

Presentation of the team

Esteban Muriel
Research and
coding

Manuel Villegas
Research and
coding

Andrea Serna Literature review

Mauricio ToroData preparation

Problem Statement

Streets of Medellín, Origin and Destination

Three paths that reduce both the risk of harassment and distance

Solution Algorithm

Explanation of the algorithm

The nodes are the map locations and the edges have a weight equal to the distance*risk (for our first option).

Complexity of the algorithm

Algorithm name	Time complexity	Complexity of memory
Dijkstra's Algorithm	O(E * logV)	O(V)

Complexity of Dijkstra's algorithm using a priority queue where V represents the number of vertices and E represents the number of edges.

Tomada de: https://www.elcolombiano.com/antioquia/como-es-vivir-el-espacio-publico-de-mede llin-cuando-se-es-mujer-CB13654035

First path minimizing d = length * HRisk

Origin	Destination	Distance (meters)	Risk of harassment (between 0 and 1)
EAFIT University	National University	14571.9	0.0019

Second path minimizing d = length + (80 * HRisk)

Origin	Destination	Distance (meters)	Risk of harassment (between 0 and 1)
EAFIT University	National University	8098.18	0.5566

Third path minimizing d = length ^ (10 * HRisk)

Origin	Destination	Distance (meters)	Risk of harassment (between 0 and 1)
EAFIT University	National University	25527.69	0.73476

Visual comparison of the three paths

Source: EAFIT Destination: UNAL

Paths	Equation	Time (s)
Red:	length * HRisk	0,0937
Yellow:	length + (80 * HRisk)	0,0748
Blue:	length ^ (10 * HRisk)	0,1588

Future work directions

DS&A II

Use other algorithms

Implement more variables

Project 1

Build a web application

Make it a real time app

Software Engineering

build a mobile application

Get a bigger database

Project 2

Implement machine learning

make the app standalone

i P%t@!

if%#\$@!

THANK YOU!

With the support of

all the monitors, especially to Samuel Rico Gomez and Gregorio Bermudez Ocampo for comments that greatly improved this project. Thanks to all my companions and friends, also to Rafael Villegas Michel and Isabela Muriel Roldan for giving his opinion and tips to achieve this work in the best way possible and finally thanks to our parents for giving us the opportunity to be in EAFIT.