

1

2

-4

Exercises in Textbook (6th ed.)

Sections	Exercises	Typical Ones
§2-3	2.1	2.1(a)
§2-4	2.2~2.4, 2.24	2.3, 2.4
§2-5	2.5~2.9, 2-13	2.6
§2-6	2.10, 2.11, 2.15~2.23, 2.27, 2.29~2.31	2.17(a)*, 2.20, 2.22*, 2.30
§2-7	2.12, 2.14, 2.25	2.14, 2.25
§2-8	2.26, 2.28, 2.32, 2.33	2.28, 2.32*

^{* :} Answers to problems appear at the end of the text.

Introduction

- Important factor of digital circuit design:
 - the cost of the circuit
 - ⇒ Find simpler and cheaper, but equivalent, realizations of a circuit.
- Boolean algebra:
 - Mathematical methods that simplify circuits rely primarily on Boolean algebra.

J.J. Shann 2-6

-6

Basic Definitions

- A deductive mathematical system may be defined with
 - = a set of elements: S
 - a set of operators: binary/unary operator
 - a number of unproven axioms or postulates:
 - Form the basic assumptions from which it is possible to deduce the rules, theorems, and properties of the system

J.J. Shann 2-8

-7

8

- elements: $\in S$
- operators
- axioms or postulates
- For algebraic structures:
 - 1. Closure
 - \triangleright E.g.: the set of natural numbers $N = \{1, 2, 3, 4, ...\}$ is closed w.r.t. "+" (arithmetic addition), but not to "-" (arithmetic subtraction)
 - 2. Associative law: (x * y) * z = x * (y * z)
 - 3. Commutative law: x * y = y * x
 - 4. Identity element: e, e * x = x * e = x
 - \triangleright E.g.: 0 is an identity element w.r.t. "+" on the set of integers I = $\{\ldots, -3, -2, -1, 0, 1, 2, 3, \ldots\}$
 - 5. Inverse: x * y = e
 - \triangleright E.g.: In the set of integers, I, and the operator +, with e = 0, the inverse of an element a is (-a).
 - 6. Distributive law: $x * (y \cdot z) = (x * y) \cdot (x * z)$

J.J. Shann 2-9

-9

Axiomatic Definition of Boolean Algebra

- 1854 George Boole: Boolean algebra
- 1904 E. V. Huntington: postulates

https://en.wikipedia.org/wiki/Edwa rd_Vermilye_Huntington

■ 1938 C. E. Shannon: 2-valued Boolean algebra

(switching algebra, binary logic)

George Boole $(1815 \sim 1864)$ https://en.wikipedia.org/wiki/George Boole

C.E. Shannon $(1916 \sim 2001)$

https://en.wikipedia.org/wiki/Claude Shannon J.J. Shann 2-11

2-3 **Axiomatic Definition of Boolean Algebra** J.J. Shann

10

Boolean Algebra

- Boolean algebra: an algebra structure
 - a set of elements: **B**
 - a set of operators: 2 binary operators: +, •
 - (Huntington) postulates

J.J. Shann 2-12

- (Huntington) postulates:
 - 1. (a) Closure w.r.t the operator +.
 - (b) Closure w.r.t the operator •.
 - 2. (a) An identity element w.r.t. +: 0, x + 0 = 0 + x = x
 - (b) An identity element w.r.t. •: 1, $x \cdot 1 = 1 \cdot x = x$
 - 3. (a) Commutative w.r.t. +: x + y = y + x
 - (b) Commutative w.r.t. : x y = y x
 - 4. (a) is distributive over +: x (y + z) = (x y) + (x z)
 - (b) + is distributive over •: $x + (y \cdot z) = (x + y) \cdot (x + z)$
 - 5. Complement: x', (a) x + x' = 1 (b) $x \cdot x' = 0$
 - 6. There exists at least two elements $x, y \in \mathbf{B}$ s.t. $x \neq y$.
 - * Associative law: can be derived from the other postulates

	\overline{xy}	$x \cdot y$	$\overline{x}y$	x+y	x	x'
	00	0	0 0	0	0	1
	0 1	0	0 1	1	1	0
	10	0	10	1		
:	1.1	1	1.1	1		

- 1. Closure
- 2. Identity elements: two; 0 for +, 1 for x + 0 = 0 + x = x, $x \cdot 1 = 1 \cdot x = x$
- 3. Commutative laws: x + y = y + x, $x \cdot y = y \cdot x$
- 4. (a) is distributive over +: x (y + z) = (x y) + (x z)
 - (b) + is distributive over : $x + (y \cdot z) = (x + y) \cdot (x + z)$
- 5. Complement:
 - (a) x + x' = 1: 0 + 0' = 0 + 1 = 1, 1 + 1' = 1 + 0 = 1
- (b) $x \cdot x' = 0$: $0 \cdot 0' = 0 \cdot 1 = 0$, $1 \cdot 1' = 1 \cdot 0 = 0$
- **6**. $\mathbf{B} = \{0,1\}, 0 \neq 1$.

J.J. Shann 2-15

Two-Valued Boolean Algebra

- Set of elements: $\mathbf{B} = \{0, 1\}$
- Set of operators: 2 binary operators: +, •

xy	$x \cdot y$	xy	x+y
0 0	0	0 0	0
0 1	0	0 1	1
10	0	10	1
1 1	1	1 1	1
AND		О	R

0 1

NOT

(Postulate 5)

• (Huntington) postulates:

J.J. Shann 2-14

-14

Proof by Truth Table

* Prove 4(b)!

Proof> 4(a) $x \cdot (y + z) = (x \cdot y) + (x \cdot z)$

xyz	y + z	$x \bullet (y+z)$	<i>x</i> • <i>y</i>	$x \bullet z$	$(x \bullet y) + (x \bullet z)$
000	0	0	0	0	0
0 0 1	1	0	0	0	0
010	1	0	0	0	0
0 1 1	1	0	0	0	0
100	0	0	0	0	0
1 0 1	1	1	0	1	1
1 1 0	1	1	1	0	1
1 1 1	1	1	1	1	1 ,

Basic Theorems and Properties of Boolean Algebra

J.J. Shann

-17

A. Basic Theorems

- Postulates and theorems of Boolean algebra:
 - Postulates: basic axioms, need no proof
 - Theorems: must be proven
 - i. From the postulates and proven theorems
 - ii. From truth table

J.J. Shann 2-19

Basic Theorems and Properties of Boolean Algebra

- Duality:
 - Every algebraic expression deducible from the postulates of Boolean algebra (or truth table) remains valid if the operators and identity elements are interchanged

(OR \leftrightarrow AND, 0 \leftrightarrow 1) * Positive vs. Negative Logic (p.2-86~2-88)

_ E.g.:

4.(a)
$$x \cdot (y+z) = (x \cdot y) + (x \cdot z)$$

(b) $x + (y \cdot z) = (x+y) \cdot (x+z)$ dua
5.(a) $x + x' = 1$

5.(a) x + x' = 1 $(b) x \cdot x' = 0$ dual

J.J. Shann 2-18

-18

•		dual	
Postulate/Theorem	(a)	(b)	
Postulate 2, identity element	x + 0 = x	$x \cdot 1 = x$	
Postulate 5, complement	x + x' = 1	$x \cdot x' = 0$	
Postulate 3, commutative	x + y = y + x	x y = y x	
Postulate 4, distributive	x(y+z) = xy + xz	x + (y z) = (x + y) (x + z)	
Theorem 1	x + x = x	$x \cdot x = x$	
Theorem 2	x + 1 = 1	$x \cdot 0 = 0$	
Theorem 3, involution	(x')' = x		
Theorem 4, associative	x + (y+z) = (x+y) + z	x(yz) = (xy)z	
Theorem 5, DeMorgan	(x+y)'=x'y'	(xy)' = x' + y'	
Theorem 6, absorption	x + xy = x	x(x+y) = x	
Theorem *, consensus	xy + x'z + yz = xy + x'z	(x+y)(x'+z)(y+z) = (x+y)(x'+z)	
		J.J. Shann 2-20	

■19

1

- Two variables: (x + y)' = x' y', (x y)' = x' + y'
- Three or more variables:

$$(A + B + C)' = (A + X)'$$
 let $B + C = X$
 $= A' X'$ by DeMorgan's
 $= A' (B + C)'$ substitute $B + C = X$
 $= A' (B' C')$ by DeMorgan's
 $= A' B' C'$ associative

Generalized form:

$$(A + B + C + ... + G)' = A' B' C' ... G'$$

 $(A B C ... G)' = A' + B' + C' + ... + G'$

 \Rightarrow AND \leftrightarrow OR and complement each literal

J.J. Shann 2-26

-26

Theorem * : Consensus

Postulate/Theorem	(a)	(b)
Postulate 2, identity element	x + 0 = x	$x \cdot 1 = x$
Postulate 5, complement	x + x' = 1	$x \cdot x' = 0$
Postulate 3, commutative	x+y=y+x	xy=yx
Postulate 4, distributive	x(y+z) = xy + xz	x + (yz) = (x + y)(x + z)
Theorem 1	x + x = x	$x \cdot x = x$
Theorem 2	x+1=1	$x \cdot 0 = 0$
Theorem 3, involution	(x')' = x	
Theorem 4, associative	x + (y + z) = (x + y) + z	x(yz) = (xy)z
Theorem 5, DeMorgan	(x + y)' = x' y'	$(xy)^{*} = x^{*} + y^{*}$
Theorem 6, absorption	x + xy = x	x(x+y)=x

... T2(a), P2(b)

xy + x'z + yz = xy + x'z

= xv + x'z

$$(x + y) (x' + z) (y + z) = (x + y) (x' + z)$$

$$xy + x'z + yz$$

= $xy + x'z + (x + x')yz$... P2(b), P3(b), P5(a)
= $xy + x'z + xyz + x'yz$... P4(a)
= $xy(1+z) + x'z(1+y)$... P3(a), P4(a)

- can be used to eliminate redundant terms from Boolean expressions.
- can be used to generate redundant terms for further simplification.

* Venn diagram

J.J. Shann 2-29

29

B. Operator Precedence

- Operator precedence for evaluating Boolean expression:
 - parenthesis
 - NOT
 - AND
 - OR
- Example:

$$(x+y)' + x'y$$

J.J. Shann 2-31

xy + x'z + yz = xy + x'z

* Venn diagram:

J.J. Shann 2-30

-30

2-5

Boolean Functions

J.J. Shann

Boolean Functions

- Boolean algebra:
 - is an algebra dealing w/ binary variables and logic ops
 - binary variables: are designated by letters of the alphabet
 - > logic ops: AND, OR, NOT
- Boolean expression:
 - an algebraic expression formed by using binary variables, the constants 0 and 1, the logic op symbols, and parentheses.
 - E.g.: $X \cdot (\overline{Y} + Z) + Z \cdot 1$

J.J. Shann 2-33

-33

Boolean Equation

- Boolean equation:
 - consists of a binary variable identifying the function followed by an equal sign and a Boolean expression.
 - expresses the logical relationship b/t binary variables
 - can be expressed in a variety of ways
 - * Obtain a simpler expression for the same function.
 - _ E.g.:

$$F(W, X, Y, Z) = X\overline{YZ} + \overline{YZ} + \overline{W}XYZ + WXY + \overline{W}XY\overline{Z}$$

$$= (X) + (\overline{YZ})$$
terms

J.J. Shann 2-35

Boolean Function

- Boolean function:
 - can be described by
 - a Boolean equation,
 - a truth table, or
 - a logic ckt diagram

J.J. Shann 2-34

34

Truth Table

- Truth table for a function: is unique
 - a list of all combinations of 1's and 0's that can be assigned to the binary variables and a list that shows the value of the function for each binary combination.

_ E.g.:

$$F(X,Y,Z) = X + \overline{Y}Z$$

X Y Z	F
0 0 0	0
0 0 1	1
0 1 0	0
0 1 1	0
1 0 0	1
1 0 1	1
1 1 0	1
1 1 1	1

Logic circuit diagram:

- An algebraic expression for a Boolean function
 ⇒ A ckt diagram composed of logic gates
- Circuit gates are interconnected by wires that carry logic signals.

- E.g.: $F(x,y,z) = x + \overline{y}z$

* Combinational logic circuits

J.J. Shann 2-37

37

- \rightarrow Define input variables: 4; w, x, y, z
 - w = 1 if applicant has been involved in a car accident
 - x = 1 if applicant is married
 - v = 1 if applicant is a male
 - z = 1 if applicant is under 25
- Find a Boolean expression which assumes the value 1 whenever the policy should be issued:
- x y' z' 1. a married female 25 years old or over
- v'z 2. a female under 25
- w' x y z 3. a married male under 25 who has not been involved in a car accident
- wxy 4. a married male who has been involved in a car accident
- w' x y z' 5. a married male 25 years or over who has not been involved in a car accident
 - \Rightarrow F = x y' z' + y' z + w' x y z + w x y + w' x y z' J.J. Shann 2-39

Example

Inputs / Insurance Policy Output

 Present a set of requirements under which an insurance policy will be issued:

The applicant must be

- 1. a married female 25 years old or over, or
- 2. a female under 25, or
- 3. a married male under 25 who has not been involved in a car accident, or
- 4. a married male who has been involved in a car accident, or
- 5. a married male 25 years or over who has not been involved in a car accident.

J.J. Shann 2-38

-38

Simplify the expression and suggest a simpler set of requirements:

Insurance policy

w = 1 if applicant has been involved in a car accident

x = 1 if applicant is married

y = 1 if applicant is a male z = 1 if applicant is under 25

The applicant must be

- 1. married or
- 2. a female under 25.

J.J. Shann 2-40

41

Simplification of Boolean Functions

 Boolean algebra is a useful tool for simplifying digital ckts.

Postulate/Theorem	(a)	(b)
Postulate 2, identity element	x + 0 = x	$x \cdot 1 = x$
Postulate 5, complement	x + x' = 1	$x \cdot x' = 0$
Postulate 3, commutative	x+y=y+x	xy = yx
Postulate 4, distributive	$x\left(y+z\right) =xy+xz$	x + (yz) = (x + y)(x + z)
Theorem 1	x + x = x	$x \cdot x = x$
Theorem 2	x + 1 = 1	$x \cdot 0 = 0$
Theorem 3, involution	(x')' = x	
Theorem 4, associative	x + (y + z) = (x + y) + z	x(yz) = (xy)z
Theorem 5, DeMorgan	$(x+y)'=x'\ y'$	(xy)' = x' + y'
Theorem 6, absorption	x + xy = x	$x\left(x+y\right) =x$
Theorem *. consensus	xy + x'z + yz = xy + x'z	(x + y)(x' + z)(y + z) = (x + y)(x' + z)

_ E.g.:

$$F_2 = x'y'z + x'yz + xy'$$

$$= x'z (y' + y) + xy' \qquad ... \text{ Postulate 4(a)}$$

$$= x'z \cdot 1 + xy' \qquad ... \text{ Postulate 5(a)}$$

$$= x'z + xy' \qquad ... \text{ Postulate 2(b)}$$

J.J. Shann 2-42

42

A. Algebraic Manipulation

- Implementation of Boolean function w/ gates:
 - each term is implemented w/ a gate
 - each literal designates an input to a gate
 - » literal: a primed or unprimed variable
 - E.g.: $F_2 = x'y'z + x'yz + xy'$... 3 terms & 8 literal = x'z + xy' ... 2 terms & 4 literals
- Criterion of equipment minimization:
 - Minimize the # of "literals"
 - Minimize the # of "terms"
- Algebraic manipulation: literal minimization
 - Method: cut-and-try (hard)
 - > employ the postulates, basic theorem, ...

J.J. Shann 2-44

Example 2-1

- Simplify the following Boolean functions to a minimum # of literals:
 - 1. x(x' + y)= xx' + xy= 0 + xv= xy $3\rightarrow 2$
- Postulate/Theorem (b) Postulate 2, identity element x + 0 = x $x \cdot 1 = x$ Postulate 5, complement x + x' = 1 $x \cdot x' = 0$ Postulate 3. commutative x + y = y + xx y = y xPostulate 4, distributive x(y+z) = xy + xz+ (yz) = (x + y) (x + z)Theorem 1 x + x = x $x \cdot x = x$ Theorem 2 $x \cdot 0 = 0$ Theorem 3, involution Theorem 4, associative x + (y + z) = (x + y) + zx(yz) = (xy)zTheorem 5, DeMorgan (x+y)' = x'y'(xy)' = x' + y'Theorem 6, absorption x + xy = xx(x+y)=x

Theorem *, consensus xy + x'z + yz = xy + x'z (x + y)(x' + z)(y + z) = (x + y)(x' + z)

- 2. x + x'v= (x + x')(x + y)= 1 (x + v)
 - = x + y 3 \rightarrow 2 (or by duality from 1)

J.J. Shann 2-45

45

B. Complement of a Function

- Complement of a function F:
 - E.g.: p.2-38 (Insurance Policy) F = 1 whenever the insurance policy should be issued \Rightarrow G = F' = 1 whenever the insurance policy should **not** be issued
 - i. interchange of 1's to 0's and 0's to 1's for the values of F in the truth table
 - ii. can be derived algebraically by applying DeMorgan's theorem ⇒ interchange AND and OR ops and complement each variable and constant

$$\overline{X + Y} = \overline{X} \cdot \overline{Y}$$
 $\overline{X \cdot Y} = \overline{X} + \overline{Y}$

$$\overline{X \cdot Y} = \overline{X} + \overline{Y}$$

iii. take the dual (OR \leftrightarrow AND, $0 \leftrightarrow 1$) of the function eq & complement each literal

J.J. Shann 2-47

- 3. (x+y)(x+y')= xx + xy + xy' + yy'= x + xy + xy' + 0= x(1 + y + y')=x $4\rightarrow 1$
- Postulate/Theorem (b) Postulate 2, identity element x + 0 = xPostulate 5, complement x + x' = 1 $x \cdot x' = 0$ Postulate 3, commutative x + y = y + xPostulate 4. distributive x(y+z) = xy + xzx + (yz) = (x + y)(x + z)Theorem 1 $x \cdot x = x$ x + 1 = 1 $x \cdot 0 = 0$ Theorem 2 (x')' = xTheorem 3, involution Theorem 4, associative x + (y + z) = (x + y) + zx(yz) = (xy)zTheorem 5, DeMorgan (x+y)' = x'y'Theorem 6, absorption x + xy = xTheorem *, consensus xy + x'z + yz = xy + x'z (x + y)(x' + z)(y + z) = (x + y)(x' + z)
- 4. xy + x'z + yz= xy + x'z + yz(x+x')= xy + x'z + xyz + x'yz
- * 4 & 5
- = xy(1+z) + x'z(1+y)
- → Consensus theorem
- $= xy + x'z \quad 6 \rightarrow 4$
- 5. (x+y)(x'+z)(y+z)
 - =(x+y)(x'+z) 6 \rightarrow 4 (duality from 4)

J.J. Shann 2-46

-46

Example 2.2

 $\overline{X + Y} = \overline{X} \cdot \overline{Y}$ $\overline{X \cdot Y} = \overline{X} + \overline{Y}$

- Complementing functions by applying DeMorgan's theorem:
 - _ E.g.s:

$$\begin{split} F_1 &= \overline{X} Y \overline{Z} + \overline{X} \overline{Y} Z \qquad \overline{F}_1 = (\overline{X} Y \overline{Z} + \overline{X} \overline{Y} Z)' \\ &= (\overline{X} Y \overline{Z})' \cdot (\overline{X} \overline{Y} Z)' \\ &= (X + \overline{Y} + Z) \cdot (X + Y + \overline{Z}) \end{split}$$

$$\begin{split} F_2 &= X(\overline{Y}\ \overline{Z} + YZ) \quad \overline{F}_2 = (X(\overline{Y}\ \overline{Z} + YZ))' \\ &= \overline{X} + (\overline{Y}\ \overline{Z} + YZ)' \\ &= \overline{X} + (\overline{Y}\ \overline{Z})' \cdot (YZ)' \\ &= \overline{X} + (Y + Z) \cdot (\overline{Y} + \overline{Z})_{\cdot \text{Shann 2-48}} \end{split}$$

Complementing functions by using duals:

= E.g.s: (dual: $OR \leftrightarrow AND$, 0 \leftrightarrow 1)

$$F_{1} = \overline{X}Y\overline{Z} + \overline{X}\overline{Y}Z$$
dual of $F_{1} \Rightarrow (\overline{X} + Y + \overline{Z}) \cdot (\overline{X} + \overline{Y} + Z)$
complement each literal $\Rightarrow (X + \overline{Y} + Z) \cdot (X + Y + \overline{Z})$

$$= \overline{F_{1}}$$

$$F_{2} = X(\overline{Y} \overline{Z} + YZ)$$
dual of $F_{2} \Rightarrow X + (\overline{Y} + \overline{Z}) \cdot (Y + Z)$
complement each literal $\Rightarrow \overline{X} + (Y + Z) \cdot (\overline{Y} + \overline{Z})$

$$= \overline{F_{2}}$$
J.J. Shann 2-49

49

Canonical & Standard Forms

- Boolean expressions:
 - an expression formed w/:
 - binary variables
 - constants 0 and 1
 - binary operators OR and AND
 - > unary operator NOT
 - parentheses
 - equal sign
 - Special forms:
 - Canonical forms
 - Standard forms

Boolean expressions
Standard

form

Canonical form

Non-Standard form

J.J. Shann 2-51

2-6

Canonical & Standard Forms

J.J. Shann

-50

A. Canonical Forms

- Canonical forms:
 - special forms of Boolean expression being expressed directly from truth tables
 - Two types:
 - i. sum-of-minterms form
 (minterm) + ... + (minterm)
 - ii. product-of-maxterms form
 - (*max*term) ... (*max*term)

 $x y z \mid F_2$

- \blacksquare minterm: standard product, m_i
 - an AND term of the *n* variables, w/ each variable being primed if the corresponding bit is 0 and unprimed if a 1.
 - -n variables $\rightarrow 2^n$ minterms
 - E.g.: minterms for 3 variables

хJ	v z	minterm		m_0	m_1	m_2	m_3	m_4	m_5	m_6	m_7
0.0	0 (x'y'z'	(m_0)	1	0	0	0	0	0	0	0
0.0	1	x'y'z	(m_1)	0	1	0	0	0	0	0	0
0 1	0	x'yz'	(m_2)	0	0	1	0	0	0	0	0
0.1	1 1	x'yz	(m_3)	0	0	0	1	0	0	0	0
1.0	0 (xy'z'	(m_4)	0	0	0	0	1	0	0	0
1.0	1	xy'z	(m_5)	0	0	0	0	0	1	0	0
1 1	0	xyz'	(m_6)	0	0	0	0	0	0	1	0
1 1	l 1	xyz	(m_7)	0	0	0	0	0	0	0	1

minterms vs. Maxterms

• E.g.: for 3 binary variables $(*M_i = m_i')$

xyz	minterm		Maxterm	
000	x'y'z'	(m_0)	x + y + z	(M_0)
001	x'y'z	(m_1)	x + y + z'	(M_1)
010	x'yz'	(m_2)	x + y' + z	(M_2)
011	x'yz	(m_3)	x + y' + z'	(M_3)
100	xy'z'	(m_4)	x' + y + z	(M_4)
101	xy'z	(m_5)	x' + y + z'	(M_5)
110	xyz'	(m_6)	x' + y' + z	(M_6)
111	xyz	(m_7)	x' + y' + z'	(M_7)

- E.g.: $m_3 = \overline{x}yz$ $= x + \overline{y} + \overline{y}$

J.J. Shann 2-55

4

Maxterms

- *Maxterm*: standard sum, M_i (= m_i ')
 - an OR term of the *n* variables, w/ each variable being unprimed if the corresponding bit is 0 and primed if a 1.
 - *n* variables \rightarrow 2^{*n*} Maxterms
 - E.g.: Maxterms for 3 variables

xyz	Maxterm		M_0	M_1	M_2	M_3	M_4	M_5	M_6	M_7
0 0 0	x+y+z	(M_0)	0	1	1	1	1	1	1	1
0 0 1	x+y+z'	(M_1)	1	0	1	1	1	1	1	1
0 1 0	x+y'+z	(M_2)	1	1	0	1	1	1	1	1
0 1 1	x+y'+z'	(M_3)	1	1	1	0	1	1	1	1
100	x'+y+z	(M_4)	1	1	1	1	0	1	1	1
1 0 1	x'+y+z'	(M_5)	1	1	1	1	1	0	1	1
110	x'+y'+z	(M_6)	1	1	1	1	1	1	0	1
111	x'+y'+z'	(M_7)	1	1	1	1	1	1	1	0

-54

4

Canonical Forms

- Canonical forms:
 - A Boolean function can be expressed algebraically from a given truth table by
 - i. Sum-of-minterms form:

(*min*term) + ... + (*min*term)

- form a minterm for each combination of the variables that produces a 1 in the function, and then take the OR of all those
- ii. Product-of-Maxterms form:

$(max term) \bullet \dots \bullet (max term)$

form a maxterm for each combination of the variables that produces a 0 in the function, and then take the AND of all those terms

J.J. Shann 2-56

=55

Example

Given the truth table of two functions, f_1 and f_2 , express each of the functions as sum-ofminterms and product-ofmaxterms forms.

x y z	f_1	f_2
0 0 0	0	0
0 0 1	1	0
0 1 0	0	0
0 1 1	0	1
1 0 0	1	0
1 0 1	0	1
1 1 0	0	1
1 1 1	1	1

<Ans.>

Sum of minterms:

$$f_1 = x'y'z + xy'z' + xyz = m_1 + m_4 + m_7 = \sum m(1, 4, 7)$$

$$f_2 = x'yz + xy'z + xyz' + xyz = m_3 + m_5 + m_6 + m_7$$

$$= \sum m(3, 5, 6, 7)$$
J.J. Shann 2-57

57

Conversion to Sum of Minterms Form

- Two methods of expressing a Boolean function in its sum-of-minterms form:
 - i. Expand the expression into a sum of AND terms by using the distributive law, x(y + z) = xy + xz. Any missing variable x in each AND term is ANDed with (x + x').
 - ii. Obtain the truth table of the function directly from the algebraic expression and then read the minterms from the truth table.

J.J. Shann 2-59

$f_1 = x'y'z + xy'z' + xyz$
$= m_1 + m_4 + m_7 = \sum m(1,4,7)$
$f_2 = x'yz + xy'z + xyz' + xyz$
$= m_3 + m_5 + m_6 + m_7 = \sum m(3,5,6,7)$

x y z	f_1	f_2
0 0 0	0	0
0 0 1	1	0
0 1 0	0	0
0 1 1	0	1
1 0 0	1	0
1 0 1	0	1
1 1 0	0	1
1 1 1	1	1

Product of maxterms:

$$f_1' = m_0 + m_2 + m_3 + m_5 + m_6$$

= $x'y'z' + x'yz' + x'yz + xy'z + xyz'$

$$f_1 = (f_1)' = (x+y+z)(x+y'+z)(x+y'+z')(x'+y+z')(x'+y'+z)$$

$$= M_0 M_2 M_3 M_5 M_6 = \Pi M(0, 2, 3, 5, 6)$$

$$f_2 = (x+y+z)(x+y+z')(x+y'+z)(x'+y+z)$$

= $M_0 M_1 M_2 M_4 = \Pi M(0, 1, 2, 4)$

J.J. Shann 2-58

-58

Example: F(A, B, C) = A + B'C

<Ans.>

Approach 1:

$$A = A (B+B') (C+C')$$
$$= (AB +AB') (C+C')$$

$$= AB (C+C') + AB'(C+C')$$

$$= ABC + ABC' + AB'C' + AB'C'$$

$$B'C = (A+A')B'C$$
$$= AB'C + A'B'C$$

 $= \Sigma m(1, 4, 5, 6, 7)$

4

Conversion to Product-of-Maxterms Form

- Two methods of expressing a Boolean function in its product-of-maxterms form:
 - i. Convert the function into OR terms by using the distributive law, x + yz = (x + y)(x + z).
 - Any missing variable x in each OR term is ORed with xx'.
 - ii. Obtain the truth table of the function directly from the algebraic expression and then read the maxterms from the truth table.

J.J. Shann 2-62

-62

- To convert from one canonical form to another:
 - Interchange the symbols Σ and Π & list those numbers missing from the original form
 - E.g.: F = xy + x'z

.5 1 .0,	~ -	
x y z	$\boldsymbol{\mathit{F}}$	
0 0 0	0	F(x, y, z)
0 0 1	1	$= \Sigma m(1, 3, 6, 7)$
0 1 0	0	-2m(1, 3, 0, 7)
0 1 1	1	=
1 0 0	0	$=\Pi M(0, 2, 4, 5)$
1 0 1	0	=
1 1 0	1	•••••
1 1 1	1	J.J. Shann 2-65

Sum of Products (SOP)

SOP:

(AND term) + ... + (AND term)

is a Boolean expression containing AND terms (product terms) of one or more literals each.

There *AND* terms are *OR*ing together.

→ 2-level gating structure

(if the complements of the input variables are available)

= E.g.:
$$F_1 = y' + xy + x'yz'$$

J.J. Shann 2-67

B. Standard Forms

- Canonical forms: special cases of standard forms
 - sum of *minterms* & product of *maxterms*
 - the basic forms that one obtains from reading a function from the truth table.
 - Each terms must contain all the variables
 - > Seldom w/ the least # of literals (not minimized)
- Standard forms:
 - Sum of *products* & product of *sums*(*AND* terms) (*OR* terms)
 - The terms may contain any number of literals

J.J. Shann 2-66

=66

4

Product of Sums (POS)

POS

 $(OR\ term) \bullet \dots \bullet (OR\ term)$

is a Boolean expression containing *OR* terms (*sum* terms) of one or more literals each.

These *OR* terms are *AND*ing together.

 \rightarrow 2-level gating structure

(if the complements of the input variables are available)

- E.g.: $F_2 = x(y'+z)(x'+y+z')$

J.J. Shann 2-68

-70

-72

	x y	F_0	F_1	F_2	<i>F</i> ₃	F_4	F ₅	F_6	F ₇	F_8	F ₉	F ₁₀	F ₁₁	F ₁₂	F ₁₃	F ₁₄	F ₁₅	
Ш	0 0	0	0	0	0	0	0	0	0	1	1	1	1	1	1	1	1	
	0 1	0	0	0	0	1	1	1	1	0	0	0	0	1	1	1	1	
	1 0	0	0	1	1	0	0	1	1	0	0	1	1	0	0	1	1	
	1 1	0	1	0	1	0	1	0	1	0	1	0	1	0	1	0	1	
F_{0}	$F_0 = 0$ Null						F_1	.5 =	1		Identity							
$F_1 = xy$			AN	D, x	ŀу			$F_{14} = (xy)'$				NAND, $x \uparrow y$						
$F_2 = xy'$				Inhibition, <i>x/y</i>					F_1	$F_{13} = x' + y$				Implication, $x \supset y$				
$F_3 = x$				Transfer					$F_{12} = x'$				Complement, x'					
$F_4 = x'y$				Inhibition, y/x					$F_{11} = x + y'$				Implication, $x \subset y$					
$F_{:}$	$F_5 = y$				Transfer					$F_{10} = y'$				Complement, y'				
$F_6 = xy' + x'y$				Exclusive-OR, $x \oplus y$				$F_9 = xy + x'y'$				Eauivalence, $(x \oplus y)'$						
F	$\frac{1}{7} = x + 1$	- <i>y</i>		OR	, <i>x</i> +	y			F_8	= (.	x + 1	<i>y</i>)′	NC)R, x		1141111 4	L=12	

- The 16 functions can be subdivided into 3 categories:
 - 1. 2 functions that produce a constant 0 or 1.
 - 2. 4 functions w/ unary operations complement (NOT) and transfer.
 - 3. 10 functions w/ binary operators that define eight different operations AND, OR, NAND, NOR, exclusive-OR, equivalence, inhibition, and implication.

J.J. Shann 2-73

-73

- Boolean expression:
 - AND, OR and NOT operations
 - It is easier to implement a Boolean function in these types of gates.
- Factors in considering the construction of other types of logic gates:
 - the feasibility and economy of implementing the gate w/ electronic components
 - the possibility of extending the gate to more than two
 - the basic properties of the binary operator

* Why?

E.g.: commutativity, associativity, ...

the ability of the gate to implement Boolean functions

* Why? alone or in conjunction w/ other gates

J.J. Shann 2-75

-74

-75 **-**76

Extension to Multiple Inputs

- Extension to multiple inputs
 - A gate can be extended to multiple inputs if its binary operation is commutative and associative.
- AND, OR: commutative and associative:

$$x + y = y + x$$

$$(x + y) + z = x + (y + z)$$

$$x \cdot y = y \cdot x$$

$$(x \cdot y) \cdot z = x \cdot (y \cdot z)$$

J.J. Shann 2-81

81

- Modification of the definition:
 - The multiple NOR (or NAND) gate is a complement OR (or AND) gate.

$$x \downarrow y \downarrow z = (x + y + z)'$$
$$x \uparrow y \uparrow z = (x \cdot y \cdot z)'$$

y = (xyz)'

3-input NOR gate

3-input NAND gate

J.J. Shann 2-83

- NAND (\uparrow), NOR (\downarrow):
 - commutative but **not** associative ⇒ not extendable

- E.g.:
$$(x \downarrow y) \downarrow z \neq x \downarrow (y \downarrow z)$$

 $(x \downarrow y) \downarrow z = [(x + y)' + z]' = (x + y) z' = xz' + yz'$
 $x \downarrow (y \downarrow z) = [x + (y + z)']' = x' (y + z) = x'y + x'z$

 $x \longrightarrow y \longrightarrow x \downarrow (y \downarrow z) = x'(y+z)$

 Σ m(2, 4, 6)

 Σ m(1, 2, 3) J.J. Shann 2-82

82

- In writing cascaded NOR and NAND operations:
 - > Use the correct parentheses to signify the proper sequence of the gates.
 - E.g.: Cascaded NAND gates

 $F = [(ABC)' \cdot (DE)']' = ABC + DE$

G = (ABCDE)' = A' + B' + C' + D' + E'

85

-86

■87 **■**88

Integrated Circuits (ICs)

- Digital ckts are constructed w/ integrated ckts.
- Integrated circuit (IC):
 - is a silicon semiconductor crystal (chip) containing the electronic components for the digital gates and storage elements.
 - The various components are interconnected on the chip.
 - The chip is mounted in a ceramic or plastic container, and connections are welded from the chip to the external pins.

J.J. Shann 2-9

-90

B. Digital Logic Families

Digital logic families: ckt technology

TTL: transistor-transistor logic ECL: emitter-coupled logic (speed)

MOS: metal-oxide semiconductor (density)

CMOS: complementary MOS (power)

 The basic ckt in each family is a NAND, NOR, or inverter gate. (Ch3)

J.J. Shann 2-92

91

補充資料: Technology Parameters

- The most important parameters of digital logic families:
 - _ Fan-in
 - _ Fan-out
 - Noise margin
 - Propagation delay
 - Cost
 - Power dissipation

Reference:

M. Morris Mano & Charles R. Kime, *Logic and Computer Design Fundamentals*, 3rd Edition, 2004, Pearson Prentice Hall. (§3-2)

J.J. Shann 2-93

93

- Fan-out: # of standard loads driven by a gate output
 - Max fan-out: the fan-out that the output can drive w/o impairing gate performance
- For CMOS gates:
 - The load on the output of a gate determines the time required for the output of the gate to change from L to H and from H to L. → transition time

J.J. Shann 2-97

4

Fan-in

- **Fan-in**: # of inputs available on a gate
 - For high-speed technologies, fan-in is often restricted on gate primitives to ≤ 4 or 5.
- E.g.: Implementation of a 7-input NAND gate using NAND gates w/ 4 or fewer inputs

* NAND is not associative!

J.J. Shann 2-96

96

Example:

An integrated circuit logic family has

NAND gates with a fan-out of 4 standard loads & buffers with a fan-out of 8 standard loads.

Sketch a schematic showing how the output signal of a single NAND gate can be applied to 18 other gate inputs. Assume that each input is one standard load.

J.J. Shann 2-98

97

Fan-in & Fan-out:

- must be dealt w/ in the technology mapping step of the design process.
- _ Gate w/ fan-ins larger than available ⇒ Multiple gates
- Gate w/ fan-outs either exceed its max allowable fan-out or have too high a delay ⇒ Multiple gates or added buffers at its output

J.J. Shann 2-99

-99

Input(s)

- **Propagation delay**: the time required for a change in value of a signal to propagate from input to output
 - The operating speed of a ckt is inversely related to the longest propagation delays through the gates of the ckt.
- 3 propagation delay parameters:
 - high-to-low propagation time t_{PHL}
 - low-to-high propagation time t_{PLH}
 - propagation delay t_{pd} : $\max(t_{PHL}, t_{PLH})$

J.J. Shann 2-101

Noise Margin

Noise margin: the max external noise voltage superimposed on a normal input value that will not cause an undesirable change in the ckt output

100

103

4

For CMOS gates:

- The load on the output of a gate determines the time required for the output of the gate to change from L to H and from H to L. → transition time
- E.g.: (next page)

J.J. Shann 2-104

104

Cost for a gate:

is usually based on the area occupied by the layout cell
 (∞ the size of the transistors & the wiring in the gate layout)

J.J. Shann 2-106

■105

Power dissipation

- *Power dissipation*: the power drawn from the power supply and consumed by the gate
 - must be considered in relation to the operating temperature and cooling

J.J. Shann 2-107

107

* Chapter Summary

- Primitive logic ops: AND, OR, NOT
- Boolean algebra
- Canonical form: minterm & maxterm standard forms
- Standard forms: SoP and PoS ⇒ 2-level gate ckts
- Other logic gates:
 - NAND, NOR
 - XOR, XNOR
- Integrated circuits
 - Technology parameters

J.J. Shann 2-109

C. Computer-Aided Design (CAD) of VLSI Circuits

CAD tools:

- software programs that support computer-based representation and aid in the development of digital hardware by automating the design process.
- Schematic capture tools:
 - > support the drawing of blocks and interconnections at all levels of the hierarchy.
 - At the level of primitives and functional blocks, libraries of graphics symbols are provided.

Logic simulator:

- verify the behavior and the timing of the hierarchical blocks and the entire ckt
- Logic synthesizer:
 - optimize design being generated automatically from HDL (hardware description language) specifications in physical area or delay
 JJ. Shann 2-108