Wstęp do sztucznej inteligencji Modele bayesowskie

Jakub Robaczewski

Algorytm klasyfikacji:

Celem zadania było zaimplementowanie naiwnego klasyfikatora Bayesa wykorzystującego algorytm walidacji krzyżowe. Stworzone przeze mnie funkcje możemy podzielić na 3 grupy: zarządzanie danymi, klasyfikator i walidację. By ułatwić klasyfikację klasy podane w zadaniu (1, 2, 3) zostały przemianowane na (0, 1, 2).

Zarządzanie danymi:

Funkcje zarządzania danymi służą do pobrania danych z podanego pliku oraz dalszej obróbki

- read from file() pobiera dane z podanego pliku
- split_data() dzieli podany zbiór na 2, wykorzystując podane proporcje
- group() dzieli zbiór na podzbiory według przynależności do klas
- pick_parameters () wybiera z listy parametrów podane parametry i tworzy listę w postaci [id, a, b].

Klasyfikator:

Mój klasyfikator do obliczenia prawdopodobieństwa należenia do którejś z klas wykorzystuje wzór:

$$P(C_k|x) = \frac{P(C_k) * P(x_1|C_k) * P(x_2|C_k)}{P(x)}$$

Gdzie x₁ i x₂ to dwa wybrane parametry

- bayes() przyjmuje dane i podaje parametry wykorzystując funkcje likelihood() i get_means_variances()
- likelihood() oblicza prawdopodobieństwo warunkowe za pomocą wzoru:

$$P(x_k|C_k) = \frac{1}{\sqrt{2\pi\sigma_k^2}} * exp\left(\frac{-(x_k - \overline{x_k})^2}{2\sigma_k^2}\right)$$

- calc_class_probs() oblicza prawdopodobieństwo należenia do klasy na podstawie ilości elementów
- get_means_variances() oblicza średnie i wariancje z danych

Walidacja i testowanie:

- check_prediction() przewiduje do jakiego zbioru należy x, bazując na prawdopodobieństwie z liczby elementów, średniej i wariancji
- cross_validate dzieli test na n bloków i znajduje najlepsze parametry dla zbioru
- make_test() wykonuje test na zbiorze test ucząc się na zbiorze train i zwraca skuteczność dla każdej klasy

Wyniki:

Best parameters: 0, 6	Best parameters: 0, 6	Best parameters: 0, 6	Best parameters: 0, 6	Best parameters: 0, 6
Accuracy 0: 93.88%	Accuracy 0: 97.78%	Accuracy 0: 100.00%	Accuracy 0: 93.33%	Accuracy 0: 93.88%
Accuracy 1: 94.34%	Accuracy 1: 83.87%	Accuracy 1: 86.21%	Accuracy 1: 92.86%	Accuracy 1: 90.74%
Accuracy 2: 70.00%	Accuracy 2: 100.00%	Accuracy 2: 94.12%	Accuracy 2: 80.49%	Accuracy 2: 84.62%
Total accuracy: 87.32%	Total accuracy: 92.25%	Total accuracy: 92.96%	Total accuracy: 89.44%	Total accuracy: 90.14%
Best parameters: 11, 12	Best parameters: 0, 6	Best parameters: 11, 12	Best parameters: 0, 6	Best parameters: 11, 12
Accuracy 0: 95.56%	Accuracy 0: 100.00%	Accuracy 0: 93.48%	Accuracy 0: 97.87%	Accuracy 0: 73.58%
Accuracy 1: 94.64%	Accuracy 1: 83.05%	Accuracy 1: 87.72%	Accuracy 1: 87.93%	Accuracy 1: 94.12%
Accuracy 2: 73.17%	Accuracy 2: 97.50%	Accuracy 2: 97.44%	Accuracy 2: 86.49%	Accuracy 2: 92.11%
Total accuracy: 88.73%	Total accuracy: 92.25%	Total accuracy: 92.25%	Total accuracy: 90.85%	Total accuracy: 85.92%

Jak zauważamy na powyższych testach, algorytm osiąga 85%-92% procentową skuteczność dla parametrów 0, 6 oraz 11, 12, co jest dobrym wynikiem. Jak wydać na wykresach dane przy tych parametrach układają się w dość łatwo wyróżnialne zbiory.

Przykładowo dla parametrów 1,7 nie da się wyznaczyć tak dobrze wyróżnialnych zbiorów, dlatego nie są to dobre parametry dla algorytmu.