Practice for Quiz 10 Math 2580 Spring 2016

Sean Fitzpatrick

February 23rd, 2016

If you can answer the following problems, you should be well-prepared for Quiz 10:

1. Find the following antiderivatives:

(a)
$$\int e^{3x} dx$$

(b) $\int \cos(x) dx$
(c) $\int \frac{2x}{1+x^2} dx$
(d) $\int x \sin(x) dx$
(e) $\int \sin^2(x) dx$
(f) $\int \frac{1}{\sqrt{4-x^2}} dx$

2. Sketch the following rectangles in \mathbb{R}^2 :

(a)
$$[-1,2] \times [0,2]$$
 (b) $[1,4] \times [-1,1]$

- 3. For each of the rectangles from Problem 2, determine uniform partitions $x_0 < x_1 < x_2 < x_3$ of the x-interval into three sub-intervals and $y_0 < y_1 < y_2$ of the y-interval into two sub-intervals. Use these partitions to divide the given rectangle into six sub-rectangles R_{ij} , with $1 \le i \le 3$ and $1 \le j \le 2$.
- 4. Sketch each of the subsets of \mathbb{R}^2 below and express them as both a Type 1 region and a Type 2 region:
 - (a) The region bounded by the coordinate axes and the line x + y = 1.
 - (b) The region bounded by the curves $y = \sqrt{x}$, y = 0, and x = 4.

Note: a region is called a Type 1 region (or "vertically simple") if it lies between the graphs of two functions $y = f_1(x)$ and $y = f_2(x)$. (So $f_1(x) \le y \le f_2(x)$, where $a \le x \le b$.) A region is a Type 2 region (or "horizontally simple") if it lies between the graphs of two functions $x = g_1(y)$ and $x = g_2(y)$. (So $g_1(y) \le x \le g_2(y)$, where $c \le y \le 2$.)