LECTURE 12: STATUS AND USER EVALUATION

Status Theory

- □ **Directed** networks
 - Trust, opinion, friendship
- □ **Status** in a network [Davis-Leinhardt '68]
 - $\square A \xrightarrow{+} B :: B has higher status than A$
 - $\blacksquare A \xrightarrow{\blacksquare} B :: B \text{ has lower status than } A$
 - Apply this principle transitively over paths
 - Can replace each A $\xrightarrow{-}$ B with A $\xleftarrow{+}$ B
 - Obtain an all-positive network with same status interpretation

Status vs. Balance

Status and balance give different predictions!

Status vs. Balance

At a global level:

- □ Status ⇒ Hierarchy
 - All-positive directed network should be (approximately) acyclic

■ Balance ⇒ Coalitions

 Balance ignores directions and implies that subgraph of negative edges should be (approximately)
 bipartite

Theory of Status

- Edges are directed and created over time
 - X has links to A and B
 - Now, A links to B (triad A-B-X)
 - □ How does sign of A→B
 depend signs from/to X?
 P(A → B | X) vs. P(A → B)
- We need to formalize:
 - 1) Links are embedded in triads:
 Triads provide <u>context</u> for signs
 - 2) Users are <u>heterogeneous</u> in their linking behavior

Heterogeneity in linking behavior

- □ Users differ in frac. of + links they give/receive
- □ For a user U:
 - Generative baseline: Frac. of + given by U
 - Receptive baseline: Frac. of + received by U

Basic question:

- How do different link contexts cause users to deviate from their baselines?
 - Link contexts as modifiers on a person's predicted behavior
 - <u>Surprise</u>: How much behavior of A/B <u>deviates</u> from his/her <u>baseline</u> when A/B is in <u>context</u> X

Joint Positive Endorsement

- X positively endorses A and B
- □ Now A links to B

A puzzle:

- In our data we observe:Fraction of positive links deviates
 - Above generative baseline of A: $S_g(X) > 0$
 - Below receptive baseline of B: $S_r(X) < 0$
- □ Why?

A Story: Soccer Team

- Ask every node: How does skill of B compare to yours?
 - Build a signed directed network
- We haven't asked A about B
- But we know that X thinks
 A and B are both better than him

A Story: Soccer Team

□ A's viewpoint:

- Since B has positive evaluation,B is high status
- Thus, evaluation A gives is more likely to be positive than the baseline

How does A evaluate B?

A is evaluating someone who is better than avg.

→ A is more positive than average

A Story: Soccer Team

□ B's viewpoint:

- Since A has positive evaluation,A is high status
- Thus, evaluation B receives is less likely to be positive than the baseline

How is B evaluated by A?

B is evaluated by someone better than average.

→ They will be more negative to B than average

Y R A

Sign of A→B deviates in different directions depending on the viewpoint!

Consistency with Status

- Determine node status:
 - Assign X status 0
 - Based on signs and directions of edges set status of A and B
- Surprise is status-consistent, if:
 - Gen. surprise is status-consistent if it has same sign as status of B
 - Rec. surprise is status-consistent if it has the **opposite** sign from the status of A
- Surprise is balance-consistent, if:
 - If it completes a balanced triad

Status-consistent if:

Gen. surprise > 0

Rec. surprise < 0

Predicting Edge Signs

Edge sign prediction problem

- Given a network and
 signs on all but one edge, predict
 the missing sign
- Friend recommendation:
 - Predicting whether you know someone vs. Predicting what you think of them

People Express Opinions

In many online applications users express positive and negative attitudes/opinions:

- □ Through <u>actions</u>:
 - Rating a product
 - Pressing a "like" button
- ☐ Through **text**:
 - Writing a comment, a review
- Success of these online applications is built on people <u>expressing opinions</u>
 - Recommender systems
 - Wisdom of the Crowds
 - Ranking

People & Evaluations

- □ About items:
 - Movie and product reviews amazon.com.

Online communities

- □ About items created by others:
 - Q&A websites

User-User Evaluations

- Many on-line settings where one person expresses an opinion about another (or about another's content)
 I trust you [Kamvar-Schlosser-Garcia-Molina '03]
 - □ I agree with you [Adamic-Glance '04]
 - □ I vote in favor of admitting you into the community [Cosley et al. '05, Burke-Kraut '08]
 - I find your answer/opinion helpful
 [Danescu-Niculescu-Mizil et al. '09,
 Borgs-Chayes-Kalai-Malekian-Tennenholtz '10]

Evaluations: Some Issues

Some of the central issues:

Factors:

What factors drive one's evaluations?

□ Synthesis:

How do we create a composite description that accurately reflects cumulative opinion of the community?

Evaluations: the Setting

People evaluate each other:

- □ Direct: User to user [ICWSM '10]
- Indirect: User to content (created by another member of a community) [WSDM '12]
- Where online does this explicitly occur on a large scale?

Evaluations: the Data

- Wikipedia adminship elections
 - Support/Oppose (120k votes in English)
 - 4 languages: EN, GER, FR, SP

- Stack Overflow Q&A community
 - Upvote/Downvote (7.5M votes)
- Epinions product reviews
 - Ratings of others' product reviews (13M)
 - \blacksquare 5 = positive, 1-4 = negative

The New Setting

Relation to the previous class:

We still talk about one person evaluating the other via a \pm /- evaluation

So far we focused on evaluations in the context of a network

Now we focus on a single evaluation (without the context of a network)

Human Evaluations

■ What drives human evaluations?

- □ How do properties of evaluator A and target B affect A's vote?
 - Status and Similarity are two fundamental drivers behind human evaluations

Definitions

□ Status:

- Level of recognition, merit, achievement, reputation in the community
 - Wikipedia: # edits, # barnstars
 - Stack Overflow: # answers

□ User-user Similarity:

- Overlapping topical interests of A and B
 - Wikipedia: Similarity of the articles edited
 - Stack Overflow: Similarity of users evaluated

Relative vs. Absolute Assessment

□ How do properties of evaluator A and target B affect A's vote?

- □ Two natural (but competing) hypotheses:
 - (1) Prob. that B receives a positive evaluation depends primarily on the characteristics of B
 - There is some objective criteria for user B to receive a positive evaluation

Relative vs. Absolute Assessment

□ How do properties of evaluator A and target B affect A's vote?

- □ Two natural (but competing) hypotheses:
 - (2) Prob. that B receives a positive evaluation depends on relationship between the characteristics of A and B
 - User A compares herself to user B and then makes the evaluation

Effects of Status

- How does status of B affect A's evaluation?
 - Each curve is fixed status difference: $\Delta = S_A S_B$
- □ Observations:
 - Flat curves: Prob. of positive eval. P(+) doesn't depend on B's status
 - lacktriangle Different levels: Different values of Δ result in different behavior

Status difference
remains salient even as
A and B acquire more
status

Effects of Similarity

- How does prior interaction shape evaluations? 2 hypotheses:
 - (1) Evaluators are more supportive of targets in their area
 - "The more similar you are, the more I like you"
 - (2) More familiar evaluators know weaknesses and are more harsh
 - "The more similar you are, the better I can understand your weaknesses"

Effects of Similarity

Prior interaction/ similarity boosts positive evaluations

Status & Similarity

Status is a proxy for quality when evaluator does not know the target

Status & Similarity

■ Who shows up to evaluate?

Elite evaluators vote on targets in their area of expertise

- Selection effect in who gives the evaluation
 - \square If $S_A > S_B$ then A and B are highly similar

A Puzzle

- What is P(+) as a function of $\Delta = S_A$ S_B ?
 - Based on findings so far:
 Monotonically decreasing

Δ, Status difference

Summary

- Social media sites are governed by (often implicit) user evaluations
- Wikipedia voting process has an explicit,
 public and recorded process of evaluation
- Main characteristics:
 - Importance of relative assessment: Status
 - Social media sites are governed by (often implicit) user evaluations
 - Importance of prior interaction: Similarity
 - Similarity plays important role