Data Analytics and Machine Learning Group TUM School of Computation, Information and Technology Technical University of Munich

Adversarial Training for Neural Combinatorial Solvers

Oriol Aranda Llorens, Johanna Sommer, Stephan Günnemann

TL;DR

- We propose adversarial training to improve generalization and robustness on neural combinatorial solvers.
- We propose a more efficient data generation method for SAT and k-SAT.
- We show adversarial training does not negatively impact training performance.

Neural Combinatorial Solvers

- **Bad generalization:** from randomly generated data to other domains, and from small to large problem instances.
- Bad robustness: adversarial attacks reveal hard model-specific instances
- Data generation is either:
- Incomplete and efficient
- Complete and inefficient

Use adversarial attacks to:

- 1) improve robustness and generalization
- 2) ease learning with costly generated data

Adversarial Training

Exploit SAT invariances (satisfiability):

$$(l_1 \lor l_2) \land (l_1) = True \quad \begin{cases} del \rightarrow (l_1 \lor l_2) \land (l_1) = True \\ add \rightarrow (l_1 \lor l_2 \lor l_3) \land (l_1) = True \end{cases}$$

• Given an instance x and a neural solver S_{θ} , we obtain the **perturbed instance** $\widetilde{x} = f_p(x)$ learning a perturbation matrix p s.t.

$$\max_{p} \mathcal{L}(S_{\theta}(\widetilde{x}))$$

$$f_p(x) = \begin{cases} x_{ij} - p_{ij}, & \text{if edge } i \to j \text{ exists} \\ x_{ij} + p_{ij}, & \text{otherwise} \end{cases}$$

$$x \begin{cases} \frac{l_1}{l_2} \begin{bmatrix} 1 & 1 \\ 1 & 0 \\ 0 & 0 \\ 0 & 0 \end{bmatrix} & \xrightarrow{f_p} \quad \widetilde{x} \begin{cases} \begin{bmatrix} 1 - 0 & 1 - 0 \\ 1 - p_{21} & 0 + p_{22} \\ 0 + p_{31} & 0 + p_{32} \\ 0 + p_{41} & 0 + p_{42} \end{bmatrix} \end{cases}$$

• Adversarial training procedure: use the perturbed instances to train the neural solver S_{θ} s.t.

$$\min_{\theta} \mathcal{L}(S_{\theta}(\widetilde{x}))$$

Efficient Data Generator

- Former method: randomly build x and get the solution y with a classical solver \rightarrow Inefficient
- Our method: randomly build x starting from a solution $y \to \text{No}$ need for a solver

$$y = [x_1, \overline{x_1}, x_2, \overline{x_2}, x_3, \overline{x_3}]$$

$$x = \bigwedge_{i=1}^{n_c} (l_{i1} \vee l_{i2} \vee \cdots \vee l_{ik_i})$$

- * For SAT $\forall i,\ k_i \sim 1 + Ber(0.7) + Geo(0.4)$ and $n_c \sim N(\mu, \sigma^2)$
- For k-SAT $\forall i, \ k_i = k \ \text{and} \ n_c = n_v \cdot \alpha_k$

Training Performance

Adversarial training does not negatively impact training performance since we have obtained same results compared with the normal training.