CHAPTER SIX

Numerical Differentiation

Objectives

- Approximate the derivative
- Central-difference formula of order $O(h^2)$
- Optimum step-size

Approximating the Derivative

- Estimate the derivatives (slope) of a function by using the function values at only a set of discrete points
- Represent the function by Taylor polynomials or Lagrange interpolation
- Evaluate the derivatives of the interpolation polynomial at selected points

$$f'(x) = \lim_{h\to 0} \frac{f(x+h)-f(h)}{h}$$
, where h is step size

Central-difference formula

• First, start with second-degree Taylor expressions about x for f(x+h) and f(x-h)

•
$$x_0 = x$$
 , $x = x + h$

$$f(x+h) = f(x) + f'(x)h + \frac{f''(x)}{2!}h^2 + \frac{f'''(c1)}{3!}h^3$$
 Error $O(h^3)$

$$f(x+h) = f(x) - f'(x)h + \frac{f''(x)}{2!}h^2 - \frac{f'''(c2)}{3!}h^3$$

$$O(h^3) f'''(c) = \frac{f'''(c1) + f'''(c2)}{2}$$

$$f(x+h) - f(x-h) = 2f'(x)h + O(h^3) + O(h^3) = 2f'(x)h + O(h^3)$$

$$f'(x) = \frac{f(x+h) - f(x-h)}{2h} + O(h^2)$$

Central – differnce formula of order $O(h^2)$

Central-difference formula - Example

- Let $f(x)=\cos(x)$. Use **central-difference formula of order** ${\it O}(h^2)$ with step size h=0.1 , 0.01 , 0.001 , 0.0001 . To approximate f'(0.8)
- Note that the exact value of $f'(0.8) = -\sin(0.8) = -0.717356090899$

• If
$$h = 0.01 \rightarrow$$

$$f'(0.8) = \frac{f(0.81) - f(0.79)}{2 \times 0.01}$$

$$= -0.717344150$$

Table 6.2 Numerical Differentiation Using Formu

Step size	Approximation by formula (3)	Error using formula (3)
0.1	-0.716161095	-0.001194996
0.01	-0.717344150	-0.000011941
0.001	-0.717356000	-0.000000091
0.0001	-0.717360000	-0.000003909

Optimum step-size

$$f(x_0 - h) = y_{-1} + e_{-1}$$

$$\bullet f(x_0 + h) = y_1 + e_1$$

$$y_{-1}, y_1 \rightarrow$$
 approximate values for $f(x_0 - h)$ and $f(x_0 + h)$ $e_{-1}, e_1 \rightarrow$ round-off error

• Central-difference formula of order $O(h^2)$

•
$$f'(x_0) = \frac{y_1 - y_{-1}}{2h} + E(f, h)$$

•
$$E(f,h)_{total\ error} = E(f,h)_{round-off} + E(f,h)_{truncated}$$

Optimum step-size (cont'd)

•
$$E(f,h)_{total\ error} = E(f,h)_{round-off} + E(f,h)_{truncated}$$

$$= \frac{e_1 - e_{-1}}{2h} + \frac{h^2 f^{(3)}(c)}{3!}$$

• Assume: $|e_{-1}| \le \epsilon$, $|e_1| \le \epsilon$, $M = \max\{|f^{(3)}(x)|\}$

• Then, error bound: $|E(f,h)| \le \frac{2\epsilon}{2h} + \frac{Mh^2}{6}$

→ To find optimum value of h: $\partial(h) = 0$ → $h = (\frac{3\epsilon}{M})^{\frac{1}{3}}$

Optimum step-size - Example

• Let $f(x) = \cos(x)$ and $\epsilon = 0.5 \times 10^{-9}$. Find optimum step size for Central-difference formula of order $O(h^2)$

•
$$|f^{(3)}(x)| \le |\sin(x)| = 1$$
 $\to M = 1$

•
$$h = \left(\frac{3\epsilon}{M}\right)^{\frac{1}{3}} = \left(\frac{3\times0.5\times10^{-9}}{1}\right)^{\frac{1}{3}} = 0.001144714$$

• Note that from previous example, optimum step size h=0.001

References

• [1] Mathews J. H. and Fink K. D. (1999). Numerical Methods using MATLAB, NJ: Prentice Hall

