Math 233 Lecture Notes

Jan 18th

First, settle some notation:

Disks:

Let $a \in \mathbb{C}$, and r > 0. Denote the open disk of radius r, centered at a as:

$$D(a,r) = \{ z \in \mathbb{C} : |z - a| < r \}$$

Similarly, denote the closed disk as:

$$\overline{D}(a,r) = \{ z \in \mathbb{C} : |z - a| \le r \}$$

Connected sets and components:

Let X be a topological space. Call $E \subseteq X$ disconnected when there exist non-empty subsets $A, B \subset E$ such that $A \cup B = E$ and $\overline{A} \cap B = A \cap \overline{B} = \emptyset$. We say that A, B is said to separate E.

We call $E \subseteq X$ if it does not admit a separation into subsets.

Now, suppose $E \subseteq X, x_0 \in E$. Then, if we have $A \subset E$ such that $x_0 \in A$, and A connected, then $\cup A$ is connected. Moreover, since we have the (potentially uncountable) union over all connected sets, this must be the largest such connected sets that includes x_0 . Call this maximal connected set the component of E that contains x_0 . Call the collection of such connected subsets of E over all x_0 the connected components of E. It should be clear that the set E must be the disjoint union of the connected components.

Now, let $E \subseteq \mathbb{C}$ be an open set. Let $a \in E$. Because E is open, there exists r > 0 such that $D(a,r) \subseteq E$. Then, D(a,r) is in the connected component containing a. Thus, the components of E are open.

Note: we will use Ω to denote open sets in \mathbb{C} .

Call an open, connected subset of \mathbb{C} a region.

Derivatives:

Suppose that $\Omega \subseteq \mathbb{C}$ is an open set, and we have $f:\Omega \to \mathbb{C}$. Let $z\in \Omega$. Then, if it exists, we define the derivative of f at z as:

$$f'(z_0) = \lim_{z \to z_0} \frac{f(z) - f(z_0)}{z - z_0}$$

That is, for the limit to exists, we must have that:

$$\lim_{z \to z_0} \left| \frac{f(z) - f(z_0)}{z - z_0} - f'(z_0) \right| = 0$$

We note that in the \mathbb{R}^2 sense of derivatives, complex differentiable implies real differentiable, but not the converse, because the extra structure from the Cauchy-Riemann equations.

Theorem:

If $f'(z_0)$ exists, then f is continuous at z_0 .

Let $\Omega \subset \mathbb{C}$ be an open set, $f : \Omega \to \mathbb{C}$. If f is differentiable on all of Ω , then we call f holomorphic (or analytic).

We denote the set of all holomorphic functions on Ω by $\mathcal{H}(\Omega)$.

Let $f, g \in \mathcal{H}(\Omega)$. Then $f + g, fg \in \mathcal{H}(\Omega)$ and $f/g \in \mathcal{H}(\Omega)$ if $0 \notin g(\Omega)$. The normal rules hold: product rule, quotient rule, etc.

Chain rule:

Suppose that $g \in \mathcal{H}(\Omega)$, $g(\Omega) \subset \Omega_1$, and $f \in \mathcal{H}(\Omega_1)$. Then we claim that $h = f \circ g \in \mathcal{H}(\Omega)$ and $h' = f'(g(z_0)) * g'(z_0)$

Proof:

Let $z_0 \in \Omega$, $w_0 = g(z_0) \in \Omega_1$. Since $f'(w_0)$ exists, because f is holomorphic, define $\phi : \Omega_1 \to \mathbb{C}$ as:

$$\phi(w) = \begin{cases} \frac{f(w) - f(w_0)}{w - w_0} & \text{if } w \in \Omega \setminus \{w_0\} \\ f'(w_0) & \text{if } w = w_0 \end{cases}$$

We see that by the definition of the derivative, that ϕ is continuous on Ω_1 , and we have that $f(w) - f(w_0) = \phi(w)(w - w_0)$. However, we have that $w_0 = g(z_0), w = g(z)$, so we have that:

$$\frac{f(g(z)) - f(g(z_0))}{z - z_0} = \phi(g(z)) \frac{g(z) - g(z_0)}{z - z_0}$$

If we take the limit of both sides as $z \to z_0$, we see that the right hand side is exactly $\phi(g(z_0))g'(z_0)$. Further, the left hand side is exactly the definition of the derivative of h at z_0 . Hence, $h'(z_0)$ exists, and equals $f'(g(z_0))g'(z_0)$.

Power rule

By direct computation, we have that $\frac{d}{dz}(z^n) = nz^{n-1}$. This holds for all $n \in \mathbb{Z}$

Definition:

Let $f: \mathbb{C} \to \mathbb{C}$. If f is holomorphic, then we call f entire. Example: $1, z, z^2$ are entire.

Functions representable by Power Series:

Consider a power series $\sum_{n=0}^{\infty} c_n (z - a_n)^n$.

By the root test, we can say this series has radius of convergence R, where $\frac{1}{R} = \limsup_{n \to \infty} |c_n|^{1/n}$. In particular, the series converges absolutely for all $z \in D(a, R)$. Further, the series diverges for all $z \notin \overline{D}(a, R)$. Now, for $0 \le r < R$, the power series converges uniformly via the Weierstrauss M-test.

Now, let $f: \Omega \to \mathbb{C}$. We say that f is representable by power series on Ω provided that for any disk $D(a,r) \subseteq \Omega$, f may be represented by a power series $f(z) = \sum_{n=0}^{\infty} c_n (z-a)^n, z \in D(a,r)$.

Theorem:

Suppose that f is representable by a power series on Ω . Then f is holomorphic on Ω , that is, $f \in \mathcal{H}(\Omega)$. Moreover, if $D(a,r) \subset \Omega$, and $f(z) = \sum_{n=0}^{\infty} c_n (z-a)^n$ on this disk, then for any $z \in D(a,r)$, $f'(z) = \sum_{n=1}^{\infty} n c_n (z-a)^n$. We notice that this is also a power series; as such, f' is also representable by a power series (and, thus, holomorphic).

Proof omitted, long computation, refer to lecture notes or Rudin.

If f is representable by power series on Ω , then f' is also representable, and thus holomorphic. Moreover, $f^{(n)}$ is holomorphic. By term-by-term differentiation, we have that:

$$f^{(k)} = \sum_{n=k}^{\infty} n(n-1)...(n-k+1)c_n(z-a)^{n-k}$$

Further, we have that at z = a, that $f^{(k)}(a) = k!c_k \implies c_k = f^{(k)}(a)/k!$.