Differential Evolution

Semelhante aos Algoritmos Genéticos, no entanto são descartados alguns operadores genéticos. Existe uma população inicial gerada aleatoriamente, onde cada individuo representa uma possível solução do problema. Em cada geração é trocada informação genética de forma a aperfeiçoar os indivíduos aproximando-os de uma boa solução.

Selecção:

Não existe selecção, isto é, todos os indivíduos são seleccionados.

Recombinação:

Todos os indivíduos são recombinados da seguinte forma:

Variáveis de controlo que se mantêm constantes ao longo de todo o processo: F: factor de escala:

Cr: probabilidade de crossover;

- 1. Determinar o melhor individuo presente actualmente na população(b)
- 2. Para cada iteração do algoritmo fazer:
- 3. Para cada individuo da população fazer:
- 4. Escolher 2 indivíduos diferentes aleatórios da população (x,y) e um pivot (p);
- 5. Se aleatório [0,1] < Cr então:
- 6. Calcular $p_i = b_i + F * (x_i y_i)$;
- 7. Determinar o fitness de p;
- 8. Se o fitness de p for melhor que o fitness de b, então:
- 9. O melhor individuo (b) passa a ser p;
- 10. Voltar ao passo 2 até ser concluído o numero de iterações

Mutação:

Os indivíduos não são mutados.

Aceitação:

Uma vez que não é aplicado um operador de selecção, este operador não faz sentido existir, isto é, os indivíduos permanecem constantemente na população.

Vantagem: em relação aos Algoritmos Genéticos, é mais rápido, pois não são usados operadores de selecção, mutação e aceitação.