

Acta Crystallographica Section E

Structure Reports Online

ISSN 1600-5368

4-Cyclopropyl-1-(6'-deoxy-1',2'-O-isopropylidene-α-D-glucofuranosyl)-1*H*-1,2,3-triazole

Qiurong Zhang, Peng He, Guangqiang Zhou, Kang Yu and Hongmin Liu*

New Drug Reseach & Development Center, Zhengzhou Univresity, Zhengzhou 450001, People's Republic of China Correspondence e-mail: zqr409@163.com

Received 16 July 2013; accepted 31 July 2013

Key indicators: single-crystal X-ray study; T = 291 K; mean $\sigma(C-C) = 0.004$ Å; disorder in main residue; R factor = 0.042; wR factor = 0.113; data-to-parameter ratio = 12.6.

In the title compound, $C_{14}H_{21}N_3O_5$, the tetrahydrofuran ring adopts an envelope conformation with the C atom bearing the substituent as the flap. The pentafuranose ring adopts a twisted conformation about the C–C bond fusing the rings. The dihedral angle between these rings (all atoms), which are *cis* fused, is 72.89 (14)°. The cyclopropane ring is disordered over two orientations in a 0.576 (5):0.424 (5) ratio; the dihedral angles subtended to the triazole ring are 53.3 (11) and 46.6 (9)°, respectively. In the crystal, the molecules are linked by $O-H\cdots N$ and $O-H\cdots O$ hydrogen bonds, generating (001) sheets. A weak $C-H\cdots O$ interaction also occurs.

Related literature

For further synthetic details, see: Pradere *et al.* (2008). For background to 1,2,3-triazoles, see: Alvarez *et al.* (1994); Genin *et al.* (2000).

Experimental

Crystal data

 $\begin{array}{lll} \text{C}_{14}\text{H}_{21}\text{N}_{3}\text{O}_{5} & V = 1553.68 \ (9) \ \text{Å}^{3} \\ M_{r} = 311.34 & Z = 4 \\ \text{Orthorhombic, } P2_{1}2_{1}2_{1} & \text{Cu } K\alpha \text{ radiation} \\ a = 8.5905 \ (3) \ \text{Å} & \mu = 0.85 \text{ mm}^{-1} \\ b = 8.7215 \ (3) \ \text{Å} & T = 291 \text{ K} \\ c = 20.7373 \ (7) \ \text{Å} & 0.22 \times 0.2 \times 0.18 \text{ mm} \end{array}$

Data collection

Refinement

 $\begin{array}{ll} R[F^2>2\sigma(F^2)]=0.042 & \text{H atoms treated by a mixture of} \\ wR(F^2)=0.113 & \text{independent and constrained} \\ S=1.06 & \text{refinement} \\ 2778 \text{ reflections} & \Delta\rho_{\max}=0.25 \text{ e Å}^{-3} \\ 220 \text{ parameters} & \Delta\rho_{\min}=-0.20 \text{ e Å}^{-3} \end{array}$

Table 1 Hydrogen-bond geometry (Å, °).

D $ H$ \cdots A	D-H	$H \cdot \cdot \cdot A$	$D \cdot \cdot \cdot A$	$D-\mathrm{H}\cdots A$
O3−H3···N3 ⁱ O5−H5···O3 ⁱⁱ	0.83 (2) 0.82 (3)	1.95 (2) 2.02 (3)	2.767 (3) 2.821 (3)	171 (3) 164 (3)
C7—H7···O1 ⁱⁱⁱ	0.93	2.59	3.496 (3)	165

Symmetry codes: (i) x, y + 1, z; (ii) $x + \frac{1}{2}, -y + \frac{5}{2}, -z + 1$; (iii) x + 1, y, z.

Data collection: FRAMBO (Bruker, 2004); cell refinement: SAINT (Bruker, 2004); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: OLEX2 (Dolomanov et al., 2009); software used to prepare material for publication: OLEX2.

We gratefully acknowledge the financial support of the National Natural Science Foundation of China (grant No. 81172937).

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: HB7111).

References

Alvarez, R., Velazquez, S., San-Felix, A., Aquaro, S. & De Clercq, E. (1994). *J. Med. Chem.* **37**, 4185–4194.

Bruker (2004). FRAMBO, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsion, USA.

Dolomanov, O. V., Bourhis, L. J., Gildea, R. J., Howard, J. A. K. & Puschmann, H. (2009). J. Appl. Cryst. 42, 339–341.

Genin, M. J., Allwine, D. A., Anderson, D. J. & Barbachyn, M. (2000). J. Med. Chem., 43, 953–970.

Pradere, U., Roy, V. & McBrayer, R. T. (2008). *Tetrahedron*, **64**, 9044–9051. Sheldrick, G. M. (2008). *Acta Cryst.* A**64**, 112–122.

Acta Cryst. (2013). E69, o1386 [doi:10.1107/S1600536813021351]

4-Cyclopropyl-1-(6'-deoxy-1',2'-O-isopropylidene- α -D-glucofuranosyl)-1H-1,2,3-triazole

Qiurong Zhang, Peng He, Guangqiang Zhou, Kang Yu and Hongmin Liu

1. Comment

1,2,3-Triazoles have been shown to have various biological activities, such as anti-HIV (Alvarez *et al.*, 1994) and antibacterial (Genin *et al.*, 2000). $C_{14}H_{21}N3_{0}5$, the title compound (I), is a new 1,2,3-triazole. The nucleus of the molecule consists of one methylenedioxy rings, one 1,2,3-triazole ring, one cyclopropyl ring and one tetrahydrofuran ring (Fig. 1). The tetrahydrofuran ring fuses with one methylenedioxy ring, having the *cis* arrangement at the ring junctions and giving a V-shaped molecule.

The crystal packing, which features O—H···N hydrogen bonds (Table 1), is shown in Figure 2.

2. Experimental

The title compound (I) was synthesized from 6-azido-6-deoxy-1,2-*O*-isopropylidene-alpha -*D*-glucofuranose, whose starting material was D-glucose. The copper catalyzed reaction of 6-azido-6-deoxy-1,2-*O*-isopropylidene-alpha -*D*-glucofuranose(1 mmol) and cyclopropylacetylene (1.2 mmol) in water/tetrahydrofuran (2 ml:2 ml) was stirred for 3 h at room temperature. The mixture was filtered and evaporated and the residue extracted with EtOAc (50 ml). The organic layer was washed brine, dried over Na₂SO₄ for 6 h, filtered, and the solvent evaporated *in vacuo*. Purification of the residue by column chromatography gave the title compound as white solid.

Colourless prisms were grown by slow evaporation from acetone solution at room temperature for two weeks. mp:389–391k; $R_f = 0.30$ (petroleum ether/EtOAc, 1:1); ¹H NMR (400 MHz, DMSO-d₆) σ : 7.69(1H, s), 5.86(1H, d, J = 3.6 Hz), 5.27(1H, d, J = 4.9 Hz), 5.19(1H, d, J = 6.4 Hz), 4.47(1H, dt, J = 10.2, 5.1 Hz), 4.42(1H, d, J = 3.6 Hz), 4.23(1H, d, J = 14.0, 8.0 Hz), 4.08–3.93(2H, m), 3.75(1H, dd, J = 8.8, 2.5 Hz), 1.92(1H, dq, J = 8.4, 5.0 Hz), 1.37(3H, s), 1.24(3H, s), 0.94–0.82(2H, m), 0.79–0.63(2H, m); ¹³C NMR (100 MHz, DMSO-d₆) σ : 153.61, 126.82, 115.95, 109.77, 89.90, 86.23, 78.05, 71.49, 58.80, 31.88, 31.39, 12.70, 11.72.

3. Refinement

All H atoms were placed geometrically and treated as riding on their parent atoms with C—H are 0.96 Å (methylene) or 0.93 Å (aromatic), 0.82 Å (hydroxyl) and $U_{iso}(H) = 1.2 U_{eq}(C)$.

Attempts to confirm the absolute structure by refinement of the Flack parameter in the presence of 1156 sets of Friedel equivalents led to an inconclusive value of 0.0 (3). Therefore, the absolute configuration was assigned to correspond with that of the known chiral centres in a precursor molecule, which remained unchanged during the synthesis of the title compound.

Computing details

Data collection: FRAMBO (Bruker, 2004); cell refinement: *SAINT* (Bruker, 2004); data reduction: *SAINT* (Bruker, 2004); program(s) used to solve structure: *SHELXS97* (Sheldrick, 2008); program(s) used to refine structure: *SHELXL97* (Sheldrick, 2008); molecular graphics: OLEX2 (Dolomanov *et al.*, 2009); software used to prepare material for publication: OLEX2 (Dolomanov *et al.*, 2009).

Figure 1
The molecular structure of (I) showing 30% probability displacement ellipsoids.

Figure 2 Packing diagram for (I).

4-Cyclopropyl-1-(6'-Deoxy-1',2'-O-isopropylidene-α-D-glucofuranosyl)-1*H*-1,2,3-triazole

Crystal data	Cr	vstal	data	
--------------	----	-------	------	--

$C_{14}H_{21}N_3O_5$	$D_{\rm x} = 1.331 {\rm Mg m^{-3}}$
$M_r = 311.34$	Melting point = 389–391 K
Orthorhombic, $P2_12_12_1$	Cu $K\alpha$ radiation, $\lambda = 1.54178 \text{ Å}$
a = 8.5905 (3) Å	Cell parameters from 2697 reflections
b = 8.7215 (3) Å	$\theta = 4.3-67.0^{\circ}$
c = 20.7373 (7) Å	$\mu = 0.85 \text{ mm}^{-1}$
$V = 1553.68 (9) \text{ Å}^3$	T = 291 K
Z=4	PRISMATIC, colourless
F(000) = 664	$0.22 \times 0.2 \times 0.18 \text{ mm}$

Data collection	
Data confection	
Bruker MWPC	5692 measured reflections
diffractometer	2778 independent reflections
Radiation source: fine-focus sealed tube	2503 reflections with $I > 2\sigma(I)$
Graphite monochromator	$R_{\mathrm{int}} = 0.028$
Detector resolution: 0 pixels mm ⁻¹	$\theta_{\rm max} = 67.1^{\circ}, \ \theta_{\rm min} = 4.3^{\circ}$
phi and ω scans	$h = -10 \rightarrow 6$
Absorption correction: multi-scan	$k = -6 \rightarrow 10$
(SADABS; Bruker, 2004)	$l = -24 \longrightarrow 22$
$T_{\min} = 0.835$, $T_{\max} = 0.862$	

Refinement

Refinement on F^2	2778 reflections
Least-squares matrix: full	220 parameters
$R[F^2 > 2\sigma(F^2)] = 0.042$	2 restraints
$wR(F^2) = 0.113$	Primary atom site location: structure-invariant
S = 1.06	direct methods

sup-3 Acta Cryst. (2013). E69, o1386

Secondary atom site location: difference Fourier

Hydrogen site location: inferred from neighbouring sites

H atoms treated by a mixture of independent and constrained refinement

 $w = 1/[\sigma^{2}(F_{o}^{2}) + (0.0567P)^{2} + 0.1063P]$ where $P = (F_{o}^{2} + 2F_{c}^{2})/3$ $(\Delta/\sigma)_{max} < 0.001$ $\Delta\rho_{max} = 0.25 \text{ e Å}^{-3}$ $\Delta\rho_{min} = -0.20 \text{ e Å}^{-3}$ Extinction correction: SHELXL, $Fc^{*}=kFc[1+0.001xFc^{2}\lambda^{3}/\sin(2\theta)]^{-1/4}$

Extinction coefficient: 0.0020 (3)

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F^2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F^2 , conventional R-factors R are based on F, with F set to zero for negative F^2 . The threshold expression of $F^2 > \sigma(F^2)$ is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F^2 are statistically about twice as large as those based on F, and F-factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (\mathring{A}^2)

	x	y	Z	$U_{ m iso}$ */ $U_{ m eq}$	Occ. (<1)
O1	-0.0805 (2)	0.9329(2)	0.39252 (9)	0.0556 (5)	
O2	0.0625(2)	1.0684 (2)	0.31968 (8)	0.0541 (5)	
О3	0.2108(2)	1.32136 (18)	0.44356 (9)	0.0487 (4)	
O4	0.12445 (19)	0.99779 (18)	0.46166 (8)	0.0470 (4)	
O5	0.5249(2)	1.1144 (2)	0.44763 (9)	0.0517 (4)	
N1	0.4448 (2)	0.7779 (2)	0.46218 (9)	0.0395 (4)	
N2	0.3396(2)	0.6662(2)	0.45796 (11)	0.0461 (5)	
N3	0.3860(3)	0.5760(2)	0.41084 (11)	0.0536 (5)	
C1	-0.0064(3)	1.0493 (3)	0.42728 (12)	0.0427 (5)	
H1	-0.0800	1.1009	0.4561	0.051*	
C2	0.0544(3)	1.1602(3)	0.37614 (12)	0.0458 (5)	
H2	-0.0119	1.2508	0.3708	0.055*	
C3	0.2187(3)	1.1997 (3)	0.39848 (11)	0.0398 (5)	
H3A	0.2871	1.2245	0.3621	0.048*	
C4	0.2639(2)	1.0486 (2)	0.43038 (11)	0.0378 (5)	
H4	0.2922	0.9745	0.3968	0.045*	
C5	0.3927(2)	1.0555 (2)	0.47975 (11)	0.0401 (5)	
H5A	0.3625	1.1273	0.5139	0.048*	
C6	0.4246 (3)	0.8990(3)	0.51006 (11)	0.0427 (5)	
H6A	0.5179	0.9056	0.5363	0.051*	
H6B	0.3387	0.8723	0.5382	0.051*	
C7	0.5573 (3)	0.7605(3)	0.41813 (13)	0.0486 (6)	
H7	0.6429	0.8238	0.4115	0.058*	
C8	0.5199 (4)	0.6308(3)	0.38513 (14)	0.0560(7)	
C9	0.6279 (7)	0.5539 (8)	0.3376 (4)	0.0575 (13)	0.576 (5)
Н9	0.7207	0.6118	0.3247	0.069*	0.576 (5)
C10	0.5544 (9)	0.4602 (11)	0.2880(4)	0.0937 (19)	0.576 (5)
H10A	0.4419	0.4512	0.2890	0.112*	0.576 (5)
H10B	0.5990	0.4632	0.2450	0.112*	0.576 (5)

C11	0.6422 (10)	0.3805 (10)	0.3380 (4)	0.076 (2)	0.576 (5)
H11A	0.7418	0.3361	0.3262	0.091*	0.576 (5)
H11B	0.5842	0.3241	0.3703	0.091*	0.576 (5)
C12	-0.0353(3)	0.9372 (3)	0.32677 (12)	0.0537 (6)	
C13	0.0573 (5)	0.7939 (4)	0.31160 (18)	0.0822 (10)	
H13A	0.1480	0.7901	0.3386	0.123*	
H13B	0.0886	0.7957	0.2672	0.123*	
H13C	-0.0060	0.7051	0.3194	0.123*	
C14	-0.1795 (4)	0.9543 (5)	0.28580 (19)	0.0976 (14)	
H14A	-0.2461	0.8672	0.2922	0.146*	
H14B	-0.1503	0.9606	0.2412	0.146*	
H14C	-0.2338	1.0460	0.2980	0.146*	
C9A	0.5637 (10)	0.5566 (12)	0.3225 (5)	0.0575 (13)	0.424 (5)
H9A	0.5328	0.6124	0.2835	0.069*	0.424 (5)
C10A	0.7242 (11)	0.4953 (13)	0.3224 (5)	0.0937 (19)	0.424 (5)
H10C	0.7798	0.4917	0.3631	0.112*	0.424 (5)
H10D	0.7883	0.5136	0.2847	0.112*	0.424 (5)
C11A	0.5835 (14)	0.3960 (15)	0.3149 (7)	0.076(2)	0.424 (5)
H11C	0.5634	0.3524	0.2727	0.091*	0.424 (5)
H11D	0.5550	0.3307	0.3509	0.091*	0.424 (5)
H5	0.591 (3)	1.141 (4)	0.4739 (12)	0.059 (9)*	
Н3	0.266 (3)	1.393 (3)	0.4302 (14)	0.058 (8)*	

Atomic displacement parameters (\mathring{A}^2)

	U^{11}	U^{22}	U^{33}	U^{12}	U^{13}	U^{23}
O1	0.0553 (10)	0.0571 (10)	0.0543 (9)	-0.0242 (9)	0.0018 (8)	0.0009(8)
O2	0.0620(11)	0.0563 (10)	0.0439 (8)	-0.0223 (9)	-0.0041(8)	0.0044 (8)
O3	0.0526 (9)	0.0281 (7)	0.0655 (11)	-0.0076 (7)	0.0121 (8)	-0.0079(7)
O4	0.0394(8)	0.0445 (8)	0.0573 (9)	-0.0097(7)	-0.0010(7)	0.0133 (7)
O5	0.0420 (9)	0.0476 (9)	0.0654 (11)	-0.0149(7)	-0.0044(8)	0.0029(8)
N1	0.0358 (9)	0.0308 (8)	0.0521 (10)	-0.0021 (7)	-0.0022(8)	0.0047 (8)
N2	0.0431 (10)	0.0332 (9)	0.0621 (11)	-0.0064(8)	0.0011 (9)	0.0018 (9)
N3	0.0657 (13)	0.0322 (9)	0.0628 (12)	-0.0073 (10)	0.0019 (10)	-0.0037(9)
C1	0.0357 (10)	0.0382 (11)	0.0542 (12)	-0.0002(9)	0.0036 (10)	-0.0022 (10)
C2	0.0435 (12)	0.0362 (11)	0.0579 (14)	0.0003 (10)	-0.0021 (10)	0.0052 (10)
C3	0.0414 (11)	0.0291 (10)	0.0488 (12)	-0.0028(9)	0.0066 (10)	-0.0005(9)
C4	0.0369 (10)	0.0283 (10)	0.0483 (11)	-0.0003(8)	0.0021 (9)	-0.0038(9)
C5	0.0384 (11)	0.0320(10)	0.0498 (11)	-0.0040(9)	-0.0006(9)	-0.0061 (9)
C6	0.0415 (12)	0.0397 (11)	0.0470 (11)	-0.0034 (9)	-0.0059(9)	0.0011 (10)
C7	0.0426 (12)	0.0357 (11)	0.0676 (15)	-0.0003 (10)	0.0094 (11)	0.0072 (10)
C8	0.0673 (17)	0.0349 (11)	0.0658 (15)	0.0006 (11)	0.0148 (13)	0.0022 (11)
C9	0.049 (4)	0.0495 (16)	0.074 (4)	0.001(3)	0.006(3)	-0.003(2)
C10	0.074(3)	0.127 (5)	0.080(3)	0.012 (4)	0.000(3)	-0.046(4)
C11	0.089(6)	0.047(2)	0.091 (6)	0.017 (4)	0.022 (4)	-0.001(4)
C12	0.0585 (15)	0.0525 (14)	0.0502 (12)	-0.0192 (12)	-0.0062 (12)	0.0014 (12)
C13	0.091(2)	0.0624 (19)	0.093(2)	-0.0184 (18)	0.019(2)	-0.0190 (18)
C14	0.092(3)	0.107(3)	0.093(2)	-0.047(2)	-0.042 (2)	0.038(2)
C9A	0.049 (4)	0.0495 (16)	0.074 (4)	0.001(3)	0.006(3)	-0.003 (2)
C10A	0.074(3)	0.127 (5)	0.080(3)	0.012 (4)	0.000(3)	-0.046(4)

Geometric parameters (Å, °) O1—C1 1.399 (3) C7—C8 1.361 (4) O1—C12 1.418 (3) C8—C9 1.511 (8) O2—C2 1.420 (3) C8—C9A 1.499 (12) O2—C12 1.428 (3) C9—H9 0.9800 O3—C3 1.416 (3) C9—C10 1.459 (10) O3—H3 0.829 (18) C9—C11 1.517 (11) O4—C1 1.405 (3) C10—H10A 0.9700 O4—C4 1.432 (3) C10—H10B 0.9700 O5—C5 1.413 (3) C10—C11 1.458 (11) O5—H5 0.821 (18) C11—H11A 0.9700 N1—N2 1.332 (3) C11—H11B 0.9700 N1—C6 1.460 (3) C12—C13 1.514 (4) N1—C7 1.338 (3) C12—C14 1.509 (4) N2—N3 1.316 (3) C13—H13A 0.9600 C1—H1 0.9800 C13—H13B 0.9600 C1—C2 1.527 (3) C14—H14A 0.9600 C2—C3 1.525 (3))
O1—C12 1.418 (3) C8—C9 1.511 (8) O2—C2 1.420 (3) C8—C9A 1.499 (12) O2—C12 1.428 (3) C9—H9 0.9800 O3—C3 1.416 (3) C9—C10 1.459 (10) O3—H3 0.829 (18) C9—C11 1.517 (11) O4—C1 1.405 (3) C10—H10A 0.9700 O4—C4 1.432 (3) C10—H10B 0.9700 O5—C5 1.413 (3) C10—C11 1.458 (11) O5—H5 0.821 (18) C11—H11A 0.9700 N1—N2 1.332 (3) C11—H11B 0.9700 N1—C6 1.460 (3) C12—C13 1.514 (4) N1—C7 1.338 (3) C12—C14 1.509 (4) N2—N3 1.316 (3) C13—H13A 0.9600 N3—C8 1.355 (4) C13—H13B 0.9600 C1—C1 0.9800 C13—H14A 0.9600 C1—C2 1.527 (3) C14—H14A 0.9600 C2—H2 0.9800 C14—H14B 0.9600	
O1—C12 1.418 (3) C8—C9 1.511 (8) O2—C2 1.420 (3) C8—C9A 1.499 (12) O2—C12 1.428 (3) C9—H9 0.9800 O3—C3 1.416 (3) C9—C10 1.459 (10) O3—H3 0.829 (18) C9—C11 1.517 (11) O4—C1 1.405 (3) C10—H10A 0.9700 O4—C4 1.432 (3) C10—H10B 0.9700 O5—C5 1.413 (3) C10—C11 1.458 (11) O5—H5 0.821 (18) C11—H11A 0.9700 N1—N2 1.332 (3) C11—H11B 0.9700 N1—C6 1.460 (3) C12—C13 1.514 (4) N1—C7 1.338 (3) C12—C14 1.509 (4) N2—N3 1.316 (3) C13—H13A 0.9600 N3—C8 1.355 (4) C13—H13B 0.9600 C1—H1 0.9800 C13—H13C 0.9600 C1—C2 1.527 (3) C14—H14A 0.9600 C2—H2 0.9800 C14—H14B 0.9600	
O2—C2 1.420 (3) C8—C9A 1.499 (12) O2—C12 1.428 (3) C9—H9 0.9800 O3—C3 1.416 (3) C9—C10 1.459 (10) O3—H3 0.829 (18) C9—C11 1.517 (11) O4—C1 1.405 (3) C10—H10A 0.9700 O4—C4 1.432 (3) C10—H10B 0.9700 O5—C5 1.413 (3) C10—C11 1.458 (11) O5—H5 0.821 (18) C11—H11A 0.9700 N1—N2 1.332 (3) C11—H11B 0.9700 N1—C6 1.460 (3) C12—C13 1.514 (4) N1—C7 1.338 (3) C12—C14 1.509 (4) N2—N3 1.316 (3) C13—H13A 0.9600 N3—C8 1.355 (4) C13—H13B 0.9600 C1—H1 0.9800 C13—H13C 0.9600 C1—C2 1.527 (3) C14—H14A 0.9600 C2—H2 0.9800 C14—H14B 0.9600	
O2—C12 1.428 (3) C9—H9 0.9800 O3—C3 1.416 (3) C9—C10 1.459 (10) O3—H3 0.829 (18) C9—C11 1.517 (11) O4—C1 1.405 (3) C10—H10A 0.9700 O4—C4 1.432 (3) C10—H10B 0.9700 O5—C5 1.413 (3) C10—C11 1.458 (11) O5—H5 0.821 (18) C11—H11A 0.9700 N1—N2 1.332 (3) C11—H11B 0.9700 N1—C6 1.460 (3) C12—C13 1.514 (4) N1—C7 1.338 (3) C12—C14 1.509 (4) N2—N3 1.316 (3) C13—H13A 0.9600 N3—C8 1.355 (4) C13—H13B 0.9600 C1—H1 0.9800 C13—H13C 0.9600 C1—C2 1.527 (3) C14—H14A 0.9600 C2—H2 0.9800 C14—H14B 0.9600	
O3—C3 1.416 (3) C9—C10 1.459 (10) O3—H3 0.829 (18) C9—C11 1.517 (11) O4—C1 1.405 (3) C10—H10A 0.9700 O4—C4 1.432 (3) C10—H10B 0.9700 O5—C5 1.413 (3) C10—C11 1.458 (11) O5—H5 0.821 (18) C11—H11A 0.9700 N1—N2 1.332 (3) C11—H11B 0.9700 N1—C6 1.460 (3) C12—C13 1.514 (4) N1—C7 1.338 (3) C12—C14 1.509 (4) N2—N3 1.316 (3) C13—H13A 0.9600 N3—C8 1.355 (4) C13—H13B 0.9600 C1—H1 0.9800 C13—H13C 0.9600 C1—C2 1.527 (3) C14—H14A 0.9600 C2—H2 0.9800 C14—H14B 0.9600	
O3—H3 0.829 (18) C9—C11 1.517 (11) O4—C1 1.405 (3) C10—H10A 0.9700 O4—C4 1.432 (3) C10—H10B 0.9700 O5—C5 1.413 (3) C10—C11 1.458 (11) O5—H5 0.821 (18) C11—H11A 0.9700 N1—N2 1.332 (3) C11—H11B 0.9700 N1—C6 1.460 (3) C12—C13 1.514 (4) N1—C7 1.338 (3) C12—C14 1.509 (4) N2—N3 1.316 (3) C13—H13A 0.9600 N3—C8 1.355 (4) C13—H13B 0.9600 C1—H1 0.9800 C13—H13C 0.9600 C1—C2 1.527 (3) C14—H14A 0.9600 C2—H2 0.9800 C14—H14B 0.9600	
O4—C1 1.405 (3) C10—H10A 0.9700 O4—C4 1.432 (3) C10—H10B 0.9700 O5—C5 1.413 (3) C10—C11 1.458 (11) O5—H5 0.821 (18) C11—H11A 0.9700 N1—N2 1.332 (3) C11—H11B 0.9700 N1—C6 1.460 (3) C12—C13 1.514 (4) N1—C7 1.338 (3) C12—C14 1.509 (4) N2—N3 1.316 (3) C13—H13A 0.9600 N3—C8 1.355 (4) C13—H13B 0.9600 C1—H1 0.9800 C13—H13C 0.9600 C1—C2 1.527 (3) C14—H14A 0.9600 C2—H2 0.9800 C14—H14B 0.9600	
O5—C5 1.413 (3) C10—C11 1.458 (11) O5—H5 0.821 (18) C11—H11A 0.9700 N1—N2 1.332 (3) C11—H11B 0.9700 N1—C6 1.460 (3) C12—C13 1.514 (4) N1—C7 1.338 (3) C12—C14 1.509 (4) N2—N3 1.316 (3) C13—H13A 0.9600 N3—C8 1.355 (4) C13—H13B 0.9600 C1—H1 0.9800 C13—H13C 0.9600 C1—C2 1.527 (3) C14—H14A 0.9600 C2—H2 0.9800 C14—H14B 0.9600	
O5—H5 0.821 (18) C11—H11A 0.9700 N1—N2 1.332 (3) C11—H11B 0.9700 N1—C6 1.460 (3) C12—C13 1.514 (4) N1—C7 1.338 (3) C12—C14 1.509 (4) N2—N3 1.316 (3) C13—H13A 0.9600 N3—C8 1.355 (4) C13—H13B 0.9600 C1—H1 0.9800 C13—H13C 0.9600 C1—C2 1.527 (3) C14—H14A 0.9600 C2—H2 0.9800 C14—H14B 0.9600	
N1—N2 1.332 (3) C11—H11B 0.9700 N1—C6 1.460 (3) C12—C13 1.514 (4) N1—C7 1.338 (3) C12—C14 1.509 (4) N2—N3 1.316 (3) C13—H13A 0.9600 N3—C8 1.355 (4) C13—H13B 0.9600 C1—H1 0.9800 C13—H13C 0.9600 C1—C2 1.527 (3) C14—H14A 0.9600 C2—H2 0.9800 C14—H14B 0.9600	
N1—N2 1.332 (3) C11—H11B 0.9700 N1—C6 1.460 (3) C12—C13 1.514 (4) N1—C7 1.338 (3) C12—C14 1.509 (4) N2—N3 1.316 (3) C13—H13A 0.9600 N3—C8 1.355 (4) C13—H13B 0.9600 C1—H1 0.9800 C13—H13C 0.9600 C1—C2 1.527 (3) C14—H14A 0.9600 C2—H2 0.9800 C14—H14B 0.9600	
N1—C6 1.460 (3) C12—C13 1.514 (4) N1—C7 1.338 (3) C12—C14 1.509 (4) N2—N3 1.316 (3) C13—H13A 0.9600 N3—C8 1.355 (4) C13—H13B 0.9600 C1—H1 0.9800 C13—H13C 0.9600 C1—C2 1.527 (3) C14—H14A 0.9600 C2—H2 0.9800 C14—H14B 0.9600	
N2—N3 1.316 (3) C13—H13A 0.9600 N3—C8 1.355 (4) C13—H13B 0.9600 C1—H1 0.9800 C13—H13C 0.9600 C1—C2 1.527 (3) C14—H14A 0.9600 C2—H2 0.9800 C14—H14B 0.9600	
N3—C8 1.355 (4) C13—H13B 0.9600 C1—H1 0.9800 C13—H13C 0.9600 C1—C2 1.527 (3) C14—H14A 0.9600 C2—H2 0.9800 C14—H14B 0.9600	
N3—C8 1.355 (4) C13—H13B 0.9600 C1—H1 0.9800 C13—H13C 0.9600 C1—C2 1.527 (3) C14—H14A 0.9600 C2—H2 0.9800 C14—H14B 0.9600	
C1—H1 0.9800 C13—H13C 0.9600 C1—C2 1.527 (3) C14—H14A 0.9600 C2—H2 0.9800 C14—H14B 0.9600	
C2—H2 0.9800 C14—H14B 0.9600	
C2—H2 0.9800 C14—H14B 0.9600	
C2—C3 1 525 (3) C14—H14C 0 9600	
0.7000 0.7000	
C3—H3A 0.9800 C9A—H9A 0.9800	
C3—C4 1.525 (3) C9A—C10A 1.479 (12)	
C4—H4 0.9800 C9A—C11A 1.420 (17)	
C4—C5 1.509 (3) C10A—H10C 0.9700	
C5—H5A 0.9800 C10A—H10D 0.9700	
C5—C6 1.528 (3) C10A—C11A 1.495 (18)	
C6—H6A 0.9700 C11A—H11C 0.9700	
C6—H6B 0.9700 C11A—H11D 0.9700	
C7—H7 0.9300	
C1—O1—C12 110.60 (18) C8—C9—H9 116.7	
C2—O2—C12 109.78 (18) C8—C9—C11 119.2 (6)	
C3—O3—H3	
C1—O4—C4 109.89 (16) C10—C9—H9 116.7	
C5—O5—H5	
N2—N1—C6 119.59 (19) C11—C9—H9 116.7	
N2—N1—C7 111.23 (19) C9—C10—H10A 117.5	
C7—N1—C6 129.17 (19) C9—C10—H10B 117.5	
N3—N2—N1 106.30 (19) H10A—C10—H10B 114.6	
N2—N3—C8 109.8 (2) C11—C10—C9 62.7 (5)	
O1—C1—O4 113.18 (19) C11—C10—H10A 117.5	
O1—C1—H1 110.7 C11—C10—H10B 117.5	
O1—C1—C2 104.92 (19) C9—C11—H11A 117.9	
O4—C1—H1 110.7 C9—C11—H11B 117.9	
O4—C1—C2 106.35 (17) C10—C11—C9 58.7 (5)	
C2—C1—H1 110.7 C10—C11—H11A 117.9	
O2—C2—C1 103.44 (18) C10—C11—H11B 117.9	

O2—C2—H2	112.9	H11A—C11—H11B	115.1
O2—C2—C3	109.4 (2)	O1—C12—O2	106.32 (19)
C1—C2—H2	112.9	O1—C12—C13	108.8 (3)
C3—C2—C1	104.40 (18)	O1—C12—C14	108.6 (3)
C3—C2—H2	112.9	O2—C12—C13	109.3 (2)
O3—C3—C2	109.04 (18)	O2—C12—C14	110.2 (3)
O3—C3—H3A	111.8	C14—C12—C13	113.3 (3)
O3—C3—C4	111.92 (19)	C12—C13—H13A	109.5
C2—C3—H3A	111.8	C12—C13—H13B	109.5
C2—C3—C4	99.90 (17)	C12—C13—H13C	109.5
C4—C3—H3A	111.8	H13A—C13—H13B	109.5
O4—C4—C3	104.53 (17)	H13A—C13—H13C	109.5
O4—C4—H4	109.0	H13B—C13—H13C	109.5
O4—C4—C5	108.58 (18)	C12—C14—H14A	109.5
C3—C4—H4	109.0	C12—C14—H14B	109.5
C5—C4—C3	116.50 (18)	C12—C14—H14C	109.5
C5—C4—C3	109.0	H14A—C14—H14B	109.5
O5—C5—C4			109.5
	106.52 (18)	H14A—C14—H14C	
O5—C5—H5A	108.7	H14B—C14—H14C	109.5
O5—C5—C6	111.98 (18)	C8—C9A—H9A	115.6
C4—C5—H5A	108.7	C10A—C9A—C8	113.0 (7)
C4—C5—C6	112.02 (17)	C10A—C9A—H9A	115.6
C6—C5—H5A	108.7	C11A—C9A—C8	123.5 (10)
N1—C6—C5	112.82 (18)	C11A—C9A—H9A	115.6
N1—C6—H6A	109.0	C11A—C9A—C10A	62.1 (8)
N1—C6—H6B	109.0	C9A—C10A—H10C	118.1
C5—C6—H6A	109.0	C9A—C10A—H10D	118.1
C5—C6—H6B	109.0	C9A—C10A—C11A	57.0 (7)
H6A—C6—H6B	107.8	H10C—C10A—H10D	115.3
N1—C7—H7	127.3	C11A—C10A—H10C	118.1
N1—C7—C8	105.5 (2)	C11A—C10A—H10D	118.1
C8—C7—H7	127.3	C9A—C11A—C10A	60.9 (7)
N3—C8—C7	107.2 (2)	C9A—C11A—H11C	117.7
N3—C8—C9	128.4 (3)	C9A—C11A—H11D	117.7
N3—C8—C9A	113.7 (4)	C10A—C11A—H11C	117.7
C7—C8—C9	123.5 (4)	C10A—C11A—H11D	117.7
C7—C8—C9A	137.3 (4)	H11C—C11A—H11D	114.8
C9A—C8—C9	24.4 (3)		111.0
C)/1 C0 C)	24.4 (3)		
O1—C1—C2—O2	-21.9 (2)	C2—O2—C12—O1	-11.0 (3)
O1—C1—C2—C3	-136.45 (19)	C2—O2—C12—C13	-128.3 (3)
O2—C2—C3—O3	164.93 (18)	C2—O2—C12—C14	106.5 (3)
O2—C2—C3—C4	-77.6 (2)	C2—C3—C4—O4	-38.2 (2)
O2—C2—C3—C4 O3—C3—C4—O4	* *	C2—C3—C4—O4 C2—C3—C4—C5	
	77.1 (2)		-158.00 (19)
O3—C3—C4—C5	-42.7 (3)	C3—C4—C5—O5	-59.1 (2)
04—C1—C2—O2	98.2 (2)	C3—C4—C5—C6	178.16 (19)
04—C1—C2—C3	-16.3 (2)	C4—O4—C1—O1	106.0 (2)
04—C4—C5—O5	-176.68 (17)	C4—O4—C1—C2	-8.7 (2)
O4—C4—C5—C6	60.6 (2)	C4—C5—C6—N1	50.0 (2)

O5—C5—C6—N1	-69.6 (2)	C6—N1—N2—N3	179.2 (2)
N1—N2—N3—C8	-0.2(3)	C6—N1—C7—C8	-179.0(2)
N1—C7—C8—N3	0.1 (3)	C7—N1—N2—N3	0.3(3)
N1—C7—C8—C9	-170.2(4)	C7—N1—C6—C5	65.6 (3)
N1—C7—C8—C9A	163.2 (6)	C7—C8—C9—C10	-155.2(6)
N2—N1—C6—C5	-113.0(2)	C7—C8—C9—C11	137.6 (6)
N2—N1—C7—C8	-0.2(3)	C7—C8—C9A—C10A	70.7 (11)
N2—N3—C8—C7	0.1 (3)	C7—C8—C9A—C11A	141.4 (9)
N2—N3—C8—C9	169.7 (4)	C8—C9—C10—C11	-109.7(7)
N2—N3—C8—C9A	-167.5(5)	C8—C9—C11—C10	104.7 (7)
N3—C8—C9—C10	36.6 (9)	C8—C9A—C10A—C11A	116.9 (11)
N3—C8—C9—C11	-30.5 (8)	C8—C9A—C11A—C10A	-100.3(9)
N3—C8—C9A—C10A	-127.0(8)	C9—C8—C9A—C10A	5.6 (10)
N3—C8—C9A—C11A	-56.2 (10)	C9—C8—C9A—C11A	76.4 (16)
C1—O1—C12—O2	-4.1 (3)	C12—O1—C1—O4	-99.3 (2)
C1—O1—C12—C13	113.5 (2)	C12—O1—C1—C2	16.3 (3)
C1—O1—C12—C14	-122.7(3)	C12—O2—C2—C1	20.2(3)
C1—O4—C4—C3	30.3 (2)	C12—O2—C2—C3	131.0(2)
C1—O4—C4—C5	155.31 (18)	C9A—C8—C9—C10	-22.7(12)
C1—C2—C3—O3	-84.9 (2)	C9A—C8—C9—C11	-89.8 (16)
C1—C2—C3—C4	32.6 (2)		

Hydrogen-bond geometry (Å, °)

<i>D</i> —H··· <i>A</i>	<i>D</i> —Н	H <i>A</i>	D···A	<i>D</i> —H··· <i>A</i>
O3—H3···N3 ⁱ	0.83 (2)	1.95 (2)	2.767 (3)	171 (3)
O5—H5···O3 ⁱⁱ	0.82(3)	2.02(3)	2.821 (3)	164 (3)
C7—H7···O1 ⁱⁱⁱ	0.93	2.59	3.496 (3)	165

Symmetry codes: (i) x, y+1, z; (ii) x+1/2, -y+5/2, -z+1; (iii) x+1, y, z.

Acta Cryst. (2013). E**69**, o1386