# Fusion: Applying Equational Transforms to Simplify Programs

github.com/ryanorendorff/lc-2017-fusion

Ryan Orendorff, PhD<sup>1</sup> May 2017

<sup>&</sup>lt;sup>1</sup>Department of Bioengineering University of California, Berkeley University of California, San Francisco

#### **Outline**

Motivation: Simple Programs versus Performance

A brief introduction to GHC

List fusion with foldr/build

Stream Fusion

Applications of Fusion

# Motivation: Simple Programs versus Performance

## Common way to process a list: map and fold!

As an example, say we want to square all the elements in a list and then sum the result.

$$process :: [Int] \rightarrow Int$$
  
 $process \ xs = sum \circ map \ sq \ xs$ 

Where we have defined the functions as follows.

$$map = []$$
 =  $[]$   
 $map f (x : xs) = f x : map f xs$ 

$$sq \ x = x * x$$

## Common way to process a list: map and fold!

As an example, say we want to square all the elements in a list and then sum the result.

```
process :: [Int] \rightarrow Int

process \ xs = sum \circ map \ sq \ xs
```

Where we have defined the functions as follows.

$$map = []$$
 =  $[]$   
 $map f (x : xs) = f x : map f xs$ 

$$\begin{array}{l} sq \ x = x * x \\ foldr :: (a \rightarrow b \rightarrow b) \rightarrow b \rightarrow [a] \rightarrow b \\ foldr \ \_z \ [] \qquad = z \\ foldr \ f \ z \ (x : xs) = f \ x \ (foldr \ f \ z \ xs) \\ sum :: [Int] \rightarrow Int \end{array}$$

### **How fast is** *process*?

So now that we have our process function, how fast does it run?

$$process :: [Int] \rightarrow Int$$
  
 $process \ xs = sum \circ map \ sq \ xs$ 

Let's try to process a million elements with our process and process', which uses the standard Prelude sum and map.

$$process [0..1,000,000]; process' [0..1,000,000]$$

## How fast is process?

So now that we have our process function, how fast does it run?

$$process :: [Int] \rightarrow Int$$
  
 $process \ xs = sum \circ map \ sq \ \ xs$ 

Let's try to process a million elements with our process and process', which uses the standard Prelude sum and map.

$$process [0..1,000,000]; process' [0..1,000,000]$$

| Function | Time (ms) | Memory (MB) |
|----------|-----------|-------------|
| process  | 220.0     | 265.26      |
| process' | 25.31     | 96.65       |

## How fast is process?

So now that we have our process function, how fast does it run?

$$process :: [Int] \rightarrow Int$$
  
 $process \ xs = sum \circ map \ sq \ xs$ 

Let's try to process a million elements with our process and process', which uses the standard Prelude sum and map.

$$process [0..1,000,000]; process' [0..1,000,000]$$

| Function | Time (ms) | Memory (MB) |
|----------|-----------|-------------|
| process  | 220.0     | 265.26      |
| process' | 25.31     | 96.65       |

How does the Prelude do so much better with the same functions?

## We can get good performance with manual code

We can try to get better performance by writing our program as a recursive function.

```
process :: [Int] \rightarrow Int

process \ xs = sum \circ map \ sq \ xs
```

### We can get good performance with manual code

We can try to get better performance by writing our program as a recursive function.

```
process :: [Int] \rightarrow Int
process \ xs = sum \circ map \ sq \ xs
process_{hand} :: [Int] \rightarrow Int
process_{hand} \ [] = 0
process_{hand} \ (x : xs) = x * x + process_{hand} \ xs
```

### We can get good performance with manual code

We can try to get better performance by writing our program as a recursive function.

$$process :: [Int] \rightarrow Int$$
 $process \ xs = sum \circ map \ sq \ xs$ 
 $process_{hand} :: [Int] \rightarrow Int$ 
 $process_{hand} [] = 0$ 
 $process_{hand} (x : xs) = x * x + process_{hand} \ xs$ 
 $function time (ms)$ 
 $process 220.0$ 
 $process' 25.31$ 
 $process_{hand} 26.8$ 

It seems we have matched GHC's performance!

## GHC generated the simplified version automatically

Our manual version  $process_{hand}$ .

```
process_{hand} :: [Int] \to Int process_{hand} [] = 0 process_{hand} (x : xs) = x * x + process_{hand} xs
```

and when we compile the Prelude defined process', GHC produces

```
\begin{aligned} &processGHC :: [Int] \rightarrow Int \\ &processGHC \ [] &= 0 \\ &processGHC \ (x:xs) = x*x + (processGHC \ xs) \end{aligned}
```

## GHC generated the simplified version automatically

Our manual version  $process_{hand}$ .

```
process_{hand} :: [Int] \to Int
process_{hand} [] = 0
process_{hand} (x : xs) = x * x + process_{hand} xs
```

and when we compile the Prelude defined process', GHC produces

```
\begin{aligned} &processGHC :: [Int] \rightarrow Int \\ &processGHC \ [] &= 0 \\ &processGHC \ (x:xs) = x*x + (processGHC \ xs) \end{aligned}
```

How can we leverage the compiler to write simple code that is fast?

#### Table of Contents

Motivation: Simple Programs versus Performance

#### A brief introduction to GHC

List fusion with foldr/build

Stream Fusion

Applications of Fusion

## The GHC Compilation Pipeline converts Haskell into an intermediate language and then bytecode

When GHC compiles a Haskell program, it converts the code into an intermediate language called "Core", which is then (eventually) turned into byte code.



## The GHC Compilation Pipeline converts Haskell into an intermediate language and then bytecode

When GHC compiles a Haskell program, it converts the code into an intermediate language called "Core", which is then (eventually) turned into byte code.



When GHC is given a Core program, it performs several types of transformations on the program.

Inlining functions

- Inlining functions
- Removing redundant lambdas

- Inlining functions
- Removing redundant lambdas
- Simplifying constant expressions ((x+8)-1)

- Inlining functions
- Removing redundant lambdas
- Simplifying constant expressions ((x+8)-1)
- Combining type casts

- Inlining functions
- Removing redundant lambdas
- Simplifying constant expressions ((x+8)-1)
- Combining type casts
- Applying rewrite rules

- Inlining functions
- Removing redundant lambdas
- Simplifying constant expressions ((x+8)-1)
- Combining type casts
- Applying rewrite rules
- . . .

## Rewrite Rules allow us to say two expressions are equivalent

Rewrite rules allow us to replace terms in the program with equivalent terms.

```
{-# RULES "name" forall x. id x = x \# -}
```

## Rewrite Rules allow us to say two expressions are equivalent

Rewrite rules allow us to replace terms in the program with equivalent terms.

```
\{-\# RULES "name" forall x. id x = x \#-\}
```

"Any time we see the term  $id\ x$ , replace it with x".

Rewrite rules have some gotchas.

• Rules doesn't prevent you from doing something silly

```
\{-\# RULES "id5" forall x. id x = 5 \#-\}
```

Rewrite rules have some gotchas.

• Rules doesn't prevent you from doing something silly

```
\{-\# \text{ RULES "id5" forall x. id x = 5 #-}\}
```

 The left hand side is only substituted for the right, not the other way around.

```
{-# RULES "id" forall x. id x = x #-} x \Rightarrow idx
```

Rewrite rules have some gotchas.

Rules doesn't prevent you from doing something silly

```
\{-\# \text{ RULES "id5" forall x. id x = 5 #-}\}
```

 The left hand side is only substituted for the right, not the other way around.

```
{-# RULES "id" forall x. id x = x #-} x \Rightarrow idx
```

You can make the compiler go into an infinite loop.

```
{-# RULES "fxy" forall x y. f x y = f y x #-}
```

Rewrite rules have some gotchas.

Rules doesn't prevent you from doing something silly

```
\{-\# \text{ RULES "id5" forall x. id x = 5 #-}\}
```

 The left hand side is only substituted for the right, not the other way around.

```
{-# RULES "id" forall x. id x = x #-} x \Rightarrow idx
```

You can make the compiler go into an infinite loop.

```
{-# RULES "fxy" forall x y. f x y = f y x #-}
```

• If multiple rules are possible, GHC will randomly choose one.

### We can combine maps to traverse a list once

Let us introduce the following rule about maps.

#### We can combine maps to traverse a list once

Let us introduce the following rule about maps.

```
{-# RULES "map/map" forall f g xs.
  map_{fuse} f (map_{fuse} g xs) = map_{fuse} (f.g) xs #-}
    mapTestUnfused :: [Int] \rightarrow [Int]
    map Test Unfused xs = map (+1) (map (*2) xs)
    mapTestFused :: [Int] \rightarrow [Int]
    mapTestFused \ xs = mapfuse \ (+1) \ (mapfuse \ (*2) \ xs)
```

## Our map fusion performs (a bit) better!

We can test our functions on a million elements

$$mapTestUnfused xs = map (+1) (map (*2) xs)$$

$$mapTestFused \ xs = mapfuse \ (+1) \ (mapfuse \ (*2) \ xs)$$

and find we get a bit better time and space performance.

| Function         | Time (ms) | Memory (MB) |
|------------------|-----------|-------------|
| map Test Unfused | 26.4      | 256.00      |
| map TestFused    | 17.6      | 184.00      |

### Through rules, GHC performs fusion

Some of the rules work together to perform *fusion*: to combine terms in such a way as to pass over a data structure once.

In our process function, we create an intermediate list

$$process :: [Int] \rightarrow Int$$
 $process \ xs = sum \circ map \ sq \ xs$ 

whereas our "fused" form did not make any intermediate structure, and used an accumulator instead.

```
process_{hand} :: [Int] \to Int process_{hand} [] = 0 process_{hand} (x : xs) = x * x + process_{hand} xs
```

### Table of Contents

Motivation: Simple Programs versus Performance

A brief introduction to GHC

List fusion with foldr/build

Stream Fusion

Applications of Fusion

## $foldr\ /\ build$ fusion is used to simplify list computations

GHC accomplishes fusion with two functions: foldr and build.

## $foldr \ / \ build$ fusion is used to simplify list computations

GHC accomplishes fusion with two functions: foldr and build.

foldr combines the elements of a list

foldrfuse :: 
$$(a \to b \to b) \to b \to [a] \to b$$
  
foldrfuse  $f[z] = z$   
foldrfuse  $f[z] = x$  (foldr  $f[z] = x$ )

## $foldr \ / \ build$ fusion is used to simplify list computations

GHC accomplishes fusion with two functions: foldr and build.

foldr combines the elements of a list

foldrfuse :: 
$$(a \to b \to b) \to b \to [a] \to b$$
  
foldrfuse  $f[z] = z$   
foldrfuse  $f[z] = x$   
foldrfuse  $f[z] = x$ 

while build builds up a list from a generating function.

buildfuse :: 
$$\forall a.(\forall b.(a \rightarrow b \rightarrow b) \rightarrow b \rightarrow b) \rightarrow [a]$$
  
buildfuse  $g = g$  (:) []

# $foldr \ / \ build$ fusion is used to simplify list computations

GHC accomplishes fusion with two functions: foldr and build.

foldr combines the elements of a list

foldrfuse :: 
$$(a \to b \to b) \to b \to [a] \to b$$
  
foldrfuse  $f[z] = z$   
foldrfuse  $f[z] = x$   
foldrfuse  $f[z] = x$ 

while build builds up a list from a generating function.

buildfuse :: 
$$\forall a.(\forall b.(a \rightarrow b \rightarrow b) \rightarrow b \rightarrow b) \rightarrow [a]$$
  
buildfuse  $g = g$  (:) []  
build1  $l \equiv [1, 2, 3]$   
where  
 $l \ cons \ nil = 1 \ cons' (2 \ cons' (3 \ cons' \ nil))$ 

# The foldr3/build1 rule removes intermediate fold/build pairs

To remove intermediate data structures (those created by build), we eliminate foldr/build pairs with a rule.

```
{-# RULES "foldr/build" \forall f z (g :: \forall b. (a -> b -> b) -> b -> b). foldr f z (build g) = g f z #-}  foldr (+) 0 (build l) \equiv l (+) 0 \equiv 1 + (2 + (3 + 0))  where  l \ cons \ nil = 1 \ `cons' (2 \ `cons' (3 \ `cons' \ nil))
```

### We need a few extra rules to convert maps into fold/builds

To convert our definition of maps into a fold/build pair, we need the following helper function.

$$mapFBfuse :: (elt \rightarrow lst \rightarrow lst) \rightarrow (a \rightarrow elt) \rightarrow a \rightarrow lst \rightarrow lst$$
  
 $mapFBfuse \ c \ f = \lambda x \ ys \rightarrow c \ (f \ x) \ ys$ 

### We need a few extra rules to convert maps into fold/builds

To convert our definition of maps into a fold/build pair, we need the following helper function.

$$mapFBfuse :: (elt \rightarrow lst \rightarrow lst) \rightarrow (a \rightarrow elt) \rightarrow a \rightarrow lst \rightarrow lst$$
  
 $mapFBfuse \ c \ f = \lambda x \ ys \rightarrow c \ (f \ x) \ ys$ 

With that, we have all we to convert map into build/fold.

```
{-# RULES "map" \forall f xs. map f xs = build (\c n -> foldr (map<sub>fb</sub> c f) n xs) #-}
```

### We need a few extra rules to convert maps into fold/builds

To convert our definition of maps into a fold/build pair, we need the following helper function.

$$mapFBfuse :: (elt \rightarrow lst \rightarrow lst) \rightarrow (a \rightarrow elt) \rightarrow a \rightarrow lst \rightarrow lst$$
  
 $mapFBfuse \ c \ f = \lambda x \ ys \rightarrow c \ (f \ x) \ ys$ 

With that, we have all we to convert map into build/fold.

```
{-# RULES "map" \forall f xs. map f xs = build (\c n -> foldr (map<sub>fb</sub> c f) n xs) #-}
```

We also provide a way to combine sequential  $\mathit{mapFB}$  functions.

```
{-# RULES "map_{\rm fb}" \forall c f g. map_{\rm fb} (map_{\rm fb} c f) g = map_{\rm fb} c (f . g) #-}
```

Let's try applying the rewrite rules manually.

sum (map sq xs)

```
sum (map \ sq \ xs)
\equiv \{ \text{ expand } map \ f \ xs \}
```

```
\begin{array}{ll} sum \; (map \; sq \; xs) \\ \\ \equiv & \{ \; expand \; map \; f \; xs \; \} \\ \\ sum \; (build \; (\lambda c \; n \rightarrow foldrfuse \; (mapFBfuse \; c \; sq) \; n \; xs)) \end{array}
```

```
\begin{array}{ll} sum \; (map \; sq \; xs) \\ & \equiv \quad \{ \; \text{expand} \; map \; f \; xs \; \} \\ sum \; (build \; (\lambda c \; n \rightarrow foldrfuse \; (mapFBfuse \; c \; sq) \; n \; xs)) \\ & \equiv \quad \{ \; \text{expand sum} \; \} \end{array}
```

```
\begin{array}{ll} sum \; (map \; sq \; xs) \\ & \equiv \quad \{ \; \text{expand} \; map \; f \; xs \; \} \\ sum \; (build \; (\lambda c \; n \rightarrow foldrfuse \; (mapFBfuse \; c \; sq) \; n \; xs)) \\ & \equiv \quad \{ \; \text{expand sum} \; \} \\ foldr \; (+) \; 0 \; (build \; (\lambda c \; n \rightarrow foldrfuse \; (mapFBfuse \; c \; sq) \; n \; xs)) \end{array}
```

```
\begin{array}{l} sum \; (map \; sq \; xs) \\ \equiv \quad \{ \; \text{expand} \; map \; f \; xs \; \} \\ sum \; (build \; (\lambda c \; n \rightarrow foldrfuse \; (mapFBfuse \; c \; sq) \; n \; xs)) \\ \equiv \quad \{ \; \text{expand sum} \; \} \\ foldr \; (+) \; 0 \; (build \; (\lambda c \; n \rightarrow foldrfuse \; (mapFBfuse \; c \; sq) \; n \; xs)) \\ \equiv \quad \{ \; \text{apply} \; foldr \; / \; build: \; foldr \; f \; z \; (build \; g) = g \; f \; z \; \} \end{array}
```

```
\begin{array}{l} sum \; (map \; sq \; xs) \\ \equiv \quad \{ \; \text{expand} \; map \; f \; xs \; \} \\ sum \; (build \; (\lambda c \; n \rightarrow foldrfuse \; (mapFBfuse \; c \; sq) \; n \; xs)) \\ \equiv \quad \{ \; \text{expand sum} \; \} \\ foldr \; (+) \; 0 \; (build \; (\lambda c \; n \rightarrow foldrfuse \; (mapFBfuse \; c \; sq) \; n \; xs)) \\ \equiv \quad \{ \; \text{apply} \; foldr \; / \; build: \; foldr \; f \; z \; (build \; g) = g \; f \; z \; \} \\ \lambda c \; n \rightarrow foldfuse \; (mapFBfuse \; c \; sq) \; n \; xs) \; (+) \; 0 \end{array}
```

```
sum (map \ sq \ xs)
\equiv { expand map \ f \ xs }
sum (build (\lambda c \ n \rightarrow foldr fuse (map FB fuse \ c \ sq) \ n \ xs))
\equiv { expand sum }
foldr(+) \ 0 \ (build \ (\lambda c \ n \rightarrow foldr fuse \ (mapFB fuse \ c \ sq) \ n \ xs))
\equiv { apply foldr / build: foldr f z (build q) = q f z }
\lambda c \ n \rightarrow foldfuse \ (mapFBfuse \ c \ sq) \ n \ xs) \ (+) \ 0
≡ { apply lambda }
```

```
sum (map \ sq \ xs)
\equiv { expand map f xs }
sum (build (\lambda c \ n \rightarrow foldr fuse (map FB fuse \ c \ sq) \ n \ xs))
\equiv { expand sum }
foldr(+) \ 0 \ (build \ (\lambda c \ n \rightarrow foldr fuse \ (mapFB fuse \ c \ sq) \ n \ xs))
\equiv { apply foldr / build: foldr f z (build q) = q f z }
\lambda c \ n \rightarrow foldfuse \ (mapFBfuse \ c \ sq) \ n \ xs) \ (+) \ 0
foldfuse (\lambda x \ ys \rightarrow sq \ x + ys) \ 0 \ xs
```

# Applying foldr: the empty case

We now look at empty case

$$foldfuse (\lambda x \ ys \rightarrow sq \ x + ys) \ 0 \ []$$

## Applying foldr: the empty case

We now look at empty case

foldfuse 
$$(\lambda x \ ys \to sq \ x + ys) \ 0 \ []$$

 $\equiv$  {-expand foldr case:  $foldr f z [] = z - }$ 

# Applying foldr: the empty case

We now look at empty case

```
foldfuse\ (\lambda x\ ys 	o sq\ x + ys)\ 0\ [] \equiv\ \{-\text{expand}\ foldr\ \text{case}\colon foldr\ f\ z\ [] = {\sf z}\ -\} 0
```

$$process\ (x:xs) = foldfuse\ (\lambda x\ ys \rightarrow sq\ x + ys)\ 0\ (x:xs)$$

```
\begin{array}{l} process\;(x:xs) = foldfuse\;(\lambda x\;ys \to sq\;x + ys)\;0\;(x:xs) \\ \\ \equiv \;\; \{-\text{expand}\;foldr\;\text{case}:\;foldr\;f\;z\;(x:xs) = f\;x\;(foldr\;f\;z\;xs)\;\text{-}\} \end{array}
```

process 
$$(x:xs) = foldfuse \ (\lambda x \ ys \to sq \ x + ys) \ 0 \ (x:xs)$$

$$\equiv \{ -expand \ foldr \ case: \ foldr \ f \ z \ (x:xs) = f \ x \ (foldr \ f \ z \ xs) \ - \}$$

$$(\lambda x \ ys \to sq \ x + ys) \ x \ (foldr \ (\lambda x \ ys \to sq \ x + ys) \ z \ xs)$$

```
process (x:xs) = foldfuse \ (\lambda x \ ys \rightarrow sq \ x + ys) \ 0 \ (x:xs)
\equiv \{ \{ -expand \ foldr \ case: \ foldr \ f \ z \ (x:xs) = f \ x \ (foldr \ f \ z \ xs) \ - \} \}
(\lambda x \ ys \rightarrow sq \ x + ys) \ x \ (foldr \ (\lambda x \ ys \rightarrow sq \ x + ys) \ z \ xs)
\equiv \{ \{ -use \ definition \ of \ processfused: \ foldr \ f \ 0 \ xs = processfused \ xs \} \}
```

```
process (x:xs) = foldfuse \ (\lambda x \ ys \to sq \ x + ys) \ 0 \ (x:xs)
\equiv \{ \{ -expand \ foldr \ case: \ foldr \ f \ z \ (x:xs) = f \ x \ (foldr \ f \ z \ xs) \ - \} \}
(\lambda x \ ys \to sq \ x + ys) \ x \ (foldr \ (\lambda x \ ys \to sq \ x + ys) \ z \ xs)
\equiv \{ \{ -use \ definition \ of \ processfused: \ foldr \ f \ 0 \ xs = processfused \ xs \}
(\lambda x \ ys \to sq \ x + ys) \ x \ (processfused \ xs)
```

```
process (x:xs) = foldfuse \ (\lambda x \ ys \rightarrow sq \ x + ys) \ 0 \ (x:xs)
\equiv \{ \{ -expand \ foldr \ case: \ foldr \ f \ z \ (x:xs) = f \ x \ (foldr \ f \ z \ xs) \ - \} 
(\lambda x \ ys \rightarrow sq \ x + ys) \ x \ (foldr \ (\lambda x \ ys \rightarrow sq \ x + ys) \ z \ xs)
\equiv \{ \{ -use \ definition \ of \ processfused: \ foldr \ f \ 0 \ xs = processfused \ xs \} 
(\lambda x \ ys \rightarrow sq \ x + ys) \ x \ (processfused \ xs)
\equiv \{ \{ -apply \ lambda \ - \} \}
```

Now let's do the (x:xs) case.

sq x + process xs

```
\begin{array}{l} process \; (x:xs) = foldfuse \; (\lambda x \; ys \to sq \; x + ys) \; 0 \; (x:xs) \\ \equiv \; \{ \text{-expand} \; foldr \; \text{case:} \; foldr \; f \; z \; (x:xs) = f \; x \; (foldr \; f \; z \; xs) \; - \} \\ (\lambda x \; ys \to sq \; x + ys) \; x \; (foldr \; (\lambda x \; ys \to sq \; x + ys) \; z \; xs) \\ \equiv \; \{ \text{-use definition of} \; processfused:} \; foldr \; f \; 0 \; xs = processfused \; xs \\ (\lambda x \; ys \to sq \; x + ys) \; x \; (processfused \; xs) \\ \equiv \; \{ \text{-apply lambda -} \} \end{array}
```

Now let's do the (x : xs) case.

x \* x + processfused xs

```
process (x:xs) = foldfuse (\lambda x \ ys \rightarrow sq \ x + ys) \ 0 \ (x:xs)
\equiv {-expand foldr case: foldr f z (x : xs) = f x (foldr f z xs) -}
(\lambda x \ ys \rightarrow sq \ x + ys) \ x \ (foldr \ (\lambda x \ ys \rightarrow sq \ x + ys) \ z \ xs)
\equiv {-use definition of processfused: foldr f 0 xs = processfused xs
(\lambda x \ ys \rightarrow sq \ x + ys) \ x \ (processfused \ xs)
\equiv {-apply lambda -}
sq x + process xs
\equiv {-inline sq -}
```

## Bringing both cases back together

If we now combine our two cases, we have the following

$$process_{hand}[] = 0$$
  
 $process_{hand}(x : xs) = x * x + process_{hand}xs$ 

This is the same as what we had originally written manually!

## We achieved list fusion using foldr / build with rewrite rules

We managed to fuse *process* using our rewrite rules. We can look at the output of the compiler and it confirms what we expected.

$$process_{hand}[] = 0$$
  
 $process_{hand}(x : xs) = x * x + process_{hand}xs$ 

## We achieved list fusion using foldr / build with rewrite rules

We managed to fuse *process* using our rewrite rules. We can look at the output of the compiler and it confirms what we expected.

$$process_{hand}[] = 0$$
  
 $process_{hand}(x : xs) = x * x + process_{hand}xs$ 

| Function         | Time (ms) | Memory (MB) |
|------------------|-----------|-------------|
| process          | 220.0     | 265.26      |
| process'         | 25.31     | 96.65       |
| $process_{hand}$ | 25.31     | 96.65       |
| process fused    | 25.31     | 96.65       |

#### Table of Contents

Motivation: Simple Programs versus Performance

A brief introduction to GHC

List fusion with foldr/build

#### Stream Fusion

Applications of Fusion

#### Introduction to Stream

The Stream fusion system attempts to do something similar, by defining a list as a state machine.

data Stream a where

$$Stream :: (s \rightarrow Step \ a \ s) \rightarrow s \rightarrow Stream \ a$$

#### Introduction to Stream

The Stream fusion system attempts to do something similar, by defining a list as a state machine.

data 
$$Stream \ a \ where$$
  
 $Stream :: (s \rightarrow Step \ a \ s) \rightarrow s \rightarrow Stream \ a$ 

## Streams have little helpers to make lists

```
stream :: [a] \rightarrow Stream \ a
stream \ xs = Stream \ uncons \ xs
  where
     uncons[] = Done
     uncons(x:xs) = Yield x xs
unstream :: Stream \ a \rightarrow [a]
unstream (Stream next s0) = unfold next s0
  where
     unfold next s = \mathbf{case} \ next \ s \ \mathbf{of}
        Done \rightarrow []
        Skip s' \to unfold \ next \ s'
        Yield x s' \rightarrow x: unfold next s'
```

# Maps on Streams!

$$maps :: (a \rightarrow b) \rightarrow Stream \ a \rightarrow Stream \ b$$
 $maps \ f \ (Stream \ next0 \ s0) = Stream \ next \ s0$ 
 $\mathbf{where}$ 
 $next \ s = \mathbf{case} \ next0 \ s \ \mathbf{of}$ 
 $Done \rightarrow Done$ 
 $Skip \ s' \rightarrow Skip \ s'$ 
 $Yield \ x \ s' \rightarrow Yield \ (f \ x) \ s'$ 
 $mapl :: (a \rightarrow b) \rightarrow [a] \rightarrow [b]$ 
 $mapl \ f = unstream \circ maps \ f \circ stream$ 

#### **Stream Fusion!**

Fusion on streams only has one rewrite rule, and it is pretty simple.

```
{-# RULES "stream" \forall (s :: Stream a).
stream (unstream s) = s #-}
```

#### **Stream Fusion!**

Fusion on streams only has one rewrite rule, and it is pretty simple.

```
\{-\# \text{ RULES "stream" } \forall \text{ (s :: Stream a).}
      stream (unstream s) = s #-}
    mapTestStream :: [Int] \rightarrow [Int]
    map TestStream \ xs = mapl \ (+1) \ (mapl \ (*2) \ xs)
    mapTestStreamCompiled :: [Int] \rightarrow [Int]
    mapTestStreamCompiled [] = []
    mapTestStreamCompiled (x:xs) =
       1 + (x * 2) : mapTestStreamCompiled xs
```

#### **Table of Contents**

Motivation: Simple Programs versus Performance

A brief introduction to GHC

List fusion with foldr/build

Stream Fusion

Applications of Fusion

## We can make process even faster with Data. Vector

The *Data.Vector* package uses stream fusion and many other rewrite rules behind the scenes in order to optimize array based computations.

 $process \ xs = sum0 \circ map \ sq \ \$ \ xs$ 

## We can make process even faster with Data. Vector

The  $Data.\,Vector$  package uses stream fusion and many other rewrite rules behind the scenes in order to optimize array based computations.

$$process \ xs = sum \theta \circ map \ sq \ \$ \ xs$$

The vector version looks very similar.

 ${f import}$  qualified Data. Vector as V

process Vec n = V.sum ~\$~V.map sq ~\$~V.enumFromTo ~1~(n :: Int)

# We can make process even faster with Data.Vector

#### But has incredible performance!

| Function              | Time (ms) | Memory (MB)         |
|-----------------------|-----------|---------------------|
| process               | 220.0     | 265.26              |
| process'              | 25.31     | 96.65               |
| process manual fused' | 4.7       | 96.65               |
| processVec            | 0.7       | $16 \times 10^{-5}$ |
|                       |           |                     |

## What code does *Data. Vector* generate?

While we wrote this in our program

```
processVec \ n = V.sum \ \ V.map \ sq \ \ V.enumFromTo \ 1 \ (n :: Int)
```

GHC ended up generating the following Core code.

```
loop\ counter\ acc = \mathbf{case}\ counter \leqslant 100000000
False \to acc;
True \to loop\ (counter+1)\ (acc+counter*counter)
```

simplify this core, ignore unboxing

# Repa: A numerical Haskell Library using Fusion

Repa also uses fusion in order to handle array operations.

## Data Parallel Haskell: Nested Data Parallelism made easy

```
processDPH :: [:Int:] \rightarrow Int

processDPH = sumDPH \circ mapDPH \ sq \ \ xs
```

Does dispatch by MPI.