Assignement Deep Learning

hugo.todeschini

January 2019

1 Question 2

We want to prove that $W^* = argmin \|WX - Y\|_F = UV^T$ with W orthogonal matrix and $SVD(YX^T) = U\Sigma V^T$

$$\|WX - Y\|_{\mathcal{F}} = \sqrt{tr((\hat{W}X - Y)(WX - Y)^T)}$$

$$\begin{split} \|WX - Y\|_F &= \sqrt{tr((WX - Y)(WX - Y)^T)} \\ \|WX - Y\|_F &= \sqrt{tr(WX(WX)^T) + tr(YY^T) - tr(Y(WX)^T) - tr(WXY^T))} \end{split}$$

 $tr(WX(WX)^T) = \|WX\|_F^2$ and $\|WX\|_F = \|X\|_F$ because W is an orthogonal matrix which preserve norms

Moroever $tr(Y(WX)^T) = tr(WXY^T)$ because $tr(A^T) = tr(A)$ for all A matrix. So $||WX - Y||_F = \sqrt{||X||_F^2 + ||Y||_F^2 - 2tr(WXY^T)}$

To minimize $||WX - Y||_F$ we need to maximize $tr(WXY^T)$

$$SVD(YX^T) = U\Sigma V^T$$
 So $SVD(XY^T) = V\Sigma U^T$

$$tr(WXY^T) = tr(WV\Sigma U^T) = tr(U^TWV\Sigma)$$

U,W and V are orthogonal matrix so we can define an orthogonal matrix Z equal to U^TWV and $tr(U^TWV\Sigma) = tr(Z\Sigma)$

 Σ is a diagonal matrix with $\Sigma = diag(\sigma_1, \sigma_2, \sigma_3...)$ and all $\sigma_i \geq 0$

So $\operatorname{tr}(\mathrm{Z}\Sigma) = \sum_{i=1}^n \sigma_i z_{i,i}$ and to maximize $\operatorname{tr}(\mathrm{Z}\Sigma)$ we have to maximize all $z_{i,i}$ but Z is an orthogonal matrix and all its columns are normed so $z_{i,i} \leq 1$ and if we take all $z_{i,i} = 1$ we get the identity matrix because all $z_{i,j}$ with $i \neq j$ are equal to 0 to have an orthogonal matrix.

So
$$Z = U^T W V = I$$
 and $W = U V^T$