Name: Student ID:

Analog Electronics

Homework # 1

Due date: March 23, 2020

Problem 1: BJT current steering circuit

For the circuit in Figure 1, every transistor is the same and has $|V_{BE}|=0.7\,\mathrm{V}$ and $\beta=\infty$. Find I,V_1,V_2,V_3,V_4 , and V_5 for $R=50k\Omega$. State briefly what will happen to I if β is finite

Figure 1

Problem 2: MOS current-steering circuit

The current-steering circuit of Figure 2 is fabricated in a CMOS technology for which $\mu_n C_{ox} = 400 \, \mu A/V^2$, $\mu_p C_{ox} = 100 \, \mu A/V^2$, $V_{tn} = 0.5 V$, $V_{tp} = -0.5 V$, $V_{An} = 5 \, V/\mu m$, and $\left|V_{Ap}'\right| = 5 V/\mu m$. If all devices have $L = 0.5 \mu m$, design the circuit so that $I_{REF} = 20 \mu A$, $I_2 = 100 \mu A$, $I_3 = I_4 = 40 \mu A$, and $I_5 = 80 \mu A$. Use the minimum possible device widths needed to achieve proper operation of the current source Q_2 for voltages at its drain as high as $+0.8 V(V_{D2,max} = 0.8 V)$ and proper operation of the current sink Q_5 with voltages at its drain as low as $-0.8 V(V_{D5,min} = -0.8 V)$.

- a) Specify the widths of all devices and the value of R.
- b) Find the output resistance of the current source Q_2 and the output resistance of the current sink Q_5 .

<u>Tip</u>: Assume the transistors are in saturation mode. Remember the effect of channel length modulation when calculating i_D . From the given information of $V_{D2,max}=0.8V$ and $V_{D5,min}=-0.8V$, you can calculate the corresponding overdrive voltage V_{OV}

Figure 2

Problem 3: Basic Gain Cell

Figure 3 shows an IC MOS amplifier formed by cascading two common-source stages. Assuming that $V_{An} = |V_{Ap}|$ and that the biasing current sources have output resistances equal to those of Q_1 and Q_2 .

- a) Express the overall voltage gain v_0/v_i in terms of g_m and r_o of Q_1 and Q_2 .
- b) If Q_1 and Q_2 are to be operated at equal overdrive voltages, $|V_{OV}|$, find $|V_{OV}|$ if $|V_A|=4V$ and $A_{vo}=500\ V/V$

Figure 3

Problem 4: The MOS Cascode

Design the CMOS cascode amplifier in Figure 4 for the following specifications: $g_{m1}=1.5~mA/V$ and $A_v=-300~V/V$. Assume that for the available fabrication process, $|V_A'|=5~V/\mu m$ for both NMOS and PMOS devices and that $\mu_n C_{ox}=500~\mu A/V^2$, $\mu_p C_{ox}=200~\mu A/V^2$. Use the same channel length L for all devices and operate all of them at $|V_{OV}|=0.5~V$. Determine L, the bias current I (I_{D1}), and the W/L ratio for each transistor. Assume that suitable bias voltages have been chosen, and neglect the Early effect in determining the W/L ratios

Figure 4