Chap. 05 Deep Learning & HPC

中山浩太郎松尾研究室

Speed Matters

Why speed matters

"Faster is better" applies almost everywhere, not just in the tech domain.

by Joshua-Michéle Ross | @jmichele | April 26, 2011

処理速度が2倍だったら...

- ・ 2倍のデータを処理
- · 2倍のパラメータを探索
- 2倍の実験を回せる
- ・ 計算機を専有する時間が1/2に
- より多くの研究者で計算機を共有できる
- ・ 研究に要する時間が短く
- 研究プロセスを早くできる
- 問題を発見するのに要する時間が短く
- · AWSに払うお金が半分に

悲しい事件その1

「君のプロセスが10日もGPUを専 有してるんだけど」

「忘れてました」

エビングハウスの忘却曲線

- パラメータのことを思い出す ためのオーバーヘッド
- 数日も経つとそもそも実験を回していることも忘れる
- · 1週間も経つと既に研究の 興味は別のことに移っている
- ・byobuの功罪

悲しい事件その2

「松尾先生のクレジットカードにAmazonか ら30万円の請求が来てるけど誰か知って る?」 学生「AWSって高いんですね」

良い表現学習のためには 大量のデータが必要

データセットとサイズ

DataSet	Records	Compressed	Memory
CIFAR10 (32 x 32)	60K	160MB	235MB
Caltech101 (JPEG)	10K	126MB	2,000MB
STL-10 (96 x 96)	100k	2,500MB	2,600MB
MSCOCO 2014 (Train, JPEG)	82K	13GB	N.M
ImageNet (Train)	??	138GB	N.M
ImageNet (Test)	??	13GB	N.M

一般的な環境でのメモリ量比較

松尾研究室: 64/128 GB, AWS GPU: 15 / 60 GB

とてもメインメモリに乗らない

(環境に応じてCropping/解像度を落とす、分散処理等)

例えば医療画像

The Big Bang in Machine Learning

[&]quot;Google's AI engine also reflects how the world of computer hardware is changing. (It) depends on machines equipped with GPUs... And it depends on these chips more than the larger tech universe realizes."

Agenda

- HPC Learning
- 大規模データとストレージ
- 並列計算・マルチGPU
- 実践テクニック
- ・まとめ

Agenda

- HPC Learning
- ・大規模データとストレージ
- 並列計算・マルチGPU
- 実践テクニック
- ・まとめ

Deep Learning & GPU

TITAN X FOR DEEP LEARNING

GPUとムーアの法則

Deep Learning ライブラリー覧

ライブラリ	主な特徴	利用方法	GPU対応
Caffe	・高速な動作・モデルや実装を共有する コミュニティが充実 ・画像処理のモデルが充実	・Protobufファイルでモデル作成 ・Python / Matlab インタフェース ・C++言語でのモデル作成	©
Torch7	・高度なパッケージ管理機能 ・モダンな設計思想 ・シンプルかつ強力なモデル設計機能	・Lua言語でのモデル作成	©
Keras	・Theanoベース ・モダンな設計思想 ・LSTM、RNNなどにも対応	• Python	©
Chainer	・Pythonベース、Numpyとの高い親和性 ・導入が容易, define-by-run	・Python ・Caffeの設定ファイル読み込み	©
TensorFlow	・Pythonベース、Numpyとの高い親和性 ・自動微分	• Python	©
Pytorch	・Pythonベース、Numpyとの高い親和性 ・define-by-run	• Python	©

そもそもGPUつて何?

GPU?

- · グラフィック(3D等)のレンダリングに利用
- Nvidia Geforce GTX 780 Ti
- ・ 2,880コア 5,040 GFLOPS
- Intel Xeon E5-4650 8コア 172.8 GFLOPS
- ・ 高度な並列性と高いメモリ帯域幅

Deep Learning (NN) と GPU

- ・ 高度な並列性と高いメモリ帯域幅
- ・ニューラルネットワークの計算特性と同じ
 - 大量のパラメータ、活性値、勾配のためのバッファ
 - 単純な行列計算・行列積が計算の中心
 - GPUの並列計算特性に合致
- · GPGPUの普及
- 2005年にGPGPUでMLPを3x高速化
- ・その後すぐに畳み込みネットワークにも適用

Python系フレームワーク

Deep Learning Libraries TensorFlow Keras Chainer Pytorch		
Array / Tensor Libraries		
Numpy Torch	CuPy gpuarray	
BLAS / LAPACK	CUDA	
OS		
CPU	GPU	

例)松尾研究室の環境

- · 仮想化サーバでCPU・メモリ・GPUを共有
- ・ すべてマルチGPU環境
- ・ 教員・学生でリソース共有
- ・ カンファレンス締め切り前には争奪戦

GPU Type	Cores	MEM	#
TITANX	3,000	12GB	12 (+2)
TITANX (Pascal)	3,584	12GB	8 (+4)
TESLA K40	2,880	12GB	4
GeForce 980GTX	2,000	6GB	2
TITAN Black	2,880	6GB	3 (-1)

マルチGPU環境の必要性と問題

- 1台のマシンに複数のGPU
- · GPUサーバの管理コスト低減
- ・仮想化による共有
- ・マルチGPUによる並列計算・勾配計算
- ・問題
 - 使用メモリなども気を使う
 - 締め切り前の争奪戦

PCアーキテクチャ, CPU, GPU

- Northbridge
 - CPU, Main Memory, PCIe
 - Frontside bus (FSB) CPU
 - 非常に高速
- Southbridge
 - USB, SATA, Ethernet, etc.
 - I/O controller hub
 - Northbridgeと比べて低速

PCIe and Lanes

- 1x PCIe 3.0 (1レーン)
 - 500MB / 1 Way
- 16x PCIe
 - 16x send, 16x receive
 - 16GB / Sec
- 40レーンの壁
 - サーバグレードXeonでも 2つしかGPUを搭載できない

howstuffworks.com

DP環境

- Xeon X 2
- 合計80レーン
- 16xのGPUを それぞれ2台
- ・ 合計4台まで
- QPI:
 Quick Path
 Interconnect

PCIe and Lanes

- 特殊なマザーボード
- ・PCI Expressのバスに スイッチ機構
- 16x GPUを8台搭載可能に

howstuffworks.com

GPUとCUDAカーネル

Python系フレームワーク

Deep Learning Libraries			
TensorFlow Keras	Chainer Pytorch		
Array / Tensor Libraries			
Numpy Torch	CuPy gpuarray		
BLAS / LAPACK	CUDA		
OS			
CPU	GPU		

GPU - CPU 処理フロー

GPU - CPU 処理フロー

ここまでのまとめ

- Deep LearningにGPUは必須
- ・ミドルウェアがCUDAのコードを自動生成
- ・ テンソル処理・畳み込み計算の高速化
- ・マルチGPU環境
- ・ GPU<->CPUレーンを意識しないと パフォーマンス低下
- ・処理フローやボトルネックを知ることが大事

Profiler

Profiler

- · Profilerとは
 - プログラムのパフォーマンスを計測
 - どの関数呼び出しがどれくらいの実行時間を 使っているか
 - 可視化のツールも充実
 - プログラムのボトルネック発見には必須
- Python OProfiler (cProfile)
- CUDAOProfiler

CPU Profiler

Memory Profiler

```
(3)ubuntu@k-nakayama_cuda:~/tmp$ python -m memory_profiler load_cifar10.py
Using Theano backend.
Using gpu device 0: Tesla K40c (CNMeM is enabled with initial size: 95.0% of memory, cuDNN not avai
(50000, 32, 32, 3)
(10000, 32, 32, 3)
Filename: load_cifar10.py
                      Increment
Line #
         Mem usage
                                   Line Contents
       218,586 MiB
                       0.000 MiB
                                   @profile
                                   def load data():
                     234.684 MiB
                                       (X_train, y_train), (X_test, y_test) = cifar10.load_data()
       453,270 MiB
                       0.000 MiB
                                       print(X_train.shape)
        453,270 MiB
                       0.000 MiB
                                       print(X_test.shape)
```

Exercise

GPUで どんな処理も高速になるか? ↓ 高速化の効果が高い処理は限定

行列積と畳込み計算

Minibatch SGD

Mini-batch SGD

Batch-SGD

全部

X У X У У У X У X У **SGD**

1つだけ利用

Minibatch SGD

X	У
X	У
X	У

Mini-batch SGD

Batch-SGD 全部

0.5 0.4 0.3 0.2 0.1 0-0 -0.1 -0.2 -0.3

500

1000

1500

2000

SGD 1つだけ利用

Minibatch SGD

Andrew Ng.資料より

高速化TIPS

Illustration: Fabien Tencé - ankivil.com

高速化TIPS

経験上、30~40%高速化 最近は入れてないと挙動が怪しいフレーム ワークもある 経験上、10%~20%程度高速化 GPUメモリを最大限確保 メモリ領域をバッファ

Illustration: Fabien Tencé - ankivil.com

松尾研究室の計算機環境

• 参考:

http://weblab.t.u-tokyo.ac.jp/hpc/

- 前提:
 - 学生はサーバの使い方が荒い
 - 研究者も荒い(sudo rm -r / 事件)
 - すぐに環境を壊す
 - Deep Learning関係の実装は 依存関係が多い
 - Deep Learning関係の技術革新は おろそしいスピードで進んでいる
- 環境の使い捨てが可能な仮想化技術が必須

GPU Type	Cores	MEM	#
TITANX	3,000	12GB	12 (+2)
TITANX (Pascal)	3,584	12GB	8 (+4)
TESLA K40	2,880	12GB	4
GeForce 980GTX	2,000	6GB	2
TITAN Black	2,880	6GB	3 (-1)

GPUで どんな処理も高速になるか? ↓ 条件分岐や複雑な処理はX

Agenda

- HPC Learning
- 大規模データとストレージ
- 並列計算・マルチGPU
- 実践テクニック
- ・まとめ

データセットとサイズ

DataSet	Records	Compressed	Memory
CIFAR10 (32 x 32)	60K	160MB	235MB
Caltech101 (JPEG)	10K	126MB	2,000MB
STL-10 (96 x 96)	100k	2,500MB	2,600MB
MSCOCO 2014 (Train, JPEG)	82K	13GB	N.M
ImageNet (Train)	??	138GB	N.M
ImageNet (Test)	??	13GB	N.M

一般的な環境でのメモリ量比較

松尾研究室: 64/128 GB, AWS GPU: 15 / 60 GB

とてもメインメモリに乗らない

(環境に応じてCropping/解像度を落とす、分散処理等)

ストレージ

Deep Learningとストレージ DB系

- ・ スケーラビリティ・クエリなどで利点
- ・メモリよりは当然低速
- LMDB
 - 高速
 - Caffeでよく利用される
 - 並列読み込みやOSキャッシュの利用で高速化
- HDF5
 - 柔軟なクエリ
 - Numpy Arrayがそのまま突っ込める
 - ネットワークのシリアライズなどでも利用

ファイルシステム系

- ライブラリ付属のデータジェネレータ
 - Keras, TensorFlow, ...
 - Caltech形式(サブディレクトリ=クラス)
- Spark DataFrame + TF

Deep Learningと ストレージ

並列読み込み

NFS/SSH << File IO << Main Mem << GPU Mem 時間のかかる読み込み処理を並列化・キュー管理

Exercise

CPUとGPU - 通信と速度

Agenda

- HPC Learning
- 大規模データとストレージ
- ・並列計算・マルチGPU
- 実践テクニック
- ・まとめ

Deep Learningと並列計算

- ・パラメータサーチ
 - 複数のプロセス(マシン)に個別のパラメータの組み合わせを割り当てる
 - LR, Dropout Rate, # of neurons
 - グリッドサーチ, ランダムサーチ, BO
- ・ データ並列
 - 複数GPU(マシン)にそれぞれ個別のデータ(ミニバッチ)を割り当てる
 - 一つのモデルを共有
 - 推論に適用するのは非常に容易
- ・ モデル並列
 - 一つのモデルを複数のマシンで分割計算
 - モデル毎に作り込みが必要

モデル並列

データ並列

J. Dean, et al., Large Scale Distributed Deep Networks, NIPS 2012

マルチGPUと分散処理

非同期確率的勾配降下法 (Asynchronous SGD)

Hogwild! (Feng Niu, et al. 2011)

- · パラメータ読み込み:非同期(わかる)
- · パラメータ書き込み:非同期(!)
- コアの一部がお互いの進行を 上書き
- · 各グラジエント降下ステップ の平均的な改善量は減少
- スパースな問題の場合には ステップの生産速度の増加
- ・ 全体としては学習プロセスの 高速化を持たらす

```
import torch.multiprocessing as mp
from model import MvModel
def train(model):
    # Construct data loader, optimizer, etc.
   for data, labels in data loader:
        optimizer.zero grad()
        loss fn(model(data), labels).backward()
        optimizer.step() # This will update the shared parameters
if __name__ == '__main__':
   num processes = 4
    model = MvModel()
   # NOTE: this is required for the ``fork`` method to work
   model.share_memory()
    processes = []
   for rank in range(num processes):
        p = mp.Process(target=train, args=(model,))
        p.start()
        processes.append(p)
    for p in processes:
      p.join()
```

Downpour SGD Sandblaster L-BFGS

Figure 2: Left: Downpour SGD. Model replicas asynchronously fetch parameters w and push gradients Δw to the parameter server. Right: Sandblaster L-BFGS. A single 'coordinator' sends small messages to replicas and the parameter server to orchestrate batch optimization.

その後

- "Going Deeper with Convolutions," (GoogLeNet),
 CVPR 2015
- "Batch Normalization"
- AlphaGoのポリシーネットワークの学習
- "TensorFlow:

Large-Scale Machine Learning on Heterogeneous Distributed Systems," Google White Paper, 2015

さらに高速の世界へ

専用ハードウェア

- ハードの種類
 - GPU
 - Application—SpecificIntegrated Circuit(ASIC)
 - FPGA
- Tensor Processing Unit (TPU)
 - Google開発のASIC
 - Google Street View、AlphaGoで利用

TPU (from pcworld.com)

Agenda

- HPC Learning
- ・大規模データとストレージ
- ・並列計算・マルチGPU
- ・実践テクニック
- ・まとめ

Celery

Celery

- 非同期分散ジョブ/タスクキュー
- 簡単にスケール
- · アプリサーバと ワーカーを分離
- Webサーバの 計算部分分離

FacialVAE

http://fvae.ail.tokyo M. Suzuki | WEBLAB

GPUツール

nvidia-smi

NVIDIA	A-SMI 331	.62 Driver Ve	rsion: 331.62		
	Name Temp Per		Bus-Id Disp.A Memory-Usage		
	Tesla K20 27C P	m Off 00 46W / 225W	0000:03:00.0 Off 142MiB / 4799MiB	+======== 0%	0 Default
	Tesla K20 26C P		0000:81:00.0 Off 19MiB / 4799MiB	99%	0 Default
	te proces	ses: Process name			GPU Memory Usage
0	101459 101459				134MiB 134MiB

その他便利なツール

- Microway/gpu-burn
- nvprof
- cuda/samples
 - matrixMul
 - bandwidthTest
 - deviceQuery ...

```
[root@node3 ~]# ./gpu_burn -d 60
GPU 0: Tesla K20m (UUID: GPU-1247410f-4b9e-81f7-bb2e-09b1cb1ae60a)
GPU 1: Tesla K20m (UUID: GPU-41a862d3-d7d8-d087-4c73-6aae177a79c4)
Initialized device 1 with 5119 MB of memory (5025 MB available, using 4523 MB of it), using DOUBLES
Initialized device 0 with 5119 MB of memory (5025 MB available, using 4523 MB of it), using DOUBLES
11.7% proc: 2K/2K err: 0/0 tmp: 35C/39CC
       Summary at: Thu May 26 09:53:42 EST 2016
23.3% proc: 5K/6K err: 0/0 tmp: 37C/41C
       Summary at: Thu May 26 09:53:49 EST 2016
35.0% proc: 8K/9K err: 0/0 tmp: 40C/44C
       Summary at: Thu May 26 09:53:56 EST 2016
46.7% proc: 11K/12K err: 0/0 tmp: 41C/45C
       Summary at: Thu May 26 09:54:03 EST 2016
58.3% proc: 14K/15K err: 0/0 tmp: 42C/46C
       Summary at: Thu May 26 09:54:10 EST 2016
68.3% proc: 17K/18K err: 0/0 tmp: 44C/48C
       Summary at: Thu May 26 09:54:16 EST 2016
81.7% proc: 20K/21K err: 0/0 tmp: 44C/49C
       Summary at: Thu May 26 09:54:24 EST 2016
91.7% proc: 23K/23K err: 0/0 tmp: 45C/50C
        Summary at: Thu May 26 09:54:30 EST 2016
100.0% proc: 26K/27K err: 0/0 tmp: 46C/51C
Killing processes.. done
Tested 2 GPUs:
        GPU 0: OK
        GPU 1: OK
 root@node3 ~1#
```

Agenda

- HPC Learning
- 大規模データとデータベース
- 並列計算・マルチGPU
- 実践テクニック
- ・まとめ

まとめ

- ・良い表現学習 → 大規模データセット
- ・各リソース特性と処理の流れを知ることでパフォーマンスを最大化できる
 - CPU、メモリ、ストレージ、GPU
- ・プロファイル
- ・ストレージ、データベース
- ・マルチGPU、並列処理