Lecture 03 (System Architecture)

Won't cover initial few chapters from Seshia book (related to FSM design)

1 Uploading Code to Arduino Board

- 1. AES takes about 25Kb/s (35 microseconds per byte)
- 2. If 16 bytes of data is to be sent, then about 0.5ms of overhead is observed
- 3. This is about 15% overhead total (encryption + decryption) for a powertrain ECU

2 Design Characteristics

- 1. Interaction with physical world
- 2. Specific task
- 3. Real-time (safety-critical)
- 4. Large numbers
- 5. Low cost
- 6. Resource constraints

3 Design Process

- 1. Highly optimised
 - interactions among different components
 - detailed implementation
- 2. Concurrency
 - timing
- 3. Correctness
 - modelling at high and low abstraction levels

3.1 Example of Concurrency + Correctness

- 1. A drone was storing temperature and pressure value at the same memory location to reduce the memory consumption
- 2. Processor reads the wrong value leads to drastic consequences

4 Operating System (types)

- 1. No OS
- 2. Real-time operating system (RTOS)
- 3. Embedded linux distribution we will use Raspberry Pi boards in this course

5 CPU (types)

- 1. Atmel AVR Microcontroller
 - 8-bit
 - Arduino uno
- 2. MicroChip PIC microcontroller
 - 16-bit
- 3. ARM Cortex-M microcontroller
 - 32-bit
 - smart-watch etc
- 4. ARM Cortex-A microcontroller
 - 64-bit
 - Raspberry Pi 4

6 System on Chip (SoC)

- 1. Different components are all integrated on a single chip
- 2. Has components like DRAM, processor, memory controller, etc
- 3. Nothing is going to change in the system (components cannot be modified) helps in optimisations
- 4. Some more components are peripherals, interrupt controller, timers, power, clocks, boot flash

7 Parallelism

- 1. Instruction level
 - instruction pipelining
 - superscalar execution
 - OOO execution
- 2. Data level
 - SIMD
- 3. Thread level
 - multithreading

8 ISA

1. ARM

- in-order cores
- low power and lesser area
- 2. Intel Atom
 - \bullet in-order execution
 - data-level parallelism