

Case 5 3

Department of the Interior.

Books are issued to and returned by employes, between the hours of II a. m. and 2 p. m. on all days except Sundays

The Library is open to employes for reference, from 9 a.m. till tp m

LIBRARY RULES

- 1. The impliers of the Deportment of the literal of the infloring to
- A The employees of the Deportment of the Interve only are inflored to bottom bond strong the 1 for 1 gr.

 2. Petrotobour Bowel force who there is a reconstruction to knyth. It bears an exception to other in the transition of the Cl. (C. i) on the Deportment of the Higgs rate of the Interview Other may be replied.

 3. No bond will be taken from the I for it, and the reconditions that I have been registered by the I digital and 4. Of works of a night volume show a reconstruction may be no reconstruction to taken 5. The period of absumption bands is to true excelsion of except whether of the Department of the III for the Department of the III for the Department of the III for the III

- to Borrowers wishing to retrip books for a longer period than two works may at the close of the second week force the loop for an additional two

- weeks.

 1. The bound ground will be removed by torce.

 2. Boulds classed as Works of Peterer commeted on the Catalogue with the control before from the fallow manifest on the Catalogue with a work of the property of the perfect copy.

 1. Application for an activation books must be in second activate process of the new from the city.

 11. Book returned will not be resserted until the cover because in some of a distribution of manifest books.

- the first included in the test of interference of the content of the content of the first included in the test of the first included in the content of the first included in the content of the first included in the first included included in

(10 \ 10\\\\\\\\\

SMITHSONIAN

MISCELLANEOUS COLLECTIONS.

VOL. XXXII.

"EVERY MAN IS A VALUABLE MEMBER OF SOCIETY WHO BY HIS OBSERVATIONS, RESEARCHES,

AND EXPERIMENTS PROCURES KNOWLEDGE FOR MEN."—SMITHSON.

WASHINGTON: PUBLISHED BY THE SMITHSONIAN INSTITUTION. $1888. \label{eq:washing}$

ADVERTISEMENT.

The present series, entitled "Smithsonian Miscellaneous Collections," is intended to embrace all the publications issued directly by the Smithsonian Institution in octavo form; those in quarto constituting the "Smithsonian Contributions to Knowledge." The quarto series includes memoirs, embracing the records of extended original investigations and researches, resulting in what are believed to be new truths, and constituting positive additions to the sum of human knowledge. The octavo series is designed to contain reports on the present state of our knowledge of particular branches of science; instructions for collecting and digesting facts and materials for research; lists and synopses of species of the organic and inorganic world; museum catalogues; reports of explorations; aids to bibliographical investigations, etc., generally prepared at the express request of the Institution, and at its expense.

In the Smithsonian Contributions to Knowledge, as well as in the present series, each article is separately paged and indexed, and the actual date of its publication is that given on its special title page, and not that of the volume in which it is placed. In many cases works have been published and largely distributed, years before their combination into volumes.

S. P. LANGLEY,

Secretary S. I.

CONTENTS OF VOL. XXXII

- ARTICLE I. (No. 659.) THE CONSTANTS OF NATURE. PART I. A
 TABLE OF SPECIFIC GRAVITY FOR SOLIDS AND LIQUIDS.
 [New Edition: revised and enlarged.] By Frank Wigglesworth Clarke. 1888. Pp. 420.
- ARTICLE II. (No. 658.) INDEX TO THE LITERATURE OF THE SPECTROSCOPE. By Alfred Tuckerman. 1888. Pp. 433.

------ 659 -------

THE CONSTANTS OF NATURE.

PART I.

A TABLE OF SPECIFIC GRAVITY FOR SOLIDS AND LIQUIDS.

[NEW EDITION. REVISED AND ENLARGED.]

BY

FRANK WIGGLESWORTH CLARKE,

Chief Chemist U. S. Geological Survey.

WASHINGTON:
PUBLISHED BY THE SMITHSONIAN INSTITUTION.
1888.

FRINTED AND STEREOTYPED BY

JUDD & PETWOILER.

AT WASHINGTON, D. C.

TABLE OF CONTENTS.

NED OD HOTT		
	ON	
I.	Elements	
II.	Inorganic fluorides	
III.		
111.	Inorganic chlorides	
	1st. Simple chlorides	
	2d. Double chlorides	
IV.	3d. Oxy- and sulpho-chlorides	
IV.	Inorganic bromides	
	1st. Simple bromides	
	2d. Double, oxy-, and sulpho-bromides	
∇.	Inorganic iodides	
	1st. Simple iodides	
*77	2d. Double and oxy-iodides	
VI.	Chlorobromides, chloriodides, and bromiodides	
VII.	Ammonio-chlorides, ammonio-bromides, and ammonio-iodides.	
VIII.	Inorganic oxides	
	1st. Simple oxides	
~ ~~	2d. Double and triple oxides	
IX.	Inorganic sulphides	-
	1st. Simple sulphides	-
	2d. Sulpho-salts of arsenic, antimony, and bismuth	
_	3d. Miscellaneous double and oxy-sulphides	
X.	Selenides	
XI.	Tellurides	
XII.	Phosphides	
XIII.	Arsenides	
XIV.	Antimonides	
XV.	Sulphides with arsenides or antimonides	
XVI.	Hydrides, borides, carbides, silicides, and nitrides	
XVII.	Hydroxides	
XVIII.	Chlorates and perchlorates	
	· Bromates	
XX.	Iodates and periodates	
XXI.	Thiosulphates (hyposulphites), sulphites, and dithionates	
XXII.	Sulphates	
	1st. Simple sulphates	
	2d. Double and triple sulphates	
	3d. Basic and ammonio-sulphates	
XXIII.	Selenites and selenates	
XXIV.	Tellurates	

		Page.
XXV.	Chromates	102
XXV1.	Manganites, manganates, and permanganates	105
XXVII.	Molybdates	105
XXVIII.	Tungstates	-106
XXIX.	Borates	107
XXX.	Nitrates	108
	1st. Simple nitrates	
	2d. Basic and ammonio-nitrates	
XXXI.	Hypophosphites and phosphites	
XXXII.	Hypophosphates	113
XXXIII.	Phosphates	114
	1st. Normal orthophosphates	
	2d. Basic orthophosphates	
	3d. Meta- and pyro-phosphates	
XXXIV.	Vanadates	
XXXV.	Arsenites and arsenates	
21 21 21 1 .	1st. Normal orthogramates	
	2d. Basic orthographates	
X- X- X- X- I	2d. Pyronrsenates and arsenitesPhosphates, vanadates, and arsenates, combined with haloids	
XXXVI.		
XXXVII.	Antimonites and antimonates	
XXXVIII.	Columbates and tantalates	
XXXIX.	Carbonates	
	1-t. Simple carbonates	
	2d. Double carbonates	
35.5	3d. Basic carbonates	
XL.	Silicates	
	1st. Silicates containing but one metal	
	2d. Silicates containing more than one metal	
	3d. Boro-, fluo-, and other mixed silicates	
XLI.	Titanates and stannates	
XLII.	Cyanogen compounds	
	1st. General division	
	2d. Cyanides, cyanates, and sulphocyanates	
XLIII.	Miscellaneous inorganic compounds	
XLIV.	Alloys	. 145
XLV.	Hydrocarbons	157
	1st. Paratlins	
	2d. Olefines	
	3d. Acetylene series	
	4th. Benzene series	
	5th. Miscellaneous aromatic hydrocarbons	
	6th. Terpenes	
	7th. Unclassified	_ 186
XLVI.	Compounds containing C, II, and O	187
	1st. Alcohols of the paradlin series	_ 187
	2d. Oxides of the paratlin series	_ 196
	3d. The fitty acids	
	4th. Anhydrides of the fatty acids	_ 204

		Page.
	5th. Ethers of the series $C_n H_{2n} O_2$	_ 205
	6th. Aldehydes of the acetic series	_ 216
	7th. Ketones of the paraffin series	_ 219
	8th. Oxides, alcohols, and ethers of the olefines	_ 222
	9th. Ethers of carbonic acid	_ 225
	10th. Acids and ethers of the oxalic series	_ 226
	11th. Acids and ethers of the glycollic series	_ 280
	12th. Acids and ethers of the pyruvic series	_ 232
	13th. Acids and ethers of the acrylic series	_ 234
	14th. Derivatives of the acrylic series	_ 235
	15th. Acids and ethers, malic-tartaric group	
	16th. Acids and ethers, citric acid group	
	17th. Glycerin and its derivatives	_ 239
	18th. The allyl group	_ 240
	19th. Erythrite, mannite, and the carbohydrates	243
	20th. Miscellaneous non-aromatic compounds	
	21st. Phenols	249
	22d. Aromatic alcohols	_ 251
	23d. Aromatic oxides	252
	24th. Aromatic acids and their paraffin ethers	_ 256
	25th. Ethers of aromatic radicles	_ 260
	26th Aromatic aldehydes	261
	27th. Aromatic ketones	262
	28th. Camphors, essential oils, etc	_ 262
	29th. Miscellaneous compounds	265
XLVII.	Compounds containing C, H, and N	268
	1st. Cyanides and carbamines of the paraffin series	268
	2d. Amines of the paraffin series	269
	3d. The aniline series	271
	4th. The pyridine series	274
	5th. Miscellaneous compounds	278
XLVIII.	Compounds containing C, H, N, and O	281
	1st. Nitrites and nitrates of the paraffin series	
	2d. Nitro-derivatives of the paraffin series	
	3d. Aromatic nitro-compounds	
	4th. Miscellaneous nitrates, nitrites, and nitro-compounds	
	5th. Miscellaneous amido-compounds	_ 287
	6th. Miscellaneous cyanogen compounds	289
	7th. Miscellaneous compounds	
XLIX.	Chlorides, bromides, and iodides of carbon	
L.	Compounds containing C, Cl, and O	
LI.	Compounds containing C, H, and Cl	293
	1st. Chlorides of the paraffin series	
	2d. Chlorides of the series C _n H _{2n} Cl ₂	
	3d. Miscellaneous non-aromatic chlorides	
	4th. Aromatic compounds	
LII.	Compounds containing C, H, O, and Cl	
LIII.	Compounds containing C, Cl, N, or C, H, Cl, N	
T.T.77	Compounds containing C Cl N O or C H Cl N O	215

TABLE OF CONTENTS.

		Page.
LV.	Compounds containing C, II, and Br	316
	1st. Bromides of the paroffin series	316
	2d. Bromides of the series C _n H _{2n} Br ₂	318
	3d. Miscellaneous non-aromatic bromides	321
	4th. Aromatic compounds	
LVI.	Compounds containing C, II, O, and Br	325
LVII.	Bromine compounds containing nitrogen	328
LVIII.	Compounds containing C, II, and I	329
	1st. Todides of the paraflin series	
	2d. Miscellaneous compounds	
LIX.	Compounds containing C, II, I, O, or C, II, I, N	335
LX.	Compounds containing two or more halogens	
LXI.	Organic compounds of fluorine	339
LXII.	Organic compounds of sulphur	
	1st. Compounds containing C, II, and S	
	2d. Compounds containing C, II, S, and O	342
	3d. Sulphur compounds containing nitrogen	
	4th. Sulphur compounds containing halogens	346
LXIII.	Organic compounds of boron	. 347
XLIV.	Organic compounds of phosphorus	
LXV.	Organic compounds of vanadium, arsenic, antimony, and bismuth.	
LXVI.	Organic compounds of silicon.	
LXVII.	Organic compounds of tin	
LXVIII.	Organic compounds of aluminum	. 354
LXIX.	Organic compounds of zinc, mereury, thallium, and lead	
LXX.	Metallic salts of organic acids	
LXXI.	Salts of organic bases with inorganic acids	
LXXII.	Miscellaneous organic compounds	. 366
APPENDIX.	Note on the specific gravity of woods	
NDEX		369

INTRODUCTION.

Early in 1872 I submitted to the Secretary of the Smithsonian Institution, the late Joseph Henry, a manuscript entitled "A Table of Specific Gravities, Boiling Points, and Melting Points for Solids and Liquids." It was accepted for publication, and in February, 1874, the printed copies were ready for distribution. For years previously Professor Henry had had in mind the publication of a series of similar tables somewhat upon the plan long before suggested by Babbage, and accordingly my modest work was given the somewhat ambitious title of "The Constants of Nature" and made the first part of the proposed undertaking. Subsequently Parts II, III, and V were furnished by myself and Part IV by Professor G. F. Becker, and in 1876 I also published a supplement to Part I.

The following tables form, in effect, a new edition of Part I, completely revised, rearranged, and brought down as nearly as possible to the date of printing. They are, however, modified by the omission of boiling and melting points, except when such data seemed essential to the proper identification of a compound, on the ground that the magnificent tables of Professor Carnelley already supply that want. I have limited myself to specific gravity alone, following in the main the plan of arrangement adopted in my earlier work, with such changes as were made necessary by the later developements of chemical thought. Constitutional formulæ have been used, not according to any fixed rule, but according to convenience, and their adoption has been governed, to some extent, by the limitations of the octavo page. All other details have been subject to the same limitations, and it is hoped that their absence will be compensated for by the almost uniformly full references to literature. Some data could not be traced back to their original sources, at least not without unwarrantable labor, and most of these formed part of an early table prepared nearly twenty years ago for my own private use. A few determinations are accredited to standard works of reference, such as Watts' Dictionary, Dana's Mineralogy, and the like, and many have been drawn from the Jahresbericht. Absolute completeness cannot, of course, be claimed, and in some directions it has not

even been attempted. Among minerals, only those having approximately definite formulæ are given, and indefinite substances have been excluded altogether. The tables aim at reasonable completeness only as regards artificial substances of definite constitution, and all else is gratuitous. A good many determinations of specific gravity have been unearthed from doctoral dissertations, school programmes, and similar foes of the bibliographer, and doubtless other data so printed have escaped my notice altogether. There is a weakness of human nature which, masquerading as patriotism, sometimes leads men of science to bury valuable researches in obscure local publications, and a compiler may never flatter himself that no such paper has cluded his vigilance. I shall be glad to receive notice of all omissions, and will try to rectify such or other errors in future supplements or appendices.

A word in conclusion as to the extent of the table. They contain the specific gravities of 5,227 distinct substances and 14,465 separate determinations. The original edition gave only 2,263 substances, to which nearly 700 were added in the supplement. The increase is a noteworthy indication of existing chemical activity.

F. W. CLARKE.

Washington, June 20, 1888.

EXPLANATORY NOTES.

In references to literature the following abbreviations have been used. In each case, as far as practicable, series, volume, and page are indicated, the page reference signifying, according to circumstances, either the first page of the paper cited, or else the actual page upon which the determination is given. The former rule applies to pages containing many data; the latter to cases in which the specific gravity datum is merely incidental.

A..C. J.-American Chemical Journal.

A. C. P.—Annalen der Chemie und Pharmacie.

A. J. S .- American Journal of Science.

Am. Chem.—American Chemist.

Am. J. P .- American Journal of Pharmacy.

Am. Phil. Soc.-American Philosophical Society.

Ann.-Annales de Chimie et de Physique.

Ann. Phil.-Annals of Philosophy.

Arch, Pharm.-Archiv für Pharmacie.

B. D. Z.—Die Beziehungen zwischen Dichte und Zusammensetzung bei festen und liquiden Stoffen. Leipzig, 1860.

Bei.-Beiblätter zu den Annalen der Physik und Chemie.

Ber.-Berichte der Deutsehen Chemischen Gesellschaft.

B. H. Ztg.-Berg-und hüttenmännische Zeitung.

B. J.—Berzelius' Jahresbericht.

Böttger.—Tabellarische Uebersicht der specifischen Gewichte der Körper. Frankfort, 1837.

B. S. C.—Bulletin de la Société Chimique.

B. S. M.—Bulletin de la Société Française de Mineralogie.

Bull. Acad. Belg.—Bulletins, Academie Royale de Belgique.

Bull. Geol.—Bulletin de la Société Géologique.

Bull. Heb.—Bulletin Hebdomadaire de l'Association Scientifique de France.

Bull. U. S. G. S .- Bulletin of the U. S. Geological Survey.

C. C.—Chemisches Centralblatt.

C. G.—Chemical Gazette.

C. N.—Chemical News.

C. R.—Comptes Rendus.

D. J.-Dingler's Polytechnisches Journal.

Dm.—Schröder's "Dichtigkeitsmessungen." Heidelberg, 1873.

Erd. J.—Erdmann's Journal.

- F. W. C.—This abbreviation indicates the work of students under the direction of F. W. Clarke.
- G. C. L.—Gazzetta Chimica Italiana.
- Geol. Mag.-Geological Magazine.
- G. F. F.—Geologiska Foreningar Forhandlingar.
- Gilb. Ann.-Gilbert's Annalen.
- Gm. II -Gmelin's Handbook of Chemistry. Cavendish Society edition.
- 1n. Diss, or Inaug. Diss.—Inaugural or Doctoral Dissertation. Always prefixed by the name of the university from which the dissertation was published.
- J.—Jahresbericht über die Fortschritte der Chemie.
- J. A. C.-Journal of Analytical Chemistry.
- J. C. S .= Journal of the Chemical Society.
- J. P. C.—Journal für Praktische Chemie.
- J. Ph. Ch.—Journal de Pharmacie et de Chimie.
- J. R. C .- Jahresbericht über die Fortschritte * * * der reinen Chemie.
- M. C .- Monatshefte für Chemie.
- M. C. S .- Memoirs of the Chemical Society.
- Mem. Acad. Belg. Mémoires, Academie Royale de Belgique.
- Min. Mag.-Mineralogical Magazine.
- M. P. M.-Mineral egische Petrographische Mittheilungen.
- M. St. P. Sav. Et.-Mémoires de Savants Etrangers, St. Petersburg Academy.
- N. J.—Neues Jahrbuch für Mineralogie, etc.
- Nich, J.-Nicholson's Journal.
- Öf. Ak. St.-Öfversigt af K. Vet. Akad. Forhandlingar, Stockholm.
- P. A.—Poggendorff's Annalen. For convenience, the second series under Wiede-mann is covered by the same abbreviation.
- P. des C.—Pesanteur Spécifique des Corps. Brisson, Paris, 1787. A German edition by Blumbof appeared at Leipzig in 1795.
- P. M Philosophical Magazine. London, Edinburgh, and Dublin.
- Proc. Amer. Acad.—Proceedings of the American Academy, Boston.
- Proc. Amer. Asso.—Proceedings of the American Association for the Advancement of Science.
- P. R. S. Proceedings of the Royal Society. London.
- P. R. S. E —Proceedings of the Royal Society. Edinburgh.
- P. R. S. G. -- Proceedings of the Royal Society. Glasgow.
- P. T.—Philosophical Transactions.
- Q J. S.—Quarterly Journal of Science.
- R. T. C.—Recueil des Travaux Chimiques.
- Schw. J. Schweigger's Journal.

S. W. A.—Sitzungsberichte der K. K. Akademie der Wissenschaften. Wien.

Thurston's Report.—Report of the Board on Testing Iron, Steel, and other Metals.
Washington, 1881.

U. N. A.—Upsala, Nova Acta.

V. H. V.-Verhandlungen des naturhistorisches Vereines. Bonn.

Watts' Diet .- Watts' Dictionary of Chemistry.

- Z. A. C.—Zeitschrift für analytische Chemie.
- Z. C.—Zeitschrift für Chemie.
- Z. G. S.—Zeitschrift der Deutschen Geologischen Gesellschaft.
- Z. K. M.—Zeitschrift für Krystallographie und Mineralogie.

A TABLE OF SPECIFIC GRAVITIES

FOR

SOLIDS AND LIQUIDS.

I. THE ELEMENTS.

NAME.	Specific Gravity.	Λ uvhority.
Hydrogen, Liquefied	.026 } .032 \	Cailletet and Hautefeuille. C. R. 92, 1086.
(Occluded by palladium.)	.620 to .623	Dewar. P. M. (4), 47, 334.
Lithium	.578 }	Bunsen. J. 8, 324.
Sodium	.9348 .97223, 15°	Davy. P. T. 1808, 21. Gay Lussac and Thénard. See Böttger.
4	.985	Schröder. J. 12, 12. Troost and Hautefeuille. C. R. 78, 970.
	$\left\{ \begin{array}{l} .9743, 10^{\circ} \\ .9735, 13^{\circ}.5 \end{array} \right\}$	Baumhauer. Ber. 6, 655.
14	.972	Quincke. P. A. 135, 642. Ramsay. Ber. 13, 2145.
\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\	$\left\{ \begin{array}{l} .9725,0^{\circ} \\ .9686,16^{\circ}.9,\mathrm{m.of3} \\ .9287,97^{\circ}.6,\mathrm{fused} \end{array} \right\}$ ==	Hagen. P. A. (2), 19, 436.
Potassium	.865, 15°	Gay Lussac and Thénard. Ann. 66, 205.
11	.874 .8427, fused	Sementini. See Böttger. Playfair and Joule. M. C.S. 3, 76.
" "	.8750, 13° .8766, 18° .8642, 0° }	Baumhauer. Ber. 6, 655.
Rubidium	.8298, 62°.1, fused }	Hagen. P. A. (2), 19, 436. Bunsen. J. 16, 185.
Cæsium	$\left\{ \begin{array}{c} 1.872 \\ 1.884 \end{array} \right\}$ 15°	Setterberg. A. C. P. 211, 215.
Glueinum	1.886) 2.1	Debray. J. 7, 536. [384. Nilson and Patterson Per 11
Magnesium	1.64 (Cor. for impurities) 1.85, 20°	Humpidge. P. R. S. 39, 1.
	$\left\{ \frac{1.69}{1.71} \right\}$ 17°	Kopp.
u	. 1.75	Deville and Caron. J. 10, 148. H. Wurtz. Am. Chem., Mar. 1876.

Name.	Spherfic Gravity.	Аптиовіту.
Zinc	6.861	Brisson, P. des C.
Zinc	0.802	Berzelius. See Bottger.
**	6,9154	Karsten, Schw. J. 65, 394.
**	6,939, m. of 3	Playfair and Joule, M. C. S. 3, 67.
***	7.03 to 7.20	Bolley, 4, 8, 387.
	$\frac{6.9660}{0.0000} \cdot 12^{12}$	•
**	D. 15 (1)	Schiff, A. C. P. 107, 59.
4.5	17.21	Daniell.
	7.146 6.895	Wertheim,
**		Mallet, D. J. 85, 378, [817]
**	7.2	Roberts and Wrightson. Bei. 5.
" Ordinary	7.1812) 7.1811)	Kalischer, Ber. 14, 2750.
9 Crystalline		
G. Fused	6.512, m. of 3	Playfair and Joule, M. C. S. 3, 76.
4	6.48 Two methods	Roberts and Wrightson, Ann. (5).
		30, 181.
	6,900) 7,119, of [Quincke, P. A. 185, 642
o Solid o Not pressed	7.142, 16	
6 Ones	7.153, 16	Spring. Ber. 16, 2724.
O Twice O	7.150, 16	Equing. 1941. 194 2421.
Cadmium. Cast	5,6010)	
· Hammered	8,69117	Stromeyer, Schw. J. 22, 365.
**	8,670	Children. See Bottger.
		Herapath, P. M. 64 (1824), 321.
4.	8,6955	Karsten, Schw. J. 65, 391
• Wire	8.0080	Baudrimont, J. P. C. 7, 278
Pure	8,510)	
	5.500 } =======	Schroder, P. A. 107, 115.
4+	5,667	Schroler, 1, A. 197, 415.
· Commercial	5.015	
	8,655, 11	Matthiessen, J. 13, 112.
	8,027, 0)	Quincke, P. A. 105, 642.
· Fuscil	8,891	
· Not pressed	8.612, 17	
	Si667, 162	Spring, Ber. 16, 2724.
1 11 10	8,667, 167) 8,6681, 02	
	5,0051, 0 5,0065, 0184, colid	Vicentini and Omodei. Bei. 11.
4.	7.989, 318 , molten	769.
Mercury, Solid	14.391	Schulze,
4	1.1.2222 (0.1)	
**	15.715	(Hallstrom, Gilla Ann. 20, 403.
**	14 485, = 601	Biddle, P. M. 30, 153.
	14.0, about	Kupffer and Cavallo.
6.4	15.19	Joule, J. 16, 283.
4.4	14.1982	Mallet, J. C. S. 34, 275.
to Liquid	14,5681	Brisson, P. des C.
	13.575	Fahrenheit. See Bottger.
11	43,550	Muschenbrack, " "
	13.598, 155	Crichton, P. M. 16, 48.
**	13.644. 101	Biddle, P. M. 30, 152.
6.	13 (075, 02)	Hallstrom, Gilb. Ann. 20, 397
4.	12.810, boiling f	
4.	10.586	Scholz. See Bottger.
4. 4.	13,567	Kummer, v v
4,	13,5856, 4 }	Kupffer, Ann. (2), 40, 285.
	10,000,200)	•

Name.		Specific Gravity.	Authority.
Mercury. Liquid		13.588597	Biot and Arago. Biot's "Traité de Physique."
"		13.5592	Karsten. Schw. J. 65, 394.
ıı ıı <u> </u>			
		13.570, 10°—15° }	Regnault. P. A. 62, 50.
_		. 5, 550 -5	
		13.59599	Regnault. Ann. (3), 14, 236.
•		13.59602 \ 0°	Regulatit. Ann. (5), 11, 200.
• • • • •		18.595, 0°	Kopp. J. 1, 445.
" "		18 573 15°	Holzmann. J. 13, 112.
		13.603, 12°	Schiff.
"		13.584, 16°,6	Stewart. P. T. 1863, 430.
" " "		13.5953, 0°	Volkmann. Ber. 14, 1708.
Calcium		$\begin{bmatrix} 1.566 \\ 1.581 \end{bmatrix}$	Matthiessen. J. 8, 324.
		1.584	[126.
		1.55	Liés-Bodart and Jobin. J. 11,
		1.6 to 1.8	Caron. J. 13, 119.
Strontium		2.504)	Matthiessen. J. 8, 324.
**		$ 2.580 \rangle$	
		2.4	Franz. J. P. C. 107, 253.
Barium		4.00, about	Clarke. Gilb. Ann. 55, 28. Kern. C. N. 31, 243. [52, 63.
T		3.75 2.68	Wöhler and Deville. Ann. (3),
Boron.* Cryst		2.5345, 17°.2, m. of 2)	Womer and Devine. 11mm (5),
$\begin{array}{ccc} & & \text{Al} \ \text{B}_{12} - \\ & & \text{C}_2 \text{Al}_3 \text{B}_4 \end{array}$		2.618, 13°	Hampe. A. C. P. 183, 85 and 96.
	8	2.611, 20°	•
Aluminum. Cast		2.50)	Wöhler. J. 7, 327.
	$\mathrm{mered}_{}$	2.67	,
		2.583, 4°	Mallet. P. T. 1880, 1025.
tt Com	11	2.688	Barlow. J. C. S. April, 1883. A. P. Corbit. Communicated
" Com	'l wire foil	2.8075	W. Bishop. by R. B. Warder.
Gallium		5.935, 28° \	
"		5.956, 24°,45 (=======	Boisbaudran. C. R. 83, 611.
Indium. In grai	ns	$\left\{\begin{array}{c} 7.110 \\ 7.147 \end{array}\right\} \ 20^{\circ}.4 $	
		7.147 } 20 .1 }	Reich and Richter. J. 17, 241.
" Lamin:		7.277)	Winkler. J. 18, 233.
"		7.362, 15° 7.421, 16°.8	" J. 20, 262.
Lanthanum		6.049)	Hillebrand and Norton. P. A.
		6.163 }	156, 473.
Cerium		. 6.628 \(\)	Hillebrand and Norton. P. A.
" After fusi	on		156, 471.
Didymium		6.544	Hillebrand and Norton. P. A. 156, 474.
Thallium		11.862	_ Lamy. J. 15, 180.
			De la Rive. J. 16, 248.
" Cast		_ 11.853 	
		$\begin{bmatrix} 11.777 \\ 11.900 \end{bmatrix}$	Werther. J. 17, 247.
		1 0 -	
	l		_ Crookes. J. C. S. 1864, 112.

^{*} According to Hampe, the so-called "crystallized boron" is never pure. Its composition is shown in the formulæ given above.

	NAME	Specific Gravity.	AUTHORITY.
Carbon.	Diamond	3,550	Brisson, P. des C.
			Grailich. Bull. Geol. (2), 13, 542
4.6		3,520	Molis, Min. 2, 300.
		1.00	Shepard.
* *		0.5	Berzelius, A. C. P. 49, 247.
	**	0.55	Pelonze. Watts' Dict.
**	• •	0.5295	Thomson, Min. 1, 46.
		- 0.09	Schafarik, P. A. 139, 188.
	**	8,51432, 18 .1.	, Schrotter, J. 24, 257.
* *		0.5146	Schrauf, J. 24, 257.
* *		3,529, 15*	Dufrenoy. J. 24, 258.
4 +		3.51835, m. of 5	Baumhauer, J. C. S 32, 849.
6.4	Graphite	2.144	_ Breithnupt. See Bottger.
		2.229	Kenngott, S. W. A, 13, 469.
		2.277	Regnault. Gm. H.
	4+	2.11	Fuchs, J. P. C. 7, 353.
			Berzelius, A. C. P. 49, 247.
1.1			Karsten, Schw J. 65, 394.
6.4			Poggendorff, P. A. Erganz, Bd.
			1848, 363.
		2.25 1 Paritie 1	N. P. 1 10 2
6.4		2.20 Purified	Brodie. J. 12, 68.
4.4	**	2.105)	M (# 1 n
**	1.4	0 545	Mené.* J. 20, 972.
		- 1.802) - 1.814) 20 , paritied	1
		1.814 / 20 . paritied	Lowe, J. S. 297.
4.6	Gas carbon	2,35	_ Graham.
	* 1	2,08	Bandriment.
**		1,885	Mené, J. 20, 972.
		1.723, 1.821, 1.982)	
	11	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	Meyn. J. P. C. 26, 482.
	Sugar charcos		
			Monier, Ball, Heb 11, 13,
* *	Charcoal		_ Colquhoun.
1 .		2.10 from alcohol	
			Griffith. " " [4, 24]
1 .			- Playfair. Proc. Roy. Soc. Edin
	Lamp-black	1.78	Baudrimont.
1.		1.723 from kerosene	
• •		1.780 from coal-tar	
		naphtha	Hallock, Bull. 42, U. S. G. S.
		, 1.752 from natural g	
		1.773 from dead oil	
Silicon.		2.49, 10	Wohler, J. 9, 347.
.5111111111.	Creapino oraci	2.10	
			mannama reserve
.,		2.194	Winkler, J. 17, 208, 209,
		2.197	HIMSELF BY IN STANCE
.,			Miller, Proc. Roy, Soc. Edin
* * *	.,	2.004	4, 241.
	Adamatane	2.48, m. of 6	Playfair, Proc. Roy. Soc. Edin 4, 241.
Germani	11111	5,469, 2014	Winkler, J. P. C. (2), 84, 201
Zirconiu		1.15	Troost. J. 18, 189.
		7 291	Brisson, P. des C.
Tin			Muschenbroek, See Böttger.
4.4	-	. 7.295	according ones. The trafficers

[•] The extremes of 22 determinations made on specimens from different localities.

NAME.	SPECIFIC GRAVITY.	AUTHORITY.
Tin	7.2914	Guyton. Nich. J. (1), 1, 110.
	7.278, 15°.5	
"	7.2911, 17°	Kupffer. Ann. (2), 40, 285.
"		1 (2), 10, 20 %
"	7.600	Herapath. P. M. 64, 321.
"	7.5565	1
44		Karsten. Schw. J. 65, 394.
" Wire	7.3395	Baudrimont. J. P. C. 7, 278.
"	7.306, m. of 4	Playfair and Joule. M. C. S. 3, 68
" Crystallized		_ ·
" Cast		W. H. Miller. P. M. (3), 22, 263
	- 0014	Kopp. A. C. P. 93, 129.
" Cooled slowly	7.373)	St. Claire Deville. P. M. (4), 11
" quickly		144.
44		Matthiessen. J. 13, 112.
t t	7.291	Mallet. D. J. 85, 378.
" Reduced by H. from		210100, 9101
Sn Cl ₂ .	 	
" Precipitated		Rammelsberg. Ber. 3, 725.
" Remelted		[817.
"	2	Roberts and Wrightson. Bei. 5
"		Quincke. P. A. 135, 642.
"	·	E. Wiedemann. P. A. (2), 20, 232.
	(5.809, 5.781, 19°)	12. 17 1000011111111 (2), 20, 202
" Allotropie	5.802, 19.5	
" Allotropic convert-		
	7.304, 19°	
	6.020, 6.002, 19° } }	Two lots. Schertel. J. P. C. (2),
" Allotropie	5.930, 12°.5	19, 322.
" Allotropic after re-		
conversion.	\ \ 7.24 \to 7.27	
" Rhombic cryst	-6.52 (
		Treehmann. Z. K. M. 5, 625.
" Ordinary	1 '	Richards. Tr. Amer. Inst. Min.
" Allotropic		Eng. 11, 235.
" Not pressed	1	Inig. 11, 299.
" Once "	7.292, 10°.25	Spring. Ber. 16, 2724.
" Twice "		Spring. Der. 10, 2124.
"		
"	7.1835, 226°, solid	Vicentini and Omodei. Bei. 11.
(4		769.
"Fused		Playfair and Joule. M. C. S. 3, 75.
u used		Roberts and Wrightson. Ann.
"	1 C Two mothode 2	(5), 30, 181.
((((7.144	Quincke. P. A. 135, 642.
Lead		Muschenbroek. See Böttger.
"		Brisson. P. des C.
((Böckmann. See Böttger.
(4		Guyton. Ann. 21, 3.
"	11,3303	
"	11.346, 15°.5	
" Wire		Crichton. P. M. 16, 48.
W 116		Baudrimont. J. P. C. 7, 278.
		Herapath. P. M. 64, 321.
	11.3888	Karsten. Sehw. J. 65, 394.
	11.231, m. of 4	Playfair and Joule. M. C. S. 3, 68.
		Reich. J. P. C. 78, 328.
	- 11.3525, 18° }	,
**	_ 11.395, 4°	Streng. J. 13, 187.

Name.	Specific Gravity.	Антиовиту.
Lead Cooled slowly from fusion.	11.361, 70°	Mallet, A. J. S. (6), 8, 212.
 Cooled quickly from fusion. Electrolytic. Electrolytic, fused 	11,542 11,542 11,225	St. Claire Deville, P. M. (4), 11, 144.
and cooled quickly.	11 276 142	Holzmann, J. 13, 112,
	11.341, 1°)	Schweitzer, Am. Chem. 7, 174,
" Not pressed	11.005, 0° 11.4 11.050, 14)	Quincke, P. A. 97, 396, [817, Roberts and Wrightson, Bei, 5,
Gorea Gorea	11,350, 14 11,501, 14 11,492, 16°	Spring, Ber. 16, 2724.
	11,359, 0° 11,005, 325°, solid 10,645, 325°, molten	Vicentini and Omodei, Bei, 11,769,
Molten	10,509, m, of 3 11,07 10,07) 10,65) Two methods (Playfair and Joule, M. C. S. 3, 74, Mallet, A. J. S. (3), 8, 212, Roberts and Wrightson, Ann (5), 30, 184.
44 44	10.952	Quincke, P. A. 135, 642.
Thorium*	7.657)	Chydenius, J. 16, 191.
6 Crystallized Non-crystallized	$11.230 \atop 10.968$	Nilson, Ber. 16, 160. Compare earlier paper, Ber. 15, 2544.
Nitrogen, Liquetical		Cailletet and Hautefeuille, C. R. 92, 1086.
	.5812, =155°.7 .83, =1965° .866, =202°	Wroblevsky, C. R. 102, 1010.
	.859 (—191°.4, boiling	Olszewski, P. A. (2), 31, 73.
	.891 (point. .805)	
Phosphorus, Common	1.77	Berzelius, See Bottger.
	2.09 1.800	Bottger, Watts' Dict.
	1.8971.3	Play fair and Joule, M. C. S. 3, 69
**	1.840 (10	Schrotter, J. 1, 336,
4.6	1.8262) 1.8265) 10°	Kopp. A. C. P. 93, 129.
44	1.823, 35	Gladstone and Dale, A. 12, 73,
44	1 83676, 0 1 1 82321, 20	Planti and De Franchis. Ber. 8, 70
11	1 80681, 11	
13.4	$\begin{array}{ccc} 1.70 & 4.10 \\ 2.08 & 0.17 \end{array} = -17$	Schrotter, J. 1, 336.
	$\{2,106,\}$ 17 =	Schrötter, J. 3, 262,
o cry-t.	2.11)	[Jan Two preparations: Brodie, J. 5
	2.234	• •
	with 10 in a	Hattorf, J. 18, 100,

 $^{^{\}circ}$ Nilson's determinations are the only ones having any present value. Chydenius' work has merely historical Interest.

NAME.	SPECIFIC GRAVITY.	AUTHORITY.
Phosphorus, Red. Cryst.	2.34, 0° 2.148, 0°, prep. at 265° 2.19, 0° " 360°	Troost and Hautefeuille. Ber. 7,
" Molten	2.293, 0° " 500° J 1.744 1.88, 45° 1.763 1.74924, 40°]	Playfair and Joule. M. C. S. 3, 76. Schrötter. J. 1, 336. Gladstone and Dale. J. 12, 73.
	1.6949, 100° 1.6027, 200° 1.52867, 280°	Boils at 278°.3. Pisati and De Franchis. Ber. 8, 70.
" " Vanadium	1.4850, at boiling point_ 1.833 5.5, 15°	Ramsay and Masson. Ber 13, 2147. Quincke. P. A. 135, 642. Roscoc. P. T. 1869, 679.
Arsenic	$ \begin{vmatrix} 5.866 \\ 5.875 \end{vmatrix} $ 15°	Setterberg. Of. Ak. St. 1882, 10,13. Brisson. P. des C.
"	5.766 5.7633 5.884	Mohs. See Böttger. Stromeyer. " " Turner.
" "	5.700 \ 5.959 \}	Guibourt. B. J. 7, 128. Herapath. P. M. 64, 321. Karsten. Schw. J. 65, 394.
" Native	$ \begin{vmatrix} 5.736 & \\ 5.722 & $	Breithaupt. J. P. C. 16, 475. Breithaupt. J. P. C. 11, 151. Playfair and Joule. M. C.S. 3, 72,
::	$5.395, 12^{\circ}.5$ 5.726 5.728 14°	Ludwig. J. 12, 183. Bettendorff. J. 20, 253.
" After fusion " Allotropic	5.709, 19° 4.710 4.716 \} 14°	Mallet. B. S. C. 18, 438. Bettendorff. J. 20, 253.
" " " " " " " " " " " " " " " " " " "	4.6 to 4.7 4.91 3.7002 to 3.7100, 15° 6.702	Engel. C. R. 96, 498. Spring. Ber. 16, 326. Rückoldt. A. C. P. 240, 215. Brisson. P. des C.
"	6.712 6.733 6.852	Hatchett. See Böttger. Böckmann. " " Muschenbroek. " "
(t	6.860 6.646 6.6101	Mohs. " " Breithaupt. " "
"	6.706	Karsten. Schw. J. 65, 394. Marchand and Scheerer. J. P. C. [27, 193.
"	6.6987 Extremes } - 6.7102 Extremes } - 6.713, 14°	Dexter. P. A. 100, 567. Matthiessen. J. 13, 112. Sabradon P. A. 107, 112.
:: ::	6.697 6.7022, m. of 6 6.6957 Extremes	Schröder. P. A. 107, 113. Cooke. Proc. Amer. Acad. 1877
Not pressed	6.620, 0° 6.675, 15°.5)	Quincke. P. A. 135, 642.
" Once " Twice "	6.733, 15° 6.740, 16°	Spring. Ber. 16, 2724.

Name.	Specific Gravity.	Астновиту.
Antimony, Amorphous	5.71)	Gore, J. 13, 172
	0.51	100 J. 10, 112
· Molten		Playfair and Jorde, M. C. S. 3, 77
**	-6,529 f	Traylan and 50 th. Mr. C. S. S. G.
**	-6.528	Quincke, P. A. 105, 642
Bismuth	9.67	
**	9.822	Brisson. P. des C
	9,800	
**	9.8827	Thenard. " "
	9,8827	
	9.831	Herapath, P. M. 64, 321.
	9.6542	Karsten, Schw. J. 65, 394
· Pure	9.799, 1927	
· Commercial	9.788	Marchand and Scheerer, J. P. C.
· Compressed	9,556	27, 190.
" Crystallized		
9 Quickly cooled from fusion.	9.677	C. St. Claire Deville, A. 8, 15
	9.823, 122	Holzmann, J. 13, 112
**		Schroder, P A, 107, 115.
**		Roberts and Wrightson. Be. 5. 817.
	9,819, 02	Quincke, P. A. 155, 642
" Not pressed		Commence In It. 1000 or 12
Once of	9,856, 15	Spring. Ber. 16, 2724
Twice "	9,860, 15-	Spring. Der. 16, 2,22
1.00.00	9.787.00	
		Who extend a late of the state
		Vicentini and Omodel. B., 11, 769.
· Molten		Playthir and Joule, M. C. S. 3.
4.	La cultu S	70.
	10,039)	Roberts and Wrightson. By two
	10,055 }	methods. Nature, 22, 448
**	9,709	Quincke, P. A. 105, 642
Columbium, Niobiumo		Marignae, J. 21, 214
**		Roscow, C. N. 37, 26
Tantalum	10,0% to 10,7%	Rose, J. 9, 966.
Oxygen, Liquined		By two methods. Pictet. Ann.
**	.30883, m. of 44	(5), 13, 193,
	.8402)	Pictet, recalculated by Offret
4.	,8(5)	$\Delta \mathrm{nm} (5.149, 271)$
14	(.58, .65, .70, 0)	Carlletet and Heute femille C. R.
** ** =	.5455, .50,-24	02, 1086.
5.4	.895	Wroldevsky, C R 97, 1 ac
4.	.899 (400), m. of 12	$\frac{\text{Wroblevsky}}{\text{So}_{17}^{2}} = \frac{1}{2} \frac$
4.	.7555 -129 .57)	
4.4	500 = 1.11 - 11	Olszewski. Ber 17, ref. 198
	1,877 100 .0 0 1,110 =481 .4 boils)	
	1.1.1.7 ing point.	Olszewski, P. A. (2), 51, 73.
4.4	.6. 115)	We 11 - 1- 41 12 100 1-10
	1.24 200 7	Wroblevsky, C. R. 102, 1010.
Sulphur, Rell	1,9007	Brisson, P. des C.

^{*} Probably the hydride, Ch H.

	NAME.	SPECIFIC GRAVITY.	AUTHORITY.
Sulphur.	Roll	1.868	Böckmann.
144	Flowers	2.086	Gehler.
	Cryst.	1.898	Fontenelle. Quetal by
4.6	From solution	1.927	Bischof. Quoted by
4.6	Cryst.	1.989	Breithaupt. Marchand and Scheerer.
"	Roll	1.9777 }	
6.6	"	2.0000 j	Thomson. J. P. C. 24, 129.
4.6	Prismatic	2.072	Mohs.
4.6	Native	2.086	Dumas and Roget.
4.6	Soft	2.027	Osann.
٤.	Native	2.05001	Karsten. Schw. J. 65, 394.
"	From fusion	1.9889)	224100011 201111 201 03, 002.
44	Prismatic	1.982	
"	Native	2.066	Marchand and Scheerer. J. P. C.
"	From solution	2.0518	24, 129.
"	Soft	1.957 J	
"	Native	2.069	Kopp. A. C. P. 93, 129.
"	Soft	$\frac{1.919}{1.928}$	
"	Prismatic	1.958	C. St. Claire Deville. J. 1, 365.
"	Native	2.070	C. St. Chare Devine. 3. 1, 303.
44	From solution	2.063	
	Crystallized	2.010)	
4.6	Flowers	1.913	Playfair and Joule. M. C. S. 3,79.
44	Waxv	1.921	1 10, 1011 1110 0 0 0110. 21. 0, 15. 5, 10.
44	Native, cryst	2.0757	D 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
4.6	Soft	1.87 to 1.9319 }	Brame. C. R. 35, 748.
"	Amorphous.	1.87	
	Yellow. Amorphous.	1.91 —1.93	Müller. J. 19, 118.
	Brown.	3 0 - 10 00 J	D' d' D H 991
"	Crystallized	2.0748, 0°	Pisati. Ber. 7, 361.
"	Insoluble	1.9556, 0°	
		1.9496, 20° ·	
"		1.9041, 40° { 1.9438, 60° {	Spring. Bei. 5, 853.
"	"	1.9559, 80°	
44	"	1.9643, 100° J	
	Cryst. from CS ₂ .	2.0477, 0°))	
"	· · · · · · · · · · · · · · · · · · ·	2.0370, 20°	
44		2.0283, 40°	
"	" "	2.0182, 60°	
"	" "	2.0014, 80°	
6.6	" "	[1.9756, 100°]	Carata and Doi: 7 Of 4 Thomas Dal
4.6	From Sicily	2.0788, 0° j {	Spring. Bei. 5, 854. From Bul-
4.6	"	2.0688, 20°	letin de l'Acad. Roy. de Belg.
4.6		2.0583, 40°	(3), 2, 83–110, 1881.
	"	2.0479, 60°	
4.6		2.0373, 80° }	
4.6	_ "	ل ز 2.0220, 100°	
4.6	Lamellæ		Maquenne. Ber. 17, ref. 199.
"	Sicilian	2.06665, 16°.75	Schrauf. Z. K. M. 12, 325.
44	Molten		Playfair and Joule. M. C. S. 3,76.
44	"	1.815 \ determinat'ns \	
44		1.4794, m. of 5	At the boiling point, 446°. Ram-
"	"	t C EXIPENS 1 1	say. J. C. S. 35, 471.
		1.0100)	l '
Seiemun	ı	T.O 10 T.O	Berzelius. See Böttger.

	Name.	Specific Gravity.	Антиовиту.
Selenium		4.810	Boullay, See Bottger.
9.4		4,808, 150	
4.6	Cryst. fr. fusion	4.805)	
1.6	**	(4.7% / Tarana Tarana J	Schuffgotsch, J. 6, 329.
* *	Amorphous	4.276 ! 200	The state of the s
	11 11 11 11	4.256	
	Precip. Red .	4.245 4.275	
	Precip. after (1,250	Schaffgotsch. J. 6, 329.
	heat g to 50% 1	1.297	
	Crystallized .	4,460.)	
		4.509	
* *	* *	4,700)	Mitscherlich, J. S. 314.
4.4	or from so-	4.760)	Mitschermen, J. S. 314.
	lution.	15'	
h h		4.755	
h h	Crystallized	4,406, 215	- Neumann, P. A. 126, 138.
4.5	Black	1.50+	
		1.51	Rathke, J. P. C. 108, 235.
	Precip. Red ==	4.26)	
		1.25	
	Gray	4.495 4.514	
	Laminated	1.77	
	from alkaline	$\frac{1}{4.79}$	
	selenides. (1.50	
	Cryst, from CS.	1 115	V.,
		1.51	 Rammelsberg, P. A. 152, 154.
* *	13 11 11	4,59	
	Amorphous .	1.27	
		4.04	
1.1	Melteri	4.29	
* *	**	4,06 j	
- 4	Comparison	4,7004, 0	
- +	**	4 78000, 200	
4.1	4.4	4,7609, 40	
	• •	4 7526, 60	
	••	4.7451, 80	
		4.7167, 100 3 4	Spring, Bei, 5, 854. From Bull
	Uncompressed	1.7412, 0 1.4 1.7176, 20	de l'Acad. Roy, de Belg. (3
		1 7010 10	2. 88-110, 1881
		4,6826, 60	
	* 1	1,0023, 807	
,		4 65301, 400	
	Fuscil	12	Quincke, P. A. 105, 642,
Tenantina		6.115	Ř hyprotli. Ann. 25, 273.
		6-147 F	Magnus, See Bottger,
		6.2445, m. of 5	Ber, chus. P. A. 28, 392.
		1, [50]	Lowe, J. P. C. 60, 463
		0.111	Reichenstein. See Bottger.
	C. tripital	6.2549, 0	
•		6.2449, 20	
		6 2294, 40 6 2170, 00	Spring, Bei 5,854, From Bul
,		6.20.0, 80	de l'Acad. Rev. de Belg. 43
			2, 55-110, 1551

NAME.	Specific Gravity.	AUTHORITY.
Tellurium, Uncompress	ed. 6.2322, 0°	
	6.2194, 20°	
**	6.2052, 40°	Santan Dat 7 054 D D H
11	6.1500, 60°	Spring. Bei. 5, 854. From Bull.
	6.1366, 80°	de l'Acad. Roy. de Belg. (3) 2, 88-110, 1881.
11	6.1640, 100° J	2, 66-110, 1661.
		Klein and Morel. Ann. (6), 5, 61
Chromium	7.3	Bunsen. Watts' Dict.
" Crystallized		Wöhler. J. 12, 169.
" Red. by K C Molybdenum		Loughlin. J. 21, 220.
it and the second second		Bucholz. Nich. J. 20, 121.
	8,636	Buchotz. 141ch. 5. 20, 121.
"		Debray. J. 11, 157.
" Red. by K C		Loughlin. J. 21, 220.
Tungsten		D'Elhuyart. See Böttger.
		Allan and Aiken. " "
	17.4	Bucholz. Sehw. J. 3, 1.
		,
"		Uslar. J. 8, 372.
" ==========	_ [18.26]	
" Reduced by H	$ = \begin{bmatrix} 17.1 & \text{to } 17.3 \\ 17.9 & \text{to } 18.12 \end{bmatrix}$	Bernoulli. J. 13, 152.
	17.9 to 18.12 \(\)	Det. 10411. 0. 19, 102.
		D 11 0 0 7 7
		Prepared by three methods. Zett-
• "		now. J. 20, 218.
(1		Roseoe. C. N. 25, 61.
		Waddell. A. C. J. 8, 287.
Uranium		Peligot. J. 9, 380.
"	10.00	Peligot. A. C. P. 149, 128.
(,	10 40# 40 0 4	Zimmermann. Ber. 15, 851.
Chlorine. Liquefied	1.88, 15°.5	Faraday. P. T. 1823, 164.
Bromine		Balard. Ann. (2), 32, 337.
44	2.98 \ 15°	
**	[4.99]	
"		Pierre. Ann. (3), 20, 5.
	$\begin{bmatrix} 3.18828, 0^{\circ} \\ 2.08918, 500.07 \end{bmatrix}$	Thorpe. J. C. S. 37, 172.
		1
	2.9483, m. of 4	Tukan at the heilings it to
	$\frac{2.9471}{2.9503}$ Extremes $\frac{1}{2.9503}$	Taken at the boiling point. Ram-
"		say. Ber. 13, 2146.
	3.1073, 0	Van der Plaats. J. C. S. 50, 849.
Iodine	4.948	Gay Lussac. Ann. 91, 5.
" Solid		Gay Bussac. 11m. 51, 5.
11 11		
	4.825, 107°]	
" Molten		Billet. J. 8, 46.
	3.988, 111°.7	'
11 11		
	3.796, 170° J J	[4, 241.
" Solid	1.5.030	Playfair. Proc. Roy. Soc. Édin.

NAME	Specific Gravity.	Антновиту.
Manganese	6,861)	Bergmann.
	8.03	Bachmann, See Bottger.
**	7.188)	John. P. M. 2, 176. Brunner. J. 10, 202.
1	7.200 j	
1ron Wrought	7.7(0) 7.6005	Brisson. P. des C. Karsten. Schw. J. 65, 304.
	7.7109 7.7312	Bandrimont, J. P. C. 7, 268,
" Dar	7.4800 [Broling. See Percy's Metalburgy.
	7.8707)	Berzelius, " " "
 Reduced by zinc t 	7.50)	Poumaréde, J. 2, 281.
Annor. 1	7.817	
• Reduced by C	7.130	Playfair and Joule, M. C. S. 3.72. Smith. See Percy's Metallurgy.
" Fused in H., not forged.	7.880, 16°	Smith. See Percy's Metallurgy.
 Fused in H., forged Fused in H., wire _ Fused in crucible Good commercial 	7.847, 16° /	Caron. C. R. 70, 1260.
• Reduced by H	7,998) 300	
· Molten	6.88	Stahlschmidt, J. 18, 255, Roberts and Wrightson, Bei, 5, 8-817. [6, 145]
e Molten steel	8.05 7.807	Petruschewsky and Alexejeff. Bei. Brisson. P. des C.
	8.279, cast)	Richter. Ann. 50, 164.
· Cast	5.050 } 125	Tupputi, Ann. 78, 133,
	5.3632, 129.5	Tourte, Ann. 71, 103.
	S.177) S.710 (Baumgartner. See Bottger.
	S.667 9.000	
· · · · Reduce I by H	7,861)	Play fair and Joule, M. C.S 3, 71
·· Wire	7.803 j	•
Boduced by H.	5,975)	
	9,261 } 7 7 7 7 7 7	Ranamelsberg, J. 2, 282.
Cobult	\$.710 \$.710 \$.487	Schröder, P. A. 107, 113, Lampadais, Erd J. (1), 5, 300, Brunner, See Bottger,
**	9.152	Cichier, o o
	8,500 8,5101 .	
1)	8,5384	Hany and Tassaert. See Bottger.
	8.558	T. H. Henry, M. C. S. 3, 507
to the freed by H		Playfair and Joule, M. C. S. 3, 71,
É S S S S S S S S S S S S S S S S S S S	-5 977. m + 5 5	Rammelsberg, J. 2, 282.

	NAME.	SPECIFIC GRAVITY.	AUTHORITY.
Copr	er	8.895	Hatchett. P. T. 1803, 88.
	Rolled	8 878)	· ·
4.	Cast		Brisson. P. des C.
14	(,		
. 6	Drawn		Berzelius. See Böttger.
	Hammered		
+4		8.78	Kupffer. Ann. (2), 25, 356.
. 4		8.900	
4.6		8.721	Karsten. Schw. J. 65, 394.
66	Wire in several	8.6225)	
	different con-	8.3912	
	ditions.	8.7059	Baudrimont. J. P. C. 7, 287.
		8.8181	Dandriniont. 9.1. C. 1, 201.
11	Hammered	8.8893	İ
4.4	Cast, slowly cooled		
* *	Crystallized	8.940	
4.4	Cast	8.921	
	77	8.939	5.5
• •	Various sorts of	8.949	[27, 19]
	wire.	8.930	Marchand and Scheerer. J. P.
4.4	Chast	8.951	
	Sheet Pressed	8,952 8,931	
	Electrolytic		
4.4			Mallet. D. J. 85, 378.
	Finely divided		Mariet. D. 9. 69, 576.
6.6		8.483	1
64	"	8 200	·
	Electrolytic		Playfair and Joule. M. C. S. 3, 5
.4	"	0.604	1
4.6	Finely divided	0.00= 5	DI C. II I TOCATO
44		8.41613 } 4	Playfair and Joule. J.C.S.1,12
. 4	Hammered	8,855]	
4.4		8.878	
	Rolled	8.879 [O'Neill. Memoirs Manchest
"		8.898	Philosophical Society, (3),
44	Annealed	8.884	243.
. 6		8.896 J	
4.4		8.902, 12°	Schiff.
		8.838	Whitney. J. 12, 769.
		8.952	Schröder. P. A. 107, 113.
		0.000 }	2, 22, 21, 22,
	Electrolytic, cast	8.916	
	1	8.958 8.853	Diek. P. M. (4), 11, 409.
4.6	" wire_	8.733	, , , ,
4.4	Plate	8.902, 0°	Quincke. P. A. 97, 396.
. (1 1110022222222	8.945, 0° (in vacuo) }	Quineke. 1. A. 51, 550.
"		8.9565, 17°	Hampe, C. C. 6, 379.
4.4		8.8	Roberts and Wrightson. Bei.
. 6	Allotropie	8.0 to 8.2	Schutzenberger. J. Ph. Ch. (4
	1		28, 366.
4.4	Molten	7.272	Playfair and Joule. M. C. S. 3,77
	"	8.217	Roberts and Wrightson. Bei.
			817.
ilver		10.472	Brisson. P. des C.
66		10,362, 10°	Biddle. P. M. 30, 152.

Cast 10,565 Presign powdery 10,5532		NAME.	Specific Gravity.	Λv thority.		
10, 1252 Karsten Schw. J. 65, 394 10, 1252 Karsten Schw. J. 65, 394 Cast dowly cooled 10, 1053 Same mass, rolled 10, 513 Hammered 10, 1176 Brittle 9, 8463 10, 1943 Cryst, in lamine 9, 5338 Baudriment, J. P. C. 7, 287, 287, 287, 288, 289 Cryst, in lamine 10, 134 Breithaupt, J. P. C. 11, 151, 287, 289, 289, 289, 289, 289, 289, 289, 289	Silver		10.43)			
Cast, slowly cooled 10,1053			10,17 /	Lengsdorf.		
Cast, slowly cooled 10,1053				Karsten, Schw. J. 65, 394		
Hammered 10,4156		Cast, slowly cooled	10,1058			
Brittle						
Granulated 9,0323 Cryst, in lamine 9,5538 Wire						
Cryst, in lamine 9,5538 Wire			9.5160 }	Baudrimont, J. P. C. 7, 287.		
Wire						
10,434 Breithaupt, J. P. C. 11, 151, Karmarsch, J. P. C. 11, 151, Karmarsch, J. P. C. 13, 150, 150, 150, 150, 150, 150, 150, 150						
10.42				Por (a)		
10.522 10.537 Playfair and Joule, M. C. S. 3, 66 Cast 10.505 Pressel 10.505 Pressip, powdery 10.5523 10.5283 m. of 1 10.5283 m. of 1 10.5283 m. of 1 10.5283 m. of 1 10.5283 m. of 8 Pressip 10.548 m. of 1 10.5283 m. of 8 Pressip 10.548 m. of 1 10.5283 m. of 8 Pressip 10.542 Pressip 10.542 Pressip 10.542 Pressip 10.542 Pressip 10.542 Pressip 10.542 Pressip Pressip 10.542 Pressip Pressip 10.542 Pressip Pressip 10.542 Pressip 10.542 Pressip Pressip 10.542 Pressip Pressip Pressip 10.542 Pressip Pressip Pressip 10.542 Pressip						
10.537 10.5365 10.5365 10.5365 10.5365 10.5365 10.5365 10.5362 10.5287, m. of 13 10.5287, m. of 14 10.5287, m. of 14 10.5287, m. of 15 10.5283, m. of 8 10.468, 13 10.5283, m. of 8 10.512 10.515 Christomanos, J. 21, 272, Dumas, C. N. 37, 82, Vacuo. 10.412, 1 Zimmermann, Ber. 15, 850, Roberts, C. N. 31, 113, 10.621, 02 Quincke, P. A. 155, 612, 10.621, 03 Quincke, P. A. 155, 612, 10.621, 03 Quincke, P. A. 155, 612, 10.622 Quincke, P. A. 155, 612, 10.602 Quincke, P. A. 75, 10.3, 10.602 Quincke, P. A. 155, 612, 10.602 Quincke, P. A. 75, 10.3, 10.602 Quincke, P. A. 75, 10.3, 10.602 Quincke, P. A. 155, 612, 10.602 Quincke, P. A. 15				Karmarsch. J. P. C. 15, 156.		
Cast				Playfair and Joule, M. C. S. 0, 66.		
Presid 10,5665 Precip. powdery 10,5432 10,6491 10,5287, m. of 13 10,5287, m. of 14 10,5283, m. of 8 10,498, 13 10,498, 13 10,498, 13 10,498, 13 10,575 Christomanos, J. 21, 272, 20,400, 2		C. 1				
Precip powdery 10,5527 m, of 13		Proceed				
10.6191 10.5287, m, of 13 10.5283, m, of 4 10.5283, m, of 8 10.5283, m, of 8 10.5283, m, of 8 10.5283, m, of 8 10.512 10.575 Christomanos, J. 21, 272, Dumas, C. N. 37, 82, Vacuto, 10.57 Roberts, C. N. 31, 113, 112, 112, 113, 114, 114, 115, 115, 115, 115, 115, 115						
10.5287, m. of 13 10.5287, m. of 13 10.5287, m. of 4 10.5283, m. of 8 10.5283, m. of 8 10.575 Christomanos. J. 21, 272, Dumas. C. N. 57, 82, Vacuo. 10.107 Roberts. C. N. 57, 82, Vacuo. 10.57 Roberts. C. N. 51, 143, Ouineke. P. A. 135, 642, Ouineke.	4.4	tricitie bearings		G. Rose P. A. 78, 1		
10,5287, m, of 4 10,5283, m, of 8 10,408, 13 10,408, 13 10,408, 13 10,575 Christomanos, J. 21, 272, Dumas, C. N. 37, 82, Wactto, 10,112, 1 Zimmermann, Ber. 15, 850, Roberts, C. N. 31, 143, 112, 113, 114, 115, 115, 115, 115, 115, 115, 115				11 11 11 11 11 11 11 11		
10,5283, m, of 8 10,468, 13 Holzmann, J. 13, 112, 10,575 Christomanos, J. 21, 272, 10,575 Christomanos, J. 21, 274, 10,575 Christomanos, J. 21,						
10.468, 13						
Matter heating in 10,512 Dumas C. N. 37, 82,				Holzmann, J. 13, 112,		
Atter heating in 10,512 Dumas C. N. 37, 82, Vactor, 10,412 Zimmermann Ber. 15, 850, Roberts C. N. 31, 143, Quincke P. A. 155, 642, Playfair and Joule M. C. S. 3, 78 Playfair and Joule M. C.			10,575			
10, 112, 15 Zimmermann, Ber, 15, 850, 10, 57 Roberts, C, N, 31, 143, 110, 21, 62 Quincke, P, A, 135, 642, 21, 21, 21, 21, 21, 21, 21, 21, 21, 2	• •	After heating in				
10.57			10 119 1	Zimmermann Por 15 850		
10,621, 0° Quincke, P. A. 135, 642, Molten 9,131 Playfair and Joule, M. C. S. 3, 78 9,281 Roberts, C. N. 31, 140, 9,10 Playfair and Joule, M. C. S. 3, 78 10,002 Roberts, C. N. 31, 140, 10,002 Quincke, P. A. 135, 642, 10,003 Quincke, P. A. 135, 642, 10,003 Quincke, P. A. 135, 642, 10,003 Quincke, P. A. 73, 1, 11,00 Quincke, P. A. 135, 642, 12,003, Quincke, P. A. 135, 642, 13,00 Quincke, P. A. 135, 642, 14,00 Quincke, P. A. 135, 642, 15,00 Quincke, P. A. 135, 642, 16,						
State 9,281 Playfair and Joule, M. C. S. 3, 78 9,281 Playfair and Joule, M. C. S. 3, 78 9,2612 Playfair and Joule, M. C. S. 3, 78 9,2612 Playfair and Joule, M. C. S. 3, 78 Play				Onineke P A 135 642		
9.281 Sayam and Sayam an		Molten	9.101 a			
Second State Seco				Playfair and Joule, M. C. S. 3, 78		
Compared		**	9-1019	Roberts, C. N. 31, 140,		
Gold 19,258			9.511 m $_{-3}$ 1			
Gold 19,258 Brisson P. des C. 'Hammered 19,267 Elliot Quoted by Rose, 'Pressed 19,3336, 17, 5 'Ppt by exalic acid 19,281, 17, 5 'Ppt by exalic acid 19,281, 17, 5 Fee cutly prepared. 19,286, 17, 5 Fee cutly prepared. 19,296, 17, 5 Fee cutly prepared. 19,296, 13 Holzmann, J. 13, 112, 'Ppt by exalic acid 19,4941 G. Rose, P. A. 75, 403, 19,296, 13 Holzmann, J. 13, 112, 112, 113, 114, 114, 115, 115, 115, 115, 115, 115						
Cold			10,002	Quincke, P. A. 135, 642.		
Hammered 19,207 Elliot. Quoted by Rose. 19,3 to 19,4 Lewis. 0 0 0 0 0 0 0 0 0	Gold		19.258			
Pressed 19,3336, 17, 15 19,2881, 177, 5 19,2881, 177, 5 19,2881, 177, 5 19,2881, 177, 5 19,2881, 177, 5 19,296, 17, 15 19,296, 17, 15 19,296, 17, 15 19,296, 17, 15 19,296, 17, 15 19,296, 17, 15 19,296, 17, 15 19,296, 17, 15 19,296, 17, 15 19,296, 17, 15 19,296, 17, 15 19,296, 17, 15 19,296, 17, 15 19,296, 17, 15 19,296, 17, 15 19,296, 17, 17, 18, 19, 112, 19, 19, 19, 19, 19, 19, 19, 19, 19, 19	1	lammered	19,207	Elliot. Quoted by Rose.		
Pressed 19,3336, 17, 15 19,2881, 177, 5 19,2881, 177, 5 19,2881, 177, 5 19,2881, 177, 5 19,2881, 177, 5 19,296, 17, 15 19,296, 17, 15 19,296, 17, 15 19,296, 17, 15 19,296, 17, 15 19,296, 17, 15 19,296, 17, 15 19,296, 17, 15 19,296, 17, 15 19,296, 17, 15 19,296, 17, 15 19,296, 17, 15 19,296, 17, 15 19,296, 17, 15 19,296, 17, 15 19,296, 17, 17, 18, 19, 112, 19, 19, 19, 19, 19, 19, 19, 19, 19, 19			19.3 to 19.4	Lewis.		
16-amples differs 19,2689, 17 , 5			19,3336, 17, .5			
16-amples differs 19,2689, 17 , 5			19,2981, 177,5			
ently prepared. 19,3296, 17, 5 tremes 19,4911	(19.2881, 17°,5,m of 57	§ G. Rose, P. A. 73, 1.		
Ppt. by exale acid 19,491			[10]5080F1279 J - E/4			
19,265, 13		ently prepared, 1	[19,3296, 17, 5] tremes	1		
□ Betere refling 19,2945) 1 Roberts and Rigg. J. C. S. (2) □ Or ce rolled 19,2982 f 12, 203. □ M ben 17,099 Quincke. P. A. 105, 642. Rathemann 11,0) Deville and Debray. J. 12, 234. □ 12,264, 0 Deville and Debray. C. R. 83,928. Rhedium 11,0) Wellaston. P. T. 1804, 426. □ 11,2 . Cloud. Schw. J. 43, 316. □ 12,1 Deville and Debray. J. 12, 246. Palladium 11,3) □ 11,8) Wellaston. See Bottger. □ 12,148 Lowry. □ 0 12,148		lipt, by exame acid				
Or ce rolled 19,2382 f		- I				
w M ben Ruthemum 17,000 Quincke, P. A. 135, 642. Ruthemum 11,00 Deville and Debray, J. 12, 234 w 12 261, 0 Deville and Debray, C. R. 83,928 Rhedium 11,00 Wellaston, P. T. 1804, 426, w 11,20 Cloud, Schw. J. 43, 316, w 12,1 Deville and Debray, J. 12, 246, Palladium 11,30 Wellaston, See Bottger, w 12,148 Lowry,						
Ruthenaum 11.0) Deville and Debray 4, 12, 234 12 261, 0 Deville and Debray C R 83,928 Rhodium 11.0 Wollaston P. T. 1804, 426 11.2 Cloud Schw. J. 43, 316 11.0 Hare A. J. S. (2), 2, 365 12.1 Deville and Debray J. 12, 246 Palladium 11.3) Wollaston See Bottger 12.148 Lowry			A = 4			
11.4 Deville and Debray, J. 12, 234				$Q_{1111000000} = \Gamma_{11} \Lambda_{11} \Gamma_{000} \Gamma_{0} \Gamma_{21}$		
12 261, 0 Deville and Debray, C. R. 83,928 Rhodium 11,0 Wellaston, P. T. 1804, 426,				Deville and Debray, 4, 12, 234		
Rhedium						
11.2 Cloud, Schw. J. 43, 316, 11.0 Hare, A. J. S. (2), 2, 365, 12.1 Deville and Debray, J. 12, 246, 11.8 Wollaston, See Bottger, 12,148 Lowry, 9, 9		utu				
11.0						
Palladium 11.3 Deville and Debray, J. 12, 246 Palladium 11.3 Wollaston, See Bottger, 12.148 Lowry, 9 9						
Palladium 11.3 \\ 11.8 \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\	1.1					
Wollaston, See Bottger, 12.148 Lowry, 9 9	Pallie	lium		•		
12.148 Lowry. 0 0				Wollaston, See Bottger,		
				Lowry.		
	* 1		11.852	Lampadius. Watts' Diet.		

NAME.	Specific Gravity.	Антновиту.	
Palladium	11.8	Vauquelin. Ann. 88, 167.	
"	11.041, 18°	Cloud. Schw. J. 1, 362.	
"	10.928	Breithaupt. See Böttger.	
"	11.628	Benneke and Reinecker. See Böttger.	
"	11.30	Coek. M. C. S. 1, 161.	
" Hammered	11.80)	, '	
	11.752 11.4, 22°.5	Breithaupt. J. P. C. 11, 151.	
"	12.0	Deville and Debray. J. 12, 237. Troost and Hautefeuille. C. R.	
	12.104	78, 970. Lisenko. Ber. 5, 29.	
" Molten	10.8	Quincke. P. A. 135, 642.	
Osmium	21.40	Deville and Debray. J. 12, 232.	
"	22.477	Deville and Debray. C. R. 82, 1076.	
Iridium. Porous globule_	18.680	Children. See Böttger.	
"	21.78)	Eckfeldt and Boyé, for Hare. A.	
"	21.83	J. S. (2), 365.	
" Black	18.6088	G. Rose. P. A. 75, 403.	
	21.15	Deville and Debray. J. 12, 242.	
"	22.421, 17°.5	Deville and Debray. P. M. (4),	
	22.22	50, 561.	
T1 .:	22.38	Matthey. C. N. 40, 240.	
Platinum	20.85	D 1 O () 1 M ()	
	20.98	Borda. Quoted by Marchand.	
	21.06)	J. P. C. 33, 385.	
" Cast " Hammered	$19.5 \atop 20.3$	Brisson. P. des C.	
" Wire	21.0	Brisson. 1. des C.	
((((21.7	Klaproth. Quoted by Marchand.	
"	21.061	Sickingen. " " "	
"	21.45	Berzelius. " " "	
	21.47)		
"	21.53 }	Berthier. " " "	
" Cast	17.7	Prechtl. " " "	
	21.3	Faraday. " " "	
" Hammered	20.9	E. D. Clarke. " " "	
" Spongy	21.47	Thomson. " " "	
"	21.343	Scholz. See Böttger.	
(,	21.359	Meissner. " "	
Wire	21.16		
	21.40	Wollaston. P. A. 16, 158.	
" " Hammarul	21.53	2, 10, 10,	
Tammered	21.25 J		
5pong,	$\frac{17.572}{15.790}$	T: 1: D A 18 101	
	15.780	Liebig. P. A. 17, 101.	
	16.319) 17.894	Schola See Datter	
Diack		Seholz. See Böttger.	
"	$21.2668 \atop 21.3092$ } 0°	Marchand. J. P. C. 33, 385.	
" Hammered		· ·	
" " " " " " " " " " " " " " " " " " "	21.16	Huma A I S (2) 9 205	
	21.23	Hare. A. J. S. (2), 2, 365.	
	16.634		
DDD115.y			
Oponsy	20.9815	Rose. P. A. 75, 403.	

NAME.	Specific Gravity.	Authority.
Platinum, Precip. blac	·k 22,0345 26,1448, 15°,7 ? }	Rose P A 75 402
" Black	26.1418, 15°.7 ? / ~~ ~	1 1000 1 1 10 100 1000
**	17.766 j	
" Spongy	$21.169 \left\{ \begin{array}{c} 21.213 \end{array} \right\}$	Playfair and Joule, M. C. S. 3, 57.
44	(21.243)	
44	21.15	Deville and Caron. J. 10, 259.
4 +	21.15	 Deville and Debray, J. 12, 240.
" Very pure	21,504, 17°,6	Deville and Debray. P. M. (4), 50, 560,
· Molten	18,915	Quincke, P. A. 135, 642.

H. INORGANIC FLUORIDES.

NAME.	FORMULA.	SP. GRAVITY.	Антиовиту.	
Hydrogen fluoride or hydrothuoric acid, liquid.	en fluoride or hy- H F		Davy. P. T. 181:	
		.9922, 11* .9879, 12*.7 .9885, 10*.6 (c) 1.036, 15*.5	Gore. P. T. 1869 173.	
Lithium fluoride	Li F	2.582 2.608 2.612	Schröder, Dm. 1879	
	**	2,295, 210.5	Clarke, A. J. S. (3) 13, 292.	
Sodium fluoride	Na Γ	$\frac{2.710, \text{ m. of } 7}{2.601, \frac{11x_{s}}{2.772}, \text{ tremes}}$	Schroder, Dm. 187.	
		2,558, 11 .5 .	Clarke, A. J. S. 62 13, 292.	
Potassium fluorido	K. F	2,454, 12° 2,459 ₁	Bodeker, B. D. Z	
		2.476 2.507	Schröder, Dm. 187.	
44		2.090, 219.5	Clarke, A. J. S. (3) 13, 292.	
4.4	**	2,350, m. of 3	Schröder, Ber. 1 2018.	
Rubidium fluoride.	Rb F	3,202, 160.5	Clarke, A. J. S. (3) 13, 293,	
Ammonium by drogen flu-	$\Delta m H F_{x} = \dots$	1.211, 120	Bodeker, B. D. 7	
Silver thuoride	Ag F	2.472	Schröder, Dm. 187. Cossa, Ber. 10, 29. Strüver, Dana	
Zine fluoride	$\begin{array}{cccccccccccccccccccccccccccccccccccc$. 4,556, 17° (. 2,567, 10° (Min., 2d App. Clarke, A. J. S. (3) 13, 291.	

NAME.	FORMULA.	Sp. Gravity.	AUTHORITY.
Cadmium fluoride	Cd F ₂	5.994, 22°, m.	Kebler. A. C. J. 5,
Calcium fluoride	Ca F ₂	of 7. 3.183, m. of 60	241. Kenngott. J. 6, 853.
(1 (1 (1)		3.150	Smith. J. 8, 976. Sehiff. A. C. P. 108, 21.
u u Precip	"	3.162	Luca. J. 13, 98.
" " Precip " Ignited	((3.150	Schröder. Dm. 1873.
Strontium fluoride	Sr F ₂	4.202	"
11 11		4.236 } 4.210	Schröder. P. A. 6 Erganz. Bd. 622.
Barium fluoride	Ba F2	4.58, 13°	Bödeker. B. D. Z.
;	('	$\left\{ egin{array}{l} 4.824 \ 4.833 \end{array} ight\}$	Schröder. Dm. 1873.
Lead fluoride	Pb F ₂	8.241	(1) 1 (0)
Nickel fluoride	Ni F., 3 H. O	2.855, 14° }	Clarke. A. J. S. (3), 13, 291.
Aluminum fluoride	LALE"	$\left[\frac{3.065}{3.13} \right] 12^{\circ}$	Bödeker. B. D. Z.
Arsenic trifluoride, l	As F ₃	2.73	Unverdorben, P.A.
" "	"	2.66	7, 316. MacIvor. C. N. 30, 169.
(1 (1		2.6659, 0° €	Thorpe. J. C. S.
., ,,	((2.4497, 60°.4 } 2.784	37, 372. [874. Moissan. C. R. 99,
Bismuth fluoride	Bi F ₃ Bi O F	5.32, 20° } 7.5, 20° }	Gott and Muir. J.
" oxyfluoride Crvolite. Greenland	Na ₃ Al F ₆	7.5, 20°	C. S. 53, 127. Dana's Mineralogy.
Siberia		2.95	Durnew. J. 4, 820.
" Colorado		2.972, 24°	Hillebrand and Cross. A. J. S.
Chiolite	Na ₅ Al ₈ F ₁₄	2.72	(3), 26, 271. Hermann. J. P. C.
	"	2.90	37, 188. Kokscharow. J. 4,
::		2.842-2.898	820. Rammelsberg. P. A.
Chodneffite	Na ₂ Al F ₅	3.003)	74, 314. Rammelsberg, P.A.
Chodneffite	""	3.077 } {	74, 314.
		2.62—2.77	Wörth. Dana's Mineralogy.
Pachnolite.* Colorado	Na Ca Al F ₆ . H ₂ O	2.965, 17°, m.	Hillebrand and Cross. A. J. S.
	"	0.000.000	(3), 26, 271.
Prosopite. Altenberg	Ca Al ₂ (F. O II) ₈	$\frac{2.890}{3.898}$ }	Scheerer. Dana's Mineralogy.
" Colorado	"	2.880, 23°	Hillebrand and
001011110	l	1	Cross. A. J. S.

 $^{{}^{\}diamond}\mathrm{According}$ to Brandl, pachnolite and thomsenolite are distinct species, but Hillebrand and Cross show them to be identical.

 $^{2 \}text{ s } \text{ G}$

Name.	FORMULA.	SP. GRAVITY.	Аттионату
Rulstonite	$\operatorname{NaMgAH}_4\Gamma_{12} \otimes \operatorname{H}_2O_2$	11.1.2	Nordenskield. Da
	$(\mathrm{MgNa}_2)\mathrm{Al}_3(\mathrm{F},\mathrm{OH}_2)\mathrm{H}_2(\mathrm{OH}_2)$	250	reds Min., 3d App Penfield, and Har per, A. J. S. (3) 32, 381.
Fluorerite	Ce F ₃ , -2.	1.7	Berzelius, Dana' Mineralogy,
Pysonite	t Ce $\mathbf{F}_3.$ 3 La \mathbf{F}_3	6.13, in mean	Allerand Comstock
Yttrocerite		3.147	Berzelius. Dana' Mineralogy.
Potassium borotluoride	K B F ₄	2.5)	Stollar, B. S. C. 18
Lithium silicotluoride	* *	2.86 2.211	Stella, J. 17, 21, Topsoc, C. C. 1, 70
Sodium silicotluoride	Na_2 Si F_6	2.7517, 17 .5	Stolba. J. P. C. 97 503.
		Statut Arenos I	Schroder, Dm.187
Potassium silicofluoride.	K_2 Si F_6	2,6655) 4515	(Stollar, J. P. C + 97, 503.
			Schröder, Din, 187
Rubidium silicofluoride . Caesium silicofluoride . Ammonium silicofluoride	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	3,3383, 20 3,3756, 175 1,970 2,056, m. of 5 ₄	Stolba, J. 20, 186 Preis, J. 21, 195, Topson, C. C. 1, 7
	4.	$\frac{2.035}{2.071}$ $\frac{11x}{11x}$ $\frac{1}{2}$	Schroder, Dm. 187
Calcium siliçoiluoride			S(ollar, A, 35), 2
Strontium silicotluoride	$\begin{array}{cccc} \operatorname{Ca} \operatorname{Si} F_6, & 2 \operatorname{H}_2 \operatorname{O} \\ \operatorname{Sr} \operatorname{Si} F_6, & 2 \operatorname{H}_2 \operatorname{O} \end{array} \right]$	2,955)	Topson, C. C. 1, 7
**	Ba Si F ₆ ==	2,000 / 1,2791, 21	Stollar, J. 31, 287 Stollar, J. 18, 170
Barium silicofluoride	Dasir _g = -	1.2380, 22	Schweitzer, Uni- of Missouri, spe- ial pub. 1876.
Magnesium silicotluoride Zine silicotluoride	Mg Si F ₆ , 6 H ₂ O Zn Si F ₆ , 6 H ₂ O	2.104 ;	Topsoe, C.C. L.7
	44	2.121 2.141 2.141 3.141	i Stoller, J. R. 6 i 5, 72.
Manganese silicofluoride Tron silicofluoride	$\begin{array}{c} \operatorname{Mn}\operatorname{Si}\operatorname{F}_6, \operatorname{GH}_2\operatorname{O} \\ \operatorname{Fe}\operatorname{Si}\operatorname{F}_6, \operatorname{GH}_2\operatorname{O} \end{array}$	1.858 1.96115, 17.5	Topson, C. C. 1, 7 Stolla B. S. C. 1 155.
Nickel silicothuoride Cobalt silicothuoride	$\begin{array}{ccc} \text{Ni Si F}_6, & \text{6 H}_2 & \text{0} \\ \text{Co Si F}_6, & \text{6 H}_2 & \text{0} \end{array}$	2.10% i 2.007 ;	Topson, C.C.I.7
4, 5,	6	2.1211) 2.11-5 19	(Stella, B. S.) (26, 155
Copper silicofluoride	$\begin{array}{cccc} \operatorname{Cu} \operatorname{Si} \operatorname{F}_6, & \operatorname{H}_1 \operatorname{O} \\ \operatorname{Cu} \operatorname{Si} \operatorname{F}_6, & \operatorname{GH}_2 \operatorname{O} \end{array}$	2,535 2,1576, 17	Topson, C. C. 1.5 Studen, J. 20, 25
4. 4.		2,207 2,182	Topson C.C. 1.7 Topson and Chri- tausen.

^{*}According to Stolba, these salts contain \mathcal{O}_2 molecules of water

NAME.	FORMULA.	Sp. Gravity.	Аптн	IORITY.
Potassium titanofluoride Copper titanofluoride Potassium zircofluoride Zine zircofluoride Niekel zircofluoride Potassium stannifluoride Ammonium stannifluoride Manganese stannifluoride. Cobalt stannifluoride Potassium columboxyfluoride. Copper columboxyfluoride. Potassium tantalofluoride. Potassium uranoxyfluoride """ ""	Cu Cb O F ₅ . 4 H ₂ O Cu Cb O F ₅ . 4 H ₂ O 3 K F. U O ₂ F ₂ 3 K F. 2 U O ₂ F ₂	2.813 2.750 4.056 4.263, 20°	" " Baker. 760.	" " J. C. S. 35, "
Ammonium uranoxyfluo- ride.	3 Am F. U O_2 F_2 .	3.186, 20°	"	66

III. INORGANIC CHLORIDES.

1st. Simple Chlorides.

NAME.			FORMULA.	Sp. Gravity.	Антновіту.	
	ricacid	, liquef'd	H Cl	.873, 7°.5 .854, 11°.7 .855, 15°.8 .808, 22°.7 .748, 33° .678, 41°.6 .619, 47°.8 1.998 2.074	113. Quincke. P. A. 138, 141.	
Sodium c	enioriae		Na Cl	. 2.2001	Hassenfratz. Ann. 28, 3.	
	"		"	2.15	Leslie. See Böttger.	
"	44		"		Mohs.	
"			"	2.078	Karsten. Schw. J. 65, 394.	
"	11		"	2.030	Unger, See Böttger,	
	"		"	2.150	Kopp. A.C.P. 36,1.	
"	"		"	2.011, m. of 3_	Playfair and Joule M. C. S. 2, 401	
"	"		:	2.24	Filhol. Ann. (3).	

Name. Sodium chloride		Name. Formula. Sp. Grave			Sp. Gravity.	Аттновиту.
		Na Cl		2.155, 15°,5	Holker, P. M. (3), 27, 213.	
4.4		Cryst.			2.195)	15 111. Y 0: 35
		After fu-			2.201 }	Deville, J. 8, 15.
		~i++11.				
* *					2.142)	Grassi, J. 1, 39,
* *		-			2.207 /	
* *		Helite			2.105	Hunt. J. 9, 976,
• •	• •				2,115	Schiff, A. C. P. 108, 21.
					2.153 [[[[]]]]	Schroder, P. A. 106,
			**		2.161 /	10016
					2.145	Buignet. J. 15, 14.
• •			**		2.1629, 15° ===	Stolla, J. P. C. 97, 503.
4.9			**		2.1543	Haagen, P. A. 101, 117.
					2.06-2.08	Page and Keightley, J. C.S (2), 10, 505.
. 6			* *		2.145	Stas. (2), 10, 50%.
4.6		Natural			2.187	Rudertf. Ber. 12,
				- 1		251.
					2.1641, 15°	Bedson and Wil- liams, Ber. 14,
•	+ 1	Cryst, at			2.16171	*) = (*) **() (*)
		Cryst. at		~	2,15491	Nicot. P. M. (5), 15, 94.
	, 6			- 8	1.612, at the melting point.	Braun J. C. S. (2),
					2.23	Brugelmann. Ber.
- 1					2.165 , 101	[17, 2350.
					2.1615, 202	
	* *				2,1594, 30% []	Andreae, J. P. C.
* * *					2,15665, 40°	$(2^{\circ}, 30, 345,$
					2,174 (5, 50)	
. 1					2.1551 (Zehnder, $P(A=2)$,
				-	2.1887	29, 259,
*					2,092, 0 (1)	Quincke, P. A. 195,
Potassa	in chb	Fuse1	K Cl II		2.04) 1.9367 (22)	642. Hassenfratz, Ann.
6.					1.836	28 G. Kawani, See Bott-
			**		1.915:	ger. Kursten Schw. J.
			t.		1.945	65, 394 Nov. A.C. Doc. 1
					1 500	Kopp. A C. P 36.1. Playfair and Joule. ΔI C S 2, 401.
					1,97756,4	Playfair and Joule, J. C. S. I. 137.
* *			**		1.991	Filled, Ann. (3), 21, 415.
**					1.695	Schiff, A. C. P. 108, 21.
4.6					1.918, 155.5	Holker, P. M. (3), 27, 213,

					T	
	Name.			FORMULA.	Sp. Gravity.	AUTHORITY.
Potessi	Potessium chloride				1.995	Schröder. P.A. 106. 226.
"	٠.				1.986 1.94526, 15° _	Buignet. J. 14, 15.
"	• • •				1.90—1.91	
"	٤.		61		1.612, at the melting p't.	Braun. J. C. S. (2),
£ £	6:	Not pressed.	"		1.980, 225	15, 51.
"	"	Once pressed.	"		2.071, 20° }	Spring. Ber. 16, 2724.
"		Twice pressed.	44		2.068, 21°	2121.
٤.	"		"		1.98	Brügelmann. Ber. 17, 2359.
44	4.6		44		1.932, 0° \	Quincke. P. A. 135,
Rubidi	ın chlori	-Fused de			$\begin{bmatrix} 1.870 & \dots & \\ 2.807 & \dots & \end{bmatrix}$	642. Setterberg. Of. Ak.
	chloride.				8.992	St. 1882, 6, 23.
	ium chło			i	1.450	Wattson. See Bött-
64	66		4.		1.54425	ger. Hassenfratz. Ann. 28, 3.
44	٤.		44		1.528	Mohs. See Böttger.
۲:	٠.		"		1.578, m. of 3.	Playfair and Joule. M. C. S. 2, 401.
"	4.6		"		1.5333, 4°	Playfair and Joule. J. C. S. 1, 137.
**	"		٤.		1.52, 15°.5	Holker. P. M. (3), 27, 214.
46	"		66		1.500 1.522	Kopp. A.C.P. 36,1,
44						Schiff. A. C. P. 108,
"	4.				1.550 1.5033 }	Buignet. J. 14, 15.
4.4	44		6:		1.5191 \ 150	Stolba, J. P. C. 97,
"	"		"		1.5209) 1.456	503. W. C. Smith. Am.
Silvene	hloride		1 m C1		5.4548	J. P. 53, 145.
onver e		nfused	ng Ci		5.501	Proust.
::		lack d	4.4		5.5671	Karsten. Schw. J.
"	44 A	fter fu-			5.4582)	65, 394.
"			"		5.129	Herapath. P. M. 64, 321.
"			"		5.548	Boullay. Ann. (2), 48, 266.
6.6					5.55	Gmelin.
66		ttive	4.4		5.31 \	Domeyko, Dana's
					5.43 } 5.517	Min.
						Schiff, A. C. P. 108, 21. [226,
			• • •		5.5943	Schröder. P. A. 106,

Name.			FORMULA. SP. GRAVITY		SP. GRAVITY.	Астновиту.
Silver chl	M	loiten	Ag Cl		5,505, 0 °) 4,919, 451°)	Rodwell, P.T.1882 1125. Quincke, P.A. 105
					5.0	642. Quincke, P. A. 158
Phallium	chlorid		Tl Cl		7.00	141. Willim.
Thallium					7.02	Lamy, J. 15, 184.
Magnesius		ride	Ti, Cl. Mg Cl.		2.177, in. of 2	Playfair and Joule
4.6			$Mg \operatorname{Cl}_{2,1} 6 \operatorname{II}_2 6$	D	1.562, m. of 4	M. C. S. 2, 401.
**	••		**		1,558	Filhel, Ann. (3) 21, 115.
* *	•• В	ischolite.	**		1.65	Ochsenius, B. S. M 1, 128.
Zine chlor Cadmium			$\operatorname{Zn} \operatorname{Cl}_2$ $\operatorname{Cd} \operatorname{Cl}_2$		0.6254. 121	Bodeker, B. D. Z.
 Mercurou		ide	са ст., 2 П е нg ст. , 1	0	3 655, 16 39 3.324, m. of 3 7.1758	P Knight, F.W.C W Knight, F.W.C Hassenfratz, Ann
			**		7.14	28, 3. Boullay, Ann. (2
+ 6	h-h-				6,0025	Karsten, Schw. J
11					6,7107	65, 394 Herapath, P. M. 6
		Native			6.182	321. Haidinger, Dana
+4	* 1				7.178	Min. Playfair and Joule M. C. S. 2, 401.
• •					6.56	Schiff, A. C. P. 10
Mercuric	Hlorid		$\operatorname{Hg} \operatorname{Cl}_2 = \ldots$		5,1098	21. Hassenfratz. Am
					5.14 5.42	28, 3. Gmelin. Boullay, Ann. (2
* *					5,4002	40, 266. - Karsten, - Schw. •
					0.023	65, 394. Playfair and Joul
. 4					5.148, m. of 3	M. C. S. 2, 401 Schröder, P. A. 10
Calcium c	ddorida		CacCl		2 214	113. Boullay, Ann. (2
			*		2.260	43, 266,
**	+1				2.0401	Karsten, Schw. 4
* *					2.150	Playfair and Joul M. C. S. 2, 401
* *					2.210	Filhel, Ann (3), 2 115, [2]
1.5	+ 4		44		2.205	Schiff, A. C. P. 10
• •	• •				2.160, 27	Favre and Valso C. R. 77, 579.
• •		Fused		-	2.210, 0)	

	Name	2.	Formula.	SP. GRAVITY.	AUTHORITY.
Calcium chloride. Fused _			Ca Cl ₂	2.120	Quincke. P. A. 138,
"			Ca Cl ₂ . 6 H ₂ O	1.680, m. of 2_	141. Playfair and Joule.
**	"		"	1.635	M. C. S. 2, 401. Filhol. Ann. (3), 21,
	11		ιι 	1.612, 10° 1.701, 17°.1	415. Kopp. J. 8, 44. Favre and Valson. C. R. 77, 579.
			"	$\left\{ \begin{array}{l} 1.654, \mathrm{m.~of~4} \\ 1.642, $	Schröder. Dm. 1873.
.; Strontiur	n ehlor	ide	Sr Cl ₂	1.671 \(\) tremes \(\) \(2.8033 \) \(\) \(\)	Karsten. Schw. J.
"			"	2.960	65, 394. Filhol. Ann. (3), 21,
"	"		"	3.035, 17°.2	415. Favre and Valson, C. R. 77, 579.
			"	3.054	Schröder. A. C. P. 174, 249.
	"		"	2.770, at the melting point.	Braun. J. C. S. (2),
		Fused	"	2.770	Quincke, P. A. 138. 141.
44			2 2 2		Playfair and Joule. M. C. S. 2, 401.
7.6	"			1.603	Filhol. Ann. (3), 21 415.
	"			1.921 1.932, 17°.2	Buignet. J. 14, 15 Favre and Valson C. R. 77, 579.
Barium o	" chlorid	e	Ba Cl ₂	1.954 1.964, 16°.7 3.860 \ 4.156 \	Schröder. Dm. 1873 Mühlberg. F. W.C Boullay. Ann. (2)
			(1	3.8	43, 266. Richter. Watts' Diet
44	"		"	3.7037	Karsten. Schw. J 65, 394.
44			"	3.750	Filhol. Ann. (3), 21 415.
	"		"	3.820	Schiff. A. C. P. 108
:4	"		(,	$\frac{3.872}{2.000}$ }	Schröder. P. A. 107
16	"		"	. 3.886 } . 3.7, 17°.5	113. Kremers. P. A. 85
"	"		"	3.844, 16°.8	42. Favre and Valson C. R. 77, 579.
4.6	"		"	3.92	Brügelmann. Ber 17, 2359.
"	"	Molten_	"		Quincke. P. A. 138 141.
"	"		Ba Cl ₂ . 2 H ₂ O	·	Playfair and Joule M. C. S. 2, 401.
"	"		11		Filhol. Ann. (3), 21 415.
"	"		"	3,05435, 4°	Playfair and Joule J. C. S. 1, 137.

	Name.	FORMULA	Sp. Gravity.	Антиовиту.
Larium	chloride	Ba CI ₂ . 2 H ₂ O $_{\perp}$	3.052	Schid, A. C. P. 10
		**	3.081	21. Burgnet, J. 14, 15
4.4				Favre and Valser C. R. 77, 579
* *			EL 3.045	Schröder, Din, 187.
	foride	Pb Cl ₂ =	5.29	Monro.
**	O Native		5.208 5.8022	Dana's Min.
	· Unfused . · After fusion			Karsten, Schw. 5 65, 594.
4.4	" Cryst.	**		Schabus, J. 4, 022
4.4				
**			5,80584, 15% _	Stollac, J. P. C. 9 503.
	**		5,88	Brugelmann, Be 17, 205 c
hean t	is chloride	Cr Cl ₂	2.751.14	Grabfield, T. W. 6
Chromic	chloride	C12 C16	3,03, 172	Schafarik, J. P. C 50, 12,
**			of 13.	
Mangan	ous chloride	Mn Cl ₂		Schröder, A. C. 174, 219.
• •		Mn Cl. 1 H.O.	1.898	
		**	1.913	Schröder, Dm. 187
			2.01, 10	Bodoker B. D.
Ferrous	chloride	Fe Cl ₂		Filhol, Ann:
h h			2.988, 174,0	Grabbield F. W.
* *	••	Fe Cl ₂ . 4 H ₂ O		Filiad. Ann. 3 .1 415.
		**	1.967	Schalor J 4, 327
Ferrie el		Fe ₂ Cl ₆	2.801, 10 .8	Grabeleld, F. W. Schiff, A. C. P. 10
	inforide	Co Cl,		21
i obiit c		Ca Cl ₂ 6 H ₂ O	1.84, 132	Playfide and Jou M. C. S. 2, 401 Bodeker and Ehle
L'133.75.41.		Cu Cl	3,677	B. D. Z. Karsten – Schw
	44		3,376	65, 394 Playfor and Job
٠.	· Nantoquite		3,930	M. C. S. 2, 401 Bree ampt. J. 3
Caprica	hloride	Cu (1 =	3 054	Playfair and Jon
•				M C S 2 401.
**		Ca CL 2 H, O	2.545; m; of 2	D 2 D D
Boron t		1; (2.47, 18 1,45	Boloser B D Wolder and Devil A 10, 981
Cralinan	chloride Mater.	Colt.	2.56, 80	Borsbaudran, C 41 196.
Cermin	chlande	Co Cl ₃	0.88 15% 5	Robinson, C. No. 251.
Dalymi	um chleride	$D_{1} \leftarrow_{3} \otimes H_{1} + \cdots$	2.250) 15.5	Clay U.N.A.18

Name	. .	FORMULA.		Sp. Gravity.	Аптновиту.
Samarium ehlor	ide	Sm Cl ₃ , 6 H ₂ O		2.375 \ 2.395 \ 15°	Cleve. U. N. A. 1885.
Caroon entoride	. **	Si Cl ₄		1.52371, 0°	
"				7 5000 50 500	26.
((1.5083, 5°-10°	D. D. D.
"		"		1.4983, 10°-15° 1.4884, 15°-20°	
		"		1.4878, 20°	Haagen. P. A. 131,
		"		1.49276	117. Mendelejeff. C. R.
		"		1.522, 0°	51, 97. Friedel and Crafts. A. J. S. (2), 43,
		"		1.52408,00	162. Thorpe. J. C. S.
				1.40294, 57°.57	37, 372.
Silicon hexchlor	ride	Si ₂ Cl ₆		1.58, 0°	Troost and Haute- feuille. Z. C. 14,
Titanium tetrac	hloride	Ti Cl ₄		1.76088, 0°	331, Pierre. Ann. (3), 20, 21.
• (((("		1.7487, 5°-10°)
"		"		1.7403, 10°=15°	Regnault. P. A.
" "		"		1.7322, 15°-20°) 62, 50.
" "				1.76041, 00	Thorpe. J. C. S.
Germanium tetr				1.52223,136°.41 1.887, 18°	Winkler. Ber. 19,
Tin dichloride	·	Sn Cl_2 . $2 \text{ H}_2 \text{ O}$		2.759	ref. 655. Playfair and Joule.
				2.71, 15°.5, s	M. C. S. 2, 401. Penny. J. C. S. 4,
		"		$\begin{bmatrix} 2.5876, 37^{\circ}.7, 1 \end{bmatrix}$	239.
		"		2.634, 24°	Bishop. F. W. C.
Tin tetrachlorid	e	Sn Cl ₄		2.26712, 0°	Pierre. Ann. (3), 20, 19.
11 11				2.2618, 5°-10°)
11 11		**		2.2492, 10°-15°	Regnault. P. A.
"		"		2.2368, 15°-20°) 62, 50.
" "		££		2.234, 15° 2.2328, 20°	Gerlach. J. 18, 237. Haugen. P. A. 131,
<i>ti tt</i>		"		2.27875, 0°	117. Thorpe. J. C. S.
"		"			$\left. \left\{ \begin{array}{c} 1007 \text{ pc.} & 3. \text{ C. S.} \\ 37, 372. \end{array} \right. \right.$
Nitrogen trichle	ride	N Cl ₃ . ?		1.653	Watts' Dictionary.
Phosphorus tric		P Cl ₃		1.45	Davy. Watts' Diet.
ű		"		1.61616, 0°	Pierre. Ann. (3) , 20 , 9 .
"		··		1.6091, 5°-10°	
"				1.6001, 10°15°	Regnault. P. A.
"	"	"		1.5911, 15°-20° 1.6119, 0°, m.	62, 50.
				of 2.	Buff. A. C. P. 4
"		11		1.59708, 10°	Supp. Bd. 129. Boiling point, 76°.
	44			1.47124, 76°	

 $^{\ ^*}$ The chlorides, bromides, and iodides of carbon are assigned to a special division among organic compounds.

Vanadium dichloride	Name.		FORMULA.	Sp. Gravity.	Authority.	
	Phospho	orus tric			1.5774, 20°	Haagen, P. A. 131, 117.
Vanadium trichloride	+ 4) Thorpe. J. C. S.
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$			lorido	V C	1.46815,75°,95 8 93 18° s	
Vanadum tetrachteride V C1, 18,363, 88 1,8150, 222 1,8150, 222 1,8150, 222 1,8150, 222 1,8150, 222 1,638						
Arsenic trichloride	Vanadiu	m tricl	doride	V Cl ₃	3.00, 18°, s	4.
Arsenic trichloride	Vanadiu	m tetra		6.	1 80000 89	
Arsenic trichloride					1.8159, #2° .)	[15,
Company Comp	Arsenic	trichlor		As Cl3	_ : 2.20495, 0° _ :	Pierre, Ann. (3), 20,
Color Colo	* *	**			2.1766	Penny and Wallace.
Antimony trichloride -8 Cl ₃ $-2.20500, 0^{\circ}$ $-1.50812, 1302.21$ $-37, 575.2$	+ 4	4.4			2.1668, 20°	- Illungen, P. A. 131,
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	* *					A Thorpe, J. C. S.
$\begin{array}{cccccccccccccccccccccccccccccccccccc$						
Antimony pentachloride $ Sb Cl_3 $ $ Sb Cl_3 $ $ Sc $		iy trich	doride			
Antimony pentachloride $ Sb Cl_3 2,3461, 20^2 1348, 117, 117, 117, 117, 117, 117, 117, 11$		* *	1			1 15 1 (1 1) (17
Antimony pentachloride Sb Cl ₅ 2,3461, 20° Haagen, P. A. B H77 Bismuth trichloride Bi Cl ₅ 4,56, 41 Sulphur chloride S ₂ Cl ₂ 1,687 Dumas, Ama, a 49, 204, Marchand, J. P. 222, 567,					* 6750 1 70 P	
$\begin{array}{cccccccccccccccccccccccccccccccccccc$			achloride .			Hauegen, P. A. 131.
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	D:	4	1	18.73	1.58.11	
1,686 1,686 1,686 1,686 1,686 1,686 1,686 1,688 1,68						Dumas, Ann. (2),
$\begin{array}{cccccccccccccccccccccccccccccccccccc$		CHILITI		2 - 2		
1,6882, 10 - 15; Regnardt, P, 1,6793, 15\$*-20 Regnardt, P, 1,6793, 15\$*-20 Repp. A, C, P, 9	. 4	4.4			1.686	Marchand, J. P. C. 22, 507.
1.6793, 15*-20 1.62, 50 1.7055, 0 1.7055, 0 1.7055, 0 1.7055, 0 1.7055, 0 1.6802, 107.7 355, 0 1.6828, 20* 1.6828, 20* 1.6828, 20* 1.6828, 20* 1.6828, 20* 1.17, 0.6828, 20* 1.6828, 20* 1.70941, 0 1.70941, 0 1.70941, 0 1.70941, 0 1.70941, 0 1.70941, 0 1.70941, 10 1.70941, 0 1.70941, 10						1
1,7055, 0 1,682, 167, 7 355, 6 1,682, 167, 7 355, 6 1,6828, 20° Haggen, P. A. B. 147, 14848, 138 Rainsay, J. C. S. 3 463, 17,0941, 0° 1,70941, 0° 1,						
$\begin{array}{cccccccccccccccccccccccccccccccccccc$						
Color Colo						
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	• • •					Haugen, P. A. 131.
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$. 4	٠.			1.4848, 108	Ramsay, J. C. S. 35,
A					1.70941.01	403. → Thorpe: J. C. S.
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	6.6					
Iodine menochl cride I Cl 3,263, 0 0 0 3,222, 16, 5 0 0 3,206, 18, 2 0 0 3,180, 30 0 0 3,176, 32 0 0 3,12, 48 0 0 3,12, 48 0 0 3,12, 48 0 0 3,084, 60 Hannay, J. C. S.(0 0 0,032, 72 14, 818, Melts 0 0 3,036, 75 24-7, Botts 0 0 2,988, 86 1007,5 to 1017,5 0 0 2,984, 95 0 0 3,18223, 0) Thorpe, J. C.	Seleniun	a chlori			2,906, 17, 15	Divers and Shimose, Ber. 17, 866.
0	Lodine n	nonochi	loride	101	0.263, 0	
0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0					3,222, 16, 5	
0	4.4				0.206, 18/12	
1	. 6					
3, 127, 48 3, 084, 60 4, 084, 60 5, 084, 60 6, 084, 60 11, 818, Melts 6, 084, 60 2, 188, 86 100°, 5 to 101°, 5 6, 084, 60 6, 084, 60 7, 188	* *					
a a b c <td></td> <td></td> <td></td> <td>**</td> <td></td> <td></td>				**		
11,818, Melts 10,032,72						Hannay, J. C S.(2).
9		. 4			0,032,72	11, 818. Melts at
2, 64, 90 2, 64, 90 2, 94, 95 3, 48, 98 6, 9, 18723, 0) Thorpe, J. C.	6.6	* *				245.7. Boils at
0 0 1 2,904, 95 0 0 2,958, 98 0 0 3,48223, 0 1 Thorpe, J. C.						100°,5 to 101°,5,
a a 2,058, 68 a a 5,18223, 0) Thorpe, J. C.						
a a 3,18223, 0 ,) Thorpe, J. C.	* *					
a a 2 981%, 101° 3 / 27 371.						Thorne, J. C S
		44			2 48[96, 10103	37, 371.

NAME.	FORMULA.	Sp. Gravity.	AUTHORITY.
Iodine trichloride	I Cl ₃	3.1107	Christomanos. Ber. 10, 789.
Platinum dichloride Platinum tetrachloride	Pt Cl ₂	5.8696, 11° 2.431, 15°	Bödeker. B. D. Z.

2d. Double Chlorides.

N	AME.			FORMULA.		Sp. Gravity.	Аптновиту.
Ammonium chloride.	mag	nes	ium	Am ₂ Mg Cl ₄ . 6 H	I ₂ O -	1.456, 10°	Bödeker. B. D. Z.
Potassium z	ine el	lori	de	K ₂ Zn Cl ₄		2.297	Schiff. A. C. P. 112, 88.
Ammonium	zinee	hlo	ride_	Am ₂ Zn Cl ₄		1.879	
"	"			£ 6 £ 6		$\begin{bmatrix} 1.72 \\ 1.77 \\ 1.77 \end{bmatrix}$ 10° $\left\{ \begin{bmatrix} 1.72 \\ 1.77 \end{bmatrix} \right\}$	B. D. Z.
						1.77	273.
Barium zino				Ba ₂ Zn Cl ₆ . 4 H ₂			271.
Potassium c ride.	admiu	m c	hlo-	K ₂ Cd Cl ₄		2.500	Schröder. Dm. 1873.
Strontium co				$Sr Cd_2 Cl_6$. $7 H_2$			W. Knight. F.W.C.
Barium cadr	mium e	ehło "	ride	Ba Cd Cl ₄ . 4 H ₂	O	2.968	Topsöe. C. C. 4, 76.
u Sading man	"	n Ma	 ido	Na Hg Cl ₃ . 2 H ₂		2.966, 25°.2	W. Knight. F. W.C. Playfair and Joule.
							M. C. S. 2, 401.
Potassium r ride.		•		K Hg Cl ₃ . H ₂ O	i		"
Ammonium chloride.	me		ıry	Am ₂ Hg ₂ Cl ₆ . H _{2,6}			
Potassium i				$Am_2 Hg Cl_4$. $H_2 G$ $K_2 Fe Cl_4$. $2H_2 G$)	2.162	Schabus. J. 3, 327.
Potassium e	opper	ehlo	ride	K ₂ Cu Cl ₄ . 2 H ₂	0	2.426	M. C. S. 2, 401.
"	"	"		"	~	2.400	Schiff. A. C. P. 112, 88.
"	"	"		44		2.359 2.410	Kopp. J. 11, 10. Tschermak. S. W.
"		"				2.358)	A. 45, 603.
	"	44		11		2.392	Schröder. Dm. 1873.
"	"	44		"		2.425	
Rubidium co	oppero	hlo	ride	Rb_2 Cu $\mathrm{Cl}_4.$ 2 H_2	0-^-		Wyrouboff. B. S. M. 10, 127.
Ammonium ride.	coppe	er el	nlo-	Am_2 Cu $\mathrm{Cl}_4.$ 2 H	2 O_	2.018	Playfair and Joule. M. C. S. 2, 401.
1146.	"		"	"		1.963	Schiff. A. C. P. 112,
"	11					1.977	88. Kopp. J. 11, 10.
4.4	"		"			2.066	Tschermak. S. W.
			ı		1		A. 45, 603.

- III - III - III - III - III	i		
Name.	FORMULA.	SP. GRAVITY.	Антновиту.
Ammonium copper chlo- ride.	$\overline{\mathrm{Am}_2}$ Cu Cl $_{\mathrm{C}}$ 2 H $_2$ O	1.981, 24°	Evans. F. W. C.
Potassium palladiochlo- ride.	K ₂ Pd Cl ₆	2.500	Topsoë. C. C. 4, 76.
Ammonium palladiochlo- ride.	Am ₂ Pd Cl ₆	2.418	
Magnesium palladiochlo- ride.	$\operatorname{Mg} \operatorname{Pd} \operatorname{Cl}_{6}$ 6 $\operatorname{H}_2 \operatorname{O}_{-}$	2.124	
Zine palladiochloride	Zn Pd Cl ₆ , 6 H ₂ O =.		44 44
Nickel palladiochloride Potassium iridichloride	Ni Pd Cl ₆ , 6 H ₂ O K., Ir Cl.	0.546, 15°	Bodeker, B. D. Z.
Ammonium iridichloride	K_2 Ir Cl_6	[2.856, 15°]	11 11
${\bf Potassium platosochloride}$	K ₂ Pt Cl ₄	[-3.3056, 202.34]	Clarke, A. J. S.
\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \	A Dr. C1		(3), 16, 206.
Ammonium platosochlo- ride.	Am ₂ Pt Cl ₄		Romanis, C. N. 49, 273.
Sodium platinchloride	Na ₂ Pt Cl ₆ . 6 H ₂ O ₋ .		Topsoé. C. C. 4, 76.
Potassium platinehloride	K ₂ Pt Cl ₂	0.586, 15° 0.694	Bodeker, B. D. Z. Tschermak, S. W.
			A, 45, 603.
		3.3, 170)	Pettersson, U. N.
			A. 1874. Schröder, Dm.1873.
Rubidium platinebloride	Rb ₂ .Pt Cl ₆	$13.96, 17^{\circ}, 1.17$	Pettersson, U. N. A. 1874.
Ammonium platinchlo-	$\operatorname{Am}_2\operatorname{Pt}\operatorname{Cl}_6$	$\frac{2.955}{3.009}$ $\left. 15^{\circ} \right.$	Bodeker, B. D. Z.
ride.		(2.960	Tschermak, S. W.
		3.0, 170,2	A. 45, 603, Pettersson, U. N.
	.,	2.936	A. 1874. Schroder, Dm.1873.
	4.	3.065	Topsoc. C. C. 4, 76.
Thallium platinchloride	Tl ₂ Pt Cl ₆	5.76, 17°	Peitersson, U. N. A. 1874.
Magnesium platinehlo- ride.	Mg Pt Cl ₆ . 6 H ₂ O	2.43*	Topsoe. C. C. 4, 78.
44	${ m Mg\ Pt\ Cl_6},\ 12\ { m H_2\ O}$	2,060	4.
Cadmium platinchloride	Cd Pt Cl., 6 H. O.	2.882	fs (s
Barium platinchloride	$\begin{array}{c c} \text{Ba Pt Cl}_{6}^{6}, \ 4 \ \text{H}_{2}^{2} \ \text{O} \\ \text{Pb Pt Cl}_{6}, \ 3 \ \text{H}_{2}^{2} \ \text{O} \end{array}$	2.864	4.
Level platinchloride	$[M_{\rm b}, M_{\rm b}, M_{\rm b}] = [M_{\rm b}, M_{\rm b}, M_{\rm b}, M_{\rm b}] = [M_{\rm b}, M_{\rm b}, M_{\rm b}, M_{\rm b}, M_{\rm b}] = [M_{\rm b}, M_{\rm b}, M_{\rm b}, M_{\rm b}, M_{\rm b}, M_{\rm b}] = [M_{\rm b}, M_{\rm b}, M_{\rm b}, M_{\rm b}, M_{\rm b}, M_{\rm b}, M_{\rm b}] = [M_{\rm b}, M_{\rm b}] = [M_{\rm b}, M_{\rm b}] = [M_{\rm b}, M_{\rm b}] = [M_{\rm b}, M_{\rm b}] = [M_{\rm b}, M_{\rm b}, M_{$	3.681	
Manganese platinchloride	Mn Pt Cl ₆ , 6 H ₂ O ,	2.692	
Iron platinehloride	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	2.112	
Copper platinchloride	C_0 Pr C_1 C_1 C_2 C_2	2.781	44
Dalymium platinchloride	$\begin{array}{ccc} \operatorname{Cu} \operatorname{Pt} \operatorname{Cl}_{6}^{\circ}, & \operatorname{G} \operatorname{H}_{2}^{\circ} \operatorname{O} & = \\ \operatorname{Di} \operatorname{Pt} \operatorname{Cl}_{7}, & \operatorname{Io}_{2}^{\downarrow} \operatorname{H}_{2} \operatorname{O} & = \end{array}$	2.683] 210 2	Cleve, U. N. A. 1885.
Samarium platinchloride	Sm Pt Cl ₇ , 10½ H ₂ O =	2.696	Creve. C. 28. 20. 1886.
Didymium aurichloride	Di Au Cl ₆ , 10 H ₂ O	2, (11)	
Samarium aurichloride	Sm Au Cl ₆ , 10 H, O ₂	2.664	
**	ν	$[2.744]^{-107.9}$	11 11 11 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
Potassium stannochloride	K ₂ Sn Cl ₄ 3 H ₂ O	2.511	Playfair and Joule. M. C. S. 2, 401
Ammonium stannochlo- ride.	$\Lambda m_{\mathbf{z}} \operatorname{Sn} \operatorname{Cl}_{\mathbf{z}^{(1)}} \operatorname{3} \operatorname{H}_{\mathbf{z}} \operatorname{O}$	2.104	

Na	ME.	FORMULA.		Sp. Gravity.	AUTHORITY.
Potassium sta	annichloride_ '' ''	K ₂ Sn Cl ₆ -		2.686 } 2.688 } 2.700 2.948	Schröder. Dm. 1873. Joergensen. Romanis. C. N. 49,
Cæsium stanı				,	273. Stolba. D. J. 198, 225.
Ammonium ride.	stannichlo-	Am ₂ Sn Cl _e	3	2.387, m. of 4 2.381 Ex- 2.396 tremes. 2.511	Romanis. C. N. 49,
ride.	stannichlo- timony chlo-		-	2.080	273. Topsoë and Christ- iansen. Romanis. C. N. 49, 273.

3d. Oxy- and Sulpho-Chlorides.

NAME.	FORMULA.	Sp. Gravity.	Антиовиту.
Matlockite Mendipite Atacamite	Pb ₂ O Cl ₂	7.21 7.0—7.1 3.898	Greg. J. 4, 821. Dana's Mineralogy. Zepharovich. J. 24, 1186.
		3.757	Tschermak. J. 26,
"	"	3.7688	1201. Zepharovich. J. 26, 1201.
Botallackite	Cu ₄ Cl ₂ (O H) ₆ . 3 H ₂ O	3.6	
Tallingite	Cu ₅ Cl ₂ (O II) ₈	3.5	Church. J. C. S. 18,
Mereurie oxychloride			78. Blaas. Z. K. M. 5, 283.
Didymium oxychloride		5.100)	Cleve. U. N. A. 1885.
Samarium oxychloride	Sm O Cl	(6.987)	"
Nitroxyl chloride	N O ₂ Cl	1.3677, 8°	Baudrimont. J. P. C. 31, 478.
	"	1.32, 14°	Müller. A. C ?.
Phosphorus oxychloride	P O Cl ₃	1.673, 14°	122, 1. Cahours. J. P. C. 45, 129.
		1.70, 12°	Wurtz. J. 1, 365.
" " " ———		1.662, 19°.5	
.,		1.69371, 10°	
"		[1.69106, 14° 1.68626, 15°	Puff A C D 4
		1.68626, 15° 1.64945, 51°	
		1.509116, 110°	

Name.	Formula.	SP. GRAVITY.	Антиовату.
Phosphorus oxychloride	P O Cl ₃	1.66	Wichelhaus, J. 20
i. i.	4.	1,71160, 01 1 50967,107=.20	149. Thorpe, J. C. S 37, 337.
Pyrophosphoriechloride.	$P_2 \stackrel{\cdots}{O} Cl_{4}$	1.5112, 106°,7 1.58, 7°	Schall, Ber. 17, 2204 Geuther and Mi- chaelis B. S. C 16, 231.
Vanadyl dichloride Vanadyl trichloride	V O C), V O C) ₃	11 2.88, 13°, 8 11 1.761, 20 1 111	Roscov, P.T. 1868, 1 Schafarik, J. P. C 76, 142.
· · · · · · · · · · · · · · · · · · ·	4.		Roscoe, P.T. 1868, 1
	4.	1,86541,00	Thorpe, J. C. S 1 87, 348, 1 11176 C. P. 101
Antimony oxychloride	$\operatorname{Sh}_4 \operatorname{O}_5 \operatorname{Cl}_2$		L'Hôte, C. R. 101 1151. Cooke, Proc. Am
Bismuth oxychloride	Bi o Cl	7.2, 20	Acad. 1877. Muir. Hoffmeister and Robbs. J. C
Daubreite Sulphur oxvehloride Thioryl chloride	$\begin{array}{c} \operatorname{Bi}_{\gamma} \operatorname{O}_{\kappa} \operatorname{Cl}_{3} \\ \operatorname{S}_{\gamma} \operatorname{O} \operatorname{Cl}_{4} \\ \operatorname{S} \operatorname{O} \operatorname{Cl}_{2} \end{array}$. 1,656, 0	8, 39, 37, [922] Domeyko, C. R. 82 Ogier, Ber. 15, 922 Wurtz, J. P. C 99, 255.
			Thorpe, J. C. S
Sulphuryl chloride	$SO_2^{\alpha}Cl_2$	1.6551, 107.1 1.661, 212 _ 1.70811, 0	Nesini, Bei, 9, 324 Behrends, J. 30, 210 Thorpe, J. C. 8
Disulphuryl chloride.	**	1,56025,69 ,95 1,818,161 , , ,	. — 37, 259, П. Rose, Р. А. 44 291, [12]
•• ••	11	1.762 1.810, 180	Rosenstiehl, J. 14 Mielmelis,
Chlore sulphonic acid	s o ₂ , o ii. ci	1,85846, 0 ° 1,60 (10,1392,59 1,78474, 0) Therpe. J. C. S
Selenyl chloride	Se O Cl.	1,54871,155°,8 1,7688,14 2,14	3 - 07, 058. Nasini - Bei, 9, 324 Weber - J. 12, 91.
d Chromyl dichloride	CrO Cl	= 2,443, 13 = 1,9134, 10	Michaelis, Z.C. 13 160. Thomson, P. T
		1.71, 21	1827, 159. Walter, Ann. (2
		1.92, 25° 1.7538, 117°	66, 387. Thorpe, J. 21, 229 Ramsay, J. C. S. 33
		1,95101, 01 1,75780, 1150.9	163. Thorpe, J. C. S + 37, 372. [117
Phosphorus sulphochlorale	$P \times Cl_{\tau}$	1.661, 22 1.66820, 02 1.45509.125°.12	Baudriment, J. 14 Thorpe, J. C. 8

IV. INORGANIC BROMIDES.

1st. Simple Bromides.

NAME.	Formula.	Sp. Gravity.	Аптновіту.
Lithium bromide	Li Br	3.102, 17°	
Sodium bromide	Na Br	2.952	13, 293. Sehiff. A. C. P. 108,
		3.079, 17°.5 3.011	21. Kremers. J. 10, 67. Tschermak. S. W.
" "	"	3.198, 17°.3	A. 45, 603. Favre and Valson.
" Fused	"	2.448	C. R. 77, 579. Quincke. P. A. 138, 141.
"	Na Br. 4 H ₂ O	2.34	Playfair and Joule. M. C. S. 2, 401.
" " ————		2.165, 16°.8	Favre and Valson. C. R. 77, 579.
Potassium bromide	K Br	2.415	Karsten. Schw. J. 65, 394.
(((("	2.672	Playfair and Joule. M. C. S. 2, 401.
<i>u u</i>	"	2.690, m. of 6_	Schröder. P. A. 106, 226.
" " Fused	"	2.712, 12°.7 2.199	Beamer. F. W. C. Quincke. P. A. 138, 141.
" "Not pressed "Once "	"	$\left\{\begin{array}{c} 2.505 \\ 2.704 \\ \end{array}\right\}$ 18°	Spring. Ber. 16,2724.
" Twice " Rubidium bromide	Rb Br	2.700) 3.358	Setterberg. Of. Ak.
Cæsium bromide Ammonium bromide	Cs Br Am Br	4.463 2.379	St. 1882, 6, 23. "Schröder. P. A. 106,
" " Cryst	"	2.266, 10° 2.327)	226. Bödeker. B. D. Z.
" Sublimed		2.3394 }	Eder. Ber. 14, 511.
Silver bromide		,	Stas. Mem. Acad. Belg. 43, 1.
	3	6.3534	Karsten. Schw. J. 65, 394.
" "		6.425, m. of 7_	Sehröder. P. A. 106, 226.
<i>u u</i>		6.215, 17°	Clarke. A. J. S. (3), 13, 294.
" " Molten		$\left\{ egin{array}{l} 6.245,\ 0^{\circ}=-\ 5.595,\ 427^{\circ}=\ 6.2 \end{array} ight. ight.$	Rodwell. P. T. 1882, 1125.
Thallium bromide. Precip.			Quincke. P. A. 138, 141.
" " After fusion.	"	' ', ' '	Keck. F. W. C.
Zinc bromide Cadmium bromide	Zn Br ₂	4.712 \ 140 \	Bödeker. B. D. Z. Bödeker and Gie- secke. B. D. Z.

Name.	FORMULA.	SP. GRAVITY.	Authority.
Cadmium bromide	 Cd Br ₂	4.794. 10°,0	Knight, F. W. C
Mercurous bromide.	Hg Br.	7.307	Karsten, Schw. J 65, 394.
Mercuric bromide	Hg Br ₂	5,9202	
		. 5.7298, 162) . 5.7461, 182)	Beamer, F. W. C
'alcium bromide	Ca Br ₂	3.32. 119	Bodeker, B. D. Z
Strontium bromide	Sr Br ₂	3,962, 12° 3,985, 20°,5	Favre and Valson
44	No. 12 12 13	2,858, 18°	C. R. 77, 579.
Barium bromide	Sr Br ₂ , 6 H ₂ O Ba Br ₂	4.20	Schiff, A. C. P 108
	Ba Br., 2 H. O	3,690	-1.
· · · · · · Cryst		0.710)	Schröder. Den 1873
· Pulv		. 0.555 /	
Lerd bromide	Pb Br ₂	. 0.679, 24°.0 . 6.6302	Karsten, Schw. J
		6.611. 171.5	65, 394. Kremers, J. 5, 395
·· ·· ·· Ppt.		6.572, 190.2	Keck, F. W. C.
Juprous bromide	Cu Br	4.72, 120	Bodeker, B. D. Z
Boron tribromide	B Br ₃	2.60, 1	Wolder and Deville J. 10, 94.
Aluminum bromide	Al Br ₃		Deville and Troos J. 12, 26
Didymium bromide	Di Br ₃ , $6 \Pi_2 \Theta$	$\frac{2.803}{2.817} \left(\begin{array}{c} 20^{\circ}.7 \end{array} \right)$	Cleve, U. N. A. 1883
Samarium bromide	Sn Br ₃ , \oplus H ₂ Θ	2.973 210.8	
Silieon tetrabromide	Si Br ₄	2.8128, 00	Pierre, Ann. (3 20, 28,
Fitanium tetrabromide Fin dibromide	Ti Br ₄ Sn Br ₂	2.6 5.117, 17	- Duppa. J. 9, 365. - Raymann and Preis - A. C. P. 223, 323
Tin tetrabromide	Sn.Br.	3,322, 39 , 1 ₂ 3,349, 35 ₁ ₁ ₁	Bodeker, B. D. Z. Raymann and Prei- A. C. P. 223, 323
Phospherus tribromide	P Br ₃	2.02480, 0° =	Pierre. Ann. (3 20, 11.
4.		2.92311, 0 2.49541, 1721.5	Thorpe. J. C. S
Arsenie tribromide	A- Br		Bodeker, B. D. 2
Antimony tribromide	Sle Br ₇	0.641, 90°, 1	Kopp. A. C. P %
**		3,473, 961, 1	Mac Ivor. C. N 29, 179.
		4.148, 235, 511	
Bismuth tribromide	Bi Br ₃	5,6041 75,4, 201	Bodeker, B. D. 2 Muir, Hoffmeiste and Robbs, J. C
Sulphur bromide	S ₂ Br,	2.628. 1	S. 39, 37. Hannay, J. C. 3
Selenium bromide	Se ₂ Br ₂	3,604, 15	33, 288, Schneider, P. 7 128, 327,

2d. Double, Oxy-, and Sulpho-Bromides.

Name.	FORMULA.	Sp. Gravity.	Аптновіту.
Ammonium zine bromide Barium cadmium bromide " " " " Hydrogen mercury bromide. Potassium mercury bromide. " " " Potassium stannibromide. Ammonium stannibro-	Am ₂ Zn Br ₄ Ba Cd Br ₄ , 4 H ₂ O H Hg Br ₃ , 4 H ₂ O K Hg Br ₃ K Hg Br ₃ , H ₂ O K ₂ Sn Br ₆ Am ₂ Sn Br ₆	2.625, 13° 3.687 3.665, 24° 3.17, fused 4.410, m. of 3_ 3.865, 22° 3.783 3.505	Topsoë. C. C. 4, 76, Harper. F. W. C. Thomsen. J. P. C. (2), 11, 283.
mide. Sodium platinbromide Potassium platinbromide Ammonium platinbromide Magnesium platinbromide Zinc platinbromide Strontium platinbromide Ead platinbromide Manganese platinbromide Nickel platinbromide Cobalt platinbromide " Didymium auribromide Samarium auribromide	Na ₂ Pt Br ₆ . 6 H ₂ O K ₂ Pt Br ₆	3.323	Bödeker. B. D. Z. Topsoë. C. C. 4, 76. """""""""""""""""""""""""""""""""""
Nitrosyl tribromide Phosphoryl tribromide	P O Br ₃ V O Br ₃ Bi O Br		Landolt. J. 13, 104. Ritter. J. 8, 301. Roscoe. A. C. P. 8 Supp. Bd. 95. Muir, Hoffmeister, and Robbs. J. C. S. 39, 37. Michaelis. A. C. P. 164, 9.
	P S Br ₃ . H ₂ O	· /	Mac Ívor. C. N. 29, 116. Michaelis. A. C. P.

V. INORGANIC IODIDES.

1st. Simple Iodides

	The second secon		
Name.	FORMULY.	Sp. Gravity.	Λ UTHORITY.
Lithium iodide	Li I	3.485, 23°	Clarke, A.J.S.(3)
Sodium iodide	Na I	3,450	13, 293. Filhol. Ann. (3)
**	**	3.654, 1×2.2	21, 415. Fayre and Valson
44	Na I. 4 II. O	9 445 901 8	C. R. 77, 57%
Petassium iodide	Kl	2.078	Boullay, Ann. 2)
44	**	3.104	43, 266.
	4.		Karsten, Schw. I 65, 394.
	**	03.050	Playfair and J arls M. C. S. 2, 401.
4	·		and the second s
	44	2.850	Schiff, A. C. P. 108 21.
11 11		2.970	Buignet. J. 14, 15
44	**		Schroder, P. A. 106
44		3.077 /	226.
	**		Braun, J. C. S. (2)
		melting pit.	
" Fired		2.497	Quincke. P. A. 135
" Not press'd	4.	3.012, 20° j	
G Gnee G		3,140, 220	Spring. Ber. 1
" Twice"		3.112. 20°)	2724.
Potassium triiodide	K I ₃	3.498	Johnson, C. N. 3, 256.
Rubidium iodide	Rb I	3,567	Setterberg. Of. Al
	41. 1	4 1	St. 1882, 6, 23.
Cæsium iodide	('s 1 Am 1	1.507 2.498 11°	
Ammonium iodide		2.445	Schröder, Dm.187
Ammonium triiodide	Am 1,		Johnson, C. N. 31
lodammonium iodide		2:46, 15°	246. Seamon, C. N. 4
Silver iodide		5,614	Boullay, Ann. (2)
			43, 266,
44 44	**	5.0262	Karsten, Schw. J 65, 394.
44 4.		5,500	Filhol. Ann. (3, 21 445,
(i i,		_1115,95	Schiff, A. C. P. 108
tt t.			Schroder, P. A. 10
	44	LL 5.718 LL 1	226.
" Cryst	''	5,669, 14% _	Damour, Quoted, C - R -64, 314

			1	
1	NAME.	Formula.	Sp. Gravity.	AUTHORITY.
Silver iodie	de. Cryst After fusion Precipitated Ppt compressed.	" "	5.470 \ 5.544 \} 0° \ 5.687 \ \} 5.569 \	H. St. Claire Deville. P. A. 132, 307. C. R. 64, 325. Fizeau.
11 11 11 11 11 11 11 11 11 11 11 11 11	After rep. fusion. After one fusion. From Ag in H I. Ppt. after fusion. At max. density. At min. density.	(1) (1) (1) (1) (1) (1) (1) (1) (1) (1)	5.675, 0° 5.660, 0° 5.812, 0° 5.681, 0° 5.771, 163° _ 5.673,	Rodwell. P.T. 1882, 1125.
11 11 11 11	Molten Iodyrite	"	5.522, 527° _ J 5.64—5.67	Breithaupt. Dana's Min.
tt tt		"	5.707	Domeyko. Dana's Min. Damour. J. 7, 870.
" "	#	"	5.677, 14°	J. L. Smith. J.7,870. Damour. Quoted, C. R. 64, 314.
	odide. Precip " Cast	Tl I	$\left\{ egin{array}{ll} 7.072, 15^{\circ}.5 \ 7.0975, 14^{\circ}.7 \ 4.696, 10^{\circ} \ ___ \end{array} ight.$	Twitchell. F. W. C. Bödeker and Gie- secke. B. D. Z.
Cadmium i	odide. a variety.	'' Cd I ₂	4.666, 14°.2 5.543, m. of 8 5.622, m. of 8	secke. B. D. Z. Kebler. F. W. C. Kebler. A. C. J. 5 235. Six samples
tt tt	" " " " " " " " " " " " " " "	"	5.660, m. of 7 5.729, m. of 6 5.610, m. of 3	prepared by differ- ent methods. Tem- peratures of weigh-
	"	"	5.675, m. of 4] 5.701, m. of 4 _	ing, 10°.5 to 20°.4. Twitchell. A. C. J. 5, 235.
"	" β variety. " "	"	4.576, 10° 4.612, m. of 7 4.596, m. of 7	$egin{array}{lll} { m B\"odeker,} & { m B. D. Z.} \\ { m Kebler,} & { m A. C. J.} \\ { m 5, 235.} & { m Two lots,} \\ { m 14° to 15°.4.} \end{array}$
Maraurous	" "	" Hg I	4.688, m. of 5_7.75	Twitchell. A. C. J. 5, 235. Boullay. Ann. (2),
"	"	"	7.6445	43, 266. Karsten. Schw. J. 65, 394.
Mercuric i	odide	Hg I ₂	6.32	Boullay. Ann. (2) 43, 266.
"	"	"	6.250	Karsten. Schw. J. 65, 394. Filhol Ann. (3),
	"	"	5.91	21, 415. Schiff. A. C. P. 108, 21.
"	" Red	"	6.27 6.231, m. of 7_	Tschermak, S. W. A. 45, 603. Owens. F. W. C.
ec ec	tt tt	"	6.3004 } 0° 6.276, 126°	Rodwell and Elder. P. T. 1882, 1143.
	· Yellow		[6.225, 126°]	

NAME.	Formuta.	SP. GRAVITY.	Антновиту.
			Rodwell and Elder.
		5.286, 200° 1	P. T. 1882, 1143.
Strontium iodide Barium iodide	Sr I	4.917	$ $ Filhol. $ $ Λ nn. (3),
	Bart 7 H O	9 678 969 3	Leonard F W C
Lead iodide			43. 266
		6.0212	Karsten. Schw. J.
			65, 394 Fithol. Ann. (3) 21, 115.
44		6.07	Schiff, A. C. P.
		6.207	107, 113,
		6.12)	Rodwell, P. T. 1882
· · · · · Molten		5.6247, 888° /	1141.
Iron iodide	Cu I	2.873, 12° 4.410	Bodeker, B, D. Z. Schiff, A. C. P.
			108, 21. Rodwell, P. T. 1882 1153.
Aluminum iodide	A1 I ₃	2.63	Deville and Troost. J. 12, 26.
Tin tetriodide	Sn 1,	4.696, 11°	Bodeker, B. D. Z
**		1.874	Schroder, Dm. 1873
	As 1 ₅	3.93, approx.	Sloan, C. N. 46 194.
Antimony triiodide		4.676	Bodeker, B. D. Z Schroder, Dm. 1878
" Hexagonal		4.848, 24°, m.	
** Monoclimic		of 2.	Cooke, Proc. Am Acad, 1877.
Bismuth triiodide		5.652, 10° 5.514, 18°.4	Bodeker, B. D. Z Kebler, A. C. J. 5 285,
		$\begin{bmatrix} 5.64 \\ 5.65 \end{bmatrix}$ 20° = $\begin{cases} 1 \\ 1 \\ 1 \end{cases}$	Gott and Muir. J C. S. 50, 137.

2d. Double and Oxy-Iodides.

		. — — — — — — — — — — — — — — — — — — —		
Name.	FORMULA.	SP. GRAVITY.	Λ UTHORITY.	
			-	
Potassium endmium iodide Potassium mercury iodide	4.6	1.251, 22° 1 1.280, 23°.5 1	Lee nard, F. W. C. Owens, F. W. C.	
Silver mercury is dide	•		Bellati and Roman- ese. Bei. 5, 179.	
** **	3 Ag I, Hg I,	5,9802, 0°	4.4	
Copper mercury iodide	3 Ag I, Hg I, 2 Cu I, Hg I,	6,0956, 02	4.4	
11	2 Cu L 2 Hg 1,			

NAME.	FORMULA.	Sp. Gravity.	Аптновіту.	
Silver copper iodide	2 Cu I. Ag I	5.7302	Rodwell. P. T. 1882, 1160.	
" " " ———	2 Cu I. 2 Ag I	5.7225		
	2 Cu I. 3 Ag I	5.7160		
	2 Cn I. 4 Ag I	5.7064		
	2 Cu I. 12 Āg I	5.6950	"	
Silver lead iodide	Pb I ₂ . Ag I	5.923, 0°	"	
Sodium platiniodide	Na, Pt I 6 H, O.	3.707	Topsoë. C. C. 4, 76.	
Potassium platiniodide	K ₂ Pt I ₆	$\frac{5.154}{5.198}$ } 12°	Bödeker. B. D. Z.	
"	"	5.031	Topsoë. C. C. 4, 76.	
Ammonium platiniodide _	Am ₂ Pt I ₆	4.610	""	
Magnesium platiniodide	Mg Pt L. 9 H. O	3.458	"	
Zine platiniodide	Zn Pt I6. 9 H2 O	3.689		
Manganese platiniodide	Mn Pt I. 9 H. O			
Iron platiniodide		3.455		
Nickel platiniodide	Ni Pt L. 6 H. O	3.976	44 66	
ii pianineanae	Ni Pt I ₆ . 9 H ₂ O			
Cobalt platiniodide	Co Pt L. 9 H. O.	3.618		
" " "	Co Pt I6. 12 H, O	3.048		
		6.3	Liebe. J. 20, 1008.	
Schwartzembergite		5.7	Sehwartzemberg. Dana's Min.	
Lead oxyiodide	Pb ₁₁ I ₄ O ₁₀	7.81		

VI. CHLOROBROMIDES, CHLORIODIDES, AND BROMIODIDES.

	NA	ME.	Formula.	Sp. Gravity.	AUTHORITY.
Emboli	te		Ag (Cl Br)	5.31-5.43	Domeyko. Dana's Min.
"			"	5.806	Breithaupt. J. 2,
"	(Cl	3 Br ₂)		5.53	781. Yorke. J. C. S. 4,
Lead el Silicon	hlorob ehlor	romide obromide	Pb Cl Br Si Cl Br ₃	5.741 2.432	150. Iles. A. C. J. 3, 52. Reynolds. C. N. 55, 223.
Tin chl	lorobr	omide	Sn Cl Br ₃	3.349, 35°	Reis and Raymann. J. C. S. 44, 424.
Phosph mide			P O Cl ₂ Br		Menschutkin, J. P. C. 98, 485.
"		"	"	2.12065, 0° 1.83844, 137°.6	Thorpe. J. C. S.
Silver	ehloro	bromiodide*_	$ \mathbf{AgI}, \mathbf{2AgBr}, \mathbf{2AgCl} $	6.152, 0° (Rodwell. P.T. 1882,
"	"	(Iodobromite)		5.5118, 383° f 5.713, 18°	Lasaulx, J. C. S. 36,
"	"		Ag I. Ag Br. Ag Cl	6.1197, 0° }	366. Rodwell. P.T. 1882,
	• • •			(a.m.ta, aar.)	1110.

^{*}Rodwell's chlorobromiodides may be regarded as alloys. For each of these the higher temperature is the melting point.

	NAME.		FORMULA.	SP. GRAVITY.	Acri	ORITT.
			-		-	
Silver e	hlorobrom	iodide 2	Ag L Ag Br. Ag	Cl 6.503, 0°)	Rodwell.	P.T.1882
+ 4	s 4		**	5.6971, 326 .)	1140,	
			Ag I. Ag Br. Ag	Ct 5.9717, 0°)		
* *	* *	;		5,6430, 354° j		**
* *	• •		Ag L. Ag Br. Ag	(5,6430, 354°) (Cl. 5,907, 0° - 7 (5,680, 380°)		"
			4.4	5.680. 880° 4		••

VII. AMMONIO-CHLORIDES, AMMONIO-BROMIDES, AMMONIO-IODIDES.

Name.	FORMULA.	SP. GRAVITY.	Λ uthority.
Cadmammonium chloride Cadmammonium bromide	$\frac{N_2 H_6 Cd. Cl_2}{N_2 H_6 Cd. Br_2}$	2.632	Topsoe. C. C. 4, 76.
Dimercurosammonium chloride.	N H ₂ H ₂ C ₁ . Cl.	6,858, m. of 2	Playfair and Joule, M. C. S. 2, 401.
Dimercurammonium ehlo- ride,	$N_2 H_4 Hg^{\prime\prime}_2$. Cl_2	5.700	
Tetramereurammonium chloride.	$N_2 \operatorname{Hg}_{-4}^{\prime\prime} \operatorname{Cl}_2$, $2 \operatorname{H}_2 \operatorname{O}$	7.176, m. of 2	4.6
Cuprammonium chloride Copper ammonio-chloride	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	2.194	44 44
Nickel ammonio-bromide Nickel ammonio-iodide	Ni Br ₂ , 6 N H ₃ [Ni I, 6 N H ₃	1.837	Topsoe. C. C. 4, 76.
Purpureo-cobalt hexchlo- ride.	$\operatorname{Co}_2(\operatorname{N}(\operatorname{H}_1)_{10},\operatorname{Cl}_{6})$	1.802, 23° 1111	Gibbs and Genth. A. J. S. (2), 23, 234.
	11	$\frac{1.802}{1.808}$ 15° {	Jorgensen, J. P. C. (2), 19, 49.
Purpureo-cobalt hexbro- mide.	$\mathrm{Co}_2 \left(\left. \mathrm{N} \left(\mathrm{H}_3 \right)_{10}, \left. \mathrm{Br}_6 \right. \right] \right.$	2.488, 17%8	6.6
Purpureo-cobalt chloro- bromide,	$\mathrm{Co}_{2}\left(\left.\mathbf{N}\right.\left.\mathbf{H}_{3}\right)_{10},\ \left.\mathbf{Cl}_{4}\right.\mathbf{Br}_{2}$	2,095, 16°,8	14 14
Purpureo-cobalt bromo-	$\operatorname{Co}_2\left(\operatorname{N}(\operatorname{H}_3)_{10}, \operatorname{Cl}_2\operatorname{Br}_4\right)$	2.161 / 17°	
Luteo-cobalt hexchloride	Co_2 ($\mathrm{N}/\mathrm{H}_{3} _{12}, \ \mathrm{Cl}_6$,	1.7016, 20°	Gibbs and Genth. A. J. S. (2), 23, 319.
Purpureo-chromium hex- chloride,	$\operatorname{Cr}_2\left(\operatorname{N}/\operatorname{H}_{-10}, -\operatorname{Cl}_6\right)$	1.687, 15°.5	Abrgensen, J. P. C. (2), 20, 105.
Purpureo-chromium chlo- robromide.	$\operatorname{Cr}_2 \left(\operatorname{N} \left(\operatorname{H}_4 \right)_{10}, \operatorname{Cl}_2 \operatorname{Br}_4 \right)$	2,075, 13%8	14
Purpureo-rhodium hex- chloride, ""	$\mathrm{Rh}_2 (\mathbf{N}, \mathbf{H}_{-10}, \mathbb{C})_6$	2.072, 18 .4 / 2.079, 182 / 1	Jorgensen, J. P. C. (2), 27, 442
Purpureo-rhedium bex- bremide.	$\mathbf{Rh}_2 \circ \mathbf{N} \cdot \mathbf{H} \circ_{10}, \mathbf{Br}_6 = -$	$\frac{2.643}{2.650}$ ($17^{\circ}.5$	(Jorgensen, J. P. C. (2), 27, 464.
Purpureo-rhodium hexio- dide.	$\operatorname{Rh}_2 \left(\operatorname{N} \left(\operatorname{H} \right)_{10}, -1_6 \right)$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	Jorgensen, J. P. C. (2), 27, 471.

VIII. INORGANIC OXIDES.

1st. Simple Oxides.

NAME.	FORMULA.	Sp. Gravity.	AUTHORITY.
Water*	H ₂ O	1.0000, 4°.07	Standard of comparison.
		.999889, 0°) H ₂ O at 3°.78=1.0.
	(4	.988433, 50°	Muncke. Mém.
"		.958737, 100° .	Acad. St. Peters- burg, 1831.
	"	.959887, 0°)	(Stampfer. H2 O at
	**	.992247, 400	3°.75=1.0°. P.
4.		.999862, 0°	(A. 21, 75. Despretz. Ann. (2),
			70, 5.
	44	.99988, 0°	1
**	(4	.95903, 95°.8 ₌	
	"	.93078, 130°.8	
		.93123, 131°	Mendelejeff. A. C.
		.93035. 131°.1	P. 119, 1.
		.90783 } 156°.7	1
.,		1.00011)	1
		.90715, 157°	J
	"	.95892, 100°	Buff. H_2O at $0^{\circ}=1.0$ A. C. P. 4th Supp
			129.
	"	.999866, 0°	j
	"	1.000000, 4°.07	
		.99975, 10°	10, 471. Sp. Gr
**		.99826. 20°	} given for every
	::	.99575, 30°	degree from 0
		.99238, 40°	to 50°.
		.98835, 50°	D 1 1 7770
		.99831, 20°	Bedson and Williams, Ber. 14
		.9543, 100°.1	Schiff, Ber. 14, 2763
		.9585 \ 100°.3	'
		.9587 \ 100°.3	Schiff. Ber. 14, 2766
Ice		.91812, — 1°	Brunner. H, O a
	1 44	.91912, —10° .	} 0°=1.0. P. A
	44	.92025, —20°	() 64, 113.
	"	.9184, m. of 2.	Playfair and Joule. M. C. S. 2, 401.
• • • • • • • • • • • • • • • • • • • •		.9175	
	44	.918)	Duvernoy, P. A
		$\left \begin{array}{c} .916 \\ .922 \end{array} \right $	117, 454.
**		.91674	Bunsen. Ann. (4)
		.//10/3	23, 65.

^{*} For water and ice the table makes no pretense at completeness. Only a few important values are given out of a vast number.
† See Playfair and Joule for older values.

2	Name		FORMULA.	SP. GRAVITY.	Δv rnourry.
Ie			H ₂ O =		erties of water and
Hydrogen	dioxi	d	11, 0,	1,452	ice." Thénard. Watts
Lithium o	xide		$\operatorname{Li}_2 \Theta$. 1 2.102, 15°	Diet. Brauner and Watts
Sodium ox	side .	8	$Na_2\Theta_{+++++}$	2,505	P. M. (5), 11, 60 Karsten, Schw. J 65, 394.
Potassium Silver mor			$\begin{array}{c} K_2 O , \dots, \\ \Lambda g_2 O , \dots \end{array}$	2,656 7,143, 16°,6 L	Herapath, P. M. 64
				7,250	321. Boullay, Ann. (2, 43, 266.
	٠.			3.2555	
	••			7.147	Playfair and Joule M. C. S. 3, 54.
**			••	7.521, m. of 2.	
			$\begin{array}{cccccccccccccccccccccccccccccccccccc$		Mahla, J. 5, 424
			**	- CTV-1	Ebelmen. J. 4, 13
**	6.4			2.083, powder	
				3.09	
			"	3,096,12°, ppt. 3,027, 10°, ig- nited.	II. Rose, P. A 74, 433,
6.	٤.			3.021,10°, cryst	Nilson and Petter
					son, C. R. 91, 241
			Mg O	•	8, 190.
Magnesius	(I) () X I)	-		3.674, perielas 3.750	Sencelii, J. P. C 28, 486.
				3.642.122 0	Cossa, Ber, 10, 174
••			**	3,200	Karsten, Schw. • 65, 394.
	٠.			3.644	
4+	• •		4.4	0.650	
				3,636, cryst. 1 3,42, amer-	Brugelmann. Be
	4.			phors. 0.1902.07, enl-	
4.				einedat 350 	.
4.	1			3,2482, 0°, cal- cined at low	Ditte, J. C. 8 (2
	ı			rodness. 3,5699,00, cal	11, 5,0
,,	,			at bright	
				2.74	From three differen
1.				3,056	sources. Beckurt
4.1	4			3,69	Ber. 14, 2063

NAME.	FORMULA.	Sp. Gravity.	AUTHORITY.
Zinc oxide	Zn O	5.432 5.600	Mohs. See Böttger. Boullay. Ann. (2), 43, 266.
· · · · · · · · · · · · · · · · · · ·		5.7344	Karsten. Schw. J. 65, 394.
tt tt	(,	5.6067 }	Brooks, P. A. 74, 439.
(1 (1		5.6570 } 5.5298, cryst	W. and T. J. Hera- path. J. C. S. 1, 42.
"	"	5.612	Filhol. Ann. (3), 21, 415.
"		5.782,15°, cryst	
44 44	(1	5.47, amorphous.	Brügelmann. Ber. 13, 1741.
" Zincite		5.684	Blake. J. 13, 752. Gorgeu. B. S. C.
			47, 146.
Cadmium oxide	Cd O	8.183, 16°.5	Herapath. P. M. 64, 321.
<i>u</i>	(6.9502	Karsten. Schw. J. 65, 394.
Cryst	"	8.1108	Werther. J. 5, 390.
Mercurous oxide	Hg ₂ O	10.69, 16°.5	Herapath. P. M. 64, 321.
"	(1	8.9503	Karsten. Schw. J. 65, 394.
Mercuric oxide	нд о	$11.074, 17^{\circ}.5$ $11.085, 18^{\circ}.3$	Herapath. P. M. 64, 321.
"		11.0	Boullay. Ann. (2), 43, 266.
	(6	11.1909	Karsten. Schw. J. 65, 394.
· · · · · · · · · · · · · · · · · · ·	"	11.29	Leroyer and Dumas. See Böttger.
ιι ιι	"	11.344	Playfair and Joule. M. C. S. 3, 84.
"		11.136	Playfair and Joule. J. C. S. 1, 137.
Calcium oxide. Lime	Ca O	3.179	Boullay. Ann. (2), 43, 266.
" " " ———	"	3.16105	Karsten. Schw. J. 65, 394.
· · · · · · · · · · · · · · · · · · ·	"	3.180	Filhol. Ann. (3), 21, 415.
tt tt	"	3.251, cryst	Brügelmann. P. A.
	(3.32 "	(2), 4, 282. Levallois and Meu- nier. C. R. 90,
Strontium oxide	Sr O	3.9521	1566. Karsten. Schw. J.
	"	4.611	65, 394. Filhol. Ann. (3), 21,
	"	4.750, eryst	415. Brügelniann. P. A.
ιι ιι	(1	4.51, amorphous.	(2), 4, 282. Brügelmann. Ber. 13, 1741.

	Nas	IE.	FORMULA.	SP. GRAVITY.	Аптиовіту.
Barium oxide			Ва О	4.0	Fourcroy. See Bott-
* *	**		4.	4.2588	Tunnermann. See Bottger.
	• •		**	4.7022	Karsten, Schw. J 65, 394.
		888		1.829	Playfair and Joule
			16	5,450	M. C. S. 3, 84. Filhol. Ann. (3), 21
* *	4.1		**	5.722, cryst	: 415. Brugelmann, P. A
**				5,32	(2), 4, 282, Brugelmann, Ber 13, 1741,
Barium	dioxid	le	Ba O ₂	4.958	Playfair and Joule M. C. S. 3, 84.
Boron ti	rioxid		В, О,	1.800	Davy. See Bottger
4 +	* *			1.83	Berzelius, 6
			**	(4.75 (1.825, 21°.6	Breithaupt. = 6 Favre_and_Valson
				1.8700, 02	C. R. 77, 579.
				1.8476, 122	Ditte. C. N. 36, 287
				1.6988, 80°	
				1.848, 149.4	(Bedson and Wil
4.6				1.853, 15°.8	liams. Ber. 1-
		Fused .		1.75	(2554. Quincke, P. A. 13; 642.
Momin	11111 fr	ioxide	. <u></u>	4.152, 41	Rover and Dumas
			1	!	Quoted by Rose P. A. 47, 429.
			4.4	3.944	Mohs and Breit
			**	4,004	haupt. Quote
		(·		4.154	t by Rose. Filhol. Ann. (3)
				(3.928, eryst	21, 415. Ebelmen, J. 414.
* *				3.870 / Artifi-	1
4.6		4.4		(3,899 f cial.	
				3,750 (Heated	
**				3.725 in wind furn'ee	THE ROSC. T. A
				3,999, ignited in porcelain	74, 429.
				furnace.	
+ 6		-		1.0067, 14 . powdered	1
				a test (18 .5.	Schaffgetsch P. A
				4.008 after	74, 429.
		**		3,990	Nilson and Petters
٠,		Artiticial		2,98, 14°	son, C. R. 91, 221 Grandeau, Ann. 67
		eryst.	11 (1	3.5311	8, 193, Brisson, P. des C.
		9 Ruby	Λ^{1}_{1} Ω_{3}	3.994, m. of 9	Schaffgetsch. P. A
					74, 429.

	Name.	FORMULA.	SP. GRAVITY.	Антновіту.
Aluminur	n trioxide. Ruby	Al ₂ O ₃	3.95, natural)	Williams. C. N. 28,
"	" Sapphire.		_ 3.7, artificial } _ 3.562	Muschenbroek. See
"			3.9998}	Böttger. Schaffgotsch. P. A.
"			4.0001 § 3.98	74, 429. Williams. C. N. 28, 101.
"			3.990	Nilson and Petters- son. C. R. 91, 232.
* 4	" Corundum		3.899, 15°.5_ }	Schaffgotsch. P. A.
44	., .,		3.974 }	74, 429.
4.6			3.992, after j	Deville. J. 8, 15.
"			3.979 \ 1.50 5	Church. Geol. Mag. (2), 2, 320.
Seandium	trioxide	Sc ₂ O ₃	3.8	Clève. C. R. 89, 420. Nilson. C. R. 91,
Yttrium t	rioxide	Yt ₂ O ₃	4.842	118. Ekeberg. P. M. 14,
"	"	"	5.028, 22°	346. Cleve and Hoeglund.
"			5.046	1873. Nilson and Petters-
Indium tri	oxide	In O	7 179	son. C. R. 91, 232.
Lanthanu	m trioxide	$\begin{bmatrix} \operatorname{In_2} \operatorname{O_3} & \dots & \dots \\ \operatorname{La_2} \operatorname{O_3} & \dots & \dots \end{bmatrix}$	5.94	Hermann. J. 14, 192.
		11	5.296, 16°	Nordenskiöld. J. 14, 197.
**			6.53. 17°	Cleve. B. S. C. 21, 196.
""			6.480	Nilson and Pettersson. C. R. 91, 232.
Didymiun	trioxide	Di ₂ O ₃	$\begin{bmatrix} 6.64 & \\ 5.825, 14^{\circ} & \end{bmatrix}$	Hermann. J. 14, 195. Nordenskiöld. J. 14,
"	"		6.852	197. Cleve. J. C. S. (2),
"		"	6,950	Nilson and Petters-
"			$\left\{ \begin{array}{c} 7.177 \\ 7.182 \end{array} \right\}$ 13°.5 _	son. C. R. 91, 232. Cleve. U. N. A. 1885.
Didymiun	pentoxide			Brauner. Ber. 15, 113.
Samarium	trioxide		8.311, 13° } 8.383, 15° }	Cleve. U. N. A. 1885.
44	ioxide	Er ₂ O ₃	. 8.8)	Cleve and Hoeglund. B. S. C. 18, 195.
"	11		8.640	Nilson and Petters- son. C. R. 91,
Ytterbium	trioxide	$\left \begin{array}{c} \operatorname{Yh}_2 \operatorname{O}_3 \\ \operatorname{C} \operatorname{O}_2 \end{array} \right $	9.175	232.
"	" "		83, 0° (Thilorier. Ann. (2), 60, 427.

	Name			FORMULA.	SP. GRAVITY.	Антиовиту.
-1	lioxide.				. = - 	
arnon (310 X 1010.	L			.SS25, 69.4E	
	6.		٠.		.853, 10°,6	Mitchell. B. J. 2
	6.				.7385, 200.3	17.
	6.					ı
6.						
					.0171, 00	
4.	4.4				.0222 - 50	
6.	4.4				.8948, 10-	D'Andreéff. An
4.	4.5					(3), 56, 317.
4.	4.	4.				
4.4			4.4		7831, 252	
4.6	4.6	**			$1.057, -34^{\circ}$	
6.		4.			1.016, -25°	
6.6	+ 4				(n)G, —11°.5	
	+ 4	15	. 4		010, -10.6.	
	4.		4.6		.907, ±10.3.	Cailletet and M
	4.	4.				thias, C. R. B
ι.						1202.
	* *		6.4		.788, 152,9	
	6.6				720, 200 9	
	4.	Solid			1.188 /	T 11. 11. 15. 01
4.	4.				1,199 ;	Landolt, Ber 17, 31
4.	4.6				1.58-1.6	Dewar, Read at A
ilicon⊐	nonoxid	le	Si C		, 2.890, 1°	 Assoc, in 1884. Mabery, A. C. J. 15.
	nonoxid lioxide.)	2.893, 4° 11 2.20, 12°, 5, m. of 9.	Mahery, A. C. J. 15. Schaffgotsch. P. 68, 147.
ilicon (lioxide.				2.20, 12°,5, m. of 9.	Mabery, A. C. J. 15. Schaffgotsch. P. 68, 147. Ullik. Ber.
ilicon o	lioxide.				2.20, 12°, 5, m. of 9,	Mabery, A. C. J. 15. Schaffgotsch. P. 68, 147. Ullik. Ber. 2125. From a
ilicon o	lioxide.	Artif.	Si ()		2.20, 12°,5, m. of 9, 2.322/ 2.324/	Mahery, A. C. J. 15. Schaffgotsch. P. 68, 147. Ullik. Ber. 2125. From a latinous sili ignited.
ilicon o	lioxide.	Artif.	Si (1		2.20, 12°,5, m. of 9, 2.322) 2.524)	Mahery, A. C. J. 15. Schaffgotsch. P. 68, 147. (Ulik. Ber. 2125. From a latinous sili ignited. Scheerer.
ilicon o	lioxide.	Artif.	Si (1		2,20, 12°,5, m, of 9, 2,322	Mahery, A. C. J. 15. Schaffgotsch. P. 68, 147. (Ulik. Ber. 2125. From a latinous sili ignited. Scheerer.
ilicon o	lioxide.	Artif.	SiC		2.20, 12°, 5, m, of 9, 2.322 2.524 2.653, cryst. 2.659, ameth's 2.714	Mahery, A. C. J. 15. Schaffgotsch. P. 68, 147. Ulik. Ber. 2125. From g latinous sili ignited. Scheerer.
::	lioxide.	Artif.	Si ()		2.20, 12°, 5, m. of 9, 2.322 2.324 2.659, cryst. 2.659, ameth's 2.714 2.651, smoky	Mahery, A. C. J. 15. Schaffgotsch. P. 68, 147. Ulik. Ber. 2125. From g latinous sili ignited. Scheerer.
::ilicon (lioxide.	Artif.	SiO		2.20, 12°, 5, m, of 9, 2.322 2.324 2.659, cryst, 2.659, ameth's 2.714 2.661, smoky 2.658	Mahery, A. C. J. 15. Schaffgotsch. P. 68, 147. Culik. Ber. 2125. From a latinous sili ignited. Scheerer.
::ilicon (ioxide.	Artif.	Si ()		2.20, 12°,5, m, of 9, 2.322	Mahery, A. C. J. 15. Schaffgotsch. P. 68, 147. Clik. Ber. 2125. From a latinous silid ignited. Scheerer.
:: :: :: :: :: :: :: :: :: :: :: :: ::	Hoxide.	Artif.	Si ()		2.20, 12°, 5, m, of 9, 2.322 2.524 2.653, cryst, 2.659, ameth's 2.744 2.651, smoky 2.658 2.654, rose 2.653	Mahery, A. C. J. 15. Schaffgotsch. P. 68, 147. (Ulik. Ber. 2125. From g. latinous silidignited. Scheerer. Breithaupt. Sch.
:: :: :: :: :: :: :: :: :: :: :: :: ::	Hoxide.	Artif.	Si (1		2,20, 12°,5, m, of 9, 2,322 2,324 2,653, cryst, 2,654, smoky 2,654, smoky 2,658 2,651, rose 2,653 2,658 2,658 2,658	Mahery, A. C. J. 15. Schaffgotsch. P. 68, 147. (Ulik. Ber. 2125. From g. latinous silidignited. Scheerer. Breithaupt. Sch.
:: :: :: :: :: :: :: :: :: :: :: :: ::	Hoxide.	Artif.	Si ()		2.20, 12°, 5, m, of 9, 2.322 2.524 2.653, cryst, 2.659, ameth's 2.744 2.651, smoky 2.658 2.654, rose 2.653	Mahery, A. C. J. 15. Schaffgotsch. P. 68, 147. Ulik. Ber. 2125. From a latinous silic ignited. Scheerer.
ilicon o	Hoxide.	Artif.	Si (1)		2.20, 12°, 5, m, of 9, 2.322 2.324 2.659, ameth's 2.651, smoky 2.651, rose 2.658 2.658 2.658 3.658 4.658 5.658 6.658	Mahery, A. C. J. 15. Schaffgotsch. P. 68, 147. (Ulik. Ber. 2125. From t. latinous silidignited. Scheerer. Breithaupt. Sch. J. 68, 411.
:: :: :: :: :: :: :: :: :: :: :: :: ::	Hoxide.	Artif.	Si (1		2.20, 12°, 5, m, of 9, 2.322 2.324 2.659, eryst. 2.659, ameth's 2.714 2.651, smoky 2.658 2.658 2.658 2.658 6.2658 6.2658 6.2658 6.2658	Mahery, A. C. J. 15. Schaffgotsch. P. 68, 147. Ulik. Ber. 2125. From a latinous silic ignited. Scheerer. Breithaupt. Sch. J. 68, 411.
:: :: :: :: :: :: :: :: :: :: :: :: ::	Hoxide.	Artif.	Si ()		2.20, 12°, 5, m, of 9, 2.322 2.324 2.659, ameth's 2.651, smoky 2.651, rose 2.658 2.658 2.658 3.658 4.658 5.658 6.658	Mahery, A. C. J. 15. Schaffgotsch. P. 68, 147. Ulik. Ber. 2125. From a latinous silid signified. Scheerer. Breithaupt. Sch. J. 68, 411.
:: :: :: :: :: :: :: :: :: :: :: :: ::	Hoxide.	Artif.	Si ()		2.20, 12°, 5, m, of 9, 2.322 2.324 2.659, eryst. 2.659, ameth's 2.714 2.651, smoky 2.658 2.658 2.658 2.658 6.2658 6.2658 6.2658 6.2658	Mahery, A. C. J. 15. Schaffgotsch. P. 68, 147. Ulik. Ber. 2125. From g latinous silidignited. Scheerer. Breithaupt. Sch. J. 68, 411.
:: :: :: :: :: :: :: :: :: :: :: :: ::	Hoxide.	Artif.	Si ()		2,20, 12°,5, m, of 9, 2,322 2,324 2,653, cryst, 2,659, ameth's 2,651, smoky 2,658 2,651, rose 2,653 6,2658 6,2658 6,2658 1,658 2,658 2,658 1,658 2,658 2,658 2,658 4,658 2,658 4,65	Mahery, A. C. J. 15. Schaffgotsch. P. 68, 147. Ulik. Ber. 2125. From a latinous silid ignited. Scheerer. Breithaupt. Sch. J. 68, 411.
:: :: :: :: :: :: :: :: :: :: :: :: ::	Hoxide.	Artif.	Si ()		2.20, 12°, 5, m, of 9, 2.322 2.324 2.653, cryst. 2.659, ameth's 2.651, smoky 2.658, s 2.651, rose 2.658, s 2.658, milky 2.658, milky 2.6541 2.6541 2.655, 13°, m, of 5,	Mahery, A. C. J. 15. Schaffgotsch. P. 68, 147. Ulik. Ber. 2125. From a latinous silid ignited. Scheerer. Breithaupt. Sch. J. 68, 411. Beudant. P. A. 474. Extrem of cleven exportments, Neumann. P. 23, 1. Schaffgotsch.* P. 68, 147.
:: :: :: :: :: :: :: :: :: :: :: :: ::	Hoxide.	Artif.	Si (0		2.20, 12°, 5, m, of 9, 2.322 2.524 2.653, cryst, 2.659, ameth's 2.714 2.651, snoky 2.658 2.658 2.658 2.658 2.658 4 2.654 2.654 2.654 2.654 2.654 2.654 2.654 2.654	Mahery, A. C. J. 15. Schaffgotsch. P. 68, 147. Ulik. Ber. 2125. From a latinous sili ignited. Scheerer. 1

 $^{^{\}prime}$ See the same paper for many determinations of the specific gravity of epaline minerals.

			1		
	NA	ME.	Formula.	Sp. Gravity.	AUTHORITY.
Silicon	dioxid	e. Quartz	Si O ₂	2.6507, 0° 2.6502, 5° 2.6498, 10° 2.6493, 15° 2.6488, 20° 2.6484, 25° 2.6479, 30° 2.6460, 50° 2.6409, 100°	Dibbits. (Rock erystal.) Bei. 5, 81. Calculated from sp. g. determinations by Steinheil, data for expansion of water by Regnault and Kopp, and the expansion of quartz as determined by
 	"	Tridymite	Si O ₂	$ \begin{vmatrix} 2.295 \\ 2.326 \\ 2.282, 15^{\circ}-16^{\circ} \end{vmatrix} $ $ \begin{vmatrix} 2.282, 18^{\circ}.5_{} \\ 2.311 \\ 2.317 \end{vmatrix} $ Artif.	Pfaff and Fizeau. Vom Rath. J. 21, 1001. G. Rose. Ber. 2, 388.
£	"	"	11	2.373 \\ 2.30, 16°, "	Hautefeuille. P. M.
" Titaniur		Asmannite_	"	4.18	(5), 6, 78. v. Rath. A. J. S. (3), 7, 149. Klaproth.
"	"		"	3.9311, artif 4.253, powder	Karsten. Sehw. J. 65, 394.
£ £	"	Rutile	" "	4.255, ignited 4.249 4.244—4.245	Rose. Mohs. See Böttger. Scheerer. P. A. 65,
"	"	" "	(t	$\left\{ \begin{array}{l} 4.250 \\ 4.291 \\ 4.420, 0^{\circ} \end{array} \right\}$	296. Breithaupt. Kopp.
"	11 11 11	" "	" "	4.56 4.26, artificial. 4.283 " 4.3 "	Müller. J. 5, 847. Ebelmen. J. 4, 15, and J. 12, 14. Hautefeuille. J. 16,
""	"	Brookite_	" "	4.173—4.278 4.128 4.131	212. Lasaulx, J. 36, 1840.
"	"	"	"	4.165 4.166 3.952, orkan- site.	H. Rose. Breithaupt. J. 2,730.
"	"	" "	u	3.892} 3.949} 4.03, arkansite	Rammelsberg. J. 2, 730. Damour. J. 2, 731.
ee ee ee	:: ::	" "	и и и	4.083 " 4.085 " 4.22 4.20	Whitney. J. 2, 731. Frödmann. J. 3, 704. Beck. J. 3, 704.
"	"	 Anatase_	"	4.1, artificial	Hautefeuille. J. 17, 214. Vauquelin.
"	"	"		3.826 3.75	Mohs. See Böttger.

	N	AME.	Formu	1.1.	Sp. Gravity.	Антновиту.	
Titanium dioxide. Anatase			Ti O,		0.82	Kobell.	
					3.890 /	H. Rose.	
4.					3.912		
		4.	** *		4.06	Damour, J. 10, 661,	
					3.7, artificial /	Hautefeuille, J. 17,	
Germ:		 r dioxide	$\operatorname{Ge} \Omega_{2^{}}$		3.9 4.700, 18°	215. Winkler, Ber. 19, ref. 654.	
Zircon	ium	dioxide	$\operatorname{Zr} \Theta_2 = \ldots$		4.80	Klaproth, See Bott- ger,	
4.6					5.5	Sjogren, J. 6, 349,	
					1.9	Berlin, J. 6, 350	
11		6.			5,19	Hermann, J. 19, 191.	
					5.712)		
					5.710 152	Nordenskield, P. A.	
4.4		4.			5,621)	F14, 626.	
4.4					5.42, cryst	Knop. A. C. P. 159.	
					5.52, noria	52. Knop. A. C. P. 159.	
		4.			5,850	53. Nilson and Peters-	
Tin m	onox		Sn O		6,666, 162,5	son, C. R. 91, 232, Herapath, P. M. 64,	
						321.	
4.4	4 +		4		_5,9797,02,6live		
4.4			**		6,1083,0°, dark	Ditte. Ann. (5), 27.	
					green.	169 All age, tal	
	* 6		14		-6,600,0°, black	Line Programmed La	
			**		-6,8254.0°,dark	different meth-	
					violet. -6,4465,02, ditte	ods.	
			1		Irented to 300°.		
Tin di	ioxide		$\operatorname{Sn} \Theta_2$		6.96	Mohs. See Bottger.	
	**				6.689, 16%5	Herapath. P. M. 61	
4.					6.90	Boullay, Ann. (2) 40, 266.	
4.6					7.180	Breithaupt.	
			4.		6,952	Neumann. P. A	
						23, 1,	
		A			6.831. 9 ° 6.72	- Kopp. - Daulace, - J. 12, 11.	
		Artif. cryst.			6.849)		
			1		6.078	H. Rose.	
	1.				6,7122, 41	Playfair and Joule.	
	4.	-			6,753	J. C. S. 1, 137. Mallet. J. 3, 705	
				•	6.862	Bergemann. J. 10	
* *					ć 150 5	661.	
4 6					6,8432 \(\frac{15\circ.5}{\colors}		
	1.4		1.		6.8439 Color-		
	4.6				[](***.	Cassiterite from	
	* *				6,701, 15%5, vellow 6,7021, 15%5,	Bolivia, Forbes	
4.	**	1			black.	$\{ -P,M,(4),30,139 \}$ + Leeds.	
£ 1	* *	Artif. cryst	., ,,		.06,019	Tanats.	

	Nami	E.	F	ORMULA.	Sp. Gravity.	Ачтновиту.
Tin die	oxide. A	rtif. cryst	Sn O_2		6.70	Levy and Bourgeois. Bei. 6, 531.
Lead h	nemioxid	e	Pb_2 O.		9.772	Playfair and Joule. M. C. S. 3, 83.
Lead r	nonoxide)	Рь Ο.		9.277, 17°.5	Herapath. P. M. 64, 321.
"	"		٤٠ .		9.500	Boullay. See Bött- ger.
"	"				9.2092	Karsten. Schw. J. 65, 394.
"	"		••		9.250	Playfair and Joule. M. C. S. 3, 84.
"	"		6.		9.361	Filhol. Ann. (3), 21, 415.
6.	"		"		9.3634, 4°	Playfair and Joule. J. C. S. 1, 137.
4.4	11		"		8.02, cryst	Grailich. J. 11, 186.
6.6	14		"		9.1699, green- ish yellow.	
	66		1:		9.2089, yellow	Ditte. C. R. 94,
4.4	4.6		44		. 9.8835, brown-	
	"		44		ish yellow. 9.5605, green-	differently pre- pared by boiling
	••				ish gray.	Pb (O H) ₂ with
**	"		"		9.4223, dark green.	КОН.
44	" "		1.1		. 9.3757	. j
4.6	t t		44		9.29, 15°, yel-	
64	t t		11		low cryst. 9.126,15°, red	
44	"				eryst. 9.125, 14°, red	dedition in it.
"	"				eryst. 9.09, 15°, red pulv.	219, 60–61.
4.4	""				8.74, 14°, red, very pure.	
Lead	dioxide_		Pb O.	,	8.902, 16°.5	
					8.933	321. Karsten. Schw. J.
£ £	_				8.756)	
"					. 8.897	
			.,		- 7.049	(2), 9, 306.
Minit	ım		Pb ₃ C)4	8.94	Muschenbrock. Watts' Diet.
					9.096, 15°	Herapath. P. M. 64, 321.
C			- "		9.190	43, 266.
¢.						Karsten. Schw. J. 65, 394.
Cerin		le	Ce O	2	5.6059	_ ∏ermann. J. P. C.
			1		(0.02)	92, 113.
•			- "		1 10 10 10 10	Nordenskiöld. J. 14, 184.

Name.	FORMULA.	SP. GRAVITY.	Аптновиту.
Cerium diexide	Ce O ₂	7.09, 14°.5,	Nordenskiold, J. 14.
		cryst.	184.
**	·	6.739	Nilson and Peters- son. C. R. 91, 232.
Thorium dioxide* _	. Th Θ_{2}	9,402	Berzelius, P. A. 16, 385.
44	14	9.21	Nordenskiold and Chydenius, J. 13 134.
4		9.077	Chydenius. J. 16, 194.
44		9.861	Nilson and Petters
			son. C. R. 91.
44	14	10.2199) 170	Nilson, Ber. 15,2536.
	**	10.2206 (
	**	, 0.876, 15°	Troost and Ouvrard. C. R. 102, 1422.
Nitrogen monoxide.	L N ₂ O	9756, —5° -	
		.9370, 0°	
		S961, 10°	D'Andreéff. Ann
		.8701, 15°	(3), 56, 317.
4.6			(0), 00, 011.
	4.	.9004, 0°	Will. C. N. 28, 170.
			Wroblevsky, C. R. 97, 166,
**		1.002, -201.6)
11		952, —11°,6	
**	**		
**	**	.912, -20.2	Cailletet and Ma-
		.549. 16°.6	thias. C. R. 102
			1202.
Nitrogen tetroxide.	L. N. O.		Dulong, Schw. J.
2016 og on Cotto Xinto.	16 - My 1 / panesers		18, 177,
		1.12	Mitscherlich, Schw. d. 63, 109.
	**	1,4903, 0°	Thorpe, J. C. S.
Phesphorus pentoxid	$e = P_j O_j I I I I I I$	1.43958, 219.64	37, 224.
Vanadium dioxide ₌	$V_2 \widetilde{O}_2^{\dagger}$	2.387 3.61, 20°	Brisson. P. des C. Schafarik, J. P. C. 76, 142.
Vanadium trioxide	$V_2 \Omega_{b}$	1.72, 16°, m.	Schafarik, J. P. C. 90, 12.
Vanadium pentoxide	V_2O_3 =	3.472 / 20°) 3.510 / 20°)	Schafarik, J. P. C. 76, 112.
44 .4	••	3,85	J. J. Watts. Roscoe and Schorlem-
			mer's Treatise.
Arsenic trioxide	, $\Delta s_2^{\dagger} O_3^{\dagger}$	9,698	LeRoyerand Dumas. Gm. H. 1, 69.
		3,620	
		3.710	Leonhard.

^{*} For this sub-tance Nilson's determination is the only one of value.

N/	AME.	1	FORMULA.	Sp. GRAVITY.	AUTHORITY.
Arsenic trio	xide	As ₂ O	3	3.695, octahe- dral.	Guibourt. B. J. 7,
		- "		3.7385, amor-	128.
11 11				phous. 3.729, 17°.2	Herapath. P. M. 64, 321.
" "				$\left\{ \begin{array}{c} 3.7026 \\ 3.7202 \end{array} \right\}$	Karsten. Schw. J. 65, 394.
		11		3.798	Taylor. Gm. H. Filhol. Ann. (3), 21,
		"			415.
Arsenie pente	oxide		5	3.7342	Karsten. Schw. J. 65, 394.
		11		$\left\{ \begin{array}{c} 3.985 \\ 4.023 \end{array} \right\}$	Playfair and Joule. M. C. S. 3, 83.
,, t				4.250	Filhol. Ann. (3), 21, 415.
Antimony tri	ioxide	Sb_{2} , O_{3}		5.566	Mohs. See Böttger. Boullay. Ann. (2),
" "		،،		6,6952	43, 266.
" "	٠	،،		5.251	65, 394. Playfair and Joule.
	٠	"		5.11, octahedral.	M. C. S. 3, 83.
Valentinite _		11		3.72, prismatic. 5.566	154. Dana's Mineralogy.
Senarmontite Antimony ter	troxide	$\operatorname{Sb}_2 \operatorname{O}_4$		5.22—5.30 4.074	Playfair and Joule.
Cervantite Antimony pe	ntoxide	$\operatorname{Sb}_2^{\prime\prime}\operatorname{O}_5$		4.084 6.525	M. C. S. 3, 83. Dana's Mineralogy. Boullay. Ann. (2).
"		""		3.779	43, 266. Playfair and Joule.
Bismuth trio:	xide	Bi ₂ O ₃ .		8.211, 18°.3	M. C. S. 3, 83. Hempath. P. M. 64, 321.
		"		8.449	Le Royer and Du- mas. See Böttger.
44 41		"		8.1735	Karsten. Schw. J. 65, 394.
4 6	'			8.079	Playfair and Joule. M. C. S. 3, 82.
tt 11		11		$8.855 \\ 8.868$	Schröder. Dm. 1873.
Bismuth tetro	oxide	Bi ₂ O ₄ -		5.6, 20°	Muir, Hoffmeister, and Robbs. J. C. S. 39, 32.
Bismuth pent	oxide	Bi ₂ O ₅ -		$5.917 \atop 5.919$ 15° {	Brauner and Watts. P. M. (5), 11, 60.
tt 16		" "		5.1, 20°	Muir, Hoffmeister, and Robbs. J. C. S. 39, 32.
Columbium p	entoxide	$\mathrm{Cb}_{^2_{;i}}\mathrm{O}_5$		4.56 Extremes of several determinations.	} H. Rose, J. 1, 405.

	Name.		1	PORMULA.		Sp. Gravity.	AUTHORITY.
						From	
\mathbf{C} olumbiu:		ide = C	\mathbf{h}_{2} \mathbf{O}	5		6.140 fusion	
• •	* *				-	6.146 with	
4.4						$-\mathbf{K}_2\mathbf{S}_2\mathbf{O}_7$	
4.4	• •				-	6.48, ditto, ig- nited.	
6.						5.83, more	
						strongly ig-	
						nited.	
	4.		4.		_	5.50	1 17 1) 1 10 17
	4.0		6.4			5.98 From	H. R sec. J. 12, 15*.
	4 .					5.706 Ch Cl	For full details as to modes of prep-
4.4	4+					6,200)	aration, cherac-
6.6	4.					6,725, ditto, ig-	ter of samples.
		1				nited.	etc., see the orig-
4.					-	5.79. nore	inal paper.
						strongly ig-	1
			6.2			nited.	
						5.5I	
						5.52 Extremes	
4.			4 .			don't of several	H. Rose, J. 13, 145
	**				-	6.54 Getermie	11. 10.50. 0. 10. 14
4.6	.,		4.			5,20 / 14°, +	Nordenskiöld, J., 14.
4.6			4.			5.48 (cryst.)	209.
					1	1.37	ì
4.	4.				1	4 4a Prepare	31 1
6.	,,		6.6		1	154 by two	Marignac. J. 18.
	**		• • •		1	1 53 methods	1.15.
	4.4		4.4			5,00	Hermann, J. 18, 209
- 64	£ 4.		* *		-	4,84	Knop. A. C. P. 159 36.
T antalum		L. 1	'n, (7.03 Extremes	1
1 amarum	Detterzio		119	3		7.06 bof several: 8.26 p. determination	$\frac{1}{2}$ H. Rose, J. 1, $4\overline{0}4$
					- "	(nations)
						From	1
4.			4.	-		7.055 fusion	
		,		-		7.065) with	
6.			6.			K ₂ S ₂ O ₅ 7.986, ditto, ig-	
	• • •					nited.	
4.	4.4		. 6			7.028) From (
6 -	4.					7.280 (Ta Cl.	
4.						7.284, ditto.	i
				•		ery-talline.	¹⁴ H. Rose, J. 10, 178
4.	6.0					7.994, ditto.	For full detail
						ignited.	see the origina
4.4	4.4					7,652. ditto.	paper.
						more strong-	
						ly.	
4.4	"		4 +			8.257, ditto, in	
						porcelain für-	
		1				mace.	11 1 10 0/9
4.6	4.		4.			7,00	Hermann, J. 18, 209
4.6	6.6	1	6 .			7.35, from Ta	
6.	11					Cl ₅ , ignited. S.01, from NH ₄	🕂 Marignac, J. P. C
**	* *					-sult.	99, 33
		1				STILL.	J

NAME.	FORMULA.	Sp. Gravity.	Authority.
Tantalum pentoxide	Ta ₂ O ₅	7.60 From K 7.64 salt.	Marignac. J. P. C. 99, 33.
" " ——		7.234 }	Oesten. P. A. 100,
Sulphur dioxide. L	S O ₂	$\begin{bmatrix} 7.253 & \dots & 5 \\ 1.42 & \dots & \dots \end{bmatrix}$	342. Faraday. P. T. 1823,
•	_		189.
" "		1.45	Bussy. P. A. 1, 237.
11 11	- "	1.4911, —20°.5 1.4609, —9°.9	1
"	- "	$1.4384, -2^{\circ}.08$	
	- ' '	1.4318, — 0°.25	
" "	- " "	$\begin{bmatrix} 1.4252, +2^{\circ}.8 \\ 1.4205, 49.51 \end{bmatrix}$	
" " ——	- "	$1.4205, 4^{\circ}.51$ $1.4102, 8^{\circ}.27$	
"		1.4017, 11°.5	TOTAL DECEMBER A
	_	1.3887, 16°.43	$ \begin{cases} D'Andreéff. Ann. \\ (3), 56, 317. \end{cases} $
<i>u u</i>	- " "	1.3769, 20°.63	(0), 00, 011.
66 66	- "	$egin{array}{c} 1.3673, 23^{\circ}.91 \ 1.3587, 26^{\circ}.9 \end{array}$	
		1.3513. 29°.57	
	_ ((1.3415, 32°.96	
	- 11	1.3350, 35.°29	
" " ——		1.3258, 38°.65 1.4338, 0°	J
	- "	1.3757, 21°.7	
	- ((1.3374, 35°.2	
" " ——	-	1.2872, 52°	
" " ——	- 16	1.2523, 62°	
	_ "	1.1845, 82°.4 1.1041, 102°.4	
		1.0166, 120°.45	Cailletet and Ma-
	- "	.9560, 130°.3	thias. C. R. 104,
	- " "	.8690, 140°.8	1563. 156° is the
	- "	.8065, 146°.6	critical tempera-
	- 11	.7317, 151°.75 .6706, 154°.3	ture.
" "	- "	.6370, 155°.05	
	- "	.52, 156°	J
Sulphur trioxide. S	- S O ₃	1.9546, 18°	Morveau. Watts' Diet.
		1.975	Baumgartner.
" " L	- "	1.97, 20°	Bussy. Ann. (2), 26, 411.
и и S		1.92118)	-9, TAL.
" " "	-	$1.90915 > 25^{\circ}$	1
ιι ιι ιι		1.90814)	Buff. A. C. P. 4th
" " L	-	$1.81958 \\ 1.8105 $ 47°	Supp., 129.
		1.8101)
" " S	"	1.940, 16°	Weber. P. A. 159,
" " " ——	((1.9365, 20°	318. Nasini. Ber.15,2885.
Selenium dioxide	Se O ₂	3.9538	Clausnizer. A. C. P. 196, 265.
Tellurium dioxide	Te O ₂	5.93, 20°	Schafarik. J. P. C. 90, 12.
tt tt	- "	5.7559, 12°.5 5.7841, 14° _ }	F. W. Clarke. A. J. S. (3), 14, 285.

	Name.	FORMULA.	Sp. Ghavity.	Аптновиту,
Tellurium	n dioxide. Octa-	Te O_2	5.65)	
hedral.		** *	5.67 \ 0° [
	44			
* *	(Cortline		5.88	Klein and Morel, C.
	rhombic.		00	R. 100, 1140.
		**	0.90 !	10. 10a, 1140.
* *	4.			
* *	· Calcined	**		
Telluriun	rtrioxide	Te O3		
b b	**		5.0794, H° /-	F. W. Clarke, A. J.
**			5,1118, 11°)	8. (3), 14, 286.
Chromic o	xid	Cr ₂ O ₃	11; 5.21, cryst. 111	Wohler, See Bött- ger.
+ 4			4,909	Playfair and Joule. M. C. S. 3, 82.
			6.2, cryst	Schiff, J. 11, 161.
* *		11		Schroder, P. A. 106.
C11 :	1	43 - 43	1.00 1000	226.
	chromate	Cr5 O9	1.0, 10°	Genther, J. 14, 242
Chromiun	n trioxide	Cr ² O ₃	== 2.676, m. of 2.	Playfair and Joule M. C. S. 2, 448.
			9,727, 14 Jeryst)
. 4			L. 2.629, 147, after	Ehlers, B. D. Z.
			fusion.	,
* *			2.819, 20°	Schafarik, J. P. C 90, 12.
6.4	4.	11	2.775) Ex- (Zettnew, P. A. 143
4.4			2.801) tremes (474.
${f M}$ olybder	um dioxide	Mo O ₂	5.07	Bucholz, N. J. 20 121.
4.6			6,41, 165	
Molybder	num trioxide	Мо Оз	8,460	Thomson, See Bott
				ger.
	**		3.49	Berzelius. "
4.6	**			→ Weisbach, Dana'
* *			1.001	Min.
* *			4.39, 21°, cryst.	Schafarik, J. P. C 90, 12,
Tungsten	dioxide	W O ₂ =	12.1109	
Tuneston	trioxide	W O3	6,12	D'Elhuyart, Gm. H
Tungsten		11 13	5.274, 16°,5	Herepath. P. M. 64
* *			7.13(6)	Karsten, Schw. J 65, 394.
4.4	* *	4.4	6.209	Nordenskield. J
		**	6,302 / eryst.	11, 214
			7.16, amor-)	4 1. m (T)
			phons. 7.232, 17°,	, Zettnow, J. 20, 216
			eryst.	1
Urnnous	oxide	V O2	10.15	Ebelmen. J. P. C 27, 385.
Uranoso-	uranie oxide	$U_3 \Theta_{8^{}}$	7.1902	Karsten, Schw. J 65, 394.
"	44 44		7.31	Ebelmen, J. P. C 1 27, 385,

	NAME.		FORMULA.	Sp. Gravity.	AUTHORITY.
Uranie oxi			U .O3	$\begin{bmatrix} 5.02 \\ 5.26 \end{bmatrix}$ two $\{$	Brauner and Watts. P. M. (5), 11, 60.
Chlorine to	rioxide.	L	Cl ₂ ,O ₃	$\left\{ \begin{array}{c} 1.3298 \\ 1.387 \end{array} \right\} \ 0^{\circ} \ \left\{ \begin{array}{c} \end{array} \right.$	Brandau. Z. C. 13,
Iodine pen	toxide .		$I_2 O_5$	4.250	Filhol. Ann. (3), 21, 415.
"	"		"	4.7987, 9°	Kammerer. P. A. 138, 401.
"	_		"	4.487, 0°	Ditte. Z. C. 13, 303.
"			ει	$\left\{ \begin{array}{c} 5.037, 0^{\circ} \\ 5.020, 51^{\circ} \end{array} \right\}$	Ditte. Ann. (4) , 21, 10.
Manganou	-		Mn O	4.7264, 17°	Herapath. P. M.
• •	" -			5.38	64, 321. Playfair and Joule. M. C. S. 3, 80.
"	" _			5,091	Rammelsberg. J. 18, 878.
"	" М	angan- osite.	"	5.18	Blomstrand. J. 28, 1209.
"	" -			5.010, 4°	Veley. J. C. S. 1882, 65.
Manganoso ide. "	o-manga	nie ox-	Mn ₃ O ₄	4.746	Playfair and Joule. M. C. S. 3, 80.
"	""	"		4.325	Playfair and Joule. J. C. S. 1, 137.
"	"	"	"	4.718, artif.	Rammelsberg. J. 18,
"	"	"	"	4.856, native (4.80, artificial	878. Gorgeu. C. R. 96,
Manganic			Mn ₂ O ₃	4.82, braunite_	1145. Haidinger. Gm. H.
"			($\left\{ egin{array}{l} 4.568 \ 4.619 \end{array} ight\} \mathrm{artif.}$	Playfair and Joule. M. C. S. 3, 80.
			"		Rammelsberg. J.
44	"			4.752, braun- ite.	18, 878.
Manganese	dioxide		Mn O ₂		Turner. See Böttger. Rammelsberg. J. 18, 878.
"	44		"	4.838 " }	Breithaupt. Dana's
"			"	$\begin{bmatrix} 4.880 & `` & $ \\ 4.826 & `` & $ \end{bmatrix}$	Min. Pisani. Dana's Min.
"	"			4.965) poli- 5.040 anite.	} Dana and Penfield. A. J. S. (3), 35,
Ferroso-fer	rie oxid	e	Fe ₃ O ₄	5.094) 246. Mohs. See Böttger.
" "				4.960	Gerolt. " "
				$\left\{ \begin{array}{cccccccccccccccccccccccccccccccccccc$	Leonhard. See Bött- ger.
" "			"	5.300, 16°.5	Herapath. P. M. 64, 321.
" "			"	5.400}	Boullay. Ann. (2), 43, 266.
" "			44	5.480 }	Kenngott. Dana's
"			"	5.168 cryst 5.180 mag- netite.	Min.
" "	"		"	5.453	Playfair and Joule. M. C. S. 3, 81.

Name.		Formula.	SP. GRAVITY.	Антиовиту.	
Ferroso-l	ferric oxide	$\operatorname{Fe_3} \Theta_{i}$.	5.12, 0°, mag-	Корр.	
			netite.		
			5.106) 5.148 : "	Rammelsberg.	
	~ ~ ~ ~ ~		5,185)	rammersberg.	
4.4			186 two al-	1	
			5,00 \ lotropic	Moissan, Ann. (5	
			5,09 varieties	21, 223.	
	44		5.21) artif. (Gorgeu, C. R. 10	
			5.25 (cryst.)		
Ferric o	oxide	$^{\perp}$ Fe ₂ Θ_3 $^{\perp}$ $^{\perp}$ $^{\perp}$ $^{\perp}$	5.251	Mohs. See Bottge	
4.4			5,261	Breithaupt	
4.6			5,959, 16°,5, ppt.	Herapath, P. M. 6 321.	
		***	5.995	Boullay, Ann. (2) 43, 266.	
**			5,079, native	Neumann, P. 2 23, 1,	
	4.		. 5.121, 12°.511	Корр.	
1.	**		4.679	Playfair and Joul	
	**	• •	- 5 135.ignit'd 📝	M. C. S. 3, 80,	
+ 5	**		$\frac{5.241}{5.283}$ native	Rammelsberg,	
		••	5.280 (
		• •	5.191 / 4	G. Rose.	
	**		5,214 5 6 5 5,230 }	tr, liose,	
				11 0 . 0	
			- 5.169, ppt - 5.067, ignited	+ H. Rose, - P. Λ. 7 - i = 440,	
			3.95, yellow		
Nickelot	is oxide	NiO	5,597		
* *	* *		5.745, furnace product.) Genth. J. 1, -44	
4.1			6,605, cryst		
4.4	**		6,398		
		••	6.661		
í s	**	• •	6.8, cryst	Ebelmen, J. 4, 1	
Nickelie	oxide	$\operatorname{Ni}_2 \mathbf{O}_{-2}$	1.846, 162,5	Herapath, P. M. e. 321.	
	**		4.811	M. C. S. 3, 81,	
Cobaltor		CoO .	5,597		
			5.750, ignited	1	
	o-cobaltic oxide	Co O	5,888 _ = 1	Rammelsberg, J.	
Cobaltic	oxide.	$Co_{j}^{\prime}O_{j}$	6,296 5,822, 16%,5	282. - Herapath, P. M. 6 321	
* *			5,000	Boullay, Gm. H	
			1.511		
	oxide	_ Cu ₂ O	6 052) 162.5) 6 093) 162.5)	Hempath, P. M.	
+ 4			5.751	Karsten, Schw.	

NAME.			FORMULA.		Sp. Gravity.	Антновиту.
Cuprous	oxid	e	Cu ₂ O	5	5.75	Leroyer and Dumas. See Böttger.
				5	5.746	Playfair and Joule. M. C. S. 3, 82.
4.4	4.4		"	5	5.300)	,
4.4	44				5.342	Persoz. J. P. C. 47,
4.6	4.6		4.		5.375	84.
Cupric	oxide		Cu O		5.401, 16°.5	Herapath. P. M. 64, 321.
	: 6		"	e	3.130	Boullay. Ann. (2), 43, 266.
4.4	"			6	3.4304	Karsten. Schw. J 65, 394.
			44		5.907	Playfair and Joule.
	4.4				6.414,ignit'd	M. C. S. 3, 82.
"	"				3.322	Filhol. Ann. (3) 21, 415.
"			"	10	3.130)	21, 115.
4.4	4.4		:4		5.225	Persoz. J. P. C. 47
• 6	4.6		14		5.400	84.
4.4	. 4		"		5.451, furnace	Jenzsch. J. 12, 214
"			"		product. 3.400	Hampe. Z. C. 13
4.4	44		"		3.25, melaco- nite.	Whitney. J. 2, 728
4.4	44		"		5.952 "	Rammelsberg. P. A 80, 287.
Rutheni	um d	ioxide	Ru O ₂		7.2	Deville and Debray J. 12, 236.

2d. Double and Triple Oxides.

NAME.	FORMULA.	SP. GRAVITY.	Аптновіту.
Sodium uranium oxide	Na ₂ U ₃ O ₁₀	6.912	Drenkmann. J. 14, 257.
Delafossite	Cu' ₂ Fe''' ₂ O ₃	5.07, 25°	
Spinel		3.452, artif 3.48, natural)	Ebelmen. J. 4, 12.
44			Min.
11	"	$\begin{bmatrix} 3.631 \\ 3.715 \\ 3.77 \end{bmatrix} \begin{array}{c} 15^{\circ}.5, \\ \text{nat.} \\ 3.77 \end{array}$	Church. Geol. Mag. (2), 2, 320. Jeremejew. J. 37, 1918.
Gahnite	Zn Al ₂ O ₄	4.580, artif 4.317)	
"	11	4.89	Brush. A. J. S. (3),

Name.	FORMULA.	Sp. Gravity.	Антиониту
Gahnite	$\operatorname{Zn} \operatorname{Al}_2 \operatorname{O}_4$	4.576	Genth and Keller.
" Furnace product.		1, 194,52	J. 56, 1845, Schulze and Stelz- ner, Z. K. M. 7, 603,
Hereynite	Fe'' $\Delta l_2 \Theta_4 = \frac{\pi}{2\pi}$	3,01	Zippe. Dana - Min.
Chrysoboryl		3,759, artif. 3,597	Ellelmen, J. 4, 13, Rose, Dana's Min From three local- ities, Kokscharot, J. 14,
Alexandrite		0.614) 0.704	976, and J. 15, 745. Nilson and Petters- son. C. R 91, 252.
Calcium ison oxide	Ca Fe''' ₂ O ₄	3,860 (105.0)	Church, Geol. Mag. (2, 2, 320 Percy. P. M. 4), 45, 455.
Magnesioferrite	Mg Fe''', O,	4.568	fel, f-1-).
Hetaerolite	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	1.614 1.668) 4.998)	Rammelsberg J. 12. 776. Moore, J. C. 8, 36,
Zinc iron oxide	Zn Fe''' ₂ O ₄	5,432 cryst 5,30	47. Ebelmen, J. 4, 13. Gorgeu, B. S. C. 47, 372.
Zine chromium oxide Manganese chromium ox- ide.	$\frac{\operatorname{Zn} \operatorname{Cr}_2 \operatorname{O}_4}{\operatorname{Mn} \operatorname{Cr}_2 \operatorname{O}_4}$	5,300 · · · · · · · · · · · · · · · · · ·	Ebelmen J 4, 13,
Chromite	Fe $^{\prime\prime}$ Cr $_2$ O $_4$ =	4.821	Thomson Dana's Min.
••		4.498)	Dama - Maneralogy.
Jacobsite	Mg Fe''', O., 2 N	In 4.75, 16°	Damour, C. R. 69.
Chrompicotite	$\frac{\tilde{\mathbb{F}}e^{\prime\prime\prime}_{2}\tilde{\Omega}_{0}^{*}}{2 \mathbf{F}e^{\prime\prime\prime}\tilde{\Lambda} _{2}^{2}\tilde{\Omega}_{0}^{*} 0\rangle} \approx 2$	Mg 4,415, 202	168, Peterser, J. P. C. 106, 137

IX. INORGANIC SULPHIDES.

1st. Simple Sulphides

Name.	FORMULA	SP. GRAVIIA.	$\Delta \tau$ rnortry
. Hydrogen monosulphide ,	$H_2(S)$	a .9. l	Faraday, Gm. H 2, 197.
4.		.91, 18 .5	Blockrode P. R S 37, 355.
Hydrogen persulphide	$H_2 S_2$ or $H_2 S_3$ $^{\circ}$	1.7842	Ramsay, J. C. S. 27, 860
Sodium sulphide	$\operatorname{Nn}_2 S$	2,171	Filhol. Ann. (3), 21, 415.
Potassium sulphide	K., S	2.100	44

	NA	ME.	FORMULA.	Sp. Gravity.	Аптиониту.	
Silver sulphide			$Ag_2 S_{}$	6.8501, artif	Karsten. Schw. J. 65, 394.	
"	"	m Argentite	"	$\left\{ egin{array}{l} 7.269 \\ 7.317 \end{array} \right\}$	Dauber. J. 13, 748.	
"	"	Acanthite.	"	7.31 7	·	
4.6	44	"	"	7.36	Kenngott. J. 8, 908.	
"	"	"		7.164 } ex-	Dauber. J. 13, 748.	
	"	Daleminzite	··	7.326 } tremes.	Breithaupt. J. 15.	
		Datemmente		7.02	709.	
		ohide		8.00	Lamy. J. 15, 185. Maskelyne. P. T .	
Zine sul	phide		Zn S	3.9235	1870, 196. Karsten. Schw. J. 65, 394.	
"	"	Blende	"	4.000	Neumann. P. A. 23, 1.	
"	"		"	4.063	Henry, J. 4, 756.	
"	"		"	4.07	Kuhlmann. J. 9, 832. Tschermak. S. W.	
"			"	4.033	A. 45, 603. Genth. Am. Phil.	
					Soc. 1882.	
Cadmiu "	m sulp	ohide	Cd S	4.5, artificial 4.5 "	Schüler. J. 6, 367. Sochting. Dana's	
"	"	Greenockite		4.605	Min. Karsten. Schw. J. 65, 394.	
"	"	tt	"	4.908	Breithaupt. Watts' Diet.	
"	"		"	4.80	Brooke. P. A. 51, 274.	
			Hg S	8.124	Boullay. Ann. (2), 43, 266.	
"	"		"	8.0602	Karsten. Schw. J. 65, 394.	
				8.090, cinna- bar.		
"	"		"	7.701 \ natural,	Moore. J. P. C.	
				7.748 \(\) amor- phous.	(2), 2, 319.	
"	**			7.552, artif.	J D6-14 A T G	
				7.81, metacin- nabar.	Penfield. A. J. S. (3), 29, 453. Sidot. C. R. 81, 33.	
Carbon	monos	sulphide bhide	$\begin{array}{c} C & S \\ C & S_2 \end{array}$	1.66, s 1.272	Sidot. C. R. 81, 33. Berzelius and Mar-	
Carbon	uisui	mae		1,272	cet. Schw. J. 9, 284.	
"	"		"	1.263	Cluzel, Gm. H.	
"	"		((1 2693, 15°.1 1.265	Gay Lussae. Couërbe. Ann. (2),	
	"		(1	1.2823, 5°-10°	61, 232.	
"	"		"		Regnault. P. A.	
"	"		44	1.2676, 15°-20°	$\int_{0}^{\infty} 62,50.$	
"	t i		"	1.29312, 0°	Pierre. C. R. 27, 213.	

	Nаме		1	FORMULA.		SP. GRAVITY.	Антиовиту.
Carbon é	 li-ulphi	de	CS_2			1.29858, 0°	
	i.					1.27901, 10°	11 7 7
+ 4	6.6					1.26652, 17% _	H. L. Buff. A. C
	4.4		4.4			1.227431, 469	P. 4th Supp., 129
. 4	* *					1.2661, 20°	Haagen, P. A. 181 117
4.4	. 6		. 4		- 1	1.2665, 16°,06	Winkelmann, P. A 150, 592.
**	. (1.			1.2176, 43°	Ramsay, J. C. S. 35 463.
						1.29215, 0°	Thorpe, J. C. S
* *			4.4			1.22242, 46°.04	37, 363.
						1.2233) 1	
						1.2231 } 47°	Schiff, Ber. 14, 2767
			6.1			1.2684, 20°	Nasini, Ber. 15, 2883
**	• •					1.266, 15°.2	Friedburg, C. N
	4.6		6.4			1 000500 150 89	47, 52,
						1.26569, 179.86	Also values for
• • •						1.26446, 18°.58	other to. Dreck
• •						1,25031, 252,21	- er. P. A. (2) , 20
• •	• •		* 1			$1.23863,35^{\circ}.96$	J 870.
	* *					1.2233, 46°, 5	Schiff, Ber. 19, 560
Tin mon	osulphi	de	Sn 5			4.8523	Karsten, Schw. J 65, 394.
* *	• •		**			5.267	Boullay, Ann. (2) 43, 266,
			1.6			4,973	Schneider, J. S. 396
						5.0802, 00	Ditte, C. R. 96, 1791
Tin disu	lphide		Sn S	•		4.415	Boullay. Ann. (2) 43, 266.
* 1	• •					4,600	Karsten, Schw. J 65, 394.
Lead sul	phide		Phs			7,5052, artif	11
		alena	. 10			7.500	Breithaupt, J. P. C
+4	-					6,9238, 4° .puly,	11, 151. Playfair and Joule J. C. S. 1, 137.
• •	· · · · · · · · · · · · · · · · · · ·	alena	1			7.568	Neumann, P. A 23, 1.
	ė a		4 1			7.51	Tschermak, S. W A 45, 603,
• •	4.4		**			6.77, artificial	Schneider, J. P. C (2), 2, 91.
Lead ses	զութուլ	dride .	Pb_2	S_3		6,885	Playfair and Joule M. C. S. 3, 89,
Cerium	•ulphid	r	Ce_2	×,,		5.1	Didier. C. R. 100 1461.
Thoriun	ւ -ակին	de	Th:	· 2		8.29	Chydenius, J. 19 195,
Nitroge	n sulph	ide	N S			2.22, 15° .	Berthelot and V eille, Ber.14,155
	••		••	6		2.1166, 15°	Michaelis, Z. C. 1:
Phosphi	(PU> 1110)	no-ulphide	P S			1.5	Dupré, J. P. C. 2: 253.
	osphore	sulphide is trisul-	P.S.			2.02 2.00, 11	- 177. Sambert, C.R. 96. 1501.

Name.	FORMULA.	Sp. Gravity.	AUTHORITY.
Vanadium disulphide	V ₂ S ₂	4.2, scaly 4.4, powder	Kay. J. C. S. 37, 728.
Vanadium trisulphide	V_2, S_3	3.7, scaly	.20.
Vanadium tetrasulphide		4.0, powder } 4.70, 21°	Schafarik. J. P. C.
Vanadium pentasulphide- Arsenie disulphide	$\left[egin{array}{c} \mathbf{Y}_2 \mathbf{S}_5 \dots \\ \mathbf{A} \mathbf{S}_2 \mathbf{S}_2 \dots \end{array} \right]$	3.0 3.5444	90, 12. Kay. J.C.S.37,728. Karsten. Schw. J.
		3.240, realgar_	65, 394. Neumann. P. A.
		3.556	23, 1. Mohs. See Böttger.
Arsenie trisulphide	As_2S_3	3.459	Karsten. Schw. J. 65, 394.
	"	3.48	Haldinger. Dana's Min.
		3.44-3.45	Guibourt. See Bött- ger.
" "Dimorphite Antimony trisulphide	$\operatorname{Sb}_2 \operatorname{S}_3$	3.58 4.7520	Scaechi. J. 5, 842. Karsten. Schw. J. 65, 394.
:	"	4.15, amor- phous.	Fuchs. Watts' Diet.
" " " ———	11	4.614, black 4.641, 16° "	
	(4.280, red	H. Rose. J. 6, 361.
··	(1	4.421, ppt	j
11 11	"	4.226,26°.7,red 4.223,23°, ppt.	Cooke. Proc. Am.
	"	4.228, 28°, gray 4.289, 27	Acad. 1877.
· · · · · · · · · · · · · · · · · · ·		$\left\{ rac{4.892}{5.012} ight\} =$	Ditte. C. R. 102, 212.
" Stibnite.	"	4.603	Neumann. P. A.
	"	4.516	23, 1. Haüy. Dana's Min.
Bismuth disulphide	Bi_2 S ₂	4.62 7.29, m. of 5	Mohs. " " Werther. J. P. C.
Bismuth trisulphide	Bi ₂ S ₃	7.591, 14°.5	27, 65. Herapath. P. A. 64, 321.
"	"	7.0001	Karsten. Sehw. J.
	"	7.16, native	65, 394. Forbes. P. M. (4), 29, 4.
Selenium sulphide	Se S	$3.056, 0^{\circ}$ $3.035, 52^{\circ}$ $\}$	Ditte. Z. C. 14, 386.
Molybdenite	MoS.	4.591	Mohs. See Böttger.
Tungsten disulphide	$\mathbf{W_2^{''}S_2}$	4.444 6.26, 20°	Seibert. " " Schafarik. J. P. C.
Chromic sulphide	Cr ₂ S ₃	4.092	90, 12. Playfair and Joule.
	"	2.79,10° 3.77,19° } two	M. C. S. 3, 89. Schafarik. J. P. C. 90, 12.
Manganese monosulphide. Alabandite.	Mn S	preparations. 3.95—4.01	Leonhard. See Bött- ger.

	Name.	FORMULA.	Sp. Gravity.	Λ trinority.
Manganes	e monosulphide. Alabandite.	Mn S	4,036	Bergemann, N. J. 1857, 394.
Hauerite	Authendite.	$\operatorname{Mn} S_2 = -1$. 0.460	Von Hauer, J. 1.
Iron hemi	sulphide	$\operatorname{Fe}_2 S$	5,80	Playfair and Joule. M. C. S. 3, 88.
Iron mono	sulphide. Artif.	Fe.S	5,035, m. of 2 4,73	Rammelsberg, J.15.
	· Troilite.		1.787	263. Rammelsberg, J. 1 * 1306.
"	**		1.817	Rammelsherg, J. 17 904.
· · · · · · · · · · · · · · · · · · ·	111 Parels	11 0	4.75	Smith, J. 8, 1025.
**	phide. Pyrite	$\operatorname{Fe} S_2$	Sugar	Kenngott, J. 6, 780
**		••	_ 5.185	Zepharovich, S.W A. 12, 289, Neumann, P. A
	44		5.042	23, 1.
	· Marcasite_	**	1.852 1.075)	**
		**	1.547	Dana's Mineralogy
Ferric sul	phide	$\operatorname{Fe}_2\operatorname{S}_3$	1.246	Playfair and Joule M. C. S. S. 88.
4.				Rammelsberg, J. 17 262.
Complex :	sulphide of iron	$\operatorname{Fe}_{s}S_{g}$	1.494	Rammelsherg, J. 15 195.
Pyrrhotit	"	Fe ₇ S ₅ ,	1,541	Kenngott, S. W. A 9, 575.
			4,564.)	
4.4		.1	4.580	Rammelsberg. Di
+ 6			_ 1.640 }	na's Mineralogy.
Nickel he	misulphide	Ni ₂ S	. 6.05	Playfair and Joule M. C. S. 3, 88.
Millerite_		Xi 8	. 4.601	Kenngott, S. W. A J. 9, 575.
			5,65	Rammelsberg. Di na's Mineralogy.
Polydymi	te	Ni ₄ .8 ₅	- 1,505 (152,7)	Laspeyres, J. P. C (2), 14, 397.
Beyrichit		Ni_5S_7	1.7	Liebe, N. J. 1871 840,
Cobalt di-	sulphide	$\operatorname{CoS}_2 = \mathbb{I}_2$	4.200	Playfair and Joul. M. C. S. 3, 88.
	sulphide	$\begin{array}{cccccccccccccccccccccccccccccccccccc$. 1.8 5.792, 17.7	Hoffmann's Tables Herapath, P. M. 6 321.
1.4	÷ -		5,9775	Karsten, Schw. 7
4.4			5.71 5.70 <u>92</u>	Kopp, J. 16, 5, Thomson, Dana
			5,5215,795	Min. Scheerer, P. V. 6- 292.
4.4	· Artif cryst.		5.79)	Doelfer, Z. K. M 11, 29,

Name.	FORMULA.	Sp. Gravity.	Authority.
Copper monosulphide	Cu S	4.1684	Karsten. Schw. J.
" Covellite_		4.636	65, 394. Zepharovich. J. 7, 810.
Palladium hemisulphide $_$	Pd ₂ S	7.303, 15°	
Platinum monosulphide			Böttger. J. P. C. 3, 267.
Platinum disulphide	Pt S ₂	7.224, 18°.75 5.27	Schneider. P. A.
Platinum sesquisulphide .	$\operatorname{Pt}_2 \operatorname{S}_3$	5.52	138, 604.
2d. Sulpho-S	alts of Arsenic, Ar	ntimony, and	Bismuth.
Name.	· FORMULA.	Sp. Gravity.	Антновиту.
Proustite	Ag ₃ As S ₃	5.524 5.53 — 5.59	Mohs.
			Breithaupt. See Böttger.
Xanthoconite	$\Lambda g_9 \Lambda s_3 S_{10}$	5.552, 13° 4.112—4.159	G. Rose, P.A.15,472. Breithaupt. J. P. C. 20, 67.
Guitermannite	$\mathrm{Pb_3}\ \mathrm{As_2}\ \mathrm{S_6}$	5.94	Hillebrand. Bull. No. 20., U. S. G. S., 106.
Sartorite	Pb $\operatorname{As}_2 \operatorname{S}_4$		Waltershausen. J.
Dufrenoysite	$Pb_2 As_2 S_5$	5.409	8, 914. Landolt. P. A. 122,
ιι	"	5,549	373. ´
			14, 379.
Enargite		4.362	v. Rath. J. 17, 827. Kenngott. Dana's Min.
	"	4.430 }	Breithaupt. J. 3, 702.
.6		4.37	Kobell. J. 18, 872.
"		4.34	Root. J. 21, 998. Burton. J. 21, 998.
" Guayacanite	4.	4.39	Field. J. 12, 771.
" Clarite		4.46	Sandberger. N. J. 1875, 382.
" Luzonite		4.42	Weisbach, M. P.
Julianite	Cu_4 As S_4	5.12	M. 1874, 257. Websky, Z. G. S. 1871, 486.
Binnite Tennantite	$\begin{array}{c} \operatorname{Cu}_6 \operatorname{As}_4 \operatorname{S}_9 \\ \operatorname{Cu'}_8 \operatorname{As}_2 \operatorname{S}_7 \end{array}$	4.477	Dana's Mineralogy. Phillips. See Bött-
		4.530	ger. Scheerer. P. A. 65,
			298.

Name.	Formula.	Sp. Gravity.	Антновиту.
Sodium sulphantimonate.	$\overline{\mathrm{Na_3SbS_4.9H_2}}$	O 1.801)	Schroder, Dm. 1873
1	1	1.000	
Pyrargyrite	. $\Lambda g_3 \operatorname{Sb} S_3$		Breithaupt, Se
		0.10-0.1	Bottger.
Miargyrite	$\Lambda_{\rm g}$ Sb S,	5.211 /	,
		5.242	Weisbach, J.18,869
**			Rumpf. Z. K. M
Artificial		1 201520 1	7, 513. Doelter, Z. K. M
Wittheat			11, 29,
Stephanite	Ag Sb S,	6.269	Mohs. P. A. 17
•			474.
			H. Rose,
Polybasite	$\Lambda_{\mathbf{g}_{9}}$ Sb \mathbf{S}_{6}	41.571.1	Frenzel, J. 27, 1239 Dana's Mineralogy
1 ory basic		6.009	Genth. Am. Phi
			Soc., 1885.
Polyargyrite	$Ag_{23}\operatorname{Sb}_2\operatorname{S}_{13}$	(1.933) 189.2	Petersen, J. 22,119
1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	$\operatorname{Hg}\operatorname{Sb}_2\operatorname{S}_4$	7.011 / ¹⁰	Barcena, A. J. S
Livingstonite	11g 20g 2t 1111	4.01	(3), 8, 146.
" Artificial		4.928, 329	Baker, C. N. 42, 19
Jamesonite	$+ \operatorname{Pb}_2 \operatorname{Sb}_2 \operatorname{S}_5 \dots$	5.616, 19° -	Schaffgotsch. P. A
			88, 403.
33		5,601	Lowe, Dana's Min
" Massive		0.0173	Rammelsberg, P. 7 77, 240.
lpha Artificial		5.5	Doelter, Z. K. M
Zinkenite	Pb Sb ₂ S ₄	5.2083	11, 29,
Amkenite IIIII II I		$\frac{12^{\circ}.5}{5.810}$ $\frac{12^{\circ}.5}{12^{\circ}.5}$	G. Rose, P. A. 7, 9
		5.21, 18°	Hillebrand. Bul
• •	111 - 111 - 11	5,688-5,941	20, U.S. G.S.
Boulangerite	$\frac{1}{1} \operatorname{Pb}_3 \operatorname{Sb}_2 \operatorname{S}_6 \dots$	0.688—0.941	· Hausmann P' · 46, 282.
Massive	44	5,809 = 5,877)	Zepharovich, S. W
Fibrous		[5,69-6,086]	
Meneghinite	- Pb ₄ Sb ₂ S ₇ $ -$	6,339) }	v. Rath. J. 20, 97
		6,115 }	
**	- '		Harrington, J. 3 1911.
Geocronite	Pb, Sb, S,	6, 107	Apjohn, Dana's Mi
4.	0	6,43, 15°	Sauvage. Ann. d
			Mines, (3) , 17, 52
		1.116.15 = 6.47, 159	
Plagionite	Pb, Sb, S13	5, 10	= 302. Rammelsberg, P. 7
			47, 495.
Epiboulangerite	Pb ₆ Sb ₄ S ₁₅	6,309	Websky, J. 22, 119
Semseyite	Ph. Sb. S ₁₆	5,9518 6,194	Sipoez. Ber. 19, 9 Hausmann, Dana
t teleslepolitie	$Pb_2 A g_3 Sb_3 S_5$	0.1.71	Min.
		6,230	v. Payr. J. 13, 74 Vrba. S. W. A. 6
٤٠		6.05	
,		* 1444	143.
• Diaphorite	- 11	5.902 =	Zepharovich, S.W. A. 63, 143.

			1
NAME.	Formula.	SP. GRAVITY.	AUTHORITY.
Brongniardite	$\operatorname{Pb} \operatorname{Ag_2} \operatorname{Sb_2} \operatorname{S_5} $	5.950, 18°	Damour. Ann. d. Mines, (4), 16, 227.
Chalcostibite	Cu Sb S ₂	4.748	H. Rose. Dana's
		5.015	Breithaupt. Dana's Min.
Famatinite	Cu ₃ Sb S ₄	4.57	
Guejarite	Cu ₂ Sb ₄ S ₇	5.03	Cumenge. B. S. M. 2, 201.
Tetrahedrite	Cu ₈ Sb ₂ S ₇	4.730	
		4.58	
"	((4.90	
"		4.005	834.
		4.885	Genth. Am. Phil. Soc. 1885.
Bournonite	Cu' Pb Sb S	5.703-5.796	Zincken. J. 2, 724.
		5.726-5.855	Bromeis, J. 2, 724.
		5.726—5.863	Rammelsberg, J. 2, 724.
		5.80	Field. J. 14, 374.
(.		5.826	Wait. J. 26, 1147.
	(5.737—5.86	Hidegh. J. 37, 1911.
		5.7659	Sipöcz. Ber. 19, 95.
" Artificial		5.719	Doelter, Z. K. M. 11, 29.
Berthierite	Fe Sb ₂ S ₄	4.043	Pettko. J. 1, 1159.
	A D' 6	a 03	B 11 7 F
Silver bismuth glance*		6.92	Rammelsberg, Z. K. M. 3, 101.
Galenobismutite	Pb Bi ₂ S ₄	6.88	Sjögren. G. F. F. 4, 109.
Cosalite	Pb ₂ Bi ₂ S ₅	6.22-6.33	
Beegerite	Pb ₆ Bi ₂ S ₉	7.273	König. J. 34, 1355.
Rezbanyite	${{\rm Pb}_6^2\ {\rm Bi}_2^2\ {\rm S}_9^3}_{{\rm Bi}_{10}\ {\rm S}_{19}}$	$\{\begin{array}{c} 6.09 \\ c \\ 99 \end{array}\}$	Frenzel. J. 36, 1835.
Chiviatite	$\operatorname{Pb}_2\operatorname{Bi}_6\operatorname{S}_{11}$	6.38 f 6.920	Rammelsberg, P.A.
Emplectite	Cu Bi S,	5.18, 5°	88, 320. Weisbach. J.19,916.
Wittichenite	Cu_3 Bi S_3	4.3	Hilger. J. 18, 870.
Klaprotholite	$\operatorname{Cu}_6^3\operatorname{Bi}_4\operatorname{S}_{9}$	4.6	Petersen. N.J. 1868, 415.
Aikinite	Cu' Pb Bi S ₃	6.757	Frick. P. A. 31, 530.
**	"	6.1	Chapman. J.1,1158.
Kobellite	Pb ₃ Bi Sb S ₆	$\{6.29, \dots, \}$	Satterberg. P. A. 55,
		6.32	Bummalahana I D
	"	6.145	Rammelsberg. J. P. C. 86, 340.

^{*} Alaskaite, a lead silver salt similar to this, has a sp. gr. 6.878. Koenig, Z. K. M. 6, 42.

3d. Miscellaneous Double and Oxy-Sulphides.

Name.	FORMULA.	Sp. Gravity.	Λ стиовіту.
Thallium potassium sul- phide.	K Tl S ₂	1.263	Schneider, P. A 139, 661.
Iron potassium sulphide	K Fe''' S.	2,563	Preis, J.P.C.107,10
Sodium platinum sulphide	$\operatorname{Na}(\operatorname{Pt}_2\operatorname{S}_3^{-2})$	6.27, 15	Schneider, P. A
Potassium platinum sul- phide.	$\mathbf{K} \ \mathbf{Pt_2} \ \mathbf{S_3} \ =$	6.44, 153	138, 604.
Stromeverite	Ag Cu' S	6.26	Kopp. J. 16, 5,
11		6,255	Stromeyer, Schw. J 19, 325.
lalpaite	$\Lambda g_3 \operatorname{Cu}' S_4$		Breithaupt, J. 11
	-	6,800	GS <u>2</u> ,
Sternbergite	$\Lambda g/Fe_2/S_{3/2}$	4.215	Dana's Mineralogy
Silver gold sulphide ==	$\Lambda g_{10}^- \Lambda u_4^- S_{11}^-$	5,159	Muir. B.S.C.18,222
Argyrodite	$\Lambda g_6 \operatorname{Ge} S_5$	6,085, 157	Richter, Quoted by Winkler,
4.	* *	$\frac{6.0001}{6.111}$ 12^{5} $\frac{f}{f}$	Winkler, J. P. C
**		4.1117	(2), 34, 187.
Christophite _	Zng Fe S	8.9448.994.	Breithaupt, B. H Ztg. 22, 27.
Guadaleazarite =	Zn $\text{Hg}_6 S_7$	7.15	Petersen, J. 25,109
Bornite	Fe Cu ₃ S ₄	5,030	Rammel-berg, Z. G
**		4, 102	S. 18, 19, Forbes, J. 4, 758,
48		1.91	Katzer, M. P. M
Iron copper sulphide. Artif.	Fe ₄ Cu ₉ S ₁₀	1.85	9, 404. Deelter, Z. K. M
D 1 144	12 - 12 a S	1.521	. 11, 29. Genth. J. 8, 910.
Barnhardtite	$\frac{\operatorname{Fe}_2\operatorname{Cu}_1\operatorname{S}_1}{\operatorname{Fe}_2\operatorname{Cu}_3\operatorname{S}_4}$	4 185	Forbes, J. 4, 759.
Chalcopyrite	recus,	4.1 = 1.3	Dana's M neraloge
Artificial		1,196	Doelter, Z. K. N
Iron coppersulphide. Artif.	Fo Cu S	4 9999	R C a months
Furnace product. Cryst.	Fe_5 Cu_4 S_9	3.07	Brogger, Z. K. N 3, 495,
Cubanite	$\operatorname{Fe}_2\operatorname{Cu} S_4$	1,((2))	Breithaupt. P. J
**	3.6	4.012	59, 325,
**		1.15	Smith, J. 7, 810.
Chalcopyrrhotite	Fe ₄ Cu S ₆ .	1.128	Blomstrand, Dana Min , 2d Append
Carrollite .	Co Cu S ₂	1.58	Falor, J. 5, 840.
		4.85	Smith and Brush
Pentlandite	Fe Ni $_2$ S $_5$ = $_2$	-4.6	J. 6, 782 Scheerer, P. A 5 316.
Horbachite	$\mathrm{Fe}_{s}(\mathrm{Ni}_{2} \mathrm{S}_{15})=1$	1.43	Knop. N. J. 187
Daubreelite .	Fe Cr. S.	5,01	523. Smith, J.C.S.36,3
Bismuth nickel sulphide	Bi., Ni, S.	9.45	Weather, J. 5, 38
Voltzite	4 Zh S. Zn O	0.5-0.8	Vegl. J. 6, 786.
Kermesite	2 Sh ₂ S ₂ , Sh ₂ O	4.5 - 1.6	Dana's Mineralog

Castillite, Grunauite, and Stannite are omitted as having too indefinite composition

X. SELENIDES.

NAME.	Formula.	Sp. Gravity.	AUTHORITY.
Naumannite		!	G. Rose. P. A. 14 471.
Zinc selenide	Zn Se	5.40, 15°	Margottet. J. C. S. 32, 570.
Cadmium selenide	Cd Se	8.789 5.80	Little. J. 12, 94. Margottet. J. C. S. 32, 570.
Mercurous selenide Tiemannite	$_{ m Hg}$ Se	7.274	Little. J. 12, 95. Dana's Mineralogy.
11		8.187)	Penfield. A. J. S.
Lead selenide. Artificial '' '' Clausthalite	Pb Se	8.154	(3), 29, 449. Little. J. 12, 95. Zinken. P. A. 3.
Ferric selenide			274. Little, J. 12, 94.
Nickel selenide Cobalt selenide	Ni Se Co Se	8.462	
Berzelianite	Cu' ₂ Se	6.71	977.
Copper selenide Arsenic triselenide Bismuth triselenide	Cu Se	4.752	
" " Frenzelite		6.82 7.406 6.25, 21°	Schneider. J. 8, 386. Little. J. 12, 95. Frenzel. N. J. 1874,
" Guanajna-			679. Fernandez. Dana's
tite. Tin monoselenide	Sn Se	5.24, 15°	
· · · · · · · · · · · · · · · · · · ·		6.179, 0°	98, 236. Ditte. C. R. 96, 1792.
Tin diselenide	Sn Se ₂	5.133 4.85	Little. J. 12, 95. Sehneider. J. P. C.
Eucairite	Cu' Ag Se	7.48—7.51	98, 236. Nordenskiöld. J. 20, 977.
Crookesite Lehrbachite	(Cu Ag Tl) ₂ Se (Pb Hg) Se	6.90 7.804—7.876	44 44
Zorgite	(Pb Cu) Se	_ 6.38	Pisani. J. 32, 1183.

XI. TELLURIDES.

Name.	FORMULY.	SP. GRAVITY.	Аттновиту.
Hessite		5.412 / 5.565 /	G. Rose, P.A.18,64
4.		2.175	Genth. J. 27, 1203 Beeke, Z. K. M. 6
Zine telluride	Zn Te		205, Margottet, J. C. S 32, 570,
Cadmium telluride Coloradoite Tin telluride	Пд Тет		Genth. Z. K. M. 2, 4 Ditte. C. R. 96, 1793
Altaite Antimony telluride	Pb Te	8,159	G. Rose, P. A.18, 64 Genth, J. 27, 1233
Joseite	E. Bi ₃ Te	7.924—7.936	Bodeker and Gie seeke. B. D. Z. Dana's Mineral sey Wehrle. Dana
Wehrlite Tetradymite	Pi. T.,	,,,=	Min. Genth. J. 5, 863.
	1. 11. 11. 11. 11. 11. 11. 11. 11. 11.	7.868 7.941 7.642, 182	Genth. J. 13, 714, Balch, J. 16, 724
Calaverite Sylvanite Petzite	Au Ag Te ₄	7.943	Genth. J. 27, 123
Tapalpite	$egin{array}{cccccccccccccccccccccccccccccccccccc$	6,020 (7,800	Remmelsherg, Z C S 21, S1,

XII. PHOSPHIDES.

Name.		FORMULA.	Sp. Gravity.	$\Delta \tau$ intentity
_				
Silver phosphide		$\Lambda g_2 P_3$	4.63	Schrott r. S.W A 1849, 301.
Zine phosphide		Zn ₂ P ₂	1.76 1.72	Hayer, J. C. S 32,
Tin monophosphic			6,56	Schrötter, S.W.A., 1849, 301.
4. 4.		4.	Fig. 7 (5)	Natanson and Vort- menn. Ber. 10, 1460.
Tin diphosphide		. Sn P,	1.91. 120	Emmerling, Ber. 12, 155.
Chromium phospl	ride	Cr P	4.6%	Martins, J. 11, 160
Manganese phospl				Wohler, J. e. 359
		Mn ₃ P		Schrotter, S.W. A 1849, 201

Name.	Formula.	Sp. Gravity.	Антновиту.
Iron phosphide	Fe ₃ P	6.28	Hvoslef, J. 9, 285
Nickel phosphide	Fe ₃ P ₄	5.04	Freese. J. 20, 284
Nickel phosphide	Ni ₅ P	_ 7.283	Jannetaz. J. C. S
	Ni ₃ P ₂	5.99	44, 651. Sehrötter. S.W.A 1849, 301.
Cobalt phosphide	Co. P	5.62	
Tricopper phosphide	Cu, P	6.75	
" it "	"	6.59	Hvoslef. J. 9, 285
	44	6.350	Sidot. J. R. C. 5, 75
Copper monophosphide	Cu P	0.14	153,
Molybdenum monophos- phide.			163.
Tungsten hemiphosphid:	W. P	5.207	Wöhler, J. 4, 347.
Tungsten hemiphosphide Palladium diphosphide	$\operatorname{Pd}^{'}\operatorname{P}_{2}$	8.25	Sehrötter, S. W. A 1849, 301.
Platinum diphosphide	Pt P.,	8.77	
Platinum diphosphide Iridium hemiphosphide *-	Ir ₂ P	13,768	Clarke. A. C. J. 5 231.
Gold phosphide	$\mathrm{Au_2}\;\mathrm{P_3}$	6.67	Schrötter, S. W. A. 1849, 301.

XIII. ARSENIDES.

Name.	FORMULA.	Sp. Gravity.	Антновиту.
Silver arsenide	Ag As	8.51	Deseamps, J. Ph. C.
Trisilver diarsenide	$Ag_3 As_2$	9.01	(4), 27, 424.
Trisilver diarsenide Trisilver arsenide " Huntilite_	/Ag _{3,} As	7.47	Wurtz. Dana's
Triconner diarsenide	Cu As	6.94	Description J. Ph. C.
Dicopper arsenide Tricopper arsenide " " Domeykite Algodonite	Cu ₂ As	7.76	(4), 27, 424.
Tricopper arsenide	Cu _{3.} As	7.81	Genth. J. 15, 708.
			99, 104.
Whitneyite	Cu. As	8.408	Genth. J. 12, 771.
((11	$\left\{\begin{array}{c} 8.246 \\ 8.471 \end{array}\right\} \ 21^{\circ}_{}$	Genth. J. 15, 708.
Tricadmium arsenide	Cd ₃ As	6.26	Descamps. J. Ph. C. (4), 27, 424.
Tin hemiarsenide Tin diarsenide	Sn ₂ As	7.001, 18°	Bödeker. B. D. Z.
Im diarsemide	SH AS ₂	0.00	(4), 27, 424.
Lead arsenide Trilead tetrarsenide	Pb ₃ As ₄	9.65	

^{*}Commercial "cast iridium." Contains several per cent. of the phosphides of rhodium and ruthenium, with possibly a little phosphide of osmium.

Name.	FORMULA.	SP. GRAVITY.	Λ UTHORITY.
Trilend diarsenide	$\operatorname{Ph}_3 \Lambda s_2 \dots \dots \dots \dots$		Descamps, J. Ph. C.
Kaneite Leucopyrite Leucopyrite	Fe, Λ_{S_3}	5,55 6,659 6,848	Kane. Dana's Min. Breithaupt. P. A. 9, 115.
Lolingite	Fe Ac 2	6.216, in mass. 6.321, only.	Behneke, J. 9, 831.
	**	7,400	Hillebrand, A. J. S. (3), 27, 353,
Trinickel arsenide	Ni ₃ As	7.71	Descumps, J. Ph. C. (1, 27, 421.
Niccolite	Ni As	7.603	Scheerer, P. A. 65 292.
		7.39, 16°	Ebelmen, Ann. d. Mines (4), 11, 55.
. (**	7.314	Genth. J. 36, 1829,
Rammelshergite	Ni Λ_{2}	7,0997,188	Breithaupt, Dana's Min.
4.		6.9	$-{\rm MeCey}$, J. 37, 1905
Smaltite	$Co(\Lambda_2)$	6.51	Rose, A. 5, 836.
Skutterudite	J		Scheerer, P. A. 42 553.
Antimony hemiarschide	Sh ₂ As	6.46	Descami s. J. Ph. C +1, 27, 424.
Allemontite	Sh A-3	6.13	Thomson. Dana's
			Rammelsberg Dana's Min.
Bismuth arsenide	$\mathrm{Bi}_3 \Lambda^{\mathrm{s}}_4$	5.45	Descamps, J. Ph. C (1), 27, 424,
Gold arsenide	Λu, Λs,	16.20	(- 1 - 2 - 2 - 1)
O Rilevite	Cu' ₂ Fe, As ₅	7.313 - 7.428.	Waldie, J. 24, 1183

XIV. ANTIMONIDES.*

Name.	Formula.	SP, GRAVITY.	Антиовиту.
Dyscrasite, Stibiotriargen- tite, 9 9 9 Dyscrasite, Stibiohexar-		9.77	377.
gentite. Zine antimonide	Zn Sb	6,383	Cooke, P. M. (4), 19, 413.
Trizine diantimonide Breithauptite	Zu ₃ Sh ₂ Ni Sh ₂	7.544	Breithaupt, Dana's Min.
Tin antimonide *	$\operatorname{Sn}_2\operatorname{Sh}$	7.07, 190	Bodeker, B. D. Z.

^{*} Compare also the table of alloys.

XV. SULPHIDES WITH ARSENIDES OR ANTIMONIDES.

NAME.	FORMULA.	Sp. Gravity.	Authority.
Arsenopyrite	Fe S As	6.269	Kenngott, S. W. A. 9, 584.
		6.21	
"		_ 6.095, in mass.	
		6.004, pulv) -
"		6.255	Forbes. J. 18, 871.
	.,	6.16	Zepharovich, S. W.
44	"	6.05-6.07	A. 56 (1), 42.
			McCay. J. 37, 1905 Breithaupt and
Pacite	$ \operatorname{Fe_5 S_2} \operatorname{As_8} $	6.297 \	Weisbach, B. H.
"	"	6.303 } }	Ztz. 25, 167.
Glaucopyrite	$\text{Fe}_{13} \text{ S}_2 \text{ As}_{24} $	7.181	Sandberger, J. P. C. (2), 1, 230.
Glaucodot	(Co Fe) S As	5.975-6.003	Breithaupt. P. A. 67, 127.
	"	5.905-6.011	Schrauf and Dana S. W. A. 69, 153
Cobaltite	Co S As	6.0-6.3	Dana's Mineralogy.
Gersdorffite	Ni S As	5 10)	
"			Forbes. J. 21, 997.
"		6.1977	
Ullmannite	Ni S Sb	6.506, 20°	Rammelsberg. P. A. 64, 189.
"		6.803}	Jannasch. J. 36
44		6.883}	1832.
Corynite			872.
Wolfachite		6.372	Sandberger. J. 22 1193.
Alloclasite	Co ₃ S ₄ Bi ₄ As ₆	6.6	
"	44	6.23-6.5	Frenzel. J. 36, 1831

XVI. HYDRIDES, BORIDES, CARBIDES, SILICIDES, NITRIDES, ETC.

NAME.	Formula.	Sp. Gravity.	Антновиту.
Sodium hydride	Na ₂ H	0.959	Troost and Haute- feuille. C. R. 78,
Palladium hydride			1 1 991
"	-		feuille. C. R. 78, 970.
Columbium hydride	Cb II	6.0 to 6.6 6.15 to 7.37	$\left\{egin{array}{l} ext{Marignae.} & ext{J. 21,} \ 214. & ext{Supposed to} \ ext{be metal.} \end{array} ight.$

	AME.		FORMULA.	SP. GRAVITY.	Ачтновиту.
Platinum l	oride		Pt B	17.02	Martius. J. 11, 210.
ron silico-	carbide		Fe ₆ Si ₂ C	6.6	Colson. J. C. S. 42
litanium c	arbide		Ti C, impure	5.10	933. Shimer, J. A. C.
ron silicid	(*		Fe. Si	6.611	1, 4. Hahn, J. 17, 264
Platinum :	ilicide		$\operatorname{Pt}_3^2\operatorname{Si}_2$	14,1	Colson. Ber. 15
4.4	4.4		Pt ₉ Si	18.97	Memminger, A.C
Aluminum Aluminum	titanide zireonid	· (?) -	$\begin{array}{ccc} \Lambda I_4 & \mathrm{Ti} \\ \Lambda I_3 & \mathrm{Zr}_4 & \mathrm{or} & \Lambda I_6 & \mathrm{Zr}_2 \end{array}$	3.11, 16° Sil. (3.629)	J. 7, 172, Levy. C. R. 106, 66 Melliss. Gottinger Doct. Diss., 1870
Ammonia.	Liquetic	d	N II ₃		
4.6	4.6		44	6231, 0°	Jolly. J. 14, 165.
4 4	4.6				
	4.4			.6429, 5	
4.4	**			1,6364.0	
4.4	4.4				D'Andreéff. Ann
1.4	* *				(3), 56, 317
4.6	* *				
4.4	4.4				
l'itanium i			Ti ₂ N ₂		 Friedel and Guérin C. R. 82, 974.
Iron nitrid	e. Impui	*C*	$\operatorname{Fe}_5 \operatorname{N}_2$	3,147	Silvestri. Ber. 8

XVII. HYDROXIDES.

Name.	FORMULA.	Sp. Carreta	Антноких.
A A M Fo.	I OKSI CEA.		
Sodium hydroxide.	Na O H $=$	2.130	Filhol. Ann. (3), 21, 415.
		1.723	W. C. Smith. Am. J. P. 53, 145,
	2 Na O H, 7 H, O	1,405	Hermes, J. 16, 178.
Potassium hydroxide	KOH .	2.100	Dalton,
		2,044	Filhel, Ann. (3), 21, 415.
-		1.058	W. C. Smith, Am. J. P. 53, 145.
Brucite	Mg (O H) ₂	2,36	Hermann, J. 14,
**		2.376	Beck, J. 15, 718.
· Artif. cryst.		2,36, 157	Schulten, C. R. 101, 72.
Zine hydroxide	Zn (O H)	2.677	Nicklés, J. 1, 435.
		3,053	Filhol. Ann. (3), 21, 415.
Cadmium hydroxide. Cryst.	Γ Cd (O H) ₂	4.79, 15°	Schulten, C. R. 101, 72.

NAME.	Formula.	Sp. Gravity.	Антновіту.
Calcium hydroxide			Filhol. Ann. (3), 21,
Strontium hydroxide	Sr (O II) ₂	3.625 1.396 1.911, 16°	" " " " " " " " " " " " " " " " " " "
Barium hydroxide			Filhol. Ann. (3), 21,
:	Ba (O H) ₂ . 8 H ₂ O	1.656 2.188, 16°	Filhol. J. P. C. 36, 37.
Lead hydroxide	Pb (O H) ₂ . 2 Pb O	7.592, 0°	Ditte. J. C. S. 42, 928.
Lead oxyhydroxide	Pb (O H) ₂ O	6.267	Wernicke, J. P. C. (2), 2, 419.
Manganese hydroxide. Cryst.	Mn (O H) ₂		Schulten. C. R. 105, 1266.
Manganese oxyhydroxide	Mn (O H) ₂ O	$ \ 2.596\ ____$	Wernicke. J. P. C. (2), 2, 419.
Manganite	Mn ₂ (O H) ₂ O ₂		Kammelsberg, J.18, 878.
Manganese hydroxide	Mn ₁₂ H ₂ O ₂₄	$\left\{ \begin{array}{c} 4.750 \\ 4.800 \end{array} \right\} 4^{\circ} \left\{ \begin{array}{c} \end{array} \right.$	Veley. J. C. S. 41, 65.
	Mn ₂₄ H ₁₆ O ₅₃	$\frac{4.671}{4.681}$ $\frac{4}{9}$	" "
Turgite			Hermann. Dana's Min.
"		4.14	Bergemann. J. 12, 771. Brush. A. J. S. (2),
			44, 219. Brunck and Graebe.
Ferric oxyhydroxide "Göthite.			Ber. 13, 725.
., ., ., ., .,		$\{4.19, \dots, 4.24, \dots\}$	Yorke. P. M. (3), 27, 265-267.
Limonite	Fe ₄ (O ₁ H) ₆ O ₃	3.6—4.0 3.908	Dana's Mineralogy. Bergemann. Dana's
Ferric hydroxide	Fe ₂ (O H) ₆	3.77, precip	Min. Yorke. P. M. (3), 27, 269.
" Limnite_ Nickelic oxyhydroxide	Ni ₂ (O II) ₄ O	2.69	Church. J. 18, 879. Wernicke. J. P. C.
Cobaltic oxyhydroxide Heterogenite	Co ₂ (O H) ₄ O	2.483 3.44	(2), 2, 419. " Frenzel. J. P. C.
Copper hydroxide Diaspore	Cu (O H) ₂ Al (O H) O	3.368	(2), 5, 404. Schröder, Dm. 1873. Jackson, A. J. S.
		3.343	(2), 42, 108. Shepard. A. J. S.
Gibbsite	Al (O H) ₃	2.387	(2), 50, 96. Hermann. J. 1, 1164.
		2.389	Silliman, Jr. J. 2, 389.
Stibiconite	Sb ₂ (O H) ₂ O ₃	5.28	Blum and Delffs. J. P. C. 40, 318.

Name	FORMULA.	SP GRAVITY.	AUTHORIFY.
Antimonic hydroxide		6.6	Boullay. Dana's Min.
Bismuth oxyhydroxide			Wernicke, J. P. C. (2), 2, 419.
			Muir. Hoffmeister, and Robbs. J. C. 8, 39, 32
$ \begin{array}{l} \textbf{Metabismuthic hydroxide} \\ \textbf{Uranyl hydroxide} \\ \end{array} $	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	5,75, 20° 5,926, 15°	Malaguti, J. P. C. 29, 233.
Eliasite	$U^{\ast}(\Theta,H)_{i}(\Theta) = \dots = \dots$	1.087—1.207	Zepharevich. Da- na's Min.
Gummite	t* • π) ₅	3.9-4.20	Breithaupt. Dana s Min.
Chalcophanite	$\operatorname{Zn}(\operatorname{Mn}_2\operatorname{O}_1/2\operatorname{H}_2\operatorname{O}_2)$	3,907	Moore, J. C. S. 36, 17.
Namaqualite		2.49	Church, J. C. 8,23.1, Hermann, J. 1,1168.

XVIII. CHLORATES AND PERCHLORATES.

N.	A.M.*	Гонмина.	SP. GRAVITY.	Λ UTHORITY.
chloric ac Sadium chb	id. erate	H Cl O ₂ , 7 H ₂ O Na Cl O	2.467 2.289	Berthelot. Bodeker, B. D. Z
Potassium c	hlorate	K Cl O :	2,02613, 41	Playfair and Joule J. C. S. L. 197.
**	· · · · · · · · · · · · · · · · · · ·	··	2.325	Kremers, J. 10, 67 Buignet, J. 14, 17 Holker, P. M. 4 27, 214.
	4.		$\begin{array}{c} 2.325, \mathrm{m.~of} 5_4 \\ 2.246 \mathrm{(-Fx)} \\ 2.364 \mathrm{(tenses)} \\ 2.167 \mathrm{(-1)} \end{array}$	Schroder, Du. 187 W. C. Smith, An
	site	Ag ClO =	4,430 4,430	J. P. 53, 145 S. hroder J. 12, 1 Teperer B. S. C. 1 246.
Thallium c Strontium		11 (10) 8: (1 ₂ 0)	5,5047, 9 6,150 / 3,454	Mair. C. N. 44, 15 Schröder, Du., 187
Barium chi	orate	$\begin{array}{ccc} \operatorname{Ba} \operatorname{Ct}_{i} \operatorname{O}_{k} & \operatorname{H}_{i} \operatorname{O} \\ & & & \\ \operatorname{Pb} \operatorname{Cl}_{i} \operatorname{O}_{k} & \operatorname{H}_{i} \operatorname{O} \\ & & & \\ & & & \\ \end{array}$		Bodeker, B. D. Z. Schröder, Dec 187

^{*}Kummerer also gives figures for other by frates of oblerio will

NAME.	Formula.	Sp. Gravity.	AUTHORITY.
Lead chlorate Mercurous chlorate Mercuric chlorate Basic mercuric chlorate			l 246.
Hydrogen perchlorate, or perchloric acid. Lithium perchlorate Potassium perchlorate " " " " " " " Ammonium perchlorate Thallium perchlorate	H Cl O ₄ . H ₂ O Li Cl O ₄ K Cl O ₄ " " " " " " " Am Cl O ₄	1.811, 50°	Wyrouboff. B. S. M. 6, 53. Kopp. J. 16, 4. Schröder. Dm. 1873. Stephan, F. W. C.

XIX. BROMATES.

Name.	Formula.	Sp. Gravity.	AUTHORITY.
Sodium bromatePotassium bromate		3.271, 170.5	Kremers. J. 10, 67 " Topsoë. B. S. C. 19, 246.
Silver bromate " " " Magnesium bromate	$\operatorname{Ag} \operatorname{Br} \operatorname{O}_{3}$	5.1983, 16°	Storer. F. W. C. " Topsoë. B. S. C. 19
Zinc bromateCadmium bromate	Cd $\operatorname{Br}_2 \operatorname{O}_6$. 2 $\operatorname{H}_2 \operatorname{O}_{}$	3.758	Topsoë. B. S. C. 19 246.
Basic mercuric bromate Calcium bromate Strontium bromate Barium bromate	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	3.329 3.773 4.0895, 17°	Topsoë. C. C. 4, 76
" " Lead bromate Nickel bromate	Ba Br ₂ O ₆ , H ₂ O Pb Br ₂ O ₆ , H ₂ O Ni Br ₂ O ₆ , 6 H ₂ O	3.9918, 18° 5 3.820 4.950 2.575	Topsoë, C. C. 4, 76
Copper bromate	Cu Br ₂ O ₆ . 6 H ₂ O	2,085	

XX. IODATES AND PERIODATES.

Name.	FORMULA.	SP. GRAVITY.	Λ UTHORITY.
Hydrogen iodate,* or iodic	П1 О1	4.869, 0°) 4.816, 50°.8	Ditte. Ann. (4), 21,
neid	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	1.277, 173.5	Kremers, J. 10, 67.
Potassium iodate			Ditte. Ann. (4), 21,
Ammonium iodate	$\Delta \text{ in } 1 \Theta_3$	0.802, 185 0.8072, 125.5 / 0.8085, 246 /	Clarke. Fullerton, F. W. C.
Silver iodate. Precip. Cryst. from .	$\Delta \leq 1 \Omega_{i}$	5,4023, 16°,50 5,6475, 14°,50	
Magnesium iodate Barium iodate	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$5.2299, 18^{\circ}$	Bishop, F. W. C. Fullerton, F. W. C.
Lead iodate	Pb I ₂ O ₆	6.209) 6.218 / 6.257)	Schroder, Dm. 1873,
**		6.155, 20°	Fullerton, F. W. C.
Niekel iodate		3,6054, 22°	4.6
Cobalt iodate	$C_{2} \stackrel{C}{=} C_{6} \stackrel{C}{=} C_{1} \stackrel{C}{=} C_{1} \stackrel{C}{=} C_{2} \stackrel{C}{=} $	5,008, 18° 3,6659, 18°,5	
Didymium periodate	Di 105, 4 11, 0	3.755 } 21°.2	Cleve, F. N. A. 1885.
Samarium periodate	Sm I Θ_5 , 4 H ₂ $\Theta_{}$	8.798. 212.	

XXI. THIOSULPHATES, * SULPHITES, DITHIONATES.

			5.5
Name.	FORMULA.	SP. GRAVITY.	Λ UTHORITY.
Sodium thiosulphate:		1.672 1.786, 10: 1.784 1.728	Buignet, J. 14, 15, Kepp. J. 8, 45, Schiff, J. 12, 44, W. C. Smith, Am, J. P. 53, 148,
Potassium thiosulphate Magnesium thiosulphate Calcium thiosulphate	$\begin{array}{c} \mathbf{K}_2 \mathbf{S}_2 \mathbf{O}_1 \\ \mathbf{Mg} \mathbf{S}_2 \mathbf{O}_2 \otimes \mathbf{H}_2 \mathbf{O}_2 \\ \mathbf{Ca} \mathbf{S}_2 \mathbf{O}_3 \otimes \mathbf{H}_2 \mathbf{O}_3 \end{array}$	2,590 [1] [1 1,818, 24 1,8715, 10 [5 1,8728, 16] [4]	Buignet J. H. 15, Oliver, F. W. C. Richardson, F.W.C.
Strontium thiosulphate Barium thiosulphate	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	2.1778, 179 3.4461, 16 3.4486, 18 (c)	
Cobalt thiosulphate	$\operatorname{Co} S_2 O$, $\operatorname{G} \operatorname{H}_2 O$	1.905, 25%	Oliver, F. W. C.
Hydrogen sulphite or sul-	H SO GH O	1.147, 15°,	Genther. A. C. P.
phurous acid.		cry-1.	221, 218.

For various hydrates of iodic acid see Kaemmerer, P. A. 138, 329.
 † Commonly called hyposulphites.

NAME.	Formula.	SP. GRAVITY.	AUTHORITY.
Sodium sulphite	Na ₂ S O ₃ . 10 H ₂ O Cu ₂ S O ₃ . H ₂ O	1.561 4.46 3.83, 15°	Buignet. J. 14, 15. Etard. Ber. 15, 2233.
Hydrogen dithionate, or dithionic acid. Lithium dithionateSodium dithionate	$H_2 S_2 O_6 + aq.$ $Li_2 S_2 O_6. 2 H_2 O$ $Na_2 S_2 O_6. 2 H_2 O$	1.347	
" " Potassium dithionate	"	2.175, 11° 2.277	246. Baker, C. N. 36, 203. Topsoë, B. S. C. 19, 246.
Ammonium dithionate Silver dithionate Magnesium dithionate	$Ag_{\mathfrak{g}}S_{\mathfrak{g}}O_{\mathfrak{g}}$. $2H_{\mathfrak{g}}O_{}$	1.704 3.605 1.666	Topsoë. C. C. 4, 76. Topsoë. B. S. C. 19, 246.
Zinc dithionate Cadmium dithionate Calcium dithionate	Cd S ₂ O ₆ . 6 H ₂ O	1.915 2.272 2.180	Topsoë. C. C. 4, 76. Topsoë. B. S. C. 19, 246.
Strontium dithionate Barium dithionate	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	2.176, 11° 2.373 4.586, 13°.5 3.142 3.055, 24°.5	Baker. C. N. 36, 203. Topsoë. C. C. 4, 76. Baker. C. N. 36, 203. Topsoë. C. C. 4, 76. Stephan. F. W. C.
Lead dithionate	Mn S ₂ O ₆ . 4 H ₂ O Mn S ₂ O ₆ . 6 H ₂ O	3.245	Topsoë. C. C. 4, 76. Baker. C. N. 36, 203. Topsoë. C. C. 4, 76.
Iron dithionate Nickel dithionate Cobalt dithionate	Ni S ₂ O ₆ . 6 H ₂ O	1.815	

XXII. SULPHATES.

1st. Simple Sulphates.

NAME.			F	ORMULA.	Sp. Gravity.	Антнокиту.
Hydrogen sulphurie		or	H ₂ S O	4	1.857	Bineau. Ann. (3), 24, 337.
"	11		"		1.8485	Ure. Schw. J. 35,
"	"				1.854, 0°)	
"	"					Marignae. J. 6, 325.
4.4	44		"		1.834, 24°	,
	"				1.857, 0°	Kolb. Z. A. C. 12, 333.
	"		"		1.85289, 0°	Marignac. Ann. (4), 22, 420.
"	"		"		1.8354, 18°	Kohlrauseh. P. A. 159, 243.
4.6	"				1.82730, 23°	Nasini. Ber.15,2885.

Name. Hydrogen sulphate, or sulphuric acid.			For	MULA.	Sp. Gravity.	AUTHORITY. Schertel. Ber. 15, 2734.	
			$\Pi_2 \otimes \Theta_4$		1.851, 0°		
	**				1.8084, 157	Lunge and Naef Ber. 16, 950.	
* *	٤,				. 1,88295, 190.02	- MendelejetE - Ber.	
é s	11	1	"		. 1,8528, 00 .	17. ret. 304. Mendelejetf. Ber 19, 380.	
4.	4 .				1.83904, 15%	1.2, 600.	
4.						Perkin, J. C. S. 49	
	4.				1.88265, 25°)	111.	
٠.	* *		$\Pi_2 \otimes \Theta_4$.	$H_2 \leftrightarrow$	1.781. 8	Wackenroder, J. 2 249.	
. 4	6.4		. ($1.7913, 0^{\circ}$	Mendelejeff. Ber 19, 380.	
4.	6.4		**		1.7780G, 15° /		
4.4	4.				1.77428, 20°	Perkin. J. C. S. 49	
i.	4.	'	11		1.77071, 25°)	114	
4.			$\Pi_2 \otimes \Theta_4$.	$2 \Pi_2 O \ldots$		Watts' Dictionary.	
••					. 1,6655, 0°	- Mendelejeff, — Ber 1 — 19, 380,	
4.	44				. 1,65084, 152)		
4.	4.4			~ ~		Perkin. J. C. S. 49	
4.4					_ 1.64467, 25°)	777.	
6 *	* *		$\Pi_2 \otimes \Theta_{\mathfrak{p}}$	3 11, ()	. 1,55064, 15°)		
4.			* * *	4	1.54754, 20%		
		1.1.	11 8 41	•	1,54754, 20° (1,54498, 25°)		
i. Hydrogen			$\begin{array}{c} \Pi_2 S_2 O_7 \\ \Pi_2 S O_4 \end{array}$	-3 S O ₃	1.54754, 20%	Watts' Dictionary, Weber, P. A. 159	
i. Hydrogen Hydrogen	tetra-u	lphate	$\begin{aligned} & & \overset{\circ}{\mathbb{I}}_2\\ & & \overset{\circ}{\mathbb{I}}_2 \overset{\circ}{\mathbf{S}}_2 \overset{\circ}{\mathbf{O}_3}\\ & & \overset{\circ}{\mathbb{I}}_2 \overset{\circ}{\mathbf{S}} \overset{\circ}{\mathbf{O}_4}\\ & & \overset{\circ}{\mathbb{I}}_2 \overset{\circ}{\mathbf{S}} \overset{\circ}{\mathbf{O}_4}. \end{aligned}$	$\frac{1}{2}3SO_3$	1,54754, 202 (1,54400, 252) 1,9	Watts' Dictionary, Weber. P. A. 159 325, Kremers. J. 10, 67 Brauner. P. M. (5)	
Hydrogen Hydrogen	tetra-u	lphate	$\operatorname{Li}_2\operatorname{S}\Theta_4$	3 S O ₃	1,54754, 20° (1,54496, 25°) 1,9	Watts' Dictionary, Weber. P. A. 159 325, Kremers. J. 10, 67 Brauner. P. M. (5) 11, 67.	
i. Hydrogen Hydrogen Lithium si	tetra-u	lphate		3 S O ₃	1,54754, 20° (1,54496), 25° (1,9	Watts' Dictionary, Weber, P. A. 159 325, Kremers, J. 10, 67 Brauner, P. M. (5)	
i. Hydrogen Hydrogen Lithium si	tetra-u	lphate	$\operatorname{Li}_2\operatorname{S}\Theta_4$	3 S O ₃	1,54754, 202 (1,54496, 252) 1,9 1,988	Watts' Dictionary, Weber, P. A. 159 325, Kremers, J. 10, 67 Brauner, P. M. (5) 11, 67, Troost, J. 10, 141, Pettersson, U. N	
Hydrogen Hydrogen Lithium si	tétrasu alphati	lphate	$\begin{array}{c} \operatorname{Li}_2 \operatorname{S} \operatorname{O}_{4}, \\ \operatorname{Li}_2 \operatorname{S} \operatorname{O}_{4}, \\ \vdots \\ $	3 S O ₃	1,54754, 202 (1,54496, 252) 1,9 1,9 1,9 1,9 1,9 1,9 1,9 1,9 1,9 1,9	Watts' Dictionary, Weber. P. A. 159 325, Kremers. J. 10, 67 Brauner. P. M. (5) 11, 67, Troost. J. 10, 141, Pettersson. U. N. A. 1874	
Hydrogen Hydrogen Lithium si	tétrasu alphati	lphate	$\operatorname{Li}_2\operatorname{S}\Theta_4$	3 S O ₃	1,54754, 20° / 1,54496; 25° / 1,983	Watts' Dictionary, Weber. P. A. 159 325, Kremers. J. 10, 67 Brauner. P. M. (5) 11, 67, Troost. J. 10, 141, Pettersson. U. N. A. 1874	
Hydrogen Hydrogen Lithium si	tétrasu alphati	lphate	$\begin{array}{c} \operatorname{Li}_2 \operatorname{S} \operatorname{O}_{4}, \\ \operatorname{Li}_2 \operatorname{S} \operatorname{O}_{4}, \\ \vdots \\ $	3 S O ₃	1,54754, 202 (1,54496, 252) 1,9 1,9 1,9 1,9 1,9 1,9 1,9 1,9 1,9 1,9	Watts' Dictionary, Weber. P. A. 159 325, Kremers, J. 10, 67 Brauner, P. M. (5) 11, 67, Troost, J. 10, 141, Pettersson, U. N. A. 1874 Mobs.—Quoted by Schroder,	
Hydrogen Hydrogen Lithium si	tétrasu alphati	lphate	$\begin{array}{c} \operatorname{Li}_2 \operatorname{S} \operatorname{O}_{4}, \\ \operatorname{Li}_2 \operatorname{S} \operatorname{O}_{4}, \\ \vdots \\ $	3 S O ₃	1,54754, 20° / 1,54496; 25° / 1,983	Watts' Dictionary, Weber. P. A. 159 325, Kremers. J. 10, 67 Brauner. P. M. (5) 11, 67, Troost. J. 10, 141, Pettersson. U. N. A. 1874 Mohs. Quoted by Schroder, Breithaupt, Quoted by Schroder, Cordier. Quoted by	
Hydrogen Hydrogen Lithium si	tétrasu alphate lphate	lphate	$\begin{aligned} &\operatorname{Li}_2 \operatorname{S} \operatorname{O}_4, \\ &\operatorname{Li}_2 \operatorname{S} \operatorname{O}_4, \\ &\operatorname{Na}_2 \operatorname{S} \operatorname{O}_4, \\ &\operatorname{N} \end{aligned}$	3 S O ₃	1,54754, 202 (1,54496, 252) 1,9 1 1,988	Watts' Dictionary, Weber. P. A. 159 325. Kremers, J. 10, 67 Brauner. P. M. (5) 11, 67. Treest. J. 10, 141. Pettersson. U. N. A. 1874 Mobs. Quoted by Schroder. Breithaupt. Quoted by Schroder. Cordier. Quoted by Schroder. Thomson. Ann	
Hydrogen Hydrogen Lithium st Sodium su	tétrasu ulphate lphate	lphate	$\begin{array}{c} \operatorname{Li}_2 \operatorname{S} \Theta_4, \\ \vdots \\ \operatorname{Li}_2 \operatorname{S} \Theta_4, \\ \vdots \\ \operatorname{Na}_2 \operatorname{S} \Theta_4, \\ \vdots \\ \vdots \\ \end{array}$	3 S O ₃	1,51754, 20° / 1,54496; 25° / 1,988	Watts' Dictionary, Weber. P. A. 159 325, Kremers. J. 10, 67 Brauner. P. M. (5) 11, 67, Troost. J. 10, 141, Pettersson. U. N. A. 1874 Mobs. Quoted by Schroder, Breithaupt. Quoted by Schroder, Cordier. Quoted by Schroder, Thousen. Ann Phil. (2), 10, 43; Karsten. Schw. J.	
Hydrogen Hydrogen Lithium st Sodium su 	tétrasu alphate lphate	lphate	$\begin{array}{c} \operatorname{Li}_2 \operatorname{S} \Theta_4, \\ \vdots \\ \operatorname{Li}_2 \operatorname{S} \Theta_4, \\ \vdots \\ \operatorname{Na}_2 \operatorname{S} \Theta_4, \\ \vdots \\ \vdots \\ \end{array}$	3 S O ₃	1,54754, 202 (1,54496), 252 (1,54496), 252 (1,988)	Watts' Dictionary, Weber. P. A. 159 325. Kremers. J. 10, 67 Brauner. P. M. (5) 11, 67. Troost. J. 10, 111. Pettersson. U. N. A. 1874 Mohs. Quoted by Schroder. Breithaupt. Quoted by Schroder. Cordier. Quoted by Schroder. Thomson. Ann Phil. (2), 10, 435 Karsten. Schw. J. 65, 394 Playfair and Joule	
Hydrogen Hydrogen Lithium si Sodium su 	tétrasu ulphate lphate	lphate	$\begin{array}{c} \operatorname{Li}_2 \operatorname{S} \Theta_4, \\ \vdots \\ \operatorname{Li}_2 \operatorname{S} \Theta_4, \\ \vdots \\ \operatorname{Na}_2 \operatorname{S} \Theta_4, \\ \vdots \\ \vdots \\ \end{array}$	3 S O ₃	1,54754, 20° / 1,54496; 25° / 1,988	Watts' Dictionary, Weber. P. A. 159 325. Kremers. J. 10, 67 Brauner. P. M. (5) 11, 67. Troost. J. 10, 141. Pettersson. U. N. A. 1874 Mobs. Quoted by Schroder. Breithaupt. Quoted by Schroder. Cordier. Quoted by Schroder. Thomson. Ann Phil. (2), 10, 435 Karsten. Schw. J. 65, 394 Playfair and Joule M. C. S. 2, 404. Uilhol. Ann. (3)	
Hydrogen Hydrogen Lithium st Sodium su 	tétrasu ulphate lphate	lphate	$\begin{array}{c} \operatorname{Li}_2 \operatorname{S} \Theta_4, \\ \vdots \\ \operatorname{Li}_2 \operatorname{S} \Theta_4, \\ \vdots \\ \operatorname{Na}_2 \operatorname{S} \Theta_4, \\ \vdots \\ \vdots \\ \end{array}$	3 S O ₃	1,54754, 202 (1,54496), 252 (1,54496), 252 (1,988)	Watts' Dictionary, Weber. P. A. 159 325. Kremers. J. 10, 67 Brauner. P. M. (5) 11, 67. Troost. J. 10, 141. Pettersson. U. N. A. 1874 Mobs. Quoted by Schroder. Breithaupt. Quoted by Schroder. Cordier. Quoted by Schroder. Thomson. Ann Phil. (2), 10, 437 Karsten. Schw. J. 65, 394 Playfair and Joule M. C. S. 2, 404. Uilhol. Ann. (3) 24, 445	
Hydrogen Hydrogen Lithium st Sodium su 	tétrasu ulphate lphate	lphate	$\begin{array}{c} \operatorname{Li}_2 \operatorname{S} \Theta_4, \\ \vdots \\ \operatorname{Li}_2 \operatorname{S} \Theta_4, \\ \vdots \\ \operatorname{Na}_2 \operatorname{S} \Theta_4, \\ \vdots \\ \vdots \\ \end{array}$	3 S O ₃	1,54754, 20° / 1,54496; 25° / 1,988	Watts' Dictionary, Weber. P. A. 159 325, Kremers. J. 10, 67 Brauner. P. M. (5) 11, 67, Troost. J. 10, 141, Pettersson. U. N. A. 1874 Mohs. Quoted by Schroder, Breithaupt, Quoted by Schroder, Cordier, Quoted by Schroder, Thomson. Ann Phil. (2), 10, 437 Karsten. Schw. J. 65, 394 Playfair and Joule M. C. S. 2, 404, Filhol. Ann. (3) 24, 445 Kremers. J. 5, 45	
Hydrogen Hydrogen Lithium st Sodium su 	tétrasu alphate lphate	liphate	$\begin{array}{cccc} \operatorname{Li}_2 & S & \mathcal{O}_4, \\ & & & & \\ & & & \\ & $	3 S O ₃	1,54754, 202 (1,54496), 252 (1,54496), 252 (1,988), 1.9 (2,210), 1.988 (1,210), 1	Watts' Dictionary, Weber. P. A. 159 325. Kremers, J. 10, 67 Brauner. P. M. (5) 11, 67. Troost, J. 10, 141. Pettersson, U. N. A. 1874 Mobs. Quoted by Schroder. Breithaupt, Quoted by Schroder. Cordier, Quoted by Schroder, Cordier, Quoted by Schroder, Thomson, Ann Phil. (2), 10, 435 Karsten, Schw. J. 65, 394 Playfair and Joule M. C. S. 2, 404. Uilhol. Ann. (3) 24, 445 Kremers, J. 5, 45 Crystallized at different tempera	
Hydrogen Hydrogen Lithium st Sodium su 	tétrasu ulphate lphate	liphate	$\begin{array}{c} \operatorname{Li}_2 \operatorname{S} \Theta_4, \\ \vdots \\ \operatorname{Li}_2 \operatorname{S} \Theta_4, \\ \vdots \\ \operatorname{Na}_2 \operatorname{S} \Theta_4, \\ \vdots \\ \vdots \\ \end{array}$	3 S O ₃	1,54754, 20° / 1,54496; 25° / 1,988	Watts' Dictionary, Weber. P. A. 159 325. Kremers. J. 10, 67 Brauner. P. M. (5) 11, 67. Troost. J. 10, 141. Pettersson. U. N. A. 1874 Mobs. Quoted by Schroder. Breithaupt. Quoted by Schroder. Cordier. Quoted by Schroder. Thomson. Ann Phil. (2), 10, 437 Karsten. Schw. J. 65, 394 Playfair and Joule M. C. S. 2, 404. Uilhol. Ann. (3)	

NAME.			F	Formula.		Sp. Gravity.	Authority.
Sodium su	lphate		Na ₂ S (04		2.681, 20°.7	Favre and Valson. C. R. 77, 579.
"	"		4.6			2.677 } 17° 5	Pettersson, U. N.
""	"		4.6			$ 2.687 ^{-17}$	A. 1874.
"	"		. 4			2.66180, eryst.)
"	"		"			at 40°. 2.66372, eryst. at 110°	Nicol. P. M. (5) 15, 94.
16	"		44			2.104, at the	Braun. J. C. S. (2)
"	"		Na_2S	O ₄ . 10 I	H ₂ O	melting p't. 1.4457	13, 31. Hassenfratz. Ann. 28, 3.
""	"			t t		1.350	Thomson. Ann. Phil. (2), 10, 435.
t t	"			""		1.469, m. of 2 ₋	Playfair and Joule. M. C. S. 2, 401.
"	"			"		1.520	Filhol. Ann. (3). 21, 415.
"	"			44		1.465	Schiff.
44	"			"		1.471	Buignet. J. 14, 15.
"	"			**			Stolba. J. P. C. 97
4.6	"					1.4595 $\}$	503.
"	"			"		1.455, 26°.5	Favre and Valson. C. R. 77, 579.
* 6	"			4.4		1.485, 19° \	Pettersson. U. N.
4.4	"			. (1.492, 20° ∫	A. 1874.
Potassium		ate	$K_2 S O$	4		2.636	Wattson.
"	"		٠.,			2.4073	Hassenfratz. Ann 28, 3.
" .	"		**			2.880	Thomson. Ann Phil. (2), 10, 435
"	**		""			2.6232	Karsten. Schw. J 65, 394.
**	"		""			2.400	Jacquelain. A. C. P 32, 234.
"	"		"			2.662	Kopp. A. C. P
"	"		"			2.640	Playfair and Joule M. C. S. 2, 401.
"	"		ιι			2.65606, 4°	Playfair and Joule J. C. S. 1, 132.
"	"		""			2.625	Filhol. Ann. (3), 21 415.
"	44	Cryst	"			2.644)	
"	"	After fu-	14			$ 2.657\}$	Penny. J. 8, 333.
		sion.					
"	"		"			2.676	Holker. P. M. (3) 27, 213.
"	"		"			2.653	Schiff. A. C. P. 107 64.
"	"		"			2.658	Schröder, P. A. 106 226.
"	"		"			2.572	Buignet. J. 14, 15.
"	"		"			2.645	Stolba. J. P. Ć. 97 503.
"	"		"			2.648	Topsoë and Christ iansen.

Name.			FORMULY.		Sp. Gravity.	Аптновіту.	
	*		2 7 17		$= \frac{2,660,17^{\circ}.1}{9.667}$	Date of the North	
4.	-				= 2.667, 181.2	Pettersson, U. N. A. 1874.	
					- 2,669, 184,2) - - 2,685, 184,5 -	Richardson, F. W. C	
• •	-						
	-					Wise, F. W. C.	
**			••		2.715	W. C. Smith. Am.	
4.4					41.1.45.	J. P. 45, 148,	
* *			•••		2.1. fused	Quincke, P.A.158 141.	
4.6					2,6651, 02	1 41.	
	_				. 2.6027, 10° i		
					2,66001, 207		
4.					2.6577, 301		
4.4					2,6551, 10		
6.					2,6522,503	Spring. Ber. 15	
4.5					2,6492,50	1940. Details in	
4.4					2,6456,702	Bull, Acad. Bel	
					2,6420,80	gique IV., No. 8	
					2,6366,900	1552.	
4 -	. 4				2.6311.400		
	Not pr				2.653. 213 1 1		
4.	Once		4.4		2,651, 222	Spring. Ber. 16	
	Twice		6.4		2,656, 225	272].	
Pota-siun	a pyrosulpl		$({}_2S_2O$.) .) = =	Jacquelain, A. C P. 32, 234.	
Parkillina	i sulphate.	1.	: :::, S ()	8,639, 161,8	Pettersson, U.N.A	
4 - (3 171/41/11/17					3.641, 167,8 ()	1871.	
			• •		2,4438, 0		
					3,5438, 0- 3,6402, 10°		
	4.4		٠.		3,6498, 0° 3,6402, 10° 0,6667, 20°		
4.4	4.6				3,6468, 69 3,6462, 10° 3,6667, 20° 3,6663, 30°		
			••		3,4438, 0° 3,6402, 10° 5,6567, 20° 3,6563, 80° 3,6206, 40°	Spring. Ber. 1	
			••		3,4458, 05 3,6462, 102 3,6367, 202 3,6383, 302 3,6256, 402 3,6256, 502		
44			••		8,4458, 0- 8,4402, 102 6,4307, 202 8,4303, 402 8,4256, 402 8,6220, 402 8,6220, 402	1940. Details i	
					0,0438, 0 0,0402, 10° 0,0067, 20° 0,0034, 00° 0,0250, 40° 0,0250, 50° 0,6220, 60° 0,6181, 70	1940. Details i Bull, Acad. Be	
44					0,0438, 0 0,0402, 10° 0,0067, 20° 0,0034, 00° 0,0250, 00° 0,0250, 50° 0,0250, 50° 0,0181, 70 0,0142, 80	1940. Details i Bull, Acad. Be gique IV., No. 2	
11 11 11 11 11 11 11 11 11 11 11 11 11					0,0438, 0 0,0402, 10° 0,0007, 20° 0,0003, 00° 0,0250, 40° 0,0250, 50° 0,0250, 50° 0,6181, 70° 0,0442, 80° 0,0089, 90°	1940. Details i Bull, Acad. Be	
11 11 11 11 11 11 11 11 11 11 11 11 11			6.		0,0438, 0 0,0402, 10° 0,0067, 20° 0,0034, 00° 0,0250, 00° 0,0250, 50° 0,0250, 50° 0,0181, 70 0,0142, 80	1940. Details i Bull, Acad. Be gique IV., No. 3 1882. Pettersson, U. N	
		(2	0,0438, 0 0,6402, 10° 0,6007, 20° 0,6003, 30° 0,6256, 50° 0,6256, 50° 0,6181, 70 0,6181, 70 0,6182, 80° 0,6089, 90° 0,6089, 100° 0,6003, 100°	1940. Details i Bull, Acad. Be gique IV., No. 3 1882. Pettersson, U. 2 A. 1874. Hassenfratz. Am	
	a control of the cont	(O ₁	0,0438, 0 0,0402, 10° 0,0007, 20° 0,0007, 20° 0,0250, 40° 0,0250, 50° 0,0250, 60° 0,6181, 70 0,0442, 80 0,0080, 90° 0,6080, 100 4,105, 10 ,21	1940. Details i Bull, Acad. Be gique IV., No. 9 1882. Pettersson, U. N A. 1874. Hassenfratz, Am 28, 6.	
	a constitution of the cons	(0.11.)		O ₄	0,0438, 0 0,6402, 10° 0,6007, 20° 0,6003, 30° 0,6256, 50° 0,6256, 50° 0,6181, 70 0,6181, 70 0,6181, 70 0,6181, 70 1,6142, 80 0,6089, 90° 0,6089, 100° 1,7076 1,7076	1940. Details i Bull, Acad. Be gique IV., No. : 1882. Pettersson, U. N A. 1874. Hassenfratz, Am	
Casium s	um sulphate	(0.11.)		O ₄	0,0438, 0 0,6402, 10° 0,6007, 20° 0,6007, 20° 0,6003, 00° 0,6250, 50° 0,6184, 70 0,6184, 70 0,6184, 70 0,6080, 90° 0,6080, 100 1,7676 1,7676	1940. Details i Bull, Acad. Be gique IV., No. 1882. Pettersson, U. No. 1874. Ilassenfratz. Am 28, 6. Kopp. J. 11, 10.	
	sulphate	(0.11.)		O ₄	0,0438, 0 0,6402, 10° 0,6007, 20° 0,6003, 30° 0,6256, 50° 0,6256, 50° 0,6181, 70 0,6181, 70 0,6181, 70 0,6181, 70 1,6142, 80 0,6089, 90° 0,6089, 100° 1,7076 1,7076	1940. Details in Bull. Acad. Bengique IV., No. 21882. Pettersson, U. No. 21874. Hassenfratz. Am 28, 3. Kopp. J. 11, 10. Playfair and Joul.	
	sulphate	(0.11.)		O ₄	0,0438, 0 0,6402, 10° 0,6007, 20° 0,6007, 20° 0,6003, 00° 0,6250, 50° 0,6184, 70 0,6184, 70 0,6184, 70 0,6080, 90° 0,6080, 100 1,7676 1,7676	 1940. Details in Bull, Acad. Bengique IV., No. 1882. Pettersson, U. 2 A. 1874. Hassenfratz. Am 28, 3. Kopp. J. 11, 10. Playfeir and Joul. Playfair and Joul. Playfair and Joul. 	
Casium s Ammoni	sulphate	(0.11.)		O ₁	3,0438, 0 3,6402, 10° 3,6307, 20° 3,6333, 30° 3,6250, 40° 3,6250, 50° 3,6270, 60° 3,6181, 70 3,6089, 90° 3,6089, 10° 4,105, 10°, 21° 1,7676 1,78° 1,78° 1,750	1940. Details in Bull. Acad. Bergique IV., No. 3, 1882. Pettersson. U. No. 3, A. 1874. Hassenfratz. Am 28, 3. Kopp. J. 11, 10. Playfoir and Joul. May C. S. 2, 301. Playfair and Joul. J. C. S. 1, 138. Schiff. A. C. P. 10	
Casium s	culphate um sulphate	(0.11.)		O ₄	0,0438, 0 0,0402, 10° 0,0007, 20° 0,0003, 30° 0,0250, 40° 0,0250, 50° 0,0442, 80 0,0442, 80 0,0089, 90° 0,0089, 100 4,105, 10°, 21° 1,7676 1,7676 1,760 1,76	1940. Details in Bull. Acad. Bergique IV., No. 1882. Pettersson. U. 2 A. 1874. Hassenfratz. An 28, 3. Kopp. J. 11, 10. Playfair and Joul. M. C. S. 2, 401. Playfair and Joul. J. C. S. 1, 138. Schiff. A. C. P. 10, 64. Schroder, P. A. 10	
Casium s	sulphate			O ₁	0,0438, 0 0,6402, 10° 0,6007, 20° 0,6003, 30° 0,6250, 40° 0,6250, 50° 0,6250, 60° 0,642, 80 0,6442, 80 0,6089, 90° 0,609, 100 4,105, 10 22 1,7676 1,7676 1,750 1,76147, 4° 1,628 1,771, m. of 2	1940. Details in Bull. Acad. Bergique IV., No. 1882. Pettersson. U. 2 A. 1874. Hassenfratz. An 28, 3. Kopp. J. 11, 10. Mat. C. S. 2, 401. Playfair and Jour J. C. S. 1, 138. Schiff. A. C. P. 10 64. Schröder, P. A. 10 226.	
Casium s Ammoni	sulphate um sulphate um sulphate			O ₄	0,0438, 0 0,6402, 10° 0,6007, 20° 0,6007, 20° 0,6003, 00° 0,6250, 50° 0,6250, 50° 0,6184, 70 0,6484, 80 0,6080, 100 1,7676 1,7676 1,7676 1,7676 1,76147, 4° 1,628 1,771, m. of 2 1,750	1940. Details in Bull. Acad. Bergique IV., No. 1882. Pettersson. U. 2 A. 1874. Hassenfratz. An 28, 3. Kopp. J. 11, 10. Playfair and Jour J. C. S. 2, 401. Playfair and Jour J. C. S. 1, 138. Schiff. A. C. P. 10 64. Schroder, P. A. 10 226. Buignet, J. 14, 15	
Casium s Ammoni	sulphate um sulphate um sulphate			O ₄	3,448, 0 3,6402, 10° 3,6507, 20° 3,6507, 20° 3,6503, 30° 3,6250, 40° 3,6250, 60° 3,6270, 60° 3,642, 80 3,642, 80 4,105, 10 ,22 1,7676 1,760 1,760 1,76147, 4° 1,628 1,771, m. of 2 1,750 1,750 1,750 1,750 m. of 4	1940. Details if Bull. Acad. Be gique IV., No. 1882. Pettersson. U. 2 A. 1874. Hassenfratz. An 28, 3. Kopp. J. 11, 10. Playfair and Joul. M. C. S. 2, 401. Playfair and Joul. J. C. S. 1, 198, Schiff. A. C. P. 10 64. Schröder, P. A. 10 226, Buignet, J. 14, 15	
Casium s Ammoni	sulphate um sulphate a a a a			O ₁	3,0438, 0 3,6402, 10° 3,6007, 20° 3,6007, 20° 3,6250, 40° 3,6250, 50° 3,6250, 60° 3,6181, 70 3,6089, 90° 3,6089, 90° 3,6089, 10° 4,105, 10°, 21° 1,7676 1,750 1,76147, 4° 1,628 1,771, m. of 2 1,750 1,750 extreme	1940. Details in Bull. Acad. Begique IV., No. 1882. Pettersson. U. 2 A. 1874. Hassenfratz. An 28, 3. Kopp. J. 11, 10. Playfair and Joul. M. C. S. 2, 401. Playfair and Joul. J. C. S. 1, 138. Schiff. A. C. P. 10 64. Schroder. P. A. 16 226. Buignet. J. 14, 15 5.	
Casium s Ammoni	sulphate um sulphate um sulphate			O ₄	3,448, 0 3,6402, 10° 3,6507, 20° 3,6507, 20° 3,6503, 30° 3,6250, 40° 3,6250, 60° 3,6270, 60° 3,642, 80 3,642, 80 4,105, 10 ,22 1,7676 1,760 1,760 1,76147, 4° 1,628 1,771, m. of 2 1,750 1,750 1,750 1,750 m. of 4	1940. Details in Bull. Acad. Bergique IV., No. 1882. Pettersson. U. M. A. 1874. Hassenfratz. Am. 28, 5. Kopp. J. 11, 10. Playfair and Joul. M. C. S. 2, 401. Playfair and Joul. J. C. S. 1, 138. Schiff. A. C. P. 10, 64. Schroder, P. A. 10, 226. Buignet, J. 14, 15. Pettersson. U. M.	

	NAME.		Fo	RMULA.	SP. GRAVITY.	AUTHORITY.
Ammoni	ium sulpl	hate	Am ₂ S (),	1.765, 20°.5 1.773	Wilson. F. W. C Schröder. Ber. 11, 2211.
"	"		""		1.7763, 0°	2211.
"	"		"		1.7748, 10°	
"	"		"		1.7734, 20° 1.7719, 30°	
"	44				1.7703, 40°	
"	"		6.		1.7685, 50°	Spring. Ber. 15,
٤.	"				1.7667, 60°	1940. Details in
"	"		"		1.7641, 70°	Bull. Acad. Bel
"	"		"		1 1	gique. 1V., No. 8, 1882.
"			"			1002.
"	Not	pressed_	"		1.773, 20° 3	
"	One				1.750, 22° }	Spring. Ber. 16,
35		ee "	4 0.0			2724.
Maseagn Silver su			Am ₂ S O	O ₄ . H ₂ O	1.72—1.73 5.341	Dana's Mineralogy. Karsten. Schw. J.
Differ on	Thurse		115250	4	0.011	65, 394.
"	"		""		5.322	Playfair and Joule. M. C. S. 2, 401.
. ("		5.410	Filhol. Ann. (3), 21, 415.
"			"		5.425	Schröder. P. A. 106, 226.
44			"		$\left[\begin{array}{c} 5.49 \\ 5.54 \end{array} \right]$ 11° $\left\{ \left[\begin{array}{c} 110 \\ 110 \end{array} \right]$	Pettersson. U.N.A.
() ()			mi u o			1874.
Thellium	ı surpnat	e	112 5 04		6.603	Lamy. J. 15, 186. Lamy and Des Cloi-
			_			zeaux. Nature 1, 116.
6.	4.4				6.79, 17°.8)	
"	"				$ 6.81, 17^{\circ}.2_{} \rangle $	Pettersson. U.N.A.
Glucinuı		te	_		6.83, 17°) 2.448	1874. Nilson and Petters-
"	4 6		GIS O_4 .	4 H ₂ O	1.725	son. C. R. 91, 232. Topsoë. C. C. 4, 76.
"	41		"		1.6743, 22°	H. Stallo. F.W.C.
""	**		""		1.713	Nilson and Pettersson. C. R. 91, 232.
	ım sulph	ate	Mg S O	1	2.6066	Karsten, Schw. J. 65, 394.
	"		"		2.706, m. of 2_	Playfair and Joule. M. C. S. 2, 401.
"	"		44		2.628	Filhol. Ann. (3), 21, 415.
"	"		"		2.675, 16°	Pape. P. A. 120, 367.
"	"		"		$\left[egin{array}{c} 2.770, 13^{\circ}.8 \ 2.795, 14^{\circ} \end{array} ight\}$	Pettersson. U. N. A. 1876.
"	"		"		2.488	Sehröder. J. P. C.
"	**		"		$\{2.471\}$ $\}$	(2), 19, 266. Two
"	"		"		2.829)	modifications.
"				T. 0	2.709, 15°	Thorpe and Watts. J. C. S. 37, 102.
	"		Mg S O ₄	. H ₂ O	2.517, native	Bischof. Dana's Min.

	Name.		FORMUL:	١.	SP. GRAVITY.	Λ ттновиту.
Magnesiu	m sulphat	e M	$g \otimes O_4$. $H_2 \otimes$.) _	2.281, 16°	Pape. Pr. A. 120,
			**		2,889, 14° = 7	Pettersson, U.N.A.
	14				2,810, 16°,5 + 2,885 + 1	1876. Schroder, J. P. C.
	. i		• •		2.478, m. of 2	(2), 19, 266. Playfair. J. C. S.
"					2,445, 15°	37, 102. Thorns and Watts
"		\	g S O _x , 2 H	()	2.279	Thorpe and Watts, J. C. S. 37, 102, Playfair, J. C. S.
				-		37, 102.
	4.4		4.		2.079, 15°	Thorpe and Watts, J. C. S. 37, 102.
4.6	4.6		g S O ₄ , 5 H		1.869, m. of 2.	37, 102.
16	4.4	M	$g S O_c = 6 \Pi$	2 ()	1.751	
. 6			••		1.781, 15°	Thorpe and Watts. J. C. S. 37, 102.
4.4	Two	modi-			1.6151 /	Schulze, $P, \Lambda, (2),$
s 4	ties	ations.	**		1.8981	31, 229.
(4	. 4	М	$g \otimes O_4$, 7 H	2 ()	1.6603	Hassenfratz, Ann. 28, 3.
4.6	4.4				1.751	Mohs. See Bottger.
4.4	4.6		**	-	1.071	Kopp. A. C. P. 36, 1.
4.4					1.660	Playfair and Joule. M. C. S. 2, 401.
"	4.4		4.6		1.6829, 4°	¹ Playfair and Joule. J. C. S. 1, 138.
. 6	s (* *	-	1.751	Filhol, Ann. (3), 21, 415.
+ 4	4.6				1.685	Schiff, A. C. P. 107, 64.
+ 4	4.4		4.4		1.675	Buignet. J. 14, 15.
. 6	6.6	~	4.6		1.636, 15°.5	Forbes, P. M. 32, 1 135,
4.4	4.4		. 6		1.665, 15°.5	Holker, P. M. (3), 27, 213.
. (4.4		1.701, 16°	
* *	4.4				$-1.684, 15^{\circ}.4 - i$	Pettersson, U. N. A.
+ 4	s 4		1.4		1.691. 15% 5 +	IS76.
+ 4	h 6		* *		1.680	Schroder, Dm. 1873.
	+ 4		* *		1.675	Schroder, J. P. C. (2), 19, 266,
4.4			• •		1.632	W. C. Smith. Am. J. P. 53, 148.
+ 6	4.		4.4		1,678, 15°	Thorpo and Watts. J. C. S. 57, 102.
Zine sulp	hate	7	n S O ₄		3,681, m. of 2	Playfair and Joule. M. C. S. 2, 401.
					3,400	Karsten, Schw. J. 65, 394.
					3.400	Filhol. Ann. (3), 24, 415
		!			3.435, 16°	Pape. P. A. 420,

	Name.			IULA.	Sp. Gravity.	AUTHORITY.	
Zine st	ılphate		Zn S O ₄		3.520		
4.6			"		3.552	Schröder. J. P. C.	
					3.580		
"	"				3.6235, 15°	I Thorpe and Watts. J. C. S. 37, 102.	
: 6	"		Zn S O ₄ .	Н ₂ О	3.215, 16°		
"	"		**		3.076		
"	"		"		3.259		
4.6	"		· · ·		3.2845, 15°		
"	"		Zn S O4.	2 H ₂ O	2.958, 15°	_	
44	"		$\operatorname{Zn} S O_4$.	5 H ₂ O	2.206, 15°	_	
"	"		$Zn S O_4$.	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	2.056	- Playfair. J. C. S.	
"	"		"		2.072, 15°		
"	"		Zn S O ₄ .	7 H ₂ O	1.912	J. C. S. 37, 102. Hassenfratz. Ann. 28, 3.	
	"				2.036	Mohs. See Böttger.	
	"		"		1.931, m. of 4	- Playfair and Joule.	
"	"		"		2.036		
"	"		"		1.953	21, 415. Schiff. A. C. P. 107, 64.	
4.6	"		"		1.957		
"	"		"		1.9534		
						503.	
"			"		1.976, 15°.5	Holker. P. M. (3), 27, 213.	
	"		"		1.901, 16°		
44	"		"		2.015		
4.6	"		"		1.953	Schröder. J. P. C.	
"	4.6		4.6		1.955	$\{(2), 19, 266.$	
"	"		"		1.961	W. C. Smith. Am. J. P. 53, 148.	
"	"		"		1.974, 15°		
Cadmi	um sul	phate	Cd S O4-		4.447		
		"	Caso	но	2.939	Buignet. J. 14, 15.	
		"	2 03 5 5	8 H ()	3.05, 12°	Giesecke. B. D. Z.	
	rous su	lphate	$\operatorname{Hg}_2\operatorname{SO}_4$	H ₂ O , 8 H ₂ O	7.560	Playfair and Joule. M. C. S. 2, 401.	
Mercu	ric sub	ohate	Hg S O.		6.466		
Calciu	m sulp	hate	Ca S O		6.466 2.9271	Karsten. Schw. J.	
44		"			2.955	Neumann. P. A.	
"			" -		3.102		
		" Artificial	" -		2.969	21, 415. Manross. J. 5, 9.	
		cryst.				1	

-								
NAME. Calcium sulphate. Anhy-			FORMULA.			SP, GRAVITY.	Антиовиту.	
			Ca S O ₄		2.92, 15°	Fuchs. J. 15, 755.		
drite.						2,736 - 7		
						2,750 1	Two lots, Schroder,	
	4.					2,400 (
		A			-	2.73 F / . 2.08	Dm. 1873.	
		Artificial eryst.					Gorgeu, Ann. (6), 4, 515	
41	6.6	2	CaS	θ_{ψ} H_2	0	2.101	Johnston, P M 2 , 13, 325.	
	4.	(la S O.	. 2 H ₂	()	2.720	Lerover and Dumas.	
4.	4.4		,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,			2,310	Moha,	
			4			2.307	Breitleaupt, Schw. J. 68, 291.	
"	4.					2.331	Filhol Ann. (3).	
							21, 415,	
66	4.6	Gypsum *				2.317. m. of 15 2.3057	Kenngett, J. 6,844 Stolba J. P. C. 97,	
4.6		12. 1	,			2.2745, 192.40	503.	
		Powder =='				2.3228, 18 .2		
4.4						12.0225, 15.74 j	Pettersson, U.N.A.	
* *		relation re-				2,3086, 18	1574	
4.	4.4					2.3223, 18° J		
Strontiun tite.	n sulpl	inte. Celes 8	Sr S O _i			0.978	Breithrupt. Dana's Min.	
4.4		**	4.			3,9598	Bendant. Dana's Min.	
4.6	4.4	4.	4.			3,505	Hunt. Dana's Min.	
4.6	4.4		4.5			3.86	Molis.	
4.4	4.	6.	6.4				Корр.	
"		٠	4 1			3,955	Neumann, P. A 23, 1.	
44		Artificial				3,927	Manross, J. 5, 9,	
4.6		eryst.	4.6			3,949	Schröder, P.A Er-	
							ganz. Bd. 6, 622	
44	4.	1'pt				3.5443	Karsten, Schw. J. 65, 394.	
"	4.	١.	LL			3.770	Filhol, Ann. (3), 21, 415.	
4.		4	6 x			3,707	Schröder, P. A. 106, 226,	
4.5		15				8,6679 (10.5)		
44		Ppt. ig-				$\begin{bmatrix} 3.60(19) & 18 \end{bmatrix}$		
	٠.							
4.		unignited.				a.7383 (Schweitzer. Proc	
6 +	١.		* *			3.0502 150	Amer. Asso, 1877	
4.5	4 .	•				3.9514	201.	
1 .		-				3,9702		
4.	6 4	Artif. cryst	4.	-		0.9	Gorgen, Ann. (6) 4, 515	
Barium:	sulpha	ite	Ba S C)4		1.12	Breithaupt Mohs. See Bottger	
4 •						1,2003	Karsten, Schw J 65, 394.	
			6.			4,4695, 0°		
	6.2				-		Kopp.	
4 66	"	Berite				4.429	Neumann. P Λ 23, 1.	
4.6		4.	6.4			= 1.4773) ex-	(f) G. Rose, P. A. 75	
"	4.6	4.	6.6			4.4872) trems	1 400,	

NAME.			For	RMULA.	Sp. Gravity.	AUTHORITY.
Barium	sulpha	te. Barite }			$\left. \begin{array}{c} 4.4794 \\ 4.4804 \end{array} \right\}$	
"	"	powder. \\Precip	"		4.5271)	G. Rose. P. A. 75,
• •	44				4.5253 }	
"		Artif. eryst.			4.179	Manross. J. 5, 9. Precipitates in dif-
"	"				$\left\{ egin{array}{l} 4.022 \\ 4.065 \end{array} ight\}$	ferent conditions.
"	"				$\{4.512\}$	Sehröder. P. A. 106, 226.
"	<i>(()</i>	Ppt. ignited.	"		4.2942]	
4.4		Ppt. dried at 95°.			$ 4.2688 _{18^{\circ}}$	Schweitzer. University of Missouri.
"	"]	Ppt			4.4591	Special pub.,1876.
"	"				[4.4881]	
"	"				$\left\{ \frac{4.3360}{4.3969} \right\} = 14^{\circ}.9$	DE W. Janes D
"	44	"			4.3962 140 5	E. Wiedemann. P. M. (5), 15, 371.
"	4.6	"	"		4.0001)	
"	"	Artif. cryst.			4.44—4.50	Gorgeu. Ann. (6), 4, 515.
Lead su	lphate		Pb S O4.		6.298	Mohs. Karsten. Schw. J.
						65, 394.
"	"		"		6.30	Filhol. Ann. (3), 21, 415.
					6,35	Smith. J. 8, 969.
"		Nativo			$(6.20 \dots)$	Field. J. 14, 1022. Schröder. P. A. Er-
4.6		Native Precip			6.212	ganz. Bd, 6, 622.
16	4.4				5.96, 17°.1 į	Pettersson. U. N.
	44				5.97, 16°.8 } 6.16	A. 1874.
	••	Artıf. eryst.			0.10	Gorgeu. Ann. (6), 4, 515.
Mangan	ese sul	phate	Mn S O ₄		3.1, 14°	Bødeker. B. D. Z.
ï		ī	"		3.192, 16°	Pape. P. A. 120, 368.
**					2.954	Schröder. Dm. 1873.
"					$ \hspace{.06cm} 2.975 \hspace{.05cm} \hspace{.06cm}$	Schröder. J. P. C. (2), 19, 266.
44			"		3.235, 14°.6 \	Pettersson. U. N.
"			"		3.260, 14° ∫	A. 1876.
"					3.386	Playfeir. J. C. S. 37, 102.
"			"		3.282, 15°	Thorpe and Watts. J. C. S. 37, 102.
		"	Mn S O.	. H ₂ О	2.870, 14°.2	0. 0. 0. 01, 102.
t t					$ 2.903, 15^{\circ}.4 $	Pettersson, U. N.
"					2.905, 14°.9	A. 1876.
"			''		3.210	Playfair. J. C. S. 37, 102.
"			"		2.845, 15°	Thorpe and Watts. J. C. S. 37, 102.
"		" Szmikite	"		3.15	Schröekinger. J. 30, 1296.
"			$\mathrm{Mn}~\mathrm{S}~\mathrm{O}_4$. 2 II ₂ O	2.526, 15°	****
"		"	Mn SO,	. з п, О	2.356, 15°	
4.4			Mn SO4	. 4 H ₂ O	2.261	Topsoë. C. C. 4, 76

Name.			FORMULA.	St. Gravity	Антнокиту.	
Manganese	sulph	ate	Mn 8 O ₄ , 5 H ₂ O ₋₂	1.884	Gmelin.	
* *	• •			2.087) Корр. А. С. 1	
4.4	+ 6			2.095	1 36, 1.	
• •	• •			, 2.059, 16°	Pape. P. A. 12 372.	
4.4	4.			$2.099, 16^{\circ}.2$	1	
• •	+ 4			2.103, 172.6	Pettersson, U. N.	
* *	**			$\begin{array}{c ccccccccccccccccccccccccccccccccccc$) [1876.	
			77		J. C. S. 37, 102.	
Perrous sul	phate		Fe S O ₄		21, 415.	
• 4	••			3.188	Playfair and Joul M. C. S. 2, 401,	
4.4	4.4			3.48	Playfair. J. C. 37, 102.	
4.6	44		"	3.346, 15°	J. C. S. 37, 102.	
"	+ 6		Fe S $\Theta_4,\ \Pi_2$ $\Theta_{}$	3.017	Playfair. J. C. 37, 102.	
"	"			2.994, 15°		
	4.4		Fe S O 9 H O	2.778, 15°	0. 5 01, 102.	
* *			$\begin{array}{cccc} \operatorname{Fe} & \operatorname{S} & \operatorname{O}_{\operatorname{F}} & 2 & \operatorname{H}_{2} & \operatorname{O} & \\ \operatorname{Fe} & \operatorname{S} & \operatorname{O}_{4^{\circ}} & 3 & \operatorname{H}_{2} & \operatorname{O} & \end{array}$	2.268, 16° 11	Pape. P. A. 1;	
**	44		Fe S O ₄ , 4 H ₂ O $_{}$	2.227, 15°	Thorpe and Wat J. C. S. 37, 102.	
	"		Fe S Θ_4 , $[7]{\rm H}_2[\Theta]$.	1.8399	Hassenfratz. An	
4.6				; 1.857, m. of		
	44			1.8889, 4°	J. C. S. 1, 138.	
* 4	"			1,904	Filhol. Ann. (3),:	
**				1.881	Schiff, A. C. P. 10	
	. 6			1.902	_ Buignet, J. 14, 1	
4.4	14		"	1,851, 15°.5	Holker, P. M. (27, 214.	
. 4	. 6			1.9851, 16° .	= Pupe. P. A. 1:	
			**	1,841	Schröder, Dm. 187	
. 4				11 1.897	Schröder, J. P. (2), 19, 266.	
**				1.8(0)	W. C. Smith. A: J. P. 53, 145.	
P11s	1		E. (S.O.)	3,097, 18°	0.1.00.130.	
Ferrie sulp	mare		$\operatorname{Fe}_2\left(\operatorname{SO}_4\right)_3$	_ "3,098, 18°,5	Pettersson, U.	
				3,103, 18°,2) (A. 1874.	
Joquimbit 			Fe ₂ (S O ₄) ₃ , 9 H ₂ O	2.0=2.1	Dana's Mineralog Breithaupt. See	
Hileite			$\mathrm{Fe_2}(\mathrm{S}\bar{\mathrm{O}}_4)_3, 12\mathrm{H}_2\mathrm{C}$. 1.812	K. M. 3, 520. Schrauf, N. J. 187	
Nickel sul	phate		Ni SO,	3.643, 16°	252. Pape, P.A. 120,30	
				8.652) Schroder, J. P.	

	Nami	s.	FORMULA.	SP. GRAVITY.	Authority.
Nickel s	ulphate		Ni S O ₄	3.526	Playfair. J. C. S. 37, 102.
"	"			3.418, 15°	Thorpe and Watts.
"	"		Ni S $\mathcal{O}_{4^*_{\mathcal{U}}}$ 6 \mathcal{H}_2 O	2.042)	J. C. S. 37, 102.
44	"			2.074	Topsoë. C. C. 4, 76.
"	"			2.031, 15°	Thorpe and Watts. J. C. S. 37, 102.
44	44		Ni S O4. 7 H2 O	2.037	Kopp. A.C.P.36,1.
11	"		* "	1.931	Schiff. A. C. P. 107, 64.
11	"]	Iorenosite_	"	2.004	Fulda. J. 17, 859.
"	"				Pape. P. A. 120,
"	"			1.955, 14°	Pettersson. U. N. A. 1876.
"	"			1.949, 15°	
Cobalt s	ulphate		Co S O ₄	3,531	Playfair and Joule. M. C. S. 2, 401.
"			"	3.614, 15°.6 \	Pettersson, U.N.A.
"	66		"	3.615, 16°	1876.
"	"		"		
"	"			3.472, 15°	
"	"		Co S O4. H2 O	3.125, 15°	"
"	"		Co S O ₄ . 2 H ₂ O	2.712	Playfair. J. C. S. 37, 102.
"	u		"	2.668, 15°	Thorpe and Watts. J. C. S. 37, 102.
**	"		Co S O ₄ . 4 H ₂ O	2.327, 15°	
**	4.6		Co S O. 5 H. O	2.134, 15°	
"	"		Co S O4. 6 H2 O	_ 2.019, 15°	
"	"		$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	1.924	Schiff, A. C. P. 107, 64.
"	4.4		(:	_ 1.958, 15°.6 \	Pettersson. U. N.
"	"			_ 1.964, 15°.5	A. 1876.
"	"			1.958	
"				_ 1.918, 15°	Thorpe and Watts J. C. S. 37, 102.
$\mathbf{C}\mathrm{opper}$	sulpha	te	Cu S O ₄	3.631	Playfair and Joule M. C. S. 2, 401.
"	"		"	_ 3.572	Karsten. Schw. J 65, 394.
"	"			3,530	Filhol. Ann. (3), 21 415.
"	"			_ 3.527, 16°	Pape. P. A. 120
"	"			3.707, 19°	
"	"		"	_ 3.82, 17°.1)	C. R. 77, 579. Pettersson. U. N
"					A. 1874.
"	"				Hampe. Z. C. 13
"	"			3.83	$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$

	XAS	IE.	FORMUL	Λ.	Sp. Gravity.	А итповиту.
pper:	sulpha	te	Cu S O ₄		3.606, 15°	
			Cu S O_4 . H_2 O_4)	3,125, 16°	J. C. S. 37, 102, Pape. P. A. 420
			4.			370.
					3.235, 179.2	D
					8,239, 18°, I 8,246, 18°	Pettersson, U. N
			••		3,068	A. 1874. Schroder, J. P. C
	•••				0,00	(2), 19, 266.
**					3.2(6)	Playfair. J. C. 8
11			4.4		3,289, 15°	Thorpe and Watte J. C. S. 37, 102.
**			$\mathrm{Cu}\mathrm{S}\mathrm{O}_4,2\mathrm{H}_2\mathrm{C}$)	2.808, 16°	Paper P. A. 120
	4.		**		2.575	371. Playfair. J. C. s
4.	4.		**			37. 102.
					2.891	Thorpe and Watt
					m, 1999, 199	J. C. S. 37, 102,
			CuSO, 3H	Θ	2,663, 151	
			$2 \operatorname{Cu} \operatorname{S} \operatorname{O}_4$. 71	ή. ο 🗔	2,648, 15°	4.
			Cu S O _e 5 H	2 ()	2.1943	Hassenfratz. Ann 28, 3.
11	4.4		* *		.) .)	Gmelin.
4.4		Native 1.	4.6		2.207	Breithaupt, J. P. C
"	"		4.4		2.271	Kopp. A. C. I
	• •		• 4		2.251	Playfair and Joul. M. C. S. 2, 401.
	**			e	2.250	Filhol. Ann. (3), 2
			4.4		2.2422)	
* *					2.2751 19	Playfair and Joul
+ i					2.2901	J. C. S. 1, 188.
			. 4		2,302	Buignet, J. 14, 1
6.6	**		**		2.2778	Stollar, J. P. C. 9 508,
4.4					2,268, 16°	Paper P.A. 120, 37
4.4	**				[E.E.IS, IS3.9] [.]	Favre and Valso C. R. 77, 579.
	4+				2.286, 192, 1	Pettersson, U. 1
			4.4		2.212,202	Λ, 1874.
1.			. 4		2.27	Schroder, Dm. 187
					2.263	Schroder, J. P.
4.	4.4				2.296	(2), 19, 266,
4.	* 6				2,000	Rudorff, Ber. 1 251.
4 +			. 6		2.212	W. C. Smith: Ar J. P. 53, 145.
* *	* *		. 4		2.284, 15°	Thorpe and Watt J. C. S. 37, 102.
hromi	e sulpl	hate	$\operatorname{Cr}_2 \left(\operatorname{S} \left(\operatorname{O}_4 \right)_3 \right)$	į	2.743, 17°.2	Favre and Valso C. R. 77, 579.
			* *		3.012	Nilson and Petter son, C. R. 91, 23
. 4			$\operatorname{Cr}_2(S \Theta_4)_3$. 1	5 H O	1.696. 999	Sehrotter, P.A. 5
						. The state of the

	Name.		Formula.	Sp. Gravity.	Аптновіту.
Chromic	sulphat	e	Cr ₂ (S O ₄) ₃ . 15 H ₂ O ₋	1.867, 17°.2	Favre and Valson.
Aluminu	ın sulpl	nate	Al ₂ (S O ₄) ₃	2.7400	C. R. 77, 579. Karsten. Schw. J.
. 6	•			2.171	65, 394. Playfair and Joule.
**	6			2.672, 22°.5	M. C. S. 2, 401. Favre and Valson.
	41		"	$\left\{ \begin{array}{c} 2.710 \\ 2.716 \end{array} \right\}$ 17° (C. R. 77, 579. Pettersson. U. N. A. 1874.
	61		$Al_2 (S O_4)_3$. 18 $H_2 O_2$	1.671, m. of 2	Playfair and Joule. M. C. S. 2, 401.
. 6	41			1.569	Filhol. Ann. (3), 21, 415.
	41		٠	1.767, 22°.1	Favre and Valson. C. R. 77, 579.
	-	1	${ m In}_2 ({ m S} { m O}_4)_3$	1	Nilson and Pettersson. C. R. 91, 232.
Scandiun Yttrium	a sulphe sulphat	ite	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	2.579 2.606, 19°.4)	
**			2 (1 4/3	2.615, 15°	Pettersson, U.N.A.
	44			[2.626, 19°.5]	1876.
				2.612	Nilson and Pettersson. C. R. 91, 232.
	"		$Y_2 (S O_4)_3$. $8 H_2 O_{}$	2.52	Cleve and Hoeglund. B. S. C. 18, 200.
	"			2.53	Topsoë. Quoted by Pettersson.
. 6	"			2.531, 19°.6	
. 6	• •			2.537, 19°.4	Pettersson. U. N. A.
: 6	44			2.552, 15°) 2.540	Nilson and Bottons
					Nilson and Petters- son. C. R. 91, 232.
Erbium s	sulphate		$\operatorname{Er}_2(\overset{\circ}{,}\overset{,}\overset{\circ}{,}\overset{\overset{\circ}{,}\overset{,}{,}\overset{,}{,}\overset{,}{,}\overset{,}{,}$	3.518, 14°.5	Pettersson. U. N.
"	14		"	3.524, 14°.2 J 3.678	A. 1876. Nilson and Petters-
.4	"		Er ₂ (S O ₄) ₃ . 8 H ₂ O	3.17	son. C. R. 91, 232. Cleveand Hoeglund.
	"		44	9 990 100 4 5	B. S. C. 18, 200.
"				$\left\{ \begin{array}{l} 3.230, 16^{\circ}.4 \\ 3.242, 16^{\circ}.6 \end{array} \right\}$	Pettersson. U. N.
44	"		"	3.248, 17°.1	A. 1876.
	4.4			3.180	Nilson and Petters-
Ytterbiu	m sulph	ate	Yb ₂ (S O ₄) ₃	3.793	son. C. R. 91, 232.
64			$Yb_2^2 (SO_4^{4/3})_3 \cdot SH_9O_{-1}$	3.286	"
Lanthan	um sulp	hate	$\begin{array}{c} {\rm Yb_2^2\ (S\ O_4)_3.\ S\ H_2\ O_{}} \\ {\rm La_2\ (S\ O_4)_3. \} \end{array}$	3.53, 13°.6 }	Pettersson. U. N.
"		"	"	3.67, 15°.4 } 3.600	A. 1876. Nilson and Petters-
"		"		3,544 } 150 }	son. C. R. 91, 232. Brauner. S. W. A.
**		::		$13.545 (10^{\circ})$	June, 1882.
			La ₂ (S O ₄) ₃ . 9 H ₂ O	2.827	Topsoë. Quoted by Pettersson.
				2.848, 17°.2	Pettersson. U. N.
"				$\begin{bmatrix} 2.864, 17^{\circ}.4 \end{bmatrix}$	A. 1876.
•				2.853	Nilson and Petters- son. C. R. 91, 232.

	Name.		FORMUL	Α,	SP. GRA	VITY.	Астно	RITY.
Cerium =	ulphate.		Ce, (S O ₄),				1 1 STO	
• •	** -				3,912		Nilson and son, C. l	1 Petters
**			$Ce_2 (SO_4)_3$, 5	$H_2\Theta_{-1}$	3,214, 11	2.2	Pettersson.	U.N.A
	-		••		3.220		Nilson and son, C.	Petter-
Didymiu	m sulpho	ti: =====	$\operatorname{Di}_{2}\left(\mathbf{S} \boldsymbol{\Theta}_{4}\right)_{1}\ldots$		3.722, 14 3.756, 15	16 1	Pettersson.	U.N.A
١.					9.795		Nilson and	
44	4.4				8,662 / 1	√ °.3	Cleve, I 1885.	J. N. A
	4.4		$\operatorname{Di}_2(\mathbf{S} \mathbf{O}_4)_3$. S	$H_2 \Theta$	2.52		Cleveand I B. S. C.	
44					2.877, 167 2.886, 148			
			4.		2.878		Nilson and son, C. I	
					2.827, 14- 2.828, 16-		Cleve, U. N	
 Samariun	o sulidini		$\operatorname{Sm}_{+}(\widetilde{S} \Omega_{i})_{i+1}$		2,801, 162			
			$\frac{\operatorname{m}_2}{\operatorname{Stu}_2} \times \operatorname{O}_4^{4} = 5$ $\operatorname{Th}_{-}(\operatorname{SO}_{4/2}) = 5$	H ₂ O	2.925 1	~ 1.3	**	
Thorium	-ulphate						Clarke, 2 2, 175.	7. C. J
4.6	6.				4,2252, 17		Kruss and Ber. 20.	
4.	4.		$2~\mathrm{Th}~(\mathrm{S}~\mathrm{O}_4)_2.$	$9 \ \Pi_2 \ \Theta_1$	0.008, 243		Clarke, A 2, 175.	
ŧι			The S $\Theta_4^{-1}_{2}$, 9	$\Pi_2 \Theta_{++}$	2.707			3. S. C.
Uranyl si	ilphate		$\mathrm{U}(\mathrm{O}_{\mathbb{Z}} \otimes \mathrm{O}_{\mathbb{Z}}) \otimes$	$\Pi_2 \Theta_{-1}$	$3.280, 16^{\circ}$, ii		. F.W C

2d. Double and Triple Sulphates.*

Name.			FORMULY.		Sp. Gravity.	AUTHORITY
Sodium hy	drogen sul	hate	Na H S O ₄			Playfair and Joule.
Potassium phate.	hydrogen	-11]-	K H S $\boldsymbol{\Theta}_i$		2.112	Thomson, Ann. Phil. (2., 10, 435.)
1					2.160	Jacquelain. A C. P. 32, 234
••	b +	٠.	**			Playfair and Joule, M. C. S. 2, 401.
	**	• •			2.47767. 4	Playfair and Joule. J. C. S. 1, 138

[.] Exclusive of basic or partly basic double sulphates.

		<u> </u>	1			1
N.	AME.		FORMULA.		Sp. Gravity.	AUTHORITY.
	nydrogei	ı sul-	K II S O ₄		2.305, cryst	
phate.	"	"	"		2.354 cryst. 2.355 mass.	Sehröder. Dm.
"	"	"			2.091, after fusion.	1873.
"	"	"	"		2.245, eryst	Wyrouboff, B. S. M. 7, 7.
Ammonium phate.	hydrogo	en sul-	Λ m H S O_4		1.761, m. of 2 ₋	Playfair and Joule. M. C. S. 2, 401.
- "	" "	"	"		1.787	Sehiff. A. C. P. 107, 64.
Sodium po phate.	tassium	sul-	$Na_2 S O_{4_{i,i}} 3 K_2 S$		$\frac{2.668}{2.671}$	Two lots. Penny. J. 8, 333.
Lithium am	moniun:	sul-	Am Li S O ₄		1.164) two mod) Wyrouboff. B. S.
phate. Sodium am:	monium		Am Na S O ₄ . 2 I	I_2O	1.204 ∫ ifications 1.63	M. 5, 42. Sehiff. A. C. P. 114,
Potassium ar phate.	nmoniu:	m sul-	Am K S $O_{4^{}}$		2.280	68. Sehiff. A. C. P. 107, 64.
Guanovulite			$\begin{array}{cccccccccccccccccccccccccccccccccccc$	() ₆ .)	$\frac{2.83}{2.65}$	Wibel. Ber. 7, 393.
Glauberite			$\operatorname{Na_2}$ Ca $(\operatorname{S} \operatorname{O}_4)_{2^{-1}}$		2.767	Breithaupt. Schw. J. 68, 291.
Syngenite			K_2 Ca $(S O_4)_2$. \overline{I}	I ₂ O ₋	2.64 2.603, 17°.5	Ulex. J. 2, 776. Zepharovich. J. 25, 1143.
			"		2.252	Rumpf. Dana's
Dreelite Polyhalite _			$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$(O_4)_4$.	3.2—3.4 2.7689	Min., 2d Supp. Dana's Mineralogy.
Krugite			K _a Ca, Mg (S	$egin{array}{l}_2 \ O_4 \ O_5 \ O_2 \end{array}$	2.801	Precht. Ber. 14, 2138.
Simonyite			$Na_2Mg(SO_4)_2$. 41	H ₂ O.	2.244	Tschermak. J. 22, 1241.
Loewite			$\mathrm{Na_4Mg_2(SO_4)_4.}$ 5	H ₂ O.	2.376	Haidinger. J. 1, 1220.
Krönnkite			$\mathrm{Na_2Cu(SO_4)_2}$. 21	H ₂ O.	2.5	Domeyko. Dana's Min., 3d Supp.
a .						
Potassium m phate.	agnesiu		$K_2 \text{ Mg } (S O_4)_2$.		2.676	Playfair and Joule. M. C. S. 2, 401.
	"	"			2.735}	Schröder. Ber. 7,
"		"	$K_2Mg(SO_4)_2$. $6\tilde{I}$	Ι ₂ Ο.	2.750 } 2.076 , m. of 2.	1117. Playfair and Joule.
"	"	"	"		2.05319, 4°	M. C. S. 2, 401. Playfair and Joule. J. C. S. 1, 138.
"	"	"	"		1.995	Schiff. Δ. C. P. 107, 64.
"	"	"	"		2.024	Topsoe and Christ- iensen.
"	"	"	"		2.034	Schröder. Dm. 1873.
"	"	"	"		2.036}	Schröder. J. P. C.
A mmonium	magne	. "	Am Mar (S.O.)		2.048 }	(2), 19, 266.
Ammonium sulphate.	magne	aiuili	$Am_2 Mg (S O_4)_2$		VOV	

Sulphate.	FORMULA.		Sr. Gravity.	AUTHORITY,
Anthonium zinc sulphate A	$n_2 \stackrel{\mathbf{Mgr}}{=} (\mathbf{S}, \mathbf{O}_4)_2$		2.095 2.141	Schroder, J. P. C
Cotassium zinc sulphate K. Cotassium zinc sulphate A.	w Mar(80) - 61			
Potassium zinc sulphate Ammonium cadmium sulphate. Annonium cadmium sulphate.	$(n_2 \operatorname{Mg} (SO_4)_2, 61)$	2 / !	1.721	Ginelin. Playfair and Joule
Cotassium zinc sulphate	* *	1	1.71686, 1°	M. C. S. 2, 401. Playfair and Joule
Potassium zinc sulphate Ammonium zinc sulphate Ammonium cadmium sulphate. Company of the compan	4.6		1,680	J. C. S. 1, 138.
Cotassium zinc sulphate K. Cotassium zinc sulphate K. Cotassium zinc sulphate K. Cotassium zinc sulphate K. Cotassium zinc sulphate A.				Schiff, A. C. P. 105
Potassium zine sulphate	*4		1.762	Buignet. J. 14, 13
Potassium zinc sulphate A Ammonium zinc sulphate A Company of the company of th	. 1		1.720	Topsoc and Chrisiansen.
Potassium zinc sulphate K.	**		1.723)	Schroder, J. P. C
Ammonium zinc sulphate			1.727 }	(2), 19, 266.
	$_{2}$ Zn $(SO_{4})_{2}$		2.816	Playfair and Joul. M. C. S. 2, 401.
			2.946 1	
Ammonium zine sulphate A	**		2.891	Various lots, di
			3.027	ferently treated Schroder, J. P. C
			2.703	(2), 19, 266.
Ammonium zinc sulphate Ammonium zinc sulphate A			2.733)	
Ammonium zinc sulphate Ammonium zinc sulphate Ammonium zinc sulphate Ammonium zinc sulphate A A A A A A A A A A Potassium cadmium sul- phate. Ammonium cadmium sul- phate. Ammonium cadmium sul- phate. A A A A A A A A A A A A A	$_2$ Zn (S Θ_4 $_2$, 6 H	L ₂ O		-Корр, А. С. Р. 36,
Ammonium zine sulphate A	••		2.215	Playfair and Joul M. C. S. 2, 401.
Ammonium zine sulphate Ammonium zine sulphate Ammonium zine sulphate Ammonium cadmium sul- phate. Potassium cadmium sul- phate. Potassium manganese sul- Rotassium manganese sul- Ammonium cadmium sul- phate.	* *		2.24004, 4°	Playfeir and Joul J. C. S. 1, 108.
Ammonium zine sulphate A	+4	4	2.153	Schiff, A. C. P. 10 64.
Ammonium zine sulphate A	4.6		2.249	Schröder, Dm. 187
Ammonium zinc sulphate A	* 6		2.235	Schröder, J. P.
Potassium cadmium sulphate. Ammonium cadmium sulphate. Potassium manganese sul- K phate.	* *		2.240	(2), 19, 266,
Potassium cadmium sul- K phate. Animonium cadmium sul- A phate. Potassium manganese sul- K phate.	$m_2 \operatorname{Zn} (S O_4)_2 =$		1) 1)()1)	Playfair and Joul M. C. S. 2, 401.
Order of the control	**		2.258	Schroder, J. P.
Potassium cadmium sul- phate. Ammonium cadmium sul- phate. Potassium manganese sul- phate.	44		2.255	(2), 19, 266,
Potassium cadmium sul- phate. Ammonium cadmium sul- phate. Potassium manganese sul- phate.	$m_2 Zn (SO_4)_2$, 61	1120	1.897, m. of 2	Playfair and Joul M. C. S. 2, 401.
Potassium cadmium sul- phate. Ammonium cadmium sul- phate. Potassium manganese sul- phate.	6.6		1.910	Schiff, A. C. P. 16
Potassium cadmium sul- phate. Ammonium cadmium sul- phate. Potassium manganese sul- phate.			1.919	****
phate. Ammonium cadmium sul- phate. Pottassium manganese sul- phate			1.021	Schroder, J. P.
phate. Ammonium cadmium sul- phate. Potassium manganese sul- phate	4.6		1.925	(2), 19, 266.
Ammonium cadmium sul- A phate. Potassium manganese sul- K phate	$_{2}$ Cd (S Θ_{4}) $_{2}$, 6 1	$I_2 \leftrightarrow$	2.438	Schitf, A, C, P, 10
Potassium manganese suls, K phate.	$\mathrm{m_2Cd}\left(\mathrm{SO_4}\right)_2$, 61	$\Pi_2 \Theta$	2.0%	
	$_{2}$ Mn $(S \Theta_{i})$, $_{-}$.		$3.008,\mathrm{m},\mathrm{of}2$	Playfair and Jou M. C. S. 2, 401,
		-	3,031	Schroder, Ber. 1118.
	* *		2.951	Schroder, J. P.
	., Mn (80 ₂₅₎ 4 H	1.0	2.313	(2), 19, 266.
	., Mn (80 _{0), 411} .m., Mn (80 _{0), 4} 6.			Thomson, Gm.
Ammonium ma n ganese A sulphate.	mg and the end of the	. 1,22	4	1, 71.
surpliace:	**		1,820	Schroder, J. P.
	**		1.827	(2), 19, 266,

N	AME.		Formui	.A.	SP. GRAVITY.	AUTHORITY.
Potassium i	iron sul	phate	K ₂ Fe (SO ₄) ₂ .	6 H ₂ O ₋	2.202	Playfair and Joule.
**	44	٠	"			M. C. S. 2, 401. Schiff. A. C. P. 107,
Ammonium	iron su	ılphate	$\mathrm{Am}_{2}\mathrm{Fe}\left(\mathrm{SO}_{4} ight)$	₂ . 6 H ₂ O	1.848, m. of 2_	64. Playfair and Joule.
**	"		"		1.813	M. C. S. 2, 401. Schiff. A. C. P. 107, 64.
11	"		"		1.886	
Potassium r	nickeł st	ılphate	K ₂ Ni (S O ₄) ₂		2.897, m. of 2_	Playfair and Joule. M. C. S. 2, 401.
"	"				3.086	Schröder. Ber. 7, 1117.
44	"		$K_2 \text{ Ni } (S_{i_4}^O)_2$		2.111	Kopp. A. C. P. 36, 1.
"	"	"	""		1.921 }	Schröder. J. P. C. (2), 19, 266.
Ammonium phate.	4.4	l sul-	$\operatorname{Am}_{2}\operatorname{Ni}\left(\overset{\circ}{\underset{\iota\iota}{\operatorname{N}}}\operatorname{O}_{4}\right)$	2. 6 H ₂ O	1.915 }	Kopp. A. C. P. 36, 1.
Potassium e	obalt su	lphate	$K_2 \text{ Co } (S O_4)_2$		1.921) 3.105	Schröder. Ber. 7,
"	"	"	$\mathrm{K_{2}Co}\left(\mathrm{SO_{4}}\right)_{2}$.	3H ₂ O	2.154	1118. Schiff. A. C. P. 107,
"	"	"	"		2.205, 16°.8 2.214, 16°.6	64. Pettersson. U. N. A. 1876.
Ammonium phate.			$\mathrm{Am}_{2}\mathrm{Co}(\mathrm{SO}_{4})_{2}$		1.873	Schiff. A. C. P. 107,
11		"	"		1.902, 18°	Pettersson. U. N.
11	"	"	"		1.907, 16°.6 5 1.893	A. 1876. Schröder. J. P. C.
Thallium co	balt sul	phate_	$\mathrm{Tl}_{2}\mathrm{Co}\left(\mathrm{S}\operatorname*{O}_{4}\right)_{2}.$	$6\Pi_2\Omega$	3.729, 16°.2	(2), 19, 266. Pettersson. U. N.
					0.000, 10".4]	A. 1876.
Potassium ee	ppersu	lphate.	$K_2 \text{ Cu } (S \text{ O}_4)_2$		2.797 , m. of 2_{-}	Playfair and Joule.
"	"	"	• 6	,		M. C. S. 2, 401. Favre and Valson. C. R. 77, 579.
"	"	"	""		$\frac{2.754}{2.770}$	
"	"	"	"		$\left. \begin{array}{c} 2.779 \\ 2.789 \end{array} \right\}$	Schröder. Dm. 1873.
"	"	"	$\mathbf{K_2}\mathbf{Cu}\;(\mathbf{S}\;\mathbf{O_4})_2.$			Playfair and Joule. M. C. S. 2, 401.
"	* 6	ιι	"		2.16376, 4°	Playfair and Joule. J. C. S. 1, 138.
""	"	"	""		2.137	Schiff. A.C.P. 107, 64.
"	"		"		,	Favre and Valson. C. R. 77, 579.
"	"	"	"		2.224 2.221, 16°	Schröder. Dm. 1870. Pettersson. U. N. A.
	copper	sul-	Am ₂ Cu (S O ₄)2	2.197 , m. of 2_{-}	1876. Playfair and Joule.
phate.	"	"	.,		2.348	M. C. S. 2, 401. Schröder. J. P. C.
		1		i	1	(2), 19, 266.

Magnesium zine s Magnesium cadm phate. Magnesium iron s Magnesium copp plate. Fauserite Zine iron mangar phate. Native Mendozite Sedium aluminum """ """ """ """ """ """ """		hate sul-	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	4 H ₂ O 4 H ₂ O 4 H ₂ O	1.757 1.891, m. of 2 1.89678, 4° 1.961 1.925, 15°.2 1.961, 15°.8 1.870, 22° 1.817 1.983	1876. Evans. F.W. C. Schiff. A. C. F. 107, 64
phate. A A A A A A A A A A A A A A A A A A A		hate sul-	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	4 H ₂ O 4 H ₂ O 4 H ₂ O	1.757 1.891, m. of 2 1.89678, 4° 1.961 1.925, 15°.2 1.961, 15°.8 1.870, 22° 1.817 1.983	Playfair and Joule M. C. S. 2, 401. Playfair and Joule J. C. S. 1, 138. Schiff. A. C. P. 107, 64. Pettersson, U.N. A. 1876. Evans, F.W. C. Schiff. A. C. F. 107, 64. """ """ """ """ """ """ """ """ """
Magnesium zine s Magnesium zine s Magnesium cadm phate. Magnesium copp phate. Fauserite Zine iron mangar phate. Native Mendozite Sodium aluminum """ """ """ """ """ """ """	sulplium sulploer	in the sul-	$\begin{array}{c} & \text{i.} \\ & \text{i.} \\ & \text{i.} \\ & \text{Mg Zn}(SO_4)_2, 1, \\ & \text{Mg Cd}(SO_4)_2, 1, \\ & \text{Mg Fr}(SO_4)_2, 1, \\ & \text{Mg Cu}(SO_4)_2, 1, \\ & \text{Mg Mn}_2(SO_4)_2, 1, \\ \end{array}$	4 H ₂ O 4 H ₂ O 4 H ₂ O 4 J ₂ H O	1,89678, 4° 1,961	M. C. S. 2, 401. Playfair and Jould J. C. S. 1, 138. Schiff. A. C. P. 107, 64. Pettersson, U.N.A. 1876. Evans. F.W. C. Schiff. A. C. F. 107, 64.
Magnesium zinc s Magnesium zinc s Magnesium cadm phate. Magnesium copp phate. Fauserite Zinc iron mangar phate. Native Mendozite Sodium aluminum """ """ """ """ """ """ """	sulplium sulploer	hate sul-	$\begin{split} & \overset{\text{f.}}{\text{4.}} \\ & \overset{\text{f.}}{\text{4.}} \\ & \text{Mg Zn}(\mathbf{SO}_4)_2, 1 \\ & \text{Mg Cd}(\mathbf{SO}_4)_2, 1 \\ & \text{Mg Fe(SO}_4)_2, 1 \\ & \text{Mg Cu}(\mathbf{SO}_4)_2, 1 \\ & \text{Mg Mn}_2(\mathbf{SO}_4)_2, 1 \end{split}$	4 H ₂ O 4 H ₂ O 4 H ₂ O 4 ₂ H O	1,931	J. C. S. 1, 138. Schiff. A. C. P 107, 64. Pettersson, U. N. A 1876. Evans, F.W. C. Schiff. A. C. F 107, 64. """ """ """ """ """ """ """ """ """
Magnesium zine s Magnesium zine s Magnesium cadm pliate. Magnesium iron s Magnesium copp pliate. Fauserite Zine iron mangar pliate. Native Mendozite Sodium aluminum """ """ """ """ """ """ """	sulplium sulploer nese	hate sul-	$\begin{split} & \overset{\text{f.}}{\text{t.}} \\ & \text{Mg Zn}(\mathbf{SO_4})_2, \ 1 \\ & \text{Mg Cd}(\mathbf{SO_4})_2, \ 1 \\ & \text{Mg F} \cos \mathbf{O_4})_2, \ 1 \\ & \text{Mg Cu } (\mathbf{SO_4})_2, \ 1 \\ & \text{Mg Mn}_2(\mathbf{SO_4})_2, \ 1 \end{split}$	4 H ₂ O 4 H ₂ O 4 H ₂ O 4 ₂ H O	1.925, 15°.2 1.991, 15°.8 1.870, 22° 1.817 1.980 1.798 1.818 1.818	107, 64, Pettersson, U.N.A 1876. Evans, F.W.C. Schiff, A. C. F 107, 64,
Magnesium zine s Magnesium zine s Magnesium cadm pliate. Magnesium iron s Magnesium copp pliate. Fauserite Zine iron mangar pliate. Native Mendozite Sodium aluminum """ """ """ """ """ """ """	sulplium sulploer nese	hate sul-	$\begin{split} & \text{Mg Zn}(\mathbf{SO}_4)_2, \ 1: \\ & \text{Mg Cd}(\mathbf{SO}_4)_2, \ 1: \\ & \text{Mg Fr}(\mathbf{SO}_4)_2, \ 1: \\ & \text{Mg Cu}(\mathbf{SO}_4)_2, \ 1: \\ & \text{Mg Mn}_2(\mathbf{SO}_4)_2, \ 1: \\ \end{split}$	 4 H ₂ O 4 H ₂ O 4 _L 11 O	1,931, 15°.8) 1,870, 22° 1,817 1,983 1,733 1,813	1876. Evans. F.W. C. Schiff. A. C. F. 107, 64.
Magnesium cadm phate. Magnesium iron s Magnesium copp phate. Fauscrite Zinc iron mangar phate. Native Mendozite Sedium aluminum """ """ Potassium aluri """ """ """ """ """ """ """	ium sulpl eer nese	sul- hate sul-	$\begin{split} & \operatorname{Mg}\operatorname{Cd}(SO_4)_2, \ 1 \\ & \operatorname{Mg}\operatorname{Fe}(SO_4)_2, \ 1 \\ & \operatorname{Mg}\operatorname{Cu}\left(SO_4\right)_2, \ 1 \\ & \operatorname{Mg}\operatorname{Mn}_2(SO_4)_2, \ 1 \end{split}$	411 ₂ 0 411 ₂ 0 4 ₂ 110	1.983 1.700 1.810	101, 51.
phate. Magnesium iron s Magnesium copp phate. Fattserite Zine iron mangar phate. Native Mendozite Sedium aluminum """" """" """" """" """" """" """"	sulpl oer nese	hate sul-	$\begin{split} & \underset{Mg}{\text{Mg Fo}(SO_4)_2, 1} \\ & \underset{Mg}{\text{Cu}(SO_4)_2, 1} \\ & \underset{Mg}{\text{Mn}_2(SO_4)_3, .} \end{split}$	4 Н ₂ О 4 ₂ П О	1.700 1.810	
Magnesium iron s Magnesium copp phate. Fauserite Zinc iron mangar phate. Native Mendozite Sodium aluminum	ner nese	sul-	$\frac{\operatorname{MgCu}(SO_4)_2}{\operatorname{MgMn}_2(SO_4)_3}.$	4 ₂ Ĥ O	1.813	
phate. Fauserite Zine iron mangat phate. Native Mendozite Sodium aluminum	nese		$\mathrm{MgMn}_2(\mathrm{SO}_4)_3$			
FauseriteZinc iron mangar phate. Native	nese	sul-		15H ₂ O	1.88	
phate. Native Mendozite Sodium aluminur		sul-				Breithaupt. J. 19 901.
Sodium aluminur			Zn Fe Mn ₅ (S 28	$H_2^{O_4} \vec{O}$.	2.1627	- 11es. A. C. J. 3, 420
Potassium alur alur	Mendozite			$1\mathrm{H}_2\mathrm{O}$	1.55	Thomson. Dana Min.
Potassium alur alur			$NaAl(SO_4)_2$. 1	$2 H_2 \Theta$	1.641	 Schiff, A.C.P.107,6
					$^{\circ}1.567$ $^{\circ}1.686, 18^{\circ}$	Buignet. J. 14, 1-
Potassium alur alum.* "" "" "" "" "" "" "" "" "" "" "" "" "	1.		11			Pettersson, U. N
Potassium alur alum.*	4.4					A. 1874.
alum.*	4.6				1.73	Soret, J.C.S. 50, 59
6	nin	um	K Al (S O ₁) ₂ =		2.228, m. of 2	
11 15 15 15	4.6	~ -			$\frac{2.6846}{2.6905}$ $\frac{15^{\circ}}{15^{\circ}}$	Pettersson, U. N. A. 1876.
	6.		** * * * * * * * * *	$2 H_z$ O	1.7109	Hassenfratz. Ann 28, 3.
	44			_	1.753	Dufrenov.
4.	4.				1.721	 Kopp. Å. C.P. 36, 1
	4.4		**	-	1.726, m. of 4	
					1,75125, 4°	Playfair and Joule J. C. S. 1, 138.
	4.4				1.711	Schröder, Dm. 187
	+ 6		1		$1.749,21^{\circ}$	1
* *	4.					Pettersson, U. N
4.4	4.	~ ~	4.		1,755, 20°,5) A. 1874.
	٠,				1,750	J. W. C. Smith. An J. P. 53, 145.
i i					1.722	Schiff, A. C. 1
"	4.4				1.757	Buignet, J. 14, 1
"	"		6.		1.7505	

^{*} The dehydrated alums are included here for convenience.

	AME.			Formula.		Sp. Gravity.	AUTHORITY.
Potassium	alun	ninu	ı m	K Al (S O ₄) ₂ . 12	—— Н,О	1.7546, 0°	
$_{ m alum}$				4,		1.7542, 10°	
"		• 6				1.7538, 20°	
""		"		"		1.7532, 30°	
				"		1.7526, 40°	Spring. Ber. 15,
		**		64		1.7521, 50°	1254, and Bei. 6,
44				"		$1.7501, 60^{\circ}$	648. Also a series
**		"					in Ber. 17, 408.
"		"		"		1.7252, 80°	1
"		"		"		1.7067, 90° J	
••		••				1.758, 21°, not	
		"				pressed.	
••		**		**		1.756, 16°.5,	Spring. Ber. 16,
4.6						once pressed.	2724.
••		••		••		1.750, 16°.5,	
"		"	ļ	"		twice pressed	G D 00 005
	1		1			1.735	Soret. C. R. 99, 867.
Rubidium a	.141111111		ши	Rb Al (S O ₄) ₂		2.7882, 14°.8	Pettersson, U.N.A.
44	44			DP 43/80) 19	II ()	2.7910, 15° ∫	1876.
				$RbAl(SO_4)_2$. 12	1120	1.874	Redtenbacher, S.W.
4.4			۱ ،	4.4		1.800.)	A. 51, 248.
"	66				~	$1.890 \atop 1.891$ 20° {	Pettersson, U.N.A.
6.6	44	(1.001	1074.
"	- 4					1.8648, 10°	
"	"		١	4.6		1.8639, 20°	
	44	4	۱	"		1.8635, 30°	
"		٤				1.8631, 40°	
"		4	۱	4.4		1.8624, 50°	Spring. Ber. 15,
4.6	4.6		٠	4.4		1.8619, 60°	1254, and Bei. 6,
4.6	"	٤	٠			1.8611, 70°	648. Also a series
	4.6	6		"		1.8596, 80°	in Ber. 17, 408.
"	* *	4		"		1.8578, 90°	,
4.6	" "			"		1.8554, 100° L	
"	4.4			4.4		$\frac{1.883}{1.886}$ \} 20.\circ 6	Setterberg. Ber. 15,
4.4	" "			11		1.886 $\int_{-20.76}^{20.76}$	1740.
	44			: 4		1.852	Soret. C. R. 99, 867.
Cæsium alu	minun	alui	m	$Cs Al (S O_4)_2$. 12 I	I_2O	2.003	Redtenbacher. S. W.
"	"						A. 51, 248.
	44	"		"		1.994, 18°.1	Pettersson. U. N.
"	44			"		2.000, 20°	A. 1874.
"		"		44		2.0215, 0°	
"	44			"		2.0210, 10°	
4.6		44				2.0205, 20°	
4.6		"	[44		2.0200, 30°	
. 6	44			"		3.0194, 40° 2.0189, 50° }	Spring Por 15
**	4.6	"		4.6		2.0186, 60°	Spring. Ber. 15,
"	"	44				2.0173, 70°	1254, and Bei. 6, 648. Also a series
"	"	"		"		2.0153, 80°	in Ber. 17, 408.
"	4.6	6.6		"		2.0107, 90°	in Der. 17, 400.
* *	"	6.6		"		2.0061, 100°	
**	"	"		"		1.988, 18°, not	1
						pressed.	
4.6	"	"		4.6		2.000, 20°,	D ===
			1			once pressed.	Spring. Ber. 16,
46	64	44		"		2.005, 20°,	2724.

Name.			FORMULA.		Sp. Gravity.	Λ UTHORITY	
Casium alui Ammonium			$\frac{\Lambda 1 (S O_4)_{\mu} 12}{\ln \Lambda 1 (S O_4)_{\mu}}$		1.911 2.039	Soret. C. R. 99, 867, Playfair and Joule, M. C. S. 2, 401.	
alum.	٤.		$\max \{1 (S O_1)_2, 1\}$	2H ₂ O	1.602	Breithaupt, J. P. C.	
64	4.4		4.		1.625)	11, 151.	
	6.4			-	1.626 (Кэрр. А.С.Р.36.1.	
	4.		* *		1.625	Playfair and Joule.	
	6.5				1.621	M. C. S. 2, 401. Schiff, A. C. P. 107. 64.	
,,		1			1,658	Buignet, J. 14, 15	
• •	4.		6.		1.642, m. of 1)	
4.4	11		. 4		1.608) extremes	Pettersson, U. N.	
	4.		. (1,647 (18/2 1975)		
6.6	"		£ t		1.661	W. C. Smith. Am. J. P. 59, 147.	
4.4					$1.6357, 0^{\circ}$		
4.1	٤.		* *		$1.0331, 10^{\circ}$		
1.4	4.4	-	* *		1.0046, 20°		
6.6	14				1,6815, 30°		
4.4	6.6		**		1,6340, 40°		
ί.	44		**		1,6336, 502	Spring. Ber. 15	
4:	4.				1,6002, 602	1254, and Bei, 6	
6.6	4.				1,6828, 703	648. Also a serie	
			* *		1,6323, 80	in Ber. 17, 408.	
4.6					1,6256, 50° 1,6275, 100°		
4.	6.5			-	1.641, 15°, not	1	
**	••				pressed.		
٤.,	"				1.629, 16°, 5, onco pressed.	Spring, Ber. 1	
**	4.6				1.684, 18 .	2721.	
					twice pressed	1	
6.4	4.4				1.681	Soret. C. R. 99, 86	
Methylamir alum.	ie alumin	um I	$rac{\mathrm{N} \Pi_2 \mathrm{C} \Pi_3 \mathrm{A} \mathrm{I} (8)}{12}$	ξΟ ₄) П. О.	1,568	**	
Thallium al	uminum al	lum T	$TAT(S \Theta_i)_2, 2$	$\Pi_z \Theta$	3.645, 17°	 Pettersson, U. N. A 1874. 	
. (4 4		$1\Lambda 1(\mathrm{S} \mathrm{O}_4)_{\mathbb{Z}}, 11$	$2H_2\Theta$	2.018, 157.8		
	6.	£ s =	**		2,366, 21		
6.6	4.4	4.4	**		2,365, 207,6		
* -	* 1	4.6	• •		. 2.381, 17° J		
	(.				2,320, 22°, not pressed.		
	4.4		ι.		2.814, 160.5,	Spring. Ber. 1	
4.6	4.6	4.6	4.		once pressed. 2,314, 184,	2721.	
					twice pressed	1	
					2,3226, 02		
4.4	6.6		4.		2,3213, 102		
4.	4.4	1	4.		2,3200, 202	Spring. Ber. 1	
6.6					2,8159, 80° 2,8151, 40°	408.	
	"				2,8151, 50° 2,8151, 50°		
	4.				2,5151; 50° -) -2,257	Soret. C. R. 99, 80	
					2,255 2,1583, 14,11 (
Potassium	chrome an	1111	K Cr (SO ₄) ₂		2,1618, 14 .4		

	Name.		Formul	۸.	Sp. Gravity.	AUTHORITY.
Potassiun	n ehrome	alum	K Cr (S O ₄) ₂ . 1	$2\mathrm{H_2O}$	1.848	Kopp. A. C. P. 36, 1.
"	"	"	٤:		1.826	Playfair and Joule.
44	(,	"	**		1.85609, 4°	
4.6	٠.	٠	٤.		1.845, 12°	J. C. S. 1, 138. Schiff. A. C. P. 107, 64.
"	44	44			1.839, 21°)	101, 51.
	4.6	4.	4.4		1.840, 21°	D
4.6	4.	44	66		1.841, 20°.2	Pettersson. U. N. A.
4.4	٤.		4.		1.849, 21°	1874.
	• 6	1.	4.6		1.807)	
4.6	44	14	66		1.808 }	Schröder. Dm. 1873.
"	4.4	14	4.6		1.8278, 0°	
4.4	4.4				1.8273, 10°	
44	4.4		"		1.8269, 20°	
4.4	4.4	44	11		1.8265, 30°	
4.6	4.4				1.8260, 40°	Spring. Ber. 15,
44	4.4	٤. "	14		1.8255, 50°	1254, and Bei. 6,
"	4.4	44	44		1.8223, 60°	648. Also a series
4.6	4.4	64	4.6		1.8044, 70°	in Ber. 17, 408.
"	4.6	44	"		1.7456, 80°	111 3301. 11, 100.
" "	4.6	4.6	4.4		1.828, 20°, not)
"	"		"		pressed. 1.823, 16°.5,	Spring. Ber. 16,
					once pressed.	3724.
		"			1.817	Soret. C. R. 99, 867.
Rubidium			$\operatorname{Rb}\operatorname{Cr}(\operatorname{SO}_4)_2$. 1	$2H_2O$	$\{1.967\}_{1000}$ $\{16^{\circ}.8\}$	Pettersson. U. N.
	4.6				1.202)	A. 1874.
		"	0 (1 (0 0) 1	A 1 T	1.946	Soret. C. R. 99, 867.
Cæsium el			$\operatorname{Cs}\operatorname{Cr}(\operatorname{SO}_4)_2$. 1	YH2O	2.043	D tt TT N
Ammoniu	m enrom	e alum	Am Cr $(S^*\tilde{O}_4)_2$		1.9943, 14°.7	Pettersson. U. N. A. 1876.
4.6	4.0	٠٠	$\mathrm{Am}\mathrm{Cr}(\mathrm{S}\mathrm{O}_4)_2.$	$12\mathrm{H_2O}$	1.738, 21°	Sehrötter. P. A. 53, 513.
4.2	"	"	"		1.728, 20°	Pettersson. U. N. A. 1874.
4.6	"	"	"		1.719	Soret. C. R. 99, 867.
Thallium	chrome a	lum	$\operatorname{Tl}\operatorname{Cr}(\operatorname{SO}_4)_2$. 1	2 H, O	2.392, 15° }	Pettersson, U. N.
4.4	4.4				2.402, 18° }	A. 1874.
4.4	4.6	"	"		2.236	Soret. C. R. 99, 867.
Potassium	ciron alu	m	K Fe $(SO_{1})_{2}$. 15	2H,O.	1.831	Topsoë. C. C. 4, 76.
٤.	44 44		44"-		1.819, 16°.8	•
٠.	"		4.6		$1.822, 17^{\circ}.5$	Pettersson. U. N.
4.4	"		"		1.831, 17°	A. 1874.
"	14 14		4.4		1.806	Soret. C. R. 99, 867.
Rubidium		m	$Rb \operatorname{Fe}(S O_4)_2$.	$12\mathrm{H}_2\mathrm{O}$	1.916	
Cæsium ir			$Cs Fe(S O_4)_2$. 1	$2\mathrm{H_2^{-}O}$	2.061	
Ammoniu	m iron al	um	$\begin{array}{c} \operatorname{Rb}\operatorname{Fe}(\operatorname{SO}_4)_2. \\ \operatorname{Cs}\operatorname{Fe}(\operatorname{SO}_4)_2. \\ \operatorname{Am}\operatorname{Fe}(\operatorname{SO}_4)_2 \end{array}$		2.54, 16°.8	Pettersson. U. N.
"	4.6		$\mathrm{AmFe}(\mathrm{SO_4})_2$. 1	$2H_2O$	1.712	A. 1874. Kopp. A. C. P.
"	"		"		1.718	36, 1. Playfair and Joule.
"	"	"	"		1.719	M. C. S. 2, 401. Topsoë. C. C. 4,
u	"	"	44		1.700	76. Schröder. Dm. 1873.

Name.	FORMULA.	Sp. Gravity.	Антиовіту.
Ammonium iron alum	AmFe(SO ₄) ₂ . 12H ₂ O	1.720, 18°.2 1.723, 18°	Pettersson, U.N.A.
4. 44	44	1.718	Soret. C. R. 99, 867.
Thallium iron alum	Ti Fe(SO.) 12 HO	2,351, 15	Petters on U. N. A.
			1874.
a a		2.355	Soret. C. R. 99, 867.
Potassium gallium alum	$\mathrm{KGa}\left(\mathrm{SO_4}\right)_2$. $12\mathrm{H}_2\mathrm{O}^{-1}$	1.895	Soret. C. R. 101,
			156.
Rubidium gallium alum	$-{ m Rb}{ m Ga}({ m SO}_4)_2,\ 12{ m H}_2{ m O}_4$	1.962	
Ammonium gallium alum	$(\text{AmGa}(\text{SO}_{4})_{2}, 12\Pi_{2}\text{O})$	1.640	Soret. C. R. 99, 867
		1.1(0)	Soret, C. R. 101 156.
Day : Harry in Party along	PLI _B (\$0.) 19H 0	9.065	100,
Casima indium alum	C_{2} In $(SO_{4})_{2}$, T_{2} II $(SO_{4})_{3}$	9 9.11	
Rubidium indium alum Casium indium alum Ammonium indium alum	$\Lambda m In(SO_4)_2$, $12 H_2O$	2.011	Soret. C. R. 99, 867.
Sonomaite	$\mathrm{Mg_3Al_2(SO_4)_6}$, 33 $\mathrm{H_2O}$	1,604	Goldsmith, J. 30, 1297.
Roemerite. (Ferroso-fer- ric sulphate.)	$\mathrm{Fe_3}\left(\mathrm{SO_4}\right)_4,12\mathrm{H}_2\mathrm{O}_{\pi}.$	2.15-2.18	
Uranyl potassium sulphate Uranyl ammonium sul- phate.	$\begin{array}{c} \mathrm{UO}_{2}\mathrm{K}_{2}(8\mathrm{O}_{4})_{2},\ 2\mathrm{H}_{2}\mathrm{O} \\ \mathrm{UO}_{2}\mathrm{Am}_{2}(8\mathrm{O}_{4})_{2},\ 2\mathrm{H}_{2}\mathrm{O} \end{array}$	3,863, 19°,1 3,0131, 21°,5	Schmidt, F. W. C
Didymium ammonium sulphate "	Am Di (8 O ₄) ₂	3.075 ± 15°	Cleve, U. N.A.1885
	Am Di (80,),, 411,0	2.575, 15°	
Samarium ammonium sul-	A m Sm $(S O)$.	$-3.191, 18^{\circ}$	**
phate.	$\operatorname{AmSm}(\operatorname{SO}_4)_2$, $\operatorname{AH}_2\operatorname{O}$	2.674 / 182.4 L	

3d. Basic and Ammonio-Sulphates,

Name.	FORMULA.	SP. GRAVITY.		
Tetrabasic zine sulphate.	Zn ₃ S O ₇ , 4 H ₂ O ==	3,122		
Mercurie orthosulphate,	$\mathrm{Hg}_3 \otimes \mathrm{O}_6 $	8.319	**	
or turpeth mineral. Tetrabasic copper sulphate	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	11.15	Maskeryne, J. 18,	
Herrengrundite	$\operatorname{Cu}_5\operatorname{S}_2\operatorname{O}_{11},\ 7\operatorname{H}_2\operatorname{O}_{}$	3.132	Winkler, Dana's Min., 3d App.	
Brechantite*	$\mathrm{Cu}_7\mathrm{S}_2\mathrm{O}_{13},5\Pi_2\mathrm{O}$	3.78-3.87	Magnus. P. A. 14, 141.	
(,			G. Rose. Dana's	
· Warringtonite			Maskelyne, J. 18, 902.	

[·] Composition uncertain, because of variations in the analyses.

Name.	FORMULA.	SP. GRAVITY.	Аптновиту.
Lanarkite	$Pb_2 S O_5$	6.3-6.4	Thomson.
Linarite	Pb Cu S O5. H2 O	5.43	Brooke. Ann. Phil. (2), 4, 117.
Alumian	Al ₂ S ₂ O ₇	12.781 (Breithaupt. J. 11, 730.
Werthemanite	Ai ₂ S O ₆ . 3 H ₂ O	2.80	Raimondi. Dana's
Aluminite Felsobanyite	$Al_2 S O_6$. $9 II_2 O_{}$ $Al_4 S O_9$. $10 H_2 O_{}$	1.66 2.33	Min., 3d App. Dana's Mineralogy. Haidinger. J. 7, 863.
Alunite	$K_{2}^{14}Al_{6}S_{4}O_{22}$. $6H_{2}O_{-}$	2.481	Gautier-Laeroze. J. 16, 833.
Löwigite Zinealuminite	$ \begin{array}{c} K_2 Al_6 S_4 O_{22}, 9 H_2 O_2 \\ Zn_6 Al_6 S_2 O_{21}, 18 H_2 O_2 \end{array} $	2.58	Römer. J. 9, 877. Bertrand and Damour. Z. K. M. 6,
Ettringite	${ m Ca_6Al_2S_3O_{18}.~32H_2O}$	1.7504	298. Lehmann. N. J. 1874, 273.
Amarantite	$\operatorname{Fe_2} \operatorname{S_2} \operatorname{O_9}$. 7 $\operatorname{H_2} \operatorname{O_{}}$		Frenzel. M. P. M. 9, 398.
Raimondite	$ \begin{aligned} &\text{Fe}_{4} \text{ S}_{3} \text{ O}_{15}, \text{ 7 H}_{2} \text{ O}_{} \\ &\text{Fe}_{4} \text{ S}_{3} \text{ O}_{15}, \text{ 13 H}_{2} \text{ O}_{} \end{aligned} $	$\frac{3.190}{3.222}$ }	Breithaupt. J. 19, 952.
Hohmannite	Fe ₄ S ₃ O ₁₅ , 13 H ₂ O	2.24	Frenzel. M. P. M.
Copiapite	$\mathrm{Fe_4~S_5~O_{21}}.$ 12 $\mathrm{H_2~O_{}}$	2.14	9, 397. Borcher. Dana's Min.
Fibroferrite	$\mathrm{Fe_4~S_5~O_{21}}$. 27 $\mathrm{H_2~O_{}}$		Smith. A. J. S. (2), 18, 375.
Carphosiderite	Fe ₆ S ₄ O ₂₁ . 10 H ₂ O		Pisani. Dana's Min. Breithaupt. Sehw. J. 50, 314.
		3.09	Laeroix. C. R. 103, 1037.
Jarosite	$\rm K_2~Fe_8~S_5~O_{28}.~9~H_2~O$	3.256	Breithaupt. J. 6, 845.
Urusite Sideronatrite Silver ammonio-sulphate_	$\begin{array}{c} Na_4 \ Fe_2 \ S_4 \ O_{17}, \ 8 \ H_2 \ O \\ Na_2 \ Fe_2 \ S_3 \ O_{13}, \ 6 \ H_2 \ O \\ Ag_2 \ S \ O_4, \ 4 \ N \ H_{3} \end{array}$	2.153	Frenzel J. 32, 1195. Dana's Min.,3d App. Playfair and Joule.
Zincammonium sulphate - Tetramercurammonium	$\begin{array}{c} \operatorname{Zn} \operatorname{N}_2 \operatorname{H}_6, \operatorname{S} \operatorname{O}_4 \\ \operatorname{Hg}_4 \operatorname{N}_2 \operatorname{S} \operatorname{O}_4, \operatorname{2} \operatorname{H}_2 \operatorname{O} \end{array}$	2.479 7.319	M. C. S. 2, 401.
sulphate. Cuprammonium sulphate	Cu N ₂ H ₆ . S O ₄	2.476	
Copper ammonio-sulphate	$\begin{array}{c} \text{Cu N}_2^{2} \text{II}_6, \text{SO}_4, \text{3 II}_2 \text{O} \\ \text{Cu SO}_4, \text{4 N II}_3, \text{II}_2 \text{O} \end{array}$	1.790 \	
" " ——		1.809 \ 2.133, 24°.3	Evans. F. W. C.
Roseocobalt iodosulphate	$\operatorname{Co_2}\left(\operatorname{N} \operatorname{II_3}\right)_{10}\left(\operatorname{S} \operatorname{O_4}\right)_2 \operatorname{I_2}$	$2.139 \atop 2.149$ 20°.5 =	Wilson. F. W. C.

Note.—Botryogen, elinophæite, johannite, lamprophenite, pissophanite, plagiocitrite, and wattevillite, being of uncertain composition, are omitted. See Dana's Mineralogy and appendixes.

XXIII. SELENITES AND SELENATES.

	_		
NAME.	FORMULA.	SP. GRAVITY.	Аптновиту.
Hydrogen selenite, or se-	Π_2 So Ω_2	3.123	Topsoc. C. C. 4, 76.
lenious acid.		0.0001	Cleusnizer, A. C. P. 196, 265.
Chalcomenite	Cu Se Θ_3 , $2 \Pi_2 \Theta_{+++}$	0.70	Des Cloizeaux and Damour, B. S. M. 4, 51.
Mercurous scienite	3 Hg ₂ O, 4 Se O ₂₊₁ \approx	7,85, 13°, 5	Kohler, P. Λ. 89, 149.
Hydrogen selenate, or so- lenic acid, to to	$\Pi_2 \lesssim \Omega_1$	2.625	Mitscherlich, P. A. 9, 629.
Lithium selenate	$\operatorname{Li}_2\operatorname{Se} \operatorname{O}_1,\operatorname{II}_2\operatorname{O}$	2,627 2,439	Fubian. J. 14, 130, Topsov. C. C. 4, 76,
4.		2,565, 192, 5 (Pettersson, U.N.A. 1871.
Sodium selenate	$\operatorname{Na}_2\operatorname{Se} \operatorname{O}_4$	3.098	Topsoc. B. S. C. 19, 246.
	· · · · · · · · · · · · · · · · · · ·	0,200, 171,2 / 0,217, 172,0 /	Pettersson, U. N. A. 1874.
	$\operatorname{Ne}_2\operatorname{Se}(O_k, 10 \operatorname{H}_2 O)$	1,584	Topsoc. C.C. 4, 76. $\stackrel{\uparrow}{\cdot}$ Pettersson. U.N.
Potassium selenate	ν. Σ S. ()	1.603 yextremes 1.621) 17 9-19 3.050	A. 1874. Topson, C. C. 4, 76.
Pottissium solemate	14, 500 (7, 11111)	3.071, 18 3.077, 19 ³	Pettersson, U. N. A
Sodium potassium selenate		8.077, 21 1 8.095	1874 Topson, C. C. 4, 76
Rubidium selenate.	Rb. Sc O.	3,923, m. of 5 3,8964 extremes	1
Casium selenate	$\operatorname{Cs}_{2}\operatorname{Se}\Omega_{p}$.	3,943 f 48 -17 8 -1,31, 15 .2	
4.4	Δm, Se O _C	1.34, 157, 5 (c) 2.162	1876. Tops e. B. S. C. 19
		2.197. 18	$\frac{246}{246}$. Pettersson, $\mathbf{U}, \mathbf{N}, \mathbf{\Lambda}$
Ammonium hydrogen se-	Δm H Se Θ_4	2.195, 157.5 ± 2.400 ±	1874. Topooc. C. C. 4, 76
lenate. Silver selemate	Ag So O,	5.92. 172>	Pettersson, U.N.A
Silver ammendo-selenate Thallium selenate	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	5,93, 47 2,854 7,019, 481	1874. Topsoc. C. C. 4, 76 Pettersson, U. N. A
Glucinum selenate Magnesium selenate	$\begin{array}{c} GI(S_{\mathcal{C}}, O_{i}) + II_{i}, O \\ M_{\mathcal{C}}(S_{\mathcal{C}}, O_{i}) + GII_{i}, O \end{array}$	7,067, 487,2 4 2,029 1,928	1874. Toppor. C. C. 4, 70
Magnesium setemate	14 2 4 15 15 14 14 15 15 15 15 15 15 15 15 15 15 15 15 15	1,955, 157,2 7 1,960, 157,8 7	Pettersson, U. N. A
Zine selemite	$\begin{array}{c} \operatorname{Zn} \operatorname{Se} \left(\left(\left(\frac{5}{4} \right) \right) \right) & \operatorname{Se} \left(\left(\frac{5}{4} \right) \right) \\ \operatorname{Zn} \operatorname{Se} \left(\left(\left(\frac{5}{4} \right) \right) \right) & \operatorname{GH}_{2} \left(\left(\frac{5}{4} \right) \right) \end{array}$	2.591 2.025	Topsoc. C. C. 4, 79
Cadmium selenate =	Cd Sc O 2 II, O	3.632	_

Name.	Formula.	Sp. Gravity.	Антновиту.
Calcium selenate. Cryst_	Ca Se O ₄	2.93	Michel. C. R. 106,
" "Strontium selenate. Cryst.			878. Topsoë. C. C. 4, 76. Michel. C. R. 106,
Barium selenate			878. Schafarik. J. P. C.
" Cryst		4.75	90, 12. Michel. C. R. 106, 878.
Lead scienate			Schafarik. J. P. C. 90, 12.
" " "		6.23, 180, 2 }	Pettersson, U.N.A. 1874.
Manganese selenate	Mn Se O ₄ . 2 H ₂ O		Topsoë. B. S. C. 19, 246. Pettersson. U. N. A.
:: ::	Mn Se O ₄ . 5 H ₂ O	$[3.012, 16^{\circ}.6]$	1876. Topsoë. B. S. C. 19,
:: ::		$2.386 \atop 2.389$ 16° {	246. Pettersson, U. N. A.
Iron selenate	Fe Se O ₄ . 7 H ₂ O	2.078	1876. Topsoë. B. S. C. 19, 246.
Nickel selenate	Ni Se O ₄ . 6 H ₂ O	2.332, 14°.1	t t
Cobalt selenate		2.335, 13°.8 2.339, 13°.8	Pettersson. U. N. A. 1876.
cobait seignate	$\begin{array}{c} \text{Co Se O}_4 \\ \text{Co Se O}_4 \\ \text{Se O}_4 \\ \text{6 H}_2 \\ \text{O} \end{array}$	2.512	Topsoë. C. C. 4, 76.
("	$\left. egin{array}{c} 2.247, 14^{\circ}.6 \ 2.248, 17^{\circ} \end{array} ight\}$	Pettersson. U. N. A.
Copper selenate	$\begin{array}{c} \text{Co Se O}_4, & 7 \text{ H}_2 \text{ O} \\ \text{Cu Se O}_4, & 5 \text{ H}_2 \text{ O} \end{array}$	2.258, 15°.8) 2.135	1876. Topsoë. C. C. 4, 76.
" "	44	2.562, 17°.8	Pettersson, U.N.A. 1874.
Yttrium selenute	Y_2 (Se O_4) ₃ . 9 H_2 O	2.5770, 18°	Cleve and Hoeglund. B. S. C. 18, 289.
		2.780 2.661, 12°.8	Topsoë. Quoted by Pettersson. Pettersson. U.N.A.
Erbium selenate			1876. Topsoë. Quoted by
tt tt		3.501, 13°.8	Pettersson.
	$\operatorname{Er}_2(\operatorname{Se} \operatorname{O}_4)_3. \ 9 \ \operatorname{H}_2 \operatorname{O}$	$\left\{ \begin{array}{ll} 3.510, 14^{\circ} \\ 3.529, 13^{\circ}.4 \end{array} \right\}$	Pettersson, U. N. A. 1876. Topsoe, Quoted by
Lanthanum selenate	$\text{La}_2 \text{ (Se O}_4)_3. \text{ 6 H}_2 \text{ O}$		Pettersson. Pettersson. U.N.A.
Didymium selenate	Di ₂ (Se O ₄) ₃	$\{4.416\}$ 12°.5	1876.)
" " ————	6.6	4.460)	$\left. \begin{array}{ll} \text{Cleve.} & \text{U. N. A.} \\ 1885. \end{array} \right.$
(((11 Di ₂ (Se O ₄) ₃ . 5 H ₂ O	$3.710, 13^{\circ}.8 \ 3.722, 13^{\circ}.3$	Pettersson, U.N.A. 1876.

Name.	FORMULA.	SP. GRAVITY.	Аттиовиту,	
Didymium selenate	$\operatorname{Di}_2(\operatorname{Se} \Omega_4)_3$, $\operatorname{5} \operatorname{H}_2 \Omega$	3.677, 15°	Cleve, U. N. A.1885	
Samarium selenate	$\operatorname{Sm}_2\left(\operatorname{Se}\Omega_{\mathfrak{t}}\right)_3$	3.685, 18°,3 { -1.077, 10°		
ittimarium seiemae 1111	$\operatorname{Sm}_2(\operatorname{Se} \operatorname{O}_1^{13}, \operatorname{SH}_2\operatorname{O})$	0.000	4.	
44		3,329 13°	4.	
	$\operatorname{Sin}_2\left(\operatorname{Se}\Omega_{\mathfrak{C}}\right)_{\mathfrak{p}},\ 12\ \operatorname{H}_2\Omega_{\mathfrak{p}}$	3,000 100		
Thorium selenate	Th (Se Θ_4) ₂ , 9 H ₂ Θ	0.026	Topsoé. B. S. C 21, 121.	
Magnesium potassium se-	$\mathrm{Mg}\mathrm{K}_{2}(\mathrm{SeO}_{4})_{2},\mathrm{6H}_{2}\mathrm{O}$	2,336	Topsoc. C. C. 4, 76	
lenate. Magnesium ammonium	$\mathrm{MgAm}_2(\mathrm{ScO}_4)_2, \mathrm{GH}_2\mathrm{O}$	2.035	Topsoe, B. S. C. P.	
selenate.	$\operatorname{Zn} \operatorname{K}_2(\operatorname{Se} \operatorname{O}_4)_2, \operatorname{2H}_2\operatorname{O}$	3.210	246. Topsoé. C. C. 4, 76	
Zine potassium selenate ==	Zn K. (Sc O.). 6 H.O	2.538	10pate. C. C. 4, 7	
Zine ammonium selenate	$ \begin{array}{c} \operatorname{Zn} \operatorname{K}_2(\operatorname{Se} \operatorname{O}_4^+), & \operatorname{GH}_2\operatorname{O} \\ \operatorname{Zn} \operatorname{Am}_2(\operatorname{Se} \operatorname{O}_4)_2, & \operatorname{GH}_2\operatorname{O} \end{array} $	2.200	44	
Cadmium potassium sele- nate.	$\operatorname{Cd} \mathbf{K}_{2}(\operatorname{Se} O_{4})_{2}. \operatorname{L}^{2}\mathbf{H}_{2}\mathbf{O}$	3.876	44 44	
Cadmium ammonium se- lenate.	$\mathrm{CdAm}_2(\mathrm{SeO}_4)_2,\ 2\mathrm{H}_2\mathrm{O}$			
Manganese potassium se-	$\begin{array}{c} -CdAm_2(SeO_4)_2, \ 6H_2O \\ -Mn \ K_2(SeO_4)_2, \ 2H_2O \end{array}$	2.307 3.070		
lenato. Manganese ammonium se-	$\operatorname{MnAin}_2(\operatorname{SeO}_4)_2, 6\Pi_2 \mathrm{C}_3$	2,098	246. Topsoe. C. C. 4, 7	
– lenate. Iron ammonium selenate.	$\operatorname{FeAm}_{n}(\operatorname{SeO}_{i})_{g}$, $\operatorname{6H}_{i}\operatorname{O}_{i}$	2.160		
Nickel potassium selenate	Ni K., (SeO, 1, 6H, O	2,589	44 +4	
		-2,580, m. of 5.		
**		2.575) extremes		
Nickel ammonium sele-	$-\mathrm{NiAm}_2(\mathrm{SeO}_4)_2$, $611_2\mathrm{O}$	2 587 f 16 74-17 3 2,228	$egin{array}{ll} (A) & A. & 1876. \\ & Topson. & C. & C. & 4. & 7. \end{array}$	
nate.	**	2.274, 15°.8	Pettersson, U.N.	
4.		2.279, 160	1876.	
Nickel thallium selenate	$-\mathrm{NiTl}_2(\mathrm{SeO}_i)_2$, $6\Pi_2\mathrm{O}_2$	4.066, 13°.3:	**	
Cobalt potassium selenate	- Co \mathbf{K}_2^r (Se \mathbf{O}_4^r) $_2$, \mathbf{GH}_2 () 2,514	Topsoé, C. C. 4, 7	
**		$-2.531, 18^{\circ}.8^{\circ}$)	Pettersson, U.N., 1876.	
Cobalt rubidium selenate.	Cally Section CH C	$-2.543, 17^{\circ}.4^{\circ}$ $+$	1570.	
Capati tilinitian sootaee.	· (0111) (1	2.838, 15°.6		
	4.6	2.814, IS°.6		
Coledt cosium selenate =	$-\operatorname{Co}\operatorname{Cs}_2\left(\operatorname{So}\operatorname{O}_4\right)_2$, 6 H_2 () 3,050, 18°.5)		
**	4.6	3.061, 16°.7	4	
Coledt ammonium selenate	$\sim \mathrm{CoAm}_{\beta}(\mathrm{SeO}_{\lambda})_{a}, 6 \Pi_{\beta} 0$	3,073, 18°,8) > 2,212	Topsoc. C. C. 4, 5	
		-2.225, 188	•	
**		2.220, 170	Pettersson, U.N.	
Cobelt thallium selencte	$=\operatorname{CoTI}_2\left(\operatorname{SeO}_{C_2},\operatorname{6H}_2\right)$	$2.248, 15^{\circ}.5^$	1876.	
Copper potessium selemat	$e \cdot \operatorname{Cu}(\operatorname{K}_2 / \operatorname{Se}(\Omega_1)_2, 0) \operatorname{H}_2 0$	$4.059, 16^{\circ}.5 + 0.2.527 + 0.2.556, 17^{\circ} + 0.0000000000000000000000000000000000$	Topsoe, C. C. 4, 7 Pettersson, U. N.	
**	4.6	2.557, 16°,4	1876.	
C pperammonium selenat	$\in \operatorname{CuAm}_{\sigma}(\operatorname{SeO}_{\epsilon})_{\sigma}$, 6H,		Topsoe, C. C. 4, 7	
			Pettersson, U.N.	

NAME.	FORMULA.	Sp. Gravity.	AUTHORITY.	
Sodium aluminum alum	NaAl(SeO ₄) ₂ . 12H ₂ O	2.061, 21°		
" " " —		2.069, 20°.8	Pettersson. U. N.	A.
Potassium aluminum alum		2.071, 20°.8) 1.971	1874. Weber. J. 12, 93	1
rotasstum arummum arum	KAR(560 ₄) ₂ . 1211 ₂ 0	1.998, 21° }	Pettersson. U. N.	
		2.004, 20°.1	1874.	
Ammonium aluminum alum.	1		Pettersson. U.N. 1876.	Α.
" " —	$AmAl(SeO_4)_2$. $12H_2O$	1.892, m. of 4_)	
· · · · · · · · · · · · · · · · · · ·	44	1.895 170-200.5	Pettersson. U. A. 1874.	N.
Rubidium aluminum alum	4.6		44 44	
		2.135, 17°.2		
Cæsium aluminum alum	$\operatorname{CsAl}(\operatorname{SeO}_4)_2$. $12\operatorname{H}_2\operatorname{O}_4$	2.223, 18°.8 { 2.225, 20°		
Thallium aluminum alum	$TlAl(SeO_4)_2$. $12H_2O$	2.492, 17°.5 2.514, 17°		
Potassium chromium alum	1,2	2.5190, 20°.3	Pettersson, U.N., 1876.	Α.
" "	$K \operatorname{Cr} (\operatorname{Se} \operatorname{O}_4)_2$. $12 \operatorname{H}_2 \operatorname{O}_4$	2.076, 17°.6		
" " " " " " " " " " " " " " " " " " "	K Cr (Se O ₄) ₂ . 12 H ₂ O	$\left\{ egin{array}{ll} 2.077,17° \ 2.081,17°.2 \end{array} ight\}$	Pettersson, U.N. 1874.	Α.
Ammonium chromium alum.	Am Cr (Se O_4) ₂	2.3585, 15°.5	Pettersson, U.N., 1876.	Α.
" "	$AmCr(SeO_4)_2$. $12H_2O$	1.980 } 20° {	Pettersson. U.N.	Α.
Rubidium chromium alum		2.214, 18°.8	1874.	
Thallium chromium alum	$\mathrm{Tl}\mathrm{Cr}(\mathrm{Se}\mathrm{O_4})_2$. $12\mathrm{H_2O}$	4.440,11	"	
Didymium potassium se-	Di K (Se O ₄) ₂	3.839, 13°	Cleve. U. N. A.188	 85.
lenate.	70177 (7 0 - *** 0			
	Di K $(\operatorname{SeO}_4)_2$. $5\operatorname{H}_2\operatorname{O}_4$	3.178 (13	"	
Didymium ammonium selenate. "	$DiAm(SeO_4)_2$. $5H_2O_4$		"	
Samarium potassium sele-	Sm K (Se O ₄) ₂	$\frac{4.098}{4.129}$ 10°	· · · · · · · · · · · · · · · · · · ·	
!! !! !!	Sm K (SeO ₄) ₂ . 3H ₂ O ₋	3.566, 100)		
Samarium ammonium selenate.	Sm Am (Se O_4) ₂	3.540, 18° } 3.805, 14°	"	
" "	SmAm SeO_4) ₂ . $3H_2O$	3.277, 14°		
11 11 11 11 11	"	0.200, 10	"	
Potassium selenate with nickel sulphate.	K_2SeO_4 . $NiSO_4$. $6\overline{II}_2O$	3.260, 18°.6) 2.34	Gerichten. B. S. 20, 80.	C

XXIV. TELLURATES.

N	AME.	,	FORMULA.	SP. GRAVITY.	Астиот	HTY.
Hydrogen t	ellurate,	or tel-	H ₂ Te O ₄	3.425, 18°.8		
lurie acie	l. "	••	· · · · · · · · · · · · · · · · · · ·	3.440, 19°.2	Clarke. A	J. S.
4.6	4.4	**		3.458, 19°.1	(3), 16, 2	OG,
4.4			Π_2 Te Θ_4 , 2 Π_2 Θ .	2.340	Oppenheim 213.	. J. 10,
6.6			. 4	2,9649, 26%, 5 1	Clarke, A	. J. S.
. (4.4		4.	2,9999, 25°, 5 i	(3), 16, 2	06.
Ammoniui	n tellura	t	Am. Te O	2.956, 24°,5 j		
				3.012, 25°		4.4
4.6			4.	3,024, 24%,5		
	ellurate .		$\text{Tl}_2 \text{Te } \Theta_{4}$	6.712, 160		"
6.6	4.4			$100, 17^{\circ}.5 +$		
k.b.	**		2 Tl₂ Te O₃. H₂ O	5.687, 220 1	4.	6.4
s £			**	5.712, 20° +		
Barium tel	hirate		Ba Te O ₄	1.5805, 10° = i	Clarke!	l. J. S
4.4					(3), 11, 2	186

XXV. CHROMATES.

$\begin{array}{cccccccccccccccccccccccccccccccccccc$	NAME.		Name. Formula. Sp		SP. GRAVITY.	AUTHORITY.	
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$				$\operatorname{Na}_{i_{2}}\operatorname{Cr}\left(\operatorname{O}_{1}\right) =$			Abbot. F. W. C.
2,6402 Karsten, Schw. 65, 394, 2,705 Kopp, A. C. 96, L 2,682, m, of 10 Playfair and Jou M. C. S. 2,401, 2,711 Playfair and Jou M. C. S. 2, 401, 2,72309, 4° J. C. S. 1, 197, 2,678, 15°,5 Helker, P. M. of 27, 213, 2,691 Schiff, A. C. P. 10 64, 2,7043 Schiff, A. C. P. 10 6503, 66, 69, 69, 69, 69, 69, 69, 69, 69, 69,		44		$\begin{array}{cccc} & & & & Na_2 \ Cr \ O_1, \ 10 \ H_2 \ O \\ dichromate & & & Na_2 \ Cr_2 \ O_5, \ 2 \ H_2 \ O \\ \end{array}$		1,4828, 201	Stanley, C. N. 54,
6 2,705 Kopp. A. C. 26, L. 7 2,682, m. of 10 Playfair and Jou M. C. S. 2, 401. 8 9 2,711 Playfair and Jou Playfair and Jou J. C. S. 1, 137. 9 10 2,72300, 4° (J. C. S. 1, 137.) 10. C. S. 1, 137. 9 2,72300, 4° (J. C. S. 1, 137.) 10. C. S. 1, 137. 10 2,7213. Schiff. A. C. P. 10. 64. 10 2,7343. Stollar, J. P. C. 1. 503. 10 2,7403. 0° Schroder, Dm. 187. 10 2,7374, 10° Spring. Ber. 1.			te	K ₂ Cr O		2.612 2.6402	Karsten, Schw. J.
2,682, m, of 40 Playfair and Jou M. C. S. 2, 401. 2,711 Playfair and Jou Playfair and Jou M. C. S. 2, 401. 2,72309, 4° J. C. S. 1, 137. 2,678, 15°,5 Helker, P. M. G. 27, 213. 2,691 Schiff, A. C. P. 10 G. 3, 2,714 Schiff, A. C. P. 10 G. 4, 2,7043 Schiff, A. C. P. 10 G. 503, 2,719 Schröder, Dm. 185 2,722 Schröder, Dm. 185 2,7343, 10° Spring, Ber. 1	4.4	4.4				2.705	Kopp. A. C. P.
2.711 Playfair and Jour 2.72309, 4° J. C. S. 1, 197. 2.678, 15°,5 Holker, P. M. G. 27, 213. 2.691 Schiff, A. C. P. 10 G. G. 2.7043 Schiff, A. C. P. 10 G. G. 2.719 Schiff, A. C. P. 10 G. G. 2.722 Schröder, Dm. 187. G. 2.722 Schröder, Dm. 187. G. 2.734, 10° Spring, Ber. 1	4.6	4.6		••		2.882, m. of 10	Playfair and Joule.
2.72309, 4° (J. C. S. I. 137. 2.678, 15°,5 Helker, P. M. 6 27, 213. 2.691 Schiff, A. C. P. 10 64. 2.7303 Stella, J. P. C. 3 503. 2.719 Schröder, Dm. 187 2.722 Schröder, Dm. 187 2.724 Schröder, Dm. 187 2.734, 10° 2.7345, 20° Spring, Ber. 1	4.6	4.6		++		2.711	
27, 213, Schiff, A. C. P. 10 2,7043	4.4	+ 4					J. C. S. 1, 137.
64. Stollar, J. P. C. Stollar, J. Stollar,		4.6		• •		2.678, 15%, 5 [2]	Helker, P. M. (3), 27, 213,
503. 503. 503. Schröder, Dm. 187. Schröder, Dm. 187. 2,7403, 0° 2,7574, 10° 2,7545, 20° Spring. Ber. 1	6.6	4 4		. 6			Schiif, A. C. P. 107, 64.
Schröder, Dm. 187 2.7403, 0° 2.7574, 10° 2.7534, 20° Spring. Ber. 1	4.6	å s		4.6		2.7848	Stolba, J. P. C. 97, 500.
2.7403, 0° 2.7403, 0° 2.7574, 10° 2.7574, 10° 2.7545, 20° 8 pring. Ber. 1	4.5	4.6		4.4		2.719	S. Jan. Jan. Day 1872
" 2.7074, 10° 2.7074, 10° Spring. Ber. 1	* *			6.6		2.722	Schröder, Din. 1549.
" 2,7345, 20° Spring. Ber. 1				1		2.7403, 0°	
4 0 1 9 2 7217 302 1 1910							
1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1		* *					1940.

			1			<u> </u>
NA	ME.		For	RMULA.	Sp. Gravity.	AUTHORITY.
Potassium cl	ıromat	e	${ m K_2~Cr~O}$	4	2.7258, 50°)	
"	"				2.7227, 60°	
"	"	~			2.7169, 70°	Spring. Ber. 15,
"	"					1940.
"	"				2.7102, 90° 2.7095, 100°	
Potassium di		ate),		Karsten. Schw. J.
"	"		"		2.624	65, 394. Playfair and Joule.
"	"		"		2.692, 4°	M. C. S. 2, 401. Playfair and Joule.
"	"		، ،			J. C. S. 1, 137.
"	"		"		$\begin{vmatrix} 2.689 & \dots & \\ 2.721 & \dots & \end{vmatrix}$	Schabus. J. 3, 312. Schiff. A. C. P. 107,
••	••		••			64.
"	"		"		$\left\{ \begin{array}{c} 2.6616 \\ 2.6806 \end{array} \right\}$ 15° $\left\{ \begin{array}{c} \end{array} \right.$	Stolba. J. P. C. 97,
"	"		4.4		$\{2.6806\}$	503.
"		Pulv	"		2.702	2 3 4 3
"		fter }	"		$\{2.677\}$	Schröder. Ber. 11,
	" fu	sion. }	"		$\left\{ \begin{array}{c} 2.751 \\ 2.694 \end{array} \right\}$	2019. W. C. Smith. Am.
						J. P. 53, 145.
Potassium tr		ate	$\mathrm{K_2}\mathrm{Cr_3}\mathrm{C}$) ₁₀		Playfair and Joule. M. C. S. 2, 401.
"	"	~	"		3.613	Bothe. J. 2, 272.
**	66		"		$\{2.676 \ldots \}$	Schröder. A. C. P.
Potassium eb	romiuı	n ehro-	$K_2 \operatorname{Cr}_5 C$		2.28, 14°	Tommasi. B. S. C. (2), 17, 396.
Ammonium	ehroma	ite	$\mathrm{Am}_{2}\mathrm{Cr}$	O ₄	1.9138 } 120	Abbot. F. W. C.
"	"		"		1.9203 }	
					1.860 }	Schröder. Dm. 1873.
Ammonium	diehroi	mate	$\mathrm{Am_2}\mathrm{Cr_2}$	O ₇	2.367	Schiff. A. C. P. 107,
"	"					64.
"	"					Schröder. Dm. 1873.
"	"		"			
"	"		"		2.1225, 10	Abbot. F. W. C.
Silver chrom:)4	5.770	Playfair and Joule.
				4		M. C. S. 2, 401.
tt tt			"		5.536	Rettig. A. C. P. 173, 72.
" "			"		$\left[egin{array}{c} 5.463 \ 5.583 \end{array} ight]$	Schröder. Dm. 1873.
Silver diehror	mate		$Ag_2 Cr_2$	0,	4.662)	"
" "	. ,		: (4.676 (
Silver ammor	110-chr	omate	Ag ₂ Cr C	ν ₄ . 4 Ν Π ₃	3.063, m. of 3_	Playfair and Joule. M. C. S. 2, 401.
Magnesium c	hrome	te _	Mg Cr O	H ₂ O	$\begin{bmatrix} 2.717 & & & \\ 2.2301 & & & \\ & & & \end{bmatrix}$	Topsoe. C. C. 4, 76.
٠,٠	"					Abbot. F. W. C.
"	11				1.66, 15°	Kopp. A. C. P. 42, 97.
"	"		6		1.75, 12°	Bödeker. B. D. Z.
m · · ·			II 0 0	4	1.7613 169 1	Abbot. F. W. C.
Trimereuric o Strontium chi	enroma romate	b	Sr Cr O ₄	'6	7.171, 18°.6 3.353	II. Stallo. F.W.C. Schröder. Dm. 1873.

Nam	E.	For	MULA.	Sp. Gravity.	Антиовиту.
Barium chrom	ate	Ba Cr O		3.90, 11°	Bodeker and Gie secke. B. D. Z.
	,	3.3		. 4.49, 283	Schafarik. J. P. C 90, 12
4. 4.1				4.5044	Schweitzer, University of Missouri Special pub., 1876
44 4+					Schröder, Dm. 1873
4.4		4.		4.991	
**	Cryst	**		4.60	29 192
Lead chromate	e 	Pb Cr O		6.004	Mohs. See Bottger
				. 5.95I	Breithaupt
4. 44		1.			Playfur and Joule M. C. S. 2:401.
ر ده ده	Artif. cryst.	4.1		6.118	M. C. S. 2, 401. Manross. J. 5, 12.
	**			6.29	Bourgeois, B.S.C 47, 884.
	Sative			. 5.965. m. of 3.	Schroder, Ber. 11 2019.
Diplumbie chr	omate	Ph_2 Cr C	3	6,266	Playfair and Joule M. C. S. 2, 401.
Phoenicochroit		Pb. Cr. C)	5.75	Dana's Mineralogy
Potassium	ammonium	K Am C	r (),	2.250	Schroder, Dm. 1873
chromate. Potassium cal		V C. /C.	(A) = 2 II (A		
mate.	cium enro-	W.cu(c)	$\{0_4\}_{g}$, $211_{g}0$	9 505 (4+
* *		K.Ca.(C:	rO.A., 2 H.O.	. 2.772 /	
		15 M = (1)			
Magnesium chromate.	potassium	K ₂ arg (C	$(r O_4)_2$. $\Pi_2 O$	1000 :	
enromate.	44			0) " 4/11 .	
	6.			2.5966 (192.5)	Abbot. F. W. C.
Magnesium	ammonium	Am., Mg(CrO.)6H.() 1.8278, 16° ° Y	
chromate.	**	-		. 1.8293, 17°	4.4
4.	44			1.8293, 17° 1.8595, 16° 5.5—5.78	
Vauquelinite Potassium chl	orochromate	$-\mathrm{Pb}_{2}\mathrm{Cu}$ O $-\mathrm{K}/\mathrm{Cr}$ O $_{3}$	Cl	. 5.5—5.78 . 2.466	Dana's Mineralogy Playfair and Joule
4 6		6.		2.49702, 4°	M. C. S. 2, 401. Playfair and Joule
Sodium chron	iodate	Na Cr 1	O _c . H, O	3.21	, J. C. S. 1, 187. Berg, C. R 104
					- 1514
Potassium chr	omiodate	K Cr I	· 6	3.66	
Ammonium a	hromiodate_	Am Cr I	0,	8,50	**

XXVI. MANGANITES, MANGANATES, AND PERMANGANATES.

NAME.	FORMULA.	SP. GRAVITY.	Антновиту.
Barium manganite			lier. C. R. 98-141
Barium manganate			90. 12
Potassium permanganate	K Mn O4	$\left\{ \frac{2.709}{2.710} \right\}$	Kopp. J. 16, 4.

XXVII. MOLYBDATES.

Name.	FORMULA.	Sp. Gravity.	Аптновиту.
Strontium molybdate	18 Mo O ₃ . 14 N H ₃ . (O H) ₆ . 18 H ₂ O. Sr Mo O ₄ Ba Mo O ₄ Pb Mo O ₄ " Ce ₂ (Mo O ₄) ₃ Di ₂ (Mo O ₄) ₃ Sm ₂ (Mo O ₄) ₃	2.286 2.295 2.975 4.1348, 21° 4.1554, 20°.5 } 4.6483, 19°.5 } 4.6589, 17°.5 } 8.11, artificial 6.62 " 6.76 6.95 4.56, cryst. 4.82, ppt. } 4.75, cryst. 5.95	Manross. J. 5, 11. Cossa. G. C. I. 16, 324. Haidinger. Smith. J. 8, 963. Cossa. G. C. I. 16, 324. " Cleve. B. S. C. 43, 162.

XXVIII. TUNGSTATES.

NAMII.	FORMULA.	SP. GRAVITY.	Аптиовиту.
Sedium tungstate	Na ₂ ,W O ₁	1.1743, 20°,5 / 4.1833, 18°,5 /	J. L. Davis, F.W. C.
**	Na ₂ W Θ_4 , 2 H ₂ Θ_5 .	3,2314, 197 3,2588, 17°,5 m	
Scalium metatungstate	$\operatorname{Na_2W_4O_{10}}$ 10 $\operatorname{H_2O}$	3.8467. 13°	Scheibler, J. 14, 219,
Sodium polytungstate		5,4983	Scheibler, J. 14
s dium tungstoso-tung-	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	0.087, 145 L., 6.017 L., L.,	216. Wright, J. 4, 348
erito.	$\operatorname{Na}_2 \operatorname{W}_4 \operatorname{O}_{11}$	7.2%)	Scheibler, J. 14 223.
Perassium tungstoso-tungstate, " " " " " " " " " " " " " " " " " " "	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	7.085 / 7.095 / 1 7.195 7.0	Two preparations Knorre, J. P. C (2), 27, 62. Zettnow, J. 20, 224 Knorre, J. P. C (2), 27, 62.
Solium potassium tung- st so-tung-tate. Calcium tungstate Scheelite		7.112 7.121 6.076, artif 6.04	Knerre, J. P. C (21, 27, 62, Manross, J. 5, 11 Karsten, Schw. J (55, 394,
		6,02	
Barium tungstate	$\begin{array}{c} \text{Ba } \overset{\cdot}{\mathbf{W}} \overset{\cdot}{\mathbf{O}}_{4}, \\ \vdots \\ \text{Ba } \overset{\cdot}{\mathbf{W}}_{4} \overset{\cdot}{\mathbf{O}}_{13} \overset{\cdot}{\cdot} \overset{\cdot}{\mathbf{O}} \overset{\cdot}{\mathbf{H}}_{2} \overset{\cdot}{\mathbf{O}}_{1}, \\ \text{Pb } \overset{\cdot}{\mathbf{W}} \overset{\cdot}{\mathbf{O}}_{4}, \dots & \vdots \end{array}$	 5,0005, 10°,5 5,0422, 15" 5 4,298, 14° 11 8,292, art f. 5	783. J. L. Davis, F W. C. Scheibler, J.11,220 Manross, J. 5, 11.
Manganese tungstate	 Mn W O ₄	\$,1002) \$,1002) \$,1275 7 6,7, artif. 7	Kerndt, J. P. 6 42, 113. Geuther and For
· · · · · · · · · · · · · · · · · · ·		7.14	Breithaupt, Dana
ite.		7.177. 210	Min. H diebrand. A. d
Iren tungstate	Fe W O4	7.1. artif	S. 31, 27, 357. Genther and For
· Ferberite		7.160 ==	lerg J. 14, 22 Ronnelsberg, J. I
		6.801	S75. Breithaupt, Dana
o Remite Ir namanganese trangstate	$2\mathrm{Mi.W}\mathrm{O_4},\mathrm{dFeW}\mathrm{O_4}$	7.0, artif _	Min. Ludecke, J. 02,119 Geuther and For Jurg. J. 14, 22

 $^{^{36}}$ rg. J. 14, 224. 24 . Finally Ber 15, 50 finds the specific gravity of all the "turgsten broazes" to vary between 7.2 and 7.3, at 9. ± 18 .

NAME.	Formula.	Sp. Gravity.	AUTHORITY,
Wolfram* "Fe2: Mn Nickel tungstate Cerium tungstate Didymium tungstate Samarium tungstate	Ni W O ₄	7.4581 6.8522, 22° 6.8896, 20°.5 } 6.514, 12°	 Sipöez. Ber. 19, 95. J. L. Davis. F. W. C. Cossa and Zechini. Ber. 13, 1861. Cossa. Ber. 14, 107.

XXIX. BORATES.

NAME.			For	FORMULA.		SP. GRAVITY.	AUTHORITY.
Hydroge acid.	n bora	te, or borie	H ₃ B O ₃ -			1.479	Kirwan.
"	"		" -			1.4347, 15° 1.493, 20°.5	Stolba. J. 16, 667. Favre and Valson C. R. 77, 579.
"	"	" "	"" -			$\left. \begin{array}{c} 1.5463,0^{\circ} \\ 1.5172,12^{\circ} \\ 1.4165,60^{\circ} \end{array} \right\}$	Ditte. Bei. 2, 67.
Sodium d	،، libora t	e		7		1.3828, 80° J 2.367	Filhol. Ann. (3) 21, 415.
"	"		"		- 1	2.871, 20°	C. R. 77, 579.
"			"			$\begin{array}{c} 2.368, 16° \\ 2.370, 14°.2 \end{array} \right\}$	Bedson and Wil-
"			"			2.370, 14°.2	liams. Ber. 14
"	"		"			2.373, 18°.5	2553.
"	"					2.5, fused	Quineke. P. A. 135 642.
"	"		$\mathrm{Na_2}\;\mathrm{B_4}\;\mathrm{O}$	7. 5 H ₂ O		1.815	
"	66		Na, B, O	10 H _o O	1	1.757	Wattson.
"	"		2 4 11			1.120	28. 3.
4.4	4.4					1.716	Mohs. See Böttger.
"	"		"			1.74	1828 (1), 483.
"	"		"			1.730, m. of 2_	Playfair and Joule. M. C. S. 2, 401.
"	"					1.692	Filhol. Ann. (3), 21, 415.
""	"		""			1.692	Buignet. J. 14, 15.
"	"		ιι			1.7156	Stolba. J. P. C. 97, 503.
"	"		"			1.711, 20°	Favre and Valson. C. R. 77, 579.
	"		"			1.736	W. C. Smith. Am. J. P. 53, 148.

^{*}See Dana's Mineralogy for many other determinations.

Name.	FORMULA.	SP. GRAVITY,	Антиовату.
Potassium borate	K, B, O,	1.740	Buignet. J. 14, 15
Pinnoite	$\begin{array}{c} \mathbf{Mg} \; \mathbf{B}_1 \; \mathbf{O}_4 \; & 3 \; \mathbf{H}_2 \; \mathbf{O}_{-1} \\ \mathbf{Mg}_3 \; \mathbf{B}_2 \; \mathbf{O}_6 \\ \mathbf{Mg}_5 \; \mathbf{B}_4 \; \mathbf{O}_{11} \; & 3 \; \mathbf{H}_2 \; \mathbf{O}_{-1} \end{array}$	2.27	Staute, Ber. 17, 1584
Magnesium borate	$Mg_3 B_2 O_6$	2.987	Ebelmen, J. 4, 13,
Szaibelyite	$-\mathrm{Mg_3}\mathrm{B_4}\mathrm{O_{11}},\mathrm{B}\mathrm{H_2}\mathrm{O_{20}}$	5.0	Peters. J. 16, 836,
Colemanite	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	2.128	Evans. J. 37, 1927
Priceite	$Ca_3 B_s O_{15}$ $6 H_2 O_{-1}$	2.262	Silliman, A. J. S
" Pandermite		2.265	(3), 6, 128.
. randermite		÷ 10	v. Rath. Dana'
I and Laruta	Pl. P. O	5.504	Min., 3d App. Herapath. J. 2, 227
Lead borate Lead hydrogen borate Jeremerewite	Ph II R 0	5.935	. Herapan. 3. 2. 221
Leromorowite	ALB O	1 11 194	Damour, J. C. S
			44, 719.
Didymium orthoborate	Di B O	5,680 / 170	
		$-5.721 + \frac{10^{2}}{2} = -$	Cleve, U. N. A.1885
Didymium orthoborate Didymium borate	$\operatorname{Di}_{\mathbf{i}}\operatorname{B}_{2}\operatorname{O}_{2}$	5.825, 11°	Nordenskiold, J. 14
			197.
Samarium ortholorate	$Sm B O_3$	6.045) 160.4	Cleve. U. N. A
Samarium orthoborate 	N () D () 1 1 ()	0.0523	1885.
			How, A. J. S. (2) 24, 234.
Franklandite	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	1.65	Reynolds. J. 30 1288.
Hydroboracite	$egin{array}{lll} & & & & & \ddot{\Pi}_2 \ M_{\Xi_3} & Ca_3 & B_{16} & O_{50}, & 18 \ & & & H_5 & O_{.} \end{array}$	1.36	Hess. P. A. 31, 49
Sussexite	$\mathbf{Mg}(\mathbf{Mn})\mathbf{B}_{2}(\mathbf{O}_{5}, \mathbf{H}_{2}^{\dagger}\mathbf{O})$		Brush, A. J. S. (2) 46, 240.
Magnesium chromium borate.	Mg_6 Cr_6 B_4 O_{21}	3.82	Ebelmen. J. 4, 13
Magnesium iron borate	Mg6 Fe6 B4 O217-	3.85	'm' 1
Ludwigite	Mg ₆ recourse that	0.304 (- (4.01c)	Tschermak, J. 27 1278.
Rhodizite	$\begin{array}{c} {\rm Mg_6^6Fe^{\prime\prime\prime}_4^4Fe^{\prime\prime}_2H_3} + \\ {\rm B_3^{}O_{20}} + \\ {\rm Al_2^{}K^{}B_3^{}O_{2}} \end{array}$	1 35 294 1 2 2 2 3 3 4	Damonr. J. 37, 1927
Boracite	Mor B. O. Cl	2.9184	Karsten, J. 1, 1227
The state of the second	2487 MW 7,70 C 17	2.974	Mohs. See Bottger

XXX. NITRATES.

1st. Simple Nitrates.

	Name.		FORMULA.	Sp. Gravity.	Астновіту.
Hydrogen acid.	nitrate, o	rnitrie H	N O ₃	1,5549, 151,51 1	Kirwan, Gilb, Ann. 9, 266,
4.				1.522, 12°,5 1	Mitscherlich. P. A.
4.	4.	4.4	**	1,500	 Smith, J. 1, 386.
				1,500 1,552, 151	0014
+ +	4.	6 _ H	NO. H.O.	1.186	1. Smith. J. I, 386.
		11	NO. 3 H.O.	1.424	**
Nitric sub	hydrate		$\mathbf{H} = \mathbf{N} \left[\mathbf{O}_3, \mathbf{N}_2^{\dagger} \right] \mathbf{O}_3$	1.424 1.642, 18	Weber, J. P. C. (2), 6, 357.

					1	1
	NA	ME.	F	ORMULA.	Sp. Gravity.	Аптновіту.
Lithium	nitra	ite	Li N C)3	2.334 2.442	Kremers. J. 10, 67. Troost. J. 10, 141.
Sodium		te	Na N	O ₃	2.0964	Hassenfratz. Ann.
"	**		"		2.096	Klaproth.
4.6	11				2.1880	Marx. See Böttger.
"	u				2.2256	Karsten. Schw. J. 65, 394.
"			"		2.200	Kopp. A.C.P. 36, 1.
"	"				2.182, m. of 4_	Playfair and Joule. M. C. S. 2, 401.
"	"		"		2.2606, 4°	Playfair and Joule. J. C. S. 1, 137.
46	"		44		2.26	Filhol. Ann. (3), 21, 415.
"	"		"		2.256	Schröder. P. A. 106, 226.
4.4	"		"		2.265	Buignet. J. 14, 15.
11	"				2.236	Kopp. J. 16, 4.
11	"	~	""		2.246, 15°.5	Holker. P. M. (3), 27, 213.
1.4	11		"		2.24}	Page and Keightley.
					2.25}	J. C. S. (2), 10, 566.
**	**				2.148	W. C. Smith. Am. J. P. 53, 148.
	11	Native	"		2.18, 15°.5	Forbes. P. M. (4), 32, 135.
"	"				2.290	Hayes.
44	"		"		1.878, at the melting p't.	Melts 314°. Braun. P. A. 154, 190.
"	"		16		2.24	Brügelmann. Ber. 17, 2359.
"	"		Na N	O ₃ . 7 H ₂ O	1.357, 0°, l	Ditte. B. S. C. 24, 366.
${f P}$ otassiu	m nit	rate	кхо	3	1.9369	Hassenfratz. Ann. 28, 3.
44		٠	"		1.933	Wattson.
"	4		"		2.1006	Karsten. Schw. J. 65, 394.
"	4		"		2.058	Kopp. A. C. P. 36, 1.
"	4	'	"		2.070, m. of 3_	Playfair and Joule. M. C. S. 2, 401.
46		١			2.1078)	·
"			4.6		$2.10657 > 4^{\circ}$	Playfair and Joule. J. C. S. 1, 137.
"		'			(2.09584)	0. O. D. 1, 197.
"	•	' Large	"		2.109	
"	4	erystals. ' Small	"		2.143 }	Grassi. J. 1, 39.
"	ι	erystals. ' After	: 4		2.132	
"	4	fusion.	"		2.100	Sehiff. A. C. P. 112,
"	6		"		2.086	88. Sehröder, P. A. 106, 226.
"	6		44		2.126	Buignet. J. 14, 15.
"			"			Kopp. J. 16, 4.

	NAME.	FORMULA.	Sr. Gravity.	Authorn Y.
Potassiu	m nitrate	K N O ₃	2.074, 15°,5	Holker, P. M. (3) 27, 213.
٤.	**		2.0845 [Stollin, J. P. C. 97
4.			2.0901 j 2.059, 0°	503. - Quincke, P. A. 195
••			1	612.
4.			2.06	Page and Keightley J. C. S. (2), 10, 50
			2,10355, cryst. at 20°.	Nicol. P. M. (5)
	4.		2.09916, cryst. at 110°.	15, 94.
6.6	44	"	1.702, at the melting pit.	Braun. (Melts a 342°.) P. A. 159
Λ mmon	ium nitrate	Λ m N Θ_3	1.579	Hassenfratz, Am 28, 3.
+ 4		4.	1.707	-Корр. A С Р. 56, 1
٤.	A A section of the se		1,635, m. of 3	Playfair and Joule M. C. S. 2, 401.
4.4			1,707, m. of 2	Schröder, P. A. 108 226.
"			1.700	Schiff, A. C. P. 11: 88.
		11	1.723	Buignet, J. 11, 15 Stolba, J. P. C. 95
٠.	**		1.0010 == -=	500.
Silver n	itrate	$\Lambda_{\mathcal{G}} \to 0_3$	1,8551	Karsten, Schw 65, 694.
6.	**		4.336	Playfair and Joul M. C. S. 2, 401.
• •				
	**		2 cm 2	Schröder, P. A. 10 113.
h s				
Thalliun	n nitrate	Tl N O ₃	5,8 5,55 1	Lamy, J. 15, 186 Lamy and Des Clo zeaux, Nature 116.
Magnes	ium nitrate			Playfair and Joul M. C. S. 2, 401.
Zine nit	rate	$\operatorname{Zn}\left(\operatorname{N}\left(\operatorname{O}_{1}\right)_{2}\right)$ 6 $\operatorname{H}_{2}\operatorname{O}$	2.067 150 (Laws, F. W. C.
Cadmin	m nitrate	$-\operatorname{Cd}_{\mathbb{C}}(\operatorname{N}_{\mathbb{C}}\operatorname{O}_{3})_{\mathbb{C}} + \operatorname{H}_{2}\operatorname{O}_{+}^{\mathbb{C}}$	2,450, 14%) 2,460, 20 3	
Mercur	ms nitrate	$\mathrm{Hg} \mathrm{N} \mathrm{O}_3, \mathrm{H}_2 \mathrm{O}$	4.785, m. of 3	Playfair and Joul M. C. S. 2, 401.
Calciun	initrate	$\operatorname{Ca}\left(\mathbf{X} \boldsymbol{\Omega}_{3}\right)_{1},\ldots,$	2.240	Filhol. Ann. 3 21,415.
* *	**	**	2,472 2,504, 17 .9	Kremers, J. 10, 6 Favre and Vans C. R. 77, 579
4 +	**	$\mathrm{Ca}\cdot\mathrm{N}(\mathrm{O_3})_2,\ 4/\mathrm{H_2}(\mathrm{O})$	1.75	Filliol. Ann. (3), 2 415.
4.	4.	**	1.90, 157, 5, 5, 1	Ordway, J. 12, 11
٤٠	44	4.	= 1,79,15 ,5,1, i = 1,575, 15°	Favre and Valso
••				C. R. 77, 579.

2	NAME.			FORMULA.	Sp. Gravity.	Аптновіту.
Strontiu	ım ni	itrate	Sr (N	$O_3)_2$	3.0061	Hassenfratz. Ann 28, 3.
44	•				2.8901	Karsten. Sehw. J 65, 394.
11					2.704	Playfair and Joule
"	4		"	******	2.857	M. C. S. 2, 401. Filhol. Ann. (3), 21 415.
"	4		"		2.962, m. of 4_	Schröder. P. A. 106 226.
"					2.805 2.980, 16°.8	Buignet. J. 14, 15
"				0) 411.0	,	Favre and Valson. C. R. 77, 579.
"			or (IV	O ₃) ₂ . 4 H ₂ O		Filhol. Ann. (3), 21, 415.
			D (N		2.249, 15°.5	Favre and Valson. C. R. 77, 579.
		ite		O ₃) ₂		Hassenfratz. Ann. 28, 3.
"	"		"		3.1848	Karsten. Schw. J. 65, 394.
"	"		"		,	Playfair and Joule. M. C. S. 2, 401.
£ ("		""	**********	3.16052, 4°	Playfair and Joule. J. C. S. 1, 137.
46	**		"		3.200	Filhol. Ann. (3), 21, 415.
	"		"		3.222 \ \	Crystallized at differ-
"	13				3.228	ent temperatures.
"					$\frac{3.240}{2.049}$ \ \(\)	Kremers. J. 5, 15,
"	"				3.242 / }	
					5.208}	Schröder, P. A. 106,
	ί.				3.241 }	226.
	٤.				3.404	Buignet. J. 14, 15.
					3.22	Brügelmann. Ber. 17, 2359.
Lead nr			,	O ₃) ₂	4.068	Hassenfratz. Ann. 28, 3.
	"				4.769	Breithaupt. Sehw. J. 68, 291.
"	"				4.8993	Karsten. Sehw. J. 65, 394.
"	"		"		4.340	Kopp.
"	"		"		4.316, m. of 3_	Playfair and Joule. M. C. S. 2, 401.
"	· · ·		""		4.472, 4°	Playfair and Joule. J. C. S. 1, 137.
""	"		ιι		4.581	Filhol. Ann. (3). 21, 415.
"	"		"		4.41, 15°.5	Holker. P. M. (3), 27, 214.
	"	ľ			4.423)	mi, mlt.
"	"		"		4.429}	Sehröder. P. A. 106,
**	46				4.509	226.
"	"				4.285	
"					4.200	Buignet. J. 14, 15. Ditte. Ber. 15, 1438.
Mangan	ese ni	itrate	Mn (N	O ₃) ₂ . 6 H ₂ O ₋	1 8199 919 6) Ordway. J. 12,
"	050 II	"	7.111 (T	1 3/2. 0 112 0 -	1.8104, 21°, 1.	

Name.	FORMULA.	Sp. Gravity.	Антновиту.
Nickel nitrate		2.037, 220	Laws, F. W. C.
Cobalt nitrate Copper nitrate	$ \begin{array}{c} \text{Co } (\text{N } \text{O}_3)_2, \text{ 6 H}_2 \text{ O}_3 \\ \text{Cu } (\text{N } \text{O}_3)_2, \text{ 3 H}_2 \text{ O}_4. \end{array} $	$-1.83, 14^{\circ}$	Bodeker, B. D. Z. Hassenfratz, Ann.
		2.047, m. of 3.	28, 3. Playfair and Joule. M. C. S. 2, 401.
Didymium nitrate	Di $(N, \Theta_3)_3$, $6, \Pi_2, \Theta_{}$	2.245 19°	Cleve. U. N. A.1885.
Samarium nitrate	$\operatorname{Sm} (\operatorname{N} \operatorname{O}_3)_3, \operatorname{GH}_2 \operatorname{O}$	$\frac{2.070}{2.080} \left\{ \begin{array}{l} 20^{\circ}.4 \end{array} \right\}$	
Ferric nitrate	$\frac{\operatorname{Fe}_2\left(\operatorname{N}\left(\operatorname{O}_3\right)_6,\ 18\right)\operatorname{H}_2\left(\right)}{\operatorname{H}_2\left(\operatorname{O}_3\right)}$	1.6835, 21°, s.	(Ordway, J. 12
Bismuth nitrate	Bi $(\mathbf{N}, \Theta_3)_3$, $5 \mathbf{H}_2 \Theta$	2,736, m. of 2.	Playfair and Joule. M. C. S. 2, 401.
Uranyl nitrate	$\begin{array}{c} \text{U} \text{ O}_2 \left(\text{N} \text{ O}_3 \right)_2 \text{, 6 H}_2 \text{ O} \end{array}$	2.823, 13° 2.807, 13°	Laws, F. W. C. Bodeker, B. D. Z.
Gold hydrogen nitrate	$\operatorname{Au} \operatorname{H} \left(\operatorname{N}_{\mathcal{O}_3} \right)_{\mathfrak{t}}, \operatorname{3H}_{\mathfrak{t}} \operatorname{O} \\ \stackrel{\leftarrow}{\longrightarrow}$	$\frac{2.82}{2.87}$ 19°	Gumpach. See Schottlander Wurzburg In Diss. 1884.

2d. Basic and Ammonio-Nitrates.

NAME.	FORMULA.	Sp. Gravity.	Антновиту,
Dimercurie nitrate	$\mathrm{Hg_2~N_2~O_5,~2~H_2~O_{12}}$	1.212	Playfair and Joule. M. C. S. 2, 401.
Mercurous subnitrate	$\operatorname{Hg}_{6}\left(\operatorname{N}\left(\operatorname{O}_{i}\right)_{i}\operatorname{O}_{i}\operatorname{S}\operatorname{H}_{2}\operatorname{O}_{i}\right)$	5,967	a. h.
Lead hydroxynitrate	Pb N O ₃ O H	5.90, 0°	 Ditte. Ber. 15, 1438.
Diplumbic nitrate :	$Pb_2 N_2 O_7 = \dots$	5.645	Playfair and Joule. 4. M. C. S. 2, 401.
Tricupric nitrate		2.765, m. of 3	**
Tetracupric nitrate		0.078)	
		3.371	Wells and Penfield.
Gerhardtite	* *	3, 426]	$_{\odot}=\Lambda, A, S, (3), 30, 50,$
Bismuth subnitrate	$\operatorname{Bi}_2 \operatorname{N}_2 \operatorname{O}_8$, $\operatorname{H}_2 \operatorname{O}_8$	4.551	 Playfair and Joule. M. C. S. 2, 401.
Bismuth hydroxynitrate	Bi (O H), N O ₂	5,260, m. of 2	
Mercury ammonionitrate	$\operatorname{Hg}_{3}\operatorname{N}_{2}\operatorname{O}_{2},\ 2\operatorname{N}\operatorname{H}_{3}$	5.970	**
Copper ammonionitrate	$\operatorname{Cu}_{-1}(\operatorname{N}^{*}\operatorname{O}_{\mathbb{T}^{1}_{0}}, \operatorname{4}\operatorname{N}\operatorname{H}_{3})$	1.874, m. of 3	11
44		1.505, 21%5	Evans. F. W. C.
Purpureocobalt chlorenia trate.	$\frac{\operatorname{Co}_2(\operatorname{NH}_3)_{10}\operatorname{Cl}_2(\operatorname{NO}_3)_0}{\operatorname{Cl}_2(\operatorname{NO}_3)_0}$	1,667, 162	Jorgensen, J. P. C. (2), 20, 105.
Purpureocobalt bromonitrate.	$\mathrm{Co}_2(\mathrm{NH_3})_{10}\mathrm{Br}_2(\mathrm{NO_3})_4$	1,956, 17°.1	Jorgensen, J. P. C. (2), 19, 49.
Parpure chromium chlo-	$\operatorname{Cr}_{i}(\operatorname{NH}_{i})_{in}\operatorname{Cl}_{i}(\operatorname{NO}_{i})_{i}$	1,569, 170,2.1	Jorgensen, J. P. C.
ronitrate.	3 10 21 3 1		(2), 20, 105.

VVVI	HYPOPHOSP	HITES AND	PHOSPHITES

NAME.	FORMULA.	Sp. Gravity.	AUTHORITY.
Hydrogen hypophosphite, or hypophosphorous acid Barium hypophosphite """""""""""""""""""""""""""""""""""	Ba H ₄ P ₂ O ₄ . H ₂ O Mg H ₄ P ₂ O ₄ . 6 H ₂ O Ni H ₄ P ₂ O ₄ . 6 H ₂ O Ni H ₄ P ₂ O ₄ . 6 H ₂ O Co H ₄ P ₂ O ₄ . 6 H ₂ O	2.8718, 10° 2.8971, 17° 2.893	

XXXII. HYPOPHOSPHATES.

NA	ME.	Formula.	Sp. Gravity.	AUTHORITY.
Tetrasodium phate.	hypophos-	Na ₄ P ₂ O ₆ . 10 H ₂ O		Dufet. C. R. 102, 1328. Dufet. B. S. M. 10,
Trisodium hyp Disodium hyp	pophosphate oophosphate_ ''	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	1.8491	77.

XXXIII. PHOSPHATES.

1st. Normal Orthophosphates.

pho-phoric a	.cid. 				1.85	Schiff, J. 12, 41.
phosphoric a	.cid. 					
4.4	subsite				1.884 189.9	Thomsen, J. P. C
4.4	-phate					(2), 2, 160,
4.			$\operatorname{Na_3} \operatorname{P} \operatorname{O_4} $		2.5111, 12°	C. A. Mohr. F. V
			Na P O ₁ , 12 H ₂ (2.5362, 172.5 j. 1.699	C. Playfair and Joul
			24 (3 1 (74. 12 112)		4.17==	M. C. S. 2, 401.
	4.		* *		1.615	Schiff, A. C. P. 11
	44		4.6		1.6645	188. Turk 1 D & M 1
* 1	**		**		1.0010	Dufet. B. S. M. 1
	rogen p	110	Nag II P O _t , 2 H ₂	()	1.545	Dufet, C. R. 10
phate.	٤.		Να, И Р О _г . 7 Н,	()	1.6780	1328. Dufet. B. S. M. 1
* .			2002 11 1 O4. 1 112	. ` '	1.07 %	77.
**			$Na_2 H P O_4$, 12 H	$, \odot$	1.5189	Tunnermann, S
	4.6		**		1 797	Bottger.
		••	**	~ -	1.020, III, 01 o	Playfair and Jou M. C. S. 2, 401.
4.	4.		**		1.586, 89	Kopp. J. 8, 45.
4.	4+		* *		1,525	
4.					1,550	Buignet. J. 14.
4.6			4.			Stolba. J. P.
						97, 503,
4.		**	4.			W. C. Smith. A
	64		4.		1.5318	 J. P. 53, 148. Dufet. B. S. M.
						77.
Sodjum dihyd	rogen j	1]1	Na H_1 P O_4 . H_2	O_	2.040	Schiff, A. C. P. I
Phate.					2.0547	SS. Duf t. B. S. M.
6.6	4.	٠	, Na $\mathrm{H_2}$ P $\mathrm{O_4}$, 2 H	₂ ()	1.915	
	4.2		**		1.50302	R. 102, 1303, Dufet, B. S. M.
					1.00000	17
Potnssium	dihydr	ogen	$K H_i P O_i =$	-	2.276	Schiff, A. C.
phosphate.		٤.			*1. 10.2	112, 88, Buignet, J. 14,
					3.021	, bugged at H,
**		* *	44		11 111111	Schroder, Dm. 18
	* *	41 -			alice to the	, seminari, 1711. 17
1.1	1 1	4.5	ν Η D Ω		2,350 J	Schiff. A. C.
Diammonium phosphate.	nydr	ogen			. 1. 11	. Schin. A. C
• • •	h +	4 +				Buignet. J. 14,
		ogen	$-\mathrm{Am}(\mathrm{H}_2(\mathrm{P})\mathrm{O}_4)=0$		1.758	Schiff, A. C.
physphate.	4.				1.700	112, 55, Schröder, Dm. 15

	1	1	
Name.	Formula.	Sp. Gravity.	AUTHORITY.
Ammonium dihydrogen phosphate.	Am H ₂ P O ₄	1.779	Schröder. Ber. 7,
Sodium potassium hydro-	Na K H P O ₄ . 7 H ₂ O	1.671	Sehiff. A. C. P.
gen phosphate. Sodium ammonium hy- drogen phosphate.	Na Am HPO ₄ . 4H ₂ O	1.554	112, 88.
Trisilver phosphate	Ag ₃ P O ₄	7.321	
Thallium dihydrogen phosphate.	Tl H ₂ P O ₄	4.728	Böttger. Lamy and Des Cloizeaux. Nature 1,
Trithallium phosphate Bobierrite	$\begin{array}{ c c c c c c c c c c c c c c c c c c c$	6.89, 10° 2.41	
Magnesium hydrogen phosphate.	Mg H P O ₄ . H ₂ O	2.326, 15°	Schulten. C. R. 100, 877.
Struvite	Am Mg P O ₄ . 6 H ₂ O	1.65	Teschemacher. P.
Hannayite	$\begin{array}{c} \operatorname{Am_3} \operatorname{Mg_3} \operatorname{H_3} \left(\operatorname{P} \operatorname{O_4} \right)_4. \\ \operatorname{8} \operatorname{H_2} \operatorname{O}. \end{array}$	1.893	M. (3), 28, 548. v. Rath. B. S. M. 2, 80.
Hopeite Brushite	$Zn_3 (PO_4)_2$. $4 H_2 O$ Ca H PO ₄ . $2 H_2 O$	2.76—2.85 2.208	Dana's Mineralogy. Moore. A. J. S. (2),
Metabrushite	2 Ca H P O ₄ . 3 H ₂ O	$\left\{ egin{array}{l} 2.288 \ 2.356 \ 2.362 \ \end{array} ight\}$ 15°.5 $\left\{ egin{array}{l} 15^{\circ}.5 \ \end{array} ight\}$	39, 43. Julien. A. J. S. (2), 40, 371.
Martinite	$Ca_{10} H_4 (P O_4)_8$. $H_2 O$	2.892—2.896	Kloos. J. C. S. 54,
Reddingite	Mn ₃ (P O ₄) ₂ . 3 H ₂ O ₋	3.102	233. Brush and Dana. A.
Vivianite	$\mathrm{Fe_3}(\mathrm{P}\mathrm{O_4})_2.8\mathrm{H_2}\mathrm{O}_{}$	2.58, 15°	J. S. (3), 16, 120. Rammelsberg. P. A. 64, 411.
"		2.680	Rammelsberg. J. P.
Lithiophilite	Mn Li P O ₄	3.482	C. 86, 344. Brush and Dana. A.
Triphylite	Fe Li P O ₄	3.6 3.534—3.589	J. S. (3), 18, 45. Fuchs. B.J.15,211. Penfield. A. J. S.
Hureaulite	${ m Mn_{10}\; Fe_2\; H_3\; (P\; O_4)_5.} \atop { m 5\; H_2\; O.}$	3.185—3.198	(3), 17, 226. Des Cloizeaux. Ann.
Fairfieldite	$\operatorname{MnCa_2(PO_4)_2}$. $\operatorname{2H_2O_2}$	3.15	(3), 53, 300. Brush and Dana. A.
Dickinsonite	$\operatorname{NaCaFeMn}_2(\operatorname{PO}_4)_3$.	3.338)	J. S. (3), 17, 359. Brush and Dana. A.
Fillowite	$ \begin{array}{c} H_2 \text{ O.} \\ \text{Na}_2 \text{CaFeMn}_6 (\text{PO}_4)_6. \\ H_2 \text{ O.} \end{array} $	3.343}	J. S. (3), 16, 114. Brush and Dana. A.
Strengite	Fe''' P O ₄ . 2 II ₂ O	2.87 2.74	J. S. (3), 17, 363. Nies. Z. K. M. 1, 94. Schulten. Z. K. M.
Koninekite	Fe''' P O ₄ . 3 H ₂ O		12, 640. Cesaro. A. J. S. (3),
Aluminum phosphate.	Al P O4	2.59	29, 342. Schulten. C. R. 98, 1584.
Berlinite	4 Al P O ₄ . H ₂ O	2.64	Blomstrand. Dana's Min.
Callainite. (Variseite?)	2 Al P O4. 5 H2 O	2.50	Damour. C. R. 59, 936.

Name.	FORMULA.	Sp. Gravity.	Аптновиту.
Variscite	Al P O ₄ , 2 H ₂ O	2.408, 18°	Petersen, N. J. 1871, 357.
ZepharovichiteXenotime		4.54	Boricky, J. 22, 1235, Smith J. 7, 857
11		4.51	
Cerium phosphate	Ce P O	4.89 5.22, 14°	Damour. J. 10, 686, Grandeau. Ann (6), 8, 193,
Cryptolite		4.6	Wohler, P. A. 67, 424.
Rhabdophane (Scovillite)		4.78	Watts. J. 2, 773.
Rhabdophane (Scovillite)	$\frac{2 \text{ (La Di Y Er) P O}_{e}}{\text{H}_{a} \text{ O}_{e}}$	3.9-4.01	Brush and Penfield A.J.S. (3), 25, 459
Monazite	(Ce La Di) P O ₄	5.203	Genth. Dana's Min. Rammelsberg, J. 30
		5.1065.110	1298. Kokscharow, J. 15 762.
**		5.174	Rammelsberg, Z. G. S. 29, 79.
Didymium phosphate	Di P O ₄	5.84, 15°	Grandegu, Ann. (6) 5, 193.
Samarium phosphate	Sin P O4	$\left\{ \begin{array}{c} 5.826 \\ 5.830 \end{array} \right\}$ 17°.5 $\left\{ \begin{array}{c} \end{array} \right.$	Cleve. U. N. A.
Autunite	S H O	3.05-3.19	Dana's Mineralogy.
Torbernite	$\begin{array}{ccc} & \text{Cu } \left(\mathbf{U} \; \mathbf{O}_2 \right)_2 & (\mathbf{P} \; \mathbf{O}_4^2)_2, \\ & & \mathbf{S} \; \mathbf{\Pi}_3 \; \mathbf{O}, \end{array}$	3.4-3.6	** **
Uranocircite	$\begin{array}{c} \mathrm{Ba}_{-}(\mathbf{U}, \mathbf{\Theta}_{2})_{2} & (\mathbf{P}, \tilde{\mathbf{O}}_{4})_{2}, \\ & \mathbf{S}_{-}\mathbf{H}_{2}, \tilde{\mathbf{O}}, \end{array}$	3.53	Weisbach. J. 30 1303.
Sodium zirconium phosphate.	$Na_s \operatorname{Zr} (P O_i)_{i=1,\dots,n}$	2.43, 14°	Troost and Ouvrard C. R. 105, 30.
	$ \begin{array}{l} \operatorname{Na}_{12}\operatorname{Zr}_3 & (\operatorname{P} \operatorname{O}_1)_{*} \\ \operatorname{Na}\operatorname{Zr}_2 & (\operatorname{P} \operatorname{O}_4)_{3} \end{array} $	2.88, 14° 3.10, 12°	
Potassium zirconium	$K_2 \operatorname{Zr} (P O_4)_2 = $	3.076, 7°	Troost and Ouvrard C. R. 102, 1422.
Sodium thorium phos-	$\begin{bmatrix} K & Zr_2 & (P & O_4)_3 & \dots \\ N & n_5 & Th & (P & O_4)_3 & \dots \end{bmatrix}$	3.18, 12° 3.843, 7°	
Potassium thorium phos-	$\sum_{\mathbf{F}} \frac{\mathbf{Th}_2}{\mathbf{Th}_2} \left(\frac{\mathbf{P}}{\mathbf{P}} \frac{\mathbf{O}_4}{\mathbf{O}_4} \right)_3 = \cdots$	5.62, 16° 3.65, 12°	C. R. 105, 30.
phate.			C. R. 102, 1422.
16 16 16	$K_2 \text{ Th } (P O_4)_2 = = = = K \text{ Th}_2 (P O_4)_3 = = = = = = = = = = = = = = = = = = =$	4.688, 7° 5.75, 12°	

2d. Basic Orthophosphates.

N		0	
NAME.	FORMULA.	SP. GRAVITY.	Антновиту.
Isoclasite	Ca ₂ (OH)PO ₄ . 2H ₂ O ₋	2.92	Sandberger. J. P.
Libethenite	Cu ₂ (O H) P O ₄	3.6-3.8	C. (2), 2, 125. Hermann. J. P. C. 37, 175.
Tagilite	Cu ₂ (O H) P O ₄ . H ₂ O ₋	3.50	Hermann. J. P. C. 37, 184.
"	"	4.076	Breithaupt. B. H. Ztg. 24, 309.
Veszelyite	Cu ₂ (OH)PO ₄ . 2H ₂ O ₋	3.531	Sehrauf. Z. K. M. 4, 31.
Pseudomalachite	Cu ₈ (O H) ₃ P O ₄	4.175	Schrauf. Z. K. M. 4, 14.
Ehlite	$\mathrm{Cu_5(OH)_4(PO_4)_2.H_2O}$	4.102	Schrauf. Z. K. M. 4, 13.
Dihydrite	$\mathrm{Cu_5}\ (\mathrm{O}\ \mathrm{H})_4\ (\mathrm{P}\ \mathrm{O_4})_{2^{}}$	4.309	Schrauf. Z. K. M. 4, 12.
Triploidite	$({ m Mn\ Fe})_2({ m O\ H})\ { m P\ O_{4^-}}$	3.697	Brush and Dana. A. J. S. (3), 16, 42.
Ludlamite	$Fe_7 (O H)_2 (P O_4)_4. 8 H_2 O.$	3.12	Maskelyne and Field. J. 30, 1300.
Pieite	${\rm Fe_{14}~(O~H)_{18}}({\rm P~O_4)_8}. \ {\rm 27~H_{\circ}~O}.$	2.83	Streng. J. 34, 1377.
Dufrenite	Fe''' ₂ (O H) ₃ P O ₄	3.227	Dufrenoy. Dana's Min.
(1		3.382	Campbell. A. J. S. (3), 22, 65.
"	"	3.454 3.293	Massie. J. 33, 1433. Borieky. S. W. A.
Cacoxenite	Fe''' ₄ (O H) ₆ (P O ₄) ₂ .	3.38	56 (İ), 7. Dana's Mineralogy.
Calcioferrite	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	2.523)	Reissig. Dana's Min.
Borickite	re''' ₅ Ca (O H) _n (r	2.529 2.696 — 2.707 —	Boricky. J. 20, 1002.
Chalcosiderite	$Fe'''_6 Cu (O H)_8 (P O_4)_4.4 H_2 O.$	3.108	Maskelyne. J.C.S.
Andrewsite	Fe''' ₈ Cu Fe'' ₄ (PO ₄) ₈	3.475	28, 586.
Evensite	$Al_3(OH)_6PO_4$. $6H_2O$	1.939	Forbes. P. M. (4),
Trolleite	Al ₄ (O II) ₃ (P O ₄) ₃	3.10	28, 341. Blomstrand. Dana's
Augelite	Al ₄ (O H) ₆ (P O ₄) ₂	2.77	Min.
Turquois	Al ₄ (O H) ₆ (P O ₄) ₂ .	2.621	Hermann. J. P. C.
Peganite	$H_2O.$	2.426—2.651	33, 282. Blake. J. 11, 722.
Fischerite	$Al_4 (O H)_6 (P O_4)_2$.	2.492—2.496	Breithaupt. Schw. J. 60, 308.
Cæruleolactite	$Al_4 (O H)_6 (P O_4)_2.$ $5 H_2 O.$	2.552, 19°)	Hermann. J. P. C. 33, 286.
Car a reoractite	$Al_{6} (O H)_{6} (P O_{4})_{4}.$ $7 H_{2} O.$	2.593, 18° }	Petersen. N. J. 1871, 353.

Name.	FORMULA.	SP. GRAVITY.	Антновиту.
Wavellite	$Al_{6} (O H)_{6} (P O_{4})$. 2.337	Haidinger. Dana's
"	:: :::::::::::::::::::::::::::::::	2.816	Min. Richardson, Dana's
Planerite	$= \Lambda l_6 (O H)_6 (P O_4)$	2.65	Min. Hermann, J. 15,
Spherite	$= \Delta l_{10} + O(H)_{1s} + \frac{12(H + O_s)}{(P + O_s)}$	2.536	764. Zepharovich, S. W.
Lazulite	$= \Delta l_{p} \operatorname{Mg} \left(\operatorname{OH} \left[\frac{\operatorname{H}_{2}}{2} \left(\operatorname{PO}_{k} \right) \right] \right)$	12) 186 Balance	Smith and brush.
* (Rammelsberg. P.
4.4	• •	3.108	A. 64, 261. Chapman, J. 14,
Cirrolite	$\Delta l_{z}Ca_{z}OH(zPO_{t}$	0, 3,08	
Plumbogummite	$\mathbb{L}^{1}[\Lambda l_{i}]\operatorname{Pb}(O[\Pi],\mathbb{P}O_{4})$. 4.88, 15°.6	Min. Dufrenoy. Ann.
Plumboguramite	te	4.014, 20°	(2., 59, 440, Genth., A.J.S. (2), 23, 424.
Eosphorite	Al Mn (O H pP O _c .) 3.121 /	Brush end Dane.
Childrenite	Π ₂ 0.) 3,145 []) 3,22	A. J. S. (3), 16, 35, Church, J. C. S. 26,
Childrenue	H, C). 0.22 0 02 0 1.	
Barrandite	$\Lambda_{\rm L}$ $\Lambda_{\rm L}$ $\Lambda_{\rm L}$ $\Lambda_{\rm L}$ $\Lambda_{\rm L}$ $\Lambda_{\rm L}$ $\Lambda_{\rm L}$ $\Lambda_{\rm L}$ $\Lambda_{\rm L}$ $\Lambda_{\rm L}$), 2.000	Zepharovich, J. 20, 4000.

3d. Meta- and Pyrophosphates.

Name.	FORMULA.	SP. GRAVITY.	Λ UTHORITY.
Sedium metaphosphate	Na P O ₃	2,4756, 19°,5 + 2,4769, 18° +	Mohr. F.W.C.
			liems. Ber. 14,
Potassium metaphosphate	К Р О	$\begin{array}{c} 2.2513 \\ 2.2639 \\ \end{array}, 14^{\circ}.5 \end{array}$	Molir. F.W.C.
Didymium metaphosphate	$\operatorname{Di} \operatorname{P}_{\gamma} \operatorname{O}_{1k} = -1$	8,888 / 1814 8,855 / 1814	Cleve, U. N. A.1885.
Samarium metaphosphate	$\operatorname{Sm} \operatorname{P}_5 \operatorname{O}_{16} = \ldots = 1$	3,485 281,5	
Therium metaphesphate		4.08, 167.4	Troost, C. R. 101, 210,
Sodium pyrophosphete	$Na_{i}P_{i}O_{i}=\cdots$	2.8618 / 1-0	Schreder, Dm. 1873,
	`	2.8851	Monr. F.W.C.
	$Na_4/P_a/O_7$, 10 H_a/O_1 .	1.856	M. C. S. 2, 401.
			Mol r. F.W.C.

	<u> </u>		
NAME.	FORMULA.	Sp. Gravity.	AUTHORITY.
Sodium pyrophosphate	Na ₄ P ₂ O ₇ . 10 H ₂ O	1.824	Dufet. C. R. 102, 1328.
"		1.8151	Dufet. B. S. M. 10,
Sodium hydrogen pyrophosphate.	Na ₂ H ₂ P ₂ O ₇ . 6 H ₂ O	1.8616	77.
Potassium pyrophosphate.	K ₄ P ₂ O ₇	2.33	Brügelmann. Ber. 17, 2359.
Silver pyrophosphate	Ag ₄ P ₂ O ₇	5.306	Stromeyer. See Bött-
" " ———		5.2596	
${\bf Thallium\ pyrophosphate}\ _$	Tl ₄ P ₂ C ₇	6.786	Böttger. Lamy and Des Cloi- zeaux. Nature 1,
Magnesium rumanhaanhata	Ma P O	2.000	116.
Magnesium pyrophosphate	. L	1 ·) 5.50 1 co \	Schröder. Dm. 1873. Lewis. F.W.C.
Zine nyronhosnhate	Zn. P. O.	3 758\$)	
Manganese pyrophosphate	Mn ₉ P ₉ O ₇	[3.5742, 26°]	
Niekel pyrophosphate	Ni ₂ P ₂ O ₇	3.9064,27°)	"
Cobalt pyrophosphate	$\operatorname{Co}_2\operatorname{P}_2\operatorname{O}_7$	3.710, 25° (
Barium pyrophosphate	Ba ₂ P ₂ O ₇ . H ₂ O	3.746, 23° } 3.574 }	
· · · · · · · · · · · · · · · · · · ·	"	$\left. \begin{array}{c} 3.582 \\ 3.590 \end{array} \right\}$	Sehröder. Dm. 1873.
Silicon pyrophosphate	Si P ₂ O ₇	3.1, 14°	Hautefeuille and Margottet. C. R. 96, 1053.
Zirconium pyrophosphate	Zr P ₂ O ₇	3.12}	Knop. A. C. P. 159,
Zirconium pyrophosphate "Tin pyrophosphate	$\operatorname{Sn} \operatorname{P}_2 \operatorname{O}_7$	3.61	48. Knop. A.C.P.159, 39.
Basic tin pyrophosphate	Sn ₂ (P ₂ O ₇) O ₂	3.87	и и
Basic titanium pyrophos- phate.	$\mathbf{Ti_3}\; (P_2\; O_7)\; O_4$	2.9	Knop. A.C.P.157, 365.

XXXIV. VANADATES.

Name.	Fountura.	Sp. Gravity.	Λ UTHORITY.
Sodium octovanadate	Na ₁₂ V, O ₂₆ , 4 H ₂ O	2.85.187	Carnelley, J. C. 8 (2), 11, 323.
Silver octovanadate Thallium metavanadate	TI V O	5.67, 182 6.019, 112	4.
Thallium pyrovanadate	114 \ 2 \ O_7	5.21, 184.5. ppt. 5.812, 184.5.)	.4 .4
Thallium orthovanadate	T1, V 0	fused. 8.6, 17° 8.50, 17°, 5	4.
Thallium decavanadate Thallium decavanadate Magnesium vanadate.		7.86, 17 2.19 9 j.	
Brown.		2.167	Sugiura and Baker J. C. S. 35, 716.
Pucherite Dechenite	$\begin{array}{c} \text{Bi V } \boldsymbol{\Theta}_{4}\\ \text{Pb}_{3} \boldsymbol{\mathrm{V}}_{u} \boldsymbol{\Theta}_{s}, \text{Zn}_{3} \boldsymbol{\mathrm{V}}_{u} \boldsymbol{\Theta}_{s}. \end{array}$		Frenzel, J. P. C (2), 4, 227, Bergemann, J. 3
"		5.84	753. Tschermak, J. 14 1021.
Descloizite		5,5(6) 5,839	Rammelsberg, Damour, J. 7, 855
44		5,015 (Rammelsberg, J 23, 1428.
			Pentield, A. J. S. (3), 26, 361.
4 Light	4.	5.814-5.882 (Genth. Am. Phil Soc. 1885. Roscoe, J. 29, 125;
Volborthite#	., R ₀ O II ₁ , V O ₄ , B II ₂ O .	3,55 4	Credner. Dena.
Didymium vanadate		4.1663 (-1.17)	Cleve, U. N. A.1883
Didymium metavanadate Samarium metavanadate		2. 11. 1	
46	$\left(\mathbf{s}_{\mathrm{m}} \mathbf{v}_{\mathrm{s}} \mathbf{o}_{\mathrm{re}} 14 \mathbf{H}_{\mathrm{s}} \mathbf{o}_{\mathrm{s}} \right)$	2,620, 174,8 (c) 2,525, 174,5 (c) 2,526, 174,8 (c)	
Sodium vanadium vana-	6 H. O.	1,389, 15	Brierly, J. C >
	$2Na_{1}O, 2V_{2}O_{1}, V_{1}O_{2}, = 13.11, O.$	1.827, 15	
Potessium vanadium va- nadate. Ammonium vanadium va- nadate.	Н. О.	1,335, 45	

^{*} Pentiold's mineral contained some copper and arsenic. Frenzel's tritochorite (G. 6.25) is similar, $\pm F$ annula somewhat doubtful. $\pm R$ in this formula $\pm \beta_4'$ Cu and Γ_4 Cu + Bu

XXXV. ARSENITES AND ARSENATES.

1st. Normal Orthoarsenates.

N	AME.		FORM	ULA.	Sp. Gravity	. Authority.
Sodium dih	ydrogei	n arse-	Na H ₂ As (O ₄ . H ₂ O	2.535	Sehiff. A. C. I
"	"	"			2.6700	_ Dufet. B. S. M. 10
"	"	"	Na H ₂ As O	4. 2 H ₂ O	2.320	77. Joly and Dufet. (R. 102, 1393.
"	"		"		2.3093	_ Dufet. B. S. M. 10
Disodium h	ydrogei	n arse-	Na ₂ H As O	4. 7 H ₂ O	1.871	77. Sehiff. A. C. I 112, 88.
11	"'	"			1.8825	_ Dufet. B.S. M. 10
cı	"		$\mathrm{Na_{2}HAsO_{4}}$. 12 H ₂ O	1.759	
44	"	"	۲,		1.736	Playfair and Joule M. C. S. 2, 401.
ţţ	"	"	44		1.670	Sehiff. A. C. P. 11:
"	"	"	"		1.6675	
Trisodium a	rsenate		Na _{3,4} As O ₄₋ .		2.8128 } 21°_	Stallo. F. W. C.
"	"		No ₃ As O ₄ .	$12~\mathrm{H_{2}~O}$.	2.8577 } 21°- 1.804	Playfair and Joule
					1.762	
14	"		4.6		1.7593	
Potassium di senate.	ihydrog	gen ar-	K H_2 As O_4		2.638	Thomson. See Böt ger.
"	""	" "	"		2.832	
"	"	"	£ £		$2.844 \ 2.853$	
"		"	44		$\left \begin{array}{c} 2.855 \\ 2.855 \end{array} \right $	Sehröder. Dm. 187
**	44	"	"		2.862	Topsoë. B. S. C. 19
Ammonium arsenate.	dihyd	lrogen	$\mathrm{Am}\ \mathrm{H_2}\mathrm{As}\ \mathrm{O}$)4	2.249	Schiff. A.C.P.11:
"	4		* *		2.299)	
"			"		2.309	Schröder. Dm. 1878
"	(2.312)	m
o Diammoniun arsenate.	•	rogen	Am ₂ II As C)4	2.308 1.989	Topsoë. C. C. 4, 76 Schiff. A. C. F 112, 88,
Potassium so gen arsena		ydro-	K Na H As O	4. 7 H ₂ O	1.884	Sehiff. A. C. P. 119 88.
Ammonium drogen arse	sodiun	n hy-	Am Na H	$As O_4$.	1.838	" "
Hoernesite			$\mathrm{Mg}_3\left(\mathrm{As}\ \mathrm{O}_4 ight)_2$		2.474	Haidinger. J. 13

Name.	FORMULA.	Sp. Gravity.	А стнокиту.
Magnesium hydrogen ar- senate.	$(\Pi \operatorname{Mg} \operatorname{As} \operatorname{O}_4)_2, \ \operatorname{H}_2 \operatorname{O}$	3.155, 15°	Schulten, C. R. 100, 877.
Kottigite Native nickel arsenate	$-\operatorname{Zh}_3(\Lambda \circ \operatorname{O}_4)_2$, $-\operatorname{SH}_2\operatorname{O}_3(\Lambda \circ \operatorname{O}_4)_2$	3.1 4.982	Kottig. J. 2, 771.
Erythrite Cabrerite	$\begin{array}{c} \operatorname{Co}_3 \left(\operatorname{As} \operatorname{O}_4 \right)_{\mathbb{Z}} \operatorname{S} \operatorname{H}_2 \operatorname{O} \\ \left(\operatorname{Ni} \operatorname{Co} \operatorname{Mg} \right)_3 \left(\operatorname{As} \operatorname{O}_4 \right)_{\mathbb{Z}} \\ \operatorname{S} \operatorname{H}_2 \operatorname{O}. \end{array}$	2.565	Dana's Mineralogy Ferber, B. H. Ztg
Roselite		3,5-3,0	Schrauf, N. J. 1874
		3.46, 30	Weisbach, N. J. 1874, 871.
Caryinite	$\frac{1}{2} \left(\text{Pb Mn Ca} \right)_3 \left(\text{As } \Theta_{4/2} \right)$		Min., 3d App.
BerzeliiteHaidingerite Pharmaeolite Wapplerite	- H Ca As O ₆ , H ₂ O - 2 H Ca As O ₆ , 5 H ₂ O -/ H (Ca Mg) As O ₆ ,	2.848 2.64—2.78	Dana's Mineralogy Frenzel. Dana'
Forbesite	$+\Pi_{2}O_{2}$	3,086	Min., 2d App. † Forbes. P. M. (4) † 25, 103.
Scorodite	Fe''' As $\Theta_{\rm p}/2~\Pi_2~\Theta$	3.11 /	Damour. Ann. (3)
· Artificial		0.25	Verneuil and B or geois, C. R. (8) 224.
Carminite Trogerite	$= \frac{\text{Pb}_3 \text{ Fe'''}_{10} \left(\Lambda \text{s} O_4\right)_{12}}{\left(\Gamma O_2\right)_3 - \left(\Lambda \text{s} O_4\right)_{22}} $ $= \frac{12 \text{ H} \cdot \text{O}}{12 \text{ H} \cdot \text{O}}$	1.105 3.23	Dana's Mineralogy
Uranospinite		8.45	., ., ., .,
Zeumerite		0.00	

2d. Basic Orthoarsenates.

Name.	FORMULA.	Sp. Gravery.	Анаповіту.	
Adamite	Zn ₂ (O II) As O ₄ ===	4,835, 15°	Friedel, C. R 62, 692.	
Native nickel arsenate		4.888	Bergemann, J. 11, 728.	
Olivenite			13, 404.	
			33. 291	
Clinochisite	Cu, (O II), A. O.	4.19 - 4.36	Dana's Mineralogy.	
Clinoclasite			12, 304	
.4	.1	4.08, 198	Hillebrand, Private communication.	
Euchroite	CustOH AsO, 6H O	3,389	Dana's Mineralogy.	
Erinite				

Name.	FORMULA.	Sp. Gravity.	AUTHORITY.
Corn wallite		4.160	Dana's Mineralogy.
Tyrolite	$\begin{array}{c} H_2 \text{ O.} \\ \text{Cu}_5 \text{ (O H)}_4 \text{ (As O}_4)_2. \\ 7 \text{ H}_2 \text{ O.} \end{array}$	3.02—3.098	" "
"	"	3.162	Church. J.C.S.26,
"		3.27, 20°.5	
Chalcophyllite	$Cu_{8} (O H)_{10} (As O_{4})_{2}.$ $7 H_{2} O.$	2.659	
	"	2.435	Hermann. J. P. C. 33, 294.
ConichalciteBayldonite	Cu Ca $(O H)$ As O_4 : $Cu_3Pb(OH)_2(AsO_4)_2$. H_2 O .	4.123 5.35	Fritzsche. J.2,772. Church. J.C.S.18, 265.
Liroconite	$Cu_2 Al (O H)_4 As O_4.$ $4 H_2 O.$	2.926	
	"	2.964	
		2.985	
Chenevixite	(As O.)	3.93	Pisani. C. R. 62, 690.
PharmacosideriteArseniosiderite	$Fe'''_4 (OH)_3 (As O_4)_3$ $Fe'''_4 Cu_3 (OH)_9$ $(As O_4)_3$.	2.9—3.0 3.520	Dana's Mineralogy.
	(As O ₄) ₃ .		Rammelsberg. Church. J. C. S. 26, 102.
Allaktite	$\mathrm{Mn_7}\mathrm{(O~H)_8}\mathrm{(As~O_4)_{2^-}}$	3.83—3.85	Sjögren. A.J.S.(3), 27, 494.
Rhagite	${ m Bi}_5({ m O}{ m H})_9({ m As}{ m O}_4)_{2^{}}$	6.82, 22°	
Mixite	${}^{6}{}^{$	2.66	
"	"	3.79, 23°. 5	Hillebrand. Private communication.
Walpurgite	$({ m U} \ { m O_2})_3 \ { m Bi}_{10} \ ({ m As} \ { m O_4})_4 \ ({ m O} \ { m H})_{24}.$	5.64	Weisbach. N. J. 1873, 316.

3d. Pyroarsenates and Arsenites.

NAME.	FORMULA.	SP. GRAVITY.	Authority.
Magnesium pyroarsenate Zine pyroarsenate Manganese pyroarsenate """ Lead arsenite	Zn_2 $\operatorname{\Lambda} \operatorname{s}_2$ O_7	$ \begin{array}{c} 3.7305, 15^{\circ} \\ 3.7649, 18^{\circ} \\ 4.6989 \\ 4.7034 \\ 21^{\circ} - \\ 3.6625, 25^{\circ} \\ 3.6832 \\ 3.6927 \\ 5.85, 23^{\circ} \end{array} $	Stallo. F. W. C. Schafarik. J. P. C. 90, 12.

XXXVI. PHOSPHATES, VANADATES, AND ARSENATES, COMBINED WITH HALOIDS.

Name.	FORMULA.	SP. GRAVITY.	Антновиту.
			•
Sodium fluo-phosphate".	$-Na_4(P)O_4(F,12)\Pi_2O$	2.2165	
Sodium fluo-arsenate*	Na. A.O. F. 12 H.O.	2.549	
Wagnerite	$\mathbf{M}\mathbf{g}_{2}^{-}(\mathbf{P} \mathbf{O}_{4}) \mathbf{F}_{}$	$\frac{2.985}{3.068}$ $\frac{15^{\circ}}{15^{\circ}}$	Rammelsberg, P. A.
**	1		64, 251. Pisani. Z. K. M
			3, 645.
Artificial vanadium wag-	(Ca2 (V O4) Cl	. 1.01	Hautefeuille. J C
nerite			8. (2), 12, 131.
Herderite	.: Ct Gl P O ₄) F	. 7.00	Hidden and Mack intosh. A. J. S
			(0), 27, 105.
		3,000)	– Penfield and Harper
		3.012	= A.J.S.(3), 32, 107
Triplite	$= (\mathbf{Fe} \mathbf{Mn})_2 (\mathbf{PO}_4 \mathbf{F}_{})$. 6.94.	- Bergemann, J. P. C ! - 79, 414.
		. 0.83-0.90	Siewert, J. 26, 1185
Amblygonite	- Al Li (P O ₄) F	3.118	Breithaupt, J. P. C
			19, 479,
			Penfield, A. J. S (3), 18, 295.
		2,049	
			34, 243.
Durangite	$= \Lambda \{ \Delta \pi (\Delta s O_i) \} = -$	- 3.537	. Brush. A.J. S. (3) 11, 464.
Fluorapetite	Ca ₅ (P O ₄), F	. 3,164—3,285	G. Rose, P. A. !
	**		185. . Pusirewski, J. 15
**		_ 0,0,0,0 0,210 .	769.
		. 3.25	Church, J. C. S
	13.44	0.074	26, 101,
Chlorapatite	- Ca ₅ (P O ₄) C1	_ 3.954. artii _ 2.98	– Manross, J. 5, 10, – Daubreč, → Étudo
			synthétiques."
Pyromorphite	$Pb_5 \cdot P \cdot O_4 \in Cl_{}$	_ 7,00%, artif	Manross, J. 5, 10
		7.054—7.208	Z. G., Rose, P. A. 3 209.
**		7.89	. Fuchs. J. 20, 100.
Vanadinite			Roscor, Z. C. 1.
			307.
		41,880	Rammelsberg, J.:
4.		6,863	
Mimetite	. Pb ₅ (A · O _{4 3} Cl	7.218	
			856.
·· Artificial			 Smith: J. 8, 965. Michel: B. 8, N
			10, 135.
Ekdemite			 Nordenskield, Z.4 M. 2, 306.
Endlichite	Ph ₅ (As O _{4.7} Ch	11,801	Genth. Am. Ph
	Pb ₃ (VO ₄) ₅ C	ł.	Soc., 1885.

^{*}Baker of, C. S., May, 1885 assigns more complex formula to these saits.

XXXVII. ANTIMONITES AND ANTIMONATES.

NAME.	Formula.	Sp. Gravity.	AUTHORITY.
Sodium antimonite	Na Sb O ₂ . 3 H ₂ O	2.864	Terreil. Ann. (4)
Sodium hydrogen anti- monite.	·		
RomeiteAtopite	Ca (Sb O ₂) (Sb O ₃) ?-	4.675 } 4.714 }	Damour. J. 6, 837.
Atopite	$\operatorname{Ca_2}\operatorname{Sb_2}\operatorname{O}_{7}$	5.03	Nordenskiöld. Da-
Barcenite	Ca Hg (Sb O ₃) ₄	5.953, 20°	na's Min., 3d App. Mallet. A. J. S. (3), 16, 306.
Monimolite	Pb ₄ (Sb O ₄) ₂ O	5.94	Igelström. Dana's Min.
Bindheimite			Hermann. J. P. C. 34, 179.
	"	5.01, 19°	Hillebrand. Bull.
Nadorite Stibioferrite	$\begin{array}{c} \text{Pb (Sb O}_2\text{) Cl} \\ 4 \text{ Fe''' Sb O}_4\text{.} & 3 \text{ H}_2 \text{ O} \end{array}$	7.02 3.598	20, U. S. G. S. Flajolot. J. 23, 1280, Goldsmith. Dana's
Thrombolite	$\mathrm{Cu}_{10}\mathrm{Sb}_6\mathrm{O}_{19},19\;\mathrm{H}_2\mathrm{O}$	3.668	Min., 2d App. Sehrauf. Z. K. M. 4, 28.

XXXVIII. COLUMBATES AND TANTALATES.*

Name.	Formula.	Sp. Gravity.	AUTHORITY.
Magnesium columbate Manganese columbate Columbite	$\mathbf{Mg_4} \overset{\mathbf{Cb_2}}{\overset{?}{\overset{?}{\overset{?}{\overset{?}{\overset{?}{\overset{?}{\overset{?}{\overset$	4.3 4.94 5.469—5.495	Joly. C. R. 81, 268, Joly. B. S. C. 25, 67. Schlieper Dana's
			Min. Oesten. Dana's Min. Breithaupt. J. 11,
Manganese columbite	" Mn (Cb O ₃) (Ta O ₃) _	5.40—5.42 6.59	720. Müller. J. 11, 721. Comstock. A. J. S. (3), 19, 131.
Tantalite	Fe Ta ₂ O ₆	7.264	Nordenskiöld. P. A. 26, 488.
	"	7.936	Berzelius. Dana's
"		7.703	
"	"	7.2	Rose. J. 11, 720. Smith. A. J. S. (3),
Mangantantalite	Mn Ta ₂ O ₆	7.37	Arzruni. J. C. S. 54, 234.
Sipylite	Er Cb O ₄	4.883, 16°	

^{*}For samarskite, microlite, fergusonite, and other natural columbotantalates see Dana's Mineralogy. The formulæ here assigned to columbite, tantalite, and sipylite are only approximative, representing the typical compounds.

XXXIX. CARBONATES.

1st. Simple Carbonates.

Name. Lithium carbonate			FORMULA.	Sp. Gravity	Антновиту.
			Li ₂ C O ₃	2.111 1.787, fused	Kremers, J. 10, 67 Quincke, P. A. 138
			Na ₂ C O ₃	2, 1659	
"	6.			2.430	
4.	4.4			2,500	
4.6	4.1			2, 407, 20°, 5_	- Favre and Valsor C. R. 77, 579.
6.6	4.4			2.190)	Schroder, Dm. 187
4+	4.			2.510 /	
4.1	* *		4;	2.041, 960° -	Braun. J. C. S. (2)
44	4.4			2.45, fused	Quincke, P. A. 13- 642.
(1	44		Na ₂ C O ₃ , 8 H ₂	0 1.51	
	ι,		$Na_2 C O_3$, $10H_2$	O 1.428	Haidinger, See Bot ger.
4.4	41		4.	1,154, m. of	
4.4	4.6			1.475	
44	6.6				Buignet. J. 14, 1
4.6	4.4			1,455, 15°.5.	== Holker, P. M. (3 27, 214.
"				1.4402	Stolba. J. P. C. 9 503.
٠.	6.6		6.	1,456, 19°	C. R. 77, 579.
Thermot	natrite .		1 Na $_{2}$ C Θ_{3} , 1 H $_{2}$ Θ	1.5-1.6	Dana's Mineralog
Potassiu	m carb	onate	K ₂ C O ₃	2.2643	Karsten. Schw. 65, 394.
4.4	٠.			2,103	Playfair and Jou! M. C. S. 2, 401.
* *				2.267	
6.				2.105	W. C. Smith. At J. P. 53, 145,
6.4	4			2.00, 1150°	
Silver er	irborat	·	Ag CO3	6.0766	Karsten, Schw. 65, 394.
• •				6,0, 17°.5	
Thallium		enste	Tl ₂ C O ₃	7.06	Lamy, J. 15, 180
Magnesi	ium car	bonate	Mg C O ₃	3,037	116. Neumann. P. 23, 1.

NAME.			FORMULA.		Sp. Gravity	AUTHORITY.	
Magnesis	nn ee	rhone.	to.	Marth	0	3 026	Woh
Magnesi	um ca	тоона		mg C	O ₃		
"							and the second s
"		"				- 3.017	
"		46				- 3.033	
"		**				3.017	Scheerer. J. 8
"		"		"			Jenzsch. J. 6, 848
"		"		"			'
						_ 3.033	Zepharovich. J. 8 975.
"		"		"		3.015	
"		"		Mg C	O ₃ . 3 H ₂ O	1.875	
Zine carl	bonate			Zn C ()3	4.339	
"	"			"			
				"		4.3765	Karsten. Schw. J 65, 394.
4.	44					4.45	
"	4.6						
Cadmiun	a carbo	onate.		Cd C (03	4.42, 17°	
"	•			"		4.4938	Karsten. Schw. J 65, 394.
"		" _		"		4.258	Schröder. Dm. 1878
Caleium	carboi	nate		Ca C C)3	2.7000	Karsten. Schw. J
"	66	Chalk			3	2.6946	65, 394.
"	46	Arage	onite	"		2.931	Haidinger.
66				44		2.927	Biot.
"	"	64				2.945)	- Biot.
4.6	"			4.6			_ Beudant.
44				"			35-2-
"	66	"				- 2.931	Mohs.
"	"	"		"		$\{2.938\}$	Breithaupt.
"	"	"		"		, ,	-
"	"	"		"		2.926	23, 1.
"	"					2.933, 0°	_ Корр.
"	"	"				- 2.93	_ Nendtwieh.
			~			2.92	Riegel. J. 4, 819.
"	61	"		6.6			_ Stieren. J. 9, 882.
46	"	"		"		_ 2.932	Luea. J. 11, 732.
"		Caleit	e	"		2.7064	Karsten. Sehw. J
"	"	"		"			65, 394.
"	66	"		4 ((2.7213)	
"	"	44		44			_ Beudant.
"	"	"		"			Neumann. P. A 23, 1.
"	"	"		"		2.702	Hochstetter. J. 1 1222.
"	"	46	["		2.72	Kopp. J. 16, 5.
"	"	"		"	Artificial		Bourgeois. Ann
"	"			Ca C O	5 H. O	1 783	(5), 29, 493. Pelouze.
""	"				3. J 11 ₂ J	1.783	- Salm-Horstmar. P.
trontium	a carb	onate		Sr C O	·	3.605	A. 35, 515. Mohs. See Böttger

N.	AME.	FORMULA.	SP. GRAVITY.	Аптиовиту.	
Strontium c	arbonate	Sr C O ₃	3.6245	Karsten, Schw. J	
			3.613	v. der Marck. J. 3	
	" Precip.		3.548	759. Schröder, P. A. 106	
			0.620	226.	
barium caru	onate	Ba C O ₃	1.21 4.501	Breithaupt. Mohs.	
44	44		4.85		
			4.3019	Karsten, Schw. J 65, 391.	
* *			4.565	Filhol. Ann. (3) 21, 415.	
4.6	" Precip.		4.216	-1, 11.7.	
4.4	"		4.235	Schröder, P.A. 10c	
"			4.372)	226.	
44	" Ppt. hot.	"	4.1721	Salam Sanan (C. a.	
4.4		11	4.1975	Schweitzer, Con	
"	" Ppt. cold.		1.1609	trib. Lab. Univ. e Missouri, 1876.	
4.6	**	**	4.2811		
Lead carbon	ate	Pb C O ₃	6,465 6,5	' Mohs. See Bottge John.	
44 4+		4	6.47	Breithaupt.	
			; 6.4277	Karsten. See Bott	
		44		ger.	
			6.60	Smith. J. 8, 972.	
				Schroder, P. A	
	carbonate	Mn C O	6,517	Erganz, Bd. 6, 623 Mohs. See Bottge	
manganese (carbonate	MH C 03		Kersten, J. P. C	
			0.900	37, 163,	
4.6			3 6608		
4.4	44	44	3.57	Gräner. J. 3, 767	
4.4	6 Ppt.		3.122	Schroder, P. A	
4.6	ii ii		3:129	106, 226.	
Iron carbon	ate	Fe (O ₃	3.829	Mohs. See Bottge	
		**	3.815		
11 11			' 8.872	Neumann, P. A 23, 4.	
"			3.668	Breithaupt, J. P. C	
11 11		"	3,796, 00	Kopp.	
Lanthanite		$\operatorname{La}_2\left(\operatorname{C}\left(\operatorname{O}_3\right)_3, \operatorname{S}\operatorname{H}_2\right)$	O_ 2.605, 20°	Genth. A. J. S. (2 28, 425.	
			2.666	Blake. J. 6, 850.	
		131 (61 6)		(11 I' N')	
Didymium (carbonate	$\operatorname{Di}_{2}\left(\operatorname{C}\left(\operatorname{O}_{3}\right)_{3}, \operatorname{S}\operatorname{H}_{2}\right)$	O=2.850, +, -, +	Cleve. U. N. A	

2d. Double Carbonates.

NAN	IE.	For	MULA.	SP. GRAVITY.	AUTHORITY.
Hydrogen sodi	um earbon-	Na H C)3	2.192, m. of 2	Playfair and Joule. M. C. S. 2, 401.
tt t	"			2.163 2.2208, 15°	Buignet. J. 14, 15. Stolba. J. P. C. 97, 503.
tt t:		11		$\left\{ egin{array}{ll} 2.207 \\ 2.205 \end{array} ight\}$	Schröder. Dm. 1873.
11 11	"			2.159	W. C. Smith. Am. J. P. 53, 148.
Urao	- -	Na ₃ H (C ($(O_3)_2$. 2 H_2 O	2.1473, 21°	Chatard. Private communication.
Hydrogen pota	ssium car-	KHCO3		2.012	Gmelin.
with the state of		44		2.092	Playfair and Joule.
"	" "			2.180	M. C. S. 2, 401. Buignet. J. 14, 15.
"	" "	"		$\left\{ \begin{array}{c} 2.140 \\ 2.167 \end{array} \right\}$	Schröder. Dm. 1873.
"		"		2.078	W. C. Smith. Am. J. P. 53, 145.
Hydrogenamn bonate.	onium car-		O ₃	1.586	Playfair and Joule. M. C. S. 2, 401.
Sodium potassiate.	um carbon-	K Na C O	3	$2.5289 \ 2.5633 \$	Stolba. J. 18, 166.
11 11	ιι	K Na C O	3. 12 H ₂ O ₋	$egin{array}{c} 1.6088 \ 1.6334 \ \end{array} egin{array}{c} \ \end{array}$	" "
Silver potassiu ate.	m carbon-	Ag K C C	3	3.769	Schulten. C. R. 105, 813.
Gaylussite		Na ₂ Ca (C C	O ₃) ₂ . 5 H ₂ O	1.928 }	Boussingault. Ann. (2), 31, 270.
Dolomite		Са Мд (С	$O_3)_{2}$	2.914 }	Neumann. P. A. 23, 1.
"		""		2.89 2.924	Ott. J. 1, 1223. Tschermak. J. 10,
" Hydrodolomite		 Ca Mg _a (C	$O_3)_3$. H_2O_2	2.85 2.495	695. Senft. J. 14, 1027. Rammelsberg. Da-
			5/3 2	2.86	na's Min. Hermann. J. P. C.
Bromlite		Ca Ba (C C	O ₃) ₂	3.718 3.76, 15°.5	47, 13. Thomson. Johnston. P. M.
Barytocalcite				3.66	(3), 6, 1. Children. Ann.
Manganocalcite	·	Ca Mn ₂ (C	O ₃) ₃	3.037	Phil. (2), 8, 114. Breithaupt. P. A.
Pistomesite		Mg Fe (C	O ₃) ₂	3.412 }	69, 429. Breithaupt. P. A.
Mesitite		Mg ₂ Fe (C	O ₃) ₃	3.417 { 3.349 }	70, 146. Breithaupt. P. A. 11, 170.
				-1000 #===== '	-1, 110.

Name.	FORMULA.		SP. GRAVITY.	Астнова	TY.
Ankerite	Ca (Mg Fe) (C	$O_{3^{\beta_2}}$	3.01	Luboldt.	Dana's
"			3,008		Dana's
	"		3.072	Boricky. 1215.	J. 22.
Dawsonite	Al Na (C Θ_3) (Θ	П);	2,40		

3d. Basic Carbonates.

Name.	FORMULA.	SP. GRAVITY.	Λ uthority.
Hydromagnesite	$ Mg_4 (C O_3)_3 (O H)_2 $	2.145	
44	8 H ₂ O.	2.180	Smith and Brush, J
Hydrogiobertite	$\mathbf{Hg}_2 \leftarrow \mathbf{O}_4, \ 3 \ \mathbf{H}_2 \leftarrow \mathbf{O}_4$	2.149—2.174	Scacchi, See Z. K M. 12, 202,
Hydrozincite	$Zn_3 (C O_3) (O \Pi)_{4}$.	0.252	Petersen and Voit
			A. C. P. 108, 48
Zaratite	Ni_3 (CO_3) OH) $_{\rm P}4H_2O$	2.57	B. Silliman, Jr. J.
	$\operatorname{Cn}_2\left(\operatorname{C}\left(\operatorname{O}_3\right),\left(\operatorname{O}\operatorname{H}\right)_2,\ldots\right)$	2.693	1, 1225.
Mulachite	$= \cdot \cdot = \operatorname{Ch}_2 \left(\operatorname{CO}_{\mathbb{A}} \right) \left(\operatorname{OH} \right)_{2^{-1}}$	·····	J. 68, 294.
		3 595	Breithaupt, J. P. C
			16, 475.
	40	4.06	
	Cu ₃ (C Θ_3) ₂ (Θ \mathbf{H}) ₂		
* *	**	3.5-3.831	- Dana's Mineralogy
Bismutosphærite	Bi ₂ C O ₅	7.25-7.32	Weisbach, J. C. S.
·			84, 117.
4.		7.42	Wells, Λ , J , S , (3)
			31, 271,
Bismutite	Bi	6.86	Louis, J. C. S. 54
			1)+),

XL. SILICATES.*

1st. Silicates Containing But One Metal.

NAME.	FORMULA.	Sp. Gravity.	AUTHORITY.
Sodium metasilicate Phenakite	Gl_2 Si O_4	1.666, 18° 2.966} 2.996}	F. W. Clarke. Kokscharow. J. 10
"			20, U. S. G. S.
		2.95	Hatch. N. J. 1888
Bertrandite		2.593	
		2.586	Damour. B. S. M.
			Scharizer, Z. K. M. 14, 41.
Enstatite	Mg Si O ₃	3.19	Damour. Dana's Min.
"	"	3.10—3.13 3.153	Kenngott. J. 8, 928. Bröggerand v. Rath. Z. K. M. 1, 22.
" Artificial		3.11	Houtefeuille. J. 17, 212.
Forsterite			Rammelsberg. J. 13
"Boltonite		3.008	Sitlimen, Jr. J. 2, 742.
" " "	"	$\left. \begin{array}{c} 3.208 \\ 3.328 \end{array} \right\}$	Smith. J. 7, 821.
Tale	$\mathrm{Mg_3}\mathrm{H_2}\mathrm{Si_4}\mathrm{O_{12}}$	2.48—2.80 2.682	Scheerer. J. 4, 793. Senft. Z. G. S. 14, 167.
Serpentine	${ m Mg_3~H_4~Si_2~O_9}$	2.557	
(("	2.644	Delesse. J. 1, 1195. Hermann. J. 2, 764.
((2.564 - 2.593	

 $[\]ensuremath{^{*}}$ For sp. gr. of silicates before and after fusion see v. Kobell, Bei. 6, 314.

Note.—As regards the natural silicates this table is far from complete. Only those compounds are included which admit of fairly definite chemical formulation, and only a few typical determinations of specific gravity are given in each case. Furthermore, the arrangement is absolutely chemical, and is in no sense dependent upon mineralogical considerations. Thus, for example, all the magnesium silicates are brought together; and so also are the numerous double silicates of aluminum and calcium, quite regardless of their classification as mineral species. Many micas, chlorites, scapolites, etc., are omitted altogether; but the omissions are not serious, for all the important data have been many times collected in the larger treatises on mineralogy, and are, therefore, easily accessible.

	- 1		
Name.	FORMULA.	SP. GRAVITY.	Антновиту.
Williamite	Zn, Si O,	4.15	Levy. B. J. 25, 351.
		4.02	Hermenn, J. 2, 743.
	**	4.11	
**		1.16 /	Mixter. J. 21, 1006.
· Artificial	**	1.25	Gorgeu, B. S. C. 47, 146.
Calamine	$\operatorname{Zn}_2\operatorname{Si}\Theta_4$, $\operatorname{H}_2\Theta$	3.435	Hermann, J. P. C.
		3,43-3,49	Monheim, J. 1, 1187.
	**	3.42	Schnebel, J. 11,710
		3,36	Wieser, J. 24, 1156
		8,808, 21%	McIrby, J. 26, 1175
Wollastonite	Ca Si O,	2.551	Seibert, See Bott-
** ************************************	.,		ger.
		2.853	v. Rath. J. 24, 1145
		2.700	Piquet. J. 25, 1104
" Artificial -		m. (Bourgeois, Ann. (5) 29, 441.
**		2.55	Gorgen, Ann. 6) 4, 515.
X-meltite	4 Ca Si Θ_{σ}/Π_2 Θ	2.710-2.715	Rammelsberg, J. 19 932.
Okenite	$\operatorname{Ca}\operatorname{Si}_2\operatorname{O}_3,\ 2\operatorname{H}_2\operatorname{O}$	2. 124	Schmidt, J. 18, 889
21		2.25	Kobell, Dana's Min
		2.362	Connel, Dona's Min
Rhedenite	Mn Si O _	4.63	Hermann, J. 2, 708
**		2.63	- Igelstrom, J. 4, 768
		3,65	Fino, J. 36, 1891.
" Artificial		3,68	Gorgen, Ann. (6), 4 515,
Hydrorhodenite	$\begin{array}{c} \operatorname{Mn}\operatorname{Si}\operatorname{O}_{2},\ \operatorname{H}_{2}\operatorname{O}_{2}\\ \operatorname{Mn}\operatorname{Si}\operatorname{O}_{3},\ 2\operatorname{H}_{2}\operatorname{O}_{2} \end{array}$	2.49	Engstrom, Collins, Z. K. M 5, 623.
Tephroite	$\operatorname{Mn}_2\operatorname{Si} O_{i}$	1.1	Brush, J. 17, 837.
*	4.5	4.0	 Mixter, S. 21, 1006
· Arthicial		4.34	Gorgen, C. R. 98 920.
		1.08	Gorgen, Ann. (6 4, 515,
Friedelite ;	. $\operatorname{Mn}_4\operatorname{H}_4\operatorname{Si}_3\Theta_{12}$	0.07	
Gramerite	Fo Si O_3	0.710	Gruner, C. R. 2 794.
Ferelate	Fe, Si O	4,108	Gmelin, B.J.21, 200
		4,006	Delesse, J. 7, 821.
· Astificial			Gorgen, Ann. (6, 4, 515.
Clary-one Ha	Cu Si O, 2 H, O	2.0-2.235	. Dana's Mineralogy
	Ca II, Si O, Lanca	0.014)	Kenngott, J. 3, 73
Dioptase	111111111111111111111111111111111111111	0.048 (77)	Te many tree or spread
Dioptuse	**	3.45 (TT) T	•
	$Al_2 O_2 Si O_3 = 1$	0.48 111 1 0.48 111 1	Igelstrom, J.7,819 Erdmann, B.J.2
Dioptuse	**	3.48	Igelstrom, J.7,819 Erdmann, B.J.2 311 Jacobson, P.A.69
Dacptase	$Al_{\pi}O_{\pi}SiO_{\pi}$	3,48 3,661	Igelstrom, J.7,819 Erdmann, B.J.2 311 Jacobson, P.A,69 416.

	1		
NAME.	FORMULA.	Sp. Gravity.	AUTHORITY.
Andalusite	Al ₃ (Si O ₄) ₃ (Al O) ₃ -	3.152	Kersten. J. P. C. 37, 163.
	"	3.160	Damour. Ann. d.
"		3.07-3.12	Mines (5), 4, 53. Schmid. P. A. 97,
Fibrolite			113. Damour. J. 18, 881.
"		3.239	Erdmann. B. J. 24, 311.
(((t	3.232	Dana. Dana's Min. Brush.
Dumortierite	$Al_2 (Si O_4)_3 (Al O)_6$ -	3.36	Damour. Z. K. M. 6, 289.
Xenolite	$\Lambda l_4 (Si O_4)_3$	3.58	Nordenskiöld, P.A. 56, 643.
Kaolinite	Al2 O H (Si O4)2 H3-	2.6 2.4—2.63	Clark. J. 4, 786. Dana's Mineralogy.
(6		2.611	Hillebrand, Bull. 20,
Pyrophyllite	Al II (Si O ₃) ₂	2.78-2.79	U. S. G. S. Sjögren. J. 2, 757.
(((1	2.81 2.804	Brush. J. 11, 707. Genth. Z. K. M. 4,
	"	2.82	384. Tyson and Allen.
"		2.812	J. 15, 745. Genth. J. 36, 1903.
Allophane	$Al_2 Si_{0}O_5$. 6 $H_2 O$	2.02 1.85—1.89	Schnabel. J. 2, 756. Dana's Mineralogy.
Szaboite	$\begin{array}{c} \mathrm{Fe^{\prime\prime\prime}_2} \; (\mathrm{Si} \; \mathrm{O_3})_3 \; \\ \mathrm{Fe^{\prime\prime\prime}_2} \; (\mathrm{Si} \; \mathrm{O_3})_3 , \; 5 \; \mathrm{H_2} \mathrm{O} \end{array}$	3.505	Koch. Z.K.M.3,308.
Nontronite. Chloropal	" (S1 O ₃) ₃ . S H ₂ O	1.727—1.870 2.105	Dana's Mineralogy. Thomson. Dana's
Zireon	Zr Si $\tilde{\mathcal{O}}_{4}$	4.047	Min. Damour. J.1,1171.
(,	6.	4.595 4.602)	Wetherill, J. 6,796.
		4.625 }	Hunt. J. 4, 768.
(("	4.395 before 4.515 heating.	Chumah I 17 991
"	ιι ιι	4.438) after	Church. J.17,834.
"		4.863 ∫ heating 4.709, 21°	Cross and Hille-
Cerium orthosilicate	Ce, (Si O,),	4.9	brand. J. 36,1839. Didier. C. R. 19,882.
Thorium metasilicate	$Ce_4 (Si O_4)_3$ Th $(Si O_3)_2$	5,56, 25°	Troost and Ouvrard. C. R. 105, 255.
Thorium orthosilicate Thorite. (Orangite)	Th Si O ₄ 3 H ₂ O?.	6.82. 16° 5.397	Bergemann. P. A.
" "			82, 562.
		5.34	Krantz. P. A. 82, 586.
		5.19	Damour. Ann. d. Mines (5), 1, 587.
" "		4.888—5.205	Chydenius. P. A. 119, 43.
" (Ordinary) Eulytite	Bi ₄ (Si O ₄) ₃	4.344—4.397 5.912—6.006	Dana's Mineralogy.
	4/3	6.106, 17°	v. Rath. J. 22, 1209.

2d. Silicates Containing More Than One Metal.

Name.	FORMULA.	Sp. Gravity.	AUTHORITY.
Pectolite	II Na Ca ₂ (Si O ₃) ₃	2.784 2.778—2.881	Scott. J. 5, 866. Heddle and Greg. J. 8, 952.
		2,870	Clarke, Bull, 9, U. S. G. S.
Melacolite	Ca Mg (Si Θ_3) ₂	3.37	Bonsdorff, Dana's
			Haushofer, J. 20, 984.
		3.192	D elter, Z. K. M 4, 89.
Tremelite		3.278—3.275 2.980—8.004_	Hunt. Dana's Min. Rammelsberg, J. 11 694.
44		2.99	Michaelson, Dana's
		2.096, 220	Konig. Z, K. M. 1, 50.
Hedenbergite	$\left[\operatorname{Ca}(\operatorname{Fe}) \operatorname{Si}(O_{\mathbb{F}_2}) \right]_{2} =$	3,467, 25°	Wolff, J. P. C. 34, 236.
		3.192	Doelter, Z. K. M. 4, 90.
Montleellite	Ca Mg Si O ₄	3.119	Rammelsherg, J. 13, 758.
Knebelite	Fe Mn Si O ₄	3,05 3,714, 18°,5	Freda. J. 26, 1876. Doebereiner. Schw. J. 24, 49.
		1.122	Erdouern. Dana's Min.
Kentrolite			v. Rath. Z. K. M. 5, 95.
Melanotekite	Fe''', Pb, Si, Oarra	5.70	Lindstrone, Z. K M. 6, 515.
Hyalotekite Petalite	Ca Ba Ph $\mathrm{Si}_{a}\mathrm{O}_{\mathrm{py}}^{-s}$ Al Li $(\mathrm{Si}_{2}\mathrm{O}_{3/2})$	0.81 2.447—2.455.	Nordenskield, Rammelsberg, J. 5 858.
		2,412—2,553	Demotic Dama's
· · · · · · · · · · · · · · · · · · ·		2.382-2.401	Breithoupt. P: A
Spedimene	Δ1 Li (Si O _{3/2}	3,1327—3,137	Mohs. See Bottger Rammelsberg, J. 5 857.
		0.16	Pisani, Z. K. M. 2
· Hiddenite .		3,177	Genth, Z. K. M. 6 522.
Encryptite	$\Delta 1$, $\operatorname{Li}_{i_{\lambda}} \simeq i \operatorname{O}_{i_{\lambda}, \lambda}$	2.647	Brush and Dana, A A S. 63, 20, 266
Aluminum lithium silicate		2,40, 122	Hautefeuille, C. R. 90, 541.
Albite	$\begin{array}{c} \text{Al Li Si}_1 \Omega \\ \text{Al Si Si}_3 \Omega_8 \end{array}$	2.41, 11 2 2.612	Eggertz. Dana's

Name.	Formula.	Sp. Gravity.	AUTHORITY.
Albite	Al Na Si ₃ O ₈	2.609, 12° 2.59	Streng. J. 24, 1151.
"		2.59	Leeds. J. 26, 1166.
((::	2.604	Genth. J. 36, 1896. Baerwald. J. 36,
		2.010	Baerwald. J. 36, 1897.
"		2.601	Laeroix. Z. K. M. 14, 112.
" Artificial	"	2.61	Hautefeuille. Z. K. M. 2, 107.
Jadeite	Al Na (Si O ₃) ₂	3.26-3.36	Damour. B. S. M. 4, 157.
"		3.33	Damour. Z. K. M. 6, 290.
			Unpub-
tt		3.326-3.355	LITHIOCK, La , c
"		3.26—3.34 3.35	mawes. 3 TT c
			Taylor. National Museum.
Nephelite			Scheerer. P. A. 49, 359.
"		2.629	Kimball. J. 13, 762.
		2.600-2.6087	Rammelsberg. Z. G. S. 29, 78.
	"		Lorenzen. J. 36, 1884.
Analeite			Waltershausen. J. 11, 711.
"		2.236	Waltershausen. J. 6, 820.
"	"		Thomson. Dana's Min.
"		2.222	Bamberger. Z. K. M. 6, 33.
EudnophiteParagonite	**	2.27	Weibve. J. 3, 735.
			Schafhäutl. Dana's Min.
" Pregrattite			Oellacher. Dana's Min.
" Cossaite		2.890-2.896	Gastaldi. Dana's Min., 2d App.
Hydronephelite	2 H O	2.263	Diller. A. J. S. (3), 31, 267.
Natrolite	$\operatorname{Al}_2\operatorname{Na}_2\operatorname{H}_4(\operatorname{Si}\operatorname{O}_4^2)_{3}$	2.207, 11°	Gmelin. J. 3, 733.
"	"	2.254—2.258 2.249	Kenngott. J. 6, 820. Brush. A. J. S. (2),
Orthoclase	Al K Si ₃ O ₈	2.5702	31, 365. Breithaupt. See
		2.573	Böttger. Rammelsberg. J. 20,
"	ιι	2.576—2.586	988. v. Rath. J. 24, 1150.
	.:	2.572 - 2.595	Genth. J. 36, 1896.
" Artificial	"	2.55, 16°	Hautefeuille. Z. K. M. 2, 514.
Leucite	Al K (Si O ₃) ₂	2.519	Bischof. Dana's Min.
	i		

NAME.	FORMULA.	SP. GRAVITY.	Аз тиокиту.
Leucite	Al K (Si Ω_3) ₂	2.48	Rammelsberg, J. 9, 852.
·· Artificial	44	2.47, 13°	v. Rath. J. 27, 1255. Hautefeuille, Z. K. M. 5, 411.
Museovite	Al ₃ K II ₂ (Si O ₄) ₃	2.817 2.714—2.796	Kussin, Dana's Min. Grailich. Dana's Min.
		2.800-2.801	Tschermak, Z. K. M. 3, 127.
	• (2.855	Scharizer, Z. K. M. 12, 15.
Pollucite	$\left[\Lambda l_2 \operatorname{Cs}_2 \Pi_2 \left(\operatorname{Si} \left(\mathbf{O}_3 \right)_5 \right] \right]$		Breithaupt. P. A. 69, 439.
		9.901 2.803	Pisani, J. 17, 850, Rammelsberg, Z. K. M. 6, 286,
Grossularite	**	3,609	Hunt. Dana's Man. Websky, J. 22, 1214
***		0.010	Januasch, J. 36, 1880.
Anorthite		1.7017 1.7017	Rose, See Bottger Deville, J. 7, 832 Potyka, J. 12, 785
			Silliman, Dana - Min, y. Rath. J. 27, 1255
Idoerase	$\mathbf{Al}_{k} \operatorname{Ca}_{k} \left(\operatorname{Si} \left(\mathbf{O}_{k} \right)_{7} \right) = 1$		Ger. See Bott- ger. Rammelsberg, J. 2
			745. Damour, J. 24, 1153
	1.	3,403—3,472…	Korn. J. 36, 1874 Januasch. J. 36 1875.
Melilite	Λ1 ₂ Ca ₆ Si ₅ O ₁₉	2.9 = 3.101 2.95	Dana's Mineralogy Damour, Ann. (d) 10, 59.
Meionite*	Δl_6 Ca $_4$ Si $_6$ O $_5$	2.731-2.737	v. Rath. P. A (9)
		2.716, 163	Neminar, J. 28 1227.
Gehlenite	$\Lambda l_2 \operatorname{Ca}_1 \operatorname{Si}_2 \operatorname{O}_{10}$	2.1667 2.1667	Dana's Mineralogy Janovsky, J. 26 1170.
Prehilte	$\Delta !_{j} \operatorname{Ca}_{2} \frac{\Pi_{2} \cdot \operatorname{Si}(\Theta_{1})_{3}}{\cdots}$	2,926 2,845=2,897, 4	Mohs. See Bottger Streng. N.J. 1870 314
Healandite	$\Lambda^{1}_{j} \subset_{\Lambda} \Pi_{10} \operatorname{Si}_{6} \Omega_{A}$	2.195	Genth, J. 36, 1187 Thomson, Dana Min.
44		2.1963	Jeremejew, Z. K. M 2, 503,
Stillite	ΔV_1 Ca Π_{12} Si_6 O $_2$	2.203	Munster, P.A. 65 297.

^{*}For other data relative to the scapolite group see Dana's Mineralogy and also Tschermak's memoir in $M, \ell, 4, 881$

		· · · · · · · · · · · · · · · · · · ·	
Name.	FORMULA.	Sp. Gravity.	Authority.
Stilbite	$\begin{array}{ c c c c c c c c c c c c c c c c c c c$		na's Min.
Laumontite	Al ₂ Ca H ₈ Si ₄ O ₁₆	2.16	Schmid. J.24, 1158. Breithaupt. See
ιι 	"	2.280-2.310_	Böttger. Mallet. Dana's Min. Gericke. J. 9, 861.
Scolezite	Al ₂ Ca ₂ H ₆ Si ₃ O ₁₃	2.393	Waltershausen. J. 6, 819.
"		2.28	Collier. Dana's Min. Lüdecke. Z. K. M.
Chabazite	Al ₂ Ca H ₁₂ Si ₄ O ₁₈		6, 312. Breithaupt. See
"	"	2.08—2.19 2.133	Böttger Dana's Mineralogy. Streng. Z. K. M.
"	$Al_3 Ca_2 H Si_3 O_{13}$	2.115 (1, 519. Rammelsberg. J. 9,
"		3.226-3.381	849. Breithaupt. Dana's Min.
Margarite	$\mathrm{Al}_4 \; \mathrm{Ca} \; \mathrm{H}_2 \mathrm{Si}_2 \mathrm{O}_{12}$		Hermann. J. P. C. 53, 16.
Oligoclase	Al ₅ Ca Na ₃ Si ₁₁ O ₃₂	2.729	Kerndt. J. 1, 1182. v. Rath. J. 11, 706.
Andesite	 Al ₃ Ca Na Si ₅ O ₁₆	2.643—2.689 ₋ . 2.651—2.736 ₋ .	Petersen. J. 25. 1112. Delesse. J. 1, 1183.
Labradorite	Al ₇ Ca ₃ Na Si ₉ O ₃₂	2.667—2.674 2.719—2.883	Hunt. J. 14, 995. Delesse. J. 1, 1183.
"		2.709 2.697 2.72–2.77,15°.5	Damour. J. 3, 723. Hunt. J. 4, 782. Streng. J. 15, 736.
Faujasite	${ m Al_4CaNa_2H_4(SiO_3)_{10}} \ { m 18~H_2~O},$	1.923	Damour. Ann. d. Mines (4), 1, 395.
Thomsonite	$\begin{bmatrix} 2 \operatorname{Al}_2 \left(\operatorname{Ca} \operatorname{Na}_2 \right) \operatorname{Si}_2 \operatorname{O}_8, \\ 5 \operatorname{H}_2 \operatorname{O}. \end{bmatrix}$	2.35—2.38	Zippe, Dana's Min. Rammelsberg, J.P.
" Lintonite		2.32—2.37	C. 59, 348. Peckham and Hall.
Gmelinite	$\mathrm{Al_2(Ca} \underset{\text{\tiny ```}}{\mathrm{Na_2}})\mathrm{II_{12}}\mathrm{Si_4O_{18}}$	2.07 2.099—2.169	A. J. S. (3), 19,122. Damour. J. 12, 796. Dana's Mineralogy.
"		2.100	Liversidge. J. 36, 1895.
Milarite	$\text{Al}_2 \text{Ca}_2 \times \text{H} (\text{Si}_2 \text{O}_5)_6$	2.5529	Ludwig. Z. K. M. 2, 631. Waltershausen. Da-
Phillipsite	$\mathrm{Al}_2\left(\mathrm{Ca}\mathrm{K}_2\right)\mathrm{H}_8\mathrm{Si}_4\mathrm{O}_{16}$	2.201	na's Min. Marignac. B. J. 26,
;; ;;		2.150, 21° }	351. W. Fresenius. Z. K.
Strontium oligoclase	Al ₅ Sr Na ₃ Si ₁₁ O ₃₂	2.619	M. 3, 42. Fouqué and Lévy. C. R. 90, 622.
Strontium labradorite Strontium anorthite	$Al_7 Sr_3 Na Si_9 O_{32}$ — $Al_2 Sr (Si O_4)_2$ ———	2.862	" "

	FORMULA.	SP. GRAVITY.	Астновиту.
arium oligoclase	Λl ₅ Ba Na ₃ Si ₁₁ O ₃₂	2.(40)	
	ALD NESLA	0.000	C. R. 90, 622.
arium labradorite	$A_{12} = Da_3 = A B_1 = A_{12} = A_{13} = A_{14} = A_{1$, , , , , , , , , , , , , , , , , , , ,	
arium anorthite	A1 Ba H. Si. O.	2.392	Molis. See Bottger
	11.12 12.10 1 15 = 19	2.14-2.45	Dana's Mineralogy
		2.447	Damour. Dana'
		2.402, 210	Min. W. Fresenius, Z. K M. 3, 42.
end oligoclase	$\Lambda l_5 \; \mathrm{Pb} \; \mathrm{Na}_3 \; \mathrm{Si}_{11} \; \mathrm{O}_{32}$	3.196	Fouqué and Lévy C. R. 90, 622.
end labradorite	Al ₇ Pb ₃ Na Si ₉ O ₃₂	3,609	66
lead anorthite	$\Lambda \mathbb{I}_n \operatorname{Pb}$ (Si $\Theta_{\mathbf{z} \mathbb{I}_p}$	1.093	** **
luclase.	$-\Delta\Gamma \mathrm{GHTSi} \hat{\mathrm{O}}_{5}^{-1}\rangle$. 3,036	Mallet, J. 6, 800
14		3.097	Des Cloizeaux. D na's Min.
		3,096-3,103.	Kokscharow. D
**		3.087	Guyot, Z. K. M. 250.
Beryl	$-\Delta l_2/G l_3/(Si/O_3)_6$, or	12.813	Mallet, J. 7, 828
	$=\Lambda { m I}_4^*/{ m GI}_5^*/{ m II}_2/{ m Si}_{11}^*/{ m O}_{54}$	2.686	Haughton, J. 1 720.
**	.	. 2.650	 Petersen, J. 19, 91
	. · · · · · - ·	2.706	Penfield and Hr per, A. J. S. 6 32, 111.
.4		2.681—2.725	
·· Emerald		2.614	Boussingault, J.1 1216.
**		2,710—2,759	Kammerer, Dans Min.
olite	_ Al ₄ Mg ₂ Si ₅ O ₁₈	. 2,605	Kokscharow, J.
		_ 2.6600, 16°	Schachtel, Z. K. 7, 594.
		. 2,6708, 18%	Jost, Z. K. M. 594.
Ripidolite	$= \mathrm{Al}_2 \mathrm{Mg}_5 \mathrm{Si}_3 \mathrm{O}_{14}, \mathrm{4H}_2 \mathrm{O}_{14}, \mathrm{H}_3 \mathrm{O}_{14}, \mathrm{H}_4 \mathrm{O}_{14}, \mathrm{H}_4 \mathrm{O}_{14}, \mathrm{H}_4 \mathrm{O}_{14}, \mathrm{H}_4 \mathrm{O}_{14}, \mathrm{H}_4 \mathrm{O}_{14}, \mathrm{H}_5 \mathrm{O}_{14}, \mathrm{H}$	2.603	- Rose, Dana's M - Hermann, Dan - Min.
		2.673	Moriginae, Dan Min.
	* *	2.711	Blake, Dana's M
Arctish to	$= \Lambda I_s M_{\mathbb{Z}} \operatorname{Ca} \Pi_s \operatorname{Ci} \Omega_{\mathfrak{p}}$		Blomstrand.
Mangane e garnet. Arte dical.	$-\Delta^{ij}$ M _{1ci} [Si Θ_{ij}]	4,05, 11:	Gorgeu, C. R. ! 1503.
	$\Delta 1_1 \ \mathrm{Min} \ \Pi_4 \geq \frac{1}{2} \Theta_{10}$	2.635	Breithaupt. Dan Min.
	**	2.870	. Koninck, Z. K. 1, 222.
Kery holite			1, 11111
Kery look to O Althoral to O	Al ₂ Fe″ ₃ , Si O _{1,1,2,3}		Wachtmeister, I

NAME.	FORMULA.	Sp. Gravity.	AUTHORITY.
Partschinite	Al_2 Fe'' Mn_2 (Si O_4) ₃ Al_2 Fe'' H_2 Si ₃ O_{11}	3.26	Haidinger. J.7, 826. Damour. Z. K. M. 4, 413.
Chloritoid	Al ₂ Fe" H ₂ Si O ₇	3.52 3.513 3.588	Smith. J. 3, 741. Hunt. J. 14, 1011.
			pöcz. Z. K. M. 3, 508.
Ouverovite			Erdmann. B. J. 23, 291.
Acmite	Fe''' Na (Si O ₃) ₂	3.41—3.52 3.536—3.543	Dana's Mineralogy. Breithaupt. See Böttger.
		3.530	Rammelsberg. J. 11, 695.
:-			Doelter. Z. K.M. 4, 92.
Andradite	Fe''' ₂ Ca ₃ (Si O ₄) ₃	3.85 3.796—3.798	Damour. J. 9, 848. Kokscharow. J. 12, 782.
		3.797	Fellenberg. J. 20, 984.
		3.740	Dana. Z. K. M. 2, 311.
" Demantoid		3.828	Rammelsberg. Z. K. M. 3, 103.
			Cossa. Z. K. M. 5, 602.
Crocidolite	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	3.200	Stromeyer and Haus- mann. P. A. 23, 153.
		3.2	
Lievrite	Si O	3.711	Tobler. J. 9, 851.
"	:,	4.0234.05	Städeler. J. 19, 934. Lorenzen. J. 36, 1879.
Thuringite. (Owenite)	Fe''' ₄ Fe'' ₄ Si ₃ O ₁₆ .	3.197, 20°	Genth. A. J. S. (2), 16, 167.
		3.191	Smith. A. J. S. (2), 18, 376.
		3.177	Zepharovich, Z. K. M. I, 371.
Sphene	"	3.44	Hunt. J. 6, 837. Fuchs. Dana's Min.
"Greenovite	"	3.547	Rose. " " " Hintze. Z. K. M.
" Artificial	"	3.45	2, 310. Hautefeuille. J. 17,
GuariniteZirconium potassium silicate.	$\operatorname{Zr} \operatorname{K}_2^{"} \operatorname{Si}_2 \operatorname{O}_7^{}$	3.487 2.79	216. Guiscardi. J. 11, 718. Mellis. Göttingen Doet Diss 1870
Zirconium sodium silicate Calcium tin silicate	$\begin{array}{c} \operatorname{Zr_8Na_2SiO_{19},11H_2O} \\ \operatorname{Ca~Sn~Si~O_5} \end{array}$	3.53 4.34	Doet. Diss., 1870. Bourgeois. C. R. 104, 233.

3d. Boro-, Fluo-, and Other Mixed Silicates.

N A	ME.	FORMULA.	Sp. Gravity.	Антновиту.
Danlarite		Ca B ₂ Si ₂ O ₅		Brush and Dana. Z.
+ 4				
		Са И В Si О		' 7, 297. Mohs. See Bettger.
		Can Brays		Breithaupt. See
				Bottger.
			2.983	Whitney, J. 12,801
			2.987-3.014	Tschermak, J. 13
			1.055	: 778.
Homilite		Ca, Fe B, Si, O ₁₀ ,		Smith. J. 27, 1270 Paikull. Z. K. M
11 (11111111)		(.t. 1 (1) 1 · .t. () 1 · .t.		1, 385.
Howlite		Са ₂ П ₅ В ₅ Si О ₁₁	2.59	Pentield and Sperry
		2 3 3 41		A. J. S. (fb, fd 221.
Axinite .		$A1_1$ Ca Fe Mni_4 H_2 B Si_5 O_{ab}	3.271	Mohs. See Bottger
Tourmaline.	Colorbes	$\begin{array}{c} \text{B Si}_5 \text{ O}_{21} \\ \text{Al B O}_2 \text{ (Si O}_4 \text{)}_2 \text{ R}^7_{6} \end{array}$	3.07=3.085	Riggs. A. J. S. (3) 35, 35.
4+	Rod	٠	2.995-0.082.	
			2,9973,028	85, 85,
**	Green		3,069-3,112-	Rammelsberg, J.:
	Brown	* * * * * * * * * * * * * * * * * * * *	3.0353.168	
**	Black		3,205-4,240	
4.4		-	3.05-3.20	. Riggs, A. J. S. (3 35, 35,
$\Lambda_{ m pophvllite}$		Ca, K II, StON, F.	2,305	Molis, See Bottge
Tholaisme.		111.0	2.7777	Money Con Donage
- 6		**	2.305	Jackson, J. 3, 73;
		1.	1.07	Smith. J. 7, 808.
Leucophinio		$-\mathrm{Gl}_4\mathrm{Ca}_4\mathrm{Na}_4\mathrm{Sl}_7\mathrm{O}_{22}\mathrm{F}$	2.5034	Rammel-berg, J. !
4.			2.971	867. Erdmann, B. J. 2 168.
M. linophan		G' Ca. Na ₁₂ S ₄ O ₁₄ F ₄	3,00	Scheerer, J. 5, 88
			3.018	Rammelsberg, J. 867.
Тораг		$_{\bullet}$ An Si Θ_{\bullet} F_{2}	. 0.429—0.517.	Breithaupt. Se Bottger.
		••	1.52 -0.51	Kokscharow, J. 807.
			0.514 = 0.503	Rammelsberg, J. 1 C. 96, 7.
			_ 3,501 = 3,597	Cliurch, Geol. Ma (21, 2, 320.
			0.578, 227	Hilleterind But 20, U. S. G. S.
Lepid dite_		$Al_2 \times Al_3 \otimes_3 O_2 \times_2 .$	2,534-2,5316	

NAME.	Formula.	SP. GRAVITY.	AUTHORITY.
Lepidolite	$\mathrm{Al}_2 \; \mathrm{K} \; \mathrm{Li} \; \mathrm{Si}_3 \; \mathrm{O}_9 \; \mathrm{F}_2$.	2.838	
Phlogopite	$\mathrm{Al_2Mg_5}_{^{13}}\mathrm{HKSi_5O_{18}F_2}_{^{}}$	2.78—2.85 2.81	12, 15. Dana's Mineralogy. Kenngott. J. 15,
		2.959, 16°	742. Berwerth, Z. K. M. 2, 521.
		2.742—2.867	Tschermak. Z. K. M. 3, 127.
Caleium chlorosilicate			
Sodalite	$Al_4 Na_5 (Si O_4)_4 Cl$	2.401 2.31	v.Rath. Dana's Min. Lorenzen. J. 36, 1884.
"		2.8405, 21°	Bamberger. Z. K. M. 5, 584.
Marialite	Al ₃ Na ₄ Si ₉ O ₂₄ Cl	2.294—2.314 2.626, 19°	Kimball. J. 13, 775. v. Rath. Z. G. S. 18,
Pyrosmalite_s	${ m Mn}_5{ m Fe''}_5{ m H}_{14}({ m Si}{ m O}_4)_8$	3,1683,174	Lang. J. P. C. 83,
		3.081	Hisinger, Dana's
Helvite	$\mathrm{Gl_3~Mn_4~(Si~O_4)_3~S}$	4.806	Lewis. Z. K. M. 7, 425.
		3,23—3.37	Kokscharow. J. 22, 1228,
Danalite	$\mathrm{Gl_3}\;\mathrm{Fe_3}\;\mathrm{Zn}\;(\mathrm{Si}\;\mathrm{O_4})_3\mathrm{S}$	3.427	Cooke. A. J. S. (2),
Nosean	$\mathrm{Al}_4\mathrm{Na}_6(\mathrm{Si}\mathrm{O}_4)_4\mathrm{S}\mathrm{O}_{4^-}$	2.25—2.4 2.279—2.399	Dana's Mineralogy. v. Rath. Z. G. S. 16,
Complex silicate and sulphide.	$\mathrm{Ca_{18}Al_2S_2O_{35}.\ 2Ca\ S}$	3.054	86. Rammelsborg, J. P.
Thaumasite	$\operatorname{Ca_3}$ Si $\operatorname{O_3}$ S $\operatorname{O_4}$ C $\operatorname{O_3}$.	1.877, 19°	C. (2), 35, 98. Lindström. J. 33, 1484.
Calcium silicophosphate	$\operatorname{Ca}_5\operatorname{Si}\operatorname{O}_4(\operatorname{PO}_4)_{2^{}}$	3.042	Carnot and Richard. B. S. M. 6, 241.

XLI. TITANATES AND STANNATES.

	NAME.		Formula.	Sp. Gravity	Аптновиту.
Calcium	titanate.		Ca Ti O ₃	4.10	Ebelmen.
11	"	"		1	Hautefeuille. J. 17, 217.
"	"	Perof- skite.		4.017	Rose. B. J. 20, 210.
"	"	4.4		4.038	Damour. J. 8, 960.
"	""	"			Damour. J. 8, 960. Brun. Z. K. M. 7,
Strontiu	m titanate	9	Sr ₂ Ti ₃ O ₈	5.1	389. Bourgeois. C. R. 103, 141.

Name.	FORMULA.	Sp. Gravity,	Алтиовиту.
Barium titanate	Ba ₂ Ti ₃ O ₈	5.91	Bourgeois, C. R. 103, 141.
Magnesium titanate	Mg Ti O ₃	3.91	Hautefeuille, J. 17, 217.
Magnesium orthotitanate	Mg, Ti O	0.52	
Magnesium orthofitanate Himenite	Fe Ti O ₃ *	4.727	Marignac, B. J. 26, 372.
Iron orthotitanate	Fe ₂ Ti O ₁	1.37	Hautefeuille, J. 17, 217.
Zine titanate	Zn Ti ₃ O ₇	4.52, 15°	
Potassium stannate	K, Sn O, 3 H, O.	3.197	Ordway, J. 18, 240,

XLII. CYANOGEN COMPOUNDS.*

1st. General Division.

NAME.	FORMULA.	Sp. Gravity.	Λ UTHORITY.
Cyanogen, Liquefied	C ₂ N ₂	.866, 17 ⁷ ,2	Faraday, P.T.1845, 155.
Hydrocyanic acid	H C N	.63000, 18° f	Gay Lussae. Ann. 95, 136. Trautwein. Cooper. P. A. 47, 527.
Cyanic acid	••	1.140, 02	
Cyanuric acid	H ₃ C ₃ N ₃ O ₃	1,768, 0° 2,500, 19° 2,228, 21° 1,725, 48° 1,725	Troost and Haute- teuille, J. 22, 99 Schroder, Ber. 13 1070.
Cyamelide	н с х о _в	1.974, 0° _) 1.774, 21° _)	Troost and Haute- feuille, J. 22, 99
Hydrosulphocyanic acid.	ПСХ8	1.0013, 10° 1.022	Clasen. Porrett, P.T. 1814 548.
41		1.0082	Meitzendorff, P. A 56, 63,
${\bf Tricyanogen\ trichloride}_{\pm 1}$		1.02	Serullas, Ann. (2) 38, 370
Cyanogen iodide	C N I	1.85	Weltzien's "Zu- sammenstellung."

^{*} Exclusive of organic eyanides, or compounds containing organic redicles.

2d. Cyanides, Cyanates, and Sulphocyanides.

NAME.	FORMULA.	SP. GRAVITY.	AUTHORITY.
Potassium cyanide Silver cyanide Mercury cyanide	Ag C N	3.943, 11°	Bödeker. B. D. Z. Giesecke. " Bödeker. " Clarke. A. J. S. (3), 16, 201.
11	11 11 11	4.0026, 22°.2 3.990	Creighton. F. W. C. Wittmann. "Schröder. Ber. 13, 1070.
Mercury oxyeyanide	"	$ 4.428 ^{26.12}$ $ 4.437 ^{190.2}$	Clarke. A. J. S. (3), 16, 201. Creighton. F. W. C.
Mercury potassium cya-	K He (C N)	$ \begin{array}{c} 4.531, 21^{\circ}.7 \\ 2.4470, 21^{\circ}.2 \end{array}\rangle$	Wittmann. "
nide. " " " Potassium chromocyanide	K ₄ Cr (C N) ₆	$ \begin{vmatrix} 2.4551, 24° \\ 2.4620, 21°.5 \\ 1.71 \end{vmatrix} $	Creighton. " Moissan. Ann. (6),
Potassium manganicya- nide.	K ₃ Mn (C N) ₆		4, 138.
Sodium ferrocyanide Potassium ferrocyanide "	$egin{array}{l} { m Nu_4Fe(CN)_6.} & 12{ m H_2O} \\ { m K_4Fe(CN)_6.} & 3{ m H_2O} \\ { m} \\ { m} \end{array}$	1.83	Bunsen.
Thallium ferrocyanide	$\mathrm{Tl_{4}\ Fe\ (C\ N)_{6}.\ 2\ H_{2}\ O}$	4.641	Lamy and Des Cloizeaux. Nature 1, 142.
Ammonium ferrocyanide with ammonium chloride.	$\begin{array}{c} \mathrm{Am_4} \mathrm{Fe} (\mathrm{C} \mathrm{N})_6. \\ 2 \; \mathrm{Am} \; \mathrm{Cl.} \; 3 \; \mathrm{H_2} \; \mathrm{O}. \end{array}$	1.490	Topsoë. C. C. 4, 76.
Potassium ferricyanide " " " " " " " " " " " " "	K ₃ Fe Cy ₆	1.8004 1.845 1.849 1.817 1.849, 15°.3)	Schabus. J. 3, 359. Wallace. J. 7, 378. Schiff. J. 12, 41. Buignet. J. 14, 15.
(t (t	::	1.854, 15°.3 1.855, 15° 1.861, 15°	Schröder. Dm. 1873.
Silver ammonio-ferricy- anide.	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	$2.42 \atop 2.47$ 14°.2	Gintl. J. 22, 321.
Sedium nitroprusside	$ \begin{array}{c c} Na_{4} & Fe_{2} & (C & N)_{10} \\ (NO)_{2} & 4 & H_{2} & O. \end{array} $	$\left\{ \begin{array}{c} 1.710 \\ 1.716 \end{array} \right\}$	Schröder. Dm. 1873.
" " "	11	1.6869, 25° 1.713 } 1.731 }	Dudley. F. W. C. Schröder. Ber. 13, 1070.
Potassium nickel cyanide		1.010111	Dudley. F. W. C.
Potassium cobalticyanide			Bödeker. B. D. Z. Topsoë. C. C. 4, 76.
Potassium platinocyanide			Dudley. F. W. C.
Barium platinocyanidel	BaPt (C N) ₄	3.054	Schabus. J. 3, 360.

Name.	Formula.	SP. GRAVITY.	Антионтту
Samarium platinocyanide			Cleve, U. N. A. 18-5, Topsoë, B. S. C. 21, 118.
Petas ann cyanater	K C N O	2.0175, 16 2.056, 42	Schröder, Ber. 12.
Silver eyanate	Ag C N O	1.001, 16° 3,998	
P. tassium sulphoeyanide	KCNS	1.801	Bodeker, B. D. Z. Schröder, Ber. 11, 2215.
Ammonium sulphocyanide.		1.200 / 132	Dudley, F. W. C. Schroder, Ber. 11,
Lead sulphocyanide Phosphorus sulphocyanide	P ₁ C X S ₃	1,625, 18°	2215, Schabus, J. 3, 362, Miquel, J. C. S, 32, 872.
Potassium chromium sul- phocyanide, " " Potassium platinsulpho- cyanide, "	' K ₂ Pt (C N S) ₆	1,7051, 17 ,5 , 1,7107, 16° , 2,312, 18° , , 2,370, 19° , ,	Dudley, F. W. C.
Potassium platinselenio- cyanide. Titanium nitrocyanide	K_2 Pt $(C, N, Se)_6$	3.877, 10 1.2 T	Wollaston, P. T.
		5,28001	1823, 17. Karsten, Schw. J. 65, 394.
Samarium sulphocyanide with mercuric cyanide.	$\frac{\text{Sm } (C N S)_{1}, 3 \text{Hg}}{(\text{CN})_{1}, 12 \text{H}_{2} 0.7}$	2.742, 15°) 2.749, 15°.4)	Cleve, U. N. A. 1885.

XLIII. MISCELLANEOUS INORGANIC COMPOUNDS.

	-		
NAME.	Former x.	Sp. Gravity.	Λ UTHORITY.
Nitrogen ehlorophosphide	P ₃ N ₃ Cl ₃	1.98	Gladstone and Helmes, J. 17, 148.
Mercury sulphide with copper chloride.	Hg S. Cu Cl.	6.20	Raschig, A. C. P. 228, 27.
Mercury chloride with am- monium dichromate.	**	0.2336, 21	Heighway, F. W. C.
	* *	3.0824, 147	Langenbeck, P. W.
Mercury cyanide with po- tassium chromate.	2 Hg Cy ₂ . K ₂ Cr Θ_4	0.564, 21°,8	H Schmidt, F. W. C.

NAME.	FORMULA.	SP. GRAVITY.	AUTHORITY.
Potassium nitrato-sul-	K ₂ S O ₄ . H N O ₃	2.38	Jacquelain. A. C. P. 32, 234.
Potassium phosphato-sul- phate.	$K_2 \otimes O_4$. $H_3 \otimes O_4$	2.296	
Hanksite	$4~\mathrm{Na_2~S~O_4},~\mathrm{Na_2~C~O_3}$	2.562	Hidden. A. J. S. (3), 30, 135.
Phosgenite			Rammelsberg. P.
Leadhillite	Pb ₄ S O ₄ (C O ₃) ₃	6.550 6.526	Gadolin. J. 6, 846. Kokscharow. J. 6, 846.
Bastnäsite (Hamartite)	(Ce La Di) (CO ₃) F	4.93	
		5.18-5.20	Allen and Comstock. A. J. S. (3), 19,
Parisite	$(\text{Ce La Di})_2 (\text{C O}_3)_4$.	4.35	Bunsen. Dana's Min.
α	ιι <u>-</u>	4.317	Dufrency. Dana's Min.

XLIV. ALLOYS.*

ALLOY.	Specific Gravity.	AUTHORITY.
SODIUM AND POTASSIUM. Na K ZINC AND CALCIUM.† Zn ₁₂ Ca ALLOYS OF MERCURY.		Hagen. P. A. (2), 19, 436. v. Rath. Z. C. 12, 665.
AMALGAMS. Hg Zn Hg ₅ Cd ₂ Hg Pb Hg Pb ₂ Hg, Pb.	11.93 12.284, 15°.7 11.979, 15°.9	Calvert and Johnson. J. 12, 120. Croockewitt. J. 1, 393. Matthiessen. P. T. 1860, 177. Bauer. J. 24, 317. Matthiessen. P. T. 1860, 177. Kupffer. Ann. (2), 40, 285. Holzmann. P. T. 1860, 177.

^{*}This table contains only a moderate number of the many determinations which have been made relative to the specific gravity of alloys. Only those alloys have been admitted which allow of relatively simple chemical formulæ. Some of them are doubtless true chemical compounds, but in most cases the formulæ merely represent proportionate composition.

† See also Norton and Twitchell, A. C. J. 10, 70.

Alloy.	Specific Gravity.	Антнопиту.
ALLOYS OF MERCURY		
AMALGAMS—continue	·q.	
m Hg~Sn	10.3447	Kupffer, Ann. (2), 40, 285.
	10.369, 14°.2	- Holzmann, P. T. 1860, 177.
Hg Sn,		Calvert and Johnson, J. 42, 120 Knowler, App. (2), 40, 285.
	9,362, 92,9	
	9.914	Calvert and Johnson, J. 12, 126
Hg Sn ₃	18.8218	
· · · · · · · · · · · · · · · · · · ·		
Hg Sn ₄ Hg Sn ₅	8,510 8,312	
$\operatorname{Hg}\operatorname{Sn}_6$		
Hg Biller	11.208	
$\Pi_{\mathbf{g}}^{\perp}$ Bi_2	10.693	
	10,45	Croockewitt, J. 1, 393.
$\operatorname{Hg}\operatorname{Bi}_3$ $\operatorname{Hg}\operatorname{Bi}_4$	10.474	. Calvert and Johnson. J. 12, 126
$\operatorname{Hg}\nolimits$ Bi_{5}	10,350	
$\Pi_{\mathbf{g}_5} \Lambda_{\mathbf{g}_{10}} = \mathbf{N}_{\mathrm{ative}}$	12.700, 17-	
Hg , Au	15,412	. Croockewitt. J. 1, 393.
ALLOYS OF ALUMINU		
11.7.	1,500	11:1 I 11 100
A) Zn		
A1, Sn		
Al. Su-	4.025	_ ((
A1, Su	4.276	
\1, Sn		
Al Sn Al Sn,	5, 154 6, 264	-
A1 Sn,		-
A1, Cb		
Al [°] , Ta	7.02	Marignac. J. 24, 212,
Al Cr	1.9	. Wohler, J. 11, 160,
71, W	5.55	
Λ1 ₃ . M i	3,402 2,647	Michel, J. 13, 131, Michel, J. 13, 132,
Λ1 ₆ Cu	2.761	Hirzel. J. 11, 138,
$\Delta 1_n^{44}$ Cu		
M, Cu	8,816	4.6
Al_{11}^{σ} Cu_3	3.579	-, 44
M ₇ Cu ₂	3.724	"
$\Delta l_{\pi}^{\dagger} C u$	3,972	- 11
A1, Cu	4,855	1 14
Al Culling	5.731	- "
Al Cu ₂	6.949	- 44
$\Delta \Gamma C n_3$	7.204	
Al Cu,	7.731	16
Al Cu. = =		- 4
Al. Cu.	7.551	
Λ l, Λ g	0.788	
ΑΓΑς	S.TH	
$\Delta \Gamma \Delta g$,	9,076	_

		[
ALLOY.	Specific Gravity.	AUTHORITY.	
TIN AND ZINC.			
Sn ₂ Zn	7.235	Croockewitt. J. 1, 394.	
<u>. </u>	7.274	Calvert and Johnson	
Sn Zn	7.115	Croockewitt. J. 1	
Sn Zn ₂	7.262 7.096	Calvert and Johnso Croockewitt. J. 1	
"	7.188	Calvert and Johnson	on. J. 12, 120
Sn Zn ₂	7.180	"	"
Sn Zn ₄	7.155	"	"
Sn Zn ₅	7.140	"	"
Sn Zn ₁₀	7.135		••
TIN AND CADMIUM.			
Sn ₆ Cd	7.434, 12°.7		1. 1860, 177.
Sn ₄ Cd	7.489, 15° 7.690, 12°.9	"	"
Sn ₂ Cd Sn Cd	7.690, 12°.9	11	"
Sn Cd ₂	8.189, 11°.1	46	"
Su Cd.	8.336, 14°.5	"	44
Sn Cd ₆	8.432, 15°	"	"
TIN AND LEAD.			
Sn ₁₂ Pb	7.628, 19°.4]		
"	7.4849, 181°, s 7.3513, 212°, l		
"	$\begin{bmatrix} 7.3513, 212^{\circ}, 1.11 \\ 7.3209, 218^{\circ}.711 \end{bmatrix}$		
"	7.3041, 249°.4 }	Vicentini and Ome	dei. Bei. 12
"	7.2726, 275°.3	178. Melting point, 181°.	
"	7.2490, 304°.2	Tion areas point, ret .	
"	7.2294, 329°		
"	7.2088, 854°.8 J	T7 0' 4 (0)	40.005
Sn ₆ Pb	7.9210 7.927, 15°.2	Kupffer. Ann. (2) Long. P. T. 1860	1, 40, 285.
й Сп. Dl.	$\begin{vmatrix} 7.927, 15^{2}.2 \\ 8.0279 \end{vmatrix}$	Kupffer. Ann. (2)	. 40. 285.
Sn ₅ Pb	8.093	Calvert and Johnson	n. J. 12, 120
44	8.046	Riche. J. 15, 111.	
Sn ₄ Pb	8.1730	Kuptfer. Ann. (2) Thomson. J. 1, 10	, 40, 285.
"	7.850	Thomson. J. 1, 10	155
14	8.188, 16°	Long. P. T. 1860, Calvert and Johnson	177. m = 1 19 190
"	8.196	Pillichody. J. 14,	
11	8.195	Riche. J. 15, 111.	210.
"	8.177, 16°.7 }	,	
"	8.0735, 183°.3, s.		
	7.8393, 209°, 1 7.8090, 240°.4		
"	1.8090, 240°.4	Vicentini and Omo	dei. Bei. 12
"	7.7917, 260°.4 7.7586, 295°.5	178. Melting point, 183°.3.	
	7.7323, 324°.7		
(1	7.7032, 357°.6]		
Sn. Pba	8.291	Riche. J. 15, 111.	
Sn ₃ Pb	8.3914	Kupffer. Ann. (2)	, 40, 285.
::	8.549		901
"	9.025 8,418	Croockewitt. J. 1, Calvert and Johnso	
	(U+ XIU	Learners and somise	/ii. 0 - 120 120

$\Lambda_{\rm LLOY}$.	Specific Gravity.	Ацтиовиту.
TIN AND LEAD—cont	in'd.	
e., Dl.	4,4047	Pillichody. J. 14, 279.
Sn ₃ Pb		
**		3, 111
	the state of the s	
	the state of the s	
	8,0755, 189°.7	
		Vicentini and Omodei. Bei. 1:
**		178. Melting point, 182°.9.
**		The streng point, 1.2 in
		Picha I 15 111
$rac{\operatorname{Sn}_5}{\operatorname{Sn}_2} \operatorname{Pb}_2$		
The Toronton		Regnault. P. A. 53, 67.
		Thomson, J. 1, 1040.
***		Calvert and Johnson. J. 12, 12
**		Pillichody. J. 14, 279.
		. Riche. J. 15, 111.
**		
	8.6298, 182°.3, 5.	
		. Vicentini and Omodei. Bei. 1
**		178. Melting point, 182°.3.
44		
	8.2148, 351°.5 j	
Sn ₃ Pb,	9.0377	Pillichody. J. 14, 279.
Sn ₇ Pb ₅		
Sn Ph		
	9,387, 13°,3	
		Long. P. T. 1860, 177.
**		
	9,4330	
44	9,451	
**		
	9.2809, 181°,8, s.	
	9,180, 181°,8, 4.	
	9,0953, 216°,7	
	9,0438, 233°	Vicentini and Omodei. Bei. 1
**		178. Melting point, 181°.8.
**		
	5,8771, 3370	
	8,8500, 856°	
	9,6899, 15°	Pohl. J. 3, 323,
Su, Pb,	9.7971	 Pillichody. J. 14, 279.
Sn Pb,	10.0782	_ Kupffer, Ann. (2), 40, 285.

ALLOY.	Specific Gravity.	AUTHORITY.	
rin and Lead—contin'd	1.		
Sn Pb,	9.966	Crossbawitt I 1 204	
((10.080, 14°.8		
((
"	10.0520		
"	1		
Sn Pb ₃	10.110	Riche. J. 15, 111.	
On F 0 ₃	- 10.3868	Kupffer. Ann. (2), 40, 285.	
"		Calvert and Johnson. J. 12, 15	
		Pillichody. J. 14, 279.	
Sn Pb4	10.5551	Kupffer. Ann. (2), 40 285.	
	10.590, 14°.3	Long. P. T. 1860, 177.	
		Calvert and Johnson. J. 12, 15	
	- 10.5997		
Sn Pb ₅			
Sn Pb ₆	10.815, 15°.6	Long. P. T. 1860, 177.	
LEAD AND CADMIUM.			
U Dh	9.160, 13°.7	H. lemann B F 1900 155	
Ud ₆ Pb Ud ₄ Pb	9.858, 120	Holzmann. P. T. 1860, 177.	
Cd, Pb	9.755, 14°.7	4. 4.	
Jd Pb		44 44	
Cd Pb,		44 44	
$\operatorname{Cd} \operatorname{Pb}_4$		"	
Cd Pb ₆	_ 11.044, 14°.8		
ANTIMONY AND TIN.	, , , , , , , , , , , , , , , , , , , ,		
01. C.,	_ 6.739, 16°.2	I D # 1000 155	
8b ₁₂ Sn	6.747, 13.°4	Long. P. T. 1860, 177.	
8b ₈ Sn 8b, Sn	6.781, 13°.5	"	
$\operatorname{Sb}_2\operatorname{Sn}$	6.844, 13°.8		
, no maria a maria a maria a maria a maria a maria a maria a maria a maria a maria a maria a maria a maria a m			
1. 0.,	16.000 150 0		
5b Sn	$ [-6.929, 15^{\circ}.8] $	**	
5b Sn 5b Sn ₂	_ 6.929, 15°.8 _ 7.023, 15°.8	εε εε εε	
5b Sn 5b Sn ₂ 5b Sn ₃	_ 6.929, 15°.8	 	
Sb Sn Sb Sn ₂ Sb Sn ₃ Sb Sn ₃	_ 6.929, 15°.8 _ 7.023, 15°.8 _ 7.100, 10°.6 _ 7.140, 19°		
Sb Sn	6.929, 15°.8 -1.023, 15°.8 -7.100, 10°.6 -1.7140, 19° -1.208, 18°.5		
Sb Sn	6,929, 15°.8 -7.023, 15°.8 -7.100, 10°.6 -7.140, 19° -7.208, 18°.5 -7.276, 19°.4		
Sb Sn. Sb Sn.	6.929, 15°.8 -7.023, 15°.8 -7.100, 10°.6 -7.140, 19° -7.208, 18°.5 -7.276, 19°.4 -7.270, 20°		
bb Sn bb Sn ₂ bb Sn ₃ bb Sn ₃ bb Sn ₁₀ bb Sn ₁₀ bb Sn ₂₀ cb Sn ₅₀ cb Sn ₁₀₀	6.929, 15°.8 -7.023, 15°.8 -7.100, 10°.6 -7.140, 19° -7.208, 18°.5 -7.276, 19°.4 -7.270, 20°	(1) (2) (3) (4) (4) (4) (4) (4) (4) (4) (4) (4) (4	
Sb Sn 3b Sn ₂ 5b Sn ₃ 5b Sn ₃ 5b Sn ₁₀ 5b Sn ₁₀ 5b Sn ₂₀ 5b Sn ₂₀ 5b Sn ₂₀ 5b Sn ₂₀ 5b Sn ₂₀	6,929, 15°,8 7,023, 15°,8 7,100, 10°,6 7,140, 19° 7,208, 18°,5 7,276, 19°,4 7,279, 20° 7,284, 20°,2		
Sb Sn. Sb Sn ₂ Sb Sn ₃ Sb Sn ₃ Sb Sn ₃ Sb Sn ₁₀ Sb Sn ₁₀₀ Sb Sn ₂₀ ANTIMONY AND LEAD. Sb Pb	6,929, 15°.8 7,023, 15°.8 7,100, 10°.6 7,140, 19° 7,208, 18°.5 7,276, 19°.4 7,279, 20° 7,284, 2\(\text{\text{\$\emptyred}\}\)	" " " " " " " " " " " " " " " " " " "	
	6,929, 15°,8 7,023, 15°,8 7,100, 10°,6 -7,140, 19° -7,208, 18°,5 -7,276, 19°,4 -7,279, 20° -7,284, 20°,2	" " " " " " " " " " " " " " " " " " "	
Sb Sn. Sb Sn ₂ Sb Sn ₃ Sb Sn ₃ Sb Sn ₃ Sb Sn ₁₀₀ Sb Sn ₁₀₀ ANTIMONY AND LEAD. Sb Pb. Sb Pb.	6,929, 15°,8 7,023, 15°,8 7,100, 10°,6 7,140, 19° 7,298, 18°,5 7,276, 19°,4 7,279, 20° 7,284, 20°,2 7,214 7,361 7,489	"" "" "" "" "" "" "" "" "" "" "" "" ""	
Sh Sh Sh Sh Sh Sh Sh Sh	6,929, 15°,8 7,023, 15°,8 7,100, 10°,6 7,140, 19° 7,208, 18°,5 7,276, 19°,4 7,279, 20° 7,284, 20°,2 7,214 7,361 7,432 7,525	" " " " " " " " " " " " " " " " " " "	
bb Sn. bb Sn. bb Sn. cb	6,929, 159.8 7,023, 159.8 7,100, 109.6 7,140, 199 7,298, 189.5 7,276, 149.4 7,276, 209 7,284, 2\(\mathred{\mathrea}\) - 209 7,284, 2\(\mathrea\) - 2 7,214 7,931 7,432 7,525 7,629	Riche. J. 15, 111. Calvert and Johnson. J. 12, 12 Riche. J. 15, 111.	
bb Sn. bb Sn. bb Sn. bb Sn. cb	6,929, 15°, 8 7,023, 15°, 8 7,100, 10°, 6 7,140, 10° 7,208, 18°, 5 7,276, 10°, 4 7,279, 20° 7,284, 20°, 2 7,214 7,361 7,432 7,525 7,622 7,830	Riche. J. 15, 111. Calvert and Johnson. J. 12, 12 Riche. J. 15, 111. Calvert and Johnson. J. 12, 12	
bb Sn bb Sn bb Sn cb Sn	6,929, 15°,8 7,023, 15°,8 7,100, 10°,6 -7,140, 10° 7,208, 18°,5 -7,276, 10°,4 -7,279, 20° -7,284, 20°,2 -7,214 -7,301 -7,432 -7,525 -7,622 -7,830 -8,330 -8,330	Riche. J. 15, 111. Calvert and Johnson. J. 12, 12 Riche. J. 15, 111. Calvert and Johnson. J. 12, 12	
Sh Sh Sh Sh Sh Sh Sh Sh	6,929, 15°,8 7,023, 15°,8 7,100, 10°,6 7,140, 10° 7,208, 18°,5 7,276, 10°,4 7,279, 20° 7,284, 20°,2 7,214 7,331 7,432 7,525 7,622 7,830 8,330 8,201, 13°,7	Riche. J. 15, 111. Calvert and Johnson. J. 12, 12 Riche. J. 15, 111. Calvert and Johnson. J. 12, 12 Matthiessen. P. T. 1860, 177.	
Sh Sh Sh Sh Sh Sh Sh Sh	6,929, 15°,8 7,023, 15°,8 7,100, 10°,6 7,140, 19° 7,208, 18°,5 7,276, 19°,4 7,276, 20° 7,284, 20°,2 7,214 7,961 7,432 7,525 7,622 7,830 8,330 8,201, 13°,7 8,233	Riche. J. 15, 111. Calvert and Johnson. J. 12, 12 Riche. J. 15, 111. Calvert and Johnson. J. 12, 12 Matthiessen. P. T. 1860, 177. Riche. J. 15, 111.	
bb Sn. bb	6,929, 15°,8 7,023, 15°,8 7,100, 10°,6 7,140, 19° 7,208, 18°,5 7,276, 19°,4 7,279, 20° 7,284, 2\(\mathred{\text{\ti}\text{\te	Riche. J. 15, 111. Calvert and Johnson. J. 12, 12 Riche. J. 15, 111. Calvert and Johnson. J. 12, 12 Matthiessen. P. T. 1860, 177. Riche. J. 15, 111. Calvert and Johnson. J. 12, 12	
Sh Sh Sh Sh Sh Sh Sh Sh	6,929, 15°,8 7,023, 15°,8 7,100, 10°,6 7,140, 10° 7,208, 18°,5 7,276, 10°,4 7,279, 20° 7,284, 20°,2 7,284, 20°,2 7,284, 20°,2 7,301 7,432 7,525 7,622 7,830 8,330 8,201, 13°,7 8,233 8,989, 11°,7	Riche. J. 15, 111. Calvert and Johnson. J. 12, 12 Riche. J. 15, 111. Calvert and Johnson. J. 12, 12 Matthiessen. P. T. 1860, 177. Riche. J. 15, 111.	

Allery.	Specific Gravity.	Λun	тиовиту.
ANTIMONY AND LEAD—eontinued.			
			hnson, J. 12, 120P. T. 1860, 177, 111.
Sb[Pb ₃]	10.136 10.144, 15°.4 10.211	Calvert and J	ohnson: J. 12, 126 P. T. 1860, 177, 111.
Sb. Pb ₉	10.387	Calvert and J Riche, J. 15	chuson, J. 12, 126 , 111.
Sh Pb ₃ .	10,556 10,586, 19-13 10,615 10,673	Calvert and J	ohnson. 4, 12, 126 P. T. 1860, 177, , 111.
Sb Pb ₀ Sb Pb ₁ Sb Pb ₁	10,722 10,764 10,802		
Sb Pb ₁₀ Sb Pb ₁₅	10,722 10,764 10,802 10,930, 100,9 11,194, 20°, 5	Matthiessen.	P. T. 1860, 177.
BISMUTH AND ZINC.			
Bi Zn	9,046	Calvert and J	ohnson, J. 12, 12
BISMUTH AND CADMIUM			
Bi _E Cd	9.737. 149.7	. 4	P. T. 1860, 177.
10 Cd	9,669,14°,8 _ 9,554,13°,4	• •	**
Bi Cd	2 0.388, 15 ³	* *	44
Bi Cd.	9,195, 155,5,7,7,7	+4	4.4
Bi Cil,	9.079, 13°,1	**	**
BISMUTH AND HIS.			
Bi ₄₀₀ Str	0.815, 183.1	Carty. P. T.	. 1860, 177,
B: ₁₋₀ Sn B: ₁₋₀ Sn	9.814, 19.,5 9.814, 195		
$ B_{1,n} S_{n} $ $ B_{1,n} S_{n} $	9,803, 221,8		* *
$\frac{B_{1,n}}{B_{1,n}} > n$	9.774, 20		* *
Bi ₁₀ >n	9,737, 196,8		
Br ₁₀ Sn Br ₁₁ Sn Br ₁₂ Sn	9.675 15 2	* *	**
Bi, Si	9.614. 127.7		**
Bi ₄ Su	9,435,15	 Riche. J. 15	119
B Sn	9,178, 15 (9)	Carty, P. T.	. 1830, 177.
• •	S 759	Regnault, 1	A 53, 67,
B: ~n			
	9.145 8.759 8.772, 1256 8.774	Carty, P. T. Riche, J. 15	, 1860, 177, , 112,
	W 77.1	Riche, J. L.	. 112.
Bi Sn Bi Sn	\$,772, 125,6 \$,754 \$,506 \$,085 \$,339, 135,9	Riche, J. L.), 112. . A. 53, 67.

ALLOY.	Specific Gravity.	AUTHORITY.
BISMUTH AND TIN— eontinued.		
Bi Sn ₂	8.327	Riche. J. 15, 112.
Bi., Sn ₅	8.199	
Bi Sn ₃	8.112, 14°.2	Carty. P. T. 1860, 177.
,,, ,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	8.097	Riche. J. 15, 112.
$\operatorname{Bi}_2\operatorname{Sn}_7$	8.017	
Bi Sn ₄	7.943, 20°	Carty. P. T. 1860, 177.
Bi Sn ₂₂	7.438, 19°.9	- "
BISMUTH AND LEAD.		
Bi ₆₀ Pb	9.844, 21°.7	Carty. P. T. 1860, 177.
Bi _{ss} Pb	9.845, 21°.6	
Bi ₄₀ Pb	9.850, 21°.3	
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	9.887, 20°.6	14 44
Bi ₂₉ Pb	9.893, 19°.5 9.934, 21°.1	
Bi ₁₆ Pb	9.934, 21°.1	
Bi ₁₂ Pb	9.973, 15°	
Bi ₈ Pb	10.048, 10°.7	" " " " " " " " " " " " " " " " " " "
D: 701	8.6	
Bi ₄ Pb	10.235, 12°.5	Carty. P. T. 1860, 177.
	10.232	
Bi ₂ Pb	9.73	E. Wiedemann. P. A. (2), 20,239.
D1 ₂ F 0	10.538, 14° 10.519	Carty. P. T. 1860, 177.
11	10.96	Riche. J. 15, 111. E. Wiedemann. P. A. (2), 20, 239.
Bi Pb	10.956, 14°.9	Carty. P. T. 1860, 177.
"	10.931	Riche. J. 15, 111.
44	11.03	E. Wiedemann. P. A. (2), 20, 237.
Bi ₄ Pb ₅	11.038	Riche. J. 15, 111.
Bi Pb	11.108	" "
Bi. Pb.	11.166	"
Bi Pb2	11,141, 12°.7	Carty. P. T. 1860, 177.
44	11.194	Riche. J. 15, 111.
44	11.4	E. Wiedemann. P. A. (2), 20, 236.
Bi ₂ Pb ₅	11.209	Riche. J. 15, 111.
Bi Pb ₃	11.161, 14°.8	Carty. P. T. 1860, 177.
	11.225	Riche. J. 15, 111.
Bi ₂ Pb ₇	11.285	11 10 10 10 10 10 10 10 10 10 10 10 10 1
Bi Pb ₄	11.188, 20°.8	Carty. P. T. 1860, 177.
Bi Pb ₅	11.196, 20°.2	
Bi Pb ₁₂	11.280, 22°.5. 11.331, 23°	" "
Bi Pb ₅₀	11.001, 20	
BISMUTH AND ANTIMONY.		
Bi ₆ Sb	9.435, 9°.4	Holzmann. P. T. 1860, 177.
B1. Sb	9.369	Calvert and Johnson. J. 12, 120.
Bi ₄ Sb	9.276	"
.,	9.277, 12°.1	Holzmann. P. T. 1860, 177.
Bi, Sb	9.095	Calvert and Johnson. J. 12, 120.
Bi. Sb	8.859	11 12, 12, 120.
	8.886, 14°	Holzmann. P. T. 1860, 177.
Bi Sb	8.364	Calvert and Johnson. J. 12, 120.
44	8.392, 11°	Holzmann. P. T. 1860, 177.
Bi Sb ₂	7.829	Calvert and Johnson. J. 12, 120.

A 1.1.0 Y.	Specific Gravity.	Антновиту.
EISMUTH AND ANTIMONY		
—continued.		
Bi Sb ₉	7.864, 99.4	Holzmann, P. T. 1860, 177.
1:1 > 1.	1.171	Carvertand ounteen Octavia
Bi 8/4	. (.840	
Bi Sb ₃	1.2/1	
IRON AND TIN.		
Fe Sn ₅ . Cryst. furnace	7.504	Rammel-berg.
F. Sna	. 7.440	J. Noellner. J. 13, 188.
product. Fe Sn ₂	8,799	Lassaigne.
IRON AND NICKEL.		
A	5 1	Ulrich. N. J. 1888, 209.
Awarune, Ni Fe	. 6.1	Ciricii. 14. 5. 1 - 4. 200.
COPPER AND ZING.*		
Cu ₁₀ Zn	5,605	Mallet. D. J. 85, 378.
Cu Zu	S.607	
Cu Zu	_ S.600	-1
Cu Zu	8.557	4.
Cu Zn	. 8,591	-1 - 4.
Cu ₃ Zn	. 8.419	- 411 4 1111 110 110
	- 8.673	 Calvert and Johnson. J. 12, 120. Mallet. D. J. 85, 378.
Cu ₄ Zn	- 7.447	Calvert and Johnson. J. 12, 120
Cu, Zn	. 8,650 . 8,397	Mallet. D. J. 85, 378.
Cu ₃ Zn	- 8,576	
Cu, Zn	8 999	Mallet, D. J. 85, 378.
(1) 1/11	8.202	Croockewitt. J. L. 394
4.4	5,484	Calvert and Johnson. J. 12, 120
Cu. Zn.	. 8.224	_ Croockewitt. J. 1, 394.
Cu Zn	. 8,230	. Mallet, D. J. So. 548.
**	_ 7.80%	
Cu ₃ Zu ₅	7.989	Croockewitt, J. 1, 391.
Cu Zn ₂	- 8.253	 Mallet. D. J. 85, 378. Calvert and Johnson. J. 12, 120
	(.500	Mallet. D. J. 85, 378.
		_ Marret, 17, 0, 00, 01 %
$\begin{array}{cccc} Cu_{*} Zn_{1*} & . & . & . \\ Cu_{*} Zn_{19} & . & . & . \end{array}$		
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	7,603	
$\operatorname{Cu}_n \operatorname{Zn}_{21}$. 5.055	
Cu, Zu,		4.
Cu Zn	, 7.148	- "
Cu Zu	. 7.419	
	7,786	. Calvert and Johnson. J. 12, 12
Cu Zn,	7,471	Mallet. D ₁ J. 85, 378
**	7 115	Calvert and Johnson, J. 12, 120
Cu Zn ₅	6,605	Mallet. D J. 85, 378.
	7.142	Calvert and Johnson. J. 12, 120

^{*} see also the Rep. () of the (U,S) Reard on Festing Iron, Steel, and other Metals. Washington, towerament Printing Office, 1881.

$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	ALLOY.	Specific Gravity.	Антиовиту.
Cu ₁₈ Sn 8,649 " " " " " " " " " " " " " " " " " " "	COPPER AND TIN.		
Cus S n 8,649 "" "" "" "" "" "" "" "" "" "" "" "" ""	Cu ₉₆ Sn		Thurston's Report, 295.
Cu ₁₉ Sn 8.793 Calvert and Johnson J. 12, 126 Cu ₁₅ Sn 8.825 " " Riche J. 21, 270 Riche J. 23, 1100 Thurston's Report, 295 Cu ₁₂ Sn 8.861 Thurston's Report, 295 Thurston's Report, 295 Cu ₁₂ Sn S. 8681 Thurston's Report, 295 Cu ₁₂ Sn Mallet D. J. 85, 378 Cu ₁₂ Sn S. 852 Calvert and Johnson J. 12, 126 Cu ₁₂ Sn S. 887 Riche J. 21, 270 S. 887 Riche J. 21, 270 S. 887 Riche J. 21, 270 S. 887 Riche J. 22, 31100 S. 886 Riche J. 21, 270 S. 886 <td>Cu₁₈ Sn</td> <td> 8.649</td> <td>-</td>	Cu ₁₈ Sn	8.649	-
Cu ₁₉ Sn 8.793 Calvert and Johnson J. 12, 126 Cu ₁₅ Sn 8.825 " " Riche J. 21, 270 Riche J. 23, 1100 Thurston's Report, 295 Cu ₁₂ Sn 8.861 Thurston's Report, 295 Thurston's Report, 295 Cu ₁₂ Sn S. 8681 Thurston's Report, 295 Cu ₁₂ Sn Mallet D. J. 85, 378 Cu ₁₂ Sn S. 852 Calvert and Johnson J. 12, 126 Cu ₁₂ Sn S. 887 Riche J. 21, 270 S. 887 Riche J. 21, 270 S. 887 Riche J. 21, 270 S. 887 Riche J. 22, 31100 S. 886 Riche J. 21, 270 S. 886 <td>Cu₂₅ Sn</td> <td> 8.820</td> <td>Calvert and Johnson. J. 12, 120</td>	Cu ₂₅ Sn	8.820	Calvert and Johnson. J. 12, 120
Cu ₁₅ Sn 8,825 " <	Cu ₂₄ Sn		Thurston's Report, 295.
"	Cu ₂₀ Sn		- Calvert and Johnson. J. 12, 120
"S.80 Riche, J. 23, 1100, Cu ₁₀ Sn 8.561 Thurston's Report, 295, Cu ₁₀ Sn 8.561 Mallet, D. J. 85, 378. "S.83 Riche, J. 21, 270 "S.83 Riche, J. 23, 1100, Cu ₈ Sn 8.462 Mallet, D. J. 85, 378. "S.84 Riche, J. 23, 1100, Cu ₈ Sn 8.49 """ "S.86 Riche, J. 23, 1100, Cu ₈ Sn 8.72 Mallet, D. J. 85, 378. """ 8.72 Riche, J. 21, 270. """ 8.72 Mallet, D. J. 85, 378. """ 8.72 Riche, J. 23, 1100. Cu ₆ Sn 8.750 Mallet, D. J. 85, 378. """ 8.65 Riche, J. 23, 1100. """ 8.865 Riche, J. 23, 1100. """ 8.565 Thurston's Report, 295. """ 8.565 Thurston's Report, 295. Cu ₅ Sn 8.575 Mallet, D. J. 85, 378. """ 8.87 Riche, J. 23, 1100. Cu ₄ Sn 8.400 Mallet, D. J. 85, 378.	Cu ₁₅ Sn		-
Cu ₁₂ Sn 8,681 Thurston's Report, 295. Cu ₁₆ Sn 8,561 Mallet. D. J. 85, 378. Cu 8,832 Calvert and Johnson. J. 12, 126 Cu 8,83 Riche. J. 21, 270. Cu 8,83 Riche. J. 23, 1100. Cu ₉ Sn 8,462 Mallet. D. J. 85, 378. Cu 8,84 Riche. J. 21, 270. Cu 8,84 Riche. J. 23, 1100. Cu ₁ Sn 8,85 Mallet. D. J. 85, 378. Cu 8,72 Mallet. D. J. 85, 378. Cu 8,72 Riche. J. 23, 1100. Cu ₈ Sn 8,750 Mallet. D. J. 85, 378. Cu 8,65 Riche. J. 23, 1100. Cu ₈ Sn 8,55 Riche. J. 21, 270. Cu 8,65 Riche. J. 21, 270. Cu 8,65 Thurston's Report, 295. Cu 8,65 Calvert and Johnson. J. 12, 120. Cu 8,75 Mallet. D. J. 85, 378. Cu 8,75 Mallet. D. J. 85, 378. Cu 8,96 Riche. J. 21, 270.	"		Riche I 22 1100
Cuio Sn 8.561 Mallet. D. J. 85, 378. """ 8.832 Calvert and Johnson. J. 12, 120 """ 8.83 Riche. J. 21, 270 """ 8.842 Mallet. D. J. 85, 378. Cu ₉ Sn 8.459 "" """ 8.86 Riche. J. 21, 270. """ 8.872 Mallet. D. J. 85, 378. """ 8.80 Riche. J. 23, 1100. Cu ₁ Sn 8.728 Mallet. D. J. 85, 378. """ 8.00 Riche. J. 21, 270. """ 8.00 Riche. J. 23, 1100. Cu ₈ Sn 8.750 Mallet. D. J. 85, 378. """ 8.653 Riche. J. 21, 270. """ 8.91 Riche. J. 23, 1100. Cu ₈ Sn 8.575 Mallet. D. J. 85, 378. """ 8.965 Calvert and Johnson. J. 12, 120 """ 8.87 Riche. J. 21, 270. """ 8.87 Riche. J. 21, 270. """ 8.87 Riche. J. 21, 270. """ 8.94 Calvert and Johnson. J. 12, 120 """ 8.94 Calvert and Johnson. J. 12, 120 """ 8.93 Thurston's Report, 295. """ 8.93 Thurston's Report, 295.	Cu., Sn		
""" 8.887 Riche. J. 21, 270 """ 8.83 Riche. J. 23, 1100 Cu ₉ Sn 8.462 Mallet. D. J. 85, 378. """" """" """" """ """ """ """ """ """ """ """ """ """ 8.84 Riche. J. 21, 270 """ """ 8.72 Riche. J. 23, 1100 Mallet. D. J. 85, 378. """ 8.90 Riche. J. 21, 270 Riche. J. 23, 1100. """ 8.95 """ 8.95 """ 8.95 """ 8.95 """ 8.96 """ 8.96 """ 8.96 """ 8.96 """ 8.97 """ 8.95 """ 8.96 """ 8.97 """ 8.97 """ 8.97 """ 8.97	Cu ₁₀ Sn		Mallet. D. J. 85, 378
"" 8,87 Riche. J. 23, 1100. Cu ₉ Sn 8,462 Mallet. D. J. 85, 378. "" 8,84 Riche. J. 21, 270. "" 8,84 Riche. J. 21, 270. "" 8,86 Riche. J. 21, 270. "" 8,72 Riche. J. 21, 270. "" 8,90 Riche. J. 23, 1100. Cu ₆ Sn 8,750 Mallet. D. J. 85, 378. "" 8,65 Riche. J. 21, 270. "" 8,65 Riche. J. 23, 1100. Cu ₆ Sn 8,750 Mallet. D. J. 85, 378. "" 8,65 Riche. J. 21, 270. "" 8,65 Riche. J. 21, 270. "" 8,65 Riche. J. 21, 270. "" 8,65 Thurston's Report, 295. "" 8,65 Thurston's Report, 295. "" 8,65 Thurston's Report, 295. "" 8,65 Riche. J. 21, 270. "" 8,86 Riche. J. 21, 270. "" 8,965 Calvert and Johnson. J. 12, 120. "" <	(,		
"" 8,83 Riche. J. 23, 1100. Cu ₉ Sn 8,462 Mallet. D. J. 85, 378. "" 8,84 Riche. J. 21, 270. "" 8,86 Riche. J. 23, 1100. Cu, Sn 8,728 Mallet. D. J. 85, 378. "" 8,90 Riche. J. 21, 270. "" 8,90 Riche. J. 23, 1100. Cu ₆ Sn 8,750 Mallet. D. J. 85, 378. "" 8,91 Riche. J. 21, 270. "" 8,91 Riche. J. 23, 1100. "" 8,965 Calvert and Johnson. J. 12, 120. "" 8,965 Calvert and Johnson. J. 12, 120. "" 8,87 Riche. J. 21, 270. "" 8,948 Calvert and Johnson. J. 12, 120. "" 8,938 Thurston's Report, 295. "" 8,939 Riche. J. 23, 1100. "" 8,939 Riche. J. 23, 1100. </td <td></td> <td> 8.87</td> <td></td>		8.87	
Cu ₃ Sn 8.459 " "" "" "" "" "" "" "" "" "" "" "" "" "			
63 8.84 Riche. J. 21, 270. 64 8.86 Riche. J. 23, 1100. Cu ₂ Sn 8.72 Mallet. D. J. 85, 378. 64 8.72 Riche. J. 21, 270. 65 8.90 Riche. J. 23, 1100. Cu ₆ Sn 8.65 Riche. J. 21, 270. 64 8.65 Riche. J. 23, 1100. 65 Riche. J. 23, 1100. 66 8.91 Riche. J. 23, 1100. 67 8.95 Calvert and Johnson. J. 12, 120. 68 8.963 Calvert and Johnson. J. 12, 120. 69 8.87 Riche. J. 23, 1100. 60 8.87 Riche. J. 21, 270. 60 8.87 Riche. J. 23, 1100. 60 8.87 Riche. J. 23, 1100. 60 8.894 Calvert and Johnson. J. 12, 120. 60 8.938 Thurston's Report, 295. 60 8.939 Mallet. D. J. 85, 378. 60 8.939 Calvert and Johnson. J. 12, 120. 60 8.939 Calvert and Johnson. J. 12, 120.			
""" 8.86 Riche. J. 23, 1100. Cuz Sn 8.728 Mallet. D. J. 85, 378. """">"""">""""""""""""""""""""""""""	Cu ₈ Su		- "
Cu, Sn 8.728 Mallet D. J. 85, 378. " 8.72 Riche. J. 21, 270. " 8.90 Riche. J. 23, 1100. Cu ₆ Sn 8.750 Mallet. D. J. 85, 378. " 8.65 Riche. J. 21, 270. " 8.91 Riche. J. 23, 1100. " 8.565 Thurston's Report, 295. " 8.665 Calvert and Johnson. J. 12, 120. " 8.62 Riche. J. 23, 1100. " 8.87 Riche. J. 23, 1100. " 8.87 Riche. J. 23, 1100. " 8.94 Calvert and Johnson. J. 12, 120. " 8.94 Calvert and Johnson. J. 12, 120. " 8.93 Riche. J. 21, 270. " 8.93 Riche. J. 23, 1100. " 8.93 Riche. J. 23, 1100. " 8.93 Riche. J. 23, 1100. " 8.93 Mallet. D. J. 85, 378. Cu ₂ Sn 8.59 Mallet. D. J. 85, 378. Cu ₂ Sn 8.59 Riche. J. 23, 1100. <t< td=""><td></td><td></td><td>Riche. J. 21, 270.</td></t<>			Riche. J. 21, 270.
d' 8.72 Riche. J. 21, 270. Cu ₆ Sn 8.90 Riche. J. 23, 1100. Cu ₆ Sn 8.750 Mallet. D. J. 85, 378. " 8.65 Riche. J. 21, 270. " 8.91 Riche. J. 23, 1100. " 8.565 Thurston's Report, 295. Mallet. D. J. 85, 378. Calvert and Johnson. J. 12, 120. " 8.862 Riche. J. 23, 1100. " 8.87 Riche. J. 21, 270. " 8.80 Thurston's Report, 295. " 8.938 Thurston's Report, 295. " 8.954 Calvert and Johnson. J. 12, 120. " 8.96 Riche. J. 21, 270. " 8.96 Riche. J. 23, 1100. " 8.96 Riche. J. 21, 270. " 8.682 " " " "			
Cu ₆ Sn 8.750 Mallet. D. J. 85, 378. " 8.65 Riche. J. 21, 270. " 8.91 Riche. J. 23, 1100. " 8.565 Thurston's Report, 295. " 8.565 Thurston's Report, 295. " 8.665 Calvert and Johnson. J. 12, 120 " 8.67 Riche. J. 23, 1100. " 8.77 Riche. J. 23, 1100. " 8.948 Calvert and Johnson. J. 12, 120 " 8.938 Riche. J. 23, 1100. " 8.938 Thurston's Report, 295. " 8.938 Thurston's Report, 295. " 8.938 Thurston's Report, 295. " 8.954 Calvert and Johnson. J. 12, 120 " 8.959 Mallet. D. J. 85, 378. " 8.96 Riche. J. 21, 270. " 8.954 Calvert and Johnson. J. 12, 120 " 8.95 Riche. J. 21, 270. " 8.96 Riche. J. 21, 270. " " " Cu ₂ Sn	(i Si		
Cu ₆ Sn 8.750 Mallet. D. J. 85, 378. " 8.65 Riche. J. 21, 270. " 8.91 Riche. J. 23, 1100. " 8.565 Thurston's Report, 295. Mallet. D. J. 85, 378. Calvert and Johnson. J. 12, 120. " 8.62 Riche. J. 21, 270. " 8.77 Riche. J. 23, 1100. Cu ₄ Sn 8.400 Mallet. D. J. 85, 378. " 8.948 Calvert and Johnson. J. 12, 120. " 8.80 Riche. J. 23, 1100. " 8.938 Thurston's Report, 295. " 8.939 Mallet. D. J. 85, 378. Cu ₃ Sn 8.954 Calvert and Johnson. J. 12, 120. " 8.96 Riche. J. 21, 270. " 8.97 Thurston's Report, 295. " " " Cu ₂ Sn 8.416 Mallet. D. J. 85, 378. Cu ₂ Sn	((Riche J 23 1100
""" 8.65 Riche. J. 21, 270. """ 8.91 Riche. J. 23, 1100. """ 8.565 Thurston's Report, 295. """ 8.965 Calvert and Johnson. J. 12, 120. """ 8.62 Riche. J. 21, 270. """ 8.77 Riche. J. 23, 1100. """ 8.948 Calvert and Johnson. J. 12, 120. """ 8.938 Riche. J. 21, 270. """ 8.938 Riche. J. 23, 1100. """ 8.938 Thurston's Report, 295. """ 8.954 Calvert and Johnson. J. 12, 120. """ 8.96 Riche. J. 23, 1100. """ 8.96 Riche. J. 23, 1100. """ 8.970 Thurston's Report, 295. """ 8.512 Croockewitt. J. 1, 394. """ 8.512 Croockewitt. J. 1, 394. """ 8.57 Riche. J. 21, 270. """ 8.560 Thurston			Mallet. D J 85 378
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	٠		Riche, J. 21, 270
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$		8.91	Riche. J. 23, 1100.
""" 8.62 Riche. J. 21, 270. """ 8.87 Riche. J. 23, 1100. """ 8.948 Calvert and Johnson. J. 12, 120 """ 8.948 Calvert and Johnson. J. 12, 120 """ 8.80 Riche. J. 21, 270. """ 8.938 Thurston's Report, 295. """ 8.954 Calvert and Johnson. J. 12, 120 """ 8.954 Calvert and Johnson. J. 12, 120 """ 8.96 Riche. J. 23, 1100. """ 8.96 Riche. J. 23, 1100. """ 8.970 Thurston's Report, 295. """ 8.682 """"""""""""""""""""""""""""""""""""			Thurston's Report, 295.
""" 8.62 Riche. J. 21, 270. """ 8.87 Riche. J. 23, 1100. """ 8.948 Calvert and Johnson. J. 12, 120 """ 8.948 Calvert and Johnson. J. 12, 120 """ 8.80 Riche. J. 21, 270. """ 8.938 Thurston's Report, 295. """ 8.954 Calvert and Johnson. J. 12, 120 """ 8.954 Calvert and Johnson. J. 12, 120 """ 8.96 Riche. J. 23, 1100. """ 8.96 Riche. J. 23, 1100. """ 8.970 Thurston's Report, 295. """ 8.682 """"""""""""""""""""""""""""""""""""	Cu ₅ Sn		
""" 8.87 Riche. J. 23, 1100. Cu4 Sn 8.400 Mallet. D. J. 85, 378. """ 8.948 Calvert and Johnson. J. 12, 120 """ 8.80 Riche. J. 21, 270. """ 8.938 Thurston's Report, 295. """ 8.954 Calvert and Johnson. J. 12, 120 """ 8.954 Calvert and Johnson. J. 12, 120 """ 8.96 Riche. J. 21, 270. """ 8.96 Riche. J. 23, 1100. """ 8.970 Thurston's Report, 295. """ 8.570 Thurston's Report, 295. """ 8.512 Croockewitt. J. 1, 394. """ 8.512 Croockewitt. J. 1, 394. """ 8.533 Calvert and Johnson. J. 12, 120 """ 8.512 Croockewitt. J. 1, 394. """ 8.512 Croockewitt. J. 1, 394. """ 8.533 Thurston's Report, 295. """ 8.57 Riche. J. 21, 270. """ 8.57 Riche. J. 23, 1100. """ 8.312 Thurston's Report, 295. """" """"			Calvert and Johnson. J. 12, 120.
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	~		Riche. J. 21, 270.
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$			Mallet D. I. 25, 1100.
""" 8.77 Riche. J. 21, 270. """ 8.938 Riche. J. 23, 1100. Cu ₃ Sn 8.539 Mallet. D. J. 85, 378. """ 8.954 Calvert and Johnson. J. 12, 120 """ 8.91 Riche. J. 21, 270. """ 8.96 Riche. J. 23, 1100. """ 8.970 Thurston's Report, 295. """ 8.682 """ """ 8.512 Croockewitt. J. 1, 394. Cu ₂ Sn 8.416 Mallet. D. J. 85, 378. Cu 8.533 Calvert and Johnson. J. 12, 120 """ 8.533 Calvert and Johnson. J. 12, 120 """ 8.57 Riche. J. 21, 270. """ 8.57 Riche. J. 23, 1100. """ 8.57 Riche. J. 21, 270. """ 8.30 Thurston's Report, 295. """ """ """ Cu ₄ Sn ₃ 8.30 Riche. J. 21, 270. """ """ """ Cu ₄ Sn ₃ 8.30 Thurston's Report, 295. """ """ """ Cu ₅ Sn ₅ 8.182	6		
""" 8.80 Riche. J. 23, 1100. Cu ₃ Sn 8.938 Thurston's Report, 295. """ 8.954 Calvert and Johnson. J. 12, 120 """ 8.96 Riche. J. 23, 1100. """ 8.970 Riche. J. 23, 1100. """ 8.682 """"""""""""""""""""""""""""""""""""			Riche J 21 270
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$			
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$		_ 8.938	
" 8,954 Calvert and Johnson. J. 12, 120 " 8,96 Riche. J. 21, 270. " 8,96 Riche. J. 23, 1100. " Thurston's Report, 295. " " Cu ₁₂ Sn. 8,682 " S.512 Cu ₂ Sn. S.512 " S.533 " S.533 " S.15 " S.57 " Riche. J. 21, 270. Riche. J. 23, 1100. Thurston's Report, 295. " " " S.560 Thurston's Report, 295. " " Cu ₁₂ Sn. S.442 Riche. J. 21, 270. Riche. J. 23, 1100. Thurston's Report, 295. " " " Cu ₃ Sn. S.06 Riche. J. 21, 270. Riche. J. 23, 1100. Thurston's Report, 295. " " " Cu ₄ Sn. S.302 Riche. J. 23, 1100. Cu ₄ Sn. S.302 Riche. J. 23, 1100. Cu ₄ Sn. S.302 Riche. J. 23, 1100. <td< td=""><td>Cu₃ Sn</td><td>_[8,539</td><td></td></td<>	Cu ₃ Sn	_[8,539	
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	"		Calvert and Johnson. J. 12, 120.
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$			Riche. J. 21, 270.
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$			Riche. J. 23, 1100.
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$			Thurston's Report, 295.
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	$\operatorname{Cu}_{12}\operatorname{Sn}_5$		i ·
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$.:		
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$			
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$		8.15	Riche. J. 21, 270.
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$			Riche. J. 23, 1100.
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$			Thurston's Report, 295.
	Cu ₁₂ Sn ₇		
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	Cu_3 Sn_2	- 8.06	
Cu ₄ Sn ₃ 8.302 " " " " Cu ₆ Sn ₅ 8.182 " " " " Cu Sn 8.056 Mallet D. J. 85, 378 " S.072 Croockewitt J. 1, 394 " Calvert and Johnson J. 12, 120 " Riche J. 21, 270			Kiene. J. 23, 1100.
Cu ₆ Sn ₅ 8,182 " " " " " " " " " " " " " " " " " " "	Cu Su		rnursion's Report, 295.
Cu Sn 8.656 Mallet. D. J. 85, 378. Croockewitt. J. 1, 394. Croockewitt. J. 1, 394. Culvert and Johnson. J. 12, 120. Riche. J. 21, 270.	Cu. Sn.		
" 8.072 — Croockewitt. J. 1, 394. " 7.992 — Calvert and Johnson. J. 12, 120. " Riche. J. 21, 270.	Cu Su	8.656	36.1
"			
" Riche. J. 21, 270.			
" Riche. J. 23, 1100		7.90	Riche. J. 21, 270.
		8.12	Riche. J. 23, 1100

ALLOY.	Specific Gravity.	Антновиту.
copper and tin-continued.		
Cu Su	8.013	Thurston's Report, 295.
Cu ₃ Su ₄	7.948	1 11011 • 110 111, 239.
Cu ₃ Su ₅	7.805	· · · · · · · · · · · · · · · · · · ·
Cu Su	7.887	
Cu Sn ₂ Cryst.	7.50	Miller, P. A. 120, 55.
	7.735	Calvert and Johnson, J. 12, 120.
**	7.83	
	7.74	Riche, J. 23, 1100
	. 7.770	Thurston's Report, 295.
Cu. Sn. Furnace product.	G.994	Rammelsberg, P. A. 120, 54.
Cu ₂ Sn ₅	7.652	Rammelsberg, P. A. 120, 54, Croockewitt, J. 1,304.
Cu Sn ₃	. 7,447	Mallet. D J. 85, 378.
		Calvert and Johnson, J. 12, 120.
**	. 7.11	Riche, J. 21, 270.
	7.00	Riche, J. 23, 1100.
	7.657	Thurston's Report, 295.
Cu Su,	7.472	
	7.558	
	7.81	Riche, J. 21, 270,
	7,50	Riche. J. 23, 1100.
		Thurston's Report, 295.
Cu Sh.	7.442	Mallet, D. J. 85, 378,
	7.517	Calvert and Johnson, J. 12, 120.
**	7.25	Riche, J. 21, 270.
	7.52	Riche. J. 23, 1100.
	7.457	Thurston's Report, 295.
Cu Su,	7,060	44 44
Cu Su _{4s}	7,305	
Cu Su _m	7.299	
COPPER AND LEAD.	! 	
$\begin{array}{cccc} \mathbf{Cu} & \mathbf{Pb} & \dots & \dots & \dots \\ \mathbf{Cu}_2 & \mathbf{Pb}_3 & \dots & \dots & \dots \end{array}$		Croockewitt. J. 1, 394.
COPPLE AND ANTIMONY		
Cu ₁₁ Sb ₂	5,524	I to all a second
Horsfordite .	5,512 (
Cu. Sh	5.571	Kamenski, P. M. (5), 17, 271
Cu ₄ Sh Cu ₂ Sh	8,000	
Cu'sh	7,990	
COPPER AND DISMITH.		
C . In	9.664	Calvert and Johnson, J. 12, 120
SHIVER AND TIN.		
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	9,953, 147.8 9,507, 127,9 8,828, 647,8 8,220, 167,3	Holzmann. P. T. 1860, 177.

^{*} Kan cassa gives data for seventeen other Cu Shalleys.

ALLOY.	SPECIFIC GRAVITY.	Aı	UTHORITY.
SILVER AND TIN—continued.			
Ag Sn ₃	7.936, 19°.3 7.551, 18°.8	Holzmann.	P. T. 1860, 177.
$Ag \operatorname{Sn}_6$	7.666, 18°.4		"
Ag Sn ₁₈	7.421, 18°.6		"
SILVER AND LEAD.			
Ag ₄ Ph		Matthiessen.	P. T. 1860, 177.
Ag Pb		1	"
Ag Pb	11 144 189 9	d	46
$Ag Pb_4$			44
Ag Pb ₁₀	11.285, 22°.2	"	"
$\stackrel{\circ}{\mathrm{Ag}} \stackrel{\circ}{\mathrm{Pb}}_{25}^{10}$	11.334, 20°.6	"	"
SILVER AND COPPER.*			
A.c. Cu	9.9045	Levol. J. 5	700
Ag ₃ Cu ₂ Solid	Le court h	1	, 768.
" Molten	$\left[\begin{array}{c} 9.9045 \\ 9.0554 \end{array} ight. \left\{ \begin{array}{c} \end{array} ight.$	Roberts. C.	N. 31, 143.
GOLD AND TIN.	0.0001		
Au ₄ Sn	16.367, 15°.4	Holzmann.	P. T. 1860, 177.
Au ₂ Sn		1101211141111	1. 1. 1000, 177.
Au Sn	11.833, 14°.6		6.6
Au, Su,		44	44
$\mathbf{A}\mathbf{u}$ Sn ₂	10.168, 23°.7		44
Au., Sn ₅		"	44
Au Sn ₃	9.405, 23°.7	"	44
Au Sn.	8.931, 25°.6	"	46
Au Sn	8.470, 23°.1	"	44
Au Sng	8.118, 22°.4	"	4.6
Au Sn ₁₅	7.801, 22°.8	"	4.6
Au Sn ₅₀	7.441, 22°,9	"	"
GOLD AND LEAD.			
Au ₄ Pb	17.013, 14°.3	Matthiessen,	P. T. 1860, 177.
Au ₂ Pb	15.603, 14°.5	14	11. 11. 1000, 1771
Au Pb	14.466, 14°.3		"
Au Pb,	13.306, 22°.1	"	44
Au Pb ₃	12.737, 21°.3["	"
Au Pb4	12.445, 21°.6	46	"
Au Pb5	12.274, 19°.4	"	"
Au Pb ₁₀	11.841, 23°.3	"	"
GOLD AND BISMUTH.			
Au, Bi	14.844, 16°	Holzmann.	P. T. 1860, 177.
Au Bi	18.403, 16°.5	11	"
Au Bi ₂	12.067, 16	"	"
Au Bi	11.025, 23°	"	"

^{*} See Karmarsch, Beiblätter 2, 194, for sixteen Ag Cu alloys.

ALLOY.	Specific Gravity.	ATTHORITY,
Gelb AND BISMUTH continued.		
An Bi, Au Bi ₂₀ Au Bi ₄₀ Au Bi ₄₀	10.452, 21 ,4 10.076, 18 ',7 9.942, 21°,2 9.872, 21°	44
Au ₆ Cu	17,0340 17,1656 16,4832	Roberts. Bei. 2, 327.
GOLD AND SILVER.		
Au ₆ Ag Au ₄ Ag Au ₂ Ag Au Ag Au Ag Au Ag ₂ Au Ag ₄ Au Ag ₅	18,041, 182,1 17,540, 122,3 16,854, 162 14,870, 162 16,192, 142,0 12,257, 14,7 11,760, 182,1	" "
Pallabum and Lead.	11.925	Bauer. J. 24, 317.
PLATINUM AND LEAD.	, 15.77	Bauer. Z. C. 14, 48.
IRIDIUM AND OSMIUM. Ir Os. Newjanskite Ir Os ₄ . Sisserskite	19,080—19,471 21,115	Berzefius. Dana's Min.
TRIPLE ALLOYS.* CJ. Ph. Bi	10,563 10,762	
Pb Sn, Bi Pb Sn, Bi, Pb, Sn, Bi ₂ , Rose's all y	9.194, 11 9.254, 20 9.5125, 4	Regnault. P. A. 53, 67,
Ph. Su _b Bi ₁ . Rose's all by Ph. Su _b Bi ₁ . Darcet's be Su ₂ Sh Bi. Cu ₁ Ni Sh ₃ . Furnace product.	7,883, 20	Regnault. P. A. 50, 67, Sandberger, J. 11, 202,
quadruple alloys. Cd Sn Pb Bi		v. H mer. J. 18, 236.
Cd _a Sn Pa Br Weeds	9.751	Spring. Ann. (5), 7, 196.
miloy. C.I. Sh ₄ Ph ₄ Bi ₄ C.I. Sh ₄ Ph ₅ Bi ₄ C.I. Sh ₄ Sh ₄ Ph ₅ Bi ₄₀ C.I. Sh ₄ Ph ₆ Ph ₄₁ . Lapo- witz alloy.	9,725 9,685 9,7244, 4	v. Hauer. J. 18, 230. Spring. Ann. (5, 7, 196.

^{*} For the triple alloys of this n Za see Taurston's Report. For many small small see Joule, J. C. S., v. l. 16, 1863. Torialloys of platinum and gold see Princep, P. T. 1828.

XLV. HYDROCARBONS.

1st. Paraffins. $C_n H_{2n} + {}_{2}$.

	Name.		F	ORMULA.	SP. GRAVITY.	AUTHORITY.
Methane.	Liqu	efied	C H ₄ -		.37	Wroblevsky. C. R. 99, 136.
44			11 _		$\left. \begin{array}{c} .414 \\ .415 \\ .416 \end{array} \right\} - 164^{\circ} -$	Olszewski. P. A. (2), 31, 73.
			$C_3 H_8$.613, —25° .600, 0°	Lefebvre. J. 21, 329. Pelouze and Ca- hours. J. 16, 524.
• 6			"		.600, 0° .624, —1°	Ronalds. J. 18, 507. Lefebyre. J. 21, 329.
Normal pe	entane	. (B. 39°)			.636, 17°	Schorlemmer. J. 15, 386.
"			"		.6263, 17°	Schorlemmer. J. 19, 527.
"	"		"		.626, 14°	Cahours and Demar- çay. C. R. 80,1569.
"			**		.6267, 14°	Lachowicz. A.C.P. 220, 191.
"	"		"		.624, 11°.5	Gladstone. Bei. 9, 249.
••			.,		.6323, 17°	Norton and Andrews. A. C. J.
Isopentan	,	. 30°)	"		.6415, 11°.2 .6385, 14°.2	8, 7. Frankland. J. 3, 481.
			44		.628, 18°	Pelouze and Cahours. J. 16, 527.
11			4.6		.6375, 13°	Just. A. C. P. 220, 153.
**					$.6282, 13^{\circ}.7$ $.6132, 30^{\circ}.5$	Schiff. G. C. I, 13, 177.
			4.		.6402, 0° } .6111, 30° }	Bartolli and Strac- ciati. Bei. 9, 697.
Normal ho		(B. 69°).	$C_6 H_{14}$.6745, 180	Williams. J. 10, 418.
* *					.669, 16°	Pelouze and Cahours. J. 15, 410.
11	11		4.4		.678, 15°.5	Schorlemmer. J. 15, 386.
	11		1.		.6617, 17°.5 .6645, 16°.5	Dale. J. 17, 381. Wanklyn and Erlenmeyer. J. 16,
t t	t t		"		.6630, 17°	521. Schorlemmer. A.C.
4.6	"		4.4		.689, 0°	P. 161, 263. Warren. J. 21, 330.
11	11		4.4		.6641, 180)	Thorpe and Young.
ιι	11		11		.6620, 19°.5	A. C. P. 165, 1.
11	"		4.4		.667, 13°	Cahours and Demar- çay. C. R. 80, 1570.
**	"		11		.6199, 60°.8	Ramsay. J. C. S. 35, 463.

Name.	Formula.	SP GRAVITY.	Λ utinomity.
Normal hexane.	C ₆ H ₁₄		Zander, A. C. P.
4. 4.		6129,60° }	214, 181. Lachowicz. A. C.
	(,		P. 220, 102.
		.6142 68°,6 }	Schiff. G. C. I. 13.
4, 4,			177. Bruhl, A. C. P. 200, 183.
4. 4.	(.	_ 1,6550, 01)	Bartoli and Strac-
"			chati, Bei, 9, 697.
	44	6745, 181	Norton and An- drews, A. C. J. 1 S. 7.
Isohexane, (B, 62°) =====	44	7011. 0	Wurtz. J. S. 576.
**	**	676.0	Warren, J. 21, 330.
Hexane, B. 485-625		.5.417. 255	Gladstone, Bei, 9, 249.
" B, 50°=00°	4.	. 110, 252 .5755, 202,5	Wislicenus, A. C.
Methyl-diethyl-methane, (B. 64°.) Tetramethyl-ethane, or i	**	. 769, 108	P. 219, 315.
diisopropyl. (B. 58%)	44	.6701.171.5	Schorlemmer, J. 20.
**		.6599.29%	566.
	44		Riche, Ann. 3, 59, 426.
	**	1880 B 221	Zander, Λ_i C. P.
Hexane from suberie acid.	**		214, 181, Riche, Ann. (3), 59,
B. 78°. Normalheptane. (B.98°.4	С ₇ П ₁₆	709.171.5	426. Schorlemmer, J.15. 386.
From coal oil petroleum			Schorlemmer, J.16, 532.
· · · · · · · azelaicacid		.6851, 173,5	Dale, J. 17, 381.
	4.	. 9840, 20-,5	Schörlemmer and Dale, A. C. P. 136, 266,
		7085, 0°	Warren and Storer. J. 21, 331.
44 44	**	01, 120	Cahours and Demer- civ. C. R. 80, 1570
6 9 From petro- leum.		6967, 199	Beilstein and Kur- batow. Ber. 13 2028.
(i ii	**	.0015, 150)	Thorpe and Young.
44 44	• • • • • • •	,6910, 102 - v	A. C. P. 165, L.
· · · · (Abieter»			Wenzell, C. N. 39 182.
44 44 44		.70045, 00 .6105 (, 95°,43	Thorpe, J. C. S.
4		. 5176, 20	1 - 37, 371. Lachowicz, A ₁ C. P. 220, 193.
		.7291, 200	,
44 41	1		Lachowicz, A. C. P

	NA	ME.		Formula.	Sp. Gravity.	Антновиту.
or di	methy	ethyl-amyl, yl-butyl-me- 90°.3.	C, II	16	.7009, 0°	Wurtz. J. 8, 576.
thane.	. <u>.</u>		"		6010 150 5 1	Calcalana A G
	"				.6819, 17°.5	Schorlemmer. A. C.
	"				.6795, 20° ∫	P. 136, 259.
	"		"		.6789, 19°	Schorlemmer. A. C. P. 136, 264.
	"		"		.7259, 0°]	Schorlemmer. A. C.
	"		"		.7148, 15° [P. 136, 269. From
	"				.6999, 32° [petroleum.
	"				.6867, 48°]	•
			"		.6833, 18°.4	Grimshaw. A. C. P. 166, 163.
	"		"		.69692, 0°	Thorpe. J. C. S.
	"		"		.61606, 90°.3	37, 371.
	"				•6060, 91°	Ramsay. J. C. S. 35, 463.
Methyl- thane.		-propyl-me- 91°.)	""		.6895, 20°	Just. A. C. P. 220,
		ane. (B.96°)	"		.689, 27°	Ladenburg. B. S. C. 18, 548.
D:	, ,		"			(Friedel and Laden-
		iethyl-me-	44		.7111, 0°	burg. J. P. C.
thane.	(B.	86°—87°.)	4.6		.6958, 20°.5	101, 315.
"	Fron	petroleum_	"		.709, 16°	Schorlemmer. A. C. P. 166, 172.
Hentane	from	petroleum_	"		.7328, 00	1. 100, 172.
2 openie		3. 92°—94°) _	44		.6473, 92°-94°	
4.6	(1	. 02 /-	64		.7303, 00	Bartoli and Strac-
66			"		.6462, 92°-94°	ciati. Bei. 9, 697.
Normalo	etane	e. (B. 125°.5)	$C_8 H_1$.6945, 18°	Williams. J. 10,
						418.
"	66		"		.7083, 12°.5	Schorlemmer.
"	"		"		.7032, 17°	Schorlemmer. A. C. P. 161, 263.
"	"		"		.723, 0°)	
"	"		66		.721, 10° }	Riche. J. 13, 248.
"	"		"		.719, 17°.5	Schorlemmer. J.15, 386.
"	"		"		.726, 15°	Pelouze and Ca-
u	"		""		.728, 0°	hours. J. 16, 524. Wurtz. J. 16, 509.
"	"		"		.7207, 15°.5	(Thorpeand Young.
"	"		" "		.7165, 15°.6	Two lots. A. C.
"	"		"		.723, 13°	(P. 165, 1. Cahours and Demar-
		ļ				çay. C. R. 80, 1571.
"	"		"		.71883, 0°	Thorpe. J. C. S.
"	"		* *		.61077, 125°.46	∫ 37, 371.
"	"	From co- nicein.	"		.712, 11°	Hofmann. Ber. 18, 13.
Tetramet	hvl-h		"		.6940, 18°	Kolbe. J. 1, 559.
		B. 108°,53.)			,	o. 1, 000.
	""		4.6		.7057, 00	Wurtz. J. 8, 576.
	"				.7135, 0°	Kopp. A. C. P. 95,
	"		"			307.
					, 10 .1) .	501.

^{*} For a mixture of heptane and isoheptane from petroleum, B. 92°-94°, Pelouze and Cahours give a sp. g. of .699, 16° .

$\begin{array}{cccccccccccccccccccccccccccccccccccc$	Nav	dΕ.	FORMULA.	Sp. Gravity.	Λ urnority.
Alisebattyl. (B. 108 c. 54.) 170 s. 60 c. 170 lb. 10 17	Tetramethyl-l	outane, or C	`. II,	7091, 0°	
Gold, 20° Williams, J. C. S 55, 50° Williams, J. C. S 55, 50° S5, 125. S5, 125. S5, 125. S63, 100° S63, 10					
CSG, 308 Williams J. C. S 35, 125.		_		7015, 10°	
10	**		**	.6931, 20° [Williams I C S
$\begin{array}{cccccccccccccccccccccccccccccccccccc$			**		
Canada C	**	!			00, 129.
1.					
10					
Thorpe, J. C. S. G1519, 108°, 53 37, 371. 37, 371. 38, 38, 38, 38, 38, 38, 38, 38, 38, 38,					
Collage Coll		1			
Total 12°, 1					
$\begin{array}{cccccccccccccccccccccccccccccccccccc$					+ 37, 371.
Octane from petroleum, 36167 167° 8 177. Lenoine, B. S. C. 41. 161. B. 121° 1 41. 161. 41. 161. Common log (B. 143°) C ₂ H ₂₀ 741. 162. Common log (B. 143°) C ₂ H ₂₀ 744. 13° Cahours and Strace hours, J. 16, 524. Common log (B. 143°) C ₂ H ₂₀ 744. 13° Cahours and Demar cay, C. R. 80. 1571. Common log (B. 143°) C ₂ H ₂₀ Thorpe and Young A. C. P. 165. 1. Common log (B. 143°) C ₂ T ₂ T ₂ T ₃ T ₃ T ₃ Krafft, Ber. 15, 1687. Common log (B. 143°) C ₂ T ₂ T ₃				45.5 45.4	1 1
$\begin{array}{cccccccccccccccccccccccccccccccccccc$		No.			
$\begin{array}{cccccccccccccccccccccccccccccccccccc$					
Normal nonane. (B. 146°	Octane from [petroleum.	**	102.12	
Normal nonance. (B. 1496) C ₉ H ₁₀				= 1.00	
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$					
$\begin{array}{cccccccccccccccccccccccccccccccccccc$					
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	Normal nonar	ie. (B.149) (9 H ₂₀		
$\begin{array}{cccccccccccccccccccccccccccccccccccc$				711 100	
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$				144, 19*	gay.* C. R. 80
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$			**	7279, 18°.5	Thorpe and Young.
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	44 44	1		7830, 0°)	
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$			**	7224, 13°.5	
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	44 ++				Krafft, Ber. 15, 1687
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	4.4				
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	44 44			6541, 99°.1 J	
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	46 48		**	7124, 21°	
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$		(B. 136°)	.4		41, 161.
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	**	$(B, 130^{\circ})$			
$\begin{array}{cccccccccccccccccccccccccccccccccccc$					
$\begin{array}{cccccccccccccccccccccccccccccccccccc$		-			
Tetramethyl pentane, or buryl-amyl. (B. 132.) C ₁₀ H ₂₂					
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$					
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$		4 - 7 - 1			
$\begin{array}{cccccccccccccccccccccccccccccccccccc$		l. (B. 132.)			
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	Normal decan	e. (B. 167°) - 0	C ₁₀ H ₂₂		A. C. P. 165, L.
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	4.4	(B. 170) .			Jacobson. A. C. P
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$					184, 202.
7342, 15° Krafft, Ber. 15, 1687 7304, 20° Krafft, Ber. 15, 1687 7304, 20° Krafft, Ber. 15, 1687 7304, 20° Krafft, Ber. 15, 1687 Recommendation of the comment of the commen		(B, 175°)			
7304, 20°					
	1.6		**		Kraift, Ber. 15, 1687
220, 180.					
Diisoamyl. (B. 155°)	.4				220, 180.
	Diisonmyl. (1	B. 1557)		7704, 11°	. Frankland, J.3, 479

^{*} Preparations from petroleum, being at 1300 to 1100, and doubtless containing admixed Isomers

NAME.		FORMULA.	SP. GRAVITY.	AUTHORITY.
Diisoamyl. (B. 158°	C ₁₀ H	L ₂₂	.7410, 0° .7282, 20° }	Wurtz. J. 8, 573.
" (B. 159°			.7365, 18°	Williams. J. 10, 418.
" (B. 156° " (B. 159°			.753, 0° .7358, 9°.8	Wurtz. J. 16, 510. Schiff. G. C. I. 13,
(D. 193	"		.6126, 159°.4	Sehiff. G. C. I. 13,
" (B. 160°	')		.7463, 22°	Just. A. C. P. 220,
" (B. 157°	2.1)		.72156, 22°	156. Lachowicz. A. C. P. 220, 172.
Decane. (B. 160°)			.757, 16°	Pelouze and Ca- hours.* J. 16, 524.
" (B. 159°)			.758, 14°	Cahours and Demar- çay.* C. R. 80,1571.
" (B. 155°—I	(60°) - ''		.760	Cloez.† C. R. 85, 1003.
" (B. 162°—1	.63°) - ''		.7324, 20° }	Lachowicz. † A. C.
" (B. 152°—1			.7187, 21°	P. 220, 195.
44			.753, 15°.6	I amain # D G G
			.751, 17° [Lemoine.* B. S. C. 41, 161.
"			.739, 33°.5 J	,
			.7711, 0° .6475, 158–162°) Bartoli and Strac- (viati.* Bei.9,697.
Undecane. (B. 181°)	C ₁₁ H	24	.766	Pelouze and Ca-
" (B. 177°)			.770, 14°	hours.* J. 16, 524. Cahours and Demar-
" (B. 179°)			.769	çay.* C. R. 80,1571. Cloez.† C. R. 85, 1003.
" (B. 180°-1	182°)_ "		.7816, 00) Bartoli and Strac-
.,, , , , , , , , , , , , , , , , , , ,	"		$.6448,180 - 182^{\circ}$	} ciati.* Bei.9,697.
Normal undecane, (B. 19	(4°.5.)		.7560, 0°]	
11 11	"		.7557, 0° .7448, 15°	Krafft. Ber. 15, 1687.
"			.7411, 20°	Melts at —26°, 5.
11 11			.6816. 99° il	
Dodecane. (B. 202°)	C ₁₂ H	26	.7574, 0°	Wurtz. J. 8, 576.
" (B. 198°)			.7568, 18° .778, 20°	Williams, J. 10, 418. Pelouze and Ca-
(B. 200°)	1		.784, 14°	hours.* J. 16, 524. Cahours and Demar-
" (B. 196°.			.782	çay.*C, R. 80,1571. Cloez.† C. R. 85,
" (B. 201°)	<i>'</i>		.7738, 17°	1003. Schorlemmer. A. C.
" (B. 198°=			.7915, 0°	P. 161, 263. Bartoli and Strac-
`	"		.6442,198-200°	ciati.* Bei.9,697.
Normal dodecane.	1.10 5) ((.7655, 0°)	
	14°.5) "		.7548, 15° .7511, 20°	Krafft. Ber. 15, 1687.
			.6930, 99°.1] [

^{*} From petroleum. Doubtless a mixture of isomers.

[†] From hydrogen evolved from cast iron. Constitution undetermined.

[†] Two isomers from Galician petroleum. Constitution undetermined.

 -				The state of the s
	Name.	Formula.	SP. GRAVITY.	Λ етновиту.
Tridecar	ne. (B. 219°)	C ₁₃ H ₂ ,	.7(6), 17°	Pelouze and Ca-
4.4	(B. 2174.5)		.700	hours.* J. 16, 524. Clocz.† C. R. 85, 1003.
	(B. 218°-220°)		.8016, 0° .6469,218-220°	Bartoli and Strac- ciati.* Bei.9,657.
Normal:	tridecane.(B.234 5)	4.	.7716, 00)	1
* *			.7713, 0°	
4.4			·7008, 15° }	Kraift. Ber.15, 1687.
			.7005, 992	
Tetradec	cane. (B. 2387)	С 14 П 30	.809, 205	Pelouze and Ca- hours.* J. 16, 524.
4.	(B. 236°)		.512	Cloez.† C. R. 85, 1003.
	$(B, 286^{\circ}-240^{\circ})$	**		Bartoli and Strac-
		h.		∫ ciati.* Bei.9.697.
Normal	tetradecane. = (B. 2525, 5)		.7750, 13.5.2 1.7750, 5°	
	(1), 202 (0)		.7715, 102	
			.7681, 15°	Kraift, Ber. 15, 1687.
* *			.7645, 201 [1]	Melts at 4°, 5.
		**	.7087, 00°.2 J	11 45 15 16 0010
Pentade	eane. (B. 260°)	$C_{15}^{\prime\prime}\Pi_{32}^{\prime\prime}$	7788, 52.4.11. .825, 193	Krafft, Ber. 19, 2218. Pelouze and Calours.* J. 16, 524.
	(B. 2582)		,830 088,	Clocz.† C. R. 85, 1003,
• •	(B. 258"-262"		.5224, 03) Bartoli and Strac-
41			63852582621	 j ciati.[±] Bei,9,697.
Normal	pentadecane. · (B. 2705)		.7757, 10° 1	
	(D. 2107.0)		.7724. 15	Krafft, Ber. 15, 1687.
			.7680, 201	Melts at 10°.
* *	**		.7186, 99°.3	
	me, dioctyl, or di-	C ₁₆ II 4	.550	Clocz.† C. R. 85, 1 1003,
1-octV.	I. (B. 278.)	"	.7488, 15°	Eichler, Ber. 12, 1882.
"	(B. 265•,5)		,50 <u>99</u> , 0°	Alechin. Ber. 16, 1225,
4.6	(B. 261)		.50011, 152	Luchowicz, A. C. P. 220, 187.
4.4	(B. 278 -282°)		,5257,00	/ Bartoli and Strac-
	* *		. 60000, 275-252°	i ciati. * Bei. 9, 697.
Normal	hexdecane.	**	.7754.18	
	₩ (B.2875		.7712, 20° .7707 25° }	Krafft, Ber. 15, 1687.
**			7197, 592	Melts at 18.
b +			.7754.117.2	Krafft, Ber. 19, 2218.
Heptade	cone. (B. 303	\mathbf{C}_{17} Π_{jh}	77-4.22 .5	
* *		**	.7747, 221 5 .7749, 25	Krafft † Ber. 15,
4.	-		.7714, 305	1687. Melts at
		11	.7245, 995	22 .7.

^{*} From petrolenin. Probably a mixture of isomers. † From hydrogen evolved from east ir m = Constitution undetermined.

¹ All of Krefft's parathus are said to belong to the normal series.

		1	
Name.	FORMULA.	Sp. Gravity.	AUTHORITY.
Octadecane. (B. 317°)	C ₁₈ H ₃₈	.7768, 28°]	
"		.7754, 30°	77
		7719, 35° }	Krafft. Ber. 15, 1687.
46	"	.7685, 40° .7288, 99°	Melts at 28°.
"	"	.7766, 28°	Krafft. Ber. 19, 2218.
Nondecane. (B. 330°)	C ₁₉ H ₄₉	.7774, 32°]	
		.7754, 35°	Krafft. Ber. 15, 1687.
		.7720, 40° [Melts at 32°.
Ti (M. 930.7)	C II	.7323, 99°.3	2,20760 (10 02)
Eicosone. (M. 36°.7)	C_{20} II_{42}	$\begin{bmatrix} .7779, 36^{\circ}.7 \\ .7487, 80^{\circ}.2 \end{bmatrix}$	Krafft. Ber. 15, 1711.
"		.7363, 99°.2	Krant. Der. 19, 1711.
	"	.7776, 36°.7	Krafft. Ber. 19, 2218.
Heneicosane. (M. 40°.4)	C ₂₁ H ₄₄	.7783, 40°.4	
		.7557, 74°.7	Krafft. Ber. 15, 1711.
		.7400, 98°.9	
Docosane. (M. 44°.4)	C ₂₂ H ₄₆	.7782, 44°.4	"
"		$\begin{array}{c} 0.7549, 79^{\circ}.6 \\ 0.7422, 99^{\circ}.2 \end{array}$	"
Tricosane. (M. 47°.7)		.7785, 47°.7	
111cosaite. (31. 41 .1)	C ₂₃ H ₄₈	.7570, 80°.8	cc c6
"	((.7456, 98°.8	
Tetracosane. (M. 51°.1)	C ₂₄ H ₅₀	.7786, 51°.1)	
**		.7628, 76° }	"
"	(Tr	.7481, 98°.9	
Heptacosane. (M. 59°.5)	C ₂₇ H ₅₆	.7796, 59°.5	u u
		.7659, 80°.8 .7545, 99° }	., .,
Hentriacontane. (M.68°,1)	C ₃₁ H ₆₄	.7808, 68°.1	
"	3164	.7730, 80°.8	
	((.7619, 98°.8	
Dotriacontane. (M. 70°)	C ₃₂ II ₆₆	.7810, 70°	Krafft. Ber. 19, 2218.
Pentatriacontane.	C ₃₅ H ₇₂	.7816, 74°.7	17 05 D 17 1911
" (M. 74°.7)	"	.7775, 80°.8	Krafft. Ber. 15, 1711.
	$C_n H_{2n} +_2 \dots$.7664, 99°.2) .913)	
M. 61°	on 112n 2	.921	
" M. 67°		.927[Thursday 1
" M. 72°		.934 []	From ozokerite. Sauerlandt. J.
" M. 76°		.940	1879, 1147.
" M. 82° " M. 38°		.948]	10.0, 11
M. 55°		.872, 17° }	
" M. 43°		.883, 17°)	
"	"	.788, 55°	
		.889, 17° }	İ
" "		.785, 55° j	1
" M. 46°		.887, 173 }	Albrecht. D. J.
" M. 47°		.781, 60°-65° §	218, 280.
" M. 47"		.900, 17° } .775, 60°-65° }	
" M. 51°		.908, 17° }	
		.775, 60°-65°	
" M. 56°		.912, 17° (
" "		.777, 60°–65° }	J
			-

^{*}No attempt has been made to secure completeness concerning the specific gravity of common paraffin. The data given are included only to facilitate comparison.

	Name.	FORMULA,	SP. GRAVITY	Астновиту.
Paraffin.	M. 08 ²		.874, 21°, 8 .788, 68° .779, 40°, 4 .775, 49° .771, 54°, 5 .767, 60°	From shale oil, Beilby, J.C.S., Sept., 1883, 388, Data given for sp. g. of parallin in solution.

2d. Olefines. $C_n \mathbf{H}_{2n}$.

Name.		FORMULA.	Sp. Gravity	Аптновиту.
— Ethylene, Liqu	efiedC,	П,	414, —21°	(
100				
**			353, -3°.7	Cailletet and Ma-
14		46		thies. C. R. 102
n		Н		† 1202. . Chapman, J. 20,581
Butylene	(4			
			.639, —14°.2	28, 207
Amylene	C.	H ₁₀		Mendelejetř. J. 13.7
			,6533, 10°	Bauer. J. 14, 660.
**			66277, 0°	1
				- 1
			61450, 17°	Buff. A. C. P.,
		••		Supp. Bd., 129.
		14	679, 00	Buff. J. 21, 334.
				Ramsay, J. C. S. 35
				463.
**				
**		**	6840, 85°.6	Schiff, G. C. I. 13
4.6			, 6856, 86°,8)	187.
			.6503, 21°	. Gladstone. Bei. 9
				249.
Trimethyl ethyl	eme		6783, 0°	. Le Bel, B. S. C. 25
	1			517.
3. Ethyl methyl	ethylene		,670, 0^ •	Le Bel. B. S. C. 25
			.618, 0°	Flawitzky, Ber. 11
Isopropyl ethyle	.;;;,,			962.
Hexylene	C.	П,	.709, 120	Pelouze and Ca
Treating and				hours, J. 16, 520
å a			(6937.)	
**		**	.6986 ()	Wurtz. J. 17, 511
**			702, 0°	. Geibel and Buff. 🦂
				21, 336.
			(999) 00 (Hecht. A. C. P. 163
				146.
Tetramethyl etl	vil. no	4.4		Pawlow, A. C. I

	1		
NAME.	FORMULA.	SP. GRAVITY.	AUTHORITY.
 a. Ethyl dimethyl ethylene. " β. Ethyl dimethyl ethylene. 	C ₆ H ₁₂	1.000, 10)	Jawein. Ber. 11, 1258.
lene. " "		.687, 19° }	**
Heptylene	C ₇ H ₁₄	.718, 18°	Williams. J. 11, 438.
"		.7060, 12°.5 .7026, 19°.5	Schorlemmer. A. C. P. 136, 257.
	"		Grimshaw. A. C. P. 166, 163.
"	(,	Renard. Ber. 15, 2368.
		.71812, 20°	Sokolow. Ber. 21,
Dimethyl isopropyl ethylene.		.6985, 14°	ref. 56. Markownikow. Z. C. 14, 268.
· · · · · · · · · · · · · · · · · · ·			Pawlow. A. C. P. 173, 194.
Oetylene	j	.708, 16°	Cahours. C. R. 31, 143.
"		.723, 17°	Bouis. J. 7, 582.
"	"	.737, 20° .7396, 0°	Fittig. J. 13, 320. Warren and Storer.
"		.7217, 17°	J. 21, 331. Möslinger. Ber. 9,
"	4.	.7294, 9°.9 }	1000. Schiff. G. C. I. 13,
"	٠	$[.6806, 123^{\circ}.4]$	177. G. C. 1. 15,
"	٠,	.7222, 220	Laehowiez. A. C. P. 220, 185.
"	"	.7197, 20°	Brühl. A. C. P. 235, 1.
"		.73645, 20°	Sokolow. Ber. 21, ref. 56.
Diisopropyl ethylene		.7526, 16°	Williams. Ber. 10, 908.
Methyl ethyl propyl ethylene.		.73138, 20°	Sokolow. Ber. 21, ref. 56.
Diisobutylene		.734, 0°	Butlerow. J. C. S. 34, 122.
		.737, 0°	Lermontoff. A. C. P. 196, 116.
Nonylene. B. 145°	C ₉ H ₁₈	.757, 20°.5	Fittig. J. 13, 321.
В. 153°		.7618, 0°	Warren and Storer. J. 21, 331.
" B. 134°	"	.853, 18°.4	Lemoine. B. S. C. 41, 161.
"		.74333, 20°	Sokolow. Ber. 21, ref. 56.
Diamylene. B. 165°	C ₁₀ H ₂₀	.7777, 0° .8416, 0° }	Bauer. J. 14, 660.
и В. 151°	"	.8248. 200	Schneider. A. C. P. 157, 208.
" B. 174°.6	"	.8248, 20° } .7912, 0°	Warren and Storer.
" B. 175°.8	"	.823, 0°	J. 21, 332. Warren and Storer. J. 21, 331.
"	"	.7789, 10°	Sehiff. G. C. I. 13, 177.

NAME.		FORMULA.	SP. GRAVITY.	Аттиовиту.	
Diamylene.	B, 156°	С 10 Н 20		Schiff G. C. L. 17	
			6615 (199° c	177.	
4.6		**		Nasini and Bern heimer, G. C. I	
				15, 50,	
* 6	B. 165°		' .855, 14°	Lemoine, B. S. C	
	B. 164°		7887, 200	41, 161. Lachowicz. A. (
Endecylene .		C ₁₁ H ₂₂	.752.00	P. 220, 177, Warren, J. 21, 330	
interpreters		* *	, 500 (10 L	Werren and Stores	
			.791.02	J. 21, 332.	
Dodocylene.	B. 216°	$C_{12} \Pi_{21}$	791.40°	Warren, J.21,000	
	B. 2129.6		8361)		
4 x	B 208 =215°.			Warren and Stores	
* *				J. 21, 332.	
* *					
* *			7729 00		
• •			- 3132 to 5	_ Krafft, Ber. 16, 2018	
4.			.7620, 15%		
· · ·			7511. 80°		
	В. 1962 - Рол.		.790, 0° - 7 .750, 19° - 7	From two source	
**				Jawein, Ber. 11	
* *			798, 100	1258.	
		.,		(Butlerow, Men	
Triisobutyle	ne. B. 1782			Acad. St. Pe	
		***	.746,500 +	tersb., 1879.	
		**		Lermontoff, A. C	
				P. 196, 116.	
	B. 180°	14	782.10	1	
**	17. 17.07		7135, 519.6		
11			707, 990,5		
* *					
* *		11		Five different lot	
**			.708, 603,5	Puchot. And	
		**	,707,1002.2	(5), 28, 525.	
		**	.780, 0"		
. 6			.779,00		
* *		**			
Tridecylene		C ₁₃ H ₂₆	8145, 0°	Warren and Store J. 21,332.	
Tetradecyler	1**	C1+ H25			
9.5			7552, 08 [Kraift Ber. 16, 201;	
* *		**			
**			7635, 30°	D	
Trianylene		$-\frac{C_{15}}{C_{15}}\frac{H}{H}_{0}$	8139	Bauer. J. 14, 660	
Cetene, B 2	(1)	C ₁₆ H _Q	7893, 15°.2 7915, 4°)	Mendelejeff, J. 13,	
• •			7839, 15		
**			7686, 879.1		
			.7917, 19	Two sample	
			78 12, 150	Krafft, Ber. 1	
			[7689, 679.1]	3018.	
Dioctyleta	** *****			Bouis, Watts' Die	
Etherel, B		-		Dunias and Boulla	
ALCOHOLD SECTION AND ADMINISTRATION OF PERSONS ASSESSMENT ASSESSMENT ASSESSMENT ASSESSMENT ASSESSMENT ASSESSME	and the second second				

NAME.	FORMULA.	Sp. Gravity.	AUTHORITY.
Etherol	C ₁₆ H ₃₂	.921	Serullas. Ann. (2), 39, 178.
Tetramylene	C ₂₀ H ₁₀	$\left\{ \begin{array}{c} .7881, 22^{\circ}.1 \\ .7790, 35^{\circ}.6 \end{array} \right\}$	Krafft. Ber. 16, 3018.
Melene	C ₂₇ H ₅₄	.861, 15°	Weltzien's "Zusam- menstellung."

3d. Acetylene Series and Derivatives.

N	YAME.	FORMULA.	Sp. Gravity.	AUTHORITY.
 	Liquefied	" " " " " " " " " " " " " " " " " " "	.460, —7°	Ansdell. C. N. 40 136. Critical to. 37 ^d .05.
u Isopropyl a	B. 41°—42°	"	.69999, 0° .687386, 17° .65719, 41° .65082, 42° .652, 11° .6854, 0°	Buff. A. C. P., 4 Supp. Bd., 129. Bruylants. Ber. 8, 407. Flawitzky and Kriloff. Ber. 11, 1939. Williams. J. 13, 495.
Hexoylene.	Pentine B. 80°—83° 59°.5	C ₆ H ₁₀	.6709, 18° .6766, 18° .710, 13° .7494, 0° .7377, 13° } .684, 14°	Gladstone. J. C. S. 49, 623. " Reboul and Truchot. J. 20, 587. Hecht. Ber. 11, 1051. Berthelot and Luca.
		" " " " " " C ₆ H ₆ ————————————————————————————————————	$\begin{array}{c} .68724, 17^{\circ} \\ .64682, 59^{\circ}.5 \\ .64564, 58^{\circ} \\ .7074, 0^{\circ} \\ .6508, 59^{\circ}.5 \\ .6983, 11^{\circ}.9 \\ .6503, 59^{\circ}.3 \\ .6880, 20^{\circ} \\ .8579, 18^{\circ}.2 \\ . \end{array}$	J. 1, 590. Buff. A. C. P., 4th Supp. Bd., 129. Zander. A. C. P. 214, 181. Schiff. G. C. I. 13, 177. Brühl. Bei. 4, 780. L. Henry. C. N. 38, 101.

NAME.	FORMULA.	SP. GRAVITY.	Апиновиту
Dajoropargyl			(2) 11 1215
	*,	.52	Berthelot and Ogier
Ethyl propyl acetylene			Stru
Tetramethyl allylene	**	$.9518, 9^{\circ} - \dots$	L. Henry, Ber. 8
Methyl propyl allyl me		.5031, 202	Renard, C. R 97 419.
Heptidene		.7155, 200	Bruhl, A, C, P 235, 4.
Conylene	$C, \Pi_{11}, \dots, \dots$.76076, 15°	Wertheim, A. C. P 123, 157.
From allyl diethyl carbi- nel.			Reformatsky, J. P
** **		.75622, 182	C. (2), 30, 217.
From allyl dipropyl carbi- nol.	C 10 H 15	.78300	
		.1525	
		.7726) .7705 - 15°	
44		.7738	Reformatsky, J. F C. (2), 27, 980.
		.7665 (=0") .7703 -	
		.7725, 202.6	A711 1 1 1 1 1 1
From allyl dimethyl carbinal.	C ₁₂ .11 ₁₀	.8530, 01 / .8385, 201 /	Nikolsky and Sayt: off, J. P. C. (2 27, 383.
11		.9512.0°)	Albitsky, J. P. C
Dodecylidene	 C ₁ , 11,,	.8349, 210, 4	24, 20, 213,
		.7917.150 [] \ .7788.822.5	Krafft, Ber. 17, 1871
Tetradecylidene	C_{11} H_{21}		
Bonylene	$\frac{2}{c_{\rm B} H_{\rm S}} = \frac{1}{111111}$.78° 2, 30° 1 ° 1 .9114, 0° 1	Wertheim, A. C. 1
Trivalerylen		,862-15	123, 457 Reboul, J. 20, 587
He yadaay lidene	Α ₃ , Π ² ,	.80d9, 20 (.79d9, 30 (Krafft, Ber 17, 147
Oct alege ddene Loo yn ne lli lli o llilli	Call Land	.5151.24	Lippmannen III. w liezek. Ber 12, 7:

4th. Benzene Series.

NAME.		FORMULA.		Sp. Gravity.	AUTHORITY.	
	ie	C ₆ H	[₆	.85, 15°.5 }	Faraday. P.T. 1825,	
"		"		.956, —18°,s. ∫ .85	440. Mitscherlich. A. C.	
				0.5	P. 9, 43.	
"		"		.85	M ansfield. J .1,711.	
"		**		$\left \begin{array}{c} .89911, 0^{\circ} _\ .88372, 15^{\circ}.2 \end{array} \right\}$	Wann D A 79 949	
**		"		.88354, 15°.3	Kopp. P.A. 72, 243.	
"		"		.8931, 5°—10°		
"		"		.8827, 10°—15°	(Regnault. P. A.	
11		"		.8838, 15°—20°	$ \int 62, 50.$	
46		"		.8841, 15°	Mendelejeff. J. 13, 7.	
"				.8667	Church. J. 17, 581.	
"		"		.8957, 0°)	, , , , , , , , , , , , , , , , , , ,	
"		44		.8820, 15°.5	Warren. J. 18, 515.	
"		"		.895, 3°)	Jungfleisch. C. R.	
"		"		.812, 80°.5 }	64, 911.	
"				.8995, 0° j	•	
"		"		.8890, 10°	Louguinine. Ann.	
"		4.4		.8784, 20°	(4), 11, 453. Other	
"		"		.8568, 40° []	values given for	
44		"		.8349, 60° []	intermediate t°s.	
"		"		.8126, 80° J		
"		"		.90023, 0° }		
"				.89502, 5°		
"		44		.88982, 100		
66				.88462, 15°		
		44		.87940, 20°		
"				.87417, 25°	•	
"		"		.86891, 30°		
"		"		.86362, 35°		
"		"		.85829, 40°	Adrieenz. Ber. 6,	
11		"		.85291, 45°	442.	
				.84748, 50°		
"				.84198, 55° .83642. 60°		
"				.83078, 65°		
		44		.82505, 70°		
44		4.6		.81923, 75°		
"		44		.81331, 80°		
44		4.6		.899487, 0°		
"		44		.883573, 15°		
::		44		.872627, 25°	Pisati and Paterno.	
"		4.6		.846170, 50°	J. C. S. (2), 12,	
"		"		.818721, 75°	686.	
"		6.6		.88029	Landolt. Ber. 9, 907.	
"		44		.8773, 20°	Naumann. Ber. 10, 1422.	
6("		.8142, 80°	Ramsay. J. C. S. 35, 463.	
"		"		.8858, 15°	Thorpe and Watts. J. C. S. 37, 102.	
		"		.8111.80°	Schiff. Ber. 14, 2769.	

	Name.		FORMULA.		SP. GRAVITY.	Ацтновиту.
		C ₆ 1	I ₆		9000, 0° }	Dieff. J. P. C. (2
4.4					8518, 20° {	27, 368. Schiff. G. C. I. 1:
					8839, 14°.2 8111, 80°.1	Schiff, G. C. I. 1: 177.
					8799, 200	Brühl. Bei. 4, 780
4.6					87901, 20°	Flink. Bei. 8, 26
4 s					8719, 25%,7)	Schall. Ber. 17, 255
11					8845, 13°.8	Schiii. Ber. 17, 299
4.4					8851, 7°5)	C1 1
**					$\begin{array}{c} 8901 \\ 8903 \end{array}$ 10°	Gladstone. Bei. 249.
"					8801, 20°	Knops. V. H. V 1887, 17.
		'			\$5716, 40°.1	1001, 11.
. 4					85493, 41°.3 84324, 53°.2	Taken at differen
					84006, 54°.7	pressures, eac
					83101, 64°.1	to, being the boi
4.4					83081, 649.2	ing point at tl
• •					82099, 72°,9	f pressure of served. No
6.4					82079, 73°,4	beck. Z. P.
					81387) 79°,2	1, 654.
4.6					81392 (''' :- 81297, 79°.9	,
4.6			·		87907, 20°	Weegmann, Z. P.
•••					01001, 20	2, 218.
oluene		C ₇	И _в		86	Pelletier and Water, Gm. II.
**					821	Couerbe. Gm. H.
••					864, 23°	Glénard and Bo dault. Gm. II.
44		'			87, 18° 8650	Deville. Gm. H. Church. J. 17, 53
					8824, 0°)	
					8720, 15° } ==	Warren. J. 18, 51
					881, 5°	Tollens and Fitti A. C. P. 131, 30
4.4					8841, 00]	
. 4					8657, 20°	Louguinine. An (4), 11, 453. Oth
4.4					8875, 50° }	values given f
4.4		' '	•		8086, 80° 7889, 100°	intermediate tos
					866, 20°	Post and Mehrter
					.8657, 20°	Ber. S. 1551. Naumann. Ber. 1
						1425.
* *					.7650, 111°	Ramsay. J. C. 35, 463.
					.5522, 0° .5797, 2°.77	
					.8722, 10°.89	
					8692, 14°.13	
					S658, 15°.43	
					8556, 28°.74	Naccari and Pa
					.5430, 42°.24	liani. Bei, 6, 8
* *					.8258, 60°,04	Several other i
					.8136, 72°.46	termediate vi
			4 4		7874, 99°.01	ues are given.

Tolnene
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$
##
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$
"
"
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$
"
"
" " " " " " " " " " " " " " " " " " "
"
"
"
"7335, 132-134° Ramsay. J. C. 35, 463.
35, 463.
" Brühl. A. C.
235, 1.
Orthoxylene
Gindstone. Bel.
" 249. Colson. Ann. (
" Colson. Ann. (
"81449, 90°.4]
" .81422, 90°.6
"79497, 112°.7 Taken at differe
" " .79435, 112°.9 pressures, each
" 178204 1230.8 being the boili
"
" " .77398 \ 133°.9 ure observe Neubeck, Z.
" (" (" C 1 650
"
"
"
"

^{*}Exact character not specified. For sp. gr. of several mixed xylenes see Lewinstein, Ber. 17, 446.

	NAME.	FORMUL.	Λ.	SP. GRAVITY.	Аттиовату.
				. 7	
		$\mathbf{C}_{6}[\mathbf{H}_{4}](\mathbf{C}[\mathbf{H}_{3})_{2}.$	1.5	.575, 02 1	Warren, J. 18, 517
4.4				. ~ (a). 10°)	
		• • • • • • • • • • • • • • • • • • • •		.8715, 12°.8 .7567, 169°	
* *					Schiff, G. C. I
* *		44		-7571 ± 1892.2	13, 177.
i s		4.		.7572) 155 .2	(1) 1 11 : (
4.6		**		.8726, 15°.5	Glad-tone. Bei. 9 249.
* *		4,		.861, 24°,5	Colson, Ann. (6 6, 86,
"		4.		.8655, 20°	Bruhl, A. C. I 205, 1.
44		4.4		,80584, 883,8)
44					
		4.		.75722, 1052, 3	m 1
				.78667, 108°,7	Taken at differen
				.77183, 1202.5	pre-sures, each t
		4.		.77127. 1210.5	being the boilir
44		6.6		** . t . t .) ()	f point at the pre-
4.4					ure observes
				757000	Neubeck, Z.
46		66		$\frac{13705}{75705}$ \ $138^{\circ}.1$	C. 1, 656.
				750584	
		45		$\left\{ \frac{75658}{75685} \right\}$ 139°,1	
		44		,531334 ,8312, 0°	Pinette, A. C.
5 K		"		7567, 1852.9 (213, 50.
		4,	1 1	5621, 198,5	
Paraxyle	no	••	1.7 -	79=1.10 .9	A. C. P. 136, 30
				7518 1 136°,5	Schiff, Ber. 11, 279
+ 4		4.4		7515 (1997.9)	SCHIII. DOLLETT. = C
4.4				8188.16°	Gladstone. Bei. 249.
		4.		854, 214, 5, 111	Colson, Ann.
.,		4.		80215 + _{860 9}	
4.6		4.6		40150	Tr. 1 1100 m
		4.		78811, 1062,9	Taken at differe
4.4		4.6		,78310, 107%.L	pressures, en
4,				77292, 1192	i'. being t
4.4		4.4		7506×) 100c.	boiling point
				- Mass - 1-1	
.,				75120	served. Ne
				75421 5 104 1	
		1.1		T 5, 3, 86	1. 656
		4.			!
.,		* *		.550[.0]	Pinette. A C
**		**		[[7558, 188])	
	nzene	$C_4[\Pi_5,C_2[\Pi_5]$		Solid 1, 22 15 1	Yittig and Ken A. C. P. 141, 2
					`
				7011 1 195 8	Schiff, G. C.
				.7612 (150 8	13, 177,
				88.016, 00	Weger A. C
				.7612, 1369.5	221, 61.
				[S679, 200]	
					and the first than the second

					1
Name.		For	MULA.	Sp. Gravity.	Аптновиту.
Trimethylbenzene		C ₆ H ₃ (C	II ₃) ₃	.8643, 0° .8530, 15° }	Warren. J. 18, 515.
"	itylene.			.8694, 9°.8 \	Schiff. G. C. I. 13,
"					177.
44		4.6		.8558, 20°	Brühl. Bei. 4, 781.
44				.8632, 19°	Gladstone. Bei. 9,
" Pseudo	eumene	"	1.3.4	.8901, 0°	Konowalow. Ber.
Orthomethylethyl	benzene	C ₆ H ₄ . CH	₃ . C ₂ H ₅ . 1.2-	.8731, 16°	20, ref. 570. Claus and Mann.
Metamethylethylb	enzene_	"	1.3.	.869, 20°	Ber. 18, 1122. Wroblevsky. A. C. P. 192, 198.
Paramethylethylb	enzene _	"	1.4_	.8694, 110.3	1.172, 100.
""				.7393) 1000	Schiff. G. C. I. 13,
44		"		$\left\{ \begin{array}{c} .7393 \\ .7394 \end{array} \right\}$ 162° $\left. \begin{array}{c} \end{array} \right\}$	177.
14		"			Auschütz. A. C. P. 235, 314.
Propylbenzene		C ₆ H ₅ . C ₃	H ₇	.881, 0°	Paterno and Spica. Ber. 10, 294.
44		""		.88009, 0°	Spica. J.C.S. 36,631.
		"		.8692, 17°	Wispek and Zuber. A. C. P. 218, 380.
		"		.8702, 9°.8 }	Schiff. G. C. I. 13,
		44		.7399, 158°.5 ∫	177.
Isopropylbenzene.		"		.87	Pelletier and Wal-
	mene.				ter. Ann. (2), 67,
4.6	"	"		.8792, 0° (269.
"	"	"		.8675, 15° }	Warren. J. 18, 515.
"	"	"		.87976, 0°)	
"	"	"		.85870, 25°	
"	"	44		.83756, 500	Pisati and Paterno.
"	"	"		.81585, 75°	J. C. S. (2), 12, 686.
"	"	"		.79324, 100°	0.0.0.(2),12,000
"	"	"		.86576, 17°.5	Liebmann. Ber. 13,
"	"	4.6		.8776, 00))
"	"	44		.8577, 25° } .87798, 0° }	Two preparations.
"	"	"		.87798.00 1	} Silva. B. S. C.
"	"	4.4		.85766, 25°	43, 317.
44	"	11		.8432, 12°	Gladstone. Bei. 9, 249.
Tetramethylbenzer	ne	$C_6 H_2 (C I$	H ₃) ₄	.8816, 9°	Knublauch. Tübin- gen Inaug. Diss.,
Dimethylethylbenz	zene	C ₆ II ₃ (C I	$(\Pi_3)_2 \stackrel{\text{C}_2}{=} \frac{\Pi_5}{1.2.4.}$.8783, 20°	1872. Ernst and Fittig.
"		"	1.3.5	.8644, 20°	
"		"	"	.861, 200	24, 73. Wroblevsky. A. C.
**		11	1.3.4	.8686, 20°	P. 192, 217. Anschütz. A.C. P.
Diethylbenzene		C_6 H_4 (C_2	H ₅) ₂ . 1.4	.8707, 15°.5	
Metamethylpropy zene.	lben-	C_6H_4 . CH_3	. C ₃ H ₇ . 1.3-	.863, 16°	A. C. P. 144, 285. Claus and Stuesser, Ber. 13, 899.

Name.		FORMULA.		SP. GRAVITY.	Аттиовиту.
Metamethylpropy	glben- C	$^{\circ}_{_{0}}\Pi_{_{4}}$, $C\Pi_{_{3}}$, $C_{_{3}}\Pi_{_{7}}$.	1.3	.×72×. 0°	Spica. Ber. 16, 792.
zehe.			4.4	.861 92.82	Schiff. G. C. 1. 13,
		+4	11	.7245, 175°, 17	177.
Paramethylprop; zene. Cymche.	y I ben -	4.6	1.4_		Gerhardt and Ca- hours, A.C. P. 38 345.
11		66	41	.857, 16°	Need, A. C. P. 63 281.
4.	i	4.6	4.4	,5778, 0°	Kopp. A. C. P. 94
4.		"	4.6	18678, 127.6 (1	257.
4.6		4.6	4.	,8660,152	Mendelejeff, J. 13.7
6.6		44	4.	, .5001, 20°	Williams, J. C. S 15, 120.
4.4		4.6	6 >	.8007.0	From cummir. oil
		44	4.	.8724, 0	Warren, Mem Amer. Acad. 9
11		44	(1	.8592, 14	154. From cummin oil
6.6		4.4	6.5	.5705.0°	Louguinine, Ant
		4.		.8511.20	₹ 4.11.153. Othe
			4.		values given fo
6.		44		.7800, 100° J	intermediate tis. From campher
./				.8742.0 .8574.201 [1]	- Louguinine Anr
		6	6.	550 N 20 - 11 530 N 50 - 1	(4), 11, 453. Othe
44		41	4.	.7919, 100	T values given for intermediate to.
		11	6.4	,5705, O°	From two sources
4.4		44	6.	S572, 20°, 2 /	Beilstein an
65		"	4.	,8732, 0°	Kupffer, J. C S. 2), 12, 152.
"	~	"	4.4	.5707, 00	Beilstein and Kup iffer, A. C. P. 170 295.
**		"	4.4	.56	Gladstone, J. C.3 (2), 11, 659, Ext. of S, from di
4.4		44	4.	.5421	, terent source
4.6		6.6	4.	.8148	Gladstone, J. (8 (2), 11, 970.
("	6.6		Orlowsky, B. S. C 21, 321.
11		4.6	* *	.87146, 01	Prom cummin oi
44				,85157, 25 ,82352, 50	Pisati and Pate
**		4.6		(8140), 751	no, J. C. S. (2
**		4.4		.79307, 100	12, 489.
+4				.87227.0	12 1 1 1
1.6		"	,	[KG25K, 25]	 From cymylalcola Pisati and Pate
4.4	!	4.4	4.4		10 J. C. S. (2
4.5		4.4			12, 686.
4.4		4.	4.	.79129, 1002	
				.57224.0	From camphor. P
44				. \$52,97, 25 . \$6251, 500	sati and Patern
		4.6		.50261, 50 1,81230, 752	1, C. S. (2), 1
11		6.		.70122, 100°	656.

$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	Nam	F	FORMU	T. A	Sp. Gravity.	A IMPLICATIONS
Paramethyl propy benzene Cent. CH ₂ . CH ₃ . CH ₃ . 1.4. $.86942, 0^{\circ} \}$ Fisati and terno. J. 20. (2), 12, 686. From two som Kratt. A. C. (2), 12, 686. From Kratt. A. C. (2), 12, 12, 12, 12, 12, 12, 12, 12, 12, 12	_1 A.U	E.	FORMU	1.A.	SP. GRAVITY.	Антновиту.
Paramethyl propy benzene Cent. CH ₄ . CH ₃ . C ₃ H ₇ . 1.4. $.86942, 0^{\circ} \}$ Fisati and terno. J. 2 (2), 12, 686. From two som Kraut. A. C. (2), 12, 686. From Kraut. A. C. (2), 12, 12, 12, 12, 12, 12, 12, 12, 12, 12						From thyme oil
	Paramethylpr zene. Cymer	opylben- ne.	C ₆ H ₄ . CH ₃ . C	H ₇ . 1.4_	$\left\{ \begin{array}{l} .86542,0^{\circ}__\ .78429,100^{\circ} \end{array} \right\}$	Pisati and Pa terno. J. C. S
" " " " " " " " " " " " " " " " " " "	"				.8598 15°)	
					.8732, 0° }	Kraut. A. C. P
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$.8595, 15° }	
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$			1		86025 109	
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	"		"		.873, 0°	Febve. Ber.14, 1720
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	"		"	"		Kanonnikoff. Bei
$\begin{array}{cccccccccccccccccccccccccccccccccccc$						Schiff. Ber. 15, 2974
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$						Brühl. A.C.P. 235,1
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$				••	,	49, 623.
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	Methylisoprop	ylbenzene _			.86948, 0° }	Silva. B. S. C. 43
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	"				.8702, 0°	Jacobsen. Ber. 12
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	Butylbenzene.		$C_6 \coprod_5$. $C_4 \coprod_9$.8622, 16°	Radziszewski. Ber
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$.875, 0°)	0, 200.
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$.864, 15° }	
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$.794, 99°.3) 8577 160	
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	1sobut Tbenzer		**		.89, 15°)	
$\begin{array}{cccccccccccccccccccccccccccccccccccc$		13			.8726, 16° {	
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$				1.3.5.		Jacobsen. B. S. C 24, 74.
$\begin{array}{cccccccccccccccccccccccccccccccccccc$		Laurene.				Fittig, Köbrich, and Jilke. J. 20, 701
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	Metaethylprop	ylbenzene _				Renard. Ann. (6)
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	•					Lippmann and Lou guinine. J.20,667
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$.8731, 21°	Dafert. M. C. 4, 617
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	-		$C_6^{H_5}$. $C(CH_3)$	$_{1}^{1_{2}}$. $_{1}^{1_{3}}$ $_{2}^{1_{1}}$ $_{3}^{1_{3}}$.8602, 22°	Schramm. A. C. P
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	Isoamylbenzen	e	$C_6 H_5$. CH_2 . C	(CH)	.859, 12°	Tollens and Fittig
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$		ethylben-	$\mathrm{C_6H_4\text{-}CH_3.C_5}$	\mathbf{H}_{11} . 1.2_{-1}	.8945	Pabst. B. S. C. 25
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	Paraisoamylmo	ethylben-	44	1.4_{-}	.8643, 9°	Bigot and Fittig. J
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	Parapropylisop	ropylben-	$\mathrm{C_6~H_4~(C_3~H_7}$) ₂ . I.4	.8713, 0°	Paterno and Spica
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	Isohexylbenzer	ie	$\mathrm{C_6~H_5.~C_6~H_{13}}$	3	.8568, 16°	Schramm. A. C. P.
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	Amyldimethyll	benzene	$\mathrm{C_6H_3(CH_3)_2}$. С ₅ Н ₁₁ -	.8951, 9°	Bigot and Fittig. J.
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	Normal octylbe	enzene		1		Schweinitz. Ber. 19.
Diisoamylbenzene $C_6 H_4 (C_5 H_{11})_2$.8868, 0° A. Austin. B. S						Ahrens. Ber. 19, 2718.
32, 13.	Diisoamylbenze	ene	$C_6 H_4 (C_5 H_{11}$)2	.8868, 0°	A. Austin. B. S. C. 32, 13.

5th. Miscellaneous Aromatic Hydrocarbons.

						===================================	
NA	ME.		Form	IULA.	Sp. Gravety.	Aumo	RITY.
				-			
$\Delta \Pi y \Pi benzene$			$C_{n}(\Omega_{p},C)$	П,	.9180, 15°	Perkin. (l. N. 36,
Loquopylying	vlbenzesa		C, H, C,	Π_{τ} , C_{τ} Π_{τ}	.8002, 150	• •	
1 sopropy lality	Pretizete	-	$\begin{array}{cccc} C_6 & \Pi_4 & C_5 \\ C_6 & \Pi_4 & C_3 \end{array}$	Π_7 , C_3 Π_5	.890, 15	• •	4 *
- Isopropylbate		11:	€ 6 H 6 € 1,	П _т . С, П, П,	.,8875, 15'	311	
Phenylacetyle	citic		(211.161	11.5	.,04658, 0 .,80802, 1418,6	Weger, 221, 61	
**					.9295, 20	Bruhl.	
Ethylphenyla	cetylene		сен.	С. П.	.923, 210	235, 1. Morgan, J	C S (3).
						1, 163,	,
Cinnamene.	(Styrolen	۰۰)	C_2/H_3 , C_6	П ₅	.928, 150	E. Kopp. 37, 283.	J. P. €.
			**		.921	Blythand I A. C. P.	Jofmann. 53, 294.
**	+ 6		• •			Scharling, 97, 186.	
	**		**		.912, 15°	Perkin, J	I. C. S. 32,
	1.4	_			.911		
**	6.6					From di	fferent
					3015 50°	sources.	
**						Ber 11.	1260.
					.,926 .,7926, 1462	Schiff, G	C 1 10
••						177.	V 1 . 1 · / ,
4.4			**			Weger.	A. C. P.
1.4	+ 4				7914. 146° 2 c	221, 61,	
4.6			**		. 190595, 17%		G. C. I.
	• •				9084	15, 50, Gladstone,	103
						45, 211,	0. 6.5.
	**					Bruhl	A C. P.
						235, 1.	
Metheimano	.154,		(C 11) 0-		. 1.051, 13°	Scharling, 97, 186.	А. С. Р.
Dicinnamen			C. H		1 027, 6°	Erdmann.	A. C. P.
**			* *		$1.016, 15^{\circ}$	216, 189	
Phenylbutyl	ene		C ₄ H ₇ , C ₆	Π_5 .	.9015, 15% 5 .	Aronheim 19, 258	. В. S. С.
• •	-				.8864, 129.1	Nasini. 1	
 Phenylpenty 			$C_{\mu}\Pi_{\mu},C_{\rho}$, H ₅	.5155, 23°		. C. 4, 625.
Phony lisope:	ntylene .		••		538, 167	° Schramm. 218, 394	
Tetraphenyl	ethane		$ \mathbf{C}_2 \Pi_2 \vee \mathbf{C}_0$	ь П _{5 4}	1.179)		
Phenyltolyle	thane		$C_2 H_4 / C_6$	$\Pi_{\pm} C_{\pm} \Pi_{\pm}$	94		ki. B. S.
Ditolylethar);·		$C_2(H_4)(C$, П.),	974, 200		. A. C. P.
Dixylyletha	*:4:		C 11 . C	Н	000, 200		. А. С. Р.
Mariyothi	110		2 224	6 3 . 3		235, 820	

NAME.	Formula.	Sp. Gravity.	Аптновіту.
Diphenylpropane	C ₃ H ₆ (C ₆ H ₅) ₂	.9956,0° .9205.100°}	Silva. Ber. 12, 2270.
Tetrahydrotoluene	C_7 H_{12}	.797, 18°	Renard. Ann. (6),
Tetrahydroxylene	C ₈ H ₁₄	.814, 0°	1, 223. Wreden. A. C. P.
	"	.8158	163, 337. Renord. Ann. (6), 1, 223.
Hexhydrobenzene	C ₆ H ₁₂	.76, 0°	Wreden. J. R. C. 5, 350.
Hexhydrotoluene	C ₇ II ₁₄	.772, 0° }	Wreden. Ber. 10, 713.
"	"	.758, 20° .742, 20°	Renard. Ann. (6), 1, 223.
11	11	.7741, 0° }	Lossen and Zander.
Hexhydroxylene.	C ₈ H ₁₆	.6896, 96°.5) .7956, 4°	A. C. P. 225, 109. Schiff. Ber. 13, 1407.
(B. 137°.6.) (B. 121°.5)		.764, 19°	Renard. Ann. (6),
Hexhydroisoxylene. (B. 118°)	(t	.781, 0° }	1, 223. Wreden. Ber. 10, 712.
(D. 110)=		.777, 0°	Wreden. J. C. S. (2), 12, 258.
	ιι	$.7814, 0^{\circ}$	Lossen and Zander.
Hexhydrocumene	C ₉ H ₁₈	.6781, 118°) .787, 20°	A. C. P. 225, 109. Renard. Ann. (6),
Hexhydropseudocumene		.7812, 0° }	1, 223. Konowaloff. Ber.
Hexhydrocymene	C ₁₀ H ₂₀	.7667, 20° } .8116, 17°	20, ref. 571. Renard. Ann. (6),
β. Benzylene	C ₇ H ₆	1.106, 35°	1, 223. Gladstone and Tribe.
Diphenyl	C ₁₂ ,H ₁₀	1.160)	J. C. S. 47, 448. Schröder. Ber. 14,
. "		1.169 } .9961, 70°.5	2516. Sehiff. A. C. P. 223, 247.
Triphenylbenzene	C ₆ H ₃ (C ₆ H ₅) ₃	1.205 }	225, 247. Schröder. Ber. 14, 2516.
Phenyltoluene	C_6H_4 , CH_3 , C_6H_5 , 1.4	1.015, 27°	Carnelley. J. C. S. (2), 14, 18.
Benzylethylbenzene Metabenzyltoluene	$\begin{array}{c} {\rm C_6H_4,C_2H_5,C_7H_7,1.4} \\ {\rm C_6H_4,CH_3,C_7H_7,1.3} \end{array}$.985, 18°.9 .997, 17°.5	Walker. Ber. 5, 686. Sentf. A. C. P. 220, 223.
Parabenzyltoluene	" 1.4	.995, 17°.5	Zineke. A. C. P. 161, 93.
Dibenzyltoluene	$C_6 H_3$. $C H_3 (C_7 H_7)_{2^-}$	1.049	Weber and Zineke.
Phenylxylene	$\mathrm{C_6~H_3~(C~H_3)_2~C_6~H_{5^-}}$	1.01, 0°	J. C. S. (2), 13, 155. Barbier. J. C. S.
Benzylcymene	C ₁₀ II ₁₃ . C ₇ II ₇	.987, 0°	(2), 13, 62. Mazzara. Ber. 12, 384.
Dipentenylbenzene Benzylidenetolylene?	C ₂₂ H ₂₈	.9601, 23° 1.0032, 18°	Dafert. M. C. 4, 625. Lippmann. Ber. 19,
12 s a	I		ref. 744.

Σ.	ME.	FORMUI	.A.	Sp. Gravity.	Антиовиту.
Ditolyl		C ₁₆ H ₁₄		.9172, 121°	Schiff, A. C. P. 223, 247.
Dibenzyl				1.002, 140	Limpricht. J. 19,
				.9915, 10°.5 =	593. Fittig. A. C. P. 139, 178.
**	1			1.0423, 52°.3	Schiff, A. C. P. 220, 247.
Dixylylene		$C_{16}\ H_{16}\ \dots$.0954, 220	Lippmann. Ber. 19,
Naphthal ne	. 1	C ₁₀ H ₅		.0774.79 .2 _	red. 744. Kopp Λ. C. P. 95.
4 +			-	.0028, 997,2	307. Alluard. J. 12, 472.
* *	S			1,15173, 19	Volil.
				1.150, 182	Watts' Dictionary.
				1.018	Ure Gm. H.
	"			1.811 42 = }	Schröder, Ber. 12, 1611.
4.4	1.			.5770, 215°	Ramsay, J. C. S.
**				.9777, 79°.2	39, 65. Sehitf. A. C. P.
					223, 247,
1.1				.3852, 797	Lossen and Zander.
"	**			.8671, 217 .1 ([], A. C. P. 225, 109.
				,96208, 682, 1	Nasini and Bernheimer, G. C. I.
Methylmphi	thalene	C ₁₀ H ₇ . C H ₃		1.0287, 112.5	Fittig and Remsen. A. C. P. 155, 114.
**		**		1,0042, 22°	Reingruber, A. C. P. 206, 376.
Dimetry Iraq	ohtlinlene	C ¹⁹ H ⁶ (€, H ³),	1.0176, 20°	Giovanozzi, J. C. S. 42, 853.
**		4		1.0283,07	Cannizzaro en d Carnelutti, J. C.
* *		4.		1,10199, 122 (8, 41, 80,
4.4		* *		1.01803, 165, 1	Nasini and Bern-
6.4		* *		1,01058, 272,7	 heimer, G, C, I.
**				.97111, 77 .7	15, 50,
Ethylmaphth	interne	$C_{10} H_7$, $C_2 H_5$		1.0181, 10	 Fittig and Remsen, A. C. P. 155, 118.
		4.4		1.0201, 02	Carnelutti, Ber. 13,
**				1.0123, 11 .9 a	1672.
Isopr pylnaj	ohthalene	$C_{10} H_7$, $C_3 H_7$.990), O ' _	Roux, Ann. 65, 12,
Δ mylnaphth	mlene	$C_{10} H_7 / C_5 H_1$	1 -	.973, 0	Raux. Ann +6), 12, 321.
Naphthalene	tetrahydride	С ₁₀ Н ₂ . Н ₄		.081, 125	Graebe, B. S. C. 18, 205.
6 n	4.4	**		1000 O	Wreden and Znato- wiez, Ber. 9, 1607.
No plithalen-	· hexhydride	C_{10} Π_8 Π_8		165 <u>0</u> , 65	* *
*				19419,02010	Lossen and Zander.
**	**	**		.7800, 2007	A. C. P. 225, 109, f Nasini and Bern-
44		4.4		.01887, 160, 1 (heimer. Two
	"			(65807, 185.44)	samples, G, C, I 15, 50,

NAME.	FORMULA.	Sp. Gravity.	AUTHORITY.
Naphthalene octohydride.			
Naphthalene decahydride Naphthalene dodecahy- dride.	$\begin{array}{cccccccccccccccccccccccccccccccccccc$.857, 0° .802, 0°	
Dimethylnaphthalene hexhydride.	C ₁₂ H ₁₂ . H ₆	.92194, 19°.8	Nasini and Bernheimer. G. C. I.
a. Benzylnaphthaléne	C ₁₀ H ₇ ; C ₇ H ₇	1.166 1.165, 0°	Miquel. Ber. 9, 1034. Vincent and Roux. B. S. C. 40, 163.
β. Benzylnaphthalene Acenaphtene	C ₁₀ H ₆ . C ₂ H ₄	1.176, 0° 1.0300, 103°	Sehiff. A.C. P. 223,
Anthracene	C ₁₄ H ₁₀	1.147	247. Reichenbach. Watts'
Phenanthrene	"	1.0630, 100°.5	Dict. Schiff. A. C. P. 223, 247.
dride.	С ₁₄ Н ₁₀ . Н ₄		Graebe. J. C. S. (2), 14, 70.
Stilbene	C ₁₄ H ₁₂	.9707, 119°.2	Schiff. A. C. P. 223, 247.
Retene. Solid	C ₁₈ H ₁₈	$ \begin{array}{c c} 1.104 \\ 1.110 \\ 1.132 \\ 1.152 \\ 1.162 \\ 1.063 \\ 1.063 \\ 1.067 \\ 1.077 \\ 1.087 \\ 1.093 \\ \end{array} \right\} $	Ekstrand. A. C. P. 185, 78.

6th. Terpenes.

Name.	FORMULA.	Sp. Gravity	А стнокіту,
Oil of turpentine	C ₁₀ H ₁₆	.8902, 0°	Frankenheim. J. 1,
61 11	"	.85557	
			Four different sam-
	6.6	$\begin{bmatrix} .8600 \\ .8614 \end{bmatrix}$ 20° $\left\{ \begin{bmatrix} .8614 \\ .8614 \end{bmatrix} \right\}$	ples. Gladstone.
"			J. C. S. 17, 1.
" B. 1689	.2 (4		Schitf. Bei. 9, 559.
From Abies Regina-Am			Buchner and Theil.
liæ.			J. 17, 536.
From Pinus abies	- 11	.856, 20°	Wöhler. Gm. H.
			Blanchet and Sell.
		,	Gm. H.
From Pinus maritima	' '	.864, 160	Berthelot. J. 6, 519.
" " B. 179°	3 "	.8639, 0°)	Flawitzky. Ber. 12,
		.8486, 20° }	2357.
From Pinus picea		.859, 60	Flückiger, J. 8,643.

NAME.		FORMULA.	Sp. Gravity.	Антновиту.
From Pi	nus pumilio (1 ₁₀ 11 ₁₆	.875, 17°	Buchner, J. 13, 479
From Pi	nus sylvestris.	10 -16		Tilden. J. C. S. 33
	B. 171°.			80.
	·· ·· ·· · · · · · · · · · · · · · · ·			121
				Flawitzky, Ber. 11 1846.
				Flawitzky, Ber. 20
		**		1956.
Terpene	')	***		+Schiff, G. C. 1, 13
			· (} \	1 177.
* *	?			Kanonnikoff, Bei
		16	· 1.1 . 1(12.1)	7, 592.
4.4			8711, 10°.2	Gladstone, J. C. S 49, 623.
	10	4.4	1.8443, 20°	Kanonnikoff, Bei
rectorber	10			7, 592,
				Flawitzky, Ber. 20
		**		1961.
l'huja ter	pene. B. 160°	**		Jahns, Ber. 16, 2900
From See	Iuoia. B. 155°	,,	8522, 15°	Lunge and Stein
				kauler. Ber. 14 2204.
P 1 21	0. 1045	**	.543	Watts' Dictionary.
	ie. B. 134° ne. B. 157°			Atterberg, Ber. 10
Yu-triner	Ir. D. 101			1203.
Terebent!	hend. B. 157°		871, 174,5	Atterberg, Ber. 14 2531.
			1.8767, 091	£-001.
		.,		
4.4				11.2 11.0 (1.0)
				Riban, B. S. C. 21 173.
4.6				140.
* 6				
. 4				D. 1: C. D. 62
4.6			8815, 0°	Barbier, C. R. 96 1066.
	rom camphor oil.			Yoshida, J. C. S
1	rom campuor ou.			47, 779.
Lerebene			8718	Pierre, J. 4, 52,
				.)
* *		**		Regnault. P. A
1.1		**	. 1.8564, 15°=20°.) 62, 50,
	B. 160:		8580, 20°	' Gladstone, J. C. S 17, 1,
s 4				
4.4			.5600, 200	
			8400, 402 [Riban, B. S. C. 21
* *			[] .8267, 60°	173.
4.6	B. 156	**	.8264.15	Orlowsky, B.S. C
* *	D. 100			21, 321.
s derebe	nthene, B. 175	11		Berthelot, J. 6, 523
t a starte to		**		
4.4			,5427, 200,28	
* *		**	.8273, 402.19	Riban, C. R. 79, 314
* *			.5181, 552,82	
4.4		• •	7964, 797,24 J	

		1	1
NAME.	Formula.	SP. GRAVITY.	Антновіту.
Isoterebenthene Terpilene. Laevorotatory	C ₁₀ H ₁₆	.7793, 100° .8672, 0°	Riban. C. R.79, 314. Bouchardat and Lafont. C. R. 102, 50.
Terpinylene. B. 177° Terpinene. B. 178	··	.8526, 15° .93, 0°	Tilden. C. N. 37,166. Walitzky. Ber. 15, 1086.
	"	.855	Wallach. A. C. P. 230, 260.
Sylvestrene. B. 175°	"	.8612, 16°	Atterberg. Ber. 10, 1206.
	"	.8598, 17°.5	Atterberg. Ber. 14, 2531.
"	"	.8658, 14°	Gladstone. Bei. 9,
Austrapyrolene. B.177° From oil of neroli. B.173°_	"	.847 .8466, 20°	Watts' Dictionary, Gladstone, J. C. S. 17, 1.
From oil of orange	· · · · · · · · · · · · · · · · · · ·	.835	Soubeiran and Capi- taine,
" " B.174°	· · · · · · · · · · · · · · · · · · ·	$\begin{bmatrix} .8460 \\ .8468 \end{bmatrix}$ 20° {	Gladstone. J. C. S. 17, 1.
From oil of petit grain From Citrus lumia	(1	.8470, 20° .853, 18°	Luca. J. 13, 479.
From Citrus bigaradia	"	.8520, 10° }	Luca. C. R. 45, 904.
From Citrus medica		.8517, 12° / .8514, 15°	Berthelot. J. 6, 521.
11 11 1,	"	.8466, 20°	Gladstone. J. C. S.
Oil of eitron		950# 50 100	17, 1.
Off of cition	44	.8597, 5°—10° .8558,10°—15°	Regnault. P. A.
" " ——————		.8518, 15°-20°	62, 50.
Citron terpene		.8593 } 90.9	
"		.8595)	Sal.: 42 Day 10 500
	"	$\begin{array}{c} .7279 \\ .7285 \end{array}$ $\left. \begin{array}{c} 168^{\circ} \end{array} \right.$	Schiff. Ber. 19, 560.
	(($1.7286 \int 100$	
From oil of lemon		.84)	Zeller. Watts' Dict.
" " "		.86 }	
		$\{ \frac{.8380}{8001} \} 0 = \{ $	Frankenheim, Two
" " B. 173°	"	.8661 } 0 { .8468, 20°	samples. J. 1, 68. Gladstone. J. C. S.
Citrene. B. 165°		.8569	17, 1. Blanchet and Sell.
From oil of bergamot	"	.856	Gm. H. Ohme. A. C. P. 31, 316.
" " "		.8464 } 20° {	Gladstone. J. C. S.
Hoganidana		.8466) (17, 1.
Hesperidene		.8483	Gladstone. Bei. 9, 249.
From oil of angeliea		.8487	Müller. Ber. 14, 2483.
D, 17.9		.833, 0°	Naudin. Ber. 15, 254.
" " B. 158° " B. 178°	11	.8609	Beilstein and Wie-
" " B. 176°	"	$.8504 \ 16^{\circ}.5 \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \$	gand. Ber. 15, 1741.
2.110		.0101)	4 1 4 4 4

Name.	FORMULA.	SP. GRAVITY.	Аттновиту.
3 Terebangeline. B. 166	С 10 П 16	. ,570, 0°	Naudin. C. R. 96 1153.
From oil of anise			Gladstone, J. C. S 17, 1.
From oil of bay	**	.908, 15° .8508, 20°	Blas. J. 18, 569. Gladstone. J. C. S
From oil of birch tar		870, 20°	17, 1. Sobrero. Watts
From oil of calamus		S793, 0°	Diet. Kurbatow, A. C. P
From oil of camphor '	.,	8733, 20°	173, 1. Yoshida, J. C. S
From oil of caraway		.8466, 200	47, 779. Gladstone. J. C. S
Carvene	4.	561, 15°	17, 1, Volckel, J. 6, 51;
		4580 t 900 (Gladstone, J. C. S 17, 1.
**			11, 1.
**		7127 /	Schiff, G. C. I. 13
			177.
,,		7188) 8529, 20°	Kanonnikoff. Be
6.		849. 15°	7, 592. Fluckiger, Ber. 1
From oil of cascarilla		8467, 20°	ref. 358. Gladstone, J. C. 8
From oil of copal	16	951, 10°	17, 1. Schibler, J. 12, 510
From oil of cummin	**	8772. 0° i	Warren, J. 18, 51
From oil of dill	**	8467, 20°	Gladstone, J. C.:
From oil of elder			11 111 11 11
From elemi	.,		Deville, J. 2, 44 Stenhouse, A. C. 1
From oil of erechthidis		, .5350, 155,5	Beilstein and Wie
			gand, Ber. 17 2854.
From oil of Erigeron canadense.			**
From Eucalyptus amyg- dalina.		8642, 20°	Gladstone, J. C.:
From oil galbanum From Illicium religiosum	44	5512, 92	Mossmer, J. 14, 68 Eykmann, Ber, 1
			1721.
From kauri gum		864, 187	Rennie, Ber. 1- 1719.
From laurel turpentine			20, 1,
From oil of marjoram	4.5	8460, 189,5	Beilstein and Wigand Ber. 1- 2854.
From oil of mint	,,	8600, 20°	
11 11	11	.8646, 17°.3	Gladstone. J. C. 49, 623.

NAME.	Formula.	Sp. Gravity.	Аптновіту.
From oil of peppermint	C ₁₀ H ₁₆	.8602, 20°	Gladstone. J. C. S.
			17, 1.
From menthol. B. 168.°6		.8254, 00]	
"	"	.8178, 10° .8111, 20° }	Atkinson and Yo-
	"	.8001, 40° [shida. J. C. S. 41,
14 +4	((.7924, 60° }	49.
From oil of myrtle	"	.8690, 20°	Gladstone. J. C. S. 17, 1.
From oil of nutmeg	"	.8518 } 20°	"
" " B.167°_	"	1.00=1	
" " B.164°_" " B.178°_	"	.8454, 25°	Gladstone. Bei. 9, 249.
From oil of parsley	44	.8732, 200	Gladstone. J. C. S.
From oil of parsnip		.865, 12°	17, 1. Gerichten. Ber. 9,
		,	259.
From Ptychotis ajowan From oil of rosemary	"	.854, 12° .8805, 20°	Stenhouse. J. 9,624. Gladstone. J. C. S.
·			17, 1.
From oil of sage. B. 155°. B. 167°.	"	$\begin{bmatrix} .8635* \\ .8866 \end{bmatrix}$ 15° $\{$	Three isomers. Sigi-
" " B. 165°	11	8653	ura and Muir. J. C. S. 33, 292.
" " B. 170°	"	0059 1	Muir. J. C. S. 37,
	"	.8667 \ 15° \	682.
	"	.8632, 24°.5	Gladstone. J. C. S. 49, 623.
From Satureja hortensis From oil of thyme	"	.855, 15° .8635, 20°	Juhns. Ber. 15, 819. Gladstone. J. C. S.
Thymene		.868, 20°	17, 1. Lallemand. J. 9,
		.8635, 20°	616. Kanonnikoff. Bei.
From oil of wormwood	"	.8565, 20°	7, 592. Gladstone. J. C. S.
Cajeputene. B. 165°	"	.850, 15°	17, 1. Schmidl. J. 13, 481.
Isocajeputene. B. 177°	44	.857, 16°	Schmidl. J. 13, 481.
Camphene	"	.8481, 47°.7	o.10,102.
î	"	.8387, 58°.9	Riban. B. S. C.
"		.8211, 79°.7	24, 9.
	"	.8062, 97°.7] .8345, 99°.84]	•
		<i>'</i>	Spitzer. Ber. 11, 1815.
Camphilene		.87	Watts' Dictionary.
Caoutehin	"	$.855,0^{\circ}$ }	Bouchardat. B. S. C. 24, 109.
	"	.842, 20°	Williams, J. 13, 495.
Cieutene	(,	.87038, 18°	Van Ankum. J. 21, 794.
Cinaëbene	"	.878	Hirzel. J. 7, 592.
Cynene, B. 174°.5	"	.825, 16°	Völckel. A. C. P. 89, 358.
"	44	.8500, 15°)	00, 000.
"	(.8238, 50° }	Hell and Stürcke.
"	"		

^{*} Misprinted 0.8435. Corrected in later paper.

NAME.	FORMULA.	Sp. Gravity.	Аттновиту
Cynene, B. 1825	С ¹⁰ П ¹⁶	.55454, 162	Wallach and Brass. A. C. P. 225, 291.
From eyneol. B. 1790.		.85652 (the same and the s
F Bandrene		.85650 (77 77 .8558, 107 ;	Pesci. G. C. 1, 16,
Gaultherilene		.8510, 201 = -	Gladstone, J. C. S. 17, 1.
Gereniene		.542 / 200 _ 1	Jacobsen, Z. C. 14, 171.
Licerete		.805, 182	Morin, J. C. S. 42.
MaceneOilbene		.8520, 175,5 .865, 125	737. Schacht J. 15, 451. Kurbatow, Z. C 14, 201.
Sefrene		.8015.0	Grimaux and Ru- otte, J. 22, 784.
Tolene Polymer of isoprene		858, 10	E. Kopp. J. 1, 737, Bouchardat. Ber. 8.
Polymer of valerylene		.854, 21° 111 y .826, 15° 111	(a)4.
From oil of calamus	С ₁₅ П ₂₄	.9150 1	Gladstene, J. C. S. 17, 1.
	11	.9275 (20° (Kurbatow, A C P. 173, 1.
From oil of cascarilla		.9212, 20	
From oil of cedar		.9231, 18°	Gladstone, Bei 9, 249.
From oil of cloves		915. 157	Ettling. Wetts' Diet.
			Williams, J. 11, 442.
	**	.500 11, 2015	Gladstone, d. C.S. 17, 1.
. •		. 1905, 152	Church, J. C. S. (2), 13, 115.
From oil of copaiva			Postelt, J. 2, 455, Soubeiran and Cap-
11 11 11			itaine. Gm. II.
		.5975, 24	Levy. Ber. 18, 3206.
From oil of cubebs	**	.915 / .530	Schmidt.
		.935)	
4. 4.		.000,2,201	Gladstone, J. C. 8 17, 1.
4 4 4		.0280, 0	1357.
Cedrene		.984, 1451	Walter Ann. 3., 1,501.
4.		. 1915, 15 . 19241, 18	Muir. 3, C. S 57, 13 Gladstone, A. C. S (21, 10, 1,
From Prybalanops cam-		$\frac{2000}{1921}, 20^{5} = \frac{1}{1}$	Lallemand, J. 12,
From gurgun balsam		.9014, 15° .9292, 0°	Valente, J. C. S. 40.
From Laurus nobalis		.925, 15°	284. Blos. J. 18, 569

Name.	Formula.	Sp. Gravity.	Антновіту.
From Ledum palustre	(1	$ \begin{cases} .9237, \ 19^{\circ} = \\ .921, \ 10^{\circ} = \\ .98, \ 8^{\circ} = \\ .9211, \ .9255 \\ .9278 \\ .946, \ 0^{\circ} = \\ .937, \ 13^{\circ}.5 = \\ \end{cases} $	Rizza. Ber. 20, ref. 562. Strauss. J. 21, 795. Flückiger. J. 8, 646. Oeser. J. 17, 534. Gladstone. J. C. S. 17, 1. Montgolfier. Ber. 10, 234.
From oil of rosewood From oil of sage " " " " " "	"	.9042, 20° .9198, 0° .9137, 12° .9072, 24° .8970, 41°	Gladstone. J. C. S. 17, 1. Sigiura and Muir. J. C. S. 33, 297.
From oil of sandal wood _ Sesquiterpene	"	.9190	Gladstone. J. C. S. (2), 10, 1. Wallach. A. C. P.
From oil of vitivert From copaiva oil From minjak-lagam oil	C ₂₀ H ₃₂	.9332 .892, 17° .923, 15°	238, 85. Gladstone. J. C. S. (2), 10, 1. Brix. Ber. 14, 2267. Haussner. Ber. 16,
From oil of poplar		.9002	1387. Piccard. C. C. (3),
From tar-cumene	" ?	.8850, 22°	6, 4. Jacobsen. A. C. P. 184, 203.
Diterebene Metaterebenthene Colophene	(1	.94 .913, 20° .9391, 20°	Watts' Dictionary. Berthelot. J. 6, 524. Gladstone. J. C. S. 17, 1.
Difellandrene		.94, 9°	Deville. P. A. 51, 439. Pesci. G. C. I. 16,
Heveéne		.921, 21°	225. Bouchardat. A. C. P. 37, 30.
Tetraterebenthene	C ₄₀ H ₆₄ ?	.977, 0°	Riban. C. R. 79, 391.

7th. Unclassified Hydrocarbons.

Name.	FORMULA.	SP. GRAVITY.	Аттновиту.
Heptansplitene*	C ₇ II ₁₁	.7778, 0° } .7624, 17°.5	Milkowsky, Ber. 18 ref. 186.
Ostoraphtene	C. H ₁₆	. 7649, 0°)	Markownikoff, Ber. 18, ref. 186.
I see etemphtene		1.7765 (0°)	Putochin. Ber. 18
Nonenaphtene			ref. 186. Markownikoff and Ogloblin, Ber. 16
	**		1877. - Konowaloff, Ber - 18, ref. 186.
Dekanaphtene			Markownikoff and Ogloblin, Ber. 16
Endekanaphtene	C ₁₁ H ₂₂	.8119, 0°	
Dodekanaphtene Tetradekanaphtene	$\frac{C_{12}^{\prime\prime}}{C_{11}}\frac{\Pi_{24}^{\prime\prime}}{\Pi_{1}}$	8055, 14° 8390, 0°	11 11
Tetradekanaphtene Pentadekanaphtene	Ch Harris	8294, 17°	
Nononaphtylene	, C ₁₉ H ¹⁰	.8068, ti ⁵	Konowaloff, Ber 18, ref. 186.
Menthene	C_{10} Π_{1s}	.451, 21°	
		814, 15°	
4.5	4.	1	Atkinson and Ye
**		m	-hida. J. C.
	**	7761, 60°]	41, 49.
From oil of calamus	••		Kurbatow, J. C.: (2), 12, 259.
From turpentine chlorhy- drate	**	.852, 19°	.) Montgolfier. Be 12, 376.
Cymhydrene			Gladstone, J. C.: 49, 616.
Terpilene bydride		8179, 0° / 8060, 17*,5	
Ethyl comphene	$C_{10} \Pi_{12} C_2 \Pi_5$	8709, 20°	Spitzer. Ber. 1 1817.
Isobatyl camphene	$C_{1\sigma} H_{*}$. $C_{*} H_{a-1}$	8611, 200	Spitzer. Ber. 1
Camplin	С19 П 2	.1.827, 25°	Claus, J. P. C. 2 269.
Diterclouthyl	C20 II 0		**Renard. C. R. 10 866.
Dater benthy lene			Renard, C. R. 10 856.
Disampliane hydrob	C, H	.9574, 19°	Montgolfier, C. l 87, 840,

According to Kenewaloff, the "maphteness" are identical with the hexhydrides of the benzene series.

NAME.	FORMULA.	Sp. Gravity.	Аптновиту.
Didecene	C ₂₀ H ₃₆	.9362, 12°	Renard. C. R. 106, 1086.
Caoutchene	C ₄ H ₈	.65, —2°	Bouehardat. A. C.
Tropilidene	C ₇ H ₈	.9129, 0°	P. 37, 30. Ladenburg. A. C, P. 217, 133.
From copper camphorate_	C_8H_{14}	.793	Moitessier. J. 19,
From decomposition of phenol.			669.
EucalypteneAnthemene	$C_{12} \stackrel{\text{H}}{}_{18} - \cdots - \cdots - \cdots$.836, 12° .942, 15°	
Paranicene Lekene	C ₁₀ H ₁₂ ?	1.24	gand. Ber. 16,
Könlite	(C ₆ H ₆) _n	.88	1548. Trommsdorf. A. C. P. 21, 126.
Hartite	(C ₃ H ₅) _n	1.046	Haidinger. P. A.
From petroleum	(C ₇ II ₄) _n	1.096, 15°	
Carbopetrocene	$\left(\left.\left(C_{10}\right.H_{2}\right)_{n}\right.or\left(\left.C_{12}\right.H_{2}\right)_{n}.$	1.235, 10°	17, 5.

XLVI. COMPOUNDS CONTAINING C, H, AND O.

1st. Alcohols of the Paraffin Series.

Name.		1	FORMULA.	Sp. Gravity.	AUTHORITY.	
Methyl	alcoho	1	С Н4	0	.798, 20°	Dumas and Peligot. Ann. (2), 58, 5.
11	4.4				.807, 9°	Deville `
"	4.4		"		.813	Regnault.
"	"		٠,		.813 .82704, 0°	Pierre. Ann. (3), 15, 325.
"	"		"		.7938, 25°	Kopp. A. C. P. 55,
"	"				.81796, 00)	1
"	"				.80307, 16°.9	Kopp. P. A. 72, 53.
44	"				.8065, 15°	Mendelejeff, J. 13, 7.
"	"		- 44		.8052, 9°.5	
"	"		"			Kopp. A. C. P. 94,
"	"		11		.7997, 16°.4	
"	"				.7973, 15°	
u	"				.7995, 15°	
"	"		"		.8574, 21°	Linnemann. J. 21,
u	"		٠.		.81571, 10°	681. Dupré. P. A. 148,
"	"		٠, ،		.7964, 20°	236. Landolt.

	Nas	1E.	1	FORMULA.	Sp. Gravit	у. Аптиовату.
dethyl	nleohe	1	с II. (7997, 15 °	Grodzki and Krä-
			•			mer. Z. A. C. 14 103.
44	£ ¢		**		7984, 15°	zki. Ber. 9, 1929
4.6	4.6		4.		8008, 0°	
4.4	4.6				.5014, 149	
11	4.4		* *		- 1175 h 61°.	Schiff, G. C. L 13
4.4	6.		6.			1 1
4.			٤.		.7953, 20°	Bruhl. Bei. 4, 781
6.6	4.4		4.6		°01.118.	
4.4	4 x		* *			
6.6	4.6		••		510, 15°	LL Regnault and Ville jean. C. R. 99, 82
	41				7901, 18°	Glad-tone. Bei. 9
46	41		6.6		7923, 20° _	Winkelmann, P. A
						(2), 26, 105.
44	4.4				7931, 20° L	Traube. Ber. 19,879
4.6	4.4					
						telli. Ber. 10, 221
6.6	6.4				75009, 22%	
4.6			. 4			
4.4	6.		6 .		6494, 150°	to 238°, 5. Ramsa
4.4	4.4				5525, 200%	and Young. P. T
6.4	6 .					5 178, 313.
Ethyla	deohol	*	$C_2\Pi_6$	0	.7924, 17°.9	Gay Lussac.
:.	4.4		Ť "		.1 .7915, 18° .	 Dumas and Boullay P. A. 12, 93.
					. 5095, 0°	Darling.
						Kopp. A. C. P. 5
4.6	4.6					166. 10°)
4.6	6.		4.4			
4.6						200 1 62 50
					4	·20°) 62, 50.
	64				51057 / ₀₂	
					51057 / 0°	
4.					$\frac{1}{1}$.81087 $\frac{1}{1}$.8095 $\frac{1}{1}$.79821, 11°	Kopp. P. A. 72, 6
			6.		51057 / 0°	Kopp. P. A. 72, 6
4.	6 + 6 +		6.			Kopp. P. A. 72, 6 Pierre, Ann. (3 15, 325, Fownes, P. T. 184
6.						Kopp. P. A. 72, 6 Pierre. Ann. (3 15, 325, Fownes, P. T. 184 219.
64	4. 4. 4.					Kopp. P. A. 72, 6 Pierre. Ann. (3 15, 325, Fownes, P. T. 184 219, Wackenroder, J.
64	4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4				. \$1087 / 62 . \$095 / 70821, 142 . 7090, 1428 . \$151, 62 / 7088, 152, 62 . 7897 / 21	Kopp. P. A. 72, 6 Pierre. Ann. (3 15, 325, Fownes, P. T. 184 249, Wackenroder, J. 682,
44	4. 4. 4.					Kopp. P. A. 72, 6 Pierre. Ann. (3 15, 325, Fownes, P. T. 184 249, Wackenroder, J. 682,
64	4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4					Kopp. P. A. 72, 6 Pierre. Ann. (3 15, 325. Fownes. P. T. 184 219. Wackenroder. J. 682. Delffs. J. 7, 26.
64	44 44				\$1087 02 \$095 142 \$79821, 142 \$7990, 148,8 \$151, 02 \$7908, 152,5 \$7905 212 \$7905 179081, 152 \$809, 52	Kopp. P. A. 72, 6 Pierre. Ann. (3 15, 325, Fownes, P. T. 184 249, Wackenroder, J. 682, Drinkweter, J. 682, Deld's, J. 7, 26, Wetherill, J. P.
64	6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6					Kopp. P. A. 72, 6 Pierre. Ann. (3 15, 325. Fownes, P. T. 184 249. Wackenroder, J. 682. Drinkwater, J. 682. Delfs. J. 7, 26, Wetherill, J. P. 6 60, 202.
6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6	() () () () () ()					Kopp. P. A. 72, 6 Pierre. Ann. (3) 15, 325. Fownes. P. T. 184 249. Wackenroder. J. 682. Drinkwater. J. 682. Delff. J. 7, 26. Wetherill. J. P. 6 60, 202. Pouillet. J. 12, 43
4, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6,	11					Kopp. P. A. 72, 6 Pierre. Ann. (3) 15, 325. Fownes. P. T. 184 249. Wackenroder. J. 682. Drinkwater. J. 682. Delfs. J. 7, 26. Wetherill. J. P. 6 60, 202. Pouillet. J. 12, 43

^{*} For this compound there are so many determinations of specific gravity that absolute completeness with regard to them has not been attempted by the compiler.

NAME. Fthyl alcohol			FORMULA.		SP. GRAVITY.	Аптновиту.	
					.6796, 180°.9	Mendelejeff. J. 14, 20.	
11	44				.7946 } 15° {	Baumhauer. J. 13,	
11					1.1941) (393.	
14	1.4				.80625, 0°)		
14					.80207, 5°		
14			٠٠,		.79788, 10°	N. 11:00 T 10	
	"				.79367, 15° }	Mendelejeff. J. 18,	
					.78945, 20° .78522, 25°	469.	
"					.78096, 30°		
	44				.8086, 19°	Linnemann. J. 21,	
			.,		,	413.	
			"		.8090, 17°	Linnemann. A.C.P. 160, 195.	
11					.822, 20°	Pierre and Puchot. Ann. (4), 22, 260.	
"	"		11		.79481, 11°	Erlenmeyer. A.C.P. 162, 374.	
""	11		**		.815, 0° 5° .80214,1	Pierre. C. N. 27, 93.	
	"		٠,		.7946, 16°.03	Winkelmann, P. A. 150, 592.	
4.4	11		t t		.7339, 78°	Ramsey. J. C. S. 35, 463.	
"	"				.8120, 0°	Vincent and Dela- chanal. J. 1880, 396.	
11	"				.7995, 14°	De Heen. Bei. 5, 105. (Bedson and Wil-	
11	"		**		.8019, 20° .7976, 25°	liams. Ber. 14, 2550.	
4.4	. 44				.7381)	2550.	
	44		4.1		.7382 78°.2_)	
					7 109 5	Schiff. G. C. I. 13,	
4.4	4.6				.7402) 177.	
**	"				.7968, 20°	Nasini. G. C. I. 13, 135.	
	"		••		.8000, 20°	Bruhl. Bei. 4, 781.	
	"		4.		.79603,17°.86	values. Drecker.	
	**		4.4		.77616,40°.90	P. A. (2), 20, 870.	
4.6	4.4		44.		.7882, 25°.3		
	11		+ 4		.7899, 23°.4	Schall. Ber. 17, 2555.	
11	4.4				.79326, 15°	Squibb. C. N. 51, 33.	
11	4.6		••		.7906, 20°	Winkelmann, P. A. (2), 26, 105.	
11	* *				.79175, 0°	Pagliani and Bat- telli. Bei. 10, 222.	
44	11		4.4		.70606, 110°)	[Intermediate val-	
"			1.1		.5570, 200°	ues given. Ram-	
"			14		.3109, 242°.9)	say and Young. P.T. 1886, 129.	
Propy	l alcoho	l	C_3H_8C)	.8198, 0°]		
+4	6.6				.8125, 9°.6 [Pierre and Puchot.	
• :	• 6		"		.7797, 50°.1	Ann. (4), 22, 276.	
**	••				.7494, 84°]	(),,	

Name. Propyl alcohol			FORMULA.		SP. GRAVITY.	Антиовиту.	
					.81a, 1a-	Chancel. A. C. P.	
64	"		4.		.512. 16°	151, 302. Chepman and Smith. J. C. S.	
4.4	44		44		.823. 0°	22, 194. Savtzeff. Z. C. 13 107.	
٤.	"		* !		.8205, 0°	Rossi, A. C. P. 159 79.	
	4.4				.8066, 15°		
4.	44		4.		,5195, 0°)		
	6.				.80825,15°) ***	Pierre, C. N. 27, 93	
	4 .		* *			 Bruhl, Ber. 13, 1529 	
4.4	4.4				.8091, 112	 De Heen, Bei, 5, 105 	
6.			4 +		[,8200, 0+]		
4.4	6.6				.8127, 9°,71	N	
6.4	4.5				.8001, 25°, 16	Naccari and Pag liani, Bei 6, 88	
4.			* *		7808, 085,18	liani. Bei, 6, 88 Values given a	
	4.4					several interme	
					.7610, 670, 164	diate tos.	
	٤,				.7550, 77 (69)	dilitte tes.	
			3.5		.7085, 947, 40		
4.4					.5177.0	Zander, A. C. 1	
					. 7.3600, 97°, 1 ×	214, 181,	
			1.4		,8190,207	 Pagliani, Bei, 7, 450 	
			* *		.7005)	2 1 141 (2 /2 7 1)	
					.7366 979.1	Schiff, G. C. I. 1:	
	6.		h s		.7007.)	177.	
	, .		6.4		5040, 200	Winkelmann, P. P. 12, 26, 105.	
	4.		£ s		8051, 20%	_ Traule. Ber. 19 881.	
[])[]	yl ale	edied	4.		.791, 15°	Linnemann. J. 1	
• •			* *		.7915, 162.5	Siersch, A. C. I	
					.7876, 160	 Linnemann A. C P. 161, 18. 	
4.6						203, 1 Δ. C. I	
* *					.797 ISS .	Duclaux, Ann. σ 13, 89,	
		4.			.70001, OT	Zunder. A. C. I	
		6				214, 181.	
* 1					E1114 / Strust	Schiff, G. C. 1, 1	
			5.4		.7H4 (21 -22	177	
					8076, 20	Traube, Ber 19,88	
Hydrot hod	o of is	opropylal o-	· C, 1		,800, 15	Linnemann. A. 6 P. 136, 40.	
a. Butyla	de de	d. B. 1177.5		Γ_{i} Θ Γ_{i} Θ Γ_{i} Θ Γ_{i} Θ Γ_{i} Θ Γ_{i}	.832, 157 .829, 07	. Saytzeff. Z. C. 1	
					: SERVICE:	1	
					(8105, 201]		
4.4	6.6				.7994. 40	Lieben and Rose	
4.4	4.4				. 770%, 9%2.7	A. C. P. 158, 13	

NAME. Butyl alcohol			Formula.		SP. GRAVITY.	AUTHORITY
			С4 П О		.8112, 15°	Two samples. Linnemann. Ann.
4.4	"		4.4		.8152, 14°	(4), 27, 268. De Heen. Bei. 5, 105.
4.4	"		44		.806. 15°	Pierre. C. N. 27, 93.
4.4	"		"		.8099, 20° }	Two lots. Bruhl.
			"		.8096, 20° }	A. C. P. 203, 1.
"	"		"		.8233, 0° }	Zander. A.C. P. 224,
"			"		.7247, 117°.5 }	88.
"					$\begin{bmatrix} .7269 \\ .7270 \end{bmatrix}$ 116°.7	Sehiff. G. C. I. 13,
	yl alcoho	l. B. 108°_	"		.8032, 18°.5	Wurtz. A. C. P. 93, 107.
	"		"		.817, 0°)	101.
"	"		44		.809, 11°	Piomo ond Dual
"	"		"		.774. 55° (Pierre and Puehot. J. 21, 434.
"	"				.732, 100° }	
	"		"		.8055, 16°.8	Chapman and Smith. _ J. C. S. 22, 161.
"	•		"		.8003, 18°	Linnemann. A.C.P. 160, 195.
"					.8025, 19°	Linnemann. Ann. (4), 27, 268.
"	"		"		.8167 } 00 {	Menschutkin. A. C.
"	"		"		.8108)	P. 195, 351.
"	"		44		$\begin{bmatrix} .8020 \\ .8062 \end{bmatrix}$ 20°	Brühl. Ber. 13,1520.
4.6	"		"		.8102, 00	<u></u>
44	"		"		.8052, 14°.50	Naccari and Pagli-
"	4.6		"		.7927, 30°.71	ani. Bei. 6, 89.
4.6	"	-	"		.7800, 46°.56	\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \
"	"		"		.7608, 68°.97	several interme-
"	"		"		.7497, 80°.86	diste tos.
"	"		"		.7295, 101°.97	J
"	"		"		.8064, 15°	Duelaux. Ann. (5), 13, 90.
	"				.7265, 106°.6	Schiff. G. C. I. 13, 177.
"	"		"		.8062, 200	Landolt. Bei. 7,846.
"	"		"		.79888, 26°.15 .77844, 52°.2	Schall. Ber. 17,
"	"		"		.8024, 20°.5	Gladstone. Bei. 9,
"	"		"		.8031, 20°	249. Winkelmann. P. A.
"	16		"		.8029, 20°	(2), 26, 105. Traube. Ber. 19,883.
Methyl	lethylcarl	binol.	"		.85, 0°	De Luynes. Ann.
		B. 99°.				(4), 2, 424.
	"		4.6		.827, 0° }	Lieben. A. C. P.
Trimethylearbinol.			"		.810, 22°}	150, 114.
	"	B. 82°.5_	"		.8075, 0° }	Butlerow. Z. C. 14,
	"		"		.7788, 30° }	278.
	"		"		.7792, 37°	Linnemann. Ann. (4), 27, 268.
	"		"		.7864, 20°)	V 77 - 17 = 20.
	"		"		.7823, 24° }	Brühl. A. C. P.
	66		4.4		7019 950	203, 1.

NAME.			For	MULA.	Sp. Gravity	Атпиовиту.	
		(° 11 ()		.7802, 269	Bruhl. A. C. P		
T. imechylearbanel. B. 82°,5			$\begin{array}{cccccccccccccccccccccccccccccccccccc$., 502, 20	Bruni, A. C. P 203, 1. Butlerow, Z. C. 14 273.	
Hydrate of trimethy learbi-		.8276.0					
Normal amyl alcohol.					1829G, 00 1 1		
		 B. 137 			.5165, 20° = 1	Lieben and Ross	
• •		-				A. C. P. 150, 70,	
* *					7×85, 99°15 _j ×2×2, 6°	Zander. A. C. I	
* *					.7117, 1872.85	1 224, 88.	
					. 8290, 02	Gartenmeister. A	
Vmvl a	lcohol.	* B. 131°.5.			5154, 152	C. P. 233, 249, Calcours. A. C. 1	
44						30, 288, Kopp. A. C. P. 5	
						166.	
• •	* *		• •		.8271.0°	Pierre, J. 1, 62.	
• •			• •		.8185, 15°	Rieckher, J. 1, 699	
* *					, 18253, 6° , 18141, 15-19		
					\$127 t 169,4	Kepp. P. A. 7	
					[S115] 168,4	227.	
			* *		.515, 11	Delifs, J. 7, 26,	
* *					.5215, 00	Kepp. A. C. P. 9	
			+ +		. \$113, 18°,7 a	11 To 1	
					,519, 15°	Schiff.	
* *	**				5142. 153	$-{ m Mendelejeff},~{ m J},{ m 13},$	
					115 (115)	From two source	
+ 4	* *				Deter 194-	Schorlemmer, a (19, 527.	
					,826, 0°		
						Ann (1, 22, 33	
b k	6.6				.8201, 15° ==	Graham.	
1.1	1.5		**		8148, 15°	Duclaux Ann. (7 13, 91.	
					\$1:15, 200	Land dt.	
					.8214.09		
					SITE 155	Two products. E	
					.5102, 213,5]	Hell. A. C.	
			b 8		5263, 00	160, 257.	
			• •				
					.5254, 02	Pierre, C. N. 1	
			* *		, SI 16, 157 - 15 , , S255, O	93 Pierre and Publis	
	* *					B. S. C. 20, 570	
1 +	4.4	Orlinary			.517 /		
	* *	Less active.			.816.15	Ley. Ber. 6, 139	
	* 1	M_{t} recover	, ,		.505.15		
* *	• •				.8128, 20 .8075, 14	Bruhl, Bei A. 79 De Heen, Bei 5, 10	
					(5248, 0	Balbaano, Ber.	
						1137	
					.8101 20°	Two lets Brul	
					(8104, 201	A. C. P. 203, 1	
	**				,5256, 0 ,5055, 249	Flawitzky, Ber. I	
1.5	* *				, m(1ma), 200° ==	11,	

^{*} Ordinary, inactive, and a specifical,

Name.			Fo	RMULA.	SP. GRAVITY.	1
				KM ULA.	SI. GRAVIII.	Антновиту.
Amyl al	cohol		C ₅ H ₁₂ C)		Schiff. Ber. 14, 2768
"	"		٤٠.		.7154, 130°.5	Sehiff. G. C. I. 13
	**		"		$\left\{ \begin{array}{c} .8063, 26^{\circ}.1 \\ .7729, 66^{\circ} \end{array} \right\}$	Schall. Ber. 17 2555.
	11		"		.8114, 20°	Winkelmann P. A (2), 26, 105.
	"		"		.8121, 20°	Traube. Ber. 19 883.
	"		"		.8252, 0°	Pagliani and Bat telli. Bei. 10, 222
Methylp	ropyl	€arbinol. B. 119°_	 		$\begin{bmatrix} .8249 \\ .8260 \end{bmatrix}$ 0° {	Wurtz. Z. C. 11 490.
	"				.833, 0°	Le Bel. Z. C. 14
			tt		$\left\{ \begin{array}{c} .8239, 0^{\circ} \\ .8102, 20^{\circ} \end{array} \right\}$	Bielohoubek. Ber 9, 925.
	"		11		.827, 0° } .815, 18° }	$\left\{egin{array}{l} ext{Wagner and Saytz-} \ ext{eff.} & ext{A. C. P. 179} \ ext{320.} \end{array} ight.$
Methylis	oprop	ylcarbinol. B. 112°-	""		.8308, 0° } .8219, 19° }	Winogradow. A. C. P. 191, 125.
	"		"		.833, 0° } .819, 19° }	Wischnegradsky, A. C. P. 190, 340.
Diethylc	arbin	ol. B.116°.5	"		.832, 0° }	Wagner and Saytz- eff. A. C. P. 175, 368.
			"		.831, 0° } .816, 18° }	$\left\{ egin{array}{l} ext{Wagner and Saytz-} \\ ext{eff.} & ext{A. C. P. 179,} \\ ext{320.} \end{array} ight.$
Dimethy	lethy:	learbinol. B. 102°.5.	4.6		.829, 0°	Wurtz. A. C. P. 125, 114.
	"		"		.828, 0°	Ermolaien. Z. C. 14, 275.
	. .		""		$.8258, 0^{\circ}$ $\}$ $.810, 19^{\circ}$ $\}$	Flawitzky. A. C. P. 179, 349.
			"		.827, 0° } .812, 19° }	Wischnegradsky.A. C. P. 190, 334.
	"		"		.827, 17° .7241, 101°.6	Münde. Ber. 7, 1370. Schiff. G. C. I. 13,
Normal l	nexyl	alcohol. B.157°.	C_6 H_{14} O		.820, 17°	Pelouze and Ca- hours. J. 16, 527.
e e e e	"	"	""		.813, 0° .819	Buff. J. 21, 336. Franchimont and Zincke. C. N. 24,
"	"	"	"		.8333, 0°)	263.
"	"	"	e e e e		.8204, 20° } .8107, 40° } .813, 17°	J. R. C. 5, 156. Frentzel. Ber. 16,
r.	"	"	"		0010	745.
46	"		"		.8327 } 0 .6958 1570	
"	* *	"	"		.6982 } [157]) 224, 00.

Name		For	MULA.	Sp. Gravity.	Аттиовиту.
AASIG					
Normal hexyl a	lcohol	° ₆ H ₁₄ ⊖	4		Gartenmeister, A.C P. 233, 249.
Methyldiethyle	irbinol	4.		.5287, 202]	
• •		4.		.8194, 25° .8143, 30° (Reformatsky, J. I
		6.6		.8104, 85°	C, (2), 36, 340,
Methylpropylca	rbylear-)	4.4		.8396, 0°/	Two lots. Liebe
binol. B. 147	o. ` } [4.6		.8211, 23°.7 (and Zeisel, M. (
**				.8375, 0° 1	4, 32.
() Afrika malandari an m	Linal or Y	4.		5257, 17°.6 ₎ 5327, 0°))
Methylbutylcar secondary hex				.8209, 16°	Wanklyn and Erler
hol. B. 136°.		4.6		.7482,990)	meyer, J. 16, 52
4.		4.		8266 1 0° 1	Two samples, Hech
4.6		4.6		.5306 ()	A. C. P. 165, 14
44		6.		.8007, 18°	Wislicenus, A.C. 1 219, 310.
Methylisobutyl	carbinol	4.4			
	, . ,			1.518d, 17° ==)	
Ethylpropylcar	B. 131°	**			. Volker, Ber. 8, 101
	15. 1.76	+4			Oechsner de C
4.4				,81825, 20° j	ninck, C. R. 82.9
sohexyl or cap	proyl alco-	٤,		533, 0°)	Faget. J. 6, 504.
hol. B. 150°		4.6		754, 100° ji 11 8295, 15°	
Dimethylisop r o nol. B. 117°	pylearbi-	"		. \$364, 0°	- Priunichnikow. C. 14, 275.
11.71.		"		8387, 0°) Pawlow. A, C.
4.6		6.4			
Methylethylpre hol.	pyl alco-	"		.829, 15°	52, 228.
Trimethylcarby carbinol, or alcohol. B.	pinacolyl			_ .8047. 0°	Friedel and Silv J.C.S. (2), 11, 49
Normal heptyl	alcohol. B. 175°.5.				_ Wills, A. 6, 508.
64 44					_ Stadeler, J. 10, 30
					Cross. J. C. S.
44 44	4.	4.		.824, 270	123.
66 64		4.		8342, 0°	Zander. A. C.
		6+		6876, 175°.8	
	**			, \$356, 0°	Gartenmeister. C. P. 233, 249.
Isoheptyl alcol	nul. ?				Four products fr
B	.163°=165°	4.4			different source
		(,			Schorlemmer. C. P. 136, 257
Dipropylearbir	iol. B. 150°.	(.			Kurtz, A. C. P. 1
4.				.81882, 202) Ustinoff and Sav
4.		(.	R	,81064, 30°	eff. J. P. C. (
4.				80677, 35°) [34, 470.
Diisopropylear	binel.	4.		.S323, 17°	Munde. Ber.7,13
В.	131°—132°.				

	1	1	
NAME.	Formula.	Sp. Gravity.	Аптногіту.
Ethylisobutylearbinol.	C ₇ H ₁₆ O	.827, 0°	E. Wagner. B. S.
B. 147°.5. Methylamylcarbinol.		.8185, 17°.5	C. 42, 330. Rohn. A. C. P.
B. 149°. Triethylcarbinol. B. 141°		.8593, 0°	190, 310. Nahapetian. Z. C.
"		.83892, 20° \	14, 274. Barataeff and Sayt- zeff. J. P. C.
Methylethylpropylcarbi-		.82992, 30°	(2), 34, 465. Sokolow. Ber. 21,
nol. Normal octyl alcohol.	C ₈ H ₁₈ O	1	ref. 56. Zincke. Z. C. 12,
B. 196°.5.			55.
	"		Zander. A. C. P. 224, 88.
	"	.8369, 0°	Gartenmeister. A.C. P. 233, 249.
Methylhexylcarbinol, or capryl alcohol.	"	.823, 17°	Bouis. J. 7, 581.
capty t arconor.		.826, 16°	Pelouze and Ca- hours. J. 16, 529.
	"	.823, 16°	
"		.6589, 181°	Ramsay. J. C. S. 35, 463.
"	"	.8193, 20°	Brühl. A. C. P. 203, 1.
"	" 	$\begin{bmatrix} .6781 \\ .6782 \end{bmatrix}$ 179°	Schiff. G. C. I. 13,
"	"	.817	Duelaux. Ann. (5),
"Octylene hydrate"		.811, 0°)	13, 92. Clermont. A. C. P.
Director in Sector also below	"	.793, 23° 5	149, 38.
Primary isoöctyl alcohol. "B. 179°.5	"	.841, 0°] .833, 12°]	,
		.828, 20°	
	"	.821, 30° }	Williams. J. C. S.
" " " "	"	.814, 40°	35, 125.
		.807, 50° .867, 100°	
Secondary isooctyl alcohol.	"	.820, 15°	
" B. 161°.5_	"	.811, 30°	"
" " " "		.801, 40° }	
", ", —	"	.793, 100° J	
Methyldipropylcarbinol	"	.82357, 20°	Gortaloff and Saytz-
		.81506, 30°	eff. J. P. C. (2),
Diethylpropylearbinol		.81080, 35°) .83794, 20°	33, 202. Sokolow. Ber. 21,
Isodibutol, B. 147°		.8417, 0°	ref. 56. Butlerow. J. C. S.
Nonyl alcohol. B. 187°	C ₉ H ₂₀ O	.835, 18°.5	34, 122. Lemoine. B. S. C.
Normal nonyl alcohol		.8415, 0°)	41, 161.
" " " "	"	.8346, 10° }	Krafft. Ber. 19, 2221.
		.8279, 20°)	Tschebotareff and
Ethyldipropylearbinol	"	$\begin{array}{c} .83368, 20^{\circ} \\ .82583, 30^{\circ} \end{array}$	Tschebotareff and Saytzeff. J. P. C.
	"	.82190, 35°	(2), 33, 193.

NAME.	FORMULA.	Sp. Gravity.	Authority.
Ethylhexylearbinol.	C ₉ H ₂₀ O		Wagner, Ber, 17,
Normal decyl alcohol .			ret. 510.
Atormar decyr arconor :	**		Krafft, Ber. 16, 1714.
16 16			
Decyl alcohol. B. 200°		858, 189.5	Lemoine. B. S. C.
•			41, 161.
Isodecyl alcohol, B. 200	30 11	8569, 0°	Borodin. J. 17, 338.
Propylhexylearbinol. B. 21		839, 0°	E. Wagner, B.S.C.
Methylnonylcarbinol.		8968 169	42, 330. Giesecke. Z. C. 13.
B. 22	250.	,,	431.
Normal dodecyl alcoho	1 / 12 15 15	.8309, 24° 7	
	' '	$2.2, .8201, 40^{\circ} = -\frac{1}{2}$	Krafft, Ber. 10, 1714.
Normal tetradecyl al		8236, 38°)	
145744		8153, 50° } 7813, 98°.9 }	
Isomer of myristic ale		8368, 15°)	
hol. B. 270°—275°.		8301, 30° /	Perkin, Jr. J. C
**	4.	8279, 35°)	8, 43, 77,
Normal hexdecyl alcol	19 31		
			15 .65 15 13 13 153 4
		7837, 98°.7 }	Krafft, Ber. 16, 1714
	hol 4	8185, 49° 5	
	hol C ₁₈ H ₂₈ O		
4.6		8018, 70° }	
44 44		7849, 99°.1 🗦	

2d. Oxides of the Paraffin Series.*

Name.				For	MUI.A.	SP. GRAVITY.	Аптиониту.
Methyl ethyl oxide			С II ₃ . С ₂ II ₅ . О			Dobriner. A. C. A. C.	
Ethyl	oxide, or	ether		(C. H.)	0	7119, 24°,8	Gay Lussac.
**	4.4	6.6		11.5.2		.713, 20°	Dumas and Boullay.
6.4	4.4			**		.788, 12°.5	Ann. (2), 36, 294. Muncke, M. St. P. Sav. Et. 1, 1831, 249.
4.4	6.1	4.4		4.6			Kopp. P. A. 72.
1.4	4.6	4 4		+ 6			281.
* *	4.6			4.4)
4.8	4.4			6.4			Regnault. P. A.
	4.4					.7185,15°-20°	
* *		4.4					Pierre. C. R. 27,
		4.4				.728, 70	213. Delifs. J. 7, 26.

^{*} All of Dobriner's ethers represent normal parallins.

	Nas	ſE.		For	RMULA.	Sp. Gravity.	Аптновіту.
Ethyl	oxide, o	r ether	·	$(C_2 H_5)_2$	0	.73644, 0°	Intermediate val-
"	:1	"				1.00001, 10 .022	ues given. Men-
	"	"				.60896, 99°.9 .55958, 131°.6	delejeff. A. C.
44	"	"				.51735, 157°	P. 119, 1.
41	"	"		11		.7271, 10°.2)	Matthiessen and
"	"	"		"		.7204, 15°.8	Hockin.
"	"	"		"		.6956, 34°.5	Ramsay. J. C. S.
"	"	"		"		.7157, 20°	35, 463. Brühl. Ber. 13, 1530.
"	**	44		"		.7197, 15°	Buchan. C. N. 51,
						F 0100 10	94.
"	"	"		"		$\left\{ \begin{array}{c} .73128, 4^{\circ} - \ .71888, 15^{\circ} \end{array} \right\}$	Squibb. C. N. 51,
"	"	4.4		"		.73590, 0°]	67 and 76.
46	44	44		"		.7304, 5°	
" "	4.4	6.6		44		.7248, 10°	
"	"	"		"		.7192, 15° [Oudemans. Ber. 19,
"	"	"				.7135, 20° .7077, 25°	ref. 2.
"	"	6.6		"		.7019, 30°	
46	"	"		"		.6960, 35°	
"	44	"		"		.6704, 50°)	Also values for every
	"			"		.6105, 100°	5° from 0° to 193°.
"	"	44		"		.5179, 150°	Ramsay and Young.
	"			"		.3030, 193° .2463, at erit-	P. T. 178, 85. Ramsay and Young.
						ical to.	P. M. 1887, 458.
Methy	l propyl	oxide		$C H_3$. C_3	Н ₇ . О	.7471, 0° }	Dobriner. A. C. P.
77.1.1	"			CH C	TT 0	.70415, 38°.9 ∫	243, 1.
Ethyl	propyl o	xide _		C ₂ H ₅ . C ₃	117. 0	7545 00	Brühl. Bei. 4, 779. Dobriner. A. C. P.
	4.6	44	!	4.6		.6871.630.6	Dobriner. A. C. P. 243, 1.
Ethyl	isopropy	l oxid	e	"		$\begin{array}{c} .7411,0 & \\ .70415,38^{\circ}.9 \end{array} $ $\begin{array}{c} .7386,20^{\circ} & \\ .7545,0^{\circ} & \\ .6871,63^{\circ}.6 \end{array} $ $\begin{array}{c} .7447,0^{\circ} & \\ .7447,0^{\circ} & \end{array}$	Markownikoff. A.
							C. P. 138, 374.
Methy	I butyl c	xide		CH_3 . C_4	O	.7635, 0° }	Dobriner. A. C. P.
Propel	l oxide			(C. H.). ()	.6901, 70°.3 { .7633, 0° }	243, 1. Zander. A. C. P.
rops.	"			(03 47)2		.6743, 90°.7	214, 181.
Isopre	pyl oxide	e		4.6		.7435, 0°)	"
4.1	6.6			$C_2 \stackrel{\iota\iota}{\Pi_5}_{\iota\iota} C_4$.6715, 69° }	
Ethyl	butyl ox	1de		$O_2 \Pi_5, O_4$	H ₉ . O	$.7694,0^{\circ}$ $.7522,20^{\circ}$ $$	Liohon and Possi
"	4.			"		.7367, 40° }	Lieben and Rossi. A. C. P. 158, 137.
4.4	44			44		.761, 0°	Saytzeff.
4.6				4.4		.7680, 0° }	Dobriner. A. C. P.
11				""		.6785, 91°.4	243, 1.
Ethyl Marko	isobutyl Lamyl o	oxide. vida			н о	.7507, 0° .6871, 91°	Wurtz. J. 7, 574.
Ethyl:	l amyl o isoamyl	oxide		C. H. C.	Η ₁₁ . Ο Η ₁₁ . Ο	.8036, 14°.7	Schiff. Bei. 9, 559. Mendelejeff. J. 13, 7.
"	1302111,71	"		2 - 5 11 5		.764, 18°	Rebouland Truchot.
		_	.,		1		J. 20, 582.
Tertiar	y ethyla	mylo:	xide_	"		.759, 21°	Wandalase B. 00
4.6		44				.7785, 0° } .751, 18° }	Kondakoff, Ber. 20, ref. 549.
Propv1	butyl o	xide	-	C. H. C.	H ₉ . O	.7773, 0° }	Dobriner. A. C. P.
	"	"		3 111 4		.6638, 117°.1	243, 1.
			- 1		1	· .	

Name.	FORMULA.	SP. GRAVITY.	Астиониту.
Butyl oxide	(C, H _n) ₂ O	.784, 0°	
		1,7685, 20° 5	Lieben and Ross
**			A. C. P. 165, 109
**			Dobriner, A. C. 1
sobutyl oxide			243, 1.
sobuty1 oxide	**		
		i i	
**	**		Puchot. Ann. (5
		724, 48°,75 j	28, 521=528
			Four samples.
**			
Secondary butyl oxide	**		Kessler, A. C. I
		,	175, 55.
Ethyl hexyl oxide		7658, 50°	Schorlemmer, J. C
		7841, 68°)	Schörfemmer, a. C S. 19, 357.
4	11	776, 13°	Rebouland Trucho
			J. 20, 582.
Diethyl-ethyl oxide			
	**		Lieben, A. C. I
F .1 11	(1.11 (1.11 (1.		178, 14.
Tethyl heptyl oxide	С П ₃ , С, Н ₁₅ , О.	6667, 146°.8 (Dobriner. A. C. 1 243, 1.
thyl heptyl oxide	си си о	7000, 1000 o (=4·0, 1.
thy in province 222222	2 115. 7 1115. 0	.65065, 166°,6	
		790 / 160 !	Cross. J. C. S. 3
			123.
Tethyl octyl oxide		5014, 0° { 65856, 178° }	Dobriner. A. C. I 243, I.
to all and once much and have		S190 100 5	Wills, J. 6, 510,
Amyl oxide	(C, H.,), O	779	Ricekher, J. 1, 69
		.7994, 00	Wurtz. J. 9, 654
Propyl heptyl oxide	$C_3 \coprod_7 C_7 \coprod_{15} O_{}$		Dobriner, A. C. 1
4	w w		240, 1,
Ethyl octyl oxide	$C_2 H_5, C_6 H_{17}, O_{}$	7!+4, 17°	Moslinger, Ber. 1003.
			Debriner, A. C.
		639m, 189°, 2 i	243, 1.
Ithyl capryl oxide		791.466	Wills, J. 6, 510.
Butyl heptyl oxide	$\mathrm{C_4~H_9},~\mathrm{C_7~H_{15}},~\mathrm{O}$		Dobring, A. C. 1
	CHOLIN O		243. 1.
ropyl octyl oxide	$C_3 H_{T_{11}} C_n H_{17} O_{-1}$,8039, 0° / 	
Butyl octyl oxide	C. H., C. H., O	,5069, 0° /	1
	4 119	(277, 2250.7)	
Amyl capryl oxide	$\begin{array}{cccccccccccccccccccccccccccccccccccc$		Wills, J. 6, 510.
Sormal heptyl oxide	$-\mathrm{C}_{\tau}(\Pi_{15})_2(\mathrm{O})^{\prime\prime}$ and $-$		Dobriner, A. C. 1
	11 11 (1) II (1)	,6055, 2615,9%	243, 1.
Ieptyl octyl oxide	C_{7} Π_{13} C_{8} Π_{17} Ω	N482, 0° 	**
Sormal octyl oxide	(C. H.,), O		Moslinger, Ber.
to the transfer of the transfe	(* **11.7	8050, 177 - 3	1001.
	••		Dobriner, A. C.

3d. The Fatty Acids.

).	-		c- 0	
Name.			r	ORMULA.	Sp. Gravity.	Антновиту.
Formic acid			C H ₂ O ₂		1.2353	Liebig. Gm. H.
11			"		1.2227, 0° }	Kopp. P. A. 72, 248.
			"		1.2067, 13°.7 } 1.2211, 20°	Landolt. P. A. 117,
16			""		$\left\{ \begin{array}{c} 1.2211 \\ 1.2165 \end{array} \right\} \ \ 20^{\circ} \left\{ \begin{array}{c} \end{array} \right.$	353. Semenoff. Ann. (4), 6, 115.
t e	4		"		1.24482, 0°	Petterson. U. N. A. 1879.
			"		1.2188, 20° 1.2415, 0°	Brühl. Bei. 4, 781.) Zander. A. C. P.
4.4			"		1.1175, 100°.8	224, 88.
i i	4		11		1.2191, 20°	Winkelmann, P. A. (2), 26, 105.
44			"		1.2182, 22°	Lüdeking. P. A. (2), 27, 72.
4.6			"		1.1170, 100°.3	Schiff. Ber. 19, 560.
. 4					1.2190, 20°	Traube. Ber. 19, 884.
			"		1.22734, 15°	Perkin. J. C. S. 49,
		d	C ₂ H ₄ (02	1.0630, 16°	Mollerat. Ann. (1), 68, 88.
"	"				1.0622	Sebille-Auger. Watts' Diet.
"			"		1.0635, 15°	Mohr. A. C. P. 31, 277.
	"				1.100, 8°.5, s.	Persoz. Watts'
44					1.0650, 13°, l. 1.0647, 5°-10°	Diet.
4.6					1.0591, 10°-15°	Regnault. P. A.
4.4	4.6		"		1.0535, 15°-20°	62, 50.
	"		"		1.08005, 0°	*
6.6	44		"		1.06195, 17°	Kopp. P. A. 72, 253.
1.6	11		"		1.0635, 10°	Delffs. A. C. P. 92, 277.
4.6	"		""		1.0607, 15°	Mendelejeff, J. 13, 7.
6.6	٤٤				$\begin{bmatrix} 1.0563 \\ 1.0563 \end{bmatrix}$ 15°.5	(Roscoe. J. C. S. 15,
	4.6		"		1.0565 }	1 = 270.
11	4.4				1.0514, 20°	Landolt. P. A. 117, 853.
"	"				1.05533, 15°	Oudemans. Z. C. 1866, 750.
	"		"		1.0626, 20°	Linnemann. A. C. P. 160, 216.
	11		44		1.0502	Landolt. Ber. 9, 907.
			"		1.0490, 18°	Kohlrausch. P. A. 159, 240.
11			"		.9325, 113°	Ramsay. J. C. S. 35, 463.
					1.0635, 15°	Duclaux. Ann. (5), 13, 95.
"	"		"		1.1149, 0°, s	
46	"		"		$1.0576, 12^{\circ}.79 \mid 1.0543, 15^{\circ}.97 \mid$	Petterson. U.N.A.
**			"		1.0503, 19°.03	1879.
••	•••		••		1.0000, 101.00	J

	Хам	E. :	Fo	RMULA.	Sp. Grav	иту. Аптиовиту.
Acetic acid					1.0559, 20	Bedson and Wil liams, Ber.14, 2550
	1.				$^{-1}_{-1}$ 1.0495, 20	
٤.					1.0701, 0°	
			4.			2.1 11 88.
* *			4.		1.0532, 20	
"			4.6		1.0465, 22	
٤.	·· ·		4.4		11.05704, 1	
Provio:	nie acid		C. H. O.	·	1.0161.0°	
			3 - 6			
**	4.		11		9963, 20°	Landolt, P. A, 117
	**					
"	4.6		44		9961, 19°	
4.4	4.4		4.		1.0143, 0°	
4.4	4.		4.4		.5667. 490	
					.9062, 99°	
4.	6.6		6.			
4.			4.6		1.0199, 02	
			4.			
					1.0133, 0°	
4.					0.566	Zandon A C I
			4.			10°.5 Zander. A. C. 1
"	4.		44		.5033, 20°	
**	* *		"		.9902, 25°	
			4.4			
			**		1.0089.00	
64	4.		**			
44	4.		**			
Butyri	e acid.	B. 163°	C ₄ H ₅ O	<i></i>	9675, 25° 963, 15°	Chevrenl.
4.5	١.				95165, 09	
4.6	4.		4.			
	6.		4.			
	• • •					0.50
	4.4				.9850, 133	
4.6	44				.9580, 143	
"	4.6				.9601. 14	
6.6	4.6		4 .		974, 15°	
**	"				.9587, 20	
	4.		4.1			
					.8141, 16	
.,	• • •					177.

	Name		F	ORMULA.	Sp. Gravity	Аптногиту.
Butyrie	acid		C_4H_8C)2	.9746 } 0°	
""			"		[• · · · · · · · ·]	Zander. A. C. P.
"					$\{.8099\}$ $\{.8099\}$ $\{.62^{\circ}, 5\}$	224, 88.
"					.8120 102 .5 .9603, 20°	
••					.9005, 20	Winkelmann. P. A. (2), 26, 105.
"	"	· • • • • • • • • • • • • • • • • • • •			.9549, 25°	Lüdeking. P.A.(2), 27, 72.
"	"		• • •		.9809, 0°	Gartenmeister, A.C. P. 233, 249.
4.4	"		"		.9624, 20°	Traube. Ber. 19, 885.
Isobuty:	ric acid.	B. 154°	"		.98862, 0°)	Kopp. P. A.72, 258.
"	"		"		.9739, 15° }	_ **
"	"		"		.973, 7°	Delffs. A. C. P. 92, 277.
"	"		"		.9598, 0°)	35 1 22 20 4 2
66	"		"		$\left\{ \begin{array}{l} .9208, 50^{\circ} __ \\ .8965, 100^{\circ} \end{array} \right\}$	Markownikoff. A.C.
"	"				.9503, 20°	P. 138, 368.
						Linnemann. Ann. (4), 27, 268.
"	"				.9697, 0° .9160, 52°.6	
"	"		"		.8665, 99°.8	Pierre and Puchot.
	"		44		.8220, 139°.8	B. S. C. 19, 72.
16	"				.9490, 20°	Brühl. Ber. 13, 1529.
**	"		""		.9515, 20°	Brühl. A.C.P. 200, 180.
ιι	"		"		.8087, 153°	Schiff. G. C. I. 13, 177.
"	"		11		.9651, 0°)	Zander. A. C. P.
" "	"		**		.8054, 154°	224, 88.
"	"				.9519, 20°	Traube. Ber. 19, 886.
	valerie		$C_5H_{10}C$)2	.9577, 0°]	
"		" B. 185°	"		.9415, 20°	Lieben and Rossi.
"	"				.9284, 40° { .9034, 99°.3	A. C. P. 159, 58.
"	"	"	11		.945, 17°.5	Cahours and Demar-
tt.			"		.7569, 195°	çay. C. R. 89, 331. Ramsay. J. C. S. 35.
		"			·	463.
i i	"	"	"		.9608, 0° }	Kehrer and Tollens.
"	"	"	"		.9448, 20° }	A. C. P. 206, 239.
"			"		.9562, 0° (.7828, 185°.4 (Zander. A. C. P. 224,
"	"				.9568, 0°	88. Gartenmeister. A.C.
						P. 233, 249.
Isovaler	ie aeia.™	B. 175°			$\{0.941, 14^{\circ}, 0.932, 28^{\circ}\}$	Chevreul.
"	"		"		.944, 10°	Trommsdorf. A. C. P. 6, 176.
"	"				.930, 12.°5	Trautwein. Gm. H.
"	"		"		.937, 16°.5	Dumas and Stas. J. P. C. 21, 267.
11	"		"		.9403, 15°	Personne. J. 7, 653.
"	"				.9555, 0°)	Kopp. A. C. P. 95,
"	"		4.6		.9378, 19°.6	307.

 $[\]boldsymbol{*}$ Including ordinary and unspecified valerianic acid.

Name.		FORMULA.		Sp. Gravity.	Антновиту.	
Isovaleric	acid .		$C_5 \Pi_{10} O$	2	.935, 15°	Delffs. A. C. P. 92
			4.6		.9558, 15°	277. Mendelejeff. J. 13, 7
. 6	** -		. 6		.9313, 20°	Landolt. P. A. 117
4.6	" -		+ 6		.95357, 0°	Frankland and Dup pa. J. 20, 396.
	_		. 4		.9470, 00]	144 01 20, 000.
4.4			4.6		.8972, 54°.05	Pierre and Puchot
4.4			+ 6		.8542, 99°.9	B. S. C. 19, 72.
			1.6		.8095, 147°.5	D. S. C. 10, 12.
	-				.9465, 0° [1, , , , , ,
	-				.9285, 200.2	From differen
"	-				.9468, 00 [sources. Erlen
	-				.9295, 19°.7 (meyer and Hell
44	-				.9299, 18°,8	A. C. P. 160, 253
"	-		4.		.917, 15°	Lev. Ber. 6, 1365
4.6			4.4		.93087, 17°.4	
44					.9345, 15°	leben.
44						218, 56.
"					9297, 20°	Winkelmann, P. A. (2) , 26, 105.
**					.941, 16°	Renord. Ann. (6 1, 223.
			4.4		.9818, 20°	Traube. Ber. 19,886
		tic acid, p	(.9505, 00 1	(Erlenmeyer an
		ric acid.	1 16		.9331, 19°,5	Hell. A. C. I
B. 172°	.9.	.,			.988, 24°	(160, 257, Saur. A. C. P. 18
	. 4				4.37 3.50	275.
. 6	4.6					Pagenstecher, A. C
44	4.6				.948, 14°.5	P 195, 118. Lescoeur. J. C. :
44	4.4				9405, 17°	
Primethy	Lacerti	e acid			.944, 00)	257. Butlerow, Ber.
Normal c					905, 50° } 922, 26° }	728.
Normai c	aproie	B. 205°.	6 11120	2		Chevrenl, Febling, A. C. I
h š					.9449, 0°)	53, 406.
			. 4			
	4.4					Lieben and Ross
. 6	4.4		4.6			A. C. P. 159, 70
+ 4	4.6	64				
1.6	4.6		4.		.928, 200	Lieben, A. C. P. 17
+ 6	4.4		. 6		9164, 40°)	89.
4.6	6.6				568, <u>2</u> 8°	Caliours and Dema gay. C. R. 89, 33
. 4	6.6		4.4			Zander, A.C. P. 22
	6.6		+ 4			84.
* *	4.4		. 4		9449 / 00 1	Gartenmeister, A. G
4.4	6.6				9453 "	P. 233, 249.

	1	1	ī ·
NAME.	FORMULA.	SP. GRAVITY.	Аптновіту.
Isocaproic acid. B. 199°	$C_6H_{12}O_2$.9252, 20°	Landolt. P. A. 117, 353.
		.9237, 20°	Brühl. Bei. 4, 781.
Diethylacetic acid. B. 190°	"	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	Sticht. J. 21, 522. Schnapp. Ber. 10, 1954.
" "			Saytzeff, Ber. 11,
Wetherland and and		.9196, 18 }	512.
Methylpropylacetic acid. B. 193°		$\left \begin{array}{c} .9414, 0^{\circ} \\ .9279, 18^{\circ} \end{array} \right\} $	"
u u		.9231, 25°	Liebermann and Scheibler. Ber. 16,
· · · · · · · · · · · · · · · · · · ·	"	.9286, 15°	1823. Liebermann and Kleemann. Ber.
${\bf Methyliso propylacetic} \ acid$	"	.928, 15°	17, 918. Romburgh. J. C. S. 52, 232.
Methylethylpropionic acid		.930, 15°	Romburgh. J. C. S. 52, 228.
Denanthic acid. B. 223°	C7 H14O2	.9167, 24°	Städeler. J. 10, 360.
" "		.9179, 18° }	Landolt. P. A. 117,
11 11	"	.9175, 20°	353.
		.9312, 24	Franchimont. A. C. P. 165, 237.
"	"	.9345, 0°]	
" "	"	.9278, 8°.5 [Grimshaw and Schorlemmer. A.
	"	.9208, 16° [C. P. 170, 137.
" " "		.9110, 28°]	0. 1. 170, 100.
"		$\begin{bmatrix} .9359, 0^{\circ} \\ .9348, 9^{\circ} \end{bmatrix}$	
		9235, 280	
	"	.916, 21°	Mehlis. A.C.P. 185, 362.
" " "	"	.935, 0°)	
" "	"	.9198, 20° }	Lieben and Janecek.
" "	"	.9084, 40°)	J. R. C. 5, 156.
		.924, 21°	Cahours and Demar- çay. C. R. 89, 331.
11 11	"	.9160, 20°	Brühl. Bei. 4, 781.
11 11	"	.9313, 0° }	Zander. A.C. P. 224,
"	"	.7429, 223°.2	88.
и и	"	.9333, 0°	Gartenmeister. A.C.
Isoheptylic acid. B. 211°.5	"	.9305, 0°)	P. 233, 249.
" " " " "		.9138, 21° }	Heeht. A. C. P. 209,
	44	.8496, 1000	315.
Isoamylacetic acid. B. 217°	(,	.9260, 15°	Poetsch. A. C. P.
Caprylic acid. B. 236°.5	$C_8H_{16}O_2$.911, 20°	218, 56. Fehling. A. C. P. 53, 401.
	"	.905, 21°	Perrot. J. 10, 353.
"	"	.901, 18°	Fischer. A. C. P.
		.923, 17°	Cahours and Demar-
		.9270, 0° }	çay. C. R. 89, 331. Zander. A.C. P. 224,
" "	"	.726 4 , 236°.5 }	88.

Name.	Formula.	SP. GRAVITY.	Λ стновиту.	
Caprylic acid	$\mathrm{rid}_{}$ $\mathrm{C_8H_{16}O_{2^{}}}$		Gartenmeister, A.C. P. 233, 249.	
Isooctylic acid. B. 210°		893, 40° 885, 50°	Williams. J. C. S. 35, 125.	
Dipropylacetic acid. B. 219°, 5.	"	9215, 0°	Burton. A. C. J. 3, 389.	
Pelargonic acid. B. 253°	C ₉ H ₁ ,O ₂	,903, 21° ,9065, 17°	Perrot. J. 10, 353. Franchimont and Zincke. C. N. 25, 57.	
(From six different sources. Berg- mann. Arch. Pharm. 22, 331.	
4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4	, t	9065, 17°,5 9483, 99°,3	Krafft, Ber. 15, 1687. Gartenmeister. A.	
Isononylic neid. B. 245°	44		C. P. 233, 249. Kullhem. A. C. P. 173, 319.	
Rutylic acid	C_{10} H_{20} O_2	93ō, 37°, 1	Fischer, A. C. P. 118, 307.	
Lauric acid	$C_{12} H_{24} O_2 $	843, 20°, s	Gorgey, A. C. P.	
Stearie neid		1.01, 0°, s) 	Saussure. Watts Dict. Kopp. J. 8, 43.	

4th. Anhydrides of the Fatty Acids.

	Nau	E.	Fo	BMULA.	Sp. Gravety.	Астиовату
- Acetic a	nhydri	· [•	C. H. O		1.073, 20°, 5	Gerhardt. J. 5, 451.
14			•••		1.0/839, 02 }	
	* *					Mendelejetf, J. 13,7.
						Nasini, Ber. 14, 1513, Bruhl, Bei. 4, 782.
		ydride				Linnemann. J 21, 433.
* *			4.			Perkin, J. C. S. (2), 13, 11.
Butyrie	anhyd	ride	., C. II., €),	1.978, 12 .5	Gerhardt. J. 5, 452.

NAME.	Formula.	Sp. Gravity.	AUTHORITY.
Valeric anhydride Oenanthic anhydride		.934, 15° .91, 14°	Toennies and Staub. Ber. 17, 851. Watts' Dictionary. Malerba. J. 7, 444. Mehlis. A. C. P. 185, 371.

5th. Ethers of the Series C_n H_{2n} O_2 .

NAME.			Form	ULA.	SP. GRAVITY.	AUTHORITY.
		ıte	С Н ₃ . С Н	O ₂	.9984, 0°)	
11			"			Kopp. P. A. 72, 261
"			"			TT 11 2
**					.9928, 0°	Volhard. A. C. P. 176, 135.
"	"		16		.9797, 15°	Kraemer and Grodz ki. Ber. 9, 1928
"	"		"		.9482, 33°	
"	4.6		"		.9767, 14°	
"	"		"			
44	4.6		44		.99839, 0°)	
4.4	"		- 66		.95196, 32°.3	218, 302.
Ethyl f	format	e	C, H, C H	O,	.9157, 18°	Gehler. See Böttger.
ű	"		- ""		.912	Liebig. Quoted by Kopp.
4.6	44		4.4		.94474, 00)	1
"	4.4		"		.92546, 15°.7	Kopp. P. A. 72, 266.
4.6	"		46		.9394, 0°)	
"	: 4				.9188, 170 }	
"	11				.93565, 0°	
4.4	"		"		.917	Löwig. J. 14, 599.
"	"		"		.8649, 55°	Ramsay. J. C. S. 35, 463.
"	11		"		.9064, 200	Brühl. Ber. 13, 1530.
"	"		4 6		.9214, 14°	De Heen. Bei. 5, 105.
11	i t		"		.9367, 0° }	
44	"		"		.9238, 10°.84	Several intermediate
"	"		"		.9122, 20°.03	values given. Nac-
	"		"		.8959, 32°.79 }	cari and Pagliani.
"			"		.8865, 40°.02	Bei. 6, 89.
"	"		"		.8740, 49°.76	1
"	"		"		.8707, 51°.94 J	(01:00 0 0 1 10
			44		.8730 } 53°.4 _	Sehiff. G. C. I. 13,
"	"		"		.8731 \ 00 .4 -	177. Elsässer. A. C. P.
			"		.93757, 0° } .86667, 54°.4 }	218, 302.
"	"				01015	Winkelmann. P. A.
44	"		4.6		.9152 200	(2), 26, 105.
"	"		4.6		.9445, 0°	Gartenmeister. A.C.
					, 0	P. 233, 249.

	Name.		For	tMtT.A.	Sr. Gravity.	Аптновіту.
Propyl			C, II., C II O,		.9197, 0°)	
6.0	4.4				.577, 35°.5 -	Pierre and Puchot.
44	11				.836, 72°.5 .9188, 0°	Z. C. 12, 660.
	44				.8761, 882.5	Pierre and Puchot.
	4.				.835, 729.5 }	$\{-\Lambda nn. (4), 22, 288,$
	٠.				.9026, 143	De Heen. Bei. 5.
"	44		"		.91888, 02 1	105. Elsåsser. A. C. P.
4+	6.6		4.6		.82146, 81° j	218, 302.
	6.6		4.6		.9023 / 502	Winkelmann, P. A.
4.6	ι.				.9125 -	(2), 26, 105.
4.6	٤.				.9250, 0° }	Gartenmeister, A.C.
6.6	4.5		٤.		.8270, 81° j	P. 233, 249.
Butyl	format	6	$\mid \mathrm{C_4} \mid \mathrm{H_9}$. $\mid \mathrm{C} \mid$.0108, 0° [44
4.			**		.7972, 106°.9 (
		ate	44		$.8845, 0^{\circ})$	
4.	6.4				.850, 34° .8224, 59°.8	Pierre and Puchot.
"			''			Ann. (4), 22, 319.
"	"		"		- 7962, 832.4 ゴ - 8650, 142	De Heen, Bei, 5,
"	"				.7784, 98°	105. Schiff, G. C. I. 13,
4.6			4.6		,88540, ((°)	177. Elsässer, A. C. P.
6.6			44		.78257, 972.0 (218, 302.
Norma	Lamyl	formate	C. H.,, C	$H _{\mathcal{O}_2}$.9015.02	Gartenmeister, A.C.
		44	2 11		.7692, 130°.4 (P. 233, 249.
Isoamy	1 form	ate	4.6		.881, 15º	Delifs. J. 7, 26.
	h a				.8945, 0° (Kopp. A. C. P. 96.
4.4	4.		4.		.8740, 21° } ==	Kopp. A. C. F. 36.
4.4	t t		44		.8809, 15°	Mendelejeff, J. 13, 7.
4.4	4.4				.8816, 14°	De Heen. Bei. 5, 105.
6.4	41		4.		.7554, 125°,5	Schiff, G. C. I. 13, 177.
+ +	4.4		4.6		.8802, 200	Bruhl. Bei. 4, 782.
* *	6.4		4.4		.894378, 02) Elsasser, A. C. P.
4.4	4.4		4.4		.77027, 1239.32	7 218, 302,
Normal	l hexyl	formate	C ₆ H ₁₃ , C	H O ₂	.8495, 17°	Frentzel. Ber. 16, 745.
	٤.	4.	+4		.8977, 02)	Gartenmeister, A.C.
		4.			.7481, 1530,6	P. 233, 249.
Normal	Lhenty	I formate	C. H., C	П О,	.5997, 02 /	44 41
4.	1	4.	4.4		.7808, 176°, 7 j	
Normal	Loctvl	formate	C. H C	$\Pi_{i}\Theta_{i}$,8020, 0° /	44 44
6.		+4			$.7156, 198^{\circ}, 1$	
Methyl	ncetat	0	C H ₃ , C ₂	$\Pi_3 \Theta_2$.010, 220	Dumas and Peligot. P. A. 36, 117.
	4,		**	-	.0028, 0° } .0085, 21° }	Kopp. A C. P. 96.
•••					.9562, 02)	••
					.93755, 15°,64	Kopp. P. A. 72, 271,
					.56684, 0°	Pierre, C. R 27, 213,
**	4.4		4.6		.910	Grodzki and Krae-
						mer. Z. A. C. 14, 103.
	4.6		44		.9039, 20°	
4.4						: De Heen. Bej. 5, 105.

NAME.			Formul	.Α.	Sp. Gravity.	Аптновиту.
Methyl	aceta	te	С Н ₃ . С ₂ Н ₃ С)2	$.8825 \atop .8826 $ 55° {	Schiff. G. C. I. 13, 177.
66	"		"		.95774, 0°)	Elsässer. A. C. P.
"			"		.88086, 57°.5 }	218, 302.
44	"		4.4		.9424, 0°	
44	"		"		.9238, 19°.2	Henry. C. R. 101, 250.
			44		.9643, 0°)	
4.6	"				.8873, 57°.3	
- "	44			0	.866, 7°	Thénard. Gm. H.
	cetate	9	C2 H5. C2 H3	02	.89, 15°	Liebig.
"	"				.9051, 0°	Frankenheim. P. A. 72, 427.
"	"		"		.91046, 0° `)
"	"		"		.89277, 15°.7	Kopp. P. A. 72, 276.
4.6	"		"		.8926, 15°.9) Di
"	"		"			213.
"	"				.906, 17°.5	_ Marsson. J. 4, 514.
4.6	"					
44	"				_ .932, 20°	
						563.
"	"		- "		.9055, 17°.5	Marsson. J. 6, 501.
44	"		- "		8922, 15°	Delffs. J. 7, 26.
44	66		- "			
44	"		- "		903, 0°	Ann. (4), 22, 261.
44	"		-		.868, 24°	Léblane. Ann. (3), 10, 198.
"	"		_	· 	9068, 15°	
					.9007, 20°	
"	"		- "		0000 110	
44					8220, 74°.3_	
"	"				+.9227, 0°	1
"	"		- "		00-6 100 00	Several intermedi-
"			- "			ate values given
44			- "		8730, 41°.13	Naccari and Pag
	44		- "		_] .8594, 51°.75	liani. Bei. 6, 89.
44	44					
66	44				.8309, 73°.74	
"	44				.9004	
4.4	44		. "		.9012	16, 1227.
44	44				$\begin{array}{c} .8306 \\ .8294 \end{array}$ 75°.5	Sehiff. G. C. I. 13
	44		"			1
	4.6		"		92388, 0°	
"	6.6		"		82673, 77°.1	\
44	4.4		"			$\{(2), 26, 105.\}$
66	"				.9041)	
11	4.4				9253, 0°	9, 766.
	rl ace	tate	C ₃ H ₇ . C ₂ H	I ₃ O ₂	.910, 0° .8635, 42°.5	
44	4		"		.8137, 84°.6	J Z. C. 12, 660.
"			"		910, 0°	5
**			"			Pierre and Puchot
"			;;		.8128, 84°.6	Ann. (4), 22, 289
44		"	1		, .0120, 01 .0	/ (-// - /

	Na	ME.	FORM	ULA.	SP. GRAVITY.	Антиовиту.	
Propyl acetate			C ₃ H ₇ , C ₂ H	3 O ₂	.913, 0°		
**					.8992, 15°		
					.8856, 20°	P. 161, 30. Bruhl, Ber. 13, 1530	
	+ 4				.8871.140		
					.7916 101°.8		
	**				.7918 (101°.8	177.	
• •	* *	8			.909092, 0° _	$_{\perp}$ + Elsässer. – A. C. I	
• •	* *				794388, 100°.		
**	**				.9093, 0°		
- Butyln			C4 H9. C2 H	3 O ₂	.9000, 0°)	P. 233, 249.	
:			!		, .8817, 20° LL	 Lieben and Ross 	
١.	4.6				[.8659, 40°)		
* *	4.6				.8768, 23° 	 Linnemann, An. (4), 27, 268. 	
	* *				.9016, 00	Gartenmeister, A.	
* *	٠.				.7683, 424°.5 j		
	vI acet	ate			.8845, 16°		
					.892, 00	_ Lieben. J. 21, 44	
	•					(1)	
						- Chapman and Smit	
					= .83143, 50° =) = .9052, 0° =)	J. C. S. 22, 160.	
6.6							
+ 4			**			Pierre and Puche	
+ 4						Ann. (4), 22, 32	
1.6	•				.,7972, 99°,75]	. , ,	
• •					.7589, 112°.71	Schiff, G. C. I. 1	
+ +					.892100, 0° _	Elsasser. A. C.	
+ 4					77080, 116°,3	f = 218, 302.	
		Lacetate				1	
		**				 Lieben and Ros 	
• •	4.4	* *			5645, 40°]	$C_{\rm e} = A_{\rm e} C_{\rm e} P_{\rm e} 159, 70$	
						Gartenmeister, A.	
		learbyl ac			7461, 147°.67 9222, 0°		
tate.		removi ne				. 11 11172. 72. C. 11, 11.	
Diethy	learby	Lacetate .				Wagner and Says	
					.593, 16°	eff. A.C.P.17	
\mvl:	acetati		**			' (- 366,) Kopp. A. C. P. !	
						297.	
					.8837, 05		
• •	h 4				.° .8692, 15°.1	257.	
* *					863, 10°	Delifs. J. 7, 26.	
• •						Mendelejeff, J. 13,	
1.1					~~ <u>\\</u>	Schorlemmer, J. 1	
		Inactive			5752)	(† 527. Balbiano, Ber.	
	1.1						
• •					5501 140	1437. - Da Roon Roi 5 10	
• •						. De Heen, Bei, 5, 10	
**			**		. ,8561, 14° ,8561, 20° ,742° 138°	 De Heen, Bei, 5, 10 Bruhl, Bei, 4, 78 Sobiet, G. C. I. 1 	

Name.	Formula.	Sp. Gravity.	AUTHORITY.
Tertiary amyl acetate " " " " " " " " " " " " " " " " " " "	C ₅ H ₁₁ . C ₂ H ₃ O ₂ C ₆ H ₁₃ . C ₂ H ₃ O ₂	.8909, 0° .8738, 19° } .8890, 17°	Flawitzky. A. C. P. 179, 349. Franchimont and Zincke. C. N. 24,
Secondary hexyl acetate_	"	.8902, 0° } .7267, 169°.2 } .8778, 0° }	Gartenmeister. A. C. P. 233, 249. Wanklyn and Er-
Methyldiethylearbyl acetate.	16	.8310, 50° }	lenmeyer. J. 16, 522.
thylpropylearbyl ace-	• • • • • • • • • • • • • • • • • • • •	.8772, 25° .8735, 30° .8679, 35°] .8525, 0°	Reformatsky. J. P. C. (2), 36, 340. Buff. J. 21, 336.
tate. Methylisobutylearbylace- tate. Methylarunylethyl a co		.8805, 0°	Kuwschinow. Ber. 20, ref. 629.
Methylpropylethol ace- tate. Normal heptyl acetate		.8717, 25°	Lieben and Zeisel. M. C. 4, 33. Cross. J. C. S. 32, 123.
Isoheptyl acetate	"	.8891, 0° } .7134, 191.°3 } .8605, 16° }	Gartenmeister. A. C. P. 233, 249. Three products.
Dipropylearbyl acetate	"	.8707, 16°.5 .8868, 19° }	Schorlemmer. A. C. P. 136, 271. (Ustinoff and Saytz-
Methylisoamylcarbylace- tate.	· · · · · · · · · · · · · · · · · · ·	.8587, 20° }	eff. J. P. C. (2), 34, 470. Rohn. A. C. P. 190,
Normal octyl acetate	C ₈ H ₁₇ . C ₂ H ₃ O ₂	.8717, 16° .8847, 0° } .6981, 210°	312. Zincke. J. 22, 370. Gartenmeister. A. C. P. 233, 249.
Methyldipropylcarbylace- tate. "		.8738, 0° } .8554, 20° }	{ Gortaloff and Saytzeff, J. P. C. (2), 33, 702.
"Octylene acetate" "	C ₉ H ₁₉ . C ₂ H ₃ O ₂	.803, 26° } .8795, 0° } .8675, 20° }	Clermont. J. 17, 517. Tsehebotareff and Saytzeff. J. P.
Isomer of myristic acetate	C ₁₆ II ₁₃₂ O ₂	.8559, 15° }	C. (2), 33, 193. Perkin, Jr. J. C. S.
Cetyl acetate Methyl propionate	$\begin{array}{c} {\rm C_{16}} \ {\rm H_{33}}. \ {\rm C_2} \ {\rm H_3} \ {\rm O_2} \\ {\rm C \ H_3}. \ {\rm C_3} \ {\rm H_5} \ {\rm O_2} \end{array}$.8448, 35°) .858, 20° .9578, 4°	43, 77. Dollfus. J. 17, 518. Kahlbaum. Ber. 12,
() () () () () () () () () () () () () (:: :: ::	$.8954, 14^{\circ}$	344. De Heen. Bei. 5, 105. Schiff. G. C. I. 13, 177.
tt tt	"	.93725, 0° .836798, 79°.9_ .922, 15°	Elsässer. A. C. P. 218, 302. Israel. A. C. P. 231,
	"	.9403, 0°	197. / Gartey Gister. Bei. 9, 7 %.
14 s g			' ,

NAME.		Form	JLA.	SP. GRAVITY.	Антиовіту.	
Ethyl propionate			С, Н, С, Н	C ₂ H ₅ . C ₃ H ₅ O ₂		Kopp. A. C. P. 9
	* * *				.8949, 26°.3]	307.
4.6	4.6		4.4		.9139, 0°)	D: 1 D 1
4.4	4.4				.8625, 45°,1	Pierre and Pucho
			"		.816, 83°)	Ann. (4), 22, 35
. 4	4.				.8964, 16° == }	Linnemann. A.C.1
	"				.8945, 17° }	160, 195. Do Harry Point 10
	"				.9175, 14°	De Heen. Bei. 5, 10 CSabiet C. Cot 1
44			4.6		$\begin{bmatrix} 7961 \\ 7963 \end{bmatrix}$ 98°.8 .	$\left\{ egin{array}{ll} \operatorname{Schiff.} & \mathbf{G.C;I.I} \\ 177. \end{array} ight.$
	44		4.6		.9109, 0°]	(111.
44	4.6		4.6		.8968, 12°.60	
4.6	66				.8832, 24°.57	Several intermedia
44	4.6		"		.8637, 41°.54	valuesgiven. Na
4.6	4.4		44		.8514, 52°.05	cari and Paglian
4.6	4.4		4.6		.8365, 64°.46	Bei. 6, 89.
**	4.4		"		.8247, 74°.46	
4.4	4.4		44		.8020, 92°.96	
4.4	44		4.6		.91238, 0° (Elsässer. A. C.
4.4	4.4		4.6		79868, 98°.3 ji	218, 302.
4.4	4.4		4.6		.91224, 0°	Weger, Ber. 16, 291
4.4	4.4		4.4		.886 1 150	Three samples. 1
4.4	4.4		4.6		.8010)	rael. A. C. P. 23
6.4	4.4		"		.8900, 19°)	197.
ropyl p	ropion	ate	C ₃ H ₇ . C ₃ H	5 O2	.9022, 0°	
* *					.8498, 51°.27	Pierre and Puche
1.4	**				.7944, 100°.6	Ann. (4), 22, 29
"	44		44		.,7839, 108°,34 .8885, 13°	,
**	••		,,		,	Linnemann. A. (P. 161, 32.
4.4	4.4		44		.8821, 14°	De Heen, Bei. 5, 10
64	4.6		44		\[\frac{7680}{682}\]\ \1210\{\]	Schiff. G. C. I. 1
4.4	4.		"		1900	177.
4.4	4.6		"		.90192, 0°	Elsasser. A. C.
* *	4.4				.772008, 122°.2	
• 6					.9023, 0°	C. P. 233, 249.
3utyl pi	ropiona	ite	C, H ₉ . C ₃ H	5 O2	.8828, 15°	Linnemann. An (4), 27, 268.
4.6	4.4		4.6		.8958, 0° }	Gartenmeister.
4.6					.7489, 145°.4	C. P. 233, 249.
sobutyl	l propie	nate	4.6		.8926, 0°)
4.4			4.		.8437, 490.2	Pierre and Puch
6.6	4.4		1 46		.7896, 100°.15	Ann. (4), 22, 32
4.4	4.4		"		.7698, 116°.5	. 1
6.4			- "		°0 ,686788.	Elsasser, A. C.
+ 6	**		٠.		.74424, 136°.8	1 218, 302.
\myl pi	ropion:	ite	C ₅ H ₁₁ . C ₃	$H_5 O_2 =$.8700, 14°	De Heen. Bei, 5, 10
4.1	4.6				.7295, 160°	Schiff. G. C. I. 1
• •	4.6		4.6		.887672, 0°	Elsasser, A. C.
4.4	+ 6		6.6		.,78646, 160°.2	218, 302.
Sormal 	heptyl	${\bf Propionate}$	C. H ¹² C.	H ₅ O ₂	.8846, 0°}	Gartenmeister, C. P. 233, 249.
Sormal	ōetyl p	oropionate	$C^{s}\Pi^{12},C^{3}$	H ₅ O ₂	.8833, 0°) .6860, 226°.4	4
	1			. 0	- (02005, 0°)	
		te	-CH,CH	• U ₂	and the state of t	Kopp. P. A, 72, 29

NAME. Methyl butyrate			Formu	JLA.	Sp. Gravity.	Антновиту.
			C H ₃ . C ₄ H ₇	O ₂	1.02928, 0°	Pierre. C. R. 27, 213.
"	"		"		.9091, 0° }	Kopp. A. C. P. 95,
46	"		"		.8793, 30°.3	307.
"	44		"		.9475, 4°	Kahlbaum. Ber. 12, 344.
	44		"		.8962, 20°	Brühl. Ber. 13, 1530]
44	"		"		.91939, 0°	Elsässer. A. C. P.
"	"		""		.80261, 102°.3 .9194, 0°	Gartenmeister. A.
			"		.9056, 0°)	C. P. 233, 249.
	isobut	yrate	44		.8625, 38°.65	Pierre and Puchot.
"	"		"		.815, 78°.6	B. S. C. 19, 72.
"	"				.911181, 0°	Elsässer. A. C. P.
"	"		"		.80397, 92°.3	218, 302.
			C2 H5. C4 H	0	.9003, 18° (Linnemann. A. C.
Ethyl b	utyrau	3	02 115.04 11		.8990, 17° }	P. 160, 195.
"	"				.8892, 20°	Brühl. Ber. 14, 2800.
"	"		"		.7703 \ 119°.8	Schiff. G. C. I. 13,
"			"		1.77001	1 1111.
"	"				.90193, 0°	Pierre. C. R. 27, 213.
"	"		"		.8894, 15°	. Mendelejeff. J. 13, t.
"	"				.8942, 0°	Frankland and Dup- pa. J. 18, 306.
"	"				.89957, 0°	Elsässer. A. C. P.
"	"		"		.76940, 119°.9	218, 302.
"	"		"		.9004, 0°	Gartenmeister. A. C. P. 233, 249.
Ethanlia	ahutı	rata	"		.90412, 0°)	Kopp. P. A. 72, 287
Etnyris	sobuty.	rate			.89065, 13°	Kopp. 1. A. 12, 201
	4.6		"		890, 0° j	
"	46		"		.871, 18°.8	Pierre and Puchot
"			1 44		.831, 55°.6	B. S. C. 19, 72.
4.6			"		7794, 100°.1 J	G G T 10
"	"		. "		.7681, 110°.1_	177.
4.6	"		"		.890367, 0°	_ \ Elsässer. A. C. P
44	"		"		.77725, 110°.1	$\int_{-1}^{2} 218, 302.$
\mathbf{Propyl}		ate	C ₃ H ₇ . C ₄ H	[7 O2	.8789, 15°	161, 33.
4.6	"		"		_ .89299, 0°	- Elsässer. A. C. P
44	"				_ .745694, 142°.	$7 \int 218, 302.$
Propvl	isahut	tyrate	"		_ .8872, 0°	-[]
* 1.7py1	.50541				_ .8402, 47°.24_	- Pierre and Puchot
4.6	4				.7842, 100°.25	- Ann. (4), 22, 295
44					_ .7525, 128°.75	The state of the s
+4	4		- "		884317, 0°	
4.6	4		- "		74647, 133°.9	$= \int 218, 302.$
Isopror	yl bu	tyrate	"		_ \.8787, 0° \	Silva. Z. C. 12, 508
1, 1	•	ī	- "	· · · · · · · · · · · · · · · · · · ·	. 8652, 13°)	
Butyl	butyrat	te	_ C4 H9. C4 H	1, O ₂	_ .8885, 0°	Linkon and Possi
			- "		8717, 20°	Lieben and Rossi A. C. P. 158, 137
• 6			- 44		8579, 40°	
• 6	"		- "		.8760, 12°	(4), 27, 268.
			_		.8878, 0°	Gartenmeister. A.C
. 6	"		_] P. 233, 249.

	Nyme		FORMUL	Α.	SP. GRAVITY.	Астновиту.
solantyl	hutvrat	0	С. П. С. П. С),	.581775.00	Elsässer. A. C.
			, ,, , ,		1.71630, 1569,9	j 218, 302.
3.6		- 199	1.6		.8798, 00)	
		· ·			.86635, 169	Grunzweig, B.S.
					[.51838, 95°,4] [.5719, 0°]	18, 125.
solutyi	isobuty	rate _			[8258, 50°]\$	
			4.6		[.7753, 90°,S]	Pierre and Puch
1.4					.7439, 1289,8	\uparrow Ann. (4), 22, 32
			"		il. 57 4957. 6° 🚅) Elsässer. A. C.
			4.4		[.73281, 146°.6.	. j 218, 302.
	4 +		••		. S7519. 0°)	
			. 6		.86064, 150	Grunzweig, B.S.
			() 11 () 15		.81192, 98°.4)	18, 125.
ormul		tyrate	$C_5 \coprod_{W_1} C_4 \coprod_7$	O_2	.8832, 0° /	Gartenmeister, A.
		**			.,7092, 181°.5 j .,8688, 15°	P. 233, 249, Mendelejeff, J. 13,
myl bu	ityrate =				1.852, 15°	Deld's. J. 7, 26.
					.882806, 0/	Elsässer. A. C.
			4.4		.71119, 1789.6	(218, 302.
			4.6		.873, 100	De Heen, Bei, 10,31
mvl is	dutyrat				.5769, 0°}	,
i.		_	14		1.8264, 55°, 4	Pierre and Puche
* *	+ 4		44		.7889, 100°.2	Ann. (1), 22, 31
	• •		44		7446, 1892.5 J \$75965, 02	
			* * *			
			+ 4			
1			е п е п	0	.70662, 1682,8	I = 218, 302.
ormal	hexyl lo	ityrate	$C_6 \coprod_{13.4}^{3.4} C_4 \coprod_{7}$	02	.70662, 168°,8 .8825, 0°}	 f 218, 302. Gartenmeister, Λ.
			+ 6		.70662, 168°,8 .8825, 0°	f 218, 302. Gartenmeister, A. P. 230, 249.
		oity rate	$C_7 H_{15} C_4 H_7$	0,	.70662, 168°,8 .8825, 0° } .6963, 205°,1 } .8827, 0° } .6869, 225°,2 {	 f 218, 302. Gartenmeister, Λ.
ormad 1		oity rate	+ 6	0,	.70662, 168°,8 .8825, 0°	f 218, 302. Gartenmeister, A. P. 230, 249.
ormal 1	heptyl b oetyl bar	outyrate tyrate	$C_{7}H_{15}, C_{4}H_{7}$ $C_{8}H_{17}, C_{4}H_{7}$	0,	.70562, 168°,8 .8825, 0°	(artenmeister, A. P. 238, 249.
ormad l ormad c ormad c	heptyl b oetyl bu tyrate	outyrate tyrate	$C_{7}H_{15}, C_{4}H_{7}$ $C_{8}H_{17}, C_{4}H_{7}$	0,	.70562, 168°,8 .8825, 0°	(218, 302, Gartenmeister, A. P. 235, 249, a a a Dollfus, J. 17, 51
ormad l ormad c ormad c	heptyl b oetyl bar	outyrate tyrate	$C_{7}H_{15}, C_{4}H_{7}$ $C_{8}H_{17}, C_{4}H_{7}$	0,	.70662, 168°,8 .8825, 0°	[218, 302, Gartenmeister, A. P. 233, 249, a a a Dollfus, J. 17, 51 Calcurs and Dem
ormad l ormad c ormad c	heptyl b oetyl bu tyrate	outyrate tyrate	$C_{7}H_{15}, C_{4}H_{7}$ $C_{8}H_{17}, C_{4}H_{7}$	0,	.70662, 168°,8 .8825, 0°,) .6063, 205°,1 (.8827, 0°,) .6860, 225°,2 (.8794, 0°,) .6751, 242°,2 (.856, 20°,)	Gartenmeister, A. P. 233, 249. a. a. a. Dollfus, J. 17, 51 Cahours and Demegay, C. R. 89, 33
ormal l ormal c ormal c	heptyl b oetyl bu tyrate	outyrate tyrate	$C_{7}H_{15}, C_{4}H_{7}$ $C_{8}H_{17}, C_{4}H_{7}$	0,	.70562, 168°,8 .8825, 0°	Gartenmeister, A. P. 233, 249. a. a. bollfus, J. 17, 51 Cahours and Demegay, C. R. 89, 33 Gartenmeister, B
ormad l	heptyl b cetyl bu tyrate valerate	outy rate	$C_{7}H_{15}, C_{4}H_{7}$ $C_{8}H_{17}, C_{4}H_{7}$	O_2 O_2 O_2 O_3	.70662, 168°, 8 .825, 0° ; .6963, 205°, 1 ; .8827, 0° ; .6869, 225°, 2 ; .8794, 0° ; .6751, 242°, 2 ; .856, 20° .895, 17° .9067, 0° ; .7767, 127°, 3 ; .8060, 0° ;	[218, 302, Gartenmeister, A. P. 233, 249, a a a Dollfus, J. 17, 51 Cahours and Domegay, C. R. 89, 33 Gartenmeister, B 9, 766.
ormad l	heptyl b oetyl bu tyrate	outy rate	C ₇ H ₁₇ C ₄ H ₇ C ₈ H ₁₇ C ₄ H ₇ C ₈ H ₁₇ C ₄ H ₇ C ₁₆ H ₁₈ C ₄ H ₈ C H ₂ C ₅ H ₉ C	O_2 O_2 O_2 O_3	.70562, 168°,8 .825, 0°,; 1 .6963, 205°,1 ; 1 .827, 0°,; 1 .6860, 225°,2 (.8794, 0°,; 1 .6751, 242°,2 ; 1 .856, 20°,; 1 .895, 17°,; 1 .9097, 0°,; 1 .7767, 127°,3 ; 1 .8000, 0°, 1 .8806, 16°; 1	[218, 302, Gartenmeister, A. P. 233, 249, a a a Dollfus, J. 17, 51 Cahours and Dome gay, C. R. 89, 33 Gartenmeister, B 9, 766.
ormad l	heptyl b cetyl bu tyrate valerate	outy rate	C ₇ H ₁₇ C ₄ H ₇ C ₅ H ₁₇ C ₄ H ₇ C ₅ H ₉ C ₇ H ₉ C ₇ H ₉ C ₈	O_2 O_2 O_2 O_3	.70562, 168°,8 .8825, 0°,; 1 .6063, 205°,1 .8827, 0°,; 1 .6860, 225°,2 (.8794, 0°,; 1 .6751, 242°,2 (.856, 20°,; 1 .895, 17°,; 1 .9067, 0°,; 1 .8060, 10°, 1 .8806, 10°, 1 .901525, 0°,;	Gartenmeister, A. P. 233, 249. a. a. a. Bollfus. J. 17, 51 Cahours and Domegay. C. R. 89, 33 Gartenmeister. B. 9, 766. Kopp. A. C. P. 9
ormad l	heptyl b cetyl bu tyrate valerate	outy rate	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	O ₂	.70562, 168°,8 .8525, 0°	Gartenmeister, A. P. 233, 249. a. a. a. Bollfus. J. 17, 51 Cahours and Domegay. C. R. 89, 33 Gartenmeister. B. 9, 766. Kopp. A. C. P. 9
ormad l	heptyl b oetyl bu tyrate valerate	tyrate	C ₇ H ₁₇ C ₄ H ₇ C ₅ H ₁₇ C ₄ H ₇ C ₅ H ₉ C ₇ H ₉ C ₇ H ₉ C ₈	O ₂	.70562, 168°,8 .8525, 0°,) .6063, 205°,1 \ .8827, 0°, .6860, 225°,2 \ .8794, 0°, .6751, 242°,2 \ .856, 20°, .895, 17°, .7767, 127°,3 \ .8060, 0°, .8060, 0°, .901525, 0°, .88667, 15°, .88667, 15°, .88667, 15°, .88662, 15°,3	Gartenmeister, A. P. 233, 249. a. a. a. Bollfus. J. 17, 51 Cahours and Domegay. C. R. 89, 33 Gartenmeister. B. 9, 766. Kopp. A. C. P. 9
ormad l	heptyl b octyl bu tyrate valerate	tyrate	C ₇ H ₁₇ C ₄ H ₇ C ₄ H ₁₇ C ₄ H ₇ C ₄ H ₁₇ C ₄ H ₇ C ₁₆ H ₁₈ C ₄ H ₈ C H ₂ C ₅ H ₉ C	O ₂	.70662, 168°, 8 .825, 0°,; 1 .6963, 205°, 1; 1 .827, 0°,; 1 .6869, 225°, 2; (.8794, 0°,; 1 .6751, 242°, 2; 1 .856, 20°,; 1 .895, 17°,; 1 .9097, 0°,; 1 .7767, 127°, 3; 1 .8900, 0°, 1 .8806, 16°; 1 .901525, 0°,; 88687, 15°, .88687, 15°,; 88662, 15°, 3 .9005, 0°,; 1	(218, 302, Gartenmeister, A. P. 233, 249, a a a Collius, J. 17, 51 Cahours and Denneyry, C. R. 89, 33 Gartenmeister, B 9, 766, Kopp. A. C. P. 9 Kopp. P. A. 72, 29
ormad l	heptyl b oetyl bu tyrate valerate	tyrate	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	O ₂	.70562, 168°,8 .825, 0°,; 1 .6063, 205°,1 ; 1 .827, 0°,; 1 .6860, 225°,2 (.8794, 0°,; 1 .6751, 242°,2 ; 1 .856, 20°,; 1 .895, 17°,; 1 .9097, 0°,; 1 .7767, 427°,3 ; 1 .8030, 0°, 1 .8806, 16°; 1 .901525, 0°,; 1 .88662, 15°,3 ; 1 .9005, 0°,; 1 .805, 0°,; 1	Gartenmeister, A. P. 233, 249. a a Dollfus, J. 17, 51 Calicurs and Demi- gay, C. R. 89, 33 Gartenmeister, B 9, 766. Kopp, A. C. P. (Kopp, P. A. 72, 23
ormad l	heptyl b octyl bu tyrate valerate	tyrate	C ₇ H ₁₇ C ₄ H ₇ C ₈ H ₁₇ C ₄ H ₇ C ₁₆ H ₁₇ C ₄ H ₇ C ₁₆ H ₁₇ C ₄ H ₇ C ₁₆ H ₁₇ C ₅ H ₉ C	O ₂	.70662, 168°,8 .8525, 0°,; 1 .6063, 205°,1 .8527, 0°,; 1 .6860, 225°,2 .8794, 0°,; 1 .6751, 242°,2 .8754, 20°,; 1 .8794, 0°,; 1 .6751, 242°,2 .7767, 127°,3 .895, 17°,; 1 .800, 0°,; 1 .800, 16°,; 1 .8005, 0°,; 1 .8567, 15°,; 88662, 15°, 3 .9005, 0°,; 1 .8581, 44°,5 .8643, 64°,3 .8643, 64°,3 .8643, 64°,3 .8643, 64°,3 .8645, 64°,3 .8643, 64°,3 .8645, 64°,3 .8643, 64°,3 .8645, 64°,3 .8	(218, 302, Gartenmeister, A. P. 233, 249, a a Gartenmeister, A. Dollfus, J. 17, 51 Calicurs and Demigay, C. R. 89, 33 Gartenmeister, B. 9, 766, Kopp. A. C. P. (Kopp. P. A. 72, 29 Pierre and Puche
ormad l	heptyl b octyl bu tyrate valerate	tyrate	C ₇ H ₁₇ C ₄ H ₇ C ₈ H ₁₇ C ₄ H ₇ C ₁₀ H ₂₇ C ₄ H ₇ C ₁₀ H ₂₇ C ₄ H ₇ C ₁₀ H ₂₇ C ₅ H ₉ C C ₁₀ C ₄ C ₅ C ₆ C ₇ C ₁₀ C	O ₂	.70562, 168°,8 .825, 0°,; 1 .6063, 205°,1 ; 1 .827, 0°,; 1 .6860, 225°,2 (.8794, 0°,; 1 .6751, 242°,2 ; 1 .856, 20°,; 1 .895, 17°,; 1 .9097, 0°,; 1 .7767, 427°,3 ; 1 .8030, 0°, 1 .8806, 16°; 1 .901525, 0°,; 1 .88662, 15°,3 ; 1 .9005, 0°,; 1 .805, 0°,; 1	(218, 302, Gartenmeister, A. P. 233, 249, a a Gartenmeister, A. Dollfus, J. 17, 51 Cahours and Demegay, C. R. 89, 33 Gartenmeister, B. 9, 766, Kopp. A. C. P. C. Kopp. P. A. 72, 29 Pierre and Puche Ann. (4), 22, 34
ormad l	heptyl b octyl bu tyrate valerate	tyrate	C ₇ H ₁₇ C ₄ H ₇ C ₈ H ₁₇ C ₄ H ₇ C ₁₀ H ₂₇ C ₄ H ₇ C ₁₀ H ₂₇ C ₄ H ₇ C ₁₀ H ₂₇ C ₅ H ₉ C C ₁₀ C ₄ C ₅ C ₆ C ₇ C ₁₀ C	O ₂	.70562, 168°, 8 .825, 0°,; 1 .6963, 205°, 1 8827, 0°,; 1 .8827, 0°,; 1 .6860, 225°, 2 (.8794, 0°,; 1 .6751, 242°, 2 8856, 20°, 1 .895, 17°,; 1 .9097, 0°,; 1 .7767, 127°, 3 800, 0°, 1 .8806, 16°, 1 .901525, 0°, 1 .88687, 15°, 88682, 15°, 3 9005, 10°, 1 .8581, 41°, 5 8848, 61°, 8 1 .7945, 100°, 1 8908, 10°,	(218, 302, Gartenmeister, A. P. 233, 249, a a a Gartenmeister, A. Dollfus, J. 17, 51 Cahours and Dennegay, C. R. 89, 33 Gartenmeister, B. 9, 766, Kopp. A. C. P. C. Kopp. P. A. 72, 26 Pierre and Puche Ann. (4), 22, 34 Remard. Ann. (4, 223)
ormad l	heptyl b octyl bu tyrate valerate	tyrate	C ₇ H ₁₇ C ₄ H ₇ C ₈ H ₁₇ C ₄ H ₇ C ₁₀ H ₂₇ C ₄ H ₇ C ₁₀ H ₂₇ C ₄ H ₇ C ₁₀ H ₂₇ C ₅ H ₉ C C ₁₀ C ₄ C ₅ C ₆ C ₇ C ₁₀ C	O ₂	$\begin{array}{c} .70662, 168^\circ, 8\\ .8525, 0^\circ, \dots)\\ .6063, 205^\circ, 1^\circ, \\ .8527, 0^\circ, \dots)\\ .8527, 0^\circ, \dots)\\ .6860, 225^\circ, 2^\circ, \\ .8794, 0^\circ, \dots)\\ .6751, 242^\circ, 2^\circ, \\ .856, 20^\circ, \dots)\\ .895, 17^\circ, \dots, \\ .9097, 0^\circ, \dots, \\ .895, 17^\circ, \dots, \\ .9097, 0^\circ, \dots, \\ .896, 16^\circ, \dots, \\ .896, 16^\circ, \dots, \\ .8866, 16^\circ, \dots, \\ .88687, 15^\circ, \dots, \\ .88682, 15^\circ, 3^\circ, \dots, \\ .88682, 15^\circ, 3^\circ, \dots, \\ .8581, 41^\circ, 5^\circ, \dots, \\ .848, 61^\circ, 3^\circ, \dots, \\ .848, 61^\circ, 3^\circ, \dots, \\ .848, 61^\circ, 3^\circ, \dots, \\ .7945, 100^\circ, 1^\circ, \dots \end{array}$	[218, 302, Gartenmeister, A. P. 233, 249, a a a Bollius, J. 17, 51 Cahours and Demagay, C. R. 89, 33 Gartenmeister, B 9, 766, Kopp. A. C. P. C. Kopp. P. A. 72, 23 Pierre and Puch Ann. (4), 22, 33 Renard, Ann. (4), 223, Schmidt and Sadleben, J. C.
ormad l	heptyl b octyl bu tyrate valerate	tyrate	C ₇ H ₁₇ C ₄ H ₇ C ₈ H ₁₇ C ₄ H ₇ C ₁₀ H ₂₇ C ₄ H ₇ C ₁₀ H ₂₇ C ₄ H ₇ C ₁₀ H ₂₇ C ₅ H ₉ C C ₁₀ C ₄ C ₅ C ₆ C ₇ C ₁₀ C	O ₂	.70562, 168°, 8 .825, 0°	[218, 302, Gartenmeister, A. P. 233, 249, a a a a bollfus. J. 17, 51 Cahours and Demicay. C. R. 89, 33 Gartenmeister. B 9, 766. Kepp. A. C. P. C. Kepp. A. C. P. C. P. C. Ann. (4), 22, 34 Renard. Ann. (4), 223, 34 Schmidt and Sachlehen. J. C. 36, 139
ormad 1 ormad of orma	heptyl b octyl bu tyrate valerate	tyrate	C ₇ H ₁₇ C ₄ H ₇ C ₈ H ₁₇ C ₄ H ₇ C ₁₀ H ₂₇ C ₄ H ₇ C ₁₀ H ₂₇ C ₄ H ₇ C ₁₀ H ₂₇ C ₅ H ₉ C C ₁₀ C ₄ C ₅ C ₆ C ₇ C ₁₀ C	0,	.70562, 168°, 8 .825, 0°,) .6963, 205°, 1 .827, 0°,) .827, 0°,] .6860, 225°, 2 .8794, 0°,] .856, 20°, .895, 17°, .9097, 0°,] .7767, 127°, 3 .806, 16°, .806, 16°, .8062, 15°, 3 .9052, 0°, .8581, 41°, 5 .8581, 61°, 3 .7945, 100°, 1 .8908, 16°, .8908, 16°,	(218, 302, Gartenmeister, A. P. 233, 249, a a a a a bollfus. J. 17, 51 Cahours and Demsequy. C. R. 89, 33 Gartenmeister. Boll 9, 766. Kopp. A. C. P. 9 Fierre and Puche Ann. (4), 22, 34 Remard. Ann. (e), 4, 223, 35, 139 Bruhl. Bei, 4, 78 Gartenmeister. Boll 9, 766.
ormad l	heptyl b octyl bu tyrate valerate	tyrate	C ₇ H ₁₇ C ₄ H ₇ C ₅ H ₁₇ C ₄ H ₇ C ₁₆ H ₁₇ C ₄ H ₇ C ₁₆ H ₂ C ₇ H ₉ C C ₁₆ H ₃ C ₅ H ₉ C C ₁₆	0,	.70562, 168°,8 .825, 0°,) .6063, 205°,1 .827, 0°,) .6860, 225°,2 .8794, 0°,) .856, 20°, .895, 17°, .9097, 0°,) .7767, 127°,3 .800, 0°, .8806, 16°, .901525, 0°, .88687, 15°, 3°, .8062, 15°,3 .8063, 15°, 15°, 3°, .8581, 41°,5 .8413, 61°, 3°, .8581, 61°, 3°, .8581, 61°, 3°, .8581, 61°, 3°, .8581, 61°, 3°, .8581, 61°, 3°, .8581, 61°, 3°, .8581, 61°, 3°, .858165, 17°,	(218, 302, Gartenmeister, A. P. 233, 249, a a a a a a a a a a a a a a a a a a a
ormad 1 ormad o ctyl bu ctyl bu cthyl v cohyl i	heptyl brootyl	tyrate	C ₇ H ₁₇ C ₄ H ₇ C ₈ H ₁₇ C ₄ H ₇ C ₉ H ₁₈ C ₄ H ₈ C ₁₈ H ₂₈ C ₄ H ₈ C ₁₈ H ₃₈ C ₅ H ₉ C C ₁₈ C ₄ C ₄ C ₅ C ₆ C ₆ C ₇ C ₈	0,	.70562, 168°, 8 .825, 0°,) .6963, 205°, 1 .827, 0°,) .827, 0°,] .6860, 225°, 2 .8794, 0°,] .856, 20°, .895, 17°, .9097, 0°,] .7767, 127°, 3 .806, 16°, .806, 16°, .8062, 15°, 3 .9052, 0°, .8581, 41°, 5 .8581, 61°, 3 .7945, 100°, 1 .8908, 16°, .8908, 16°,	(218, 302, Gartenmeister, A. P. 233, 249, a a a Gartenmeister, A. P. 233, 249, a a a a a Gartenmeister, B. P. 17, 51 Cahours and Dennegay, C. R. 89, 33 Gartenmeister, B. 9, 766, Kopp. A. C. P. C. Kopp. P. A. 72, 22 Pierre and Puche Ann. (4), 22, 34 Remard. Ann. (4), 22, 34 Remard. Ann. (4), 223, 35, 139, 139, 139, 130, 130, 130, 130, 130, 130, 130, 130
ormad 1 ormad of orma	heptyl brootyl	tyrate	C ₇ H ₁₇ C ₄ H ₇ C ₅ H ₁₇ C ₄ H ₇ C ₁₆ H ₁₇ C ₄ H ₇ C ₁₆ H ₂ C ₇ H ₉ C C ₁₆ H ₃ C ₅ H ₉ C C ₁₆	0,	.70562, 168°,8 .8525, 0°,) .6063, 205°,1 .8527, 0°,) .6869, 225°,2 .8794, 0°,) .6879, 22°,2 .8794, 0°,) .6879, 20°,895, 17° .9097, 0°,) .7767, 127°,3 .806, 16° .901525, 0°,88662, 15°,3 .80687, 15° .88687, 15° .88687, 15° .88687, 15° .88687, 15° .88687, 15° .88688, 16°,8998, 16°,8998, 16°,855465, 17° .8795, 20°,77518, 116°, 7	Gartenmeister, A., P. 233, 249, a. a. a. Bollius, J. 17, 51 Cahours and Dema- gay, C. R. 89, 33 Gartenmeister, Be- 9, 766, Kopp, A. C. P. 9 Kopp, P. A. 72, 29 Pierre and Puche Ann. (4), 22, 24 Renard, Ann. (4), 223, Schmidt and Sach leben, J. C. 36, 139 Bruhl, Bei, 4, 78 (Elsasser, A. C.)

	Nam	E.	Formi	ULA.	Sp. Gravity.	Аптновіту.
Ethyl v	alerate		C ₂ H ₅ . C ₅ H	9 O ₂	.878, 18°.5	Cahours and Demar- çay. C. R. 89, 331.
"	"		"		.8939, 0° }	Gartenmeister. Bei.
	"		"		.7443, 144°.7	9, 766.
Ethyl is	sovaler	ite	"		.894, 13°	Otto. A. C. P. 25, 62.
"	"		"		.869, 14°	Berthelot. J.7,441.
"	"		"		$\left\{ \begin{array}{l} .8829,0^{\circ} \\ .8659,18^{\circ} \end{array} ight\}$	Kopp. A. C. P. 96.
"	"				.886, 0°]	
"	"		"		.832, 55°.7	
"	"		"		.7843, 99°.63	Pierre and Puchot.
"	"		"		.7582, 122°.5	Ann. (4), 22, 353.
"	"		"		.8661, 20°	Brühl. Bei. 4, 782.
"	" "		"		.88514, 0°	\ Elsässer. A.C. P.
"	"		"		.74764, 134°.3_	$\int 218, 302.$
"	"		"		.8743, 16°	Renard. Ann. (6), 1, 223.
44			"		.8882, 0° }	Frankland and Dup-
"	"		"		.87166, 18°	pa. J. 20, 396.
Ethyl t	rimeth	ylacetate	"		.8773, 0° {	Friedeland Silva. J.
44			"		.8535, 25° }	C. S. (2), 11, 1127.
"					.875, 0°	Butlerow. B. S. C. 23, 27.
Ethyl n	nethyle	thylacetate	"		.877, 15°	Israel. A. C.P. 231, 197.
Propyl	valerat	e	$C_3 H_7$. $C_5 H$	9 O ₂	.8888, 0° }	Gartenmeister. Bei.
	. ".		"		.7264, 167.°5 ∫	9, 766.
Propyl	isovale:	rate			.8862, 00	
44	"		"		.8387, 50°.8 .7906, 100°.15_	Pierre and Puchot.
44	44		"		.7755, 113°.7	Ann. (4), 22, 297.
4.4	44		"		.880915, 0°	Elsässer. A.C. P.
44	4.4		"		.727405, 155°.9	218, 302.
Isoprop	yl isova	ilerate	"		$.8702,0^{\circ}$	
	•		44		.8538, 17° }	Silva. Z. C. 12, 508.
Butyl v			C ₄ H ₉ . C ₅ H	9 O ₂	.8847, 0° }	Gartenmeister. Bei.
T 1.4	1:1		"		.7095, 185°.8	9,766.
Isobuty	1 Isovati	erate	"		.8884, 00]	
"	4.6				.8438, 49°.7 { .7966, 100° }	Pierre and Puchot.
66	4.6		44		.7428, 155°.8	Ann. (4), 22, 330.
66	"		"		.878599, 0°) Elsässer. A.C.P.
11	4.4		"		.70549, 168°.7	218, 302.
Normal	amylv	alerate	C_5H_{11} . C_5H_5	O ₂	.8812, 0° }	Gartenmeister. Bei.
	"		"		.6982, 203°.7	9, 766.
Amyl is		ite	"		.8793, 0° }	Kopp. A. C. P. 94,
	44		"		.8645, 17°.7	257. Mandalaiae I 12 7
"	"		"		.8596, 15°	Mendelejeff. J. 13, 7.
66	"		"		.832, 50°.67	
"	4.4		"		.787, 100° {	Pierre and Puehot.
44	"		"		.740, 149°.5	Ann. (4), 22, 346.
44	"	Inactive_	"		.8700, 0°	Balbiano. Ber. 9,
"	"		"		.8633, 16°	1437. Renard. Ann. (6), 1, 223.
	"		"		.869, 15°	Ley. Ber. 6, 1362.

Name.	Formula.	Sp. Gravity.	Ачтновіту.	
A coul is an locate	CH CHO	.8658, 20°	Bruhl, Bei. 4, 782	
Amyl isovalerate	51111. C5119 32	.863, 10°	De Heen. Bei. 11	
Normal hexyl valerate		.6823, 223°.8 (Gartenmeister. Bei 9, 766.	
Normal heptyl valerate	**	* .6708, 243°.6 j		
Normal octyl valerate	$C_8 \Pi_{17}, C_5 \Pi_9 O_{2}$	1.6618, 260°,24		
Octyl isovalerate	$\begin{array}{cccccccccccccccccccccccccccccccccccc$.8624, 16° .852, 20° .8977, 18°	Zincke. J. 22, 371 Dollfus. J. 17, 518 Fehling. A. C. P 53, 399.	
6		.889, 19°	Cahours and Demar cay. C. R. 89, 331	
**	"	$\left\{ \begin{array}{c} .9039, 0^{\circ} \\ .7536, 149^{\circ}.6 \end{array} \right\}$	Gartenmeister. Bei 9, 766.	
Ethyl caproate	$C_2 H_5$. $C_6 H_{11} O_{2}$		Lerch. A. C. P. 49	
"		. 8765, 17°.5	Franchimont a n e Zincke, A, C, P 163, 193.	
44 -44			Lieben and Ross	
11 11		8594, 40°) 8895, 0°)	A. C. P. 165, 118	
		8728, 200	Lieben. A. C. 1	
14	"	1,8596, 40°)	170, 89,	
11		878, 19°	Caliours and Demai gay. C. R. 89, 33	
44 44		8858, 0°)	Gartenmeister. Be	
		」,7269, 166°.6 ∫	9, 766,	
Ethyl isocupronte		887, 0° } _{ .8705, 20° }	I blown and Post	
**		8566, 40°)	Lieben and Ross A. C. P. 165, 11	
Ethyl diethylacetate		8822, 0°	Frankland and Dup pa. J. 18, 308.	
	11	.8826, 00)	Savtzeff. Ber. 1	
44			512.	
Ethyl methyl propylacetate				
		,8670, 18° (,8841, 0°	Lieben and Zeise	
Propyl caproate	С ₃ Н ₇ . С ₆ П ₁₁ О ₂	8814, 0°) .7097, 185°,5)	M. C. 4, 26, Gartenmeister, Be 9, 766,	
Butyl caproate	C_4 H_9 , C_6 H_{11} O_2			
Hexyl caproate	C ₆ H ₁₁ , C ₆ H ₁₁ O ₂	1.865	Franchimont an Zincke, C. N. 2 263.	
Methylethylpropyl methylethylpropionate.		867, 15° 8769 (0°)	Romburgh, J. C. 52, 228.	
Normal heptyl caproate	$\frac{C_{7} \Pi_{15}}{C_{8} \Pi_{17}} \frac{C_{6}}{C_{6}} \Pi_{11} \Omega_{2} \dots$.6594, 259.°4)	9, 766.	
Normal octyl caproate		[6509, 2750.2]		
Methyloenanthate	- C H ₃ , C ₇ H ₁₃ O ₂		Cabours and Dema cay. C. R. 89, 33	

NAME.	FORMULA.	Sp. Gravity.	AUTHORITY.	
Methyl oenanthate Methyl isoöenanthate	C H ₃ . C ₇ H ₁₃ O ₂	.8981, 0° }	Gartenmeister. Bei. 9, 766.	
Methyl isoöenanthate		.8840, 15°	Poetsch. A. C. P. 218, 56.	
<i>u u</i>		.8790, 15°	Hecht. A. C. P. 209, 324.	
Ethyl oenanthate	C_2 H_5 . C_7 H_{13} O_2	.874, 24°	Franchimont. A.C. P. 165, 237.	
"		.8735, 16°	Grimshaw and Schorlemmer. A.	
" "	"	.871, 21°	C. P. 170, 137. Mehlis. A. C. P. 185, 366.	
· · · · · · · · · · · · · · · · · · ·	1	.877, 16°.5		
"		.8879, 0°)		
" "	''	1.8716, 200 }	Lieben and Janecek.	
11 11		.8589, 40°)	J. R. C. 5, 156.	
		.87163 .87199 15°)	
14 14		86477)	Perkin. J. P. C	
		$\begin{bmatrix} .86477 \\ .86487 \end{bmatrix}$ 25°) (2), 32, 523.	
	"	.8861.00	Gartenmeister. Bei	
	"	$\left.\begin{array}{c} .8861, 0^{\circ} \\ .7105, 187^{\circ}.1 \end{array}\right\}$	9, 766.	
Ethyl isoöenanthate		.8720, 15°	Poetsch. A. C. P. 218, 56.	
	"	.8685, 15°)	Heeht. A. C. P. 209	
., ,,		.8570, 27° }	324.	
Propyl oenanthate	C ₃ H ₇ . C ₇ H ₁₃ O ₂	.8824, 0°)	Gartenmeister. Bei	
Propyl oenanthate	- " "	.6965, 206°.4	9, 766. Heeht. A. C. P. 209	
Isopropyl isoöenanthate.	-	.859, 19°	324. Hecht. A. C. P. 209	
Butyl oenanthate	C ₄ H ₉ . C ₇ H ₁₃ O ₂	.8807, 00 }	325. Gartenmeister. Bei. 9, 766.	
Normal heptyl oenantha	e C, H ₁₅ . C, H ₁₃ O ₂	.870, 16°	Cross. J. C. S. 32, 123.	
		.86522, 15° \	Perkin. J. P. C.	
tt tt	1 66	.85933, 25°	(2), 32, 523.	
" "	- "	.8807, 0° }	Gartenmeister. Bei.	
		.6839, 225°.1 }	9, 766.	
Normal octyl ocnanthate	- C ₈ H ₁₇ . C ₇ H ₁₃ O ₂	6410 9000 4		
Methyl caprylate			Fehling. A. C. P.	
ιι ιι	-	.887, 18°	53, 399. Cahours and Demar- çay. C. R. 89, 331	
	-	.8942, 00)	Gartenmeister. Bei	
	_ "	.7163, 1920.9	9, 776.	
ti ti Ti Ti Ti Ti Ti Ti Ti Ti Ti Ti Ti Ti Ti	·		Fehling. A. C. P. 53, 399.	
"	- "	.8728, 16° .878, 17°	Zineke. J. 22, 373.	
" "			Cahours and Demar- cay. C. R. 89, 331.	
	- " "	.8842, 0° }	Gartenmeister. Bei.	
" "		.6980, 205°.8 }	9, 766.	

	Хаме		FORMULA	SP. GRAVIT	у. Аутновиту
			$C_3 H_7, C_5 H_{15} O_2$.0807.2245.7	j 9, 766.
Butyl er	prylate		$-C_4/H_9$, $C_8/H_{15}/O_2$.5797, 02	
				,6745,240°,5 8754,0°	
Normal	перция	arbuyance -	$-C_7/H_{15}, C_7/H_{15}/O$		
		prylate .	$-\mathrm{C}_\pi^-\mathrm{H}_{17},\mathrm{C}_\pi^-\mathrm{H}_{15}^-\mathrm{O}$		
			. 412 412	8755, 0°	
			**	.6318, 3052,9	
Methyl	pelargor	iate	$C/H_3, C_9/H_{17}/O_2,$		Zincke and Franchi mont. A.C.P. 16
Ethyl 10	darcona	t et	C. H., C. H., O.		. Cahours, J. 3, 40
			2 3 9 11 2	2001, 8725, 15 , 5	 Delifs, J. 7, 26.
**	* i			.5655, 172.5	Zincke and Franch mont. A.C.P. 16 332
* *			44	.5 (307	
4.4	4 4		44	.86201	With neid from si
* *	á s		4.6		
* *			. 44		
* *	4.4				Pharm, 22, 331.
	6.4		4.4		
• •	4.4		4.4		Perkin, J. P. (
12.1			4.		121, 32, 323,
Ethylis	ononyla	to	**) .86406, 17° _	Kullhem, A C I 173, 319.
Ethyl re Ethyl b	urate		$\begin{array}{cccccccccccccccccccccccccccccccccccc$		Rowney, J. 4, 44 2. Gorgey, J. 1, 56 Delffs, J. 7, 26.
			**	8671, 195	Delffs. J. 7, 26.
11.11	Acres Contra		CHCHO	Sec. 1.	Playfair, A.C.P. 3

6th. Aldehydes of the Acetic Series.

	Хаме.		Fo	RMULV.	SP. GRAVIII.	Астновит
Acetic	aldchyde.	B. 2078	C ₂ H ₁ C		.7900, 18	Liebig, A. C. P. 14, 132
	1.6				79412.5 .1 -1	
+ 4	4.4					Kopp. P A 72.
b	h h				,80092.0	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
4.6	* *		• •			Pierre, C. R 27, 214,
4.4	4.6		* *		.706, 163	Guckelberger, J 1
4.4	4.4		h +		$.8217, 5 = 10^{\circ}$	
4.4	6.6		4.4			- Regrault P. A
4.4	4.4		4.1		8440,15 = 20	1 62, 50,
	4.6		**		.7771, 213	Ramsay, J. C. S. 35, 463
4.4	4.5				,807, 01	
* *					,7932, 10	Limitali
1.	4.4					Bruhl. Bei. 4, 782.

Name Formula Sp. Gravity Author	ITY.
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	P. C.
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	23.
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	
Paraldehyde. B. 124° $(C_2 H_4 O)_3$ $.998, 15^{\circ}$ Kekulé and Z. C. 13, Two lots. A. C. P. 15 (Schiff. G. 177. Gladstone. 249. Louguinine 19, ref. 2. Perkin. J. 199003, 25^{\circ} (C_2 H_4 O)_n $.99925, 15^{\circ}$ $.99003, 25^{\circ}$ Bauer. J. Cuckelbergo 848. Michaelson. $.849^{\circ}$ $.804, 17^{\circ}$ $.804, 17^{\circ}$ $.8192, 9^{\circ}$	C. S. 51,
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	Brühl.
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	202 1
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	C. I. 13.
"	0.1.10,
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	Bei. 9,
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$. Ber.
Isomerofaldehyde, B, 110° C2 H4 O)n 1,033,0° Bauer. J. Guckelberge S48. Guckelberge S48. S284,0° S36. Rossi. A. 159,79. S674, 21° S666, 20° Bright Ber. Service S48. S666, 20° S76, 20° S	P. C.
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	23.
" "	13, 436.
" "	er. J. 1,
" "	J. 17,
" " 832,0°	С. Р.
" "	
" " " 8074, 21° Linnemann. 161, 23. Brühl. Ber.	Puchot.
" " 161, 23. 161, 23. 161, 23. Brühl. Ber.	
" Bruhl. Ber.	
"	
" " " " " " " " " " " " " " " " " " " "	P. C.
	3.
Butyric aldehyde. B. 75°- C ₄ H ₈ O	
" "	
203. 1.	. C. P.
" " 80, 15° Guckelberge 849.	r. J.1,
Isobutyricaldehyde. B.63° "	
" "	Puchot.
·1090, 00 ·4 Z. C. 15, 2	!55.
Urech, Ber.	(2, 1744.)
.cos, 20 minemann.	Ann.
" (4), 27, 26 Brühl, A.C.1	ე. ე-ეტე 1
" " 1750, 20 Brum, A.C.1	
" " Fossek. M. C	1.4,662.
	P. C.
" $(2), 32, 52$	
Polymer of isobutyric aldehyde. (C ₄ H ₈ O) _n	
Isovaleric aldehyde. B. 92°.5. C ₅ H ₁₀ O818 Trautwein.	

NAME. Isovaleric aldehyde		FORMULA.		Sp. Gravity.	Аптновиту.	
		C ₅ H ₁₀ (0	.820, 22°	Chancel, J. P. C. 36	
	4.4		1.		.8009, 20°	Personne. J. 7, 654
	6.4				1	Kopp. A. C. P. 94
	4.4		4.4		.8057, 17°.4	257.
. 4			4.6			
4.6	+ 4		4.6		778, 43°.4 }	Pierre and Puchot
4.4	11		4.4		.7485.71°.9	Ann. (4), 22, 340
"			4.6		.768, 12°.5	A. Schröder. Z. C 14, 510.
	4.4		4.4		7984, 20°	Bruhl. Bei. 4, 78;
4.6	11		4.6		. 8061, 25°	Gladstone. Bei. 3 249.
11	4.6		"		.7998, 20°	Landolt, P. A. 122 556.
6.6			4.4		.80405, 15°)	Perkin, J. P. C
4.6	4.4		4.6		. 79607, 25°	(2), 32, 523,
Polymero	f valeral	. B. 215°	(C5 H ₁₀	$O)_n$, Wanklyn, J. 22, 530
somer of		-hyde. '—185°. ∣	C ₆ H ₁₂ ()	.842, 15°	Fittig. J. 13, 319.
			C. H. (9	.8271. 79	Bussy. J. P. C. 37
eenanth	юl. В. İ	54°.				92.
eenanth "		54°.	44			Williamson. J.
	ol. B. I	54°.			.827, 17°	Williamson, J. 565.
		.54°. 	**		.827, 17°	92. Williamson. J. 565. Cross. J. C. S. 33
"	iol. B. Í .,	.54°. 	44		.827, 17°	92. Williamson, J. 565. Cross, J. C. S. 33 123.
	ol. B. I	54°. 			.827, 17°	92. Williamson, J. 565. Cross, J. C. S. 3: 123. Bruhl, A. C. 1
"	ol. B. I	54°. 	* 4		.827, 17° .823, 16° .8495, 20°	92. Williamson, J. 565. Cross, J. C. S. 33
"	iol. B. I	54°. 	**		.827, 17°	92. Williamson, J. 565. Cross, J. C. S. 33 123. Bruhl, A. C. 1 203, 1.
" " " " " " " " " " " " " " " " " " "	101. B. Í	54°. 	4.4 4.4 4.4		.827, 17°	92. Williamson. J. 565. Cross. J. C. S. 3: 123. Bruhl. A. C. 1 203, 1. Perkin, Jr. Ber. 1
14 41 14 14	101. B. Î	54°.	4.6 4.6 4.6 4.6		.827, 17°	92. Williamson. J. 565. Cross. J. C. S. 33 123. Bruhl. A. C. I 203, 1. Perkin, Jr. Ber. 13 2802.
11 11 11 11 11	101. B. Í	54°.	• • • • • • • • • • • • • • • • • • • •		.827, 17°	92. Williamson. J. 565. Cross. J. C. S. 3: 123. Bruhl. A. C. 1 203, 1. Perkin, Jr. Ber. 1 2802. Perkin. J. P. C.
14 14 14 14 14 14	101. B. I		44 44 44 44 44		.827, 17°	92. Williamson. J. 565. Cross. J. C. S. 3: 123. Bruhl. A. C. 1 203, 1. Perkin, Jr. Ber. 1: 2802. Perkin. J. P. C. (2), 32, 523.
14 44 44 44 44 44	ol. B. I		• • • • • • • • • • • • • • • • • • • •		.827, 17°	92. Williamson. J. 565. Cross. J. C. S. 3: 123. Bruhl. A. C. 1 203, 1. Perkin, Jr. Ber. 1: 2802. Perkin. J. P. C. (2), 32, 523.
" " " " " " " " " " " " " " " " " " "	oenanth	 ωl. ≈=164°.	44 44 44 44 44		.827, 17°	92. Williamson. J. 565. Cross. J. C. S. 3: 123. Bruhl. A. C. 1 203, 1. Perkin, Jr. Ber. 1: 2802. Perkin. J. P. C. (2), 32, 523. Fittig. J. 13, 319
" " " " " " " " " " " " " " " " " " "	oenanth	 ωl. ≈=164°.	44 44 44 44 44		.827, 17°	92. Williamson. J. 565. Cross. J. C. S. 3: 123. Bruhl. A. C. 1 203, 1. Perkin, Jr. Ber. 1 2802. Perkin. J. P. C. (2), 32, 523. Fittig. J. 13, 319 Bouis. J. 8, 524. Limpricht. A. C. I
(control of taprylic a	ool. B. I	ol. 2—164°. B.178°)	.827, 17°	92. Williamson. J. 565. Cross. J. C. S. 3: 123. Bruhl. A. C. I 203, 1. Perkin, Jr. Ber. I. 2802. Perkin. J. P. C (2), 32, 523. Fittig. J. 13, 319 Bouis. J. 8, 524. Limpricht. A. C. I 93, 242. Williams. J. 11, 44
(control of taprylic a	ool. B. I	ol. 2—164°. B.178°)	.827, 17°	92. Williamson. J. 565. Cross. J. C. S. 3: 123. Bruhl. A. C. I 203, 1. Perkin, Jr. Ber. I. 2802. Perkin. J. P. C (2), 32, 523. Fittig. J. 13, 319 Bouis. J. 8, 524. Limpricht. A. C. I 93, 242. Williams. J. 11, 44
(a) (b) (c) (d) (d) (d) (d) (e) (e) (e) (e) (e) (f) (f) (f) (f) (f) (f) (f) (f) (f) (f	ochanth B. Idi Ocenanth B. Idi Idehyde Odehyde Inyrist	ol. 2—164°. B.178°		0	.827, 17°	92. Williamson. J. 565. Cross. J. C. S. 3: 123. Bruhl. A. C. I 203, 1. Perkin, Jr. Ber. I. 2802. Perkin. J. P. C (2), 32, 523. Fittig. J. 13, 319 Bouis. J. 8, 524. Limpricht. A. C. I 93, 242. Williams. J. 11, 44
isomer of taprylie a	och B. I	ol. -164°. B. 213. ic. alde-	C ₈ H ₁₆ C ₁₁ H ₂₂ C ₁₆ H ₂₈	O	.827, 17°	92. Williamson. J. 565. Cross. J. C. S. 3: 123. Bruhl. A. C. 1 203, 1. Perkin, Jr. Ber. 1: 2802. Perkin. J. P. C. (2), 32, 523. Fittig. J. 13, 319 Bouis. J. 8, 524. Limpricht. A. C. 1 93, 242. Williams. J. 11, 44 Perkin, Jr. J. C. S.
isomer of faprylie a Euodyl a) Isomer of hyde.	och B. I	ol. -164°. B. 213. ic. alde-	C ₈ H ₁₆ C ₁₁ H ₂₂ C ₁₆ H ₂₈	0	.827, 17°828, 16°8495, 20°8128, 30°809, 35°81264, 15°81578, 25°81578, 25°8274, 30°8274, 30°8274, 30°8274, 30°828, 35°8744, 15°	92. Williamson. J. 565. Cross. J. C. S. 3: 123. Bruhl. A. C. 1 203, 1. Perkin, Jr. Ber. 1: 2802. Perkin. J. P. C. (2), 32, 523. Fittig. J. 13, 319 Bouis. J. 8, 524. Limpricht. A. C. 1 93, 242. Williams. J. 11, 44 Perkin, Jr. J. C. S.

7th. Ketones of the Paraffin Series.

Name.				FORMULA	•	SP. GRAVITY.	Authority.	
Dimethy tone.	yl keto B. 56°.		r ace-	C H ₃ . C O. C	Н ₃	.7921, 18°	Liebig. Gm. H.	
4.4	4.6		"			.8144, 0° }	Kopp. P. A. 72,	
4.4	4.6		"			.79945, 13°.9	239.	
	"		"	41		.790, 15°	Linnemann. A. C. P. 143, 349.	
"	"		"			.8008, 15°	Mendelejeff. J. 13,7.	
4.4	"		"	"		.7938, 18° }	Linnemann. A. C.	
"	"					.7975, 15° }	P. 161, 18.	
"	"		"	"		.7998, 15°	Grodzki and Krä- mer. Z. A. C. 14, 103.	
i i	"		"			.81858, 0°	Thorpe. J. C. S.	
"	44		"	"		.75869, 56°,53	37, 371.	
4.6	6.6		"	1 "		.7920, 20° .8125, 0° }	Brühl. Ber. 13, 1527.	
"	4.4		"	"		.8125, 0°)	Zander. A. C. P.	
"			"	"		.7489, 56°.3 }	214, 181.	
44	"		"	4.6		.7506, 56°	Schiff. G. C. I. 13, 177.	
44	"		"			.79652, 15°)	Perkin. J. P. C.	
	4.4		"	"		.78669, 25°	(2), 32, 523.	
Methyl	ethyl Laceto			C H ₃ . C O. C ₂ I	I ₅	.838, 19°	Fittig. J. 12, 341.	
inethy	1 40010					.8125, 18°	K	
"	"					004 00	pa. J. 18, 309.	
	44	"		"		.824, 0° .8063, 15°.3	Popoff. J. 20, 399. Grimm. Z. C. 14,	
"	"	"		"	ļ	.8045, 19°.8	174. Schramm. Ber. 16,	
Diethyl pione.	ketone B. 10-		pro-	$oxed{ \mathrm{C_2H_5.CO.C_2I} }$	I ₅	.811, 11°.5	1581. Genther. J. 20, 455.	
	4.4	4.4		.,		.8145, 0° }	Chapman and Smith.	
" "	4.6	"		"		.8015, 15° }	J. 20, 453.	
"	"	"		"		.813, 20°	Smith. B. S. C. 18, 321.	
4.4	16	44		"		.829, 0° }	(Wagner and Saytz-	
"	44	"		"		.811, 19° }	{ eff. A. C. P.	
"	"	"		"		.8335, 0°	(179, 323. Chancel. C. R. 99,	
Methyl	propyl			C H ₃ . C O. C ₃ I	I,	.8078, 18°.5	1055. Grimm. Z. C. 14,	
			103°.		1	005 00	174.	
	44	11				.827, 0°	Friedel. J. 11, 295.	
	"	"		"		.842, 19°	Fittig. J. 12, 341.	
"	44	44		"		$.8132, 13^{\circ} = .8040, 22^{\circ} = .8040, 22^{\circ}$	Frankland and Dup-	
44	"	""				.815, 17°.5	pa. J. 18, 307. Popoff. A. C. P. 161, 285.	
"	"	"		**		0.20 6.2	(Wagnerand Saytz-	
"	"	"		"		.828, 0° }	eff. A. C. P. 179,	
"	44	"	1	"			(323. Changal C P 00	
						•@204, U*	Chancel. C. R. 99, 1055.	

	Name	·.	FORMULA.		SP. GRAVITY.	Антиопіту.
Methyl	propyl	ketone	$C H_3$. $C O$. $C_3 H$.	,	.81238 } 15°)	
					.S1288 J. 11 J.	Perkin. J. P. C.
* *	4.4				.50147) 25° §	(2), 32, 503.
			· · · · · · · · · · · · · · · · · · ·		1 (0.450)	
Methyl:	isoprop;	yl ketone.	**		.8099, 13°	Frankland and Dup- pa. J. 18, 309.
"	44	B. 95°.	"		.815, 15°	Munch. A. C. P. 180, 337.
4.6	6.	"			.522, D°)	Wischnegradsky, A.
14		"	* *		.501, 19° i	C. P. 190, 341.
4.4		**			.ST23. 02)	Winogradow, A.C.
4.4		44	4.6		.8051, 19° j	P. 191, 125.
mide.	-B. 76°-	_ ~1 °.	3 10		.832, 05	Bouchardat. Ber 14, 2261.
Ethyl p	ropyl k	tone. B. 123°.	$C_2 \coprod_5$. C O. $C_3 \coprod$	•		Popoff, A. C. P. 161 285.
4.			* *		.888, 21°.5	Oechsner de Co
			011 00 0 H		cone no o	minelt, C. R. 82,90
Methyi	butyi k	etone.	С H ₃ . СО. С ₄ H.	9	.7846, 502 }	Wanklynand Erlen meyer, J. 16,522
		B. 128°	4.		.833, 0°	Friedel. J. 11, 295
Mathel		l ketone.	41		.81892, 0°	Frankland and
. I chiya	i sonoti.	B. 114°.			,,	Duppa, J. 20, 395
	second e. B. 1	arv butyl			.511,0°	G. Wagner, Ber. 18 ref. 180.
4.6	**		. 4		.5151, 11°.5	Wislicenus, A.C.F 219, 208.
tone, 1060.	or Pana	colin. B.	C H ₃ . C O. C (C	11313		Fittig. J. 12, 347.
	+ 4				.530, 0°)	Two preparations
			6.		.791, 50° (.823, 0)	Butlerow, A. C
			4.1			P. 174, 127.
4.4	4 4		4.4		.7217. 105°	Schiff. Bei, 9, 559
Ketone	from he	Cylene. B 125°.	Ce H ¹⁵ O		.8848, H°	L. Henry, C. R. 97 260.
Dipropy tyron	el ketor e. B. l	ne, or bu-	- C ₃ H ₇ , C O, C ₃ H	I,		Chancel, Ann. (3 12, 146,
*	* *	b b	••		.819, 20°	E. Schmidt, Ber. 597.
4.4	4.6	4.			.52, 20"	Kurtz, A. C. P. 161 207.
k k	6.6	4.4	"		.58015, 42)	D 12 1 (1 2 6
* *		6.			.82165, 152	Perkin, J. C. S. 4
Disopr		tone.			.81452, 252) .8254, 17°	323, Munch, A.C.P. 180
Methyl		B 125), setone,	С П₃. С О С₃ Н	11	.813, 20°	331. E. Schmidt, Ber. 597.
h 4	D	155 = 156°. B. 182°.5	4.	?	.505, 120	
Mothel	isominy	I ke tone.	44		. 424)	
		* B.144			829 (Popoff, J. 18, 31
	h h	-	- ' ' '			. Grimshaw, A. C. I 166, 163.
44	4.6	-	-		.5175, 179.2	$Rehn. A_1C.P. 19$

NAME.	Formula.	Sp. Gravity.	AUTHORITY.
Methylisopropyl acetone _	C II ₃ . C O. C ₅ H ₁₁	.815, 20°	Romburgh. J. C. S. 52, 232.
Methyldiethylcarbyl ketone, or diethyl acetone. B. 138°.	" <u></u>	.8171, 22°	Frankland and Duppa. J. 18, 306.
Methyl amyl pinaeolin. "B. 132°-		.842, 0° } .825, 21° }	Wischnegradsky. A. C. P. 178, 103.
Ethyl butyl pinacolin. "B.126°-	C_2H_5 . CO. C(CH ₃) ₃₋	.831, 0° .810. 21°	11 11
Methyl hexyl ketone. "B.171°-		,	203 1
	и и	$.6843 \atop .6844 $ } 172°.3	Sehiff. G. C. 1. 13, 177.
" B. 209°_	"	.8430, 15°	Poetseh. A.C.P.218, 56.
		.8351, 0°	Béhal. B. S. C. 47, 34.
Methyl butyrone. B. 180°-	C ₈ H ₁₆ O	.827, 16°	Limpricht. J. 11, 296.
Isopropyl isobutyl ketone. B. 160°.	C ₃ H ₇ . C O. C ₄ H ₉		Williams, C. N. 39,
Ethyl amyl pinacolin. "B. 151°-	C_2 H_5 . C_5 C_5 H_{11}	.845, 0° } .829, 21° }	Wischnegradsky. A. C. P. 178, 103.
Diisobutyl ketone, or valerone. B. 181°.	C_4 H_9 . C O . C_4 H_{9}	.833, 20°	E. Schmidt. Ber. 5, 597.
Methyl octyl ketone. R 211°.	C H ₃ . C O. C ₈ H ₁₇		Jourdan. Ber. 13,
Diamyl ketone, or caprone.	"	.8379, 3°.5 } .8247, 20°	Krafft. Ber.15, 1687.
Diamyl ketone, or caprone. B. 220°.	$C_5 H_{11}$. C O. $C_5 H_{11}$.822, 20°	E. Sehmidt. Ber. 5, 597.
11 11 11		.828, 20°	Limpricht. J. 11, 296.
Methyl nonyl ketone, or methyl caprinol. B. 224°.	{ C H ₃ . C O. C ₉ H ₁₉	.8295, 17°.5 .8281, 18°.7	Gorup-Besanez and Grimm. Z. C. 13, 290. Gieseeke. Z. C. 13,
		.8268, 20°.5	Gieseeke. Z. C. 13, 428.
Dihexyl ketone, or oenan- thone. B. 264°.		.825, 30°	v. Uslar and See- kamp. J. 11, 299.
" " ?		.8870, 15°	Poetsch. A. C. P. 218, 56.
Methyl diheptylcarbyl ketone. B. 302°.		i	Jourdan. Ber. 13, 434.
Laurone. M. 69°	$C_{11} H_{23}$. C O. $C_{11} H_{23}$	$\begin{bmatrix} .8036, 69^{\circ} & - \\ .8024, 70^{\circ}.7 \end{bmatrix}$	Krafft. Ber. 15, 1711.
Myristone. M. 76°.3			
Palmitone, M. 82°.8	C H., C O. C II.	7922, 90°.9 7997, 82°.8	
Cteanana M 200 1	C H CO C H	7947, 90°.9	
Palmitone. M. 82°.8 Stearone. M. 88°.4	C ₁₇ H ₃₅ . C O. C ₁₇ H ₃₅ .	.7979, 88°.4 .7932, 95° }	

8th. Oxides, Alcohols, and Ethers of the Olefines.

NAME.	FORMULA.	SP. GRAVITY.	AUTHORITY.	
Ethylene oxide Propylene oxide Butylene oxide. B. 56°.5.	C ₂ H ₄ , O C ₃ H ₆ , O C ₄ H ₈ , O	.8945, 0° .859, 0° .8344, 6°	Wurtz. J. 16, 486. Oser. J. 13, 448. Eltekow. J. C. S. 44, 566.	
Isobutylene oxide. B. 51°.5.		.8311, 0°	Eltekow. Ber. 16, 397.	
Amylene oxide. B. 95° Trimethylethylene oxide. B. 75°.5.	C ₂ II ₁₀ . O	.824, 0° .8293, 0°		
Methylpropylethyleneox- ide. B. 110°.	C ₆ H ₁₂ . O		L. Henry, Ann. (5), 29, 553.	
δ. Hexylene oxide.		1.8739, 0°	Lipp. Ber. 18, 3284.	
B. 103°—104°. Octylene oxide. B. 145°	C ₈ H ₁₆ . O		De Clermont. Z. C 13, 411.	
Diamylene oxide. B. 185°.	C ₁₀ H ₂₀ . O	9402, 0°	Schneider, A. C. P 157, 221.	
Diethylene dioxide.	C ₄ H ₈ O ₂	. 1.0482, 0°	Wurtz. J. 15, 423	
B. 102°. Ethylene ethylidene di- oxide. B. 82°.5.		1.0002, 0°	Wurtz. J. 14, 656	
Ethylene glycol. B. 197°	C ₂ H ₄ . (O H) ₂	1.125, 0°	Wurtz. Ann. (3)	
		.9444, 195°		
		1.11678, 15°) 1.11208, 25°)	Perkin. J. P. C (2), 32, 523.	
6. 6.		"1.1072, 20°	Brühl. Bei. 4, 782	
Trimethylene glycol. B. 216°.	С ₃ П ₆ . (О Н) ₂	_ 1.053, 19° 	. Reboul. C. R. 79 169.	
		1.0536, 18°	Freund, J. C. 8, 42 156.	
44 44	44	_' 1.0625, 0° } _' .6025, 214° _ }	Zander, A. C. P 214, 181.	
Propylene glycol. B. 1880		_' 1.051, 0°)	Wurtz. J.10, 464.	
		_ 1.038, 25° ↑ ** -(1.054, 0°	Belohoubek. Ber	
44 44	14		12, 1873,	
		1.0527, 0°)	J. C. S. 42, 377.	
44	11		214, 181.	
Butylene glycol. B.183°,5 Dimethylethyleneglycol.		1.048, 0°	Wurtz, J. 12, 499	
B. 207°,5.	**	1,0259, 0°	. Wurtz. C. R. 95 473.	
Ethylethylene glycol. B. 191°.5	14	1.0189, 0° } 1.0059, 17°,5 }		
Isobutylene glycol. B.177		1.0129, 0°) .\ 1.0003, 20°	Nevole, C. R. Si	

NAME.	FORMULA.	Sp. Gravity	AUTHORITY.
			TO MORITI.
Amylene glycol. B. 177°_	C ₅ H ₁₀ . (O H) ₂		Wurtz. J. 11, 42-
Ethylmethylethylene glycol. B. 187°.5.	"	.9945, 0° } .9800, 19° }	{ Wagner and Say zeff. A. C. P. 179
Isopropylethylene gly- col. B. 206°.	"	.9987, 0° } .9843, 21°.5	Flavitsky. A.C.1
Methylpropylethylené glycol. B. 207°.	C ₆ H ₁₂ . (O H) ₂	.9669, 0°	Wurtz. J. 17, 51
Dimethylbutyleneglycol. "B. 220°_	"	.9759, 0° } .9604, 24° }	Sorokin. B. S. 6 31, 72.
Pseudohexylene glycol	"	$\left\{ \begin{array}{l} .9638,0° \\ .9202,65° \end{array} ight\}$	Wurtz. J. 17, 51
8. Hexylene glycol Pinakone, B. 177°	"	.9809, 0° .96, 15°	Lipp. Ber. 18, 328 Linnemann. J. 1
"	" "	.96718, 15°	315. Perkin. J. P. (
Octylene glycol. " " B. 235°-240°-	C ₈ H ₁₆ ; (O H) ₂	.96087, 25° } .932, 0° { .920, 29° {	(2), 32, 523. De Clermont. J. 1
Butyrone pinakone		.87, 20°	517. Kurtz. A. C. 1 161, 205.
Diethylene alcohol Friethylene alcohol	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	1.132, 0° 1.138	Wurtz. J. 16, 48
	6 - 14 0 4		
Methylene dimethyl ether, or methylal.	C H_2 . (O C H_3) ₂	.8551	Malaguti. Ann. (2 70, 394.
		.8604, 20°	Brühl. A. C. 1 203, 1.
		.854, 20°	Arnhold. A. C. I 240, 192.
Methylene diethyl ether		.851, 0°	Greene. J. Am. (S. 1, 523.
		.8275, 16°.5	L. Henry. C. I 101, 599.
" " "		.834, 20°	Arnhold. A. C. I 240, 192.
Methylene dipropyl ether Methylene diisopropyl	C H ₂ (O C ₃ H ₇) ₂	.8345, 20° .831, 20°	" "
ether. Methylene diisobutyl ether.	C H ₂ (O C ₄ H ₉) ₂	.825, 20°	££
Methylenediisoamylether Methylene dicetyl ether	$\begin{array}{c} C H_2 (O C_5 H_{11})_2 \\ C H (O C H_1) \end{array}$.835, 20° .846, 20°	"
Ethylene monethyl ether Ethylene diethyl ether	$\begin{array}{c} \text{C } \text{H}_{2}^{1} \text{ (O } \text{C}_{8}^{3} \text{ H}_{17}^{11/2}, \\ \text{C}_{2}^{1} \text{ H}_{4}, \text{ O } \text{H}, \text{ O } \text{C}_{2}^{1} \text{ H}_{5}^{1} \\ \text{C}_{2}^{2} \text{ H}_{4}, \text{ (O } \text{C}_{2}^{1} \text{ H}_{5}^{1}, \\ \end{array}$.926, 13°	Demole. Ber. 9, 746 Wurtz. J. 11, 423
zeny tene dietny i etnet 222			William 5, 11, 42
Ethidene dimethyl ether, or dimethyl acetal.	C ₂ H ₄ . (O C H ₃) ₂	.8555, 0°	Wurtz. J. 9, 597.
" " " "	دد	.8674, 1° .8787, 0°)	Alsberg. J. 17, 48
" " " " "		.8590, 14° .8503, 22° }	Dancer. J. 17, 48
	"	.8497, 23° .8476, 25°]	
		10210, 40" ==]	

Name. Ethidene dimethyl ether, or dimethyl acetal.			Formut.v.		Sp. Gravity.	Антновиту.		
			···r.	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	2	,S655, <u>99</u> 5	Bachmann, A.C. P	
or dime	thyl ac	etal.		. (.8013, 62°.7		i. C. I. 1:
• •				* 6		.85789, 15°	Perkin.	J. P. C
Ethidene: er, or me				$C_2\Pi_{4^*}(OC\Pi_3)(OC\Pi_3)$	${}^{1}_{2}\mathbf{H}_{5}$.81761, 25°) .8585, 0°	$\mathbf{W}_{\mathrm{urtz.}}^{(2), (32)}$	J. 9, 597.
**				• •		,8400, 222	Bachman 218, 49	n. A.C.1
* *	**	* *		**		.8655, 220	Bachman	n. A.C.1
Ethidene acetal.	diethyl	ether	, or	$\mathrm{C_2~H_{4^*}}$ (O $\mathrm{C_2~H_5}$	12 -	.812, 215	218, 53 Doberein	
		. 4		4.6		.823, 203		C. P.5, 2
		• 6		44		.8314, 20°	Stas. J. Bruhl.	
							203, 1,	
44	""	"		"		.829, 13°	Engel at C. R. 9	id Girari 0, 692.
	"	"		44		·1868 - 100°.2		G. C. I. 1
"	"	"		14		.7365 (103312 .826, 14 ²	Lantsch.	
44	"	44		"		.8210, 223		in. A.C.
	"	٠.				.80187, 15° - i	218, 49 Perkin.	J. P.
 Ethidene	diam.			$C_2 H_4$. (O $C_3 H_7$)		.,\$2881, 252 1 .,\$25, 22 .,5	(2), 32 Girard B	. 523. Jer. 13, 223
or prop; Ethidene	ylaeeta diisolaa	d. B. 1 tyl etł	47° ' ter, ,	$C_2 \Pi_{4^{\circ}} (\Theta C_4 \Pi_9)$.816, 207		
orisobu Ethidene diamyl	diamy	Lether		$C_2 \stackrel{\textstyle \cdot}{\Pi}_{C_1} \stackrel{\textstyle \cdot}{\underset{\circ}{\cup}} C_5 \stackrel{\textstyle \cdot}{\Pi}_1$	1,5 -	.8817, 15°		J. 17, 48 in. A.C.
•					-		218, 49	1
Propiden	· ·lipro	pyl etl	her	$C_3 H_6$, 10 $C_3 H_5$	12	.8495, 02	Schudel. 1283.	J. C. S. 1
Butidene or isola			ær,	C_4/H_{sc} (O/ C_2/H_5	i.	.9957, 12°, 4	Oeconom 14, 120	ides. Be d.
Dimethy l	valera	1	-	$C_5 H_{10}$, (O C/H)	13	.852, 10	Λ being	.1, 17, 48
Diethyl y				C_{s} Π_{10} (O, C_{s}, Π_{10}) (O, C_{s}, Π_{10})	1,7	1,845,42 1,849,7	Alalmerer	J. 17, 48
Diamyl v Ethidene				C, H, o, o C 1	11 2 1 ₃ 1 ₂	.853, 12 .5	Laatsch. 218, 13	A. C .
Ethidene				C, H, O (O C, I C, H, O (O C, I C, H, O (O C, I	$\Gamma_1 1_2 =$.891, 115 . =		+ 4
Ethidene Ethidene				C_{i} Π_{i} Ω_{i} Ω_{i} C_{i} Π_{i}	17.2	,895, 11 ,879, 11		
Ethidene				C(11,0 0 C, 1	\mathbf{I}_{11-2}^{9}	.874, 11	4.	• •
					-			
Ethylene	diacet	ete		\mathbf{C}_2 $\mathbf{H}_{\mathbf{G}_2}$ $(\mathbf{C}_2$ \mathbf{H}_3 \mathbf{O}_3	2 2 -	1,128,02	Wurtz. Bruhl.	J. 12, 48 Bei. 4, 78
	. 4					1.11076, 155	Perkin.	4. P.
Ethylene	dingo	intest.		$C_2 \stackrel{\leftrightarrow}{\Pi}_{4^+} \stackrel{\leftrightarrow}{(C_3 \stackrel{\leftrightarrow}{\Pi}_5 O)}$		-1.10183, 258% -4.05440, 154%	21, 32	, 523.
ranjume.	arda of			11		1,04566, 25% (* *	* *
	7 3 .	rate		$\begin{array}{cccccccccccccccccccccccccccccccccccc$		1,024,0	Wurtz.	J. 12, 48

NAME.	FORMULA.	Sp. Gravity.	AUTHORITY.	
Propylene diacetate	C ₃ H ₆ . (C ₂ H ₃ O ₂) ₂	1.070, 19°	Reboul. C. R. 79, 169.	
Propylene divalerate	$C_3 H_6$. $(C_5 H_9 O_2)_{2^{}}$.98, 12°	Reboul. J. C. S. 36, 127.	
β . Butylene monacetate	$\mathrm{C_4H_8.OH.(C_2H_3O_2)}$	1.055, 0°		
Hexylene diacetate Pseudohexylene diacetate Ethidene diacetate	C, H, (C, H, O,),	1.060, 12°	Wurtz. J. 17, 516. Wurtz. J. 17, 513. Schiff. Ber. 9, 306.	
" "		1.073, 15° 1.073, 15°	S. 44, 452.	
Ethidene acetate propionate.	$\left. \begin{array}{ccc} {\rm C_2} \ {\rm H_4}. \ \ ({\rm C_2} \ {\rm H_3} \ {\rm O_2}) \\ ({\rm C_3} \ {\rm H_5} \ {\rm O_2}) \end{array} \right\}$		Geuther. J.17,329 Two preparations Rübeneamp. A. C. P. 225, 267.	
Ethidene dipropionate			Rübencamp. A. C. P. 225, 267.	
Ethidene acetate butyrate_			Two preparations. Rübencamp. A C. P. 225, 267.	
Ethidene dibutyrate	$C_2 H_4$. $(C_4 H_7 O_2)_2$.9855, 15°	Rübencamp. A.C. P. 225, 267.	
Ethidene acetate valerate	$C_2 H_4$. $(C_2 H_3 O_2)$.991, 15°		
Ethidene divalerate Ethidene oxyformate	$\begin{array}{cccccccccccccccccccccccccccccccccccc$.947, 15° 1.134, 21°	Geuther. A. C. P 226, 223.	
Ethidene oxya etate Ethidene oxypropionate Ethidene oxybutyrate	$C_8 H_{14} O_5$ $C_{10} H_{18} O_5$	1.071, 16° 1.027, 26°	11 11 11 11 11 11 11 11 11 11 11 11 11	

9th. Ethers of Carbonic Acid.

Name.		FORMULA.		Sp. Gravity.	Authority.		
Methyl	carbor	ate	(C H ₃) ₂ . C	03	1.069, 22°	Conncler.	Ber. 13,
"	"				1.065, 17°		Ber. 13,
"	"				1.060	Schreiner.	Ber. 13,
	•	B 10.10			1.0372		"
4.4	"	" B. 115°.	"		1.0016	"	4.4
Ethyl c	arbona	te	$(C_2 H_5)_2$. C		1.0016 .975, 19°	1 19, 17,	
44	4.6		4.6		.9998, 0° }	Kopp. A	. C. P. 95,
44	4.6		"		.9780, 200 }	307.	,
"	"		"		.9762, 20°	Bruhl.	A. C. P.
"	"		"		.9735	Schreiner.	Ber. 13,

Name.	Formula.	Sp. Gravity.	А стновиту.
Ethyl propyl carbonate =	$C_2/\Pi_5, \ C_3/\Pi_7, \ C/O_3$.9516, 20°	Pawlewski, Ber. 17, 1607.
Propyl carbonate	$(C_3 \ \Pi_7)_2, \ C \ O_3 = \dots$.968, 220	Caliours. C. R. 77, 746.
		.949, 17°	Rose. Ber. 13, 2418.
Butyl carbonate	$(C_4 H_9)_2$. C O_3	.9407, 00	
		9244, 200 }	Lieben and Rossi
**		9111, 40°)	A. C. P. 165, 109
Labutyl carbonate	44	919. 15°	1 Kose. Ber. 13, 2418
Isoamyl carbonate	(C ₅ H ₁₁) _a , C O ₃	9114	Medlock, J. 2, 430
		. 9065, 15°, 5	Bruce, J. 5, 605.
Isoamyl carbonate Carbonate Ethyl orthogarbonate		. 912, 15°	Rose. Ber. 13, 2418
Ethyl orthogarbonate	(C., H.)., C O	925	Bassett. J. 17, 477
Propyl orthocarbonate	(C. H.). C O	. 1.911, 8°	Rose, Ber. 13, 2419
Isobutyl orthocarbonate	(c. H5. c o.	.100, 80	44 66

10th. Acids and Ethers of the Oxalic Series.

Name.	FORMULA.	SP. GRAVITY.	Антновиту.	
Oxalic neid	С. Н. О.	2.(11), 9°	Husemann, B. D. Z.	
11 16	C. H. O., 2 H. O	1,507	Richter.	
	1	1.622	Playfair and Joule.	
			M. C. S. 2, 401.	
11 11	4.6	1,629	Buignet. J. 14, 15,	
46 66	44	1.63, 9°	Husemann, B. D. Z.	
66 66			Schroder. Ber. 10,	
			851.	
11 11		1.531	Rudorff. Ber. 12,	
			251.	
11 11	44	1.57	W. C. Smith. Am.	
			J. P. 53, 145.	
(1 (1	44	1,655, 182,5	Wilson, F. W. C.	
Succinic acid				
		1,529, 92, sub-)	
		Linux	Hussiana R D	
		1.552,9°, cryst.	() Z.	
(6 1)		1.567	Schroder, Ber. 10.	
			851.	
Ethyl oxalic acid		1.2175, 20%	Anschutz, Ber. 16.	
•			2412.	
Pyrotartaric seid	C. H. O	1,405	Schroder, Ber, 13	
44	3	1. (11.)	1070	
Methylisepropylmalonic	C. H., O.	.390, 15°	Romburgh, J. C.	
acid.	1 - 12 4		8, 52, 232,	
Schreie reid	C., H., O.,	1,1017, fused	Carlet. J. 6, 429.	
	10 14 4			
Methyl oxalate	CHO	1.1566, 50°	Kopp. A.C. P. 95	
archive oxagate and a con-	. 4 . 16 4		307.	
4. 4.	44	1.1479, 549	Weger. A. C. P.	
41 44	4.	1,0039, 163°.3		

NAME.	FORMULA.	Sp. Gravity.	Аптновиту.
Methyl ethyl oxalate	C ₅ H ₈ O ₄	1.27, 12° 1.15565, 0° .94693,173°.7}	Chancel. J. 3, 470. Wiens. Königsberg Inaug. Diss.
Ethyl oxalate	C ₆ H ₁₀ O ₄	1.0929, 7°.5	1887. Dumas and Boullay.
(1 (1 (1 (1 (1 (1 (1 (1 (1 (1 (1 (1 (1 (11	1.086, 12° 1.1010, 5° 10° 1.0953, 10° 15° 1.0898, 15° 20° 1.1016, 0° 1.0815, 18°.2 1.0824, 15° 1.0793, 20°	
" " " " " " " " " " " " " " " " " " "	 C ₈ H ₁₄ O ₄	$ \begin{vmatrix} 1.1023 \\ 1.1029 \\ 1.1030 \end{vmatrix} 0^{\circ} \begin{cases} \\ 1.08563, 15^{\circ} \\ 1.07609, 25^{\circ} \\ \\ 1.018, 22^{\circ} \\ \end{vmatrix} $	Weger. A. C. P. 221, 61. Perkin. J. P. C. (2), 32, 523. Cahours. Les Mon-
" " Butyl oxalate	" " " C ₁₀ H ₁₈ O ₄	1.0384, 0° .80601, 213°.5}	des, 32, 280. { Wiens. Königsberg Inaug. Diss. 1887. Cahours. C. C. 5, 20.
(((("	$\left\{ egin{array}{lll} 1.0099,0^{\circ} & \ .780,243^{\circ}.4 \end{array} ight\}$	Wiens. Königs- berg Inaug. Diss. 1887.
Ethyl heptyl oxalate Amyl oxalate	$egin{array}{cccccccccccccccccccccccccccccccccccc$.99542, 0° .75493, 263°.71 .968, 11°	Dolffy I 7 96
Propyl heptyl oxalate	" " " " " " "	.981435, 0° } .72669, 284°.4}	Delffs. J. 7, 26. Wiens. Königsberg Inaug. Diss. 1887.
Propyl octyl oxalate 	$C_{13} \stackrel{H}{}_{24} O_4 - \cdots $ $C_5 \stackrel{H}{}_8 O_4 - \cdots$.97245, 0° .71512, 291°.1_ 1.135, 22°	} " " Osterland. J. C. S.
" " "	"	1.16028, 15° 1.15110, 25°	(2), 13, 142. Perkin. J. P. C. (2), 32, 523. (Wiens. Königs-
"	"	1.1753, 0° } .95686, 180°.7 }	berg Inaug. Diss. 1887.
Ethyl malonate	C ₇ H ₁₂ O ₄	1.068, 18°	Conrad and Bischoff. A. C. P. 204, 127.
 	"	$\left\{ \begin{array}{c} 1.06104, 15^{\circ} \\ 1.05248, 25^{\circ} \end{array} \right\}$ $\left\{ \begin{array}{c} 1.07607, 0^{\circ} \\ .86227, 198^{\circ}.4 \end{array} \right\}$	Perkin. J. P. C. (2), 32, 523. Wiens. Königsberg Inaug. Diss.
Ethyl propyl malonate	C ₈ H ₁₄ O ₄	1.04977, 0° .83542, 211°	1887.
Propyl malonate	C ₉ H ₁₁₆ O ₄	1.02705, 0° .79966, 228°.3_	} "
Butyl malonate	C ₁₁ H ₂₀ O ₄	1.0049, 0° .800073, 251°.5	}

Name.	FORMULA.	SP. GRAVITY.	Астновіту.
Methyl succinate	C ₆ II ₁₀ O ₄	1.1179, 20°	Fehling, A.C. P. 49, 195.
	**	1.1162, 18°	Weger. A. C. P.
	4:	.91200, 195°.2 . 1.12611, 15°	(† 221, 61. Perkin, J. P. C.
	11	1.11718, 25°	(2), 32, 523.
Methyl ethyl succinate	C ₇ H ₁₂ O ₄	1.0925, 0° .86482, 208°, 2) Weger. A. C. P.
Ethyl succinate	C ₈ II ₁₄ O ₄	1.036	D'Arcet. Ann. (2),
	"	1.0718, 00)	58, 291. Kopp. A. C. P. 95,
		1 41475 959 5 (307.
11 11		1.0502) 0°	1
	16	1,0600 ; 5 82726, 215°,4	$\left. \left. \left. \left. \right. \right. \right\} \right. $ Weger. A. C. P. $\left. \left. \left. \left. \left. \right\} \right. \right. \right.$ $\left. \left. \right \right. \right. \right. \right. \right. \right \right. \right. \right.$
4		1.04645, 15°)	Perkin, J. P. C.
		1.00802, 25° /	(2), 32, 523.
Ethyl propyl succinate	C. H., O.	1.03866, 00)	Wiens. Konigs-
	3 10 4	.81476,231°.17	berg Inaug. Diss. 1887.
Propyl succinate	C ₁₀ H ₁₈ O ₄	1.0189, 0°	1)
		.78183, 247°.1)
Isopropyl succinate		1.009, 6° .997, 18°.5 } ==	Silva. C. R. 69, 416.
Ethyl butyl succinate	41	1,02178, 0°) .78572, 247°)	Wiens. Konigs- berg Inaug. Diss. 1887.
Propyl butyl succinate	C ₁₁ H ₂₀ O ₄	1.0106, 02	1 1001.
	!	.77587, 258°.7	1
Isobutyl succinate	C ₁₂ H ₂₂ O ₄	.9787 1 , 15° }	$egin{array}{ll} { m Perkin.} & { m J.} & { m P.} & { m C.} \\ { m i.} & (2), 32, 523. \end{array}$
The last was to be as	CHO		(Wiens. Konigs
Ethyl heptyl succinate	C ₁₃ H ₂₄ O ₄	.98503, 0° ; .78134,291°.4	berg Inaug. Diss.
7	(11 ()		[[1887.
Isonmyl succinate	C ₁₄ H ₂₆ O ₄	.9612, 13°	Guareschi and Del Zanna, Ber. 12 1699.
Heptyl succinate	С ₁₅ П ₃₁ О ₄	.951846, 0°)	Wiens, Konigs- berg Innug, Diss.
**		.65174, 850°.15	1887.
Ethyl methylmalomate	C ₈ II ₁₄ O ₄	1.021, 220	Conrad and Bischoff A. C. P. 204, 202
4.	11	1.02132, 15°)	Perkin, J. P. C.
**		1.01295, 25°)	(2), 32, 523,
Methyldimethylsuccinate		1.0568, 16°	Barnstein A. C. P. 242, 126.
Methyl ethylsuccinate		1.051, 34°	Polko, A. C. P. 242,
Ethyl pyrotartrate	C_9 Π_{16} Θ_4	1.025, 210	Reboul Ber. 9, 1429.
**		1.01885, 15° + 1.01126, 25° +	Perkin, J. P. C. 2, 32, 523.
Ethyl ethylmalonate		1.008, 18°	Conrad and Bischoff.
***************************************			A. C. P. 204, 135.
**	1	1.01285, 15° /	Perkin, J. P. C.
Webs Lifting the limit was		1.00441, 25°) .9965, 15°	(2), 32, 523. Thorne. Ber. 14,
Ethyl dimethylmalonate		J.J. 10"	1644.
	1		

NAME.	FORMULA.	SP. GRAVITY.	AUTHORITY.
Tio. 1.11 (2.11)	C II O	1.00150 150	Dulin I D G
Ethyl dimethylmalonate	··	1.00153, 15° } .99356, 25° }	Perkin. J. P. C. (2), 32, 523.
Ethyl adipate	C ₁₀ H ₁₈ O ₄	1.001, 20°.5	(2), 32, 523. Malaguti. A. C. P.
Ethyl methylethylmalo-		.994, 15°	56, 306. Conrad and Bischoff.
nate. Ethyl propylmalonate		.99309, 15°	Ber. 13, 595. Perkin. J. P. C.
Ethyl isopropylmalonate	"	98541, 25° .997, 20°	(2), 32, 523. Conrad and Bischoff.
			Ber. 13, 595.
" " —	"	99271, 15° .98521, 2 5°	Perkin. J. P. C. (2), 32, 523.
Ethyl dimethylsuccinate	"	.9976, 17°	Levy and Engländer. A. C. P. 242,
			der. A. C. P. 242, 201.
	"	1.0134, 17°	Barnstein. A. C. P.
Ethyl ethylsuceinate	"	1.030, 21°	242, 126. Polko. A. C. P. 242,
	G 11 0		113.
Ethyl diethylmalonate	C ₁₁ H ₂₀ O ₄	.990, 16°	Conrad and Bischoff. A. C. P. 204, 139.
" " ——	44	1.0041,00 }	Shukowski. Ber. 21,
" " ——	"		ref. 57. Perkin. J. P. C.
" " ——	((.98441, 25°	(2), 32, 523.
Ethyl isobutylmalonate	"	.983, 15°	Conrad and Bischoff.
Ethyl secondary-butyl-malonate.		.988, 15°	Ber. 13, 595. Romburgh. Ber. 20, ref. 376
Ethyl methylisopropyl-		.990, 15°	Romburgh. Ber. 20,
malonate. Methyl subcrate	C ₁₀ H ₁₈ O ₄	1.014, 18°	ref. 469. Laurent. Ann. (2), 66, 162.
Ethyl suberate	C ₁₂ H ₂₂ O ₄	1.003, 18°	Laurent. Ann. (2),
	• •	.991, 15°	166, 160. Hell. B.S.C. 19, 365.
11 11			Perkin. J. P. C.
Ethyl tetramethylsucci-		.97826, 25° { 1.012, 0° }	(2), 32, 523. Hell and Wittekind.
nate. "	"	1.0015, 13°.5	Ber. 7, 319.
Methyl sebate		.985, 60°, 1	Neison. J. C. S. (3), 1, 316.
Ethyl sebate	C ₁₄ H ₂₆ O ₄	.965, 16°	Neison. J. C. S. (3), 1, 318.
" "		.96824, 15°	Perkin. J. P. C.
Butyl sebate	C., H., O.	.96049, 25° .9417, 0° }	(2), 32, 523. Gehring. C. R. 104,
"	$C_{18} \stackrel{H}{_{'4}} \stackrel{A}{_{'4}} O_4$ $C_{20} \stackrel{H}{_{38}} O_4$.9329, 15° }	1289.
Amyl sebate	C ₂₀ H ₃₈ O ₄	.951, 18°	Neison. C. N. 32, 298.
Ethyl dioctylmalonate	~		Conrad and Bischoff. Ber. 13, 595.
Ethyl acetomalonate	C ₉ II ₁₄ O ₅	1.080, 23°	Ehrlieh. B. S. C. 23, 73.
Ethyl acetosuccinate	C ₁₀ H ₁₆ O ₅	1.079, 21°	
" " ———	"	$\left\{ \begin{array}{l} 1.08809, 15^{\circ} \\ 1.08049, 25^{\circ} \end{array} \right\}$	Perkin. J. P. C.

Name.	Formut.a.	SP. GRAVITY.	Authority.
Ethyl acetoglutarate			pach, A. C. P. 192.130.
Ethyl [3] methylacetosue- cinate.		1.061, 27°	Hardtmuth, A.C. P. 192, 142.
Ethyl a methylacetoglu- tarate.	C ₁₂ H ₂₀ O ₅	1.043, 20°	Wislicenus and Lim- pach. A. C. P. 192 133.
Ethyl dimethylacetosuc-		1.057, 27°	Hardtmuth, A.C. P. 192, 142.
Ethyl 3 ethylacetosucci- mate.	44	1.064, 16°	Thorne. J. C. S. 39
Ethyl lactosuccinate	C ₁₁ H ₁₈ O ₆	1.119, 0°	Wurtz and Friedel J. 14, 378.
Ethyl succinosuccinate .	С ₁₂ П ₁₆ О ₆	1.4057, 18°	
Ethyl ethidenemalonate	$C_g \coprod_{11} O_4$	1.0435, 15°	

11th. Acids and Ethers of the Glycollic Series.

NAME.	FORMULA.	Sp. Gravity.	Антновиту.
Glycollic acid Lactic acid	$\frac{C_2 \prod_4 O_3}{C_3 \prod_6 O_3}$	1.197, 13° _ 1.215, 10°	Cleez. J. 5, 497, Gey Lussae and Pelouze. P. A. 29, 111.
	$C_c[H_1,O_3]$	1.0211, 00)	Mendelejeff, J. 13,7, Bruhl, Bei, 4, 782, Heintz, J. 12, 359, Helland Waldbauer,
Amyl glycollic acid.	**	$_{-}$ 1.0101, 160 $_{\odot}$	Ber. 10, 450.
Methyl glycollate	C ₃ H ₆ O ₁	1.1862	Schreiner, Bei, 3,
Ethyl glycollate	$C_4 \prod_{\alpha} O_{\beta}$	1.1071	**
Propyl glycollate	\mathbf{C}_5 \mathbf{H}_{13} \mathbf{O}_3	1.0837	(2), 7, 340, Schreiner, Bei, 3, 350,
Methyl methylglycollate Ethyl methylglycollate	C, H, O,	1.0746	
Projeyl methylglycollate	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	1.0105	Schreiber, Z. C. 13.
the staying is considered.	6 111 13		168. Schreiner. Bei, 3
Propyl ethylglycollate	C ₇ H ₁₄ O ₃		350,

Name.	FORMULA.	Sp. Gravity.	AUTHORITY.
Methyl propylglycollate	C ₆ H ₁₂ O ₃	.9845	Sehreiner. Bei. 3,
Ethyl propylglycollate Propyl propylglycollate	$\begin{bmatrix} C_7 & H_{14} & O_3 & \dots \\ C_8 & H_{16} & O_3 & \dots \end{bmatrix}$.9758	tt tt
Methyl lactate	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	1.1176	
Ethyl laetate	$\left\{ \text{ C}_{5} \text{ H}_{10} \text{ O}_{3} \right\}$	1.0542, 0° }	Wurtz and Friedel.
" "	"	1.042, 13° } 1.0540	J. 14, 373. Schreiner. Bei. 3, 250.
Ethyl methyllactate	C ₆ H ₁₂ O ₃	1.0030	"
Ethyl ethyllactate	$\begin{array}{c} {\rm C_6\ H_{12}\ O_3} \\ {\rm C_7\ H_{14}\ O_3} \end{array}$.9203, 0°	Wurtz. J. 12, 294.
		.9540	Schreiner. Bei. 3, 350.
Ethyl oxyisobutyrate		.9931, 13°	Frankland and Dup- pa. P.T. 1866, 309.
" "		1.0750	Schreiner. Bei. 3, 350.
Ethyl methyloxybutyrate	C ₇ H ₁₄ O ₃	.9768, 13°	Frankland and Dup- pa. J. 18, 381.
ı:		1.0100	Schreiner, Bei. 3, 350.
Ethyl ethyloxybutyrate	C ₈ H ₁₆ O ₃	.930, 19°	Duvillier. Ann. (5), 17, 533.
	"	.9540	Schreiner. Bei. 3, 350.
Methyl diethyloxyacetate_	C ₇ H ₁₄ O ₃	.9896, 16°.5	Frankland and Dup- pa. P.T. 1866, 309.
Ethyl diethyloxyacetate	$\mathrm{C_8}~\mathrm{H_{16}}~\mathrm{O_3}$.9613, 18°.7 .98	L. Henry. B. S. C.
Amyl diethyloxyacetate	C ₁₁ H ₂₂ O ₃	.93227, 13°	19, 212. Frankland and Dup- pa. P.T. 1866, 309.
Ethyl amylhydroxalate	C_9 H_{18} O_3	.9449, 13°	Frankland and Dup-
Ethyl ethylamylhydroxa-	C ₁₁ H ₂₂ O ₃	.9399, 13°	pa. J. 18, 382. Frankland and Dup- pa. P.T. 1866, 309.
late. Ethyl diamyloxalate	$\mathrm{C}_{14}\;\mathrm{H}_{28}\;\mathrm{O}_{3}$.9137, 13°	Frankland and Dup-
			pa. J. 18, 383.
Ethal and almost lists	ОПО	1 0002 170	Hointz I 15 909
Ethyl acetoglycollate Ethyl acetolaetate	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	1.0093, 17° 1.0458, 17°	Heintz. J. 15, 292. Wislieenus. J. 15, 300.
Ethyl propionoglycollate.		1.0052, 22°	Senf. Ber. 14, 2416.
Ethyl butyroglycollate	C ₈ H ₁₄ O ₄	1.0288, 22°	
Ethyl isobutyroglycollate Ethyl butyrolactate	С. И. О	1.0240, 22°.5 1.024, 0°	Wurtz. J. 12, 295.
" " "	C ₈ H ₁₄ O ₄	1.028, 0°	Wurtz. J. 13, 273.
Laetyl ethyl lactate	C ₈ II ₁₄ O ₅	1.134, 0°	Wurtz and Friedel. J. 14, 377.
Ethyl diethylglyoxylate	C ₈ H ₁₆ O ₄	.994, 18°	Sehreiber. Z. C. 13, 168.
Oxybutyrie lactone	C ₄ II ₆ O ₂	$1.1441,0^{\circ} - 1.1286,16^{\circ}$	Saytzeff Ber. 14, 2688.
" "		1.1302, 20°	Frühling. Ber. 15, 2622.
" "	"	1.1295, 10°	Henry. C. R. 101, 1158.

Name.	FORMULA.	SP. GRAVITY.	Астновиту.
EthyHortyric lactone.	\perp C $_6$ H $_{10}$ O $_2$	1,0348, 16°	Chanlaroff, A. C. P. 226, 339.
Heptolactone			1718.
			Young, A. C. P. 216, 41.

12th. Acids and Ethers of the Pyruvic Series.

	Name	ī. ·	FORMULA.	SP. GRAVITY.	Аттновиту.
	, pyrori l-formic		C ₃ H ₄ O ₃		Volckel, J. 6, 426
**					Berzelius.
4.4				1.2403 - 1.24	Claisen and Shad-
**				1.2600 1	well, Ber.11, 1507
i e			"	1,2415	Claisen and Shall well, Ber. 11, 621
Propior	ıyl-form	ic acid	C_4 H_6 O_3	1.2000, 17°.5	
	vl-propi linie aci		C ₅ H ₈ O ₃	1,135, 15°	
Methyl	pyrnvat	e	C ₄ H ₆ O ₃	1.151, 0° _	Opponheim, B.S.C 19, 254
Methyl	acetacet	ate	C ₅ H ₈ O ₃	1,037,90	Brandes, J. 19, 306
Ethyl a	cetacetal	te .	$C_6^3 \coprod_{10}^5 \vec{O_3}$	1,03, 5°	Geuther, J. 18, 203
**	4.4		6 19 3	1.0256, 201	Bruhl. A C. P 203, L
	• •			1.030, 15°	Elion. Ber. 17, ref. 568.
4.4	4.5			1.0165, 00	
4.4	4.4		4+		
6.6	4.4			9611,79°.2}	Schiff. Ber. 19, 560
* *	4.4			.9029, 1857,5	
4.4	4.4			5458, 1800	
**			1.4	1,03171, 15° / 1,02353, 25° /	(Perkin, J. P. C (2), 32, 523,
Isolaity	lamitan	tete	C ₄ II ₁₄ O ₃	.979.07 == { .992.28 == {	Emmerling and Oppenheim Ber 9, 1097.
Λ myl a	ortnortn'	te	$C_{\sigma} \Pi_{16} \Theta_{1} = 0$		Conrad. A.C. P. 186 231.
Methyl	methyla	areta cetate	$C_{i_0} \Pi_{i_0} \Theta_{i_0}$	1 020, 97	Brandes, J. 19, 306
		etaeetate	$C_{\tau}^{2} \prod_{i=0}^{m} O_{i}$.995, 140	**
Methyl	laevulir	inte .	$C_n \coprod_{i \in \mathcal{O}_{X_i}} O_{X_i}$	$\left. \begin{array}{l} 1.0641.0^{\circ} \\ 1.0519, 20^{\circ} \end{array} \right\}$	Grete, Kehrer, and Tollens, A.C. P 206, 221.
Ethylli	aevulina	te .	$C_7 \coprod_{i \in I} O_3$	1.0325, 0° { 1.0156, 20° }	
\mathbf{Propyl}	leevulin	nte	$C_8 \prod_{14} O_3 \dots$	1.0103, 0° }	

$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	8, 303. P. 226, and C. J. 3, P. 186, and 8, 309. Op- Ber.
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	and 2. J. 3. P. 186. 8, 309. Op- Ber.
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	2. J. 3, P. 186, and 8, 309, Op- Ber.
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	2. 186, a u d 8, 309. O p Ber
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	and 8,309. Op- Ber.
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	8,309. Op Ber
"	\mathbf{Ber}
' 10. 101 and	3 001
" "	
Ethyl methylethylacetaee- C_9 H_{16} O_3	2. 188
Ethyl isopropylacetacetate " 98046, 0° Frankland Duppa. J. 2	
Ethyl methylpropylacet- C_{10} H_{18} O_3	
	C. P.
	C. P.
Ethyl dipropylaeetacetate C_{12} H_{22} O_3	C. J.
	er. 13
	C. P.
Ethyl diisobutylacetace- "	7, 501.
Ethyl diheptylaeetacetate C_{20} H_{38} O_3	C. S.
Ethyl acetopyruvate C ₇ H ₁₀ O ₄ 1.124, 21° Claisen and S Ber. 20, 218	
Ethyl diacetylaeetate C ₈ H ₁₂ O ₄ 1.044, 15° Elion. Ber. 16	, 1369.
" " 1.064, 15° James. A. 226, 202.	С. Р.
Ethyl carbacetacetate $C_8 H_{10} O_3$ 1.136, 27° Duisberg. B 1387.	er. 15,
Ethyl ethylideneacetace- C ₈ H ₁₂ O ₃ 1.0225, 15° Claisen and	l Mat- C. P.
Ethyl amylideneacetace- C_{11} H_{18} O_3	er. 16,
tate: thyl ethoxylmethylacet- C_9 H_{16} O_4	C. P.
	С. Р.

13th. Acids and Ethers of the Acrylic Series.

NAME.	FORMULA.	SP. GRAVITY.	Антновиту.
Methylacrylic acid β. Crotonic, or quartenylic acid.			Brühl, Ber. 14, 2800, Gouther, J. P.C. (2), 3, 442.
Pyroterebic acid			Rabourdin, A. C. P 52, 395.
		1.006, 26°	Mielek, A.C.P. 180
Methylethylaerylic acid			52. Lieben and Zeisel
Hydrosorbic acid	44	969, 19°	
Amyldecatoic acid Moringic acid	$\begin{bmatrix} C_{10} \prod_{18} O_2 \\ C_{15} \prod_{28} O_2 \end{bmatrix}$		tig. Z. C. 13, 425 Borodin. ? Walter. C. R. 22
Oleic acid	$C_{18}H_{34}O_2$.808, 19°	Chevreul.
Methyl acrylate. B. 80°,3.		' .961, 19°.2 - ∫	Kalılbaum. Ber. 13 2349.
63 64			Weger, A.C.P. 221 61.
Liquid polymer of methyl acrylate, "		1.140, 0°) 1.125, 18° }	Kahlbaum, Ber. 13 2349.
Solid polymer of methyl acrylate.	44	1.2223, 15°.6 [16
Ethyl acrylate, B. 98°.5.	$C_5 \coprod_{i \in I} O_2$	9252, 0° (Caspary and Tollens B. S. C. 20, 368.
11 11		93928, 0° {	Weger, A. C. P. 221
Propylacrylate, B. 122°,9	C ₆ H ₁₀ O ₂	91996, 0°)	41
Methyl crotonate		(1806, 4°	Kahlbaum, Ber. 12 344.
Ethyl crotonate	0 10 2	.9188	
11 11	**	9237	Bruhl, A. C. P. 235, I
11 11	**	92680, 15° } 91846, 25° }	Perkin, J. P. C (2), 32, 523,
Ethyl 3 crotomate			Genther, J. P. C (2), 3, 444.
Ethyl angelate	$C_7 \Pi_{12} O_2 \dots$		Beilstein and Wie gand. Ber. 17 2261.
Ethyl tiglete			Genther and Froh lich, Z.C 13, 545
4, 4,		,9425, 0°	Beilstein and Wie gand. Ber. 17 2261.
Ethyl ethylerotonate	$C_s \Pi_{14} \Theta_I = \dots .$	9208, 18°	Frankland and Dup
Methyl oleate	C ₁₂ H ₃₆ O ₂	'.879, 18°	pa J 18, 384 Laurent. Ann. (2)
Ethyl elepte	. C ₂₀ H _{3*} O ₂	.871, 18°	65, 294.

Name.	FORMULA.	Sp. Gravity.	AUTHORITY.
Methyl elaidate	C ₂₀ H ₃₈ O ₂	$\left[egin{array}{c} .87041 \ .86991 \end{array} ight\} \left[25^{f o} ight\}$	Perkin. J. P. C. (2), 32, 523. Laurent. Ann. (2), 65, 294.

14th. Derivatives of the Acrylic Series.

NAME.	FORMULA.	Sp. Gravity.	AUTHORITY.
Aerolein, or acrylaldehyde Metacrolein Aeropinacone	$\begin{array}{cccccccccccccccccccccccccccccccccccc$.8410, 20° 1.03, 8° .99, 17°	Brühl. Bei. 4, 780. Geuther. J. 17, 334. Linnemann. J. 18,
Acrolein ethylate		1	317. Taubert. J. C. S. 31,
Aerolein diacetate	C ₇ H ₁₀ O ₄	1.076, 22°	296. Hübner and Geu- ther. J. 13, 307.
Crotonaldehyde	C ₄ H ₆ O	1.033, 0°	Roscoe and Schor- lemmer's Treatise.
Diacetate from erotonalde- hyde.	C ₈ II ₁₂ O ₄	1.05, 14°	
Tiglie aldehyde, or guajol . β . Angelical actone	$\begin{array}{cccccccccccccccccccccccccccccccccccc$.871, 15° 1.1084, 0°	Völckel. J. 7, 611. Wolff. A. C. P. 229,
Methylethylaerolein	C ₆ II ₁₀ O	.8577, 20°	257. Lieben and Zeisel. M. C. 4, 18.
Amyldecaldehyde		\[\begin{pmatrix} .862, 0° \\ .848, 20° \end{pmatrix}	Borodin. Ber. 5, 480.
"	"	.861, 0° }	Gäss and Hell. Ber. 8, 372.
Hexylpentylacrylic aldehyde. " " "	4.4	.8494, 15° } .8416, 30° } .8392, 35° }	Perkin, Jr. Ber. 15, 2804.
	"	.8504, 15°	Perkin, Jr. J. C. S. 44, 81.
Hexylpentylacrylic alco- hol. " "	C ₁₄ II ₂₈ O	\[.8520, 15° \] \[.8444, 30° \] \[.8110, 250 \]	Perkin, Jr. Ber. 15,
Hexylpentylacrylic acetate. "	l C., H., O.	1 8680 15°)	2810. Perkin, Jr. Ber. 15,
" "	(10	.8568, 35°)	2809.

15th. Acids and Ethers, Malic-Tartaric Group.

	Na:	ME.	For	MULA.	SP. GRAVI	ГΥ.	Астно	RITY.
Malie ac	eid		$C_4 \; \Pi_6 \; O_5$		1.559, 4°		Schröder. 1611.	Ber. 12.
Tartario	neid		С. Н. О.		1.75		Richter.	
11			4.4		(1.764			. 12, 41.
4.4	4.4				1.739	+ 1	Buignet.	J. 14, 15.
4.4	۴٠.				1.754		Schroder.	Ber. 10,
"	"		44		1.77			ith. Am.
							J. P. 50	, 140. ann an d
4.4					1.7617			$\operatorname{ing. P.A.}$
4.6	* * * *	Amorphous _			1.6821	517	(2), 25	
44			is		1.7594, 7°		Perkin	J. C. S. 51,
Racemic	e acid.		C, H, O,		1.7782, 7° 1.75		+ 4	11
			C_4^{\dagger} H_6^{\dagger} O_6^{\dagger}	11,0	1.75		Pasteur.	J. 2, 309.
4.4	4.				1.69			J. 14, 15.
	4.6		44		1.6873, 7°		366.	J. C. S. 51,
Laevota	irtarie	acid			1.7496		Pasteur. 28, 72.	Ann. (3),
Methyl	malea	te	C ₆ H ₈ O ₄		1,1529, 14		Anschutz 2283.	. Ber. 12,
4.4	11							
4.6	"							
44	64		1				17	77 11 77
44							1887,	V. H. V
4.6							1.321,	14.
4.6	4.4				1.13827.33			
Fthyl r	malent		C. H., O		1.06917, 20		• • •	
		ite	C, H, C),	1,02899, 20	Do		• •
		ite	$C_8^{10}H_{12}^{-10}O$,	1.106, 11°		Henry, A	A. C. P. 156
4.6	4.4				1.0522, 17	0.5	2252.	. Ber. 12
4.6	4.6				1		Knops. 1887, 1	V. H. V 7.
)	
Propyl	fuma		C ₁₀ 11 ₁₆ ($\frac{1}{1}$, 02732, 1			
* *	1.4		* *	,4	J. 1.02447, T	70.4		
6.					1,02117, T 1,02200, 2	7°.4		,,
6 b 6 b	 		4.6		1.02117, 1 1.02200, 2 1.02127, 2	7°.4 0°.5		6.6
6 b 6 b 4 c	1 + 6 + 6 +		44		1.02447, 1 1.02203, 2 1.02127, 2 1.01691, 2	7°.4 0°.5 0°.8		"
6 b 6 b 6 b 6 b 6 b 6 b 6 b 6 b 6 b 6 b	1 + 4 + 4 + 4 + 4 + 4 + 4 + 4 + 4 + 4 +		4.		1.02447.1 1.02200.2 1.02127.2 1.01691,2 1.01652.2	7°.4 0°.5 0°.8 5°.5		66
6 b 6 b 6 b 6 b 6 b 6 b 6 b 6 b 6 b 6 b	6 · · · · · · · · · · · · · · · · · · ·		44		1.02447, 1 1.02200, 2 1.02127, 2 1.01691, 2 1.01352, 2 1.00978, 3	7°.4 0°.5 0°.8 5°.5 9°.1	Anschutz	and Pic
Mothyl	tartr	ate	C 6 H 10 C	6	1,02447, 1 1,02203, 2 1,62127, 2 1,01694, 2 1,01652, 2 1,00978, 3 1,0403, 15	7°.4 0°.5 0°.8. 5°.5 9°.1	Anschutz tet. B	z and Pic er. 13, 1177
Mothyl	tartr		4.	6	1.02447, 1 1.02200, 2 1.02127, 2 1.01694, 2 1.01652, 2 1.00978, 3	7°.4 0°.5 0°.8.5 3°.5 16.1	Anschutz tet. Be Landolt. Anschutz	z and Pic er, 13, 1177 Ber, 9, 910 z and Pic
Mothyl	tartr	ate	C 6 H 10 C	6	1.02447, 1 1.02200, 2 1.02127, 2 1.01691, 2 1.01652, 2 1.00978, 3 1.0403, 15	7°,4 0°,0°,8 0°,8 5°,5 9°,1	Anschutz tet. Be Landolt. Anschutz tet. Be	z and Pic er. 13, 1177 Ber. 9, 910

Name.	Formula.	SP. GRAVITY	AUTHORITY.
	C ₁₀ H ₁₈ O ₆	1.2019, 25° } 1.1392, 17°	Perkin. J. C. S. 51, 363. Anschütz and Pic- tet. Ber. 13, 1177. Pictet. Ber. 15, 2242.

16th. Acids and Ethers, Citric Acid Group.

Name.	FORMULA.	Sp. Gravity.	AUTHORITY.
Citric acid	" ————————————————————————————————————	1.542 1.553	Schiff. J. 12, 41. Buignet. J. 14, 15. W. C. Smith. Am. J. P. 53, 145.
Citraconic anhydride	C ₅ H ₄ O ₃	1.247 1.25360, 12°.4 1.24894, 16°.6 1.24518, 20°	Watts' Dictionary.
" " "	" "	1.24405, 21° 1.23920, 25°.4 1.23501, 29°.2 1.23073, 33°	Knops. V. H. V. 1887, 17.
Triethyl citrate			91 967
Tetrethyl citrateEthyl aconitate Ethyl isaconitate	C ₁₄ H ₂₄ O ₇ O ₇ C ₁₂ H ₁₈ O ₆	1.1369, 20° 1.1022, 20° 1.074, 14° 1.1064 1.0505, 15°	Conen. Ber. 12, 1653. Watts' Dictionary. Conen. Ber. 12, 1053. Conrad and Guth- zeit. A. C. P. 222, 255.
Methyl itaconate			Anschütz. Ber. 14, 2787.
" " " " " " " " " " " " " " " " " " "	(C ₇ H ₁₀ O ₄) _n	1.13195, 12° 1.12410, 18° 1.12182, 20° 1.11882, 22°.5 1.11421, 27°.1 1.10847, 32°.4 1.3126, 20°	Knops. V. H. V. 1887, 17.
nate. Ethyl itaconate		1.051, 15°	Anschütz. Ber. 14, 2787.
		·	Knops. V. H. V. 1887, 17.
Polymer of ethyl itaconate	$\left(\left(C_9 \right. H_{14} \left. O_4 \right)_n \right)_n = $	1.2549, 20°l	

	Name		FORMULA.	SP. GRAVITY.	Антиовиту,	
Methyl citraconate			$C_7 \coprod_{10} O_4 \ldots$	1.1168, 15°	Perkin. Ber. 14	
**				1.1050, 30°	25H.	
* *	٠.		**	1.1172, 13°.5_	O. Strecker, Ber. 14 2785.	
**	4.6			1.1164, 15°.5_		
••				1.11043, 20° _		
Ethyl ci	traconat		C9 H14 O4	1,1050, 15° }	Perkin, Ber. 1	
::	* *			1.038, 30°)	2543.	
4.6	4.4			1.010, 18°.5	. Watts' Dictionary.	
• •	4.4			L047, 15°		
٠.	"			1.048, 16°,5	∴ Gladstone. Bei, 9 249.	
44	"		"	1.06241, 20° _	Knops. V. H. V 1887, 17.	
Methyla	nesacon	ate	C, H ₁₀ O ₄	$= 1.1254, 15^{\circ}$	Perkin. Ber. 1:	
	4.6		·	1.1138, 30° j	2543.	
	• •			1.1293, 11°.8_	.º O. Strecker. Ber. 1- 2785.	
**	44		"	1.1246, 16°	Gladstone, Bei. 9 249.	
4.4	4.4		4.	1.12966, 11°.9	1	
6.6	4.			1.12462, 16°.4		
4.4	* *			1.12097, 20°	-	
* *				1.12011, 20°.8	Knops. V. H. V	
٠.	4.6		4.	_ 1.11648, 249.3	1887, 17.	
	4.6			1.11180, 284.6		
			C II ()	1.10702, 33° ± 1.043, 20° ±	.) ! Pebal. J. 4 04.	
Ethyl m	esacona	œ	$C_9 \coprod_{i_1} O_4$	1.051, 15° 1.1		
4.4	4.4		4.	1.039, 301)		
4.4			41	1.043, 202	Petri. Ber. 14, 278	
			(1	1.050, 16°		
	41			1.04674, 20° _		
Methylo	erotacor	inte	$C_7 \coprod_{10} O_4$	1.11, 15°	Claus. A. C. P. 19	
Ethyl ac	etocitra	ite	$\mathcal{O}_{14} \Pi_{22} \mathcal{O}_{4} \dots \dots$	1.1459, 15°	Ruhemann, Ber. 2 802.	
Ethyl te	rebate		$C_9 \Pi_{14} \Theta_{4} = \dots = \dots$	1.111, 16°		

17th. Glycerin and its Derivatives.

NAME.	FORMULA.	Sp. Gravity.	Антновіту.
Glycerin, or glycerol	C ₃ H ₅ (O H) ₃	1.27, 10° 1.28, 15°	Chevreul.
		1.28, 15	Pelouze. Ann. (2), 63, 19.
" "		1.260, 15°.5	Watts' Dictionary.
"		1.115, 12°.5	Sokoloff. A. C. P. 106, 95.
" "		1.2636, 15°	Mendelejeff. J. 13, 7.
"		1.26949, 6°.7	Mendelejeff. A.C.
" "		1.26244, 16°.6_	P. 114, 165.
		1.2609	Godeffroy. C.C.(3), 6, 34.
" Crys	1	1.261, 15°.5	Roos. C. N. 33, 39.
	- "	1.2688, 0°	Emo. Bei. 6, 663.
" "		1.2590, 20° 1.262, 17°.5	Brühl. Bei. 4, 782. Strohmer. Ber. 17,
			ref. 206.
" "	- "	1.2658, 15°	Gerlach. Ber. 17, ref. 522.
" "	-	1.26241, 15°	Perkin, J. P. C.
		1.25881, 25° ((2), 32, 523.
Hexyl glycerin	C ₆ H ₁₁ (O H) ₃	1.0936, 0°	Orloff, A. C. P. 233, 359.
Triethyl diglycerin	C ₁₂ H ₂₆ O ₅	1.00, 14°	Rebouland Louren- co. J. 14, 675.
Glycerin ether	(C ₃ H ₅) ₂ O ₃	1.0907, 18°	Gegerfeldt. J. 24, 401.
"		1.16, 16°	Zotta. A. C. P. 174,
" "	- "	1.1453, 0°	87. Silva. J. C. S. 40,
Glyeide	C ₃ H ₆ O ₂	1.165, 0°	1122. Hanriot. Ann. (5),
Ethyl glycide	C ₅ H ₁₀ O ₂	a1.00	17, 62. Reboul. J. 13, 465. Henry. B. S. C. 18, 232.
Amyl glycide	C. H., O.	.90, 20°	Reboul, J. 13, 463.
Amyl glycide	C ₅ H ₁₀ O ₂	1.081, 0°	Harnitzky and Men-
	3 10 3	·	schutkin. J. 18, 506.
Valero-glyceral	C ₈ H ₁₆ O ₃	1.027, 0°	"
Trimethylin	. C. H., O.	.9483, 0°	Alsberg. J. 17, 495.
Diethylin	$C_7^6 \coprod_{16}^{14} O_3^3$.92	Berthelot. J. 7, 450.
Triethylin	$\begin{bmatrix} C_9 & H_{20} & O_3 \\ O_3 & O_4 \end{bmatrix}$.8955, 15°	Alsberg. J. 17, 495.
Triglycerin tetrethylin	$C_{17}^{3} \text{ H}_{36}^{6} \text{ O}_{7}$	1.022, 14°	Reboul and Louren- co. J. 14, 675.
Ethylamylin	C ₁₀ H ₂₂ O ₃	.92	Reboul. J. 13, 465.
Monamylin	- C'9H18O2	.98, 20°	Reboul. J. 13, 464.
Diamylin	C'3 H'28 O3	.907, 90	Reboul. J. 13, 465.
Monoallylin	$- C_6 H_{12} O_3$	1.1160, 0° }	Tollens. A. C. P.
		1.1013, 25° }	156, 149.
Diformin	3 0 3	1.304, 15°	Van Romburgh. Ber. 14, 2827.
Monacetin	. C ₅ H ₁₀ O ₄	1.20	Berthelot. J. 6, 455.

NAME.	FORMULA.	SP. GRAVITY	Λ UTHORITY.
Diacetin	C, H ₁₂ O ₅	1.184	Berthelot. 4.6, 455
m :	C ₉ H ₁₄ O ₆	1,148, 289	Laufer, J. 1876, 243 Berthelot, J. 7, 449
Triacetin Epiacetin	C ₂ H ₈ O ₃	1.120, 20°	Breslauer, J. P. C -2), 20, 188.
Polymer of epiacetin	(C. H. O.)	1.204, 20°	
Monobutyrin -	С. П., О.		Berthelot. J. 6, 455
Dibutyrin	C_{ij} H_{co} O_{i}	1.051 /	1
	$\begin{array}{c} C_{15} H_{26} O_{6} \\ C_{8} H_{16} O_{4} \\ C_{13} H_{24} O_{5} \end{array}$	4.054)	
Tributyrin	$C_{15} \Pi_{26} \Theta_{6}$	1.056	Berthelot, J. 7, 449
Menovalerin	+ C ₈ H ₁₆ O ₄	1.100	
Divalerin	$C_{13} H_{24} O_{5}$	1,059	
Cocinin	$_{-} $ C_{12} H_{50} O_{6} $_{-}$ $_{-}$ $_{-}$ $_{-}$		
Tristearin	C ₅₇ H ₁₁₀ O ₆	.987, 10°	Kopp. A. C. P. 99 194.
		.9872)	101.
		9572) 150	
11		1,9867	
		9600, 51°.5	
• •	14		
			Three modifies
		1.01.19 (tions. Duffy.
44		1.009. 51°.5	5, 510,

·· Liquid			
Monolein	_ C ₂₁ II ₄₀ O ₄	947	Berthelot, J. 6, 45
Diolein	$C_{39} \prod_{12} O_5 - \cdots$		11
Ethyl glycerateBenzoiein	- 15 H ₁₀ O ₁	1.228	 Henry, Ber. 4, 70 Berthelot, J. 6, 45
Benzoiein Glycerin salicylate	C 10 H 12 O 4	1.9655	Gottig, Ber, 10, 181
Criveerin Suncynor	- 10 1112 13	1.9500 1.2704	Kahibaum, Ber. 19
Glycerin cinnamate	-,	1.2708	1491,

18th. The Allyl Group.

Name.		AME. FORMULA.		Sr. Gravity.	Антиовиту.	
	alcoho		C ₃ H ₅ . O		[\$17\$, 27°]] ; [\$709, 0] = { [\$1\$02, 62°]	Tollens and Henninger, A.C.P. Lio, 184. Additional value are given. Tollens A.C.P. 158, 104
4 +	4.	-			.8569, 157, 511.	Dittmarand Stewart P. R. S. G. 10, 61
			44		\$6000, 0 / 	Thorpe. J. C. S. 37 371.
* *	6.4					Zander. A. C. F
	• •					Schiff, G. C. I. 13 177.

NAME.	Formula.	SP. GRAVITY.	AUTHORITY.
Allyl alcohol	C ₃ II ₅ . O H	.8540, 20°	Brühl. A. C. P. 200,
	16	.8563, 23°	139. Gladstone. Bei. 9, 249.
<i>(</i>		.85778, 15° .85067, 25°	Perkin. J. P. C. (2), 32, 523.
Ethylvinyl aleohol	C ₄ H ₇ , O H	.834, 0° } .818, 21° }	Nevolé. J. C. S. 32, 868.
11 11	14	.827, 0° } .81, 22° }	Lieben. J. C. S. 32, 868.
Ethylvinylearbinol		.856, 0°	E. Wagner. B.S.C. 42, 330.
Methyl isocrotyl alcohol		.8604 .8625 } 0°	Wurtz. J. 17, 515.
· · · · · · · · · · · · · · · · · · ·		.842, 16°.2 .891, 10°	Crow. C. N. 36, 264. Destrem. Ann. (5),
Allyldimethylearbinol	ιι ιι	.8438, 0° }	27, 50. Saytzeff. A. C. P.
Diallyl monohydrate		.8307, 18° { .8367, 0°	185, 151. Wurtz. J. 17, 515. Sehirokoff and
Allyldiethylearbinol	C ₈ H ₁₆ O	.8891, 0° } .8711, 20° }	Saytzeff. A. C. P. 196, 114.
Allylmethylpropylearbi-	"	.8486, 0° } .8345, 20° }	Semljanizin. Ber. 12, 2375.
Isopropylallyldimethyl carbinol.	C ₉ II ₁₈ O	.829, 17°.8	Dieff. J. P. C. (2), 27, 369.
Allyldipropylearbinol	C ₁₀ II ₂₀ O	.8602, 0° } .8427, 24° }	P. and A. Saytzeff. Ber. 11, 1939.
Allyldiisopropylearbinol	"	.8671, 0°	Lebedinsky, J. P. C. (2), 23, 23.
Propargyl alcohol		.9628, 21°	Henry. B. S. C. 18, 236.
Diallylearbinol	C, II, O	.9715, 20° .8758, 0° .8644, 12° }	Brühl. Bei. 4, 780. M. Saytzeff. A. C.
Diallylmethylearbinol	44	.8478, 32° } .8638, 0° }	P. 185, 129. Sorokin. A. C. P.
Diallylethylcarbinol	C ₉ II ₁₆ O	.8523, 13° } .8776, 0° }	185, 169. Smirensky. Ber. 14,
Diallylpropylcarbinol		.8637, 17° } .8707, 0° {	2688. P. and A. Saytzeff.
Diallylisopropylearbinol .	11	.8564, 20°	Ber. 11, 1259. Rjabinin and Saytz-
		.8512, 20° }	eff. Ber. 12, 689.
Vinyl ethyl oxide	C_2 H_3 . C_2 H_5 . $O_{}$.7625, 17°.5	Wislicenus. A.C.P.
Methyl allyl oxide	C H ₃ . C ₃ H ₅ . O	.77, 11°	192, 109. Henry. B. S. C. 18,
Ethyl allyl oxide	$\begin{array}{cccccccccccccccccccccccccccccccccccc$.7651, 20° } .8223, 0° }	232. Brühl. Bei. 4, 780. Zander. A.C.P.214,
Methyl propargyl oxide	С П ₃ . С 1 1 1 . О	.7217, 94°.3 } .83, 12°.5	181. Henry. B. S. C. 18,
Ethyl propargyl oxide	C ₂ H ₅ . C ₃ H ₃ . O	.8326, 20°	232. Brühl. Bei. 4, 780.

Name.	FORMULA.	Sp. Gravity.	AUTHORITY.
Amyl propargyl oxide	С ₅ П ₁₁ , С ₈ П ₃ , О	.84, 12°	Henry. B. S. C. 18, 232.
Diallylearbyl methyl ox-	С, Пп. С Пз. О	.8258, 0° }	Rjabinin. Ber. 12, 2374.
Diallylearbyl ethyl oxide	$C_7 \coprod_{\Pi_1, C_2 \coprod_5 C_5} O_{}$.8218, 0° .8023, 20°	
Isopropylallyldimethyl- carbyl methyl oxide.	С ₉ Н ₁₇ . С Н ₃ . О	.8027, 4°	Kononowitsch, Ber. 18, ref. 105.
Allyl formate	C ₄ H ₆ O ₂	.9022, 17°.5	Tollens, Weber, and Kempf. J. 21, 450
Allyl acetate	$\mathrm{C_5} \ \mathrm{H_8} \ \mathrm{O_2} \ .$.8220, 103°	Schiff, G. C. I. 13.
· · · · · · · · · · · · · · · · · · ·	44	.9276, 20° .9258, 24°,5	Bruhl. Bei. 4, 780. Gladstone. Bei. 9 219.
Ethylvinyl acetate	$\mathrm{C_6}\;\mathrm{H_{10}}\mathrm{O_{2}}$.896, 0°	Nevolé. J. C. S. 32 868.
		.892, 0°	Lieben. J. C. S. 32 868.
Methylisocrotyl acetate Allyldimethylcarbyl ace- tate. ''	C ₈ II ₁₄ O ₂	.912 .9007, 0° } .8832, 18°.5	Wurtz. J. 17, 514 M. and A. Saytzeff A. C. P. 185, 151
Allyldipropylearbyl ace- tate.	$C_{12} \coprod_{i=2}^{i} O_2 \cdots$.8903, 0° .8733, 21°}	Saytzeff. Ber. 11 1939.
Propargyl acetate	$C_5 \coprod_6 O_2$	1.0031, 12°	Henry, J. C. S. (2) 11, 1123.
a a Diallylearbyl acetate	C ₉ H ₁₄ O ₂	1.0052, 20° .9167, 0° }	Brühl. Bei. 4, 780 M. Saytzeff. A. C. P
Diallylmethylcarbyl ace-	$C_{10} \prod_{ii}^{ii} O_2$.8997, 17°.5 .8997, 0° .8733, 21°	185, 129. Sorokin. A. C. P 185, 169.
Allylacetic acid	$C_5 \stackrel{\cdots}{H_8} O_2 = 0$.98656, 12° .98416, 15°	Perkin. J. C. S. 49
 Ethyl allylacetate	$C_7 \stackrel{\alpha}{\mathrm{H}}_{12} \mathrm{O}_2 \ldots$.97670, 25°) .9222, 0°	205. Wurtz. J. 21, 446
Allyloctylic neid	$C_{11}^{i} \prod_{120}^{12} \vec{O}_{2}$.91020, 25° } .89930, 45°	Perkin. J. C. S. 49 205.
Ethyl allyloctylate	$C_{13} \stackrel{\Pi}{\dots} C_{2} \stackrel{\dots}{\dots}$.88271, 15° .87658, 25°	"
Diallylacetic acid	С _в II ₁₂ O ₂	.9495, 25° .9578, 18°	Wolff, Ber. 10, 1957 Reboul, J. C. S. 32 594.
14 44	44	.95756, 12° .95547, 15°	Perkin, J. C. S. 49
Ethyl methoxyldiallylace-	$C_{11}\stackrel{\cdots}{\Pi}_{18}\stackrel{\circ}{O_3}$	[.94918, 25°] [.99066, 20°]	Barataeff, J. P. C (2), 35, 2.
Allyl acetacetate	$C_7 \coprod_{10} O_3$.99272, 15°) .98542, 25°)	Perkin, J. P. C (2), 32, 523.
Ethyl allylacetacetate	$C_9\Pi_{14}O_3$.9968, 13°.5	Gladstone. Bei. 9 249.
	46	.982, 20°	Zeidler, B. S. C. 23
Ethyl diallylacetacetate Ethyl diallyloxyacetate		.948, 25° .9878, 0°	Wolff, Ber. 10, 1956

NAME.	Formula.	Sp. Gravity.	Authority.
Allyl oxalate	C ₈ II ₁₀ O ₄	1.055, 15°.5	Hofmann and Ca- hours. J. 9, 585.
Ethyl allylmalonate	C ₁₀ H ₁₆ O ₄	1.018, 16°	Conrad and Bischoff. Ber. 13, 595.
"	"	1.01475, 14°	Gladstone. Bei. 9, 249.
" " ———		1.00620, 25°	(2), 32, 523.
Ethyl diallylmalonate	C ₁₃ H ₂₀ O ₄		Conrad and Bischoff. Ber. 13, 595.
" " ———	"	1.00620, 6°.5)	Matwejeff. Ber. 21, 181.
<i>((((((((((</i>			Perkin. J. C. S. 49, 205.
Butallylmethylearbin oxide.	$C_6 H_{12} O_2$	1.0099, 21°	Kablukow. Ber. 21, ref. 54.
Butallylmethyl pinakone - "		.9452, 2 4° }	ref. 55.
Derivative of tetrabrom- diallylearbin acetate.	C ₁₃ II ₂₀ O ₇	1.18013, 0°	Dieff. J. P. C. (2), 35, 20.

19th. Erythrite, Mannite, and the Carbohydrates.

	NAM	1 E.		For	MULA.	Sp. Gravity.	Authority.
Eryth Anhy Mann	rite or e	rythrol crythro	1	$C_4 H_6 (O_4 H_6 O_2 H_6 O_2 H_8 (O_4 H_8 O_2 H_8 O_3 H_8 O_$	H) ₄	1.590	Lamy. J. 5, 676. Schröder. Ber. 12, 1561. Przybytek. Ber. 17, 1091. Prunier. Ann. (5),
Dulei Sorbit Pinite Quere Cane	te or dul	eitol	rose	$(C_6 H_{14} O)$	O ₆) ₂ . II ₂ O	1.485 1.486 1.489 1.466, 15° 1.654, 15° 1.520 1.5845	15, 22. Schröder. Ber. 12, 1561. Eichler. J. 9, 665. Pelouze. J. 5, 655. Berthelot. J. 8, 675. Prunier. Bei. 2, 68. Brisson. P. des C.
۲۲ ۲۲	ii ii	;; ;;		12 (1 22 11		1.600	Schübler and Renz. Filhol. Playfair and Joule.
"	"	"				1.5578 1.63	M. C. S. 2, 401. Brix. J. 7, 618. Dubrunfaut. Maumené. B. S. C.
"	"	"		"		1.588, 4°	22, 33. Schröder. Ber. 12, 561.

NAML. Cane sugar, or saccharose			Forv	IULA.	SP. GRAVII	SP. GRAVITY. AUTHORITY.	
			$C_{12} H_{22} O_{11}$			5 Gerlach.	
	* 1	· Fused.			$\frac{1}{2}$ 1.9566, 115.57	== Morin, J. Ph. C. (4)	
4.	. (vitreous. ·· Molten			_ 1.6	28, 34, Quincke, P. A, 138 141.	
					1,5081	Wiedemann and	
	4.4	· Barley sugar.	16		1.5122	$\begin{array}{c c} & 1 & \text{Lude-king. P. A} \\ & (2), 25, 154. \end{array}$	
4.6	. 6	44	4.		1.5928	Zehnder, P. A. (2) 29, 260.	
Mille s	mear. of	r lactose	1.1		1.584	Filliol.	
14						Playfair and Joule J. C. S. 1, 138.	
4.6	+ 4				1.525, 42	561.	
4.4	**		4.6		1.588	- W. C. Smith, Am - J. P. 53, 148.	
Melezi	itose		$C_{12} \coprod_{22} O_1$	п. П ₂ О	1,540, 175,5		
Glucos	st		C. H. O.	. H ₂ O	1.3861 /	Paven and Persoz.	
					1.391)		
			1	- +	$(-\frac{1.54}{1.57}, 11)_{-}$	Bodeker. B. D. Z.	
	Fusi I				1.8	Quineke, P. A. 13 141.	
Inveit	e. Anlij	vdrous	C. H 12 O.		1.752	Tanret and Villier Ann. (5), 23, 39	
			$C_6 H_{12} O_6$. 2 $\rm H_2$ O =	[1.1151, 5] _	Vohl. J. H. 189.	
					1,535, 8° 1,521, 15 ′ _		
Berge	nite		$C_8 \coprod_{10} \Theta_8$. H ₂ O _	1.5415		
Storel	1		- (C ₆ H ₁₀ €) ₅ \ _n	1.505	Payen.	
					1.530	Dictrich, Z. A C. 51.	
					1.56		
	Arrow	root			1.5045, air d		
• •	Poteto		. 4		1.5029. 9 1.6000, drie		
Disti	"ih				1,03843	O'Sullivan, J. 1	
Inuli	N				1.170	Dragendorff, J. : 718.	
					1.462	Dubrunfaut.	
					1.3491	Kiliani, A. C. 205, 151.	
• · llu	1				1.525	Weltzien su Zusai menstellung."	
Crim.			h b		. 1.525, dried	fried Fluckiger, Z Lat j = 10, 145.	
		1 * .			1002.	7.	
	(+ 1201-0	rabat (111). Beacanth (1			1.054		
		1			1.456	(1 00 50	
	11				1.359	J	

NAME. FORMULA. SP. GRAVITY. AU	UTHORITY.
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	and and Johan- Ber. 21, 594. le. Ber. 12,

20th. Miscellaneous Non-Aromatic Compounds.

NAME.	Formula.	Sp. Gravity.	Аптновиту.
Acetopropyl alcohol	C ₆ H ₁₂ O ₂	1.00514, 15° 1.00197, 20° 1.09896, 25° 1.0143, 0°	Perkin, Jr. J. C. S. 51, 830. Lipp. Ber. 18, 3281. Perkin, Jr. J. C. S. 51, 719. Deutsch. Ber. 12, 115. Williamson.
Propyl orthoformate	$C_{10}^7 H_{22}^{16} O_3^{3}$.879, 23°	
Isobutyl orthoformate Isoamyl orthoformate Diethoxylether Derivative of isobutylal- dehyde.	$\begin{array}{cccccccccccccccccccccccccccccccccccc$.864 .8924, 21° .9575, 0°	"
Derivative of vuleral	4.4	.9027, 17° .895	Borodin. J. 17, 339.
Derivative of oenanthol " " "	C ₂₈ H ₅₀ C	.8831, 15° .8751, 30° .8723, 35°	Perkin. Ber. 15, 2805. Olewinsky. J. 14,
Diacetone alcohol	$C_6 \coprod_{12} O_2$.9306, 25°	463. Heintz. A. C. P.
Methoxylmethyl ethyl acetone.	C ₇ H ₁₁ O ₂	.855, 20°	178, 349. James. J. C. S. 49, 50.
Dimethoxyl diethyl acetone.	C ₉ II ₁₈ O ₃		
From diethylacetone	C ₂₀ H ₃₄ O ₂		6, 160.
Ethyl diacetone carbonate	C ₁₀ H ₁₈ O ₃		l no J 18 206
Mesityl oxide		!	1 919
	"	î .	235, 1.
Homologue of mesityl oxide.	C ₈ II ₁₄ O	.8547, 15°.4	Schramm. Ber. 16, 1581.

N	AME.	FORMULA.	SP. GRAVITY.	Ацтиопіту,
				Fittig. J. 12, 344.
			= -1997	
				Schwanert, J.15,464 Schulze, Ber. 15, 54,
			.845, 200)	Cuuize. Der. 10, 94.
			8793, 27°	Brühl. A. C. P
			8785, 28° {	235, 1.
			.8776, 29°]	
Aldol		C_4 H_8 O_2		Wurtz. B. S. C. 18
			1.0819, 49°.6	436.
Derivative	of aldel	$C_8~H_{16}~O_4$	1 0941 5	Wurtz. C. R. 97
			$1.0951 \ 0^{\circ} \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \$	1526.
N			- 1.0953)	11 11
Diacetate II Compoun	om the above	$C_{12} \ H_{20} \ O_{6}$	_ 1.095, 0°	
	of laevulinic	C ₁₄ H ₂₉ O ₇	_ 1.097, 15°	Conrad and Guth
ether.			,	zeit. Ber. 17, 2286
Diethyl gly	collie ether	С ₄₀ П ₃₆ О ₁₀	_ 1.01, 19°	Geuther. J. 20, 455
Propidene :	icetie neid	$C_5^{10}\Pi_8^{36}O_2^{-10}$	9922, 15°	Komnenos, A.C.P
A autul tuin	th.vlana	C II O	90471, 15°)	218, 167.
xeety) tim	ethylene	C ₅ II ₈ O		Perkin, Jr. J. C. S
+ 4		44	.89706, 250	51, 832.
Ethylacety	ltrimethylene-	C, H ₁₂ O ₃	_ 1.08436, 4° j	· · · · · · · · · · · · · · · · · · ·
carboxyl:				Perkin, Jr. J. C. S
4.4	**			47, 801.
**			**	Gladstone. Ber, 19
			1	2563.
4.4		"	- 1.05174) 150)
4.4			_[1.05152]	li
44				Two preparations
1.6				Perkin, Jr. J. C S. 51, 826.
4.4			1.04758 150	
6.4				
Ethyl trim	ethylenedicar-	C H 14 O4	_ 1.0708, 7°	Gladstone. J. C. S
boxylate.				51, 852.
* *			1.06455, 15° 1.05657, 25°	Perkin, J. C. S. 51 852.
		11		802. Perkin, Jr J. C. 8
4.4			1.05664, 25°	47, 801.
Ethyl trime	thylenetricar-	C12 II16 O6		Conrad and Guth
 boxylate. 				zeit. Ber. 17, 1180
	lenemonocar-	3 " 4		Perkin, J.C.S. 51, 1
boxylic a	CIG. "		1.05116, 20° (1.04761, 25°)	1 CTKIII. J.C. S. SI, I
Ethyl tetr		(C ₁₀ H ₁₆ O ₄	1.0154, 140	Gladstone. Bei. ?
carboxyla		10 10 4		249.
	* 6		- 1.05828, 9°)	,, ,, , , , , , , , , , , , , , , , , ,
				Perkin, J.C.S. 51, 1
ri Erlad – azas	tyltatrumathy	$C_{\mathfrak{p}} \stackrel{\circ}{\Pi}_{14} O_{3}$	1.04051, 25°) 1.0668, 13°	Glad-tone. Bei. !
lencearbe		9 4 14 173	1,000,000	219.
	amethylene-	C, H, O,	1.02054, 15%	Two lots. Perkin
	soxylic acid - s		1.01739, 20°	J. C. S 53, 19
	1.1		1.01435, 25%	and 199.

NAME.	FORMULA.	SP. GRAVITY.	Аптновіту.
Methylpentamethylene- }	C ₇ H ₁₂ O ₂	1.0256, 4°]	
monocarboxylic acid.		1.0208, 10°	
		1.0172, 15°	Two lots. Perkin.
	"	1.0139, 20° 1.0109, 25°	J. C. S. 53, 195
Methylpentamethylene)	C ₈ H ₁₄ O	.9222, 4°)	and 199.
methyl ketone.	08114	.9174, 10°	
	"	.9136, 15° }	Perkin. J. C. S. 53,
	"	.9100, 20°	200.
	"	.9070, 25°]	
Methylhexamethylene-	$C_8 \stackrel{\text{H}}{_{''}} O_{2}$	1.0079, 4°]	
monocarboxylic acid.		1.0033, 10° .99982, 15°	Doubin I C C 70
	(4	.9966, 20°	Perkin. J. C. S. 53, 209.
"	"	.9940, 25°	200.
Methyldehydrohexone	C ₆ H ₁₀ O	.92272, 4°)	
	(,	.91278, 15° }	Perkin. J. C.S. 51,
"		.90502, 25°	719.
Ethyl methyldehydro-)	C ₉ H ₁₄ O ₃	1.06457, 15°	j
hexonecarboxylate.	"	$1.05840, 25^{\circ}$ $1.06840, 15^{\circ}$	
		1.06470, 20°	
	"	1.06137, 25°	Three lots. Perkin.
"	"	1.0744, 9°)	J. C. S. 51, 711
" " —	"	1.0696, 15°	and 713.
	<i>ιι</i>	1.0660, 20°	
		1.0626, 25° J	
Ethyl methenyltricarbox- ylate.	C ₁₀ H ₁₆ O ₆	1.10, 19°	Conrad. Ber. 12,
Ethyl ethenyltricarboxy-late.	C ₁₁ H ₁₈ O ₆	1.089, 175	Bischoff. A. C. P. 214, 39.
Methyl diethyl-β-methyl-	"	1.079, 15°	Bischoff. A. C. P.
ethenyltricarboxylate.			214, 56.
Ethyl β -methylethenyl-	$C_{12} H_{20} O_{6}$	1.092, 16°	Bischoff. Ber. 13,
tricarboxylate.	Q 17 0	1 0 1 1 1 1 0	2165.
Ethyl a β -dimethylethe-	$C_{13} H_{22} O_{6}$	1.0745, 15	Bischoff and Rach.
nyltricarboxylate. Ethyl butenyltricarboxy-		1.065, 17°	A. C. P. 234, 54. Polko. A. C. P. 242,
late.		1.000, 11	113.
Ethyl isobutenyltricar-	"	1.064, 17°	Barnstein. A. C. P.
boxylate.			242, 126.
" "		1.0805, 18°	Levy and Engländer. A. C. P. 242,
			der. A. C. P. 242,
Ethyl propylethenyltri-	C ₁₄ H ₂₄ O ₆	1.059 199	210.
carboxylate.	O ₁₄ 11 ₂₄ O ₆	1.002, 10	Waltz. A.C. P. 214, 58.
Ethyl dicarboxylgluta-	C ₁₅ H ₂₂ O ₈	1.131, 15°	Conrad and Guth-
conate.			zeit. Ber. 15, 2842.
Ethyl isoallylenetetra-	C ₁₅ H ₂₄ O ₈	1.102, 15°	Bischoff. Ber. 13,
carboxylate.			2164.
Ethyl dimethylacetylene-	C ₁₆ H ₂₆ O ₈	1.114, 15°	Bischoff and Rach.
tetracarboxylate.	сио	8571 00 1	A. C. P. 234, 54.
Methylisopropenylcarbi- nol. "	5 :11 ₁₀ · · · · · · · · · · · · · · · · · · ·	.8419. 200 5	Kondakoff. Ber. 18, ref. 660.
Pyruvic acetate	C, H, O,	1.053, 11°	Henry. B. S. C. 19,
		·	219.
Ethyl pyruvyl ether	C ₅ H ₁₀ O ₂	.92, 18°	Henry. Ber. 14, 2272.

	*1	1	
NAMES	FORMULA.	SP GRAVILY.	Ат пионит.
Paresorbic neid	$C_6 \coprod_{\mathcal{R}} O_2$	1.068, 15	Hofmann, J. C. S. 12, 322.
Derivative of mannite	$C_0(H_S(t)) = \mathbb{I}_{t=0}(\mathbb{I}_t)$		Fauconnier, J.C.S. 48, 743.
Morthy Linuente 11	C. II _B O.	$\frac{1.15}{1.50}$, $\frac{1}{20}$,	Malaguti, Ann. (2), 63, 86,
Ethyl mucate	$C_{10} \prod_{i=1}^{n} O_{i}$	1.17) 200	
Valerylene diacetate =	$C_9 \prod_{16} O_1$.1033	Guthrie and Kolbe. J. 12, 365.
Conylene diacetate	$C_{12}/H_{20}/O_1$.!!\\\.1\\\^2.2	Wertheim, J. 16, 438,
Amenyl valerone	$C_{14} \Pi_{26} O $.800, 7°	Geuther, Frohlich, and Loos, Ber. 13, 1356.
Linoleic acid Ricinoleic acid	$\begin{array}{cccc} C_{18} & H_{32} & O_2 & \dots & \\ C_{18} & H_{34} & O_3 & \dots & \dots \end{array}$.9206, 14°	
			Norton and Richardson. A. C. J. 10, 57.
Distillate from linoleic acid.	C ₂₀ H ₃₆ O ₂	,9108, 15°	
Distillate from ricinoleic neid.			4.6
Furfurane	С. П. О	(9444, 15° (Henninger, Ann (6., 7, 209.
Dihydrofurfurane	C ₄ II ₆ O		
Erythrol. (Crotonylene	$C_4 \stackrel{\cdots}{\Pi}_* O_2$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	4.6
Furfurelglycot).	$C_5 \prod_i O_2$	1.1648, 15°.6 1.1648, 15°.6 1.1636, 13°.5	
		1.168, 15°,5	Fownes, P. T. 1845 253.
		1,1006, 27°	(3), 18, 124.
44		1, 1010, 1620	35, 463,
			13, 177.
			249.
		1.1591, 20°	235, 1.
Ethylfurfurearbinol	$C_7 \coprod_{i \in \mathcal{C}} O_2 = \mathbb{I}$	1.066, 0°) 1.053, 15°, 5	ner. Ber. 17, 196
Furfurbutylene	$C_*\Pi_{pr}\Theta$.9509, 148.5	Ber. 17, 852.
Frieusol = Ethyl pyromucate	$C_{\gamma}\Pi_{\gamma}\Theta_{\gamma}$ $C_{\gamma}\Pi_{\gamma}\Theta_{\gamma}$	1.450, 43°,5 1.297, 20°	
Triethylpropylphycite =	C ₉ 11 _{.0} O ₄	976, 0° 96051, 16°.5	Wolff, A. C. I

NAME.	FORMULA.	SP. GRAVITY.	Антновіту.
Acid from petroleum	$C_{13} \stackrel{"}{\underset{"}{\text{H}}}_{24} O_{2} - \cdots$.982, 0° } .969, 23° } .939, 0°919, 27° }9931, 21°.5	Hell and Medinger. Ber. 7, 1218. " " Kelly. Ber. 11, 2226.

21st. Phenols.

Name.	For	RMULA.	SP. GRAVITY.	AUTHORITY.
Phenol	С ₆ Н ₅ . О	H	1.062, 20° 1.065, 18°	
"	"		1.0627	3, 195. Serugham. J. C. S. 7, 237.
"	"		1.0808, 0°, 1. 1.0597, 32°.9	Kopp. A. C. P. 95, 307.
"	"		1.0554	Duclos. A.C.P. 109, 135.
"	"		1.068	Church. J. C. S. 16, 76.
"	"		1.0667, 38° 1.0709, 38°	
	"		1.066, cryst	87. Hamberg. Ber. 4,
ιι ιι	"		1.05433, 40°	751. }
"	"		1.04663, 50° 1.03804, 60° 1.02890, 70°	Adrieenz. Ber. 6,
"	"		1.01950, 80° 1.01015, 90°	443.
	"		1.00116, 100° 1.0558, 46°	
(("		1.0463, 56° }	From four differ-
(("		1.0470, 56° 1.0560, 46°	ent sources. Ladenburg. Ber. 7,
	"		1.0467, 56° { 1.0559, 46° }	1687.
"	"		1.0476, 56° ∫ .8789, 186°	Ramsay. J. C. S. 35,
"	"		1.0591, 40°)	463. Bedson and Williams. Ber. 14,
"	"		1.0545, 45° } 1.0722, 20°	2551. Landolt. P. A. 122,
	"		1.0702, 20°	558. Brühl. Bei. 4, 782.
"	"			Flink. Bei. 8, 262. Gladstone. Bei. 9,
		j	,	249.

$\begin{array}{c ccccccccccccccccccccccccccccccccccc$
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$
$\begin{array}{cccccccccccccccccccccccccccccccccccc$
$\begin{array}{cccccccccccccccccccccccccccccccccccc$
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$
" "
"
" ?
" ?
" 1.3. ? " 1.0366, 0°
1.0242, 155.5
" = $\begin{bmatrix} 1.0129, 30^{\circ} \\ 1.0990, 179 \end{bmatrix}$ Lake, J. 1876,
1,0020,439
3903, 39° 1 9073, 100°
Phloretol
Isopropylkresol C_6 II_5, C_7 II_5, C II_7, O II 1,00129, 0°) Spica, J. C. S.
10
1000.
" " Jahns. Ber. 15." Jahns. Ber. 15." Stephones 1.9
" " 1.01008, 0° 1 1 1 1 1 1 1 1 1
" " 1,92424, 100° } no. Ber. 8,

Name.	Formula.	SP. GRAVITY	AUTHORITY.
Propylkresol. Thymol	" " " " " " " " -	$\begin{array}{l} 1.0101, 4^{\circ} \\ .939, 25^{\circ}.5 \\ .988, 0^{\circ} \\ .1.029 \\ .1.034 \\ \end{array}$ $\begin{array}{l} 1.034 \\ .96895, 24^{\circ}.4 \\ .92838, 77^{\circ}.3 \\ .9499, 49^{\circ}.3 \\ \end{array}$ $\begin{array}{l} .9941, 0^{\circ}, 1 \\ .9401, 16^{\circ}.5 \\ .7923, 231^{\circ}.8 \\ \end{array}$ $\begin{array}{l} 1.0171 \\ 1.1171, 13^{\circ} \\ \\ 1.125, 16^{\circ} \\ \\ 1.119, 17^{\circ}.5 \\ .10894, 13^{\circ} \\ \end{array}$	Schiff. Ber. 13, 1408. Haines. J. 9, 623. Febve. Ber. 14, 1720. Schröder. Ber. 14, 2516. Nasini and Bernheimer. G. C. I. 15, 50. Schiff. A. C. P. 223, 247. Pinette. A. C. P. 243, 32. Perkin. C. N. 39, 39. Hlasiwetz. A. C. P. 106, 366. Sobrero. Völckel. J. 7, 610. Gorup-Besanez.

22d. Aromatic Alcohols.

NAME.	FORMULA.	SP. GRAVITY.	Аптновіту.
Benzyl alcohol	C ₆ H ₅ . C H ₂ O II	1.059	Cannizzaro. J. 7, 585.
:(1.0628, 0° } 1.0507, 15°.4 }	Kopp. A. C. P. 94, 257.
		1.0465, 19°	Kraut. A. C. P. 152, 134.
((((Brühl. Bei. 4, 781. Gladstone. Bei. 9,
Benzylcarbinol	C_6H_5 , CH_2 , CH_2OH	1.0337, 21°	249. Radziszewski. Ber. 9, 373.
Phenylpropyl alcohol	$C_6 H_5$. $C H_2$. $C H_3$.	1.008, 18°	Rügheimer, A. C.
Orthoxylyl alcohol	" "	1.0079, 20°	Brühl. Bei. 4, 781.
Orthoxylyl alcohol	C ₆ H ₄ . C H ₃ . C H ₂ O H	1.08, s { 1.023, 40°, 1. {	6, 86.
MetaxylyI alcohol	C ₆ H ₄ . CH ₃ . CH ₂ OH	.9157, 17°	Radziszewski a n d Wispek. Ber. 15, 1747.
" "	†		Colson. Ann. (6),
Ethylphenylearbinol Cymyl alcohol. 1.4	C ₆ H ₄ . CHOH. CH ₃	1.016, 0° }	Wagner. Ber. 17, ref. 317.
Cymyl aleohol. 1.4	$\begin{array}{ c c c c c c c c c c c c c c c c c c c$.9775, 15°	Kraut. A. C. P. 192, 224.

Name.	FORMULA.	SP. GRAVITY.	Аптиовиту.
Saligenin	$C_6\Pi_4$, $O\Pi$, $C\Pi_2O\Pi$	1.1613, 25°	heim. J. 14, 765.
Methylsaligenin, 1.2	$\mathbf{C_6H_4},\mathbf{OCH_3},\mathbf{CH_2OH}$	1,1200, 23° 1,0532, 100°	{
Anisic alcohol. 1.4		$\{1.1093, 26^{\circ}, 1.0507, 100^{\circ}\}$	
Acetophenone alcohol	•		Emmerling and Engler. Ber. 6, 1006
Cinnamic alcohol	**	. 1.0402, 24°,8 -1.04017, 24°,8_ -1.03024, 36°,1.) Nasini and Bern-
4, 4,		1.0027, 77°.8 1.0318, 13°) = 15, 50. Gladstone. Bei. 9 [= 249.
11 11 11 11 11 11 11 11 11 11 11 11 11	4.	1.0351, 31° 1.0346, 32°	Brühl. A. C. P
Ethylphenylacetylene al-	C ₁₀ H ₁₂ O	.985, 19°	Morgan. J. C. S (3), 1, 163.
Orthoxylene glycol		1,138, 75°	Colson. Ann. (6) 6, 86.
Metaxylene glycol	ļ	1.161, 18°, sur- fused.	}
Paraxylene glycol		1.135, 53° 1.094, 135°	,
Mesitylene glycol	$\begin{bmatrix} \mathbf{C_6H_3.CH_3.(CH_2OH)_2} \end{bmatrix}$	1.20, 15°	Robinet and Colson C. R. 96, 1863.

23d. Aromatic Oxides.

	Nav	411.		FORMULA		SP. GRAVITY.	Антновиту.
Phenyl	ether.			С ₆ Н ₅ . О. С ₆ Н	5	1.0904	Gladstone and Tribe J. C. S. 41, 6.
ri 14 Phenyl	methy	loxide.	Λni-	 С ₆ Н ₅ . О. С Н ₅		1.0744, 21°) 1.0712, 25°) .991, 15°	Gladstone. Bei, 9 2 F9. Cahours. J. 2, 403
501. 11	"	64	4.6				Schiff, G. C. I. 13 (177, Nasini and Bern
6.6	6.6	"	6.6	11		L.8604, 1549,8 (heimer, G, C, 1 15, 50, Pinette, A,C,P, 243 32,
Phenyl tol.	ethyle "	xide. I	tr tr	C ₆ H ₅ . O. C ₂ H	5	.8196 { 171°.5 .8198 { 171°.5 .978, 15°	(Schiff, G. C. I. 13

		1	-
NAME.	Formula.	Sp. Gravity.	AUTHORITY.
Phenylethyloxide. Phenetol. """ Phenyl propyl oxide		(.8109, 170°, 5 1	Pinette. A.C.P. 243, 32. Cahours. Les Mon- des, 32, 280.
	"	.9639, 0° } .7889, 190°.5 }	Pinette. A.C.P. 243, 32.
Phenyl isopropyl oxide	(1	.958, 0° } .947, 12°.5 }	Silva. Z. C. 13, 250.
Phenyl butyl oxide	C ₆ H ₅ . O. C ₄ H ₉	.9500, 0° } .7664, 210°.3 }	Pinette. A.C.P. 243, 32.
Phenyl isobutyl oxide		.9388, 16°	Riess. J. C. S. 24, 221.
Phenyl n. heptyl oxide	C ₆ H ₅ . O. C ₇ H ₁₅	.9319, 0° } .7075, 266°.8 }	Pinette. A.C.P. 243, 32.
Phenyl n. octyl oxide	C ₆ H ₅ , O. C ₈ H ₁₇	.9221, 0°} .6941, 282°.8}	" "
Benzyl ether	C ₇ H ₇ . O. C ₇ H ₇	1.0359, 16°	Lowe. J. C. S. 51, 701.
Kresyl ether		1.0352, 16°	Gladstone. Bei. 9, 249.
Orthokresyl methyl oxide.	C ₇ H ₇ O. C H ₃	.9957, 0° } .8331, 171°.3 }	Pinette. A. C. P. 243, 32.
Metakresyl methyl oxide	"	.9891, 0°)	
Parakresyl methyl oxide	"	.8255, 177°.2 } .8236, 175°.5	Schiff. Bei. 9, 559.
" " "		.9868, 0° } .8241, 175°	Pinette. A. C. P. 243, 32.
Orthokresyl ethyl oxide	C ₇ H ₇ . O. C ₂ H ₅	.9679, 0° {	
Metakresyl ethyl oxide	"	.7941, 184°.8	Staedel. Ber. 14,898.
		.97123, 5° .9650, 0° } .7888, 192° }	Pinette. A. C. P.
Parakresyl ethyl oxide		.8744.0°	243, 32. Fuchs. J. 22, 457.
" " "		$.9662,0^{\circ}$ }	Pinette. A. C. P.
Orthokresyl propyl oxide _	~~~	.9517, 0° {	243, 32.
Metakresyl propyl oxide		.7675, 204°.1	
" " "	"	[.7628, 210°.6 } [
Parakresyl propyl oxide		$\left[egin{array}{c} .9497, 0^{f o} \ ___ \\ .7635, 210^{f o}.4 \end{array} ight\}$	"
Orthokresyl butyl oxide	C ₇ H ₇ , O. C ₄ H ₉	.9437, 0° }	
Metakresyl butyl oxide	(6	.9407, 0° }	
Parakresyl butyl oxide		.7422, 229°.2 { .9419, 0° }	ιι ι ι
Orthokresyln, heptyloxide	C ₇ H ₇ , O. C ₇ H ₁₅	.7410, 229°.5 } .9243, 0° }	
Metakresyln. heptyloxide		.7016, 277°.5 { .9202, 0° }	"
Parakresyl n. heptyl oxide		.6927, 283°.2 } .9228, 0° }	"
Orthokresyl n. octyl oxide	C ₇ H ₇ . O. C ₈ H ₁₇	6905. 9839 3	
Metakresyl n. octyl oxide		.6905, 292°.9 } .9194, 0° }	
" " " " "		.6818, 298°.9	"

NAME.	FORMULA.	Sp. Gravity.	Антновиту.
Parakresyl n. octyl oxide	C ₇ H ₇ . O. C ₈ H ₁₇	.9199, 0° }	Pinette, A. C. P
Ethyl phenetel Phloryl ethyl oxide	$\begin{array}{cccccccccccccccccccccccccccccccccccc$.6808, 298° } .986, 14° .9823, 18°	243, 32. Auer. Ber. 17, 669 Sigel. A. C. P. 170
	, s		345.
Styrolyl ethyl oxide Orthopropylphenyl me-) thyl oxide.	$C_6\Pi_1$, $C_3\Pi_7$, O , $C\overline{\Pi}_3$.	.931, 21°.9 .9694, 0° } .9168, 100°	Thorpe. J. 22, 412 Spica. Ber. 12, 293
Parapropylphenyl methyl		.9636, 0° }	: 6
oxide. " Isopropylphenyl methyl oxide.	"	.962, 0°	Paterno and Spice Ber. 10, 84.
Isopropylphenyl ethyl ox-	$C_6\Pi_4$, $C_2\Pi_7$, O , $C_2\Pi_5$.94877, 02 / .86869, 1002 /	Spica. J. C. S. 38 167.
Orthoisopropylphenyl eth- yl oxide.	**	.94438, 0° .85913, 100°	Fileti. G. C. I. 16 113.
Butyl anisol	$C_6\Pi_4$, $C_4\Pi_9$, O , $C\Pi_3$.		Studer, Ber. 14 2187.
Methyl thymol	С ₁₀ П ₁₃ . О. С П ₃	.941, 18°	Engelhardt and Lat schinoff, J. 22, 466
· · · · · · · · · · · · · · · · · · ·		.953898.0°) .869281,100°}	Two samples. P.
		.954314.0° /	sati and Paterne
		.,870459,100° }	Ber. 8, 71.
11	4.	.9531, 0° 7635, 216°,2	Pinette, A. C. I 243, 32.
Ethyl thymol	C_{10} H_{13} , Θ , C_{2} H_{5}	.98866, 00 /	Spica. J. C. S. 4
., 4.		.85758, 100°) .9384, 0°)	460, Pinette. A. C. I
Propyl thymol	C ₁₀ H ₁₃ . O. C ₃ H ₇	.7400, 226°.9	243, 32.
Butyl thymol	С ₁₀ П ₁₃ . О. С ₄ П ₉	(.7215, 248°) .9280, 0°)	
Normal heptyl thymol	С ₁₀ И ₁₃ , О. С ₇ И ₁₅	7.7108, 258°,3 7 .9097, 0° 7	
Normal octyl thymol	C ₁₀ H ₁₃ , O. C ₅ H ₁₇	.6712, 306°.7 (.9026, 0°)	
	4.	.6608, 319°,8 (
Metaxylyl ethyl oxide	$\begin{array}{c} C_6 H_4, \subset H_3, \subset H_2, O, \\ \subset_2 H_5. \end{array}$.9302, 17° -	Radziszewski a n Wispek, Ber. 1 1746.
Paraxylyl ethyl oxide		.9904, 17°	Radziszewski a n Wispek, Ber, 1
Diphenylearbyl ethyl ox-	$(\mathbf{C}_{6}\Pi_{5})_{2}\mathbf{C}\Pi,\Theta,\mathbf{C}_{2}\Pi_{5}$	1.029, 20°	Linnemann.
Benzyl anisol	$\langle C_6 H_4 \rangle \langle C_{\overline{5}} H_7 \rangle \langle O, C H_1 \rangle$	1.073, 0°/ .983, 100°/	Paterno. B. S. C 18, 77.
Phenylvinyl ethyl oxide	$C_{1\sigma} H_{12} O . \ldots .$.9812, 02	Erlenmeyer, Be:
Orthovinylanisoil	$C_6 H_4$, $C_2 H_3$, O , $C H_3$	1,0005, 152 1,000, 301 }	Perkin, J. C. S. 3 211.
Paravinylanisõil		1,002, 15° /	
Orthoallylanisöil	$C_6 \Pi_4$, $C_3 \Pi_5$, O , $C \Pi_3$,, ,,
"		1,9798, 45° } ==	1

NAME.	FORMULA.	SP. GRAVITY.	Аптновиту.
Anethol. 1.4	C ₆ H ₄ . C ₃ H ₅ . O. CH ₃ -	.984, 20°	Landolph. C. R. 82, 227.
" Natural " Artificial " " "		$\left. \begin{array}{c} .9858,30^{\circ} -\ .9852,30^{\circ} \\ .9761,45^{\circ} \end{array} \right\} \\ .9887,21^{\circ}.3 -\ .$	Perkin. Schiff. A. C. P. 223,
 		.99132, 14°.9 .98556, 21°.6 .97595, 34°.4 .94041, 77°.3	Nasini and Bern- heimer. G.C.I. 15, 50.
"Artificial Orthobutenylanisöil	C ₆ H ₄ , C ₄ H ₇ , O, C II ₃ -	.9869, 21°	Gladstone. J.C.S. 49, 623. Perkin. J. C. S. 33, 211.
Parabutenylanisöil Phenyl allyl oxide Kresyl allyl oxide. 1.4_ Phenyl propargyl oxide_	$\begin{array}{cccccccccccccccccccccccccccccccccccc$.9869, 10°	Nasini. Bei. 9, 331. Henry. Ber. 16, 1378.
Veratrol. 1.2 Dimethylresorein. 1.3	C ₆ II ₄ (O C II ₃) ₂	1.086, 15° 1.075, 0°	Merck. J. 11, 256. Coninck. Ber. 13, 1992.
($\begin{bmatrix} 1.0803, 0^{\circ} \\ 1.0317, 55^{\circ}.8 \\ 1.0104, 79^{\circ}.2 \\ .9566, 135^{\circ}.5 \\ .8752, 215^{\circ} \end{bmatrix}$	Schiff. Ber. 19, 560.
Methylene diphenate	$C H_2 (O C_6 H_5)_2$	1.1136, 18°	Henry. Ann. (5), 30, 269.
Wethylana dianthal resy		1.092, 20°	Arnhold. A. C. P. 240, 192.
Methylene diorthokresy- late. Methylene dimetakresy-		1.019, 50°, 1	
late. Methylene diparakresylat Methylene dibenzylate Methylene dithymylate_	C H, (O C ₁₀ H ₁₃),	1.034, 50°, 1 1.053, 20° .979, 50°, 1	" " " " " Henry, Ber, 16, 1378.
Ethylene diphenate	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	1.018, 11°	Henry. Ber. 16, 137

24th. Aromatic Acids and their Paraffin Ethers.

	Nas	п:.	Fο	RMULA		SP. GRAVITY.	А стнокиту,
Benzoie	e acid		С, П, С	C O O 1	II	1.29. cryst	Корр.
* *	* *		", "	• •		1.201, 21%, 5.1.)
	* * * *			**		[-1.206, 255.8, L]	Mendelejeff, J. 1
	* * -			4.6		1.227, 271, 1.	271.
h +	11			* *		1.0838, 1219.4	Kopp. J. S. 35.
				* *		1.337, sublimed	Rudorif, Ber.12, 25
	* * -					1.255	Schröder. Ber. 1
4.4	* * * -			* *		1.291 - 40	561.
1.6				٠.		1.297	
. 1	-			• •		1.0800, 1210.4.	Schiff, A. C. P. 22 247.
Methyl	benzo	ate	C ₈ ∏ ₈ O			1.10, 17°	Dumas and Pelige Ann. (2), 58, 50.
4.			1.6			1.1026, 00)	Kopp. A. C. P. 9
**	+4		* *			[1.0876, 162.3 ∫	257.
	1.1		* *			$[1.0921, 12^{\circ}.3]_{-}$	Mendelejeff, J. 13,
+4	1.1		4 +			1.0862, 20%	Bruhl, Bei, 4, 782
* *	4.4		* *			1.100, 10°	De Heen, Bei, 1 313.
	* 4					1.103, 15°	Stohmann, Rodat and Herzberg, P. C. (2), 36, 4.
Ethyl l	benzoat	0	C ₉ H ₁₀ €)2		1.0539, 10°.5_	Dumas and Boulla P. A. 12, 450.
. 6	4.4		11			1.00, 18°	Deville, Ann. (3),
4.6	4.4		* *			1.049, 149	Delifs, J. 7, 26,
4.4	4.4					1.0657, 02)	Kopp. A. C. P. 9
. 4	4.6		+ L			1.0556, 10°.5 j	257.
4.4			+4			1.0517. 149.1	Mendelejeff, J. 13,
• •	4.4		6.6			1.018, 200	Naumenn, Ber, 1 2016,
			64			1,0473, 200	Bruhl. Bei. 4, 78
* *	* *		. 6			1.0502, 16°	Linnemann. A. (
4.4	4.4		* *			1.160, 10°	P. 160, 195, De Heen, Bei, 1 313,
h £	* *		**			1,050, 15°	and Herzberg.
Propyl	 benzos	cte	 C ₁₀ H ₁₂	O ₂		1.050, 15° 	nnd Herzberg. P. C. (2), 36, 1. Linnemann. Δ.
eropyl	benzos	de	 C ₁₀ H ₁₂ 	O ₂			and Herzberg, P. C. (2), 36, 1. Linnemann, A. (P. 161, 29, Stohmann, Rodot and Herzberg,
4.	4.4	zeate	 C ₁₀ H ₁₂	O ₂		1,0316, 16° 1,0218, 15° 1,054, 0° _)	and Herzberg, P. C. (2), 36, 1. Linnemann, A. C. P. 161, 29. Stolmann, Rodet and Herzberg, P. C. (2), 36, 1.
I-oproj	a pyl ben:	zonte	C ₁₀ H ₁₂			1.0316, 16° 1.0218, 15°	Linnemann. A. C. P. 161, 29. Stolmann, Rodot and Herzberg. P. C. (2), 36, 1. Silva. Z. C. 12, 63 Linnemann. An
I-oproj	a pyl ben:	zonte				1.0316, 16° 1.0218, 15° 1.054, 0°) 1.010, 25° j	and Herzberg, P. C. (2), 36, 1, Linnenunn, A. (P. 161, 29, Stohmann, Rodst and Herzberg, P. C. (2), 36, 1, Silva, Z. C. 12, 63

NAME.	FORMULA.	Sp. Gravity.	AUTHORITY.
Amyl benzoate	C ₁₂ H ₁₆ O ₂	1.0039, 0° } .9925, 14°.4 } 1.002, 10°	Kopp. A. C. P. 94, 257. De Heen. Bei. 10,
и и		.9916, 15°	and Herzberg, J.
Hexyl benzoate	C ₁₃ II ₁₈ O ₂	.99846, 17°	P. C. (2), 36, 1. Frentzel. Ber. 16, 745.
Salicylic acid	С ₆ Н ₄ . ОП. СООН. 1.2	1.443	Rüdorff. Ber. 12, 251. Schröder. Ber. 12,
" Metaoxybenzoie acid	. 1.3	1.482 1.485 4° { 1.473 , 4°	1611.
Paraoxybenzoic acid Methyl salicylate, oil of	- "	$\left\{ egin{array}{ll} 1.460 \\ 1.476 \\ 1.180, 15^{\circ} \end{array} \right\} $	Pettigrew. Am. J.
Betula lenta. Propyl salicylate	C ₁₀ H ₁₂ O ₃	1.021, 21°	P. 55, 385. Cahours. Les Mon-
Methylsalicylic acid. 1.2_	C_6H_4 . OCH $_3$. COOH	1.18, 10°	des, 32, 280. Cahours. Ann. (3), 10, 327.
16 16	-	1.1845, 15° 1.1969, 0° } 1.1819, 16° }	Mendelejeff. J. 13, 7. Kopp. A. C. P. 94, 257.
Anisic acid. 1.4	- 44	$ \begin{vmatrix} 1.1801, 20^{\circ} & __\\ 1.364\\ 1.376\\ 1.385 \end{vmatrix} 4^{\circ} -_ \left\{ $	Landolt. Bei. 7,847 Schröder. Ber. 12, 1611.
Ethylsalicylic acid. 1.2 -	C ₆ H ₄ . OC ₂ H ₅ . COOH	1.097	Baly. J. C. S. 2, 28. Delffs. J. 7, 26.
Ethyl ethylsalicylateEthyl ethylmetaoxyben- zoate.	"	[1.0725, 20°] ()	Göttig. Ber. 9, 1473. Heintz. A.C.P. 153, 332.
Methyl isopropylsalicylat Protocatechuic acid	$C_6 H_3 (O_{11})_2$. COOH	$1.0725, 20^{\circ}$ $1.062, 20^{\circ}$ 1.541 1.542 1.542	Kraut. J. 22, 566. Schröder. Ber. 12, 1611.
Gallie acid	(6 H ₂ (O H) ₃ . COO H	$\left \begin{array}{c} 1.685 \\ 1.703 \end{array} \right 4^{\circ}$	
Phenylacetic, or alphatoluic acid. " -		1 0004 1050 1	Möller and Strecker. J. 12, 299.
16 16 —	-	1.220 (40)	Schröder. Ber. 12, 1611. Schiff. A.C.P. 223,
Methyl phenylacetate	$= \left[\begin{array}{cccc} \mathbf{C}_9 & \mathbf{H}_{10} & \mathbf{O}_2 \end{array} \right]$	·	247. Radziszewski. Z. C.
Ethyl phenylacetate Propyl phenylacetate	$\begin{bmatrix} C_{10} & H_{12} & O_2 & \dots \\ C_{11} & H_{14} & O_2 & \dots \end{bmatrix}$	1.031 1.0142, 18°	12, 358. Hodgkinson. J. C.
Phenylpropionic, or hy- drocinnamic acid.		.8780, 279°.8	S. 37, 483. Weger A. C. P. (221, 61.
Methyl phenylpropionate	11 11 12 02	1.0455, 0° { 1.018, 49° } 1.0473, 0°	Erlenmeyer. J. 19, 366. Weger. A. C. P.
15 0 0	- 44	.88824, 286°.6.) 221, 61.

17 s g

	Name	:.	FORMULA.	SP. G	RAVITY.	Антиовиту,
Sthel n	henvlor	onionate	C ₁₁ H ₁₄ O ₂	1,0313	3, 0° /	Erlenmeyer, J. 1
2013 F	nen'i de		11 11 2		490 /	
4.6						Bruhl, Bei. 4, 78
4.						Weger, A. C.
	11					1
ropyl	Puen's ib	ropionate.	$C_{12} \coprod_{i=0}^{i} O_{2} = \cdots$		5, 262°.1	
Cox Lui	henvlor	opionate	$C_{14} \Pi_{20} \Theta_{2} \dots$		05)	Erlenmeyer. J. 1
4.4			**		49°)	367.
fethyl	oxyphet	iylacetate.	C ₉ 11 ₁₀ O ₃	, 1.15,	179.5	Fritzsche. Ber. 1 2175.
thyl o	xypheny	vlacetate	$C_{10} \coprod_{12} O_3$	1,104.	170.5	"
Thyl -	oxyphei	iylpropio-	$C_{11} \ H_{14} \ O_3 = \dots = \dots$	1.860.	17°.5	Saarbach, J. P. (2), 21, 156.
hthali	e acid 🛫		$C_6 H_4$. ($C \leftrightarrow C$	$\Gamma_{i_2}=-1.585$	<u>)</u>	Schroder. Ber. 1
s 4			**	L = 1,-000	j	1070.
Lethyl	phthala	te	$C_{10} \coprod_{10} O_{1}$	1,200° 1,202;	l 2 13°,5.	Thron
				1.210		Three prepartions. Schim
4.	6.6		1.	1,195		zigaug. Inat
4.6	* *			1.197	1	
	6.6		+	1.205		1 1883. See a
6.0	4.6			1.195		Graebe, Ber.
* *	4.4		4.	_ 1.1963	i i	J 861.
			$C_{12}\stackrel{\circ}{\Pi}_{14}O_{1}$	1.203 1.131		'] Two preparatio
anyi p	ohthalati		12 1114 111	1.132		Schmalziga
	5 h			1.129	1 1	Imang. Diss.
	1.6			1.129		langen, 1883.
ethopl	henylen	glyoxylic	$C_6\Pi_4$, COH, CC) OH 1.104		' Colson and Gauti
acid.		, ,		()())]))([1 C. R. 102, 689.
		phenyme-	С ₆ П ₅ .СП.СП.С	0911 1,240		E. Kopp. J. P. 37, 280.
rylie	acid.		4.6	1.195		Schabus, J. 3, 3
4.4		٠	6.	1.246		Schroder. Ber.
4.4			6.6	1.249	1 (1611.
* *		6.	4.4		5, 133°)	Weger, A. C.
		4			4, 300° i	221, 61.
lethyl	cinnam	ate	$\Gamma_{10} \Pi_{10} \Omega_{2}$	1.100		.) E. Köpp C. R. 1376.
4.4	4.		4.	1.041	5, 362	Weger, A. C.
6.6			**		s, 2590, 6	221.61.
Ethylo	einnama	te	C_{11} H_{12} O_2	1,126	, 0°	: E. Kopp. C. R. + 1876.
6.	4.4			1.13		Marchand, A. C 32, 269.
4.6	6.4		**		ρ' ₁ (1 '	
4.4	4.5		9.1		is, 200.2%	95, 307,
• •	6.4		**	1,045		
* *	4.		-		S (0) E1	 Weger, A.C.P. 1
			4.4		13, 271°	61.
	6.6					0 .3 (3 // 1) 99
			**	. 1.943	$\omega, 20^{\circ}$.	Bruhl, A ₁ C, P. 23
.: Cropyl	i. Leinnam	nate	$C_{17} \stackrel{\circ}{\Pi}_{14} O_2 \stackrel{\circ}{\dots}$		(0, 20°) (5	
li Propyl		inte	$C_{17} \stackrel{\text{tr}}{\Pi}_{14} O_2 = 1$	1.01		. Kalilbaum, Ber.

Name.	FORMULA.	Sp. Gravity.	Антновиту.
Methyl a methylorthox- } yphenylaerylate. }	C ₁₁ II ₁₁ O ₃	1.1404, 15° 1.1277, 30° } 1.1465, 8°.5	Perkin. J. C. S. 39 409. Gladstone. Bei. 9 249.
Methyl 3 methylorthox-) yphenylaerylate. }	6. 6.	$ \begin{array}{c} 1.1486, 15^{\circ} \\ 1.1362, 30^{\circ} \\ 1.1556, 9^{\circ}.5 \end{array} $	Perkin, J. C. S. 39 409. Gladstone, Bei, 9
Ethyl a ethylorthoxy- phenylacrylate. Ethyl β ethylorthoxy- phenylacrylate.	C ₁₃ II ₁₆ O ₃	1.084, 15° } 1.074, 30° } 1.090, 15° 1.090, 10°	249. Perkin, J. C. S. 39 409. " " Gladstone. Bei. 9 249.
Methyl a methylorthox- yphenylerotonate. $\{$ Methyl β methylorthox- yphenylerotonate. $\{$	C ₁₂ II ₁₄ O ₃	1.1112, 15° 1.1061, 30° 1.1279, 15° 1.1136, 30° 1.1136, 30°	Perkin. J. C. S. 39 409.
Methyl a methylorthox- } yphenylangelate. } Methyl 3 methylorthox- } yphenylangelate. } Mandelie acid	C ₁₃ H ₁₆ O ₃	1.1044, 15° { 1.0882, 30° } 1.1100, 15° } 1.1008, 30° } 1.355 { 4° {	u u Schröder. Ber. 12
Cuminie acid	$C_6 \Pi_4$. $C_3 \Pi_7$. $C O O \Pi^-$	1.156 (40	1611.
Quinic acidEthyl veratrate	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	1.169 \(\frac{\pi}{1.637}, 8\cdot .5 \) 1.637, 8\cdot .5 \) 1.141, 18\cdot	Watts' Dictionary, Will. A. C. P. 37 198.
Ethyl phenylglyoxylate Ethyl phenylacetacetate	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	1.121, 17°.5 1.0861, 16°	Claisen. Ber. 12, 629 Hodgkinson. J. C. S 37, 481.
Ethyl benzylacetacetate	C ₁₃ H ₁₆ O ₃	1.036, 15°.5	Conrad. Ber. 11 1056.
Ethyl methylbenzylacet- acetate.	C ₁₄ 11 ₁₈ O ₃	1.046, 23°	
Ethyl benzylmalonate	C ₁₄ H ₁₈ O ₄	1.077, 15°	Conrad and Bischoff A. C. P. 204, 203
Ethyl benzylmethylmalo- nate.	C ₁₅ 11 ₂₀ O ₁	1.064, 19°	Conrad and Bischoff Ber. 13, 595.
Ethyl benzylidenemalo- nate.	C ₁₄ H ₁₆ O ₄	1.1105, 15°	Claisen and Crismer A. C. P. 218, 132
Ethyl benzylacetosucci- nate.	C ₁₇ H ₂₂ O ₅	1.088, 15°	Conrad. Ber. 11 1058.
Monomethyl propylpy- } rogallate. Picamar.	C ₁₀ H ₁₄ O ₃	1.10 1.10288, 15°	Reichenbach. Pastrovich. M.C.4 183.

25th. Ethers of Aromatic Radicles.

NAME.	FORMULA.	SP. GRAVITY.	Аптновиту.
Phonyl acetate	C, H, O ₂	1.074	Boughton, J. 18,
Kresyl acetate	$\mathbf{C}_{9}(\mathbf{H}_{10} \mathbf{O}_{2})$	$1.0499,23^{\pm}$	530. Glodstone. Bei. 9,
Benzyl acetate		1,057, 16°,5	249. Conrod and Hodg-kinson, A. C. P. 193, 312.
		1,0100, 21° 1,03814, 22°,5	Gladstone, Bei, 9 - 249.
Paraxylyl acetatel	$C_{10}\stackrel{\circ}{\Pi}_{12} O_{\downarrow}$	1.0261, 15	Jacobsen. Ber. 11
Ethylphenyl acetate ==.	**	1.0286	Radziszewski. Ber 9, 879,
		$1.0507,22^{\circ}.5$.	Gladstone, Bei, 9 249.
Methylphenylcarbyl ace-		1.05, 171	Radziszewski, C.C 5, 261.
tiete. Parepropylphenyl neetate.	$C_{11} \coprod_{i=1}^{n} O_2 = \dots = 0$	1,029, 0° ,0425, 100°	Spica. Ber, 12, 295
Orthoisopropylphenyl acc-	••	1 02714, 0° / .96818, 100° /	Fileti. G. C. I. 16
tate. Paraise propylphonyl aces		1.026, 02	Paterno and Spica
Mesityl acetate.		$1.0903, 16^{\circ}, 5$	Ber. 10, 84. Wispak, Ber. 16 1577.
Thymylacetate		1,009, 0° .924, 100	Two preparations Paterno, J. C. S
Butylphenyl acetate		1,040,0° 1,	21, 10, 638, Studer Ber. 14 2187.
D phenylearbyl acetate	$C_{15} \; H_{14} \; O_{1} \qquad . \label{eq:constraint}$	$1.49, \frac{997}{2}$.	Linnemann, A. C P. 133, 20,
Benzyl propionate	$\mathbf{C}_{\mathrm{m}} \mathbf{H}_{\mathrm{n}} \mathbf{O}_{\mathrm{galler}}$	1,036-16-,5	Conrad and Hodg kinson, A. C. P 193, 312.
Benzyl butyrate	$C_1, \ \Pi_{10} \ O \ \cdots \ \ldots$	1.016, 162	Hodgkinson A C
Benzyl isobutyrate			P 190, 320
		1,0058, 23	Gladstone, Bei, 9 219
Isomore of bernyllis dutys		1,0228, 227	**
Beneyl phenymetric	$\mathbf{C}_{\pm} = \mathbf{H}_{\pm k} \cdot \mathbf{O}_{\pm}$	1.101 .	Slawik, J. C. S. (2) 14, 59
Beregyl beney's estate	$C_{n_c} \coprod_{c} O_{c}$.	1,074, 21	Control and Hodg kirson, A.C.P 193, 312.
Beney' ben vhereprenate. Benevices vibrityrib	C_{i} , H_{i} , O_{i}	1 016, 165, 5 1,027, 173, 5	
Been by him has hirvested		1 028, 18	
The served morthy the may be actual.		1 0285, 18	Holgkinson, J. C. S B. 195
Berry Venture	C ₁₄ H ₀ O	1.114 15 5	K et al. A. C. P. 152 159
		1.1224 19.1	Chasen, Ber. 20, 646

NAME.	FORMULA.	Sp. Gravity.	Authority.
Benzyl cinnamate	C ₁₃ H ₁₆ O ₄	1.12, 20°	249. Robinet and Colson. C R 96 1863

26th. Aromatic Aldehydes.

Name.	FORMULA.	Sp. Gravity.	Астновиту.
Benzaldehyde. Almond oil.	C ₆ H ₅ . C O H	1.075	Chardin-Hardan-
"		1.038, 15°	Guckelberger. J. 1. 850.
"		1.043	
"	44	1.0636, 0°)	Kopp. A. C. P.
"	"		94, 257.
"		1.0504	Mendelejeff. J. 13, 7.
ιι	"		Lippmann and Hawliczek. Ber. 9, 1461.
"	<i>(</i> ($\begin{bmatrix} 1.0471 \\ 1.0474 \end{bmatrix}$ 20°	Landolt.
"	(,	1.0455, 20°	Brühl. Bei. 4, 782.
Toluic aldehyde	C. H. C. H. COH	1.037 00	Gundelach. B. S. C.
11 11	C6 H4 C H3. C C H2	1.024, 22° }	26, 45.
Phenylacetic aldehyde	-		Radziszewski. Ber. 9, 372.
Cuminic aldehyde. Cumi-	C. H., C. H., C O H	.9832, 0°)	Kopp. A. C. P. 94.
" nol.	- 4 3 6	.9727, 13°.4	257.
££ ££	-	. 9751, 15°	Mendelejeff. J. 13, 7.
" "	- "	.9751, 15° .9775, 20°	Gladstone. Bei. 9, 249.
Paratolylpropyl aldehyde	C ₆ H ₄ . CH ₃ . CH ₂ . CH ₃ . CH ₄ . CH ₄ .		v. Richter and Schüchner. Ber. 17, 1931.
Salicylic aldehyde, or sali- cylol.	С ₆ Н ₄ . О Н. С О Н_	1.1731, 13°.3	Piria. A. C. P. 29, 300.
	"	1.1671, 20°	
Anisic aldehyde	C ₆ H ₄ . O C H ₃ . C O H	1.09, 20°	Cnhours. Ann. (3), 14, 484.
"	-	1.1228, 18°	Rossel, Z. C. 12, 561.
Cinnamic aldehyde	C ₉ H ₈ O	1.0497, 20°	Brühl. A. C. P. 235, 1.

27th. Aromatic Ketones.

	=		
Name.	FORMULA.	SP, GRAVITY.	Ацтиовіту,
Methyl phenyl ketone - Methyl benzyl ketone -	С. Н., СО, С И ₃ С. И., СО, С И ₄	1,032, 15° 1,010, 13°	Friedel, J. 10, 270, Radzi-zewski, Ber.
		.9891, 220	3, 199. Essner and Gossin.
Methyl tolyl ketone			Ber. 17, ref. 429.
Propyl phenyl ketone	C ₆ H ₅ , C O, C ₃ H ₇	,350, 10" 11111	Schmidt and Fig- berg, J. C. S. (2), 12, 75.
		.992, 15° .9949, 15°	Popoff. Ber 6, 560, Einhern. In. Diss. Tubingen, 1880.
Isopropyl phonyl ketone		.994, 12°) .972, 80° }	
Methyl xylyl ketone	С, Н ₉ . СО, С Н ₃	.934, 60°) .9962, 19°	Claus and Wollner, Ber. 18, 1856.
Isobutyl phenyl ketone	$C_{\kappa} \amalg_{5^{*}} C \to C_{\kappa} \amalg_{9}$.993, 177.5	Popoff, A.C.P. 162 151.
Tolyl phenyl ketone	$C_6 \; \Pi_5, \; C(\Theta, \; C_7 \; \Pi_7) \; \dots$	1.055, 175.5	Sentf. A. C. P. 220 252.
Acetocinnamone	$C_s/H_7, C/O, C/H_3 = \mathbb{I}$	1.00%	
Propionylaectophenone Butyrylaectophenone	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	1.081, 15° 1.061, 15°	

28th. Camphors, Essential Oils, Etc.

NAME.	For	MULA.	SP. GRAVITY.	Λ uthority.
Laurel campher	C 10 H 16 C		(986) (986)	Watts' Dictionary.
Myristicol	.,		9466, 20°	Gladstone, J. C. S. (2), 10, 1.
Absinthol	• •		.973, 24	(2), 10, 1. Leblanc, A, C. P. 56, 357.
	• •		.9267, 202	Gladstone, J. C. S. (2), 10, 1.
**	• •		.0128, 225	Gladstone, Bei, 9, 249
Citro II 1	**		\$742 / 20	Two samples Gladstone, J. C. S. (2), 10, 1
From oil of commder $=$,8970	Grosser, Ber. 14, 2505.
Erican dil	••		.574, 202	Frohde, J. P. C. 82, 186.
Oil of Mentha pulegium.			. 9271)	Watts' Dictionary.

Name.	FORMULA.	Sp. Gravity.	AUTHORITY.
Oil of Pulegium micran-	C ₁₀ H ₁₆ O	.932, 17°	Butlerow. J. 7, 595.
thum. From oil of tansy		.918, 4°	Bruylants. Ber. 11,
Thujol Cajeputol	C ₁₀ H ₁₈ O	.924, 15° .9160, 20°	Jahns. Ber. 16, 2930. Gladstone. J. C. S.
Cajeputene hydrate	"	.8900, 21°.5 .903, 17° .9160, 20°	(2), 10, 1. Schmidl. J. 13, 480. Kanonnikoff. Bei. 7,
Oil of coriander	"	.871, 14° .8719, 15°	592. Kawalier. J. 5, 624. Grosser. Ber. 14,
Cyneol		.92067, 16°	2486. Wallach and Brass.
"	· · · · · · · · · · · · · · · · · · ·	.9267, 20°	A. C. P. 225, 291. Wallach. A. C. P. 245, 195.
Oil of eucalyptus oleosa		.9075, 20°	Gladstone. J. C. S. (2), 10, 1.
Geraniol		.8851, 15° }	Jacobsen. Z. C. 14, 171.
Oil of Licari kanali		.868, 15°	Morin. J. C. S. 40, 738.
Oil of Melaleuca ericifolia		.8960, 20°	Gladstone. J. C. S. (2), 10, 1.
Oil of Melaleuea linarifolia From menthol		.8985, 20° .9032	Moriya. C. N. 42,
Menthone	tt	.9126, 0° }	268.
**		.8972, 20°	
**	"	.8819, 40° }	Atkinson and Yoshi-
.("	.8665, 60° .8511, 80°	da. J. C. S. 41, 295.
	"	.8511, 80°	
Ngai camphor	"	.8355, 100° j 1.02	Diameter I G G
From Osmitopsis asteris-		.921	Plowman. J. C. S. (2), 12, 582.
coides. Salviol		.934, 15°	Gorup-Besanez. J. 7, 596.
(,		.938, 15°	Sigiura and Muir. J. C. S. 33, 295. Muir. J. C. S. 37, 13.
Terpane	((.935, 0°	Bouchardat and
20.p0			Voiry. C. R. 106, 664.
Terpilenol		.961, 0° }	Bouchard at and Lafont. B.S.C. 45, 295.
	"	.9533, 0°	Lafont. B. S. C. 49, 323.
Terpinol*	и	.952, 0°	Bouchardat and Voiry. B.S.C. 47, 870.
	ιι	.9296, 10°	

^{*}List's terpinol (J. 1, 726) is now known to be a mixture.

Name.	FORMULY.	SP GRAVITY.	Аттионту
Terpinel	C ₁₀ H ₁₅ O	,9357, 20°	Wallach. A. C. I
		.9274, 169	245, 196. Tilden, C. N. 37, 100
Eurpentine hydrate		.0009, 02	Flawitzky, Ber. 1:
	**	.9201, 181	2355,
		.9511, 10°	Renard, Ber. 13, 931
44		.9155	Kanonnikoff, Bei 7, 592.
		9535, 0°1	Flawitzky, Ber. 20
	**	.0180, 192, 5	1959.
From wormseed oil		.0275, 167	
	-	.8981, 59	Hell and Sturck
** ** **		.8553, 100%	Ber. 17, 1970
denthel	$C_{10} \prod_{j,n} O$.9094 - 20-	(Twosamples Gla
		.9515 (20	stone, J. C. S. (2) 1 10, 1.
		.89, 152	Moriva. C. N. 4
			265.
		.5756, 200	Kanonnikoff, Bei. 502.
Ethyl camphor	_ С ₁₂ П ₂₃ О	.040, 202	Baubigny, J. 19,62
lucalyptol	12 20	.905. 8	Clorez, Z. C. 12, 41
	-	.9178, 15°	Poolil. J. R. C. 538.
from wormseed oil	1.1	.010, 20	Volckel, J. 6, 51
\myl campher	$C_{15}^{-}\Pi_{26}^{-}\Theta$.019, 15	Baubigny.
Vniyr campuor 1222 1 Veetyl campher 1122 1	C. H. O	986, 20	Baubigny, J. P.03.
Methyl borneol	С., Н., О	.940, 452	Bouldigny.
Ethyl borned .	$egin{array}{ccc} C_{12}^{O} & \Pi_{18}^{O} & O_{2,2,2} & O_{2,2} & O_{2,2,2} & O_{2,2,2} & O_{2,2,2} & O_{2,2,2} & O_{2,2,2} & O_{2,2,2,2} & $	916, 235	**
From Achilles ageratum	**	.549, 20	De Luce, J. C.: 31, 326.
From Angostura bark	C = W = O	001	Herzeg, J. 11, 43
Petehouti compher	$\begin{array}{ccc} C_{13} & H_{24} & O & & \dots \\ C_{13} & H_{24} & O & & \dots \end{array}$	1,051, 45	Gal. Z. C. 12, 2;
thlof ginger	$C_{ab}^{\dagger} \coprod_{i=1}^{n} C_{ab}^{\dagger} = 0$		Paponsek, 4, 5, 6;
Camphorogenel	C. H. O.		Yoshida, A. C.
			17, 779 (Two samples, 1
Terrilene formete	C_{11} Π_{18} O_{-1} ,	" 'nize!' (to	font. B. S. C.
the second second			. (323
Terpilene scetate	\mathcal{L}^{\prime} C_{12} Π_{12} $\Omega_{}$.		Bouchardst and I font, C.R. 102, 3
		.50820-05	10110, 4 . 14. 15. 25.
Terebenthere acetete Terebene acetate	••	.977. 0	Bouchardat and I
Compliene rectate		1,002,0	font C.R 102.1 Lafont, C. R 19
Complication oid	$C_{1i} \coprod_{i \in O_{1i}} O_{i}$.	1.191	1718. Schröder, Ber
	18 77 16 4	1.495	1070
Effly learnphora, word	C_1 , Π_{-1} , O_3	1.0.6, 20.,5	Malaguti, Arr 64, 164
Ethyl complete de	_ C ₁₄ H ₄ O ₄	1.020, 16 = .	Malaguti, A.C.
**			i Delimel, J. R. C
6.6	**	1,070, 257	
Propyl camphorate	C_{16} , $\frac{11}{11}$, O_4	1,058, 24	
Ethyl paracamphorate	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	_ 1.03, 15= _	Chautard J 16.3
Camphoric anhydrate	C,, II,, O,	. 1.194, 20°, 5	_ Malaguti, Ani

Name.	FORMULA.	Sp. Gravity.	Астновіту.
Ethyl camphocarbonate Camphrene Diethylcamphresic acid	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	1.052, 15° .974, 6° 1.128, 13°	Roser. Ber. 18, 3112. Chautard. J. 10, 483. Schwanert. J. 16,
Ethyl camphresate	C ₁₆ H ₂₆ O ₇	1.0775, 13°	397.

29th. Miscellaneous Compounds.

NAME.	FORMULA.	Sp. Gravity.	Аптнокіту.
Quinone	C ₆ II ₄ O ₂	1.307 }	Schröder. Ber. 13,
Phlorol	C ₈ H ₁₀ O	1.015, 12°	Sigel. A. C. P. 170,
Carvol		.953, 15° .9530, 20°	Völckel. Gladstone. J. C. S. (2), 10, 1.
61	- "	.9562, 20°	
ει 			Beyer. Ber. 16, 1387.
(;	- ((.960, 18°.5 .7866, 228°	
"		.9667, 11°	Gladstone. J. C. S. 49, 623.
Eagenol	- C ₁₀ H ₁₂ O ₂	1.076	Stenhouse. A. C. P. 95, 106.
"	- "	1.0684, 14°	Williams, A. C. P. 107, 240.
		1.066, 15°	Church. J. C. S. (2), 13, 113.
"		1.0778, 0° }	Wassermann, J. C.
"	_	1.063, 18°.5 \\ 1.0703, 14°	S. (2), 1, 706. Tiemann and Kraaz. Ber. 15, 2066.
	- 1	1.066, 17°.5	Gladstone. Bei. 9, 249.
Isoeugenol		1.080, 16°	Tiemenn and Kraaz. Ber. 15, 2066.
Methyl eugenol?	C ₁₁ H ₁₄ O ₂	1.046, 15°	Church. J. C. S. (2), 13, 115.
		1.055, 15°	Petersen. Ber. 21, 1060.
Ethyl eugenol	C ₁₂ H ₁₆ O ₂	1.026, 0°)	Wassermann, A. C.
Propyl eugenol	$C_{13} ext{ II}_{18} ext{ } O_2 ext{}$	$1.0117, 18^{\circ}.5$ $1.0024, 16^{\circ}$	P. 179, 376. Wassermann. Ber.
Isobutyl eugenol Amyl eugenol	$\begin{array}{cccccccccccccccccccccccccccccccccccc$.985, 15° .976, 16°	10, 237 Wassermann. Ber.
Allyl eugenol Coumarin	$\begin{bmatrix} C_{13} H_{16} O_2 & & \\ C_9 H_6 O_3 & & \\ \end{bmatrix}$	1.018, 15° .9207	10, 238. "" Gladstone. Bei. 9,
	1	1	249.

Name.	FORMULA.	SP. GRAVITY.	AUTHORITY.
Safrol	C_{10} Π_{10} O_2	1.1141, 0-	Grimaux and Ruotte.
		1.0950, 185	Z. C. 12, 411. J. Schiff. Ber. 17, 1965.
Coerulignol	С _ю П ₁₄ О ₂	1.05645, 15° _	Pastrovich, M. C. 4, 189.
Phthalic anhydride		1.530 i 4	Schroder, Ber. 12, 1611.
Benzeic anhydride	$C_{14} \prod_{10} \Theta_3$	1.231 40	
Benzo-oenanthic only-	$C_{14}\stackrel{\circ}{\Pi}_{18}O_3$	1 1 ~ 1	 Malerba. J. 7, 444.
dride. Benzo-cinnamie anhy-		1.184.200	Gerhardt. J. 5, 449.
dride. Benze-cuminic anhydride Pyruvyl benzeate		1.115, 20° = 11	Gerhardt, J. 5, 448.
			Romburgh, J. C. S. 44, 60.
	$C_{14} H_{10} O_{9} $	1.097	W. C. Smith. Am. J. P. 53, 145.
Benzoyl glycollic ether Propylene ethylphenylke-	$\frac{C_{11}}{C_{12}} \frac{\Pi_{12}}{\Pi_{16}} \frac{O_1}{O_2} \frac{1}{12} \frac{1}{12} \frac{1}{12}$	1.1509, 20°,4 ,988, 22°	Andrieff, J. 18, 344, Morley and Green.
tate. Isomer of benzil Saliretin	C ₁₁ H ₁₀ O ₂	1.104.100	Ber. 17, 0016, Alexeyerl, J. 17, 005,
		1.1161, 252	Beilstein and Seel- heim. J. 14, 765.
•	$C_{26} H_{22} O_{2}$		Linnemann. J. 18, 556.
Derivative of propyl phenylmetate. Derivative of ethyl phenylmetate.		1.0628, 20°	Hodgkinson, J. C. S. 37, 482.
nylocetucetate.			
a Naphtol	С ₁₀ И ₈ О	1,224, 4°	Schroder, Ber. 12,
		1.09539, 98°,7	Nasini and Bern- heimer, G.C.L. 15,
3 Nephtol a aa_		1.217, 4°	50. Schroder. Ber. 12.
		1.23	1611. Brügelmann, Ber.
Naphtol		.9048, at boil-	17, 2059 Ramsay, J. C. S. 39,
Methyl a mapleted	$C_{11} \coprod_{i \in I} G = \bigcup_{i \in I}$	ing point. 1,09606, 10-,9 1,07901, 04-,5	65. Nasini and Bern- heimer, G.C.I.
Propyla nepht 1	C, H ₁₄ O C H.	1.04661, 775.7 1.04471, 18 . 1	15, 50,
Mothyl a neightyl exide Mothyl naphtyl ketene		1,0074, 152 1,124, 02	Stnedel, Ber. 14, 898, (Roux, Ann. (6), 12, 336,
Antimequinene	$C_{16} \coprod_{i=1}^{4} O_i$	1.438	Schroder, Ber. 13,
		1.425	1070.
Pherenthrenequations:		1,404	. 4

NAME.	Formula.	Sp. Gravity.	Антновиту.
Asarone	C ₁₂ H ₁₆ O ₃	1.165, 18° }	Butlerow and Rizza.
Salicin. Natural	C ₁₃ II ₁₈ O ₇	$1.0655, 95^{\circ}$ } $1.4338, 26^{\circ}$ } 1.4257	B. S. C. 43, 114. Piria. Ann. (3), 44, 368.
Santonin	C ₁₅ H ₁₈ O ₃	1.247, 20°.5	Trommsdorf. A. C. P. 11, 190.
.,		1.1866	Carnelutti and Nasini. Ber. 13, 2210.
Metasantonin. M. 136° " 160°.5_		$1.1649 \} $	
Santonid Metasantonid	11 11	1.1967 1.046	44 44 44 44
Parasantonid	"	1.1957 1.2015, 20° 1.251	Nasini. Ber. 14.1513. Carnelutti and Na-
Santonic acid Parasautonic acid	C ₁₅ II ₂₀ O ₄	1.2684	sini. Ber. 13, 2210.
Methyl santonate Methyl parasantonate	$C_{16} \stackrel{H}{\underset{\iota}{}_{\iota}} O_4 \stackrel{\cdots}{\cdots}$	1.1667 1.1777	.,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,
Ethyl santonateEthyl parasantonate	C ₁₆ $\prod_{i_1}^{1} \sum_{i_2}^{2} O_4$	1.1481 1.153	" "
Propyl santonate	C ₁₈ II ₂₆ O ₄	1.1185 1.125, 20°	Nasini. G. C. I. 13,
Propyl parasantonate		1,153	165. Carnelutti and Na- sini. Ber. 13, 2210.
Isobutyl santonateAllyl santonate	$\begin{array}{c} C_{19} \ H_{28} \ O_4 \\ C_{18} \ H_{24} \ O_4 \\ C_{18} \ H_{16} \ O_2 \\ \end{array}$	1.1181 1.1434	
Styracin	$C_{18}^{r_3} \coprod_{r_4}^{r_4} O_2^{r_4}$	1.154	Schröder. Ber. 13 1070.
Pimaric acid Sylvic acid Tropilene	$C_{20} \stackrel{\Pi}{\underset{\iota}{}_{10}} O_{2} = C_{7} \stackrel{\Pi}{\underset{10}{}_{10}} O_{2}$	1.047, 18° 1.1611, 18° 1.01, 0°	Siewert. J. 12, 510.
· · · · · · · · · · · · · · · · · · ·	.,	1.0091, 0°	2130. Ladenburg. A. C
Cinaerol	C ₁₀ II ₁₈ O ₂	1.05}	P. 217, 139. Hirzel. Watts' Die- tionary.
Colophonone Apiol	C., H., O	1.13 1.84 1.015	Schiel. J. 13, 489 Lindenborn. Ber. 9
Calophyllum resin			1478.
Tannin from Persea lingue From Sequoia gigantea	C ₁₇ H ₁₇ O ₉		307. Arata. Ber. 14, 2251 Lunge and Stein- kauler. Ber. 14
Turmerol	C ₁₉ H ₂₈ O	.9016, 17°	2205. Jackson and Menke A. C. J. 4, 371.
Guyaquillite Hartin	$\begin{bmatrix} C_{20} & II_{26} & O_3 & & \\ C_{20} & II_{34} & O_2 & & \\ \end{bmatrix}$	1.092 1.115, 19°	Dana's Mineralogy Schrötter. P. A. 59
Resip from rosewood			45. Terreil and Wolff
Cardol	C ₂₁ H ₅₁ O ₂	.978, 23°	J. C. S. 38, 559. Städeler. J. 1, 577

Name.	FORMULA.	Sp. Gravity.	Аттновиту.
Ivad	. С _{.6} Ц ₄₀ О	.9846, 15°	Planta-Reichenau.
Cholesterin			
		1.046 / 202 (Mehu. J. C. S. (2), 13, 217.
Waldivine	$\sim C_{36} H_{48} \Theta_{20}, 5 H_2 \Theta_2$	1.16	Tanret, J. Ph. C. +55, 3, 61.
Cochlearin			Dictionary.
Aloisol	. C ₆ H ₈ O ₅ , ?		Robiquet. Watts'
Xanthil Pieroliehenin Phycic acid	$\begin{array}{cccccccccccccccccccccccccccccccccccc$		Couerbe. Alms. A.C. P. 1, 61.

XLVII. COMPOUNDS CONTAINING C. H. AND N.

1st. Cyanides and Carbamines of the Paraffin Series.

NAME.		Formu	1	SP. GRAVITY.	Аптионету.
Methyl cyanide, nitril.	**	••		.8191, 16° /	Kopp. A, C, P. 98, 367. Vincent and Dela- chanal, C, R, 90
Methyl carbamir					747. Schiff Bei, 9, 559. Gautier: Rescound Schorlemmer's Treatise.
Ethyl cyanide, o	r Drobio- C	и сх		,7017,970	Ramsay, J. C. S. 35
	••			.70005, 970,08	Thorpe, J. C. S
Ethyl curbamine		* *			Schiff, Bei, 9, 559 Pelouze, Watts Dictionary.
**			- +	.7880, 121.6	
Propyl evanide.	or buty - C	$H_{\tau} \subset S$.705, 12 .5	Dumes. J. 1, 594.
I-opropyl carbat	nine	• •		.7596, 0	Gautier. B.S.C.11
Butyl eyanide.	er veleres C	i II ₂ , C N		.8164, 0*	Lieben and Rossi A. C. P. 158, 137
Isobutyl evanide	o, or iso-	• •		.810	Schlieper. A. C. P 50, 15
Valeronium.		4.4		.813, 15°	Guckelberger, J. 1 852.

Name.	FORMULA.	Sp. Gravity.	AUTHORITY.
Isobutyl cyanide, or isovaleronitril.	"	.8226, 0° .8146, 10° .8060, 20° } .6921, 129°.3 .8010, 18°	
Isobutyl carbamine		.7873, 4°	249. Gautier. Z. C. 12,
Isoamyl cyanide, or capro-	C ₅ H ₁₁ , C N	.8061, 20°	415. Frankland and Kolbe. J. 1, 559.
			Gladstone. Béi. 9, 249.
" '. " Oenanthonitril	C ₆ H ₁₃ . C N	.6861, 154° .895, 22°	Schiff. Bei. 9, 559. Mehlis. A.C.P. 185, 368.
Heptyl eyanide Octyl cyanide	C ₇ H ₁₅ . C N	.8201, 13°.3 .786, 16°	
Isoöctyl cyanide Lauronitril	 C ₁₁ H ₂₃ , C N	.8187, 14° .8350, 0°)	Felletár. J. 21, 634.
	11	.8273, 15°	Krafft and Stauffer. Ber. 15, 1728.
Myristonitril	U10 Han U N	1.8281.19* 1	
Palmitonitril	C ₁₅ II ₃₁ . C N	.8224, 31° .8186, 40°	
Stearonitril		.7761, 98°.9 .8178, 41°)	

2d. Amines of the Paraffin Series.

Name.	FORMULA.	Sp. Gravity.	AUTHORITY.
Trimethylamine	N. (C II ₃) ₃	.673, 0°	Blennard. Roscoe and Schortem- mer's Treatise.
Ethylamine Diethylamine	$\begin{array}{cccccccccccccccccccccccccccccccccccc$.6964, 8°	
"		.7159, 10° .7055, 20° .6949, 30°	353. Values given
		.6844, 40° _	
		.6684) 500	9.00
Triethylamine	N. (C ₂ H ₅) ₃	.6686) 66° .7277, 20° .7317, 19°	Brühl. Bei. 4, 779. Gladstone. Bei. 9, 249.

Timethylearlundamine	Name.	FORMULA.	SP. GRAVITY.	Ашиовиту
Propylamine	Triethylamine	N. (C. IL).	.6621, 892	Schiff, Ber 19, 560
Lopropylamine	Propylamine	N. H., C. H.	.7283.404	Silva. Z. C. 12, 6.38
Seprepylamine		**		
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$				Schiff. Ber. 19, 500
Disoprepylamine	Isopropylamine Dipropylamine Dipropylamine		.756, 0	Siersch, J. 21, 682 Vincent, Ber, 19 ref, 680,
Secondary hexylamine Secondary hexylamine		$X H_{*}(C_{3} H_{7})_{2} =$	700, 000	Siersch, J. 21, 682
Butylamine		$N_{\tau_1}(C_3^-\Pi_7)_3$.		
Butylamine			.771.0°	Vincent. Ber. 19
Linnemann and Zetta, Ann. 4 27, 275. Linemann Ann. 4 27, 275. Linemann Ann. 4 27, 275. Linemann Ann. 4 27, 275. Linemann Ann. 4 27, 275. Linemann Ann. 4 27, 278. Schiff, Ber. 19, 500 Linemann Ann. 4 27, 268. Cont. 15 Cont. 15 Linemann Ann. 4 27, 268. Cont. 15 Cont. 15 Linemann Ann. 4 27, 268. Cont. 15 Cont. 15 Linemann Ann. 4 27, 268. Cont. 15 Cont. 15 Linemann Ann. 4 27, 268. Cont. 15 Cont. 15 Linemann Ann. 4 27, 268. Cont. 15 Cont. 15 Linemann Ann. 4 27, 268. Cont. 15 Cont				Lieben and Rossi
Produtylamine				
Isohutylamine		**		Zotta. Ann. 4
Trimethylearbandamine	Isobutylamine		.7357, 153	Linnemann. Ann
Tributylamine		4.		Schiff, Ber. 19, 560
Tributylamine	Trimethylearbanolamine		.0087.155	
Complete Complete	**	**	.7187. 01	The small of small for
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	* *			Rudnetf. Ber. 11
$\begin{array}{cccccccccccccccccccccccccccccccccccc$				1023,
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	••	4.		Programm A C T
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$				
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	Tributy lamine	N. (C. II.)	.79d, 0°	
$\begin{array}{cccccccccccccccccccccccccccccccccccc$				Lieben and Ross
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	Triisolutylamine			Sachtleben, Ber. 11
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	Ams Lenine	Σ H $_{\circ}$ C $_{\circ}$ H $_{11}$		Wurtz, J. 3, 451.
$\begin{array}{cccccccccccccccccccccccccccccccccccc$				Wurtz, J. 19, 423
$\begin{array}{cccccccccccccccccccccccccccccccccccc$		••		an, aa,
Drimethylethyleare reds 1	· Active	**	0.00	- Plimpton, J. C. 3
Drimethylethylear sods anine				Schiff Bei, 9, 559
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	Dimethylethylear scal-		7770 OF 1	Wurtz, J. 19, 42
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	• •			
Active 1,7878 0 Primpten, J. C. 3	1) and lamina	X 11 - C - 11		
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	\ctiv		.7575 ()	
Hexylamine	e Inactive	**	7776, 147	384, 381.
$\begin{array}{cccccccccccccccccccccccccccccccccccc$		$S \mapsto C \setminus H_{11 + 1}$.7964 13	**
Secondary hexylamine 9 ,7638 Uppenkamp, Be 8, 57		$N(H_{+},C_{6},H_{1},\dots)$		Pelouse and Ca hours J 16,50
	Secondary hexylamine		.7608	Uppenkamp. Be
	Octylamine	$(N/H_2,C_*/H_{17}) =$		Squire, J. 7, 485.

3d. The Aniline Series.

" " " " " " " " " " " " " " " " " " "						
" " " 1.028	NA	МЕ.	Form	IULA.	SP. GRAVITY.	AUTHORITY.
" " 1.028 Fritzche J. P. C. 20, 453. Kopp. A. C. P. 98, 20, 453. Kopp. A. C. P. 98, 201, 192, 192, 193, 193, 194, 195, 195, 194, 194, 194, 195, 195, 195, 195, 195, 195, 195, 195	A midobenzen	e, or aniline.	С ₆ Н ₅ . Н ₂	N	1.620, 16°	
" " " 1.0351, 19°.7 Kopp. A. C. P. 98, 267, 13°.7 Sideler and Arndt. J. 17, 425. Lucius Kern. Ber. 10, 199, 20, 189, 217, 425. Lucius Kern. Ber. 10, 199, 20, 189, 217, 189°.1 Kopp. A. C. P. 98, 267, 189°.1 Kopp. J. P. A. (2), 2718, 2719, 27	"	"			1.028	Fritzche. J. P. C.
" " " " 1.0251, 139.7 Städeler and Arndt. J. 17, 425. " " " 1.024, 17°.5	44	"			1.0361.00)	
" " " 1.018, 15°.5 Städeler and Arndt. J. 17, 425. Lucius.	"	,,	1		1.0251, 130,7	
" " " 1.024, 17°.5.	"	"	. "			Städeler and Arndt.
" " " " " " " " " " " " " " " " " " "	44	44			1.024, 179.5	Lucius
" " " " " " " " " " " " " " " " " " "	64	.,,	1 "			
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	"					Ramsay. J. C. S. 35,
" " " " " " " " " " " " " " " " " " "	"	44			1 0379 00	
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	"	"	44			
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	"	11				Johst P A (2)
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$			1		1.02110, 19.02	
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	44	44	1 "		1 0216 200	
" " " 1.016, 13° - Gladstone. Bei. 9, 249. Schiff. Bei. 17, 259. Gladstone. Bei. 9, 249. Schiff. Bei. 9, 559. Schiff. Bei. 9, 5	44	11				
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	44	11	"			Schall. Ber.17,2555.
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	44	1.0	1 "			Gladstone Pei 9
" " " " " " " " " " " " " " " " " " "	"	11	1 "		1.0322.70.5	
	"	1.			.8751. 188°.1	
" " " " " " " " " " " " " " " " " " "	. "	11)
" " " " " " " " " " " " " " " " " " "	"	11	44	,		
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	"	11				Taken at different
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	4.4					
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	44	11				
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	44	11				
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	44	12				
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	"	"	"		.88097 \ 1750.9	served. Neu-
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	"		"		.87443, 181°.6_	
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	44		"		.87424 181° 8	11 655
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$.87384) 1020 1	<u> </u>
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$			"		$.87356 \} 100^{-1.1}$	l j
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	"		"		1.0216, 20°	
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	"		٠.		1.02204, 20°	Weegmann. Z. P. C.
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	Methylaniline		C ₆ II ₅ . C I	1 ₃ . H N	.976, 15°	Hofmann. Ber. 7,
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	Benzylamine		С ₆ Н ₅ . С 1	I ₂ Н ₂ N	.990, 14°	Limpricht. J. 20,
"	Orthotoluidine	9	C ₆ H ₄ . C I	I ₃ . II ₂ N	1.0002, 16°.3	Rosenstiehl. J. 21,
"						
"						
"						
"	66		"		.998, 25°.5)	
"	"		**		1.046	
"	66		"			Ramsay. J. C. S. 35,
" Hirseh. Ber. 18,	"		"	İ	.9986. 200	
	"		"			
		1			,	

South 1787, 1 1787, 1 1787, 1 1787, 1 1787, 1 1887,	N	AME.	FORMULA.	Sr. Grav	711 Y.	Астновиту.
Section Sect		ne -	$C_6 \stackrel{\longleftarrow}{\Pi}_3, \stackrel{\longleftarrow}{C} \stackrel{\longleftarrow}{\Pi}_3, \stackrel{\longleftarrow}{\Pi}_2 \stackrel{\longleftarrow}{N}$	89007, 14	1 <u>9</u> 0.7	
Septiment Sept						Taken at different
Metatoluidine	**	-		.87456-10	103.6	
Metatoluidine			**	Scoc4_+_,	mus i	
Metatoluidine					1,7 ,1	
Metatoluidine	* *				ISGE 9	
Metatoluidine	* *					beck. Z. P. C. 1,
Metatoluidine	**				1.	
Metalohidine					1994	1
SS528 1406 SS531 1406 SS531 1406 SS531 1406 SS531 1406 SS531 1406 SS531 1416 SS531 SS						Lorenz. C. N. 30,
Sample S			13	44504		
Solgs, 171			**		1495	
Service Serv			+4		He	Taken at different
Solid 191				86283.11	71 .	pressures, cach
St. St.						t', being the boil-
Paratoluidine	**					ing point at the
Paratoluidine	* *					pressure ob-
Paratoluidine	* *					
Paratoluidine	* *				2019	
Paratoluidine						11.1.1
Paratoluidine					2035	
Taken at different pressures, each continue to the pressures of the pressures of the pressures of the pressure of the pressu	Paretolaidit				43° _	
1						Talana at Marana
1					1682	
1			**			
Dimethylaniline C ₆ H ₂ C H N 1953, 127 1968, 2 P. C 658.	. ,					
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	+ 5				×1	
$\begin{array}{cccccccccccccccccccccccccccccccccccc$					1925.6	served. Neu
$\begin{array}{cccccccccccccccccccccccccccccccccccc$						linck, Z. P. C. 1
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$					200°	15.55.
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$					oF.5.	
	Dimethylan	iline	C ₆ H ₅ , C H 2, N =			Hofmann. C. N. 27, 1.
14 C H C H H N 2042, 16 Wroldersky B B 12, 1227, 17, 15 Jacobson B B B B B B B B B						Kern. Ber. 10, 190
Ethylamiline Ethylamiliobennene, 1.2 C ₆ H ₂ C ₇ H ₂ H ₃ N	* 4	8	**	.7941, 19	() -	Ramsay, J. C. S 35, 463,
Ethylamidobeniene, 1.2 $C_6 \coprod_{V} C_2 \coprod_{S} \coprod_{V} H_1 X_1 $ Ethylamidobeniene, 1.2 $C_6 \coprod_{V} C_2 \coprod_{S} \coprod_{V} H_2 X_2 $ Methylamidobeniene, 1.2 $C_6 \coprod_{V} C_2 \coprod_{S} \coprod_{V} H_1 X_2 $ Methylamidobeniene, 1.2 $C_6 \coprod_{V} C_2 \coprod_{S} \coprod_{V} H_2 X_2 $ Methylamidobeniene, 1.2 $C_6 \coprod_{V} C_2 \coprod_{S} \coprod_{V} H_2 X_2 $ Methylamidobeniene, 1.2 $C_6 \coprod_{V} C_2 \coprod_{S} \coprod_{V} H_2 X_3 $ Monnet, Reverde and Nolting, but, 2278. Mondersky, But, 1227, 17 15 Jacobson, Ber. 4 100, Notang and Fore			8.6	2 .5575, 20		Bruhl, A. C. P 255, L
Methyltoluidine, 1.2 CgH _e CH , CH H N , 97 5, 22 Monnet, Reverdigand Nolting, built, 2278 Xundine, 1.2 4 under the character of the cha	Ethylamilia Ethylamido	beniterie, 1.2	$egin{array}{ccc} \mathbf{C}_6 & \mathbf{H}_2 & \mathbf{C}_2 & \mathbf{H}_5 & \mathbf{H}_1 & \mathbf{N}_2 \\ \mathbf{C}_6 & \mathbf{H}_4 & \mathbf{C}_2 & \mathbf{H}_2 & \mathbf{H}_3 & \mathbf{N}_4 \end{array}$	204, 15 1 - 384, 22		H. fmann, J. 2, 398 Boilstein and Kuhi Lorg, A.C.P. 156 206.
Xdine, 1.2.4	Methyltolui	dine, 1.2	 С _в и, си, еп и	N 1970, 25 N 1970, 15		Monnet, Reverded
1, 77 (17.4) Jacobson. Ber. 4 100, 11 (17.4) L. Notting and Fore	$X \dots inv. 1$	21	с, п ен ди :	S (0.042, 10	i	Wrobbysky, B:
and the second of the second o		4.0		1.471	7.5	Jacobson, Ber. 47
				1.1.		

Name.	FORMULA.	SP. GRAVITY.	AUTHORITY.
Xylidine. 1.3.4	C ₆ II ₃ (C H ₃) ₂ H ₂ N	.985, 18°.5	Tawildarow. Z. C. 13, 418.
"		.9184, 25°	Hofmann. Ber. 9, 1295.
"		$\left\{ \begin{array}{c} .86651 \\ .86687 \end{array} \right\}$ 159°.5	
"	- "	.86687 \ 105 .5	Taken at different
" "		.84874, 1820	pressures, each
	-1 ~-	.83473, 197° .82374, 205°	to. being the
		$\begin{bmatrix} .81633 \\ .81597 \end{bmatrix}$ 215°.5	boiling point at the pressure ob-
	- "	$\begin{bmatrix} .81597 \\ .81597 \end{bmatrix}$ 215°.5	served. Neubeck.
"		.81454) 2180	Z. P. C. 1, 662.
"		1.81436)	J
" 1.3.5		.9935, 0°	Wroblevsky. Ber. 10, 1249.
"		.972, 15°	Nölting and Forel. Ber. 18, 2678.
" 1.4.2	·	.980, 15°	Nölting and Forel. Ber. 18, 2680.
		.9867, 19°	Gladstone. Bei. 9, 249.
Dimethyltoluidine. 1.2		.9324	Hofmann. C. N. 27, 1.
" 1.3 " 1.4		.9368	" "
Propylaniline	C ₆ H ₅ . C ₃ H ₇ II N		Ber. 21, 1106.
Ethyltoluidine. 1.3	C_6H_4 . CH_3 . C_2H_5H N	.869, 20°	Wroblevsky. J. C. S. (2), 13, 455.
" 1.4		.9391, 15°.5	Morley and Abel. J. 4, 497.
Cumidine Pseudocumidine, 1.3.5.6	$\begin{bmatrix} C_6 & H_4, & C_3 & H_7, & H_2 & N_{-1} \\ C_6 & H_2 & (C & H_3)_3 & H_2 & N_{-1} \end{bmatrix}$.8526	Nicholson. J. 1, 664. Hofmann. C. N. 27, 1.
DiethylanilineIsobutylaniline	$\begin{bmatrix} C_6 & H_5 & (C_2 & H_5)_2 & N & - \\ C_6 & H_5 & C_4 & H_9 & H & N & - \end{bmatrix}$.939, 18° .9262, 15°	Hofmann. J. 2, 399. Giannetti. Ber. 14, 1759.
		.940, 18°	
Dimethylxylidine	$- C_6 H_3 (C H_3)_2 (C H_3)_2 N$.9293	Hofmann. C. N. 27, 1.
Tetramethylaniline			Hofmann. Ber. 17, 1912.
Isoamylaniline			Pictet and Crépieux. Ber. 21, 1106.
Diethyltoluidine. 1.4			Morley and Abel. J. 7, 498.
Dimethylmesidine. 1.3.5.			Hofmann. C. N. 27, 1.
Methylamylaniline			Claus and Rautenberg. Ber. 14, 622.
Dipropylaniline	$\begin{bmatrix} C_6 & H_5 & (C_3 & H_7)_2 & N & \\ & & & & & & & & & & & & & & & &$.7267, 245°.4 }	Zander. A. C. P. 214, 181.
Diisopropylaniline	- 44	.9338, 00 }	
Trimethyldiethylaniline_	$C_6 \cdot (CH_3)_3 (C_2H_5)_2 H_2 N$.7504, 221° ∫ .971	Ruttan. Ber. 19,
Allylaniline	C ₆ H ₅ . C ₃ H ₅ H N	.982, 25°	2384. Schiff. J. 17, 415.

Name.	FORMULA.	SP. GRAVITY.	Астновит
Diallylaniline	$C_6 H_5 (C_3 H_5)_2 N$.1.0680, 02	Zunder, A.C.P. 214,
Diphenylamine	N. H. (C ₆ H ₅) ₂	$-\frac{1.156}{1.161}$ 4^{2}	181. Schroder, Ber. 42. 561.
			Ramsey, J. C. S. 35, 463
Methyldiphenylamine	$(N, (C_6 H_5)_2 C/H_3$	1.0476, 20°	
Dibenzylamine			Limpricht, J. 20,
Amidobenzylamine	$\left[\begin{array}{cccc} C_7 & \Pi_{10} & N_2 \end{array}\right]$	1.08, 20°	Amsel and Hof- mann, Ber. 19, 1288.
${\bf Metamidodimethylaniline}$	$C_8 H_{12} X_2$.995, 25°	

4th. The Pyridine Series.

NAME.	Formula.	SP. GRAVITY.	Аттновиту.
Pyridine	C ₃ H ₃ N	.9858, 00	Anderson, 4, 10, 397
			Thenius, J. 14, 502
			Ramsay, J. C. S. 35 463.
			Richard, Ber. 13
	44	¹ .8828 115°	Schiff. Ber. 19, 560
••			Ladenburg, Ber. 21 289.
r Picoline	С, П, Х	,955, 10°	Anderson, A. C. P 60, 93,
			Thenius. J. 14, 502
4.			Ramsay, J. C. S. 35
	- '	,9560, 0°	Richard. Ber. 13
		96161, o°	Thorpe. J. C. S
4.4		.83258, 1239, 5	87, 371.
	**	94093, 23°,5	Gladstone, Bei, 9 249.
		,(65559, 0°	Lange, Ber. 18
4.			
	**	,9656, 0 `	Ladenburg, C. R 103, 692.
3 Picoline	4.4	97712, 0°)	Hesekiel, Ber. 18
		,94965, 30° j	
	11	9771, 0°	

NAME.	FORMULA.	Sp. Gravity.	AUTHORITY.
γ Picoline	C ₆ II ₇ N	.9708, 0°	Lange. Ber. 18, 3436.
		.9708, 0°	Ladenburg. C. R. 103, 692.
"	"	.9742, 0°	Ladenburg. Ber. 21, 287.
a Lutidine	C ₇ II ₉ N	.928	Williams. J. 7, 494.
"	"	.9467, 0° .945, 22°	Anderson. J. 10, 397. Thenius. J. 14, 502.
		.9467, 00	Williams, J. 17, 437.
	"	.9467, 0° .7916, 154°	Ramsay, J. C. S. 35, 463.
"	"	.9377, 0°	Richard. Ber. 13, 198.
()	"	.9545, 0°	Ladenburg and
ιι aγ		.9503, 0°	Roth. Ber. 18, 52. Ladenburg and
и а—а		.9424, 0°	Roth. Ber. 18, 913. Ladenburg. C. R. 103, 692.
β Lutidine	"	.9555, 0° .9598, 0°	Williams, J. 17, 437.
**		·	Coninck. C. R. 91, 206.
a Ethylpyridine	"	$\begin{bmatrix} .9495 \\ .9498 \end{bmatrix}$ 0° {	Ladenburg. Ber. 20, 1653.
γ Ethylpyridine	"	.9522, 0° }	Ladenburg. Ber. 18,
	(1 II N	.9358, 20° }	2963.
a Collidine	C ₈ H ₁₁ N	.921	Anderson. J. 7, 490. Anderson. J. 10, 397.
.,	::	.953, 220	Thenius. J. 14, 502.
		.943	Wurtz. Ber.12,1710.
		.7839, 173°	Ramsay, J. C. S. 35, 463.
		.9291, 0°	Richard. Ber. 13, 198.
"	"	.917, 15°	Hantzsch. Ber. 15, 2914.
(1	"	.9286, 16°.8	Weidel and Pick.
	"	.9224, 15°	S.W. A. 90, 972. Mohler. Ber. 21, 1014.
β Collidine		.9656, 0°	Coninek. C. R. 91,
Aldehyde collidine	"	.9389, 4°	296. Dürkopf. Ber. 18, 920
a Isopropylpyridine	(.9342, 0°	Ladenburg. C. R. 103, 692.
γ lsopropylpyridine	"	.9408, 0°	Ladenburg and Schrader. Ber. 17,
		.9439, 0°	1121. Ladenburg. C. R. 103, 692.
γ Propylpyridine	"	.9393, 0°)	
a rropyrpyriume	"	$\left \begin{array}{c} .9411,0^{\circ} \\ .9306,10^{\circ} \end{array}\right\}$	Two lots. Ladenburg. Ber. 17,772.
Parvoline	C ₉ H ₁₃ N	.966, 22° .916, 14°	Thenius. J. 14, 502. Engelmann. J.C.S.
			50, 259.

Name.		Fo	RMULA.	SP. GRAVITY.	Астиовиту.
Parvoline			Y	.92894, 16° j	Dürkopf and Schlaugk, Ber 21, 832.
Coridine Rubidine Viridine	($C_{10} \stackrel{\Pi}{\Pi}_{15} = C_{11} \stackrel{\Pi}{\Pi}_{17}$	X X X	1.017, 220	Thenius, J. 14, 502
Allyl pyridine		Σ _μ H ₉ N		.9595. 0°	Ladenburg, Ber. 19 2578.
Piperidine, From	ninerine!		V	.8810, 00 }	Ladenburg and
· Synth	retic			.8814, 4° / .7791 /	Roth. Ber. 17, 513
**			*****	$\frac{.7801 + 105^{\circ}}{.7810}$, , , , , ,
2 Methylpiperidir	ie (C ₆ H ₁₃ :		.8601, 0°	Roth. Ber. 18, 47
**		**		.560, 05	Ladenburg, C. R 103, 747.
3 Methylpiperidir	10	* *		.8680, 4°	Hesekiel, Ber, 18 1 940,
**	'	••		0°	Ladenburg, C. F 103, 747.
ı—a Dimethylpij	eridine ,	C ₇ H ₁₅	Y	.8492, 40	Roth. Ber. 18, 5-
-γ Dimethylpip	eridine	**		8615, 0°	Ladenburg, C. F 103, 747.
z Ethylpiperidine		* *		.5674. 0°	Ladenburg, Ber. 18 2968,
Ethylpiperidine		* *		,8759, 0°	Ladenburg, Ber. 18 2964.
Methyl-a-ethylpij	peridine	C. H ₁₇	7	8495, 0°	Ladenburg, C. 1 103, 747.
z Propylpiperidin	e. Coniin			80	Geiger. Blyth. J. 2, 388.
11	**			.878 .846, 12°,5	
* *	•• -			856	Schorm, Ber. 18 1767.
	***			.010, 02	
				.809, 155 .842, 500	Two preparation
**	5.6		_	, 440, 0° 1 1	Schiff, A. C. I
• • •		* *		.870, 15	166, 88,
**	** -	• •		5411.500	1 - 1 - 1 - 1 - D - 1
• •		**		,800	Ladenburg, Ber. 1 774.
1.0	• •	* *		.875, 0	Ladenburg, Ber. 1 † 772.
++				,8626, 0° ;	Ladenburg, Ber. 19 2580.
/ Propylphperidir		* *		.870, 0	Ladenburg, Ber. 1 772.
a 1propylpiperi	dine -	+ +		. 8660, 0	Ladenburg, Ber. 1 1676,
4.6		* *		,8076-0	 Ladenburg, C. I 103, 747.
					157019 4 24.

Name. Formula. Sp. Gravity. Authority. Methyl - α γ - isopropylpiperidine. C_9 H_{19} N
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$
10.
Paradiconiine
Quinoline or chinoline C ₉ H ₇ N 1.081, 10° Hofmann. A. C. 47, 79.
" "
" 1.0947, 20° Skraup. Ber. 1.0699, 50° 1002.
" " 1.1055, 0° _) Coninck, J. C. S.
" 1,0965, 11°.5 } 89.
" " 1.096 Gladstone. Bei
" '
Lepidine C ₂₀ H ₀ N 1.072.15° Williams, J. 9. 5
Orthomethylquinoline 10 5 9
" 1.0734, 20° Skraup. Ber. 1.0586, 50° 1002.
Metamethylquinoline 1.0839, 0°)
" 1.0722, 20° Skraup. Ber.
Paramethylquinoline (1.0576, 50°) 2255.
"
" 1,0560, 50° 1 1002.
Dimethylquinoline C_{11} H_{11} N $1.0752, 4^{\circ}$ Berend. Ber. 3165.
" α—γ " 1.0611, 15° Beyer. J. P. C. (33, 402.
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$
1.1635, 20° main. M. C. 1.1493, 50° 593.
Isodipyridine C ₁₀ H ₁₀ N ₂ 1.08 Ramsay. P. M. (
"
Dipieoline C ₁₂ H ₁₄ N ₂ 1.12 Ramsay. P. M. (
" Anderson.

NAME.	FORMULA.	Sp. Gravity.	Антиовату,
Nicotine.	C ₁₀ H ₁₁ N ₂	1.003, 4	
		1.027, 15° _	
**			Barral. J. 1, 614.
		1.0006, 50°	
		1.01800.105.2	1
			Landolt, A.C.P.
		1.00373, 30°	
			Skalweit, Ber. 14, 1809.
Hydronicotine			1215
Dipiperidyl	. С ₁₀ И ₁₀ Х	9561, 4°	Liebrecht. Ber. 19, 2591.
a Stillazoline			818.
Diliydro-a-stillazol	C., H., N	1.0465, 05	

5th. Miscellaneous Compounds,

N ymu.	Formula.	SP. GRAVITY.	Authority.
Dimethyl hydrazin	$C_2 H_k N_2 \dots$.501, 110	Renoud, Her. 13. 2171.
Ethylene diamine	$C_2\Pi_4$ (N Π_2),	.902	Rhouss poles and Meyer, J. C. S.
Propylene diamine . = = =	$C_{\pm}H_{6}\cdot N(H_{2})_{2}\cdot \dots$.878, 15°	42, 940, Hofmann, Ber. 6, 310
Pentamethylene diamine			Ladenburg, Ber. 18, 2957.
3 Methyltetramethylene diamine.			Oldsch. Ber. 20. 1 1655.
Ethylene cyanide Pyrotartromtril	$\frac{\mathrm{C}_2}{\mathrm{C}_3} \frac{\mathrm{H}_4}{\mathrm{H}_6} (\frac{\mathrm{C}}{\mathrm{N}})_2$	1,023, 45°	Simpson, J. 14, 654, Henry, Ber. 18, ref. 330,
Crot mitril		.5191.00 /	
Adyl carbanine	C. H., C N	7.812, 0° (Licke, A. C. P
Allylamine	$C_3 \coprod_{i \in S} H_2 X$	864, 15° 7754, 10°.5 ()	Oeser, J. 18, 506,
	11	7775, 11° 7693, 17°.5 7684, 19°	Four-samples, Glad- stone: Bei.9,249.
Triellylamine	$(C_3 \coprod_{i=1}^n)_3 X$	11,7261, 562 1,8206, 02 1,6826, 1558,54	
Propylally lamine	$C_3(H_{\pi^*},C_3(H_{\pi^*},H,N))$		Liebermann and Paul. Ber. 16, 523.
Isoamy lally lamine	$C_5 \Pi_{11}$, $C_8 \Pi_5$, H/N .		

Name.	FORMULA.	SP. GRAVITY.	AUTHORITY.
Pyrrol	C ₄ H ₅ N	1.077	Anderson. J. 10,
	"	.7276, 133°	399. Ramsay. J. C. S.
	"	.9752, 12°.5	35, 463. Weidel and Ciami-
		.9606	cian. Ber. 13, 71. Gladstone. Bei. 9, 249.
MethylpyrrolEthylpyrrol	C. H. N	.9203, 10° .8881, 16°	Bell. Ber. 10, 1866. Bell. Ber. 9, 936.
**	4.6	.9042, 10°	Bell. Ber. 10, 1862.
AmylpyrrolPyrrolidin	C ₉ H ₁₅ N	.8786, 10°	Bell. Ber. 10, 866.
Pyrrolidin	C ₄ H ₉ N	.879, 0° }	Petersen. Ber. 21, 290.
Methylpyrrolidin	C ₅ H ₁₁ N	.871, 10° } .8654, 0°	Oldach. Ber. 20, 1155.
Methylphenylpyrazol	C ₁₀ H ₁₀ N ₂	$\begin{bmatrix} 1.085 \\ 1.081 \end{bmatrix}$ 15° $\left\{ \begin{bmatrix} 1.085 \\ 1.081 \end{bmatrix} \right\}$	Claisen and Stylos. Ber. 21, 1143 and 1147.
Ethylphenylpyrazol	C ₁₁ H ₁₂ N ₂	1.064, 15°	Claisen and Stylos. Ber. 21, 1148.
Propylphenylpyrazol	C ₁₂ H ₁₄ N ₂	1.0435, 15°	" "
Propylphenylpyrazola Glucosine			Tanret. B. S. C. 44, 104.
β Glueosine	C ₇ H ₁₀ N ₂	1.012, 0° .9826, 12°	Morin. Ber. 21, ref. 188.
Methylglyoxalin	C ₄ H ₆ N ₂	1.0363	Wallach and Schulze. Ber. 14,
		1.0359, 23°	424. Goldschmidt. Ber. 14, 1846.
Ethylglyoxalin	C ₅ H ₈ N ₂	.999	Wallach. Ber. 16, 535.
Oxalmethylethylin	"	1.0051, 11°	Radziszewski. Ber. 16, 487.
Propylglyoxalin	C ₆ H ₁₀ N ₂	.967, 16°	Wallach. Ber. 15, 650.
Oxalethylethylin		.9820	Wallach and Strick- er. Ber. 13, 512.
		.980	Radziszewski. Ber. 16, 487.
Oxalethylpropylin Oxalpropylethylin Oxalpropylpropylin	C, H, N,	.9813	
Oxalpropylpropylin	C ₈ H ₁₄ N ₂	.9520	Wallach and Schulze. Ber. 14,
		.951	424. Radziszewski. Ber. 16, 487.
Amylglyoxalin		.940, 18°	Wallach. Ber. 15, 651.
Oxalethylisoamylin	C ₉ H ₁₆ N ₂	.9291, 19°.6	
One le manualise en eller	C H N	0140 100	1291.
Oxalpropylisoamylin Oxalisobutylisoamylin Oxalisoamylisoamylin	C. H. N.	.9048. 169.1	
Oxalisoamylisoamylin	C ₁₂ H ₂₂ N ₂	.9029, 190	
J J J	'' '' '	1 '	i

		_	
Name.	FORMULA.	SP. GRAVITY.	Λ UTHORITY.
Oxalmethyloenanthylin .	C ₁₀ H ₁₈ N ₂	,9282, 16°,5	Karez, Ber. 20, ref. 474
Oxalethylocnanthylin Oxalpropylocnanthylin	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$.9210, 16°,5 .9192, 17°	
Benzonitril	C ₆ H ₅ . C N	1,0073, 15°	Fehling, A, C, P
4.		1.0230, 0°) 1.0084, 16°.8 ;	Kopp. A. C. P. 98
		.8330, 192°	Ramsay, J. C. S. 35 463.
		1.0052, 18°	Gladstone, Bei, f 249,
Benzyl cyanide, or a tol- uic nitril.	C, H, C N	1.0155, 8°	Radziszewski, Ber 3, 198.
		1.0146, 18°	Hofmann, Ber. 7
Phenylpropionitril	С, Н ₉ . С Х	1.0014, 182	Hofmann. Ber. 7
Orthoxylyl cyanide	**	1.0156, 22°	Radziszewski a n Wispek, Ber. 18 1279.
Metaxylyl cyanide		1.0022, 220	
Paraxylyl cyanide	() H () N	9999, 999	D 6 1 1 70.
Cumonitril	$\left[egin{array}{ccc} { m C}_9 & { m H}_{11}, & { m C} & { m N} \\ { m C}_{12} & { m H}_{10} & { m N}_2, \end{array} ight]$; .765, 14° 1.180)	Hofmann, J. 1, 59
**	4.	$\begin{bmatrix} 1.196 \\ 1.202 \end{bmatrix} 4^{\circ} = \{$	Schroder, Ber. 1 561.
		1,223 J . 8256, 298°	Ramsay, J. C. S 3.
Phenyl hydrazin	С ₆ И, Х ₂	1.091, 21°	463. Fischer, A C. I
		1.097, 22°.7	190, 82. Fischer. A. C. I
Chinaldin	C. H. N	1.0646, 20°	' 236, 198. Kusel, Ber, 19, 224
Piperyl hydrazin	$\begin{array}{cccccccccccccccccccccccccccccccccccc$. ,9283, 149.6.	Knorr, A.C. P. 22 201.
Diethylaniline azylin	C ₁₀ H ₂₅ N ₄	. 1.107, 15°, 8	Lippmann an Fleissner, Ber. 1 1417.
Methyl indol	$\begin{bmatrix} C_9 & H_9 & N \\ C_9 & H_{14} & N_2 \end{bmatrix}$		Lipp. Ber. 17, 251
Ptomaine	$\{C_s H_H X\}$,0865, 0°	Coninck, C. R 10 859.
"Acetylamine, ?"	C, H, N. ?	.975, 15°	Natanson, J. 9, 52

XLVIII. COMPOUNDS CONTAINING C, H, N, AND O.

1st. Nitrites and Nitrates of the Paraffin Series.

	· · · · · · · · · · · · · · · · · · ·		
NAME.	Formula.	Sp. Gravity.	AUTHORITY.
Methyl nitriteEthyl nitrite		.991 .886, 4°	Strecker. J. 7, 521 Dumss and Boullay Ann. (2), 37, 19.
"		.947, 15°	Liebig. A.C. P. 30
ropyl nitrite	-		Mohr. J. 7, 561.
Isopropyl nitrite	(;	$\left\{ \begin{array}{l} .856,0^{\circ} \\ .844,24^{\circ} \end{array} \right\}$	201 B G 50 000
Isobutyl nitrite		$\begin{bmatrix} .89445,0^{\circ} & - \\ .8771,16^{\circ} & - \\ .82568,50^{\circ} & \\ .8915,0^{\circ} & - \end{bmatrix}$	Chapman and Smith. J. C. S 22, 153. Bertoni. Ber. 19, ref
Amyl nitrite		.8773	98. Rieckher. J. 1, 699 Hilger. Am. Ch. 5 231. Gladstone. Bei. 9 249.
Dimethylethylearbyl nitrite.		.9033, 0°	Bertoni. G. C. I. 16 512.
Octyl nitrite			Eichler. Ber. 12 1887.
Methylhexylcarbyl nitrite		.881, 0°	Bertoni. G.C.I. 16, 512.
Methyl nitrate	С Н ₃ . N О ₃	1.182, 20°	Dumas and Peligot.
Ethyl nitrate	C ₂ H ₅ . N O ₃	1.112, 17°	Ann. (2), 58, 39. Millon. Ann. (3), 8, 236.
		$\{1.1322, 0^{\circ}, 1.1123, 15^{\circ}, 5\}$	Kopp. Λ. C. P. 98, 367.
() ((1.0948, 17° .9991, 87°	Wittstein, J.18, 470, Ramsay, J. C. S. 35,
		1.1067, 25°	463. Gladstone. Bei. 9, 249.
Isopropyl nitrate	C ₃ H ₇ , N O ₃	1.054, 0° }	Silva. Z. C. 12, 637.
Isobutyl nitrate	C ₄ H ₉ . N O ₃	1.0384, 0° }	Chapman and Smith. J. C. S. 22, 153.
Amyl nitrate	C ₅ H ₁₁ . N O ₃	.902, 22°	Rieckher. J. 1, 699.
		.994, 10° 1.000, 7°—8° _	Hofmann. J. 1, 699. Chapman and Smith.
" " Cetyl nitrate	C ₁₆ H ₃₃ . N O ₃	.8698, 147° .91	J. 20, 550. Schiff. Bei. 9, 559. Champion. C. R. 73, 571.

2d Nitro-Derivatives of the Paraffin Series.

NAME.	FORMULA.	SP. GRAVITY.	А стновиту.
Nitromethane	$\begin{array}{c} C H_3 N O_2 \\ C_2 H_5 N O_2 \end{array}$	1.0236, 161°.5 1.0582, 13°	Schiff. Bei, 9, 559 Meyer and Stuber Ann. (4), 28, 138
"	14	.9329, 114°.5 1.0550, 18°	Schiff, Bei, 9, 559,
Nitroheptane	C ₇ H ₁₅ N O ₂	9869, 19°	Beilstein and Kur batow. Ber. 13 2029.
Dinitroethane	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	1,3503, 23°,5 1,258, 22°,5 1,205, 15°	Meer Ber. 8, 1080 Meer. Ber. 8, 1087 Chancel. Ber. 16 1495.
Dinitrohexane	C ₆ H ₁₂ (N O ₂) ₂	1.1033, 5°	Chancel. C. R. 100 601.
Ethyl nitrogectate	C ₄ H ₇ N O ₄		Forerand, C. R. 88
Nitrocaprylic acid	C, II ₁₅ N O ₄	1.093, 18°	Wirz. A. C. P. 104
Ethyl nitrocaprylate	C ₁₀ H ₁₉ N O ₄	1,031, 18°	289. Wirz. A. C. P. 104 290.
Nitrosodiethyline . Nitrosodipropylamine	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	924, 14°	Geuther, J. 16, 40;
Derivative of nitroethene	$C_5 \; \Pi_7 \; N \; O$	1.0102, 15°	Gotting. A. C. P
	6 9	1.0	

3d. Aromatic Nitro-Compounds.

2	ŠAME.	Forme	JLA.	SP. GRAVITY.	Аптновіту.
Nitrobenze	ene	C ₆ H ₅ . N O ₂	2	1.209, 15°	Mitscherlich. P.A.
4.4		"		1.2002, 00 }	Kopp. A. C. P. 98,
4.4		"		1.1866, 14°.4	367.
"				1.2159, 5°-10°)
"				1.2107, 10°-15°	Regnault. P. A.
"				1.2504, 15°-20°	62, 50.
"				1.206, 20°	Naumann. Ber. 10, 2015.
"		"		1.0210, 220°	Ramsay. J. C. S.
4.6	:			1 2020 200	35, 463.
: 6				1.2039, 20°	Brühl. Bei. 4, 780.
				1.1740, 25°.5	} Schall. Ber. 17,
		İ		1.0851, 116°.2	2555.
.4				1.2121, 7°.5	Gladstone. Bei. 9, 249.
4.6		"		1.07134, 150°.7)
44		11		1.07033, 153°.3	m 1
44		4.6		1.06276, 158°.4	Taken at different
4.6		4.6		1.04807, 173°.2	pressures, each
11				1.04477, 186°.6	t°. being the
4.6		- 66			boiling point at
44				1.03246, 189°.4	the pressure ob-
16				1.03059, 189°.4	served. Neu-
				1.01794, 200°.1	beck. Z. P. C.
				1.00846, 207°.3	1, 655.
4.4				1.00722, 208°.2	1, 000.
		4.4		1.00713, 208°.2	J
Dinitroben	zene	C ₆ H ₄ (N O ₂	2)2	1.3690, 98°.1	Schiff. A.C. P. 223, 247.
Nitrotolue	ne	C ₆ H ₄ . C H ₃ .	N O ₂	1.18, 16°.5	Deville. Ann. (3), 3, 175.
4.				1.1231, 54°	Schiff. A. C. P. 223, 247.
44		**		1.1649, 15°.5	Gladstone. Bei. 9, 249.
(A .)	. 1				(Beilstein and
	toluene				Kuhlberg. A.C.
"				$[1.163, 23^{\circ}.5]$	P. 155, 17.
"		4.6		1.159	Leeds. Ber. 14, 483.
4.6		44		1.09500.1	1
		11		$\begin{bmatrix} 1.02503 \\ 1.02483 \end{bmatrix}$ $\begin{bmatrix} 160^{\circ} \end{bmatrix}$	li
4.6				.99814, 186°.1	Taken at different
				.99679, 187°.1	pressures, each
"				0.040.00	
"				$\{ \frac{.98403}{.98999} \}$ 197°.7	to. being the
"				.98388 101 .1	boiling point at
"				.97149, 208°.7	the pressure ob-
				.97087, 209°.2	served. Neu-
		11		.96192) 2180	beck. Z. P. C. 1,
"				$.96177 \}$ 210	655.
"		44		.96063 219°.8	
"		11		L 00000 > ZIY . 81	j
Metanitrot	oluene			1.168, 22°	Beilstein and Kuhl-
				, ==	berg. J. 22, 403.

Name.		FORMULA.		SP. GRAVITY.	Аптиовиту.
Metanitrotoluene		— — П _е . С П _э . N О		1.01158 / 1710	1
Methunitotomene.	6	1141 . 1131 21	2	$1.01128 + \frac{171^{\circ}}{}$	
4.4			_	.98775 / 1949.1	Taken at different
		••		.315 (3) (1)	pressures, eacl
**		**		-37227 207°.8	to being the
4.4				201125-1	boiling point at
				-:00027 218°.8	the pressure ob
-			-	96008) 7	served. Neu
-				.95099 <u>227</u> 0 .9508 ()	beek, Z. P. C. 1
-		**		4. U. (NOTO T	655.
		٠.		.94984, 227°.5 94988 <u>22</u> 8°.5 94914	
4.				.91914 \ 228°.5	
Paranitrotoluene				1,00668, 1772.5	.)
ti ti		4.		1.00167, 178°.5	
		4 •		198174 / 2010	to, being th
				.98364 1	le boiling point a
**		6.4		.56812, 213° 1.	(the prossure of
4+				.94531 (237°.:	5 beck. Z, P. C. 1
44		66			655.
 Dinitrotoluene			$\widetilde{O_{\mathbf{z}}}$,		Schiff, A. C. P. 22: 247.
Nitroorthoxylene.	C	₆ Н ₃ (С П ₃) ₂ N	Θ_2 .	1.189, 20°	_ Jacobsen, Ber. 13 160
		6.	-	1.147, 15°	Noelting and Fore Ber. 18, 2671.
Nitrometaxylene.	1,3.2			1,126, 17°,5	
45		٠.		. 1.126, 24°,5	
4.6		4.4		1.112, 15°	Grevingk, Ber. 1 2430.
"	1.3.4	4.4	-	. 1.124, 25°	 Beilstein and Kul- berg.
٤,		44	-	1.135, 15°	Grevingk. Ber. 1 2429.
4.6	6.	4.6		., .98667, 1762.	1
6.4	44	4+			
4.4		**		1.98057, 1823	Taken et differe
4.4		**		.07505, 186°	pressures, en
* 4		4.		$\sim .95631 \pm .2069$, d to being the
4.4		**	-	95642 - ****	hoiling point the pressure
6.4		••		94075, 215° 92964 (' 1 \
• •			-	9/9/15 (beck, Z. P. C.
44				- 301794 / 240 91890 / 240	1 655.
				91828 248	
**		4+		.91684, 244%	
Nitroparaxylene		4.		1,132, 15	Noelting and For Ber. 18, 2680.
Nitrocymene =		$C_{10} H_{17}, S, O_1$		1,0085, 180	Lambolph, C. C.
Dimitroeymene_		$C_{10} \Pi_{12} = \Sigma / O$,1,	1,206, 18°,5 1,204, 21° 1.	1
Nitronsphthslei		$C_{10} H_{7}, N/O_{2}$		1.321 / 42 ==	Schröder, Ber. 1. 1611.

NAME.	FORMULA.	Sp. Gravity.	AUTHORITY.
Nitronaphthelene	C ₁₀ H ₇ . N O ₂	1.2226, 61°.5	Schiff. A. C. P. 223, 247.
Orthonitrophenol	C ₆ H ₄ . O ₁ H. N O ₂	$1.443 \atop 1.451 $ } 4° { $1.2945, 45^{\circ}.2$	Schröder. Ber. 12, 561. Schiff. A. C. P. 223,
Paranitrophenol	" "	1.467 1.469 4° { $1.2809, 114^{\circ}$	247. Schröder. Ber. 12, 561. Schiff. A. C. P. 223,
Trinitrophenol, or picric acid.	C ₆ H ₂ . O H. (N O ₂) ₃ -	1.813	247. Rüdorff. Ber. 12, 251.
Methyl orthonitrophenate		1.268, 20°	Post and Mehrtens. Ber. 8, 1552.
Methyl paranitrophenate_ Methyl a dinitrophenate_ Methyl β dinitrophenate_ Methyl trinitrophenate_ Orthonitrobenzoic acid	$C_{6}H_{3}$. $O \subset H_{3}$. $(NO_{2})_{2}$ $C_{6}H_{2}$. $O \subset H_{3}$. $(NO_{2})_{3}$		Post and Frerichs.
" " " " " Metanitrobenzoic acid		$\begin{array}{c} 1.574 \\ 1.576 \\ 1.4721 \end{array} \right\} \begin{array}{c} 4^{\circ} \left\{ \right. \end{array}$	Ber. 8, 1549. Schröder. Ber. 12, 1611. Post and Frerichs.
ranitrobenzoic acid	" " "	$1.492 \atop 1.496 \atop 1.5804 $	Ber. 8, 1549. Schröder. Ber. 12, 1611. Post and Frerichs.
Nitroanisol Orthonitroisobutylanisol _ Paranitroisobutylanisol Metanitraniline	C ₆ H ₄ . O C H ₃ . N O ₂ - C ₆ H ₄ . O C ₄ H ₉ . N O ₂ - C ₆ H ₄ . H ₂ N. N O ₂ -	1.1046, 20° 1.1361, 20°	Riess. Z. C. 14, 39.
Parenitraniline		1.415 1.433 } 4°	561.

4th. Miscellaneous Nitrates, Nitrites, and Nitro-Compounds

N.A	ME.	Formul	A. (Sp.)	GRAVITY	Λυμποι	7.13
Allyl nitrite		$C_1 H_5$, N/O_2		G, O*	Bertoni, G	- . C. J. 1:
Allyl nitrate		† C ₃ H ₅ , N O ₃	1.00	, 10°	Henry, B. 232.	S. C. 19
Ethylene nit: Ethylene mo	rosonitrate . nonitrate	$\begin{array}{c} C_2 & \Pi_4, & N, O_2, \\ C_2 & \Pi_4, & O, \Pi_5, \end{array}$	$egin{array}{llll} N & O_1 & = 1.47; \\ N & O_2 & = 1.81 \end{array}$		Kekulé, Be Henry, An 243,	
Ethylene din	itrate	$\mathbb{C}_2[\Pi_3][\mathbf{N}]\Theta_{12}$	1.48	37. 💝	Champion.	Z. C. 1
Propylene	linitrite .	$C_3 H_6 \times O_{\odot}$	1.11	1, 05	470. Bertoni, G 512.	. C. 1 1
Propylene di	nitrate	$C_1H_6/N O_{1/2}$		5, 5°	Henry, An 244,	n. 4 - 2
Ethylene ace Hyceryl trin		$\begin{array}{cccc} C_2 H_1 & C_2 H_1 O \\ C_2 H_1 & \tilde{N} & O_2 \ell_1 \end{array}$	NO ₃ 1.20 1.20	. 18° 1. 15°,5_	Masson. 1699.	Ber. 1
Nitrolactic a	rid .	$C_{\beta} H_{\alpha} N_{\beta} O_{\alpha \beta}$	1.85	. 125.5	Henry, An	n. (4., 2
Ethyl nitrogl Ethyl nitrola Ethyl nitron	ctate	$\begin{array}{ccc} C_4 & \Pi_7 & N & O_5 \\ C_4 & \Pi_9 & N & O_5 \\ C_7 & \Pi_{11} & N & O_5 \end{array}$	1.15	12, 15%2 34, 149 9, 155		
Ethyl nitrota	rtronate -	$C_7 \Pi_{11} \Sigma O_7 .$	1.27	75. 10°	Ber. 13, 3 Henry, An 415,	
Ethyl nitrom Nitroglyceria		$\begin{array}{c} C_3 \stackrel{H_1}{\to} \stackrel{N}{\to} O_7 \\ C_4 \stackrel{H_3}{\to} \stackrel{N}{\to} O_9 \end{array}$	1,50	H, 16°	De Vrij.	 L. 5, 62
* *			1.000	.)	Liebe. J.	
4.6			1,60		Sobrero, J	
41		**			Chempion,	
6 h 6 h		**	1.75	150 5. 5. 5. 6. 6. 6. 6. 6. 6. 6. 6. 6. 6. 6. 6. 6.	Kern, C. N Beskerhinn C. 1-118	
		* •	1.60	1.115.5	Hay and J. C. S.	
Nitromannit	٠	$C_6 \coprod_i N_6 O_{18}$		Lot eryst		
••	-	• •	1,446 1,50 1,54	litused	Solveloff. 698.	Ber. 1
Prinitrolio to Pontanitrolio Xectonitrosc	1.1-1.	$\begin{array}{cccc} C_{12} & H_{13} & N & O_{13} \\ C_{12} & H_{13} & N & O_{13} \\ C_{14} & H_{13} & N & O_{13} \end{array}$	1.47	1, 0° 1, 0° 57, 18	Gé. Ber. 1 Colley. B	
Accessethyl n	itrate	$\begin{array}{ccc} C_6 & \Pi_{14} & N_2 & O_7 \\ C_{10} & \Pi_{12} & N_1 & O_2 \end{array}$	1.04	51, 192 1, 15-	Nadler J Meriva J	

5th. Miscellaneous Amido-Compounds.

Name.	Formula.	Sp. Gravity.	Authority.
Ethylhydroxylamine Ethylenedismine hydrate	$\begin{array}{cccccccccccccccccccccccccccccccccccc$.8827, 7°.5 .970, 15°	Gürke. Ber. 14, 258, Rhoussopolos and Meyer. J. C. S. 42,
Oxypropylpropylamine	$\mathrm{NH.C_3H_7.C_3H_6OH}$.9018, 18°	940. Liebermann and
Oxyisoamylamine	N H ₂ C ₅ H ₁₁ O	.9265, 14°	Paal. Ber. 16, 523. Radziszewski and Sebramm. Ber.
Dioxyisoamylamine Trioxyamylamine	$\begin{array}{c} { m N~II.~(C_5H_{11}O)_2}_{} \\ { m N~(C_5H_{11}O)_3}_{} \end{array}$.9500, 14° .879, 22°	J. Erdmann. J. 17,
Formamide	N H ₂ . C O H	1.1462, 19°	$egin{array}{ll} 419. \\ Gladstone. & Bei. 9, \\ 249. \end{array}$
Methylformamide	N H. С H ₃ . С О H	1.011, 19°	Linnemann. J. 22, 601.
Ethylformamide	N H. C ₂ H ₅ . C O H	.967, 2° .952, 21°	Wurtz. J. 7, 567. Linnemann. J. 22, 602.
Diethylformamide Aeetamide	$\begin{array}{c} \mathbf{N} & (\mathbf{C}_2 \mathbf{H}_5)_2 \cdot \mathbf{C} \cdot \mathbf{O} \cdot \mathbf{H} = \mathbf{I} \\ \mathbf{N} & \mathbf{H} \cdot \mathbf{C} \cdot \mathbf{H} \cdot \mathbf{O} \end{array}$.908, 19°	"
Acctained		$egin{array}{c} 1.11 \ 1.13 \ 1.159.4^{\circ} \ \end{array}$	Mendius. B. D. Z. Schröder. Ber. 12,
Ethylacetamide Ethyldiacetamide	$egin{array}{cccccccccccccccccccccccccccccccccccc$.942, 4°.5 1.0092, 20°	561. Wurtz. J. 7, 566. Wurtz. Ann. (2),
Dimethylacetamide	$N (C H_3)_2$. $C_2 H_3 O$.9405, 20°	42, 55. Franchiment. R. T.
Diethyłacetamide	N. $(C_2 H_5)_2$. $C_2 H_3 O$.9248, 8°.5	C. 2, 329. Wallach and Ka- mensky. A. C. P.
Propionamide	N H ₂ . C ₃ H ₅ O	$1.030 \atop 1.037$ $4^{\circ}_{}$ {	214, 235. Schröder. Ber. 12.
Amidoacetic acid, or gly- cocoll.	$C_2 H_5 N O_2$	1.1607	561. Curtius. B. S. C. 39, 169.
Ethyl diethylglycocollate_	C ₈ H ₁₇ N O ₂	.919, 15°	Kraut. J. R. C. 4, 198.
Amidocaproic acid, or leu- cine.	C ₆ H ₁₃ N O ₂	1.293, 18°	Engel and Vilmain. B. S. C. 24, 279.
u u u		1.282	Lippmann. Ber. 17, 2837.
Oxamide	C ₂ H ₄ N ₂ O ₄	$\begin{pmatrix} 1.627 \\ 1.657 \\ 1.667 \end{pmatrix} 4^{\circ}_{} \left\{ \right.$	Schröder. Ber. 12, 561.
Dimethyloxamide	$C_4 H_8 \stackrel{N}{\underset{ii}{N}}_2 O_2 = -$	1.281 1.307 } 4°{	Schröder. Ber. 12, 1611.
Diethyloxamide	$C_6 H_{12} N_2 O_2$	1.164 1.173 \ 4°	
Asparagine	C ₄ H ₈ N ₂ O ₃ . H ₂ O	1.519, 14° 1.552	Watts' Dictionary, Rúdorff, Ber. 12, 252.
Amidosuccinic, or aspartic acid. "	C ₄ H ₇ N O ₄	1.6613, active- 1.6632, inactive	Pesteur J 4 389

Name.	FORMULA.	SP. GRAVITY.	Антновиту,
Allylsuccinimide	C ₇ H ₉ N O ₂	1.1543, 0° 1.1432, 12° 1.1112, 50°	Moiné, J. C. S. 52, 489.
Ethyl amidoacetacetate	$C_6 \stackrel{\cdots}{H_{11}} N O_2 \stackrel{\cdots}{\cdots} \stackrel{\cdots}{\cdots}$	1.0677, 100° j 1.014, 30°	Duisberg, Ber. 15,
Ethylamidopropiopropio-	$C_k H_{15} N O_2 \dots \dots$.9774, 15° .	1386, Israel, A. C. P. 231, 197.
Mucamide	$C_6 \mid H_{12} \mid N_2 \mid O_6 \mid = 1$	1,589, 13°,5	Malaguti, C. R. 22, 854.
Benzamide	N H ₂ , C ₇ H ₅ O	1.335 / 4° /	Schroder. Ber. 12, 1611.
Amidobenzoic acid	$[N]\Pi_{x}[C_{3}\Pi_{5}]O_{x}, \ldots$	1.506 / 4°	
Amidomethylphenol	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	1.108, 26° 1.016, 23°	Brunck, J. 20, 620, Muhlhauser, A. C.
Ethyl orthoamidophenetol	3 10	1.021, 189,3	P. 207, 249, Forster, J. P. C. (2),
Methylformanilide		1.097, 18°	21, 347. Pictet and Crépieux.
Ethylformanilide Propylformanilide	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	1.063, 16° 1.044, 16°	Ber. 21, 1106.
Propylformanilide Isoamylformanilide Actanilide	$\frac{C_{12}^{10}}{C_8}\frac{\Pi_{13}^{10}}{\Pi_9}\frac{N}{N} \Theta $	1,004, 16° = 1,000, 10°, 5 = 1,205 / 1,5 = 6	Williams, J. 17, 424, Schroder, Ber. 12,
Benzanilide	$C_{13} \stackrel{\cdots}{H}_{11} \stackrel{\cdots}{N} \stackrel{\cdots}{O} \stackrel{\cdots}{\ldots} \cdots$	1,216 y ¹ - 1 y 1,306 y ₁ o	1611.
Oxethenaniline	$C_s \stackrel{\sim}{\Pi}_H \Sigma O_s \stackrel{\sim}{\longrightarrow} 1$	1.821 (7) (7) (1.11.0)	Demole, J. C. S. (2), 12, 77.
a Ethylbenzhydroxamie neid.	C_9 H_{11} N O_2	1.209	Gurke, Ber. 14, 258.
3 Ethylbenzhydroxamie acid.		1.185	Gurke, Ber. 14, 259.
Ethyl ethylbenzhydroxa- mate.		1,0258, 17	Gurke, Ber. 14, 257.
Ethyl a dibenzhydroxa- mate.	C ₁₆ H ₁₅ N O ₃	1,2400, 18 , 4	Gurke, Ber. 14, 258.
Ethyl 3 dibenzhydroxa-		1,2395, 18°,4	
Tyresine	$\begin{array}{c} C_9 H_{11} N_1 O_3 \\ C_1 H_1 N_2 O_3 \end{array} \qquad . \label{eq:constraint}$	$egin{array}{cccccccccccccccccccccccccccccccccccc$	Siber, Ber, 17, 2837, Proust, Bodeker, B. D. Z.
	· · · · · · · · · · · · · · · · · · ·	1,35 1,323 / pc 3 1,333 /	Schabus, Schröder, Ber, 12, 561.
Ethyl carbanide	$C_2 \coprod_{\Omega} \mathbf{N}_2 \Omega$	1,200 1,213, 185	Two samples. Lenckart J.P. 1 C. 2, 21, 11.
Diethyl carbanide.		1.040	Schroder, Ber. 13, 1070.
Be tazyl phenyl carbamide	C ₁₀ H ₀ , N ₂ O ₂₁ , 122	.9165, 185	Gladstone, Bei, 9, 249.
Ethyl carbanacte, or ure- thane	C II, N O.	,9862, 21	Wurtz. J. 7, 565.

6th. Miscellaneous Cyanogen Compounds.

Name.	FORMULA.	SP. GRAVITY.	Authority.
Ethyl cyanate Tertiary butyl cyanate			Brauner. Ber. 12,
Cyanaldehyde	$C_2 H_3 O C N$.881, 15°	
Ethyl cyanformate	C_4 H_5 N O_2	1.0139, 13°.5	1168. Henry. C. R. 102,
Ethyl cyanacetate Diisobutyryl dicyanide	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	1.0664, 13°.5 .96	768. " " " " Moritz. J. C. S. 40,
Ethylene cyanhydrin	$C_2 H_4$. O H. C $N_{}$	1.0588, 0°	13. Erlenmeyer. A. C.
Ethyl acetylcyanacetate	$C_7 H_9 N O_3$	1.102, 19°	P. 191, 276. Huller and Held.
Ethyl methylacetylcyan-	C ₈ H ₁₁ N O ₃	.996, 20°	Ber. 15, 2363. Held. B. S. C. 41, 330.
acetate. Ethyl ethylacetylcyanac-	C ₉ H ₁₃ N O ₃	.976, 20°	690.
etate. Ethoxyacetonitril	C ₄ H ₇ N O	.918, 6°	
		.9093, 20°	
Phenoxyacetonitril	C ₈ II ₇ N O	1.09, 17°.5	niak. Fritzsche. Ber. 12,
Mandelie nitril		1.124	2178. Võlckel. P. A. 62,
Hydroxisovaleronitril	C ₅ Il ₉ N O	.95612, 0°	
Hydroxycaprylonitril	C ₈ H ₁₅ N O	.9048, 17°	Sigel, A. C. P.
Triethoxyacetonitril	$C_8 \coprod_{15} N O_3$	1.0030, 15°.5	
Valeracetonitril	$C_{13} H_{24} N_2 O_3$.79	163. Schlieper. A. C. P.
Acetoxyacetonitril	$C_4 H_5 N O_2$	1.1003, 13°.5	
Acetoxypropionitril Cyanöil	$C_5 \stackrel{ ext{H}_7}{ ext{N}} \stackrel{ ext{N}}{ ext{O}_2}$	1.077, 13°.5	768.
Cyanöil	C ₆ H _H N O	1.009	Rossignon, A. C. P. 44, 301.

7th. Miscellaneous Compounds.

Name.	FORMULA.	SP. GRAVITY.	Authority.
Ethyl earlituide	C ₃ II ₂ N O	.8981 1.092, 50°	Wortz. J. 7, 561, Hofmann. P. R. 8 19, 108,
Ethylmethyl acetoxim Trimethylene diethylalkin Tetrethylallylalkin Methylphenylethylalkin Piperpropylalkin Hydroxypicoline	$\begin{array}{cccccccccccccccccccccccccccccccccccc$.9199, 4° .9002, 4° 1.08065, 0° .9456, 0°	Janny, Ber. 15, 277; Berend, Ber. 17, 510
Collidine monocarbonic ether. Collidine dicarbonic ether	$C_{11} H_{15} N O_2 \dots$ $C_{14} H_{19} N O_4 \dots$		R. Michael, A. C. I 225, 121, Hantzsch, Ber. 13
Nitroxylpiperidine	$C_5 \prod_{10} N_2 O$	1,0659, 152,5	2913. Wertheim, J. 19
Acetpiperidid	$\mathrm{C_7~H_{13}~N~O}_{\odot}$	1,01106, 9°	410. Wallach and Kr mensky, A. C. I 214, 238.
Acetyleopellidine	$C_{10} \overset{H}{\underset{\sim}{H}_{19}} \overset{N}{N} \overset{O}{\ldots}$.9787, 0° == } .9980, 21° == }	Durkopf, Ber. 19 924.
Parachinanisol	С ₁₀ Щ ₉ N О	1.1665, 0° }	Skraup, Ber. 19
Base from ethylamine camphorate.	$C_{14} \stackrel{G}{\coprod}_{14} N_2 O \stackrel{\square}{\coprod}$	1.1102, 50°) 1.0177, 15°	ref. 631. Wallach and K: mensky, A. C. F 214, 245.
Uric meid	$C_5 \; \Pi_{\underline{5}} \; N_4 \; O_3 \; . \; . \; . \; . \; .$	1.855	Schroder, Ber. 1: 1070.
H.ppuric acid = 1. Ethyl hippurate	$\begin{array}{cccc} C_g H_1 & N_1 O & \dots & \dots \\ C_{g1} H_1 & N_1 O_3 & \dots & \dots \end{array}$	1,008, s 1,040, 20°, s	Schalus, J. 3, 416 Stenhouse, A. C. I 31, 148.
Ethyl glycocholate	$C_{28} \; \Pi_{47} \; N \; O_{6} \; \dots \dots \dots$.:01	Springer, A. C. J. 181.
Indegotine	$C_{16} \; \Pi_{17} \; N \; \; O_2 \; \; \dots \; \; \; . \label{eq:controller}$	1,55	Weltzien's "Zi
Credine hydrate = =	$C_1 \coprod_{\alpha} N_{\frac{1}{\alpha}} O_2, \coprod_{\beta} O_{-\beta}$	1.31 /	Watts' Dictionary
Carara Experime	$\begin{array}{cccc} C_{1}\Pi_{10} & N_{3} & O & , & \Pi_{7} & O \\ C_{17} & \Pi_{19} & N & O & , & \dots \end{array}$	1.23, 1°e ³ 1.1001, 18 ³	Pfatf. Watts' Diet Wieleken roden Wetts' Diet.
Stryel, mine	$C_A \coprod_{i \in \mathcal{N}} N_i O_{i+1} = .$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	F. W. Clarke. Blunt. J. C. S. 5 1047.
Morphine .	$C_{11}(H_{13}(\Sigma,\Theta_2,H_2,\Theta_3))$	1.317	Schröder, Ber. I 1070.
M septimine limity rate	$C_{21} \; H_{22} \; N \; O_{\mu} = 0 \; . \label{eq:constraint}$	1.215, 487	Decharme, J. 19 445.
Morphine exalate Morphine lactate Codeine	$\begin{array}{c} C_{96} \prod_{s} N_{2} O_{9}, 2 \prod_{s} O \\ C_{26} \prod_{s} N_{2} O_{8} \\ C_{15} \prod_{s} N_{2} O_{3}, N_{2} O \\ \end{array}$	1,286, 15° 1,3571 1,200 1,311 (Hunt. J. 8, 566, Schroder, Ber. 1

Name.	FORMULA.	Sp. Gravity.	Аптно	PRITY.
Thebaine	C ₁₉ H ₂₁ N O ₃	1.282}	Schröder. 1070.	Ber. 13,
Landanine	C ₂₀ H ₂₅ N O ₄	$- \begin{vmatrix} 1.255 \\ 1.256 \end{vmatrix}$	1070.	"
Papaverine	C ₂₁ H ₂₁ N O ₄	$\begin{bmatrix} 1.308 \\ 1.317 \end{bmatrix}$	"	"
Cryptopine	C ₂₁ H ₂₃ N O ₅	_ 1.351	"	"
"	C_{22}^{-1} H_{23}^{-1} N O_{7}^{-1}	$\begin{bmatrix} 1.314 \\ 1.391 \\ 1.395 \end{bmatrix}$	"	"
Pelletierine	C ₈ H ₁₅ N O	988, ó°	Tanret. 1031.	Ber. 13,
Paraffinie acid	C ₁₃ H ₂₆ N O ₅	1.14, 15°	Champion	and Pel- C. 18, 247.

XLIX. CHLORIDES, BROMIDES, AND IODIDES OF CARBON.

:	Name.			Formula.		Sp. Gravity.	Антновиту.
Carbon tet	rachloric	le	C CI4			1.599	Regnault. Ann. (2), 71, 383.
"	44		44			1.56	
66	"					1.62983, 0°	Pierre. Ann. (3), 33, 210.
4.4	44		66			1.567, 12°	
4.6	44		٠.			1.5947, 20°	
44	"					1.4658, at the boiling p't.	
4.4	44		4.1			1.63195, 00	
4.6	6.4		4.			1.47999, 76°.74	
44	4.		44			1.6084, 9°.5)	Sehiff. G. C. I. 13,
44	4.		- 44			1.4802, 75°.6	177.
4.4	4.					1.60500, 15°	Perkin. J. P. C. (2),
1.6	"					1.58878, 25°	32, 523.
Tetrachlor	ethylene		C ₂ C1	,		1.619, 20°	
4.6			4.			1.6490, 0°	
"						1.612, 10°	
			44			1.6595, 0°	Bourgoin. Ber. 8, 548.
"			4.4			1.6190. 209	Brühl. Bei. 4, 780,
"			"		i	1 6919 00 4	`
"						$1.6312, 9^{\circ}.422$ 1.4434 1.4489 120°	Schiff. G. C. I. 13,
"						1.4489 120°	177.
Hexehlore	thane			;		1.619	Regnault. Ann. (2), 71, 374.
"			""			2.011	Schröder. Ber. 13, 1070.

NAMI	E.	FORMULA.	SP. GRAVITY	Λ UTHORITY.
Octochlorpropa Hexchlorobenze		C _b C' _b	1,585, 228 1,407, 0174	Cahours. J. 3, 496, Jungfleisch, J. 20,
			1.5191, 2665 - 1.4624 (306°)	
The carbonyl el	iloride	CSCl	1.46	Kolbe. A. C. P. 45, 11.
	**		$\begin{array}{c} 1.5498, 0 \cdot \\ 1.5369, 11 \cdot \\ 1.5241, 17 \cdot \\ 1.05085, 15^{\circ} \end{array}$	Claesson: Lund Arskrift 1881 5. Billeter and Strohl. Ber. 21, 102.
Carbon tetrabre	omide	C Br ₄	., 3,42, 14	Bolas and Groves,
Carbon sulphol	romide	$C(S_2 \operatorname{Br}_4, \ldots, S_n)$	2,88, 15	J. C. S. 24, 780 Hell and Urech, Ber. 16, 1148.
Bromo-trichlor	methane	C Cl. Br	2.058, 0	
••			1.842.100	Thorpe, J. C.S. 37,
Dibrom-tetraeli	lorethane	C_2 Cl_4 Br_2	2.3, 212	Malaguti, Ann. (3), 16, 24.
Dibrem-hexelil Carbon tetriodi	orpropane dellill	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	1.974 1.32, 20 ¹ .2	Caliours.

L. COMPOUNDS CONTAINING C. CL. AND O.

NAMI	FORMULY.	~1. (*E / Z117.	Аттиовиту.
epinorii -	E)		
Carbonyl chloride	('()(1,432,0 1,392,181,6	Emmerling and Lengyel, Z. C. (-13, 189.)
Trichl statetyl chloride	C. C. O	1,600,18	Malaguti, Ann. (3), 16, 9
		1 6561 05	" Thorpe, J. C. S.
		1 44517, 118	37, 371
Tradderac star anhydrate	C ₄ C ₁₆ ()	1,6508,20	Anthoine, J. Ph. Ch. (5), 8, 417.
Types blorunethyl formate.	C (; O	1.724.42	Cahours, J. 1, 676
		1,6525, 11	Hentschel, A.P.C (2), 66, 69
Hex 1 cerethyl formate	(, ()	1.705.18	Cloez, Ann. (3), 17, 299
H to blorme thy Lacetate		1.001, 18	Closia, Ann. (3), 17 312
Perchlorethyl neetate	C. C	1.79, 25	Leldane, Ann. (3)
	**	1.78. 22	Léldanc, Ann. (3), 10, 208,

Name.	Formula.	Sp. Gravity.	Антновиту.
Hexchlormethyl oxide	C ₂ Cl ₆ O	1.594	Regnault. Ann. (2) 71, 403.
Perchlorethyl oxide	C ₄ Cl ₁₀ O	1.9, 14°.5	
Hexehloracetone	C ₃ Cl ₆ O	1.75, 10° 1.744, 12°	Plantamour. Cloëz. Ann. (6), 9
Chloroxethose	C ₄ Cl ₆ O	1.654, 21°	
Derivative of sodium citrate.	$\mathrm{C}_5 \; \mathrm{Cl}_{10} \; \mathrm{O}_2$	1.66	
By action of P Cl ₅ on succinyl chloride.	C ₄ Cl ₆ O	1.634	Kauder, J. P. C (2), 28, 191.

LI. COMPOUNDS CONTAINING C, H, AND CL.

1st. Chlorides of the Paraffin Series.

Name. Methyl chloride			FORMULA.		SP. GRAV	Sp. Gravity.	А стновіту.	
"	4.4		4.4		.95231,0		l i	
"	"				92880, 1		1	
* *	"		4.4		.91969, 1		} Vince	nt and Dela
4.4	4.6				- 90875, 23			nal. Bei. 3
66	66		4.4		.89638, 36	0°.2	332.	
"	"		6.6		.97886, 3	9°	j	
Ethyl el	hloride		C, H ₅ (И	.874, 5°	.874, 5°	Thénard.	
ü	4.4		٠.		-1.92138, 0	٠	Pierre.	C. R. 27, 213
4.4	4.4				9253, 0°		Darling	. J. 21, 328
"	"							ann. A.C.P
"	"		4.		.8510, 12	o		. J. C. S. 35
"	4.6		4.6		$.92295, 1$	5°)		J. P. C. (2)
66			4.6		.1.91708, 2	5°	31, 48	
Propyl (chlorid	le	C, H, C	Jl)	, , , , , , , , , , , , , , , , , , ,	
	4.4		٠., '		8918, 19	°.75	Pierre :	and Puchot
"	4.6		6.6		8671, 39	°)	Ann.	(4), 22, 281
"	4.4		4.6			°)		ann. A.C.F
4.6	44		6.2		[] .8959, 19	° }	161, ;	38 and 39.
4.6	4.4		4.6			o		n. Bei. 5, 10a
"	66		4.4		9123, 00)	Zander.	A.C.P. 214
4.6	44		٤.		8536, 46	°.5	181.	
"	"		"		0 4 4 .		Sehiff. 177.	G. C. I. 18
"	"		"			0		Bei. 4, 778
"	"		"		/			J. P. C. (2)
"	"		"				31, 48	
Isoprop	vl chlo	oride	٤.				Linnen	
11							Linnen	

	Nav	1 E.	Fo	RMUI.A.	SP GRAVITY	т. А итновиту,
	vl chle	ride	C. H. C	1	,8825, 0°	Zander, A.C.P. 21-
			3			181.
			+ +			+ Perkin, J. P. C. (2)
					85750, 25°	31, 481.
intel e	blorid	**	$C_4 H_9 C$	1		 Gerhard, J. 15, 40
			1 1 9			
			. 4		.8874, 20°	
					S972, 14°	Linnemann. And
	. (. 8094, lap	(4), 27, 268. Ramsay, J. C. :
	. 4				.8794, 14°	65, 463,
1		ride	. 4			in the first the first to
-010117	remo		4.4			Pierre and Puche
) Ann. (4), 22, 31
**					·8798, 15°	Linnemann. A C P. 162, 1.
	. 4					
					8073, 68°	Schiff. Bei, 9, 55
						/ Perkin, J. P.
					87393, 25°	(2), 31, 481.
[rimet]	iylear	byl chloride	* *		,8658, 0°	Puchot, Ann. (7 28, 549,
					54712, 15°	Perkin, J. P.
						(2), 31, 481.
V., r.,		al chloride .	CH	(1		, , , , , , , , , , , , , , , , , , , ,
	I Profits		5 11		.8834, 20° _	Lieben and Ros
					8680, 40°) A. C. P. 159, 70
	* *	**	**			Luchowicz, A. C. 220, 191.
\mv1.	hlorid	t*			8859, 0°	. 1 Kopp. A. C. P. 9
					$18625, 25^{\circ}, 1$	307.
					89584, 0°	Pierre, C. R. 27, 2
					•	(Two product
• •			• •		5750 + _{20°}	Schorlemmer.
6.6	• •		* *		5777 (***	19, 527.
• •					.7801, bp	Ramsay, J. S. 35, 463.
					8716, 14°	De Heen, Bei. 5, 1
4.4		8	• •		.8703, 20°	220, 190,
			1+		7903, 991.5	
						Perkin, J. P.
						(2), 31, 481
		Active			,556	Le Bel. B. S. C. 546.
		Innetive	4 *			Balbiano. Ber. 1437.
M. de	1	Lorentz Lorbit				(Wagner and Say
ride.	throb)	learbyleblo-	**	-		
Diethy	dearbi	1 chloride			.916, 00	4
		**				
Diffret	hyleth	vlearbyl chle	- 14		583, 0°	Wurtz. J. 16. 7
ride.		4	1		444,00	(Wischnegrads)
						- A.C.P. 190, 3
	6.6					

Name.	FORMULA.	Sp. Gravity.	AUTHORITY.
Dinethylethylearbyl chlo-	C ₅ H _{II} Cl	.87086, 15° .86219, 25°	Perkin. J. P. C. (2),
ride. " Hexyl chloride	C ₆ H ₁₃ Cl	.86219, 25° } .892, 16°	31, 481. Pelouze and Ca-
	"	.892, 23°	hours. J. 16, 525. Geibel and Buff. J. 21, 336.
11 11	"	.895, 13°	Cahours and Demor- çay. C. R. 80, 1570.
Secondary hexyl chloride_		.871, 24°	Domac. Ber. 14,
Chloride from tetrame- thylethane. "	"	.8943, 14° .8874, 22° }	Schorlemmer. J. 20,
11 11		1.8759, 34° }	567.
Dimethylisopropylcarbyl chloride.	"	.8966, 0° { .8784, 19° }	Pawlow. A. C. P. 196, 122.
Pinacolyl chloride		.8991, 0°	Friedel and Silva. J. C. S. (2), 11,
Heptyl chloride	C ₇ H ₁₅ Cl	.9983, 15°	488. Petersen. J. 14, 613.
		.890, 20°	Pelouze and Ca- hours. J. 15, 386.
tt tt	"	.8737, 18°.5) Two preparations.
11 11	11	.8725, 20° } .8965, 19°	Schorlemmer. A. C. P. 136, 257.
	**	.891. 190	Schorlemmer.
11 11		.881, 16°	Cross. J. C. S. 32,
Isoheptyl chloride	"	.8814, 16°.5	123.
		.8780. 18°.5	Sehorlemmer. A. C.
"	"	.8757, 22°)	P. 136, 257.
Octyl chloride	C ₈ H ₁₇ Cl	.892, 18°	Sehorlemmer. J. 15, 386.
	"	.895, 16°	Pelouze and Ca- hours. J. 16. 528.
" "	"	.8802, 16°	Zincke, A. C. P. 152, 5.
ιι ιι	"	.850	Cahours and Demar- çay. C. R. 80, 1571.
(1 (1	"	.87857, 15°	Perkin. J. P. C.
Indicted allowed	"	.87192, 25° ((2), 31, 481.
Isooctyl chloride	"	.8834, 10°.5 .8617, 36° }	Schorlemmer. J. 20, 567.
Methylhexylcarbyl chlo-		.87075, 15°	Perkin. J. P. C.
ride. " "	"	.86388, 25°	(2), 31, 481.
Nonyl chloride. B. 196°	C ₉ II ₁₉ Cl	.899, 16°	Pelouze and Ca- hours. J. 16, 529.
		.8962, 14°	Thorpe and Young. A. C. P. 165, 1.
" B. 182°		.911, 23° }	Lemoine. B. S. C.
The start of the control	4.4	1.908-259-8 (1	41, 161.
Decatyl chloride Dodecatyl chloride	C ₁₀ H ₂₁ Cl	.908, 19° .933, 22°	Pelouze and Ca-
		1	hours. J.16, 530.
Cetyl chloride	C ₁₆ II ₃₃ Cl	.8412, 12°	Tüttscheff. J. 13, 406.
ļ			

2d Chlorides of the Series C_n H_{_n} Cl_{_}.

	Name.		F.	ORMULA.	SP. GRAVIIY	. Аттиовиту_
M hylene chloride		C II ₂ Cl ₂		1,041, 15	Regnault, Ann. 1	
					1,550,07	71, 378. = Butterow, J. 22, 54
			4.0		1.377765, 0	Therne, J. C.
			4.		1, 30093, 41-,6) (37. 371.
	1.4		* *		1,000771, 15	 Perkin, J. P. C. C.
					1.02107, 254	02. 523.
Ethy lene	chloride		$C_2 H_{\bullet} G$.11	1.250, 125	 Begnault Am. 1 58, 307.
	6.4		* *		1.247, 18	Luchig, A.C.P. 21
	* *				1,28031.05	Pierre, C. R. 27, 21
**			h +		1.1562, 20%	Hange in P. A. 1.
* *					. = 1.25, 14° .	Manmené, J. 22, 3
**	••		41		1.272, 14	Gradstone and Tril C. N. 29, 212.
"	**				. 1.1050, 81	Rumsay, J. C. S. : 463.
6.4	* *				1.28082.00	Ti orpe, J. C. S.:
* *	4.4				1,15605,80%	
**	**				. 1,2521, 202 .	
4.4	.,				1.1576, 839,2	Schiff, Ber, 15, 29
	4.				1,2550, 92.8	
					1,1576, 804,0	
• •					1.272, 11	
					1,25991, 15°	r Perkin, J. P. C. (
			4 -		1,21800, 25%	32, 523.
••	• •		• •			Weegmann Z. P. 2, 218.
lthy liden	e chlori	de	* *		1.171.170	1. Regnault, Ann. 71, 357.
* *					1.24074, 05 _	Pierre, C. R. 27, 2
						. Genther, J. 11, 2
	4.1				1.198, 6.,5	Darling, J. 21, 3
	6.6					Gladstone and Ta
					0	C. N. 23, 212.
4.4			4.4		. 1.1743, 20	Bruhl, A C. 203, 1.
4.4	4.				1,1070,56	Remsay, J. C. S. 4631.
4.4	6 0				1,20394, 0	Two sample
			.,		1,10023, 5003	
	* 1				201 201 5 0	.) 37,183 and 1
4.4					1,1895, 9 .8.	. 1
4.			4		1,11425, 502,	7 Schiff, G. C. L.
	٠,				1.11555, 560.	
			1.0		1.18450, 151	Perkin, J. P. C.
6.					1.17120, 251	32, 523,
4.4	4.				1,17503, 202	≟ Weegmann. Z.
						C. 2, 218.

NAME.	FORMULA.	SP. GRAVITY.	Аттногиту.
Propylene chloride	C ₃ H ₆ Cl ₂	1.1656, 14°	Linnemann. A. C P. 161, 18.
" " " " " " " " Trimethylene chloride	11 12 14 15 16 17	$\left. \begin{array}{c} 1.184,0^{\circ} \\ 1.155,25^{\circ} \\ 1.182,0^{\circ} \\ 1.153,25^{\circ} \\ \end{array} \right\} \left. \begin{array}{c} 1.16470,97^{\circ}.5_{-1} \\ 1.201,15^{\circ} \end{array} \right.$	Friedel and Silva Z. C. 14, 489. Schiff. Bei. 9, 559 Reboul. J. C. S. 36 127.
" " Dimethylmethylene chlo-		1.1896, 17°.6 1.117, 0°	$egin{array}{cccc} { m Freund.} & { m Ber.} & { m 14} \ 2270. \ { m Friedel.} \end{array}$
ride. Methylchloracetol.		1.06, 16°	Linnemann. A. C
		1.0827, 16°	P. 138, 125. Linnemann. A. C P. 161, 18.
("	1.1058, 0° \\ 1.0744, 25° \\ 1.1125, 0° \\ 1.0818, 25° \\ 1.09620 \\ 1.	Friedel and Silva Z. C. 14, 489.
ropylidene ehloride	44 44 44	1.09657 { 1.08430 } 25° 1.08476 } 1.143, 10°	Perkin. J. P. C (2), 32, 523. Reboul. C. R. 82 378.
Isobutylene chloride	"	1.112, 18° 1.0953, 0° 1.0751, 20°.7 1.0111, 12°	Kolbe. J. 2, 338. Kopp. A. C. P. 95 307. Oeconomides. Ber 14, 1201.
Amylene chloride Isoamylidene chloride	C ₅ H ₁₀ Cl ₂	1.058, 9° 1.2210, 0° 1.05, 24°	Guthrie. J. 14, 665 Bauer. J. 19, 531
Chloramyl chloride Hexylene chloride. B.180°	$C_6H_{12}Cl_2$	1.194, 0° 1.087, 20°	Buff. J. 21, 333.
" " B. 163° Heptylene chloride		1.0527, 11° 1.0295, 10°	Henry. C. R. 97, 260 Husemann. B. D. Z

3d. Miscellaneous Non-Aromatic Chlorides.

	Name.	For	MULA.	Sp. Gravity.	Антновиту.
Chlorofor	m	≟ H Cl₃		1.48, 189	Liebig, A. C. P.
**				1.491, 17°	Regnault, Ann. (2 71, 381.
				1.493 /	
**				1.497 }	
* *				1.113 1	Soubeiran an
+ 4				1.496. 120 ==)	Mialhe. J. 2, 40
+4				-1,500, 15°.5 -1,52523, 0°	Gregory, J. 3, 45
				1.512, 129	
• • •				1.91-, 1	. 63,
				1.49	Fluckiger.
+ 6		* *		1.472, 16°.5	Geuther.
4.6				[1.507, 17°	Flückiger, Z. A. C
		4.4		1.502	5, 302. Rump. C. C. (3),
		-			34.
4.6				1,500,15°	Remys. J. C. S. (2 13, 439.
"				1.3954, 63°	
				1.52657, 00	Therpe, J. C. S. 3
		**		1.40877, 61%2	i 371.
**		1.6		1.4018 + 630	(Schiff, Ber. 1
1.4				1.40814 /	2763-2766.
4 -				1,4081,600.6	. Schiff, Ber. 15, 295 2 Nasini, G. C. L. 1
				1,-1,00000, 2015 2.	135.
+ 4				1,5009, 11°, 5 (Schiff, G. C. I. 1
• •				. 1.4081, 60°.94 i	
				1,48978, 18°,5	$\subset_{\mathbb{R}} W$ ith intermedia
				1,45695, 85%,86	
				1.50027	(1,.1, (2), 20, 5
				1.1)
					Perkin, J. P.
				$-1.48492 e^{-2.0}$) (2), 82, 523.
Trichler	ethine	$C \coprod C$	Cl ₃	1,372, 16°	. Regrealt, Ann 71, 364.
* 1				1,81651, 0	 Pierre, C. R. 27, 2
				$-1.32466, 15^{\circ}$	Perkin, J. P. C.
		* *		$-1.31144.25^{\circ}$	82, 523.
Chlereth	ylene dichleride	C H ⁺ C.I	. C H Cl ₂ .	1,422, 175	Regneult, Ann. (69, 153,
			••	. 1.42234.0° .	Pierre, C. R. 27, 2
+ 4	• 6			. 1,4577,95,4.	
	11			. 1.2943)	. ! Schiff. G.C.1.
* *	**			. 1.2946 (113).	177.
1.0				1.2947	
* 1				1,391	Delacre, Bull, Act Belg, (3), 13, 2
6.4				1,45527, 155	Perkin, J. P.
	4.6			↓ 1.44303.25°	$\frac{1}{1}$ (2), 32, 523.

Name.	Formula.	Sp. Gravity.	Антновіту.
Tetrachlorethane. B. 102°	C H ₂ Cl. C Cl ₃	1.530, 17°	Regnault. Ann. (2), 71, 366.
B. 135°		1.576, 19°	Regnault. Ann. (2), 68, 162.
		1.61158, 0°	Pierre. C. R. 27, 213.
Acetylene tetrachloride	C II Cl ₂ . C II Cl ₂	1.614, 0° }	Paterno and Pisati.
Pentachlorethane	C H Cl ₂ . C Cl ₃	1.522, 100°.1) 1.644	Z. C. 14, 385. Regnault. Ann. (2),
и .	~	1.66267, 0°	71, 368. Pierre. C. R. 27, 213.
4.6	.,		Paterno. Z. C. 12, 245.
	"	1.70893, 0° 1.46052, 159°.1	Thorpe. J. C. S. 37, 371.
Dichlorethylene	$C_2 H_2 Cl_2$	1.250, 15°	Regnault. Ann (2), 69, 155.
Trichlorpropane Trichlorhydrin	С ₃ Н ₅ Сl ₃ СН ₂ Сl. СНСl. СП ₂ Сl	1.347 1.41, 0°)	Cahours. J. 3, 496. Three separate prod-
	" "	1.417, 15° }	ucts. Linnemann. A. C. P. 136, 51.
		1.41,0	Oppenheim. J. 19, 521.
16	" "	1.39836	$ \left. \begin{array}{cccccccccccccccccccccccccccccccccccc$
" Isotrichlorhydrin	CH,Cl. CH,. CHCl.	1.38783 25"-) (2), 32, 523. Romburgh. Ber. 14,
Allylene tetrachloride		1.47, 13°	1400. Borsche and Fittig.
., ., .,		1.482)	J. 18, 313. Ganswindt, Jena
Tetrachlorglycide		1.485 } 1.496, 17°	Inaug. Diss. 1873. Pfeffer and Fittig. J. 18, 504.
Allylidene tetrachloride		1.503, 17°.5	Hartenstein. J. P. C. (2), 7, 295.
	"	1.522, 15°	Romburgh. Ber. 14, 1400.
Tetrachlorpropane	"	1.548 1.55, s	Cahours. J. 3, 496. Berthelot.
Hexachlorpropane Heptachlorpropane	$\begin{bmatrix} C_3 & H_2 & Cl_6 & \dots \\ C_3 & H^2 & Cl_7 & \dots \end{bmatrix}$	1.626	Cahours. J. 3, 496.
Chloropropylene		.918, 9°	Linnemann. J. 19, 308.
		.9307, 0° .931, 0°	Oppenheim. J. 19, 521. Oppenheim. J. 21,
Allyl chloride		.934, 0°	339. Oppenheim. J. 19,
		.9547, 0°	521. Tollens. A. C. P.
		.9610, 0° 1	156, 155. Zander. A. C. P.
" " "	"	.9002, 46° }	214, 181.

NAME.	C FORMULA.	Sp. Gravity.	Астиовату.
Allyl chloride	. C, II, C1	$\frac{.9055}{.9058}$, 417.8	Schittle, G. C. I. 13, 177.
		.0379, 20° .94866, 15°	Bruhl, Bei. 4, 780, Perkin, J. P. C.
Allylidene dichloride	-	1,93228, 252 (1,470, 242.5	(2), 32, 523, Hubber and Gen- ther, J. 13, 305,
a Dichlorpropylene, Epi- dichlorhydrin,		1.21	Claus, A. C. P. 170, 425.
		1,22, 8 1,21, 20 ⁵	Henry, Ber. 5, 965, Reboul, J. 13, 460
dichlorhydrin.		1.230.174.5	Hartenstein, J. P.
· · · · · · · · · · · · · · · · · · ·		1.226, 15°	C. (2), 7, 295, Remburgh, Ber. 15, 245.
·· · ·			Friedel and Silva. Quoted by Rom-
a Trichlorpropylene	C ₃ H ₃ Cl ₃	1.387. 14	
3 Trichlorpropylene		1,411,20°	Pfeffer and Fittig. J. 18, 504.
Propergyl chloride Crotonylene dichloride Chlorisobutylene	$-C_{i}H_{i}CI_{i}$	1,131	
Trichlorpentane Tetrachlorpentane Chloremylene	C ₃ H ₂ Cl ₃	1,33, 135 2,4292 ,9992, 0	Bauer. J. 19, 534.
			Bruylants, Ber. 8, 411.
Isoprene hydrochlorate			38, 323,
Isoprene dichloride Trichlorhexate		1.065, 16° 1.163, 21°	Pelouze and Ca- hours, J. 15, 525.
Hexachlorhexane Chlorhexylene Chlordiellyl Chlordiemylene chloride Erkosylene chloride	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	1.508, 20° .9636, 11° .9197, 48°,2 1.1638, 0° 1.010, 24°	**
Isovinyl chloride	$(C_2 H_3 C1)_n$	1.406	
Chloronicone	$-C_5/H_5/CI$	1.141, 105	St. Evre. J. 1, 536.

4th. Aromatic Compounds.

Nam	ε.	F	ORMULA.	SP. GRAVITY	. Аптногиту.
Monochlorbenz	ene	C ₆ H ₅ (JI	1.1499, 0°	
		4.4		_ 1.1347, 10°	From benzene. So.
• 6		. 4		1.1258, 20°	koloff. J. 18, 517
• •		4.6		1.1188, 30°	Kolon. 5. 16, 517
**		4.6			
4.4		. 4		. 1.1085, 10°	From phenol. So
"		1.1		1.099, 20°	
4.6		11		. 1.092, 30°]	koloff. J. 18, 517
"		4.6		1.118	Jungfleisch. J. 19 551.
**				1.77, —40°	Jungfleisch. J. 20
"				980. 133°	' 36 <u>.</u>
		1.6		1.1293, 0°	Jungfleisch. J. 21 343.
"		4.6		1.12855, 0°	From hanzone
4.4		"		1.11807, 9°.79	- Admission Dec
4.4		4.4		1.10467, 22°.4	$\begin{bmatrix} 6, 443. \end{bmatrix}$
"				$1.04428,77^{\circ}.2$	7) 0, 445.
* 6				1.12818, 0°	From phonol
44		"		1.11421, 9°.79	From phenol Adricenz. Ber
. 4		"		1.10577, 22°.43	
4.6		6.6		1.04299, 77°.2	$\left\{ \frac{2}{6} \right\} = 6,443.$
4.6		"		.9817 } 1320 {	Sehiff. G. C. I. 13
"		6.6		1.9818 } 1827	177.
• 4		"		1.1066, 200	Brühl. Bei. 4, 780.
"		4.4		1.1046, 25°.2)	Schall. Ber. 17.
"		4.4		1.0703, 52°.3	2564.
. ("		1.106, 15°	ler. A. C. P. 243,
Orthodichlorber	izene	C. H. C	'l _a	1.3278, 0°	226. Beilstein and Kur-
		0 1	2		batow. A. C. P. 176, 41.
		"		1.3254, 0°	Friedel and Crafts.
Metadichlorben	2010	"		1.3148	Ann. (6), 10, 416. Beilstein and Kur-
Metadicinorben	zene			1.0140	batow. B. S. C. 23, 179.
4.6		"		1.307, 0°	
Paradichlorbenz	ene			1.459, s	(2), 13, 450. Jungfleisch. J. 19,
				1 350 505	551.
		14		1.250, 53° }	Jungfleiseh. J. 20,
"		14		1.123, 171° (56.
"		"		1.4581, 20°.5	
				1.241, 63° [Jungfleisch. J. 21,
				1.2062, 93°	347.
		"		1.1366, 166° J	
"		4.4		1.467, 4°	Schröder. Ber. 12, 561.
"				1.2499, 550.1	Schiff. A. C. P. 223,

	Хам	E.	Form	U.1.A.	Sp. Gravity.	Λ trinority.
Trichlor	oen zer	16.	C_6 H_3 Cl_3 .		1.457, 7°	Mitscherlieh, P. A
		1.3.4			1,575	35, 372 Jungfleisch, J. 13
					, , , - , -	551.
	4.				1.457, 17 . s. / 1.227, 2062	Jungfleisch, J. 20 36.
					1,574, 101, 5, 1	1971.
		44			1.4658, 10°.l.	
	4.4				$1.4460, 26^{\circ}$	Jungfleisch, J. 2
		44	-		1,4111,567	350,
		44			1.2427, 1965	D 27 . 1 . 1 . 1
	• •	**	**		1,4654, 12°, 1.	Beilstein and Ku batow, A. C. 1 192, 230
Tetrachle	orbeni	zene, 1.2.4.5	$C_6 H_2 Cl_{1-2}$		1.748	Jungtleisch, J. 1: 551.
	٠.	**	••		1,448, 1395	Jungtleisch, J. 2
	+ 5	* *			1.315, 240° = c	1)(1,
		• • • • • • • • • • • • • • • • • • • •	••		1,7044, 10°, s 1,4889, 149	
		**	**		1,3958, 179	🚽 Jungtleisch, J. 2
					$1.3281,230^{\circ}$	352.
Pentachl	orben	zene	Call Cla		1.625.74	Jungtleisch, J. 2
			**		1,870, 2701	36.
					1.8422. 101	
					$-1.8012, 16^{\circ}, 5 + 1.6091, 84^{\circ} - 1$	Jungfleisch, J. 2
					1,5782,114°	1100
	• •		* *		1,3821, 261年月	
Monochl	ortole	iche	$C_6 H_4$, $C H$	3. Cl _	1,080, 112	Limpricht, J. 1 591.
		1.1	• •		1,0705, 277.2	Arenheim and Die rich. Ber. 8, 140
	4.6		••		.6051, 1590,8	Schiff, G. C. I. 1 177.
	* -				1.072,247.44%	
	* *		• •		1,061, 351,48	
			• •		1,049, 48°,71 (1,029, 67 (80)	Cattaneo, Bei.7, 58
					1,010, 800,86	
					1,796, 992,64 [
			• •		1 0761, 196	Gbalstone, Bei. 249.
Benzyl c	hloric	1	$C_6/H \gtrsim C/H$, Cl	1.1131	Cannizzaro, J. 621.
					1,107,11	Limpricht J. 1
						502. Schiff, G. C. L. 1
					$\frac{.9452}{.9453}, \frac{1753}{.0453}, \frac{1}{.00}$	177.
			* *		1.100 30 01	
* *			* *		1.082, 441, 37	1
	• •				1,066,59	Cattaneo. Bei.
			* * * * * * * * * * * * * * * * * * * *	~	1.017, 75° 1.016, 100°,08	5-1
	4.1		4 .		1,099, 7	Gladstone. Bei.
				-		249
	• •		6.6		.9453, 178°	Schiff G C 1 1

		<u> </u>			
Name	: .	Formui		Sp. Gravity.	Аттновиту.
Dichlortoluene.	1.2.4	C ₆ II ₃ . C H ₃ .	Cl ₂	1.24597, 20°	Lellmann and Klotz. A. C. P. 231, 308.
"	1.2.5			1.2535, 200	-51, 500.
"	1.3.4	"		1.2518, 16°	Aronheim and Die-
"		"		$\{1.2596, 18^{\circ}.4\}$	trich. Ber. 8, 1403.
"				1.2512, 20°	Lellmann and Klotz. A. C. P. 231, 308.
4.4	B. 202°	"		1.256, 13°	Beilstein. J. 13, 412.
	B. 207°	" CHO		1.2557, 14°	Limpricht. J. 19, 593.
Benzylidene die	hloride	C ₆ H ₅ . C H C		1.245, 16° 1.295, 16°	Cahours. J. 1, 711. Hübner and Bente. Ber. 6, 804.
"				1.2699, 0°	
"		"		1.2122, 56°.8 1.1877, 79°.2	Sabier Pon 10 500
		4.6		1.1257, 135°.5	Schiff. Ber. 19, 563.
"		"		1.0407, 203°.5	
Trichlortoluene		C ₆ H ₂ C H ₃ .	Cl ₃	1.413, 9° 1.4093, 19°.5	Henry. J. 22, 508. Aronheim and Die- trich. Ber. 8, 1405.
Dichlorbenzyl e Benzyl trichlor	hloride ide	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	H ₂ Cl	1.44, 0° 1.61, 13°	Naquet. J. 15, 419. Limpricht. J. 18, 538.
"		" -		1.380, 14°	Limpricht. J. 19, 594.
Tetrachlortolue	ne	C ₆ H Cl ₄ . C H	I ₃	1.495, 14°	Limpricht. J. 19, 595.
Trichlorbenzyl					Beilstein and Kuhlberg. J. 21, 361.
Orthodichlorben chloride.					
chloride. Chlorbenzo-triel	ıloride.1.3	C ₆ H ₄ Cl. C C	Cl ₃	$\begin{bmatrix} 1.74 \\ 1.76 \end{bmatrix}$ $\begin{bmatrix} 13^{\circ} \\ \end{bmatrix}$	Limpricht. A. C. P. 134, 58.
"	1.2			1.51	Kolbe and Laute- mann. A. C. P. 115, 196.
Dichlorbenzo-tr	ichloride _	$C_6 H_3 Cl_2$. C	Cl ₃	1.587, 21°	Beilstein and Kuhlberg, Z. C. 21, 363.
"		"		1.5829, 16°	Aronheim and Dietrich. Ber. 8, 1403.
Trichlorbenzyle ride.	ne dichlo-		-		Beilstein and Kuhlberg. Z. C. 21, 362.
Tetrachlorbenzy Tetrachlorbenzy		C ₆ H Cl ₂ C I	I ₂ Cl	1.634, 25° 1.704, 25°	Beilstein and Kuhl-
chloride. Chlororthoxylen				1.0863, 19°	berg. Z. C. 21,364.
ii	1.2.4	113. 0 113. 0		1.0692, 15°	Ber. 18, 1367. Krüger. Ber. 18,
Chlormetaxylene		"		1.0598, 20°	1757. Jacobsen. Ber. 18,
Isotolyl chloride		С ₆ Н ₄ . С Н ₃ . С	C II, Cl	1.079, 0°)	1761. Gundelach. B. S. C.
" Chlorethylbenze					25, 385. Istrati. B. S. C. 42,
	i		i	I	115.

NAME.	FORMULA.	SP. GRAVITY	Астиовату.
Chlorethylbenzene	C ₆ H ₁ , C ₂ H ₃ , Cl	1.065	Istrati. Ber. 18, ref. 701.
Dichlererthoxylene	$C_6 H_2$, $C_1 H_3$, $C_2 H_3$, $C_3 H_4$	1.150, 70°, 1.	Colson. Ann. (60, 6,
	••	1.250, 20°, 1.) 1.0080	86. Kautz, Freiburg In. Diss. 1885.
Dichlormetaxylene		1,302, 20°, s. 7 1,202, 40°, f. 7	. Colson. Ann. (6), 6,
Dichlorparaxylene Orthoxylene dichloride	$C_6 H_4 (C H_2 C P_2)$	1 040, S	Colson, C. R. 104,
Metaxylene dichloride - Paraxylene dichloride		1.470	429.
Orthoxylene tetrachloride Metaxylene tetrachloride	$C_6 H_4 (CHCl_2)_2 = 1$	1,601 1,536	Colson and Gautier.
Paraxylene tetrachloride		1.696	C. R. 102, 689.
Chloreymene. 1.16 Diethylmonechlorbenzene		1,014,41	Gerichten, Ber. 10 1249. Istrati, Ber. 18, ref.
Triethylmonoch lor ben -		1.028	701.
zene. Tetrethylmonochloricen -	$C_6 \; \Pi, \; Cl. \; , C_2 \; H_5)_{4^*=1}$	1.022	
Zene. Pentethylmonochlorben- zene.	$C_6 (\operatorname{Cl} + C_2(H_1)_{\sigma^{-1} + 1})$	1.065	
B Chlorstyrolene	C, H, Cl	2.112, 223	Glaser, A. C. P. 151 166.
3 Benzene hexchloride	C ₆ H ₆ Cl ₆	1.89, 19:	Mennier, Ann. (6) [
By action of ethylene on monochlorbenzene.	C _q H _q C ^q	1.170	1strati. Ber. 18, ref [704]
a Chlernaphthalene	C = H + C1	1.2052, 61.2	Laurent Quoted le
0	1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1	1,2028, 65, 1	Carius. Carius. A. C. P. 111
		1,2025, 15	149. Koninck and Mor
4 Chlornaphthelene		1,2656, 16	quart. C. N. 25/57 Rimarenko, Her. 9 661.
Naphthalene dienland	C., II, Cl,	1.287, 12 .5 1.2648, 182 . a	Gladstone. Bei, 9 219.
Trichloracenciphtene	C ₁ H ₁ C' ₁	1,43, 17	Kelder and Norton A. C. J. 10, 218
Complete leader of the complete control of the cont	$C_n[\Pi_1][C]$	1.0 %. 11	Schwanert, J. 15 465
Geranic I by dree iderate C. sutchin by dreehl states.	← ₁ , H ₁₇ ←1 =	1,020, 20	Jacobsen, A. C. P 157, 236, Watts' Dictionary.
From terpone of Piners pur- nums.		.16-2, 172	Buchner, J. 13, 479
Terebentione hydrochlo-	4.	$\frac{1.016}{1.017}$, $0^2 = \frac{1}{1}$	Two isomers. Bar bier, C. R. 96, 1066

Name.	Formula.	SP. GRAVITY.	Аптновиту.
Isotorebenthene hydro- chlorate. From terpene of Muscat nut oil.		,	Riban. C. R. 79, 225. Cločz. J. 17, 536.

LII. COMPOUNDS CONTAINING C, H, O, AND CL.

NAME.	Formula.	Sp. Gravity.	AUTHORITY.
Dichlorethyl alcohol	C ₂ II ₄ Cl ₂ O	1.145, 15°	Delacre, Bull, Acad.
Trichlorethyl alcohol	C ₂ II ₃ Cl ₃ O	1.55, 23°.3	Belg. (3), 13, 248. Garzarolli-Thurn- lackh. Ber. 14, 2826.
Dichlorhexyl alcohol	$C_6 H_{12} Cl_2 O_{}$	1.4, 12°	Destrem. Ann. (5), 27, 50.
Dichlormethyl oxide	$C_2 \coprod_4 Cl_2 O$	1.315, 20°	Regnault. Ann. (2), 71, 398.
Tetrachlormethyl oxide	$C_2 H_2 Cl_4 O$	1.606, 20°	Regnault. Ann. (2), 71, 401.
Tetrachlormethylethyl oxide.	C ₃ H ₄ Cl ₄ O	1.84, 0°	Magnanini. G. C. I. 16, 330.
Chlorethyl oxide	C ₄ H ₉ Cl O	1.0572, 0°	Henry. C. R. 100,
Dichlorethyl oxide Tetrachlorethyl oxide	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	1.174, 23° 1.5008	
		$1.4379, 0^{\circ} - \\ 1.4182, 15^{\circ}.2 \\ 1.5055, 99^{\circ}.9 \\ 1.4211, 15^{\circ} - $	Paterno and Pisati. Ber. 5, 1054. Roscoe and Schor-
Pentachlorethyl oxide	C ₄ H ₅ Cl ₅ O	1.645	lemmer's Treatise. Jacobsen. Z. C. 14, 444.
th Chloracetic acid	$C_2 H_3 Cl O_2$	1.577, 8° 1.366, 73°	Henry. Ber. 7, 763. R. Hofmann. J. 10, 348.
Dichl cacetic acid	$C_2 \coprod_2 Cl_2 O_2$	1.5216, 15°	
Trichloracetic acid	C ₂ H Cl ₃ O ₂	1.617, 46°	Dumas, A. C. P. 32, 109.
Chlorpropionic acid	C ₃ H ₅ Cl O ₂	1.28, 0°	Clermont. Z. C. 14, 349.
Chlorbutyric acid	C ₄ If ₇ Cl O ₂	1.072, 0°	
·· 2'		1.2198, 10°	Henry. C. R. 101, 1158.
?	"	1.065, 15°	Haubst. J. C. S.
Chlorisobutyric acid	"	1.062, 0°	(2), 1, 693. Balbiano. Ber. 11, 1693.
Methyl chlorocarbonate	$C_2 ext{ II}_3 ext{ Cl } ext{O}_2$	1.236, 15°	

Name.	FORMULA.	SP. GRAVIIY.	Аттиовиту.
Ethyl chlorocarbonate	C_3 Π_5 $C1$ O_2	1.133, 15°	Dumas Ann. (2), 54, 230.
Propyl chlorocarbonate Isopropyl chlorocarbonate	C ₄ H ₇ C1 O ₂	1.094, 15° 1.141, 4°	Rose. Ber. 13, 2417. Spica. J. C. S. 52, 1028.
Isobutyl chlorocarbonate Isoamyl chlorocarbonate Dichlorethyl formate	$egin{array}{cccc} C_5 & H_9 & Cl & O_2 & \dots \\ C_6 & H_{11} & Cl & O_2 & \dots \\ C_3 & H_4 & Cl_2 & O_2 & \dots \\ \end{array}$	1.053, 15° 1.032, 15° 1.1261, 16°	Rose. Ber. 13, 2417
Pentachloramyl formate		1.52	70, 370. Springer, A. C. J. 3,
Methyl monochloracetate			293. Henry. B. S. C. 20.
		1.2852, 19°.2.	448. Henry, C. R. 101,
Methyl dichloracetate	$\begin{bmatrix} C_3 & \Pi_4 & Cl_2 & O_2 & \dots \end{bmatrix}$	1.3508, 190.2	250
Dichformethyl acetate		1.25	Malaguti, Ann. (2), 70, 381.
Methyl trichloracetate	C ₃ H ₃ Cl ₃ O ₂	$\{1.4969, 14^{\circ}\}$ $\{1.4962, 20^{\circ}, 2\}$ $\{1.4892, 19^{\circ}, 2\}$	Bauer. A. C. P. 229, 163. Henry. C. R. 101,
Ethyl monochloracetate	c n clo		250. Bruhl. A. C. P.
Estily i monocinorae tarez-	6.	.9925, 144°.5	203, 1. Schiff, G. C. L. 13,
		1,1722, 8°	177. Henry, C. R. 101,
Ethyl dichloracetate	C, H, Cl, O,	1.301, 120	
4		1.29	
		_ 1.2821, 20°	
	4.	1.0913 157°.	203, 1. Schiff, G. C. I. 13, 1 177.
Dichlorethyl acetate	4.	1.8217, 10°.61	(111.
		1.104, 15	Delacre, Bull, Acad. Belg. (3), 13, 255.
Ethyl trieldoracetate	$C_1 H_1 Cl_3 O_2$	1,0826, 20	Bruhl. A. C. P. 203, 1.
4. 4.		$=\frac{1.1650}{1.1651} \div 1672.$	1 Schiff, G. C. L. 13, 177.
Monochlorethyl dichlor- ncetate.		1,200, 15°	. Delacre, Ber. 21, ref. 183.
Dichlorethyl monochlor- nectate.	44	1,216, 152	
Trichlorethyl acetate		L.367	Léblanc, Ann. (3), 10, 207.
	- "	. 1,35, 207	Malaguti, Ann. (3), 16, c2.
í, íí	- '`	1,0907, 262,81	Garzarolli-Thurn- lackh. Ber. 14, 2826.
44	- 46	1.157, 15°	

Name.	FORMULA.	SP. GRAVITY.	Антиовіту.
Tetrachlorethyl acetate	C_4 II_4 Cl_4 O_2	1.485, 25°	Léblanc. Ann. (3)
Monochlorethyl trichlor-		1.251, 15°	10, 212. Delaere. Ber. 21, ref. 183.
acetate. Dichlorethyl dichlorace-		1.25, 15°	109.
tate. Trichlorethyl monochlor-		1.25	er er
acetate. Trichlorethyl diehlorace-	$\mathrm{C_4~H_3~Cl_5~O_2}$	1.267	
tate. Hexchlorethyl acetate	$C_4 H_2 Cl_6 O_2$	1.698, 23°.5	Léblanc. Ann. (3),
Heptachlorethyl acetate	C ₄ H Cl ₇ O ₂	1.692, 24°.5	10, 215. Léblanc. Ann. (3),
Propyl monochloracetate_	C ₅ H ₉ Cl O ₂	1.1096, 8°	10, 208. Henry. C. R. 100,
Butyl monochloracetate	C ₆ H ₁₁ Cl O ₂	1.013, 0° } 1.081, 15° }	Gehring. C. R. 102, 1400.
Trichlorbutyl acetate	C ₆ H ₉ Cl ₃ O ₂	1.3440, 8°.5	Garzarolli-Thurn- lackh. Ber. 15, 2619.
Amyl monochloracetate	C ₇ H ₁₃ Cl O ₂	1.063, 0°	Hougouneng. B.S.
Methyl α ehlor propionate	$\mathrm{C_4~H_7~Cl~O_2}$	1.075, 4°	C. 45, 328. Kahlbaum. Ber. 12,
Ethyl a chloropropionate.	C_5 H_9 Cl O_2	1.0869, 20°	344. Brühl. A. C. P.
Ethyl β chloropropionate		1.1160, 8°	Henry. C. R. 100, 114.
Ethyl dichlorpropionate	$\mathrm{C}_5 \; \mathrm{H}_8 \; \mathrm{Cl}_2 \; \mathrm{O}_2$	1.2461, 20°	Brühl. A. C. P. 203, 1.
	((1.2493, 0°	Klimenko. Z. C. 13, 654.
Dichlorethyl propionate		1.282, 8°	Henry. C. R. 100,
Methyl chlorbutyrate			114. Henry. C. R. 101,
Methyl $a \beta$ dichlorbuty-rate. ""	C ₅ H ₈ Cl ₂ O ₂	1.2809, 0° } 1.2614, 18°.3 }	1158. Zeisel. Ber. 19, ref.
Ethyl chlorbutyrate	C ₆ H ₁₁ Cl O ₂	1.2355, 41°.1) 1.0517, 20°	749. Brühl. A. C. P.
"		1.1221, 10°	203, 1. Henry. C. R. 101,
		1.063, 17°.5	1158. Markownikoff. A.C.
Methyl trichlorpropylear- bylacetate.	$C_7 H_{11} Cl_3 O_2$	1.3048, 11°.5	P. 153, 243. Garzarolli-Thurn- lackh. A. C. P.
Chloroenanthic ether	C ₉ H ₁₇ Cl O ₂ . ?	1.2912, 16°.5	223, 149. Malaguti. Ann. (2),
Derivative of chlorinated methyl formate.		·	70, 363. Guthzeit. Quoted by Hentschel.
		1.4741, 27°	Hentschel. J. P. C. (2), 36, 99.
Derivative of chlorinated ether.	$C_5 \stackrel{\text{H}_9}{\text{H}_{11}} \stackrel{\text{Cl}_7}{\text{Cl}} \stackrel{\text{O}_8}{}$.9482, 0°	Lieben and Bauer. J. 15, 494.

NAME.	FORMULA.	SP. GRAVILY.	Антиовиту.
Derivative of chlorinated ether.	C ₆ H ₁₃ CI O	.9735, 0	Lieben and Batter, J. 15, 393,
Chlorecetic anhydride.	$C_4 \coprod_5 C_1 O_3 \ldots \ldots$	1,201, 21	Anthoine, J. Ph. Ch. (5), 8, 417.
Trichloracetic anhydride Tetrachloracetic anhy-	$\begin{array}{cccccccccccccccccccccccccccccccccccc$		
deide. Acetylchloride	$C_2 \coprod_3 O$, $C1$	1,1305, 0 1 +	Gerhardt. J. 5, 414. Kopp. A. C. P. 95,
		1.1072, 10* () 1.10773, 0* () 1.05698, 503,75	307. Thorpe, J. C. S. (37, 871.
	••	. 1.1051, 20 /	Bruhl, A. C. P. 200, 1.
Chloracetyl chloride Propionyl chloride	C ₂ H ₂ Cl O. Cl	1,495, 0° 1,0646, 20°	Wurtz. J. 10, 346, Brühl. A. C. P. 203, 1.
a Chlerepropiony I chloride	•		Henry, C. R. 100, 114.
3 Chloropropionyl chloride Butyryl chloride	C_4 H_7 O , $C1$	1,8807, 182 11,0277, 202	Bruhl, A. C. P.
Isobutyryl chloride Chlorobutyryl chloride =	 С, П ₆ Cl O. Cl	1.0174, 20° 1.257, 17°	203, 1. Markownikoff. A.
		1.2679, 10	C. P. 153, 241, Henry, C. R. 161, 1158,
Valeryl chloride	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	1,005, 62 .9887, 20°	Béchamp, J. 9, 429, Bruhl, A. C. P. 203, 1.
Chlorecetone	$C_{\pm}H_{\pm}CIO_{\pm\pm\pm\pm\pm}$. 1.19	Linnemann. Riche, J. 12, 339.
		_' 1.162, 16°	Linnemann. J. 18, 312.
		1.18. 165	Linnemann. J. 19, 308.
••		1.17	Henry, B. S. C. 19, 219.
i i		1.158, 189	$egin{array}{ll} \mathrm{Clock} & \mathrm{Ann.} \ (6), 9, \\ -145, \\ \mathrm{Kane.} \end{array}$
Dicklorace to a	· · · · · · · · · · · · · · · · · · ·	1 331 1111 1,236, 211 1,326, 02	' Fittig. J. 12, 345. The garten. C. C.
		1.201, 15° e. ş.	1, 580 Closz, Ann. (6), 9, 145,
T = 0.91 inectors P = color inectors			städeler. J. 6, 398
		. [1.617, 8°] .! [1.617, 8°] [1.576, 14°]	Two isomers Cloez. B. S. C. 1 20,638 and 640.
Post and all hayde	С. И ₃ СГО С. И. СГО _{п.}	1 23 1,69, 5 1,502, 18°	Riche, J. 12, 435, Jacobsen, Ber. 8, 88, Liebig, A. C. P. 1,
	1	1,5183,07 1	195. Kopp. A. C. P. 95.

Name.	Formula.	Sp. Gravity.	AUTHORITY,
ZVAME.	T ORMC LA.	DI. GRAVIII.	AUTHORITI.
	C ₂ H Cl ₃ O	1.5448, 0° }	Thorpe. J. C. S. 37,
	ιι	1.3821, 97°.2 } 1.5121, 20°	371. Brühl. A. C. P.
"	ιι ιι	1.54179 } 4°	203, 1.
"	"	1.3692, 97°.73	$\left.\begin{array}{c} \text{Passavant.} \text{C. N.} \\ 42, 288. \end{array}\right.$
"	tt	$\left\{ \begin{array}{l} 1.5292,9^{\circ} \ 1.5197,15^{\circ} \end{array} \right\}$	Perkin. J. C. S.
Parachloralide	$(C_2 \coprod Cl_3 O)_n$	1.5060, 25°) 1.5765, 14°	51, 808. Clöez. J. 12, 434.
Chloral hydrate	$C_2^2H_3$ Cl_3^3 O_2^{7n}	1.901 1.818, 4°, pulv.	Rüdorff. Ber. 12, 252.
		1.848, 4°, eryst.	$\left\{ \begin{array}{ll} \text{Schröder. Ber. 12,} \\ \text{561.} \end{array} \right.$
"		$1.6415, 49^{\circ}.9$ $1.6274, 58^{\circ}.4$	Perkin. J. C. S. 51,
	··	1.6136, 66°.9 <i>)</i> 1.5704)	808. Jungfleisch, Le-
() ()	"	1.5719 66°, l. 1.5771	baigne, and Rou- cher. J. Ph. C.
	C_4 H_7 Cl_3 O_2	1.143, 40°, l	(4), 11, 208. Martins and Men-
	. , , , ,		delssohn-Bar- tholdy. Z. C. 13.
,			650. Jungfleisch, Le-
<i>u u</i>		$\left\{ \begin{array}{c} 1.3286 \\ 1.3439 \end{array} \right\} \ \ 66^{\circ}, l.$	baigne, and Rou-
Chloral amylate			[[(4), 11, 208.
Chiorar amyrate 1111111	C ₇ 11 ₁₁ C ₁₃ O ₂	1,294, 29 1111	Martins and Men- delssohn-Bar-
		1 4531 150	tholdy. Z. C. 13, 650.
Chloracetyl chloral		·	Å. C. P. 171, 65.
Diacetylchloral hydrate Acetylchloral ethylate	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	1.422, 11° 1.327, 11°	
Derivative of chloral	Ce He Cl, O,	1.78, 17° 1.42, 11°	Henry. Ber. 7, 764.
Butyl chloral	$C_4^7 H_5^0 Cl_4^4 \tilde{C}_3 - \cdots - C_4^7 H_5^2 Cl_3^3 O - \cdots$	1.3956, 20°	Brühl. A. C. P. 203, 1.
tt t:		1.4111, 7°	Gladstone. Bei. 9, 249.
Butyl chloral hydrate	C_4 Π_7 Cl_3 O_2	1.693 1.695 1.7422	Schröder. Ber. 12,
Derivative of chloralide	C_5 H Cl_7 O_3	1.7426, 20°	561. Anschutz and Has-
			lam. A. C. P. 239, 300.
Chlorovaleral			A. Schröder Z. C. - 14, 510.
Derivative of valeral "" Dichlorvinyl methyl oxide "" ""	$\left[\begin{array}{ccc} \mathrm{C_{10}} & \mathrm{H_{10}} & \mathrm{Cl_{4}} & \mathrm{O} & \\ \mathrm{C_{10}} & \mathrm{H_{12}} & \mathrm{Cl_{6}} & \mathrm{O} & \end{array} \right]$	1.272, 14° 1.397, 14°	
Dichlorvinyl methyl oxide		$\left\{ \begin{array}{c} 1.2934,0^{\circ}__ \\ 1.1574,100^{\circ} \end{array} \right\}$	Denaro. G. C. 1.
Monochlorvinyl ethyl oxide.	C4 H7 C1 O		Godefroy. C. R. 102, 869.
Trichlorvinyl ethyl oxide	C ₄ H ₅ Cl ₃ O	$1.3725, 0^{\circ}$ $1.2354, 99^{\circ}.9$	Paterno and Pisati. J. C. S. (2), 11, 158.
		1.2001, 00 .0)	. 0.0.0.(2),11,100.

Name	FORMULA.	SP. GRAVITY.	Аптиовиту.
Trichlorvinyl ethyl oxide	C ₄ H ₃ Cl ₃ O	1.8822, 19°	Godefroy, C. R. 102, 869.
Methylene sceto-chloride	C_3 Π_5 $C1$ O_2	1.1953, 14°.2	Henry, B. S. C. 20,
Ethylene aceto-chloride	$C_4 \coprod_7 C1 O_2$	1.1780, 0° 1.114, 15°	Simpson, J. 12, 487, Franchimont, J. C. S. 44, 452.
Ethylene butyro-chloride Ethylidene oxychloride	C ₆ H ₁₁ Cl O ₂	1.0854, 0° 1.1076, 12° 1.136, 14°.5	Simpson, J. 12, 489, Lieben, J. 11, 291, Laatsch, A. C. P. 218, 13.
Ethylidene aceto-chloride.	С, П, С1 О,	1.114, 15°	Rubencamp, A. C.
Ethylidene propio-chlo-	$\left[\begin{array}{ccc} \mathrm{C}_{5} \mathrm{~H_{9}} \mathrm{~Cl~O_{2}} \end{array} \right]$	1.071, 15°	P. 225, 267.
ride. Ethylidene butyro-chlo-	$C_6 \Pi_{11} Cl O_2$	1.038, 15°	
ride. Ethylidene valero-chloride Aldehydemethyl chloride Trichlordimethyl acetal	$\begin{array}{cccccccccccccccccccccccccccccccccccc$.997, 15° .996, 17° 1.28	Magnanini. G. C. I.
Trichlormethylethyl ace-	$C_5 \stackrel{\cdot}{\Pi}_9 \stackrel{\cdot}{Cl}_3 \stackrel{\cdot}{\Omega}_2 = \dots =$	1.32	16, 330.
tal. Chloracetal	C ₆ H ₁₃ C1 O ₂	1,0195 1,0418,0°	Lieben. J. 10, 437. Paterno and Mazzara. J.C.S. (2), 11, 1217. Klien. J. C. S. 31,
Dichloracetal Trichloracetal	$\begin{array}{c} \mathbf{C_6} \coprod_{12} \mathbf{Cl_2} \mathbf{O_2} \\ \mathbf{C_6} \coprod_{11} \mathbf{Cl_3} \mathbf{O_2} \\ \vdots \\ \vdots \\ \vdots \\ \end{array}$	1.1383, 11° 1.2813, 0° 1.2655, 22°.2 1.1617, 99°.96	291. Lieben. J. 10, 436. Paterno and Pisati. J. C. S. (2), 11, 258.
		1.288	Byasson, C. N. 38, 46, B. V. 20, 45, B. 70
Trimethylene chlorhydrin Propylene chlorhydrin		1.132, 17° 1. 1.1302, 0° 111	
	 h C ₄ H ₈ Cl ₂ O	1,0335, 0°	Oppenheim. J. 21, 340. Occonomides. Ber. 14, 1568.
Hexylene chlorhydrin	- С ₆ Н ₁₃ СТО	$= \frac{1.0143}{1.018} + 11^{\circ} =$	
Hexylene aceto-chloride Heptylene chlorhydrin	$\begin{array}{c} C_s \prod_{15} Cl O_s \\ C_t \prod_{15} Cl O \end{array}$	1.014, 6° 1.014, 0° 1.001, 11°	
Octylene chlorhydrin	С, П, С10 1.	1.003, 0°	
Octylene aceto-chloride	. C_{10} $H_{\frac{1}{12}}$ $C1$ O_2	$\{1.026, 0^{\circ}\}\$	- 4.6
Dichlorethoxyethylene.	C ₄ H ₆ Cl ₂ O	1.08, 108	Geuther and Brock- hoff. J. P. C. (2), 7, 114.
Pentachlorpropylene ox	- C, H Cl ₅ O	d1.5	Cloez. Ann. (6), 9,
Ethyl-glycollic chloride Chlorolactic ether	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	1.145, 1° 1.145, 0°	Henry. J. 22, 531, Wurtz. J. 11, 254.

NAME.	Formula.	SP. GRAVITY.	Authority.
Ethyl chloromalonate	C ₇ H ₁₁ Cl O ₄	1.185, 20°	Conrad and Bisch- off. A. C. P. 209,
Ethyl ethylchloromalo-	C ₉ H ₁₅ Cl O ₄	1.110, 17°	221. Guthzeit. A. C. P. 209, 233.
nate. Ethyl chlorisobutylmalonate.	C ₁₁ H ₁₉ Cl O ₄	1.094, 15°	Conrad and Bisch- off. Ber 13, 600.
11 44	"	1.091, 15°	Guthzeit. A. C. P. 209, 237.
Succinyl chloride	$C_4 H_4 Cl_2 O_2$	1.39	Gerhardt and Chiozza. C. R. 36, 1052.
Chloromaleic ether	C ₈ H ₁₁ Cl O ₄		Henry. A. C. P. 156, 179.
Ethyl chloracetacctate	с н сіо	1.178, 20° 1.19, 14°	Frank. Ber. 10, 928. Allihn. Ber. 11, 569.
Ethyl dichloracetacetate	$\begin{bmatrix} \mathbf{C_6} \ \mathbf{H_9} \ \mathbf{Cl} \ \mathbf{O_3} \ \dots \ \\ \mathbf{C_6} \ \mathbf{H_8} \ \mathbf{Cl_2} \ \mathbf{O_3} \dots \end{bmatrix}$	1.293, 16°	Conrad. A. C. P. 186, 234.
Ethyl chloracetopropionate.	C ₇ H ₁₁ Cl O ₃	1.196, 21°	Conrad and Guth- zeit. Ber. 17, 2287.
Ethyl monochlormethylacetacetate.	C ₇ H ₁₁ Cl O ₃	1.093, 15°	Isbert. A. C. P. 234, 160.
Ethyl dichlormethylacet-acetate.	$\mathrm{C_7~H_{10}~Cl_2~O_3}$	1.2250, 17°	Isbert. Jena Inaug. Diss. 1866.
Ethyl monochlorethylacetacetate.	С ₈ Н ₁₃ С1 О ₃	1.0523, 15°	Isbert. A. C. P. 234, 160,
Ethyl dichlorethylacetacetate.	$\mathrm{C_8~H_{12}~Cl_2~O_3}$	1.183, 1 5°	
Ethyldiethylchloracetacetate.	$\mathrm{C_{10}~H_{17}~Cl~O_3}$	1.063, 15°	James. J. C. S. 49, 50.
Ethyl diethyldiehloracetacetate.	$\mathrm{C}_{10}\ \mathrm{H}_{16}\ \mathrm{Cl}_2\ \mathrm{O}_3$	1.155, 15°	
Acetotrichlorethylidene aeetie ether.	$C_8 H_9 Cl_3 O_3$	1.342, 15°	Matthews. J. C. S. 43, 203.
Monochlorhydrin	C ₃ H ₇ Cl O ₂	1.81 1.4, 13°	Berthelot. J. 6, 456. Henry. J. C. S. (2), 13, 346.
Diehlorhydrin	$C_3 \stackrel{``}{H_{6}} Cl_2 O {=}$	1.328, 0° 1.37 1.3699, 9°	Hanrict: Ber. 10,727. Berthelot. J. 7, 449. Henry. A. C. P. 155,
		1.855, 17°.5	324. Gegerfeldt. Z. C. 13, 672.
	"	1.383, 0° }	Markownikoff. J. C. S. (2), 12, 241.
"		1.3799, 0° }	Tollens. A.C.P. 156,
Epichlorhydrin	C ₃ H ₅ Cl O	1.3681, 11°.5 } 1.204, 0°	164. Darmstaedter. J. 21, 454.
	"	1.194, 110	Reboul. J. 13, 456.
"	"	1.20313, 0° 1.05667,116°.55	Thorpe. J. C. S. 37, 371.
	"	$\left\{ \begin{array}{c} 1.05667,116^{\circ}.55 \\ 1.0588 \\ 1.0598 \end{array} \right\}$ 115°.8	Schiff. Ber. 14,
	٠٠	1.0000	2768.
"	"	1.194, 11°	Člöez. Ann. (6), 9, 145.
Ethyl monochlorhydrin	C ₅ H ₁₁ Cl O ₂	1.117, 11°	Henry. J. C. S. (2), 13, 346.

Name.	FORMULA.	Sp. Ghavily.	Acareans
DeclayI mone chlorhydrin	$C_7(\Pi_{\stackrel{\bullet}{\Omega}_{\mathcal{A}}}C)(O_2)=0$	1 03, 101,5 1,005, 172	Alsherg, J. 17, 196, Reboulfedd Leurens- ge - J. 14, 674
As al monochlerhydrin As too blothydrin	$\overset{C}{\leftarrow}\overset{H_{17}}{\rightarrow}\overset{Cl}{\leftarrow}\overset{O_2}{\rightarrow}{\rightarrow}$	1,00,20 1,27,0	Relocal, J. 15, 464, Henry, J. C. S. 2, 13, 346,
As to-de laborhydrin	$C_{\mathbb{R}}[\Pi_{\mathbb{R}}^{-}C]_{\mathbb{R}}[O_{2}]$	1,250, 11 1,271, 8	Truchot, J. 18, 507 Henry, Ber 4, 701.
Den it wilderhydrin Betyr ode blorhydrin Vale ode blerhydrin Bet nyl monochlorhytrin	$\begin{array}{c} C_7 \; H_{11} \; C \; O_4 \\ C_7 \; H_{12} \; C \; O_7 \\ C_7 \; H_{14} \; C \; O_8 \\ C_7 \; H_{14} \; C \; O_8 \end{array}$	1.214. F 1.194. H 1.199. H 1.2921 175	Truehot, J. 18, 7 1
B. Senyl (Cehl erhyddin Bestenyl epochlorhydrin D. 31M dichlorhydrin Chloraffyl alcohol	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	1.274, 16 1.008, 152 1.4, 7 1.164, 197	Henry, Ber. 7, 416, Henry, Ber. 15,
Cid or Hyladechol		1,162,152	Romburgh, Ber. 15, 245,
. We thy lehlorally learbined	C 11 ₉ C1 O	1.05521, 11 .1	Garzarolli - The on hachh, A C P 223, 119.
Chlorerotyl ale diol	C, H, C) O	1.1812. 152	Gerzaroll, Thurr - lackh, Bez 15, 261).
Mothylichlorerotomite 222	C, H, Ci O,	1.143, 15 1.0933, 4 ·	Frohlich, J. 22, 547, Kahlbaum, Ber 12, 511
Ethyl chlorer denate	$C_n \coprod_{i \in \mathcal{C}} Cl(O_2, \ldots, O_n)$	1,110, 15° 1,129, 15	Frohnel, J. 22, 547 Claus, A. C. P. 191, 64
Call cethylacetylene tetra- earlience ether.	C_{16} H , Cl O_{π}	1.0%4,20%	Bischoff and Rev. Ber. 17, 270
Catraconyl chloride	$C_1 \Pi_1 Cl_2 O_2 = 1 \cdots .$	1,40, 153	Gerhardtar I Chi i- ra. J. C. 391
**	••	1,498, 16 ,1	O. Streeker Ber. 15, 1649
Prop lphycite trichl a- hydrin.	CH,CO	1.4824.112	Wolff, Z. € 12. 465.
Dallibrold and d Denovative of isobutyl al-	$\frac{C_{i_1}\Pi_{i_1}C_{i_2}\Theta_2}{C_{i_1}\Pi_{i_1}C_{i_2}G_{i_2}}=$	4,082, 7, 19 1997, 15	Lefort J. b. 151 Boquillor, J. C. s.
Deriv tive of isolacyle neid	$C_{i}^{-}(\Pi^{+}C_{i}) = O$	1.471, 10	Dendarquy, Ber 12, 380
Call applicated	C, 11 (, O	1,36%,20%,5	Petersen and B of S Predari A C P 157, 125.
Control thy lighten d	$e_{\pm}\Pi_{\pm}e_{\pm}\phi$	1.182.9	Henry, Z C 15 247
Ch' aparakres d	• •	$1.2106, 25^{\circ}$.	Schall and Draile. Ber. 17, 2529
Chest methylpical resol Chest inylphenol	C. II. (10)	1.11 (0, 25° 1.106, 9°	Henry, Z C, 10, 247.
Methyleidorphenet d. a $\beta = -$	C, II _{II} Cl O	1.127, 19°.5 + 1.131, 18°)	Wroblevsky, Z. C.

Name.	FORMULA.	SP. GRAVITY.	Аптиовіту.
Chloranethol	C ₁₀ II ₁₁ Cl O	1.1154, 0°	Ladenburg. Z. C. 12, 575.
		1.191, 20°	Landolph. C. R. 82.
Metachlorsalicylol Metachlorbenzoic acid Ethyl metachlorbenzoate	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	1.29, 8° 1.29 .981, 10° 1.3278, 0°	Henry, J. 22, 509. St. Evre. J. 1, 529.
Ethyl orthodichlorbenzo- ate.			Beilstein. Ber. 8, 435. Morley and Green.
Chlorisopropyl benzoate Derivative of benzoic ether	C ₁₀ H ₁₁ Cl O ₂ C ₁₈ H ₁₆ Cl ₆ O ₃	1.172, 19°	J. C. S. 47, 135. Malaguti. Ann. (2)
Benzyl monochloracetate	$C_{18} H_{16} O_{16} O_{3}$	1.2223, 4°	70, 375. Seubert. Ber. 21
Benzyl dichloracetate	C_9 H_8 Cl_2 O_2	1.3130, 4°	281.
Benzyl trichloracetate Benzoyl chloride	$C_9 H_7 Cl_3 O_2$	1.3887, 4° 1.196	 Wöhler and Liebig.
tt	t (1.250, 15°	A. C. P. 3, 262. Cahours. J. 1, 532
· · · · · · · · · · · · · · · · · · ·	(,	1.2324, 0° } 1.2142, 19° } .9857, 198°	Kopp. A. C. P. 95 307. Ramsay. J. C. S.
		1.2122, 20°	35, 463. Brühl. A. C. P
Chlorodracylic chloride			285, 1. Emmerling. Ber. 8
Toluyl chloridePhenylacetic chloride	C ₈ H ₇ Cl O	1.175 1.16817, 20°	881. Cahours. J. 11, 265 Anschützand Berns Ber. 20, 1390.
Cumyl chlorideAnisyl chloride	$C_{10} H_{11} Cl O$ $C_8 H_7 Cl O_2$	1.07, 15° 1.261, 15° 1.207, 16°	Cahours. J. 1, 534 Cahours. J. 1, 538
Cinnamyl chloridePhtbalyl chloride	C_3 H_4 Cl_2 O_2	1.207, 16°	Cahours. J. 1, 535 Brühl. A. C. P. 235, 1.
Dichloracetophenone	$C_8 H_6 Cl_2 O$	1.338, 15°	Gautier. Ber. 20 ref. 12.
Trichloracetophenone Chlorobenzyl ethylate Ethyl benzylchlormalo-	$C_8 \ H_5 \ Cl_3 \ O \ \ C_9 \ H_{11} \ Cl \ O \ \ C_{14} \ H_{17} \ Cl \ O_4 \ \$	1.427, 15° 1.121, 14° 1.150, 19°	Naquet. J. 15, 420. Conrad. Ber. 13,
nate. Benzodichlorhydrin Trichlorphenomalic acid Tetrachlorethyl camphor- ate.	$\begin{array}{c} C_{10} \; H_{10} \; Cl_2 \; O_2 \\ C_7 \; H_7 \; Cl_3 \; O_5 \\ C_{14} \; H_{20} \; Cl_4 \; O_4 \end{array}$	1.441, 8° 1.5 1.386, 14°	2159. Truchot. J. 18, 503. Carius. J. 1866, 561. Malaguti. Ann. (2). 70, 360.
Santonyl chloride		1.1644	
Derivative of bergamot oil	6 (C_{10} Π_{16}). 2 Π Cl . Π_2 O		Ohme. A. C. P 31, 318.

LIII. COMPOUNDS CONTAINING C, CL, N. OR C, H, CL, N.

NAME	FORMULA.	SP. GRAVITY.	AUTHORITY.
Calor sectonitrile			Bisschopinck, B. S. C. 20, 450.
**		1.193, 20°	Engler, Ber. 6, 1003,
Dichloracetonitrile		i	Bisschopinck. B. S. C. 20, 450.
Trichloracetonitrile.	C ₂ Cl ₃ N	1.114 1.439, 12°.2	Dumas, J. 1, 593, Bisschopinek, B. S.
	(1 11 (11 N	1 101 150	C, 20, 450.
Dichlorpropionitrile; Chlorobutyronitrile	C	_ 1.461, 10°	Otto. J. 13, 400.
] 1158.
Dichlorethylemine	$-\mathrm{C}_2$ H_5 Cl_2 N	_ 1.2397, 5° }	Tscherniak, Ber. 9,
Chloroxalmothylin		- 1.2300, 15° ∫	147.
Chloroxalmo thylin	C_4 H_5 Cl N_2	1.2478, 16°	Wallach and Schulze, Ber. 14, 424.
Chlorocaletivlin	C. H. Cl N.	1.1420, 159	
Chlorogalethylin		1.142	Wallach and Strick-
			er. Ber. 13, 512.
Chloroxalpropylin	$C_s H_{13} Cl N_2$	1.0900	Wallach and Schulze. Ber. 14, 421.
Orthochloraniline	C ₆ H ₆ Cl N	1.2338, 00	Beilstein and Kurba- tow. Ber. 7, 487.
Motachloraniline		1.2432, 0°	Beilstein and Kurba- tow. A. C. P. 176, 45.
Chlorotoluidine, B. 222	C, H _s Cl N	1.151, 20°	
0 B 23%		1.1855, 20°	
· B. 2.7°—212	**	1,203, 190	
6 B. 236°		1.175, 18°	Henry and Radzis- zewski. Z. C. 12, 542.
Chlorpicoline	C ₆ H ₆ CLN	1.146, 20°	Ost. J. P. C. (2), 27, 278.
Orthochlorchinelane	C ₀ H ₀ Cl N = 1	. 1.2752, 16°.2 + . 1.2754, 16°.6 +	Bollewig, Tübingen
Perachlorchinoline .		1.3768, 142.6 (
	• •	1,3766, 15%	
Chloride from methylunical	C.H. N. C.	1,6273, 219.8	Behrend, A. C. P. 229, 26.

LIV. COMPOUNDS CONTAINING C, CL, N, O, OR C, H, CL, N, O.

Name.	FORMULA.	Sp. Gravity.	Антновиту.
Chloronitromethane	$\mathrm{C}\;\mathrm{H_2}\;\mathrm{Cl}\;\mathrm{N}\;\mathrm{O_2}$	1.466, 15°	Tscherniak. Ber. 8,
Dichlordinitromethane	$C Cl_2 N_2 O_4$	1.685, 15°	609. Marignae. Watts'
Chlorpierin Diehloramyl nitrite	$\begin{array}{c} \text{C } \text{Cl}_3 \text{ N } \text{O}_2 \\ \\ \text{C}_5 \text{ H}_9 \text{ Cl}_2 \text{ N } \text{O}_2 \end{array}$	1.6657 1.69225, 0° 1.48444, 111°.9 1.233, 12°	Dict. Stenhouse. J. 1, 540. Thorpe. J. C. S. 37, 371. Guthrie. J. 11, 404.
Trichloracetyl eyanide	C_3 Cl_3 N O	1.559, 15°	Hofferichter. J. P. C. (2), 20, 195.
Trichloracetic dimethylamide.	C ₄ II ₆ Cl ₃ N O	1.441, 15°	Franchimont and Klobbie. Ber. 20, ref. 690.
Ethylene chloronitrin	C_2 H_4 Cl N O_3	1.378, 21°	Henry. Ann. (4), 27, 243.
Propylene chloronitrin Dichlormethoxylacetoni- tril.	$C_3^{"}$ $H_3^{"}$ Cl_2 N $O_{}$		Bauer. A. C. P. 229, 163.
Dichlorethoxylacetonitril_Dichlorpropoxylacetoni-tril.	$\begin{array}{c} \mathrm{C_4\ H_5\ Cl_2\ N\ O} \\ \mathrm{C_5\ H_7\ Cl_2\ N\ O} \end{array}$	1.3394, 15°.5 1.2382, 15°.5	" "
Dichlorisobutoxylacetoni- tril.	C ₆ H ₉ Cl ₂ N O	1.1226, 15°.5	
Monochlordinitrin	$\mathbf{C}_3\ \mathbf{H_5}\ \mathbf{Cl}\ \mathbf{N}_2\ \mathbf{O_6}$	1.5112, 9°	Henry. A. C. P. 155, 168.
Diehlormononitrin Chlorazol	$ \begin{bmatrix} C_3 & H_5 & Cl_2 & N & O_3 & \dots \\ C_4 & H_3 & Cl_3 & N_2 & O_4 & \dots \end{bmatrix} $	1.465, 10° 1.555	Mühlhaüser. J. 7,
Dichlornitrophenol	$C_6 ext{ II}_3 ext{ Cl}_2 ext{ N } ext{ O}_3 ext{}$	1.59	Fischer. A. C. P., 7th Supp., 185.
Chlornitrobenzene	C ₆ H ₄ Cl N O ₂	1.358, 0°	Sokoloff, J. 19, 552.
	"		Jungfleisch. J. 21, 345.
" Meta		1.534	Schröder. Ber. 13, 1070.
" Para		1.380, 22°	Jungfleisch. J. 21, 343.
Chlordinitrobenzene			Jungfleiseh. J. 21, 345.
e		1.6867, 16°.5	Jungfleisch. J. 21, 346.
		1.72, 18°	Engelhardt and Latschinoff, Z C. 13, 232.
Dichlornitrobenzene		1	Jungfleisch. J. 21, 348.
Trichlornitrobenzene	ł		Jungfleisch. J. 21, 351.
Dichlordinitrobenzene	C ₆ H ₂ Cl ₂ N ₂ O ₄	1.7103, 16°	Jungfleisch. J. 21, 348.
Trichlordinitrobenzene	C ₆ H Cl ₃ N ₂ O ₄	1.850, 25°	

-	1			
N v30	Fount (A.		SP GRAVITY.	Астновиту.
-		-		
Tetr chlornitrob nzene	C, H Cl, N O,		1.714. 251	Jungfleisch, J. 21, 353,
Pentachlornitroben 2 m	$C_{\kappa} \leftarrow N \Theta$		1,718, 25	Aungtleisch, J. 21, 354
Chlornitrotoluene	1 C. $\mathrm{M_{o}}$ C. N.O		1,307, 15	Wroblevsky, Z C, 12, 683.
* *		_	1,0259, 18	4.0
**			1,200, 20	Wroblevsky, Ber. 7, 1062.
Parachlormetanitrotolu- ene.			1.297, 227	Gettermann and Kaiser. Ber. 18. 2600.
Dichlornitrotoluene	$[C_{\tau}]\Pi_{\tau}[C]_{\tau}[N]O_{\tau\tau\tau}$		1, 155, 17°	Wroblevsky and Pirogoff, Ber 3, 203,
Derivetive of acetanilide	C, H, C, X, O		1.0890, 207	Witt Ber, S. 1227.
Derivative of protein			1.028	Muhlhauser, J. 7, 671.
A4 10 10 10 10 10 10 10 10 10 10 10 10 10	$C_1 \cdot \Pi_{12} \cdot C1 \cdot N \cdot \Theta_4$		1,360	

LV. COMPOUNDS CONTAINING C. H. AND BR.

1st. Bromides of the Paraffin Series

	N $\chi_{\rm M}$	E		Fo	RMULA.	SP. GRAVITY	Аттиовиту.
Methyl	bromid	, .	€,	H 16:		1,66443, 0	Pierre C R.27,213
	* *					1.732	Two lots Merrill.
						1.7116 () (P. C. (2), 18, 29,
1.4				* -		$1.73206, 15 - \epsilon$	Perkin, J. P. C. (2)
+ 6		_				1,72045, 251 (31, 481,
4.4						1,46576, 15	
* *						1,450947, 18 1	
4.6						1, 45554, 20	11.
6 .						1,45049,21	Weegmann Z P.C
1 .						1,447-88,24	2, 218,
						1,44122,27	
Ethyl l	romide		- C,	н, в	r .	1.40	Lowig. A, C. P. 3
	4.4					1,47029,03	Pierre C R 27, 21;
						1,4600,20	Haugen, P A 13 117.
						1,4621, 9	Delin, A. C. P., 49 Supp., 85
	.,			* *		1,4685,107,5	Linnemann A. C P. 160, 195.
						1,4189, 155	Mendelejetf, J. 13.
				h +		1,4775,51,10)
h h	4.4						- Regnault. P .
			- 1			1,4582,157-20	1 62, 50
	1.4					1.47, 15°	Gladstone and Tril

					1	
	Nam	E.	F	ORMULA.	Sp. Gravity.	Аптновіту.
Ethyl	bromide	;	$\mathrm{C_2H_5I}$	Br	1.4069, 20°	Naumann. Ber. 10 2016.
4.6	. (1.4579, 14°	De Heen. Bei. 5, 105
4.	44				1.4134, 38°.4	Schiff. Ber. 19, 560
4.6	" "				1.44988, 15°	Perkin. J. P. C. (2)
			(i		1.43250, 25° }	31, 481.
•		le		Br	1.353, 16°	Chapman and Smith J. 22, 360.
• •	4.4				1.388, 0°	Rossi. A. C. P. 159
	"		"		1.3497, 0° }	-
			- 44			Pierre and Puchot
44	"		"		1.2589, 54°.2)	Ann. (4), 22, 284
"	"		"		1.3577, 16°	Linnemann. A. C. P. 161, 40.
"	4.6		44		1.3520 } 200 {	Brühl. A. C. P.
			٠.		1.09.00	203, 1.
- 4			44		1.3617, 14°	De HeenBei. 5, 115.
• •	• •				1.3835, 0° }	Zander. A. C. P. 214
	4.4		١.		$\{1.3835, 0^{\circ} = 1.2639, 71^{\circ} \}$	181.
••	4.6				1 1100110, 10	Perkin. J. P. C. (2)
• 4	44		4.6		[1.34739, 25°]	31, 481.
Isoprop	pył bron	nide			1.320, 13°	Linnemann. J. 18. 489.
• 6			44		1.33, 21°	Linnemann.
"			"		1.248, 20°	Linnemann. A. C. P. 161, 18.
64			4.4		1.2997	
			44		1.5007 > 20° (Three lots. Brühl.
4.6	4.6		11		1.3117	A. C. P. 203, 1.
4.5	4.4		4.4		1.3397, 0° }	Zander. A. C. P.
	14		4.4		1.2368, 60°	214, 181.
4.4	4.6		• •		1.31978, 15°)	Perkin. J. P. C. (2),
4.4			* 6		1.30522, 25° /	31, 481.
Butyll	$_{ m bromide}$		C_4H_9I	3r	$1.305,0^{\circ}$	
4.4					1.2792, 20°	Lieben and Rossi.
11	4.6		٤.		1.2571, 40°	A. C. P. 158, 137.
"			64		1.2990, 20°	Linnemann. Ann. (4), 27, 268.
4.4	"		11		1.2605, 14°	De Heen. Bei. 5, 105.
		de	**		1.274, 16°	Wurtz. J. 7, 572.
"	"		٤.		1.2702, 16°	Chapman and Smith. J. C. S. 22, 153.
	"		4.4		1.249, 0°)	•
11	"		• •		1.191, 40°.2	Pierre and Puchot.
"	"				1.1408, 73°.5	Ann. (4), 22, 314.
"	4.4				1.2038, 16°	Linnemann. A. C. P. 162, 1.
::	44		4.6		1.1456, 90°.5	Schiff. Bei. 9, 559.
	44		4.6		1.27221, 15°)	Perkin. J. P. C. (2),
	44		4.4		1.25984, 25°	31, 481.
Trimet	hylearb	yl bromide_	44		1.215, 20°	Roozeboom. Ber. 14, 2396.
44		"	44		1.20200, 15°)	Perkin. J. P. C. (2),
4.6		"	"		1.18922, 25°	31, 481.
Norma	l pentvl	bromide	$C_5 H_n$	Br	1.246, 0°)	Ja, 2
"	10011	"	5 -ii		1.2234, 20°	Lieben and Rossi.
"	"	"	"		1.2044, 40°	A. C. P. 159, 70.

Name.			Fore	TULA.	SP. GRAVITY.	Антиониту.	
Amyl	bromid	t.	C. H., Br		1,16576, 0	Pierre, C. R. 27, 213	
	* 1		3		1.217, 16°		
4+	4.6		**		1.2015, 202	Haegen, P. A. 131	
4.1			* 4		1,2059, 15°,7	Mendelejeff, J. 13, 7	
	4.6		4.4		* 1.0502, 120°	. Ramsay, J. C. S . 35, 463.	
4 4	4 +		4.4		L.2002, 14°	. De Heen, Bei, 5, 105	
4.4	4 +		4.4		1.0126 / 1170 1	(Schiff, Ber. 14 (4 - 2766)	
6.4	4 +		4.4		1.0127 (117)	2766.	
4.4	4.6		4.4		1,2055, 220	Lachowicz, A. C. P 220, 171.	
4.4	4.4		4.4		1.0881, 118 .5.	Schiff, Ber. 19, 560	
* *		Active			1.225, 15°	Le Bel. B. S. C. 25	
		Imective			1.2058, 0°	Balbiano, Ber. 9 1437.	
4.	4.		h +		1.21927, 152 /	Perkin, J. P. C. (2)	
Norm	al hexy	l bromide.	$C_{\nu}H_{13}$ Br				
* *		**				Lieben and Janecek	
	• •	4.4				J. R. C. 5, 156.	
Norm	al hepty	vl bromide	C ₇ H ₁₅ Br		1.133, 167	Cross, J. C. S. 32 123.	
Secon	dary her	ptyl bromide	٠.		1,422, 173,511	Verable, Ber, 13 1650.	
Norm	al octyl	bromide	C. H. Br		1.116, 162		
		4.6				Perkin, J. P. C	
6.	4 +	4.4				(2), 31, 481.	
Secon	dary oc	tyl bromide			1.0989, 221	Lachowicz, A. C. P 220, 185.	

2d Bromides of the Series $\boldsymbol{C}_{_{\mathrm{S}}}(\boldsymbol{H}_{_{2n}},\boldsymbol{Br}_{_{2n}},\boldsymbol{H}_{_{2n}},\boldsymbol{Br}_{_{2n}})$

	NAME.		Ровмину	Sp. Gravity. Authority.
Methylene		r I	· H. Bry	2.0844, 11 . 5 Steiner, Ber. 7, 507, 2.1930, 0
• •	 bromide		 H. Br. C H. Br	2,49850 2,499022 2,47840 2,47745 2,104,215 Regnault, Ann. 24,
e.				59, 358, 1 2.128, 131
4.6	44			2.16292, 20°.1 Pierre C R 27, 213.
"	44		4.	2.179 Butlerow, J. 14, 652, 12,1827, 20° Haagen, P. A., 131, 1 = 117.

Name.			FORMULA.		Sp. Gravity.	AUTHORITY.
Ethylene bromide			C H ₂ Br. C	H ₂ Br	2.198, 10°	Reboul. Z. C. 13, 200.
"	4.4		"		2.21324, 00	Thorpe. J. C. S.
**			.:		1.93124,1310.45	
	44				2.1785, 20° (Anschütz. A. C. P.
44	4.4		"		2.1767, 21°.5	221, 133.
4.4	44		"		1.9246, 130°.3	Schiff. Ber. 19, 560.
"	44		"		2.18895, 15°)
4.4	44		٤٠		2.17271 } 25°	Perkin. J. P. C.
4.1	44				$\{2.17197\}^{-29}$	(2), 32, 523.
"	44		"		2.17681, 20°	Weegmann. Z. P. C. 2, 218.
Ethylidene	bromic	le	C H3. C H	Br	2.185, 0°	Caventou. J. 14, 608.
""	"		""		$\frac{2.129}{2.129}$ } 10° {	Reboul. Z. C. 13,
"	"		"		$ 2.132 ^{10^{\circ}}$	200.
"	"		"		2.0822, 21°.5	Auschütz. A. C. P. 221, 133.
44	4.4				2.10006, 17°.5	(Angelbis Frei-
44	"		"		2.08905, 20°.5	burg Inaug. Diss. 1884.
"			""		2.10297, 15° \	Perkin. J. P. C.
4.4	44		"		2.08540, 25° ∫	(2), 32, 523.
"	"				2.05545, 20°	Weegmann. Z. P. C. 2, 218.
	ne bron	nide	CH ₂ Br.CH	₂ . CH ₂ Br	2.0177, 0°	Geromont. A. C. P. 158, 370.
"	'		11		1.98 3 9, 13°.5	Reboul, J. C. S. 36, 127.
"		'	"		1.9228	Freund. Ber. 14, 2270.
4.4			"		2.0060, 0° }	Zander. A.C.P. 214,
4.6			""		1.7101, 165°	181.
4.4			. (1.98236, 15° (Perkiń. J. P. C. (2),
"		٠	"		1.96836, 25° ∫	32, 523.
Propylene l		e	CH ₃ . CH B	r. C $ m H_2Br$		Reynolds. J. 3, 495.
"	"		"		1.974	Cahours. J. 3, 496.
"	"		.,		1.955, 9°	Reboul. Z. C. 13, 200.
"	"		"		1.954, 15° }	Linnemann. A. C.
" "	"		"		1.950, 16° }	P. 136, 53.
"	"		٠:		1.943, 17°	Linnemann. A. C. P. 138, 123.
"	44		"		1.972, 0° }	Erlenmeyer. A. C.
"	"		"		1.946, 17° }	P. 139, 226.
"	"		"		1.9586, 0° (Two products.
	"		""		1.9256, 20°	Friedel and La-
	"			~-	$1.9710, 0^{\circ} = $	∫ denburg. B. S.
"	"		"		1.9383, 20°	C. 8, 146.
	"		"			Linnemann. A. C.
"	"		"		1.9465, 15°)	P. 161, 42.
"	"					Zander. A. C. P.
"	"		"		1.6944, 141°.7	3 214, 181.
"	"		"		1.8893, 18°	Gladstone. Bei. 9,
"	"				1.910, 21° 5	249.
"	"		"		1.94426 15°)
"	"		"		1.94474)	Perkin. J. P. C.
46	"		"		1.93004 } 25°-) (2), 32, 523.
	••		••		1.93030 } 29 -	

	·		1		Su Carrer	11.11
	NAME.		POEMU	1. 1.	-1: 4:1: 1 / i l /	Атиновиту
	i Meil i Meil		сп, св	. СП.	1.8119. 0 · · · · · · · · · · · · · · · · · ·	Friede i and L. Jerbarge. B. S. C. S. 150.
	1/ 1.	:			1,805, 0	13 boul, Z. C. 1 200.
			4.4			Reboul. (Perkin, J. P. C.)
.;	Example.	(".H , CHB:	CH.Br	1.83140, 25 (c) 1.870, 0 (c)	32, 523. Warth J 22, 3
					1.5504.07	Grebowsky of a Saytzehl, A.
n .		1	си, спі	3: C11	151.91.0	P. 179, 632.Wuren, J. 20, 57
	1.				1.500 11	
					1.7215.70 .3 1. 75.100s	Probett, Ann 28,544,
					1.74 (4) 1.75 (4) 7 (8)	P = 01 1 P
					1,742 (1, 27)	2 . 42, 521
John Y	lene bros ild		С, П, В.:		1.7 (1)	Two control of L.
• •					1 11	1 2.4. 8: 1. Ben 118:
	e they be they be		С.П., (СПП	try CII	1.7.0	1. (.). (.).
eranž.	lere i e di		C_1 H_{11} Dr_2		1 111 0	$He^{\alpha}_{(7)} \stackrel{\circ}{\underset{\sim}{\longrightarrow}} \Lambda \stackrel{\circ}{\longrightarrow} \Lambda$
* *					1. • 2	$\frac{G(x_1,x_2,x_3,x_4,\dots,x_n)}{2!}$
	•				1. 1000 15 1. 1000 1 25	1 : Cn
	ne ir mak		$C_6 H_1, Br_2 $		1. (24) ²⁷ 1. (2.1)	Pite, that t
					1,575,18	The grant is
						V. C. P. 105, 5 H) Lit and Sc. V. C. P. 172, 6
					1.61-7.0	Helling, A. C.
	n c' - mide					172, 281,

3d. Miscellaneous Non-Aromatic Bromides,

			-			1	
NA		Formu	LA.	SP. GRAVITY	AUTHORITY.		
Bromoform _	СН	Br ₃		2.13	Löwig. A. C. P. 3		
			""			2.9, 12° 2.775, 14°.5	Cahours. J. 1, 501.
			"			2.43611, 1510	6- Thorpe. J. C. S. 37.
16			11			$\left\{ \begin{array}{c} 2.90246 \\ 2.90450 \end{array} \right\} 15^{\circ} \\ \left\{ \begin{array}{c} 2.88253 \\ 2.88253 \end{array} \right\} 25^{\circ} \end{array}$	Perkin. J. P. C.
Bromethylene		omide_	C H ₂	Br. C H	Br ₂	2.88421	Wurtz. J. 10, 461.
""				"		2.659, 0°	. Caventou. J. 14, 608.
e e 4 e	ı	·		"		2.6189, 17°.5	Demole. Ber. 9, 49. Anschütz. A. C. P.
**		'	G II	"		2.57896, 20°	Weegmann. Z. P. C. 2, 218.
Tetrabrometh "	ane			11	r ₃	2.88, 22° 2.93	
6.6 6.6				ee ee		$egin{array}{c} 2.9292, 17^{\circ}.5 \\ 2.9216, 21^{\circ}.5 \\ 2.88249, 16^{\circ}.6 \end{array}$	221, 133.
6 6 6 6 6 6				"		$\left[\begin{array}{c} 2.87687, 19^{\circ}.1 \\ 2.87482, 20^{\circ} \end{array} \right]$	
44				"		2.86512, 24°.3 2.85836, 27°.3	C. 2, 218.
Acetylene tet	rabron	nide	СНВ	3r ₂ . C H	$\overrightarrow{\mathrm{Br}_{2^{}}}$	$egin{array}{c} 2.85189, 30^{\circ}.2 \ 2.848, 21^{\circ}.5_ \end{array}$	
4.6 4.6	"			"		$\left\{ egin{array}{ll} 2.9469 \\ 2.9517 \\ 2.9708 \end{array} \right\} \ \ 179.6$	$\left. \begin{array}{c} \text{Anschütz. Ber. 12,} \\ 2075. \end{array} \right\}$
44	44			"		$\{2.9712\}^{-17^{\circ}.5}$ $\{2.9629, 21^{\circ}.5\}$	221, 133.
"	44			"		2.92011, 17°.5 2.96725, 20° _	Inaug. Diss. 1884. Weegmann. Z. P.
Bromethylene bromide.	, or		2 0	Br		1.52	Watts' Dictionary.
44		11	e c c c			1.5286, 11° 1.5167, 14° 1.52504, 9°.6_	Ansehütz. A. C. P. 221, 133. Perkin. J. P. C. (2),
Dibromethyler	ne		$C_2 \coprod_{i,i}$	Br ₂		3.038, 10° } 3.053, 14°.5	32, 523. Sawitseh. J. 13, 431.
44			"			2.1780, 20°.6	
21 s	G						

NAME. Acetylene dibromide			F	DEMULA.		SP. GRAVITY.	Аптиовиту.
			C ₂ H ₂ Br ₂		2.120, 17°	Tawildarow. A. C. P. 176, 23.	
						2.2023, 220.7.	Sabanejeff, B. S. C 27, 371.
44	4.6		4.4			2.268, 0°	Plimpton. Ber. 1- 1812.
						2.271,0°) 2.223,19°)	Sabanejeff. Ber. 10 1220.
"	11		4.4			2.2711, 17°.5	Anschütz. A. C. I 221, 133.
"	11		"			2.2983, 0° 2.0352, 110°.5_	Weger. A. C. I 221, 61.
. ("		. (2.22889, 20°	Weegmann, Z. P. 0 2, 218.
	thylene _ propane			Br ₂ . CH.		2.68762, 20° 2.336	Cahours. J. 3, 49
			3			2.392, 230	Wurtz. J. 10, 463
				44		2.39, 10°	Linnemann. J. 1: 490.
"						2.33, 12°	Reboul. J. C. S. 3
"				HBr. CH	•		Reboul. C. R. 79 317.
Tribroml	nydrin		CH_2Br	. CHBr.C	H ₂ Br	2.436, 23° 2.966, 0°	Wurtz. J. 10, 46 Perrot. J. 11, 39
44				44	-	2.407, 10°	Henry. A. C. 1 154, 370.
44				"		2.41344, 15°) 2.39856, 25°	Perkin. J. P. C. (2 32, 523.
	mpropane		C. H. 1	Br		2.169	Cahours. J. 2, 49
Allylene	tetrabrot	nide	C H ₃ . (`Br₂. (`Ⅱ	-	2.94, 0°	Oppenheim. J. 1 493.
	mglycide mpropan		$\frac{\mathrm{CHBr}_2}{\mathrm{CHB}}$, CHBr.C.	H_2B_1	2.64	Rehoul. J. 13, 46 Cahours, J. 3, 49
	ropylene		$C_3^3 H_5^3$	Br ₅ Br		1.364, 19°,5	Reboul. C. R. 7
**			6.6			1.39, 9°	Reboul, J. C. S. 3 127.
"			44			1.42077, 15°) 1,40527, 25° (Perkin, J. P. C. (2 82, 523.
3 Bromp	ropylene					1.400, 130 }	Linnemann. A
44			٠.			1.410, 11° _ 1 1.408, 10°	P. 136, 55. Linnemann. J. 1
٤.						1.4110, 15°	208. Linnemann. A. C P. 161, 18.
44			6.			1, 428, 198, 5	Reboul. C. R. 7
	omide					1.172	Cahours. J. 3, 49
**						$\{1,451,0^{\circ},1,4355,15^{\circ},15^{\circ}\}$	Tollans, J. P.C. 10
• 6	11					1,0009,62°)	185. Tollensand Henni
						1.461, 0° }	ger. Z. C. 12, 8 Tollens. A. C.
	41					1.436, 15° }	156, 153.
4.4						1.4593, 0° }	Zander. A. C.
1.1	**		1 "			11.3333, 70°.5 ∫	214, 181.

		1	
NAME.	FORMULA.	SP. GRAVITY.	Аптновіту.
Allyl bromide	C ₃ H ₅ Br	1.396, 20°.5 1.3867, 24°.5	Gladstone. Bei. 9.
	"	1.3980, 20°	Brühl. A. C. P. 235, 1.
tt 1t	"	$1.42532, 15^{\circ}$ $1.41057, 25^{\circ}$	Perkin. J. P. C. (2), 32, 523.
Epidibromhydrin Allylene bromide		2.06, 11° 1.950	Reboul. J. 13, 461. Cahours. J. 3, 496.
" "	· · · · · · · · · · · · · · · · · · ·	2.05, 0°	Oppenheim. J. 17, 493.
" "	"	2.00, 15°	Borsche and Fittig. J. 18, 314.
	"	1.98, 15°	Linnemann. J. 18, 490.
Propargyl tribromide Propargyl bromide	$C_3 H_3 Br_3$ $C_3 H_3 Br$	2.53, 10° 1.52, 20°	Henry. Ber. 7, 761. Henry. B. S. C. 20,
" "	"	1.59, 11°	452. Henry. Ber. 7, 761.
Propargyl pentabromide _ Tribromisobutane	$C_3 H_3 Br_5 \dots $ $C_4 H_7 Br_3 \dots$	3.01, 10° 2.187, 17°	Norton and Wil-
			liams. A. C. J. 9, 88.
Bromamylene			Linnemann. Z. C. 11, 58.
Isoprene bromide			Bouchardat. J.C.S. 38, 323.
Isoprene dibromide Bromhexylene.	C ₅ H ₈ Br ₂ C ₆ H ₁₁ Br	1.601, 15° 1.35, 12°	Destrem. Ann. (5),
B. 99°–100°. B. 138°	"	1.17, 15°	27, 50. Reboul and Truchot.
" B. 140°		1.2205, 0° }	J. 20, 587. Hecht and Strauss.
Hexine dibromide	C ₆ H ₁₀ Br ₂	1.2025, 15° } 1.6977, 0° }	A. C. P. 172, 62. Hecht. Ber. 11, 1054.
Hexine tetrabromide Dibromdiallyl	C ₆ H ₁₀ Br ₄	$1.5543, 100^{\circ}$ } $2.1625, 0^{\circ}$	"
		1,656	Henry, J. C. S. (2), 11, 1215.
Dipropargyl tetrabromide Conylene bromide	$C_8 H_6 Br_4$	2.464, 19° 1.5679, 16°.25_	Henry. Ber. 7, 761. Wertheim. J. 15,
Bromdeeylene	C ₁₀ H ₁₉ Br	1.109, 15°	367. Rebouland Truchot. J. 28, 588.
Isovinyl bromide	(C ₂ H ₃ Br) _n	2.075	Baumann. A. C. P. 163, 308.
Erythrene hexbromide	C ₄ H ₄ Br ₆	2.9, 15°, 1 } 3.4, solid }	Colson. B.S.C. 48, 52. Two modifi-
		,	(cations.

4th. Aromatic Compounds.

NAME.	FORMULA.	Sp. Gravity.	Антиовиту.	
Brombenzene	C ₆ H ₅ Br	1.519 0° (Ladenburg. Ber. 7, 1685.	
	16	1.51768, 0° 1.50236, 11°.46 1.48977, 20°.96	Adrieenz. Ber. 6,	
		1.41163, 77°.76 1.4914, 20°	Bruhl. Bei. 4, 780.	
44	(1	$egin{array}{l} 1.5203,0^{\circ}$	Weger. A. C. P. 221, 61. Gladstone. Bei. 9,	
0	64	- 1.49225, 23° ∫ -1,3080, 155°	249. Schiff. Bei. 9, 559.	
Orthodibrombenzene	C ₆ II. Br ₂	1.858, 99° j	Schitf. Ber. 19, 560. Körner. J. C. S. (3), 1, 214.	
Metadibrombenzene Paradibrombenzene	14	$\begin{array}{c} 1,955,18^{\circ}.6\\ 2.218\\ 2.222\\ \end{array} \right\} \begin{array}{c} 4^{\circ}\\ \end{array} \left\{ \begin{array}{c} 2.218\\ 2.222\\ \end{array} \right\} \left\{ \begin{array}{c} 4^{\circ}\\ \end{array} \right\} \left\{$	Schroder. Ber. 12, 561,	
**		1,8408, 89°.3	Schiff, A. C. P. 223, 247.	
Benzyl bromide Orthobromtoluene		1.438, 22° 1.4092, 21°.5		
14		1.4109, 22° 1.401, 18°	Kekulé, J. 20, 663, Wroblevsky, A. C. P. 168, 147.	
Metabromtoluene	- 44	1,2031, 182°,5 1,4009, 21°	Schiff. Ber. 19, 560. Wroblevsky, Z. C.	
Parabromtoluene	44	1.3999, 30°	13, 239. Hubner and Terry. Z. C. 14, 232.	
Dibromtoluene, B. 236° B. 238°-239°	С ₆ Н ₃ . С Н ₃ . Вг ₂	1.8127, 19°	Wroblevsky, Z C. 13, 239.	
9 B. 246°	44	1.812, 220	Wroblevsky, Z. C 14, 272.	
Ethylbrombenzene, 1.1 Bromxylene	$\begin{array}{cccccccccccccccccccccccccccccccccccc$		Fittig and Koenig J. 20, 609. Beilstein, J. 17, 530	
1.2.4		1,8693, 15°	Jacobsen, Ber. 17 2373.	
9 1 3.5 cm Metaxylyl bromide cm			P. 192, 215. Radziszewski – a ne	
Orth xylyl bromide		1.0811, 200	Wispek, Ber. 15 1745. Radziszewski gene Wispek, Ber. 15	
D becomerthoxylene		A.	1747. Ancobsen. Ber. 17 2377.	
Orthoxylylene bromide:	$\left[\begin{array}{cccc} C_6 & \Pi_4 & (C & \Pi_2 & Br)_2 & \dots \\ & & & & & & & \end{array}\right]$	1.984, 0°, s. / 1.680, 95°, 1. /		

NAME.	Formula.	SP. GRAVITY.	AUTHORITY.
Orthoxylylene bromide	C ₆ H ₄ (C H ₂ Br) ₂	1.988	Colson. C. R. 104, 429.
Metaxylylene bromide	"	1.734, 0°, s. 1.615, 80°, l. } 1.959	Colson. Ann. (6), 6, 86. Colson. C. R. 104,
Paraxylylene bromide	"	2.010, s } 1.850, 155°, l. }	429.
" " ——		2.012	Colson. C. R. 104, 429.
Brommesitylene. 1.3.5.6	C ₆ H ₂ (C H ₃) ₃ . Br	1.3191, 10°	
Isopropylbrombenzene. 1.4.	C ₆ H ₄ . C ₃ H ₇ . Br	1.3223, 13°	Meusel. J. 20, 698.
		1.3014, 15°	Jacobsen. Ber. 12,
Dibromeymene			Claus and Wimmel.
β Bromamylbenzene Benzene hexbromide			Dafert. M. C. 4, 621. Meunier. Ann. (6),
BromdibenzylBromnaphthalene	C ₁₀ H ₇ Br	1.318, 9° 1.555 1.503, 12°	Stelling and Fittig. Glaser. J. 18, 562. Wahlforss. J. 18, 564.
" "	"	1.48875, 16°.5. 1.47496, 28°.1. 1.42572, 77°.6. 1.5678, 16°.5)	Nasini and Bern- heimer. G. C. I.
	(; 	1.5403, 17° 1.5403, 18° 1.605, 0°	Gladstone. Bei. 9, 249. Roux. B. S. C. 45,
a Tetrabrom hydrocam-		·	514. Royére. Ber. 19,
phene. β Tetrabromh y d roca m - phene.		1.93711	ref. 438.

LVI. COMPOUNDS CONTAINING C, H, O, AND BR.

Name.	FORMULA.	Sp. Gravity.	Аптновиту.		
$a\beta$ Dibrompropyl alcohol.	C ₃ H ₆ , Br ₂ O	2.1682, 0° } 1.7535, 219° }	Weger. A. C. P. 221, 61.		
Monobromtrimethy lear- binol.			Guareschi and Garzino. J. C. S. 54, 437.		
Dibromhexyl alcohol	$\mathrm{C_6~H_{12}~Br_2~O_{}}$	1.99, 15°			
Bromethyl oxide	C ₄ H ₉ Br O	1.3704, 0°	Henry. C. R. 100, 1007.		
Bromacetyl bromide	C_2 H_2 Br_2 O	2.317, 21°.5	Naumann. J. 17,		
Propionyl bromide	C ₃ H ₅ O. Br	1.465, 14°	322. Sestini. J. 22, 528.		

Name.	FORMULA.	SP. GRAVITY.	AUTHORITY.
Dibronacetic acid	C_2 H_2 Br_2 O_2	2.25	
Bromobutyric acid	C_{i} Π_{7} Br O_{2}	1.54, 15°	J. 11, 285. Schneider. J. 14,
Bromisobutyric acid		1.5225, 60°	457. Helland Waldbauer.
Dibromobutyric acid	$C_1 H_6 Br_2 O_2 \dots$	1,500, 100° j 1.97	Ber. 10, 448. Schneider. J. 14,
Bromosterrie acid	С ₁₈ П ₃₅ Вг О ₂	1.0658, 20°	458. Oudemans. J. P.
Ethyl bromacetate	$^{ig(}C_4$ H $_7$ Br O_2	1.5250, 18°	
Dibromethyl acetate	C_4 Π_6 Br_2 O_2	1.962, 17°	249. Kessel. Ber. 10,
Ethyl brompropionate	† $\mathrm{C_{5}}$ $\mathrm{H_{9}}$ Br $\mathrm{O_{2}}$	1.396, 11°	1996. Henry, A. C. P.
	$C_4 \coprod_6 \operatorname{Br}_2 O_2 \ldots$	1.9043, 0° }	156, 176. Philippi. Gottingen
nate. a . $a \beta_{-}$		1.8973, 12° j 1.9777, 0°	Imag. Diss. 1873.
Ethyldibrompropionate. a		1.6140, 205°.8 1.7728, 0°	f 221, 61. Philippi, Gott, In-
ι		$\begin{bmatrix} 1.7536, 12^{\circ} & \{ 1.796, 0^{\circ} & \dots \} \end{bmatrix}$	aug. Diss. 1873. Munder and Tollens.
$\begin{array}{cccccccccccccccccccccccccccccccccccc$		$\left[\begin{array}{ccc} 1.777, 15^{\circ} & __\end{array}\right] \\ \left[\begin{array}{ccc} 1.8234 & 0^{\circ} & __\end{array}\right] \\ \left[\begin{array}{ccc} 1.8279 & \end{array}\right]$	A. C. P. 167, 222. Weger, A. C. P.
76 1 111		1.4554, 214°.6	221, 61.
Propyl dibrompropionate.	**	[1,6682, 12°]	Philippi, Gott. In- aug. Diss. 1873.
		1.7014, 0°) 1.3391, 233° (Weger, A. C. P. 221, 61.
Butyl dibrompropionate. a		1.6008, 0° { 1.5778, 12° } 1.450, 5°	Philippi, Gott, In- aug. Diss, 1873, Henry, C. R. 102,
Methyl brombutyrate, γ ₋₁		,	368. Schneider, J. 14, 458.
Ethyl brombutyrate		1.33, 15° 1.345, 12° 1.363, 5°	Cahours, J. 15, 248, Henry, C. R. 102,
Ethyl bromisobutyrate		1,328, 0° }	368 Hell and Wittekind.
Ethyl bromvalerate. a	4.4	1,300, 19°,5 } 1,226, 18°	Ber. 7, 319, Juslin, Ber. 17, 2504.
Ethyl bromethylmethyl- nectate, a.	(1 II ₁₃ Di O ₂	1.2275, 18°	Bocking, A. C. P. 204, 24.
Bromal	C ₂ H Br ₃ O	3.34	Lowig. A. C. P. 3,
Parabronalide	C H Br ()	3.107	Cloez. J. 12, 433, Sokolowsky, B. S. C.
		2.5	27, 371.
Dibromace tone Hexbromethylmethyl ke- tone.	$C_4^3 H_2 Br_6 O$	2,88, 0°	Demole, Ber. 11, 1712.
Ethylene bromhydrin	$C_2 \Pi_4 \text{Br.} \Theta \Pi = \mathbb{I}_{\mathbb{Z}^2}$	1.66, 8°	Henry, Ann. (4), 27, 243.
Bromethylene bromhydrir Bromethylene bromacetin	C ₂ H ₃ Br. Br. O H C ₂ H ₃ Br. Br. C ₂ H ₂ O ₂	2.35, 0 1.48, 0°	Demole. Ber. 9, 50, Demole. Ber. 9, 51,
Ethylidene bromethylate.	$C_{\bullet}^{j}\Pi_{\bullet}^{-}$ Br. $O(C_{2}^{2}\Pi_{5}^{-2})$	1.0632, 12°	Henry, C. R. 100, 1 1007.

	,		
NAME.	Formula.	Sp. Gravity.	Аптновиту.
Trimethylene bromhydrin	C ₃ H ₆ . Br. O II	1.5374, 20°	Frühling. Ber. 15, 2622.
Ethoxybromamylene Hexylene bromhydrin Ethyl bromacetacetate	$\begin{bmatrix} C_5 & H_8 & Br. & O & C_2 & H_5 & - \\ C_6 & H_{12} & Br. & O & H_{} & - \\ C_6 & H_9 & Br & O_3 & \end{bmatrix}$	1.23, 19° 1.2959, 11° 1.511, 22°	Reboul. J. 17, 507. Henry. C. R. 97, 260. Duisberg. Ber. 15, 1378.
Ethyl dibromacetacetate _ Ethyl tribromacetacetate _ Ethyl tetrabromacetace- tate.	C ₆ H ₈ Br ₂ O ₃	1.884, 25° 2.144, 22° 2.401, 17°	1010. 11 11
Dibromide of dibromacet- acetic ether.	C ₆ H ₈ Br ₄ O ₃ . ?	2.320, 21°	Conrad. A. C. P. 186, 233. Compare
Ethyl bromethylacetace-tate.	C ₈ H ₁₃ Br O ₃	1.354	Ber. 15, 2133. Wedel. A. C. P. 219, 102.
Ethyl dibromethylacetacetate.	C ₈ H ₁₂ Br ₂ O ₃	1.635	Wedel. A. C. P. 219, 103.
Ethyl tribromethylacet- acetate.	C ₈ H ₁₁ Br ₃ O ₃	1.860	
Ethyl β bromacetopropionate.	C ₇ H ₁₁ Br O ₃	1.439, 15°	Conrad and Guth- zeit. Ber. 17, 2286.
Ethyl brompropiopropionate.	C ₈ H ₁₃ Br O ₃	1.337, 15°	Israel. A. C. P. 231, 197.
Ethyl dibrompropiopro- pionate.	$C_8 H_{12} Br_2 O_3$	1.611, 15°	"
Bromallyl alcohol	C ₃ H ₅ Br O		Henry. B. S. C. 18, 232.
Bromallyl acetateAllyldibrompropionate.β_ " Dibromallyl oxide	$C_5 H_7 Br O_2 - C_6 H_8 Br_2 O_2 - C_6 H_8 Br_3 $	1.57, 12°)	" " Münderand Tollens.
Dibromallyl oxide	C ₆ H ₈ Br ₂ O	1.818, 20° } 1.7, 17°	A. C. P. 167, 222. Henry. B. S. C. 20,
Brommethylallyl oxide			Henry. B. S. C. 18, 232.
Bromethylallyl oxide Monobromhydrin Dibromhydrin	C ₅ H ₉ Br O C ₃ H ₅ . Br (O H) ₃	1.27, 12° 1.717, 4°	Henry. Ber. 5, 186. Veley. C. N. 47, 39.
Dibromhydrin	C ₃ H ₅ . Br ₂ O H	2.11, 10°	Berthelot and De
		2.11, 18°	Luca. J. 8, 627. Berthelot and De Luca. J. 9, 601.
		2.02, 18°.5	Zotta. A. C. P. 174, 87.
Epibromhydlin	C ₃ H ₅ Br O	1.615, 14°	Berthelot and De Luca. J. 9, 600.
Bromdiethylin Diethyl brommaleate	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	1.258, 8° 1.4095, 17°.5	Henry. Ber. 4, 701. Anschütz and Aschman. Ber. 12,
Dibromoleic acid Bromeitropyrotartaric an- hydride.	$C_{18} \stackrel{\mbox{H}}{\mathrm{H}_{32}} \operatorname{Br}_2 O_2 \dots C_5 \stackrel{\mbox{H}}{\mathrm{H}_3} \operatorname{Br} O_3 \dots$	1.272, 7°.5 1.935, 23°	2284. Lefort. J. 6, 451. Bourgoin. J. Ph. C. 26, 234.
Ethyl δ brompyromucate	C ₇ H ₇ Br O ₃	1.528, 0°	Hill and Sanger. A. C. P. 232, 52.
Orthomonobromphenol Paramonobromphenol	C ₆ H ₅ Br O	1.6606, 30° 1.840, 15°	Körner. J. 19, 574. Hand. A. C. P. 234, 133.

NAME.	FORMULA.	Sp. Gravity.	Аптновиту.	
Brommethylphenol	C, H, Br O	1.494, 9°	Henry, Z. C. 13,	
Bromperakresol			Schall and Dralle. Ber. 17, 2531	
Bromisopropylphenol	$C_s \coprod_9 \operatorname{Br} O = = = = = = = = = = = = = = = = = = $	1.4182, 24°.5 1.481, 0° (Silva. B.S.C., Jan.,	
Bromallylphenol ether	C ₉ H ₉ Br O	1.957, 12°.5	1870. Henry. Ber. 16. 1378.	
Brommethyleugenol	$^{\circ}\mathrm{C}_{11}$ H_{13} Br O_2	1,3959, 0°		
Benzoyl bromide			2473.	
Monobromeamphor	С ₁₀ II ₁₅ Вг О	1.437 }	Schroder, Ber. 13, 1070,	
Santonyl bromide		1.4646	Carnelutti and Na- sini, Ber. 13, 2210.	

LVII. BROMINE COMPOUNDS CONTAINING NITROGEN.

NAME.	Formula.	SP. GRAVITY.	Антновиту.
Brompierin			Bolas and Groves Z. C. 13, 414.
		2.816, 132	Gladstone, Bei. 9 219.
Tetranitroethylene bro-	$\left[\mathrm{C}_{2}\left(\mathrm{N}\right]\mathrm{O}_{2}\right)_{4}\left[\mathrm{Br}_{2}\right]_{-1}$	1.25, 14°	Villiers, J. C. S. 42 815.
Bromonitric glycol	C_2 H_4 Br N O_{3+r}	1.735, 8°	Henry, Ann. (4) 27, 243.
Bromellyl nitrate	$C_3 \; \Pi_4 \; \mathrm{Br} \; \mathrm{N} \; \mathrm{O}_{3^{-+}}$; L5. 13°	Henry, B. S. C. 18
Nitrobromtoluene, B. 2697	$\mathrm{C_7~H_5~Br~N~O_{2++}}$	1.612, 200	Wroblevsky, Z. C 13, 240,
o B. 256		1.631, 189	Wroblevsky, Z. C 13, 166.
Bromtoluidine. B. 240° _	C_7 Π_8 Br N	1.510, 20°	Wroblevsky, A. C P. 168, 147.
		. I.1412, 19°	Wroblevsky, A. C P. 192, 203.
Brompyridine	C ₅ H ₄ Br N	1.645, 0°	Ciamician end Dennstedt. Ber
	1 46 -	1.646, 0° 1.632, 10°	15, 1174. Danesi, Ber. 15, 1177

LVIII. COMPOUNDS CONTAINING C, H, AND I.

1st. Iodides of the Paraffin Series.

	NA	AME.	I	FORMULA.	SP. GRAVITY.	AUTHORITY.
Methyl iodide		C H ₃ I		2.227, 22°	Dumas and Peligot.	
"	"		"		2.19922, 0°	Ann. (2), 58, 30.
"	"		"		2.19922, 0	Pierre. C. R. 27, 213. Haagen. P. A. 131,
••	•••				2.2000, 20	117.
"	"		r e		2.269, 25°	Linnemann. Z. C. 11, 285.
"	"		"		2.2905, 16°	Sigel. A. C. P. 170.
"	"		**		2.1905, 42°	Ramsay. J. C. S. 35, 463.
"	s ("		2.28517, 15°)	Perkin. J. P. C. (2),
"	**		"		2.25288, 25°	31, 481.
"	"				2.3346, 0° }	Dobriner. A. C. P.
"	4.4		4.6		2.2146, 42°.8	243, 23.
			C. H.	I	1.9206, 23°.3	Gay Lussae. Ann.
"	"		"		1.92, 16°	(1), 91, 91. Marchand. J. P. C.
						33, 188.
"	"		"		1.97546, 0°	Pierre. C. R. 27, 213.
"	"		"		1.9567, 5°-10°	1)
"	4.6		"		1.9457,10°-15°	
"	"		"		1.9348,15°-20°	
4.6	44		"		1.9464, 16°	Frankland. J. 2, 412.
41	4.6		"		1.9309, 15°	Mendelejeff. J. 13, 7.
"			"		1.98, 4°	Berthelot. A. C. P. 115, 114.
ct	"		"		1.927, 20°	Linnemann. A. C. P. 144, 133.
"	"		"		1.9265, 19°	Linnemann. A. C. P. 148, 251.
44	4.6		"		1.935	Haagen. P. A. 131,
"	"		"		1.000	117.
44	"		"		1.979, 0° 1	Pierre and Puchot.
"	"		"		1.907, 30°.4	Ann. (4), 22, 261.
£ £	"		"		1.9444, 14°.5	Linnemann. A. C. P. 160, 195.
"	"		"		1.944, 15°	Crismer. Ber. 17,652.
"	"				1.9313, 14°	Gladstone. Bei. 9, 249.
"	"		"		1.8111, 72°.2	Schiff. Ber. 19, 560.
"	"			***************************************	1.96527, 4°	,
"	"		"		1.94332, 15°	Perkin. J. P. C. (2),
"	"		"		1.92431, 25°	31, 481.
"	"				1.9795, 0°)	Dobriner. A. C. P.
"	"		"		1.8156, 72°.5	243, 23.
Propyl	iodid	le	C ₃ H ₇	I	1.789, 16°	Berthelot and De Luca. J. 7, 452.
"	"		"	***************************************	1.7012, 21°	Linnemann. J. 21, 433.

NAME. Propyl iodide				Sp. Gravity.	Аптиокиту.
				1.7843, 16°	Chapman and Smith. J. C. S. 22, 195.
. 4	4.			1.782, 0°	Rossi, A. C. P. 159,
				1.7472, 16°	79. Linnemann. A. C.
+ 4				1.7877, 23°	P. 160, 195. Linnemann. A. C.
				1.7610, 16°	P. 161, 25. Linnemann. A. C.
4.4				1.78635, 0°	P. 161, 34.
+ 4		1.1		1.75035, 19°.27	Brown. J. C. S. 32,
6.6	**	4.4		1.74772, 200.79	
* 4	**	11		1.74628, 20°,91	837.
	44			1.7427, 20°	Brúhl, A. C. P. 203, 1.
4.6	4.	6.6		1.7483, 140	De Heen. Bei. 5, 105.
		"		1.5867, 102°.5	Zander. A. C. P. 214, 181.
14				1.7838, 0°	Chancel. B. S. C. 39, 648.
				1.7508, 16°	Gladstone. Bei. 9, 249.
	4.4	1.		1 =040 60 3	- 40.
				1.7842, 0°)	
				1.7674, 9°.1	Pierre and Puchot.
4.1				1.6843, 52°.6	Ann. (4), 22, 286.
* *		4.4		[1,6373, 75°.3]	7.111. (4), 22. 2
4.4				1.76732, 100	Perkin, J. P. C. (2),
	**			1.75853, 15°	31, 481.
				1.7829, 0° 1	Dobriner. A. C. P.
		1 44		1.585, 102°.5	243, 23,
Isopro	pyl iodide			1.70, 15°	Linnemann. J. 18, 489.
		4.4		1.714, 16°	Erlenmeyer, A. C. P. 126, 309.
	**			1.73, 0°	Simpson. A. C. P. 129, 128.
	**			1.725, 0°	Wurtz. See A. C. P. 136, 43.
* 1				1.69, 15°	Linnemann. A. C. P., 3d Supp., 265.
4.4				1.71, 15°	Linnemann. A. C. P., 3d Supp., 267
		1.6		1,735,00)	Erlenmeyer. A. C.
					P. 139, 229.
	**			1.711, 17° == 1	
+ 1	•• ••			1.71732, 17°	H.L.Buff, A.C.P
* *	**			1.562442, 96°	4th Supp., 129
				1.70, 18°	Linnemann. A. C P. 140, 178.
• •				1.745, 15°.5 a	Siersch. A. C. P 140, 142.
4.1	**			1.7109, 15°	
* *	4.4	4.4		1.714,00	.1)
4.4		1 6.4		1,70526, 199.8	D T () C 00
		4.4		1,70506, 200,1	Brown, J. C. S. 32
				1.70457, 21°.03	
				1 11 10 10 10 10 10 10 10 10 10 10 10 10	12

Ν	JAME.	FORMULA.		Sp. Gravity.	Аптновіту.	
Isopropyl i	odide	C ₃ H ₇ I		1.7033, 20°	Brühl. A. C. P.	
"				1.5650, 89°	203, 1. Zander. A. C. P	
"				1.7157, 14°	214, 181. Gladstone. Bei. 9 249.	
"				1.71630, 15° } 1.70049, 25° }	Perkin. J. P. C. (2) 31, 481.	
Butyl iodić	le	C, H, I		1.643, 0°)	**, 1011	
ii ii				1.6136, 20° }	Lieben and Rossi	
		"		1.5894, 40°)	A. C. P. 158, 137	
				1.5804, 18°	Linnemann. Ann (4), 27, 268.	
				1.6166, 20°	Brühl. A. C. P 203, 1.	
		"		1.6172, 14°	De Heen. Bei. 5, 105	
"				1.6476, 0° 1.4308, 129°.9	$\left\{ egin{array}{l} ext{Dobriner. A. C. P} \ 243,\ 23. \end{array} ight.$	
Secondary	butyl iodide	4.6		1.632, 0°)) 210, 20.	
"		"		1.600, 200 }	De Luynes. J. 17	
11		. "		1.584, 30°)	499.	
"	" "			1.6263, 0°)		
"		. "		1.6111, 10°	Lieben. J. 21, 439	
"	" "			1.5952, 20° 1.5787, 30°	,	
"		111		1.634, 0°	Wurtz. A.C.P. 152	
[cobuty] ic	dide			1.604, 19°	23. Wurtz. J. 7, 573.	
150001131 10	<i>11</i>			1.643, 0°	Wurtz. J. 20, 573	
"	"			1.6301, 0°)	Chapman an	
4.4		- "		1.6032, 16°	Smith. J. C. S	
11		. "		1.54816, 50°)	22, 156.	
	"	- ''		1.6345, 0°		
"		- "		1.6214, 8°.3 1.6387, 56°.4	Pierre and Puchot	
"				1.464, 98°.8	Ann. (4), 22, 317	
"	"	"		1.6081, 19°.5	Linnemann. A. C P. 160, 195.	
"		- "		1.592, 22°	Linnemann. Ann (4), 27, 268.	
44				1.6433, 0°)	Erlenmeyer an	
"				1.6278, 10°	Hell. A. C. I	
"	"	- "		1.6114, 20°	160, 257.	
"	"	- "		1.6401, 0° }	Brauner. A. C. F	
11		- "		1.6050, 20°	192, 69.	
		-		1.6056, 20°	Brühl. A. C. I 203, 1.	
"		- ''		1.5982	Gladstone. Bei. 9 249.	
"	11	- "		1.4335, 114°.5_	Schiff. Ber. 19, 560	
"		- "		1.61385, 15°	Perkin. J. P. (
	earbyl iodide.?	-		1.60066, 25° { 1.587, 0° }	(2), 31, 481.	
	arbyi lodide. i	- "		1.501, 50°.1		
111111111111111111		-1			{ } Two lots. Pucho	
11 11 11 11 11 11 11 11 11 11 11 11 11	" -	- "		1.571, 0°)		
 	ntyl iodide	- "		$\left\{ \begin{array}{ccc} 1.571, 0^{\circ} & \\ 1.479, 53^{\circ} & \end{array} \right\}$	$\int \mathbf{A} \mathbf{n} \mathbf{n}. (5), 28, 546$	

NAS	IE.	Fo	ORMULA.	SP. GRAVITY.	Аптиовиту.
- Normal penty	l iodide (H ₁₁ 1		_ 1.4961, 40°	
				1 7 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4	A. C. P. 159, 70.
4 + + + +				_ 1.5441, 0°	
	** -	1.4			P. 243, 20,
$\chi_{ m myl}$ iodide .					Frankland J.3, 478.
				1.5277, 0°	Frankland.
				_ 1,4936, 20° _ 1,4676, 0°)	Grimm. J. 7, 543,
				1.4387, 22°.3	Kopp. A. C. P. 95, 307.
		4.4		_ 1.4557, 22 .6) _ 1.5087, 15°.8_	Mendelejetf, J. 13, 7.
46				_ 1.4734, 20°	
				_ 1.1,01, 20	117.
66 44				_ 1,5005,14°	
		4.4		. 1.5418,0°)	
-				1.5054, 23°	
66 44		4.4		_ 1,5048, 14°	Gladstone. Bei. 9.
-				,	219.
		4.		. 1,3098, 148° _	Schiff. Ber. 19, 560.
				1.5100, 15°	Perkin, J. P. C. (2),
		4.4		. 1.49811, 25°	31, 481.
	\ctive			1.54, 15°	
	٠	"		' 1.5425, 16°	Just. A. C. P. 220 150.
Methylpropyl	engladiodide			1.587, 0°	
n oruž (brobž)	Carry norman	4 -		1.5219, 11°	Wurtz. J. 21, 446
	-	6.			(Wagner and Saytz
4.	6	4.6		1.539, 0°	1 def A C P 179
4.6				. 1.510, 20°	1 (818.
	**	4.6		1.499, 15°	Romburgh, Ber. 16 392.
101 - (1)	1.11.1.	4.		1.528, 0°	, (Wagner and Snytz
Diethylearby	100106			1,505, 16°	eff. A. C. P. 175
				·	' (365,
	٠٠			1,4792	Gladstone, Bei, 9 249.
				1.524, 0°	🍦 (Wagnerand Say tz
	**			1,501, 20°	eff. A. C. P. 179
					' (318.
${f D}$ imethyleth;	dearbyl io-			_ 1,5207, 0°	/ Flawitzky, A.C.P
dide. ·		* *		1,4954, 19°	179, 348.
				1.524, 0° ± ±	/ Wischnegradsky, A
**				1.497, 198	C. P. 190, 331.
				1.522, 0°	/ Winogradow, A. C
				1,498, 18° 1,431, 19°	 P. 191, 125. Pelouze and Ca
Hexyl iodide		C. H12	1	1. 1.11. 1.1	hours, J. 16, 526
				1.4115	
					263.
14		* *		$1.4607,0^{\circ}$)
4.4				1,4363,20°	Lieben and Janecel
* *				1,4178,40°	J. R. C. 5, 156.
1.4				1,4661,00	$\mathbf{L}_{\mathbf{a}} \in \mathbf{Dobriner}, \ A. C. I$
		b 4		1.2165, 177°.	1. 7 243, 23.
	xyl iodide	4.4		1.439	Wanklynand Erler

NAME.		Fe	ORMULA.	Sp. Gravity.	Аптновиту.
Secondary hexyl i	odide	C ₆ H ₁₁₃	I	1.4447, 0° } 1.3812, 50° } 1.4526, 0°	Wanklyn and Erlen- meyer. J. 16, 518. Heeht. A.C. P. 165
" " " " " " " " " " " " " " " " " " " "	"	 		1.4589, 0° } 1.3938, 50° } 1.4477, 0° } 1.3808, 50° } 1.4487, 0° } 1.3839, 50° } 1.4193 1.42694, 15° } 1.41631, 25° } 1.3939, 0° } 1.3725, 19°	Krusemann. Ber. 9, 1468. Gladstone. Bei. 9, 249. Perkin. J. P. C. (2), 31, 481. Pawlow. A. C. P.
Pinacolic iodide	dide		I	1.4739, 0°	196, 122. Friedel and Silva. J. C. S. (2), 11,488. Cross. J. C. S. 32, 123. Dobriner. A. C. P. 243, 23. Kurtz. A. C. P.
Normal octyl iodi """"""""""""""""""""""""""""""""""	yl iodide " lide	11 11 11 11 11 11 11 11 11 11 11 11 11		1.338, 16° 1.355, 0°	161, 205. Zineke. J. 22, 371. Krafft. Ber. 19, 2218. Perkin. J. P.C. (2), 31, 481. Dobriner. A. C. P. 243, 23. Bouis. J. 8, 526. De Clermont. J. 21, 449. Krafft. Ber. 19, 2218

2d. Miscellaneous Compounds.

Name.	FORMULA.	Sp. Gravity.	AUTHORITY.
dethylene iodide	C II ₂ I ₂		Butlerow, J. 11,420.
44	**		Gladstone, Bei, 9,
4. 44	44		249.
44	* 6	.:⊩3.2343. 16° - ∫	
44	((Brauns, Bei, 11, 698
(, (,	44	_ 3.189, 74°) _ 3.28528, 15° /	Perkin, J. P. C. (2)
	44	3,26555, 25°	31, 481.
Ethylene iodide	$C_2 \Pi_4 I_2$	2.07	E. Kopp. J. P. C
Ethylidene iodide	"	2.84, 0°	Gustavson, B. S. C 22, 13.
ropylene iodide	C ₃ H ₆ I ₂	2,490, 18°,5	Berthelot and De Luca. J. 7, 453
4. 41	"	2.5631, 19°	Freund, J. C. S 42, 156.
rimethylene iodide			
		2.57612, 15°	Perkin, Ber. 18, 221
	**	2.56144, 25° <i>)</i> 2.15, 0°	Oppenheim. J. 18
Allylene dihydriodate			493.
4.6		2.1458, 0°	Semenoff, J. 18, 493
Butylene iodide	• , .	2.291, 0°	Wurtz. C. R. 97 473.
Diallyl dihydriodate odoform	$C_6 \prod_{12} I_2 \dots \dots$	2.021, 0°	Wurtz. J. 17, 511
odoform	C II 1 ₃	2.00	Weltzien's Zusam menstellung.
		4.09	Brugelmann, Ber 17, 2359.
Vertylene iodide	C, H, L,	3,303, 21°, s.)	Sabanejeff, A. C. 1
		2.942, 21%, 1.)	
odethylene (vinyl iodide)	$C_2 \coprod_i I$	1.98	Regnault.
	**	2.09, 0°	Gustavson, Ber. 1
Allyl iodide	C ₃ H ₅ I	1.789, 16°	Berthelot and D Luca.
		1.746, 0°	Woicikoff, J. 19 495.
"		1.848, 125	Linnemann, A. C P., 3d Supp., 26
	44	1.839, H°	Linnemann. Λ. (P., 3d Supp., 26
		1.8696, 0°) Zander. A. C. 1
4. 4.		1.6601, 102°.6	1 214, 181.
		1.846, 15°	.] Romburgh. Ber 19 4 - 392.
44 44	44	1.82403, 15°) 1.80776, 25° }	Perkin, J. P. C. (2 31, 481.
	**	1,8346,00)	
Allviene hvariodate			
Allylene hydriodate		' 1.5025, 16°]	Semenoff, J. 18, 49 Oppenheim, J. 1

NAME.	FORMULA.	SP. GRAVITY.	AUTHORITY.
Iodallylene	C ₃ H ₃ I	1.7	Liebermann. J. 18,
Propargyl iodide	"	2.0177, 0°	Henry. Ber. 17, 1132.
Diallyl hydriodateIodhexylene	C ₆ II ₁₁ I	1.497, 0°	Wurtz. J. 17, 514.
Todhexylene		1.92, 10°	Destrem. Ann. (5),
Iodobenzene	C ₆ H ₅ I	1.69	27, 50. Schutzenberger. J. 14, 348.
	"	1.833	
"	"	1.64, 15°	Kekulé. J. 19, 554. Ladenburg. A. C. P. 159, 251.
"	"	1.8403, 11°	
"		1.7732, 56°.8	Schiff. Ber. 19, 560.
"		1.7874, 79°.2	Schin. Ber. 13, 500.
"		1.6486, 135°.5	Į
"		1.8578, 0° 1.5612, 187°.5	Schiff. Bei. 9, 559.
Orthoiodtoluene			Beilstein and Kuhl-
	07 11 1	1,500,20	berg. A.C.P. 158, 349.
Metaiodtoluene	"	1.697, 20°	
Benzyl iodide	"	1.7335, 25°	Lieben. J. 22, 425.

LIX. COMPOUNDS CONTAINING C, H, I, O, OR C, H, I, N.

NAME.	Formula.	Sp. Gravity.	Authority.
Totmiodmothyl oxide	CHIO	3 345	Briining J 10 432
Tetraiodmethyl oxide Moniodethyl oxide			1007.
Acetyl iodidePropyl iodacetate			1 114
Methyl β iodpropionate Ethyl β iodpropionate " " Methyl γ iodbutyrate	$\begin{bmatrix} \mathrm{C_4} & \mathrm{H_7} & \mathrm{I} & \mathrm{O_2} & \dots \\ \mathrm{C_5} & \mathrm{H_9} & \mathrm{I} & \mathrm{O_2} & \dots \end{bmatrix}$	1.8408, 7° 1.707, 8°	" " " Otto Bor 71 08
	1	}	368.
Iodaldehyde		ŀ	118.
IodacetoneIodhydrodiglycide			Clermont and Chau tard. C.R.100,745 Berthelot and De
Diiodhydrin			Luca. Nahmacher. Ber. 5
EpiiodhydrinSantonyl iodide	C ₃ H ₅ I O	2.03, 13° 1.3282	Carnelutti and Nasi
Iodehinolin	C ₉ II ₆ I N	1.9323 } 1.9345 }	ni. Ber. 13, 2210 La Coste. Ber. 18 780.
	}	1	

LX. COMPOUNDS CONTAINING TWO OR MORE HALOGENS.

Name.	FORMULA.	Sp. Gravity.	Аптновіту.
Chlorobrommethane	C II ₂ Cl Br	1.9907, 19°	Henry. C. R. 101,
Bromochloroform	C H Cl ₂ Br	1.9254, 15°	meister. Der. 19,
	"	1.983	599, Arnhold, A. C. P. 240, 192.
Chlorobromoform	C H Cl Br ₂	2.4450, 15°	Jacobsen and Neu- meister. Ber. 15
	"	2.447, 20°	599, Dyson. J. C. S. 43 36,
Ethylene chlorobromide	C H ₂ Cl. C H ₂ Br	1.700, 18°	Henry, A. C. P. 156
"		1.705, 11°	Montgolfier and Giraud. C. R. 88 654.
Ethylidene chlorobromide	C H ₃ . C H Cl Br	1.61, 14°	
	44	1.666, 16°	
Chlorodibromethane	C H3. C Br2 Cl	2.134, 16°	
	C H ₂ Br. C H Br Cl.	2.268, 16°	
Dichlorbromethane			Denzel. Ber. 11 1740.
"	C H ₂ Cl. C H Br Cl.		Lescoeur. J. C. S + 34, 718.
		1,86850, 15°	
"	C H Cl ₂ . C H ₂ Br	1.85420, 25° / 1.238, 15°. ?	32, 523. Delacre, Bull. Acad Belg. (3), 13, 25
Brommethylchloroform	C.Cl. C.H.Br	1.8839, 0°	Henry, C. R. 98, 37
Chlortribromethane	C H_2 Br , C Br 2 Cl $=$	2.602, 16°	
Dichlordibromethane			1740.
	C H Cl ₂ . C H Br ₂		1991
Trichlordibromethane	_ C ₂ H Cl ₃ Br ₂	2.317, 00)	D.4 1 D (
11	11	$\begin{bmatrix} 2.295, 19^{\circ}.5 \\ 2.129, 100^{\circ} \end{bmatrix}$	Paterno, J. P. ((2), 5, 98.
Chlortetrabromethane			
Chlordibromethylene			Denzel. Ber. 1 1741.
Dichlorbromethylene Acetylene chlorobromide	$\begin{bmatrix} \mathbf{C}_2 & \mathbf{H} & \mathbf{C} \mathbf{I}_2 & \mathbf{Br} & \dots & \dots \\ \mathbf{C}_2 & \mathbf{H}_2 & \mathbf{C} \mathbf{I} & \mathbf{Br} & \dots & \dots \end{bmatrix}$	1.906, 16° 1.8157, 0°	''
		_ 1.7787, 0°) _ 1.7467, 19°	Sabanejeff, Ber. 1
Propylene chlorobromide	C ₃ H ₆ Cl Br	1.62, 16°	Reboul. A. C. 1 155, 216.
	_ С H ₃ . С H Cl. С H ₂ В	r [1,585, 0°] 1,475, 18°]	Friedeland Silva.

NAME.	FORMULA.	SP. GRAVITY.	Authority.
Propylene chlorobromide	CH ₃ . CH ₂ . CH Cl Br CH ₃ . CH Br. CH ₂ Cl CH ₂ Br. CH ₂ . C ll ₂ Cl	1.60, 20° 1.474, 21° 1.63, 8°	Reboul. Ber. 7, 1037.
Dibromehlorpropylene Chlorodibromhydrin		2.064, 0° 2.085, 9° 2.088	Friedel. J. 12, 337. Reboul. J. 13, 461. Oppenheim. J. 21, 341.
		2.004, 15°	
Chlorobromhydroglycide - Derivative of chlorobrom- hydroglycide.	$C_3 H_4 Cl Br - C_3 H_4 Cl Br_3 - C_3 H_4 Cl Br_3 - C_5 Gr_3 - G_6 Gr_3 - G_7 Gr_4 Gr_5 Gr_5 Gr_5 Gr_5 Gr_5 Gr_5 Gr_5 Gr_5$	2.39, 14°	Reboul. J. 13, 461. Reboul. J. 13, 462.
Derivative of epidichlor- hydrin. Bromallyl chloride	C ₃ H ₄ Cl ₂ Br ₂		" " Henry. B. S. C. 18,
Chloracetyl bromide Bromacetyl chloride	C_2 H_2 Cl $O.$ Br C_2 H_2 Br $O.$ Cl	1.908, 9°	232. Wilde. J. 17, 320. Wilde. J. 17, 319.
Triehloracetyl bromide	C ₂ Cl ₃ O. Br		C. (2), 20, 195.
Hexchlortetrabromethyl oxide.	C ₄ Cl ₆ Br ₄ O		16, 25.
Chlorobromethyl acetate _ Dichlordibromethyl acet-	$C_4 H_6 Cl Br O_2 - \cdots$ $C_6 H_6 Cl_2 Br_2 O_3 - \cdots$	1.6499, 11°.4 1.956, 19°	1308.
acetate. Tribromehloracetone	C ₃ H ₂ Cl Br ₃ O	2.270	zeit. Ber. 16, 1551.
Bromochloral	C ₂ H Cl ₂ Br O		meister. Ber. 15,
Chlorobromhydrin	$\mathbf{C_2}$ H Br ₂ Cl O $\mathbf{C_3}$ H ₆ Cl Br O	2.2793, 15° 1.740, 12° 1.7641, 9°	" Reboul. J. 13, 458. Henry. Z. C. 13,
Phyeite bromodiehlorhy-drin.			604. Wolff. A. C. P. 150, 32.
Chlorodi bromnitrome-	C Cl Br ₂ N O ₂	2.421, 15°	
thane. Chlorobromnitrin	$\mathrm{C_3~H_5~Cl~Br~N~O_3}$	1.7904, 9°	610. Henry. Ber. 4, 701.
Chloriodomethane	C H ₂ Cl I	2.49, 20°	Sakurai. J. C. S. 41, 362.
Chloriodoform	"	,	Sakurai. J. C. S. 47, 198. Boucherdat. A. C. P. 22, 230.
" Ethylene chloriodide	C ₂ II ₄ Cl I	2.454, 0° } 2.403, 21°.5 } 2.151, 0° 2.39, 20°	Borodine, J. 15, 391. Simpson, J. 16, 485. Maumené, J. 22, 345.
	"	2.16439, 0° 1.87915, 140°.1	Thorpe. J. C. S.
22 s G			

Name.	FORMULA.	Sp. Gravity.	Антновиту.
ChloriodethyleneAcetylene chloriodide	C ₂ H ₂ Cl I	2.1431, 0° 2.2298	Henry, C. R. 98, 742. Plimpton, J. C. S. 41, 394.
44	4.6	$\begin{bmatrix} 2.154, 0^{\circ} & 1 \\ 2.1175, 19^{\circ} & 1 \end{bmatrix}$	Sabanejeff, Ber. 16, 1221.
Propylene chloriodide		1.932, 0° 1.824	Simpson. J. 16, 494. Oppenheim. J. 20, 571.
3 Chlorallyl iodidea Chlorallyl iodide		$ \begin{vmatrix} 1.977, 15^{\circ} & - \\ 1.880 + & 15^{\circ} \\ 1.913 & 15^{\circ} \end{vmatrix} $	Romburgh, Ber. 16
Dichloriodhydrin Orthochloriodobenzene	$ \begin{array}{ccccc} C_3 & H_5 & Cl_2 & I \\ C_6 & H_4 & Cl & I \end{array} $] 2.0476, 9°	Henry, Ber. 4, 701 Beilstein and Knr- batow. A. C. P
Chloriodotoluene	C ₇ H ₆ Cl I	1.702, 19°	176, 43. Beilstein and Kuhl- berg. A. C. P 156, 82.
	"	1.716, 17°	Wroblevsky. Z.C
a Chloriodethyl acetate	C, H, Cl I O,	1.770, 19°.5 1.9540, 18°	Henry. C. R. 97
Iodochlorhydrin	C ₃ H ₆ Cl I O ₂	2.06, 10°	1308. Reboni. J. 13, 458
Bromiodomethane	C H ₂ Br I	2.9262, 16°.8	Henry, C. R. 101 595.
Ethylene bromiodide	С П ₂ Вг. С П ₂ 1	2.7, 1°	
		2.514, 30°	Friedel, C. R. 79
		2,705, 18°, s	
Ethylidene bromiodide	C H ₃ . C H Br I	2.5, 1°	
		2.452, 16°	
Dibromiodethane	. C ₂ H ₃ Br ₂ I	2.86, 29°	Simpson. C. N. 29
Bromiodethylene	. C ₂ H ₂ Br l	2.5651, 00	
Acetylene bromiodide		2.750, 0°, s. 2.6272, 17°.5	Plimpton. J. C. S
Propylene bromiodide	C ₃ H ₆ Br I	2.2, 11°	Reboul. A. C. I 155, 214.
Paraiodorthobromtoluene	C, 116 Br I	_ 2.014, 200,7_	Wroblevsky, Z. C 13, 165.
${\bf M} {\bf ctaiodorthobromtoluen}$	46	2.139, 150	Wroblevsky, Z. C 14, 210.
Chlorobromiodethane	_ C ₂ H ₃ Cl Br I	2.53, 0°	Henry, C. R. 99
Chlorobromiodhydrin			Henry. Ber. 4, 70

TXT	ORGANIC	COMPOUNDS ($\mathcal{A}C$	FILIORINE *
1441.	OIGMINIO		æ	THUUNING."

NAME.	FORMULA.	SP. GRAVITY.	Authority.
Fluobenzene	C ₆ H ₅ F	1.024, 20°	
		1.0236, 20°	Wallach and Heus-
Paradifluobenzene	C ₆ H ₄ F ₂	1,11	ler. A. C. P. 243,
Parafluotoluene	C, H, F	.992, 25°	
Parafluochlorobenzene	C ₆ H ₄ Cl F	1.226, 15°	ler. A. C. P. 243,
Parafluobrombenzene Parafluoanilin	C ₆ H ₄ Br F	1.593, 15° 1.153, 25°	219. " " " " " " " " " " " " " "
Parafluonitrobenzene	C ₆ H ₄ N O ₂ F	1.326, l	

LXII. ORGANIC COMPOUNDS OF SULPHUR.

1st. Compounds Containing C, H, and S.

NAME.	Formula.	Sp. Gravity.	Аптновіту.
Methyl sulphide	(C H ₃) ₂ S	.845, 21°	Regnault. Ann. (2), 71, 391.
Ethyl sulphide	(C ₂ H ₅) ₂ S	.825, 20°	Regnault. Ann. (2), 71, 388.
" "		.83672, 0° .83676, 20	Pierre. C. R. 27, 213. Nasini. Ber. 15,
Propyl sulphide	(C ₃ H ₇) ₂ S	.814, 17°	2882. Cahours. B. S. C. 19, 301.
Ethyl amyl sulphide Butyl sulphide	$(C_2 H_5) (C_5 H_{11}) S = (C_4 H_9)_2 S = ($.852, 0° .849, 0° .8386, 16°	Savtzeff J 19 529
	"	.8317, 23°	175, 351. Reymann. J. C. S.
Isobutyl sulphide		.8863, 10°	
Isoamyl sulphide	(C ₅ H ₁₁) ₂ S	.84314, 200	(2), 17, 446. Nasini. Ber. 15, 2883.
Oetyl sulphide	(C ₈ H ₁₇) ₂ S	.8419, 17°	

^{*}See also under organic compounds of boron.

Name.	FORMULA.	SP. GRAVITY.	Астновиту.
Methyl disulphide	C ₂ H ₆ S ₂	1.046, 18°	Cahours. Ann. (3)
Ethyl disulphide	C ₄ H ₁₀ S ₂	1.06358, 0° About 1.00 .99267, 20°	18, 258. Pierre, C. R. 27, 213 Morin, P. A. 48, 484 Nasini, Ber. 15 2882.
Amyl disulphide	$\begin{bmatrix} C_{10} H_{22} S_2 \\ C_3 H_9 S_3 \end{bmatrix}$	$ \begin{array}{c} .918, 18^{\circ} \\ 1.2162, 0^{\circ} \\ 1.2059, 10^{\circ} \end{array} $	O. Henry. J. 1, 700
6	44	$\{1.2059, 10^{\circ} \}$ $\{1.199, 17^{\circ} \}$	Klason. Ber. 20 3415.
Ethyl mercaptan	C ₂ II ₅ ; S II	.842, 15° .835, 21°	Zeise. P. A. 31, 389 Liebig. A. C. P. 11
44 44	14	.8456, 5°—10° _ .8406, 10°—15°	Regnault, P. A. 53
4. 41		,8356,15°—20° .83907,20°	60. Nasini, Ber. 15
			2882.
Butyl mercaptan	C4 H9. S H	.858, 0° } .843, 16° }	$egin{cases} G \text{ rabowsky an} \ Saytzelf. & A. C \ P. 175, 351. \end{cases}$
Isobutyl mercaptan	44	.848, 11°.5 .8299, 17°	Humann, J. 8, 613 Reymann, J. C. 8
11 11		.83573, 20°	(2), 13, 141. Nasini. Ber. 13 2882.
Amyl mercaptun	C ₅ H ₁₁ , S H	.835, 21°	Krutzsch. J. P. C
44 44		.8518, 0° }	31, 2. Kopp. A. C. P. 9. 307.
**		.89475, 20°	Nasini. Ber. 1 2883.
Hexyl mercaptan	С ₆ Н ₁₃ . S Н	.8856, 0°	Wanklyn and Erler meyer. J. 17, 50
Carbon tetramereaptide .	C(SC, H ₅),	1.01	Claesson. J. 187 520.
Ethylene mercapten Methylene dithioethylate		1.123, 23°,5 .947, 20°	Werner, J. 15, 42 Classon, J. P. 0
Ethylene dithioethylate.	$C_2 H_{\bullet} / (S C_2 H_5)_2 =$.98705, 15°.5	123, 176, V. Meyer, Ber, 1 3266,
Ethylene thiovinylethy-	$\left\ \left\ \mathbf{C}_2 \mathbf{H}_4 \right\ \mathbf{S} \mathbf{C}_2 \mathbf{H}_3 \right\ \mathbf{S} \mathbf{C}_2 \mathbf{H}_4$	1.01921, 15°,5 1.0167, 19°=20	
Derivative of dithioglycol	C ₅ H ₁₀ S ₂		Mansfeld, Ber. 1 2662.
Amylene sulphide Vinyl sulphide	$\left(\begin{array}{ccc} C_{2} H_{10} S & & \\ C_{2} H_{3} \gamma_{2} S & & \end{array} \right)$.907, 132 1,015, 13°	Guthrie, J. 14, 66 Semmler, A. C.
Allyl sulphide	ДеС, П ₅ 2,8	.8541, 11°	
		, 58765, 4°	249. Nasini and Scal Bei, 10, 696.
Allyl trisulphide Fusyl sulphide	C ₆ H ₄₀ S ₅	1.012, 15° .850, 13°	

Name.	Formula.	Sp. Gravity.	AUTHORITY.
Trisulphhydrin	C ₃ II ₈ S ₃	1.391, 14°.4	Carius. J. 15, 455.
Methyl trisulphocarbonate	C ₃ II ₆ S ₃	1.159, 18°	Cahours. Ann. (3), 19, 162.
Ethyl trisulphocarbonate_	C ₅ H ₁₀ S ₃	1.152	Selomon. J. P. C.
Amyl trisulphocarbonate	$C_{11} H_{22} S_3$.877	(2), 6, 433. Hüsemann. J. 15,
Ethylene trisulphocarbon-	$C_3 H_4 S_3$	1.4768	
ate. Propylene trisulphocar-	$C_4 \coprod_6 S_3$	1.31, 20°	
bonate. Butylene trisulphocarbon-	$C_5 H_8 S_3$	1.26, 20°	434.
ate. Amylene trisulphocarbon-	C ₆ H ₁₀ S ₃	1.073	
ate. Allyl trisulphocarbonate -	C ₇ H ₁₀ S ₃	.943	Hüsemann. J. 15, 410.
Phenyl sulphide	$(C_6 H_5)_2 S_{}$	1.119	Stenhouse. J. 18, 532.
Phenyl tetrasulphide	$(C_6 H_5)_2 S_4$	1.297, 14°.5	Otto. J. P. C. (2), 37, 209.
Phenyl ethyl sulphide	$(C_6 H_5) (C_2 H_5) S_{}$	1.0315, 10°	Beckmann. J. C.
Ethyl paratolyl sulphide -	$(C_7 \text{ II}_7) (C_2 \text{ H}_5) \text{ S} \dots$	1.0016, 17°.5	S. 36, 37. Gäbler. Ber. 13,
Phenyl mercaptan Benzyl mercaptan Xylyl mercaptan Mesitylene mercaptan	C ₇ H ₇ . S H	1.078, 14° 1.058, 20° 1.036, 13° 1.0192	1277. Vogt. J. 14, 630. Märcker. J. 18, 543. Schepper. J. 18, 558. Holtmeyer. J. 20,
Cymyl mercaptan	C ₁₀ H ₁₃ . S H	.9975, 17°.5 .989	
	"	.995	172, 326. Bechler, Leipzig In-
Methylcymyl mercaptan _ Naphtyl mercaptan	C ₁₁ H ₁₅ . S II C ₁₀ H ₇ . S II	.986 1.146, 23°	aug. Diss. 1873. "" Schertel. J.17,533.
Thiophene	C ₄ H ₄ S	1.062, 23°	V. Meyer. Ber. 16, 1471.
	"	1.08844, 0° 1.0769, 10°	
(("	1.0651, 20°	
	"	1.0533, 30°	
((((1.0413, 40° [1.0291, 50° [Schiff. Ber. 18, 1605.
	((1.0169, 60°	
		1.0045, 70°	
· · · · · · · · · · · · · · · · · · ·		.9920, 80° .98741, 84°	
(("	1.05928, 4°	Nasini and Scala.
		1	Bei. 10, 696.

NAME.	FORMULA.	SP, GRAVITY.	Антиовиту.
Thiophene		1.06835, 16°.5_ 1.06466, 19°.7_ 1.06432, 20°	Knops. V. H. V.
Thiotolene	4	1.05662, 26°.6. 1.05332, 29°.2 1.0534, 32°	1887, 17.
Orthothioxene			Demuth. Ber. 19, 1858.
Metathioxene			Grunewald, Ber. 20 2586, Messinger, Ber. 18
		.9056, 20°	1637. Zelinsky. Ber. 20 2017.
Ethylthiophene		.990, 24°	Ber. 17, 1558.
Normal propylthiophe Isopropylthiophene	ene. C ₇ H ₁₀ S		Schleicher, Ber. 19
${\bf Normal\ butylthiopher}$	ae $_{}$ C_8 Π_{12} $S_{}$		
	44		Muhlert. Ber. 19 634.
· ·	C ₁₂ H ₂₀ S		Schweinitz. Ber. 19
β Methylpenthiophen	C ₆ H ₈ S	.9938, 19°	Krekeler, Ber. 19 3271,

2d. Compounds Containing C, H, S, and O.

	NAME. FORMULA		ULA.	SP. GRAVITY.	Антиовиту.	
Methy	l sulphi	te	$(C H_3)_2 S C$), H.) S O.	1.0456, 16°.2 1.0675, 18°	Carius. J. 12, 86, Carius. A. C. P.
		sulphite $(C/H_3)^2(C_2/\dot{H}_5)$ S O_3 = 1.0675, 18° Carius. Δ . 111, 103. Ebelmen an		111, 103.		
Ethyt	surpnite		(C ₂ H ₅ ' ₂ 5	'' ₃	1.050, 10	quet. Ann. (3)
4.4	4.4		44		1.10684, 00	Pierre, C. R. 27, 213.
4.4					1.1063, 05 }	Carius, J. P. C. (2)
4.6	s 6		£ 6		1.0926, 129.7	2, 285.
+ 4			**		1.0982, 119	Nasini, Bei. 9, 324
Methy	l sulph:	ete	(C H ₃) ₂ S €	0,	1.321, 225	Dumas and Peligot Ann. (2), 58, 33,
4.4	4.4		4.4		1.385, 13°	Bodeker, B. D. Z.
4.6	4.6		"		1.327, 18°	
4.4			4.4		1,33344, 15°)	
6.6	4.6		11		1	Perkin, J. C. S. 49
4.6			11		1,32386, 25°	777.

	1	I	1
NAME.	FORMULA.	SP. GRAVITY.	Authority.
Ethyl sulphate	(C ₂ H ₅) ₂ S O ₄	1.120 1.1837, 19°	Wetherill. J. 1, 692. Claesson. J. P. C. (2), 19, 258.
"	"	1.167	Stempnevsky. Ber. 15, 947.
Ethyl sulphurous acid		i	Kopp. A. C. P. 35, 343.
Ethyl sulphuric acid		i	Vogel. Gmelin's Handbuch.
	"	$\begin{bmatrix} 1.315 \\ 1.317 \\ 1.215 \end{bmatrix}$ 16° $\left\{ \begin{bmatrix} 1.215 \\ 1.215 \end{bmatrix} \right\}$	Marchand. Gme- lin's Handbuch. Duflos. Gmelin's
Ethyl ethylsulphonate	C, H, S O,		Handbuch. Carius. J. P. C. (2),
Ethyl ethylsulphonate " " " "	"	1.1508, 20°.4 } 1.14517, 22°	2, 269. Nasini. Ber. 15, 2884.
Isoamyl ethyl sulphone			Beekmann. J.C.S. 36, 38.
Diisobutyl sulphone Methyl methylxanthate	$C_8 H_{18} S O_2$ $C H_3 O. C S. C H_3 S$	1.0056, 18° 1.143, 15°	Cahours. Ann. (3),
		1.176, 18°	19, 160. Salomon. J. P. C. (2), 8, 114.
Ethyl methylxanthate	C H ₃ O. C S. C ₂ H ₅ S.	1.12, 18° 1.123, 11°	Chancel. J. 3, 470.
Methyl ethylxanthate	$C_2 H_5 O. C S. C H_3 \overline{S}$	1.129, 18°	Salomon. J. P. C. (2), 8, 114.
"	"	1.11892, 4°	Nasini and Scala. Bei. 10, 696.
Ethyl ethylxanthate	$C_2 H_5 O. CS. C_2 H_5 S$	1.0703, 18°	Zeise. A. C. P. 55, 310.
" "		1.07	Debus. A. C. P. 75, 125.
" "	"	1.085, 19°	Salomon. J. P. C. (2), 6, 433.
Methyl propylxanthate	• •		Nasini and Scala. Bei. 10, 696.
Ethyl propylxanthate Ethyl butylxanthate	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	1.05054, 4° 1.003, 17°	Mylius. B. S. C. 19, 221.
Butyl butylxanthate Ethyl dithioxycarbonate _	$C_4H_9O. CS. C_4H_9S. C_2H_5S. CO. C_2H_5S.$	1.009, 12° 1.084, 20°	Sehmidt and Glutz. J. 21, 575.
		1.085, 19°	Salomon. J. P. C. (2), 6, 433.
Ethyl thioxycarbonate Ethyl dioxythiocarbonate	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	1.0285, 18° 1.032, 1°	Debus. J. 3, 465.
" Ethyl butyl thioxycarbon-	" C ₂ H ₅ S. CO. C ₄ H ₉ O	1.031, 19° .9939, 10°	Salomon. J. P. C. (2), 6, 433. Mylius. Ber. 6, 312.
ate. """ Ethyldioxysulphocarbon-	$\begin{array}{cccccccccccccccccccccccccccccccccccc$.9938, 10° 1.26043, 4°	" Nasini and Scala.
ate. ? Propyl dioxysulphoear-			Bei. 10, 696.
bonate. ?			

Name.	FORMULA.	SP. GRAVITY.	Антновиту.
Xanthurin	$C_4 H_8 \otimes O_2$	1.012	Couerbe, A. C. P. 40, 297.
Thincetic acid Ethyl ethylthioglycollate	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	1.074, 10° 1.0469, 4°	Ulrich. J. 12, 355. Claesson. B. S. C.
Ethyl amylthioglycollate.	$C_9 \Pi_{18}\otimes O_2,\dots,$.9797, 42	23, 445. Claesson. B. S. C. 23, 446.
Ethyl phenylthioglycol- late.		_11.1269, 15° 1	Claesson, B. S. C. 23, 443.
Disulphamylene oxide Disulphamylene hydrate Aldehyde with sulphaldes.	$\begin{array}{c} C_{10} \ \Pi_{20} \ S_2 \ O_{} \\ C_{10} \ \Pi_{22} \ S_2 \ O_{2} \\ C_2 \ \Pi_4 \ O \ \neg \neg \ C_2 \ \Pi_4 \ S_{} \end{array}$. 1.054, 132 . 1.049, 82 . 1.134	Guthrie, J. 12, 483,
hyde.* Dihentylene sulphoxide.	(C, II), 8 0	1.875, 23°	550
Mon sulphhydrin Disulphhydrin Ethyl thioxalate	$C_3 H, S_2 O \dots$	_ [4.342, 149.4	Carius, J. 15, 454, Morley and Saint,
Oxysulphobenzid	$C_{12} \Pi_{10} \otimes O_4 \dots$	1.0060, 15°	J. C. S. 43, 400, Annaheim, Ber. 9, 1149,
Oxyphenyl mercaptan	C ₆ II ₆ S O	1.2373, 0°) 1.1889, 100°)	Haitinger. M. C. 4.
Thiophene aldehyde	C ₅ H ₄ S O	1.215, 21°	
Acetothienone Acetoethylthienone	$\begin{array}{cccccccccccccccccccccccccccccccccccc$		Peter. Ber. 17, 2644. Schleicher. Ber. 19, 660.
Acetylthioxene		1.0910, 17°	Messinger, Ber. 18, 2302.

3d. Sulphur Compounds Containing Nitrogen.

NAME.		NAME. FORMULA.		Sp. Gravity.	Λ UTHORITY.	
Methyl	thiocyan	inte	S C. S C L	I ₃	1.115, 16°	Cahours. Ann. (3) 18, 261.
1.4	4 +		4 +		1.05794, 00	Pierre, C. R. 27, 213
**	* 6		"		1.06905, 4°	Pierre, C. R. 27, 213 Nasini and Scala Bei, 10, 696.
Ethyl tl	nocyana	to	N C. S C ₃ 1	13	1.020, 16°	Cahours. Ann. (3) 18, 265.
	* *					Lowig. P. A. 67 101.
4.4	8.4		4.		1.033, 02	.]
4.4	6.		4.		1.01261, 192	
	4.4		4.4		1,00235, 220	- } Butf. Ber. 1, 200
6.6	6.6		6.4			
4.6	4.4		6.6		$\frac{870135}{869367}$ 146	
* 4				-		Nasini and Scala Bei, 10, 696.

[•]Pinner's termula. We hendeste heads it "surphly-drate if weetyl mercaptan," and writes the fermula C_{12} $H_{16} \simeq_{70}$

NAME.	FORMULA.	SP. GRAVITY.	Аптновиту.
Isopropyl thiocyanate	N C. S. C ₃ H ₇	.989, 0° .974, 15° } .963, 20°	Gerlich. Ber. 8, 651. L. Henry. J. 22, 361.
Amyl thiocyanate Hexyl thiocyanate			O. Henry. J. 1, 700. Pelouze and Ca- hours. J. 16, 526.
Allyl thiocyanate	6.6	1.071, 0° } 1.056, 15° }	Gerlich. Ber. 8, 653.
Methyl thiocarbimide	,	1.00312, 4	Nasini and Scala. Bei. 10, 696.
Ethyl thiocarbimide	C S. N C ₂ H ₅	.997525, 21°.4_ .997235, 22° .87909 1229 2	Buff. Ber. 1, 206.
"		1.0030, 18°	Gladstone. Bei. 9, 249.
" "	"	.99525, 4°	Nasini and Scala. Bei. 10, 696.
Tertiary butyl thiocarbi- mide. ""	C S. N. C4 H9	.9187, 15° }	Rudneff. Ber. 12, 1023.
mide. " Amyl thiocarbimide " " Hexyl thiocarbimide	C S. N C ₅ H ₁₁	$.957538,0^{\circ}$ $.94189,17^{\circ}$	Buff. Ber. 1, 206.
Hexyl thiocarbimide	C S. N C ₆ H ₁₃	.78749, 182°) .9253	Uppenkamp. Ber. 8,
Allyl thiocarbimide.	C S. N C ₃ H ₅	1.015, 20°	56. Dumas and Pelouze. Ann. (2), 53, 182.
" "	"	$\begin{pmatrix} 1.009 \\ 1.010 \end{pmatrix}$ 15°	Will. A.C.P. 52, 4.
"		1.0282, 0° 1.0173, 10°.1 }	Kopp. A. C. P. 98,
" "		1.0173, 10°.1)	367.
"	"	$.8739$ $.8741$ $\}$ 150°.1	Schiff. Ber. 14, 2767.
	"	.8740, 151°.3 1.00572, 4°	Schiff. Ber. 19, 560. Nasini and Scala.
Phenyl thiocarbimide	C S. N C ₆ H ₅	1.135, 15°.5	Bei. 10, 696. Hofmann. J. 11,
	"	1.155, 17°.5	349. Billeter. C. C. (3), 6, 101.
"	"	.9398, 219°.8	Schiff. Bei. 9, 559.
		1.12891, 4°	Nasini and Scala. Bei. 10, 696.
	"	1.35	Madan. C. N. 56, 257.
Sulpho-urea	C H ₄ N ₂ S	1.406, 4°	
"	"	1.450	Schröder. Ber. 13, 1070.
Thialdin	C ₆ H ₁₃ N S ₂	1.191, 18°	
Oenanthothialdin	$ \begin{array}{c} C_{21} \; H_{43} \; N \; S_2 \\ C_{10} \; H_{20} \; (C \; N)_2 \; S_2 \\ C_{10} \; H_{20} \; (C \; N)_2 \; S_4 \\ \end{array} $.896, 24° 1.07, 13° 1.16, 13°	A. G. 1. 61, 4. Schiff. J. 21, 724. Guthrie. J. 14, 665.

Name.	FORMULA.	SP. GRAVITY.	Астновиту.
Sulphocarbanilide	$C_{13} H_{12} N_2 S_{}$	1,311 } 4° {	Schroder. Ber. 12,
Sulphocarbanilide Thiocyanacetone Accetyl thiocyanate	C ₄ H ₅ S N O	1.209, 0° } 1.195, 20° }	Tcherniak and Hel- lon. Ber. 16, 350.
Assetyl thiocyanate Benzoyl thiocyanate			1.40%
Ethyl thiocyanacetate			1210.
Cystic oxide			Venables. Watts
			Diet.

4th. Sulphur Compounds Containing Halogens.

Name.	FORMULA.	SP. GRAVITY.	Аптновиту.
• •••••	er- C S Cl,	1.712, 12°.8	Rathke. A. C. P.
captan.		1.722, 0°)	107, 130.
4.6			Klason. Ber. 20,
		_ 1.6953, 17°.5	2378.
Dichlorethyl sulphide.		1.547, 12°	Riche. J. 7, 556.
F etrachlorethyl sulphic	$de = \left[(C_2^T \operatorname{II}^* Cl_4)_2 \operatorname{S}_{} \right]$	1.673, 24°	Regnault. Ann. (2).
Ethyl chlorperthiocarb	on- C ₂ H ₅ S ₂ Cl ₂	1.1408, 16°	71, 406. Klason. Ber. 20 2385.
Ethylene thiodichlorid	e_ C, H, S Cl,	1.408, 13°	
Ethylene dithiodichlor	$egin{array}{ll} \operatorname{ide} & \left[egin{pmatrix} (\mathring{C}_2 & \Pi_4)_2 & S_2 & \operatorname{Cl}_2 = 1 \\ (G_2 & \Pi_3 & \operatorname{Cl})_2 & S_2 & \operatorname{Cl}_2 = 1 \\ \end{array} ight] \end{array}$	1.346, 19°	
elslagida			
chloride. "	odi- $(C_2 \coprod_2 Cl_2)_2 S Cl_2 =$	1.219)	
$oldsymbol{\lambda}$ my lene-thiodichlorid	$e_{\perp} = C_5 \coprod_{10} S Cl_2 \dots$	1.138, 14°	Guthrie. J. 12, 481
$\Delta m_{ m N}$ lene dithiodichlor	ide $(C_3 \coprod_{10}), S_2 Cl_2 = 1$	1.149, 12°	Guthrie, J. 12, 480 Guthrie, J. C. S
Trichloramy lene - this - chtoride.	olli- $\left\{\left(C_{5}\left(\Pi_{7}^{2}\right)C\right)_{3}\right\}_{2}$ S $\left(C\right)_{2}$ =	1.406, 16°	13, 41.
	ide CH, ClSO,	1.51	McGowan, J. P. C
(ny tanquam tan	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,		(2), 30, 280.
Dichlormethy Isulphor	nic CHCl ₃ SO ₂ =====	1.71	McGowan. Leipzig
chloride.		*	In. Diss. 1884
Ethyl-ulphonic chloric	$\log_{10} C_2 \coprod_{5} \mathrm{CLS} \ \mathrm{O}_{2^{++++}}$	1.857, 22°,5	' Gerhardt and Chan cel. J. 5, 435.
D111	ride: C_6 H_3 $C1$ S O_2	1 978 939	Gerhardt and Chan
t ren's ren't nome curor	$u_0, e^{-t_1^2} \in (c, O^2)^{-1}$		eel. J. 5, 434:
Trichlormethyl amyl- phite.	sul- $C \in \Gamma_2$ $C_5 \mid \Pi_{11} \mid S \mid \Theta_3$	1.101	Carius, A. C. 1 113, 36.
Ethyl chlorosulphonat	(e), $C_g \coprod_5 O_1 S O_2$, C1	1,379,00	
		. 1,8556, 27° - 1,824, 61° - 1	Purgold, J. 21, 41

NAME.	FORMULA.	SP. GRAVITY.	Аптновіту.
Ethyl chlorosulphonate	" C ₂ H ₅ S. C O. Cl C ₅ H ₁₁ S. C O. Cl	1.3539, 27° { 1.3874, 0° } 1.3541, 27° } 1.184, 16°	32, 241.
Chlorallyl thiocarbimide - Ethylene chlorothiocya- nate.			L. Henry. Ber. 5, 186. James. J. C. S. 43, 38.
Tetrachloroxysulphoben- zid.	$C_{12} H_6 Cl_4 S O_4$	1.7774, 16°	Annaheim. Ber. 9, 1150.
Tetrabromoxysulphoben- zid.	$C_{12} \coprod_6 Br_4 S O_4$	2.3775, 17°	
Tetriodoxysulphobenzid	$C_{12} \ \Pi_6 \ I_4 \ S \ O_4 \$	2.7966, 19°	it i t
Monobromthiophene	$\mathrm{C_4~H_3~Br~S}$	1.652, 23°	V. Meyer. Ber. 16, 1470.
Dibromthiophene Octyliodthiophene	C ₄ H ₂ Br ₂ S C ₄ H ₂ S. C ₈ H ₁₇ .·I	2.147, 23° 1.2614, 20°	Schweinitz. Ber. 19,

LXIII. ORGANIC COMPOUNDS OF BORON.

Name.	FORMULA.	Sp. Gravity.	AUTHORITY.
Boron triethyl	B (C ₂ H ₅) ₃	.6961, 23°	Frankland and Dup- pa. J. 13, 386.
Trimethyl borate	(C H ₃) ₃ B O ₃	.9551, 0°	Ebelmen and Bouquet. J. P. C. 38
Triethyl borate	(C ₂ H ₅) ₃ B O ₃	.940, 0° } .915, 20° }	Sehiff. A. C. P. 5th Supp., 184.
" "		.871	quet. J. P. C. 38 215.
:: :: ::		.887. 09	29, 548. Schiff. A. C. P
Methyl diethyl borate Tripropyl borate	$\begin{array}{c} C H_3 (C_2 H_5)_2 B O_3 \\ C H & B O \end{array}$.904, 0° } .883, 20° }	Schiff. A. C. P. 5th Supp., 197.
Tripropyl borate	$\begin{pmatrix} (C_3 & H_7)_3 & B & O_3 & \dots \\ (C_5 & H_{11})_3 & B & O_3 & \dots \end{pmatrix}$.870	Cahours. C.C. 4,482 Ebelmen and Bou quet. J. P. C. 38, 219.
" " …		.872, 0°) ·
"	- "	.852, 24°	
(- "	$\begin{bmatrix} .840 \\ .855 \end{bmatrix}$ 28°	Sehiff. A. C. P.
<i>u u</i>	"	.853, 29, an- other lot.	5th Supp., 189 and 195.

NAME.	FORMULA.	SP. GRAVITY.	Аптновиту.
Ethyl diamyl borate	$C_2 \text{ H}_5 (C_5 \text{ H}_{11})_2 \text{ B } O_{3-}$ $(C_2 \text{ H}_5)_2 C_5 \text{ H}_{11} \text{ B } O_{3-}$.876, 0° } .852, 28° }	Schiff. A. C. P., 5th Supp., 193.
Amyl metaborate 	C_5 Π_{11} B O_2	.949, 20°	5th Supp., 189.
Ethylene fluoborate	C ₂ H ₅ B F O ₂	$ \begin{array}{c} 1.124,0^{\circ} \\ 1.106,20^{\circ} \\ 1.0478,23^{\circ} \end{array} $	Schiff. A. C. P., 5th Supp., 208.

LXIV. ORGANIC COMPOUNDS OF PHOSPHORUS.

Name.	FORMULA.	Sp. Gravity.	Антновиту.
Triethylpho-phin	P (C ₂ II ₅) ₃	.812, 15°.5	Hofmann and Ca-
Monoetylphosphin	P II ₂ (С ₈ II ₁₇)	.8209, 17°	hours. J. 10, 372. Möslinger. Ber. 9, 1007.
Phonylphosphin	P H ₂ (C ₆ H ₅)	1.001, 15°	Kohler and Michael- is. Ber. 10, 809.
Diphenylphosphin	Р П (С ₆ П ₅) ₂	1.07, 16°	Dörken. Ber. 21, 1508.
Triphenylphosphin	P (C ₆ H ₅) ₃	1.194	Michaelis and So- den. A.C. P. 229, 302.
	"	1.186	
Dimethylphenylphosphin	P (C H ₃) ₂ C ₆ H ₅	9768, 11°	
Diphenylmethylphosphin	P C H ₃ (C ₆ H ₅) ₂	. 1.0784, 15°	
Diethylphenylphosphin	$P(C_2 H_5)_2 C_6 H_5$.9571, 13°	
Ethyl phosphite	(C ₂ H ₅) ₃ P O ₃	1,075	Williamson. J. 7
Methyl hypophosphate	(C H ₃) ₄ P ₂ O ₆	1.109, 15°	
Ethyl hypophosphate Propyl hypophosphate	$(C_2 \Pi_5)_4 P_2 O_6$	1.1170, 15°	
- Propyl hypophosphate - Isobutyl hypophosphate	$(C_3 H_7)_4 P_2 O_6$ =====	1,134, 15° 1,125, 15°	.]
Methyl orthophosphate	. (СП,), РО,	_ 1.2378, 0°	Weger. A. C. P
		.∤ 1.0019, 197°.2,	221, 61.
Dimethyl ethyl orthophosophate.	$= (C H_3)_2 C_2 H_5. P O_4$	1.1752, 0° 95188, 203°.3	- 1
Ethyl orthophosphate			Limpricht. J. 18
			471.
Ethyl pyrophosphate	$= \begin{pmatrix} C_2 & \Pi_5 \end{pmatrix}, P_2 & O_7 & \dots & \dots \\ C_2 & \Pi_5 \end{pmatrix}, P_3 & O_7 & \dots & \dots $		Clermont. J. 7, 562 Wurtz. A. C. P. 58
Amyl umylphosplute	-1 (, 2 H ¹¹ , H I O ²		77.

Name.	Formula.	Sp. Gravity.	AUTHORITY.
Diamylphosphoric acid Triphenyl phosphite	$(C_5 H_{11})_2 H P O_{4} (C_6 H_5)_3 P O_{3}$	1.025, 20° 1.184, 18°	Fehling. Noack. A. C. P. 218,
Phosphenyl ether	$C_6 H_5 P O_2 (C_2 H_5)_{2-1}$	1.032, 16°	99. Köhler and Michael-
Phenylphosphinie acid	C ₆ H ₅ . H ₂ P O ₃	1.475, 4°	is. Ber. 10, 817. Schröder. Ber. 12, 561.
Diphenylphosphinic acid-			" "
Phenoxyldiphenylphos- phin.	C ₆ H ₅ O (C ₆ H ₅) ₂ P	1.140, 24°	Michaelis and La Coste. Ber. 18,
${\bf Triphenylphosphin~oxide_}$	(C ₆ H ₅) ₃ P O	1.2124, 22°.6	Coste. Ber. 18,
Naphtylphosphinie aeid Naphtylphosphorous aeid	C ₁₀ H ₇ , H ₂ P O ₃	1.435 } 4° {	2120. Schröder. Ber. 12, 561.
Naphtylphosphorous acid "	C ₁₀ H ₇ H ₂ P O ₂	1.377, 4° 1.441, 4°, after fusion.	}
Complex ether?	C ₁₄ H ₃₆ P ₂ O ₈	.960, 14°	Geuther. A. C. P. 224, 278.
Amylnitrophosphorous acid.	(C ₅ H ₁₁) ₂ H P N O ₄ -	1.02, 20° 1.00, 70° }	Guthrie. J. 11, 404.
Ethylphosphorous chloride	C ₂ H ₅ P O Cl ₂	1.316, 0°	Menschutkin. A. C. P. 139, 344.
" " " —	ιι <u></u>	1.305265, 0° 1.13989, 117°.5	Thorpe. J. C. S.
Butylphosphorous chloride.	$C_4 H_9 P O Cl_2$	1.191, 0°	Menschutkin. J. 19, 487.
Amylphosphorous chloride.	$C_5 H_{11} P O Cl_2$	1.109, 0°	
Diacetone phosphoroso- chloride.	$C_6 \ H_{10} \ P \ O_2 \ Cl$	1.209, 17°.5	Michaelis. Ber. 18, 900.
Phenylphosphorous chloride.	$C_6 H_5 P O Cl_2$	1.3549	Hölzer. Quoted by Noack.
"		1.348, 18°	Noack. A. C. P. 218, 91.
" <u> </u>		1.3543, 20°	Anschütz and Emery. A. C. P. 239, 310,
Diphenylphosphorous chloride.	$(\mathrm{C_6\ II_5)_2\ P\ O_2\ Cl}_{}$	1.2494	Hölzer. Quoted by Noack.
		1.221, 18°	Noack. A. C. P. 218, 92.
Phosphenyl chloride	C ₆ H ₅ P Cl ₂	1.319, 20°	Michaelis. C. C. 4, 548.
		1.3428, 0° 1.10415, 224°.6	Thorpe. J. C. S.
Phosphenyl oxychloride	C ₆ II ₅ P Cl ₂ O	1.375, 20°	Michaelis. C. C. 4, 548.
Diphenyl phosphochloride	(C ₆ II ₅) ₂ P Cl	1.2293, 15°	Michaelis and Link. A. C. P. 207, 209.

NAME.	FORMULA.	SP. GRAVITY.	Антновиту.
Metachlorocarbonyl phe- nylorthophosphorie chloride.	C, II, PO, Cl,	1.54844, 20°	Anschutz and Moore, A. C. P. 239, 335.
Parachlorocarbony lphe- nylorthophosphoric chloride.			Anschutz and Moore. A. C. P. 239, 344.
By action of P Cl ₅ on salicylic acid.	C, II, P O ₂ Cl ₅	1.62019, 20°	Апяснй tz нп d Мооте, А. С. Р. 239, 320.
Paraxylylphosphochlo- ride.	C ₈ H ₉ P Cl ₂	1.25, 18°	
Paraxylylphosphoroxy- chloride.	C ₈ H ₉ P O Cl ₂	1.31, 18°	
Sulphophosphorous ether.	(С ₂ П ₅) ₃ Р S ₃	1.24, 12°	Michaelis, C. N. 25,
Ethyl pyrosulphophos-	$(C_2 H_5)_4 P_2 S_3 O_4$	1.1892, 17°	
Amyl sulphophosphate Ethylsulphophosphorous chloride.	$(C_5 \Pi_{11})_3 P S O_3 \dots C_2 \Pi_5 P S Cl_2 \dots$.849, 12° 1.30, 12°	
Triethoxylpyrophosphor- sulphobromide.	$(C_2 H_5)_3 \text{ Br } P_2 S_3 O_3$	1.3567, 19°	Michaelis, A. C. P. 161, 9,
Phosphenyl sulphochlo-	C ₆ H ₅ P Cl ₂ S	1.376, 13°	
Triphenyltrisulphophos- phamide.	$(C_6 H_5)_3 H_3 N_3 P S_{}$	1.31	

LXV. ORGANIC COMPOUNDS OF VANADIUM, ARSENIC, ANTIMONY, AND BISMUTH.

NAME.	FORMULA.	SP. GRAVITY.	Аутновиту.
Ethyl orthovanadate	(C ₂ II ₅) ₃ V O ₄	1.167, 17°.5	Hull. J. C. S. 51, 752.
Dimethylarsine oxide	(A · C ₂ H ₆) ₂ O	1.462, 15°	Bunsen, P. A. 40,
Triethylarsine	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	1.151, 16°.7 1.428, 9°.6	
Ethyl arsenite Amyl arsenite Methyl arsenate	(C ₅ H ₁₁) ₃ As O ₃	1.0525, 0°	Crafts. J. 20, 552. Crafts.
Ethyl arsenate	$= \left(\left(\frac{C_2}{4} \prod_{5 > 3} \Lambda_5 \right)_3 \right)_4 = 0$	1,3264, 0° }	324. Crafts. J. 20, 551.
Phenylarsenic acid	C ₆ H ₇ As O ₃	1,760 1,803 1,805	Schröder, Ber. 12, 561,
Diphenylarsenic acid	C ₁₂ H ₁₁ As O ₂	1,515, 4°	44 44

NAME.	Formula.	SP. GRAVITY.	Аптногиту.
Diphenylarsine chloride	As (C ₆ H ₅) ₂ Cl	1.42231, 15°	chaelis. Ber. 11,
Phenylarsine bromide	As (C ₆ H ₅) Br ₂	2.0983, 15°	1885. Michaelis. Ber. 10,
Ethyl thioarsenite	As (S C ₂ H ₅) ₃	1.3141, 16°	626. Claesson. Lund Arsskrift, 1884–'5.
TrimethylstibineTriethylstibine	Sb (C H ₃) ₃	1.523, 15° 1.3244, 16°	Landolt. J. 14, 569. Löwig and Schweit-
Triamylstibine	Sb (C ₅ H ₁₁) ₃	1.1333, 17°	zer. J. 3, 471. Berlé. J. 8, 586.
Triamylstibine Triethylstibine ehloride	Sb (C ₂ H ₅) ₃ Cl ₂	1.0587	Cramer. J. 8, 590. Löwig and Schweit- zer. J. 3, 476.
Triethylstibine bromide Triphenylstibine	$\begin{array}{ c c c c c c c c c c c c c c c c c c c$	1.953, 17° 1.4998, 12°	" " Michaelis and Reese.
Metatritolylstibine	Sb (C ₇ H ₇) ₃	1.3957, 15°.7	A. C. P. 233, 46. Michaelis and Genz- ken. A. C. P. 242,
Paratritolylstibine		1.35448, 15°.6_	185. Michaelis and Genz- ken. A. C. P. 242, 169.
	DI (G. II.)	2 22 102	77 N D 00
Bismuth trimethyl			1517.
Bismuth triethylBismuth triphenyl	Bi (C ₂ H ₅) ₃	1.82 1.5851, 20°	Breed. J. 5, 602. Michaelis and Polis. Ber. 20, 55.

LXVI. ORGANIC COMPOUNDS OF SILICON.

NAME.	FORMULA.	SP. GRAVITY.	Authority.
Silicon tetrethyl	Si (C ₂ H ₅) ₄	.7657, 22°.7	Friedel and Crafts. A. J. S. (2), 49,
	"	.8341, 0°	311. Ladenburg. B. S. C. 18, 240.
Silicon hexethyl	Si ₂ (C ₂ H ₅) ₆	$\begin{bmatrix} .8510, 0^{\circ} \\ .8403, 20^{\circ} \end{bmatrix} $	Friedel and Laden- burg. A. C. P. 203, 251.
Silicon tetrapropyl	Si (C ₃ H ₇) ₄	.7979, 0° .7883, 15° }	Pape. Ber. 14, 1872.
Silicoheptane	Si C ₆ H ₁₆	.7510, 0°	Ladenburg. A. C. P. 164, 300.
Silicodecane	Si C ₉ H ₂₂	.7723, 0° .7621, 15° }	Pape. Ber. 14, 1872.
Silicon triethyl phenyl	Si (C ₂ H ₅) ₃ C ₆ H ₅	.9042, 0°	Ladenburg. C. C. 5, 312.

NAME.	FORMULA.	SP. GRAVITY.	Λ uthority.
Silicon tetraphenyl	Si (C ₆ H ₅) ₄	1.078, 20° 1.0793, 20° 1.1188, 20° 1.0776, 20°	Polis, Ber. 19, 1012,
Ethyl metasilicate	$(C_2 H_5)_2$ Si $ O_3 $	1.079, 21°	Ebelmen, A. C. P.
Methyl orthosilicate	(C H3/4 Si O4	1,0589, 09	57, 339. Friedel and Crafts.
Trimethyl ethyl orthosili-	$(C/\Pi_3)_3/C_2/\Pi_5/Si/O_4$.	1.023	J. 18, 465, Friedel and Crafts
cate. Dimethyl diethyl ortho-	$(C \Pi_3)_2(C_2 \Pi_5)_2$ Si O_4	1.004, 00	J. 19, 491.
silicate. Methyl triethyl orthosili-	$C/H_3+C_2/H_5)_8$ Si O_4	.089, 02	
cate. Ethyl orthosilicate	(C2 H5)4 Si O4	.032	Ebelmen. A. C. P
46		,933, 20°	52, 324. Ebelmen. A, C, P
		.(6676, 0°	57, 334. Friedel and Crafts
	4.	.9330, 220,5	$egin{array}{ll} A, J, S, (2), 48, 158 \ Mendelejetf, J, 13, 7 \end{array}$
Propyl orthosilicate		1.915, 182	Caliours, C C.4, 481
Butyl orthosilicate	$(C_4 \prod_9)_4 \operatorname{Si} O_{4}$	1.3658, 15°	Cahours, C. C. 5, 20
Triethyl amyl orthosilicate Diethyl diamyl orthosili-		.926, 02	Friedel and Crafts A. J. S. (2, 43, 163, Friedel and Crafts
ente.	(2		J. 19, 489.
Ethyl triamyl orthosilicate Amyl orthosilicate	$\begin{array}{c} \left\{ \begin{array}{ccc} C_{2} \prod_{5} \left(C_{5} \prod_{11/3} \operatorname{Si} \right) \right\} \\ \left(C_{5} \prod_{11} \right)_{4} \operatorname{Si} \right\} \end{array}$.913, 6° .868, 20°	Ebelmen. A. C. P
Hexmethyl disiliente	(C. II) e Si O	1.1111.02	Friedel and Crafts J. 18, 465.
Hexethyl disiliente	$\left(C_{2}\right.H_{5/6}\mathrm{Si}_{2}\left.O_{7}\right]$	1.0196, 0° / [1.0019, 19°,2 /	Friedel and Crafts J 19, 489.
Octothyl tetrasilicate	C_{16} H_{10} Si_4 O_{12}	. 1.071, 0° == 1 1.054, 14°.5 (Troost and Haute fauille, B. S. C 19, 255.
Ethyl siliconcetate	C_7 H_{18} Si O_3	9283, 0°	Ladenburg, J. C. 8
Mothyl silicopropionate	$C_1\Pi_{11}$ Si O_3	.9747, 00	(2), 12, 40. Ladenburg, A. C. I
Ethyl silicopropionate	C_ 1120 S. O	.0207, 02	173, 143. Friedel and Laden burg. A. C. I 159, 259.
Ethyl silicoben toate	$C_{1i} \coprod_{i=0}^{n} Si \Theta_{3}$	1.0183, 0° + 1.0055, 10° +	Ladenburg, J. C. S 28, 11, 1026,
Silicon diethyl diethylate	$\{C_s H_{s0}>:O_s=1,\ldots,S_s\}$		Ladenburg, A. C. I 161, 300.
Treethylsilaced	$\left\{ \begin{array}{ll} \mathbf{S}, \mathbf{C}_{6} \mathbf{H}_{1, 2}, \mathbf{O} \mathbf{H} \\ \mathbf{S}_{1} \mathbf{C}_{6} \mathbf{H}_{1, 2} \mathbf{O} \end{array} \right$,8709, 0° ,8881, 0°	Ladenburg, Ber.
		.8500,00	730 Ladenburg, A. C. I 164, 300.
Silicolarity I metato	Si C. H., C. H. O.	.9089, 62	101, 000,
Silicoheptyl acetate	Isi c'. ii c'. ii. o :	\$ 103, 0°	

NAME.	Formula.	SP. GRAVITY.	Authority.
Silicoheptyl chloride	Si C ₆ H ₁₅ Cl	.9249, 0°	Ladenburg. A. C. P. 164, 300.
Methylsilicie monochlor- hydrin.	Si C ₃ H ₉ Cl O ₃	1.1954, 0°	
Methylsilicic dichlorhy- drin.	Si C ₂ H ₆ Cl ₂ O ₂	1.2595	ιι ΄ ιι
Ethylsilieic monochlorhydrin.	Si C ₆ H ₁₅ Cl O ₃	1.0483, 0°	Friedel and Crafts. A. J. S. (2), 43, 160.
Ethyl silieie diehlor hydrin	$\operatorname{Si} \operatorname{C}_{4} \operatorname{II}_{10} \operatorname{Cl}_{2} \operatorname{O}_{2} $	1.144, 0°	
Ethylsilicie triehlorhydrin	•		Friedel and Crafts. J. 19, 489.
Propylsilicie monochlor- hydrin.	Si C ₉ H ₂₁ Cl O ₃	.980	Cahours. C. C. 4, 482.
Propylsilicie diehlorhy- drin.	$\begin{array}{ c c c c c c c c c c c c c c c c c c c$	1.028	
Derivative of silicon triethylphenyl.	Si C ₁₂ H ₁₉ Cl	1.1085, 0°	Ladenburg. A. C. P. 173, 143.
Silicon iodoform	Si H I ₃	$ \left\{ \begin{array}{l} 3.362,0^{\circ} __ \\ 3.314,20^{\circ} __ \end{array} \right\} $	Friedel. A. C. P.

LXVII. ORGANIC COMPOUNDS OF TIN.

NAME.	FORMULA.	Sp. GRAVITY.	Authority.
Stanntetramethyl			13 605
Stanndiethyl	Sn ₂ (C ₂ H ₅) ₄	1.558, 15° 1.192	Löwig. J. 5, 584.
"Ethylene stannethyl" Stanntriethyl	$\operatorname{Sn}_{2}\left(\operatorname{C}_{2}\operatorname{H}_{5}\right)_{6}$	1.4115,00	Ladenburg. Z. C.
Stanntetrethyl	Sn (C ₂ II ₅) ₄	1.187, 13°.6	Frankland. J. 12.
Stannethyltrimethyl Stanndiethyldimethyl	$\operatorname{Sn} (C_2 H_5)_2 (C H_3)_2 -$	1.2319, 19°	Cahours. J. 14, 551. Frankland. J. 12, 412.
" Stanntetrapropyl	" Sn (C ₂ H ₂),	1.2509, 0° } 1.2603, 0° } 1.179, 14°	Two lots. Morgu- noff. Z. C. 10, 370.
Stanntricthylphenyl	Sn $(C_2 H_5)_3 C_6 H_5$	1.2639, 0°	20, 190. Ladenburg. A. C. P. 159, 251.
Stauntriethyl ethylate			P 8th Supp., 60.
Stanndimethyl iodide Stanntrimethyl iodide	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	2.872, 22° 2.155, 18° 2.1432, 0° }	Cahours. J. 12, 427. Cahours. J. 12, 429. Ladenburg. Z. C.
Stanndiethyl iodide	Sn (C ₂ H ₅) ₂ I ₂	1.8 2.0329, 15°	Cahours. J. 12, 424 Frankland. J. 12, 413.

Name.	FORMULA.	Sp. Gravity.	AUTHORITY.
Stanntriethyl bromide Stanntriethyl iodide	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	1,320 1,630 1,850 1,833, 22°	Cahours. J. 12, 424. Cahours. B.S.C. 19,
Stanntributyl iodide "Ethstannethyl chloride" "Ethstannethyl bromide" "Ethstannethyl iodide"	Sn ₂ C ₁₀ H ₂₅ Cl Sn ₂ C ₁₀ H ₂₅ Br	1.48	Löwig. J. 5, 588.

LXVIII. ORGANIC COMPOUNDS OF ALUMINUM.

Name.	FORMULA.	Sp. Gravity.	Астнов	ITY.
Aluminum ethylate			C. N. 42,	3.
Aluminum propylate	A1 (C ₃ H ₇ O) ₃	1.026, 4°	4.4	
Aluminum butylate	$AI(C, H_0O)_{3}$	9825, 4°	٤,	
Aluminum aurylate	$A1 (C_5 H_1, O)_{garana}$.9804, 40		
Aluminum phénylate	Al (C, H, O),	1.25, 4°	4.	4.4
Aluminum cresylate	Al (C, H, O),	1.166, 4°		6.6
Aluminum thymolate	A1 (C., H., O).	1.04.40	6.	
Aluminum chloride and benzene.	A1 Čl., 3 Č. H	1.14, 0°)	Gustavson.	Ber. 11
benzene. 6 6	344	1.12, 20° }	2152.	
toluene.	Al Cl ₃ , 5 C ₇ H ₈	$\left[\frac{1.08,0^{\circ}}{1.06,22^{\circ}} \right]$	"	
Aluminum chloride and	$\left[\begin{array}{cccccccccccccccccccccccccccccccccccc$	1.139, 0° }	Gustavson. 694.	Ber. 12
Aluminum bromide and benzene.	Al Br ₃ , 3 C ₆ H ₆	$1.49, 0^{\circ}$ }	Gustavson. 1845.	Ber. 11
Aluminum bromide and toluene. "	Al Br _{3/} 3 C ₇ H ₈	1.37, 0° }	Gustavson. 1843.	Ber. 11
Aluminum bromide and benzene, " " Aluminum bromide and toluene, " " Aluminum bromide and cymene, " "	2 Al Br ₃ , 3 C ₁₀ H ₁₄	1,493, 0° } 1,477, 16° }	Gustavson. 694.	Ber. 12

LXIX. ORGANIC COMPOUNDS OF ZINC, MERCURY, THALLIUM, AND LEAD.

Zinc ethyl Zn (C ₂ H ₃) ₂ 1.182, 18° Duppa, J. 16, 473.				
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	NAME.	Formula.	SP. GRAVITY.	Аптновіту.
Zinc ethyl	Zine methyl	Zu (C II ₃) ₂	1.386, 10°.5	Frankland and Duppa, J. 16, 473
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	Zinc ethylZinc propyl		1.182, 18° 1.098, 15°	Frankland. J. 8, 577. Gladstone and Tribe. J. S. C. (2),
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	Zinc amyl	Zn (C ₅ H ₁₁) ₂	1.022, 0°	Frankland and Duppa. J. 16,473.
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	Mercurethyl	$ \text{Hg} (\text{C}_2 \text{H}_5)_2$	2.444	
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	Mercurbutyl			Chapman and Smith. J. C. S. 22, 164.
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	Mercuramyl	Hg (C ₅ H ₁₁) ₂	1.835, 15° 1.6663, 0°	Cahours. C. C. 5, 20. Frankland and
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	Mercuroctyl			Eichler. Ber. 12,
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$		$\operatorname{Hg} \left({\operatorname{C}}_{6} \operatorname{H}_{5} \right)_{2}$	$egin{bmatrix} 2.290 \ 2.324 \ 2.340 \ \end{pmatrix} 4^{\circ} \Big\{$	Schröder. Ber. 12, 561.
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	Mercurdinaphtyl	Hg (C ₁₀ H ₇) ₂	1.918 1.926 1.041	
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$			4.063, 4° 3.461 \ _40	
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	Mercury β hexyl mercap-			
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	Thallium ethylate	Tl C ₂ H ₅ O	3.480} 3.685}	Lamy. Ann. (4), 3, 373.
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	Thailidm amylate	"'	2.465 { 2.518 }	Lamy. J. 17, 466
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	Lead tetramethyl Lead diethyl Lead triethyl	Pb (C ₂ H ₅) ₂	1.55	Buckton. J. 11, 391. Buckton. J. 12, 409.
	Lead tetraphenylPara lead tetratolyl	$Pb (C_6 H_5)_4$ $Pb (C_1 H_7)_4$	1.5298, 20°	Polis. Ber. 20, 716.

LXX. METALLIC SALTS OF ORGANIC ACIDS.

NAME.	FORMULA.	SP. GRAVITY.	Аптиовиту.
Lithium formate	Li C H O2. H2 O	1.405 { 1,479 { } }	Schroder. Ber. 14, 21.
Sodium formate	Na G II O ₂	1.907 1.931	
Potassium formate	КСПО2	1.896)	
Ammonium formate	Am C H O2	1.264 (
Zinc formate	$\operatorname{Zn} \operatorname{C}_2 \operatorname{H}_2 \operatorname{O}_4$	1.271) 2.368	Schröder. Ber. 14,
	Zn C ₂ H ₂ O ₄ , 2 H ₂ O	2,339	23. Schröder. Ber. 8,
11 11		2.205	199. Schröder. Ber. 14,
Cadmium formate		2,1575, 21°,3	23. Breen. F. W. C.
Cadmium formate	Cd C2 H2 O4. 2 H2 O	2.429, 20°.2 2.427	Schröder, Ber. 14,
Calcium formate	Ca C ₂ H ₂ O ₄ . 2 H ₂ O	1 2.477 J 1 2.021 J	22. Schröder. Ber. S,
	14	2,009)	199. Schroder. Ber. 14.
Strantium Cornuta	Sr C H O	2,015	292)
Strontium formate	$\operatorname{Sr} \operatorname{C}_{2}^{2} \operatorname{H}_{2}^{2} \operatorname{O}_{4}^{4}, \operatorname{2} \operatorname{H}_{2} \operatorname{O}_{-}$	(2.252, cryst.)	Schröder. Ber. 8, 199.
		2,241, m. of 3.	
Barium formate		3.193, cryst.)	Schröder. Ber. 8,
44 44	11		Two lots. Schroder.
Lead formate	$\operatorname{Pb} \operatorname{C}_2^{-\Pi_2} \operatorname{O}_{\bullet}^{}$	3.233 4.56, 11°	Ber. 11, 2129. Bodeker and Gie-
		4,507)	secke, B. D. Z. Schröder Dm. 1873.
11 11	1 46	4.610, cryst.)	Schroder, Ber. 8,
Manganese formate	Mn C ₂ H ₂ O ₄	4.621, puly.) 2.205	199. Schroder. Ber. 14,
44	$\operatorname{Mn} \operatorname{C}_2\operatorname{H}_2\operatorname{O}_4,\operatorname{2}\operatorname{H}_2\operatorname{O}$	1.917)	23.
		1.954	
Nickel formate	$\begin{array}{c} \operatorname{Ni} \left(C_{1} \right) \operatorname{H}_{2} \left(O_{1} \right) \operatorname{2} \operatorname{H}_{2} \left(O_{1} \right) \\ \operatorname{Co} \left(C_{1} \right) \operatorname{H}_{2} \left(O_{1} \right) \operatorname{2} \operatorname{H}_{2} \left(O_{1} \right) \end{array}$	2.1547, 20°.2 2.1080, 20°.2.}	H. Stallo, F. W. C.
Corper formate	Ca C, H, O, 4 H, O	2.1286, 22° 1 1.515, 20°	Gehlen. Ann. 83,
		1.811, puly.	213. Schroder. Ber. S.
		1.795, cryst.)	199. Schroder. Ber. 14.
C			Schroder, Ber. 14, Schroder, Ber. 14,
Strontium copper formete	$1 \ge \Gamma_2 \le \Pi \left(\le \prod_i \Theta_2 \right)_0 = 1$	1 2,012	Schroder, Ber. 14, 21.

		t	1
NAME.	FORMULA.	Sp. Gravity.	Authority.
Strontium copper formate		2.133 (Schröder. Ber. 14,
Barium copper formate Didymium formate	Di (C H O ₂) ₃	$\begin{bmatrix} 2.747 \\ 3.427 \\ 3.433 \end{bmatrix}$ 20° $\left\{ \right.$	Cleve. U. N. A. 1885.
Samarium formate	Sm (C H O ₂) ₃	$ \begin{vmatrix} 3.730 \\ 3.732 \\ 3.737 \end{vmatrix} 20^{\circ}_{} $	
Sodium acetate	Na C ₂ H ₃ O ₂	1.421, 14° 1.524 }	Bodeker. B. D. Z.
u u		$\left\{ \begin{array}{cccc} 1.524 & \\ 1.529 & \\ 1.53 & \end{array} \right\}$	Schröder. Ber. 14, 1608. Brügelmann. Ber.
<i>u u</i>	Na C ₂ H ₃ O ₂ . 3 H ₂ O ₋	1.420 1.40, 12°	17, 2359. Buignet. J. 14, 15. Bödeker. B. D. Z.
" " Sodium triacetate	Na C ₆ H ₁₁ O ₆	$\left\{ \begin{array}{ccc} 1.450 & \dots & \\ 1.456 & \dots & \\ 1.47 & \dots & \end{array} \right\}$	Schröder. Ber. 14, 1608. Lescoeur. C. R. 78,
Potassium triacetate	$\begin{array}{cccccccccccccccccccccccccccccccccccc$		1046.
Silver acetate	$\operatorname{Ag} \operatorname{C}_2 \operatorname{H}_3 \operatorname{C}_2$		Liebig and Redten- bacher. P. M. (3), 19, 227.
Magnesium acetate	" " " " " " " " " " " " " " " " " " "	$\left\{ \begin{array}{cccccccccccccccccccccccccccccccccccc$	Schröder. Ber. 9, 1888.
	$Mg (C_2 H_3 O_2)_2$	$\left\{ \begin{array}{ccc} 1.419 & \\ 1.422 & \\ 1.453 \end{array} \right\}$	Schröder. Ber. 14, 1610. " "
" " ———	" "	1.455 \	Kubel. Ber. 19, ref. 283.
Zinc acetate	$\operatorname{Zn} \left(\operatorname{C}_{2} \operatorname{H}_{3} \operatorname{O}_{2} \right)_{2}$	1.810} 1.869}	Schröder. Ber. 14, 1610.
Cadmium acetate	$ \begin{array}{l} \text{Zn } (C_2 H_3 O_2)_2. \ 2 H_2 O \\ \text{Zn } (C_2 H_3 O_2)_2. \ 3 H_2 O \\ \text{Cd } (C_2 H_3 O_2)_{2} \end{array} $	1.735 1.7175, 12° 2.329 \	Bödeker. B. D. Z. Schröder. Ber. 14,
	$\operatorname{Cd}\left(\operatorname{C}_{2}^{''}\operatorname{H}_{3}^{'}\operatorname{O}_{2}\right)_{2}.\overline{\operatorname{2}\operatorname{H}_{2}\operatorname{O}}$	2.004	1611.
Mercuric acetate	$\operatorname{Hg} \left(\operatorname{C}_{2} \operatorname{H}_{3} \operatorname{O}_{2} \right)_{2} \dots$	$\left. \begin{array}{l} 3.2544,22^{\circ} \\ 3.2861,23^{\circ} \end{array} \right\}$	Hagemann. F.W.C.
Strontium acetate	$\mathrm{Sr} \; (\mathrm{C_2 \; H_3 \; O_2})_2 \;$ $2 \mathrm{Sr} \; (\mathrm{C_2 \; H_3 O_2})_2 . 3 \mathrm{H_2 O}$	2.099 1.981 \	Schröder. Ber. 14, 1608.
Barium acetate	Ba (C ₂ H ₃ O ₂) ₂	2.018)	Schröder. Ber. 11,
11 11 11 11 11 11 11 11 11 11 11 11 11	"	2.486 } 2.316 } 2.440 }	2129. Two lots. Schröder. Ber. 12, 561.
	" Bo (C H O) H O	2.480	Schröder. Ber. 14, 1608. Bödeker. B. D. Z.
	Ba $(C_2 H_3 O_2)_2$. $H_2 O_2$ Ba $(C_2 H_3 O_2)_2$. $3 H_2 O_3$	2.026	Schröder. Ber. 14, 1608.
Lead acetate	Pb (C ₂ H ₃ O ₂) ₂	3.238} 3.264}	Schröder. Ber. 14, 1609.

Name.	FORMULA.	SP. GRAVITY.	Аптновиту.
A . A . M . Lo.	1 With Care		TECHNORIE I.
Lead acetate	Рь (С, П, О,), 3 Н, О	$\stackrel{1}{2}$.496	Buignet. J. 14, 13
	(2 1 3 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	2.559, 13°	Schroder, Dm. 1873
**		2,540 /	Schroder. Ber. 14
4.6	44	2.560}	1609.
		2.460	W. C. Smith. Am
Manganese acetate	Mn (C ₂ H ₃ O ₂) ₂	1.737)	J. P. 53, 145. Schröder. Ber. 14
	**	1.753	1610.
	$\operatorname{Mn} \left(C_2 \prod_{i,i} O_2 \right)_2 . 4 \prod_2 O_2$	$\left\{ \frac{1.388}{1.590} \right\} =$	"
Nickel acetate	Ni $(\overline{\mathcal{C}}_2 \Pi_3 \mathcal{O}_2)_{2}$	1.797 (
11 11	$\operatorname{Ni}\left(\operatorname{C}_{2}\operatorname{H}_{3}\operatorname{O}_{2}\right)_{2}.\overline{\operatorname{4}\operatorname{H}_{2}\operatorname{O}}$	1.100	
44	1 1 1 2 1 3 2 2 2 2 1 2 2 2	1.7443, 15°.7	H. Stallo. F. W. C
44	44	1.734)	Schröder. Ber. 14
44 44		1.753 [1610.
Cobalt acetate	$\mathrm{Co}(\mathrm{C}_2\mathrm{H}_{\frac{3}{4}}\mathrm{O}_2)_2,4\mathrm{H}_2\mathrm{O}$	1.7031, 15°.7 } 1.7043, 18°.7 {	H. Stallo, F. W. C
Copper acetate	$\operatorname{Cu}\left(\operatorname{C}_{2}\left[\operatorname{H}_{3}\left(\operatorname{O}_{2}\right)_{2}\right]_{2}$	1.920	Schroder. Ber. 14
11 11	$\operatorname{Cu}_{-}(\overset{\circ}{\operatorname{C}}_{2}\overset{\circ}{\operatorname{II}}_{3}\operatorname{O}_{2})_{2}.\overset{\circ}{\operatorname{II}}_{2}\overset{\circ}{\operatorname{O}}$	1.939	$egin{array}{cccccccccccccccccccccccccccccccccccc$
			83, 213.
44		1.880, m. of 4.	1
	14	1.875 extreme-	Schröder. Dm
			1873.
14 14		1.875)	Schroder, Ber. 15 1609.
Didymium acetate	Di (C ₂ H ₃ O ₂) ₃	2.125, 13°.5	Cleve. U. N. A
Diffyindin acetite 111111		2.190, 16°, 5 ()	1885.
44 44	Di $(C_2 \coprod_3 O_2)_3$, $H_2 O_2$	2.230 / 20°	11
\$ & \$ & \$ & \$ & \$ & \$ & \$ & \$ & \$ & \$ &	$\operatorname{Di}\left(\operatorname{C}_{2}\operatorname{H}_{3}\operatorname{O}_{2}\right)_{3},\operatorname{4}\operatorname{H}_{2}\operatorname{\widetilde{O}}$		
	**	1.884 (19 7)	
Samarium acetate	$\begin{array}{c} \operatorname{Sm} \; (\operatorname{C}_2 \operatorname{H}_1 \operatorname{O}_2)_3 \\ \operatorname{Sm} \; (\operatorname{C}_2 \operatorname{H}_3 \operatorname{O}_2)_3, 4 \operatorname{H}_2 \operatorname{O} \end{array}$	1.942, 14°.5	11 11
		[1.968, 15°, 5] [
Calcium copper acetate Lithium uranyl acetate	$\begin{array}{c} \operatorname{CaCu}(\operatorname{C}_2\operatorname{H}_3\operatorname{O}_2)_4\operatorname{SH}_2\operatorname{O} \\ \operatorname{Li}(\operatorname{U}(\operatorname{O}_2)(\operatorname{C}_2\operatorname{H}_3\operatorname{O}_2)_3, \\ \operatorname{S}(\operatorname{H}_2\operatorname{O}) \end{array}$	2,280, 15°	Schabus. J. 3, 393 Wyrouboff, B. S. M 8, 118.
Sodium uranyl acetate	$N_{R} = U = O_2 + C_2 = H_3 = O_2)_3$	2.55, 12°	Bodeker and Giesecke, B. D. Z
Sodium uranyl monochler- acetate.	$\left \begin{array}{c} \operatorname{Nr} \operatorname{U} \operatorname{O}_2 (\operatorname{C}_2 \operatorname{H}_2 \operatorname{C} (\operatorname{O}_2)_3 \\ \operatorname{2} \operatorname{H}_2 \operatorname{O} \end{array} \right $	2.748, 14°	Clarke, A. C. J : 331.
Cilcon tractionata	No. C. 11. (1)	·) ~11t	Schroder, Ber. 10
Silver propionate			1872.
Barium propionate	$\operatorname{Ba}_{-}(\operatorname{C}_{5}^{-}\operatorname{H}_{5}^{-}\operatorname{O}_{2})_{2}=====$	2.067, 22°.3 1.970	Stern, F. W. C. Schroder, Ber. 1 2129.
Dilymium propionate	$\operatorname{Di}_{-}(C_{3} H_{5} O_{2})_{3}====$	1.861.12°.5	Cleve. U. N. A 1885.
15 15	$ \operatorname{Di}\left(\operatorname{C}_{3}\operatorname{H}_{5}\operatorname{O}_{2}\right)_{3},\operatorname{3}\operatorname{H}_{2}\operatorname{O} $	1.741, 12°.5 1.742, 13° }	44 44
Samarium propionate	$\mathrm{Sm} \left(\mathrm{C}_3 \mathrm{H}_5 \mathrm{O}_2 \right)_{3 +}$	1.894, 140	
	$ \operatorname{Sm}(C_3 H_5O_2)_3$, $3 H_2O $	1.784)	
**	44	1.786 \ 13°.2	"
44 44	1 " ~-	1.788)	1

Name.	Formula.	SP. GRAVITY.	Authority.
Silver butyrate	Ag C ₄ H ₇ O ₂	2.353, 4°	Schröder. Ber. 10,
Barium butyrateBarium isobutyrate	Ba (C ₄ H ₇ O ₂) ₂	1.768, 22° 1.779 } 1.800 }	848. Stern. F. W. C. Schröder. Ber. 11, 2130.
Silver isovalerate. Ppt Cryst	$\operatorname{Ag} \operatorname{C}_{5} \operatorname{H}_{9} \operatorname{O}_{2}$	$\begin{bmatrix} 2.110 \\ 2.118 \end{bmatrix}$ 4° $\begin{cases} \end{cases}$	Schröder. Ber. 10, 848.
Silver caproate	Ag C ₆ H ₁₁ O ₂	2.029, ppt. 2.052, cryst. 2.053, " 1.866, "	From two caproic acids, probably not identical. Schröder. Ber.
Silver caprylate	Ag C _{8,1} H ₁₅ O ₂	1.877, " } 1.740, ppt. 1.771, eryst. }	Schröder. Ber. 10, 1872. Schröder. Ber. 10, 1873.
Potassium methylsulphate	K C H ₃ S O ₄	2.057	Schröder. Ber. 11,
Barium methylsulphate		2.276, 20°.2	2020. Geppert. F. W. C.
Potassium ethylsulphate		$egin{array}{cccc} 2.258 & \ 2.275 & \ 1.792 & \ \end{array}$	Schröder. Ber. 11, 2130. Schröder. Ber. 11,
Barium ethylsulphate		1.809 } 2.0714, 22°.6 }	2020. Geppert. F. W. C.
" " " " ———		2.080, 21°.7 § 2.055	Schröder. Ber. 11, 2130.
Didymium ethylsulphate	**1	1.860, 17°.8 1.867, 18° }	Cleve. U. N. A. 1885.
Samarium ethylsulphate Potassium propylsulphate	***	1.874 1.885 1.794	u u Schröder. Ber. 11,
Barium propylsulphate		1.831 \$	2020. Geppert. F. W. C.
" "		1.844 } 20 .0 2	Schröder. Ber. 11, 2130.
Potassium isobutylsul- phate. "		1,480 }	Schröder. Ber. 11, 2020.
Barium isobutylsulphate	Ba (C ₄ H ₉ SO ₄) ₂ . 2H ₂ O	$1.714, 22^{\circ}$	Whetstone. F.W.C. Schuermann. F.W. C.
:: :: ::		1.727 }	Schröder. Ber. 11, 2130.
Potassium amylsulphate			Schröder. Ber. 11, 2020.
Barium amylsulphate		1.638	Whetstone. F.W.C. Schröder. Ber. 11,
Potassium methylxanthate	K C H ₃ C O S ₂	1.641 { 1.6754, 15°.2 } 1.7002 }	2130. Bishop, F.W.C.
Potassium ethylxanthate	К С ₂ П ₅ С О S ₂	1.558, 21°	Geppert. F. W. C. H. Stallo. F. W. C.
Potassium isobutylxan- thate.	K C ₄ II ₉ , C O S ₂	1.5576, 21° 5 ()	u u

Name.	FORMULA.	SP. GRAVITY.	AUTHORITY.
I tal inno applato	Li C O	9 1919 179 5	Stolba. J. 1880, 283.
Lithium oxalateSodium hydrogen oxalate	N. H.C.O. H.O.	9.915	Buignet, J. 14, 15.
Potassium oxalate	$\begin{array}{c} \text{Li}_2 \; \text{C}_2 \; \text{O}_4 \\ \text{Na} \; \text{H} \; \text{C}_2 \; \text{O}_4 , \; \text{H}_2 \; \text{O} \\ \text{K}_2 \; \text{C}_2 \; \text{O}_4 , \; \text{H}_2 \; \text{O} \end{array} .$	2.010	Playfair and Joule.
Louissium oxumo	K2 C2 O4. H2 O 11111	2,104, III. 01 22.	M. C. S. 2, 401.
	44	2.08	Schiff. J. 12, 16.
Potassium hydrogen oxa-	K H C ₂ O ₄	1.965 m of 2	Playfair and Joule.
late.			M. C. S. 2, 401.
45 65 66	"	2.030	Schiff. J. 12, 16.
(, (,		2.088	Buignet. J. 14, 15.
Potassium quadroxalate	KH. (C. O.) 2H. O	1.817	Playfair and Joule.
I othertam quantization	11 113 (0 2 0 1/2 11 11 2 0		M. C. S. 2, 401.
4.4	4.6	1.765	
44 44		1.836	Buignet. J. 14, 15.
Rubidium quadroxalate		2.1246, 18°	Stolba. J. 1877, 243.
Ammonium oxalate	Am. C. O., H. O.	1.461, m, of 2_	Playfair and Joule
		,	M. C. S. 2, 401.
44 44	٠,	1.475	Schiff. J. 12, 16.
		1.470	Buignet. J. 14, 15
		1.501)	1
6.6		. 1.502 (Schröder. Dm. 1873
Ammonium hydrogen ox-	Am H C, O, H, O	1,563, m. of 3.	Playfair and Joule
alate.			M. C. S. 2, 401.
Ammonium quadroxalate		1.556	Schiff. J. 12, 16.
Ammonium quadroxalate	Am H. (C. O.). II. O	1.589, m. of 2.	Playfair and Joule
	3 2 1 2 2	,	M. C. S. 2, 401.
		1.607	
Silver oxalate	Ag. C. O.	4.96, 10°	Husemann, B. D. Z
		5,005, 4°, ppt.	Schröder. Ber. 10
		5.029, 4°, ervst.	849.
Thallium oxalate	Tl, C, O,	6.31	Lamy and Des Cloi
			zeaux. Nature, l
			442.
Thallium hydrogen ox-	THE $C_2 \Theta_i$. $H_2 \Theta_{}$.	3.971	
alate.			
Zine oxalate	. Zn C_2 O_4	2.547, 18°,3)	
**		[2,562, 21°,5]	Wilson. F. W. C
		-2.582, 17°.5)	
Cadmium oxalate	Cd C2 O4	3.310, 17°)	Freeman. F. W. C
() ()		± a.a20, 18° j = 7	
Calcium oxalate	$C_{8}C_{2}O_{4}$	2.106	. Schröder. Dm. 1873
		$\begin{pmatrix} 2.181 \\ 2.182 \end{pmatrix} 4^{\circ} = \{$	Schroder, Ber It
			561.
**		2,200)	
Barium oxalate.	. Ba $C_2 O_4$	- 2,6578	Schweitzer, Univer
			sity of Missour
	111 (2 (2)	= Titu)	special pub., 187
	. Pb C ₂ O ₄		Schroder, Dm. 187
Manganese oxalate		. 0,050 (
Manganese oxalate	. MB C ₂ V ₄	$\left(\begin{array}{c} 2.452, 21^{\circ}.8 \\ 2.453, 20^{\circ}.7 \end{array}\right)$	Freeman, F. W. t
4.			r reeman. r. W. C
	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	_ 2,407,215,6 <i>)</i> - 9.19 \	
Harris I I I I I I I I I I I I I I I I I I I		- m - 1 * 5	Dana's Mineralogy
Humboldtine	$= 2 \operatorname{rec}_2 \Omega_{i_1} \circ \Pi_{i_2} \Omega$	0.450 ;	. Dana's acinetang
Humboldtine		2,450	. Pana's scinctang
Humboldtine Nickel oxalate	$= Ni C = O_4 = \dots = \dots$	$_{*}$ l 2.218, 19° $_{*}$)	
Humboldtine	Ni C-O ₄	$\begin{bmatrix} 2.218, 19^{\circ} & 1 \\ 2.2285, 19^{\circ}.5 \end{bmatrix}$	
Nickel exalate	Ni C- O _t	$_{*}$ l 2.218, 19° $_{*}$)	Freeman. F.W. C

NAME.	FORMULA.	Sp. Gravity.	AUTHORITY.
Stannous oxalate " " " Thorium oxalate	Sn C ₂ O ₄	3.558, 18 3.576, 22°.5 3.584, 23°.5 4.637, 16°	Wilson. F.W. C.
Uranyl oxalate		2.98	175. Ebelmen. J. P. C.
Potassium copper oxalate_	$\mathrm{K_{2}Cu}(\mathrm{C_{2}O_{4}})_{2}$. $\mathrm{2H}_{2}\mathrm{O}$	2.288, m. of 2.	27, 391. Playfair and Joule.
Ammonium copper oxalate.	$Am_2Cu(C_2O_4)_2$. $2H_2O$	1.923	M. C. S. 2, 401.
Potassium chromoxalate Strontium chromoxalate Strontium potassium chro-	$\begin{array}{c} K_3(\operatorname{Cr} \cup_{_{6}} \operatorname{O}_{12}).\ 3\operatorname{H}_2\operatorname{O} \\ \operatorname{Sr}_3(\operatorname{Cr} \cup_{_{6}} \operatorname{O}_{12})_2.\ 10\operatorname{H}_2\operatorname{O} \\ \operatorname{Sr} K(\operatorname{Cr} \cup_{_{6}} \operatorname{O}_{12}).\ 6\operatorname{H}_2\operatorname{O} \end{array}$	$ \left\{ \begin{array}{c} 2.1039,23^{\circ} \\ 2.1464,24^{\circ} \\ 2.148,8^{\circ}.8_{} \\ 2.155,12^{\circ}.8_{} \end{array} \right\} $	Bishop. F.W.C. Kebler. F.W.C.
moxalate. Barium chromoxalate	$\begin{array}{c} \operatorname{Ba_3}\left(\operatorname{Cr} \operatorname{C_6} \operatorname{O_{12}}\right)_2$	2.570, 6°.8 2.445, 13°.9 2.372, 27° 1.9731, 17°.5	" " " " Eder and Valenta.
Ammonium ferroxalatePlatosoxalic acid	${ m Am_3(FeC_6O_{12}).8H_2O} \ { m PtH_2(C_2O_4)_2.H_2O}$	1.7785, 17°.5 2.94, 14°	Ber. 14, 1106. Söderbaum. Upsala Diss. 1888.
Sodium platosoxalate Potassium platosoxalate. " Light.	$egin{array}{l} { m Na_2Pt}({ m C_2O_4})_2.4{ m H_2O} \\ { m Na_2Pt}({ m C_2O_4})_2.5{ m H_2O} \\ { m K_2Pt}\left({ m C_2O_4})_2.2{ m H_2O} \end{array}$	$\left.\begin{array}{c} 2.89,17^{\circ}.2_{} \\ 2.92,17^{\circ}.2_{} \\ 3.027,11^{\circ}.6 \\ 3.036,12^{\circ}_ \end{array}\right\}$	ee ee
" " Dark. Ammonium platosoxalate. Light. " Dark.	$\operatorname{Am_2Pt}(\operatorname{C_2O_4})_2 \cdot 2\operatorname{H_2O}$	3.012, 12° 2.614, 11°.7 2.58, 11°.5	46 66 46 66
Platodiamine platosoxa- late. Light.	$Pt(N \coprod_3)_4 Pt(C_2 O_4)_2$	3.51, 13°.5	
" "Dark. Didymium nitratoöxalate. " "	$\begin{array}{c} \text{Di H}_2(\text{N O}_3)_2(\text{C}_2\text{O}_4)_3. \\ \text{11 H}_2^{\circ}\text{O} \end{array}$	$\left\{\begin{array}{c} 3.48, 13^{\circ}.5_{} \\ 2.424 \\ 2.425 \end{array}\right\} \left\{\begin{array}{c} 13^{\circ}.2_{} \end{array}\right.$	Cleve. U. N. A. 1885.
Ammonium succinate Silver succinate " " " Barium succinate " Lead succinate	Am ₂ C ₄ H ₄ O ₄	1.367, 10° 3.518, 10° 3.807, 4° 2.696 2.699 3.800, 10°	Zuchariae. B. D. Z. Husemann. B. D. Z. Schröder. Ber. 10, 849. Schröder. Ber. 11, 2129. Husemann. B. D. Z.
Ammonium malate			24.
late. Silver malate	Ag ₂ C ₄ H ₄ O ₅	4.0016	Liebig and Redten- bacher, A. C. P. 38, 139.

Name.	FORMULA.	Sp. Gravity.	Антновиту.
Sodium tartrate Potessium tartrate Potessium tartrate Potassium hydrogen tar-	Na ₂ C ₄ H ₄ O ₆ , 4 H ₂ O K ₂ C ₄ H ₄ O ₆ K ₂ C ₄ H ₄ O ₆ H ₂ O K H C ₄ H ₄ O ₆	1.794 1.975 1.960 1.943	Buignet. J. 14, 15, Schiff. J. 12, 16, Buignet. J. 14, 15, Schabus. J. 3, 378.
trate.		1,973	Schiff. J. 12, 16.
Ammonium tartrate	Am ₂ C ₄ H ₄ O ₆	1,956 1,566 1,523	Buignet, J. 14, 15, Schitf, J. 12, 16, Buignet, J. 14, 15,
**	.,	1.601	Wyrouboff, Bei. 8,
Ammonium hydrogen tar- trate.		1.680	Schiff, J. 12, 16.
Sodium potassium tartrate	Na K C ₄ H ₄ O ₆ . 4 H ₂ O	1.74	Mitscherlich. Schiff. J. 12, 16,
44 44 44	4.	1.767 1.790 1.77	W. C. Smith, Am
Sodium ammonium tar-	$\boxed{\mathrm{Nu}\mathrm{Am}\mathrm{C_4H_4O_6.4H_2O}}$	1.58	J. P. 53, 145, Mitscherlich.
trate.		1.576 1.587	Pasteur. J. 2, 309 Schiff. J. 12, 16.
Potassium ammonium tar- trate.			
Rubidium tartrate	I .		Wyrouboff, Bei. 8 24.
	Rb ₂ C ₄ H ₄ O ₅ . H ₂ O =	1	M. 6, 311.
Rubidium hydrogen tar- trate.			1
Rubidium lithium tartrate	Rb Li C ₄ H ₄ O ₆ . H ₂ C	2.281	Wyrouboff, B. 5 M. 6, 53,
Rubidium sodium tartrate	$-\mathrm{Rb}\mathrm{Na}\mathrm{C_4}\mathrm{H_4O_6}.2\mathrm{J}\mathrm{H_2}\mathrm{C}$	2.200	Wyrouboff, Ana (6), 9, 221.
Silver tartrate	Ag ₂ C ₄ H ₄ O ₆	3.4321	
Thallium tartrate	Tl ₂ C ₄ H ₄ O ₆	5.110	
	$\left[\begin{array}{cccccccccccccccccccccccccccccccccccc$	4,658	Lamy and Des Clozenux. Natur
		4.740	
Thallium hydrogen tar- trate.	TI H C, H, O6	3,496	
46 46	[†] ТГП С, П, О ₆ , <u>ў</u> П ₂ О	3,399	Wyrouboff, B. S. M. 6, 311.
Thallium lithium tartrate	. The C $_4$ H $_4$ O $_6$ H $_2$ C	0 0,000	Wyrouboff, B.S. 2
Thellium sodium tartrati	$= \mathrm{Tl}\mathrm{Na}\mathrm{C}_4\mathrm{H}_4\mathrm{O}_62_2^4\mathrm{H}_2\mathrm{O}_6$	3,120	Wyrouboff. An (6), 9, 221.
Strontium tartrate	Sr C, H, O ₆	0 570 170 1	Joslin, F. W.
44 44	Sr C, H, O ₆ , 4 H ₂ O	1.561, 19° 1.966, 19°.2	

	1	1	1
NAME.	Formula.	SP. GRAVITY.	Аптновіту.
Strontium tartrate Barium tartrate	Sr C ₄ II ₄ O ₆ 4 H ₂ O _ Ba C ₄ II ₄ O ₆	1.972, 18°.1 2.965, 21°.5 2.974, 21°.9 2.980, 20°.8	Joslin. F.W.C.
Lead tartrate	Pb C ₄ II ₄ O ₆	$\left. \begin{array}{c} 3.998, 16^{\circ}.5 \\ 4.001, 17^{\circ}.5 \\ 4.037, 17^{\circ}.7 \end{array} \right\}$	
Potassium tartrantimo- nite, or tartar-emetic	2 K C ₄ H ₄ Sb O ₇ . H ₂ O	2.5569	Pasteur. Ann. (3), 28, 86.
<i>u u u </i>	"	2.588 2.597	Schiff. J. 12, 16. Buignet. J. 14, 15. Topsoë and Christ- iansen.
Ammonium tartrantimo- nite.	$2\mathrm{Am}\mathrm{C_4H_4SbO_7.H_2O}$	2.324	Topsoë. C. C. 4, 76.
Silver tartrantimonite Thallium tartrantimonite_	$\begin{array}{c} \operatorname{Ag} \operatorname{C}_4 \operatorname{H}_4 \operatorname{Sb} \operatorname{O}_7 \\ \operatorname{2Tl} \operatorname{C}_4 \operatorname{H}_4 \operatorname{Sb} \operatorname{O}_7 \cdot \operatorname{II}_2 \operatorname{O} \end{array}$	3.4805, 18°.2 3.99	Evans. F. W. C. Lamy and Des Cloi- zeaux. Nature, 1, 142.
Barium tartrantimonite	Ba $(C_4 \ H_4 \ Sb \ O_7)_2$.	3.112, 19°	Joslin. F. W. C.
Potassium borotartrate	K C ₄ II ₄ B O ₇	1.832	Buignet. J. 14, 15.
Potassium racemate Potassium hydrogen racemate.	$\begin{array}{c} {\rm K_2C_4H_4O_6,2H_2O} \\ {\rm K^2H^3C_4H_4O_6} \end{array}$	1.58 1.954	Mitscherlich. Wyrouboff. B.S.M. 6, 311.
Potassium lithium race- mate.	K Li C ₄ H ₄ O ₆	1.610	Wyrouboff. B.S.M. 6, 53.
Potassium sodium race- mate.	K Na C ₄ H ₄ O ₆ . 3 H ₂ O		Wyrouboff. B. S. C. 45, 52.
Rubidium racemate	Rb ₂ C ₄ H ₄ O ₆	2.640	Wyrouboff. Bei. 8,
Rubidium hydrogen race- mate. Rubidium lithium race-	Rb H C ₄ H ₄ O ₆ Rb Li C ₄ H ₄ O ₆	2.282	Wyrouboff. B. S. M. 6, 311. Wyrouboff. Bei. 8,
mate. Ammonium racemate	$\mathrm{Am}_2~\mathrm{C}_4~\mathrm{H}_4~\mathrm{O}_6$	1.601	24. Wyrouboff. B.S. M.
Ammonium hydrogen	Am H C ₄ H ₄ O ₆	1.636	9, 102. Wyrouboff. B. S. M.
racemate. Ammonium sodium race- mate.	Am Na C $_4$ H $_4$ O $_6$. H $_2$ O	1.740	6, 311. Wyrouboff. Ann. (6), 9, 221.
Silver racemate	$Ag_2 C_4 II_4 O_6$	3.7752	Liebig and Redtenbacher. A. C. P. 38, 139.
Thellium recemate			Two varieties. Wy- rouboff. B.S.M. 9, 102.
· · · · · · · · · · · · · · · · · · ·	$2~\mathrm{Tl_2}~\mathrm{C_4}~\mathrm{H_4}~\mathrm{O_6}.~\mathrm{H_2}~\mathrm{O}$	4.659	Lamy and Des Cloizeaux. Nature, I,
Thallium hydrogen race- mete.	TI H C ₄ H ₄ O ₆		142. Wyrouboff. B. S. M. 6, 311.
Thellium lithium race- mete.	Tl Li C_4 H_4 O_6 . 2 H_2 O		Wyrouboff. Ann. (6), 9, 221.
Thallium sodium rucemate	Tl Na C ₄ H ₄ O ₆ . 2 H ₂ O	3.289	`ú'' u

NAME.	FORMULA.	SP. GRAVITY.	Астиовиту.
Potessium racemantimo- nite.	$2 \times C_4 \times_4 Sh O_7 \times_2 O$	2.4768	Pastenr. Ann. (3), 28, 86.
Potassium citrete*	К ₃ С ₆ П ₅ О ₇ . П ₂ О	1.98	W. C. Smith Am. J. P. 53, 145.
Trisodium citrate	$2\mathrm{Na_3C_6H_5O_7,11H_2O}$		Blakemore, F.W.C.
Dismmonium citrate.	$\mathrm{Am}_2\mathrm{C}_6\mathrm{H}_6\mathrm{O}_7$	1.859, 21° } 1.479, 22° }	
Uranyl oleate	$U_{-O_2} (C_{18} \Pi_{33} O_2)_2$.	1.13	Gibbons. Ber. 16,
Calcium hippurete Potassium orthonitrophe- nate.	$\frac{2 C_R C_{18} H_{16} N_2 O_6, 3 H_2 O}{K_1 C_6 H_4 N_1 O_3, H_2 O}$	1.682, 203	964. Schabus. J. 3, 3, 411. Post and Mehrtens. Ber. S, 1552
Silver orthonitrophenate	$Ag C_6 \coprod_{S \to S} S O_3 = = $	2.661, 20°	
Barium orthonitrophenate Lead orthonitrophenate	$\begin{array}{c} \operatorname{Ba}\left(\operatorname{C}_{6}^{*}\operatorname{H}_{4}\operatorname{N}\operatorname{O}_{3}^{*}\right)_{2}\operatorname{H}_{2}\operatorname{O}\\ \operatorname{Pb}_{2}\operatorname{O}\left(\operatorname{C}_{6}\operatorname{H}_{4}\operatorname{N}\operatorname{O}_{3}\right)_{2}\operatorname{H}_{2}\operatorname{O} \end{array}$	2.3301, 20°	"
Potassium metanitrophe- nate.	K C ₆ H ₄ N O ₃ . 2H ₂ O ₋	1.691, 20°	
Barium metanitrophenate	${\rm Ba}({\rm C_6H_4NO_3})_2.2{\rm H_2O}$.	2.343, 20°	"
Lead metanitrophenate	Ph O $(C_6 H_4 N O_3)_{}$	2.694, 20°	11 11
Potassium paranitrophe- nate.	K C ₆ H ₄ N O ₃ . 2 H ₂ O ₂		
Silver paranitrophenate	Ag C ₆ H ₄ N O ₃ , 2 H ₂ O =	2.652, 20°	44 44
Barium paranitrophenate_ Lead paranitrophenate	$\frac{\mathrm{Ba}(\mathrm{C}_6^{\mathrm{H}}\mathrm{H},\mathrm{NO}_3)_2,811_2^{2}\mathrm{O}_{-}}{\mathrm{PhO}(\mathrm{C}_6\mathrm{H}_4\mathrm{NO}_3),211_2\mathrm{O}_{-}}$	2.322, 20° 1 9.689, 90°	"
Potassium a dinitrophenate	K C. H. N. O. H. O	1.778, 20°	11 11
Silver a dinitrophenate	$\begin{array}{c} K C_6 H_3 N_2 O_5 H_2 O \\ Ag C_6 H_3 N_2 O_5 H_2 O \\ Ba(C_6 H_3 N_2 O_5)_2 4 H_2 O \end{array}$	2.755, 20°	"
Barium a dinitrophenate .	$-\mathrm{Ba}(\mathrm{C}_{6}^{\circ}\mathrm{H}_{3}^{\circ}\mathrm{N}_{2}\mathrm{O}_{5})_{2}.4\mathrm{H}_{2}\mathrm{O}$	2.439, 200	££ 46
Lead a dinitrophenate	$\frac{1}{2} \frac{1}{11} $	2,817, 20°	
Potassium 3dinitrophenate	K C ₆ H ₃ N ₂ O ₅	1,757, 20°	**
Silver 3 dinitrophenate == Barium 3 dinitrophenate=	$Ag C_6 H_3 N_2 O_5$	2.733, 20°	11
Barium 3 dinitrophenate =	$[Ba(C_6H_3N_2O_5)_2, H_2O]$	2.406, 20°	46 64
Lead 3 dinitrophenate Lithium_picrate		2,807, 20° 1,716, 19°)	
in pictate	4.	1,724, 20°	Beamer, F. W. C.
	46	1.710, 20°	
Potassium picrate	К С ₆ П ₂ N ₃ О ₇	1,852, 20° 1	Post and Mehrtens. Ber. 8, 1552.
Silver pierate	$\Delta g \ C_6 \ \Pi_2 \ N_3 \ O_7 \ \dots$	2.816, 20°	., ., ., .,
Thallium picrate	· Tl C ₆ H ₂ N ₃ O ₇	3.039	Lamy and Des Cloi- zeaux. Nature, L 142.
Barium pierate	$\mathrm{Ba}(\mathrm{C}_6\mathrm{H}_2\mathrm{N}_3\mathrm{O}_7)_2.\mathrm{IH}_4\mathrm{O}$	2.518, 20°	Post and Mehrtens. Ber. 8, 1552.
Lead pierate	Pb(C ₆ H,N ₃ O ₇), H ₂ O	2.831, 20°	
Samarium pierate	$\sin(C_6^2\Pi_2^2N_3^2O_7)_3^2.8\Pi_2^2O_7$	1,951, 180.5	Cleve, U. N. A. 1885.
Ammonium benzoate	Λ m C_7 Π_5 O_2	$\begin{array}{c c} -1.260 \\ 1.264 \end{array}$ $\begin{array}{c c} 4^{\circ} - \end{array}$	Schröder. Ber. 12,

^{*}Smith gives this salt under the name "potassil citras," and assigns no formula.

NAME.	Formula.	Sp. Gravity.	Аптно	RITY.
Silver benzoate Calcium benzoate Barium benzoate Silver cinnamate Mellite	$\begin{array}{c} \text{Ca}(\text{C}_7\text{H}_5\text{O}_2)_2\text{. 3 H}_2\text{O}\\ \text{Ba}(\text{C}_7\text{H}_5\text{O}_2)_2\text{. 3 H}_2\overset{-}{\text{O}} \end{array}$	$ \begin{vmatrix} 1.435 \\ 1.457 \end{vmatrix} 4^{\circ} - \{ 1.792 \\ 1.808 \end{vmatrix} 4^{\circ} - \{ \end{cases} $	1889. Schröder. 1611. Schröder.	Ber. 9, Ber. 12, Ber. 12,

LXXI. SALTS OF ORGANIC BASES WITH INORGANIC ACIDS.*

NAME.	FORMULA.	Sp. Gravity.	AUTHORITY.
Tetramethylam monium iodide. " " Tetrethylammonium iodide. " "	"	1.831, 19°.5	Owens. F. W. C. Schröder. Ber. 12, 561.
Tetromethylummonium mercury iodide.			Owens. F. W. C.
Ethylamine platinchloride "" Ethylamine aurochloride.		$\left\{ \begin{array}{c} 2.250 \\ 2.255 \end{array} \right\}$ 19° $\left\{ \begin{array}{c} \end{array} \right.$	Clarke. A. C. J. 2, 175. Topsoë. S. W. A.
Diethylamine aurochlo- ride, Triethylamine aurochlo-	1 11		78, 97.
ride. Guanidine carbonate	(C H ₅ N ₃) ₂ H ₂ C O ₃	1.238)	Sehröder. Ber. 13, 1070.
Aniline chlorhydrate		7.77	Schröder. Ber. 12, 1611. Beamer. F. W. C.
Aniline nitrate	(C. II. N) H. S O.	$\left\{ \begin{array}{c} 1.356 \\ 1.360 \end{array} \right\} 4^{\circ} \left\{ \begin{array}{c} 1.377, 4^{\circ} \end{array} \right.$	Schröder. Ber. 12, 1611.
Aniline tartrantimonite			252.
Berberine ehlorhydrate	C ₂₀ H ₁₇ N O ₄ . H Cl	1.397, 19°.4	Vicille. Bei.5,573.
Berberine platinehloride	(C ₂₀ II ₁₇ N O ₄ . H Cl) ₂ Pt Cl ₄	1.758, 19°	

^{*}Aniline tartrantimonite is included in this table for reasons of convenience.

NAME.	FORMULA.	Sp. Gravity.	Антиовиту.
Strychnine platinchloride	(C ₂₁ H ₂₂ N ₂ O ₂ , HCl) ₂ , Pt CL	1.779, 13°.5	Clarke, A. C. J. 2, 174.
Cinchonine chlorhydrate	C_{20} H_{24} N_2 O. H $Cl_{}$	1.234	Hesse, J. 15, 371.
Picolinic acid platinchlo- ride	-1C ₆ H ₅ N O ₂ . H Cl) ₂ Pt Cl., 2 H ₅ O	2.0672, 21°.8	Weidel, Ber. 12, 1989.
Cinchonine chlorhydrate. Picolinic acid platinchlo- ride. Nicotinic acid platinchlo- ride.	$\begin{array}{c} \left(\mathrm{C_{5}\;H_{5}\;N\;O_{2},\;H\;Cl}\right)_{2} \\ \mathrm{Pt\;Cl.},\;2\;H_{5}\;\mathrm{O} \end{array}$	2.1297, 21°.8	44 44
Triethylphosphin plato- sochloride.	Pt Cl_2 . $(\text{C}_6 \ \text{H}_{15} \ \text{P})_2^2 =$	1.5, 10°	Cahours and Gal. Z. C. 13, 437.

LXXII. MISCELLANEOUS ORGANIC COMPOUNDS.

NAME.	FORMULA.	SP. GRAVITY.	Антиовиту.
Ethyl selenite			Michaelis, A. C. P 241, 159.
Glucose with sodium chloride.	$2C_6H_{12}O_6$, NaCl. H_2O_6	1.55 / 110	Bodeker, B. D. Z
Cane sugar with sodium iodide.	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	1.854	Gill. J. C. S. 24 269.
Ferrous sucrocarbonate		1.85	Tanret. J. C. S. 40
Salt from lead acctate and potassium triodide.	${\rm Pb_8} {\rm K_6} {\rm C_{36}} {\rm H_{54}} {\rm O_{28}} {\rm I_{17}}$	3.054	Johnson, C. N. 37 110.
Chloraurotrieth y l p h o s- phorous ether.	Au Cl P (O C $_2$ H $_5$) $_3$	2.025	Lindet. C. R. 103 1014.

APPENDIX.

NOTE ON THE SPECIFIC GRAVITY OF WOOD.

Although wood is a substance which does not come within the scope of these tables, the following references to literature are given as a matter of convenience.

ASCHAUER.—Dove's Repertorium, 1, 142.

Brisson.-Pesanteur Spécifique des Corps.

Estrada.—Cuban woods. Van Nostrand's Magazine, 29, 417. 1883.

Hon.—Beiblätter (Wiedemann's), 2, 534.

IHLSENG.—Amer. Journ. Sci. (3), 17, 125.

KARMARSCH.—Dove's Repertorium, 1, 141.

KOPP.—Dove's Repertorium, 7, 171; also Ann. Chim. Phys. (3), 6, 380.

MENDENHALL.—Ohio Agricultural and Mechanical College, Report for 1878.

Osbonne.—"Report on Class III," Melbourne Exhibition of 1861. Many data for Australian woods and essential oils.

SHARPLES.—Vol. IX, Reports of Tenth U. S. Census. Complete as to woods of the United States.

SMITH.-Journ. Chem. Soc., June, 1880, p. 417.

WILEY.—Purdue University (Indiana) Report, No. 2, 1876.

Many figures are also given in Böttger's "Tabellarische Uebersicht."

(367)

INDEX.

Α.	PAGE.
PAGE.	Acid, Alphatoluic 257
Abies Reginae-Amaliae, oil from 179	" Amidoacetic 287
Abietene 158	" Amidobenzoic 288
Absinthol	" Amidocaproic
Acanthite 57	" Amidosuccinic 287
Acenaphtene 179	" Amyldeeatoic 234
Acetal 224	" Amylglycoffic 230
Acetamide	" Amylnitrophosphorous 349
Acetanilide 288	" Anisic 257
" Derivative of 316	" Arsenic 49
Acetic aldehyde 216	" Arsenious 48
Acetic anhydride 204	" Aspartie 287
Acetobutyl alcohol 245	" Benzoic 256
Acetochlorhydrin312	" Borie 107
Acetocinnamone	" Bromisobutyrie 326
Acetodichlorhydrin 312	" Bromobutyrie 326
Aceto-ethyl nitrate 286	" Bromostearic
Acetoethylthienone 344	" Butyric 200
Acetoglyceral	" Camphorie
Acetone	" Caproic
Acetonitril	" Caprylic
Acetonitrose	" Chloracetle
Acetophenone alcohol	" Chlorie
Acetopropyl alcohol	" Chlorisobutyrie 305
Acetothienone 314	" Chlorobutyrie 305
Acetotrichlorethylidene acetic ether 311	" Chloropropionic 305
Acetoxyacetonitril	" Chlorosulphonic 30
Acetoxypropionitril 289	" Chromie 52
Acetpiperidid230	" Cinnamie
Acetyl, Chloride 308	" Citraconic
" Iodide 335	" Citrie
" Thiocyanate 316	" Columbic 49
Acetylamine	" Crotonic
Acetyl camphor	" Cuminie
Acetylchloral ethylate	" Cyanie 142
Acetylcopellidine 290	" Cyanurie 142
Acetylene 167	" Diallylacetic 242
" Bromiodide	" Diamylphosphoric
" Chloriodide	" Dibromacetic
" Chlorobromide 336	" Dibromoleic
" Dibromide	" Dichloracetic
" Iodide 334	" Dichloroleic 312
" Tetrabromide 321	" Diethylacetic 203
" Tetrachloride	" Diethylcamphresic 265
Acetylthioxene	" Diphenylarsenic 350
Aeetyltrimethylene	" Diphenylphosphinic 349
Acetyl valeryl	" Dipropylacetic 204
Achillea ageratum, oil of	" Dithionic 75
Acid, Acetic	" Ethylbenzhydroxamic 288
" Acetylformic 232	" Ethyleamphoric 264
" Acetylpropionic 232	" Ethylmethylacetic 202
" Allylacetic	" Ethyloxalic 226
" Allyloctylic	" Ethyloxyisobutyrie 230
24 s g	(369)
=1 5 U	(555)

	1	٠١، ٢	PAG
Acid,	Ethylsalicylic	. 277	Acid, Perchlorie
	Ethylsulphuric	14.3	
**	Ethylsulphurous	. 313	
44	Formic		
44	Gallie	. 257	" Phenylphosphinie 3
4.0	Giyeollie		
**	Hippuric		
	Hydrochloric		
41	Hydrocinnamic		" Phthalie
**	Hydrocyante		
44	Hy-Irothuorie		
4.1	Hydrosorbie		
	Hydrosulphocyanic		
	Hypophosphorous		
	Todae		1 1307-07 X 3111
	Isomnylacetic		
			" Protocatechuic
	Isolaityrie		Protocatechnic
**	Isocaproie		
	Isoheptylic		1310301101011
	Isohexie, derivative of		1 5 TOCKI CATTE
	Isononylie		
	Isooctylie		1,111/16
	Isovalerie		Settlet College Commission Commis
11	Itaconic		" Quinic
4.	Lactic		" Racemic 2
	Laevotartarie		" Ricinoleic 2
**	Laevulinic		" Rutylic 2
	Laurie		" Salicylic 2
	Lindere		" Santonie 2
**	Malie		" Selacie 2
	Mandelie		" Selenie
	Metachlorbenzoic		" Selenions
44	Methylaerylie		" Stearie 2
	Methylethylacrylic		" Succinio 2
**	Methyl thylpropionic		" Sulphhydric
**	Methylglycollie	230	" Sulphurie
**	Methylhexamethylenemonocarboxy-		* Sulphurous 51,
			" Sylvie 2
4.0	Methylisopropylacetic		" Tannie 2
**	Methylisopropylmalonic		" Tantalie
**	Methylpentamethylenemonocarboxy-		" Tartarie 2
61	Methylpropylacetic		6 Tetramethylenemonocarboxylic 2
44	Methylsalicylic		" Thiacetic 3
* 1	Molybdie		" Triebloracetic 3
41	Moringie	231	• Trichlorphenomalic
**	Naphtylphosphime		" Trimethylacetic
4.0	Naphtylphosphorous	31+	" Tungstie
**	Nicotime, chloroplatingto of		" Pric 2
	Nitrie	105	" Valerie 20
11	Nitrobenzoie	285	Aemite 1
11	Nitrocaptylic		Aerolein
**	Nitrol wite	250	" Diacetate
+4	Oenanthic	203	" Ethylate 2
11	Oleje	2.4	Aeropinacone 2
	Orthophenyleneglyoxylie		Acryl aldehyde 2:
	Oxalie		Adamite
	Oxylonzoie		Aikmite
	Parathme		Alaborolite
	Paras intonie		Alaskaite
	Paraserbie		. Allete 1.
	Pelargonic		Ablehyde

PAG	GE.		PAGE.
Aldehyde with sulphaidehyde 3		Aluminum,	, Ammonium sulphate 94
Aldehyde collidine			Amylate 354
Aldehyde methyl chloride 3			Barium silicate 138
Aldol 2			Borate 108
Alexandrite			Bromide 32
Algodonite		44	" with aromatic hydrocar-
Allaktite 1			bons 354
		44	Butylate
Alloelasite			Cæsium selenate 161
Allophane 1		**	" silicate 136
Allyl, Acetacetate 2		66	" sulphate 93
" Acetate 2		**	Calcium phosphate 118
" Alcohol 2		44	" silicates 136, 137
" Bromide 3	322	66	" sulphate 97
" Carbamine 2	278	64	Chloride, with aromatic hydro-
" Chloride 2			carbons
" Dibrompropionate 3		44	Copper arsenate
" Formate 2		46	Cresolate
" lodide 3			Ethylate
" Nitrate		46	Fluorides
" Nitrite		44	Fluosilicate
" Oxalate	- 1	44	Glucinum silieste
" Oxide	- 1		Hydroxides 71
" Santonate	1		Iodide
" Sulphides 3			Iron silicates 138, 139
" Thiocarbimide 3			Lead phosphate
" Thiocyanate 3		44	" silicate
" Trisulphocarbonate 3		"	Lithium fluophosphate 124
Allylamine		66	" silicates
Allylaniline 2		66	Magnesium phosphate,
Allylanisöil		**	" silicate
Allylbenzene I		44	" sulphate 96
Allyldiethylearbinol2		46	surpriate 30
" Derivative of 1		**	Manganese phosphate
		44	" silicate 138 Mellitate 365
Allyldiisopropylearbinol		44	Methylamine sulphate 94
" Acetate 2		44	Oxide 42
" Derivative of 1		"	Phenolate
Allyldipropylearbinol 2		"	Phosphates 115, 116, 117, 118
" Acetate		"	
		"	Potassium borate
Derivative of		44	selenate 101
Allylene, Bromide		"	Sincates 155, 150
" Dihydriodate 3		44	541 phates 32, 31
113 41104410		"	Propylate
rodide		"	Rubidium selenate
1 etraoromide			aupitate
Tetracinoride			Silicates
Allyleugenol			Sodium earbonate
Allylidene, Chlorides 299, 3		"	nuoarsenate 124
Allylmethylpropylcarbinol 2			seienate 101
Allylpyridine 2		"	Sineates 154, 155
Allylsuccinimide 2		"	. surpriese
Almandite			Strontium silicate 137
Almond oil		**	Sulphates 87, 97
Alőisol 2		**	Thallium selenate 101
Altaite	66		" sulphate 94
	97	"	Thymolate 354
Alumina		**	Titanide 70
Aluminite		"	Zinc sulphate 97
Aluminum	3	"	Zirconide 70
" Alloys of			92, 93, 94, 95, 96, 101
" Ammonium selenate 1	101	Alunite	97

	PAGE.	1	PAGE.
Amalgams	145	Ammonlum.	Molybdates 105
Amarantite .		**	Nickei seienate 100
Amblygonite		**	" sniphate 91
Amenyl vale	rone		Nitrate 110
Amidobenze	ne 271		Oxalate 360
	lamine 274	"	Palladiochioride 28
Amidodimet	hylaniline 274	"	Perchlorate
Amidomethy	dphenol		Phosphates 111
Ammonia			Platinbromide
Ammonium.	Aluminum selenate 101	"	Platinchloride
**	" *ulphate 94	11	Platiniodide
4.6	Arsenates 121	"	Piatosochioride 28
61	Benz-ate 364	11	Platoxalate 361
**	Bromide 31	44	Potassium chromate 104
**	Cadmium selenate 100	"	" suiphates 89
**	" suiphate 90	**	" tartrate 362
44	Chloride 21	**	Quadroxalate
**	Chromate 103	44	Racemate 363
41	Chromiodate 104	**	Samarium sulphate 96
**	Chromium selenate 101		Selenate 98
**	" suiphate 95	**	Silicofluoride
44	Citrate	**	Sodium arsenate
**	Cobait selenate 1(*)	**	" phosphate 115
**	" sulphate 91		" racemate
**	Copper chloride		" suiphate 89
	" oxalate		" tartrate
**	" seienate 100		Stannibromide
	" sulphate 91		Stanniehloride
44			
	Dichromate 103		Stannifluoride
	" with mercuricehlo-		Stannochloride
	ride 111		Succinate
	Didymium sulphate 96		Sulphate
**	Dithionate 75		Sulphoeyanide 114
**	Ferrocyanide with ammonium		Tartrantimonite
**	chloride 143		Tartrate
	Ferroxalate		Teilurate 102
**	Formate 356		Uranoxyfluoride
	Gallium sulphate 96		Uranyi snlphate 96
**	Hydrogen carbonate 129		Vanadium vanadate 120
**	" fluoride 16		Zine bromide 33
**	" malate		" chioride 27
**	" oxalate 360	"	" seienate 100
**	⁴⁴ racemate		** sulphate 90
44	9 sclenate		etate 232
**	** sulphate 89		e
"	44 tartrate		192, 193
**	Indium sulphate		hosphite 318
"	fodate 71		ite 350
**	Iodides		ate
**	Tridichloride		·
41	Iron selemate 100		de 318
41	* sulphates		Me
**	Lithium sulphate 89		l oxide
1.5	Magneslum ebloride 27		de
14	ehromate 101		doxyacetate
**	" phosphate, II5		Hide 310
14	selenate 100		icetacetate
**	eallighte		ite
	Malate	" Iodide	202
**	Manganese selenate 100	" Isobut	yrate 212
**	" sulphate (6)		erate
**	Mercury chloride 27	" Merca	ptan 310

	LGE.	PAG	
Amyl, Monochloracetate	307	Antimony Bismuth alloys 1	51
" Nitrate		" Bromide	
" Nitrite		" Chlorides	
" Oxalate	227	" Copper alloys 1	
" Oxide		" Hydroxide	
" Phenylpropionate		" Iodide	
" Propargyl oxide		" Lead alloys 149, 1	
" Propionate		" Organic compounds	
" Sebate			49
" Silicate			30
" Sulphophosphate		1	64
" Thiocarbimide			29
" Thioeyanate		" Sulphides	
" Trisulphocarbonate		" Tartrates 363, 3	
" Valerate		" Telluride	
Amylamine		" Tin alloys 1	
Amylbenzene		Apatite 1	
Amyl camphor		Apiol 2	
Amyldecaldehyde	235	Apophyllite 1	
Amyldimethylbenzene		Aragonite 1	
Amylene		Arctolite 1	
" Chloride		Argentite	
" Dithiodichloride		Argyrodite	
" Glyeol		Arkansite	45
" Oxide		Arsenic	7
" Sulphide			32
" Thiodichloride			20
" Trisulphocarbonate			17
Amyl eugenol			30
Amyl glyeide		" Organic compounds 350, 3	
Amyl glyoxalin		" Oxides 48,	
Amyl monoehlorhydrin		" Selenide	
Amylnapthalene		" Sulphides	
Amylpyrrol		" Sulphobromide	
Amylphosphorous chloride		Arseniosiderite 1	
Analcite		Arsenopyrite	
Anatase		Asarone 2	
Andalusite		Asmannite	
Andesite		Asparagine 2	
Andradite		Atacamite	
Andrewsite		Atopite 1	
Anethol		Augelite 1	
Angelica lactone		Auribromides	
Angelica, oil of		Auriehlorides	
Anglesite		Australene 1	
Angostura, oil of		Austrapyrolene 1	
Anhydrite		Autunite 1	
Aniline		Awaruite 1	
" Salts of		Axinite 1	
Anise, oil of		Azobenzene 2	
Anisic alcohol		Azurite 1	30
" aldehyde			
Anisol		77	
Anisyl chloride		В,	
Ankerite		D	or
Anorthite		Barcenite 1	
Anthemene		Barite	82
Anthracene		Barium	
Anthraquinone		" Acetate 3 " Aluminum silicates 1	
Antiar resin	267		
Antimony	i	" Amylsulphate	
Arseniae	68	benzoate 3	υij

		AGE.		AGE
Barium	Bromate		Benzanilide	
+4	Bromide		Benzone	
**	Butyrate	359	" Hexbromide	
**	Cadmium bromide	113	" - Hexeldoride	303
**	" ehleride		Benzil, isomer of	
**	Calcium earl-onate	129	Benzoeinnamic anhydride	200
44	sulphate	50	Benzoeuminic anhydride	200
**	Carbonate	128	Benzodichlorhydriu	313
11	Chlorate		Benzooenanthie anhydride	266
**	Chloride	23	Benzoie anhydride	
	Chromete		Benzoicin	
	Chromoxalate		Benzonitril	
**	Copper formate		Benzoyl, Bromide	
14	Pinitrophenate		" Chloride	
	Puthionate		" Thiocyanate	
	Ethyl-sulphate		Benzoylglycollic ether	
	Feldspars		Benzyl, Acetate	
	Fluoride		" Alcohol	
			" Benzoate	
	Formate,			
	Hydroxide		Denzyracetate	
	Hypophosphite		neuzynanyrate	
**	Indate		Denzynsoontyrate	
	lodide		Densylpolationate	260
**	1sobutylsulphate		Dromige	
**	Isobutyrate		Dutyrate	
**	Manganate		" Chloride 392,	
	Manganite		" Cinnemate	
**	Methylsulphote	350	" Cyanide	201
**	Molybelate	105	" Pichloracetate	51
**	Nitrate	111	" Dimethylbenzylacetate	200
64	Nitrophenates	364	" Iodide	335
**	Oxalate	360	" Isolaityrate	204
*1	Oxides	4.2	" Mercaptan	-311
**	Picrate		" Monochloracetate.,	
	Platinbromide		" Oxide	
	Platinchloride		" Phenylacetate	202
	Platinocyanide		Propionate	264
**	Propionate		" Trichloracetate	
14	Propylsulphate		Benzylamine	
	Pyrophosphate		Benzylanisol	
**	Selenate		Benzylearbinol	
**	Silicolluride		Benzyleymene	
**	Succinate		Benzylene	
			Benzylethylbenzene	
	Sulphate		Benzylidene dichloride	
**			Benzylidene tolylene	
	Tartrate		Benzylnaphthalene	
	Tellurate		Benzyl phenyl carbamide	4.0
	Thiosulphate			
	Titanate		Benzyltoluene	111
	Tungstates		Platinchloride	
	Uranyl phosphate			
	Zine chloride		Bergamot, oil of	
	rdtite		Bergentte	
	hte		Berlinite	
	aleite		Berthierite	- 17
	dte.,		Bertrandite	
	$ \text{of} \ldots \ldots \ldots \ldots \ldots \ldots \ldots$		Beryl	138
	ute		Beryllium, see g'ucinum	
Beegerl	ite ae	1 [Berze lante	
Benyler	a**	1: 5	Betzeliite	
Benzali	lehy le	201	Betula lenta, oil of	257
Benzan	nde	254	Beyrichite	

		PAGE.	1	PAGE.
Bindhe	imite	125	Bromallyl. Chloride.	. 337
Binnite		. 61	" Nitrate	. 328
Birch ta	ar, oil of	182	Bromallylphenol ether	
Bischof	ite	22	Bromamylbenzene	
Bismut	h	8	Bromamylene	. 323
"	Amalgams		Brombenzene	
"	Antimony alloys		Bromeamphor	
44	Arsenate		Bromeitropyrotartarie anhydride	
86	Arsenide		Bromdecylene	
"	Bromide		Bromdibenzyl	
"	Cadmium alloys		Bromdiethylin	
"	Carbonates		Bromethyl oxide	
44	Chloride		Bromethyl allyl oxide	
**	Copper arsenate		Bromethylene	
"	Fluoride		" Bromacetin	
"	Gold alloys 155	,	1710thing artin	
"	Hydroxides	72	Diplomide	
"	lodide		Bromhexylene	
"	Lead alloys		Bromine	
"	Nickel sulphide		Bromiodethylene	
"	Nitrates		Bromiodomethane	
"	Oxides		Bromisopropylphenol	
"	Oxybromide		Bromkresol	
"	Oxychloride		Bromlite	
	Oxyfluoride		Brommesitylene	
"	Selenide		Brommethyl allyl oxide	
"	Silicate		Brommethylchloroform	
"	Sulphides		Brommethyleugenol	
"	Tellurides		Brommethylkresol	
	Tin alloys		Brommethylphenol	
**	Uranyl arsenate		Bromnaphthalene	
	VanadateZine alloys		Bromochloral	
Riemuth	triethyl		Bromoform	
	trimethyl		Bromonitrie glycol	
	triphenyl		Bromotrichlormethane	
	te		Bromphenol	
	sphærite		Brompierin	
	- price rec		Brompropylene	
	te		Brompyridine	
	e		Bromtoluene	
			Bromtoluidine	
	e		Bromtrimethylearbinol	
			Bromxylene	
Borofluo	rides	. 18	Brongniardite	
			Brookite	
" Br	omide	32	Brucite	70
" Ch	loride	24	Brushite	115
" Ox	cide	42	Butallylmethylcarbin oxide	
Boron tr	iethyl	347	Butallylmethyl pinakone	243
Botallack	cite	29	Butane	157
Boulange	rite	62	Butenylanisoïl	255
Bournon	ite	63	Butenyl chlorhydrins	312
	• • • • • • • • • • • • • • • • • • • •		Butenylphenol	
	ptite		Butidene diethyl ether	
	tite		Butyl. Acetate.,	
	tone	.,	" Alcohol	
	tyl. Bromide		" Benzoate	
"	Chloride		" Bromide	
			" Butylxanthate	
Bromally	l. Acetate		" Butyrate	
••	Alcohol	327	" Caproate	214

PAGE,	PAGE.
Butyl, Caprylate 216	Cadmium, Arsenide
e Carbonate	" Barium bromide
" Chloride 204	" chloride 27
" Cyanate 250	9 Bismuth alloys 150
9 Cyanide 268	" Bromate 73
e Dibrompropionate	" Bromide 31
* Formate 206	Garbonate 127
" Heptyl oxide 198	44 Uhloride
" lodide	" Dithionate
** Malonate	" Fluoride 17
" Mercaptan	" Formate 356
 Monochloracetate	" Hydroxide 70
" Octyl oxide 198	" Iodide 35
" Oenanthate 215	Lead alloys 11)
" Oxabate	" Magnesium sulphate 92
* Oxple 198	" Nitrate 110
9 Proptonate	0 Oxalate
" Sebate 229	44 Oxide 11
" Silicate	" Platinebloride
" Sulphide	" Potassium chloride 27
" Thiocarbimide	" iodide 28
o Valerate	" selenate
Butylamine	" sulphate (0)
Butyl amyl	" Selenate 98
Butylanisol	* Selenide 65
Butylbenzene	" Strontium ebloride
Butylehloral. 309	" Sulphate
" Hydrate	" Sulphide 57
Butylene 161	" Telluride
" Bromide	" Tin alloys 117
6 Glycol	Ca-sium
" lodide	" Aluminum selenate 101
" Monacetate	" silicate 136
6 Oxido 239	" sulphate 93
" Trisulphocarbonate	" Bromide
Butylphenyl acetate	" Chloride 21
Butylphosphorous chloride	" Chromium sulphate 95
Butyithlophene	" Cobalt selenate 101
Butylthymol	" Indium sulphate 96
Butyric aldehyde217	" Iodide
o anhydride	4 Iron sulphate 95
Butyro-dichlorhydrin 312	" Selenate 99
Butyrone	" Silicothoride 18
Butyrone pinakone	" Stannichloride 21
Butyronitril	" Sulphate 78
Butyrylacetophenone	Caffeine
Butyryl chloride	Cajeputene 183
	" Hydrate
	Cajeputel 263
C.	Calamine
	; Calamus, oil of
Cabrerite	Calaverite
Caeoxeni'e 117	Calcioferrite
+ admanimonium bromide	Calcite
" ebloride as	Calcium 3
Cadmium	4 Aluminum phosphate 118
* Acctate 257	4 silicates 136, 137
" Amalgam 115	4 sulphate 97
Ammontobromide 38	" Antimonate
Ammoniochloride	4 Arsenates
Ansmonium selenate	" barium cerbonate
" sulphete is	" sulphate

	PAGE.	PAG	E.
Calcium.	Benzoate	Camphor, oil from 180, 1	
"	Borates 108	Camphoric anhydride 2	
44	Borosilicates 140	Camphorogenol 2	
"	Bromate	Camphrene 2	
"	Bromide	Camphryl chloride 3	112
"	Chloride 23	Cane sugar	
"	Chlorophosphate 124	Caoutchene 1	
"	Chlorosilicate	Caoutchin 1	
66	Chlorovanadate 124	" Hydrochlorate 3	
44	Chromium silicate 139	Capraldehyde2	
44	Copper acetate 358	Caprone 2	221
44	" arsenate 123	Capronitril 2	269
"	Dithionate 75	Caproyl alcohol 1	194
**	Fluophosphate 124	Capryl alcohol 1	
"	Fluoride 17	Caraway, oil of 1	
"	Formate	Carbamide 2	288
"	Glucinum fluophosphate 124	Carbon	4
"	Hippurate	broinide	
"	Iron arsenate	" Chloride	
44	" oxide	" Iodide	
44	" phosphate 115	" Oxychlorides	
44	" silicates	" Sulphides	
44	Magnesium borate 108	" Sulphobromide	
44	" carbonate 129	" Tetramercaptide	
**	" silicates 134	Carbonyl, Chloride	
44	Manganese carbonate 129	" Thioamyl chloride	
"	" phosphate 115	" Thioethyl chloride	347
"	" silicate 134	Carbopetrocene	
"	Mercury antimonate 125	Cardol	267
44	Nitrate 110	Carminite	122
"	Oxalate 360	Carphosiderite	
"	Oxide	Carrollite	64
	Phosphates	Carvaerol	
"	" sulphate 89	Carvene	
"	Selenate	Carvol	
44	Silicates	Caryinite	123
**	Silicofluoride	Cassiterite	46
44	Silicophosphate141	Castorite	134
44	Sodlum borate 108	Cedar, oil of	184
"	" carbonate 129	Cedrene	184
44	" silicate 134	Celestite	82
44	" sulphate 89	Cellulose	244
"	Sulphate 81	Cerargyrite	21
"	Sulphide 57	Cerium	3
"	Thiosulphate 74	" Chloride	
"	Tin silicate		47
44	Titanate	" Fluocarbonates	145
	Titanio-silicate	" Molybdate	105
"	Tung tate	" Phosphate	
"	Uranyl arsenate	" Silicate" " Sulphate	199
"	" phosphate 116 Zine alloy 145	" Sulphide	59
	Zinc attoy	" Tungstate	107
	llum resin	Cerotene	167
	ne	Cervantite	49
campile "	Acetate 264	Cetene	166
Camphil	ene	Cetyl. Acetate	209
	186	" Alcohol	196
Campho	r 262, 263	" Butyrate	212

378 Index.

P	AGE,	PAGI	
Cetyl. Chloride	295	Chloriodoform 33	7
" Isovalerate	214	Chloriodomethane 33	7
" Nitrate	281	Chloriodotoluene 33	,
Chabazite	137	Chlorisobutylene 30	М
Chalcomenite		Chlorisopropyl benzoate 31	3
Chalcophanite		Chloritoid 1:.	'n
Chalcophyllite		Chlorkresol	
Chalcopyrite		Chlormethylphenol	
Chalcopyrrhotite		Chlornaphthalene	
Chalcosiderite		Chlornitrobenzene	
Cha costibite		Chlornitromethane	
		Chlornitrotolnene	
Chalk		Chlorobenzylethylate 31	
Chenevixite		Chlorobromal 33	
Childrenite		Chlorobromethyl acetate	
Chinablin			
Chinoline		Chlorobromhydrin	
Chrolite		Chlorebromhydroglycide	
Chiviatite		Chlorobromiodethane	
Chloracetal		Chlorobromiodhydrin 33	
Chloracetic anhydride	305	Chlorobrommethane	
Chloracetone	308	Chlorobromnitrin	
Chloracetonitril	314	Chlorobromoform 33	C
Chloracetyl bromide		Chlorocarbonylphenylorthophosphoric chlo-	
" chloride		ride	jį
Chloracetyl chloral		Chlorodibromethane 33	ú
Chloral		Chlorodibromethylene 33	ú
a Derivatives of		Chlorodibromhydrin 33	, 7
Chloraldehyde		Chlorodibromnitromethane 33	
Chlorafide, derivative of		Chlorodracylic chloride	
Chlorallyl, Alcohol		Chloroenanthic ether	
		Chloroform 26	
4 Indide		Chloronicene	
		Chloropal 13	
Chloramyl chloride		Chloropropionyl chloride	
Chloramylene		Chlorotetrabromethane	
Chlorenethol		Chlorotolnidines	
Chloranilmes			
Chlorapatite		Chlorotribromethane	
Chloraurotriethylphosphorous ether		Chlorovaleral	
Chlorazol	315	Chloroxalethylin	
Chlorbenzenes	301	Chloroxalmethylin	
Chlorbenzotrichloride	303	Chloroxalpropylin	
Chlorbutylene chlorhydrin	310	Chloroxethose	
Chlorbutyronitril	314	Chlorphenol	
Chlorbutyryl chloride	308	- Chlorpteoline 3	1
Chlorchinolines	311	Chlorpicrin	1
Chlorerotyl alcohol	312	Chlorpropylene 29	r
Chloreymene	301	Chlor-alicylol 3	ì.
		Chlorstyrolene	
Chlordiallyl	5 64	Chlortoluene	1
Chlordinitrobenzene	215	Chlorxylene 39	
Chlorethylacetylenetetra arbonic ethin		Chodnetlite	1
hlorethylbenzene		Cholesterine	
Chlorethylene dichloride	1 . 1 2		
is accountable to the area BDC announced the announced	3013		
the state of the s	200	Christophite	į,
" dithiodichloride	298 336	Christophite	į,
" dithiodishloride	298 336 305	Christophite	6 ()
dithodeshloride	208 336 305 312	Christophite 0 Chrome slums 94, 95, 40 Chromite 7 Chromitum 7	6 0 5)
Chlorethyl oxide	298 336 305 312 300	Christophite	6 0 5 1
dithodenloride Chlorethyl oxide Chlorethylhenol Chlorhexylene Chlorhexylene	298 336 305 312 300	Christophite	6 0 50 1 1b 3
dithodenloride Chlorethyl oxide Chlorethylhenol Chlorhexylene Chlorhexylene	298 336 305 312 300	Christophite	605011830
dithodeshoride Chlorethyl oxide Chlorethylphonol Chlorhexylene Chlorine "Troxide Chloriol ethyl acetate.	298 336 305 312 300 41 53 338	Christophite	6050110300
dithiodenloride Chlorethyl oxide Chlorethylhenol Chlorhexylene Chlorhexy	298 336 305 512 300 -11 -53 328 338	Christophite	6 0 50 1 1b 3 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

PAGE.	PAG	E.
Chromium. Calcium silicate 139		54
" Chlorides 24		71
" Chromate 52		67
" Magnesium borate 108		33
" Manganese oxide 56	riatiniodide	
" Oxalates 361	rotassium seienate	
" Oxides 52	surpriate	
" Oxychloride 30	1 3 Tophosphate	
Filospindo	Kuolulum selenate It	
1 otassium enromate	selenate	99
setenate	Scientide	65
surpliate	Sincondorate	18
surphoeyanide 144	Stantinuoride	19
Audidium seienate 101	outpriate	85
suprite	Surprinces	60
Supmite	I namum seienate	
empiride	surphate	91
I namum selenate 101	Thrisulphate	74
surphate	Cobeltite	
Zine oxide	Cochlearin	
Chrompicotite	Cocinin	
Chromyl dichloride 30	Codeine	
Chrysoberyl 56	Coernleolactite	-
Chrysocolla	Coerulignol	
Cinacrol	Colemanite	
	Collidine	
Cinabbene	Carbonic ethers 23	
Cinchonine chlorhydrate 366	Colorbene	
Cinnabar 57 Cinnamene 176	Colophonone	66 66
Cinnamic acetate. 261	Columbite 12	
" alcohol		
" aldehyde	" Aluminum alloy	8
Cinnamyl chloride	" Hydride	
Cirrolite	" Oxide	
Citraconic anhydride	Columboxyfluorides	
Citraconyl ehloride	Coniceine	
Citrene	Conichaleite 12	
Citron, oil of	Conijne 27	
Citronellol. 262	Convlene 16	
Citron terpene 181	" Bromide 32	
Citrus, oils from 181	" Diacetate	
Clarite 61	Copaiva, oil of	
Clausthalite	Copal, oil of	
Clinoclasite	Copellidine27	
Cloves, oil of	Copiapite 9	
Cobalt 12	Copper 1	
" Acetate 358	" Acetate	58
" Ammoniochlorides 38	" Aluminum alloys 14	6
" Ammoniobromide 38	" arsenate 12	23
" Ammonium selenate 100	" Ammoniochlorides 3	88
" sulphate 91	" Ammonionitrate 11	
" Arsenates 122	" Ammoniosulphate 9	7
" Arsenides 68	" Ammonium chloride 2	7
" Cæsium selenate 100	" oxalate 36	1
" Chloride 24	" selenate 10	0
" Dithionate 75	" sulphate 9	1
" Formate 356	" Antimonate 12	5
" Hypophosphite 113	" Antimony alloys 15-	
" Iodate 74	" Arsenates 122, 12	3
" Nitrate 112	" Arsenides 6"	•
" Oxelate	" Berium formate 35	7

	PAGE,	PATE.
Copper.	Bismuth alloys 154	Covellite
44	" arsenate	Creatine hydrate
44	Bromate	Crocidolite 139
44	Bromide	Crocoste 101
44	Calcium acetate	Crookesite
44	" arsenate	Crotonaldehyde
4.	Camphorate, hydrocarbon from 187	Crotonitril
	Car's onates 130	Crotonylene dichloride
44	Chlorides	" glycol
	Chloride, with mercuric sulphide 141	Cryolite
**	Chiloride, with mercuric surprise in 10	Cryptolite
	Columboxyfluoride 19	Cryptoide 24
44	Tormate	
4.5	Gold alloys 156	Cubanite 64
**	Hydroxide	Cubebs, oil of
4 1	10dide	Cumene 173
4.6	Fren arsenate	Cumidine 273
4.4	" phosphate 117	Cuminic aldehyde
4.6	" sulphides +4	Cutninol
44	Lead alloys	Cummin, oil of
4.6	44 arsenate 123	Cumonitril
*1	" chromate 104	Cumyl chloride
41	" sulphate 97	Cuprammonium chloride 38
**	" vanadate 118	sulphate
44	Magnesium sulphate	Cuprite 54
41	Mercury iodide	Cyamelide
4.6	Nitrates	Cyanablehyde
44	Oxides	Cyanoconicine
44	Oxychloride	Cyanogen
41	Oxychloride	" Chloride
**	Phosphates	" Jodide
	Phosphides	
44	Platinehloride 28	Cyanoti
41	Potassium chloride	Cymene
4.4	• ox.date 0.4	Cymhydrene
4.6	selenate 100	Cymyl alcohol
4+	" sulphate 91	" mercaptan
41	Rubadium chloride	Cynene 183
4.6	Selenate 99	Cyneol 263
4.6	Selenide	Cystic oxide 346
4.1	Selenite	1
4.6	Silicates	
4.4	Sittee-fluoride	D.
44	Silver alloys	
4.6	* lodide	Daleminzite 57
44	Sodium sulphate	Danalite
	Strontium formate	Pantorrite
	Sulidades	11 (reet's alloy
44	Sa phides	Patelite 140
	Sa philes	Daubreeute
••	20 pm 10	Dishrette
	Tin alloys 13, 151	Dawsonte 130
	Tr moffsoride 19	
• •	Tranyl arsenate	
4.1		Declience
4.	Zinc alloys 152	Ducyl, Alech ds
	(b), e	· therrie
	ler, oil of 202, 203	** [oatde
	(e.,	Dekknaphtene
C + (2.1) VS	Clife 121	The late easily
Corcet -	Cate	Temanteid 12.0
 ery na 	tp t E	Desclottle
4 -,1 :1		- Dextrin
	e	- 19acetto 240
	cia	1 discetochlorhydrin
Carl 111. F	filit acceptance and the first and the first acceptance of the first acceptance and the first ac	

PAOE.	PAGE
Diacetone alcohol 245	Dichlorbromethylene 33
Diacetonephosphoroso-chloride	Dichlordibromethane 33
Diacetylehloral hydrate 309	Dichlordibrom ethyl acetate 33
Dially1 167	Dichlordinitrobenzene 318
" Diehlorhydrin 312	Dichlordinitromethane 31
" Dihydriodate 334	Dichlorethoxyethylene 310
" Hydriodate 335	Dichlorethoxylacetonitril
" Monohydrate 241	Dichlorethyl. Acetate 300
Diallylaniline 274	" Aleohol 305
Diallylearbinol 241	" Dichloracetate 307
Diallylearbyl. Acetate 242	" Formate 300
" Ethyl oxide 242	" Monochloracetate 306
" Methyl oxide 242	" Oxide 305
Diallylene 167	" Propionate 307
Diallylethylcarbinol	" Sulphide 346
Diallylisopropylearbinol 241	Dichlorethylamine
Diallylmethylearbinol241	Dichlorethylene
Diallylmethylcarbyl acetate	"Thiodichloride 346
Diallytpropylearbinol 241	Dichlorhexyl alcohol
Diamyl acetal 224	Diehlorhydrin
Diamylamine 270	Diehloriodhydrin
Diamylene 165, 166	Dichlorisobutoxylacetonitril 315
" Oxide 242	Dichlormethoxylacetonitril
" Thiocyanates 345	Dichlormethyl acetate 306
Diamylin	" oxide 305
Diamyl ketone	Diehlormethylsulphuric chloride 346
Diamyl valeral	Dichlormononitrin
Diaphorite	Dichlornitrobenzene
Diaspore 71	Dichlernitrophenol
Diazobenzene nitrate	Dichlornitrotoluene
Dibenzyl 178	Dichlorpropionitril
Dibenzylamine274	Dichlorpropoxylacetonitril315
Dibenzyltoluene 177	Dichlorpropylene
Dibromacetone	Dichlortoluene
Dibromallyl oxide 327	Dichlor-vinyl methyl oxide
Dibrombenzene	Dichlorxylenes
Dibromchlorpropylene	Dicinnamene
Dibromcymene	Dickinsonite
Dibromdiallyl 323	Didecene 187
Dibrom-ethyl acetate	Didymium
Dibromethylene	" Acetate
Dibromhexchlorpropane	" Ammonium selenate 101
Dibromhexyl alcohol	" sulphate 96
Dibromhydrin 327	" Borates 108
Dibromiodethane	" Bromide 32
Dibrompropyl alcohol	" Carbonate
Dibromtetrachlorethane	" Chloride
Dibromthiophene	" Ethylsulphate 359
Dibromtoluene	" Formate
Dibromxylene	" Gold bromide
Dibutyrin	Gold ptoinide 33
Dieamphene hydride	
Dichloracetal	metaphosphiate
	mory butte 100
Dichloracetone	1v1(1a(6 112
	NICOARROW 301
Dichloracetophenone	Oxides 45
Dichloramyl nitrite	O Ayethor Floring Line 23
Dichlorbenzenes	remodate
Dichlorbenzo-trichloride	rnosphates 116
Dichlorbenzyl chloride	riatinemoride 28
Dichlorbenzylene dichloride	1 otassium seienate 101
oichlorbromethane	" Propionate 358

PA	GE.	FA	11 + 25
Didymium, Selenate	\$1.3	Dimethyl acetal	
" Sulphate	88	Dimethylacetamide	
" Tungstate		Dimethylaniline	27.2
Vanadates	120	Dimethylanisidine	254
Diethoxyl ether	215	Dimethylarsine oxide	3.0
Diethyl acetamide	257	Dimethylbutylene glycol	224
Diethyl acetone	221	Dimethylbutylmethane	
Diethylamine	2959	Dimethyleopellidine	277
" Anrochloride		Dimethyldiethylmethane	
Diethyl amyl borate.		Dimethyl diethyl silicate	
Diethyl amyl sorace		Dimethylethylbenzene	11 100
Diethylaniline	21.0		
Diethylaniline azylin		Dimethylethylearbinol	
Diethylbenzene		Dimethylethyleschinolamine	270
Diethylbrommaleate	327	Dimethylethylearbyl chloride	231
Diethyl carbanide	255	iodide	
Diethylearbinol	193	nitrite	
Diethylearbyl acetate	208	Dimethyl ethyl phosphate	338
" chloride	294	Dimethylethylene g.ycol	2:12
iodide	302	Dimethylhydrazin	278
Diethyl diamyl silicate	352	Dimethylisopropylcarbinol	194
Diethyl ethyl oxide	198	Dimethylisopropylearbyl chloride	
Diethylene alcohol		iodide	
" dioxide		Dimethylisopropylethylene	
Diethylformamide	957	Dimethyl ketone	
Duethylglycollie ether	216	Dimethylmesidine	
Diethylglycome ether	219	Dimethylmethylene bromide	
Diethylin	2.21	" chloride	320
Diethyl ketone	213		
Diethylmonochlorbenzene	301	Dimethylnaphthalene	
Diethylmonochlorhydrin	312	Dimethyloxamide	
Diethyloxamide	257	Dimethylphenylphosphin.,	
Diethylphenylphosphin	348	Dimethylpiperidine	276
Diethylpropylearbinol	195 -	Dimethylpropylbenzene	175
Diethylthiophene	312	Dimethylquinoline	277
Diethyltolnidine	273	Dimethylresorcin	255
Diethyl valeral	224	Dimethyltoluidine	27.3
Difellandrene		Dimethyl valeral	
Dithobenzene		Dimethylxylidine	273
Piformin		Dimorphite	
Pilieptylene sulphoxide		Dinitrobenzene	
Inhexyl ketone		Dinitrobutane	
Inhexylene		Punitrocymene	
Dibydrite		Dinitroethane	
		Pinitrole mane.	
Dihydrofurfurane			
Dihydrostifbazol	27.5	Dinitropropane	
Dirodhydrin	3333	Dinitrotoluene	
Diisoamyl		Dioctyl	
Difsoamylbenzene		Dioctylene	
Duschutyl 15%		- Diolein	
Disobatylene	165	Djoptase	132
Inisolatyl ketone		Dio xyisoamylamine	
- Dirsobutyl sulphone	243	Dipentenyibenzene	
Dusobutyryl dicyanide	189	Diphenols	250
Diisopropyl		- Poplienyl	177
Disograpylamine		Diphenylamine	274
Dusopropylantline		Diphenylacsine chloride	
Disopropylearbinol		Diphenylearbyl acetate	
Disopropylethylene		ethyl oxide	
Disopropyl ketone		Diphenylmethylphosphin	
Diff , or of	1 4 1	Diphenyiphosphia	
Dinescuranimonium chloride	172	Diphenyl phosphochloride	
		Tuphenyi phosphorous caloride	
Princercurosammonium "		- Pappenyiptosphotous entoride	177
Preseth expldiethyl acetone	245	Diphenylpropane	10

383

PAG	GE.	P	AGE.
Dipicoline 2	277	Eosphorite	
Dipiperidyl 2	278	Epiacetin	240
Dipropargyl 10	168	Epiboulangerite	62
" Bromide 3.	323	Epibromhydrin	327
Dipropylamine 2	270	Epichlorhydrin	311
Dipropylaniline 2		Epidibromhydrin	323
Dipropylearbinol 19	94	Epidiehlorhydrin	300
D:propylcarbyl acetate 20	09	" Derivative of	337
" iodide 3:	33	Epiiodhydrin	335
Dipropyl ketone 2:	20	Erbium, Columbate	125
Dipyridyl 27	77	" Oxide	
Disulphamylene hydrate 3-	44	" Selenate	99
" oxide 34		" Sulphate	
Disulphhydrin 34		Erechthidis, oil of	
Disulphuryl chloride		Ericinol	
Diterebene 18	85	Erigeron, oil of	182
Diterebenthyl18	86	Erinite	122
Diterebenthylene 18		Erythrene hexbromide	
Dithioglycol, derivative of 34		Erythrite 122,	
Ditolyl		Erythrol	
Ditolylethane		Ether	
Divalerin24		Etherol	
Dixylylene 17		Ethidene ethers	
Dixylylethanc		Ethoxyacetonitril	
Docosane		Ethoxybromamylene	
Dodecanc		Ethstannethyl compounds	
Dodecyl alcohol		Ethyl. Acetacetate	
" chloride		" Acetate	
Dodecylene		" Acetocitrate	
Dodecylidene		" Acetoglutarate	
Dodekanaphtene		" Acetoglycollate	
Dolomite		" Acetolactate	
Domeykite		" Acetomalonate	
Dotriacontane 16		" Acetopyruvate	
Dreelite		" Acetosuccinate	
Drybalanops camphora, oil of			
Dufrenite		meety it fanacetate	
Dufrenovsite		" Acetylteremethylenecarboxylate	
Dulcite 24		Acception of the control of the cont	
Dumortierite		Acontate	
		Acrylate	
Durangite 12		Autpate	
Dyscrasite	68	Alcohol	
	- 1	Any meetacetate	
E.		Any accetate	
Δ.	1	Anymaionate	
THE		Anyloctylate	
Ehlite 11		Anyr oxide	
Eicosane 16		" Amidoacetacetate	
Eikosylene 16		" Amidopropiopropionate	
" Chloride 30	- 1	" Amylhydroxalate	
Ekdemite 12		" Amylideneacetacetate	
Elder, oil of 18		" Amyl oxide	
Elemi, oil of 18		" sulphide	
Eliasite 7		" Amylthioglycollate	
Embolite 3	- 1	" Angelate	
Emerald 13		" Arsenate	350
Emplectite 6	63	" Arsenite	350
Enargite 6		" Benzoate	
Endecylene 16		" Derivative of	313
Endekanaphtene 18		" Benzylacetacetate	259
Endlichite 12	24	" Benzylacetosuccinate	259
Enstatite 13	31	" Benzylchlormalonate	

	PAGE.			PAGE.
Ethyl.	Henzylidenemalonate	Ethyl.	Diamyloxalate	
**	Benzylmalonate 259	**	Dibenzylhydroxamate	
44	Benzylmethylmalonate 259		Dibromacetacetate	
**	Borate 317	"	Dibromethylacetacetate	
**	Bromacetasetate	"	Dibrompropionate	
11	Bromacetate	1	Dibrompropiopropionate	
**	Bromacetopropionate 327		Dicarboxylghtaconate	
11	Brombutyrate	**	Dichloracetacetate	
11	Bromethylacetacetate 327	"	Dichloracetate	
**	Bromethylmethylacetate		Dichlorbenzoate	
4.4	Bromide 316	"	Dichlorethylacetacetate	
**	Bromisobutyrate 326		Dichlormethylacetacetate	
**	Brompropionate	46	Dichlorpropionate	
**	Brompropiopropionate 327	"	Diethylacetate	
4.8	Brompyromucate		Diethylchloracetacetate	
**	Bromvalerate	"	Diethyldichloracetacetate	
**	Butenyltricarboxylate	**	Diethylglycocollate	
4.4	Butylmalonate		Diethylglyoxylate	
4.4	Butyl oxide	1.	Diethylmalonate	
**	Butylsuccinate 228	44	Diethyloxyacetate	
* *	Butylthioxyearbonate	"	Diheptylacetacetate	
4.4	Butylxanthate	44	Diisobutylacetacetate	
1.6	Butyrate		Dimethylacetacetate	
**	Butyroglycollate		Dimethylacetosuccinate	
**	Butyrolactate		Dimethylacetylenetetracarboxylate.	
44	Camphoearbonate		Dimethylethenyltricarboxylate	
**	Camphorate	"	Dimethylmalouate	
**	Camphresate	**	Dimethylsuccinate	
	Caproate	44	Dioctylacetacethte	
44	Caprylate	**	Dioctylmalonate	
11	Capryl oxide	44		
	Carbacetacetate		Dioxythice arbonate	
44	Carbamate	"	Dipropylacetacetate	
"	Carbonates 225, 226	11	Dithioxycarbonate	
**	Chloracetacetate	**	Elaidate	
"	Chloracetate	44	Ethenyltricarboxylate	
	Chloracetopropionate	44	Ethidenemalonate	
44	Chlorbutyrate	44	Ethoxylethylacetacetate	
	Chlorerotonate	44	Ethoxylmethylacetacetate	
	thloride. 293 Chlorisolatylmalonate 311	**	Ethylacetacetate	
14		44	Ethylacetosuccinate	
"	Chloroearbonate 306 Chloroenanthate 3 7	**	Ethylacetyleyanacetate	
,,	Chlorolact de	44	Ethylamylhydroxalate	
"	Chloromaleate	44	Ethylbenzhydroxamate	
**	Chloromalonate	**	Ethylchloromalonate	
		4.4	Ethylerotonate	
**	Chloropropionate 307 Chlorosulphonate 346	**	Ethylglycollate	
**	Chlorperthiocarbonate	64	Etnylideneacetacetate	
11	Cinnamate	**	Ethyllactate	
14	Citraconate		Ethylmalonate	
41	Citrates	4.4	Ethylmethylacetate	
44	Crotonate	14	Ethyloxybenzoate	
	Cyanacetate		Ethyloxybutyrate	
**	Cyanate	44	Ethylpropiopropionwe	
**	t yanformate	**	Ethylsalicylate	
**	Cyanide		Ethylsuccinate	
- 65	Inacetylacetate	**	Ethylsulphonate	
**	Diallylacet cetate	44	Ethylthioglycollate	
	Diallylmalenate	**	Ethylxanthate	
4.6	Diallyloxyacetite	* *	Formate	
**	Diamyl borate	**	Fumarate	
	F. Detti C. Frankling William Co.			

	PAGE.	1		AGE.
Ethyl.	Glycerate 240	Ethyl.	Myristate	216
"	Glycoeholate	"	Nitrate	281
44	Glycollate 230		Nitrite	281
44	Heptylacetacetate		Nitroacetate	282
44	Heptyl oxalate 227	"	Nitrocaprylate	282
"	" oxide 198	16	Nitroglycollate	
44	Heptylsuccinate 228	"	Nitrolactate	
"	Hexyl oxide 198	44	Nitremalate	
44	Hippurate	"	Nitromalonate	
"	Hypopho-phate		Nitrotartronate	
		44		
"	Iodide	"	Octylacetacetate	
	Iodpropionate 335		Octyl oxide	
44	Isaconitate		Oenanthate	
44	Isoallylenetetracarboxylate 247		Oleate	
4.4	Isoamyl oxide 197	**	Orthoearbonate	
"	Isobutenyltriearboxylate 247	"	Orthoformate	245
44	Isobutylacetacetate	46	Oxalate	227
46	Isobutylmalonate	"	Oxide	196
44	Isobutyl oxide 197	**	Oxyisobutyrate	231
44	Isobutyrate	"	Oxyphenylacetate	
44	Isobutyroglycollate	"	Oxyphenylacrylate	
"	Isocaproate	"	Oxyphenylpropionate	
44	Isononylate 216	- "	Paracamphorate	
44			Parasantonate	
44	Iseöenanthate		Pelargonate	
"	Isopropylacetacetate			
"	Isopropylmalenate		Phenylacetacetate	
44	Isopropyl oxide 197	"	Derivative of	
	Isovalerate 213		Phenylacetate	
44	Itaconate 237	"	Phenyl carbenate	
"	Lactate	"	Phenylglyoxvlate	
44	Lactosuccinate	"	Phenylpropionate	
44	Laevulinate 232	44	Phenylthioglycollate	344
"	Laurate 216	**	Phosphate	348
4.6	Maleate 236	44	Phosphite	348
44	Malonate	**	Phthalate	258
44	Mereaptan 340	"	Propargyl oxide	241
44	Mesaconate	44	Propionate	
44	Metachlorbenzoate	"	Propionylglycollate	
	Metasilicate		Propionylpropionate	
**	Methenyltricarboxylate		Propyl carbonate	
"	Methoxyldia Vlacetate		" malonate	
"		- 44	" oxide	
44	Methylacetacetate		" suceinate	
44	Methylacetogtutarate	"	Succinate	
44	Methylacetosuccinate 230		Propylethenyltricarboxylate	
44	Methylacetylcyanacetate 289		Propylglycollate	
	Methylbenzylacetacetate 259		Propylmalonate	
"	Methyldehydrohexonecarboxylate 247	"	Propylxanthate	
44	Methylethenyltricarboxylate 247	44	Pyromucate	
"	Methylethylacetacetate 233	"	Pyrophosphate	
44	Methylethylmalonate 229	"	Pyrosulphophosphate	
46	Methylglycollate	"	Pyrotartrate	228
44	Methylisopropylmalonate 229	"	Racemate	237
44	Methyllactate	"	Rutylate	
44	Methylmalonate	44	Santonate	
"	Methyloxybutyrate 231	"	Sebate	
46	Methylpropylacetacetate	"	Selenite	
"	Methylpropylacetate	"	Silicate	
46	Methylxanthate	"	Silieoacetate	
"	Monochloracetate		Silicobenzoate	
46				
	Monochlorethylacetacetate		Silicopropionate	
	Monochlormethylacetacetate	"	Subgrate Suggrate	
••	Mucate 948	4.6	Succinate	228

ī	AGE.	F		PA	GE
Ethyl. Succinosuccinate	230	1	Ethylene.	Chloride	294
" Sulphate		!	**	Chloriodide:	
" Sulphide	339	1	44	Chlorobromide	
" Sulphite			6.6	Chloronitriu	
" Sulphophosphite			**	Chlorothiocyanate:	
" Tartrate	236		4.6	Cyanhydrin	
" Terebate	238		14	Cyanide	
" Tetrabromacetacetate	327		11	Diamine	
Tetramethylenedicarboxylate			**	" Hydrate	
" Tetramethylsuccinate				Diethyl ether	
" Thiographite			4.6	Dinitrate	
" Thiographimide			**		
1 1111 / 441 1711111 (4 ())			**	Diphenate	
THE VALUE CONT.				Dithiodichloride:	
" Thiocyanate			"	Pithloethylate	
" Thioxalate			"	Ethylidene dioxide	
* Thioxycarbonate			"	Fluoborate	
" Tiglate				Glyeol	
" Triamyl silicate			44	Iodide	
" Tribromacetacetate	327		4.6	Mercaptan	
" Tribromethylacetacetate			4.4	Monethyl ether	22
" Trichloracetate	306		4.4	Mononitrate	24
" Trimethylacetate			64	Nitrosonitrate	2.
" Trimethylenedicarboxylate	246		44	Oxide	22
" Trimethylenetricarboxylate			44	Propionate	
" Tri-ulphocarbonate			4.6	Thiodichloride	
" Valerate			4.	Thiovinylethylate	
" Vatudate			44	Tri-ulphocarbonate	
" Veratrate			Ethylene	stannethy).	
Ethylacetamide				dene glycol	
Ethylamidobenzeue	0-7			enol	
				namide	
Ethylamine				ruili le	
Addisormation					
amphorate, pass from				urearbinol	
O Platinehloride				cide	
Ethyl amyl				ollie chloride	
Ethyl amylin				exalin	
Ethyl amyl pinacoliu				ylearland	
Ethylaniline				roxylamine	
Ethylbenzene	172		Ethyliden	re, Acetochloride	
Ethylhorneol	264		**	Bromi le	
Ethylbrombenzene	32 t		6.6	Bromethylate,	
Ethyl butyl pinacolin	221		4.6	Bromiodide	
Ethylbutyric lactone	212		4.4	Butyrochloride	31
Ethyleamphene	156		++	Chloride	21
Ethyleangher	264		4.4	Chlorobromide	33
Ethyl earbamide			" •	Indide	33
Ethyl earleanine			4.4	Oxychloride	.11
Ethyl carbinide			4.4	Propiochloride	31
Ethyldiacetami le		1	4.4	Valerochloride	
Ethyldracetone carb mate			Ethelisol	outylearbinol	
Ethyllumethylethylene				hylacetoxim	
Ethyldlpropylearbinol				hylethylene	
Ethyldipropylearbyl acetate			17th inter	" Bromide	
Ethylene			1241-41-65	111311111111111111111111111111111111111	
tootate				nochlorhydrlu	
Acetochiotide				thalene	
Acctonitrate				roaml lophenetol	
" Brom'iydrin				atolyl sulphide	
" Bromide				netol	
** Bromfodide				nol	
" Butyrate				nyl acetate	
" Butyrochloride	. 314)	Ethylphe	enylacetylene	17

387

PAGE.	PAG	Œ
Ethylphenylacetylene alcohol 252	Forbesite 1	2
Ethylphenylcarbinol 251	Formamide 2	
Ethylphenylpyrazol279	Forsterite 1	3]
Ethylphosphorous chloride	Franklandite 1	.08
Ethylpiperidine	Freieslebenite	65
Ethylpropylaeetylene 168	Frenzelite	6
Ethylpropylbenzene	Friedelite 1	3:
Ethylpropylearbinol 191	Fuchsine 3	G
Ethylpropylearbyl acetate 209	Fucusol 2	48
Ethyl propyl ketone 220	Furfurane 2	48
Ethylpyridine	Furfurbutylene2	48
Ethyl pyruvyl ether 247	Furfurol 2	48
Ethyl pyrrol	Fusyl sulphide 3	4(
Ethylsilieie ehlorhydrins 353		
Ethylsulphonic chloride 346		
Ethylsulphophosphorous chloride 350	G.	*
Ethylthiophene	Gahnite	5.5
Ethylthymol	Galbanum, oil of 18	
Ethyltoluidine 273	Galena	
Ethylvinyl acetate		68
" alcohol 241	Gallium	9
Ethylvinylearbinol		96
Ettringite 97		94 24
Eucairite 65	Gaultherilene	
Eucalyptene 187	Gaylussite	
Euealyptol 264	Gehlenite 1:	
Eucalyptus amygdalina, oil of 182	Geocronite	
" oleosa, "	Geraniene 18	
Euchroite 122	Geraniol	eo Da
Euclase 138	" Hydrochlorate 30	
Eucryptite 134	Gerhardtite	
Eudnophite 135	Germanium	4
Eugenol		25
Eulytite 133		46
Euodyl aldehyde 218		69
Eusynehite 120		71
Evansite	Ginger, oil of	
	Glauberite	
F.	Glaucodot	
F •	Glaucopyrite	
Fairfieldite115	Glueinum	1
Famatinite 63	" Aluminum silicates 13	
Faujasite 137	" Calcium fluophosphate 19	
Fauserite	" Oxide	
Fayalite 132	" Selenate	
Fellandrene 184	" Silicates 13	
Felsobanyite 97	" Sulphate 7	
Ferberite 106	Glucose24	
Fibroferrite	" With sodium chloride 36	
Fibrolite 133	Glucosine 27	
Fillowite 145	Glycerin	
Fischerite 117	" Cinnamate 24	
Fluoaniline 329	" Selicylate 21	
Fluobenzene 339	Glycerin ether	
Fluobrombenzene	Glyceryl trinitrite	
Fluocerite 18	Glycide	
Fluochlorbenzene 339	Glycocoll 28	
Fluonitrobenzene	Gmelinite	
Fluorapatite 124	Gold 1	
Fluorite	" Amalgam 14	
Fluor spar	"Arsenide 6	
Fluotoluene	" Riemuth alloys 155 15	

PACE.		GE.
Gold. Copper alloys 156	Heptelactone	232
" Didyinlum bromide 33	Heptyl. Acetate :	209
n ehloride 28	44 Alcohols	195
" Diethylamine " 3-5	" Bromide	313
" Ethylamine "	" Butyrate	212
" Hydrogen nitrate 112	" Capronte	
" Level alloys	4 Caprylate	
" Phosphide	Chloride	
" Phosphilde	" Cyanide	
Samarium bromide	" Formate	
" chloride 28	FO(10)3(C	
" Silver alloys 156	1001100	
0 0 sulphide	Octy (Oxfordaminia	
" Telluride 66	· · · · · · · · · · · · · · · · · · ·	
n Tin alloys	" Oxide	
9 Triethylamine chloride 305	" Propionate	
Gothite 71	" Succinate	228
Graminin 215	" Valerate	214
Grape sugar	Heptylene	165
Greenerkite	" Bromide	320
Greenovite	4 Chlorhydrin	
Grossularite	" Chloride	
Grunerite	Heptylthymol	
Guadaleazarite	Hercynite	
Guadaleazarite		
Gueiacol	Herderite	
Guajol 235	Herrengrundite	
Guanajnatite	Hesperidene	
Guanidine carbonate	Hessite	
Guanovulite	Hetaerolite	56
Guarante 139	- Heterogenite	71
Gnavacanite	Heulandite	136
Guejarite 63	Heveene	155
Guitermannite 61	Hexadecylidene	
Gum	Hexane	
Gummite 72	Hexbrom-ethyl methyl ketone	
Gurgun balsatn 184	Hexchloracetone	
Gurgun bar-am	Hexchlorbenzene	
Guya quillite	Hexehlorethane	
Gypsum 82	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	
	Hexchlor-ethyl acetate	
н.	Hexchlor ethyl formate	
	Hexchlorhexaue	
Haidingerite	Hexchlor-methyl acetate	
Halite	Hexchlor-methyl oxide	. 29.
Hamartite 115	Hexeblorpropone	. 293
Hanksite 115	Hexchlortetrabrom ethyl oxlde	10
Hantayste	Hexdecane	
Harmstone	Hexdeeyl alcohols 193	
Harmet due	Hexethyl silicate	
Hartin	Hexhydrobenzene	
Hartite 187	Hexhydrocumene	
Havetite (0)		
Hedenbergite	Hexhydrocymene	
Helv ₁ ,e 111	Hexhydrotoluene	
Hematite 54	Hexhy-froxylenes	
Hemp, cil of	Hexine bromi les	
Hetejeosane	Hexmethyl silicate	
Heatra contacts 164	Hexoylene	
He, traditors thyl acetate	Hexyl. Acetates	21
Heps echlorpr quate	0 Alcohols	
Helitagesane	" Benzoat	25
Hepta Iscane	" Bremide	31
Heltare	" Butyra"	
Heptanaphtene		
	ti Cataronta	
Heptidene		

	PAGE		PAG
Hexyl.	Formate 20	Ind	dium. Ammonium sulphate 9
66	Iodide 33	2 4	" Cæsium "
66	Mercaptan 34) 4	" Oxide 4
**	Thiocarbimide 34	5 4	" Rubidium sulphate 9
44	Thiocymate 34	5 6	" Sulphate 8
"	Valerate		osite
Howard	mine		nulin
	ene 16		
нехущ			dacetone33
46	Acetochloride 31		daldehyde 33
	Bromhydrin 32		dallylene 33
"	Bromide 32		dammonium iodide 3
**	Chlorhydrin 31		dbenzene 33
**	Chloride 29	Iod	dbromtoluene 33
46	Diacetate 22	Iod	dchinoline 33
46	Glycol 22	Iod	dehlorhydrin 33
"	Oxide 22		dethylene 33
Hexvl	glycerin 23		dethyl oxide
	pentylacrylic compounds 23		dhexylene
	nite		dhydrodiglycide
	ockite 11		
			dine
	esite 12		Omorraes 26, 2
	nnite 9'		" Pentoxide 5
	te 140		dobromite 8
Hopeit	e 115	Iod	doform 33
Horba	chite 6	l Iod	dtoluene 33
Horsfo	rdite 15	loli	lite 13
Howlite	e 14) Irid	idichlorides 2
Hübne	rite 100		idium 1
	ite 6	1	" Phosphide 6
	llite	1	idosmium
	ekite 13		on 1
	oracite		" Aluminum phosphate 11
	lolomite 129	' I	SHICAGO 100, 10
Hydrog	gen		Ammontani oasiate 50
**	Chloride 19	1	selenate 10
46	Fluoride 10	.)	Sulphacommunication of
44	Oxides 39, 40		71 H 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
44	Sulphides 56	"	Alsenates 122, 12
Hydrog	giobertite 130	. "	" Arsenides 6
Hydrol	utidino 277	- "	" Cæsium sulphate 9
Hvdror	nagnesite 130	, "	" Calcium arsenate 12
	nephelite 138		
	nicotine 278		
-	uinone	1	
	hodonite	'	phosphate 11
		'	Stilettes 191, 19
	alcite72		Cal bollate
	ropidine 277		Cinoriaes
	yeaprylonitril 289		Columbate
	yisovaleronitril 289		Copper arsenate 12
	cypicoline 290		phosphate
Hydroz	incite 130	46	" sulphides 6
		"	Dithionate 7:
	I.	"	' Hydroxides 7
	4.	"	
Ice.		"	
	e 136	1	
		"	
		1	
		"	Carbonate
	religiosum, oil of 182	1	outplace
	e 142	46	Branganese prospilates
	ine 290	"	Silicates
Indium	3	66	tungstate 106, 107

	PAGE	PAGE	E.
Iron.	Nickel alloy 152	Isobutyl, Nitrate	1
4.6	Nitrate 112	" Nitrite 28	
*4	Nitride 70	" Orthocarbonate 22	
**	Oxides 53, 51	" Orthoformate 24	
14	Phosphates 115, 116	" Oxide 19	
**	Phosphides 67	4 Propionate	
44	Platinchloride 28	-Antonace	
+4	Platmiodide	Succinate 22	
44	total control of the		
	" sulphate	Isobutyi acetal	
**	Rubidium sulphate	Isobutylamine 27	
44	Selemate	Isobutylaniline 27	
	Selenide	Isobutylhenzene 17	
	Silicates	Isobutyleamphene	
	Silicide	Isobutyl carbamine	
	Silico carbide	Isobutylene, Bromide	
4.4	Silicofluoride18	" Chloride 25	
4.	Sodium oxalate 3c1	4 Glycol 22	
١.	" silicates 139	o Oxide 22	
44	" sulphates 97	Isolatyleugenol 26	
44	Sucrocarbonate 200	Isobutylidene chloride	
	Sulphates 84, 96, 97	Isobutyl phenyl ketone	
	Sulphides 60	Isobutyrie aldehyde	7
	Tantalate 125	" anhydride 20	15
4.4	Tin alloy 152	Isobutyryl chloride	18
**	Titanates 142	Isocajeputene	3
4.6	Tung-tate 106	Isoclasite	7
44	Zinc oxide	Isodecyi alcohol 19	113
Isoar	nyl. Acetate	- Isodibutol	15
4	Carbonate	Isodipyridine 27	
4.0	tilling of the state of the sta	Isoeugenol	5
41	Cyanide 269	Isoheptane	
	Formate 206	Isoheptyl, Acetate	
	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	" Alcohol 19	
	1 - (1) C + 11114 C +	44 Chloride	
	• Sulphide 339	Isohexane 15	
Isoat	nylallylamine	Isohexyl alcohol 19	
	nylaniline 273	Holiexylbenzene	Ü
Isoat	mylbenzene 175	Isometonaphtene	915
Isosi	mylene bromide 320	Isooctyl, Alcohol	
Isoat	nyl ethyl sulphone	" Chloride 29	
	nylformanilide 288	" Cyanide 26	
14081	nylidene chloride 297	Isoprene	
Leobi	enzpinakone	" Bromides	
	ityl. Acetacetate 232	" Dichloride	
ı	/(C1-13416)	11, 1110 1110 1110 1110 1110 1110 1110	# l
•	***************************************	1 113 1111 1 1 1 1 1 1 1 1 1 1 1 1 1 1	
4	Total Paris of Committee of a	Isopropyl, Alcohol	
	Dell'your	Benzoate	
4	111	Diollide	
	111111111111111111111111111111111111111	" Butyrate	12
4	1 (4) Inches to the contract of the contract o	" Chlorocarbonate	
4	* Highlies	" Indide	
4	The state of the s	" Isomenanthate	
4	V 101111111	" Isovaierate	
	FOITH ACC.	" Nitrate 25	
4	113 Indiana Indiana	** Nitrate	
	A Profession and the contract of the contract	" Oxide	
	1200.000 3.19(0.1.10000000000000000000000000000000	" Sugarate	
4	1 401 (1618)	" Tartiate 23	
4	• Mercaptan 340	1870300	- •

	GE.		GE
Isopropyl. Thiocyanate		Kresol	
Isopropylaeetylene	167	Kresyl. Acetate	
Isopropylallylbenzene	176	" Allyl oxide	
Isopropylallyldimethylcarbinol 241,	242	" Butyl "	
Isopropylamine		" Ethyl "	
Isopropylbenzene		" Heptyl "	
Isopropylbrombenzene		" Methyl "	
Isopropylbutenylbenzene		" Octyl " 253,	
Isopropyl carbamine		" Oxide	
Isopropylethylene		" Propyl oxide	
" Glyeol		Krönnkite	
Isopropyl isobutyl ketone		Krugite	
Isopropylkresol	250	Kyanite	
Isopropylnaphthalene	178	-25	
Isopropylphenol	250	L.	
Isopropylphenyl. Acetate	360	14.	
"Ethyl oxide		Labradorite	13
" Methyl "		Lactose	
Isopropyl phenyl ketone		Lactyl ethyl laetate	
Isopropylpiperideine	277	Lanarkite	
Isopropylpiperidine	276	Langite	
Isopropylpyridine		Lanthanite	
Isopropylthiophene 3		Lanthanum	-~
Isopropylvinylbenzene 1		" Carbonate	19
Isoterebenthene		" Oxide	
" Hydrochlorate 3		" Selenate	
Isoterpene 1		" Sulphate	
Isotolyl chloride		Laudanine	
Isotrichlorhydrin 2		Laumontite	
Isovaleric aldeliyde 2		Laurel camphor	
Isovaleronitril		" turpentine	
Isovinyl bromide 3		Laurene	
" chloride		Laurone	
		Lauronitril	26
		Lauren nobilis, oil of	
[vaol		Laurus nobilis, oil of	8
		Laurus nobilis, oil of	8
J.	268	Laurus nobilis, oil of	11
J. Jacobsite	268 56	Laurus nobilis, oil of	18 11 35
J. Jacobsite	56 135	Laurus nobilis, oil of	18 11 35
J. Jacobsite	56 135 64	Laurus nobilis, oil of	18 11 35 11
J. Jacobsite	56 135 64 62	Laurus nobilis, oil of	18 11 35 11 13
J. Jacobsite	56 135 64 62 97	Laurus nobilis, oil of	18 11 35 11 13 14
J. Jacobsite	56 135 64 62 97	Laurus nobilis, oil of	18 11 13 14 12 15
J. Jacobsite	56 135 64 62 97 108 66	Laurus nobilis, oil of	18 11 13 14 12 15
J. Jacobsite	56 135 64 62 97 108 66	Laurus nobilis, oil of	18 11 13 14 12 15 6
J. Jacobsite	56 135 64 62 97 108 66	Laurus nobilis, oil of	18 11 13 14 12 15 6 12
J. Jacobsite	56 135 64 62 97 108 66	Laurus nobilis, oil of	18 11 13 14 12 15 16 12 15
J. Jacobsite	56 135 64 62 97 108 66	Laurus nobilis, oil of	18 11 13 14 12 15 16 12 15 17
J. Jacobsite	56 135 64 62 97 108 66 61	Laurus nobilis, oil of	18 11 13 14 12 15 16 12 15 16 17 3
J. Jacobsite	56 135 64 62 97 108 66 61	Laurus nobilis, oil of	18 11 13 14 12 15 16 12 15 16 17 3 14 14 19 19 19 19 19 19 19 19 19 19 19 19 19
J. Jacobsite	56 135 64 62 97 108 66 61	Laurus nobilis, oil of	18 11 13 14 12 15 16 12 15 16 17 18 19 19 19 19 19 19 19 19 19 19 19 19 19
J. J. J. J. J. J. J. J.	56 135 64 62 97 108 66 61	Laurus nobilis, oil of	18 11 13 14 12 15 16 12 15 16 17 18 19 19 19 19 19 19 19 19 19 19 19 19 19
J. J. J. J. J. J. J. J.	56 135 64 62 97 108 66 61 68 133 138 138	Laurus nobilis, oil of	18 11 13 14 12 15 16 12 15 16 17 12 17 12 17 12 17 12 18 18 18 18 18 18 18 18 18 18 18 18 18
J. Jacobsite	268 56 135 64 62 97 108 66 61 133 133 182 134	Laurus nobilis, oil of	18 13 14 12 15 16 12 15 16 12 15 16 12 15 16 12 15 16 12 15 16 12 15 16 12 15 16 12 15 16 16 17 18 18 18 18 18 18 18 18 18 18 18 18 18
J. J. J. J. J. J. J. J.	268 56 135 64 62 97 108 66 61 133 138 138 138 134 64 64	Laurus nobilis, oil of	18 13 14 12 15 6 12 15 10 7 3 14 12 17 2 13 3 14 12 13 14 12 15 10 12 13 14 14 14 14 14 14 14 14 14 14 14 14 14
J. J. J. J. J. J. J. J.	268 56 135 64 62 97 108 66 61 138 138 138 138 146 64 63 64 63	Laurus nobilis, oil of	18 11 35 11 12 12 15 6 12 15 16 12 17 12 12 12 12 12 12 12 12 12 12 12 12 12
J. J. J. J. J. J. J. J.	268 56 56 56 61 56 62 97 7108 66 61 68 133 138 182 64 63 134 64 63 134 64 63 134 64 63 134 64 65 65 65 65 65 65 6	Laurus nobilis, oil of	18 11 35 11 13 14 12 15 16 12 15 16 12 15 16 12 12 12 12 12 12 12 12 12 12 12 12 12
J. J. J. J. J. J. J. J.	268 56 56 61 56 62 97 7108 66 61 68 133 138 182 134 64 63 134 63	Laurus nobilis, oil of	(88 111 133 141 141 151 161 161 171 171 171 171 171 17
J. J. J. J. J. J. J. J.	268 56 135 64 62 97 108 66 66 67 138 138 134 64 63 63 115 68 68 115 68 115 68 115 68 115 68 115 68 115 68 115 68 115 68 115 68 115 68 115 68 115 68 115 68 115 68 115 68 115 68 115 68 68 115 68 115 68 115 68 115 68 115 68 115 68 115 68 115 68 115 68 115 68 115 68 115	Laurus nobilis, oil of	1835 1111 1335 1111 1344 1215 156 167 173 124 127 127 127 127 127 127 127 127 127 127
J. Jacobsite	268 56 135 64 62 97 108 66 61 133 138 182 134 63 134 63 134 63 115 187 187	Laurus nobilis, oil of	18111111111111111111111111111111111111
J. J. J. J. J. J. J. J.	268 56 135 64 62 97 108 66 61 68 133 138 182 134 63 115 187 122	Laurus nobilis, oil of	18111111111111111111111111111111111111

	p	AGE .	PAV	
Lend	Copper sulphate		Limonite	
44	* venadate		Linarite	
44	Dinitrophenates	264	Lintonite	
4.4	Dathionate	75	Lipowitz' alloy 1	
4.5	Vehispars		Liroconite 1	
	Fluoride		Litharge	
	Formate	356	Lithiophilite	
	Gold albys	155	Lithium	
4.4	Hydroxides	71	" Aluminum fluophosphate 1	
44	1 class		" silicates 1	
	Iodide.		" Ammonium sulphate	
	Iron arsenate	120	" Bromide	
4.6	** silva'e		" Carbonate	
4.4	Many mese silicate		" Chloride	
4.6	Mory belate.		" l'ithionate	
	Nitrates	110	" Fluoride	
* 4	Nitrophenates	261	" Formate 3	
	Oxplate		" Indide	
41	Oxides		" Iron phosphate	
	Oxychloride		" Manganese phosphate 1	
	Oxyoniornia		" Nitrate	
44	Pathelium alloy	100	" Ovelate	
44	Pierate	263	" Oxide	
44	Platinbrotnide		" Perchlorate	
44	Platinebbri le		" Pierate	
4.6	Platinum alloy		" Potassium racemate	
41	Selerate		" Rubidium "	
44	Scientie		tartrate	
	Silver alloys		" Selenate	
44	" include		" Silicothuoride	
44			" Sulphate	
	Sulphates 8		" Thallium racemate	
	Sulphates		" tartrate	
41	Sulphides		" Uranyl acetate	
44	Sulphocyanide	111	Livingstonite	
44	Tartrate	2111	Loewite	
44	Telluride		Lolingite	
44	Tin alloys 117, 118,		Lowigite	
44	Tungstate		Ludlamite	
14	Zine vanaelates		Ludwigite	
	diethyl		Luteocobalt chloride	
Lead	nillite	1.45	Lutiline	
	tetramethyl		Luzonite	
	tetraphenyl			***
	tetratolyl			
	triethyl		M.	
Lean.	m palustre, oil of	1.5	Macene	1 - 1
	richite		Magnesioferrite	
	ne		Magnesium	
	m, oil of		" Acetate	
	line		" Aluminum phosphates	
	lolite		" silicates	
	ine		" " enlphate	
	1114		" Ammonium chloride	
	ophiene		" chromate	
Lette	pyrite	1 4 4	the the phosphates	
Lette.	PATRO	11-	phosphates	
Libet	henite	151	selphate	
LICAT	i kanalı, oil of	02.1	4 Arsenates 121,	
			Boratos	
	Ite		" Bromate	
			Cadmium sulphate	
1.11111	iite 🕳		· · · · · · · · · · · · · · · · · · ·	

	PAGE.	P.	AGE.
Magnesium	. Calcium arsenate 122	Manganese. Dithionate	75
"	" borate 108	"Garnet	138
44	" earbonate 129	" Hydroxides	
**	" silicate 134	" Iron fluophosphate	
64	Carbonate 126, 130	" phosphetes 115,	
44	Chloride	" silicate	
44	Chromate 103	" tungstates 106,	
**	Chromium borate 108	" Lead silicate	
"	Columbate	" Lithium phosphate	
"		mandin phosphate	
"	Copper sulphate 92	pragnesium borate	
**	Dithionate	surpliate	
"	Fluophosphate 124	Nitrate	
	Fluoride 16	Ozalate	
"	Hydroxide 70	Oxides	
44	Hypophosphite 113	" Phosphide	
44	Iodate 74	" Platinbromide	
**	Iron borate 108	" Platinchloride	
44	" carbonate 129	" Platiniodide	
"	" sulphate 92	" Potassium selenate	100
44	Manganese borate 108	" sulphate	90
44	" sulphate 92	" Pyroarsenate	123
44	Nitrate 110	" Pyrophosphate	119
44	Oxide 40	" Selenate	
44	Palladichloride	" Silicates	
**	Phosphates 115	" Silicofluoride	
44	Platinbromide	Stannifluoride	
44	Platinchloride 28	" Sulphate	
44	Platiniodide	" Sulphides 59	
"		" Tantalate	
"	Potassium chromate	1 antalate	
"	seleliate 100	Tungstate	
	adipitate	Manganite	
16	Pyroarsenate 123	Manganocalcite	
"	Pyrophosphate 119	Mangantantalite	
"	Selenate 98	Mannite	
**	Silicates 131	" Derivative of	
**	Silicofluoride 18	Maracaibo balsam	
"	Sodium sulphate 89	Marcasite	
"	Stannichloride 29	Margarite	
"	Sulphate 79	Marialite	141
"	Thiosulphate 74	Marjoram, oil of	182
44	Titanates 142	Martinite	115
44	Vanadates 120	Mascagnite	79
44	Zine sulphate 92	Matlockite	29
Jagnetite		Meionite	
		Melaconite	
		Melaleuca, oil of	263
	itril	Melanotekite	
	imbite 125	Melene	
		Melezitose	
	Acetate	Melilite	136
	Aluminum alloy 146	Melinophane	140
	•	Mellite	365
"	phosphate 118		
	SHICate 108	Mendipite	60
"	Ammonium selenate	Meneghinite	02
	surphate 90	Mentha pulegium, oil of	102
	Arsenate 123	Menthene	
	Arsenide 68	Menthol	
	Calcium phosphate 115	" Derivatives of 183, 263,	
	Carbonate 128	Menthone	263
	Chloride 24	Mercaptan	340
	Chromium oxide 56	Mereury	
44	Columbates 125	" Acetate	357

	P.	AGR.	1		GE
Mereury.	Ammoniochlorides		Methyl	Bromble	
4.4	Ammonionitrate		"	Butyloxide	
44	Ammoniosulphate		"	Butyrate	
**	Ammonium chloride			Caproste	
* *	Bromate	73	"	Caprylate	
4.6	Bromides		"	Capryl oxide	
4.4	Calcium antimonite	125	"	Carbonate	
6.4	Chlorates		''	Chlorbutyrate	307
	Chlorides	22	**	Chlorerotonate	31.
**	Chloride with ammonium dichro-		14	Chloride	290
	mate	114	"	Chlorocarbonate	30.
+ 4	t bloroeyanide	143	- 11	Chlerpropionate	307
4.6	Chromate	103	11	Cinnamate	
4.4	Cyanide 140,	111	"	Citraconate	23)
4.4	Hexyl mercaptide	355	14	Croteconate	
44	Hydrogen bromble	33	- "	Crotonate	234
**	lodides	3.5	44	Cyanide,	
14	Nitrates 110,		"	Dibrompropionate	326
44	Organic compounds	355	- "	Dichloracetate	304
44	Oxides	-11	44	Dichlorbutyrate	
44	Oxychloride	29		Diethyl borate	347
44	Oxycyanide	143	"	Diethylmethylethenyltricarboxy-	
4.6	Potassium bromide			late	247
44	" chloride	27	11	Diethyloxyacetate	23
4.6	cyanide	143	44	Dimethylsuceinate	P 1
**	iodide		**	Dinitrophenate	283
44	Selenide	65	**	Elaidate	23
44	Selenate	98	- 11	Ethylaeetacetate	233
4.6	Silver iodide		14	Ethyl carbonate	(14)
44	Sodium chloride	27	44	Ethylglycollate	
+ 4	Sulphates	. 96	44	Ethyl oxalate	
44	Sulphide		"	Ethyl oxide	
4.6	with copper chloride		44	" succinate	
**	Telluride	66	44	Ethylsuccinate	00
Mesitite.		129	**	Ethyl sulphite	
	Acetate		14	Ethylxanthate	
44	Oxide	245	"	Formate	20.
Mesityler	ne	172	**	Hlyeollate	
+4	Acetate	261	- 11	Heptyl oxide	19
44	Glycol	252	- "	Hypophosphate	34
44	Mercaptan	341	44	Iodbutyrate	33
Metabrus	hite	115	1 44	Todide	32
Metacinn	namene	176	- 11	Hodpropionate	33.
Metacrol	ein	235	- 11	Isobutyrate	21
Metasant	onid	267	4.6	Isočenanthate	24.
Metasant	onine	267		Isopropylsalicylate	25
Metatem	plene	185		Isovalerate	21:
Metatere	benthene	185	**	Itaconate	23
	·n•		44	Lactate	23
				Laevulinate	23
Methoxy	linethyl ethyl acetone	245		Maleate	
Methyl	linethyl ethyl acetone	2.32		Malonate	
* *	Acctate	206	- 44	Mesaconate.	
14	Aerylate	2314	"	Methylacetacetate	
**	Alcohol .	187		Me hylglycollate	
4.4	Allyl oxide	211	"	Methyloxyphenylacrylate	
	Amy1 "		**	Methyloxyphenylangelate	
	Arsenate		- 11	Methyloxyphenylerotonate	
4.4	Arsenite	350		Methylpropylpyrogallate	
4.5	Benzoste	1256		Methylxanthate	
	Borate		11	Monochloracetate	
	Brombutyrate		11	Mucate	
	-				

395

	PAGE.	PA	\mathbf{AGE}
Methyl.	Naphtyl oxide 266	Methyldiethylbenzene	
"	Nitrate 281	Methyldiethylearbinol	194
"	Nitrite 281	Methyldiethylcarbyl acetate	209
"	Nitrophenate 285	Methyldiethylearbyl ketone	221
"	Oenanthate 214	Methyldiethylmethane	158
"	Oleate 234	Methyldiheptylcarbyl ketone	
44	Orthoformate 245	Methyldipropylearbinol	
44	Oxalate 226	Methyldipropylearbyl acetate	
44	Oxyphenylacetate	Methyldiphenylamine	
44	Parasantonate	Methylene. Acetochloride	
"	Pelargonate	" Bromide	
"	Phenylacetate	" Chloride	
44			
"	Phenylpropionate	Ditinoethylate	
"	Phosphate	Ethers of 220,	
"	Phthalate	" Iodide	
"	Propargyl oxide 241	Methylethyl acetal	
	Propionate 209	Methylethylbenzene	
"	Propylglycollate 231	Methylethylearbinol	
44	Propyl oxide 197	Methyl ethyl ketone	
44	Propylxanthate 343	Methylethylpiperidine	
44	Pyruvate 232	Methylethylpropyl aleohol	194
44	Salicylate 257	Methylethylpropylbenzene	175
"	Santonate 267	Methylethylpropylearbinol	198
"	Sebate 229	Methylethylpropylethylene	165
**	Silicate 352	Methylethylpropylmethane	
**	Silicopropionate 352	Methylethylpropyl methylethylpropionste	
44	Suberate	Methyleugenol	
44	Succinate	Methylformamide	
44	Sulphate	Methylformanilide	
64	Sulphides	Methylglyoxalin	
**	Sulphite	Methylhexylcarbinol	
"	Tartrate	Methylhexylcarbyl chloride	
**	Thiocarbimide	" iodide	
"	Thiocarbinide	" nitrite	
44	•	mitrite	
"	Trichloracetate	Methyl hexyl ketone	
"	Triehlorpropylcarbylacetate 307	Methylindol	
"	Triethyl silicate	Methylisoamylbenzene	
	Trinitrophenate 285	Methylisoamylearbyl acetate	
	Trisulphocarbonate 341	Methyl isoamyl ketone	
"	Valerate 212	Methylisobutylearbinol	
	eetone 219	Methylisobutylcarbyl acetate	
		Methyl isobutyl ketone	220
	mine alum 94	Methylisocrotyl acetate	242
	mylaniline 273	" alcohol	241
Methylaı	nylearbinol 195	Methylisopropenylearbinol	247
Methyl a	myl ketone 220	Methylisopropylacetone	221
	myl pinacolin 221	Methylisopropylbenzene	175
Methylai	ailine 271	Methylisopropylearbinol	193
Methyl b	enzyl ketone 262	Methyl isopropyl ketone	220
Methylbe	orneol 264	Methylisopropylpiperidine	277
Methylbi	romacetol 320	Methylnaphthalene	178
Methylbi	atylearbinol 194	Methyl naphtol	266
Methyl b	utyl ketone 220	Methyl naphtyl ketone	
	utyrone 221	Methylnonylcarbinol	
	arbamine 268	Methyl nonyl ketone	
	aprinol 221	Methyl cetyl ketone	
	nloracetol	Methylpentamethylene methyl ketone	
	lorallylcarbinol	Methylpenthiophene	
	lorphenetol	Methylphenylcarbyl acetate	
	ppellidine	Methylphenylethylalkin	
	ymyl mercaptan 341	Methyl phenyl ketone	
dethyld.	hydrohexone	Methylphenylpyrazol.	
- our year		retnylphenylpyrazon	-19

		PAGE.		PA 31	E
Methylpiper	ldine	276	Morph	hine, Salts of 3	41
	dallylene			amite 1.	
	Henzene 173			mide	
Methythropy	thenzene	102		at nut oil, derivative of	
Methythropy	dearbinol	1 1113		ovite	
Methylpropy	learbyl acetate	208			
**	chloride			tic acctate, tsomer of 2	
44	fodide		**	interesting	
Methylpropy	dearbylcarbinol	. 194	4.6	aldehyde, "	1 -
Methyloropy	tethylene glycol	223	Myrist	dicol	1.2
44	oxide			done 2.	
Marketten	lethol acetate			stonitril 29	
Methylpropy	Tethol Recente	441.0		e, oil of 1:	
Methyl prop	yi ketone	. 219			
	1		Myrtu	is pimenta, oil of	
	tidine				
Methylquine	dine	. 277		N.	
Methylsalige	·nin	252			
	chlorhydrins		Nador	rite	2.
	onic chloride			qualite	
	nethylene diamine			oquite	
				thalene 1	
	ol		Napht		
	line			" Dichloride 30	
	ketone			" Hydrides 178, 1	
Methyluraci	l, chloride from	. 311	Napht	tol	Gf
Methyl xyly	l ketone	. 262	Napht	tyl mercaptan 3	41
				tine	
				lite 1	
				annite	
				elite 1	
				li, oil ef 1	
Mimetite		. 124		anskite 1	
Minium		. 47	Ngai c	eamphor 2	ŧ ,,
Miniak lagar	n oil	. 185	Nicco	olite	ť,
			Nicke	rt	1:
			4.4	Acetate	E.
	·		+ 4	Aluminum alloy 1	
			**	Ammonio-bromide	
Molybdenun	n		4.6	Ammonio-chloride	
	Oxides		44		
44	Phosphide			Ammonium selenate 1	
**	Sulphide	. 59	41	" sulphate	
Monacetin		. 239	44	Arsenates 1	
Monellylin.		. 239 i	4.4	Arsenides	1.
			64	Bromate	7
			4.6	Bismuth sulphide	
			4.4	Chloride	
				Pithionate	
	amphor				
	ydrin			Fluoride	
- Monobromith	itophene	. 347	**	Formate 3	
Monobutyri	h	. 240	6.6	Hydrocarbonete 1	
Monochlorb	enzene	. 304	44	Hypophosphite 1	1
4.6	Derivative of	304	4.4	Iodate	~
Monochlord	i-itrin		4.4	Iron alloy 1	15
Managhtana	thyl dichloracetate	110.00	44	Nitrate	
Motton-titota-			**	Ο x (late	
	trichloracetate	.30%			
	ydrin			OXI les	
	duene		**	Oxyhydroxide	
Monochlory	inyl ethyl oxole	3000	4.0	Pall ulrehleride	
Monodein		. 210	**	Phosphide	
Monosulphb	ydrin	341	44	Plannbromide	
	la		44	Platiniodide	3
			44	Potassium selenate 1	
Margarette					
Moremosite			"		9

	AGE.	PA	
Nickel. Selenate		Oetyl. Aleohols	
" Selenide		" Bromide	
" Silicofluoride		" Butyrate	
" Sulphate		" Caproate	
" with potassium selenate		" Caprylate	
Surprince		Chioride	
" Thallium selenate		" Cyanide	269
" Tungstate		" Formate	
" Zircofluoride		" Iodide	
Nicotine		Isovaterate	
Niobium, see columbium		Nitrite	
Nitrandines		" Oenanthate	
Nitroanisol		Oxide	
Nitrobenzene		r ropionate	
Nitrobromtoluene		Cutjande	
Nitroeymene		valerate	
Nitroethane		Octylamine	
Nitrogen		Octylene	
Official control of the control of t		Acetate	
Citiot opiiospatae		Accordioride	
Oxides		Chiornydrin	
Oxypromide		Glycol	
Oxyemoriae		11) drate	
curpmaci		O'Altre	
Nitroglyeerin		Octylphosphin	
Nitroheptane		Octylthiophene	
Nitroisobutylanisol		Oetylthymol	254
Nitromannite		Oenanthic aldehyde	
Nitromethane		anny arrae	
Nitronaphthalene		Oenanthol	
Nitrophenols		Derivative of	
Nitrosodietnynn		Oenanthone	
Nitrosyl bromide		Oenanthonitril	
Nitrotoluenes		Okenite	
Nitrous oxide		Oldhamite	
Nitroxyl chloride		Olibene	
Nitroxylenes		Oligoclase	184
Nitroxylpiperidine		Olivenite	
Nonane		Orange, oil of	
Nondecane		Orangite	
Nononaphtene		Orein	
Nononaphtylene		O'Rileyite	
Nontronite		Orpiment	
Nonyl. Alcohol		Orthoclase	
" Chloride		Osmiridium	
" Iodide		Osmitopsis, oil of	
Nonylene		Osmium	
Nosean		Ouvarovite	
Nutmegs, oil of		Owenite	
		Oxalethylethylin	
0.		Oxalethylisoamylin	
		Oxalethyloenanthylin	
Octaceto-diglucose	245	Oxalethylpropylin	
Octaceto-saecharose		Oxalisoamylisoamylin	
Oetadecane		Oxatisobutylisoamylin	
Octane 159,		Oxalmethylethylin	
Octochlorpropane		Oxalmethyloenanthylin	
Octodecylene		Oxalpropylethylin	
Oetodecylidene		Oxalpropylisoamylin	279
Octonaphtene		Oxalpropyloenanthylin	
Octvl. Acetate	209	Ovalpropylpropylin	

L A G L	
Oxamide	Peppermint, oil of 183
Oxethenaniline 289	Perchlor-ethyl acetate 29.
Oxybutyrie lactone 231	Perchlor-ethyl oxide
Oxygen	Periclase
Oxvisoamylamine	Persea lingue, tannin from 201
Oxyl henyl mercaptan	Petalite
Oxypropylpropylamine 287	Petit grain, oil of 1-1
Oxysulphobenzid	Petzite 60
	Pharmecolite 12
Р.	Pharmacoside rite
	Phenakite 13
Pachnolite 17	Phenanthrene 17
Pacite	" Hydride 17
Palladiochlorides	Phenanthrene quinone
Palladium 1	Phenetel
4 Lea I alloy 156	Phenol
9 Phosphide 63	Phenoxyacetonitril 28
" Sulphide 6	Phenoxyldiphenylphosphin 31
Palmitone 22	Phenyl. Acetite
Palmitonitril	• Allyl oxide
Pandermite 100	
Papaverine	
Parabromalide	
Parachinanisol	
Parachloralide	
Paradichloraldehyde	
Paradiconiine	
Paratin 163, 1-	
Paragonite	5 "Mercaptane 31
Paraldehyde 21	are thy coxists and an arrangement and
Paranicene	
Parasantonid	
Parisite	Thospitte
Parsley, oil of	0 140[30[35] OA100
Parsnip, oil of	
Partschinite 13	
Parvoline	
Patchouli camplior 26	
Patchoult, of of	
Pect-dite 13	
Peganite	
Pettetierine	
Pent thrompropane	
Pentachioracetone	
Pentachlor-amyl formate	
Pentachlorbenzene	
Pentachlorethane	Phenylphosphorous chloride
Pentachlor ethyl exide	5 I henylpropachitril
Pentachtornitrobencene 31	6 Phenylpropyl alcohol 2
Pentachlor-propylene oxide	6 Phenylpropyl alcohol 2 9 Phenylsutphonic chloride 5
Pentulcane	
Pentylekan sphtene	
Pentamethylene diamine	
Pentane I	
Pentanitrola Use.	- Phlem 2
Pent Priventane p	
Pentethylm mochl obenzene 3	
	4 Phlorol 2
Pentyl, Promide	
Chleride	
" Indide	
Penwithite	
1 enwithine 1	12 Phosgenite

PA		~	PAG
Phosphenyl chloride		Potassium	
" ether		"	Aluminum borate 10
" oxychloride		"	" selenate 10
Phosphorus	6	66	" silicates 135, 136, 13 " sulphates 92, 9
" Bromide			Ammonium chromate 10
" Chlorides		4.6	" sulphate
"Oxybromide		66	" tartrate 3
" Oxychloride		44	Amylsulphate
"Oxychlorobromide		"	Antimony chloride
" Pentoxide		44	Arsenate
" Sulphides		44	Borate 16
" Sulphobromide,		66	Borofluoride
	30	66	Borotartrate 36
" Snlphocyanide	141	44	Bromate
Phthalic anhydride		44	Bromide
Phthalyl chloride		"	Cadmium chloride
Phycite bromodichlorhydrin:			" iodide
Picamar	259	"	" selenate 10
Picite	117	"	" sulphate
Picoline 274, 5	275	"	Calcium chromate 10
Picrolichenin	268	"	" sulphate
Pinacolic chloride		"	Carbonates 126, 1
" iodide 5			Chlorate
Pinacoline			Chloride
Pinacolyl alcohol			Chlorochromate 16
Pinakoue		44	Chromates 102, 10
Pinite			Chromate with mercuric cyanide. 1-
Pinnoite			Chromiodate 10
Pinus, oils from		"	Chromium selenate 10
Pipecoleine Supercoline Superc		44	" sulphageanide 1
Piperidine		44	" sulphocyanide 14 Chromocyanide 15
Piperine2			Chromoxalate
Piperpropylalkin2			Citrate 36
Piperyl hydrazin			Cobalt selenate 10
Pistomesite 1		44	" sulphate
Plagionite	62	66	Cobalticyanide1
Planerite 1	118	"	Columboxyfluoride 1
Platinbromides		**	Copper chloride 2
Platinchlorides 28, 365, 3	366	**	" oxalate 36
	37	4.6	" selenate 10
	15	44	" sulphate 9
	70		Cyanate 14
	27		Cyanide 14
. Hydrac	69		Dinitrophenates 36
nead anoy 1	- 1		Dithionate 7
r nospinde	67		Ethylsulphate
" Potassium sulphide	64		Ethylxanthate
	64		Ferricyanide 14 Ferrocyanide 14
	61		Fluoride 1
Platodiamine platosoxalates 3			Formate
	28		Gallium sulphate 9
Plumbogummite 1			Hydrogen oxalate 36
Polianite		"	" racemate 36
Pollucite 1	- 1	44	" sulphate 8
Polyargyrite		44	" tartrate 36
	62		Hydroxide 7
• • • • • • • • • • • • • • • • • • • •	60	"	Iodate 7
Polyhalite			fodides 3
Poplar, oil of 18	85	44]	Iridichloride 2

	PAGP				AG E
Potassium.	Iron chloride 27		Potassium.	Stannifluoride	 19
4.6	** salphates 50, 95, 97		* *	Stannochloride	
4.6	· sulphide		**	Strontium chromoxalate	
	Isobutyl-sulphate		44	Sulphate	 7.7
+4	Isobutylxanthate 35.4		**	Sulphide	 56
**	Lithium racemate		4.4	Sulphocyanide	 143
**	Magnesium chromate 101		4.6	Tantalofluoride	 19
. 4	sesenate		**	Tartrantimonite	 31.3
	" sulphate 2.7		4.4	Tartrate	
	Manganese selemate 100		4.4	Thallium sulphide	
**	sulphate 50			Thiosulphate	
	Manganteyanide	1	**	Thorium phosphate	
	Mercury bremide,			Titanothoride	
	ehloride		**	Triacetate	
	evantle			Tungstates	
	" iodide			Uranoxythoride	
			+4	Uranyl sulphate	
	Metaphosphate 11s			Vanadium vanadate	
	Methylsulphate		**	Zine ehloride	
	Methylx anthate	j	14		
	Niekel cyanide 113			6 selenate	
	9 selenate		.,	" sull hate	
+ 6	" sulphate 94			Zircoflucride	
	Nitrate		••	Zircontum phosphates	
	Nitrato-sulphate		+ 4	* sili ate	
4.6	Natiophenates	,		·	
**	Oxalate				
**	Ox; ie 40				
4.6	Talladiochloride 28				
16	Perchlorate			Acetate	
+4	Permanganate 165		4.4	Alcoho(
* 4	Phosphate 111		4.4	Bronddes	
4.6	Pho-phatosulphate		+4	Chloride	 . 200
4.4	Pierate		**	Todide	
4.4	Placinbromide		Propidene	acetic acid	 216
4.6	Platiachloride		Propidene	dipropyl ether	 . 224
6.6	Platime-lide 37		Propionan	iide	 . 257
**	Platinocyanide		Propione .		 . 219
. 1	Platraum seleurocyanide			aldehyde	
4.6	" sulphide		+4	anhydride	 . 204
**	sulphocyanide 111		Proponiti	il	 . 203
	Platosochloride		Propionyla	vectophenone	 . 263
6.6	Par er Unter inn in a minimum 364		Propionyl	bromide	 . 325
+ 6	Project alphate 259		44	chloride	 . 308
4.0	Pyraphesphate		Propyl. Ac	etate	 . 207
**	Pyr sulphate		46 Ac	rylate	 . 211
**	Quarters and the		· A1	eolod.,	 . 151
14	Rice mat 363			nzoate	
4.4	Racementinonite		· B	nate	 . 317
**			131	omi-le	 17
14	Selenate 98 Silie diagnile		151	uvl exide	 . 197
	Silver carbonate		44	sue anatelland, and a	
	Sodium ,dloy 115		130	atvinos	
	" earlomate 123			unit he rate	
	* phosphate 115			percenter	
14	selenate			prylate	
14				clon itc.	
	9 sulph ce			deride	
	timz-tate			Horocarbonate	
	* vanadate 122			nnamate	
44	Stannate			canide	
**	Stannate			brompropionate	
			, 17	юхуsulphocarbonate	
	Stannichloride 20	, 1	1,	ray surprocarounae	 04

	PAGE.	PAG	GE.
Propyl.	Ethylacetacetate	Propylglyoxalin	279
"	Ethylglycollate	Propylhexylcarbinol 1	196
44	Formate 206	Propylidene chloride 2	297
44	Fumarate 236	Propylisopropylbenzene 1	175
.4	Glycollate 230	Propylkresol	
44	Heptyl oxalate 227	Propylnaphtol 2	266
44	" oxide 198	Propylphenol 2	250
44	Hypophosphate 348	Propylphenyl acetate	
4.6	Iodacetate 335	Propyl phenyl ketone	262
44	Iodide 329	Propylphenyl methyl oxide	
44	Isobutyrate 211	Propylphenylpyrazol 2	
"	Isoöenanthate	Propylphycite trichlorhydrin 3	312
"	Isovalerate	Propylpiperidine	276
44	Laevulinate 232	Propylpyridine	275
46	Maleate 236	Propylsilicie chlorhydrins	
44	Malonate 227	Propylthiophene	
"	Methylglycollate230	Propylthymol 2	254
44	Monochloracetate 307	Prosopite	
66	Nitrite	Proteine, derivatives of 3	
64	Octyl oxalate 227	Proustite	
44	" oxide 198	Pseudocumene 1	
44	Oenanthate 215	Pseudohexylene acetate	
44	Orthocarbonate 226	" glycol	
44	Orthoformate	Pseudomalachite 1	
4.4	Oxalate 227	Ptomaine	
64	Oxide 197	Ptychotis ajowan, oil of 1	
44	Parasantonate	Pucherite 1	
"	Phenylacetate 257	Pulegium micranthum, oil of	
4.4	" Derivative of 200	Purpureochromium. Chloride	
46	Phenylpropionate 258	" Chlorobromide	
44	Propionate 210	" Chloronitrate 1	
"	Propylglycollate 231	Purpureocobalt. Bromide	
66	Salicylate	" Bromonitrate 1	
44	Santonate	" Chloride	
44	Silicate	Chlorobronide	
"	Succinate	" Chloronitrate 1	
"	Sulphide 339	Purpureorhodium, Bromide	
"	Tartrate		
44	Valerate	100100	
	cetal	Pyrargyrite	
	llylamine	Pyridine	
	mine 270	Pyrite	
	niline	Pyrocatechin	
	enzene 173	Pyrogallol	
Propyle	ene. Acetate	Pyrolusite	- 53 • • •
"	Bromide	Pyromorphite 1	124
"	Bromiodide	Pyrophosphoric chloride	:00 •••
"	Chlorhydrin310	Pyrophyllite	155 131
"	Chloride	Pyrosmalite	141
"	Chloriodide	Pyrrhotite	ยย
"	Chlorobromide	Pyrrol	
44	Diamine	Pyrrolidine	210
"	Dinitrate 286	Pyrotertronitril	-10 917
"	Dinitrate	ryruvie acetate	-16
"	Ethylphenylketate		
"	Glycol 900	Q.	
	Iodide	Quartz	4.1
"	Oxide	Quartz	44 040
"	Trisulphocarbonate	Quercite	-30 277
	Valerate	Quinoline	266 266
rropyle	ugenol 265	Спионе	-00

R.	5.	
PAGE.	Carri	PAGE.
Raimon lite	Saccharose Safrone	
Ralstonite	Safrol	
Realgar	Sage, oil of	140 155
Reddingite	Saliein	
Reinite 106	Saligenin	
Resorcin	Salicylol	
Retene	Saliretin	266
Regbanvite	Salt	
Khabdophane	Salvied	
Rhagite 123	Samarium, Acetate	
Rhodium	4 Ammonium selenate	
" Ammonio romide 38	sulphate	
" Ammoniochloride 28	Dorate	
Ammoniciodide 38	bromide	
Rhodizite	111011716	
Rh stonite	" Ethylsulphate	
Ripidolite	Gold bromide	
Roem tite 96 Romeite 125	" chloride	
Rosaniline chlorhydrate	" Métaphosphate	
Roselite	" Metavanadate	
Resemary, od of	" Molybelate	
Researchalt indesulphate	" Nitrate	
Rose's alloy	oxide	
Rosewood, oil of 185	" Oxychloride	
" resin troto	Periodate	
Ruld-line	" Phosphate	110
Rubidium1	Pierate	
4 Alaminum selenate	" Platinchloride	2
" sulpha*"	" Platinocyanide	
e Promi le	Potassium selenate	
•• Chloride	" Propionate	
• Chromium selenate Isa	4 Solomate	
o sulphate	Southin mail parte	
o Cobalt selenate 190	CHI 3000	
O Copper chloride	tarpine jaman man mega	
Fluori le	eyanide	
19.5.11.1113 -1111.11114.1111.11111.1111.1111.1111.1	Sandal wood, oil of	
9 Hydrogen raes tacts	Santonid	
" Indium sulphate	Santonine	
" Todide	Santonyl, Brounde	
o Iron sulphate	Chloride	
4 Lithian recentate	• 10dide	
44 tartrate	Sapplaire	
" Platmehforide 28	Sartorite	
4 Quelroxalve 200	Satureja, oil of	1-
* Recember 201	Scandium, Oxide	4
6 Selected	" Sulphate	>
" Silie distoride, 15	Scheelite	
6 Sodijim tartrate	Schwartzembergite	
" sulphate 78	Se dezite	
" Tartrate 5/2	Scoro lite	
Trat y	Sewillite	
Ruthenaum 11	Sclenium	
9 1. xi bi	" Bromide	
Huttle		
	Oxyeldoride	
	" Sulphide	
	surpaide	

PAGE.	PAGE.
Sellaite 16	Silver. Phosphide 66
Semseyite	" Picrate 364
Senarmontite 49	" Potassium carbonate
Sequoia, oil of 180, 267	" Propionate 358
Serpentine 131	" Pyrophosphate 119
Sesquiterpene 185	" Racemate
Sideronatrite	" Selenate
Silica	" Selenide 65
Silicofluorides	" Succinate 361
Silicoheptyl compounds	" Sulphate 79
Silicon 4	" Sulphide
	Surpride
Brounde 32	Tartrantimonite 363
Chiorides 23	100 t1 at 0 502
Chioropionide	1enariae 00
" Organic compounds of 351, 352, 353	110 anoys 109, 100
" Oxides 44	" Vanadate 120
" Pyrophosphate 119	Simonyite 89
Silver 13	Sipylite 125
" Acetate 357	Sisserskite 156
" Aluminum alloys 146	Skutterudite 68
" Amalgam 146	Smaltite 68
" Ammonio-chromate 103	Sodalite141
" Ammonio-ferricyanide 143	Sodium 1
" Ammonio-selenate 98	" Acetate 357
" Ammonio-sulphate 97	" Aluminum earbonate 130
" Antimonides	" selenate
" Arsenides 67	" " silicates 134, 135, 137
" Benzoate	emeates 104, 100, 101
Denzoate	surpnate 92
Districtin grance	Ammonium arsenate 121
Diomate 31	phosphate 115
" Bremide 73	Tacemate 505
" Butyrate 359	surpnate 89
" Caproate 359	" tartrate 362
" Caprylate 359	" Antimonites 125
" Carbonate 126	" Arsenates 121
" Chlorate 72	" Borates 107
" Chloride 21	" Bromate 73
" Chlorobromide 37	" Bromide 31
" Chlorobromiodide 37, 38	" Calcium borates 108
" Chromates	" carbonate 129
" Cinnamate	" " silicate 134
4 Copper alloys 155	" " sulphate 89
" iodide	" Carbonates
" Cyanate	" Chlorate
" Cyanide	" Chloride 19
Cyaniuc	Chioride 13
Dilittophenate	Onfoliates 102
Dittilenate	Chromiodate 104
" Fluoride 16	Citiate 304
" Gold alloys 156	" " Derivative of 293
" sulphide 64	" Copper sulphate 89
" Iodate 74	" Dithionate 75
" Iodide 34	" Ferrocyanide 143
" Iron ammonio-cyanide 143	" Ferroxalate 361
" Isovalerate 359	" Fluoarsenate 124
" Lead iodide 37	" Fluophosphate 124
" Malate	" Fluoride 16
" Mercury iodide 36	" Formate
" Nitrate	" Hydride
" Nitrophenates	" Hydrogen oxalate 360
"Oxalate 360	" sulphate
Oxalave	surphate
Okides 40	113 410 2140
". Phosphate 115	" Hypophosphates 113

	PA911	PAGE
Sodium.	Iodate	Stearonitril 200
4.4	Todide 31	Stephanite
4.4	Iron sulpha'es 97	Sternbergite+4
4.6	Magnesium sulphates 89	Stilliconite
41	M organese phosphate 115	Stibioferrite 125
4.4	Mercury chloride 27	Stibiohexargentite
44	Metaphosphate 118	Stibiotriargentite
4.4	Metasilicate 131	Stibnite
4.1	Nitrate	Stilbazoline
t.	Nitroprusside	Stilbene 179
4.4	Oxide 40	Stillite 136
61	Phosphates	Stolzite 105
**	Platinbromide	Strengite 115
	Traumorounde	Stromeyerite
4.	Placinchlori le	Strontisnite 127
4.	Platiniodide	
	Platinum sulphide	Strontium
44	Platoxalate	44 Acetate
4.4	Potassium alloy 145	Aluminum sineaces
	e arsenate 1.1	promate
4.4	carbonate 129	" Bromide 3.
4.6	44 phosphate 115	" Cadmium chloride 27
4.4	4 racemate 363	Garbonate, 127
4.4	selenate 98 ;	" Chlorate 7.
6.6	sulphate 89	" Chloride 21
46	44 tartrate	Ghromate 103
4.6	6 tungstate 106	44 Chromoxalate
44	Pyrophosphates	" Copper formate
44	Rubidium tartrate	" Dithionate 7:
4.6	Samarium molybelate	" Feldspars
44	Selenate	" Fluoride 17
4.6	Silicofluoride	" Formate 350
	Sulphantimonate	" Hydroxide 7
44		" Iodide
41	Sulphate	" Molybdate 10
	Sulphite	" Nitrate
44	Sulphide	
"	Tartrate	VADIO
	Thallium racemate 363	I Decition of the control of the con
•	44 tartrate	Potassium entomoxalace
	Thiosulphate	" Selenate 9
4.6	Thorum phosphates 116	" Silicotluoride 1
- 11	Triacetate 357	" Sulphate 8
* *	Tungstates 100	" Tartrate 36
4.4	Uranium exide	" Thiosulphate 7
4.4	Uranyl acetate	" Titanate 14
4.4	" monochloracetate	Struvite 11
4.6	Vanadates	Strychnine 29
4.1	Zirconium phosphates 116	Styracin
4.4	" silicate 139	Styrolene
Somum	vite	Styrolyl ethyl oxide
S. (*) 100		Succinvi chloride
	e 118	" Perivative of
	139	Sulphocarbanilide
Servent	55	Sulpho urea
eparet.	7.14	Sulphur
Shortan	reme,	Support.
-t.mmil	11 - 1	" Prompte.
Stannie	diforales 20	
Franuif	luornies 19	
Stenno	chlorides	" Oxychloride
	rganle compounds 35%, 351	Sulphuryl chloride
	211	Sussexite 16
	240	Sylvanite
Stearor	ie 221	Sylvestrene D

PAGE.	PAGE.
Syngenite 89	Tetrachlorpropane
Szaboite 133	Tetrachlortoluene
Szaibelyite 108	Tetracosane 163
Szmikite 83	Tetradecane
	Tetradecyl alcohol 196
T.	Tetradecylene 166
	Tetradecylidene 168
Tagilite 117	Tetradymite 66
Tale	Tetrahydrotoluene
Tallingite29	Tetrahydroxylene 177
Tannin 267	Tetraiod-methyl oxide
Tansy, oil of	Tetraiodoxysulphobenzid
Tantalite	Tetramercurammonium chloride
Tantalofluorides 19	" sulphate 97
Tantalondorides 8	
	Tetramethylallylene
Arthinian arroy 140	Tetramethylammonium iodide
1 entoxide	" mereury iodide 365
Tapalpite 66	Tetramethylaniline
Tellurium 10	Tetramethylbenzene 173
" Oxides 51, 52	Tetramethylbutane 159, 160
Tennantite 61	Tetramethylethane 158
Tephroite 132	Tetramethylethylene 164
Terebangeline 182	Tetramethylpentane 160
Terebene 180	Tetramylene 167
" Acetate 264	Tetranitroethylene bromide 328
Terebenthene 180	Tetraphenylethane 176
" A cetate	Tetraterebenthene 185
" Hydrochlorate 304	Tetrethylallylalkin 290
Terpane 263	Tetrethylammonium iodide 365
Terpene 180, 181	Tetrethy! citrate
Terpilene	Tetrethylmonochlorbenzene
4 Acetate	Thallium
" Formate	" Aluminum selenate 101
" Hydride	" sulphate
11, 41140	" Amylate 355
Terpilenol	"Bromides
Terpinene	" Carbonate
Terpinol	Caroonate 120
Terpinylene	Chiorate 12
Tetrabromethane	Chiorides 22
Tetrabroinglycide 322	Chromium seienate
Tetrabromhydrocamphene 325	surphate
Tetrabromoxysnlphobenzid	" Cobalt selenate 100
Tetrabrompropane	" sulphate 91
Tetrachloracetone	" Ethylate 355
Tetrachloracetic anhydride 308	" Ferrocyanide 143
Tetrachlorbenzene 302	" Hydrogen oxalate 360
Tetrachlorbenzyl chloride 303	" Hydrogen racemate 363
Tetrachlorbenzylene dichloride 303	" tartrate 362
Tetrachlorethane	" Iodide 35
Tetrachlor-ethyl acetate 307	" Iron sulphate 96
Tetrachlor-ethyl camphorate 313	" Lithium racemate 363
Tetrachlorethylene	" tartrate 362
Tetrachlor-ethyl oxide	" Nickel selenate
Tetrachlor-ethyl sulphide	" Nitrate
Tetrachlorglycide299	" Oxalate360
Tetrachlor-methyl ethyl oxide	" Perchlorate 73
Tetrachlor-methyl formate 292	" Phosphates
Tetrachlor-methyl mercaptan	r nosphates 113
Tetrachlor-methyl oxide	" Picrate
Tetrachlor-methyl oxide	ratinemoride 20
	1 otassium surpinae 04
Tetrachloroxysulphobenzid	ryrophosphate
Tetrachlorpentane 300	" Racemate 363

TAGE.	Ĩ¹AĢE₊
Thallium, Selenate tes	Tin. Oxalate
4 Sodium racemate 303	" Oxides 46
44 tartrate	" Phosphides +6
" Sulphate 79	" Potassium chlorides 25, 29
" Sulphide 57	" Pyrophosphate 119
" Tartrantimounte	" Seleni lės (5
4 Tartrate	" Silver alloys
o Tellmate 102	" Sulphides
Vanadates 120 (" Telluride
Thaumasite	" Zine alloys
Thebaine291	Titanofluorides
Thermonatrite 126	Titanium, Bromide
Thiablin	" Calcium silicate 139
Thiocarbonyl chloride 292 *	4 Carlide 70
Thiocyanacetone	" Chloride 25
Thionyl chloride	• Dioxide 45
Thiophene	" Nitride 70
" Aldehyde311	" Nitrocyanide 144
Thiotolene	" Pyrophosphate 119
Thioxene 312 }	Tolene
Thomsonite 137	Toluene 170
Thorite 135	Toluic aldehyde
Thorium 6	" nitril 250
" Metaphosphate 118	Toluidines
o oxalate	Toluyl chloride
48 Oxide	Tolyl phenyl ketone 262
" Platinocyanide 111	Tolylpropyl aldehyde 261
" Potassium phosphates	Тораг
" Selenate	Torbernite 110
u Silicates	Tourmaline 14
" Sodium phosphates 116	Tremolite 131
" Sulphate	Triacetin 240
" Sulphide 58	Triallylamine 27
Thrombolite 125	Triamylamine
Thuja terpene	Triamylene 160
Thujol	Triamylstibine
Thuringite 139	Tribromehloracetone 33
Thymene 183	Tribromethylene 32
Thyme, oil of 183	Tribromhydrin 32
Thymol	Tribromisebutane 32
Thymyl acetate	Tribrompropane
Tiemannite	Tributylamine
Tiglic aldehyde	Tributyrin 24
Tin	Trichloracenaphtene
" Aluminum alloys	Trichloracetal 31
" Amalgam4	Trichloracetic anhydride 29
4 Ammonium chlorides	Trichlor-acetic anhydride 30
" Antimonides	Trichloracetic dimethylamide
" Arsenides	Trichloracetonitril
" Bismuth alloys 150	Trichloracetophenone
" Bromide 32	Trichloracetyl bromide
** Cadmlum alloys	ehlerite
" Calcum silicate	eyanide 31
" Chlorides	Trichloramylene throdichloride
" Chlorobromide	Trichlorbenzene
" Copper alloys 153, 154	Trichlorbenzyl chloride
" Fluorides	Trichlorbenzylene dichloride 30
** Gold alloys 155	Trichlorbutyl acctate
9 lodale	Trich'ordibrometh me
9 Iron alloys 152	Tri-hlordimethyl acetal 33
 9 Lead (*) 9 Organic compounds of	Traddorde Probenzene 3
** Organic complain 18 of	Trablorethane

PAGE.	PAGE.
Trichlor-ethyl acetate 306	Trinitrolactose
Trichlor-ethyl alcohol	Trinitrophenol
Trichlorethyl chloracetates	Triphenols
Trichlorhexane	Triphenylbenzene
Trichlorhydrin 299	Triphenylphosphin
· •	
Trichlor-methyl amyl sulphite 346	" Oxide
Trichlormethylethyl acetal	Triphenyltrisulphophosphamide
Trichlornitrobenzene	Triphenylstibine
Trichlorpentane 300	Triphylite 115
Trichlorpropane	Triplite 124
Trichlorpropylene 300	Triploidite 117
Trichlortolnene 303	Tripropylamine 270
Trichtorvinyl ethyl oxide 309	Tristearin 240
Tricosane 163	Trisulphhydrin
Tridecane 162	Tritolylstibine
Tridecylene	Trivalerylene
Tridymite	Trögerite
Triethoxyacetonitril	Troilite
Triethoxylpyrophosphorsulphobromide 350	Trolleite
Triethylamine	
	Tropilene 267
" Aurochloride 365	Tropilidene 187
Triethyl amyl orthosilicate	Tungsten
Triethylarsine	" Aluminum alloy 146
Triethylcarbinol 195	" Oxides 52
Triethyl citrate237	" Phosphide 67
Triethyl diglyccrin 239	" Sulphide 59
Triethylene alcohol 223	Turgite 71
Triethylin239	Turmerol
Triethylmethane	Turpentine
Triethylmonochlorbenzene 304	" Hydrate
Triethylphosphin	Turpeth mineral
" Platosochloride 360	
Triethylpropylphycite	Turquoise
	Tyrolite 123
Triethylsilicol	Tyrosine
Triethylstibine	Tysonite 18
DIOIE 100 0.01	
cmorage	
Triglyccrin tetrethylin 239	
	U.
Triisobutylamine 270	
Triisobutylene 166	Ulexite 108
Triisobutylene 166	Ulexite 108
Triisobutylene	Ulexite
Triisobutylene 166 Trimethylamine 269 Trimethylbenzene 172	Ulexite 108 Uthmannite 69 Undecane 161 Uranium 11
Triisobutylene 166 Trimethylamine 269 Trimethylbenzene 172 Trimethylearbinol 191 Trimethylearbinolamine 270	Ulexite 108 Ullmannite 69 Undecane 161 Uranium 11 " Arsenate 122
Triisobutylene 166 Trimethylamine 269 Trimethylbenzene 172 Trimethylearbinol 191 Trimethylearbinolamine 270 Trimethylearbyl, Bromide 317	Ulexite 108 Uthmannite 69 Undecane 161 Uranium 11 " Arsenate 122 " Barium phosphate 116
Triisobutylene 166 Trimethylamine 269 Trimethylbenzene 172 Trimethylcarbinol 191 Trimethylcarbinolamine 270 Trimethylcarbyl, Bromi-le 317 "Chloride 294	Ulexite 108 Uthmannite 69 Undecane 161 Uranuium 11 " Arsenate 122 " Barium phosphate 116 " Dismuth arsenate 123
Triisobutylene 166 Trimethylamine 269 Trimethylbenzene 172 Trimethylcarbinol 191 Trimethylcarbinolamine 270 Trimethylcarbyl Bromi-le 317 " Chloride 294 " Iodide 331	Ulexite 108 Ullmannite 69 Undecane 161 Uranium 11 " Arsenate 122 " Barium phosphate 116 " Bismuth arsenate 123 " Calcium 122
Triisobutylene 166 Trimethylamine 269 Trimethylbenzene 172 Trimethylearbinol 191 Trimethylearbinolamine 270 Trimethylearbyl Brontide 317 " Chloride 294 " Iodide 331 " Nitrite 281	Ulexite 108 Utlmannite 69 Undecane 161 Uranium 11 "Arsenate 122 "Barium phosphate 116 "Bismuth arsenate 123 "Calcium" 122 "phosphate 116
Triisobutylene 166 Trimethylamine 269 Trimethylenzene 172 Trimethylearbinol 191 Trimethylearbinolamine 270 Trimethylearbyl Bromide 317 " Chloride 294 " Iodide 331 " Nitrite 281 Trimethylearbylmethylcarbinol 194	Ulexite 108 Ullmannite 69 Undecane 161 Uranium 11 " Arsenate 122 " Barium phosphate 116 " Dismuth arsenate 123 " Calcium 122 " " phosphate 116 " Copper arsenate 122
Triisobutylene 166 Trimethylamine 269 Trimethylbenzene 172 Trimethylearbinol 191 Trimethylearbinolamine 270 Trimethylearbyl Bromide 317 " Chloride 294 " Nitrite 281 Trimethylearbylmethylearbinol 194 Trimethyldiethylaniline 273	Ulexite 108 Ullmannite 69 Undecane 161 Uranium 11 " Arsenate 122 " Barium phosphate 116 " Bismuth arsenate 123 " Calcium 122 " " phosphate 116 " Copper arsenate 122 " phosphate 116
Triisobutylene 166 Trimethylamine 269 Trimethylenzene 172 Trimethylearbinol 191 Trimethylearbinolamine 270 Trimethylearbyl Bromide 317 " Chloride 294 " Iodide 331 " Nitrite 281 Trimethylearbylmethylearbinol 194 Trimethyldiethylaniline 273 Trimethylene Bromhydrin 327	Ulexite 108 Ullmannite 69 Undecane 161 Uranium 11 "Arsenate 122 "Barium phosphate 116 "Gismuth arsenate 123 "Calcium 122 "Copper arsenate 116 "Copper arsenate 122 "phosphate 116 "Hydroxides 72
Triisobutylene 166 Trimethylamine 269 Trimethylenzene 172 Trimethylearbinol 191 Trimethylearbinolamine 270 Trimethylearbyl Bromi-le 317 " Chloride 294 " Iodide 331 " Nitrite 281 Trimethylearbylmethylcarbinol 194 Trimethyldiethylaniline 273 Trimethylene Bromhydrin 327 Bromide 319	Ulexite 108 Udmannite 69 Undecane 161 Uranium 11 "Arsenate 122 "Barium phosphate 116 "Bismuth arsenate 123 "Calcium 122 "Copper arsenate 116 "Copper arsenate 122 "phosphate 116 "Hydroxides 72 "Lithium acetate 358
Triisobutylene 166 Trimethylamine 269 Trimethylenzene 172 Trimethylearbinol 191 Trimethylearbinolamine 270 Trimethylearbyl, Bromide 317 " Chloride 294 " Iodide 331 " Nitrite 281 Trimethylearbylmethylcarbinol 194 Trimethyldiethylaniline 273 Trimethylene, Bromhydrin 327 " Bromide 319 " Chlorhydrin 310	Ulexite 108 Utlmannite 69 Undecane 161 Uranium 11 "Arsenate 122 "Barium phosphate 116 "Bismuth arsenate 123 "Caleium" 122 "Topper arsenate 122 "Copper arsenate 122 "Hydroxides 72 "Lithium acetate 358 "Nitrate 112
Triisobutylene 166 Trimethylamine 269 Trimethylenzene 172 Trimethylearbinol 191 Trimethylearbinolamine 270 Trimethylearbyl, Bromide 317 " Chloride 294 " Iodide 331 " Nitrite 281 Trimethylearbylmethylearbinol 194 Trimethyldiethylaniline 273 Trimethylene, Bromhydrin 327 " Eromide 310 " Chlorhydrin 310 " Chloride 297	Ulexite 108 Ullmannite 69 Undecane 161 Uranium 11 "Arsenate 122 "Barium phosphate 116 "Bismuth arsenate 123 "Calcium" 122 ""phosphate 116 "Copper arsenate 122 "Hydroxides 72 Lithium acetate 358 "Nitrate 112 "Oleate 364
Triisobutylene 166 Trimethylamine 269 Trimethylenzene 172 Trimethylearbinol 191 Trimethylearbinolamine 270 Trimethylearbyl. Bromide 317 " Chloride 291 " Iodide 331 " Nitrite 281 Trimethylearbylmethylearbinol 194 Trimethyldiethylaniline 273 Trimethylene. Bromhydrin 327 " Bromide 319 " Chloride 297 " Glycol 222	Ulexite 108 Ullmannite 69 Undecane 161 Uranium 11 "Arsenate 122 "Barium phosphate 116 "Calcium 122 "Calcium 122 "Copper arsenate 122 "Copper arsenate 116 "Hydroxides 72 "Lithium acetate 358 "Nitrate 112 "Oleate 364 "Oxalate 361
Triisobutylene 166 Trimethylamine 269 Trimethylbenzene 172 Trimethylearbinol 191 Trimethylearbinolamine 270 Trimethylearbyl, Brontide 317 " Chloride 294 " Iodide 331 " Nitrite 281 Trimethylearbylmethylearbinol 194 Trimethyldiethylaniline 273 Trimethylene, Bromhydrin 327 " Bromide 319 " Chlorhydrin 310 " Chloride 297 " Glycol 292 " Iodide 334	Ulexite 108 Utlmannite 69 Undecane 161 Uranium 11 "Arsenate 122 "Barium phosphate 116 "Glismuth arsenate 123 "Calcium 122 "Calcium 122 "Copper arsenate 122 "Hydroxides 72 Lithium acetate 358 "Nitrate 112 "Oleate 364 "Oxalate 361 "Oxides 52
Triisobutylene 166 Trimethylamine 269 Trimethylenzene 172 Trimethylearbinol 191 Trimethylearbinolamine 270 Trimethylearbyl, Bromide 317 " Chloride 294 " Iodide 331 " Nitrite 281 Trimethylearbylmethylcarbinol 194 Trimethyldiethylaniline 273 Trimethylene, Bromhydrin 327 " Bromide 319 " Chlorhydrin 310 " Chloride 297 " Glycol 222 " Iodide 331 Trimethylenedicthylalkin 290	Ulexite 108 Utlmannite 69 Undecane 161 Uranium 11 "Arsenate 122 "Barium phosphate 116 "Bismuth arsenate 123 "Calcium 122 "Copper arsenate 116 "Copper arsenate 122 "Hydroxides 72 "Lithium acetate 358 "Nitrate 112 Oleate 364 "Oxalate 361 "Oxides 52 "Sodium acetate 358
Triisobutylene 166 Trimethylamine 269 Trimethylbenzene 172 Trimethylearbinol 191 Trimethylearbinolamine 270 Trimethylearbyl, Brontide 317 " Chloride 294 " Iodide 331 " Nitrite 281 Trimethylearbylmethylearbinol 194 Trimethyldiethylaniline 273 Trimethylene, Bromhydrin 327 " Bromide 319 " Chlorhydrin 310 " Chloride 297 " Glycol 292 " Iodide 334	Ulexite 108 Ullmannite 69 Undecane 161 Uranium 11 "Arsenate 122 "Barium phosphate 116 "Eismuth arsenate 123 "Calcium" 122 ""phosphate 116 "Copper arsenate 122 "Hydroxides 72 Lithium acetate 358 "Nitrate 112 "Oleate 364 "Oxides 52 "Sodium acetate 358 "Sodium acetate 358 "monochloracetate 358
Triisobutylene 166 Trimethylamine 269 Trimethylenzene 172 Trimethylearbinol 191 Trimethylearbinolamine 270 Trimethylearbyl, Bromide 317 " Chloride 294 " Iodide 331 " Nitrite 281 Trimethylearbylmethylcarbinol 194 Trimethyldiethylaniline 273 Trimethylene, Bromhydrin 327 " Bromide 319 " Chlorhydrin 310 " Chloride 297 " Glycol 222 " Iodide 331 Trimethylenedicthylalkin 290	Ulexite 108 Utlmannite 69 Undecane 161 Uranium 11 "Arsenate 122 "Barium phosphate 116 "Bismuth arsenate 123 "Calcium" 122 "Copper arsenate 122 "Phosphate 116 "Hydroxides 72 "Lithium acetate 358 "Nitrate 112 "Oleate 364 "Oxides 52 "Sodium acetate 358 "monochloracetate 358
Triisobutylene 166 Trimethylamine 269 Trimethylenzene 172 Trimethylearbinol 191 Trimethylearbinolamine 270 Trimethylearbinolamine 317 " Chloride 294 " Iodide 331 " Nitrite 281 Trimethylearbylmethylcarbinol 194 Trimethyldiethylaniline 273 Trimethylene Bromide 319 " Chlorhydrin 310 " Chloride 297 " Glycol 222 " Iodide 331 Trimethylenediethylalkin 290 Trimethylethylene 164	Ulexite 108 Ullmannite 69 Undecane 161 Uranium 11 "Arsenate 122 "Barium phosphate 116 "Eismuth arsenate 123 "Calcium" 122 "Tolor of the company
Triisobutylene 166 Trimethylamine 269 Trimethylenzene 172 Trimethylearbinol 191 Trimethylearbinolamine 270 Trimethylearbyl. Bromide 317 " Chloride 294 " Iodide 331 " Nitrite 281 Trimethylearbylmethylcarbinol 194 Trimethyldiethylaniline 273 Trimethylene. Bromhydrin 327 " Bromide 310 " Chlorhydrin 310 " Chloride 297 " Glycol 222 " Iodide 334 Trimethylenediethylakin 290 Trimethylenediethylakin 290 Trimethylenediethylakin 292	Ulexite 108 Ullmannite 69 Undecane 161 Uranium 11 "Arsenate 122 "Barium phosphate 116 "Eismuth arsenate 123 "Calcium" 122 ""phosphate 116 "Copper arsenate 122 ""Hydroxides 72 "Lithium acetate 358 "Nitrate 112 "Oleate 364 "Oxides 52 "Sodium acetate 358 ""nonochloracetate 358

1491.	PAGE.
Ur mexytherides 19	We rinseed, oil of 263
1.50	Wormwood, oil of
129 129	Wuitenite 105
U. et hate	
I (u-19	Х.
	.1.
V.	Xanthil
• •	Xanthoconite
Vicentifile 19	Nanthurin
Vaccasetonitid	Xenolio 133
Valeral Derivatives of	Xenotane,
Polymer of	Xenaltite
Valerie anhydrale	Xyjene
A Control Manager and Control	* Diehlende
V deroglycetal	" Glycols 272
A Alterbatication and a second	" Tetracid gale
Valer-mirit	Xylenel
Valeryletdoride	
Vasrelene	Xy:: live s
9 16a etate 248	Xylvi, Acetate
* Paymer - f	" Alcoh is 23
Vacacilitite 121	" broundes
Vana II (m	. 5.400.00
•• • • • • • • • • • • • • • • • • • •	10000100000
• Oxples 18	" Merca tas
" Oxplannide	" Patesphoenlor; le 37)
** Overlie Classification and the control of the co	" Thesphorexychieride 250
" suphides	Xylylene breamus
Variation wagnerity,	
Variscite 117, 116	\mathbf{Y}_{\bullet}
Variouslimite	
Ven squite	Ytterbium, ()x;de
Verstrel 25	** Sal ₄ ha6
Vestelvite	Yttrium, Oxide
Vinyl, Bremide	" Phosphate
" Ethylogric	** Selenate
· bodide	" Selenate
Very dred 27 Vesselyite 117 Vinyl, Bremade 321 ** Ethyl exite 211 ** Isingle 4 ** Salph, le 34 Vmyl acreed 254 Veryline 256	Yttrecerite
"Sulph, le 319 Varylandeed 254 Varidine 276 Vinvert, oil of 185 Vivante 115 Volberthite 120 Voltzite 04	
Viridine	Z.,
Vitivert value	
Vivianite	Zaratite 10
Vollaritore 120	Ze ₁ hare vichite
Autoim (4)	Zennerite
1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	Zine 2
W.	Zemerite
W.,	* Vicinitian allev
Wagnerite (=	**
W. Chryster	" Vinalgam H
Wallingto 28 Walpurzite 123 Warringtonite 66 Water 18 Wivelite 118	** Ammerica sultenate 97
The second section is a second	** And a second broans le
WATTHEFORD	er ehl alberranian in in in
Water and the state of the stat	and the same of th
W West Comment of the	" supporter minimum in his
No. 1 (1997) 11 (1997) 12 (1997) 13	* Actimorphis
	" Arsenates
White evies	* The mach take
What is the first the second of the second o	9 Therefore the
With object the	* Die my'e
Week a dre	9 Bronnide
We'thata	T Ca cum alloy
Weaklet 25 26	• Carlo dates 1.7, 1.
White exite	" Chl rile
We be the first of the second	

Zinc. Copper alloys. 152 Zinc. Silicofluoride. 18 " Dithionate. 75 "Sulphate. 80, 96 " Fluoride. 16 "Sulphi-le. 57 " Formate. 355 "Telluride. 66 "Hydroxide. 70 "Tin alloy. 147 "Hypophosphite. 113 "Titanate. 142 "Iodide. 35 "Zircofluoride. 19 "Iron oxide. 56 Zincaluminite. 97 "Lead vanadates. 120 Zinc anyl. 355 "Magnesium sulphate. 92 Zinc ethyl. 355 "Nitrate. 110 Zinc ethyl. 355 "Oxide. 41 Zinc methyl. 355 "Oxide. 41 Zinc methyl. 355 "Oxysulphide. 64 Zinc methyl. 355 "Oxysulphide. 64 Zincenturyl. 92 "Phosphide. 65 Zirconium. 42 "Phosphide. 36 Zirconium. 43		PAGE.	PAGE.
"Fluoride 16 "Sulphide 57 "Formate 356 "Telluride 66 "Hydroxide 70 "Tin alloy 147 "Hypophosphite 113 "Titanate 142 "Iodide 35 "Zircofluoride 19 "Iron oxide 56 Zinealuminite 97 "Lead vanadates 120 Zine anyl 355 "Magnesium sulphate 92 Zine ethyl 355 "Nitrate 110 Zineite 41 "Oxalate 360 Zine methyl 355 "Oxide 41 Zine propyl 355 "Oxysulphide 64 Zinkenite 62 "Palladiochloride 28 Zircofluorides 19 "Phosphide 28 Zirconium 4 "Platinoridide 33 "Oxide 46 "Platinoridide 37 "Potassium phosphates 116 "Potassium chloride 27 "Silicate 129 "Selenate	Zine	. Copper alloys 152	Zine, Silicofluoride 13
"Formate" 356 "Telluride 65 "Hydroxide 70 "Tin alloy 147 "Hypophosphite 113 "Titanate 142 "Hodide 35 "Zircofluoride 19 "Iron oxide 56 Zincalmminite 97 "Lead vanadates 120 Zinc amyl 355 "Magnesium sulphate 92 Zinc ethyl 355 "Nitrate 192 Zinc methyl 355 "Oxide 41 Zinc propyl 355 "Oxide 41 Zinc propyl 355 "Oxysulphide 64 Zincenturides 19 "Phosphate 115 Zircofluorides 19 "Phosphide 25 Zirconium 4 "Platinoromide 23 "Oxide 46 "Platinoromide 33 "Oxide 46 "Platinoromide 37 "Potassium phosphates 116 "Potassium chloride 27 "Silicate 139 "Selenate </th <td>"</td> <td>Dithionate</td> <td>" Sulphate 80, 96</td>	"	Dithionate	" Sulphate 80, 96
"Hydroxide	44	Fluoride 16	" Sulphide 57
"Hypophosphite 113 "Titanate 142 "Iodide 35 "Zircofluoride 19 "Iron oxide 56 Zincalminite 97 "Lead vanadates 120 Zinc anyl 355 "Magnesium sulphate 92 Zinc ethyl 255 "Nitrate 110 Zincite 41 "Oxalate 360 Zinc methyl 355 "Oxide 41 Zinc propyl 355 "Oxyalphide 64 Zincentucides 19 "Phosphate 115 Zircontucides 19 "Phosphate 115 Zircontum 4 "Platinbromide 28 Zircontum 4 "Platinbromide 33 "Oxide 46 "Platinodide 37 "Potassium phosphates 116 "Potassium chloride 27 "Selenate 120 "Sodium phosphate 119 "Sodium phosphate 119 "Selenate 98 Zoisite 31cate	"	Formate 356	" Telluride 66
"Iodide 35 "Zircofluoride 19 "Iron oxide 56 Zinealuminite 97 "Lead vanadates 120 Zinc amyl 355 "Magnesium sulphate 92 Zinc ethyl 355 "Nitrate 110 Zinc ethyl 355 "Oxide 41 Zinc methyl 355 "Oxysulphide 64 Zinc propyl 355 "Oxysulphide 64 Zincentine 62 "Palladiochloride 28 Zircofluorides 19 "Phosphate 115 Zircon 133 "Phosphide 66 Zirconium 4 "Platinoridide 33 "Oxide 46 "Platinoridide 33 "Potassium phosphates 116 "Potassium chloride 27 "Oxide 13 "Potassium chloride 27 "Oxide 13 "Potassium phosphates 116 "Selenate 90 "Silicate 133 "Pyrophosphate 113 </th <td>44</td> <td>Hydroxide 70</td> <td>" Tin alloy 147</td>	44	Hydroxide 70	" Tin alloy 147
" Iron oxide	"	Hypophosphite 113	" Titanate 142
" Lead vanadates 120 Zinc amyl 355 " Magnesium sulphate 92 Zinc ethyl 355 " Nitrate 110 Zinc methyl 355 " Oxalate 360 Zinc methyl 355 " Oxide 41 Zinc propyl 355 " Oxysulphide 64 Zincofituorides 19 " Palladiochloride 28 Zircofituorides 19 " Phosphate 12 Zircon 133 " Phosphide 65 Zirconium 4 " Platinbromide 23 "Oxide 46 " Platiniodide 37 "Potassium phosphates 116 " Potassium chloride 27 "Silicate 139 " sulphate 90 "Silicate 133 " Pyrophosphate 123 "Sodium phosphates 116 " Pyrophosphate 119 "Silicate 139 " Selenate 98 Zoisite 137 " Selenide 65 Zorgite 65 <td>"</td> <td>Iodide</td> <td>" Zircofluoride 19</td>	"	Iodide	" Zircofluoride 19
" Magnesium sulphate 92 Zinc ethyl 355 " Nitrate 110 Zincite 41 " Oxalate 260 Zinc methyl 355 " Oxysulphide 41 Zinc propyl 355 " Oxysulphide 64 Zincoffuorides 19 " Palladiochloride 28 Zircoffuorides 19 " Phosphate 115 Zircon 133 " Phosphide 66 Zirconium 4 " Platinbromide 33 " Oxide 46 " Platiniodide 37 " Potassium phosphates 116 " Potassium chloride 27 " " Silicate 129 " selenate 100 " Pyrophosphate 119 " Pyrophosphate 123 " Sodium phosphates 116 " Pyrophosphate 119 " " " Silicate 139 " Selenate 98 Zoisite 137 Selenide 65 Zorgite 65	"	Iron oxide 56	Zincaluminite 97
"Nitrate 110 Zincite 41 "Oxalate 360 Zinc methyl 355 "Oxide 41 Zinc propyl 355 "Oxysulphide 64 Zinkenite 62 "Palladiochloride 28 Zircofittorides 19 "Phosphate 115 Zircon 133 "Phosphide 66 Zirconium 4 "Platinbromide 33 "Oxide 46 "Platinodide 37 "Potassium phosphates 116 "Potassium chloride 27 "Selenate 129 "Selenate 100 "Pyrophosphate 119 "Pyroarsenate 123 "Sodium phosphates 116 "Pyrophosphate 119 "Silicate 139 "Selenate 98 Zoisite 137 Selenide 65 Zorgite 65	"	Lead vanadates 120	Zine amyl 355
"Oxalate	44	Magnesium sulphate	Zine ethyl 355
"Oxide 41 Zinc propyl 355 "Oxysulphide 64 Zincofttorides 19 "Palladiochloride 28 Zircofttorides 19 "Phosphate 115 Zircon 133 "Phosphide 66 Zirconium 4 "Platinbromide 33 "Oxide 46 "Platiniodide 37 "Potassium phosphates 116 "Potassium chloride 27 "Silicate 139 "sulphate 90 "Silicate 13 "Pyroarsenate 123 "Sodium phosphates 116 "Pyrophosphate 119 "Silicate 139 "Selenate 98 Zoisite 137 "Selenide 65 Zorgite 65	**	Nitrate 110	Zincite
"Oxysulphide 64 Zinkenite 62 "Palladiochloride 28 Zircofftuorides 19 "Phosphate 115 Zircon 133 "Phosphide 66 Zirconium 4 "Platinbromide 23 "Oxide 46 "Platiniodide 37 "Potassium phosphates 116 "Potassium chloride 27 "Silicate 129 "sulphate 90 "Silicate 133 "Pyroarsenate 123 "Sodium phosphates 116 "Pyrophosphate 119 "Silicate 139 "Selenate 98 Zoisite 310 "Selenide 65 Zorgite 65	**	Oxalate	Zine methyl 355
" Paladiochloride 28 Zircoffttorides 19 " Phosphate 115 Zircon 133 " Phosphide 66 Zirconium 4 " Platinbromide 33 "Oxide 46 " Platiniodide 37 "Potassium phosphates 116 " Potassium chloride 27 "Silicate 129 " selenate 100 "Pyrophosphate 119 " sulphate 90 "Silicate 133 " Pyroarsenate 123 "Sodium phosphates 116 " Pyrophosphate 119 "Silicate 139 " Selenate 98 Zoisite 137 " Selenide 65 Zorgite 65	64	Oxide 41	Zine propyl 355
" Phosphate 115 Zireon 133 " Phosphide 66 Zireonium 4 " Platinbromide 23 "Oxide 46 " Platiniodide 37 "Potassium phosphates 116 " Potassium chloride 27 "Silicate 129 " selenate 100 "Pyrophosphate 119 " sulphate 90 "Silicate 133 " Pyroarsenate 123 "Sodium phosphates 116 " Pyrophosphate 119 "Silicate 139 " Selenate 98 Zoisite 137 " Selenide 65 Zorgite 65	44	Oxysulphide 64	Zinkenite 62
" Phosphide 66 Zirconium 4 " Platinbromide 33 "Oxide 46 " Platiniodide 37 "Potassium phosphates 116 " Potassium chloride 27 "Silicate 139 " selenate 100 "Pyrophosphate 119 " sulphate 90 "Silicate 133 "Pyroarsenate 123 "Solium phosphates 116 " Pyrophosphate 119 "Silicate 139 "Selenate 98 Zoisite 137 "Selenide 65 Zorgite 65	**	Palladiochloride 28	Zircoffuorides
" Platinbromide 33 " Oxide 46 " Platiniodide 37 " Potassium phosphates 116 " Potassium chloride 27 " silicate 129 " selenate 100 " Pyrophosphate 119 " sulphate 90 " Silicate 133 " Pyrophosphate 123 " Sodium phosphates 116 " Pyrophosphate 119 " silicate 139 " Selenate 98 Zoisite 137 " Selenide 65 Zorgite 65	"	Phosphate 115	Zireon 133
" Platiniodide 37 " Potassium phosphates 116 " Potassium chloride 27 " silicate 139 " selenate 100 " Pyrophosphate 119 " sulphate 90 " Silicate 133 " Pyroarsenate 123 " Sodium phosphates 116 " Pyrophosphate 119 " silicate 139 " Selenate 98 Zoisite 137 " Selenide 65 Zorgite 65	"	Phosphide 66	Zireonium 4
Potassium chloride	"	Platinbromide	" Oxide 46
" " selenate 100 " Pyrophosphate 119 " " sulphate 90 " Silicate 133 " Pyroarsenate 123 " Sodium phosphates 116 " Pyrophosphate 119 " silicate 139 " Selenate 98 Zoisite 137 " Selenide 65 Zorgite 65	"	Platiniodide 37	" Potassium phosphates 116
"" Selentate 100 Pyrophosphate 113 "" Pyrophosphate 123 " Solition phosphates 116 "" Pyrophosphate 119 " " silicate 139 "" Selenate 98 Zoisite 137 "" Selenide 65 Zorgite 65	46	Potassium chloride 27	" silicate, 139
Sulphate 30 State 153 " Pyroarsenate 123 " Sodium phosphates 116 " Pyrophosphate 119 " "silicate 139 " Selenate 98 Zoisite 137 " Selenide 65 Zorgite 65	"	" selenate 100	" Pyrophosphate 119
Pyrophosphate	66	" sulphate 90	" Silicate 133
Fyrophosphate 119 Shivate 139 "Selenate 98 Zoisite 137 "Selenide 65 Zorgite 65	44	Pyroarsenate	" Sodium phosphates 116
" Selenide	44	Pyrophosphate 119	" silicate 139
Selentide	66	Selenate 98	Zoisite 137
" Silicates 132	"	Selenide 65	Zorgite 65
	"	Silicates 132	

SMITHSONIAN MISCELLANEOUS COLLECTIONS.

-----658 -----

INDEX

TO THE

LITERATURE

OF THE

SPECTROSCOPE.

ALFRED TUCKERMAN, PH. D.

WASHINGTON:
PUBLISHED BY THE SMITHSONIAN INSTITUTION.
1888.

PRINTED AND STFREOTYPED BY

JUDD & DETWEILER,

AT WASHINGTON, D. C.

ADVERTISEMENT.

With the rapid accumulation of scientific memoirs and discussions, published from year to year in numerous journals and society proceedings, a constantly larger expenditure of time and labor is required by both the investigator and the student, to learn the sources of information and the condition of discovery in any given field. Hence is felt the growing need of classified indexes to the work done in the various fields of research, and hence the corresponding tendency of the age to supply such demand.

The present work aims at a general survey of Spectroscopic Literature, with references to authorities in its more special subdivisions, and it has been prepared for the Institution by Mr. Tuckerman, without other remuneration than the expectation of serving the interests of scientific inquirers.

It has been brought down to the middle of the year 1887.

S. P. Langley, Secretary Smithsonian Institution.

Washington, February, 1888.

PREFACE.

This work is intended to be a list of all the books and smaller treatises, especially contributions to scientific periodicals, on the spectroscope and spectrum analysis from the beginning of our knowledge upon the subject until July, 1887; an Index or Bibliography of the Spectroscope and Spectrum Analysis.

It was begun at the suggestion of Dr. Wolcott Gibbs, whose work in connection with the subject is well known.

The object is to enable a chemist to find out at a glance all that has been published in any branch of his subject where the spectroscope is used, and what every writer has published.

The method pursued has been as follows: 1, to examine the bibliographies, booksellers' catalogues, and books on spectrum analysis for books; 2, to examine the scientific periodicals for the shorter treatises, the first and original contributions to the subject, and this was done volume by volume wherever there was no index to a series of years—as in the Comptes Rendus and the later volumes of the Annales de Chemie et de Physique and of (Poggendorff's, now Wiedemann's) Annalen der Physik und Chemie, as well as others. Use was made of the bibliography at the end of Roscoe's Spectrum Analysis, and in the reports of the British Association for 1881 and 1884, for such books and articles as the author could not find elsewhere. Credit is also due to the Astor Library and its managers for the means it afforded the author of making this Index.

After the greater part of the material was collected it was divided into such subjects as the titles indicated, in alphabetical order, easy finding being constantly kept in view. Titles have often been repeated more than once so as to make sure of their being found. Finally, at the suggestion of the Smithsonian Institution, the List of Authors was added.

The author hopes that his two objects, fullness and ready access of all the titles, will prove to have been gained.

New York, 1887.

TABLE OF CONTENTS.

	Pages.		Page⊲.
History	1-8	Astronomical—Continued.	
Books	8-10	Heat in the solar spectrum_	112-113
Apparatus	11-39	Hydrogen in the solar spec-	
Analysis in general	40-49	trum	113
Qualitative Analysis	49	Intensity of the solar spec-	
Quantitative Analysis	49-51	trum	113
Absorption Spectra	52-60	Iron lines in the solar spec-	
Alkalies and Alkaloids	61	trum	114
Aluminium	62 - 63	Magnesium in the solar spec-	
Antimony	64	trum	114
Arsenic	65	Maps of the solar spectrum_	114-115
Astronomical, in general	66-70	Oscillation-frequencies	115
Comets in general	70-71	Oxygen in the solar spec-	
Comets in particular	71-79	trum	115
Displacement of stellar spec-		Photography of	115-117
tra	79-80	Pressure	117-118
Fixed Stars	80-82	Protuberances	118-122
Measurements	82	Radiation	122-123
Meteors	83	Red end	123-124
Nebulæ	84-85	Rotation	124
Photography	85-86	Storms and cyclones on the	
Planets	86-88	Sun	124
Solar spectrum in general	88-99	Sun-spots	125-129
Solar absorption	99-100	Telluric Rays	129
Solar atmosphere	100-101	Ultra-Violet	129-130
B lines in the solar spec-		Water in the solar spectrum_	131
trum	101	Wave-lengths	131-132
Bright lines in the solar		White lines	132
spectrum	101-102	Twinkling of stars	132
Chemical effects of solar		Atmospheric and Telluric Spec-	
spectrum	102	tra	133-135
Chromosphere and corona	102-105	Aurora and the Zodiacal Light.	136 - 142
D lines in the solar spec-		Austrium	143
trum	105	Barium	143-144
Dark lines in the solar spec-	,	Beryllium or Glucinum	144
trum	105-106	Bismuth	145
Displacement of the solar		Blue Grotto	145
spectrum	106	Borax	145-146
Eclipses of the Sun	106-111	Bromine	147-148
Elements in the Sun	111	Cadmium	• 149
Solar eruptions	111-112	Cæsium	150
Gas spectra in the Sun		Calcium	151-152
-	,	(vii)	

	Pages.		Pages.
	153-154	Carbon Compounds—Continued.	
arbon Compounds, general	154-160	Special:	
Special:		Cureumin	169
Acetic Acid	160	Cynnogen	
Acetylene	160-161	Cymene	170
Acid Brown	161	Decay	170
Agarythrine	161	Diamond	170
Albumen	161	Diazo	170
Alcohol	161	Diphenyl	170
Alizarine	161-162	Dipyridene	170
Alkanna	162	Drossera Whittakeri	170
Allyldipropylearbinol	162	Ebonite	171
Alum	162	Eosin	171
Amido-azo-a-naphthalene	162	Ether Vapour	171
Amido-azo-β-naplithalene =	162	Excrements	171
Aniline	162 - 163	Fast Red	171
Anthracen	163	Fish	171
Anthrapurpurin	163	Flour and Grain	172
Anthrarufin	163	Flowers	172
Aphides	163	Fuchsin	172
Aurin	164	Fungi	172
An Australian Lake	164	Gall	173
Azo-Colors	164	Gelatine	173
Beets	164	Gun-Cotton	173
Benzene		H S O ₃ , etc	17:3
Biebrich Scarlet	164		173
Bile	164-165	Hematine	173-174
Birds		Hemoglobine	174
Bismarck Brown	165		174
Blood		Hydrocarbons	174-175
Bonellia Viridis		Hydrobilirubin	175
Brucine		Hydrechinon	175
Butter		Hydroxyanthraquinone	175
Carbohydrates			
Carmine			
Carvophyllacem			
Chinizarin			
Chinolin			
Chinen			
Chotelin		Metaxylene	. 177
Chromogene			
Chrysoidine			
Citracon			
Coal		·	
Colem			
Croceine Scarlet			
Croton Acid	·		
Crystalloids			
Cumenē	-		
Cameno necession		•	

TABLE OF CONTENTS.

	Pages.		Pages
Carbon Compounds—Continued.		Didymium	209-210
Special:		Diffraction	211
Carbonic Acid	179-180	Discontinuous Spectra	212
Paratoluidine	181	Dispersion Spectra	212-216
Paraxyline	181	Dissociation	216
Pentacrinus	181	Distribution	217
Phenols	181	Double Spectra	217
Picolene	181	Dysprosium	218
Piperidine	181	Electric Spectra	218-225
Plants	181	Emission Spectra	226
Purpurin	181-182	Energy in the Spectrum	227
Pyridine	182	Erbium	228-229
Quinoline	182	Exchanges	230
Raspberry	182	Explosions	230
Rosaniline	182	Flame and Gas Spectra	231-240
Ruberine	182	Fluorescence	
Safranin	183	Fluorine	246
Carbonate of Soda	183	Gadolinite	247
Spongilla Fluviatilis	183	Gallium	248
Sulphide of Carbon	183	Germanium	248
Terebinthine		Glass	249
Terpenes	184	Gold	250
Tetrahydroquinoline	184	Heat Spectra	
Tourmeline	184	Helium	255
Triphenylmenthane	184	High Altitudes	258
Tropæolin	184	Holmium	$\frac{256}{256}$
Tropæolin 0 0 U	184	Homologous Spectra	256
Turpentine	184	Hydrogen	
Ultramarine	184	Indigo	261
Urine	185	Indium	261
Wine	185	Interference	262
Wood	185	Inversion	
Xantophyll.	186		263-264
Cerium	186	Iodine	265-267 267
Chlorine	187	Iridium	
Chlorine Compounds	187-191	Iron	268-269
Chlorophyll	192–194	Jargonium	270
Chromium	195	Lanthanum	270
Cobalt	1	Lead	271
	196	Light (C. El (i.i.)	272-273
Colour	197-199	Lightning. (See Electricity.)	0=0
Cone Spectrum	199	Limits of the Spectrum	273
Constants	200	Lines of the Spectrum	274-275
Copper	t	Liquids	276-278
Crystals	203	Lithium	279-280
D Line	204	Longitudinal Rays	281
Dark Lines	1	Luminous Spectra	281
Davyum	206	Magnesium	
Decipium	207	Manganese	
Density	207-208	Maps	287-288

	Pages .	•	Ungers
Mercury	::894	Samarskite	350
Metals	290 - 294	Scandium	331
Meteorological			231
Microscopie Spectra	296	Selenium	230
M:neral Waters	297	Silicium	ვავ
Minium	297	Silver .	324-336
Molyhdenum	298	Sodium	337-329
Mo-andrum	298	Strontium	340
Multiple Spectra.	2081	Sulphur	341-342
Nickel	500	Tellurium .	343
Niobium	299	Terbium	343
Nitrogen .	200-304	Thaltium	344
Nomenclature =		Thulium	045
Opties	206	Tin	34.5
Osmium	307	Titanium	340
Oxygen	208-310	Urnnium	347
Palladium		Vnnadium	
Paragenic Spectra		Violet and Ultra-Violet	
Philippium	311	Volcanoes	350
Phosphorescence	-312-314	Water Spectra	351-359
Phosphorus		Wave-Lengths	
Platinum	317	Yellow Bodies	357
Polarized Light		Ytterbium	
Potassium	319-320	Yttrium	350
Pressure .	320	Zine	360
Radiation .	321	Zirconium	361
Red End of the Spectrum	222		
Refraction	1111 = 1121	LIST OF AUTHORS	26.
Rhabdophane	326	: With the pages of the precedi	ng Index
Rhodium.	326	con which the titles of their v	
Rubidium	327	given)	
Ruthenium	327		
Salt (Common)	328	Number of titles	
Samarium	329	Number of authors	799

LITERATURE OF THE SPECTROSCOPE.

HISTORY.

Arago (Domenique François Jean), 1786–1853. Œuvres complètes, avec Tables, publices d'après son ordre sous la direction de J. A. Barral. Paris et Leipzig, 1854–'62, 17 vols., ill., 8°.

(Interesting here only in connection with polarized light.)

Barlocci.

(Wrote on the influence of white light.)

Beccaria, 1716-81.

(Wrote on the refraction of rock crystal, about 1750; see Ency. Brit., eighth edition I, 753.)

- Becker (G. F.). Contribution to the History of Spectrum Analysis.

 Amer. Jour. Sci., (3) 16, 392.
- Bérard. Mem. de la Soc. d'Arcueil, 3 (1817); and Biot's Traité de Physique, 4, 600-18, 673-4.

(A full account of Bérard's experiments on the calorific rays of the spectrum.)

- Berthold (G.). Zur Geschichte der Fluorescenz. Ann. Phys., u. Chem., **158**, 623.
- Biot (J. B.). Traité de Physique expérimentale et mathématique. Paris, 1816, 4 vols., 8°.
- — . Mémoire sur les Lois générales de la double Réfraction et de la Polarization dans les Corps cristallisés. Paris, 1819, 4°.
- Blair (Dr. Robert), 1787-1829. Edinburgh Transactions, III, 3.

(He discovered the uses of muriatic acid mixed with antimony in correcting secondary spectra in telescopes.)

(1 T)

Boscovich (Roger Joseph). Opuscula. Bassano, 1784, 5 vols., 4°. Opera pertinentia ad Opticam et Astronomiam (Astor Library).

Enev. Brit., eighth edition, I, 721-2, 753.

(He made a delicate micrometer with double refraction, about 1777, and observed the so-called Secondary Spectrum, consisting of purple and green light.)

Bouguer (Pierre), 1698-1758. Essai d'Optique, sur la Gradation de la Lumière. Paris, 1729, 8°; ed. La Caille, Paris, 1760, 4°.

Ency. Brit., eighth edition, I, 753-4.

(He published a number of treatises on the gradation of light.)

Brewster (Sir David), 1781-1868. Treatise on Optics. Edinburgh, 1831. New Analysis of Solar Light, indicating three primary colours, forming coincident spectra of equal length. Edinburgh, 1834. (See Life of B. by Mrs. Gordon.)

Buffon.

In his "Epoques de la Nature" he describes light and heat as known in his times.)

Delaunay. Notice sur la Constitution de l'Universe. Première Partie: Analyse Spectrale, Annuaire du Bureau des Longitudes, 1869, Paris, 8°.

(A masterly treatise on the subject at that time.)

- Desains (P.), Recherches expérimentales sur les anneaux colorés de Newton. Comptes Rendus, **78**, 219-21; Phil. Mag. (4) **47**, 236-7.
- Dolland (John), 1706-61. See Proc. Royal Soc., 50 (1757) 733, and Ency. Brit., eighth edition, I, 749-51.

(He discovered that dispersion depends not on the mean refraction but on the constitution of the diaphanous medium.)

- Draper (Henry). Obituary by G. F. Barker in Amer. Jour. Sci. (3) 25, 89.
- Draper (J. W.). Early Contributions to Spectrum Photography. Nature, 10, 243-4.
- Dutirou (l'abbé). Memoire sur la détermination des indices de réfraction des sept raies de Fraunhofer dans une série nombreuse de verres.

Annales de Chimie et de Physique, (3) 28 (1850) 176.

Exner (K.). Die Fraunhofer 'schen Ringe, die Quetelet 'schen Streifen und verwandte Erscheinungen.

Sitzungsber, de. Wiener Akad. 76, II, 522.

Faye. Note sur l'Association nouvellement fondée en Italie sous le titre de "Societa dei Spettroscopisti Italiani." Comptes Rendus, 74, 913-18, 1240-3.

(See Tacchini, Comptes Rendus, 74, 1237.)

- Forbes (James D.). On the Refraction and Polarization of Heat. Edinburgh Trans., 13 (1836), 131-68, 446-72.
- Rays in the Solar Spectrum. Phil. Mag. (1836) 453.
- —— —. Article in Ency. Brit., eighth edition, on Sir David Brewster.
- Fraunhofer (Joseph von), 1787–1826. "Bestimmung des Brechungsund Farbenzerstreuungs-Vermögens verschiedener Glasarten in Bezug auf die Vervollkommung achromatischer Fernröhre. Von Jos. Fraunhofer in Benedictbaiern." Denkschriften der k. Akad. der Wissenshaften zu München für die Jahre 1814 and 1815. Band V, 193–226, mit drey Kupfertafeln, München, 1817, 4°. (Fraunhofer's announcement of his discovery of the dark lines of the spectrum of sunlight.)

J. von Utschneider, Kurtzer Umriss der Lebensgeschichte des Herrn Dr. J. von Fraunhofer, Munich, 1826.

Merz, Das Leben und Wirken Fraunhofer, Landshut, 1865.

See Works of Sir David Brewster.

— — — Neue Modificationen des Lichtes durch gegenseitige Einwirkung und Beugung der Strahlen, und Gesetze derselben, München (no date).

Edinburgh Jour. Science, No. 13, 109, 15, 7, new series No. 13, 101.

- Gerding (Th.). Geschichte der Chemie. Leipzig, 1867, 8°.
- Herschel (A. S.). Progress of Spectrum Analysis. Chem. News, 19, 157; Jour. Franklin Inst., 88, 49, 136.
- Herschel (Sir John Frederick William), 1792-1871. On the Absorption of Light by coloured Media, and on the Colours of the prismatic Spectrum exhibited by certain Flames; with an Account of a ready Mode of determining the absolute dispersive Power of any Medium, by direct experiment. Edinburgh Trans., 9 (1823), 445.

- Herschel (Sir John Frederick William). Homogeneous yellow and orange Spaces in the Spectrum. Phil. Trans., **90** (1800), 255.

- Hoppe-Seyler (F.). Die Spectralanalyse. Ein Vortrag. Berlin, 1869, 8°.
- Hunt (T. Sterry). Chemistry of the heavenly Bodies since the Time of Newton. Proc. Cambridge Philosoph. Soc., 4, 129-139; Amer. Jour. Sci., (3) 23, 123-138; Ann. Chim. et Phys., (5) 28, 105.
- Huyghens Christian), 1629-95. Opera Varia, Leyden, 1724, 2 vols., 4°. Opera reliqua, Amsterdam, 1728, 2 vols., 4°.
- Jahresbericht der Chemie (Liebig's), Jahre 1863, 113; 1866, 78.
- Johnson (A.). On Newton, Wollaston, and Fraunhofer's Lines. Nature, 26, 572; Beiblätter, 7, 65 (Abs.).
- Kirchhoff (G.). Geschichtliches über Spectralanalyse. Ann. Physik u. Chemie, 118, 94, 102; Phil. Mag., (4) 25, 250.
- Kopp (H. . Entwickelung der Chemie in der neueren Zeit. München, 1871-3, 8°.
- Ladd (William). On the Results of Spectrum Analysis as applied to the heavenly bodies. A Lecture delivered before the British Association at the Nottingham Meeting, August 24, 1866. London, 1866, 8°, with photographs of the stellar spectra.

Chem. News, 14, 173, 199, 209, 235,

Lamansky S.). Geschichtliches über das Wärmespectrum der Sonne. Ann. Phys. u. Chem., 146, 200, 207, 209.

- Lambert (Johann Heinrich), 1728-77. Photometria. Augsburg, 1760, 8°.
- Liveing (G. D.) and Dewar (J.). Note on the History of the Carbon Spectrum. Proc. Royal Soc., **30**, 490–4; Beiblätter, **5**, 118–22; Nature, **23**, 265–6, 338.
- Lloyd (Prof.). Report on Physical Optics. Fourth Rept. British Assoc., 1834, pp. 295-414.
- Malus (E. L.), Paris, 1775–1812. Théorie de la double Réfraction de la Lumière dans les Substances cristallisés, Paris, 1810, 4°.
 (See Ency. Brit., 8th ed., I, 754, for an account of him.)
- Marie (L'abbé). Nouvelle découverte sur la lumière, pour en mesurer et compter les degrés. Paris, 1700, 8°.

 (Gave the first ideas about photometry.)
- Maskelyne. Account of a new Instrument for measuring small Angles, called the Prismatic Micrometer. Phil. Trans., 47 (1777), 799.
- Mayer (A. M.). The History of Young's Discovery of his Theory of Colour. Phil. Mag., (5) 1, 111-127.
- Meldola (R.). Contributions to the chemical History of the aromatic Derivatives of Methane. Jour. Chem. Soc., 41, 187-201.
- Melloni (Macédoine). See Annales de Chimie et de Physique, 53 (1833), 5-72; do., 48, 198, Recherches sur plusieurs phénomènes entreprises au moyen du thermomultiplicateur; do., 48, 385; do., 55, 337; do., 60, 402, 410-18; do., 61, 411; do., 65, 5; do., 68, 107; do., 70, 435; do., 72, 40, 334; do., 74, 18, 331; do., 75, 337.

(Melloni was famous chiefly for his thermomultiplier.)

- Miller (William Allen). Recent Spectrum Discoveries, 1863. Jour. Franklin Inst., 76, 29; Chem. News, 1863.
- Morichini (Domenico Pino), 1773-1830. Sopra la forza magnetizzatrice del lembo estremo del colore violetto. Milano, 1802.

 (A collection of his works was published by Pirotta of Milan in 1836.)
- Mousson (A.). Resumé de nos connaissances actuelles sur le spectre. Archives de Genève (1861).
- Newton (Sir Isaac). Collected Works. Optics, Chap. II, sections 1-3; vol. 3 of Latin edition, London, 1779-85, 5 vols., 4°.
- Nobili, worked with Melloni, above.

- Poggendorff (J. C.). Handwörterbuch der exacten Wissenschaften. Leipzig, 1858-63, 2 vols., lex. 8°.
- Powell (Rev. Baden). Report on Radiant Heat. British Association Repts., 1, 295.
- Priestley (Dr. Joseph). An Account of all the prismatic Colours, made by electrical Explosions on the Surface of Pieces of Metal. Phil. Trans., **58** (1768), 68.
- Ritter.
- (In 1801 he exposed muriate of silver in various parts of the spectrum and found that the action was least of all in the red, greater in the yellow, and greatest beyond the visible violet rays. Forbes, in Ency-Brit., 8 ed., 16, 594.)
- Robison (John). A System of mechanical Philosophy, with notes by David Brewster. London, 1822, 4 vols., 8°. See chapter on the telescope, III, 403-522.
- Rood (O. N.). Newton's Use of the Term Indigo with Reference to a Color of the Spectrum. Amer. Jour. Sci., (3) 19, 135-7; Beiblätter, 4, 460 (Abs.).
- Rowland (H. A.). On recent Progress in photographing the solar Spectrum. Rept. British Assoc. (1884), 635.
- Rudberg (Fr.). Dispersion de la lumière. Ann. de Chimie et de Physique, **36**, 439.
- — Sur la réfraction des rayons différenment colorés dans des cristaux à un ou deux axes optiques. Ann. de Chimie et de Physique, 48, 225.
- Ruprecht (Rudolph). Bibliotheea chemica et pharmaceutica. Leipzig, 1858-70, 8°.
- Rutherfurd (L. M.). Construction of the Spectroscope. Amer. Jour. Sci., (3) 39, (1869), 129. Note by Ditscheiner in Sitzungsber. d. Wiener Akad., 52 H, 542, 563-8.
- Schwerd (F. M.). Die Beugungserscheinungen aus dem Fundamentalgesetz der Undulationstheorie analytisch entwickelt und in Bildern dargestellt. Mannheim, 1835, 8°.
- Seechi (A.). L. Soleil. Exposé des principales Découvertes modernes sur la Structure de cet Astre. Paris, Gauthier-Villars, 1870. (See Nature, 13, 188.)

- Seebeck (T. J.). Berlin, 1770-1831.
 - Abhandlungen der Berliner Akad., 1818–19, 306; Edinburgh Jour. Sci., 1 (1824), 358.
- Stewart (B.). Some Points in the History of Spectrum Analysis. Nature, 21, 35.
- Stieren (E.). Die ersten Beobachtungen über Spectralanalyse veröffentlichte Alter. Ann. Phys. u. Chem., 132, 469.
- Stokes (G. G.). Early History of Spectrum Analysis. Nature, 13, 188-9.

(His discovery of fluorescence.)

- Swan (W.). On the Prismatic Spectra of the Flames of Compounds of Carbon and Hydrogen. Edinburgh Trans., **21** (1857), 411-29; Ann. Phys. u. Chem., **100**, 306.
- Tarry (H.). Report on the Researches and Experiments made by the Spectroscopic Association of Italy. (From Les Mondes of March 21, 1872.) Chem. News, **25** (1872), 179.
- Thalén (Robert). Om Spektralanalys, med en Spektralkarte. Upsala Universitets Aarpkrift. Upsala, 1866, 8°.
- Wollaston (Dr.), 1766-1828. A Method of examining refractive and dispersive powers by prismatic Reflection. Phil. Trans. (1802), 365-380.
 - (His own account of his discovery of five fixed lines of the solar spectrum, which he said he could not explain.)
- Wünsch (Christian Ernst), 1730–1810. Untersuchungen über die verschiedenen Farben des Lichtes. Leipzig, 1792, 8°, with plates.
- Wurtz (A.). Histoire des Doctrines chimiques depuis Lavoisier jusqu'à nos jours. Paris, 1869, 8°.

Young (Dr. Thomas). Elements of Natural Philosophy, Vol. 1, 786, plate 29.

(Gives a small colored drawing of the spectrum as seen by Dr. Wollaston and himself, with the yellow line.)

Life by Dr. G., Peacock, London, 1855, 8°.

Zantedeschi. Ricerche sulla Luce, Venezia, 1846, 8°; Chap. III. (See Edinburgh Jour, Sei., n. s., 5 (1830), 76, repeating experiments of Barlocci and similar to those of Morichini.)

BOOKS.

- Agnello (A.). Eclisse totale del 22 dic. 1870. Palermo, 1870.
- Angström (A. J.). Recherches sur le Spectre normal du Soleil. Upsala. W. Schultz, 1868. Avec Atlas et 6 planches.
- Becquerel (Edm.). La Lumière, ses Causes et ses Effets. 2 vols., 8°, Paris, 1867–1868, 16 fr.
- Blaserna (P.). Sulla polarizzazione della Corona solare. Palermo, 1871, 8°.
- Capron (J. R.). Photographed Spectra. 136 photographs of spectra, London, Spon, 1877, 8°.
 - (See review of, in Chem. News, **37** (1878), 118.)
- Champion (P.), Pellet (H.), et Grenier. De la Spectrométrie, Spectromètre. Paris, 1873, 8°.
- Draper (Henry). On diffraction Spectrum Photography. New Haven, 1873, 8°.
- Grandeau (L. N.). Instruction pratique sur l'analyse spectrale. Paris, 1863, 8°, 3 fr.
- Hirn (G, A.). Flamme en combustion et Température du Soleil. Paris, 1873, 8°.
- Hoppe-Seyler (F.). Handbuch der physiologisch-chemischen Analyse. 3. Auflage, Berlin, 1870, 8°.

- Hough (G. W.). The total Solar Eclipse of Aug. 7, 1869. Albany, N. Y., J. Munsell, 1870, 8°.
- Kirchhoff (G.). The Solar Spectrum and Spectra of the Chemical Elements. London, Macmillan, 1861-2, with plates.

 (Translations of the original communications to the Academy of Sciences

Translations of the original communications to the Academy of Sciences of Berlin.)

- Lecoq de Boisbaudran (F.). Spectres Lumineux. Paris, 1874, 8°, avec atlas.
- Lielegg (A.). Die Spectralanalyse. Weimar, Voigt, 1867.
- Lockyer (J. N.). The Spectroscope and its Applications. London, Macmillan, 1873, 8°.
- Lommel (E.). The Nature of Light. New York, Appleton, 1876, 8°.
- Lorscheid (J.). Die Spectralanalyse. Münster, 1870, 8°.
- Mac Munn (C. A.). The Spectroscope. London, Churchill, 1880.
- Proctor (R. A.). The Spectroscope. London, 1877, 8°.
- Radau (R.). Le Spectre solaire. Paris, 1862, 18°.
- Respighi (L.). Osservazioni spettroscopiche del Bordo e della Protuberanze Solari. Roma, 1871, 8° (with a plate).
- Rood (O. N.). Modern Chromatics, with 130 illustrations. New York, Appleton, 1879.
- Roscoe (H. E.). Spectrum Analysis. London, Macmillan, Fourth Edition, 1886, 8°.
 - (With a short bibliography of the principal works relating to the spectroscope. One of the best text-books, if not the best, on the subject.)
- Ruprecht (R.). Bibliotheca chemica et pharmaceutica. Leipzig, 1858-70, 8°.
- Sands (B. F.) and others. United States Naval Observatory Reports on the total Eclipse of the Sun, Aug. 7, 1869. Government Printing Office, Washington, D. C., 1869.
- Schellen (H.). Die Spectralanalyse. 2 Auflage, Braunschweig, 1871, 5°. (Translated by J. and C. Lassell, London, 1872; reviewed by Roscoe in Nature, 1, 503, and by others in Chem. News, 22, 284; 25, 80.)

- Secchi (A.). Sulle ultime scoperte spettroscopiche nel Sole. Roma, Type delle Belle Arti, 1869.
- Le Soleil. Exposé des principales Découvertes modernes sur la Structure de cet Astre. Paris, Ganthier Villars, 1870, 8°.
 Do. translated into German, Braunschweig, Westermann, 1872, 8°.
- Simmler (R. Th.). Beiträge zur chemischen Analyse durch Spectralbeobachtungen. Chur, 1861, 8°.
- Smyth (C. Piazzi). Madeira Spectroscopic. Edinburgh, W. and K. Johnston, 1881, 8°. (Spectroscopic observations made at Madeira.)
- Stein (Th.). Das Licht im Diensie der wissenchaftlichen Forschung. Leipzig, 1877, 8°.
- Stokes (G. G.). Mathematical and physical Papers, reprinted from the original Journals and Transactions, with additional Notes by the Author. Cambridge, University Press, 1880-1883, 2 vols., 8°.
- Thalén (R.). Om Spektralanalys, exposé, med en Spektralkarte. Upsala Universitets Arsskrift, 1866, 8°.
- Valentin (G.). Der Gebrauch des Spectroskops zu physiologischen und ärztlichen Zwecken. Leipzig und Heidelberg, Winter 'sehe Buchhandlung, 1863, 8°.
- Vierordt (K.). Anwendung des Speetralapparates. Tübingen, 1871, 8°.
- Vogel (H. W.). Practische Spectral-Analyse irdischer Stoffe. Nordlingen, 1877, 12°.
- Watts (W. M.). Index of Spectra. London, Gillman, 1872, 8°.
- Wrottesley (Lord). Applications of Spectrum Analysis. London, 1865, 8°,
- Young (C. A.). The Sun. New York, 1881, 8°.

APPARATUS.

ABSORPTION SPECTROSCOPE.

Sur un nouveau spectroscope d'absorption.

Thierry (Maurice de). Comptes Rendus, 101 (1885), 811-813; Jour. Chem. Soc., 50 (1886), 113 (Abs.).

ACTINIC BALANCE.

(See Spectro-bolometer.)

ALKALOID REACTIONS.

Alcaloïdreactionen im Spectralapparate.

Hock (K.). Arch. f. Pharm., 19, 358; Ber. chem. Ges., 14, 2844 (Abs.).

ASTRONOMICAL SPECTROSCOPES.

(See Spectro-telescopes.)

AUTOMATIC SPECTROSCOPES.

A new automatic motion for the spectroscope.

Baily (W.). Phil. Mag., (5) 4, 100-104.

An automatic spectroscope.

Browning (J.). Chem. News, 20 (1870), 222; 21 (1870), 201.

Automatic spectroscope.

Proctor (R. A.). Monthly Notices Astron. Soc., 31 (1871), 47-48.

Automatic spectroscope.

Proctor (R. A.). Monthly Notices Astron. Soc., 31 (1871), 205-208.

Automatic spectroscope for Dr. Huggins's sun observations.

Grubb (H.). Monthly Notices Astron. Soc., 31 (1871), 36.

Automatic spectroscope.

Reynolds (J. E.). Chem. News, 23 (1871), 118.

Universal automatic spectroscope.

Browning (J.). Monthly Notices Astron. Soc., 32 (1872), 213.

Large automatic spectroscope.

Browning (J.). Monthly Notices Astron. Soc., 33 (1873), 410.

Ucber Spectralapparat mit automatischer Einstellung.

Kruss (H.). Z. Instrumentenkunde, 5 (1885), 181-191, 232-244; Beiblatter, 9 (1885), 628 (Alis. .

DESSEMER-FLAME SPECTROSCOPES.

Examination of the Bessemer flame with the spectroscope.

Silliman (J. M.). Amer. Jour. Sci. (2), 50, 297-397; Phil. Mag., 41, 1-12; Jour. Chem. Soc. (2), 9, 97-98 (Abs.).

Examination of the Bessemer flame with coloured glasses and with the spectroscope.

Parker (d. S.). Chem. News. 23 (1871), 25-26; Jour. Chem. Soc. (2), 9, 98 (Abs.).

Spectroscope pour les hauts-fourneaux et pour le procédé Bessemer.

Zenger (Ch. V.). Comptes Rendus, **101** (1885), 1005; Jour. Chem. Soc., **50** (1886), 190 (Abs.).

USE OF THE BLOWPIPE.

Emploi du chalumeau à chlorhydrogène pour l'étude des spectres.

Diacon. Comptes Rendus, 56, 653.

BOLOMETER.

(See Spectro-bolometer.)

EÖRSCH-APPARATUS.

Der Spectralapparat von Borsch zugleich Reflexions-Goniometer.

Börsch, Ann. Phys. u. Chem., 129, 384,

COLLIMATORS.

Sur un nouveau collimateur.

Thollon (L.), Comptes Rendus, 96, 642-643; Nature, 27, 476 [Als.);
z. Instrumentenkunde, 3, 480-481 (Als.); Beildatter, 7, 285 (Als.).

An easy method of adjusting the collimator of a spectroscope.

Schuster A., Proc. Physical Soc., 3, 14-17; Phil. Mag., 65; 7, 95-18; Beiblatter, 354, Abs.

Use of a collimating eye-piece in spectroscopy.

Liveing (G. D., and Dewar, J. L., Proc. Cambridge Phil. Soc., 4, 336; Beiblatter, 7, 892, Abs.

COMPENSATING EYE-PIECE.

Construction of a compensating eye-piece.

Proc. Royal Soc., 21, 426-442.

CYLINDRICAL LENSES.

Zweckmässigkeit cylindrischer Linsen bei Spectralapparaten.

Schönn (L.). Ann. Phys. u. Chem., 144, 334.

DENSIMETER.

Optical densimeter for ocean water.

Hilgard (J. E.). United States Coast Survey Rep't (1877), 108-113;
 Z. Instrumentenkunde, 1, 206-207 (Abs.); Beiblätter, 5, 658 (Abs.).

DEVIATION IN SPECTROSCOPES.

Spectroskop mit constanter Ablenkung.

Goltzsch (H.). Carl's Repert., **18**, 188–190; z. analyt. Chem., **21**, 556 (Abs.).

Ueber ein einfaches Mittel die Ablenkung oder Zerstreuung eines Lichtstrahles zu vergrössern.

Kohlrausch (F.). Ann. Phys. u. Chem., 143, 147-149.

Die kleinste Ablenkung im Prisma.

Lommel (E.). Ann. Phys. u. Chem., 159, 329.

Die kleinste Ablenkung im Prisma.

Berg (F. W.). Ann. Phys. u. Chem., 158, 651.

Démonstration élémentaire des conditions du minimum de déviation d'un rayon par le prisme.

Hesehus (N.). Jour. soc. phys. chim. russe, 12, 226-231; Jour. de Phys., 10, 419-420 (Abs.); Beiblätter, 6, 227 (Abs.).

Nouvelles démonstrations des conditions du minimum de déviation d'un rayon dans le prisme.

Kraiewitch (K.). Jour. soc. phys. chim. russe, 16, 8-12. Notes surcet article, par Wolkoff, 16, 174.

Ueber die Schwankungen in der chemischen Wirkung des Sonnenspectrums und über einen Apparat zur Messung derselben.

Vogel (H.). Ber. chem. Ges., 7, 88-92; Jour. Chem. Soc., (2) 12, 424 (Abs.); Amer. Jour. Sci., (3) 7, 414-415.

Das Minimum der Ablenkung eines Liehtstrahls durch ein Prisma.

Kessler (F.). Ann. Phys. u. Chem., n. F. 15, 333-334.

DIFFRACTION SPECTROSCOPES.

(See "Gratings.")

DIRECT-VISION SPECTROSCOPES.

Nouveau spectroscope à vision directe.

Thollon (L.). Comptes Rendus, 86, 329-331; Beiblatter, 2, 253-254 (Abs.).

Théorie du nouveau spectroscope à vision directe.

Thollon (L.). Comptes Rendus, 86, 595; Beiblätter, 2, 253.

Nouveau prisme composé, pour spectroscope à vision directe, de très grande pouvoir dispersif.

Thollon (L.). Comptes Rendus, 88, 80-82; Beiblätter, 3, 355.

Sur l'emploi de prismes à liquide dans le spectroscope à vision directe.

Zenger (C. V.). Comptes Rendus, 92, 1503-1504.

Le spectroscope à vision directe appliqué à l'astronomie physique.

Zenger (C. V.). Comptes Rendus, 93, 429-432; Beiblatter, 5, 793 (Abs.).

Le spectroscope à vision directe, à spath calcaire.

Zenger (C. V.). Comptes Rendus, 93, 720-722; Beiblätter, 6, 21 (Abs.); Z. Instrumentenkunde, 1, 263-266.

Les observations spectroscopiques à la lumière monochromatique.

Zenger (C. V.). Comptes Rendus, 94, 155-156; Chem. News, 45, 86-87 (Abs.); Jour. Chem. Soc., 42, 677 (Abs.); Amer. Jour. Sci., (3) 23, 322-323 (Abs.); Beiblatter, 6, 378; Z. Instrumentenkunde, 2, 114 (Abs.).

Spectroscope à vision directe très puissant.

Zenger (C. V.). Comptes Rendus, 96, 1039-1041; Nature, 27, 596 (Abs.); Chem. News, 47, 213 (Abs.); Beiblatter, 7, 455-457 (Abs.), Amer. Jour. Sci., (3) 25, 469; Z. analyt. Chem., 22, 540-541 (Abs.).

Spectroscope à vision directe pour observation des rayons ultra-violettes. Zenger (C. V.).—Comptes Rendus, 98, 494.

Neues geradsichtiges Taschenspectroskop.

Hilger (A.). Beiblatter, 1, 124-125.

Spectroscopes à vision directe et à grande dispersion.

Thollon (L.). Jour. de Physique, 8, 73-77.

Note on a direct-vision spectroscope on Thollon's plan, adapted to laboratory use and capable of giving exact measurements.

Liveing (G. D.) and Dewar (J.). Proc. Royal Soc., 28, 482–483; Beiblätter, 3, 709 (Abs.).

Ein Spectroskop à vision directe mit nur einem Prisma.

Emsmann (H.). Ann. Phys. u. Chem., 150, 636.

A direct-vision compound prism by Merz; with dispersion almost double that of flint glass.

Gassiot. Proc. Royal Soc., 24, 33.

Combinazioni spettroscopiche a visione diretta.

Riccó (A.). Mem. Spettr. ital., 8, 21-34.

Ueber ein verbessertes Prisma à vision directe.

Braun (C.). Ber. aus Ungarn, 1, 197-200.

Note on a new form of direct-vision spectroscope.

Liveing (G. D.) and Dewar (J.). Proc. Royal Soc., 41 (1886), 449–452.

DISPERSION APPARATUS.

Das Dispersionsparallelopiped und seine Anwendung in der Astrophysik.

Zenger (K. W.). Sitzungsber d. Böhm. Ges. (1881), 416-429; Beiblätter, **6**, 286 (Abs.).

Sur un spectroskope à grande dispersion.

Cornu (A.). Jour. de Phys., 12 (1883), 53-57; Amer. Jour. Sci., (3) 25, 469.

Sur un spectroscope à grande dispersion.

Cornu (A.). Séances de la Soc. franç. de Phys., 1882, 165-170; Beiblätter, 7, 285 (Abs.); 8, 33 (Abs.).

Bemerkungen über die Einrichtung eines Dispersiometers.

Mousson (A.). Ann. Phys. u. Chem., 151, 137-145.

ECLIPSE APPARATUS.

(See "Solar and Stellar App.")

EFFICIENCY OF SPECTROSCOPES.

Efficiency of different forms of the spectroscope.

Pickering (E. C.). Amer. Jour. Sci., 95, 301, and (3) 22, 397.

ELECTRIC APPARATUS.

Tube spectro-électrique destiné à l'observation des spectres des solutions métalliques.

Delachanal (B.) et Mermet (A.). Comptes Rendus, 79, 800; 81, 726.

An arrangement of the electric arc for the study of the radiation of vapours, together with preliminary results.

Liveing (G. D.) and Dewar (J.). Proc. Royal Soc., 34, 119-122; Nature, 26, 213-214 (Abs.); Beiblätter, 6, 934-936 (Abs.); Jour. Chem. Soc., 44, 262-263 (Abs.).

On the use of most electrodes.

Hartley (W. N.). Chem. News, 49, 149; Beiblätter, 8, 581.

Apparat zur leichten Darstellung des langen electrischen Spectrums. Müller (J.). Ann. Phys. u. Chem., 130, 137.

ERYTHROSCOP.

Erythroscop und Melanoskop.

Lommel (E.). Ann. Phys. u. Chem., 143, 483-490.

EUTHYOPTIC.

Das einfache euthyoptische Spectroskop.

Kessler (F.). Ann. Phys. u. Chem., 151, 507.

FINDER.

A reliable finder for a spectro-telescope.

Winlock (Prof.). Jour. Franklin Inst., (3) 60, 295.

FIXATOR.

Der Fixator, ein Ergänzungsapparat des Spectrometers.

Carl's Repert., 17, 645-651; Jour. de Phys., (2) 1, 198-199 (Abs.).

FLAME APPARATUS.

Spectralapparat un den wärmeren oder kälteren Theile der Flammen beobachten zu können. (For Bessemer flame apparatus look above under Bessemer.)

Salet (G.). Ber. chem. Ges., 3 [1870], 246.

FLUORESCENT EYE-PIECES.

Spectroscope à oculaire fluorescent.

Soret (J. L.). Jour. de Phys., 3 (1874), 253.

Une spectroscope pour étudier les phénomènes de la fluorescence.

Lamansky (S.). Jour. de Phys., 8 (1879), 411.

Some modifications of Soret's fluorescent eye-piece.

Liveing and Dewar. Proc. Cambridge Phil. Soc., 4, 342-343.

Spectroscope à oculaire fluorescent.

Manet. Ann. Chim. et Phys., (5) 11, 72.

Spectralapparat mit fluorescirendem Okular für den ultravioletten Theil des Spectrums J.

Reye (Th.). Ann. Phys. u. Chem., 149, 407.

Spectroscope à oculaire fluorescent.

Soret (J. L.). Archives de Genève, (2) 49, 338-343; Ann. Phys. u. Chem., 152, 167-171; Jubelband, 407-411; Amer. Jour. Sci., (3) 8, 64-65.

Spectroscope à oculaire fluorescent; seconde note.

Soret (J. L.). Arch. de Genève, (2) 57, 319-333; Ann. Chim. et Phys., (5) 11, 72-86; Amer. Jour. Sci., (3) 14, 415-416 (Abs.); Beiblätter, 1, 190-192 (Abs.).

FULGATOR MODIFIÉ.

Nouveau tube spectro-électrique (fulgator modifié).

Delachanal et Mermet. Comptes Rendus, 81, 726.

GELATINE LEAVES.

Gefärbte Gelatinblättehen als Objecte für das Spectroscop.

Lommel (E.). Ann. Phys. u. Chem., 143, 656.

GRATINGS.

Preliminary notice of the results accomplished in the manufacture and theory of gratings for optical purposes.

Rowland (H. A.). Johns Hopkins Univ. Circular (1882), 248-249;
Phil. Mag., (5) 13, 469-474; Nature, 26, 211-213; Amer. Jour. Sci.,
(3) 24, 63 (Abs.); Observatory (1882), 224-228; Z. Instrumentenkunde, 2, 304 (Abs.).

On concave gratings for optical purposes.

Rowland (H. A.). Amer. Jour. Sci., (3) 26, 87-98; Phil. Mag., (5)
16, 197-210; Beiblatter, 7, 862-863 (Abs.); Z. Instrumentenkunde.
4, 135-136 (Abs.); Jour. de Phys., (2) 3, 184 (Abs.).

Curved diffraction gratings.

Glazebrook (R. T.). Proc. Physical Soc., 5, 243-253; Phil. Mag., (5)
15, 414-423; Amer. Jour. Sci., (3) 26, 67 (Abs.); Beiblätter, 8, 34 (Abs.); Jour. de Phys., (2) 3, 152-154 (Abs.).

Remarks on the above by Rowland (II. A.). Amer. Jour. Sci., (3, 26, 214; Phil. Mag., (15) 16, 210; Beiblatter, 8, 34 (Abs.); Jour. de Phys., (2) 3, 184-185 (Abs.).

Concave gratings for giving a diffraction spectrum.

Rowland (H. A.). Nature, 27, 95.

The spectra formed by curved diffraction gratings.

Baily (W.). Proc. Physical Soc., 5, 181-185; Phil. Mag., (5) 15, 183-187;
Beiblätter, 7, 465-566 (Abs.); Jour. de Phys., (2) 3, 152-154;
Chem. News, 47 (1883), 54.

Notes on diffraction gratings.

Blake (J. M.). Amer. Jour. Sci., (3) 8, 33-39.

Optische Experimentaluntersuchungen über Beugungsgitter.

Quincke (G.). Ann. Phys. u. Chem., 146, 1-65.

Note on the use of a diffraction grating as a substitute for the train of prisms in a solar spectroscope.

Young (C. A.). Amer. Jour. Sci., (3) 5, 472-473; Phil. Mag., (4) 46, 87-88; Ann. Phys. u. Chem., 152, 368 (Abs.).

Preliminary note on the reproduction of diffraction gratings by means of photography.

Strutt (J. W.). Proc. Royal Soc., 20, 414-417; Phil. Mag., (4) 44, 392-394; Amer. Jour. Sci., (3) 5, 216 (Abs.); Ann. Phys. u. Chem., 152, 175-176 (Abs.).

On the manufacture and theory of diffraction gratings.

Rayleigh (Lord). Phil. Mag., (4) 47, 81-93, 193-205.

On copying diffraction gratings.

Rayleigh (Lord). Phil. Mag., (5) 11, 196-205.

On the determination of the coefficient of expansion of a diffraction grating by means of the spectrum.

Medenhall (T. C.). Amer. Jour. Sci. (3) 21, 230-232.

Use of the reflecting grating in eclipse photography.

Lockyer (J. N.). Proc. Royal Soc., 27, 107-108.

Sur les réseaux métalliques de M. Rowland.

Mascart. Soc. franç. de Phys. (1882), 232-238; Jour. de Phys., (2) 2, 5-11; Beiblätter, 7, 466-468 (Abs.).

Sur la théorie des réseaux courbes.

Sokoloff (A.). Jour. soc. phys. chim. russe, 15, 293-305.

On a theorem relating to curved diffraction gratings.

Baily (W.). Phil. Mag., (5) 22 (1886), 47-49.

HAND-SPECTROSCOPE.

Handspectroskop.

Simmler. Jour. prackt. chem., **90**, 299; Ann. Phys. u. Chem., **120**, 623.

HELPS.

Ein neuer Hülfsapparat zur Spectralanalyse.

Schultz (H.). Pfluger's Arch. f. Physiol., 28, 197-199; Ber. chem. Ges., 15, 2754 b (Abs.); Beiblätter, 6, 674 (Abs.).

Ueber einige physikalische Versuche und Hülfseinrichtungen.

Z. Instrumentenkunde, 3, 388-392; Beiblätter, 8, 220 (Abs.).

INDEX.

Selbstleuchtender Index im Spectroskop.

Sundell (A. F.). Astronom. Nachr., 102, 90; Beiblätter, 6, 876-877 (Abs.); Z. Instrumenten., 2, 422 (Abs.).

INTERFERENCE APPARATUS.

Sur les phénomènes d'interférence produits par les réseaux parallèles, interférence-spectromètre.

Crova (A.). Comptes Rendus, 72, 855-858, 74, 932-936; Ann. Chim. et Phys., (5) 1, 407-432.

Sur l'application du spectroscope à l'observation des phénomènes d'interférence.

Maseart. Jour. de Phys., 1 (1872), 177.

KOLORIMETER.

Dr. von Konkoly's Speetralapparat in Verbindung mit einem Kolorimeter.

> Gothard (E. von). Centralzeitung für Optik und Mechanik, 4, 241-243.

LAMPS.

Ueber Lampen für monochromatisches Licht.

Laspeyres (H.). Z. Instrumenten., 2, 96-99; Beiblätter, 6, 480.

Un illuminateur spectral.

Le Roux (F. P.). Comptes Rendus, 76, 960, 998-1000; Chem. News, 27 (1873), 233.

Illumination des corps opaques.

Lallemand (A.). Comptes Rendus, 69, 192; 78, 1272.

Spectralilluminator.

Jahresber, d. Chem. (1873), 147.

Illumination of spectroscope micrometers.

Konkoly (N. von). Monthly Notices Astronom. Soc., 44, 250.

End-on in place of transverse illumination in private spectroscopy.

Smyth (Piazzi). Chem. News, 39 (1879), 145, 166, 188; Nature, 19, 400 (Abs.).

Des minima produits, dans une spectre calorifique, par l'appareil réfringent et la lampe qui servent à la formation de ce spectre.

Aymonnet et Maquenne. Comptes Rendus, 87, 494.

Spectre calorifique du Soleil et de la lampe à platine incandescent Bourbouze.

Mouton. Comptes Rendus, 89, 295.

On an improvement of the Bunsen burner for spectrum analysis.

Kingdon (F.). Chem. News, 30, 259.

Sar l'emploi de la lumière Drummond.

Debray (II.). Ann. Chim. et Phys., (3) 65, 331.

Note on the Littrow form of spectroscope.

Brackett (C. F.). Amer. Jour. Sci., (3) 24, 60-61; Beiblatter, 6, 877-876 (Abs.).

The monochromatic lamp.

Brewster (Sir D.). Trans. Edinburgh Royal Soc., 1822.

Ueber das Spectrum der Sell'schen Schwefelkohlenstofflampe.

Vogel (H. W.). Ber. chem. Ges., 8, 96-98.

Relation between radiant energy and radiation in the spectrum of incandescence lamps.

Abney (W. de W.) and Festing (R.). Proc. Royal Soc., 37 (1884), 157-173.

Ein einfacher Brenner für monochromatisches Licht.

Noack. Z. zur Förderung des physischen Unterrichts, 2, 67-69; Beiblätter, 9 (1885), 739 (Abs.).

Natriumlampe für Polarizationsapparate.

Landolt (H.). Z. Instrumentenkunde, 4 (1884), 390; Beiblätter, 8, 339 (Abs.).

FOR MAGNETIC SPECTRA.

Fixing and exhibiting magnetic spectra.

Mayer (A. M.). Jour. Franklin Inst., 91, 355.

MEASURING APPARATUS.

Eine vergleichbare Spectralscale.

Weinhold (A.). Ann. Phys. u. Chem., 138, 417, 434; Jahresber. d. Chemie (1869), 175.

Glass reading-scale for direct-vision spectroscopes.

Proctor (H. R.). Chem. News, 27 (1873), 149; Nature, 6, 473.

Measurement of faint spectra.

Proctor (H. R.). Nature, 6, 534.

Spectroscopic scale.

Capron's Photographed Spectra. London, 1877, p. 17.

Measuring scales for pocket spectroscopes.

Herschel (A. S.). Nature, 18, 300-301; Beiblätter, 2, 560-561 (Abs.).

New form of measuring apparatus for a laboratory spectroscope.

Reynolds (J. E.). Scientific Proc. Dublin Soc., new ser., 1, 5-9; Phil. Mag., (5) 5, 106-110; Chem. News, 37 (1878), 115-116.

Messung des Brechungesexponenten während des Unterrichtes.

Kurz (A.). Carl's Repert., 18, 190-192.

Mesure des indices de réfraction des liquides à l'aide des lentilles formées des mêmes.

Piltehikoff. Jour. soc. phys. chim. russe, 13, 390-410; Beiblätter, 7, 189-190 (Abs.); Jour. de Phys. (2) 1, 578-579 (Abs.).

Eine Interferenz-Scala für das Spectroskop.

Muller J.). Dingler's Jour., 199, 133-145.

Combination der Interferenz-Seala mit der photographischen Spectral-Seala.

Müller (J.). Dingler's Jour., 199, 268-271.

FOR METALLIC SPECTRA.

Apparat zur Objectivdarstellung der Metallspectren.

Edelmann (Th.). Ann. Phys. v. Chem., **149**, 119-122; Chem. Centalblatt (1872), 691; Jour. Chem. Soc., (2) **11**, 461 (Abs.).

METEOROLOGICAL.

A meteorological spectroscope.

Donelly (Col. J. F.). Nature, 26, 501; Beiblätter, 7, 25 (Abs.); Jour. de Phys., (2, 3, 44, (Abs.). (See Rain-Band Spectroscope, below.)

SPECTRO-MICROMETERS.

Illumination of spectroscope micrometers.

Konkoly (N. von). Monthly Notices Astronom. Soc., 44, 250.

A convenient eve-piece micrometer for the spectroscope.

Rood (O. N.). Amer. Jour. Sci., (3) 6, 44-45; Phil. Mag., (4) 46, 176.

Direct-vision micrometer for pocket spectroscopes.

Proctor (H. R.). Chem. News, 27 (1873), L50.

A new form of micrometer for use in spectroscopic analysis.

Watts (W. M.), Proc. Physical Soc., 1, 160-164; Phil. Mag., (4) 50, 82-85; Ann. Phys. u, Chem., 156, 313-318; Chem. News, 32 (1875), 144.

MICRO-SPECTROSCOPES. (SPECTRUM-MICROSCOPES.)

Some technical applications of the spectrum-microscope.

Sorby (H. C.). Quar. Jour. Microscop. Sci., 9 (1869), 058-080; Div. ler's Jour., 198, 243-254, 004-048.

A new and improved microscope spectrum apparatus.

Sorby H. C.). Monthly Microscop. Jour. 13, 198-208.

A new micro-spectroscope, and on a new method of printing a description of the spectra seen with the spectrum microscope.

Sorby (H. C.). Chem. News, 15, 220.

Use of the micro-spectroscope in the discovery of blood-stains.

Herepath (W. Bird). Chem. News, 17, 113, 123.

Spectrum analysis as applied to microscopic observation. Suffolk (W. T.). Chem. News, **29** (1874), 195.

Binoculares Spectrum-Mikroscop.

Jahresber. d. Chemie, (1869), 175.

New arrangement of a binocular spectrum-microscope.

Crookes (W.). Proc. Royal Soc., 17, 443.

Ueber ein Polari-Spectrum-Mikroscrop, mit Bemerkungen über das Spectrumocular.

Rollett (A.). Z. Instrumentenkunde, 1, 366-372; Beiblätter, 6, 229-230 (Abs.); Z. analyt. Chemie, 21, 554-555 (Abs.).

Mikrochemische Reactionsmethoden im Dienste der technischen Microscopic.

Tschirch (A.). Generalversammlung d. deutsch. Apotheker Ver. 1883; Archiv f. Pharm., (3) **20**, 801-812; Jour. Chem. Soc., **44**, 376-378 (Abs.).

MINERALOGICAL SPECTROSCOPE.

The spectroscope applied to mint-assaying.

Outerbridge (A. E.). Jour. Franklin Inst., 98, 276; Jahresber. d. Chemie, (1868), 130.

MIRRORS.

Sur la transparence actinique de quelques milieux et en particulier sur la transparence actinique des miroirs de Foucault et leur application en photographie.

Chardonnet (de). Jour. de Phys., (2) 1, 305-312; Comptes Rendus, 94, 1171.

Miroir tremblant pour la recomposition des couleurs du spectre.

Luvini (J.). Les Mondes, 43, 427-429; Beiblätter, 1, 556 (Abs.).

Miroir tournant pour la recomposition de la lumière spectrale.

Lestrade (Lavaut de). Les Mondes, 44, 416-417.

Neues Spiegelprisma mit konstanten Ablenkungswinkeln. Absteck ganzer und halber rechter Winkel mit den Wollaston'schen Spiegelprisma

Bauernfeind (C. M.). Ann. Phys. u. Chem., 134, 169-172.

NEW SPECTROSCOPE.

Un nouveau spectroscope.

Govi (S. G.), Chem. News, 52 (1885), 201 (Abs.); Comptes Rendus, 101 (1885).

Ueber ein neues Speetroskop.

Gothard E. von). Ber. aus. Ungarn, 2 (1884), 263-265; Beiblatter, 11 (1887), 37 (Abs.).

OPTOMETER.

Sur un optomètre spectroscopique.

Zenger (C. V.). Comptes Rendus, 101 (1885), 1003; Amer. Jour. Sci., (3) 31, 60.

OVERLAPPING SPECTROSCOPE.

An overlapping spectroscope.

Love (J.). British Assoc. Rept. (1881), 564; Beiblätter, 8.

OXYHYDROGEN APPARATUS.

Production of spectra by the oxyhydrogen flame.

Marvin (T. H.). Phil. Mag., (5) 1, 67-68; Jour. Chem. Soc., 2 (1876), 156 (Abs.).

PHOSPHORESCENT EYE-PIECE.

Spectroscop mit phosphorescirendem Ocular.

Lommel (E.). Ann. Phys. u. Chem., n. F. 20, 847.

PHOSPHOROGRAPHIES.

Sur les phosphorographies du spectre solaire.

Becquerel (E.). Jour. de Phys., 11 (1882), 139.

Phosphorographies du spectre solaire infra-rouge.

Becquerel (H.). Comptes Rendus, 96 (1883); Amer. Jour. Sci., (3) 25, 230.

Phosphorograph of the spectrum.

Draper. Amer. Jour. Sci., (3) 21, 171.

Phosphorographie, augewandt auf die Photographie des Unsichtbaren.

Zenger (K. V.). Comtes Rendus, 103 (1886), 454-456; Beiblätter, 11 (1887), 94 (Abs. .

PHOTOGRAPHIC SPECTROSCOPY.

Notice imprimée sur les effects chimiques des radiations et sur l'emploi qu'en a fait M. Daguerre pour fixer les images de la chambre noire.

Biot. Comptes Rendus, 9, 200.

Application aux opérations photographiques des propriétés reconnus par M. Ed. Becquerel dans ce qu'il nomme les rayons continuateurs.

Gaudin. Comptes Rendus, 12, 862.

Action des rayons rouges sur les placques daguerriennes.

Foucault et Fizeau. Comptes Rendus, 23, 679.

Observations sur les expériences de M. M. Foucault et Fizeau.

Becquerel (Ed.). Comptes Rendus, 23, 800.

Remarques. Foucault (L.). Do., 856.

Des actions que les diverses radiations solaires exercent sur les couches d'iodure, de chlorure ou de bromure d'argent.

Claudet. Comptes Rendus, 25, 554.

Note sur ce Mémoire. Becquerel (Ed.). Do., 594.

Note sur les transformations successives de l'image photographique par la prolongation de l'action lumineuse.

Janssen (J.). Comptes Rendus, 91, 199.

Beschreibung eines höchst einfachen Apparatus um das Spectrum zu photographiren.

Vogel (H. W.). Ann. Phys. u. Chem., 154, 306.

Ueber die Hülfsmittel, photographische Schichten für grüne, gelbe und rothe Strahlen empfindlich zu machen.

Vogel (H. W.). Ber. chem. Ges., 17, 1196-1203; Jour. Chem. Soc., 46, 1081 (Abs.); Beiblätter, 8, 583-585 (Abs.).

Early contributions to spectrum-photography and photo-chemistry.

Draper (J. W.). Nature, 10, 243-244.

Spectrum photography.

Lockyer (J. N.). Nature, 10, 109, 254.

Photographie du spectre chimique.

Prazmowski. Comptes Rendus, 79, 108.

Theory of absorption-bands in the spectrum, and its bearing in photography.

Amory (Dr. Rob't). Proc. Amer. Acad., 13, 216.

Dunkle Linien in dem photographirten Speetrum weit über dem sichtbaren Theil hinaus.

Muller (J.). Ann. Phys. u. Chem., 97, 135.

Physics in photography.

Abney (W. de W.). Nature, 18, 489-491, 528-531, 543-546.

Method of fixing, photographing, and exhibiting the magnetic spectra.
Mayer (A. M.). Chem. News, 23 (1871), 266.

Reversal of the metallic lines as seen in over-exposed photographs of spectra.

Hartley (W. N.). Proc. Royal Sec., 34, 84.

Reversal of the developed photographic image.

Abney (W. de W.). Phil. Mag., (5) 10, 200-208.

Photographische Spectral-Beobachtungen im rothen und indischen Meere. Vogel (H. W.). Ann. Phys. u. Chem., **156**, 319-325.

Delicacy of spectrum photography.

Hartley (W. N. l. Proc. Royal Soc., 36 (1885), 421-422; Jour. Chem. Soc., 48 (1885), 466 (Abs.).

Ueber neue Fortschritte in dem farbenempfindlichen photographischen Verfahren.

Vogel (H. W.). Sitzungsber, preuss, Akad., 51 (1886), 1205-1208;Photogr. Mitt., 22, 295; Beiblatter, 11 (1887), 255.

Ueber einige geeignete praktische Methoden zur Photographie des Spectrums in seinen verschiedenen Bezirken mit sensibilisirten Bromsilberplatten.

Eder (J. M.). Monatschr. f. Chemie, 7, 1886), 42,4454; Beiblatter, 11 (1887), 50, A'e. ; Jour. Chem. Soc., 52 (1887), 93 (Abs.).

PHOTOMETERS.

Ein neues Photometer.

Glan (P.). Ann. Phys. u. Chem., n. F. 1, 351.

Photometrische Untersuchungen.

Ketteler (E) und Pulfrich (C). Ann. Phys. u. Chem., n. F. 15, 537-578; Amer. Jour. Sci., (3) 23, 486-487 (Abs.).

....

Études photométriques.

Cornu (A.). Jour. de Phys., 10, 189-198; Beiblätter, 6, 229 (Abs.).

Ein Photometer zu schulhygienischen Zwecken.

Petrusehewski (Th.). Jour. soc. phys. chim. russe, **16**, (2) 295-303, 1884; Beiblätter, **9** (1885), 248 (Abs.).

POLARIZATION SPECTROSCOPES.

A rotary polarization spectroscope of great dispersion.

Tait (P. G.). Nature, 22, 360-361; Beiblätter, 4, 725 (Abs.).

Ein Polarizationsapparat aus Magnesiumplatincyanur.

Lommel (E.). Ann. Phys. u. Chem., n. F. 13, 347.

PRISMS.

Absorption of light by prisms.

Robinson (T. R.). Observatory (1882), 53-54; Beiblätter, **6**, 589 (Abs.).

Projection du foyer du prisme.

Crova (A.). Jour. de Phys., (2) 1, 84-86.

Étude des aberrations des prismes et de leur influence sur les observations spectroscopiques.

Crova (A.). Ann. Chim. et Phys., (5) 22, 513-543.

Bemerkungen über Prismen.

Radau (R.). Ann. Phys. u. Chem., 118, 452.

Déplacement des raies du spectre sous l'action de la température du prisme.

Blaserna (P.). Arch. de Genève, (2) **41**, 429-430; Ann. Phys. u. Chem., **143**, 655-656; Jour. Chem. Soc., (2) **10**, 118 (Abs.); Phil. Mag., (4) **43**, 239-240.

A direct-vision compound prism by Merz, with dispersion almost double that of ordinary flint glass.

Mr. Gassiot. Proc. Royal Soc., 24, 33.

Note on the use of compound prisms.

Browning (J.). Monthly Notices Astronom. Soc., 31, 203-205.

Auflösung scheinbar einfacher Linien durch Vermehrung der Prismen. Merz (Sigismund). Ann. Phys. u. Chem., 117, 655. The best form of compound prism for the spectrum microscope.

Sorby (II. C.). Nature, 4, 511-512.

Ueber ein verbessertes Prisma à vision directe.

Braun (C.). Ber. aus Ungarn, 1, 197-200.

Ein Speetroscop à vision directe mit nur einem Prisma.

Emsmann (H.). Ann. Phys. u. Chem., 150, 636.

Geradsichtiges Prisma.

Fuchs (F.). Z. Instrumentenkunde, 1, 349-353; Z. analyt. Chemie., 21, 555.

Nouveau modèle de prisme pour spectroscope à vision directe.

Hofmann (J. G.). Comptes Rendus, 79, 581.

Geradsichtige Prismen.

Riccó (A.). Z. Instrumentenkunde, 2, 105; Z. analyt. Chem., 21, 555 (Abs.); Beiblatter, 6, 794 (Abs.).

Minimum du pouvoir de resolution d'un prisme.

Thollon (L.). Comptes Rendus, 92, 128-130.

The magnifying power of the half-prism as a means of obtaining great dispersion, and on the general theory of the half-prism spectroscope.

Christie (W. H. M.). Proc. Royal Soc., 26, 8-40; Beiblatter, 1, 556-561 (Abs.).

New form of spectroscope with half-prisms.

Chem. News, 35 (1875), 161.

Use of prisms of flint glass.

Rood (O. N.). Amer. Jour. Sci., 85, 356,

Ueber die anomale Dispersion spitzer Prismen.

Lang (V. von). Ann. Phys. u. Chem., 143, 269.

Nicht alle Quarzprismen verlängern das Spectrum am ultra-violetten Ende.

Salm-Horst Der Furst . Ann. Phys. u. Chem., 109, 158.

Use of carbon bisulphide in prisms.

Draper (H.). Amer. Jour. Sci., (3) 29, 269-277, 1885; Jour. Chem. Soc., 43, 853 (Als.), 1885; Jour. de Phys., (2) 5, 132 (Abs.), 1886. Ueber die Anwendung von Schwefelkohlenstoffprismen zu spectroscopischen Beobachtungen von hoher Präcision.

Hasselberg (B.). Ann. Phys. u. Chem., (2) 27 (1886), 415-436.

Neues Flüssigkeitsprisma für Spectralapparate.

Wernicke (W.). Z. Instrumentenkunde, 1, 353-357; Beiblätter, 6, 94-95 (Abs.); Z. analyt. Chemie, 21, 555.

PROJECTION OF THE SPECTRUM.

Projection du foyer du prisme.

Crova (A.). Jour. de Phys., 11 (1882), 84.

Projection of the Fraunhofer lines of diffraction and prismatic spectra on a screen.

Draper (J. C.). Amer. Jour. Sci., (3) 9, 22-24; Phil. Mag., (4) 49, 142-4.

Nouvelle méthode pour projecter les spectres.

Moigno. Les Mondes, 43, 554-5; Beiblätter, 1, 555.

PROTUBERANCE SPECTROSCOPE.

Protuberanz Spectroscop mit excentrischer bogenförmiger Spaltvorrichtung.

Brunn (J.). Z. Instrumentenkunde, 1, 281-282; Beiblätter, 6, 230 (Abs.).

QUANTITATIVE APPARATUS.

Quantitative Analyse durch Spectralbeobachtung, Apparat.

Hennig (R.). Ann. Phys. u. Chem., 149, 350.

Zur quantitativen Spectralanalyse.

Krüss (H.). Carl's Repert., 2, 17-22.

RAIN-BAND SPECTROSCOPE.

Rain-band Spectroscope.

Bell (L.). Amer. Jour. Sci., (3) 30, 347.

REFLECTOR.

Anwendung eines Reflectors bei Spectraluntersuchungen.

Fleck. Jour. prackt. Chemie, n. F. 3 (1870), 352; Jour. Chem. Soc., (2) 9, 857 (Abs.).

REFRACTOMETERS.

Sur un réfractomètre destiné à la mesure des indices et de la dispersion des corps solides.

Soret (C.). Comptes Rendus, 95, 517-520; Belblätter, 6, 870-72 (Abs.); Z. Instrumenten., 2, 444-415 (Abs.).

Sur l'emploi d'un verre biréfringent dans certaines observations d'analyse spectrale.

Cruls, Comptes Rendus, 96, 1295-1294; Nature, 28, 48 (Abs.); Belblatter, 7, 529 (Abs.).

Interference phenomena in a new form of refractometer.

Michelson (A. A.). Amer. Jour. Sci., (3) 23, 305-400; Phil. Mag., (5) 13, 256-242; Beiblatter, 7, 534-535 (Abs.).

Appareils refringents en sel gemme.

Desains (P.). Comptes Rendus, 97, 689, 732; Beiblatter, 7, 858 Abs. (...

A new refractometer for measuring the mean refractive index of plates of glass and lenses by the employment of Newton's rings.

Royston-Pigott (G. W.). Proc. Royal Soc., 24, 393-399.

REGISTERING SPECTROSCOPE.

A registering spectroscope.

Huggings (W.). Proc. Royal Soc., 19, 317-318; Phil. Mag., (4) 41, 544-546; Ann. Chim. et Phys., (4) 26, 275-276; Chem. News, 23 (1871), 98.

REVERSION SPECTROSCOPES.

Ein neues Reversionsspectroscop.

Zollner (F.). Ber. d. Sachs, Ges. d. Wiss., 23, 200-200; Ann. Phys., u. Chem., 144, 449-456; Phil. Mag., (4) 43, 47-52; Jahresher, d. Chemie (4869), 175.

Ein neuer Reversionsspeetralapparat.

Konkoly (N. ven). Centralzeitung f. Optik u. Mechanik, 4, 122-124; Beiblatter, 7, 595; Ber. aus Ungarn, 1, 128-199.

Reversion spectroscope.

Langley S. P.), Comptes Rendus (1884), 1145-1147.

On a method of estimating the thickness of Young's Reversing Layer. Pulsifer (W. H.). Amer. Jour. Sci., (2017, 203.

A new form of reversible spectroscope.

Stevens (W. L.). Amer. Jour. Sci., (3) 23, 226-229.

RIGID SPECTROSCOPES.

Description of a rigid spectroscope; constructed to ascertain whether the position of the known and well-defined lines of a spectrum is constant while the coefficient of terrestrial gravity under which the observations are taken is made to vary.

Gassiot (J. P.). Proc. Royal Soc., 14, 320.

On the observations made with a rigid spectroscope by Captain Mayne and Mr. Connor.

Gassiot (J. P.). Proc. Royal Soc., 16, 6.

ROTARY SPECTROSCOPE.

Ueber einen rotirenden Spectralapparat.

Lohse (O.). Z. Instrumentenkunde, 1, 22-25; Beiblätter, 5, 278.

SCALES.

(See "Measuring Apparatus.")

SCREENS.

Die Beugungserscheinungen geradlinig begrenzter Schirme.

Lommel (E.). Abhandl. d. bayr. Akad., (2) 15, 529-664, 1886; Beiblätter, 11 (1887), 42-46 (Abs.).

APPARATUS FOR SECONDARY SPECTRA.

On a secondary spectrum of very large size, with a construction for secondary spectra.

Rood (O. N.). Amer. Jour. Sei., (3) 6, 172-180.

Du spectre secondaire et de son influence sur la vision dans les instruments d'optique.

Foucault (Léon). Ann. Chim. et Phys., (5) 15, 283.

SELENACTINOMETER.

Un Selénactinomètre.

Morize (H.). Comptes Rendus, 100, 271-272; Beiblätter, 9, 256.

SLITS FOR SPECTROSCOPES.

Sur un spectroscope à fente inclinée.

Garbe (G.). Comptes Rendus, 96, 836; Jour. de Phys., 12 (1883), 318.

Die Anwendung des Vierordt'sehen Doppelspaltes in der Spectralanalyse.

Dietrich (W.). Beiblatter, 5, 438-141.

Protuberanzspectroscop mit excentrischer, bogenförmiger Spaltvorrichtung.

Brunn (J.). Z. Instrumenten., 1, 281; Beiblatter, 6, 230.

Spectralspalt mit symmetrischer Bewegung der Schneiden.

Kruss (H.). Carl's Repert., 18, 217-228; Z. analyt. Chemie, 21, 182-101; Beiblatter, 6, 286 (Abs.); Jour. Chem. Soc., 42, 1229 (Abs.);
 Z. Instrumenten., 3, 62-63.

Spectroscope with slide, approved by Tyndall and others.

Hofmann. Chem. News, 26 (1872), 180.

Slit for the spectroscope.

Tucker (Alex. E.). Chem. News, 41 (1880), 79.

SPECTRO-BOLOMETER.

Use of the spectro-bolometer.

Langley (S. P.). Amer. Jour. Sci., (3) **21**, 187; **24**, 305; **25**, 170; **27**, 169; **30**, 477.

SPECTROGRAPH.

Beschreibung eines Spectrographen mit Flüssigkeitsprisma.

Lobse (O.). Z. Instrumenten., **5** (1884), 11-13; Beiblatter, **9** (1885), 167 (Abs.).

SPECTROMETERS.

Description d'un spectromètre.

Zantedeschi, Comptes Rendus, 54, 208.

Description d'un nouveau spectromètre à vision directe rendu plus simple et moins dispendieux.

Valz. Comptes Rendus, 57, 69, 141, 298.

On a spectrometer and universal goniometer, adapted to the ordinary wants of a laboratory.

Liveing (G. D.). Proc. Cambridge Phil. Soc., 4, 343.

On a new form of spectrometer.

Draper (J. W.). Amer. Jour. Sci., [3) 18, 30-34; Phil. Mag., (5) 7, 513-516; Beiblatter, 3, 621.

Interferenzspectrometer.

Fuchs (F.). Z. Instrumenten., 1, 326-329; Beiblätter, 6, 228.

Das Lang'sche Spectrometer.

Miller (F.). Carl's Repert., 16, 250-251.

Der Fixator, ein Ergänzungsapparat des Spectrometers.

Ketteler (E.). Carl's Repert., 17, 645-651.

A Spectrometer.

Browning (J.). Monthly Notices Astronom. Soc., 33, 411.

De la spectrométrie, spectromètre.

Champion (P.), Pellet (H.), et Grenier (M.). Comptes Rendus, 76, 707-711; Jour. Chem. Soc., (2) 11, 934 (Abs.).

SPECTROPHOTOMETERS.

Ueber ein Spectrophotometer.

Zahn (von). Ber. d. naturforsch. Ges. in Leipzig, 5, 1-4.

Ein Spectrophotometer.

Fuchs (F.). Z. Instrumenten., 1, 349-353; Beiblätter, 6, 228.

Ein neues Spectrophotometer.

Hüfner (G.). J. prackt. Chemie, n. F. 16 (1877), 290; Chem. News, 37 (1878), 31; Carl's Repert., 15, 116-118.

On a spectrophotometer.

Glazebrook (R. T.). Proc. Cambridge Phil. Soc., **4**, 304–308; Beiblätter, **8**, 211–212 (Abs.).

Étude sur les spectrophotomètres.

Crova (A.). Comptes Rendus, 92, 36-37; Phil. Mag., (5) 11, 155-156.

Description d'un spectrophotomètre.

Crova (A.). Ann. Chim. et Phys., (5) 29, 556-573.

Das neue Spectrophotometer von Crova, verglichen mit dem von Glan, nebst einem Vorschlag zur weiteren Verbesserung beider Apparate. Zenker (W.). Z. Instrumenten., 4, 83-87; Beiblätter, 8, 499.

Ueber die Unwandlung meines Photometers in ein Spectrophotometer.

Wild (H.). Ann. Phys. u. Chem., n. F. 20, 452-468; Nature, 29, 253 (Abs.); Jour. de Phys., (2) 3, 142-143 (Abs.).

Ein Spectrophotometer.

Wild (H.). Dingler's Jour., 252, 462-465.

SPECTROPOLARISCOPE.

A spectropolariscope for sugar analysis.

Levison (W. G.). Amer. Jour. Sci., 124, 469.

3 т

SPECTROSCOPES (MISCELLANLOES).

Construction of the spectroscope.

Rutherfurd L. M. (. Amer. Jour. Sci., (3) **39**, 1869), 129. Note by Ditscheiner in Sitzungsber, Wiener Akad., **52** 11, 542, 563-568.

Construction of the spectroscope.

Cooke (J. P., Jr.). Amer, Jour. Sci., 90, 305.

Description of a large spectroscope.

Gibbs (Wolcott). Amer. Jour. Sci., (2) 25, 110.

Spectral-Apparat.

Kirchhoff (G.) und Bunsen (R.). Ann. Phys. u. Chem., 110, 162;
Jour. prakt. Chem., 85, 65, 74.

Spectral-Apparat.

Mousson (A.). Ann. Phys. u. Chem., 112, 428.

Ursache der mangelnden Proportionalität in den Abständen bestimmter Streifen bei verschiedenen Apparaten.

Gottschulk (F.). Ann. Phys. u. Chem., 121, 64-96.

Notiz zur Theorie der Spectralapparate.

Ditscheiner (L. . Ann. Phys. u. Chem., 129, 336.

Convenient form of spectroscope for use in a laboratory.

Browning (J.). Chem. News, 22 (1870), 229.

Improvement of the spectroscope.

Grubb (T.), Chem. News, 29 (1874), 222.

On a quartz and Tecland spar spectroscope corrected for chromatic aberration.

Steno W. H.; Chem. News. 41, 91.

Note accompagnant le présentation de trois nouveaux spectroscopes,

Janssen (J. Comptes Rendus, 55, 576,

Un appareil destiné à réproduire les expériences d'optique, relativ se de réfraction, à la réflexion de la lumière polarisée, à la mesure des indices et à la spectroscopie.

Lutz Comptes Rendes, 34 201.

Line Verbesserung an Spectralapparaten.

Maller aF. Z. Instrumenten i 2/2 more Berkhatter, 6, 231.

Ein sehr einfacher und wirksamer Spectralapparat.

Konkoly (N. von). Centralzeitung f. Optik u. Mechanik, 4, 76-77; Beiblätter, 7, 456 (Abs.); Z. Instrumenten., 3, 324 (Abs.); Ber. aus Ungarn, 1, 134.

Vorschlag zur Construction eines neuen Spectralapparates.

Lippich (F.). Z. Instrumenten., 4, 1-8; Beiblätter, 8, 300-302 (Abs.).

Neuere Apparate für die Wollaston'sche Methode zur Bestimmung von Lichtbrechungsverhältnissen.

Liebich (T.). Z. Instrumentenkunde, 4, 185-189.

Nouveau spectroscope.

Thollon (L.). Jour. de Phys., 7, 141-148.

Spectroscop-Apparate.

Jahresber. d. Chemie, (1861) 41, (1862) 27, (1863) 114, (1864) 115, (1865) 94, (1866) 78, (1867) 105, (1868) 130, 132, (1869) 175, (1870) 1062, (1872) 948, (1873) 146, 147, (1874) 152, (1876) 142.

Spectralapparat.

Mitscherlich. Jour. prakt. Chem., 86, 13.

Arcobaleno in mare e modificazione allo spettroscopio descritto nel Vol. V. Riccò (A.). Mem. spettr. ital., 8, 87.

Nouveau spectroscope.

Stoney. Moniteur scientifique (3) 6, 657.

Apparate zur Untersuchung der Farbenempfindungen.

Glan (P.). Archiv. f. Physiol., 24, 307-308; Beiblätter, 5, 445 (Abs.).

A new spectroscope.

Zenger (C. V.). Phil. Mag., (4) 46, 439-445.

An improvement in the construction of the spectroscope.

Madan (H. G.). Phil. Mag., (4) 48, 118.

 Λ home-made spectroscope.

Furniss (J. J.). Pop. Sci. Monthly, 15, 808.

Description of a large spectroscope.

Gassiot (J. P.). Proc. Royal Soc., 12 (1863), 536.

The improvement of the spectroscope.

Grubb (T.). Proc. Royal Soc., 22, 308-309; Phil. Mag., (4) 48, 532-534; Chem. News, 29, 222-223; note by G. G. Stokes, Proc. Royal Soc., 22, 309-310, and Phil. Mag., (4) 48, 534.

Neue Einrichtung des Spectroscops.

Littrow (Otto von). Sitzungsber, Wiener Akad., 46 II, 521; 48 II, 26-32; note by Prof. C. F. Brackett in Amer. Jour. Sci., 124, 60.

SPECTRO-TELESCOPES.

Ein Spectrotelescop.

Glan (P.). Ann. Phys. u. Chem., n. F. 9, 492.

Description of a hand spectrum-telescope.

Huggings (W.). Proc. Royal Soc., 16, 241; Ann. Phys. u. Chem., 136, 467.

Spectrum-telescop.

Jahresber, d. Chemie (1868), 133,

A reliable finder for a spectro-telescope.

Winlock (J.). Jour. Franklin Inst., (3) 60, 295.

Ueber das spectroscopische Reversionsfernrohr.

Zollner (F.). Ber. Sächs. Acad. Wiss., 24, 129-134; Phil. Mug., (4)
43, 47; 44, 417-421; Ann. Phys. u. Chem., 147, 617-623; Comptes Rendus, 69, 421.

A tele-spectroscope for solar observations.

Browning (J.). Monthly Notices Astronom. Soc., 32, 214-215.

Appareil destiné à observer les raies noires du spectre solaire.

Dujardin (F.). Comptes Rendus, 8, 253.

Improvements in a solar spectroscope made by Mr. Grubb for Prof. Young.

Erck (W. . Monthly Notices Astronom, Soc., 38, 331-332.

Spectroscopes furnished by the Royal Society to Mr. Hennessey for observing the solar celipse of 1868 at Mussoorie, in India.

Proc. Royal Soc., 16, 169.

An eclipse spectroscope.

Lockver JJ, N.). Nature, 18, 224.

Neue Methode die Sonne spectroscopisch zu bebachten.

Secchi (A.). Ann. Phys. u. Chem., 143, 154; Amer. Jour. Sci., 4, 163-464.

Sur un nouveau moyen d'observer les éclipses et les passages de Vénus,

Secchi, A.J., Comptes Rendu , 73 (9)4-905; Monthly Notices Astronom, Soc., 31, 202

Sur l'emploi de la lunette horizontale pour les observations de la spectroscopie solaire.

Thollon (L.). Comptes Rendus, **96**, 1200-1202; Nature, **28**, 24; Beiblätter, **7**, 456 (Abs.).

Apparatus for recording the position of lines in the spectrum, especially adapted to solar eclipses.

Winlock (J.). Proc. Amer. Acad., 8, 299.

Ein Spectroscop für Cometen-und Fixstern-Beobachtungen.

Gothardt (E. von). Centralzeitung für Optik u. Mechanik, **4**, 121; Beiblätter, **7**, 595 (Abs.).

A star spectroscope.

Gould (B. A.). Proc. Amer. Acad., 8, 499.

A small universal stellar spectroscope.

Merz (S.). Phil. Mag., (4) 41, 129-132.

The spectroscope and the transit of Venus.

Nature, 11, 171,

Spectroscopie stellaire.

Seechi (A.). Comptes Rendus, 65, 389.

Secchi met sous les yeux de l'Académie l'appareil dont il s'est servi pour ses recherches.

Comptes Rendus, 64, 738.

Un nouveau spectroscope stellaire.

Thollon (L.). Comptes Rendus, **89**, 749-752; Beiblätter, **4**, 360-361 (Abs.).

Ueber ein neues Spectroscop, nebst Beiträgen zur Spectralanalyse der Gestirne.

Zöllner (F.). Ann. Phys. u. Chem., 138, 32, 35; Phil. Mag., (4) 38, 360; Amer. Jour. Sci., 99, 58.

Nouveau spectroscope et recherches spectroscopiques de M. Zöllner; rapport verbal sur ces publications.

Faye. Comptes Rendus, 69, 689.

Ein einfaches Ocularspectroscop für Sterne.

Zöllner (F.). Ann. Phys. u. Chem., 152, 503; Phil. Mag., (4) 48, 156-157.

Nouveau spectroscope stellaire.

Zenger (Ch. V.). Comptes Rendus, 101 (1885), 616.

TUBES.

Sur les tubes lumineux à électrodes extérieures.

Alvergniat. Comptes Rendus, 73, 561; Jour. Chem. Soc., (2) 9, 1141 (Abs.).

Tube spectro-électrique destiné à l'observation des spectres de solutions métalliques.

Delachanal (B.) et Mermet (A.). Comptes Rendus, 79, 800; Ann. Chim. et Phys., (5) 3, 485.

Nouveau tube spectro-électrique (fulgator modifié).

Delachanal et Mermet, Comptes Rendus, 81, 726; Bull, Soc. chim., (2) 25, 194-197; Jour. Chem. Soc., 2 (1876), 35 (Abs.).

Ein einfaches Stativ für Geissler'sche Spectralröhren.

Gothardt (E. von). Z. Instrumenten., **3**, 320-321; Centralzeitung 1. Optik u. Mechanik, **4**, 146-147; Beiblatter, **8**, 216.

End-on gas vacuum-tubes in spectroscopy.

Smyth (C. Piazzi). Nature, 19, 458; Beiblätter, 3, 604 (Abs.).

End-on tubes brought to bear upon the carbon and carbo-hydrogen question.

Smyth (C. Piazzi). Nature, 20, 75-76.

Tube for observing the spectra of solutions.

Nature, 13, 75.

Spectralröhren mit longitudinaler Durchsicht.

Zahn (W. von). Ann. Phys. u. Chem., n. F. 8, 675.

ULTRA-VIOLET APPARATUS.

Spectroscope pour la partie ultra-violette du spectre.

Cornu (A.). Les Mondes, 49, 16-17; Beildatter, 3, 501.

Spectroscope destiné à l'observation des radiations ultra-violettes.

Cornu (A.). Jour. de Phys., 8, 185-193; Beiblatter, 4, 34 (Abs.).

UNIVERSAL-SPECTROSCOPI'S.

Ein neues Universalstativ für die Benützung des Taschenspectroskopes, Lepel F. von). Ber. chem Gehl 12, 264-265.

Ein Universalstativ für die Benützung des Taschenspectrockopes.

Vogel, H. W.). Ber chem. Ges., 10, 1428-1432; Jour. Chem. Soc., 2 (1877), 915 (Abs.). Neues Universalspectroskop für quantitative und qualitative chemische Analyse.

Krüss (G.). Ber. chem. Ges., 19 (1885), 2739–2745; Jour. Chem. Soc., 52, 179 (Abs.), 1887; Amer. Jour. Sci., (3) 33 (1887).

WIDTH IN APPARATUS.

Bei der kleinsten Breite des Spectrums haben die Linien die geringste Krummung in dem Spectralapparat.

Ditscheiner (L.). Ann. Phys. u. Chem., 129, 337.

ADDENDA.

On liquids of high dispersive powers for prisms.

Gibbs (Wolcott). Amer. Jour. Sci., vol. 4, 1870.

Appareil destiné à l'étude des intensités lumineuses et chromatiques des couleurs spectrales et de leurs mélanges.

Parinaud et Duboseq. Jour. de Phys., (2) 4 (1885), 271-3.

Sur un nouvel appareil dit "hema-spectroscope."

Thierry (M. de). Comptes Rendus, 100 (1885), 1244.

Sur un nouveau spectroscope d'absorption.

Thierry (M. de). Comptes Rendus, 101, (1885), 811.

Vermischte Mittheilungen, betreffend Spectralapparate.

Vogel (H. C.). Z. Instrumentenkunde, 1, 19-22; Beiblätter, 5, 279 (Abs.).

Sur un nouveau spectroscope stellaire.

Zenger (Ch. V.). Comptes Rendus, 101 (1885), 616.

Sur un optomètre spectroscopique.

Zenger (Ch. V.). Comptes Rendus, 101 (1885), 1003.

Spectroscope pour les hautes fourneaux et le procédé Bessemer.

Zenger (Ch. V.). Comptes Rendus, 101 (1885), 1005.

SPECTRUM ANALYSIS.

a, general.

On the production of coloured spectra by light.

Abney (W. de W.). Proc. Royal Soc., 29 (1879), 190; Chem. News. 39 (1879), 282.

The production of monochromatic light, or a mixture of colours on a screen.

Abney (W. de W.). Phil. Mag., (5) 20 (1885), 172-174.

Mathematische Theorie der Spectralerscheinungen.

Akin (C. II.). Sitzungsber, Wiener Akad., 53 1, 392; 53 11, 574.

Welchen Stoffen die Fraunhofer'schen Linien angehören.

Angström (A. J.). Ann. Phys. u. Chem., 117, 296-302; Proc. Royal Soc., 19, 120.

Spectra of non-metallic bodies.

Angstrom and Thalèn. Chem. News, 36 (1877), 111.

Spectres de quelques corps composés dans les mélanges gazeux en équilibre.

Berthelot et Richard. Ann. Chim. et Phys., (4) 18, 191; Bull. Soc. chim. Paris, 13, 109.

Nouvelles remarques sur la nature des éléments chimiques.

Berthelot. Comptes Rendus, 77, 1347-52, 1357, 1399-1403.

Certain spectral images produced by a rotating vacuum-tube.

Bidwell (Shelford . Nature, 32 (1885), 30.

Photochemical researches.

Bursen (R. and Roscoe (H. E.). Rept. British Assoc. (1856), 1, 62

Spectralanalytische Untersuchungen.

Bunsen (R.—Ann. Phys. u. Chem., 155, 230-252, 366-384; P. Mag., 14150, 417-430, 527-539.

Spectrum Analysis.

Carpenter J. L. Once a Week, 8, 708,

Untersuchungen über die optischen Eigenschaften von fein vertheilten Korpern.

Christiansen (C.). Ann. Phys. u. Chem., t2 24 (1885), 439-446.

Spectren der chemischen Elemente und ihrer Verbindungen.

Ciamician (G. L.). Sitzungsber. Wiener Akad., 76 II, 499; Ber. chem. Ges., 14, 1101a.

Spectroskopische Untersuchungen.

Ciamician (G. L.). Sitzungsber. Wiener Akad., 79 II, 8; Amer. Jour. Sci., 1, 301; Chem. News, 40, 285; 43, 211, 270.

The spectroscope and evolution.

Clarke (F. W.). Pop. Sci. Monthly, 2, 320.

Lecture experiments in chemical analysis.

Clemenshaw (E.). Nature, **31** (1885), 329; Phil. Mag., (5) **19** (1885), 365-368; Jour. Chem. Soc., **48**, 1035 (Abs.); note on the above, Chem. News, **51**, 57, 139.

Sur les raies spectrales spontanément renversables et l'analogie de leurs lois de répartition et d'intensité avec celles des raies de l'hydrogène.

Cornu (A.). Jour. de Phys., (2) 5 (1886), 93-100.

Distinction between spectral lines of solar and terrestrial origin.

Cornu (A.). Phil. Mag., (5) **22** (1887), 458-463; Jour. Chem. Soc., **52**, 313 (Abs.).

Radiant matter spectroscopy and residual glow.

Crookes (W.). Chem. News, **53** (1885), 75, 133; **54** (1886), 28, 40, 54, 63, 75; **55** (1887), 107, 119, 131; Ber. chem. Ges., **16**, R. 1689a; note par Damien (B. C.), Jour. de Phys., (2) **4** (1885), 333.

Genesis of the elements.

Crookes (W.). Chem. News, 55 (1887), 83, 99.

Production normale des trois systèmes de franges des rayons rectilignes. Croullebois. Comptes Rendus, **92**, 1009.

Notice sur la constitution de l'univers. Première Partie, Analyse spectrale.

Delaunay. Ann. des Longitudes, 1869.

Sur quelques procédés de spectroscopie pratique.

Demarçay (Eug.). Comptes Rendus, 99 (1885), 1022, 1069-71.

Loi de répartition des raies et des bandes; analogie avec la loi de succession de sons d'un corps solide.

Deslandres. Comptes Rendus, **103** (1887), 972-976; Chem. News, **55** (1887), 204 (Abs.).

De spectral analyse. Academisch Proefschrift.

Dibbits (H. C.), Rotterdam, 1863, with plates.

Over spectroscopische vergelikingen, betrekking hebbende tot de samenstelling van verschillende lichtbronnen en hoofdzalijk tot den licht en kleurenzin.

> Donders, Proc. Verb. Akad. Wetensch., Amsterdam, 1882-3, No. 10, 4-6.

The spectroscope and its revelations.

Draper (II.). Galaxy, 1, 313.

Essai d'analyse spectrale.

Dubrunfaut. Bull. Soc. chim. Paris, n. s. 13, 412; Comptes Rendus, 70, 418.

Chemical Changes produced by Sunlight.

Duclaux (E.). Comptes Rendus, 103 (1887), 881-2.

Comparative Actions of Heat and Solar Radiation.

Duclaux (E.). Comptes Rendus, 104 (1887), 294-7.

Recherches spectrographiques de la scource normale de lumière et de son emploi à la mesure photochimique de la sensibilité lumineuse.

Eder (J. M.). Wiener, Anzeigen (1885), 93; note par Gripon (E.),
Jour. de Phys., (2) 5 (1886), 241, and note by Abney (W. de W.),
Chem. News. 49, 57. [Chiefly interesting to photographers.]

Position du foyer des rayons de lumière monochromatique qui, issus d'un même point, ont traversé un prisme à vision directe.

Exner (K.). Wiener Anzeigen (1885); Jour. de Phys., (2) 5 (1886), 207.

Les vibrations de la matière et les ondes de l'éther dans les combinaisons photochimiques.

Favé. Comptes Rendus, 86, 560-565.

Influence du magnétisme sur les caractères des lignes spectrales.

Fievez (Ch.). Mém. Acad. Bruxelles, 9 (1885), No. 3; Chem. News, 52 (1885), 302.

Bestimmung des Brechungs-und Farbenzerstreuungs-Vermögens verschiedener Glasarten.

Fraunhofer (Jos.). Denkschr. d. k. Akad. d. Wiss., Munchen, V (18) 4-15), 193–226, mit drey Kupfertafeln, Munchen, 1817, 42.

Mischung von Spectralfarben.

Frey M. von) and Kries (J. von). Archiv f. Physiol. (1881), 336-353; Jour. de Phys., 24 1, 513-514 (Abs.).

Spectrum analysis.

Gasselt, J. P. a. Proc. Royal Soc., 12, 536.

Spectre rotatoire.

Govi (G.). Comptes Rendus, 91, 517.

Note on the theoretical explanation of Fraunhofer's lines.

Hartshorne (H.). Jour. Franklin Inst., 75, 38-43; 105, 38; Les Mondes, 45, 517-522; Beiblätter, 2, 561.

On the methods and recent progress of spectrum analysis.

Hersehel (A. S.). Chem. News, 19, 157.

Die Fraunhofer'schen Linien auf grossen Höhen dieselben wie in der Ebne.

Heusser (J. C.). Ann. Phys. u. Chem., 91, 319.

Der Gang der Lichtstrahlen durch ein Spectroskop.

Hoorweg (J. L.). Ann. Phys. u. Chem., 154, 423.

On the spectra of some of the chemical elements, with maps.

Huggins (W.). Phil. Trans. (1884), 139; Proc. Royal Soc., 13, 43.

Le prix Lalande decerné à M. Huggins.

Comptes Rendus, 75, 1305.

On some recent spectroscopic researches.

Huggins (W.). Quar. Jour. Sci., April, 1869.

Chemische Wirkung der verschiedenen Theile des Spectrums.

Jahresber. d. Chemie. 1, 197, 221; 2, 156; 3, 154; 4, 152, 201; 4, 152, 201; 5, 124, 125, 126, 131, 211; 6, 167; 7, 137; 8, 123; 12, 643; 13, 598; 14, 27; (1870), 930; (1872), 146; (1873), 152; (1874), 152, 958.

Leçons sur l'analyse spectrale.

Jamin. Jour. de Pharm., (3) 42, 9.

Chemische Analyse durch Spectralbeobachtungen.

Kirchhoff (G.) und Bunsen (R.). Ann. Phys. u. Chem., 110, 161-187;
113, 337-379; Phil. Mag., (4) 20, 89.

Spectroscopic method for determining chemical action in solutions containing two or more colored salts.

Krüss (G.). Nature, 26, 568.

Analyse spectrale simplifiée.

Laborde (l'abbé). Comptes Rendus, 60, 53.

On certain remarkable groups in the lower spectrum.

Langley (S. P.). Proc. Amer. Acad., 14, 92.

Nouvelle méthode spectroscopique.

Langley (S. P.). Comptes Rendus, 84, 1145-47; Beiblatter, 1, 471-2.

Recomposition de la lumière spectrale.

Lavaut de Lastrade. Les Mondes, 43, 828-830.

Spectroscopic Notes.

Leach J. H.). Nature, 6, 125; J. Franklin Inst., 93, 418.

Remarques sur quelques particularités observées dans des recherches d'analyse spectrale.

Lecoq de Boisbaudran (F.). Comptes Rendus, **69**, 1189; **76**, 1263-1265; Jour, Chem. Soc., (2) **11**, 1257-1258 (Abs.).

Théorie des spectres.

Lecoq de Boisbaudran (F.). Comptes Rendus, 82, 1264-1266; Jour. Chem. Soc., 2 (1876), 470 (Abs.).

Note on "Spectroscopic Papers."

Liveing (G. D.) and Dewar (J.). Proc. Royal Soc., 29, 166-168; Beiblatter, 4, 38 (Abs.).

On the identity of the spectral lines of different elements.

Liveing #G. D.) and Dewar (J.). Proc. Royal Soc., 32, 225; Bei-blatter, 5, 741.

Studies in Spectrum Analysis.

Liveing (G. D.) and Dewar (J.). Proc. Cambridge Phil. Soc., 3, 208-209; Nature, 19, 163-164.

Preliminary note on the compound nature of the line spectra of elementary bodies.

Lockyer (J. N.). Proc. Royal Soc., 24, 352-354; Phil. Mag., (5) 2, 229-231; Ann. Chim. et Phys., (5) 25, 190; Jahresber, d. Chemie, 14, 45.

The spectroscope and its applications.

Lockver (J. N. . Nature, 7, 125-466; 8, 10, 89, 104.

Some recent methods in spectroscopy.

Lockyer of No. Chem. News, 33, 29.

On a new method of spectrum observation.

Lockyer J. Nov. Proc. Reyel Soc., **30**, 22-31; Chem. News, **41**, 84-87; Amer. Jour. Sci., Jo. **19**, 300 311; Beiblatter, **4**, 361 (Abs.); Ber. enem. Geo., **13**, 938-9; Abs. .

On the necessity for a new departure in spectrum analysis.

Lockyer J. N. . Nature, 21 5-8; Berblatter, 4 363 Abs.).

Recomposition of the component colours of white light.

Loudon (J.). Phil. Mag., (5) 1, 170-171.

Das Stokes'sche Gesetz.

Lubarsch (O.). Ann. Phys. u. Chem., n. F. 9, 665.

Recomposition de la lumière spectrale.

Luvini (J.). Les Mondes, 44, 97-99.

Recherches sur la comparaison photométrique des scources diversement colorées, et en particulier sur la comparaison des divers parties d'une même spectre.

Macé de Lépinay (J.) et Nicati (W.). Bull. soc. franç. de Phys. (1883), 11-23; Jour. de Phys., (2) **2**, 64-76; Ann. Phys. u. Chem., n. F. **22** (1884), 567.

Applications des spectres cannelées de Fizeau et Foucault.

Macé de Lépinay (J.). Jour. de Phys., (2) 4 (1885), 261-271.

The logical spectrum.

Macfarlane (A.). Phil. Mag. (5) 19, 286.

Spectre chimique rendu visible avec ses raies cannelées.

Matthiesen. Comptes Rendus, 16, 1281.

Lectures on spectrum analysis, 1862.

Miller (W. A.). Pharmaceutical Jour., (2) 3, 399; Chem. News, 5, 201.

Recent spectrum discoveries, 1863.

Miller (W. A.). Jour. Franklin Inst., 76, 29.

Exeter Lecture, 1869.

Miller (W. A.). Popular Sci. Rev., Oct., 1869.

Beitrag zur Spectralanalyse.

Mitscherlich (Alex.). Ann. Phys. u. Chem., **116**, 499-504; Ann. Chim. et Phys., (3) **69**, 169; Phil. Mag., (4) **28**, 169.

Sur l'analyse spectrale.

Moigno (Fr.). Cosmos, 22, 23, 52, 75.

Spectrum Analysis.

Morton (II.). Jour. Franklin Inst., (3) 58, 56, 136.

Die Spectren der chemischen Verbindungen.

Moser (J.). Ann. Phys. u. Chem., 160, 177-199; Phil. Mag., (5) 4, 444-449 (Abs.); Nature, 16, 193-194 (Abs.). Résumé de nos connaissances actuelles sur le spectre.

Mousson (A.). Archives de Genève (1861).

Sur le mélange des couleurs.

Moutier (J.). Bull. Soc. Philom., (7) 7, 19-21; Carl's Repert., 19, 672-674.

On certain spectral images produced by a rotating vacuum-tube.

Muirhead (Dr. Henry). Nature, 32 (1885), 55.

Present state of spectrum analysis.

Nature, 22, 523.

Upon an optical method for the measurement of high temperatures.

Nichols (E. L.). Amer. Jour. Sci., (3) 19, 42-49.

Mutual attraction of spectral lines.

Peirce (C. S.). Nature, 21, 108; Beiblatter, 4, 278 (Abs.)

Die Spectren der chemischen Verbindungen.

Plucker. Ann. Phys. u. Chem., 105, 78.

Spectrum Analysis.

Pritchard (C.). Contemporary Review, 11, 481

Lettre relative à l'analyse spectrale.

Regimbeau. Comptes Rendus, 54, 921.

Die Méthode des Spectrophors.

Reinke J. J. Ann. Phys. u. Chem., (2) 27 (1886), 444-448.

Preliminary Report of the Committee appointed to construct and print Catalogues of Spectral Rays arranged upon a Scale of Wavenumbers.

> Rept. British Assoc., 1872; later Reports of same Committee, Repts. British Assoc., 1870 and 1874.

Report of the Committee consisting of Professor Dewar, Dr. Williamson, Dr. Marshall Watts, Captain Abney, Mr. Stoney, Prof. W. N. Hartley, Prof. McLeod, Prof. Carey Foster, Prof. A. K. Huntington, Prof. Emerson Reynolds, Prof. Reinold, Prof. Liveing, Lord Rayleigh, Dr. Arthur Schuster, and Mr. W. Chandler Roberts (Secretary), appointed for the purpose of reporting upon the Present State of our Knowledge of Spectrum Analysis.

Reports of the British Association (1881), 317-422; (1884), 295-350.

Report of the Committee consisting of Professor Sir H. E. Roscoe, Mr. J. N. Lockyer, Professors Dewar, Wolcott Gibbs, Liveing, Schuster, and W. N. Hartley, Captain Abney, and Dr. Marshall Watts (Secretary), appointed for the purpose of preparing a new series of Wave-length Tables of the Spectra of the Elements. (Gives the wave-lengths of the elements and of certain compounds, "so far as they are known to the committee or have proved accessible.")

Report of the British Association, (1884) 351-446, (1885) 288-322, (1886) 167-204.

Sur quelques phénomènes spectroscopiques singuliers.

Riccò (A.). Comptes Rendus, 102 (1886), 851-853.

Secondary Spectra.

Rood (O. N.). Amer. Jour. Sci., 106, 172.

Spectrum Analysis.

Roscoe (H. E.). Cornhill Mag., 6, 109.

Lectures on Spectrum Analysis, delivered at the Royal Institution of Great Britain, 1861, 1862.

Roscoe (H. E.). Chem. News, 4, 118; 5, 218, 261, 287.

Six Lectures on Spectrum Analysis, delivered in 1868, before the Society of Apothecaries of London.

Roscoe (H. E.). London, 1869 (published in book form by Macmillan).

Address to the Chemical Section of the British Association; Remarks on the Spectroscope and Spectrum Analysis.

Roscoe (Prof. Sir H. E.). Rept. British Assoc. (1884), 664.

Principles of spectrum analysis.

Rowney (T.). Jour. Franklin Inst., 75, 31.

Recherches spectroscopiques.

Salet (G.). Bull. Soc. chim. Paris, n. s. 16, 195.

Teachings of modern spectroscopy.

Schuster (A.). Popular Science Monthly, 19, 468.

Résumé des résultats de l'analyse spectrale.

Secchi (A.). N. Arch. Phil. Nat., 23, 145.

Beitrag zur chemischen Analyse durch Spectralbeobachtungen.

Simmler (R. Th.). Ann. Phys. u. Chem., 115, 242, 425.

Madeira spectroscopic.

Smyth (C. Piazzi), Edinburgh, 1881-1882 (book).

Vorschläge zur Herstellung übereinstimmender Angaben.

Steinheil. Ann. Phys. u. Chem., 122, 167.

The Janssen-Lockyer Method of Spectrum Analysis.

Stewart (B.). Nature, 7, 301-302, 381-382.

Spectrum Analysis.

Stewart (B.). Nature, 21, 35.

On a simple mode of climinating errors of adjustment in delicate observations of compared spectra.

Stokes (G. G.). Proc. Royal Soc., 31, 470-473; Beiblatter, 5, 360-361 (Abs.).

On a remarkable phenomenon of crystalline reflection.

Stokes (G. G.). Nature, 31 (1885), 565-568.

On a method of destroying the effects of slight errors of adjustment in experiments of change of refrangibility due to relative motions in the line of sight.

Stone (E. J.). Proc. Royal Soc., 31, 381.

Sur la récomposition de la lumière blanche avec l'aide des couleurs du spectre.

Stroumbo, Comptes Rendus, 103 .1886 , 737-8.

Prismatic Spectra.

Talbot (H. Fox). Phil. Mag., 9 (1836), 3.

Notices spectroscopiques.

Thenard P.). Comptes Rendus, 91, 387; Beiblatter, 5, 44 (Abs.).

Eine neue Methode für spectralanalytische Untersuchungen.

Timiriasef, Sec. phys. chim. russe, Mar. 27, 1872; Ber. chem. Ges., 5, 328-329 (Abs. ; Jour. Chem. Soc., 2, 10, 1113 (Abs.).

Eine Lichteinheit.

Trowbridge (J.), Proc. Amer. Acad. (1885), 494-499; Beiblatter, 9 (1885), 739 (Als.).

Effect of resistance in modifying spectra.

Tyndall (J. . Nature, 7 '81.

Ueber die Beziehungen zwischen Lichtabsorption und Chemismus.

Vogel (H. V.), Monatsber Berliner Akal. (1875), 80-83; Pharmscouncil Jour. Trans., 45, 6, 444-465; Scientific American, 1876. Ueber einige Farbenwahrnehmungen und über Photographie in natürlichen Färben.

Vogel (H. W.). Ann. Phys. u. Chem., (2) 28 (1886), 130–135; Jour. Chem. Soc., 50 (1886), 749 (Abs.).

General methods of observing and mapping spectra.

Watts (W. Marshall). Rept. British Ass. (1881), 317.

On a means to determine the pressure at the surface of the Sun and stars, and some spectroscopic remarks.

Wiedemann (E.). Phil. Mag., (5) **10**, 123-125; Proc. Phys. Soc., **4**, 31-34.

Darstellung eines Spectrums mit einer Fraunhofer'schen Linie. Wüllner (A.). Ann. Phys. u. Chem., 135, 174.

Spectroscopic Notes.

Young (C. A.). Nature, **2**, 338; **3**, 110; **5**, 85-88; Phil. Mag., (5) **16**, 460-463; Beiblätter, **8**, 221 (Abs.); Amer. Jour. Sci., (3) **26**, 333-336; Jour. Franklin Inst., **60**, 331-340; **88**, 416; **90**, 64, 331; **92**, 348; **94**, 349; Chem. News, **22**, 218.

Ueber eine neue spectrometrische Methode.

Zenger (K. W.). Sitzungsber. Prager Ges. (1877), 20-40; Beiblätter, 3, 187-188 (Abs.).

b, QUALITATIVE ANALYSIS.

On the use of the prism in qualitative analysis.

Gladstone (J. H.). Jour. Chem. Soc., 10 (1858), 79.

On a definite method of qualitative analysis of animal and vegetable colouring-matters by means of the spectrum microscope.

Sorby (H. C.). Proc. Royal Soc., 15, 433.

c, QUANTITATIVE ANALYSIS.

Ueber quantitative Bestimmung des Lithiums mit dem Spectral-Apparat.

Ballmann (H.). Z. analyt. Chem., **14**, 297-301; Jour. Chem. Soc., **2** (1876), 550 (Abs.).

De la spectrométrie.

Champion (P.), Pellet (H.), et Grenier (M.). Comptes Rendus, **76**, 707-711; Jour. Chem. Soc., (2) **11**, 934 (Abs.).

Note par M. J. Janssen. Comptes Rendus, **76**, 711-713; Jour. Chem. Soc., (2) **11**, 1258 (Abs.).

Use of the spectroscope in quantitative analysis.

Gibbs (Wolcott). Proc. Amer. Acad., 10, 401, 417.

4 т

De la loi d'absorption des radiations de toute espèce à travers les corps, et de son emploi dans l'analyse spectrale quantitative.

Govi (G.). Comptes Rendus, 85, 1046-1049, 1100-1103; Phil. Mag.,
 (5) 5, 78-80; Jour. Chem. Soc., 34, 190-191 (Abs.); Beiblatter. 2,
 312-343 (Abs.).

Researches on spectrum photography in relation to new methods of quantitative chemical analysis.

Hartley (W. N.). Proc. Royal Soc., 34, 81-84; Ber. chem. Ges., 15, 2924-5 (Abs.); Jour. Chem. Soc., 44, 263-4 (Abs.); Beiblätter, 7, 109-110 (Abs.); Z. analyt. Chem., 22, 539-540 (Abs.); Phil. Trans., 175 (1884), 49-62.

The same, continued. Proc. Royal Soc., **36**, 421-2; Chem. News, **49**, 128 (Abs.); Beiblätter, **8**, 705 (Abs.).

Ueber quantitative Analyse durch Spectralbeobachtung.

Hennig (R.). Ann. Phys. u. Chem., 149, 349-353; Jour. Chem. Soc., (2) 12, 495 (Abs.).

Ueber quantitative Spectralbeobachtung.

Hufner (G.). Jour. prakt. Chem., (2) 16, 290.

Quantitative Spectralanalyse.

Jahresber, d. Chemie, (1872) 873, (1873) 147, 173, (1875) 901.

Analyse spectrale quantitative.

Janssen (J.). Comptes Rendus, 71, 626.

Zur quantitativen Spectralanalyse.

Kruss (H.). Carl's Repert, analyt. Chem., 2, 17-22.

Quantitative Spectralanalyse.

Kruss (H.). Ber, chem. Ges., 18, 983-6; Jour. Chem. Soc., 48 (1885), 835 (Abs.).

Quantitative spectroscopic experiments.

Liveing (G. D.) and Dewar (J.). Proc. Royal Soc., 29, 482-489; Beiblatter, 4, 367 (Abs.).

Quantitative analysis of certain alloys by means of the spectroscope.

Lockyer (J. N.). Proc. Royal Soc., 21, 507-8; Phil. Trans., 164 (1874), 495-499; Phil. Mag., (4) 47, 311-312 (Abs.); Ber. chem. Ges., 6, 1426 (Abs.); Jour. Chem. Soc., (2) 12, 495 (Abs.).

Quantitative Spectralanalyse, insbesondere zu derjenigen des Blutes.

Noorden (C. v.). Ber, chem. Ges., 13 (1880), 439; Z. physiolog. Chem., 4, 9-35.

Quantitative Bestimmung von Farbstoffen durch den Spectralapparat.

Preyer (W.). Ber. chem. Ges., 4, 404.

Analyse quantitative de la lumière blanche.

Rood (O. N.). Les Mondes, 48, 610-611.

Emploi du spectroscope pour la détermination quantitative des matières colorantes.

Schiff (H.). Bull. Soc. chim. Paris, n. s. 16, 97.

Beiträge zur quantitativen Spectralanalyse.

Settegast (H.). Ann. Phys. u. Chem., n. F. 7, 242-271; Jour. Chem. Soc., 36, 828-9 (Abs.).

- Quantitative Bestimmung von Farbstoffen durch den Spectralapparat. Vierordt (K.). Ber. chem. Ges., 4, 327, 457, 519.
- Zur quantitativen Spectralanalyse.

Vierordt (K.). Ber. chem. Ges., 5, 34-38; Ann. Phys. u. Chem., n. F. 3, 357.

Die Anwendung des Spectralapparates zur Photometrie der Absorptionsspectren und zur quantitativen chemischen Analyse.

Vierordt (Dr. Karl). Tübingen, 1873, 8°.

Die Anwendung der quantitativen Spectralanalyse bei den Titrirmethoden.

Vierordt (K.). Ann. Phys. u. Chem., 177, 31-45; Amer. Jour. Sci., (3) 10, 216-7 (Abs.).

Beschreibung einiger quantitativen Spectralanalyse.

Wolff (C. H.). Ber. chem. Ges., 12, 128; Z. analyt. Chem., 18, 38-49.

Anwendung eines Spectrophotometers zur quantitativen Spectralanalyse. (Von Lahn). Ber. d. naturforsch. Ges. in Leipzig, 5, 1-4.

ABSORPTION SPECTRA.

On the photographic method of registering absorption spectra, and its application to solar physics.

Abney (W. de W.). Proc. Phys. Soc., **3**, 43-46; Phil. Mag., (5) **7**, 313-316; Beiblatter, **3**, 621.

Photographic records of absorption spectra.

Abney (W. de W.). Chem. News, 39 (1879), 132.

Absorption spectra of organic bodies.

Abney (Capt.) and Festing (Col.). Chem. News, 43 (1881), 126.

Absorption-spectra thermograms.

Abney (W. de W.) and Festing (R.). Proc. Royal Soc., 38, 77-83; Jour. Chem. Soc., 48 (1885), 1175 (Abs.).

Transverse absorption of light.

Ackroyd (W.). Chem. News, 36, 159-161.

Selective absorption of light.

Ackroyd (W.). Proc. Physical Soc., 2, 110-118; Phil. Mag., (5) 2, 423-430; Beiblatter, 1, 350-2 (Abs.).

Note on the absorption of sea-water.

Aitken (J.). Proc. Royal Soc. Edinburgh, 11, 637; Beiblätter, 7, 372 (Abs.).

Theory of absorption bands in the spectrum, and its bearing in photography and chemistry.

Amory (Dr. Robert). Proc. Amer. Acad., 13, 216.

- Pouvoirs absorbants des corps pour la chaleur; analyse spectroscopique.

 Aymonnet. Comptes Rendus, 83, 971.
- Sur les variations des spectres d'absorption, et des spectres d'émission par phosphorescence d'un même corps.

Becquerel (H.). Comptes Rendus, 102 (1886), 106-110.

Sur les lois de l'absorption de la lumière dans les cristaux et sur une méthode nouvelle permettant de distinguer dans un cristal certaines bands d'absorption appartenant à des corps différents.

Becquerel (II). Comptes Rendus, 103 (1887), 165-169.

Absorption spectrum of nitrogen peroxide.

Bell (L.). Amer. Chem. Jour., 7, 32-34; Jour. Chem. Soc., 48 (1885), 949 (Abs.).

A new form of absorption cell.

Bostwick. Amer. Jour. Sci., (3) 30, 452.

Ueber das Absorptionsspectrum des übermangansauren Kalis und seine Benützung bei chemisch-analytischen Arbeiten.

Brücke (E.). Chemisches Centralblatt, (3) **8** (1877), 139-143; Jour. Chem. Soc., **34**, 242-243 (Abs.).

Das Absorptionsspectrum des Didyms.

Bührig (H.). Jour. prakt. Chem., (2) **12**, 209-215; Amer. Jour. Sci., (3) **11**, 142 (Abs.).

Sur les spectres d'absorption de l'ozone et de l'acide pernitrique.

Chappuis (J.). Comptes Rendus, **94**, 946-948; Jour. Chem. Soc., **42**, 1017 (Abs.); Beiblätter, **6**, 483 (Abs.); Amer. Jour. Sci., (3) **24**, 58-59 (Abs.).

Ueber die Veränderlichkeit der Lage der Absorptionsstreifen.

Claes (F.). Ann. Phys. u. Chem., n. F. 3, 389-414.

Sur la loi de répartition suivant l'altitude de la substance absorbant dans l'atmosphère; les radiations solaires ultra-violettes.

Cornu (A.). Comptes Rendus, 90, 940-946; Beiblätter, 4, 727.

Sur l'observation comparative des raies telluriques et métalliques comme moyen d'évaleur les pouvoirs absorbants de l'atmosphère.

Cornu (A.). Soc. franç. de Phys. (1882), 241-247; Jour. de Phys., (2)
2, 58-63; Z. Instrumenten., 3, 290 (Abs.).

Sur l'intensité calorifique de la radiation solaire et son absorption par l'atmosphère terrestre.

Crova (A.). Comptes Rendus, 81, 1205-1207.

Effect of various dyes on the behavior of silver bromide towards the solar spectrum; connection between absorption and photographic sensitiveness.

Eder (J. M.). Monatsschr. f. Chemie, 6, 927-953; Jour. Chem. Soc., 50, 405 (Abs.).

Connection between absorption and photographic sensitiveness.

Eder (J. M.). Monatschr. f. Chemie, 7, 331-350; Jour. Chem. Soc., 50 (1886), 958 (Abs.).

Salpetersaure Nickellösung als Absorptionspäparat.

Emsmann (II.). Ann. Phys. u. Chem., Erganzungsband 6 (1874), 5534-5; Phil. Mag., (4) 46, 329-530; Jour. Chem. Soc., (2) 12, 113.

Sur les raies d'absorption produites dans le spectre par les solutions des acides hypoazotiques, hypochloriques et chloreux.

> Gernez (D.). Comptes Rendus, 74, 465-468; Jour. Chem. Soc., (2) 10, 280 (Abs.); Ber. chem. Ges., 5, 248 (Abs.).

Note sur le prétendu spectre d'absorption special de l'acide azoteux.

Gernez (D.). Bull. Soc. Philom., (7) 5, 42.

Sur les spectres d'absorption des vapeurs de sélénium, de protochlorure et de bromure de sélénium, de tellure, de protochlorure et de bromure de tellure, protobromure d'iode et d'alizarine.

Gernez (D.). Comptes Rendus, 74, 1190-1192; Jour. Chem. Sec., (2)
10, 665 (Abs.); Phil. Mag., (4) 43, 473-475; Amer. Jour. Sci., (3)
4, 59-60.

Sur les spectres d'absorption de quelques matières colorantes.

Girard (Ch.) et Pabst. Comptes Rendus, 101 (1885), 157-160; Jour. Chem. Soc., 48, 1098 (Abs.).

Ueber den Einfluss der Dichtigkeit eines Körpers auf die Menge des von ihm absorbirten Lichtes.

Glan (P.), Ann. Phys. u. Chem., n. F. 3, 54-82.

Sur la mesure de l'intensité des raies d'absorption et des raies obscures du spectre solaire.

Gouy. Comptes Rendus, 89, 1033-4; Beiblatter, 4, 369-370 (Abs.).

On the action of heat on the absorption spectra and chemical constitution of saline solutions.

Hartley (W. N.). Proc. Royal Soc., 23, 372-373 (Abs.; Ber. chem. Ges., 8, 765 (Abs.); Phil. Mag., (5) 1, 244-245.

On the absorption spectrum of ozone.

Hartley (W. N.). Jour. Chem. Soc., 39, 57–60; Ber. chem. Ges., 14, 672 (Abs.); Beiblatter, 5, 505-506 (Abs.).

On the absorption of solar rays by atmospheric ozone. Part I.

Hartley (W. H.). Jour. Chem. Soc., 39, 111-128; Ber. chem. Ges., 14, 1390 (Abs.).

Researches on the relation between the molecular structure of carbon compounds and their absorption spectra.

Hartley (W. N.). Jour. chem. Soc., 39, 153-168; 41, 45-49; 47, 685-757; 51, 152-202; Beiblatter, 6, 375-6 (Abs.); Nature, 32 (1885), 93-4.

45

Die Oxydationsproducte der Gallenfarbstoffe und ihre Absorptionsstreifen.

Heynsius (A.) und Campbell (G. F.). Archiv. f. Physiol., 4, 497-547;
Jour. Chem. Soc., (2) 10, 307-308 (Abs.).

Absorptionsspectra.

Jahresber. d. Chemie (1875), 124.

Photometrie des Absorptionsspectrums der Blutkörperchen.

Jessen (E.). Zeitschr. f. Biologie, 17, 251-272; Ber. chem. Ges., 15, 952 (Abs.).

On the absorption of radiant heat by carbon dioxide.

Keeler (J. E.). Amer. Jour. Sci., (3) 28, 190-198; Nature, 31, 46.

Zusammenhang zwischen Absorption und Dispersion.

Ketteler (E.). Ann. Phys. u. Chem., 160, 478.

Notiz, betreffend die Dispersionscurve der Mittel mit mehr als einem Absorptionsstreifen.

Ketteler (E.). Ann. Phys. u. Chem., n. F. 1, 340-351.

Experimentaluntersuchung über den Zusammenhang zwischen Refraction und Absorption des Lichtes.

Ketteler (E.). Ann. Phys. u. Chem., n. F. 12, 481-519.

Ueber den Zusammenhang zwischen Emission und Absorption von Licht und Wärme.

> Kirchhoff (G.). Monatsber. d. Berliner Akad., 27 Oct., 1859; Phil. Mag., (4) 19, 163.

> (This contains the statement of the Law of Exchanges, and the first announcement of the discovery of the cause of Fraunhofer's lines.—
>
> Roscoe.)

Ueber das Verhältniss zwischen dem Emissionsvermögen und dem Absorptionsvermögen der Körper für Wärme und Licht.

Kirchhoff (G.). Ann. Phys. u. Chem., **109**, 275, 299; Phil. Mag., (4) **20**, 1.

(This paper contains a discussion of the Mathematical Theory of the Law of Exchanges, and is followed by a postscript on the history of the subject.—Roscoe.)

Beziehungen zwischen der Zusammensetzung und den Absorptionsspectren organischer Verbindungen.

Krüss (J.) und Oecomenides (S.). Ber. chcm. Ges., **16**, 2051-56; **18**, 1426-33; Jour. Chem. Soc., **44**, 1041-2 (Abs.); **48**, 949; Beiblätter, **7**, 897-9 (Abs.).

Üeber das Absorptionsspectrum der flüssigen Untersalpetersäure.

Kundt (A.). Ann. Phys. u. Chem., 141, 157-159; Jour. Chem. Soc.,
(2) 9, 185 (Abs.); Z. analyt. Chem., (2) 7, 64 (Abs.).

Ueber einige Bezeihungen zwischen der Dispersion und Absorption des Lichtes.

Kundt (A.). Ann. Phys. u. Chem., Jubelband, 615-624.

Ueber den Einfluss des Lösungsmittels auf die Absorptionsspectra gelöster absorbirenden Medien.

Kundt (A.). Sitzungsber, d. Munchener Akad, 1877, 234-262; Am. Phys. n. Chem., n. F. 4, 34-54.

Die Absorptionsstreifen in Prismen von Schwefelkohlenstoff, Flintglass und Steinsalz entsprechend.

Lamansky (S.). Ann. Phys. u. Chem., 146, 213-215.

Zur Kenntniss der Absorptionsspectra.

Landauer (J.). Ber. chem. Ges., 11, 1772-1775; 14, 004-004; J. ur. Chem. Soc., 36, 101 (Abs.); 40, 591 (Abs.); Beiblatter, 3, 105-6 (Abs.); 5, 441 (Abs.).

The selective absorption of solar energy.

Langley (S. P.). Amer. Jour. Sci., (3): 25, 169-196; Ann. Phys. 5.
Chem., n. F. 19, 226-244, 384-400; Phil. Mag., (5): 15, 155-18.
Ann. Chim, et Phys., (5): 29, 497-542; Z. Instrumentenkunde, 4, 27-32 (Abs.); Jour. de Phys., (2): 2, 371-374 (Abs.); Jour. Franklit. Inst., 88, 157-8 (Abs.).

Note on the above by Koyl (C. II). Johns Hopkins Univ. Cir. 2 145-6; Phil. Mag., (5) 16, 317-318; Beiblatter, 7, 899

On the amount of atmospheric absorption.

Langley (S. P.). Amer. Jour. Sci., (3) 28 (1885), 163, 242; Phil. Mag., (5) 18, 289-307; Jour. Chem. Soc., 28 (1885), 519; Abs.

Absorption dunkler Wärmestrahlen durch Gasen und Dämpfen.

Leeher und Pernter. Sitzungsber d. Wiener Akad., 82 11, 265; Ph.).
Mag., Jan., 1881; Amer. Jour. Sci., (3, 21, 256.

Ueber die Absorption der Sonnenstrahlung durch die Kohlensäure unserer Atmosphäre.

Lecher (E.). Sitzungber, d. Wiener Akad., 82 11, 851-865.

Weber Ausstrahlung und Absorption.

Lecher (E.). Sitzungsber d. Wiener Akad., 85 11, 441-400; A. Phys. u. Chem., n. F. 17, 477-518 (Abs.).

Ueber die Aenderung der Absorptionsspectra einiger Farbstoffe in verschiedenen Losungsmitteln.

 $\label{eq:Lepel} \textbf{Lepel}~(F,\,\text{von}), \quad \text{Ber. chem. Ges.}~ \textbf{11},~1146-1151;~ \text{Jour. Chem. S} + \ldots \\ \textbf{34}~925~(\Lambda \text{bs.});~ \text{Berbletter},~ \textbf{3}~560.$

On the absorption of great thicknesses of metallic and metalloidal vapours.

Note 1, of Spectroscopic Notes.

Lockyer (J. N.). Proc. Royal Soc., 22, 371.

On a new class of absorption phenomena.

Lockyer (J. N.). Proc. Royal Soc., 22, 378.

On the absorption spectra of metals volatilized by the oxyhydrogen flame.

Lockyer (J. N.) and Roberts (W. C.). Proc. Royal Soc., 23, 344-349;Phil. Mag., (5) 1, 234-239; Jour. Chem. Soc., 2 (1876), 156 (Abs.).

Emploi de la gélatine pour montrer l'absorption dans le spectre.

Lommel (E.). Ann. Chim. et Phys., (4) 26, 279.

Theorie der Absorption und Fluorescenz.

Lommel (E.). Ann. Phys. u. Chem., n. F. 3, 251-283.

Sur la théorie de l'absorption atmosphérique de la radiation solaire. Maurer (J.). Archives de Genève, (3) 9, 374-391.

Absorption des Lichtes durch gefärbten Flüssigkeiten.

Melde (F.). Ann. Phys. u. Chem., 124, 91; 126, 264.

Absorption spectra of brucine, morphine, strychnine, veratrine and santonine in concentrated acids.

Meyer (A.). Archives Pharmaceutical Soc., (3) 13, 413-416; Jour. Chem. Soc., 36, 269.

Absorption spectra of anthrapurpurin.

Perkin (W. H.). Jour. Chem. Soc., (2) 11, 433.

New way of observing absorption spectra.

Phipson (T. L.). Chem. News, 31 (1875), 255.

M. Chautard's classification of the absorption band of chlorophyll.

Pocklington (H.). Pharmaceutical Trans., (3) 4, 61-63.

Ueber die Absorptionsspectra der Chlorophyllfarbstoffe.

Pringsheim. Monatsber. d. Berliner Akad. (1874), 628-659.

Photometrische Untersuchungen über die Absorption des Lichtes in isotropen und anisotropen Medien.

Pulfrich (C.). Ann. Phys. u. Chem., n. F. 14, 177-218; Amer. Jour. Sci., (3) 23, 50 (Abs.); Jour. de Phys., (2) 1, 285-286.

On the absorption bands in the visible spectrum produced by certain colourless liquids.

Russell (W. J.) and Lapraik (W.). Jour. Chem. Soc., **39** (1881), 168-173; Nature, **22**, 368-70; Beiblätter, **5**, 44-45; Amer. Jour. Sci., (3) **21**, 500-501 (Abs.).

Sur le spectre d'absorption de la vapeur du soufre.

Salet (G.). Comptes Rendus, 74, 865-866; Jour. Chem. Soc., (2) 10, 382 (Abs.); Ber. chem. Ges., 5, 323 (Abs.).

Ueber die Absorptionsstreifen des Blattgrüns.

Schonn (L.). Ann. Phys. u. Chem., 145, 166-167; Arch. de Genève, (2) 43, 282-283.

Ueber die Absorption des Lichtes durch Flüssigkeiten.

Schonn (J. L.). Ann. Phys. u. Chem., n. F. 6, 267-270.

Ueber die Absorption des Lichtes durch Wasser, Steinöl, Ammoniak, Alcohol und Glycerin.

Schönn (J. L.). Ann. Phys. u. Chem., Ergänzungsband 8 (1878), 670-5; Jour. Chem. Soc., 34, 693.

Ueber die Lichtempfindlichkeit der Silberhaloidsalze und den Zusammenhang von optischer und chemischer Lichtabsorption.

Schulz-Sellack (C.). Ann. Phys. u. Chem., 143, 161-171; Ber. chem.
Ges., 4, 210-211 (Abs.); Jour. Chem. Soc., (2) 9, 302-303 (Abs.);
Phil. Mag., (4) 41, 549-550 (Abs.).

Sur les spectres d'absorption ultra-violets des différents liquides.

Soret (J. L.). Arch. de Genève, (2) 60, 298-300; Beiblatter, 2, 30-31 (Abs.), 410-411 (Abs.).

Recherches sur l'absorption des rayons ultra-violets par diverses substances; spectres d'absorption des terres de la gadolinite et du didyme.

Soret (J. L.), Arch. de Genève, (2) 63, 89-112; Comptes Rendus, 86, 1062-1064; Beildatter, 3, 196-197 (Abs.).

Sur les spectres d'absorption du didyme et de quelques autres substances extraits de la samarskite.

Soret (J. L.). Comptes Rendus, 88, 422-424.

Recherches sur l'absorption des rayons ultra-violets par diverses substances; nouvelle étude des spectres d'absorption des métaux terrenux.

Soret (J. L.), Arch. de Genève, (3) 4, 261-292; Beiblatter, 5, 124-125 (Abs.).

Absorption des rayons ultra-violets.

Soret, J. L. L., Arch. de Geneve, 3 (4, 377-380); remarques par M. A., Rilliet, do., 380-1.

0

Recherches sur l'absorption des rayons ultra-violets par diverses substances.

Soret (J. L.). Arch. de Genève, (3) 10, 429-494.

Spectre d'absorption du sang dans la partie violette et ultra-violette.

Soret (J. L.). Comptes Rendus, 97, 1269-70; Jour. Chem. Soc., 46, 381

- Absorption der unsichtbaren Strahlen durch Alkalien, Glukoside, u. s. w. Stokes (G. G.). Ann. Phys. u. Chem., 123, 43.
- Ueber eine Methode zur Untersuchung der Absorption des Lichtes durch gefärbte Lösungen.

Tumlirz (O.). Wiener Anzeigen (1882), 165-6; Beiblätter, 7, 895-6; Chem. News, 49, 201.

Observations of absorbing vapours upon the Sun.

Trouvelot (E. L.). Monthly Notices Astronom. Soc., 39, 374.

Die graphische Darstellung der Absorptionsspectren.

Vierordt (K.). Ann. Phys. u. Chem., 151, 119-124.

Ueber die Absorption der chemisch wirksamen Strahlen in der Atmosphäre der Sonne.

Vogel (H. C.). Ber. d. Sächs. Ges. d. Wiss., 24, 135-141; Ann. Phys.
u. Chem., 148, 161-168; Phil. Mag., (4) 45, 345-350; Jour. Chem.
Soc., (2) 11, 712 (Abs.).

Note on this by A. Schuster in Phil. Mag., (4) 45, 350.

Ueber die Beziehung zwischen chemischer Wirkung des Sonnenspektrums, der Absorption und anomalen Dispersion.

Vogel (H.). Ber. chem. Ges., 7, 976-979; Jour. Chem. Soc., (2) 12, 1121-1122.

Ueber die Beziehungen zwischen Lichtabsorption und Chemismus.

Vogel (H.). Monatsber. d. Berliner Akad. (1875), 82-83.

Spectral-photometrische Untersuchungen insbesondere zur Bestimmung der Absorption der die Sonne umgebenden Gashülle.

Vogel (H. C.). Monatsber. d. Berliner Akad. (1877), 104-142.

Absorptionsspectrum des Granats und Rubins.

Vogel (H. W.). Ber. chem. Ges., 10 (1877), 373.

Untersuchungen über Absorptionsspectra.

Vogel (H. W.). Monatsber. d. Berliner Akad. (1878), 409-431.

Ueber Verschiedenheit der Absorptionsspectra eines und desselben Stoffs.

Vogel (H. W.). Ber. chem. Ges., 11, 913-920, 1363-71; Jour. Chem. Soc., 36, 189 (Abs.); Beiblätter, 2, 699-702 (Abs.); note on the above by J. Moser. Ber. chem. Ges., 11, 1416 and 1562; Bull. Soc. chim. Paris, n. ser., 32 (1879), 52.

Ueber den Zusammenhang zwischen dem Absorptionsspectrum und der sensibilisirenden Wirkung von Farbstoffen.

Vogel (H. W.). Ann. Phys. u. Chem., 2) 26, 527-30.

Ueber die Absorption und Brechung des Lichtes in metallisch undurchsichtigen Körpern.

> Wernicke (W.). Monatsber, d. Berliner Akad. (1874), 728-737; Ann. Phys. u. Chem., 155, 87-95.

Untersuchungen über die bei der Beugung des Lichtes auftretenden Absorptionserscheinungen.

Wien (Willy). Ann. Phys. u. Chem., (2) 28 (1886), 117-130.

Einige neuen Absorptionsspectren.

Wolff (C. H.). Carl's Repert., 2, 55-56; Z. analyt. Chem., 22, 96-7; Chem. News, 47, 178 (Abs.).

Ueber die Absorptionsspectren verschiedener Ultramarinsorten.

Wunder (J.). Ber. chem. Ges., 9, 295-299; Jour. Chem. Soc., 1 (1876), 864-5.

Bemerkungen, von R. Hoffmann. Ber. chem. Ges., 9, 494-5.

(For the absorption spectra of particular substances look under those substances.)

ALCALIES AND ALCALOIDS.

Nachweis der Spectralanalyse der Alcalien.

Belohoubek. Jour. prackt. Chem., 99, 235.

Absorption spectra of the alcaloids.

Hartley (W. N.). Chem. News, 51 (1885), 135; Phil. Trans. (1885),
Part II, 9; Proc. Royal Soc., 38, 1-4 and 191-193; Jour. Chem.
Soc., 48 (1885), 1174 (Abs.).

Spectralreactionen der Alcaloïde.

Hock (C.). Ber. chem. Ges., 14 (1881), 2844b (Abs.); Arch. f. Pharm.,
19, 358-9; Comptes Rendus, 93, 849-51; Jour. Chem. Soc., 42, 349 (Abs.); Beiblätter, 6, 232 (Abs.).

Spectra der Alkalien.

Kirchhoff und Bunsen. Jour. prakt. Chem., 80, 449.

Zur Lehre von den Fäulnissalkaloïden.

Poehl (A.). Ber. chem. Ges., 16, 1975-1988.

Absorptionsspectra der Alkalichromate und der Chromsäure.

Sabatier (P.). Beiblätter, 11 (1887), 223.

Absorption der unsichtbaren Strahlen durch Alkaloïde, Glukoside, u. s. w. Stokes (G. G.). Ann. Phys. u. Chem., **123**, 43.

Ueber die Lichtempfindlichkeit der Silberhaloïdsalze unter alkalischer Entwickelung.

Vogel (H.). Ber. chem. Ges., 6, 88-92.

Spectra der Alkalien.

Wolf und Diacon. Jour. prakt. Chem., 88, 67.

ALUMINIUM.

Phosphorescence de l'alumine.

Becquerel (E.). Comptes Rendus, 103 (1886), 1224; 104 (1887), 334-5;
Amer. Jour. Sci., (3) 33, 303 (Abs.); Jour. Chem. Soc., 52, 499 (Abs.); Chem. News, 55 (1887), 99.

Aluminium spark spectrum, photographed.

Capron (J. R.). Photographed Spectra, London, 1877, p. 19, 40, 47.

Renversement des raies spectrales de l'aluminium.

Cornu (A.). Comptes Rendus, 73, 332.

Détermination des longueurs d'onde des radiations très-réfrangibles de l'aluminium, etc.

Cornu (A.). Jour. de Phys., 10, 425-431; Arch. de Genève, (3) 2, 119-126; Beiblätter, 4, 34-35 (Abs.).

Crimson line of phosphorescent alumina.

Crookes (W.). Proc. Royal Soc., 42 (1887), 25-30; Nature, 35 (1887), 310; Amer. Jour. Sci., (3) 33, 304 (Abs.); Chem. News, 55 (1887), 25.

Action des fluorures sur l'alumine.

Frémy et Verneuil. Comptes Rendus, 103 (1887), 738-40.

Specific refraction and dispersion of the alums.

Gladstone (J. H.). Phil. Mag., (5) **20**, 162-168; Jour. Chem. Soc., **50** (1886), 293 (Abs.).

Spectre continu de l'alumine.

Gouy. Comptes Rendus, 86, 878.

Distribution of heat in the spectra of various scources of radiation; white oxide of aluminium, etc.

Jacques (W. W.). Proc. Amer. Acad., 14, 142.

Spectrum von Aluminium.

Jahresber, d. Chemie (1872), 145.

Aluminium métallique, étincelle.

Lecoq de Boisbaudran (F.). Spectres Lumineux, Paris, 1874, p. 102, planche XV. Sur la fluorescence rouge de l'alumine.

Lecoq de Boisbaudran (F.). Comptes Rendus, **103**, 478-482, 554-556, 1107; **104**, 330-334; Jour. Chem. Soc., **52** (1887), 191, 409 (Abs.). Remarques par M. Edm. Becquerel. Comptes Rendus, **104**, 334-36 et 824-26.

Phosphorescence de l'alumine.

Lecoq de Boisbaudran (F.). Comptes Rendus, 103 (1887), 1224-1227;
Jour. Chem. Soc., 52 (1887), 191 (Abs.).

Indice du quartz pour les raies de l'alumine.

Sarasin (Ed.). Comptes Rendus, 85, 1230.

Spectre de l'aluminium dans l'arc voltaïque.

Seechi (A.). Comptes Rendus, 77, 173.

Indices de réfraction des aluns.

Soret (C.). Comptes Rendus, 101, 156-157; Jour. Chem. Soc., 48 (1885), 1097 (Abs.).

Réaction très-sensible de l'alumine.

Vogel (H. W.). Bull. Soc. chim. Paris, n. sér. 28, 475-8.

ANTIMONY.

Antimony Spark Spectrum.

Capron's Photographed Spectra, London, 1877, p. 19, 34.

L'antimoine n'a donné aucune apparence de renversement.

Cornu (A.). Comptes Rendus, 73, 332.

Protochlorure d'antimoine, en solution, étincelle.

Lecoq de Boisbaudran. Spectres Lumineux, Paris, 1874, p. 150, planche

Spectrum of antimony at elevated temperatures.

Lockyer (J. N.). Chemical News, 30, 98.

ARSENIC.

Arsenic spark spectrum, photographed.

Capron's Photographed Spectra, London, 1877, p. 18.

Spectrum of arsenic.

Huntington (O. W.). Proc. Amer. Akad., (2) 9, 35-38; Amer. Jour. Sci., (3) 22, 214-217; Beiblätter, 5, 868 (Abs.).

The spectrum of arsenic at elevated temperatures.

Lockyer (J. N.). Chem. News, 30, 98.

Sur l'origine de l'arsénic et de la lithine dans les eaux sulfatées calciques Schlagdenhauffen. Jour. de Pharm., (5) 6, 457-463; Jour. Chem. Soc., 44, 302 (Abs.).

ASTRONOMICAL.

 α , GENERAL.

Spectroscopic Researches.

D'Arrest. Nature, 17, 311.

Notes on some recent astronomical experiments at high elevations on the Andes.

Copeland (R.). Nature, 28, 606; Beiblatter, 8, 220-221 (Abs.).

Spectroscopic observations made at the Earl of Crawford's observatory, Dun Eeht.

Copeland (R.). Monthly Notices Astronom. Soc., 45, 90.

Recherches spectroscopiques sur quelques étoiles non encore étudieés.

Cruls (L.). Comptes Rendus, 91, 486-7; Beiblätter, 5, 130-1.

Intorno alle strie degli stellari.

Donati. Il nuovo Cimento, 15, 292.

Rapport sur un mémoire et plusieurs notes de M. Janssen concernant l'analyse prismatique de la lumière solaire et de celle de quelques étoiles.

Fizeau. Comptes Rendus, 58, 795.

Recherches sur les spectres des gaz dans leur rapports avec la constitution du Soleil, des étoiles et des nébuleuses.

Franckland et Lockyer. Comptes Rendus, 68, 1519.

Astrophysical observations made during the year 1882 at the Herény Observatory, Hungary.

Gothard (E. von). Monthly Notices Astronomical Soc., 43, 420-424;
Math.-naturwiss. Ber. aus Ungarn, 1, 207-9.

Spectroscopic observations at the Royal Observatory, Greenwich.

Christie (W. H. M.). Nature, 28, 136-9; 30, 147-8.

Ditto.

Airy (G. B.). Monthly Notices Astronom. Soc., 36, 27-37; 37, 22-36; Beiblatter, 11, 95 (Abs.).

Beiträge zur Untersuchung der Sternbewegungen und der Lichtbewegung durch Spectral-Messungen.

Homann (Hans). Inaugural.-Diss., Berlin, 1885; Beiblatter, 11 (1887), 146.

Spectrum analysis applied to the heavenly bodies.

Huggins (W.). Rept. British Assoc., 1866; do., 1868; Chem. News, 19, 187.

Spectra of some of the fixed stars. [The first complete and accurate investigation of the stellar spectra.—Roscoe.]

Huggins (W.) and Miller (W. A.). Phil. Trans. (1864), 413; Phil.Mag., June, 1866; Proc. Royal Soc., 12, 444; 13, 242.

Lecture on the physical and chemical constitution of the fixed stars and nebulæ.

Huggins (W.). Chem. News, 11, 270.

Further observations of the Sun and of some of the stars and nebulæ; with an attempt to discover therefrom whether these bodies are moving towards or from the earth.

Huggins (W.). Proc. Royal Soc., 16, 382.

Note on the heat of the stars.

Huggins (W.). Proc. Royal Soc., 17, 309.

Spectren von Gestirne.

Jahresber, d. Chemie, (1856) 140, (1862) 26 u. 27, (1863) 107, 108 u. 110, (1864) 115, (1865) 92, (1866) 78, (1867) 107, (1870) 176.

Remarques sur la note du père Secchi relative aux spectres prismatiques des corps célestes.

Janssen. Comptes Rendus, 57, 215.

Nouvelle lettre annoncante la présence de la vapeur d'eau dans les planètes et les étoiles.

Janssen. Comptes Rendus, 68, 376.

Sur quelques spectres stellaires remarquables par les caractères optiques de la vapeur d'eau.

Janssen. Comptes Rendus, 68, 1545.

Les méthodes en astronomie physique.

Janssen. Ann. du Bureau des Longitudes (1883), 779-812; Beiblätter, 7, 323-4 (Abs.).

Note sur divers points de physique céleste.

Janssen. Comptes Rendus, 96, 527-529; Nature, 475 (Abs.).

Testimony of the spectroscope to the nebular hypothesis.

Kirkwood (D.). Amer. Jour. Sci., (3) 2, 155; Phil. Mag., (4) 42, 399.

Astrophysiche Beobachtungen.

Konkoly (N. von). Math.-naturwiss. Ber. aus Ungarn, 1, 126-127.

Untersuchungen über das Spectrum der Fixsterne.

Lamont. Jahrb. d. Sternwarte bei Munchen (1868), 90.

The Mt. Whitney Expedition.

Langley (S. P.). Nature, 26, 314-317.

Note on the bright lines in the spectra of stars.

Lockyer (J. N.). Proc. Royal Soc., 27, 50.

Spectrum der Fixsterne.

Merz (S.). Ann. Phys. u. Chem., 117, 654.

A course of four lectures on spectrum analysis, with its applications to astronomy; delivered at the Royal Institution of Great Britain in May and June, 1867.

Miller W. A.). Chem. News, 15, 259, 276; 16, 8, 20, 47, 71.

Spectrum analysis of the Sun and other heavenly bodies.

Miller (W. A.). Pop. Sci. Monthly. 8, 335.

Stars with peculiar spectra, discovered at the astronomical observatory of Harvard College.

Pickering (E. C.). Astronom. Nachr., 101, 73-74; Beiblatter, 6, 106 (Abs.).

The spectroscope in astronomical observation.

Proctor (R. A.). Pop. Sci. Rev., 8, 141.

The measurement of stellar spectra.

Rutherfurd (L. M.). Amer. Jour. Sci., (3) 35, 71.

Sur les spectres prismatiques des corps célestes.

Secchi (A.). Comptes Rendus, 57, 71.

Remarques par M. Janssen, do., 215.

Analyse spectrale de la lumière de quelques étoiles.

Secchi (A.). Comptes Rendus, 63, 324, 364.

Nouvelles recherches sur l'analyse de la lumière spectrale des étoiles.

Seechi A. Comptes Rendus, 63, 621.

Sur les spectres de quelques étoiles.

Scechi (A.). Comptes Rendus, 64, 345.

Nouvelle note sur les spectres stellaires.

Secchi (A.). Comptes Rendus. 64, 774.

Note accompagnant la présentation d'un exemplaire de son mémoire "Sur les Spectres stellaires" imprimé dans les publications de la Societé des Quarante de Modène.

Secehi (A.). Comptes Rendus, 65, 562.

Note sur les spectres stellaires.

Secchi (A.). Comptes Rendus, 67, 373.

Étude spectrale des divers rayons du Soleil et rapprochements entre les spectres obtenus et ceux de certaines étoiles.

Secchi (A.). Comptes Rendus, 68, 959.

Note sur l'intervention probable des gaz composés dans les caractères spectroscopiques de la lumière de certaines étoiles ou de diverses régions du Soleil.

Secchi (A.). Comptes Rendus, 68, 1086.

Nouvelles remarques sur les spectres fournis par divers types d'étoiles.

Secchi (A.). Comptes Rendus, **71**, 252; Ann. Phys. u. Chem., **131**, 156.

Les spectres stellaires.

Secchi (A.). Comptes Rendus, 75, 655.

Spettri prismatici delle Stelle fisse.

Secchi (A.). Atti della Soc. Ital., Roma, 1868.

Stellar Spectrometry.

Secchi (A.). Chemical News, 18, 168.

Bright lines in stellar spectra.

Sherman. Amer. Jour. Sci., (3) 30, 378, 475; note by Maunder (E. W.), Monthly Notices, 46 (1885), 282-4; reply to note, do., 47 (1886), 14.

Colour in practical astronomy, spectroscopically examined.

Smyth (Piazzi). Trans. Royal Soc. Edinburgh, 28, 779-843; Beiblätter, 4, 548.

Physical constitution of the Sun and stars.

Stoney (G. J.). Proc. Royal Soc., 16, 25; 17, 1.

Spectroscopic observations with the great Melbourne telescope.

Sueur (A. Le). Proc. Royal Soc., 18, 242.

Spectroscopic observations of various stars.

Sueur (A. Le. Proc. Royal Soc., 19, 18.

Ueber die Spectra der weissen Fixsterne.

Vogel (H. V.). Monatsher, Berliner Akad. (1880), 192-198; Beiblätter, 4, 786 (Als.); Photographic News, Feb. 20, 1880; Nature, 21, 410.

Einige spectralanalytische Untersuchungen en Sternen, ausgeführt mit dem grossen Refractor der Wiener Sternwarte.

Vogel (H. W.). Sitzungsber, d. Wiener Akad., 88 H, 791-815; Bei-Shlatter, 8, 598-511 (Abs.).

Spectroscopie stellaire.

Wolf et Rayet. Comptes Rendus, 65, 292.

Analyse spectrale de la lumière de quelques étoiles.

Wolf. Comptes Rendus, 68, 1470.

Ursache der ungleichen Intensität der dunklen Linien im Spectrum der Sonne und der Fixsterne.

Zollner (F.), Ann. Phys. u. Chem., 141, 373.

b, comets.

1, Spectra of Comets in general.

La matière radiante et les comètes.

Begouen. Revue scientifique, 30, 297.

Remarques sur la lumière propre des comètes.

Berthelot, Ann. Chim. et Phys., (5) 27, 232-3; Jour. Chem. Soc., 44, 261 (Abs.).

Comets; their composition, purpose and effect upon the earth.

Boss (L.). Observatory (1882), 215-221.

Sur l'analyse spectrale appliquée aux comètes.

Fave. Comptes Rendus, 93, 361.

Sur les queues des comètes.

Flammarion. Comptes Rendus, 93, 136.

On Comets.

Huggins (W.). Proc. Royal Institution, 10, 1-11; Ann. Chim. et Phys., (5) 27, 408-425.

Ueber die chemische Constitution der Cometen, verglichen mit der der Meteore.

Konkoly (N. von). Math.-naturwiss. Ber. aus Ungarn, 1, 135-139.

Observations sur la réfraction cométaire.

Meyer (W.). Arch. de Genève, 3: 8, 526-535; Beiblaiter, 7, 141-142 (Abs.); Jour. de Phys., (2) 2, 387-8.

Sur la polarization de la lumière des comètes.

Prazmowski. Comptes Rendus, 93, 262.

Sur la lumière des comètes.

Respighi. Comptes Rendus, **93**, 439-440; Phil. Mag., (5) **12**, 300-307; Beiblätter, **5**, 745 (Abs.).

Observations sur le spectre des comètes.

Secchi (A.). Comptes Rendus, 78, 1467.

Cometary Theory.

Tyndall (J.). Phil. Mag., (4) 37, 241.

Ueber die Spectra der Cometen.

Vogel (H.). Astronom. Nachr., 80, 183-188; Ann. Phys. u. Chem., 149, 400-408; Nature, 9, 193.

2, Particular Comets.

(In the order of their last known dates.)

Comet c, 1859 (Donati's).

c, 1859, Donati's Comet. Comparaison du spectre produit par la lumière de la comète de Donati et par celle d'Arcturus.

Porro. Comptes Rendus, 47, 873.

Comet a, 1866.

Spectrum of Comet a, 1866.

Huggins (W.). Proc. Royal Soc., 15, 5.

Comet b, 1867.

Spectrum of Comet b, 1867.

Huggins (W.). Monthly Notices Astronom. Soc., 17, 288.

Comet b, 1868.

Spectrum of Comet b, 1868.

Huggins (W.). Proc. Royal Soc., 16, 481.

Comet a, 1871.

Spectrum of Comet a, 1871.

Huggins (W.). Chem. News, 23, 265.

Comet c, 1873.

Spectre de la comète c, 1873.

Wolf (C.) et Rayet (G.). Comptes Rendus, 77, 529.

Comet d, 1873.

Spectre de la comète d, 1873.

Rayet (G.) et André. Comptes Rendus, 77, 564.

Comet c, 1874 (Coggia's).

Observations spectroscopiques de la queue de la comète de Coggia.

Barthèlemy (A.). Comptes Rendus, 79, 313, 578.

Spectrum of Coggin's Comet.

Huggins (W.). Proc. Royal Soc., 23, 154-159.

Coggia's Comet, its physical condition and structure. Physical theory of comets.

Norton (W. A.). Amer. Jour. Sci., (3) 15, 161-77.

Note sur le spectre de la comète de Coggia (c, 1874).

Rayet (G.). Comptes Rendus, **78**, 1650-2; Amer. Jour. Sci., (3) **8**, 156 (Abs.).

Spectre de la comète de Coggia.

Secchi (A.). Comptes Rendus, 79, 20, 284.

Observations spectroscopiques sur la comète de Coggia.

Wolf et Rayet. Comptes Rendus, 79, 370-1.

Comet b, 1877 (Winnecke's).

On the spectrum of Comet b, 1877 (Winnecke's).

Airy (G. B.). Monthly Notices Astronom. Soc., 37, 469, 470.

The spectra of comets b and c, 1877.

Lindsay (Lord). Monthly Notices Astronom, Soc., 37, 430.

Spectre de la comète de Winnecke.

Secchi (A.). Comptes Rendus, 66, 1299, 1336,

Lumière de la comète de Winnecke.

Wolf et Rayet. Comptes Rendus, 71, 49.

Comet c, 1877 (Swift-Borelly).

On the spectra of comets b and c, 1877.

Lindsay (Lord). Monthly Notices Astronom. Soc., 37, 430.

Observations du spectre de la comète Borelly.

Secchi (A.). Comptes Rendus, 84, 427, 1289.

Ueber das Spectrum des von Borelly am 20, August entdeckten Cometen, sowie über das des hellen von Henry am 23 August aufgefundenen Cometen.

Vogel (H.). Astronom. Nachr. 82, 217-20; Amer. Jour. Sci., (3) 6, 393 (Abs.).

Observations des comètes b (Winnecke) et c (Swift-Borelly), 1877.

Wolf. Comptes Rendus, 84, 929-31, 1289-92.

Comet a, 1878 (Brorsen's).

Spectrum of Brorsen's Comet, observed at Greenwich.

Airy (G. B.). Monthly Notices Astronomical Soc., 39, 428-30.

Spectrum of Brorsen's Comet.

Backhouse (T. W.). Nature, 20, 28.

Spectrum des Brorsen'schen Cometen.

Brédischin (T.). Astronom. Nachr., 95, 15-16.

Spectrum of Brorsen's Comet.

Christie (W. H. M.). Nature, 20, 5, 75; Amer. Jour. Sci., (3) 17 496-7.

Spectrum of Brorsen's Comet.

Huggins (W.). Proc. Royal Soc., 16, 386; Nature, 19, 579.

Vorläufige Anzeige über das Spectrum des Brorsen'schen Cometen.

Konkoly (N. von). Astronom. Nachr., 94, 335-6; 95, 193-6.

Observations of Brorsen's Comet.

Lindsay (Lord). Monthly Notices Astronom. Soc., 39, 430.

Spectre de la comète de Brorsen.

Secchi (A.). Comptes Rendus, 66, 881.

Spectrum of Brorsen's Comet.

Watts (W. M.). Nature, 20, 27-8, 94.

Spectrum of Brorsen's Comet.

Young (C. A.). Amer. Jour. Sci., (3) **17**, 373-5; Nature, **19**, 559; Phil. Mag., (5) **8**, 178-9.

Comet d, 1879 (Palisa's).

Spectroscopische Beobachtung des Cometen Palisa.

Konkoly (N. von). Astronom. Nachr., 96, 39-42.

Observations of the spectrum of comet d, 1879.

Lindsay (Lord). Monthly Notices Astronom. Soc., 40, 23-5.

Comet d, 1880 (Hartwig's). Spectrum of.

Christie (W. H. M.). Monthly Notices Astronom. Soc., 41, 52-3; Nature, 22, 557; Beiblatter, 5, 129.

Comet b, 1881.

Observations of comet b, 1881.

Backhouse (T. W.). Monthly Notices Astronom. Soc., 42, 413-21.

Spectra of comets b and c, 1881.

Capron (J. R.). Nature, 24, 430-1.

Spectra of comets b and c, 1881.

Greenwich Observatory Reports, Monthly Notices Astronom. Soc., 42, 14-19.

Note on the observations of comet b, 1881, made at the United States Naval Observatory.

Harkness (W.). Amer. Jour. Sci., (3) 22, 137-9.

Spectroscopische Beobachtungen der Cometen b und c, 1881.

Hasselberg (B.). Bull. Acad. St. Petersburg, 27, 417-25.

Preliminary notes on the photographic spectrum of comet b, 1881.

Huggins (W.). Proc. Royal Soc., 33, 1; Chem. News, 44, 183; Rept. British Assoc. (1881), 320; Comptes Rendus, 92, 1483; 93, 26.

Note sur la photographie de la comète b, 1881, obtenu à l'observatoire de Meudon.

Janssen (J.). Jour. de Phys., (2) 1, 441-9.

Spectroscopische Beobachtungen der Cometen b und c, 1881, angestellt in O'Gyalla, Ungarn.

Konkoly (N. von). Naturforscher, 14, 321, 323, 331.

Physical observations of comet b, 1881, made at Forrest Lodge, Marcsfield.

Noble (W.). Monthly Notices Astronom. Soc., 42, 47-49.

Spectrum of comet b, 1881.

Scabroke (G. M.). Nature, 24, 201, 431.

Observations spectroscopiques sur la comète b, 1881.

Thollon (L.). Comptes Rendus, 93, 37, 259, 383; Nature, 24, 224.

Ueber die Spectra der Cometen b und c, 1881.

Vegel (H. C.). Astronom. Nach., 100, 301-4; Beiblätter, 5, 867 (Abs.).

Observations de la comète b, 1881.

Wolf (C.). Comptes Rendus, 93, 36.

Spectroscopic observations upon the comet b, 1881.

Young (C. A.). Amer. J. Sci., (3) 22, 135-7; Beiblätter, 5, 663-4 (Abs.).

Comet c, 1881.

Note on the spectrum of comet c, 1881, as seen with a Browning's miniature spectroscope on the $4\frac{1}{2}$ telescope.

Backhouse (T. W.). Monthly Notices Astronom. Soc., 42, 43.

Note on photographs of the spectrum of the comet of June, 1881.

Draper (H.). Amer. Jour. Sci., (3) 22, 134-5; Chem. News, 44, 75-6;
Mem. Spettr. ital., 10, 150-1; Jour. de Phys., (2) 1, 153 (Abs.).

Spectra of comets b and c, 1881.

Greenwich Observatory, Monthly Notices Astronom. Soc., 42, 14-19.

Spectroseopische Beobachtungen der Cometen b und c, 1881.

Hasselberg (B.). Bull. Acad. St. Petersburg, 27, 417-25.

Speetroscopische Beobachtungen der Cometen b und c, 1881, angestellt am astrophysikalischen Observatorium in O'Gyalla (Ungarn).

Konkoly (N. von). Naturforscher, 14, 321, 323, 331.

Études spectroscopiques sur les comètes b et c, 1881.

Thollon (L.). Comptes Rendus, 93, 383.

Ueber die Spectra der Cometen b und c, 1881.

Vogel (H. C.). Astronomische Nachr., 100, 301-4; Beiblätter, 5, 867.

Spectrum of Schaeberle's Comet.

Capron (J. R.). Nature, **24**, 430-1. (See also Tacchini, in Comptes Rendus, **93**, 261.)

Telbutt's Comet, origination of its proper light.

Smyth (C. Piazzi). Nature, 24, 430.

Comet a, 1882 (Wells's).

Spectrum of comet a, 1882 (Wells's).

Backhouse (T. W.). Nature, 26, 56; Beiblätter, 6, 678.

Les vapeurs du sodium dans la comète de Wells.

Bredichin (T.). Astronom. Nuchr., 102, 207; Beiblatter, 6, 678 (Abs.).

Ueber das Spectrum des Cometen Wells.

Dunér (N. C.). Astronom. Nachr., 102, 159, 169; Monthly Notices Astronom. Soc., 42, 412-13; Beiblatter, 6, 678 (Abs.).

Spectroscopic observations of comet a, 1882 (Wells).

Greenwich Observatory Rept., Monthly Notices Astronom. Soc., 42, 251, 410-12.

Ucher das Spectrum des Cometen a, 1882 (Wells).

Hasselberg (B.). Astronom. Nachr., 102, 259-64; Beiblatter, 6, 744 (Abs.); Nature, 26, 344 (Abs.).

On the photographic spectrum of comet a, 1882 (Wells).

Huggins (W.). Proc. Royal Soc., 34, 148-150; Nature, 26, 179 (Abs.); Beiblatter, 6, 679 (Abs.); Amer. Jour. Sci., (3) 24, 402-3; Comptes Rendus, 94, 1689-91.

Spectroscopische Beobachtungen des Conneten Wells, angestellt am astrophysikalischen Observatorium in O'Gvalla (Ungarn).

Konkoly (N. von). Naturforscher, 15, 245; Beiblatter, 6, 678 (Abs.).

On the spectrum of comet a, 1882 (Wells), observed at the Royal Observatory of Greenwich.

Maunder, Monthly Notices Astronom. Soc., 42, 251, 410-12; Mem. Spettr. ital., 11, 79.

Spettro della Cometa Wells osservato à Palermo.

Riccò (A.). Mem. Spettr. ital., 11, 76.

Cometa Wells, Spettro osservato all'Equatore Merz del R. Osservatorio del Collegio romano.

Tacchini (R.). Mem. Spettr. ital., 11, 77-8; Comptes Rendus, 94, 1031-3.

Ueber das Spectrum des Cometen Wells.

Vogel (H. C.). Astronom. Nachr., 102, 159, 199-202; Beiblatter, 6, 678 (Abs.).

Su di una particolaritá luminosa rimarcata a Palermo nella coda della cometa (Wells).

Zona (T.). Mem. Spettr. ital., 11, 76-7; Beiblatter, 6, 679 (Abs.).

Comet b, 1882 (Cruls).

Analyse spectrale de la grande comète australe.

Cruls. Comptes Rendus, 95, 825.

Beobachtungen des grossen September Cometen, 1882, am astrophysicalischen Observatorium zu Herény, Ungarn.

Gothard (E. von). Astronom. Nachr., **103**, 377–80; Beiblätter, **7**, 116 (Abs.).

- Spectroscopische Beobachtungen des grossen September Cometen, 1882 II. Gothard (E. von). Astronom. Nachr., **105**, 311-14.
- Sur le déplacement des raics du sodium observé dans le spectre de la grande comète de 1882.

Gouy et Thollon. Comptes Rendus, 96, 371-2; Nature, 27, 380 (Abs.);
 Amer. Jour. Sci., (3) 25, 309; Beiblätter, 7, 293 (Abs.).

- Zur Spectroscopie des grossen September Cometen, 1882.
 - Hasselberg (B.). Astronom. Nachr., 104, 13-16; Beiblätter, 7, 293 (Abs.).
- Beobachtung des grossen September Cometen auf der Sternwarte in O'Gyalla (Ungarn).

Konkoly (N. von). Astronom. Nachr., 104, 45-8; Monthly Notices Astronom. Soc., 43, 56-7; Beiblätter, 7, 293.

- Osservazioni astrofisiche della grande cometa di settembre, 1882.
 - Riceò (A.). Astronom. Nachr., 103, 281-4; Beiblätter, 7, 28 (Abs.).
- Osservazioni spettroscopiche della cometa Cruls fatte collo spettroscopio di Clean applicato al refrattore di Om. 25 nell'Osservatorio di Palermo.

Riccò (A.). Mem. Spettr. ital., 11, Sept. 15-17.

- Observations of the great comet b, 1882, made at Sydney Observatory.

 Russell (H. C.). Monthly Notices Astronom. Soc., 43, 31.
- Sur une comète observée à Nice.

Thollon et Gouy. Comptes Rendus, 95, 555-7; Beiblätter, 7, 116 (Abs.).

- Observations spectroscopiques sur la grande comète (Cruls).
 - Thollon et Gouy. Comptes Rendus, 95, 712-14; Nature, 27, 24 (Abs.); Beiblätter, 7, 28-9 (Abs.).
- Sur le déplacement des raies du sodium observé dans le spectre de la grande comète de 1882.

Thollon et Gouy. Comptes Rendus, 96, 371.

- Beobachtungen des grossen September Cometen, 1882.
 - Vogel (H. C.). Astronom. Nachr., **103**, 279-282; Beiblätter, **7**, 28 (Abs.).

(See also Tacchini, in Comptes Rendus, 93, 261.)

Comet a, 1883 (Brooks-Swift). Beobachtung des Cometen a, 1883 (Brooks-Swift).

Gothard (E. von). Astronom. Nachr., 105, 135-6.

Spectroscopic Observations of Comet a, 1883 (Brooks-Swift).

Konkoly (N. von). Monthly Notices Astronom. Soc., 43, 328-6.

Finlay's Comet. Sulla spettro della cometa Finlay, Settembre, 1883.
Hasselberg (B.). Mem. Spettr. ital., 11, no. 11, 1-3; Beiblätter, 7, 293 (Abs.).

Comet a, 1884 (Pons-Brooks).

Aspect de la comète Pons-Brooks, le 13 Janvier, 1884. Cruls (L.). Comptes Rendus, **98**, 898.

Spectroscopische Beobachtungen des Cometen a. 1884 (Pons-Brooks).
Gothard (E. von). Astronom. Nachr., 109, 99-106.

Spectrum of Comet b, 1883 (Pons-Brooks).
Greenwich Observatory Rept., Monthly Notices Astronom. Soc., 44, 62-3.

Spectroscopische Beobachtungen des Cometen Pons-Brooks.
Hasselberg (B.). Astronom. Nachr., 108, 55-56.

Vorläufige spectroscopische Beobachtung des Cometen Pons-Brooks.
Konkoly (N. von). Astronom. Nachr., 107, 41-2; Observatory, 6, 333-4; Amer. Jour. Sci., (3) 27, 76-7; Beiblatter, 8, 33 (Abs.); Monthly Notices Astronom. Soc., 44, 251-3.

Spectroscopische Beobachtungen des Cometen Pons-Brooks. Kovesligethy (R. v.). Astronom. Nachr., 108, 169-174.

Observations spectroscopiques sur la comète Pons-Brooks.
Perrotin. Comptes Rendus, 98, 344.

Spectre de la comète Pons-Brooks, à l'observatoire de Bordeaux. Rayet (G.). Comptes Rendus, 97, 1352; 98, 348.

Sullo spettro della cometa Pons-Brooks.

Riccò (A.). Mem. Spettr. ital., 13, 39-40.

Observations spectroscopiques faites à Nice sur la comète Pons-Brooks.

Thollon (L.). Comptes Rendus, 98, 33; Beiblätter, 8, 221.

Étude spectroscopique de la comète Pons-Brooks, faite au réflecteur de Om. 50 de l'Observatoire d'Alger.

Trépied (C.). Comptes Rendus, 97, 1540-1; Nature, 19, 255 (Abs.).

Sur le spectre de la comète Pons-Brooks.

Trépied (C.). Comptes Rendus, 98, 32-3.

Variation singulière de la comète Pons-Brooks.

Trépied (C). Comptes Rendus, 98, 614.

Einige Beobachtungen über den Cometen Pons-Brooks, insbesondere über das Spectrum desselben.

Vogel (H. C.). Astronom. Nachr., 108, 21-6.

Observations of Comet Pons-Brooks.

Young (C. A.). Astronom. Nachr., 108, 205-8.

Encke's Comet.

Note on the spectrum of Eneke's Comet.

Huggins (W.). Proc. Royal Soc., 20, 45; Comptes Rendus, 73, 1297-1301.

Sur le spectre de la comète Encke.

Tacchini (P.). Comptes Rendus, 93, 949; Beiblätter, 6, 106.

Spectre de la comète de Tempel.

Secchi (A.). Comptes Rendus, 62, 210.

Spectrum of comet c, 1886.

Sherman. Amer. Jour. Sci., (3) 32, 1

c, displacement of stellar spectra.

Effect of a star's rotation on its spectrum.

Abney (W. de W.). Monthly Notices Astronom. Soc., 37, 278.

Spectroscopic results for the motions of stars in the line of sight, obtained at the Royal Observatory, Greenwich.

Airy (G. B.). Monthly Notices Astronom. Soc., **36**, 218; **38**, 493; **41**, 109; **42**, 230; **43**, 80; **44**, 89; **45**, 330; **46**, 126; **47**, 101.

Note on the displacement of lines in the spectra of stars.

Christie (W. H. M.). Monthly Notices Astronom. Soc., 36, 313-317.

Remarques sur le déplacement des raies du spectre par le mouvement du corps lumineux ou de l'observateur.

Fizeau. Comptes Rendus, 69, 743; 70, 1062.

Sur un travail de M. l'abbé Spée concernant le déplacement des raies des spectres d'étoiles.

Houzeau et Montigny. Bull. de l'Acad. de Belgique, 47, 318-324.

Sur le déplacement des raies dans les spectres des étoiles produits par leur mouvement dans l'épace.

Huggins (W.). Comptes Rendus, 82, 1291-1253; Phil. Mag., (5) 2, 72-74.

On a method of finding the parallax of double stars, and on the displacement of the lines of the spectrum of a planet.

Niven (C.). Monthly Notices Astronom, Soc., 34, 339-347.

Spectroscopic observations of the motions of stars in the line of sight, made at the Temple Observatory, Rugby.

Seabroke (G. M.). Monthly Notices Astronom. Soc., 39, 450-453; 47 (1887), 93.

Sur le déplacement des raies dans les spectres des étoiles produit par leurs mouvements dans l'épace.

Secchi (A.). Comptes Rendus, 82, 761, 812.

Nouvelles remarques sur question du déplacement des raies spectrales, du au mouvement propre des astres.

Seechi (A.). Comptes Rendus, 83, 117.

d. fixed stars.

1, In general.

Lecture on the physical and chemical constitution of the fixed stars and nebula.

Huggins (W.). Chem. News, 11, 270.

Spectra of some of the fixed stars.

Huggins (W.) and Miller (W. A.). Phil. Trans. (1864), 413; Phil. Mag., June, 1866; Proc. Royal Soc., 12, 444; 13, 242.

Untersuchungen über das Spectrum der Fixsterne.

Lamont. Jahrbuch d. Sternwarte bei München (1868), 90.

Spectrum der Fixsterne.

Merz (S.). Ann. Phys. u. Chem., 117, 654.

Spettri pri-matici delle stelle fisse.

Secchi (A.). Attr de a Soc. Ital., Roma, 1868.

2, Particular fixed stars.

Spectrum of Novæ Andromedæ.

Sherman. Amer. Jour. Sei., (3) 30, 378,

Observations of the spectrum of a new star in Andromeda at Greenwich^{*}
Maunder (E. W.). Monthly Notices Astronom. Soc., **46** (1885), 19-21.

Outburst in Andromeda.

Perry (S. J.). Monthly Notices Astronom. Soc., 46 (1885-6), 22.

Note sur le spectre d'Antarès.

Secchi (A.). Comptes Rendus, 69, 163.

Spectrum of 7 Argo with bright lines.

Sueur (A. Le). Nature, 1, 517.

Spectroscopische Beobachtung von y Cassiopeiæ.

Konkoly (N. von). Astronom. Nachr., 107, 61-2; Beiblätter, 8, 221.

Beobachtungen der hellen Linien in dem Spectrum von 7 Cassiopeiæ.

Gothard (E. von). Astronom. Nachr., **106**, 293; **108**, 233; Beiblätter, **7**, 862 (Abs.).

Spectrum of a new star in Corona Borealis.

Huggins (W.) and Miller (W. A.). Proc. Royal Soc., 15, 146.

On the spectrum of the new star in Cygnus.

Backhouse (J. W.). Monthly Notices Astronom. Soc., 39, 34-37; Nature, 15, 295-6.

The new star in Cygnus.

Becquerel (E.). Monthly Notices Astronom. Soc., 37, 200-202; Amer. Jour. Sci., (3) 13, 395-97.

The new star in Cygnus.

Copeland (R.). Astronom. Nachr., 89, 37-40, 63; 90, 351-2; Nature, 15, 315-16; Amer. Jour. Sci., (3) 15, 76-77.

Sur le spectre de l'étoile nouvelle de la constellation du Cygne.

Cornu (A.). Comptes Rendus, 83, 1172-1174; Nature, 15, 158.

Spectrum of Nova Cygni.

Nature, 16, 400-3.

Étude spectroscopique de la nouvelle étoile signalée par M. Schmidt.

Seechi (A.). Comptes Rendus, 34, 107, 290.

Der neue Stern in Cygnus.

Vogel (H.). Astronom. Nachr., 89, 37-40, 63; 90, 351; Nature, 15, 315; Amer. Jour. Sci., (3) 15, 76.

Spectrum of the star Ll 13412.

Pickering (E. C.). Nature, 23, 604; Beiblätter, 5, 511 (Abs.).

6 т

Photographs of the spectra of a Lyra and of Venus.

Draper (II.). Amer. Jour. Sci., (3) 13, 95; Nature, 15, 218; Phil. Mag., (5) 3, 238.

Beobachtungen der hallen Linien in dem Spectrum von 3 Lyra.

Gothard (E. von). Astronom, Nachr., 108, 283.

Lettre accompagnant l'envoi d'une figure du spectre d'a d'Orion.

Seechi (A.). Comptes Rendus, **62**, 591; Monthly Notices Astronom. Soc., **26**, 214.

Spectrum of the variable star q Orionis.

Huggins (W.) and Miller (W. A.). Monthly Notices Astronom. Soc., 26, 215.

Sur le spectre de l'étoile a d'Orion.

Janssen (J.). Comptes Rendus, 57, 1008.

Spectrum of a new star in Orion.

Copeland (R.). Monthly Notices, **46**, 109-114. Note by Maunder, do., 284-6.

Observations on the spectrum of Nova Orionis at Greenwich.

Maunder (E. W.). Monthly Notices Astronom. Soc., 46 (1885-6), 114-115.

Disappearance of ε Piscium at its occultation of Jan. 4, 1865, with conclusions as to the non-existence of a lunar atmosphere.

Huggins (W.). Monthly Notices, 25, 60; Chem. News, 11, 175.

Sur le spectre de Sirius.

Janssen (J.). Comptes Rendus, 57, 1008.

Note sur les spectres des trois étoiles de Wolf.

Secchi (A.). Comptes Rendus, 69, 39, 163, 1053.

Sur trois petites étoiles.

Wolf et Rayet. Comptes Rendus, August, 1867.

e, measurements of stellar spectra.

Measurements of stellar lines.

Airy (G. B.). Monthly Notices Astronom. Soc., 23, 190.

Stellar spectrometry.

Report of the British Assoc., 1868.

Measurement of stellar spectra.

Rutherfurd (L. M.). Amer. Jour. Sci., 35, 71.

Measurement of a few stellar lines.

Secchi (A.). Astronom. Nachr., 3. März, 1863.

f, SPECTRA OF METEORS.

Spectra of the meteors of November 13-14, 1866.

Browning (J.). Phil. Mag., (4) 33, 234.

Presence of lithium in meteorites.

Bunsen. Phil. Mag., (4) 23, 474.

Meteoric Arc Spectrum.

Capron (J. R.). Photographed Spectra, London, 1877, p. 32, 33.

Spectra of shooting stars.

Herschel (A. S.). Nature, 9, 142-3.

Progress of meteor spectroscopy.

Herschel (A. S.). Nature, 24, 507-8; Beiblätter, 5, 871.

Spectroscopische Beobachtungen der Meteorite.

Konkoly (N. von). Astronom. Nachr., 95, 283-6; Monthly Notices Astronom. Soc., 33, 575-6; Nature, 20, 521-2 (Abs.).

Ueber die chemische Constitution der Planeten verglichen mit der der Meteore.

Konkoly (N. von). Math.-naturwiss. Ber. aus Ungarn, 1, 135-9.

A catalogue of observations of luminous meteors,

by Baden Powell from 1848 till 1859, by Glaisher till 1867, and by others till 1882; all in the Reports of the British Assoc. for those years.

Note sur les spectres stellaires, et sur les étoiles filantes.

Secchi (A.). Comptes Rendus, 65, 979; 75, 606-613.

Sur les diverses circonstances de l'apparition d'un bolide aux environs de Rome et sur les spectres stellaires.

Secehi (A.). Comptes Rendus, 75, 655-9.

L'existence d'essaines d'étoiles filantes à proximité du globe terrestre.

Silbermann (J.). Comptes Rendus, 74, 553-7, 638-642.

Spectroscopic examination of gases from meteoric iron.

Wright (A. W.). Amer. Jour. Sci., (3) 9, 294-302; Jour. Chem. Soc. (1876), 1, 27-8 (Abs.).

Preliminary note on an examination of gases of the meteorite of Feb. 12, 1875.

Wright (A. W.). Amer. Jour. Sci., (3) 9, 459-60; Jour. Chem. Soc. (1876), 1, 352 (Abs.).

g, NEBULE.

1, In general.

Recherches sur l'intensité relative des raies spectrales des nébuleuses.

Fièvez (C.). Bull. de l'Acad. de Belgique, (2) 49, 107-113; Phil. Mag., (5) 9, 309-312; Beiblatter, 4, 461-2.

Recherches sur les spectres des gaz dans leurs rapports avec la constitution du Soleil, des étoiles et des nébuleuses.

Franckland et Lockyer. Comptes Rendus, 68, 1519.

Spectra of the nebulæ.

Huggins (W.). Phil. Trans. (1864), 437.

Further observations on the spectra of some of the nebulæ.

Huggins (W.). Phil. Trans. (1866), 381-387; Proc. Royal Soc., 15, 17.

On the motions of some of the nebulae towards or from the Earth.

Huggins (W.). Proc. Royal Soc., 22, 251-4; Amer. Jour. Sci., (3) 8, 75-77; Phil. Mag., (4) 48, 471-4.

Note on the bright lines in the spectra of stars and nebulæ.

Lockyer (J. N.). Proc. Royal Soc., 27, 50.

New planetary nebulæ.

Pickering (E. C.). Amer. Jour. Sci., (3) **20**, 303-305; Beiblätter, **5**, 130 (Abs.).

Spettro di alcune nebulose.

Seechi (A.). Naturforscher (Berliner), 1, 279; 2, 279, 356; Mem. Spettr. ital., 1, 33.

2, Spectra of particular nebula.

Nebula of Argo.

Le Sueur. Proc. Royal Soc., 18, 245.

The nebula in Cygnus.

Winnecke. Monthly Notices Astronom. Soc., 40, 92.

On the inferences to be drawn from the appearance of bright lines in the spectra of irresolvable nebulae.

Huggins (W.). Proc. Royal Soc., 26, 179-181.

On a cause for the appearance of bright lines in the spectra of irresolvable star-clusters.

> Stone (E. J.). Proc. Royal Soc., 26, 156-7, 517-19; Monthly Notices Astronom. Soc., 38, 106-8.

On photographs of the nebula in Orion and of its spectrum.

Draper (H.). Amer. Jour. Sci., (3) 23, 339; Monthly Notices Astronom. Soc., 42, 367-8; Nature, 26, 33; Comptes Rendus, 94, 1243.

Spectrum of the Great Nebula in the Sword-Handle of Orion.

Huggins (W.). Proc. Royal Soc., 14, 39.

On the spectrum of the Great Nebula in Orion, and on the motions of some stars towards or from the earth.

Huggins (W.). Proc. Royal Soc., 20, 379-394; Phil. Mag., (4) 45, 133-147; Nature, 6, 231-235; Amer. Jour. Sci., (3) 5, 75-78; Monthly Notices Astronom. Soc., 32, 359-362; Comptes Rendus, 94, 685.

Photographic spectrum of the Great Nebula in Orion.

Huggins (W.). Nature, 25, 489; Ann. Chim. et Phys., (5) 28, 282;Proc. Royal Soc., 33, 425; Amer. Jour. Sci., (3) 23, 355-6.

Lumière spectrale de la nébuleuse d'Orion.

Secchi (A.). Comptes Rendus, 60, 543.

Observations of the Nebula of Orion, made with the great Melbourne Telescope.

Sueur (A. Le). Proc. Royal Soc., 18, 242.

New planetary nebulæ.

Pickering (E. C.). Amer. Jour. Sci., (3) **20**, 303-5; Beiblätter, **5**, 130 (Abs.).

Neue Linien im Spectrum planetischer Nebel.

Zöllner (F.). Ann. Phys. u. Chem., 144, 451.

Spectra of southern nebulæ.

Herschel (Lieut. John). Proc. Royal Soc., **16**, 416, 417, 451; **17**, 58 61, 303.

Note on the Rev. T. W. Webb's new nebula.

Lindsay (Lord). Monthly Notices Astronom. Soc., 40, 91; Beiblätter, 4, 614 (Abs.).

Ueber das Spectrum des von Webb entdeckten Nebels im Schwan.

Vogel (H. C.). Astronom. Nachr., 96, 287; Beiblätter, 4, 468 (Abs.); Monthly Notices Astronom. Soc., 40, 294.

h, photography of stellar spectra.

Researches upon the photography of stellar and planetary spectra.

Draper (H.). Proc. Amer. Acad., n. s. 11, 231-261; Amer. Jour. Sci., (3) 18, 419-425; Nature, 21, 83-85; Beiblätter, 4, 374. Note on the photographic spectra of stars.

Huggins (W.). Proc. Royal Soc., 25, 445; 30, 20; Nature, 21, 269–270; Phil. Trans., 171, 669–690; Beiblatter, 467–468 (Abs.).

Note préliminaire sur les photographies des spectres stellaires.

Huggins (W.). Comptes Rendus, 83, 1229.

Sur les spectres photographiques des étoiles.

Huggins (W.). Comptes Rendus, 90, 70-73; Amer. Jour. Sci., (3) 19, 317.

Investigations in stellar photography.

Pickering (E. C.). Memoirs Amer. Acad., 11 (1886), 179-226; Beiblatter, 11 (1887), 115 (Abs.).

Report on the present state of celestial photography in England.

Rue (Warren de la). Rep'ts British Assoc, for 1859 and 1861.

Études astrophotographiques.

Zenger (C. V.). Comptes Rendus, 97, 552-555; Beiblätter, 7, 860-862 (Abs.).

i, SPECTRA OF PLANETS.

1, In general.

On some points connected with the chemical constituents of the solar system.

Gladstone (J. H.). Phil. Mag., (5) 4, 379-385; Jour. Chem. Soc., 34, 189 (Abs.).

Ueber die chemische Constitution der Planeten verglichen mit der der Meteore.

Konkoly (N. von). Math.-naturwiss. Ber. aus Ungarn, 1, 135-139.

On the displacement of the lines of the spectrum of a planet.

Niven (C.). Monthly Notices Astronom, Sec., 34, 339-347.

Sur les raies atmosphériques des planètes.

Secchi (A.). Comptes Rendus, 59, 182.

Untersuchungen über die Spectra der Planeten.

Vogel (H. C.). Ann. Phys. u. Chem., 158, 461-472.

2, Spectra of particular planets.

On a photograph of Jupiter's spectrum showing evidence of intrinsic light from that planet.

Draper (II.). Monthly Notices Astronom. Soc., 40, 433-425; Amer. Jour. Sci., (3) 20, 118-120.

0

Note on the spectrum of the red spot on Jupiter.

Lindsay (Lord). Monthly Notices Astronom. Soc., 40, 87-88; Beiblätter, 4, 614 (Abs.).

Observation du spectre de Jupiter.

Secchi (A.). Comptes Rendus, 59, 309.

Spectroscopic observations of Jupiter, made with the great Melbourne telescope.

Sueur (A. Le). Proc. Royal Soc., 18, 242.

Physical observations of Mars.

Airy (G. B.). Monthly Notices Astronom. Soc., 38, 34-38.

Spectrum of Mars.

Huggins (W.). Monthly Notices Astronom. Soc., 27, 178; Jour. Franklin Inst., 84, 261.

Note on the spectrum of the eclipsed Moon.

Noble (W.). Monthly Notices Astronom. Soc., 38, 34.

Sur l'application de l'analyse spectrale à la question de l'atmosphère lunaire.

Janssen (J.). Comptes Rendus, 56, 962.

Lettre sur le spectre de la planète Neptune et sur quelques faits d'analyse spectrale.

Secchi (A.). Comptes Rendus, 69, 1050.

Raies du spectre du planète Saturne.

Secchi (A.). Comptes Rendus, 60, 1167; Phil. Mag., (4) 30, 73.

Spectrum of Uranus.

Huggins (W.). Chem. News, 23, 265; Proc. Royal Soc.. 19, 488–491; Phil. Mag., (4) 42, 223–226; Nature, 4, 88; Amer. Jour. Sci., (3) 2, 138.

Résultats fournis par l'analyse spectrale de la lumière d'Uranus.

Secchi (A.). Comptes Rendus, 68, 761.

The Transit of Venus.

Cacciatore. Nature, 27, 180.

Osservazioni del passagio di Venere sul disco solare fatte in Italia nel 6 Dicembre 1882.

Crova (A.). Mem. Spettr. ital., 11, Dic. 1-23; Beiblätter, 7, 375 (Abs.).

Photographs of the spectrum of Venus, Dec., 1876.

Draper (H.). Nature, 15, 218; Amer. Jour. Sci., (2) 13, 95; Phil. Mag., (5) 3, 238.

Observations of the transit of Venus, Dec. 6, 1882, made at Mells, tenmiles south of Bath.

Horner (Maurer). Mon. Not. Astronom. Soc., 43, 276.

Note sur l'observation du passage de la planète Vénus sur le Soleil, Janssen (J.). Comptes Rendus, 96, 288-92; Belblatter, 7, 375.

Observation of the transit of Venus, Dec. 6, 1882, made at the Allegheny Observatory.

Langley (S. P.). Mon. Not. Astronom. Soc., 41, 71.

The spectroscope and the transit of Venus.

Nature, 11, 171; 27, 156-157.

Nouveau moyen d'observer les éclipses et les passages de Vénus.

Seechi (A.). Comptes Bendus, 73, 984.

Essai pendant une éclipse solaire, de la nouvelle méthode spectroscopi que proposée pour le prochain passage de Vénus.

Secchi (A.). Comptes Rendus, 76, 1327.

Observations du passage de Vénus à l'Observatoire royal du Collège romain.

Taechini (P.). Comptes Rendus, 95, 1209-1211.

Observation du passage de Vénus, à Avila, Espagne.

Thollon (L.). Comptes Rendus, 95, 1340-42.

Observations of the transit of Venus, Dec. 6, 1882, made at Princeton, N. J., and South Hadley, Mass.

Young (C. A.). Amer. Jour. Sci., (3, 25, 321-29.

j, solar spectrum.

1, Solar spectrum in general.

Influence of water in the atmosphere on the solar spectrum.

Abney and Festing. Proc. Royal Soc., **35**, 928-941; Belblatter **8**, 5-7 (Abs.).

Lecture on solar physics.

Abney (W. de W.). Nature, 25, 162-166, 187-191, 252-257.

Sunlight and skylight at high altitudes.

Abney (W. de W.). Nature, **26**, 586; Beiblätter, **7**, 28 (Abs.); Jour. de Phys., (2) **3**, 47-48 (Abs.).

The solar spectrum, from λ 7150 to λ 10000.

Abney (W. de W.). Phil. Trans. (1886), Part II, XIII.

Remarques sur quelques raies du spectre solaire.

Angström (A. J.) Comptes Rendus, 63, 647; Phil. Mag., (4) 23, 76; 24, 1.

Remarques de M. Janssen. Comptes Rendus, 63, 728.

Ueber die Fraunhofer'schen Linien im Sonnenspectrum.

Angström (A. J.). Ann. Phys. u. Chem., 117, 290.

Mémoire sur la constitution du spectre solaire.

Becquerel (E.). Comptes Rendus, 14, 901-3.

Des effets produits sur les corps par les rayons solaires.

Beequerel (E.). Comptes Rendus, 17, 882.

Constitution physique du Soleil.

Boillot (A.). Comptes Rendus, 72, 728.

Mémoire sur le spectre solaire.

Brenta. Comptes Rendus, 11, 766.

On the lines of the solar spectrum, and on those produced by the Earth's atmosphere, and by the action of nitrous acid gas.

Brewster (Sir D.). Phil. Mag., (3) **8**, 384; Proc. Royal Soc., **10**, 339 (Abs.); Comptes Rendus, **30**, 578.

On the lines of the solar spectrum, with a map of the solar spectrum, giving the absorption lines of the Earth's atmosphere.

Brewster and Gladstone. Phil. Trans. (1860), 149.

Catalogue of the oscillation-frequencies of solar rays.

British Association Rep't for 1878.

Ueber die Fraunhofer'schen Linien im Sonnenspectrum, wie sie sieh dem unbewaffneten Auge zeigen.

Broch (O. J.). Ann. Phys. u. Chem., Ergänzungsband, 3, 311.

Constitution physique du Soleil.

Chacornae. Comptes Rendus, 60, 170.

Sur la distribution de l'intensité lumineuse et de l'intensité visuelle dans le spectre solaire.

Charpentier (Aug.). Comptes Rendus, 101 (1885), 182-183.

Spectral estimates of the Sun's distance.

Chase (P. E.). Proc. Amer. Philosoph. Soc., 18, 227.

Sur le spectre normal du Soleil.

Cornu (A.). Ann. de l'Ecole normale, (2) 3, 421-434; Arch. de Genève, (2) 52, 62-3 (Abs.).

Constitution du Soleil; reponse à M. Janssen.

Cornu (A.). Comptes Rendus, 73, 545.

Sur quelques conséquences de la constitution du spectre solaire.

Cornu (A.). Comptes Rendus, 86, 530.

Considération sur les couleurs du spectre solaire.

Dalet. Comptes Rendus, 28 273.

Action du spectre solaire sur les sels haloïdes d'argent, accroissement de leur sensibilité dans certaines parties du spectre par l'adjonction de matières colorantes et autres.

Eder (J. M.). Jour. de Phys., (2) 4 (1885), 185.

Constitution physique du Soleil.

Faye. Comptes Rendus, 60, 89, 138, 168.

Résultats concernant la constitution physique du Soleil, obtenus soit par l'analyse spectrale, soit par l'étude mécanique de la rotation.

Fave. Comptes Rendus. 68, 1139.

Analyse spectrale du Solcil.

Faye. Comptes Rendus, 74, 921.

Sur la théorie physique du Soleil proposée par M. Vicaire.

Faye. Comptes Rendus, 77, 293-301.

Sur la constitution physique et mécanique du Soleil.

Fave. Comptes Rendus, 96, 355-361.

Sur une objection de M. Tacchini relative à la théorie du Soleil dans les "Memorie dei Spettroscopisti italiana."

Faye, Comptes Rendus, 96, 811-816

Répense à une note de M. Thollon sur l'interprétation d'une phénomène de spectroscopie solaire.

Fave. Comptes Rendus. 97, 779-782.

Studien über den Ursprung der Fraunhofer'schen Linien in ihrer Bezichung zur Constitution der Sonne.

Fievez (Ch.). Bull. de l'Acad. de Belgique, (3) 12 (1886), 25-32; Beil latter, 11 (1887), 94 (Abs.) Rapport sur un Mémoire et plusieurs Notes de M. Janssen concernant l'analyse prismatique de la lumière solaire.

Fizeau. Comptes Rendus, 58, 795.

Spectroscopische Beobachtungen der Sonne.

Franckland u. Lockyer. Ber. chem. Ges., 2, 742.

On some points connected with the chemical constituents of the solar system.

Gladstone (J. H.). Phil. Mag., (5) **4**, 379-385; Jour. Chem. Soc., **34**, 189 (Abs.).

Solar Chemistry.

H. (G.). Nature, 24, 581-2.

Spectrum of the Sun; spectra of the limb and centre of the Sun.

Hastings (C. S.). Amer. Jour. Sci., 105, 369; Nature, 8, 77.

A theory of the constitution of the sun, founded upon spectroscopic obvations, original and other.

Hastings (C. S.). Amer. Jour. Sci., (3) 21, 33-44; Phil. Mag., (5) 11, 91-103; Beiblätter, 5, 588-592 (Abs.).

The Solar Spectrum.

Herschel (J.). Nature, 6, 454-455.

Action comparative des rayons solaires sous différentes latitudes.

Herschel (J.). Comptes Rendus, 3, 506.

Observations on the spectra of the Sun.

Huggins (W.). Phil. Trans. (1868), 529.

Ueber die Längstreifen im Sonnenspectrum.

Jahresber. d. Chemie, 1, 198; 4, 151; 5, 125; 6, 167.

Spectrum der Sonne.

Jahresber. d. Chemie, 14, 41, 43.

Fraunhofer Linien bei tiefem Stand der Sonne.

Jahresber. d. Chemie, 15, 26.

Constitution der Sonne.

Jahresber. d. Chemie, 17, 84.

Zusammenhang der Distanz der Spectrallinien mit den Dimensionem der Atome.

Jahresber. d. Chemie, 19, 78.

Sonnenspectrum.

Jahresber. d. Chemie, 25, 147.

Objective Darstellung des Sonnenspectrums.

Jahresber, d. Chemie, 29, 158.

Lettre à M. Dumas sur les résultats des observations spectroscopiques concernant la constitution du Soleil.

Janssen (J.). Comptes Rendus, 68, 312.

Constitution du Soleil.

Janssen (J.). Comptes Rendus, 73, 402-6.

Sur ce qu'ont jusqu'à ce jour d'incomplet les résultats fournis par l'analyse spectrale pour nous faire connaître la constitution du Soleil.

Janssen (J.). Comptes Rendus, 73, 793.

Réponse à la note de M. Tacchini inserée au dernier "Comptes Rendus," séance du 14 Mai 1877.

Janssen (J.). Comptes Rendus, 84, 1182.

Notice sur les progrès récents de la physique solaire.

Janssen (J.). Ann. du Bureau des L'engitudes (1879), 623-685; Beiblatter, 4, 277 (Abs.).

Die Chemie des Himmels.

Janssen (J.). Archiv. f. Pharmacie 1875), 51.

Reply to Angström's observations on the solar lines.

Janssen (J.). Phil. Mag., (4:23, 75.

Objective Darstellung des Sounenspectrums.

Kessler (F.). Ber. chem. Ges., 9, 577.

Sur la loi de Stokes.

Lamansky (S. . Comptes Rendus, 88, 1192.

In feuchter Luft sind die Streifen des Sonnenspectrums breiter.

Lamansky (S.). Ann. Phys. u. Chem., 146, 208-221.

The solar atmosphere, an introduction to an account of researches made at the Alleghany Observatory.

Langley (S. P.). Amer. Jour. Sci., (3) 10, 489-497.

A proposed new method in solar spectrum analysis.

Langley (S. P.). Amer. Jour. Sci., (3) 14, 140-146; Reiblatter, 1, 621 (Abs.).

Solar spectrum at high altitudes.

Langley (S. P.). Amer. Jour. Sel., 02 24, 200.

Observations du spectre solaire.

Langley (S. P.). Comptes Rendus, 95, 482-487; Jour. Chem. Soc., 44, 137 (Abs.).

Procédé pour obtenir la récomposition de la lumière du spectre solaire. Lavaud de Lestrade. Comptes Rendus, **86**, 61.

On recent discoveries in solar physics made by means of the spectroscope. Lockyer (J. N.). Phil. Mag., (4) 38, 142.

Spectroscopic Observations of the Sun.

Lockyer (J. N.). Proc. Royal Soc., 15, 256; 17, 91, 128, 131, 350, 415, 506; 18, 74; Ber. chem. Ges., 2, 742; 3, 578; Nature, 3, 34.

Researches in spectrum analysis in connection with the spectrum of the sun, No. I.

Lockyer (J. N.). Proc. Royal Soc., 21, 83; Phil. Trans., 163, 253-275; Amer. Jour. Sci., (3) 5, 236-7 (Abs.).

Ditto, No. II.

Lockyer (J. N.). Proc. Royal Soc., 21, 285; Phil. Trans., 163, 639–658; Jour. Chem. Soc., (2) 11, 994–995 (Abs.); Phil. Mag., (4) 46, 407–410 (Abs.); Ber. chem. Ges., 6, 973 (Abs.).

Ditto, No. III.

Lockyer (J. N.). Proc. Royal Soc., 21, 508-514 (Abs.); Phil. Trans., 164, 479-494; Phil. Mag., (4) 47, 384-390.

Ditto, No. IV.

Lockyer (J. N.). Proc. Royal Soc., 22, 391; Phil. Trans., 164, 805–813; Phil. Mag., (4) 49, 326.

Ditto, No. V.

Lockyer (J. N.). Proc. Royal Soc., 25, 546.

Ditto, No. VI.

Lockyer (J. N.). Proc. Royal Sec., 27, 49, 279, 409.

Ditto, No. VII.

Lockyer (J. N.). Proc. Royal Soc., 28, 157-180; Amer. Jour. Sci.,
(3) 17, 93-116; Beiblätter, 3, 88-113; Nature, 19, 197-201, 225-230;
Ann. Chim. et Phys., (5) 16, 107-144; Chem. News, 39, 1-5, 11-16.

Note on a recent communication of Messrs. Liveing and Dewar.

Lockyer (J. N.). Proc. Royal Soc., 29, 45-7; Beiblätter, 3, 710-711 (Abs.).

Recent researches in solar chemistry.

Lockyer (J. N.). Proc. Physical Soc., 2, 308-325; Phil. Mag., (5) 6, 161-176; Beiblätter, 3, 353-354 (Abs.).

Spectroscopic observations of the Sun.

Lockver (J. N.) and Scabroke (G. M.). Phil. Trans., 165, 577-586.

Lectures on solar physics; the chemistry of the Sun.

Lockyer (J. N.). Nature, 24, 267-274, 206-301, 315-324, 365-370, 391-399.

Constitution physique du Soleil.

Lockyer (J. N.). Comptes Rendus, 69, 121.

Réponse au Père Secchi.

Lockver (J. N.). Comptes Rendus, 69, 452.

Observations spectroscopiques du Soleil.

Lockyer (J. N.). Comptes Rendus, 70, 1268.

Recherches expérimentales sur le spectre solaire.

Lockyer (J. N.). Comptes Rendus, 75, 1816-19.

Recherches d'analyse spectrale au sujet du spectre solaire.

Lockyer (J. N.). Comptes Rendus, 76, 1399.

Recherches sur les rapports d'analyse spectrale avec le spectre du Soleil.

Lockyer (J. N.). Comptes Rendus, 88, 148-154; Jour. Chem. Soc., 36, 575-6 (Abs.).

Recherches sur l'analyse spectrale dans ses rapports avec le spectre solaire.

Lockyer (J. N.). Ann. Chim. et Phys., (4) 29, 430.

On a new method of spectrum observation.

Lockyer (J. N.). Amer. Jour. Sci., (3) 19, 303-311.

Solar spectroscopic observations.

Maclear (J. P.). Nature, 6, 514.

Considérations sur le spectre solaire.

Matthiessen. Comptes Rendus, 16, 917.

Spectrum of the Sun.

Mellone (M.). Amer. Jour. Sci., 55, 1.

Spectrum analysis of the Sun.

Miller (W. A.). Pop. Sci. Monthly, 8, 335.

Spectrum des durch Chlor gegangenen Sonnenlichtes.

Morren. Ann. Phys. u. Chem., 137, 165.

On the physical constitution of the Sun.

Norton (W. A.). Amer. Jour. Sci., (3) 1, 395-407; Phil. Mag., (4) 42, 55-67.

Spectrum of the Sun.

Olmstead (D.). Amer. Jour. Sci., (2) 48, 137.

Les raies du spectre solaire.

Peslin. Comptes Rendus, 74, 325.

Researches in circular solar spectra.

Pigott (G. West Royston). Proc. Royal Soc., 21, 426.

Spectroscopic discoveries concerning the Sun.

Proctor (R. A.). Temple Bar, 25, 281.

Réponse à une Note précédente du P. Secchi sur quelques particularités de la constitution du Soleil.

Respighi (L.). Comptes Rendus, 74, 1387-90.

Réponse aux critiques présentées par le Père Secchi, à propos des observations faites sur quelques particularités de la constitution du Soleil. Respighi (L.). Comptes Rendus, **75**, 134-138.

Sur la grandeur et les variations du diamètre solaire.

Respighi (L.). Comptes Rendus, 77, 715-720, 774-778.

Sulla constituzione fisica del Sole.

Respighi (L.). R. Accad. dei Lincei, 10 April, 1871.

Osservazioni solari dirette et spettroscopiche esequite nel R. osservatorio di Palermo.

Riccò (A.). Mem. Spettr. ital., 9, 25-36, 61-90, 161-189; 10, 146-147.

Recherches sur les raies du spectre solaire et des différents spectres électriques.

Robiquet. Comptes Rendus, 49, 606.

Solar spectrum in a hailstorm.

Romanes (C. H.). Nature, 25, 507.

Italian spectroscopy.

Secchi (A.). Nature, 6, 465-6.

Ueber den Einfluss der Atmosphäre auf die Linien des Spectrums.

Secchi (A.). Ann. Phys. u. Chem., 126, 485.

Certain spectroscopic observations.

Secchi (A.). Chem. News, 27, 244.

Notes sur les spectres solaires.

Secchi (A.). Comptes Rendus, 66, 124, 398.

Existence d'une couche donnant un spectre continu entre la couche rose et le bord solaire.

Secchi (A.C. Comptes Rendus, 68, 550.

Étude spectrale des taches solaires; documents que peut fournir cette étude sur la constitution du Soleil.

Secchi (A. a. Comptes Rendus, 68, 1082.

Remarques sur la lettre de M. Lockyer, du 2 Août.

Seechi (A.). Comptes Rendus, 69, 315.

Replique à la Note de M. Lockyer, du 16 Août.

Secchi (A.). Comptes Rendus, 69, 549.

Résultats de quelques observations spectrales du Soleil.

Secchi (A.), Comptes Rendus, 70, 903.

Note contenant une rectification numérique à sa dernière communication. Secchi (Λ_*) . Comptes Rendus, **70**, 1662.

Déplacement des raies observées dans le spectre solaire.

Secchi (A.). Comptes Rendus, 70, 1213.

Nouveaux observations concernant la constitution physique du Soleil.

Secchi (A.). Comptes Rendus, 72, 362.

Quelques nouveaux résultats d'analyse spectrale.

Seechi (A.). Comptes Rendus, 74, 593.

Sur quelques particularités de la constitution du Soleil.

Seechi (A.). Comptes Rendus, 74, 1087-91.

Réponse aux observations presentées par M. Respighi sur quelques particularités de la constitution du Soleil.

Secchi (A.). Comptes Rendus, 74, 1501-7.

Observations des variations des diamètres solaires.

Secchi (A.). Comptes Rendus, 75, 606-613.

Recherches spectroscopiques solaires.

Secchi (A.). Comptes Rendus, 75, 749.

Sur quelques observations spectroscopiques particulières.

Seechi (A.). Comptes Rendus, 76, 1052-56.

Nouvelles recherches sur la diamètre solaire.

Secchi (A.). Comptes Rendus, 77, 253-260.

Réponse à M. Respighi.

Secchi A.). Comptes Rendus, 77, 904.

Note on a possible ultra-solar spectroscopic phenomenon.

Smyth (C. Piazzi). Proc. Royal Soc., 20, 136.

The visual, grating and glass-lens, solar spectrum, in 1884.

Smyth (C. Piazzi). Trans. Roy. Soc. of Edinburgh, 32, part III, 519-544, with plates; Monthly Notices Astronom. Soc., 47 (1887), 191-2.

On the Sun as a variable star.

Stewart (B.). Lecture at the Royal Institution, April 12, 1867.

On the change of refrangibility of light; with a drawing of the fixed lines in the solar spectrum in the extreme violet, and in the invisible region beyond.

Stokes (G. G.). Phil. Trans., 1852 II, 463.

Lecture on solar physics.

Stokes (G. G.). Nature, 24, 595-8, 613-18.

On the bearing of recent observations upon solar physics.

Stoney. Phil. Mag., (4) 36, 441.

Osservazioni solari dirette e spettroscopiche fatte a Palermo nel 1 trimestre del 1879, nel secondo trimestre del 1879, nel terzo e quarto trimestre del 1879, nel 1 trimestre del 1880, nel secondo trimestre del 1880, nel 3 trimestre del 1880, nel 4 trimestre del 1880, riassunto delle osservazioni, 1880,

Tacchini (P.). Mem. Spettr. ital., **8**, 37-40, 52-54, 93-97, 102-104; **9**, 49-58, 105-110, 194-203; **10**, 5-11, 12; Comptes Rendus, **88**, 1131; **89**, 519.

Sull'andamento dell'attivitá solare del 1871 al 1878.

Tacchini (P.). Mem. Spettr. ital., 8, 65-72.

Nouvelles observations spectrales.

Tacchini (P.). Comptes Rendus, 77, 195-198.

Sur le magnésium dans le spectre solaire.

Tacchini (P.). Comptes Rendus, 84, 1450.

Résultats des observations solaires pendant le deuxième trimestre de 1878, et des observations pendant le troisième trimestre de 1878.

Tacchini (P.). Comptes Rendus, 87, 259, 1031.

Sur la cause des spectres fugitifs observés par M. Trouvelot sur la limbe solaire.

Tacchini (P.). Comptes Rendus, 91, 156-8.

7 т

Observations solaires faites à l'observatoire royal du Collège romain pendant le troisième, 1880.

Tacchini (P.). Comptes Rendus, 91, 1053-4.

Observations solaires faites à l'Observatoire royal du Collège romain pendant le premier, le deuxième et le troisième trimestres de 1881.

Tacchini (P.). Comptes Rendus, 93, 380; 94, 830.

*Comparaison entre le spectre normal du Soleil et celui de réfraction suivant l'échelle de Kirchhoff.

Thalén (R.). Ann. Chim. et Phys., (4) 18, 211.

Déplacement des raies spectrales, dû au mouvement de rotation du Soleil. Thollon (L.). Comptes Rendus, 88, 169-171; Beiblatter, 3, 355-6 (Abs.); Jour. Chem. Soc., 36, 574.

Observation faite sur un groupe de raies dans le spectre solaire.

Thollon (L.). Comptes Bendus, 91, 368-70; Beiblatter, 4, 790 (Abs.):
Amer. Jour. Sci., (3) 20, 430; Jour. Chem. Soc., 40, 333.

Quelques phénomènes solaires observés à Nice.

Thollon (L.). Comptes Rendus, 91, 487-92.

Études spectroscopiques faites sur le Soleil à l'Observatoire de Paris.

Thollon (L.). Comptes Rendus, 91, 656-60.

Sur l'interprétation de quelques phénomènes de spectroscopie solaire.

Thollon (L.). Comptes Bendus, 97, 747.

Études faites au sommet du Pic du Midi, en vue de l'établissement d'une station astronomique permanente.

Thollon et Trépied. Comptes Rendus, **97**, 834-836; Nature, **29**, 7-8; Beiblatter, **8**, 824 (Abs.).

Observations relatives à la réponse de M. Faye concernant divers phénomènes de spectroscopie solaire.

Thollen (L.). Comptes Rendus, 97, 900.

Recherches sur la décomposition de l'acide carbonique dans le spectre solaire par les parties vertes des végétaux.

Timiriasef (C.). Ann. Chim. et Phys., (5) 12, 355.

Spectres fugatifs observés près du limbe solaire.

Trouvelot (L.). Ann. Chim. et Phys., (5) **19**, 433-449; Beiblatter, **4**, 727 (Abs.).

Note par M. Tacchini. Comptes Rendus, 91, 156-8.

Sur la constitution physique du Soleil; réponse aux critiques de M. Faye. Vicaire (E.). Comptes Rendus, 75, 527-31; 77, 1401-95. Vermehrung und Verdickung der Fraunhofer'schen Linien bei Sonnenuntergang.

Weiss (A.). Ann. Phys. u. Chem., 116, 191; Phil. Mag., (4) 24, 407.

Remarks on spectroscopic observations of the Sun, made at the Temple Observatory, Rugby School, in 1871-2-3.

Wilson (J. M.) and Seabroke (G. M.). Monthly Notices Astronom. Soc., 34, 26-29.

Application of the spectroscope to observations of the Sun.

Winlock (J.). Proc. Amer. Acad., 8, 330.

Note on the duplicity of the "1474" line in the solar spectrum.

Young (C. A.). Amer. Jour. Sci., (3) 11, 429-431.

Spectroscopic observations of the Sun.

Young (C. A.). Nature, 3, 34.

Spectroscopic Notes.

Young (C. A.). Amer. Jour. Sci., (3) **20**, 353-8; (3) **26**, 333; Nature, **23**, 281; Chem. News, **20**, 271; Beiblätter, **5**, 287.

Anologia delle vibrazioni luminose e delle spettro solare, con 1 tav.

Zantedeschi (F.). Sitzungsber. Wiener Akad., 25, 145-165.

De mutationibus quae contingunt in spectro solari fixo elucabratio, Zantedeschi (F.). Münchener Abhandlungen, **8**, 99.

Ueber die Temperatur und die physische Beschaffenheit der Sonne.

Zöllner (F.). Der Naturforscher, 3, 93, 189, 233, 311; Ber. Sächs. Ges. Wiss., 25, 158-194; Phil. Mag., (4) 46, 290-304, 343-56.

2, Solar Absorption.

Sur la loi de répartition suivant l'altitude de la substance absorbant dans l'atmosphère.

Cornu (A.). Comptes Rendus, 90, 940-946; Beiblätter, 4, 727-8 (Abs.).

Sur l'intensité calorifique de la radiation solaire et son absorption par l'atmosphère terrestre.

Crova (A.). Comptes Rendus, 81, 1205-7.

Sur la mesure de l'intensité des raies d'absorption et des raies obscures du spectre solaire.

Gouy. Comptes Rendus, 89, 1033-4; Beiblätter, 4, 369 (Abs.).

Absorption of solar rays by atmospheric ozone.

Hartley (W. N.). Jour. Chem. Soc., **39**, 111-128; Ber. chem. Ges., **14**, 1390 (Abs.).

The selective absorption of solar energy.

Langley (S. P.). Amer. Jour. Sci., (3) 25, 169-166; Ann. Phys. u.
 Chem., n. F. 19, 224-234, 084-400; Phil. Mag., (5) 15, 153-183;
 Ann. Chim. et Phys., (5) 29, 497-542.

Observations of absorbing vapours upon the Sun.

Trouvelot (E. L.). Monthly Notices Astronom, Soc., 39, 374-379.

Spectral-photometrische Untersuchungen insbesondere zur Bestimmung der Absorption der die Sonne umgebenden Cashülle.

Vogel (H. C.). Monatsher, d. Berliner Akad. 1877, 194-142.

Ueber die Absorption der chemisch wirksamen Strahlen in der Atmosphäre der Sonne.

Vogel H. C., Ber, Sachs, Ges, Wiss., 24, 135-141; Ann. Phys. u.
 Chem., 143, 161-168; Phil. Mag., 4, 45, 345-350.
 Note by Schuster (A., Phil. Mag., 4) 45, 350.

3. Solar Atmosphere.

On hydrocarbons in the solar atmosphere.

Abney (W. de W. . Rept. British Assoc. (1881), 524.

Mémoire sur l'atmosphère solaire.

Angelot. Comptes Rendus, 68, 245.

Atmospheric lines of the solar spectrum, with a map.

Hennessey J. B. N. . Phil. Trans., 165, 157-P0; Amer. Jour. Sci., 9, 307.

Ursache der Spectren und Folgerungen über die Zustände der Sonnenatmosphäre.

Jahresber, d. Chemie, 15, 32.

Sur une atmosphère incandescente qui entoure la photosphère solaire.

Janssen Jos. Comptes Rendus, 68, 181.

Remarques à propos des résultats obtenus par M. Janssen et des connaissances précédemment acquises au sujet de l'atmosphère solaire.

Leverrier, Comptes Rendus, 68, 311.

Atmosphère du Soleil.

Littrow. Comptes Rendus, 68, 435.

Réfrangibilité de la raie jaune brilliante de l'atmosphère solaire.

Rayet. Comptes Readus, 68, 320; Chem News, 19, 178.

Spectre de l'atmosphère solaire.

Rayet. Comptes Rendus, 68, 1321; 71, 301; 77, 529; Ann. Chim. et Phys., (4) 24, 5-80; Archiv. f. Pharmacie, 4, 325-7. Nouvelles observations sur l'atmosphère et les protubérances solaires. Secchi (A.). Comptes Rendus, **68**, 1243.

Sur l'état actuel de l'atmosphère solaire.

Secchi (A.). Comptes Rendus, 84, 1430-34.

Ueber den Einfluss der Atmosphäre auf die Linien des Spectrums. Secchi (A.). Ann. Phys. u. Chem., **126**, 485.

Résultats des opérations faites en 1877 au bord du Soleil sur les raies b et 1474 k.

Tacchini. Comptes Rendus, 86, 756.

Observation of absorbing vapours on the Sun.

Trouvelot. Monthly Notices Astronom. Soc., 39, 374.

Spectral-photometrische Untersuchungen, insbesondere zur Bestimmung der Absorption der die Sonne umgebenden Gashülle.

Vogel (H. C.). Monatsber. d. Berliner Akad. (1877), 104-142.

Influence de la vapeur aqueuse visible dans l'atmosphère, et de la pluie sur le spectre solaire.

Zantedeschi. Comptes Rendus, 63, 644.

4, B lines in the solar spectrum.

Measures of the Great B line in the spectrum of a high sun.

Smyth (C. Piazzi). Monthly Notices Astronom. Soc., 39, 38-43.

Note on the Little b group of lines in the solar spectrum.

Smyth (C. Piazzi). Trans. Roy. Soc. Edinburgh, 32, 37-44; Nature, 23, 287 (Abs.); Amer. Jour. Sci., (3) 21, 323.

Résultats des opérations faites en 1877, au bord du Soleil sur les raies b et 1474 k.

Tacchini. Comptes Rendus, 86, 756.

Constitution et origine du groupe B du spectre solaire.

Thollon (L.). Jour. de Phys., 13, 421; Nature, 30, 520.

Mémoire sur la constitution et l'origine du groupe B du spectre solaire.

Thollon (L.). Bull. astronomique, 1883-4. Note by Smyth (C. Piazzi). Nature, **30**, 535.

5, Bright lines in the solar spectrum.

On the existence of bright lines in the solar spectrum.

Christie (W. H. M.). Monthly Notices Astronom. Soc., 38, 473-4.

On the coincidence of the bright lines of the oxygen spectrum with bright lines in the solar spectrum.

Draper (II.). Amer. Jour. Sci., (3) 18, 262-76; Monthly Notices Astronom. Soc., 39, 440-47; Beiblatter. 4, 275 (Abs.).

Report to the Committee on Solar Physics on the basic lines common to Spots and Prominences.

Lockyer (J. N.). Proc. Royal Soc., 29, 247-65; Beiblätter, 4, 45 (Abs.).

On a cause for the appearance of bright lines in the solar spectrum.

Meldola (R.). Phil. Mag., (5) 6, 50-61; Jour. Chem. Soc., 36, 574;
Amer. Jour. Sci., (3) 16, 290-300; Beiblatter, 2, 561-2 (Abs.).

Letter to the Superintendent of the U. S. Coast Survey, containing a catalogue of bright lines in the spectrum of the solar atmosphere.

Young (C. A.). Amer. Jour. Sci., (3) 4, 356-62; Nature, 7, 17-20.

6, Chemical effects of the solar spectrum.

Sur l'action chimique des différents rayons du spectre solaire.

Claudet. Comptes Rendus, 25, 938.

On the chemical efficiency of sunlight.

Dewar (J.). Phil. Mag., 44, 307-311.

Wirkung der chemischen Strahlen verscniedener Theile der Sonnenscheibe.

Jahresber, d. Chemie, 16, 101.

Rayons violets qui renferment le maximum d'action chimique de toutes les conleurs du spectre solaire.

Poey (A.). Comptes Rendus, 73, 1238.

Expériences sur la transmission des rayons chimiques du spectre solaire à travers différents milieux.

Somerville (Mrs.). Comptes Rendus, 3, 473.

Beziehungen zwischen der chemischen Wirkung des Sonnenspectrums, der Absorption und anomalen Dispersion des Sonnenspectrums.

Vogel (H.). Ber. chem. Ges., 7, 976.

7, Chromosphere and Corona.

Spectre de la couronne.

Blaserna (P.). Comptes Rendus, 74, 379.

The comparative aggregate strength of the light from the red hydrogen stratum, and of that of the rest of the chromosphere.

Hammond (B. E.). Nature, 3, 487.

On the solar corona.

Harkness (W.). Bull. Philosoph. Soc. Washington, 3, 116-119; Beblätter, 5, 128.

Photographing the spectrum of the corona.

Huggins (W.). Nature, 27, 199.

The coronal atmosphere of the Sun.

Janssen (J.). Nature, 8, 127-9, 149-50.

Sur la photographie de la chromosphère.

Janssen (J.). Comptes Rendus, 91, 12; Beiblätter, 4, 615.

L'analyse spectrale de la lumière zodiacale et sur la couronne des éclipses.

Liais (E.). Comptes Rendus, 74, 262-4; Amer. Jour. Sci., (3) 3, 390-91.

Note on the unknown chromospheric substance of Young.

Liveing (G. D.) and Dewar (J.). Proc. Royal Soc., 28, 475-7; Beiblätter, 3, 709 (Abs.).

A new method of viewing the chromosphere.

Lockyer (J. N.) and Seabroke (G. M.). Proc. Royal Soc., 21, 105-107;
Amer. Jour. Sei., (3) 5, 319 (Abs.); Comptes Rendus, 76, 363-5;
Phil. Mag., (4) 45, 222-4.

Note on the existence of carbon in the coronal atmosphere of the Sun.

Lockyer (J. N.). Proc. Royal Soc., 27, 308; Jour. Chem. Soc., 38, 429 (Abs.).

Preliminary note on the substances which produce the chromospheric lines.

Lockyer (J. N.). Proc. Royal Soc., 28, 283-4; Nature, 19, 292;
Amer. Jour. Sci., (3) 17, 250; (3) 18, 158; Beiblätter, 3, 420-422.

Discussion of "Young's List of Chromospheric Lines."

Lockyer (J. N.). Proc. Royal Soc., 28, 432-444; Beiblätter, 3, 420 (Abs.).

Photographie der Corona.

Lohse (O.). Astronom. Nachr., 104, 209-212; Beiblätter, 7, 291 (Abs.).

On the corona seen in total eclipses of the Sun.

Norton (W. A.). Amer. Jour. Sci., (3) 1, 5-15; Phil. Mag., (4) 41, 225-236.

Note on the chromosphere.

Perry S. J. Monthly Notices Astronom, Soc., 43, 426-7; Nature, 3, 67.

Osservazioni spettroscopiche del Bordo e delle Protaberanze Solari.

Respighi - La, Roma, 1871.

La corona solare l'eclisse, 22 Dic. 1870.

Ricca (V. S. a. Palermo, 1871.

Osservazioni delle inversioni della coronale 1474 k, e delle k del magnesio fatte nel Osservatorio di Palermo.

Riccó (A. a. Mem. Spettr. ital., 10/148-51.

Professor Young and the presence of ruthenium in the chromosphere.

Roscow (II. E. . Nature, 9, 5,

On the spectrum of the corona.

Sampsen, W. T. . Amer, J. ir. Sel., 635 16, 6445-51; Belblatter, 3, 277 (Abs.).

Résultats de quelques observations spectroscopiques des bords du Sel il. Secchi A — Comptes Rendus, 67, 1018.

Note sur les spectres des trois étoiles du Wolf et sur l'analyse comparative de la lumière du bord solaire et des taches.

Secchi A. . Comptes Rendus, 69, 39,

Note sur la constitution de l'auréole solaire et sur quelques particularités du tube de Geissler.

Seechi A . Comptes Rendus, 70, 27, 82.

Sur les relations qui existent, dans le Soleil, entre les facul s, les protubérances et la couronne.

Seechi A Comptes Rendus, 72, 829 832; 73, 242-246, 594-709

Hydrogène et la raie D. dans le spectre de la chromosphère solaire.

Secchi A. L. Comptes Bendus, 73, 1300.

Spectre de la chromosphère.

Seechi (A. . Comptes Rendus, 74, 205.

Observations de la chromosphère.

Seech: A Comptes Rendus, 75, 606-613

Magnésium dans la chromosphère du soloil.

Tacchini, Comptes Renduct 75, no. 430. Phil. Mag., (4) 44, 150-160, 479-80.

Présence du spectre du magnésium sur le bord entière du Soleil.

Tacchini. Comptes Rendus, 76, 1577; 77, 606-9; 82, 1385-7.

Observations on the Corona seen during the eclipse of Dec. 11 and 12, 1871.

Winter (G. K.). Phil. Mag., (4) 43, 191-4.

On the solar corona.

Young (C. A.). Amer. Jour. Sci., (3) 1, 311-373.

Note on the spectrum of the corona.

Young (C. A.). Amer. Jour. Sci., (3) 2, 53-55; Chem. News, 24, 198-9.

Preliminary catalogue of the bright lines in the spectrum of the chromosphere.

Young (C. A.). Amer. Jour. Sci., 3 2, 332-335; Phil. Mag., (4) 42, 377-380; Nature, 5, 312-313.

Spectrum of the corona of the Sun.

Young (C. A.). Amer. Jour. Sci., (3) 2, 53; Chem. News, 24, 198.

Note on the chromosphere lines.

Young (C. A.). Nature, 3, 266-7.

Spectrum of the chromosphere.

Young (C. A.). Nature, 5, 312.

The corona line.

Young (C. A.). Nature, 7, 28.

Beobachtungen der Corona.

Zöllner (F.). Der Naturforscher (Berlin), 2, 167, 253, 379, 395; 3, 91, 392; Les Mondes (Paris), 21, 345, 602; 22, 142; Nature, 1, 15, 139, 146, 533, 543; 2, 114, 164, 277; 3, 163, 175, 262, 263, 278; Phil. Mag., (4) 38, 281; 39, 17; Monthly Notices Astronom Soc., 30, 193.

8, The D group of lines in the solar spectrum.

Monographie du groupe D dans le spectre solaire.

Thollon. Jour. de Phys., (2) 3, 5-11; Beiblätter, 8, 647.

9, Dark lines in the solar spectrum.

Sur les raies sombres du spectre solaire et la constitution du Soleil.

Cornu (A.). Comptes Rendus, 86, 315.

Sur la distribution de la chaleur dans les régions obscures des spectres solaires.

Desains (P.). Comptes Rendus, 95, 433.

On the presence of dark lines in the solar spectrum which correspond closely to the lines of the spectrum of oxygen.

Draper (J. C.). Amer. Jour. Sci., (3) 16, 256-65; Nature, 18, 654-7; Beiblatter, 3, 188 (Abs.); Jour. Chem. Soc., 36, 997.

Mesure de l'intensité de quelques raies obscures du spectre solaire.

Gouy. Comptes Rendus, 91, 383; Jour. Chem. Soc., 40, 333 (Abs.); Beiblatter, 5, 46 (Abs.).

Dunkle Linien des Sonnenspeetrums.

Jahresber, d. Chemie, 16, 107, 110.

A method of examining refractive and dispersive powers by prismatic reflection.

Wollaston (W. H.). Phil. Trans. (1802), 365.

Ursache der ungleichen Intensität der dunklen Linien im Spectrum der Sonne.

Zöllner (F.). Ann. Phys. u. Chem., 141, 373.

10, Displacement of the solar spectrum.

Note on the displacement of the solar spectrum.

Hennessey (J. H. N.). Proc. Royal Soc., 22, 219.

Observations on the displacement of lines in the solar spectrum caused by the Sun's rotation.

Young (C. A.). Amer. Jour. Sci., (3) 12, 321-8.

11, Eclipse Spectra.

On the solar eclipse of Dec. 22, 1870, observed at Xeres, in Spain.

Abbay (R.). Monthly Notices Astronom. Soc., 31, 60-62.

Observations on the total celipse of the Sun of 1869.

Abbe (C.). Amer. Jour. Sci., (3) 3, 264-267.

On the total solar eclipse of May 17, 1882.

Abney (W. de W.) and Shuster (A.). Phil. Trans., 175, 252-271;
Proc. Royal Soc., 35, 151 (Abs.); Beiblatter, 7, 896 (Abs.); Nature,
26, 465.

Eclisse totale del 22 Dic. 1870.

Agnello (A.). Palermo, 1870.

On the results of the spectroscopic observations of the solar eclipse of July 29, 1878.

Barker (G. F.). Amer. Jour. Sci., (3) 17, 121-5.

Observations sur un artifice semblable auquel ont songé en même temps M. Janssen dans l'Inde et M. Zantedeschi en Italie.

Beaumont (Élie de). Comptes Rendus, 68, 314

The solar eclipse of July 29, 1878.

Draper (H.). Amer. Jour. Sci., (3) **16**, 227-30; Phil. Mag., (5) **6**, 318-320.

The Eclipse.

Draper (H.). Nature, 18, 462-4.

Account of the expedition of the Jesuits from Manilla, eclipse of Aug. 18, 1868.

Faura (F.). Bull. meteorol. dell. Osservatorio del Collegio Romano, 7, no. 12.

Suggestion relative à l'observation de l'éclipse de Soleil du 31 décembre 1861.

Faye. Comptes Rendus, 53, 679.

Observations relatives à la coïncidence des méthodes employées séparément par M. Lockyer et par M. Janssen.

Faye. Comptes Rendus, 67, 840.

Note sur une télégramme et sur une lettre de M. Janssen.

Faye. Comptes Rendus, 68, 112.

Rapport au Bureau des Longitudes sur la prochaine éclipse du 6 mai 1883.

Fizeau, Cloué, Lewy et Janssen. Comptes Rendus, 95, 881-885; Ann. du Bureau des Longitudes (1883), 813-820; Nature, 27, 110-112.

Account of spectroscopic observations of the eclipse of the Sun, Aug. 18, 1868.

Haig (C. T.). Proc. Royal Soc., 17, 74.

On the total eclipse of the Sun of Aug. 18, 1868.

Herschel (Alex.). Proc. Royal Institution, 1868-9.

The total eclipse of Aug. 7, 1869.

Hough (G. W.). Albany (J. Munsell), 1870.

Indication de quelques-uns des résultats obtenus à Cocanada pendant l'éclipse du mois d'août dernier, et à la suite de cette éclipse.

Janssen (J.). Comptes Rendus, 67, 838.

Lettre sur l'éclipse du 18 août.

Janssen (J.). Comptes Rendus, 67, 839.

Resumé des notions acquises sur la constitution du Soleil.

Janssen J. . Comptes Rendus, 63, 312.

Observations spectrales prises pendant l'éclipse du 15 août 1865.

Janssen (J.), Comptes Rendus, 68, 267.

Sur l'éclipse totale du 22 décembre prochain, 1870.

Jamssen, J. L. Comptes Rendus, 71, 554.

Lettr•sar les résultats du voyage pour observer en Algérie l'éclipse du 8 deil du 22 Déc. 1870.

Janssen (J.). Comptes Rendus, 72, 220.

Remarques sur une dernière note de M. Cornu.

Janssen (J.). Comptes Rendus, 73, 790-791.

Télégrammes addressés à l'Académie sur les observations faites pendant l'éclipse du Soleil du 11 Déc. 1871, sur la côte de Malabar.

Janssen (J.), Comptes Rendus, 73, 1407.

Lettre sur l'éclipse du 12 Déc. 1871.

Janssen (J.). Comptes Rendus, 74, 111.

Les conséquences principales qu'il peut tirer de ses observations sur l'éclipse du 12 Déc. 1871.

Janssen J.A. Comptes Rendus, 74, 175, 514, 725; Monthly Notices
 Astronom, Soc., 32, 69-70; Proc. Royal Soc., 20, 178-9; Amer.
 Jour, Sci., 69, 3, 226; Jour, Chem. Soc., 2, 10, 500 (A)

Sur l'éclipse solaire.

Janssen J.). Comptes Rendus, 96, 1745; Nature, 23, 216.

Rapport à l'Académie sur la mission en Océanie pour l'observation de l'éclipse totale de Soleil du 6 mai 1883.

Janssen J.A. Comptes Rendus, 97, 584-602; Mem. Spettr. ital., 12, 201–216.

Rapport à l'Académie relatif à l'observation de l'éclipse du 12 D° : 1871, observée à Schoolor (Indoustan).

Janssen (J.). Ann Chim, et Phys., 4/28, 471-29.

Applications utiles de la méthode graphique à la prédiction des felipses de Soleil.

Laussedat. Comptes Rendus, 70, 240.

Report of observations, etc., of the total eclipse of the Sun taken at " Le Maria Louisa" Vineyard, Cadiz, Dec. 21-22, 1870.

Lindsay (Lord). Monthly Notices Astronom. Soc., 31, 4 (460)

Remarks on the recent eclipse of the Sun as observed in the United States.

Lockyer (J. N.). Proc. Royal Soc., 18, 179; Comptes Rendus, 70, 1390; Nature, 1, 14.

Note on the recent and coming total solar eclipses.

Lockyer (J. N.). Proc. Royal Soc., 34, 291-300; Nature, 27, 185-9; Beiblätter, 7, 193 (Abs.).

The Mediterranean eclipse, 1870.

Lockyer (J. N.). Nature, **3**, 221-24, 321-2; Amer. Jour. Sci., (3) **3**, 226-30.

The solar eclipse.

Lockyer (J. N.). Nature, 5, 217-19; Amer. Jour. Sci., (3) 3, 226-30.

The Eclipse.

Lockyer (J. N.). Nature, 18, 457-62.

Eclipse notes on the solar spectrum.

Lockyer (J. N.). Nature, 25, 573-8; 26, 100-101.

Spectrum of solar eclipses.

Lockyer (J. N.). Nature, 27, 185.

Report on the total solar eclipse of April 6, 1875.

Lockyer (J. N.). Phil. Trans., 169, 139-154.

The solar eclipse.

Lockyer (J. N.)., Maclear (J. P.). Nature, 5, 219-21; Amer. Jour. Sci., (3) 3, 310-12.

The total eclipse of the Sun of Aug. 7, 1860.

Morton (Henry). Jour. Franklin Inst., (3) 53, 119, 150, 200.

The solar eclipse of Dec. 22, 1870, observed at San Antonio, near Puerto de Sta. Maria.

Perry (S. J.). Monthly Notices Astronom. Soc., 31, 62-3, 149, 151.

Sur l'éclipse du 17 mai 1882.

Puiseux (A.). Comptes Rendus, 94, 1643.

Analyse spectrale des protubérances observées à la presqu'île de Malacca pendant l'éclipse totale du Solcil du 18 août.

Rayet. Comptes Rendus, 67, 757; Rept. Astronom. Soc., 1868-9, p. 152.

The solar eclipse.

Respighi (L.). Nature, 5, 237-8; Amer. Jour. Sci., (3) 3, 312-14.

Spectralbeobachtungen während der totalen Sonnenfinsterniss des Jahres 1868 zu Aden.

Riha (J.). Sitzungsber, d. Wiener Akad., 58, 11, 655, 721-4.

Some remarks on the total solar eclipse of July 29, 1878.

Schuster (A.). Monthly Notices Astronom. Soc., 39, 41-7.

Essai, pendant une éclipse solaire, de la nouvelle méthode spectroscopiq a proposée pour le prochain passage de Vénus.

Secchi (A.). Comptes Rendus, 76, 1327-31; Chem. News, 27, 320.

- Observations de l'éclipse solaire du 10 octobre 1874, avec le spectroscope. Secchi (A.). Comptes Rendus, 79, 885.
- L'observation des protubérances solaires faites hors du moment d'une éclipse par M. Janssen et par M. Lockyer.

Stewart (B.). Comptes Rendus, 67, 904.

- Sull'eclisse totale di sole del 17 maggio 1882, osservato à Sohage in Egitto.

 Tacchini (P.). Mem. Spettr. ital., 11, Sept. 1-14; Comptes Rendus,
 95, 896.
- The total solar eclipse of Dec. 12, 1871.

Tennant (J. F.). Monthly Notices Astronom. Soc., 32, 70-2; Nature, 6, 492.

Report of the Indian Eclipse, Aug. 18, 1868.

Tennant (J. F.). Royal Astronom. Soc. Memoirs, Vol. 7; Nature, 1,
536; Naturforscher (Berlin), 1, 311, 319, 327, 351, 369, 393; 2, 59;
Les Mondes, 18, 130, 168, 272, 296, 362, 413.

Eclipse totale de Soleil, observée à Souhage (haute Égypte) le 17 mai (temps civil) 1882.

Thollon (L.). Comptes Rendus, 94, 1630-35; Beiblatter, 6, 878-80.

Observation de l'éclipse totale du 17 mai 1882.

Trépied. Comptes Rendus, 94, 1638.

Reports on the total eclipse of the Sun, Aug. 7, 1869.

United States Naval Observatory (Commodore B. F. Sands and others).
Washington, 1869.

On the results of the eclipse observations, Aug. 7, 1869.

Young (C. A.). Amer. Jour. Sci., (3) 3, 314; Nature, 1, 14, 170, 203, 336, 552; Les Mondes, 21, 238, 600; Naturforscher, 2, 253, 379, 534;
3, 16, 53, 142, 163, 175.

Spectroscopic observations of the American eclipse party in Spain.

Young (C. A.). Nature, 3, 261.

The Sherman astronomical expedition.

Young (C. A.). Nature, 7, 107-109.

Observations upon the solar eclipse of July 29, 1878, by the Princeton Eclipse Expedition.

Young (C. A.). Amer. Jour. Sci., (3) 16, 279-90.

Total solar eclipse of August 28-29, 1886.

By various persons. Abstract in Monthly Notices Astronom. Soc., 47 (1887), 175.

12, Spectra of the elements in the Sun.

On sun-spots and terrestrial elements in the Sun.

Liveing and Dewar. Phil. Mag., (5) 16, 401-408; Beiblätter, 8, 304-5 (Abs.); Jour. de Phys., 13, 418.

Note préliminaire sur les éléments existant dans le Soleil.

Lockyer (J. N.). Comptes Rendus, 77, 1347-52; Ber. d. chem. Ges., 6, 1554-5 (Abs.).

Les éléments présents dans la couche du Soleil qui produit le renversement des raies spectrales.

Lockyer (J. N.) Comptes Rendus, 86, 317.

Sur la composition élémentaire du spectre solaire.

Matthiessen. Comptes Rendus, 19, 112.

13, Spectra of solar eruptions.

Eruzione solare metallica dal 31 luglio, 1880, osservata a Palermo.

Riceò (A.). Mem. Spettr. ital., 9, 96-100.

Sur l'éruption solaire observée le 7 juilliet.

Secchi (A.). Comptes Rendus, 75, 314-322.

Sur les éruptions métalliques solaires observées à Palermo depuis 1871 jusqu'en avril 1877.

Tacchini (P.). Comptes Rendus, 84, 1448-50.

Disegni delle eruzioni etc. del Sole fatti à Roma dal giugno a dicembre 1879.

Tacchini (P.). Mem. Spettr. ital., 4, 5-7.

Sulle eruzioni solari metalliche osservate a Roma nel 1881.

Tacchini (P.). Mem. Spettr. ital., 11, 53-8; Comptes Rendus, 94, 1031-3; 95, 373-8; Beiblätter, 6, 486 (Abs.).

An explosion on the Sun (Sept. 13, 1871).

Young (C. A.) B ston Jour, Chemistry, 1871; Amer. Jour. Sci., (3)
 2, 468-70; Nature, 4, 488-9; Phd. Mag., (4) 43, 76-79.

14, Gas spectra in the Sun.

Preliminary note of researches on gaseous spectra in relation to the physical constitution of the Sun.

Franckland and Lockyer, Proc. Royal Soc., 17, 288; Comptes Rendus, 68, 420; 69, 264.

15, Heat in the solar spectrum.

Sur la distribution de la chaleur dans les régions obscures des spectres solaires.

Desains (P.). Comptes Rendus, 95, 433.

Lage des Wärmemaximums im Sonnenspectrum.

Knoblauch (II.). Ann. Phys. u. Chem., 120, 193.

Geschichtliches über das Wärmespectrum der Sonne.

Lamansky (S.). Ann. Phys. u. Chem., 146, 200, 207, 209.

Observations on invisible heat-spectra and the recognition of hitherto unmeasured wave-lengths, made at the Aflegheny Observatory, Pa.

Langley (S. P.). Amer. Jour. Sci., (3) 31 (1886), 1/42; 32 (1886), 83-100; Phil. Mag., (5 21 (1886), 304-100; 22 (1886), 149-174; Ann. Chim. et Phys., (6, 9 (1886), 100 506; Jour. de Phys., 2) 5, 277-380 (Als.); Beiblatter, 11 (1877), 245 (Als.).

Influence des différentes heures de la journée sur la position du maximum de température dans la partie obscure du spectre solaire.

Melloni, Comptes Rendus, 11, 111.

Spectre calorifique normal du Soleil.

Mouton, Comptes Rendus, 89, 205.Remarques par M. Thenard, Comptes Rendus, 89, 208.

Untersuchungen über die thermischen Wirkungen des Sonnenspectrums. Müller (J.). Ann. Phys. u. Chem., 105, 337.

Wellenlange und Brechungsexponent der äussersten dunklen Warmestrahlen des Sonnenspectrums.

> Muller (I.). Ann. Phys. u. Chem., 105, 543; Berichtigung dazu, des., 116, 644.

Sur les propriétés échauffantes des rayons solaires par de grandes et de faibles latitudes.

Pentland. Comptes Rendus, 8, 310.

The solar spectrum in 1877-8, with some practical idea of its probable temperature of origination.

Smyth (C. Piazzi). Trans. Royal Soc. Edinburgh, 29, 285-342; Beiblätter, 4, 276 (Abs.).

Sur la température du Soleil.

Soret (J. L.). Archives de Genève, (2) 52, 89-95; Phil. Mag., (4) 50, 155-8.

16, Hydrogen in the solar spectrum.

La circulation de l'hydrogène solaire.

Faye. Comptes Rendus, 76, 597-601.

The comparative aggregate strength of the light from the red hydrogenstratum, and of that from the rest of the Chromosphere.

Hammond (B. E.). Nature, 3, 487.

Dépèche télégraphique addressé de Simla au sujet des lignes de l'hydrogène dans le spectre des protubérances solaires.

Janssen (J.). Comptes Rendus, 68, 245.

17, Intensity of light in the solar spectrum.

- On the variation in the intensity of the fixed lines of the solar spectrum.

 Draper (W.). Phil. Mag., (4) 25, 342.
- The comparative aggregate strength of the light from the red hydrogenstratum, and of that from the rest of the Chromosphere.

Hammond (B. E.). Nature, 3, 487.

Distribution de l'énergie dans le spectre solaire normal.

Langley (S. P.). Comptes Rendus, 92, 701.

Confronto fra la radiazione e l'intensità chimica della luce del sole.

Macagno (J.). Mem. Spettr. ital., 8, App. 13-18.

Étude de la distribution de la lumière dans le spectre solaire.

Macé (J.) et Nicati (W.). Comptes Rendus, **91**, 623, 1073; Beiblätter, **5**, 301 (Abs.).

Ueber die Vertheilung der chemischen Lichtintensität im Sonnenspectrum.

Monckhoven. Photographische Mittheilungen, 16, 145-6; Beiblätter, 4, 49 (Abs.).

Untersuchungen über die Helligkeitsänderungen in verschiedenen Theilen des Sonnenspectrums bei abnehmender Höhe der Sonne über dem Horizont.

Müller (G.). Astronom. Nachr., **103**, 241-252; Beiblätter, **7**, 111 (Abs.).

18, Iron lines in the solar spectrum.

On the iron lines widened in solar spots.

Lockyer (J. N.). Proc. Royal Soc., 31, 348-9; Beiblätter, 5, 288 (Abs.);
Comptes Rendus, 92, 904-910; Jour. Chem. Soc., 40, 669 (Abs.).

19, Magnesium in the solar spectrum.

Spectre du magnésium en rapport avec la constitution du Soleil.

Fievez (Ch.). Ann. Chim. et Phys., (5) 23, 366.

20, Maps of the solar spectrum.

On the photographic method of mapping the least refrangible end of the solar spectrum (with a map of the spectrum from 7600 to 10750), Bakerian Lecture.

Abney (W. de W.). Phil. Trans., **171**, 637-667; Comptes Rendus, **90**, 182-3; Beiblätter, **4**, 375 (Abs.).

Sur le spectre normal du Soleil, partie ultra-violette.

Cornu (A.). Paris, Gauthier-Villars, 1881, 4°. Extrait des Annales de l'École normale supérieur, (2) 9, (1880). Avec deux planches. (Maps drawn by wave-lengths.)

Étude du spectre solaire.

Fievez (Ch.). Bruxelles, F. Hayez, 1882, 4°. Extrait des Annales de l'Observatoire royal de Bruxelles, n. sér., tome IV. Avec une planche. (Wave-lengths, lines 6399 to 4522.)

Étude de la région rouge $(\Lambda - C)$ du spectre solaire.

Fievez (Ch.). F. Hayez, Bruxelles, 1883, 4°. Extrait des Annales de l'Observatoire royal de Bruxelles, n. sér., tome V. Avec deux planches. (Wave-lengths, lines 7500 to 6500.)

Untersuchungen über das Sonnenspectrum und die Spectren der chemischen Elemente.

Kirchh ff G.). Berlin, Dummber, 1866-1875, 2 Theile, 12. Mit vier Tafeln. Besondere Abdruck aus den Abhandlungen der Berliner Akademie der Wissenschaften, 1861 und 1862. He used an arbitrary scale.)

Recherches sur le spectre solaire ultra-violet, et sur la détermination des longueurs d'onde, suivies d'une note sur les formules de dispersion.

> Mascart (E.). Extrait des Annales scientifiques de l'École normale supérieure, tome I (1864). Paris, Gauthier-Villars, 1864, 42. Avec un planche.

[A photographic map of the solar spectrum is being made by Prof. Rowland, and some thirty parts of it have been distributed privately. At the end of the year 1887 it extended from wave-length 0.0003675 to wave-length 0.0005796.]

Large Maps of the Solar Spectrum,

[by Thollon, in the Annals of the Academy of Nice, Tome I. Not yet published, but about to be so; and Tome II. is to contain another, smaller, map.]

21, Oscillation-frequencies.

Catalogue of the oscillation-frequencies of solar rays.

Rept. British Assoc. for 1878.

22, Oxygen in the solar spectrum.

Discovery of oxygen in the Sun by photography, and a new theory of the solar spectrum.

Draper (H.). Amer. Jour. Sei., (3) 14, 89-96; Nature, 16, 364; 17, 339; Comptes Rendus, 85, 613; Beiblätter, 2, 86-90.

On a photograph of the solar spectrum showing the dark lines of oxygen.

Draper (J. C.). Monthly Notices Astronom. Soc., 40, 14-17; Amer. Jour. Sci., (3) 17, 448-452; Jour. Chem. Soc., 38, 201 (Abs.); Beiblätter, 3, 872.

Telluric oxygen lines in the solar spectrum.

Egoroff. Amer. Jour. Sci., 126, 477; Comptes Rendus, Aug. 27, 1883.

On the presence of oxygen in the Sun.

Schuster (A.). Nature, 17, 148-9; Beiblätter, 2, 90-91.

23, Photography of the solar spectrum.

Preliminary note on photographing the least refracted portion of the solar spectrum.

Abney (W. de W.). Monthly Notices Astronom. Soc., **36**, 276-7; Phil. Mug., (5) **1**, 414-415.

Photography at the least refrangible end of the solar spectrum.

Abney (W. de W.). Monthly Notices Astronom. Soc., 38, 348-51; Phil. Mag., (5) 6, 154-7.

On the photographic method of mapping the least refrangible end of the solar spectrum (with a map of the spectrum from 7600 to 10750). Bakerian Lecture.

Abney (W. de W.). Phil. Trans., **171**, 653-67; Proc. Royal Soc., **30**, 67 (Abs.); Beiblätter, **4**, 375 (Abs.); **5**, 507-9; Comptes Rendus, **90**, 182-3; Jour. Chem. Soc., **38**, 429.

Use of the spectroscopic camera during the total solar eclipse of May 17, 1882.

Abney and Schuster. Proc. Royal Soc., 35, 152.

Photography of the ultra-red portions of the solar spectrum.

Abney (W. de W.). Chem. News, 40, 311.

Photographs of the solar spectrum.

Amory (R.). Proc. Amer. Acad., 11, 70, 279, with plates.

Image photographique colorée du spectre solaire.

Beeguerel (Éd.). Comptes Rendus, 26, 181.

De l'image photochromatique du spectre solaire, et des images obtenus dans la chambre obscure.

Becquerel (Éd.). Comptes Rendus, 27, 483. Rapport sur ce mémoire, par M. Regnault, do., 28, 200.

Sur les phosphorographies du spectre solaire.

Becquerel (Éd.). Jour. de Phys., (2) 1, 139.

Observations sur un mémoire de M. E. Marchand relatif à la mesure de la force chimique contenu dans la lumière du Soleil.

Becquerel (Éd.). Ann. Chim. et Phys., (4) **30**, 572-3; Jour. Chem. Soc., (2) **12**, 942 (Abs.).

Janssen's new method of solar photography.

Blanford (H. F.). Nature, 18, 643-645.

Ueber directe Photographirung der Sonnenprotuberanzen.

Braun (C.). Astronom. Nachr., **80**, 34-42; Ann. Phys. u. Chem., **148**, 475-488.

The solar spectrum.

Capron (J. R.). Nature, 6, 492.

Sur la photographie du spectre solaire.

Conche (E.). Comptes Rendus, 90, 689-90.

On the phosphorograph of a solar spectrum, and on the lines of its infra-red region.

Draper (J. W. . Amer. Jour. Sci., (3) 21, 171-182; Phil. Mag., (5) 11, 157-169; Beiblatter, 5, 509-510.

On a method of photographing the solar corona without an eclipse.

Huggins (W. Proc. Royal Soc. 34, 409-414; Nature, 27, 109-201;
Amer. Jour. Sci., 43, 25, 126-130; 27, 27-32; Ann. Chim. et Proc., 61, 3, 540-550;
Beiblatter, 7, 194 (Abs.; Astronom, Nachr., 104-113-118; Jour. de Phys., 21, 2, 173, Abs.);
Comptes Rendus, 96, 51-59.

Photographische Darstellung des Sonnenspectrums.

Jahresber, d. Chemie, 16, 101; 17, 116.

Objective Darstellung des Sonnenspectrums; Vorlesungsversuch.

Kessler, F. J., Ber, chem. Ges., 9, 577-8; Jour. Chem. Soc., 2, 266.

On the use of the reflecting grating in eclipse photography.

Lockyer (J. N.). Proc. Royal Soc., 27, 107-8.

Rutherfurd's Photographie des Sonnenspectrums.

Müller (J.). Ann. Phys. u. Chem., 126, 435.

Photographie de l'image du spectre solaire.

Niepce de Saint Victor. Comptes Rendus, 45, 814; 46, 451, 490.

Photography of the infra-red region of the solar spectrum.

Pickering (H. W.). Proc. Amer. Acad., 20, 473.

On recent progress in photographing the solar spectrum.

Rowland (H. A.). Rept. British Assoc. (1884), 635.

On photographs of the solar spectrum.

Rowland (H. A.). Amer. Jour. Sci., (3) 31, 319.

Étude photographique du Soleil à l'observatoire impérial de Paris.

Sourel. Comptes Rendus, 71, 225.

Le fotografie del Sole fatte all'osservatorio di Meudon dal Professor Janssen.

Tacchini (P.). Mem. Spettr. ital., 9, 1-5.

Photographie der weniger brechbaren Theile des Sonnenspectrums.

Vogel (H. C.) und Lohse (O.). Ann. Phys. u. Chem., 159, 297; 160, 292.

On reversed photographs of the solar spectrum beyond the red, obtained on a collodion plate.

Waterhouse (Capt. J.). Proc. Royal Soc., 24, 186-9.

Ueber den Einfluss des Eosins auf die photographische Wirkung des Sonnenspectrums auf das Silberbromid und Silberbromjodid.

Waterhouse (Capt. J.). Ann. Phys. u. Chem., 159, 616-622; Proc. Royal Soc. Bengal for 1876.

Photographie directe des protubérances solaires sans l'emploi du spectroscope.

Zenger (C. W.). Comptes Rendus, 88, 374.

24, Pressure on the Sun.

On a method of determining the pressure on the solar surface.

Wiedemann (E.). Monthly Notices Astronom. Soc., 40, 627-8.

On a means to determine the pressure at the surface of the Sun and stars, and some spectroscopic remarks.

Wiedemann (E.). Proc. Physical Soc., 4, 31-34; Phil. Mag., (5) 10, 123-5; Beiblatter, 4, 613 (Abs.).

25, Spectra of solar protuberances.

Quadri statistici delle protuberanze e macchie solari osservati all' Collegio Romano nel 1 semestre, 1879.

Barbieri (E.). Mem. Spettr. ital., 8, 75-80.

Constitution des protubérances solaires.

Bianchi. Comptes Rendus, 68, 276.

La découverte du moyen qui permet d'observer en tout temps les protubérances solaires.

Delaunay. Comptes Rendus, 67, 867.

Fravaux de M. Respighi pour l'observation spectrale des protubérances solaires.

Faye. Comptes Rendus, 70, 886.

Sur les taches et protubérances solaires observées à l'équatorial du Collège romain.

Ferrari. Comptes Rendus, 87, 971-3.

Spectroscopic observations of the solar prominences.

Herschel (Capt.). Proc. Royal Soc., 18, 62, 119, 355.

Note on a method of viewing the solar prominences without an eclipse. Huggins (W.). Proc. Royal Soc., 17, 302.

Note on the wide-slit method of viewing the solar prominences.

Huggins (W.). Proc. Royal Soc., 21, 127.

Étude spectrale des protubérances solaires.

Janssen (J.). Comptes Rendus, 68, 93.

Méthode qui permet de constater la matière protubérantielle sur tout le contour du disque solaire.

Janssen (J.). Comptes Rendus, 68, 713.

On the solar protuberances.

Janssen (J.). Proc. Royal Soc., 17, 276.

Notice of an observation of the spectrum of a solar prominence.

Lockyer (J. N.). Proc. Royal Soc., 17, 91, 104, 128.

Report to the Committee on Solar Physics on the Basic Lines common to Spots and Prominences.

Lockyer (J. N.). Proc. Royal Soc., 29, 247-265; Beiblätter, 4, 45 (Abs.).

Protubérances solaires.

Lockyer (J. N.). Comptes Rendus, 67, 949.

Analyse spectrale des protubérances observées à la presqu'île de malacca pendant l'éclipse totale du Soleil du 18 août 1868.

Rayet. Comptes Rendus, 67, 757.

Sur le spectre des protubérances solaires.

Rayet. Comptes Rendus, 68, 62; Ann. Chim. et Phys., (4) 24, 56.

Renversement de deux lignes du sodium dans le spectre de la lumière d'une protubérance.

Rayet. Comptes Rendus, 70, 1333.

Osservazioni spettroscopiche del Bordo e delle Protuberanze Solari [with lithographic plate of the prominences].

Respighi (L.), Roma, 1871.

Sulle protuberanze solari.

Respighi (L.). Bull. meteorol. dell'osservat. del Coll. Rom., 9, 89-91; Amer. Jour. Sci., (3) 1, 283-287.

Spectre des protubérances solaires.

Respighi (L.). Comptes Rendus, 77, 716, 774.

Noch einmal meine Bedenken gegen die Zöllner'sche Erklärung der Sonnenflecke und Protuberanzen.

Reye (T.). Ann. Phys. u. Chem., 151, 166-173.

Quelques particularités du spectre des protubérances solaires.

Secchi (A.). Comptes Rendus, 67, 1123.

Remarques sur la rélation entre les protubérances et les taches solaires. Secchi (A.). Comptes Rendus, 68, 237-8.

Sur les relations qui existent, dans le Soleil, entre les facules, les protubérances et la couronne.

Secchi (A.). Comptes Rendus, 72, 829-32; 73, 242-6, 593-9.

Sur les divers aspects des protubérances.

Secchi (A.). Comptes Rendus, 73, 826-36, 979-83.

Sur un nouveau moyen de mesurer les hauteurs des protubérances solaires. Secchi (A.). Comptes Rendus, 74, 218-224.

Spectre des protubérances solaires.

Secchi (A.). Comptes Rendus, 74, 218-24.

Resumé des observations des protubérances solaires du 1 janvier au 29 avril.

Secchi (A.). Comptes Rendus, 74, 1315-20; Monthly Notices Astronom, Soc., 32, 318-20 (Abs.).

Sur les protubérances et les taches solaires.

Secchi (A.). Comptes Rendus, 76, 251.

Quelques observations spectroscopiques particulières.

Secchi (A.). Comptes Rendus, 76, 1052.

Nouvelle série d'observations sur les protubérances solaires; spectre du sodium, de l'hydrogène, du fer, du magnésium, peutêtre des oxydes. Secchi (A.). Comptes Rendus, **76**, 1522-26.

Protubérances solaires.

Secchi (A.). Comptes Rendus, 77, 977.

Observations spectrales des protubérances solaires pendant le dernier trimestre de l'année 1873.

Secchi (A.). Comptes Rendus, 78, 606.

Tableaux des observations des protubérances solaires, du 26 décembre 1873 au 2 août 1874.

Secchi (A.). Comptes Rendus, 79, 885-9.

Études des taches et des protubérances solaires de 1871 à 1875.

Seechi (A.). Comptes Rendus, 80, 1270-8.

Résultats des observations des protubérances et des taches solaires du 23 avril au 28 juin 1875.

Secchi (A.). Comptes Rendus, 81, 562, 695.

Suite des observations spectroscopiques des protubérances solaires, 1875. Secchi (A.). Comptes Rendus, 82, 717.

Nouvelle série d'observations sur les protubérances et les taches solaires. Secchi (A.). Comptes Rendus, 83, 26-7.

Observations des protubérances solaires pendant le second trimestre d' 1876.

Secchi (A.). Comptes Rendus, 84, 423.

Observations des protubérances solaires, pendant le premier semestre de l'année 1877.

Secchi (A.). Comptes Rendus, 86, 98.

Ueber eine ausgezeichnete Protuberanz.

Spörer. Ann. Phys. u. Chem., 148, 171-2.

L'observation des protubérances solaires faites du moment une éclipse par M. Janssen et M. Lockyer.

Stewart (Balfour). Comptes Rendus, 67, 904.

Observations des taches et des protubérances solaires, pendant le 1 trimestre de 1878.

Tacchini (P.). Comptes Rendus, 86, 1008.

Observations des taches et protubérances solaires pendant les troisième et quatrième trimestres de 1879.

Tacchini (P.). Comptes Rendus, 90, 358-60.

Observations des protubérances, des facules et des taches solaires pendant le premier semestre de l'année 1880.

Tacchini (P.). Comptes Rendus, 91, 466-7.

Observations des taches, des facules et des protubérances solaires, faites à l'observatoire du Collège romain pendant le dernier trimestre, 1880.

Tacchini (P.). Comptes Rendus, 92, 502-4.

- Protuberanze solari osservate a Palermo nel quarto trimestre del 1878. Tacchini (P.). Mem. Spettr. ital., 8, 10-11.
- Riassunto delle protuberanze e delle macchie solari osservate alla specola del Collegio Romano nel mese di Settembre, Ottobre e Dicembre.

 Tacchini (P.). Mem. Spettr. ital., 8, 13-16.
- Sulla distribuzione delle macchie, facole e protuberanze solari sulla superficie del Sole, durante l'anno 1880.

Tacchini (P.). Mem. Spettr. ital., 10, 122-3.

Observations des protubérances, des facules et des taches solaires faites à l'observatoire royal du Collège romain pendant le premier semestre 1882.

Tacchini (P.). Comptes Rendus, 95, 276-8.

Observations des protubérances, facules et taches solaires faites à l'Observatoire royal du Collège romain pendant le troisième et le quatrième trimestre de 1882.

Tacchini (P.). Comptes Rendus, 96, 1290-1; Nature, 28, 48 (Abs.).

Forms of solar protuberances.

Taechini (P.). Nature, 6, 293.

Taches et protubérances solaires observées avec un spectroscope à grande dispersion.

Thollon (L.). Comptes Rendus, 89, 855.

Observation spectroscopique d'une protubérance solaire le 30 août 1880. Thollon (L.). Comptes Rendus, 91, 432.

Perturbations solaires nouvellement observées.

Thollon (L.). Comptes Rendus, 97, 144.

Taches et protubérances solaires observées avec un spectroscope à très grande dispersion.

Thollon (L.). Jour. de Phys., 9, 118.

Sudden extinction of the light of a solar protuberance.

Trouvelot (E.). Amer. Jour. Sci., (3) 15, 85-8.

Observations of the solar prominences.

Tupman (Capt.). Monthly Notices Astronom. Soc., 33, 105-115; Amer. Jour. Sci., (3) 5, 319.

Sur une méthode employée par M. Lockyer pour observer en temps ordinaire les spectres des protubérances signalées dans les éclipses de Soleil.

Warren de la Rue. Comptes Rendus, 67, 836.

Beobachtung der Sonnenprotuberanzen in monochromntischem Lichte. Zenker (W.). Ann. Phys. u. Chem., **142**, 172-176.

Einrichtung des Spectroskops zur Wahrnehmung der Protuberanzen. Zollner (F.). Ann. Phys. u. Chem., **138**, 42.

Beobachtungen von Protuberanzen der Sönne.

Zollner (F.5. Der Naturforscher, 1, 417; 2, 9, 33, 51, 74, 91, 116, 133, 213, 245, 338; 3, 39, 175, 189, 205, 262, 263, 278; Les Mondes, 18, 362, 413; 19, 213, 215, 232, 498; Nature, 1, 172, 195, 607; 2, 131.

26, Radiation and the solar spectrum.

Recherches sur les effets de la radiation chimique de la lumière solaire, au moven des courants électriques.

Becquerel (Éd.). Comptes Rendus, 9, 145. Remarques sur cette note, par M. Biot, do., 169. Réponse, do., 172-3. Sur de nouveaux procédés pour étudier la radiation solaire, tant directe que diffuse, dans ses rapports avec la phosphorescence.

Biot. Comptes Rendus, 8, 259, 315.

Sur la répartition de la radiation solaire à Montpellier pendant l'année 1875.

Crova (A.). Comptes Rendus, 82, 375-7.

On the present state of our knowledge of solar radiations.

Hunt (R.). Rep'ts British Assoc. for 1850, 1852, 1853.

Étude des radiations superficielles du Soleil.

Langley (S. P.). Comptes Rendus, 81, 436-9.

27, Red end of the solar spectrum.

Photography of the ultra-red portions of the solar spectrum.

Abney (W. de W.). Chem. News, 40, 311.

Work in the infra-red of the spectrum.

Abney (W. de W.). Nature, 27, 15-18; Jour. de Phys., (2) 3, 48; Beiblätter, 7, 695 (Abs.).

Atmospheric absorption in the infra-red of the solar spectrum.

Abney (W. de W.) and Festing (Lieut. Col.). Nature, 28, 45; Proc. Royal Soc., 35, 80.

On the fixed lines in the ultra-red region of the spectrum.

Abney (W. de W.). Phil. Mag., (5) 3, 222; Beiblätter, 1, 239.

On lines in the infra-red region of the solar spectrum.

Abney (W. de W.). Phil. Mag., (5) 11, 300; Beiblätter, 5, 509.

Sur l'observation de la partie infra-rouge du spectre solaire au moyen des effets de phosphorescence.

Becquerel (Éd.). Comptes Rendus, **83**, 249-255; Archives de Genève, (2) **57**, 306-318; Amer. Jour Sei., (3) **13**, 379-80 (Abs.); Ann. Chim. et Phys., (5) **10**, 5-13.

La détermination des longueurs d'onde des rayons de la partie infra-rouge du spectre au moyen des effets de phosphorescence.

Becquerel (Édm.). Comptes Rendus, 77, 302; Amer. Jour. Sci., (3) 28, 391, 459.

On the fixed lines in the ultra-red invisible region of the spectrum.

Draper (J. W.). Phil. Mag., (5) **3**, 86-89; Beiblätter, **1**, 239-40 (Abs.).

Optical spectroscopy of the red end of the solar spectrum.

Hennessey (J. B. N.). Nature, 17, 28.

Der infra-rothe Theile des Sonnenspectrums.

Lang (V. von). Carl's Repert, 19, 107-9; Beiblatter, 7, 074 [Abs.).

On certain remarkable groups in the lower spectrum.

Langley (S. P.). Proc. Amer. Acad., 14, 92-105; Beiblatter, 4, 208.

Photography of the infra-red region of the solar spectrum.

Pickering (W. H.). Proc. Amer. Acad., 20, 473.

Eine Wellenlängenmessung im ultrarothen Sonnenspectrum.

Pringsheim (E.). Ann. Phys. u. Chem., n. F. 18, 32; Amer. Jour. Sci., (3) 25, 230.

Optical spectroscopy of the red end of the solar spectrum.

Smyth (C. Piazzi). Nature, 16, 264.

28, Spectroscopic effect of rotation.

Sur la loi de rotation du Soleil; réponse à une réclamation du P. Seechi et à un mémoire du Dr. Zöllner.

Faye. Comptes Rendus, 73, 1122-31.

Ueber die spectroscopische Beobachtung der Rotation der Sonne, und ein neues Reversionspectroscop.

Zöllner (F.). Ann. Phys. u. Chem., 144, 449.

29, Storms and cyclones on the Sun.

Sur la nouvelle hypothèse du P. Secchi.

Faye. Comptes Rendus, 76, 593-7.

Note sur quelques points de la théorie des eyelones solaires, en répouse à une critique par M. Vicaire.

Faye. Comptes Rendus, 76, 700-41.

Réponse au P. Secchi et à M. Vicaire.

Fave. Comptes Rendus, 76, 919-923, 977-982.

Note sur les cyclones solaires, avec une réponse de M. Respighi à M. M. Vicaire et Secchi.

Fave. Comptes Rendus, 76, 1229-32.

Sur les cyclones du Soleil comparés à ceux de notre atmosphère.

Tarry (II.). Comptes Rendus, 77, 44-8.

Spectre d'une evelone solaire.

Thollon (L.). Comptes Rendus, 90, 87-9.

Observations sur la théorie des cyclones solaires.

Vicaire (E.), Comptes Rendus, 76, 703-6, 948-52.

30, Sun-spots.

On the spectrum of a solar spot observed at the Royal Observatory, Greenwich.

Airy (G. B.). Monthly Notices Astronom. Soc., 38, 32-3.

On the spectrum of a sun-spot observed at the Royal Observatory, Greenwich, 1880.

Airy (G. B.). Monthly Notices Astronom. Soc., 41, 63-4.

Dessin des taches solaires observées le 23 mai à 7 heures du soir. Baudin. Comptes Rendus, **70**, 1193.

On a periodicity of cyclones and rainfalls in connection with sun-spot periodicity.

British Assoc. Rep'ts for 1873-8.

- Bands observed in the spectra of sun-spots at Stonyhurst Observatory.

 Cortie (A.). Monthly Notices Astronom. Soc., 47 (1886), 19.
- Complément de la théorie physique du Soleil; explication des taches.

 Faye. Comptes Rendus, **75**, 1664-72, 1793-6; **76**, 301-10, 389-97 (réponse aux critiques de M. M. Secchi et Tacchini).
- Réponse à de nouvelle objections de M. Tacchini. Faye. Comptes Rendus, 77, 381-8, 621-7.
- Théorie des scories solaires selon M. Zöllner. Faye. Comptes Rendus, 77, 501-9.
- Sur l'explication des taches solaires proposée par M. le Dr. Raye. Faye. Comptes Rendus, 77, 855-61.
- Réponse aux remarques de M. Tarry sur la théorie des taches solaires. Faye. Comptes Rendus, 77, 1122-30.
- Théories solaires; réponse à quelques critiques récentes. Faye. Comptes Rendus, 78, 1663-70.
- Observations au sujet de la dernière note M. Tacchini, et du récent mémoire de M. Langley.

Faye. Comptes Rendus, 79, 74-82.

Double série de dessins répresentant les trombes terrestres et les taches solaires executée par M. Faye.

Faye. Comptes Rendus, 79, 265-73.

Sur le dernier numéro des "Memorie dei Spettroscopisti italiani." Faye. Comptes Rendus, 80, 935-6.

Spectrum of the great sun-spot of 1882, Nov. 12-25.

Greenwich Observatory, Monthly Notices Astronom. Soc., 43, 77.

On sun-spots and terrestrial elements in the Sun.

Liveing (G. D.) and Dewar (J.). Phil. Mag., (5) 16, 401-8; Beiblatter. 8, 304 (Abs.); Jour. de Phys., 13, 418.

Temperature of sun-spots.

Liveing (G. D.) and Dewar (J.). Phil. Mag., (5) 17, 302-4; Beiblatter, 8, 768 (Abs.).

On a sun-spot observed Aug. 31, 1880.

Lockver (J. N.). Proc. Royal Soc., 31, 72; Beiblatter, 5, 129 (Abs.).

Note on the reduction of the observations of the Spectra of 100 sun-spots observed at Kensington.

Lockyer (J. N.). Proc. Royal Soc., 32, 203-6.

Preliminary Report to the Solar Physics Committee on the Sun-spot Observations made at Kensington.

> Lockyer (J. N.). Proc. Royal Soc., 33, 154; Chem. News, 44, 297-8; Beiblatter, 6, 281-2 (Abs.).

On the most widened lines in sun-spot spectra; first and second series, from November 12, 1879, to October 15, 1881.

Lockyer (J. N.). Proc. Royal Soc., 36, 443-6; 42 (1887), 37-46.

Observations of sun-spot spectra in 1883.

Perry (S. J.). Monthly Notices Astronom. Soc., 44, 244-8.

On the sun-spot spectrum from D to B.

Perry (S. J.). Rept. British Assoc. (1884), 635.

Analyse spectrale d'une tache solaire.

Rayet. Comptes Rendus, 70, 846.

Réponse à M. Fave concernant les taches solaires.

Reye (T.). Comptes Rendus, 77, 1178-41.

Les minima des taches du Soleil en 1881.

Riccò (A.). Comptes Rendus, 94, 1169-71.

Sulla diversa attività dei due emisferi solari nel 1881.

Riccò (A.). Astronom. Nachr., 103, 155-6.

Remarques sur la relation entre les protubérances et les taches solaires. Secchi (A.). Comptes Rendus, 68, 207.

Présence de la vapeur d'eau dans le voisinage des taches solaires.

Secchi (A.). Comptes Rendus, 68, 358.

L'analyse comparative de la lumière du bord solaire et des taches.

Secchi (A.). Comptes Rendus, 69, 39.

Note sur les taches solaires.

Secchi (A.). Comptes Rendus, 69, 163, 589, 652.

Sur les taches et le diamètre solaires.

Secchi (A.). Comptes Rendus, 75, 1581-4.

Taches solaires.

Seechi (A.). Comptes Rendus, 76, 519-27.

La théorie des taches solaires, réponse à M. Faye.

Secchi (A.). Comptes Rendus, 76, 911-19.

Études des taches et des protubérances solaires.

Secchi (A.). Comptes Rendus, 80, 1273-78; 83, 26-7.

Note sur les taches du Soleil.

Sonrel. Comptes Rendus, 70, 1033.

Report to the Solar Physics Committee on a Comparison between apparent Inequalities of Short-period in Sun-spot Areas, and in Diurnal Temperature-ranges at Toronto and at Keno.

Stewart (B.) and Carpenter (W. L.). Proc. Royal Soc., 37, 22, 290.

Macchie solari e facole osservate a Palermo nei mesi di gennaio, febbraio, e marzo 1879 (e durante l'anni 1879 e 1880).

Tacchini (P.). Mem. Spettr. ital., **8**, 35-6, 50-1, 55-6, 90-2, 97-101; **9**, 45-8, 91-2, 190-2; **10**, 1-4, 122-123.

Sur la théorie des taches solaires; réponse à deux notes précédentes de M. Faye.

Tacchini (P.). Comptes Rendus, 76, 633-5.

Sur la théorie émise par M. Faye des taches solaires.

Tacchini (P.). Comptes Rendus, 76, 826-30.

Nouvelles observations spectrales, en désaccord avec quelques-unes des théories émises sur le taches solaires.

Tacchini (P.). Comptes Rendus, 77, 195-8.

Observations spectroscopiques sur les taches solaires; réponse à M. Faye.

Tacchini (P.). Comptes Rendus, 79, 39.

Sur les taches solaires.

Tacchini (P.). Comptes Rendus, 84, 1079-81.

Spectre d'une tache solaire observee pendant le mois de juin 1877.

Tacehini (P.). Comptes Rendus, 84, 1500.

Observations des taches et des protubérances solaires pendant le 1 trimestre de 1878.

Tacchini (P.). Comptes Rendus, 86, 1008.

Observations des taches et des protubérances solaires (pendant les années 1879, 1880, 1881, et 1882).

Tacchini (P.). Comptes Rendus, **90**, 358-60; **91**, 316-7, 466-7; **93**, 382; **95**, 276-8; **96**, 1290.

Sur la grande tache solaire de novembre 1882, et sur les perturbations magnétiques qui en ont accompagné l'apparition.

Tacchini (P.). Comptes Rendus, 95, 1212-14.

Macchie solari e facole osservate in Roma all'equatoriale di Cauchoix nel terzo trimestre, e nel ultimo trimestre 1879.

Tacchini (P.) e Millosevich (E.). Mem. Spettr. ital., 8, 73-4, 88-9.

Macchie solari e facole osservate a Roma nel mese di gennaio, 1880.

Tacchini (P.) e Millosevich (E.). Mem. Spettr. ital., 9, 8.

Observations des taches du Soleil, faites à l'Observatoire de Toulouse en 1874 et 1875.

Tisserand (F.). Comptes Rendus, 82, 765-7.

Sur deux taches solaires actuellement visibles à l'œil nu.

Tremeschini. Comptes Rendus, 70, 340.

On the veiled solar spots.

Trouvelot (L.). Proc. Amer. Acad., 11, 62-69; Amer. Jour. Sci., (3) 11, 169-476.

Sur la théorie des taches et sur le novau obscur du Soleil.

Vicaire (E.). Comptes Rendus, 76, 1396-9.

Sur la constitution du Soleil, et la théorie des taches.

Vicaire (E.). Comptes Rendus, 76, 1540-4; 77, 49-4.

Note on the temperature of sun-spots.

Wiedemann (E.). Phil. Mag., (5) 17, 247-8; Beiblatter, 8, 768 (Ale.).

Études sur la fréquence des taches du Soleil et sa relation avec la variation de la déclinaison magnétique.

Wolf. Comptes Rendus, 70, 741.

Spectroscopic Notes; Spot-spectra.

Young C. A. L. Jour. Franklin Inst., 60, 331-40; Nature, 3, 110-113.

Ueber die Periodicität und heliographische Verbreitung der Sonnenflecken.

> Zöllner (F.). Ber. Sächs. Ges. d. Wiss., 22, 338-350; Ann. Phys. u. Chem., 142, 524-539.

Ueber den Aggregatzustand der Sonnenflecken.

Zöllner (F.). Ann. Phys. u. Chem., 152, 291-310.

31, Telluric (terrestrial) rays of the solar spectrum.

Étude spectrale du groupe de raies telluriques nommé a (Alpha) par Angström.

Cornu (A.). Comptes Rendus, 95, 801; 98, 169-76; Nature, 29, 351;
Beiblätter, 8, 305-7 (Abs.); Jour. de Phys., (2) 3, 109-117.

Les bandes telluriques du spectre solaire.

Crova (A.). Comptes Rendus, 87, 107.

Sur les raies telluriques du spectre solaire.

Egoroff (N.). Comptes Rendus, 93, 385, 788; Chem. News, 44, 256 (Abs.); Beiblätter, 5, 871-2 (Abs.); 6, 100-101 (Abs.).

Sur la production des groupes telluriques fondamentaux A et B du spectre solaire par une couche absorbante d'oxygène.

Egoroff (N.). Comptes Rendus, **97**, 555-7; Beiblätter, **7**, 859-60 (Abs.); Amer. Jour. Sci., (3) **26**, 477 (Abs.).

Tellurische Linien der Sonne und der Gestirne.

Jahresber. d. Chemie, 18, 92; 19, 77.

Sur les raies telluriques du spectre solaire.

Janssen (J.). Comptes Rendus, 54, 1280; 56, 189, 538; 57, 1008;
60, 213; 95, 885; Ann. Chim. et Phys., (4) 23, 274-299; Ann. Phys. u. Chem., 126, 480; Phil. Mag., (4) 30, 78.

In feuchter Luft sind die Wärmestreifen des Sonnenspectrums breiter.

Lamansky (S.). Ann. Phys. u. Chem., 146, 217.

Étude sur les raies telluriques du spectre solaire.

Thollon (L.). Comptes Rendus, 91, 520-522; Beiblätter, 4, 891 (Abs.).

32, Ultra-violet part of the solar spectrum.

Étude du spectre solaire ultra-violet.

Cornu (A.). Comptes Rendus, 86, 101; Jour. de Phys., 7, 285.

Deux planches relatives au spectre solaire.

Cornu (A.). Comptes Rendus, 86, 983.

9 т

Sur l'absorption atmosphériques des radiations ultra-violettes.

Cornu (A.). Jour. de Phys., 10, 5.

Sur la limite ultra-violette du spectre solaire.

Cornu (A.). Comptes Rendus, 88, 1101-8; Proc. Royal Soc., 29, 47-55; Jour. Chem. Soc., 36, 861 (Abs.); Beiblätter, 4, 39-40 (Abs.).

Observation de la limite ultra-violette du spectre solaire à diverses altitudes.

Cornu (A.). Comptes Rendus, 89, 808-814; Jour. Chem. Soc., 38, 201 (Abs.); Amer. Jour. Sci., (3) 19, 406.

Loi de repartition, suivant l'altitude, de la substance absorbant dans l'atmosphère des radiations solaires ultra-violettes.

Cornu (A.). Comptes Rendus, 90, 940.

Sur le spectre normal du Soleil; partie ultra-violette.

Cornu (A.), Ann. de l'École Normale, (2) 9, 21-106; Beiblätter, 4, 371-4 (Abs.).

Sur les longueurs d'onde et les caractères des raies violettes et ultraviolettes du Soleil, données par une photographie faite au moyen d'un réseau.

Draper (H.). Comptes Rendus, 78, 682-6.

Influence des rayons ultra-violets du spectre solaire sur la matière verte des végétaux et sur la flexion des tiges.

Guillemin. Comptes Rendus, 45, 62, 543.

Ultra-violette Strahlen des Sonnenspectrums.

Jahresber, d. Chemie (1872), 134.

Sur les raies du spectre solaire ultra-violet.

Mascart, Comptes Rendus, 57, 789; Phil. Mag., (4) 27, 159

Sur l'absorption du nonveau violet extrême par diverses matières.

Matthiessen. Comptes Rendus, 19, 112.

Rayons violets qui renferment le maximum d'action chimique de toutes les conleurs du spectre solaire.

Poev (A.). Comptes Rendue, 73, 1238.

Nouvelles expériences tendant à démontrer qu'il existe une force magnétisante dans l'extrémité violette du spectre soluire.

Ridolfi (C.). Ann. Chim. et Phys., (5: 3, 323-4

33, Water in the solar spectrum.

The influence of water in the atmosphere on the solar spectrum and solar temperature.

Abney (W. de W.) and Festing (R.). Proc. Royal Soc., **35**, 328-41; Jour. Chem. Soc., **46**, 241; Beiblätter, **8**, 507 (Abs.).

Aqueous lines in the spectrum of the Sun.

Cooke (J. P., Jr.). Amer. Jour. Sci., 91, 178; Phil. Mag., (4) 31, 337.

Influence de la vapeur aqueuse visible dans l'atmosphère, et de la pluie sur le spectre solaire.

Zantedeschi. Comptes Rendus, 63, 644.

34, Wave-lengths of the solar spectrum.

Wave-lengths of A, a, and of prominent lines in the infra-red of the solar spectrum.

Abney (W. de W.). Proc. Royal Soc., 36, 137.

Détermination des longueurs d'onde des raies et bandes principales du spectre solaire infra-rouge.

Becquerel (H.). Comptes Rendus, 99, 417; Amer. Jour. Sci., 123, 391, 459.

Détermination des longueurs d'onde des raies du spectre solaire au moyen des bandes d'interférence.

Bernard (F.). Comptes Rendus; 58, 1153; 59, 32.

Sur la photométrie solaire.

Crova (A.). Comptes Rendus, **94**, 1271; **95**, 1271-3; **96**, 123; Beiblätter, **7**, 113 (Abs.).

Bestimmung der Wellenlängen der Fraunhofer'schen Linien des Sonnenspectrums, mit 2 Tafeln.

Ditscheiner (L.). Sitzungsber. d. Wiener Akad., 50 II, 286, 296-341.

Sur les longueurs d'onde et les caractères des raies violettes et ultraviolettes du Soleil, données par une photographie faite au moyen d'un réseau.

Draper (H.). Comptes Rendus, 78, 682-6.

On the normal solar spectrum (giving wave-lengths of the principal lines of the solar spectrum).

Gibbs (Wolcott). Amer. Jour. Sci., 93, 1.

Mesures spectrophotométriques en divers points du disque solaire.

Gouy et Thollon. Comptes Rendus, 95, 834-6; Beiblätter, 7, 113-114 (Abs.).

Wellenlänge und Brechungsexponent der äussersten dunklen Wärinestrahlen des Sonnenspectrums.

Müller (J.). Ann. Phys. u. Chem., **115**, 543. Berichtigung dazu, **116**, 644.

Eine Wellenlängenmessung im ultrarothen Sonnenspectrum.

Pringsheim (E.). Ann. Phys. u. Chem., n. F. 18, 32; Nature, 23, 72.

Relative wave-length of the lines of the solar spectrum.

Rowland (H. A.). Amer. Jour. Sci., (3) 38 (1887), 182-190; Ph.J. Mag., (5) 23 (1887), 257-65.

Note on Sir David Brewster's Line Y in the infra-red of the solar spectrum.

Smyth (C. Piazzi). Edinburgh Transactions, 32 II, 223-238.

Spectralphotometrische Untersuchungen.

Vogel (H. C.). Monatsber, d. Berliner Akad., (1877) 104-142.

35, White lines in the solar spectrum.

White lines in the solar spectrum.

Hennessey (J. H. N.). Proc. Royal Soc., 22, 221; Phil. Mag., (4) 48, 303-6; 53, 259 (appendix to the preceding note).

k, TWINKLING OF STARS.

Ueber das Funkeln der Sterne und die Scintillation überhaupt.

Exner (K.). Sitzungsber, d. Wiener Akad., 84 II, 1038-81; Ann. Phys. u. Chem., n. F. 17, 305-22; Jour. de Phys., (2) 1, 373 (Abs.)

Analyse prismatique de la lumière des étoiles scintillantes.

Montigny (Ch.). Bull, del'Acad, de Belgique, (2) 37, 165-90; Comptes Rendus, 66, 910; Ann. Phys. u. Chem., 153, 277-98.

Nouvelles recherches sur la fréquence de la scintillation des étoiles dans ses rapports avec la constitution de leur lumière d'après l'analyse spectrale.

Montigny (Ch.). Bull. de l'Acad. roy. de Belgique, 2) 38, 300-32);
Ann. Phys. u. Chem., Erganzungsband, 7, 605-624.

ATMOSPHERIC SPECTRA.

Atmospheric transmission of visual and photographically active light.

Abney (W. de W.). Monthly Notices Astronom. Soc., 47 (1887), 260-5.

Spectre de l'air atmosphérique.

Becquerel (H.). Comptes Rendus, 90, 1407.

La radiation atmosphérique comme agent chimique.

Biot. Comptes Rendus, 8, 598.

Observations of the lines of the solar spectrum, and on those produced by the Earth's atmosphere.

Brewster (Sir D.). Phil. Mag., (3) 8, 384.

On the aqueous lines of the solar spectrum.

Cooke (J. P.). Amer. Jour. Sci., (2) 41, 178; Phil. Mag., (4) 31, 337.

Sur l'absorption par l'atmosphère des radiations ultra-violettes.

Cornu (A.). Comptes Rendus, 88, 1285; Jour. de Phys., 10, 5.

Sur l'observation comparative des raies telluriques et métalliques comme moyen d'observer les pouvoirs absorbants de l'atmosphère.

Cornu (A.). Comptes Rendus, 95, 801-6; Jour. de Phys., (2) 2, 58;
Beiblätter, 7, 110 (Abs.); Amer. Jour. Sci., (3) 25, 78; Bull. Soc. franç. de Phys. (1882), 241-7.

Étude spectrale du groupe de raies telluriques nommé a (alpha) par Angström.

Cornu (A.). Comptes Rendus, 98, 169; Ann. Chim. et Phys., (6) 7 (1886), 5-102; Phil. Mag., (5) 22 (1886), 458-63; Amer. Jour. Sci., (3) 33 (1887), 70 (Abs.); Beiblätter, 11 (1887), 37 (Abs.).

s bandes telluriques du spectre solaire.

Crova (A.). Comptes Rendus, 87, 107.

Recherches sur les raies telluriques du spectre solaire.

Egoroff (N.). Comptes Rendus, 93, 385, 788.

Recherches sur le spectre d'absorption de l'atmosphère terrestre.

Egoroff (N.). Comptes Rendus, 95, 447; Beiblätter, 6, 937; Jour. Chem. Soc., 44, 137.

Sur la production des groupes telluriques fondamentaux A et B du spectre solaire, par une couche d'oxygène.

Egoroff (N.). Comptes Rendus, 97, 555.

Note on the atmospheric lines of the solar spectrum and on certain spectra of gases.

Gladstone (J. H.). Proc. Royal Soc., 11, 305.

Bandenspectrum der Luft.

Goldstein, Sitzungsber, d. Wiener Akad., 84 H, 693; Ann. Phys. u. Chem., n. F. 15, 280.

On the absorption of solar rays by atmospheric ozone.

Hartley (W. N.). Jour. Chem. Soc., 39, 111-28; Ber. chem. Ges., 14, 1390 (Abs.).

Atmospheric lines of the solar spectrum.

Hennessey (J. H.). Proc. Royal Soc., 19, 1; 23, 201.

Zustand der Atmosphäre.

Jahresber, d. Chemie, 13, 607; 14, 45; 16, 103; 19, 77.

Spectres telluriques.

Janssen (J.). Comptes Rendus, 101 (1885), 111.

Analyse spectrale des éléments de l'atmosphère terrestre.

Janssen (J.). Comptes Rendus, 101 (1885), 649.

In feuchter Luft sind die Wärmestreifen des Sonnenspectrums breiter.

Lamansky (S.). Ann. Phys. u. Chem., **146**, 217.

Abhängigkeit des Brechungsquotienten der Luft von der Temperatur.

Lang (V. von). Ann. Phys. u. Chem., 153, 448-65; Sitzungsber. Wiener Akad., 69 II, 451-68.

Amount of atmospheric absorption.

Langley (S. P.). Phil. Mag., (5) 18, 289-307; Jour. Chem. Soc., 23, 319; Amer. Jour. Sci., (3) 28 (1885), 163, 242.

Ueber die Absorption der Sonnenstrahlung durch die Kohlensäure unserer Atmosphäre.

Lecher (E.). Sitzungsber, Wiener Akad., 82 11, 851-863.

On the spectrum of the atmosphere.

Maclear (J. P.). Nature, 5, 341.

Sur la théorie de l'absorption atmosphérique.

Maurer (J.). Archives de Genève, (3) 9, 374-91.

Opalescence of the atmosphere for the chemically active rays.

Roscoe (H. E.). Chem. News, 14, 28,

On the atmospheric lines between the D lines.

Russell (H. C.). Monthly Notices Astronom. Soc., 38, 30-32.

Spectrum des electrischen Glimmlichts in atmosphärischer Luft. Schimkow (A.). Ann. Phys. u. Chem., **129**, 513.

Sur l'influence de l'atmosphère sur les raies du spectre. Secchi (A.). Comptes Rendus, **60**, 379.

Spectrum von atmosphärischer Luft.

Vogel (H. C.). Ann. Phys. u. Chem., 146, 580.

AURORA AND ZODIACAL LIGHT.

The aurora and its spectrum.

Abercromby (R.). Nature, 27, 173; Beiblätter, 7, 193.

Magnetic disturbances, auroras and earth-currents.

Adams (W. G.). Nature, 25, 66-71.

Spectrum of aurora borealis.

Angström (A. J.). Nature, 10, 210; Ann. Phys. u. Chem., Jubelband, 424-9; Arch. de Genève, (2) 50, 204 (Abs.); Jour. de Phys., 3, 210.

Observations of the zodiacal light at Cadiz.

Arcimis (A. T.). Monthly Notices Astronom. Soc., 36, 48-51.

Spectrum of the Aurora.

Backhouse (T. W.). Nature, 4, 66; 7, 182, 463; 28, 209.

A line in the green between b and F; a line in the yellow-green between D and E (principal auroral line); a line in the green-blue at or near F, assumed to be 485 of Alvan Clarke, Jr.; a line in the red between C and D, almost equidistant between C and D; a line in the green at or near b, at 517.

Barker (G. F.). Nature, 7, 182.

Spectrum of the Aurora.

Barker (G. F.). Amer. Jour. Sci., (3) 2, 465-8; 5, 81-84; Jour. Chem. Soc., (2) 10, 119 (Abs.); Chem. News, 24, 270.

On the spectrum of the nurorn borealis.

Browning (J.). Monthly Notices Astronom. Soc., **31**, 17; Phil. Mar., (4) **41**, 79; Amer. Jour. Sci., (3) **1**, 215.

Comparison of some tube and other spectra with the spectrum of the aurora.

Capron (J. R.). Phil. Mag., (4) 49, 249-66.

Spectrum of aurora.

Capron (J. R.). Nature, 3, 28; Phil. Mag., (4) 49, 481.

The anrora borealis of Feb. 4, 1872.

Capron (J. R.). Nature, 5, 284-5. (See below under Cornu, K.). Maclear, Murphy, Perry, Prazmowski, Respighi, Seechi, Smyth. Stone, Tacchini, Twining, and Watts.) Spectrum of the aurora and of the zodiacal light (with a list of authorities on the subject, included here).

Capron (J. R.). Nature, 7, 182-186.

The aurora spectrum.

Capron (J. R.). Nature, 7, 201.

The aurora and its spectrum.

Capron (J. R.). Nature, 25, 53; Jour. de Phys., (2) 2, 97 (Abs.).

The aurora.

Capron (J. R.). Nature, 27, 83-4, 139, 198.

Magnetic storm, aurora and sun-spot.

Christie (W. H. M.). Nature, 27, 83.

Spectrum of the Aurora.

Church (A. II.). Chem. News, 22, 225.

A line in the green-blue at or near F; at 485; assumed to be 486 F hydrogen.

Clark (Alvan, Jr.). Nature, 7, 182.

A line in the green near E (corona line?); at 532; assumed to be 531.6 (corona line).

Clark (Alvan, Jr.). Nature, 7, 182.

A line in the yellow-green between D and E (principal auroral line).
Clark (Alvan, Jr.). Nature, 7, 182.

Line in the indigo at or near G; at 435; supposed to be G hydrogen.

Clark (Alvan, Jr.). Nature, 7, 183.

Observations of the aurora on Aug. 12 and 13, 1880 Copeland (R.). Nature, 22, 510.

Spectre de l'aurore boréale du 4 février.

Cornu (A.). Comptes Rendus, 74, 390.

Sur l'intensité calorifique de la radiation solaire et son absorption par l'atmosphère terrestre.

Crova (A.). Comptes Rendus, 81, 1205-7.

The aurora.

Eiger (T. G.). Nature, 3, 6-7; 7, 182; 27, 85-6.

Spectrum of the aurora.

Ellery (R. J.). Nature, 4, 280.

Spectrum of the aurora.

F. (T.). Nature, 3, 6.

Sur les aurores boréales.

Faye. Comptes Rendus, 77, 546.

The continuous spectrum; faint green reaching from the aurora line to F. Flogel. Nature, 7, 183.

Spectroscopic examination of the aurora, April 10, 1872.

Frazer (P.). Proc. Amer. Philosoph. Soc., 12, 579.

On the spectrum of the aurora.

Herschel (A. S.). Phil. Mag., (4) 49, 65-71; Nature, 3, 486.

Line in the yellow-green between D and E (principal auroral line).

Herschel (A. S.). Nature, 7, 182.

Spectrum of the aurora.

Holden (E. S.). Amer. Jour. Sci., (3) 4, 423; Phil. Mag., (4) 44, 478.

Spectrum of the aurora.

Hyatt. Nature, 3, 105.

Das Nordlichtspectrum.

Jahresber, d. Chemie, (1868) 128, (1869) 180, (1872) 148, (1873) 151, (1875) 123.

Spectrum des Zodiaeal-Lichtes.

Jahresber, d. Chemie, (1872) 148.

The aurora borealis of Feb. 4, 1872.

Key (H. Cooper). Nature, 5, 302.

Spectrum of the aurora.

Kirk (E. B.). Observatory, (1882) 271, (1886) 311.

Spectrum of the nurora.

Kirkwood (D.). Nature, 3, 126.

Sur la décharge électrique dans l'aurore boréale, et le spectre du même phénomène.

Lemstrom (S.). Archives de Genève, (2) 50, 225-42, 355-86; Nature,
28, 60-3, 107-9, 128-30; Jour. de Phys., (2) 2, 315-17 (Abs.).
(See Tresca in Comptes Rendus, 96, 1305.)

L'analyse spectrale de la lumière zodiacale et sur la couronne des éclipses. Liais É . Comptes Rendus, 74, 262. Spectrum of the aurora.

Lindsay (Lord). Nature, 4, 347, 366; 7, 182.

The aurora borealis of Feb. 4, 1872.

Maclear (J. P.). Nature, 5, 283.

Spectrum of aurora.

Maclear (J. P.). Nature, 6, 329

Spectrum of aurora australis.

Maelear (J. P.). Nature, 17, 11.

Swan lamp spectrum and the aurora.

Munro (J.). Nature, 27, 173; Beiblätter, 7, 193.

The aurora borealis of Feb. 4, 1872.

Murphy (J. J.). Nature, 5, 283.

Spectrum of the aurora.

Newlands (J. A. R.). Chem. News, 23, 213.

Das Nordlichtspectrum.

Oettigen (A. J.). Ann. Phys. u. Chem., 146, 284-7; Ann. Chim. et Phys., (4) 26, 269-73.

The aurora borealis of Feb. 4, 1872.

Perry (S. J.). Nature, 5, 303.

Spectrum of the aurora.

Pickering (E. C.). Nature, 3, 104.

Étude spectrale de la lumière de l'aurore boréale du 4 février.

Prazmowski. Comptes Rendus, 74, 391.

Spectrum of the aurora.

Pringle (G. H.). Nature, 6, 260.

Spectra of the aurora and corona.

Proctor (H. R.). Nature, 3, 6, 68, 346, 369, 468; 6, 161, 220; 7, 242.

Spectrum of the aurora.

Proctor (II. R.). Nature, 7, 1 _.

Sur le spectre de l'aurore boréale.

Rayet (G.). Jour. de Phys., 1, 363.

L'analyse spectrale de la lumière zodiacale.

Respighi (L.). Comptes Rendus, 74, 514.

Le spectre de la lumière zodiacale et le spectre de l'aurore boréale sont identicales.

Respighi (L.). Comptes Rendus, 74, 743.

Observations of the aurora borealis of Feb. 4 and 5, 1872.

Respighi (L.). Nature, 5, 511; Gazz. Ufficiale d. Regno d'Italia, Feb. 5, 1872.

The aurora.

Robinson (H.). Nature, 27, 85.

The aurora.

Romanes (C. H.). Nature, 27, 86.

On the auroral spectrum.

Rowland (H. A.). Amer. Jour. Sci., 5, 320.

Spectre de l'aurore boréale.

Salet (G.). Bull. Soc. chim. Paris, 1 Mars 1872; Ber. chem. Ges., 5, 222.

Spectrum of the aurora.

Schmidt. Nature, 7, 182-3.

The aurora borealis of Feb. 4, 1872.

Seabroke (G. M.). Nature, 5, 283.

Sur l'aurore boréale du 4 février observée à Rome, et sur quelqu s'n deveaux résultats d'analyse spectrale.

Secchi (A.). Comptes Rendus, 74, 583-8.

Aurore boréale observée à Rome le 10 août à 10 heures du matin.

Secchi (A.). Comptes Rendus, 75, 606-613.

La luce zodiacale confronto tra le osservazioni del P. Dechevrens e quelle di G. Jones.

Serpieri (A.). Mem. Spettr. ital., 9, 133-42.

Mémoire sur des faits dont on peut déduire: 1, une théorie des aurores boréales et australes, fondée sur l'existence de marées atmosphériques; 2. l'indication, à l'aide des aurores, de l'existence d'essains d'étoiles filantes à proximité du globe terrestre.

Silbermann (J.). Comptes Rendus, 74, 553-7, 638-42.

Spectra of aurora, corona and zodiacal light.

Smyth (C. Piazzi). Nature, 3, 509-10.

Spectroscopic observations of the zodiacal light in April, 1872, at the Royal Observatory, Palermo.

> Smyth (C. Piazzi). Monthly Notices Astronom. Soc., 32, 277-288; Amer. Jour. Sci., (3) 4-245 (Abs.).

The aurora borealis of Feb. 4, 1872.

Smyth (C. Piazzi). Nature, 5, 282-3.

Spectrum of the aurora.

Smyth (C. Piazzi). Nature, 7, 182.

The aurora of Feb. 4, 1872.

Stone (E. J.). Nature, 5, 443; Amer. Jour. Sci., (3) 3, 391-2.

Beobachtung eines Nordlichtspectrum (Aurora Borealis).

Struve (Otto von). Bull. de l'Acad. de St. Pétersbourg, 3, 49.

Observations of the aurora.

Sueur (A. Le). Proc. Royal Soc., 19, 19.

Spectrum of the aurora.

T. (F.). Nature, 7, 182-3.

Sur l'aurore boréale du 4 février 1872.

Tacchini (P.). Comptes Rendus, 74, 540-2.

Sur l'origine des aurores polaires.

Tarry (H.). Comptes Rendus, 74, 549-53.

Sur les observations de M. Lemström en Laponie.

Tresca. Comptes Rendus, 96, 1335-6.

The aurora of Feb. 4, 1872.

Twining (A. C.). Amer. Jour. Sci., (3) 3, 273-81.

Untersuchungen über das Spectrum des Nordlichtes.

Vogel (H. C.). Ber. Sächs. Ges. d. Wiss., 23, 285-99; Ann. Phys. u. Chem., 146, 569-85; Jour. Chem. Soc., (2) 10, 1061 (Abs.); Amer. Jour. Sci., (3) 4, 487 (Abs.).

Spectrum des Nordlichtes.

Vogel (H. C.). Astronom. Nachr., 78, 247-8.

Spectrum of the aurora.

Watts (W. M.). Phil. Mag., (4) 49, 410-11.

The aurora borealis of Feb. 4, 1872.

Watts (W. M.). Nature, 5, 303.

Observations sur le spectre de l'aurore boréale.

Wijkander (A.). Arch. de Genève, (2) **51**, 25-30.

Line in the green near E (corona line).

Winlock. Nature, 7, 182.

On the spectrum of the zodiacal light.

Wright (A. W.). Amer. Jour. Sci., (3) 8, 39-46; Ann. Phys. c., Chem., 154, 619-29.

Ueber das Spectrum des Nordlichtes.

Zöllner (F.). Ber. Sächs, Ges. Wiss., 22, 254-260; Ann. Phys. c. Chem., 141, 574-581; Phil. Mag., (4) 41, 122-127; Amer. Jour. Sci., (3) 1, 372-3 (Abs.).

Spectrum of the aurora.

Zollner (F.). Nature, 7, 182-3.

AUSTRIUM.

Spectrum of austrium.

Linnemann (E.). Monatschr., 7, 121-3; Jour. Chem. Soc., 50 (1886), 773 (Abs.).

BARIUM.

Ueber den Einfluss der Temperatur auf die Brechungsexponenten der natürlichen Sulfate des Baryum.

Arzruni (A.). Zeitschr. Krystallogr. u. Mineralog., 1, 165-192; Jahrb.
 f. Mineral. (1877), 526 (Abs.); Jour. Chem. Soc., 34, 189 (Abs.).

Barium spark spectrum.

Capron (J. R.). Photographed Spectra, London, 1877, p. 21.

Spectre de chlorure de baryum.

Gouy. Comptes Rendus, 84, 231.

Sur les caractères des flammes chargées du chlorure de baryum.

Gouy. Comptes Rendus, 85, 439.

Spectre continu du baryum.

Gouy. Comptes Rendus, 86, 878.

Spectrum von Baryum.

Jahresber. d. Chemie (1870), 174.

Chemische Analyse durch Spectralbeobachtungen, Baryum.

Kirchhoff und Bunsen. Ann. Phys. u. Chem., 110, 182

Chlorure de Baryum (ou Ba O) dans le gaz.

Lecoq de Bei-bandran (F.). Spectres Lumineux, Paris, 1874, p. 57, 62, planche VII.

Bromure de baryum dans le gaz chargé de brome; iodure de baryum dans le gaz chargé d'iode.

Lecoq de Boisbaudran (F.). Spectres Lumineux, Paris, 1874, p. 65, planche VIII.

BERYLLIUM OR GLUCINUM.

Beryllium are spectrum.

Capron (J. R.), Photographed Spectra, London, 1877, p. 22.

Spectrum of beryllium.

Hartley (W. N.). Chem. News, 47, 201; Jour. Chem. 8 c., 43, 31, 19; Ber. chem. Ges., 16, 1859 (Abs.); Amer. Jour. Sci., 32, 26, 316-17.

Remarks on the atomic weight of beryllium.

Hartley W. N.; Proc. Royal Soc., 36, 462-4; Chem. News, 49, 171-2; Beiblatter, 8, 820 (Abs.).

Spectrum of beryllium.

Nature, 29, 90,

Propriétés principales du glucinum.

Nilson, L. F., et Petterson, O., Comptes Rendus, 91, 169.

Note on the atomic weight of beryllium.

Reynolds (J. E.). Proc. Royal Soc., **35**, 248-50; Beiblatter, **8**, 0 f (Abs.).

Reply by Humpidge (T. S. . Proc. Royal Soc., 35, 35s-9.

.

BISMUTH.

Le bismuth n'a donné aucune apparence de renversement.

Cornu (A.). Comptes Rendus, 73, 332.

Fluorescence des composés de bismuth.

Lecoq de Boisbaudran (F.). Comptes Rendus, 103 (1887), 629-31, 1064-8; Jour. Chem. Soc., 52, 4 (Abs.), 189 (Abs.).

BLUE GROTTO.

Spectroscopische Untersuchung der blauen Grotte auf Capri. Vogel (H. W.). Ann. Phys. u. Chem., **156**, 325.

BORAX.

Boron arc spectrum.

Capron (J. R.). Photographed Spectra, London, 1877, p. 22.

L'acide borique.

Dieulafait (L.). Ann. Chim. et Phys., (5) 12, 318-54; Jour. Chem. Soc., 34, 11 (Abs.).

10 т

Existence de l'acide borique dans les eaux de la Mer Morte.

Dieulafait (L.). Comptes Rendus, 94, 1852-4; Jour. Chem. Soc., 42, 1037 (Abs.); Ann. Chim. et Phys., (5) 25, 145-167.

L'acide borique dans les eaux minérales de Contrexeville et Schinznach (Suisse).

Dieulafait (L.). Comptes Rendus. 95, 999-1001; Jour. Chem. Soc. 44, 301 (Abs.).

Les salpêtres naturels du Chili et du Péron au point de vue de l'acidborique.

Diculafait (L.). Comptes Rendus, 98, 1545-8; Chem. News, 50, 45 (Abs.).

On line spectra of boron.

Hartley (W. N.). Proc. Royal Soc., 35, 201-4; Chem. News. 48, 1-2; Jour. Chem. Soc., 46, 242 (Abs.); Beiblätter, 8, 120 (Abs.);

Spectra of boric acid and blowpipe beads.

Horner (Charles). Chem. News, 29, 66.

Spectre de l'acide borique dans le gaz.

Leeoq de Boisbaudran (F.). Spectres Lumineux, Paris, 1874, p. 191-planche XXVIII.

Spectre de l'acide borique.

Lecoq de Boisbaudran (F.). Comptes Rendus, 76, 833.

Speetrum von Fluorborgas.

Plücker, Ann. Phys. u. Chem., 104, 125.

Propriétés optiques de borax.

Senarmont (H. des. Ann. Chim. et Phys., (2) 41, 336.

Spectra der verschiedenen grünen Flammen, Borax.

Simmler (R. Th.). Ann. Phys. u. Chem., 115, 249.

Spectre du bore.

Troost et Hautefeuille. Comptes Rendus, 63, 620; Bull. Soc. chim. Paris, n. s. 16, 229.

BROMINE.

Action des rayons différemment réfrangible sur l'iodure et le bromure d'argent.

Becquerel (E.). Comptes Rendus, 79, 185-90; Jour. Chem. Soc., (2) 13, 30 (Abs.).

Spectre du brome dans les tubes de Geissler.

Chautard (J.). Comptes Rendus, 82, 273.

De l'action des différentes lumières colorées sur une couche de bromure d'argent impregnée de diverses matières colorantes organiques.

Cros (Ch.). Comptes Rendus, **88**, 379-81; Jour. Chem. Soc., **36**, 504-5.

Speetre de bromure de cuivre.

Dincon (E.). Ann. Chim. et Phys., (4) 6, 1.

Spectre d'absorption de protobromure de tellure et de protobromure d'iode.

Gernez (D.). Bull. Soc. chim. Paris, n. s. 18, 172.

Speetre du brome.

Gouy. Comptes Rendus, 85, 70.

- Absorptionsspectrum des Bromtellurs, des Bromselens, und des Bromjods. Jahresber. d. Chemie (1872), 140.
- On the action of the less refrangible rays of light on silver iodide and bromide.

Lea (M. Carey). Amer. Jour. Sci., (3) 9, 269-78; Jour. Chem. Soc., 1 (1876), 28 (Abs.).

Notes on the sensitiveness of silver bromide to the green rays as modified by the presence of other substances.

Lea (M. Carey). Amer. Jour. Sci., (3) 11, 459-64.

Réaction spectrale du Brome.

Locoq de Boisbaudran (F.). Comptes Rendus, 91, 902-3; Phil. Mag., (5) 11, 77-8; Beiblätter, 5, 118 (Abs.).

Bromure de baryum dans le gaz chargé de brome.

Lecoq de Boisbaudran. Spectres Lumineux, Paris, 1874, p. 63, 65, planche VIII.

Verbindungsspeetrum zur Entdeckung von Brom.

Mitscherlich. Jour. prackt. Chem., 97, 218.

Entdeckung sehr geringer Mengen von Brom in Verbindungen.

Mitscherlieh. Ann. Phys. u. Chem., 125, 629.

Absorption spectra of bromine.

Roscoe (H. E.) and Thorpe (T. E.). Proc. Royal Soc., 25, 4.

Ueber die Lichtempfindlichkeit des Bromsilbers.

Vogel (H.). Ber. chem. Ges., 6, 1302-6; Ann. Phys. u. Chem., 150, 453-9; Jour. Chem. Soc., (2) 12, 217 (Abs.); Amer. Jour. Sci., (3, 140-1; Phil. Mag., (4) 47, 273-7.

Ueber die chemische Wirkung des Lichtes auf reines und gefärbtes Bromsilber.

> Vogel (II. W.). Ber, chem. Ges., 8, 1635-6; Jour. Chem. Soc., 1 (1876), 510 (Abs.); Amer. Jour. Sci., (3) 11, 215-16 (Abs.).

Neue Betrachtungen über die Lichtempfindlichkeit des Bromsilbers.

Vogel (H. W.). Ber. chem. Ges., 9, 667-70; Jour. Chem. Soc., 2 (1876), 265 (Abs.).

Ueber die Empfindlichkeit trockner Brömsilberplatten gegen das Sonnenspectrum.

Vogel (H. W.). Ber. chem. Ges., 14, 1024-8; Beiblatter, 5, 521 (Abs.); Jour. Chem. Soc., 40, 773 (Abs.).

Ueber die verschiedenen Modificationen des Bromsilbers.

Vogel (H. W.). Ber, ehem. Ges., 16, 1170-79; Beiblatter, 7, 553 (Abs.).

Sur la sensibilité du bromure d'argent à l'égard des radiations considérées comme chimiquement inactives.

Vogel (H. W.), Bull. Soc. chim. Paris, n. s. 21, 233.

Ueber die Brechung und Dispersion des Lichtes im Bronsilber.

Wernicke (W.). Ann. Phys. u. Chem. 142, 560-76; Jour. Chem. Soc., (2) 9, 656 (Abs.); Ann. Chim. et Phys., 4-26, 287.

Uebereinstimmung des Absorptionsspectrums von Brom mit dem Spectrum dessen Dampfes,

Wullner (Ac. Ann. Phys. u. Chem., 120, 150.

CADMIUM.

Ultra-violet spectrum of cadmium.

Bell (L.). Amer. Jour. Sci., **31** (1886), 426-31; Jour. Chem. Soc., **50**, 957 (Abs.).

Cadmium arc spectrum.

Capron (J. R.). Photographed Spectra, London, 1877, 23.

Spectrum of chloride of cadmium.

Chem. News, 35, 107.

Déterminations des longueurs d'onde des radiations très réfrangibles du cadmium.

Cornu (A.). Arch. de Genève, (3) 2, 119-126; Beiblätter, 4, 34 (Abs.); Jour. de Phys., 10, 425-31.

Renversement des raies spectrales du cadmium.

Cornu (A.). Comptes Rendus, 73, 332.

Spectre de chlorure de cadmium.

Gouy. Comptes Rendus, 84, 231.

Spectrum von Cadmium.

Jahresber. d. Chemie (1872), 145.

Chlorure de cadmium en solution, étincelle.

Lecoq de Boisbaudran (F.). Spectres Lumineux, Paris, 1874, 139.

Spectrum of cadmium at elevated temperatures.

Lockyer (J. N.). Chem. News, 30, 98.

Indice du quartz pour les raies du cadmium.

Sarasin (Ed.). Comptes Rendus, 85, 1230.

CÆSIUM.

Observations on easium.

Allen (O. D.). Phil. Mag., 25, 189; Amer. Jour. Sci., (2) 34 (1862), 367.

On the equivalent and spectrum of casium.

Allen (O. D.) and Johnson (S. W.). Phil. Mag., 25, 196; Amer. Jour. Sci., (2) 35 (1863), 94.

On caesium.

Bunsen (R.). Phil. Mag., 26, 241.

Les salpêtres naturels du Chili et du Pérou au point de vue du casium.

Dieulafait. Comptes Rendus, 98, 1545-8; Chem. News, 50, 45 (Abs. .

Recherches sur la présence du casium dans les eaux naturelles.

Grandeau (L.). Ann. Chim. et Phys., (3) 67, 155.

Spectrum von Casium.

Kirchhoff (G.) und Bunsen (R.). Ann. Phys. u. Chem., 113, 207, 379; Phil. Mag., (4) 22, 498.

Chlorure de cæsium.

Lecoq de Boisbaudran (F.). Spectres Lumineux, Paris, 1874, · . 44, planche 111.

On pollux, a silicate of casium.

Pisani. Comptes Rendus, 58, 714.

CALCIUM.

Sur la phosphorescence du sulfure de calcium.

Becquerel (Edm.). Comptes Rendus, **103** (1887), 551-3; Chem. News, **55** (1887), 123.

Action du manganèse sur le pouvoir de phosphorescence du carbonate de chaux.

Becquerel (Edm.). Comptes Rendus, 103 (1886), 1098-1101.

Ueber das Calciumspectrum.

Blochmann (R.). Jour. prackt. Chem., (2) **4**, 282-6; Jour. Chem. Soc., (2) **9**, 1149-1150 (Abs.).

Calcium (Zinc) spark spectrum.

Capron (J. R.). Photographed Spectra, London, 1877, p. 23.

Spectre de chlorure de calcium.

Gouy. Comptes Rendus, 84, 231.

Recherches photométriques, spectre du calcium.

Gouy. Comptes Rendus, 85, 70.

Sur les flammes chargées du chlorure de calcium.

Gouy. Comptes Rendus, 85, 439.

Spectre continu du calcium.

Gony. Comptes Rendus, 85, 878, 1078.

Spectrum von Kalk.

Jahresber. d. Chemie (1870), 174.

Linien von Calcium.

Kirchhoff (G.) und Bunsen (R.). Ann. Phys. u. Chem., 110, 177.

Das Wärmespectrum des Kalklichtes.

Lamansky (S.). Monatsber. d. Berliner Akad. (1871), 632-41; Phil. Mag., (4) 43, 282-9; Ann. Phys. u. Chem., 146, 200-32.

Ueber die Dispersion des Aragonits nach arbiträrer Richtung.

Lang (V. von). Sitzungsber. d. Wiener Akad., 83 II, 671-6.

Note on the spectra of calcium fluoride.

Liveing (G. D.). Proc. Philosoph. Soc. Cambridge, 3, 96-8; Beiblätter, 4, 611-12 (Abs.).

Sur de nouvelles raies de calcium.

Lockyer (J. N.). Comptes Rendus, 82, 660-2; Ann. Chim. et Phys.,
(5) 7, 569-72; Chem. News, 33, 166-7; Jour. Chem. Soc., 2 (1876),
35 (Abs.); Ber. chem. Ges., 9, 505 (Abs.); Ann. Phys. u. Chem.
158, 327-9 (Abs.); Bull. Soc. chim. Paris, n. s. 26, 267.

Remarques à propos de la dernière communication de M. Lockyer sur de nouvelles raies de calcium, par M. C. Sainte-Claire Devill-Comptes Rendus, 82, 709-10.

Calcium comme corps composé d'après le spectroscope.

Lockyer (J. N.). Comptes Rendus, 87, 673.

Fluorescenz von Kalkspar.

Lommet (E.). Ann. Phys. u. Chem., n. F. 21, 422-7; Jour. Chem. Soc., 46, 649 (Abs.).

Sur l'origine de l'arsénie et de la lithine dans eaux sulfatées calciques.

Schlagdenhauffen. Jour. de Pharm., (5) 6, 457-63; Jour. Chem. Soc., 44, 302 (Abs.).

Sur les causes déterminantes de la phosphorescence du sulfure de calcium.

Vernenil (A.). Comptes Rendus, 103 (1887), 601-4; Beiblatter, 11 (1887), 253; Jour. Chem. Soc., 52, 2.

Ueber die neuen Wasserstofflinien und die Dissociation des Calciums.

Vogel (H. W.). Ber. chem. Ges., 13, 274-5; Jour. Chem. Soc., 33, 597 (Abs.); Beiblätter, 4, 274, 786; Monatsber. d. Berliner Akad. (1880), 192-8; Nature, 21, 410.

Expériences sur divers échantillons de chaux.

Volpicelli (M.). Comptes Rendus, 56, 493; 57, 571.

Coïncidence of the spectrum lines of iron, calcium, and titanium.

Williams (W. Mattieu). Nature, 8, 46.

CARBON.

1, CARBON IN GENERAL.

Note on the spectrum of carbon.

Attfield (J.). Phil. Mag., (4) 49, 106-8; Phil. Trans. (1862), 221.

Carbon points ruled out.

Capron (J. R.). Photographed Spectra, London, 1877, 23.

Spectroscopic researches in carbon and cyanogen.

Ciamician (G. L.). Chem. News, 44, 216.

On the refraction equivalents of the diamond and the carbon compounds.

Gładstone (J. H.). Chem. News, 42, 175; Jour. Chem. Soc., 40, 333 (Abs.); Beiblätter, 5, 43 (Abs.); Proc. Royal Soc., 31, 327-30; Ber. chem. Ges., 14, 1553 (Abs.).

Carbon and carbon compounds.

Herschel (A. S.). Nature, 22, 320; Beiblätter, 5, 118-122.

Spectrum von Kohlenstoff.

Jahresber. d. Chemie, (1862) 33, (1863) 113, (1864) 109, (1865) 89, (1869) 176, 178, (1875) 122.

Refractionsäguivalente der Elemente C, etc.

Landolt (R.). Versammlung deutscher Aertzte und Naturforscher,
Aug. 12-18, 1872; Ber. chem. Ges., 5, 808; Chem. Centralblatt, (3)
3, 705; Jour. Chem. Soc., (2) 11, 460 (Abs.).

Note on the history of the carbon spectrum.

Liveing (G. D.) and Dewar (J.). Proc. Royal Soc., 30, 490-4; Beiblätter, 5, 118-22; Nature, 23, 265-6, 338.

Spectrum of Carbon.

Liveing (G. D.) and Dewar (J.). Proc. Royal Soc., 33, 403-410;
Chem. News, 45, 155 (Abs.); Nature, 25, 545; Jour. Chem. Soc.,
44, 1-2 (Abs.); Beiblatter, 6, 675 (Abs.).

General observations on the spectra of carbon and its compounds.

Liveing (G. D.) and Dewar (J.). Proc. Royal Soc., 34, 123-30.

Spectrum of carbon at elevated temperatures.

Lockyer (J. N.). Chem. News, 30, 98.

Note on the spectrum of carbon.

Lockyer (J. N.). Proc. Royal Soc., 30, 335-43, 461-3; Beiblätter, 5, 118-22 (Abs.).

Sulla questione dei doppi legami tra carbonio e carbonio dal punto di vista della chimica ottica.

Nasini (R_i). Gazz, chim. ital., **14**, 150-6; Ber. chem. Ges., **17**, Referate, 559-61 (Abs.); Atti R. Ac. dei Lincei, **8**, 169-73; Beiblatter, **8**, 577.

On the spectrum of earbon,

Roscoe (H. E.). Nature, 23, 313-14.

Spectre du carbone.

Salet (G.). Bull. Soc. chim. Paris, 1 Mars 1872; Ber. chem. Ges., 5, 222 (Abs.).

Ueber das Dispersionsäquivalent von Diamant.

Schrauf (A.). Ann. Phys. u. Chem., n. F. 22, 424-9; Jour. Chem. Soc., 48, 14 (Abs.).

Note on the identity of the spectra obtained from the different allotropic forms of earbon.

Schuster (A.) and Roscoe (H. E.). Proc. Manchester Philosoph. Soc., 19, 46-49; Beiblatter, 4, 208 (Abs.).

Carbon and hydrocarbon in the modern spectroscope.

Smyth (C. Piazzi). Phil. Mag., (4 49, 24-33.

Carbon and carbo-hydrogen, spectroscoped and spectrometed.

Smyth (C. Piazzi). Phil. Mag., (5) 8, 107-19; Belblatter, 4, 36 (Abs.).

Spectre du carbone.

Troost et Hautefeuille. Comptes Rendus, 73, 620; Bull. Soc. chim. Paris, n. s. 16, 229.

Spectra of carbon.

Watts (W. M.). Phil. Mag., (4) 38, 249; 41, 12; 48, 309, 456; 49, 104; Nature, 23, 197, 266; Beiblatter, 5, 118; Chem. News, 22, 172; Jour. prackt. Chemie, 104, 422.

2, Carbon compounds.

a, In general.

Influence of the molecular grouping in organic bodies on their absorption in the infra-red region of the spectrum.

Abney (W. de W. and Festing (Lieut, Col.) Proc. Royal Soc., **31**, 416; Chem. News, **43**, 92, 126; Beiblätter, **5**, 506.

Action des rayons différemment réfrangible sur l'iodure et le bromure d'argent; influence des matières colorantes.

Becquerel (E.). Comptes Rendus, **79**, 185-90; Jour. Chem. Soc., (2) **13**, 30 (Abs.).

Sulla relazioni esistenti tra il potere rifrangente e la constituzione chimica della combinazioni organiche.

Bernheimer e Nasini. Atti della R. Accad. dei Lincei, Transunti, (3) 7, 227-30; Gazz. chim. ital., 13, 317-20; Beiblätter, 7, 528 (Abs.).

Influence des diverses couleurs sur la végétation.

Bert (P.). Comptes Rendus, 73, 1444.

Sur la région du spectre solaire indispensable à la vie végétale.

Bert (P.). Comptes Rendus, 87, 695-7; Jour. Chem. Soc., 36, 336 (Abs.).

Vergleichung von Pigmentfarben mit Spectralfarben.

Bezold (W. von). Ann. Phys. u. Chem., 158, 165, 606.

On the action of various colored bodies on the spectrum.

Brewster (Sir D.). Phil. Mag., (4) 24, 441.

Die Beziehungen zwischen den physikalischen Eigenshaften organischer Körper und ihrer chemischen Constitution.

Brühl (J. W.). Ber. chem. Ges., 12, 2135-48; 13, 1119-39, 1520-35;
14, 2533-39; Jour. Chem. Soc., 38, 293-5 (Abs.); Beiblätter, 4, 776-86; Amer. Jour. Sci., (3) 23, 234-5 (Abs.).

Die chemische Constitution organischer Körper in Beziehung zu deren Dichte und ihren Vermögen das Lieht fortzupflanzen. Drei Theile und Nachtrag.

Brühl (J. W.). Ann. Chem. u. Pharm., **200**, 139-231; **203**, 1-33, 255-285, 363-368; Jour. Chem. Soc., **38**, 295-7 (Abs.); **33**, 781-3 (Abs.); Beiblätter, **4**, 776-86.

Ueber den Zusammenhang zwischen den optischen und den thermischen Eigenschaften flüssiger organischer Körper.

Brühl (J. W.). Sitzungsber, d. Wiener Akad., 84 H, 817-75;
Monatschr, f. Chemie, 2, 716-74; Ann. Phys. u. Chem., 211, 121-178;
Jour. Chem. Soc., 42, 263 (Abs.);
Berichtigung, Ann. Phys. u. Chem., 211, 371-2.

Untersuchungen über die Molecularrefraction organischer flüssiger Körper von grossen Farbenzerstreuungsvermögen.

Bruhl (J. W.). Ber. chem. Ges., 19 (1886), 2746.

De l'action des différentes lumières colorées sur une couche de bromure d'argent impregnée de diverses matières colorantes organiques.

Cros (Ch.), Comptes Rendus, 88, 379-81, Jour. Chem. Soc., 36, 504 (Abs.).

Relation between the chemical constitution of certain organic compounds and their action upon the ultra-violet rays.

Dunstan (W. R.). Pharmaceutical Trans., (3) 11, 54-6.

Note concernant le mémoire de M. Kanonikoff sur le pouvoir réfringent des substances organiques.

Flavitsky (F.). Jour. Soc. phys. chim. russe, 16, 260-7.

On the refraction equivalents of the diamond and the carbon compounds.

Gladstone (J. H.). Chem. News. **42**, 175; Jour. Chem. Soc., **40**, 333 (Abs.); Beiblatter, **5**, 43 (Abs.).

Refraction equivalents of organic compounds.

Gladstone (J. H.). Jour. Chem. Soc., 45, 241-59; Chem. News, 49,
233 (Abs.); Nature, 30, 119 (Abs.); Ber. chem. Ges., 17, Referate,
556 (Abs.).

Spectres des carbonates.

Gouy. Comptes Rendus, 85, 70.

Influence of certain rays of the spectrum on plants growing in an iron manure.

Griffiths (A. B.). Jour. Chem. Soc., 45, 74.

Ueber das Verhalten einiger Farbstoffe im Sonnenspectrum.

Haerlin (J.). Ann. Phys. u. Chem., 118, 70.

Researches on the absorption of the ultra-violet rays of the spectrum by organic substances.

Hartley (W. N.) and Huntington (A. K.). Proc. Royal Soc., 28, 200;
 31, 1; Chem. News, 40, 269; Phil. Trans., 170, 257-74; Beiblatter,
 4, 370.

Researches on the relation between the molecular structure of carbon compounds and their absorption spectra.

Hartley (W. N.). Jour. Chem. Soc., 39, 153-68; 41, 45-49; Beiblatter, 6, 375 (Abs.); Amer. Chem. Jour., 3, 373.

Das Auge empfindet alle Strahlen die brechbarer sind als die rothen.

Helmholtz (H.). Ann. Phys. u. Chem., 94, 205.

Absorptionsstreifen färbiger Lösungen.

Jahresber, d. Chemie, (1864) 108, (1865) 85, (1867) 825, (1868) 129, (1873) 147.

On the chemical circulation in the body.

Jones (H. Bence). Proc. Royal Institution, May 26, 1865.

Zur Frage über den Einfluss der Structur auf das Lichtbrechungsvermögen organischer Verbindungen.

Kanonnikoff (J.). Jour. russ. phys. chem. Ges. (1881), 268; Ber. chem. Ges., 14, 1697-1700.

Sur le pouvoir réfringent des substances organiques dans les dissolutions.

Kanonnikoff (J.). Jour. Soc. phys. chim. russe, 15, 112-13; Ber. chem. Ges., 16, 950 (Abs.); Jour. prackt. Chemie, n. F. 27, 362-4;
Beiblätter, 7, 593 (Abs.); Jour. Chem. Soc., 44, 1041 (Abs.).

Sur la relation du pouvoir réfringent et la composition des composés organiques.

Kanonnikoff (J.). Jour. Soc. phys. chim. russe, 15, 434-79; Ber. chem. Ges., 16, 3047-3051 (Abs.); Bull. Soc. chim. Paris, 41, 318 (Abs.); Beiblätter, 8, 375 (Abs.).

Sur les relations entre la composition et le pouvoir réfringent des composés chimiques.

Kanonnikoff (J.). Jour. Soc. phys. ehim. russe, 16, 119-131; Ber. chem. Ges., 17, Referate, 157 (Abs.); Nature, 30, 84 (Abs.); Bull. Soc. chim. Paris, 12, 549.

Réponse à la note de M. Flavitsky.

Kanonnikoff (J.). Jour. Soc. phys. chim. russe, 16, 448-50; Jour. prackt. Chemie, (2) 31, 321-3 (Abs.).

Spectrum of colour-blind.

König (Dr.). Nature, 29, 168.

Beziehungen zwischen der Zusammensetzung und den Absorptionsspektren organischer Verbindungen.

Krüss (G.) und Occonomides (S.). Ber. chem. Ges., 16, 2051-6; Jour.
 Chem. Soc., 44, 1041-2 (Abs.); Beiblätter, 7, 897 (Abs.).

Ueber die Gränzen der Empfindlichkeit des Auges für Spectralfarben.

Lamansky (S.). Ann. Phys. u. Chem., 143, 633-43.

Zur Kenntniss der Absorptionsspectra von Verbindungen.

Landauer (J.). Ber. chem. Ges., 14, 391-4; Jour. chem. Soc., 40, 591 (Abs.); Beiblätter, 5, 441.

Ueber die Molecularrefraction flüssiger organischer Verbindungen.

Landolt (H.). Sitzungsber, d. Berliner Akad. (1882), 64-91; Ann. Phys. u. Chem., 213, 75-112; Jour. Chem. Soc., 42, 909 (Abs.). On the theory of the action of certain organic substances in increasing the sensitiveness of silver haloids.

Lea (M. Carey). Amer. Jour. Sci., (3) 14, 96-9; Beiblatter, 1, 5/35 (Abs.).

Ueber die Aenderung der Absorptionsspectra einiger Farbstoffe in verschiedenen Lösungsmitteln.

Lepel (F. von). Ber, chem. Ges., 11, 1146-51; Jour. Chem. S. ...
34, 925 (Abs.).

Planzenfarbstoffe als Reagentien auf Magnesiumsalze.

Lepel (F. von). Ber. chem. Ges., **13**, 766-8; Jour. Chem. Soc., **4**0, 60 (Abs.).

Contributions to our knowledge of the spectra of the flames of gases containing carbon.

Lielegg (A.). Phil. Mag., (4) 37, 208.

General observations on the spectra of carbon and its compounds.

Liveing (G. D.) and Dewar (J.). Proc. Royal Soc., 34, 123-30; Jour. Chem. Soc., 44, 261 (Abs.).

New organic spectra.

MacMunn (Dr. C. A.). Proc. Roy. Physiolog. Soc. (1884), No. 4; Nature, 31 (1885), 326-7.

De la flamme de quelques gaz carburés (avec une planche du spectre du carbone).

Morron (A.). Ann. Chim. et Phys., (4) 4, 305.

Sur les effets de coloration.

Nickles. Comptes Rendus, 62, 93.

Les rapports entre les propriétés spectrales des corps simples avec leurs propriétés physiologiques.

Papillon, Comptes Rendus, 73, 791.

Quantitative Bestimmung von Farbstoffen durch den Spectralapparat.

Prever (W.). Ber, chem. Ges., 4, 401.

Du spectre musculaire.

Ranvier (L.). Comptes Rendus, 78, 1572-5.

Absorptionsspectren verschiedener Farbenlösungen.

Reynolds. Jour. prackt. Chemie, 105, 358.

Versuche über Farbenmischung.

Schelske (R.). Ann. Phys. u. Chem., n. F. 16, 349-58.

Quantitative Bestimmung von Farbstoffen durch den Spectralapparat.

Schiff (H.). Ber. chem. Ges., 4, 474; Bull. Soc. chim. Paris, n. s. 16, 97.

On a definite method of qualitative analysis of animal and vegetable colouring matters by means of the spectrum-microscope.

Sorby (H. C.). Proc. Royal Soc., 15, 433.

Comparative vegetable chromatology.

Sorby (H. C.). Proc. Royal Soc., 21, 442.

On the colouring matters derived from the decomposition of some minute organisms.

Sorby (H. C.). Monthly Microscop. Jour., 3, 229-31.

On the examination of mixed colouring matters with the spectrummicroscope.

Sorby (H. C.). Monthly Microscop. Jour., 6, 124-34.

Zur Spectralanalyse gefärbter Flüssigkeiten und Gläser.

Stein. Jour. prackt. Chemie, n. F. 9, 383; 10, 368; Jour. Chemical Soc., (2) 13, 412-14 (Abs.).

On the discrimination of organic bodies by their optical properties.

Stokes (G. G.). Phil. Mag., (4) 27, 388.

Prismatic spectra of the flames of compounds of carbon and hydrogen.

Swan (W.). Edinburgh Philosoph. Trans., 21, 411; Ann. Phys. u. Chem., 100, 306.

Longueur d'ondes des bandes spectrales données par les composés du carbone.

Thollon (L.). Comptes Rendus, **93**, 260; Ann. Chim. et Phys., (5) **25**, 287-8.

Absorptionsspectren verschiedener Farbenlösungen.

Thudichum. Jour. prackt. Chemie, 106, 414-15.

Der Gebrauch des Spectroscops zu physiologischen und ärtztlichen Zwecken.

Valentin (G.). Leipzig, Winter'sche Buchhandlung, 1863.

Quantitative Bestimmung von Farbstoffen durch den Spectralapparat.

Vierordt (K.). Ber. chem. Ges., 4, 327, 457, 519; Phil. Mag., (4) 41, 482-4; Amer. Jour. Sci., (3) 2, 138 (Abs.); Bull. Soc. chim. Paris, v. s. 16, 96.

Ueber die abnorme Wirkung mancher Farbstoffe auf die Lichtempfindlichkeit photographischer Platten.

Vogel (H. W.). Ber. chem. Ges., 8, 95-6.

Ueber das Spectrum der Sell'schen Schwefelkohlenstofflampe.

Vogel (H. W.). Ber. chem. Ges., 8, 96-8; Jour. Chem. Soc., (2) 13, 604 (Abs.).

Ueber die Absorptionsspectren verschiedener Farbenstoffe und ihre Anwendung zur Entdeckung von Verfälsehungen.

Vogel (H. W.). Ber. chem. Ges., 8, 1246-54; Dingler's Journal, 219, 73-81; Bull. Soc. chim. Paris, n. s. 26, 475.

Ueber die Wandlung der Speetren verschiedener Farbstoffe.

Vogel (H. W.). Ber. chem. Ges., 11, 622-4; Jour. Chem. Soc., 34, 545 (Abs.).

Ueber den Zusammenhang zwischen Absorption der Farbstoffen und deren sensibilisirender Wirkung auf Bromsilber.

Vogel (H. V.). Ann. Phys. u. Chem., (2) 26 (1885), 527-30,

Untersuchungen über die Spectra der Kohlenverbindungen.

Wesendonck (K.). Ann. Phys. u. Chem., n. F. 17, 427-67; Jour. Chem. Soc., 44, 761 (Abs.); Monatsber. d. Berliner Akad. (1880), 791-4.

Bemerkungen, Wüllner (A.). Ann. Phys. u. Chem., n. F. 14, 363.

b, Carbon compounds in particular.

ACETIC ACID.

Indices de réfraction des dissolutions aqueuses d'acide acétique et d'hyposulfite de soude.

Damien. Comptes Rendus, 91, 323-5; Beiblätter, 5, 41-42 (Abs.).

ACETYLENE.

Bemerkung zu Herrn Wüllner's Aufsatz; Ueber die Spectra des Wasserstoffs und des Acetylens.

Hasselberg (B.). Ann. Phys. u. Chem., n. F 15, 45-49.

Spectrum des Acetylens.

Jahresber, d. Chemie (1869), 182.

De la flamme de quelques gaz carburés, et en particulier de celle de l'acetylène.

> Morren (A.). Ann. Chim. et Phys., (4) 4, 305; Jour. prackt. Chem., 87, 50.

Spectrum des Acetylens.

Wüllner (A.). Ann. Phys. u. Chem., n. F. **14**, 355. Bemerkung, Hasselberg (B.), do., **15**, 45-9.

ACID BROWN.

Spectrum of acid brown.

Hartley (W. N.). Jour. Chem. Soc., 51 (1887), 198.

AGARYTHRINE.

Spectrum of agarythrine, an alcaloid contained in agaricus ruber.

Phipson (T. L.). Chem. News, **46**, 199–200; Ber. chem. Ges., **16**, 244 (Abs.).

ALBUMEN.

Farbenreactionen des Albumin.

Adamkiewicz (A.). Pfluger's Arch. f. Physiol., 9, 156-162; Jour. Chem. Soc., (2) 13, 172 (Abs.).

Spectroscopic notes on the carbohydrates and albumenoids from grain.

Hartley (W. N.). Jour. Chem. Soc., 51 (1887), 58-61.

ALCOHOL.

Misura dell'indice di rifrazione dell'alcool anisico e dell'alcool metilsalicilico.

Blaserna (P.). Gazz. chim. ital., 2, 69-75.

Brechungscoefficienten einiger Gemische von Anilin und Alkohol.

Johst (W.). Ann. Phys. u. Chem., n. F. 20, 47-62.

Spectre de l'alcohol.

Masson (A.). Comptes Rendus, 32, 129

Ueber die Absorption des Lichtes durch Alcohol, etc.

Schönn (J. L.). Ann. Phys. u. Chem., Ergänzungsband, 8, 670-675; Jour. Chem. Soc., 34, 693 (Abs.).

ALIZARINE

Notiz über künstliches Alizarin.

Boettger (R.) und Petersen (T.). Ber. chem. Ges., 4, 778-9.

Spectre d'absorption d'alizarine.

Gernez (D.). Bull. Soc. chim. Paris, n. s. 18, 172.

Absorptionsspectrum des Alizarins.

Jahresber. d. Chemie (1872), 140.

11 т

On artificial alizarine.

Perkin (W. H.). Jour. Chem. Soc., (2) 8, 133-43; Ann. Chem. u. Pharm., 158, 315-19 (Abs.); Ann. Chim. et Phys., (4) 26, 136 (Abs.).

Absorptionsspectrum des Alizarins.

Reynolds. Jour. prackt. Chem., 105, 358.

L'alizarine nitrée.

Rosenstiehl (A.). Ann. Chim. et Phys., (5) **12**, 519-529; Jour. Chem. Soc., **34**, 231–2.

Sur les spectres d'alizarine et de quelques matières colorantes qui en derivent.

Rosenstiehl (A.). Comptes Rendus, **88**, 1194-6; Jour. Chem. Soc., **36**, 807 (Abs.); Beiblatter, **3**, 793.

Zur Kenntniss der Alizarin-Farbstoffe.

Vogel (H. W.). Ber, chem. Ges., 11, 1371-1; Jour. Chem. Soc., 36, 83-5 (Abs.).

ALKANNA.

Der Alkannafarbstoff, ein neues Reagens auf Magnesiumsalze.

Lepel (F. von). Ber. chem. Ges., 13, 763-6.

ALLYLDIPROPYLCARBINGL.

Untersuchungen über einen aus Allyldipropylearbinol erhaltenen Kohlenwasserstoff.

Reformatsky (S.). Jour. prackt. Chemie, n. F. 27, 589-407; Beiblatter, 7, 689 (Abs.).

ALUM.

Sur les aluns crystallisés.

Soret (C.). Arch. d. Genève, (3) 10, 300; Beiblatter, 8, 374.

AMIDO-AZO-a-NAPHTHALESE.

Spectrum of amido-azo-a-naphthalene, C_{10} H_1 : $N: N: C_{10}$ H_2 : $N: M_2$

Hartley (W. N.). Jour, Chem. Soc., 51 (1887), 190.

AMIDO-AZO-,3-NAPHTHALENE.

Spectrum of amido-azo-3-naphthalene.

Hartley (W. N.). Jour. Chem. Soc., 51 (1887), 191.

ANILINE.

Die Brechungscoefficienten einiger Gemische von Anilin.

Johnt (W.). Ann. Phys. u. Chem., n. F. 20, 47-62.

Lo Spettroscopio applicato alla ricerca dei colori di anilina introdati nei vini rossi per sofisticazione.

Maeagno (J.). Mem. Spettr. ital. (1881), 35-40; Ber. chem. Ges., 14, 1584 (Abs.).

Aniline colours in the spectroscope.

Reimann (M.). Chem. News, 33, 260.

Absorptionslinien der Anilinfarbstoffe im Spectralapparat.

Schiff. Jour. prackt. Chemie, 89, 229.

Application of the spectroscope in the manufacture of aniline colours.

Schoop (P.). Chemische Industrie, 9 (1886), No. 3; Chem. News, 53 (1886), 287 (Abs.).

Zur Kenntniss der grünen Anilinfarben.

Vogel (H. W.). Ber. chem. Ges., 11, 1371-4; Jour. Chem. Soc., 36, 83-5 (Abs.).

ANTHRACEN.

Ueber Anthracen-disulfosäure und deren Umwandlung in Antrarufin.

Liebermann (C.) und Boeck (K.). Ber. ehem. Ges., 11, 1613-18;
Jour. Chem. Soc., 36, 257-9.

Ueber die der Chrysazinreihe augehörigen Anthracenverbindungen.

Liebermann (C.). Ber. chem. Ges., 12, 182-8.

Use of the spectroscope in discriminating anthracens.

Nickels (B.). Chem. News, **41**, 52, 95, 117; Jour. Chem. Soc., **38**, 757 (Abs.); Ber. chem. Ges., **13**, 829 (Abs.).

ANTHRAPURPURIN.

Absorptionsspectrum des Anthrapurpurins.

Jahresber, d. Chemie (1873), 451.

Absorptionspectra of anthrapurpurin.

Perkin (W. H.). Jour. Chem. Soc., (2) 11, 433.

ANTHRARUFIN.

Ueber Anthracen-disulfosäure und deren Umwandlung in Anthrarufin.

Liebermann (C.) und Boeck (K.). Ber. ehem. Ges., 11, 1613-18;
Jour. Chem. Soc., 36, 257-9 (Abs.).

APHIDES.

On the colouring matter of some aphides.

Sorby (H. C.). Quar. Jour. Microscop. Sci., 11, 352-61.

AURIN.

Spectrum of aurin.

Hartley (W. N.). Jour. Chem. Soc., 51 (1887), 167-8.

AN AUSTRALIAN LAKE.

Spectrum of a poisonous Australian lake.

Francis (G.). Pharmaceutical Trans., (3) 8, 1047-8; Jour. Cher. Soc., 34, 907 (Abs.).

AZO-COLORS.

Spectrum of azobenzene.

Hartley (W. N.). Jour. Chem. Soc., 51 (1887), 176-8.

Spectrum of amido-azo-a-naphthalene, and of amido-azo-β-naphthalene.
Hartley (W. N.). Jour. Chem. Soc., **51** (1887), 190-1.

On the spectra of the azo-colours.

Stebbins (J. II.). Jour. Amer. Chem. Soc., 6 (1884), 117-20, 149-75.

BEETS.

Spectralanalytische Notiz; rothe Rüben in Weinverfälschungen.

Lepel (F. von). Ber. chem. Ges., 10, 1875-7; Jour. Chem. Soc., 34, 168 (Abs.); Bull. Soc. chim. Paris, n. s. 30, 573.

BENZENE.

Description and measurements of the spectrum of benzene.

Hartley (W. N.). Jour. Chem. Soc., 47 (1885), 694-6.

Spectrum of benzene-azo-3-naphtholsulphonic acid.

Hartley (W. N.). Jour. Chem. Soc., 51 (1887), 196.

Misura dell'indice di rifrazione del cimene, della benzina e di alcuni derivati del timol naturale e del timol sintetico.

Pisati (G., e. Paterno (E.). Gazz, chim. ital., 4, 557-61; Ber. chem. Ges., 8, 71 (Abs.).

BIEBRICH SCARLET.

Spectrum of biebrich scarlet.

Hartley (W. N.). Jour. Chem. Soc., 51 (1887), 194.

HILE.

Le reazioni dei pigmenti biliari.

Capranica (S.). Gazz, chim. ital., 11, 430-1; Ber. chem. Ges., 15, 262-3 (Abs.); Jour. Chem. Soc., 42, 232.

Researches into the colouring matters of human urine, with an account of their artificial production from bilirubin and from hematin.

MacMunn (C. A.). Proc. Royal Soc., 31, 206-37; Jour. Chem. Soc., 40, 1056-8 (Abs.); Beiblätter, 5, 281.

Observations on the so-called bile of invertebrates.

MacMunn (C. A.). Proc. Royal Soc., 35, 370-403.

Künstliche Umwandlung von Bilirubin in Harnfarbstoff.

Maly (R.). Ann. Chem. u. Pharm., 161, 368-70; 163, 77-95; Jour. Chem. Soc., (2) 10, 514 (Abs.), 835 (Abs.).

A reducible by-product of the oxidation of bile-pigment.

Stockvis (B. J.). Neues Repertorium f. Pharm., 21, 123, 732-7; Jour.
Chem. Soc., (2) 10, 308 (Abs.); 11, 288; Bull. Soc. chim. Paris, n. s. 18, 265.

Researches on bilirubin and its compounds.

Thudiehum (J. L. W.). Jour. Chem. Soc., (2) 13, 389-403.

BIRDS.

Spectres observés au travers d'une plume.

Hugo (L.). Comptes Rendus, 83, 602.

Ueber die Färbungen der Vogeleierschalen.

Liebermann (C.). Ber. chem. Ges., 11, 606-610; Amer. Jour. Sci., (3) 16, 66 (Abs.).

BISMARCK BROWN.

Spectrum of bismarck brown.

Hartley (W. N.). Jour. Chem. Soc., 51 (1887), 180-1.

вьоор.

Ueber das Verhalten von Blut und Ozon zu einander.

Binz (C.). Medicinalisches Centralblatt, 20, 721-5; Chemisches Centralblatt (1882), 810-11; Jour. Chem. Soc., 44, 486 (Abs.).

Dosage de l'hemoglobine dans le sang par les procédés optiques.

Branly (E.). Anu. Chim. et Phys., (5) 27, 238-73; Jour. Chem. Soc.,
44, 394 (Abs.); Z. analyt. Chem., 22, 629-32 (Abs.); Jour. de Phys.,
(2) 2, 430 (Abs.).

Absorptionsspectrum des durch Wasserstoffsuperoxyd gebräunten blausäurehaltigen Blutes.

Buchner. Jour. prackt. Chem., 104, 345.

On the action of nitrates on the blood.

Gamge (A.). Phil. Trans. (1868), 589; Ber. chem. Ges., 9, 833; Jour. prackt. Chemie, 105, 287.

Absorptionslinien in Blutspectrum.

Hoppe-Seyler (F.). Jahrb. d. gesammt. Medicin, 114, 3.

Ueber das Verhalten des Blutfarbestoffs in Spectrum des Sonnenlichtes.
Hoppe-Seyler (F.). Virchow's Annalen, 22, 446; 29, 233; Chem. Centralblatt, 1862, 170.

Untersuchungen zur physicalischen Chemie des Blutes.

Hüfner (G.). Jour. prackt. Chemie, (2) 22, 362-88; Jour. Chem. Soc., 40, 111-13 (Abs.).

Untersuchungen über den Blutfarbestoff und seine Derivate.

Jaderholm (A.). Zeitschr. f. Biologie, 13, 193-255; Jour. Chem. Soc., 34, 236-7 (Abs.).

Spectren des Blutfarbstoffs.

Jahresber, d. Chemie, 15, 535 (Abs. See Hoppe-Seyler, above.)

Photometrie des Absorptionsspectrums der Blutkörperchen.

Jessen (E.). Zeitschr. f. Biologie, 17, 251-72; Ber. chem. Ges., 15, 952 (Abs.).

Spectrum der Sanguinarlösung.

Naschold. Jour. prackt. Chemie, 106, 407.

Beträge zur Kentniss der Blutfarbstoffe.

Otto (J. G.). Pflüger's Archiv. f. Physiol., **31**, 240-44; Ber. chem. Ges., **16**, 2688-9.

On some improvements in the spectrum method of detecting blood. Sorby (H. C.). Monthly Microscop, Jour., 6, 9-17.

On some compounds derived from the colouring matter of blood. Sorby (H. C.). Quar. Jour. Microscop. Sci., 10, 400-2.

Application of spectrum analysis to microscopical investigations, and especially to the detection of blood stains.

Sorby (H. C.). Chem. News, 11, 186, 194, 232, 256.

On the blood spectrum.

Sorby (H. C.). Nature, 4, 505; 5, 7.

Spectre d'absorption du sang dans la partie violette et ultra-violette. Soret (J. L.). Comptes Rendus, 97, 1269. Reduction and oxidation of the colouring matter of the blood.

Stokes (G. G.). Proc. Royal Soc., 13, 353.

Ueber das Vorkommen eines neuen, das Absorptionsspectrum des Blutes zeigenden, Körper's im thierischen Organismus.

Struve (H.). Ber. chem. Ges., 9, 623; Bull. Soc. chim. Paris, n. 18, 471.

Ueber die spectralanalytische Reaction auf Blut.

Vogel (H. W.). Ber. chem. Ges., 9, 587, 1472; Bull. Soc. chim. Paris, n. s. 27, 83.

BONELLIA VIRIDIS.

Der grüne Farbstoff von Bonellia Viridis.

Schenck (L. S.). Sitzungsber. Wiener Akad., 72 II, 581-5.

On the colouring matter of bonellia viridis.

Sorby (H. C.). Quar. Jour. Microscop. Soc., 15, 166.

BRUCINE.

Absorption spectrum of brucine, etc.

Meyer (A.). Archives of the Pharmaceutical Soc., (3) 13, 413-16; Jour. Chem. Soc., 36, 269.

BUTTER.

Ueber einige Methylester aus der Propionsäure-und Buttersäuregruppe. Kahlbaum (G. W. A.). Ber. chem. Ges., 12, 343-4; Jour. Chem. Soc., 36, 521 (Abs.).

CARBOHYDRATES.

Spectroscopic notes on the carbohydrates and albuminoids from grain.

Hartley (W. N.). Jour. chem. Soc., 51 (1887), 58-61.

CARMINE.

Spectrum von ammoniakalischer Carminlösung und von Blut.

Campani. Ber. chem. Ges., 5, 287.

Spectre du carmin d'indigo.

Vogel (H. W.). Bull. Soc. chim. Paris, n. s. 27, 83

CARYOPHYLLACE M.

Colouring matter of the caryophyllaceæ.

Hilger (A.) and Bischoff (H.). Landwirthschaftl. Versuch-Statistik, 23, 456-61; Jour. Chem. Soc., 36, 730 (Abs.).

CHINIZABIN.

Ueber Chinizarin.

Grimm (F.). Ber, chem. Ges., 6, 506-12.

Absorptionsspectrum des Chinizarins.

Jahresber, d. Chemie (1873), 455 (Abs.). See Grimm.

CHINOLIN.

Ueber einige im Pyridinkern substituirte Chinolinderivate.

Friedländer (P.) und Weinberg (A.). Ber. chem. Ges., 15, 2679-2685.

CHINON.

Ueber den im Ag. atrotomentosus vorkommenden chinonartigen Körper.

Thörner (W.). Ber. chem. Ges., 12, 1630-5.

CHOTELIN.

Veber Chotelin.

Liebermann (L.). Pflüger's Archiv. f. Physiol., 11, 181-90; Jour. Chem. Soc. (1876), 1, 407-8 (Abs.).

CHROMOGENE.

Ueber einige Chromogene des Harns und deren Derivate.

Plósz (P.). Zeitschr. f. physiolog. Chemie, 8, 85-94; Ber. chem. Ges., 16, 2933 (Abs.).

CHRYSOIDINE.

Das Chrysoidin, eine antiphotogenische Farbe.

Bardy (C.). Chemisches Centralblatt, (3), 9, 109; Jour. Chem. Soc., 34, 613 (Abs.).

Spectrum of chrysoidine.

Hartley (W. N.). Jour. Chem. Soc., 51 (1887), 178

CITRACON.

Ueber die Molecularrefraction der Citracon und Mesaconsäureather.

Bruhl (J. W.). Ber, chem. Ges., **14**, 2736-44; Jour. Chem. Soc., **42**, 829-30; Beiblätter, **6**, 376.

COAL.

Soda flames in coal fires.

Herschel (J.). Nature, 27, 78, 103.

COLEIN.

Spectrum of colein.

Church (J. H.). Jour. Chem. Soc., 1877, 1, 260.

CROCEINE SCARLET.

Spectrum of croceine scarlet.

Hartley (W. N.). Jour. Chem. Soc., 51 (1887), 195.

CROTON ACID.

Ueber die Molecularrefraction der Crotonsäure.

Brühl (J. W.). Ber. chem. Ges., 14, 2797-2801; Jour. Chem. Soc., 42, 827 (Abs.); Beiblätter, 6, 477 (Abs.).

CRYSTALLOIDS.

On the rate of passage of crystalloids in and out of the body.

Jones (H. Bence). Proc. Royal Soc., 14, 400.

CUMENE.

Spectrum of cumene-azo-β-naphtholdisulphonic acid.

Hartley (W. N.). Jour. Chem. Soc., 51 (1887), 187.

CURCUMIN.

Ueber Curcumin, den Farbstoff der Curcumawurzel.

Daube (F. U.). Neues Repert. d. Pharm., 20, 36; Ber. chem. Ges.,3, 609-13; Jour Chem. Soc., (2) 9, 152 (Abs.).

CYANOGEN.

Photographed spectrum of cyanogen.

Capron (J. R.). Photographed Spectra, London, 1877, 71.

Spectroscopic researches in carbon and cyanogen.

Ciamician. Chem. News, 44, 216.

Spectrum von Cyanogen.

Dibbits (H. C.). Ann. Phys. u. Chem., 122, 507.

Constitution of evanuric acid.

Hartley (W. N.). Jour. Chem. Soc., **41**, 45-9; Beiblätter, **6**, 375 (Abs.).

Note on the reversal of the spectrum of cyanogen.

Liveing (G. D.) and Dewar (J.). Chem. News, 44, 253; Proc. Royal Soc., 33, 3; Ann. Chim. et Phys., (5) 23, 571.

Sur le chromocyanure de potassium.

Moissan (H.). Comptes Rendus, 93, 1079-81; Chem. News, 45, 22 (Abs.); Ber. chem. Ges., 15, 243 (Abs.).

De la flamme du cyanogen.

Morren (M. A.). Ann. Chim. et Phys., (4) 4, 305.

Bestimmung der Brechungsquotienten einer Cyaninlösung.

Pulfrich (C.). Ann. Phys. u. Chem., n. F. 16, 335.

Cyanogen in small induction sparks in free air.

Smyth (C. Piazzi). Nature, 28, 340.

CYMENE.

An examination of terpenes for cymene by means of the ultra-violet spectrum.

Hartley (W. N.). Jour. Chem. Soc., 37, 676-8.

(Look above under Cumene.)

DECAY.

Zur Lehre von den Fäulnissalkaloïden.

Poehl (A.). Ber. chem. Ges., 16, 1975-88.

DIAMOND.

On the refraction equivalents of the diamond and the carbon compounds.

Gladstone (J. H.). Chem. News, 42, 175; Jour. Chem. Soc., 40, 333
(Abs.); Beiblätter, 5, 43 (Abs.).

DIAZO.

Spectrum of diazo.

Hartley (W. N.). Jour. Chem. Soc., 51 (1887), 196.

DIPHENYL.

Ueber Diphenyldüsoindolazofarbstoffe.

Möhlau (R.). Ber. chem. Ges., 15, 2490-7; Jour. Chem. Soc., 44, 342 (Abs.).

DIPTRIDENE.

Description and measurement of the spectrum of dipyridene (Dr. Ramsay).

Hartley (W. N.). Jour. Chem. Soc., 47 (1885), 717.

DROSSERA WHITTAKERI.

Absorption spectra of the colouring matter of Drossera Whittakeri.

Rennie (E. H.). Jour. Chem. Soc., 51 (1887), 377.

EBONITE.

On the transmission of radiation of low refrangibility through ebonite.

Abney (W. de W.) and Festing (R.). Proc. Physical Soc., 4, 256-9; Phil. Mag., (5) 11, 466-9; Chem. News, 43, 175 (Abs.); Beiblätter, 5, 506 (Abs.).

Note on the index of refraction of ebonite.

Ayrton (W. E.) and Perry (J.). Proc. Physical Soc., 4, 345-8; Phil.
 Mag., (5) 12, 196-9; Nature, 23, 519; Beiblätter, 5, 741 (Abs.).

EOSIN.

Photographic action of eosin.

Waterhouse (J.). Photographie Journal, **16**, 135-6; Jour. Chem. Soc., 1876, **2**, 232 (Abs.).

ETHER VAPOUR.

Spectrum or etner vapour.

Capron (J. R.). Photographed Speetra, London, 1877, p. 74.

EXCREMENTS.

Swei pathologische Harnfarbstoffe.

Baumstark (F.). Pflüger's Arch. f. Physiol., 9, 568-84; Jour. Chem. Soc., (2) 13, 480 (Abs.).

Ueber das Urorosein, einen neuen Harnfarstoff.

Nencki (M.) und Sieber (N.). Jour. prackt. Chemie, 26, 333-6; Chem. News, 42, 12 (Abs.); Jour. Chem. Soc., 44, 101 (Abs.); Ber. chem. Ges., 15, 3087.

Ueber einen neuen krystallinischen farbigen Harnbestantheil.

Plósz (P.). Zeitschr. physiol. Chemie, **6**, 504-7; Ber. ehem. Ges., **15**, 2626-7 (Abs.).

Ueber einige Chromogene des Harns und deren Derivate.

Plósz (P.). Zeitschr. physiol. Chemie, **8**, 85-94; Ber. chem. Ges., **16**, 2933-4 (Abs.).

FAST REI

Spectrum of fast red.

Hartley (W. N.). Jour. Chem. Soc., 51 (1887), 197.

FISH.

Spectrum of fish pigment.

Francis (G.). Nature, 13, 167.

FLOUR AND GRAIN.

Spectroscopic notes on the carbohydrates and albuminoids from grain.

Hartley (W. N.). Jour. Chem. Soc., 51 (1887), 58-61.

Matière colorante se forment dans la colle de farine.

Lecoq de Boisbaudran (F.). Comptes Rendu», 94, 562-3; Jour. Chem. Soc., 42, 739 (Abs.).

Ueber den Nachweis von Mutterkorn im Mehle auf spectroscopischem Wege.

Petri (J.). Zeitschr. analyt. Chemie, 18 211-20; Jour. Chem. Soc., 36, 977-9 (Abs.).

FLOWERS.

Ueber Blumenblau.

Schönn (L.). Zeitschr. analyt. Chemie, 9, 327-8.

The colouring matter of the petals of Rosa Gallica.

Senier (H.). Pharmaceutical Trans., (3), 7, 650-652; Jour. Chem. Soc., 1877, 2, 502 (Abs.).

FUCHSIN.

Ueber die Brechungsverhältnisse des Fuchsins.

Christiansen (C.). Oversight k. Danske Vidensk. Selskabs, 1871, 5-17;
Ann. Phys. u. Chem., 143, 250-9; Ann. Chim. et Phys., (4) 25, 400 (Abs.).

Zur Farbenzerstreuung des Fuchsins.

Christiansen (C.). Ann. Phys. u. Chem., 146, 154-155; Jour. Chem. Soc., (2) 11, 236.

Nachweis von Fuchsin im Weine.

Liebermann (L.). Ber, chem. Ges., 10, 866; Jour. Chem. Soc., 1877.
2, 969 (Abs.).

Ueber die optischen Eigenschaften des festen Fuchsins.

Voigt (W.). Gottinger gelehrten Nachr. (1884), 262.

Ueber den Nachweis von Fuchsin in damit gefärbten Weinen durch Stearin.

Wolff (C. II.). Repert. analyt. Chem., 2, 193-4; Chemisches Central-blatt, (3) 13, 670, (Abs.); Jour. Chem. Soc., 44, 384 (Abs.).

FUNGI.

Fluorescence of the pigments of fungi.

Weiss (A.). Chem. Centralblatt, 1886, 670-1; Jour. Chem. Soc., 44, 384-5 (Abs.).

GALL.

Die Oxydationsproducte der Gallenfarbstoffe und ihre Absorptionsstreifen.

Heynsius (A.) und Campbell (J. F. F.). Pflüger's Archiv. f. Physiol.,4, 497-547; Jour. Chem. Soc., (2) 10, 307-8 (Abs.).

Absorptionsspectren der Gallenfarbstoffe.

Jaffe. Jour. prackt. Chemie, 104, 401.

Untersuchungen über die Gallenfarbstoffe.

Maly (R.). Wiener Anzeigen, 9, 39-41; Chem. Centralblatt, (3) 3, 180-1; Jour. Chem. Soc., (2) 10, 638 (Abs.); Jour. prackt. Chem., 103, 255; 104, 38.

Untersuchungen über die Gallenfarbstoffe und ihre Erkennung mittelst des Spectroscops.

Stockvis (B. J.). Ber. chem. Ges., 5, 583-5; Jour. Chem. Soc., (2) 11, 78 (Abs.).

GELATINE.

Emploi de la gélatine pour montrer l'absorption dans le spectre.

Lommel (E.). Ann. Chim. et Phys., (4) 26, 279.

GUN-COTTON.

Spectrum explodirender Schiessbaumwolle.

Jahresber. d. Chemie (1873), 151.

Spectrum des Lichtes explodirender Schiessbaumwolle.

Lohse (O.). Ann. Phys. u. Chem., 150, 641.

Spectrum des Lichtes explodirender Schiessbaumwolle.

Vogel (H. W.). Ann. Phys., u. Chem., n. F. 3, 615.

Spectrum of H S $O_3 \cdot C_8$ H₈ · N : N · C₁₀ H₄ (H S O_3)₂ · O H β (Na Salt). Hartley (W. N.). Jour. Chem. Soc., **51** (1887), 188-9.

HELIANTHIN.

Spectrum of helianthin.

Hartley (W. N.). Jour. Chem. Soc., 51 (1887), 192-3.

HEMATINE.

Action de l'hydrosulfite de soude sur l'hématine du sang (hématine reduite).

Cazeneuve (P.). Bull. Soc. chim. Paris, (2) 27, 258-60; Jour. Chem. Soc., 1877, 2, 346 (Abs.).

Ueber Assimilation von Hæmatococcus.

Englemann (T. W.). Onderzoekingen physiol. Lab. Utrecht, (3) 7.
200-8; Proc. Verb. K. Akad. Wetenschappen, Amsterdam, March
25, 1882, 3-6 (Abs.); Beiblätter, 7, 377-8 (Abs.).

Researches into the colouring matters of human urine, with an account of their artificial production from bilirubin and from hematine.

MacMunn (C. A.). Proc. Royal Soc., 31, 206-337; Jour. Chem. Soc., 40, 1056-8 (Abs.); Beiblätter, 5, 281.

On hemine, hematine and a phosphorized substance contained in blood corpuscules.

Thudichum (J. L. W.) and Kingzett (C. T.). Jour. Chem. Soc., 1879, **2**, 255-64.

HEMOGLOBIN.

Dosage de l'hémoglobine dans le sang par les procédés optiques.

Branly (E.). Ann. Chim. et Phys., (5) 27, 238-273; Jour. Chem. Soc.,
44, 334 (Abs.); Zeitsehr, analyt. Chem., 22, 629-32 (Abs.); Jour. de Phys., (2), 2, 430 (Abs.).

Ucber die Bestimmung des Hæmoglobin-und Sauerstoff-gehaltnes im Blute. Hüfner (G.). Zeitschr. physiol. Chem., 3, 1-18; Ber. chem. Ges., 12, 702 (Abs.); Jour. Chem. Soc., 36, 835.

On the evolution of hemoglobine.

Sorby (H. C.). Quar. Jour. Microscop. Sci., 16, 76-85.

Spectralanalytische Bestimmung des Hæmoglobingehaltes des menschlichen Blutes.

Wiskemann (M.). Zeitschr. f. Biologie, 12, 434-47; Jour. Chem. Soc., 1877, 2, 808-9.

HOFFMANN'S VIOLET.

Spectrum of Hoffmann's violet.

Hartley (W. N.). Jour. Chem. Sec., 51 (1887), 171-4.

HYDROCARBONS.

Hydrocarbons in the solar atmosphere.

Abney (W. de W.). Rept. British Assoc., 1881, 524.

Sur le pouvoir réfringent de l'hydrocarbure C11 H20.

Albitsky (A.). Jour. Soc. phys. chim. russe, 15, 524-6.

Spectrum von Kohlenwasserstoff.

Angström (A. J.). Ann. Phys. u. Chem., 94, 157.

On the spectra of the compounds of carbon with hydrogen and nitrogen.

Liveing (G. D.) and Dewar (J.). Proc. Royal Soc., 30, 494-509; Nature, 22, 620-3.

On the origin of the hydrocarbon flame spectrum.

Liveing (G. D.) and Dewar (J.). Proc. Royal Soc., 34, 418-29; Nature, 27, 257-9; Chem. News, 46, 293-7; Beiblätter, 7, 288-9 (Abs.).

Nuovo metodo spettroscopico per discoprire nei miscugli gassosi e nelle acque le puì piccole quantità d'un idrocarburo gassoso od almeno molto volatile.

Negri (A. e G. de). Gazz. chim. ital., 5, 438; Jour. Chem. Soc., 1876, 2, 659 (Abs.); Chem. News, 33, 76.

Untersuchungen über einen aus Allildipropylcarbinol erhaltenen Kohlenwasserstoff, C_{10} H_{18} .

Reformatsky (S.). Jour. prackt. Chem., n. F. 27, 389-407; Beiblätter, 7, 689 (Abs.).

Carbon and hydrocarbon in the modern spectroscope.

Smyth (C. Piazzi). Phil. Mag., (4) 49, 24-33.

Carbon and carbohydrogen, spectroscoped and spectrometed in 1879.

Smyth (C. Piazzi). Phil. Mag., (5) 8, 107-119; Beiblätter, 4, 36 (Abs.).

Hydrocarbons of the formula (C₅ H₈)_n.

Tilden (W. A.). Chem. News, **46**, 120-1; Jour. Chem. Soc., **44**, 75-6 (Abs.).

Carbon and hydrocarbon in the modern spectroscope.

Watts (W. M.). Phil. Mag., (4) 49, 104-6.

HYDROBILIRUBIN.

Ueber Choletelin und Hydrobilirubin.

Liebermann (L.). Pflüger's Arch. Physiol., 11, 181-90; Jour. Chem. Soc., 1876, 1, 407-8 (Abs.).

HYDROCHINON.

Ueber das Phthaleïn des Hydrochinons.

Grimm (F.). Ber. chem. Ges., 6, 506-12.

HYDROXYANTHRAQUINONE.

Spectra of the methyl derivatives of hydroxyanthraquinone.

Liebermann (C.) und Kostanecki (S. von). Ber. chem. Ges., 19, 2327-32; Jour. Chem. Soc., 52 (1887), 1 (Abs.).

INDIGO.

Spectre de l'indigo.

Lallemand (A.). Comptes Rendus, 78, 1272.

Sur la diffusion de l'indigo, etc.

Lallamand (A.). Comptes Rendus, 79, 693.

Spectre du carmin de l'indigo.

Vogel (H. W.). Bull. Soc. chim. Paris, n. s. 27, 83.

Spectralanalytische Werthbestimmung verschiedener reiner Indigosorten.
* Wolff (C. H.). Zeitschr. analyt. Chem., 23, 29-32.

IODINE GREEN.

Spectrum of iodine green.

Hartley (W. N.). Jour. Chem. Soc., 51 (1887), 174-6.

LAMP-BLACK.

Spectre du noir de fumée.

Lallemand (A.). Comptes Rendus, 78, 1272.

LEAVES.

Das Grün der Blätter.

Müller (J.). Ann. Phys. u. Chem., 142, 615-16; Jour. Chem. Soc., (2) 9, 654.

Ueber Blattgrün.

Schonn (L.). Zeitschr. analyt. Chemie, 9, 327-8; Ann. Phys. u. Chem., 145, 166-7; Arch. de Genève, (2) 43, 282-3.

On the various tints of autumnal foliage.

Sorby (H. C.). Chem. News, 23, 197-9, 148-50; Jour. Chem. Soc., (2) 9, 184 (Abs.).

On the colour of leaves at different seasons of the year.

Sorby (H. C.). Quar. Jour. Microscop. Sci., 11, 215-234.

Ueber die Lichtwirkung verschieden gefärbter Blätter.

Vogel (H. W.). Sitzungsber, d. Münchener Akad., 1872, 188-7.

LUTEÏNE.

Results of researches on luteïne and the spectra of yellow organic substances contained in animals and plants. Researches conducted for the medical department of the Privy Conneil.

> Thudichum (J. L. W.) Proc. Royal Soc., 17, 253; Jour. prackt. Chem., 106, 414.

MESACON.

Ueber die Molecularrefraction der Citracon-und Mesacon-säureather.

Brühl (J. W.). Ber. chem. Ges., **14**, 2736-44; Jour. chem. Soc., **42**, 829-30; Beibätter, **6**, 376.

METAXYLENE.

Description and measurement of the spectrum of metaxylene (Kahlbaum). Hartley (W. N.). Jour. Chem. Soc., 47 (1885), 700-7.

METHYLENE BLUE.

On the spectroscopic examination of methylene blue and of South's violet.

Stebbins (J. H., Jr.). Jour. Amer. Chem. Soc., 6 (1884), 304-5.

METHACRYL.

Ueber die Molecularrefraction der Methacrylsäure.

Brühl (J. W.). Ber. chem. Ges., 14, 2797-2801; Jour. Chem. Sec., 42, 827 (Abs.); Beiblätter, 6, 477 (Abs.).

METHÄMOGLOBIN.

Studien über das Methämoglobin.

Otto (J. G.). Pflüger's Arch. f. Physiol., 31, 245-67; Ber. chem. Ges., 16, 2689 (Abs.).

Jeber das Methämoglobin.

Saarbach (H.). Pflüger's Arch. f. Physiol., 28, 382-8; Ber. chem. Ges., 15, 2752 (Abs.).

MORINDON.

Spectrum der Morindonlösungen.

Stein. Jour. prackt. Chemie, 97, 241.

Spectrum der Morindonlösungen.

Stenhouse. Jour. prackt. Chemie, 98, 127.

MORPHINE.

Absorption spectrum of morphine.

Meyer (A.). Archives of the Pharmaceutical Soc., (3) 13, 413-16; Jour. Chem. Soc., 36, 269.

NAPHTHALENE.

Description and measurement of the spectrum of naphthalene.

Hartley (W. N.). Jour. Chem. Soc., 47 (1885), 691-701.

12 T

Spectrum of amido-azo-a-naphthalene.

Hartley (W. N.). Jour. Chem. Soc., 51 (1887), 190.

Spectrum of amido-azo-3-naphthalene.

Hartley (W. N.). Jour, Chem. Sec., **51** (1887), 191.

Absorptionsspectrum von Naphthalin.

Jahresber, d. Chemie (1873), 157.

Spectre de naphthaline pure.

Lallemand (A.). Comptes Rendus, 77, 1218.

Ueber die Fluorescenz des Naphthalinrothes.

Wesendonck (K. L. Ann. Phys. u. Chem., (2) 26 (1885), 521-7; Jour. Chem. Soc., 50 (1886), 585; Jour. de Phys., (2) 5 (1886), 517 (Abs.).

OILS.

Oleliant spectrum.

Capron (J. R.). Photographed Spectra, London, 1877, p. 73.

Spectrum analysis of oils.

Doumer and Thibaut. Chem. News, 51 (1885), 229.

The spectroscope applied to the detection of adulterations of fixed oils.

Gilmour (W.). Pharmaceutical Jour. Trans., 3 $\mathbf{6},981-2$: $\mathbf{7},22$.

On essential oils.

Gladstone (J. H.). Jour, Chem. Soc., (2) 10, 1-12; Ber. chem. G. 5, 60 (Abs.).

Examination of essential oils.

Hartley (W. N.) and Huntington (A. K.). Proc. Royal Soc., 29, 2).

Ueber gefürbte ætherische Oele.

Hock (K.). Archiv, f. Pharra., (3) 21, 17-18, 437-8; Zeitschr. av. dyb., Chemie, 23, 241 (Abs.).

Spectrum fetter Öele.

Jahresber, d. Chemie (1870), 175.

Objective Darstellung des Spectrums der Oele.

Jahresber, d. Chemie, 1876), 963.

Reports of the committee for investigating the constitution and optical properties of essential oils.

Reports of the British Assoc., 1872, 1873, and 1874

ORTHO-TOLUIDINE.

Description and measurement of the spectrum of ortho-toluidine.

Hartley (W. N.). Jour. Chem. Soc., 47 (1885), 739.

Ueber einige Derivate der Orthotoluysäure.

Jacobsen (O.) und Weiss (F.). Ber. chem. Ges., 16, 1956-62; Jour. Chem. Sec., 44, 1121 (Abs.).

ORTHO-XYLENE.

Description and measurement of the spectrum of ortho-xylene (Kahlbaum).

Hartley (W. N.). Jour. Chem. Soc., 47 (1885), 702-4.

CARBONIC ACID (CARBON AND OXYGEN).

Spectrum von Kohlensäure.

Angström (A. J.). Ann. Phys. u. Chain., 94, 155.

Spectre de l'acide carbonique.

Becquerel (H.). Comptes Rendus, 90, 1407.

Spectrum of carbonic acid.

Capron (J. R.). Thotographed Spectra, London, 1877, p. 68.

Action of the spectral rays on the decomposition of carbonic acid in plants.

Crookes (W.). Chem. News, 27, 133.

Spectrum der Flamme von Kohlenoxyd.

Dibbits (H. C.). Ann. Phys. u. Chem., 122, 503.

Combustion of carbonic oxide under pressure.

Franckland (E.). Proc. Royal Soc., 16, 419, 421; Jour. prackt. Chemie, 105, 190.

Erkennung der Vergiftung mit Kohlenexyd.

Hoppe-Seyler (F.). Zeitschr. f. analyt. Chem., 3, 439; Phil. Mag., (4) 30, 456.

Funkenspectrum von kohlensäurem Lithium.

Jahresber, d. Chemie (1873), 152.

Absorption of radiant heat by carbon dioxide.

Keeler (J. E.). Amer. Jeur. Sci., (3) 28, 190-198; Nature, 31, 46 (Abs.).

Die Wirkung der Spectralfarben auf die Kohlensäurezersetzung in Pflanzen,

Pfeffer (W.). Versuchs-Stationen Organ, 15, 356-67; Jour. Chem.
Soc., (2) 10, 1107 (Abs.); 11, 400 (Abs.); Ann. Phys. u. Chem.,
148, 86-99; Chem. News, 27, 133-4.

Spectrum von Kohlensäure.

Plücker. Ann. Phys. u. Chem., 105, 76

Ueber die Dauer der spectralanalytische Reaction von Kohlenoxyd.

Salfeld (E.), Repert, analyt. Chem. (1883), 25-7; Archiv. d. Pharm., (3) 21, 289 (Abs.); Jour. Chem. Soc., 46, 343 (Abs.).

Propriétés optiques d'acide oxalique.

Sénarmont (H. de). Ann. Chim. et Phys., (3) 41, 336.

Die Zerstreuung der C O2 durch die Pflanzen im directen Sonnenspectrum.

Timiriaseff (K.). Mém. Acad. St. Pétersbourg, Sept., 1873; Ber. chem. Ges., 6, 1212 (Abs.); Jour. Chem. Soc., (2) 12, 285 (Abs.).

Recherches sur la décomposition de l'acide carbonique dans le spectre solaire par les parties vertes de végétaux (extrait d'un ouvrage "Sur l'assimilation de la lumière par les végétaux," St. Pétersbourg, 1875.)

Timiriaseff (C.). Ann. Chim. et Phys., (5) 12, 355-95; Comptes Rendus, 84, 1236-9; Jour. Chem. Soc. (1877), 2, 635 (Abs.).

Ueber die Nachweisung von Kohlenoxydgas.

Vogel (H. W.). Ber, chem. Ges., 10, 792-5.

Note on the spectrum of carbonic acid.

Wesendonck (C.). Proc. Royal Soc., 32, 380-2; Chem. News. 44, 42-3; Jour. Chem. Soc., 40, 861 (Abs.).

Ueber die Molecularrefraction der geschwefelten Kohlensäureather, nebst einigen Bemerkungen über Molecularrefraction im Allgemeinen,

> Wiedemann, E. J., Ann. Phys. u. Chem., n. F. 17, 577-80; Jour. Chem. Soc., 44, 762 (Abs.); Jour. de Phys., (2) 2, 139 (Abs.)

Ueber die Brechungsexponenten der gesehwetelten Substitutionsproducte des Kohlensaureäthers.

Wiedemann «E. Jour, prackt Chen. 1 €, 1% J

Spectrum von Köhlensäure.

Wullner, A. a., Ann. Phys. in Chem., 344, 485, 500, 507, 516, 517.

PARATOLUIDINE.

Description and measurement of the spectrum of paratoluidine. Hartley (W. N.). Jour. Chem. Soc., 47 (1885), 706.

PARAXYLINE.

Description and measurement of the spectrum of Paraxyline (Kahlbaum).

Hartley (W. N.). Jour. Chem. Soc., 47 (1885), 707-10.

PENTACRINUS.

Colouring matter of pentacrinus.

Nature, 21, 578.

PHENOLS.

On a new class of colouring matters from the phenols.

Meldola (R.). Jour. Chem. Soc., 39, 37-40

PICOLENE.

Description and measurement of the spectrum of picolene (Dr. Ramsay). Hartley (W. N.). Jour. Chem. Soc., 47 (1885), 719-21.

PIPERIDINE.

Description and measurement of the spectrum of piperidine (Kahlbaum). Hartley (W. N.). Jour. Chem. Soc., 47 (1885), 731.

PLANTS.

Zur Theorie des Assimilations-processes in der Pflanzenwelt.
Benkovich (E. von). Ann. Phys. u. Chem., **154**, 468-73.

Zur Frage über die Wirkung des farbigen Lichtes auf die Assimilationsthätigheit der Pflanzen.

> Lommel (E.). Ann. Phys. u. Chem., 145, 442-55; Jour. Chem. Soc., (2) 11, 292 (Abs.).

Ueber den Einfluss des farbigen Lichtes auf die Assimilation und die damit zusammenhängende Vermehrung der Aschenbestandtheile in Erbsenkeimlingen.

Weber (R.). Landwirthschaftl.-Versuchs-Statistik, 18, 18-48; Jour. Chem. Soc., (2) 13, 1211-15 (Abs.).

PURPURIN.

Displacement of the absorption bands of purpurin in solutions of alum.

Morton (II.). Chem. News, **42**, 207; Jour. Chem. Soc., **40**, 488.

Note on the purple of the ancients.

Schunk (E.). Jour. Chem. Soc., 37, 612-17.

Die Purpurin-Thonerde-Magnesiareaction

Vogel (H. W.). Ber. chem. Ges., 10, 157, 373; Bull. Soc. chim. Paris, n. s. 23, 475, 478.

Ueber die Lichtempfindlichkeit des Purpurins.

Vogel (H. W.). Ber. chem. Ges., 10, 692.

PYRIDINE.

Description and measurement of the spectrum of pyridine (Kahlbaum).
Hartley (W. N.). Jour. Chem. Soc., 47 (1885), 711-16.

QUINOLINE.

Description and measurement of the spectrum of quinoline, specimens I and II.

Hartley (W. N.). Jour. Chem. Soc., 47 (1885), 721-7, 728-30.
(Look below for Tetrahydroquinoline.)

Spectrum of quinoline-red.

Hoffmann (A. W.). Ber. chem. Ges., 20, 4-2 i; Jour. Chem. Soc., 52 (1887), 380 (Abs.).

RASPBERRY.

Ueber die Untersuchungen von Hinbeersaft.

Vogel (H. W.). Ber, chem. Ges., 10, 1428-32; Jour. Chem. Soc., 1877, 915 (Alis.).

ROSANTLINE.

Ueber Rosolsäure.

Grabe (C.) und Caro (H.). Ann. Phys. u. Chem., 179, 184-203; Jour. Chem. Soc., 1876, 1, 588-91.

Spectrum of rosaniline base.

Hartley (W. N.), Jour. Chem. Sec., 51 (1887), 164-6.

Spectrum of rosaniline hydrochloride.

Hartley (W. N.), Jour. Chem. Soc., 51 1887, 109-171.

RUBERINE.

On the colouring matter (ruberine), etc., contained in agaricus ruber.

Phipson, T. L., Chem. News, 46, 199-200; Jour. Chem. Soc., 44, 100 (Abs.); Ber. chem. Ges., 16, 244 (Abs.).

SAFRANIN.

Absorptionsspectrum von safranin.

Landauer (J.). Ber. chem. Ges., 11, 1772-5; Jour. Chem. Soc., 36, 101 (Abs.); Beiblätter, 3, 195-6.

SODA (CARBONATE).

Propriétés optiques de sous-carbonate de soda.

Senarmont (H. de). Ann. Chim. et Phys., (3) 41, 336.

SPONGILLA FLUVIATILIS.

Chromatological relations of spongilla fluviatilis.

Sorby (H. C.). Quar. Jour. Microscop. Sci., 15, 47-52.

CARBON AND SULPHUR.

Note on the absorption spectrum of iodine in solution in carbon disulphide.

Abney (W. de W.) and Festing (Lieut. Col.). Proc. Royal Soc., 34, 480.

Spectre du sulphure de carbone.

Becquerel (H.). Comptes Rendus, 85, 1227.

Spectrum von Schwefelkohlenstoff.

Dibbits (H. C.). Ann. Phys. u. Chem., 122, 531.

Schwefelkohlenspectrum.

Jahresber. d. Chemie (1875), 122, 125, 126 (Abs.). See Vogel (H. W.), Deutsch. chem. Ges., 1875, 96; Watts (W. M.), Phil. Mag., (4) 48, 369; and Morton (H.), Ann. Phys. u. Chem., 155, 551.

Absorptionsstreifen in Prismen von Schwefelkohlenstoff.

Lamansky (S.). Ann. Phys. u. Chem., 146, 213, 215.

Ueber das Spectrum der Sell'schen Schwefelkohlenstofflampe.

Vogel (H. W.). Per. chem. Ges., **8**, 96-8; Jour. Chem. Soc., (2) **13**, €93 (Abs.).

TEREBINTHENE.

Sur les chlorhydrates liquides de térébinthène.

Barbier (P.). Comptes Rendus, 96, 1066-9; Jour. Chem. Soc., 44, 809 (Abs.).

Spectre de l'essence de térébinthène.

Masson (A.). Comptes Rendus, 32, 129.

TERPENES.

Das moleculare Brechungsvermögen der Terpene.

Flawitsky (F.). Ber. chem. Ges., 15, 15-16.

An examination of terpenes for cymene by means of the ultra-violet spectrum.

Hartley (W. N.). Jour. Chem. Soc., 37, 676-8.

TETRAHYDROQUINGLINE.

Description and measurement of the spectrum of tetrahydroquinoline.

Hartley (W. N.). Jour. Chem. Soc., 47 (1885), 731-4.

Description and measurement of the spectrum of tetrahydroquinoline hydrochloride (Kahlbaum).

Hartley (W. N.). Jour. Chem. Soc., 47 (1885), 785-8.

TOURMELINE.

On the nature of the light emitted by heated tourmeline.

Stewart (Balfour). Phil. Mag., (4) 21, 391.

TRIPHENYLMENTHANE.

Spectrum of tripnenylmenthane.

Hartley (W. N.). Jour. Chem. Soc., 51 (1887), 162-4.

TROPEOLIN.

Spectrum of tropæolin θ .

Hartley (W. N.). Jour. Chem. Soc., 51, 182-3.

Spectrum of troppolin " " ".

Hartley (W. N.). Jour. Chem. Soc., 51, 184-7.

TURPENTINE.

Spectrum of turpentine vapour.

Capron (J. R.). Photographed Spectra, London, 1877, p. 74.

ULTRAMARINE.

Ueber die Absorptionsspectren verschiedener Ultramarinsorten.

Wunder (J.). Ber, chem. Ges., 9, 295-9; Jour, Chem. Soc. (1870), 1, 864.

Bemerkungen dazu, Hoffmann, R. Ber, chem. Ges., 9, 404

URINE.

Researches into the colouring matters of human urine, with an account of the separation of urobilin.

MacMunn (C. A.). Proc. Royal Soc., 30, 250-2; 31, 26-36; Ber. chem. Ges., 14, 1212-14 (Abs.).

Observations on the colouring matter of the so-called bile of invertebrates, and on some unusual urine pigments, etc.

> MacMunn (C. A.). Proc. Royal Soc., 35, 370-403; Jour. Chem. Soc., 46, 194-8 (Abs.).

Ueber das Urorosein, einen neuen Harnfarbstoff.

Nencki (M.) und Sieber (N.). Jour. prackt. Chemie, 26, 333-36; Chem. News, 42, 12 (Abs.); Jour. Chem. Soc., 44, 101 (Abs.); Ber. chem. Ges., 15, 3087 (Abs.).

Substances colorantes de l'urine.

Neusser (E.). Les Mondes, (3) 2, 468-9; Jour. Chem. Soc., 46, 93 (Abs.).

WINE.

Recherche et détermination des principales matières colorantes employées pour falsifier les vins.

Chancel (G.). Comptes Rendus, 84, 348-51; Jour. Chem. Soc. (1877), 2, 371 (Abs.); Ber. chem. Ges., 10, 494.

The detection of foreign colouring matters in wine.

Dupré (A.). Jour. Chem. Soc., **37**, 572-5; Ber. chem. Ges., **13**, 2004-5 (Abs.).

The detection of the colouring matters of logwood, Brazil-wood, and cochineal in wine.

Dupré (A.). Analyst, 1, 26; Jour. Chem. Soc. (1877), 1, 234 (Abs.).

Zur Weinverfälschung.

Lepel (F. von). Ber. chem. Ges., 9, 1906-11; 11, 1552-6.

WOOD.

Preliminary notes on a blue colouring matter found in certain wood undergoing decomposition in the forest.

Girdwood (G. P.) and Bemrose (J.). Rept. British Assoc. (1884), 690.

Absorptionsspectrum von Brazilienholtzabkochung.

Reynolds (J. E.). Jour. prackt. Chemie, 105, 358.

Absorptionsspectrum von Campecheholtzabkochung.

Reynolds (J. E.). Jour. prackt. Chemie, 105, 359.

XANTOPHYLL.

Notiz über die Strahlen des Lichtes welche das Xantophyll der Pflanzen zerlegen.

Wiesner (J). Ann. Phys. u. Chem., 153, 622-3.

CERIUM.

Contribution to the chemistry of the cerite metals.

Brauner (B.). Jour. Chem. Soc., **43**, 278-89; Chem. News, **47**, 175 (Abs.).

Sulla diffusione del Cerio, etc.

Cossa (A.). R. Accad. dei Lincei, (3) 3, 17-34; Beiblätter, 4, 43-44 (Abs.).

Le didyme de la cérite est probablement un mélange de plusieurs corps.

Delafontaine. Comptes Rendus, 87, 634-5; Jour. Chem. Soc., 36, 119 (Abs.); Beiblätter, 3, 197-8 (Abs.).

Sur les terres de la cérite.

Demarçay (Eug.). Comptes Rendus, 103 (1887), 580.

Contribution to the chemistry of cerium compounds.

Hartley (W. N.). Jour. Chem. Soc., 41, 202-9; Chem. News, 45, 40 (Abs.).

Le didyme de la samarskite diffère-t-il de celui de la cérite?

Lecoq de Boisbaudran (F.). Comptes Rendus, 88, 322; Beiblätter, C 358 (Abs.).

CHLORINE.

1, CHLORINE ALONE.

Spectre du chlore dans les tubes de Geissler.

Chautard (J.). Comptes Rendus, 82, 273.

Spectres appartenant à la famille du chlore.

Ditte (A.). Comptes Rendus, 73, 738.

Des spectres d'absorption du chlore.

Gernez (D.). Bull. Soc. chim. Paris, n. s. 17, 258; Ber. chem. Ges., 5, 219; Comptes Rendus, 74, 465, 660.

Absorptionsspectrum des Chlors.

Jahresber. d. Chemie (1869), 182 (Abs. See Morren, below).

Réaction spectrale du chlore.

Lecoq de Boisbaudran (F.). Comptes Rendus, **91**, 902-3; Phil. Mag., (5) **11**, 77-8; Beiblätter, **5**, 118 (Abs.).

Verbindungsspectrum zur Entdeckung von Chlor.

Mitscherlich. Jour. prackt. Chem., 97, 218.

Absorptionsspectrum des durch Chlor gegangenen Sonnenlichtes.

Morren. Ann. Phys. u. Chem., 137, 165; Comptes Rendus, 68, 376.

2, CHLORINE COMPOUNDS.

Effect of the spectrum of silver chloride.

Abney (W. de W.). Rept. British Assoc. (1881), 594.

Sur les chlorhydrates liquides de térébinthène.

Barbier (P.). Comptes Rendus, **96**, 1066-9; Jour. Chem. Soc., **44**, 809 (Abs.).

Spectre du bichlorure de titane.

Becquerel (II.). Comptes Rendus, 85, 1227.

Tin chloride spectrum.

Capron (J. R.). Photographed Spectra, London, 1877, p. 76.

Sur l'indice de réfraction du chlorure d'argent naturel.

Cloiseux (Des). Bull. Soc. mineral. de France, 5, 143; Beiblätter, 7, 25 (Abs.). Spectrum von Kupferchlorid, mit einer Karte.

Dincon (E.). Ann. Chim. et Phys., 4 6.1.

Spectres des métalloïdes de la famille du chlore.

Ditte (A.). Bull. Soc. chim. Paris, n. s. 16, 229; Comptes Rendus, 73, 738.

Ueber Chlorsäure, ein neues Reagens auf Alkaloïde.

Fraude (G.). Ber. chem. Ges., 12, 1558-60.

Spectrum von Chloroxyd und Unterchlorinsäure.

Gernez (D.). Ber, chem. Ges., 5, 218.

Sur les raies d'absorption produites dans le spectre par les solutions des acides chloreux, etc.

Gernez (D.). Comptes Rendus, **74**, 465-8; Jour. Chem. Soc., (2) **10**, 280 (Abs.); Ber. chem. Ges., **5**, 218 (Abs.).

Spectre d'absorption du chlorure d'iode.

Gernez (D.). Comptes Rendus, 74, 660; Bull. Soc. chim. Paris, n. s. 17, 258.

Spectre d'absorption du vapeur de l'acide hypochloreux.

Gernez (D.). Comptes Rendus, 74, 803; Bull. Soc. chim. Paris. n. s. 17, 257; Ber. chem. Ges., 5, 219.

Spectre d'absorption du vapeur de protochlorure de tellure.

Gernez (D.). Bull. Soc. chim. Paris, n. s. 18, 172.

On the violet flame of many chlorides.

Gladstone (J. H.). Phil. Mag., (4) 24, 417.

Spectres de chlorure de baryum, de chlorure de cadmium, de chlorure de calcium, de chlorure de cobalt, de chlorure de cuivre, de chlorure de fer, de chlorure de magnésium, de chlorure de platine, de chlorure de strontium.

Gony. Comptes Rendus, 84, 201; 85, 400; Chem. News, 35, 107.

Absorptionsspectrum des Mangansuperchlorids.

Juhresber, d. Chemie, 1869), 184 (Alex. See Luck, below

Spectra der Chlormetalle.

Jahresber, d. Chemie (1863), 111 (Abs. See Diacon, above).

Absorptionsspectrum des Chlors und der unterchlorigen Saure.

Jahresber, d. Chemie, 1872, 108, 109 (Abs., See Gernez, ab. ve).

Absorptionsspectrum des einfachen Chlorjods.

Jahresber, d. Chemie 1872, 139 Abs. See Gernez, above.

Absorptionsspectrum des Chlorselens.

Jahresber. d. Chemie (1872), 140 (Abs. See Gernez, above).

Absorptionsspectrum des einfachen Chlortellurs.

Jahresber, d. Chemie (1872), 140 (Abs. See Gernez, above).

Spectrum des Phosphorenzlichts von Chlorophan.

Kindt. Ann. Phys. u. Chem., 131, 160.

Spectralanalyse des Chlorberylliums.

Klatzo. Jour. prackt. Chemie, 106, 230.

Protochlorure d'antimoine en solution.

Lecoq de Boisbaudran (F.). Spectres Lumineux, Paris, 1874, p. 150, planche XXIII.

Chlorure de baryum dans le gaz et en solution, étincelle.

Lecoq de Boisbaudran (F.). Spectres Lumineux, Paris, 1874, p. 57, 62, planche VII; p. 66, planche IX.

Chlorure de bismuth en solution, étincelle.

Lecoq de Boisbaudran (F.). Spectres Lumineux, Paris, 1874, p. 145, planche XXII.

Chlorure de cadmium en solution, étincelle.

Lecoq de Boisbaudran. Spectres Lumineux, p. 139, planche XX.

Chlorure de calcium dans le gaz chargé de H Cl; et en solution, étincelle.

Lecoq de Boisbaudran (F.). Spectres Lumineux, Paris, 1874, p. 79, planche XI; p. 81, planche XII.

Sesquichlorure de chrome en solution, étincelle.

Lecoq de Boisbaudran (F.). Spectres Lumineux, Paris, 1874, p. 106, planche XVI.

Chlorure de cobalt en solution, étincelle.

Lecoq de Boisbaudran (F.). Spectres Lumineux, Paris, 1874, p. 129, planche XIX.

Chlorure de cuivre en solution, étincelle; et dans le gaz.

Lecoq de Boisbaudran (F.). Spectres Lumineux, Paris, 1874, p. 152, planche XXIV; p. 156, planche XXIV.

Chlorure de didyme en solution concentrée, absorption; et en solution étendue, absorption.

Lecoq de Boisbaudran. Spectres Lumineux, Paris, 1874, p. 87, planche XIII: p. 90, planche XIII.

Calorure de l'erbium en solution, absorption.

Lecoq de Boisbaudran. Spectres Lumineux, Paris, 1874, p. 100, $\mathfrak p \ln n \operatorname{ch} \cdot XV$

Spectre de chlorure d'or.

Lecoq de Boisbaudran (F.). Comptes Rendus, 77, 1152 1; Jour.
 Chem. Soc., (2) 12, 217 (Abs.); Ber. chem. Ges., 6, 1418 (Abs.);
 Bull. Soc. chim. Paris, n. s. 21, 125.

Chlorure d'or en solution, étincelle; et dans le gaz.

Leeoq de Boishaudran (F.). Spectres Lumineux, Paris, 1874, p. 172, planche XXVI; p. 176, planche XXVI.

Perchlorure de fer en solution, étincelle.

Leccal de Boisbaudran (F.). Spectres Lumineux, Paris, 1874, p. 122, planche XVIII.

Chlorure de magnésium en solution, étincelle.

Lecoq de Boisbaudran. Spectres Lumineux, Paris, 1874, p. 85, plancho XII.

Chlorure de manganèse en solution, dans le gaz, étincelle courte, étincelle movenne.

Lecoq de Boi-haudran (F.). Spectres Lumineux, Paris, 1874, p. 110, 111, 120, planches XVII, XVIII.

Bichlorure de mercure en solution, étincelle.

Lecoq de Boisbaudran (F.). Spectres Lumineux, Paris, 1874, p. 169, planche XXV.

Chlorure de nickel en solution, étincelle.

Lecoq de Boisbaudran. Spectres Lumineux, Paris, 1874, p. 103, planche X1X.

Chlorure de palladium en solution, étincelle.

Lecoq de Boisbaudran. Spectres Lumineux, Paris, 1874, p. 184, planche XXVII.

Chlorure de platine en solution, étincelle.

Lecoq de Boisbaudran (F.). Spectres Lumineux, Paris, 1874, p. 181.
planche XXVII.

Chlorure de potassium dans le gaz.

Lecoq de Boisbaudran (F.). Spectres Lumineux, Paris, 1874, p. 47, planche IV.

Chlorure de rubidium dans le gaz.

Lecoq de Boisbaudran (F.). Spectres Lumineux, Paris, 1874, p. 45, planche IV. Chlorure de strontium dans le gaz chargé de H Cl; et en solution, étincelle.

Lecoq de Boisbaudran. Spectres Lumineux, Paris, 1874, p. 72, 75, planche X; p. 69, planche IX.

Bichlorure de l'étain en solution, étincelle.

Lecoq de Boisbaudran. Spectres Lumineux, Paris, 1874, p. 143, planche XXII.

Chlorure de zinc en solution, étincelle.

Lecoq de Boisbaudran. Spectres Lumineux, Paris, 1874, p. 138, planche XX.

Absorptionsspectrum des Mangansuperchlorids.

Luck (E.). Zeitschr. analyt. Chemie, 8, 405.

Verbindungspectrum zur Entdeckung von Chlor.

Mitscherlich (A.). Jour, prackt. Chemie, 97, 218.

Entdeckung sehr geringer Mengen von Chlor in Verbindungen.

Mitscherlich (A.). Ann. Phys. u. Chem., **125**, 629. Spectroscopic anomalies, especially in chlorides.

Palmieri (L.). Chem. News, 47, 247.

Absorption spectra of bromine and of iodine monochloride.

Roscoe (H. E.) and Thorpe (T. E.). Proc. Royal Soc., 25, 4.

Spectroscopic observations on dissolved cobaltous chloride.

Russell (W. J.). Chem. News, 51, 259.

Spectren organischer Chlorverbindungen.

Salet (G.). Ber. chem. Ges., 5, 222; Bull. Soc. chim. Paris, 1 mars 1872.

Recent discoveries with the spectroscope, especially in the absorption spectrum of chromochloric anhydride.

Stoney (Johnstone). Chem. News, 23, 104.

Ueber die verschiedenen Modificationen des Chlorsilbers.

Vogel (H. W.). Ber. chem. Ges., 16, 1170-9.

Ueber die Brechung und Dispersion des Lichtes in Chlorsilber.

Wernicke (W.). Ann. Phys. u. Chem., **142**, 560-73; Jour. Chem. Soc., (2) **9**, 653 (Abs.); Ann. Chim. et Phys., (4) **26**, 287 (Abs.).

CHLOROPHYLL.

Propriétés optiques de la chlorophylle.

Ann. Chim. et Phys., (4) 26, 277-9.

Recherches sur les raies de la chlorophylle.

Chautard (J.). Comptes Rendus, 75, 1836.

Examen spectroscopique de la chlorophylle dans les résidus de la digestion.

Chautard (J.). Comptes Rendus, **76**, 103-5; Jour. Chem. Soc., (2) **11**, 521.

Observations par M. Millardet. Comptes Rendus, 76, 105-7.

Modifications du spectre de la chlorophylle sous l'influence des alcalis.

Chautard (J.). Comptes Rendus, **76**, 570; Bull. Soc. chim. Paris, **20**, 89; Jour. Chem. Soc., (2) **11**, 582 (Abs.).

Influence des rayons de diverses couleurs sur le spectre de la chlorophylle.

Chautard (J.). Comptes Rendus, **76**, 1031-3; Jour. Chem. Soc., (2) **11**, 713 (Abs.).

Examen des différences presentées par le spectre de la chlorophylle, selon la nature du dissolvant.

Chautard (J.). Comptes Rendus, 76, 1069-9; Jour. Chem. Soc., (2) 11, 996-7.

Classification des bandes d'absorption de la chlorophylle; raies accidentales.

Chautard (J.). Comptes Rendus. 76, 1273.

(Look below under Pocklington.)

Spectre de la chlorophylle.

Chautard (J. .. Comptes Rendus, 77, 596.

Nouvelles bandes surnuméraires produites dans les solutions de chlorophylle sons l'influence des agents sulfurés.

> Chautard (J.). Comptes Rendus, 78, 414-16; Jour. Chem. Soc., (2), 12, 643 (Abs.).

Recherches sur le spectre de la chlorophylle.

Chautard J. J. Ann. Chim. et Phys., 5, 3, 5-50.

Note sur la chlorophylle.

Filhel E. . Comptes Rendus, 79, 612-14; Jour. Chem. Soc., §2, 13, 571-2, Abs. 5.

Recherches sur la chlorophylle et quelques uns de ses dérivés.

Gerland (E.) et Rauwenhoff (W. H.). Arch. Neerlandaises, 6, 97-116;
Ann. Phys. u. Chem., 143, 231-9;
Jour. Chem. Soc., (2) 9, 1201-2 (Abs.).

Ueber die Einwirkung des Lichtes auf das Chlorophyll.

Gerland (J.). Ann. Phys. u. Chem., **143**, 585-610; Jour. Chem. Soc., (2) **10**, 160 (Abs.).

Ueber die Rolle des Chlorophylls bei der Assimilationsthätigkeit der Planzen und das Spectrum der Blätter.

Gerland (J.). Ann. Phys. u. Chem., **148**, 99-115; Jour. Chem. Soc., (2) **11**, 401 (Abs.).

Purpurophyll, ein neues (?) Derivat des Chlorophylls.

Hartsen (T. A.). Ann. Phys. u. Chem., 146, 158-60.

Absorptionsspectrum des Chlorophylls.

Jahresber. d. Chemie (1872), 136 (Abs. See Chautard, above).

Spectroscopische Untersuchungen des Chlorophylls.

Jahresber. d. Chemie (1873), 154-7 (Abs. See Chautard, above).

Zur Kenntniss der Chlorophyll-farbstoffe.

Krauss (G.). Archives de Genève, (2) 46, 359 (Abs.).

Untersuchungen über das Chlorophyll, den Blumenfarbstoff und deren Beziehungen zum Blutfarbstoffe.

> Liebermann (L.). Sitzungsber. d. Wiener Akad., 72 II, 599-618; Chem. Centralblatt, (3) 7, 615-16; Jour. Chem. Soc., 1877, 2, 208 (Abs.).

Ueber das Verhalten des Chlorophylls zum Licht.

Lommel (E.). Ann. Phys. u. Chem., 143, 568-85; Jour. Chem. Soc., (2) 10, 150-60 (Abs.).

Observations sur l'examen spectroscopique de la chlorophylle par M. Chautard.

Millardet (A.). Comptes Rendus, **76**, 105-7; Jour. Chem. Soc., (2) **11**, 996 (Abs.).

Spectroscopic study of chlorophyll.

Nature, 26, 636.

M. Chautard's classification of the absorption-bands of chlorophyll.

Pocklington (H.). Pharmaceutical Trans., (3) 4, 61-3.

Ueber die Absorptionsspectra der Chlorophyllfarbstoffe.

Pringsheim. Monatsber. d. Berliner Akad. (1874), 628-59.

13 т

Ueber natürliche Chlorophyllmodificationen und die Farbstoffe der Florideen.

Pringsheim. Monatsber, d. Berliner Akad. (1875, 745-59.

Spectroscopic study of chlorophyll.

Russell (W. J.) and Lapraik (W. Jour, Chem. Soc., 41, 304-41; Nature, 26, 606-9; Ber. chem. Ges., 15, 2746 (Abs.); Chem. New-, 45, 250.

Ueber die Bedeutung des Chlorophylls.

Sachsse (R.). Sitzungsber, d. Naturforsch, Ges, zu Leipzig, 2, 120-55; Chemisches Centralblatt, (3) 7, 550-2; Jour. Chem. Soc. (1877), 2, 208 (Abs.).

Ueber eine neue Reaction des Chlorophylls.

Sachsse (R.). Chemisches Centralblatt. (3) 9, 121-5; Jour. Chem Soc., 34, 516 (Abs.).

Die Reindarstellung des Chlorophyllfarbstoffes.

Tschirch (A.). Ber. chem. Ges., **16**, 2731-6; Jour. Chem. Sec., **45**, 57-62.

Untersuchungen über das Chlorophyll und einige seiner Derivate.

Tschirch (A.). Ann. Phys. u. Chem., n. F. 21, 370-83.

Beziehungen des Lichtes zum Chlorophyll.

Wiesner (J.). Sitzungsber, d. Wiener Akad., 59 I, 227; Anrl. Phys. u. Chem., 152, 497; Jour. Chem. Soc., (2) 12, 999 (Abs.).

CHROMIUM.

On the colour properties and relations of chromium.

Bayley (T.). Jour. Chem. Soc., 37, 828-36.

The chromium are spectrum, photographed.

Capron (J. R.). Photographed Spectra, London, 1877, p. 26

On the optical properties of a new chromic oxalate.

Hartley (W. N.). Proc. Royal Soc., **21**, 499-507; Ber. chem. Ges.. **6**, 1425 (Abs.).

Distribution of heat in green oxide of chromium.

Jacques (W. W.). Proc. American Acad., 14, 142.

Sesquichlorure de chrome en solution, étincelle.

Lecoq de Boisbaudran (F.). Spectres Lumineux, Paris, 1874, p. 106, planche XVI.

Absorptionsspectra der Alkalichromate und der Chromsäure.

Sabatier (P.). Beiblätter, 11, 223.

COBALT.

On the colour, properties, and relations of cobalt, etc.

Bayley (T.). Jour. Chem. Soc., 37, 828-36.

Cobalt are spectrum, photographed.

Capron (J. R.). Photographed Spectra, London, 1877, p. 27.

Spectre de chlorure de cobalt.

Gouy. Comptes Rendus, 84, 231; Chem. News, 35, 107.

Spectra of some cobalt compounds in blowpipe chemistry.

Horner (C.). Chem. News, 27, 241; Jour. Chem. Soc., (2) 11, 1161-2 (Abs.).

Spectrum von Kobalt.

Jahresber, d. Chemie (1872), 145. (See Lockyer, below.)

Spectrum von Kobaltverbindungen.

Jahresber, d. Chemie (1873), 150. (See Horner, above.)

Spectre des sels de cobalt.

Lallemand (A.). Comptes Rendus, 78, 1272.

Chlorure de cobalt en solution, étincelle.

Lecoq de Boisbaudran (F.). Spectres Lumineux, Paris, 1874, p. 129, planche XIX.

On the spectrum of cobalt.

Lockyer (J. N.). Proc. Royal Soc., 17, 289.

Absorption spectra of cobalt salts.

Russell (W. J.). Proc. Royal Soc., **31**, 51; **32**, 258; Chem. News, **43**, 27.

Spectroscopic observations on dissolved cobaltous chloride.

Russell (W. J.). Chem. News, 51, 259.

Erkennung des Kobalts neben Eisen und Nickel.

Vogel (H. W.). Ber, chem. Ges., 12, 2313-16; Beiblatter, 4, 278 (Abs.); 5, 118 (Abs.).

Methods for the determination of cobalt by spectral analysis.

Wolff. Chem. News, 39, 124.

COLOUR.

Metachromism, or colour-change.

Ackroyd (W.). Chem. News, 34, 75-7.

Ueber die Aenderung des Farbentones von Spectralfarben bei abnehmender Lichtstärke.

Albert (E.). Ann. Phys. u. Chem., n. F. 16, 129-60; Jour. Chem. Soc., 42, 1153 (Abs.).

Influence de la lumière sur les animaux.

Béclard. Comptes Rendus, 46, 441.

Influence des rayons colorés du spectre sur le développement des animaux.

Béclard. Comptes Rendus, 73, 1487.

Nouvelles recherches sur les impressions colorées produites lors de l'action chimique de la lumière.

Becquerel (Éd.). Comptes Rendus, 39, 65.

Ueber die Entstehung von farbigem Licht durch elective Reflection.

Behrens (H.). Ann. Phys. u. Chem., 150, 303-11.

Action of various coloured bodies on the spectrum.

Brewster (Sir D.). Phil. Mag., (4) 24, 441.

Étude expérimentale de la réflexion des rayons actiniques; influence du poli speculaire.

Chardonnet (E. de). Comptes Rendus, 96, 441; Jour. de Phys., 12, 219.

La perception des couleurs.

Charpentier (Aug.). Comptes Rendus, 96, 859.

Recherches expérimentales sur les anneaux colorés de Newton.

Desains (P.). Comptes Rendus, 78, 219-21; Phil. Mag., (4) 47, 236-7.

Farbe und Assimilation.

Engelmann (T. W.). Onderzoekingen physiol. Lab. Utrecht, (3) 7, 209-33; Beiblätter, 7, 378-80 (Abs.); Centralblatt f. Agricultur-chemie (1883), 174-8 (Abs.); Jour. Chem. Soc., 44, 819 (Abs.).

Bacterium photometricum.

Engelmann (T. W.). Onderzoekingen physiol. Lab. Utrecht, (3) 7, 252-90; Pflüger's Arch. f. physiol., 30, 95-124; Proc. Verb. K. Akad. v. Wetenschappen, Amsterdam, Mar. 25, 1882, 3-6 (Abs.); Beiblätter, 7, 381 (Abs.).

Das Verhalten verschiedener Wärmefarben bei der Reflexion polarisirten Strahlen von Metallen.

Knoblauch (H.). Ann. Phys. u. Chem., n. F. 10, 654.

Ueber den neutralen Punckt im Spectrum der Farbenblinden.

Konig (A.). Verhandl, d. physischen Ges. in Berlin (1883), 20-23.

Influence of colour upon reduction by light.

Lea (M. Carey). Amer. Jour. Sci., (3) 7, 200-207.

Influence of colour upon the refraction of Light.

Lea (M. Carey). Amer. Jour. Sci., (3) 9, 355-7.

Dr. Vogel's colour theory.

Lea (M. Carey). Amer. Jour. Sci., (3) 12, 43-50.

On the development of the colour sense.

Lubbock (Dr. Montague). Rept. British Assoc. (1881), 715.

On the relations of the colours of the spectrum.

Maxwell (J. Clerk). Proc. Royal Soc., 10, 484.

On the duration of colour impressions upon the retina.

Nichols (E. L.). Amer. Jour. Sci., (3+28, 243-52.

Eine Beziehung zwischen der Farbe gewisser Flammen und den durch das Licht gefärbten heliographischen Bildern.

Niepce de Saint Victor. Ann. Phys. u. Chym., Erganzungsband, 3 (1853), 442; Ann. Chim. et Phys., (3) 32, 373.

On the sensitiveness of the eye to slight differences of colour.

Peirce (B. O., Jr.). Amer. Jour. Sci., (3) 26, 299-302; Z. Instrumentenkunde, 4, 67-8 (Abs.); Beiblätter, 8, 120.

Sur l'achromatisme chimique.

Prazmowski. Comptes Rendus, 79, 107-110; Jour. Chem. Soc., (2) 12, 1125 (Abs.).

Experiments in colour.

Rayleigh (Lord). Nature, 25, 64-6.

Sur l'application de la succession anomale des couleurs dans le spectre de plusieurs substances.

Sellmeier. Jour. de Phys., 1, 104.

Bemerkungen hiezu, A. Levistal. Ann. Phys. u. Chem., 143, 272.

Colour in practical astronomy, spectroscopically examined.

Smyth (C. Piazzi). Trans. Roy. Soc. Edinburgh, 28, 779-843; Beiblatter, 4, 548 (Abs.).

Comparative vegetable chromatology.

Sorby (H. C.). Proc. Royal Soc., 21, 442-83; Jour. Chem. Soc., (2) 12, 279-85 (Abs.).

Sur la transparence des milieux de l'œil pour les rayons ultra-violets.

Soret (J. L.). Comptes Rendus, 88, 1012-15; Beiblätter, 3, 620 (Abs.)

On combinations of colour by means of polarized light.

Spottiswoode (W.). Proc. Royal Soc., 22, 354-8.

Farbenwahrnehmung.

Weinhold (A.). Ann. Phys. u. Chem., n. F. 2, 631.

De l'influence de différentes couleurs du spectre sur la dévellopement des animaux.

Yung (E.). Comptes Rendus, 87, 998-1000.

CONE-SPECTRUM.

The blowpipe cone-spectrum and the distribution of the intensity of light in the prismatic and diffraction spectra.

Draper (J. W.). Nature, 20, 301.

CONSTANTS.

Beziehungen zwischen physikalischen Constanten chemischer Verbindungen.

Bruhl (J. W.). Ber. chem. Ges., 15, 467.

Spectroscopische Untersuchung der Constanten von Lösungen.

Bürger (H.). Ber. chem. Ges., 11, 1876.

On a new optical constant.

Gibbs (Wolcott). Proc. Amer. Acad., 10, 401-16; Ann. Phys. u. Chem., 156, 120-44.

Optische Constanten.

Janowsky (J. V.). Ber. chem. Ges., 13, 2272-77.

Ueber die Refractionsconstante.

Lorenz (L.). Ann. Phys. u. Chem., n. F. 11, 70-103.

Experimentelle Untersuchungen über die Refractionsconstante.

Prytz (K.), K. Dan, Ges. d. Wiss, 1880, 6, 3-22; Ann. Phys. u. Chem., n. F. 11, 104-20.

Ueber einige von den Herrn J. W. Brühl und V. Zenger aufgestellte Beziehungen zwischen physikalischen Constanten chemischer Verbindungen.

Wiedemann. Ber. chem. Ges., **15**, 464₇70; Beiblatter, **6**, 370 | Abs.).

COPPER.

On the colour, properties, and relations of the metals copper, nickel, cobalt, iron, manganese, and chromium.

Bayley (T.). Jour. Chem. Soc., 37, 828-36.

On the colour relations of copper and its salts.

Bayley (T.). Phil. Mag., (5) 5, 222-4.

On the analysis of alloys containing copper.

Bayley (T.). Phil. Mag., (5) 6, 14-19.

On the colour properties and colour relations of the metals of the iron-copper group.

Bayley (T.). Jour. Chem. Soc., 39, 362-70.

Copper spark spectrum; copper arc spectrum; copper and silver arc spectrum; copper, gold, and silver (alloy) arc spectrum; copper and iron spark spectrum.

Capron (J. R.). Photographed Spectra, London, 1877, p. 27, 31, 43.

Spectrum of nitrate of copper.

Chem News, 35, 107.

Renversement des raies spectrales de cuivre.

Cornu (A.). Comptes Rendus, 73, 332.

Spectre du cuivre.

Debray. Comptes Rendus, 54, 169.

Spectre du bromure de cuivre, et du chlorure de cuivre.

Diacon (E.). Ann. Chim. et Phys., (4) 6, 1

Spectre de l'azotate de cuivre.

Gouy. Comptes Rendus, 84, 231; Chem. News, 35, 107.

Caractères des flammes chargées de l'oxyde de cuivre et de l'acetate de cuivre.

Gouy. Comptes Rendus, 85, 439.

Black oxide of copper.

Jacques (W. W.). Proc. Royal Soc., 14, 159.

Spectrum des Kupfers.

Jahresber, d. Chemie, 15, 30. (See Debray, above.)

Spectre de l'oxyde de cuivre.

Lallemand (A.). Comptes Rendus, 78, 1272.

Sur la diffusion lumineuse du sulfure et du phosphure de cuivre obtenus sans précipitation.

Lallemand (A.). Comptes Rendus, 79, 693.

Chlorure de cuivre en solution, étincelle; chlorure de euivre dans le gaz. Lecoq de Boisbaudran, Paris, 1874, p. 152, 156, planche XXIV.

Erkennung von Chlor, Brom und Tod durch das Spektrum der Kupferverbindung.

Mitscherlich (A.). Ann. Phys. u. Chem., 125, 629.

Spectrum von Kupfer.

Simmler (R. Th.). Ann. Phys. u. Chem., 115, 249.

Methods for the determination of copper by spectral analysis.

Wolff. Chem. News, 39, 124.

CRYSTALS.

- Sur le pouvoir rotatoire du quartz dans le spectre ultra-violet.
 - Croullebois. Comptes Rendus, 81, 666.
- Action rotatoire du quartz sur le plan de polarization des rayons calorifiques obscurs d'un spectre.
 - Desains (P.). Comptes Rendus, 84, 1056.
- Anwendung des Spectroskops zur optischen Untersuchung der Krystalle.

 Ditscheiner (L.). Sitzungsber. d. Wiener Akad., 58 II, 4, 15-29.
- Indices de réfraction ordinaire et extraordinaire du quartz, pour les rayons de différentes longueurs d'onde jusqu'à l'extrême ultraviolet.
 - Sarasin (E.). Arch. de Genève, (2) 61, 109-19; Comptes Rendus, 85, 1230-2 (Abs.); Beiblätter, 2, 77 (Abs.).
- Indices de réfraction ordinaire et extraordinaire du spath d'Islande pour les rayons de diverses longueurs d'onde jusqu'à l'extrême ultraviolet.
 - Sarasin (E.). Comptes Rendus, 95, 680.
- Indices de réfraction du spath-fluor pour les rayons de différentes longueurs d'onde, jusqu'à l'extrême ultra-violet.
 - Sarasin (E.). Comptes Rendus, 97, 850.
- Propriétés optiques de quelques cristaux; acide oxalique, hyposulôte de soude, sous-carbonate de soude, borax.
 - Senarmont (H. de). Ann. Chim. et Phys., (3) 41, 336.
- Sur la polarization rotatoire du quartz.
 - Soret (J. L.). Arch. de Genève, (3) 8, 5-59, 97-132, 201-28; Jour. de Phys., (2) 2, 281-6 (Abs.).
- Sur la polarization rotatoire du quartz.
 - Soret (J. L.) et Sarasin (E.). Comptes Rendus, 83, 818; 95, 635.

D LINE.

- Dark double line D in the spectrum from the electric arc. Foucault. L'Institut (1848), 45.
- Darstellung der dunklen Fraunhofer'schen Linie D. Kirchhoff (G.). Ann. Phys. u. Chem., 109, 148.
- Die Ursache der dunklen Linie D nicht in dem Atmosphäre. Kirchhoff (G.). Ann. Phys. u. Chem., 109, 297.
- Détermination de la valeur absolue de la longueur d'onde de la raie D.

 Macé de Lépinay (J.). Ann. Chim. et Phys., (6) 10 (1887), 170-199.
- Détermination de la longueur d'onde de la raie D₂.

 Macé de Lépinay (J.). Jour. de Phys., (2) 5, 411-16.
- Indice du quartz pour la raie D.
 Sarasin (Ed.). Comptes Rendus, 85, 1230.
- D line spectra.

Stokes (G. G.). Nature, 13, 247.

Monographie du groupe D du spectre solaire. Thollon (L.). Jour. de Phys., 13, 5.

DARK LINES.

Étude des bandes froides des spectres obscurs.

Dessains (P.) et Aymonnet. Comptes Rendus, 81, 423.

Die brechbarsten oder unsichtbaren Lichtstrahlen im Beugungsspectrum, und ihre Wellenlänge.

Eisenlohr (W.). Ann. Phys. u. Chem., 98, 353.

Dark double line D in the spectrum from the electric arc.

Foucault. L'Institut (1849), 45.

Anwendung der dunklen Linien des Spectrums als Reagens auf Uran und Mangansäure.

Jahresber. d. Chemie, 5, 125. (See Stokes in L'Institut, 1852, p. 392.)

Umwandlung heller Linien in Dunkle.

Jahresber. d. Chemie, 14, 44. (See Kirchhoff, below.)

Dunkle Spectrallinien der Elemente.

Jahresber. d. Chemie, 17, 108. (See Hinrichs (G.) in Amer. Jour. Sci., [2] 38, 31.)

Umkehrung der hellen Spectrallinien der Metalle, insbesondere des Natriums, in Dunkle.

> Jahresber. d. Chemie, 18, 90. (See Madan (H. G.) in Phil. Mag., [4] 29, 338.)

Die Ursache der dunklen Linie D nicht in dem Atmosphäre.

Kirchhoff (G.). Ann. Phys. u. Chem., 109, 297.

Umkehrung der hellen und dunklen Linien.

Kirchhoff (G.) und Bunsen (R.). Ann. Phys. u. Chem., 110, 187.

Spectrum des Phosphorescenzlichtes von Chlorophan, etc., mit dunklen Linien.

Kindt. Ann. Phys. u. Chem., 131, 160; Phil. Mag., Dec., 1867.

Absorptionsspectren dunkler Wärmestrahlen in Gasen und Dämpfen. Lecher und Pernter. Sitzungsber. d. Wiener Akad., **82** II, 265.

Dunkle Linien in den Spectren einiger Fixsterne.

Merz (L.). Ann. Phys. u. Chem., 117, 654.

Dunkle Linien in dem photographirten Spectrum weit über dem sichtbaren Theil hinnus.

Muller (J.). Ann. Phys. u. Chem., 97, 135.

Wellenlänge und Brechungsexponent der äussersten dunklen Warmestrahlen des Sonnenspectrums.

Müller (J.). Ann. Phys. u. Chem., **116**, 543; Berichtigung d.a.:. **116**, 644.

A method of examining refractive and dispersive powers by prismatic reflection. (Contains the first discovery of the dark solar lines. Wollaston (W. H.). Phil. Trans. (1802), 365.

Ursache der ungleichen Intensität der dunklen Linien im Spectrum der Sonne und der Fixsterne.

Zollner (F.). Ann. Phys. u. Chem., 141, 373.

DAVYUM.

Spectre du davvum.

Kern (S.). Comptes Rendus, 85, 667; Nature, 17, 245; Chem. News, 36, 114, 155, 164; Beiblätter, 1, 619.

DECIPIUM.

Sur le décipium, métal nouveau de la samarskite.

Delafontaine. Comptes Rendus, **87**, 632-4; Jour. Chem. Soc., **36**, 117-8; Amer. Jour. Sci., (3) **17**, 61-2 (Abs.); Beiblätter, **3**, 197-8 (Abs.).

Remarques sur le décipium et ses principaux composés.

Delafontaine. Comptes Rendus, 90, 221-3; Arch. de Genève, (3) 3, 250-60; Beiblätter, 4, 549 (Abs.).

Spectre du nitrate de décipium.

Lecoq de Boisbaudran (F.). Comptes Rendus, 89, 212.

DENSITY.

Ueber den Einfluss der Dichte und der Temperatur auf die Spectren von Dämpfen und Gasen.

Ciamician (G.). Wiener Anzeigen (1878), 158-60; Chemisches Centralblatt (1878), 689-90; Jour. Chem. Soc., 36, 101 (Abs.).

Ueber den Einfluss der Dichte und der Temperatur auf die Spectren von Dämpfen und Gasen, 1879.

Ciamician (G.). Sitzungsber. d. Wiener Akad., 78 II, 867-90; Chemisches Centralblatt (1879), 507-9, 537-42, 555-7; Nature, 20, 90 (Abs.); Beiblätter, 3, 609-11.

Ueber den Einfluss der Dichtigkeit eines Körpers auf die Menge des von ihm absorbirten Lichtes.

Glan (P.). Ann. Phys. u. Chem., n. F. 3, 54-82,

De l'intensité lumineuse des couleurs spectrales.

Parinaud (H.). Comptes Rendus, 99, 937.

- De l'influence qu'exerce l'intensité de la lumière colorée, etc. Prillieux. Comptes Rendus, **69**, 294, 408, 412.
- Ueber die Abhängigkeit der Brechungsexponenten anomal dispergirender Medien von der Concentration der Lösung und der Temperatur. Sieben (G.). Ann. Phys. u. Chem., 23, 312.
- Note sur un procédé destiné à mesurer l'intensité relative des éléments constitutifs des différentes scources lumineuses.

Trannin (H.). Comptes Rendus, 77, 1495.

Aenderung der Lage und Breite der Linien in Salpetergas und anderen Substanzen mit der Dicke und Schicht.

Weiss (A.). Ann. Phys. u. Chem., 112, 153.

Ueber den Einfluss der Dichtigkeit und Temperatur auf die Spectra glühender Gase.

Zollner (F.). Ber. Sachs, Ges. d. Wiss., 22, 233-53; Ann. Phys. u. Chem., 142, 88-111; Phil. Mag., (4) 41, 120-205.

DIDYMIUM.

Sur les variations des spectres d'absorption du didyme.

Becquerel (H.). Comptes Rendus, 103 (1887), 777-80; Chem. News, 55, 148 (Abs.).

Sur le didyme.

Brauner (B.). Comptes Rendus, 94, 1718–19; Chem. News, 46, 16–17; Jour. Chem. Soc., 44, 18 (Abs.); Ber. chem. Ges., 15, 2231 (Abs.).

Das Absorptionsspectrum des Didyms.

Bührig (H.). Jour. prackt. Chemie, (2) **12**, 209-15; Amer. Jour. Sei., (3) **11**, 142 (Abs.).

Erscheinungen beim Absorptionsspectrum des Didyms; Aenderung bei Anwendung polarisirten Lichtes.

Bunsen (R.). Ann. Phys. u. Chem., 128, 100.

On the inversion of the bands in the didymium absorption spectra.

Bunsen (R.). Phil. Mag., (4) 28, 246; 32, 177. (See Roscoe's Spectrum Analysis, Lecture 4, Appendix F, Third Edition.)

Photograph of the didymium are spectrum.

Capron (J. R.). Photographed Speetra, London, 1877, p. 28.

Note préliminaire sur le didyme.

Clève (P. T.). Comptes Rendus, 94, 1528-30; Chem. News, 45, 273;
Jour. Chem. Soc., 44, 18 (Abs.); Ber. chem. Ges., 15, 1750 (Abs.);
Beiblätter, 6, 771-2 (Abs.).

Quelques remarques sur le didyme.

Clève (P. T.). Comptes Rendus, 95, 33; Jour. Chem. Soc., 42, 1165 (Abs.); Beiblätter, 6, 772 (Abs.).

Note on the absorption spectrum of didymium.

Crookes (W.). Chem. News, 54 (1886), 27.

Vergleich der Absorptionsspectra von Didym, etc.

Delafontaine. Ann. Phys. u. Chem., 124, 635.

Sur les spectres du didyme et du samarium.

Demarçay (Eug.). Comptes Rendus, 102 (1886), 1551-2.

Absorptionslinien der Didymlösungen.

Erdmann. Jour. prackt. Chemie, 85, 394; 94, 303.

14 T

On an optical test for didymium.

Gladstone (J. H.). Jour. Chem. Soc. (1858), 10, 219.

Absorptionsspectrum des Didymnitrats.

Jahresber, d. Chemie (1870), 321.

Chlorure de didyme en solution concentrée, absorption; do. en solution étendue, absorption.

Lecoq de Boisbaudran (F.). Spectres Lumineux, Paris, 1874, p. 87, 90, X111.

The didymium absorption spectrum.

Rood., O. N.). Amer. Jour. Sci., (2) 34, 129; Ann. Phys. u. Chem., 113, 350.

Sur le spectre du nitrate de didvme.

Smith (Lawrence) et Lecoq de Boisbaudran (F.). Comptes Rendus. 88, 1167.

Recherches sur l'absorption des rayons ultra-violets par diverses substances; spectre du didyme.

Soret (J. L.). Arch. de Genève, (2) 63, 89-112; Comptes Rendus, 36, 1062-1; Beiblatter, 2, 410-11; 3, 196-7.

Recherches sur les spectres d'absorption du didyme et de quelques autres substances extraites de la samarskite.

Soret (J. L.). Comptes Rendus, 88, 422-4.

Om de lysande spectra hos Didym och Samarium (Sur les spectres brilliants du didyme et du samarium).

Thalen (R.). Ofversigt K. Svensk, Vetensk, Akad. Forhandl., 40, No. 7, 3-16; Jour. de Phys., (2) 2, 446-49; Ber. chem. Ges., 16, 2760 (Abs.); Beiblatter, 7, 893 (Abs.).

Om spectra tillhörande didym, yttrium, erbium och lanthan.

Thalen (R.). K. Svensk, Vetenskaps Akad. Forhandlingar, 12, No. 4, 24; Bull. Soc. chim. Paris, 42) 22, 350 (Abs.); Jour. de Phys., 4, 33, avec une planche.

Note on the spectrum of didymium.

Thompson (Claude M.). Chem. News, **55** (1887), 227.

DIFFRACTION.

Spectrum der brechbarston Strahlen.

Crookes. Cosmos, 8, 90; Ann. Phys. u. Chem., 97, 621.

Krümmung der Spectrallinien.

Ditscheiner (L.). Sitzungsber. d. Wiener Akad., 51 II, 341, 368-383.

On diffraction spectrum photography.

Draper (II.). Amer. Jour. Sci., 106, 401-9; Phil. Mag., (4) 46, 417-25; Nature, 9, 224-6; Ann. Phys. u. Chem., 151, 337-50.

Beugungsspectrum auf fluorescirenden Substanzen.

Eisenlohr (W.). Ann. Phys. u. Chem., 99, 163.

Albertotypic eines photographirten Diffractionsspectrums.

Jahresber. d. Chemie (1873), 166. (See Draper, above.)

Diffraction bands in the spectrum.

Moreland. Amer. Jour. Sci., (3) 29, 5.

Wärmevertheilung im Diffractionsspectrum.

Müller (J.). Ann. Phys. u. Chem., 105, 355.

Comparison of prismatic and diffraction spectra.

Pickering (E. C.). Proc. Amer. Acad., 11, 273.

On diffraction spectra.

Quineke (G.). Phil. Mag., (4) 45, 365-71.

Beugungserscheinungen im Spectrum.

Rosiky. Sitzungsber. d. Wiener Akad., 71 I, 391.

Reduction for diffraction in spectrum observation.

Rosenberg (E.). Jour. Franklin Inst., 106, 95.

Sur les phénomènes de diffraction produits par les réseaux circulaires.

Soret (J. L.). Archives de Genève, (2) 52, 320-37; Ann. Phys. u. Chem., 156, 99-113; Ann. Chim. et Phys., (5) 7, 409-24.

Einige Bermerkungen über die Diffractionsspectra.

Spée (E.). Bull. de l'Acad. de Belgique, (3) 12, 32-4; Beiblätter, 11 (1887), 99 (Abs.).

Imitation des spectres de diffraction par dispersion.

Zenger (Ch. V.). Comptes Rendus, 96, 521.

DISCONTINUOUS SPECTRA.

On discontinuous spectra in high vacua.

Crookes (W.). Proc. Royal Soc., 32, 206-13; Nature, 24, 89-91; Chem. News, 43, 237-9; Bor. chem. Ges., 14, 1696-7.

DISPERSION SPECTRA.

Experimentelle Prüfung der aelteren und neueren Dispersionsformeln.

Bruhl (J. W.). Ber, chem. Ges., 19 (1886), 2821-37; Beiblatter, 11, 244-8; Jour. Chem. Soc., 52, 195-8 (Abs.).

Note on the curvature of lines in the dispersion spectrum, and the method of correcting it.

Christie (W. H. M.). Monthly Notices Astronom. Soc., **34**, 263-5. Note on this by Simms, same vol., 363-4.

Specific refraction and dispersion of light by liquids.

Gladstone (J. H.). Rept. British Assoc. (1881), 591; Nature, 24, 468 (Abs.; Beiblatter, 6, 21 (Abs.).

Specific refraction and dispersion of isomeric bodies.

Gladstone (J. H.) Proc. Royal Soc., 4, 94-100; Phil. Mag., (5, 11, 54-60); Ber. chem. Ges., 14, 835 (Abs.); Jour. Chem. Soc., 40, 213 (Abs.); Beiblatter, 5, 276 (Abs.).

Zur Theorie der anomalen Dispersion.

Helmholtz (H.—Monatsber, d. Berliner Akad, (1874), 667-80; App. Phys. u. Chem., 154, 582-96.

Untersuchungen über das Dispersionsgesetz.

Hesse (O. . Ann. Phys. u. Chem., n. F. 11, 871-99).

Sur la dispersion anomale.

Hurion. Jour. de Phys., 7, 181; Ann. de l'École normale, (2) 6, 367-412; Beiblätter, 2, 79 (Abs.).

Zusammenhang zwischen Absorption und Dispersion.

Ketteler (E.). Ann. Phys. u. Chem., 160, 466-86.

Das specifische Gesetz der sogenannten anomalen Dispersion.

Ketteler (E.). Ann. Phys. u. Chem., Jubelband, 166-82.

Notiz, betreffend die Dispersionscurve der Mittel mit mehr als einem Absorptionsstreifen.

Ketteler (E.). Ann. Phys. u. Chem., n. F. 1, 340-51.

Einige Anwendungen des Dispersionsgesetzes auf durchsichtige, halbdurchsichtige und undurchsichtige Mittel.

Ketteler (E.). Ann. Phys. u. Chem., n. F. 12, 363.

Attempt at a theory of the (anomalous) dispersion of light in singly and doubly refracting media.

Ketteler (E.). Verhandl. d. naturhist. Vereinsd. preuss. Rheinlande und Westphalens, 33 (1876); Phil. Mag., (5) 2, 332-45, 414-22, 508-22.

Zur Handhabung der Dispersionsformel.

Ketteler (E.). Ann. Phys. u. Chem., (2) 30, 299-31

Recherches sur la dispersion prismatique de la lumière.

Klereker (C. E. de). Bihang till k. Svensk. Vet. Akad. Handl., 7, 1-55; Comptes Rendus, 97, 707 (Abs.).

Ueber anomale Dispersion der Körper mit Oberflächenfarben.

Kundt (A.). Ann. Phys. u. Chem., 142, 163-171; 143, 149-52, 259-79; 144, 128-37; 145, 67-80; Nachtrag, 145, 164-66; Ann. Chim. et Phys., (4) 25, 404-10 (Abs.), 413-19 (Abs.), 419-21 (Abs.).

Ueber einige Beziehungen zwischen der Dispersion und Absorption des Lichtes.

Kundt (A.). Ann. Phys. u. Chem., Jubelband, 615-24.

Ucber anomale Dispersion in glühendem Natriumdampf.

Kundt (A.). Ann. Phys. u. Chem., n. F. 10, 321-5; Phil. Mag., '5 10, 53-57.

Ueber die Dispersion des Aragonits nach arbiträrer Richtung.

Zang (V. von). Sitzungsber. d. Wiener Akad.. 83 PI, 671-6; Wiener Anzeigen (1881), 84 (Abs.).

On the dispersion of a solution of mercuric iodide.

Liveing (G. D.). Proc. Philosoph. Soc. Cambridge, 3, 258-60; Beiblatter, 4, 610 (Abs.).

Theorie der normalen und anomalen Dispersion.

Lommel (E.). Ann. Phys. u. Chem., n. F. 3, 329-56.

Ueber einige zweiconstantige Dispersionsformel.

Lommel (E). Ann. Phys. u. Chem., n. F. 8, 628-634.

Ueber das Dispersionsgesetz.

Lommel (E.). Ann. Phys. u. Chem., n. F. 13, 353-60.

Das Gesetz der Rotationsdispersion.

Lommel (E.). Ann. Phys. u. Chem., n. F. 20, 578.

Theorie der Dispersion.

Lorenz (L.). Ann. Phys. u. Chem., n. F. 10, 1-21.

Einige Versuche über totale Reflexion und anomale Dispersion.

Mach (E.) und Arbes (J.). Ann. Phys. u. Chem., (2) 27, 436-44.

Sur la dispersion des gaz.

Mascart. Comptes Rendus, 78, 679-82; Amer. Jour. Sci., (3) 7, 591-2 (Abs. .

Versuch einer Erklärung der anomalen Farbenzerstrenung.

Meyer (O. E.). Ann. Phys. u. Chem., 145, 80-86; Ann. Chim. et Phys., (4) 43, 321-38.

Quelques phénomènes de décomposition produits par la lumière.

Morren. Comptes Rendus, 69, 399.

Une méthode pour mesurer la dispersion dans les différentes parties du spectre fourni par un prisme on un spectroscope quelconque.

Mousson, Arch. de Gen've, (2) 45, 13; Ann. Phys. u. Chem., 148, 660.

(See Mach in Ann. Phys. u. Chem., 149, 270.)

Sur les lois de la dispersion.

Mouton, Comptes Rendus, 88, 1189-92; Beildatter, 3, 616 (Abs.);
Ann. Chim. et Phys., (5, 18, 145-89.

Dispersion de la lumière.

Ricour (Th.). Comptes Rendus, 69, 1241; 70, 115.

Ueber eine neue Flüssigkeit von hohem specifischen Gewicht, "onem Brechungsexponenten und grosser Dispersion.

Rohrbach (C.), Ann. Phys. u. Chem., n. F. 1, 169-174; Amer. Jour. Sci., (3) 26, 406 (Abs.); Jour. Chem. Soc., 46, 145 (Abs.).

Recherches concernant la dispersion électromagnétique sur une spectre de grande étendue.

Schaik (W. C. L. von). Arch. Neerlandaises, 17, 373-90; Beiblätter, 7, 919 (Abs.).

Ueber das Dispersionsäquivalent von Diamant.

Sehrauf (A.). Ann. Phys. u. Chem., n. F. 22, 424-9; Jour. Chem. Soc., 48, 14 (Abs.).

Ueber die durch die Aetherschwingungen erregten Mitschwingungen der Körpertheilchen und deren Rückwirkung auf die erstern, besonders zur Erklärung der Dispersion und ihrer Anomalien.

Sellmeier (W.). Ann. Phys. u. Chem., **145**, 399-421, 520-49; **147**, 386-403, 525-54.

Untersuchungen über die anomale Dispersion des Lichtes.

Sieben (G.). Ann. Phys. u. Chem., n. F. 8, 137-57.

Micrometrical measures of gaseous spectra under high dispersion.

Smyth (C. Piazzi). Trans. Royal. Soc. Edinburgh, **32** III, 415-60, 1884, with plates.

Sur la dispersion anormale de quelques substances.

Soret (J. L.). Arch. de Genève, (2) 40, 280-3; Ann. Phys. u. Chem.,
143, 325-7; Phil. Mag., (4) 44, 395-6; Ann. Chim. et Phys., (4)
25, 412 (Abs.).

Sur la réfraction et la dispersion des aluns crystallisés.

Soret (C.). Arch. de Genève, (3) 10, 300-2; Beiblätter, 8, 374 (Abs.).

On an easy and at the same time accurate method of determining the ratio of the dispersions of glasses intended for objectives.

Stokes (G. G.). Proc. Royal Soc., **27**, 485-94; Beiblätter, **3**, 185-7 (Abs.).

Minimum de dispersion des prismes; achromatisme de deux lentilles de mêmes substances.

Thollon (L.). Comptes Rendus, 89, 93-6; Beiblätter, 4, 32-4.

Ueber die Beziehung zwischen ehemischer Wirkung des Sonnenspectrums und anomaler Dispersion.

Vogel (II.). Ber. chem. Ges., 7, 976-9; Jour. Chem. Soc., (2) 12, 1121-2.

Theorie der Dispersion.

Voigt (W.). Göttinger gelehrten Nachr. (1884), 262.

Zur Dispersion farblos durchsiehtiger Medien.

Wüllner (A.). Ann. Phys. u. Chem., n. F. 17, 580-7; Jour. de Phys., (2) 2, 231 (Abs.).

Ausdehnung der Dispersionstheorie auf die ultra-rothen Strahlen.

Wüllner (A.). Ann. Phys. u. Chem., n. F. 23, 306; Jour. de Phys., (2) 4, 324 (Abs.).

Sur la dispersion du chromate de soude à 4 H, O.

Wyrouboff (G.). Bull. Soc. mineral. de France, 5, 160-1.

DISSOCIATION.

Dissociation of the elements.

Crookes (W.). Chem. News, 39, 65-6.

Ueber die neuen Wasserstofflinien und die Dissociation des Calciums.

Vogel (H. W.). Ber. chem. Ges., 13, 274-6; Jour. Chem. Soc., 33 597 (Abs.); Beiblätter, 4, 274.

Ueber Lockver's Dissociationstheorie.

Vogel (H. W.). Sitzungsber, d. Berliner Akad. (1882), 905-7; Nature,
27, 233; Ann. Phys. u. Chem., n. F. 19, 284-287; Phil. Mag., (*)
15, 28-30; Jour. Ckom. Soc., 44, 762 (Abs.); Chem. News. 49, 291 (Abs.).

DISTRIBUTION IN THE SPECTRUM.

The distribution of heat in the visible spectrum.

Conroy (Sir J.). Proc. Phys. Soc., 3, 106-12; Phil. Mag., (5) 8, 203-9; Beiblätter, 4, 44 (Abs.).

On the distribution of lines in spectra.

Hinrichs. Amer. Jour. Sci., July, 1864.

Vertheilung der chemischen Wirkung im Spectrum.

Jahresber. d. Chemie (1873), 160.

Distribution de l'energie dans le spectre normal.

Langley (S. P.). Ann. de Chim. et de Phys., (5) 25, 211.

Wärmevertheilung im Normalspectrum.

Lundquist (G.). Ann. Phys. u. Chem., 155, 146.

Sur la distribution des bandes dans les spectres primaires.

Salet (G.). Comptes Rendus, 79, 1229-30; Ber. chem. Ges., 7, 1788 (Abs.); Bull. Soc. chim. Paris, 22, 543.

DOUBLE SPECTRA.

Secondary Spectrum.

Rood (O. N.). Amer. Jour. Sci., 106, 172.

Sur les spectres doubles.

Salet (G.). Jour. de Phys., 4, 225.

On double spectra.

Watts (W. M.). Quar. Jour. Sci., Jan., 1871.

DYSPROSIUM.

Spectre du dysprosium.

Lecoq de Boisbaudran (F.). Comptes Rendus, 102, 1005-6; Jour. Chem. Soc., 50, 667 (Abs.).

ELECTRIC SPECTRA.

Relation between electric energy and radiation in the spectrum ρf incandescence lamps.

Abney and Festing. Proc. Royal Soc., 37, 157.

Continuirliches Spectrum des electrischen Funkens.

Abt (A.). Ann. Phys. u. Chem., n. F. 7, 159; K. Ungar, Acad. d. Wiss, in Buda-Pe-t, Dec. 11, 1878; Jour. Chem. Soc., 36, 765; Amer. Jour. Sci., (3) 18, 68-9.

Spectrum des electrischen Lichtes.

Angstrom (A. J.). Ann. Phys. n. Chem., **94**, 145; Phil. Mag., (4) **9**, 327.

Pouvoir phosphorescent de la lumière électrique.

Becquerel (E.). Comptes Rendus, 8, 217; 101, 205-10; Jour. Chem. Sci., 48, 1098 (Abs.).

Nouvelles expériences sur les effets électriques produits sous l'influence des rayons solaires.

Becquerel (E.). Comptes Rendus, 9, 561; remarques par M. Biot, 569.

Nouvelles expériences sur le même sujet.

Becquerel (E. ... Comptes Rendus, 9, 711; nouvelles remarques par M. Biot, 713, 719.

Sur le rayonnement chimique qui accompagne la lumière solaire et la lumière électrique.

Becquerel (E.). Comptes Rendus, 11, 702; rapport de M. Biot à propos de ce mémoire, 12, 101.

Effets électro-chimiques produits sous l'influence de la lumière.

Becquerel (E.). Comptes Rendus, 32, 85.

A new form of absorption-cell.

Bostwick (A. E.). Amer. Jour. Sci., Dec., 1885; Phil. Mag., (5) 21, 80 (Abs.).

Einfluss des Drucks auf das Spectrum des electrischen Funkens in Gasen. Cailletet. Ber. chem. Ges., 5, 482.

Kleinste im Inductionsfunken durch die Spectralanalyse noch erkennbare Gewichtsmenge verschiedener Metalle.

Cappel (E.). Ann. Phys. u. Chem., 139, 631-6.

Wolfram arc spectrum, photographed.

Capron (J. R.). Photographed Spectra, London, 1877, 50.

Sur la photographie du spectre de l'étincelle électrique.

Cazin (A.). Bull. Soc. philom. de Paris, 1877, (7) 1, 6-7; Beiblätter, 1, 287-8 (Abs.).

Sur le spectre de l'étincelle électrique dans les gaz soumis à une pression croissante.

Cazin (A.). Comptes Rendus, 84, 1151-4; Phil. Mag., (5) 4, 153-6;
Beiblätter, 1, 620 (Abs.); Jour. Chem. Soc., 34, 357 (Abs.); Jour. de Phys., 6, 271; Amer. Jour. Sci., (3) 15, 148 (Abs.).

Phénomènes observés dans les spectres produits par la lumière des courants d'induction traversant les gaz raréfiés.

Chautard (J.). Comptes Rendus, 59, 383.

Action exercée par un électro-aimant sur les spectres des gaz raréfiés, traversés par des décharges électriques.

Chautard (J.). Comptes Rendus, 79, 1123-4.

Action des aimants sur les gaz raréfiés renfermés dans les tubes capillaires et illuminés par un courant induit.

Chautard (J.). Comptes Rendus, 80, 1161-4.

Phénomènes magnéto-chimiques produits au sein des gaz raréfiés dans les tubes de Geissler.

Chautard (J.). Comptes Rendus, **81**, 75-7; **82**, 272-274; Jour. Chem. Soc., 1876, **1**, 29 (Abs.).

Observations of the spectrum of lightning.

Clark (J. W.). Chem. News, 30, 28; 32, 65; 35, 2; Beiblätter, 1, 192.

Den Einfluss welchen die Natur der electrischen Stromquelle auf das Aussehen von Gasspectren ausübt.

> Czechowicz, Versammlung russischer Naturforscher und Aertzte in Warschau, Sept., 1876; Ber. chem. Ges., 9, 1598 (Abs.).

Analyse spectrale de l'étincelle électrique produite dans les liquides et les gaz.

Daniel. Comptes Rendus. 57, 98.

Notice sur la constitution de l'univers. Première partie, analyse spectrale.

Delaunay. Ann. du Bureau des Longitudes, Paris, 1869

Sur les spectres des étincelles des bobines à gros fil.

Demarçay (E.). Comptes Rendus, 103 (1887), 678

Spectre du pôle négatif de l'azote.

Deslandes (H.). Comptes Rendus, 103 (1886), 375-9; Jour. Chem. Soc., 50, 957.

Recherches sur l'influence des éléments électro négatifs sur le spectre des métaux.

Diacon (E.). Ann. Chim. et Phys., (4) 6, 5.

Ueber den Unterschied der prismatischen Spectra des am positiven und negativen Pol im luftverdünnten Raume hervortretenden electrischen Lichtes.

Dove (H. W.). Ann. Phys. u. Chem., 104, 184.

Over de zamenstellung von zonlicht, gaslicht en het von Edison's lamp, vergelijkend onderzocht met behulp der bacterien-methode.

Engelmann (T. W.). Proc. verb. k. Akad. v. Wetensch, te Amsterdam, Nov. 25, 1882, No. 5, 4-5; Beiblatter, 7, 380 (Abs.)

Sur les changements de réfrangibilité observés dans les spectres électriques de l'hydrogène et du magnésium.

Fiévez (C. a. Bull, Acad. de Belgique, (3), 7, 145-7; Beiblatter, 8, 506 (Abs.).

Spectrum of lightning.

Gibbons (J.) Chem. News, 24, 96; 40, 65.

Spectrum of lightning.

Grandeau (L.). Chem. News, 9, 66.

Note of an experiment on the spectrum of the electric discharge.

Grove (Sir W. R.). Proc. Royal Soc., 28, 181-4; Beiblätter, 3, 360 (Abs.).

Das Stokes'sche Gesetz.

Hagenbach (E.). Ann. Phys. u. Chem., n. F. 8, 369.

The investigation by means of photography of the ultra-violet spark spectra emitted by metallic elements and their combinations under varying conditions.

Hartley (W. N.). Chem. News, 48, 195-6; Nature, 29, 89-90; Jour. Chem. Soc., 46, 137 (Abs.); Beiblätter, 8, 302 (Abs.).

Spectrum of lightning.

Hersehel (Lieut. John). Proc. Royal Soc., 16, 418; 17, 61.

Spectra of lightning.

Hoh (Th.). Chem. News, 30, 253; Ann. Phys. u. Chem., 152, 173.

Spectrum of lightning.

Holden (E. S.). Amer. Jour. Sei., (3) 4, 474-5.

Spectrum of the electric light.

Hopkins-Walters (J.). Nature, 25, 103.

Electric spectra in various gases and with electrodes of various substances.

Huggins (W.). Phil. Trans., 1864; Ann. Phys. u. Chem., 124, 275–292, 621.

Photographische Wirkung electrischer Metallspectren.

Jahresber. d. Chemie, (1862) 33, (1863) 104, 106, 107, 113, (1864) 109, 110, 115, (1865) 90, 91, 92, (1868) 126-7, (1872) 148, (1873) 150-2, (1875) 123.

Spectrum des Blitzes.

Jahresber, d. Chemie, (1864) 109, (1868) 126, 127, (1872) 148.

Spectralanalyse mittelst des Inductionsstroms.

Jahresber, d. Chemie, (1865) 91, 92, (1873) 150, 151-2, (1864) 110.

Spectrum of lightning.

Joule (J. P.). Nature, 6, 161.

Spectra of two hundred and fourteen flashes of lightning observed at the astrophysical observatory in Herény, Hungary.

Konkoly (N. von). Observatory (1883), 267-8; Beiblätter, 7, 862 (Abs.).

Wärmevertheilung im Spectrum des Kalklichtes bei Flintglas-und Steinsalz-prismen.

Lamansky (S.). Ann. Phys. u. Chem., 146, 227.

Sur la loi de Stokes.

Lamansky (S.). Jour. de Phys., 8, 367; Ann. Phys. u. Chem., n. F. 8, 624.

Observations sur quelques points d'analyse spectrale et sur la constitution des étincelles d'induction.

Lecoq de Boisbaudran (F.). Comptes Rendus, 73, 940.

Spectre de l'ammoniaque par renversement du courant induit.

Lecoq de Boisbaudran (F.). Comptes Rendus, 101 (1885), 42-5; Jour. Chem. Soc., 48, 1025 (Abs.).

Sur un spectre électrique particulier aux terres rares du groupe terbique. Lecoq de Boisbandran. Comptes Rendus, 102 (1886), 153-5.

Fluorescence des composés du manganèse, soumis à l'effluve électrique dans le vide.

Lecoq de Boishaudran. Comptes Rendus, **103** (1886), 468-71, 625-31, 1064-7, 1107; Jour. Chem. Soc., **52** (Abs.); Amer. Jour. Sci., (3) **33**, 149-51 (Abs.); Beiblatter, **11**, 37, 39 (Abs.).

An arrangement of the electric are for the study, with the spectroscope, of the radiation of vapours, together with preliminary results.

Liveing (G. D.) and Dewar (J.). Proc. Royal Soc., 34, 119.

Note on some phenomena attending the reversal of lines in the are produced by a Siemens machine.

Lockyer (J. N.). Proc. Royal Soc., 28, 428.

Ueber die Glüherscheinungen an Metallectroden innerhalb einer Wasserstoffatmosphäre von verschiedenen Drucke.

Loliso (O.). Ann. Phys. u. Chem., n. F. 12, 109-114.

Das Stokes'sche Gesetz.

Lominel (E.). Ann. Phys. u. Chem., n. F. 8, 244.

Die weitausgedehnten ultravioletten Strahlen im Speetrum des electrischen Funkens mit dem Auge wahrnehmbar.

Mascart. Ann. Phys. u. Chem., 137, 163.

Spectre de la lumière des piles dans l'air.

Masson (A.). Comptes Rendus, 32, 128; Ann. Chim. et Phys., (3) 31, 295.

On the photographic effects of metallic and other spectra obtained by means of the electric spark.

Miller (W. Allen). Proc. Royal Soc., 12, 159; Phil. Trans. (1862), 861.

Spectre de la lumière électrique dans le vide.

Du Moncel. Comptes Rendus, 49, 40.

Spectre fluorescent de l'étincelle électrique.

Müller (J.). Ann. Chim. et Phys., (4) 13, 465.

Report on spark spectra, from the British Association Report on the Present State of our Knowledge of Spectrum Analysis.

Nature, **26**, 459. (By A. Schuster.)

Ueber das Sauerstoffspectrum und über die electrischen Lichterscheinungen verdünnter Gaze in Röhren mit Flüssigkeitselectroden.

Paalzow. Monatsber. d. Berliner Akad. (1878), 705-9; Phil. Mag.,
(5) 7, 297-300; Ann. Phys. u. Chem., n. F. 7, 130-5; Jour. Chem. Soc., 36, 861.

Photographing spark spectra.

Parry (J.). Chem. News, 36, 140.

Experimentelle Untersuchung über das electrische Lichtspectrum in Beziehung auf die Farben der Doppelsterne.

Petzval (Jos.). Sitzungsber. d. Wiener Akad., 41, 561, 581-9.

Spectra der electrischen Lichtströmungen.

Plücker. Ann. Phys. u. Chem., **104**, 122; **105**, 67; **107**, 497, 505, 506, 518-642; **116**, 27.

Spectrum of lightning.

Proctor (II. R.). Nature, 6, 161, 220.

Spectra negativer Electroden und lange gebrauchter Geissler'schen Röhren.

Reitlinger (Edm.) und Kuhn (M.). Sitzungsber. d. Wiener Akad., 51 II, 405, 408-16; Ann. Phys. u. Chem., 141, 135-6.

Electric spectra.

Robinson (Dr.). Phil. Trans. (1863).

Recherches sur les raies du spectre solaire et des différentes spectres électriques.

Robiquet. Comptes Rendus, 49, 606.

Spectrum des electrischen Glimmlichts in atmosphärischer Luft.

Schimkow (A.). Ann. Phys. u. Chem., 129, 513.

On the spectra of lightning.

Schuster (A.). Phil. Mag., (5) 7, 316-21; Beiblätter, 3, 872 (Abs.).

Sur les spectres de l'étincelle électrique dans les gaz composés et en par ticulier dans le fluorure de silicium.

Seguin (J. M.). Comptes Rendus, 54, 933.

Spectrum des Inductionsfunken.

Simmler (R. Th.). Ann. Phys. u. Chem., 115, 263.

Beiträge zur Electricitätsleitung der Gase.

Stenger (F.). Ann. Phys. u. Chem., (2) 25, 31-48; Jour. Chem. Soc., 48, 1028 (Abs.). (See Phil. Trans., 171, 65.)

On the long spectrum of the electric light.

Stokes (G. G.). Proc. Royal Soc., 12, 166; Phil. Trans. (1862), 599; Ann. Phys. u. Chem., 123, 30, 37, 472.

Effluviography.

Tomassi (D.). Bull. Soc. chim. Paris, 45, 873; Jour. Chem. Soc., 50, 959 (Abs.).

Ueber die Spectra der Blitze.

Vogel (H.), Ann. Phys. u. Chem., 143, 652-4.

Chemische Intensität des magnesium und electrischen Lichtes.

Vogel (H. W.). Photographische Mittheilungen, 16, 187-8; Beiblatter, 4, 49 (Abs.).

Spectrum of the electric (Jablochkoff) light.

Walker (E.). Nature, 18, 384; Beiblatter, 3, 505 (Abs.).

Spectra des electrischen Funkenstroms in verdünnten Gasen.

Waltenhofen (A. von). Dingler's Jour., 177, 38.

Spectrum of the electric light.

Walters (J. Hopkins . Nature, 25, 100,

The prismatic decomposition of the electric, voltaïe, and electro-magnetic sparks.

Wheatstone (C.), Chem. News, 3, 198.

Das Leuchten der Gase durch electrische Entladungen.

Wiedemann E. . Ann. Phys. u. Chem., n. F. 6, 298,

Das thermische und optische Verhalten von Gasen unter dem Einflusselectrischer Entladungen.

Wiedemann, E. J., Ann. Phys. u. Chem., n. F. 10, 202.

Das electrische Leuchten der Gase.

Wiedemann (E.). Ann. Phys. u. Chem., n. F. 18, 509-10.

Note au sujet d'un mémoire de M. Lagarde.

Wiedemann (E.). Ann. Chim. et Phys., (6) 7, 143; Amer. Jour. Sei., (3) 31, 218 (Abs.).

Das electrische Spectrum.

Willigen (S. M. von der). Ann. Phys. u. Chem., **106**, 615, 619, 621, 622, 624, 628; **107**, 473.

Sur le spectre de l'étincelle électrique dans les gaz soumis à une pression croissante.

Wüllner (A.). Comptes Rendus, 85, 280-1; Ann. Chim. et Phys., (5) 12, 143-4; Beiblätter, 1, 620.

Das Linienspectrum gehört dem Funken, das Bandenspectrum gehört der Lichthülle an.

Wüllner (A.). Ann. Phys. u. Chem., 147, 324-48.

EMISSION SPECTRA.

Sur la variation des spectres d'absorption et des spectres d'émission par phosphorescence d'un même corps.

Becquerel (H.). Comptes Rendus, 102, 106-10.

Notes on photographs of the ultra-violet emission spectra of certain elements.

> Hartley (W. N.), Chem. News, 43, 289; Ber. chem. Ges., 15, 1432a, 2924b.

Das Verhältniss zwischen Emission und Absorption ist bei allen Körpern dasselbe.

Kirchhoff (G.). Ann. Phys. u. Chem., 109, 299.

Ueber den Zusammenhang zwischen Emission und Absorption von Licht und Wärme.

> Kirchhoff (G.). Monatsber. d. Berliner Akad., Oct. 27, 1859; Phil. Mag., (4) 19, 163.

ENERGY IN THE SPECTRUM.

Étude expérimentale de la réflexion des rayons actiniques.

De Chardonnet. Jour. de Phys., 11, 549.

Distribution of chemical force in the spectrum.

Draper (J. W.). Amer. Jour. Sci., 105, 25, 91-8; Phil. Mag., (4) 44, 422-43; Jour. Chem. Soc., (2) 11, 232-5.

Actinometry.

Duelaux (E.). Comptes Rendus, 103, 1010-12; Jour. Chem. Soc., 52, 189 (Abs.).

Einführung des Princips der Erhaltung der Energie in die Theorie der Diffraction.

Fröhlich (J.). Ann. Phys. u. Chem., n. F. 3, 376.

The Bolometer and radiant energy.

Langley (S. P.). Proc. Amer. Acad., 16, 342-58; Zeitschr. Instrumentenkunde, 4, 27-32 (Abs.).

Distribution de l'énergie dans le spectre normal.

Langley (S. P.). Comptes Rendus, 93, 140; Ann. Chim. et Phys., (5) 25, 211.

Distribution of energy in the spectrum.

Rayleigh (Lord). Nature, 27, 559.

La distribution de l'énergie dans le spectre solaire et la chlorophylle.

Timiriaseff. Comptes Rendus, 96, 375.

ERBIUM.

Erbinerdelösungen coïncidirend mit den hellen Streifen leuchtender Erbinerde.

Bahr und Bunsen. Jour. prackt. Chemie, 97, 277; Ann. f. Chem. u. Pharm., 137, 1.

Aenderung des Absorptionsspectrums von Erbium bei Anwendung polarisirten Lichtes.

Bunsen (R.). Ann. Phys. u. Chem., 128, 100.

Erbium arc spectrum.

Capron (J. R.). Photographed Spectra, London, 1877, p. 29.

Sur deux nouveaux éléments dans l'erbine.

Clève (P. T.). Comptes Rendus, 89, 478-80; Amer. Jour. Sci., (3) 18, 400-1; Beiblätter, 4, 43 (Abs.).

Spectre de l'erbine.

Clève (P. T.). Comptes Rendus, 89, 708; 91, 381.

Sur les combinaisons de l'vttrium et de l'erbium.

Clève (P. T.) et Hoegland (O.). Bull. Soc. chim. Paris, 18, 193-201; 289-97; Jour. Chem. Soc., (2) 11, 136.

Note on the spectra of erbia.

Crookes (W.). Chem. News. 53 (1886), 75, 154, 179; Proc. Royal
Soc., 40, 77-9, Jour. Chem. Soc., 50, 749 (Abs.); Comptes Rendus,
102, 506.

Absorptionsspectrum von Erbiumlösungen.

Delafontaine. Jour. prackt. Chemie, 94, 303.

Vergleich der Absorptionsspectra von Didym, Erbium und Terbium.

Delafontaine. Ann. Phys. u. Chem., 124, 635; Chem. News, 11, 253; Ann. Chim. et Phys., 135, 194.

Note on the spectra of erbia and of some other earths.

Huggins (W.). Chem. News, 22, 175.

Spectren der Erbinerde.

Jahresber, d. Chemie (1873), 150.

Phosphate de l'erbine, émission; erbine, émission; chlorure de l'erbium en solution, absorption.

Lecoq de Boisbaudran (F.). Spectres Lumineux, Paris, 1874, p. 92, 97, planche XIV; p. 100, planche XV.

Spectre d'émission de l'erbine.

Lecoq de Boisbaudran (F.). Comptes Rendus, 76, 1080.

Spectre du nitrate de l'erbium.

Lecoq de Boisbaudran (F.). Comptes Rendus, 88, 1137.

Examen spectral de l'erbine.

Lecoq de Boisbaudran (F.). Comptes Rendus, 88, 1342-44; Jour. Chem. Soc., 36, 861 (Abs.); Amer. Jour. Sci., (3) 18, 216-7; Beiblätter, 3, 871 (Abs.).

Spectre de l'erbine.

Lecoq de Boisbaudran (F.). Comptes Rendus, 89, 516; Beiblätter, 4, 43 (Abs.); Chem. News, 40, 147.

Remarques à M. P. T. Clève "Sur deux nouveaux éléments dans l'erbine." Smith (L.). Comptes Rendus, 89, 480-1; Beiblätter, 4, 43 (Abs.).

Om spectra tillhörande yttrium, erbium, didym och lanthan.

Thalén (R.). K. Svensk. Vetenskaps. Akad. Forhandlinger, 12, No. 4, 24; Bull. Soc. chim. Paris, (2) 22, 350 (Abs.).

Spectrum of erbium.

Thalén (R.). Chem. News, 42, 184; Comptes Rendus, 91, 326; Jour. de Phys., (2) 4, 33.

Spektralundersökningar rörande skandium, ytterbium, erbium och thulium.

Thalén (R.). Ofversigt af Kongl. Vetensk. Acad. Förhandlingar, 38,
No. 6, 13-21; Jour. de Phys., (2) 2, 35-40; Chem. News, 47, 217
(Abs.); Jour. Chem. Soc., 44, 954 (Abs.).

EXCHANGES.

On the Theory of Exchanges.

Stewart (Balfour). Trans. Royal Soc. Edinburgh (1858), Vol. 22 part I, 1; Rept. British Assoc. (1861), 97.

EXPLOSIONS.

Spectroscopic studies on gaseous explosions.

Liveing (G. D.) and Dewar (J.). Proc. Royal Soc., 36, 471-8; Chem. News, 49, 227-9; Nature, 29, 614-15; Beiblätter, 8, 644-5 (Abs.).

Spectral lines of the metals developed by exploding gases

Liveing (G. D.) and Dewar (J.). Phil. Mag., (5) 18, 161-73; Jour. Chem. Soc., 48 (1885), 317 (Abs.).

Spectroscopic studies of explosions.

Liveing (G. D.) and Dewar (J.). Rept. British Assoc. (1884), 672; Jour. de Phys., (2) 4, 51 (Abs.).

Spectrum des Lichtes explodirender Schiessbaumwolle.

Vogel (H. W.). Ann. Phys. u. Chem., n. F. 3, 615.

FLAME AND GAS SPECTRA.

The dichroism of the vapour of iodine.

Andrews (T.). Chem. News, 24, 75; Jour. Chem. Soc., (2) 9, 973 (Abs.).

Spectres des gaz simples.

Angström (A. J.). Comptes Rendus, 73, 369; Bull. Soc. chim. Paris n. s. 16, 228.

Recherches expérimentales sur la polarization rotatoire magnétique dans les gaz.

Beequerel (H.). Comptes Rendus, 90, 1407.

Spectres d'émission infra-rouges des vapeurs métalliques.

Beequerel (H.). Comptes Rendus, **97**, 71-4; Chem. News, **48**, 46 (Abs.); Nature, **28**, 287 (Abs.); Beiblätter, **7**, 701-2 (Abs.); Amer. Jour. Sci., (3) **26**, 321 (Abs.); Ber. chem. Ges., **16**, 2487 (Abs.); Johr. Chem. Soc., **46**, 1 (Abs.); Zeitschr. analyt. Chem., **23**, 49 (Abs.).

Spectres d'émission infra-rouges des vapeurs métalliques.

Becquerel (H.). Comptes Rendus, **99**, 374; Amer. Jour. Sci., (3) **28**, 459; Phil. Mag., Oct., 1884.

Spectres de quelques corps composés dans les systèmes gazeux en équilibre.

Berthelot et Richard. Comptes Rendus, 68, 1546.

Experimentaluntersuchung zur Bestimmung der Breehungsexponenten verflüssigter Gase.

Bleekrode (L.). Ann. Phys. u. Chem., n. F. 8, 400

Experiments on Flame.

Burch (G. J.). Nature, 31, 272-5; Jour. Chem. Soc., 48, 466 (Abs.).

Einfluss des Drucks auf das Spectrum des electrischen Funkens in Gazen.
Cailletet. Ber. chem. Ges., 5, 482.

Spectrum of coal gas.

Capron (J. R.). Photographed Spectra, London, 1877, p. 24, 61, 62, 71, 72.

Relative intensity of the spectral lines of gases.

Capron (J. R.). Phil. Mag., (5) 9, 329-30; Jour. Chem. Soc., 38, 685 (Abs.); Beiblätter, 4, 613-14 (Abs.).

Spectre de l'étincelle électrique dans les gaz soumis à une pression croissante.

Cazin (A.). Comptes Rendus, 34, 1151-4; Phil. Mag., (5) 4, 153-6.

Action des ainmants sur les gaz raréfiés renfermés dans les tubes capillaires et illuminés par un courant induit.

Chautard (J.). Comptes Rendus, **59**, 383; **79**, 1123; **80**, 1161; **81**, 75; Phil. Mag., Nov., 1864.

Ueber den Einfluss des Drucks und der Temperatur auf die Spectren von Dämpfen und Gasen.

Ciamician (G.). Sitzungsber, d. Wiener Akad., 77 H, 829-41; Jour. Chem. Soc., 36, 685 (Abs.); Nature, 23, 160; Beiblatter, 3, 193-4.

Viscosity of gases at high exhaustions.

Crookes (W.). Phil. Trans., 173, 387-434; Chem. News, 43, 85-1 (Abs.); Nature, 23, 421-3, 443-6 (Abs.); Beiblatter, 5, 836-46 (Abs.).

Position of the chemical rays in the spectra of sunlight and gaslight.

Crookes (W.), Cosmos, 8, 90; Ann. Phys. u. Chem., 97, 619; Bull. London Photogr. Soc., 21 Jan., 1856.

Étude des radiations émises par les corps incandescents.

Crova (A.). Ann. Chim. et Phys., (5) 19, 472-550; Beiblatter, 5, 117 (Abs.).

Spectre du pôle négatif de l'azote.

Deslandres (H.). Comptes Rendus, 103, 375-9; Beiblatter, 11, 36.

Spectra zusammengesetzter Gase.

Dibbits (H. C.). Ann. Phys. u. Chem., 122, 538.

Essai d'analyse spectrale appliquée à l'examen de gaz simples et de leurs mélanges.

Dubrumfaut. Comptes Rendus, 69, 1245; Ber. chem. Ges., 2, 745.

Flame-spectra.

Fielding (G. F. M.). Chem. News, 54, 212.

Preliminary note of researches on gaseous spectra in relation to the physical constitution of the Sun, fixed stars and nebulæ.

Franckland (E.) and Lockyer (J. N.). Proc. Royal Soc., **17**, 1 **18**, 79.

Sur les spectres d'absorption des vapeurs de sélénium, de protochlorure et de bromure de sélénium, de tellure, de protochlorure et de protobromure de tellure, protobromure d'iode et d'alizarine.

Gernez (D.). Comptes Rendus, 74, 1190-2; Jour. Chem. Soc., (2) 10, 665 (Abs.); Phil. Mag., (4) 43, 473-5; Amer. Jour. Sci., 4, 59-60.

Blue flame from common salt.

Gladstone (J. H.). Proc. Royal Soc., 19, 582.

Note on the atmospheric lines of the solar spectrum, and on certain spectra of gases.

Gladstone (J. H.). Proc. Royal Soc., 11, 305.

Beobachtungen an Gasspektris.

Goldstein (E.). Monatsber. d. Berliner Akad. (1874), 593-610; Ann.
Phys. u. Chem., 154, 128-149; Jour. Chem. Soc., (2) 13, 527 (Abs.);
Phil. Mag., (4) 49, 333-45; Bemerkungen dazu, von A. Wüllner,
Monatsber. d. Berliner Akad. (1874), 755-61; Phil. Mag., (4) 49, 448-53.

Recherches photométriques sur les flammes colorées.

Gouy. Comptes Rendus, 83, 269-72; Phil. Mag., (5) 2, 317-19.

Recherches sur les spectres des métaux à la base des flammes.

Gouy. Comptes Rendus, 84, 231.

Recherches photométriques sur les flammes colorées; sodium, lithium, strontium, calcium, etc.

Gouy. Comptes Rendus, 85, 70.

Sur le caractères des flammes chargées de calcium, de poussières salines, de chlorure de cuivre, de l'azotate et du chlorure de calcium, du chlorure de strontium, du chlorure de baryum, de l'oxyde de cuivre, de l'acetate de cuivre.

Gouy. Comptes Rendus, 85, 439.

Sur la transparence des flammes colorées, spectres continus du potassium, du sodium, des sels de l'alumine et de magnésie, du strontium, du calcium et du baryum.

Gouy. Comptes Rendus, 86, 878.

Transparence des flammes colorées pour leurs propres radiations; la double raie du sodium, la double raie du potassium; lithium, strontium, rubidium, calcium.

Gouy. Comptes Rendus, 86, 1078.

Du pouvoir émissif des flammes colorées.

Gouy. Comptes Rendus, 88, 418.

Ueber ein einfaches Verfahren die Umkehrung der farbigen Linien der Flammenspectra, insbesondere der Natriumlinie, subjectiv darzustellen.

Günther (E.). Ann. Phys. u. Chem., n. F. 2, 477.

De la recherche des composés gazeux et de l'étude de quelques-unes de leur propriétés à l'aide du spectroscope.

> Hautefeuille (P) et Chappuis (J.). Comptes Rendus, 92, 80-2; Jour. Chem. Soc., 40, 221-222 (Abs.; Beiblätter, 5, 317 (Abs.).

Bemerkungen zu dem Aufsatze von W. Siemens: Über das Leuchten der Flamme.

> Hittorf (W.). Ann. Phys. u, Chem., n. F. 19, 73-7; Jour. Chem. Soc., 44, 697 (Abs.).

Prismatische Zerlegung des Lichtes glühender oder brennender Körper. Jahresber, d. Chemie, 1, 161; 3, 155.

Verschiedene Spectren desselben Gases.

Jahresber, d. Chemie (1868), 125.

Spectra der Flammen grünfärbender Substanzen.

Jahresber, d. Chemie, 14, 43.

Gas Spectra.

Jahresber, d. Chemie, (1864) 109, (1868) 125, (1869) 176-80, (1870) 176, (1872) 143, (1873) 148, (1875) 122.

Sur le spectre de la vapeur de l'eau.

Janssen (J.). Ann. Chim. et Phys., (4) 24, 215-7; Jour. Chem. Soc., (2) 10, 280 (Abs.).

Flamme bleue du gaz d'éclairage.

Lecoq de Boisbaudran (F.). Spectres Lumineux, Paris, 1874, p. 41, planche III.

Spectra kohlenstoffhaltiger Gase.

Lielegg. Jour. prackt. Chemie, 103, 507; Phil. Mag., (4) 37, 208.

Untersuchungen über die Spectra gasförmiger Körper.

Lippich (F.). Sitzungsber, d. Wiener Akad., 82 H, 15-33; Ann. Phys. u. chem., n. F. 12, 380.

Erklärung der Verbreiterung der Spectrallinien in den Gazen.

Lippich (F.). Ann. Phys. u. Chem., 139, 465.

Origin of the spectrum of the hydrocarbon flame.

Liveing (G. D.) and Dewar (J.). Nature, 27, 257.

On the reversal of the lines of metallic vapours.

Liveing (G. D.) and Dewar (J.). No. I in Proc. Royal Soc., 27, 132-6;
No. II in do., 27, 350-4;
No. III in do., 27, 494-6;
No. IV in do., 28, 352-8;
No. V in do., 28, 367-72;
No. VI in do., 28, 471-5;
No. VII in do., 29, 402-6;
Beiblätter, 2, 261-3 (Abs.), 490 (Abs.);
3, 502 (Abs.), 710 (Abs.);
4, 364 (Abs.).

Disappearance of some spectral lines and the variation of metallic spectra due to mixed vapours.

Liveing and Dewar. Proc. Royal Soc., 33, 428.

An arrangement of the electric arc for the study, with the spectroscope, of the radiation of vapours, together with preliminary results.

Liveing and Dewar. Proc. Royal Soc., 34, 119.

Spectral lines of metals developed by exploding gases.

Liveing (G. D.) and Dewar (J.). Phil. Mag., (5) 18, 161-73; Jour. Chem. Soc., 48, 317 (Abs.); Jour. de Phys., (2) 4, 51.

Spectroscopic studies on gaseous explosions.

Liveing (G. D.) and Dewar (J.). Proc. Royal Soc., 36, 471-8; Jour. Chem. Soc., 48, 465.

Spectroscopic Notes. Note I, on the absorption of great thicknesses of metallic and metalloidal vapours; Note II, on the evidence of variation in molecular structure; Note III, on the molecular structure of vapours in connection with their densities; Note IV, on a new class of absorption phenomena.

Loekyer (J. N.). Proc. Royal Soc., 22, 371-8.

On a new method of studying metallic vapours.

Lockyer (J. N.). Proc. Royal Soc., 29, 266-72; Beiblätter, 4, 36 (Abs.).

On the spectra of metals volatilized by the oxyhydrogen flame.

Lockyer (J. N.) and Roberts (W. C.). Proc. Royal Soc., 23, 344-9;Phil. Mag., (5) 1, 234-9; Jour. Chem. Soc., 1876, 2, 156 (Abs.).

Sur les spectres des vapeurs, aux températures élévées; hydrogène, nitrogène, potassium, carbone, sodium, zinc, cadmium, antimoine, phosphore, soufre, arsénic, bismuth, iode, mercure, lithium.

Lockyer (J. N.). Comptes Rendus, 78, 1790; Nature, 30, 178.

On the indices of refraction of certain compound ethers.

Long (J. H.). Amer. Jour. Sci., (3) 21, 279-86.

Comparaison des spectres des flammes éclairantes et des flammes pâles.

Magnus (G.). Ann. Chim. et Phys., (4) 6, 159.

Réfraction des gaz.

Mascart. Comptes Rendus, 78, 417; Ann. Phys. u. Chem., 153, 153.

Sur la comparaison des gaz et des vapeurs.

Mascart. Comptes Rendus, **86**, 321-3; Jour. Chem. Soc., **34**, 359 (Abs.).

Sur la réfraction des corps organiques considérées à l'état gazeux.

Mascart, Comptes Rendus, 86, 321-3, 1182-5; Jour. Chem. Soc., 34, 603 (Abs.); Ann. de l'École normale (2) 6, 9-78; Beiblatter, 1, 257-70.

Examination of coloured flames by the prism.

Melvill (T.). Edinburgh Physical and Literary Essays, 2, 12, 1752.

Experiments and observations on some cases of lines in the prismatic spectrum produced by the passage of light through coloured vapours and gases, and from certain coloured flames.

Miller (W. A.). Phil. Mag., (3) 27, 81.

Flame spectra.

Milne (G. A.), Chem. News, 54, 225.

Spectra von Flammen im Allgemeinen.

Mitscherlich (A.). Ann. Phys. u. Chem., 121, 487.

Ueber die Beziehung der chemischen Beschaffenheit zu der lichtbrechenden Kraft der Gaze.

Mohr (F.). Ber, chem. Ges., 4, 149-55; Jour. Chem. Soc., (2) 9, 183 (Abs.).

Sur les moyens propres à la réproduction photographique des spectres ultra-violets des gaz.

Monckhoven (van), Bull, de l'Acad, de Belgique, (2) 43, 187-92;
Beiblatter, 1, 286 (Abs.).

De la flamme de quelques gaz carburés.

Morren (M. Λ.). Ann. Chim. et Phys., (4) 4, 305; Chem. News, 9, 135.

Das Sauerstoffspectrum und die electrischen Erscheinungen verdünnter Gase in Röhren mit Flüssigkeitselectroden.

Paalzow (A.). Ann. Phys. u. Chem., n. F. 7, 130.

The spectroscopic examination of the vapours evolved on heating iron, etc., at atmospheric pressure.

Parry (J.). Chem. News, 49, 241-2; 50, 303-4; Ber, chem. Ges., 17, Referate, 337 (Abs.); Jour. Chem. Socy. 46, 801 (Abs.); Beiblatter, 8, 646 (Abs.).

Comparaison des indices de réfraction dans quelques éthers composés isomères.

Pierre 1s.) et Puchat (E.). Comptes Rendus, 76, 1566-8.

Spectrum von Fluorborgas.

Plucker (J.). Ann. Phys. u. Chem., 104, 125.

Spectra der verschiedenen Gase wenn durch dieselben bei starker Verdünnung die electrische Entladung hindurchgeht.

Phücker (J.). Ann. Phys. u. Chem., 105, 67.

- Constitution der electrischen Spectra der verschiedenen Gase und Dämpfe, Plücker (J.). Ann. Phys. u. Chem., 107, 497.
- Zusammengesetzte Gase haben wie die einfachen ihr eigenthümliches Speetrum.

Plücker (J.). Ann. Phys. u. Chem., 113, 276.

Recurrente Ströme und ihre Anwendung zur Darstellung von Gasspectren.

Plücker (J.). Ann. Phys. u. Chem., 116, 27.

On the spectra of ignited gases and vapours, with especial regard to the different spectra of the same elementary gaseous substance.

Plücker (J.) and Hittorf (S. W.). Proc. Royal Soc., **13**, 153; Phil. Trans., 1865, p. 1.

De la flamme du soufre et des diverses lumières utilisables en photographie.

Riche (A.) et Bardy (C.). Comptes Rendus, **80**, 238-41; Ber. chem. Ges., **8**, 182-3.

Sur le spectre d'absorption de la vapeur du soufre.

Salet (G.). Comptes Rendus, **74**, 865-6; Jour. Chem. Soc., (2) **10**, 382 (Abs.); Ber. chem. Ges., **5**, 323 (Abs.).

Coloration of the hydrogen flame.

Santini (S.). Gazzetta, XIV, 274-6; Jour. Chem. Soc., 48, 465 (Abs.).

Veränderlichkeit der Spectra glühender Gase.

Schenck (O.). Zeitschr. analyt. Chem., 12, 386-90; Jour. Chem. Soc., (2) 12, 1122-3 (Abs.).

Notiz über das Flammenspectrum der Schiessbaumwolle.

Schöttner (F.). Carl's Repert., 14, 55-6; Beiblätter, 3, 279.

Harmonic ratios in the spectra of gases.

Schuster (A.). Nature, **20**, 533; **31**, 337-47; Beiblätter, **4**, 37; **5**, 435-8 (Abs.).

Spectrum des Bunsen'schen Gasflamme, oder Spectrum des inneren Flammenkegels.

Simmler (R. Th.). Ann. Phys. u. Chem., 115, 247.

Spectra der verschiedenen grünen Flammen.

Simmler (R. Th.). Ann. Phys. u. Chem., 115, 249.

Blue flame from common salt.

Smith (A. P.). Nature, 19, 483; 20, 5; Chem. News, 39, 141; Jour. Chem. Soc., 36, 497 (Abs.).

Gaseous spectra in vacuum tubes.

Smyth (C. Piazzi). Proc. Royal Soc. Edinburgh, 10, 711-12 (Abs.); Trans. Royal Soc. Edinburgh, 32, Part III, 415-60, with plates.

Observations sur la note de M. M. Stoney et Reynolds sur les spectres des gaz.

Soret (G. L.). Arch. de Genève, 42, 82-4; Phil. Mag., 42, 464-5; Ann. Chim. et Phys., (4) 26, 269.

Spectres d'absorption ultra-violets des éthers azotiques et azoteux.

Soret (J. L.) et Rilliet (Alb. A.). Comptes Rendus, 89, 747.

On the effect of pressure on the character of the spectra of gases.

Stearn (C. H.) and Lee (G. H.). Proc. Royal Soc., 21, 282-3; Jour. Chem. Soc., (2) 11, 996 (Abs.); Ber. chem. Ges., 6, 973 (Abs.); Phil Mag., (4) 46, 406-7.

Zur Spectralanalyse gefärbter Flüssigkeiten, Gläser und Dämpfe.

Stein (W.). Jour. prackt. Chemie, 10, 368-84; Jour. Chem. Soc., (2) 13, 412-14 (Abs.).

On the cause of the interrupted spectra of gases.

Stoney (G. J.). Phil. Mag., (4) 41, 291-6; 42, 41-52; Ann. Chim. et Phys., (4) 26, 265-6 (Abs.), 266-8 (Abs.).
(Look under Soret, above.)

On the blue lines of the spectrum of the non-luminous gas-flame.

Swan (W.). Edinburgh Philosoph. Trans., 3, 376; 21, 353.

Prismatic spectra of the flames of earbon and hydrogen.

Swan (W.). Edinburgh Philosoph. Trans., 21 (1857), 411-29; Ann. Phys. u. Chem., 100, 306.

Some experiments on coloured flames.

Tulbot (H. Fox). Brewster's Jour. Sci., 5, 1826.

Ueber die photographische Aufnahme von Spectren der in Geisslerrohren eingeschlossenen Gase.

Vogel (H. W.). Monatsber, d. Berliner Akad. (1879), 115-19; Bei-blatter, 4, 125-30 (Abs.).

Spectroscopische Notizen. Die Wasserstofflamme in der Spectralanalyse. Vogel (H. W.). Ber. chem. Ges., 12, 2313-16; Beiblatter, 4, 278 (Abs.); 5, 118 (Abs.). Gasspectra in Geissler'schen Röhren; bei zunehmender Verdünnung der Gase verschwinden die minder brechbaren Streifen zuerst.

Waltenhofen (A. von). Ann. Phys. u. Chem., 126, 527-37.

On the spectrum of the Bessemer flame.

Watts (W. M.). Phil. Mag., (4) 45, 81-90; Jour. Chem. Soc., (2) 11, 460 (Abs.).

Untersuchungen über die Natur der Spectra: 1, Theorie; 2, Spectra gemischter Gase.

Wiedemann (E.). Ann. Phys. u. Chem., n. F. 5, 500-24; Phil. Mag., (5) 7, 77-95; Amer. Jour. Sei., (3) 17, 250-1.

Das Leuchten der Gase durch electrische Entladungen; Nachtrag zu der Arbeit über die Natur der Spectra.

Wiedemann (E.). Ann. Phys. u. Chem., n. F. 6, 298.

Das thermische und optische Verhalten von Gasen unter dem Einfluss electrischer Entladungen.

Wiedemann (E.). Ann. Phys. u. Chem., n. F. 10, 202.

Ueber die Dissociationswärme des Wasserstoffmoleculs und das electrische Leuchten der Gasen.

Wiedemann (E.). Ann. Phys. u. Chem., n. F. 18, 509-10.

Spectroscopic examination of gases from meteoric iron.

Wright (A. W.). Amer. Jour. Sei., (3) 9, 294-302; Jour. Chem. Soc., 1876, 1, 27 (Abs.).

Spectra der Gase unter hohem Druck.

Wüllner (A.). Ann. Phys. u. Chem., 137, 337-56; Phil. Mag., (4) 37, 405; 39, 365.

Ueber die Spectra einiger Gase in Geissler'schen Röhren.

Wüllner (A.). Ann. Phys. u. Chem., **144**, 481-525; **147**, 321-53; **149**, 103-12; Ann. Chim. et Phys., (4) **26**, 258-63 (Abs.); Bull. Soc. chim. Paris, n. s. **12**, 445.

Ueber die Spectra der Gase.

Wüllner (A.). Verhandl. d. naturwiss. Ges. zu Aachen, Dec., 1874;
Ann. Phys. u. Chem., 154, 149-56;
Jour. Chem. Soc., (2) 13, 527 (Abs.).

Reinheit der Spectren von Gasen.

Wüllner (A.). Ber. chem. Ges., 3, 100.

Spectres des Gaz simples.

Wüllner (A.). Comptes Rendus, 70, 125, 890.

Sur le spectre de l'étincelle électrique dans les gaz soumis à une pression croissante.

Wüllner (A.). Comptes Rendus, 85, 280-1; Ann. Chim. et Phys., (5) 12, 149-1; Beiblätter, 1, 620 (Abs.).

Des transformations que subissent les spectres des gaz incandescents avec la pression et la température.

Wullner (A.). Arch. de Genève, (2) 40, 305-10.

Bemerkungen zu Herrn Goldstein's Beobachtungen an Gasspectris.

Wullner (A.). Monatsber, d. Berliner Akad., 1874, 755-61; Phil. Mag., (4) 49, 448-53.

Ueber den Einfluss der Dichtigkeit und Temperatur auf die Spectraglühender Gase.

Zollner (F.). Ber, chem. d. k. Sächs, Ges. d. Wiss., 22, 230-53; Ann. Phys. u. Chem., 142, 88-111; Phil. Mag., (4) 41, 190-205.

FLUORESCENCE.

Observations relatives à une note de M. Lamansky ayant pour titre "Sur la loi de Stokes."

Becquerel (E.). Comptes Rendus, 88, 1237-9; Beiblätter, 3, 619; Jour. Chem. Soc., 36, 862 (Abs.). (Look below, under Lamansky.)

Sur la phosphorescence da sulfure de calcium.

Becquerel (E.). Comptes Rendus, 103, 551-3; Chem. News, 55, 123.

Action du manganèse sur le pouvoir de phosphorescence du carbonate de chaux.

Becquerel (E.). Comptes Rendus, 103, 1098-1101.

Zur Geschichte der Fluorescenz.

Berthold (G.). Ann. Phys. u. Chem., 158, 623.

Ueber die Fluorescenz der lebenden Netzhaut.

Bezold (M. von) und Engelhardt (G.). Sitzungsber. d. Münchener Akad., 7, 226-33; Phil. Mag., (5) 4, 397-400.

On the crimson line of phosphorescent alumina.

Crookes (W.). Proc. Royal Soc., 42, 25-30; Chem. News, 55, 25;Nature, 35, 310; Amer. Jour. Sci., (3) 33, 304 (Abs.).

Beugungsspectrum auf fluorescirenden Substanzen.

Eisenlohr (W.). Ann. Phys. u. Chem., 99, 163.

Les vibrations de la matière et les ondes de l'éther dans la phosphorescence et la fluorescence.

Favé. Comptes Rendus, 86, 289-94.

Action des fluorures sur l'alumine.

Frémy et Varneuil. Comptes Rendus, 103 (1887), 738-40.

De la fluorescence.

Gripon (E.). Jour. de Phys., 2, 199, 246.

Versuche über Fluorescenz.

Hagenbach (E.). Ann. Phys. u. Chem., 146, 65-89, 232-57, 375-405,
508-38; Jour. Chem. Soc., (2) 10, 1058-61 (Abs.); Phil. Mag., (4)
45, 57-64 (Abs.); Chem. News, 26, 173 (Abs.).

Fernere Versuche über Fluorescenz.

Hagenbach (E.). Ann. Phys. u. Chem., Jubelband, 303-13.

16 T

Das Aufleuchten, die Phosphorescenz und Fluorescenz des Flussspaths.

Hagenbach (E.). Naturforscherversammlung in Munchen, 1877: Ber. chem. Ges., 10, 2232 (Abs.).

Elnorescenz nach Stokes's Gesetz.

Hagenbach (E.). Ann. Phys. u. Chem., n. F. 18, 45-56; Jour. Chem. Soc., 44, 537-8 (Abs.).

Das Stokes'sche Gesetz.

Hagenbach (E.). Ann. Phys. u. Chem., n. F. 8, 369-400.

Note on the behavior of certain fluorescent bodies in castor oil.

Horner (C.). Phil. Mag., (4) 48, 165-6,

Herstellung des Spectrums fluorescirender Substanzen.

Jahresber, d. Chemie (1867), 105.

Bemerkungen zu den Arbeiten der Herrn Lommel, Glazebrook und Matthieu.

Ketteler (E.). Ann. Phys. u. Chem., n. F. 15, 613.

Ueber Fluorescenz.

Lamansky (S.). Ann. Phys. u. Chem., n. F. 11, 908-12; Jour. Chem. Soc., 40, 214 (Abs.).

Ueber das Stokes'sche Gesetz.

Lamansky (S.). Ann. Phys. u. Chem., n. F. 8, 624-8; Comptes Rendus, 88, 1192-4, 1351; Jour. Chem. Soc., 36, 862 (Abs.); Beiblatter, 3, 619.

(Look above, under Becquerel, and below, under Lubarsch.)

Sur la fluorescence des terres rares.

Lecoq de Boisbaudran. Comptes Rendus, 101 (1885), 552, 588; Jour. Chem. Soc., 48, 1174 (Abs.).

Les fluorescences Z a et Z β appartiennent-elles à des terres différentes? Lecoq de Boi-baudran. Comptes Rendus. **102**, 899-902; Jour. Chem. Soc., **50**, 666 (Abs.).

Identité d'origine de la fluorescence Z 3 par renversement et des bandes obtenus dans le vide par M. Crookes.

Lecoq de Boisbaudran. Comptes Rendus. 103, 113-17; Jour. Chem. Soc., 50, 958.

Fluorescence des composés du manganèse soumis à l'effluve électrique dans le vide.

Lecoq de Boisbandran. Comptes Rendus. 103, 468-71, 629-31, 1064-7, 1107; Jour. Chem. Soc., 52, 189, 191; Amer. Jour. Sci., (3) 33, 149-51.

Fluorescence rouge de l'alumine.

Lecoq de Boisbaudran (F.). Comptes Rendus, 104, 330-4; Jour. Chem. Soc., 52, 409 (Abs.).

Ueber die Fluorescenz in der Anthracenreihe.

Liebermann (C.). Ber. chem. Ges., 13, 913-16.

Ueber Fluorescenz.

Lommel (E.). Sitzungsber. d. phys. med. Ges. Erlangen, 1871, 39-60;
Ann. Phys. u. Chem., 143, 26-51;
Ann. Chim. et Phys., (4) 26, 283 (Abs.).

Ueber Fluorescenz.

Lommel (E.). Ann. Phys. u. Chem., **159**, 514-36; Jour. Chem. Soc., 1877, **1**, 676; Amer. Jour. Sci., (3) **13**, 380 (Abs.).

Intensität des Fluorescenzlichtes.

Lommel (E.). Ann. Phys. u. Chem., 160, 75-96.

Fluorescenz.

Lommel (E.). Naturforscherversammlung in München, 1877; Ber. chem. Ges., 10, 2232 (Abs.); Ann. Phys. u. Chem., n. F. 3, 113-25; Jour. Chem. Soc., 34, 358 (Abs.).

Theorie der Absorption und Fluorescenz.

Lommel (E.). Ann. Phys. u. Chem., n. F. 3, 251-83.

Zwei neue fluorescirende Substanzen, Anthracenblau und bisulfobichloranthracenige Säure.

Lommel (E.). Ann. Phys. u. Chem., n. F. 6, 115-118.

Ueber das Stokes'sche Gesetz.

Lommel (E.). Ann. Phys. u. Chem., n. F. 8, 244.

Die dichroïtische Fluorescenz des Magnesiumplatincyanürs.

Lommel (E.). Ann. Phys. u. Chem., n. F. 8, 634; 9, 108.

Ueber Fluorescenz.

Lommel (E.). Ann. Phys. u. Chem., n. F. 10, 449-72, 631-54.

Die Fluorescenz des Ioddampfes.

Lommel (E.). Ann. Phys. u. Chem., n. F. 19, 356.

Die Fluorescenz des Kalkspathes.

Lommel (E.). Ann. Phys. u. Chem., n. F. 21, 422; Jour. Chem. Soc., 46, 649 (Abs.).

Beobachtungen über Fluorescenz, Didymglas und Aescorcin.

Lommel (E.). Ann. Phys. u. Chem., (2) 24, 288-92.

Zur Theorie der Fluorescenz.

Lommel (E.). Ann. Phys. u. Chem., (2) 25, 643-55; Jour. de Phys., (2) 5, 516 (Abs.).

Ueber Fluorescenz.

Lubarsch (O.). Ann. Phys. u. Chem., 153, 420-40; n. F. 6, 248-67; Jour. Chem. Soc., (2) 13, 528 (Abs.).

Das Stokes'sche Gesetz.

Lubarsch (O.). Ann. Phys. u. Chem., n. F. 9, 665-71.

Neue Experimentaluntersuchungen über Fluorescenz.

Lubarsch (O.). Ann. Phys. u. Chem., n. F. 11, 46-69; Jour. Chem. Soc., 40, 70 (Abs.).

Bemerkungen zu den Arbeiten des Hernn Lamansky über Fluorescenz. Lubarsch (O.). Ann. Phys. u. Chem., n. F. 14, 575-80.

Observations on the colour of fluorescent solutions.

Morton (II.). Chem. News, 24, 77; Jour. Chem. Soc., (2) 9, 992-3 (Abs.); (2) 10, 27; Amer. Jour. Sci., (3) 2, 198, 355.

Fluorescent relations of certain solid hydrocarbons found in coal-tar and petroleum distillates.

Morton (H.). Phil. Mag., (4) 44, 345-9; Ann. Phys. u. Chem., 148, 292-7; Chem. News, 26, 199-201, 272-4; Jour. Chem. Soc., (2) 11, 235 (Abs.).

Fluorescenzverhältnisse gewisser Kohlenwasserstoffverbindungen in den Steinkohlen-und Petroleum-Destillaten.

Morton (II.). Ann. Phys. u. Chem., 155, 551-79.

Fluorescence and the violet end of a projected spectrum.

Morton (H.). Chem. News, 27, 33.

Investigation of the fluorescent and absorption spectra of the uranium salts.

Morton (H.) and Bolton (H. C.). Chem. News, 28, 47-50, 113-16, 164-7, 233-4, 244-6, 257-9, 268-70; Jour. Chem. Soc., (2) 12, 42 (Abs.).

Fluorescent relations of the basic salts of uranic oxide.

Morton (H.). Chem. News, 29, 17-18; Jour. Chem. Soc., (2) 12, 642 (Abs.).

Fluorescent relations of chrysene and pyrene.

Morton (II.). Chem. News, 31, 35-6, 45-7.

On the connection between fluorescence and absorption.

Sorby (II. C.). Monthly Microscop. Jour., 13, 161-4.

Sur la fluorescence des sels des métaux terreux.

Soret (J. L.). Comptes Rendus, **38**, 1077-8; Jour. Chem. Soc., **36**, 862 (Abs.); Beiblätter, **3**, 620 (Abs.).

Zur Kenntniss der Fluorescenzerscheinungen.

Stenger (Fr.). Ann. Phys. u. Chem., (2) 28, 201-30; Berichtigung dazu, do., 368.

On the change of refrangibility of light.

Stokes (G. G.). Phil. Trans. (1852), 463-562. (His discovery of what has since been known as fluorescence.)

Sur la fluorescence de la matière colorante des champignons.

Weiss (A.). Acad. de Vienne, Wiener Anzeiger (1885), 111; Jour. de Phys., (2) 5, 240; Chem. Centralblatt (1886), 670-1; Jour. Chem. Soc., 52, 314.

Fluorescence des Naphthalinrothes.

Wesendonck (K.). Ann. Phys., (2) **26**, 521-7; Jour. Chem. Soc., **50**, 585; Jour. de Phys., (2) **5**, 517.

Berichtigung zu einer Notiz des Herrn Lommel betreffend die Theorie der Fluorescenz.

Wüllner (A.). Ann. Phys. u. Chem., Ergänzungsband, 1878, 8, 474-8.

FLUORINE.

Silicie fluoride spectrum.

Capron (J. R.). Photographed Spectra, London, 1877, p. 75, 76.

Spectre du fluorure de silicium dans les tubes de Geissler.

Chautard (J.). Comptes Rendus, 82, 273.

Das Aufleuchten, die Phosphorescenz und die Fluorescenz des Flussspaths.

Hagenbach (E.). Naturforscherversammlung in München, 1877; Ber-chem. Ges., 10, 2232 (Abs.).

Spectrum des Fluors.

Jahresber, d. Chemie, 15 (1862), 33.

Spectrum des Phosphorescenzlichtes von Flussspath.

Kindt. Ann. Phys. u. Chem., 131, 160.

Note on the spectra of calcium fluoride.

Liveing (G. D.). Proc. Cambridge Philosoph. Soc., 3, 96-8; Beiblätter, 4, 611 (Abs.).

Spectrum von Fluorborgas.

Plucker. Ann. Phys. u. Chem., 104, 125.

Indices de réfraction du spath fluor.

Sarasin (E.). Arch. de Genève, (3) 10, 303-4.

Spectre du fluorure de silicium.

Séguin (J. M.). Comptes Rendus, 54, 993.

Ueber die Spectra des Fluorsiliciums und des Siliciumwasserstoffs.

Wesendonck (K.). Ann. Phys. u. Chem., n. F. 21, 427-37; Jour. Chem. Sec., 46, 649 (Abs.).

GADOLINITE.

New elements in gadolinite and samarskite.

Crookes (W.). Proc. Royal Soc., 40, 502-9; Jour. Chem. Soc., 52, 334.

Remarques sur la gadolinite.

Delafontaine. Comptes Rendus, 90, 221.

Gadolinium, le Ya de Marignac.

Lecoq de Boisbaudran (F.). Comptes Rendus, 102, 902; Jour. Chem. Soc., 50, 667 (Abs.).

Sur les terres de la gadolinite.

Marignae (C.). Ann. Chim. et Phys., (5) 14, 247-258; Jour. Chem. Soc., 36, 113 (Abs.).

Sur l'ytterbine, nouvelle terre contenue dans la gadolinite.

Marignac (C.). Comptes Rendus, 87, 578-81; Amer. Jour. Sci., (3)17, 62-3 (Abs.); Jour. Chem. Soc., 36, 118-19 (Abs.).

Notice sur les nouveaux métaux obtenus du gadolinite.

Mendelejeff. Jour. Soc. phys. chim. russe, 13, 517-20; Bull. Soc. chim. Paris, 38, 139-43.

*Recherches sur l'absorption des rayons ultra-violets par diverses substances. II, Sur les spectres d'absorption des terres de la gadolinite.

Soret (J. L.). Arch. de Genève, (2) 63, 89-112; Comptes Rendus, 86, 1062-4; Beiblätter, 3, 196 (Abs.); 2, 410-11; Jour. Chem. Soc., 2, 410 (Abs.).

Ueber die Erden des Gadolinits von Ytterby.

Welsbach (C. Auer von). Sitzungsber. d. Wiener Akad., **88** II, 332–44, 1237–51; Zeitschr. analyt. Chem., **23**, 520 (Abs.); Chem. News **51**, 25 (Abs.).

GALLIUM.

Caractères chimiques et spectroscopiques d'un nouveau métal, le gallium, découvert dans une blende de la mine de Pierrefitte, vallée d'Argelès (Pyrénnées).

Lecoq de Boisbaudran (F.). Comptes Rendus, 81, 492-5; 82, 168, 1036, 1098; Bull. Soc. chim. Paris, n. s. 24, 370; Jour. Chem. Soc., 1876, 1, 190 (Abs.); Amer. Jour. Sci., (3) 11, 320 (Abs.); Ann. Chim. et Phys., (5) 10, 117; Ann. Phys. u. Chem., 159, 650; Chem. News, 32, 159, 294.

Remarques à propos de la découverte du gallium.

Mendelejef (D.). Comptes Rendus, 81, 969.

GERMANIUM.

Ueber das Spectrum des Germaniums.

Kobb (G.). Ann. Phys. u. Chem., (2) 29 (1886), 670-2; Jour. Chem. Soc., 52, 313 (Abs.); Amer. Jour. Sci., (3) 33, 151 (Abs.).

Spectre du germanium.

Lecoq de Boisbaudran (F.). Comptes Rendus, 102, 1291-5; Jour. Chem. Soc., 50, 768 (Abs.).

GLASS.

Prüfung des gelben Glases für Dunkelzimmer der Photographen.

Foster (Le Neve). Dingler's Journal, **207**, 427; Jour. Chem. Soc., (2) **11**, 948 (Abs.).

Phasenveränderung des Lichtes bei Reflexion an Glas.

Glan (P.). Ann. Phys. u. Chem., 155, 14.

On the influence of temperature on the optical constants of glass.

Hastings (C. S.). Amer. Jour. Sei., (3) 15, 269-75; Beiblätter, 2, 338 (Abs.).

Refractive indices of glass.

Hopkinson (J.). Proc. Royal Soc., **26**, 290-7; Beiblätter, **1**, 680 (Abs.).

Vertheilung der Wärme im Flintglasspectrum.

Lamansky (S.). Ann. Phys. u. Chem., 146, 207, 209.

The yellow glass of commerce lets through portions of nearly the whole spectrum.

Lea (M. Carey). Amer. Jour. Sci., (3) 33, 363.

On the refractive and dispersive powers of various samples of glass.

Lohse (J. G.). Monthly Notices Astronom. Soc., 40, 563-4; Beiblätter, 4, 891 (Abs.).

Spectra produced in glass by scratching.

Love (E. J. J.). Nature, 32, 270.

Spectrale Untersuchung eines longitudinaltönenden Glasstabes.

Mach (E.). Ann. Phys. u. Chem., 146, 316-17.

Ueber die Dispersionsverhältnisse optischer Gläser.

Merz (S.). Zeitschr. f. Instrumentenkunde, 2, 176-80; Beiblätter, 6, 673 (Abs.).

Zur Spectralanalyse gefärbter Flüssigkeiten, Gläser und Dämpfe.

Stein (W.). Jour. prackt. Chemie, 10, 368-84; Jour. Chem. Soc., (3) 13, 412 (Abs.).

Methoden zur Bestimmung der Brechungsexponenten von Flüssigkeiten und Glasplatten.

Wiedemann (E.). Ann. Phys. u. Chem., 158, 375-86.

GOLD.

Gold are speetrum.

Capron (J. R.). Photographed Spectra, London, 1877, p. 30.

L'or n'a donné aucune apparence de renversement.

Cornu (A.). Comptes Rendus, 73, 332.

Speetrum des Goldchlorids.

Jahresber, d. Chemie (1873), 152.

Chlorure d'or en solution, étincelle; chlorure d'or dans le gaz.

Lecoq de Boisbaudran (F.). Spectres Lumineux, Paris, 1874, p. 172, 176, planche XXVI.

Spectre de chlorure d'or.

Lecoq de Boisbaudran (F.). Bull. Soc. chim. Paris, n. s. 21, 125.

Sur quelques spectres métalliques, chlorure d'or.

Lecoq de Boisbaudran (F.). Comptes Rendus, 77, 1152-4; Jour. Chem. Soc., (2) 12, 217 (Abs.); Ber. chem. Ges., 6, 1418 (Abs.).

HEAT SPECTRA.

Measurement of the so-called thermospectrum.

Abney (W. de W.). Chem. News, 40, 21.

Sur un moyen d'isoler les radiations calorifiques des radiations lumineuses et chimiques.

Assche (F. von). Comptes Rendus, 97, 838.

Spectres calorifiques.

Aymonnet. Comptes Rendus, 82, 1153.

Pouvoirs absorbants des corps pour la chaleur.

Aymonnet. Comptes Rendus, 83, 971.

Nouvelle méthode pour étudier les spectres calorifiques.

Aymonnet. Comptes Rendus, 83, 1102.

Ein einfacher Versuch zur Versinnlichung des Zusammenhanges zwischen der Temperatur eines glühenden Drahtes und der Zusammensetzung des von ihm ausgehenden Lichtes.

Bezold (W. von). Ann. Phys. u. Chem., n. F. 21, 175-8.

Verschiebung der Spectrallinien unter Wirkung der Temperatur des Prismas.

Blaserna (P.). Ann. Phys. u. Chem., 143, 655.

- Einfluss der Temperatur auf die Empfindlichkeit der Spectralreaction. Cappel (E.). Ann. Phys. u. Chem., 139, 628.
- Einfluss des Druckes und der Temperatur auf die Spectren von Dämpfen und Gasen.

Ciamician. Sitzungsber. d. Wiener Akad., 77 II, 839; 78 II, 867.

Distribution of heat in the visible spectrum.

Conroy (Sir J.). Proc. Royal Soc., 3, 106-12; Phil. Mag., (5) 8, 203-9; Beiblätter, 4, 44 (Abs.).

Étude des radiations émises par les corps incandescents. Mesure optique des hautes températures.

Crova (A.). Ann. Chim. et Phys., (5) **19**, 472-550; Beiblätter, **5**, 117-18 (Abs.).

Mesure spectrométrique des hautes températures.

Crova (A.). Comptes Rendus, 87, 979; 90, 252; Jour de Phys., 8, 196-8.

Recherches sur les spectres calorifiques obscurs.

Desains (P.). Comptes Rendus, 67, 296-7, 1097; 70, 985; 84, 285;
88, 1047; 89, 189; 94, 1144; 95, 433; Jour. Chem. Soc., 36, 864 (Abs.); Beiblatter, 3, 869 (Abs.).

Détermination des longueurs d'onde des rayons calorifiques à basse température dans le spectre.

Desains (P.) et Curie (P.). Comptes Rendus, 90, 1506.

Measurement of high temperatures.

Dewar (J.). Chem. News, 28, 174.

Distribution of heat in the spectrum.

Draper (J. W.). Amer. Jour. Sci., (3) 4, 161-75; Phil. Mag., (4) 44, 104-17; Jour. Chem. Soc., (2) 10, 968 (Abs.).

Absorption of light at different temperatures.

Feussner, Phil. Mag., (4) 29, 471; Monatsber, d. Berliner Akad., März, 1865.

De l'influence de la température sur les caractères des raies spectrales.

Fiévez (C.). Bull. de l'Acad. de Belgique. (3) 7, 348-55; Beiblatter.
8, 645 (Abs.); Les Mondes, (3) 8, 481-3; Chem. News. 50, 128 (Abs.).

Influence of temperature on the optical constants of glass.

Hastings (C. S.). Amer. Jour. Sci., (3) 15, 269-75; Beiblatter, 2, 338 (Abs.).

Distribution of heat in the spectra of various sources of radiation.

Jacques (W. W.). Dissertations of the Johns Hopkins University, 1879; Proc. Amer. Acad., 14, 142-61; Beiblatter, 3, 865 (Abs.).

Einfluss der Temperatur der Flamme auf das Spectrum.

Jahresber, d. Chemie, **15** (1862), 29; **21** (1868), 80; **23** [1870), 148, 175; **26** (1873), 54.

Durchgang der strahlenden Wärme durch polittes und berüsstes Steinsalz; Diffusion der Wärmestrahlen; Lage des Warmemaximums im Sonnenspectrum.

Knoblauch (H.). Ann. Phys. u. Chem., 120, 177.

Einfluss der Temperatur auf spectroseopische Beobachtungen.

Krass (G.). Ber. chem. Ges., 17, 2732b; Jour. Chem. Soc., 48, 209 (Abs.).

Geschichtliches über das Wärmespectrum der Sonne; Vertheilung der Warme im Flintglasspectrum.

Lamansky (S.). Ann. Phys. u. Chem., 146, 200-30.

Abhängigkeit des Brechungsquotienten der Luft von der Temperatur.

Lang (V. von). Ann. Phys. u. Chem., 153, 450.

Observations on invisible heat-spectra and the recognition of hitherto unmeasured wave-lengths, made at the Alleghany Observatory, Alleghany, Pa.

Langley (S. P.). Amer. Jour. Sci., (3) **31** (1886), 1-12; **32**, 83-106; Phil. Mag., (5) **21**, 394-409; **22**, 149-173; Jour. de Phys., (2) **5**, 377-80; Ann. Chim. et Phys., (6) **9**, 433-506; Beiblätter, **11**, 245.

Ueber die spectrale Vertheilung der strahlenden Wärme.

Lecher (E.). Wiener Anzeigen (1881), 193-4.

Spectra of vapours at elevated temperatures.

Lockyer (J. N.). Chem. News, 30, 98.

Nothwendigkeit bei spectroscopische Messungen die Temperatur zu berücksichtigen.

Lommel (E.). Ann. Phys. u. Chem., 143, 656.

Om Värmefördelningen i Normalspektrum (Ueber die Wärmevertheilung im Normalspectrum).

Lundquist (G.). Oefversigt af K. Vetensk. Acad. Hand., 1874, 31, X, 19-27; Ann. Phys. u. Chem., 155, 146-55.

Maximum de température.

Magnus (G.). Ann. Chim. et Phys., (4) 6, 155.

Sur l'identité des diverses radiations lumineuses, calorifiques et chimiques.

Melloni. Comptes Rendus, 15, 454.

Température des différentes parties du spectre solaire.

Melloni. Comptes Rendus, 18, 39.

Recherches sur la réflexion métallique des rayons calorifiques obscurs et polarisés.

Mouton. Comptes Rendus, 84, 650.

Spectre calorifique normal du Soleil et de la lampe à platine incandescent Bourbouze.

Mouton. Comptes Rendus, 89, 295.

Wärmevertheilung im Spectrum eines Glas-und Steinsalzprismas.

Müller (J.). Ann. Phys. u. Chem., 105, 347.

Wärmevertheilung im Diffractionsspectrum.

Muller (J.). Ann. Phys. u. Chem., 105, 355.

- Untersuchungen über die thermischen Wirkungen des Sonnenspectrums. Muller (J.). Ann. Phys. u. Chem., 115, 337.
- Wellenlänge und Brechungsexponent der äussersten dunklen Wärmestrahlen des Sonnenspectrums.

Muller (J.). Ann. Phys. u. Chem., 115, 543; Berichtigung dazu, 116, 641.

Effect of increased temperature upon the nature of the light emitted by the vapour of certain metals or metallic compounds.

Roscoe and Clifton. Chem. News, 5, 233.

On spectral lines of low temperature.

Salisbury (The Marquis of). Phil. Mag., (4, 45, 241-5; Jour. Chem. Soc., (2) 11, 711 (Abs.); Amer. Jour. Sci., (3) 6, 141 (Abs.).

Stickstoff gibt je nach der Temperatur drei Spectra.

Schimkow (A.). Ann. Phys. u. Chem., 129, 513.

- Ueber die Abhängigkeit der Brechungsexponenten anomal dispergirender Medien von Concentration der Lösung und der Temperatur. Sieben (G.). Ann. Phys. u. Chem., n. F. 23, 312.
- Einfluss der Temperatur auf das optische Drehvermögen des Quartzes und des ehlorsauren Natrons.

Sohnke (L.). Ann. Phys. u. Chem., n. F. 3, 516.

Rapport sur un travail de M. Fiévez concernant l'influence de la température sur les caractères des raies spectrales.

Stas. Bull, de l'Acad, de Belgique, (3) 7, 290-4.

Ueber den Einfluss der Wärme auf die Brechung des Lichtes in festen Körpern.

Siefan (J.). Sitzungsber, d. Wiener Akad., 63 11, 223-45.

Ueber den Einfluss der Dichtigkeit und Temperatur auf die Spectra gluhender Gase.

Zollner (F.). Ber, d. k. Sachs, Ges, d. Wiss , 22, 233-53; Ann. Phys. n. Chem., 142, 88-111; Phil. Mag., (4) 41, 190-205.

HELIUM.

Sur la raie dite de l'hélium.

Spée (E.). Bull. de l'Acad. de Belgique, (3) 49, 379-96; Beiblätter, 4, 614 (Abs.).

SPECTRA AT HIGH ALTITUDES.

Notes on some recent astronomical experiments at high altitudes on the Andes.

Copeland (R.). Nature, 28, 606; Beiblätter, 8, 220 (Abs.).

Ascension scientifique à grande hauteur, exécutée le 22 mars 1874.

Crocé-Spinelli (J.) et Sivel. Comptes Rendus, **78**, 946-50; Amer Jour. Sei., (3) **8**, 36 (Abs.).

(Look below under Janssen and Pecchi.)

- Note sur des observations spectroscopiques, faites dans l'ascension du 24 Spet. 1874, pour étudier les variations des couleurs du spectre. Fonvielle (W. de). Comptes Rendus, 89, 816-17.
- Die Fraunhofer'schen Linien auf grossen Höhen dieselben wie in der Ebne. Heusser (J. C.). Ann. Phys. u. Chem., **90**, 319.
- Remarques sur le spectre d'eau à l'occasion du voyage aérostatique de M. M. Crocé-Spinelli et Sivel.

Janssen (J.). Comptes Rendus, 78, 995-8.

Sunlight and skylight at high altitudes.

Langley (S. P.). Nature, 26, 586-9; Amer. Jour. Sci., (3) 24, 393-8;Beiblätter, 7, 28 (Abs.); Jour. de Phys., (2) 3, 47 (Abs.).

Observations relatives à une communication de M. Crocé-Spinelli sur les bandes de la vapeur d'eau dans le spectre solaire.

Secchi (A.). Comptes Rendus, 78, 1080-81.

HOLMIUM.

Spectre de holmium.

Clève (P. T.). Comptes Rendus, 89, 478.

Remarques sur le holmium ou philippine.

Delafontaine. Comptes Rendus, 90, 221.

Holmium, ou l'x de M. Soret.

Lecoq de Boisbaudran (F.). Comptes Rendus, 102, 1003-4; Jour. Chem. Soc., 50, 667 (Abs.).

HOMOLOGOUS SPECTRA.

On homologous spectra.

Hartley (W. N.). Jour. Chem. Soc., 43, 390-400; Nature, 27, 522
(Abs.); Chem. News, 47, 138 (Abs.); Amer. Jour. Sci., (3) 26, 401
(Abs.); Ber. chem. Ges., 16, 2659 (Abs.); Beiblatter, 8, 217 (Abs.).

HYDROGEN.

Spectrum von Wasserstoff.

Angström (A. J.). Ann. Phys. u. Chem., 94, 157.

Wasserstoff hat nur ein Spectrum; die vielfachen Spectren rühren bei Bemengungen her.

Angström (A. J.). Ann. Phys. u. Chem., 144, 302, 304.

Spectres des gaz simples; l'hydrogène, etc.

Angström (A. J.). Comptes Rendus, 73, 369.

Notiz über die Spectrallinien des Wasserstoffs.

Balmer (J. J.). Ann. Phys. u. Chem., (2) 25, 80-7; Jour. Chem. Soc., 48, 1025 (Abs.); Jour. de Phys., (2) 5, 515 (Abs.).

Absorptionsspectrum des durch Wasserstoffsuperoxyd gebräunten blausäurehaltigen Blutes.

Buchner. Jour. prackt. Chemie, 105, 345.

Hydrogen tube speetrum.

Capron (J. R.). Photographed Spectra, London, 1877, p. 61, 62, 63.

Sur le spectre ultra-violet de l'hydrogène.

Cornu (J.). Jour. de Phys., (2) 5, 341-54.

Continuous spectra of hydrogen observed by combustion of hydrogen in oxygen and chlorine.

Dibbits. Ann. Phys. u. Chem., 122, 497.

Recherches sur l'intensité relative des raies spectrales de l'hydrogène et de l'azote en rapport avec la constitution des nébuleuses.

Fiévez (C.). Bull. de l'Acad. de Belgique, (2) 49, 107-113; Phil.
Mag., (5) 9, 309-12; Beiblätter, 4, 461 (Abs.); Ann. Chim. et Phys.,
(5) 20, 179-85; Jour. Chem. Soc., 40, 69 (Abs.).

Sur l'élargissement des raies de l'hydrogène.

Fiévez (C.). Comptes Rendus, 92, 521-2; Beiblätter, 5, 281 (Abs.); Jour. Chem. Soc., 40, 955 (Abs.).

Combustion of hydrogen and carbonic oxide under great pressure.

Franckland. Proc. Royal Soc., 16, 419.

17 т

The refraction equivalents of carbon, hydrogen, nitrogen, and oxygen in organic compounds.

Gladstone (J. H.), Proc. Royal Soc., 31, 327-30; Ber. chem. Ges., 14, 1553 (Abc.).

Untersuchungen über das zweite Spectrum des Wasserstoffes.

Hasselberg (B.). Mem. Acad. imp. St. Pétersbourg, **30**. No. 7, 24; **31**. No. 14, 30; Beiblätter, **8**, 381-4 (Abs.); Mem. Spettr. ital., **13**.
97 (Abs.); Phil. Mag., (5) **17**, 329-52; Jour. Chem. Soc., **48**, 317 (Abs.); Jour. de Phys., (2) **4**, 241 (Abs.).

Bemerkungen zu Hrn. Wüllner's Aufsatz; "Ueber die Speetra des Wasserstoffs und des Acetylens."

Hasselberg (B.). Ann. Phys. u. Chem., n. F. 15, 45-9.

Zusatz zu meinen Untersuchungen über das zweite Spectrum des Wasserstoffs.

Hasselberg (B.). * Mélanges phys, et chim. tirés du Bull, de l'Acad, de St. Pétersbourg, 12, 203-14; Beiblatter, 9, 519 (Abs.).

Die Spectralerscheinungen des Phosphorwasserstoffs und des Ammoniaks.

Hofmann (K. B.). Ann. Phys. u. Chem., 147, 92-5.

On the spectrum of the flame of hydrogen.

Huggins (W.). Proc. Royal Soc., 80, 576; Amer. Jour. Sci. (3) 20, 121-3; Beiblätter, 4, 658 (Abs.).

L'intensité relative des raies spectrales de l'hydrogène et de l'azote en rapport avec la constitution des nébuleuses.

Huggins (W.). Bull, de l'Acad, de Belgique, (2) 49, 266-7; Beibiat; σ₁ 4, 658 (Abs.).

Spectrum des Wasserstoffs.

Jahresber, d. Chemie, 16 (1863), 111.

Absorptionsspectrum des Phosphorwasserstoffs.

Jahresber, d. Chemie, 25 (1872), 142.

Absorptionsspectra von Kohlenwasserstoffen.

Jahresber, d. Chemie, 28 (1875), 126.

Absorptionsspectrum des Wasserstoffs.

Jahresber, d. Chemie, 25 (1872), 141, 143-6.

Recherches photômétriques sur le spectre de l'hydrogène.

Lagarde (H.). Ann. Chim. et Phys., (6) 4, 248-369, avec 1 planche;
 Jour. de Phys., (2) 5, 186 (Abs.); note par Wiedemann (E.), Ann.
 Chim. et Phys., (6) 7, 143-4.

Spectre de l'hydrogène phosphoré.

Lecoq de Boisbaudran (F.). Spectres Lumineux, Paris, 1874, p. 187, planche XXVII.

Action de la lumière sur l'acide iodhydrique.

Lemoine (G.). Comptes Rendus, 85, 144-7; Beiblätter, 1, 510 (Abs.).

Spectra of compounds of carbon with hydrogen.

Liveing (G. D.) and Dewar (J.). Nature, 22, 620.

Note on the reversal of hydrogen lines, and on the outburst of hydrogen lines when water is dropped into the arc.

Liveing (G. D.) and Dewar (J.). Proc. Royal Soc., 35, 74-6; Chem.
News, 47, 122; Nature, 28, 21 (Abs.); Beiblätter, 7, 371 (Abs.);
Jour. de Phys., (2) 4, 51.

Note on the spectrum of hydrogen.

Lockyer (J. N.). Proc. Royal Soc., 30, 31-2; Beiblätter, 4, 363 (Abs.).

Sur les spectres des vapeurs aux températures élévées; hydrogène.

Lockyer (J. N.). Comptes Rendus, 78, 1790; Chem. News, 30, 98. (Original in French.)

De l'élargissement des raies spectrales de l'hydrogène.

Monekhoven (D. von). Comptes Rendus, 95, 378.

Spectrum von Wasserstoff in der Geissler'schen Röhre.

Plücker. Ann. Phys. u. Chem., 104, 122; 105, 76.

Spectrum von Wasserstoff.

Plücker. Ann. Phys. u. Chem., 105, 81.

Spectra am negativen Pol in Stickstoff-und Wasserstoff-röhren; Modification beider Röhren nach langer Gebrauch.

Reitlinger (E.). Ann. Phys. u. Chem., 141, 135-6.

Coloration of the hydrogen flame.

Santini (S.). Gazzetta chim. ital., 14, 142-6; Jour. Chem. Soc., 48, 209 (Abs.); Beiblätter, 9, 32 (Abs.).

On the spectrum of hydrogen at low pressure.

Seabroke (G. M.). Monthly Notices Astronom. Soc., 32, 63-4; Phil. Mag., (4) 43, 155-7; Chem. News, 25, 111; Ann. Chim. et Phys., (4) 26, 264 (Abs.).

Remarques sur la relation entre les protubérances et les taches solaires; intérêt qu'auraient les expériences sur la lumière spectrale de l'hydrogène brûlant sous une très forte pression.

Seechi (A.). Comptes Rendus, 68, 237-8.

Hydrogène et la raie D, dans le spectre de la chromosphère solaire.

Secchi (A.). Comptes Rendus, 73, 1300.

Prismatic spectra of the flames of compounds of earbon and hydrogen.

Swan, Phil, Trans. Edinburgh, 21, 411; Ann. Phys. u. Chem., 100, 206

Spectres de l'hydrogène, etc., sur la surface du Soleil.

Vicaire (E.). Comptes Rendus, 76, 1540.

Spectrum von Wasserstoff.

Vogel (H. C.). Ann. Phys. u. Chem., 146, 576.

Ueber die Spectra des Wasserstoffs.

Vogel (H. C.). Monatsber, d. Berliner Akad, (1879), 586-604; Beiblatter, 4, 125-30; Amer. Jour. Sci., (3) 19, 406 (Abs.).

Die Wasserstofflamme in der Spectralanalyse.

Vogel (H. W.). Ber. chem. Ges., 12, 2313; Beiblätter, 4, 278 (Abs.); 5, 118 (Abs.).

Ueber die neuen Wasserstofflinien.

Vogel (H. W.). Ber, chem. Ges., 13, 274-6; Jour. Chem. Soc., 38, 597-8 (Abs.); Beiblatter, 4, 274 (Abs.).

Die Photographie des Wasserstoffspectrums.

Vogel (H. W.). Photographische Mittheilungen, 16, 276-8.

Ueber die Spectra des Fluorsiliciums und des Siliciumwasserstoffs.

Wesendonck (K.). Ann. Phys. u. Chem., n. F. 21, 427-37; Jour. Chem. Soc., 46, 649 (Abs.).

Ueber die Dissociationswärme des Wasserstoffmoleculs.

Wiedemann (E.). Ann. Phys. u. Chem., n. F. 18, 509-10.

Electrische Spectra in Wasserstoff.

Willigen (S. M. van der). Ann. Phys. u. Chem., 106, 622.

Drei Spectra bei Wasserstoff.

Wuliner A. . Ann. Phys. u. Chem., 135, 409.

Spectra der Gase unter hohem Druck; Wasserstoff gibt dabei ein continuirliches Spectrum; vier Spectra beim Wasserstoff.

Wullner (A.). Ann. Phys. u. Chem., 137, 337-47.

Spectra des Wasserstoffs.

Wullner (A.). Ann. Phys. u. Chem., n. F. **14**, 355, (Leok above, under Hasselberg.)

INDIGO (THE).

The indigo color in the spectrum.

Rood (O. N.). Amer. Jour. Sci., (3) 19, 135

INDIUM.

Indium arc spectrum.

Capron (J. R.). Photographed Spectra, London, 1877, p. 30, 45.

Spectra of indium.

Clayden (A. W.) and Heycock (C. T.). Phil. Mag., (5) 2, 387-9; Amer. Jour. Sci., (3) 13, 57 (Abs.); Beiblätter, 1, 90-2.

Sels d'indium en solution, étincelle.

Lecoq de Boisbaudran. Spectres Lumineux, Paris, 1874, p. 142, planche XXI.

Vorläufige Notiz über ein neues Metall (Indium).

Reich (F.) und Richter (Th.). Jour. prackt. Chemie, 89, 441.

Ueber das Indium.

Reich (F.) und Richter (Th.). Jour. prackt. Chemie, 90, 172; Phil. Mag., (4) 26, 488.

Spectrum des Indiums.

Schrötter. Jour. prackt. Chemie, 95, 446.

Spectrum des Indiums.

Winkler. Jour. prackt. Chemie, 94, 1.

Zur spectralanalytische Ermittelung des Indiums.

Wleugel (S.). Correspondenzblatt d. Vereins analytischer Chemiker, 3, 39; Beiblätter, 5, 281 (Abs.); Zeitschr. analyt. Chemie, 20, 115 (Abs.).

INTERFERENCE.

Beobachtungen dunkler Interferenzstreifen im Spectrum des weissen Liehtes.

Abt (A.). Math. naturwiss. Ber. aus Ungarn, 1, 352-4.

Interferenzstreifen im Spectrum.

Arons (L.). Ann. Phys. u. Chem., (2) 24, 669-71.

Sur les phénomènes d'interférence produits par les réseaux parallèles.

Crova (A.). Comptes Rendus, 72, 855-8; 74, 932-36,

Ueber Interferenzstreifen welche durch zwei getrübte Flächen erzeugt werden.

Exner (K.). Sitzungsber, d. Wiener Akad., 72 H, 675.

Sur les conditions d'achromatisme dans les phénomènes d'interférence.

Hurion (A.). Comptes Rendus, 94, 1845; 95, 75.

Projection der Interferenz der Flüssigkeitswellen.

Lommel (L.). Ann. Phys. u. Chem., (2) 26, 156.

Sur l'application du spectroscope à l'observation des phénomènes d'interférence.

Mascart. Jour. de Phys., 1, 17; 3, 310.

Bedeutung von Newton's Construction der Farbenordnungen dünner Blättehen für die Spectraluntersuchung der Interferenzfarben.

Rollett (Alex.). Sitzungsber, d. Wiener Akad., 75 111, 12.

Graphische Darstellung der Spectren der Interferenzfarben för einen Gypskeil.

Rollett (Alex.). Sitzungsber, d. Wiener Akad., 77 HI, 177.

Ueber die an bestaubten und unreinen Spiegeln sichtbare Interferenzerscheinung.

Sekulie. Ann. Phys. u. Chem., 154, 308.

Prismatisches und Beugungsspectrum, Interferenzerscheinungen in demselben.

> Stefan (J.). Sitzungsber, d. Wiener Akad., 50 H, 127, 138-42; Ann. Phys. u. Chem., 123, 509.

Interferenzstreifen im prismatischen und im Beugungsspectrum.

Weinberg (M.). Carl's Repertorium, 18, 600-608.

INVERSION.

Reversal of the sodium lines.

Ackroyd (W.). Chem. News, 36, 164-5.

Renversement des raies spectrales des vapeurs métalliques.

Cornu (A.). Comptes Rendus, 73, 332.

Sur les raies spontanément renversables.

Cornu (A.). Comptes Rendus, 100, 1181-1188; Jour. Chem. Soc., 48, 853 (Abs.), 1885.

Sur le renversement des raies du spectre.

Duhem. Jour. de Phys., (2), 4, 221-4.

Ueber ein einfaches Verfahren die Umkehrung der farbigen Linien der Flammenspectra, insbesondere der Natriumlinie, subjectiv darzustellen.

Günther (C.). Ann. Phys. u. Chem., n. F. 2, 477.

Umkehrung der hellen Spectrallinien der Metalle, insbesondere des Natriums in dunkle.

Jahresber. d. Chemie (1865), 90.

Umkehrung der Spectra.

Kirchhoff (G.). Ann. Phys. u. Chem., 109, 275, 295; 110, 187; Jour. prackt. Chemie, 80, 480-3.

Wandlung der Spectren.

Lepel (F. von). Ber. chem. Ges., 11, 1146.

Reversal of the lines of metallic vapours.

Liveing (G. D.) and Dewar (J.). Nature, 24, 206; 26, 466.

Note on some phenomena attending the reversal of lines.

Lockyer (J. N.). Proc. Royal Soc., 28, 428-32; Beiblätter, 3, 608 (Abs.).

Wandlung der Spectren.

Moser (J.). Ber. chem. Ges., 11, 1416.

Umkehrung der Spectra.

Tyndall. Jour. prackt. Chemie, 85, 261.

Wandlung der Spectren.

Vogel (H. W.). Ber. chem. Ges., 11, 622, 913, 1363, 1562.

Leichte Umkehrung der Natriumlinie.

Weinhold (A.). Ann. Phys. u. Chem., 142, 321.

Re-reversal of sodium lines.

Young (C. A.). Nature, 21, 274-5; Beiblatter, 4, 370.

0

IODINE.

Note on the absorption spectrum of iodine in solution in carbon disulphide.

Abney and Festing. Proc. Royal Soc., 34, 480.

The dichroïsm of the vapour of iodine.

Andrews (T.). Chem. News, 24, 75; Jour. Chem. Soc., (2) 9, 993 (Abs.).

Action des rayons différemment réfrangible sur l'iodure et le bromure d'argent.

Becquerel (E.). Comptes Rendus, 79, 185-90; Jour. Chem. Soc., (2) 13, 30 (Abs.).

Iodine vapour; spark in iodine vapour.

Capron (J. R.). Photographed Spectra, London, 1877, p. 76.

Spectre de l'iode dans les tubes de Geissler.

Chautard (J.). Comptes Rendus, 82, 273.

Absorption spectra of iodine.

Conroy (Sir John). Proc. Royal Soc., 25, 46.

Wellenlänge der auf Iodsilber chemisch wirkenden Strahlen.

Eisenlohr (W.). Ann. Phys. u. Chem., 99, 162.

Spectre d'absorption du chlorure d'iode.

Gernez (D.). Comptes Rendus, 74, 660.

Spectre d'absorption des vapeurs de protobromure d'iode, etc.

Gernez (D.). Comptes Rendus, 74, 1190-92; Jour. Chem. Soc., (2)
10, 665 (Abs.); Phil. Mag., (4) 43, 473-5; Amer. Jour. Sci., (3) 4, 59-60.

Spectre d'absorption du chlorure d'iode.

Gernez (D.). Bull. Soc. chim. Paris, n. s. 17, 258; Ber. chem. Ges., 5, 219.

Iodure.

Gouy. Comptes Rendus, 85, 70.

Spectrum des Iods.

Jahresber. d. Chemie, 16, 109.

Absorptionsspectrum des Ioddampfer

Jahresber. d. Chemie, 23, 174.

Absorptionsspectrum des einfachen Chlorjods.

Jahresber, d. Chemie, 25, 139.

Absorptionsspectrum des Bromjods.

Jahresber, d. Chemie, 25, 140.

Absorptionsspectrum des Iods.

Jahresber, d. Chemie, 25, 141.

On the action of the less refrangible rays of light on silver iodide.

Lea (M. Carsy). Amer. Jour. Sci., (3) 9, 269-78; Jour. Chem. Soc. 1876, 1, 28 (Abs.).

Iodure de baryum dans le gaz chargé d'iode.

Lecoq de Boisbaudran (F.). Spectres Lumineux, Paris, 1874, p. 63.
65, planche VIII.

Action de la lumière sur l'acide iodhydrique.

Lemoine (G.). Comptes Rendus, 85, 144-7; Beiblätter, 510 (Abs.).

On the dispersion of a solution of mercuric iodide.

Liveing (G. D.). Proc. Philosoph. Soc. Cambridge, 3, 258-60; Beiblätter, 4, 610 (Abs.).

Sur les spectres des vapeurs aux températures elévees; iode.

Lockyer (J. N.). Comptes Rendus, 78, 1790; Nature, 30, 78; Chem. News, 30, 98.

Die Fluorescenz des Ioddampfes.

Lommel (E.). Ann. Phys. u. Chem., n. F. 19, 356.

Verbindungsspectren zur Entdeckung von Iod.

Mitscherlich (A.). Jour. prackt. Chemie, 97, 218.

Entdeckung sehr geringer Mengen von Chlor, Brown und Iod in Verbindungen.

Mitscherlich (A.). Ann. Phys. u. Chem., 125, 629.

Lo spettro di assorbimento del vapore di jodio.

Morghen (A.). Mem. Spettr. ital., 13, 127-31; Beiblätter, 8, 822 (Abs.); Atti R. Accad. Lincei, Transunti, (3) 8, 327-30.

Absorption-spectra of bromine and of iodine-monochloride.

Roscoe (H. E.) and Thorpe (T. E.). Proc. Royal Soc., 25, 4.

Sur la lumière émise par la vapeur d'iode.

Salet (G.). Comptes Rendus, 74, 1249.

Le spectre primaire de l'iode.

Salet (G.). Comptes Rendus, **75**, 76; Bull. Soc. chim. Paris, n. s. **18**, 216.

Absorptionsspectrum des Ioddampfes.

Thalén (R.). Ann. Phys. u. Chem., 139, 503.

Ueber die Brechung und Dispersion des Lichtes in Iod-Silber.

Wernicke (W.). Ann. Phys. u. Chem., **142**, 560-73; Jour. Chem. Soc., (2) **9**, 653 (Abs.); Ann. Chim. et Phys., (4) **26**, 287 (Abs.).

Uebereinstimmung des Absorptionsspectrums und des ersten Iodspectrums mit dem Spectrum dessen Dampfes.

Wüllner (A.). Ann. Phys. u. Chem., 120, 159, 161.

IRIDIUM.

Iridium arc spectrum.

Capron (J. R.). Photographed Spectra, London, 1877, p. 30.

IRON.

On the estimation of small quantities of phosphorus in iron and steel by spectrum analysis.

Alleyne (Sir J. G. N.). Jour. Iron and Steel Inst. (1875), 62-72.

Iron spark spectrum, and iron are spectrum; iron meteoric spectrum.

Capron (J. R.). Photographed Spectra, London, 1877, p. 31-3.

Le fer n'à donné aucune apparence de renversement.

Cornu (A.). Comptes Rendus, 73, 332.

Spectre du chlorure de fer.

Gouv. Comptes Rendus, 84, 231; Chem. News, 35, 107.

Ueber phosphorhaltigen Stahl.

Greiner (A.). Dingler's Jour., 217, 33-41; Jeur. Chem. Soc., 1876, 1, 454 (Abs.).

Distribution of heat in the various scources of radiation; black oxide of iron, etc.

Jacques (W. W.). Proc. Amer. Acad., 14, 161.

Spectrum der Bessemerflamme.

Jahresber, d. Chemie, (1867) 105, (1873) 150.

Perchlorure de fer en solution, étincelle.

Lecoq de Boisbaudran (F.). Spectres Lumineux, Paris, 1874, p. 122, planche XVIII.

Spectrum der Bessemerflamme.

Lielegg (A.). Sitzungsber, d. Wiener Akad., 55 II, 150, 153-81; 56 II, 3, 24-30; Jour. prackt. Chemie, 100, 383; Phil. Mag., (4) 34, 302.

On the iron lines widened in solar spots.

Lockyer (J. N.). Proc. Royal Soc., 31, 34c.

On the examination of the Bessemer flame with colored glasses and with the spectroscope.

Parker (J. Spear). Chem. News, 23, 25.

The spectroscopic examination of the vapours evolved on heating iron at atmospheric pressure.

Parry (J.). Chem. Soc., 49, 241-2; 50, 303; Ber. chem. Ges., 17.
Referate, 337 (Abs.); Jour. Chem. Soc., 46, 801 (Abs.); Beiblatter, 8, 646 (Abs.).

The spectroscope applied to the Bessemer Process.

Roscoe (H. E). Chem. News, 22, 44; 23, 174; Phil. Mag., (4) 25, 318.

Employment of spectrum analysis in the Bessemer Process.

Roscoe (H. E.). Jour. Iron and Steel Inst., 1871, 2, 38-62; Ber. chem. Ges., 4, 419-21 (Abs.).

Spectre du fer dans l'arc voltaïque.

Secchi (A.). Comptes Rendus, 77, 173.

Examination of the Bessemer Flame with colored glasses and with the spectroscope.

Silliman (J. M.). Chem. News, 22, 213; 23, 5.

Ueber das Eisenspectrum, erhalten mit dem Flammenbogen.

Thalén (Rob.). Nova Acta. Roy. Soc. Upsala, (3) 1884; Beiblätter, 9 (1885), 520 (Abs.).

Spectre du fer sur la surface du Soleil.

Vicaire (E.). Comptes Rendus, 76, 1540.

Ueber die Absorptionsspectren einiger Salze der Eisengruppe.

Vogel (H. W.). Ber. chem. Ges., 8, 1533-40.

Ueber eine empfindliche spectralanalytische Reaction auf Thonerde.

Vogel (H. W.). Ber. chem. Ges., 9, 1641.

Erkennung von Thonerde neben Eisensalzen.

Vogel (H. W.). Ber. chem. Ges., 10, 373; Jour. Chem. Soc., 1877, 2, 269 (Abs.).

Ueber die Erkennung des Kobalts, neben Eisen und Nickel.

Vogel (H. W.). Ber. chem. Ges., 12, 2313-16; Beiblätter, 4, 278 (Abs.); 5, 118 (Abs.).

Spectrum of the Bessemer flame.

Watts (W. M.). Phil. Mag., (4) 34, 437; 45, 81; Chem. News, 23, 49; Jour. prackt. Chemie, 104, 420.

Coïncidence of the spectrum lines of iron, calcium, and titanium.

Williams (W. M.). Nature, 8, 46.

Methods for the determination of metallic iron by spectral analysis.

Wolff. Chem. News, 39, 124.

Spectroscopic examination of gases from meteoric iron.

Wright (A. W.). Amer. Jour. Sci., (3) **9**, 294-302; Jour. Chem. Soc., 1876, **1**, 27 (Abs.).

JARGONIUM.

Jargonium, a new element accompanying zirconium.

Sorby (H. C.). Chem. News, 19, 121; Proc. Royal Soc., 17, 511

LANTHANUM.

Sur le poids atomique du lanthaue.

Clève (P. T.). Bull, Soc. chim. Paris, 39, 151-5; Chem. News, 47, 154-5; Amer. Jour. Sci., (3) 25, 381 (Abs.).

Spectre du lanthane, avec une planche.

Thalén (Rob.). Jour. de Phys., 4, 33.

LEAD.

Ueber den Einfluss der Temperatur auf die Brechungsexponenten der natürlichen Sulfate des Baryum, Strontium und Blei.

Arzruni (A.). Zeitschr. f. Krystallogr. u. Mineral., 1, 165-92; Jahrb. f. Mineral. (1877), 526 (Abs.); Jour. Chem. Soc., 34, 189 (Abs.).

Lead are spectrum, lead and antimony spark spectrum, lead and magnesium spark spectrum.

Capron (J. R.). Photographed Spectra, London, 1877, p. 34, 35.

Renversement des raics spectrales du plomb.

Cornu (A.). Comptes Rendus, 73, 332.

Spectre de l'azotate de plomb.

Gouy. Comptes Rendus, 84, 231; Chem. News, 35, 707.

Spectren zwischen Bleielectroden.

Jahresber. d. Chemie (1873), 152.

Spectre du sulfure de plomb.

Lallemand (A.). Comptes Rendus, 78, 1272.

Spectre du plomb.

Lecoq de Boisbaudran (F.). Comptes Rendus, 77, 1152; Chem. News, 24, 10.

Plomb métallique, étincelle.

Lecoq de Boisbaudran (F.). Spectres Lumineux, Paris, 1874, p. 147, planche XXIII.

LIGHT.

Vitesse de la lumière fait que les bords du spectre sont diffus.

Arago, Comptes Rendus, 36, 43.

Sur la rayonnement chimique qui accompagne la lumière, et sur les effets électriques en résultent.

Becquerel Ed.). Comptes Rendus, 13, 198.

Note accompagnant la presentation du II, volume de son ouvrage intitulé "Lumière, ses Causes et ses Effets."

Becquerel (Ed.). Comptes Rendus, 67. S.

Étude sur la part de la lumière dans les actions chimiques.

Chastaing P.). Ann. Chim. et Phys., (5, **11**, 145-223; Jour. Chem. Soc., 1877, **2**, 848 (Abs.); Berblatter, **1**, 515-20 (Abs.); (Look below, under Vogel.)

Lage der chemischen Strahlen im Spectrum des Sonnen-und Gas-Lichts.

Crookes (W.). Ann. Phys. u. Chem., 97, 619; Cosmos, 8, 90; Bull.
 Lond. Photographical Soc., 21 Jan., 1856.

Sur l'emploi de la lumière monochromatique, produite par les sels de soude.

> Henry (L. d'). Cemptes Rendus, 76, 222-4 (Abs.); Ann. Chem. u. Pharm., 169, 272; Dingler's Jour., 207, 405-7.

Constanz der Lichtspectren.

Jahresber, d. Chemie (1869), 174.

Sur le spectre anormal de la lumière.

Klercker (de). Comptes Rendus, 89, 734; Phil. Mag., (5) 8, 571-2; Beiblatter, 4, 273-4.

Lichtspectren.

Lecoq de Boisbaudran (F.). Ber, chem. Ges., 3, 140, 503, 572.

Zur Theorie des Lichtes.

London L. E. Ann. Phys. u. Chem., n. F. 16, 427-41.

Emploi du spectroscope pour distinguer une lumière plus faible dans une plus forte.

Seguin. Comptes Rendus, 68, 1322.

Chastaing's neue Theorie der chemischen Wirkung des Lichtes.

Vogel (H. W.). Ber. chem. Ges., **10**, 1638-44; Beiblätter, **1**, 681 (Abs.).

Les observations spectroscopiques à la lumière monochromatique.

Zenger (Ch. V.). Comptes Rendus, 94, 155; Amer. Jour. Sci., (3) 23, 322.

LIGHTNING.

(Look under Electricity.)

LIMITS.

Limites des couleurs dans le spectre.

Listing. Ann. Chim. et Phys., (4) 13, 460.

Limites des couleurs dans le spectre.

Thalén (Rob.). Ann. Chim. et Phys., (4) 18, 218.

LINES OF THE SPECTRUM.

Welchen Stoffen die Fraunhofer'schen Linien angehören.

Angstrom (A. J.). Ann. Phys. u. Chem., 117, 296-302.

Die Fraunhofer'schen Ringe, die Quetelet'schen Streifen und verwandte Erscheinungen.

Exner (K.). Sitzungsber, d. Wiener Akad., 76 H, 522.

Bestimmung des Brechungs-und Farbenzerstrenungs-Vermögens verschledener Glasarten.

Fraunhofer (Jos.). Denkschr. d. k. Akad. d. Wiss, zu Munchen. Band.
V (1814-15), 193-226, mit drey Kupfertafeln, Munchen, 1817, 4°.

Note on the theoretical explanation of Fraunhofer's lines.

Hartshorne (II.). Jour. Franklin Inst., 75, 38-43; 105, 38; Les Mondes, 45, 517-22; Beiblatter, 2, 561.

Die Zusammensetzung des Spectrums.

Jahresber, d. Chemie, 1, 197; 5, 126, 131; 8, 123.

Ueber die Fraunhofer'schen Linien.

Jahresber, d. Chemie, 3, 154; 4, 152; 5, 124; 6, 167; 7, 137.

Anwendung der Fraunhofer'schen Linien als chemisches Reagens.

Jahresber, d. Chemie, 5, 125.

Künstliches Spectrum einer Fraunhoferischen Linie.

Jahresber, d. Chemie (1868), 124.

Newton, Wollaston, and Fraunhofer's lines.

Johnson (A.). Nature, 26, 572; Beiblatter, 7, 65-6 (Abs.).

On certain remarkable groups in the lower spectrum.

Langley (S. P.). Proc. Amer. Acad., 14, 92.

Erklärung der Linien und Streifen in den Lichtspectren.

Lecoq de Boisbandran (F.). Ber. chem. Ges., 2, 614.

Mutual attraction of spectral lines.

Peirce (C. S.). Nature, 21, 108; Beiblatter, 4, 278 (Abs.).

On spectral lines of low temperature.

Salisbury (The Marquis of). Phil. Mag., (4) 45, 241-5; Jour Chem. Soc., (2) 11, 711 (Abs.); Amer. Jour. Sci., (3) 6, 141-2. The relation between spectral lines and atomic weights.

Vogel (E.). Pharmaceutical Jour. Trans., (3) 6, 464-5.

Darstellung eines Spectrums mit einer Fraunhofer'schen Linie. Wüllner (A.). Ann. Phys. u. Chem., 135, 174.

LIQUIDS.

- Pouvoirs absorbants des corps pour la chaleur; solutions dans l'eau, etc. Aymonnet. Comptes Rendus, 83, 971.
- Ueber eine einfache Methode zur approximativen Bestimmung der Brechungsexponenten flüssiger Körper.
 - Bodynski (J.). Carl's Repertorium, 18, 502-4; Beiblätter, 6, 932 (Abs.).
- Molecular-Refraction flüssiger organischer Verbindungen von hohem Dispersifvermögen.
 - Bruhl (J. W.). Ann. Phys. u. Chem., 235, 1-106; Ber. chem. Ges., 19, 2746 (Abs.); Jour. Chem. Soc., 52, 191 (Abs.).
- Spectroscopische Untersuchung der Constanten von Lösungen.
 - Burger (II.). Ber. chem. Ges., 11, 1876.
- Methoder til at maale Brydningsforholdet for farvede Vaedsker (Ueber die Messung des Brechungsverhältnisses gefärbter Flüssigkeiten).
 - Christiansen (C.). Oversigt kgl. Danske Vidensk, Selsk, Forh. (1882).
 217-504 Ann. Phys. u. Chem., n. F. 19, 257-67; Nature, 28, 608 (Abs.).
- Nouvelle méthode de détermination des indices de réfraction des liquides. Croullebois (M.). Ann. Chim. et Phys., (4) 22, 139-50.
- Recherches sur le pouvoir réfringent des liquides.
 - Damien (B. C.). Ann. de l'École normale, (2) 10, 233-304; Bei-blatter, 5, 579-84 (Abs.); Jour. de Phys., 10, 394-401, 434-34 (Abs.).
- On the specific refraction and dispersion of light by liquids.
 - Gladstone J. H. C. Rept. British Assoc, (1881), 591; Nature, 24, 468 (Abs.); Beiblatter, 6, 21 (Abs.).
- Ueber Regenbogen, gebildet durch Flüssigkeiten von verschiedenen Brechungsexponenten.
 - Hammerl, H.A., Sitzungsber, d. Wiener Akad., 86 11, 206-15; Bei-blatter, 7, 386-5 (Abs.).
- Preliminary notice of experiments concerning the chemical constitution of saline solutions.
 - Hartley (W. N.). Proc. Royal Soc., 22, 241-3; Chem. News, 29, 148.

ø

On the action of heat on the absorption spectra and chemical constitution of saline solutions.

Hartley (W. N.). Proc. Royal Soc., **23**, 372-2; Phil. Mag., (5) **1**, 244-5; Ber. chem. Ges., **8**, 765 (Abs.).

Application des franges de Talbot à la détermination des indices de réfraction des liquides.

Hurion. Comptes Rendus, 92, 452-3.

Spectren gefärbter Lösungen.

Jahresber, d. Chemie, 15, 34.

Ueber die Constitution von Lösungen.

Krüss (G.). Ber. ehem. Ges., 10, 1243-9; Jour. Chem. Soc., 42, 1018
(Abs.); Nature, 26, 568; Beiblätter, 6, 677 (Abs.); Amer. Jour. Sci.,
(3) 24, 141 (Abs.).

Ueber das Absorptionsspectrum der flüssigen Untersalpetersäure.

Kundt (A.). Ann. Phys. u. Chem., (2) 7, 64 (Abs.); Jour. Chem. Soc., (2) 9, 185 (Abs.).

Ueber den Einfluss des Lösungsmittels auf die Absorptionsspectra gelöster absorbirender Mittel.

Kundt (A.). Sitzungsber. d. Münchener Akad. (1877), 234-62; Ann. Phys. u. Chem., n. F. 4, 34-54.

Recherches sur l'illumination des liquides, etc.

Lallemand. Comptes Rendus, 69, 182.

Ueber die Molecularrefraction flüssiger organischer Verbindungen.

Landolt (H.). Sitzungsber. d. Wiener Akad. (1882), 62-91; Ann.
Phys. u. Chem., 213, 75-112; Beiblätter, 7, 843; Ber. chem. Ges.,
15, 1031-40; Jour. Chem. Soc., 42, 909 (Abs.).

Absorption des Lichtes durch gefürbte Flüssigkeiten.

Melde (F.). Ann. Phys. u. Chem., 124, 91; 126, 264.

Observations on the colour of fluorescent solutions.

Morton (H.). Amer. Jour. Sei., (3) **2**, 198-9, 355-7; Jour. Chem. Soc., (2) **9**, 992 (Abs.); **10**, 27 (Abs.); Chem. News, **24**, 77.

Ueber die Aenderung des Volumens und des Brechungsexponenten von Flüssigkeiten durch hydrostatischen Druck.

Quincke (G.). Ann. Phys. u. Chem., n. F. 19, 401-35; Sitzungsber.
 d. Berliner Akad. (1883), 409 (Abs.); Nature, 28, 308 (Abs.).

Ueber eine neue Flüssigkeit von hohem specifischen Gewicht, hohem Brechungsexponenten und grosser Dispersion.

Rohrbach (C.), Ann. Phys. u. Chem., n. F. 1, 169-74; Amer. Jour. Sci., (3) 26, 406 (Abs.); Jour. Chem. Soc., 46, 145 (Abs.).

On the absorption bands in the visible spectrum produced by certain colourless liquids.

> Russell (W. J.) and Lapraik (W.). Jour. Chem. Soc., 39, 168-73; Amer. Jour. Sci., (3) 21, 500 (Abs.); Nature, 22, 368-70; Beiblätter, 5, 44-5.

Ueber die Absorption des Lichtes durch Flüssigkeiten.

Schonn (J. L.). Ann. Phys. u. Chem., n. F. 6, 267-70.

Untersuchungen über die Abhängigkeit der Molecularrefraction flüssiger Verbindungen von ihrer chemischen Constitution.

Schröder (H.). Ber, chem. Ges., **15**, 964-8; Jour. Chem. Soc., **42**, 910 (Abs.).

Fernere Untersuchungen über die Abhängigkeit der Molecularrefraction flüssiger Verbindungen von ihrer chemischen Zusammensetzung.

Schroder (H.). Sitzungsber, d. Munchener Akad. (1882), 57-104;
Ann. Phys. u. Chem., n. F. 15, 636-75; 18, 148-75; Jour. Chem.
Soc., 42, 1153 (Abs.); 44, 538 (Abs.).

Sur les spectres d'absorption ultra-violets des différents liquides.

Soret (J. L.). Arch. de Genève, (2) 60, 298-300; Beiblatter, 2, 50 (Abs.).

Zur Speetralanalyse gefärbter Flüssigkeiten, Gläser und Dämpfe.

Stein (W.). Jour, prąckt. Chemie, 10, 368-84; Jour. Chem. Soc., (2) 13, 412 (Abs.).

Méthode nouvelle pour déterminer l'indice de réfraction des liquides.

Terquem et Trannin. Comptes Reidus, 78, 1843-5; Dingler's Jour., 212, 552-4; Jour. de Phys., 4, 232-8; Ann. Phys. u. Chem., 157, 302-9.

Ueber eine Methode zur Untersuchung der Absorption des Lichtes durch gef ärbte Lösungen.

Tumlirz (O.). Wiener Anzeigen (1882), 165 (Abs.); Beiblatter, 7, 895 (Abs.); Chem. News, 49, 201 (Abs.).

Absorption spectra of certain organic liquids.

Wellf (C. H.). Chem. News, 47, 178.

LITHIUM.

Ueber quantitative Bestimmung des Lithiums mit dem Spectral-Apparat.

Ballmann (H.). Zeitschr. analyt. Chemie, 14, 297-301; Jour. Chem.

Soc., 1876, 2, 550 (Abs.).

On the presence of lithium in meteorites.

Bunsen. Phil. Mag., (4) 23, 474.

Existence de la lithine et de l'acide borique dans les eaux de la mer Morte.

Dieulafait. Comptes Rendus, 94, 1352-54; Jour. Chem. Soc., 42, 1037 (Abs.); Ann. Chim. et Phys., (5) 25, 145-67.

La lithine, la strontiane et l'acide borique dans les eaux minérales de Contrexeville et Schinznach (Suisse).

Dieulafait. Comptes Rendus, **95**, 999-1001; Jour. Chem. Soc., **44**, 301 (Abs.).

Les salpêtres naturels du Chili et du Pérou au point de vue du rubidium, du cresium, du lithium et de l'acide borique.

Dieulafait. Comptes Rendus, 98, 1545-8; Chem. News, 50, 45 (Abs.).

On the blue band in the lithium spectrum.

Franckland. Phil. Mag., (4) 22, 472.

Recherches photométriques sur le lithium.

Gouy. Comptes Rendus, 83, 269; 85, 70.

Transparence des flammes colorées pour leur propres radiations; lithium, etc.

Gouy. Comptes Rendus, 86, 1078.

Spectrum des Lithiums in der Wasserstofflamme.

Jahresber. d. Chemie, 15, 30.

Funkenspectrum von kohlensäuren Lithium.

Jahresber, d. Chemie (1873), 152.

Sels de lithine en solution.

Lecoq de Boisbaudran (F.). Spectres Lumineux, Paris, 1874, p. 56. planche VI.

Spectre du lithium.

Lecoq de Boisbaudran. Conptes Rendus, 77, 1152; Bull. Soc. chim. Paris, n. s. 21, 125.

On the spectra of magnesium and lithium.

Liveing (G. D.) and Dewar (J.). Proc. Royal Soc., 30, 93-9; Belblåtter, 4, 366 (Abs.).

Note on the order of reversibility of the lithium lines.

Liveing (G. D.) and Dewar (J.). Proc. Royal Soc., 35, 76; Chem. News, 47, 183.

Sur les spectres des vapeurs aux températures élévées, lithium.

Lockyer (J. N.). Comptes Rendus, 78, 1790; Nature, 30, 78; Chem. News, 30, 98.

Sur l'origine de l'arsénic et de la lithine dans les eaux sulfatées calciques. Schlagdenhauffen. Jour. de Pharm., (5) **6**, 457-63; Jour. Chem. Soc., **44**, 302 (Abs.).

On the flame of lithia.

Talbot (H. Fox). Phil. Mag., (3) 4, 11.

De la présence de la lithine dans le sol de la Limagne et des eaux minérales de l'Auvergne. Dosage de cet alcali au moyen du spectroscope.

Truchot (P.). Comptes Rendus, **78**, 1022-4; Ber. chem. Ges., **7**, 653 (Abs.).

The blue band in the lithium spectrum.

Tyndall and Franckland. Phil. Mag., (4) 22, 151, 472.

LONGITUDINAL RAYS.

Note sur les raies longitudinales observées dans le spectre prismatique par M. Zantedeschi.

Babinet. Comptes Rendus, 35, 413. (Look below.)

Raies longitudinales du spectre.

Porro. Comptes Rendus, 35, 479.

Sur les lignes longitudinales du spectre.

Wartmann (E.). Arch. des Sciences phys. et nat., 7, 33; 10, 302; Phil. Mag., 32, 499.

Sur les causes des lignes longitudinales du spectre.

Zantedeschi (F.). Archives des Sciences phys. et nat., 12, 43; Corresp. scient. di Roma, No. 9, 69.

LUMINOUS SPECTRA.

Observations sur le rayonnement des corps lumineux.

Baudrimont. Comptes Rendus, 33, 496.

Divers effets lumineux qui résultent de l'action de la lumière sur les corps. Becquerel (E.). Comptes Rendus, 45, 817.

Constitution du spectre lumineux.

Lecoq de Boisbaudran (F.). Comptes Rendus, 69, 445, 606, 657, 694;
73, 658.

Recherches d'analyse spectrale.

Volpicelli. Comptes Rendus, 57, 571.

Sur les causes des effets lumineux, etc.

Volpicelli. Comptes Rendus, 69, 730.

MAGNESIUM.

Lead and magnesium spark spectrum, magnesium spark spectrum, magnesium arc spectrum.

Capron (J. R.). Photographed Spectra, London, 1877, p. 34, 35, 36.

Détermination des longueurs d'onde des radiations très réfrangibles du magnésium, du cadmium, du zinc et de l'aluminium.

Cornu (A.), Archives de Genève, (3) 2, 119-126; Beiblätter, 4, 34 (Abs.); Jour. de Phys., 10, 425-31.

Renversement des raies spectrales du magnésium.

Cornu (A.). Comptes Rendus, 73, 332.

Recherches sur le spectre du magnésium en rapport avec la constitution du Soleil.

Fièvez (C.). Bull. de l'Acad. de Belgique. (2) 50, 91-8; Beiblätter, 4, 789 (Abs.); Ann. Chim. et Phys., (5) 23, 366-72.

Spectre de chlorure de magnésium.

Gouv. Comptes Rendus, 84, 231.

Spectre continu des sels de magnésie.

Gouy. Comptes Rendus, 84, 878.

Spectrum des Magnesiumlichtes.

Jahresber, d. Chemie, 18, 96; 23, 174; 25, 145.

Chlorure de magnésium en solution.

Lecoq de Boisbaudran (F.). Spectres Lumineux, Paris, 1874, p. 85, planche XII.

Permanganate de potasse en solution.

Leco j de Boisbaudran (F.). Spectres Lumineux, Paris, 1874, p. 108, planche XVI.

Ueber eine emptindliche spectralanalytische Reaction auf Thonerde und Magnesia.

Lepel (F. von). Ber. chem. Ges., 9, 1641.

Ueber den Nachweis der Magnesia mit Hülfe des Spectroskops.

Lepel (F. von). Ber, chem. Ges., 9, 1845; 10, 159; Bull. Soc. chim. Paris, n. s. 28, 478; Jour. Chem. Soc., 1877, 1, 676; Beiblätter, 1, 240 (Als.). Der Alkannafarbstoff, ein neues Reagens auf Magnesiumsalze.

Lepel (F. von). Ber. chem. Ges., 13, 763-6.

Pflanzenfarbstoffe als Reagentien auf Magnesiumsalze.

Lepel (F. von). Ber. ehem. Ges., **13**, 766-8; Jour. Chem. Soc., **40**, 63 (Abs.).

On the spectra of magnesium and lithium.

Liveing (G. D.) and Dewar (J.). Proc. Royal Soc., **30**, 93-9; Beiblätter, **4**, 366 (Abs.).

Investigations on the spectrum of magnesium.

Liveing (G. D.) and Dewar (J.). Proc. Royal Soc., 32, 189-203; Nature, 24, 118.

Die dichroïtische Fluorescenz des Magnesiumplatincyanürs.

Lommel (E.). Ann. Phys. u. Chem., n. F. 8, 634; 9, 108; 13, 247.

Osservazioni delle inversioni della coronale 1474 k, e delle b del magnesio fatte nel Osservatorio di Palermo.

Riccò (A.). Mem. Spettr. ital., 10, 148-51.

Spectre du magnésium dans l'arc voltaïque.

Secchi (A.). Comptes Rendus, 77, 173.

Spectre du magnésium.

Seechi (A.). Comptes Rendus, 82, 275.

Magnésium dans la chromosphère du Soleil.

Tacchini (P.). Comptes Rendus, **75**, 23, 430; Phil. Mag., (4) **44**, 159-60.

Présence du spectre du magnésium sur le bord entière du Soleil.

Tacchini (P.). Comptes Rendus, 76, 1577.

Nouvelles observations relatives à la présence du magnésium sur le bord du Soleil, et réponse à quelques points de la théorie émise par M. Faye.

Taechini (P.). Comptes Rendus, 77, 606-9.

Nouvelles observations relatives à la présence du magnésium sur le bord du Soleil.

Tacchini (P.). Comptes Rendus, 82, 1385-7.

Spectre du magnésium sur la surface du Soleil.

Vicaire (E.). Comptes Rendus, 76, 1540.

Ueber eine empfindliche Spectralreaction auf Magnesium.

Vogel (H. W.). Ber, chem. Ges., 9, 1641; Jour. Chem. Soc., 1877, 1, 742 (Abs.); Beiblätter, 1, 240 (Abs.); Bull. Soc. chim. Paris, n. s. 28, 475.

Die Purpurin-Thonerde-Magnesia-Reaction.

Vogel (H. W.). Ber. chem. Ges., 10, 157, 373.

MANGANESE.

Sur l'effet du manganèse sur la phosphorescence du calcium carbonate.

Becquerel (E.). Comptes Rendus, **103**, 1098-1101; Jour. Chem. Soc., **52**, 190 (Abs.).

Ueber das Absorptionsspectrum des übermangansauren Kalis, und seine Benutzung bei chemisch-analytischen Arbeiten.

Brücke (E.). Chemisches Centralblatt, (3) 8, 139-143; Jour. Chem. Soc., 34, 242 (Abs.).

Manganese arc spectrum.

Capron (J. R.). Photographed Spectra, London, 1877, p. 36.

On the light reflected by potassium permanganate.

Conroy (Sir J.). Proc. Royal Soc., 2, 340-4; Phil. Mag., (5) 6, 454-8; Jour. Chem. Soc., 36, 425 (Abs.).

Spectre de l'azotate de manganèse.

Gouy. Comptes Rendus, 84, 231; Chem. News, 35, 107.

Absorptionslinien der Manganlösungen.

Hoppe-Seyler. Jour. prackt. Chemie, 90, 303.

Spectra of manganese in blowpipe beads.

Horner (Charles). Chem. News, 25, 139.

Anwendung der dunklen Linien des Spectrums als Reagens auf Mangansäure.

Jahresber, d. Chemie, 5, 125.

Absorptionsspectrum des Mangansuperchlorids.

Jahresber, d. Chemie (1869), 184.

Chlorure de manganèse en solution, étincelle courte; do., étincelle moyenne; do., dans le gaz.

Lecoq de Boisbaudran (F.). Spectres Lumineux, Paris, 1874, p. 110, 114, 120, planches XVII, XVIII.

Fluorescence des composés de manganèse dans la vide sous l'influence de l'arc voltaïque.

Lecoq de Boisbaudran (F.). Comptes Rendus, 103, 468-471; Jour. Chem. Soc., 52, 3 (Abs.); Beiblätter, 11, 37.

Das Absorption der Mangansäure nicht die Umkehrung einer dürch Manganchlorür gefärbten Flamme.

Muller (J.). Ann. Phys. u. Chem., 128, 335.

Spectrum von Mangan.

Simmler (R. Th.). Ann. Phys. u. Chem., 115, 425.

Das von übermangansaurem Kali reflectirte Licht.

Wiedemann (E.). Ann. Phys. u. Chem., 151, 625.

MAPS.

Recherches sur les spectres des métalloïdes.

Angström (A. J.) et Thalén (T. R.). Upsal., E. Berling, 1875, 4°.
Extrait des Nova Acta Reg. Soc. Sc. Upsal., Scr. III, Vol. IX.
Avec deux planches.

(Wave-lengths. Spectra of carburetted hydrogen; of carbonic oxide; bioxide of nitrogen; of light at the negative pole; of oxygen; of carbon; of hydrogen; some isolated rays of carburetted hydrogen, and of carbonic oxide.)

Sur le spectre normal du Soleil, partie ultra-violette.

Cornu (A.). Paris, Gauthier-Villars, 1881, 4°. Extrait des Annales de l'École normale supérieure, (2) 9 (1880). Avec deux planches. (Wave-lengths.)

Étude du spectre solaire.

Fievez (Ch.). Bruxelles, F. Hayez, 1882, 4°.

(Wave-lengths. Lines 6399 to 4522.)

Extrait des Annales de l'Observatoire royal de Bruxelles, n. sér., t. IV.

Étude de la région rouge (A-C.) du spectre solaire.

Fievez (Ch.).
F. Hayez, Bruxelles, 1883, 4°.
Extrait des Annales de l'Observatoire royal de Bruxelles, n. sér., t. V.
Avec deux planches. (Wave-lengths. Lines 7500 to 6500.)

Studien auf dem Gebiete der Absorptionsspectralanalyse.

Hasselberg (B.). St. Pétersbourg, et à Leipzig (L. Voss), 1878, 4°.
Mit vier Karten. Mém. Acad. imp. des Sci. de St. Pétersbourg, (7)
26, No. 4.

(Wave-lengths. Absorptionspectra of hypernitric acid at different densities, and absorptionspectrum of bromine.)

Ueber die Spectra der Cometen, und ihre Beziehung zu denjenigen gewisser Kohlenverbindungen.

Hasselberg (B.). St. Pétersbourg, 1880, Leipzig (G. Haessel), 4°. Mit einem Tafel. Mém. de l'Acad. imp. St. Pétersbourg, (7) 28, No. 2.

Untersuchungen über das zweite Spectrum des Wasserstoffs.

Hasselberg (B.). St. Pétersbourg, 1882, Leipzig (G. Haessel), 4°. Mém. de l'Acad. imp. St. Pétersbourg, (7) 30, No. 7. Mit einem Tafel. (Wave-lengths.) Untersuchungen über das Sonnenspectrum und die Spectren der chemischen Elemente.

Kirchhoff (G.). Besondere Abdrucke aus den Abhandlungen der Berliner Akademie der Wissenschaften, 1861 und 1862. 1. Theil, Dummler, Berlin, 1864, 4°. H. Theil, Dummler, Berlin, 1875, 4°. Mit vier Tafeln.

(He used an arbitrary scale.)

Recherches sur le spectre solaire ultra-violet, et sur la détermination des longueurs d'onde, suivies d'une note sur les formules de dispersion

> Mascart (E.). Extrait des Annales scientifiques de l'École normale supérioure, t. I. (1864), Paris, Gauthier-Villars, 1864, 4°.

Recherches sur la détermination des longueurs d'onde.

Maseart E.A. Paris, Gauthier-Vallars, 1866, 42. Extract des Annales de l'École normale supérieure, t. IV. Avec un planche.

[A photographic map of the solar spectrum is being prepared by Prof. Rowland, and some parts of it have been distributed, viz: wave-lengths 0.0003675 to 0.0005796.]

Mémoire sur la détermination des longueurs d'onde des raies métalliques.

Thalén , Rob.). Upsal., W. Schultz, 1868, 4°. Mit zwei Tafeln. Extrait des Nova Acta Reg. Soc. Sci. Upsal., Ser. 111, Vol. V1. (Gives the wave-lengths of the bright rays of the metals.)

Le spectre d'absorption de la vapeur d'iode.

Thalen (Rob.). Upsal., Ed. Berling, 1869, 4°. Avec trois planches.

[Thollon's map of the solar spectrum is in Vol. I of the Annales de l'Observatoire de Nice, which is about to appear. Vol. II will contain a smaller map or sheets of the group B.]

MERCURY.

Mercury spark spectrum.

Capron (J. R.). Photographed Spectra, London, 1877, p. 37.

Spectre du cinabre, de l'oxide de mercure, de l'iodure de mercure.

Lallemand (A.). Comptes Rendus, 78, 1272.

Bichlorure de mercure en solution, étincelle.

Lecoq de Boisbaudran (F.). Spectres Lumineux, Paris, 1874, p. 169, planche XIV.

On the dispersion of a solution of mercuric iodide.

Liveing (G. D.). Proc. Philosoph. Soc. Cambridge, 3, 258-60; Beiblätter, 4, 610 (Abs.).

Spectrum of mercury at elevated temperatures.

Lockyer (J. N.). Chem. News, 30, 98; Nature, 30, 78; Comptes Rendus, 78, 178.

Emissionsspectra der Haloïdverbindungen des Quecksilbers.

Peirce (B. O.). Ann. Phys. u. Chem., n. F. 6, 597.

Ueber die Spectren des Wasserstoffs, Quecksilbers, und Stickstoffs.

Vogel (H. W.). Monatsber. d. Berliner Akad. (1879), 586-604; Beiblätter, 4, 125-30; Amer. Jour. Sci., (3) 19, 406 (Abs.).

METALS.

Researches on the spectra of the metalloids.

Angström (A. J.) and Thalén (Rob.). Acta Soc. Upsala, (3) 9; Nature, 15, 401 (Abs.); Beiblätter, 1, 35-47; Bull. Soc. chim. Paris, n. s. 25, 183.

Spectres d'émission infra-rouges des vapeurs métalliques.

Beequerel (H.). Comptes Rendus, 97, 71-4; 99, 374; Chem. News,
48, 46 (Abs.); Nature, 28, 287 (Abs.); Beiblatter, 7, 701 (Abs.);
Amer. Jour. Sci., (3) 26, 321 (Abs.); 28, 459 (Abs.); Ber. chem.
Ges., 16, 2487 (Abs.); Jour. Chem. Soc., 46, 1 (Abs.); Zeitschr. f.
analyt. Chemie, 23, 49 (Abs.); Phil. Mag., Oct., 1884.

Procédé pour obtenir en projection les raies des métaux et leur renversement.

Boudréaux. Jour. de Phys., 3, 306.

Ueber die electrische Spectra der Metallen.

Brassack. Zeitschr. f. d. Gesellsch. f. Naturwiss, 9, 185.

Dissociation of the metalloid elements.

Brodie (B. C.). Nature, 21, 491-2.

Discoveries of the new alcaline metals.

Bunsen (R.). Ber. d. Berliner Akad., 10 Mai, 1860; Chem. News, 3, 132.

Kleinste im Inductionsfunken durch die Spectralanalyse noch erkennbare Gewichtsmenge verschiedener Metalle; do., im Bunsen'schen Gasflamme: Vergleich beider.

Cappel (E.). Ann. Phys. u. Chem., 139, 631.

Some experiments on metallic reflection with the spectroscope.

Conroy (Sir J.). Proc. Royal Soc., 28, 244.

On the projection of the spectra of the metals.

Cooke (J. P.). Amer. Jour. Sci., (2) 40, 243.

Renversement des raies spectrales des vapeurs métalliques.

Cornu (A.). Comptes Rendus, 73, 332; Bull. Soc. chim. Paris, n. s. 15, 5.

On the means of increasing the intensity of metallic spectra.

Crookes (W.). Chem. News, 5, 234.

Aualyse des spectres colorés par les métaux.

Debray (M. H.). Comptes Rendus, 54, 169.

Sur l'emploi de la lumière Drummond et sur la projection des raies brilliants des flammes colorées par les métaux.

Debray (M. H.). Ann. Chim. et Phys., (3) 65, 331.

Remarques sur les métaux nouveaux de la gadolinite, et de la samarskite; holmium ou philippine, thulium, samarium, décipium.

Delafontaine. Comptes Rendus, 90, 221.

Recherches sur l'influence des éléments électronégatifs sur le spectre des métaux, avec planches des spectres de chloride de cuivre et de bromide de cuivre.

Diacon (E.). Ann. Chim. et Phys., (4) 6, 1.

Sur les spectres des métaux alcalins.

Diacon et Wolf. Mém. de l'Acad. de Montpellier, 1863; Comptes Rendus, 55, 334.

Spectres des métalloïdes des familles du soufre, du chlore et de l'azote.

Ditte. Bull. Soc. chim. Paris, n. s. 16, 229.

On the use of the prism in qualitative analysis. (Gives the absorption spectra of many coloured metallic salts.)

Gladstone (J. H.). Jour. Chem. Soc. (1858), 10, 79.

Recherches sur les spectres des métaux à la base des flammes.

Gouy. Comptes Rendus, 84, 231-4; Phil. Mag., (5) 3, 238-40; Chem. News, 35, 107-8; Beiblätter, 1, 238 (Abs.); Bull. Soc. chim. Paris, n. s. 28, 352.

Das electrische Verhalten der im Wasser oder in Salzlösungen getauchten Metalle bei Bestrahlung durch Sonnen-oder Lampen-Licht.

Hankel (W.). Ann. Phys. u. Chem., n. F. 1, 410.

Investigation by means of photography of the ultra-violet spark spectra emitted by metallic elements and their combinations under varying conditions.

Hartley (W. N.). Chem. News, 48, 195.

Beiträge zur Spectroscopie der Metalloïde.

Hasselberg (B.). Bull. Acad. St. Pétersbourg, 27, 405-17.

Auflösung heller Streifen in Metallspectren.

Jahresber, d. Chemie., 15, 29.

Unterschiede in den Spectren bei Anwendung der Metalle oder der Chlormetalle.

Jahresber, d. Chemie, 15, 31, 32.

Constanz der Metallspectren.

Jahresber, d. Chemie, 15, 32.

Electrische Metallspectren.

Jahresber, d. Chemie, **15**, 33; **16**, 104, 105, 107, 113; **17**, 115; **18**, 90, 91.

Einfluss nichtmetallischer Elemente auf die Speetra der Metalle.

Jahresber, d. Chemie, 18, 87.

Umkehrung der hellen Spectrallinien der Metalle, insbesondere des Natriums in dunkle.

Jahresber, d. Chemie, 18, 90.

Objectivdarstellung der Metallspectren.

Jahresber, d. Chemic, 26, 147.

Spectren der Metalloïden.

Jahresber, d. Chemie, 26, 149,

Metallspectra.

Jahresber, d. Chemic. 28, 122,

Absorptionspectra von Metalldämpfen.

Jahresber, d. Chemie, 28, 124, 125.

Quelques spectres métalliques; plomb, chlorure d'or, thallium, lithium. Lecoq de Boisbaudran (F.). Comptes Rendus, 77, 1152; Bull. Soc.

chim. Paris, n. s. 21, 125-6.

Sur un nouveau ordre des spectres métalliques.

Leccel de Boislandran (F.). Comptes Rendus, 100, 1457-40; Jour, Chem. Soc., 48, 949 (Abs.).

Spectra of metallic compounds.

Leeds (A. R.). Jour. Franklin Inst., 90, 194

Reversal lines of metallic vapours.

Liveing (G. D. and Dewar (J.). Proc. Royal Soc., (No. 1) 27, 132-6;
(No. 11) 27, 350-4;
(No. 111) 27, 494-6;
(No. IV) 28, 367-72;
(No. VI) 28, 471-5;
(No. VII) 29, 402-6;
Beiblatter, 2, 261 (Abs.), 490 (Abs.; 3, 710 (Abs.; 4, 364 (Abs.))

On the disappearance of some spectral lines and the variations of metallic spectra due to mixed vapours.

Liveing (G. D.) and Dewar (J.). Proc. Royal Soc., 33, 428-34; Jour. Chem. Soc., 44, 2-3 (Abs.); Beiblätter, 6, 676 (Abs.).

Spectral lines of the metals developed by exploding gases.

Liveing (G. D.) and Dewar (J.). Phil. Mag., (5) 18, 161-73.

On the circumstances producing the reversal of the spectral lines of metals.

Liveing (G. D.) and Dewar (J.). Proc. Philosoph. Soc. Cambridge, 4, 256-65; Beiblätter, 7, 530 (Abs.).

Quantitative analysis of certain alloys by means of the spectroscope.

Lockyer (J. N.) and Roberts (W. C.). Proc. Royal Soc., 21, 507-8;
Phil. Trans., 164, 495-9;
Phil. Mag., (4) 47, 311 (Abs.);
Jour. Chem. Soc., (2) 12, 495 (Abs.);
Ber. chem. Ges., 6, 1426 (Abs.).

On the absorption spectra of metals volatilized by the oxyhydrogen flame.

Lockyer (J. N.) and Roberts (W. C.). Proc. Royal Soc., 23, 344-9; Phil. Mag., (5) 1, 234-9; Jour. Chem. Soc., 1872, 2, 156 (Abs.).

On a new method of studying metallic vapours.

Lockyer (J. N.). Proc. Royal Soc., **22**, 371-8; **29**, 266-72; Beiblätter, **4**, 36 (Abs.).

Notice sur les nouveaux métaux obtenus du gadolinite.

Mendelejeff. Jour. Soc. phys. chim. russe, 13, 517-20; Bull. Soc. chim. Paris, 38, 139-43.

Spectra der Haloïdsalze.

Mitscherlich (A.). Ann. Phys. u. Chem., 121, 474.

De l'influence de la température sur les spectres des métalloïdes.

Monckhoven (D. von). Comptes Rendus, 95, 520.

Sur le spectre des métaux alcalins dans les tubes de Geissler.

Salet (G.). Comptes Rendus, 82, 223-6, 274-5; Nature, 13, 314; Phil.
Mag., (5) 1, 331-3; Jour. Chem. Soc., 1876, 1, 863 (Abs.); Ann.
Phys. u. Chem., 158, 329-334.

Sur les spectres des métalloïdes.

Salet (G.). Ann. Chim. et Phys., (4) 28, 5-71; Chem. News, 27, 59, 178 (Abs.).

On the spectra of the metalloids.

Schuster (A.). Phil. Trans. (1879), 170, 37-54; Proc. Royal Soc.,
27, 383-8 (Abs.); Beiblätter, 1, 280; 2, 492 (Abs.); 3, 749 (Abs.);
Jour. Chem. Soc., 38, 430 (Abs.); Nature, 15, 447-8.

Les spectres du fer et de quelques autres métaux dans l'arc voltaïque. Secchi (A.). Comptes Rendus, 77, 173; Chem. News, 28, 82.

Recherches sur l'absorption des rayons ultra-violets par diverses substances; nouvelle étude des spectres d'absorption des métaux terreux.

Soret (J. L.). Arch de Genève, (3) 4, 261-92; Beiblätter, 5, 124 (Abs.).

Sur la fluorescence des sels des métaux terreux.

Soret (J. L.). Comptes Rendus, 88, 1077-8; Jour. Chem. Soc., 36, 862 (Abs.); Beiblatter, 3, 620 (Abs.).

Mémoire sur la détermination des longueurs d'onde des raies métalliques ; spectres des métaux dessinés d'après leurs longueurs d'onde.

Thalén (R.). Ann. Chim. et Phys., (4) 18, 202.

Optische Eigenschaften dünner metallischen Schichten.

Voigt (W.). Ann. Phys. u. Chem., (2) 25, 95-114.

Leichte Umkehrung der Natriumlinie.

Weinhold (A.). Ann. Phys. u. Chem., 142, 321.

Ueber die Absorption und Brechung des Lichtes in metallisch undurchsichtigen Körpern.

Wernicke (W.). Monatsber, d. Berliner Akad. (1874), 728-37; Ann. Phys. u. Chem., 155, 87-95.

Electrische Spectra der Metalle.

Willigen (S. M. von der). Ann. Phys. u. Chem., 106, 619.

METEOROLOGICAL.

The spectroscope and weather forecasting.

Abercromby (R.). Nature, 26, 572-3.

Rain-band Spectroscopy.

Bell (L.). Amer. Jour. Sci., (3) 30, 347.

A plea for the rain-band.

Capron (J. R.). Observatory (1882), 42-7, 71-7; Beiblätter, 6, 485 (Abs.).

The spectroscope as an aid to forecasting the weather.

Cory (F. W.). Quar. Jour. Meteorolog. Soc., 9, 234-9.

Ueber Regenbogen gebildet durch Flüssigkeiten von verschiedenen Brechungsexponenten.

Hammerl (H.). Sitzungsber. d. Wiener Akad., 86 II, 206-15; Beiblätter, 7, 383 (Abs.).

Spectroscopic observation of the red-coloured sky at sunset, 1884, Jan. 9, 5 h. 20 min.

Konkoly (N. von). Monthly Notices Astronom. Soc., 44, 250-1.

Observations, à propos d'une note récente de M. Reye sur les analogies qui existent entre les taches solaires et les tourbillons de notre atmosphère.

Marié-Davy. Comptes Rendus, 77, 1227-9.

The green Sun.

Manley (W. R.). Nature, 28, 611-12.

Observations on the rain-band from June, 1882, to Jan., 1883.

Mill (H. R.). Proc. Royal Soc. Edinburgh, 12, 47-56.

Note sur les cyclones terrestres et les cyclones solaires.

Parville (H. de). Comptes Rendus, 77, 1230-3.

The solar spectrum in a hail-storm.

Romanes (C. H.). Nature, 25, 507; Beiblätter, 6, 486 (Abs.).

The spectroscope and the weather.

Smith (C. Mitchie). Nature, 12, 366.

The green Sun.

Smith (C. Mitchie). Nature, 29, 28.

The remarkable sunsets.

Smith (C. Mitchie). Nature, 29, 381-2.

Spectroscopic prevision of rain with a high barometer.

Smith (C. Piazzi). Nature, 12, 231-2, 252-3; Ann. Phys. u. Chem., 157, 175 (Abs.).

The warm rain-band in the daylight spectrum.

Smyth (C. Piazzi). Nature, 14, 9.

Three years' experimenting in spectrum analysis.

Smith (C. Piazzi). Nature, 22, 193.

Spectroscopic weather discussions.

Smyth (C. Piazzi). Nature, 26, 551-1; Beiblatter, 6, 877 (Abs.).

Rain-band spectroscopy attacked again.

Smyth (C. Piazzi). Nature. 29, 525; Zeitschr, d. eesterreicher Ges. f. Meteorol., 14, 151-2.

Précédé pour déterminer la direction et la force du vent : suppression des gironettes ; application aux cyclones.

Tarry (II.). Comptes Rendus, 77, 1117-20.

The use of the spectroscope in meteorological observations.

Upton (Winslow). U. S. Signal Service Notes (1882), No. 4: Mec., Spettr. ital., 13, 113-18.

MICROSCOPIC SPECTRA

Prismatic examination of microscopic objects.

Huggins (William). Trans. Roy. Microscopical Soc. (1865) Quie. Jour. Microscopical Sci., July, 1865.

Anwendung der Spectralanalyse auf mikroscopische Untersuchungen.
Jahresher, d. Chemie (1867), 105

MINERAL WATERS.

La lithine, la strontiane et l'acide borique dans les eaux minérales de Contrexeville et Schinznach (Suisse).

> Dieulafait. Comptes Rendus, 95, 999-1001; Jour. Chem. Soc., 44, 301 (Abs.).

Existence de l'acide borique en quantité notable dans les lacs salés de la période moderne et dans les eaux salines naturélles, qu'elles soient ou non en relation avec des produits éruptifs.

Dienlafait. Ann. Chim. et Phys., (5) 25, 145-67.

- Untersuchung einiger Mineralwässer und Soole mittelst Spectralanalyse. Redtenbacher (Jos.). Sitzungsber. d. Wiener Akad., **44** H. 187, 151, 153-4.
- Sur l'origine de la lithine et de l'arsénic dans les eaux sulfatées calciques. Schlagdenhauffen. Jour. de Pharm., (5) **6**, 457-63; Jour. Chem. Soc., **44**, 302 (Abs.).
- Spectral-reactionen bündnerischen Gesteine und Mineralwässer. Simmler (R. Th.). Ann. Phys. u. Chem., 115, 434-48.
- De la présence de la lithine dans le sol de la Limagne et dans les eaux minérales d'Auvergne. Dosage de cet alcali au moyen du spectroscope.

Truchot (P.). Comptes Rendus, 78, 1022-4 · Ber. chem. Ges., 7, 653.

MINIUM.

Spectre du minium.

Lallemand (A.). Comptes Rendus, 78, 1272.

MOLYBDENUM.

Molybdenum are spectrum.

Capron (J. R.). Photographed Spectra, London, 1877, p. 37.

MOSANDRUM.

Le mosandrum, un nouvel élément.

Smith (J. Lawrence). Comptes Rendus, 87, 148-51; note par M. Delafontaine, Comptes Rendus, 87, 600-2, and Jour. Chem. Soc., 36, 117 (Abs.).

MULTIPLE SPECTRA.

Multiple Spectra.

Lockyer (J. N.). Nature, **22**, 4-7, 309-12, 562-5; Beiblätter, **5**, 118-22 (Abc.).

NICKEL.

Nickel arc spectrum; nickel spark spectrum; bismuth and nickel spark spectrum.

Capron (J. R.). Photographed Spectra, London, 1877, p. 20, 38.

Salpetersaure Nickellösung als Absorptionspräparat.

Emsmann (H.). Ann. Phys. u. Chem., Ergänzungsband, 1874, 6, 334; Phil. Mag., (4) 46, 329; Jour. Chem. Soc., (2) 12, 113.

Spectrum von Nickel.

Jahresber. d. Chemie, (1872) 145, (1873) 154.

Chlorure de niekel en solution, étineelle.

Leeoq de Boisbaudran (F.). Spectres Lumineux, Paris, 1874, p. 133, planche XIX.

Ueber die Erkennung des Kobalts neben Eisen und Nickel.

Vogel (H. W.). Ber. chem. Ges., **12**, 2313-16; Beiblätter, **4**, 278 (Abs.); **5**, 118 (Abs.).

NIOBIUM.

Niobium arc spectrum.

Capron (J. R.). Photographed Spectra, London, 1877, p. 38.

NITROGEN.

Spectrum von Stickoxyd, und von Stickstoff.

Angström (A. J.). Ann. Phys. u. Chem., 94, 156-7.

Spectre de l'acide azotique fumant.

Becquerel (H.). Comptes Rendus, 85, 1227.

Spectre de l'azote.

Becquerel (H.). Comptes Rendus, 90, 1407.

Spectre du protoxyde de l'azote.

Becquerel (II.). Comptes Rendus, 90, 1407.

Absorption spectrum of nitrogen peroxide.

Bell (L.). Amer. Chem. Jour., 7, 32-4; Jour. Chem. Soc., 48, 949 (Abs.).

Observations of the lines of the solar spectrum, and on those produced by the Earth's atmosphere and by the action of nitrous acid gas.

Brewster (Sir D.). Phil. Mag., (3) **8**, 384

Carattere spettroscopico della soluzione ammoniacale di carminio, di cocciniglia e di altre sostanze.

> Campani (G.). Gazz. chim. ital., 1, 471-2; Jour. Chem. Soc., (2) 9, 1096 (Abs.); Ber. chem. Ges., 5, 287.

Nitrogen spectra.

Capron (J. R.). Photographed Spectra, London, 1877, p. 55.

Sur le spectre d'absorption de l'acide pernitrique.

Chappuis (J.). Comptes Rendus, 94, 946-8; Jour. Chem. Soc., 42, 1017 (Abs.); Beiblatter, 6, 483 (Abs.); Amer. Jour. Sci., (3) 24, 58 (Abs.); Jour. de Phys., (2) 3, 48.

Spectre des bandes de l'azote, son origine.

Deslandres (H.). Comptes Rendus, 101 (1885), 1256-60; Jour. Chem. Soc., 50, 189 (Abs.).

Spectre de l'azote.

Deslandres (H.). Comptes Rendus. 103, 375-9; Jour. Chem. Soc., 50, 957 (Abs.); Beiblatter, 11, 36 (Abs.).

Spectrum von Ammoniak und von Schwefelammon.

Dibbits (H. C.). Ann. Phys. u. Chem., 122, 518, 534.

Les lacs salpêtres naturels du Chili et du Pérou.

Dieulafait. Comptes Rendus, 98, 1545-8; Chem. News, 50, 45 (Abs.).

Spectres appartenant aux familles de l'azote et du chlore.

Ditte (A.). Comptes Rendus, 73, 738; Bull. Soc. chim. Paris, n. s. 16, 229.

Salpetersaure Nickellösung.

Emsmann (H.). Ann. Phys. u. Chem., Ergänzungsband, 6 (1873), 334; Jahresber. d. Chemie (1873), 154.

Recherches sur l'intensité relative des raies spectrales de l'hydrogène et de l'azote en rapport avec la constitution des nébuleuses.

Fiévez (C.). Bull. Acad. Belgique, (2) 49, 107-113; Phil. Mag., (5)
9, 309-12; Beiblätter, 4, 461 (Abs.); Ann. Chim. et Phys., (5) 20, 179-85; Jour. Chem. Soc., 40, 69-70.

Action of nitrates on the blood.

Gamge (A.). Phil. Trans. (1868), 589; Jour. prackt. Chemie, 105, 287; Ber. chem. Ges., 9, 833.

Sur les raies d'absorption produites dans le spectre par les solutions des acides hypoazotiques.

Gernez (D.). Comptes Rendus, 74, 465-8; Jour. Chem. Soc., (2) 10, 280 (Abs.); Ber. ehem. Ges., 5, 218; Bull. Soc. ehim. Paris, n. s. 17, 257.

Note sur le prétendu spectre d'absorption spécial de l'acide azoteux.

Gernez (D.). Bull. Soc. Philom., (7) 5, 42.

The refraction equivalents of nitrogen, etc., in organic compounds.

Gladstone (J. H.). Proc. Royal Sec., **31**, 327-330; Ber. chem. Ges., **14**, 1553 (Abs.).

Spectres de l'azotate de cuivre, de l'azotate de manganèse, de l'azotate de plomb.

Gouy. Comptes Rendus, 84, 231; Chem. News, 35, 107.

Spectre de l'azotate d'argent.

Gouy. Comptes Rendus, 84, 231.

Azotate.

Gouy. Comptes Rendus, 85, 70.

Zur Spectroscopie des Stickstoffs.

Hasselberg (B.). Mém. de l'Acad. de St. Pétersbourg, (7) 32, 50 pp. sep.; Beiblätter, 9, 578 (Abs.).

Ueber die Spectralerscheinungen des Phosphorwasserstoffs und des Ammoniaks.

Hofmann (K. B.). Ann. Phys. u. Chem., 147, 92-101; Jour. Chem. Soc., (2) 11, 340 (Abs.).

Spectrum des Stickstoffs.

Jahresber, d. Chemie, 16 (1863), 110; 25 (1872), 142, 144, 145.

Absorptionsspectrum des Dampfs der salpetrigen-und untersalpeter-Säure. Jahresber, d. Chemie, **22** (1869), 183.

Spectroscopische Untersuchung der Absorptionsspectren der flüssigen Untersulpetersäure.

Jahresber, d. Chemie, 23 (1870), 172; 25 (1872), 137.

Absorptionsspectrum des Didymnitrats.

Jahresber, d. Chemie, 23 (1870), 321.

Absorptionsspectrum der Ammoniakflamme.

Jahresber, d. Chemie, 25 (1872), 142, 143,

Ucher das Absorptionsspectrum der flüssigen Untersalpetersäure.

Kundt (A.). Ann. Phys. u. Chem., 142, 157-9; Zeitsehr, f. analyt. Chem., (2) 7, 64 (Abs.); Jour. Chem. Soc., (2) 9, 185 (Abs.).

Azotate d'argent en solution, étincelle.

Leccel de Boi-baudran (F.). Spectres Lumineux, Paris, 1874, p. 167, planche XXV.

Constitution des spectres lumineux.

Lecoq de Boisbaudran F.). Comptes Rendus, 70, 144, 974, 1090.

Spectre du nitrate de didyme.

Lecoq de Beisbaudran (F.) et Smith (Lawrence). Comptes Rendus. 88, 1167.

Spectre du nitrate de décipium.

Lecoq de Boisbaudran (F.). Comptes Rendus, 89, 212.

Spectre du nitrate de samarium.

Lecoq de Boisbaudran (F.). Comptes Rendus, 89, 212.

Spectre de l'ammoniaque par renversement du courant induit.

Lecoq de Boisbaudran (F.). Comptes Rendus, 101, 42-5.

Spectres des vapeurs aux températures élévées, nitrogène.

Lockyer (J. N.). Comptes Rendus, 78, 1790; Chem. News, 30, 98.

Sur les spectres de l'acide azoteaux et du peroxyde d'azote.

Luck (E.). Bull. Soc. chim. Paris, n. s. 13, 498.

Absorption bands of nitrous acid gas.

Miller (W. Hallows). Phil. Mag., (3) 2, 381.

Benützung des Ammoniaks zur Spectralanalyse.

Mitscherlich. Jour. prackt. Chemie, 86, 14.

Die Spectren der salpetrigen und der untersalpetrigen Säure.

Moser (J.). Ann. Phys. u. Chem., n. F. 2, 139-40.

Spectrum von Stickgas, und von Stickoxydul.

Plücker. Ann. Phys. u. Chem., 105, 76, 81.

Spectra am negativen Pol im Stickstoff und Wasserstoffröhren; Modification beider Röhren nach langem Gebrauch.

Reitlinger (E.). Ann. Phys. u. Chem., 141, 135.

Spectrum einer Lösung von salpetersauren Didymoxyd.

Rood (O. N.). Ann. Phys. u. Chem., 117, 350.

Sur le spectre de l'azote et sur celui des métaux alcalins dans les tubes de Geissler.

Salet (G.). Comptes Rendus, 82, 223-6, 274-5; Nature, 13, 314;
Phil. Mag., (5) 1, 331-3; Jour. Chem. Soc., 1876, 1, 863-4 (Abs.);
Ann. Phys. u. Chem., 153, 329-34.

Spectrum des electrischen Glimmlichts in atmosphärischer Luft; Stiekstoff gibt je nach der Temperatur drei Spectra.

Sehimkow (A.). Ann. Phys. u. Chem., 129, 513-16.

Ueber die Absorption des Lichts durch Ammoniak, etc.

Schönn (J. L.). Ann. Phys. u. Chem., Ergänzungsband, 8 (1978), 670-5; Jour. Chem. Soc., 34, 693 (Abs.).

On the spectrum of nitrogen.

Sehuster (A.). Proc. Royal Soc., 20, 484-7; Phil. Mag., (4) 44, 537-41; Ann. Phys. u. Chem., 147, 106-12; Amer. Jour. Sci., (3) 5, 131 (Abs.); Jour. Chem. Soc., (2) 11, 340 (Abs.).

Bestimmung der Salpetersäure auf spectralanalytischem Wege.

Settegast (H.). Zeitschr. f. analyt. Chemie, 20, 116-117.

Spectres d'absorption ultra-violets des éthers azotiques et azoteux.

Soret (J. L.) et Rilliet (Alb. A.). Comptes Rendus, 89, 747.

Spectrum of nitrogen.

Stearn (C. II.). Nature, 7, 463.

Spectrum von Stickstoff.

Vogel (H. C.). Ann. Phys. u. Chem., 146, 578.

Ueber allmähliche Ueberführung des Bandenspectrums des Stickstoffs in ein Linienspectrum.

Vegel (H. C.). Sitzungsber, d. Münchener Akad. (1879), 171-207;
Ann. Phys. u. Chem., n. F. 8, 590-623.

On the changes produced in the position of the fixed lines in the spectrum of hyponitric acid by changes in density.

Weiss (A. . Phil. Mag., 4) 22, 80,

Ueberinstimmung der Absorptionsspectra von Untersalpetersäure mit den Spectren dessen Dampfes.

Wurlner (A.). Ann. Phys. u. Chem., 120, 159,

Die beiden Stickstoffspectra nicht durch Unterschiede der Temperatur, sondern der Entladungsart erklärbar.

Windner (A., Ann. Phys. u. Chem., 135, 526.

Spectra des Stickstoffs unter hohem Druck.

Wullner (A.). Ann. Phys. u. Chem., 137, 356,

Das Spectrum des Stickstoffs ist vielfach; Antwort auf Angström, Wallner (A.). Ann. Phys. n. Chem., 144, 520.

NOMENCLATURE.

Spectroscopic Nomenclature.

Herschel (J.). Nature, 5, 499-500; 6, 438-4.

Spectroscopic Nomenclature.

Young (C. A.). Nature, 6, 101.

OPTICS.

(With special reference to the spectroscope.)

Optische Untersuchungen.

Angström (A. J.). Ann. Phys. u. Chem., 94, 141; Phil. Mag., (4) 9, 327.

Zwei optische Beobachtungsmethoden.

Christiansen (C.). Ann. Phys. u. Chem., 141, 470.

Optische Untersuchungen einiger Reihen isomorpher Substanzen.

Christiansen (C.) und Topsoe (Haldor). Ann. Phys. u. Chem., Ergänzungsband, 6 (1874), 499.

Die optischen Eigenschaften von fein vertheilten Körpern.

Christiansen (C.). Ann. Phys. u. Chem., n. F. 23, 298.

Ueber einen optischen Versuch.

Ditscheiner (L.). Ann. Phys. u. Chem., 129, 340.

Optical Notes.

Gibbs (Wolcott). Proc. Amer. Acad., vol. 10; Ann. Phys. u. Chem., 156, 120.

Optische Controversen.

Ketteler (E.). Ann. Phys. u. Chem., n. F. 18, 387-421, 631-63.

Elementare Behandlung einiger optischen Probleme.

Lommel (E.). Ann. Phys. u. Chem., 156, 578-90.

Die Newton'schen Staubringe.

Lommel (E.). Ann. Phys. u. Chem., n. F. 8, 191.

Zur Theorie des Lichtes.

Lommel (E.). Ann. Phys. u. Chem., n. F. 16, 427.

Optische Experimental-Untersuchungen. Ueber das Verhalten des polarisirten Lichtes bei der Beugung.

Quincke (G.). Ann. Phys. u. Chem., 149, 273-324.

Investigations in optics, with special reference to the spectroscope.

Rayleigh (Lord). Phil. Mag., (5) 8, 261-274, 403-11, 477-86; 9, 40-55; Beiblätter, 4, 360.

OSMIUM.

On the spectrum of osmium.

Fraser (W.). Chem. News, 8, 34.

Spectrum des Osmiums.

Jahresber. d. Chemie, **16** (1863), 112.

OXYGEN.

The acceleration of oxidation caused by the least refrangible end of the spectrum.

Abney (W. de W.). Proc. Royal Soc., 27, 291, 451.

Spectres des gaz simples; l'oxygène.

Angström (A. J.). Comptes Rendus, 73, 369.

Spectrum von Sauerstoff.

Angström (A. J.). Ann. Phys. u. Chem., 94, 155.

Sauerstoff hat nur ein Spectrum; die vielfachen rühren bei Bemengungen her.

Angström (A. J.). Ann. Phys. u. Chem., 144, 302, 304.

Recherches expérimentales sur la polarization rotatoire magnétique dans les gaz; oxygène.

Becquerel (H.). Comptes Rendus, 90, 1407.

Ueber das Verhalten von Blut und Ozon zu einander.

Rinz (C.). Medicinalisches Centralblatt, 20, 721-5; Chem. Centralblatt (1882), 810-11; Jour. Chem. Soc., 44, 486-7 (Abs.).

Oxygen spectra.

Capron (J. R.). Photographed Spectra, London, 1877, p. 65-7.

Spectre d'absorption de l'ozone.

Chappuis (J.). Comptes Rendus, 91, 985; 94, 858-60; Chem. News.
45, 163 (Abs.); Jour. Chem. Soc., 42, 1017 (Abs.); Beiblatter, 6, 482 (Abs.); Amer. Jour. Sci., (3) 24, 56 (Abs.).

Étude spectroscopique sur l'ozone.

Chappuis (J.). Ann. de l'École normale, (2) 11, 137-87; Beiblatter, 7, 458 (Abs.).

Étude sur la part de la lumière dans les actions chimiques et en particulier dans les oxydations.

> Chastaing (P.). Ann. Chim. et Phys., (5) 11, 145-223; Jour. Chem. Soc., 1877, 2, 818 (Abs.); Beiblatter, 1, 517-20 (Abs.).

On the coïncidence of the bright lines of the oxygen spectrum with bright lines in the solar spectrum.

Draper (H.). Monthly Notices Astronom. Soc., **39**, 440-7; Amer. Jour. Sci., (3) **18**, 262-76; Beiblatter, **4**, 275 (Abs.); Comptes Rendus, **88**, 1332 (Abs.).

Dark lines of oxygen in the spectrum of the Sun.

Draper (J. C.). Amer. Jour. Sci., (3) 16, 256; (3) 17, 448; Nature,
18, 654; note by Barker (G. F.), Amer. Jour. Sci., (3) 17, 162-6;
Nature, 19, 352-3; Beiblätter, 3, 188 (Abs.).

Sur la production des groupes telluriques fondamentaux A et B du spectre solaire par une couche absorbante d'oxygène.

Egoroff (N.). Comptes Rendus, 97, 555; Amer. Jour. Sci., (3) 26, 477.

Spectre d'absorption de l'oxygène.

Egoroff (N.). Comptes Rendus, **101**, 1143-45; Jour. Chem. Soc., **50**, 189 (Abs.).

Sauerstoffausscheidung von Pflanzenzellen im Mikrospectrum.

Engelmann (T. W.). Pflüger's Archiv. f. Physiologie, **27**, 485-90; Chem. News, **47**, 11 (Abs.); Beiblätter, **7**, 377 (Abs.).

On the combustion of hydrogen and carbonic oxide in oxygen under great pressure.

Franckland. Proc. Royal Soc., 16, 419.

The refraction equivalents of oxygen, etc., in organic compounds.

Gladstone (J. H.). Proc. Royal Soc., 31, 327-30; Ber. chem. Ges., 14, 1553 (Abs.).

The absorption spectrum of ozone.

Hartley (W. N.). Jour. Chem. Soc., **39**, 57-60; Ber. chem. Ges., **14**, 672 (Abs.); Beiblätter, **5**, 505 (Abs.).

On the absorption of solar rays by atmospheric ozone.

Hartley (W. N.). Jour. Chem. Soc., 39, 111-28; Ber. chem. Ges., 14, 1340 (Abs.); Beiblätter, 5, 505 (Abs.).

Einfacher Versuch zur Demonstration der Sauerstoffausscheidung durch Pflanzen im Sonnenlichte.

Hoppe-Seyler (F.). Zeitschr. f. physiol. Chemie, 2, 425-6; Ber. chem. Ges., 12, 701 (Abs.); Jour. Chem. Soc., 36, 819 (Abs.).

Sur les spectres d'absorption de l'oxygène.

Janssen (J.). Comptes Rendus, 102, 1352-3; Jour. Chem. Soc., 50, 749 (Abs.); Beiblatter, 11, 93.

Spectre de l'oxyde de cuivre.

Lallemand (A.). Comptes Rendus, 78, 1272.

Sur les spectres de l'acide azoteux et du peroxyde de l'azote.

Luck (E.). Bull. Soc. chim. Paris, n. s. 13, 498.

Oxygen in the Sun

Meldola (R.). Nature, 17, 161-2; Beiblätter, 2, 91.

Das Sauerstoffspectrum und die electrischen Lichterscheinungen verdünnter Gaze in Röhren mit Flüssigkeitselectroden.

Paalzow (A.). Ann. Phys. u. Chem., n. F. 7, 130.

Ueber das Sauerstoffspectrum.

Paalzow (A.) und Vogel (H. W.). Ann. Phys. u. Chem., n. F. 13,

Spectrum von Sauerstoff.

Plücker. Ann. Phys. u. Chem., 104, 126; 105, 78.

Spectrum of Oxygen.

Schuster (A.). Phil. Trans., 170 (1879), 37-54; Proc. Royal Soc., 27, 383-8 (Abs.); Beiblatter, 2, 492 (Abs.); 3, 749 Abs.); Jour. Chem. Soc., 38, 430.

Spectre d'acide oxalique.

Senarmont (H. de). Ann. Chim. et Phys., (3) 41, 336.

Constitution of the lines forming the low temperature spectrum of Oxygen.

Smyth (C. Piazzi). Trans. Roy. Soc. Edinburgh, **30**, 419-25; Phil. Mag., (5) **13**, 330-37; Nature, **25**, 403 (Abs.); Jour. de Phys., (2) **2**, 239 (Abs.).

Spectrum von Sauerstoff.

Vogel (H. C.). Ann. Phys. u. Chem., 146, 576.

Photographische Beobachtungen des Sauerstoffspectrums.

Vogel (H. C.). Ber. chem. Ges., 12, 332; Amer. Chem. Jour., 1, 71.

Drei Spectra bei Sauerstoff.

Wullner (A.). Ann. Phys. u. Chem., 135, 515.

Spectra des Wasserstoffs.

Wullner (A.). Ann. Phys. u. Chem., 137, 359; n. F. 8, 253.

PALLADIUM.

Palladium arc spectrum; palladium spark spectrum.

Capron (J. R.). Photographed Spectra, London, 1877, p. 39.

Chlorure de palladium en solution, étincelle.

Lecoq de Boisbaudran (F.). Spectres Lumineux, Paris, 1874, p. 184, planche XXVII.

PARAGENIC SPECTRA.

Sur la paragénie.

Babinet. Cosmos, 25, 393.

On paragenic spectra.

Brewster (Sir D.). Phil. Mag., January, 1866.

PHILIPPIUM.

On philippium.

Brown (W. G.). Chem. News, 38, 267-8; Jour. Chem. Soc., 36, 204 (Abs.).

Sur un nouveau métal, le philippium.

Delafontaine. Comptes Rendus, **87**, 559-61; Amer. Jour. Sci., (3) **17**, 61 (Abs.); Jour. Chem. Soc., **36**, 116-17 (Abs.); Beiblätter, **3**, 197 (Abs.).

PHOSPHORESCENCE.

On the violet phosphorescence in calcium sulphide.

Abney (W. de W.). Proc. Physical Soc., 5, 35-8; Nature, 35, 355 (Abs.); Phil. Mag., (5) 13, 212-14; Jour. Chem. Soc., 42, 677 (Abs.); Beiblatter, 6, 383 (Abs.); Jour. de Phys., (2) 2, 287-8.

Propriétés de la lumière des pyrophores, examen spectroscopique.

Aubert et Dubois. Comptes Reudus, 99, 477.

Pouvoir phosphorescent de la lumière électrique.

Becquerel (E.). Comptes Rendus, 8, 217.

- Réfringibilité des rayons qui excitent la phosphorescence dans les corps.

 Becquerel (E.). Comptes Rendus, 69, 994.
- Analyse de la lumière émise par les composés d'uranium phosphorescents.
 Becquerel (E.). Ann. Chim. et Phys., (4) 27, 539-79; Comptes Rendus, 75, 296-303; Jour. Chem. Soc., (2) 11, 25 (Abs.); Amer. Jour. Sci., (3) 4, 486 (Abs.).
- Sur l'observation de la partie infra-rouge du spectre solaire, au moyen des effets de phosphorescence.

Becquerel (E.). Comptes Rendus, 96, 1215; Ann. Chim. et Phys., (5) 10, 5-13; Jour. de Phys., 6, 137.

Les spectres des corps phosphorescents.

Becquerel (E.). La Lumière, tome I, 207.

Étude spectrale des corps rendus phosphorescents par l'action de la lumière on par les décharges électriques.

Becquerel (E.). Comptes Rendus, 101, 205-210.

Effets du manganèse sur la phosphorescence du calcium carbonate.

Becquerel (É.). Comptes Rendus, 103, 1098.

Phosphorescence de l'alumine.

Becquerel (E.). Comptes Rendus, **103**, 1224; Amer. Jour. Sci., 33, 303 (Abs.); Jour. Chem. Soc., **52**, 409 (Abs.); Chem. News, **55**, 99 (Abs.).

Étude des radiations infra-rouges au moyen des phénomènes de phosphorescence.

Becquerel (H.). Comptes Rendus, 96, 1215; Ann. Chim. et Phys., *5) 30, 5-68; Beiblätter, 8, 120 (Abs.).

Maxima et minima d'extinction de la phosphorescence sous l'influence des radiations infra-rouges.

Beequerel (H.). Comptes Rendus, 96, 1853.

Résultats de ses recherches sur les effets de phosphorescence.

Beequerel (H.). Bull. Soc. franç. de Physique (1883), 24-5.

Sur les variations des spectres d'absorption et des spectres d'émission par phosphorescence d'un même corps.

Becquerel (H.). Comptes Rendus, 102, 106-10.

Sur de nouveaux procédés pour étudier la radiation solaire, tant directe que diffuse, dans ses rapports avec la phosphorescence.

Biot. Comptes Rendus, 8, 259, 315.

Spectrum of the light emitted by the glow-worm.

Conroy (Sir J.). Nature, 26, 319; Beiblätter, 6, 880 (Abs.).

De la lumière verte et phosphorescente du choc moléculaire.

Crookes (W.). Comptes Rendus, 88, 283-4.

Discontinuous phosphorescent spectra in high vacua.

Crookes (W.). Proc. Royal Soc., 32, 206-13; Chem. News, 43, 237-9;
Nature, 24, 89; Comptes Rendus, 92, 1281-3; Beiblätter, 5, 511-13;
Ann. Chim. et Phys., (5) 23, 555.

Les vibrations de la matière et les ondes de l'ether dans la phosphorescence et la fluorescence.

Favé. Comptes Rendus, 86, 289-94.

Wirkung der verschiedenen Theile des Spectrums auf phosphorescirende Substanzen.

Jahresber. d. Chemie, 1 (1847), 164.

Spectren des Lichts phosphoreseirender Thiere.

Jahresber. d. Chemie, 17 (1864), 115.

Spectrum des Phosphorenzlichts von Chlorophan, Phosphorit und Flusspath.

Kindt. Ann. Phys. u. Chem., 131, 160; Phil. Mag., Dec., 1867.

Phosphorescence de l'alumine.

Leeoq de Boisbaudran (F.). Comptes Rendus, 103, 1224-7; Jour. Chem. Soc., 52, 191 (Abs.).

Sichtbare Darstellung des Brennpuncktes der ultrarothen Strahlen durch Phosphorescenz.

Lommel (E.). Ann. Phys. u. Chem., (2) **26**, 157-9; Phil. Mag., (5) **20**, 547.

Beobachtungen über Phosphorescenz.

Lommel (E.). Ann. Phys. u. Chem., (2) 30, 473-87; Jour. Chem. Soc., 52, 410 (Abs.).

(Gives the phosphorescent spectra of 16 substances prepared by Dr. Schuchardt and with Balmain's paint.)

Lumière phosphorescent des cucuyos.

Pasteur. Comptes Rendus, **59**, 509; Ann. Phys. u. Chem., **124**, 192; Jour. prackt. Chemie, **93**, 381.

Ueber die Phosphorescenz der organischen und organisirten Körper.

Radziszewski (B.). Ann. Chem. u. Pharm., **203**, 305-36; Beiblätter, **4**, 620 (Abs.).

Spectrum of the light of the glow-worm.

Spiller (J.). Nature, 26, 343; Beiblätter, 6, 880.

On the causes of a light border frequently noticed in photographs just outside the outline of a dark body seen against the sky; with some introductory remarks on phosphorescence.

Stokes (G. G.). Proc. Royal Soc., 34, 63-68; Nature, 26, 142-3; Beiblätter, 6, 682 (Abs.).

Sur les causes déterminantes de la phosphorescence du sulfure de calcium. Verneuil (A.). Comptes Rendus, **103**, 501-4; Beiblätter, **11**, 253.

Un composé de calcium sulphide ayant une phosphorescence violette.

Verneuil (A.). Comptes Rendus, **103**, 600-3; Jour. Chem. Soc., **52**, 2 (Abs.).

PHOSPHORUS.

Coloration de la flamme et de ses composés, spectre du phosphore.

Christofle (P.) et Beilstein (F.). Comptes Rendus, **56**, 399; Ann. Chim. et Phys., (4) **3**, 281.

Spectre du phosphate.

Gouy. Comptes Rendus, 85, 70.

Ueber phosphorhaltigen Stahl.

Greiner (A.). Dingler's Jour., 217, 33-41; Jour. Chem. Soc., 1876, 1, 454-7 (Abs.).

Ueber die Spectralerscheinungen des Phosphorwasserstoffs und des Ammoniaks.

Hofmann (K. B.). Ann. Phys. u. Chem., 147, 92-101; Jour. Chem. Soc., (2) 11, 340 (Abs.).

Spectra of phosphoric acid blowpipe beads.

Horner (C.). Chem. News, 29, 66.

Spectrum des Phosphors.

Jahresber. d. Chemie, 16 (1863), 111; 17 (1864), 109; 23 (1870), 173.

Absorptionsspectrum des Phosphorwasserstoffs.

Jahresber, d. Chemie, 25 (1872), 142.

Spectrum des Phosphorescenzlichts von Phosphorit.

Kindt. Ann. Phys. u. Chem., 131, 160.

Sur la diffusion lumineuse du phosphore de cuivre obtenu sans précipitation.

Lallemand (A.). Comptes Rendus, 79, 693.

Phosphate d'erbine, émission.

Lecoq de Boisbaudran (F.). Spectres Lumineux, Paris, 1874, p. 92, 97, planche XIV.

Sur les spectres des vapeurs aux températures élévées; phosphore.

Lockyer (J. N.). Comptes Rendus, 78, 178, 1790; Nature, 30, 98.

Expériences spectrales tendant à démontrer la nature composé du phosphore.

Lockyer (J. N.). Comptes Rendus, **89**, 514-15; Beiblätter, **4**, 132 (Abs.).

Spectrum des Phosphors, etc.

Mulder. Jour. prackt. Chemie, 91, 111.

Recherche du soufre et du phosphore par le spectroscope.

Salet (G.). Bull. Soc. chim. Paris, n. s. 13, 289.

Spectres du phosphore et des composés de silicium.

Salet (G.). Comptes Rendus, 73, 1056-59.

Sur les spectres du phosphore et du soufre.

Seguin (J. M.). Comptes Rendus, 53, 1272; Phil. Mag., (4) 23, 416,

PLATINUM.

Platinum arc spectrum.

Capron (J. R.). Photographed Spectra, London, 1877, p. 39.

Spectre de chlorure de platine.

Gouy (J. R.). Comptes Rendus, 84, 231; Chem. News, 35, 107.

Distribution of heat in the spectra of various scources of radiation; platinum.

Jacques (W. W.). Proc. Amer. Acad., 14, 156.

Die optische Eigenshaften der Platincyanüre.

König (W.). Ann. Phys. u. Chem., n. F. 19, 491.

Spectre du noir de platine.

Lallemand (A.). Comptes Rendus, 78, 1272.

Chlorure de platine en solution, étincelle.

Lecoq de Boisbaudran (F.). Spectres Lumineux, Paris, 1874, p. 181, planche XXVII.

Spectre du platine incandescent.

Masson (A.). Comptes Rendus, 32, 127.

On the character and intensity of the rays emitted by glowing platinum. Nichols (E. L.). Amer. Jour. Sci., (3) 18, 446-68.

Radiation du platine incandescent, spectre du platine.

Violle (J.). Comptes Rendus, 88, 171.

Intensités lumineuses des radiations émises par le platine incandescent.

Violle (J.). Comptes Rendus, 92, 866-8, 1204-6; Beiblätter, 5, 503 (Abs.).

POLARIZED LIGHT.

Die Phasenveränderung des parallel zur Einfallsebene polarisirten Liehtsdurch Reflexion.

Glan (P.). Ann. Phys. u. Chem., 156, 243.

Polarizationswinkel des Fuchsins.

Glan (P.). Ann. Phys. u. Chem., n. F. 7, 321.

Absorption und Emission des polarisirten Lichtes.

Kirchhoff (G.). Ann. Phys. u. Chem., 109, 295.

Sur l'illumination des corps transparents par la lumière polarisée.

Lallemand (A.). Comptes Rendus, 69, 917.

Sur la polarization rotatoire du quartz.

Soret (J. L.). Arch. de Genève, (3) 8, 5-59, 97-132, 201-28; Jour. de Phys., (2) 2, 381-6 (Abs.).

Elliptische Polarization des Lichtes und ihre Beziehung zu den Oberflächenfarben der Körper.

Wiedemann (E.). Ann. Phys. u. Chem., 151, 1.

Ueber die elliptische Polarization des von durchsichtigen Körpern reflectirten Lichtes.

Wernicke (W.). Ann. Phys. u. Chem., (2) 30 (1887), 452-69,

POTASSIUM.

Absorptionsspectrum des übermangansauren Kalis und seine Benützung bei chemisch analytischen Arbeiten.

Brücke (E.). Sitzungsber. d. Wiener Akad., 74 III, 428; Chem. Centralblatt, (3) 9, 139-43; Jour. Chem. Soc., 34, 242 (Abs.).

On the light reflected by potassium permanganate.

Conroy (Sir J.). Proc. Physical Soc., 2, 340-44; Phil. Mag., (5) 6, 454-8; Jour. Chem. Soc., 36, 425 (Abs.).

Transparence des flammes colorées pour leurs propres radiations; la double raie du potassium.

Gouy. Comptes Rendus, 86, 1078.

Spectrum des Kaliums.

Jahresber. d. Chemie, 16 (1863), 112.

Linien von Kalium.

Kirchhoff (G.). Ann. Phys. u. Chem., 110, 173.

Permanganate de Potasse en solution, absorption.

Lecoq de Boisbaudran (F.). Spectres Lumineux, Paris, 1874, p. 108, planche XVI.

Sulfate de potasse fondu, étincelle; chlorure de potassium dans le gas.

Lecoq de Boisbaudran (F.). Spectres Lumineux, Paris, 1874, p. 48, planche V.

On the spectra of sodium and potassium.

Liveing (G. D.) and Dewar (J.). Proc. Royal Soc., 29, 398-402; Beiblätter, 4, 368 (Abs.).

Sur le chromocyanure de potassium.

Moissan (H.). Comptes Rendus, **93**, 1079-81; Chem. News, **45**, 22 (Abs.); Ber. chem. Ges., **15**, 243 (Abs.).

Absorption spectra of sodium and potassium at low temperatures.

Roscoe (H. E.) and Schuster (A.). Proc. Royal Soc., 22, 362.

Modifications of the spectrum of potassium which are effected by the presence of phosphoric acid.

Thudichum (J. L. W.). Proc. Royal Soc., 30, 278-86.

Ueber das von übermangansaurem Kali reflectirten Lieht.

Wiedemann (E.). Ber. d. k. sächs. Ges. d. Wiss. zu Leipzig, 25, 367–70;
Ann. Phys. u. Chem., 151, 625–28;
Phil. Mag., (4) 48, 231–33;
Jour. Chem. Soc., (2) 13, 120 (Abs.).

PRESSURE.

De l'influence de la pression sur les raies du spectre.

Cailletet (L.). Bull. Soc. chim. Paris, n. s. 18, 213; Ber. chem. Ges., 5, 482; Comptes Rendus, 74, 1282.

Gasspectren bei steigendem Druck.

Jahresber, d. Chemie, 22 (1869), 178.

Einfluss des Drucks auf das Spectrum.

Jahresber, d. Chemie, 25 (1872), 142.

Effect of pressure on the character of the spectra of gases.

Stearn (C. H.) and Lee (G. H.). Proc. Royal Soc., 21, 282.

RADIATION.

Réflexions à l'occasion d'une experience de M. Dumas relative à la formation d'un acide nouveau sous l'influence de la radiation solaire.

Biot. Comptes Rendus, 8, 622.

Sur les radiations chimiques de la lumière.

Biot. Comptes Rendus, 12, 170.

Radiant Matter Spectroscopy; the Bakerian lecture.

Crookes (W.). Proc. Royal Soc., **35**, 262; Chem. News, **47**, 261; **49**, 159, 169, 181, 194, 205; **51**, 301.

Détermination du pouvoir éclairant des radiations simples.

Crova (A.) et Lagarde. Comptes Rendus, 93, 959; Jour. de Phys., (2) 1, 162-9.

De la loi d'absorption des radiations de toute espèce à travers les corps, et de son emploi dans l'analyse spectrale quantitative.

Govi (G.). Comptes Rendus, 85, 1046-9, 1100-3; Phil. Mag., (5) 5, 78-80; Jour. Chem. Soc., 34, 190 (Abs.); Beiblätter, 2, 342 (Abs.).

On the relation between the radiating and absorbing powers of different bodies for light and heat.

Kirchhoff (G.). Phil. Mag., (4) 20, 1.

Ueber Ausstrahlung und Absorption.

Lecher (E.). Sitzungsber. d. Wiener Akad., 85 II, 441-90; Ann. Phys. u. Chem., n. F. 17, 477-518.

The dynamical theory of radiation.

Schuster (A.). Phil. Mag., (5) 12, 261-6; Beiblätter, 5, 793.

RED END OF THE SPECTRUM.

Photography of the red end of the spectrum.

Abney (W. de W.). Nature, 13, 432; Chem. News, 40, 311.

Work in the infra-red of the spectrum.

Abney (W. de W.). Nature, 27, 15.

Atmospheric absorption in the infra-red of the solar spectrum.

Abney (W. de W.) and Festing (Lieut, Col.). Nature, 28, 45.

Wave-lengths of Λ , a and other prominent lines in the red and infra red of the visible spectrum.

Abney (W. de W.). Chem. News, 48, 283.

Sur l'observation de la partie infra-rouge du spectre solaire au moyen des effets de la phosphorescence.

Becquerel (E.). Comptes Rendus, 83, 249.

Étude de la région infra-rouge du spectre.

Becquerel (H.). Comptes Rendus, 96, 121.

Étude des radiations infra-ronges, au moyen des phénomènes de phosphorescence.

Becquerel (H.). Comptes Rendus, 96, 1215; Nature, 29, 227; Amer. Jour. Sci., (3) 26, 321; Ann. Chim. et Phys., (5) 30, 5.

Maxima et minima d'extinction de la phosphorescence sous l'influence des radiations infra-rouges.

Becquerel (II.). Comptes Rendus, 96, 1853.

Sichtbare Darstellung der ultrarothen Strahlen.

Lommel (E.). Ann. Phys. u. Chem., (2) 26 (1885), 457.

Eine Wellenlängenmessung im ultrarothen Sonnenspectrum.

Pringsheim (E.). Ann. Phys. u. Chem., n. F. 18, 32,

Visible representation of the ultra-red rays.

Tyndall. Phil. Mag., (5) 20 (1885), 547; Amer. Jour. Sci., (3) 31, 150.

REFRACTION.

- Ueber die Bestimmung des specifischen Brechungsvermögens fester Korper in ihren Lösungen.
 - Bedson (P. P.) and Williams (W. C.). Ber. chem. Ges., 14, 2549-56;
 Jour. Chem. Soc., 42, 351 (Abs.); Beiblätter, 6, 91-3 (Abs.); Jour. de Phys., (2) 1, 377 (Abs.).
- Réfrangibilité des rayons qui excitent la phosphorescence dans les corps.

 Becquerel (Ed.). Comptes Rendus, 69, 994.
- Spectrum der Brechbaren Strahlen.

Crookes (W.). Cosmos, 8, 90; Ann. Phys. u. Chem., 97, 621.

Sur la double réfraction circulaire et la production normale des trois systèmes de franges des rayons circulaires.

Croullebois. Comptes Rendus, 92, 520.

Sur la variation des indices de réfraction dans les mélanges de sels isomorphes.

Dufet (H). Comptes Rendus, 86, 881-4; Jour. Chem. Soc., 34, 631-2.

Variation des indices de réfraction du quartz sous l'influence de la température.

> Dufet (H.). Comptes Rendus, 98, 1265; Jour. de Phys., 10, 513-19; Bull. Soc. minéral., 4, 191-6; 6, 76-80, 287.

Die brechbarsten oder unsichtbaren Lichtstrahlen im Beugungsspectrum und ihre Wellenlänge.

Eisenlohr (W.). Ann. Phys. u. Chem., 98, 353.

Beugungsspectrum auf fluoreseirenden Substanzen.

Eisenlohr (W.). Ann. Phys. u. Chem., 99, 163.

Ueber die Aenderung der Brechungsexponenten isomorpher Mischungen, mit deren chemischer Zusammensetzung.

Fock (A.). Zeitschr. Krystallogr. u. Mineralog., 4, 583-608; Beiblätter, 4, 662-4 (Abs.).

- Experimentaluntersuchungen über die Intensität des gebeugten Lichtes. Fröhlich (J.). Ann. Phys. u. Chem., n. F. 15, 575-613; Jour. de Phys., (2) 1, 559 (Abs.).
- Recherches sur le réfraction de la lumière.

Gouy. Ann. Chim. et Phys., (6) 8 (1886), 145-92; Beiblätter, 11 (1887), 95 (Abs.).

Das Auge empfindet alle Strahlen die brechbarer sind als die Rothen.

```
Helmholtz (II.). Ann. Phys. u. Chem., 94, 205.
```

The refractive index and specific inductive capacity of transparent insulating media.

```
Hopkinson (J.). Proc. Royal Soc., 5, 38-40.
```

Aenderung des Moleculargewichtes und Molecularrefractionsvermögen.

```
Janowsky (J. V.). Sitzungsber, d. Wiener Akad., 81 II, 539-53; 82
II, 147-58.
```

Sur la relation du pouvoir réfringent et la composition des composés organiques.

```
Kanonnikoff (J.). Ber. chem. Ges., 16, 3047-51 (Abs.); Jour. Soc. phys. chim. russe, 15, 434-79; Bull. Soc. chim. Paris, 41, 318 (Abs.); Beiblätter, 8, 375 (Abs.).
```

Sur les relations entre la composition et le pouvoir réfringent des composés chimiques. Second mémoire.

```
Kanonnikoff (J.). Jour. Soc. phys. chim. russe, 16, 119-31; Ber. chem. Ges., 17, Referate, 157-9 (Abs.); Nature, 30, 84 (Abs.); Beiblätter, 8, 493-6 (Abs.); Bull. Soc. chim. Paris, 41, 549 (Abs.); Jour. Chem. Soc., 48, 1-2 (Abs.).
```

Experimentaluntersuchung über den Zusammenhang zwischen Refraction und Absorption des Lichtes.

```
Ketteler (E.). Ann. Phys. u. Chem., n. F. 12, 481-519.
```

Constanz des Refractionsvermögens.

```
Ketteler (E.). Ann. Phys. u. Chem., (2) 30 (1887), 285-99.
```

Ueber Prismenbeobachtungen mit streifend einfallendem Licht, und über eine Abänderung der Wollaston'schen Bestimmungsmethode für Lichtbrechungsverhältnisse.

```
Kohlrausch (F.). Ann. Phys. u. Chem., n. F. 16, 603.
```

Abhängigkeit des Brechungsquotienten der Luft von der Temperatur.

```
Lang (V. von). Ann. Phys. u. Chem., 153, 450.
```

Theorie der Doppelbrechung.

```
Lemmel (E.). Ann. Phys. u. Chem., n. F. 4, 55. (Look below, under Voigt.)
```

Sur la réfraction des gaz.

```
Mascart. Comptes Rendus, 78, 417; Ann. Phys. u. Chem., 153, 153.
```

.

Wellenlänge und Brechungsexpouent der äussersten dunklen Wärmestrahlen des Sonnenspectrums.

Müller (J.). Ann. Phys. u. Chem., 115, 543; Berichtigung dazu, 116, 644.

Bei zunehmender Verdünnung der Gaze erlöschen zuerst die minder brechbaren Strahlen.

Plücker. Ann. Phys. u. Chem., 116, 27.

Report of the committee, consisting of Dr. J. H. Gladstone, Dr. W. R. E. Hodgkinson, Mr. Carleton Williams, and Dr. P. P. Bedson (Secretary), appointed for the purpose of investigating the Method of Determining the Specific Refraction of Solids from their solutions.

Report of the British Association, 1881, 155.

Indices de réfraction ordinaire et extraordinaire du quartz pour les rayons de différentes longueurs d'onde jusqu'à l'extrème ultra-violet.

Sarasin (E.). Archives de Genève, (2) **61**, 109-19; Comptes Rendus, **85**, 1230-2 (Abs.); Beiblätter, **2**, 77-8 (Abs.).

Indices de réfraction de spath d'Islande.

Sarasin (E.). Arch. de Genève, (3) **8**, 392-4; Jour. de Phys., (2) **2**, 369-71.

Indices de réfraction ordinaire et extraordinaire du spath d'Islande pour les rayons de diverses longueurs d'onde jusqu'à l'extrème ultraviolet.

Sarasin (E.). Comptes Rendus, 95, 680.

Indices de réfraction du spath-fluor pour les rayons de différentes longueurs d'onde.

Sarasin (E.). Comptes Rendus, 97, 850.

Untersuchungen über die Abhängigkeit der Molecularrefraction von der chemischen Constitution der Verbindungen.

Schroder (H.). Ber. chem. Ges., 14, 2513-16; Jour. Chem. Soc., 42, 351 (Abs.).

Indices de réfraction des aluns cristallisés.

Soret (Ch.). Comptes Rendus, 99, 867.

On a method of destroying the effects of slight errors of adjustment in experiments of changes of refrangibility due to relative motions in the line of sight.

Stone (E. J.). Proc. Royal Soc., 31, 381.

Indices de réfraction des liquides.

Terquem et Trannin. Jour. de Phys., 4, 222; Ann. Phys. u. Chem., 157, 302.

Brechungsvermögen und Verbrennungswärme.

Thomsen (J.). Ber. chem. Ges., 15, 66-69; Jour. Chem. Soc., 42, 567 (Abs.); Beiblatter, 6, 377 (Abs.).

Bemerkungen zu Hrn. Lommel's Theorie der Doppelbrechung.

Voigt (W.). Ann. Phys. u. Chem., n. F. 17, 468.

Methode zur Bestimmung des Brechungsexponenten von Flüssigkeiten und Glasplatten.

Wiedemann (E.). Ann. Phys. u. Chem., 158, 375.

RHABDOPHANE.

Analysis of rhabdophane, a new British mineral.

Hartley (W. N.). Jour. Chem. Soc., 41, 210-20; Chem. News, 45, 40 (Abs.).

Analysis of rhabdophane, a new British mineral.

Liveing (G. D.) and Dewar (J.). Jour. Chem. Soc., 41, 210-220; Chem. News, 45, 40 (Abs.).

RHODIUM.

Rhodium are spectrum.

Capron (J. R.). Photographed Spectra, London, 1877, p. 40.

RUBIDIUM.

Observations on cæsium and rubidium.

Allen (O. D.). Amer. Jour. Sci., Nov., 1862; Phil. Mag., (4) 25, 189.

Les salpêtres naturels du Chili et du Pérou au point de vue du rubidium.

Dieulafait. Comptes Rendus, 98, 1545-8; Chem. News, 50, 45 (Abs.).

Spectre du rubidium.

Gouy. Comptes Rendus, 86, 1078.

Beschreibung der Metallen Cæsium und Rubidium.

Kirchhoff und Bunsen. Ann. Phys. u. Chem., 113, 337; Phil. Mag., (4) 22, 498; 24, 46.

Chlorure de rubidium dans le gaz.

Lecoq de Boisbaudran (F.). Spectres Lumineux, Paris, 1874, p. 46, planche IV.

RUTHENIUM.

Ruthenium arc spectrum.

Capron (J. R.). Photographed Spectra, London, 1877, p. 40.

Professor Young and the presence of ruthenium in the chromosphere.
Roscoe (H. E.). Nature, 9, 5.

SALT.

Blue flame from common salt.

Gladstone (J. H.). Nature, 19, 582.

Sur les caractères des flammes chargées de poussières salines.

Gouy. Comptes Rendus, 85, 439.

Preliminary notice of experiments concerning the chemical constitution of saline solutions.

Hartley (W. N.). Proc. Royal Soc., 22, 241-3; Chem. News, 29, 148

On the action of heat on the absorption spectra and chemical constitution of saline solutions.

Hartley (W. N.). Proc. Royal Soc., 23, 372-3; Ber. chem. Ges., 8 765 (Abs.); Phil. Mag., (5) 1, 244-5.

Ausschluss des Kochsalzes.

Jahresber, d. Chemie, 16 (1863), 114.

Absorptionsspectren von Salzlösungen.

Jahresber, d. Chemie, 27 (1874), 96.

On the optical properties of rock salt.

Langley (S. P.). Amer. Jour. Sci., 26 (1885), 477; Jour. de Phys., (2) 5, 138 (Als.).

Blue flame from common salt.

Smith (A. P.). Nature, 19, 483; 20, 5; Chem. News. 39, 141; Jour. Chem. Soc., 36, 497 (Abs.).

Propriétés modulaires des pouvoirs réfringents dans les solutions salines. Valson (C. A.). Comptes Rendus, 76, 224-6; Jour. Chem. Soc., 21 11, 460 (Abs.).

SAMARIUM.

Om Samarium.

Clève (P. T.). Ofversigt. k. Vetensk. Akad. Förhandl., 40, No. 7, 17-26;
Beiblätter, 8, 264 (Abs.);
Jour. Chem. Soc., 43, 362-70;
Chem. News, 48, 74-6;
Ber. chem. Ges., 16, 2493 (Abs.);
Comptes Rendus, 97, 94.

Mutual extinction of the spectra of yttrium and samarium.

Crookes (W.). Comptes Rendus, 100, 1495-7; Jour. Chem. Soc., 48, 1025 (Abs.).

Remarques sur les métaux nouveaux de la gadolinite et de la samarskite; holmium ou philippium, thulium, Samarium, décipium.

Delafontaine. Comptes Rendus, 90, 221.

Recherches sur le samarium, radical d'une terre nouvelle extraite de la samarskite.

Lecoq de Boisbaudran (F.). Comptes Rendus, **89**, 212-14; Ber. chem. Ges., **12**, 2160 (Abs.); Beiblätter, **3**, 872 (Abs.).

Om de lysande spectra hos Didym och Samarium.

Thalén (R.). Ofversigt. k. Vetensk. Akad. Förhandl., 40, No. 7, 3-16; Jour. de Phys., (2) 2, 446-9; Ber. chem. Ges., 16, 2760 (Abs.); Beiblätter, 7, 893-5 (Abs.).

SAMARSKITE.

New elements in gadolinite and samarskite.

Crookes (W.). Proc. Royal Soc., **40**, 502-9; Jour. Chem. Soc., **52**, 334 (Abs.).

Remarques sur la samarskite.

Delafontaine. Comptes Rendus, 90, 221.

Nouvelles raies spectrales observées dans des substances extraites de la samarskite.

Lecoq de Boisbaudran (F.). Comptes Rendus, 88, 322.

Sur les terres de la samarskite.

Marignac (C.). Comptes Rendus, 90, 899-903.

Sur les spectres d'absorption du didyme et de quelques autres substances extraites de la samarskite.

Soret (J. L.). Comptes Rendus, 88, 422-4.

- 6

SCANDIUM.

Scandium ne donne pas de spectre.

Clève (P. T.). Comptes Rendus, 89, 420.

Sur le scandium, élément nouveau.

Nilson (L. F.). Comptes Rendus, **88**, 645-8; Amer. Jour. Sci., (3) **17**, 478 (Abs.); Beiblätter, **3**, 359 (Abs.).

On Scandium, en ny jordmetall. (Ueber Scandium, ein neues Erdmetall.)
Nilson (L. F.). Oefversigt af k. Vetensk. Akad. Förhand., **36** III,
45-51; Ber. chem. Ges., **12**, 554-7; Jour. Chem. Soc., **36**, 601 (Abs.);
Beiblätter, **4**, 42 (Abs.).

Sur quelques sels caractéristiques du scandium, et sur leurs spectres.

Nilson (L. F.). Comptes Rendus, 91, 118.

Raies brilliantes spectrales du métal scandium.

Thalén (R.). Comptes Rendus, **91**, 45-8; Jour. Chem. Soc., **38**, 685 (Abs.).

Spektralundersökningar rörande Skandium, Ytterbium, Erbium och Thulium.

Thalén (R.). Oefversigt af k. Vetensk. Akad. Förhand., 38, No. 6, 13-21; Jour. de Phys., (2) 2, 35-40; Chem. News, 47, 217 (Abs.); Jour. Chem. Soc., 44, 954 (Abs.).

Spectraluntersuchungen über Scandium.

Thalén (R.). Oefversigt k. Vetensk. Akad. Förhand. (Stockholm), 1881, No. 6; Beiblätter, 11, 249.

SECONDARY SPECTRUM.

Secondary Spectrum.

Rood (O. N.). Amer. Jour. Sei., (3) 6, 172.

SELENIUM.

Effect of light upon selenium.

Adams (W. G.). Proc. Royal Soc., 23, 505; Ann. Phys. u. Chem., 159, 625.

Nouvelle note sur la propriété spécifique du sélénium à l'égard des radiations thermiques.

Assche (F. van). Comptes Rendus, 97, 945.

Selenium and tellurium spark spectrum; selenium and iron spark spectrum; selenium and aluminium spark spectrum; iron meteoric are spectrum.

Capron (J. R.). Photographed Spectra, London, 1877, p. 32, 33, 40.

Spectre du sélénium.

Ditte. Comptes Rendus, 73, 623.

Spectre d'absorption du vapeur de l'acide sélénieux.

Gernez (D.). Comptes Rendus, 74, 803; Bull. Soc. chim. Paris, n. s. 18, 172.

Absorptionsspectrum des Bromselens und des Chlorselens.

Jahresber, d. Chemie, 17 (1864), 109; 25 (1872), 139, 140.

Spectrum des Selens.

Mulder. Jour. prackt. Chemie, 91, 111.

Spectrum von Selenwasserstoff.

Plücker. Ann. Phys. u. Chem., 113, 276, 278.

Spectres du sélénium et du tellure.

Salet (G.). Comptes Rendus, 73, 742, 743.

Ueber die Refraction und Dispersion des Selens.

Sirks (J. L.). Ann. Phys. u. Chem., 143, 429-39; Ann. Chim. et Phys., (4) 26, 286 (Abs.).

SILICIUM.

Silicie fluoride spectrum; silicie quartz spectrum.

Capron (J. R.). Photographed Spectra, London, 1877, p. 75, 76.

Spectre du fluorure de silicium dans les tubes de Geissler.

Chautard (J.). Comptes Rendus, 82, 273.

Das Aufleuchten, die Phosphorescenz und Fluorescenz des Flusspaths.

Hagenbach (E.). Naturforscherversammlung in München, 1877; Ber. chem. Ges., 10, 2232 (Abs.).

Line spectra of boron and silicon.

Hartley (W. N.). Proc. Royal Soc , 35, 301-4; Chem. News, 48, 1-2; Jour. Chem. Soc., 46, 242 (Abs.); Beiblätter, 8, 120.

Spectrum des Phosphorescenzlichts von Flussspath.

Kindt. Ann. Phys. u. Chem., 131, 160.

Ueber eine empfindliche spectralanalytische Reaction auf Thonerde.

Lepel (F. von). Ber. chem. Ges., 9, 1641.

Spectres des composés de silicium.

Salet. Comptes Rendus, 73, 1056-9.

Indices de réfraction du spath fluor.

Sarasin (E.). Arch. de Genève, (3) 10, 303-4.

Spectre du fluorure de silicium.

Séguin (J. M.). Comptes Rendus, 54, 993.

Spectre du silicium.

Troost et Hautefeuille. Comptes Rendus, 73, 620; Bull. Soc. chim. Paris, n. s. 16, 229.

Spectre du silicium sur la surface du Soleil.

Vicaire (E.). Comptes Rendus, 76, 1540.

Absorptionsspectrum des Granats und Rubins; Erkennung von Thonerde neben Eisensalzen.

> Vogel (H. W.). Ber. chem. Ges., 10, 373-5; Jour. Chem. Soc., 1877, 2, 269 (Abs.); Beiblätter, 1, 242 (Abs.).

Ueber eine empfindliche spectralanalytische Reaction auf Thonerde.

Vogel (H. W.). Ber. chem. Ges., 9, 1641.

Spectra des Fluorsiliciums und des Siliciumwasserstoffs.

Wesendonck (K.). Ann. Phys. u. Chem., n. F. 21, 427-37; Jour. Chem. Soc., 46, 649 (Abs.).

SILVER.

Effect of the spectrum on silver chloride.

Abney (W. de W.). Rept. British Assoc., 1881, 591; Chem. News, 44 (1881), 184.

Effect of the spectrum on the haloid salts of silver and on mixtures of the same.

Abney (W. de W.). Proc. Royal Soc., 33, 164-86; Jour. Chem. Soc., 42, 565 (Abs.); Chem. News, 44 (1881), 297.

Comparative effect of different parts of the spectrum on silver salts.

Abney (W. de W.). Proc. Royal Soc., 40, 251-2; Jour. Chem. Soc., 50, 749 (Abs.); see preceding reference.

Action des rayons différemment réfrangibles sur l'iodure et le bromure d'argent; influence des matières colorantes.

Becquerel (E.). Comptes Rendus, 79, 185-90; Jour. Chem. Soc., (2) 13, 30 (Abs.).

Silver spark spectrum; silver are spectrum; silver and copper (alloy) are spectrum.

Capron (J. R.). Photographed Spectra, London, 1877, p. 42, 43.

Sur l'indice de réfraction du chlorure d'argent naturel.

Cloiseaux (Des). Bull. Soc. minéral. de France, 5, 25.

Renversement des raies spectrales de l'argent.

Cornu (A.). Comptes Rendus, 73, 332.

De l'action des différentes lumières colorées sur une couche de bromure d'argent impregnée de diverses matières colorantes organiques.

Cros (Ch.). Comptes Rendus, 88, 379-81; Jour. Chem. Soc., 36, 504 (Abs.).

Les salpêtres naturels du Chili et du Pérou.

Diculafait. Comptes Rendus, 98, 1545-8; Chem. News, 50, 45 (Abs.).

Wellenlänge der auf Iodsilber chemisch wirkenden Strahlen.

Eisenlohr (W.). Ann. Phys. u. Chem., 99, 162.

Salpetersaure Nickellösung als Absorptionspräparat.

Emsmann (H.). Ann. Phys. u. Chem., Erganzungsband, 6 (1874), 334-5; Phil. Mag., (4) 46, 329-30; Jour. Chem. Soc., (2) 12, 413. Spectre de l'azotate de l'argent.

Gouy. Comptes Rendus, 84, 231; Chem News, 35, 107.

Spectroscopische Untersuchung der Absorptionsspectren der flüssigen Untersalpetersäure.

Jahresber. d. Chemie, 23 (1870), 172.

Ueber das Absorptionsspectrum der flüssigen Untersalpetersäure.

Kundt (A.). Ann. Phys. u. Chem., 141, 157-9; Zeitsch. analyt.
Chemie, (2) 7, 64 (Abs.); Jour. Chem. Soc., (2) 9, 185 (Abs.).

On the action of the less refrangible rays of light on silver iodide and silver bromide.

Lea (M. Carey). Amer. Jour. Sci., (3) 9, 269-78; Jour. Chem. Soc., 1876, 1, 28 (Abs.).

Note on the sensitiveness of silver bromide to the green rays as modified by the presence of other substances.

Lea (M. Carey). Amer. Jour. Sci., (3) 11, 459-64.

On the sensitiveness to light of various salts of silver.

Lea (M. Carey). Amer. Jour. Sci., (3) 13, 369-71; Jour. Chem Soc., 1877, 2, 690 (Abs.); Beiblätter, 1, 405 (Abs.).

On the theory of the action of certain organic substances in increasing the sensitiveness of silver haloids.

Lea (M. Carey). Amer. Jour. Sci., (3) 14, 96-9; Beiblätter, 1, 563 (Abs.).

Azotate de l'argent en solution, étincelle.

Lecoq de Boisbaudran (F.). Spectres Lumineux, Paris, 1874, p. 167, planche XXV.

Ueber die Lichtempfindlichkeit der Silberhaloïdsalze und den Zusammenhang von optischer und chemischer Licht.

Schultz-Selback (C.). Ann. Phys. u. Chem., 143, 161-71; Ber. chem.
Ges., 4, 210 (Abs.); Jour. Chem. Soc., (2) 9, 302 (Abs.); Phil. Mag., (4) 41, 549 (Abs.); Ann. Chim. et Phys., (4) 26, 280 (Abs.).

Chemische und mechanische Veränderung der Silberhalbödsalze durch das Licht.

Schultz-Selback (C.). Ann. Phys. u. Chem., 143, 439-49; Ber. chem. Ges., 4, 343-5; Phil. Mag., (4) 41, 550-2.

Bestimmung der Salpetersäure und Phosphorsäure auf spectralanalytischem Wege.

Settegast (H.). Zeitschr. analyt. Chemie, 20, 116-17.

Azione dei raggi solari sui composti aloidi d'argento.

Tommasi (D.). Rend. del R. Ist. Lomb., **11**, 652-8; Beiblätter, **3** 621-2 (Abs.).

Sur la radiation de l'argent au moment de sa solidification.

Violle (J.). Comptes Rendus, 96, 1033-5; Chem. News, 47, 213 (Abs.); Beiblatter, 7, 457 (Abs.).

Ueber die Lichtempfindlichkeit des Bromsilbers für die sogenannten ehemisch unwirksamen Farben.

Vogel (H, W.). Ber. chem. Ges., 6, 1302-6; Ann. Phys. u. Chem.
150, 453-9; Jour. Chem. Soc., (2) 12, 217 (Abs.); Amer. Jour. Sci.,
(3) 7, 140-1; Phil. Mag., (4) 47, 273-77; Bull. Soc. chim. Paris, n. s. 21, 233.

Ueber die ehemische Wirkung des Lichtes auf reines und gefärbtes Bromsilber.

Vogel (H. W.). Ber. chem. Ges., 8, 1635-6; Jour. Chem. Soc., 1876.
1, 510 (Abs.); Amer. Jour. Sci., (3) 11, 215-16 (Abs.).

Neue Beobachtungen über die Lichtempfindlichkeit des Bromsilbers.

Vogel (H. W.). Ber. chem. Ges., 9, 667-70; Jour. Chem. Soc., 1876, 2, 265 (Abs.).

Ueber die Empfindlichkeit trockner Bromsilberplatten gegen das Sonnenspectrum.

Vogel (II, W.). Ber. chem. Ges., 14, 1024-8; Jour. Chem. Soc., 40, 773 (Abs.); Beiblätter, 5, 521 (Abs.).

Veber die verschiedenen Modificationen des Bromsilbers und Chlorsilbers, Vogel (H. W.). Ber. chem. Ges., 16, 4170-9; Beiblatter, 7, 533 (Abs.).

Ueber die ehemische Wirkung des Sonnenspectrums auf Silberhaloïdsalze. Vogel (H. W.). Ann. Phys. u. Chem., **153**, 218-50; Jour. Chem. Soc., (2) **13**, 326 (Abs.).

Ueber die Brechung und Dispersion des Lichtes in Iod-, Brom-und Chlor-Silber.

Wernicke (W.). Ann. Phys. u. Chem., 142, 560-70; Jour. Chem.
Soc., (2) 9, 653-4 (Abs.); Ann. Chim. et Phys., 44 26, 287 (Abs.).

SODIUM.

Spectrum of sodium.

Abney (W. de W.). Chem. News, 44, 3.

Note on the spectrum of sodium.

Abney (W. de W.). Proc. Royal Soc., 32, 443.

Reversal of the sodium lines.

Ackroyd (W.). Chem. News, 36, 164-5.

Lumière jaune de la flamme de sodium.

Becquerel (H.). Comptes Rendus, 90, 1407.

Spectronatromètre.

Champion (P.), Pellet (H.) et Grenier (M.). Comptes Rendus, 76, 707-11; Jour. Chem. Soc., (2) 11, 934-5 (Abs.). (Look below, under Janssen.)

Spectre de la soude dans les tubes de Geissler.

Chautard (J.). Comptes Rendus, 82, 273.

Renversement des raies spectrales du sodium.

Cornu (A.). Comptes Rendus, 73, 332; Jour. de Phys., 1, 206.

Ueber die Opacität der gelben Natronflamme für Licht von ihrer eignen Farbe.

Crookes (W.). Ann. Phys. u. Chem., 112, 344.

Indices de réfraction des dissolutions aqueuses d'acide acétique et d'hyposulfite de soude.

Damien. Comptes Rendus, 91, 323-5; Beiblätter, 5, 41.

Das Verhältniss der Intensitäten der beiden Natriumlinien.

Dietrich (W.). Ann. Phys. u. Chem., n. F. 12, 519.

Speetre de sodium.

Fizeau (H.). Comptes Rendus, 54, 493; Ann. Phys. u. Chem., 116, 492.

Recherches photométriques sur le sodium.

Gouy. Comptes Rendus, 83, 269; 85, 70; 86, 878, 1078.

Ueber ein einfaches Verfahren die Umkehrung der farbigen Linien der Flammenspeetra, insbesondere der Natriumlinie, subjectiv dazustellen.

Günther (C.). Ann. Phys. u. Chem., n. F. 2, 477.

22 т

Sur l'emploi de la lumière monochromatique, produite par les sels de soude, pour apprécier les changements de couleur de la teinture de tournesol, dans les essais alkalimétriques.

> Henry (L. d'). Comptes Rendus, 76, 222-4; Ann. Chem. u. Pharm., 169, 272; Dingler's Jour., 207, 405-7.

Soda flames in coal fires.

Herschel (J.). Nature, 27, 78, 103.

Speetrum des Natriums.

Jahresber, d. Chemie, 15 (1862), 29, 30.

Umkehrung der hellen Spectrallinien der Metalle, insbesondere des Natriums, in dunkle.

Jahresber, d. Chemie, 18 (1865), 90.

Note sur l'analyse spectrale quantitative, à propos de la communication précédente de M. M. Champion, Pellet et Grenier.

Janssen (J.). Comptes Rendus, 76, 711-13; Jour. Chem. Soc., (2) 11, 1258 (Abs.).

Chemische Analyse durch Speetralbeobachtungen; Linien von Natrium. Kirchhoff (G.) und Bunsen (B.). Ann. Phys. u. Chem., 110, 161-87.

Ueber anomale Dispersion im glühenden Natriumdamp.

Kundt (A.). Ann. Phys. u. Chem., n. F. 10, 321-5; Phil. Mag., (5) 10, 53-7.

Sulfate de soude fondu, étincelle; sels de soude dans le gaz; sels de soude et de lithine dans le gaz.

Lecoq de Boisbaudran (F.). Spectres Lumineux, Paris, 1874, p. 54, 55, planche V, VI.

Reversal of the lines of the metallic vapours, sodium.

Liveing and Dewar. Nature, 24, 206; 26, 466.

On the spectra of sodium and potassium.

Liveing (G. D.) and Dewar (J.). Proc. Royal Soc., 29, 398-402; Beiblätter, 4, 368 (Abs.).

Note on some phenomena attending the reversal of lines.

Lockyer (J. N.). Proc. Royal Soc., 28, 428-32; Beiblatter, 3, 608 (Abs.).

Note on the spectrum of sodium.

Lockyer (J. N.). Proc. Royal Soc., 29, 140; Chem. News, 39, 243.

Spectrum of sodium at elevated temperatures.

Lockyer (J. N.). Chem. News, 30, 98.

Sur les raies de la vapeur de sodium.

Lockyer (J. N.). Comptes Rendus, 88, 1124.

Die Natriumline gehört dem Metall an.

Mitscherlich (A.). Ann. Phys. u. Chem., 116, 505.

Absorption spectra of sodium and potassium at low temperatures.

Roscoe (H. E.) and Schuster (A.). Proc. Royal Soc., 22, 362.

Indice du quartz pour les raies du sodium.

Sarasin (Éd.). Comptes Rendus, 85, 1230.

Et spectres du fer et quelques autres métaux dans l'arc voltaïque; sodium. Secchi (A.). Comptes Rendus, 77, 173; Chem. News, 28, 82.

Spectre du sodium.

Secchi (A.). Comptes Rendus, 82, 275.

Propriétés optiques de sous carbonate de soude et de hyposulfite de soude: Senarmont (II. de). Ann. Chim. et Phys., (3) 41, 336.

Sur le déplacement des raies du sodium, observé dans le spectre de la grande comète de 1882.

Thollon et Gouy. Comptes Rendus, 96, 371.

Leichte Umkehrung der Natriumlinie.

Weinhold (A.). Ann. Phys. u. Chem., **142**, 321; Phil. Mag., **(4) 41**,

(See Soret. Arch. de Genève, (2) 41, 64-5.)

Sur la dispersion du chromate de soude à 4 H₂ O.

Wyrouboff (G.). Bull. Soc. minéral. de France, 5, 160-1.

Re-reversal of sodium lines.

Young (C. A.). Nature, 21, 274-5; Beiblätter, 4, 370.

STRONTIUM.

Ueber den Einfluss der Temperatur auf die Brechungsexponenten der naturlichen Sulfate des Baryum, Strontium und Blei.

Arzruni (A.). Zeitschr. Krystallogr. u. Mineral., 1, 165-192; Jahrb. f. Mineral., 1877, 526 (Abs.); Jour. Chem. Soc., 34, 189 (Abs.).

Strontium spark spectrum.

Capron (J. R.). Photographed Spectra, London, 1877, p. 44.

La strontiane dans les eaux minérales de Contrexeville et Schinznach . (Suisse).

Dieulnfait. Comptes Rendus, 95, 999-1001; Jour. Chem. Soc., 44, 301 (Abs.).

Recherches photométriques sur le strontium.

Gouy. Comptes Rendus, 83, 269.

Spectre de chlorure de strontium.

Gouv. Comptes Rendus, 84, 231.

Recherches photométriques; spectre du strontium.

Gouy. Comptes Rendus, 85, 70.

Sur les caractères des flammes chargées du chlorure de strontium.

Gouy. Comptes Rendus, 85, 439.

Spectre continu du strontium.

Gouy. Comptes Rendus, 86, 878, 1078.

Spectrum von Strontium.

Jahresber, d. Chemie, 23 (1870), 174.

Chlorure de strontium en solution, étincelle; dans le gaz; dans le gaz chargé de H Cl.

> Lecoq de Boisbaudran (F.). Spectres Lumineux, Paris, 1874, p. 69, planche IX; p. 72 et 75, planche X.

Linien von Strontium.

Kirchhoff (G.) und Bunsen (R.). Ann. Phys. u. Chem., 110, 174.

SULPHUR.

On the violet phosphorescence in calcium sulphide.

Abney (W. de W.). Proc. Physical Soc., 5, 35-8; Nature, 35, 355 (Abs.); Phil. Mag., (5) 13, 212-14; Jour. Chem. Soc., 42, 677 (Abs.); Beiblätter, 6, 383 (Abs.); Jour. de Phys., (2) 2, 287 (Abs.).

Spectres des gaz simples; soufre.

Angström (A. J.). Comptes Rendus, **73**, 369; Ann. Phys. u. Chem., **94**, 159.

Spectre du sulfure de carbone.

Becquerel (H.). Comptes Rendus, 85, 1227.

Sulphur spectrum, sulphuric acid spectrum, sulphur quartz spectrum.

Capron (J. R.). Photographed Spectra, London, 1877, p. 68, 74, 75.

Spectrum von Schwefel.

Dibbits (H. C.). Ann. Phys. u. Chem., 122, 527-34.

Spectre du soufre.

Ditte (A.). Comptes Rendus, 73, 622-4; Bull. Soc. chim. Paris, n. s. 16, 229.

Spectres d'absorption des vapeurs de soufre.

Gernez (D.). Comptes Rendus, 74, 803; Bull. Soc. chim. Paris, n. s. 17, 259.

Spectre de sulfate de thallium.

Gouy. Comptes Rendus, 84, 831.

Sulfate acide.

Gouy. Comptes Rendus, 85, 70.

Spectrum of murexide.

Hartley (W. N.). Jour. Chem. Soc., 51 (1887), 199-200.

Spectrum des Schwefels.

Jahresber. d. Chemie, **16** (1863), 110; **17** (1864), 109; **22** (1869), 181; **23** (1870), 173; **25** (1872), 139, 141; **28** (1875), 122.

Spectre du sulfure de plomb.

Lallemand (A.). Comptes Rendus, 78, 1272.

Sur la diffusion lumineuse du sulfure de cuivre obtenu sans précipitation.

Lallemand (A.). Comptes Rendus, 79, 693.

Die Absorptionsstreifen in Prismen von Schwefelkohlenstoff.

Lamansky (S.). Ann. Phys. u. Chem., 146, 213, 215.

Sur les spectres des vapeurs aux températures élévées; spectre du soufre.

Lockyer (J. N.). Comptes Rendus, 78, 1790; Nature, 30, 78; Chemical News, 30, 98.

Spectrum des Schwefels, Schwefelkohlenstoffs, Schwefelwasserstoffs und Selens.

Mulder. Jour. prackt. Chemie, 91, 111.

Sulla refrazione atomica dello zolfo.

Nasini (R.). Gazz. chim. ital., 13, 296-311; Jour. Chem. Soc., 46, 149-51 (Abs.); Ber. chem. Ges., 15, 2878-92; Beiblätter, 7, 281 (Abs.).

Dampf des wasserfreien Schwefelsäure.

Plucker. Ann. Phys. u. Chem., 113, 276, 278.

Spectrum des Muroxids.

Reynolds. Jour. prackt. Chemie, 105, 359.

De la flamme du soufre, et des diverses lumières utilisables en photographie.

Riche (A.) et Brady (C.). Comptes Rendus, **80**, 238-41; Ber. chem. Ges., **8**, 182 (Abs.).

Recherche du soufre par le spectroscope.

Salet (G.). Comptes Rendus, 68, 404; Bull. Soc. chim. Paris, n. s. 11, 302; Ann. Phys. u. Chem., 137, 171.

Spectre du soufre.

Salet (G.). Comptes Rendus, 73, 559.

Recherche du soufre et du phosphore par le spectroscope.

Salet (G.). Bull. Soc. chim. Paris, n. s. 13, 289.

Sur la réaction spectroscopique du soufre et sur la flamme de l'hydrogène.
Salet (G.). Bull. Soc. chim. Paris, n. s. 14, 182.

Sur le spectre d'absorption de la vapeur du soufre.

Salet (G.). Comptes Rendus, 74, 865-6; Jour. Chem. Soc., (2) 10, 382 (Abs.); Ber. chem. Ges., 5, 323 (Abs.).

Sur les spectres du phosphore et du soufre.

Séguin (J. M.). Comptes Rendus, 53, 1272.

Propriétés optiques d'hyposulfite de soude.

Sénarmont (H. de). Ann. Phys. u. Chem., (3) 41, 336.

TELLURIUM.

Tellurium spark spectrum.

Capron (J. R.). Photographed Spectra, London, 1877, p. 20, 40, 45.

Spectre du tellure.

Ditte (A.). Comptes Rendus, 73, 622-24.

Sur les spectres d'absorption de tellure, de protochlorure et de protobromure de tellure.

Gernez (D.). Comptes Rendus, 74, 1190-2; Jour. Chem. Soc., (2)
10, 665 (Abs.); Phil. Mag., (4) 43, 473-5; Amer. Jour. Sci., (3) 4, 59 (Abs.); Bull. Soc. chim. Paris, n. s. 18, 172.

Spectrum des Tellurs.

Jahresber. d. Chemie, 25 (1872), 140.

Spectre du tellure.

Salet (G.). Comptes Rendus, 73, 744.

TERBIUM.

Absorptionsspectrum von Terbiumlösungen.

Delafontaine. Jour. prackt. Chemie, 94, 303.

Vergleich der Absorptionsspectra von Didym, Erbium und Terbium.

Delafontaine. Ann. Phys. u. Chem., 124, 635; Chem. News, 11, 253;Ann. Chim. et Phys., 135, 194.

Sur un spectre électrique particulier aux terres rares du groupe terbique.

Lecoq de Boisbaudran (F.). Comptes Rendus, 102, 153-55; Jour. Chem. Soc., 50, 293 (Abs.).

THALLIUM.

Thallium and indium spark spectrum.

Capron (J. R.). Photographed Spectra, London, 1877, p. 45, 47.

Renversement des raies spectrales du thallium.

Cornu (A.). Comptes Rendus, 73, 332.

Discovery of thallium.

Crookes (W.). Chem. News, 3, 193.

Thallium and its compounds.

Crookes (W.). Jour. Chem. Soc., 17, 112.

Recherches photométriques sur le thallium.

Gouy. Comptes Rendus, 83, 269.

Spectre de sulfate de thallium.

Gony. Comptes Rendus, 84, 231.

Spectrum des Thalliums und der Thalliumsalzen.

Jahresber, d. Chemie, 16 (1863), 112; 26 (1873), 152, 158

Sur le thallium, nouveau métal dont l'analyse spectrale a fait connaître l'existence.

Lamy (A.). Comptes Rendus, 54, 1255; Ann. Chim. et Phys., (3) 67, 385; Ann. Phys. u. Chem., 116, 495.

Moven de constater une empoisonnement par le thallium.

Lamy (A.). Comptes Rendus, 57, 442.

Sels de thallium dans le gaz.

Lecoq de Boi-baudran (F.). Spectres Lumineux, Paris, 1874, p. 141.
planche XXI.

Spectre de thallium.

Lecoq de Boisbaudran (F.). Comptes Rendus, 77, 1152; Bull. 8 chim. de Paris. u. s. 21, 125.

Note on the spectrum of thallium.

Miller (W. A.). Proc. Royal Soc., 12, 407.

Sur la raie spectrale du thallium.

Nickles, Comptes Rendus, 58, 132; Ann. Phys. u. Chem., 121, 336

Spectre du thallium dans l'arc voltaïque.

Secchi (A.). Comptes Rendus, 77 173.

THULIUM.

Spectre de thulium.

Clève (P. T.). Comptes Rendus, 89, 478; 91, 328.

Remarques sur le thulium.

Delafontaine. Comptes Rendus, 90, 221.

Examen spectral du thulium.

Thalén (R.). Comptes Rendus, **91**, 376-8; Jour. Chem. Soc., **40**, 349-50 (Abs.); Beiblätter, **4**, 789 (Abs.).

Spectralundersökningar rörande Skandium, Ytterbium, Erbium och Thulium.

Thalén (R.). Oefversigt af k. Vetensk. Acad. Förhand., 38, No. 6, 13-21; Jour. de Phys., (2) 2, 35-40; Chem. News, 47, 217 (Abs.); Jour. Chem. Soc., 44, 954 (Abs.).

TIN.

Tin are spectrum; tin and zinc spark spectrum; tin chloride spectrum.

Capron (J. R.). Photographed Spectra, London, 1877, p. 49, 76.

Bichlorure d'étain en solution, étincelle.

Lecoq de Boisbaudran (F.), Paris, 1874, p. 143, planche XXII.

Spectres d'étain et ses composés.

Salet (G.). Comptes Rendus, 73, 862-3; Jour. Chem. Soc., (2) 9, 1147-9 (Abs.).

TITANIUM.

Spectre du bichlorure de titanium.

Becquerel (H.). Comptes Rendus, 85, 1227.

Titanium spark spectrum; titanium, aluminium, and palladium spark spectrum; titanium arc spectrum.

Capron (J. R.). Photographed Spectra, London, 1877, p. 47.

Spectre du titanium.

Troost et Hautefeuille. Comptes Rendus, 73, 620; Bull. Soc. chim. Paris, n. s. 16, 229.

Coïncidence of the spectrum lines of iron, calcium, and titanium.

Williams (W. Matthieu). Nature, 8, 46.

URANIUM.

- Analyse de la lumière émise par les composés d'uranium phosphorescents.

 Becquerel (E.). Comptes Rendus, 75, 296-303; Jour. Chem. Soc., (2)

 11, 25 (Abs.); Amer. Jour. Sci., (3) 4, 486 (Abs.).
- Relation entre l'absorption et la phosphorescence des composés d'uranium. Becquerel (H.). Comptes Rendus, **101**, 1252-6; Jour. Chem. Soc., **50**, 189 (Abs.).
- Uranium arc spectrum.

Capron (J. R.). Photographed Spectra, London, 1877, p. 50.

Anwendung der dunklen Linien des Spectrums als Reagens auf Uransäure. Jahresber. d. Chemie, 5 (1862), 125.

Absorptionsspectren der Uransalzen.

Jahresber. d. Chemie, 26 (1873), 158.

Investigation of the fluorescent and absorption spectra of the uranium salts.
Morton (II.) and Bolton (H. C.). Chem. News, 28, 47-50, 113-16, 164-7, 233-4, 244-6, 257-9, 268-70; 29, 17-19; Jour. Chem. Soc., (2) 12, 12-13 (Abs.), 642 (Abs.).

On some remarkable spectra of compounds of zirconia and of the oxides of uranium.

Sorby (H. C.). Proc. Royal Soc., 18, 197; Ber. chem. Ges., 3, 146.

Spectra der Uranlösungen.

Thudichum. Jour. prackt. Chemie, 106, 415.

Absorption spectrum of uranine.

Wiley (H. W.). Amer. Chem. Jour., 1, 211.

Untersuchungen über das Uran.

Zimmermann (C.). Ann. Phys. u. Chem., 213, 285-329; Chem. News, 46, 172 (Abs.); Zeitschr. analyt. Chemie, 23, 220 (Abs.).

VANADIUM.

Vanadium arc spectrum.

Capron (J..). Photographed Speetra, London, 1877, p. 50.

VIOLET AND ULTRA-VIOLET.

Sur l'absorption des rayons ultra-violets par quelques milieux.

Chardonnet (E. de). Comptes Rendus, 93, 406.

Vision des radiations ultra-violettes.

Chardonnet (E. de). Comptes Rendus, 96, 509-71; Jour. de Phys., 12, 219.

Sur l'absorption atmosphérique des radiations ultra-violettes.

Cornu (A.). Jour. de Phys., 10, 5-16

Erklärung der ultra-violetten Strahlen des Spectrums.

Eisenlohr (W.). Ann. Phys. u. Chem., 93, 623.

Note upon certain photographs of the ultra-violet spectra of elementary bodies.

Hartley (W. N.). Jour. Chem. Soc., 41, 84-90; Chem. News, 43, 289 (Abs.); Beiblätter, 5, 659 (Abs.); 6, 789 (Abs.).

Investigation by means of photography of the ultra violet spark spectra emitted by metallic elements and their combinations under varying conditions.

> Hartley (W. N.). Chem. News, **48**, 195; note on the above by Wiedemann (E.), Chem. News, **49**, 117; Jour. Chem. Soc., **46**, 801 (Abs.); Beiblatter, **8**, 581 (Abs.).

Visibility of the ultra-violet rays of the spectrum.

Herschel (A. S.). Nature, 16, 22-3.

On the ultra-violet spectra of the elements.

Liveing (G. D.) and Dewar (J.). Phil. Trans., 174, 187-222; Proc.
Royal Soc., 34, 122 (Abs.); Beiblatter, 6, 934 (Abs.); 7, 598, 849-56
(Abs.); Jour. Chem. Soc., 44, 262 (Abs.); Proc. Royal Institution.
10, 245-52.

Notes on the absorption of ultra-violet rays by various substances.

Liveing (G. D.) and Dewar (J.). Proc. Royal Soc., 35, 71.

Détermination des longueurs d'onde des rayons lumineux et des rayons ultra-violets.

Mascart. Comptes Rendus, 58, 1111

Visibilité des ravons ultra-violets.

Mascart. Comptes Rendus, 68, 402; Ann. Phys. u. Chem., 137, 163.

Spectres ultra-violets.

Maseart. Comptes Rendus, 69, 337.

Sur les moyens propres à la réproduction photographique des spectres ultra-violets des gaz.

Monckhoven (van). Bull. Acad. Belgique, (2) 43, 187-92; Beiblätter, 1, 286 (Abs.).

Fluorescence and the violet end of a projected spectrum.

Morton (Henry). Chem. News, 27, 33.

Photographie des durch ein Quarzprisma erhaltenen ultra-violetten Theils des Spectrums.

Müller (J.). Ann. Phys. u. Chem., 109, 151.

A comparison of the maps of the ultra-violet spectrum.

Pickering (E. C.). Amer. Jour. Sci., (3) **32**, 223-6; Beiblätter, **11** (1887), 145 (Abs.).

On the lower limit of the prismatic spectrum, with especial reference to some observations of Sir J. Herschel.

Rayleigh (Lord). Phil. Mag., (5) 4, 348-53; Beiblätter, 1, 682 (Abs.).

Report on the ultra-violet spark spectra emitted by metallic elements.

Report of the British Association, 1882, p. 143, presented by Prof. Hartley; Nature, 26, 458.

Nicht alle Quarzprismen verlängern das Spectrum am ultravioletten Ende.

Salm-Horst (Der Fürst zu). Ann. Phys. u. Chem., 109, 158.

Experimente über die Sichtbarkeit ultra-violetter Strahlen.

Sauer (L.). Ann. Phys. u. Chem., 155, 602.

Ueber ultra-violette Strahlen.

Schönn (J. L.). Ann. Phys. u. Chem., n. F. 9, 483-92; 10, 143-8.

Der ultra-violette Theil des Spectrums lässt sich unmittelbar sichtbar machen.

Seculie (M.). Ann. Phys. u. Chem., 146, 157.

Recherches sur l'absorption des rayons ultra-violets par diverses substances.

Soret (J.). Comptes Rendus, 86, 708, 1062-4; Arch. de Genève. (2)
63, 89-112; (3) 4, 261-92, 377-81; 10, 429-94; Beiblätter, 2, 410 (Abs.); 3, 196 (Abs.); 5, 124 (Abs.); Jahresber. d. Chemie (1873), 154.

Sur la transparence des milieux de l'œil pour les rayons ultra-violets.

Soret (J. L.). Comptes Rendus, 88, 1012.

Spectres d'absorption ultra-violets des éthers azotiques et azoteux.

Soret (J. L.) et Rilliet (Alb. A.). Comptes Rendus, 89, 747.

Sur la visibilité des rayons ultra-violets.

Soret (J. L.). Comptes Rendus, 97, 314.

Sur l'absorption des rayons ultra-violets par les milieux de l'œil et par quelques autres substances.

Soret (J. L.). Comptes Rendus, 97, 572, 642.

The Change of Refrangibility of Light. (Gives a drawing of the fixed lines in the solar spectrum in the extreme violet and in the invisible region beyond.)

Stokes (G. G.). Phil. Trans. for 1852, part 11, 463.

Visibilité des rayons ultra-violets, à l'aide du parallelipipède de dispersion.

Zenger (Ch. V.). Comptes Rendus, 98, 1017.

VOLCANOES.

Observations on Mt. Etna.

Langley (S. P.). Amer. Jour. Sci., (3) 20, 33-4; Beiblätter, 4, 790 (Abs.).

Recherches spectroscopiques sur les fumerolles de l'éruption du Vesuve en avril 1872.

Palmieri (L.). Comptes Rendus, 76, 1427-8.

WATER SPECTRA.

Colour of the Mediterranean and other waters.

Aitken (J.). Proc. Royal Soc. Edinburgh, 11, 472-83; Jour. Chem. Soc., 42, 1017 (Abs.); Beiblätter, 6, 379 (Abs.).

Note on the absorption of sea-water.

Aitken (J.). Proc. Royal Soc. Edinburgh, 11, 637; Beiblätter, 7, 372 (Abs.).

Évaporation de l'eau sous l'influence de la radiation solaire ayant traversé des verres colorés.

Baudrimont (A.). Comptes Rendus, 89, 41-3.

Spectre de l'eau.

Becquerel (H.). Comptes Rendus, 85, 1227.

The spectroscope in water analysis.

Church (A. H.). Chem. News, 22, 322.

Indices de réfraction de l'eau en surfusion.

Damien (B. C.). Jour. de Phys., 10, 198-202.

Untersuchungen einiger Wässer.

Dibbits. Jour. prackt. Chemie, 92, 38, 50.

Spectre lumineux de l'eau.

Huggins (W.). Comptes Rendus, 90, 1455.

Spectres d'absorption de la vapeur d'eau.

Janssen (J.). Comptes Rendus, 56, 538; 60, 213; 63, 289; 78, 995;
95, 885; Phil. Mag., (4) 32, 315; Ann. Chim. et Phys., (4) 24, 215–17; Jour. Chem. Soc., (2) 10, 280 (Abs.); Jahresber. d. Chemie (1866), 76.

Spectre de la vapeur d'eau.

Lecoq de Boisbaudran (F.). Comptes Rendus, 74, 1050.

Spectrum of water.

Liveing (G. D.) and Dewar (J.). Proc. Royal Soc., **30**, 580; **33**, 274-6; Jour. Chem. Soc., **44**, 140 (Abs.); Beiblätter, **6**, 481 (Abs.).

Sur la réfraction de l'eau comprimée.

Mascart. Comptes Rendus, 78, 801-5; Amer. Jour. Sci., (3) 7, 593; Ann. Phys. u. Chem., 153, 154-8. Studî spettrali sub colore delle acque, nota seconda.

Riceò (A.). Mem. Spettr. ital., 8, 1-10.

Ueber die Absorption des Lichts durch Wasser, etc.

Schönn (J. L.). Ann. Phys. u. Chem., Ergänzungsband, 1878, 8, 670-5; Jour. Chem. Soc., 34, 693 (Abs.).

Observations relatives à une communication de M. Crocé-Spinelli sur les bandes de la vapeur d'eau dans le spectre solaire.

Secchi (A.). Comptes Rendus, 78, 1080.

Sur la couleur de l'eau.

Soret (J. L.). Arch. de Genève, (3) 11, 276-96; Beiblätter, 8, 508 (Abs.); Jour. de Phys., 13, 427.

Spectre d'absorption de l'eau.

Soret (J. L.) et Sarasin (Ed.). Comptes Rendus, **98**, 624; Amer. Jour. Sci., (3) **27**, 485.

Ueber die Absorption des Seewassers.

Vogel (H. W.). Beiblätter, 7, 532.

WAVE-LENGTHS.

- Wave-lengths of A, a and lines in the infra-red of the visible spectrum.

 Abney (W. de W.). Nature, 29, 190; Chem. News, 48, 283; Comptes Rendus, 97, 1206.
- Corrections to the computed lengths of waves of light, published in the Philosophical Transactions of the year 1868.

Airy (G. B.). Phil. Trans., 1872, 142, 89-109; Proc. Royal Soc., 20, 21-2 (Abs.).

Wellenlänge Messungen.

Angström (A. J.). Ann. Phys. u. Chem., **123**, 489; Jahresber. d. Chemie (1865), 85.

La détermination des longueurs d'onde des rayons de la partie infra-rouge du spectre au moyen des effets de phosphorescence.

Becquerel (E.). Comptes Rendus, 77, 302; Jahresber. d. Chemie (1873), 160.

Phosphorographie de la région infra-rouge du spectre solaire; longueur d'onde des principales raies.

Becquerel (H.). Comptes Rendus, 96, 121.

On the absolute wave-length of light.

Bell (Louis). Phil. Mag., (5) **23** (1887), 265-82; Amer. Jour. Sci., (3) **33**, 167-82.

Photometrische Untersuchungen.

Bohn (C.). Ann. Phys. u. Chem., Ergänzungsband, 6 (1874), 386.

Détermination des longueurs d'onde des radiations très réfrangibles.

Cornu (A). Jour. de Phys., 10, 425.

Étude spectrométrique de quelques scources lumineuses.

Crova (A.). Comptes Rendus, 87, 322.

Comparaison photométrique des scources lumineuses des teintes différentes.

Crova (A.). Comptes Rendus, **93**, 512; Ann. Chim. et Phys., (6) **6**, 528-45

Détermination des longueurs d'onde des rayons calorifiques à basse température dans le spectre.

Desaines (P.) et Curie (P.). Comptes Rendus, 90, 1506.

Wellenlänge der Fraunhofer Linien.

Ditscheiner (L.). Ber. d. Wiener Akad., Bd. II, Abth. 1, 296; Amer. Jour. Sci., (3) 3, 297-9.

23 т

Die brechbarston oder unsichtbaren Lichtstrahlen im Beugungspectrum und ihre Wellenlänge.

Eisenlohr (W.). Ann. Phys. u. Chem., 98, 353; 99, 159-62.

Eine Wellenmessung im Spectrum jenseits des Violetts.

Esselbach (E.). Ann. Phys. u. Chem., 98, 513.

Les vibrations de la matière et les ondes de l'éther dans les combinations photochimiques.

Favé. Comptes Rendus, 86, 560-5.

On the normal solar spectrum. (Gives the wave-lengths of the principal lines of the solar spectrum.)

Gibbs (Wolcott). Amer. Jour. Sci., 93, 1.

On the measurement of wave-lengths by means of indices of refraction.

Gibbs (Wolcott). Amer. Jour. Sci., March, 1869; Phil. Mag., (4) 50,177. [See also Rep'ts British Association for 1881 and 1884]

Recherches photométriques sur les flammes colorées.

Gouy. Comptes Rendus, 83, 269-272; 85, 70, 439; 86, 878, 1078;Ann. Chim. et Phys., (5) 18, 5-101.

Measurements of the wave-lengths of lines of high refrangibility in the spectra of elementary substances.

Hartley (W. N.) and Adeney (W. E.). Phil. Trans., 175, 63-137;
 Proc. Royal Soc., 35, 148 (Abs.); Chem. News, 47, 193 (Abs.); Beiblätter, 7, 599 (Abs.).

Zur Reduction der Kirchhoff'schen Spectralbeobachtungen auf Wellenlängen.

Hasselberg (B.). Bull, Acad. St. Pétersbourg, 25, 131-46; Beiblätter, 3, 79.

Note sur l'analyse spectrale.

Janssen (J.). Comptes Rendus, 76, 711-13; Jour. Chem. Soc., (2) 11, 1258 (Abs.).

Photometrische Untersuchungen.

Ketteler (E.) und Pulfrich (C.). Ann. Phys. u. Chem., n. F. 15, 337-378; Amer. Jour. Sci., (3) 23, 486 (Abs.); Monatsber. d. Berliner Acad (1864), 632.

Ueber die Empfindlichkeit des normalen Auges für Wellenlängenunterschiede des Lichtes.

König (A.) und Dieterici (C.). Ann. Phys. u. Chem., n. F. 22, 579-89; Jour. de Phys., (2) 4, 323 (Abs.).

Mesure de l'intensité photométrique des raies spectrales.

Lagarde (H.). Comptes Rendus, 95, 1350.

Recherches photométriques sur le spectre de l'hydrogène.

Lagarde (H.). Ann. Chim. et Phys., (6) 4, 248-369, planche.

Wave-lengths in the invisible spectrum.

Langley (S. P.). Trans. National Acad. Sci. (1883); Amer. Jour. Sci.,
(3) 27, 169; (3) 30, 480; Ann. Chim. et Phys., (6) 2, 145; Ann. Phys. u. Chem., n. F. 22, 598.

On hitherto unrecognized wave-lengths.

Langley (S. P.). Amer. Jour. Sci., (3) 32, 83; Phil. Mag., (5) 22 (1886), 149.

Courbe représentant le rapport des longueurs d'ondes aux divisions de mon micrométre.

> Lecoq de Boisbaudran (F.). Spectres Lumineux, Paris, 1874, p. 194, planehe XXIX.

Comparaison photométrique des diverses parties du même spectre.

Macé de Lépinay (J.). Ann. Chim. et Phys., (5) 24, 289; 30, 145;
Jour. de Phys., 12, 64.

Sur une méthode pratique pour la comparaison spectroscopique des scources usuelles diversement colorées.

Macé de Lépinay (J.). Comptes Rendus, 97, 1428.

Méthode pour mesurer, en longueurs d'onde, de petites épaisseurs.

Macé de Lépinay (J.). Ann. Chim. et Phys., (6) 10, 68-84; Jour. de Phys., (2) 5, 405-11.

Détermination de la longueur d'onde de la raie A du spectre.

Maseart. Comptes Rendus, 56, 138.

Détermination des longueurs d'onde des rayons lumineux et des rayons ultra-violets.

Maseart. Comptes Rendus, 58, 1111.

Longueurs d'onde de quelques métaux.

Maseart. Ann. de l'École normale, 4 (1866).

Spectralphotometrische Untersuchungen einiger photographischer Sensibilisatoren.

Messerschmidt (J. B.). Ann. Phys. u. Chem., (2) **25**, 655-74; Jour. Chem. Soc., **48**, 1097 (Abs.); Jour. de Phys., (2) **5**, 518.

Sur la détermination des longueurs d'onde calorifiques.

Mouton. Comptes Rendus, 88, 1078-82; Beiblätter, 3, 616-18 (Abs.)

Wellenlänge und Brechungsexponent der äusserstern dunklen Wärmestrahlen des Sonnenspectrums.

Müller (J.). Ann. Phys. n. Chem., 115, 543, Berichtigung dazu, 116, 644; Phil. Mag., (4) 26, 259; 30, 76; Jahresber. d. Chemie, 16 (1863), 191; 18 (1865), 229.

Note on the progress of experiments for comparing a wave-length with a metre.

Peirce (C. S.). Amer. Jour. Sci., (3) 18, 51; Beiblätter, 3, 711 (Abs.).

The ghosts in Rutherford's diffraction spectrum.

Peirce (C. S.). Amer. Jour. Mathematics, 2, 330-47; Nature, 20, 99 (Abs.); Beiblätter, 5, 48-50 (Abs.).

Photometric Researches.

Pickering (W. H.). Proc. Amer. Acad., 15, 236-50; Beiblätter, 4, 728 (Abs.).

Photometrische Untersuchungen.

Pulfrich (C.). Ann. Phys. u. Chem., n. F. 14, 177-218; Amer. Jour. Sci., (3) 23, 50 (Abs.); Jour. de Phys., (2) 1, 285 (Abs.).

Tableau de conversion de l'échelle spectrale en longueurs d'onde.

Salet (G.). Bull. Soc. chim. Paris, n. s. 27, 482.

On the relative wave-lengths of the lines of the solar spectrum.

Rowland (Henry A.). Phil. Mag., (5) 23 (1887), 257.

Three years' experimenting in mensurational spectroscopy

Smyth (Piazzi). Nature, 22, 193-5, 222-5.

Mémoire sur la détermination des longueurs d'onde des raies métalliques, spectres des métaux dessinés d'après leurs longueurs d'onde. (With a plate giving the lines and wave-lengths of forty-five metals.)

Thalén (Rob.), Ann. Chim. et Phys., (4) 18, 202; Nova Acta Reg. Soc. Sci. Upsala, (3) 6.

Longueur d'onde des bandes spectrales données par les composé du carbone.

Thollon (L.). Comptes Rendus, 93, 260; Ann. Chim. et Phys., (5)
25, 287.

Mesures photométriques dans les différentes régions du spectre.

Trannin (H.). Jour. d. Phys., 5, 297, 349.

Photometrie der Fraunhofer Linien.

Vierordt (K.). Ann. Phys. u. Chem., n. F. 13, 338-46.

Resultate spectralphotometrischer Untersuchungen.

Vogel (H. C.). Monatsber. d. Berliner Akad. (1880), 801-11; Beiblätter, 5, 286 (Abs.).

Messung der Wellenlängen des Lichtes mittels Interferenzstreifen im Beugungsstreifen.

Weinberg (M.). Carl's Repertorium, 19, 148-54; Beiblätter, 7, 299 (Abs.).

Note au sujet d'un mémoire de M. Lagarde.

Wiedemann (E.). Ann. Chim. et Phys., (6) 7, 143-4.

YELLOW BODIES.

Spectrum gelber Körper.

Thudichum. Ber. chem. Ges., 2, 63.

YTTERBIUM.

Examen spectrale de l'ytterbine.

Lecoq de Boisbaudran (F.). Comptes Rendus, 88, 1342.

Sur l'ytterbine, nouvelle terre contenue dans la gadolinite.

Marignac (C.). Comptes Rendus, 87, 578-81; Amer. Jour. Sci., (3) 17, 63 (Abs.); Jour. Chem. Soc., 36, 118 (Abs.).

Sur l'ytterbine, terre nouvelle de M. Marignae.

Nilson (L. F.). Comptes Rendus, **88**, 642-5; Amer. Jour. Sci., (3) **17**, 478 (Abs.); Ber. chem. Ges., **12**, 550-3; Jour. Chem. Soc., **36**, 601 (Abs.).

Sur quelques caractéristiques de l'ytterbium et sur leurs spectres.

Nilson (L. F.). Comptes Rendus, 91, 56.

Recherches spectrales de l'ytterbium.

Thalén (R.). Jour. de Phys., 12, 35.

Spectres de l'ytterbium et de l'erbium.

Thalén (R.). Comptes Rendus, 91, 326; Beiblätter, 5, 122; Chemical News, 42, 184.

YTTRIUM.

Yttrium arc spectrum.

Capron (J. R.). Photographed Spectra, London, 1877, p. 51.

Sur les combinaisons de l'yttrium et de l'erbium.

Clève (P. T.) et Hoegland (O.). Bull. Soc. chim. Paris, **18**, 193-201, 289-97; Jour. Chem. Soc., (2) **11**, 136-9.

Sur les poids atomiques de l'yttrium.

Clève (P. T.). Bull. Soc. chim. Paris, **39**, 120-2; Amer. Jour. Sci., (3) **25**, 381 (Abs.).

On radiant matter spectroscopy. The detection and wide distribution of yttrium.

Crookes (W.). Phil. Trans., 174, 891-918; Proc. Royal Soc., 35, 262 (Abs.); Chem. News, 47, 261 (Abs.); Ber. chem. Ges., 16, 1689 (Abs.); Jour. Franklin Inst., 86, 118-128; Beiblätter, 7, 599 (Abs.); Jour. Chem. Soc., 46, 241 (Abs.); Chem. News, 49, 159-60, 169-71, 181-2, 194-6, 205-8; Ann. Chim. et Phys., (6) 3, 145-87.

Spectre des terres faisant partie du groupe de l'yttria et de la cérite; holmium, philippium, samarium, décipium.

Soret (J. L.). Comptes Rendus, 89, 521-3; 91, 378; Ber. chem. Ges., 12, 2267-8; Jour. Chem. Soc., 38, 7 (Abs.); Chem. News, 40, 147.

Spectre de l'yttrium. Avec une planche.

Thalén (R.). Jour. de Phys., 4, 33.

ZINC.

Ueber die optischen Eigenschaften der Zincblende von Santander. (See under Voigt, below.)

Calderon (L.). Zeitschr. Krystallogr. u. Mineralog., 4, 504-17. Beiblätter, 5, 361 (Abs.).

Zine spectra

Capron (J. R.). Photographed Spectra, London, 1877, p. 23, 49, 51, 52.

Déterminations des longueurs d'onde des radiations très réfrangibles du magnésium, du cadmium, du zinc et de l'aluminium.

> Cornu (A.). Archives de Genève, (3) 2, 119-126; Beiblatter, 4, 34 (Abs.); Jour. de Phys., 10, 425-31; Comptes Rendus, 73, 332.

Spectre du chlorure de zinc.

Gouy. Comptes Rendus, 84, 231; Chem. News, 35, 107.

Chlorure de zinc en solution.

Lecoq de Boisbaudran (F.). Spectres Lumineux, Paris, 1874, p. 158, planche XX.

Spectrum of zinc at elevated temperatures.

Lockyer (J. N.). Chem. News, **30**, 98; Proc. Royal Soc., **17**, 289; **18**, 79; **21**, 83; Jahresber, d. Chemie (1872), 145.

Indice du quartz pour les raies du zinc.

Sarasin (E.). Comptes Rendus, 85, 1230.

Ueber den Einflüss einer Krümmung der Prismenflächen auf die Messungen von Brechungsindices, und über die Beobachtungen des Herrn Calderon an der Zineblende.

Voigt (W.). Zeitschr. f. Krystallogr. u. Mineral., 5, 113-130; Bes-blatter, 5, 361-2 (Abs.).

ZIRCONIUM.

Zirconium arc spectrum; zirconium and palladium spack spectrum; zirconium spark spectrum.

Capron (J. R.). Photographed Spectra, London, 1877, p. 53.

On zirconia.

Hannay (J. B.). Jour. Chem. Soc., (2) **11**, 703-10; Ber. chem. Ges., **6**, 571 (Abs.).

Absorption spectra of zircons.

Linnemann (E.). Monatsber. f. Chemie, 6, 531-6; Jour. Chem. Soc., 48, 1173 (Abs.).

On some remarkable spectra of compounds of zirconia and the oxides of uranium.

Sorby (H. C.). Proc. Royal Soc., 18, 197; Ber. chem. Ges., 3, 146.

Spectre du zirconium.

Troost et Hautefeuille. Comptes Rendus, 73, 620; Bull. Soc. chim Paris, n. s. 16, 229.

INDEX OF AUTHORS.

(The names indicate the subjects, and the numbers indicate the pages on which the titles of the authors' works are given.)

Abbay (R.). Eclipse Spectra, 106.

ABBÉ (C.). Eclipse Spectra, 106.

ABERCROMBIE (R.). Aurora, 136; Meteorological, 295.

Abney (W. de W.), alone. Analysis, 40, 47; Absorption, 52; Solar in general, 88; Solar Atmosphere, 100; Maps of Solar Sp., 114; Photographs of Solar Sp., 115; Red End, 123; Wave-Lengths of Solar Sp., 131; Atmospheric Sp., 133; Chlorine, 187; Heat, 251; Oxygen, 308; Phosphorescence, 312; Red End, 322; Silver, 334; Sodium, 337; Sulphur, 341; Wave-Lengths, 353.

Abney (W. de W.) and Festing (R.). Apparatus, 21, 26; Absorption, 52; Displacement of Stellar Sp., 79; Solar in general, 88; Red End, 123; Water in the Solar Sp., 131; Carbon Compounds in general, 154; Ebonite, 171; Carbon Disulphide, 183; Electric, 218; Iodine, 265.

Abney (W. de W.) and Schuster (A.). Eclipse Sp., 106; Photographs of Solar Sp., 115.

Abt (A.). Electric, 218; Interference, 262.

Ackroyd (W.). Absorption, 52; Color, 197; Inversion, 263; Sedium, 337.

ADAMKIEWICZ (A.). Albumin, 161.

Adams (W. H.). Aurora, 136; Selenium, 332.

AGNELLO (A.). Book (Eclipse of 1870), 8.

AIRY (G. B.). Astronomical in general, 66; Comets, 72, 73; Displacement of Stellar Sp., 79; Measurement of Stellar Sp., 82; Sp. of Planets, 87; Sun-Spots, 125; Wave-Lengths, 353.

AITKEN (J.). Absorption, 52; Water, 351.

AKIN (C. H.). Analysis, 40.

ALBERT (E.). Color, 197.

ALBITZKY (A.). Hydrocarbon, 174.

ALLEN (O. D.). Cæsium, 150; Rubidium, 327.

ALLEYNE (Sir J. Y. N.). Iron, 268.

ALVERGNIAT. Apparatus, 38.

Amony (R.). Apparatus, 26; Absorption, 52; Photographs of Solar Sp., 116.

André. Comets, 72.

Andrews (T.). Flame, 231; Iodine, 265.

Angelot. Solar Atmosphere, 100.

Andström (A. J.), alone. Book, 8; Analysis in general, 40; Solar, 89; Aurora, 136; Hydrocarbon, 174; Carbonic Acid, 179; Electric, 218; Maps, 287; Metals, 290; Nitrogen, 300; Optical, 306; Oxygen, 308.

Angström (A. J.) and Thalén (R.). Maps, 287.

Arago. History, 1; Light, 272.

ARCIMIS (A. T.). Aurora, 136.

Anons (L.). Interference, 262.

Arzruni (A.). Barium, 143; Lead, 271; Strontium, 340.

Assente (F. van). Heat, 251; Selenium, 332.

Attrield (J.). Carbon, 153.

AUBERT and DUBOIS. Phosphorescence, 312.

Aymonnet, alone. Absorption, 52; Heat, 251; Liquids, 276.

Aymonnet et Desains. Dark Lines, 205.

Aymonnet et Maquenne. Apparatus, 20.

AYRTON (W. C.) and PERRY (J.). Ebonite, 171.

Babinet. Longitudinal, 281; Paragenic, 311.

Backhouse (T. W.). Comets, 73, 74, 75; Fixed Stars, 81; Aurora, 136.

Bahr and Bunsen. Erbium, 228.

Baily (W.). Apparatus, 11, 18, 19.

Ballmann (H.). Quantitative Analysis, 49; Lithium, 279.

Balmer (J. J.). Hydrogen, 257.

Barbier (P.). Terebinthene, 183; Chlorine, 187.

BARBIERI (E.). Protuberances, 118.

BARDY (C.). Chrysoïdine, 168; (RICHE et B.), Flame, 237.

Barker (G. F.). Eclipses, 106; Aurora, 136.

Barlocci, History, 1.

Barthelemy (A.). Comets, 72.

BAUDIN. Sun-Spots, 125.

Baudrimont. Luminous Sp., 281; Water, 351.

BAUERNFEIND (C. M.). Apparatus, 23.

BAYLEY (T.). Chromium, 195; Cobalt, 196.

Beccaria. History, 1.

Becker (G. F.). History, 1.

BÉCLARD. Color, 197.

Becquerel (Edm.). Book, 8; Apparatus, 24; Aluminium, 62; Fixed Stars, 81; Solar in general, 89; Photography of Solar Sp., 116; Radiation of Solar Sp., 122; Red End of Solar Sp., 123; Bromine, 147; Calcium, 151; Coloring Matters, 155; Color, 197; Electric, 218, 219; Fluorescent, 241; Iodine, 265; Light, 272; Luminous Sp., 281; Manganese, 285; Phosphorescent, 312, 313; Refraction, 323; Silver, 334; Uranium, 347; Wave-Lengths, 353.

BECQUEREL (H.). Apparatus, 24; Absorption, 52; Solar Wave-Lengths, 131; Atmospheric, 133; Carbonic Acid, 179; Sulphide of Carbon, 183; Chlorine, 187; Didymium, 209; Emission, 226; Flame, 231; Metals, 290; Nitrogen, 300; Oxygen, 308; Red End, 322; Sodium, 337; Sulphur, 341; Titanium, 347; Water, 351; Wave-Lengths, 353.

Bedson (P. P.) and Williams (W. C.). Refraction, 323.

BEGOUEN. Comets, 70.

Behrens (H.). Color, 197.

Bell (L). Apparatus, 29; Absorption, 53; Cadmium, 149; Meteorological, 295; Nitrogen, 300; Wave-Lengths, 353.

Belohoubek. Alkalies, 61.

Benkovich (E. von). Plants, 181.

BÉRARD. History, 1.

BERG (F. W.). Apparatus, 13.

BERNARD (F.). Solar Wave-Lengths, 131.

Bernheimer e Nasini. Carbon Compounds in general, 155.

Bert (P.). Carbon Compounds in general, 155.

BERTHELOT, alone. Comets, 70.

Berthelot et Richard. Analysis, 40; Flame, 231.

Berthold (G.). History, 1; Fluorescent, 241.

Bezold (W. von). Carbon Compounds in general, 155; Fluorescent, 241; Heat, 251.

BIANCHI, Astronomical, 118.

BIDWELL (Shellford). Analysis, 40.

Binz (C.). Blood, 165; Oxygen, 308.

Biot (J. B.). History, 1; Apparatus, 25; Solar Radiation, 122, 123; Twinkling of Stars, 132; Phosphorescent, 313; Radiation, 321.

Blair (R.). History, 1.

BLAKE (J. M.). Apparatus, 18.

Blanford (H. F.). Solar Photography, 116.

Blaserna (P.). Book, 8; Apparatus, 27; Chromosphere, 102; Alcohol, 161; Heat, 251.

BLEEKRODE (L.). Flame, 231.

BLOCHMAN (R.). Calcium, 151.

Bodynski (J.). Liquids, 276.

Boeck (H.). Anthracen, 163.

Börscu. Apparatus, 12.

BOETTGER (R.). Alizarine, 161.

Bonn (C.). Wave-Lengths, 353.

Bolllot. Solar in general, 89.

Boscovich (R. J.). History, 2.

Boss (L.). Comets, 70.

Bostwick. Absorption, 53; Electric, 219.

Boudréaux. Metals, 290.

BOUGUER (P.). History, 2.

Brackett (C. F.). Apparatus, 20, 36.

Branly (E.). Blood, 165; Hemoglobine, 174.

Brassack. Metals, 290.

Braun (C.). Apparatus, 15, 28; Photography of Solar Sp., 116.

Brauner (B.). Cerium, 186; Didymium, 209.

Brédischin (T.). Comets, 73, 76.

Brenta. Solar in general, 89.

Brewster (Sir D.), alone. History, 2; Apparatus, 20; Solar in general, 89; Atmospheric, 133; Carbon Compounds in general, 155; Nitrogen, 300; Paragenic Sp., 311.

Brewster (Sir D.) and Gladstone (J. H.). Solar in general, 89.

Brock (O. J.). Solar in general, 89.

Brodii: (B. C.). Metals, 290.

Brown (W. G.). Philippium, 311.

Browning (J.). Apparatus, 11, 27, 33, 34, 36; Meteors, 83; Aurora, 136.

BRÜCKE (E.). Absorption, 53; Manganese, 285; Potassium, 319.

BRÜHL (J. W.). Carbon Compounds in general, 155; Citracon, 168; Mesacon, 177; Methacryll, 177; Constants, 200; Dispersion, 212; Liquids, 276.

Brunn (J.). Apparatus, 29, 32.

BUCHNER. Blood, 165; Hydrogen, 257.

Buffon. History, 2.

Bührig (H.). Absorption, 53; Didymium, 209.

Bunsen (R.). Analysis, 40; Meteors, 83; Cæsium, 150; Didymium, 209; Erbium, 228; Lithium, 279; Metals, 290.

Burch (G. J.). Flame, 231.

Burger (H.). Constants, 200; Liquids, 276.

CACCIATORE. Transit of Venus, 87.

Cailletet. Electric, 219; Flame, 231; Pressure, 320.

Calderon (L.). Zinc, 360.

Campani (G.). Carmine, 167; Nitrogen, 300.

CAPPEL (E.). Electric, 219; Heat, 251; Metals, 290.

CAPRANICA (S.). Bile, 164.

Capron (J. R.). Book, 8; Apparatus, 21; Aluminium, 62; Antimony, 64; Arsenic, 65; Comets, 74, 75; Meteors, 83; Solar Photography, 116; Aurora, 137; Barium, 143; Beryllium, 144; Borax, 145; Cadmium, 149; Calcium, 151; Carbon in general, 153; Cyanogen, 169; Ether, 171; Oils, 178; Turpentine, 184; Chlorine, 187; Chromium, 195; Cobalt, 196; Copper, 201; Didymium, 209; Electric, 219; Flame, 231; Fluorine, 246; Gold, 250; Hydrogen, 257; Indium, 261; Iodine, 265; Iridium, 267; Iron, 268; Lead, 271; Magnesium, 282; Manganese, 285; Mercury, 289; Meteorological, 295; Molybdenum, 298; Niobium, 299; Nitrogen, 300; Oxygen, 308; Palladium, 311; Platinum, 317; Rhodium, 326; Ruthenium, 327; Selenium, 332; Silicium, 333; Silver, 334; Strontium, 340; Sulphur, 341; Tellurium, 343; Thallium, 344; Tin, 345; Titanium, 346; Uranium, 347; Vanadium, 347; Yttrium, 359; Zinc, 360; Zirconium, 361.

CARPENTER (J.). Analysis, 40.

CAZENEUVE (P.). Hematine, 173.

CAZIN (A.). Electric, 219; Flame, 232.

CHACORNAC. Solar in general, 89.

Champion. Book, 8; Apparatus, 33; Quantitative Analysis, 49; Sodium, 337.

CHANCEL (G.). Wine, 185.

Chappus (J.). Absorption, 53; Nitrogen, 300; Oxygen, 308.

Chardonnet. Apparatus, 23; Color, 197; Energy, 227; Ultra-Violet, 348.

Charpentier (Aug.). Solar in general, 89; Color, 197.

Chase (P. E.). Solar in general, 90.

Chastaing (P.). Light, 272; Oxygen, 308.

Chautard (J.). Bromine, 147; Chlorine, 187; Chlorophyll, 192; Electric, 219; Flame, 232; Fluorine, 246; Iodine, 265; Silicium, 333; Sodium, 337.

Christiansen (C.). Analysis, 40; Fuchsin, 172; Liquids, 276; Optical, 306.

Christie (W. H.). Apparatus, 28; Astronomical in general, 66; Comets, 73, 74, 79; Bright Lines in the Solar Sp., 101; Aurora, 137; Dispersion, 212.

Christofle (P.). Phosphorus, 315.

Сисвен (A. H.). Aurora, 137; Coleïn, 168; Water, 351.

Chamician (G. L.). Analysis, 41; Carbon in general, 153; Density, 207; Flame, 232; Heat, 251.

Chaes (F.). Absorption, 53.

CLARK (Alvah, Jr.). Aurora, 137.

CLARKE (F. W.). Analysis, 41.

CLARKE (J. W.). Electric, 220.

CLAUDET. Apparatus, 25; Chemical Effects of Solar Sp., 102.

CLEMENSHAW (E.). Analysis, 41.

CLÉVE (P. T.). Didymium, 209; Erbium, 228; Holmium, 256; Lanthanum, 270; Samarium, 329; Seandium, 331; Thulium, 345; Yttrium, 359.

CLIFTON (Roscoe and). Heat, 254.

CLOISEAUX (Des). Chlorine, 187; Silver, 334.

CLOUÉ. Eclipse Sp., 107.

CONCHE (E.). Solar Photography, 116.

Connoy Sir J.). Distribution, 217; Heat, 251; Iodine, 265; Manganese, 285; Metals, 290; Phosphorescent, 313; Potassium, 319.

Cooke J. P., Jr.). Apparatus, 34; Water in the Solar Sp., 131; Metals, 290.

COPILLAND (R.). Astronomical in general, 66; Fixed Stars, 81, 82; Aurora, 137; High Altitudes, 255.

Cornu (A.). Apparatus, 15, 27, 38; Analysis, 41; Absorption, 53;

Aluminium, 62; Antimony, 64; Fixed Stars, 81; Solar in general, 90; Solar Absorption Sp., 99; Dark Lines in the Solar Sp., 105; Telluric Rays in the Solar Sp., 129; Ultra-Violet Rays of the Solar Sp., 129, 130; Atmospheric, 133; Aurora, 137; Bismuth, 145; Cadmium, 149; Copper, 201; Gold, 250; Hydrogen, 257; Inversion, 263; Iron, 268; Lead, 271; Magnesium, 282; Maps, 287; Metals, 290; Silver, 334; Sodium, 337; Thallium, 344; Ultra-Violet, 348; Wave-Lengths, 353; Zinc, 360.

CORTIE (A.). Sun-Spots, 125.

Cory (F. W.). Meteorological, 295.

Cossa (A.). Cerium, 186.

Crocé-Spinelli (J.) et Sivel. High Altitudes, 255.

CROOKES (W.). Apparatus, 23; Analysis, 41; Aluminium, 62; Carbonie Acid, 179; Didymium, 209; Diffraction, 211; Discontinuous, 212; Erbium, 228; Flame, 232; Fluorescent, 241; Gadolinite, 247; Light, 272; Metals, 290; Phosphorescent, 313; Radiation, 321; Refraction, 323; Samarium, 329; Samarskite, 330; Sodium, 337; Thallium, 344; Yttrium, 359.

Cros (Ch.). Carbon Compounds in general, 156; Silver, 334.

Croullebois. Analysis, 41; Crystals, 203; Liquids, 276; Refraction, 323.

CROVA (A.). Apparatus, 19, 27, 29, 33; Absorption Sp., 53; Solar Absorption, 99; Solar Radiation, 123; Telluric Rays of the Solar Sp., 129; Solar Wave-Lengths, 131; Atmospheric, 133; Aurora, 137; Flame, 232; Heat, 251; Radiation, 321; Wave-Lengths, 353.

Cruls (L.). Apparatus, 30; Astronomical in general, 66; Comets, 76, 77.

Czechowicz. Electrie, 220.

·Dalet. Solar in general, 90.

Damien. Acetic Acid, 160; Liquids, 276; Sodium, 337; Water, 351.

Daniel. Electric, 220.

DAUBE (F. U.). Cureumin, 169.

Daumer et Thibaut. Oils, 178.

Debray (II.). Apparatus, 20; Metals, 291.

Delachanal (B.). Apparatus, 17, 18, 38.

Delafontaine. Cerium, 186; Decipium, 207; Didymium, 209; Erbium, 228; Gadolinite, 247; Holmium, 256; Metals, 291; Philippium, 311; Samarium, 329; Samarskite, 330; Terbium, 343; Thulium, 345.

24 T

- Delaunay. History, 2; Analysis, 41; Solar Protuberances, 118; Electric, 220.
- Demarçay (Eug.). Analysis, 41; Cerium, 186; Didymium, 209; Electric, 220.
- Desaines (P.). History, 2; Apparatus, 30; Dark Lines in the Solar Sp., 105; Heat in the Solar Sp., 112; Color, 197; Crystals, 203; Dark Lines, 205; Heat, 252; Wave-Lengths, 353.
- Deslandres (H.). Analysis, 41; Electric, 220; Flame, 232; Nitrogen, 300.
- Dewar (J.). Analysis, 47; Chemical Effects of the Solar Sp., 102; Heat, 252.
- Diacon. Apparatus, 12; Alkalies, 61; Bromine, 147; Chlorine, 188; Copper, 201; Electric, 220; Metals, 291.
- DIBBITS (H. C.). Cyanogen, 169; Carbonic Acid, 179; Sulphide of Carbon, 183; Flame, 232; Hydrogen, 257; Nitrogen, 300; Sulphur, 341; Water, 351.
- DIETRICH (W.). Apparatus, 32; Sodium, 337.
- Dieulafair. Borax, 145, 146; Cæsium, 150; Lithium, 279; Mineral Waters, 297; Nitrogen, 301; Rubidium, 327; Silver, 334; Strontium, 340.
- DITSCHEINER (L.). Apparatus, 34, 39; Solar Wave-Lengths, 131; Crysstals, 203; Diffraction, 211; Optical, 306; Wave-Lengths, 353.
- DITTE (A.). Chlorine, 188; Metals, 291; Nitrogen, 301; Selenium, 332; Sulphur, 341; Tellurium, 343.

Dolland (J.). History, 2.

Donatl. Comets, 71.

Donders. Analysis, 42.

Donelly (J. F.). Apparatus, 22.

Dove (H. W.). Electric, 220.

- Draper (H.). History, 2; Books, 8; Apparatus, 24, 28; Analysis, 42; Comets, 75; Fixed Stars, 82; Nebulæ, 85; Photography of Stellar Sp., 85; Jupiter, 86; Venus, 88; Bright Lines in the Solar Sp., 102; Eclipses, 107; Oxygen in the Solar Sp., 115; Ultra-Violet Solar Sp., 130; Solar Wave-Lengths, 131; Diffraction, 211; Oxygen, 308.
- Draper (J. C.). Apparatus, 29; Dark Lines in the Solar Sp., 106; Solar Eclipses, 107; Oxygen in the Solar Sp., 115; Oxygen, 309.
- Draphr (J. W.). History, 2; Apparatus, 25, 32; Solar Photography, 116; Red End of the Solar Sp., 123; Cone Sp., 199; Energy in the Sp., 227; Heat, 252.

Draper (W.). Intensity of the Solar Sp., 113.

DUBRUNFAUT. Analysis, 42; Flame, 232.

Duclaux (E.). Analysis, 42; Energy in the Sp., 227.

Dufet (H.). Refraction, 323.

Duhem. Inversion, 263.

DUJARDIN (F.). Apparatus, 36.

DUNÉR (N. C.). Comets, 76.

Dunstan (W. R.). Carbon Compounds in general, 156.

Dupré (A.). Wine, 185.

DUTIROU (L'Abbé). History, 2.

EDELMANN (Th.). Apparatus, 22.

EDER (J. M.). Apparatus, 26; Analysis, 42; Absorption, 53; Solar in general, 90.

Egoroff (N.). Oxygen in the Solar Sp., 115; Telluric Rays in the Solar Sp., 129; Oxygen, 309.

EIGER (T. G.). Aurora, 137.

EISENLOHR (W.). Dark Lines, 205; Diffraction, 211; Fluorescent, 241; Iodine, 265; Refraction, 323; Silver, 334; Ultra-Violet, 348; Wave-Lengths, 354.

ELLERY (R. J.). Aurora, 137.

Emsmann (H.). Apparatus, 15, 28; Absorption, 54; Nickel, 299; Nitrogen, 301; Silver, 334.

Engelhart (G.) and Bezold. Fluorescent, 241.

ENGELMANN (T. W.). Hematine, 174; Color, 197; Electric, 220; Oxygen, 309.

ERCK (W.). Apparatus, 36; Didymium, 209.

Erdmann. Didymium, 209.

Esselbach (E.). Wave-Lengths, 354.

EXNER (K.). History, 2; Analysis, 42; Twinkling of Stars, 132; Interference, 262; Lines of the Sp., 274.

FAURA (F.). Eclipses, 107.

Favé. Analysis, 42; Fluorescent, 241; Phosphorescent, 313; Wave-Lengths, 354.

FAYE. History, 3; Apparatus, 37; Comets, 70; Solar Sp. in general, 90; Solar Eclipses, 107; Hydrogen in the Sun, 113; Solar Protuberances, 118; Solar Rotation, 124; Solar Storms, 124; Sun-Spots, 125; Aurora, 138.

FERRARI. Solar Protuberances, 118.

FEUSSNER. Heat, 252.

FIELDING (G. F. M.). Flame, 232.

FIEVEZ (Ch.). Analysis, 42; Nebuke, 84; Solar in general, 90; Magnesium in the Sun, 114; Electric, 220; Heat, 252; Hydrogen, 257; Magnesium, 282; Map, 114, 287; Nitrogen, 301.

FILHOL (E.). Chlorophyll, 192.

Fizhau. Astronomical in general, 66; Displacement of Stellar Sp., 79 Solar in general, 91; Solar Eclipses, 107; Sodium, 337.

Flammarion. Comets, 70.

FLAVITSKY F.). Carbon Compounds in general, 156; Terpenes, 184.

Fleck. Apparatus, 29.

Flögel. Aurora, 138.

Fock (A.). Refraction, 323.

Fonvielle (W. de). High Altitudes, 255.

Formes (J. D.). History, 3.

FOSTER | Le Neve). Glass, 249.

FOUCAULT (L.). Apparatus, 31; Dark Lines, 205.

FOUCAULT et FIZEAU. Apparatus, 25.

Francis (G. . Australian Lake, 164; Fish Pigment, 171.

Franckland (E.). Carbonic Acid, 179; Hydrogen, 257; Lithium 279; Oxygen, 309.

Franckland and Lockyer. Astronomy in general, 66; Nebulae, 84 Solar in general, 91; Gas in the Solar Sp., 112; Flame, 232.

FRASER (W.). Osmium, 207.

FRAUDE G. . Chlorine, 188.

FRAUNHOFER (J. von). History, 3; Lines of the Sp., 274.

FRAZLE (P.). Aurora, 138.

FRÉMY. Aluminium, 62.

Figer (M. von . Analysis, 42.

FRIEDLÄNDLR (P.). Chinolin, 168.

FRÖHLICH J.). Energy, 227; Refraction, 323.

Fuchs F.). Apparatus, 28, 32, 33.

Furniss (J. J. . Apparatus, 25.

GAMGE (A.). Blood, 166; Nitrogen, 301.

GARBE G.). Apparatus, 31.

Gassior. Apparatus, 15, 27, 31, 35; Analysis, 42.

GAUDIN. Apparatus, 25.

GERDING (Th.). History, 3.

GERLAND (E.). Chlorophyll, 193.

GERLAND (J.). Chlorophyll, 193.

Gernez (D.). Absorption, 54; Bromine, 147; Alizarine, 161; Chlorine, 188; Flame, 232; Iodine, 265; Nitrogen, 301; Selenium, 332; Sulphur, 341; Tellurium, 343.

Gibbons (J.). Electric, 220.

Gibbs (Wolcott). Apparatus, 34; Analysis, 47; Quantitative Analysis, 49; Solar Wave-Lengths, 131; Constants, 200; Optical, 306; Wave-Lengths, 354.

GILMOUR (W.). Oils, 178.

GIRARD (H.) et BABST. Absorption, 54.

GIRDWOOD (G. P.). Wood, 185.

GLADSTONE (J. H.). Qualitative Analysis, 49; Aluminium, 62; Planets, 86; Solar in general, 91; Atmospheric, 134; Carbon, 153; Carbon Compounds, 156; Diamond, 170; Oils, 178; Chlorine, 188; Didymium, 210; Dispersion, 213; Flame, 233; Hydrogen, 258; Liquids, 276; Metals, 291; Nitrogen, 301; Oxygen, 309; Salt, 328.

GLAN (P.). Apparatus, 26, 35, 36; Absorption, 54; Density, 207; Glass, 249; Polarized Light, 318.

GLAZEBROOK (R. T.). Apparatus, 18, 33.

GOLDSTEIN. Atmospheric, 134; Flame, 233.

Goltzsch (H.). Apparatus, 13.

Gothard (E. von). Apparatus, 20, 24, 38: Astronomical in general, 66; Comets, 77, 78; Fixed Stars, 81, 82.

GOTTSCHALK (F.). Apparatus, 34.

Gould (B. A.). Apparatus, 37.

Gouy. Absorption, 54; Aluminium, 62; Solar Absorption, 99; Dark Lines in the Solar Sp., 106; Barium, 143: Bromine, 147; Cadmium, 149; Calcium, 151; Carbonates, 156; Chlorine, 188; Cobalt, 196; Copper, 201; Flame, 233; Iodine, 265; Iron, 268; Lead, 271; Lithium, 279; Magnesium, 282; Manganese, 285; Metals, 291; Nitrogen, 301; Phosphorus, 315; Platinum, 317; Potassium, 319; Refraction, 323; Rubidium, 327; Salt, 328; Silver, 335; Sodium, 337; Strontium, 340; Sulphur, 341; Thallium, 344; Wave-Lengths, 354; Zine, 360.

Gouy et Thollon. Comets, 77; Solar Wave-Lengths, 131.

Govi (S. G.). Apparatus, 24; Analysis, 43; Quantitative Analysis, 50.

Govi (S. G.) et Lagarde. Radiation, 321.

GRÄBE (C.) und CARO (H.). Rosaniline, 182.

Grandeau (L. N.). Book 8; Casium, 150; Electric, 220.

GREINER (A.). Iron, 268; Phosphorus, 315.

GRIFFITHS (A. B.). Plants, 181.

GRIMM (F.). Chinizarin, 168; Hydrochinon, 175.

Gripon (E.). Fluorescent, 241.

Grove (Sir W. R.). Electric, 221.

GRUBB (H.). Apparatus, 11.

GRUBB (T.). Apparatus, 34, 35.

Guillemin. Ultra-Violet Solar, 130.

GÜNTHER (C.). Flame, 233; Inversion, 263; Sodium, 337.

Hagenbach (E.). Electric, 221; Fluorescent, 242; Fluorine, 246; Silicium, 333.

HAIG (C. T.). Eclipses, 107.

Hammerl (H.). Liquids, 276; Meteorological, 295.

HAMMOND (B. E.). Corona, 103; Hydrogen in the Solar Sp., 113; Intensity of the Solar Sp., 113.

HAERLIN (J.). Carbon Compounds in general, 156.

Hankel (W.). Metals, 291.

Hannay (J. B.). Zirconium, 361.

Harkness (W.). Comets, 74; Chromosphere, 103.

Hartley (W. N.). Apparatus, 16, 26; Analysis, 47; Quantitative Analysis, 50; Absorption, 54; Alkalies, 61; Solar Absorption, 99; Atmospheric, 134; Beryllium, 144; Borax, 146; Carbon Compounds, 156; Acid Brown, 161; Amido Azo, etc., 162; Aurin, 164; Benzene, 164; Azo, 164; Bismarek Brown, 165; Carbohydrates, 167; Chrysoïdine, 168; Croceïne Scarlet, 169; Cymene, 170; Dipyridene, 170; Fast Red, 171; Flour and Grain, 172; Helianthin, etc., 173; Iodine Green, 176; Metaxylene, 177; Naphthalene, 177, 178; Oils, 178; Orthotoluidine, 179; Paratoluidine, 181; Picolene, 181; Pyridine, 182; Rosaniline Base, 182; Terpenes, 184; Tetrahydroquinoline, etc., 184; Tropæolin, 184; Cerium, 186; Chromium, 195; Electric, 221; Emission, 226; Homologous Spectra, 256; Liquids, 276; Metals, 291; Oxygen, 309; Rhabdophane, 326; Salt, 328; Silicium, 333; Sulphur, 341; Violet, 348; Wave-Lengths, 354.

Hartsen (T. A.), Chlorophyll, 193.

Hartshorne (H.). Analysis, 43; Lines of the Sp., 274.

HASSELBERG (B.). Apparatus, 29; Comets, 74, 78; Acetylene, 160; Hydrogen, 258; Maps, 287; Metals, 291; Nitrogen, 301; Wave-Lengths, 354.

Hastings (C. S.). Solar in general, 91; Glass, 249; Heat, 252.

HAUTEFEUILLE (P.) et CHAPPUIS (J.). Flame, 234.

Heinrichs. Distribution, 217.

Helmholtz (H.). Carbon Compounds, 156; Dispersion, 212; Refraction, 324.

Hennessey (J. B. N.). Solar Atmosphere, 100; Displacement in the Solar Sp., 106; Red End of the Solar Sp., 123; White Lines in the Solar Sp., 132; Atmospheric Sp., 134.

Hennig (R.). Apparatus, 29; Quantitative Analysis, 50.

Henry (L. d'). Light, 272; Sodium, 338.

HEREPATH (W. B.). Apparatus, 23.

HERSCHEL (A. S.). History, 3; Apparatus, 21; Analysis, 43; Meteors, 83; Eclipses, 107; Aurora, 138; Carbon, 153; Nomenclature, 305; Violet, 348.

HERSCHEL (Lieut. John). Nebulæ, 85; Solar Protuberances, 118; Electric, 221.

Herschel (Sir John). History, 3, 4; Solar in general, 91; Coal, 168; Soda, 338.

Hesehus (N.). Apparatus, 13.

Hesse (O.). Dispersion, 212.

Heusser (J. C.). Analysis, 43; High Altitudes, 255.

Heynsius (A.) and Campbell (J. F. F.). Absorption, 55; Gall, 173.

HILGARD (J. E.). Apparatus, 13.

HILGER (A.). Apparatus, 14; Caryophyllaceæ, 167.

HIRN (G. A.). Book, 8.

HITTORF (W.). Flame, 234, 237.

Hock (K.). Apparatus, 11; Alkalies, 61; Oils, 178.

HOFFMANN (A. W.). Quinoline-Red, 182.

Hofman (J. G.). Apparatus, 28, 32; Hydrogen, 258; Nitrogen, 302; Phosphorus, 315.

Holf (Th.). Electric, 221.

HOLDEN (E. S.). Aurora, 138; Electric, 221.

Homann (H.). Astronomical in general, 66.

Hoorweg (J. L.). Analysis, 43.

Hopkinson (J.). Glass, 249; Refraction, 324.

Hoppe-Seyler (F.). History, 4; Book, 8; Blood, 166; Carbonic Acid, 179; Manganese, 285; Oxygen, 309.

Horner (M. C.). Venus, 88; Borax, 146; Cobalt, 196; Fluorescence, 242; Manganese, 285; Phosphorus, 315.

Hoven (G. W.). Book, 9.

Houzeau et Montigny. Displacement of Stellar Sp., 79.

HÜFNER (G.). Apparatus, 33; Quantitative Analysis, 50.

Huggins (W.). Apparatus, 30, 36; Analysis, 43; Astronomical in general, 67; Comets, 70, 79; Displacement of the Stellar Sp., 79; Fixed Stars, 80, 82; Nebule, 85; Photography of Stellar Sp., 85; Sp. of Planets, 86; Solar in general, 91; Chromosphere, 103; Photography of Solar Sp., 116; Solar Protuberances, 118; Electric, 221; Erbium, 228; Hydrogen, 258; Microscopic, 296; Water, 351.

HUGGINS (W.) and MILLER (W. A.). Fixed Stars, 80.

Hugo (L.). Birds, 165.

HUNT (T. Sterry). History, 4.

HUNTINGTON (O. W.). Arsenic, 65.

Hurion. Dispersion, 213; Interference, 262; Liquids, 277.

HUYGHENS (C.). History, 4.

HYATT. Aurora, 138.

JACQUES (W. W.). Aluminium, 62; Chromium, 195; Copper, 201; Heat, 252; Iron, 268; Platinum, 317.

JAFFE. Gall, 173.

James. Analysis, 43.

Janowski (J. V.). Refraction, 324.

Janssen (J.). Apparatus, 25, 34; Quanțitative Analysis, 50; Astronomical in general, 67; Comet, 74; Fixed Stars, 82; the Moon, 87; Venus, 88; Solar in general, 89, 92; Solar Atmosphere, 100; Corona, 103; Eclipses, 107, 108; Hydrogen in the Solar Sp., 113; Solar Protuberances, 118; Telluric Rays in the Solar Sp., 129; Atmospheric Sp., 134; Flame, 234; High Altitudes, 255; Sodium, 338; Water, 351.

Jessen (E.). Absorption, 55.

Joust (W.). Alcohol, 161; Aniline, 162.

Johnson (A.). History, 4; Lines of the Sp., 274.

Jones (H. Bence). Carbon Compounds, 157; Crystalloids, 169.

JOULE (J. P.). Electric, 221.

Kahlbaum (G. W. A.). Butter, 167.

Kanonnikoff (J.). Carbon Compounds, 157; Refraction, 324.

Keeler (J. E.). Absorption, 55; Carbonic Acid, 180.

Kern (J.). Davyum, 206.

Kesslær (F.). Apparatus, 13, 16; Solar in general, 92; Solar Photography, 116.

Ketteler (E.). Apparatus, 26, 33; Absorption, 55; Dispersion, 213; Fluorescence, 242; Optics, 306; Refraction, 324.

Ketteler und Pulfrich. Wave-Lengths, 354.

Key (H. Cooper). Aurora, 138.

Kindt. Chlorine, 189; Dark Lines, 205; Fluorine, 246; Phosphorescence, 313; Phosphorus, 315; Silicium, 333.

KINGDON (F.). Apparatus, 20.

Kirchhoff (G.). History, 4; Book, 9; Apparatus, 34; Analysis, 43; Absorption, 55; Barium, 143; Casium, 150; Calcium, 151; D Lines, 204; Dark Lines, 205; Emission Sp., 226; Inversion, 263; Maps, 288; Polarized Light, 318; Potassium, 319; Radiation, 321; Sodium, 338; Strontium, 340.

KIRCHHOFF und Bunsen. Alkalies, 61; Rubidium, 327.

Kirk (E. B.). Aurora, 138.

Kirkwood (D.). Astronomical in general, 67; Aurora, 138.

KLATZO. Chlorine, 189.

Klercker (C. E. de). Dispersion, 213; Light, 272.

Knoblauch (H.). Heat in the Solar Sp., 112; Color, 198; Heat, 252.

Kobb (G.). Germanium, 248.

Kohlrauch (F.). Apparatus, 13; Refraction, 324.

König (A.). Color-blind, 157; Color, 198; Platinum, 317.

König und Dieterici. Wave-Lengths, 354.

Konkoly (N. von). Apparatus, 20, 22, 30, 35; Astronomical in general, 67; Comets, 70, 73, 78; Fixed Stars, 81; Meteors, 83; Planets, 86; Electric, 221; Meteorological, 295.

Kopp (H.). History, 4.

Kövesligethy. Comets, 78.

Kraiewitsch (K.). Apparatus, 13.

Krauss (G.). Chlorophyll, 1931

Krüss (G.). Apparatus, 39; Heat, 252; Liquids, 277.

Krüss und Oeconomides. Carbon Compounds, 157.

Krüss (H.). Apparatus, 12, 29, 32; Analysis, 43; Quantitative Analysis, 50.

Krčss (J.). Absorption, 55.

Kundt (A.). Absorption, 55; Dispersion, 213; Liquids, 277; Nitrogen, 302; Silver, 335; Sodium, 338.

Kviz (A.). Apparatus, 21.

Laborde (L'Abbé). Analysis, 43.

Ladd (W.). History, 4.

Lagarde (H.). Hydrogen, 258; Wave-Lengths, 355.

LALLEMAND (A.). Apparatus, 20; Indigo, 176; Lamp-Black, 176;
Naphthalene, 177; Cobalt, 196; Copper, 202; Lead, 271; Liquids, 277; Mercury, 289; Minium, 297; Oxygen, 309; Phosphorus, 315; Platinum, 317; Polarized Light, 318; Sulphur, 341.

LAMANSKY (S.). History, 4; Apparatus, 17; Absorption, 56; Solar in general, 92; Heat in the Solar Sp., 112; Telluric Rays in the Solar Sp., 129; Atmospheric Sp., 134; Calcium, 151; Carbon Compounds, 157; Sulphide of Carbon, 183; Electric, 222; Fluorescence, 242; Glass, 249; Heat, 253; Sulphur, 342.

Lamont. Astronomical in general, 68; Fixed Stars, 80.

Lamy (A.). Thallium, 344.

LANDAUER (J.). Absorption, 56; Carbon Compounds, 157; Safranin, 183.

Landolt (H.). Apparatus, 21; Carbon, 153; Carbon Compounds, 157; Liquids, 277.

LANG (V. von). Apparatus, 28; Red End of the Solar Sp., 124; Atmospheric Sp., 134; Calcium, 151; Dispersion, 213; Heat, 353; Refraction, 324.

Langley (S. P.). Apparatus, 30, 32; Analysis, 43, 44; Absorption, 56; Astronomical in general, 68; Venus, 88; Solar in general, 92, 93; Solar Absorption, 100; Solar Heat, 112; Intensity of the Solar Sp., 113; Radiation of the Solar Sp., 122; Red End of the Solar Sp., 124; Atmospheric, 134; Energy, 227; Heat, 253; High Altitudes, 255; Lines of the Sp., 274; Salt, 328; Volcanoes, 350; Wave-Lengths, 355.

Laspeyres (H.). Apparatus, 20.

Laussldat. Eelipses, 108,

LAVAUD DE LASTRADE. Apparatus, 23; Solar in general, 93.

Lua (M. Carey). Bromine, 147; Carbon Compounds, 158; Color, 198; Glass, 249; Silver, 335.

Leach (J. H.). Analysis, 44.

Lechen (E.). Absorption, 56; Atmospheric, 134; Heat, 253; Radiation, 321.

LECHER und PERNTER. Absorption, 56; Dark Lines, 205.

LECOQ DE BOISBAUDRAN (F.). Book, 9; Analysis, 44; Aluminium, 62, 63; Antimony, 64; Barium, 144; Bismuth, 145; Borax, 146; Bromine, 147; Cadmium, 149; Cæsium, 150; Flour and Grain, 172; Cerium, 186; Chlorine, 187, 189-191; Chromium, 195; Cobalt, 196; Copper, 202; Decipium, 207; Didymium, 210; Dysprosium, 218; Electric, 222; Erbium, 229; Flame, 234; Fluorescence, 242, 243; Gadolinite, 247; Gallium, 248; Germanium, 248; Gold, 250; Holmium, 256; Hydrogen, 259; Indium, 261; Iodine, 266; Iron, 268; Lead, 271; Light, 272; Lines of the Spectrum, 274; Lithium, 279; Luminous Sp., 281; Magnesium, 282; Manganese, 285; Mercury, 289; Metals, 292; Nickel, 299; Nitrogen, 302; Palladium, 311; Phosphorescence, 313; Phosphorus, 315; Platinum, 317; Potassium, 319; Rubidium, 327; Samarium, 329; Samarskite, 330; Silver, 335; Sodium, 338; Strontium, 340; Terbium, 343; Thallium, 344; Tin, 345; Water, 351; Wave-Lengths, 355; Ytterbium, 358; Zinc, 360.

Leeds (A. R.). Metals, 292.

Lemoine (G.). Hydrogen, 259; Iodine, 266.

Lemström (S.). Aurora, 138.

LEPEL (F. von). Apparatus, 38; Absorption, 56; Carbon Compounds, 158; Alkanna, 162; Beets, 164; Wine, 185; Inversion, 263; Magnesium, 282; Silicium, 333.

LE Roux (F. P.). Apparatus, 20.

LEVERRIER. Solar Atmosphere, 100.

LEVISON (W. G.). Apparatus, 32.

Lewy. Eclipses, 107.

Liais (E.). Corona, 103; Aurora, 138.

LIEBERMANN (C.). Anthracen, 163; Anthrarufin, 163; Egg-Shells, 165; Chotelin, 168; Hydroxyanthraquinone, 175.

LIEBERMANN (L.). Fuchsin, 172; Hydrobilirubin, 175; Chlorophyll, 193; Fluorescence, 243.

LIEBICH (T.). Apparatus, 35.

LIELEGG (A.). Book, 9; Carbon Compounds in general, 158; Flame, 234; Iron, 268.

LINDSAY (Lord). Comets, 72, 73; Nebulæ, 85; Jupiter, 87; Eclipses, 108; Aurora, 139.

LINNEMANN (E.). Austrium, 143; Zirconium, 361.

Lippich (F.). Apparatus, 35; Flame, 234.

Listing. Limits of the Sp., 273.

LITTROW (Otto von). Apparatus, 36; Solar Atmosphere, 100.

LIVEING (G. D.). Apparatus, 17; Analysis, 46; Calcium, 151; Dispersion, 214; Fluorine, 246; Iodine, 266; Mercury, 289.

LIVEING (G. D.) and DEWAR (J.). History, 5; Apparatus, 12, 15, 16, 17; Analysis, 44; Quantitative Analysis, 50; Corona, 103; Elements in the Sun, 111; Sun-Spots, 126; Carbon, 153; Carbon Compounds, 158; Cyanogen, 169; Hydrocarbons, 175; Electric, 222; Explosions, 230; Flame, 234, 235; Hydrogen, 259; Inversion, 263; Lithium, 280; Magnesium, 283; Metals, 292, 293; Potassium, 319; Rhabdophane, 326; Sodium, 338; Violet, 348; Water, 351.

LLOYD. History, 5.

LOCKYER (J. N.). Book, 9; Apparatus, 19, 25, 36; Analysis, 44, 47; Quantitative Analysis, 50; Absorption, 57; Antimony, 64; Arsenic, 65; Astronomy in general, 66, 68; Nebulæ, 84; Solar in general, 93, 94; Bright Lines in the Solar Sp., 102; Chromosphere, 103; Carbon, 153, 154; Electric, 222; Flame, 235; Heat, 253; Hydrogen, 259; Inversion, 263; Iodine, 266; Iron, 268; Lithium, 280; Mercury, 289; Multiple Sp., 298; Nitrogen, 302; Phosphorus, 315; Sodium, 338; Sulphur, 342; Zine, 360.

Lockyer and Seabroke. Corona, 103.

Louse (O.). Apparatus, 31, 32; Corona, 103; Gun-Cotton, 173; Electric, 222; Glass, 249.

LOMMEL (E.). Book, 9; Apparatus, 13, 16, 17, 24, 27, 31; Absorption, 57; Chlorophyll, 193; Dispersion, 214; Electric, 222; Fluorescence, 243, 244; Heat, 253; Interference, 262; Iodine, 266; Light, 272; Optics, 306; Phosphorescence, 313, 314; Red End of the Sp., 322; Refraction, 324.

Long (J. H.). Flame, 235.

Lorenz (L.). Constants, 200; Dispersion, 214.

Lorschen (J.). Book, 9.

Lottoon (J.). Analysis, 45.

Lovi: (E. J.). Apparatus, 24; Glass, 249.

LUBARSCH (O.). Analysis, 45; Fluorescence, 244.

Lubbock (Dr. M.). Color, 198.

Luck (E.). Nitrogen, 302; Oxygen, 309.

LUNDQUIST. Distribution, 217; Heat, 253.

Lutz. Apparatus, 34.

Luvini. Apparatus, 23; Analysis, 45.

Macagno (J.). Intensity in the Solar Sp., 113; Aniline, 163.

Macé de Lépinay (J.). Analysis, 45; D Lines, 204; Wave-Lengths, 355.

Macé (J.) et Nicati (W.). Intensity in the Solar Sp., 113.

MACFARLANE (A.). Analysis, 45.

Mach (E.). Dispersion, 214; Glass, 249.

MACLEAR. Solar in general, 94; Atmospheric Sp., 134; Aurora, 139.

MacMunn (C. A.). Book, 9; Carbon Compounds, 158; Bile, 165; Hematine, 174; Urine, 185.

Madan (H. G.). Apparatus, 35.

Magnus (G.). Flame, 235; Heat, 253:

Malus (E. L.). History, 5.

Maly (R.). Bile, 165; Gall, 173.

Manet. Apparatus, 17.

Manly (W. R.). Meteorological, 295.

Marié-Davy. Meteorological, 295.

Marignac (C.). Gadolinite, 247; Samarskite, 330; Ytterbium, 358.

Marvin (T. H.). Apparatus, 24.

MASCART. Apparatus, 19; Ultra-Violet Solar Sp., 130; Dispersion, 214; Electric, 222; Flame, 235; Interference, 262; Maps, 288; Refraction, 324; Ultra-Violet, 348; Water, 351; Wave-Lengths, 355.

MASKELEYNE. History, 5.

Masson (A.). Alcohol, 161; Terebinthene, 183; Electric, 222; Platinum, 317.

Matthessen. Analysis, 45; Solar in general, 94; Solar elements, 111; Ultra-Violet Solar Sp., 130.

Maunder (E. W.). Comets, 76; Fixed Stars, 81, 82.

Maurer (J.). Absorption, 57; Atmospheric, 134.

MAXWELL (J. C.). Color, 198.

MAYER (A. M.). History, 5; Apparatus, 21, 26.

Melde (F.). Absorption, 57; Liquids, 277.

Meldola (R.). History, 5; Bright Lines in the Solar Sp., 102; Phenols, 181; Oxygen, 310.

Melloni. History, 5; Solar in general, 94; Heat, 253.

MELVILL (T.). Flame, 236.

Mendelejeff (D.). Gadolinite, 247; Gallium, 248; Metals, 293.

MENDENHALL (T. C.). Apparatus, 18.

MERMET. Apparatus, 17.

MERZ (S.). Apparatus, 27, 37; Astronomical in general, 68; Fixed Stars, 80; Dark Lines, 205; Glass, 249.

Messerschmedt (J. B.). Wave-Lengths, 355.

MEYER (A.). Absorption, 57; Morphine, 177.

MEYER (O. E.). Dispersion, 214.

MEYER (W.). Comets, 70; Brucine, 167.

MICHELSON (A.). Apparatus, 30.

MILL (H. R.). Meteorological, 295.

MILLARDET (A.). Chlorophyll, 193.

MILLER (F.). Apparatus, 33, 34.

MILLER (W. A.). History, 5; Analysis, 45; Astronomical in general, 67, 68; Solar in general, 94; Electric, 223; Flame, 236; Thallium, 344.

MILLER (H. Hallows). Nitrogen, 303.

MILNE (G. A.). Flame, 236.

MITSCHERLICH. Apparatus, 35; Analysis, 45; Bromine, 148; Chlorine, 191; Flame, 236; Iodine, 266; Metals, 293; Nitrogen, 303; Sodium, 339.

Möhlau (R.). Diphenyl, 170.

Монк (F.). Flame, 236.

Moigno (F.). Apparatus, 29; Analysis, 45.

Moissan (H.). Cyanogen, 169; Potassium, 319.

Moncel (Du). Electric, 223.

Monckhoven. Intensity of the Solar Sp., 106; Flame, 236; Hydrogen, 259; Metals, 293; Ultra-Violet, 349.

Montigny. Displacement of Stellar Sp., 79; Twinkling of Stars, 132.

Moreland. Diffraction, 211.

Morghen (A.). Iodine, 266.

Moriement (D. P.). History, 5.

Monize (II.). Apparatus, 31.

Morken (A.). Solar in general, 94; Carbon Compounds, 158; Acetylene, 160; Cyanogen, 170; Chlorine, 187; Dispersion, 214; Flame, 236.

MORTON (II.). Analysis, 45; Eclipses, 109; Purpurin, 181; Fluorescent, 244; Liquids, 277; Uranium, 347; Ultra-Violet, 349.

Moser (J.). Analysis, 45; Inversion, 263; Nitrogen, 303.

Mousson (A.). History, 5; Apparatus, 15, 34; Analysis, 46; Dispersion, 214.

MOUTIER (J.). Analysis, 46.

Mouton. Apparatus, 20; Heat in the Solar Sp., 112; Dispersion, 214; Heat, 253; Wave-Lengths, 355.

Muirhead (H.). Analysis, 46.

MULDER. Phosphorus, 316; Selenium, 332; Sulphur, 342.

MÜLLER (G.). Intensity of the Solar Sp., 113.

MÜLLER (J.). Apparatus, 16, 22, 26; Heat in the Solar Sp., 112; Photography of the Solar Sp., 117; Solar Wave-Lengths, 132; Dark Lines, 205; Diffraction, 211; Electric, 223; Heat, 253, 254; Manganese, 286; Refraction, 325; Ultra-Violet, 349; Wave-Lengths, 355.

Munro (J.). Aurora, 139.

Murphy (J. J.). Aurora, 139.

NASCHOLD. Blood, 166.

NASINI (R.). Carbon, 154; Carbon Compounds, 155 (BERNHEIMER et N.).

Negri (A. e G. de). Hydrocarbon, 175.

NENCKI und LIEBER. Excrements, 171; Urine, 185.

Neusser (E.). Urine, 185.

Newlands (J. A. R.). Aurora, 139.

NEWTON (Sir Isaac). History, 5.

NICATI (W.). Intensity of the Solar Sp., 113.

NICHOLS (E. L.). Analysis, 46; Color, 198, Platinum, 317.

NICKLES. Carbon Compounds, 158; Thallium, 344.

NIEPCE DE SAINT VICTOR. Photography of Solar Sp., 117; Color, 198.

NILSON (L. F.). Scandium, 331; Ytterbium, 358.

NILSON (L. F.) and PETERSON (E.). Beryllium, 144.

NIVEN (C.). Displacement of Stellar Sp., 80; Planets, 86.

Noack. Apparatus, 21.

Noble (W.). Comets, 74; Moon, 87.

Noorden (C. von). Quantitative Analysis, 50.

NORTON (W. A.). Comets, 72; Solar in general, 94; Corona, 103.

OETTIGEN (A. J.). Aurora, 139.

Olmstead (D.). Solar in general, 94.

Otto (J. G.). Blood, 166; Methamoglobin, 177.

OUTERBRIDGE (A.). Apparatus, 23.

Paalzow. Electric, 223; Flame, 236; Oxygen, 310.

Palmieri (L.). Chlorine, 191; Volcanoes, 350.

Papillon. Carbon Compounds, 158.

Parinaud et Duboscq. Apparatus, 39; Density, 207.

Parker (J. Spear). Apparatus, 12; Iron, 268.

Parity (J.). Electric, 223; Flame, 236; Iron, 268.

Parville (H. de). Meteorological, 295.

Pasteur. Phosphorescence, 314.

Petrce (B. O. J.). Color, 198; Mercury, 289.

Perice (C. S.). Analysis, 46; Lines of the Sp., 274; Wave-Lengtha, 356.

Pentland. Heat of the Solar Sp., 112.

Perkin (W. H.). Absorption, 57; Alizarine, 162; Anthrapurpurine, 163.

Pernter, Lecher und. Absorption, 56.

PERROTIN. Comets, 78.

Perry (S. J.). Fixed Stars, 81; Chromosphere, 104; Eclipses, 109; Sun-Spots, 126; Aurora, 139; Ebonite, 171.

Pislin. Solar Sp. in general, 95.

PETRI (J.). Flour and Grain, 172.

Peterschewski (Th.). Apparatus, 27.

Petzyal (Jos.). Electric, 223

PIEFFER (W.), Carbonic Acid, 180.

Phipson (T. L.). Absorption, 57; Ruberine, 182.

Pickenino (E.C.). Apparatus, 15; Astronomical in general, 68; Fixed Stars, 81; Nebula, 84, 85; Photography of Stellar Sp., 117; Rod End of Solar Sp., 124; Aurora, 139; Diffraction, 211; Ultra-Violet, 349; Wave-Lengths, 356.

PIERRE As.) et PUCHAT (E.). Flame, 236.

Pictorn (G. W. Royston). Apparatus, 30; Solar in general, 95.

Рилъсниковт. Apparatus, 21.

Pisani. Casium, 150.

Pisati (G.) e Paterno. Benzene, 164.

Prosza P. . Chromogene, 168; Excrements, 171.

PUÜCKUR, Analysis, 46; Borax, 146; Carbonic Acid, 180; Electric, 223; Flame, 236, 237; Fluorine, 246; Hydrogen, 259; Nitrogen, 503; Oxygen, 310; Refraction, 325; Sclenium, 332; Sulphur, 342.

Pocketisoron (H.). Absorption, 57: Chlorophyll, 193.

Poliil (A. Alkalies, 61.

Poey (A.). Chemical Effects of the Solar Sp., 102; Ultra-Violet Solar Sp., 130.

Poggendorff (J. C.). History, 6.

Porro. Comets, 71; Longitudinal Rays, 281.

POWELL (J. Baden). History, 6.

Prazmowski. Apparatus, 25; Comets, 71; Aurora, 139; Color, 198.

PREYER (W.). Quantitative Analysis, 50; Carbon Compounds, 158.

PRIESTLEY (Dr. J.). History, 6.

PRILLIEUX. Density, 208.

Pringle (G. H.). Aurora, 139.

Pringsheim. Absorption, 57; Red End of the Solar Sp., 124; Solar Wave-Lengths, 132; Chlorophyll, 193, 194; Red End of the Spectrum, 322.

PRITCHARD (C.). Analysis, 46.

PROCTOR (H. R.). Apparatus, 21, 22; Electric, 223.

PROCTOR (R. A.). Book, 9; Apparatus, 11; Astronomical in general, 68; Solar in general, 95; Aurora, 139.

PRYTZ (K.). Constants, 200.

Puiseux (A.). Eclipses, 109.

Pulfrich (C.). Absorption, 57; Wave-Lengths, 356.

Pulsifer (W. H.). Apparatus, 30.

QUINCKE (G.). Apparatus, 18; Diffraction, 211; Liquids, 277; Optics, 306.

Radau (R.). Book, 9; Apparatus, 27.

Radzizewski (B.). Phosphorescent, 314.

RANVIER (L.). Carbon Compounds, 158.

RAYET (G.). Astronomical in general, 70; Comets, 72, 78; Solar Atmosphere, 100; Solar Eclipses, 109; Solar Protuberances, 119; Sun-Spots, 126; Aurora, 139.

RAYET et André. Comets, 72.

RAYLEIGH (Lord). Apparatus, 18; Analysis, 46; Color, 198; Energy, 227; Optics, 306; Ultra-Violet, 349.

REDTENBACHER (J.). Mineral Waters, 297.

Reformatsky (S.). Hydrocarbon, 175.

RÉGIMBEAU. Analysis, 46.

REICH (F.) und RICHTER (Th.). Indium, 261.

REIMANN (M.). Aniline, 163.

REINKE (J.). Analysis, 46.

25 т

Reinold. Analysis, 46.

Reitlinger (Edm.). Electric, 223; Hydrogen, 259; Nitrogen, 303.

RENNIE (E. H.). Drossera Whittakeri, 170.

Respight (L.). Book, 9; Comets, 71; Solar Sp. in general, 95; Corona, 104; Eclipses, 109; Solar Protuberances, 119; Aurora, 140.

REYE (Th.). Apparatus, 17; Solar Protuberances, 119; Sun-Spots, 126.

Reynolds (J. E.). Apparatus, 11, 21; Analysis, 46; Beryllium, 144; Carbon Compounds, 158; Alizarine, 162; Brazil-wood, 185; Sulphur, 342.

RICCA (V. S.). Corona, 104.

Riccò (A.). Apparatus, 15, 28, 35; Analysis, 47; Comets, 76, 77, 78; Solar in general, 95; Corona, 104; Solar Eruptions, 111; Sun-Spots, 126; Magnesium, 283; Wu'er, 352.

RICHARD et BERTHELOT. Analysis, 40; Flame, 231.

RICHE et Bardy. Flame, 237; Sulphur, 342.

RICOUR (Th.). Dispersion, 214.

Ridolfi (C.). Water in the Solar Sp., 130.

Rime (J.). Eclipse, 110.

RITTER. History, 6.

Roberts (W. C.). Analysis, 46.

Robiquet. Solar Sp. in general, 95; Electric, 223.

Robinson (H.). Aurora, 140.

Robinson (T. B.). Apparatus, 27.

Robinson (J.). History, 6.

ROHRBACH (C.). Dispersion, 214; Liquids, 278.

Rollett (A.). Apparatus, 23; Interference, 262.

Romanes (C. H.). Solar Sp. in general, 95; Aurora, 140; Meteorological, 295.

Rood (O. N.). History, 6; Books, 9; Apparatus, 22, 28, 31; Analysis,
 47; Quantitative Analysis, 51; Didymium, 210; Double Spectra,
 217; Indigo, 261; Nitrogen, 303; Secondary Spectra, 331.

Roscoe (H. E.). Books, 9; Analysis, 47; Corona, 104; Atmospheric, 134; Bromine, 148; Carbon, 154; Chlorine, 191; Heat, 254; Iodine, 266; Iron, 269; Potassium, 319; Ruthenium, 327; Sodium, 339.

Rosenberg (E.). Diffraction, 211.

ROSENSTIEHL (A.). Alizarine, 162.

Rosiky. Diffraction, 211.

Rowland (H. A.). History, 6; Apparatus, 17, 18; Maps, 114; Solar Photography, 117; Solar Wave-Lengths, 132; Aurora, 140; Wave-Lengths, 356.

ROWNEY (T.). Analysis, 47.

Rudberg (Fr.). History, 6.

Rue (Warren de la). Photography of Stellar Sp., 86; Solar Protuberances, 122.

RUPRECHT (R.). History, 6; Book, 9.

Russell (H. C.). Comet, 77; Atmospheric, 134.

Russell (W. J.). Absorption, 57; Chlorine, 191; Chlorophyll, 194; Cobalt, 196; Liquids, 278.

RUTHERFURD (L. M.). History, 6; Astronomical in general, 68; Measurement of Stellar Sp., 82.

SAARBACH (H.). Methamoglobin, 177.

Sabatier (P.). Alkalies, 61; Chromium, 195.

Sachsse (R.). Chlorophyll, 194.

Sainte-Claire Deville. Calcium, 152.

Salet (G.). Apparatus, 16; Analysis, 47; Absorption, 58; Aurora, 140; Carbon, 154; Chlorine, 191; Distribution, 217; Double Sp., 217; Flame, 237; Iodine, 266; Metals, 293, Nitrogen, 303; Phosphorus, 316; Selenium, 332; Silicium, 333; Sulphur, 342; Tellurium, 343; Tin, 345; Wave-Lengths, 356.

Salisbury (The Marquis of). Heat, 254; Lines of the Sp., 274.

Salm-Horst (Der Fürst zu). Apparatus, 28; Ultra-Violet, 349.

Sampson (W. T.). Corona, 104.

Sands (B. F.). Book, 9; Eclipse, 110.

Santini (S.). Flame, 237; Hydrogen, 259.

Sarasın (Ed.). Aluminium, 63; Cadmium, 149; Crystals, 203; D Lines, 204; Fluorine, 246; Refraction, 325; Silicium, 333; Zinc, 360.

Sauer (L.). Ultra-Violet, 349.

SCHAICK (W. C. von). Dispersion, 215.

Schellen (H.). Book, 9.

Schelske (R.). Carbon Compounds, 158.

Schenck (L. S.). Bonellia Viridis, 167; Flame, 237.

Schimkow (A.). Atmospheric, 135; Electric, 223; Heat, 254; Nitrogen, 303.

Schiff (II.). Quantitative Analysis, 51; Carbon Compounds, 159; Aniline, 163.

SCHMIDT. Aurora, 140.

Schönn (L.). Apparatus, 13; Absorption, 58; Alcohol, 161; Flowers, 172; Leaves, 176; Liquids, 278; Nitrogen, 303; Ultra-Violet, 309; Water Sp., 352.

Schoop (P.). Aniline, 163.

SCHOTTNER (F.). Flame, 237.

Schrauf (A.). Carbon, 154; Dispersion, 215.

Schröder (H.). Liquids, 278; Refraction, 325.

Schrötter. Indium, 261.

Schultz (H.). Apparatus, 19.

Schulz-Sellac (C.). Absorption, 58; Silver, 335.

Schunck (E.). Purple, 182.

Schuster (A.). Apparatus, 12; Analysis, 47; Eclipses, 110; Oxygen in the Solar Sp., 115; Carbon, 154; Electric, 223; Flame, 237; Metals, 293; Nitrogen, 303; Oxygen, 310; Radiation, 321.

Schwerd (F. M.). History, 6.

Seabroke (G. M.). Comet, 74; Displacement of Stellar Sp., 80; Solar in general, 99; Aurora, 140; Hydrogen, 259.

SECCHI (A.). History, 6; Books, 10; Apparatus, 36, 37; Analysis, 47; Aluminium, 63; Astronomical in general, 68, 69; Comets, 71, 72, 73, 79; Displacement of Stellar Sp., 80; Fixed Stars, 80, 81, 82; Measurement of Stellar Sp., 82; Meteors, 83; Nebulæ, 84; Planets, 86, 87, 88; Solar in general, 95, 96; Solar Atmosphere, 101; Solar Corona, 104; Eclipses, 110; Solar Eruptions, 111; Solar Protuberances, 119, 120, 121; Solar Storms, 124; Sun-Spots, 127; Atmospheric, 135; Aurora, 140; High Altitudes, 255; Hydrogen, 259, 260; Iron, 269; Magnesium, 283; Metals, 294; Sodium, 339; Thallium, 344; Water Sp., 352.

SEEBECK (T. J.). History, 7.

Seguin (J. M'). Electric, 224; Fluorine, 246; Light, 272; Phosphorus, 316; Silicium, 333; Sulphur, 342.

Sekulic. Interference, 262; Ultra-Violet, 349.

Sellmerer (W.). Color, 198; Dispersion, 215.

SÉNARMONT (H. de). Borax, 146; Carbonic Acid, 180; Carbonate of Soda, 183; Crystals, 203; Oxygen, 310; Sodium, 339; Sulphur, 342.

Senier (H.). Flowers, 172.

SERPIERI (A.). Aurora, 140.

Settegast (H.). Quantitative Analysis, 51; Nitrogen, 303; Silver, 335.

SHERMAN. Astronomical, 69; Comets, 79; Fixed Stars, 80.

Sieben. Density, 208; Dispersion, 215; Heat, 254.

SILBERMANN (J.). Meteors, 83; Aurora, 140.

SILLIMAN (J. M.). Apparatus, 12; Iron, 269.

SIMMLER (R. Th.). Book, 10; Apparatus, 19; Analysis, 47; Borax, 146; Copper, 202; Electric, 224; Flame, 237; Mineral Waters, 297.

Sirks (J. L.). Selenium, 332.

Smith (A. P.). Flame, 238; Salt, 328.

SMITH (Lawrence). Didymium, 210; Erbium, 229; Mosandrum, 298.

Smith (C. Mitchie). Meteorological, 295, 296.

SMYTH (C. Piazzi). Book, 10; Apparatus, 20, 38; Analysis, 47; Astronomical in general, 69; Solar in general, 97; B Lines in the Solar Sp., 101; Heat in the Solar Sp., 113; Red End of the Solar Sp., 124; Solar Wave-Lengths, 132; Aurora, 140; Carbon, 154; Cyanogen, 170; Hydrocarbon, 175; Color, 198; Dispersion, 215; Flame, 238; Meteorological, 296; Oxygen, 310; Wave-Lengths, 356.

SOHNKE (L.). Heat, 254.

Sokoloff (A.). Apparatus, 19.

Somerville (Mrs.). Chemical Effects of the Solar Sp., 102.

Sonrel. Photography of the Solar Sp., 117; Sun-Spots, 127.

Sorby (H. C.). Apparatus, 22, 28; Qualitative Analysis, 49; Carbon Compounds, 159; Aphides, 163; Blood, 166; Bonellia Viridis, 167; Hemoglobin, 174; Leaves, 176; Spongilla Fluviatilis, 183; Color, 199; Fluorescence, 244; Jargonium, 270; Uranium, 347; Zirconium, 361.

Soret (C.). Apparatus, 30; Aluminium, 63; Alum, 162; Dispersion, 215; Fluorescence, 245.

SORET (J. L.). Apparatus, 17; Absorption, 58, 59; Heat in the Solar Sp., 113; Blood, 166; Color, 199; Crystals, 203; Didymium, 210; Diffraction, 211; Dispersion, 215; Flame, 238; Gadolinite, 247; Liquids, 278; Metals, 296; Nitrogen, 303; Polarized Light, 318; Samarskite, 330; Ultra-Violet, 349, 350; Water Sp., 352; Yttrium, 359.

Spée. Diffraction, 211; Helium, 255.

Spiller (J.). Phosphorescence, 314.

Spörer. Solar Protuberances, 121.

Spottiswoode (W.). Color, 199.

STAS. Heat. 254.

STEARN (C. H.) and Lee (G. H.). Flame, 238; Nitrogen, 303; Pressure, 320.

Stebbin 'J. H.). Azo Colors, 164; Lamp-Black, 176.

Stefen (J.). Heat, 254; Interference, 262.

Stein (W.). Carbon Compounds, 159; Morindon, 117; Flame, 238; Glass, 249; Liquids, 278.

STEINHEIL. Analysis, 48.

STENGER (F.). Electric, 224; Fluorescent, 245.

STENHOUSE. Morindon, 117.

STEVENS (W. L.). Apparatus, 30.

Stewart (B.). History, 7; Analysis, 48; Solar in general, 97; Eclipses, 110; Solar Protuberances, 121; Sun-Spots, 127; Tourmeline, 184; Exchanges, 230.

STIEREN (E.). History, 7.

STOCKVIS (B. J.). Bile, 165; Gall, 173.

STOKES (G. G.). History, 7; Book, 10; Analysis, 48; Alcalics, 61; Solar in general, 97; Carbon Compounds, 159; Blood, 166; D Lines, 204; Dispersion, 215; Electric, 224; Phosphorescent, 314; Ultra-Violet, 350.

Stone (E.). Analysis, 48; Nebulæ, 84; Aurora, 141.

Stone (W. II.). Apparatus, 34.

Stoney (Johnstone). Apparatus, 35; Astronomical in general, 69; Solar in general, 97; Chlorine, 191; Flume, 238.

STROUMBO. Analysis, 48.

STRUTT (J. W.). Apparatus, 18.

Struve (O. von). Aurora, 141.

Sueur (A. Le). Astronomical in general, 69; Fixed Stars, 81; Nebule, 84, 85; Planets, 87; Aurora, 141.

Suffolk (W. T.). Apparatus, 23.

SUNDELL (A. F.). Apparatus, 19.

Swan (W.). History, 7; Carbon Compounds, 159; Flame, 238; Hydrogen, 260.

TACCHINI (P.). Comets, 76, 79; Venus, 88; Solar in general, 97, 98;
Solar Atmosphere, 101; B Lines in the Solar Sp., 101; Solar Chromosphere, 104; Eclipses, 110; Solar Eruptions, 111; Photography of Solar Sp., 117; Solar Protuberances, 121, 122; Sun-Spots, 127, 128; Aurora, 141; Magnesium, 283.

Tait (P. G.). Apparatus, 27.

Talbot (H. Fox). Analysis, 48; Flame, 238; Lithium, 280.

TARRY (H.). History, 7; Solar Storms, 124; Aurora, 141; Meteorological, 296.

TENNANT (J. F.). Eclipses, 110.

TERQUEM et Trannin. Liquids, 278; Refraction, 326.

Thalén (Rob.). History, 7; Book, 10; Analysis, 84; Solar in general, 98; Didymium, 210; Erbium, 229; Iodine, 267; Iron, 269; Lanthanum, 270; Limits of the Sp., 273; Maps, 288; Metals, 294; Samarium, 329; Scandium, 331; Thulium, 345; Wave-Lengths, 356; Ytterbium, 358; Yttrium, 359.

THÉNARD (P.). Analysis, 48; Heat in the Solar Sp., 112.

THERRY (M. de). Apparatus, 11, 39.

Thollon (L.). Apparatus, 12, 14, 28, 35, 37; Comets, 74, 77, 78;
Venus, 88; Solar in general, 98; B Lines in the Solar Sp., 101;
D Lines in the Solar Sp., 105; Eclipses, 110; Solar Protuberances, 122; Solar Storms, 124; Telluric Solar Sp., 129; Carbon Compounds, 159; D Lines, 204; Dispersion, 215; Maps, 288; Sodium, 339; Wave-Lengths, 356.

THOMPSON (C. M.). Didymium, 210.

THÖRNER (W.). Chinon, 168.

Thudichum (J. L. W.). Bile, 165; Hematine, 174; Lutherine, 176; Potassium, 319; Uranium, 347.

TILDEN (W. A.). Hydrocarbon, 175.

Timiriasef. Analysis, 48; Solar in general, 98; Carbonic Acid, 180; Energy in the Sp., 227.

TISSERAND (F.). Sun-Spots, 128.

Tomması (D.). Electric, 224; Silver, 336.

Trannin (H.). Density, 208; Wave-Lengths, 356.

TREMESCHINI. Sun-Spots, 128.

Trépied (C.). Comets, 79; Eclipses, 110.

Tresca. Aurora, 141.

TROOST and HAUTEFEUILLE. Borax, 146; Carbon, 154; Silicium, 333; Titanium, 346; Zirconium, 361.

TROUVELOT (E. L.). Absorption, 59; Solar in general, 98; Solar Absorption, 100; Solar Atmosphere, 101; Protuberances, 122; SunSpots, 128.

TROWBRIDGE (J.). Analysis, 48.

TRUCHOT (P.). Lithium, 280; Mineral Waters, 297.

TSCHERCH (A.). Apparatus, 23; Chlorophyll, 194.

Tuckini (A. E.). Apparatus, 32.

Tumling (O.). Absorption, 59; Liquids, 278.

Turman (Capt.). Protuberances, 122.

Twining (A. C.). Aurora, 141.

Tyndall (J.). Analysis, 48; Comets, 71; Inversion, 263; Lithium. 280; Red End of the Sp., 322.

Upton (Winslow). Meteorological, 296.

VALENTINE (G.). Book, 10; Carbon Compounds, 159.

Valson (C. A.). Salt, 328.

Valz. Apparatus, 32.

VERNEUIL (A.). Aluminium, 62; Calcium, 152; Phosphorescent, 314.

VICAIRE (E.). Solar in general, 98; Solar Storms, 124; Sun Spots, 128;Hydrogen, 260; Iron, 269; Magnesium, 283; Silicium, 333.

Vierord (K.). Book, 10; Apparatus, 39; Quantitative Analysis, 51; Absorption, 59; Carbon Compounds, 159; Wave-Lengths, 356.

VIOLLE (J.). Platinum, 317; Silver, 336.

Vogel (E.). Lines of the Sp., 275.

VOGEL (H.). Absorption, 59; Comets, 70, 71, 75; Chemical Effect of the Solar Sp., 102; Bromine, 148; Dispersion, 215; Electric, 224.

VOGEL (H. C.). Apparatus, 13, 21, 25, 26, 39; Absorption, 59; Comets.
75, 76, 77, 79; Fixed Stars, 81; Nebulæ, 85; Planets, 86;
Solar Absorption, 100; Solar Atmosphere, 101; Photography of Solar Sp., 117; Solar Wave-Lengths, 132; Atmospheric, 135; Aurora, 141; Hydrogen, 260; Nitrogen, 303, 304; Oxygen, 319; Wave-Lengths, 357.

Vogel (H. V.). Analysis, 48; Astronomical in general, 70

VOGEL (H. W.). History, 7; Analysis, 49; Absorption, 59, 60; Astronomical in general, 70; Dissociation, 216; Electric, 224; Flame, 238; Iron, 269; Light, 273; Magnesium, 284; Mercury, 289; Nickel, 299; Silicium, 333; Silver, 336; Water, 352.

Voigi (W.). Fuchsin, 172; Dispersion, 215; Metals, 294; Refraction, 326; Zine, 360.

Vollegeelle, Calcium, 152; Luminous Sp., 281.

WALKER (E.). Electric, 224.

Waltenhofen (A. von). Electric, 224; Flame, 239

Walters (J. Hopkins). Electric, 224.

Warren de la Rue. [Above under Rue.]

WARTMANN (E.). Longitudinal Rays, 281.

Waterhouse (J.). Photography of the Solar Sp., 117; Eosin, 171.

Watts (W. M.). Books, 10; Apparatus, 22; Analysis, 47, 49; Comets, 73; Aurora, 141; Carbon, 154; Hydrocarbon, 175; Double Sp., 217; Flame, 239; Iron, 269.

Weber (R.). Plants, 181.

Weinberg (M.). Interference, 262; Wave-Lengths, 357.

Weinhold (A.). Apparatus, 21; Color, 199; Inversion, 264; Metals, 294; Sodium, 339.

Weiss (A.). Solar in general, 99; Fungi, 172; Density, 208; Fluorescent, 245; Nitrogen, 304.

Welsbach (C. A.). Gadolinite, 247.

WERNICKE (W.). Apparatus, 29; Absorption, 60; Bromine, 148; Chlorine, 191; Iodine, 267; Metals, 294; Polarized Light, 318; Silver, 336.

Wesendonck (K.). Carbon Compounds, 160; Napthalin-Red, 178; Carbonic Acid, 180; Fluorescent, 245; Fluorine, 246; Hydrogen, 260; Silicium, 333.

WHEATSTONE (C.). Electric, 224.

WIEDEMANN (E.). Analysis, 49; Pressure on the Sun, 117; Sun-Spots,
128; Carbonic Acid, 180; Constants, 200; Electric, 224, 225;
Flame, 239; Glass, 249; Hydrogen, 260; Manganese, 286; Polarized Light, 318; Potassium, 320; Refraction, 326; Wave-Lengths, 357.

WIEN (Wille). Absorption, 60.

Wiesner (J.). Xantophyll, 186; Chlorophyll, 194.

WIJKANDER. Aurora, 141.

WILD (H.). Apparatus, 33.

WILEY (H. W.). Uranium, 347.

WILLIAMS (W. M.). Calcium, 152; Iron, 269; Titanium, 346.

WILLIGEN (S. M. van der). Electric, 225; Hydrogen, 260; Metals, 294.

WILSON (J. M.) and SEABROKE. Solar in general, 99.

WINKLER. Indium, 261.

Winlock (Prof.). Apparatus, 16, 36, 37; Solar in general, 99; Aurora, 141.

WINNECKE. Nebulæ, 84.

WINTER (G. K.). Corona, 105.

WISKEMANN (M.). Hemoglobine, 174.

WLEUGEL (S.). Indium, 261.

Wolff (C. H.). Quantitative Analysis, 51; Absorption, 60; Alkalies, 61; Astronomical in general, 70; Comets, 72, 73, 75; Fixed Stars, 82; Sun-Spots, 128; Fuchsin, 172; Indigo, 176; Cobalt, 196; Copper, 202; Iron, 269; Liquids, 278.

Wollaston (Dr.). History, 7; Dark Lines in the Solar Sp., 106; Dark Lines, 206.

WRIGHT (A. W.). Meteors, 83; Aurora, 142; Flame, 239; Iron, 269. WROTTESLEY (Lord). Books, 10.

WÜLLNER (A.). Analysis, 49; Bromine, 148; Acetylene, 161; Carbonic Acid, 180; Dispersion, 216; Electric, 225; Flame, 239, 240;
Fluorescent, 245; Hydrogen, 260; Iodine, 267; Lines of the Spectrum, 275; Nitrogen, 304; Oxygen, 310.

Wunder (J.). Absorption Sp., 60; Ultra-Marine, 184.

WÜNSCH (C. E.). History, 7.

WURTZ (A.). History, 7.

Wybouboff (G.). Dispersion, 216; Sodium, 339.

YOUNG (C. A.). Books, 10; Apparatus, 18; Analysis, 49; Comets, 73, 75, 79; Planets, 88; Solar in general, 99; Bright Lines in the Solar Sp., 102; Corona, 105; Displacement of Solar Sp., 106; Eclipses, 110, 111; Sun-Spots, 128; Inversion, 264; Nomenclature, 305; Sodium, 339.

Young (T.). History, 8.

Yung (E.). Color, 199.

Zahn. Apparatus, 33, 38; Quantitative Analysis, 51.

Zantedeschi. History, 8; Apparatus, 32; Solar in general, 99; Longitudinal, 281.

ZENGER (C. V.). Apparatus, 12, 14, 15, 24, 35, 37, 39; Diffraction, 211;
Light, 273; Ultra-Violet, 350.

ZENGER (K. W.). Analysis, 49; Photography of Solar Sp., 117.

Zenker (W.). Apparatus, 33; Solar Protuberances, 122.

ZIMMERMANN (C.). Uranium, 347.

ZÖLLSER (F.). Apparatus, 30, 36, 37; Astronomical in general, 70;
Nebulæ, 85; Solar in general, 99; Corona, 105; Dark Lines in the Solar Sp., 106; Solar Protuberances, 122; Solar Rotation, 124; Sun-Spots, 129; Aurora, 142; Dark Lines, 206; Density, 208; Flame, 240; Heat, 254.

Zona. Comet, 76.

SUPPLEMENT.

As the omission of the authors' names in connection with references to the Jahresberichte der Chemie has been pointed out as a serious defect in the Index, these names are now supplied below.

```
Jahresber, d. Chemie (1847-'8), 161, analysis, by Draper.
                      (1847-'8), 164, analysis, by Becquerel.
                      (1847-'8), 197, analysis, by Brewster.
                      (1847-'8), 197, analysis, by Airy.
                      (1847-'8), 198, analysis, by Melloni.
                      (1847-'8), 198, analysis, by Brewster.
                "
                      (1847-'8), 221, chlorine and hydrogen, by Fayre
                          and Silbermann.
                      (1849), 164, photography of, by Becquerel.
                      (1850), 154, lines in the sp., by Brewster.
                      (1851), 151, longitudinal lines, by Ragona-Scinà.
                      (1851), 134; (1852), 117, interference sp., both by
                          Nobert.
                      (1851), 152, Fraunhofer lines, by Broch.
                      (1851), 152, electric sp., by Masson.
    "
                      (1852), 124, Fraunhofer lines, by Phillips and by
                          Merz.
                      (1852), 125, analysis, by Stokes.
                      (1852), 125, longitudinal lines, by Zantedeschi.
                      (1852), 126, measurements of the sp., by Porro.
                "
                      (1852), 126, 131, analysis, by Helmholtz.
                      (1853), 167, Fraunhofer lines, by Kuhn.
                      (1853), 167, Longitudinal lines, by Salm-Horstmar.
                      (1853), 178, colors, by Grassmann.
                      (1854), 137, Fraunhofer lines, by Heusser.
                      (1854), 197, solar sp. in general, by Becquerel.
                . 6
    "
                "
                      (1855), 123, analysis, by Helmholtz.
                      (1855), 123, lines of the sp., by Grassmann.
```

(395)

.,		1011 111111111111111111111111111111111
Jahresber, d.	Chemie	(1859), 643, analysis, by Kirchhoff and Bunsen.
**		(1860), 598, analysis, by Kirchhoff and Bunsen.
••	4.	(1860), 608, analysis, by Merz.
••	**	(1861), 41, analysis, by Kirchhoff and Bunsen.
• •	**	(1861), 43, electric, by W. A. Miller.
4.,		(1861), 44, phosphorus and sulphur, by Seguin.
••	**	(1861), 44, thallium, by Crookes.
••	4.	(1861), 44, dark lines, by Kirchhoff.
**		(1861), 45, solar atmosphere, by Tyndall and Roscoe.
	**	(1861), 45, analysis, by Kirchhoff and Bunsen.
		(1862), 26, Fraunhofer lines at sunset, by A. Weiss.
**	**	(1862), 26, cause of the dark lines in the solar sp., by Janssen.
4.4	**	(1862), 26, dark lines in the sp. of stars, by Merz.
••	4.	(1862), 27, coïncidence of the Fraunhofer lines with those of various metals, by Angström.
"	4.	(1862), 27, general treatises on spectrum analysis, by Jamin, W. A. Miller, and Roscoe.
**	60	(1862), 27, various forms of the spectroscope, by Janssen, Kirchhoff and Bunsen, A. Waugh, E. Hauer, and O. N. Rood.
**	4,	(1862), 27, 28, methods for obtaining constant spectra, by Mitscherlich, Crookes, Diacon et Wolf, Debray, Roscoe and Clifton, and Plücker.
4+	**	(1862), 29, spectrum of soda, by Fizenn.
44	**	(1862), 29, division of bright rays into metallic spectra in good spectroscopes, by J. P. Cooke.
·	**	(1862), 29, influence of the temperature of a flame on the spectrum produced by it, by Kirchhoff and Bünsen, Roscoe and Clifton, and Crookes.
**	**	(1862), 30, constancy of the spectra, both of metals and of their compounds, by Wolf et Diacon.
		(1862), 31, differences between the spectra of various metals and those of their chlorine compounds, especially the influence of salts, by Mitscherlich.
**	4.	(1862), 32, cause of spectra and consequences from this in regard to the condition of the solar at- mosphere, by Mitscherlich.

- Jahresber. d. Chemie (1862), 33, metallic spectra produced by electric sparks, by W. A. Miller, Stokes, and T. R. Robinson.
 - " (1862), 33, spectra of carbon and of fluorine, by Sequin, Attfield, and Swan.
 - " (1862), 34, violet coloring given to the flame by various chlorides, by Gladstone.
 - " (1862), 34, spectra of colored solutions, by Brewster, Gladstone, and by Rood.
 - " (1862), 29, spectrum of sodium, by Wolf et Diacon.
 - " (1862), 30, spectrum of lithium in the hydrogen flame, by Wolf et Diacon.
 - " (1862), 30, spectra of copper and of lead, by Debray.
 - " (1862), 535, spectrum of blood, by F. Hoppe.
 - " (1863), 101, photography of the solar spectrum, by Mascart.
 - " (1863), 104, 106, 107, photographic effect of electric spectra of metals, by W. A. Miller.
 - " (1863), 107, 110, dark lines in the solar spectrum, by Kirchhoff.
 - " (1863), 108, note, atmospheric or telluric lines of the solar spectrum, by Jasssen.
 - " (1863), 108, note, spectra of the stars, by Seechi.
 - " (1863), 109, spectrum of iodine, by A. Wüllner.
 - " (1863), 110, accuracy and comparison of spectroscopes, by Bunsen and Kirchhoff, and by J. P. Cooke.
 - " (1863), 110, spectra of sulphur and of nitrogen, by Plücker and Hittorf.
 - " (1863), 111, spectra of the chlorine metals, by E. Diacon.
 - " (1863), 111, spectrum of hydrogen, by Leclancé.
 - " (1863), 111, spectra of phosphorus, by Christofle and Beilstein.
 - " (1863), 112, use of spectrum analysis in the manufacture of steel, by Roscoe.
 - " (1862), 112, spectra of sodium and potassium, by L. M. Rutherfurd.

Jahresber.	l. Chemie	(1863), 112, spectrum of thallium, by W. A. Miller and by J. P. Gassiot.
* 6		(1863), 112, spectrum of osmium, by W. Fraser.
"	••	(1863), 113, history of spectrum analysis, by G. Kirchhoff and by H. C. Dibbits.
		(1863), 113, spectra of various metals in electricity, by Daniel.
**	4	(1863), 113, spectrum of carbon, by Daniel.
"		(1863), 114, apparatus, by Wolcott Gibbs, Littrow, R. Th. Simmler, J. P. Gassiot, H. Osann, B. Valz, and E. Mulder.
44	**	(1864), 108, spectrum analysis of colored solutions, by C. Werner.
"	4.6	(1864), 108, dark lines of the elements, by R. Bunsen.
44	••	(1864), 109, spectrum of lightning, by L. Grandeau.
"	**	(1864), 109, spectrum of the non-luminous earbon- flame, by A. Morren.
4.	**	(1864), 109, speetra of phosphorus, sulphur, and selenium, by E. Mulder.
6.6		(1864), 109, spectra of flames, by H. C. Dibbits.
**	**	(1864), 110, spectra of glowing gases and vapours in electricity, by J. Plücker and S. W. Hittorf.
"	٠,	(1864), 112, spectra of the elements and of their compounds, by A. Mitscherlich.
	4.6	(1864), 115, electric spectra of metals, by W. Huggins.
44	**	(1864), 115, spectrum of the light from phosphorescent animals, by Pasteur.
"	"	(1864), 115, note, spectra of the sun, fixed stars, planets, and nebulae, by Janssen, W. A. Miller, and Huggins.
"	6.	(1864), 115, apparatus with 11 sulphide of earbon prisms, by J. P. Gassiot.
"	"	(1864), 115, harmonious results given by the spectroscope, by F. Gottschalk.
"	"	(1865), 85, absorption spectra of colored solutions, by F. Melde.

- Jahresber, d. Chemie (1865), 87, influence of non-metallic elements on the spectra of the metals, by E. Diacon. " " (1865), 89, on the flame-spectra of carbon compounds, by A. Morren. ٤, (1865), 90, change of the bright lines of the metals, especially of sodium into dark lines, by H. G. Madan. (1865), 90, 91, electric spectra of metals, by W. Huggins and by Laborde. 66 (1865), 91, spectrum analysis by means of electricity, by Brassack. " (1865), 92, spectrum analysis of electricity, by A. von Waltenhofen. " (1865), 92, spectra of the sun and of the stars, by Janssen. " (1865), 94, spectroscopes, by H. Rexroth, J. Browning, J. P. Cooke, L. M. Rutherfurd, W. Huggins, J. P. Gassiot. ٠,, " (1865), 96, spectrum of the magnesium light, by A. Schrötter. " " (1866), 76, absorption spectrum of steam, by Jans-" (1866), 77, telluric lines of the solar spectrum, by Angström and by Secchi. " (1866), 78, note, spectra of the stars, by W. Huggins and W. A. Miller. 6: " (1866), 78, connection of the distance of the spectrum lines with the dimensions of the atoms, by G. Hinrichs. 66 (1866), 78, history of spectrum analysis, by Brew-" (1866), 78, apparatus, theory of, by L. Ditscheiner;
 - " (1867), 105, apparatus, by J. Müller.
 " (1867), 105, application of the spectroscope to microscopical investigations, by H. C. Sorby.

and spectroscopes, by Börsch and A. Forster.

- " (1867), 105, production of the spectrum of fluorescent substances, by J. Müller.
- " (1867), 105, 106, spectrum of the Bessemer flame, by A. Lielegg and by W. M. Watts.

Jahresber, o	I. Chemie	(1867), 107, spectra of the stars, by A. Secchi.
4.6	"	(1868), 130, spectroscope for testing minerals, by J. E. Reynolds,
**	**	(1868), 132, comparison of prisms for spectroscopes, by E. C. Pickering.
**	. 6	(1868), 80, spectrum of heat, by E. Desaines.
	**	(1868), 124, artificial spectrum of a Fraunhofer line, by A. Wüllner.
4.6		(1868), 125, various spectra of the same gas, by A. Wüllner.
* 6		- 1868), 126, 127, spectra of lightning, by A. Kundt.
	. 4	(1868), 128, spectrum of the aurora, by O. Struve.
**		(1868), 128, flame spectra of gases containing carbon, by A. Lielegg.
**		(1868), 129, spectrum of potassium and of barium, by J. H. Freeman.
46	. 4	-1868), 129, absorption spectra of liquids for dye- ing, by Reynolds.
. 4	• •	(1868), 130, application of the spectroscope to the examination of crystals, L. Ditscheiner.
44	+4	(1868), 133, spectrum telescope, by W. Huggins.
**	**	(1869), 174, history of spectrum analysis, by A. S. Herschel.
	* 6	(1869), 174, constitution of spectra of light, by Lecoq de Boisbaudran.
**	**	(1869), 175, spectrum scale, by A. Weinhold.
**	4.6	(1869), 175, reversion spectroscope, by F. Zöllner.
**	. 6	(1869), 175, binocular spectrum microscope, by W. Crookes.
4.6	••	(1869), 175, appearance of opal in the spectroscope, by W. Crookes.
**	* *	(1869), 176, spectrum of carbon, by W. M. Watts.
**	4.6	(1869), 176, 180, spectra of gases, by E. Frankland and J. N. Lockyer.
**	4.	(1869), 177, difference of the spectra under various circumstances, by Λ . Secchi and Lecoq de Boisbaudran.
44		(1869), 178, spectra of gases under increasing pressure, by A. Wüllner and by Frankland.

.

Jahresber.	d. Chemie	(1869), 180, spectrum of the aurora, by Angström.
	"	(1869), 181, spectrum of sulphur, by G. Salet.
"	.6	(1869), 182, spectrum of acetylene, by Berthelot and F. Richard.
	"	(1869), 182, absorption spectrum of chlorine, by Morren.
"	"	(1869), 183, absorption spectra of steam and of saltpetre, by E. Luck.
**	"	(1869), 184, absorption spectrum of mangansuper- chloride, by E. Luck.
"	46	(1870), 148, spectrum of heat, by Becquerel.
44	"	(1870), 172, spectrum analysis, by A. Kundt.
"	44	(1870), 172, absorption spectra of liquid nitrates, by A. Kundt.
"	"	(1870), 173, spectroscopic examination of sulphur and phosphorus, by Salet.
"	"	(1870), 174, absorption spectrum of iodine vapour, by R. Thalén.
"	"	(1870), 174, spectra of chalk, magnesia, baryta, and strontium, by Huggins.
44	"	(1870), 175, spectrum of fat oils, by J. Müller.
• 6	4.6	(1870), 175, influence of temperature on the sensitiveness of spectrum reactions, by E. Cappel.
**	"	(1870), 177, spectra of gases, by A. Secchi.
"	"	(1870), 177, note, spectra of stars, by Leseueur, Hennessey, Secchi, Lockyer, and Young (C. A.).
"	46	(1870), 321, absorption spectrum of nitrates of didymium, by Erk.
"	"	(1870), 930, spectrum analysis in general, by H. C. Sorby.
"	"	(1871), 120, heat spectra of sunlight and limelight, by S. Lamansky.
"	"	(1871), 144–149, spectra of colored bodies, by W. Stein.
"	"	(1871), 150, use of a reflector behind the spectrum apparatus, by H. Fleck.
	"	(1871), 150, spectrum of calcium, by R. Blochmann.
"	"	(1871), 151, diffraction and dispersion of selenium, by J. L. Sirks.

Jahresber. d.	Chemie	(1871), 151, diffraction and dispersion in iodide, bromide, and chloride of silver, by W. Wernicke.
44	44	(1871), 153, diffractive power of various liquids, by Croullebois.
4.6	••	(1871), 153, diffractive power of gases, by Fr. Mohr.
44	44	(1871), 154-160, anomalous dispersion of bodies colored on the surface, by A. Kundt.
••	**	(1871), 160, interference-scale for spectroscopic measurements, by J. Müller and by Sorby.
••	**	(1871), 160, variable spectra, by A. J. Angström.
6.	**	(1871), 160-165, spectra of gases, by Angström.
4.		(1871), 165, spectrum analysis, by G. Salet.
**		(1871), 167, spectrum of lightning, by H. Vogel.
4.		(1871), 168, solar spectrum, by J. Janssen.
••	44	(1871), 169, speetrum of the aurora, by Browning, Zöllner, R. J. Ellery, Lord Lindsay, G. F. Barker, and H. Vogel.
**	4.	(1871), 169, comparative investigations of the spectrum, by L. Troost and P. Hautefeuille.
4.	4.	(1871), 172, absorption by iodine-vapour, by $\Lambda_{\rm B}$ drews.
4.6	"	(1871), 173, inversion of the spectrum lines, by A. Weinhold.
4.	"	(1871), 175, illumination, absorption, and fluorescence, by A. Lallemand.
44	"	(1871), 179-189, chemical effects of light, by H. E. Roscoe and T. E. Thorpe.
44	"	(1871), 189, quantitative analysis, by Vierordt.
44	• •	(1871), 191, phosphorescence, by A. Forster.
41	66	(1872), 134, ultra-violet rays of the solar spectrum, by Sekulic.
4.6	"	(1872), 136, absorption spectrum of chlorophyll, by Chautard.
4.	"	(1872), 137, absorption spectrum of saltpetre, by D. Gernez.
"	"	(1872), 138, absorption spectrum of chlorine, by Gernez.
"	44	(1872), 139, 141, absorption spectrum of sulphur, by Gernez

Jahresber. d. Chemic	e (1872), 139, absorption spectra of the chloric acids and of selenium, by D. Gernez.
	(1872), 140, absorption spectra of chloride of selenium, of bromide of selenium, of tellurium, of chloride of tellurium, and of bromide of tellurium, and of alizarine, by D. Gernez.
"	(1872), 141, spectrum of iodine and of sulphur, by G. Salet.
es es	(1872), 141, 143, 144, 145, 146, spectrum of hydrogen, by G. M. Seabroke, Lecoq de Boisbaudran, A. Schuster, L. Cailletet, and E. Villari.
e6 66	(1872), 142, spectrum of phosphoretted hydrogen, by K. B. Hofmann.
"	(1872), 142, 144, 145, spectrum of nitrogen, by Schuster.
"	(1872), 142, spectrum of the flame of ammonia, by K. B. Hofmanu.
"	(1872), 143, spectrum of ammonia, by A. Schuster.
"	(1872), 143, spectra of gases, by Schuster and by Angström.
	(1872), 145, spectra of aluminium, magnesium, zinc, cadmium, cobalt, and nickel, by Lockyer.
"	(1872), 145, influence of pressure on the spectrum of the induction spark, by L. Cailletet.
"	(1872), 146, spectrum analysis, by C. Horner.
"	(1872), 147, solar spectrum, by C. A. Young.
¢¢ 6¢	(1872), 148, spectrum of the aurora, by H. C. Vogel.
"	(1872), 148, spectrum of the zodiacal light, by E. Liais.
"	(1872), 148, spectrum of lightning, by E. S. Holden.
"	(1872), 873, spectrum analysis, by Vierordt.
"	(1872), 948, micro-spectroscope, by Timiriasef.
"	(1873), 54, use of the spectrum in measuring high temperatures, by J. Dewar and by Gladstone.
66 CC	(1873), 146, spectroscopes, by Hartley, Emsmann, Zenger, H. R. Proctor, O. N. Rood, C. A. Young, F. P. Le Roux, Th. Edelmann, R. Hennig and M. M. Champion, Pellet et Grenier.

Jahresber, d.	Chemie	(1873), 148, spectra of gases, by A. Wüllner.
44	"	(1873), 149, spectra of the metalloids, by G. Salet.
	"	(1873), 150, spectrum of the Bessemer flame, by W. M. Watts.
44	"	(1873), 150, spectra of the crbium earths, by Lecoq de Boisbaudran.
46	"	(1873), 150, supposed spectrum-line of iron, by A. Seechi.
"	"	(1873), 150, spectrum of the electro-carbon light, by A. Secchi.
	44	(1873), 150, spectra of cobalt compounds, by Ch. Horner.
14	"	(1873), 151, spectrum of exploding gun-cotton, by O. Lohse.
* *	"	(1873), 151, spectrum of the aurora, by G. F. Barker.
	"	(1873), 151, spectra obtained by the induction spark, by Lecoq de Boisbaudran.
"	"	(1873), 152, spectra between leaden electrodes, by Lecoq de Boisbaudran.
46	"	(1873), 152, spectrum of chloride of gold, by Lecoq de Boisbaudran.
	"	(1873), 152, flame-spectrum of the thallium salts, by Lecoq de Boisbaudran.
"	"	(1873), 152, electric spectrum of carbonate of lithium, by Lecoq de Boisbaudran.
"	"	(1873), 152, dependence of the spectra of chemical compounds on their composition, by J. N. Lockyer.
66	44	(1873), 153, quantitative spectrum analysis of "Legirungen," by J. N. Lockyer and W. C. Roberts.
4.6	"	(1873), 154, ultra-violet spectra, by L. Soret.
**	"	(1873), 154, nitrate of nickel used as for absorption, by H. Emsmann.
**	"	(1873), 154-157, spectroscopic investigation of chlorophyll, by G. Kraus, J. Chautard, and H. Pocklington.
44	"	(1873), 157, absorption spectrum of napthaline, by A. Lallemand.

Jahresber. d. Chemie (1873), 158, absorption spectrum of thallium, by H. Morton. " (1873), 158, absorption spectrum of uranium salts, by H. Morton and H. C. Bolton. " 66 (1873), 160, wave-lengths of the spectrum, by E. Becquerel. (1873), 160, distribution of chemical effect in the spectrum, by J. W. Draper. 66 " (1873), 166, albertotype of a photographed diffraction spectrum, by H. Draper. " " (1873), 451, absorption spectrum of anthrapurpurin, by W. H. Perkin. (1873), 455, absorption spectrum of chinizarin, by . A. Kundt. 66 (1874), 96, absorption spectrum of salt solutions. by W. N. Hartley. (1874), 152, 153, 154, 155, 156, 157, spectrum analysis, by Lecoq de Boisbaudran, R. Thalén, Ch. Horner, G. Salet, E. Goldstein, J. Chautard, W. de Fonvielle, Th. Hoh, L. Clark, A. J. Angström, S. Lemström, A. Wijkander, A. W. Wright, and E. Hagenbach. 66 (1874), 152, apparatus, by S. C. Tisley, J. G. Hofmann, Th. Grubb, F. Kingdon, B. Delachanal and A. Mernset. (1874), 958, spectrum analysis of alloys, by J. N. Lockyer and W. C. Roberts. " (1874), 156-157, fluorescence and absorption, by O. Lubarsch and J. Chautard. " (1875), 122, metallic spectra, sulphide of carbon spectrum, gas spectra, by Th. Marvin, H. W. Vogel, and A. Wüllner. (1875), 122, 123, spectrum of carbon, by W. M. " " Watts, Piazzi Smyth, and Swan. (1875), 123, spectrum of the aurora, by A. S. " Herschel and by J. Rand Capron. " (1875), 123, spectrum of lightning, by L. Clark. (1875), 124, 125, absorption spectra of metallic vapours, by J. N. Lockyer and W. Ch. Roberts. (1875), 124, absorption spectra, by T. L. Phipson. "

406

Jahresber, d. Chemie (1875), 126, fluorescence and absorption spectra of the carbonates, by H. Morton. (1875), 119, indices of refraction of the spectra of fuchsin and of silver, by W. Wernicke. (1875), 120, 121, spectroscopes, by A. K. Enton, W. M. Watts, J. C. Dalton, and by B. Delachanal and A. Mermet. (1875), 121, history, by H. Wartz, who claims for the American, D. Alter, priority over Kirchhoff and Bunsen. (1875), 121, relations between atomic weight and wave-lengths, by E. Vogel. (1875), 121, relation between magnetism and spectroscopy, by J. Chautard. (1875), 121, spectrum of sodium, by Wills. (1875), 127, spectrum of chlorophyll, by Pringsheim. (1875), 127, spectrum of bonellia viridis, by S. L. Schenk. .. (1875), 128, absorption-spectra of real red wine and of its adulterations, by H. W. Vogel. (1875), 128, spectrum analysis, by R. Bunsen. (1875), 129, spectrum analysis of the carbonates, by A. and G. de Negri. (1875), 901, quantitative spectrum analysis, by K. Vierordt. (1876), 158, projection of the solar spectrum on a screen, by F. Kessler. (1876), 936, spectrum of oils, by W. Gilmour. (1876), 142, spectroscopes, by Terquem and Trannin, by Wiedemann, and by Stoney. 4.6 (1876), 142, the Talbot lines and interferent constants, by Wolcott Gibbs. (*876), 142, comparison of colors for dueing with colors of the spectrum, by W. von Bezold. (1876), 142, spectra of the metalloids, by Thalén and Angström. " (1876), 143, spectrum of nitrogen, by A. Cazin, Angström, Schuster, and Salet.

Jahresber, d. Chemie (1876), 143, spectrum of chlorine, by Czechowitz. (1876), 143, spectrum of carbonic acid, by Czechowitz. (1876), 143, spectrum of fluoride of silicon. by Czechowitz. " (1876), 144, spectra of gases, by E. Goldstein. (1876), 144, spectrum of indium, by A. W. Clay-" don and C. T. Haycock. (1876), 144, spectrum of gallium, by Lecoq de Boisbaudran. " " (1876), 144, spectrum of calcium, by J. N. Lockyer. (1876), 145, the D lines of the solar spectrum, by W. A. Ross. .. (1876), 145, the ultra-red spectrum, by E. Becquerel. (1876), 145, constants of absorption of light in .. metallic silver, by W. Wernicke. (1876), 145, absorption spectra of various kinds of " ultra-marine, by J. Wunder. (1876), 146, absorption spectra of iodine, by John Conroy and by Schultz-Sellack. " (1876), 147, absorption spectra of the vapours of bromine and of simple chloride of iodine, by H. E. Roscoe and T. E. Thorpe. " 46 (1876), 155, photographs of the ultra-red rays of the solar spectrum, by J. Waterhouse. (1877), 1031, map of the solar spectrum, by J. N. Lockyer, the first part of his map. " (1877), 1245, photography of the less refractive part of the solar spectrum, by H. W. Vogel. (1877), 1247, rice-grains in the solar spectrum, by Janssen. " (1877), 185, quantitative spectrum analysis, by G. Govi. " (1877), 181, spectroscopes, by W. H. M. Christie, H. W. Vogel, H. Schellen, and G. Hüfner. (1877), 181, spectrum of the electric spark in com-" " pressed gases, by A. Cazin. " (1877), 1034, electric spectrum of indium, by W.

Claydon and Ch. T. Heywon.

Jahresber.	d. Chemie	(1877), 1034, use of chloride of calcium and of chloride of magnesium in spectroscopy, by A. R. Leeds.
• •	66	(1877), 102, distribution of heat in the spectrum of the electric light, by P. Desaines.
•••	6.	(1877), 182, photographs of ultra-violet gas-spectra, by Van Monckhoven.
**	"	(1877), 182, spectrum of davyum, by S. Kern.
	66	(1877), 182, spectra of colored flames, by Gouy.
**	6.6	(1877), 183, spectra of the chemical compounds, by J. Moser.
46	4.6	(1877), 183, lines of oxygen and nitrogen in the solar spectrum, by H. Draper.
"	"	(1877), 183, spectra of lightning, by J. W. Clark.
"	44	(1877), 184, theory of the dispersion and absorption of light, by E. Ketteler.
"	"	(1877), 184, inversion of the sodium lines, by J. Martenson.
"	"	(1877), 184, absorption spectrum of the garnet and the ruby, by H. W. Vogel.
"	6.	(1877), 185, absorption of solutions, by G. Govi.
"	"	(1877), 185, quantitative spectrum analysis, by G. Govi.
"		(1877), 195, photography of the infra-red lines of the solar spectrum, by J. W. Draper.
"	"	(1877), 196, dissolution of earbonic acid in plants under the influence of the solar spectrum, by C. Timirjaseff.
"	44	(1877), 1245, photography of the solar spectrum, by H. W. Vogel.
"	٠.	(1878), 7, comparative spectrum analysis, by N. Lockyer,
"	41	(1878), 67, use of spectrum analysis in determining high temperatures, by A. Crova.
44	4+	(1878), 179, apparatus, by Thollon and by A. S. Herschel.
44	"	(1878), 169, conversion of Kirchhoff's scale into- wave-lengths, by B. Hasselberg.
"	"	(1878), 169, calculation of the distribution of the spectrum lines, by L. Pfaundler.

Jahro.	er. d. Chemie	(1878), 169, book containing 136 autotype pictures of spectra, by J. Rand Capron.
"	"	(1878), 170, spectrum of gun-cotton, by H. W. Vogel.
"	"	(1878), 170, spectra of oxygen, by A. Schuster.
66	46	(1878), 170, spectrum analysis of the elements, by J. N. Lockyer.
**	"	(1878), 172, nature of spectra, by E. Wiedemann.
66	66	(1878), 173, spectra of the elements and of their compounds, by G. Ciamician.
"	"	(1878), 174, influence of pressure and temperature on the spectra of gases and vapours, by G. Ciamician.
44	"	(1878), 175, electric spectra in Geissler tubes, by W. R. Grove.
"	"	(1878), 175, spectrum of oxygen, by Paalzow.
"	"	(1878), 175, oxygen lines in the solar spectrum, by R. Meldola and H. Draper.
"	"	(1878), 176, quantitative spectrum analysis, by K. Vierordt.
"	"	(1878), 176, influence of the density of a body on its spectrum, by P. Glan.
"	44	(1878), 177, influence of the dissolving medium on the spectrum of the substance dissolved, by A. Kundt.
"	46	(1878), 177, variability of the position of the absorption lines of various substances in various solutions, by F. Claes.
"	44	(1878), 177, difference of the absorption spectra of bodies in solid and liquid states, by H. W. Vogel.
"	"	(1878), 1095, measuring-apparatus, by J. Emerson Reynolds.
"	46	(1878), 1097, spectrophotometer, by Von Zahn.
"	"	(1878), 158, spectrometric investigation of various scources of light, by A. Crova.
"	"	(1878), 180, change of the absorption spectra in various solutions, by F. von Lepel.
"	"	(1878), 180, changes of the absorption spectrum of safranin, by J. Landauer.

Jahresber. d. Chemie	(1878), 180, spectroscopic investigation of solutions, by J. Landauer.
	(1878), 181, spectrum of the light of super-manganate of potassium, by J. Conroy.
u u	(1878), 181, absorption of the ultra-violet rays, by L. Soret.
.,	(1878), 181, ultra-violet absorption spectra of gado- linite, by J. L. Soret.
e6 66	(1878), 182, inversion of the spectrum lines of metallic vapours, by G. D. Liveing and J. Dewar.
66 66	(1878), 185, spectroscopic observations of the sun, by J. N. Lockyer.
	(1878), 185, oxygen in the solar atmosphere, by J. C. Draper.
u u	(1878), 185, map of the ultra-violet part of the solar spectrum, in continuation of Angström's map, by A. Cornu.
	(1878), 187, photography of the red and infra-red spectrum, by Abney.
	(1878), 188, oxidation hastened by the least refractive end of the spectrum, cause of solarization, by Abney and by Chastaing.
"	(1878), 191, flame for spectroscopic observations, by H. Gilm.
ii ii	(1879), 10, spectroscopic investigation of the elements, by J. N. Lockyer.
ee is	(1879), 159, nature of spectra, by E. Wiedemann.
cs ct	(1879), 160, band and lime spectrum, by A. Wüllner.
46 46	(1871), 163, influence of temperature on the spectra of gases and vapours, by G. Cinmician.
46 46	(1879), 166, limits of the ultra-violet spectrum, by A. Cornu.
16 16	(1879), 161, spectroscopic investigations, by J. N. Lockyer.
	(1879), 1022, quantitative spectrum analysis, by C. H. Wolf.

Jahresber. d.	Chemie	(1879), 1022, analysis of absorption spectra, by B. Hasselberg.
"	"	(1879), 1023, spectroscopic notes, by H. W. Vogel.
"	"	(1879), 157, character of the rays issuing from glowing platinum, by E. L. Nickols.
66	"	(1880), 201, new method of spectroscopic observa- tion, by J. N. Lockyer.
.6	"	(1880), 201, disappearance of lines in the apparatus, by Ch. Fievez.
"	"	(1880), 201, the line H in the spectrum of hydrogen, by J. N. Lockyer.
66	"	(1880), 201, relative intensity of spectrum lines, by J. Rand Capron.
"	46	(1880), 201, harmonic relations in the spectra of gases, by A. Schuster.
"	"	(1880), 202, spectrotelescope, by P. Glan.
"	"	(1880), 203, quantitative spectroscopic researches, by Liveing and Dewar.
"	44	(1880), 205, spectroscopic notes, by C. A. Young.
"	46	(1880), 205, spectroscopic investigations continued, by Ciamician.
"	• 6	(1880), 206, spectroscopes, by J. E. Reynolds and G. Hüfner.
"	"	(1880), 206, spectrum of the hydrogen flame, by W. Huggins.
46	"	(1880), 206, spectrum of hydrogen and of the earburetted hydrogen flame, by G. D. Liveing and J. Dewar.
"	44	(1880), 206, the helium line $\rm D_{\rm 3}$ attributed to hydrogen, by E. Spée.
**	"	(1880), 207, absorption spectrum of ozone, by J. Chappuis.
66	"	(1880), 207, spectra of the compounds of carbon with hydrogen and nitrogen, by G. D. Liveing and J. Dewar.
66	"	(1880), 207, fourth note on the spectrum of carbon, by J. N. Lockyer.
"	"	(1880), 207, history of the spectrum of carbon, by

G. D. Liveing and J. Dewar.

Jahresber, d.	Chemie	(1880), 207, spectra of the compounds of carbon with hydrogen and nitrogen, especially the sensitiveness of the spectroscopic reactions of carbo-nitrogen compounds, by G. D. Liveing and J. Dewar.
•	**	(1880), 208, the repeated inversion of the sodium lines, by C. A. Young.
"	**	(1880), 208, method for a constant sodium flame, by Fleck.
"	4.	(1880), 208, spectra of magnesium and lithium, by G. D. Liveing and J. Dewar.
	66	(1880), 209, spectroscopic relations of copper, nickel, cobalt, iron, manganese, and chromium, by Th. Bayley.
"	"	(1880), 209, absorption spectra of the yttrium group, by J. L. Soret.
"	4.6	(1880), 210, emission spectrum of erbium and ytter- bium, by R. Thalén.
"	"	(1880), 211, spectrum of thulium, by R. Thalén.
44		(1880), 212, spectrum of seandium, by R. Thalén.
44		(1880), 212, displacement of the absorption lines of purpurin in various solutions, by H. Morton.
46		(1880), 212, ultra-violet rays, by J. Schönn.
	**	(1880), 213, limits of the ultra-violet end of the spectrum, by A. Cornu.
46	"	(1880), 213, absorption of the ultra-violet rays by organic bodies, by W. R. Dunstan.
46	"	(1880), 214, the ultra-violet absorption spectra of ytterbium, erbium, holmium, philippium, ter- bium, samarium, decipium, didymium, and zir- conium, by J. L. Soret.
44	"	(1880), 219, photography of the spectra of stars, by Huggins.
44	44	(1880), 219, photographs of the spectrum of bro- mide of silver, by Abney.
"	41	(1880), 219, photochemistry of silver, by J. M. von Eder.
"	"	(1881), 117, spectroscopic measurement of high temperatures, by Λ . Crova.

Jahresber. d. Chemie	(1881), 117, use of Vierordt's do	ouble slit in spec-
	troscopic analysis, by W. Die	etrich.

- " (1881), 117, spectrophotometer, by A. Crova.
- " (1881), 117, phosphorography of the solar spectrum and the ultra-red lines, by J. W. Draper.
- " (1881), 118, inversion of spectrum lines, by G. D. Liveing and J. Dewar.
- " (1881), 118, disappearance of spectrum lines, by Ch. Fievez.
- " (1881), 119, coïncidence of spectrum lines of various elements, by G. D. Liveing and J. Dewar.
- " (1881), 119, spectrum of oxygen, by A. Paalzow and H. W. Vogel.
- " (1881), 120, spectra of hydrogen and of sulphur, by B. Hasselberg.
- " (1881), 120, spectrum of arsenic, by O. W. Huntington.
- " (1881), 121, spectra of sodium and calcium, by Abney.
- " (1881), 121, relative intensity of the sodium lines D_a and D_β , by W. Dietrich.
- " (1881), 121, spectrum of magnesium, by G. D. Liveing and J. Dewar.
- " (1881), 122, spectra of magnesium, sodium, copper, baryum, and iron in their harmonic relations, by A. Schuster.
- " (1881), 122, spectrum of iron, by J. N. Lockyer.
- " (1881), 122, 123, spectra of the carbon compounds, by E. Wesendonck; remarks by A. Wüllner, claiming priority.
- " (1881), 123, spectroscopic lines of the arc of Jamin's lamp, by Thollon.
- " (1881), 123, spectrum of carbonic acid, by C. Wesendonck.
- " (1881), 123, 124, spectrum of acetylene, by A. Wüllner.
- " (1881), 125, color of water, by F. Boas.
- " (1881), 125, absorption of the solar rays in the atmosphere, by E. Lecher.

414

SUPPLEMENT.

Jahresber, d	. Chemie	(1881), 125, absorption of light in various media, by C. Pulfrich.
46	"	(1881), 126, molecular structure of carbon compounds and their absortion spectra, by W. N. Hartley.
66	66	(1881), 127, influence of the molecular arrangement of organic substances on their absorption in the ultra-red part of the spectrum, by Abney and Festing.
66	**	(1881), 127, the absorption spectrum of ozone, by W. N. Hartley.
"	61	(1881), 127, absorption spectra of cobalt salts, by W. J. Russell.
"	٠.	(1881), 128, absorption bands in the visible spectra of colorless liquids, by W. J. Russell and W. Lapraik.
"	"	(1881), 128, spectra of terpenes and volatile oils, by W. N. Hartley and A. K. Huntington.
"	4.6	(1881), 129, chrysoidine and the allied azo dyestuffs, by J. Landauer.
• 6	44	(1881), 129, alkaloid reactions in spectroscopic apparatus, by K. Hock.
44	4+	(1881), 129, absorption of the ultra-violet rays, by De Chardonnet.
"	"	(1881), 129, passage of rays of small refraction through ebonite, by Abney and Festing.
"	"	(1881), 130, spectrum of cyanine, by V. von Lang.
"	6	(1881), 130, 131, 132, discontinuous spectra of phosphorescent bodies, by W. Crookes; E. Becquerel claims priority for a part.
"	"	(1881), 132, phosphorescence of Balmain's illuminating matter, by E. Dreher.
"	4.	(1881), 133, the light of phosphorescent substances, by E. Obach.
44	"	(1881), 133, fluorescence, by O. Lubarsch.
"	44	(1881), 133, comparative effects of light and heat in chemical reactions, by G. Lemoine.
"	"	(1881), 135, sensitiveness of dry plates of bromide of silver to the solar spectrum, by H. W. Vogel.

(1882), 179, ultra-violet spectra of the elements

by G. D. Liveing and J. Dewar.

Jahresber, d. C	Chemie	(1882), 180, photographs of the ultra-violet spectra of the elements, by W. N. Hartley.
"	"	(1882), 181, inversion of the metallic lines in too long exposed photographs of spectra, by W. N. Hartley.
		(1882), 181, map of the more refractive part of the spectrum of hydrogen, by G. D. Liveing and J. Dewar.
**	**	(1882), 181, apparatus for the study of glowing vapours, by G. D. Liveing and J. Dewar.
**	**	(1882), 181, displacement of the spectrum lines of hydrogen, by D. von Monckhoven.
**	• •	(1882), 182, intensity of the spectrum lines of hydrogen, by H. Lagarde.
"	**	(1882), 183, spectrum of oxygen at low temperatures, by Piazzi Smyth.
* 6	**	(1882), 184, 185, spectra of carbon and of its compounds, by G. D. Liveing and J. Dewar.
4.6	**	(1882), 185, spectra of carbon compounds, by K. Wesendonck.
	**	(1882), 186, disappearance of spectrum lines and their changes in mixed vapours, by G. D. Live- ing and J. Dewar.
		(1882), 186, remarks on Lockyer's theory of disso- ciation, especially in regard to iron lines in sun-spots, by H. W. Vogel.
b)	• •	1882 , 187, remarks on Von Lang's examination of powerful absorbants, by C. Pulfrich.
**	••	(1882), 187, absorption spectrum of hypernitrie acids, by J. Chappuis.
**	"	(1882), 187, absorption spectrum of ozone, by J. Chappuis.
**	**	(1882), 188, absorption spectrum of the atmosphere, by N. Egoroff.
4.	**	(1882), 188, relations of carbon compounds to their absorption spectra, by W. N. Hartley.
64	"	(1882), 189, wave-lengths of various carbon compounds, by Thollon.
**		(1882), 189, absorption spectrum of chlorophyll, by W. J. Russell and W. Lapraik.

- Jahresber. d. Chemie (1882), 190, absorption curves of liquids, by E. Ketteler and C. Pulfrich.
 - " (1882), 190, violet phosphorescence of calcium sulphide, by W. de W. Abney.
 - " (1882), 190, origin of phosphorescence, by E. Dreher.
 - " (1882), 199, sensitiveness of bromide and chloride of silver to the solar spectrum, by H. W. Vogel.
 - " (1882), 201, photography of spectra in connection with new methods of quantitative chemical analysis, by W. N. Hartley.
 - " (1883), 1554, duration of the spectroscopic reaction of carbonic acid in the blood, by E. Salfeld.
 - " (1883), 1655, apparatus, by H. Schulze, O. Tumlirz, F. Lippich, and W. Ramsay.
 - " (1883), 232, a spectrophotometer, by A. Crova.
 - " (1883), 240, direct-vision spectroscope, by Ch. V. Zenger.
 - " (1883), 1397, energy in the solar spectrum, by C. Timiriaseff.
 - " (1883), 240, spectroscopic studies in the ultra-red end, by E. Lommel.
 - " (1883), 241, wave-lengths of the extreme warm rays, by E. Pringsheim.
 - " (1883), 241, phosphorographic studies in the ultrared part of the solar spectrum, by H. Becquerel.
 - " (1883), 242, on the wave-lengths near the lines A and α in Fievez's map, by W. de W. Abney.
 - " (1883), 242, distribution of heat in the solar spectrum, by P. Desains.
 - " (1883), 242, selective absorption of the atmosphere and distribution of energy in the solar spectrum, by S. P. Langley.
 - " (1883), 243, spectra of sun-spots, by G. D. Liveing and J. Dewar.
 - " (1883), 243, spectroscopic observations of sun-spots, by C. A. Young.
 - " (1883), 243, emission spectra of metallic vapours, by H. Becquerel.

Jahresber. d.	Chemie	(1883), 244, ultra-red emission spectra of the metallic vapours, by H. Becquerel.
"	"	(1883), 244, spectra of didymium and samarium, by R. Thalén.
û	44	(1883), 244, emission spectra of scandium, ytter- bium, erbium, and thulium, by Th. Thalén.
4.	"	(1883), 245, ultra-violet spectra of the elements, by W. N. Hartley.
"	"	(1883), 245, method of photographing diffraction spectra, by W. N. Hartley and W. E. Adeney.
"	"	(1883), 246, ultra-violet emission spectra of the elements and their compounds photographically examined, by W. N. Hartley.
"	44	(1883), 246, spectrum of beryllium, by W. N. Hartley.
"		(1883), 246, spectra of boron and silicon, by W. N. Hartley.
		(1883), 246, 247, absorption spectra of various substances, by G. D. Liveing and J. Dewar.
**	"	(1883), 248, inversion of the spectral lines of the metals, by G. D. Liveing and J. Dewar.
"	"	(1883), 248, inversion of the hydrogen lines and of the lithium lines, by G. D. Liveing and J. Dewar.
46	"	(1883), 248, spectrum of phosphorescent light and of yttrium, by W. Crookes.
"	4.	(1883), 248, spectrum of hydrogen and of acetylene, by B. Hasselberg.
"	4.	(1883), 249, spectrum of hydrogen in the vacuum tube, by Piazzi Smyth.
"	64	(1883), 249, spectrum of the hydro-earbon flame, by G. D. Liveing and J. Dewar.
**	"	(1883), 249, absorption and fluorescent spectra of various bodies, by E. Linhardt.
"	"	(1883), 250, absorption spectrum of sea-water, by H. W. Vogel and J. Aitken.
44	4.6	(1883), 250, absorption spectrum of the solution of iodine in sulphate of carbon, by Abney and Festing.

Hartley.

" (1884), 283, measurement of wave-lengths, by H.
Merczyng.

(1884), 295, cause of the displacement of the lines of the spectrum, by E. Wiedemann and W. N.

"

" (1884), 289, 290, wave-lengths and refraction in the invisible part of the spectrum, obtained with the bolometer of his own invention and with a very large Rowland convex grating, by S. P. Langley.

Jahresber. d.	Chemie	(1884), 291, bands in the ultra-red part of the solar spectrum and the ultra-red spectrum of glowing
		metallic vapours, by H. Becquerel.
"	*4	(1884), 292, spectra of metals, by E. Demarçay.
**	41	(1884), 292, spectroscopic studies of exploding gases, by G. D. Liveing and J. Dewar.
**	44	(1884), 292, spectra of vapours, by J. Parry.
44		(1884), 293, phosphoreseent spectra, by W. Crookes.
"	"	(1884), 293, speetrum of hydrogen, by B. Hasselberg.
"	"	(1884), 293, spectra of fluoride of silicon and of hydrate of silicon, by K. Wesendonek.
66	"	(1884), 293, influence of temperance on spectroscopic observations, by G. Krüss.
"	"	(1884), 293, changes in the refraction of the H and Mg lines, by Ch. Fievez.
66	44	(1884), 294, displacement and inversion of the spectrum lines, by Ch. Fievez.
66	"	(1884), 295, displacement of the spectrum lines, by E. Wiedemann and W. N. Hartley.
	"	(1884), 295, spectroscopic studies of dyes, by E. L. Nichols.
46	"	(1884), 296, color of water, by J. L. Soret.
	44	(1884), 296, absorption spectrum of water, by J. L. Soret and E. Sarasin.
**	"	(1884), 297, absorption spectrum of iodine vapour, by A. Morghen.
"	"	(1884), 297, absorption spectrum of chlorochromic acid, by G. J. Stoney and J. E. Emerson.
"	"	(1884), 297, absorption spectra of asculine solutions, by K. Wesendonek.
"	"	(1884), 298, absorption spectra of the aromatic series, by J. S. Konic.
4.	66	(1884), 298, absorption spectra of the alkaloids, by W. N. Hartley.
44	4.	(1884), 298, formula for the dispersion of the ultra- red rays, by A. Wüllner.
"		(1884), 1429, influence of the spectrum on the production of carbonic acid gas by plants, by J. Reinke.

- Jahresber, d. Chemie (1884), 1551, use of photographed spectra in quantitative analysis, by W. N. Hartley. " (1884), 1620, spectroscopic valuation of various kinds of indigo, by C. H. Wolff. " " (1884), 1848, effects of electric light, of sunlight, and of the light of particular parts of the spectrum on colors printed on cotton, by J. Dépierre and J. Clouet. 66 " (1885), 317, apparatus, by H. Krüss and by Ch. V. Zenger and De Thierry. (1885), 316, burning point of the ultra-red rays, " " by E. Lommel. " (1885), 317, temperature of the induction spark, by E. Demarçay. ٤. " (1885), 317, sulphide of carbon prisms not suited to spectrometric observations, by H. Draper. (1885), 317, 318, quantitative spectrum analysis, 66 by L. Bell, applied to a solution of lithium. " (1885), 318, the iron lines, by R. Thalén. " " (1885), 318, spectrum of samarium, by Lecoq de Boisbaudran. " (1885), 318, spectrum lines which invert themselves, by A. Cornu. " (1885), 319, influence of a strong magnetic field on the spectrum lines, by Ch. Fievez. (1885), 319, telluric band in the spectrum of steam, 66
 - by H. Deslandres.

 " (1885), 319, spectrum lines of hydrogen, by J. J.
 Balmer.
 - " (1885), 320, the secondary spectrum of hydrogen, by B. Hasselberg.
 - " (1885), 320, spectrum of hydrogen, by H. Lagarde.
 - " (1885), 321, band spectrum of nitrogen, by H. Deslandres.
 - " (1885), 321, spectrum of ammonia, by Lecoq de Boisbaudran.
 - " (1885), 322, absorption vessel for a poor absorbent solution, by A. E. Bostwick.
 - " (1885), 322, spectroscopic observations of blue crystals of rock-salt, by C. Ochsenius.

Jahresber. d	. Chemie	(1885), 322, spectroscopic observations of solutions of chloride of cobalt, by W. J. Russell.
**	**	(1885), 323, absorption spectrum of blue oxalate of potassium, by C. A. Schunk.
••		(1885), 323, absorption spectra in the extreme red, by Abney and Festing.
	• 6	(1885), 323, 324, absorption spectra of various dyestuffs, by Ch. Girard and Pabst.
4.6		(1885), 324, absorption spectra of the sub-nitrates, by L. Bell.
**	**	(1885), 324, absorption spectrum of oxygen, by N. Egoroff.
. 6	**	(1885), 324, 325, absorption of atmospheric air and of hydrogen, by J. Janssen.
	4.6	(1885), 325, absorption spectra of the alkaloids, by W. N. Hartley.
44		(1885), 326, absorption spectrum of benzol vapour, by J. S. Konic.
"	66	(1885), 327, connection between the absorption spectra and the molecular structure of organic compounds, by G. Krüss and Occonomides.
66	"	(1885), 328, connection between molecular structure and the absorption of light, by N. von Klobukow.
46	"	(1885), 329, relations between molecular structure and the absorption of carbon compounds, by W. N. Hartley.
"	"	(1885), 329, 330, relations between the absorptive power and the emission of phosphorescent rays, by H. Becquerel.
"	"	(1885), 331, spectroscopy of radiant matter, by W. Crookes.
"	46	(1885), 332, spectra of samarium and of yttrium, by W. Crookes.
"	"	(1885), 332, a new kind of metallic spectra and spectra of metallic solutions, by Lecoq de Boisbaudran.
"	4.	(1885), 333, theory of fluorescence, by E. Lommel.
46	66	(1885), 333, 334, fluorescence, especially of didymium, by E. Lommel.

Jahresber. d. Chemie (1885), 335, fluorescence of naphthalin-red, by K. Wesendonck.

Report of the committee, consisting of Professors Olding, Huntington, and Hartley, appointed to investigate by means of photography the ultra-violet spark spectra emitted by metallic elements and their combinations under varying conditions; drawn up by Professor W. M. Hartley (secretary). Report of the British Association for 1885, pp. 276-284.

Report of the committee, consisting of Professor Sir H. E. Roscoe, Mr. J. N. Lockyer, Professors Dewar, Wolcott Gibbs, Liveing, Schuster, and W. N. Hartley, Captain Abney, and Dr. Marshall Watts (secretary), appointed for the purpose of preparing a new series of wavelength tables of the spectra of the elements and compounds. Report of the British Association for 1885, pp. 288–322, and for 1886, pp. 167–204.

- On the spectrum of the Stella Nova visible in the great nebula in Andromeda, by William Huggins. Rept. Brit. Assoc. for 1885, p. 932.
- On the solar spectroscopy in the infra-red, by Daniel Draper. Rept. Brit. Assoc. for 1885, p. 935.
- On the formation of a pure spectrum by Newton, by G. Griffith. Rept. Brit. Assoc. for 1885, p. 940.
- On the absorption spectra of uranium salts, by W. J. Russell and W. Lapraik. Rept. Brit. Assoc. for 1886.
- Pritchard's Wedge Photometer, by S. P. Langley, C. A. Young, and E. C. Pickering.

	•		

