o-Minimality and its Variations

Vagios Vlachos

Graduate Program on Login and Theory of Algorithms and Computation

2014

o-Minimality

Assumptions

- $\mathcal{M} = (M, <, ...)$
- < is dense, linear, without endpoints
- definability with parameters

Definition

The structure \mathcal{M} is called *o-minimal* if every definable subset of M is a finite union of singletons and open intervals with endpoints in $M_{\infty} := M \cup \{-\infty, +\infty\}.$

A theory T is called o-minimal if every model \mathcal{M} of T is o-minimal.

o-Minimality

The class of o-minimal structures is,

- closed under reducts (if < still remains in the language)
- closed under expansions by constants

Some o-minimal structures

- \bullet $(\mathbb{Q},<)$
- \bullet $(\mathbb{Q},<,+)$
- $\mathcal{R} = (\mathbb{R}, <, +, -, \cdot, 0, 1)$

$(\mathbb{Q}, <, +, \cdot, 0, 1)$ is not o-minimal

The infinite discrete set of perfect squares is definable.

Monotonicity Theorem

Let \mathcal{M} be an o-minimal structure and $f:(a,b)\to M$ be a definable function with domain (a,b) (possibly $a=-\infty$ or $b=+\infty$). Then, there are points $a=a_0< a_1< \cdots < a_{k+1}$ s.t. for each $j=0,\ldots,k,$ $f|_{(a_j,a_{j+1})}$ is either,

- constant, or
- a strictly monotonic and continuous bijection to an interval.

Finiteness Lemma

Let $A \subseteq M^2$ be definable and suppose that for each $x \in M$ the fiber $A_x := \{y \in M | (x,y) \in A\}$ is finite. Then there is $N < \omega$ s.t. $|A_x| \leq N$ for all $x \in M$.

Applications

Corollary

Let $f:(a,b)\to M$ be definale and continuous. Then f takes a maximum and minimum value on [a,b].

Exchange Principle

Let \mathcal{M} be o-minimal. Let $b, c, a_1, \ldots, a_n \in \mathcal{M}$. If b is definable over c, a_1, \ldots, a_n , and b is not definable over a_1, \ldots, a_n , then c is definable over b, a_1, \ldots, a_n .