

El producto tensorial de conjuntos dendroidales

Roger Brascó Garcés

9 de Febrero de 2022

Departamento de Matemáticas e Informática Universidad de Barcelona

Introducción

- 1. Nociones previas
- 2. Árboles como opéradas coloreadas
- 3. Conjuntos dendroidales
- 4. Producto tensorial
- 5. Conjunto de shuffles
- 6. Conclusiones

Nociones previas

Categorías

Definición

Una categoría $\mathcal C$ consiste en:

$$\mathcal{C} = (\mathrm{Ob}(\mathcal{C}), \mathrm{hom}(\mathcal{C}), \circ, \mathrm{id})$$

Además, esta estructura cumple los siguientes axiomas:

- Asociatividad.
- Unidad.

Funtores

Definición

Sean $\mathcal C$ y $\mathcal D$ dos categorías. Un *funtor* F de $\mathcal C$ en $\mathcal D$, que denotaremos por $F\colon \mathcal C\to \mathcal D$ consiste en:

- Una aplicación $Ob(\mathcal{C}) \to Ob(\mathcal{D})$.
- Para cada par de objetos $A, B \in \mathcal{C}$ una aplicación

$$C(A, B) \longrightarrow D(F(A), F(B)).$$

Además, estas aplicaciones son compatibles con la composición y la unidad.

Opéradas

Definición

Una opérada P consiste en una sucesión de conjuntos $\{P(n)\}_{n\geq 0}$ junto con la siguiente estructura:

- Un elemento unidad $1 \in P(1)$.
- Un producto composición

$$P(n) \times P(k_1) \times \cdots \times P(k_n) \longrightarrow P(k)$$

para cada n y k_1, \ldots, k_n tal que $k = \sum_{i=1}^n k_i$.

• Para cada $\sigma \in \Sigma_n$ una acción por la derecha $\sigma^* : P(n) \to P(n)$.

Además el producto composición es asociativo, equivariante y compatible con la unidad.

Opéradas coloreadas

Definición

Sea C un conjunto. Una opérada C-coloreada P consiste en, para cada (n+1)-tupla de colores (c_1,\ldots,c_n,c) con $n\geq 0$, un conjunto $P(c_1,\ldots,c_n;c)$, junto con la siguiente estructura:

- Un elemento unidad $1_c \in P(c; c)$ para cada $c \in C$.
- Un producto composición con n (n+1)-tuplas de colores $(c_1, \ldots, c_n; c)$.
- Para cada elemento $\sigma \in \Sigma_n$ una acción por la derecha en sus entradas.

Además el producto composición es asociativo, equivariante y compatible con las unidades.

Definición

Sea P una opérada C-coloreada y Q una opérada D-coloreada. Un morfismo de opéradas $f: P \to Q$ consiste en una aplicaciones entre los conjuntos de colores

Árboles como opéradas

coloreadas

Formalismo de árboles

Sea *T* el siguiente árbol:

(2.1)

Árboles como opéradas coloreadas

Definición

Sea T un árbol planar con raíz. Denotaremos la opérada coloreada no-simétrica generada por T como $\Omega_p(T)$.

Categorías Ω_p y Ω

Definición

La categoría de árboles planares con raíz Ω_p es la subcategoría plena de la categoría de opéradas coloreadas no-simétricas cuyos objetos son $\Omega_p(T)$ para cada árbol T.

Definición

La categoría de árboles con raíz Ω es la subcategoría plena de la categoría de opéradas coloreadas cuyos objetos son $\Omega(T)$ para todo árbol T.

Conjuntos dendroidales

Conjuntos dendroidales

Definición

La categoría dSets de conjuntos dendroidales es la categoría de prehaces en Ω . Los objetos son funtores $\Omega^{\mathrm{op}} \to \mathrm{Set}$ y los morfismos vienen dados por las transformaciones naturales.

El conjunto X_T lo llamaremos conjunto de déndrices con forma T.

Nervio dendroidal

El funtor $\Omega \to Oper$ que envía un árbol T a la opérada coloreada $\Omega(T)$ induce, por extensión de Kan, la siguiente adjunción

$$\tau_d$$
: $dSets \Longrightarrow Oper$: N_d

El funtor N_d se llama *nervio dendroidal*. Para toda opérada P, su nervio dendroidal es el conjunto dendroidal

$$N_d(P)_T = Oper(\Omega(T), P)$$

Este funtor es plenamente fiel y $N_d(\Omega(T)) = \Omega[T]$ para cada árbol T en Ω .

Producto tensorial

Producto tensorial de Boardman-Vogt

Definición

Sea P una opérada simétrica C-coloreada, y sea Q una opérada simétrica D-coloreada. El producto tensorial de Boardman-Vogt $P\otimes_{BV}Q$ es una opérada $(C\times D)$ -coloreada definida en terminos de generadores y relaciones de la siguiente manera. Para cada color $d\in D$ y cada operación $p\in P(c_1,\ldots,c_n;c)$ existe un generador

$$p \otimes d \in P \otimes_{BV} Q((c_1, d), \ldots, (c_n, d); (c, d))$$

De manera análoga, para cada color $c \in C$ y cada operación $q \in Q(d_1, \ldots, d_m; d)$. Estos generadores están sujetos a cinco relaciones:

Relación de intercambio

Definición

(v) $\sigma_{n,m}^*((p \otimes d) \circ ((c_1 \otimes q), \dots, (c_n \otimes q))) = (c \otimes q) \circ ((p \otimes d_1), \dots, (p \otimes d_m)),$ donde $\sigma_{n,m} \in \Sigma_{nm}$ es una permutación.

Ejemplo

Suponemos que n=2 y m=3. Antes de aplicar la permutación $\sigma_{2,3}^*$

Relación de intercambio

Después de aplicar la permutación $\sigma_{2,3}^*$

Producto tensorial de conjuntos dendroidales

Definición

Para todo par de árboles T y S en Ω , el *producto tensorial* de los representables $\Omega[T]$ y $\Omega[S]$ se define como

$$\Omega[T] \otimes \Omega[S] = N_d(\Omega(T) \otimes_{BV} \Omega(S))$$

Producto tensorial de conjuntos dendroidales

Definición

Sean X e Y dos conjuntos dendroidales y sea $X = \lim_{\to} \Omega[T]$ y $Y = \lim_{\to} \Omega[S]$ sus expresiones canónicas como colímites de representables. Entonces, definimos el *producto tensorial* $X \otimes Y$ como

$$X \otimes Y = \lim_{\stackrel{}{ o}} \Omega[T] \otimes \lim_{\stackrel{}{ o}} \Omega[S] = \lim_{\stackrel{}{ o}} N_d(\Omega(T) \otimes_{BV} \Omega(S))$$

Producto tensorial de conjuntos dendroidales

Teorema

La categoría de conjuntos dendroidales admite una estructura monoidal, simétrica y cerrada. Esta estructura monoidal está únicamente determinada (salvo isomorfismo) por la propiedad de que existe un isomorfismo natural

$$\Omega[T] \otimes \Omega[S] \cong N_d(\Omega(T) \otimes_{BV} \Omega(S))$$

para cada par T y S de objetos de Ω . La unidad del producto tensorial es el conjunto dendroidal representable $\Omega[\eta] = i_!(\Delta[0]) = U$.

Conjunto de shuffles

Shuffles

Definición

Sea S y T dos objetos de Ω . Un *shuffle* de S y T es un árbol R cuyo conjunto de aristas es un subconjunto de $E(S) \times E(T)$. La raíz de R es (a, x), donde a es la raíz de S y x es la raíz de T, y sus hojas son todos los pares (I_S, I_T) , donde I_S es una hoja de S y I_T es una hoja de T. Los vértices son de la forma

Conjunto de shuffles

Proposición

El número de shuffles sh(S, T) de dos árboles S y T satisface tres propiedades:

- (i) Simétrico: sh(S, T) = sh(T, S)
- (ii) Unitario: Si T es un árbol unitario η , entonces $sh(S, \eta) = 1$
- (iii) Inducción: Si $S = C_n[S_1, \ldots, S_n]$ y $T = C_m[T_1, \ldots, T_m]$, entonces

$$sh(S, T) = \prod_{i=1}^{n} sh(S_i, T) + \prod_{j=1}^{m} sh(S, T_j)$$

Estructura de orden parcial

Existen los shuffles intermediarios R_k (1 < k < N) entre R_1 y R_N . Todo R_k se obtiene desde un R_l anterior. Es decir, cada intercambio se basa en transformar una configuración de R_l

(5.1)

Estructura de orden parcial

A una configuración de R_k

(5.2)

Si un shuffle R_k se obtiene the otro shuffle R_l mediante la norma de arriba, entonces $R_l \leq R_k$.

Producto tensorial de árboles

Lema

Para todo shuffle R_i de S y T tenemos un monomorfismo

$$m: \Omega[R_i] \rightarrowtail \Omega[S] \otimes \Omega[T]$$

Corolario

Para todo objeto T y S en Ω , tenemos que

$$\Omega[S] \otimes \Omega[T] = \bigcup_{i=1}^{N} m(R_i)$$

Generar shuffles en Python

Ejemplo

Para acabar esta sección, pondremos un ejemplo para enseñar la utilidad del paquete. Sean S y $\mathcal T$ los árboles

Generar shuffles en Python

El conjunto de shuffles resultante sería

Conclusiones

Gracias por vuestra atención