Tutorial 2: Traction vector

APL 104 - 2022 (Solid Mechanics)

- **Q1**. Show that $\underline{t}^n = \sum_i \underline{t}^i (\underline{n} \cdot \underline{e}_i) = \sum_i \underline{t}^{\hat{i}} (\underline{n} \cdot \hat{\underline{e}}_i)$, i.e, the formula is independent of what three planes are chosen to determine \underline{t}^n !
- **Q2**. Suppose $[\underline{t}^1] = \begin{bmatrix} 0 \\ 1 \\ 0 \end{bmatrix}$, $[\underline{t}^2] = \begin{bmatrix} 1 \\ 5 \\ 7 \end{bmatrix}$, $[\underline{t}^3] = \begin{bmatrix} 0 \\ 7 \\ 9 \end{bmatrix}$ in $(\underline{e}_1, \underline{e}_2, \underline{e}_3)$ coordinate system.

What will be the traction on a plane with normal $\underline{n} = \underline{\hat{e}}_1$ where $(\underline{\hat{e}}_1, \underline{\hat{e}}_2, \underline{\hat{e}}_3)$ is obtained from rotation of $(\underline{e}_1, \underline{e}_2, \underline{e}_3)$ about \underline{e}_3 by 45°? What are the normal and shear components of traction on this plane?

- **Q3**. Show that the component of a traction vector on \underline{n} -plane in the direction \underline{m} equals the component of the traction on \underline{m} -plane in the direction \underline{n} , i.e, $\underline{t}^n \cdot \underline{m} = \underline{t}^m \cdot \underline{n}$.
- Q4. Consider a vertical bar having mass density ρ . Assume its length be to H and is subjected to uniform body force due to gravity. Find the traction vector on an infinitesimal internal section of the bar located at the center of its cross-section with outward normal

$$\underline{n} = -\sin\theta \ \underline{e}_1 + \cos\theta \ \underline{e}_2$$

and at a height of y from the base (see figure). Also find the normal and tangential components of the traction vector on this plane.

Q5. Think of a bar lying along \underline{e}_1 axis and loaded axially. We will learn later in the class that during the tensile loading of a bar, the traction on a section with normal along \underline{e}_1 has no shear components of traction. Also, as the bar is allowed to contract freely in the transverse direction, the traction on sections having normals perpendicular to \underline{e}_1 completely vanish. What will be the traction on the plane whose normal makes an angle θ from axial direction. What are the normal and shear components of traction on this plane?

APL 104 Tutorial 2 solutions

Q1. Show that $\underline{t}^n = \sum_i \underline{t}^i (\underline{n} \cdot \underline{e}_i) = \sum_i \underline{t}^{\hat{i}} (\underline{n} \cdot \underline{\hat{e}}_i)$, i.e, the formula is independent of what three planes are chosen to determine \underline{t}^n !

Solution:

Think of $(\underline{e}_1, \underline{e}_2, \underline{e}_3)$ and $(\underline{\hat{e}}_1, \underline{\hat{e}}_2, \underline{\hat{e}}_3)$ system which form the plane normals in the two cases. Let us expand the vector \underline{e}_1 in $(\underline{\hat{e}}_1, \underline{\hat{e}}_2, \underline{\hat{e}}_3)$ basis, i.e., $\underline{e}_1 = \sum_{i=1}^3 (\underline{e}_1 \cdot \underline{\hat{e}}_i) \underline{\hat{e}}_i$. Here $(\underline{e}_1 \cdot \underline{\hat{e}}_i)$ is the component of \underline{e}_1 along $\underline{\hat{e}}_i$. By the same logic, we can write

$$\underline{e}_{j} = \sum_{i} \left(\underline{e}_{j} \cdot \hat{\underline{e}}_{i} \right) \hat{\underline{e}}_{i}$$

. Now

$$\begin{split} & \underline{t}^n = \sum_i \underline{t}^{\hat{i}} \left(\underline{n} \cdot \underline{\hat{e}}_i \right) \\ & = \sum_i \left(\sum_j \underline{t}^j \left(\underline{\hat{e}}_i \cdot \underline{e}_j \right) \right) \left(\underline{n} \cdot \underline{\hat{e}}_i \right) \quad (\underline{t}^{\hat{i}} \text{ is expressed using tractions on } \underline{e}_1, \, \underline{e}_2, \, \text{and } \underline{e}_3 \, \text{ planes}) \\ & = \sum_j \underline{t}^j \sum_i \left(\underline{n} \cdot \underline{\hat{e}}_i \right) \left(\underline{\hat{e}}_i \cdot \underline{e}_j \right) \, \text{ (upon changing the order of summation)} \\ & = \sum_j \underline{t}^j \, \left(\underline{n} \cdot \sum_i \underline{\hat{e}}_i \left(\underline{\hat{e}}_i \cdot \underline{e}_j \right) \right) \\ & = \sum_j \underline{t}^j \, \left(\underline{n} \cdot \underline{e}_j \right) \quad \left(\because \underline{e}_j = \sum_i \underline{\hat{e}}_i \left(\underline{\hat{e}}_i \cdot \underline{e}_j \right) \right) \, \text{ as derived earlier} \, . \end{split}$$

NOTE: This also proves that stress tensor is independent of what three planes are chosen to form it, i.e., $\underline{\underline{\sigma}} = \sum_{i} \underline{t}^{i} \otimes \underline{e}_{i} = \sum_{i} \underline{t}^{\hat{i}} \otimes \underline{\hat{e}}_{i}$.

Q2. Suppose
$$[\underline{t}^1] = \begin{bmatrix} 0 \\ 1 \\ 0 \end{bmatrix}$$
, $[\underline{t}^2] = \begin{bmatrix} 1 \\ 5 \\ 7 \end{bmatrix}$, $[\underline{t}^3] = \begin{bmatrix} 0 \\ 7 \\ 9 \end{bmatrix}$ in $(\underline{e}_1, \underline{e}_2, \underline{e}_3)$ coordinate system. What will be the traction on a plane with normal $\underline{n} = \hat{\underline{e}}_1$ where $(\hat{\underline{e}}_1, \hat{\underline{e}}_2, \hat{\underline{e}}_3)$ is obtained from

What will be the traction on a plane with normal $\underline{n} = \underline{\hat{e}}_1$ where $(\underline{\hat{e}}_1, \underline{\hat{e}}_2, \underline{\hat{e}}_3)$ is obtained from rotation of $(\underline{e}_1, \underline{e}_2, \underline{e}_3)$ about \underline{e}_3 by 45°? What are the normal and shear components of traction on this plane?

Solution:

We simply have to use the formula

$$\underline{t}^{n} = \sum_{i} \underline{t}^{i} \left(\underline{n} \cdot \underline{e}_{i} \right)$$

Keep in mind that the above is a tensor formula. To use it, we must write every quantity involved in the above formula in the same coordinate system! Let us use $(\underline{e}_1, \underline{e}_2, \underline{e}_3)$ coordinate system here:

$$\Rightarrow [\underline{n}]_{\left(\underline{e}_1,\underline{e}_2,\underline{e}_3\right)} = [\underline{\hat{e}}_1]_{\left(\underline{e}_1,\underline{e}_2,\underline{e}_3\right)} = \begin{bmatrix} 1/\sqrt{2} \\ 1/\sqrt{2} \\ 0 \end{bmatrix}$$

Therefore,

$$\begin{split} [\underline{t}^n] &= \sum_i \left[\underline{t}^i\right] \left([\underline{n}] \cdot [\underline{e}_i]\right) \\ &= \begin{bmatrix} 0\\1\\0 \end{bmatrix} 1/\sqrt{2} + \begin{bmatrix} 1\\5\\7 \end{bmatrix} 1/\sqrt{2} + \begin{bmatrix} 0\\7\\9 \end{bmatrix} 0 \\ &= 1/\sqrt{2} \begin{bmatrix} 1\\6\\7 \end{bmatrix}. \end{split}$$

CAUTION: If you use $[\underline{n}] = \begin{bmatrix} 1 \\ 0 \\ 0 \end{bmatrix}$, you will get wrong result!

Never mix the coordinate system! Either use $(\underline{e}_1, \underline{e}_2, \underline{e}_3)$ for all or use $(\underline{\hat{e}}_1, \underline{\hat{e}}_2, \underline{\hat{e}}_3)$ for all! The final result for \underline{t}^n will be in the coordinate system that you choose.

In order to get the normal component of traction, we need to find $\underline{t}^n \cdot \underline{n}$ or $\underline{t}^{\hat{1}} \cdot \underline{\hat{e}}_1$ which when expressed in $(\underline{e}_1, \underline{e}_2, \underline{e}_3)$ coordinate system yields

$$1/\sqrt{2} \begin{bmatrix} 1\\6\\7 \end{bmatrix} \cdot \begin{bmatrix} 1/\sqrt{2}\\1/\sqrt{2}\\0 \end{bmatrix} = \frac{7}{2}.$$
 (1)

One can likewise obtain the shear components by taking dot product of traction vector with $\underline{\hat{e}}_2$ and $\underline{\hat{e}}_3$.

Q3. Show that the component of a traction vector on \underline{n} -plane in the direction \underline{m} equals the component of the traction on \underline{m} -plane in the direction \underline{n} , i.e, $\underline{t}^n \cdot \underline{m} = \underline{t}^m \cdot \underline{n}$.

Solution:

To prove this, we will use the definition of stress tensor as follows:

$$\underline{t}^n \cdot \underline{m} = \left(\underline{\underline{\sigma}} \, \underline{n}\right) \cdot \underline{m}$$

$$= \underline{n} \cdot \left(\underline{\underline{\sigma}}^T \, \underline{m}\right) \text{ (see Tutorial 1)}$$

$$= \underline{n} \cdot \left(\underline{\underline{\sigma}} \, \underline{m}\right) \text{ (due to symmetry of } \underline{\underline{\sigma}} \text{ which will be proved later)}$$

$$= \underline{n} \cdot \underline{t}^m .$$

Q4. Consider a vertical bar having mass density ρ . Assume its length be to H and is subjected to uniform body force due to gravity. Find the traction vector on an infinitesimal internal section of the bar located at the center of its cross-section with outward normal

$$\underline{n} = -\sin\theta \ \underline{e}_1 + \cos\theta \ \underline{e}_2$$

and at a height of y from the base (see figure). Also find the normal and tangential components of the traction vector on this plane.

Solution:

Taking a horizontal section at height y and writing force balance of top part of bar yields

Similarly taking a vertical section all along the bar and doing force balance either of left or right portion of the bar yields

$$\begin{bmatrix} \underline{t}^1 \end{bmatrix} = \begin{bmatrix} 0 \\ 0 \\ 0 \end{bmatrix}.$$

One can likewise show that $[\underline{t}^3]$ also vanishes although it turns out this information is not required. In order to obtain traction on an infinitesimal inclined plane at the center of the horizontal section

3

of the bar, we can use the tetrahedron formula, i.e.,

$$[\underline{t}^n] = \sum_i \begin{bmatrix} t^i \end{bmatrix} ([\underline{n}] \cdot [\underline{e}_i])$$

$$= \begin{bmatrix} 0 \\ 0 \\ 0 \end{bmatrix} (-\sin\theta) + \begin{bmatrix} 0 \\ -\rho g(H-y) \end{bmatrix} (\cos\theta) + \begin{bmatrix} \underline{t}^3 \end{bmatrix} 0$$

$$= \begin{bmatrix} 0 \\ -\rho g(H-y)\cos\theta \end{bmatrix} .$$

$$\underbrace{\frac{n}{2}}_{\text{Parametrial}} \underbrace{\frac{e}{2}}_{\text{Normal}} \underbrace{\frac{t}{2}}_{\text{Tangential}}$$

The normal component of traction vector is given by the projection of \underline{t}^n along \underline{n} :

$$t_{\text{normal}} = \underline{t}^n \cdot \underline{n}$$

$$= -\rho g(H - y) \cos \theta \ \underline{e}_2 \cdot \underline{n}$$

$$= -\rho g(H - y) \cos \theta \ (\underline{e}_2 \cdot \underline{n})$$

$$= -\rho g(H - y) \cos^2 \theta$$

Note that the normal component of traction acts along \underline{n} , and hence can be written as a vector as

$$\underline{t}_{\text{normal}}^n = (\underline{t}^n \cdot \underline{n}) \, \underline{n}$$

The shear or tangential component of traction can then be obtained as follows:

$$t_{\text{tangential}} = \underline{t}^n \cdot \underline{n}^{\perp}$$

$$= -\rho g(H - y) \cos \theta \, \underline{e}_2 \cdot (\cos \theta \, \underline{e}_1 + \sin \theta \, \underline{e}_2)$$

$$= -\rho g(H - y) \cos \theta \sin \theta$$

where \underline{n}^{\perp} is a unit vector perpendicular to \underline{n} and lies in the plane of inclined section.