Project 2 "Classical Planning"

Experiment Results

I tried to run locally all combinations of problems and search algorithm just to have the full picture. The only one I was not able to run locally was the problem 4 with Astar_h_pg_setlevel due to its really long time to complete (I did not installed pypy because I saw from the official web page that there are some libraries that are not fully supported or not supported at all by pypy and that I usually use, so I preferred to keep clean my local python installation and do not do this exercise combination)

Actions

	Problem 1	Problem 2	Problem 3	Problem 4
BFS	20	72	88	104
DFS	20	72	88	104
UCS	20	72	88	104
Greedy_BFS_h_unmet_goals	20	72	88	104
Greedy_BFS_h_pg_levelsum	20	72	88	104
Greedy_BFS_h_pg_maxlevel	20	72	88	104
Greedy_BFS_h_pg_setlevel	20	72	88	104
Astar_h_unmet_goals	20	72	88	104
Astar_h_pg_levelsum	20	72	88	104
Astar_h_pg_maxlevel	20	72	88	104
Astar_h_pg_setlevel	20	72	88	104

Node Expansions

	Problem 1	Problem 2	Problem 3	Problem 4
BFS	43	3343	14663	99736
DFS	21	624	408	25174
UCS	60	5154	18510	113339
Greedy_BFS_h_unmet_goals	7	17	25	29
Greedy_BFS_h_pg_levelsum	6	9	14	17
Greedy_BFS_h_pg_maxlevel	6	27	21	56
Greedy_BFS_h_pg_setlevel	6	9	35	107
Astar_h_unmet_goals	50	2467	7388	34330
Astar_h_pg_levelsum	28	357	369	1208
Astar_h_pg_maxlevel	43	2887	9580	62077
Astar_h_pg_setlevel	33	1037	3423	

Time to Complete (seconds)

	Problem 1	Problem 2	Problem 3	Problem 4
BFS	0.0039497	1.7106573	9.1515743	79.4936872
DFS	0.0028455	2.1253408	0.9016738	3792.9974517
UCS	0.0094644	2.6933768	15.4364058	91.5444883

Greedy_BFS_h_unmet_goals	0.0013931	0.0197747	0.0331642	0.0435025
Greedy_BFS_h_pg_levelsum	0.2024466	4.0753295	9.6263346	16.6113856
Greedy_BFS_h_pg_maxlevel	0.1285541	8.5296306	10.6825531	36.1015673
Greedy_BFS_h_pg_setlevel	0.5880906	21.8557797	150.489032	644.5688521
Astar_h_unmet_goals	0.0079307	1.9783416	7.4542304	42.2038915
Astar_h_pg_levelsum	0.4715595	133.3397137	223.7447806	1048.9292734
Astar_h_pg_maxlevel	0.5465259	751.7285616	3901.7926626	49435.7638472
Astar_h_pg_setlevel	1.3718278	1943.9594379	11521.649492	

Plan Length

	Problem 1	Problem 2	Problem 3	Problem 4
BFS	6	9	12	14
DFS	20	619	392	24132
UCS	6	9	12	14
Greedy_BFS_h_unmet_goals	6	9	15	18
Greedy_BFS_h_pg_levelsum	6	9	14	17
Greedy_BFS_h_pg_maxlevel	6	9	13	17
Greedy_BFS_h_pg_setlevel	6	9	17	23
Astar_h_unmet_goals	6	9	12	14
Astar_h_pg_levelsum	6	9	12	15
Astar_h_pg_maxlevel	6	9	12	14
Astar_h_pg_setlevel	6	9	12	

Questions

- 1. Which algorithm or algorithms would be most appropriate for planning in a very restricted domain (i.e., one that has only a few actions) and needs to operate in real time?
- 2. Which algorithm or algorithms would be most appropriate for planning in very large domains (e.g., planning delivery routes for all UPS drivers in the U.S. on a given day)?
- 3. Which algorithm or algorithms would be most appropriate for planning problems where it is important to find only optimal plans?

Answers

- I would prefer the Greedy_BFS_h_pg_levelsum because it runs really fast (not faster for small problem, little bit slower but comparable) also wrt the fastest A* search, i.e.
 Astar_h_unmet_goals. Especially because on larger and more complex problem like the 4th the Astar_h_unmet_goals is definitively slower than the Greedy_BFS_h_pg_levelsum and we can accept the not optimal (but anyhow really good) solution of the Greedy_BFS_h_pg_levelsum for the sake of speed gaining.
- 2. Here we have to look for the optimal solution if possible, in a less than 1 day of computation. For that reason the Astar_h_pg_levelsum is the best choice because it reaches near optimal solutions with a computational time increasing as a function of the size of the problem that is the best possible (the other search strategies, optimal or near optimal ones, have a computational time resolution that grows faster with the problem size ... for example the Astar_h_unmet_goals seems to be better of the Astar_h_pg_levelsum in both exacteness of the solution and computational timimng BUT the more the size of the problem increase the slower the search becomes)

3.	Given that we do not care of time but we want only optimal solution we can chose among: BFS, UCS, and A* with admissible heuristic, i.e. Astar_h_pg_setlevel.		