

Kidney Disease Prediction using Classification Models

By: Nick Catanglan

Agenda:

- 1. Problem Overview
- 2. Data Wrangling
- 3. Exploratory Data Analysis
- 4. Model Selections and Results
- 5. Future Work & Recommendations

1. PROBLEM OVERVIEW

Chronic Kidney Disease (CKD), is the gradual loss of kidney function leading to kidney failure.

- Kidney filter waste and excess fluid from the blood, which are then excreted as a urine.
- CKD is the 9th leading cause of death in the U.S. in 2016

Medicare spent in 2016 alone:

\$79 billion for people with Chronic Kidney Disease.

How does CKD Model Algorithm prediction help?

Machine Learning automatically read and predict thousands of laboratory test and medical records of patients therefore will:

- Save valuable time and money for the government, healthcare industry and patients.
- Early detection, the sooner can get treatment.

About the dataset:

- Data set from UCI repository
- 400 patients with medical records, laboratory test taken in two months period.
- 26 columns and 400 rows (11 numeric, 14 nominals)

Challenges:

- Missing Values
- Less data points
- Typographical Errors
- Outliers

Model Training & Tuning

3. EXPLORATORY ANALYSIS

HEATMAP

High correlated variables(Features)

- Hemoglobin & PCV (0.8)
- Sugar & BGR
- SC & BU

Very low correlation to Target

Potassium

After all cleaning: 368 rows, 16 col.

- 0.6

- 0.3

- 0.0

-0.3

- -0.6

PIE CHART SHOWS THE DIVISION OF OUR TARGET VARIABLE

4. Model Selections

LOGISTIC REGRESSION

- Probability
- Sigmoid function
- 0 to 1 value
- With threshold (0.5)

DECISION TREE

- Split data on features
- Repetitive splitting procedure
- Continue repetitive splitting until each node left w/ same class label
- entropy & info gain

RANDOM FOREST

GRADIENT BOOSTING

- Ensemble model Bagging(Parallel)
- Compose of many decision trees
- Average performance of trees
- Ensemble model (Sequential)
- Iterate multiple times.
- Optimizing the loss function(error) of previous learner.

Model Comparison

	Logistic Regression	Decision Tree	Random Forest	KNN	Naive Bayes	SVM	Gradient Boosting
Accuracy	95%	96%	99%	91%	92%	89%	98%
Precision	100%	100%	100%	100%	100%	100%	100%
Recall	96%	94%	98%	89%	87%	89%	97%
Cross_Val	93%	95%	97%	89%	90%	85%	96%

The best performing model is the Random Forest

CONFUSION MATRIX: Random Forest

• Use to measure performance of algorithms

	ACTUAL	ACTUAL	
PREDICTED	NOT_CKD	CKD	
NOT_CKD	43 => TP	0 => FP T-1 error	
CKD	2 =>FN T-2 error	68=>TN	

Accuracy = (TP+TN)/(TP+TN+FN+FP) = 98% 98% correct prediction 2% mis-classification error

Precision = TP/(TP+FP) = 100%

Recall = TP/(TP+FN) = 95.6%

SUMMARY:

GOAL:

Make a model that can predict CKD given some laboratory result and medical history.

RESULTS:

- Model was able to predict with 98% accuracy.
- 2% mis-classification error
- Precision 100%
- **❖** Recall 95.6%

RISKS:

- Wrong Diagnosis, model incorrectly classified 2% error as likely as CKD in fact it is NOT CKD.
- Review with group of medical and engineering professions for further study before implementation.

5. FUTURE WORK:

- Collect more data for it has only 400 observation
- Add more important features and laboratory results
 - > RBC lab results, Age stratified classifiers, Lifestyle, Work, Married etc.
- Model Improvement: combine multiple classifiers
 - Other Ensemble
- Balance label data:
 - > SMOTE
 - Oversampling or other methods.

THANK YOU!!!!!!

Any Question?