

INITIALIZING MODELS WITH LARGER ONES

Zhiqiu Xu¹, Yanjie Chen², Kirill Vishniakov³, Yida Yin², Zhiqiang Shen³, Trevor Darrell², Lingjie Liu¹, Zhuang Liu⁴

¹University of Pennsylvania ²UC Berkeley ³MBZUAI ⁴Meta AI Research

ICLR2024 (Under Review-8686)

Paper Reading by Zhiying Lu 2023.12.05

- □作者介绍
- □研究背景
- □本文方法
- 口实验效果
- □总结

作者介绍

Zhiqiu Xu

FOLLOW

PhD student, University of Pennsylvania Verified email at berkeley.edu - <u>Homepage</u>

Deep Learning Representation Learning Computer Vision Natural Language Processing

TITLE	CITED BY	YEAR
Dropout Reduces Underfitting Z Liu*, Z Xu*, J Jin, Z Shen, T Darrell International Conference on Machine Learning (ICML), 2023	-11	2023
Anytime dense prediction with confidence adaptivity Z Liu, Z Xu, HJ Wang, T Darrell, E Shelhamer International Conference on Learning Representations (ICLR), 2022	9	2021
A Coefficient Makes SVRG Effective Y Yin, Z Xu, Z Li, T Darrell, Z Liu arXiv preprint arXiv:2311,05589		2023

	All	Since 2018
Citations	20	20
h-index	2	2
i10-index	1	1
		16
		8
		2022 2023 0

Co-authors

Zhiqiang Shen

Assistant Professor at Mohamed bin Zayed University of Artificial Intelligence Verified email at mbzuai.ac.ae - <u>Homepage</u>

Machine Learning Computer Vision Efficient Networks Knowledge Distillation

TITLE	CITED BY	YEAR
Learning efficient convolutional networks through network slimming Z Liu, J Li, Z Shen, G Huang, S Yan, C Zhang IEEE International Conference on Computer Vision (ICCV) 2017	2473	2017
Dsod: Learning deeply supervised object detectors from scratch Z Shen, Z Liu, J Li, YG Jiang, Y Chen, X Xue IEEE International Conference on Computer Vision (ICCV) 2017	810 *	2017
ReActNet: Towards Precise Binary Neural Network with Generalized Activation Functions Z Liu, Z Shen, M Savvides, KT Cheng Furgnean Conference on Computer Vision (ECCV), 2020	277	2020

Cited by

Citations			587	1			5795
h-index			2	16			26
i10-index			3	9			39
					_	÷	1600
					H	ł	1200
			ī	ı	ı	ł	800
		ı	ı	ı	ı	ł	400
2017	2018	2019	2020	2021	2022	2023	0

All

字验室

Since 2018

作者介绍

Zhuang Liu

Research Scientist, Meta Al Research Verified email at berkeley.edu - <u>Homepage</u>

Deep Learning Al Computer Vision Machine Learning Neural Networks

TITLE	CITED BY	YEAR
Densely Connected Convolutional Networks G Huang*, Z Liu*, L Maaten, KQ Weinberger, *equal contribution Computer Vision and Pattern Recognition (CVPR), 2017	41068	2017
A ConvNet for the 2020s Z Llu, H Mao, CY Wu, C Feichtenhofer, T Darrell, S Xie Computer Vision and Pattern Recognition (CVPR), 2022	2712	2022
Learning Efficient Convolutional Networks through Network Slimming Z Llu, J Li, Z Shen, G Huang, S Yan, C Zhang International Conference on Computer Vision (ICCV), 2017	2473	2017
Deep Networks with Stochastic Depth G Huang*, Y Sun*, Z Liu, D Sedra, KQ Weinberger European Conference on Computer Vision (ECCV), 2016	2398	2016
Deskinding sky Maley at National Description		

not available

Cited by

FOLLOW

FOLLOW

Trevor Darrell

Proceedings of the 22nd ACM international conference on Multimedia, 675-678

Professor of Computer Science, <u>U.C. Berkeley</u> Verified email at eecs.berkeley.edu - <u>Homepage</u>

Computer Vision Artificial Intelligence Al Machine Learning Deep Learning

TITLE	CITED BY	YEAR
Fully convolutional networks for semantic segmentation J Long, E Shelhamer, T Darrell Proceedings of the IEEE conference on computer vision and pattern	44920	2015
Rich feature hierarchies for accurate object detection and semantic segmentation R Girshick, J Donahue, T Darrell, J Malik Proceedings of the IEEE conference on computer vision and pattern	33944	2014
Caffe: Convolutional architecture for fast feature embedding Y Jia, E Shelhamer, J Donahue, S Karayev, J Long, R Girshick,	17878	2014

available

VIEW ALL

室

Lab

- □作者介绍
- □研究背景
- 口本文方法
- 口实验效果
- □总结

研究背景

- 模型训练的初始化可以帮助更好地训练
- 很多方法考虑random init模型并进行train from scratch
- 现有的大量预训练模型提供了网络初始化的另一种可能性
- 本文考虑利用大的预训练模型来初始化小模型

Figure 1: Large pretrained models offer new opportunities for initializing small models.

从零初始化—Xavier init

7

Understanding the difficulty of training deep feedforward neural networks

Xavier Glorot

Yoshua Bengio

DIRO, Université de Montréal, Montréal, Québec, Canada

- 旨在保持激活函数的方差前向和反向传播过程中大致相同
- 避免梯度消失或爆炸的问题

2. 数学原理^Q

考虑一个简单的全连接层 $^{\mathbf{Q}}$,该层接受 n_{in} 个输入并产生 n_{out} 个输出。每个输出 o_i 可以表示为:

 $o_i = \operatorname{activation}(\sum_{j=1}^{n_{in}} w_{ij} x_j + b_i)$

其中 w_{ij} 是输入 x_j 到输出 o_i 的权重, b_i 是输出 o_i 的偏置, activation 是激活函数 $^{\mathsf{Q}}$ 。

如果輸入 x 的方差为 Var(x),则线性函数 $\sum_{j=1}^{n_{in}}w_{ij}x_j$ 的方差将是 $n_{in}\times Var(w)\times Var(x)$ (忽略偏执和激活函数) 。

Xavier 初始化 Q 试图使得每一层的输出的方差接近于其输入的方差。具体地,它设置权重 w 的初始方差 Q 为:

$$Var(w) = rac{2}{n_{in} + n_{out}}$$

`torch.nn.init.xavier_uniform_` 函数从均匀分布 U(-v,v) 中抽取权重,其中

$$v = \sqrt{3 imes Var(w)} = \sqrt{rac{6}{n_{in} + n_{out}}}$$

`torch.nn.init.xavier_normal_` 函数从正态分布 $N(0,\sigma^2)$ 中抽取权重,其中

$$\sigma = \sqrt{Var(w)} = \sqrt{rac{2}{n_{in} + n_{out}}}$$

 n_{in} 和 n_{out} 分别是权重的输入节点数和输出节点数。

智能多媒体内容计算实验室

从零初始化—Kaiming init

Delving Deep into Rectifiers:

Surpassing Human-Level Performance on ImageNet Classification

Kaiming He

Xiangyu Zhang

Shaoqing Ren

Jian Sun

Microsoft Research

- 使网络每一层的输入输出方差尽可能相等,避免梯度消失或爆炸的问题
- Xavier是针对tanh和sigmoid激活函数设置的,不满足ReLU情况,此 时需要用到Kaiming init

三、均匀分布

设参数w服从均匀在[-a, a]区间内均匀分布,则w的方差为:

 $D(w) = \frac{(a+a)^2}{12} = \frac{4a^2}{12} = \frac{a^2}{3} = \frac{2}{n}$

所以

$$a=\sqrt{\frac{6}{n_{in}}}$$

即w的是均匀分布在 $\left(-\sqrt{\frac{6}{n_{in}}},\sqrt{\frac{6}{n_{in}}}\right)$ 上的随机变量。

四、正态分布

如果我们假设w是服从正态分布的,则w服从

$$w \sim N(0, \sqrt{rac{2}{n_{in}}})$$

五、Pyotrch实现

nn.init.kaiming_uniform_ nn.init.kaiming_normal_

值得注意的是,kaiming方法并没有gain增益系数,只有a的一个修正系数,实际公式如下:

$$bound = \sqrt{rac{6}{(1+a^2)n_{in}}}$$

权重蒸馏

Weight Distillation: Transferring the Knowledge in Neural Network Parameters

Ye Lin^{1*}, Yanyang Li^{2*}, Ziyang Wang¹, Bei Li¹, Quan Du¹, Tong Xiao^{1,3}, Jingbo Zhu^{1,3†}

¹NLP Lab, School of Computer Science and Engineering,

Northeastern University, Shenyang, China

²The Chinese University of Hong Kong, Hong Kong, China

³NiuTrans Research, Shenyang, China

• 可学习的权重变换矩阵

$$S = \tanh(\hat{T}) \odot W + B$$

$$\bar{S} = \underset{\mathcal{S}}{\operatorname{arg\,min}}[(1 - \alpha)\mathcal{L}(y_{\mathcal{T}}, y_{\mathcal{S}}) + \alpha\mathcal{L}(y, y_{\mathcal{S}})]$$

权重裁剪

SHEARED LLAMA: ACCELERATING LANGUAGE MODEL PRE-TRAINING VIA STRUCTURED PRUNING

Mengzhou Xia¹, Tianyu Gao¹, Zhiyuan Zeng^{2*}, Danqi Chen¹

- ¹Department of Computer Science & Princeton Language and Intelligence, Princeton University
- ²Department of Computer Science and Technology, Tsinghua University

· 学习应该mask哪些权重

Granularity	Layer	Hidden dimension	Head	Intermediate dimension
Pruning masks	$z^{ ext{layer}} \in \mathbb{R}^{L_{\mathcal{S}}}$	$z^{ ext{hidden}} \in \mathbb{R}^{d_{\mathcal{S}}}$	$z^{ ext{head}} \in \mathbb{R}^{H_{\mathcal{S}}} \; (imes L_{\mathcal{S}})$	$z^{\mathrm{int}} \in \mathbb{R}^{m_{\mathcal{S}}} (\times L_{\mathcal{S}})$

$$\tilde{\mathcal{L}}^{\text{head}}(\lambda, \phi, z) = \lambda^{\text{head}} \cdot \left(\sum z^{\text{head}} - H_{\mathcal{T}}\right) + \phi^{\text{head}} \cdot \left(\sum z^{\text{head}} - H_{\mathcal{T}}\right)^2.$$

$$\mathcal{L}_{\mathrm{prune}}(\theta,z,\lambda,\phi) = \mathcal{L}(\theta,z) + \sum_{j=1}^{L_{\mathcal{S}}} \tilde{\mathcal{L}}_{j}^{\mathrm{head}} + \sum_{j=1}^{L_{\mathcal{S}}} \tilde{\mathcal{L}}_{j}^{\mathrm{int}} + \tilde{\mathcal{L}}^{\mathrm{layer}} + \tilde{\mathcal{L}}^{\mathrm{hidden}}$$
,多媒体内容计算实验室 ant Multimedia Content Computing Lab

权重初始化

Mimetic Initialization of Self-Attention Layers

Asher Trockman 1 J. Zico Kolter 12

(a) $W_Q W_K^T$ often has a noticeable positive diagonal. \rightarrow Layers 1-12, \downarrow Attention Heads 1-3

(b) $W_V W_{proj}$ often has a prominent negative diagonal. Here, we sum over heads.

Figure 1. Self-attention weights of an ImageNet-pretrained ViT-Tiny. Pictured are 3 heads for each of the 12 layers. Clipped to 64x64.

• 初始化模型使其注意力具有对角线性质 Softmax $\left(rac{1}{\sqrt{k}} (eta_1 dI + eta_1 PP^T)
ight)$.

$$W_Q W_K^T = \alpha Z + \beta I \quad \mathbb{E}[(X+P)(\alpha Z+\beta I)(X+P)^T] = \beta dI + \beta P P^T,$$

- □作者介绍
- □研究背景
- □本文方法
- 口实验效果
- □总结

Weight Selection

Figure 2: Weight selection. To initialize a smaller variant of a pretrained model, we uniformly select parameters from the corresponding component of the pretrained model.

本文方法只利用large pretrained的权重做初始化,不会在训练过程中使用 pretrain,没有额外可学习参数,也无需损失函数和蒸馏来监督训练过程

Weight Selection

Figure 2: Weight selection. To initialize a smaller variant of a pretrained model, we uniformly select parameters from the corresponding component of the pretrained model.

- 包含三个步骤:
- Layer Selection, Component Mapping, Element Selection
- 选择层数,模块对应,选择元素

Weight Selection

Layer Selection

- 默认采用first-N layer selection,即选择teacher网络连续N层
- 对于isotropic架构,直接选择前N层
- 对于hierarchical架构,每个stage选择前N层

Component Mapping

- 模块化的设计, ——对应
- Conv to Conv, Linear to Linear, Attn to Attn

Element Selection

Uniform Selection (Default)

- 均匀采样pretrain的参数,按照index 来进行选择
- 例如dim=6的Linear层选择1, 3, 5维度
- 支持任意维度变换,可以利用线性插值

Consecutive Selection

- 连续选择一定区域的参数
- 例如9*9卷积选择左上角的3*3区域

Element Selection

Uniform Selection (Default)

- 均匀采样pretrain的参数,按照index来进行选择
- 例如dim=6的Linear层选择1, 3, 5维度
- 支持任意维度变换,可以利用线性插值

```
Algorithm 1 Uniform element selection from teacher's weight tensor
Input: W_t

    b teacher's weight tensor

    ▷ desired dimension for student's weight tensor

Input: s
Output: W_s with shape s
 1: procedure UNIFORMELEMENTSELECTION(W_t, student_shape)
 2:
         W_s \leftarrow \text{Copy of } W_t
                                                                                     n \leftarrow \text{length of } W_t.\text{shape}
         for i=1 \rightarrow n do
 4:
             d_t \leftarrow W_t.\text{shape}[i]
 5:
             d_s \leftarrow s[i]
 6:
             indices \leftarrow Select d_s evenly-spaced numbers from 1 to d_t
             W_s \leftarrow \text{Select } indices \text{ along } \hat{W}_s's i^{th}dimension
 8:
 9:
         end for
         return W_s
10:
11: end procedure
```

Element Selection

Random w/ consistency

- 随机采样,但对于每个参数,都选择固 定位置的
- 例如随机一组index,对于所有卷积核 均按照这一组index选择

Random w/o consistency

对于所有参数,所有index完全随机

- □作者介绍
- □研究背景
- □ Tip-Adapter
- □实验效果
- □总结

Experiment

configuration	student			teacher
model	ViT-T	ConvNeXt-F	ViT-S	ConvNeXt-T
depth	12	2/2/6/2	12	3/3/9/3
embedding dimension	192	96 / 192 / 384 / 768	384	48 / 96 / 192 / 384
number of heads	3	-	6	-
number of parameters	5M	5M	22M	28M

Table 1: **Model Configurations.** We perform main experiments on ConvNeXt and ViT, and use student that halve the embedding dimensions of their corresponding teacher.

dataset (scale \downarrow)	random init	weight selection	change	random init	weight selection	change
ImageNet-1K	73.9	75.6	↑1.6	76.1	76.4	↑0.3
SVHN	94.9	96.5	† 1.6	95.7	96.9	† 1.2
Food-101	79.6	86.9	↑7.3	86.9	89.0	†2.1
EuroSAT	97.5	98.6	↑1.1	98.4	98.8	$\uparrow 0.4$
CIFAR-10	92.4	97.0	†4.6	96.6	97.4	$\uparrow 0.8$
CIFAR-100	72.3	81.4	↑9.1	81.4	84.4	↑3.0
STL-10	61.5	83.4	↑21.9	81.4	92.3	↑10.9
Flowers	62.4	81.9	↑19.5	80.3	94.5	↑14.2
Pets	25.0	68.6	†43.6	72.9	87.3	†14.4
DTD	49.4	62.5	↑13.1	63.7	68.8	† 5.1

(a) ViT-T

(b) ConvNeXt-F

Experiment

5

300

250

train loss

Figure 3: **Training curves on ImageNet-1K.** When initialized using weight selection from ImageNet-21K pretrained models, both ViT-T (from ViT-S) and ConvNeXt-F (from ConvNeXt-T) exhibit superior performance compared to their randomly-initialized counterparts.

Figure 4: **Faster training.** Compared to random initialization, ViT-T can reach the same performance on CIFAR-100 with only 1/3 epochs compared to training from random initialization. When compared to pretraining (on ImageNet-1K) + finetuning, weight selection is able to match the accuracy at 60 epochs of pretraining, saving 6.12x training time.

消融

22	init	ViT-T	ConvNeXt-F
	timm default (trunc normal)	72.3	81.4
	Xavier (Glorot & Bengio, 2010)	72.1	82.8
	Kaiming (He et al., 2015)	73	82.5
	weight selection (uniform)	81.4	84.4
	weight selection (consecutive)	81.6	84.0
	weight selection (random w/ consistency)	81.7	83.9
	weight selection (random w/o consistency)	77.4	82.8

Pretrained models	CIFAR-10	CIFAR-100	STL-10
supervised (ImageNet-21K)	95.1	77.6	73.1
CLIP (Radford et al., 2021)	94.9	77.3	66.0
MAE (He et al., 2022)	95.9	77.2	71.0
DINO (Caron et al., 2021)	95.0	75.7	69.4

setting	ViT-T	ConvNeXt-F
random init	72.3	81.4
weight selection	81.4	84.4
L_1 pruning	79.5	82.8
magnitude pruning	73.8	81.9

setting	ViT-A	ConvNeXt-F
random init	69.6	81.3
first-N layer selection	77.6	84.4
uniform layer selection	76.7	83.2

teacher	params	test acc
ViT-S	22M	81.4
ViT-B	86M	77.6
ViT-L	307M	76.9

setting	ViT-T	ConvNeXt-F
random init	13.5	7.1
weight selection	28.2	23.6

Setting	CIFAR-10	CIFAR-100	STL-10
random init	92.4	72.3	61.5
weight selection	97.0	81.4	83.4
w/o patch embed	96.8	79.5	77.1
w/o pos embed	95.6	78.4	80.2
w/o attention	96.2	77.3	80.5
w/o normalization	96.2	79.0	79.8
w/o mlp	95.6	78.8	74.2

Table 10: **ViT component ablation.** Using all components from pretrained models is the best.

setting	Vi	Г-Т	ConvN	leXt-F
	test acc	change	test acc	change
random init	73.9	-	76.1	-
weight selection	75.5	↑ 1.6	76.4	↑ 0.3
random init (longer training)	76.3	-	77.5	-
weight selection (longer training)	77.4	↑ 1.1	77.7	$\uparrow 0.2$

setting	CIFAR-10	CIFAR-100	STL-10
random init	92.4	72.3	61.5
mimetic init	93.3	74.7	67.5
weight selection	97.0	81.4	83.4

Figure 5: **Visualization of self-attention layers.** Visualization of $W_qW_k^T$ (left) and VW_{proj} (right) for ViT-T with random initialization, pretrained ViT-S, and ViT-T with weight selection. Weight 体内容计算实验室 selection can inherit the diagonal property of self-attention layers that only exists in pretrained ViTs. timedia Content Computing Lab

消融

setting	CIFAR-100 test acc
first-N layer selection	81.6
mid-N layer selection	68.3
last-N layer selection	62.0
uniform layer selection	76.3

Table 16: Layer selection. First-N layer selection performs significantly better than uniform layer selection when ruling out the effect of element selection.

setting	CIFAR-100 test acc
first-N layer selection	76.9
mid-N layer selection	75.9
last-N layer selection	77.1
uniform layer selection	77.5

Table 17: Layer selection (ViT-L as teacher). Uniform layer selection yields slightly better results than first-N layer selection when student's ratio to teacher is small.

More

f parameters
21.8M
19.1M
28.5M
14.0M
1

Setting	CIFAR-100 test acc
random init	72.3
ViT-B -> ViT-T	77.6
ViT-B -> ViT-S -> ViT-T	80.4

与知识蒸馏的兼容性

ImageNet-1K (logit-based distillation) CIFAR-100 (feature-based distillation) setting change change test acc test acc baseline 73.9 72.3 distill 74.8 78.4 $\uparrow 0.9$ ↑6.4 **75.5** 81.4 **†9.1** weight selection ↑ 1.6 distill + weight selection 76.0 83.9 **†11.6** $\uparrow 2.1$

Table 4: **Compatibility with knowledge distillation.** Weight selection is useful as an independent technique, and can be combined with knowledge distillation to achieve the best performance.

$$\mathcal{L} = \mathcal{L}_{class} + \alpha \cdot KL(p_t||p_s) \qquad \mathcal{L} = \mathcal{L}_{class} + \alpha \cdot L_1(O_t, MLP(O_s))$$

- □作者介绍
- □研究背景
- □方法
- 口实验效果
- □总结

总结反思

- 一种无需预训练模型参与训练过程中的、权重初始化方式 仍有很多改进的地方:
- 选择的方式会导致信息的丢失--无损的参数选择与压缩
- 依靠经验性规则选取参数--带有语义的参数选择
- 受限于同种模型的初始化--任意模型到任意模型的初始化
- 太大的模型无法蒸馏到小模型--提升初始化的scaling性能

谢谢!