Лекция 2 Линейная регрессия

Е. А. Соколов ФКН ВШЭ

15 сентября 2021 г.

1 Линейные модели

На предыдущей лекции мы уже упоминали линейные регрессионные модели. Такие модели сводятся к суммированию значений признаков с некоторыми весами:

$$a(x) = w_0 + \sum_{j=1}^{d} w_j x_j. \tag{1.1}$$

Параметрами модели являются веса или коэффициенты w_j . Вес w_0 также называется свободным коэффициентом или сдвигом (bias). Заметим, что сумма в формуле (1.1) является скалярным произведением вектора признаков на вектор весов. Воспользуемся этим и запишем линейную модель в более компактном виде:

$$a(x) = w_0 + \langle w, x \rangle, \tag{1.2}$$

где $w = (w_1, \dots, w_d)$ — вектор весов.

Достаточно часто используется следующий приём, позволяющий упростить запись ещё сильнее. Добавим к признаковому описанию каждого объекта (d+1)-й признак, равный единице. Вес при этом признаке как раз будет иметь смысл свободного коэффициента, и необходимость в слагаемом w_0 отпадёт:

$$a(x) = \langle w, x \rangle.$$

Тем не менее, при такой форме следует соблюдать осторожность и помнить о наличии в выборке специального признака. Например, мы столкнёмся со сложностями, связанными с этим, когда будем говорить о регуляризации.

За счёт простой формы линейные модели достаточно быстро и легко обучаются, и поэтому популярны при работе с большими объёмами данных. Также у них мало параметров, благодаря чему удаётся контролировать риск переобучения и использовать их для работы с зашумлёнными данными и с небольшими выборками.

2 Области применимости линейных моделей

Сложно представить себе ситуацию, в которой мы берём данные, обучаем линейную модель и получаем хорошее качество работы. В линейной модели предполагается конкретный вид зависимости — а именно, что каждый признак линейно влияет на целевую переменную, и что целевая переменная не зависит от каких-либо комбинаций признаков. Вряд ли это будет выполнено по умолчанию, поэтому обычно данные требуют специальной подготовки, чтобы линейные модели оказались адекватными задаче. Приведём несколько примеров.

Категориальные признаки. Представим себе задачу определения стоимости квартиры по её характеристикам. Одним из важных признаков является район, в котором находится квартира. Этот признак является категориальным — его значения нельзя сравнивать между собой на больше/меньше, их нельзя складывать или вычитать. Непосредственно такие признаки нельзя использовать в линейных моделях, но есть достаточно распространённый способ их преобразования.

Допустим, категориальный признак $f_j(x)$ принимает значения из множества $C = \{c_1, \ldots, c_m\}$. Заменим его на m бинарных признаков $b_1(x), \ldots, b_m(x)$, каждый из которых является индикатором одного из возможных категориальных значений:

$$b_i(x) = [f_j(x) = c_i].$$

Такой подход называется one-hot кодированием.

Отметим, что признаки $b_1(x),\ldots,b_m(x)$ являются линейно зависимыми: для любого объекта выполнено

$$b_1(x) + \dots + b_m(x) = 1.$$

Чтобы избежать этого, можно выбрасывать один из бинарных признаков. Впрочем, такое решение имеет и недостатки — например, если на тестовой выборке появится новая категория, то её как раз можно закодировать с помощью нулевых бинарных признаков; при удалении одного из них это потеряет смысл.

Вернёмся к задаче про стоимость квартиры. Если мы применим линейную модель к данным после one-hot кодирования признака о районе (допустим, это f(x)), то получится такая формула:

$$a(x) = w_1[f(x) = c_1] + \cdots + w_m[f(x) = c_m] + \{$$
взаимодействие с другими признаками $\}.$

Такая зависимость кажется логичной — каждый район задаёт некоторый базовый уровень стоимости (например, для района c_1 имеем базовую цену w_1), а остальные факторы корректируют его.

Работа с текстами. Перейдём к предсказанию стоимости квартиры по её текстовому описанию. Есть простой способ кодирования, который называется *мешок слов (bag of words)*.

Найдём все слова, которые есть в нашей выборке текстов, и пронумеруем их: $\{c_1,\ldots,c_m\}$. Будем кодировать текст m признаками $b_1(x),\ldots,b_m(x)$, где $b_j(x)$ равен количеству вхождений слова c_j в текст. Линейная модель над такими признаками

будет иметь вид

$$a(x) = w_1b_1(x) + \dots + w_mb_m(x) + \dots,$$

и такой вид тоже кажется разумным. Каждое вхождение слова c_j меняет прогноз стоимости на w_j . В самом деле, можно ожидать, что слово «престижный» скорее говорит о том, что квартира дорогая, а слово «плохой» вряд ли будут использовать при описании приличной квартиры.

Бинаризация числовых признаков. Наконец, подумаем о предсказании стоимости квартиры по расстоянию до ближайшей станции метро x_j . Может оказаться, что самые дорогие квартиры расположены где-то в 5-10 минутах ходьбы от метро, а те, что ближе или дальше, стоят не так дорого. В этом случае зависимость целевой переменной от признака не будет линейной. Чтобы сделать линейную модель подходящей, мы можем бинаризовать признак. Для этого выберем некоторую сетку точек $\{t_1, \ldots, t_m\}$. Это может быть равномерная сетка между минимальным и максимальным значением признака или, например, сетка из эмпирических квантилей. Добавим сюда точки $t_0 = -\infty$ и $t_{m+1} = +\infty$. Новые признаки зададим как

$$b_i(x) = [t_{i-1} < x_i \le t_i], \quad i = 1, \dots, m+1.$$

Линейная модель над этими признаками будет выглядеть как

$$a(x) = w_1[t_0 < x_j \le t_1] + \dots + w_{m+1}[t_m < x_j \le t_{m+1}] + \dots,$$

то есть мы найдём свой прогноз стоимости квартиры для каждого интервала расстояния до метро. Такой подход позволит учесть нелинейную зависимость между признаком и целевой переменной.

3 Измерение ошибки в задачах регрессии

Чтобы обучать регрессионные модели, нужно определиться, как именно измеряется качество предсказаний. Будем обозначать через y значение целевой переменной, через a — прогноз модели. Рассмотрим несколько способов оценить отклонение L(y,a) прогноза от истинного ответа.

MSE и \mathbb{R}^2 . Основной способ измерить отклонение — посчитать квадрат разности:

$$L(y,a) = (a-y)^2$$

Благодаря своей дифференцируемости эта функция наиболее часто используется в задачах регрессии. Основанный на ней функционал называется среднеквадратичным отклонением (mean squared error, MSE):

MSE
$$(a, X) = \frac{1}{\ell} \sum_{i=1}^{\ell} (a(x_i) - y_i)^2$$
.

Отметим, что величина среднеквадратичного отклонения плохо интерпретируется, поскольку не сохраняет единицы измерения — так, если мы предсказываем цену

в рублях, то MSE будет измеряться в квадратах рублей. Чтобы избежать этого, используют корень из среднеквадратичной ошибки (root mean squared error, RMSE):

RMSE
$$(a, X) = \sqrt{\frac{1}{\ell} \sum_{i=1}^{\ell} (a(x_i) - y_i)^2}.$$

Среднеквадратичная ошибка подходит для сравнения двух моделей или для контроля качества во время обучения, но не позволяет сделать выводы о том, насколько хорошо данная модель решает задачу. Например, MSE = 10 является очень плохим показателем, если целевая переменная принимает значения от 0 до 1, и очень хорошим, если целевая переменная лежит в интервале (10000, 100000). В таких ситуациях вместо среднеквадратичной ошибки полезно использовать коэффициент R^2):

$$R^{2}(a,X) = 1 - \frac{\sum_{i=1}^{\ell} (a(x_{i}) - y_{i})^{2}}{\sum_{i=1}^{\ell} (y_{i} - \bar{y})^{2}},$$

где $\bar{y} = \frac{1}{\ell} \sum_{i=1}^{\ell} y_i$ — среднее значение целевой переменной. Коэффициент детерминации измеряет долю дисперсии, объяснённую моделью, в общей дисперсии целевой переменной. Фактически, данная мера качества — это нормированная среднеквадратичная ошибка. Если она близка к единице, то модель хорошо объясняет данные, если же она близка к нулю, то прогнозы сопоставимы по качеству с константным предсказанием.

МАЕ. Заменим квадрат отклонения на модуль:

$$L(y, a) = |a - y|$$

Соответствующий функционал называется средним абсолютным отклонением (mean absolute error, MAE):

MAE
$$(a, X) = \frac{1}{\ell} \sum_{i=1}^{\ell} |a(x_i) - y_i|.$$

Модуль отклонения не является дифференцируемым, но при этом менее чувствителен к выбросам. Квадрат отклонения, по сути, делает особый акцент на объектах с сильной ошибкой, и метод обучения будет в первую очередь стараться уменьшить отклонения на таких объектах. Если же эти объекты являются выбросами (то есть значение целевой переменной на них либо ошибочно, либо относится к другому распределению и должно быть проигнорировано), то такая расстановка акцентов приведёт к плохому качеству модели. Модуль отклонения в этом смысле гораздо более терпим к сильным ошибкам.

Рассмотрим для примера данные из таблицы 3. Один из объектов — выброс, значение целевой переменной на нём радикально отличается от остальных объектов. Модель $a_1(x)$ почти не ошибается на «нормальных» объектах, но сильно ошибается на выбросе. Модель $a_2(x)$ подгоняется под выброс ценой ухудшения прогнозов на остальных объектах. Видно, что первая модель оказывается лучше с точки зрения

y	$a_1(x)$	$(a_1(x) - y)^2$	$ a_1(x)-y $	$a_2(x)$	$(a_2(x) - y)^2$	$ a_2(x)-y $
1	2	1	1	4	9	3
2	1	1	1	5	9	3
3	2	1	1	6	9	3
4	5	1	1	7	9	3
5	6	1	1	8	9	3
100	7	8649	93	10	8100	90
7	6	1	1	10	9	3
		MSE = 1236	MAE = 14.14		MSE = 1164	MAE = 15.43

Таблица 1. Поведение MSE и MAE при наличии выбросов.

МАЕ, но хуже с точки зрения МЅЕ. Это логично — у квадратичной функции потерь штраф за ошибку растёт нелинейно с ростом отклонения прогноза от ответа, а для абсолютной функции потерь равносильно снижение отклонения на одну и ту же величину для нормального объекта и для выброса. Заметим, что такая особенность МАЕ пропадёт, если в выборке будет много выбросов. Скажем, если будет около половины объектов с аномальными значениями целевой переменной, то вполне может стать выгоднее оптимизировать отклонение именно на них.

Приведём ещё одно объяснение того, почему модуль отклонения устойчив к выбросам, на простом примере. Допустим, все ℓ объектов выборки имеют одинаковые признаковые описания, но разные значения целевой переменной y_1, \ldots, y_ℓ . В этом случае модель должна на всех этих объектах выдать один и тот же ответ. Если мы выбрали MSE в качестве функционала ошибки, то получаем следующую задачу:

$$\frac{1}{\ell} \sum_{i=1}^{\ell} \left(a - y_i \right)^2 \to \min_{a}$$

Легко показать, что минимум достигается на среднем значении всех ответов:

$$a_{\text{MSE}}^* = \frac{1}{\ell} \sum_{i=1}^{\ell} y_i.$$

Если один из ответов на порядки отличается от всех остальных (то есть является выбросом), то среднее будет существенно отклоняться в его сторону.

Рассмотрим теперь ту же ситуацию, но с функционалом МАЕ:

$$\frac{1}{\ell} \sum_{i=1}^{\ell} |a - y_i| \to \min_a$$

Теперь решением будет медиана ответов:

$$a_{\text{MAE}}^* = \text{median}\{y_i\}_{i=1}^{\ell}.$$

Небольшое количество выбросов никак не повлияет на медиану — она существенно более устойчива к величинам, выбивающимся из общего распределения.

Рис. 1. Функция потерь Хубера и Log-Cosh.

В заключение отметим одну проблему, связанную с абсолютной функцией потерь. Рассмотрим производные для неё и квадратичной функции:

$$\frac{\partial}{\partial a}|a-y| = \operatorname{sign}(a-y), \quad a \neq y;$$
$$\frac{\partial}{\partial a}(a-y)^2 = 2(a-y).$$

Дальше в курсе мы будем изучать градиентные методы обучения, где параметры модели постепенно изменяются на основе значений производных функции потерь. Видно, что производная абсолютной функции потерь не зависит от близости прогноза к правильному ответу, по её значению нельзя понять, насколько мы близки к оптимальному прогнозу. Из-за этого при оптимизации МАЕ можно легко «перескочить» экстремум. Поэтому, как правило, использование этой функции потерь приводит к более долгой и сложной процедуре обучения.

Huber loss. Выше мы обсудили, что абсолютная функция потерь более устойчива к выбросам, а квадратичная функция лучше с точки зрения оптимизации. Почему бы не попробовать их объединить? Для прогнозов, близких к ответу, нам бы пригодились свойства гладкой квадратичной функции, а для плохих прогнозов важнее свойства абсолютного отклонения. Одним из вариантов такого объединения является функция потерь Хубера:

$$L_{\delta}(y,a) = \begin{cases} \frac{1}{2}(y-a)^2, & |y-a| < \delta \\ \delta\left(|y-a| - \frac{1}{2}\delta\right), & |y-a| \ge \delta \end{cases}$$

У этой функции потерь есть параметр δ , который регулирует, что мы считаем за выбросы. Если сделать этот параметр маленьким, то функция будет вести себя квадратично только в маленькой окрестности нуля. Если же увеличивать δ , то даже для значительных отклонений (a-y) штраф будет вести себя квадратично, и при обучении мы будем делать большой акцент на их уменьшение. Данный параметр надо подбирать, поскольку он может сильно повлиять на решение.

Также легко, что при $\delta \to 0$ функция потерь Хубера вырождается в абсолютную функцию потерь, а при $\delta \to \infty$ — в квадратичную.

Log-Cosh У функции потерь Хубера есть недостаток: её вторая производная имеет разрывы. Такого недостатка нет у функции потерь log-cosh:

$$L(y, a) = \log \cosh(a - y).$$

Как и в случае с функцией потерь Хубера, для маленьких отклонений здесь имеет место квадратичное поведение, а для больших — линейное.

Обсужденные нами «гибридные» функции потерь изображены на рис. 1. Отметим, что существуют достаточно широкие обобщения этих функций потерь [1].

MSLE. Перейдём теперь к логарифмам ответов и прогнозов:

$$L(y, a) = (\log(a+1) - \log(y+1))^{2}$$

Соответствующий функционал называется среднеквадратичной логарифмической ошибкой (mean squared logarithmic error, MSLE). Данная метрика подходит для задач с неотрицательной целевой переменной и неотрицательными прогнозами модели. За счёт логарифмирования ответов и прогнозов мы скорее штрафуем за отклонения в порядке величин, чем за отклонения в их значениях. Также следует помнить, что логарифм не является симметричной функцией, и поэтому данная функция потерь штрафует заниженные прогнозы сильнее, чем завышенные.

МАРЕ и SMAPE. В задачах прогнозирования нередко измеряется относительная опибка. Во-первых, это удобно для интерпретации — легко понять, что «опибка 50%» соответствует отклонению в полтора раза от целевой переменной. Во-вторых, это позволяет работать с разными мастштабами. Например, мы можем решать задачу прогнозирования спроса на товары в магазине, и какие-то товары могут продаваться штуками, а какие-то — тысячами. Чтобы при усреднении ошибок более популярные товары не оказывали большее влияние на результат, следует использовать функции потерь, не зависящие от масштаба. Типичный пример относительной функции потерь:

$$L(y,a) = \left| \frac{y-a}{y} \right|$$

Соответствующий функционал называется средней абсолютной процентной ошибкой (mean absolute percentage error, MAPE).

У МАРЕ есть проблем с несимметричностью: скажем, если y=1 и все прогнозы неотрицательные, то максимальная ошибка при занижении прогноза (a < y) равна

единице, а ошибка при завышении прогноза (a > y) никак не ограничена сверху. Это исправляется в симметричной модификации (symmetric mean absolute percentage error, SMAPE):

$$L(y, a) = \frac{|y - a|}{(|y| + |a|)/2}$$

Квантильная функция потерь. В некоторых задачах цены занижения и завышения прогнозов могут отличаться друг от друга. Например, при прогнозировании спроса на товары интернет-магазина гораздо опаснее заниженные предсказания, поскольку они могут привести к потере клиентов. Завышенные же прогнозы приводят лишь к издержкам на хранение товара на складе. Функционал в этом случае можно записать как

$$Q(a, X^{\ell}) = \sum_{i=1}^{\ell} \rho_{\tau}(y_i - a(x_i)),$$

где

$$\rho_{\tau}(z) = (\tau - 1)[z < 0]z + \tau[z \geqslant 0]z = (\tau - \frac{1}{2})z + \frac{1}{2}|z|,$$

а параметр τ лежит на отрезке [0,1] и определяет соотношение важности занижения и завышения прогноза. Чем больше здесь τ , тем выше штраф за занижение прогноза.

Обсудим вероятностный смысл данного функционала. Будем считать, что в каждой точке $x \in \mathbb{X}$ пространства объектов задано вероятностное распределение $p(y \mid x)$ на возможных ответах для данного объекта. Такое распределение может возникать, например, в задаче предсказания кликов по рекламным баннерам: один и тот же пользователь может много раз заходить на один и тот же сайт и видеть данный баннер; при этом некоторые посещения закончатся кликом, а некоторые нет.

Известно, что при оптимизации квадратичного функционала алгоритм a(x) будет приближать условное матожидание ответа в каждой точке пространства объектов: $a(x) \approx \mathbb{E}[y \mid x]$; если же оптимизировать среднее абсолютное отклонение, то итоговый алгоритм будет приближать медиану распределения: $a(x) \approx \text{median}[p(y \mid x)]$. Рассмотрим теперь некоторый объект x и условное распределение $p(y \mid x)$. Найдем число q, которое будет оптимальным с точки зрения нашего функционала:

$$Q = \int_{\mathbb{Y}} \rho_{\tau}(y - q) p(y \mid x) dy.$$

Продифференцируем его (при этом необходимо воспользоваться правилами дифференцирования интегралов, зависящих от параметра):

$$\frac{\partial Q}{\partial q} = (1 - \tau) \int_{-\infty}^{q} p(y \mid x) dy - \tau \int_{q}^{\infty} p(y \mid x) dy = 0.$$

Получаем, что

$$\frac{\tau}{1-\tau} = \frac{\int_{-\infty}^{q} p(y \mid x) dy}{\int_{q}^{\infty} p(y \mid x) dy}.$$

Данное уравнение будет верно, если q будет равно τ -квантили распределения $p(y \mid x)$. Таким образом, использование функции потерь $\rho_{\tau}(z)$ приводит к тому, что алгоритм a(x) будет приближать τ -квантиль распределения ответов в каждой точке пространства объектов.

Список литературы

[1] Jonathan T. Barron (2019). A General and Adaptive Robust Loss Function. // https://arxiv.org/pdf/1701.03077.pdf.