Practice microlearnings

Fill in the blanks to test your knowledge

What is Data Science?
is the exploration and quantitative analysis of structured and unstructured data to extract knowledge and drive actionable results.
It is, involving statistics, computer science, business knowledge, and more.
It involves using data to and requires multiple skill sets across domains.
Types of Analytics
explains what happened.
uses past data to forecast future outcomes.
recommends actions based on predictive models.
Other types include and
Data Science Process Models
includes stages like selection,
preprocessing, transformation, mining, and evaluation.
is a cross-industry process model with phases like business understanding, data understanding, and modeling.
and include collection, analysis, visualization, and decision-making steps.
Big Data Concepts
Big Data is characterized by the: Volume, Velocity, and Variety.
Modern tools like help process large-scale datasets.

emerged prominently with NASA in 1997 and expanded in the 2010s.
Machine Learning Introduction
is the process of teaching computers to learn from data without being explicitly programmed.
ML includes,, and learning.
and are core ML tasks.
Supervised Learning
uses labeled data to train models.
predicts discrete labels (e.g., spam or not spam).
predicts continuous values (e.g., stock prices).
Unsupervised Learning
deals with unlabeled data.
(like K-Means) groups similar data points together.
Evaluation is more difficult than in supervised learning due to lack of ground truth.
Statistical Learning Theory
focuses on model generalization and error
minimization.
Key ideas include and minimizing as a proxy for
Model Evaluation and Overfitting
occurs when a model learns training data too well and performs poorly on new data.

occurs when a model is too simple to capture patterns.
Good models balance training error and complexity to generalize well.
Model Building and Application
Data scientists use data to that guide decisions.
Common tasks: spam detection, stock forecasting, medical diagnosis, and sentiment analysis.
suggest items based on user history and preferences.

Answered microlearnings

Review sheet with highlighted answers

What is Data Science?
Data Science is the exploration and quantitative analysis of structured and unstructured data to extract knowledge and drive actionable results.
It is interdisciplinary , involving statistics, computer science, business knowledge, and more.
It involves using data to make decisions and requires multiple skill sets across domains.
Types of Analytics
Descriptive analytics explains what happened.
Predictive analytics uses past data to forecast future outcomes.
Prescriptive analytics recommends actions based on predictive models.
Other types include retrospective and real-time analytics .
Data Science Process Models
KDD (Knowledge Discovery in Databases) includes stages like selection, preprocessing, transformation, mining, and evaluation.
CRISP-DM is a cross-industry process model with phases like business understanding, data understanding, and modeling.
CCC Pipeline and modern pipelines include collection, analysis, visualization, and decision-making steps.
Big Data Concepts
Big Data is characterized by the 3Vs : Volume, Velocity, and Variety.
Modern tools like Hadoop, Spark, and NoSQL help process large-scale datasets.

Big Data emerged prominently with NASA in 1997 and expanded in the 2010s.
Machine Learning Introduction
Machine Learning (ML) is the process of teaching computers to learn from data without being explicitly programmed.
ML includes supervised, unsupervised, and reinforcement learning.
Classification, regression, clustering, and recommender systems are core ML tasks.
Supervised Learning
Supervised learning uses labeled data to train models.
Classification predicts discrete labels (e.g., spam or not spam).
Regression predicts continuous values (e.g., stock prices).
Unsupervised Learning
Unsupervised learning deals with unlabeled data.
Clustering (like K-Means) groups similar data points together.
Evaluation is more difficult than in supervised learning due to lack of ground truth.
Statistical Learning Theory
Statistical learning theory focuses on model generalization and error minimization.
Key ideas include Occam's Razor and minimizing empirical risk as a proxy for expected risk .
Input (x), output (y), hypothesis (h), and loss function (l) are core concepts.
Model Evaluation and Overfitting

Overfitting occurs when a model learns training data too well and performs poorly on new data.
Underfitting occurs when a model is too simple to capture patterns.
Good models balance training error and complexity to generalize well.
Model Building and Application
Data scientists use data to build predictive models that guide decisions.
Common tasks: spam detection, stock forecasting, medical diagnosis, and sentiment analysis.
Recommender systems suggest items based on user history and preferences.