5

ABSTRACT OF THE DISCLOSURE

A method for arithmetic performance attribution which accurately links single-period attribution effects over multiple periods. In preferred embodiments, the method determines portfolio relative performance over multiple time periods (t = 1, 2, ..., T) as a sum of terms of form $R - \overline{R} = \sum_{i} \left| c_i a_{ii} + c_2 a_{ii}^2 \right|$, where a_{ii} is a component of active return for period t, the summation over index i is a summation over all components a_{ii} for period t, R is $R = [\prod_{t=1}^{T} (1 + R_t)] - 1$, \overline{R} is $\overline{R} = [\prod_{t=1}^{T} (1 + \overline{R}_t)] - 1$, R_t is a portfolio return

for period t, \overline{R}_t is a benchmark return for period t, and the coefficients c_1 and c_2 are

$$c_1 = A$$
, and $c_2 = \left[\frac{R - \overline{R} - A \sum_{ji} a_{ji}}{\sum_{ji} a_{ji}^2}\right]$. More generally, the invention is an arithmetic

method for determining portfolio relative performance over multiple time periods $(t = 1, 2, ..., T) \text{ as a sum of terms of form: } R - \overline{R} = \sum_{i:} \sum_{k=1}^{\infty} c_k a_{i:}^k \text{, where } a_{i:} \text{ is a component}$ of active return for period t. In preferred quadratic implementations (in which the only nonzero coefficients c_k are those for which k = 1 or k = 2), the coefficients c_1 and c_2 are defined as in the above-mentioned preferred embodiments. In all embodiments, the method of the invention is metric preserving at the component portfolio level. Other aspects of the invention are a computer system programmed to perform any embodiment of the inventive method, and a computer readable medium which stores code for

implementing any embodiment of the inventive method.