# Budgeted Reinforcement Learning in Continuous State Space

Nicolas Carrara <sup>3</sup> Edouard Leurent<sup>3,4</sup> Tanguy Urvoy <sup>1</sup> Romain Laroche <sup>2</sup> Odalric-Ambrym Maillard <sup>3</sup> Olivier Pietquin <sup>3,4</sup>

<sup>1</sup>Orange Labs

<sup>2</sup>Microsoft Montréal.

<sup>3</sup>Univ. Lille, CNRS, Centrale Lille, INRIA UMR 9189 - CRIStAL

<sup>4</sup>Google Research, Brain Team, Paris

<sup>4</sup>Renault

10 august 2018.













### Problem

Given past trajectories, find a way to:

#### Problem

Given past trajectories, find a way to:

gather gold as much as possible;

#### Problem

Given past trajectories, find a way to:

- gather gold as much as possible;
- ▶ limit the villager casualties under some budget;

#### **Problem**

Given past trajectories, find a way to:

- gather gold as much as possible;
- limit the villager casualties under some budget;
- being able to change the budget in real time.

#### **Problem**

Given past trajectories, find a way to:

- gather gold as much as possible;
- limit the villager casualties under some budget;
- being able to change the budget in real time.

#### Solution

► This problem can be cast as a Budgeted Markov Decision Process.

### Markov Decision Process

We define a MDP as a tuple  $(S, A, P, R_r, \gamma)$  where:

### Markov Decision Process

We define a MDP as a tuple  $(S, A, P, R_r, \gamma)$  where:

 $ightharpoonup \mathcal{S}$  is the state space,  $\mathcal{A}$  the action space,

### Markov Decision Process

We define a MDP as a tuple  $(S, A, P, R_r, \gamma)$  where:

- $ightharpoonup \mathcal{S}$  is the state space,  $\mathcal{A}$  the action space,
- $ightharpoonup R_r \in \mathbb{R}^{\mathcal{S} imes \mathcal{A}}$  the rewards,

#### Markov Decision Process

We define a MDP as a tuple  $(S, A, P, R_r, \gamma)$  where:

- lacktriangleright  ${\cal S}$  is the state space,  ${\cal A}$  the action space,
- $ightharpoonup R_r \in \mathbb{R}^{\mathcal{S} imes \mathcal{A}}$  the rewards,
- $ightharpoonup P \in \mathcal{M}(\mathcal{S})^{\mathcal{S} imes \mathcal{A}}$  the dynamics,

#### Markov Decision Process

We define a MDP as a tuple  $(S, A, P, R_r, \gamma)$  where:

- lacktriangleright  ${\cal S}$  is the state space,  ${\cal A}$  the action space,
- $ightharpoonup R_r \in \mathbb{R}^{S imes \mathcal{A}}$  the rewards,
- ▶  $P \in \mathcal{M}(S)^{S \times A}$  the dynamics,
- lacktriangle and  $\gamma$  the discounted factor.

#### Markov Decision Process

We define a MDP as a tuple  $(S, A, P, R_r, \gamma)$  where:

- lacktriangleright  ${\cal S}$  is the state space,  ${\cal A}$  the action space,
- $ightharpoonup R_r \in \mathbb{R}^{S imes \mathcal{A}}$  the rewards,
- ▶  $P \in \mathcal{M}(S)^{S \times A}$  the dynamics,
- lacktriangle and  $\gamma$  the discounted factor.

#### Markov Decision Process

We define a MDP as a tuple  $(S, A, P, R_r, \gamma)$  where:

- lacktriangleright  ${\cal S}$  is the state space,  ${\cal A}$  the action space,
- $ightharpoonup R_r \in \mathbb{R}^{\mathcal{S} imes \mathcal{A}}$  the rewards,
- ▶  $P \in \mathcal{M}(S)^{S \times A}$  the dynamics,
- and \( \gamma \) the discounted factor.

## Objective

•  $G_r^{\pi} = \sum_{t=0}^{\infty} \gamma^t R_r(s_t, a_t)$  the  $\gamma$ -discounted return of rewards.

#### Markov Decision Process

We define a MDP as a tuple  $(S, A, P, R_r, \gamma)$  where:

- $ightharpoonup \mathcal{S}$  is the state space,  $\mathcal{A}$  the action space,
- $ightharpoonup R_r \in \mathbb{R}^{S imes \mathcal{A}}$  the rewards,
- ▶  $P \in \mathcal{M}(S)^{S \times A}$  the dynamics,
- ightharpoonup and  $\gamma$  the discounted factor.

## Objective

- $G_r^{\pi} = \sum_{t=0}^{\infty} \gamma^t R_r(s_t, a_t)$  the  $\gamma$ -discounted return of rewards.
- ▶ Find  $\pi^*$  s.t  $\forall s \in S$ :

$$\pi^* \in \operatorname*{arg\,max}_{\pi \in \mathcal{M}(\mathcal{A})^{\mathcal{S}}} \mathbb{E}[G_r^{\pi} | s_0 = s] \tag{1}$$

Constrained Markov Decision Process We define a CMDP as a tuple  $(S, A, P, R_r, R_c, \gamma, \beta)$  where:

### Constrained Markov Decision Process

We define a CMDP as a tuple  $(S, A, P, R_r, R_c, \gamma, \beta)$  where:

 $ightharpoonup \mathcal{S}$  is the state space,  $\mathcal{A}$  the action space,

#### Constrained Markov Decision Process

We define a CMDP as a tuple  $(S, A, P, R_r, R_c, \gamma, \beta)$  where:

- $ightharpoonup \mathcal{S}$  is the state space,  $\mathcal{A}$  the action space,
- $ightharpoonup R_r \in \mathbb{R}^{S \times A}$  the rewards, and  $R_c \in \mathbb{R}^{S \times A}$  the costs

#### Constrained Markov Decision Process

We define a CMDP as a tuple  $(S, A, P, R_r, R_c, \gamma, \beta)$  where:

- $ightharpoonup \mathcal{S}$  is the state space,  $\mathcal{A}$  the action space,
- $ightharpoonup R_r \in \mathbb{R}^{S \times A}$  the rewards, and  $R_c \in \mathbb{R}^{S \times A}$  the costs
- $ightharpoonup P \in \mathcal{M}(\mathcal{S})^{\mathcal{S} imes \mathcal{A}}$  the dynamics,

#### Constrained Markov Decision Process

We define a CMDP as a tuple  $(S, A, P, R_r, R_c, \gamma, \beta)$  where:

- $ightharpoonup \mathcal{S}$  is the state space,  $\mathcal{A}$  the action space,
- $ightharpoonup R_r \in \mathbb{R}^{S \times A}$  the rewards, and  $R_c \in \mathbb{R}^{S \times A}$  the costs
- ▶  $P \in \mathcal{M}(S)^{S \times A}$  the dynamics,
- $ightharpoonup \gamma$  the discounted factor, and  $\beta$  the budget.

#### Constrained Markov Decision Process

We define a CMDP as a tuple  $(S, A, P, R_r, R_c, \gamma, \beta)$  where:

- $ightharpoonup \mathcal{S}$  is the state space,  $\mathcal{A}$  the action space,
- $ightharpoonup R_r \in \mathbb{R}^{S imes \mathcal{A}}$  the rewards, and  $R_c \in \mathbb{R}^{S imes \mathcal{A}}$  the costs
- ▶  $P \in \mathcal{M}(S)^{S \times A}$  the dynamics,
- $ightharpoonup \gamma$  the discounted factor, and  $\beta$  the budget.

## Objective

•  $G_r^{\pi} = \sum_{t=0}^{\infty} \gamma^t R_r(s_t, a_t)$  the  $\gamma$ -discounted return of rewards.

### Constrained Markov Decision Process

We define a CMDP as a tuple  $(S, A, P, R_r, R_c, \gamma, \beta)$  where:

- $ightharpoonup \mathcal{S}$  is the state space,  $\mathcal{A}$  the action space,
- $ightharpoonup R_r \in \mathbb{R}^{S imes \mathcal{A}}$  the rewards, and  $R_c \in \mathbb{R}^{S imes \mathcal{A}}$  the costs
- ▶  $P \in \mathcal{M}(S)^{S \times A}$  the dynamics,
- $ightharpoonup \gamma$  the discounted factor, and  $\beta$  the budget.

- $G_r^{\pi} = \sum_{t=0}^{\infty} \gamma^t R_r(s_t, a_t)$  the  $\gamma$ -discounted return of rewards.
- $G_c^{\pi} = \sum_{t=0}^{\infty} \gamma^t R_c(s_t, a_t)$  the  $\gamma$ -discounted return of costs.

### Constrained Markov Decision Process

We define a CMDP as a tuple  $(S, A, P, R_r, R_c, \gamma, \beta)$  where:

- $ightharpoonup \mathcal{S}$  is the state space,  $\mathcal{A}$  the action space,
- $ightharpoonup R_r \in \mathbb{R}^{S imes \mathcal{A}}$  the rewards, and  $R_c \in \mathbb{R}^{S imes \mathcal{A}}$  the costs
- ▶  $P \in \mathcal{M}(S)^{S \times A}$  the dynamics,
- $ightharpoonup \gamma$  the discounted factor, and  $\beta$  the budget.

- $G_r^{\pi} = \sum_{t=0}^{\infty} \gamma^t R_r(s_t, a_t)$  the  $\gamma$ -discounted return of rewards.
- $G_c^{\pi} = \sum_{t=0}^{\infty} \gamma^t R_c(s_t, a_t)$  the  $\gamma$ -discounted return of costs.
- ▶ Find  $\pi^*$  s.t  $\forall s \in \mathcal{S}$ :

$$\pi^* \in \underset{\pi \in \mathcal{M}(\mathcal{A})^S}{\arg \max} \mathbb{E}[G_r^{\pi}|s_0 = s]$$
s.t. 
$$\mathbb{E}[G_c^{\pi}|s_0 = s] \leq \beta$$
(2)

### **Budgeted Markov Decision Process**

We define a BMDP as a tuple  $(S, A, P, R_r, R_c, \gamma, B)$  where:

- $ightharpoonup \mathcal{S}$  is the state space,  $\mathcal{A}$  the action space,
- $ightharpoonup R_r \in \mathbb{R}^{\mathcal{S} imes \mathcal{A}}$  the rewards, and  $R_c \in \mathbb{R}^{\mathcal{S} imes \mathcal{A}}$  the costs
- ▶  $P \in \mathcal{M}(S)^{S \times A}$  the dynamics,
- $ightharpoonup \gamma$  the discounted factor, and  ${\cal B}$  the budget space.

- $G_r^{\pi} = \sum_{t=0}^{\infty} \gamma^t R_r(s_t, a_t)$  the  $\gamma$ -discounted return of rewards.
- $G_c^{\pi} = \sum_{t=0}^{\infty} \gamma^t R_c(s_t, a_t)$  the  $\gamma$ -discounted return of costs.
- ▶ Find  $\pi^*$  s.t  $\forall (s, \beta) \in \mathcal{S} \times \mathcal{B}$ :

$$\pi^* \in \underset{\pi \in \mathcal{M}(\mathcal{A} \times \mathcal{B})^{\mathcal{S} \times \mathcal{B}}}{\arg \max} \mathbb{E}[G_r^{\pi} | s_0 = s, \beta_0 = \beta]$$
s.t. 
$$\mathbb{E}[G_c^{\pi} | s_0 = s, \beta_0 = \beta] \le \beta$$
(3)











# Augmented Settings

Budgeted policies  $\pi$ 

# Augmented Settings

## Budgeted policies $\pi$

lacktriangleright Take a budget eta as an additional input

### Budgeted policies $\pi$

- lacktriangle Take a budget eta as an additional input
- Output a next budget  $\beta'$

### Budgeted policies $\pi$

- lacktriangle Take a budget eta as an additional input
- ▶ Output a next budget  $\beta'$

$$\pi : \underbrace{(s,\beta)}_{\overline{s}} \to \underbrace{(a,\beta')}_{\overline{a}}$$

### Domain

### Budgeted policies $\pi$

- ▶ Take a budget  $\beta$  as an additional input
- ▶ Output a next budget  $\beta'$

$$\pi: \underbrace{(s,\beta)}_{\overline{s}} \to \underbrace{(a,\beta')}_{\overline{a}}$$

#### Domain

▶ States  $\overline{S} = S \times B$ .

### Budgeted policies $\pi$

- lacktriangle Take a budget eta as an additional input
- Output a next budget  $\beta'$

$$\pi: \underbrace{(s,\beta)}_{\overline{s}} \to \underbrace{(a,\beta')}_{\overline{a}}$$

#### Domain

- ▶ States  $\overline{S} = S \times B$ .
- ▶ Actions  $\overline{\mathcal{A}} = \mathcal{A} \times \mathcal{B}$ .

### Budgeted policies $\pi$

- ▶ Take a budget  $\beta$  as an additional input
- Output a next budget  $\beta'$

$$\pi: \underbrace{(s,\beta)}_{\overline{s}} \to \underbrace{(a,\beta')}_{\overline{a}}$$

#### Domain

- ▶ States  $\overline{S} = S \times B$ .
- Actions  $\overline{\mathcal{A}} = \mathcal{A} \times \mathcal{B}$ .
- ▶ Dynamics  $\overline{P}((s', \beta') \mid (s, \beta), (a, \beta_a)) \stackrel{\text{def}}{=} P(s' \mid s, a) \delta(\beta' \beta_a)$ .

### 2D signals

### Budgeted policies $\pi$

- ▶ Take a budget  $\beta$  as an additional input
- Output a next budget  $\beta'$

$$\pi: \underbrace{(s,\beta)}_{\overline{s}} \to \underbrace{(a,\beta')}_{\overline{a}}$$

#### **Domain**

- ▶ States  $\overline{S} = S \times B$ .
- Actions  $\overline{\mathcal{A}} = \mathcal{A} \times \mathcal{B}$ .
- ▶ Dynamics  $\overline{P}((s', \beta') \mid (s, \beta), (a, \beta_a)) \stackrel{\text{def}}{=} P(s' \mid s, a) \delta(\beta' \beta_a)$ .

### 2D signals

1. Rewards  $R = (R_r, R_c)$ 

### Budgeted policies $\pi$

- ▶ Take a budget  $\beta$  as an additional input
- Output a next budget  $\beta'$

$$\pi: \underbrace{(s,\beta)}_{\overline{s}} \to \underbrace{(a,\beta')}_{\overline{a}}$$

#### **Domain**

- ▶ States  $\overline{S} = S \times B$ .
- Actions  $\overline{\mathcal{A}} = \mathcal{A} \times \mathcal{B}$ .
- ▶ Dynamics  $\overline{P}((s', \beta') \mid (s, \beta), (a, \beta_a)) \stackrel{\text{def}}{=} P(s' \mid s, a) \delta(\beta' \beta_a)$ .

### 2D signals

- 1. Rewards  $R = (R_r, R_c)$
- 2. Returns  $G^{\pi}=(G^{\pi}_r,G^{\pi}_c)$

### Budgeted policies $\pi$

- ▶ Take a budget  $\beta$  as an additional input
- Output a next budget  $\beta'$

$$\pi: \underbrace{(s,\beta)}_{\overline{s}} \to \underbrace{(a,\beta')}_{\overline{a}}$$

#### **Domain**

- ▶ States  $\overline{S} = S \times B$ .
- Actions  $\overline{\mathcal{A}} = \mathcal{A} \times \mathcal{B}$ .
- ▶ Dynamics  $\overline{P}((s', \beta') \mid (s, \beta), (a, \beta_a)) \stackrel{\text{def}}{=} P(s' \mid s, a) \delta(\beta' \beta_a)$ .

### 2D signals

- 1. Rewards  $R = (R_r, R_c)$
- 2. Returns  $G^{\pi} = (G_r^{\pi}, G_c^{\pi})$
- 3.  $V^{\pi}(\overline{s}) = (V_r^{\pi}, V_c^{\pi}) \stackrel{\text{def}}{=} \mathbb{E} [G^{\pi} \mid \overline{s_0} = \overline{s}]$

#### Budgeted policies $\pi$

- ▶ Take a budget  $\beta$  as an additional input
- Output a next budget β'

$$\pi: \underbrace{(s,\beta)}_{\overline{s}} \to \underbrace{(a,\beta')}_{\overline{a}}$$

#### **Domain**

- ▶ States  $\overline{S} = S \times B$ .
- Actions  $\overline{\mathcal{A}} = \mathcal{A} \times \mathcal{B}$ .
- ▶ Dynamics  $\overline{P}((s', \beta') | (s, \beta), (a, \beta_a)) \stackrel{\text{def}}{=} P(s'|s, a)\delta(\beta' \beta_a)$ .

### 2D signals

- 1. Rewards  $R = (R_r, R_c)$
- 2. Returns  $G^{\pi}=(G_r^{\pi},G_c^{\pi})$
- 3.  $V^{\pi}(\overline{s}) = (V_r^{\pi}, V_c^{\pi}) \stackrel{\text{def}}{=} \mathbb{E} [G^{\pi} \mid \overline{s_0} = \overline{s}]$
- 4.  $Q^{\pi}(\overline{s}, \overline{a}) = (Q_r^{\pi}, Q_c^{\pi}) \stackrel{\text{def}}{=} \mathbb{E} [G^{\pi} \mid \overline{s_0} = \overline{s}, \overline{a_0} = \overline{a}]$

### **Policy Evaluation**

The Bellman Expectation equations are preserved, and the Bellman Expectation Operator  $\mathcal{T}^{\pi}$  is a  $\gamma$ -contraction.

### **Definition**

In that order, we want to:

#### Definition

In that order, we want to:

(i) Respect the budget  $\beta$ :

$$\Pi_a(\bar{s}) \stackrel{\text{def}}{=} \{ \pi \in \Pi : V_c^{\pi}(s,\beta) \leq \beta \}$$

#### Definition

In that order, we want to:

(i) Respect the budget  $\beta$ :

$$\Pi_{\boldsymbol{a}}(\overline{s}) \stackrel{\text{def}}{=} \{ \pi \in \Pi : V_c^{\pi}(s,\beta) \leq \beta \}$$

(ii) Maximise the rewards:

$$V_r^*(\overline{s}) \stackrel{\text{def}}{=} \max_{\pi \in \Pi_a(\overline{s})} V_r^{\pi}(\overline{s}) \qquad \qquad \Pi_r(\overline{s}) \stackrel{\text{def}}{=} \operatorname{arg\,max}_{\pi \in \Pi_a(\overline{s})} V_r^{\pi}(\overline{s})$$

#### Definition

In that order, we want to:

(i) Respect the budget  $\beta$ :

$$\Pi_{\boldsymbol{a}}(\overline{s}) \stackrel{\text{def}}{=} \{ \pi \in \Pi : V_c^{\pi}(s,\beta) \leq \beta \}$$

(ii) Maximise the rewards :

$$V_r^*(\overline{s}) \stackrel{\text{def}}{=} \max_{\pi \in \Pi_{\mathfrak{a}}(\overline{s})} V_r^{\pi}(\overline{s}) \qquad \qquad \Pi_r(\overline{s}) \stackrel{\text{def}}{=} \operatorname{arg\,max}_{\pi \in \Pi_{\mathfrak{a}}(\overline{s})} V_r^{\pi}(\overline{s})$$

(iii) Minimise the costs:

$$V_c^*(\overline{s}) \stackrel{\text{def}}{=} \min_{\pi \in \Pi_r(\overline{s})} V_c^{\pi}(\overline{s}), \qquad \Pi^*(\overline{s}) \stackrel{\text{def}}{=} \arg\min_{\pi \in \Pi_r(\overline{s})} V_c^{\pi}(\overline{s})$$

We define the budgeted action-value function  $Q^*$  similarly

## **Budgeted Bellman Optimality Equation**

### Theorem (Budgeted Bellman Optimality Equation)

 $Q^*$  verifies the following equation:

$$\begin{split} Q^*(\overline{s}, \overline{a}) &= \mathcal{T}Q^*(\overline{s}, \overline{a}) \\ &\stackrel{\text{def}}{=} R(\overline{s}, \overline{a}) + \gamma \sum_{\overline{s}' \in \overline{\mathcal{S}}} \overline{P}(\overline{s'}|\overline{s}, \overline{a}) \sum_{\overline{a'} \in \overline{\mathcal{A}}} \pi_{greedy}(\overline{a'}|\overline{s'}; Q^*) Q^*(\overline{s'}, \overline{a'}), \end{split}$$

where the greedy policy  $\pi_{greedy}$  is defined by:

$$\pi_{greedy}(\overline{a}|\overline{s};Q) \in \underset{\rho \in \Pi_r^Q}{\operatorname{arg \, min}} \underset{\overline{a} \sim \rho}{\mathbb{E}} Q_c(\overline{s},\overline{a}),$$

$$\text{where} \quad \Pi_r^Q \stackrel{\text{def}}{=} \underset{\overline{a} \sim \rho}{\operatorname{arg \, max}} \underset{\rho \in \mathcal{M}(\overline{\mathcal{A}})}{\mathbb{E}} \underset{\overline{a} \sim \rho}{\mathbb{E}} Q_r(\overline{s},\overline{a})$$

$$s.t. \quad \underset{\overline{a} \sim \rho}{\mathbb{E}} Q_c(\overline{s},\overline{a}) \stackrel{\underline{\mathcal{E}}}{\leq \beta}$$

## Optimality of the policy

### Proposition (Optimality of the policy)

 $\pi_{greedy}(\,\cdot\,;Q^*)$  is simultaneously optimal in all states  $\overline{s}\in\overline{\mathcal{S}}$ :

$$\pi_{greedy}(\cdot; Q^*) \in \Pi^*(\overline{s})$$

In particular,  $V^{\pi_{greedy}(\cdot\,;\,Q^*)}=V^*$  and  $Q^{\pi_{greedy}(\cdot\,;\,Q^*)}=Q^*$ .

## Solving the untractable program

Proposition  $(\pi_{\text{greedy}} = \pi_{\text{hull}})$ 

 $\pi_{greedy}$  can be computed explicitly, as a mixture of two points that lie on the convex hull of Q.











### Not a contraction

### Theorem (Non-Contractivity)

For any BMDP  $(S, A, P, R_r, R_c, \gamma)$  with  $|A| \ge 2$ , T is not a contraction.

$$orall arepsilon > 0, \exists Q^1, Q^2 \in (\mathbb{R}^2)^{\overline{\mathcal{SA}}} : \|\mathcal{T}Q^1 - \mathcal{T}Q^2\|_{\infty} \geq rac{1}{arepsilon} \|Q^1 - Q^2\|_{\infty}$$

### Not a contraction: intuition



## Not a contraction: intuition



## Not a contraction: intuition



## Contractivity on smooth *Q*-functions

## Conjecture (Contractivity $\mathcal{L}_{\gamma}$ )

 ${\cal T}$  is a contraction when restricted to the subset  ${\cal L}_{\gamma}$  of Q-functions such that " $Q_r$  is L-Lipschitz with respect to  $Q_c$ ", with  $L<\frac{1}{\gamma}-1$ .

# **Budgeted Dynamic Programming**

### Algorithm 1: Budgeted Value-Iteration

**Data:**  $P, R_r, R_c$ 

Result: Q\*

- $1 Q_0 \leftarrow 0$
- 2 repeat
- $Q_{k+1} \leftarrow \mathcal{T}Q_k$
- 4 until convergence

We address several limitations of Budgeted Value-Iteration

We address several limitations of Budgeted Value-Iteration

1. If the P,  $R_r$  and  $R_c$  are unknown:

We address several limitations of Budgeted Value-Iteration

- 1. If the P,  $R_r$  and  $R_c$  are unknown:
  - ▶ Work with a batch of samples  $\mathcal{D} = \{(\overline{s}_i, \overline{a}_i, r_i, \overline{s}_i'\}_{i \in [0, N]}\}$

### We address several limitations of Budgeted Value-Iteration

- 1. If the P,  $R_r$  and  $R_c$  are unknown:
  - ▶ Work with a batch of samples  $\mathcal{D} = \{(\overline{s}_i, \overline{a}_i, r_i, \overline{s}_i'\}_{i \in [0, N]}\}$
  - ▶ Replace  $\mathcal{T}$  with a sampling operator  $\hat{\mathcal{T}}$ :

$$\hat{\mathcal{T}}Q(\overline{s}_i, \overline{a}_i, r_i, \overline{s}_i') \stackrel{\text{def}}{=} r_i + \gamma \sum_{\overline{a}_i' \in \mathcal{A}_i} \pi_{\text{greedy}}(\overline{a}_i' | \overline{s}_i'; Q) Q(\overline{s}_i', \overline{a}_i').$$

#### We address several limitations of Budgeted Value-Iteration

- 1. If the P,  $R_r$  and  $R_c$  are unknown:
  - ▶ Work with a batch of samples  $\mathcal{D} = \{(\overline{s}_i, \overline{a}_i, r_i, \overline{s}_i'\}_{i \in [0, N]}\}$
  - ▶ Replace  $\mathcal{T}$  with a sampling operator  $\hat{\mathcal{T}}$ :

$$\hat{\mathcal{T}}Q(\overline{s}_i, \overline{a}_i, r_i, \overline{s}_i') \stackrel{\text{def}}{=} r_i + \gamma \sum_{\overline{a}_i' \in \mathcal{A}_i} \pi_{\text{greedy}}(\overline{a}_i' | \overline{s}_i'; Q) Q(\overline{s}_i', \overline{a}_i').$$

2. If S is continuous:

#### We address several limitations of Budgeted Value-Iteration

- 1. If the P,  $R_r$  and  $R_c$  are unknown:
  - Work with a batch of samples  $\mathcal{D} = \{(\overline{s}_i, \overline{a}_i, r_i, \overline{s}_i'\}_{i \in [0, N]}\}$
  - ▶ Replace  $\mathcal{T}$  with a sampling operator  $\hat{\mathcal{T}}$ :

$$\hat{\mathcal{T}}Q(\overline{s}_i, \overline{a}_i, r_i, \overline{s}_i') \stackrel{\text{def}}{=} r_i + \gamma \sum_{\overline{a}_i' \in \mathcal{A}_i} \pi_{\text{greedy}}(\overline{a}_i' | \overline{s}_i'; Q) Q(\overline{s}_i', \overline{a}_i').$$

- 2. If S is continuous:
  - Employ function approximation  $Q_{\theta}$ , and minimise a regression loss

$$\mathcal{L}(\textit{Q}_{\theta}, \textit{Q}_{\mathsf{target}}; \mathcal{D}) = \sum_{\mathcal{D}} ||\textit{Q}_{\theta}(\overline{s}, \overline{a}) - \textit{Q}_{\mathsf{target}}(\overline{s}, \overline{a}, \textit{r}, \overline{s}')||_{2}^{2}$$

## Budgeted Fitted-Q

### **Algorithm 2:** Budgeted Fitted-Q Iteration

Data:  $\mathcal{D}$ 

Result: Q\*

- $\mathbf{1} \ Q_{\theta_0} \leftarrow \mathbf{0}$
- 2 repeat
- $\mathbf{3} \quad \Big| \quad \theta_{k+1} \leftarrow \arg\min_{\theta} \mathcal{L}(Q_{\theta}, \hat{\mathcal{T}}Q_{\theta_k}; \mathcal{D})$
- 4 until convergence

# More scaling

## More scaling

► CPU parallel computing of the targets  $\sum_{\overline{a_i'} \in \mathcal{A}_i} \pi_{\text{greedy}}(\overline{a_i'} | \overline{s_i'}; Q) Q(\overline{s_i'}, \overline{a_i'}) \ \forall i$ 

#### More scaling

- ► CPU parallel computing of the targets  $\sum_{\overline{a_i'} \in \mathcal{A}_i} \pi_{\text{greedy}}(\overline{a_i'}|\overline{s_i'}; Q)Q(\overline{s_i'}, \overline{a_i'}) \ \forall i$
- ▶ Same for samples generation.

#### More scaling

- ► CPU parallel computing of the targets  $\sum_{\overline{a_i'} \in \mathcal{A}_i} \pi_{\text{greedy}}(\overline{a_i'}|\overline{s_i'}; Q) Q(\overline{s_i'}, \overline{a_i'}) \ \forall i$
- Same for samples generation.
- Neural Network as function approximator:



### Experiments: performances of BFTQ

- ▶ Baseline:  $\lambda$ -FTQ, Lagrangian relaxation
  - ▶  $R_r(s, a) \leftarrow R_r(s, a) \lambda R_c(s, a)$  where  $\lambda \ge 0$
- Applications:
  - dialogue systems
  - autonomous driving

## Experiments: dialogue systems

▶ A slot-filling problem: the agent (the dialogue system) fills a form by asking the user each slot.

### Experiments: dialogue systems

- ▶ A slot-filling problem: the agent (the dialogue system) fills a form by asking the user each slot.
- ► Two ways to deal with recognition errors:
  - ask to repeat with voice (safe/slow),
  - Ask to repeat with numeric pad (unsafe/fast).

## Experiments: dialogue systems



# Experiments: autonomous driving

- the agent (the car) is on a two-way road with a car in front of it:
  - it can stay behind (safe/slow),
  - ▶ it can overtake (unsafe/fast).

### Experiments: autonomous driving



# Experiments: autonomous driving

► BFTQ on the highway environment

How to collect the batch  $\mathcal{D}$ ?

lacktriangle We propose an arepsilon-greedy exploration procedure

#### How to collect the batch $\mathcal{D}$ ?

- We propose an  $\varepsilon$ -greedy exploration procedure
  - ▶ Sample an initial budget  $\beta_0$

#### How to collect the batch $\mathcal{D}$ ?

- We propose an  $\varepsilon$ -greedy exploration procedure
  - ▶ Sample an initial budget  $\beta_0$
  - At each step, where  $\overline{s} = (s, \beta)$  only explore feasible budgets:

#### How to collect the batch $\mathcal{D}$ ?

- We propose an  $\varepsilon$ -greedy exploration procedure
  - ▶ Sample an initial budget  $\beta_0$
  - At each step, where  $\overline{s} = (s, \beta)$  only explore feasible budgets:

$$\overline{a} = (a, \beta_a) \sim \mathcal{U}(\Delta_{\mathcal{AB}})$$
 where  $\Delta$  is s.t.  $\mathbb{P}(a, \beta_a | s, \beta)$  verifies  $\mathbb{E}[\beta_a] \leq \beta$ 

### Experiments: risk-sensitive exploration

 Validate the risk-sensitive exploration procedure on the corridor environment

#### Experiments: risk-sensitive exploration

- Validate the risk-sensitive exploration procedure on the corridor environment
- ▶ Learn 2 BFTQ policies with respectively:
  - A batch generated by a risk-neutral  $\varepsilon$ -greedy procedure
  - A batch generated by a risk-sensitive  $\varepsilon$ -greedy procedure

#### Experiments: corridors

- ▶ 2 corridors:
  - high costs/high rewards around the starting state
  - no costs/low rewards around the starting state
- The outermost cell is the one yielding the most reward



# Experiments: corridors





# Experiments: corridors

▶ Risk-sensitive vs Risk-Neutral on the corridors environment

 $+\,$  Budgeted Bellman Optimality Operator.

- + Budgeted Bellman Optimality Operator.
  - Fixed point.

- + Budgeted Bellman Optimality Operator.
  - ► Fixed point.
  - ▶ Not a contraction but converging in practice.

- + Budgeted Bellman Optimality Operator.
  - Fixed point.
  - Not a contraction but converging in practice.
- + Scalable for RL in continuous state space.

- + Budgeted Bellman Optimality Operator.
  - Fixed point.
  - ▶ Not a contraction but converging in practice.
- + Scalable for RL in continuous state space.
  - Function approximation with Neural Network (dedicated architecture).

- + Budgeted Bellman Optimality Operator.
  - Fixed point.
  - Not a contraction but converging in practice.
- + Scalable for RL in continuous state space.
  - Function approximation with Neural Network (dedicated architecture).
  - Solving of the untractable program using convex hull.

- + Budgeted Bellman Optimality Operator.
  - Fixed point.
  - Not a contraction but converging in practice.
- + Scalable for RL in continuous state space.
  - Function approximation with Neural Network (dedicated architecture).
  - Solving of the untractable program using convex hull.
  - CPU parallel computing of the target.

- + Budgeted Bellman Optimality Operator.
  - Fixed point.
  - Not a contraction but converging in practice.
- + Scalable for RL in continuous state space.
  - Function approximation with Neural Network (dedicated architecture).
  - Solving of the untractable program using convex hull.
  - CPU parallel computing of the target.
  - Risk-sensitive exploration procedure.

- + Budgeted Bellman Optimality Operator.
  - Fixed point.
  - Not a contraction but converging in practice.
- + Scalable for RL in continuous state space.
  - Function approximation with Neural Network (dedicated architecture).
  - Solving of the untractable program using convex hull.
  - CPU parallel computing of the target.
  - Risk-sensitive exploration procedure.
- + Experiments on two applications.

- + Budgeted Bellman Optimality Operator.
  - Fixed point.
  - Not a contraction but converging in practice.
- + Scalable for RL in continuous state space.
  - Function approximation with Neural Network (dedicated architecture).
  - Solving of the untractable program using convex hull.
  - CPU parallel computing of the target.
  - ▶ Risk-sensitive exploration procedure.
- + Experiments on two applications.
  - ▶ BFTQ reaches similar performances as Lagrangian relaxation,

- + Budgeted Bellman Optimality Operator.
  - Fixed point.
  - Not a contraction but converging in practice.
- + Scalable for RL in continuous state space.
  - Function approximation with Neural Network (dedicated architecture).
  - Solving of the untractable program using convex hull.
  - CPU parallel computing of the target.
  - Risk-sensitive exploration procedure.
- + Experiments on two applications.
  - ▶ BFTQ reaches similar performances as Lagrangian relaxation,
  - with no need for calibration,

- + Budgeted Bellman Optimality Operator.
  - Fixed point.
  - Not a contraction but converging in practice.
- + Scalable for RL in continuous state space.
  - Function approximation with Neural Network (dedicated architecture).
  - Solving of the untractable program using convex hull.
  - CPU parallel computing of the target.
  - Risk-sensitive exploration procedure.
- + Experiments on two applications.
  - ▶ BFTQ reaches similar performances as Lagrangian relaxation,
  - with no need for calibration,
  - and less variance.