Graph-based semi-supervised learning for complex networks

Leto Peel
Université catholique de Louvain
@PiratePeel

Here is a network

social networks food webs internet protein interactions

Network nodes can have properties or attributes (metadata)

social networks age, sex, ethnicity, race, etc. food webs feeding mode, species body mass, etc. internet data capacity, physical location, etc. protein interactions molecular weight, association with cancer, etc.

Network nodes can have properties or attributes (metadata)

- Metadata values
 - Metadata unknown

Can we predict the unknown metadata values?

social networks age, sex, ethnicity, race, etc. food webs feeding mode, species body mass, etc. internet data capacity, physical location, etc. protein interactions molecular weight, association with cancer, etc.

Now, let's talk about supervised learning...

Now, let's talk about *semi-*supervised learning...

Graph-based semi-supervised learning

Construct a graph based on similarity in X and propagate label information around the graph

- Metadata values
 - → Metadata unknown

- Metadata values
 - Metadata unknown

- Metadata values
 - Metadata unknown

- Metadata values
 - Metadata unknown

Semi-supervised learning in relational networks

- Metadata values
 - Metadata unknown

Semi-supervised learning in relational networks

- Metadata values
 - Metadata unknown

Semi-supervised learning in relational networks

- Metadata values
 - Metadata unknown

Naive application of label propagation does not work if we don't know how classes interact

Naive application of label propagation does not work if we don't know how classes interact

Solution: Construct a similarity graph based on the relational network

DEFINITION 3. Structural equivalence [24] — If \equiv is an equivalence relation on \mathcal{V}_r then \equiv is a structural equivalence iff $\forall a, b, c \in \mathcal{V}_r$ and $a \equiv b$:

- 1. $\forall (a \to c) \in \mathcal{E}_r$, then $(b \to c) \in \mathcal{E}_r$;
- 2. $\forall (a \leftarrow c) \in \mathcal{E}_r$, then $(b \leftarrow c) \in \mathcal{E}_r$.

Structurally equivalent nodes

Lorrain & White, Structural equivalence of individuals in social networks. J. Math. Sociol., 1971

Common neighbours

cosine similarity is a measure of how structurally equivalent two nodes are

$$S_{a,b} = \frac{\sum_{c} A_{ac} A_{cb}}{\sqrt{\sum_{c} A_{ac}^2} \sqrt{\sum_{c} A_{cb}^2}}$$

$$\mathbf{S}_{\leftrightarrow} = \mathbf{D}^{-rac{1}{2}} \mathbf{A} \mathbf{A} \mathbf{D}^{-rac{1}{2}}$$

cosine label propagation

$$\mathbf{F}_{t+1} = \mathbf{Z}^{-1} \left((1 - \alpha) \mathbf{B} + \alpha \mathbf{S}_{\leftrightarrow} \mathbf{F}_{t} \right)$$

Neighbours of neighbours

the set of neighbours of a node's neighbours contain all structurally equivalent nodes

two-step label propagation

$$\mathbf{F}_{t+1} = \mathbf{Z}^{-1}((1-\alpha)\mathbf{B} + \alpha(\mathbf{L}\mathbf{L})^{\beta}\mathbf{F}_{t})$$

Why are paths of length 2 important?

bipartite / diassortative negative auto-correlation

presence of triangles in assortative relations

Why are paths of length 2 important?

Label propagation is an eigenvector problem

$$\mathbf{L} = \mathbf{D}^{-\frac{1}{2}} \mathbf{A} \mathbf{D}^{-\frac{1}{2}}$$
 has eigenvalues in [-1,1]

most positive

most negative

Why are paths of length 2 important?

Label propagation is an eigenvector problem

$$\mathbf{L} = \mathbf{D}^{-\frac{1}{2}} \mathbf{A} \mathbf{D}^{-\frac{1}{2}}$$
 has eigenvalues in [-1,1]

When we consider even path lengths using L² (or A² in the case of cosine LP) the eigenvectors remain unchanged, but the eigenvalues are all positive

Network (label)	n	\tilde{n}	m	ℓ
word (adj/noun) [27]	112	0	569	2
foodweb (habitat) [7]	492	4	16330	5
foodweb (feeding) [7]	492	4	16330	6
cora (subject) [35]	2708	0	5429	7
yeast (function) [8]	2361	0	7182	13
agblog (political) [1]	1222	0	33428	2
hep-th (year) [15]	27770	0	352807	12
facebook (gender) [25]	4039	0	176468	2
pokec (gender) [37]	1632803	163	30622564	2
pokec (region) [37]	1632803	163	30622564	10

Gratuitous Comp. Sci. "My curve is better than your curve" slide

Take home messages...

- 1) Complex networks are not (necessarily) the same as similarity graphs
 - we should adapt our methods accordingly

Take home messages...

- 1) Complex networks are not (necessarily) the same as similarity graphs
 - we should adapt our methods accordingly

- 2) Machine Learning for Complex Networks does not require representing nodes as feature vectors
 - use Network Science!

Advertisement

The Winter Workshop on Complex Systems is a one-week workshop where young researchers from all over the world gather together for discussing about complexity science and engaging into novel research projects.

Applications now open!

http://wwcs2019.org/

February 4-8th 2019 Zakopane, Poland

For more information...

Peel, Graph-based semi-supervised learning for relational networks. SIAM International Conference on Data Mining, 2017

https://arxiv.org/abs/1612.05001

Contact:

≥ leto.peel@uclouvain.be

$$\mathbf{L} = \mathbf{D}^{-\frac{1}{2}} \mathbf{A} \mathbf{D}^{-\frac{1}{2}} \text{ and } \lambda = (\frac{1}{\alpha} - 1)$$

not $I - D^{-(1/2)}AD^{-(1/2)}$ since we require the "smoothest" eigenvector to be dominant (associated with the largest eigenvalue)

$$\min_{\mathbf{F}} \quad \frac{1}{2} tr(\mathbf{F^T L F}) + \lambda ||\mathbf{F} - \mathbf{B}||^2 \quad s.t. \quad \mathbf{F} \mathbb{1} = \mathbb{1}$$

$$\mathbf{L} = \mathbf{D}^{-\frac{1}{2}} \mathbf{A} \mathbf{D}^{-\frac{1}{2}}$$
 and $\lambda = (\frac{1}{\alpha} - 1)$

Solve using the power method:

$$\mathbf{F}_{t+1} = \mathbf{Z}^{-1}((1-\alpha)\mathbf{B} + \alpha \mathbf{L}\mathbf{F}_t)$$

Zhou et al. Learning with local and global consistency, NIPS 2003