Outline solution to Examination Questions

Unit Code MA 40188	Unit Title ALGEBRAIC CURVES					
Academic Year 2013/14	Examiner	ALASTAIR	CRAW			
Semester	Question No.	ĺ	Page	of	2	

Part

Mark

- (b) X is irreducible if there does not exist a decomposition $X=X_1\cup X_2$. Where $X_1,X_2\subseteq X$ are proper algebraic subsets.
 - (\Leftarrow) Suppose $X = X_1 \cup X_2$ is a reducable decomposition. Since $X_i \notin X$ $\exists f_i \in \mathbb{I}(X_i) \cdot \mathbb{I}(X)$ for i = 1, 2. Now $0 = f_i(p)f_2(p) = (f_if_i)(p)$ $\forall p \in X$, so $f_if_i \in \mathbb{I}(X)$ and yet $f_i \notin \mathbb{I}(X)$ for i = 1, 2, se $\mathbb{I}(X)$ is not prime.
 - (=)) Suppose $\mathbb{T}(X)$ not prime: $\mathbb{F}(X) \in \mathbb{T}(X)$ will $\mathbb{F}(X) \notin \mathbb{T}(X)$ for $\mathbb{F}(X) \notin \mathbb{T}(X)$. Then $\mathbb{F}(X) \in \mathbb{T}(X)$ for $\mathbb{F}(X) \notin \mathbb{T}(X)$ a proper algebraic subset of \mathbb{X} satisfying $\mathbb{X}_1 \cup \mathbb{X}_2 = \mathbb{V}(\mathbb{F}(X)) \cup \mathbb{V}(\mathbb{F}_2) = \mathbb{V}(\mathbb{F}(X)) = \mathbb{V}(\mathbb{F}(X)) = \mathbb{X}$. Therefore \mathbb{X} is reducible.
- (c) (i) In the expression for f, replace $x^2 \mapsto [(x^2-y^3)+y^3]$ and $y^2 \mapsto [(y^2-z^3)+z^3]$ throughout. Expand the square brackets using binomial theorem and gather expressions involving (x^2-y^3) and (y^2-z^3) to obtain $h_1, h_2, h_3 \in \text{It}[x, y, z]$ set $f = h_1, (x^2-y^3) + h_2, (y^2-z^3) + h_3$

where each term of hy is of farm $C \times y \times y \times y$ for $C \times k$ and $0 \times x \times k \times k$. Separate hy into four polynomials according to values of $x \times k$ and set $g = h_1(x^2 - y^3) + h_2(y^2 - y^3)$ to get

a, b, c, d ∈ k[7] g ∈ J.

Total

4

- (UNSERV BOT SMIL

Outline solution to Examination Questions

Unit Code MA 40188	Unit Title ALGEBRAIC CORVES,					
Academic Year 2013 / 14	Examiner ALAS	TAIR CLAW				
Semester	Question No.	Page 2 of 2				

Part

Mark

(c) (ii)

CONSERV BUT SIMILARD

DENTICH to HOMENORE)

$$\phi(x^{2}-y^{3}) = \phi(x^{2})-\phi(y^{3}) = t^{18}-t^{18}=0$$

$$\phi(y^{2}-t^{2}) = \phi(y^{2})-\phi(t^{2}) = t^{12}-t^{12}=0$$
so $T \subseteq \text{Ker}(\phi)$.

For appointe malision, let f \(\text{Ker}(\phi)\). By part (i) write

Then

$$0 = \phi(f)$$
= $\phi(g) + a(t^{4}) + b(t^{4})t^{9} + c(t^{4})t^{6} + d(t^{4})t^{15}$
= $a(t^{4}) + b(t^{4})t^{9} + c(t^{4})t^{6} + d(t^{4})t^{17}$ as ge J

Norice

a(t4), $b(t^4)t^4$, $c(t^4)t^6$, $d(t^4)t^{15}$ involve only terms in which the exponent of t is 0, 1, 2, 3 mod 4 respectively, so each of these polynomials has all coefficients equal 0 by comparing with left hand side of the above. Thus a = b = c = d = 0, leaving $f \in J$ as required. ie J = Ker(p).

(c)(iii) $J = \text{Ker}(\phi)$ is prime because $\frac{|k[x,y,t]|}{|ke(\phi)|} = |m(\phi)| = |k[t^{\epsilon},t^{\epsilon},t^{\epsilon}] \bigwedge$

is a submig of an integral domain, hence an integral domain. Fince Ik algebraically closed, $\mathbb{T}(V(T)) = T$ is prime, so V(T) is irreducible by part (b).

Outline solution to Examination Questions

Unit Code Unit Title MA 40188 ALGEBRAIC CURVES Academic Year 2013/14 Examiner ALASTAIR CRAW Page of Question No. Semester

2

Part

[NEFN]

Mark

21

2

- (b) The nestriction map $ver(x): \mathbb{I}_{k}[x_{1}, x_{n}] \longrightarrow \mathbb{I}_{k}[x]$ is a surjective ring homomorphism. The kernel is {F & |k[x1-x1]: F(p)=0 ApEX}=I(X) 3. V So the statement follows from the first isonorphism theorem.
- (C) \$: X-> Y 18 polynomial if 7 fig. for & [x] s+ \$(p) = (filp)-fin(p)) or equivalently, if & Fi, , Fine k[x, _xin] sit \$(p)=(fi(p), -, fin(p)). The pullback is \$ *: k[Y] -> k[x]: 9 +> 90%.
- For $\pi : k[y_i, y_n] \to k[\Upsilon] : F \to F_k$ set $f_i = \alpha(\pi(y_i))$ for Kj&m. her F; & k[x1,-, xn] be any left of fi from lk[x], ie F_(p)=f_(p) VpFX. Défine K-algebra homes à se Mat d'agren commtes

$$|k[y_1, -y_n] \xrightarrow{\widehat{\alpha}} |k[x_1, -x_n]|$$

$$|k[y_1, -y_n] \xrightarrow{\widehat{\alpha}} |k[x_1, -x_n]|$$

$$|k[y_1, -x_n] \xrightarrow{\widehat{\alpha}} |k[x_1, -x_n]|$$

Notice that &(I(T)) & I(X). Define D: An by $\Phi(\rho) = (F_i(\rho)_i) F_{\alpha}(\rho)_i$, so $\Phi'(\gamma_i) = F_j = \widehat{\chi}(\gamma_i) group \widehat{\Phi} = \widehat{\chi}$. For GEI(Y) and pEX

$$O = \underline{\Phi}^{*}(G)(p) \qquad a \quad \underline{\Phi}^{*}(\underline{\pi}(\tau)) = \overline{\chi}(\underline{\pi}(\tau)) \leq \underline{\pi}(x)$$

$$= G(\underline{\Phi}(p))$$

so \$(p) ∈ V(I(Y)) = Y. Thus \$ = \$\dagger L: X -> Y satisfie of = a by construction.

Outline solution to Examination Questions

Unit Code MA 40188	Unit Title ALCEBRACE	CORVES
Academic Year 2013/14	Examiner ALASTAIR	CRAW
Semester	Question No. 2 P	age 2 of 2

Part

Mark

2

5

- (e)(i) The map ϕ_i is not an isomaphism because it's not even a bijection: $\phi(1) = (0,0) = \phi(-1)$.
 - (ii) The map of is an isomorphism. One approach is ho wasterdam the inverse map: Set 42 to be the restriction to C2 of the payment map

 $\Psi_2:A^2 \longrightarrow A^1: \Psi_2(x,y)=x$ Then

(/20 /2)(+)= /2 (+, +5) = +

and

$$(\varphi_2 \circ \varphi_2) (p_1, p_2) = \varphi_2(p_1)$$

$$= (p_1, p_1)^5$$

$$= (p_1, p_2)$$

as p.5=p2 for (p.,p2)=C2

as required.

Outline solution to Examination Questions

Unit Code MA 40188	Unit Title	ALGEBIE	acc C	URVE	ys-	
Academic Year 2013 / 14	Examiner	ALASTA	CR C	CARW		
Semester	Question No.	3	Page	İ	of	.5.

Mark Part

(a)
$$T_p X = V(g) \subseteq A^n$$
 for $g = Z_1^n \stackrel{f}{\Rightarrow}_{x_0}(p) \cdot (x_0 - p_0)$
= $\{q \in A^n : Z_1^n \stackrel{f}{\Rightarrow}_{x_0}(p) \cdot (q_0 - p_0) = 0\}$.

- (b) We've given $g \in \mathcal{I}(V(f))$. The Nullstellensate implies that g = rad (f). I medicability of fingles (f) is prime and house vadical, so g & (f). This means I he C[x1, -x-] will g=hf
- (c) Pant pEX is singular if offax: (p)=0 for 16 i ≤n.

Proving that the nonsnigular locus is nonempty and Fanshi-gran is equivalent to proving that the snighter locus is a proper, Zanshir-closed subject of X = V(f). Now

$$p \in X$$
 singular (\Rightarrow) $p \in V(f, {}^{\circ}f_{\partial x_{n}}, {}^{\circ}, {}^{\circ}f_{\partial x_{n}})$

$$(\Rightarrow) \quad p \in V(f) \cap V({}^{\circ}f_{\partial x_{n}}) \cap N({}^{\circ}f_{\partial x_{n}}) \oplus N({}^{\circ}f_{\partial x_{n}}) \oplus N({}^{\circ}f_{\partial x_{n}}) \oplus N({}^{\circ}f_{\partial x_{n}}) \cap N({}^{\circ}f_{\partial x_{n}}) \oplus N({}^{\circ}f_{\partial x_$$

Which is faithirdosed, so we need only preve it's prope in W(f) Suppose otherwise. Then by @ each pt of V(4) offax: vanishes at each pair of W(f). By (b) above, 7 his C[x1, x.] satisfying Oflaxe = het for 18 isn. Viewed as a polynomial in xe, degree of offax: & degree of f, favoring affax: = 0. This is true for 15isu, so no xi appear in f guing foll, a contradiction.

(d) (i) Of
$$(\partial x = -3x^2 - 2x = -x(3x+2))$$
 so singula pairs

Of $(\partial y = 2y)$ when $(x_{ij}) \in \{(0,0), (-\frac{3}{2},0)\}$ not an $V(f)$

Total

[BOOKDORK]

> < [HOMEDORY]>

Outline solution to Examination Questions

Unit Code MA 40188	Unit Title ALCEBRAIC CORVES
Academic Year 2013/14	Examiner ALASTAVA CRAW
Semester	Question No. 3 Page 1 of 2

Part

-- [UNSCEN, HAKDOK] ---

Mark

(d)(i) ctd hence Singular only at (0,0).

Need $\frac{\partial y}{\partial t} = 0$ ie 2t = 0 so t = 0. Need $\frac{\partial y}{\partial y} = 0$ ie $2x^2y = 0$ so x = 0 or y = 0. (ii)

- Two cases: $e^{-} x = z = 0$; locus V(x, z) contained in $V(g) \cap V(\frac{\partial g}{\partial x})$ so T is singular along V(x, 2) = Y.
- e z=y=0 and $x\neq 0$, then setting $g(x,0,0)=(x-1)^2x^2=0$ for $x\neq 0$ forces x=1, in and then note $(1,0,0)\in V(\partial y\partial x)$ so I also singular at (1,0,0) & I

hence & Singular along the union $V(x,t) \cup \{(1,0,0)\}.$

Outline solution to Examination Questions

. (BOCKWOOR) ---> [DEF'N]

Unit Code MA 40188	Unit Title	ALG	EBRACC	CUK	UES.		
Academic Year 2013 /14	Examiner	ALA	STAIR (PAI	J		***************************************
Semester	Question No.	4	Page	į	of	2	
Part 1				***************************************			Mark

P= A3- {0}/~ WIR (po,pi,p2)~(90,91,92) 2/ 7AEK-10) (a) such that q= Api for 0 < i = 2. P= U0 = {[po:pi:pz] & P2 | po +0} = {(p/po, p2/po) & A2} = A2 The complement P2 Vo = { [0: p1:p2) < P2} = P1 records the asymptone directions of unbounded course in A2, e-g y=x±1 parallel in A2 are \$\frac{p_2}{p_0} = \frac{p_1}{p_0} \pm 1 in Uo extend to P2=P1 ± Po in IP2. The line at 08' less po=0, ie. pr=p1: bolk lines intersect line at so at [0:1:1] & P2 While records the asymptotic direction 'y=x' of both lines

- The equation f(x,y,x)=0 defining C is a honogeneous (b) cubic in The homogeneous coordinates x, y, & on P2. For The line L= 1P1 and hanogeneas covords 4, v, The vermenta of f to L 13 a homogeneous cubic in u, v which splits (over a possibly larger field) as II (x, u-B, v). The rosts of these factors are the points of intersection LAC A multiple paint of rutesectia corresponds to L tangent to C at p: either L meets C at p with multiplicity 2, so L meets Cat one other point; a L neets Cat an inflection pt.
- (c) The group law is given in terms of intersecting C with desserve lines: given pige C, the line L= pg will

Total

5

--- (RSODUWSVRU)-

- [UNSERN] - [HOMEWORK]

Outline solution to Examination Questions

Unit Code MA 40188	Unit Title ALGEBRAIC CURVES	
Academic Year 2013/14	Examiner ALASTAIR CRAW	
Semester /	Question No. 4 Page 2 of 2	
Part		Mark

Applically meets C in a third point or; the addition in The group law with origh O is given by joining This point is to o and defining ptq to be the third part of rutersection. Also

- · inverse pt -p is easy because the equation $y^2 = f_1(x)$ means lines Monge O one vertical lines, so inverse is reflected in xouris.
- o to define ptp, replace the line pg from the alove by TpC the tangent line (well-defined as C nonsugular). It interests C either in 2p+9 or 3p according to pure mult 2 tangency a inflection as in (b) above.
- (i) 2p=0 means TpC passes through O, re is vertical. This happens at the 3 voob of f(x): Me.
 - (ii) Tangent line to Cat p=(2,4) is y=2x so it passes through Q= (0,0). Since x=0 is a root of f(x)=x3+4x, the pair of has order 2 in the group law. Thus 2p = q : 4p = 2q = 0.