Работа 3.4.2 Закон Кюри-Вейса

Шарапов Денис, Зелёный Николай, Б05-005

Содержание

1	Аннотация	2
	1.1 Экспериментальная установка	
2	Результаты измерений и обработка данных	3
3	Вывол	3

1 Аннотация

Цель работы: изучение температурной зависимости магнитной восприимчивости ферромагнетика выше точки Кюри.

В работе используются: катушка с образцом из гадолиния, термостат, частотометр, цифровой вольтметр, LC-автогенератор, термопара медь-константан.

1.1 Экспериментальная установка

Экспериментальная установка. Схема установки для проверки Закона Кюри Вейсса показана на рис. Исследуемый ферромагнитный образец (гадолиний) расположен внутри пустотелой катушки самоиндукции, которая служит индуктивностью колебательного контура, входящего в состав LC -автогенератора. Автогенератор собран на полевом транзисторе КП-103 и смонтирован в виде отдельного блока.

Рис. 1: Схема установки

Гадолиний является хорошим проводником электрического тока, а рабочая частота генератора достаточно велика ($\sim 50~\rm k$ Гц), поэтому для уменьшения вихревых токов образец изготовлен из мелких кусочков размером $\sim 0,5~\rm km$. Катушка 1 с образцом помещена в стеклянный сосуд 2, залитый трансформаторным маслом. Масло предохраняет образец от окисления и способствует ухудшению электрического контакта между отдельными частичками образца. Кроме того, оно улучшает тепловой контакт между образцом и термостатируемой (рабочей) жидкостью 3 в термостате. Ртутный термометр 4 используется для приближённой оценки температуры.

При изменении температуры меняется магнитная восприимчивость образца χ , а следовательно, самоиндукция катушки и период колебаний τ автогенератора. Для измерения периода используется частотомер. Закон Кюри Вейсса справедлив, если выполнено соотношение:

$$\frac{1}{\chi} \sim (T - \Theta_p) \sim \frac{1}{(\tau^2 - \tau_o^2)},$$

где au_o - период колебаний в отсутствие образца.

Для охлаждения образца используется холодная водопроводная вода, циркулирующая вокруг сосуда с рабочей жидкостью (дистиллированной водой); рабочая жидкость постоянно перемешивается.

Величина стабилизируемой температуры задаётся на дисплее 5 термостата. Для нагрева служит внутренний электронагреватель, не показанный на рисунке 1.

Когда температура рабочей жидкости в сосуде приближается к заданной, непрерывный режим работы нагревателя автоматически переходит в импульсный (нагреватель то включается, то выключается) - начинается процесс стабилизации температуры.

Температура исследуемого образца всегда несколько отличается от температуры дистиллированной воды в сосуде. После того как вода достигла рданной температуры, идёт медленный процесс выравнивания температур образца и воды. Разность их температур контролируется с помощью медноконстантановой термопары 6 и цифрового вольтметра. Один из спаев термопары находится в тепловом контакте с образцом, а другой погружён в воду. Концы термопары подключены к цифровому вольтметру. Рекомендуется измерять период колебаний автогенератора в тот момент, когда указанная разность температур становится $\leq 0,5^{\circ}$ С. Чувствительность термопары

$$K = 24$$
 град/мВ.

2 Результаты измерений и обработка данных

Исследуем зависимость периода колебаний LC-генератора от температуры образца, отмечая период колебаний τ по частотометру, а температуру T — по показаниям дисплея и цифровому вольтметру. Результаты измерений внесём в таблицу 1.

Рис. 2: Схема установки

Построим график зависимости $1/(\tau^2-\tau_0^2)$ от T. Экстраполируем линейный участок зависимости, чтобы определить θ_p и θ_k для гадолиния

$$\theta_p = 18.4 \pm 0.2^{\circ} \text{C},$$

 $\theta_k \approx 21, 7 \pm 2^{\circ} \text{C}.$

3 Вывод

Причина, по которой прямая не достигает 0 заключается в том, что для этого должны формироваться колебания очень высокой частоты. Однако в данном случае появляются потери, вихревые токи и т. д.

Таблица 1: Результаты измерений

T, °C	τ , MKC	$1/(\tau^2 - \tau_0^2)$
16	9,953	0,0319
18	9,755	0,0403
20	9,442	0,0468
22	9,043	0,0709
24	8,751	0,1178
26	8,608	0,1642
28	8,534	0,2094
30	8,486	0,2529
32	8,456	0,2947
34	8,429	0,3364
36	8,409	0,3772
38	8,397	0,4154
40	8,384	0,4530

При больших температурах индуктивность катушки из гадолиния сильно падает, но ведь в ней используются и другие материалы, которыми ранее пренебрегли.

В исследуемом диапазоне от 21 до 36 °C закон Кюри-Вейса можно считать применимым

Значение парамагнитной точки Кюри - $T_0 = 16 \pm 1^{\circ} \mathrm{C}.$