.

1. Architecture:

- **Input Layer:** Matches the number of features in the dataset.
- **Two Hidden Layers:** Fully connected layers with ReLU activation. Dropout (40%) applied for regularization.
- Output Layer: Outputs probabilities for each class using the Softmax activation function.

2. Training Details:

• Loss Function: Cross-Entropy Loss for multi-class classification.

• Optimizer: Adam Optimizer

Learning rate: 0.01Batch Size: 32Epochs: 20

Provide your loss value and accuracy for all 4 methods (3 ML models & 1 NN).

Model: Logistic Regression

- Test Accuracy: 0.8043
- Test Loss: 0.5107

- Training Time: 0.85 seconds

Model: Gradient Boosting

- Test Accuracy: 0.8744
- Test Loss: 0.5341
- Training Time: 13.72 seconds

Model: Naive Bayes

- Test Accuracy: 0.8161
- Test Loss: 0.5231
- Training Time: 0.02 seconds

Neural Network:

Test Accuracy: 0.9296 Test Loss: 0.6218 Show the plot comparing the predictions vs the actual test data for all methods used.

Analyze the results. You can consider accuracy/time/loss as some of the metrics to compare the methods

Overall Observation:

From the accuracy plot, we can observe that the Neural Network outperformed other models with a test accuracy of approximately 93%, closely followed by Gradient Boosting at 87%. Logistic Regression and Naive Bayes lagged slightly with accuracies of 80% and 81%, respectively.

The log loss comparison revealed that Naive Bayes achieved the lowest log loss at 0.5231, indicating its strong confidence in predictions. Gradient Boosting also performed well with a log loss of 0.5341. However, Logistic Regression had a log loss of 0.5107, slightly better than the Neural Network, which had the highest log loss of 0.6218. This suggests some uncertainty in the Neural Network's predictions despite achieving the best accuracy.

Examining the confusion matrices, Neural Network and Gradient Boosting were better at handling class imbalances, correctly predicting most instances of each class. Logistic Regression and Naive Bayes showed higher misclassification rates, especially in minority classes, which could affect their reliability in imbalanced datasets.

Overall, the Neural Network emerged as the best-performing model in terms of accuracy, making it suitable for applications prioritizing prediction quality. However, if lower log loss is more critical, Naive Bayes or Gradient Boosting may be preferred due to their more confident predictions.