IMPERIAL_

Rapid modelling of ATES using ML

MSc Independent Research Project (IRP 2024)

Hadrian Fung

MSc Geo-energy with Machine Learning and Data Science (GEMS)

Contents

- 1 Project introduction
- 2 Significance of work
- 3 Data acquisition
- 4 Approaches | Workflow
- Data structure | Data pre-processing
- 6 Model Architecture
- 7 Results visualization | Model performance
- 8 Further Advancement : RL for mesh adaptivity

Imperial College London Rapid modelling of ATES using ML | IRP 2024 **2** 13 September 2024

Rapid modelling of ATES using ML

Aquifer Thermal Energy Storage (ATES)

provides a low carbon technology solution to regional heating and cooling at the heart of energy transition.

Capture and store the waste heat / cool over the season and extract for heating / cooling in the next season.

Aquifer Thermal Energy Storage (ATES)

- Capture and store waste cool
- Produce stored heat from underground reservoir to provide heating via heat pump

Imperial College London

Rapid modelling of ATES using ML | IRP 2024

Aquifer Thermal Energy Storage (ATES)

- Capture and store waste heat
- Produce stored cool from underground reservoir to provide cooling

Project introduction _____

IC-FERST

Imperial College Finite Element Reservoir Simulator

Numerical simulation of multiphase flow and transport in complex geological reservoirs.

Reservoir Configurations (Mesh)

Key variables across scenarios

- Well spacing
- Well depth (Well 1 & 2)
- Screen Length
- Screen separation
- Vertical permeability (Kz)

840 scenarios in dataset

Imperial College London Rapid modelling of ATES using ML | IRP 2024 8 13 September 2024

Rapid modelling of ATES using ML

Numerical simulations : Computational expensive

- Involve the solving of coupled PDEs
- High resolution spatial mesh and small timesteps
 >> ensure accuracy

ML approach : Retain accuracy & spatial resolution while increasing efficiency

- Pure data-driven (no pre-informed physics)
- scalability by hardware acceleration

(GPU parallelization)

> 24

hours*

< 30

minutes

*Without mesh adaptivity

- Scalable acceleration on numerical simulations
- Transferable approach to create a fast proxy for other fields
- Energy Transition: Rapid modelling of ATES for instant insight

12

Input

ML models

Output

- Captures spatial-temporal features in unstructured graph data
- Captures the physics and replicate the simulation results

13 September 2024

Graph Neural Networks (GNNs)

- Work well with irregular mesh
- Permutation invariance
- Proven to work well even with faulted Reservoir

Convolution Neural Networks (CNNs)

Regular grid ONLY

15

Permutation equivariance

Adaptive Mesh (Mesh changes across timesteps)

Auto-regressive approach

unstructured graph data X 240

Graph U-net architecture

Injection strategy (Sequence Generation)

- Initial well 1 injection followed by cycles of alternate injection phase and stationary phase
- Encoded into an integer list of injection sequence
- >> node feature : (1) Current injection phase (2) Next injection phase

Graph Construction (From vtu, bdf and csv)

Node Feature (Input state)

Phase 1 Temperature

Phase 1 Pressure

X-coordinates

Y-coordinates

Z-coordinates

Vertical Permeability (Kz)

Current injection phase

Next injection phase

24

Data availability _____

Input

Auto-regressive approach

Output

Node Feature

Phase 1 Temperature

Phase 1 Pressure

Vertical Permeability (Kz)

Current injection phase

Next injection phase

Node Feature

Phase 1 Temperature

Phase 1 Pressure

- Interpolate the Phase 1 Temperature and Pressure to previous / next mesh
- Nearest neighbor interpolation
- Graph U-net architecture requires prediction on the same mesh

Mesh Projection (Forward / Backward)

Auto-regressive pairs

Auto-regressive

Graph U-net architecture

29

Decoder block

→ Skip connection

Encoder & Decoder block

GCNConv

Hybrid (GCNConv | GATConv)

Multi-hop GCNConv (K > 1)

Temporal Processor block

Temporal Convolution

Temporal attention

RNN cell / LSTM

GCNConv:
1- hop aggregation

2 - hop GCNConv :2 - hop aggregation

Relative importance of nodes

GATConv

	Train dataset		Test dataset	
	Temperature	Pressure	Temperature	Pressure
U-GCN (forward)	88.14%	92.54%	85.67%	91.52%
U-GCN (backward)	93.93%	93.44%	91.65%	90.58%
Hybrid U-GAT (forward)	89.94%	92.58%	86.87%	91.66%
Hybrid U-GAT (backward)	93.93%	91.20%	92.20%	90.08%
Multi-hop GCN (K = 2 backward)	93.88%	92.10%	91.21%	89.92%
Multi-hop GCN (K = 3 backward)	93.80%	90.81%	91.98%	89.66%

13 September 2024

Accurately capturing the plume diffusion

- Capture both value + shape accurately
- Grasp of general solution of plume diffusion
- Accurate gradient at the fringe of plume
- Steady-state diffusion (stable injection or pure diffusion)

◆ The evolution of phase 1 temperature in scenario 200.

Forward Projection | GCNConv | XZ Cross-section at vertical profile y = 0.

The evolution of phase 1 temperature in scenario 200.

The evolution of phase 1 temperature in scenario 200.

The evolution of phase 1 temperature in scenario 200.

The evolution of phase 1 temperature in scenario 200.

The evolution of phase 2 temperature in scenario 200.

The evolution of phase 2 temperature in scenario 200.

The evolution of phase 3 temperature in scenario 200.

The evolution of phase 4 temperature in scenario 200.

The evolution of phase 5 temperature in scenario 200.

The evolution of phase 5 temperature in scenario 200.

The evolution of phase 5 temperature in scenario 200.

The evolution of phase 5 temperature in scenario 200.

The evolution of phase 5 temperature in scenario 200.

The evolution of phase 5 temperature in scenario 200.

The evolution of phase 5 temperature in scenario 200.

The evolution of phase 5 temperature in scenario 200.

The evolution of phase 5 temperature in scenario 200.

The evolution of phase 5 temperature in scenario 200.

The evolution of phase 5 temperature in scenario 200.

The evolution of phase 6 temperature in scenario 200.

The evolution of phase 6 temperature in scenario 200.

The evolution of phase 6 temperature in scenario 200.

The evolution of phase 6 temperature in scenario 200.

The evolution of phase 6 temperature in scenario 200.

The evolution of phase 6 temperature in scenario 200.

The evolution of phase 7 temperature in scenario 200.

The evolution of phase 7 temperature in scenario 200.

The evolution of phase 7 temperature in scenario 200.

The evolution of phase 1 temperature in scenario 200.

The evolution of phase 1 temperature in scenario 200.

The evolution of phase 1 temperature in scenario 200.

The evolution of phase 1 temperature in scenario 200.

The evolution of phase 1 temperature 2 temperature

Higher R2 score in Backward Projection

- Back projection yields an overall higher R2 score in predictions across all model architecture
- Does NOT necessarily mean that backward projection is of better performance (not indicative)
- Backward projection offer less nodes on the high gradient area in the prediction (output state | timestep t+1)
- Restricted expressiveness in backward propagation
- Not directly comparable and indicative

Imperial College London Rapid modelling of ATES using ML | IRP 2024

35

[◆] The evolution of phase 1 temperature in scenario 200.

Backward Projection | GCNConv | XZ Cross-section at vertical profile y = 0

The evolution of phase 1 temperature in scenario 200.

The evolution of phase 1 temperature in scenario 200.

The evolution of phase 1 temperature in scenario 200.

The evolution of phase 1 temperature in scenario 200.

The evolution of phase 1 temperature in scenario 200.

The evolution of phase 1 temperature in scenario 200.

The evolution of phase 1 temperature in scenario 200.

The evolution of phase 2 temperature in scenario 200.

The evolution of phase 2 temperature in scenario 200.

The evolution of phase 2 temperature in scenario 200.

The evolution of phase 2 temperature in scenario 200.

The evolution of phase 3 temperature in scenario 200.

The evolution of phase 2 temperature in scenario 200.

The evolution of phase 2 temperature in scenario 200.

The evolution of phase 2 temperature in scenario 200.

The evolution of phase 2 temperature in scenario 200.

The evolution of phase 2 temperature in scenario 200.

The evolution of phase 2 temperature in scenario 200.

The evolution of phase 3 temperature in scenario 200.

The evolution of phase 2 temperature in scenario 200.

The evolution of phase 3 temperature in scenario 200.

The evolution of phase 2 temperature in scenario 200.

The evolution of phase 2 temperature in scenario 200.

The evolution of phase 2 temperature in scenario 200.

The evolution of phase 2 temperature in scenario 200.

The evolution of phase 2 temperature in scenario 200.

The evolution of phase 3 temperature in scenario 200.

The evolution of phase 3 temperature in scenario 200.

The evolution of phase 4 temperature in scenario 200.

The evolution of phase 2 temperature in scenario 200.

The evolution of phase 2 temperature in scenario 200.

The evolution of phase 2 temperature 2 temperatur

The evolution of phase 1 temperature in scenario 200 during transition timestep Forward Projection | GCNConv | XZ Cross-section at vertical profile y = 0

Limitations on injection phase transition

- The mode struggles to capture the start of injection from stationary phase
- Physical understanding : Transient solution vs Steadystate solution
- ML understanding : imbalance dataset (< 10 % of dataset)</p>

Limitations on constant mesh for U-GNN

- Graph U-net architecture : constant input and output tensor
- ❖ The GNN model itself could not benefit from adaptive mesh refinement for variable resolution
- Constrained expressiveness on : (1) high-gradient area (2) fine-grained changes
- * Representation of mesh topology on replicating actual fluid flow in porous medium

Reinforcement Learning (RL) for adaptive mesh refinement (AMR)

- ❖ Apply AMR with proposed auto-regressive ML approach
- ❖ (1) Refine the resolution at high-gradient area and injection well screen to capture finest details

37

- ❖ (2) Coarsen the resolution at steady region to increase computational efficiency
- ❖ (3) Restructure the mesh topology (node movement / edge connectivity)

Conclusion _____

Rapid modelling of ATES using ML

- ❖ Created a fast proxy of ATES simulation while retaining accuracy with over 92% of R2 score
- Can capture accurate shape of plume + temperature values
- Limitations on transition of injection phase

IMPERIAL

End of slides

Thank you