ARCOS Group

uc3m | Universidad Carlos III de Madrid

Lesson 2 (II) Floating point

Computer Structure
Bachelor in Computer Science and Engineering

Contents

I. Introduction

- Motivation and goals
- 2. Positional (numeral) systems

2. Representations

- 1. Alphanumeric
 - Characters
 - 2. Strings
- 2. Numerical
 - I. Natural and integer
 - 2. Fixed point
 - 3. Floating point (IEEE 754 standard)

Contents

I. Introduction

- Motivation and goals
- 2. Positional (numeral) systems

2. Representations

- I. Alphanumeric
 - Characters
 - 2. Strings
- 2. Numerical
 - Natural and integer
 - 2. Fixed point
 - 3. Floating point (IEEE 754 standard)

Reminder: we need...

▶ To know possible representations:

- ▶ To know the characteristics of theses representations:
 - Limitations

▶ To know how work with the selected representation:

More representation necessities...

How to represent?

Very large numbers: 30.556.926.000₍₁₀₎

Very small numbers: 0.000000000529177₍₁₀₎

Fractional numbers: 1.58567

Reminder **Example of failure...**

- ▶ Ariane 5 explosion (first flight)
 - Sent by ESA in June 1996
 - Cost of development:10 years and 7 billion dollars

- Exploded 40 seconds after launch, at 3700 meters altitude.
- ▶ Failure due to total loss of altitude information:
 - ▶ The inertial reference system software performed the conversion of a 64-bit floating point real value to a 16-bit integer value.
 - The number to be stored was greater than 32767 (the largest 16-bit signed integer) and a conversion failure and exception occurred.

Fixed point [racionals]

The position of the binary point is fixed and the weights associated with the decimal places are used.

Example:

$$|00|.|0|0 = 2^4 + 2^0 + 2^{-1} + 2^{-3} = 9.625$$

Fractional values in binary with fixed point

Example with 6 bits:

- Example: $10.1010_{(2} = 1 \times 2^{1} + 1 \times 2^{-1} + 1 \times 2^{-3} = 2.62510$
- Using this fixed point, the range is:
 □ [0 a 3.9375 (almost 4)]

Fractional powers of 2

i	2-i	
0	1.0	1
1	0.5	1/2
2	0.251/4	
3	0.125	1/8
4	0.0625	1/16
5	0.03125	1/32
6	0.015625	
7	0.0078125	
8	0.00390625	
9	0.001953125	
10	0.0009765625	

Contents

I. Introduction

- Motivation and goals
- 2. Positional (numeral) systems

2. Representations

- I. Alphanumeric
 - Characters
 - 2. Strings
- 2. Numerical
 - I. Natural and integer
 - 2. Fixed point
 - 3. Floating point (IEEE 754 standard)

Floating-point numbers

- Each number has a mantissa and an exponent
- Scientific notation (in decimal): normalized form
 - Only one digit different to 0 on the left of decimal point
- The number is adapted to the order of magnitude of the value to be represented, by translating the decimal point by using the exponent

Scientific notation in binary

- Normalized form:
 One I (only one digit) in the left of the binary point
 - Normalized: 1.0001×2^{-9} ,
 - Not normalized: 0.0011×2^{-8} , 10.0×2^{-10}

IEEE 754 Floating Point Standard [rationals]

- Floating point standard used in most computers.
- Characteristics (unless special cases):
 - Exponent: excess-k with bias k = 2 num_bits_in_exponent I I
 - Mantissa: sign-magnitude, normalized, with implicit bit
- Different formats:
 - Single precision: 32 bits (sign: I, exponent: 8, mantissa: 23 and bias: 127)
 - **Double precision**: 64 bits (sign: I, exponent: II, mantissa: 52 and bias: 1023)
 - Quad-precision: 128 bits (sign: I, exponent: 15, mantissa: 112 and bias: 16383)

Normalization and implicit bit

Normalization

In order to normalize the mantissa, the exponent is adjusted to have a most significant bit of value I

```
Example: 00010000000010101 \times 2^3 (is not)
```

 $100000000101010000 \times 2^0$ (now it is)

Implicit bit

Once normalized, since the most significant bit is 1, it is **not** stored to leave space for one more bit (increases accuracy).

▶ This makes it possible to represent mantissa with one bit more

IEEE Standard 754 (single precision)

The value is computed (unless special cases) as:

$$N = (-1)^{S} \times 2^{E-127} \times I.M$$

where:

S = 0 for positive numbers, S = I for negative numbers 0 < E < 255 (E=0 y E=255 are special cases)

Special cases:

$$(-1)^s \times 0.$$
mantissa $\times 2^{-126}$

Exponent	Mantissa	Special value
0 (0000 0000)	0	+/- 0 (depends on sign)
0 (0000 0000)	≠ 0	Number NOT normalized
255 (1111 1111)	≠ 0	NaN (0/0, sqrt(-4),)
255 (1111 1111)	0	+/- infinite (depends on sign)
1-254	Any	Normalized number (no special)

$$(-1)^s \times 1.mantissa \times 2^{exponent-127}$$

Examples

S	E	M	N
I	00000000	000000000000000000000000000000000000000	-0 (Exception 0) E=0 y M=0.
I	01111111	000000000000000000000000000000000000000	$-2^{0} \times 1.0_{2} = -1$
0	10000001	111000000000000000000000000000000000000	$+2^2 \times 1.111_2 = +2^2 \times (2^0 + 2^{-1} + 2^{-2} + 2^{-3}) = +7.5$
0	11111111	000000000000000000000000000000000000000	∞ (Exception ∞) E=255 y M=0
0	11111111	100000000000000000000000000000000000000	NaN (Not a Number) E=255 y M≠0.

Example

Example (solution)

Calculate the value in decimal associated to this number represented in IEEE 754 single precision

- Sign bit: $0 \Rightarrow (-1)^0 = +1$
- Exponent: $10000011_2 = 131_{10} \Rightarrow E 127 = 131 127 = 4$

The decimal value is $+1 \times 2^4 \times 1.75 = +28$

Exercise

b) Represent the number -9 using IEEE 754 single precision

Exercise (Solution)

b) Represent the number -9 using IEEE 754 single precision

$$-9_{10} = -1001_2 = -1001_2 \times 2^0 = -1.001_2 \times 2^3$$
 (normalized mantissa)

- a) Sign: negative \Rightarrow S=1
- Exponent: 3+127 (bias) = $130 \implies 10000010$

- Range of representable magnitudes (regardless of sign):
 - Smallest normalized:

Largest normalized:

- Smallest not normalized :
- Largest not normalized :

 $(-1)^s * 0.mantisa * 2^{-126}$

Exponent	Mantissa	Special value
0	≠ 0	Not normalized
1-254	any	Normalized

(-I)^s * I.mantisa * 2^{exponente-127}

- Range of representable magnitudes (regardless of sign):
 - Smallest normalized:

Largest normalized:

- Smallest not normalized :
- Largest not normalized :

Tip:

$$X = 2 - 2^{-23}$$

- Range of representable magnitudes (regardless of sign):
 - Smallest normalized:

Largest normalized:

- Smallest not normalized :
- Largest not normalized :

Exercise

How many floats (single precision floating point numbers) are between I and 2 (not included)?

How many float (single precision floating point numbers) are between 2 and 3 (not included)?

Exercise (Solution)

- How many floats (single precision floating point numbers) are between I and 2 (not included)?

 - Between I and 2 there are 2²³ numbers
- How many float (single precision floating point numbers) are between 2 and 3 (not included)?

 - ▶ Between 2 and 3 there are 2²² numbers

Discrete representation

Variable resolution: denser near zero, less towards infinity

Representable numbers

(b) Floating point numbers

Example 1 inaccuracy

9.999994 e-2

Example 2 inaccuracy

▶ How does C performs a division?

```
t2.c
#include <stdio.h>
int main ()
 float a;
 a = 3.0/7.0;
 if (a == 3.0/7.0)
      printf("Equal\n");
 else printf("Not equal\n");
 return (0);
```

Example 2 inaccuracy

▶ How does C performs a division?

```
t2.c
#include <stdio.h>
int main ()
 float a;
 a = 3.0/7.0;
 if (a == 3.0/7.0)
      printf("Equal\n");
 else printf("Not equal\n");
 return (0);
```

```
$ gcc -o t2 t2.c
$ ./t2
Not equal
```

Example 2 inaccuracy

How does C performs a division?

```
t2.c
         #include <stdio.h>
         int main ()
          float a:
                             double
float
          a = 3.0/7.0;
          if (a == 3.0/7.0)
               printf("Equal\n");
          else printf("Not equal\n");
          return (0);
```

```
$ gcc -o t2 t2.c
$ ./t2
Not equal
```

Example 3 inaccuracy

The associative property is not always satisfied a + (b + c) = (a + b) + c?

```
#include <stdio.h>

int main ( )
{
    float x, y, z;

    x = 10e30; y = -10e30; z = 1;
    printf("(x+y)+z = %f\n",(x+y)+z);
    printf("x+(y+z) = %f\n",x+(y+z));

    return (0);
}
```

Example 3 inaccuracy

The associative property is not always satisfied (a + (b + c) = (a + b) + c)?

```
#include <stdio.h>

int main ( )
{
    float x, y, z;

    x = 10e30; y = -10e30; z = 1;
    printf("(x+y)+z = %f\n",(x+y)+z);
    printf("x+(y+z) = %f\n",x+(y+z));

    return (0);
}
```

```
$ gcc -o t1 t1.c

$ ./t1

(x+y)+z = 1.000000

x+(y+z) = 0.000000
```

Floating-point is not associative

Floating-point is not associative

$$x = -1.5 \times 10^{38}, y = 1.5 \times 10^{38}, z = 1.0$$

$$(x + y) + z = (-1.5 \times 10^{38} + 1.5 \times 10^{38}) + 1.0 = (0.0) + 1.0 = 1.0$$

▶ Floating point operations are not associatives

- Results are approximated
- ▶ 1.5×10^{38} is so much larger than 1.0
- ▶ 1.5×10^{38} + 1.0 in floating point representation is still 1.5×10^{38}

Example $int \rightarrow float \rightarrow int$

```
if (i == (int)((float) i)) {
     printf("true");
```

- Not always prints "true"
- Most integer values (specially larger ones) don't have an exact floating point representation
- What about double?

Example

- ▶ The number 133000405 in binary is:
- When is normalized:

 - > S = 0 (positive)
 - \bullet e = 26 \rightarrow E = 26 + 127 = 153
- The normalized number stored is:
 - \blacksquare 1.11111011010110110011010 \times 2²⁶ =

Example float \rightarrow int \rightarrow float

```
if (f == (float)((int) f)) {
    printf("true");
}
```

- Not always true
- Numbers with decimals do not have integer representation

Rounding

- Rounding removes less significant digits from a number to obtain an approximate value.
- Types of rounding:
 - ▶ Round to + ∞
 - ▶ Round it "up": $2.001 \rightarrow 3$, $-2.001 \rightarrow -2$
 - ▶ Round to ∞
 - ▶ Round it "down": $1.999 \rightarrow 1, -1.999 \rightarrow -2$
 - Truncate
 - ▶ Discard last bits: $1.299 \rightarrow 1.2$
 - Round to nearest (ties to even)
 - \triangleright 2.4 \rightarrow 2, 2.6 \rightarrow 3, -1.4 \rightarrow -1
 - If number falls midway then it is rounded to the nearest value with an even least significant digit (+23.5 \rightarrow +24 \leftarrow +24.5; -23.5 \rightarrow -24 \leftarrow -24.5)

Rounding

- Rounding means losing accuracy.
- Rounding occurs:
 - When moving to a representation with fewer representables:
 - E.g.: A value from double to single precision
 - ▶ E.g.: A floating point value to integer
 - When performing arithmetic operations:
 - ▶ E.g.: After adding two floating-point numbers (using guard bits)

Guard bits

- Guard digits are used to improve accuracy:
 - ▶ FP hardware internally includes additional bits for operations
 - After operation, guard bits are eliminated: rounding
- \triangleright Example: 2.65 x 10⁰ + 2.34 x 10²

	WITHOUT guard bits	WITH guard bits
I equalize exponents	$0.02 \times 10^2 + 2.34 \times 10^2$	0.0265×10^{2} + 2.3400×10^{2}
2 add	2.36×10^{2}	2.3665×10^2
3 round	2.36×10^{2}	2.37×10^{2}

Floating point operations

- ▶ Add
- Subtract
 - Check zero values.
 - 2. Equalize exponents (shift smaller number to the right).
 - 3. Add/subtract mantissa.
 - Normalize the result.
- Multiply
- Divide
 - Check zero values.
 - 2. Add/subtract exponents.
 - 3. Multiply/divide mantissa (taking into account the sign).
 - 4. Normalize the result.
 - 5. Rounding the result.

Additions and subtractions: Z=X+Y y Z=X-Y

Multiplication: Z=X*Y

Division: Z=X/Y

Exercise

Using the IEEE 754 format, add 7.5 and 1.5 step by step.

To binary

1)
$$7.5 + 1.5 =$$

2)
$$1.111*2^{2} + 1.1*2^{0} =$$

 $|.|||*2^2 + 0.0||*2^2 =$

4)
$$10.010*2^2 =$$

 $1.0010*2^3$

Equalize exponents

Add

Adjust exponents

Representation of the numbers

```
• | .5 = | . | × 2<sup>0</sup>

Sign = 0 (positive)

Exponent = 0 -> exponent to store = 0 + 127= 127 = 0||||||||

Mantissa = | . | -> mantissa to store = 1000000 ... 0000
```

> Splitting exponents and mantissas, and adding implicit bit

7.5 → 0 10000001	Ι.	111000000000000000000000000000000000000
1.5 → 0 01111111	Ι.	100000000000000000000000000000000000000

Add mantissas

Normalize result...

There is carry, non-normalized mantissa

Normalize result...

There is carry, non-normalized mantissa

	7.5 → 0 10000001	1.	111000000000000000000000000000000000000
+	1.5 - 0 10000001	0.	011000000000000000000000000000000000000
	9 → 0 10000010	I.	001000000000000000000000000000000000000

▶ Eliminate the implicit bit and store the result

Exercise

Using the IEEE 754 format,
 compute 9 − 7.5 step by step.

Representation of the numbers

```
• 9 = |00|.0 \times 2^0 = |.00|0 \times 2^3

Sign = 0 (positive)

Exponent = 3 -> exponent to store = 3 + 127 = 130 = 10000010

Mantissa = |1.00| -> mantissa to store = |00|0000 \dots 0000
```

61

Splitting exponents and mantissas, and adding implicit bit

Subtract

Normalize result...

Normalize result...

Normalize result...

Normalize result...

mantissa already normalized

▶ Eliminate the implicit bit and store the result

Exercise

Using the IEEE 754 format, multiply 7.5 and 1.5 step by step.

summary

7.5 × 1.5 =
$$(1.111_2 \times 2^2) \times (1.1_2 \times 2^0)$$

= $(1.111_2 \times 1.1_2) \times 2^{(2+0)}$
= $(10.1101_2) \times 2^2$
= $(1.01101_2) \times 2^3$
= 11.25

Representation of the numbers

```
• | 1.5 = | . | × 2<sup>0</sup>

Sign = 0 (positive)

Exponent = 0 -> exponent to store = 0 + 127= 127 = 0||||||||

Mantissa = | . | -> mantissa to store = 10000000 ... 0000
```

Splitting exponents and mantissas, and adding implicit bit

The implicit bit is included

Multiply: add exponents and multiply mantissas

Multiply: remove one bias from exponent (there are two)

	753		1000001		111000000000000000000000000000000000000
	7.5 →	0	10000001	I.	111000000000000000000000000000000000000
T 7	1.5 →		0111111		100000000000000000000000000000000000000
X	1.5 /	U	01111111	Ι.	100000000000000000000000000000000000000
		0	100000000	10	110100000000000000000
		_	01111111		
		0	10000001	10	.110100000000000000000

Multiply: normalize result...

▶ Multiply: normalize result...

	7.5 →	0	10000001	1.	111000000000000000000000000000000000000
X	1.5 →	0	01111111	1.	100000000000000000000000000000000000000
	11.25	0	10000010	1.	01101000000000000000000

Eliminate the implicit bit and store the result

IEEE 754 Evolution

- ▶ 1985 IEEE 754
- ▶ 2008 IEEE 754-2008 (754+854)
- ▶ 2011 ISO/IEC/IEEE 60559:2011 (754-2008)

Name	Common name	Base	Digits	E min	E max	Notes	Decimal digits	Decimal E max
binary16	Half precision	2	10+1	-14	+15	storage, not basic	3.31	4.51
binary32	Single precision	2	23+1	-126	+127		7.22	38.23
binary64	Double precision	2	52+I	-1022	+1023		15.95	307.95
binary128	Quadruple precision	2	112+1	-16382	+16383		34.02	4931.77
decimal32		10	7	-95	+96	storage, not basic	7	96
decimal64		10	16	-383	+384		16	384
decimal 128		10	34	-6143	+6144		34	6144

http://en.wikipedia.org/wiki/IEEE_floating_point

ARCOS Group

uc3m | Universidad Carlos III de Madrid

Lesson 2 (II) Floating point

Computer Structure
Bachelor in Computer Science and Engineering

How many not normalized numbers different to zero can be represented?

(s) \times 0.mantissa \times 2⁻¹²⁶

Exponent	Mantissa	Special value
0 (0000 0000)	No cero	Number not normalized

How many not normalized numbers different to zero can be represented?

(s) \times 0.mantissa \times 2⁻¹²⁶

Exponent	Mantissa	Special value		
0 (0000 0000)	No cero	Number not normalized		

Solution:

▶ 23 bits for mantissa (different to 0)

Example

What is the binary and decimal value of the following number represented in the IEEE 754 standard? 3FE00000

Binary value:

In decimal:

```
0011 1111 1110 0000 0000 0000 0000 0000
```

- Sign: 0
- Exponent: $011111111 \Rightarrow 127-127 = 0$

Then, the value is $+1 \times 1.75 \times 2^0 = 1.75$