COMP2711H Tutorial 8

Yuchen Mao

Department of Computer Science and Engineering, Hong Kong University of Science and Technology

Extended Euclidean Algorithm

Example 1.1. Calculate the greastest common divisor d of a = 2445 and b = 652. Which integers s and t make as + bt = d?

i	r_i	q_i	s_i	t_i
0	2445		1	0
1	652	3	0	1
2	489	1	1	-3
3	163	3	-1	4
4	0			

so we have that 163 = (-1)2554 + (4)652.

$$\begin{array}{rl} r_{i+1} & = r_{i-1} - r_i q_i \\ r_i & = a s_i + b t_i \\ s_{i+1} & = s_{i-1} - q_i s_i \end{array}$$

$$s_{i+1} = s_{i-1} - q_i s_i$$

$$r_{i+1} = r_{i-1} - q_i r_i$$

2 Fermat's Little Theorem

Exercise 1. What is the value of $9^{794} \mod 73$?

Exercise 2. What is the value of $34^{70} \mod 73$?

Exercise 3. Prove that $(2^{70} + 3^{70}) \mod 13 = 0$.

Reference

- 1. http://www.oxfordmathcenter.com/drupal7/node/204
- 2. http://people.brandeis.edu/~jbellaic/nt/ex2sol.pdf
- 3. http://db.math.ust.hk/notes_download/elementary/number/ne_N1.pdf