Discrete Structures and Theory of Logic Lecture-26

Dr. Dharmendra Kumar (Associate Professor) United College of Engineering and Research, Prayagraj October 2, 2023

Theory of inference for statement calculus

Let A and B be two statement formulas. We say that "B logically follows from A" or "B is a alid conclusion of the premise A" iff $A \to B$ is a tautology. That is, $A \Rightarrow B$.

A conclusion C follows from a set of premises $\{H_1, H_2, \dots, H_m\}$ iff

$$H_1 \wedge H_2 \wedge \dots \wedge H_m \Rightarrow C$$

Exercise

- 1. Determine whether the conclusion C follows logically from the premises H_1 and H_2 .
- (a) $H_1: P \rightarrow Q$
- (b) $H_1: P \rightarrow Q$
- (c) $H_1: P \rightarrow Q$
- (d) $H_1 : \neg P$
- (e) $H_1: P \rightarrow Q$

- H2 : P
- $H_2: \neg P$
- $H_2: \neg(P \wedge Q)$
- $H_2: P \leftrightarrow Q$
- $H_2: Q$

- C : Q
- C:Q
- $C: \neg P$
- $C: \neg (P \wedge Q)$
 - *C* : *P*

Exercise

- 2. Show that the conclusion C follows from the premises $H_1, H_2,$ in the following cases:-
- (a) $H_1: P \rightarrow Q$

 $C:P\to (P\wedge Q)$

(b) H_1 : $\neg P \lor Q$

- H_2 : $\neg(Q \land \neg R)$
- H_3 : $\neg R$

- $C: \neg P$
- (c) $H_1 : \neg P$

 $H_2: P \vee Q$

C : Q

(d) $H_1 : \neg Q$

 $H_2: P \rightarrow Q$ $H_2: Q \rightarrow R$ $C: \neg P$ $C: P \rightarrow R$

(e) $H_1: P \to Q$

 $H_2: P \vee \neg P$

C : R

(f) $H_1: R$

Exercise

3. Determine whether the conclusion C is valid in the following, when H_1, H_2, \ldots are the premises.

(a)
$$H_1: P \to Q$$
 $H_2: \neg Q$ $C: P$

(b)
$$H_1: P \vee Q$$
 $H_2: P \rightarrow R$ $H_3: Q \rightarrow R$ $C: R$

(c)
$$H_1: P \to (Q \to R)$$
 $H_2: P \land Q$ $C: R$
(d) $H_1: P \to (Q \to R)$ $H_2: R$ $C: P$

(e)
$$H_1: \neg P$$
 $H_2: P \lor Q$ $C: P \land Q$

4. Without constructing a truth table, show that $A \wedge E$ is not a valid consequence of

$$A \leftrightarrow B, B \leftrightarrow (C \land D), C \leftrightarrow (A \lor E)$$
 and $A \lor E$

Also show that $A \lor C$ is not a valid consequence of

$$A \leftrightarrow (B \rightarrow C), B \leftrightarrow (\neg A \lor \neg C), C \leftrightarrow (A \lor \neg B)$$
 and B

Implication rules

1. Simplification

$$P \wedge Q \Rightarrow P, P \wedge Q \Rightarrow Q$$

2. Addition

$$P \Rightarrow P \lor Q, Q \Rightarrow P \lor Q$$

3. Disjunctive Syllogism

$$\neg P, P \lor Q \Rightarrow Q$$

4. Modus Ponens

$$P, P \rightarrow Q \Rightarrow Q$$

5. Modus Tollens

$$\neg Q, P \rightarrow Q \Rightarrow \neg P$$

6. Hypothetical Syllogism

$$P \rightarrow Q, Q \rightarrow R \Rightarrow P \rightarrow R$$

7. Dilemma

$$P \lor Q, P \to R, Q \to R \Rightarrow R$$

8. Conjunction

$$P, Q \Rightarrow P \wedge Q$$

Rules of Inference

 $\label{eq:Rule P: A premise may be introduced at any point in the derivation.}$

Rule T: A formula S may be introduced in a derivation if S is tautology implied by any one or more of the preceding formulas in the derivation.

Example: Demonstrate that R is a valid inference from the premises

$$P
ightarrow Q$$
, $Q
ightarrow R$ and P.

Solution:

- (1) $P \rightarrow Q$ By rule P
- (2) $Q \rightarrow R$ By rule P
- (3) $P \rightarrow R$ By rule T, (1), (2) and hypothetical syllogism
- (4) P By rule P
- (5) R By rule T, (3), (4) and modus ponens

Example: Show that $R \vee S$ follows logically from the premises $C \vee D$, $(C \vee D) \rightarrow \neg H$, $\neg H \rightarrow (A \wedge \neg B)$ and $(A \wedge \neg B) \rightarrow (R \vee S)$.

Solution:

(1)
$$(C \lor D) \rightarrow \neg H$$

(2)
$$\neg H \rightarrow (A \land \neg B)$$

(3)
$$C \lor D \rightarrow (A \land \neg B)$$

(4)
$$(A \land \neg B) \rightarrow (R \lor S)$$

(5)
$$C \lor D \rightarrow (R \land S)$$

(6)
$$C \vee D$$

(7)
$$R \vee S$$

By rule P

By rule P

By rule T, (1), (2) and hypothetical syllogism

By rule P

By rule T, (3), (4) and hypothetical syllogism

By rule P

By rule T, (5), (6) and modus ponens

Example: Show that $R \vee S$ is tautologically implied by $(P \vee Q) \wedge (P \to R) \wedge (Q \to S)$.

Solution:

(1)
$$P \vee Q$$

(2)
$$\neg P \rightarrow Q$$

(3)
$$Q \rightarrow S$$

$$(4) \neg P \to S$$

(5)
$$\neg S \rightarrow P$$

$$\neg S \rightarrow P$$
)

(6)
$$P \rightarrow R$$

$$(7) \neg S \rightarrow R$$

(8)
$$R \vee S$$

By rule T, (1) and
$$(P \rightarrow Q \Leftrightarrow \neg P \lor Q)$$

By rule P

By rule T, (2), (3) and hypothetical syllogism

By rule T, (4) and
$$(\neg P \rightarrow S \Leftrightarrow$$

By rule P

By rule T, (5), (6) and hypothetical syllogism

By rule T, (7)and
$$(P \rightarrow Q \Leftrightarrow \neg P \lor Q)$$