Introdução ao Banco de Dados Não Relacional NoSQL

Prof. Msc. Edgard Devanir Amoroso

- Por que BD relacionais se tornaram dominantes?
 - Capacidade de armazenar grandes quantidades de dados persistentes
 - Permite acessar partes do BD de maneira rápida e fácil
 - Controle de concorrência por meio de transações
 - Provê acesso concorrente de múltiplas aplicações ou vários usuários
 - Recuperação após falhas
 - Restaura o BD para um estado anterior ao estado da falha
 - Integração compartilhada de BD
 - Aplicações armazenam seus dados em uma única BD
 - Uso de um modelo de dados padrão
 - Dialetos SQL usados por diversos fornecedores são similares

Modelo de Dados Hierárquicos

Primeiro modelo de dados a ser reconhecido. Usa uma estrutura de árvores onde cada registo é considerado uma coleção de campos ou atributos.

Modelo de Dados Relacional

Sucessor do modelo Hierárquico. Baseia-se no conceito de Entidades e Relacionamentos.

Melhorias nos SGBD's

Os Sistemas
Gerenciadores de
Banco de Dados
começam a ser
melhorados devido a
grande aceitação dos
usuários.

Modelo de Dados NoSQL

Surgem as primeiras alternativas aos modelos relacionais baseados em documentos, chavevalor ou famílias de colunas.

Modelo de Dados NoSQL

As bases de dados NoSQL começam a ser reconhecidas devido ao alto poder de performance e escalabilidade.

Relacional x NoSQL

Relacional

Relacional

NoSQL

NoSQL

Relacional x NoSQL

Use RDBMS quando	Use NoSQL quando
Suas aplicações forem centralizadas (ERP, CRM)	Suas aplicações forem descentralizadas (Web, Mobile, Big Data, IoT)
Alta disponibilidade moderada for necessária	Quando a disponibilidade tiver que ser contínua, sem interrupção
Dados gerados em velocidade moderada	Dados gerados em alta velocidade (sensores)
Dados forem gerados a partir de poucas fontes	Dados forem gerados a partir de múltiplas fontes
Dados forem estruturados	Dados forem semi ou não-estruturados
Transações complexas	Transações simples
For necessário manter moderado volume de dados	For necessário manter alto volume de dados

- Por que existe uma ascensão de BD NoSQL?
 - Valores de uma tupla relacional têm de ser simples
 - Para armazenar dados em disco, é preciso traduzir a
 - estrutura de dados não atômica da memória para a
 - representação relacional
 - Incompatibilidade de impedância: duas representações
 - diferentes que requerem tradução

 Incompatibilidade de impedância entre o modelo relacional e as estruturas de dados na memória principal

 Incompatibilidade de impedância entre o modelo relacional e as estruturas de dados na memória principal

Fator Vital para Mudança Armazenamento Dados

- Necessidade de suporte a grandes volumes de dados por meio da execução em clusters
 - BDR não foram projetados para serem executados em clusters
- O termo NoSQL é um neologismo acidental
 - Não há uma descrição oficial
 - Representa características comuns de BD NoSQL
 - Não usam o modelo relacional nem SQL
 - Executam eficientemente em clusters, mas nem todos os BD NoSQL almejam a execução em clusters
 - Possuem código aberto
 - Não têm esquema de dados
 - Foram criados para propriedades na web do século XXI
 - O resultado mais importante do surgimento de NoSQL é a persistência poliglota

Cluster

 Um cluster é um conjunto de servidores interconectados, que atuam como se fossem um único sistema e trabalham juntos para realizar tarefas de forma mais eficiente e escalável. Esses sistemas computacionais possuem alta disponibilidade, balanceamento de carga e processamento paralelo.

Motivos para Adoção de BD NoSQL

- Simplifica o acesso ao BD, mesmo que não haja a necessidade de escalar para além de uma única máquina
- Melhora a produtividade de desenvolvimento de aplicativos usando um estilo de interação de dados mais conveniente
- Permite lidar eficientemente com o acesso a dados cujo tamanho e desempenho demandam um cluster

- A orientação agregada reconhece que frequentemente deseja-se trabalhar com dados na forma de unidades
 - Tais unidades possuem uma estrutura mais complexa do que um conjunto de tuplas
- Apesar de não existir um termo comum que identifique tais unidades, BD dos tipos chave-valor, documentos e famílias de colunas fazem uso da unidade de agregados

O que é um agregado?

- É um conjunto de objetos relacionados que desejamos tratar como uma unidade
- É uma unidade de manipulação de dados e de gerenciamento de consistência
 - Comunicação com o gerenciador de armazenamento de dados do sistema é feita em termos de agregados
 - Agregados são atualizados com operações atômicas
- Lidar com agregados facilita a execução de BD NoSQL em clusters, já que o agregado constitui uma unidade natural para replicação e fragmentação
- Agregados também são mais simples de serem manipulados por programadores de aplicativos

Agregado é a base para BI em tempo real

- Agregados também podem ser usados para obter estatísticas
- Exemplo: Agregado pode conter informações sobre quais pedidos possuem um dado produto
 - Sempre que o pedido for realizado pelo cliente a estatística mantida no agregado é atualizada
- Essa desnormalização permite o acesso rápido aos dados
- Empresas tornam-se independentes da execução em lotes ao final do dia para povoar DW e gerar análises

Aplicação de Comércio Eletrônico

Cliente		
ID	Nome	
1	Ana	

Pagto				
ID	NPedido	Cartao	Vencimento	EndCobran
33	99	4595-1	10/10/2021	55

Produ	to	
ID	Nome	
27	GoPro H4	

Pedic	do	
ID	Cliente	EndEnvio
99	1	77

Endereco		
ID	Cidade	
77	Rec	

ItemF	Ped		
ID	NPedido	ProdID	Preco
100	99	27	500,00

EndCobranca		
ID	Cliente	Endereco
55	1	77


```
// em Clientes
{
"ID": 1,
"Nome": "Ana",
"EndCobranca": [ { "Cidade": "Rec" } ]
}
```



```
// em Pedidos {
"ID": 99,
"ClienteID": 1,
"ItemPed": [
{ "ProdutoID": 27,
 "Preco": 500,00,
 "Nome": "GoPro H4" }
```



```
"EndEnvio": [ { "Cidade" : "Rec" } ]
"Pagto": [
 "Cartao": "4595-1",
 "Vencimento": "10/10/2021",
 "EndCobran": { "Cidade" : "Rec" } }
```


Banco de Dados NoSQL

Dúvidas?

