МИНОБРНАУКИ РОССИИ САНКТ-ПЕТЕРБУРГСКИЙ ГОСУДАРСТВЕННЫЙ ЭЛЕКТРОТЕХНИЧЕСКИЙ УНИВЕРСИТЕТ «ЛЭТИ» ИМ. В.И. УЛЬЯНОВА (ЛЕНИНА) Кафедра МО ЭВМ

ОТЧЕТ

по лабораторной работе №1 по дисциплине «Организация ЭВМ и систем»

Тема: Трансляции, отладка и выполнение программ на языке Ассемблера.

Студент гр. 0382	Тихонов С.В.
Преподаватель	Ефремов М. А.

Санкт-Петербург

2021

Цель работы.

Изучить трансляцию, отладку и выполнение программ на языке Ассемблера

Задание.

Вариант 2

Часть 1

- 1. Просмотреть программу hello1.asm, которая формирует и выводит на экран приветствие пользователя с помощью функции ОС MSDOS, вызываемой через прерывание с номером 21H (команда Int 21h). Выполняемые функцией действия и задаваемые ей параметры следующие: обеспечивается вывод на экран строки символов, заканчивающейся знаком "\$"; требуется задание в регистре аh номера функции, равного 09h, а в регистре dx смещения адреса выводимой строки; используется регистр ах и не сохраняется его содержимое.
- 2. Разобраться в структуре и реализации каждого сегмента программы. Непонятные фрагменты прояснить у преподавателя. Строку-приветствие преобразовать в соответствии со своими личными данными.
 - 3. Загрузить файл hello1.asm из каталога Задания в каталог Masm.
- 4. Протранслировать программу с помощью строки > masm hello1.asm с созданием объектного файла и файла диагностических сообщений (файла листинга). Объяснить и исправить синтаксические ошибки, если они будут обнаружены транслятором. Повторить трансляцию программы до получения объектного модуля.
- 5. Скомпоновать загрузочный модуль с помощью строки > link hello1.obj с созданием карты памяти и исполняемого файла hello1.exe.
- 6. Выполнить программу в автоматическом режиме путем набора строки > hello1.exe убедиться в корректности ее работы и зафиксировать результат выполнения в протоколе.
- 7. Запустить выполнение программы под управлением отладчика с помощью команды > afd hello1.exe 4 Записать начальное содержимое

сегментных регистров CS, DS, ES и SS. Выполнить программу в пошаговом режиме с фиксацией используемых регистров и ячеек памяти до и после выполнения каждой команды.

Часть 2

Выполнить пункты 1 - 7 части 1 настоящего задания применительно к программе hello2.asm, приведенной в каталоге Задания, которая выводит на экран приветствие пользователя с помощью процедуры WriteMsg, а также использует полное определение сегментов. Сравнить результаты прогона под управлением отладчика программ hello1 и hello2 и объяснить различия в размещении сегментов.

Выполнение работы.

Часть 1

- 1) Изучена программа hello1.asm. Строка приветствия была изменена в соответствии с личными данными.
- 2) Выполнена трансляция hello1.asm в hello1.obj с созданием файла листинга. Трансляция прошла без ошибок.
- 3) Выполнена компоновка объектного файла с созданием карты памяти и исполняемого файла hello.exe
- 4) Выполнен запуск исполняемого файла в автоматическом режиме. Результатом работы является строка: "hello everybody, its Tikhonov Sergey from 0382"
- 5) Выполнен запуск исполняемого файла с помощью отладчика.

Таблица 1. Результаты выполнения hello1.exe в отладчике Начальные значения сегментных регистров: (CS) = 1A05, (DS) = 19F5, (ES) = 19F5, (SS) = 1A0A

Адрес Символическ команды ий код команды		16-ричный	Содержимое регистров и ячеек памяти	
	код команды	до выполнения	после выполнения	
0010	MOV AX, 1A07	B8071A	(AX) = 0000 (IP) = 0010	(AX) = 1A07 (IP) = 0013
0013	MOV DS, AX	8ED8	(DS) = 19F5 (IP) = 0013	(DS) = 1A07 (IP) = 0015
0015	MOV DX, 0000	BA0000	(DX) = 0000 (IP) = 0015	(DX) = 0000 (IP) = 0018
0018	MOV AH, 09	B409	(AX) = 1A07 (IP) = 0018	(AX) = 0907 (IP) = 001A
001A	INT 21	CD21	(IP) = 001A	(IP) = 001C
001C	MOV AH, 4C	B44C	(AX) = 0907 (IP) = 001C	(AX) = 4C07 (IP) = 001E
001E	INT 21	CD21	(IP) = 001E	(IP) = 0010

Часть 2. Проделаем аналогичные шаги для программы hello2.exe

При запуске на экран было выведено: "Hello Worlds! \n Student from 0382 — Tikhonov Sergey"

Начальное значение сегментных регистров:

$$(CS) = 1A0A, (DS) = 19F5, (ES) = 19F5, (SS) = 1A05$$

Адрес команды код команды	Символический	16-ричный	Содержимое регистров и ячеек памяти	
	код команды	До выполнения	После выполнения	
0005	PUSH DS	1E	(IP) = 0005 (SP) = 0018 Stack +0 0000 +2 0000 +4 0000 +6 0000	(IP) = 0006 (SP) = 0016 Stack +0 19 F5 +2 0000 +4 0000 +6 0000
0006	SUB AX, AX	2BC0	(AX) = 0000 (IP) = 0006	(AX) = 0000 (IP) = 0008
0008	PUSH AX	50	(AX) = 0000 (SP) = 0016 (IP) = 0008 Stack:+0 19F5	(AX) = 0000 (SP) = 0014 (IP) = 0009 Stack: +0 0000 Stack:+2 19F5
0009	MOV AX,1A07	B8071A	(AX) = 0000 (IP) = 0009	(AX) = 1A07 (IP) = 000C
000C	MOV DS, AX	BED8	(DS) = 19F5 (AX) = 1A07 (IP) = 000C	(DS) = 1A07 (AX) = 1A07 (IP) = 000E
000E	MOV DX, 0000	BA0000	(DX) = 0000 (IP) = 000E	(DX) = 0000 (IP) = 0011
0011	CALL 0000	E8ECFF	(SP) = 0014 (IP) = 0011 Stack: +0 0000 Stack:+2 19F5	(SP) = 0012 (IP) = 0000 Stack: +0 0014 +2 0000 +4 19F5
0000	MOV AH, 9	B409	(AX) = 1A07 (IP) = 0000	(AX) = 0907 (IP) = 0002
0002	INT 21	CD21	(IP) = 0002	(IP) = 0004
0004	RET	C3	(IP) = 0004	(IP) = 0014

0014	MOV DX, 0010	BA1000	(SP) = 0012 Stack: +0 0014 +2 0000 +4 19 F5 +60000 (DX) = 0000	(SP) = 0014 Stack: +0 0000 +2 19F5 +40000 +60000 (DX) = 0010
			(IP) = 0014	(IP) = 0017
0017	CALL 0000	E6FF	(SP) = 0014 (IP) = 0017 Stack: +0 0000 +2 19F5 +40000 +60000	(SP) = 0012 (IP) = 0000 Stack:+0 001A +2 0000 +4 19F5 +60000
0000	MOV AH, 9	B409	(AX) = 1A07 (IP) = 0000	(AX) = 0907 (IP) = 0002
0002	INT 21	CD21	(IP) = 0002	(IP) = 0004
0004	RET	C3	(IP) = 0004 (SP) = 0012 Stack:+0 001A +2 0000 +4 19F5	(IP) = 001A (SP) = 0014 Stack:+0 0000 +2 19F5 +4 0000
001A	RET Far	СВ	(IP) = 001A (SP) = 0014 (CS) = 1A0B Stack = +0 0000 +2 19F5 +4 0000 +6 0000	(IP) = 0000 (SP) = 0018 (CS) = 19F5 Stack +00000 +2 0000 +4000 +6 0000
0000	INT 20	CD 20	(IP) = 0000	(IP) = 0005

Выводы.

Были изучены основные элементы синтаксиса ассемблера и правила написания программ на нём. Та же были рассмотрены процессы трансляции, компоновки и выполнения программы.

ПРИЛОЖЕНИЕ **А** ИСХОДНЫЙ КОД ПРОГРАММЫ

Название файла: hello1.asm

```
HELLO1.ASM - упрошенная версия учебной программы лаб.раб. N1
               по дисциплине "Архитектура компьютера"
 Назначение: Программа формирует и выводит на экран приветствие
             пользователя с помощью функции ДОС "Вывод строки"
             (номер 09 прерывание 21h), которая:
              - обеспечивает вывод на экран строки символов,
                заканчивающейся знаком "$";
              - требует задания в регистре ah номера функции=09h,
                а в регистре dx - смещения адреса выводимой
                строки;
              - использует регистр ах и не сохраняет его
                содержимое.
      ***************
   DOSSEG
                                                ; Задание сегментов под
дос
   .MODEL
           SMALL
                                                      ; Модель памяти-
SMALL(Малая)
   .STACK
                                                ; Отвести под Стек 256
          100h
байт
   .DATA
                                             ; Начало сегмента данных
                                             ; Текст приветствия
Greeting LABEL BYTE
  DB 'hello everybody, its Tikhonov Sergey from 0382',13,10,'$'
                                      ; Начало сегмента кода
   .CODE
                                       ; Загрузка в DS адреса начала
       ax, @data
  mov
                                      ; сегмента данных
  mov
       ds, ax
                                       ; Загрузка в dx смещения
       dx, OFFSET Greeting
                                      ; адреса текста приветствия
DisplayGreeting:
```

```
том ah, 9 ; # функции ДОС печати строки int 21h ; вывод на экран приветствия трограммы int 21h ; завершение программы и выход в ДОС END ; # функции ДОС завершение программы и выход в
```

Название файла: hello2.asm

```
; HELLO2 - Учебная программа N2 лаб.раб.#1 по дисциплине "Архитектура
компьютера"
           Программа использует процедуру для печати строки
             ПРОГРАММЫ
       TEKCT
EOFLine EQU
              1$1
                            Определение символьной константы
                                "Конец строки"
        программы
; Стек
ASSUME CS:CODE, SS:AStack
AStack
          SEGMENT STACK
          DW 12 DUP('!') ; Отводится 12 слов памяти
AStack
          ENDS
; Данные программы
DATA
          SEGMENT
   Директивы описания данных
          DB 'Hello Worlds!', OAH, ODH, EOFLine
HELL0
          DB 'Student from 0382 - Tikhonov Sergey $'
GREETING
DATA
          ENDS
; Код программы
CODE
          SEGMENT
; Процедура печати строки
WriteMsq
          PROC NEAR
          mov
                AH, 9
          int
                21h ; Вызов функции DOS по прерыванию
          ret
WriteMsg ENDP
; Головная процедура
Main
          PR0C
                FAR
                         ;\ Сохранение адреса начала PSP в стеке
          push
                DS
                         ; > для последующего восстановления по
          sub
                AX, AX
                         ;/ команде ret, завершающей процедуру.
          push
                AX
                                    ; Загрузка сегментного
          mov
                AX, DATA
          mov
                DS, AX
                                     ; регистра данных.
          mov
                DX, OFFSET HELLO
                                   ; Вывод на экран первой
```

```
call WriteMsg ; строки приветствия.
mov DX, OFFSET GREETING ; Вывод на экран второй
call WriteMsg ; строки приветствия.
ret ; Выход в DOS по команде,
; находящейся в 1-ом слове PSP.

Main ENDP
CODE ENDS
END Main
```