	<u>~</u>	《离	散数学》	期末考	试卷	(A)			
使用专业、班级_		学号				姓名			
题 数	12.20		且	四	五	六	七	总	分
得 分									
例 R ² = 2. 设 P, 真值= 3. 设 A=	Q 的真值	4}, A	上关系的	图为 1 2 3 4 值为 1	, 则¬(<i>I</i>)	/	$(R \land \neg P)$	$(R) \rightarrow (R)$	v ¬S) 於

考试形式开卷()	、闭卷(),	在选项上打(√)	
开课教研室	命题教师	命题时间	使用学期

更多考试真题请扫码获取

4.下图的补图为	
- 6.A={1,2,3},P(A)是 A 的幂集, <p(a),u>的单位元是,零元是。 7.对下图,设 S={v4,v1},则 W(G-S)是;该图是否为 Hamilton 图。 v3</p(a),u>	

总张数_________数研室主任审核签字

南球知江

10. 设 A={a, b, c, d}, A 上二元运算如下:

*	a	b	c	d
a	a	b	c	d
b	b	c	d	a
c	c	d	a	b
d	d	a	b	c

那么代数系统 <a,< th=""><th>*>的幺元是</th><th>,</th><th>有逆元的元素为</th><th>,</th><th>它们的逆元分别</th></a,<>	*>的幺元是	,	有逆元的元素为	,	它们的逆元分别
为	0				

微信

本题

二、选择题《20分》

- 1、设 R, S 是集合 A 上的关系,则下列说法正确的是()
- A. 若 R, S 是自反的, 则 $R \circ S$ 是自反的;
- B. 若 R, S 是反自反的,则 $R \circ S$ 是反自反的;
- C. 若 R, S 是对称的, 则 $R \circ S$ 是对称的;
- D. 若 R, S 是传递的,则 $R \circ S$ 是传递的。
- 2.下面函数()是单射而非满射。
- A, $f: R \to R$, $f(x) = -x^2 + 2x 1$;
- B, $f: Z^+ \to R$, $f(x) = \ln x$;
- C、 $f: R \to Z$, f(x) = [x], [x]表示不大于x的最大整数;
- D. $f: R \rightarrow R$, f(x) = 2x + 1.

其中R为实数集,Z为整数集,R+,Z+分别表示正实数与正整数集。

- 3.全体小项合取式为()。
- A、可满足式; B、矛盾式; C、永真式; D、A, B, C都有可能。

试卷专用纸

4.设 A={Φ, {1}, {1, 3}, {1, 2, 3}}则 A 上包含关系"⊆"的哈斯图为()

5.图 中 从 v₁ 到 v₃ 长度为 3 的通路有 ()条。

- A. 0;
- 1;
- C. 2;
- D. 3.

6.在一棵树中有7片树叶,3个3度结点,其余都是4度结点则该树有(度结点。

- A. 1;
- B. 2;
- C. 3;
- D. 4 .

7.设 $S = \{1, 2, 3\}$, 定义 $S \times S$ 上的等价关系

 $R = \{<< a,b>,< c,d> |< a,b>\in S\times S,< c,d>\in S\times S,a+d=b+c\}$ 则由 R产生的,

- 则 $S \times S$ 上一个划分共有() 个分块
- A. 4; B. 5; C. 6;
- D. 9.

8.设 $S = \{1, 2, 3\}$, S上关系R的关系图为

则 R 具有 () 性质。

- A. 自反性、对称性、传递性; B. 反自反性、反对称性;
- C. 反自反性、反对称性、传递性; D. 自反性。
- 9.在如下各图中()欧拉图。

10.设 A={1, 2, 3},则 A上的二元关系有(

A. 2^3 ; B. 3^2 ; C. $2^{3\times3}$; D. $3^{2\times2}$

本题 得分

」三、计算解答题〖40分〗

(10)设 P→(Q△¬ R)△(¬ P→R), 画出真值表, 并求主合取范

2. (7分) 设集合 A={a, b, c, d}上的关系 R={<a,b>,<b,a>,<b,c>,<c,d>} 用矩阵运算求出 R 的传递闭包 t (R)。

36, 49, 64, 8

3. (10分) 权数 1, 4, 9, 16, 25, 36, 49, 64, 81, 100 构造一棵最优二叉树。

4.(8 分)如下图所示的赋权图表示某七个城市 $\nu_1, \nu_2, \cdots, \nu_7$ 及预先算出它们之间的一些 直接通信线路造价,试给出一个设计方案,使得各城市之间能够通信而且总造价最 小。(求最小生成树及权)

本题 得分

四、证明题〖20分〗

1. (6 分)设 T 是无回路的连通图,证明: e=v-1,其中 e 是边数, v 是 结点数。

2. (7 分)f 和 g 都是群< G_1 ,★>到< G_2 ,*>的同态映射,证明<C,★>是< G_1 ,★>的一个子群。其中 $C = \{x \mid x \in G_1 \exists f(x) = g(x)\}$

微信

(7分)设 G=<V,E>为连通图,且 e∈ E。证明:当且仅当 e 是 G 的割边时, e 才在 G 的每棵生成树中。