X20-PE — Patch-clamp

Введение

Клеточные ионные каналы

Рис. 1: Рис. 1

Живые клетки покрыты мембраной, структурную основу которой составляет двойной слой липидов, слабо проницаемый для воды и практически непроницаемый для ионов. Каждая клетка должна
обмениваться с внешней средой различными веществами и, в частности, ионами. Перенос ионов через
мембрану играет важную роль в процессах возбуждения клетки и передачи сигналов. Ионы проникают
в клетку и выходят из нее через встроенные в мембрану белки — каналы. Каналы — это белки, которые
выполняют функцию мембранных пор, так как формируют отверстия, сквозь которые могут проходить
ионы. Мембранные каналы селективны—проницаемы только для определенных веществ. Селективность
обусловлена радиусом пор и распределением заряженных функциональных групп в них. Существуют
каналы, селективно пропускающие ионы натрия (натриевые каналы), а также калиевые, кальциевые и
хлорные каналы. (см. рис. 1)

Рис. 2: Рис. 2: Закрытое и открытое состояние канала

Бывают светочувствительные ионные каналы - канальные родопсины. Эти каналы переходят из закрытого состояния, в котором они непроницаемы для ионов, в открытое, поглощая фотоны определенной длины волны (см. рис 2). Далее белок проходит через несколько промежуточных состояний, чтобы вернуться из открытого состояния в закрытое (в дальнейшем мы будем считать, что в промежуточных состояниях канал также непроницаем для любых ионов).

Биофизические методы изучения каналов: Patch-clamp

Страница 1 из 6 ≈

Рис. 3: Рис. 3: Whole-cell patch-clamp

Благодаря свободному пропусканию заряженных частиц (ионов) каналы в открытом состоянии эффективно увеличивают электрическую проводимость клеточной мембраны. Для изучения электрических свойств мембраны и изучения свойств ионных каналов существует метод локальной фиксации потенциала (Patch-clamp). Метод заключается в том, что стеклянная пипетка образует с клеточной мембраной контакт с сопротивление в несколько гигаом — это так называемый гигаомный контакт. В пипетку, заполненную электролитом, помещается электрод, второй электрод помещается внеклеточно, в омывающей жидкости. Для того, чтобы производить измерения тока, протека ющего через полную клеточную мембрану, ее кусочек, заключенный внутри пипетки, пробивается избыточным давлением. Такой метод измерения называется Whole-cell patch-clamp (дословно «полноклеточный пэтч-клэмп», см. рис. 3). Эффективная электрическая схема такая: один из электродов снаружи клетки, а второй — внутри.

Часть А. Вольтамперные характеристики каналов

Одной из характеристик, которую можно измерить для каналов, является их ВАХ. ВАХ канального родопсина—это зависимость стационарного тока от приложенного к клеточной мембране напряжения посредством электродов. ВАХ зависит от состава растворов, в которых производятся измерения. В этой части вы будете обрабатывать экспериментальные данные снятые для канального родопсина, который пропускает положительные одновалентные ионы: натрий, калий и водород. В приложении даны зависимости силы тока, проходящего через мембранные канальные родопсины при включении света, от времени для трех разных растворов, омывающих измеряемую клетку. Концентрации ионов во внеклеточной жидкости в трех случаях:

1. [H] = $10^{-7.5}$ моль/л (pH=7.5), [Na] = 140 ммоль/л, [K] = 0 ммоль/л, [Cl] = 140 ммоль/л 2. [H] = $10^{-7.5}$ моль/л (pH=7.5), [Na] = 0 ммоль/л, [K] = 140 ммоль/л, [Cl] = 140 ммоль/л 3. [H] = $10^{-6.0}$ моль/л (pH=6.0), [Na] = 0 ммоль/л, [K] = 0 ммоль/л, [Cl] = 140 ммоль/л

Внутриклеточный раствор задается раствором, который наливается в пипетку. Он во всех трех экспериментах одинаковый: [H] = $10^{-7.5}$ моль/л (pH=7.5), [Na] = 110 ммоль/л, [K] = 0 ммоль/л, [Cl] = 110 ммоль/л

Напряжение, при котором плюс находится внутри клетки, считается положительным. Сила тока, при котором положительно заряженные частицы текут изнутри клетки наружу, считается положительной.

A1^{1.50} Постройте ВАХи канального родопсина в трех экспериментах.

Другой характеристикой, описывающей канальные родопсины, которую можно измерить, является проницаемость для разных ионов. Проницаемости для Na, K и протонов будем обозначать $P_{Na}; P_K; P_H$. Проницаемость является характеристикой мембраны с каналами: она зависит от количества каналов, но не зависит от омывающих мембрану растворов. Отношение же проницаемостей для двух разных ионов не зависит от количества каналов и является наиболее фундаментальной характеристикой канальных родопсинов. Проницаемость входит в уравнение Гольдмана-Ходжкина-Катца, которое связывает ток

Страница 2 из 6 ≈

через мембрану с напряжением на ней:

$$J(u) = \frac{z^2 e^2 u}{kT} \frac{P_{out} c_{out} - P_{in} c_{in} \exp\left(\frac{zeu}{kT}\right)}{1 - \exp\left(\frac{zeu}{kT}\right)}$$

где J - сила тока, u - приложенное к мембране напряжение, e - элементарный заряд, z - зарядовое число пропускаемого иона, k — постоянная Больцмана, $T=24^{\circ}\mathrm{C}$ - температура во время проведения эксперимента, P_{out} и c_{out} — проницаемость и концентрация для иона, который находится во внеклеточном растворе, P_{in} и c_{in} —проницаемость и концентрация для иона, который находится внутри клетки. Считайте, что за время эксперимента, составы растворов снаружи и внутри клетки остаются неизменными.

 ${f A2^{4.00}}$ Постройте графики и с помощью них определите отношения ${P_{
m K}\over P_{
m Na}}$ и ${P_{
m H}\over P_{
m Na}}$.

Часть В. Спектр действия канальных родопсинов

Другой фундаментальной характеристикой канальных родопсинов является их спектр действия. Спектр действия — это зависимость заряда проходящего через клеточную мембрану с каналами от длины волны возбуждающего света. Для измерения спектра действия канального родопсина, исследуемую клетку облучают ультракороткими вспышками лазера (продолжительностью 5 нс; импульсы содержат одинаковое количество фотонов на вспышку для разных длин волн) и измеряют ток (см. рис 4). Заряд q, проходящий через мембрану, считается за время полузатухания тока. Полученная зависимость $q(\lambda)$ нормируется на максимальное значение заряда $q_{\max=q(\lambda_{\max})}$.

Рис. 4: Рис. 4: Зависимости тока (нА) от времени (мс) при облучении ультракороткими вспышками разной длины волны.

 ${f B1^{2.50}}$ Постройте спектр действия канального родопсина. Определите положение максимума спектра $\lambda_{
m max}$.

Часть С. Параметры фотоцикла

Рис. 5: Рис. 5: Фотоцикл канального родопсина

Во введении говорилось, что канал при поглощении фотонов проходит несколько промежуточных состояний и возвращаются в начальное закрытое состояние. Все эти состояния вместе называются фотоциклом (см. рис 5, на котором показан фотоцикл, в котором одно промежуточное состояние I, C и O – закрытое и открытое состояния соответственно). Переходы между этими состояниями происходят с некоторой вероятностью. Переход из закрытого состояния в открытое невозможен без поглощения света. При наличии света этот переход также происходит с некоторой вероятностью. Вероятность перехода между двумя состояниями A и B описывается величиной τ - характерное время перехода из A в B. Это время определяется, как обратная производная вероятности перехода по времени: $\tau_{AB} = \left(\frac{dp}{dt}\right)^{-1}$ (то есть вероятность перехода за время dt равна dp).

C1^{1.00} Используя все экспериментальные данные, полученные выше, определите параметры фотоцикла канального родопсина au_{OI} и au_{IC} .

Часть D. Селективность канального родопсина

Одной из важнейших характеристик канальных родопсинов является их селективность. Селективность — это способность пропускать ионы только определенного типа. Селективность может быть разной: могут через канал пропускаться только положительные или только отрицательные ионы, или может пропускаться, например, только натрий (или калий, или любой другой ион). Селективность определяется внутренним устройством белка. Рассмотрим эксперимент с другим канальным родопсинов (см. рис. 6, графики, данные в пунктах A-C, не имею к нему отношения). В этом эксперименте составы растворов следующие: Омывающий: pH=7.5, [Na]=200 ммоль/л, [K]=0 ммоль/л, [Cl]=200 ммоль/л Внутриклеточный: pH=7.5, [Na]=100 ммоль/л, [K]=0 ммоль/л, [Cl]=100 ммоль/л

Страница 4 из 6 ≈

Рис. 6: Рис. 6: ВАХ канального родопсина

D1^{1.00} По ВАХ определите положительные или отрицательные ионы пропускает этот канальный родопсин. При помощи схем и рисунков объясните, как вы определили селективность.

Приложение

Рис. 7: Условие 1. Снизу вверх напряжение меняется от -100 мВ до 80 мВ с шагом 20 мВ. Линия 0 мВ выделена жирным. Свет включен между 250 мс и 750 мс.

Страница 5 из 6 ≈

Рис. 8: Условие 2. Снизу вверх напряжение меняется от -100 мВ до 80 мВ с шагом 20 мВ. Линия 0 мВ выделена жирным. Свет включен между 250 мс и 750 мс.

Рис. 9: Условие 3. Снизу вверх напряжение меняется от -100 мВ до 80 мВ с шагом 20 мВ. Линия 0 мВ выделена жирным. Свет включен между 250 мс и 750 мс.