Tópicos de Matemática

Proposta de resolução - 1° teste (15 de novembro de 2017) — duração: 2 horas _____

- 1. Considere que as variáveis proposicionais p, q e r representam as afirmações seguintes:
 - p: A Maria tem 20 valores no teste.
 - q: A Maria resolve todos os exercícios do livro.
 - r: A Maria é aprovada na disciplina de Tópicos de Matemática.

Recorrendo às variáveis anteriores, represente por fórmulas do Cálculo Proposicional as afirmações F_1 , F_2 e F_3 a seguir indicadas.

- F_1 : A Maria não resolve todos os exercícios do livro, mas é aprovada na disciplina de Tópicos de Matemática.
- F_2 : A Maria não tem 20 valores no teste sempre que não resolve todos os exercícios do livro.
- F_3 : A Maria é aprovada na disciplina de Tópicos de Matemática só se resolve todos os exercícios do livro e se tem 20 valores no teste.

As frases F_1 , F_2 e F_3 são representadas, respetivamente, pelas fórmulas

$$((\neg q) \land r), ((\neg q) \rightarrow (\neg p)) \in (r \rightarrow (p \land q)).$$

- 2. Diga, justificando, se são verdadeiras ou falsas, as afirmações seguintes.
 - (a) A fórmula $(p \to \neg q) \land \neg (p \lor (q \leftrightarrow p))$ tem valor lógico verdadeiro sempre que p tem valor lógico falso.

Quando p tem valor lógico falso, a variável proposicional q pode ter valor lógico verdadeiro ou falso. Analisando estes dois casos, conclui-se que a fórmula $\varphi:(p\to \neg q)\land \neg(p\lor (q\leftrightarrow p))$ não tem necessariamente valor lógico verdadeiro quando p tem valor lógico falso.

p	q	$\neg q$	$p \to \neg q$	$q \leftrightarrow p$	$p \lor (q \leftrightarrow p)$	$\neg(p \lor (q \leftrightarrow p))$	φ
0	1	0	1	0	0	1	1
0	0	0 1	1	1	1	0	0

De facto, quando p e q são falsas, a fórmula φ também é falsa. Logo, a afirmação é falsa.

(b) Se φ e ψ são fórmulas proposicionais logicamente equivalentes, então $\neg \varphi \to \neg (\varphi \lor \psi)$ é uma tautologia.

Se φ e ψ são fórmulas logicamente equivalentes, então $\varphi \leftrightarrow \psi$ é uma tautologia, pelo que as fórmulas φ e ψ têm o mesmo valor lógico (são ambas verdadeiras ou ambas falsas) para cada combinação de valores lógicos atribuídos às variáveis de φ e ψ . Sendo assim, temos dois casos a considerar:

- (1) φ e ψ têm valor lógico 0;
- (2) φ e ψ têm valor lógico 1.

Caso (1): Se φ e ψ têm valor lógico 0, então $\varphi \lor \psi$ tem valor lógico 0, pelo que $\neg(\varphi \lor \psi)$ tem valor lógico 1. Logo $\neg \varphi \to \neg(\varphi \lor \psi)$ tem valor lógico 1.

Caso (2): Se φ e ψ têm valor lógico 1, então $\neg \varphi$ tem valor lógico 0, pelo que $\neg \varphi \to \neg (\varphi \lor \psi)$ tem valor lógico 1.

Atendendo a que a fórmula $\neg \varphi \rightarrow \neg (\varphi \lor \psi)$ tem sempre valor lógico 1, independentemente do valor lógico das variáveis que nela ocorrem, concluímos que esta fórmula é uma tautologia. Assim, a afirmação é verdadeira.

- 3. Considerando que p representa a proposição $\forall_{x \in A} ((\exists_{y \in A} \ x = 3 + y) \to (y \le 0 \lor y \ge 2)),$
 - (a) Diga, justificando, se p é verdadeira para:

(i) $A = \{-5, -2, 2, 5\}$;

A afirmação é verdadeira para A se, para cada $x \in A$, a implicação

$$(\exists_{y \in A} \ x = 3 + y) \to (y \le 0 \lor y \ge 2)$$

é verdadeira.

x=-5: Não existe $y\in A$ tal que x=3+y, pelo que a proposição $\exists_{y\in A}\ x=3+y$ é falsa. Logo, a implicação $(\exists_{y\in A}\ x=3+y)\to (y\le 0 \lor y\ge 2)$ é verdadeira.

x=-2: Tem-se -2=3+(-5) e $-5\in A$. Logo a proposição $\exists_{y\in A}\ x=3+y$ é verdadeira. Uma vez que $-5\le 0$, a proposição $y\le 0\lor y\ge 2$ também é verdadeira. Logo, a implicação $(\exists_{y\in A}\ x=3+y)\to (y\le 0\lor y\ge 2)$ é verdadeira.

x=2: Não existe $y\in A$ tal que x=3+y, pelo que a proposição $\exists_{y\in A}\ x=3+y$ é falsa. Logo, a implicação $(\exists_{y\in A}\ x=3+y) \to (y\leq 0 \lor y\geq 2)$ é verdadeira.

x=5: Tem-se 5=3+2 e $2\in A$. Logo a proposição $\exists_{y\in A}\ x=3+y$ é verdadeira. Uma vez que $y\geq 2$, a proposição $y\leq 0\lor y\geq 2$ também é verdadeira. Logo, a implicação $(\exists_{y\in A}\ x=3+y)\to (y\leq 0\lor y\geq 2)$ é verdadeira.

Logo a proposição p é verdadeira para A.

(ii) $A = \{-5, -2, 1, 4, \}.$

A afirmação é verdadeira para A se, para cada $x \in A$, a implicação

$$(\exists_{y \in A} \ x = 3 + y) \to (y \le 0 \lor y \ge 2)$$

é verdadeira.

Considerando x=4 tem-se x=3+1. Então, uma vez que x=3+1 e $1\in A$, a proposição $\exists_{y\in A}\ x=3+y$ é verdadeira. Porém, a proposição $y\leq 0 \lor y\geq 2$ é falsa, pelo que a implicação $(\exists_{y\in A}\ x=3+y)\to (y\leq 0 \lor y\geq 2)$ é falsa.

Logo a proposição p é falsa para A.

(b) Indique, sem recorrer ao conetivo $negac\tilde{ao}$, uma proposição equivalente a $\neg p$.

$$\neg p \Leftrightarrow \exists_{x \in A} \ (\exists_{y \in A} \ x = 3 + y \land (y > 0 \land y < 2)).$$

4. Mostre que, para qualquer inteiro n, se $(n+1)^2$ não é múltiplo de 2, então $3n^2+6n-3$ não é múltiplo de 6.

Sejam p(n) e q(n) os predicados

$$p(n)\colon\thinspace (n+1)^2$$
 não é múltiplo de 2; $q(n)\colon\thinspace 3n^2+6n-3$ não é múltiplo de $6.$

Pretendemos mostrar que a proposição $\forall_{n\in\mathbb{N}}\ (p(n)\to q(n))$ é verdadeira. No sentido de fazer a prova por redução ao absurdo, admitamos que existe $n\in\mathbb{N}$ tal que $(n+1)^2$ não é múltiplo de 2 e $3n^2+6n-3$ é múltiplo de 6. Uma vez que $3n^2+6n-3$ é múltiplo de 6, então existe $k\in\mathbb{N}$ tal que $3n^2+6n-3=6k$, donde segue que $3(n+1)^2-6=6k$. Logo $(n+1)^2=2(k+1)$, com $k+1\in\mathbb{N}$ e, portanto, $(n+1)^2$ é múltiplo de 2 (o que contradiz a hipótese de que $(n+1)^2$ não é múltiplo de 2).

5. Considere os conjuntos

$$A = \{0, 17, \{5, 8\}\}, \quad B = \{1, 2\}, \quad C = \{0, (\{5, 8\}, 1), \{17, 2\}, (0, 2), (2, 17)\}, \quad D = \{x \in \mathbb{Z} \ : \ 2|x| + 1 \in A\}.$$

(a) Determine $(A \times B) \cap C$.

Uma vez que

$$A \times B = \{(0,1), (0,2), (17,1), (17,2), (\{5,8\},1), (\{5,8\},2)\},\$$

tem-se $(A \times B) \cap C = \{(0,2), (\{5,8\},1)\}.$

(b) Dê exemplo de um conjunto E tal que $A \cap \mathcal{P}(E) \neq \emptyset$ e $D \setminus E = \emptyset$.

Atendendo a que $B=\{x\in\mathbb{Z}\ :\ 2|x|+1\in A\}$ e, para todo $x\in\mathbb{Z}$,

$$\begin{aligned} 2|x| + 1 \in A &\Leftrightarrow 2|x| + 1 = 0 \lor 2|x| + 1 = 17 \lor 2|x| + 1 = \{5, 8\} \\ &\Leftrightarrow i(x) \lor (x = -8 \lor x = 8) \lor i(x) \\ &\Leftrightarrow x = -8 \lor x = 8. \end{aligned}$$

tem-se $B = \{-8, 8\}.$

Logo,

$$B \setminus E = \emptyset$$
 se e só se $\{-8, 8\} \subseteq E$.

Por outro lado.

$$A \cap \mathcal{P}(E) \neq \emptyset$$
 se e só se $\{5,8\} \in \mathcal{P}(E)$ se e só se $\{5,8\} \subseteq E$.

Assim, $E = \{-8, 5, 8\}$ é exemplo de um conjunto tal que $B \setminus E = \emptyset$ e $A \cap \mathcal{P}(E) \neq \emptyset$ $(A \cap \mathcal{P}(E) = \{\{5, 8\}\})$.

- 6. Diga, justificando, se cada uma das afirmações que se seguem é ou não verdadeira para quaisquer conjuntos A, B e C.
 - (a) $(A \cup B) \times C = (A \times C) \cup (B \times C)$.

A afirmação é verdadeira.

$$\begin{array}{lll} \forall_{(x,y)} \ (x,y) \in (A \cup B) \times C & \Leftrightarrow & x \in (A \cup B) \wedge y \in C & \text{ (definição de produto cartesiano)} \\ & \Leftrightarrow & (x \in A \vee x \in B) \wedge y \in C & \text{ (definição de união)} \\ & \Leftrightarrow & (x \in A \wedge y \in C) \vee (x \in B \wedge y \in C) & \text{ (propriedade distributiva da conjunção em relação à disjunção)} \\ & \Leftrightarrow & (x,y) \in A \times C \vee (x,y) \in B \times C & \text{ (definição de produto cartesiano)} \\ & \Leftrightarrow & (x,y) \in (A \times C) \cup (B \times C) & \text{ (definição de união)}. \end{array}$$

Logo $(A \cup B) \times C = (A \times C) \cup (B \times C)$.

(b) Se $\mathcal{P}(A \cap B) \subseteq \mathcal{P}(C)$, então $A \subseteq C$ e $B \subseteq C$.

A afirmação é falsa.

Contra-exemplo: Sejam $A=\{1,2\},\ B=\{1,3\}$ e $C=\{1\}$. Então $A\cap B=\{1\}$ e, claramente, $\mathcal{P}(A\cap B)\subseteq\mathcal{P}(C)$, pois $\mathcal{P}(A\cap B)=\{\emptyset,\{1\}\}=\mathcal{P}(C)$. No entanto, $A\nsubseteq C$ (pois $2\in A$ e $2\not\in C$).

(c) Se $A \setminus B = A \setminus C$, então $A \cap B = A \cap C$.

A afrimação é verdadeira.

Admitamos que $A \setminus B = A \setminus C$. Então prova-se que $A \cap B = A \cap C$. De facto, se x é um objeto tal que $x \in A \cap B$, então $x \in A \wedge x \in B$ é uma proposição verdadeira. Logo $x \not\in A \setminus B$. Consequentemente, como $A \setminus B = A \setminus C$, tem-se que $x \not\in A \setminus C$, pelo que a proposição $x \not\in A \vee x \in C$ é verdadeira. Mas $x \not\in A$ é uma proposição falsa e, portanto, $x \in C$. Assim, $x \in A \wedge x \in C$ é uma proposição verdadeira, pelo que $x \in A \cap C$. Logo, $A \cap B \subseteq A \cap C$. De modo análogo prova-se que $A \cap C \subseteq A \cap B$.

7. Prove, por indução nos naturais, que, para todo o natural n,

$$3 \cdot 8 + 6 \cdot 11 + \ldots + 3n(3n+5) = 3n(n+1)(n+3).$$

Dado $n \in \mathbb{N}$, seja p(n) o predicado

$$p(n): 3 \cdot 8 + 6 \cdot 11 + \ldots + 3n(3n+5) = 3n(n+1)(n+3).$$

Pretendemos mostrar que a proposição $\forall_{n\in\mathbb{N}}\ p(n)$ é verdadeira. A prova é feita por indução nos naturais.

(1) Base de indução (n = 1): Para n = 1, tem-se

$$(3 \times 1) \times (3 \times 1 + 5) = 24 = (3 \times 1) \times (1 + 1) \times (1 + 3),$$

pelo que p(1) é verdadeiro.

(2) Passo de indução: Seja $k \in \mathbb{N}$. Admitamos, por hipótese de indução, que, p(k) é verdadeiro, isto é, que

$$3 \cdot 8 + 6 \cdot 11 + \ldots + 3k(3k+5) = 3k(k+1)(k+3).$$

Pretendemos mostrar que p(+1) é verdadeiro, ou seja, que

$$3 \cdot 8 + 6 \cdot 11 + \ldots + 3k(3k+5) + 3(k+1)(3(k+1)+5) = 3(k+1)((k+1)+1)((k+1)+3).$$

Ora, atendendo a que p(k) é verdadeiro, tem-se

$$3 \cdot 8 + 6 \cdot 11 + \ldots + 3k(3k+5) + 3(k+1)(3(k+1)+5) = 3k(k+1)(k+3) + 3(k+1)(3(k+1)+5)$$

$$= 3(k+1)[k(k+3) + (3(k+1)+5)]$$

$$= 3(k+1)(k^2 + 6k + 8)$$

$$= 3(k+1)(k+2)(k+4)$$

$$= 3(k+1)((k+1)+1)((k+1)+3).$$

Logo,

$$\forall_{k \in \mathbb{N}} \ p(k) \Rightarrow p(k+1).$$

De (1), (2) e do Princípio de Indução para \mathbb{N} , concluímos que, para todo $n \in \mathbb{N}$, p(n) é verdadeiro.