

# ME613 - Análise de Regressão

Parte 11

Samara F. Kiihl - IMECC - UNICAMP

# Critérios para Seleção de Modelos

/2016 ME613 - Análise de Regressão

### Introdução

Fases na construção de um modelo:

- · Coleta e preparação dos dados.
- · Redução do número de variáveis preditoras.
- · Refinamento e seleção de modelo.
- · Validação do modelo.

file:///Users/imac/Documents/GitHub/ME613-UNICAMP/ME613-UNICAMP.github.io/aulas/slides/parte11/parte11.html#1

ME613 - Análise de Regressão

### Introdução

Se tivermos p-1 variáveis preditoras, podemos construir  $2^{p-1}$  modelos diferentes.

Mesmo se considerarmos todos esses modelos (computacionalmente intenso), precisaríamos de algum critério para selecionar entre eles.

Métodos para seleção de modelos/variáveis foram desenvolvidos para identificar um subgrupo de variáveis que são "boas" para o modelo, segundo algum critério.

Há vários critérios desenvolvidos na literatura. Neste curso, focaremos em seis.

 $R_p^2$ 

Para o critério  $R_p^2$ , a idéia é utilizar o coeficiente de determinação,  $R^2$  para identificar subgrupos das variáveis preditoras que, quando incluídas no modelo, produzem um alto valor para  $R^2$ .

 $R_p^2$  indica que temos p parâmetros no modelo, isto é, p-1 variáveis preditoras incluídas no modelo.

$$R_p^2 = 1 - \frac{SQE_p}{SQT}$$

O objetivo deste critério não é maximização:  $R_p^2$  sempre irá aumentar conforme mais variáveis preditoras são incluídas no modelo. A idéia é comparar os diversos  $R_p^2$ 's e verificar se adicionar mais variáveis ainda traz um aumento.

5/62

file:///Users/imac/Documents/GitHub/ME613-UNICAMP/ME613-UNICAMP.github.io/aulas/slides/parte11/parte11.html#1

ME613 - Análise de Regressão

Exemplo

Considerando  $X_1$ ,  $X_2$ ,  $X_3$  e  $X_4$ , temos  $2^4 = 16$  modelos possíveis.

| Variáveis no modelo | р | $R_p^2$ | Variáveis no modelo     | р | $R_p^2$ |
|---------------------|---|---------|-------------------------|---|---------|
| nenhuma             | 1 | 0       | $X_2$ $X_3$             | 3 | 0.663   |
| $X_1$               | 2 | 0.061   | $X_2$ $X_4$             | 3 | 0.483   |
| $X_2$               | 2 | 0.221   | $X_3 X_4$               | 3 | 0.599   |
| $X_3$               | 2 | 0.428   | $X_1$ $X_2$ $X_3$       | 4 | 0.757   |
| $X_4$               | 2 | 0.422   | $X_1$ $X_2$ $X_4$       | 4 | 0.487   |
| $X_1 X_2$           | 3 | 0.263   | $X_1$ $X_3$ $X_4$       | 4 | 0.612   |
| $X_1 X_3$           | 3 | 0.549   | $X_2$ $X_3$ $X_4$       | 4 | 0.718   |
| $X_1 X_4$           | 3 | 0.43    | $X_1 \ X_2 \ X_3 \ X_4$ | 5 | 0.759   |

### **Exemplo: Cirurgias**

Y: tempo de sobrevivência

 $X_1$ : blood clotting score

*X*<sub>2</sub>: índice de prognóstico

*X*<sub>3</sub>: teste de função enzimática

*X*<sub>4</sub>: teste de função do fígado

 $X_5$ : idade (anos)

*X*<sub>6</sub>: gênero (0=masculino, 1=feminino)

 $X_7$ : uso de álcool (1 = moderado, 0 = nenhum ou severo)

 $X_8$ : uso de álcool (1 = severo, 0 = nenhum ou moderado)

6/62

ME613 - Análise de Regressão

### Exemplo



$$R_{a,p}^2$$

Como  $R_p^2$  não leva em conta o número de parâmetros no modelo e sempre aumenta conforme temos mais variáveis incluídas, uma alternativa é usar:

$$R_{a,p}^2 = 1 - \left(\frac{n-1}{n-p}\right) \frac{SQE_p}{SQT} = 1 - \frac{QME_p}{SQT/(n-1)}$$

 $R_{a,p}^2$  aumenta se e somente se  $QME_p$  diminui.

9/62

0.043

0.206

0.417

0.531

file:///Users/imac/Documents/GitHub/ME613-UNICAMP/ME613-UNICAMP/ME613-UNICAMP/ME613-UNICAMP/ME613-UNICAMP/ME613-UNICAMP/ME613-UNICAMP/ME613-UNICAMP/ME613-UNICAMP/ME613-UNICAMP/ME613-UNICAMP/ME613-UNICAMP/ME613-UNICAMP/ME613-UNICAMP/ME613-UNICAMP/ME613-UNICAMP/ME613-UNICAMP/ME613-UNICAMP/ME613-UNICAMP/ME613-UNICAMP/ME613-UNICAMP/ME613-UNICAMP/ME613-UNICAMP/ME613-UNICAMP/ME613-UNICAMP/ME613-UNICAMP/ME613-UNICAMP/ME613-UNICAMP/ME613-UNICAMP/ME613-UNICAMP/ME613-UNICAMP/ME613-UNICAMP/ME613-UNICAMP/ME613-UNICAMP/ME613-UNICAMP/ME613-UNICAMP/ME613-UNICAMP/ME613-UNICAMP/ME613-UNICAMP/ME613-UNICAMP/ME613-UNICAMP/ME613-UNICAMP/ME613-UNICAMP/ME613-UNICAMP/ME613-UNICAMP/ME613-UNICAMP/ME613-UNICAMP/ME613-UNICAMP/ME613-UNICAMP/ME613-UNICAMP/ME613-UNICAMP/ME613-UNICAMP/ME613-UNICAMP/ME613-UNICAMP/ME613-UNICAMP/ME613-UNICAMP/ME613-UNICAMP/ME613-UNICAMP/ME613-UNICAMP/ME613-UNICAMP/ME613-UNICAMP/ME613-UNICAMP/ME613-UNICAMP/ME613-UNICAMP/ME613-UNICAMP/ME613-UNICAMP/ME613-UNICAMP/ME613-UNICAMP/ME613-UNICAMP/ME613-UNICAMP/ME613-UNICAMP/ME613-UNICAMP/ME613-UNICAMP/ME613-UNICAMP/ME613-UNICAMP/ME613-UNICAMP/ME613-UNICAMP/ME613-UNICAMP/ME613-UNICAMP/ME613-UNICAMP/ME613-UNICAMP/ME613-UNICAMP/ME613-UNICAMP/ME613-UNICAMP/ME613-UNICAMP/ME613-UNICAMP/ME613-UNICAMP/ME613-UNICAMP/ME613-UNICAMP/ME613-UNICAMP/ME613-UNICAMP/ME613-UNICAMP/ME613-UNICAMP/ME613-UNICAMP/ME613-UNICAMP/ME613-UNICAMP/ME613-UNICAMP/ME613-UNICAMP/ME613-UNICAMP/ME613-UNICAMP/ME613-UNICAMP/ME613-UNICAMP/ME613-UNICAMP/ME613-UNICAMP/ME613-UNICAMP/ME613-UNICAMP/ME613-UNICAMP/ME613-UNICAMP/ME613-UNICAMP/ME613-UNICAMP/ME613-UNICAMP/ME613-UNICAMP/ME613-UNICAMP/ME613-UNICAMP/ME613-UNICAMP/ME613-UNICAMP/ME613-UNICAMP/ME613-UNICAMP/ME613-UNICAMP/ME613-UNICAMP/ME613-UNICAMP/ME613-UNICAMP/ME613-UNICAMP/ME613-UNICAMP/ME613-UNICAMP/ME613-UNICAMP/ME613-UNICAMP/ME613-UNICAMP/ME613-UNICAMP/ME613-UNICAMP/ME613-UNICAMP/ME613-UNICAMP/ME613-UNICAMP/ME613-UNICAMP/ME613-UNICAMP/ME613-UNICAMP/ME613-UNICAMP/ME613-UNICAMP/ME613-UNICAMP/ME613-UNICAMP/ME613-UNICAMP/ME613-UNICAMP/ME613-UNICAMP/ME613-UN

5/90/2016 ME/613 - Análise de Regressão 5/90/2016 ME/613 - Análise de Regressão

### Exemplo



# $C_p$ de Mallow

Exemplo

Variáveis no modelo

nenhuma

 $X_1 X_2$ 

 $X_1 X_3$ 

 $X_1$   $X_4$ 

Este critério avalia o erro quadrático médio dos n valores ajustados segundo um modelo a ser considerado.

Variáveis no modelo

 $X_2$   $X_4$ 

 $X_3$   $X_4$ 

 $X_1$   $X_2$   $X_3$ 

 $X_1$   $X_2$   $X_4$ 

 $X_1 \ X_3 \ X_4$ 

 $X_2$   $X_3$   $X_4$ 

 $X_1 \ X_2 \ X_3 \ X_4$ 

0.65

0.463

0.584

0.743

0.456

0.74

Erro de cada valor ajustado é dado por:

$$\hat{Y} : -\mu$$

em que  $\mu_i$  é o valor verdadeiro da função resposta.

Temos o viés:

$$E(\hat{Y}_i) - \mu_i$$

E um componente aleatório de erro:

$$\hat{Y}_i - E(\hat{Y}_i)$$

11/62

#### $C_p$ de Mallow

$$(\hat{Y}_i - \mu_i)^2 = [(E(\hat{Y}_i) - \mu_i) + (\hat{Y}_i - E(\hat{Y}_i))]^2$$
$$E(\hat{Y}_i - \mu_i)^2 = [E(\hat{Y}_i) - \mu_i]^2 + Var(\hat{Y}_i)$$

Erro quadrático médio total:

$$\sum_{i=1}^{n} [E(\hat{Y}_i) - \mu_i]^2 + \sum_{i=1}^{n} Var(\hat{Y}_i)$$

Medida para o critério:

$$\Gamma_p = \frac{1}{\sigma^2} \left[ \sum_{i=1}^n [E(\hat{Y}_i) - \mu_i]^2 + \sum_{i=1}^n Var(\hat{Y}_i) \right]$$

(erro quadrático médio total dividido pela verdadeira variância do erro)

13/62

file:///Users/imac/Documents/GitHub/ME6/3-UNICAMP@github.io/aulas/slides/parte11/parte11.html#1

13/2

file:///Users/imac/Documents/GitHub/ME6/3-UNICAMP@github.io/aulas/slides/parte11/parte11.html#1

V2016 ME613 - Análise de Regressão 5/90/2016 ME613 - Análise de Regressão

### $C_p$ de Mallow

Se o modelo com p-1 variáveis é adequado, então  $E\left[\frac{SQE_p}{(n-p)}\right]=\sigma^2$ , de maneira que  $E\left[\frac{SQE_p}{OME(X_1,\dots,X_{p-1})}\right]=n-p$ .

Portanto, se o modelo com p-1 variáveis é aproximadamente adequado, esperamos que  $C_p \approx p$ .

Procuramos o menor  $C_p$  tal que  $C_p \approx p$ .

# Exemplo

 $C_p$  de Mallow

Estimador para  $\Gamma_p$  é dado por:

Modelo considerando as variáveis  $X_1$ ,  $X_2$ ,  $X_3$  e  $X_4$  (P-1=4)

Incluindo apenas  $X_4$  (p = 2):

$$C_p = \frac{SQE(X_4)}{QME(X_1, \dots, X_4)} - (n - 2p)$$

Estamos considerando incluir p-1 variáveis, mas assuma que o número ideal

Se assumirmos que o modelo incluindo as P-1 variáveis é correto, temos que

 $C_p = \frac{SQE_p}{OME(X_1, \dots, X_{P-1})} - (n-2p)$ 

de variáveis a serem incluídas no modelo seja P-1>p-1.

 $QME(X_1, ..., X_{P-1})$  é um estimador não viesado para  $\sigma^2$ .

### Exemplo

```
## Analysis of Variance Table
##
## Response: lnY
          Df Sum Sq Mean Sq F value Pr(>F)
           1 5.3990 5.3990 37.894 1.092e=07 ***
## X4
## Residuals 52 7.4087 0.1425
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## Analysis of Variance Table
## Response: lnY
##
           Df Sum Sq Mean Sq F value Pr(>F)
            1 0.7763 0.7763 12.3337 0.0009661 ***
## X1
            1 2.5888 2.5888 41.1325 5.377e-08 ***
## X2
            1 6.3341 6.3341 100.6408 1.810e-13 ***
## X4
           1 0.0246 0.0246 0.3905 0.5349320
## Residuals 49 3.0840 0.0629
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
```

$$C_p = \frac{SQE(X_4)}{QME(X_1, \dots, X_4)} - (n - 2p) = \frac{7.4087314}{0.062938} - (54 - 2 \times 2) = 67.7147725$$

file:///Users/imac/Documents/GitHub/ME613-UNICAMP/ME613-UNICAMP.github.io/aulas/slides/parte11/parte11.html#1

5/30/2016 ME613 - Análise de Regressão

#### AIC e BIC

Procuramos modelos com valores pequenos de AIC, BIC.

AIC:

 $AIC_p = n \ln(SQE_p) - n \ln n + 2p$ 

BIC:

 $BIC_n = n \ln(SQE_n) - n \ln n + \ln(n)p$ 

### Exemplo

library(leaps) leaps<-regsubsets(lnY~X1+X2+X3+X4,data=dados,nbest=10)</pre> plot(leaps,scale="Cp")



ME613 - Análise de Regressão

file:///Users/imac/Documents/GitHub/ME613-UNICAMP/ME613-UNICAMP.github.io/aulas/slides/parte11/parte11.html#1

### Exemplo

5/30/2016

plot(leaps,scale="bic")



19/62

19/62

17/62

17/62

20/62

### $PRESS_{p}$

 $PRESS_p$  ( ): critério para medir quão adequado é o uso dos valores ajustados obtidos a partir de um modelo com menos variáveis para predizer os valores observados de Y.

 $SQE = \sum (Y_i - \hat{Y}_i)^2$  também serve para este propósito.

A diferença é que a medida PRESS é obtida após a exclusão da i-ésima observação e estimação do modelo com as n-1 observações restantes, e então usar este modelo para predizer o valor de Y para a i-ésima observação.

Notação:  $\hat{Y}_{i(l)}$  indica o valor predito para a i-ésima observação quando esta foi excluída na obtenção do modelo.

 $PRESS_{p}$ 

$$PRESS_p = \sum_{i=1}^{n} (Y_i - \hat{Y}_{i(i)})^2$$

Modelos com  $PRESS_p$  pequenos são considerados bons candidatos (com erro de predição pequeno).

Não é preciso ajustar n-1 vezes o modelo para calcular o  $PRESS_p$ .

Seja 
$$d_i = Y_i - \hat{Y}_{i(i)}$$
, reescrevemos:  $d_i = \frac{e_i}{1 - h_{ii}}$ 

em que  $e_i$  é o resíduo para a i-ésima observação e  $h_{ii}$  é o i-ésimo elemento da diagonal de  $\mathbf{H} = \mathbf{X}^T (\mathbf{X}^T \mathbf{X})^{-1} \mathbf{X}$ , obtidos a partir do modelo de regressão com todas as observações incluídas.

21/62

22/62

file:///Users/imac/Documents/GitHub/ME613-UNICAMP/ME613-UNICAMP.github.io/aulas/slides/parte11/parte11.html#1

21/62

file:///Users/imac/Documents/GitHub/ME613-UNICAMP/ME613-UNICAMP.github.io/aulas/slides/parte11/parte11.html#1

22/62

5/30/2016 ME613 - Análise de Regressão

5/30/2016 ME613 - Análise de Regressão

### Exemplo

## [1] 13.2956

```
library(gpcR)
modelo1 <- lm(lnY ~ 1.data=dados)
modelo2 <- lm(lnY ~ X1,data=dados)
modelo3 <- lm(lnY ~ X2,data=dados)
modelo4 <= lm(lnV ~ X3 data=dados)
modelo5 <- lm(lnY ~ X4,data=dados)
modelo6 <- lm(lnY ~ X1+X2,data=dados)
modelo7 <- lm(lnY ~ X1+X3,data=dados)
modelo8 <- lm(lnY ~ X1+X4,data=dados)</pre>
modelo9 <- lm(lnY ~ X2+X3,data=dados)
modelo10 <- lm(lnY ~ X2+X4,data=dados)
modelo11 <- lm(lnY ~ X3+X4,data=dados)
modelo12 <- lm(lnY ~ X1+X2+X3,data=dados)
modelo13 <- lm(lnY ~ X1+X2+X4,data=dados)
modelo14 \le lm(lnv \sim X1+X3+X4.data=dados)
modelo15 <- lm(lnY ~ X2+X3+X4,data=dados)
modelo16 <- lm(lnY ~ X1+X2+X3+X4,data=dados)
PRESS(modelol.verbose=FALSE)$stat
```

#### Exemplo

| Variáveis no modelo           | р | $PRESS_p$ | Variáveis no modelo     | р | $PRESS_p$ |
|-------------------------------|---|-----------|-------------------------|---|-----------|
| nenhuma                       | 1 | 13.296    | $X_2 X_3$               | 3 | 5.065     |
| $X_1$                         | 2 | 13.512    | $X_2$ $X_4$             | 3 | 7.476     |
| $X_2$                         | 2 | 10.744    | $X_3$ $X_4$             | 3 | 6.121     |
| $X_3$                         | 2 | 8.327     | $X_1$ $X_2$ $X_3$       | 4 | 3.914     |
| $X_4$                         | 2 | 8.025     | $X_1$ $X_2$ $X_4$       | 4 | 7.903     |
| $X_1$ $X_2$                   | 3 | 11.062    | $X_1$ $X_3$ $X_4$       | 4 | 6.207     |
| $X_1$ $X_3$                   | 3 | 6.988     | $X_2$ $X_3$ $X_4$       | 4 | 4.597     |
| X <sub>1</sub> X <sub>4</sub> | 3 | 8.472     | $X_1 \ X_2 \ X_3 \ X_4$ | 5 | 4.069     |

23/62

#### "Best" Subsets Algorithms

Para o exemplo visto anteriormente, se considerarmos todas as variáveis, temos  $2^8 = 256$  modelos possíveis.

ME613 - Análise de Regressão

## Procedimentos Automáticos para Seleção de Modelos

file:///Users/imac/Documents/GitHub/ME613-UNICAMP/ME613-UNICAMP.github.io/aulas/slides/parte11/parte11.html#1

25/62

26/62

5/30/2016

ME613 - Análise de Regressão

#### Exemplo - Usando $AIC_p$

```
Xy = dados[,-9] # excluindo coluna do Y original, usamos ln(Y) como variável resposta
names(Xy) <- c(names(Xy)[1:8],"y")
modelos <- bestglm(Xy,IC="AIC",TopModels = 2)</pre>
modelos$Subsets
##
    (Intercept) X1 X2 X3 X4 X5 X6 X7 X8
         TRUE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
## 1
          TRUE PALSE PALSE TRUE PALSE PALSE PALSE PALSE
## 2
          TRUE FALSE TRUE TRUE FALSE FALSE FALSE FALSE
          TRUE FALSE TRUE TRUE FALSE FALSE FALSE TRUE
## 4
          TRUE TRUE TRUE FALSE FALSE FALSE TRUE
## 5
          TRUE TRUE TRUE TRUE FALSE FALSE TRUE FALSE TRUE
         TRUE TRUE TRUE TRUE FALSE TRUE TRUE FALSE TRUE
## 7
          TRUE TRUE TRUE TRUE FALSE TRUE TRUE TRUE TRUE
## 8
          ## logLikelihood
## 0
        38.85126 -77.70252
## 1
        53.91343 -105.82686
## 2
        68.24165 -132.48329
        79.49246 -152.98493
## 4
        86.67568 -165.35135
## 5
        87.90259 -165.80517
## 6*
        88.91714 -165.83429
        89.36782 -164.73565
        89.38549 -162.77098
```

### Exemplo - Usando $AIC_p$

```
melhor <- which(modelos$Subsets$AIC==min(modelos$Subsets$AIC))
numvar <- dim(Xy)[2]-1 # total de variáveis consideradas inicialmente
varincluidas <- modelos$Subsets[melhor, 2:(numvar+1)] # variaveis escolhidas segundo criterio
varincluidas
     X1 X2 X3 X4 X5 X6 X7 X8
## 6* TRUE TRUE TRUE FALSE TRUE TRUE FALSE TRUE
summary(modeloescolhidoAIC)$coef
                Estimate Std. Error t value Pr(>|t|)
## (Intercept) 4.053974209 0.234793506 17.266126 5.572016e-22
             0.071517057 0.018637294 3.837309 3.701898e=04
             0.013755482 0.001709437 8.046792 2.169036e-10
             0.015116499 0.001385313 10.911972 1.777375e-14
## X5
            -0.003450094 0.002571776 -1.341522 1.861972e-01
## X6
             0.087316639 0.057701672 1.513243 1.369140e-01
             0.350903932 0.076391406 4.593500 3.276184e-05
```

27/62

### Exemplo - Usando $BIC_p$

modelos <- bestglm(Xy,IC="BIC")</pre>

```
(Intercept) X1 X2 X3 X4 X5 X6 X7 X8
          TRUE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
## 0
          TRUE FALSE FALSE TRUE FALSE FALSE FALSE FALSE
## 1
## 2
          TRUE FALSE TRUE TRUE FALSE FALSE FALSE FALSE
## 3
          TRUE FALSE TRUE TRUE FALSE FALSE FALSE TRUE
          TOTE TOTE TOTE TOTE PALCE PALCE PALCE PALCE TOTE
## 1*
## 5
          TRUE TRUE TRUE FALSE FALSE TRUE FALSE TRUE
## 6
           TRUE TRUE TRUE TRUE FALSE TRUE TRUE FALSE TRUE
## 7
          TRUE TRUE TRUE TRUE FALSE TRUE TRUE TRUE TRUE
## 8
          TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE
        38.85126 -77.70252
## 1
         53.91343 -103.83788
## 2
         68.24165 -128.50532
## 3
         79.49246 -147.01798
## 4*
        86.67568 -157.39542
## 5
         87.90259 -155.86025
         88.91714 -153.90039
## 7
         89.36782 -150.81276
```

file:///Users/imac/Documents/GitHub/ME613-UNICAMP/ME613-UNICAMP.github.io/aulas/slides/parte11/parte11.html#1

89.38549 -146.85911

30/2016 ME613 - Análise de Regressão

### Exemplo - Usando PRESS<sub>p</sub>

```
modelos <- bestglm(Xy,IC="LOOCV")
modelos$Subsets</pre>
```

```
(Intercept) X1 X2 X3 X4 X5 X6 X7 X8
           TRUE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
## 1
           TRUE PALSE PALSE TRUE PALSE PALSE PALSE PALSE
## 2
           TRUE FALSE TRUE TRUE FALSE FALSE FALSE FALSE
## 3
           TRUE FALSE TRUE TRUE FALSE FALSE FALSE TRUE
## A*
           TRUE TRUE TRUE TRUE FALSE FALSE FALSE FALSE TRUE
## 5
           TRUE TRUE TRUE FALSE FALSE TRUE FALSE TRUE
           TRUE TRUE TRUE TRUE FALSE TRUE TRUE FALSE TRUE
## 7
           TRUE TRUE TRUE TRUE FALSE TRUE TRUE TRUE TRUE
## 8
           TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE
   logLikelihood
## 0
         38.85126 0.24621473
## 1
         53.91343 0.15419845
## 2
         68.24165 0.09380257
         79.49246 0.06424821
## 4*
         86.67568 0.05069947
## 5
         87.90259 0.05153172
## 6
         88.91714 0.05133936
## 7
         89.36782 0.05201306
         89.38549 0.05428207
```

### Exemplo - Usando $BIC_p$

```
melhor <- which(modelos$Subsets$BIC==min(modelos$Subsets$BIC))
varincluidas <- modelos$Subsets[melhor,2:(numvar+1)] # variaveis escolhidas segundo criterio
varincluidas
      X1 X2 X3 X4 X5 X6 X7 X8
## 4* TRUE TRUE TRUE FALSE FALSE FALSE TRUE
modeloes colhido BIC <-lm(y ~ ., data = Xy[, c(which(varincluidas = = TRUE), which(names(Xy) = = "y"))])
summary(modeloescolhidoBIC)$coef
                Estimate Std. Error t value Pr(>|t|)
## (Intercept) 3.85241856 0.192695224 19.992289 3.279284e-25
              0.07332263 0.018973044 3.864569 3.273887e-04
              0.01418507 0.001730632 8.196469 9.581863e-11
## X2
## X3
              0.01545270 0.001395609 11.072371 6.145977e-15
## X8
              0.35296762 0.077190626 4.572675 3.290701e-05
```

29/62 30/62

2 file:///Users/imac/Documents/GitHub/ME613-UNICAMP/ME613-UNICAMP.github.io/aulas/slides/parte11/parte11.html#1

6/30/2016 ME613 - Análise de Regressão

### Exemplo - Usando *PRESS*<sub>p</sub>

```
melhor <- which(modelos$Subsets$LOOCV==min(modelos$Subsets$LOOCV))</pre>
varincluidas <- modelos$Subsets[melhor,2:(numvar+1)] # variaveis escolhidas segundo criterio
varincluidas
      X1 X2 X3 X4 X5 X6 X7 X8
## 4* TRUE TRUE TRUE PALSE PALSE PALSE PALSE TRUE
modeloescolhidoPRESS <- lm(y ~ .,data=Xy[,c(which(varincluidas==TRUE),which(names(Xy)=="y"))])
summary(modeloescolhidoPRESS)$coef
                Estimate Std. Error t value Pr(>|t|)
## (Intercept) 3.85241856 0.192695224 19.992289 3.279284e-25
## X1
              0.07332263 0.018973044 3.864569 3.273887e-04
## ¥2
              0.01418507 0.001730632 8.196469 9.581863e=11
## X3
              0.01545270 0.001395609 11.072371 6.145977e-15
              0.35296762 0.077190626 4.572675 3.290701e-05
```

31/62 32/62

5/30/2016

ME613 - Análise de Regressão 5/30/2016

### Exemplo - $C_p$ de Mallow, $R_p^2$ , $R_{a,p}^2$ e $BIC_p$

```
library(leaps)
modelos <- regsubsets(y ~ .,data=Xy,nbest=2)
resultados = data.frame(cbind("p"=rowSums(summary(modelos)$which),summary(modelos)$which,
                         "Cp"=round(summary(modelos)$cp,2),
                         "R2"=round(summary(modelos)$rsq,2),
                      "R2adj"=round(summary(modelos)$adjr2,2), "BIC"=round(summary(modelos)$bic,2)))
resultados
   p X.Intercept. X1 X2 X3 X4 X5 X6 X7 X8 Cp R2 R2adj BIC
              1 0 0 1 0 0 0 0 0 117.41 0.43 0.42 -22.15
               1 0 0 0 1 0 0 0 0 119.17 0.42 0.41 -21.58
## 3 3
               1 0 1 1 0 0 0 0 0 50.47 0.66 0.65 -46.81
               1 0 0 1 1 0 0 0 0 69.13 0.60 0.58 -37.44
## 4 3
               1 0 1 1 0 0 0 0 1 18.91 0.78 0.76 -65.33
               1 1 1 1 0 0 0 0 0 24.98 0.76 0.74 -60.50
## 7 5
               1 1 1 1 0 0 0 0 1 5.75 0.83 0.82 -75.70
               1 0 1 1 1 0 0 0 1 10.27 0.81 0.80 -71.01
               1 1 1 1 0 0 1 0 1 5.54 0.84 0.82 -74.17
## 10 6
               1 1 1 1 0 1 0 0 1 6.02 0.84 0.82 -73.63
## 11 7
               1 1 1 1 0 1 1 0 1 5.79 0.84 0.82 -72.21
               1 1 1 1 0 0 1 1 1 7.03 0.84 0.82 -70.76
## 13 8
               1 1 1 1 0 1 1 1 1 7.03 0.85 0.82 -69.12
## 14 8
               1 1 1 1 1 1 1 0 1 7.74 0.84 0.82 -68.28
## 15 9
               1 1 1 1 1 1 1 1 1 9.00 0.85 0.82 -65.17
```

Método

- · Método menos intensivo computacionalmente.
- · Ao final, obtém-se apenas 1 modelo candidato.
- . , ,

33/62 34/62

33/62

24/62

ME613 - Análise de Regressão

ME613 - Análise de Regressão

Início considerando P-1 variáveis.

1- Ajuste uma regressão linear simples com cada uma das P-1 variáveis. Para cada regressão, calcule a estatística  $t^*$  para testar se o coeficiente angular é 0.

ME613 - Análise de Regressão

$$t_k^* = \frac{\hat{\beta}_k}{\sqrt{\widehat{Var}(\hat{\beta}_k)}}$$

- 2- Considere a variável cujo  $|t^*|$  é o maior. Inclua esta variável caso  $|t^*|$  esteja acima de algum valor pré-determinado.
- 3 Se alguma variável é incluída, por exemplo,  $X_7$  ajustam-se regressões com pares de variáveis, sendo que sempre uma delas é  $X_7$ . Calcula-se  $t^*$  para a nova variável incluída e repita o passo 2 para decidir qual a segunda variável a ser incluída no modelo.
- <sup>4</sup> Repita até considerar todas as variáveis.

- 1. Ajuste uma regressão linear múltipla com todas as P-1 variáveis.
- 2. Teste iterativamente se uma das variáveis pode ser eliminada.

### Exemplo:

```
completo = lm(y\sim ., data=Xy)
vazio = lm(y~1, data=Xy)
step(vazio, scope=list(upper=completo, lower=vazio), direction='forward', trace=TRUE)
y ~ 1
      Df Sum of Sa
      1 5.4762 7.3316 -103.827
+ X3
           5.3990 7.4087 -103.262
           2.8285 9.9792 -87.178
       1 1.7798 11.0279 -81.782
       1 0.7763 12.0315 -77.079
+ X6
           0.6897 12.1180 -76.692
                  12.8077 -75.703
<none>
       1 0.2691 12.5386 -74.849
       1 0.2052 12.6025 -74.575
+ X7
```

ME613 - Análise de Regressão

### Exemplo:

Step: AIC=-103.83

```
y ~ X3

Df Sum of Sq RSS AIC

+ X2 1 3.01908 4.3125 -130.48

+ X4 1 2.20187 5.1297 -121.11

+ X1 1 1.55061 5.7810 -114.66

+ X8 1 1.13756 6.1940 -110.93

<none> 7.3316 -103.83

+ X6 1 0.25854 7.0730 -103.77

+ X5 1 0.23877 7.0928 -103.61

+ X7 1 0.06498 7.2666 -102.31
```

37/62

ME613 - Análise de Regressão

37/62

Exemplo:

Step: AIC=-130.48

```
y ~ X3 + X2

Df Sum of Sq RSS AIC

+ X8 1 1.46961 2.8429 -150.99

+ X1 1 1.20395 3.1085 -146.16

+ X4 1 0.69836 3.6141 -138.02

+ X7 1 0.22632 4.0862 -131.39

+ X5 1 0.16461 4.1479 -130.59

<none>
4.3125 -130.48

+ X6 1 0.08245 4.2300 -129.53
```

### Exemplo:

Step: AIC=-150.98

```
y ~ X3 + X2 + X8

Df Sum of Sq RSS AIC
+ X1 1 0.66408 2.1788 -163.35
+ X4 1 0.46630 2.3766 -158.66
+ X6 1 0.13741 2.7055 -151.66
<none> 2.8429 -150.99
+ X5 1 0.07081 2.7721 -150.35
+ X7 1 0.02464 2.8182 -149.46
```

39/62 40/62

### Exemplo:

```
Step: AIC=-163.35
y ~ X3 + X2 + X8 + X1

Df Sum of Sq RSS AIC
+ X6 1 0.096791 2.0820 -163.81

<none> 2.1788 -163.35
+ X5 1 0.075876 2.1029 -163.26
+ X4 1 0.041701 2.1371 -162.40
+ X7 1 0.022944 2.1559 -161.92
```

### Exemplo:

```
Step: AIC=-163.81

y ~ X3 + X2 + X8 + X1 + X6

Df Sum of Sq RSS AIC

+ X5 1 0.076782 2.0052 -163.83

<none> 2.0820 -163.81

+ X7 1 0.022387 2.0596 -162.39

+ X4 1 0.016399 2.0656 -162.23
```

41/62 42/62

41/62

5/30/2016 ME613 - Análise de Regressão 5/30/2016 ME63 - Análise de Regressão

### Exemplo:

```
Step: AIC=-163.83
y \sim X3 + X2 + X8 + X1 + X6 + X5
       Df Sum of Sq RSS
                   2.0052 -163.83
       1 0.033193 1.9720 -162.74
       1 0.002284 2.0029 -161.90
lm(formula = y \sim X3 + X2 + X8 + X1 + X6 + X5, data = Xy)
Coefficients:
(Intercept)
                     Х3
                                  X2
                                               X8
                                                            X1
                                                                         Х6
                                                                                      X5
                                          0.35090
   4.05397
                0.01512
                             0.01376
                                                       0.07152
                                                                    0.08732
                                                                                -0.00345
```

### Exemplo:

43/62

43/62

### Exemplo:

```
Step: AIC=-162.74
y ~ X1 + X2 + X3 + X5 + X6 + X7 + X8

Df Sum of Sq RSS AIC
- X7 1 0.0332 2.0052 -163.834
<none> 1.9720 -162.736
- X5 1 0.0876 2.0596 -162.389
- X6 1 0.0971 2.0691 -162.141
- X1 1 0.6267 2.5988 -149.833
- X8 1 0.8446 2.8166 -145.486
- X2 1 2.6731 4.6451 -118.471
- X3 1 5.0986 7.0706 -95.784
```

### Exemplo:

```
Step: AIC=-163.83
y ~ X1 + X2 + X3 + X5 + X6 + X8

Df Sum of Sq RSS AIC

<none> 2.0052 -163.834
- X5 1 0.0768 2.0820 -163.805
- X6 1 0.0977 2.1029 -163.265
- X1 1 0.6282 2.6335 -151.117
- X8 1 0.9002 2.9055 -145.809
- X2 1 2.7626 4.7678 -119.064
- X3 1 5.0801 7.0853 -97.672
```

45/62 46/62

file:///Users/imac/Documents/GitHub/ME613-UNICAMP/ME613-UNICAMP.github.io/aulas/slides/parte11/parte11.html#1

45/62

46/62

90/2016 ME613 - Análise de Regressão

5/30/2016 ME613 - Análise de Regressão

### Exemplo:

```
lm(formula = y \sim X1 + X2 + X3 + X5 + X6 + X8, data = Xy)
Coefficients:
(Intercept)
                      Х1
                                   X2
                                                Х3
                                                             Х5
                                                                           Х6
                                                                                        X8
    4.05397
                 0.07152
                              0.01376
                                           0.01512
                                                       -0.00345
                                                                      0.08732
                                                                                   0.35090
```

### Exemplo:

```
completo = lm(y~.,data=Xy)
vazio = lm(y~1, data=Xy)
step(vazio, scope=list(upper=completo, lower=vazio), direction='both', trace=TRUE)
Start: AIC=-75.7
y ~ 1
       Df Sum of Sq
                       RSS
            5.4762 7.3316 -103.827
            5.3990 7.4087 -103.262
            2.8285 9.9792 -87.178
            1.7798 11.0279 -81.782
+ X1
            0.7763 12.0315 -77.079
+ X6
            0.6897 12.1180 -76.692
                   12.8077 -75.703
            0.2691 12.5386 -74.849
            0.2052 12.6025 -74.575
```

### Exemplo:

```
Step: AIC=-103.83
y ~ X3

Df Sum of Sq RSS AIC
+ X2 1 3.0191 4.3125 -130.483
+ X4 1 2.2019 5.1297 -121.113
+ X1 1 1.5506 5.7810 -114.658
+ X8 1 1.1376 6.1940 -110.932
<none>
+ X6 1 0.2585 7.0730 -103.765
+ X5 1 0.2388 7.0928 -103.615
+ X7 1 0.0650 7.2666 -102.308
- X3 1 5.4762 12.8077 -75.703
```

### Exemplo:

```
Step: AIC=-130.48
v ~ X3 + X2
      Df Sum of Sq
                    RSS
            1.4696 2.8429 -150.985
            1.2040 3.1085 -146.161
            0.6984 3.6141 -138.023
            0.2263 4.0862 -131.394
            0.1646 4.1479 -130.585
+ X5
                   4.3125 -130.483
+ X6
       1 0.0824 4.2300 -129.526
       1 3.0191 7.3316 -103.827
- X2
       1 5.6667 9.9792 -87.178
```

49/62 50/62

ME613 - Análise de Regressão

file:///Users/imac/Documents/GitHub/ME613-UNICAMP/ME613-UNICAMP.github.io/aulas/slides/parte11/parte11.html#1

49/62

50/62

0/2016 ME613 - Análise de Regressão

### Exemplo:

Step: AIC=-150.98

### Exemplo:

```
Step: AIC=-163.35

y ~ X3 + X2 + X8 + X1

Df Sum of Sq RSS AIC

+ X6 1 0.0968 2.0820 -163.805

<none> 2.1788 -163.351

+ X5 1 0.0759 2.1029 -163.265

+ X4 1 0.0417 2.1371 -162.395

+ X7 1 0.0229 2.1559 -161.923

- X1 1 0.6641 2.8429 -150.985

- X8 1 0.9297 3.1085 -146.161

- X2 1 2.9873 5.1661 -118.731

- X3 1 5.4513 7.6301 -97.671
```

51/62 52/62

### Exemplo:

```
Step: AIC=-163.81
y ~ X3 + X2 + X8 + X1 + X6

Df Sum of Sq RSS AIC
+ X5 1 0.0768 2.0052 -163.834
<none> 2.0820 -163.805
- X6 1 0.0968 2.1788 -163.351
+ X7 1 0.0224 2.0596 -162.389
+ X4 1 0.0164 2.0656 -162.329
- X1 1 0.6235 2.7055 -151.660
- X8 1 0.9745 3.0565 -145.072
- X2 1 2.8268 4.9088 -119.490
- X3 1 5.0791 7.1611 -99.097
```

53/62 54/62

0.35090

Х1

0.08732

-0.00345

0.07152

file:///Users/imac/Documents/GitHub/ME613-UNICAMP/ME613-UNICAMP/ME613-UNICAMP/ME613-UNICAMP/ME613-UNICAMP/ME613-UNICAMP/ME613-UNICAMP/ME613-UNICAMP/ME613-UNICAMP/ME613-UNICAMP/ME613-UNICAMP/ME613-UNICAMP/ME613-UNICAMP/ME613-UNICAMP/ME613-UNICAMP/ME613-UNICAMP/ME613-UNICAMP/ME613-UNICAMP/ME613-UNICAMP/ME613-UNICAMP/ME613-UNICAMP/ME613-UNICAMP/ME613-UNICAMP/ME613-UNICAMP/ME613-UNICAMP/ME613-UNICAMP/ME613-UNICAMP/ME613-UNICAMP/ME613-UNICAMP/ME613-UNICAMP/ME613-UNICAMP/ME613-UNICAMP/ME613-UNICAMP/ME613-UNICAMP/ME613-UNICAMP/ME613-UNICAMP/ME613-UNICAMP/ME613-UNICAMP/ME613-UNICAMP/ME613-UNICAMP/ME613-UNICAMP/ME613-UNICAMP/ME613-UNICAMP/ME613-UNICAMP/ME613-UNICAMP/ME613-UNICAMP/ME613-UNICAMP/ME613-UNICAMP/ME613-UNICAMP/ME613-UNICAMP/ME613-UNICAMP/ME613-UNICAMP/ME613-UNICAMP/ME613-UNICAMP/ME613-UNICAMP/ME613-UNICAMP/ME613-UNICAMP/ME613-UNICAMP/ME613-UNICAMP/ME613-UNICAMP/ME613-UNICAMP/ME613-UNICAMP/ME613-UNICAMP/ME613-UNICAMP/ME613-UNICAMP/ME613-UNICAMP/ME613-UNICAMP/ME613-UNICAMP/ME613-UNICAMP/ME613-UNICAMP/ME613-UNICAMP/ME613-UNICAMP/ME613-UNICAMP/ME613-UNICAMP/ME613-UNICAMP/ME613-UNICAMP/ME613-UNICAMP/ME613-UNICAMP/ME613-UNICAMP/ME613-UNICAMP/ME613-UNICAMP/ME613-UNICAMP/ME613-UNICAMP/ME613-UNICAMP/ME613-UNICAMP/ME613-UNICAMP/ME613-UNICAMP/ME613-UNICAMP/ME613-UNICAMP/ME613-UNICAMP/ME613-UNICAMP/ME613-UNICAMP/ME613-UNICAMP/ME613-UNICAMP/ME613-UNICAMP/ME613-UNICAMP/ME613-UNICAMP/ME613-UNICAMP/ME613-UNICAMP/ME613-UNICAMP/ME613-UNICAMP/ME613-UNICAMP/ME613-UNICAMP/ME613-UNICAMP/ME613-UNICAMP/ME613-UNICAMP/ME613-UNICAMP/ME613-UNICAMP/ME613-UNICAMP/ME613-UNICAMP/ME613-UNICAMP/ME613-UNICAMP/ME613-UNICAMP/ME613-UNICAMP/ME613-UNICAMP/ME613-UNICAMP/ME613-UNICAMP/ME613-UNICAMP/ME613-UNICAMP/ME613-UNICAMP/ME613-UNICAMP/ME613-UNICAMP/ME613-UNICAMP/ME613-UNICAMP/ME613-UNICAMP/ME613-UNICAMP/ME613-UNICAMP/ME613-UNICAMP/ME613-UNICAMP/ME613-UNICAMP/ME613-UNICAMP/ME613-UNICAMP/ME613-UNICAMP/ME613-UNICAMP/ME613-UNICAMP/ME613-UNICAMP/ME613-UNICAMP/ME613-UNICAMP/ME613-UNICAMP/ME613-UNICAMP/ME613-UNICAMP/ME613-UNICAMP/ME613-UNICAMP/ME613-UN

 $lm(formula = y \sim X3 + X2 + X8 + X1 + X6 + X5, data = Xy)$ 

0.01376

5/30/2016 ME613 - Análise de Regressão 5/30/2016 ME613 - Análise de Regressão

### Introdução

Exemplo:

Step: AIC=-163.83 y ~ X3 + X2 + X8 + X1 + X6 + X5

Coefficients: (Intercept)

4.05397

Df Sum of Sq RSS AIC 2.0052 -163.834

- X5 1 0.0768 2.0820 -163.805

- X6 1 0.0977 2.1029 -163.265

+ X7 1 0.0332 1.9720 -162.736 + X4 1 0.0023 2.0029 -161.896

- X1 1 0.6282 2.6335 -151.117

- X8 1 0.9002 2.9055 -145.809 - X2 1 2.7626 4.7678 -119.064

- X3 1 5.0801 7.0853 -97.672

0.01512

Verificar se um modelo candidato tem bom desempenho em dados independentes daqueles usados para ajuste.

- · Coletar novos dados para verificar o modelo e seu poder preditivo.
- · Deixar parte dos dados de fora do ajuste, para usar na validação.

Validação de Modelos

#### Validação Cruzada

Quando temos um grande número de observações, podemos dividir os dados em duas partes: e .

Com o subconjunto ajustamos o modelo.

Com o subconjunto verificamos o poder preditivo do modelo.

Calculamos o :

$$MSPR = \frac{\sum_{i=1}^{n^*} (Y_i - \hat{Y}_i)^2}{n}$$

em que  $Y_i$  é o valor da variável resposta da i-ésima observação do conjunto teste,  $\hat{Y}_i$  é o valor predito para a i-ésima observação do conjunto teste segundo o modelo usando o conjunto treinamento e  $n^*$  é o total de observações no conjunto teste.

ME613 - Análise de Regressão

0.0013956

0.0771906

57/62

file:///Users/imac/Documents/GitHub/ME613-UNICAMP/ME613-UNICAMP.github.io/aulas/slides/parte11/parte11.html#

Usando  $AIC_n$  e  $R_{a.n.}^2$  temos o Modelo 3:

Usando  $C_n$ , temos o Modelo 2:

Exemplo

Com os dados de

Modelo 1:

58/62

57/62

5/30/2016 ME613 - Análise de Regressão

#### Exemplo - Modelo 1

5/30/2016

```
dadosT <- read.table("./dados/CH09TA05.txt")</pre>
colnames(dadosT) <- c("X1","X2","X3","X4","X5","X6","X7","X8","Y","lnY")
modelo1 \leftarrow lm(lnY \sim X1 + X2 + X3 + X8, data=dados)
yhat <- predict(modelo1,newdata=dadosT)</pre>
MSPR <- function(yhat,yobs){
  mean((yobs-yhat)^2)
 Variável
                                        Estimativa
                                                                               Erro-Padrão
                                        3.8524186
                                                                               0.1926952
 Intercepto
                                        0.0733226
                                                                               0.018973
 X_1
                                        0.0141851
                                                                               0.0017306
 X_2
```

0.0154527

0.3529676

MSE é 0.044 e MSPR é 0.077

 $X_3$ 

### Exemplo - Modelo 2

modelo2 <- lm(lnY ~ X1 + X2 + X3 + X5 + X8,data=dados)
vhat <- predict(modelo2,newdata=dadosT)</pre>

| Variável   | Estimativa | Erro-Padrão |
|------------|------------|-------------|
| Intercepto | 4.0381206  | 0.2376904   |
| $X_1$      | 0.0736065  | 0.0188341   |
| $X_2$      | 0.0140523  | 0.0017208   |
| $X_3$      | 0.0154557  | 0.0013853   |
| $X_5$      | -0.0034296 | 0.0026061   |
| $X_8$      | 0.3412188  | 0.0771389   |

Temos 54 observações que não foram utilizadas na escolha do modelo para os

 $ln(Y) = \beta_0 + \beta_1 X_1 + \beta_2 X_2 + \beta_3 X_3 + \beta_8 X_8 + \varepsilon$ 

 $ln(Y) = \beta_0 + \beta_1 X_1 + \beta_2 X_2 + \beta_3 X_3 + \beta_5 X_5 + \beta_8 X_8 + \varepsilon$ 

 $ln(Y) = \beta_0 + \beta_1 X_1 + \beta_2 X_2 + \beta_3 X_3 + \beta_5 X_5 + \beta_6 X_6 + \beta_8 X_8 + \varepsilon$ 

, obtemos, usando  $PRESS_n$  e  $BIC_n$ :

dados sobre cirurgia. Este será o conjunto de dados

MSE é 0.044 e MSPR é 0.08

59/62

59/62

5/30/2016

ME613 - Análise de Regressão 5/30/2016 ME613 - Análise de Regressão

### Exemplo - Modelo 3

| Variável   | Estimativa | Erro-Padrão |
|------------|------------|-------------|
| Intercepto | 4.0539742  | 0.2347935   |
| $X_1$      | 0.0715171  | 0.0186373   |
| $X_2$      | 0.0137555  | 0.0017094   |
| $X_3$      | 0.0151165  | 0.0013853   |
| $X_5$      | -0.0034501 | 0.0025718   |
| $X_6$      | 0.0873166  | 0.0577017   |
| $X_8$      | 0.3509039  | 0.0763914   |

MSE é 0.043 e MSPR é 0.079

### Leitura

- · Applied Linear Statistical Models: Capítulo 9.
- · Faraway Linear Models with R: Capítulo 10
- · Draper & Smith Applied Regression Analysis: Capítulo 15.
- · Tutorial: Model Selection in R
- · bestglm



61/62