SPARK Evaluation

Fil Babalievsky and Atishay Sehgal

8/2/2018

Background

- Dr. John Ratey: SPARK book, compiled evidence that aerobic exercise improves cognition
- Implemented in Naperville High for academically at-risk children, promising results but not randomized
- Promising results from an RCT with obese young (7-11 year old) children in Georgia
- Borough Hall: Closer to a true randomized design than Naperville, very different population than Georgia, not pre-selected based on how likely they were to benefit

Implementation

- ► One High School split a group of <100 ninth graders into 3 gym classes
- Arbitrarily split by Gym class, not based on systematic differences
- One quarter where all had same curriculum
- ► Aerobic exercise (heart rate near max) along with sports
- Implementation limited by state curriculum
- ▶ 3 days per week, 7 minutes in first quarter and 20 thereafter

Empirical design

Differences in Differences: Do SPARK kids' scores grow more from Marking Period 1 to Marking Periods 2, 3, 4? Is this different in different classes?

First:

$$\Delta_{i,s,m} = \alpha_m + \beta_m \cdot SPARK_i$$

Second: Split by classes

$$\Delta_{i,s,m} = \sum_{j} \alpha_{j,m} + \sum_{j} \beta_{j,m} \cdot SPARK_{i,j}$$

Results: Simple Design

How to read this table: a score of 2.3 in the first column and row means that SPARK kids' scores went up by 2.3 points more than non-SPARK kids from MP1 to MP2. A score of 0.5 in the second column means that SPARK scores went up by 0.5 points from MP1 to MP3 (it is not cumulative.)

Table 1:

	Dependent variable:		
	MP1 to MP2 (1)	MP1 to MP3 (2)	MP1 to MP4 (3)
Spark	2.391** (0.932)	0.547 (1.248)	1.442 (0.983)
Constant	-6.385*** (0.733)	-8.835*** (0.973)	-6.029*** (0.767)
Observations	273	263	263
R ²	0.024	0.001	0.008
Adjusted R ²	0.020	-0.003	0.004
Residual Std. Error F Statistic	7.478 (df = 271) $6.579^{**} \text{ (df} = 1; 271)$	9.878 (df = 261) 0.192 (df = 1; 261)	7.781 (df = 261) 2.151 (df = 1; 261)
Note:	*p<0.1; **p<0.05; ***p<0.01		

Results: Class effects

How to read this table: Same as before, but broken up by class in the first 3 rows

Table 2:

	Dependent variable:		
	MP1 to MP2 (1)	MP1 to MP3 (2)	MP1 to MP4 (3)
Spark_math	3.232**	0.278	2.857*
	(1.612)	(2.025)	(1.703)
Spark_sci	2.907*	0.239	0.089
	(1.603)	(1.996)	(1.679)
Spark_eng	0.986	1.396	1.456
	(1.603)	(1.996)	(1.679)
math	2.380	-8.962***	-3.965**
	(1.792)	(2.224)	(1.870)
eng	2.743	-7.629***	-3.914**
-	(1.779)	(2.191)	(1.843)
Constant	-8.086***	-3.371**	-3.429***
	(1.258)	(1.549)	(1.303)
Observations	273	263	263
R^2	0.048	0.153	0.041
Adjusted R ²	0.030	0.136	0.023

Interpretation

- ► Coefficients are points out of 100, so the coefficient of 2.8 on the 4th quarter math results means that SPARK kids had >0.28 grade levels of growth compared to non-SPARK
- Not huge and not as consistent as we would like, but still interesting
- Generally larger for math, in line with prior studies
- Hints that Georgia results could scale and that Naperville results could hold

Going forward

Ideally:

- Large scale RCT (maybe randomly assign all SI High School gym classes to SPARK or non-SPARK)
- Get as much leeway as possible from State Education Dept
- ▶ Test for heterogeneous effects: maybe measure baseline academic performance and fitness from kids, test if effects are bigger for less fit or lower scoring kids
- Pre register the study for greater credibility and visibility
- ► Post code publicly on GitHub (best practice, lends credibility and lets others check our work)

Possible Interest

- ► The prospect of running an RCT with thousands of students ought to make academics salivate
- We have offered some suggestions for how to run a larger study but it would be good to bring in full time researchers who specialize in this

Who to work with

- J-PAL North America? Prominent team of economists, focused on randomization, big on contributing to public policy
- ▶ EdLabs? Sort of in turmoil at the moment, and their director wouldn't talk to us last time. Would have been the most logical choice until March 2018; avoid until/unless they work out their issues
- Sue Dynarski? Michigan education economist noted for public outreach (maintains a colorful Twitter page), fitness enthusiast