Week summary

Monte Carlo methods to approximate expected values

Week summary

Monte Carlo methods to approximate expected values

How to sample from distribution known up to normalization constant?

Week summary

Monte Carlo methods to approximate expected values

How to sample from distribution known up to normalization constant?

Two MCMC approaches:

- Gibbs sampling reducing multidimensional sampling to a sequence of 1d
- Metropolis Hastings rejection sampling for Markov Chains (gives more freedom)

Monte Carlo

$$\mathbb{E}_{p(x)} f(x) \approx \frac{1}{M} \sum_{s=1}^{M} f(x_s)$$
$$x_s \sim p(x)$$

Unbiased estimate (larger M => better accuracy)

Monte Carlo

$$\mathbb{E}_{p(x)} f(x) \approx \frac{1}{M} \sum_{s=1}^{M} f(x_s)$$
$$x_s \sim p(x)$$

Unbiased estimate (larger M => better accuracy)

$$\mathbb{E}_{p(x)} \frac{1}{M} \sum_{s=1}^{M} f(x_s) = \mathbb{E}_{p(x)} f(x)$$

Monte Carlo

$$\mathbb{E}_{p(x)} f(x) \approx \frac{1}{M} \sum_{s=1}^{M} f(x_s)$$
$$x_s \sim p(x)$$

Unbiased estimate (larger M => better accuracy)

Variational Inference (week 3)

$$p(x) \approx q(x)$$

$$\mathbb{E}_{p(x)} f(x) \approx \mathbb{E}_{q(x)} f(x)$$

Schematic illustration

Best

• Full inference

$$p(T, \theta|X)$$

Best

• Full inference

 $p(T, \theta|X)$

• Mean field

$$q(T)q(\theta) \approx p(T, \theta|X)$$

Best

- Full inference
 - Mean field
 - MCMC

$$p(T, \theta|X)$$

$$q(T)q(\theta) \approx p(T, \theta|X)$$

$$T_s, \Theta_s \sim p(T, \Theta \mid X)$$

Best

• Full inference

 $p(T, \theta|X)$

Mean field

 $q(T)q(\theta) \approx p(T, \theta|X)$

• MCMC

 $T_s, \Theta_s \sim p(T, \Theta \mid X)$

• EM algorithm

 $q(T), \theta = \theta_{\mathrm{MP}}$

Best

• Full inference

 $p(T, \theta|X)$

Mean field

 $q(T)q(\theta) \approx p(T, \theta|X)$

• MCMC

 $T_s, \Theta_s \sim p(T, \Theta \mid X)$

• EM algorithm

- $q(T), \theta = \theta_{\mathrm{MP}}$
- Variational EM
- $q_1(T_1) \dots q_d(T_d), \ \theta = \theta_{\mathrm{MP}}$

Best

• Full inference

 $p(T, \theta|X)$

Mean field

 $q(T)q(\theta) \approx p(T, \theta|X)$

• MCMC

 $T_s, \Theta_s \sim p(T, \Theta \mid X)$

• EM algorithm

- $q(T), \theta = \theta_{\mathrm{MP}}$
- Variational EM
- $q_1(T_1) \dots q_d(T_d), \ \theta = \theta_{\mathrm{MP}}$

MCMC EM

 $T_s \sim p(T \mid \Theta, X), \Theta = \Theta_{\mathrm{MP}}$

Summary of Markov Chain Monte Carlo

Pros

- Easy to implement
- Easy to parallelize
- Unbiased estimates (wait more => more accuracy)

Cons

Usually slower than alternatives