We will cover the cup product following Hatcher.

Definition 0.1 (Cup Product). For a ring R, let $\varphi \in C^k(X;R)$ and $\psi \in C^l(X;R)$. Then the cup product $\varphi \smile \psi \in C^{k+l}(X;R)$ is the cochain whose value on $\sigma \colon \Delta^{k+l} \to X$ is given by

$$\left(\varphi\smile\psi\right)\left(\sigma\right)=\varphi\left(\sigma|_{\left[v_{0},...,v_{k}\right]}\right)\psi\left(\sigma|_{\left[v_{k},...,v_{k+l}\right]}\right)$$

where the right-hand side is the product in R.

To see that this induces a cup product on cohomology, we need the following lemma:

Lemma 0.2.
$$\delta(\varphi \smile \psi) = \delta\varphi \smile \psi + (-1)^k \varphi \smile \delta\psi \text{ for } \varphi \in C^k(X;R) \text{ and } \psi \in C^l(X;R).$$

Using the lemma, it is clear that the cup product of two cocycles is again a cocycles, and that the cup product of a cocycle and a coboundary, in either order, is a coboundary. It follows that there is an induced cup product

$$H^k(X;R) \times H^l(X;R) \xrightarrow{\smile} H^{k+l}(X;R).$$

This is associative and distributive since at the level of cochains the cup product has these properties.

If R has an identity, then there is an identity elements for the cup product, the class $1 \in H^0(X; R)$ defined by the 0-cocycle taking the value 1 on each singular 0-simplex.

0.0.1. Relative cup product. The cup product formula $(\varphi \smile \psi)(\sigma) = \varphi(\sigma|_{[v_0,...,v_k]}) \psi(\sigma|_{[v_k,...,v_{k+l}]})$ also gives relative cup products

$$H^{k}(X;R) \times H^{l}(X,A;R) \xrightarrow{\smile} H^{k+l}(X,A;R)$$
$$H^{k}(X,A;R) \times H^{l}(X;R) \xrightarrow{\smile} H^{k+l}(X,A;R)$$
$$H^{k}(X,A;R) \times H^{l}(X,A;R) \xrightarrow{\smile} H^{k+l}(X,A;R)$$

since if φ or ψ vanishes on chains in A, then so does $\varphi \smile \psi$.

We can also define an even more general relative cup product

$$H^k(X, A; R) \times H^l(X, B; R) \xrightarrow{\smile} H^{k+l}(X, A \cup B; R)$$

when A and B are open subsets of X or subcomplexes of the CW complex X.

Construction. The absolute cup product restricts to a cup product $C^k(X,A;R) \times C^l(X,B;R) \to C^{k+l}(X,A\sqcup B;R)$ where $C^n(X,A\sqcup B;R)$ is the subgroup of $C^n(X;R)$ consisting of cochains vanishing on sums of chains in A and chains in B. If A and B are open in X, then the inclusions $C^n(X,A\cup B;R) \hookrightarrow C^n(X,A\sqcup B;R)$ induces isomorphisms on cohomology:

Proposition 0.3. For a map $f: X \to Y$, the induced map $f^*: H^n(Y; R) \to H^n(X; R)$ satisfies $f^*(\alpha \smile \beta) = f^*(\alpha) \smile f^*(\beta)$, and similarly in the relative case

Theorem 0.4. The identity $\alpha \smile \beta = (-1)^{kl}\beta \smile \alpha$ holds for all $\alpha \in H^k(X, A; R)$ and $\beta \in H^l(X, A; R)$, when R is commutative.

1. The Cohomology Ring

Since the cup product is associative and distributive, it is natural to try to make it the multiplication in a ring structure on the cohomology groups of a space X. This is easy to do if we define $H^*(X;R) = \bigoplus_{k \in \mathbb{Z}} H^k(X;R)$. That is, if we define $H^*(X;R)$ as the direct sum of the cohomology groups of the space. Then elements of $H^*(X;R)$ are finite sums $\Sigma_i \alpha_i$ with $\alpha_i \in H^i(X;R)$ and the product of two such sums is defined to be $(\Sigma_i \alpha_i)$ $(\Sigma_i \beta_j) = \Sigma_{i,j} \alpha_i \beta_j$.

Exercise 1.1. Show that this makes $H^*(X; R)$ into a ring,w with identity if R has an identity. Similarly for $H^*(X, A; R)$ with the relative cup product. Taking scalar multiplication by elements of R into account, these rings can also be regarded as R-algebras.

Example 1.2. Recall that $H^k(\mathbb{RP}^2; \mathbb{Z}_2) \cong \mathbb{Z}_2$ for k = 0, 1, 2 and is 0 otherwise. Also by example 3.8 in Hatcher on Cohomology, for a generator $\alpha \in H^1(\mathbb{RP}^2; \mathbb{Z}_2)$, $\alpha^2 = \alpha \smile \alpha$ is a generator of $H^2(\mathbb{RP}^2; \mathbb{Z}_2)$, hence $H^*(\mathbb{RP}^2; \mathbb{Z}_2) \cong \mathbb{Z}_2[\alpha] / (\alpha^3)$.

Adding cohomology classes of different dimensions to form $H^*(X; R)$ is convenient, but it has little topological significance. One can always regard the cohomology ring as a *qraded ring*:

Definition 1.3 (Graded Ring). A ring A with a decomposition $\bigoplus_{k\geq 0} A_k$ into additive subgroups $A_k \leq A$ such that the multiplication takes $A_k \times A_l$ to A_{k+l} is called a *graded ring*.

To indicate that $\alpha \in A$ lies in A_k , we write |a| = k.

Definition 1.4 (Degree/dimension). The number |a| is called the *degree* or *dimension* of a.

Definition 1.5 (Commutative/anticommutative/graded commutative). A graded ring satisfying the commutativity property that $ab = (-1)^{|a||b|}ba$ is usually called commutative or any of the following less ambiguous terms: graded commutative, anticommutative, or skew commutative.