Na aula de hoje iremos iniciar o estudo sobre **Universo de Herbrand** na **Lógica de Predicados**. O **Universo**, a **Interpretação** e o **Modelo de Herbrand** são extremamente importantes em Lógica de Predicado, pois permitem se utilizar uma metodologia que elimina a necessidade de instanciações (groundings) infinitos.

Assim como já ocorreu em várias aulas anteriores, na aula de hoje (para iniciar os estudos sobre **Universo de Herbrand** na **Lógica de Predicados**) iremos realizar uma atividade pedagógica de pesquisa. O objetivo é (assim como anteriormente) despertar no aluno o senso crítico e a capacidade de buscar informações, compreender sobre o tema básico a ser abordado, e construir uma visão crítica sobre a teoria estudada. Para isso, será necessário, mais uma vez, que os alunos busquem informações em livros ou em documentos disponíveis na Web para se apropriarem do conhecimento básico sobre o tema "**Universo de Herbrand** na **Lógica de Predicados**", e na sequência expressem a visão pessoal sobre o tema respondendo às questões propostas. Assim, a atividade se divide em três etapas básicas: i) pesquisa e leitura sobre "**Universo de Herbrand** na **Lógica de Predicados**"; ii) produção de texto e, finalmente iii) resposta às questões.

- i) Descrição da etapa de pesquisa e leitura: esta etapa de pesquisa e leitura deve ser realizada individualmente, e o aluno deverá buscar (em livros ou na internet) material sobre lógica proposicional e realizar uma leitura crítica para entender o que são argumentos no contexto da lógica proposicional).
- ii) Descrição da etapa de produção de texto: nesta etapa o aluno deverá produzir um resumo de uma página descrevendo o que ele entendeu sobre a pesquisa realizada na etapa de pesquisa e leitura. Os textos devem ser manuscritos (de próprio punho).
- iii) Descrição da etapa de resposta às questões: nesta etapa o aluno deverá utilizar o conhecimento adquirido nas etapas anteriores e responder às questões abaixo. As questões devem ser respondidas em papel e de forma manuscrita (de próprio punho). É importante que as respostas representem a visão crítica e pessoal do aluno.

Exercício 33. Os exercícios abaixo devem ser entregues no início da próxima aula. A entrega da resolução correta de todos exercícios valerá 2Ps.

- 1) Como a utilização do conceito de Universo de Herbrand na Lógica de Predicados pode "diminuir" a complexidade (número de groundings) no processo de demosntração da validade de argumentos?
- 2) O que é Universo de Herbrand e Base de Herbrand na Lógica de Predicados?
- 3) Como é feita a interpretação no Universo de Herbrand? Dê pelo menos um exemplo (que seja diferente do exemplo dado na "Cartilha da Lógica".

Universo de Herbrand

Como já vocês já viram nos estudos investigativos sugeridos na última aula, o Universo de Herbrand representa uma forma de tornar tratável a demonstração da validade de argumentos (na lógica de Predicados).

Em Lógica de Predicados um conjunto de clausulas é insatisfatível se e somente se este conjunto for falso em todas as interpretações possíveis de todos os domínios possíveis. Como não se pode, na prática, fazer a verificação se um conjunto de cláusulas é falso em todas as interpretações de todos os universos de domínio possíveis, o universo de Herbrand pode ser utilizado para tornar a verificação de satisfatibilidade tratável. Assim, para um conjunto de cláusulas S, e um universo de domínio H (universo de Herbrand), diz-se que S é insatisfatível se e somente se S é falso sob todas as interpretações possíveis em H.

Considere o conjunto de cláusulas dadas em um dos exercícios de demonstração de validade de argumentos das aulas anteriores: Exemplo1 = $\{mae(f(X),X), \neg mae(Y,X) \lor \neg mae(Z,Y) \lor avo(Z,X), \neg avo(Y,a)\}$. Para se construir o universo de Herbrand para este conjunto, deve-se considerar o seguinte:

- 1) Se o conjunto de cláusulas contém tanto funções quanto constantes, então o universo de Herbrand será contavelmente infinito.
- 2) Se o conjunto de cláusulas contém apenas constantes, então o universo de Herbrand para este conjunto será um conjunto finito formado pelas constantes do conjunto de cláusulas.
- 3) Se o conjunto de cláusulas não contém constante alguma, então criase uma constante fictícia (a, por exemplo).

Os elementos do conjunto universo de Herbrand são todos os símbolos ground gerados a partir das funções e constantes presentes no conjunto de cláusulas.

Assim, para o exemplo dado acima, o conjunto universo de Herbrand (H) será:

```
H_0 = \{a\}, pois a é a única constante do conjunto de cláusulas.
```

 $H_1 = H_0 \cup \{f(a)\}$, pois $f \in a$ única função do conjunto de cláusulas.

 $H_2 = H_1 \cup \{f(f(a))\}$

 $H_3 = H_2 \cup \{f(f(f(a)))\}$

. . . .

E assim sucessivamente. Ou seja, H é infinito.

Suponha agora que tenhamos o seguinte conjunto de cláusulas: Exemplo2 = $\{mae(f(X),X), \neg mae(Y,X) \lor \neg mae(Z,Y) \lor avo(Z,X), \neg avo(Y,X)\}$. A única diferença deste conjunto para o anterior é a ausência de constantes. Assim, o conjunto universo de Herbrand seria exatamente o mesmo, pois para a definição de H_0 temos que criar uma constante (que pode ser a). Assim, teríamos:

 $H_0 = \{a\}$, pois a é a constante "criada" para o conjunto de cláusulas.

```
H_1 = H_0 \cup \{f(a)\}, pois f é a única função do conjunto de cláusulas. H_2 = H_1 \cup \{f(f(a))\} H_3 = H_2 \cup \{f(f(f(a)))\} .... E assim sucessivamente. Ou seja, H é infinito.
```

Supondo agora que tenhamos o seguinte conjunto de cláusulas: Exemplo3 = $\{ mae(f(X),X), \neg mae(Y,X) \lor \neg mae(Z,Y) \lor avo(g(X),X), \neg avo(Y,X) \}$. A única diferença deste conjunto para o anterior é a existência de duas funções (f e g). Assim, para a definição de H_0 temos que criar uma constante (que pode ser a), e o conjunto H ficaria assim:

 $H_0 = \{a\}$, pois a é a constante "criada" para o conjunto de cláusulas.

 $H_1 = H_0 \cup \{f(a),g(a)\},$ pois f e g são as únicas funções do conjunto de cláusulas.

```
\begin{split} H_{\text{B}} = & \ H_{1} \cup \{f(f(a)), f(g(a)), g(f(a)), g(g(a))\} \\ H_{\text{B}} = & \ H_{2} \cup \{f(f(f(a))), f(f(g(a))), f(g(f(a))), f(g(g(a))), \\ & \ g(f(f(a))), g(f(g(a))), g(g(f(a))), g(g(g(a)))\} \end{split}
```

•••

E assim sucessivamente. Ou seja, H é infinito.

Para finalizar nossos exemplos iniciais, suponha agora que tenhamos o seguinte conjunto de cláusulas: Exemplo4 = $\{mae(Y,X), \neg mae(Y,X) \lor \neg mae(Z,Y) \lor avo(W,X), \neg avo(Y,X)\}$. Este conjunto de cláusulas não possui funções e nem constantes. Assim, para a definição de H_0 temos que criar uma constante (que pode ser a), e o conjunto H ficaria assim:

 $H_0 = \{a\}$, pois a é a constante "criada" para o conjunto de cláusulas.

 $H_1 = H_0 \cup \emptyset$

 $H_2 = H_1 \cup \emptyset$

 $H_3 = H_2 \cup \emptyset$

. . . .

E assim sucessivamente. Ou seja, $H = \{a\}$, sendo um conjunto finito.

Para um conjunto de cláusulas S, a base de Herbrand, normalmente denotada por B_S é o conjunto de todos os predicados de S instanciados com todos os elementos do universo de Herbrand de S.

Assim, para o Exemplo 1, B_S = {mae(a,a), avo(a,a), mae(f(a),a), avo(f(a),a), mae(a,f(a)), avo(a,f(a)), mae(f(a),f(a)), avo(f(a),f(a)), mae(a,f(f(a))),avo(a,f(f(a))), ...}, sendo um conjunto infinito. Já para o conjunto de cláusulas do Exemplo4, temos B_S = {mae(a,a),avo(a,a)}, sendo um conjunto infinito.

Mostre o conjunto de Herbrand e a base de Herbrand para o conjunto de cláusulas criado a partir da Forma Normal Conjuntiva de cada uma das fórmulas bem formadas dadas abaixo.

- a) $(\exists X (p(Z) v q(X)) \leftrightarrow (\forall Y (q(X) \land q(Y))))$
- b) $(\exists X (\forall Y \neg (p(Z) \rightarrow q(X) \rightarrow (\forall Y(q(X) \land q(Y))))))$
- c) $(\forall X (\forall Y (p(Z) \rightarrow q(X) \rightarrow (\forall Y(q(X) \land q(Y))))))$
- d) $(\exists X (\exists Y (p(Z) \rightarrow q(X) \rightarrow (\forall Y(q(X) \land q(Y))))))$
- e) $(\exists X (\forall Y (p(Z) \leftrightarrow q(X) \lor (\forall Y(q(X) \land q(Y))))))$
- f) $(\exists X (\forall Y \neg (p(Z) \lor q(X) \leftrightarrow (\forall Y(q(X) \land q(Y))))))$
- g) $(\exists X (\exists Y (p(Z) \leftrightarrow q(X) \lor (\forall Y(q(X) \land q(Y))))))$
- h) $(\exists X (\exists Y \neg (p(Z) \lor q(X) \leftrightarrow (\forall Y(q(X) \land q(Y))))))$
- i) $(\forall X (\forall Y (p(Z) \leftrightarrow q(X) \lor (\forall Y(q(X) \land q(Y))))))$
- j) $(\exists X (\forall Y \neg (p(Z) \lor q(X) \leftrightarrow (\forall X \forall Y \neg (q(X) \land q(Y))))))$
- $k) (\exists X (p(Z) \lor q(X)) \leftrightarrow (\forall Y(q(X) \land q(Y)))) \leftrightarrow q(X) \lor (\forall Y(q(X) \land q(Y)))$
- 1) $(\exists X (\forall Y \neg (p(Z) \rightarrow q(X) \lor (\forall Y(q(W) \land q(Z))) \rightarrow (\forall Y(q(X) \land q(Y))))))$
- $m)(\forall X (\forall Y (p(Z) \rightarrow q(Z) \rightarrow (\forall Y(q(Z) \land q(Z))))))$
- $n) \neg (\exists X (\exists Y (p(Z) \rightarrow q(X) \rightarrow (\forall Y (q(X) \land q(Y)))))))$
- o) $\neg (\exists X (\forall Y (p(Z) \leftrightarrow q(X) \lor (\forall Y(q(X) \land q(Y))))))$