KLASIFIKASI QUALITY APEL

By: Noeril Agian Septa Dinata

#Data Science #Portfolio #Data Analyst

Quality apel?? Tujuan dari penelitian ini adalah mengetahui apa saja yang paling berpengaruh terhadap klasifikasi quality (good and bad) pada buah apel

Data Preparation

Berikut merupakakn data sampel dari data klasifikasi buah apel Sampel Data :

	A_id	Size	Weight	Sweetness	Crunchiness	Juiciness	Ripeness	Acidity	Quality
0	0.0	-3.970049	-2.512336	5.346330	-1.012009	1.844900	0.329840	-0.491590483	good
1	1.0	-1.195217	-2.839257	3.664059	1.588232	0.853286	0.867530	-0.722809367	good
2	2.0	-0.292024	-1.351282	-1.738429	-0.342616	2.838636	-0.038033	2.621636473	bad
3	3.0	-0.657196	-2.271627	1.324874	-0.097875	3.637970	-3.413761	0.790723217	good
4	4.0	1.364217	-1.296612	-0.384658	-0.553006	3.030874	-1.303849	0.501984036	good

Total data sebanyak (baris, kolom): 4001, 9

A_id: Unique identifier for each fruit

Size: Size of the fruit

Weight: Weight of the fruit

Sweetness: Degree of sweetness of the fruit

Crunchiness: *Texture indicating the crunchiness of the fruit*

Juiciness: Level of juiciness of the fruit **Ripeness**: Stage of ripeness of the fruit

Acidity: Acidity level of the fruit **Quality**: Overall quality of the fruit

Link data: https://www.kaggle.com/datasets/nelgiriyewithana/apple-quality

Penggalian Masalah pada Data

Terdapat missing sebanyak 1 baris, solusi yang dilakukan yaitu remove data kosong/ null karena hanya ada 1 data yang kosong yaitu terletak pada baris 4000.

TYPE DATA

Pada type data tidak ditemukannya masalah, semua type data benar

DUPLICATE

Tidak ditemukannya data duplicate

sampel data yang missing:

	A_id	Size	Weight	Sweetness	Crunchiness	Juiciness	Ripeness	Acidity	Quality
4000	NaN	NaN	NaN	NaN	NaN	NaN	NaN	Created_by_Nidula_Elgiriyewithana	NaN

Exploratory data analysis and Modelling

Pada tahapan EDA kita dapat mengetahui persebaran dan informasi yang ada dalam data kemudian tahapan pemodelan ini kita akan dibantu oleh machine untuk memprediksi, pemodelan ini akan menghasilkan nilai dari suatu algoritma yang nantinya akan membantu kita menyelesaikan masalah klasifikasi apel.

Exploratory data analysis

Visualisasi Data:

Outlier

Pada data terdapat outlier, solusi yang saya lakukan adalah membiarkannya karena outlier merupakan data yang penting dan dapat membantu meningkatkan hasil prediksi kita, namun dalam artian outlier yang kita temui ini merupakan penilaian dari sebuah pengamatan sebuah apel jadi outlier masih aman, berbeda dengan outlier terhadap pembelian dll, hal tersebut harus di atasai karena akan berdampak negatif apabila tidak di atasi, Sebenarnya banyak solusi untuk mengatasi outlier contohnya menghapus, mengubah, mencari info lagi tentang data yang outlier bisa menanyakan kepada penyedia data atau bisa berkaloborasi dengan data enginer..

Melakukan Label Encoding

Tujuan untuk mengubah kategorical kedalam bentuk numerik

Algoritma Random Forest dan Decision Tree

Machine learning digunakan untuk mengklasifikasi

Menampilkan hasil Akurasi, Presisi, Recall.

Membandingkan Algoritma terbaik

Feature Importance

Melakukan prediksi kolom yang berpengaruh terhadap quality berdasarkan algoritma yang memiliki nilai akurasi tertinggi.

Visualisasi dengan Heatmap:

Visualisasi Heatmap

Hasil dari Algoritma

Dari salah satu algoritma akan dibandingkan dan apabila nilai terdapat lebih tinggi dari algoritma lainnya maka algoritma tersebut yang akan belanjut ke Feature Importance

Berikut sampel data yang sudah melalui tahap encoding

	A_id	Size	Weight	Sweetness	Crunchiness	Juiciness	Ripeness	Acidity	Quality
0	0.0	-3.970049	-2.512336	5.346330	-1.012009	1.844900	0.329840	-0.491590483	1
1	1.0	-1.195217	-2.839257	3.664059	1.588232	0.853286	0.867530	-0.722809367	1
2	2.0	-0.292024	-1.351282	-1.738429	-0.342616	2.838636	-0.038033	2.621636473	0
3	3.0	-0.657196	-2.271627	1.324874	-0.097875	3.637970	-3.413761	0.790723217	1

Berikut hasil algoritma Random Forest & Decision Tree

Decision Tree Accuracy: 0.81 Confusion Matr [[324 77] [75 324]] Classification	ı ix:				Random Forest Classifier: Accuracy: 0.9075 Confusion Matrix: [[364 37] [37 362]] Classification Report:					
	precision	recall	f1-score	support		precision	recall	f1-score	support	
0	0.81	0.81	0.81	401	0	0.91	0.91	0.91	401	
1	0.81	0.81	0.81	399	1	0.91	0.91	0.91	399	
accuracy			0.81	800	accuracy			0.91	800	
macro avg	0.81	0.81	0.81	800	macro avg	0.91	0.91	0.91	800	
weighted avg	0.81	0.81	0.81	800	weighted avg	0.91	0.91	0.91	800	

Dapat kita lihat bahwa Algoritma Random Forest lebih unggul Maka Algoritma tersebut lanjut ke step selanjutnya yaitu feature importance untuk memprediksi kolom kolom yang mempengaruhi good dan bad pada data klasifikasi apel.

Fiture Importance

Dapat kita lihat yang paling mempengaruhi klasifikasi apel good atau bad adalah Ripeness, Size, Juiciness, Sweetness

Cek kebenaran menggunakan data max dan min :

Ni	lai	M	ax	

	Ripeness	Size	Juiciness	Sweetness	Quality
1381	3.995602	6.406367	0.999640	-4.164118	1
2502	7.237837	-0.921677	0.447844	-4.685317	0
2691	-0.336443	-4.122996	2.835063	6.374916	1
3874	-1.342563	1.925888	7.364403	-0.127441	1

Nilai Min:

	Ripeness	Size	Juiciness	Sweetness	Quality
161	-5.864599	3.256911	-4.283278	-0.403344	0
2232	0.301017	-0.214485	-5.961897	-3.942249	0
2832	2.291800	-1.520566	0.129411	-6.894485	0
3559	4.127709	-7.151703	-0.136146	1.673138	0

Kesimpulan and Saran

Kesimpulan:

Diketahui algoritma memiliki nilai tertinggi adalah **random forest** dan berdasarkan hasil feature importance dari random fores dapat dilihat kolom yang sangat perpengaruh terhadap quality good atau bad pada sebuah klasifikasi apel adalah (Ripeness, Size, Juiciness, Sweetness)

- Apabila Ripness tinggi maka quality dari aple tersebut terprediksi Bad
- Jika Size, Juiciness, Swetness bernilai tinggi maka aple dikategoruikan aple **good** dan begitupun sebaliknya apabila nilai rendah maka apel akan bernilai **Bad**

Dari hasil prediksi yang ditampilkan menggunakan feature importance di atas dapat dibuktikan prediksi benar

Saran:

Jadi apabila ingin memilih apel dengan kualitas GOOD pililhlah dengan Size besar, rasanya Juiciness dan Sweetness, namun apabila berdasarkan nilai pilih juga dengan nilai Ripeness rendah

Thanks

Do you have any questions?

Apabila ada kesulitan atau ada yang perlu dibahas silahkan DM. saya harap pnelitian ini tidak hanya sampai disini, anda bisa mencoba dengan algoritma lain.

Terima Kasih

This presentation template was created by **Slidesgo**, including icons by **Canva**

#Data Science