Lecture 4.

Del. A ring R is called commutative if ab=ba Va, beR.

Let R be a ring with I.

Def. An element OER is called invertible if there exists an element be R such that ab = ba = 1.

Exercise. Such an element b is unique. The element b is called the inverse of

Notation: b=a.

Exercise. $(a^{-1})^{-1} = Q$.

 $a \in \mathbb{Z}(n)$ is Exercise. An element gcd(a, n) = 1. invertible if and only if

1, 3, 5, 7.

Definition. Let R be a commutative ring with 1. We say that R is a field if every nonzero element of R is invertible.

Examples of Fields: QCRCC's Z(P), where P is a prime number.

Lemma. Let R be a field. If $0 \neq 0 \in \mathbb{R}$, $0 \neq k \in \mathbb{R}$ then $0 \neq ak$.

Proof. Since $0 \neq a$ there exists an element $\overline{a} \in \mathbb{R}$ such that $a^{-1} \cdot a = 1$. If ab = 0 then $\overline{a}^{1}(ab) = 1 \cdot b = b = 0$, a contradiction. I Remark. A ring where a product of two nonzero elements is ± 0 is called a domain.

We proved that a field is a domade. characteristic of a field. Let R be a field and let I be the identity element of R. There are two possibilities: 1) For an arbitrary nonzero integer n we have $nI \neq 0$.

If $n \geq 1$ then $nI = I + I + \cdots + I$ If $n \le -1$, say, n = -6 then

$$T_{4} \quad n \leq -1$$
, say, $(-5)1 = -(1+1+..+1)$

2) There exists a nonzero integer nSuch that n = 0. Let's analyse the 1st possibility. We claim that in this case for an arbitrary nonzero integer n and an arbitrary nayero element $a \in R$ $n a \neq 0$.

Indeed, let na=0. Without loss of generality we may assume that $n \ge 1$. Indeed, if (-5)a=-(5a)=0 then 5a=0.

But na = a + a + ... + a = (1 + 1 + ... + 1) a = n

= (n 1) a.

Since R is a domain na=0 implies n1=0 or a=0, a contradiction.

If the 1st possibility holds, then we day that the field R has zero characteristic, char R=0.

Examples: Q, R, C

Now let us discuss the Possibility 2:

there exists a nonzero integer n such that n1=0.

Again without loss of generality we alsume that $n \ge 1$.

The set $S = \{k \ge 1 \mid k = 0\}$ is not empty. For example, $n \in S$.

Basic Principle: every nonempty set of positive integers contains a minimal element.

Let p be a minimal element of the set S.

Claim: p is a prime number.

Indeed, let $P = P_1 \cdot P_2$, where P_1 , P_2 are positive integers; $P_1 > 1$, $P_2 > 1$, which implies that both P_1 and P_2 are $\leq P$.

We have $(1+\cdots+1)(1+\cdots+1)=1+\cdots+1=0$.

Hence $P_1I=0$ or $P_2I=0$. In other words $P_1 \in S$ or $P_2 \in S$. But both P_1 and P_2 are $P_2 \in S$. But both P_2 and P_3 are $P_4 \in S$.

Def. The prime number p is called the characteristic of the field R,

p = char R.

For an arbitrary element $a \in R$ pa = (p1)a = 0. Example. char Z(P)=P.

Lolynomials. and Rational Functions.

Let F be a field. It polynomial over

F is a famal expression $f(t) = a_0 + a_1 t + a_2 t^2 + \cdots + a_n t^n$,

where $n \ge 1$; $Q_0, Q_1, ..., Q_n \in F$. We assume that $Q_n \ne 0$, otherwise we just don't mention this summand. Then

deg f(t) = N.

The coefficient Qo is called the constant

term of the polynomial f(t).

The coefficient Qn is called the leading

coefficient of f(t)

Polynomials may be added and multiplied: let $f(t) = Q_0 + Q_1 t + \cdots + Q_n t^n$, $g(t) = b_0 + b_1 t + \cdots + b_m t^m$, $m \le n$.

f(t) g(t) = Qobo+(Q1bo+Qob1)t+... and but,
we just expand brackets.

With these addition & multiplication the set of polynomials

FCt]

becomes a ring.

This ring is a domain, but not a field.

Division of polynomials.

Theorem. Given two polynomials f(t) and $g(t) \neq 0$, there exist unique polynomials g(t) and g(t) such that g(t) and g(t) such that g(t) = g(t) g(t) + g(t) + g(t), deg $g(t) < \deg g(t)$.

Proof. Induction on deg f(t). Let deg f(t)=0, i.e. f(t) is a constant. By the assumption of the theorem deg $g(t) \ge 1$. We have $f(t) = g(t) \cdot 0 + f(t)$, deg $f(t) < \deg g(t)$.

Now let deg f(t) > 0. If deg f(t) < deg g(t),
then we can still choose the
presentation

 $f(t) = g(t) \cdot 0 + f(t).$

Suppose that
$$\deg \beta(t) \geq \deg \beta(t)$$
.

Let $f(t) = \alpha_0 + \alpha_1 t + \dots + \alpha_n t^n$, $\alpha_n \neq 0$,

 $g(t) = b_0 + b_1 t + \dots + b_m t^m$, $b_m \neq 0$, $m \leq n$.

The polynomial

 $f_1(t) = f(t) - \frac{\alpha_n}{b_m} t^{n-m} g(t)$

has degree < n because so the coefficient t^n cancel.

has degree < n because cothe coefficients at

By the induction affermption there exist polynomials 9,(+), 2,(+), deg 2,(+) < deg 9(+),

Inch that

Now
$$f(t) = f_1(t) + \frac{\alpha_n}{\beta_m} t \frac{n-m}{\beta(t)} =$$

$$= g(t) Q_1(t) + \zeta_1(t) + \frac{a_n}{6m} + \frac{n-m}{9(t)} =$$

It remains to let
$$q(t) = q_1(t) + \frac{an}{6m}t^{n-m}$$

Now let us prove uniqueness of q(t), z(t)Let f(t) = g(t)q(t) + z(t) = g(t)q(t) + z(t), deg z(t), deg z(t) < deg g(t).

We have $g(t) - \tilde{g}(t) = \tilde{z}(t) - 2(t)$.

the polynomial Z(t)-Z(t) of degree $\angle g(t)$ can not be divisible by g(t) unless Z(t)-Z(t)=0.

Once we established that 2(t) = 2(t) it follows that

 $g(t) q(t) = g(t) \tilde{q}(t)$ and therefore 9(t)=9(t). I Deb. In element a & F of the field F is called a root of a polynomial & (t) if $f(\alpha) = 0$. Theorem. An element XEF is a root of a polynomial & (+) if and only if & (+) in divisibly by t-d. Proof. If f(t) = (t-d) f_1(t) then $f(\alpha) = (\alpha - \alpha) f_1(\alpha) = 0.$ Suppose that f (d) = 0. Let's divide f(t) by t-d with a remainder: f(t)=(t-d)q(t)+7(+1.

Since deg E(t) < deg(t-a)=1 it follows that deg Z(t)=0, hence Z(t) is a constant, E(+)=BEF. We have f(t) = (t-d)9(t)+B.

Substitute t = d.

 $0=f(\alpha)=(\alpha-\alpha)q(\alpha)+\beta$, hence $\beta=0$. We proved that f(t) is divisible by t-w. I nousero, Theorem. Apolynomial of depree n can not have more than in distinct roots.

Proof. Suppose that d1, d2, ..., duti are roots of a polynomial f(t), desf(t)=n. By the Theorem above $f(t) = (t - d_1) f_1(t)$.

Substitute t = d2.

$$0 = f(d_2) = (d_2 - d_1) f_1 (d_2).$$

Since d1, d2, --, dn+, are distinct we have

20 - 21 + 0. Therefore f1 (2) = 0.

Again by the theorem above $f_1(t) = (t - 02) f_2(t),$

and f(t)=(t-d1)(t-d2) &2(t).

Substitute t= 03.

$$0 = f(d_3) = (d_3 - d_1)(d_3 - d_2) f_2(d_3),$$

$$f_2(d_3) = 0$$
, $f_2(t) = (t - d_3) f_3(t)$

and so on.

At the (n+1) - the step we get f(t) = (t-d1)(t-d2)--(t-dn+1)fn+1(t). But the deper of the right hand side is > n+1, a contradiction. I

For an arbitrary polynomial f(t) the set f(t) F[t] of all multiples of f(t) is an ideal of F[t]. We denote this ideal as: (f(t)).

Theorem. An arbitia

Example F = Z(5). Divide X +1 by x2+1

with a remainder.

 $X^{3}+1 = X(X^{2}+1) - X+1$, $deg(-X+1) < deg(X^{2}+1)$ We are done.