Control de Velocidad de un Motor DC

Autores

Estrada Vidal, Jorge jor1550g@gmail.com Florian Chacon, Erick erick.florian.uni@gmail.com Giraldo Castillo, Oscar oscar.gi.cast@gmail.com

Asesores:

Ing. Rodriguez Bustinza, Ricardo robust@uni.edu.pe

Universidad Nacional de Ingeniería

I. OBJETIVOS

- Identificar el modelo de un planta RC través de la adquisición de datos y de la estructura paramétrica ARX.
- Diseñar un controlador PI para la planta RC.
- Analizar y comparar un controlador PI y PID para la planta RC.

II. TAREA ACADEMICA

Realizar el diseño analitico del diseño control PI Analogico y PI por rediseño digital del código proporcionado por el profesor (control_rc.m). La tarea además de la parte analitica debe acompañar el criterio de diseño de los polos deseados en forma gráfica (Matlab).

III. PRESENTACIÓN DE RESULTADOS

En este capítulo mostraremos los resultados del análisis anterior. LLegando a obtener:

- Diseño analógico de un controlador PI.
- Rediseño digital de un controlador PI por Tustin.
- Comparación entre control PI y PID.

A. Análisis

Para hallar el controlador de nuestra planta RC, procederemos primero a identificar mediante un ARX[111], con esto obtendremos la planta identificada la cual seria como se muestra en la ecuación ??.

$$P(s) = \frac{Gain}{s + \frac{1}{\pi}} = \frac{8.66}{s + 8.59} \tag{1}$$

Observamos que nuestra planta presenta un polo real

$$s_p = -8.59$$
 (2)

El sistema que vamos a analizar es el mostrado en la Fig

Sabemos que la Función de Transferencia de nuestro controlador PI es de la siguiente forma

$$G_c(s) = \frac{K(s+a)}{s} \tag{3}$$

./imagenes/sistema.png

Fig. 1. Lugar de las raices

Asumiendo las siguientes variables de diseño:

$$t_s = 1; (4)$$

1

$$M_p = 0.1; (5)$$

Con esto procederemos a hallar nuestros polos deseados (s_d) de la siguiente manera:

$$\zeta = -\frac{\log(M_p)}{\sqrt{\log(M_p^2 + \pi^2)}} = 0.5912 \tag{6}$$

$$w_n = \frac{4.6}{\zeta t_s} = 7.7814 \tag{7}$$

$$s_d = -\zeta w_n \pm j w_n \sqrt{1 - \zeta^2}$$

= -4.6 \pm j6.2761 (8)

Graficando el lugar de las raices (Ver Fig ??), en ella se observa el polo deseado, así como el polo de la planta y el cero

del controlador PI cuyos parametros estan hallados aplicando el criterio de fase para el caso del cero y el criterio de la magnitud para la ganancia.

./imagenes/rootLocus.png

Fig. 2. Lugar de las raices

Note que r_3 corresponde al cero del integrador que más adelante será calculado. Hallando los angulos θ_1 y θ_2 con los cuales podrémos calcular θ_3 :

$$\theta_1 = \pi - atan\left(\frac{Id}{rd}\right) = 2.2033rad\tag{9}$$

$$\theta_2 = atan\left(\frac{Id - Ip}{rp - rd}\right) = 1.0046rad\tag{10}$$

$$\theta_3 = \theta_1 + \theta_2 + \pi = 0.0663 rad \tag{11}$$

Usaremos el caso 2 para el cálculo del cero del controlador (a) debido a que el valor de $\theta_3<\frac{\Pi}{2}$

$$a = r_d + \frac{i_d}{\tan(\theta_3)} \tag{12}$$

Segun los parametros de la Fig ?? podemos hallar las siguientes magnitudes:

$$r_1 = s_d - sc = -4.6000 + j6.2761$$
 (13)

Para el cálculo de la ganancia K, hacemos uso de la ganancia unitaria en el lugar de las raíces:

$$K = \frac{|r1||r2|}{Gain|r3|} = 0.0642 \tag{16}$$

Finalmente nuestro controlador PI queda de la siguiente forma:

$$G_c(s) = \frac{0.06422s + 6.37}{s} \tag{17}$$

Usando re-diseño por el metodo de Tustin para hallar el controlador en tiempo discreto, obtenemos:

$$G_c(z) = \frac{0.1377z + 0.009287}{z - 1} \tag{18}$$

B. Resultados obtenidos

La data obtenida de la adquisición se puede apreciar en la figura ??

./imagenes/data.png

Fig. 3. Data obtenida de la adquisición

./imagenes/identificacion_arx.png

Fig. 4. Identificación ARX

Se identifica el sistema usando la estructura paramétrica 69 r2 = sd-sp; %polo ARX (ver Fig. ??) usando una frecuencia de muestreo f_s de = 30Hz. Posteriormente, hallamos los controladores PI y caportamos los coeficientes obtenidos del controlador digital 73 al directorio /data para su procesamiento en labview. El código generado es el siguiente: 86 Simulación del Controlador PI continuo 86 Simulación del Controlador PI continuo

```
1 clear all; close all; clc
  % Programa para calcular el controlador
  % Cargando la DATA
5 %
  dataLeida = load('../data/data_rc.lvm');
7 T=1/30; % Tiempo de Muestreo
  y1=dataLeida(:,4);
9 u1=dataLeida(:,6);
11 figure
  subplot(211)
plot(y1,'b','LineWidth',2);
xlabel('\bf t(seg)'); ylabel('\bf y(volts)');
15 subplot (212)
  plot(u1, 'r', 'LineWidth',2);
17 xlabel('\bf t(seg)'); ylabel('\bf u(volts)');
  % Identificación ARX
21 %
  data=iddata(y1,u1,T);
23 th=arx (data,[1 1 1]);
  present (th)
thc=d2c(th);
  [num, den] = tfdata(thc);
27 Gp=tf(num, den)
  gain = num\{1\}(2);
29 tau = 1/num\{1\}(2);
31 %
  %% Polos de la planta
33 %
  sp=pole(Gp);
ip=abs(imag(sp));
  rp=abs(real(sp));
39 % Especificaciones de diseño polos deseados
  %
41 ts = 1;
  Mp = 0.1;
zeta = -log(Mp) / sqrt((log(Mp))^2 + pi^2);
  wn=4.6/(zeta*ts);
45 s1 = -zeta *wn + 1 j *wn * sqrt(1 - zeta^2);
  % Polo deseado
47 \text{ sd} = \text{s1};
  id=abs(imag(sd));
49 rd=abs(real(sd));
51 %
  % Diseño del control PI continuo
53 %
  theta1=pi-atan(id/rd):
theta2=atan((id-ip)/(rp-rd));
  theta3=theta1+theta2+pi; % condición de fase
57 theta3 = pi_to_pi(theta3);
_{59} if abs(theta3)<pi/2
       zc = rd+id/tan(theta3);
61
      zc = rd-id/tan(theta3);
  a = zc; % zero del controlador
65 % polo del controlador
  sc = 0;
  r1 = sd-sc; %polo
```

```
K = abs(r1)*abs(r2)/(gain*abs(r3));
77 Gc=tf (K*[1 a],[1 0])
  % Funcion de transferencia en lazo cerrado H
79 L=series (Gc, Gp);
  H=L/(L+1)
   figure; hold on;
t = 0:0.001:5;
u=ones(size(t)):
   yp=lsim(H,u,t);
   plot(t,u,'r')
89 plot(t, yp, 'b', 'LineWidth',2)
91 xlabel('\bf t(seg)'); ylabel('\bf y(volts)');
   legend('set point', 'y_{lazo cerrado}');
  0/0
95 % Re-diseño por tustin del Control
  % en Tiempo Discreto
97 % -
   T=tau/5;
99 [Nt, Dt] = tfdata(Gc, 'v');
   Nt = poly2sym(Nt, 's');
101 Dt = poly2sym(Dt, 's');
   syms z
103 Gdt = Nt/Dt;
   Gdt = subs(Gdt, {\dot{s'}}, (2*(z-1))/(T*(z+1)));
105 Gdt = simplify(Gdt);
   Gdt = vpa(Gdt.4):
107 [NDt, DDt] = numden(Gdt);
   NDt = sym2poly(NDt);
109 DDt = sym2poly(DDt);
111 % -
  % FT del Controlador digital D(z)
113 % -
   GDt = tf(NDt, DDt, T)
115
117 % Coeficientes para lectura de LabVIEW
119 [Np, Dp] = t f d a t a (Gp, 'v');
   planta = [Np Dp];
   save '../data/coef_planta.lvm' planta -ascii -tabs
save '../data/num_controller.lvm' NDt -ascii -tabs
123 save '../data/den_controller.lvm' DDt -ascii -tabs
```

Finalmente podemos validar que las respuestas de los sistemas controlados por un controlador PI (ver Fig. ??) y PID (ver Fig. ??) en lazo cerrado cumplen con las condiciones de diseño propuestas.

IV. CONCLUSIONES

 Notamos que comparando ambos controladores empleados (PI y PID), el sistema responde mejor frente al controlador PI ya que posee un menor sobre impulso ante el PID. (ver Fig. ??)

REFERENCES

[1] Repositorios https://github.com/oskargicast/ControladorPI

Fig. 6. Planta controlada usando un controlador PID

- [2] Ing. Rodriguez Bustinza, Ricardo Diseño del controlador discreto usando aproximador digital.
- [3] Leonardo J. Marín, Víctor M. Alfaro Sintonización de controladores por ubicación de polos y ceros Departamento de Automática, Escuela de Ingeniería Eléctrica, Universidad de Costa Rica