1. (4) TRUE

If $k \in MP$ then $\exists M$, a poly-time deterministic TM to decide k.

- Freny DTM is also an NTM.
- To verify $w \in \mathcal{I}$ we can use M | Since M is det. poly time. The Yes answer can be verify $w \in \mathcal{I}$ we can also use M | verified using M in P.

(b) TRUE

 $\forall w_1 \in k_1 \text{ and } w_2 \in k_2$, $\exists M_1 \text{ to decide } w_1 \in k_1 \text{ and } \exists M_2 \text{ to decide } w_2 \in k_2$, where k_1 , $k_2 \in \text{TIME}$

If $f_1(w_1)$ and $f_2(w_2)$ are complexities of M_1 , M_2 then computing $w \in L_1 \cap L_2$ can be achieved as follows:

Run We on M1 —
$$f_1(\omega_e)$$

 ω_p on M2 — $f_2(\omega)$

If both return a Yes, return a Yes else return a No. -0(1)

Total time
$$f_1(\omega) + f_2(\omega)$$

Polytone Polytone

.. RIDRZ EP

(c) False.

SAT E NP - Complete

Graph adong for interval graphs EP.

QCI & p SAT For k colors, for each vertex $v_i \in G$, $j \in \{1,2,...,k\}$

Create propositions C_{ij} Constraints: (a) $(C_{ij} \land C_{hj}) \lor (C_{ij} \land C_{hj}) \lor (C_{ij} \land C_{hj})$ for $(v_i, v_h) \in E$ (b) For each vertex a color u assigned, and only one color u gives $B \in NP$ -Complete $A \in P$ $B \leq_P A$ Hence a polytume function f(w) exist transforming an instance $w \in B$ into $f(w) \in A$, solved using a solver for A in polytime. Hence $B \in P$ Since $B \in P$, none all other problems in NP reduce to B and therefore to A. $\therefore NP = P$

(e) TRUE

In O(f(n)) space NTM can be sumulated by an O(f(n)) space DTM, where n is the uput sixe

Problems in NP take polytime to solve. In polytime g(n), space used (cells of the TM) must be $f(n) \leqslant g(n)$, wince the TM cannot have visited more cells than g(n).

.. NP & PSPACE

- 2. (a) SAT E NP
 - (b) VALIDITY & CO-NP
 - (c) k-CUT E P
 - (d) Non-Validity & NP
 - (e) K-REGALLOC & P
- 3. (a) SET-COVER ENP

Compute umon of sets unc (Size of C)

Check un unuon as the universe (Sixe of U)

Polytime. Verifier.

Compute C Non-Deterministically.

For each $S_i \in S$, non-deterministically decide if $S_i \in C$ or not. $S_i \in S_i$

Reduction VERTEX-COVER < P SET-COVER

Consider graph G = (V, E)Votex set Edge Set.

For each edge $e_i \in E$ construct U as follows $U = \{e_i \mid e_i \in E\}$

Construct S as follows. For each vertex $v_j \in V$, V_j is added to S, where V_j contains all edges incident on vertex $v_j \in V$

PART-1. VERTEX COYER has a solution of the rustance of SET COVER has a solution and solution as K-sized set cover C.

Rach subset in C corresponds to a unique vertex in the Graph.

i.e. V_j corresponds to V_j .

Choose V_j to be in the vertex cover, if $V_j \cdot C$. V = UThe universal set of all edges.

By choosing V_j in the vertex cover all edges are covered.

PART? : If VERTEX-COVER has a solution then SET-COVER has a sol^m.

Consider a k-sized VC and for each voitex v; in the vertex cover pick the subset V; and add V; to C. Sma all edge are correct by the VC, the writing subsets in C cover all objects in U.

But VERTEX-COVER & NP-Complete . .: SET-COVER & NP-Complete .

(b) The problem is in Difference Polynomial. $k-SC = \{\langle U, S, k \rangle | U \text{ has a cover of size } k \text{ from subsets } \frac{in}{s}S\}$ $k-SC = \{\langle U, S, k \rangle | U \text{ has no cover of size } k-1 \text{ from subsets in } S\}$ $k-MIN-SC = k-SC \cap k-SC$