Dataset description:

Data was collected by web crawler form Polish Car trading website - Otomoto.pl It consists of around 19708 observations (some of them are duplicated) and 18 variables

Objective:

Main objective of this analysis is to build a model which will be able to correctly classify to which Price-group should given car be a part of. Such model can be useful for car buyers or sellers when they are planning to sell or buy a car.

Since variable 'Price' is continuous It was divided into 3 classes 1-highest price 2-medium price and 3-low price car models.

Variables description:

Price-Price of a car

Brand-Brand of a car

Model-Model of a car

Year_produced-year in which car was produced

Mileage-car's mileage

Cylinders_capacity - Car's cylinders capacity

Fuel_type- Diesel/Petrol etc.

HP - Horse Power

transmission - type of transmission

drive_type - type of drive (FWD,AWD,RWD)

Colour-car's colour

Serviced - whether it was serviced in authorized mechanic

New/Used-Describes whether car was used before or is it brand new

Feature engineering:

- Removed two outliers (first one because its price was too big and second one because its liters per km ratio was too high)
- Reviewed each variable separately and converted it to an expected type and format
- Filled missing values with mean values of a sub groups
- Removed the rest if there were still missing values
- Grouped car brands and models as 'Other' when they appearing too rarely
- All numeric variables were transformed using log1p transformation due to their skewness

Final 'clean' dataset consists of 8503 observations

```
<class 'pandas.core.frame.DataFrame'>
Int64Index: 8503 entries, 1 to 19706
Data columns (total 18 columns):
                       Non-Null Count Dtype
    Column
    Price
                                      float64
0
                       8503 non-null
 1
    Brand
                       8503 non-null object
 2
                       8503 non-null
    Mode1
                                     object
 3
    Year produced
                       8503 non-null
                                     int32
                       8503 non-null
                                     float64
 4
    mileage
    Cylinders_capacity 8503 non-null
                                     float64
 6
                       8503 non-null object
    Fuel type
 7
    HP
                       8503 non-null
                                      float64
 8
    transmission
                       8503 non-null
                                      object
 9
    drive type
                       8503 non-null
                                      object
 10 liters per km
                       8503 non-null
                                      float64
                       8503 non-null object
 11 Type
 12 CO2 emission
                       8503 non-null
                                     float64
 13 No of doors
                       8503 non-null
                                      float64
 14 No_of_seats
                       8503 non-null
                                     float64
 15 Colour
                       8503 non-null object
                       8503 non-null object
 16 Serviced
 17 New/Used
                       8503 non-null object
dtypes: float64(8), int32(1), object(9)
memory usage: 1.2+ MB
```

EDA:

All correlations are as we should expect:

- -The higher cylinder capacity the higher the price
- -The higher the cylinder capacity the more horse power car has
- -The higher the fuel burning rate the higher the price
- -The newer the car the more expensive it is

Correlation between variables:

When it comes to direction in which different parameters are correlated with the price: There are top 30 negatively and positively correlated:

There are top 30 negatively	and positively cor	related.	
mileage	-0.565052	Price	0.743590
liters_per_km	-0.350799	No_of_doors_5.0	0.220582
transmission_Manual	-0.255964	Colour_White	0.168758
drive_type_RWD	-0.235059	HP	0.150132
CO2 emission	-0.209621	No_of_seats_5.0	0.118961
No_of_doors_3.0	-0.180385	Colour_Gray	0.084075
Fuel_type_Petrol	-0.169636	Model_tipo	0.080530
Cylinders_capacity	-0.168949	Brand škoda	0.079569
Colour_Silver	-0.134902	Model q3	0.079486
Model_Other	-0.133237	Brand dacia	0.075577
Model_sl	-0.105919	Model arteon	0.072460
Model_a4	-0.096026	Model xc40	0.071079
Model_seria3	-0.094904	Brand hyundai	0.063899
No_of_seats_4.0	-0.090991	drive type FWD	0.063314
Model_vectra	-0.083228	Model kuga	0.059911
Colour_Green	-0.073809	Model_kuga Model stelvio	0.058353
Colour_Other	-0.069774	Model duster	0.056153
Model_xj	-0.068230	_	0.056000
Model_clk	-0.065800	Model_tucson	
Model_grandvitara	-0.065063	Brand_volvo	0.053735
Model_meriva	-0.063083	Brand_kia	0.053553
Colour_Gold	-0.059779	Model_spacestar	0.053518
No_of_seats_2.0	-0.059733	Model_xc60	0.053138
Brand_bmw	-0.059520	Serviced_Yes	0.052882
Model_9-3	-0.059374	Model_superb	0.052706
Brand_saab	-0.059374	Model_compass	0.051220
Brand_daihatsu	-0.059018	Model_tiguan	0.049479
Brand_honda	-0.058072	Model_giulia	0.049156
Model_klasas	-0.057067	Model_ateca	0.048580
Model_accord	-0.055774	Model_captur	0.047847
Name: Year_produced,	dtype: float64		ed, dtype: float64
A II - f + l	1 1		

As we can see all of them are more or less in line with common sense

Histograms of continuous variables are presented below, all are indicating high skewness:

Histograms after performing logarithmic transformation look much closer to normal distribution:

Then variable 'Price' was transformed into 3 classes <u>1- High price 2-Medium price 3-Low price</u> so that classification models can be used to estimate it:

Classification:

Models used:

- -Logistic Regression
- -Decision Tree Classifier
- -Random Forest Classifier
- -Gradient Boosting Classifier

Since classes of Target variable varied greatly in size, my primary metric was ROC AUC

models were fit and train on dataset, training and fitting were done using KFold cross validation, on 5 folds, in order to minimize the overfit some parameters have been introduced:

Results:

∨ Logistic Regression						
		precision	recall	f1-score	support	
	1	0.74	0.21	0.33	118	
	2	0.89	0.97	0.93	1291	
	3	0.89	0.80	0.85	292	
accur	acy			0.89	1701	
macro	avg	0.84	0.66	0.70	1701	
weighted	avg	0.88	0.89	0.87	1701	
→ Decision	cision Tree Classifier					
		precision	recall	f1-score	support	
	1	0.70	0.62	0.66	118	
	2	0.94	0.95	0.94	1291	
	3	0.87	0.88	0.88	292	
accur				0.91	1701	
macro		0.84	0.81	0.83	1701	
weighted	avg	0.91	0.91	0.91	1701	
imes Random Forest Classifier						
V Kandom Fo	rest	precision	nocol1	f1-score	cuppont	
		precision	Lecall	11-2001-6	support	
	1	0.92	0.49	0.64	118	
	2	0.93	0.43	0.04	1291	
	3	0.92	0.89	0.90	292	
		0.02	0.05	3.33	222	
accur	acv			0.93	1701	
macro		0.92	0.79	0.83		
weighted		0.93				
	Ŭ					
∨ Gradient Boosting Classifier						
		precision	recall	f1-score	support	
	1	0.86	0.58	0.70	118	
	2	0.93	0.98	0.95	1291	
	3	0.92	0.86	0.89	292	
accur				0.93	1701	
macro		0.91	0.81	0.85	1701	
weighted	avg	0.93	0.93	0.92	1701	

When it comes to ability of identifying particular classes Random Forest generally yield better results, however f1 score for class 1 was higher in case of XGB model.

Below is the summary of how those models performed on test set (around 1700 values were used as test set):

And test set (around 700 values were used as a train set):

Best model overall in this case is **Random Forest**. However due to its high overfitting on training set (even after initial tries to reduce it) **XGBoost** may present more stable results. However it can be done as a next step on improving the model. To focus on just those two classifying methods and modify the hyperparameters.