MATHEMATICAL MODEL FOR RESHUFFLING OF CONTAINERS

B	the set of bay-locations
Q	the set of bay-locations capacities (i.e.
	8, 12, 16, 20)
F	the set of the possible class configura-
	tions
W	the set of weight configurations
P	the set of weight limits
C	the set of containers
D	the set of ports of destination
H	the set of types/heights (Box, High
	Cube)
S	the set of sizes (20, 40 feet)
n_q	the number of 20'bay-locations having
7	capacity $q, \forall q \in Q$
d_i	destination of container $i, \forall i \in C$
s_i	size of container $i, \forall i \in C$
h_i	height of container $i, \forall i \in C$
w_i	weight of container $i, \forall i \in C$
u_p	weight upper bound of weight limit
,	$p, \forall p \in P$
l_p	weight lower bound of weight limit
<i>x</i> -	$p, \forall p \in P$
$\delta_{fw} \forall f \in F, \forall w$	if the weight configuration w belong to
$\in W, \delta_{fw} = 1$	class configuration f , 0 otherwise
$y_{wp} \forall w \in W, \forall p$	if the weight limits p belong to config-
$\in P$, $\gamma_{wp} = 1$	uration w , 0 otherwise
α	weight used in the objective function
	for penalising the empty slots in the
	bay-locations.

Let us introduce the following decision variables:

$x_{ij} \in \{0, 1\}, \forall i \in C, \forall j \in B$	$x_{ij} = 1$ if container i is stored in bay-locations j
$\begin{aligned} y_{jdhsq} &\in \{0, 1\}, \forall j \in B, \\ \forall d \in D, \forall h \in H, \forall s \\ &\in S, \forall q \in Q \end{aligned}$	$y_{jdhsq} = 1$ if in bay-locations j , with capacity q , are stored containers for destination d , with height h and size s
$c_{pj} \in \{0, 1\}, \forall p$	$c_{pj} = 1$ if weight limits p are
$\in P, \forall j \in B$	assigned to bay-locations j
$a_f \in \{0,1\}, \forall f \in F$	$a_f = 1$ if class configuration f is chosen for the yard storage
$b_w \in \{0,1\}, \forall \\ w \in W$	$b_w = 1$ if weight configuration w is chosen

The resulting model is the following:

$$Min \sum_{j \in B} \sum_{d \in D} \sum_{h \in H} \sum_{s \in S} \sum_{q \in Q} y_{jdhsq} + \alpha \sum_{j \in B} z_{j}$$
 (1)

Subject to:

$$\sum_{i \in B} x_{ij} = 1 \quad \forall i \in C \tag{2}$$

$$\sum_{d \in D} \sum_{h \in H} \sum_{s \in S} \sum_{q \in O} y_{jdhsq} \le 1 \quad \forall j \in B$$
(3)

$$\sum_{i \in C} x_{ij} \leq \sum_{d \in D} \sum_{h \in H} \sum_{s \in S} \sum_{q \in O} q y_{jdhsq} \quad \forall j \in B$$
(4)

$$\sum_{j \in B} \sum_{d \in D} \sum_{h \in H} \sum_{s \in S: s_i = 20} y_{jdhsq}$$

$$+2\sum_{j\in B}\sum_{d\in D}\sum_{h\in H}\sum_{s\in S: s_i=40}y_{jdhsq} \le n_q \quad \forall q\in Q \tag{5}$$

$$\sum_{f \in F} a_f = 1 \tag{6}$$

$$\sum_{w \in W} b_w = 1;$$
(7)

$$\sum_{w \in W} \delta_{wf} b_w \le a_f \quad \forall f \in F$$
(8)

$$\sum_{p \in P} c_{pj} \le 1 \quad \forall j \in B \tag{9}$$

$$\sum_{p \in P} \gamma_{pw} c_{pj} \le b_w \quad \forall j \in B, \ \forall w \in W$$
 (10)

$$w_i x_{ij} \le \sum_{p \in P} u_p c_{pj} \quad \forall i \in C, \forall j \in B$$
 (11)

$$w_i x_{ij} \ge \sum_{o \in P} l_p c_{pj} - M(1 - x_{ij}) \quad \forall i \in C, \forall j \in B$$
 (12)

$$\sum_{d \in D} \sum_{h \in H} \sum_{s \in S} \sum_{q \in Q} q y_{jdhsq} - \sum_{i \in C} x_{ij} \le z_j \quad \forall j \in B$$
 (13)

THE HEURISTIC MODEL BASED ON TIME-INDEXING (OUT TIME)

Indices

i, q = Job index, i, q = 1, 2, ..., n

j=Machine index, j=1, 2,..., m

k=Tool type index, k=1, 2, ..., t

 h_k =Replicate number of tool type k, h_k =1, 2,..., r_k

u=Time interval, u=1, 2,..., T

Parameters

 p_i =Processing time of job i on machine j

 r_k =Number of tools of type k

l(i)=Set of tools required to process job i

Decision variables

C_{max}=Production makespan

 C_i =Production completion time of job i

$$X_{iju} = \begin{cases} 1 & \text{if job } i \text{ is scheduled to start processing on} \\ & \text{machine } j \text{ at the beginning of time interval } u \\ 0 & \text{otherwise} \end{cases}$$

$$Z_{ih_k} = \begin{cases} 1 & \text{if replicate } h \text{ of tool } k \text{ is used to process job } i \\ 0 & \text{otherwise} \end{cases}$$

The mathematical model TIM is given below:

$$Min C_{max}$$
 (1)

subject to

$$C_{\text{max}} \ge C_i$$
 $\forall i$ (2)

$$C_i = \sum_{j=1}^{m} \sum_{u=0}^{T} \left[\left(u + p_{ij} \right) X_{iju} \right] \qquad \forall i \qquad (3)$$

$$\sum_{i=1}^{m} \sum_{w=0}^{T} X_{ijw} = 1 \quad \forall i$$
(4)

$$X_{iju} = 0$$
 $\forall i, j, u = T - p_{ij} + 1, ..., T$ (5)

$$\sum_{i=1}^{n} \sum_{\mu=u-p_{i,i}+1}^{u} X_{ij\mu} \leq 1 \quad \forall j, u \quad (6)$$

$$\sum_{k=1}^{r_k} Z_{ik_k} = 1 \qquad \forall i, k \in I(i) \qquad (7)$$

$$\sum_{j=1}^{m} \sum_{\mu=u-p_{ij}+1}^{u} X_{ij\mu} + \sum_{j=1}^{m} \sum_{\mu=u-p_{qj}+1}^{u} X_{qj\mu}$$
(8)

$$\leq 1-M(Z_{ih_k}+Z_{qh_k}-2)\forall i < q, h, k \in I(i)\cap I(q), u$$

$$C_{\text{max}} \ge 0$$
 (9)

$$C_i \ge 0$$
 $\forall i$ (10)

$$X_{iju} \in \{0, 1\}$$
 $\forall i, j, u$ (11)

$$Z_{ih_k} \in \{0, 1\}$$
 $\forall i, k \in I(i)$ (12)

EQUATIONS FOR INTEGER PROGRAMMING MODEL

The integer programming formulation for this workload allocation problem is given as follows:

P1:

Minimize
$$\sum_{i \in \mathbf{I}} \sum_{i \in \mathbf{J}} \alpha_j^i \cdot U_{j,\Omega_j}^i + \sum_{t \in \mathbf{T}} \beta \cdot Z_t$$

Subject to

$$U_{i,t-1}^{i} \leq U_{i,t}^{i} \quad i \in \mathbf{I}, j \in \mathbf{J}, t = 1, \dots, \Omega_{j}$$

$$\tag{1}$$

$$\sum_{i \in \mathbf{I}} U_{j,t}^i = R_{j,t} \quad j \in \mathbf{J}, t \in \mathbf{T}$$
 (2)

$$\sum_{i \in \mathbf{J}} U_{j,t}^{i} \le K \cdot C \quad i \in \mathbf{I}, t \in \mathbf{T}$$
(3)

$$U_{i,\Omega_i}^i \leq \hat{S}_1 \quad i \in \mathbf{I}, j \in \mathbf{J}$$
 (4)

$$\sum_{i \in \mathbf{J}: \Omega_{i} = t} U_{j,t}^{i} \le Z_{t} \quad i \in \mathbf{I}, t \in \mathbf{T}$$
(5)

$$U_{j,t}^{i} \in \{0, 1, 2, 3...\} \quad i \in \mathbf{I}, j \in \mathbf{J}, t \in \mathbf{T}$$
 (6)

$$Z_t \ge 0 \quad t \in \mathbf{T}$$
 (7)

GREEDY APPRAOCH

def container_reshuffling(container_stacks, export_time):

This function reshuffles the container stacks in order to minimize the number of reshuffles needed to retrieve the containers with the earliest export time.

Args:

container_stacks: A list of lists, where each inner list represents a container stack. export_time: A list of integers, where each integer represents the export time of a container.

Returns:

A list of lists, where each inner list represents the reshuffling of a container stack.

Initialize the reshuffling of the container stacks. reshuffling = container_stacks

Iterate over the containers with the earliest export time.
for i, container in enumerate(export_time):
 # Find the container stack that contains the container.
 container_stack = container_stacks[i]

Find the position of the container in the container stack. container_position = container_stack.index(container)