

ESCUELA DE INGENIERÍA DE FUENLABRADA

GRADO EN INGENIERÍA DE ROBÓTICA SOFTWARE

TRABAJO FIN DE GRADO

Detección de transmisores radiofrecuencia con drones utilizando aprendizaje por refuerzo.

Autor: Cristian Sánchez Rodríguez Tutor: Dr. Roberto Calvo Palomino

Curso académico 2022/2023

Agradecimientos

ToDo

Madrid, 30 de junio de 2023 Cristian Sánchez Rodríguez

Resumen

En la actualidad, la ciencia ha avanzado a pasos agigantados con respecto a las soluciones tecnológicas. Uno de los campos más beneficiados, es la robótica, también gracias a que abarca una inmensa variedad de campos donde se pueden desarrollar soluciones eficientes y robustas.

Por otro lado, ha surgido un nuevo paradigma con el uso de drones, o sistemas aéreos provistos de sensores y actuadores, que amplian el espectro de uso para herramientas tecnológicas, permitiendo abordar los problemas desde nuevas perspectivas. En este proyecto, el foco de estudio se centra en los *Unmanned Air Vehicles* (UAV), ya que se busca automatizar todo el proceso de manejo del mismo.

De este modo, surge la idea de realizar este Trabajo de Fin de Grado (TFG), juntando lo mejor de ambos mundos, soluciones autónomas con dispositivos aéreos tremendamente adaptables a las circunstancias del problema.

Concretamente, el objetivo ha sido robotizar un dron, con el fin de rastrear y navegar hacia una señal de Radio Frecuencia (RF), mediante el uso de distintos algoritmos robóticos, con el fin de compararlos entre sí y determinar cual desempeña mejor su papel.

Acrónimos

 ${f RAE}$ Real Academia Española

TFG Trabajo de Fin de Grado

UAV Unmanned Air Vehicles

 $\mathbf{UAS} \; \; \textit{Unmanned Aerial Systems}$

GCS Ground Control Station

SUAV Small Unmmaned Air Vehicle

LOS Line Of Sight

IA Inteligencia Artificial

RF Radio Frecuencia

Índice general

1.	Intr	oducci	ión	1
	1.1.	Robots	s	2
		1.1.1.	Drones	2
	1.2.	Intelig	gencia artificial	3
		1.2.1.	Aprendizaje por refuerzo	4
	1.3.	Señale	es	5
	1.4.	Síntesi	is	5
2.	Obj	etivos		6
	2.1.	Descri	ipción del problema	6
	2.2.	Requis	sitos	6
	2.3.	Metod	lología	6
	2.4.	Plan d	de trabajo	6
3.	Plat	taform	as de desarrollo y herramientas utilizadas	7
	3.1.	Lengua	ajes de programación	7
		3.1.1.	Python	7
		3.1.2.	C	7
	3.2.	Entorr	nos de programación	7
		3.2.1.	Matlab	7
		3.2.2.	STM32CubeIde	7
		3.2.3.	Visual Studio Code	7
	3.3.	Exoese	queleto	7
	3.4.	Redes	Neuronales	8
		3.4.1.	Red neuronal Movenet	8
		3.4.2.	Red neuronal Mediapipe Pose	8
		3.4.3.		8

ÍNDICE GENERAL V

4.	Dise	eño		9						
	4.1.	Recop	ilación inicial de datos con el exoesqueleto	9						
	4.2. Desarrollo de la obtención del PID teórico del exoesqueleto									
		4.2.1.	Concepto de PID	9						
		4.2.2.	Método de Ziegler-Nichols	9						
		4.2.3.	PidTuner	9						
	4.3.	4.3. Algoritmo del ejercicio de las sentadillas								
	4.4.	.4. Comparativa de resultados de redes neuronales de pose y exoesqueleto .								
		4.4.1.	Guardado de datos	10						
		4.4.2.	Obtención de los ángulos	10						
		4.4.3.	Análisis de los resultados obtenidos	10						
5.	Conclusiones 1									
	5.1.	. Objetivos cumplidos								
	5.2.	Requisitos satisfechos								
	5.3.	Balanc	ce global y competencias adquiridas	11						
	5.4.	Líneas	futuras	11						
6.	Ane	exo		12						
Bi	bliografía 14									

Índice de figuras

Listado de códigos

Índice de cuadros

5.1.	Anexo co	on la	as f	uentes	de	done	le se	han	obteni	do las	s imá	genes	para este	
	proyecto													13

Introducción

En la actualidad, la tecnología forma parte de nuestro día a día. Prácticamente, constituye un elemento imprescindible para llevar a cabo cualquier actividad, sea profesional o cotidiana. ¿Su función? solucionar problemas para hacernos la vida más sencilla.

Con esto en mente, se presenta la robótica, pero ¿qué es la robótica?. Según la Real Academia Española (RAE), la robótica se define cómo "técnica que aplica la informática al diseño y empleo de aparatos que, en sustitución de personas, realizan operaciones o trabajos, por lo general en instalaciones industriales." (Real Academia Española, s.f., definición 2) [1]. Sin embargo, no es precisa, por ello una definición más concreta podría ser, ciencia que engloba diversas ramas tecnológicas, encargada del estudio y diseño de dispositivos mecánicos provistos de sensores y actuadores, capaces de realizar tareas, a través de la extracción y posterior procesamiento de la información, con el fin de generar respuestas adecuadas para resolver determinados problemas [2].

Dentro de la robótica, existen diversas maneras de clasificar, sin embargo, una de las más comunes esta relacionada con la mobilidad del dispositivo, esto es, si el mecanismo se puede desplazar por su entorno o no, por tanto se distingue lo siguiente:

- 1. Robótica industrial: que involucra mecanismos fijos, capaces de realizar tareas de manera rápida, precisa y eficiente. Como es el caso de los brazos robóticos [3].
- 2. Robótica móvil: la cual abarca el resto de dispositivos no mencionados, que engloba múltiples entornos y aplicaciones, como pueden ser, robótica aérea, terrestre y submarina [4].

Como tal, la robótica es especialmente buena a la hora de resolver tareas repetitivas, peligrosas, delicadas y en ambientes problemáticos (conocidas como las 4 D's, dull, dirty, dangerous and dear) [5]. Sin embargo, uno de los problemas más complicados

de abordar, es el contexto, es decir, la capacidad de entender y adaptarse a las circunstancias del problema. Es ahí, donde se presenta el segundo gran protagonista, la Inteligencia Artificial (IA) [6].

Pero antes de entrar en materia, primero hay que definir los conceptos básicos uno a uno como, ¿qué es exactamente un robot? ¿qué tipo de robot usaremos? ¿en qué consiste la IA y que emplearemos? ¿cómo funcionan las señales que rastrearemos? entre otras cuestiones.

1.1. Robots

Un robot es un dispositivo provisto con sensores, o elementos capaces de extraer información del entorno (por ejemplo una cámara), actuadores, o elementos que permiten al dispositivo realizar acciones (por ejemplo un motor), y una unidad de procesamiento, que se encarga de generar acciones a través de la información obtenida con los sensores, todo ello mediante algoritmos [7].

Según el problema que se quiera resolver conviene usar unos y otros. En nuestro caso buscamos un robot con capacidad de navegar, preferiblemente grandes distancias y que pueda tomar medidas de la intensidad de señal. De este modo, para el primer punto se tenían dos opciones, o bien un robot terrestre, o bien un robot aéreo. Para el segundo punto no influye ya que se podía incluir el sensor en cualquier discpositivo.

Finalmente se optó por la solución aérea, ya que nos permite barrer grandes superficies sin depender del terreno en sí.

1.1.1. Drones

Los Unmanned Aerial Systems (UAS) tienen origen en la primera guerra mundial, con el biplano llamado Kettering bug. Se trataba de un torpedo que era lanzado desde una carretilla, capaz de volar de forma no tripulada, hasta que se liberaba de sus alas y caía sobre el objetivo [8]. Más tarde, entre la primera y segunda guerra mundial (1935), se diseño el Queen Bee, de donde surgió el termino "drone", como abeja macho en busca de la reina, que se trataba de un avión no tripulado, con el fin de servir de objetivo para realizar prácticas de artillería aérea [9]. Sin embargo, no fue hasta Operation Aphrodite, en la segunda guerra mundial, donde realmente se vió el primer dron radio tripulado, con el fin de poder volar en entornos "sucios" o dirty,

dado el nuevo paradigma de las bombas atómicas [10].

Existen múltiples avances y ejemplos posteriores, pero en la actualidad podemos definir un UAS teniendo en cuenta lo siguiente:

- 1. *Ground Control Station* (GCS): es la estación de tierra o el elemento encargado de controlar la nave.
- 2. Comunicación: conecta y gestiona la transmisión de datos entre el UAV y la GCS, mediante data links, o canales de transmisión.
- 3. UAV: hace referencia directamente a la aeronave.

[11] [12] [13]

También cabe destacar que hay variedad de drones, según su peso y capacidad de carga de pago, o elementos que sea capaz de cargar, lo cual influye en la legislación detras de su uso (de forma general, cuanto mayor sea el peso, más legislación debe cumplir y mayores restricciones de uso tiene) [14]. Por ello, el dispositivo seleccionado es de la categoría más inferior o tambien denominados *Small Unmmaned Air Vehicle* (SUAV).

Tal y como fue mencionado, la gran ventaja del uso de vehículos aéreos es poder evitar las irregularidades del terreno, sin embargo, hay ligados al uso de estos dispositivos ciertos problemas, como son el clima, la carga de pago que afecta a la autonomía (peso de las baterías), los interiores (afectan a la señal GPS), entre otros. Los cuales se deben tener en cuenta de cara a la resolución del problema.

1.2. Inteligencia artificial

El segundo pilar mencionado en este TFG, es el de la IA, pero, ¿de dónde surge esto?. Quizás, la primera pregunta que se buscó responder fue la siguiente ¿Puede una máquina pensar?, formulada en "Computing Machinery and Intelligence" (Alan Turing, 1950), de donde surgió el famoso test de Turing, entre otras ideas [15]. La búsqueda de la IA enfrentó desafíos iniciales debido a la incapacidad de las primeras computadoras para almacenar datos y su elevado precio. Sin embargo, en 1956, se presentó el primer programa de IA llamado Logic Theorist en el Dartmouth Summer Research Project on Artificial Intelligence [16]. Con el tiempo, la IA progresó con

mejores algoritmos y mejoras en la capacidad de las computadoras. A pesar de esto, lograr los objetivos finales de la IA, como comprender el lenguaje humano y el pensamiento abstracto, sigue siendo un desafío a día de hoy [17].

En general, la IA es capaz de abordar los siguientes problemas:

- Predicción: que busca adelantar una respuesta precisa, con ciertos datos de entrada. Por ejemplo, predecir el precio de una vivienda en función de sus metros cuadrados.
- 2. Clasificación: que engloba datos en grupos según sus características. Como puede ser, detectar rostros en imagenes de personas.
- 3. **Aprendizaje**: Que busca resolver un problema a base de prueba y error, mediante un sistema de recompensas. Como por ejemplo, el juego del ajedrez, donde se busque ganar en el menor número de movimientos posible.

[18]

1.2.1. Aprendizaje por refuerzo

Dada la naturaleza de nuestro problema, el enfoque se basará en el aprendizaje por refuerzo, donde se planteará un sistema de recompensas y penalizaciones, que enseñará al robot a tomar las mejores acciones posibles [19].

Cabe destacar que, este enfoque está directamente extraido de la psicología y el estudio del comportamiento, donde en función de recompensas y castigos se induce al aprendizaje en distintas tareas, como por ejemplo, enseñar a jugar al ping pong a dos palomas [20].

Concretamente se hará uso de la metodología **Q-Learning**, que busca generar una tabla numérica donde cada fila se interprete como un estado del robot, que puede ser su posición; y cada columna sea una determinada acción, como puede ser moverse hacia algún lugar. De este modo, y una vez construida la tabla (que se rellena con números en función de las recompensas y penalizaciones), el robot solo tiene que identificar en que estado se encuentra y elegir la columna con mayor valor numérico, lo que se traducirá en la mejor acción para dicho estado [21].

1.3. Señales

El último elemento presente en el problema es la fuente de datos que se empleará para construir la inteligencia del robot. En este caso hablamos de las señales, concretamente de señales RF, como son por ejemplo Wi-Fi, radio FM, 4G, 5G, entre otros tipos de señales.

En particular, se usará la aproximación de **Friis**, que ofrece un método para calcular la potencia de la señal de un receptor, en función de la potencia del transmisor, las ganancias del transmisor y el receptor, la longitud de onda (que determina el tipo de señal que es), la distancia entre ambos, el medio en el que se encuentren y un factor de pérdidas asociado al sistema empleado [22] [23] [24].

1.4. Síntesis

Como conclusión de este capítulo, queda unir las piezas que conforman este puzzle, pero no sin antes mencionar algunos proyectos relacionados, donde se destaca el uso conjunto de drones y robótica para la creación de un módulo ROS, donde se engloban las comunicaciones para programar un sigue-persona [25], junto con el uso de estas aeronaves en síntesis con la IA para lograr la navegación en interiores de la misma [26]

En nuestro caso, se usará el mencionado dispositivo del tipo SUAV, provisto de un receptor RF como sensor, y los motores propios como actuadores. Se le agregarán algoritmos sistemáticos para compararlos con soluciones Q-Learning, en la tarea de resolver la detección y posterior navegación al origen de una señal RF, la cual será simulada mediante la aproximación de Friis.

Objetivos

ToDo...

2.1. Descripción del problema

ToDo...

2.2. Requisitos

ToDo...

2.3. Metodología

ToDo...

2.4. Plan de trabajo

Plataformas de desarrollo y herramientas utilizadas

ToDo...

3.1. Lenguajes de programación

3.1.1. Python

ToDo...

3.1.2. C

ToDo...

3.2. Entornos de programación

3.2.1. Matlab

ToDo...

3.2.2. STM32CubeIde

ToDo...

3.2.3. Visual Studio Code

ToDo...

3.3. Exoesqueleto

3.4. Redes Neuronales

ToDo...

3.4.1. Red neuronal Movenet

ToDo...

3.4.2. Red neuronal Mediapipe Pose

ToDo...

3.4.3. Tablas comparativas de ambos modelos

Diseño

ToDo...

4.1. Recopilación inicial de datos con el exoesqueleto

ToDo...

4.2. Desarrollo de la obtención del PID teórico del exoesqueleto

ToDo...

4.2.1. Concepto de PID

ToDo...

4.2.2. Método de Ziegler-Nichols

ToDo...

4.2.3. PidTuner

ToDo...

4.3. Algoritmo del ejercicio de las sentadillas

ToDo...

4.4. Comparativa de resultados de redes neuronales de pose y exoesqueleto

4.4.1. Guardado de datos

ToDo...

4.4.2. Obtención de los ángulos

ToDo...

4.4.3. Análisis de los resultados obtenidos

Conclusiones

ToDo...

5.1. Objetivos cumplidos

ToDo...

5.2. Requisitos satisfechos

ToDo...

5.3. Balance global y competencias adquiridas

ToDo...

5.4. Líneas futuras

Anexo

A continuación se muestran las referencias a las figuras de este trabajo junto con la fuente de la que han sido obtenidas:

Referencia imágenes	Fuente de la que se ha obtenido
??	1.https://revistaderobots.com/robots-y-robotica/
	que-es-la-robotica/?cn-reloaded=1
	2.https://www.elindependiente.com/vida-sana/2018/
	01/22/los-robots-que-nos-cuidaran-en-2050/
	3.https://www.iguanarobot.com/wp-content/uploads/
	2021/03/429190-1.jpg
	4.https://www.robotexplorador.com/
	5.https://www.edsrobotics.com/blog/
	robots-autonomos-que-son/
??	1.https://www.hogarmania.com/hogar/economia/
	como-elegir-mejor-robot-aspirador.html
	2.http:
	//automata.cps.unizar.es/robotica/Morfologia.pdf
	3.https://www.aarp.org/espanol/salud/
	enfermedades-y-tratamientos/info-12-2013/
	cirugia-robotica-beneficios-riesgos.html
	4.https://www.nobbot.com/
	mars-home-planet-reto-mundial-colonizar-marte/
??	https://elpais.com/eps/2023-05-27/
	robots-que-sienten-lo-que-tocan.html
??	http://www.technovelgy.com/ct/
	Science-Fiction-News.asp?NewsNum=455
??	https://www.medicalexpo.es/prod/hocoma/
	product-68750-438408.html
??	https://exoesqueleto/pediatrico/puede/comercializar

??	1.https://altertecnia.com/
••	exoesqueletos-mejorar-productividad/
	2.https://www.eafit.edu.co/innovacion/spinoff/
	_
	natural-vitro/PublishingImages/banner%
	20-exoesqueleto.jpg
	3.https://www.marsibionics.com/
	atlas-pediatric-exo-pacientes/
	4. https://exoesqueleto-militar
??	1.https://shop.bihar.coop/es/inicio/
	34-exoesqueleto-flexible.html
	2.https://exoesqueleto/rigido/movilidad
??	https://person-pose-keypoints
??	https:
	//www.st.com/content/st_com/en/stm32cubeide.html
??	1.https://journals.sagepub.com/doi/full/10.1177/
	1687814017735791
	2.https://cjme.springeropen.com/articles/10.1186/
	s10033-020-00465-z
??	https://www.atriainnovation.com/
	que-son-las-redes-neuronales-y-sus-funciones/
??	https://esquema/arbol/decision
??	https://movenet/pose/estimation
??	https://www.analyticsvidhya.com/blog/2022/03/
	pose-detection-in-image-usi
??	https://developers.google.com/mediapipe/
	solutions/examples
	,

Cuadro $6.1\!\!:$ Anexo con las fuentes de donde se han obtenido las imágenes para este proyecto

Bibliografía

- [1] Real Academia Española. robótico, ca. https://dle.rae.es/rob%C3%B3tico#WYTncqf, 2023.
- [2] Revista de Robots. Robótica. Qué es la robótica y para qué sirve. https://revistaderobots.com/robots-y-robotica/que-es-la-robotica/?cn-reloaded=1, 2023.
- [3] geeksforgeeks. Industrial Robots. https://www.geeksforgeeks.org/industrial-robots/, 2022.
- [4] geeksforgeeks. Mobile Robots. https://www.geeksforgeeks.org/mobile-robots/, 2022.
- [5] Bernard Marr. The 4 Ds Of Robotisation: Dull, Dirty, Dangerous And Dear. https://bernardmarr.com/
 the-4-ds-of-robotisation-dull-dirty-dangerous-and-dear/, 2021.
- [6] Daniel Dworakowski and Goldie Nejat. Robots understanding contextual information in human-centered environments using weakly supervised mask data distillation, 2020.
- [7] Jiefei Wang and Damith Herath. What Makes Robots? Sensors, Actuators, and Algorithms, pages 177–203. Springer Nature Singapore, Singapore, 2022.
- [8] National Museum of the United States Air Force. Kettering Aerial Torpedo "Bug". https://www.nationalmuseum.af.mil/Visit/Museum-Exhibits/ Fact-Sheets/Display/Article/198095/kettering-aerial-torpedo-bug/, 2023.
- [9] de Havilland Aircraft Museum. de Havilland DH82B Queen Bee. https://www.dehavillandmuseum.co.uk/aircraft/de-havilland-dh82b-queen-bee/, 2023.

BIBLIOGRAFÍA 15

[10] Mason B. Webb. Operation Aphrodite. https://warfarehistorynetwork.com/article/operation-aphrodite/, 2014.

- [11] srmconsulting. ¿UAV, UAS, RPA, dron... como llamarlos? https://srmconsulting.es/blog/uav-uas-rpa-dron-como-llamarlos.html, 2021.
- [12] Brett Daniel. Ground Control Stations: The Lifeblood of Remotely Piloted Aircraft. https://www.trentonsystems.com/blog/ground-control-stations, 2020.
- [13] R. K. Nichols; H.C. Mumm; W.D. Lonstein; C. M. Carter; and J.P. Hood. *Chapter* 13: Data Links Functions, Attributes and Latency. New Prairie Press, 2018.
- [14] SAFEDroneFlying. drone regulations. https://www.safedroneflying.aero/en/drone-guide/drone-regulations, 2023.
- [15] A. M. Turing. Computing machinery and intelligence. *Mind*, 59(236):433–460, 1950.
- [16] Leo Gugerty. Newell and simon's logic theorist: Historical background and impact on cognitive modeling. *Proceedings of the Human Factors and Ergonomics Society Annual Meeting*, 50:880–884, 10 2006.
- [17] Rockwell Anyoha. The History of Artificial Intelligence. https://sitn.hms. harvard.edu/flash/2017/history-artificial-intelligence/, 2017.
- [18] datacamp. Classification in Machine Learning: An Introduction. https://www.datacamp.com/blog/classification-machine-learning, 2022.
- [19] Prateek Bajaj. Reinforcement learning. https://www.geeksforgeeks.org/what-is-reinforcement-learning/, 2023.
- [20] Prateek Bajaj. Reinforcement and Punishment. https://pressbooks.online.ucf.edu/lumenpsychology/chapter/operant-conditioning/, 2023.
- [21] OpenStax and Lumen Learning. Reinforcement Learning Explained Visually (Part 4): Q Learning, step-by-step. https://towardsdatascience.com/reinforcement-learning-explained-visually-part-4-q-learning-step-by-step-b65 2023.
- [22] Mathuranathan. Friis Free Space Propagation Model. https://www.gaussianwaves.com/2013/09/friss-free-space-propagation-model/, 2013.

BIBLIOGRAFÍA 16

[23] ECIT Engineering. Friis Free Space Propagation Model Example. https://www.youtube.com/watch?v=E-_oGNF3S-0, 2022.

- [24] antenna theory. The Friis Equation. https://www.antenna-theory.com/basics/friis.php, 2015.
- [25] Pedro Arias Pérez. Infraestructura de programación de robots aéreos y aplicaciones visuales con aprendizaje profundo. https://gsyc.urjc.es/jmplaza/students/tfm-drones-followperson-pedro_arias-2022.pdf, 2022.
- [26] Md Moin Uddin Chowdhury, Fatih Erden, and Ismail Guvenc. Rss-based q-learning for indoor uav navigation, 2019.
- [27] Timothée Lesort, Vincenzo Lomonaco, Andrei Stoian, Davide Maltoni, David Filliat, and Natalia Díaz-Rodríguez. Continual learning for robotics: Definition, framework, learning strategies, opportunities and challenges. *Information fusion*, 2020.
- [28] Štěpán Obdržálek, Gregorij Kurillo, Jay Han, Ted Abresch, and Ruzena Bajcsy. Real-time human pose detection and tracking for tele-rehabilitation in virtual reality. In *Medicine Meets Virtual Reality* 19. IOS Press, 2012.
- [29] Brian Weinberg, Jason Nikitczuk, Shyamal Patel, Pattiti B., Constantinos Mavroidis, Paolo Bonato, and Paul Canavan. Design, control and human testing of an active knee rehabilitation orthotic device. 2007.
- [30] Joan Reig Doménech. Estudio del estado del arte de los métodos de estimación de la pose humana en 3d, 2018-07-02.