Universidad Nacional de Río Negro - Profesorado de Física

Introducción a Partículas, Astrofísica y Cosmología Guía 02 - Astrofísica

Asorey

2017

16. Magnitud aparente.

- a) Calcule la relación entre el brillo de dos estrellas de magnitudes aparentes $m_1 = 1,3$ y $m_2 = 4,9$.
- b) ¿Cuál es la más brillante?
- c) ¿Cuál sería la magnitud aparente de la segunda estrella si fuera 10 veces más brillante que la primera?
- *d*) Las magnitudes aparentes del Sol y de la Luna son: $m_{\odot} = -26,73$ y $m_{\rm Luna} = -12,6$. Verifique que el Sol es 449000 veces más brillante que la Luna.

17. Magnitud absoluta

Para las estrellas identificadas en la foto de la página 64/71 de la clase U02C02, obtenga de una tabla las magnitudes absolutas y luego calcule las distancias a la Tierra.

18. Estrellas

Calcule la luminosidad de Betelgeuse (M=-5.6) y de Rigel (M=-7.0), sabiendo que la magnitud absoluta del Sol es M=4.83 y su luminosidad $L_{\odot}=3.85\times 10^{26}$ W.

19. Colores

Utilice la ley de Wien para determinar $\lambda_{\text{máx}}$, la correspondientes frecuencia $f_{\text{máx}}$, y el color aproximado que espera para cada una de las siguientes estrellas:

Nombre	T[K]
Sol	5777
Mintaka	31000
Betelgeuse	3400
Sirio A	9540
Rigel	11000
η -Carinae	39000

20. Temperatura orbital

- a) Sabiendo que la distancia del Sol al planeta Marte (R = 3400 km) es 230 millones de kilómetros, calcule la temperatura orbital en Marte. ¿Se encuentra dentro de la zona de habitabilidad Solar?
- b) Calcule la temperatura orbital para un planeta idéntico a la Tierra que se encuentra a una distancia d=1 U.A. para estrellas de los siguientes tipos espectrales: G5, M20, A5 y B5 (use los espectros de la clase U02C03 para asociar una temperatura).

21. Diagrama H-R

Busque en catálogos estelares (por ejemplo el catálogo Herschel disponible en línea) las características espectrales y de temperatura de las siguientes estrellas: Canopus, Antares, Sol, próxima Centauri, Alfa Centauri A, Sirio A, Mintaka A, Rigel, Betelgeuse, Procyon, Polaris, Spica y Daneb. Luego ubíquelas en un diagrama de HR.

22. Betelgeuse y Rigel

Betelgeuse(α -Ori) y Rigel (β -Ori) son las dos estrellas más brillantes de la constelación de Orión. Sus posiciones se conocen con excelente precisión, habiéndose medido un paralaje de 5.07×10^{-3} arcs para Betelgeuse y 4.22×10^{-3} arcseg para Rigel. Utilizando un bolómetro en órbita, ha sido posible medir los flujos de energía en la Tierra: $\mathscr{F}_{\text{Betelgeuse}} = 8.6845 \, \text{W m}^{-2}$ y $\mathscr{F}_{\text{Rigel}} = 3.7819 \, \text{W m}^{-2}$.

- *a*) Calcule la distancia de la Tierra a estas dos estrellas, medidas en m, años-luz y parsecs (recuerde que si el paralaje es 1 arcs la estrella se encuentra a 1 parsec de distancia, y la relación es inversamente proporcional).
- b) Calcule las luminosidades de Betelgeuse y Rigel. Expresarlas en unidades de L_{\odot} y en W.
- c) Calcule las masas de Betelgeuse y Rigel ($M_{\odot} = 1,899 \times 10^{30} \text{kg}$).
- d) Utilice las temperaturas de las estrellas para estimar los radios de las mismas.
- e) ¿Dentro de que clasificación espectral las colocaría? ¿En que posición del diagrama H-R las ubicaría? Justifique.
- f) Calcule los radios mínimos y máximos de la zona de habitabilidad de cada estrella.

23. Observación astronómica

Durante el invierno, mirando hacia el Este y a media altura antes de la medianoche es posible observar la constelación de Scorpio. La estrella más brillante (Antares) se encuentra a 600 años luz de la Tierra. Sabiendo que tiene el mismo color que Betelgeuse y que su masa es $M=15,5M_{\odot}$, calcule la Luminosidad y el radio de Antares. Luego determine el tamaño mínimo y máximo de la zona de habitabilidad.

24. Supernova supernueva

Cuando una estrella se convierte en supernova, hasta el 1 % de su masa se libera en forma de energía. De esta energía, el 99 % se libera en forma de neutrinos y el resto como radiación electromagnética. Imaginemos que Canopus (α -Car, F0, M=8,5 M_{\odot} , d=310 años-luz) se convierte en supernova.

- a) Calcule la cantidad de energía liberada como neutrinos (indetectable).
- *b*) Calcule el flujo de energía electromagnética que se medirá en la Tierra. Compare este valor con la constante solar, $\mathscr{F}_{\odot} = 1400 \, \mathrm{W \, m^{-2}}$.
- c) El objeto resultante será una estrella de neutrones, con un radio aproximado de $R=20\,\mathrm{km}$. Calcule la densidad, el valor de g y la velocidad de escape v_e sobre la superficie de la estrella de neutrones.
- d) Calcule el radio de Schwarzschild de Canopus. Compárelo con el obtenido para el Sol.

25. Producción de energía

La masa de un núcleo es menor que la suma de las masas de los protones y neutrones que lo componen. Esto se debe a la contribución negativa de la energía de unión, que según la relación $E = mc^2$ corresponde a una masa. Esa diferencia se denomina *defecto de masa*:

$$\Delta m = N m_n + Z m_p - m$$

donde:

- *m* es la masa del núcleo
- N es el número de neutrones (por ende N = A Z, dónde A es el número másico)
- Z es el número atómico (igual al número de protones)
- $m_p = 938,3 \, {\rm MeV/c^2}$ y $m_n = 939,6 \, {\rm MeV/c^2}$ son las masas del protón y del neutrón respectivamente.

En este contexto, la energía de ligadura por nucleón queda dada por:

$$B = \frac{\Delta m c^2}{A}.$$

Calcule el defecto de masa y la energía de ligadura por nucleón de los siguientes átomos:

- a) ${}_{2}^{4}$ He (Helio-4, $m = 3728,4 \text{ MeV/c}^{2}$).
- b) $_{26}^{56}$ Fe (Hierro-56, $m = 52103 \text{ MeV/c}^2$).
- c) $^{208}_{82}$ Pb (Plomo-208, $m = 193729 \text{ MeV/c}^2$).
- *d*) $_{20}^{40}$ Ca (Calcio-40, $m = 37225 \text{ MeV/c}^2$).
- e) $^{41}_{20}$ Ca (Calcio-41, $m = 38156 \,\text{MeV/c}^2$).

26. Fusión

Una de las reacciones nucleares que ocurren en los núcleos estelares es la denominada cadena p-p, según la cual se produce un núcleo de Helio-4 a partir de 4 protones. Esta reacción puede resumirse como:

$$4^{1}\text{H} \rightarrow {}^{4}\text{He} + 2e^{-} + 2\nu_{e} + Q.$$

Sabiendo que las masa total inicial es $m_i=4m_p$ y que la masa final de los productos es $m_f=9.91\times 10^{-27}$ kg, calcule:

- a) la energía liberada por cada reacción;
- b) la cantidad de reacciones por segundo que deben producirse para explicar la luminosidad del Sol;
- c) la cantidad de masa que el Sol pierde cada segundo; y
- d) la cantidad de hidrógeno que es convertido a Helio cada segundo.

27. **Kepler 1**

Recordemos la primera ley de Kepler: "Todos los planetas se desplazan alrededor del Sol describiendo órbitas elípticas, estando el Sol situado en uno de sus focos". Utilizando los valores del afelio, perihelio y excentricidad de Mercurio, Venus, la Tierra, Urano y Plutón, calcule para cada uno de ellos lo siguiente:

- a) Los valores de a y b para cada una de las órbitas;
- b) La distancia desde el "otro foco" al Sol.

28. Satélites

a) A partir de la expresión para la velocidad orbital de una órbita circular,

$$v_{\rm O} = \frac{2\pi r}{t},$$

usando la tercera ley de Kepler demuestre que para el caso circular la velocidad orbital vale:

$$v_{\rm O} = \sqrt{\frac{GM}{r}}$$
.

dónde G es la constante de gravitación universal, M es la masa del cuerpo central, r es el radio de la órbita y T es el periodo orbital.

- b) Calcule el radio r para la órbita de un satélite geoestacionario (T = 24 horas).
- c) Calcule la velocidad orbital de la estación espacial internacional, que se encuentra a una altura media de 330 km. Luego determine el tiempo requerido para completar una órbita.

29. Cómeta

Un nuevo cometa de masa $m=10^{12}\,\mathrm{kg}$ fue descubierto en el sistema solar. Luego de algunas mediciones, se supo que su órbita es elíptica y el perihelio está situado a sólo $10^6\,\mathrm{km}$ del Sol.

- a) Calcule la distancia al Sol del afelio sabiendo que el período es de 10 años.
- b) ¿Cuáles es el valor de la energía potencial en el perihelio y en el afelio?
- c) Usando la segunda ley de Kepler, calcule la relación entre las energías cinéticas en el afelio y en el perihelio (ayuda: suponga que las áreas barridas son triangulares, $A = \frac{1}{2}b \times h$).

30. Otras Tierras

Imagine que un planeta de masa $m=M_{\rm Tierra}$ orbita en torno a una estrella de masa $M=6.5\times 10^{30}\,{\rm kg}$ a una distancia media $r=4.5\times 10^8\,{\rm km}$. Usando las leyes de Kepler, calcule el tiempo que requiere el planeta para completar una órbita completa y su velocidad orbital media.