Daniel Zilken, Roy Hermanns

Compiler Construction 2025

— Exercise 0 —

General Remarks

- Exercises are *optional*, i.e., not required for admission to exams. However, corrections to students' solutions are provided as annotations to the submissions.
- Please use the corresponding task in the Moodle room to submit your solution. Paper submissions are not accepted.
- Please hand in your solutions in *groups of four* and hand in only one solution per group. You can use the forum in this Moodle room to find group members.

Exercise 1 (0 Points)

Which of the following statements hold?

- (a) Deterministic finite automata (DFA) are strictly less expressive than regular expressions.
- (b) Non-deterministic finite automata (NFA) are strictly more expressive than DFA.
- (c) The regular languages are closed under:
 - (i) union,
 - (ii) intersection,
 - (iii) complement,
 - (iv) concatenation,
 - (v) Kleene closure.
- (d) Context Free Languages (CFL) are closed under:
 - (i) union,
 - (ii) intersection,
 - (iii) complement,
 - (iv) concatenation,
 - (v) Kleene closure.
- (e) DCFL is the set of context free languages that are accepted by deterministic push down automata. Is DCFL = CFL?

Solution:

- (a) No. One can be effectively converted to another.
- (b) No. NFA can be converted to a DFA using the powerset construction (Rabin-Scott construction).
- (c) Yes for all. Each operation can be implemented by manipulating a DFA or NFA.
- (d) Context Free Languages (CFL) are closed under the following:
 - (i) Yes. S_1 and S_2 are starting Non-terminal for two Grammar. $S \to S_1 \mid S_2$.
 - (ii) No. $L_1 = \{a^i b^i c^j \mid i, j \in \mathbb{N}\}\$ and $L_2 = \{a^i b^j c^j \mid i, j \in \mathbb{N}\}\$
 - (iii) No. CFLs are closed under union and if they were closed under complement, they would also be closed under intersection.

- (iv) Yes. $S \to S_1 S_2$.
- (v) Yes. Let S be the starting non-terminal. New Grammar $S' \to SS' \mid \varepsilon$.
- (e) No. Just an intuitive example: Palindromes are in CFL but not in DCFL.

Exercise 2 (0 Points)

(a) Describe the language of the following regular expression in words:

$$r = (0+1)^*0(0+1)^*0(0+1)^*.$$

- (b) Construct the regular expression for...
 - (i) the set of all strings with at most one pair of consecutive 0's and at most one pair of consecutive 1's,
 - (ii) the set of all strings with equal number of 0's and 1's such that no prefix has two more 0's than 1's nor two more 1's than 0's.
- (c) Construct a context free grammar (CFG) for a set of strings of $\{(,)\}^*$ such that every string of the set has equal number of left and right parenthesis, and every prefix has at least as many left parenthesis as right parenthesis.

Solution:

- (a) The set of all strings containing at least two 0's.
- (b) (i) The regular expression is:

$$(0+\varepsilon)(10)^*(01)^*(10)^*(1+\varepsilon)$$

$$+(0+\varepsilon)(10)^*(01)^*0$$

$$+(1+\varepsilon)(01)^*(10)^*(01)^*(0+\varepsilon)$$

$$+(1+\varepsilon)(01)^*(10)^*1$$

(ii) The regular expression is:

$$(01+10)^*$$

(c) The CFG is:

$$S \rightarrow (\ S\)\ S \mid \varepsilon$$

Exercise 3 (0 Points)

- (a) Let r and s be regular expressions. Consider the set X such that $X = r \cdot X + s$. Under the assumption that the language of r does not contain ε (i.e., $\varepsilon \notin L(r)$), find X.
- (b) (i) Show that the language $L = \{0^{i^2} \mid i \in \mathbb{N}\}$ is not regular.
 - (ii) Show that the language $L = \{a^i b^i c^i \mid i \in \mathbb{N}\}$ is not a CFL.

Solution:

(a) Guess the solution to be r^*s (because it feels right).

$$X = r.X + s \tag{*}$$

By substituting r^*s for X in the equation (\star) , we observe that r^*s satisfies this property. Thus, $L(r^*s) \subseteq L(X)$. Translating the equation to the topology of strings,

$$X = R.X \cup S$$

where R = L(r) and S = L(s). Let $\varepsilon \notin L(r)$. Suppose the solution of the above equation is $X = R^*S \cup C$, where $R^*S \cap C = \emptyset$. This new set must also satisfy the equation. Thus,

$$R^*S \cup C = R(R^*S \cup C) \cup S = RR^*S \cup RC \cup S = (RR^*S \cup S) \cup RC = R^*S \cup RC$$

Since $R^*S \cap C = \emptyset$, $C \subseteq RC$. Now we can see why the condition $\varepsilon \notin R$ is important, mainly $C \subseteq RC$ has no solution for C when $\varepsilon \notin R$.

The proof also shows what happens if $\varepsilon \in R$, $r^*s + c$ is a solution of equation (\star) for any c.

- (i) Let L be regular and n be the integer in the pumping lemma. Let $w=0^{n^2}$. By pumping lemma w=xyz with $|y|\geq 1$, $|xy|\leq n$ and xy^iz is in L for all i. For i=2, $n^2<|xy^2z|\leq n^2+n$. Or $|zy^2z|$ is strictly between n^2 and $(n+1)^2$.
- (ii) Assume L is defined by a CFG. Let n be the pumping integer. We choose a string $z=a^nb^nc^n$. We write z=uvwxy. By the premises of the pumping lemma $|vwx|\leq n$, thus it cannot contain both a and c. W.l.o.g. assume vwx does not contain c. If $v=a^kb^l$ or $x=a^kb^l$ then pumping directly leads to a word not in L. Therefore assume $v=a^k, w=a^lb^p, x=b^q$. Then for i:=2: $uv^2wx^2y=a^{n+k}b^{n+q}c^n$. Now either n+k>n or n+q>n and therefore $uv^2wx^2y\not\in L$.