

SDU Summer School

Deep Learning

Summer 2022

Welcome to the Summer School

Gradient-Based Learning

- Recap: Definition
- Stochastic Gradient Descent
- Problems with Deep Learning
- Different Optimizers

Training Feedforward Networks

- We have seen how to construct a FNN
- We can input a data point into the FNN and receive a prediction
- We now need to define a function which judges the quality of our predictions and allows us to optimize the network, i.e., train the network.

Training Feedforward Networks

- We already two such error functions:
- Mean-Squared-Error (minimize):

$$J(\theta) = \frac{1}{n} \sum_{i=1}^{n} \|y^{(i)} - \hat{y}^{(i)}\|^{2}$$

For Logistic Regression we have seen the MLE (maximize)

$$L(X, \boldsymbol{\theta}) = \prod_{i=1}^{n} p(y^{(i)}|\boldsymbol{x}^{(i)}; \boldsymbol{\theta})$$

Cross Entropy Loss

- For Neural Networks, we usually us the cross-entropy loss
- Minimizing the cross-entropy loss corresponds to maximize the log likelihood:

$$J(\boldsymbol{\theta}) = -\mathbb{E}[p(y|\boldsymbol{x};\boldsymbol{\theta})]$$

In case of our 2-case logistic regression:

$$-\frac{1}{n}\sum_{i=1}^{n} \left[y^{(i)} \log h_{\theta}(x) + (1 - y^{(i)}) \log(1 - h_{\theta}(x)) \right]$$

Cross Entropy Loss

Our Recipe

- We have the model defined
 - By constructing the neural network
- We have a loss function
 - For example the cross-entropy
- We have a goal:
 - Modify the model parameters such that we minimize the loss function
- How to minimize a function?
 - Find the nulls of the derivate?
 - Not possible, function too complicated.

The Central Idea

Update the model parameters following the steepest slope

Formally

Need partial derivatives

$$\frac{\partial}{\partial x_i} f(\mathbf{x})$$

- Measures how f changes as only variable x_i increases at point x
- Gradient is vector containing all of the partial derivatives denoted with $\nabla_{\mathbf{x}} f(\mathbf{x})$
 - Element i of the gradient is the partial derivative of f wrt x_i
 - Critical points are where every element of the gradient is equal to zero
 - A function can be minimized when moving in the direction opposite to the gradient

Update the weights

- We can decrease f by moving in the direction of the negative gradient vector
- Steepest descent proposes a new point

$$\mathbf{x}' = \mathbf{x} - \epsilon \nabla_{\mathbf{x}} f(\mathbf{x})$$

- With ϵ being the learning rate (there are many methods of defining ϵ)
- Ascending an objective function of discrete parameters is called hill climbing

Gradient-Based Learning

- Recap: Definition
- Stochastic Gradient Descent
- Problems with Deep Learning
- Different Optimizers

Stochastic Gradient Descent (SGD)

- A recurring problem in machine learning:
 - large training sets are necessary for good generalization
 - but large training sets are also computationally expensive

 Nearly all deep learning is powered by one very important algorithm: Stochastic Gradient Descent

Insight of SGD

- Insight: Gradient descent based on only a sample (we don't have the universe as data) is an expectation
 - Expectation may be approximated using small set of samples
- In each step of SGD we can sample a minibatch of examples

$$B = \{ \boldsymbol{x}^{(1)}, \dots, \boldsymbol{x}^{(m')} \}$$

- drawn uniformly from the training set
- Minibatch size m' is typically chosen to be small: 1 to a hundred
- Crucially m' is held fixed even if sample set is in billions
- We may fit a training set with billions of examples using updates computed on only a hundred examples

SGD Estimate on minibatch

Estimate of gradient is formed as

$$\boldsymbol{g} = \frac{1}{m'} \nabla_{\boldsymbol{\theta}} \sum_{i=1}^{m'} L(\boldsymbol{x}^{(i)}, y^{(i)}, \boldsymbol{\theta})$$

using only the examples of the minibatch

SDG then simply follows the estimated gradient downhill

$$\theta' = \theta - \epsilon g$$

How good is SGD?

- In the past gradient descent was regarded as slow and unreliable
- Application of gradient descent to non-convex optimization problems was regarded as unprincipled
- SGD is not guaranteed to arrive at even a local minimum in reasonable time
- But it often finds a very low value of the cost function quickly enough
- As $m \to \infty$ the model will eventually converge to its best possible test error before SGD has sampled every example

Good Enough in Practice

Gradient-Based Learning

- Recap: Definition
- Stochastic Gradient Descent
- Problems with Deep Learning
- Different Optimizers

Specialties of Deep Learning

- Neural Network training not different from ML models with gradient descent. The components are needed:
 - optimization procedure, e.g., gradient descent
 - cost function, e.g., MLE
 - model family, e.g., linear with basis functions
- Difference: nonlinearity causes non-convex loss
 - Use iterative gradient-based optimizers that merely drives cost to low value
 - No guarantees in comparison to convex optimizations
 - The initialization matters

Convex vs. Non-Convex

https://www.matroid.com/blog/post/the-hard-thing-about-deep-learning

Problem: We can end-up in local minima

Problem: Stationary points, Local Optima

- When f'(x) = 0 derivative provides no information about direction of move
- Points where f'(x) = 0 are known as stationary or critical points
 - **Local minimum/maximum**: a point where f(x) lower/ higher than all its neighbors
 - Saddle Points: neither maxima nor minima

Cliffs and Exploding Gradients

- Neural networks with many layers have steep regions i.e., cliffs
 - Result from multiplying several large weights
 - E.g., RNNs with many factors at each time step
- Gradient update step can move parameters extremely far, jumping off cliff altogether
- Cliffs dangerous from either direction
- Gradient clipping heuristics can be used

Inexact Gradients

- Optimization algorithms assume we have access to exact gradient or Hessian matrix
- In practice we have a noisy or biased estimate
 - Every deep learning algorithm relies on sampling-based estimates
 - In using minibatch of training examples
 - In other case, objective function is intractable
 - In which case gradient is intractable as well

Poor Correspondence between Local and Global Structure

- It can be difficult to make a single step if:
 - $J(\theta)$ is poorly conditioned at the current point θ
 - θ lies on a cliff
 - θ is a saddle point hiding the opportunity to make progress downhill from the gradient
- It is possible to overcome all these problems and still perform poorly:
 - if the direction that makes most improvement locally does not point towards distant regions of much lower cost

Need for good initial points

Optimization based on local downhill moves can fail if local surface does not point towards the global solution

Research directions are aimed at finding good initial points for problems with a difficult global structure

For example: Trajectory of circumventing mountains may be long and result

in excessive training time

Problem: The Learning Rate

Convergence of Steepest Descent

Steepest descent converges when every element of the gradient is zero

- Pure math way of life:
 - Find literally the smallest value of f(x)
 - Or maybe: find some critical point of f(x) where the value is locally smallest
- Deep learning way of life:
 - Decrease the value of f(x) a lot
 - But we have a highly non-convex problem (because of the activation functions) => No guarantees!

About the Gradient

- Gradient must be large and predictable enough to serve as good guide to the learning algorithm
- Functions that **saturate** (become very flat) undermine this
 - Because the gradient becomes very small
 - Happens when activation functions producing output of hidden/output units saturate
- **Negative log-likelihood** helps avoid saturation problem for many models
 - Many output units involve exp functions that saturate when its argument is very negative
 - Log function in Negative log likelihood cost function undoes exp of some units

Gradient-Based Learning

- Recap: Definition
- Stochastic Gradient Descent
- Problems with Deep Learning
- Different Optimizers

Now, why are there different optimizers?

- The actual implementations try to avoid or minder the aforementioned problems
- They differentiate in the way they are doing it, often the differences are rather subtle
- Keras comes with the following optimizers:
 - SGD
 - RMSProp
 - Adagrad
 - Adadelta
 - Adam
 - Adamax
 - Nadam

Tricks they use: **Decreasing Learning Rate**

- Batch* gradient descent (i.e. using all samples) can use a fixed learning rate
 - Since true gradient becomes small and then 0
- SGD has a source of error
 - Random sampling of m training samples
 - Sufficient condition for SGD convergence

$$\sum \varepsilon = \infty; \sum \varepsilon^2 < \infty$$

- Common to decay learning rate linearly until iteration τ : $\varepsilon_k = (1 - \alpha)\varepsilon_0 + \alpha\varepsilon_\tau$ with $\alpha = \frac{k}{\tau}$.
- After iteration τ , it is common to leave ϵ constant

> *This is unfortunately a very confusing terminology: Methods which use the entire dataset are called Batch-methods. Do not confuse with the term "minibatch" from SDG.

Tricks they use: Momentum

- Momentum helps accelerate Gradient Descent(GD) when we have
 - Surfaces that curve more steeply in one direction than in another direction
 - Facing high curvature
 - Small but consistent gradients
 - Noisy gradients
- It also dampens the oscillation as shown in the next slide
- Algorithm accumulates moving average of past gradients and move in that direction, while exponentially decaying

Tricks they use: Momentum

Tricks they use: Momentum

- Introduce variable v, or velocity
 - It is the direction and speed at which parameters move through parameter space
 - Momentum is physics is mass times velocity
 - The momentum algorithm assumes unit mass
 - A hyperparameter $\alpha \in [0,1)$ determines exponential decay

$$\boldsymbol{v} \leftarrow \alpha \boldsymbol{v} - \varepsilon \nabla_{\boldsymbol{\theta}} \left(\frac{1}{m} \sum_{i=1}^{m} L(f(\boldsymbol{x}^{(i)}; \boldsymbol{\theta}), \boldsymbol{y}^{(i)}) \right)$$

$$\boldsymbol{\theta} \leftarrow \boldsymbol{\theta} + \boldsymbol{v}$$

The larger α is relative to ε , the more previous gradients affect the current direction

Tricks they use: **Nesterov Accelerated Gradient**

- Nesterov acceleration optimization is like a ball rolling down the hill but knows exactly when to slow down before the gradient of the hill increases again.
- We calculate the gradient not with respect to the current step but with respect to the future step.
- We evaluate the gradient of the looked ahead and based on the importance then update the weights.

Tricks they use: **Nesterov Accelerated Gradient**

Tricks they use: Adaptive Learning Rate

- We have discussed how important the learning rate is
 - Set too small, we train very slow
 - Set too large, we might wildly jump above minima
- General Idea of adaptive learning:
 - Modify the learning rate for individual parameters
 - Based on their history
 - The different optimizers mainly distinguish each other how the adapt the learning rate.
- This is were the "ADA" comes from in most optimizers

- **SGD**
- **RMSProp**
- Adagrad
- Adadelta
- Adam
- Adamax
- Nadam

SGD

- Standard gradient descent
- Can use decay, momentum, and Nesterov
- Adagrad
- RMSProp
- Adadelta
- Adam
- Adamax
- Nadam

- SGD
- Adagrad
 - We perform larger updates for infrequent parameters and smaller updates for frequent parameters. (good for word embeddings where infrequent words require larger updates)
 - Often has radically quick diminishing learning rates
- RMSProp
- Adadelta
- Adam
- Adamax
- Nadam

Normal SDG for single parameter $heta_i$

$$heta_{t+1,i} = heta_{t,i} - \eta \cdot g_{t,i}$$

Adagrad Method:

$$heta_{t+1,i} = heta_{t,i} - rac{\eta}{\sqrt{G_{t,ii} + \epsilon}} \cdot g_{t,i}$$

with G_t as the diagonal matrix with the elements i, i being the sum of squares of the past updated parameters.

- SGD
- Adagrad
- **RMSProp**
 - "Root Mean Square Propagation"
 - Tries to ease on the diminishing learning rate decay from Adagrad
 - Uses an exponentially decaying running average of the squared gradients $E[q^2]$, similar to momentum.
 - Decay normally set to $\gamma = 0.9$
- Adadelta
- Adam
- Adamax
- Nadam

$$E[g^2]_t = \gamma E[g^2]_{t-1} + (1-\gamma)g_t^2$$
 $\Delta heta_t = -rac{\eta}{\sqrt{E[g^2]_t + \epsilon}}g_t$ $\Delta heta_t = -rac{\eta}{RMS[g]_t}g_t$

- SGD
- Adagrad
- RMSProp
- Adadelta
 - Very similar to RMSProp (came up around the same time)
 - They introduce the root squared parameter updates
 - Replaces the need to set a learning rate
- Adam
- Adamax
- Nadam

$$egin{aligned} E[\Delta heta^2]_t &= \gamma E[\Delta heta^2]_{t-1} + (1-\gamma)\Delta heta_t^2 \ RMS[\Delta heta]_t &= \sqrt{E[\Delta heta^2]_t + \epsilon} \ \Delta heta_t &= -rac{RMS[\Delta heta]_{t-1}}{RMS[g]_t}g_t \ heta_{t+1} &= heta_t + \Delta heta_t \end{aligned}$$

- SGD
- Adagrad
- **RMSProp**
- Adadelta
- Adam
 - **Adaptive Moment Estimation**

$$m_t = eta_1 m_{t-1} + (1-eta_1) g_t \ v_t = eta_2 v_{t-1} + (1-eta_2) g_t^2$$

Bias corrected momentums

$$\hat{m}_t = rac{m_t}{1-eta_1^t} \qquad \hat{v}_t = rac{v_t}{1-eta_2^t}$$

$$heta_{t+1} = heta_t - rac{\eta}{\sqrt{\hat{v}_t} + \epsilon} \hat{m}_t$$

- Next to the exp. dec. avg. of past squared gradients v_t Adam also keeps an exp. dec. avg. of past gradients m_t
- Whereas momentum can be seen as a ball running down a slope, Adam behaves like a heavy ball with friction, which thus prefers flat minima in the error surface.
- Adamax
- Nadam

- SGD
- Adagrad
- **RMSProp**
- Adadelta
- Adam
- **Adamax**
 - Same as Adam, but based on the max-norm L^{∞} .
- Nadam

$$u_t = eta_2^{\infty} v_{t-1} + (1 - eta_2^{\infty}) |g_t|^{\infty} \ = \max(eta_2 \cdot v_{t-1}, |g_t|)$$

- SGD
- Adagrad
- RMSProp
- Adadelta
- Adam
- Adamax
- Nadam
 - Nesterov-accelerated Adaptive Moment Estimation
 - Adam is basically RMSProp with momentum
 - We have seen that Nesterov is often more efficient
 - Welcome to Nadam: Adam which uses the Nesterov momentum.

Do we have everything?

- We have the model defined
- We have a loss function
- We have the optimization goal
- We the optimization algorithm

But what about the gradient?