

Time-dependent Dirichlet Boundary **Conditions in Finite Element** Discretizations Peter Benner and Jan Heiland November 5, 2015 Seminar Talk at Uni Konstanz

Motivation

 $lue{}$ A controlled physical processes are controlled via interfaces is modelled via PDEs for the state v with boundary control u

$$\mathcal{F}(\dot{v}, v; u)$$

and approximated through, e.g., finite elements

$$F(\dot{v}, v; u)$$
.

For further treatment like optimal control or model reduction, we want to have a standard state space form of F:

$$\dot{v} = f(v; u)$$
 or $\dot{v} = Av + Bu$.

Or a bit more concrete

■ The PDE

$$\dot{v} = Av$$
, in the domain, $v = u$ at the boundary

is spatially discretized to give an ODE with a constraint

$$M\dot{v} = Av$$
, at the inner nodes,
 $v = u$ at the boundary nodes

• however, elimination like $v = v_i + v_u$, where $v_u = G^{-1}u$ fulfills the boundary values, does lead to

$$M\dot{v}_i = Av_i + AG^{-1}u - MG^{-1}\dot{u},$$

which is not of the standard form.

Functional Analytical Framework

- $\Omega \in \mathbb{R}^d$, $d \in \{2,3\}$ a bounded and smooth domain with boundary Γ .
- $m{\mathcal{V}}:=W^{1,2}(\Omega)$ and $\mathcal{H}:=L^2(\Omega)$ the state spaces
- ullet \mathcal{V}' the dual space of \mathcal{V} with respect to the embedding $\mathcal{V}\hookrightarrow\mathcal{H}$,
- the trace spaces

$$Q' = W^{\frac{1}{2},2}(\Gamma)$$
 and $Q = Q'' := \mathcal{L}(Q',\mathbb{R}),$

and the trace operator

$$\gamma \colon \mathcal{V} \to \mathcal{Q}'$$
.

Introduction

A generic PDE

Problem

Let T > 0 and consider $A: \mathcal{V} \to \mathcal{V}'$.

For $\mathcal{F} \in L^2(0,T;\mathcal{V}')$, for $v_0 \in \mathcal{H}$, and $\mathcal{U} \in L^2(0,T;\mathcal{Q}')$, find v with $v(t) \in \mathcal{V}$ and $\dot{v}(t) \in \mathcal{V}'$, a.e. on (0,T), so that

$$\dot{v}(t) - \mathcal{A}v(t) = \mathcal{F}(t),$$
$$\gamma v(t) = \mathcal{U}(t),$$

holds for almost all $t \in (0, T)$, and so that $v(0) = v_0$ in \mathcal{H} .

- We will not discuss time regularity here.
- For illustration purposes, we consider only the linear case.

Convection-diffusion Example

Problem

Given a diffusion parameter ν , a convection wind β , and a function g prescribing the boundary conditions, find a function ρ that satisfies

$$\dot{\rho}(t) + \beta \cdot \nabla \rho(t) - \nu \Delta \rho(t) = 0,$$
$$\rho|_{\Gamma}(t) = g(t).$$

In standard weak formulations, the convection diffusion problem resembles the generic PDE with $v(t) \in W^{1,2}(\Omega)$ and, e.g., $\mathcal A$ defined via

$$\left\langle \mathcal{A}\upsilon(t),\phi\right\rangle_{\mathcal{V}',\mathcal{V}} = \int_{\Omega} \! \left(\beta\cdot\nabla\upsilon(t),\phi\right) + \nu \left(\nabla\upsilon(t),\nabla\phi\right)\,\mathrm{d}\omega - \int_{\Gamma} \nu \left(\frac{\partial\upsilon}{\partial\mathbf{n}}(t),\phi\right)\,\mathrm{d}\gamma,$$

for all $\phi \in \mathcal{V} := W^{1,2}(\Omega)$ and with $\frac{\partial}{\partial n}$ denoting the normal derivative.

Finite Element Discretization

- lacksquare Finite element space $V=\operatorname{span}\{\psi_i\}_{i=1}^{n_v}\subset\mathcal{V}$
- Assume that the basis $\{\psi_i\}_{i=1}^{n_v}$ is a nodal basis, i.e. the basis functions are associated with nodes of a mesh and they have local support.

We consider the decomposition

$$V = V_I \oplus V_{\Gamma}$$
, with dimensions $n_v = n_I + n_d$

- where $V_I = \operatorname{span}\{\psi_i\}_{i=1}^{n_I}$ is the space spanned by the basis functions of the inner
- and $V_{\Gamma} \subset V$ is the space of the basis functions $\{\psi_i\}_{i=n_l+1}^{n_v}$ that live on the boundary

Finite Element Discretization

The splitting of the FEM space

$$V = V_I \oplus V_{\Gamma},$$

is applied for ansatz and test spaces. Accordingly the mass matrix

$$M := \left[\left(\psi_i, \psi_j \right)_{\mathcal{H}} \right]_{i,j=1\cdots,n_v}$$

- is split with respect to the test space: $M = \begin{bmatrix} M_I \\ M_{\Gamma} \end{bmatrix}$,
- lacksquare and, once more, with respect to the trial space, $M_I = egin{bmatrix} M_{II} & M_{I\Gamma} \end{bmatrix}$,
- i.e. M_{II} and $M_{I\Gamma}$ are the part associated with the inner dofs and the part relates to the boundary dofs tested against the inner nodes, respectively.

Subsection

lacksquare similarly for the system matrix A approximating ${\mathcal A}$ is decomposed

$$A = \begin{bmatrix} A_I \\ A_{\Gamma} \end{bmatrix}$$
 and $A_I = \begin{bmatrix} A_{II} & A_{I\Gamma} \end{bmatrix}$

- as is a right hand side.
- Also, we write the FEM solution as

$$v = v_I + v_\Gamma = \sum_{i=1}^{n_I} v_i \psi_i + \sum_{i=n_I+1}^{n_v} v_i \psi_i,$$

and freely assign it with the coefficient vector $v = \begin{bmatrix} v_I \\ v_\Gamma \end{bmatrix}$.

Finite Element Discretization

 To assign the boundary values, we simply assign the dofs associated with the corresponding boundaries via

$$Gv = u$$
, where $G = \begin{bmatrix} 0 & I \end{bmatrix} \in \mathbb{R}^{n_v - n_I, n_v}$

Eventually, the discrete equations read:

Problem

Find $v \in ([0, T] \to \mathbb{R}^{n_v})$ so that

$$M_I\dot{v}(t) - A_Iv(t) = f(t), \quad v(0) = \alpha,$$

 $Gv(t) = u(t),$

where α is a given initial value and u is the control variable.

The direct approach

Note that we cannot simply eliminate the boundary nodes in

$$M_I\dot{v} - A_Iv = 0,$$

 $Gv = v_\Gamma = u.$

• with the partitioning of M_I and A_I with respect to the inner and boundary nodes, we obtain

$$\begin{bmatrix} M_{II} & M_{I\Gamma} \end{bmatrix} \begin{bmatrix} \dot{v}_I \\ \dot{v}_{\Gamma} \end{bmatrix} = A_{II} v_I + A_{I\Gamma} v_{\Gamma}$$

■ and, having inserted $v_{\Gamma} = u$,

$$M_{II}\dot{v}_I = A_{II}v_I + A_{I\Gamma}u - M_{I\Gamma}\dot{u}.$$

Lifting

Define a function that fulfills the boundary values for all time:

$$\tilde{v}(t) = \begin{bmatrix} \tilde{v}_I(t) \\ u(t) \end{bmatrix}.$$

Then the difference to the actual solution $\hat{v}_l = v_l - \tilde{v}_l$ solves

$$M_{II} \dot{\hat{v}}_I = A_{II} \hat{v}_I + Bu, \quad \hat{v}_I(0) = \alpha_I + M_{II}^{-1} M_{I\Gamma} u(0),$$

with

$$B = [A_{II}M_I^{-1}M_{I\Gamma} - A_{I\Gamma}].$$

- the obtained system is independent choice of the lifting \tilde{v}_l
- some choices of \tilde{v}_i are readily extended to nonlinear equations

Multipliers

If the constraint is incorporated via a multiplier:

$$M\dot{v}(t) - Av(t) - G^{T}\lambda(t) = 0,$$

 $Gv(t) = u(t),$

one can apply a projection scheme:

- Define $P := I M^{-1}G^{T}S^{-1}G$. where $S := GM^{-1}G^{T}$.
- consider $v = Pv + (I P)v =: v_i + v_{\sigma}$,
- and find that $v_g = M^{-1}G^TS^{-1}u$ and

$$M\dot{v}_i - P^T A v_i = P^T B u,$$

with $B := AM^{-1}G^{T}S^{-1}$

Ultra Weak Formulations

- Let $\Phi = W^{2,2}(\Omega) \cap W_0^{1,2}(\Omega)$ and consider the pure diffusion equation.
- $lue{v}$ a is called *very weak* solution if

$$\int_{\Omega} \left(\dot{\upsilon},\phi\right) \,\mathrm{d}\omega - \int_{\Omega} \nu \left(\upsilon,\Delta\phi\right) \,\mathrm{d}\omega = -\int_{\Gamma} \nu \left(u,\frac{\partial\phi}{\partial n}\right) \,\mathrm{d}\gamma$$

for all $\phi \in \Phi$.

- The abstract equations indicate that a spatial discretization may lead to a standard system
- The difficulty however, lies in the definition of matching test functions of high regularity with zero boundary values and suitable ansatz functions.

Ultra Weak Formulations

■ With the nonconforming ansatz spaces $V \subset W_0^{1,2}(\Omega)$, the *ultra weak* solution is approximated

$$\int_{\Omega} \left(\dot{\boldsymbol{v}}, \boldsymbol{\phi}\right) \; \mathrm{d}\omega + \int_{\Omega} \boldsymbol{\nu} \left(\nabla \boldsymbol{v}, \nabla \boldsymbol{\phi}\right) \; \mathrm{d}\omega = \int_{\Omega} \left(\boldsymbol{f}, \boldsymbol{\phi}\right) \; \mathrm{d}\omega - \boldsymbol{\nu} \int_{\Gamma} \left(\boldsymbol{u}, \frac{\partial \boldsymbol{\phi}}{\partial \boldsymbol{n}}\right) \; \mathrm{d}\gamma$$

for all $\phi \in V$.

- which is doable by in standard FEM packages.
- Note that the solution is approximated by a functions with a zero trace, i.e. $v|_{\Gamma} = 0$.

Robin Relaxation

 The Dirichlet conditions can be approximated by a Robin type condition

$$v \approx \alpha \frac{\partial v}{\partial n} + v = g$$
 or $\frac{\partial v}{\partial n} \approx \frac{1}{\alpha} (g - v)$ on Γ ,

- lacktriangle with a parameter lpha that is intended to go to zero
- which are incorporated *naturally* in the weak formulation

Test Setup

For
$$\beta_1(x) = \frac{1}{10} \begin{bmatrix} x_0 + 1 \\ -(x_1 + 1) \end{bmatrix}$$
 and $\nu_1 = 0.1$,

find approximations to the scalar function $\boldsymbol{\rho}$ satisfying

$$\begin{split} \dot{\rho}(t) + \beta_1 \cdot \nabla \rho(t) - \nu_1 \Delta \rho(t) &= 0, \\ \rho \big|_{\Gamma_0}(t) &= u(t), \\ \rho \big|_{\Gamma_1 \cup \Gamma_2}(t) &= 0, \\ \frac{\partial \rho}{\partial \nu} \big|_{\Gamma_3}(t) &= 0, \end{split}$$

on given discretizations N_h and N_τ of the spatial domain $\Omega = [-1, 1]^2$ and of the time interval [0, 0.2].

Test Setup

We consider the following schemes

- lift lifting of the boundary conditions via split mass matrix
- proj incorporation of the constraint via Lagrange multiplier and projections
- ncul nonconforming approximation of *ultra week* solutions
- pero relaxation via Robin approximation

and for a varying space discretization N_h , time discretization N_{τ} , and polynomial degrees cg, and a numerically computed reference solution, we investigate the errors

$$e_{hN_h,\tau N_{\tau}}^{pcg} := \rho_{hN_h,\tau N_{\tau}}^{pcg} - \rho_{ref}$$

measured in a numerical approximation of the $L^2(0,1;L^2([-1,1]^2))$ norm.

Estimated Order of Convergence

- Convergence tests for the consistent implementations
- the dashed lines indicate the slope of a quadratic convergence
- the dotted lines indicate a convergence of order 2.5.

Penalty versus Accuracy

- ullet Errors for pero for different values of the penalization parameter lpha
- for exact system solves (right)
- and approximate system solves (left)

Peformance in GMRES

	av.#its	$e_{h48,\tau120}^{p1,\text{tol}1e-7}$
proj	10.6	$1.2\cdot 10^{-5}$
lift	10.6	$1.2\cdot 10^{-5}$
pero	14.2	$7.8 \cdot 10^{-6}$
ncul	10.6	$1.1\cdot 10^{-5}$

- Performance of *GMRES* within the various formulations for $N_h = 48$, $N_{\tau}=120$, and linear elements (cg = 1)
- The averaged number of iterations per time-step av.#its and the approximation error in the case that the resulting linear equations are solved using *GMRES* up to a relative residual of tol = 10^{-7} .
- The colored cells contain the lowest measured values.

and an outlook

- There are numerous approaches that approximate a Dirichlet boundary control problem into a standard state space system
- Penalization schemes are easy to implement but require a wise choice of the parameter
- Consistent schemes need but a little extra implementation efforts

Future work:

- Investigate the performance of the schemes in optimal control or model reduction setups
- Analyse the consistency of the reformulations with the infinite dimensional PDE

and an outlook

- There are numerous approaches that approximate a Dirichlet boundary control problem into a standard state space system
- Penalization schemes are easy to implement but require a wise choice of the parameter
- Consistent schemes need but a little extra implementation efforts

Future work:

- Investigate the performance of the schemes in optimal control or model reduction setups
- Analyse the consistency of the reformulations with the infinite dimensional PDE

Thank you for your attention.

- F. Ben Belgacem, H. El Fekih, and J.-P. Raymond, *A penalized Robin approach for solving a parabolic equation with nonsmooth Dirichlet boundary conditions*, Asymptotic Anal. **34** (2003), no. 2, 121–136.
- Peter Benner and Jan Heiland, *Time-dependent dirichlet conditions in finite element discretizations*, ScienceOpen Research (2015).
- V. Girault and P.-A. Raviart, Finite Element Methods for Navier-Stokes Equations. Theory and Algorithms, Springer, Berlin, Germany, 1986.
- M. Hinze, R. Pinnau, M. Ulbrich, and S. Ulbrich, *Optimization with PDE Constraints*, Springer, Dordrecht, Netherlands, 2009.