

#### PSYCH 201B

#### Statistical Intuitions for Social Scientists

# Modeling data VI

You can download these slides: course website > Week 7 > Overview

#### Today's Plan:

Part 1 (together)

Part 2 (notebooks on your own)

## Announcements

### Announcements

- 1. All notebooks from this week 1-7 due Friday
- 2. Final Project
  - Feb 24 Proposal template provided
  - Mar 12 Proposal due (meet with us before this!)
  - Mar 20 Final due (propose early, finish early!)
  - 3. HW 3 will be posted tonight

due before lab Feb 25th (next Tues)

## Today's Plan

- 1. First Half (together)
  - Treatment coding review
  - Treatment with 3 levels
- 2. Second Half (on your own)
  - Notebooks 4, 5, 6, 7
  - Look at previous notebook solutions if you haven't

How does the GLM see categorical variables?

We encode levels of a categorical variable using numbers

### How does the GLM see categorical variables?

We encode levels of a categorical variable using numbers

We represent *k levels* of a categorical variable with *k-1 parameters* using one of many possible **coding schemes** 

- Reference level is coded as 0, and other level is coded as 1
- Intercept = reference (mean); Slope(s) = mean difference from reference
- ullet Default when using C() in statsmodels and lm() in R



Data

Design Matrix

```
# Treat "Student" as a categorical variable
a_model = ols('Balance ~ C(Student)', data=df.to_pandas())
```



```
# Treat "Student" as a categorical variable
a_model = ols('Balance ~ C(Student)', data=df.to_pandas())
```



#### Linear model of mean difference aka "independent t-test"



- Reference level is coded as 0, and other level is coded as 1
- Intercept = reference (mean); Slope(s) = mean difference from reference
- Default when using C() in statsmodels and lm() in R

# Categorical predictors (3+ levels)

### **New Dataset**

#### **Abstract**

Adopting a quasi-experimental approach, the present study examined the extent to which the influence of poker playing skill was more important than card distribution. Three average players and three experts sat down at a six-player table and played **60 computer-based** hands of the poker variant "Texas Hold'em" for money. In each hand, one of the average players and one expert received (a) better-than-average cards (winner's box), (b) average cards (neutral box) and (c) worse-than-average cards (loser's box). The standardized manipulation of the card distribution controlled the factor of chance to determine differences in performance between the average and expert groups. Overall, 150 individuals participated in a "fixed-limit" game variant, and 150 individuals participated in a "no-limit" game variant.



During the game, one expert player and one average player received

- (a) the winning hand 15 times and the losing hand 5 times (winner's box condition)
- (b) the winning hand 10 times and the losing hand 10 times (neutral box condition)
- (c) the winning hand 5 times and the losing hand 15 times (loser's box condition)

#### Dataset

| skill  | hand    | limit | balance |
|--------|---------|-------|---------|
| expert | bad     | fixed | 4.00    |
| expert | bad     | fixed | 5.55    |
| expert | bad     | none  | 5.52    |
| expert | bad     | none  | 8.28    |
| expert | neutral | fixed | 11.74   |
| expert | neutral | fixed | 10.04   |
| expert | neutral | none  | 21.55   |
| expert | neutral | none  | 3.12    |
| expert | good    | fixed | 10.86   |
| expert | good    | fixed | 8.68    |

skill = expert/average

hand = bad/neutral/good

limit = fixed/none

**balance** = final balance in Euros

2 (skill)  $\times$  3 (hand)  $\times$  2 (limit) design

25 participants per condition

n = 300

Meyer, G., von Meduna, M., Brosowski, T., & Hayer, T. (2012). Is poker a game of skill or chance? A quasi-experimental study. *Journal of Gambling Studies* 

# Do better hands win more money?

| 1           |        |         |       |         |
|-------------|--------|---------|-------|---------|
| participant | skill  | hand    | limit | balance |
| 1           | expert | bad     | fixed | 4.00    |
| 2           | expert | bad     | fixed | 5.55    |
| 26          | expert | bad     | none  | 5.52    |
| 27          | expert | bad     | none  | 8.28    |
| 51          | expert | neutral | fixed | 11.74   |
| 52          | expert | neutral | fixed | 10.04   |
| 76          | expert | neutral | none  | 21.55   |
| 77          | expert | neutral | none  | 3.12    |
| 101         | expert | good    | fixed | 10.86   |
| 102         | expert | good    | fixed | 8.68    |
|             |        |         |       |         |

hand = {bad, neutral, good}

### Visualize the data first



H<sub>0</sub>: Card quality does not affect the final balance

Model C

$$Y_i = \beta_0 + \epsilon_i$$



H<sub>1</sub>: Students and non-students have different balances.

#### Model A

$$Y_i = \beta_0 + \beta_1 X_i + \epsilon_i$$



### Worth it?

```
# Compact
model_c = ols('balance ~ 1', data=df.to_pandas())
results_c = model_c.fit()

# Augmented
model_a = ols('balance ~ C(hand)', data=df.to_pandas())
results_a = model_a.fit()

# Worth it?
anova_lm(results_c, results_a)
```

### Worth it!

|   | df_resid | ssr         | df_diff | ss_diff     | F         | Pr(>F)       |
|---|----------|-------------|---------|-------------|-----------|--------------|
| 0 | 299.0    | 7579.984625 | 0.0     | NaN         | NaN       | NaN          |
| 1 | 297.0    | 5020.583223 | 2.0     | 2559.401402 | 75.702581 | 2.699281e-27 |

## You just did a One-way ANOVA!

```
# Compact
model_c = ols('balance ~ 1', data=df.to_pandas())
results_c = model_c.fit()

# Augmented
model_a = ols('balance ~ C(hand)', data=df.to_pandas())
results_a = model_a.fit()

# Worth it?
anova_lm(results_c, results_a)
```

### Worth it!

| Pr(>F)       | F         | ss_diff     | df_diff | ssr         | df_resid |   |
|--------------|-----------|-------------|---------|-------------|----------|---|
| NaN          | NaN       | NaN         | 0.0     | 7579.984625 | 299.0    | 0 |
| 2.699281e-27 | 75.702581 | 2559.401402 | 2.0     | 5020.583223 | 297.0    | 1 |



# Reporting an ANOVA



The final balance differed significantly as a function of the quality of a player's hand (i.e. whether the hand was bad, neutral, or good), F(2, 297) = 75.703, p < .001.

## Interpreting parameter estimates

#### what do these represent?

|                    | 0LS         | Regressi                 | ion Results    | <u>/</u> |                   | _     |
|--------------------|-------------|--------------------------|----------------|----------|-------------------|-------|
| Dep. Variable:     | ba          | <br>lance                | R-squared:     |          | 0.33              | 8     |
| Model:             |             | 0LS                      | Adj. R-squared | l:       | 0.33              | 3     |
| Method:            | Least Sq    | uares                    | F-statistic:   |          | 75.70<br>2.70e-27 |       |
| Date:              | Wed, 19 Feb | 2025                     | Prob (F-statis | tic):    |                   |       |
| Time:              | 11:         | 11:57:14 Log-Likelihood: |                |          | -848.31           |       |
| No. Observations:  |             | 300 AIC:                 |                |          | 1703.             |       |
| Df Residuals:      |             | 297 BIC:                 |                |          | 1714.             |       |
| Df Model:          |             | 2                        |                |          |                   |       |
| Covariance Type:   | nonr        | obust                    |                |          |                   |       |
|                    | coef        | std err                  | t              | P> t     | [0.025            | 0.975 |
| Intercept          | 5.9415      | 0.411                    | 14.451         | 0.000    | 5.132             | 6.75  |
| C(hand)[T.good]    | 7.0849      | 0.581                    | 12.185         | 0.000    | 5.941             | 8.229 |
| C(hand)[T.neutral] | 4.4051      | 0.581                    | 7.576          | 0.000    | 3.261             | 5.549 |

```
# Treat "hand" as dummy-coded categorical variable
model_a = ols('balance ~ C(hand)', data=df.to_pandas())
```



- Reference level is coded as 0, and other levels are coded as 1
- Intercept = reference (mean); Slope(s) = mean difference from reference
- **BO** = ("bad")
- **B1** = ("good" "bad")
- **B2** = ("neutral" "bad")



- Reference level is coded as 0, and other levels are coded as 1
- Intercept = reference (mean); Slope(s) = mean difference from reference
- **B0** = ("bad")
- B1 = ("good" "bad")
- **B2** = ("neutral" "bad")



- Reference level is coded as 0, and other levels are coded as 1
- Intercept = reference (mean); Slope(s) = mean difference from reference
- B0 = ("bad")
- B1 = ("good" "bad")
- **B2** = ("neutral" "bad")



- Reference level is coded as 0, and other levels are coded as 1
- Intercept = reference (mean); Slope(s) = mean difference from reference



#### if hand == "bad":

$$\widehat{\text{balance}}_i = 5.94$$

#### if hand == "good":

$$\widehat{\text{balance}}_i = 5.94 + 7.08 = 13.02$$

#### if hand == "neutral":

$$\widehat{\text{balance}}_i = 5.94 + 4.41 = 10.35$$



 $balance_i = 5.94 + 7.08 \cdot hand\_good_i + 4.41 \cdot hand\_neutral_i$ 

### How does the GLM see categorical variables?

We encode levels of a categorical variable using numbers

We represent *k levels* of a categorical variable with *k-1 parameters* using one of many possible **coding schemes** 

Let's see some more\*

### Deviation (Sum/Contrast) Coding

```
# Treat "hand" as sum-coded categorical variable
model_sum = ols("balance ~ C(hand, Sum)", data=df.to_pandas())
```



## Deviation (Sum/Contrast) Coding

```
# Treat "hand" as sum-coded categorical variable
model_sum = ols("balance ~ C(hand, Sum)", data=df.to_pandas())
```



- Each level is coded as 1; last level = -1
- Intercept = grand-mean; Slope(s) = deviations from grand-mean
- Why? You want a valid ANOVA (F-test) and have at least 2 predictors
  - At least 1 predictor has 3+ levels

```
# Treat "hand" as polynomial-coded categorical variable
model_poly = ols("balance ~ C(hand, Poly)", data=df.to_pandas())
```



- Intercept = grand-mean; Slope(s) = polynomial (linear, quadratic, cubic..)
- Allows you test specific trends over levels of categorical variable
- Why? You want a valid ANOVA (F-test) and have at least 2 predictors
  - At least 1 predictor has 3+ levels



- Intercept = grand-mean; Slope(s) = polynomial (linear, quadratic, cubic..)
- Allows you test specific **trends** over levels of categorical variable
- Why? You want a valid ANOVA (F-test) and have at least 2 predictors
  - At least 1 predictor has 3+ levels



- Intercept = grand-mean; Slope(s) = polynomial (linear, quadratic, cubic..)
- Allows you test specific **trends** over levels of categorical variable
- Why? You want a valid ANOVA (F-test) and have at least 2 predictors
  - At least 1 predictor has 3+ levels



- Intercept = grand-mean; Slope(s) = polynomial (linear, quadratic, cubic..)
- Allows you test specific **trends** over levels of categorical variable
- Why? You want a valid ANOVA (F-test) and have at least 2 predictors
  - At least 1 predictor has 3+ levels

## Today's Plan

- 1. First Half (together)
  - Treatment coding review
  - Treatment with 3 levels
- 2. Second Half (on your own)
  - Notebooks 4, 5, 6, 7
  - Look at previous notebook solutions if you haven't