Produire une étude du marché

Réalisé par: ACHAT Hayat

https://www.fao.org/faostat/fr/#data

table population:

	Domain Code	Domain	Area Code (FAO)	Area	Element Code	Element	Item Code	Item	Year Code	Year	Unit	Value	Flag	Flag Description	Note
0	OA	Annual population	2	Afghanistan	511	Total Population - Both sexes	3010	Population - Est. & Proj.	2018	2018	1000 persons	37171.921	X	International reliable sources	NaN
1	OA	Annual population	3	Albania	511	Total Population - Both sexes	3010	Population - Est. & Proj.	2018	2018	1000 persons	2882.740	X	International reliable sources	NaN
2	OA	Annual population	4	Algeria	511	Total Population - Both sexes	3010	Population - Est. & Proj.	2018	2018	1000 persons	42228.408	X	International reliable sources	NaN
3	OA	Annual population	5	American Samoa	511	Total Population -	3010	Population - Est. & Proj.	2018	2018	1000 persons	55.465	X	International reliable sources	NaN

Nettoyage des données

vérification des lignes et colonnes:

```
population 17 df.columns
Index(['Domain Code', 'Domain', 'Area Code (FAO)', 'Area', 'Element Code',
      'Element', 'Item Code', 'Item', 'Year Code', 'Year', 'Unit', 'Value',
      'Flag', 'Flag Description', 'Note'],
     dtype='object')
population 17 df.value counts()
                                                     Element Code Element
                                                                                              Item Code Item
Domain Code Domain Area Code (FAO) Area
Year Code Year Unit Value Flag Flag Description
                                                                     Note
                                            Tokelau 511 Total Population - Both sexes 3010
           Annual population 218
                                                                                                        Population -
Est. & Proj. 2017
                      2017 1000 persons 1.3 X International reliable sources UNDESA, Population Division ? World P
opulation Prospects, the 2017 Revision
dtype: int64
```

Nettoyage des données

vérifier les nans:

population_17_df.Value.isna().sum()

0

vérification des valeurs nuls:

population_17_df.	isnull().sum()
Domain Code	0
Domain	0
Area Code (FAO)	0
Area	0
Element Code	0
Element	0
Item Code	0
Item	0
Year Code	0
Year	0
Unit	0
Value	0
Flag	0
Flag Description	0
Note	232
dtype: int64	

vérification des doublons

vérifier les doublons dans la table population:

```
population_17_df.loc[population_17_df.duplicated(keep=False),:]
```

Domain Code Domain Area Code (FAO) Area Element Code Element Item Code Item Year Code Year Unit Value Flag Flag Description Note

supprimer les doublons (provinces de chine)dans la table population:

```
population_17_df.drop(population_17_df[population_17_df.Area.str.startswith("China,") == True].index, inplace=True)
```

unifier les deux tables population 2017 et population 2018

population_mrg=pd.merge(population_18_df,population_17_df,on='Area Code (FAO)')
population_mrg.head()

	Domain Code_x	Domain_x	Area Code (FAO)	Area_x	Element Code_x	Element_x	Item Code_x	ltem_x	Year Code_x	Year_x		Element_y	Item Code_y	ltem_y	Year Code_y	Year_y
0	OA	Annual population	2	Afghanistan	511	Total Population - Both sexes	3010	Population - Est. & Proj.	2018	2018		Total Population - Both sexes	3010	Population - Est. & Proj.	2017	20 <mark>1</mark> 7
1	OA	Annual population	3	Albania	511	Total Population - Both sexes	3010	Population - Est. & Proj.	2018	2018	2335.0	Total Population - Both sexes	3010	Population - Est. & Proj.	2017	2017
2	OA	Annual population	4	Algeria	511	Total Population - Both	3010	Population - Est. & Proi.	2018	2018		Total Population - Both	3010	Population - Est. & Proi.	2017	2017

Pourcentage de croissance de la population

calculer le **pourcentage de croissance** en calculant t la différence entre le nombre d'habitants en 2018 et ceux de l'année antérieure(2017)

population_croi=population.assign(prc_croissance=((population['Value_x']) - (population['Value_y']))/100)
population_croi.head()

	Area Code (FAO)	Area_x	Year_x	Value_x	Year_y	Value_y	Unit_y	prc_croissance
0	2	Afghanistan	2018	37171.921	2017	36296.113	1000 persons	8.75808
1	3	Albania	2018	2882.740	2017	2884.169	1000 persons	-0.01429
2	4	Algeria	2018	42228.408	2017	41389.189	1000 persons	8.39219
3	5	American Samoa	2018	55.465	2017	55.620	1000 persons	-0.00155
4	6	Andorra	2018	77.006	2017	77.001	1000 persons	0.00005

Collecter les données

table disponibilité alimentaire:

	Domain Code	Domain	Area Code	Area	Element Code	Element	Item Code	Item	Year Code	Year	Unit	Value	Flag	Flag Description
0	FBS	Food Balances (2010-)	2	Afghanistan	645	Food supply quantity (kg/capita/yr)	2511	Wheat and products	2018	2018	kg	160.12	Fc	Calculated data
1	FBS	Food Balances (2010-)	2	Afghanistan	664	Food supply (kcal/capita/day)	2511	Wheat and products	2018	2018	kcal/capita/day	1372.00	Fc	Calculated data
2	FBS	Food Balances (2010-)	2	Afghanistan	674	Protein supply quantity (g/capita/day)	2511	Wheat and products	2018	2018	g/capita/day	37.00	Fc	Calculated data

products

ns

eat

2018

2018

2018

Nettoyage des données

125.27 Fc

Czechia

167

2018 kcal/capita/day 0.00

2018 kcal/capita/day 83.00

vérifier les nans:

2018 kg

dispo 18 df.isna().describe()

	Domain Code	Domain	Area Code	Area	Element Code	Element	Item Code	Item	Year Code	Year	Unit	Value	Flag	Flag Description
count	59624	59624	59624	59624	59624	59624	59624	59624	59624	59624	59624	59624	59624	59624
unique	1	1	1	1	1	1	1	1	1	1	1	1	1	1
top	False	False	False	False	False	False	False	False	False	False	False	False	False	False
freq	59624	59624	59624	59624	59624	59624	59624	59624	59624	59624	59624	59624	59624	59624
dispo_	18_df.value_co	ounts()												
Domain Year Co		+	Area Value		Area Eleme Flag Descript		Element				Item	Code I	tem	
FBS		lances (2		100	Armenia 645		Food supply	/ quant:	ity (<mark>k</mark> g/cap:	ita/yr)	2511	h	lheat an	d

Food supply (kcal/capita/day)

2765

2734

2735

Crustacea

Poultry M

Meat, Oth

Calculated data

Calculated data

Calculated data

Nettoyage des données

vérification des valeurs nuls:

dispo_18_df.isnul	l().sum()
Domain Code	0
Domain	0
Area Code	0
Area	0
Element Code	0
Element	0
Item Code	0
Item	0
Year Code	0
Year	0
Unit	0
Value	0
Flag	0
Flag Description dtvpe: int64	0

vérification des valeurs isna:

Domain Code	0
Domain	0
Area Code	0
Area	0
Element Code	0
Element	0
Item Code	0
Item	0
Year Code	0
Year	0
Unit	0
<mark>Value</mark>	0
Flag	0
Flag Description	0

Nettoyage des données

supprimer les doublons (provinces de chine)dans la table population:

```
dispo 18 df.drop(dispo 18 df[dispo 18 df.Area.str.startswith("China,") == True].index, inplace=True)
```


Préparer les tables pour les opérations

pivoter la colonne éléments dans la table des Disponibilités :

Element	Area	Item	Year	Fat supply quantity (g/capita/day)	Food supply (kcal/capita/day)	Food supply quantity (kg/capita/yr)	Protein supply quantity (g/capita/day)
0	Afghanistan	Apples and products	2018	0.03	7.0	4.94	0.04
1	Afghanistan	Bananas	2018	0.03	6.0	3.85	0.07
2	Afghanistan	Barley and products		0.02	2.0	0.21	0.06
3	Afghanistan	Beans	2018	NaN	NaN	0.00	NaN
4	Afghanistan	Beer	2018	0.00	0.0	0.00	0.00

proportion de protéines d'origine animale par rapport à la quantité totale de protéines:

```
dispo_18.loc[dispo_18.Item.isin(anim_item),'Type'] = 'anim'
dispo_18.loc[~dispo_18.Item.isin(anim_item),'Type'] = 'other'
```

```
dispo_prot_proportion=dispo_prot_mrg.assign(proportion_protéines=((dispo_prot_mrg['dispo_prot_anim']) / (dispo_prot_mrg['Protein | |
```

dispo_prot_proportion

	Area	Protein supply quantity (g/capita/day)	dispo_prot_anim	proportion_protéines
0	Afghanistan	57.61	10.73	0.186252
1	Albania	112.81	61.02	0.540909
2	Algeria	90.30	24.61	0.272536
3	Angola	53.83	16.77	0.311536
4	Antiqua and Rarbuda	80 6 8	52 00	0.644522

Disponibilité alimentaire en protéines par habitant:

```
dispo_18_ans=dispo_18.assign(dispo_protéines_ans=((dispo_18['Protein supply quantity (g/capita/day)'])*365))
dispo_prot_habit=pd.DataFrame(dispo_18_ans.groupby(["Area"])['dispo_protéines_ans'].agg('sum').reset_index())
dispo_prot_habit
```

	Area	dispo_protéines_ans
0	Afghanistan	21027.65
1	Albania	41175.65
2	Algeria	32959.50

Disponibilité alimentaire en calories par habitant:

dispo_18_ans=dispo_18.assign(dispo_cal_ans=((dispo_18['Food supply (kcal/capita/day)'])*1000*365))
dispo_18_ans.head()

Element	Area	Item	Year	Fat supply quantity (g/capita/day)	Food supply (kcal/capita/day)	Food supply quantity (kg/capita/yr)	Protein supply quantity (g/capita/day)	Туре	dispo_cal_ans
0	Afghanistan	Apples and products	2018	0.03	7.0	4.94	0.04	other	2555000.0
1	Afghanistan	Bananas	2018	0.03	6.0	3.85	0.07	other	2190000.0
		-							

	Area	dispo_cal_ans	
0	Afghanistan	8.274550e+08	
1	Albania	1.202675e+09	
2	Algeria	1.233335e+09	
3	Angola	8.924250e+08	
4	Antigua and Barbuda	9.008200e+08	

dispo_cal_habit=pd.DataFrame(dispo_18_ans.groupby(["Area"])['dispo_cal_ans'].agg('sum').reset_index())
dispo_cal_habit.head()

Préparer les données pour la mission deux

unifier entre les trois table pour la suite de l'exercice

```
data_anal=data1.merge(data2)
data_anal
```

	Area	dispo_protéines_ans	proportion_protéines	dispo_cal_ans	prc_croissance
0	Afghanistan	21027.65	0.186252	8.274550e+08	8.75808
1	Albania	41175.65	0.540909	1.202675e+09	-0.01429
2	Algeria	32959.50	0.272536	1.233335e+09	8.39219

Préparer les données pour la mission deux

unifier entre les trois table pour la suite de l'exercice

```
data_anal=data1.merge(data2)
data_anal
```

	Area	dispo_protéines_ans	proportion_protéines	dispo_cal_ans	prc_croissance
0	Afghanistan	21027.65	0.186252	8.274550e+08	8.75808
1	Albania	41175.65	0.540909	1.202675e+09	-0.01429
2	Algeria	32959.50	0.272536	1.233335e+09	8.39219

Construire un dendrogramme des pays étudiés

Réalisation d'une classification hiérarchique

pour **obtenir un dendrogramme** des pays coupé en 5 groupes pour former **5 clusters**

Méthode : Ward → Maximise l'inertie entre les groupes

```
data_class.clusters.value_counts()
```

- 2 63
- 4 54
- 1 34
- 3 23
- 5 1

les groupes sont répartis d'une manière **inégalitaire** (un groupe solitaire)

- on ne prend pas en compte les axes dont l'inertie associée est inférieure à (100/p)%
- 100/4 = 25 ce qui correspond à la première composante F1 et la deuxième F2

Visualisation des partitions dans le premier plan factoriel Analyse en Composante Principales

- la croissance correspond à l'axe F2 et elle est dans le sens positif
- les disponibilités se projettent sur l'axe F1, s'orientent vers la direction négatif et sont presques égales
- on résume en deux axes principaux: disponibilités et croissances

Projection des individus

- la partition n'est pas claire
- la répartition de nos groupe sur les deux plans factoriels suit l'axe de la disponibilité
- les groupe se resserre sur eux même
- le 4ème groupe est plutôt étalé selon l'axe de l croissance.
- le 5éme groupe comprend un seul pay

Projection des centroïdes

- les quatres clusters traçant une droite parallèle à l'axe de la disponibilité
- cluster1: une forte disponibilité en et une croissance moyenne
- le 2 et le 4:une moyenne disponibilité et croissance
- le 3:une très faible croissance et disponibilité
- quant au 5 ème une très forte croissance population et très faible disponibilité

K Means (l'algorithme des centres mobiles)

K-means avec 2 clusters:

- Les deux cluster se répartissent à gauche et à droite de l'axe F1
- s'étalent suivant l'axe F2
- Le 1er cluster se répartis à gauche et représente le groupe de pays ayant les plus fortes disponibilité et croissance
- Le 2éme se situe à droite représente le groupe de pays ayant de faible disponibilités et croissance

K Means avec 3 clusters

 la partie étalée et qui s' éloignent des deux groupes forment le troisième cluster et se distinguent par une très forte croissance et une faible disponibilité

K Means avec 4 clusters

 un quatrième groupe intermédiaire c' est formé au centre des axes, représente une disponibilité et croissance moyenne

K Means avec 5 clusters

- de nouveaux le groupe situé au centre se divise en deux parties inégales parallèlement à l'axe F1 pour former deux groupes
- le G0 représente les pays ayant une croissance plus forte que le G4

K Means avec 6 clusters

- à 6 clusters les groupes continuent de se diviser
- des class ayant un effectif très faible
- pas de grande différence entre les class

K Means (les centroïdes)

j'ai choisis 4 clusters car ils semblent être le plus stable minimise l'inertie interclass

Pays ciblés

on remarque que l'inertie commence à se stabiliser à partir de K=4 donc je prend K=4 pour mes tests et pour choisir les pays

Test d'adéquation : la variables disponibilité en protéine/an

on effectue un **Test de Kolmogorov-Smirnov** pour la variable **disponibilité en protéines par ans** on confirme avec le test **shapiro wilk**

- la p value étant supérieur à 5% pour ce niveau de test
- on ne peut pas rejeter l'hypothèse nul,
- donc l'échantillon suit une lois normale

```
#pour etre plus sur on effectue un test de shapiro
stats.shapiro(data_mrg_K4['dispo_protéines_ans'])
ShapiroResult(statistic=0.9916048049926758, pvalue=0.4014256000518799)
```


: stats.kstest(data_mrg_K4["dispo_protéines_ans"],list(np.random.normal(np.mean(data_mrg_K4["dispo_protéines_ans"]), np.std(data_r

Test de comparaison entre deux populations (dans le cas gaussien) cluster 1 et 3

Avant que le test t puisse être effectué, je tester les hypothèses. D'abord pour tester l'homogénéité des variances. Pour ce faire, j'utilise le test d'homogénéité de la variance de Levene.

```
Le test d'égalité des variances :
{H0: σ21=σ22
H1: σ21≠σ22
```

- la p value étant supérieur à 5% pour ce niveau de test on ne rejete pas l'hypothèse nulle c'est-à-dire il y a une homogénéité des variances,
- on continue les étapes suivantes pour tester l'hypothèse de normalité.

```
stats.levene(data_var1,data_var2)
```

LeveneResult(statistic=0.9543626855314353, pvalue=0.33059308348238403)

Test de comparaison de deux populations (dans le cas gaussien) cluster 3 et 4

égalité des moyennes

Test de comparaison entre deux populations (dans le cas gaussien) cluster 3 et 4

égalité des moyennes

```
data_gb_means=data_mrg_K4.groupby("clusters_K4").mean()
data gb means
            dispo_protéines_ans proportion_protéines dispo_cal_ans prc_croissance
clusters_K4
                   38473.807692
                                           0.571365
                                                     1.234065e+09
                                                                         1.735096
                   29281.226119
                                           0.477086
                                                     1.035276e+09
                                                                         2.814539
                   26974.412500
                                           0.332657
                                                     9 954462e+08
                                                                        75.103448
                                           0.267391
                   21462.280769
                                                     8 819312e+08
                                                                         4.684985
```

Test de comparaison entre deux populations (dans le cas gaussien) cluster 1 et 3

pour avoir une idée de la normalité en visualisant les données sous forme de graphique q-q

Il y a un certain écart par rapport à la normalité dans le diagramme q-q, mais cela ne semble pas être une grande violation. Dans l'ensemble, les données semblent avoir une normalité

Test de comparaison de deux populations (dans le cas gaussien) cluster 1 et 3

tester l'égalité des moyennes

Tout d'abord, je vais les vérifier visuellement.

Test de comparaison de deux populations (dans le cas gaussien) cluster 1 et 3

```
Le test d'égalité des moyennes :  \{ H0 \colon \mu 1 = \mu 2 \\ H1 \colon \mu 1 <> \mu 2
```

test statistique en utilisant le test de normalité de Shapiro-Wilk.

```
stats.shapiro(data_eff1['dispo_protéines_ans'])

ShapiroResult(statistic=0.9690171480178833, pvalue=0.09285737574100494)

stats.shapiro(data_eff2['dispo_protéines_ans'])

ShapiroResult(statistic=0.9788655638694763, pvalue=0.47880813479423523)
```

aucun des tests de normalité n'est significatif (p value>5%), ce qui signifie qu'on ne peut pas rejeter l'hypothèse de normalité.

on continue avec le test t-indépendant

Test de comparaison de deux populations (dans le cas gaussien) cluster 1 et 3

test t indépendant

```
stats.ttest_ind(data_eff1['dispo_protéines_ans'], data_eff2['dispo_protéines_ans'], equal_var=True)

Ttest_indResult(statistic=11.904277661676698, pvalue=6.819949158307224e-22)
```

- on a la p value largement <5% un résultat signifiant ce qui nous mène à rejeter l'hypothèse H0 en faveur de l'hypothèse alternative,
- les deux cluster sont indépendants.
- on conclut a une différence différence des moyens entre les populations des deux clusters 1 et 3.

pays choisis

pays choisis

le choix c'est porté sur 25 Pays d'afriques ainsi que l'inde et la chine

Conclusion

- deux axes à prendre en considération F1 et F2
- deux variable variables principales peuvent résumer toutes les variables :la disponibilité (sur l'axe F1 et la croissance (sur l'axe F2).
- la classification la plus adapté est le clustering en en 4 groupe par le k means
- les pays qu'on doit prendre en compte pour notre étude sont ceux faisant partie du 3eme et 4eme cluster représentant une faible disponibilité en protéines et une forte croissance.
- existe une différence significative entre les populations des deux clusters 1 et 3.