Hope Artificial Intelligence

Assignment-Regression Algorithm

Download Set: *

Google Drive Link Click here .

Git Hub Link: https://raw.githubusercontent.com/RamishaRaniK/dataset/main/insurance_pre.csv

Problem Statement or Requirement:

A client's requirement is, he wants to predict the insurance charges based on the several parameters. The Client has provided the dataset of the same.

As a data scientist, you must develop a model which will predict the insurance charges.

1.) Identify your problem statement

The problem statement in this scenario is to develop an AI model that can predict insurance charges for individuals based on several Inputs contained in the provided dataset.

- 2.) Tell basic info about the dataset (Total number of rows, columns)

 Number of rows 1137

 number of columns 6
- 3.) Mention the pre-processing method if you're doing any (like converting string to number nominal data) dataset=pd.get_dummies(dataset,drop_first=True)-pd.get_dummies method is used to convert the string values into number values.
- 4.) Develop a good model with r2_score. You can use any machine learning algorithm; you can create many models. Finally, you have to come up with final model.
- 5.) All the research values (r2_score of the models) should be documented. (You can make tabulation or screenshot of the results.)
- 6.) Mention your final model, justify why u have chosen the same.

Random Forest

criterion	n_estimators	Values
poisson	1000	0.854861868

R2_Score is better than other models.

Kindly create Repository in the name Regression Assignment.

Upload all the ipynb and final document in the pdf Communication is important (How

Multiple linear Regression

Value

0.789479035

Support Vector Machine

kernel	gamma	Values
linear	scale	-0.010102665
poly	scale	-0.075699656
rbf	scale	-0.083382386
sigmoid	scale	-0.075429243
precomputed	scale	ValueError: Precomputed matrix must be a square matrix. Input is a 936x5 matrix.
linear	auto	-0.010102665
poly	auto	-0.075699656
rbf	auto	-0.083382386
sigmoid	auto	-0.075429243
precomputed	auto	ValueError: Precomputed matrix must be a square matrix. Input is a 936x5 matrix.

Decision Tree

criterion	splitter	Values
squared_error	random	0.75412567
friedman_mse	random	0.664306406
absolute_error	random	0.74092581
poisson	random	0.736888486
squared_error	best	0.681842956
friedman_mse	best	0.688845637
absolute_error	best	0.698828727
poisson	best	0.715818957

Defalult

Random Forest

criterion	n_estimators	Values
squared_error	50	0.849832932
friedman_mse	50	0.850071614
absolute_error	50	0.852665599
poisson	50	0.849107596
squared_error	100	0.853830791
friedman_mse	100	0.854051894
absolute_error	100	0.852009362
poisson	100	0.852633426
squared_error	1000	0.854177812
friedman_mse	1000	0.853737812
absolute_error	1000	0.853767376
poisson	1000	0.854861868

www.hopelearni ng.net