Section 1
f20220335@goa.bits-pilani.ac.in Switch account
Oraft saved
Your email will be recorded when you submit this form
Let us define equi-satisfiable relation over the set of wffs as follows. A and B are equi-satisfiable iff (A is satisfiable iff B is satisfiable). Which of the following formulas are true?
Equi-satisfiable is a reflexive relation
Equi-satisfiable is a symmetric relation
Equi-satisfiable is a transitive relation
Equi-satisfiable is an equivalence relation
None of these

Which of the following statements are true?
 Every atomic proposition is a literal Every formula is a literal Every literal is an atomic proposition None of these Every literal is a formula
Which of the following statements are true? "\cup" denotes set union and "\" denotes set minus. ✓ If U = A then U \cup {B} = A for any B ✓ If U =A then U\cup {B} = A for any valid formula B ☐ If U =A then U\{B} = A for any B ☐ If U =A then U\{B} = A for any valid B

Let us define a set of good formulas inductively.
 Every atomic proposition p is a good formula. If A is a good formula, then (~A) is a good formula. If A and B are good formulas then (A/\B) is a good formula. Consider a semantic tableaux T of a good formula. Recall U(n) denotes the set of formulas associated with the node n in T. For which of the following measures, W(n) < W(n₁) where n is child of n₁?
\bigvee W(n)= number of operators in U(n).
W(n)= number of conjunct operators (/\) in U(n)
\bigvee W(n)=number of unary operators in U(n) + 2 *number of conjunct operators in U(n)
\bigvee W(n)= number of conjunct operators in U(n)+2* number of unary operators in U(n)
None of these
Which of the following statements are true about box clause?
Box clause is valid
✓ Box clause is unsatisfiable
✓ Box clause is a clause without any literals
✓ Any clause set contacting box clause is unsatisfiable
None of these

Consider the following logic program P= {likes(john,flowers). likes(mary,food). likes(mary,oj). likes(john,oj). likes(john,mary). likes(paul,mary).}. What Prolog will return for the query likes(mary,X)?
None of these
x
✓ oj
Paul
☐ John
Let us define a set of good formulas inductively. Two fixed atomic proposition p and q are good formulas. If A and B are good formulas then (A<->B) is a good formula and (A \land B) is a good formula. Which of the following statements are true?
Every good formula is valid or equivalent to (p/\q)
There are no good formulas which are valid.
Every good formula is equivalent to p or q or (p->q)
None of these
Every good formula is equivalent to either p or q
Let C1={p, \sim q, \sim r}, C2={p,q, \sim r} be two clauses. Which of the following statements are true?
✓ {p,~r} is a resolvent of C1 and C2
[{p,r,~r} is a resolvent of C1 and C2
[{p} is a resolvent of C1 and C2
[{p,q,~q} is a resolvent of C1 and C2
None of these

Which of the following statements are true? Recall, we will use set notation for CNF formulas only.
[{{p,q,r}} is a horn formula
{{p,~q,~r},{~q,~r}} is a horn formula
{{p},{q},{r}} is a horn formula
{{~q,~r}{~p,~r}} is a horn formula
None of these
Let us define equi-satisfiable relation over the set of wffs as follows. A and B are equi-satisfiable iff (A is satisfiable iff B is satisfiable). Which of the following statements are true?
If A and B are equi-satisfiable then A is satisfiable
If A and B are valid then A and B are equi-satisfiable
If A and B are satisfiable then A and B are equi-satisfiable
Atomic propositions p and q are equi-satisfiable.
None of these
Consider the formula (p\/~q) /\ (p/\~q).
None of these
All the semantic tableaux of the above formula are closed
There exists an unique semantic tableaux for the above formula
Any semantic tableaux of the above formula will have at least 6 nodes
All the semantic tableaux of the above formula are open

Which of the following is true about bi-implication operator in a semantic tableau?
None of these
(A<-> B) is an alpha-formula with alpha1=(A->B), alpha2=(B ->A)
(A<-> B) is an alpha-formula with alpha1=A, alpha2=B
\sim (A<-> B) is a beta-formula with beta1=(\sim A)/\B, beta2=A/\(\sim B)
(A<->B) is a beta formula with beta1=A, beta2=B
Let S be a set of clauses. Each clause in S has at most three literals. Number of clauses in S is k and the number of atomic propositions used in S is at most n. Which of the following statements are true?
None of these
Number of clauses in Res*(S) is at most n^3+n
Number of clauses in Res*(S) is at least k
Each clause in Res*(S) has at most four literals
Number of clauses in Res*(S) is at most k^3+k
Which of the following restrictions of propositional logic formulas lead to polynomial running time algorithm for the satisfiability problem? Restricting to DNF formulas Restricting to CNF formulas Restricting to Horn formulas
Restricting to CNF formulas in which if a literal occurs in the formula then its complementary pair will not occur in the formul

Which of the following statements are true about Semantic tableau method?
✓ It is a syntactic method
It is an efficient method
To apply this method, formula should be in DNF
None of these
To apply this method, formula should be in CNF
Which of the following statements are true about Resolution?
Resolution is an efficient method
To apply resolution method, formula should be in CNF
To apply resolution method, formula should be in DNF
None of these
Resolution is a syntactic method
Let us define equi-satisfiable relation over the set of wffs as follows. A and B are equi-satisfiable iff (A is satisfiable iff B is satisfiable). Which of the following statements are true?
equi-satisfiable iff (A is satisfiable iff B is satisfiable). Which of the following
equi-satisfiable iff (A is satisfiable iff B is satisfiable). Which of the following statements are true?
equi-satisfiable iff (A is satisfiable iff B is satisfiable). Which of the following statements are true? If A and B are equi-satisfiable, then A and B are valid
equi-satisfiable iff (A is satisfiable iff B is satisfiable). Which of the following statements are true? If A and B are equi-satisfiable, then A and B are valid If A and B are equi-satisfiable, then A and B are satisfiable
equi-satisfiable iff (A is satisfiable iff B is satisfiable). Which of the following statements are true? If A and B are equi-satisfiable, then A and B are valid If A and B are equi-satisfiable, then A and B are satisfiable Atomic propositions p and ~p are equi-satisfiable.

Which of the following statements are true? Formulas are represented using clause set notation. Here \box denotes the box clause.
[\box} is equivalent to the empty clause set {}
{{p}, \box} is equi-satisfiable to {\box}
[{{p}, \box} is equi-satisfiable to {p}
None of these
[{{p}, \box} is equivalent to the empty clause set {}
Which of the following statements are true about Res operator? Recall that for a given set of clauses S, Res(S)=S \cup {R: R is a resolvent of two clauses in S} and \box denotes the box clause.
For all set of clauses S, Res*(S)=Res(S)
For all set of clauses S, Res(S)=S
For all set of clauses S, Res(S) is equivalent to S
If S is unsatisfiable, then Res(S)={\box}
None of these

Which of the statements are true about the following algorithm for validity problem.
Algorithm simple-validity(A)
If A is an atomic. proposition then return Yes
else return No
Algorithm simple-validity is sound for validity problem
None of these
Algorithm simple-validity is complete for validity problem
Algorithm simple-validity is neither complete nor sound for validity problem
Algorithm simple-validity terminates on all inputs

Page 2 of 2

Back

Submit

Clear form

Never submit passwords through Google Forms.

This form was created inside of BITS Pilani University. Report Abuse

Google Forms