Chapter 4

- 4.1 Normal approximation (Laplace's method)
- 4.2 Large-sample theory
- 4.3 Counter examples
 - includes examples of difficult posteriors for MCMC, too
- 4.4 Frequency evaluation*
- 4.5 Other statistical methods*

Normal approximation (Laplace approximation)

- Often posterior converges to normal distribution when $n \to \infty$
 - bounded, non-singular, the number of parameters don't grow with n
 - we can then approximate $p(\theta|y)$ with normal distribution

Normal approximation (Laplace approximation)

- Often posterior converges to normal distribution when $n \to \infty$
 - bounded, non-singular, the number of parameters don't grow with n
 - we can then approximate $p(\theta|y)$ with normal distribution
 - Laplace used this (before Gauss) to approximate the posterior of binomial model to infer ratio of girls and boys born

Normal approximation (Laplace approximation)

- Often posterior converges to normal distribution when $n \to \infty$
 - bounded, non-singular, the number of parameters don't grow with n
 - we can then approximate $p(\theta|y)$ with normal distribution

• We can approximate $p(\theta|y)$ with normal distribution

$$p(\theta|y) pprox rac{1}{\sqrt{2\pi}\sigma_{ heta}} \exp\left(-rac{1}{2\sigma_{ heta}^2}(heta-\hat{ heta})^2
ight)$$

• i.e. log posterior $\log p(\theta|y)$ can be approximated with a quadratic function

$$\log p(\theta|y) \approx \alpha(\theta - \hat{\theta})^2 + C$$

• We can approximate $p(\theta|y)$ with normal distribution

$$p(\theta|y) pprox rac{1}{\sqrt{2\pi}\sigma_{ heta}} \exp\left(-rac{1}{2\sigma_{ heta}^2}(heta-\hat{ heta})^2
ight)$$

• i.e. log posterior $\log p(\theta|y)$ can be approximated with a quadratic function

$$\log p(\theta|y) \approx \alpha(\theta - \hat{\theta})^2 + C$$

• Corresponds to Taylor series expansion around $heta=\hat{ heta}$

$$f(\theta) = f(\hat{\theta}) + f'(\hat{\theta})(\theta - \hat{\theta}) + \frac{f''(\hat{\theta})}{2!}(\theta - \hat{\theta})^2 + \frac{f^{(3)}(\hat{\theta})}{3!}(\theta - \hat{\theta})^3 + \dots$$

• We can approximate $p(\theta|y)$ with normal distribution

$$p(\theta|y) pprox rac{1}{\sqrt{2\pi}\sigma_{ heta}} \exp\left(-rac{1}{2\sigma_{ heta}^2}(heta-\hat{ heta})^2
ight)$$

• i.e. log posterior $\log p(\theta|y)$ can be approximated with a quadratic function

$$\log p(\theta|y) \approx \alpha(\theta - \hat{\theta})^2 + C$$

• Corresponds to Taylor series expansion around $heta=\hat{ heta}$

$$f(\theta) = f(\hat{\theta}) + f'(\hat{\theta})(\theta - \hat{\theta}) + \frac{f''(\hat{\theta})}{2!}(\theta - \hat{\theta})^2 + \frac{f^{(3)}(\hat{\theta})}{3!}(\theta - \hat{\theta})^3 + \dots$$

• if $\hat{\theta}$ is at mode, then $f'(\hat{\theta}) = 0$

• We can approximate $p(\theta|y)$ with normal distribution

$$p(\theta|y) pprox rac{1}{\sqrt{2\pi}\sigma_{ heta}} \exp\left(-rac{1}{2\sigma_{ heta}^2}(heta-\hat{ heta})^2
ight)$$

• i.e. log posterior $\log p(\theta|y)$ can be approximated with a quadratic function

$$\log p(\theta|y) \approx \alpha(\theta - \hat{\theta})^2 + C$$

ullet Corresponds to Taylor series expansion around $heta=\hat{ heta}$

$$f(\theta) = f(\hat{\theta}) + f'(\hat{\theta})(\theta - \hat{\theta}) + \frac{f''(\hat{\theta})}{2!}(\theta - \hat{\theta})^2 + \frac{f^{(3)}(\hat{\theta})}{3!}(\theta - \hat{\theta})^3 + \dots$$

- if $\hat{\theta}$ is at mode, then $f'(\hat{\theta}) = 0$
- often when $n \to \infty$, $\frac{f^{(3)}(\hat{\theta})}{3!}(\theta \hat{\theta})^3 + \dots$ is small

Multivariate Taylor series

Multivariate series expansion

$$f(\theta) = f(\hat{\theta}) + \frac{df(\theta')}{d\theta'} \Big|_{\theta' = \hat{\theta}} (\theta - \hat{\theta}) + \frac{1}{2!} (\theta - \hat{\theta})^{T} \frac{d^{2}f(\theta')}{d\theta'^{2}} \Big|_{\theta' = \hat{\theta}} (\theta - \hat{\theta}) + \dots$$

• Taylor series expansion of the log posterior around the posterior mode $\hat{\theta}$

$$\log p(\theta|y) = \log p(\hat{\theta}|y) + \frac{1}{2}(\theta - \hat{\theta})^T \left[\frac{d^2}{d\theta^2} \log p(\theta'|y) \right]_{\theta' = \hat{\theta}} (\theta - \hat{\theta}) + \dots$$

• Taylor series expansion of the log posterior around the posterior mode $\hat{\theta}$

$$\log p(\theta|y) = \log p(\hat{\theta}|y) + \frac{1}{2}(\theta - \hat{\theta})^T \left[\frac{d^2}{d\theta^2} \log p(\theta'|y) \right]_{\theta' = \hat{\theta}} (\theta - \hat{\theta}) + \dots$$

• Multivariate normal $\propto |\Sigma|^{-1/2} \exp\left(-\frac{1}{2}(\theta-\hat{\theta}^T)\Sigma^{-1}(\theta-\hat{\theta})\right)$

• Multivariate normal $\propto |\Sigma|^{-1/2} \exp\left(-\frac{1}{2}(\theta-\hat{\theta}^T)\Sigma^{-1}(\theta-\hat{\theta})\right)$

• Multivariate normal $\propto |\Sigma|^{-1/2} \exp\left(-\frac{1}{2}(\theta-\hat{\theta}^T)\Sigma^{-1}(\theta-\hat{\theta})\right)$

Normal approximation

$$p(\theta|y) \approx N(\hat{\theta}, [I(\hat{\theta})]^{-1})$$

where $I(\theta)$ is called *observed information*

$$I(\theta) = -\frac{d^2}{d\theta^2} \log p(\theta|y)$$

Normal approximation

$$p(\theta|y) \approx N(\hat{\theta}, [I(\hat{\theta})]^{-1})$$

where $I(\theta)$ is called *observed information*

$$I(\theta) = -\frac{d^2}{d\theta^2} \log p(\theta|y)$$

 $Hessian H(\theta) = -I(\theta)$

• $I(\theta)$ is called *observed information*

$$I(\theta) = -\frac{d^2}{d\theta^2} \log p(\theta|y)$$

- $I(\hat{\theta})$ is the second derivatives at the mode and thus describes the curvature at the mode
- if the mode is inside the parameter space, $I(\hat{\theta})$ is positive
- if θ is a vector, then $I(\theta)$ is a matrix

 BDA3 Ch 4 has an example where it is easy to compute first and second derivatives and there is easy analytic solution to find where the first derivatives are zero

- Normal approximation can be computed numerically
 - iterative optimization to find a mode (may use gradients)
 - autodiff or finite-difference for gradients and Hessian

- Normal approximation can be computed numerically
 - iterative optimization to find a mode (may use gradients)
 - autodiff or finite-difference for gradients and Hessian
 - e.g. in R, demo4_1.R:

```
\begin{array}{lll} \mbox{bioassayfun} & <-\mbox{ function}(w,\mbox{ df})\ \{ & \mbox{ } z <-\mbox{ } w[1] + w[2]*df\$x \\ & -\mbox{sum}(\mbox{ df}\$y*(z) - \mbox{ df}\$n*\mbox{log1p}(\mbox{exp}(z))) \\ \} \\ \mbox{theta0} & <-\mbox{ } c(0\,,0) \\ \mbox{optimres} & <-\mbox{ optim}(w0,\mbox{ bioassayfun}\,,\mbox{ } gr=\mbox{NULL},\mbox{ df1}\,,\mbox{ hessian=T)} \\ \mbox{thetahat} & <-\mbox{ optimres}\$\mbox{par} \\ \mbox{Sigma} & <-\mbox{ solve}(\mbox{optimres}\$\mbox{hessian}) \\ \end{array}
```

- Normal approximation can be computed numerically
 - iterative optimization to find a mode (may use gradients)
 - autodiff or finite-difference for gradients and Hessian
- CmdStan(R) has Laplace algorithm

- Normal approximation can be computed numerically
 - iterative optimization to find a mode (may use gradients)
 - autodiff or finite-difference for gradients and Hessian
- CmdStan(R) has Laplace algorithm
 - uses L-BFGS quasi-Newton optimization algorithm for finding the mode
 - uses autodiff for gradients
 - uses finite differences of gradients to compute Hessian

- Normal approximation can be computed numerically
 - iterative optimization to find a mode (may use gradients)
 - autodiff or finite-difference for gradients and Hessian
- CmdStan(R) has Laplace algorithm
 - uses L-BFGS quasi-Newton optimization algorithm for finding the mode
 - uses autodiff for gradients
 - uses finite differences of gradients to compute Hessian
 - second order autodiff in progress

 Optimization and computation of Hessian requires usually much less density evaluations than MCMC

- Optimization and computation of Hessian requires usually much less density evaluations than MCMC
- In some cases accuracy is sufficient

- Optimization and computation of Hessian requires usually much less density evaluations than MCMC
- In some cases accuracy is sufficient
- In some cases accuracy for a conditional distribution is sufficient (Ch 13)
 - e.g. Gaussian latent variable models, such as Gaussian processes (Ch 21) and Gaussian Markov random fields
 - Rasmussen & Williams: Gaussian Processes for Machine Learning
 - CS-E4895 Gaussian Processes (in spring)

- Optimization and computation of Hessian requires usually much less density evaluations than MCMC
- In some cases accuracy is sufficient
- In some cases accuracy for a conditional distribution is sufficient (Ch 13)
 - e.g. Gaussian latent variable models, such as Gaussian processes (Ch 21) and Gaussian Markov random fields
 - Rasmussen & Williams: Gaussian Processes for Machine Learning
 - CS-E4895 Gaussian Processes (in spring)
- Accuracy can be improved by importance sampling (Ch 10)

But the normal approximation is not that good here: Grid $sd(LD50) \approx 0.1$, Normal $sd(LD50) \approx .75!$

Grid sd(LD50) \approx 0.1, IS sd(LD50) \approx 0.1

- Accuracy can be improved by importance sampling
- Pareto-k diagnostic of importance sampling weights can be used for diagnostic
 - in Bioassay example k = 0.57, which is ok

- Accuracy can be improved by importance sampling
- Pareto-k diagnostic of importance sampling weights can be used for diagnostic
 - in Bioassay example k = 0.57, which is ok
- CmdStan(R) has Laplace algorithm
 - since version 2.33 (2023)
 - + Pareto-k diagnostic via posterior package
 - importance resampling (IR) via posterior package

Normal approximation and parameter transformations

- Normal approximation is not good for parameters with bounded or half-bounded support
 - e.g. $\theta \in [0, 1]$ presenting probability

Normal approximation and parameter transformations

- Normal approximation is not good for parameters with bounded or half-bounded support
 - e.g. $\theta \in [0, 1]$ presenting probability
 - Stan code can include constraints

```
real<lower=, upper=0> theta;
```

Normal approximation and parameter transformations

- Normal approximation is not good for parameters with bounded or half-bounded support
 - e.g. $\theta \in [0, 1]$ presenting probability
 - Stan code can include constraints real<lower=, upper=0> theta;
 - for this, Stan does the inference in unconstrained space using logit transformation

- Normal approximation is not good for parameters with bounded or half-bounded support
 - e.g. $\theta \in [0, 1]$ presenting probability
 - Stan code can include constraints real<lower=, upper=0> theta;
 - for this, Stan does the inference in unconstrained space using logit transformation
 - density of the transformed parameter needs to include Jacobian of the transformation (BDA3 p. 21)

Binomial model $y \sim Bin(\theta, N)$, with data y = 9, N = 10

With Beta(1, 1) prior, the posterior is Beta(9 + 1, 1 + 1)

With Beta(1, 1) prior, the posterior is Beta(9 + 1, 1 + 1)

Stan computes only the unnormalized posterior $q(\theta|y)$

With Beta(1, 1) prior, the posterior is Beta(9 + 1, 1 + 1)

For illustration purposes we normalize Stan result $q(\theta|y)$

With Beta(1, 1) prior, the posterior is Beta(9 + 1, 1 + 1)

Beta(9 + 1, 1 + 1), but x-axis shows the unconstrained $logit(\theta)$

...but we need to take into account the absolute value of the determinant of the Jacobian of the transformation $\theta(1 - \theta)$

...but we need to take into account Jacobian $\theta(1-\theta)$

Let's compare a wrong normal approximation...

...but we need to take into account Jacobian $\theta(1-\theta)$

Let's compare a wrong normal approximation and correct one

Let's compare a wrong normal approximation and correct one Sample from both approximations and show KDEs for draws

Let's compare a wrong normal approximation and correct one Inverse transform draws and show KDEs

Laplace approximation can be further improved with importance resampling

Higher order derivatives at the mode can be used

- Higher order derivatives at the mode can be used
- Split-normal and split-t by Geweke (1989) use additional scaling along different principal axes

- Higher order derivatives at the mode can be used
- Split-normal and split-t by Geweke (1989) use additional scaling along different principal axes
- Other distributions can be used (e.g. *t*-distribution)

- Higher order derivatives at the mode can be used
- Split-normal and split-t by Geweke (1989) use additional scaling along different principal axes
- Other distributions can be used (e.g. *t*-distribution)
- Instead of mode and Hessian at mode, e.g.
 - variational inference (Ch 13)
 - CS-E4820 Machine Learning: Advanced Probabilistic Methods
 - CS-E4895 Gaussian Processes
 - Stan has the ADVI algorithm (not very good implementation)
 - Stan has Pathfinder algorithm (CmdStanR, brms)
 - instead of normal, methods with flexible flow transformations
 - expectation propagation (Ch 13)
 - speed of these is usually between optimization and MCMC
 - stochastic variational inference can be even slower than MCMC

Pathfinder: Parallel quasi-Newton variational inference.

quasi-Newton variational inference. *Journal of Machine Learning Research*, 23(306):1–49.

Pathfinder: Parallel quasi-Newton variational inference.

Zhang, Carpenter, Gelman, and Vehtari (2022). Pathfinder: Parallel quasi-Newton variational inference. *Journal of Machine Learning Research*, 23(306):1–49.

Pathfinder: Parallel quasi-Newton variational inference.

Birthdays case study uses Pathfinder to speed up workflow https://users.aalto.fi/~ave/casestudies/Birthdays/birthdays.html

Distributional approximations

Exact, Normal at mode, Normal with variational inference

Distributional approximations

Exact, Normal at mode, Normal with variational inference

Grid sd(LD50) \approx 0.090, Normal sd(LD50) \approx .75, Normal + IR sd(LD50) \approx 0.096 (Pareto-k = 0.57)

Distributional approximations

Exact, Normal at mode, Normal with variational inference

Grid sd(LD50) \approx 0.090, Normal sd(LD50) \approx .75, Normal + IR sd(LD50) \approx 0.096 (Pareto-k = 0.57) VI sd(LD50) \approx 0.13, VI + IR sd(LD50) \approx 0.095 (Pareto-k = 0.17)

Variational inference includes a large number of methods

- Variational inference includes a large number of methods
- For a restricted set of models, possible to derive deterministic algorithms
 - can be fast and can be relatively accurate

- Variational inference includes a large number of methods
- For a restricted set of models, possible to derive deterministic algorithms
 - can be fast and can be relatively accurate
- Using stochastic (Monte Carlo) estimation of the divergence, possible to derive generic black box algorithms

- Variational inference includes a large number of methods
- For a restricted set of models, possible to derive deterministic algorithms
 - can be fast and can be relatively accurate
- Using stochastic (Monte Carlo) estimation of the divergence, possible to derive generic black box algorithms
 - possible to use use also mini-batching

- Variational inference includes a large number of methods
- For a restricted set of models, possible to derive deterministic algorithms
 - can be fast and can be relatively accurate
- Using stochastic (Monte Carlo) estimation of the divergence, possible to derive generic black box algorithms
 - possible to use use also mini-batching
 - can be fast and provide better predictive distribution than Laplace approximation if the posterior is far from normal

- Variational inference includes a large number of methods
- For a restricted set of models, possible to derive deterministic algorithms
 - can be fast and can be relatively accurate
- Using stochastic (Monte Carlo) estimation of the divergence, possible to derive generic black box algorithms
 - · possible to use use also mini-batching
 - can be fast and provide better predictive distribution than Laplace approximation if the posterior is far from normal
 - in general, unlikely to achieve accuracy of HMC with the same computation cost

- Variational inference includes a large number of methods
- For a restricted set of models, possible to derive deterministic algorithms
 - can be fast and can be relatively accurate
- Using stochastic (Monte Carlo) estimation of the divergence, possible to derive generic black box algorithms
 - possible to use use also mini-batching
 - can be fast and provide better predictive distribution than Laplace approximation if the posterior is far from normal
 - in general, unlikely to achieve accuracy of HMC with the same computation cost
 - with increasing number of posterior dimensions, the obtained approximation gets worse (Dhaka, Catalina, Andersen, Magnusson, Huggins, and Vehtari, 2020)

- Variational inference includes a large number of methods
- For a restricted set of models, possible to derive deterministic algorithms
 - can be fast and can be relatively accurate
- Using stochastic (Monte Carlo) estimation of the divergence, possible to derive generic black box algorithms
 - possible to use use also mini-batching
 - can be fast and provide better predictive distribution than Laplace approximation if the posterior is far from normal
 - in general, unlikely to achieve accuracy of HMC with the same computation cost
 - with increasing number of posterior dimensions, the obtained approximation gets worse (Dhaka, Catalina, Andersen, Magnusson, Huggins, and Vehtari, 2020)
 - with increasing number of posterior dimensions, the stochastic divergence estimate gets worse and flows have problems, too (Dhaka, Catalina, Andersen, Welandawe, Huggins, and Vehtari, 2021)