

Dot Product: $(x_1, x_2, \dots, x_n) \bullet (y_1, y_2, \dots, y_n) = (x_1y_1 + x_2y_2 + \dots + x_ny_n)$

Dot Product:
$$(x_1, x_2, ..., x_n)$$
 • $(y_1, y_2, ..., y_n)$ = $(x_1y_1 + x_2y_2 + + x_ny_n)$ ordered n-typle output is a scalar $\in \mathbb{R}$

(1) (2) (3) (4) 5) • (-2) (3) (1) (-4) (7) = 1.-2 + 2.3 + 3.1 + 4.1-4) + 5.(-7)

5-typle = -2 + 6 + 3 - 16 - 35 = -45 $\in \mathbb{R}$

Matrix Multiplication

Bnxt Amon - multiplication is not possible!

on the multiplied with any other

of The fact that the nultiplication AB is possible does not imply BA is also possible.

The order is important

$$AB = \begin{bmatrix} -5 & -1 & 4 \\ -9 & -7 & -1 \end{bmatrix}_{2\times3}$$

3 (1,1 entry =
$$A_{1}$$
st row • B_{1} st column = $-2t-6+3+0=-5$
1,2 entry = " • B_{2} st column = $-3+8+6+-12=-1$
1,3 entry = " • B_{3} st column = $1+10+9+-16=4$
2,1 entry = A_{2} sd row • B_{1} st column = $-4+0+-5+0=-9$
2,2 entry = " • B_{2} st column = $-6+0+-10+9=-7$
2,3 entry = " • B_{3} st column = $2+0+-15+12=-1$

2,1 entry =
$$A_{2rd}$$
 row • B_{1} + column = -4 + 0 + -5 + 0 = -2 ,2 entry = 11 • B_{2} rd column = -4 + 0 + -10 + 9 = -4

2. For each of the pairs of matrices that follow, determine whether it is possible to multiply the first matrix times the second. If it is possible, perform the multiplication.

(a)
$$\begin{bmatrix} 3 & 5 & 1 \\ -2 & 0 & 2 \end{bmatrix} \begin{bmatrix} 2 & 1 \\ 1 & 3 \\ 4 & 1 \end{bmatrix}$$
$$(4 & -2) \begin{bmatrix} 4 & -2 \\ -2 & 1 \end{bmatrix} (4 & 2 & 2)$$

(b)
$$\begin{bmatrix} 4 & -2 \\ 6 & -4 \\ 8 & -6 \end{bmatrix} \begin{bmatrix} 1 & 2 & 3 \end{bmatrix}$$

(c)
$$\begin{bmatrix} 1 & 4 & 3 \\ 0 & 1 & 4 \\ 0 & 0 & 2 \end{bmatrix} \begin{bmatrix} 3 & 2 \\ 1 & 1 \\ 4 & 5 \end{bmatrix}$$

(d)
$$\begin{bmatrix} 4 & 6 \\ 2 & 1 \end{bmatrix} \begin{bmatrix} 3 & 1 & 5 \\ 4 & 1 & 6 \end{bmatrix}$$

(e)
$$\begin{bmatrix} 4 & 6 & 1 \\ 2 & 1 & 1 \end{bmatrix} \begin{bmatrix} 3 & 1 & 5 \\ 4 & 1 & 6 \end{bmatrix}$$

(f)
$$\begin{bmatrix} 2 \\ -1 \\ 3 \end{bmatrix}$$
 $\begin{bmatrix} 3 & 2 & 4 & 5 \end{bmatrix}$