モース関数の存在

1

1.1 参考文献

松本幸夫, Morse 理論の基礎, 岩波書店, 2005.

1.2

設定 1.1. 多様体 M の次元は m としておく.

命題 1.2. $(\mathbb{R}^m$ におけるモース関数の存在). $U \subset \mathbb{R}^m$ を開集合, $f: U \to \mathbb{R}$ を滑らかな関数とする. このとき, 適当な m 個の実数 a_1, a_2, \ldots, a_m で

$$\tilde{f}(x_1,\ldots,x_m) = f(x_1,\ldots,x_m) - (a_1x_1 + a_2x_2 + \cdots + a_mx_m)$$

が U 上のモース関数となるものが存在する. また, このとき, a_1, a_2, \ldots, a_m はいずれも絶対値がいくらでも小さくなるようとることができる.

証明. step: a_1, \ldots, a_m が ∇f の臨界値でないならば,

$$\tilde{f}(x_1,\ldots,x_m) = f(x_1,\ldots,x_m) - (a_1x_1 + a_2x_2 + \cdots + a_mx_m)$$

はモース関数である.

 $(\cdot \cdot)$ $p \in U$ を \tilde{f} の臨界点とする. $\nabla f_p - a = 0$ なので, $\nabla f_p = a$ なのだが, a は ∇f の臨界値ではないので, $p \in U$ は ∇f の臨界点ではない. 従って, ∇f の微分 H^f は非退化であるので, $\det H_p^f \neq 0$ が成り立つ. $\det H^{\tilde{f}} = \det H^f$ であるので, $p \in U$ は \tilde{f} の非退化な臨界点である. つまり, 任意の臨界点が非退化臨界点であるので, \tilde{f} はモース関数である.

続き.

step: a_1, \ldots, a_m は存在し、さらに絶対値がいくらでも小さくとれる

 $(\cdot \cdot \cdot)$ ∇f の臨界値の集合はサードの定理から測度 0 であるので, 0 のいくらでも近くにもとめるものが存在する. (あたりまえだが, 0 がとれるわけではない.)

命題 1.3. M がコンパクト多様体であるとき、座標近傍による有限被覆と、コンパクト集合による有限被覆の組 $(\{U_i\}_{i=1}^N,\{K_i\}_{i=1}^N)$ で、 $K_i\subset U_i$ $(i=1,\ldots,N)$ を満たすものが存在する.

証明・任意の $p\in M$ に対して $p\in U_p$ なる座標近傍をとる。 U_p は開集合なので、十分小さい半径の開球 $B(p;\varepsilon)$ を含む。 $\{q\in M\mid d(p,q)\leq \varepsilon/2\}$ は、コンパクト集合 M に含まれる閉集合なのでコンパクト集合。これを K_p とする。 $M=\cup_{p\in M} \mathrm{int}(K_p)$ なる被覆の有限部分被覆をとれば、もとめるような組が得られる。

設定 1.4. M をコンパクトな多様体とする. $f,g:M\to\mathbb{R}$ は, M に対して, 有限個の座標近傍 U_i による被覆 $M=U_i$ と, 有限個のコンパクト集合 $K_i\in U_i$ による被覆 $M=\cup K_i$ の組 $(\{U_i\},\{K_i\})$ をとったとき, 任意の K_i 上で

$$|f(p) - g(p)| < \varepsilon$$

$$|\partial_i f(p) - \partial_i g(p)| < \varepsilon \quad (i = 1, 2, \dots, m)$$

$$|\partial_i \partial_j f(p) - \partial_i \partial_j g(p)| < \varepsilon \quad (i, j = 1, 2, \dots, m)$$

を満たす時に $(\{U_i\}, \{K_i\}, C^2, \varepsilon)$ の意味で近いという.

注意 **1.5.** $(\{U_i\}, \{K_i\})$ を別の $(\{U_i'\}, \{K_i'\})$ に取り替えることを考える. $(\{U_i\}, \{K_i\}, C^2, \varepsilon)$ の意味で近かったからといって, $(\{U_i'\}, \{K_i'\}, C^2, \varepsilon)$ の意味で近いとは限らない. 例えば球面を二つ用意して, 二つの球面をまたがる被覆がない場合とある場合を考えれば良い.

設定 1.6. 今後, M には常に前述の $(\{U_i\}, \{K_i\})$ を適当にひとつ固定して備えておく.

命題 1.7. M を多様体, $C \in M$ をコンパクト集合, $g: M \to \mathbb{R}$ とする. C が g の退化した臨界点を含まなければ、十分小さな $\varepsilon > 0$ で

 $(\{U_i\}, \{K_i\}, C^2, \varepsilon)$ の意味で近い任意の滑らかな関数 f に対して C が f の退化した臨界点を含まないような ε がとれる.

証明. g の退化した臨界点が $C \cup K_i$ の中に存在しないことの必要十分条件は明らかに

$$|\partial_1 g| + \dots + |\partial_m g| + |\det(\partial_i \partial_j g)| > 0$$

が $C\cap K_i$ 上で成り立つことなので、十分小さい ε を選んでおくと、 $(\{U_i\}, \{K_i\}, C^2, \varepsilon)$ の意味で近い滑らかな関数 f に対して

$$|\partial_1 f| + \dots + |\partial_m f| + |\det(\partial_i \partial_j f)| > 0$$

が $C\cap K_i$ 上で成り立つ. 従って, $C\cap K_i$ は退化臨界点を含まない. 従って $C=\cup(C\cap K_i)$ は退化臨界点を含まない. \Box

命題 1.8. M を多様体とする. (U,K) を座標近傍と, $K\subset U$ を満たすコンパクト集合の組とする. このとき, 滑らかな関数 $h:U\to\mathbb{R}$ で

- $(1) \ 0 \le h \le 1$
- (2) h は K の適当な開近傍 V の上で恒等的に 1 である.
- (3) h は V を適当なコンパクト集合 $L \subset U$ の外部では恒等的に 0 である. M を満たすものが存在する.

証明. 多様体の基礎とかにかいてる.

注意 1.9. (この h を (U, K) に適合したプリン関数ということにし, (K, V, L, U) を皿ということにする.)

П

命題 1.10. (閉多様体上のモース関数の存在). M を閉多様体, $g:M\to\mathbb{R}$ を滑らかな関数とする. $(\{U_i\},\{K_i\},C^2,\varepsilon)$ の意味で近い滑らかな関数 $f:M\to\mathbb{R}$ で, モース関数となるものが存在する.

証明.

$$C_0 := \varnothing, C_i := K_1 \cup \cdots \cup K_i$$

と定める. $f_0 \coloneqq g$ とする. 滑らかな関数 $f_{i-1}: M \to \mathbb{R}$ で C_{i-1} に退化臨界点を含まないものが存在したとする. (U_i,K_i) に適合するプリン関数 h をとる. 皿を (K_i,V_i,L_i,U_i) とする.

$$f_i := \begin{cases} f_{i-1}(x_1, \dots, x_m) - (a_1 x_1 + \dots + a_m x_m) h_i(x_1, \dots, x_m) & (x \in U_i) \\ f_{i-1}(x_1, \dots, x_m) & (x \in L_i) \end{cases}$$

として定める (a_1,\ldots,a_m) はあとからうまく定める). すると、プリンは K_i 上で 1 なので、 f_i は K_i で モース関数となるように a_1,\ldots,a_m をうまく定めればよい.従って、 f_i は K_i 上に退化臨界点を持たない. $\underline{\text{step:}}\ a_1,\ldots,a_m$ はさらに f_i が f_{i-1} が $(\{U_i\},\{K_i\},C^2,\varepsilon)$ の意味で近いようにとりなおせる. $\underline{(\cdot;)}\ U_i$ だと

$$|f_i(p) - f_{i-1}(p)| = |a_1x_1 + \cdots + a_mx_m| h_i(p)$$

$$|\partial_k f_i(p) - \partial_k f_{i-1}(p)| = |a_k h_i(p) + (a_1x_1 + \cdots + a_mx_m)\partial_k h_i(p)|$$

$$|\partial_k \partial_l f_i(p) - \partial_k \partial_l f_{i-1}(p)| = |a_k \partial_l h_i(p) + a_l \partial_k h_i(p) + (a_1x_1 + \cdots + a_mx_m)\partial_k \partial_l h(p)|$$

であり、 h_i 、 $\partial_k h_i$ 、 $\partial_k h_i$ は連続なのでコンパクト集合上では最大値をとるので、 a_1,\ldots,a_m を十分小さくとれば、 K_i 上では C^2 の意味で近い. K_i 以外のコンパクト集合 K_j の上では、結局 K_i の外では $f_i=f_{i-1}$ であることを考えると、 $K_j\cap L_i$ 上での評価を考えれば良い. $K_i\cap L_j$ は座標近傍 $U_i\cap U_j$ に含まれるので、上の式の右辺に座標変換のヤコビ行列分の変化が生じるのだが、それもコンパクト集合上の連続関数なので a_1,\ldots,a_m を十分小さくとればよい.

 f_{i-1} は $K_1\cup\cdots K_{i-1}$ 上に退化臨界点をもたないので、上のようにして定めた $(\{U_i\},\{K_i\},C^2,\varepsilon)$ の意味で近い f_i も $K_1\cup\cdots K_{i-1}$ に退化臨界点をもたない. K_i も f_i の退化臨界点を含まないので、 $K_1\cup\cdots K_{i-1}\cup K_i$ に退化臨界点を持たない. これを繰り返すことで、 $M=\cup K_i$ 上に退化臨界点をもたない $(\{U_i\},\{K_i\},C^2,\varepsilon)$ の意味で近い滑らかな関数を構成できる.