Rajshahi University of Engineering & Technology Department of Computer Science & Engineering Course No. CSE 2101 Marks: 17 CT:#4

- Show that among any n+1 positive integers not exceeding 2n there must be an integer that divides one of the other integers. [5]
- 2. What is the solution of the recurrence relation $a_n=a_{n-1}+a_{n-2}$ with $a_0=0$ and $a_1=1\mbox{?} \mbox{ [7]}$
- 3. Find the number of solutions of

 $e_1 + e_2 + e_3 = 17$,

where e_1,e_2 , and e_3 are nonnegative integers with $2 \le e_1 \le 5$, $3 \le e_2 \le 6$, and $4 \le e_3 \le 7$. [5]

Class Test: 01

Course No: CSE 2103

Dept. of CSE

Marks: 20	Dept. of CDD	Time: 30 min
 The function x³ - 2 Method, (b) the moderate Method to solve the 	$2x^2 - 4x + 8$ has a double root at $x = 2$. Use (a diffed Newton-Raphson Method, and (c) the most root at $x = 2$.) the stabdard Newton-Raphson l2 odified Newton Raphson
Obtain, to four deci by Regula-Falsi me	mal places, the root between and 2 of the equathod to accuracy of 0.0001.	ation $x^3 - 2x^2 + 3x - 5 = 0$ 05
 What is Round-off 2.3742, 52.275, 2.3 	error? Round-off the following numbers to two	decimal places: 48.21416. 03

Class Test: 03

Course No: CSE 2103

Dept. of CSE

M	arks: 20								Tim	e: 30 min	
1. Prove that, $ma_0 + a_1 \sum_{i=1}^{m} x_i = \sum_{i=1}^{m} y_i \qquad \text{for } y = 1 \text{ for } x = 1 $)5 , 2)			
2.	Using the	following	g table find	y(x) as a	polynomia	al in x usi	ng Lagrang	e's formu	la.	0	08
		x		-2	-1	2	3				
	у	(x)	-	12	-8	3	5				
3.	3. Fit a function of the form $y = ax^b$ to the following data:									0	07
	x	2	4	7	10	20	40	60	80		
	у	43	25	18	13	8	5	3	2		

Class Test #04 Course No: CSE 2103

Marks: 20

Time: 30 min

TKS:	t dx	10
1)	Derive Simpson's (3/8) rule $\int_{0}^{x_1} y dx = \frac{3}{8}h(y_0 + 3y_1 + 3y_2 + y_3)$. Using this rule, evaluate $I = \int_{0}^{1} \frac{dx}{1 + x}$	
	with h=1/6. Evaluate the integral by using Simpson's (1/3) - rule and compare the result.	

2) From the following table, find x, correct to two decimal places, for which y is maximum and find this

value of y.		113	114	1.5	1.6
х	1.2	1.5	0.0055	0.0075	0.9996
V	0.9320	0.9636	0.9855	0.5573	10,777

CT-2 EEE-2151 Time: 20 minutes

- Q1. Draw the voltage divider bias circuit and derive the expression of $I_{\rm CQ}$ and $V_{\rm CEQ}$.
- Q2. Determine V_{CE} for the given figure.

CT-3	EEE 2151	Time: 20 minutes	2016 series
	uivalent circuit of unb sion of (i) input impo) voltage gain.		220 MΩ (12 V
Q2. For the given n (ii) Calculate A _v an	etwork, detemine (i) D id (iii) Determine the e	effect of $r_0 = 30k\Omega$.	β= 120 r _o = 40 kΩ

(d) A = 2i + j - 3k, B = i - 4k, C = 4i + 3j - k (b) A = i - 3j + 2k, B = 2i - 4j - k, C = 3i + 2j - kIf dependent find the relation. [3] Q2. Find the projection of the vector $\mathbf{A} = \mathbf{i} - 2\mathbf{j} + \mathbf{k}$ on the vector, $\mathbf{B} = 4\mathbf{i} - 4\mathbf{j} + 7\mathbf{k}$. Q3. Given x = t, $y = t^2$, $z = \frac{2}{3}t^3$, find (i) the curvature κ , (ii) the torsion τ . [6] **Q4.** If a particle has velocity v and acceleration a along a space curve. Show that $\rho = \frac{v^3}{|\mathbf{v} \times \mathbf{a}|}$. [5] Dept. of CSE (A) Time-30Mins Q1. Find the angle between the surfaces $x^2 + y^2 + z^2 = 9$ and $z = x^2 + y^2 - 3$ at the point (2, -1, 2) **Q2.** If $\mathbf{A} = (3x^2 + 6y)\mathbf{i} - 14yz\mathbf{j} + 20xz^2\mathbf{k}$, evaluate $\int_C \mathbf{A} \cdot d\mathbf{r}$ from (0, 0, 0) to (1, 1, 1) along the path C: $x = t, y = t^2, z = t^3$ Q3. Evaluate $\iint_S \mathbf{A} \cdot \mathbf{n} \, dS$, where $\mathbf{A} = z\mathbf{i} + x\mathbf{j} - 3y^2z\mathbf{k}$ and S is the surface of the cylinder $x^2 + y^2 = 16$ included in the first octant between z = 0 and z = 5. Q4. Find the volume of the region common to the intersecting cylinders $x^2 + y^2 = a^2$ and $x^2 + z^2 = a^2$ Dept.: CSE Course Number: Math-2113 Section: A Series: 16 Class Test: 02 Total Time: 30 min Total Marks: 20 2x + 3y - z - w = 0Q-2: Find all the eigen values and any one eigen vector of the x - y - 2z - 4w = 0

Time-30Mins

Dept. of CSE

3x + y + 3z - 2w = 0

Q1. In each case determine whether the vectors are linearly independent or dependent:

Total Marks-20

[6]

Department of Computer Science & Engineering Course No: 2113; Class test -02

Time: 30 Minute

From the following Trail Balance of M/S Rahim & sons prepare a Trading A/C, Profit &Loss A/c for the year ended 31st December 2017 and a Balance sheet as on that date:

Dr	Trial Ba	lance	Cr	
Particulars	Amount	Particulars	Amount	Adjustments;
Drawing	5,000	Sales	2,50,000	1 Closing stock was valued at
Buildings	150,000	Réturn out	4,000	TK 55000. 2. Depreciate furniture by 10%
furniture	20,000	S/Ereditors	25,000	& buildings by 5% 3 Salaries due Tk1500 and
General expense	3,000	Interest	2,500	rent prepaid Tk500
Stock(1-1-17)	25,000	Discount	2,500	4 Make a reserve for bad
87Debtors	20,000	Capital	170,000	debts 5% on S/debtors.
Eash in hand	5,000	10%Loan	40,000	1
Cash at Bank	15,000	Bank overdraft	20,000	1
Purchases	140,000	_e6mmission	5,000	1
Wages	15,000			1
Advertisement	20,000			
Stationery	5,000]		
Carriage in	5,000			
Rent	4,000			
Insurance	3,000	7		
salaries	10,000]		
Investment	50,000]		
Return in	2,000			
Bad debts	1,000			
Commission	1,000]		
Good will	15,000	1		
Carriage out	1,500	1		
Import duty	3,500			1
Total	519,000	Total	519,000	

6

Marks: 20

Open Book Exam_CT-1_CSE-A _2016 Series_Marks: 10*2= 20_ Time: 30 Minutes

- 1. If you want to sustain employee loyalty and their cooperation, which principle you have to follow?
- 2. According to Henri Fayol, What factors are necessary to ensure discipline in an organization?
- 3. Give an example of a decision situation that is effective but not efficient.
- 4. Mention at least two names of physical, financial and information resources respectively.
- 5. What are the basic differences unity of command and unity of direction?
- 6. Mention the steps of controlling.

Marks: 20

- 7. What is delegation of authority? Why is it important?
- 8. How can you claim that you have conceptual skills?
- 9. Is university vice chancellor a manager? Why or why not?

20-06-2017: Paid Rent of Tk 30000 by cheque.

10. What are the main functions of a top level manager?

Department of Computer science and Engineering Course No: Hum-2113; Class Test-01

Tim	e: 30 Minutes
1. What do you mean By Accounting? What are the principles of Accounting?	04
2. What is meant by Accounting Cycle? Discuss the each step of Accounting cycle.	03
3 "All the events must have a dual effects on the basic accounting equation"-Explain.	03
4. Journalize the Following Transactions in the books of Rahim&Brothers for the month of J	une 2017: 10
01-06-2017: Started business with cash Tk 500000 and Office equipments of Tk 10	0000
05-06-2017: Purchased a Machinery of Tk 200000.	000d.
10-06-2017: Raw material purchased of Tk 50000.	
15-06-2017: Sales of Tk 40000 to Mr.Zaman.	