Thiago Landim

Motivação ●0

Há algumas dualidades em álgebra.

Estrutura

Há algumas dualidades em álgebra.

Algebra	\longleftrightarrow	Topologia
álgebras	\longleftrightarrow	espaços
Booleanas		de Stone
C^* -álgebras	\longleftrightarrow	espaços topológicos
comutativas		compactos Hausdorff

História

 Nos anos 30, von Neumann e Murray desenvolveram a álgebra de operadores para descrever com rigor matemático a Mecânica Quântica.

História

Motivação

 Nos anos 30, von Neumann e Murray desenvolveram a álgebra de operadores para descrever com rigor matemático a Mecânica Quântica.

"A introdução de tais 'ficções' matemáticas é frequentemente necessária na abordagem de Dirac, mesmo quando o problema é meramente calcular numericamente o resultado de um experimento claramente definido."

Representação de Gelfand

Alguns anéis aparecem naturalmente na Topologia e na Análise. Um exemplo que já vimos é o anel C([0,1]).

Representação de Gelfand

Alguns anéis aparecem naturalmente na Topologia e na Análise. Um exemplo que já vimos é o anel $\mathcal{C}([0,1])$. Vimos que Specm $\mathcal{C}([0,1])=[0,1]$ por meio da correspondência

$$a \mapsto M_a := \{ f \in C([0,1]) \mid f(a) = 0 \}.$$

Podemos também formar uma trialidade! A cada ponto de $a \in [0,1]$, podemos associar um **caráter** $\varphi_a \colon C([0,1]) \to \mathbb{R}$ definido por $\varphi_a(f) = f(a)$.

Reciprocamente, todo caráter τ é da forma φ_a para algum $a \in [0, 1]$, pois ker $\tau = M_a$ para algum a.

Podemos também formar uma trialidade! A cada ponto de $a \in [0,1]$, podemos associar um **caráter** $\varphi_a \colon C([0,1]) \to \mathbb{R}$ definido por $\varphi_a(f) = f(a)$.

Reciprocamente, todo caráter τ é da forma φ_a para algum $a \in [0,1]$, pois ker $\tau = M_a$ para algum a.

$$[0,1] \xleftarrow{C}_{\mathsf{Specm}} C([0,1]) \xleftarrow{\varphi}_{\mathsf{ker}} \Omega(C([0,1]))$$

Vamos tentar agora estudar funções contínuas na reta. Infelizmente, $C(\mathbb{R})$ não possui norma bem definida, pois as funções podem ser ilimitadas.

Vamos tentar agora estudar funções contínuas na reta. Infelizmente, $C(\mathbb{R})$ não possui norma bem definida, pois as funções podem ser ilimitadas.

Sol. 1 Estudar $C_b(\mathbb{R})$.

Representação de Gelfand

Vamos tentar agora estudar funções contínuas na reta. Infelizmente, $C(\mathbb{R})$ não possui norma bem definida, pois as funções podem ser ilimitadas.

Sol. 1 Estudar $C_b(\mathbb{R})$.

Prob. 1 Compactificação de Stone-Čech $\beta \mathbb{R}$.

Vamos tentar agora estudar funções contínuas na reta. Infelizmente, $C(\mathbb{R})$ não possui norma bem definida, pois as funções podem ser ilimitadas.

Sol. 1 Estudar $C_b(\mathbb{R})$.

Prob. 1 Compactificação de Stone-Čech $\beta \mathbb{R}$.

Sol. 2 Estudar $C_0(\mathbb{R})$.

Vamos tentar agora estudar funções contínuas na reta. Infelizmente, $C(\mathbb{R})$ não possui norma bem definida, pois as funções podem ser ilimitadas.

Sol. 1 Estudar $C_b(\mathbb{R})$.

Prob. 1 Compactificação de Stone-Čech $\beta \mathbb{R}$.

Sol. 2 Estudar $C_0(\mathbb{R})$.

Prob. 2 Compactificação de um ponto \mathbb{R}^* .

Compactificação

Definição

Dado um espaço topológico X, definimos a **compactificação de um ponto** $X^* := X \sqcup \{\infty\}$ cujas vizinhanças do infinito são complementares de compactos.

Compactificação

Definição

Dado um espaço topológico X, definimos a **compactificação de um ponto** $X^* := X \sqcup \{\infty\}$ cujas vizinhanças do infinito são complementares de compactos.

Compactificação

Definição

Dado um espaço localmente compacto X, definimos a compactificação de um ponto $X^* := X \sqcup \{\infty\}$ cujas vizinhanças do infinito são complementares de compactos.

Propriedades

Observação

 $C_0(\mathbb{R})$ são as funções contínuas em \mathbb{R}^* que valem 0 no infinito.

$$f = (f - f(\infty)) + f(\infty)$$

 $C(\mathbb{R}^*) = C_0(\mathbb{R}) \oplus \mathbb{R}$

Definição

Um espaço vetorial normado V é um espaço vetorial dotado de uma norma $\|\cdot\|:V\to\mathbb{R}_{>0}$.

- $\|v\| = 0 \iff v = 0;$
- $||v + w|| \le ||v|| + ||w||.$

Definição

Um espaço vetorial normado V é um espaço vetorial dotado de uma norma $\|\cdot\|:V\to\mathbb{R}_{>0}$.

- $\|v\| = 0 \iff v = 0;$
- $||v + w|| \le ||v|| + ||w||.$

Exemplos

$$C([0,1]), C_0(\mathbb{R}), L^p(\mathbb{R}), \ell^{\infty}(\mathbb{C}), c_0, c_{00}, M_p(\mathbb{C}).$$

Espaços de Banach

Definição

Chamamos V de espaço de Banach se ele é um espaço vetorial normado completo.

Exemplos

Dos exemplos anteriores, apenas c_{00} não é completo. Note que $\overline{c_{00}}=c_0$ em $\ell^\infty(\mathbb{C})$.

Espaço Dual

Definição

Dado um espaço vetorial normado, podemos formar V^* o conjunto de todos os funcionais **limitados** (ou seja **contínuos**) de V. O espaço dual é sempre Banach!

$$||f|| \coloneqq \sup_{\|v\| \le 1} |f(v)|$$

Teorema de Hahn-Banach

Teorema

Seja V um espaço normado e W um sub-espaço vetorial. Se $f:W\to\mathbb{C}$ é um funcional linear, então existe uma extensão $F:V\to\mathbb{C}$ de mesma norma, isto é:

- Para todo $w \in W$, F(w) = f(w);
- $\|F\| = \sup_{v \in V} |F(v)| = \sup_{w \in W} |f(w)| = \|f\|.$

Corolários

Corolário 1

Seja V um espaço normado e $v \in V$ um elemento não-nulo. Então existe um $f \in V^*$ tal que f(v) = 1.

Corolários

Corolário 1

Seja V um espaço normado e $v \in V$ um elemento não-nulo. Então existe um $f \in V^*$ tal que f(v) = 1.

Corolário 2

O espaço dual V^* separa pontos.

Corolários

Corolário 2

O espaço dual V^* separa pontos.

Problemas de Compacidade

Teorema

Seja V um espaço vetorial e B sua bola unitária fechada. Então

 $B \in compacta \iff V \text{ tem dimensão finita.}$

Problemas de Compacidade

Teorema

Seja V um espaço vetorial e B sua bola unitária fechada. Então

 $B \in compacta \iff V \text{ tem dimensão finita.}$

Intuição

A ideia é tentar pegar vetores "ortogonais". Em $\ell^\infty(\mathbb{C})$

$$(1,0,0,\ldots),(0,1,0,\ldots),(0,0,1,\ldots),\ldots$$

Teorema de Banach-Alaoglu

Definição

Se V é um espaço vetorial normado, nós podemos induzir em V^* a **topologia fraca*** que é a topologia mais fraca na qual todas as aplicações Ap_a: $f \mapsto f(a)$ são contínuas.

Teorema de Banach-Alaoglu

Definição

Se V é um espaço vetorial normado, nós podemos induzir em V^* a **topologia fraca*** que é a topologia mais fraca na qual todas as aplicações Ap_a : $f \mapsto f(a)$ são contínuas.

Teorema de Banach-Alaoglu

A bola unitária B^* de V^* é compacta na topologia fraca*.

Espaços de Banach

Questão

Por que espaços de Banach são interessantes?

Espectro

Espaços de Banach

Questão

Por que espaços de Banach são interessantes?

Lema

Seja V um espaço de Banach e (v_n) uma sequência tal que $\sum ||v_n||$ converge, então $\sum v_n$ converge.

Teorema de Stone-Weierstrass

Teorema

Seja X um espaço compacto Hausdorff e A uma subálgebra com unidade de $C(X,\mathbb{C})$ que:

- separa pontos;
- é fechada pela conjugação, isto é, $f \in A \implies \overline{f} \in A$;

Então A é densa em $C(X, \mathbb{C})$.

Representação de Gelfand

Convenção

Alerta

Todos os espaços vetoriais e todas as álgebras agora serão tomadas sobre os complexos \mathbb{C} .

Espectro

Álgebra de Banach

Definição

Uma **Álgebra de Banach** A é uma \mathbb{C} -álgebra que também é um espaço de Banach de modo que o produto satisfaça $\|ab\| \leq \|a\| \|b\|$. Além disso, se a Álgebra de Banach tem unidade, também exigimos que $\|1\| = 1$.

Exemplos

 $L^1(\mathbb{C}), L^\infty(\mathbb{C}), C(X,\mathbb{C}), C_0(X,\mathbb{C}), M_n(\mathbb{C}), B(\mathcal{H}), \mathbb{M}, \mathbb{C}(z).$

Definição

Uma *-álgebra de Banach A é uma álgebra de Banach dotada de uma involução *: $A \rightarrow A$ tal que:

- $(a+b)^* = a^* + b^*;$
- $(\lambda a)^* = \overline{\lambda} a^*;$
- $(ab)^* = b^*a^*.$

Exemplos

Todos os exemplos anteriores formam *-álgebras de Banach, mas a subálgebra $UT_n(\mathbb{C}) \subset M_n(\mathbb{C})$ não é.

C^* -álgebras

Definição

Uma C^* -álgebra é uma *-álgebra de Banach que também satisfaz a identidade B^*

$$||a||^2 = ||a^*a||.$$

Em particular, $||a|| = ||a^*||$.

Exemplos

 $L^1(\mathbb{C})$, $L^\infty(\mathbb{C})$, $C(X,\mathbb{C})$, $C_0(X,\mathbb{C})$, $M_n(\mathbb{C})$, $B(\mathcal{H})$.

Alguns elementos especiais

Definição

Seja A uma C^* -álgebra. Dizemos que:

- $a \in A$ é autoadjunto se $a = a^*$;
- $n \in A$ é **normal** se $n^*n = nn^*$;
- $u \in A$ é unitário se $uu^* = u^*u = 1$.

Exemplos

Álgebra linear!

Unitização

Teorema

Seja A uma álgebra de Banach sem unidade. Então existe uma álgebra de Banach com unidade $\tilde{A} := A \oplus \mathbb{C}$ na qual A é um ideal maximal de codimensão 1. Além disso:

- Se A é comutativo, então à é comutativo.
- Se A é uma C*-álgebra, então à é uma C*-álgebra.

Convenção

Alerta

Nesta seção, iremos assumir, exceto no final, que todas as álgebras têm unidade.

Espectro

Definição

Seja A uma álgebra de $a \in A$ um elemento qualquer. Definimos o **espectro** de a por

$$\sigma(a) = \sigma_A(a) := \{\lambda \in \mathbb{C} \mid \lambda 1 - a \text{ não \'e invertível}\}.$$

Exemplos

- Para uma matriz $A \in M_n(\mathbb{C})$, vale que $\sigma(A) = \{\text{autovalores}\}.$
- Para uma função $f \in C([0,1])$, vale que $\sigma(f) = \operatorname{im} f$.

Contra-exemplo

Se T é uma transformação linear, então não necessariamente $\sigma(T) = \{\text{autovalores}\}$. Por exemplo, o espectro do shift

$$\tau(a_1, a_2, a_3, \dots) = (0, a_1, a_2, \dots),$$

contém 0, mas 0 não é autovalor.

Série de von Neumann

Teorema

Seja A uma álgebra de Banach e $a \in A$ tal que $\|a\| < 1$. Então

$$(1-a)^{-1}=\sum_{n=0}^{\infty}a^{n}.$$

Teorema

Seja A uma álgebra de Banach e $a \in A$ tal que ||a|| < 1. Então

$$(1-a)^{-1}=\sum_{n=0}^{\infty}a^{n}.$$

Basta notar que $\sum ||a^n||$ converge e

$$(1-a)\sum_{n=1}^{N}a^{n}=1-a^{N+1}\to 1.$$

Resolvente

Definição

Seja A uma álgebra de Banach e $a \in A$. Chamamos de **resolvente** o complementar do espectro, e a **função resolvente** a função

$$R_a : \mathbb{C} \setminus \sigma(a) \to A, \quad \lambda \mapsto (\lambda 1 - a)^{-1}$$

Teorema

O resolvente de qualquer elemento $a \in A$ é aberto, e a função resolvente é analítica.

Resolvente

Teorema

O resolvente de qualquer elemento $a \in A$ é aberto, e a função resolvente é analítica.

Se $|\lambda - \lambda_0|$ é suficientemente pequeno, então

$$R_a(\lambda) = \frac{1}{\lambda - a} = \frac{1}{(\lambda_0 - a) - (\lambda_0 - \lambda)}$$
$$= \frac{1}{\lambda_0 - a} \frac{1}{1 - (\lambda_0 - \lambda)(\lambda_0 - a)^{-1}}$$
$$= \sum_{n=0}^{\infty} (\lambda_0 - \lambda)^n (\lambda_0 - a)^{-n-1}.$$

Compacidade

Teorema

Seja $a \in A$ um elemento de uma álgebra de Banach. Então $\sigma(a)$ é um conjunto compacto que está contido no disco de raio ||a|| e centro a origem.

Compacidade

Teorema

Seja $a \in A$ um elemento de uma álgebra de Banach. Então $\sigma(a)$ é um conjunto compacto que está contido no disco de raio ||a|| e centro a origem.

Já vimos que o conjunto é fechado. Se $|\lambda|>\|a\|$, então $\|\lambda^{-1}a\|<1$ e $1-\lambda^{-1}a$ é invertível.

Elementos especiais

Teorema

- Se u é unitário, então $\sigma(u) \subseteq S^1$.
- Se a é autoadjunto, então $\sigma(a) \subseteq \mathbb{R}$.

Elementos especiais

Teorema

- Se a é autoadjunto, então $\sigma(a) \subseteq \mathbb{R}$.
- $\lambda \in \sigma(u) \implies \lambda^{-1} \in \sigma(u^{-1}) = \sigma(u^*)$, portanto $|\lambda| = 1$.
- $e^{ia} = \sum_{n=1}^{\infty} \frac{1}{n!} (ia)^n$ é unitário e $e^{i\lambda} \in \sigma(e^{ia})$.

Teorema

Seja A uma álgebra de Banach e $a \in A$. Então $\sigma(a)$ é não vazio.

Teorema

Seja A uma álgebra de Banach e $a \in A$. Então $\sigma(a)$ é não vazio.

Se $\sigma(a)$ é vazio, então para qualquer funcional linear limitado $f:A\to\mathbb{C}$, vale que $f\circ R_a\colon\mathbb{C}\to\mathbb{C}$ é uma função inteira e $f((\lambda 1-a)^{-1})\to 0$ se $|\lambda|\to\infty$.

Chegamos em uma contradição, pois $f(\lambda 1 - a) = 0$ para todo $f \in A^*$.

Teorema de Gelfand-Mazur

Teorema

A única álgebra de Banach A tal que todo elemento não-nulo tem inversa é \mathbb{C} .

Teorema de Gelfand-Mazur

Teorema

A única álgebra de Banach A tal que todo elemento não-nulo tem inversa é \mathbb{C} .

Com efeito, dado $a \in A$, existe $\lambda \in \mathbb{C}$ tal que $\lambda 1 - a$ não é invertível, logo $a = \lambda 1$.

Raio espectral

Teorema

Definimos o raio espectral de a por

$$\rho(a) := \sup_{\lambda \in \sigma(a)} |\lambda|.$$

Exemplos

- Se $A \in M_n(\mathbb{C})$, então $\rho(A)$ é o maior dos seus valores singulares.
- Se $f \in C([0,1])$, então $\rho(f) = ||f||_{\infty}$.

Atenção

Contra-exemplo

Mesmo em álgebras conhecidas, é possível que $\rho(a) < ||a||$. Por exemplo, em $M_2(\mathbb{C})$, se

$$A = \begin{pmatrix} 0 & 1 \\ 0 & 0 \end{pmatrix},$$

então ||A|| = 1, mas $\rho(A) = 0$.

Fórmula de Gelfand

Teorema

Seja a ∈ A um elemento de uma álgebra de Banach. Então

$$\rho(a) = \lim_n ||a^n||^{1/n}.$$

Teorema

Seja a ∈ A um elemento de uma álgebra de Banach. Então

$$\rho(a) = \lim_n ||a^n||^{1/n}.$$

Salvação

Se A é uma C^* -álgebra comutativa, então $\rho(a) = ||a||$.

Unitização

Álgebras sem unidade

Se A não tem unidade e $a \in A$, definimos $\sigma_A(a) := \sigma_{\tilde{A}}(a)$. Neste caso, note que $0 \in \sigma_A(a)$.

Caráteres

Definição

Seja A uma álgebra de Banach comutativa. Chamamos de **caráter** todo homomorfismo de álgebras não-nulo $\tau: A \to \mathbb{C}$. O conjunto de todos os caráteres é chamado **espaço ideal maximal** ou **espaço dos caráteres** e é denotado por $\Omega(A)$.

Caráteres

Definicão

Seja A uma álgebra de Banach comutativa. Chamamos de **caráter** todo homomorfismo de álgebras não-nulo $\tau: A \to \mathbb{C}$. O conjunto de todos os caráteres é chamado espaco ideal **maximal** ou **espaço dos caráteres** e é denotado por $\Omega(A)$.

Exemplo

$$\Omega(C([0,1])) = \operatorname{Specm} C([0,1]) = [0,1]$$

 $\Omega(C_0(\mathbb{R})) = \operatorname{Specm} C_0(\mathbb{R}) = \mathbb{R}$

Ideais Maximais

Teorema

Seja A uma álgebra de Banach comutativa com unidade. Então:

- Se $\tau \in \Omega(A)$, então $\|\tau\| = 1$.
- A transformação $\tau \mapsto \ker \tau$ define uma bijeção entre $\Omega(A)$ e Specm A.

Representação de Gelfand

Espectro

Teorema

Seja A uma álgebra de Banach comutativa.

■ Se A tem unidade, então

$$\sigma(a) = \{\tau(a) \mid \tau \in \Omega(a)\};$$

■ Se A não tem unidade, então

$$\sigma(a) = \{\tau(a) \mid \tau \in \Omega(a)\} \cup \{0\}.$$

Topologia

Note que $\Omega(A) \subseteq B^* \subseteq A^*$. Assim, podemos induzir em $\Omega(A)$ a topologia fraca*.

Teorema

Se A é uma álgebra de Banach comutativa com unidade, então $\Omega(A)$ é compacto Hausdorff. Se A não tem unidade, então $\Omega(A)$ é localmente compacto Hausdorff.

Questão

Qual a relação entre $\Omega(A)$ e $\Omega(\tilde{A})$?

Questão

Qual a relação entre $\Omega(A)$ e $\Omega(\tilde{A})$?

 $\Omega(\tilde{A})$ é a compactificação de um ponto de $\Omega(A)$!

Questão

Qual a relação entre $\Omega(A)$ e $\Omega(\tilde{A})$?

 $\Omega(\tilde{A})$ é a compactificação de um ponto de $\Omega(A)$!

Questão

E qual o ponto no infinito?

Interlúdio

Questão

Qual a relação entre $\Omega(A)$ e $\Omega(\tilde{A})$?

 $\Omega(\tilde{A})$ é a compactificação de um ponto de $\Omega(A)$!

Questão

E qual o ponto no infinito?

O caráter τ_{∞} associado ao próprio A visto como ideal maximal de \tilde{A} .

Transformada de Gelfand

Definição

A transformada de Gelfand de uma álgebra de Banach comutativa A é a função $\Gamma \colon A \to C_0(\Omega(A)), a \mapsto \hat{a}$ definida por

$$\hat{a} \colon \Omega(A) \to \mathbb{C}, \quad \tau \mapsto \tau(a).$$

Representação de Gelfand

Teorema

Seja A uma álgebra de Banach comutativa. A transformação de Gelfand

$$\Gamma \colon A \to C_0(\Omega(A)), \quad a \mapsto \hat{a}$$

é um homomorfismo de álgebra contrativo cuja imagem separa pontos e tal que

$$\|\hat{a}\|_{\infty} = \rho(a).$$

Além disso, seu núcleo é J(A).

Teorema

Se A é uma C*-álgebra comutativa, então a transformada de Gelfand

$$\Gamma \colon A \to C_0(\Omega(A)), \quad a \mapsto \hat{a}$$

é um isomorfismo isométrico.

Álgebra Comutativa?

Teorema (Fundamental da Álgebra de tipo finito)

Suponha que A é uma \mathbb{C} -álgebra com unidade tal que $\dim_{\mathbb{C}} A$ é enumerável. Então $\sigma(a)$ é não vazio para todo $a \in A$. Além disso, a é nilpotente se e somente se $\sigma(a) = \{0\}$.

Álgebra Comutativa?

Teorema (Fundamental da Álgebra de tipo finito)

Suponha que A é uma \mathbb{C} -álgebra com unidade tal que $\dim_{\mathbb{C}} A$ é enumerável. Então $\sigma(a)$ é não vazio para todo $a \in A$. Além disso, a é nilpotente se e somente se $\sigma(a) = \{0\}$.

Hilbert Nullstellensatz

Seja $I \triangleleft \mathbb{C}[x_1, \dots, x_n]$ um ideal radical e $A = \mathbb{C}[x_1, \dots, x_n]$. Então a projeção

$$\pi: A \to \mathbb{C}[x_1, \ldots, x_n]/I(V(I))$$

é um isomorfismo.

