Spectroscopy Visualizer 使用手册

V 2.7.4

VOYAGER

目录

E	录		ĺ
1	程序等	安装和运行环境	1
	1.1	程序主体	1
	1.2	Python 3 辅助模块	1
2	程序的	使用时的注意事项	1
3	程序界	P面名词解释	5
	3.1	采样模块	5
		3.1.1 Device Name	5
		3.1.2 Channel	5
		3.1.3 Sample Rate/MHz	5
		3.1.4 Range/V	5
		3.1.5 Record Length/M	5
		3.1.6 Rep Rate Diff/Hz	5
	3.2	寻峰切片模块	5
		3.2.1 Peak Min Amp/V	5
		3.2.2 Peak Min Length	5
		3.2.3 Auto-adjust Min Amp	5
		3.2.4 Find By Absolute Value	7
		3.2.5 Slice Length	7
		3.2.6 Reference	7
	3.3	相位校正模块	7
		3.3.1 Correction	7
		3.3.2 View Phase	3
		3.3.3 Temp. Window	3
		3.3.4 Real Spec Only	3
		3.3.5 Phase	3
		3.3.6 Zero Fill Factor)

	3.3.7	Auto-flip Minus Spec	9
3.4	程序材	目关模块	9
	3.4.1	Points Displayed	9
	3.4.2	Threads	9
	3.4.3	Queue Capacity	9
	3.4.4	Operation Mode1	0
3.5	数据征	字储模块1	0
	3.5.1	Set Storage Directory1	0
	3.5.2	Open1	0
	3.5.3	Save Options1	0
	3.5.4	Save Format	1
3.6	命令權	莫块1	1
	3.6.1	Sample Data1	1
	3.6.2	View Pulses	1
	3.6.3	Restart1	1
	3.6.4	Start/Stop1	1
3.7	文件對	支单1	1
	3.7.1	Load Compressed Files	2
	3.7.2	Load Data Files1	2
	3.7.3	Decode Files	2
3.8	配置多	英单1	2
	3.8.1	Save Configs1	2
	3.8.2	Load Configs1	2
	3.8.3	Set Current Configs as Default	2
3.9	工具卖	支单1	3
	3.9.1	Generate the Wavelength Axis1	3
	3.9.2	Flatten Curves	3
	3.9.3	Sample Data	3

	3.9.4 Miscellaneous Options	3
3.10	其他设定窗口1	4
	3.10.1 Peak Position	4
	3.10.2 Empty Queue Timeout	4
	3.10.3 Min Linear Phase Length	4
	3.10.4 Max Linear Phase Std	5
	3.10.5 Python Path	5
3.11	图形显示模块1	5
	3.11.1 红线1	5
	3.11.2 白线1	5
	3.11.3 按下左键拖动后释放1	5
	3.11.4 右键1	5
	3.11.5 中键1	5
	3.11.6 Start Freq	6
	3.11.7 End Freq	6
	3.11.8 X	6
	3.11.9 Delta	6
3.12	数据存储标签1	6
	3.12.1 TS-1523542351	6
	3.12.2 Binary	6
	3.12.3 Decode	6
	3.12.4 Wavelength	6
	3.12.5 Flat	6
	3.12.6 Gas1	6
	3.12.7 Ref 或 Reference1	6
	3.12.8 Trans或 Transmittance	7
	3.12.9 Magnitude	7
	3.12.10 Intensity	7

1 程序安装和运行环境

1.1 程序主体

程序的全部安装文件放置在 SpectroscopyVisualizer 文件夹下,运行 setup.exe 或 SpectroscopyVisualizer.application 均可进行安装,安装后会在桌面和开始菜单 创建快捷方式,并可通过控制面板进行卸载。

程序运行在 Microsoft .NET Framework 4.5 平台上。.NET Framework 4.5 只支持 Windows Vista SP2 以上版本的操作系统,一般不需手动安装,需要时可以从 Microsoft 官网下载。

程序可以运行在无采集卡的电脑上,然而其中的数据采集功能必须运行在有采集卡并且安装了 NI-SCOPE 套件的计算机上。

1.2 Python 3 辅助模块

另有一部分辅助功能由 Python 3 代码实现,如查看时域脉冲,生成波长轴和归一化频谱。这些功能需要计算机上安装有 Python 3 的解释器,并且包含 numpy, matplotlib 两个支持库。

要安装 Python 3,可以从 Python 官网上下载 Python 3 安装文件进行安装,接下来下载并安装 numpy 和 matplotlib。也可以直接下载 anaconda python 3.5 以上版本,下载后无需手动安装其他库。程序编写时的 Python 版本为 Python 3.5。

安装结束后,需要在程序的 Tools->Miscellaneous Options 对话框中,设定 Python Path 项的值,即 Python 3 解释器的路径。点击 Browse 按钮,进入 Python 3 或 anaconda 的安装文件夹中,寻找 Python.exe 文件,选择该文件即可。

2 程序使用时的注意事项

1. 当有其他程序,或者本程序的另一个实例占有了采集卡的资源时,本程序的 采集功能无法使用。同样,本程序使用过程中,其他程序也无法进行采集。 这一点可以以后在代码中添加释放资源语句进行改善。

- 2. 程序在数据处理的过程中,程序面板和其他选项窗口内的所有参数更改均无效,只在程序下一次开始数据处理的时候生效。而在使用 Loop 模式或者 Restart 命令时,面板上参数的更改会在下一轮生效。
- 3. 程序的波形显示画布上,显示频谱时显示的总是叠加谱的模的平方,显示相位时显示的是首个信号的展开后的相位谱。在保存选项上可以调整保存时使用的格式,但是对程序显示没有影响。

3 程序界面名词解释

3.1 采样模块

Device Name	Dev3	Channel	0
Sample Rate/MHz	100	Range/V	10
Record Length/M	1	Rep Rate Diff/Hz	400

3.1.1 Device Name

指数字采集卡的设备名。设备名可以从 NI-MAX 中查看得到。目前的默认 值是 Dev3。

3.1.2 Channel

指当前使用的采集通道的编号。查看板卡即可得到通道编号。

3.1.3 Sample Rate/MHz

指采集卡内时钟的采样率,单位为兆赫兹。目前程序不支持外时钟。另外, 采集卡的采样率不能任意设置,只能设定为几个固定的值,如 100MHz、50 MHz 等等。具体可以设置的值请参考设备手册。如果设置错误的值有可能影响后续计 算。

3.1.4 Range/V

指采集卡的采集幅度范围,单位为伏特。具体物理意义请参考设备手册。

3.1.5 Record Length/M

指采集卡单次采集所取得的数据长度或点数,单位为兆点。所设定的长度, 经换算成字节后,不可超过采集卡板载内存的最大容量。板载内存的容量是多少 点数或者多少字节,请查询设备手册或询问厂商。

3.1.6 Rep Rate Diff/Hz

指两个相干信号重复频率之差,单位为赫兹。在脉冲序列寻峰的时候会使用这个值。

3.2 寻峰切片模块

Peak Min Amp/	V 0.5	✓ Auto-adjust Min Amp
Peak Min Lengt	th 2000	✓ Find By Absolute Val
Slice Length	Minimum Length	∨ Reference

3.2.1 Peak Min Amp/V

寻峰的阈值,即峰可能的最小的幅度,单位为伏特。根据 Find By Absolute Value 设定的不同,绝对值或幅度本身低于这个值的点将不会被认为是脉冲的峰。这个值主要用来排除噪声。

3.2.2 Peak Min Length

寻峰时,每个峰底部最短的长度,单位为点数。这个参数用来排除在整个采 样数据的最开始部位的峰,这些峰的前半部分被采样的起点所截掉,因此需要排 除掉。

3.2.3 Auto-adjust Min Amp

勾选后,将自动调整 Peak Min Amp,以避免错误地将真正的峰认作噪声。 自动调整的原理是,比较最终找到的峰的数目与通过重频差估计出来的峰的数目, 如果找到的峰过多,则提升阈值,如果找到的峰过少,则降低阈值。另外,自动 调整不保证所有的峰都被找到或所有噪声都被排除,只在达到接近估计数目时停 止。因为需要重复寻找,所以勾选后会降低程序运行速度。

3.2.4 Find By Absolute Value

勾选后,在找峰的时候根据所有点的幅度的绝对值进行寻找。反之,则只寻 找幅度大于零的点。

3.2.5 Slice Length

切片时,判定每个脉冲周期长度的方式,单位为点数。这个值作为切片后每个脉冲周期的长度。

1. Minimum Length: 所有相邻脉冲峰间距的最小值

2. Average Length: 所有相邻脉冲峰间距的平均值

3. Fixed Length: 指定的长度

3.2.6 Reference

勾选后,程序将认为时域信号中包含参考脉冲,并且气体脉冲和参考脉冲各自拥有固定的周期。程序将会把找到的脉冲峰分为两组,并会判定在频谱校正后,平均幅度较大的一组为气体信号,另一组为参考信号。在右侧画布显示图形时,只显示传输信号的频谱。在保存数据时,气体信号相关的数据加以 GAS 标识,参考信号相关的数据加以 REF 标识,二者相除后的数据加以 TRANSMISSION标识。

需要注意的是,包含参考脉冲后,程序中各模块的接口完全改变。程序增加 了很多可能的异常情况。加上这部分开发较为仓促,测试机会很少,因此较有可 能出现问题。

3.3 相位校正模块

Correction	Mertz	V	☐ View Phase
Temp. Window	Hann	V	Real Spec Only
Phase Full Range ~			
Zero Fill Factor	1		Auto-flip Minus Spec

3.3.1 Correction

选择相位校正的方式,这个选项仅仅影响对幅度谱和相位谱进行运算的方式,

不影响如何获取相位谱。

FFT Only: 只作 FFT 变换,不作相位校正

Mertz: 使用 Mertz 法处理相位与频谱。具体请参考相关论文。

3.3.2 View Phase

勾选后,在右侧画布上显示目前信号展开后的相位。选定后,程序对输入数据仅作寻峰、切片处理,然后计算数据中第一个脉冲的相位谱。不进行任何相位校正处理。

3.3.3 Temp. Window

选择时域加窗也即频域切趾的方式。选项略。

3.3.4 Real Spec Only

勾选后,在相位校正后,仅仅保留频谱的实部,不保留虚部。反之保留完整的复数。在 Mertz 法的相关论文中,都只保留了实部,而虚部在计算中实际上已经被消去。

3.3.5 Phase

选择从时域脉冲中提取用来相位校正的相位谱的方式。

Full Range: 从频谱中,提取全部频率范围的相位。数学上可以证明,使用这个方法提取相位会导致校正后频谱上出现大于零的基线。另外,该方法的计算量较大。

Central Interpolation: 即 FTIR 相关论文中介绍的方法。提取时域脉冲峰附近的较短的双边区域,如 512 个点,进行 FFT,计算相位谱,再插值到完整数据的长度。

Specific Pts Range: 首先计算单周期脉冲的完整的频谱,然后计算频谱上指定范围(相位平坦区域)的相位谱。计算得到这部分展开后的相位谱后,根据区域内相位的跳变情况和方差情况,寻找出相位最平坦的一部分子区域(或完整区域),进行线性拟合。拟合后,再向外插值到完整长度。区域的起止单位为索引点数。

Specific Freq Range: 同上,区域的起止单位为赫兹。

3.3.6 Zero Fill Factor

对切片后的时域脉冲进行补零的系数 ZFF。假设原脉冲长度最接近的 2 的整数次幂为 2^N ,则补零后的长度为 2^N*2^{ZFF-1} 。补零后的长度,总为 2 的整数次幂。程序中必须对数据进行补零,因为所使用的数学库无法对任意长度的数据进行 FFT 计算。因此,ZFF 设置的值必须大于零。

3.3.7 Auto-flip Minus Spec

勾选后,对校正后频谱平均幅度小于零的数据进行正负翻转。这个选项是为 了解决过去曾经出现的频谱翻转并叠加相消的现象。通常不建议勾选。

3.4 程序相关模块

Points Displayed	1000	Threads 4
Queue Capacity	48	Manual ~

3.4.1 Points Displayed

右侧画布上显示的数据点数。数据点数过多会导致更新缓慢和卡顿,数据点数过少会导致显示的分辨率不佳。该数值对存储的计算结果没有影响,仅仅影响显示效果。

3.4.2 Threads

并行工作的消费者线程数目。在不超过 CPU 最大线程数的情况下,线程数目越多,计算速度越快。CPU 最大线程数请参考 CPU 相关资料和 CPU 自身核心数。

3.4.3 Queue Capacity

采样数据队列的最大容量。所有数据都从该队列中取出进行计算。因此,设定容量较小时,队列容易满容量而堵塞,导致计算速度缓慢。但同时,有数据被取出计算后,最新的采样数据会马上加入,因此此时的计算结果会更加接近实时的结果。

而设定容量较大时,队列内可以缓存更多的数据,计算速度相对较快。但此时程序的计算结果会有较大的延时,可能计算的是几秒之前的采样数据。

设定容量过大,缓存数据量超过程序可用的最大内存后,会导致程序内存溢出而崩溃。

3.4.4 Operation Mode

程序运行后的操作模式。

Manual: 手动停止采样和计算。

Single: 采样指定次数。单位为采样的次数,而非数据量。

Loop: 循环采样,每次采样指定的次数。所储存的结果可以通过 TS-开头的时间戳分辨所属的循环。

3.5 数据存储模块

Set Save Directory				Open
Samples	Spec	Total	Magni	tude Y

3.5.1 Set Storage Directory

设置采样数据和计算数据的共同存储目录。存储数据较多时,建议先存储至 固态硬盘上,否则容易发生硬盘满转速阻塞的问题,硬盘阻塞后,程序将运行缓 慢。

3.5.2 Open

在资源浏览器中打开存储的目录。

3.5.3 Save Options

选择要保存的数据。

Samples: 时域被序列化的数据,命名以 Binary 开头。因时域数据量巨大,为了压缩空间和提升存储速度,没有为存储可读的数字文本,所以需要使用 File->Decode Files 进行解码,或直接使用 Load Compressed 进行读取和后处理。

Spec: 每次采样对应的频域叠加谱。

Total: 所有采样数据的总频域叠加谱。

3.5.4 Save Format

选择存储数据的形式,如幅度(绝对值)、强度(平方后)、复数本身、相位等等。选项略。

3.6 命令模块

Sample Data	View Pulses	Restart	Start

3.6.1 Sample Data

仅仅采集数据,不进行计算,点击后在弹出的对话框中输入采样的次数(不是数据量)。在采集时,面板左侧各个模块的相关设置均会生效。

3.6.2 View Pulses

查看时域脉冲序列,以及寻峰的结果。该命令依赖 Python 运行环境,使用者的电脑必须安装了 Python 3.5,以及 numpy, matplotlib 等 package。推荐在电脑上安装 Anacomanda 的集成包,该包中包含了上述的所有运行环境。并且需要在 Tools-> Miscellaneous Options 中设定正确的 Python.exe 的路径。

3.6.3 Restart

重新开始采集。重新采集时生效的参数以点击按钮时面板的输入为准。

3.6.4 Start/Stop

开始或停止采集。每次开始采集时生效的参数,以点击按钮时面板的输入为 准。在程序运行中更改参数无效。

3.7 文件菜单

3.7.1 Load Compressed Files

载入压缩过的时域数据文件,进行后处理,压缩过的数据文件开头有[Binary]标识,扩展名为.txt,无法使用其他工具直接打开阅读,只能使用同菜单下的解码命令解码后才可使之可读。后处理时的参数以点击菜单时面板输入为准。

3.7.2 Load Data Files

载入直接存储数值的可读的时域数据文件,进行后处理,这些文件开头有 [Decode]标识,扩展名为.txt。这些文件同时也可以使用其他数据浏览工具打开。 后处理时的参数以点击菜单时面板输入为准。

3.7.3 Decode Files

载入压缩过的时域数据文件,进行解码,转化为可读的数据文件。序列化过的数据文件开头有[Binary]标识,扩展名为.txt。解码后的数据文件有[Decode]标识,扩展名为.txt。

3.8 配置菜单

3.8.1 Save Configs

保存当前的程序参数到硬盘中。

3.8.2 Load Configs

从硬盘中载入配置文件。

3.8.3 Set Current Configs as Default

将当前的程序参数设置为每次启动的默认参数。

3.9 工具菜单

3.9.1 Generate the Wavelength Axis

为频谱数据产生波长轴。产生的波长轴数据文件的文件名有 WavelengthAxis 标识。因为使用了 Python 模块,注意事项请参见 View Pulses 按钮的描述。

3.9.2 Flatten Curves

对频谱进行分段的拟合,并对吸收峰附近进行插值。最后用原频谱除以拟合和拼接后的频谱,获取归一后的频谱。同样适用了 Python 模块,注意事项请参见 View Pulses 按钮的描述。在使用该命令时,必须首先生成波长轴。如未生成,程序将会自动首先执行生成波长轴命令。请按次序进行操作。具体的操作方法,请参照程序运行时,弹出的黑色命令行界面上的指示。

3.9.3 Sample Data

见按钮模块的 Sample Data

3.9.4 Miscellaneous Options

一些其他的杂项设定, 打开新的窗口进行设定。

3.10 其他设定窗口

V Options	– 🗆 X
Peak Position	Center In Period V
Empty Queue Timeout/ms	5000
Min Linear Phase Length/pts	200
Max Linear Phase Std	0.34
Python Path Browse	C:\Anaconda3\python.exe
	OK Cancel

3.10.1 Peak Position

切片后,脉冲峰在脉冲周期内的位置。

Center in Period: 脉冲峰在脉冲周期的中心

Left in Period: 脉冲峰在脉冲周期的起始处

3.10.2 Empty Queue Timeout

程序中,当数据的阻塞队列为空,即没有采集到数据或采集到的数据都已经被处理之时,程序等待的时间,单位为毫秒。超过这个时间,如果仍然没有新的数据被采集,程序将停止。

3.10.3 Min Linear Phase Length

线性相位校正时,拟合相位的最短长度,单位为点数。在进行线性相位校正

时,程序会根据用户输入的频率区段去进行线性相位校正。如果用户选择的区段 内有跳变,程序会将用户选择的区段根据跳变点进行分段,分别计算每一段的标 准差,取标准差最小的一段作为线性相位校正的拟合对象。在相位分段的过程中, 如果某个相位区段的长度少于这个最小的点数,这个区段将不计算在内。

3.10.4 Max Linear Phase Std

线性相位校正时,待拟合相位的最大标准差。如果待拟合区段的标准差大于 这个值,将被舍去。

3.10.5 Python Path

设定 Python 解释器的路径。该 Python 解释器必须安装了 numpy 和 matplotlib 模块,否则无法顺利执行。点击 Browse 按钮后,选择正确的 Python.exe 文件即可。

3.11 图形显示模块

3.11.1 红线

显示频谱时,表示的是单次采集过后所有周期频谱的平均值的平方。显示相位时,为单次采集后第一个周期的展开后的相位谱。

3.11.2 白线

显示频谱时,显示的是从开始到结束,所有周期频谱平均后的平方值。

3.11.3 按下左键拖动后释放

缩放视图,显示左键滑动范围的频谱或相位。

3.11.4 右键

撤销,返回上一个视图。

3.11.5 中键

手动调整幅度显示范围。在显示频谱时,幅度范围不会根据输入自动调整, 而在显示相位时,幅度范围会自动调整。

3.11.6 Start Freq

当前显示区域的起始频率,单位为兆赫兹。

3.11.7 End Freq

当前显示区域的终止频率,单位为兆赫兹。

3.11.8 X

当前鼠标光标位置的横坐标,单位为兆赫兹。

3.11.9 Delta

拖动左键画线过程中,线起始和终止两点之间的横坐标距离,单位为兆赫兹。

3.12 数据存储标签

3.12.1 TS-152354235

TS 表示 Time stamp, 即本轮计算开始的时间戳。152354235 即 15 时 23 分 54 秒 235 毫秒。

3.12.2 Binary

被压缩存储的时域数据文件。

3.12.3 Decode

未被压缩或被解码的时域数据文件

3.12.4 Wavelength

表示该文档存储着相应数据文件的波长轴

3.12.5 Flat

指经过分段拟合归一化后的频谱

3.12.6 Gas

表示含有参考信号时, 非参考信号的数据

3.12.7 Ref 或 Reference

表示含有参考信号时,参考信号的数据

3.12.8 Trans或 Transmittance

表示气体透射信号与参考信号频谱相除的结果。

3.12.9 Magnitude

表示复数的模。

3.12.10 Intensity

表示复数的模的平方。