Homework 5

Max marks: 85

Due on Oct 15th, 2021, 9 AM, before class.

Problem 1 Determine the decimal values of the following unsigned numbers $(()_b \text{ indicates a base } b \text{ representation})$ (25 marks):

- 1. $(0111011110)_2$
- $2. (1011100111)_2$
- 3. $(3751)_8$
- 4. $(A25F)_{16}$
- 5. $(F0F0)_{16}$

Problem 2 Determine the decimal values of the following 1's complement binary numbers (15 marks):

- 1. 0111011110
- 2. 1011100111
- 3. 1111111110

Problem 3 Determine the decimal values of the following 2's complement numbers (15 marks):

- 1. 0111011110
- 2. 1011100111
- 3. 1111111110

Problem 4 Convert the decimal numbers 73, 1906, -95, and -1630 into signed 12-bit numbers in the following representations (20 marks):

- 1. Sign and magnitude
- 2. 1's complement
- 3. 2's complement

Problem 5 Show that the circuit in Figure 1 implements the full-adder specified in Table 1 (10 marks).

c_i	x_i	$y_i \mid$	c_{i+1}	$ s_i $
0	0	0	0	0
0	0	1	0	1
0	1	0	0	1
0	1	1	1	0
1	0	0	0	1
1	0	1	1	0
1	1	0	1	0
1	1	1	1	1

Table 1: Truth table for Full adder

Figure 1: A decomposed implementation of the full-adder circuit.