Big Data and Economics

Bootstrapping, Functions, and Parallel Processing

Kyle Coombs
Bates College | ECON/DCS 368

Table of contents

- Prologue
- Bootstrapping
- Functions
- Iteration
- Parallel Processing

Prologue

Plan for the week

- Computers closed: Explanation of bootstrapping, basics of functions, iteration, and parallel processing
- Computers open: Work through practical examples
- By the end of the week you will:
 - Understand the intuition of bootstrapping
 - Be able to write basic functions in R
 - Be able to iterate tasks serially and in parallel in R
 - Be able to bootstrap in R

Bootstrapping

Bootstrapping: Motivating example

- Imagine you gain powers to view every parallel, distinct universe where the world¹
- With these powers, you **obviously** decide to replicate critical results in economics
 - You collect equivalent sample sizes
 - You run the same regressions to estimate the same parameters
- Do you think the results will be the same in each parallel universe?

Bootstrapping: Motivating example

- Imagine you gain powers to view every parallel, distinct universe where the world¹
- With these powers, you **obviously** decide to replicate critical results in economics
 - You collect equivalent sample sizes
 - You run the same regressions to estimate the same parameters
- Do you think the results will be the same in each parallel universe?
- No! They'll differ a lot or a little, depending on how variable the data generating process is

Return to earth

- We don't have powers to view parallel universes
- But we can view different random samples of a population of interest
- And each sample will provide a distinct estimate of the true parameters of interest
- We have two ways to use these samples to get close to our parallel universe powers:
- 1. **Mathematical approximations**: Make simple assumptions that randomness obeys mathematical regularities for large samples
 - e.g. Central Limit Theorem allows us to use the normal distribution to approximate the sampling distribution of the mean
- 2. **Resampling**: Use the same sample to estimate the variability of our estimates
 - e.g. bootstrapping which we will cover today

Visualizing samples

What is bootstrapping?

- Bootstrapping is named for "pulling yourself up by your bootstraps," a joke² because the method seems preposterous and impossible
- Bootstrapping has two repeated steps:
- 1. Draw a random sample **with replacement** of size *N* from your sample.
- 2. Perform the same analysis on the new sample.
- Repeat steps 1 and 2 a bunch of times saving each, the 2.5th and 97.th percentiles show the 95% confidence interval

Then plot the distribution of the estimates from each sample

² Not a great one. 9 /

What is a bunch of times?

How many bootstraps is enough?

What is a bunch of times?

How many bootstraps is enough?

It depends. Intuively:

- The more bootstraps, the better
- But the more bootstraps, the longer it takes to run
- Many econometricians and statisticians have purported to solve for "optimal" bootstrapping, but it is still an open question
- Arguably, you should do 1000s, if not more times!
 - o In this lecture, I did not do that because it would take too long to generate my slides
- See parallel processing before for speed ups!

Visualizing Bootstrapping vs. population

Population samples

Bootstrap analog

Schematics taken from Data Science in R: A Gentle Introduction by James Scott

What does bootstrapping show?

- Bootstrapping shows how much your estimates vary across samples
- It shows the **sampling distribution** of your estimates
- The 95% confidence interval is the 2.5th and 97.5th percentile of the sampling distribution

What does bootstrapping show?

- Bootstrapping shows how much your estimates vary across samples
- It shows the **sampling distribution** of your estimates
- The 95% confidence interval is the 2.5th and 97.5th percentile of the sampling distribution
- **Intuition**: Bootstrapping simulates the process of collecting new samples
 - If your sample is truly representative, then any shuffled sample should be representative too!
 - Your own sample is itself a random sample generated from some other random sample

A "simple" example

- Imagine you have an RCT, and you want to estimate the effect of a treatment on some outcome
- There are two groups of treated users:
 - Those for whom treatment effect is zero
 - Those for whom treatment effect is one

On average the treatment effect is 0.5, but there is a lot of variation!

Visualizing simple example

Heterogeneous treatment effect

Bootstrap to get random samples

• Let's take a bunch of random samples and see how the average treatment effect varies

Now with a bigger sample

• With a larger baseline sample, the distribution of the average treatment effect is tighter

Bootstrapping assumptions

- Your sample is just one random sample from the population of interest
- Bootstrapping assumes that randomness in data is driven by sampling
- Bootstrapping assumes a distribution that is not "highly" skewed
- (Basic) bootstrapping assumes independent and identically distributed
 - But you can do clustering and other forms of correlation, etc.
- Other technical assumptions!

When should I do it?

- The bootstrap simulates the sample distribution of your estimates
- Use it to:
- 1. Calculate the standard error of your estimates
 - Especially when you can't use analytical formulas (e.g. the median)
- 2. Do power simulations on pilot data
- 3. Generate "training data sets" for machine learning models
- 4. Explore variation in model predictions as the sample changes
- 5. Other robustness checks and more

How do I bootstrap?

There are two main requirements:

- 1. Always use the same sample size as your original sample
 - This ensures the "same" data-generating process and approximates the same randomness
- 2. Always sample with replacement
 - That means you may sample the same observation twice

How many samples?

• The more samples you take, the

Limitations of bootstrapping

- Bootstrapping cannot save you if your sample is biased
- Bootstrapping cannot save you if your sample is too small
- Bootstrapping cannot save you if your sample is not representative

Limitations of packages

- I used the boot package above!
- That handles many cases, but it can get a little slow for big data
- And it has built-in parallel processing, but it may not work on different systems
- Best to know how to do it yourself as well cause it is pretty easy once you get the hang of it!

Functions

What is a function?

• In math, a function is a mapping from domain to range

 $f(x)=x^2$ Takes a number from the domain and returns its square in the range f(2)=4 The function applied to 2 returns 4

• In programming, a function is a mapping from input to output

```
square \( \infty \text{function}(x) \{
    x^2
}
square(2) # Returns 4
```

Why use functions?

Abstraction

• They allow you to summarize complex details into a single line of code, so you only need to understand them once (instead of repeating yourself)

Automation

Automate a task to happen many times without having to write the same code over and over

Documentation

• Well-written functions codify the steps you take to do something, so you can easily remember what you did

How do I write a function?

In R, functions are defined using the function keyword

```
some_function ← function(positional_input1=1,positional_input2="two",keyword_inputs) {
    # Do something with these inputs
    # Create output or ouputs
    return(output) # Return the output
    # If you do not specify return, it returns the last object
}
```

function takes keyword inputs and positional inputs. It does not require a specific order for these unlike in Python. But generally, position comes first.

Control flow: If/else logic

Functions make great use of if/else logic

No input value provided. Using default value of 1
value value_squared
1 1 1

This function has a default value of 1 for when you fail to provide a value.

Each step of bootstrap

```
# library(tidyverse) # Already loaded
set.seed(1)
df \( \) tibble(x = rnorm(1000, mean = 0, sd = 1),
    y = x + rnorm(1000, mean = 0, sd = 1))

bootstrap_sample \( \) function(df) {
    # 1. Draw a random sample with replacement of size N from your sample.
    sample \( \) df %>% slice_sample(n = nrow(df), replace = TRUE)
    # 2. Perform the same analysis, here a median, on the new sample.
    return(coef(lm(y \( \times \) x, data = sample))[2])
}

bootstrap_sample(df)
```

x ## 0.9671832

Wrapping up a function

- You can wrap functions inside of other functions
- This is a great way to make your code more readable and modular
- Also useful for various iteration tasks that need to take an iterated input

```
wrapper_bootstrap 
function(i,df) {
    # print(i) # if you want to visualize the i.
    bootstrap_sample(df)
}
wrapper_bootstrap(1,df)
```

```
## x
## 0.9824952
```

More on functions

- There is a lot more to functions than we can cover today
- Check out Grant McDermott's Introudctory and Advanced chapters on functions
- There are some incredible tips on how to:
 - Debug functions
 - Write functions that are easy to read
 - Catch errors
 - Cache or memoise big functions

Iteration

Iteration: For loops

- You've likely heard of for loops before!
- They're the most common way to iterate across programming languages
- In R, the syntax is fairly simple: you iterative over a vector or list of values, and do stuff with those values

```
for(i in 1:10) {
   square(i)
}
```

Bootstrapping for loop

To save output, you have to pre-define a list where you deposit the output

```
deposit \( \times \text{vector("list",10)} \) # preallocate list of 10 values
set.seed(1)
for (i in 1:10) {
    # perform bootstrap
    deposit[[i]] \( \times \text{bootstrap_sample(df)} \) }
bootstrapped_median \( \times \text{bind_rows(deposit)} \) head(bootstrapped_median)
```

Binding output

- Did you notice the bind_rows() function I called?
- After any iteration that leaves you a bunch of dataframes in a list, you'll want to put them together
- The bind_rows function is a great way to bind together a list of data frames
- Other options include:
 - o do.call(rbind, list_of_dataframes)
 - o data.table::rbindlist()

Issues with for loops

- For loops are slow in R
- They clutter up your environment with extra variables (like the i indexer)
- They can also be an absolute headache to debug if they get too nested
- Look at the example below: this is a nested for loop that is hard to read and debug
- In some languages, this is all you have, but not in R!

```
for (i in 1:5) {
    for (k in 1:5) {
        if (i > k) {
            print(i*k)
        }
        else {
            for (j in 1:5) {
                print(i*j*k)
            }
        }
    }
}
```

Tips on iterating

- Start small! Set your iteration to 1 or 2 and make sure it works
- Why?
 - You'll know faster if it broke
- Print where it is in the iteration (or use a progress bar with something like phapply)

```
for (i in 1:2) {
   print(i)
   # complex function
}

## [1] 1
## [1] 2
```

Iteration: apply family

- R has a much more commonly used approach to iteration: the *apply family of functions: apply, sapply, vapply, lapply, mapply
- The *apply family takes a function and applies it to each element of a list or vector
- lapply is the most commonly used and returns a list back

```
## [[1]]
    value value_squared
## 1 1
##
## [[2]]
    value value_squared
## [[3]]
    value value_squared
## 1
## [[4]]
     value value_squared
## [[5]]
    value value_squared
         5
## [[6]]
     value value_squared
## 1
## [[7]]
    value value squared
```

lapply(1:10, square)

*apply syntax

- The *apply family is a little confusing at first, but it's very powerful
- The syntax is *apply(list_or_vector, function, other_arguments)
- The function is a function that takes a single argument
- The other_arguments are arguments that are passed to the function

Bootstrapping lapply

- One trick: *apply insists on iterating over some sequence indexed i like a for-loop
- But you can ignore it by using function(i) and then not using i in the function

```
set.seed(1)
lapply(1:10, function(i) bootstrap_sample(df=df)) %>%
  bind_rows()

## # A tibble: 10 × 1
## x
```

Wrapper functions to get around *apply

- Maybe you don't like the ugly syntax of function(i) and then not using i in the function
- Well you can write a wrapper function to get around that

Iteration: map

- Sometimes the *apply syntax is a little confusing
- The **purrr** package in the tidyverse has more intuitive syntax for iteration: map
- The variant map_df is especially useful beause it automatically binds the output into a data frame
 - The same iteration syntax applies here too.

While loops

- I'm largely skipping while loops, but they're also important!
- While loops iterate until one or more conditions are met
 - Typically one condition is a max number of iterations
 - Another conditions is that the some value of the loop is within a small amount of a target value
- These are critical for numerical solvers, which are common in computational economics and machine learning

Parallel Processing

Motivating example: Parallel Processing

- Imagine you get home from the grocery store with 100 bags of groceries
- You have to bring them all inside, but you can only carry 2 at a time
- That's 50 trips back and forth
- How can you speed things up?

Motivating example: Parallel Processing

- Imagine you get home from the grocery store with 100 bags of groceries
- You have to bring them all inside, but you can only carry 2 at a time
- That's 50 trips back and forth
- How can you speed things up?
 - Ask friends to carry to at a time with you (parallel processing)
 - Get a cart and carry 10 at a time (more RAM and a better processor)

A warning

- Parallel processing is an incredibly powerful tool, but it is full of pitfalls
- A friend of mine from the PhD said that he did not understand it until the 4th year of his PhD
- Many economists understand the intuition, but not the details and only do it if absolutely necessary
- That used to be me until I started teaching this class!
- So if it is hard, that's normal. But it is worth learning!

"One trip?" okay

One trip? Okay, sure

Parallel processing: What?

- Your computer has multiple cores, which are like multiple brains
- Each of these is capable of doing the same tasks
- Parallel processing is the act of using multiple cores to do the same task at the same time

Parallel processing: What?

- Your computer has multiple cores, which are like multiple brains
- Each of these is capable of doing the same tasks
- Parallel processing is the act of using multiple cores to do the same task at the same time
- Many coding tasks are "embarassingly parallel"
 - That means they can be broken up into many small tasks that can be done at the same time
 - Bootstrapping is one such example
- Some tasks are not embarrassingly parallel
 - These are called "serial" tasks
 - Parts of these tasks may be possible to do in parallel

Parallel processing vocab

The vocab for parallel processing can get a little confusing:

- Socket: A socket is a physical connection between a processor and the motherboard
- **Core**: A core is a physical processor that can do computations
- **Process**: A process is a task that is being done by a core (Windows users may know this from Task Manager)
- **Thread**: A thread is a subtask of a process that can be done in parallel and share memory with other threads
- Cluster: A cluster is a group of computers that can be used to do parallel processing
- Node: One computer within a cluster

Parallel Processing in R

- In R, there are many ways to parallel process, I'll introduce you to the **future.apply** package
- There are many parallel processing packages in R, but **future.apply** follows the *apply family syntax

Trivial example: square numbers

- Let's start with some trivial to understand examples
- Here is a function called slow_square, which takes a number and squares it, but after a pause.

```
## Emulate slow function
slow_square =
  function(x = 1) {
    x_sq = x^2
    d = data.frame(value = x, value_squared = x_sq)
    Sys.sleep(2) # literally do nothing for two seconds
    return(d)
  }
```

Let's time that quickly.

```
# library(tictoc) ## Already loaded

tic()
serial_ex = lapply(1:12, slow_square)
toc(log = TRUE)

## 24.82 sec elapsed
```

Now in parallel

[1] TRUE

```
# library(future.apply) ## Already loaded
# plan(multisession) ## Already set above

tic()
future_ex = future_lapply(1:12, slow_square)
toc(log = TRUE)

## 5.64 sec elapsed

all.equal(serial_ex, future_ex)
```

Example: bootstrapping in parallel

• The future_lapply works the same, but now I have to set the seed inside the function

```
set.seed(1)
tic()
serial_boot ← lapply(1:1e4, function(i) bootstrap_sample(df)) %>%
    bind_rows()
toc(log = TRUE)

## 61.16 sec elapsed

tic()
parallel_boot ← future_lapply(1:1e4,
    function(i) bootstrap_sample(df),
    future.seed=1) %>%
    bind_rows()
toc(log = TRUE)

## 21.98 sec elapsed
```

Want to use map? Try furrr

The **furrr** package, i.e. future **purrrr** is a parallel processing version of **purrr**

• Again, the syntax is the same, but you have to set the seed inside the function with .options.

```
tic()
furrr_boot = future_map_dfr(1:1e4,
    function(i) bootstrap_sample(df),
    .options = furrr_options(seed=1))
toc(log = TRUE)
```

29.23 sec elapsed

Get standard errors from results

- Now that we have a bunch of estimates, we can get the standard error of our estimates
- The 95% confidence interval is just the 2.5th and 97.5th percentile of the sampling distribution

R packages that use parallel processing

- Many R packages already use parallel processing
- feols() from **fixest** uses parallel processing to speed up OLS estimation
 - You can control how using the nthreads argument
- data.table uses parallel processing to speed up data wrangling
- boot and sandwich can use parallel processing to speed up bootstrapping
- And many others do the same

Parallel processing: Why?

- Parallel processing is a great way to speed up your code and often there are straight-forward ways to do it
- It is not always worth doing:
 - Theoretically, the gain should be linear: each additional node should speed up your code by the same amount
 - In practice, there are "overhead" costs to parallel processing that can slow things down
 - **Overhead costs**: reading in and subsetting data, tracking each node

Across computer clusters

- Parallel processing is also a way to speed up your code across multiple computers
- This is called "distributed computing"
- It is a way to speed up your code when you have a lot of data and a lot of computers
- Imagine you have 1000 computers, each with 1/1000th of your data
- You can run the same code on each computer, and then combine the results
- Same logic, but the "overhead" costs are higher

What next?

- Go try how to bootstrap in R!
- Better yet, learn to do it in parallel
- Navigate to the lecture activity 13a-bootstrapping-functions-practice

Next lecture: Decision Trees