Knowledge discovery in data mining Probability H.W. mework Jerry goes to the bank 20%. of the day Susan goes 30%. Of the day = 0.3 P(T) = 0.2; P(S) = 0.3; P(T+S) = 0.08a) $P(J|S) = P(J \cap S) = \frac{0.88}{p(S)} = \frac{0.8}{6.3} = \frac{0.8}{3} = \frac{0.26}{3}$ 6) P(J (4-5)) = P(JAS) = 0.08 0.08 0.08 1-P(8) 1-03 0.7 b) P(J Susan was not there)-P(J-S)=0.12So, P(J|Susan was not there)=6.12

 $\frac{20.12}{0.7} = \frac{1.2}{7} = \frac{0.17}{}$

c)
$$P(\text{atleast one of them is 7 hera}) = 0.42$$
 $P(0.22 + 0.08 + 0.12) = 0.42$

So, $P(\text{atleast one } | \text{both were there})$
 $= 0.08 = 1.9$
 $= 0.42$

Homework

 $P(H) = 0.8$; $P(S) = 0.9$
 $P(\text{atleast one}) = 0.91$
 $P(\text{atleast$

So,
$$P(A \cap B) = P(A) \times P(B)$$

$$\Rightarrow \frac{1}{36} = \frac{5}{36} \times \frac{1}{86}$$

$$\Rightarrow \frac{1}{36} + \frac{5}{216} = \frac{6}{36} + \frac{1}{36}$$

$$\Rightarrow \frac{1}{36} = \frac{6}{36} \times \frac{1}{36}$$
So, $P(A \cap B) = P(A) \times P(B)$

$$\Rightarrow \frac{1}{36} = \frac{6}{36} \times \frac{1}{6}$$

$$\Rightarrow \frac{1}{36} = \frac{1}{36} \times \frac{1}{6} \times \frac{1}{6}$$

$$\Rightarrow \frac{1}{36} = \frac{1}{36} \times \frac{1}{6} \times \frac{1}{6} \times \frac{1}{6}$$

$$\Rightarrow \frac{1}{36} = \frac{1}{36} \times \frac{1}{6} \times \frac{1}{6$$

positional p(0/T) =
$$P(0/T) / P(T)$$

= 0.3 × 0.6 = 0.18
 $P(0/NT) = 0.1$
 $P(0 / NT) = P(0/NT) / P(NT)$
= 0.1 × 0.1 = $1 / 0.0$
 $P(0/A) = 1 - 0.6 - 0.1 = 0.3$
 $P(0/A) = P(0/A) / P(A)$
= 0.3 × 0.2 = 0.06
a) $P(To find oil) = 0.18 + 0.06 + 0.01$
= 0.25
b) $P(That + they drilled in texas) = P(TNO) / P(0)$
= 0.18 / 0.25 = 0.72
 $P(TO / P(0)) = 0.18 / 0.25 = 0.72$
 $P(TO / P(0)) = 0.18 / 0.25 = 0.72$

Hence they are independent.