[Total No. of Questions: 8]

T.E. (Comp.) (Semester - V) Examination, May 2011 **AUTOMATA LANGUAGE AND COMPUTATIONS**

Duration: 3 Hours Total Marks: 100 Instructions: 1) Answer any five questions, selecting at least one from each Module. Assume suitable data if, necessary. 2) **MODULE - I** a) Is it possible to obtain an equivalent Moore machine corresponding to a Mealy Q1)machine? Justify your answer.

- [5] b) Draw \in -NFA for following regular expression. Convert the obtained \in -NFA to NFA. $(0+1)(01)^*(011)^*$.
 - [8] c) Prove using mathematical induction that for all $n \ge 0.5^n - 2^n$ is divisible by 3. [5]
 - d) Find regular expression for language of stungs of length one or more that contains only letters, digits and underscores (-) and begins with letter or underscore. [2]
- a) State and prove part 1 of Kleene's theorem. Q2)[8] b) Convert the following NFA to DFA. [4]

Write regular expressions for the following:

[6]

- Set of strings consisting of even number of a's followed by odd number of i)
- Set of 0's and 1's without any consecutive 1's.
- d) State pumping lemma for regular sets.

[2]

MODULE - II

a) Obtain CFG to generate the following language. Q3)[6]

 $L = \{a^n b^m \mid m > n \text{ and } n \ge 0\}$ i)

ii) $L = \{w \mid w \in \{a, b\}^*, na(w) \neq nb(w)\}$

b) Construct a PDA for the following grammar [6]

 $S \rightarrow aABC$

 $A \rightarrow aB|a$

 $B \rightarrow bAb$

 $C \rightarrow a$

	c)	Enumerate the rules involved in constructing a CFG from a push Down Auton	
	d)	Check whether the following grammar is ambigious. Justify your answer.	[4] [4]
		$S \rightarrow aB bA$	
		$A \rightarrow aS bAA a$	
		$B \rightarrow bS aBB b$	
Q4)	a)	Define:	[4]
		i) Push Down Automata.	
		ii) Context Free Grammar.	
	b)	Convert the following grammar to Greibach Normal form.	[8]
		$A \rightarrow BC$, -
		$B \to CA b$	
		$C \to AB a$	
	c)	Obtain a CFG corresponding to the following PDA.	[6]
		1. $\delta(q_0, 0, z_0) = (q_0, x z_0)$	
		2. $\delta(q_0, 0, x) = (q_0, x x)$ 3. $\delta(q_0, 1, x) = (q_1, \epsilon)$	
		4. $\delta(q_1, 1, x) = (q_1, \in)$	
		5. $\delta(q_1, \in, x) = (q_1, \in)$	
		6. $\delta(q_1, \in, z_0) = (q_1, \in)$	
	d)	State pumping lemma for context free languages.	[2]
		MODULE - III	_
Q5)	a)	Define:	[6]
		i) Multitape Turing Machine.	
		ii) Non Deterministic Turing Machine.	
		iii) Acceptance by a Turing Machine.	
	b)	Construct a Turing machine to accept the language.	[6]
		$L = \{w w \text{ is even and } \Sigma = \{a, b\}\}.$	
	c)	Explain how a universal Turing Machine is constructed. Use example to illus the construction.	trate [8]
Q6)	a)	State and explain Church Turing Thesis.	[4]
	b)	Construct a Turing machine to compute the function $f(x) = x + y$ where x and	
		positive integers. Assume Turing Machine to use unary notation.	[6]

XXXX