Folheações de codimensão um em característica positiva e aplicações

Wodson Mendson

IMPA

27 de janeiro de 2022

k = corpo algebricamente fechado de característica $p \geq 0$ (exemplo: $\mathbb{C}, \overline{\mathbb{F}}_p$)

k = corpo algebricamente fechado de característica $p \geq 0$ (exemplo: $\mathbb{C}, \overline{\mathbb{F}}_p$)

Definição

Seja X uma variedade algébrica não singular de dimensão pelo menos dois definida sobre k. Uma **folheação** \mathcal{F} **de codimensão um** em X consiste em um subfeixe coerente $T_{\mathcal{F}} \subset T_X$ de posto dim X-1 satisfazendo as seguintes propriedades:

- $T_{\mathcal{F}}$ é fechado por colchete de Lie,
- O quociente T_X/T_F é livre de torção, isto é, T_F é saturado em T_X .

k = corpo algebricamente fechado de característica $p \geq 0$ (exemplo: $\mathbb{C}, \overline{\mathbb{F}}_p$)

Definição

Seja X uma variedade algébrica não singular de dimensão pelo menos dois definida sobre k. Uma **folheação** \mathcal{F} **de codimensão um** em X consiste em um subfeixe coerente $T_{\mathcal{F}} \subset T_X$ de posto dim X-1 satisfazendo as seguintes propriedades:

- \bullet $T_{\mathcal{F}}$ é fechado por colchete de Lie,
- O quociente T_X/T_F é livre de torção, isto é, T_F é saturado em T_X .

O conjunto singular de $\mathcal F$ é definido pondo

$$\operatorname{sing}(\mathcal{F}) = \{x \in X \mid (T_X/T_{\mathcal{F}})_x \text{ não \'e um } \mathcal{O}_{X,x}\text{-m\'odulo livre}\}.$$

Seja \mathcal{F} uma folheação de codimensão um em X.

• Feixe normal de \mathcal{F} :

$$N_{\mathcal{F}} = (T_X/T_{\mathcal{F}})^{**}$$

• Feixe conormal de \mathcal{F} :

$$\Omega^1_{X/\mathcal{F}} = \{ \omega \in \Omega^1_{X/k} \mid i_v \omega = 0 \quad \forall v \in T_{\mathcal{F}} \} \cong N_{\mathcal{F}}^*$$

Seja \mathcal{F} uma folheação de codimensão um em X.

• Feixe normal de \mathcal{F} :

$$N_{\mathcal{F}} = (T_X/T_{\mathcal{F}})^{**}$$

• Feixe conormal de \mathcal{F} :

$$\Omega^1_{X/\mathcal{F}} = \{ \omega \in \Omega^1_{X/k} \mid i_v \omega = 0 \quad \forall v \in T_{\mathcal{F}} \} \cong N_{\mathcal{F}}^*$$

A inclusão de $N_{\mathcal{F}}^*$ em $\Omega^1_{X/k}$ determina uma seção global não nula $\omega \in \mathrm{H}^0(X,\Omega^1_{X/k}\otimes N_{\mathcal{F}})$ com zeros de codimensão pelo menos dois. Como $T_{\mathcal{F}}$ é estável por colchete de Lie temos que $\omega \wedge d\omega = 0$. Reciprocamente, se ω é uma seção global de $\Omega^1_{X/k}\otimes \mathcal{I}$ para algum feixe invertível \mathcal{I} , com zeros de codimensão pelo menos dois e integrável então obtemos um subfeixe saturado de T_X e fechado por colchete de Lie considerando o núcleo do mapa contração por ω

$$\gamma_{\omega}: T_X \longrightarrow \mathcal{I}$$

Folheações em variedades algébricas: definição II

Definição

Seja $\mathcal I$ um feixe invertível em X. Uma folheação de codimensão um em X com feixe normal $\mathcal I$ é determinada por uma seção global não nula $\omega \in \mathrm H^0(X,\Omega^1_{X/k}\otimes \mathcal I)$ satisfazendo as seguintes condições

- $\omega \wedge d\omega = 0$,
- $\operatorname{codim}\operatorname{sing}(\omega) \geq 2$.

Folheações em variedades algébricas: definição II

Definição

Seja \mathcal{I} um feixe invertível em X. Uma folheação de codimensão um em X com feixe normal \mathcal{I} é determinada por uma seção global não nula $\omega \in \mathrm{H}^0(X,\Omega^1_{X/k}\otimes \mathcal{I})$ satisfazendo as seguintes condições

- $\omega \wedge d\omega = 0$.
- $\operatorname{codim}\operatorname{sing}(\omega) > 2$.

Quando $X=\mathbb{P}^n_k$ as folheações de codimensão um em X admitem uma representação bem explícita. Dada uma tal folheação podemos associar grau.

Usando a sequência exata de Euler para espaços projetivos

$$0 \longrightarrow \Omega^1_{\mathbb{P}^n_k} \longrightarrow \mathcal{O}_{\mathbb{P}^n_k}(-1)^{n+1} \longrightarrow \mathcal{O}_{\mathbb{P}^n_k} \longrightarrow 0$$

percebe-se que uma folheação de codimensão um e gra
udem \mathbb{P}^n_k é determinada por uma 1-forma homogênea em
 \mathbb{A}^{n+1}_k

$$\sigma = A_0 dx_0 + \dots + A_n dx_n$$

Usando a sequência exata de Euler para espaços projetivos

$$0 \longrightarrow \Omega^1_{\mathbb{P}^n_k} \longrightarrow \mathcal{O}_{\mathbb{P}^n_k}(-1)^{n+1} \longrightarrow \mathcal{O}_{\mathbb{P}^n_k} \longrightarrow 0$$

percebe-se que uma folheação de codimensão um e gra
udem \mathbb{P}^n_k é determinada por uma 1-forma homogênea em
 \mathbb{A}^{n+1}_k

$$\sigma = A_0 dx_0 + \dots + A_n dx_n$$

onde $A_0 \dots, A_n \in \mathbf{k}[x_0, \dots, x_n]$ são polinômios homogêneos de grau d+1 e tal que $\mathrm{sing}(\sigma) = \mathcal{Z}(A_0 \dots, A_n)$ tem codimensão maior que um e com σ satisfazendo as seguintes condições

$$i_R \sigma = \sum_i A_i x_i = 0$$
 $\sigma \wedge d\sigma = 0.$

A condição de integrabilidade se traduz em uma serie de equações:

$$A_i \left(\frac{\partial A_l}{\partial x_j} - \frac{\partial A_j}{\partial x_l} \right) + A_j \left(\frac{\partial A_i}{\partial x_l} - \frac{\partial A_l}{\partial x_i} \right) + A_l \left(\frac{\partial A_j}{\partial x_i} - \frac{\partial A_i}{\partial x_j} \right) = 0$$

para $0 \le i < j < l \le n$.

A condição de integrabilidade se traduz em uma serie de equações:

$$A_i \left(\frac{\partial A_l}{\partial x_j} - \frac{\partial A_j}{\partial x_l} \right) + A_j \left(\frac{\partial A_i}{\partial x_l} - \frac{\partial A_l}{\partial x_i} \right) + A_l \left(\frac{\partial A_j}{\partial x_i} - \frac{\partial A_i}{\partial x_j} \right) = 0$$

para $0 \le i < j < l \le n$.

O espaço de folheações de codimensão um e grau $d \geq 0$ em $\mathbb{P}^{\rm n}_{\rm k}\ (n \geq 2)$ é denotado por

$$\mathbb{F}ol_{d}(\mathbb{P}^{n}_{k}) = \{ [\omega] \in \mathbb{P}(H^{0}(\mathbb{P}^{n}_{k}, \Omega^{1}_{\mathbb{P}^{n}_{k}} \otimes \mathcal{O}_{\mathbb{P}^{n}_{k}}(d+2))) \mid \omega \wedge d\omega = 0 \text{ e codim } sing(\omega) \geq 2 \}.$$

A condição de integrabilidade se traduz em uma serie de equações:

$$A_{i}\left(\frac{\partial A_{l}}{\partial x_{j}} - \frac{\partial A_{j}}{\partial x_{l}}\right) + A_{j}\left(\frac{\partial A_{i}}{\partial x_{l}} - \frac{\partial A_{l}}{\partial x_{i}}\right) + A_{l}\left(\frac{\partial A_{j}}{\partial x_{i}} - \frac{\partial A_{i}}{\partial x_{j}}\right) = 0$$

para $0 \le i < j < l \le n$.

O espaço de folheações de codimensão um e grau $d \geq 0$ em $\mathbb{P}^{\rm n}_{\rm k}\ (n \geq 2)$ é denotado por

$$\mathbb{F}ol_{d}(\mathbb{P}^{n}_{k}) = \{ [\omega] \in \mathbb{P}(H^{0}(\mathbb{P}^{n}_{k}, \Omega^{1}_{\mathbb{P}^{n}_{k}} \otimes \mathcal{O}_{\mathbb{P}^{n}_{k}}(d+2))) \mid \omega \wedge d\omega = 0 \text{ e codim } sing(\omega) \geq 2 \}.$$

Problema

Descrever as componentes irredutíveis de $\mathbb{F}ol_d(\mathbb{P}^n_{\mathbb{C}})$.

Novas componentes irredutíveis de $\mathbb{F}ol_d(\mathbb{P}^3_{\mathbb{C}})$

Nessa exposição, mostramos como usar folheações em característica positiva para exibir novas componentes irredutíveis de $\mathbb{F}ol_d(\mathbb{P}^3_{\mathbb{C}})$.

¹Codimension one foliations of degree three on projective spaces

Novas componentes irredutíveis de $\mathbb{F}\mathrm{ol}_{\mathrm{d}}(\mathbb{P}^3_{\mathbb{C}})$

Nessa exposição, mostramos como usar folheações em característica positiva para exibir novas componentes irredutíveis de $\mathbb{F}ol_d(\mathbb{P}^3_{\mathbb{C}})$.

Seja $\operatorname{Map}_1(\mathbb{P}^3_{\mathbb{C}}, \mathbb{P}^1_{\mathbb{C}} \times \mathbb{P}^1_{\mathbb{C}})$ a coleção de mapas racionais de $\mathbb{P}^3_{\mathbb{C}}$ em $\mathbb{P}^1_{\mathbb{C}} \times \mathbb{P}^1_{\mathbb{C}}$ de grau um.

¹Codimension one foliations of degree three on projective spaces

Novas componentes irredutíveis de $\mathbb{F}ol_d(\mathbb{P}^3_{\mathbb{C}})$

Nessa exposição, mostramos como usar folheações em característica positiva para exibir novas componentes irredutíveis de $\mathbb{F}ol_d(\mathbb{P}^3_{\mathbb{C}})$.

Seja $\operatorname{Map}_1(\mathbb{P}^3_{\mathbb{C}}, \mathbb{P}^1_{\mathbb{C}} \times \mathbb{P}^1_{\mathbb{C}})$ a coleção de mapas racionais de $\mathbb{P}^3_{\mathbb{C}}$ em $\mathbb{P}^1_{\mathbb{C}} \times \mathbb{P}^1_{\mathbb{C}}$ de grau um.

Dados $d_1, d_2 \in \mathbb{Z}_{\geq 0}$ seja $d = d_1 + d_2 + 2$ e considere o mapa racional

$$\begin{split} \Psi_{(d;d_1,d_2)}: \operatorname{Map}_1(\mathbb{P}^3_{\mathbb{C}},\mathbb{P}^1_{\mathbb{C}} \times \mathbb{P}^1_{\mathbb{C}}) \times \mathbb{F}ol_{(\mathbf{d}_1,\mathbf{d}_2)}(\mathbb{P}^1_{\mathbb{C}} \times \mathbb{P}^1_{\mathbb{C}}) -- &\to \mathbb{F}ol_{\mathbf{d}}(\mathbb{P}^3_{\mathbb{C}}) \\ (\Phi,\mathcal{G}) \longmapsto \Phi^*\mathcal{G} \end{split}$$

¹Codimension one foliations of degree three on projective spaces

Novas componentes irredutíveis de $\mathbb{F}ol_d(\mathbb{P}^3_{\mathbb{C}})$

Nessa exposição, mostramos como usar folheações em característica positiva para exibir novas componentes irredutíveis de $\mathbb{F}ol_d(\mathbb{P}^3_{\mathbb{C}})$.

Seja $\operatorname{Map}_1(\mathbb{P}^3_{\mathbb{C}}, \mathbb{P}^1_{\mathbb{C}} \times \mathbb{P}^1_{\mathbb{C}})$ a coleção de mapas racionais de $\mathbb{P}^3_{\mathbb{C}}$ em $\mathbb{P}^1_{\mathbb{C}} \times \mathbb{P}^1_{\mathbb{C}}$ de grau um.

Dados $d_1, d_2 \in \mathbb{Z}_{\geq 0}$ seja $d = d_1 + d_2 + 2$ e considere o mapa racional

$$\Psi_{(d;d_1,d_2)}: \operatorname{Map}_1(\mathbb{P}^3_{\mathbb{C}}, \mathbb{P}^1_{\mathbb{C}} \times \mathbb{P}^1_{\mathbb{C}}) \times \operatorname{Fol}_{(\operatorname{d}_1,\operatorname{d}_2)}(\mathbb{P}^1_{\mathbb{C}} \times \mathbb{P}^1_{\mathbb{C}}) -- \to \operatorname{Fol}_{\operatorname{d}}(\mathbb{P}^3_{\mathbb{C}})$$

$$(\Phi, \mathcal{G}) \longmapsto \Phi^* \mathcal{G}$$

Teorema A

Seja $C_{(d;d_1,d_2)}$ a imagem de $\Psi_{(d;d_1,d_2)}$. Então, $C_{(d;d_1,d_2)}$ é uma componente irredutível de \mathbb{F} old $(\mathbb{P}^3_{\mathbb{C}})$

¹Codimension one foliations of degree three on projective spaces

Novas componentes irredutíveis de $\mathbb{F}ol_{\mathbf{d}}(\mathbb{P}^3_{\mathbb{C}})$

Nessa exposição, mostramos como usar folheações em característica positiva para exibir novas componentes irredutíveis de $\mathbb{F}ol_d(\mathbb{P}^3_{\mathbb{C}})$.

Seja $\operatorname{Map}_1(\mathbb{P}^3_{\mathbb{C}}, \mathbb{P}^1_{\mathbb{C}} \times \mathbb{P}^1_{\mathbb{C}})$ a coleção de mapas racionais de $\mathbb{P}^3_{\mathbb{C}}$ em $\mathbb{P}^1_{\mathbb{C}} \times \mathbb{P}^1_{\mathbb{C}}$ de grau um.

Dados $d_1, d_2 \in \mathbb{Z}_{\geq 0}$ seja $d = d_1 + d_2 + 2$ e considere o mapa racional

$$\begin{split} \Psi_{(d;d_1,d_2)}: \operatorname{Map}_1(\mathbb{P}^3_{\mathbb{C}},\mathbb{P}^1_{\mathbb{C}} \times \mathbb{P}^1_{\mathbb{C}}) \times \mathbb{F}ol_{(\mathbf{d}_1,\mathbf{d}_2)}(\mathbb{P}^1_{\mathbb{C}} \times \mathbb{P}^1_{\mathbb{C}}) -- &\to \mathbb{F}ol_{\mathbf{d}}(\mathbb{P}^3_{\mathbb{C}}) \\ (\Phi,\mathcal{G}) \longmapsto \Phi^*\mathcal{G} \end{split}$$

Teorema A

Seja $C_{(d;d_1,d_2)}$ a imagem de $\Psi_{(d;d_1,d_2)}$. Então, $C_{(d;d_1,d_2)}$ é uma componente irredutível de $\operatorname{Fol}_{\mathbf{d}}(\mathbb{P}^3_{\mathbb{C}})$

O resultado generaliza uma componente encontrada em grau d=3 por R.C Costa, R. Lizarbe e J.V Pereira. ¹

¹Codimension one foliations of degree three on projective spaces

 $\mathbf{k} = \text{corpo}$ algebricamente fechado de caracterísica p > 0.

$$R=$$
k-domínio (exemplo: $R={\bf k}[x_1,...,x_n],{\bf k}[[x_1,\ldots,x_n]])$

 $\mathbf{k} = \text{corpo}$ algebricamente fechado de caracterísica p > 0.

$$R = \text{k-domínio (exemplo: } R = \text{k}[x_1, ..., x_n], \text{k}[[x_1, ..., x_n]])$$

Sejam v, v_1 e v_2 k-derivações de R. Então valem as seguintes propriedades

 \bullet O p-iterado de v , v^p , é uma k-derivação,

 $\mathbf{k} = \text{corpo}$ algebricamente fechado de caracterísica p > 0.

$$R=$$
k-domínio (exemplo: $R={\bf k}[x_1,...,x_n],{\bf k}[[x_1,\ldots,x_n]])$

Sejam v, v_1 e v_2 k-derivações de R. Então valem as seguintes propriedades

- \bullet O p-iterado de v, v^p , é uma k-derivação,
- Se v_1, v_2 são k-derivações de R então

$$(v_1 + v_2)^p = v_1^p + v_2^p + \sum_{i=1}^{p-1} s_i(v_1, v_2)$$

com $s_i(v_1, v_2)$ na álgebra de Lie gerada por v_1, v_2 ,

 $\mathbf{k} = \text{corpo}$ algebricamente fechado de caracterísica p > 0.

$$R = \text{k-domínio (exemplo: } R = \text{k}[x_1, ..., x_n], \text{k}[[x_1, ..., x_n]])$$

Sejam v, v_1 e v_2 k-derivações de R. Então valem as seguintes propriedades

- \bullet O p-iterado de v, v^p , é uma k-derivação,
- Se v_1, v_2 são k-derivações de R então

$$(v_1 + v_2)^p = v_1^p + v_2^p + \sum_{i=1}^{p-1} s_i(v_1, v_2)$$

com $s_i(v_1, v_2)$ na álgebra de Lie gerada por v_1, v_2 ,

• Para qualquer $f \in R$ temos

$$(fv)^p = f^p v^p + f v^{p-1}(f)v.$$

Folheações p-fechadas

Definição

Seja \mathcal{F} uma folheação em uma variedade algébrica não singular X definida sobre k. Dizemos que \mathcal{F} é p-fechada se $T_{\mathcal{F}}$ é estável por p-potências.

²Sur les hypersurfaces solutions des équations de Pfaff

Folheações p-fechadas

Definição

Seja \mathcal{F} uma folheação em uma variedade algébrica não singular X definida sobre k. Dizemos que \mathcal{F} é p-fechada se $T_{\mathcal{F}}$ é estável por p-potências.

As folheações p-fechadas são a versão em característica positiva das folheações holomorfas que admitem uma integral primeira meromorfa. Vale em particular o seguinte teorema.²

 $^{^2}$ Sur les hypersurfaces solutions des équations de Pfaff

Folheações p-fechadas

Definição

Seja \mathcal{F} uma folheação em uma variedade algébrica não singular X definida sobre k. Dizemos que \mathcal{F} é p-**fechada** se $T_{\mathcal{F}}$ é estável por p-potências.

As folheações p-fechadas são a versão em característica positiva das folheações holomorfas que admitem uma integral primeira meromorfa. Vale em particular o seguinte teorema.²

Teorema (Brunella-Nicolau)

Seja X uma variedade algébrica não singular definida sobre k e \mathcal{F} uma folheação de codimensão um. Então, \mathcal{F} é p-fechada se e só se existe uma infinidade de hipersuperfícies \mathcal{F} -invariantes.

²Sur les hypersurfaces solutions des équations de Pfaff

Por outro lado, cuidado!³

 $^{^3}$ Invariant hypersurfaces for positive characteristic vector fields

Folheações p-fechadas e não p-fechadas

Por outro lado, cuidado!³

Proposição (J.V.Pereira)

Seja \mathcal{F} uma folheação em \mathbb{P}^2_k e suponha que $\deg(\mathcal{F}) < p-1$. Então, \mathcal{F} admite uma curva algébrica F-invariante.

³Invariant hypersurfaces for positive characteristic vector fields

Por outro lado, cuidado!³

Proposição (J.V.Pereira)

Seja $\mathcal F$ uma folheação em $\mathbb P^2_k$ e suponha que $\deg(\mathcal F) < p-1$. Então, $\mathcal F$ admite uma curva algébrica $\mathcal F$ -invariante.

Exemplo

Sejam k um corpo algebricamente fechado de característica p>0 e \mathcal{F} a folheação em \mathbb{A}^2_k definida pela a 1-forma

$$\omega = ydx - \alpha xdy$$

para algum $\alpha \in k^*$. Então, \mathcal{F} é p-fechada se e somente se $\alpha \in \mathbb{F}_p$.

Note inicialmente que um campo v é tangente a \mathcal{F} se e somente se $v = g \cdot v_1$ para algum polinômio $g \in \mathbf{k}[x,y]$ onde $v_1 = \alpha x \partial_x + y \partial_y$. Agora, note que v_1 é tangente a folheação definida por ω e que $v_1^p = \alpha^p x \partial_x + y \partial_y$.

 $^{^3}$ Invariant hypersurfaces for positive characteristic vector fields

- \bullet k = corpo algebricamente fechado de caracterísit
cap>0
- R = k-domínio local regular que é localização de um k-domínio de tipo finito (exemplo: $\mathcal{O}_{X,x}$)
- $t_1, \ldots, t_r = \text{um sistema de parâmetros de } R$.

- \bullet k = corpo algebricamente fechado de caracterísit
cap>0
- R = k-domínio local regular que é localização de um k-domínio de tipo finito (exemplo: $\mathcal{O}_{X,x}$)
- $t_1, \ldots, t_r = \text{um sistema de parâmetros de } R$.

Do sistema de parâmetos obtemos $\{dt_1,\ldots,dt_r\}$ uma base para o módulo $\Omega^1_{R/k}$. Temos ainda que R é um R^p -módulo livre com base formada por todos os monômios da forma $t_1^{a_1}\cdots t_r^{a_r}$ com $0\leq a_i\leq p-1$ para todo i.

- \bullet k = corpo algebricamente fechado de caracterísit
cap>0
- R = k-domínio local regular que é localização de um k-domínio de tipo finito (exemplo: $\mathcal{O}_{X,x}$)
- $t_1, \ldots, t_r = \text{um sistema de parâmetros de } R$.

Do sistema de parâmetos obtemos $\{dt_1,\ldots,dt_r\}$ uma base para o módulo $\Omega^1_{R/k}$. Temos ainda que R é um R^p -módulo livre com base formada por todos os monômios da forma $t_1^{a_1}\cdots t_r^{a_r}$ com $0 \le a_i \le p-1$ para todo i.

• 1-formas fechadas:

$$Z_{R/k}^1 = \{ \omega \in \Omega_{R/k}^1 \mid d\omega = 0 \}$$

- \bullet k = corpo algebricamente fechado de caracterísit
cap>0
- R = k-domínio local regular que é localização de um k-domínio de tipo finito (exemplo: $\mathcal{O}_{X,x}$)
- $t_1, \ldots, t_r = \text{um sistema de parâmetros de } R$.

Do sistema de parâmetos obtemos $\{dt_1,\ldots,dt_r\}$ uma base para o módulo $\Omega^1_{R/k}$. Temos ainda que R é um R^p -módulo livre com base formada por todos os monômios da forma $t_1^{a_1}\cdots t_r^{a_r}$ com $0\leq a_i\leq p-1$ para todo i.

• 1-formas fechadas:

$$Z_{R/k}^1 = \{\omega \in \Omega_{R/k}^1 \mid d\omega = 0\}$$

• 1-formas exatas:

$$B^1_{R/k} = \{ \omega \in \Omega^1_{R/k} \mid \omega = dg \}$$

- \bullet k = corpo algebricamente fechado de caracterísit
cap>0
- R=k-domínio local regular que é localização de um k-domínio de tipo finito (exemplo: $\mathcal{O}_{X,x}$)
- $t_1, \ldots, t_r = \text{um sistema de parâmetros de } R$.

Do sistema de parâmetos obtemos $\{dt_1,\ldots,dt_r\}$ uma base para o módulo $\Omega^1_{R/k}$. Temos ainda que R é um R^p -módulo livre com base formada por todos os monômios da forma $t_1^{a_1}\cdots t_r^{a_r}$ com $0 \le a_i \le p-1$ para todo i.

• 1-formas fechadas:

$$Z_{R/k}^1 = \{ \omega \in \Omega_{R/k}^1 \mid d\omega = 0 \}$$

• 1-formas exatas:

$$B^1_{R/k} = \{ \omega \in \Omega^1_{R/k} \mid \omega = dg \}$$

• Obstrução:

$$H_{R/k}^1 = Z_{R/k}^1 / B_{R/k}^1$$

Considere o R^p -módulo

$$M(t_1,\ldots,t_r)=R^pt_1^{p-1}dt_1\oplus\cdots\oplus R^pt_r^{p-1}dt_r$$

Proposição

Todo elemento de $Z_{R/k}^1$ se escreve de modo único como $\sigma = \sigma_1 + \sigma_2$ com $\sigma_1 \in B_{R/k}^1$ e $\sigma_2 \in M(t_1, \dots, t_r)$.

Considere o R^p -módulo

$$M(t_1,\ldots,t_r) = R^p t_1^{p-1} dt_1 \oplus \cdots \oplus R^p t_r^{p-1} dt_r$$

Proposição

Todo elemento de $Z_{R/k}^1$ se escreve de modo único como $\sigma = \sigma_1 + \sigma_2$ com $\sigma_1 \in B_{R/k}^1$ e $\sigma_2 \in M(t_1, \ldots, t_r)$.

O Operador de Cartier é o mapa

$$\mathbf{C} \colon Z^1_{R/k} \longrightarrow \Omega^1_{R/k}$$
$$dg + \sum_{i=1}^r u_i^p t_i^{p-1} dt_i \mapsto \sum_{i=1}^r u_i dt_i$$

Fórmula fundamental

O **Operador de Cartier** pode ser definido de maneira mais explícita considerando inversa do isomorfismo⁴

$$\gamma \colon \Omega^1_{R/\,\mathbf{k}} \longrightarrow Z^1_{R/\,\mathbf{k}} \longrightarrow H^1_{R/\,\mathbf{k}}$$
$$adt \mapsto a^p t^{p-1} dt \mapsto [a^p t^{p-1} dt].$$

 $^{^4}$ 1.3.4 Theorem em Frobenius splitting methods in geometry and representation theory

Fórmula fundamental

O **Operador de Cartier** pode ser definido de maneira mais explícita considerando inversa do isomorfismo 4

$$\gamma \colon \Omega^1_{R/\,\mathbf{k}} \longrightarrow Z^1_{R/\,\mathbf{k}} \longrightarrow H^1_{R/\,\mathbf{k}}$$
$$adt \mapsto a^p t^{p-1} dt \mapsto [a^p t^{p-1} dt].$$

Teorema

Seja $\omega \in \Omega^1_{R/k}$ uma 1-forma fechada e $v \in \mathrm{Der}_k(R)$ uma derivação. Então,

$$i_v \mathbf{C}(\omega)^p = i_{v^p}\omega - v^{p-1}(i_v\omega).$$

 $^{^4}$ 1.3.4 Theorem em Frobenius splitting methods in geometry and representation theory

Proposição

^a Seja X uma variedade algébrica não singular sobre definida sobre k e denote por $\mathcal{Z}^1_{X/k}$ o subfeixe de $\Omega^1_{X/k}$ formado pelas 1-formas fechadas. Existe um operador, chamado o **Operador de Cartier**, $C: \mathcal{Z}^1_{X/k} \longrightarrow \Omega^1_{X/k}$ unicamente determinado pelas seguintes propriedades:

Proposição

^a Seja X uma variedade algébrica não singular sobre definida sobre k e denote por $\mathcal{Z}^1_{X/k}$ o subfeixe de $\Omega^1_{X/k}$ formado pelas 1-formas fechadas. Existe um operador, chamado o **Operador de Cartier**, $C: \mathcal{Z}^1_{X/k} \longrightarrow \Omega^1_{X/k}$ unicamente determinado pelas sequintes propriedades:

Proposição

^a Seja X uma variedade algébrica não singular sobre definida sobre k e denote por $\mathcal{Z}_{X/k}^1$ o subfeixe de $\Omega_{X/k}^1$ formado pelas 1-formas fechadas.

Existe um operador, chamado o **Operador de Cartier**, $C: \mathcal{Z}^1_{X/k} \longrightarrow \Omega^1_{X/k}$ unicamente determinado pelas sequintes propriedades:

$$\mathbf{0} \quad \mathbf{C}(f^p \sigma_1) = f \ \mathbf{C}(\sigma_1),$$

Proposição

^a Seja X uma variedade algébrica não singular sobre definida sobre k e denote por $\mathcal{Z}^1_{X/k}$ o subfeixe de $\Omega^1_{X/k}$ formado pelas 1-formas fechadas.

Existe um operador, chamado o **Operador de Cartier**, $C: \mathbb{Z}^1_{X/k} \longrightarrow \Omega^1_{X/k}$ unicamente determinado pelas sequintes propriedades:

$$\bullet$$ $C(df) = 0,$

Proposição

^a Seja X uma variedade algébrica não singular sobre definida sobre k e denote por $\mathcal{Z}_{X/k}^1$ o subfeixe de $\Omega_{X/k}^1$ formado pelas 1-formas fechadas.

Existe um operador, chamado o **Operador de Cartier**, $C: \mathcal{Z}^1_{X/k} \longrightarrow \Omega^1_{X/k}$ unicamente determinado pelas sequintes propriedades:

$$\mathbf{0} \quad \mathbf{C}(f^p \sigma_1) = f \ \mathbf{C}(\sigma_1),$$

$$\bullet$$ $C(df) = 0,$

$$C(f^{p-1}df) = df,$$

Proposição

^a Seja X uma variedade algébrica não singular sobre definida sobre k e denote por $\mathcal{Z}^1_{X/k}$ o subfeixe de $\Omega^1_{X/k}$ formado pelas 1-formas fechadas.

Existe um operador, chamado o **Operador de Cartier**, $C: \mathbb{Z}^1_{X/k} \longrightarrow \Omega^1_{X/k}$ unicamente determinado pelas sequintes propriedades:

$$\mathbf{0} \quad \mathbf{C}(f^p \sigma_1) = f \ \mathbf{C}(\sigma_1),$$

$$\bullet$$ $C(df) = 0.$

$$C(f^{p-1}df) = df,$$

para quaisquer seções locais $f \in \mathcal{O}_X$, $\sigma_1, \sigma_2 \in \mathcal{Z}^1_{X/k}$.

^aSeshadri, L'opération de Cartier

Folheações não p-fechadas e a p-distribuição associada

- $\bullet~X=$ variedade algébrica não singular de dimensão pelo menos dois definida sobre k
- ullet $\mathcal{F}=$ folheação de codimensão um não p-fechada em X

Folheações não p-fechadas e a p-distribuição associada

- $\bullet~X=$ variedade algébrica não singular de dimensão pelo menos dois definida sobre k
- \bullet $\mathcal{F}=$ folheação de codimensão um não p-fechadaem X

Teorema (D. Cerveau, A. Lins Neto, F. Loray, J.V. Pereira, F. Touzet)

Seja X uma variedade algébrica não singular definida sobre k e ω uma 1-forma racional. Suponha que ω é integrável e que v é um campo racional tal que $i_v\omega=0$. Se $f=i_{v_n}\omega\neq 0$ então $d(f^{p-1}\omega)=0$.

^aComplex codimension one singular foliations and Godbillon-Vey sequences

Folheações não p-fechadas e a p-distribuição associada

- \bullet X= variedade algébrica não singular de dimensão pelo menos dois definida sobre k
- $\mathcal{F} =$ folheação de codimensão um não p-fechada em X

Teorema (D. Cerveau, A. Lins Neto, F. Loray, J.V. Pereira, F. Touzet)

Seja X uma variedade algébrica não singular definida sobre $k e \omega$ uma 1-forma racional. Suponha que ω é integrável e que v é um campo racional tal que $i_v\omega = 0$. Se $f = i_{v_v}\omega \neq 0$ então $d(f^{p-1}\omega) = 0$.

^aComplex codimension one singular foliations and Godbillon-Vey sequences

Seja ω uma 1-forma fechada definindo \mathcal{F} . Considere o subfeixe $T_{\mathcal{C}_{\mathcal{T}}}$ de $T_{\mathcal{F}}$ definido pondo

$$T_{\mathcal{C}_{\mathcal{F}}} = \{ v \in T_{\mathcal{F}} \mid i_v \mathbf{C}(\omega) = 0 \}$$
 (1)

onde C é o Operador de Cartier.

Folheações p-fechadas e não p-fechada Operador de Cartier p-distribuição e p-divisor p-divisor em superfícies

Morfismo p-curvatura

Pelas propriedades do Operador de Cartier segue que $T_{\mathcal{C}_{\mathcal{F}}}$ independe da escolha da 1-forma fechada definindo \mathcal{F} e é um subfeixe saturado em T_X .

Folheações p-fechadas e não p-fechada Operador de Cartier p-distribuição e p-divisor p-divisor em superfícies

Morfismo p-curvatura

Pelas propriedades do Operador de Cartier segue que $T_{\mathcal{C}_{\mathcal{F}}}$ independe da escolha da 1-forma fechada definindo \mathcal{F} e é um subfeixe saturado em T_X .

Definição

Seja $\mathcal F$ uma folheação de codimensão um não p-fechada em X. A p-distribuição associada a $\mathcal F$ é a distribuição definida pelo feixe $T_{\mathcal C_{\mathcal F}}$ e será chamada de p-distribuição associada a $\mathcal F$.

Morfismo p-curvatura

Pelas propriedades do Operador de Cartier segue que $T_{\mathcal{C}_{\mathcal{F}}}$ independe da escolha da 1-forma fechada definindo \mathcal{F} e é um subfeixe saturado em T_X .

Definição

Seja \mathcal{F} uma folheação de codimensão um não p-fechada em X. A p-distribuição associada a \mathcal{F} é a distribuição definida pelo feixe $T_{\mathcal{C}_{\mathcal{F}}}$ e será chamada de p-distribuição associada a \mathcal{F} .

Exemplo

A fórmula fundamental implica que se dim X=2 então $T_{\mathcal{C}_{\mathcal{F}}}$ é o feixe nulo. De fato, dado $v \in T_{\mathcal{F}}$ temos que $0 \neq i_{v^p}\omega = i_v C(\omega)^p$.

Morfismo p-curvatura

Pelas propriedades do Operador de Cartier segue que $T_{\mathcal{C}_{\mathcal{F}}}$ independe da escolha da 1-forma fechada definindo \mathcal{F} e é um subfeixe saturado em T_X .

Definição

Seja \mathcal{F} uma folheação de codimensão um não p-fechada em X. A p-distribuição associada a \mathcal{F} é a distribuição definida pelo feixe $T_{\mathcal{C}_{\mathcal{F}}}$ e será chamada de p-distribuição associada a \mathcal{F} .

Exemplo

A fórmula fundamental implica que se dim X=2 então $T_{\mathcal{C}_{\mathcal{F}}}$ é o feixe nulo. De fato, dado $v \in T_{\mathcal{F}}$ temos que $0 \neq i_{v^p}\omega = i_v \ \textit{\textbf{C}}(\omega)^p$.

Considere o seguinte morfismo de feixes de conjuntos

$$\psi_{\mathcal{F}} \colon T_{\mathcal{F}} \longrightarrow \frac{T_X}{T_{\mathcal{F}}}$$

que associa $v \text{ em } v^p \mod T_{\mathcal{F}}$.

Folheações p-fechadas e não p-fechad Operador de Cartier p-distribuição e p-divisor p-divisor em superfícies

Morfismo p-curvatura e Frobenius

As propriedades de derivações em característica positiva implicam que $\psi_{\mathcal{F}}$ é de fato um morfismo de feixes de grupos.

Morfismo p-curvatura e Frobenius

As propriedades de derivações em característica positiva implicam que $\psi_{\mathcal{F}}$ é de fato um morfismo de feixes de grupos.

Definição

O morfismo p-curvatura associado a \mathcal{F} é o mapa de \mathcal{O}_X -módulos:

$$\varphi_{\mathcal{F}} \colon F_X^* T_{\mathcal{F}} \longrightarrow N_{\mathcal{F}}$$
$$\sum_i f_i \otimes v_i \mapsto \sum_i f_i v_i^p.$$

Morfismo p-curvatura e Frobenius

As propriedades de derivações em característica positiva implicam que $\psi_{\mathcal{F}}$ é de fato um morfismo de feixes de grupos.

Definição

O morfismo p-curvatura associado a \mathcal{F} é o mapa de \mathcal{O}_X -módulos:

$$\varphi_{\mathcal{F}} \colon F_X^* T_{\mathcal{F}} \longrightarrow N_{\mathcal{F}}$$
$$\sum_i f_i \otimes v_i \mapsto \sum_i f_i v_i^p.$$

Nas condições acima, a folheação \mathcal{F} é p-fechada se e somente se $\varphi_{\mathcal{F}} \equiv 0$.

Morfismo p-curvatura e Frobenius

As propriedades de derivações em característica positiva implicam que $\psi_{\mathcal{F}}$ é de fato um morfismo de feixes de grupos.

Definição

O morfismo p-curvatura associado a \mathcal{F} é o mapa de \mathcal{O}_X -módulos:

$$\varphi_{\mathcal{F}} \colon F_X^* T_{\mathcal{F}} \longrightarrow N_{\mathcal{F}}$$
$$\sum_i f_i \otimes v_i \mapsto \sum_i f_i v_i^p.$$

Nas condições acima, a folheação \mathcal{F} é p-fechada se e somente se $\varphi_{\mathcal{F}} \equiv 0$.

Lembrar: O morfismo **Frobenius absoluto**, denotado por F_X , consiste no morfismo que é identidade a nível de espaços topológicos e a nível de funções é o morfismo de anéis p-potência

$$F_X = (f, f^{\#}) : (X, \mathcal{O}_X) \longrightarrow (X, \mathcal{O}_X)$$

onde $f = id e f^{\#} : a \mapsto a^{p}$.

Morfismo p-curvatura

Considere o morfismo p-curvatura

$$\varphi_{\mathcal{F}} \colon F_X^* T_{\mathcal{F}} \longrightarrow N_{\mathcal{F}}$$
$$\sum_i f_i \otimes v_i \mapsto \sum_i f_i v_i^p.$$

Morfismo p-curvatura

Considere o morfismo p-curvatura

$$\varphi_{\mathcal{F}} \colon F_X^* T_{\mathcal{F}} \longrightarrow N_{\mathcal{F}}$$
$$\sum_i f_i \otimes v_i \mapsto \sum_i f_i v_i^p.$$

Proposição

Temos $\operatorname{Ker}(\varphi_{\mathcal{F}}) = F_X^* T_{\mathcal{C}_{\mathcal{F}}}$ onde F_X é o mapa Frobenius absoluto e existe um divisor efetivo $\Delta_{\mathcal{F}} \in \operatorname{Div}(X)$ tal que a sequencia

$$0 \longrightarrow F_X^* T_{\mathcal{C}_{\mathcal{F}}} \longrightarrow F_X^* T_{\mathcal{F}} \longrightarrow N_{\mathcal{F}} \otimes_{\mathcal{O}_X} \mathcal{O}_X(-\Delta_{\mathcal{F}}) \longrightarrow 0$$

é exata em codimensão um, isto é, fora de um conjunto fechado de codimensão ≥ 2 .

Folheações p-fechadas e não p-fechada Operador de Cartier p-distribuição e p-divisor p-divisor em superfícies

Folheações não p-fechadas: p-distribuição e p-divisor

Definição

Seja \mathcal{F} uma folheação não p-fechada em X. A p-distribuição associada a \mathcal{F} é o subfeixe de T_X definido por $T_{C_{\mathcal{F}}}$. O p-divisor de \mathcal{F} é o divisor $\Delta_{\mathcal{F}}$.

Uma propriedade interessante do p-divisor está contida na seguinte proposição.

Proposição

Seja X uma variedade não singular sobre k e \mathcal{F} uma folheação em X não p-fechada. Seja H uma hipersuperfície irredutível em X. Se H é \mathcal{F} -invariante então $\operatorname{ord}_H(\Delta_{\mathcal{F}}) > 0$. Reciprocamente, se $\operatorname{ord}_H(\Delta_{\mathcal{F}}) \not\equiv 0$ mod p então H é \mathcal{F} -invariante.

Folheações p-fechadas e não p-fechada Operador de Cartier p-distribuição e p-divisor p-divisor em superfícies

Consequências

Proposição

Seja $\mathcal F$ uma folheação de codimensão um em uma variedade projetiva não singular X de dimensão pelo menos dois e definida sobre k. Suponha que $\mathcal F$ seja não p-fechada. Então, a identidade

$$\mathcal{O}_X(\Delta_{\mathcal{F}}) = \omega_{\mathcal{F}}^{\otimes p} \otimes (\omega_{\mathcal{C}_{\mathcal{F}}}^*)^{\otimes p} \otimes N_{\mathcal{F}}$$

vale em Pic(X).

Consequências

Proposição

Seja $\mathcal F$ uma folheação de codimensão um em uma variedade projetiva não singular X de dimensão pelo menos dois e definida sobre k. Suponha que $\mathcal F$ seja não p-fechada. Então, a identidade

$$\mathcal{O}_X(\Delta_{\mathcal{F}}) = \omega_{\mathcal{F}}^{\otimes p} \otimes (\omega_{\mathcal{C}_{\mathcal{F}}}^*)^{\otimes p} \otimes N_{\mathcal{F}}$$

vale em Pic(X).

Quando $X=\mathbb{P}^n_k$ a proposição acima implica que dada $\mathcal F$ uma folheação de codimensão um não p-fechada e de grau d em \mathbb{P}^n_k temos a seguinte **fórmula do grau:**

$$\deg(\Delta_{\mathcal{F}}) = p(d - \deg(\mathcal{C}_{\mathcal{F}}) - 1) + d + 2 \tag{2}$$

Folheações p-fechadas e não p-fechada:
Operador de Cartier
p-distribuição e p-divisor
p-divisor on superfícios

p-divisor e propriedades

Proposição

Seja \mathcal{F} uma folheação de codimensão um em \mathbb{P}_k^n tal que $p \nmid \deg(N_{\mathcal{F}})$. Então, \mathcal{F} admite uma hipersuperfície invariante.

p-divisor e propriedades

Proposição

Seja \mathcal{F} uma folheação de codimensão um em \mathbb{P}_k^n tal que $p \nmid \deg(N_{\mathcal{F}})$. Então, \mathcal{F} admite uma hipersuperfície invariante.

Demonstração.

Seja ω a 1-forma projetiva definindo a folheação \mathcal{F} . Se \mathcal{F} é p-fechada então \mathcal{F} admite de fato uma infinidade de soluções. Assim, podemos supor que \mathcal{F} é não p-fechada. Como $p \nmid \deg(N_{\mathcal{F}})$ segue da fórmula do grau que $\deg(\Delta_{\mathcal{F}}) \not\equiv 0 \mod p$. Em particular, $\Delta_{\mathcal{F}}$ não é um p-fator e assim existe um polinômio irredutível Q ocorrendo em $\Delta_{\mathcal{F}}$ com $\deg(Q) \not\equiv 0 \mod p$. Tal fator, define uma hipersuperfície \mathcal{F} -invariante.

p-distribuição e p-divisor

p-divisor e propriedades: exemplo

Exemplo

Seja \mathcal{F} uma folheação não dicrítica em $\mathbb{P}^2_{\mathbb{C}}$ definida por uma 1-forma projetiva

$$\Omega = Adx + Bdy + Cdz.$$

Suponha que $A, B, C \in \mathbb{Z}[x, y, z]_{d+1}$ e seja $p\mathbb{Z} \in Spm(\mathbb{Z})$ ideal maximal tal que $p \nmid d+2$. Seja \mathcal{F}_p a folheação em $\mathbb{P}^2_{\overline{\mathbb{R}}_-}$ obtida por redução módulo $p\mathbb{Z}$ de Ω . Se $\Delta_{\mathcal{F}_n}$ é irredutível então \mathcal{F} não admite soluções algébricas.

⁵The Poincaré problem in the nondicritical case

p-divisor e propriedades: exemplo

Exemplo

Seja $\mathcal F$ uma folheação não dicrítica em $\mathbb P^2_{\mathbb C}$ definida por uma 1-forma projetiva

$$\Omega = Adx + Bdy + Cdz.$$

Suponha que $A, B, C \in \mathbb{Z}[x, y, z]_{d+1}$ e seja $p\mathbb{Z} \in Spm(\mathbb{Z})$ ideal maximal tal que $p \nmid d+2$. Seja \mathcal{F}_p a folheação em $\mathbb{P}^2_{\overline{\mathbb{F}}_p}$ obtida por redução módulo $p\mathbb{Z}$ de Ω . Se $\Delta_{\mathcal{F}_p}$ é irredutível então \mathcal{F} não admite soluções algébricas.

Isso pode ser usado para dar uma simples prova do Teorema de Jouanolou que diz que muitas folheações no pano complexo de grau $d \in \{2,3\}$ não possuem soluções algébricas. O ponto crucial aqui é uma cota para o grau de soluções algébricas fornecina por Carnicer.⁵

 $^{^{5}}$ The Poincaré problem in the nondicritical case

Exemplo: Folheações em superfícies e o p-divisor

Seja X uma superfície projetiva não singular definida sobre k. Dar uma folheação em X equivale a dar um sistema $\{(U_i, \omega_i, v_i)\}_{i \in I}$ tal que:

- $\{U_i\}_{i\in I}$ é uma cobertura aberta de X.
- Para cada $i \in I$ temos $v_i \in T_X(U_i)$, $\omega_i \in \Omega^1_{X/k}(U_i)$ tais que $i_{v_i}\omega_i = 0$.
- Em $U_i \cap U_j$ temos $\omega_i = f_{ij}\omega_j$ e $v_i = g_{ij}v_j$ para algums funções $f_{ij}, g_{ij} \in \mathcal{O}_X^*(U_{ij})$.
- Para cada $i \in I$ temos $\operatorname{codim}(\omega_i) \geq 2$ e $\operatorname{codim}(v_i) \geq 2$.

Exemplo: Folheações em superfícies e o p-divisor

Seja X uma superfície projetiva não singular definida sobre k. Dar uma folheação em X equivale a dar um sistema $\{(U_i, \omega_i, v_i)\}_{i \in I}$ tal que:

- $\{U_i\}_{i\in I}$ é uma cobertura aberta de X.
- Para cada $i \in I$ temos $v_i \in T_X(U_i)$, $\omega_i \in \Omega^1_{X/k}(U_i)$ tais que $i_{v_i}\omega_i = 0$.
- Em $U_i \cap U_j$ temos $\omega_i = f_{ij}\omega_j$ e $v_i = g_{ij}v_j$ para algums funções $f_{ij}, g_{ij} \in \mathcal{O}_X^*(U_{ij})$.
- Para cada $i \in I$ temos $\operatorname{codim}(\omega_i) \geq 2$ e $\operatorname{codim}(v_i) \geq 2$.

As coleções $\{f_{ij}^{-1}\}, \{g_{ij}\}$ determinam elementos de $H^1(X, \mathcal{O}_X^*) = \operatorname{Pic}(X)$ e os fibrados lineares associados são os fibrado conormal $\Omega^1_{X/\mathcal{F}}$ e fibrado cotangente $\Omega^1_{\mathcal{F}}$ associados a \mathcal{F} . Um divisor na classe linear correspondente a $\Omega^1_{\mathcal{F}}$ é chamado de **divisor canônico** de \mathcal{F} e denotado por $K_{\mathcal{F}}$.

Construção explícita do p-divisor

Seja $\mathcal{F} = \{(U_i, \omega_i, v_i)\}$ uma folheação em X que não é p-fechada. Em cada U_{ij} temos relações:

$$\omega_i = f_{ij}\omega_j \qquad v_i = g_{ij}v_j.$$

Como estamos assumindo que \mathcal{F} é não p-fechada, temos para cada $i, j \in I$,

$$0 \neq i_{v_i^p} \omega_i = i_{(g_{ij}v_j)^p} f_{ij} \omega_j = i_{(g_{ij}^p v_j^p + g_{ij}v_j^p - 1(g_{ij}^{p-1})v_j)} f_{ij} \omega_j = g_{ij}^p f_{ij} i_{v_j^p} \omega_j \neq 0.$$

A coleção $\{i_{v_i^p}\omega_i\}_{i\in I}$ determina uma seção $0\neq s_{\mathcal{F}}\in \mathrm{H}^0(X,(\Omega^1_{\mathcal{F}})^{\otimes p}\otimes N_{\mathcal{F}}).$

Observação

O p-divisor associado a $\mathcal F$ é o divisor de zeros da seção $s_{\mathcal F}$:

$$\Delta_{\mathcal{F}} = (s_{\mathcal{F}})_0 \in \operatorname{Div}(X).$$

Folheações p-fechadas e não p-fechada: Operador de Cartier p-distribuição e p-divisor p-divisor em superfícies

p-divisorem $\mathbb{P}^2_{\mathbf{k}}$ e em $\mathbb{P}^1_{\mathbf{k}}\times\mathbb{P}^1_{\mathbf{k}}$

Problema

Seja X uma superfície algébrica não singular. O que podemos dizer sobre $\Delta_{\mathcal{F}}$ para uma folheação genérica \mathcal{F} ?

Folheações p-fechadas e não p-fechada Operador de Cartier p-distribuição e p-divisor p-divisor em superfícies

Problema

Seja X uma superfície algébrica não singular. O que podemos dizer sobre $\Delta_{\mathcal{F}}$ para uma folheação genérica \mathcal{F} ?

Por exemplo, será que muitas folheações em $\mathbb{P}^2_{\mathbf{k}}$ possuem p-divisor reduzido? Irredutível?

p-divisor em \mathbb{P}^2_k e em $\mathbb{P}^1_k \times \mathbb{P}^1_k$

Problema

Seja X uma superfície algébrica não singular. O que podemos dizer sobre $\Delta_{\mathcal{F}}$ para uma folheação genérica \mathcal{F} ?

Por exemplo, será que muitas folheações em $\mathbb{P}^2_{\mathbf{k}}$ possuem p-divisor reduzido? Irredutível?

Nessa direção, temos os seguintes resultados.

Teorema

Sejam $d_1, d_2 \in \mathbb{Z}_{\geq 0}$ tais que $p \nmid d$ e $p \nmid d_i$, se $d_i \neq 0$. Então,

Folheações p-fechadas e não p-fechada Operador de Cartier p-distribuição e p-divisor p-divisor em superfícies

p-divisor em \mathbb{P}^2_k e em $\mathbb{P}^1_k \times \mathbb{P}^1_k$

Problema

Seja X uma superfície algébrica não singular. O que podemos dizer sobre $\Delta_{\mathcal{F}}$ para uma folheação genérica \mathcal{F} ?

Por exemplo, será que muitas folheações em $\mathbb{P}^2_{\mathbf{k}}$ possuem p-divisor reduzido? Irredutível?

Nessa direção, temos os seguintes resultados.

Teorema

Sejam $d_1, d_2 \in \mathbb{Z}_{\geq 0}$ tais que $p \nmid d$ e $p \nmid d_i$, se $d_i \neq 0$. Então,

• Uma folheação genérica em \mathbb{P}^2_k de grau $d \ge 1$ tem p-divisor reduzido, e

p-divisor em \mathbb{P}^2_k e em $\mathbb{P}^1_k \times \mathbb{P}^1_k$

Problema

Seja X uma superfície algébrica não singular. O que podemos dizer sobre $\Delta_{\mathcal{F}}$ para uma folheação genérica \mathcal{F} ?

Por exemplo, será que muitas folheações em $\mathbb{P}^2_{\mathbf{k}}$ possuem p-divisor reduzido? Irredutível?

Nessa direção, temos os seguintes resultados.

Teorema

Sejam $d_1, d_2 \in \mathbb{Z}_{>0}$ tais que $p \nmid d$ e $p \nmid d_i$, se $d_i \neq 0$. Então,

- Uma folheação genérica em \mathbb{P}^2_k de grau $d \geq 1$ tem p-divisor reduzido, e
- Uma folheação genérica em P_k¹ × P_k¹ com divisor canônico
 K ≡ d₁F + d₂M possui p-divisor não nulo e reduzido.

Folheações p-fechadas e não p-fechada Operador de Cartier p-distribuição e p-divisor p-divisor em superfícies

Folheações de tipo (d_1, d_2) em $\mathbb{P}^1_{\mathbf{k}} \times \mathbb{P}^1_{\mathbf{k}}$

Uma folheação em $\mathbb{P}^1_{\mathbf{k}} \times \mathbb{P}^1_{\mathbf{k}}$ será dita **de tipo** (d_1, d_2) se possui divisor canônico de bigrau (d_1, d_2) . Os possíveis tipo estão contidos na região:⁶

$$S_0 = \{ (d_1, d_2) \in \mathbb{Z}^2 \mid d_1, d_2 \ge 0 \} \cup \{ (-2, 0) \} \cup \{ (0, -2) \}.$$

 $^{^6\}mathrm{Xavier}$ Gómes-Mont, Holomorphic foliations in ruled surfaces

Folheações de dimensão um e grau um p-fechadas

$$\mathbb{V}ec_d(\mathbb{A}_k^{n+1}) = \{[v] \in \mathbb{P}(\mathfrak{X}_d(\mathbb{A}_k^{n+1})) \mid \operatorname{div}(v) = 0\} \subset \mathbb{P}(\mathfrak{X}_d(\mathbb{A}_k^{n+1}))$$

Folheações de dimensão um e grau um p-fechadas

$$\mathbb{V}ec_d(\mathbb{A}^{n+1}_k) = \{[v] \in \mathbb{P}(\mathfrak{X}_d(\mathbb{A}^{n+1}_k)) \mid \operatorname{div}(v) = 0\} \subset \mathbb{P}(\mathfrak{X}_d(\mathbb{A}^{n+1}_k))$$

Para cada $\alpha = [\alpha_0 : \cdots : \alpha_n] \in \mathbb{P}^n_k$ tal que $\sum_i \alpha_i = 0$ denote por $\mathcal{F}(\alpha)$ a folheação de dimensão um e grau um em \mathbb{P}^n_k determinada pelo campo $v(\alpha) = \sum_{i=0}^n \alpha_i x_i \partial_{x_i}$ e considere a seguinte subvariedade de $\mathbb{V}ec_1(\mathbb{A}^{n+1}_k)$:

$$V(\alpha) = \overline{\{\mathcal{F} \in \mathbb{V}ec_1(\mathbb{A}^{n+1}_k) \mid \mathcal{F} \text{ \'e conjugada via } \operatorname{Aut}(\mathbb{P}^n_k) \text{ a } \mathcal{F}(\alpha_0, \dots, \alpha_n)\}}.$$

Folheações de dimensão um e grau um p-fechadas

$$\mathbb{V}ec_d(\mathbb{A}^{n+1}_k) = \{[v] \in \mathbb{P}(\mathfrak{X}_d(\mathbb{A}^{n+1}_k)) \mid \operatorname{div}(v) = 0\} \subset \mathbb{P}(\mathfrak{X}_d(\mathbb{A}^{n+1}_k))$$

Para cada $\alpha = [\alpha_0 : \cdots : \alpha_n] \in \mathbb{P}^n_k$ tal que $\sum_i \alpha_i = 0$ denote por $\mathcal{F}(\alpha)$ a folheação de dimensão um e grau um em \mathbb{P}^n_k determinada pelo campo $v(\alpha) = \sum_{i=0}^n \alpha_i x_i \partial_{x_i}$ e considere a seguinte subvariedade de $\mathbb{V}ec_1(\mathbb{A}^{n+1}_k)$:

$$V(\alpha) = \overline{\{\mathcal{F} \in \mathbb{V}ec_1(\mathbb{A}_k^{n+1}) \mid \mathcal{F} \text{ \'e conjugada via } \operatorname{Aut}(\mathbb{P}_k^n) \text{ a } \mathcal{F}(\alpha_0, \dots, \alpha_n)\}}.$$

Teorema

Suponha que p não divide n+1 e denote por $\mathbb{V}ec_{1,0}(\mathbb{A}_k^{n+1})$ o fechado que consiste das folheações p-fechadas. Se $\alpha = [\alpha_0 : \cdots : \alpha_n] \in \mathbb{P}_k^n(\mathbb{F}_p)$ e $\sum_i \alpha_i = 0$ então $V(\alpha)$ é uma componente irredutível de $\mathbb{V}ec_{1,0}(\mathbb{A}_k^{n+1})$. Além disso, toda componente irredutível de tal espaço é dessa forma.

Agumas consequências

• Denote por i(n, p) o número de componentes irredutíves de $\mathbb{V}ec_{1,0}(\mathbb{A}_{k}^{n+1})$. Então,

$$p^{n-1}/(n-1)! \le i(n,p) \le p^n$$

Agumas consequências

• Denote por i(n,p) o número de componentes irredutíves de $\mathbb{V}ec_{1,0}(\mathbb{A}^{n+1}_k)$. Então,

$$p^{n-1}/(n-1)! \le i(n,p) \le p^n$$

• Seja \mathcal{C} uma folheação de dimensão um e grau um em \mathbb{P}^3_k . Suponha que \mathcal{C} seja p-fechada e seja $\{\mathcal{C}_t\}_{t\in T}$ uma família de folheações p-fechadas com $\mathcal{C}_0 = \mathcal{C}$ para algum ponto fechado $0 \in T$. Se \mathcal{C} é definida pela mapa racional

$$\Phi \colon \mathbb{P}^3_k \longrightarrow \mathbb{P}^1_k \times \mathbb{P}^1_k$$
$$[x_0 : x_1 : y_0 : y_1] \mapsto ([x_0 : x_1], [y_0 : y_1])$$

então existe um aberto U sobre 0 tal que para todo $t \in U$ temos que \mathcal{C}_t é definida por um mapa racional $\Phi_t : \mathbb{P}^3_k \to \mathbb{P}^1_k \times \mathbb{P}^1_k$ de grau um com $\Phi_0 = \Phi$.

Para demonstração do teorema principal é necessário um estudo sobre o comportamento do p-divisor em vizinhanças.

Para demonstração do teorema principal é necessário um estudo sobre o comportamento do p-divisor em vizinhanças.

Teorema

Seja $\mathcal F$ uma folheação de codimensão um e grau d em $\mathbb P^3_k$ e suponha que

- \mathcal{F} é não p-fechada com p-divisor **reduzido**.
- A p-folheação $C_{\mathcal{F}}$ tem grau $e \in \mathbb{Z}_{>0}$.

Para demonstração do teorema principal é necessário um estudo sobre o comportamento do p-divisor em vizinhanças.

Teorema

Seja $\mathcal F$ uma folheação de codimensão um e grau d em $\mathbb P^3_k$ e suponha que

- \mathcal{F} é não p-fechada com p-divisor **reduzido**.
- A p-folheação $C_{\mathcal{F}}$ tem grau $e \in \mathbb{Z}_{\geq 0}$.

Então, existe um aberto $U_{\mathcal{F}}$ do espaço de folheações de codimensão um e grau d em \mathbb{P}^3_k que contem \mathcal{F} tal que para qualquer folheação $\mathcal{F}^{'} \in U_{\mathcal{F}}$ temos

A prova consiste em reduzir a um problema de polinômios. É consequência da propriedade de invariância do p-divisor e da seguinte proposição.

A prova consiste em reduzir a um problema de polinômios. É consequência da propriedade de invariância do p-divisor e da seguinte proposição.

Proposição

Sejam $d \in \mathbb{Z}_{>0}$ e k um corpo de característica p > 0. Considere $\mathbb{P}_k^{M_d}$ o espaço projetivo nas variáveis: x_0, x_1, x_2, x_3 . Seja $G \in \mathbb{k}[x_0, x_1, x_2, x_3]_d$ um polinômio homogêneo de grau d tal que $G = FE^p$ com F livre de quadrados. Então, existe um aberto em torno de [G] tal que para qualquer $[\tilde{G}] \in U_G$ temos que $\tilde{G} = \tilde{F}\tilde{E}^p$ com \tilde{F} livre de p-potências com $\deg(\tilde{F}) \geq \deg(F)$.

Novas componentes irredutíveis de $\mathbb{F}ol_{\mathbf{d}}(\mathbb{P}^3_k)$

- k = corpo de característica p > d + 2.
- $\mathbb{F}ol_{(d_1,d_2)}(\mathbb{P}^1_k \times \mathbb{P}^1_k) = \text{espaço parametrizando as folheações em } \mathbb{P}^1_k \times \mathbb{P}^1_k \text{ com divisor canônico de tipo } (d_1,d_2).$
- $\mathrm{Map}_1(\mathbb{P}^3_k,\mathbb{P}^1_k\times\mathbb{P}^1_k)=\mathrm{cole}$ ção de mapas racionais de grau um.

Novas componentes irredutíveis de $\mathbb{F}ol_{\mathbf{d}}(\mathbb{P}^3_{\mathbf{k}})$

- k = corpo de característica p > d + 2.
- $\mathbb{F}ol_{(d_1,d_2)}(\mathbb{P}^1_k \times \mathbb{P}^1_k) = \text{espaço parametrizando as folheações em } \mathbb{P}^1_k \times \mathbb{P}^1_k \text{ com divisor canônico de tipo } (d_1,d_2).$
- $\operatorname{Map}_1(\mathbb{P}^3_k, \mathbb{P}^1_k \times \mathbb{P}^1_k) = \operatorname{coleção}$ de mapas racionais de grau um.

Sejam $d_1, d_2 \in \mathbb{Z}_{>0}$ e $d = d_1 + d_2 + 2$ e considere o mapa racional

$$\begin{split} \Psi_{(d;d_1,d_2)}: \operatorname{Map}_1(\mathbb{P}^3_k,\mathbb{P}^1_k \times \mathbb{P}^1_k) \times \mathbb{F}ol_{(d_1,d_2)}(\mathbb{P}^1_k \times \mathbb{P}^1_k) - &\longrightarrow \mathbb{F}ol_d(\mathbb{P}^3_k) \\ (\Phi,\mathcal{G}) &\longmapsto \Phi^*\mathcal{G}. \end{split}$$

Novas componentes irredutíveis de $\mathbb{F}ol_{\mathbf{d}}(\mathbb{P}^3_{\mathbf{k}})$

- k = corpo de característica p > d + 2.
- $\mathbb{F}ol_{(d_1,d_2)}(\mathbb{P}^1_k \times \mathbb{P}^1_k) = \text{espaço parametrizando as folheações em } \mathbb{P}^1_k \times \mathbb{P}^1_k \text{ com divisor canônico de tipo } (d_1,d_2).$
- $\operatorname{Map}_1(\mathbb{P}^3_k, \mathbb{P}^1_k \times \mathbb{P}^1_k) = \operatorname{coleção}$ de mapas racionais de grau um.

Sejam $d_1, d_2 \in \mathbb{Z}_{>0}$ e $d = d_1 + d_2 + 2$ e considere o mapa racional

$$\begin{split} \Psi_{(d;d_1,d_2)}: \operatorname{Map}_1(\mathbb{P}^3_k,\mathbb{P}^1_k \times \mathbb{P}^1_k) \times \mathbb{F}ol_{(d_1,d_2)}(\mathbb{P}^1_k \times \mathbb{P}^1_k) - & \longrightarrow \mathbb{F}ol_d(\mathbb{P}^3_k) \\ (\Phi,\mathcal{G}) & \longmapsto \Phi^*\mathcal{G}. \end{split}$$

Teorema B

Seja $X_{(d;d_1,d_2)}$ o fecho de Zariski da imagem de $\Psi_{(d;d_1,d_2)}$. Então, $X_{(d;d_1,d_2)}$ é uma componente irredutível de $\mathbb{F}ol_d(\mathbb{P}^3_k)$.

Passo 1: Seja \mathcal{F} uma folheação de grau $d \geq 3$ em \mathbb{P}^3_k e suponha que

- $\mathcal{F} = \Phi^* \mathcal{G}$ para alguma folheação \mathcal{G} de tipo (d_1, d_2) em $\mathbb{P}^1_k \times \mathbb{P}^1_k$,
- \bullet ${\mathcal G}$ não p-fechadae com $\Delta_{\mathcal G}$ reduzido.

Passo 1: Seja \mathcal{F} uma folheação de grau $d \geq 3$ em \mathbb{P}^3_k e suponha que

- $\mathcal{F} = \Phi^* \mathcal{G}$ para alguma folheação \mathcal{G} de tipo (d_1, d_2) em $\mathbb{P}^1_k \times \mathbb{P}^1_k$,
- \mathcal{G} não p-fechada e com $\Delta_{\mathcal{G}}$ reduzido.

Passo 2: Note que \mathcal{F} é não p-fechada e temos que $\Delta_{\mathcal{F}} = \Phi^* \Delta_{\mathcal{G}}$ (comparação de graus). Seja T uma componente irredutível de \mathbb{F} old(\mathbb{P}^3_k) contendo a imagem de $\Psi_{(d;d_1,d_2)}$ e $\{\mathcal{F}_t\}_{t\in T}$ a família parametrizada por T com $\mathcal{F}_0 = \mathcal{F}$.

Passo 1: Seja \mathcal{F} uma folheação de grau $d \geq 3$ em \mathbb{P}^3_k e suponha que

- $\mathcal{F} = \Phi^* \mathcal{G}$ para alguma folheação \mathcal{G} de tipo (d_1, d_2) em $\mathbb{P}^1_k \times \mathbb{P}^1_k$,
- \mathcal{G} não p-fechada e com $\Delta_{\mathcal{G}}$ reduzido.

Passo 2: Note que \mathcal{F} é não p-fechada e temos que $\Delta_{\mathcal{F}} = \Phi^* \Delta_{\mathcal{G}}$ (comparação de graus). Seja T uma componente irredutível de \mathbb{F} old(\mathbb{P}^3_k) contendo a imagem de $\Psi_{(d;d_1,d_2)}$ e $\{\mathcal{F}_t\}_{t\in T}$ a família parametrizada por T com $\mathcal{F}_0 = \mathcal{F}$.

Passo 3: Seja U um aberto de T contendo 0 tal que para todo $t \in U$ temos \mathcal{F}_t não p-fechada. Nesse caso, para todo $t \in U$ temos a p-folheação associada: $\{\mathcal{C}_{\mathcal{F}_t}\}_{t \in U}$. O comportamento do grau do p-divisor em vizinhanças implica que reduzindo U, podemos supor $\deg(\mathcal{C}_{\mathcal{F}_t}) \leq 1$ para $t \in U$.

Passo 1: Seja \mathcal{F} uma folheação de grau $d \geq 3$ em \mathbb{P}^3_k e suponha que

- $\mathcal{F} = \Phi^* \mathcal{G}$ para alguma folheação \mathcal{G} de tipo (d_1, d_2) em $\mathbb{P}^1_k \times \mathbb{P}^1_k$,
- \bullet ${\mathcal G}$ não p-fechadae com $\Delta_{\mathcal G}$ reduzido.

Passo 2: Note que \mathcal{F} é não p-fechada e temos que $\Delta_{\mathcal{F}} = \Phi^* \Delta_{\mathcal{G}}$ (comparação de graus). Seja T uma componente irredutível de \mathbb{F} old(\mathbb{P}^3_k) contendo a imagem de $\Psi_{(d;d_1,d_2)}$ e $\{\mathcal{F}_t\}_{t\in T}$ a família parametrizada por T com $\mathcal{F}_0 = \mathcal{F}$.

Passo 3: Seja U um aberto de T contendo 0 tal que para todo $t \in U$ temos \mathcal{F}_t não p-fechada. Nesse caso, para todo $t \in U$ temos a p-folheação associada: $\{\mathcal{C}_{\mathcal{F}_t}\}_{t \in U}$. O comportamento do grau do p-divisor em vizinhanças implica que reduzindo U, podemos supor $\deg(\mathcal{C}_{\mathcal{F}_t}) \leq 1$ para $t \in U$.

Passo 4: Uma comparação de graus mostra que \mathcal{F} não está na componente das folheações que são pullbacks lineares de folheações em \mathbb{P}^2_k . Reduzindo a um aberto V em torno de 0 podemos supor que $\deg(\mathcal{C}_{\mathcal{F}_t})=1$ em V.

Passo 5: Como $\deg(\mathcal{F}_t) > 2$ podemos supor que $\mathcal{C}_{\mathcal{F}_t}$ não é p-fechada. Caso contrário, existiria um campo homogêneo v_t de grau um tangente a \mathcal{F}_t tal que $v_t \wedge v_t^p$ é não nulo e que define \mathcal{F}_t , o que é uma contradição por comparação de graus.

Passo 5: Como $\deg(\mathcal{F}_t) > 2$ podemos supor que $\mathcal{C}_{\mathcal{F}_t}$ não é p-fechada. Caso contrário, existiria um campo homogêneo v_t de grau um tangente a \mathcal{F}_t tal que $v_t \wedge v_t^p$ é não nulo e que define \mathcal{F}_t , o que é uma contradição por comparação de graus.

Passo 6: Por um lema técnico, garantimos que \mathcal{F}_t é um pullback por uma aplicação racional de grau um de uma folheação de tipo (d_1, d_2) em $\mathbb{P}^1_k \times \mathbb{P}^1_k$.

Passo 5: Como $\deg(\mathcal{F}_t) > 2$ podemos supor que $\mathcal{C}_{\mathcal{F}_t}$ não é p-fechada. Caso contrário, existiria um campo homogêneo v_t de grau um tangente a \mathcal{F}_t tal que $v_t \wedge v_t^p$ é não nulo e que define \mathcal{F}_t , o que é uma contradição por comparação de graus.

Passo 6: Por um lema técnico, garantimos que \mathcal{F}_t é um pullback por uma aplicação racional de grau um de uma folheação de tipo (d_1, d_2) em $\mathbb{P}^1_k \times \mathbb{P}^1_k$.

Passo 7: As considerações acima mostram que existe um aberto $U_{\mathcal{F}}$ no espaço das folheações de codimensão um e grau d em \mathbb{P}^n_k contendo \mathcal{F} que admite a seguinte propriedade:

• Para toda folheação $\tilde{\mathcal{F}} \in U_{\mathcal{F}}$ temos que $\tilde{\mathcal{F}} = \gamma^* \tilde{\mathcal{G}}$ para alguma $\tilde{\mathcal{G}} \in \mathbb{F}ol_{(\mathbf{d}_1, \mathbf{d}_2)}(\mathbb{P}^1_k \times \mathbb{P}^1_k)$ e $\gamma \in \mathrm{Map}_1(\mathbb{P}^3_k, \mathbb{P}^1_k \times \mathbb{P}^1_k)$.

Logo, $U_{\mathcal{F}} \subset X_{(d;d_1,d_2)}$ e por passagem ao fecho de Zariski concluímos $T = X_{(d;d_1,d_2)}.$

Redução módulo p

- $X = \mathcal{Z}(F_0, \dots, F_r) \subset \mathbb{P}^M_{\mathbb{C}}$.
- $R = \mathbb{Z}$ -álgebra finitamente gerada obtida por adjunção de todos os coeficientes que ocorrem em F_0, \ldots, F_r .

Para cada ideal maximal $\mathfrak{p} \in \mathbf{Spm}(R)$ de R temos que o corpo $k(\mathfrak{p}) = R/\mathfrak{p}$ é finito, em particular, de característica p > 0.

Redução módulo p

- $X = \mathcal{Z}(F_0, \dots, F_r) \subset \mathbb{P}^M_{\mathbb{C}}$.
- $R = \mathbb{Z}$ -álgebra finitamente gerada obtida por adjunção de todos os coeficientes que ocorrem em F_0, \ldots, F_r .

Para cada ideal maximal $\mathfrak{p} \in \mathbf{Spm}(R)$ de R temos que o corpo $k(\mathfrak{p}) = R/\mathfrak{p}$ é finito, em particular, de característica p > 0.

Proposição (Bertini-Noether)

Sejam $\mathfrak{p} \in Spm(R)$ um ideal maximal de R e considere $X_{\mathfrak{p}}$ a variedade definida sobre $\overline{k}(\mathfrak{p})$ obtida por redução módulo \mathfrak{p} dos polinômios F_0, \ldots, F_r . Então, $X_{\mathfrak{p}}$ é irredutível e dim $X = \dim X_{\mathfrak{p}}$ para quase todo ideal maximal de R, isto é, para todo ideal maximal de R fora de conjunto fechado próprio $E \subset Spm(R)$.

Componentes irredutíveis e redução módulo p

Sejam X uma variedade projetiva em $\mathbb{P}^M_{\mathbb{C}}$ dada por polinômios $F_0, \ldots, F_r \in \mathbb{C}[x_0, \ldots, x_M]$ e $Y \subset X$ um fechado irredutível dado por polinômios $H_0, \ldots, H_k \in \mathbb{C}[x_0, \ldots, x_M]$. Seja Z uma componente irredutível de X contendo Y e suponha que esteja dada por polinômios G_0, \ldots, G_l . Denote por R a \mathbb{Z} -álgebra finitamente gerada obtida por adjunção de todos os coeficientes que ocorrem nos polinômios $F_0, \ldots, F_r, G_0, \ldots, G_l, H_0, \ldots, H_k$.

Componentes irredutíveis e redução módulo p

Sejam X uma variedade projetiva em $\mathbb{P}^M_{\mathbb{C}}$ dada por polinômios $F_0, \ldots, F_r \in \mathbb{C}[x_0, \ldots, x_M]$ e $Y \subset X$ um fechado irredutível dado por polinômios $H_0, \ldots, H_k \in \mathbb{C}[x_0, \ldots, x_M]$. Seja Z uma componente irredutível de X contendo Y e suponha que esteja dada por polinômios G_0, \ldots, G_l . Denote por R a \mathbb{Z} -álgebra finitamente gerada obtida por adjunção de todos os coeficientes que ocorrem nos polinômios $F_0, \ldots, F_r, G_0, \ldots, G_l, H_0, \ldots, H_k$.

Corolário

Suponha que exista um conjunto denso S de Spm(R) tal que $Y_{\mathfrak{p}} = Z_{\mathfrak{p}}$ para todo ideal $\mathfrak{p} \in S$. Então, Y = Z e assim Y é uma componente irredutível de X.

Novas componentes irredutíveis de $\mathbb{F}\mathrm{ol}_{\mathrm{d}}(\mathbb{P}^3_{\mathbb{C}})$

Considere o mapa racional

$$\Psi_{(d;d_1,d_2)} \colon \operatorname{Map}_1(\mathbb{P}^3_{\mathbb{C}},\mathbb{P}^1_{\mathbb{C}} \times \mathbb{P}^1_{\mathbb{C}}) \times \operatorname{\mathbb{F}ol}_{(d_1,d_2)}(\mathbb{P}^1_{\mathbb{C}} \times \mathbb{P}^1_{\mathbb{C}}) - - \longrightarrow \operatorname{\mathbb{F}ol}_{d}(\mathbb{P}^3_{\mathbb{C}})$$

$$(\Phi,\mathcal{G}) \mapsto \Phi^*\mathcal{G}.$$

Novas componentes irredutíveis de $\mathbb{F}\mathrm{ol}_{\mathrm{d}}(\mathbb{P}^3_{\mathbb{C}})$

Considere o mapa racional

$$\begin{split} \Psi_{(d;d_1,d_2)} \colon \operatorname{Map}_1(\mathbb{P}^3_{\mathbb{C}},\mathbb{P}^1_{\mathbb{C}} \times \mathbb{P}^1_{\mathbb{C}}) \times \mathbb{F}ol_{(\operatorname{d}_1,\operatorname{d}_2)}(\mathbb{P}^1_{\mathbb{C}} \times \mathbb{P}^1_{\mathbb{C}}) - -- &\to \operatorname{Fol}_{\operatorname{d}}(\mathbb{P}^3_{\mathbb{C}}) \\ (\Phi,\mathcal{G}) \mapsto \Phi^*\mathcal{G}. \end{split}$$

Teorema A

Seja $C_{(d;d_1,d_2)}$ o fecho de Zariski da imagem $\Psi_{(d;d_1,d_2)}$. Então, $C_{(d;d_1,d_2)}$ é uma componente irredutível de $\operatorname{Fol_d}(\mathbb{P}^3_{\mathbb{C}})$.

Sabemos que o enunciado análogo sobre característica p>d+2 é verdadeiro.

Sabemos que o enunciado análogo sobre característica p>d+2 é verdadeiro. Sejam Z uma componente irredutível de $\mathbb{F}\mathrm{ol}_{\mathrm{d}}(\mathbb{P}^{3}_{\mathbb{C}})$ contendo $C_{(d;d_{1},d_{2})}$ e $\{E_{0},\ldots,E_{h}\}$ a união da coleção de polinômios a coeficientes em \mathbb{C} que descrevem as variedades: $Z,C_{(d;d_{1},d_{2})}$ e $\mathbb{F}\mathrm{ol}_{\mathrm{d}}(\mathbb{P}^{3}_{\mathbb{C}})$.

Sabemos que o enunciado análogo sobre característica p>d+2 é verdadeiro. Sejam Z uma componente irredutível de $\mathbb{F}\mathrm{ol}_d(\mathbb{P}^3_{\mathbb{C}})$ contendo $C_{(d;d_1,d_2)}$ e $\{E_0,\ldots,E_h\}$ a união da coleção de polinômios a coeficientes em \mathbb{C} que descrevem as variedades: $Z,C_{(d;d_1,d_2)}$ e $\mathbb{F}\mathrm{ol}_d(\mathbb{P}^3_{\mathbb{C}})$. Seja R a \mathbb{Z} -álgebra obtida por adjunção de todos os coeficientes que ocorrem em E_0,\ldots,E_h e T o conjunto fechado em $\mathbf{Spm}(R)$ dado por $\cup_{j=2}^{d+2}V(jR)\subset\mathbf{Spm}(R)$. O Teorema B (componente em característica positiva) garante que para todo ideal maximal $\mathfrak{p}\in\mathbf{Spm}(R)-T$ temos que $C_{(d;d_1,d_2),\mathfrak{p}}=Z_{\mathfrak{p}}$.

Sabemos que o enunciado análogo sobre característica p>d+2 é verdadeiro. Sejam Z uma componente irredutível de $\mathbb{F}\mathrm{ol}_d(\mathbb{P}^3_{\mathbb{C}})$ contendo $C_{(d;d_1,d_2)}$ e $\{E_0,\ldots,E_h\}$ a união da coleção de polinômios a coeficientes em \mathbb{C} que descrevem as variedades: $Z,C_{(d;d_1,d_2)}$ e $\mathbb{F}\mathrm{ol}_d(\mathbb{P}^3_{\mathbb{C}})$. Seja R a \mathbb{Z} -álgebra obtida por adjunção de todos os coeficientes que ocorrem em E_0,\ldots,E_h e T o conjunto fechado em $\mathbf{Spm}(R)$ dado por $\cup_{j=2}^{d+2}V(jR)\subset\mathbf{Spm}(R)$. O Teorema B (componente em característica positiva) garante que para todo ideal maximal $\mathfrak{p}\in\mathbf{Spm}(R)-T$ temos que $C_{(d;d_1,d_2),\mathfrak{p}}=Z_{\mathfrak{p}}$. Pelo corolário anterior temos que $Z=C_{(d;d_1,d_2)}$ é uma componente irredutível de $\mathbb{F}\mathrm{ol}_d(\mathbb{P}^3_{\mathbb{C}})$, o que encerra a demonstração.

Sabemos que o enunciado análogo sobre característica p>d+2 é verdadeiro. Sejam Z uma componente irredutível de $\mathbb{F}\mathrm{ol}_{d}(\mathbb{P}^{3}_{\mathbb{C}})$ contendo $C_{(d;d_{1},d_{2})}$ e $\{E_{0},\ldots,E_{h}\}$ a união da coleção de polinômios a coeficientes em \mathbb{C} que descrevem as variedades: $Z,C_{(d;d_{1},d_{2})}$ e $\mathbb{F}\mathrm{ol}_{d}(\mathbb{P}^{3}_{\mathbb{C}})$. Seja R a \mathbb{Z} -álgebra obtida por adjunção de todos os coeficientes que ocorrem em E_{0},\ldots,E_{h} e T o conjunto fechado em $\mathbf{Spm}(R)$ dado por $\cup_{j=2}^{d+2}V(jR)\subset\mathbf{Spm}(R)$. O Teorema B (componente em característica positiva) garante que para todo ideal maximal $\mathfrak{p}\in\mathbf{Spm}(R)-T$ temos que $C_{(d;d_{1},d_{2}),\mathfrak{p}}=Z_{\mathfrak{p}}$. Pelo corolário anterior temos que $Z=C_{(d;d_{1},d_{2})}$ é uma componente irredutível de $\mathbb{F}\mathrm{ol}_{d}(\mathbb{P}^{3}_{\mathbb{C}})$, o que encerra a demonstração.

Corolário

O espaço de folheações holomorfas de codimensão um e grau d em $\mathbb{P}^3_{\mathbb{C}}$ possui pelo menos $\left\lfloor \frac{d-1}{2} \right\rfloor$ componentes irredutíveis distintas com elemento genérico não admitindo um fator de integração polinomial.

Folheações em caracterísica positiva Folheações p-fechadas de dimensão um e grau um em $\mathbb{P}^n_{\mathbb{C}}$ Novas componentes irredutíveis de Fol $_{\mathbb{C}}$ ($\mathbb{P}^n_{\mathbb{C}}$)

Obrigado:)

