18MAA 242 Lector 14 - symmetric group Sn Last time: - two-row notation (12...n) - cycle notation (i, iz ··· ix). A transposition just means a cycle of length 2: e.g. (13) sweps 1 and 3 (fixes everything else). Proposition: Any permutation X & Sn can be Definition: Let & ESn and write a product of transpositions. The sign of of is defined as $Sign(x) = (-1)^k$ where k = number of transpositions in (*)

Important point: For given of, may be many ways to write it as $\alpha = \gamma_1 - \gamma_k$ Exemple: in S_3 , $\alpha = (12)$ $\leftarrow k=1$ $= (13)(23)(12) \leftarrow k = 3$ But the number (-1) k only depends on a, not on how we choose to write it as a Product of transpositions. Definition: If sign(x) = 1 we say or is even if $sign(\alpha) = -1$ we say α is cold. Example: a) (12) = (13)(23)(13)So sign (12) = $(-1)^3 = -1$ So (12) is odd, b) $(i_1 \cdots i_k) = (i_1 i_k) \cdots (i_1 i_2)$ k-1 transpositions

So Sign $(i_1 \cdots i_k) = (-1)^{k-1}$ Generators of Groups

Def: Let G be a group and $g_1, ..., g_k \in G$.

We say G is generated by $g_1, ..., g_k$ if

every $g \in G$ can be written as a product of

the g_i 's and their inverses, the g_i 's.

Example: $g = g_2 g_1^2 g_3 g_1^2$. \leftarrow "word" in the g_i If G_i is generated by G_i in G_i we use the

notation $G_i = G_i$

Exemple: The dihedral group D_n is generated by rotation by $2\pi/n$, called r, and reflection, called s. $D_n = \langle r, s \rangle$

" since we have seen Dn=2e, r, ..., r s].

Generating Sn

Already saw any x & Sn can be written as a product of transpositions.

So the set of transpositions generates Sn

But we can find smaller generating sets:

Proposition 1: Sn is generated by the transpositions

 $Y_1 = (12), Y_2 = (13), \dots, Y_n = (1n)$

Proof: We already know set of all transpositions

generales Sn. So it is enough to write any

transposition (ij) as a product of the Ti's

This is easy:

(ij) = (1i)(1j)(ii) (ij) = (1i)(1j)(ii)

Proposition 2: Sn is generated by the transpositions

 $\sigma_{1} = (12), \quad \sigma_{2} = (23), \quad \sigma_{n-1} = (n-1n)$

Proof: By Proposition 1, It's enough to write any

of the Vi as a product of J's, which can

be done as follows:

T; = (1;) =

(j-1j)····· (23)(12)(23)····· (j-1)

The Alternating Group

The set of even permutations in Sn is denoted? $A_n = \{ \alpha \in S_n \mid sign(\alpha) = 1 \}$

This is a group: if of B are even then

 $sign(\alpha\beta) = sign(\alpha) sign(\beta)$ so $\alpha\beta$ is even. $(-1)^{k+l}$ $(-1)^{l}$

The number of e the alternating group An

Number of elements: $|A_n| = |S_n| = n!$

Example: A₃ has $\frac{3!}{2} = \frac{6}{2} = 3$ elements.

 $A_3 = \{e, (123), (132)\}$ 3-cycles

In general, An contains all the k-cycles of for kin and kodd. [Remember: sign(i, ik) = (-1)k-1]

(But it has more elements besides!)

Proposition: The alternating group An (173)

is generated by 3-cycles of the form (1 i j) $(1 < i, j \le n, i \ne j)$

(6)
Proof: By Proposition 1 every $\alpha \in A_n$ is
a product of an even number of the 7:
Now pair them up and use (1i)(1j) = (1ji)
to get a product of 3-cycles.
Application: The 15-puzzle.
In 1896 Scm Lloyd offered \$ 1000 to enyone who
could transform this: 1234 5678 (N) Slide \$ 9101112 tiles \$ 13 15 14
to this: \\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\
View a configuration of the puzzle as
a permutation of {1,2,,15} - i.e. an
element of Si5.
Notice: Any permutation we can
obtain from (s) must be even.

To see this, think of blank square as being labelled 16. Any more of the pozzle is a transposition. But to get blank square back to bottom-right it must make as many up-moves as down, and left moves as right. So even number of transposition.

Corollary: The puzzle connot be solved. Proof: The configuration (N) corresponds to

the transposition (1415), hence odd.