

Superficie de minimal de Schwarz

Elder Guzmán

Geometría Diferencial

2 de junio de 2023

Universidad del Valle de Guatemala

Hermann Schwarz

Hermann Schwarz

Hermann Schwarz fue un matemático alemán conocido principalmente por aportes en el campo del análisis complejo. Hermann nacio en Hermsdorf, Silesia (ahora Polonia). Se caso con la hija de Ernst Kummer, quien junto a Karl Weierstrass lo convenció de cambiarse de química a la matemática. En 1864 obtuvo su doctorado en Universität Berlin.

Superfice de Schwarz

Superficies

Schwarz describio varias superficeis minimas basandose en argumentos simetricos desde poligonos que eran solucion al problema de Plateu. Estas superficies fueron nombradas posteriormente por Schoen en un seminario.

Superficie

Superficies

(a) Superficie P

(c) Superficie CLP Elder Guzmán (Universidad del Valle de Guatemala)

(b) Superfice H

(d) Superficie D

Propiedades

Algunas propiedades de estas superficies son:

- Tienen genus 3
- Son funciones de período triple (invariantes bajo traslaciones de un *lattice* de rango 3.)
- Son orientables.
- No tienen auto-intersecciones.
- Se han usado como modelos para nano-estructuras, superficies electrostáticas equipotentes en cristales y grafitos hipotéticos con curvatura negativa.

Recordemos la representación de **Weierstrass** o también llamado la parametrización de **Weierstrass-Enneper**. Recuerde que se necesitan dos funciones, f meromorfa y g holomorfa.

Recordemos la representación de **Weierstrass** o también llamado la parametrización de **Weierstrass-Enneper**. Recuerde que se necesitan dos funciones, f meromorfa y g holomorfa.

$$f(z) = e^{i\theta} (z^4 - 14z^2 + 1)^{-1/2}$$

 $g(z) = z$

Donde θ es una constante.

Recordemos la representación de **Weierstrass** o también llamado la parametrización de **Weierstrass-Enneper**. Recuerde que se necesitan dos funciones, f meromorfa y g holomorfa.

$$f(z) = e^{i\theta} (z^4 - 14z^2 + 1)^{-1/2}$$

 $g(z) = z$

Donde θ es una constante. Según sea el valor de θ es la superficie minimal que se obtiene, ya que puede parametrizar la superficie de Neovius y el gyroide.

Las funciones componentes queda:

$$x_1(z) = \mathcal{R} \left\{ \int_0^z (1 - w^2) e^{i\theta} \left(w^4 - 14w^2 + 1 \right)^{-1/2} dw \right\}$$

$$x_2(z) = i\mathcal{R} \left\{ \int_0^z (1 + w^2) e^{i\theta} \left(w^4 - 14w^2 + 1 \right)^{-1/2} dw \right\}$$

$$x_3(z) = 2\mathcal{R} \left\{ \int_0^z w e^{i\theta} \left(w^4 - 14w^2 + 1 \right)^{-1/2} dw \right\}$$

Las funciones componentes queda:

$$\begin{split} x_1(z) &= \mathcal{R} \left\{ \int_0^z (1 - w^2) e^{i\theta} \left(w^4 - 14w^2 + 1 \right)^{-1/2} dw \right\} \\ x_2(z) &= i\mathcal{R} \left\{ \int_0^z (1 + w^2) e^{i\theta} \left(w^4 - 14w^2 + 1 \right)^{-1/2} dw \right\} \\ x_3(z) &= 2\mathcal{R} \left\{ \int_0^z w e^{i\theta} \left(w^4 - 14w^2 + 1 \right)^{-1/2} dw \right\} \end{split}$$

Note que algunas de estas se pueden explicitar únicamente por medio de integrales elípticas.

Schwarz P

Las funciones componentes para la "P" quedan:

Schwarz P

Las funciones componentes para la "P" quedan:

$$x_1(z) = \mathcal{R}\left\{i \int_0^z (1 - w^2) \left(w^4 - 14w^2 + 1\right)^{-1/2} dw\right\}$$

$$x_2(z) = \mathcal{R}\left\{-\int_0^z (1 + w^2) \left(w^4 - 14w^2 + 1\right)^{-1/2} dw\right\}$$

$$x_3(z) = 2\mathcal{R}\left\{i \int_0^z w \left(w^4 - 14w^2 + 1\right)^{-1/2} dw\right\}$$

Schwarz P

Las funciones componentes para la "P" quedan:

$$x_{1}(z) = \mathcal{R}\left\{i \int_{0}^{z} (1 - w^{2}) (w^{4} - 14w^{2} + 1)^{-1/2} dw\right\}$$

$$x_{2}(z) = \mathcal{R}\left\{-\int_{0}^{z} (1 + w^{2}) (w^{4} - 14w^{2} + 1)^{-1/2} dw\right\}$$

$$x_{3}(z) = 2\mathcal{R}\left\{i \int_{0}^{z} w (w^{4} - 14w^{2} + 1)^{-1/2} dw\right\}$$

La cual puede aproximarse mediante la ecuación cos(x) + cos(y) + cos(z) = 0.