Controle - Qula de Exercícios do Paulo -
$$13/6/14$$

 3°) PD) 2007.
FTMA = $K(5+2)$. 1
 5° 5°

$$t_{32\%} = \frac{4}{3\omega_{n}} = 53 : 3\omega_{n} = 0.8$$

$$M_{p} = 16\%$$

$$\frac{1}{3} = \int \frac{(\ln M_{p})^{2}}{m^{2} + (\ln M_{p})^{2}} \cdot \frac{3}{3} = 0,5038$$

FTMA =
$$K(s+2)$$
 1 (s+p) (s-1)(s+2)

Condição de fase

arcta
$$\frac{1,39}{p-0,8} = 5,06^{\circ}$$
 $\frac{1,39}{p-8} = t_0 5,06^{\circ}$

$$\frac{1,39}{p-8}$$
 = to 5,06°

$$p-0.8 = 1.39$$
 $t_{0.06}$
 $p=16.50$

Condição de Ganho: (usar os módulos p/o
FTMA=1
$$\Delta = -0.84 + j1.39$$

$$G_{c}(s) = 27,22 (s+2)$$

$$(s+16,5)$$

C) Chual a tipa do Compensador?

$$G(\Delta) = \frac{10}{\left(\frac{1}{\Delta} + 1\right) \left(\frac{1}{10} + 1\right)}$$

$$G(\Delta)G_{C}(\Delta) = \frac{\left(\frac{1}{\Delta} + 1\right) \cdot 10}{\left(\frac{1}{\Delta} + 1\right) \left(\frac{1}{10} + 1\right) \left(\frac{1}{20} + 1\right)}$$

$$G_{C}(\Delta) = \frac{\left(\frac{1}{\Delta} + 1\right) \cdot 10}{\left(\frac{1}{20} + 1\right)}$$

$$G_{C}(\Delta) = \frac{\left(\frac{1}{\Delta} + 1\right)}{\left(\frac{1}{20} + 1\right)}$$

$$G_{C}(\Delta) = \frac{1}{\Delta}$$

b)
$$\cos = \lim_{\Delta \to 0} \frac{1}{1 + G(\Delta)} \frac{\text{degran}}{1 + 10}$$
 $\cos = \lim_{\Delta \to 0} \frac{1}{1 + G(\Delta)} = \frac{1}{1 + 10} = \frac{1}{11} \quad \text{compensador}$
 $\cos = \lim_{\Delta \to 0} \frac{1}{1 + G(\Delta)} = \frac{1}{1 + 10} = \frac{1}{11} \quad \text{compensador}$

	, ÑC	C
3	0,524	0,4247
(e)m	10,48	34,3
Or O	8,93	31,04
Mp	9,21	22,91
£ρ .	0,35	0,101
tson.	0,727	0,12.88

 $e_{\infty} = \lim_{s \to 0} \frac{1/s^2}{1+6} = 0$