

NAVER LABS

Europe

Guaranteed Generation from Large Language Models

Minbeom Kim

Thibaut Thonet

Jos Rozen

Hwaran Lee

Kyomin Jung

Marc Dymetman

Goals of Guaranteed Generation

- 1. 20% strict guarantees on constraints satisfaction.
- 2. Preserve original distribution as much as possible.
- 3. Achieve (1) & (2) with **limited inference costs**.

Basic Notations

Base LLM: a(y), sample $y \sim a(y)$

The guarantee: binary hard constraint $b(y) \in \{0, 1\}$

E.g. b(y) is a toxicity detector (0 means toxic, 1 means non-toxic)

E.g. b(y) is a verifier of certain keywords

Guaranteed sampler: sampler that **never** violates b(y)

Formalization of Guaranteed Generation

We define Ideal distribution g as

$$g(y) = \begin{cases} 0, & b(y) = 0\\ \frac{1}{Z_{a,b}} a(y), & b(y) = 1 \end{cases}$$

- g is the guaranteed distribution, a conditioned by the fact that y satisfies b, i.e. g(y) = a(y | [b(y) = 1]).
- g is the guaranteed distribution p that minimizes $KL(p \mid \mid a)$, g preserves the original distribution a as much as possible.

Limitation of Autoregressive Models

Theorem 1. However, it is impossible to exactly fit g(y) with an autoregressive trained model a'(y).

Claim 1. To achieve this objective, we need inference-time Monte-Carlo (MC) methods that exploits the approximation a' as a proposal sampler but only retains samples satisfying the constraint b.

Claim 2. When we apply *rejection sampling* to a, we *obtain* g with significant Inference cost. Even with a efficient proposal a', a significant inference cost must still be incurred to improve the quality of samples via an MCMC

To address this, we introduce \$\varbbellet\$ GUARD to amortize this inference procedure.

IDENTIFY AND SET OF THE PROPERTY OF THE PROPE

? How can we optimize KL(g | | a')?

CAP: prompting a to be aware of constraint b

SFT: sample a lot of $y \sim a$ and retain only b(y) = 1. Then fine-tune those on a $\nabla_{\theta} KL(g \mid a'_{\theta}) = -\mathbb{E}_{y \sim a'_{\theta}} \frac{g(y)}{a'_{\theta}(y)} \nabla_{\theta} \log a'_{\theta}(y)$, which is *distributional* policy gradient loss,

DPG: sample y from **adaptive** proposal a'_{θ} and update a' with $\nabla_{\theta} KL(g \mid | a'_{\theta})$. Both SFT and DPG is very slow in the early stage... Can we boost up?

Warm-start DPG: Fine-tune a' with $y \sim a(\cdot | CAP)$ for **skipping early stage**.

Experiment & Discussion

 $AR_a = 0.23 \%$ Constraint 1: Lexical constraints "amazing"

Constraint 2: Story completion from negative opening with "positive" ending

 $AR_{a} = 0.5 \%$

- DPG's *adaptive* proposal excels other baselines.
- Warm-start helps to skip the inefficient early stage.
- After § GUARD training,

 $AR_{\alpha'}$ of constraint 1: 0.23 % \rightarrow 0.416 % (180x boost-up!) $AR_{a'}$ of constraint 2: 0.5 % \rightarrow 0.306 % (60x boost-up!) while preserving a high proximity to g

from **Q** GUARD training

Conclusion. We formalize how to guarantee that LLMs perfectly meet specified requirements

without compromising their usefulness.

Relative position of 'amazing' in the text

GUARD