Computing Excited States properties of molecule under Non-uniform Magnetic Fields: Nonperturbative

Approach

Arun Kantholia, Sangita Sen*a

^aDepartment of Chemical Science, IISER Kolkata, e-mail: arunkantholi2022@iiserkol.ac.in; Sangita.sen@iiserkol.ac.in

1. Objective

- **Computing** the Electronic Anapole Susceptibility Comparison between **Ground State and Lowest Excited State**
- **Quantity to measure the response of the electronic state to non-uniformities** in a magnetic field

- **Anapole** moments are those moments which couple linearly to the curl of the magnetic field
- **Permanent electronic anapole moments:**
 - **➤** Toroidal shape(Fullerene)
 - > Lack of improper rotation symmetry(chiral radical)

2. Molecular Hamiltonian and Properties

$$\widehat{H} = \frac{1}{2} \sum_{l} \widehat{\pi_{l^2}} - \sum_{l} v(r_l) + \sum_{k>l} \frac{1}{r_{kl}} + \sum_{l} B_{tot}(r_l) \cdot \widehat{S_l}$$

$$A_{tot}(r) = \frac{1}{2} B \times (r - g) - \frac{1}{3} (r - h) \times ((r - h)^T b)$$

Linearly Varying nonuniform magnetic field

$$B_{tot}(\mathbf{r}) = \nabla \times A_{tot} (r) = \mathbf{B} + (r - h)^T \mathbf{b} - \frac{1}{3} (\mathbf{r} - \mathbf{h}) T_r(b)$$

In our calculation

$$abla \cdot B_{(tot)} = 0$$
 $b = b^T$

$$abla \times B_{(tot)} = C$$
 $C_{\alpha} = \in_{\alpha\beta\gamma} b_{\beta\gamma}$

3. Molecular Hamiltonian and Properties Cont....

In a non-perturbative setting, the energy E as well as expectation value properties can be obtained directly as functions of B and C

$$E(B, \mathbb{C}) \approx E_0 + B \cdot J_G - \frac{1}{2}\mathbb{C} \cdot \mathbf{a} - \frac{1}{2}B^T \chi B - B\mathcal{M}\mathbb{C} - \frac{1}{2}\mathbb{C}^T \mathcal{A}\mathcal{C}$$

Turning to the second-order susceptibilities, the defining expressions are Specifically $\mathcal A$ denotes the anapole susceptibility tensor

$$\mathcal{A}'_{\alpha\beta} = -2 \frac{\partial^2 E\left(\mathbf{B}, \mathbb{C}\right)}{\partial \mathbb{C}_{\alpha} \partial \mathbb{C}_{\beta}} | B_{=0} \mathbb{C}_{=0}$$

General HF Model with an external non-uniform magnetic field

$$\phi_{K}(r) = \sum_{a} C^{a,K\uparrow} \chi_{a}(r) \begin{pmatrix} 1 \\ 0 \end{pmatrix} + \sum_{a} C^{a,K\downarrow} \chi_{a}(r) \begin{pmatrix} 0 \\ 1 \end{pmatrix}$$
$$= \sum_{a} \chi_{a}(r) \begin{pmatrix} C^{a,K\uparrow} \\ C^{a,K\downarrow} \end{pmatrix}$$

$$D^{2\times2}(\mathbf{r},\mathbf{r}') = \sum_{K}^{OCC} \phi_{K}(r) \phi_{K}(r')^{\dagger}$$

$$= \sum_{ab} \chi_{a}(r) \begin{pmatrix} D^{\uparrow\uparrow;ab} & D^{\uparrow\downarrow;ab} \\ D^{\downarrow\uparrow;ab} & D^{\downarrow\downarrow;ab} \end{pmatrix} \chi_{b}(r')^{*}$$

4. Anapole Moment

When a Magnetic field with Curl C is applied, Meridional electric currents like those on a toroidal charge distribution are induced. These generate an induce Anapole moment

5. Symmetry Effect

Electronic Transitions in different symmetries				
Molecule	1 st Symmetry	2 nd Symmetry	3 rd Symmetry	4 th Symmetry
LiH	³ Σ _Z	$^{1}\mathbf{\Sigma}_{_{\mathrm{X}}}$	$^3\Pi_{ m x}$	$^3\Pi_{ m y}$
ВН	3 ∏ _x	³ ∏ _y	¹ Π _y	$^{1}\Pi_{x}$
AlH	³ П _у	³ ∏ _x	$^{1}\Pi_{\mathrm{X}}$	$^{1}\Pi_{\mathrm{y}}$
LiF	³ ∏ _x	³ ∏ _y	¹ ∏ _X	¹ ∏ _y
HF	3 ∏ _x	³ ∏ _y	$^{1}\Pi_{\mathrm{X}}$	¹П _у
AlF	3 ∏ y	³ ∏ _X	¹ П _у	$^{1}\Pi_{\mathrm{X}}$

Representation of First Excited electronic transition in LiF Molecule

6. Anapole susceptibility

- **\Leftrightarrow** In hetero diatomic $\Sigma \to \pi$ excitation show low sensitivity toward C in non uniform magnetic field ,HF,LiF,AlF singlet and triplet pi state compared to hydride molecules this is in spite of the fact X-F bonds are longer than X-H bonds. This likely due to the high electronegativity of fluorine atom, which binds the π electron very strongly
- **Cz** destroyed the nodal plane of p orbital resulting in the larger response in the Cz when compared with the response to Cx. this is true for hydrides vice versa for fluoride

7. Anapole susceptibility Cont....

***** Excited electronic state is more sensitive than ground state to non-uniform magnetic field

Representation of size effect of orbital anapole moment to chirality

8. Conclusions & Future outlook

- **Excited-state anapole susceptibility is interesting because it delves into the** quantum nature of electromagnetic interactions, contributes to our understanding of fundamental physics, and has potential applications in various scientific and technological domains.
- **❖** Due to more varied and loosely bound electronic densities, the excited state shows a larger response to external perturbations.
- **Greater spin densities can be induced for :**
 - **➤** Less symmetric electronic states
 - \triangleright Larger atoms trends \mathcal{A} are somewhat similar to that for electronic polarizability χ

- **❖** Plan able to analyze the joint influences of orbital and spin on the energies and anapole susceptibilities of various molecules.
- **Study the factors influencing objects like induced** anapole moments

9. Reference & Acknowledgements

1.Sen, S., and Tellgren, E. I. "Non-perturbative calculation of orbital and spin effects in molecules subject to non-uniform magnetic fields," The Journal of Chemical Physics, V. 148, No. 18, 2018.

2. Tellgren, E. I., and Fliegl, H. "Non-perturbative treatment of molecules in linear magnetic fields: Calculation of anapole susceptibilities," The Journal of Chemical Physics, V. 139, No. 16, 2013.

- Supervisor: Sangita Sen
- **Director of IISER Kolkata**
- Head, Dept. of Chemistry, IISER Kolkata
- **SERB India for financial assistance**

