D - 31 - 2012

열팽창용 안전밸브의 기술지침

2012. 7.

한 국 산 업 안 전 보 건 공 단

안전보건기술지침의 개요

ㅇ 작성자 : 김 재 현

○ 개정자 : 한 인 수

- o 제·개정경과
 - 1997년 7월 화학안전분야 기준제정위원회 심의
 - 1997년 8월 총괄기준제정위원회에서 심의
 - 2002년 11월 화학안전분야 기준제정위원회 심의
 - 2002년 12월 총괄기준제정위원회 심의
 - 2012년 7월 총괄제정위원회 심의(개정, 법규개정조항 반영)
- ㅇ 관련규격 및 자료
 - API RP 520 및 521
 - BS 6759
 - ICI CODE PSG No.8
- 관련법규·규칙·고시 등
 - 산업안전보건기준에 관한 규칙 제61조(안전밸브 등의 설치)
- ㅇ 기술지침의 적용 및 문의

이 기술지침에 대한 의견 또는 문의는 한국산업안전보건공단 홈페이지 안 전보건기술지침 소관 분야별 문의처 안내를 참고하시기 바랍니다.

공표일자 : 2012년 7월 18일

제 정 자 : 한국산업안전보건공단 이사장

열팽창용 안전밸브의 기술지침

1. 목 적

이 지침은 산업안전보건기준에 관한 규칙(이하 "안전보건규칙"이라 한다) 제261 조(안전밸브 등의 설치)의 규정에 의거 열팽창용 안전밸브의 설치 등에 관한 기술적 사항을 정함을 목적으로 한다.

2. 적용범위

이 지침은 액체를 취급하는 배관에 설치하는 열팽창용 안전밸브의 설치대상, 배출용량, 크기, 설정압력 및 배출물질의 처리 등에 적용한다.

3. 용어의 정의

- (1) 이 지침에서 사용하는 용어의 정의는 다음과 같다.
 - (가) "열팽창용 안전밸브(Liquid thermal relief valve)"라 함은 2개 이상의 밸브 또는 맹판(Blind flange) 등으로 차단된 배관내의 액체가 외부 열원에 의한 열팽창으로 인해 배관이 파열되는 것을 방지하기 위하여 설치하는 안전밸브를 말한다.
 - (나) "열원"이라 함은 태양열, 수증기, 열매유, 전기 등과 같이 내부 액체의 온도를 상승시킬 수 있는 에너지 발생원을 말한다.
 - (다) "배관계"라 함은 열원에 의하여 액체가 가열되는 가열로, 열교환기, 용기 등 화학설비를 포함한 배관 시스템을 말한다.
 - (라) "상변화(Phase change)"라 함은 액체가 증기 또는 액체의 일부가 증기로 기화하는 상태변화를 말한다.

D - 31 - 2012

- (마) "최고허용압력(Maximum allowable working pressure)"이라 함은 용기, 배관, 밸브, 플랜지 등의 제작에 사용된 재질의 두께(부식여유 제외)를 기준하여 산출된 허용가능한 최고의 압력을 말한다.
- (바) "설정압력(Set pressure)"이라 함은 설계상 정한 분출압력 또는 분출 개시 압력으로서 이름판에 표시된 압력을 말한다.
- (사) "배압(Back pressure)"이라 함은 안전밸브의 토출측에 걸리는 압력을 말한다.
- (2) 기타 이 지침에서 사용하는 용어의 정의는 이 지침에 특별한 규정이 있는 경우를 제외하고는 산업안전보건법, 같은 법 시행령, 같은 법 시행규칙, 안 전보건규칙 및 고용노동부 고시에서 정하는 바에 의한다.

4. 설치대상 및 설치위치

4.1 설치대상

열팽창용 안전밸브는 인화성 물질, 가연성 가스, 독성물질 및 물 등을 액체 상태로 취급하는 배관계가 2개의 밸브로 차단되어 다음 각호와 같은 열원에 의해 가열되는 경우에 설치한다.

다만, 물을 취급하는 경우에는 열교환기의 냉각용 배관계에 한하여 열팽창용 안전밸브를 설치한다.

- (1) 가열로 또는 열교환기와 같은 공정열
- (2) 수증기, 열매유 또는 전기에 의한 배관 가열
- (3) 태양의 복사열
- (4) 대기온도 상승

4.2 설치대상 제외

4.1항의 규정에도 불구하고 다음 각호의 1과 같은 안전상의 조치를 하는 경우에는 열팽창용 안전밸브의 설치를 생략할 수 있다.

D - 31 - 2012

(1) 차단된 배관계에 열팽창을 흡수할 수 있는 용기를 설치하는 경우

(2) 액체의 흐름이 완전히 차단되지 않도록 밸브 자체에 기계적 조치 등을 한 경우

(3) 전기 등을 이용하여 배관계를 가열할 때 배관내의 액체가 운전온도 이상 으로 과열되지 않도록 온도 조절장치 또는 전원 차단장치를 설치한 경우

(4) 태양의 복사열 또는 대기온도 상승에 의한 열원이 배관계내로 유입되는 것을 방지할 수 있도록 배관을 지하에 매설한 경우

4.3 설치위치

열팽창용 안전밸브는 배관계가 밸브 등에 의하여 차단될 수 있는 위치에 설치하여야 한다.

5. 배출용량 및 크기

5.1 배출용량

배관계의 용량이 크거나 또는 열팽창용 안전밸브에서 과도한 상변화가 예상되는 경우에는 다음의 공식을 이용하여 배출용량을 결정한다. 다만, 열팽창용 안전 밸브에서 배출되는 물질의 상 변화가 없으며 배관계 내의 용량이 적은 경우에는 배출용량 계산을 생략할 수 있다.

$$W = \frac{Q_F \cdot \beta}{S}$$

W : 배출용량 (kg/h)

 Q_F : 유입열량 (kcal/h)

S : 유체의 비열 (kcal/kg·℃)

D - 31 - 2012

5.2 유입 열량

배관계 내로 유입되는 열량은 다음과 같이 산정한다.

- (1) 가열로 또는 열교환기에 의하여 배관계 내의 유체가 가열되는 경우에는 가열용량 또는 열교환 용량을 배관계 내로 유입되는 열량으로 한다.
- (2) 태양의 복사열 또는 대기온도 상승등에 의하여 배관계 내로 유입되는 열량은 다음과 같은 시행착오 방법에 따라 계산한다.
- ① 배관계의 외부 표면온도 T₀를 가정한다.
- ② 배관계 내로 유입되는 열량 Q_F를 계산한다.

$$Q_F = U_F \cdot A_o \cdot (T_o - T_F)$$

Q_F: 배관계 내로 유입되는 열량(kcal/h)

 U_F : 배관계 내의 유체와 외부 표면 사이의 열전달 계수 $(\text{kcal/h} \cdot \text{m}^2 \cdot \mathbb{C})$

Ao: 배관계의 외부 표면적(m²)

 T_{o} : 배관계의 외부 표면온도($^{\circ}$ C)

T_F : 유체의 온도(℃)

③ 대기로 유출 또는 대기에서 유입되는 열량 Q_A 를 계산한다.

$$Q_A = U_A \cdot A_o \cdot (T_A - T_o)$$

QA: 전도·대류에 의하여 대기로 유출되는 열량 또는 배관계 내로 유입되는 열량(kcal/h)

 U_A : 배관계 외부표면과 대기 사이의 열전달 계수 $(kcal/h \cdot m^2 \cdot \mathbb{C})$

A_o: 배관계의 외부 표면적(m²)

 T_{o} : 배관계의 외부 표면온도($^{\circ}$ C)

T_A : 대기온도(℃)

D - 31 - 2012

④ 태양의 복사열에 의하여 배관계 내로 유입되는 열량 Qs를 계산한다.

$$Q_s = A_r \cdot \alpha \cdot q_{sr}$$

Qs: 태양의 복사열에 의하여 배관계 내로 유입되는 열량(kcal/h)

A_r : 태양이 수직으로 비치는 배관의 면적(m²)

α : 흡수율(보온재로 시공되지 않은 배관 : 0.9, 보온재로 시공된

배관 : 0.4)

q_{sr}:태양의 복사에너지(750 kcal/h·m²)

- ⑤ 수증기, 열매유 또는 전기에 의하여 배관계를 가열하는 경우에는 수증기 등에 의한 열량(Q_E)이 모두 배관계로 유입되는 것으로 한다.
- ⑥ 다음과 같은 식에 따라 Q_F , Q_A , Q_S 및 Q_E 를 가감하여 열수지를 검토한다.

$$Q_F = Q_A + Q_S + Q_E$$

① ⑥항 열수지의 좌·우가 같아 질 때까지 ①에서 가정한 T_0 를 조정하여 ① \sim ⑥의 단계를 반복한다.

5.3 크기

5.3.1 배출물질의 상변화가 없는 경우

열팽창용 안전밸브에서 배출되는 물질이 상변화 없이 액체로 배출되는 경우에는 5.1항의 배출용량을 충분히 배출시킬 수 있도록 열팽창용 안전밸브의 크기를 선정한다. 통상적으로 열팽창용 안전밸브에서 배출되는 물질의 상변화가 없으며 배관계 내의 내용적이 작은 경우에는 열팽창용 안전밸브의 인입측 배관 호칭지름은 15㎜ 또는 20㎜, 토출측 배관 호칭지름은 20㎜ 또는 25㎜로 하며, 오리 피스의 크기는 최소한 36㎜²로 한다.

KOSHA GUIDE

D - 31 - 2012

5.3.2 배출물질의 상변화가 있는 경우

열팽창용 안전밸브에서 배출되는 물질의 상변화가 예상되는 경우 즉, 취급하고 있는 물질이 증기-액체 평형을 이루고 있는 경우에는 열팽창용 안전밸브에서 배출되는 증기 및 액체의 양을 각각 고려하여 열팽창용 안전밸브의 크기를 계산하여야 한다.

6. 설정압력

밸브 또는 맹판 등에 의하여 차단될 수 있는 배관계내의 배관, 밸브, 플랜지 및 용기 등과 같은 모든 화학설비 중에서 설계압력이 가장 낮은 화학설비의 설계압력을 열팽창용 안전밸브의 설정압력으로 하여야 한다.

일반적으로 플랜지의 최고허용압력을 열팽창용 안전밸브의 설정압력으로 하는 경우에는 관련 배관계 내의 밸브, 배관 및 화학설비의 최고허용압력 또는 설계압력은 플랜지의 최고허용압력과 같거나 그 이상으로 한다.

7. 선정

열팽창용 안전밸브의 토출측 배관을 저장탱크, 밀폐된 용기, 펌프 인입측 배관 등 밀폐계로 연결하여 배출물질을 처리하는 경우에는 열팽창용 안전밸브 후단에 미치는 배압을 고려하여 열팽창용 안전밸브를 선정한다.

7.1 배압이 설정압력의 10%를 초과하지 않는 경우

열팽창용 안전밸브의 토출측 후단에 걸리는 압력이 열팽창용 안전밸브 설정압력의 10%를 초과하지 않는 경우에는 일반 열팽창용 안전밸브를 사용한다.

7.2 배압이 설정압력의 10~30% 이내인 경우

열팽창용 안전밸브의 토출측 후단에 걸리는 압력이 열팽창용 안전밸브 설정압력의 $10\sim30\%$ 이내인 경우에는 배압의 영향을 받지 않도록 제작된 벨로우즈형 열팽창용 안전밸브를 사용한다.

D - 31 - 2012

7.3 배압이 설정압력의 30%를 초과하는 경우

열팽창용 안전밸브의 토출측 후단에 걸리는 압력이 열팽창용 안전밸브 설정압력의 30%를 초과하는 경우에는 열팽창용 안전밸브의 설정압력을 상향조정하여 배압이 설정압력의 30%를 초과하지 않도록 한다. 다만, 설정압력을 상향조정하는 경우에는 관련 배관계의 설계압력이 열팽창용 안전밸브의 설정압력 이상이되도록 하여야 한다.

8. 배출물질의 처리

열팽창용 안전밸브에서 배출되는 물질이 안전보건규칙 별표 1의 제7호에서 규정하는 급성독성물질인 경우에는 다음 각호의 1과 같은 방법을 선정하여 처리한다.

(1) 공정계 내로 재유입

열팽창용 안전밸브의 토출측 배관을 밸브 또는 맹판 등에 의하여 차단되지 않는 저장탱크 또는 저압용기 등의 인입 또는 출구배관등으로 연결하여 공정계 내로 회수할 수 있다.

(2) 밀폐된 용기로 배출

열팽창용 안전밸브의 토출측 배관을 밀폐용기로 연결하여 배출물질을 회수한다.

(3) 소각후 대기배출

열팽창용 안전밸브의 토출측 배관을 후레아 헤다 등에 연결하여 후레아 스텍 또는 소각설비에서 연소처리 할 수 있다.

(4) 세정후 대기배출

열팽창용 안전밸브의 토출측 배관을 세정탑 등에 연결하여 세정후 대기로 배출할 수 있다.