Functional Dependencies and Normalization

DataBases

Slides from CS145 Stanford (2016), Christopher Ré

Functional Dependencies

Functional Dependency

Def: Let A,B be sets of attributes

We write A \rightarrow B or say A functionally determines B if, for any tuples t_1 and t_2 :

$$t_1[A] = t_2[A] \text{ implies } t_1[B] = t_2[B]$$

and we call A → B a <u>functional dependency</u>

A->B means that

"whenever two tuples agree on A then they agree on B."

Defn (again):

Given attribute sets $A=\{A_1,...,A_m\}$ and $B=\{B_1,...B_n\}$ in R,

Defn (again):

Given attribute sets $A=\{A_1,...,A_m\}$ and $B=\{B_1,...B_n\}$ in R,

The functional dependency $A \rightarrow B$ on R holds if for any t_i, t_i in R:

If t1,t2 agree here..

Defn (again):

Given attribute sets $A=\{A_1,...,A_m\}$ and $B=\{B_1,...B_n\}$ in R,

The functional dependency $A \rightarrow B$ on R holds if for any t_i, t_i in R:

 $t_i[A_1] = t_j[A_1] \text{ AND } t_i[A_2] = t_j[A_2] \text{ AND } ...$ AND $t_i[A_m] = t_j[A_m]$

Defn (again):

Given attribute sets $A=\{A_1,...,A_m\}$ and $B=\{B_1,...B_n\}$ in R,

The functional dependency $A \rightarrow B$ on R holds if for any t_i, t_j in R:

 $\underline{if} t_i[A_1] = t_j[A_1] \text{ AND } t_i[A_2] = t_j[A_2] \text{ AND } ...$ AND $t_i[A_m] = t_j[A_m]$

 $\underline{\text{then}} \ t_i[B_1] = t_j[B_1] \ \text{AND} \ t_i[B_2] = t_j[B_2]$ $\text{AND} \ ... \ \text{AND} \ t_i[B_n] = t_j[B_n]$

FDs for Relational Schema Design

- High-level idea: why do we care about FDs?
 - Start with some relational schema
 - 2. Model its functional dependencies (FDs)
 - 3. Use these to design a better schema
 - 1. One which minimizes the possibility of anomalies

Functional Dependencies as Constraints

A **functional dependency** is a form of **constraint**

- Holds on some instances not others.
- Part of the schema, helps define a valid instance.

Student	Course	Room
Mary	CS145	B01
Joe	CS145	B01
Sam	CS145	B01
••	••	• •

Note: The FD {Course} -> {Room}

holds on this instance

Recall: an <u>instance</u> of a schema is a multiset of tuples conforming to that schema, i.e. a table

Functional Dependencies as Constraints

Note that:

- You can check if an FD is violated by examining a single instance;
- However, you cannot prove that an FD is part of the schema by examining a single instance.
 - This would require checking every valid instance

Student	Course	Room
Mary	CS145	B01
Joe	CS145	B01
Sam	CS145	B01
••	••	••

However, cannot prove that the FD {Course} -> {Room} is part of the schema

More Examples

An FD is a constraint which <u>holds</u>, or <u>does not hold</u> on an instance:

EmpID	Name	Phone	Position
E0045	Smith	1234	Clerk
E3542	Mike	9876	Salesrep
E1111	Smith	9876	Salesrep
E9999	Mary	1234	Lawyer

More Examples

EmpID	Name	Phone	Position
E0045	Smith	1234	Clerk
E3542	Mike	9876 ←	Salesrep
E1111	Smith	9876 ←	Salesrep
E9999	Mary	1234	Lawyer

{Position} → {Phone}

More Examples

EmpID	Name	Phone	Position
E0045	Smith	1234 →	Clerk
E3542	Mike	9876	Salesrep
E1111	Smith	9876	Salesrep
E9999	Mary	1234 →	Lawyer

but *not* {Phone} → {Position}

ACTIVITY

A	В	С	D	Е
1	2	4	3	6
3	2	5	1	8
1	4	4	5	7
1	2	4	3	6
3	2	5	1	8

Find at least three FDs which are violated on this instance:

"Good" vs. "Bad" FDs

We can start to develop a notion of **good** vs. **bad** FDs:

EmpID	Name	Phone	Position
E0045	Smith	1234	Clerk
E3542	Mike	9876	Salesrep
E1111	Smith	9876	Salesrep
E9999	Mary	1234	Lawyer

Intuitively:

EmpID -> Name, Phone, Position is "good FD"

 Minimal redundancy, less possibility of anomalies

"Good" vs. "Bad" FDs

We can start to develop a notion of good vs. bad FDs:

EmpID	Name	Phone	Position
E0045	Smith	1234	Clerk
E3542	Mike	9876	Salesrep
E1111	Smith	9876	Salesrep
E9999	Mary	1234	Lawyer

Intuitively:

EmpID -> Name, Phone, Position is "good FD"

But Position -> Phone is a "bad FD"

Redundancy!
 Possibility of data
 anomalies

"Good" vs. "Bad" FDs

Student	Course	Room
Mary	CS145	B01
Joe	CS145	B01
Sam	CS145	B01
••	••	••

Returning to our original example... can you see how the "bad FD" {Course} -> {Room} could lead to an:

- Update Anomaly
- Insert Anomaly
- Delete Anomaly
- •

Given a set of FDs (from user) our goal is to:

- 1. Find all FDs, and
- 2. Eliminate the "Bad Ones".

FDs for Relational Schema Design

- High-level idea: why do we care about FDs?
 - Start with some relational schema
 - 2. Find out its functional dependencies (FDs)

This part can be tricky!

- 3. Use these to design a better schema
 - 1. One which minimizes possibility of anomalies

- There can be a very large number of FDs...
 - How to find them all efficiently?
- We can't necessarily show that any FD will hold on all instances...
 - How to do this?

We will start with this problem: Given a set of FDs, F, what other FDs must hold?

Equivalent to asking: Given a set of FDs, $F = \{f_1, ..., f_n\}$, does an FD g hold?

Inference problem: How do we decide?

Example:

Products

Name	Color	Category	Dep	Price
Gizmo	Green	Gadget	Toys	49
Widget	Black	Gadget	Toys	59
Gizmo	Green	Whatsit	Garden	99

Provided FDs:

```
1. \{Name\} \rightarrow \{Color\}
```

2. {Category} →

{Department}

3. {Color, Category} → {Price}

Given the provided FDs, we can see that {Name, Category} → {Price} must also hold on **any instance**...

Which / how many other FDs do?!?

Equivalent to asking: Given a set of FDs, $F = \{f_1, ..., f_n\}$, does an FD g hold?

Inference problem: How do we decide?

Answer: Three simple rules called Armstrong's Rules.

- 1. Reflexivity: Y is included in X => X -> Y
- 2. Augmentation: $X \rightarrow Y => XZ \rightarrow YZ$
- 3. Transitivity: $X \rightarrow Y$ and $Y \rightarrow Z => X \rightarrow Z$

1. Split/Combine

$$A_1, ..., A_m \rightarrow B_1, ..., B_n$$

1. Split/Combine

$$A_1, ..., A_m \rightarrow B_1, ..., B_n$$

... is equivalent to the following *n* FDs...

$$A_1,...,A_m \rightarrow B_i \text{ for } i=1,...,n$$

1. Split/Combine

And vice-versa, $A_1,...,A_m \rightarrow B_i$ for i=1,

... is equivalent to ...

$$A_1, ..., A_m \rightarrow B_1, ..., B_n$$

Reduction/Trivial

$$A_1,...,A_m \rightarrow A_j$$
 for any j=1,...,m

3. Transitive Closure

$$A_1, ..., A_m \rightarrow B_1, ..., B_n$$
 and $B_1, ..., B_n \rightarrow C_1, ..., C_k$

3. Transitive Closure

$$A_1, ..., A_m \rightarrow B_1, ..., B_n$$
 and $B_1, ..., B_n \rightarrow C_1, ..., C_k$ implies $A_1, ..., A_m \rightarrow C_1, ..., C_k$

Example:

Products

Name	Color	Category	Dep	Price
Gizmo	Green	Gadget	Toys	49
Widget	Black	Gadget	Toys	59
Gizmo	Green	Whatsit	Garden	99

Provided FDs:

```
1. \{Name\} \rightarrow \{Color\}
```

2. {Category} →

{Department}

3. {Color, Category} → {Price}

Which / how many other FDs hold?

Example:

Inferred FDs:

Inferred FD	Rule used
4. {Name, Category} -> {Name}	;
5. {Name, Category} -> {Color}	?
6. {Name, Category} -> {Category}	?
7. {Name, Category -> {Color, Category}	?
8. {Name, Category} -> {Price}	?

Provided FDs:

```
    {Name} → {Color}
    {Category} →
    {Dept.}
    {Color, Category} →
    {Price}
```

Which / how many other FDs hold?

Example:

Inferred FDs:

Inferred FD	Rule used
4. {Name, Category} -> {Name}	Trivial
5. {Name, Category} -> {Color}	Transitive (4 -> 1)
6. {Name, Category} -> {Category}	Trivial
7. {Name, Category -> {Color, Category}	Split/combine (5 + 6)
8. {Name, Category} -> {Price}	Transitive (7 -> 3)

Provided FDs:

```
    {Name} → {Color}
    {Category} →
    {Dept.}
    {Color Category} →
```

3. {Color, Category} → {Price}

Can we find an algorithmic way to do this?

Closures

Closure of a set of Attributes

```
Given a set of attributes A_1, ..., A_n and a set of FDs F:
Then the <u>closure</u>, \{A_1, ..., A_n\}^+ is the set of attributes B s.t. \{A_1, ..., A_n\} B
```

```
Example: F = {name} → {color}
{category} → {department}
{color, category} → {price}
```

Closure Algorithm

Start with $X = \{A_1, ..., A_n\}$ and set of FDs F.

Repeat until X doesn't change; **do**:

if $\{B_1, ..., B_n\} \rightarrow C$ is entailed by F

and $\{B_1, ..., B_n\} \subseteq X$

then add C to X.

Return X as X+

```
Start with X = \{A_1, ..., A_n\}, FDs F.

Repeat until X doesn't change; do:

if \{B_1, ..., B_n\} \rightarrow C is in F and \{B_1, ..., B_n\} \subseteq X:

then add C to X.

Return X as X<sup>+</sup>
```

```
{name, category}+ =
{name, category}
```

```
Start with X = \{A_1, ..., A_n\}, FDs F.

Repeat until X doesn't change; do:

if \{B_1, ..., B_n\} \rightarrow C is in F and \{B_1, ..., B_n\} \subseteq X:

then add C to X.

Return X as X<sup>+</sup>
```

```
{name, category}+ =
{name, category}
```

```
{name, category}+ =
{name, category, color}
```

```
F =
{name} → {color}

{category} → {dept}

{color, category} →
{price}
```

```
Start with X = \{A_1, ..., A_n\}, FDs F.

Repeat until X doesn't change; do:

if \{B_1, ..., B_n\} \rightarrow C is in F and \{B_1, ..., B_n\} \subseteq X:

then add C to X.

Return X as X<sup>+</sup>
```

```
{name, category}+ =
{name, category}
```

```
{name, category}+ =
{name, category, color}
```

```
{name, category}+ =
{name, category, color, dept}
```

```
Start with X = \{A_1, ..., A_n\}, FDs F.

Repeat until X doesn't change; do:

if \{B_1, ..., B_n\} \rightarrow C is in F and \{B_1, ..., B_n\} \subseteq X:

then add C to X.

Return X as X<sup>+</sup>
```

```
{name, category}+ =
{name, category}
```

```
{name, category}+ =
{name, category, color}
```

```
{name, category}+ =
{name, category, color, dept}
```

```
{name, category}+ =
{name, category, color, dept,
price}
```

Example

```
R(A,B,C,D,E,F)
```

```
\{A,B\} \rightarrow \{C\}

\{A,D\} \rightarrow \{E\}

\{B\} \rightarrow \{D\}

\{A,F\} \rightarrow \{B\}
```

Compute
$$\{A, F\}^+ = \{A, F, F\}$$

Example

```
R(A,B,C,D,E,F)
```

```
\{A,B\} \rightarrow \{C\}

\{A,D\} \rightarrow \{E\}

\{B\} \rightarrow \{D\}

\{A,F\} \rightarrow \{B\}
```

```
Compute \{A,B\}^+ = \{A, B, C, D\}
```

Compute
$$\{A, F\}^+ = \{A, F, B\}$$

Example

```
R(A,B,C,D,E,F)
```

$${A,B} \rightarrow {C}$$

 ${A,D} \rightarrow {E}$
 ${B} \rightarrow {D}$
 ${A,F} \rightarrow {B}$

Compute $\{A,B\}^+ = \{A, B, C, D, E\}$

Compute $\{A, F\}^+ = \{A, B, C, D, E, F\}$

3. Closures, Superkeys & Keys

Why Do We Need the Closure?

• With closure we can find all FD's easily

- To check if $X \rightarrow A$
 - 1. Compute X⁺
 - 2. Check if $A \subseteq X^+$

Note here that X is a set of attributes, but A is a single attribute. Why does considering FDs of this form suffice?

Recall the Split/combine rule:

$$X \rightarrow A_1, ..., X \rightarrow A_n$$
 implies

$$X \rightarrow \{A_1, ..., A_n\}$$

Step 1: Compute X+, for every set of attributes X:

```
Example:
Given F =
```

```
\{A,B\} \rightarrow C
\{A,D\} \rightarrow B
\{B\} \rightarrow D
```

```
\{A\}^+ = \{A\}
\{B\}^+ = \{B,D\}
\{C\}^+ = \{C\}
\{D\}^+ = \{D\}
{A,B}^+ = {A,B,C,D}
{A,C}^+ = {A,C}
{A,D}^+ = {A,B,C,D}
{A,B,C}^+ = {A,B,D}^+ = {A,C,D}^+ = {A,B,C,D}
\{B,C,D\}^+ = \{B,C,D\}
{A,B,C,D}^+ = {A,B,C,D}
```

No need to compute thesewhy?

Example:
Given F =

Step 1: Compute X+, for every set of attributes X:

```
{A,B} \rightarrow C

{A,D} \rightarrow B

{B} \rightarrow D
```

```
{A}+ = {A}, {B}+ = {B,D}, {C}+ = {C}, {D}+ = {D}, {A,B}+ = {A,B,C,D}, {A,C}+ = {A,C}, {A,D}+ = {A,B,C,D}, {A,B,C}+ = {A,B,C,D}+ = {A,C,D}+ = {A,B,C,D}+ = {A,B,C,
```

Step 2: Enumerate all FDs X \rightarrow Y, s.t. Y \subseteq X+ and X \cap Y = \emptyset :

```
\{A,B\} \rightarrow \{C,D\}, \{A,D\} \rightarrow \{B,C\}, \{A,B,C\} \rightarrow \{D\}, \{A,B,D\} \rightarrow \{C\}, \{A,C,D\} \rightarrow \{B\}
```

Example:
Given F =

Step 1: Compute X+, for every set of attributes X:

```
{A,B} \rightarrow C

{A,D} \rightarrow B

{B} \rightarrow D
```

```
{A}+ = {A}, {B}+ = {B,D}, {C}+ = {C}, {D}+ = {D}, {A,B}+ = {A,B,C,D}, {A,C}+ = {A,C}, {A,D}+ = {A,B,C,D}, {A,B,C}+ = {A,B,C,D}+ = {A,B,
```

Step 2: Enumerate all FDs X \rightarrow Y, s.t. Y \subseteq X+ and X \cap Y = \emptyset :

"Y is in the closure of X"

```
\{A,B\} \rightarrow \{C,D\}, \{A,D\} \rightarrow \{B,C\}, \{A,B,C\} \rightarrow \{D\}, \{A,B,D\} \rightarrow \{C\}, \{A,C,D\} \rightarrow \{B\}
```

Example:
Given F =

Step 1: Compute X+, for every set of attributes X:

```
{A,B} \rightarrow C

{A,D} \rightarrow B

{B} \rightarrow D
```

```
{A}+ = {A}, {B}+ = {B,D}, {C}+ = {C}, {D}+ = {D}, {A,B}+ = {A,B,C,D}, {A,C}+ = {A,C}, {A,D}+ = {A,B,C,D}, {A,B,C}+ = {A,B,C,D}+ = {A,B,
```

Step 2: Enumerate all FDs X \rightarrow Y, s.t. Y \subseteq X+ and X \cap Y = \emptyset :

The FD X →
Y is non-trivial

```
\{A,B\} \rightarrow \{C,D\}, \{A,D\} \rightarrow \{B,C\}, \{A,B,C\} \rightarrow \{D\}, \{A,B,D\} \rightarrow \{C\}, \{A,C,D\} \rightarrow \{B\}
```

Minimal Cover of a set F of FD

Minimal subset of elementary FD allowing to generate all the others.

- Theorem:
 - Any set of FD has a minimal cover, that in general is not unique.
- Formally, F is a Minimal Cover iif:
 - All f in F is elementary.
 - There is no f in F such that F {f} is "equivalent" to F.

Minimal Cover of a set F of FD

- X -> A is an **elementary** DF if:
 - A is an attribute, X is a set of attributes, A is not included in X
 - it does not exist X 'included in X such that X '-> A in F+

- Equivalence
 - Two sets of DF are equivalent if they have the same transitive closure.

Superkeys and Keys

Keys and Superkeys

A <u>superkey</u> is a set of attributes A_1 , ..., A_n s.t. for any other attribute B in R, we have $\{A_1, ..., A_n\} \rightarrow B$

I.e. all attributes are functionally determined by a superkey

A <u>key</u> is a minimal superkey

Meaning that no subset of a key is also a superkey

Finding Keys and Superkeys

For each set of attributes X

1. Compute X+

2. If X+ = set of all attributes then X is a **superkey**

3. If X is minimal, then it is a key

Do we need to check all sets of attributes? Which sets?

Example of Finding Keys

```
Product(name, price, category, color)
```

```
{name, category} → price
{category} → color
```

What is a key?

Example of Keys

Product(name, price, category, color)

```
{name, category} → price
{category} → color
```

Normalization

Normal Forms

• 1st Normal Form (1NF) = All tables are flat

2nd Normal Form

Boyce-Codd Normal Form (BCNF)

• 3rd Normal Form (3NF)

DB designs based on functional dependencies, intended to prevent data anomalies

1st Normal Form (1NF)

Student	Courses
Mary	{CS145,CS229}
Joe	{CS145,CS106}
•••	• • •

Violates 1NF.

Student	Courses
Mary	CS145
Mary	CS229
Joe	CS145
Joe	CS106

In 1st NF

1NF Constraint: Types must be atomic!

A poorly designed database causes anomalies:

Student	Course	Room
Mary	CS145	B01
Joe	CS145	B01
Sam	CS145	B01
• •	••	••

If every course is in only one room, contains <u>redundant</u> information!

A poorly designed database causes anomalies:

Student	Course	Room
Mary	CS145	B01
Joe	CS145	C12
Sam	CS145	B01
••	••	••

If we update the room number for one tuple, we get inconsistent data = an update anomaly

A poorly designed database causes anomalies:

Student	Course	Room
••	••	•

If everyone drops the class, we lose what room the class is in! = a <u>delete anomaly</u>

CS229

C12

A poorly designed database causes anomalies:

Student	Course	Room
Mary	CS145	B01
Joe	CS145	B01
Sam	CS145	B01
••	••	••

Similarly, we can't reserve a room without students = an <u>insert</u> anomaly

Student	Course
Mary	CS145
Joe	CS145
Sam	CS145
••	• •

Course	Room
CS145	B01
CS229	C12

Is this form better?

- Redundancy?
- Update anomaly?
- Delete anomaly?
- Insert anomaly?

Today: develop theory to understand why this design may be better and how to find this decomposition...

2nd Normal Form (2NF)

Definition

- a relationship is in second normal form iff:
- > it is the first form
- > any non-key attribute is not dependent on a key part

Schema

Such a relationship should be broken into R1 (K1, K2, X) and R2 (K2, Y)

Example 2NF

• Example 1:

- Supplier (name, address, product, price)
- The key is (name, product)
- But name -> address: not second form

Example 2:

- R (wine, type, customer, discount)
- The key is (wine, customer)
- But wine -> type: not second form

3rd Normal Form (3NF)

- Definition
 - a relationship is in third normal form iff all nontrivial FD in F (X->A) X is a super key or A is a prime attribute (is part of a key).
 - $> 3NF \rightarrow 2NF$
 - Prohibits FD between non-key attributes (not part of a key)
 - > formally:
 - $> X \rightarrow A$ is a nontrivial FD in F and
 - > X contains an R key, or
 - > A is part of a key of R.
- Diagram

Such a relationship should be broken into

R1 (\underline{K} X, Y) and R2 (X, Z)

Example 3rd Form

- Example
 - Car (NVH, brand, type, power, color)
 - NVH is key
 - type -> brand
 - type -> Power

Not in 3rd form!

Decomposition Example

Car (NVH, brand, type, power, color)
 vehicle (NVH, type, color)
 Model (type, brand, power)

Reduction (wine, type, customer, discount)
 Discount (type, customer, discount)
 Type (wine, type)

Order(wine, customer)

Even fewer redundancies: BCNF

Definition

a relationship is in BCNF (Boyce-Codd Normal Form) iff all nontrivial FD in F (X->A) X is a super key

Simpler than 3NF, a little stronger (BCNF \rightarrow 3NF)

Such a relationship can be divided into

R1 ($\underline{K2}$ \underline{Y} , X) and R2 (\underline{Y} , K1)

1. Boyce-Codd Normal Form

Back to Conceptual Design

Now that we know how to find FDs, it's a straight-forward process:

- 1. Search for "bad" FDs
- 2. If there are any, then keep decomposing the table into sub-tables until no more bad FDs
- 3. When done, the database schema is normalized

Recall: there are several normal forms...

Boyce-Codd Normal Form (BCNF)

- Main idea is that we define "good" and "bad" FDs as follows:
 - $X \rightarrow A$ is a "good FD" if X is a (super)key
 - In other words, if A is the set of all attributes
 - $X \rightarrow A$ is a "bad FD" otherwise
- We will try to eliminate the "bad" FDs!

Boyce-Codd Normal Form (BCNF)

Why does this definition of "good" and "bad" FDs make sense?

- If X is *not* a (super)key, it functionally determines *some* of the attributes
 - Recall: this means there is <u>redundancy</u>
 - And redundancy like this can lead to data anomalies!

EmpID	Name	Phone	Position
E0045	Smith	1234	Clerk
E3542	Mike	9876	Salesrep
E1111	Smith	9876	Salesrep
E9999	Mary	1234	Lawyer

Boyce-Codd Normal Form

BCNF is a simple condition for removing anomalies from relations:

```
A relation R is <u>in BCNF</u> if:

if \{A_1, ..., A_n\} \rightarrow B is a non-trivial FD in R

then \{A_1, ..., A_n\} is a superkey for R
```

Equivalently: \forall sets of attributes X, either (X⁺ = X) or (X⁺ = all attributes)

In other words: there are no "bad" FDs

Example

Name	SSN	PhoneNumber	City
Fred	123-45-6789	206-555-1234	Seattle
Fred	123-45-6789	206-555-6543	Seattle
Joe	987-65-4321	908-555-2121	Westfield
Joe	987-65-4321	908-555-1234	Westfield

{SSN} → {Name,City}

This FD is bad because it is <u>not</u> a superkey

 \Longrightarrow **Not** in BCNF

What is the key? {SSN, PhoneNumber}

Example

Name	SSN	City
Fred	123-45-6789	Seattle
Joe	987-65-4321	Madison

SSN	PhoneNumber
123-45-6789	206-555-1234
123-45-6789	206-555-6543
987-65-4321	908-555-2121
987-65-4321	908-555-1234

Now in BCNF!

{SSN} → {Name,City}

This FD is now good because it is the key

Let's check anomalies:

- Redundancy?
- Update?
- Delete?

BCNFDecomp(F	₹):	

BCNFDecomp(R):

Find a set of attributes X s.t.: $X^+ \neq X$ and $X^+ \neq X$ [all attributes]

Find a set of attributes X which has non-trivial "bad" FDs, i.e. is not a superkey, using closures

BCNFDecomp(R):

Find a set of attributes X s.t.: $X^+ \neq X$ and $X^+ \neq X$ [all attributes]

if (not found) then Return R

If no "bad" FDs found, in BCNF!

BCNFDecomp(R):

Find a set of attributes X s.t.: $X^+ \neq X$ and $X^+ \neq X$ [all attributes]

if (not found) then Return R

let
$$Y = X^+ - X$$
, $Z = (X^+)^C$

Let Y be the attributes that X functionally determines (+ that are not in X)

And let Z be the other attributes that it doesn't

BCNFDecomp(R):

Find a set of attributes X s.t.: $X^+ \neq X$ and $X^+ \neq X$ [all attributes]

if (not found) then Return R

$$\underline{\text{let }} Y = X^+ - X, \ Z = (X^+)^C$$

decompose R into $R_1(X \cup Y)$ and $R_2(X \cup Z)$

Split into one relation (table) with X plus the attributes that X determines (Y)...

BCNFDecomp(R):

Find a set of attributes X s.t.: $X^+ \neq X$ and $X^+ \neq X$ [all attributes]

if (not found) then Return R

let
$$Y = X^{+} - X$$
, $Z = (X^{+})^{C}$

decompose R into $R_1(X \cup Y)$ and $R_2(X \cup Z)$

And one relation with X plus the attributes it does not determine (Z)

BCNFDecomp(R):

Find a set of attributes X s.t.: $X^+ \neq X$ and $X^+ \neq X$ [all attributes]

if (not found) then Return R

<u>let</u> $Y = X^+ - X$, $Z = (X^+)^C$ decompose R into $R_1(X \cup Y)$ and $R_2(X \cup Z)$

Return BCNFDecomp(R₁), BCNFDecomp(R₂)

Proceed recursively until no more "bad" FDs!

Example

BCNFDecomp(R):

Find a set of attributes X s.t.: $X^+ \neq X$ and $X^+ \neq X$ [all attributes]

if (not found) then Return R

<u>let</u> $Y = X^+ - X$, $Z = (X^+)^C$ decompose R into $R_1(X \cup Y)$ and $R_2(X \cup Z)$

Return BCNFDecomp(R₁), BCNFDecomp(R₂)

R(A,B,C,D,E)

{A} → {B,C} {C} → {D}

Example

R(A,B,C,D,E)

 ${A} \rightarrow {B,C}$ ${C} \rightarrow {D}$

2. Decompositions

Recap: Decompose to remove redundancies

1. We saw that **redundancies** in the data ("bad FDs") can lead to data anomalies

- 2. We developed mechanisms to detect and remove redundancies by decomposing tables into BCNF
 - 1. BCNF decomposition is *standard practice-* very powerful & widely used!
- However, sometimes decompositions can lead to more subtle unwanted effects...

When does this happen?

Decompositions in General

$$R_1$$
 = the projection of R on A_1 , ..., A_n , B_1 , ..., B_m

$$R_2$$
 = the projection of R on A_1 , ..., A_n , C_1 , ..., C_p

Theory of Decomposition

Name	Price	Category
Gizmo	19.99	Gadget
OneClick	24.99	Camera
Gizmo	19.99	Camera

Sometimes a decomposition is "correct"

I.e. it is a <u>Lossless</u> decomposition

Name	Price
Gizmo	19.99
OneClick	24.99
Gizmo	19.99

Name	Category
Gizmo	Gadget
OneClick	Camera
Gizmo	Camera

Lossy Decomposition

Name	Price	Category
Gizmo	19.99	Gadget
OneClick	24.99	Camera
Gizmo	19.99	Camera

However sometimes it isn't

What's wrong here?

Price	Category
19.99	Gadget
24.99	Camera
19.99	Camera

Lossless Decompositions

What (set) relationship holds between R1 Join R2 and R if lossless?

It's lossless if we have equality!

Hint: Which tuples of R will be present?

Lossless Decompositions

A decomposition R to (R1, R2) is <u>lossless</u> if R = R1 Join R2

Lossless Decompositions

$$R(A_1, ..., A_n, B_1, ..., B_m, C_1, ..., C_p)$$
 $R_1(A_1, ..., A_n, B_1, ..., B_m)$
 $R_2(A_1, ..., A_n, C_1, ..., C_p)$

If
$$\{A_1, ..., A_n\} \rightarrow \{B_1, ..., B_m\}$$

Then the decomposition is lossless

Note: don't need
$$\{A_1, ..., A_n\} \rightarrow \{C_1, ..., C_p\}$$

BCNF decomposition is always lossless. Why?

A problem with BCNF

<u>Problem</u>: To enforce a FD, must reconstruct original relation—on each insert!

Note: This is historically inaccurate, but it makes it easier to explain

A Problem with BCNF


```
{Unit} → {Company}
{Company, Product} → {Unit}
```

We do a BCNF decomposition on a "bad" FD:

{Unit}+ = {Unit, Company}

```
{Unit} → {Company}
```

We lose the FD {Company, Product} → {Unit}!!

So Why is that a Problem?

<u>Unit</u>	Company
Galaga99	UW
Bingo	UW

Unit	Product
Galaga99	Databases
Bingo	Databases

No problem so far. All local FD's are satisfied.

Unit	Company	Product
Galaga99	UW	Databases
Bingo	UW	Databases

Let's put all the data back into a single table again:

Violates the FD {Company, Product} → {Unit}!!

The Problem

We started with a table R and FDs F

We decomposed R into BCNF tables R₁, R₂, ...
 with their own FDs F₁, F₂, ...

 We insert some tuples into each of the relations—which satisfy their local FDs but when reconstruct it violates some FD across tables!

<u>Practical Problem</u>: To enforce FD, must reconstruct R—on each insert!

Possible Solutions

- Various ways to handle so that decompositions are all lossless / no FDs lost
 - For example 3NF- stop short of full BCNF decompositions.
- Usually a tradeoff between redundancy / data anomalies and FD preservation...

BCNF still most common- with additional steps to keep track of lost FDs...