1. For the following reaction, draw a galvanic cell and label ALL parts (make sure to include where oxidation and reduction are happening, and how all species flow through the system, including electrons).

$$2AgNO_3$$
 (aq) + Cu (s) \rightarrow Cu(NO₃)₂ (aq) + 2Ag (s)

2. Calculate the standard emf for a galvanic cell based on the following rxn:

$$2Na (s) + 2H2O (l) \rightarrow 2NaOH (aq) + H2 (g)$$

3. Calculate the eq. constant, K, for the following reaction (T=298K, acidic conditions):

$$Cr(s) + NO_3^-(aq) \rightarrow Cr^{3+}(aq) + NO(q)$$

4. Calculate E°_{ox} for the reaction below:

$$Au(s) + NO_3^-(aq) + 4H^+(aq) \rightarrow Au^{3+}(aq) + NO(g) + 2H_2O(l)$$
 $E^{\circ}_{cell} = -0.54$

- 5. Rank the following in order of increasing strength as oxidizing/reducing agents:
 - a. Ag, Cr³⁺, Li, F⁻, H₂ reducing agents
 - b. F_2 , Cr^{3+} , I_2 , MnO_4^- oxidizing agents
 - c. Cu⁺, Ni, Cd, Cr reducing agents
- 6. Calculate the standard E° for the electrochemical cell below:
 - a. Al (s) $| Al^{3+}$ (aq) $| Mg^{2+}$ (aq) | Mg (s)
 - b. $Zn(s) | Zn^{2+}(aq) | SO_4^{2-}(aq) | H_2SO_3(aq) | Pt(s)$
- 7. Calculate $\Box G^{\circ}$ and K for the following reaction. Is this reaction spontaneous?

$$MnO_4^-(s) + H^+(aq) + H_2O_2(aq) \rightarrow MnO_2(s) + H_2O(l) + O_2(g)$$

- 8. A number of chemical species can behave as both an oxidizing reagent and a reducing reagent. In the following situations, what reaction would predominate?
 - a. Chamber containing Mn²⁺ (aq), PbO₂ (s), and Ag (s)
 - b. Chamber containing I₂ (s), Zn²⁺ (aq) and Cl₂ (g)
 - c. Chamber containing Cr³⁺ (aq), ClO₂⁻ (aq), and Au (s)
- For the following reaction, draw a galvanic cell and label ALL parts (make sure to include where oxidation and reduction are happening, and how all species flow through the system, including electrons).

$$2AgNO_3$$
 (ag) + Cu (s) \rightarrow Cu(NO₃)₂ (ag) + 2Ag (s)

2. Calculate the standard emf for a galvanic cell based on the following rxn:

$$2Na (s) + 2H2O (l) \rightarrow 2NaOH (aq) + H2 (q)$$

3. Calculate the eq. constant, K, for the following reaction (T=298K, acidic conditions):

$$Cr(s) + NO_3^{-1}(aq) \rightarrow Cr^{3+1}(aq) + NO(q)$$

4. Calculate E°_{ox} for the reaction below:

$$Au(s) + NO_3^- (aq) + 4H^+ (aq) \rightarrow Au^{3+} (aq) + NO (g) + 2H_2O (l)$$
 $E^o_{cell} = -0.54$

- 5. Rank the following in order of increasing strength as oxidizing/reducing agents:
 - a. Ag, Cr³⁺, Li, F⁻, H₂ reducing agents
 - b. F_2 , Cr^{3+} , I_2 , MnO_4^- oxidizing agents
 - c. Cu⁺, Ni, Cd, Cr reducing agents
- 6. Calculate the standard E° for the electrochemical cell below:
 - a. Al (s) $| Al^{3+} (aq) | | Mg^{2+} (aq) | Mg (s)$
 - b. $Zn(s) | Zn^{2+}(aq) | SO_4^{2-}(aq) | H_2SO_3(aq) | Pt(s)$
- 7. Calculate $\Box G^{\circ}$ and K for the following reaction. Is this reaction spontaneous?

$$MnO_4^-(s) + H^+(aq) + H_2O_2(aq) \rightarrow MnO_2(s) + H_2O(l) + O_2(g)$$

- 8. A number of chemical species can behave as both an oxidizing reagent and a reducing reagent. In the following situations, what reaction would predominate?
 - a. Chamber containing Mn²⁺ (aq), PbO₂ (s), and Ag (s)
 - b. Chamber containing I₂ (s), Zn²⁺ (aq) and Cl₂ (g)
 - c. Chamber containing Cr³⁺ (ag), ClO₂ (ag), and Au (s)

USEFUL INFORMATION:

F = 1F = 96485 C/mol = 96485 J/V·mol

R = 8.314 J/mol_{*}K

Half-reaction	&° (V)	Half-reaction	&° (V)
The Percentage	C (1)	Tim reaction	C (1)
$F_2 + 2e^- \rightarrow 2F^-$	2.87	$O_2 + 2H_2O + 4e^- \rightarrow 4OH^-$	0.40
$Ag^{2+} + e^- \rightarrow Ag^+$	1.99	$Cu^{2+} + 2e^{-} \rightarrow Cu$	0.34
$\text{Co}^{3+} + \text{e}^- \rightarrow \text{Co}^{2+}$	1.82	$Hg_2Cl_2 + 2e^- \rightarrow 2Hg + 2Cl^-$	0.27
$H_2O_2 + 2H^+ + 2e^- \rightarrow 2H_2O$	1.78	$SO_4^{2-} + 4H^+ + 2e^- \rightarrow H_2SO_3 + H_2O$	0.20
$Ce^{4+} + e^{-} \rightarrow Ce^{3+}$	1.70	$Cu^{2+} + e^{-} \rightarrow Cu^{+}$	0.16
$PbO_2 + 4H^+ + SO_4^{2-} + 2e^- \rightarrow PbSO_4 + 2H_2O$	1.69	$2H^+ + 2e^- \rightarrow H_2$	0.00
$MnO_4^- + 4H^+ + 3e^- \rightarrow MnO_2 + 2H_2O$	1.68	$Fe^{3+} + 3e^{-} \rightarrow Fe$	-0.036
$IO_4^- + 2H^+ + 2e^- \rightarrow IO_3^- + H_2O$	1.60	$Pb^{2+} + 2e^{-} \rightarrow Pb$	-0.13
$MnO_4^- + 8H^+ + 5e^- \rightarrow Mn^{2+} + 4H_2O$	1.51	$Sn^{2+} + 2e^{-} \rightarrow Sn$	-0.14
$Au^{3+} + 3e^{-} \rightarrow Au$	1.50	$Ni^{2+} + 2e^- \rightarrow Ni$	-0.23
$PbO_2 + 4H^+ + 2e^- \rightarrow Pb^{2+} + 2H_2O$	1.46	$PbSO_4 + 2e^- \rightarrow Pb + SO_4^{2-}$	-0.35
$Cl_2 + 2e^- \rightarrow 2Cl^-$	1.36	$Cd^{2+} + 2e^{-} \rightarrow Cd$	-0.40
$Cr_2O_7^{2-} + 14H^+ + 6e^- \rightarrow 2Cr^{3+} + 7H_2O$	1.33	$Fe^{2+} + 2e^{-} \rightarrow Fe$	-0.44
$O_2 + 4H^+ + 4e^- \rightarrow 2H_2O$	1.23	$Cr^{3+} + e^{-} \rightarrow Cr^{2+}$	-0.50
$MnO_2 + 4H^+ + 2e^- \rightarrow Mn^{2+} + 2H_2O$	1.21	$Cr^{3+} + 3e^{-} \rightarrow Cr$	-0.73
$IO_3^- + 6H^+ + 5e^- \rightarrow \frac{1}{2}I_2 + 3H_2O$	1.20	$Zn^{2+} + 2e^{-} \rightarrow Zn$	-0.76
$Br_2 + 2e^- \rightarrow 2Br^-$	1.09	$2H_2O + 2e^- \rightarrow H_2 + 2OH^-$	-0.83
$AuCl_4^- + 3e^- \rightarrow Au + 4Cl^-$	0.99	$Mn^{2+} + 2e^{-} \rightarrow Mn$	-1.18
$NO_3^- + 4H^+ + 3e^- \rightarrow NO + 2H_2O$	0.96	$Al^{3+} + 3e^{-} \rightarrow Al$	-1.66
$ClO_2 + e^- \rightarrow ClO_2^-$	0.954	$H_2 + 2e^- \rightarrow 2H^-$	-2.23
$2Hg^{2+} + 2e^{-} \rightarrow Hg_{2}^{2+}$	0.91	$Mg^{2+} + 2e^{-} \rightarrow Mg$	-2.37
$Ag^{+} + e^{-} \rightarrow Ag$	0.80	$La^{3+} + 3e^{-} \rightarrow La$	-2.37
$Hg_2^{2+} + 2e^- \rightarrow 2Hg$	0.80	$Na^+ + e^- \rightarrow Na$	-2.71
$Fe^{3+} + e^{-} \rightarrow Fe^{2+}$	0.77	$Ca^{2+} + 2e^{-} \rightarrow Ca$	-2.76
$O_2 + 2H^+ + 2e^- \rightarrow H_2O_2$	0.68	$Ba^{2+} + 2e^- \rightarrow Ba$	-2.90
$MnO_4^- + e^- \rightarrow MnO_4^{2}$	0.56	$K^+ + e^- \rightarrow K$	-2.92
$I_2 + 2e^- \rightarrow 2I^-$	0.54	$Li^+ + e^- \rightarrow Li$	-3.05

USEFUL INFORMATION:

F = 1F = 96485 C/mol = 96485 J/V·mol R = 8.314 J/mol·K

Standard Reduction Potentials at 25°C (298 K) for Many Common Half-reactions					
Half-reaction	&° (V)	Half-reaction	&° (V)		
$F_2 + 2e^- \rightarrow 2F^-$	2.87	$O_2 + 2H_2O + 4e^- \rightarrow 4OH^-$	0.40		
$Ag^{2+} + e^- \rightarrow Ag^+$	1.99	$Cu^{2+} + 2e^{-} \rightarrow Cu$	0.34		
$Co^{3+} + e^{-} \rightarrow Co^{2+}$	1.82	$Hg_2Cl_2 + 2e^- \rightarrow 2Hg + 2Cl^-$	0.27		
$H_2O_2 + 2H^+ + 2e^- \rightarrow 2H_2O$	1.78	$SO_4^{2-} + 4H^+ + 2e^- \rightarrow H_2SO_3 + H_2O$	0.20		
$Ce^{4+} + e^{-} \rightarrow Ce^{3+}$	1.70	$Cu^{2+} + e^{-} \rightarrow Cu^{+}$	0.16		
$PbO_2 + 4H^+ + SO_4^{2-} + 2e^- \rightarrow PbSO_4 + 2H_2O$	1.69	$2H^+ + 2e^- \rightarrow H_2$	0.00		
$MnO_4^- + 4H^+ + 3e^- \rightarrow MnO_2 + 2H_2O$	1.68	$Fe^{3+} + 3e^{-} \rightarrow Fe$	-0.036		
$IO_4^- + 2H^+ + 2e^- \rightarrow IO_3^- + H_2O$	1.60	$Pb^{2+} + 2e^{-} \rightarrow Pb$	-0.13		
$MnO_4^- + 8H^+ + 5e^- \rightarrow Mn^{2+} + 4H_2O$	1.51	$Sn^{2+} + 2e^{-} \rightarrow Sn$	-0.14		
$Au^{3+} + 3e^{-} \rightarrow Au$	1.50	$Ni^{2+} + 2e^- \rightarrow Ni$	-0.23		
$PbO_2 + 4H^+ + 2e^- \rightarrow Pb^{2+} + 2H_2O$	1.46	$PbSO_4 + 2e^- \rightarrow Pb + SO_4^{2-}$	-0.35		
$Cl_2 + 2e^- \rightarrow 2Cl^-$	1.36	$Cd^{2+} + 2e^{-} \rightarrow Cd$	-0.40		
$Cr_2O_7^{2-} + 14H^+ + 6e^- \rightarrow 2Cr^{3+} + 7H_2O$	1.33	$Fe^{2+} + 2e^{-} \rightarrow Fe$	-0.44		
$O_2 + 4H^+ + 4e^- \rightarrow 2H_2O$	1.23	$Cr^{3+} + e^{-} \rightarrow Cr^{2+}$	-0.50		
$MnO_2 + 4H^+ + 2e^- \rightarrow Mn^{2+} + 2H_2O$	1.21	$Cr^{3+} + 3e^{-} \rightarrow Cr$	-0.73		
$IO_3^- + 6H^+ + 5e^- \rightarrow \frac{1}{2}I_2 + 3H_2O$	1.20	$Zn^{2+} + 2e^{-} \rightarrow Zn$	-0.76		
$Br_2 + 2e^- \rightarrow 2Br^-$	1.09	$2H_2O + 2e^- \rightarrow H_2 + 2OH^-$	-0.83		
$AuCl_4^- + 3e^- \rightarrow Au + 4Cl^-$	0.99	$Mn^{2+} + 2e^{-} \rightarrow Mn$	-1.18		
$NO_3^- + 4H^+ + 3e^- \rightarrow NO + 2H_2O$	0.96	$Al^{3+} + 3e^{-} \rightarrow Al$	-1.66		
$ClO_2 + e^- \rightarrow ClO_2^-$	0.954	$H_2 + 2e^- \rightarrow 2H^-$	-2.23		
$2Hg^{2+} + 2e^{-} \rightarrow Hg_{2}^{2+}$	0.91	$Mg^{2+} + 2e^{-} \rightarrow Mg$	-2.37		
$Ag^+ + e^- \rightarrow Ag$	0.80	$La^{3+} + 3e^{-} \rightarrow La$	-2.37		
$Hg_2^{2+} + 2e^- \rightarrow 2Hg$	0.80	$Na^+ + e^- \rightarrow Na$	-2.71		
$Fe^{3+} + e^{-} \rightarrow Fe^{2+}$	0.77	$Ca^{2+} + 2e^{-} \rightarrow Ca$	-2.76		
$O_2 + 2H^+ + 2e^- \rightarrow H_2O_2$	0.68	$Ba^{2+} + 2e^{-} \rightarrow Ba$	-2.90		
$MnO_4^- + e^- \rightarrow MnO_4^{2-}$	0.56	$K^+ + e^- \rightarrow K$	-2.92		
$I_2 + 2e^- \rightarrow 2I^-$	0.54	$Li^+ + e^- \rightarrow Li$	-3.05		