Learning to Rewind via Iterative Prediction of Past Weights for Practical Unlearning

Jinhyeok Jang, Jaehong Kim, Chan-Hyun Youn

Post Processing after Verification of Unauthorized Use of Specific Data

- Recently, there have been many issues arising from AI models that use data containing copyrighted or private information without permission.
- In such cases, the owners of the problematic AI model must choose one of these:

<Options>

- 1) Negotiating a settlement with appropriate compensation
- 2) Re-training from scratch using the full dataset, excluding the problematic data.
- 3) Removing the problematic knowledge from the trained model.

How to remove only the selected knowledge

Machine Unlearning

• A topic dedicated to selectively removing specific knowledge from DNNs, aiming to find Θ_{GS}

<Notations>

Forget data (D_f) : problematic data or dataset that should be forgotten Remaining data (D_r) : the others included in training dataset Entire training dataset $(D_f \cup D_r)$: the union of forget and remaining data Θ : Weights of a AI model

In our scenario, data used without authorization is designated as D_f , while data with authorized use is designated as D_r .

Related Works

• 1. Unlearning using the Entire Dataset

- Overwhelming computational and storage demands
- i.e., Weight Noising, Fisher, SCRUB

√ High Computational Cost ✓ Dependence on the Full Dataset ✓ Confusion rather than Knowledge Deletion

• 2. Training Incorrect Knowledge

- Unintentional confusion in the performance of unlearned DNN (Side Effects)
- i.e., Random Label, Boundary Unlearning, SalUn,

• 3. Approximation of less learned state

- Less accurate approximation of unlearned weights (Worse Deletion)
- i.e., NegGrad, Task Vector

Proposed Method

The Concept of Weight Nowcasting Network (WNN)

- ✓ An add-on network which learns the general tendency of weight changes during training DNNs to accelerate training process.
- ✓ To train WNN, the authors collected numerous histories of NNs with various settings
- √ Then, they trained a regression model predicting future weights based on current history

We adapted WNN from its original goal of <u>Acceleration of training process</u> to facilitating <u>Machine Unlearning</u>.

✓ For adapting, we modified the task of WNN to Predict Past Weights

Unlearning Procedure

Forward Training

- Our Unlearning involves:
 - Forward training to obtain the future trajectory
 - Coordinate-wise Past Weight Prediction (Element-wise)

Unlearning Procedure

Repetition of two procedures for Gradual Unlearning

InvWNN

Using the collected training histories of various DNNs, we trained an ad-hoc model p
redicting the prior weights using the future training trajectory.

Experiments

Standard Unlearning Experiment

- CIFAR10 with ResNet18
- Unlearn the half of training data
 - RA: Remaining Accuracy (Acc(D_r))
 - UA: Unlearning Accuracy (100%-Acc($D_{\rm f}$))
 - TA: Test Accuracy
 - MIA: Ratio of D_f classified as Unseen Data

Method	Termination Condition: UA $> 8.11\%$			
	RA (%)	UA (%)	TA (%)	MIA (%)
Pretrained	99.96 ± 0.02	0.02 ± 0.01	94.38 ± 0.10	9.75±1.61
Retrain	99.92 ± 0.02	8.11 ± 0.19	91.45 ± 0.32	29.07 ± 0.42
Random Label	91.03 ± 0.55	8.99 ± 0.53	83.63 ± 0.44	33.19 ± 2.46
Boundary	91.24 ± 0.21	8.42 ± 0.16	83.72 ± 0.10	28.51 ± 3.97
SalUn	91.33 ± 0.45	8.58 ± 0.39	84.45 ± 0.35	32.62 ± 3.17
NegGrad	91.26 ± 0.31	8.59 ± 0.11	85.01 ± 0.95	28.56±9.60
Task Vector	92.03 ± 0.72	8.54 ± 0.54	83.29 ± 0.82	30.86 ± 6.65
Proposed	92.24±0.71	8.31 ± 0.24	85.04±1.10	31.94 ± 4.56

Table 1: Results of five trials for unlearning randomly selected 50% of CIFAR10. Note that better performance corresponds to a smaller gap with the retrained model.

The proposed method achieved the Higher RA and TA with the similar UA

Side Effect Removal

- For all problems, we used CIFAR10 and ResNet18
- Label Noise
 - Pretraining on 80% clean and 20% label-noised data
 - Unlearning the noised data
- Overfitting
 - Pretraining on 1% of entire training data with excessive iterations
 - Unlearning the 1% data
- Backdoor Attack
 - Pretraining on 80% clean and 20% BadNet backdoor data
 - Unlearning the adversarial data

Generalization

- Extension to more challenging cases
 - Datasets: CIFAR100 and TinyImageNet
 - Architecture: PVTv2 and ConvNext

- Diffusion Model (U-Net)
 - Pretraining on MNIST
 - Unlearning only "4" images

Figure 5: Unlearning across novel datasets, architectures, and tasks. For diffusion, a lower ratio (left) and lower KID (right) at the same x-coordinate indicate better unlearning.

Visualization

Class Activation Map for Backdoor Attack Case

Figure 4: CAM for backdoor data of each unlearning method. The black line at left of backdoor images is the hidden signature.

Diffusion Model

Visualization

Unlearning Trajectory

Figure 7: Landscape visualization of unlearning on labelnoised data. The upper shows the test accuracy landscape, reflecting the ability to preserve accuracy. The lower depicts accuracy on \mathcal{D}_f , representing forgetting performance.

Conclusion

The contributions of this work are summarized as follows:

- 1) We apply the concept of weight prediction to machine unlearning.
- 2) We establish an evaluation protocol based on side effect removal.
- 3) Our method can generally work using only forget data
- 4) In our experiments, the proposed method outperforms previous unlearning approaches in standard unlearning scenarios and in removing side effects.

Thanks

Poster **#138**: 12:30–2:30, today

Feel free to contact me at jangjh6297@gmail.com

Our repository:

