# Banach Spaces of Analytic Functions

## Ashish Kujur

Last Updated: January 28, 2023

# Contents

| $\S 1$ | Ana      | lytic and Harmonic Functions                       |
|--------|----------|----------------------------------------------------|
|        | §1.1     | The Cauchy and Poisson Kernels                     |
|        |          | Boundary Values                                    |
|        |          | §1.2.1 Weak* convergence of measures               |
|        |          | §1.2.2 Convergence in norm                         |
|        |          | §1.2.3 Weak* convergence of bounded functions      |
|        |          | §1.2.4 The entire picture!                         |
|        | §1.3     | Fatou's Theorem                                    |
|        | §1.4     | Hardy Spaces – $H^p$ spaces                        |
|        |          | §1.4.1 Series Representation of Harmonic Functions |
| $\S 2$ | The      | space $H^1$                                        |
| •      | §2.1     | Brief Recap!                                       |
|        | $\S 2.2$ | The Helson-Lowdenslager Approach                   |
|        |          | Szegö's Theorem                                    |

## §1 Analytic and Harmonic Functions

### §1.1 The Cauchy and Poisson Kernels

**Proposition §1.1.1.** Let  $u: \overline{\mathbb{D}} \to \mathbb{C}$  be a harmonic function. Then we have that

$$u\left(re^{i\theta}\right) = \frac{1}{2\pi} \int_{-\pi}^{\pi} u\left(e^{it}\right) P_r\left(e^{i(\theta-t)}\right) dt \tag{§1.1.1}$$

#### §1.2 Boundary Values

#### §1.2.1 Weak\* convergence of measures

**Theorem §1.2.1.** Let  $\{\varphi_i\}_i$  be an approximate identity on  $\mathbb{T}$  and let  $\mu \in \mathcal{M}(\mathbb{T})$ . Then for all  $i, \varphi_i * \mu \in L^1(\mathbb{T})$  with

$$\|\varphi_i * \mu\|_1 \le C_{\varphi} \|\mu\|$$

and

$$\|\mu\| \le \sup_i \|\varphi_i * \mu\|_1.$$

Moreover, the measures  $d\mu_i = (\varphi_i * \mu) (e^{it}) dt/2\pi$  converge to  $d\mu(e^{it})$  in the weak\* topology, i.e.

$$\lim_{i} \frac{1}{2\pi} \int_{-\pi}^{\pi} f\left(e^{it}\right) \left(\varphi_{i} * \mu\right) \left(e^{it}\right) dt = \int_{\mathbb{T}} \varphi\left(e^{it}\right) d\mu \left(e^{it}\right)$$

for all  $f \in \mathcal{C}(\mathbb{T})$ .

### §1.2.2 Convergence in norm

**Theorem §1.2.2.** Let  $\{\varphi_i\}_i$  be an approximate identity on  $\mathbb{T}$  and let  $f \in L^p(\mathbb{T})$  with  $p \in [1, \infty)$ . Then for all  $i, \varphi_i * f \in L^p(\mathbb{T})$  with

$$\|\varphi_i * f\|_p \le C_{\varphi} \|f\|_p$$

and

$$\lim_{i} \|\varphi_i * f - f\|_p = 0.$$

### §1.2.3 Weak\* convergence of bounded functions

**Theorem §1.2.3.** Let  $\{\varphi_i\}_i$  be an approximate identity on  $\mathbb{T}$  and let  $f \in L^{\infty}(\mathbb{T})$ . Then for all  $i, \varphi_i * \mu \in \mathcal{C}(\mathbb{T})$  with

$$\|\varphi_i * \mu\|_{\infty} \le C_{\varphi} \|\mu\|_{\infty}$$

and

$$||f||_{+\infty} \le \sup_{i} ||\varphi_i * f||_{\infty}.$$

Moreover,  $\varphi_i * f$  converge to f in the weak\* topology, i.e.

$$\lim_{i} \int_{-\pi}^{\pi} g\left(e^{it}\right) \left(\varphi_{i} * f\right) \left(e^{it}\right) dt = \int_{\mathbb{T}} g\left(e^{it}\right) f\left(e^{it}\right) dt$$

for all  $g \in L^1(\mathbb{T})$ .

#### §1.2.4 The entire picture!

**Definition §1.2.4** (Poisson integral of some function or measure). Let  $\tilde{f}: \mathbb{D} \to \mathbb{C}$  be a harmonic function. Then  $\tilde{f}$  is said to be the *Poisson integral* of the function  $f: \mathbb{T} \to \mathbb{C}$  if

$$\tilde{f}(re^{i\theta}) = \frac{1}{2\pi} \int_{T} f\left(e^{it}\right) P_r\left(e^{i(\theta-t)}\right) dt$$

In such a case, we will denote the function  $\tilde{f}$  by P[f]. Similarly, f is said to be the *Poisson integral* of a complex measure  $\mu$  on T if

$$\tilde{f}(re^{i\theta}) = \frac{1}{2\pi} \int_{T} P_r\left(e^{i(\theta-t)}\right) d\mu\left(e^{it}\right)$$

In such a case, we will denote the function  $\tilde{f}$  by  $P[\mu]$ .

**Theorem §1.2.5** (Ultimate Convergence). Let  $f : \mathbb{D} \to \mathbb{C}$  be a harmonic function. Define for each  $r \in [0,1)$ , the function  $f_r : \mathbb{T} \to \mathbb{C}$  by

$$f_r\left(e^{i\theta}\right) = f\left(re^{i\theta}\right)$$

The following statements holds:

- 1. If 1 then <math>f = P[g] for some  $g \in L^p[g]$  iff for each r > 0,  $||f_r||_p < +\infty$ .
- 2. If p=1 then f=P[g] for some  $g\in L^p[g]$  iff  $f_r$  converge in the  $L^1$  norm.
- 3.  $f = P[\mu]$  for some  $\mu \in \mathcal{M}(\mathbb{T})$  iff for each r > 0,  $||f_r||_1 < +\infty$

## §1.3 Fatou's Theorem

**Theorem §1.3.1.** Let  $\mu$  be a complex measure on the unit circle  $\mathbb{T}$ , and let  $f: \mathbb{D} \to \mathbb{C}$  be the harmonic function defined by

$$f(re^{i\theta}) = \frac{1}{2\pi} \int_{\mathbb{T}} P_r\left(e^{i(\theta-t)}\right) d\mu\left(e^{it}\right)$$

Let  $e^{i\theta_0}$  be any point where  $\mu$  is differentiable with respect to the normalised Lebesgue measure. Then

$$\lim_{r \to 1} f\left(re^{i\theta_0}\right) = \left(\frac{d\mu}{d\theta}\right) \left(e^{i\theta_0}\right) = \mu'\left(e^{i\theta_0}\right)$$

In fact,  $f(re^{i\theta}) \to \mu'(e^{i\theta_0})$  as  $re^{i\theta}$  approaches  $e^{i\theta_0}$  along any path in the open disc within the region of the form  $|\theta - \theta_0| \le c(1-r)$  for some c > 0.

Corollary §1.3.2. Let  $\mu$  be a complex measure on  $\mathbb{T}$ . Then  $P[\mu]$  has nontangential limits equal everywhere to the Radon Nikodym derivative of  $\mu$  with respect to the normalised Lebesgue measure.

**Corollary §1.3.3.** Let  $f : \mathbb{T} \to \mathbb{C}$  be  $L^1$ . Then P[f] has nontangential limits at almost everywhere and these limits equal to f almost everywhere.

**Corollary §1.3.4.** Let  $f : \mathbb{D} \to \mathbb{C}$  be a harmonic function and  $1 \leq p < \infty$ . Suppose that for all  $0 \leq r < 1$ , we have that

$$||f_r||_p < +\infty$$

Then for almost every  $\theta$  the radial limits

$$\tilde{f}(e^{i\theta}) = \lim_{r \to 1} f\left(re^{i\theta}\right)$$

exist and define a function  $\tilde{f}$  in  $L^p(\mathbb{T})$ . The following also holds:

- 1. If p > 1 then  $f = P[\tilde{f}]$ .
- 2. If p = 1 then  $f = P[\mu]$  for some complex measure  $\mu$  whose absolutely continuous part is  $fd\theta$ .
- 3. If f is bounded then the boundary values exist almost everywhere and define a bounded measurable function  $\tilde{f}$  on  $\mathbb{T}$  such that  $f = P[\tilde{f}]$ .

*Proof.* Suppose that for each  $r \in [0,1)$ , we have  $||f_r||_p < +\infty$ . We need to prove that for almost every  $\theta$ ,  $\lim_{r\to 1} f\left(re^{i\theta}\right)$  exists. Then by Theorem §1.2.5, we have that f = P[g] for some  $g \in L^p(\mathbb{T})$ . Since  $L^p(\mathbb{T}) \subset L^1(\mathbb{T})$ , we can use the previous corollary. By the previous corollary, we have that P[g] has nontangential limits almost everywhere, we have that

$$\tilde{f}\left(e^{i\theta}\right) = \lim_{r \to 1} f(re^{i\theta}) = \lim_{r \to 1} P[g]\left(re^{i\theta}\right) \tag{§1.3.1}$$

exists almost everywhere.

Now we proceed to prove part (1). Also by Theorem §1.2.5, we have that f = P[g] for some  $g \in L^p(\mathbb{T})$ . Hence, we have that by Equation §1.3.1 that  $\tilde{f}(e^{i\theta}) = \lim_{r \to 1} P[g] \left(re^{i\theta}\right)$  holds at almost every  $\theta$ .

Also, by the previous corollary,  $\lim_{r\to 1} P[g]\left(re^{i\theta}\right) = g(e^{i\theta})$  for almost every  $\theta$ . Hence, we have that  $\tilde{f} = g$ .

Corollary §1.3.5. Let  $f : \mathbb{D} \to \mathbb{R}_{\geq 0}$  be a harmonic function. Then f has nontangential limits at almost every point of  $\mathbb{T}$ . (Why demand nonnegative?)

Let  $h(\mathbb{D})$  denote the set of all harmonic functions on  $\mathbb{D}$ . Let  $p \in [1, \infty]$ . Define

$$h^{p}\left(\mathbb{D}\right)=\left\{ f\in h\left(\mathbb{D}\right) \mid \left\{ f_{r}\right\} _{0\leq r<1} \text{ is uniformly bounded in }L^{p} \text{ norm }\right\}$$

4

We define a norm on  $h^p(\mathbb{D})$  by

$$||f||_{h^{p}(\mathbb{D})} = \sup_{0 \le r < 1} ||f_{r}||_{L^{p}(\mathbb{D})} = \begin{cases} \sup_{0 \le r < 1} \left( \frac{1}{2\pi} \int_{-\pi}^{\pi} |f(re^{i\theta})|^{p} d\theta \right)^{\frac{1}{p}} & \text{if } p \in [1, \infty) \\ \sup_{0 \le r < 1} ||f(re^{i\theta})||_{L^{\infty}(\mathbb{D})} & \text{if } p = \infty \end{cases}$$

It is easy to see why  $||f|| < +\infty$  for any  $f \in h^p(D)$ . So we now proceed to show that  $h^p(D)$  is a Banach space with this norm. First we show that it is indeed a normed linear space.

Clearly,  $h(\mathbb{D})$  is a vector space. To show that  $h^p(\mathbb{D})$  is a vector space, it suffices to check that  $h^p(\mathbb{D})$  is a subspace.

Let  $f, g \in h^p(\mathbb{D})$  and let  $\alpha \in \mathbb{C}$ . Then for any  $r \in [0, 1)$ , we have that

$$\|(f + \alpha g)_r\|_p = \|f_r + \alpha g_r\|$$
  
=  $\|f_r\|_p + \alpha \|g_r\|_p$ 

Take note of the use of Holder's inequality. After this is done, since  $\{f_r\}_{r\in[0,1)}$  and  $\{g_r\}_{r\in[0,1)}$  is uniformly bounded, we have that  $\{f+\alpha g\}_{r\in[0,1)}$  is uniformly bounded in  $L^p$  norm.

Now, we need to show that it is a normed linear space but this follows almost immediately. To show that it is a Banach space, we show that

**Theorem §1.3.6.** Let  $p \in [1, \infty]$ . If  $u \in L^p(\mathbb{T})$  then  $f = P * u \in h^p(\mathbb{D})$  and  $\|f\|_p = \|u\|_p$ . If  $\mu \in \mathcal{M}(\mathbb{T})$  then  $f = P * \mu \in h^1(\mathbb{D})$  and  $\|f\|_1 = \|\mu\|$ .

*Proof.* We consider the case  $p \in [1, \infty)$ . The other cases can be dealt similarly. Consider the map

$$u \stackrel{T}{\mapsto} U$$

where  $U\left(re^{i\theta}\right) = \frac{1}{2\pi} \int_{-\pi}^{\pi} P_r\left(e^{i(\theta-t)}\right) u\left(e^{it}\right) dt$ . By Theorem §1.2.2, we have that  $\|U\| = \|u\|_p < +\infty$ . Hence  $U \in h^p\left(\mathbb{D}\right)$ .

Linearity is obvious. We need to check injectivity and surjectivity.

To check injectivity, let  $u \in L^p(\mathbb{T})$  and suppose that T(u) = P[u] = 0. Now  $\lim_{r\to 1} P[u] \left(re^{i\theta}\right) = u$  for almost  $\theta$  by Corollary §1.3.3 and hence u = 0 almost everywhere.

Surjectivity is clear from Theorem §1.2.5.

## $\S 1.4$ Hardy Spaces $-H^p$ spaces

Let us denote the set of all analytic functions on  $\mathbb{D}$  by  $H(\mathbb{D})$ . Hence,  $H(\mathbb{D}) \subset h(\mathbb{D})$ . For  $p \in (0, \infty]$ , we consider the *Hardy classes* of analytic functions on the unit disc

$$H^{p}(\mathbb{D}) = \left\{ F \in H(\mathbb{D}) \mid \|F\|_{p} < \infty \right\}$$

Clearly,

$$H^{p}\left(\mathbb{D}\right)\subset h^{p}\left(\mathbb{D}\right)$$

We will see that  $H^p(\mathbb{D})$ ,  $1 \leq p \leq +\infty$ , is also a Banach spaces isomorphic to a closed subspace of  $L^p(\mathbb{T})$  denotes by  $H^p(\mathbb{T})$ .

To prove that  $H^{p}(\mathbb{D})$  is a closed subspace of  $h^{p}(\mathbb{D})$ , we are going to identify  $H^{p}(\mathbb{D})$  with the closed subspace

$$\left\{ u \in L^{p}\left(\mathbb{T}\right) : \int_{-\pi}^{\pi} u\left(e^{it}\right) e^{ikt} = 0 \text{ for all } k \in \mathbb{N} \right\}$$

Let  $\{u_n\}$  be a sequence of functions in the above subspace; suppose that  $\{u_n\}$  converge to  $u \in L^p(\mathbb{T})$ . Now, let  $k \in \mathbb{N}$  be arbitrary. Since  $\{u_n\}$  converge to u in p-norm, we have that  $\{u_n\}$  converge to u in 1-norm. Hence we have the following:

$$\left| \int_{-\pi}^{\pi} u_n\left(e^{it}\right) e^{ikt} dt - \int_{-\pi}^{\pi} u\left(e^{it}\right) e^{ikt} dt \right| \leq \int_{-\pi}^{\pi} \left| u_n\left(e^{it}\right) - u\left(e^{it}\right) \right| dt$$

From the above inequality, it is evident that u is in the subspace mentioned above!

#### §1.4.1 Series Representation of Harmonic Functions

**Theorem §1.4.1.** Let U be a harmonic on the disc  $D_R = \{|z| < R\}$ . Then, for each  $n \in \mathbb{Z}$ , the quantity

$$a_n = \frac{\rho^{-|n|}}{2\pi} \int_{-\pi}^{\pi} U\left(\rho e^{it}\right) e^{-int} dt \qquad (0 < \rho < R)$$
 (§1.4.1)

is independent of  $\rho$  and we have

$$U\left(re^{i\theta}\right) = \sum_{n=-\infty}^{\infty} a_n r^{|n|} e^{in\theta} \qquad \left(re^{i\theta} \in \mathbb{D}\right) \tag{§1.4.2}$$

The function

$$V\left(re^{i\theta}\right) = \sum_{n=-\infty}^{\infty} -isgn\left(n\right)a_n r^{|n|} e^{in\theta} \qquad \left(re^{i\theta} \in \mathbb{D}\right)$$
 (§1.4.3)

is the unique harmonic conjugate of U such that V(0) = 0. The series in §1.4.2 and §1.4.3 are absolutely and uniformly convergent on compact subsets of  $D_R$ 

### §2.1 Brief Recap!

**Theorem §2.1.1.** Let  $u: \overline{\mathbb{D}} \to \mathbb{C}$  be a harmonic function. Then we have that

$$u\left(re^{i\theta}\right) = \frac{1}{2\pi} \int_{-\pi}^{\pi} u\left(e^{it}\right) P_r\left(e^{i(\theta-t)}\right)$$

### §2.2 The Helson-Lowdenslager Approach

Let  $\mathcal{C}\left(\overline{\mathbb{D}}\right)$  be the set of all continuous functions on  $\overline{\mathbb{D}}$  and let  $H\left(\mathbb{D}\right)$  be the set of all holomorphic functions on the open disc  $\mathbb{D}$ . We define  $\mathcal{A} = \mathcal{C}\left(\overline{\mathbb{D}}\right) \cap H\left(\mathbb{D}\right)$ .

We show that  $\mathcal{A}$  is an uniformly closed algebra of  $\mathcal{C}(\overline{\mathbb{D}})$ . Let  $\{f_n\}$  be a sequence in  $\mathcal{A}$  converging uniformly to  $f \in \mathcal{C}(\overline{\mathbb{D}})$ .

We recall Morera's Theorem for analytic functions at this point:

**Theorem §2.2.1** (Morera). A continuous, complex valued function  $f: D \to \mathbb{C}$  that satisfies  $\oint_{\gamma} f(z) dz = 0$  for any closed piecewise  $C^1$  path  $\gamma$  in D must be holomorphic on D.

We use this theorem to prove what we want to prove. Now, let C be any closed curve in  $\mathbb{D}$ . Then for any  $n \in \mathbb{N}$ ,

$$\oint_C f_n(z) \, dz = 0$$

So,

$$\oint_{C} f(z)dz = \oint_{C} \lim_{n \to \infty} f_{n}(z) dz = \lim_{n \to \infty} \oint_{C} f_{n}(z) dz = 0$$

Since C was arbitrary, f must be holomorphic. This shows that  $\mathcal{A}$  is uniformly closed. The fact that it is an algebra is easy to check  $\checkmark$ .

Now, note that since  $\mathbb{D}$  is a compact metric space, we have that  $\mathcal{C}(\mathbb{D})$  is a complete metric space with supremum metric. Since the supremum metric can also be induced by a norm, namely the supremum norm, we have that  $\mathcal{C}(\mathbb{D})$  is a Banach space with the supremum norm.

Thus, this is what we have proved so far:

**Theorem §2.2.2.** The disc algebra  $\mathcal{A} = \mathcal{C}\left(\overline{\mathbb{D}}\right) \cap H\left(\mathbb{D}\right)$  is a Banach space under the sup norm

$$||f||_{\infty} = \sup_{|z| \le 1} |f(z)|$$

We make a couple of observations at this point:

1. Each  $f \in \mathcal{A}$  is the Poisson integral of its boundary values:

$$f\left(re^{i\theta}\right) = \frac{1}{2\pi} \int_{-\pi}^{\pi} f\left(e^{it}\right) P_r\left(e^{i(\theta-t)}\right) dt$$

2. It follows from the Maximum Modulus Theorem that

$$||f||_{\infty} = \sup |f(e^{it})|$$

**Theorem §2.2.3** (Correspondence of  $\mathcal{A}$  with a closed subspace of  $\mathcal{C}(\mathbb{T})$ ). Consider the subspace

$$\tilde{\mathcal{A}} = \left\{ f \in \mathcal{C}\left(\mathbb{T}\right) : \int_{-\pi}^{\pi} f\left(e^{it}\right) e^{in\theta} \text{ for } n = 1, 2, \ldots \right\}$$

of  $\mathcal{C}(\mathbb{T})$ . Then there is an isomorphism of  $\mathcal{A}$  with  $\tilde{\mathcal{A}}$ .

*Proof.* First, we show that  $\tilde{\mathcal{A}}$  is a closed subspace of  $\mathcal{C}(\mathbb{T})$ . Let  $\{f_n\}$  be a sequence of functions in  $\tilde{\mathcal{A}}$  converging to  $f \in \mathcal{C}(\mathbb{T})$ . Consider the following:

$$\left| \int_{-\pi}^{\pi} f\left(e^{it}\right) e^{ikt} dt \right| = \left| \int_{-\pi}^{\pi} f\left(e^{it}\right) e^{ikt} dt - \int_{-\pi}^{\pi} f_n\left(e^{it}\right) e^{ikt} dt \right|$$
$$= \int_{-\pi}^{\pi} \left| f\left(e^{it}\right) - f_n\left(e^{it}\right) \right| dt$$
$$\leq 2\pi \left\| f_n - f \right\|_{\infty} \to 0 \text{ as } n \to \infty$$

This shows that  $\tilde{\mathcal{A}}$  is closed under  $\mathcal{C}\left(\mathbb{T}\right)$  with supremum norm.

Now consider the linear map  $T: \mathcal{A} \to \tilde{\mathcal{A}}$  given by

$$f \stackrel{T}{\longmapsto} f \mid_{\mathbb{T}}$$

For the sake of convenience, we will write  $f|_{\mathbb{T}}$  as  $f_{\mathbb{T}}$ . We first need to show this map is well defined! That is, we need to show that

$$\int_{-\pi}^{\pi} f_{\mathbb{T}}\left(e^{it}\right) e^{ikt} dt = 0$$

for all  $k \in \mathbb{N}$  but this immediately follows from Cauchy's theorem.

Note that injectivity is clear from Theorem §2.1.1. To show surjectivity, let  $f \in A$ . We need to show that there is a function  $u \in A$  such that  $u_{\mathbb{T}} = f$ . Consider the function

$$u\left(re^{i\theta}\right) = \begin{cases} (P*f)(re^{i\theta}) & \text{if } 0 \le r < 1\\ f\left(e^{i\theta}\right) & \text{if } r = 1 \end{cases}$$

This is the Dirichlet problem on the unit disc! So, u is continuous on  $\overline{\mathbb{D}}$ . It remains to show that u is analytic on  $\mathbb{D}$ . But note that for  $r \in [0,1)$ ,

$$u\left(re^{i\theta}\right) = \sum_{n=-\infty}^{\infty} r^{|n|} \hat{f}(n) e^{int}$$
$$= \sum_{n=0}^{\infty} r^{|n|} \hat{f}(n) e^{int}$$

This completes the proof of the theorem!

In view of the previous theorem, we will simply write  $\tilde{\mathcal{A}}$  as  $\mathcal{A}$ .

Theorem §2.2.4 (F and M. Riesz).

## §2.3 Szegö's Theorem