Class core values

- 1. Be **respect**ful to yourself and others
- 2. Be **confident** and believe in yourself
- 3. Always do your **best**
- 4. Be cooperative
- 5. Be **creative**
- 6. Have **fun**
- 7. Be **patient** with yourself while you learn
- 8. Don't be shy to **ask "stupid" questions**
- 9. Be **inclusive** and **accepting**

Learning Objectives

- 1. Describe the need for LSTMs and GRUs
- 2. Explain the basic architecture of LSTM unit
- 3. Explain the basic architecture of GRU
- 4. Implement a LSTM module using keras
- 5. Tune LSTM model

Parameter sharing in RNNs allow for adopting different lengths

Due to limitations of the architecture, remembering context from past is challenging

The sky is <u>blue</u>

I live in France. I love this city. I speak French

LSTMs are developed to help with the memory issue of RNNs

LSTM
Long Short Term Memory

The key to LSTMs is the cell state

Cell states and output are controlled by a series of gates

In the first step, we decide how much of the previous information to keep (forget gate)

$$f_t = \sigma\left(W_f \cdot [h_{t-1}, x_t] + b_f\right)$$

The network then decides which values to update

$$i_t = \sigma(W_i \cdot [h_{t-1}, x_t] + b_i)$$

$$\tilde{C}_t = \tanh(W_C \cdot [h_{t-1}, x_t] + b_C)$$

Cell state is updated by throwing out old information and adding new ones

$$C_t = f_t * C_{t-1} + i_t * \tilde{C}_t$$

The output is generated based on the input and the updated cell state

$$o_t = \sigma (W_o [h_{t-1}, x_t] + b_o)$$
$$h_t = o_t * \tanh (C_t)$$

GRUs are a variation of LSTMs designed to deal with the vanishing gradient problem

GRU

Gated Recurrent Unit
Update gate and reset gat

The gates are designed to decide which information to keep/forget

Update gate helps the network to learn how much of the past information to remember

$$z_t = \sigma(W^{(z)}x_t + U^{(z)}h_{t-1})$$

Reset gate helps the network to learn how much of the past information to forget

$$r_t = \sigma(W^{(r)}x_t + U^{(r)}h_{t-1})$$

The information of reset gate is used to let the network keep only relevant information from past

$$h_t' = \tanh(Wx_t + r_t \odot Uh_{t-1})$$

The information of reset gate is used to let the network keep only relevant information from past

$$h_t' = \tanh(Wx_t + r_t \odot Uh_{t-1})$$

The network then updates itself based on the knowledge on what to remember to generate output

$$h_t = z_t \odot h_{t-1} + (1 - z_t) \odot h_t'$$

Next lecture: Transformers

Heads-up for next Wednesday

Kristine Deibler · 1st
Computational Design Scientist at Novo Nordisk

Layne Price · 1st Sr Machine Learning Scientist at Amazon

Jack Maguire · 1st Senior Scientist at Genentech

Nikhil Naik · 2nd Senior Research Manager | Machine learning, Computer Vision, NLP, AI for Biology

