DM545/DM871 Linear and Integer Programming

Lecture 9 IP Modeling Formulations, Relaxations

Marco Chiarandini

Department of Mathematics & Computer Science University of Southern Denmark

Outline

1. Formulations
Uncapacited Facility Location
Alternative Formulations

2. Relaxations

Outline

1. Formulations

Uncapacited Facility Location Alternative Formulations

2. Relaxations

4

Outline

1. Formulations

Uncapacited Facility Location

Alternative Formulations

2. Relaxations

5

Uncapacited Facility Location (UFL)

Given:

- depots $N = \{1, \ldots, n\}$
- clients $M = \{1, ..., m\}$
- f_i fixed cost to use depot j
- transport cost for all orders cij

Variables: $y_j = \begin{cases} 1 & \text{if depot opened} \\ 0 & \text{otherwise} \end{cases}$

Task: Which depots to open and which depots serve which client

 \mathbf{x}_{ij} fraction of demand of i satisfied by j

Objective:

$$\min \sum_{i \in M} \sum_{j \in N} c_{ij} x_{ij} + \sum_{j \in N} f_j y_j$$

Constraints:

$$\sum_{j=1}^{n} x_{ij} = 1$$

$$\sum_{i=1}^{n} x_{ij} \le my_{i}$$

$$\forall i = 1, \ldots, m$$

$$\forall j \in N$$

Outline

1. Formulations

Uncapacited Facility Location

Alternative Formulations

2. Relaxations

Good and Ideal Formulations

Definition (Formulation)

A polyhedron $P \subseteq \mathbb{R}^{n+p}$ is a formulation for a set $X \subseteq \mathbb{Z}^n \times \mathbb{R}^p$ if and only if $X = P \cap (\mathbb{Z}^n \times \mathbb{R}^p)$

That is, if it does not leave out any of the solutions of the feasible region X.

There are infinite formulations

Definition (Convex Hull)

Given a set $X \subseteq \mathbb{Z}^n$ the convex hull of X is defined as:

$$\operatorname{conv}(X) = \left\{ \mathbf{x} : \mathbf{x} = \sum_{i=1}^{t} \lambda_i \mathbf{x}^i, \qquad \sum_{i=1}^{t} \lambda_i = 1, \qquad \lambda_i \ge 0, \qquad \text{for } i = 1, \dots, t, \right.$$

$$\left. \text{for all finite subsets } \left\{ \mathbf{x}^1, \dots, \mathbf{x}^t \right\} \text{ of } X \right\}$$

3

Proposition

conv(X) is a polyhedron (ie, representable as $Ax \leq b$)

Proposition

Extreme points of conv(X) all lie in X

Hence:

$$\max\{\mathbf{c}^T\mathbf{x}:\mathbf{x}\in X\}\equiv\max\{\mathbf{c}^T\mathbf{x}:\mathbf{x}\in\mathsf{conv}(X)\}$$

However it might require exponential number of inequalities to describe conv(X) What makes a formulation better than another?

$$X \subseteq \text{conv}(X) \subseteq P_2 \subset P_1$$

 P_2 is better than P_1

Definition

Given a set $X \subseteq \mathbb{R}^n$ and two formulations P_1 and P_2 for X, P_2 is a better formulation than P_1 if $P_2 \subset P_1$

Example

$$P_1 = \text{UFL with } \sum_{i \in M} x_{ij} \le my_j \quad \forall j \in N$$

 $P_2 = \text{UFL with } x_{ii} \le y_i \quad \forall i \in M, j \in N$

$$P_2 \subset P_1$$

- $P_2 \subseteq P_1$ because summing $x_{ii} \leq y_i$ over $i \in M$ we obtain $\sum_{i \in M} x_{ii} \leq my_i$
- $P_2 \subset P_1$ because there exists a point in P_1 but not in P_2 : $m = 6 = 3 \cdot 2 = k \cdot n$

$$x_{10} = 1, x_{20} = 1, x_{30} = 1,$$

$$x_{41} = 1, x_{51} = 1, x_{61} = 1$$

$$\sum_{i} x_{i0} \le 6y_0 \quad y_0 = 1/2$$
$$\sum_{i} x_{i1} \le 6y_1 \quad y_1 = 1/2$$

Outline

1. Formulations
Uncapacited Facility Location
Alternative Formulations

2. Relaxations

Optimality and Relaxation

$$z = \max\{c(\mathbf{x}) : \mathbf{x} \in X \subseteq \mathbb{Z}^n\}$$
 How can we prove that \mathbf{x}^* is optimal?
$$\overline{z} \text{ is UB}$$

$$\underline{z} \text{ is LB}$$
 stop when $\overline{z} - \underline{z} \le \epsilon$

- Primal bounds (here lower bounds): every feasible solution gives a primal bound may be easy or hard to find, heuristics
- Dual bounds (here upper bounds): Relaxations

Optimality gap (SCIP):

- If primal and dual bound have opposite signs, the gap is "Infinity".
- If primal and dual bound have the same sign, the gap is

$$rac{|pb-db|}{\mathsf{min}(|pb|,|db|)}$$

decreases monotonously during the solving process.

Proposition

(RP)
$$z^R = \max\{f(\mathbf{x}) : \mathbf{x} \in T \subseteq \mathbb{R}^n\}$$
 is a relaxation of (IP) $z = \max\{c(\mathbf{x}) : \mathbf{x} \in X \subseteq \mathbb{R}^n\}$ if :

- (i) $X \subseteq T$ or
- (ii) $f(\mathbf{x}) \geq c(\mathbf{x}) \, \forall \mathbf{x} \in X$

In other terms:

$$\max_{\mathbf{x} \in T} f(\mathbf{x}) \ge \begin{Bmatrix} \max_{\mathbf{x} \in T} c(\mathbf{x}) \\ \max_{\mathbf{x} \in X} f(\mathbf{x}) \end{Bmatrix} \ge \max_{\mathbf{x} \in X} c(\mathbf{x})$$

- T: candidate solutions;
- $X \subseteq T$ feasible solutions;
- $f(\mathbf{x}) \geq c(\mathbf{x})$

Relaxations

How to construct relaxations?

1. $IP : \max\{\mathbf{c}^T\mathbf{x} : \mathbf{x} \in P \cap \mathbb{Z}^n\}, P = \{\mathbf{x} \in \mathbb{R}^n : A\mathbf{x} \leq \mathbf{b}\}$ $LP : \max\{\mathbf{c}^T\mathbf{x} : \mathbf{x} \in P\}$ Better formulations give better bounds $(P_1 \subseteq P_2)$

Proposition

- (i) If a relaxation LP is infeasible, the original problem IP is infeasible.
- (ii) Let x^* be optimal solution for LP. If $x^* \in X$ and $f(x^*) = c(x^*)$ then x^* is optimal for IP.
- 2. Combinatorial relaxations to easy problems that can be solved rapidly Eg: TSP to Assignment problem Eg: Symmetric TSP to 1-tree

3. Lagrangian relaxation

$$IP: z = \max\{\mathbf{c}^T\mathbf{x} : A\mathbf{x} \le \mathbf{b}, \mathbf{x} \in X \subseteq \mathbb{Z}^n\}$$

$$LR: z(\mathbf{u}) = \max\{\mathbf{c}^T\mathbf{x} + \mathbf{u}(\mathbf{b} - A\mathbf{x}) : \mathbf{x} \in X\}$$

$$z(\mathbf{u}) > z \forall \mathbf{u} > \mathbf{0}$$

4. Duality:

Definition

Two problems:

$$z = \max\{c(\mathbf{x}) : \mathbf{x} \in X\}$$
 $w = \min\{w(\mathbf{u}) : \mathbf{u} \in U\}$

form a weak-dual pair if $c(\mathbf{x}) \leq w(\mathbf{u})$ for all $\mathbf{x} \in X$ and all $\mathbf{u} \in U$. When z = w they form a strong-dual pair

Proposition

 $z = \max\{\mathbf{c}^T\mathbf{x} : A\mathbf{x} \leq \mathbf{b}, \mathbf{x} \in \mathbb{Z}_+^n\}$ and $w^{LP} = \min\{\mathbf{u}^T\mathbf{b} : A^T\mathbf{u} \geq \mathbf{c}, \mathbf{u} \in \mathbb{R}_+^m\}$ (ie, dual of linear relaxation) form a weak-dual pair.

Proposition

Let IP and D be weak-dual pair:

- (i) If D is unbounded, then IP is infeasible
- (ii) If $\mathbf{x}^* \in X$ and $\mathbf{u}^* \in U$ satisfy $c(\mathbf{x}^*) = w(\mathbf{u}^*)$ then \mathbf{x}^* is optimal for IP and \mathbf{u}^* is optimal for D.

The advantage is that we do not need to solve an LP like in the LP relaxation to have a bound, any feasible dual solution gives a bound.

Examples

```
Weak pairs:
```

```
Matching: z = \max\{\mathbf{1}^T \mathbf{x} : A\mathbf{x} \leq \mathbf{1}, \mathbf{x} \in \mathbb{Z}_+^m\}
V. Covering: w = \min\{\mathbf{1}^T \mathbf{y} : A^T \mathbf{y} \geq \mathbf{1}, \mathbf{y} \in \mathbb{Z}_+^n\}
```

Proof: consider LP relaxations, then $z \le z^{LP} = w^{LP} \le w$. (strong when graphs are bipartite)

Weak pairs:

```
S. Packing: z = \max\{\mathbf{1}^T\mathbf{x} : A\mathbf{x} \leq \mathbf{1}, \mathbf{x} \in \mathbb{Z}_+^n\}
S. Covering: w = \min\{\mathbf{1}^T\mathbf{y} : A^T\mathbf{y} \geq \mathbf{1}, \mathbf{y} \in \mathbb{Z}_+^m\}
```