Damian Trilling

d.c.trilling@uva.nl, @damian0604

14-06-2024. 12.30-13.30

Vrije Universiteit Amsterdam

Today

Top-down vs bottom-up

Predicting things

You have done it before!

From regression to classification

Machine Learning for Opinions

Conceptual clarifications

(Traditional)) non-SML approaches

An implementation

Classifiers

Vectorizers

Summing up

Revisiting the difference between the dictionary approach and

Top-down vs bottom-up

Methodological approach

	Counting and Dictionary	Supervised Machine Learning	Unsupervised Machine Learning
Typical research interests and content features	visibility analysis sentiment analysis subjectivity analysis	frames topics gender bias	frames topics
Common statistical procedures	string comparisons counting	support vector machines naive Bayes	principal component analysis cluster analysis latent dirichlet allocation semantic network analysis
	deductive		inductive

Boumans and Trilling, 2016

The same logic applies to non-textual data!

Methodological approach

	Counting and Dictionary	Supervised Machine Learning	Unsupervised Machine Learning
Typical research interests and content features	visibility analysis sentiment analysis subjectivity analysis	frames topics gender bias	frames topics
Common statistical procedures	string comparisons counting	support vector machines naive Bayes	principal component analysis cluster analysis latent dirichlet allocation semantic network analysis
	deductive		inductive

Boumans and Trilling, 2016

The same logic applies to non-textual data!

Supervised machine learning

You have a dataset with both predictor and outcome (independent and dependent variables; features and labels)

— a labeled dataset.

Unsupervised machine learning

Supervised machine learning

You have a dataset with both predictor and outcome (independent and dependent variables; features and labels) — a labeled dataset. Think of regression: You measured x1, x2, x3 and you want to predict y, which you also measured

Unsupervised machine learning

You have no labels.

Supervised machine learning

You have a dataset with both predictor and outcome (independent and dependent variables; features and labels) — a labeled dataset. Think of regression: You measured x1, x2, x3 and you want to predict y, which you also measured

Unsupervised machine learning

You have no labels. (You did not

Again, you already know some techniques to find out how x1,

- Principal Component Analysis
 (PCA) and Singular Value
 Decomposition (SVD)
- Cluster analysis
- Topic modelling (Latent Dirichlett

Supervised machine learning

You have a dataset with both predictor and outcome (independent and dependent variables; features and labels) — a labeled dataset. Think of regression: You measured x1, x2, x3 and you want to predict y, which you also measured

Unsupervised machine learning

You have no labels. (You did not measure y)

Again, you already know some techniques to find out how x1, x2,...x_i co-occur from other courses:

- Principal Component Analysis
 (PCA) and Singular Value
 Decomposition (SVD)
- Cluster analysis
- Topic modelling (Latent Dirichlet

Supervised machine learning

You have a dataset with both predictor and outcome (independent and dependent variables; features and labels) — a labeled dataset. Think of regression: You measured x1, x2, x3 and you want to predict y, which you also measured

Unsupervised machine learning

You have no labels. (You did not measure y)

Again, you already know some techniques to find out how x1, x2,...x_i co-occur from other courses:

- Principal Component Analysis (PCA) and Singular Value Decomposition (SVD)
- Cluster analysis
- Topic modelling (Latent Dirichlet Allocation)

Unsupervised versus supervised methods in opinion research

- Valerie talked this morning in detail Topic Modeling (= unsupervised)
- Good to get an overview of of different topics/opinions/viewpoints/... (it's complicated) in a large corpus
- Allows to discover topics one did not search for

Unsupervised versus supervised methods in opinion research

- But this does not align well with automatically coding a-priori or theoretically defined concepts
- Example: "pro-Russia" vs "pro-Ukraine" vs "neutral"
- Supervised methods

Unsupervised versus supervised methods in opinion research

Blurring boundaries

More modern models (e.g., transformer models) are semi-supervised: pre-trained on a large set of unlabeled data (unsupervised), fine-tuned on a smaller set of labeled data (supervised)

Predicting things

Predicting things

You have done it before!

You have done it before!

$$y = -.8 + .4 \times man + .08 \times age$$

$$\hat{y}_{man20} = -.8 + .4 \times 1 + .08 \times 20 = 1.2$$

$$\hat{y}_{woman40} = -.8 + .4 \times 0 + .08 \times 40 = 2.4$$

You have done it before!

- 1. Based on your data, you estimate some regression equation $y_i = \alpha + \beta_1 x_{i1} + \cdots + \beta_p x_{ip} + \varepsilon_i$

$$y = -.8 + .4 \times man + .08 \times age$$

- 1. Based on your data, you estimate some regression equation $y_i = \alpha + \beta_1 x_{i1} + \cdots + \beta_p x_{ip} + \varepsilon_i$
- 2. Even if you have some new unseen data, you can estimate your expected outcome \hat{y} !

You have done it before!

- 1. Based on your data, you estimate some regression equation $y_i = \alpha + \beta_1 x_{i1} + \cdots + \beta_p x_{ip} + \varepsilon_i$
- 2. Even if you have some new unseen data, you can estimate your expected outcome \hat{y} !
- 3. Example: You estimated a regression equation where y is newspaper reading in days/week:

$$y = -.8 + .4 \times man + .08 \times age$$

Regression

- 1. Based on your data, you estimate some regression equation $y_i = \alpha + \beta_1 x_{i1} + \cdots + \beta_p x_{ip} + \varepsilon_i$
- 2. Even if you have some *new unseen data*, you can estimate your expected outcome \hat{y} !
- 3. Example: You estimated a regression equation where y is newspaper reading in days/week:

$$y = -.8 + .4 \times man + .08 \times age$$

4. You could now calculate \hat{y} for a man of 20 years and a woman of 40 years - even if no such person exists in your dataset:

$$\hat{y}_{man20} = -.8 + .4 \times 1 + .08 \times 20 = 1.2$$

$$\hat{y}_{woman40} = -.8 + .4 \times 0 + .08 \times 40 = 2.4$$

- We will only use half (or another fraction) of our data to estimate the model, so that we can use the other half to check if our predictions match the manual coding ("labeled data", "annotated data" in SML-lingo)
 - e.g., 2000 labeled cases, 1000 for training, 1000 for testing —
 if successful, run on 100,000 unlabeled cases
- We use many more independent variables ("features")
- Typically, IVs are word frequencies (often weighted, e.g tf×idf) (⇒BOW-representation)

- We will only use half (or another fraction) of our data to estimate the model, so that we can use the other half to check if our predictions match the manual coding ("labeled data", "annotated data" in SML-lingo)
 - e.g., 2000 labeled cases, 1000 for training, 1000 for testing if successful, run on 100,000 unlabeled cases
- We use many more independent variables ("features")
- Typically, IVs are word frequencies (often weighted, e.g tf×idf) (⇒BOW-representation)

- We will only use half (or another fraction) of our data to estimate the model, so that we can use the other half to check if our predictions match the manual coding ("labeled data", "annotated data" in SML-lingo)
 - e.g., 2000 labeled cases, 1000 for training, 1000 for testing —
 if successful, run on 100,000 unlabeled cases
- We use many more independent variables ("features")
- Typically, IVs are word frequencies (often weighted, e.g tf×idf) (⇒BOW-representation)

- We will only use half (or another fraction) of our data to estimate the model, so that we can use the other half to check if our predictions match the manual coding ("labeled data", "annotated data" in SML-lingo)
 - e.g., 2000 labeled cases, 1000 for training, 1000 for testing —
 if successful, run on 100,000 unlabeled cases
- We use many more independent variables ("features")
- Typically, IVs are word frequencies (often weighted, e.g. tf×idf) (⇒BOW-representation)

Predicting things

From regression to classification

In the machine learning world, predicting some continous value is referred to as a regression task. If we want to predict a binary or categorical variable, we call it a classification task.

(quite confusingly, even if we use a logistic regression for the latter)

Classification tasks

For many computational approaches, we are actually not that interested in predicting a continous value. Typical questions include:

- Is this article about topix A, B, C, D, or E?
- Is this review positive or negative?
- Does this text contain frame F?
- I this satire?
- Is this misinformation?
- Given past behavior, can I predict the next click?

How many selected items are relevant?

How many relevant items are selected?

Some measures

- Accuracy
- Recall
- Precision
- F1 = $2 \cdot \frac{\text{precision} \cdot \text{recall}}{\text{precision} + \text{recall}}$
- AUC (Area under curve)
 [0,1], 0.5 = random
 guessing

More details this afternoon!

Machine Learning for Opinions

Machine Learning for Opinions

Conceptual clarifications

Beyond sentiment

A lot of – partly contradictory – definitions and operationalizations

- "sentiment" or "sentiment analyis" often used as overarching term
- valence/polarity: (how) positive vs (how) negative
- stance detection: stance towards
- aspect-based sentiment analysis
- . . .

Unemployment is going down.

Trump supported the law, while Biden opposed it.

Biden supported the law, while Trump opposed it.

Biden supported Trump's decision to oppose the law.

Beyond sentiment

An opinion should have at least a target (what is evaluated?), and maybe also a source (who evaluates?)

Can we do anything at all?

- It depends on the complexity of the task
- Maybe errors cancel each other out (?)
- In any case: Need for careful evaluation

Machine Learning for Opinions

(Traditional)) non-SML approaches

Let's consider three tasks

For a given text (say, a news article, a press release, a review), determine the

```
sentiment e.g., [positive|neutral|negative]  \begin{aligned} & \text{frames e.g., [economic|human|moral|conflict], or} \\ & \text{non-exclusive: economic} = [0|1], \text{ human} = [0|1], \dots \end{aligned}
```

related concepts e.g., perspectives, viewpoints, etc.

What would be the strengths and weaknesses of different approaches for each of these tasks?

Imagine using a dictionary-based (list of keywords, list of regular expressions, or similar) approach to these tasks. How does the design (length, inclusiveness, etc.) of this list influence precision and recall?

Dictionary-based approaches for text classification

good for

- distinct, manifest things (names of organizations, pronouns, swearwords (?), ...)
- little room for interpretation/misunderstandings etc.
- "must-be-explainable-to-afive-year-old"

Dictionary-based approaches for text classification

good for

- distinct, manifest things (names of organizations, pronouns, swearwords (?), ...)
- little room for interpretation/misunderstandings etc.
- "must-be-explainable-to-afive-year-old"

had for

- latent constructs and concepts
- implicit things

Hence, not state-of-the-art for

- topics
- frames
- sentiment

Dictionary-based approaches for text classification

good for

- distinct, manifest things (names of organizations, pronouns, swearwords (?), ...)
- little room for interpretation/misunderstandings etc.
- "must-be-explainable-to-afive-year-old"

bad for

- latent constructs and concepts
- implicit things

Hence, not state-of-the-art for

- topics
- frames
- sentiment

From dictionary approaches to SML

- Early days of sentiment analysis: list of positive words, list of negative words, count what occurs most
- You can even buy lists of words that are meant to measure constructs like "positive emotions" or even "analytic" or "authentic" language use from a psychologist (LIWC, Pennebaker et al., 2007)

From dictionary approaches to SML

- Early days of sentiment analysis: list of positive words, list of negative words, count what occurs most
- You can even *buy* lists of words that are meant to measure constructs like "positive emotions" or even "analytic" or "authentic" language use from a psychologist (LIWC, Pennebaker et al., 2007)

What do you think? Can this even work

Bag-of-words dictionary approaches to sentiment analysis

con

- simplistic assumptions
- e.g., intensifiers cannot be interpreted ("really" in "really good" or "really bad")
- or, even more important, negations.

Improving the BOW approach

Example: Sentistrenght (Thelwall et al., 2012)

- $-5 \dots -1$ and $+1 \dots +5$ instead of positive/negative
- spelling correction
- "booster word list" for strengthening/weakening the effect of the following word
- interpreting repeated letters ("baaaaaad"), CAPITALS and !!!
- idioms
- negation

VADER by Hutto and Gilbert, 2014 works in a similar way. Even though this is much less naïve than LIWC, for instance, the problem remains. Can we construct a dictionary that, irrespective of the context, gives us a meaningful estimate of sentiment?

Improving the BOW approach

Example: Sentistrenght (Thelwall et al., 2012)

- $-5 \dots -1$ and $+1 \dots +5$ instead of positive/negative
- spelling correction
- "booster word list" for strengthening/weakening the effect of the following word
- interpreting repeated letters ("baaaaaad"), CAPITALS and !!!
- idioms
- negation

VADER by Hutto and Gilbert, 2014 works in a similar way. Even though this is much less naïve than LIWC, for instance, the problem remains: Can we construct a dictionary that, *irrespective of the context*, gives us a meaningful estimate of sentiment?

Such an *off-the-shelf* dictionary does not (and probably cannot) exist.

Boukes et al., 2020: Sentiment analysis of economic news

	All tones combined (overall score)				
	F ₁		n (human coding)	precision	recall
Recession	0.26		4640	0.30	0.43
Damstra and Boukes (2018)	0.32		4640	0.52	0.45
LIWC	0.42		4640	0.53	0.48
SentiStrength	0.42		4640	0.45	0.45
Pattern	0.41		4640	0.45	0.45
Polyglot	0.43		4640	0.44	0.44
DANEW	0.43		4640	0.46	0.45
	Negative Tone				
	F ₁	n (predicted)	n (human coding)	precision	recal
Recession	0.00	6	1524	0.33	0.00
Damstra and Boukes (2018)	0.08	99	1524	0.62	0.04
LIWC	0.29	471	1524	0.62	0.19
SentiStrength	0.39	1158	1524	0.45	0.34
Pattern	0.30	692	1524	0.48	0.22
Polyglot	0.42	1158	1524	0.48	0.37
DANEW	0.36	794	1524	0.52	0.27
	Neutral Tone				
	F ₁	n (predicted)	n (human coding)	precision	recal
Recession	0.60	4634	2008	0.43	1.00
Damstra and Boukes (2018)	0.60	4366	2008	0.44	0.96
LIWC	0.60	3750	2008	0.46	0.86
SentiStrength	0.55	3103	2008	0.45	0.70
Pattern	0.56	3260	2008	0.45	0.74
Polyglot	0.47	2231	2008	0.45	0.50
DANEW	0.53	2776	2008	0.46	0.63
	Positive tone				
	F ₁	n (predicted)	n (human coding)	precision	recal
Recession	0.00	0	1108	0.00	0.00
Damstra and Boukes (2018)	0.14	175	1108	0.53	0.08
LIWC	0.29	419	1108	0.52	0.20
SentiStrength	0.22	379	1108	0.42	0.14
Pattern	0.30	688	1108	0.39	0.24
Polyglot	0.39	1251	1108	0.37	0.42
DANEW	0.36	1070	1108	0.37	0.35

Boukes et al., 2020: Sentiment analysis of economic news

Table A1. Correlations between sentiment scores using different methods for headlines (above) and full texts (below).

	Headline							
	Manual coding	Recession	D & B	LIWC	SentiStrength	Pattern	Polyglot	DANEW
Manual coding	1.00 ***							
Recession	-	-						
Damstra and Boukes (2018)	0.16 ***	-	1.00 ***					
LIWC	0.30 ***	-	0.16 ***	1.00 ***				
SentiStrength	0.24 ***	-	0.08 **	0.26 ***	1.00 ***			
Pattern	0.22 ***	-	0.00	0.30 ***	0.22 ***	1.00 ***		
Polyglot	0.30 ***	-	0.19 ***	0.32 ***	0.37 ***	0.26 ***	1.00 ***	
DANEW	0.24 ***	-	0.04	0.43 ***	0.33 ***	0.23 ***	0.32 ***	1.00 ***
				Full text				
	Manual coding	Recession	D & B	LIWC	SentiStrength	Pattern	Polyglot	DANEW
Manual coding	1.00 ***							
Recession	-0.06 *	1.00 ***						
Damstra and Boukes (2018)	0.27 ***	-0.16 ***	1.00 ***					
LIWC	0.39 ***	0.02	0.27 ***	1.00 ***				
SentiStrength	0.17 ***	-0.01	0.10 ***	0.18 ***	1.00 ***			
Pattern	0.13 ***	-0.02	0.04	0.28 ***	0.12 ***	1.00 ***		
Polyglot	0.26 ***	0.05	0.17 ***	0.41 ***	0.21 ***	0.30 ***	1.00 ***	
DANEW	0.15 ***	0.06 *	0.05	0.36 ***	0.18 ***	0.29 ***	0.37 ***	1.00 ***

The word "recession" did not occur in headlines of our sample, as such, no correlation coefficient is available for the recession classifier; *** p < .001, ** p < .010, * p < .05.

Boukes et al., 2020: Sentiment analysis of economic news

- Dictionaries have low agreement with each other, and also with human coders
- Even their own dictionary didn't agree
- This is not because these dictionaries are particularly bad!. Main point: For such a complex and context-dependent task, a dictionary is just not the right tool.

van Atteveldt et al., 2021: Extending Boukes et al., 2020 with SML

"manual coding (using undergraduate students) yields the best results

[...] A good second place is taken by crowd coding [...]

[...] machine learning performs worse than both students' manual coding and crowd coding. Reaching $\alpha = 0.50$ for deep learning (CNN) and slightly worse for classical machine learning (SVM; $\alpha = 0.41$, NB; $\alpha = 0.40$), machine learning still performs significantly better than chance. However, since these results are lower than generally accepted levels of inter-coder reliability [...]

Finally, [...] dictionaries [...] perform worse than the machine learning results and much worse than manual annotation [...] [and] approximate chance agreement"

Category	Technique	Accuracy	Precision	Recall
Satisfaction (N = 854)				
Sentiment analysis	LIWC	0.05	0.06	0.04
•	P	0.04	0.04	0.04
	SN	0.07	0.07	0.08
Dictionary-based	D	0.15	0.30	0.10
Machine learning	BNB	0.38	0.44	0.34
	MNB	0.32	0.67	0.21
	LR	0.51	0.38	0.76
	SGD	0.49	0.38	0.69
	SVM	0.52	0.41	0.63
	PA	0.50	0.40	0.68
Neutral (N = 760)	r A	0.50	0.40	0.08
Sentiment analysis	LIWC	0.13	0.16	0.10
Schullent analysis	P	0.13	0.13	0.14
	SN	0.19	0.16	0.22
Dictionary-based	D	0.14	0.35	0.09
Machine learning	BNB	0.28	0.25	0.32
Muchine rearring	MNB	0.15	0.34	0.10
	LR	0.37	0.25	0.74
	SGD	0.33	0.23	0.60
	SVM	0.36	0.24	0.69
	PA	0.34	0.24	0.60
Dissatisfaction $(N = 267)$				
Sentiment analysis	LIWC	0.20	0.15	0.29
,	P	0.19	0.12	0.40
	SN	0.22	0.14	0.54
Dictionary-based	D	0.09	0.41	0.05
Machine learning	BNB	0.26	0.20	0.40
	MNB	0.25	0.48	0.16
	LR	0.35	0.23	0.77
	SGD	0.39	0.32	0.48
	SVM	0.04	0.02	1.00
	PA	0.35	0.23	0.71

Note, LIWC Linguistic Inquiry and Word Count; P Pattern; SN Sentiment Net; D Dictionary-based; BN Bernoulli Naïve Bayes; MNB Multinomial Naïve Bayes; LR Logistic Regression; SGD Stochastic Gradient Descent; SVM Support Vector Machine; and PA Passive Aggressive. Performance scores ≥0.60 have been highlighted. Results merely derived from the test set.

SML is no panacea, but the most promising approach to analyzing large quantities of texts. Don't believe off-the-shelf packages that claim to do the work for you. (For small datasets, just do it by hand.)

What does this mean for our research?

It we have (say) 2,000 documents with manually coded kabels...

- we can use them to train a SML classifier
- which can code an unlimited number of new documents
- with an acceptable accuracy (at least for some of them)

What does this mean for our research?

It we have (say) 2,000 documents with manually coded kabels...

- we can use them to train a SML classifier
- which can code an unlimited number of new documents
- with an acceptable accuracy (at least for some of them)

Machine Learning for Opinions

An implementation

I'll show some Python code on the next slide, just as a means to talk about the steps. We'll have examples in both R and Python in the materials (and this afternoon).

An implementation

Let's say we have two list of tuples with movie reviews and their rating:

```
reviews_train = ["This is a great movie", "Bad movie", ... ...]
labels_train = [1,-1, ...]
```

And a second dataset with an identical structure:

```
reviews_test = ["Not that good","Nice film", ... ...]
labels_text = [-1,1, .....]
```

Both are drawn from the same population, it is pure chance whether a specific review is on the one list or the other.

Based on an example from http://blog.dataquest.io/blog/naive-bayes-movies/

Training a A Naïve Bayes Classifier

```
from sklearn.naive_bayes import MultinomialNB
    from sklearn.feature_extraction.text import CountVectorizer
2
    from sklearn import metrics
 3
4
    vectorizer = CountVectorizer(stop_words='english')
5
    features train = vectorizer.fit transform(reviews train)
7
    features_test = vectorizer.transform(reviews_test)
8
    # Fit a naive bayes model to the training data.
9
    nb = MultinomialNB()
10
11
    nb.fit(features train, labels train)
12
    # Now we can use the model to predict classifications for our test
13
         features.
    predictions = nb.predict(features_test)
14
15
16
    print(f"Precision:\t{metrics.precision_score(labels_test, predictions,
        pos_label=1, labels = [-1,1]))"
    print(f"Recall:\t{metrics.recall_score(labels_test, predictions,
17
        pos_label=1, labels = [-1,1]))"
```

And it works!

Using 50,000 IMDB movies that are classified as either negative or positive,

- I created a list with 25,000 training tuples and another one with 25,000 test tuples and
- trained a classifier
- \bullet with precision and recall values > .80

Dataset obtained from http://ai.stanford.edu/~amaas/data/sentiment, Maas, A.L., Daly, R.E., Pham, P.T., Huang, D., Ng, A.Y., & Potts, C. (2011). Learning word vectors for sentiment analysis. 49th Annual Meeting of the Association for Computational Linguistics (ACL 2011)

Playing around with new data

- newdata=vectorizer.transform(["What a crappy movie! It sucks!", "This is awsome. I liked this movie a lot, fantastic actors","I would not recomment it to anyone.", "Enjoyed it a lot"])
- predictions = nb.predict(newdata)
- 3 print(predictions)

This returns, as you would expect and hope:

1 [-1 1 -1 1]

Can you relate the IMDB-example to our earlier discussion on sentiment analysis? Why does ML work so well here?

But we can do even better

We can use different vectorizers and different classifiers.

Machine Learning for Opinions

Classifiers

Different classifiers

Typical options in a nutshell:

- Naïve Bayes
- Logistic Regression
- Support Vector Machine (SVM/SVC)
- Random forests

Machine Learning for Opinions

Vectorizers

CountVectorizer (=simple word counts)

$$tfidf_{t,d} = tf_{t,d} \cdot idf_t$$

$$idf_t = \log \frac{N}{n_t}$$

- CountVectorizer (=simple word counts)
- 2. TfidfVectorizer (word counts ("term frequency") weighted by number of documents in which the word occurs at all ("inverse document frequency"))

$$tfidf_{t,d} = tf_{t,d} \cdot idf_t$$

$$idf_t = \log \frac{N}{n_t}$$

- CountVectorizer (=simple word counts)
- 2. TfidfVectorizer (word counts ("term frequency") weighted by number of documents in which the word occurs at all ("inverse document frequency"))

$$tfidf_{t,d} = tf_{t,d} \cdot idf_t$$

$$idf_t = \log \frac{N}{n_t}$$

- CountVectorizer (=simple word counts)
- 2. TfidfVectorizer (word counts ("term frequency") weighted by number of documents in which the word occurs at all ("inverse document frequency"))

$$tfidf_{t,d} = tf_{t,d} \cdot idf_t$$

There are different ways to weigh the idf score. A common one is taking the logarithm:

$$idf_t = \log \frac{N}{n_t}$$

where N is the total number of documents and n_t is the number of documents containing term t

Different vectorizer options

- Preprocessing (e.g., stopword removal)
- Remove words below a specific threshold ("occurring in less than n=5 documents") \Rightarrow spelling mistakes etc.
- Remove words above a specific threshold ("occuring in more than 50% of all documents) ⇒ de-facto stopwords
- Not only to improve prediction, but also performance (can reduce number of features by a huge amount)

precision	recall
0.87	0.77
0.79	0.88
	11
•	recall
	0.78
0.80	0.88
precision	recall
0.87	0.85
0.85	0.87
precision	recall
0.89	0.88
0.88	0.89
	0.87 0.79 precision 0.87 0.80 precision 0.87 0.85

Summing up

Summing up

Revisiting the difference between the dictionary approach and the SML

What is our fitted classifier again?

Essentially, just a formula

$$p = \frac{1}{1 + e^{-(\beta_0 + \beta_1 x_1 + \beta_2 x_2 + \dots + \beta_n x_n)}}$$

where β_0 is an intercept¹, β_1 a coefficient for the frequency (or tfidf score) of some word, β_2 a coefficient some other word.

If our fitted *vectorizer* contains 5,000 words, we thus have 5,001 coefficients

(for logistic regression in this case, but same argument applies to other classifiers as well)

¹Machine Learning people sometimes call the intercept "bias" (yes, I know, that's confusing)

But isn't that then essentially very much like a dictionary, except that the words have different weights?

In some sense, yes.

- But we don't pretend that we can construct the dictionary a priori.
- It's specifically tailored to our use-case.
- The weights are *really* essential here.

We could print all coefficients-word pairs, but probably it's enough to just look at those with the largest absolute value:

In some sense, yes.

- But we don't pretend that we can construct the dictionary a priori.
- It's specifically tailored to our use-case.
- The weights are *really* essential here.

We *could* print all coefficients-word pairs, but probably it's enough to just look at those with the largest absolute value:

Feature weights

In [98]: import eli5 eli5.show weights(pipe, top=10)

Out [98]: v=1 top features

In [111]: eli5.show prediction(clf. test[0][0].vec=vec)

Out[111]: y=1 (probability 0.844, score 1.689) top features

Contribution? Feature

+1.920 Highlighted in text (sum) -0.232 <BIAS>

it is a rare and fine spectacle, an allegory of death and transfiguration that is neither preachy nor mawkish. a work of mature and courageous insight, northfork avoids arthouse distinction by refusing to belong to a kind, unlike the most memorable and accomplished film to impose an obvious comparison, wim wenders 1987 wings of desire (der himmel über berlin), it sustains an ambivalence in a narrative spectrum spanning from the mundane to the supernatural, this story of earthly and celestial eminent domains in the american west withholds the fairytale literalness that marked its german predecessor in the ad hoc genre of angels shedding their wings with obsequious sentimentalism, its celestial transcendence, be it inspired by doleful faith or impelled by a fever dream, never parts ways with crud and rot, this firm grounding redounds to great credit for writers and directors mark and michael polish.

ELI5

- Inspecting all coefficients of a ML model usually doesn't make much sense
- But that does not mean that we cannot understand how the model makes its predictions
- We can look at the most important coefficients
- We can look which words in a given text contributed most to its classfication

But have we solved all problems of dictionaries?

No.

For instance, the negation and/or intensifier problem.

Possible approaches

- *n*-grams as features
- preprocessing (?)
- deep learning
- ...

 \Rightarrow But ultimately, it's just an empirical question how big the problem is!

But have we solved all problems of dictionaries?

No.

For instance, the negation and/or intensifier problem.

Possible approaches

- n-grams as features
- preprocessing (?)
- deep learning
- ⇒ But ultimately, it's just an empirical question how big the problem is!

Summing up & Looking forward

A note on contemporary approaches

Advantages of Conventional/classic machine learning

- Easy to do (⇒ this afternoon)
- many models are comparatively easy to understand and transparent: e.g., regression coefficients linking word frequencies to probability of a label
- no (computationally, financially, environmentally) expensive researches needed
- (still) very useful as a baseline

A note on contemporary approaches

However,...

- Classic SML models are "dumb": they do not know anything about what the words mean
- hence, if a word is not in the training data, it remains unknown to the model and will be ignored
- BOW: no taking into account of sentence structure

Alternartives

- Deep learning, neural networks, . . .: Different architectures,
 e.g. to model "latent" constructs or to take sentence structure
 into account
- But: Even those (party) superseeded by transformer models (from BERT to GPT)
- Pretrained model with "knowledge" about language plus finetuning, few-shot, zero-shot learning
- ⇒ Ultimately, you may use more advanced approaches but always compare to simpler baselines

Any questions?

Things to remember

- unsupervised vs supervised
- evaluation metrics (e.g., precision, recall)
- why "sentiment" often is a problematic concept

References

Boukes, M., van de Velde, B., Araujo, T., & Vliegenthart, R. (2020). What's the Tone? Easy Doesn't Do It: Analyzing Performance and Agreement Between Off-the-Shelf Sentiment Analysis Tools. Communication Methods and Measures, 14(2), 83-104. https://doi.org/10.1080/19312458.2019.1671966

Boumans, J. W., & Trilling, D. (2016). Taking stock of the toolkit: An overview of relevant autmated content analysis approaches and techniques for digital journalism scholars. Digital Journalism, 4(1), 8-23. https://doi.org/10.1080/21670811.2015.1096598

Hutto, C. J., & Gilbert, E. (2014). Vader: A parsimonious rule-based model for sentiment analysis of social media text. Eighth International AAAI Conference on Weblogs and Social Media.

Pennebaker, J. W., Booth, R. J., & Francis, M. E. (2007). Linguistic Inquiry and Word Count: LIWC.

Thelwall, M., Buckley, K., & Paltoglou, G. (2012). Sentiment strength detection for the social web.

Journal of the American Society for Information Science and Technology, 63(1), 163-173. https://doi.org/10.1002/asi.21662

van Atteveldt, W., van der Velden, M. A., & Boukes, M. (2021). The Validity of Sentiment
Analysis: Comparing Manual Annotation, Crowd-Coding, Dictionary Approaches, and
Machine Learning Algorithms. Communication Methods and Measures, 00(00), 1-20.
https://doi.org/10.1080/19312458.2020.1869198

Vermeer, S., Araujo, T., Bernritter, S. F., & van Noort, G. (2019). Seeing the wood for the trees: How machine learning can help firms in identifying relevant electronic word-of-mouth in social media. International Journal of Research in Marketing, 36(3), 492-508. https://doi.org/10.1016/j.ijresmar.2019.01.010