Stats 413 Fall 2019

Exam I

Total Points: 50

2:30~pm-3:50pm,~Wednesday,~Oct~9

Name:			
ID:			

Instruction: Answer each question in the space provided. You may continue the answer on the back of the sheet, but please do not continue the answer for any question on the sheet for a different question. If you need more space, please use extra blank sheets provided and label them clearly.

1. [22 pts] Consider a multiple linear regression model $Y_i = \beta_0 + \beta_1 X_{i,1} + \beta_2 X_{i,2} + \beta_3 X_{i,3} + e_i, i = 1, \dots, 100$. We get the following R-output (values are rounded to two digits).

```
Call:
lm(formula = y ~ x1 + x2 + x3)

Residuals:
    Min    1Q Median    3Q    Max
    -4.50    -1.35    0.05    1.18    4.00
```

Coefficients:

```
Estimate Std. Error t value Pr(>|t|)
                            0.20
(Intercept)
                 0.68
                                      3.5
                                             0.06 .
1e-10 ***
                -0.38
                            0.20
                                     -1.9
x1
                            0.19
x2
                 1.40
                                             1e-05 ***
x3
                 0.98
                            0.21
                                      4.6
Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' '1
```

Residual standard error: 1.9 on 96 degrees of freedom Multiple R-squared: 0.44, Adjusted R-squared: 0.42 F-statistic: 25 on 3 and 96 DF, p-value: 3.9e-12

(a) [4 pts] For the considered linear regression model, write out the corresponding mean function. In addition, specify what assumptions are made for the statistical errors in this model.

(b) [5 pts] What is the ordinary least square estimate of β_3 , i.e., $\hat{\beta}_3$? How to interpret this value? What is the value of the standard error of $\hat{\beta}_3$? How to interpret this value? Give a 95% confidence interval of β_3 (suppose the 97.5% quantile of the used t-distribution is 2).

(c) [1 pt] Calculate the predicted value of the response of a new observation with $X_1^*=1, X_2^*=1, X_3^*=0.$

(d) [3 pts] What are the values of \mathbb{R}^2 and adjusted \mathbb{R}^2 for the above regression? How shall we interpret the value of \mathbb{R}^2 ?

(e) [3 pts] For the F-statistic in the last line of the R-output, write out the corresponding mean functions under the null and alternative hypotheses. What distribution does the corresponding test statistic follow under the null hypothesis? Give your conclusion for this test.

(f) [6 pts] We have the following ANOVA (type II) table for the regression $Y \sim X_1 + X_2 + X_3$.

Anova Table (Type II tests)

Response: y
Sum Sq Df F value Pr(>F)
x1 13.37 1 3.5426 0.06284
x2 198.27 1 52.5220 1.073e-10
x3 80.89 1 21.4266 1.152e-05
Residuals 362.40 96

For each F-test in this ANOVA table, specify the mean functions under the null and alternative hypotheses. What distribution does the corresponding test statistic follow under each null hypothesis? Based on the p-values, what are your conclusions about these tests?

- 2. [18 pts] Consider a multiple linear regression with n observations and p predictors, $\mathbf{Y} = \mathbf{X}\boldsymbol{\beta} + \mathbf{e}$, where $\mathbf{Y} = (Y_1, \dots, Y_n)^{\top}$ is the $n \times 1$ vector of responses; \mathbf{X} is the $n \times (p+1)$ matrix of predictors, including a column of 1's for the intercept; and $\mathbf{e} = (e_1, \dots, e_n)^{\top}$ is the $n \times 1$ vector of statistical errors. Let $\bar{Y} = n^{-1} \sum_{i=1}^{n} Y_i$.
 - (a) [5 pts] Derive the formula of the ordinary least square (OLS) estimator $\hat{\beta}$ (please show details).
 - (b) [4 pts] Show that $\widehat{\beta}$ is an unbiased estimator of β .
 - (c) [4 pts] Let $\widehat{\mathbf{Y}} = (\widehat{Y}_1, \dots, \widehat{Y}_n)^{\top}$ be the fitted values from the OLS estimation. Prove that the sample mean of $\{\widehat{Y}_1, \dots, \widehat{Y}_n\}$ is the same to the sample mean of $\{Y_1, \dots, Y_n\}$, i.e., $n^{-1} \sum_{i=1}^n \widehat{Y}_i = \overline{Y}$.
 - (d) [5 pts] Prove that TSS = RSS + SS_{reg}, where TSS is the total sum of squares (i.e. $\sum_{i=1}^{n} (Y_i \bar{Y})^2$), RSS is the residual sum of squares (i.e. $\sum_{i=1}^{n} (Y_i \hat{Y}_i)^2$), and SS_{reg} is the regression sum of squares (i.e. $\sum_{i=1}^{n} (\hat{Y}_i \bar{Y})^2$).

[Blank page]

