

TAUTOLOGICAL INTEGRALS ON SYMMETRIC PRODUCTS OF CURVES

ZHILAN WANG

ABSTRACT. We propose a conjecture on the generating series of Chern numbers of tautological bundles on symmetric products of curves and establish the rank 1 and rank -1 case of this conjecture. Thus we compute explicitly the generating series of integrals of Segre classes of tautological bundles of line bundles on curves, which has a similar structure as Lehn's conjecture for surfaces.

1. INTRODUCTION

Let X be a smooth quasi-projective connected complex variety of dimension d , and denote by $X^{[n]}$ the Hilbert scheme of n points on X . Let $\mathcal{Z}_n \subset X \times X^{[n]}$ be the universal family with natural projections $p_1 : \mathcal{Z}_n \rightarrow X$ and $\pi : \mathcal{Z}_n \rightarrow X^{[n]}$ onto the X and $X^{[n]}$ respectively. For any locally free sheaf F on X , let $F^{[n]} = \pi_*(\mathcal{O}_{\mathcal{Z}_n} \otimes p_1^*F)$, which is called the tautological sheaf of F .

When $d = 2$, many invariants of the Hilbert schemes of points on a projective surface can be determined explicitly by the corresponding invariants of the surface, including the Betti numbers [10], Hodge numbers [11], cobordism classes [8], and elliptic genus [5], etc.. G. Ellingsrud, L. Gottsche and M. Lehn showed in [8] that for a polynomial in Chern classes of tautological sheaves and the tangent bundle of $X^{[n]}$, there exists a universal polynomials in Chern classes of the corresponding sheaves and the tangent bundle on X such that the integrals of these two polynomials over $X^{[n]}$ and X are equal. A direct consequence is that the generating series of certain tautological integrals can be written in universal forms of infinite products; though it is not easy to find explicit expressions. For example, various authors have considered the computation of the integrals of top Segre classes of tautological sheaves of a line bundle on a surface [9, 14, 16, 22, 23, 24]. M. Lehn made a conjecture on the generating series as follows:

Conjecture 1. (M. Lehn [16]) For a smooth projective surface S and a line bundle L on it, define

$$N_n = \int_{S^{[n]}} s_{2n}(L^{[n]}),$$

then

$$(1) \quad \sum_{n \geq 0} N_n z^n = \frac{(1-k)^a (1-2k)^b}{(1-6k+6k^2)^c}.$$

Here $a = HK - 2K^2$, $b = (H-K)^2 + 3\chi(\mathcal{O}_S)$ and $c = \frac{1}{2}H(H-K) + \chi(\mathcal{O}_S)$, where H is the corresponding divisor of L and K is the canonical divisor.

And

$$k = z - 9z^2 + 94z^3 - \dots \in \mathbb{Q}[[z]]$$

is the inverse of the function

$$z = \frac{k(1-k)(1-2k)^4}{(1-6k+6k^2)^3}.$$

This conjecture is still open up to now. Recently M. Marian, D. Oprea and R. Pandharipande showed that this conjecture holds for K3 surfaces [18] by considering integrals over Quot schemes and the recursive localization relations.

J. V. Rennemo [20] gave a generalization of the theorem of G. Ellingsrud, L. Gottsche and M. Lehn: when $d = 1$ and $d = 2$ the universal property of polynomials in Chern classes of tautological sheaves and tangent bundles holds; when $d > 2$, one should consider the universal property of integrals of polynomials only in Chern classes of tautological sheaves over geometric subsets of $X^{[n]}$.

In this article, we focus on the case of $d = 1$. For C a smooth projective curve, the Hilbert scheme of n points on C is isomorphic to the n -th symmetric product, so it is a smooth projective variety of dimension n . We have the following conjecture:

Conjecture 2. For C a smooth projective curve and E_r a vector bundle of rank r on C , one has

$$(2) \quad \sum_{n=0}^{\infty} z^n \int_{C^{[n]}} c(E_r^{[n]}) = \exp\left(\sum_{n=1}^{\infty} \frac{z^n}{n} (A_n^r d_r + B_n^r e)\right),$$

$$(3) \quad \sum_{n=0}^{\infty} \frac{z^n}{n} \int_{C^{[n]}} c(-E_r^{[n]}) = \exp\left(\sum_{n=1}^{\infty} \frac{z^n}{n} (C_n^r (-d_r) + D_n^r e)\right),$$

Here $c(E_r^{[n]})$ is the total Chern class, $d_r = \int_C c(E_r)$ and e is the Euler number of C . A_n^r , B_n^r , C_n^r and D_n^r are integers depending only on r and n , which satisfy $A_n^r = (-1)^{n+1} \binom{rn-1}{n-1}$, $C_n^r = (-1)^n \binom{-rn-1}{n-1} = (-1)^{n-1} A_n^{r+1}$, $D_n^r = (-1)^n B_n^{r+1}$.

Conjecture 2 shares some similarities as in the surface case, which has been established in an unpublished work by Jian Zhou and the author and will appear in a subsequent work.

We will see the existence of the universal coefficients A_n^r , B_n^r , C_n^r and D_n^r is a direct consequence of Theorem 2.3 in Section 2 and it will be explained in Section 3.2. The mysterious part of Conjecture 2 to the author is that A_n^r , B_n^r , C_n^r and D_n^r are all integers and there are relationships between them. More precisely, if two vector bundles E_r and E_{r+1} of ranks r and $r+1$ respectively satisfy $\int_C c(E_r) = \int_C c(E_{r+1})$, then it is implied by Conjecture 2 that

$$\sum_{n=0}^{\infty} z^n \int_{C^{[n]}} c(-E_r^{[n]}) = \sum_{n=0}^{\infty} (-z)^n \int_{C^{[n]}} c(E_{r+1}^{[n]})$$

For some special r , we can determine B_n^r explicitly and prove the conjecture. When $r = 1$, $B_1^1 = 0$. We have the following theorem:

Theorem 1.1. *For C a smooth projective curve and L a line bundle on C , one has*

$$(4) \quad \sum_{n=0}^{\infty} z^n \int_{C^{[n]}} c(L^{[n]}) = \exp\left(\sum_{n=1}^{\infty} \frac{(-1)^{n+1}}{n} z^n \int_C c(L)\right).$$

For the rank -1 case, it is the generating series of the integrals of top Segre classes of tautological sheaves of a line bundle on C . We can also prove the conjecture in this case. Analogous to Conjecture 1, we have the following theorem:

Theorem 1.2. *For C a smooth projective curve and L a line bundle on C , one has*

$$(5) \quad \begin{aligned} & \sum_{n=0}^{\infty} z^n \int_{C^{[n]}} s(L^{[n]}) \\ &= \exp\left(\sum_{n=1}^{\infty} \frac{z^n}{n} \left(-\binom{2n-1}{n-1} d + (4^{n-1} - \binom{2n-1}{n-1}) e\right)\right) \\ &= \frac{(1-k)^{e+d}}{(1-2k)^{\frac{e}{2}}}. \end{aligned}$$

Here $s(L^{[n]})$ is the total Segre class, d is the degree of the line bundle L , e is the Euler number of S and $z = k(1-k)$.

Theorem 1.2 is related to an enumerative problem. A. S. Tikhomirov in [22] has interpreted N_n in Conjecture 1 as the number of $(n-2)$ -dimensional n -secant planes in the image to the surface in \mathbb{P}^{3n-1} . In a similar fashion, $(-1)^n \int_{C^{[n]}} s(L^{[n]})$ counts the number of n -secant $(n-2)$ -planes to C in \mathbb{P}^{2n-2} . For example, it is easy to compute from Theorem 1.2 that $\int_{C^{[2]}} s(L^{[2]}) = \frac{1}{2}(d^2 - 3d + 2 - 2g)$, which coincides the classical formula of the number of nodes of a curve in \mathbb{P}^2 .

In 2007 Le Barz [15] and E. Cotterill [7] have already independently derived the generating formula of such numbers. Le Barz's approach is via the multisection loci, and E. Cotterill uses a formula by Macdonald (cf. [1] Chapter VIII, Prop. 4.2) and the graph theory. However, our method is different from Le Barz's and E. Cotterill's.

We use the similar strategy used in [25] to prove the above theorems. Firstly we establish a universal formula theorem for curves as Theorem 4.2 in [8] for surfaces, and hence we only need to prove the cases of certain line bundles on \mathbb{P}^1 . Using the natural torus action on \mathbb{P}^1 and the induced action on the Hilbert scheme, we can consider the equivariant case of \mathbb{P}^1 , or we can reduce it further to the equivariant case of \mathbb{C} , which becomes a combinatoric problem.

Remark 1.1. After the first version of this article, Professor Oprea tells the author in an email that Conjecture 2 has been solved by M. Marian and himself, and the universal coefficients are also explicitly determined by them in [17]. To be more precise, the relationships between the universal coefficients conjectured in Conjecture 2 do hold; if we write

$$C(z) = \sum_{n=1}^{\infty} \frac{z^n}{n} C_n^r, D(z) = \sum_{n=1}^{\infty} \frac{z^n}{n} D_n^r,$$

then

$$C(-t(1-t)^r) = -\log(1+t)$$

and

$$D(-t(1+t)^r) = \frac{r+1}{2} \log(1+t) - \frac{1}{2} \log(1+t(r+1))$$

A direct consequence of the above is that (3) can be written in a form which is similar to Theorem 1.2:

$$\begin{aligned} & \sum_{n=0}^{\infty} z^n \int_{C^{[n]}} c(-E_r^{[n]}) \\ &= \frac{(1-k)^{\frac{r+1}{2}e+d}}{(1-(r+1)k)^{\frac{r}{2}}}, \end{aligned}$$

where $z = k(1-k)^r$.

2. UNIVERSAL PROPERTIES OF TAUTOLOGICAL INTEGRALS OVER HILBERT SCHEMES OF POINTS ON CURVES

Let C be a smooth projective connected curve. It is well-known that $C^{[n]}$ is smooth of dimension n and in particular isomorphic to the n -th symmetric product. In this section, we will see that the theorems on the cobordism rings of Hilbert schemes of points of surfaces established by Ellingsrud, Göttsche and Lehn in [8] can be generalized to curves.

We will follow what has been done in [8]. Let $\Omega = \Omega^U \otimes \mathbb{Q}$ be the complex cobordism ring with rational coefficients. For a smooth projective curve C we denote its cobordism class by $[C]$, and define an invertible element in the formal power series ring $\Omega[[z]]$:

$$H(C) := \sum_{n=0}^{\infty} [C^{[n]}] z^n.$$

We have the following theorem:

Theorem 2.1. *$H(S)$ depends only on the cobordism class $[C] \in \Omega$.*

Two stably complex manifolds have the same cobordism class if and only if their collection of Chern numbers are identical. Theorem 2.1 is proved in [20] and there is a generalized version of this theorem:

For a smooth projective variety X , let $K(X)$ be the Grothendieck group generated by locally free sheaves. Let $E_1, \dots, E_m \in K(C)$ and r_1, \dots, r_m are the ranks respectively.

Theorem 2.2. *(J. V. Rennemo [20]) Let P be a polynomial in the Chern classes of $C^{[n]}$ and the Chern classes of $E_1^{[n]}, \dots, E_m^{[n]}$. Then there is a universal polynomial \tilde{P} , depending only on P , in the Chern classes of the tangent bundles of $C^{[n]}$, the ranks r_1, \dots, r_m and the Chern classes of E_1, \dots, E_m , such that*

$$\int_{C^{[n]}} P = \int_S \tilde{P}.$$

These theorems can be used in the computations of generating series of tautological integrals. Let $\Psi : K(X) \rightarrow H^\times$ be a group homomorphism from the additive group $K(X)$ to the multiplicative group H^\times of units of $H(X; \mathbb{Q})$. We require Ψ is functorial with respect to pull-backs and is a polynomial in Chern classes of its argument. Also let $\phi(x) \in \mathbb{Q}[[x]]$ be a formal power series and put $\Phi(X) := \phi(x_1) \cdots \phi(x_n) \in H^*(X; \mathbb{Q})$ with x_1, \dots, x_n the Chern roots of T_X . For $x \in K(X)$, define a power series in $\mathbb{Q}[[z]]$ as follows:

$$H_{\Psi, \Phi}(X, x) := \sum_{n=0}^{\infty} \int_{X^{[n]}} \Psi(x^{[n]}) \Phi(X^{[n]}) z^n.$$

Theorem 2.3. *For each integer r there are universal power series $A_i \in \mathbb{Q}[[z]]$, $i = 1, 2$, depending only on Ψ , Φ and r , such that for each $x \in K(C)$ of rank r we have*

$$H_{\Psi, \Phi}(C, x) = \exp\left(\int_C (c_1(x)A_1 + c_1(C)A_2)\right).$$

The proof of the above theorem is similar as the proof of Theorem 4.2 in [8] so we omit the details here. The main idea is that $H_{\Psi, \Phi}$ factors through \mathbb{Q}^2 to $\mathbb{Q}[[z]]$ and we can choose $(\mathbb{P}^1, r\mathcal{O})$ and $(\mathbb{P}^1, (r-1)\mathcal{O} \oplus \mathcal{O}(-1))$ as the "basis".

3. PROOF OF THEOREMS

3.1. Localizations on Hilbert schemes of points. The linear coordinates on $\mathbb{C}^{[n]}$ are given by $p_i(z_1, \dots, z_n) = z_1^i + \cdots + z_n^i$. The induced torus action on $\mathbb{C}^{[n]}$ is given by

$$q \cdot p_i = q^i p_i, \quad q = \exp(t) \in \mathbb{C}^*.$$

This action has only one fixed point at $p_1 = \cdots = p_n = 0$, and the tangent bundle and the tautological bundle $\mathcal{O}_{\mathbb{C}}^{[n]}$ have the following weight decompositions at this point:

$$\begin{aligned} T_{\mathbb{C}}^{[n]} &= q^{-1} + \cdots + q^{-n}, \\ \mathcal{O}_{\mathbb{C}}^{[n]} &= 1 + q + \cdots + q^{n-1}. \end{aligned}$$

For $A = (a_1, \dots, a_r)$, where $a_1, \dots, a_r \in \mathbb{Z}$, denote by $\mathcal{E}_r^A = \mathcal{O}_{\mathbb{C}}^{a_1} \oplus \cdots \oplus \mathcal{O}_{\mathbb{C}}^{a_r}$ the rank r T -equivariant vector bundle of weight (a_1, \dots, a_r) . The tautological bundle $(\mathcal{E}_r^A)^{[n]}$ has the following weight decomposition at the fixed point:

$$(\mathcal{E}_r^A)^{[n]} = \sum_{i=1}^r q^{a_i} (1 + q + \cdots + q^{n-1}).$$

For a smooth (quasi-)projective curve C which admits a torus action with isolated fixed points P_1, \dots, P_l and $u_i = q^{c_i}$ the weights of $T_{P_i}^* C$, this torus action induces a T -action on $S^{[n]}$. The fixed points on $S^{[n]}$ are parameterized by nonnegative integers (n_1, \dots, n_l) such that

$$n_1 + \cdots + n_l = n.$$

The weight decomposition of the tangent space at the fixed point is given by:

$$\sum_{i=1}^l (u_i^{-1} + \cdots + u_i^{-n_i}).$$

Suppose E is a rank r equivariant vector bundle on C such that

$$E|_{P_i} = q^{a_1} + \cdots + q^{a_r}.$$

Then the weight of $E^{[n]}$ at the fixed point (n_1, \dots, n_l) is given by

$$\sum_{i=1}^l \sum_{j=1}^r (t^{a_j} (1 + u_i + \cdots + u_i^{n_i-1})).$$

Let $\psi(x) \in \mathbb{Q}[[x]]$ be a formal power series. For $x \in K(C)$ of rank r , Let $\Psi(x^{[n]}) = \psi(e_1(x^{[n]})) \cdots \psi(e_r(x^{[n]}))$, where $e_1(x^{[n]}), \dots, e_r(x^{[n]})$ are Chern roots of $x^{[n]}$. It is obvious to see that such Ψ satisfies the conditions in Theorem 2.3.

Let $v = (v_1 = a_1 t, \dots, v_r = a_r t)$ and $w_i = c_i t$. Using the localization formula, the equivariant version of $H_{\Psi, \Phi}$ for \mathbb{C} and \mathcal{E}_r^A which we denote by $H_{\Psi, \Phi}(\mathbb{C}, \mathcal{E}_r^A)(t)$ is as follows:

$$H_{\Psi, \Phi}(\mathbb{C}, \mathcal{E}_r^A)(t) = \sum_{n=0}^{\infty} z^n \frac{\phi(-st)}{-st} \prod_{j=1}^r \psi(v_j + (s-1)t).$$

Assume that

$$\begin{aligned} H_{\Psi, \Phi}(\mathbb{C}, \mathcal{E}_r^A)(t) &= \exp \left(\sum_{n=1}^{\infty} z^n \int_{\mathbb{C}}^t \left(\sum_{j=0}^r (A_{0,j}^n c_0^t(\mathbb{C}) c_j^t(\mathcal{E}_r^A) + A_{1,j}^n c_1^t(\mathbb{C}) c_j^t(\mathcal{E}_r^A)) \right) \right) \\ &= \exp \left(\sum_{n=1}^{\infty} z^n \int_{\mathbb{C}}^t \left(\sum_{j=0}^r (A_{0,j}^n \frac{\sigma_j(v_1, \dots, v_r)}{t} + A_{1,j}^n \sigma_j(v_1, \dots, v_r)) \right) \right), \end{aligned}$$

where we denote by \int^t the equivariant integral, c_i^t is the equivariant Chern classes and σ_j is the j -th elementary symmetric polynomial.

Denote by $H_{\Psi,\Phi}(C, E)(t)$ the equivariant version of $H_{\Psi,\Phi}(C, E)$. It can be computed by localization as follows:

$$\begin{aligned}
H_{\Psi,\Phi}(C, E)(t) &= \sum_{n=0}^{\infty} z^n \prod_{i=1}^l \prod_{s=1}^{n_i} \frac{\phi(-sw_i)}{-sw_i} \prod_{j=1}^r \psi(v_j + (s-1)w_i) \\
&= \prod_{i=1}^l \sum_{n_i=0}^{\infty} z^{n_i} \prod_{s=1}^{n_i} \frac{\phi(-sw_i)}{-sw_i} \prod_{j=1}^r \psi(v_j + (s-1)w_i) \\
&= \prod_{i=1}^l H_{\Psi,\Phi}(\mathbb{C}, \mathcal{E}_r^A)(w_i) \\
&= \prod_{i=1}^l \exp\left(\sum_{n=1}^{\infty} z^n \int_{\mathbb{C}}^t \left(\sum_{j=0}^r (A_{0,j}^n \frac{\sigma_j(v_1, \dots, v_r)}{w_i} + A_{1,j}^n \sigma_j(v_1, \dots, v_r))\right)\right) \\
&= \exp\left(\sum_{n=1}^{\infty} z^n \left(\sum_{j=0}^r (A_{0,j}^n \sum_{i=1}^l \frac{\sigma_j(v_1, \dots, v_r)}{w_i} + A_{1,j}^n \sum_{i=1}^l \sigma_j(v_1, \dots, v_r))\right)\right) \\
&= \exp\left(\sum_{n=1}^{\infty} z^n \int_C^t \left(\sum_{j=0}^r (A_{0,j}^n c_0^t(C) c_j^t(E^A) + A_{1,j}^n c_1^t(\mathbb{C}) c_j^t(E))\right)\right).
\end{aligned}$$

If C is projective, by taking nonequivariant limit one has

$$H_{\Psi,\Phi}(C, E) = \exp\left(\sum_{n=1}^{\infty} z^n \int_C^t \left(\sum_{j=0}^r (A_{0,j}^n c_0(C) c_j(E^A) + A_{1,j}^n c_1(\mathbb{C}) c_j(E))\right)\right)$$

3.2. Proof of Theorem 1.1. Let us see the general case of Conjecture 2 first. Taking $\Psi : K(X) \rightarrow H^\times$ to be the total Chern class and $\Phi = 1$, we see that such $H_{\Psi,\Phi}$ satisfies the conditions in Theorem 2.3 and hence can be written in the desired form. So $\frac{1}{n} A_n^r$, $\frac{1}{n} B_n^r$, $\frac{1}{n} C_n^r$ and $\frac{1}{n} D_n^r$ exist as the n -th coefficients of the corresponding universal power series. Now clearly A_n^r , B_n^r , C_n^r and D_n^r are rational numbers depending only on r and n , and we hope to determine them explicitly as integers. As we have discussed in Section 3.1, in order to prove Conjecture 2, it suffices to prove the equivariant version of $(\mathbb{C}, \mathcal{E}_r^A)$. Using localization, we have checked Conjecture 2 for $r = 2, 3, 4, 5$ and $n < 10$. We also conjecture that

$$B_n^2 = (-1)^n (4^n - \binom{2n-1}{n-1}),$$

$$B_n^3 = (-1)^n \left(\sum_{i=0}^{n-1} \left(\frac{2^{n-2-i}}{n} (n-i)(3n-3i-1) \binom{3n}{i} - \binom{3n-1}{n-1} \right) \right)$$

and have checked them up to $n = 10$. However effort fails to find the explicit expressions for higher r .

Before proving Theorem 1.1, recall that in Section 2.5 of [25] the following identity is established:

$$\begin{aligned}
& \sum_{n=0}^{\infty} z^n \chi(\mathbb{C}^{[n]}, \Lambda_{-y}(\mathcal{E}_1^A)^{[n]})(q) \\
(6) \quad & = \sum_{n=0}^{\infty} z^n \prod_{i=1}^n \frac{1 - yq^a q^{i-1}}{1 - q^i} \\
& = \exp\left(\sum_{n=1}^{\infty} \frac{z^n}{n} \frac{1 - q^{na} y^n}{1 - q^n}\right) \\
& = \exp\left(\sum_{n=1}^{\infty} \frac{z^n}{n} \chi(\mathbb{C}, \Lambda_{-y^n} \mathcal{E}_1^A)(q^n)\right).
\end{aligned}$$

Here $\Lambda_u E = \sum_{i=0}^n u^i \Lambda^i E$ and $\chi(\mathbb{C}^{[n]}, \Lambda_{-y}(\mathcal{O}_{\mathbb{C}})^{[n]})(q)$ the equivariant Euler characteristic of $\Lambda_{-y}(\mathcal{O}_{\mathbb{C}})^{[n]}$ on $\mathbb{C}^{[n]}$.

Moreover, the discussion in the last subsection implies that (6) can be generalized as the following:

Proposition 3.1. *For a smooth projective curve C and a line bundle L on C ,*

$$\sum_{n=0}^{\infty} z^n \chi(C^{[n]}, \Lambda_{-y} L^{[n]}) = \sum_{n=0}^{\infty} z^n \chi(C, \Lambda_{-y^n} L).$$

To prove Theorem 1.1, we only need to prove the following lemma by using (6):

Lemma 3.2.

$$\sum_{n=0}^{\infty} z^n \int_{C^{[n]}}^t c^t((\mathcal{E}_1^A)^{[n]}) = \exp\left(\sum_{n=1}^{\infty} (-1)^{n+1} z^n \int_{\mathbb{C}}^t c^t(\mathcal{E}_1^A)\right),$$

where $A = (a)$, $a \in \mathbb{Z}$ is the equivariant weight of $\mathcal{O}_{\mathbb{C}}$.

Proof. Similarly as in [12], let $q = \exp(\beta t)$, $y = \exp(\beta)$, and take $\beta \rightarrow 0$ in (6), one has

$$\begin{aligned}
& \sum_{n=0}^{\infty} z^n \prod_{i=1}^n \frac{1 + at + (i-1)t}{it} \\
& = \exp\left(\sum_{n=1}^{\infty} \frac{z^n}{n} \frac{n + ant}{nt}\right) \\
& = \exp\left(\sum_{n=1}^{\infty} \frac{z^n}{n} \frac{1 + at}{t}\right).
\end{aligned}$$

Hence

$$\begin{aligned}
& \sum_{n=0}^{\infty} z^n \int_{\mathbb{C}^{[n]}}^t c^t((\mathcal{E}_1^A)^{[n]}) \\
&= \sum_{n=0}^{\infty} z^n \prod_{i=1}^n \frac{1+at+(i-1)t}{-it} \\
&= \sum_{n=0}^{\infty} (-z)^n \prod_{i=1}^n \frac{1+at+(i-1)t}{it} \\
&= \exp\left(\sum_{n=1}^{\infty} \frac{(-z)^n}{n} \frac{1+at}{t}\right) \\
&= \exp\left(\sum_{n=1}^{\infty} \frac{(-1)^{n+1}}{n} z^n \frac{1+at}{-t}\right) \\
&= \exp\left(\sum_{n=1}^{\infty} \frac{(-1)^{n+1}}{n} z^n \int_{\mathbb{C}}^t c^t(\mathcal{E}_1^A)\right).
\end{aligned}$$

□

3.3. Proof of Theorem 1.2. We also have an equivariant version of (5) of C. However, it is also difficult to compute. We have to find some other way to give a proof.

Denote $\mathcal{O}(d)$ over \mathbb{P}^1 by L_d and $\int_{(\mathbb{P}^1)^{[n]}} s(L_d^{[n]})$ by N_n^d . As it has been discussed, Theorem 1.2 is true if the following lemma holds:

Lemma 3.3.

$$(7) \quad \sum_{n=0}^{\infty} z^n N_n^0 = \frac{(1-k)^2}{1-2k},$$

and

$$(8) \quad \sum_{n=0}^{\infty} z^n N_n^{-1} = \frac{1-k}{1-2k}.$$

Here $z = k(1-k)$.

We will use the localization formula to prove this lemma. Recall that the homogeneous coordinates on \mathbb{P}^1 are given by $[\zeta_1 : \zeta_2]$ and there is a torus-action on \mathbb{P}^1 :

$$q \cdot [\zeta_1 : \zeta_2] = [\zeta_1 : q \cdot \zeta_2]$$

There are two fixed points $P_1 = [1 : 0]$ and $P_2 = [0 : 1]$ on \mathbb{P}^1 . We choose the canonical lifting to the tangent bundle of \mathbb{P}^1 and the weight decompositions of the cotangent space at P_1 and P_2 are given by q^{-1} and q respectively. We also choose a lifting to L_d such that the weight decomposition of L_d is given by $L_d|_{P_1} = 1$ and $L_d|_{P_2} = q^{-d}$. Denote the equivariant integral $\int_{(\mathbb{P}^1)^{[n]}} s_x^t(L_d^{[n]})$ by $N_n^d(t)$, where

$$s_x^t(L_d^{[n]}) = \frac{1}{c_x^t(L_d^{[n]})} = \frac{1}{1 + x c_1^t(L_d^{[n]}) + \cdots + x^n c_n^t(L_d^{[n]})}$$

is the equivariant total Segre class. N_n^d is the coefficient of x^n in $N_n^d(t)$. By localization formula one has

$$N_n^d(t) = \sum_{k=0}^n \prod_{i=1}^k \frac{1}{(1-x(i-1)t)(it)} \prod_{i=1}^{n-k} \frac{1}{(1+x((i-1)t-dt))(-it)}.$$

Here we write $\prod_{i=s}^{s-1} (\cdot) = 1$ for convenient notation.

We have the following lemma:

Lemma 3.4. *One has*

$$N_n^d(t) = \frac{\binom{2n-2-d}{n} x^n}{\prod_{i=0}^{n-1} (1+(d-i)xt)(1-ixt)},$$

and hence it is easy to see by comparing the coefficient that $N_n^d = \binom{2n-2-d}{n}$.

Proof.

$$\begin{aligned} & N_n^d(t) \\ &= \sum_{k=0}^n \prod_{i=1}^k \frac{1}{(1-x(i-1)t)(it)} \prod_{i=1}^{n-k} \frac{1}{(1+x((i-1)t-dt))(-it)} \\ &\stackrel{y=\frac{1}{tx}}{=} \sum_{k=0}^n \prod_{i=1}^k \frac{1}{(1-\frac{(i-1)}{y})(it)} \prod_{i=1}^{n-k} \frac{1}{(1+\frac{(i-1)-d}{y})(-it)} \\ &= \sum_{k=0}^n y^n \prod_{i=1}^k \frac{1}{(y-(i-1))(it)} \prod_{i=1}^{n-k} \frac{1}{(y+((i-1)-d))(-it)} \\ &= \frac{y^n}{\prod_{i=0}^{n-1} (y+(d-i))(y-i)t^n} \sum_{k=0}^n \frac{\prod_{i=k}^{n-1} (-y+i) \prod_{i=n-k}^{n-1} (y+i-d)}{k!(n-k)!} \\ &= \frac{y^n}{\prod_{i=0}^{n-1} (y+(d-i))(y-i)t^n} \sum_{k=0}^n \binom{-y+n-1}{n-k} \binom{y+n-1-d}{k} \\ &= \frac{y^n}{\prod_{i=0}^{n-1} (y+(d-i))(y-i)t^n} \binom{2n-2-d}{n}. \end{aligned}$$

The last identity is a special case of the Chu-Vandermonde's identity (cf. [13], P. 45 Exercise 3.2 (a)).

Take $x = \frac{1}{ty}$ and one gets

$$N_n^d(t) = \frac{\binom{2n-2-d}{n} x^n}{\prod_{i=0}^{n-1} (1+(d-i)xt)(1-ixt)}.$$

□

Now we are going to prove (7).

(N_n^0) is the integer sequence A001791 in the on-line encyclopedia of integer sequences [21] and the generating series is given by

$$\sum_{n=0}^{\infty} N_n^0 z^n = \frac{1 - 2z + \sqrt{1 - 4z}}{2\sqrt{1 - 4z}}.$$

Take $z = k(1 - k)$ and one can easily get (7).

Applying similar arguments we can prove (8), so we omit the proof here.

REFERENCES

- [1] Arbarello E, Cornalba M, Griffiths P. Geometry of Algebraic Curves: Volume II with a contribution by Joseph Daniel Harris, volume 268. Springer Science & Business Media, 2011
- [2] Atiyah M F, Singer I M. The index of elliptic operators: III. Annals of mathematics, 546–604 (1968)
- [3] Beltrametti M, Sommese A J. Zero cycles and k-th order embeddings of smooth projective surfaces. Proceedings of Problems in the theory of surfaces and their classification, Symposia Math, volume 32, 1991. 33–48
- [4] Beltrametti M, Sommese A J. On k-spannedness for projective surfaces. Springer (1990)
- [5] Borisov L, Libgober A. McKay correspondence for elliptic genera. Annals of mathematics, 1521–1569 (2005)
- [6] Catanese F, Göttsche L. d-very-ample line bundles and embeddings of Hilbert schemes of 0-cycles. *manuscripta mathematica*, 68(1):337–341 (1990)
- [7] Cotterill E. Geometry of curves with exceptional secant planes: linear series along the general curve. *Mathematische Zeitschrift*, 267(3-4):549–582 (2011)
- [8] Ellingsrud G, Göttsche L, Lehn M. On the cobordism class of the Hilbert scheme of a surface. *Journal of Algebraic Geometry*, 10:81–100 (2001)
- [9] Ellingsrud G, Strømme S. Botts formula and enumerative geometry. *Journal of the American Mathematical Society*, 9(1):175–193 (1996)
- [10] Göttsche L. The Betti numbers of the Hilbert scheme of points on a smooth projective surface. *Mathematische Annalen*, 286(1):193–207 (1990)
- [11] Göttsche L, Soergel W. Perverse sheaves and the cohomology of Hilbert schemes of smooth algebraic surfaces. *Mathematische Annalen*, 296(1):235–245 (1993)
- [12] Iqbal A, Nazir S, Raza Z, et al. Generalizations of Nekrasov-Okounkov Identity. *Annals of Combinatorics*, 16(4):745–753 (2012)
- [13] Koepf W. Hypergeometric summation. Braunschweig/Wiesbaden: Vieweg, 2014
- [14] Le Barz P. Formules pour les multiseantes des surfaces algebriques. *L'Ens. Math*, 33:1–66 (1987)
- [15] Le Barz P. Sur une formule de Castelnuovo pour les espaces multiseants. *Bollettino dell'unione matematica italiana. Sezione B: articoli di ricerca matematica*, 10(2):381–388 (2007)
- [16] Lehn M. Chern classes of tautological sheaves on Hilbert schemes of points on surfaces. *Inventiones mathematicae*, 136(1):157–207 (1999)
- [17] Marian A, Oprea D. Tautological integrals over symmetric powers of curves. <http://math.ucsd.edu/~doprea/segre-curves.pdf> (2015)
- [18] Marian A, Oprea D, Pandharipande R. Segre classes and Hilbert schemes of points. arXiv preprint arXiv:1507.00688 (2015)
- [19] Nakajima H. Lectures on Hilbert schemes of points on surfaces. Number 18, American Mathematical Soc., 1999
- [20] Rennemo J V. Universal polynomials for tautological integrals on Hilbert schemes. arXiv preprint arXiv:1205.1851 (2012)
- [21] Sloane N J. The on-line encyclopedia of integer sequences. Published electronically at <https://oeis.org>
- [22] Tikhomirov A. Standard bundles on a Hilbert scheme of points on a surface. *Proceedings of Algebraic Geometry and its Applications*. Vieweg+ Teubner Verlag, 1994: 183–203

- [23] Tikhomirov A, Troshina T. Top Segre Class of a Standard Vector Bundle ε_D^4 on the Hilbert Scheme $Hilb^4 S$ of a Surface S . Proceedings of Algebraic Geometry and its Applications. Vieweg+ Teubner Verlag, 1994: 205–226
- [24] Troshina T. The degree of the top Segre class of the standard vector bundle on the Hilbert scheme $Hilb^4 S$ of an algebraic surface S . Izvestiya Rossiiskoi Akademii Nauk. Seriya Matematicheskaya, 1993, 57(6): 106-129
- [25] Wang Z, Zhou J. Tautological sheaves on Hilbert schemes of points. Journal of Algebraic Geometry, 23(4):669–692 (2014)

INSTITUTE OF MATHEMATICS, ACADEMY OF MATHEMATICS AND SYSTEMS SCIENCE, CHINESE ACADEMY OF SCIENCES, BEIJING 100190, P. R. CHINA

E-mail address: zlwang@amss.ac.cn