Homework 5 Due Friday, December 2

1. Consider a system with the following form of the Landau free energy:

$$f(t,m) = -hm + tm^2 + sm^4 + um^6$$

where u is a fixed positive constant, while s can be either positive or negative (it was strictly positive in the theory of second order phase transitions we discussed in class). m is the magnetization and h is the external magnetic field. First, set h=0 and minimize f with respect to m. Show the following:

- (a) For t > 0 and $s > -(3ut)^{1/2}$, $m_0 = 0$ is the only real solution.
- (b) For t > 0 and $-(4ut)^{1/2} < s \le -(3ut)^{1/2}$, $m_0 = 0$ or $m_0 = \pm m_1$, where $m_1^2 = (\sqrt{s^2 3ut} s)/3u$. However, the minimum of f at $m_0 = 0$ is lower than the two minima at $m_0 = \pm m_1$ and so the ultimate equilibrium value of the magnetization is $m_0 = 0$.
- (c) For t > 0 and $s = -(4ut)^{1/2}$, $m_0 = 0$ or $m_0 = \pm (t/u)^{1/4}$. Now the minimum f at $m_0 = 0$ is of the same height as the ones at $m_0 = \pm (t/u)^{1/4}$, so a nonzero magnetization is as likely to occur as the zero one.
- (d) For t > 0 and $s < -(4ut)^{1/2}$, the minima of the free energy are $m_0 = \pm m_1$. This means that a first order transition occurs along the line $s = -(4ut)^{1/2}$, as the magnetization jumps between $m_0 = 0$ and $m_0 = \pm m_1$. This demonstrates that Landau theory can be used to describe first order transitions as well as continuous (second order) transitions.
- (e) For t = 0 and s < 0, $m_0 = \pm (2|s|/3u)^{1/2}$.
- (f) For t < 0, $m_0 = \pm m_1$ for all s. As $t \to 0$, $m_1 \to 0$ if s > 0.
- (g) For t = 0 and s > 0, $m_0 = 0$ is the only solution. Combining this results with the previous one, we see that the line t = 0 with s positive is the line of second order phase transitions. The lines of second and first order transitions meet at the point (t = 0, s = 0), which is called the *tricritical point*.