OIPE COLLEGE TRACE TRACE

IN THE UNITED STATES PATENT AND TRADEMARK OFFICE

ATTY.'S DOCKET: MUKAI=1

* %

In re Application of:

Hiroyuki MUKAI et al.

Serial No.: 09/935,338

Filed: August 23, 2001

For: METHOD FOR AMPLIFYING

NUCLEIC ACID SEQUENCE

Art Unit:

Examiner:

Washington, D.C.

January 17, 2002

SUPPLEMENTAL PRELIMINARY AMENDMENT

Honorable Commissioner of Patents Washington, D.C. 20231

Sir:

Prior to examination on the merits, please amend as follows:

IN THE CLAIMS

Please cancel claim 1 without prejudice and add new claims 221-331.

--221(New). A method for amplifying a nucleic acid, characterized in that the method comprises:

(a) preparing a reaction mixture by mixing a nucleic acid as a template, a deoxyribonucleotide triphosphate, a DNA polymerase having a strand displacement activity, at least one primer and an endonuclease that cleaves an extended strand generated from the primer, wherein the primer is a chimeric oligonucleotide primer

CATHW ... DIEVOR

B