Announcements for Thursday, 07NOV2024

• none

ANY GENERAL QUESTIONS? Feel free to see me after class!

Try These On Your Own

10.0 g Ca(OH)₂(s) was needed to completely neutralize 266 mL
 HCl(aq). What was the molarity of HCl(aq)? 1.01 M

• What volume of 2.5 M NaOH (aq) must be added to 100. mL of 0.50 M H₃PO₄ (aq) to completely neutralize the acid? 60 mL

Oxidation-Reduction Reactions (Redox Reactions)

- oxidation-reduction reaction = an electron-transfer reaction
 - electrons are transferred from one reactant to another
 - many important and relevant reactions are redox reactions
 - combustion, rusting/corrosion, batteries, metabolism, photosynthesis...
- oxidation = the loss of electrons; reduction = the gain of electrons
- oxidizing agent = the reactant that gets reduced during the process and allows another reactant to be oxidized
- reducing agent = the reactant that gets oxidized during the process and allows another reactant to be reduced

Cl undergoes reduction
$$Cl_2$$
 is the *Oxidizing Agent*

2 Na(s) + $Cl_2(g) \rightarrow 2$ NaCl(s)

Na undergoes oxidation Na is the *Reducing Agent*

Oxidation-Reduction Reactions (Redox Reactions) (continued)

- redox reactions are comparatively harder to identify than precipitation reactions and acid-base reactions
- to correctly identify a redox reaction you must assign oxidation numbers (?!?) to all atoms and ions and look for changes as reactants go to products
 - the same species could be undergoing both oxidation and reduction at the same time
 - a disproportionation reaction

$$3 BrF \rightarrow BrF_3 + Br_2$$

bromine is being both oxidized and reduced

Oxidation States/Numbers

- oxidation number = the fictitious charge an atom would have in a compound if all electrons were assigned to the more electronegative atom in that compound
 - oxidation numbers are assigned to help keep track of the transfer of electrons during a redox reaction
- for ions in an ionic compound, oxidation states have the same value as the ions' charges
 - NaCl
- for neutral atoms in a molecular compound, oxidation states are NOT ion charges
 - H_2O vs. OF_2
 - the more electronegative atom(s) gets full ownership of shared electrons
- oxidation numbers are IMAGINARY charges that are assigned based on rules
 - as opposed to ion charges which are real and measurable

Rules for Assigning Oxidation Numbers

- oxidation numbers are assigned to every atom or ion in a compound according to a specific procedure
 - oxidation numbers can be positive, negative, or fractional

the rules for assigning oxidation numbers MUST be applied in a specific order since certain rules take priority over others

- 1. the sum of oxidation numbers for each atom or ion in a compound must equal the overall charge of the compound
 - atoms in elemental forms have oxidation numbers of zero: $H_2(g)$, $O_3(g)$, Na(s), $P_4(s)$, etc.
 - monatomic ions have oxidation numbers equal to their charge: Cu^+ ox # = +1, S^{2-} ox # = -2, etc.
- 2. Assign oxidation numbers of +1 to Group 1A metal cations and +2 to Group 2A metal cations
 - Li⁺, Na⁺, K⁺, Rb⁺, Cs⁺, Mg²⁺, Ca²⁺, Sr²⁺, Ba²⁺
- 3. Assign fluorine an oxidation number of -1

Rules for Assigning Oxidation Numbers (continued)

- 4. Assign hydrogen an oxidation number of +1 unless otherwise dictated by previous rules
 - NaH, CaH₂
- 5. Assign oxygen an oxidation number of -2 unless otherwise dictated by previous rules
 - H₂O₂, OF₂, NaO₂
- 6. Assign Group 7A nonmetals (Cl, Br, I) oxidation numbers of -1 unless otherwise dictated by previous rules
- 7. Assign Group 6A nonmetals (S, Se, Te) oxidation numbers of -2 unless otherwise dictated by previous rules
- 8. Assign Group 5A nonmetals (P, As, Sb) oxidation numbers of -3 unless otherwise dictated by previous rules

The rules for assigning oxidation numbers will NOT be provided on an exam and must be MEMORIZED!

Minimum and Maximum Oxidation Numbers

- some elements can have many oxidation states
 - for nitrogen, minimum ox # = Group # -8 (5-8 = -3); maximum ox # = Group # (+5)
 - for sulfur, minimum ox # = Group # 8 (6–8 = –2); maximum ox # = Group # (+6)
 - for chlorine, minimum ox # = Group # 8 (7–8 = –1); maximum ox # = Group # (+7)
- when a species has its <u>maximum ox #</u>, it can **only** be reduced (i.e., gain electrons) and act as an <u>oxidizing agent</u>
 - NO₃⁻, SO₄²⁻, ClO₄⁻
- when a species has its <u>minimum ox #</u>, it can **only** be oxidized (i.e., lose electrons) and act as a <u>reducing agent</u>
 - NH₃, H₂S, HCl
- when a species has an <u>intermediate ox #</u>, it can act as *either* an oxidizing agent (and be reduced) or as a reducing agent (and be oxidized)
 - NO, SO₂, ClO⁻
- transition metals can also have multiple ox #s, but can't be easily predicted from Group #

Identify the oxidizing agent and the reducing agent in the following reaction.

H: $+1 \rightarrow +1$... no change

O: $-1 \rightarrow -2$... gain of electrons ... reduction ... H_2O_2 is the oxidizing agent

N: $-2 \rightarrow 0$... loss of electrons ... oxidation ... N_2H_4 is the reducing agent

Identify the oxidizing agent and the reducing agent in the following reaction.

Mn: $+7 \rightarrow +4$... gain of electrons ... reduction ... MnO₄ is the oxidizing agent

O: $-2 \rightarrow -2$... no change H: $+1 \rightarrow +1$... no change

C: $+3 \rightarrow +4$... loss of electrons ... oxidation ... $C_2O_4^{2-}$ is the reducing agent

Try These On Your Own

Assign oxidation numbers to all species and determine if the reaction is a redox. If it is, identify the oxidizing agent and the reducing agent.

$$2 \text{ NO(g)} + 5 \text{ H}_2(g) \rightarrow 2 \text{ NH}_3(g) + 2 \text{ H}_2O(g)$$

$$N_2O_5$$
 (aq) + $H_2O(\ell) \rightarrow 2 HNO_3$ (aq)

5 Fe²⁺(aq) + 8 H⁺(aq) + MnO₄⁻(aq)
$$\rightarrow$$
 5 Fe³⁺(aq) + Mn²⁺(aq) + 4 H₂O(ℓ)