Leia com atenção:

A duração do teste é de 1,5 horas.

Não é permitido o uso de calculadora.

Justifique todas as suas respostas.

1. Considere as seguintes matrizes:

$$A = \begin{bmatrix} 1 & a & 1 \\ 1 & 1 & -1 \\ 2 & -a & -3 \end{bmatrix}, \quad X = \begin{bmatrix} x \\ y \\ z \end{bmatrix} \quad e \quad B = \begin{bmatrix} 1 \\ -1 \\ b \end{bmatrix}.$$

- (a) Classifique o sistema AX = B em função dos parâmetros reais $a \in b$.
- (b) Determine os valores reais dos parâmetros a, b e c de modo que $C = \begin{bmatrix} c & -3 & 1 \end{bmatrix}^T$ seja uma solução do sistema AX = B. Para os valores encontrados justifique se a solução dada é a única solução.
- (c) Determine todos os valores reais de a para os quais o sistema homogéneo associado ao sistema AX=B tem soluções não nulas e calcule duas dessas soluções.
- (d) Considere a=0. Prove que o sistema AX=B é um sistema de Cramer e determine a incógnita z através da regra de Cramer.
- 2. Sejam $A=\left[a_{ij}\right]$ e $B=\left[b_{ij}\right],\,i,j\in\{1,2\},$ matrizes reais de ordem 2 invertíveis tais que

$$a_{ij} = i + j - 1$$
 e $BA = \begin{bmatrix} 0 & 1 \\ -1 & 2 \end{bmatrix}$.

- (a) Calcule as matrizes $A \in B$.
- (b) Utilizando as propriedades dos determinantes, defina o determinante da matriz $-5A^{-1}B^{T}$ em função dos determinantes de A e B e calcule-o.
- 3. Em \mathbb{R}^3 , considere o conjunto $V = \{(1,2,3), (4,5,6), (7,8,9)\}.$

(a) Averigue se
$$V$$
 é uma base de \mathbb{R}^3 . [1.5]

(b) Caracterize por meio de equações o subsespaço
$$S$$
 gerado por V . [1.5]

(c) Indique o valor de
$$k \in \mathbb{R}$$
 de forma a que $(1, k, 0)$ pertença a S ? [1.0]

(d) Determine duas bases diferentes para
$$S$$
 e indique q dimensão de S . [1.5]

Nome:	Curso:
Número:	Versão A

Escolha Múltipla

Em cada uma das questões escolha APENAS uma opção, rodeando a letra correspondente.

I. Sendo $\alpha \in \mathbb{R}$ considere as matrizes reais: $A_{\alpha} = \begin{bmatrix} \alpha & 2 & 2 \\ 0 & 2 & 0 \\ 1 & 2 & 2\alpha \end{bmatrix}, B = \begin{bmatrix} 2 \\ 3 \\ 5 \end{bmatrix}, X = \begin{bmatrix} x \\ y \\ z \end{bmatrix}$ e as

proposições seguintes, envolvendo as matrizes anteriores:

- a. A matriz A_{α} é invertível para $\alpha \in \{0, 1\}$.
- b. O sistema $A_{\alpha}X=B$ é de Cramer para $\alpha=2.$
- c. $A_0^{-1}B$ é uma matriz do tipo (3,1) onde a entrada (1,1) é igual a 2.
- d. Considere $A = A_0$. A matriz $A^T B B^T$ é solução da equação matricial $X^{-1}(A+I)^T (BB^T)^{-1}A^{-1} = (BB^T)^{-1}$.

A lista completa das proposições verdadeiras é:

A.
$$\{a, c, d\}$$
 B. $\{a, c\}$ C. $\{b, d\}$ D. $\{b, c, d\}$ [2.0]

II. Sejam
$$A = \begin{bmatrix} x & y & z \\ 3 & 0 & 2 \\ 1 & 1 & 1 \end{bmatrix}, B = \begin{bmatrix} x+3 & 1 & 9 \\ y & 1 & 0 \\ z+2 & 1 & 6 \end{bmatrix}, C = \begin{bmatrix} x & y & z & 0 \\ -2 & -2 & -2 & 0 \\ y & z & x & 2 \\ 3 & 0 & 2 & 0 \end{bmatrix}.$$

Considere as seguintes afirmações:

- a.) $|2A^TA^{-1}| = 2$.
- b.) |B| = -3|A|.
- c.) A é invertível, quaisquer que sejam $x, y, z \in \mathbb{R}$.
- d.) |D| = -4|A|.

A lista completa das proposições verdadeiras é:

A.
$$\{a, c, d\}$$
 B. $\{a, c\}$ C. $\{b, d\}$ D. $\{b, c\}$

[2.0]

- III. Considere os conjuntos: $S_1 = \{(x, y, z) \in \mathbb{R}^3 \mid x = 2y + z\}, S_2 = \{(x, y, z) \in \mathbb{R}^3 \mid x = z^2\}$ e as seguintes afirmações:
 - a. S_1 é um subespaço vetorial de \mathbb{R}^3 .
 - b. S_2 não é um subespaço vetorial de \mathbb{R}^3 .
 - c. S_1 é gerado pelo vetor (2,1,0).
 - d. $(4,1,2) \in S_1 \cap S_2$.

A lista completa das proposições verdadeiras é:

A.
$$\{a, c, d\}$$
 B. $\{b, c\}$ C. $\{a, b, d\}$ D. $\{c, d\}$ [2.0]