Case study 2

Оценка мутационного профиля пациентов с раком молочной железы

Дано

- Данные о наличии мутаций в генах BRCA1, BRCA2, TP53, PTEN лист Mutations
- Клинические данные пациентов (рак молочной железы) лист Clinical data

Цель анализа

- Найти наличие мутационной со-встречаемости данных генов между собой
- Рассчитать оценку зависимости продолжительности жизни от наличия мутаций в данных генах

1. Импорт данных и объединение

library(readxl) library(dplyr)

Функции импорта и объединения таблиц

2. Обработка

- Получить столбцы в бинарном виде «1»/«0»
 - Функция ifelse()
 - Функция mutate_at()
- «Почистить» названия столбцов
 - library(janitor)
 - Функция clean_names()

2. Обработка

• Функция ifelse()
ifelse(условие, вариант_TRUE, вариант_FALSE)
ifelse(vector > 0, "> 0", "<= 0")

Функция mutate_at()
 mutate_at(c(вектор столбцов), ~функция_для_столбцов)
 dataframe %>%
 mutate_at(c(col1, col2, col3), ~ifelse(. > 5, 0, 1)

2. Обработка

- library(janitor)
- Функция clean_names()

«Чистит» название столбцов:

- Убирает заглавные буквы
- Пробелы заменяет на нижние подчеркивания

3. Со-встречаемость мутаций

- 1. Найти наличие мутационной со-встречаемости данных генов между собой (с помощью теста Фишера по парам генов)
- library(rstatix)
 - combn()
 - table()
 - fisher test()
- library(stringr)
 - str_c()
 - str_to_upper()
- library(purrr)
 - map()
 - bind rows()

3. Со-встречаемость мутаций

- combn()
 - combn(vector, 2)
- table
 - Таблица сопряженности
- fisher_test()
 - Таблица теста Фишера с уровнем значимости

3. Со-встречаемость мутаций

- •str_c()
 - Объединение вектора
- •str_to_upper()
 - Верхний регистр

- 3. Со-встречаемость мутаций
- •map()
 - Применение функции на столбцах таблицы
- •bind_rows()
 - Объединение в таблицу

4. Выживаемость

2. Рассчитать оценку зависимости продолжительности жизни от наличия мутаций в данных генах (с помощью оценки Каплана-Мейера)

- library(survival)
- library(ggfortify)
- library(survminer)

km_surv_fit() — расчёт кривой выживаемости surv_pvalue()\$pval — получение уровня значимости ggsurvplot() — график кривой выживаемости

4. Выживаемость

Оценка Каплана-Мейера

https://www.machinelearningmastery.ru/kaplan-meier-curves-c5768e349479/

На вход: группа пациентов, время, статус (0/1).

4. Выживаемость

