Calcolo Numerico A, A.A. 2007/08 Appello 25 marzo 2009

Esercizio 1 Si consideri la funzione

$$f(x) = e^{-x^2}, x \in [-2, 2],$$
 (1)

sia n un numero intero positivo, H=4/n e $s_3(x)$ la spline cubica che interpola f negli (n+1) nodi equispaziati x_i (per i=0,...,n) in [-2,2].

1.a) Sapendo che la stima teorica dell'errore dell'interpolazione con spline cubiche afferma che, se $f \in C^4([x_0, x_n])$, allora

$$\max_{x \in [x_0, x_n]} |f(x) - s_3(x)| \le CH^4 \max_{x \in [x_0, x_n]} |f^{(4)}(x)|$$

con C = 5/384, calcolare il minimo numero di nodi di interpolazione per cui l'errore di interpolazione

$$E(f) := \max_{x \in [-2,2]} |s_3(x) - f(x)| \tag{2}$$

sia minore o uguale a 10^{-6} .

- **1.b)** Verificare sperimentalmente quanto trovato al punto precedente. A tale proposito si approssimi l'errore E(f), con $\tilde{E}(f) = \max |s_3(\tilde{x}_j) f(\tilde{x}_j)|$, essendo $\{\tilde{x}_j\}_{j=1}^{1000}$ 1000 nodi equispaziati nell'intervallo [-2, 2].
- **1.c)** Sia $p_n(x)$ il polinomio interpolatore di Lagrange globale di grado n della funzione $f(x) = e^{-x^2}$ sull'intervallo [-2,2]. Dire (verificandolo sperimentalmente) se l'errore di interpolazione $E_n(f) = \max_{x \in [-2,2]} |p_n(x) f(x)| \to 0$ per $n \to \infty$, qualora si scelgano n+1 nodi equispaziati. Si considerino valori di $n \le 50$.

Commentare esaustivamente i risultati ottenuti.

Esercizio 2 Si consideri il sistema lineare $A\mathbf{x} = \mathbf{b}$, dove la matrice A e il termine noto \mathbf{b} sono

$$A = \begin{bmatrix} 1001 & 1001 & 0 & 0 & 0 & 0 \\ 1001 & 1001 & 1 & 0 & 0 & 0 \\ 0 & 1 & 1001 & 1001 & 0 & 0 \\ 0 & 0 & 1001 & 1001 & 1 & 0 \\ 0 & 0 & 0 & 1 & 1001 & 1001 \\ 0 & 0 & 0 & 0 & 1001 & 1001 \end{bmatrix} \quad \mathbf{b} = \begin{bmatrix} 3003/2 \\ 9011/6 \\ 7013/12 \\ 35047/60 \\ 22037/60 \\ 11011/30 \end{bmatrix}$$
(3)

2.a) Dire se il Metodo di Eliminazione di Gauss, nelle versioni senza pivotazione e con pivotazione, può essere utilizzato per la risoluzione del sistema dato. Giustificare la risposta.

2.b) Risolvere il sistema $A\mathbf{x} = \mathbf{b}$ con il comando \ di Matlab e, sapendo che la soluzione esatta è $\mathbf{x} = [1, 1/2, 1/3, 1/4, 1/5, 1/6]^T$, determinare l'errore in norma 2 sulla soluzione esatta.

Dire, verificandolo numericamente, se la soluzione numerica $\hat{\mathbf{x}}$ calcolata verifica la stima a priori dell'errore di risoluzione di un sistema lineare, supponendo che l'errore sui dati sia dell'ordine della precisione di macchina.

2.c) È possibile utilizzare il metodo del Gradiente Coniugato per la risoluzione del sistema $A\mathbf{x} = \mathbf{b}$?

Giustificare la risposta e verificare sperimentalmente richiamando la function https://paola-gervasio.unibs.it/CS/MATLAB/gradiente_coniugato.m, con tol=1.e-8, nmax=6 e x0 vettore di numeri casuali.

Esercizio 3 Nella function schema1.m è implementato uno schema numerico per l'approssimazione di equazioni differenziali ordinarie. La sua sintassi di chiamata è:

[tn,un]=schema1(odefun,tspan,y0,Nh);

dove: odefun è il function handle associato alla funzione del problema di Cauchy, tspan=[t0,tf] (con $t0=t_0$, $tf=t_f$),

y0 contiene la condizioni iniziale,

Nh è il numero di intervalli di uguale ampiezza (=h) in cui è suddiviso l'intervallo $[t_0, t_f]$. In output th è il vettore riga tegli istanti temporali e un è un vettore colonna contenente la soluzione numerica. (La sintassi di chiamata di questa function è uguale a quella della function feuler.m).

3.a) Si determini sperimentalmente l'ordine di convergenza dello schema, prendendo come riferimento il problema

$$\begin{cases} y'(t) = \frac{y(t)}{t} + \frac{3t}{1+t^2} & \text{per } t \in [1,5] \\ y(1) = \frac{3}{4}\pi, \end{cases}$$

sapendo che la soluzione esatta è $y(t) = 3t \arctan(t)$.

3.b) Si consideri il problema lineare modello $y'(t) = \lambda y(t)$ per $t \in [0, 100]$ con condizione iniziale y(0) = 1 e λ reale negativo. Si determini sperimentalmente come deve essere scelto h_0 al variare di $\lambda \in \mathbb{R}^-$, affinché lo schema risulti assolutamente stabile $\forall 0 < h < h_0$. (Si prendano ad esempio valori di $\lambda = -1, -2, -4$.)