Multiphase Flows – WS 2022/23 Problem Session 10: Process Engineering Applications

Aranya Dan, M. Tech.

Institute for Combustion Technology RWTH Aachen University

Process Reactors

- Physical processes
 - Bubble column
 - Fluidized bed
 - Fixed beds
 - o Bio-reactor
- Thermal and chemical reactors
 - Bubble column
 - o Fluidized bed
 - Bio-reactor

Hydrocyclone

Bubble column

Problem I: Sedimentation of Single Particles (I)

We investigate the sedimentation of single particles at different conditions.

- a) Compute the steady-state sedimentation velocity of a single particle with diameter $d_P = 0.02 \text{ mm}$ in water at 20 °C.
- b) Compute the steady-state sedimentation velocity of a single particle with diameter $d_P = 0.2 \text{ mm}$ in air at $1000 \, ^{\circ}\text{C}$.
- c) Compute the time after which an initially quiescent particle with diameter $d_P=0.02~\mathrm{mm}$ has reached 99 % of its steady-state sedimentation velocity in water at 20 °C. The acceleration factor for the accelerated liquid is $\alpha=0.5$.

Particle density:
$$\rho_P = 5200 \; \frac{\mathrm{kg}}{\mathrm{m}^3}$$

Properties of water (20 °C):
$$\rho_{W,20} = 998.2 \frac{\text{kg}}{\text{m}^3}$$
, $\eta_{W,20} = 1.004 \cdot 10^{-3} \frac{\text{kg}}{\text{m} \cdot \text{s}}$

Properties of air (1000 °C):
$$\rho_{A,1000} = 0.2733 \frac{\text{kg}}{\text{m}^3}$$
, $\eta_{A,1000} = 47.93 \cdot 10^{-6} \frac{\text{kg}}{\text{m} \cdot \text{s}}$

Single particle motion in a resting fluid

Drag laws of spherical particles

 Force balance in vertical direction at a sphere settling in a steady state

$$F_G = V_{SP} \cdot \rho_P \cdot g$$

$$F_G - F_B - F_D = 0$$

$$F_B = V_{SP} \cdot \rho_L \cdot g$$

Single particle motion in a resting fluid

Drag laws of spherical particles

- Drag laws of spherical particles
 - \circ Re \leq 0.1
 - Creeping flows
 - Analytical solutions by solving the Navier-Stokes-Equation [Stokes and Oseen]

$$C_D = \frac{24}{\text{Re}}$$

- $0.1 < \text{Re} < 2 \cdot 10^3$
 - Determined experimentally by owing a fixed sphere
 - The drag is increasingly dominated by inertial forces
 - The flow separates from the particle surface and eddies are generated downstream

$$C_D = \frac{24}{\text{Re}} + \frac{4}{\sqrt{\text{Re}}} + 0.4$$

Problem I: Solution

Compute the steady-state sedimentation velocity of a single particle with diameter $d_P = 0.02 \text{ mm}$ in water at 20 °C.

Force balance at particle at steady-state: a)

$$F_B = \frac{\pi}{6} d_P^3 \rho_W g$$

$$F_G = \frac{\pi}{6} d_P^3 \rho_P g$$

$$F_D = C_D \rho_W \frac{\pi}{4} d_P^2 \frac{v^2}{2}$$

$$F_G - F_B - F_D = 0$$

Preliminary assumption:

$$F_D = C_D \rho_W \frac{\pi}{4} d_P^2 \frac{v^2}{2}$$
 Preliminary assumption:
Stokes flow $\rightarrow C_D = \frac{24}{Re}$ (with $Re = \frac{d_P v \rho_W}{\eta_W}$)

$$= > \frac{\pi}{6} d_P^3 (\rho_P - \rho_W) g - \frac{24\eta_W}{d_P v \rho_W} \rho_W \frac{\pi}{4} d_P^2 \frac{v^2}{2} = 0$$
$$= > v_\infty = 9.123 \cdot 10^{-4} \frac{\text{m}}{\text{s}}$$

Check assumption of Stokes flow: Re = 0.018 < 0.1(assumption was correct)

Problem I: Solution

Compute the steady-state sedimentation velocity of a single particle with diameter $d_P = 0.2 \text{ mm}$ in air at 1000 °C.

b) Assumption: 0.1 < Re < 2000

=> Approximation of Kaskas:
$$C_D = \frac{24}{Re} + \frac{4}{\sqrt{Re}} + 0.4$$
 (1)

From force balance (as before):
$$C_D = \frac{3v^2\rho_L}{4d_Pg(\rho_P - \rho_L)}$$
 (2)

(2)=(1):
$$\frac{3v^2\rho_L}{4d_Pg(\rho_P-\rho_L)} = \frac{24\eta_L}{\rho_Ld_Pv} + 4\sqrt{\frac{\eta_L}{\rho_Ld_Pv}} + 0.4$$

Iteration necessary
$$=> v_{\infty} = 1.85 \frac{\text{m}}{\text{s}}$$

Problem I: Solution

c) Time to reach 99% of steady-state velocity ($v_{\infty} = 9.123 \cdot 10^{-4} \frac{\text{m}}{\text{s}}$ already computed in (a))

Transient force balance (equation of motion): $F_G - F_B - F_T - F_D = 0$

$$=> \frac{\pi}{6} d_P^3 (\rho_P + \alpha \rho_W) \frac{dv}{dt} + \frac{24\eta_W}{d_P v \rho_W} \rho_W \frac{\pi}{4} d_P^2 \frac{v^2}{2} + \frac{\pi}{6} d_P^3 (\rho_W - \rho_P) g = 0 \quad (1)$$
(with $\alpha = V_{W,\text{accel}}/V_P$)

From (a):
$$v_{\infty} = \frac{d_P^2 g(\rho_P - \rho_W)}{18\eta_W} = > \eta_W = \frac{d_P^2 g(\rho_P - \rho_W)}{18v_{\infty}}$$
 (2)
Inserting (2) in (1): $\frac{v_{\infty}}{g(\rho_P - \rho_W)} (\rho_P + \alpha \rho_W) \frac{dv}{dt} = v_{\infty} - v$

Separation of variable & integration: $\int_0^{0.99v_\infty} \frac{1}{v_\infty - v} dv = \int_0^\tau \frac{g(\rho_P - \rho_W)}{v_\infty(\rho_P + \alpha \rho_W)} dt$

=>
$$-\ln(v_{\infty} - v)|_{0}^{0.99v_{\infty}} = \frac{g(\rho_{P} - \rho_{W})}{v_{\infty}(\rho_{P} + \alpha \rho_{W})} \tau$$

=> $\tau = 5.8 \cdot 10^{-4} \text{ s}$

Particle Cloud Behavior

- In technical systems: particles often aggregate -> formation of particle clouds (PC)
 - → velocity smaller than velocity for single particle
 - → particles do not move any more in "pure" fluid, but in a medium with different properties due to the presence of a high particle number
- Particle volume concentration: $Z = \frac{\dot{V}_P}{\dot{V}_M} = \frac{\dot{V}_P}{\dot{V}_L + \dot{V}_P}$
- ➤ Cloud settling velocity [Richardson and Zaki]:

$$\frac{v_{\infty,PC}}{v_{\infty,SP}} = 1$$
, $Z < 0.001$

Problem 2: Sedimentation Velocity of Particle Cloud

We investigate the sedimentation of particles with diameter $d_P = 0.02$ mm. The stationary sedimentation velocity of the single particles in water has been determined as $v_{\infty,SP} = 9.123 \cdot 10^{-4} \, \frac{\rm m}{\rm s}$ in Problem 1.

Compute the particle cloud velocity of particles with this size assuming a particle mass concentration of $w_{\rm P}=10\%$ in the fluid.

Properties:
$$\rho_{\rm P}=5200\,{\rm kg\over m^3}$$
 , $\rho_{\rm W}=998.2\,{\rm kg\over m^3}$, $\eta_{\rm W}=1.004\cdot 10^{-3}\,{\rm kg\over m\cdot s}$

Problem 2: Solution

Particle volume fraction:
$$Z = \frac{V_P}{V_P + V_W} = \frac{\frac{m_P}{\rho_P}}{\frac{m_P}{\rho_P} + \frac{m_W}{\rho_W}} = \frac{\frac{W_P}{\rho_P}}{\frac{W_P}{\rho_P} + \frac{W_W}{\rho_W}}$$

with
$$w_P = 0.1$$
 and $w_W = 1 - w_P = 0.9$
=> $Z_W = 0.0209 > 0.001$ => use of approximation formula

$$Re = \frac{\rho_W v_{\infty} d_P}{\eta_W} = 0.018 \implies \text{from diagram: } \gamma = 4.7$$

$$=> v_{\infty,PC} = v_{\infty,SP} (1 - Z_W)^{\gamma} = 8.26 \cdot 10^{-4} \frac{\text{m}}{\text{s}}$$

Problem 3: Sedimentation Velocity with Wall Impact

Determine the stationary sedimentation velocity $v_{\infty,P}$ for a spherical particle with diameter d_P in water in a cylindric vessel with diameter D.

Note that the velocity $v_{\infty,P}$ is influenced by the displaced fluid. Assume Stokes flow and a "piston profile" for the fluid velocity around the particle.

Properties:
$$\rho_P = 5200 \; \frac{\mathrm{kg}}{\mathrm{m}^3}$$
, $\rho_W = 998.2 \; \frac{\mathrm{kg}}{\mathrm{m}^3}$, $\eta_W = 1.004 \cdot 10^{-3} \; \frac{\mathrm{kg}}{\mathrm{m} \cdot \mathrm{s}}$

Geometry: $d_P = 2 \text{ mm}$, D = 10 mm

Wall influence

- Simplified investigation
 - \circ Difference to the velocity $v_{\infty,wall}$ results in a displacement flow \dot{V}_L which is created by the sphere

$$\dot{V}_L = \frac{\pi}{4} d_P^2 \cdot v_{\infty,wall}$$

Fluid velocity

$$v_L = \frac{\dot{V}_L}{\frac{\pi}{4}(D^2 - d_P^2)} = v_{\infty,\text{wall}} \cdot \frac{1}{\frac{D^2}{d_P^2} - 1}$$

- Simplified investigation
 - \circ Difference to the velocity $v_{\infty,wall}$ results in a displacement flow \dot{V}_L which is created by the sphere
 - Fluid velocity

o Relative velocity

Relative velocity

$$v_r = v_\infty = v_L + v_{\infty,\text{wall}} = v_{\infty,\text{wall}} \cdot \frac{1}{1 - \frac{d_P^2}{D^2}}$$

Modelling of the wall influence

Problem 3: Solution

As in problem I: $v_{\infty} = \frac{d_P^2 g(\rho_P - \rho_W)}{18\eta_W}$

=> v_{∞} is relative velocity between particle and fluid: $v_{\infty} = v_{\infty,P} + v_W$ (I)

Assumption: "piston profile"

$$=> \dot{V}_W = \dot{V}_P$$

$$=> \left(\frac{\pi}{4}D^2 - \frac{\pi}{4}d_P^2\right)v_w = \frac{\pi}{4}d_P^2v_{\infty,P}$$

$$=> v_W = v_{\infty,P} \frac{d^2}{D^2 - d^2}$$
 (2)

(2) in (1):
$$v_{\infty,P} = v_{\infty} \left(1 - \frac{d_P^2}{D^2} \right)$$

=> without wall:
$$v_{\infty} = 9.12 \frac{\text{m}}{\text{s}}$$

=> with wall:
$$v_{\infty,P} = 8.76 \frac{\text{m}}{\text{s}}$$

Thank you for your attention

Aranya Dan, M. Tech.

Institute for Combustion Technology RWTH Aachen University

http://www.itv.rwth-aachen.de

