Parcial II de Lógica 2009

1. V o F. Justifique.

- a. Sea A un modelo de tipo τ , y sean $a,b\in A$ tales que para toda fórmula sin cuantificadores $\varphi=\varphi(x)$ vale que $A\models\varphi[a]$ sii $A\models\varphi[b]$. Entonces a no es definible en A.
- F b. Sea A una $(\emptyset, \{f^1\}, \emptyset, a)$ -álgebra. Supongamos $Im(f^A) = \{a, b\}$, con $a \neq b$. Entonces si una congruencia θ de A no contiene al par (a, b) se tiene que $\theta = \{(x, x) : x \in A\}$.
 - c. Sea $\tau = (\emptyset, \{f^1\}, \emptyset, a)$, y sea A una τ -álgebra finita tal que f^A es biyectiva. Sea A' la τ -álgebra con universo A y $f^{A'} = (f^A)^{-1}$. Entonces toda congruencia de A es congruencia de A'.
 - d. Sean $\varphi, \psi \in F^{\tau}$, con $\varphi = \varphi(x_1)$ y $\psi = \psi(x_2)$. Si $(\forall x_1 \varphi \mapsto \forall x_2 \psi)$ es universalmente válida entonces $\varphi \sim \psi$.
- Sea \(\tau = (\empty, \{s, i\}, \empty, a)\), con \(a(s) = a(i) = 2\). Sea \(A = (\{0, 1, 2\}, \text{max}, \text{min})\), y sea B la subálgebra de \(A \times A\) con universo \(B = A \times A \{(0, 2)\}\). Pruebe que todo elemento de B es definible.
- 3. Sea $\tau = (\emptyset, \{f^2\}, \emptyset, a)$, y sean A y B τ -álgebras tales que $\{A, B\} \models \forall z \exists xy \ f(x,y) = z$. Pruebe que $A \times B \models \forall z \exists xy \ f(x,y) = z$.