

ऊष्मा का संचरण (Heat Transfer)

JEE

ऊष्मा स्थानातरण

(1)
$$Q = \frac{kA(T_1 - T_2)t}{x}; H = kA\left(\frac{T_1 - T_2}{L}\right)$$

जहाँ Q लम्बाई x और अनुप्रस्थ—काट A की छड़ के विपरीत सिरों पर समय t में प्रवाहित होने वाली ऊष्मा की मात्रा है। T_1 और T_2 स्थिर अवस्था में सिरों के तापमान हैं और k छड़ के पदार्थ की तापीय चालकता गुणांक है।

(2)
$$Q = -kA \left(\frac{dT}{dx}\right)t$$

जहाँ (dT/dx) ताप प्रवणता को दर्शाता है।

(3)
$$H = \frac{dQ}{dt} = -kA \left(\frac{dT}{dx}\right)$$

H ऊष्मीय धारा कहलाती है।

विकिरण

यह ऊष्मा संचरण की एक विधि है जिसमें ऊष्मा बिना किसी माध्यम के उपयोग के सीधे एक स्थान से दूसरे स्थान तक जाती है।

- ऊष्मा ऊर्जा का यह विकिरण EM तरंगों का रूप लेता है।
- ये रेडिएटर अपने तापमान के परिणामस्वरूप उत्सर्जित होते हैं, जैसे लाल-गर्म लोहा या फिलामेंट लैंप प्रकाश उत्सर्जित करता है।
- प्रत्येक व्यक्ति अपने पिरवेश से ऊर्जा उत्सर्जित और अवशोषित दोनों करता है। अवशोषित ऊर्जा की मात्रा शरीर के रंग के समानुपाती होती है।
- कृष्णिका विकिरण एक कृष्ण पिंड द्वारा अपने पर्यावरण (एक आदर्श अपारदर्शी, अपरावर्तक) के साथ उष्मागतिक साम्य में एक पिंड के भीतर या आसपास उत्सर्जित तापीय विद्युत चुम्बकीय विकिरण है। इसमें तरंग दैर्ध्य का एक विशिष्ट स्पेक्ट्रम होता है जो तीव्रता के व्युत्क्रमानुपाती होता है और केवल पिंड के तापमान पर निर्भर करता है, जिसे गणना और सिद्धांत के लिए एक समान और स्थिर माना जाता है।
- परावर्तकता (r), अवशोषकता (a) और पारगम्यता (t)

$$(1) \qquad r = \frac{Q_1}{Q}$$

$$(2) a = \frac{Q_2}{Q}$$

$$(3) t = \frac{Q_3}{Q}$$

जहाँ Q_1 परावर्तित ऊर्जा है, Q_2 अवशोषित ऊर्जा है और Q_3 एक सतह के माध्यम से पारगम्य ऊर्जा है जिस पर Q आपतित विकिरण ऊर्जा है।

स्टीफन का विकिरण नियम

स्टीफन का नियम कहता है कि किसी कृष्ण पिंड से विकिरित शक्ति घनत्व उसके परम तापमान T की चौथी घात के अनुक्रमानुपाती होता है।

वीन का विस्थापन नियम

• $\lambda_m T = b =$ स्थिरांक; जहाँ, b वीन का स्थिरांक है और इसका मान 2.89×10^{-3} m-K. होता है।

न्यूटन का शीतलन नियम

 'न्यूटन का शीतलन नियम' कहता है कि किसी पिंड के ठंडा होने की दर उसके परिवेश से पिंड के अतिरिक्त ताप के समानुपाती होती है:

$$\frac{dQ}{dt} = -k(T_2 - T_1)$$

जहाँ T_1 परिवेश का तापमान है और T_2 पिंड का तापमान है।

