Daniel Guterman - 08/02/2020

1. Introduction:

1.1 Background

The real-estate market is changing dramatically in the last decade. Beside the classical housing market – long terms leases and acquisitions for leaving, there is a new emerging market – the short-term lease, especially Air B&B. Buying a house for air B&B purposes is an idea that is growing in popularity.

In order to verify that the purchase is as profitable as expected there are couple of factors to be addressed – the popularity of the location, the size of the house and the sense of security of the Air B&B residents. The safeness of an area is crucial because one bad experience such as being robbed is going to leave the residents with a bitter taste and therefore might lead to bad reviews and reduce profitability.

1.2 Problem

Feeling safe is a factor that's difficult to quantify, and its difficult to measure before the actual buying of the house. But I believe that you can get a fair estimate by understanding the crime stats and the popular vanues of each area and deciding the location accordingly.

1.3 Chosen data

The crime statistics dataset of London found on Kaggle has crimes in each Boroughs of London from 2008 to 2016. The year 2016 being the latest we will be considering the data of that year which is actually old information as of now. The crime rates in each borough may have changed over time. This project aims to select the safest borough in London based on the total crimes, explore the neighborhoods of that borough to find the 10 most common venues in each neighborhood and finally cluster the neighborhoods using k-mean clustering.

2. Data Acquisition and Cleaning

2.1 Data Acquisition

The data acquired for this project is a combination of data from three sources.

- The first data source of the project uses a London crime data that shows the crime per borough in London.
- The second source of data is scraped from a Wikipedia page that contains the list of London boroughs. This page contains additional information about the boroughs.
- The third data source is the list of Neighborhoods in the Royal Borough of Kingston upon Thames as found on a Wikipedia page. This dataset is created from scratch using the list of neighborhoods available on the site.

2.2 Data Cleaning

The data preparation for each of the three sources of data is done separately. From the London crime data, the crimes during the most recent year (2016) are only selected. The major categories of crime are pivoted to get the total crimes per the boroughs for each major category (see fig 2.1).

Daniel Guterman - 08/02/2020

	Borough	Burglary	Criminal Damage	Drugs	Other Notifiable Offences	Robbery	Theft and Handling	Violence Against the Person	Total
0	Barking and Dagenham	1287	1949	919	378	534	5607	6067	16741
1	Barnet	3402	2183	906	499	464	9731	7499	24684
2	Bexley	1123	1673	646	294	209	4392	4503	12840
3	Brent	2631	2280	2096	536	919	9026	9205	26693
4	Bromley	2214	2202	728	417	369	7584	6650	20164

Fig 2.1

The second data is scraped from a Wikipedia page using the Beautiful Soup library in python. Using this library, we can extract the data in the tabular format as shown in the website. After the web scraping, string manipulation is required to get the names of the boroughs in the correct form (see fig 2.2). This is important because we will be merging the two datasets together using the Borough names

	Borough	Inner	Status	Local authority	Political control	Headquarters	Area (sq mi)	Population (2013 est)[1]	Co-ordinates	Nr. in map
0	Barking and Dagenham	NaN	NaN	Barking and Dagenham London Borough Council	Labour	Town Hall, 1 Town Square	13.93	194352	51°33′39″N 0°09′21″E / 51.5607°N 0.1557°E /	25
1	Barnet	NaN	NaN	Barnet London Borough Council	Conservative	North London Business Park, Oakleigh Road South	33.49	369088	51°37′31″N 0°09′06″W / 51.6252°N 0.1517°W /	31
2	Bexley	NaN	NaN	Bexley London Borough Council	Conservative	Civic Offices, 2 Watling Street	23.38	236687	51°27′18″N 0°09′02″E / 51.4549°N 0.1505°E /	23
3	Brent	NaN	NaN	Brent London Borough Council	Labour	Brent Civic Centre, Engineers Way	16.70	317264	51°33′32″N 0°16′54″W / 51.5588°N 0.2817°W /	12
4	Bromley	NaN	NaN	Bromley London Borough Council	Conservative	Civic Centre, Stockwell Close	57.97	317899	51°24′14″N 0°01′11″E / 51.4039°N 0.0198°E /	20

Fig 2.2

The two datasets are merged on the Borough names to form a new dataset that combines the necessary information in one dataset (see fig 2.3). The purpose of this dataset is to visualize the crime rates in each borough and identify the borough with the least crimes recorded during the year 2016.

	Borough	Local authority	Political control	Headquarters	Area (sq mi)	Population (2013 est)[1]	Co- ordinates	Burglary	Criminal Damage	Drugs	Other Notifiable Offences	Robbery	Theft and Handling	Violence Against the Person	Total
o	Barking and Dagenham	Barking and Dagenham London Borough Council	Labour	Town Hall, 1 Town Square	13.93	194352	51°33'39"N 0°09'21"E / 51.5607"N 0.1557"E /	1287	1949	919	378	534	5607	6067	16741
1	Barnet	Barnet London Borough Council	Conservative	North London Business Park, Oakleigh Road South	33.49	369088	51°37′31″N 0°09′06″W / 51.6252°N 0.1517″W /	3402	2183	906	499	464	9731	7499	24684
2	Bexley	Bexley London Borough Council	Conservative	Civic Offices, 2 Watting Street	23.38	236687	51°27'18"N 0°09'02"E / 51.4549"N 0.1505°E /	1123	1673	646	294	209	4392	4503	12840
3	Brent	Brent London Borough Council	Labour	Brent Civic Centre, Engineers Way	16.70	317264	51°33'32"N 0°16'54"W / 51.5588"N 0.2817"W /	2631	2280	2096	536	919	9026	9205	26693
4	Bromley	Bromley London Borough Council	Conservative	Civic Centre, Stockwell Close	57.97	317899	51"24"14"N 0"01"11"E / 51.4039"N 0.0198"E	2214	2202	728	417	369	7584	6650	20164

Fig 2.3

After visualizing the crime in each borough we can find the borough with the lowest crime rate and hence tag that borough as the safest borough. The third source of data is acquired from the list of

Daniel Guterman - 08/02/2020

neighborhoods in the safest borough on wikipedia. This dataset is created from scratch, the pandas data frame is created with the names of the neighborhoods and the name of the borough with the latitude and longitude left blank (see fig 2.4).

	Neighborhood	Borough	Latitude	Longitude
0	Berrylands	Kingston upon Thames		
1	Canbury	Kingston upon Thames		
2	Chessington	Kingston upon Thames		
3	Coombe	Kingston upon Thames		
4	Hook	Kingston upon Thames		

fig 2.4

The coordinates of the neighborhoods is be obtained using Google Maps API geocoding to get the final dataset (See Fig 2.5)

11	Neighborhood	Borough	Latitude	Longitude
0	Berrylands	Kingston upon Thames	51.393781	-0.284802
1	Canbury	Kingston upon Thames	51.417499	-0.305553
2	Chessington	Kingston upon Thames	51.358336	-0.298622
3	Coombe	Kingston upon Thames	51.419450	-0.265398
4	Hook	Kingston upon Thames	51.367898	-0.307145

fig 2.5

The new dataset is used to generate the 10 most common venues for each neighborhood using the Foursquare API, finally using k means clustering algorithm to cluster similar neighborhoods together.

3. Methodology

3.1 Exploratory Data Analysis

3.1.1 Statistical summary of crimes:

The describe function in python is used to get statistics of the London crime data, this returns the mean, standard deviation, minimum, maximum, 1st quartile (25%), 2nd quartile (50%), and the 3rd quartile (75%) for each of the major categories of crime (See fig 3.1.1).

Daniel Guterman - 08/02/2020

	Burglary	Criminal Damage	Drugs	Other Notifiable Offences	Robbery	Theft and Handling	Violence Against the Person	Total
count	33.000000	33.000000	33.000000	33.000000	33.000000	33.000000	33.000000	33.000000
mean	2069.242424	1941.545455	1179.212121	479.060606	682.666667	8913.121212	7041.848485	22306.696970
std	737.448644	625.207070	586.406416	223.298698	441.425366	4620.565054	2513.601551	8828.228749
min	2.000000	2.000000	10.000000	6.000000	4.000000	129.000000	25.000000	178.000000
25%	1531.000000	1650.000000	743.000000	378.000000	377.000000	5919.000000	5936.000000	16903.000000
50%	2071.000000	1989.000000	1063.000000	490.000000	599.000000	8925.000000	7409.000000	22730.000000
75%	2631.000000	2351.000000	1617.000000	551.000000	936.000000	10789.000000	8832.000000	27174.000000
max	3402.000000	3219.000000	2738.000000	1305.000000	1822.000000	27520.000000	10834.000000	48330.000000

Fig 3.11

The count for each of the major categories of crime returns the value 33 which is the number of London boroughs. 'Theft and Handling' is the highest reported crime during the year 2016 followed by 'Violence against the person', 'Criminal damage'. The lowest recorded crimes are 'Drugs', 'Robbery' and 'Other Notifiable offenses'.

3.1.2 Boroughs with the highest crime rates:

Comparing five boroughs with the highest crime rate during the year 2016 it is evident that Westminster has the highest crimes recorded followed by Lambeth, Southwark, Newham and Tower Hamlets. Westminster has a significantly higher crime rate than the other 4 boroughs (see fig 3.1.2).

Fig 3.1.2

3.1.3 Boroughs with the lowest crime rates

Comparing five boroughs with the lowest crime rate during the year 2016, City of London has the lowest recorded crimes followed by Kingston upon Thames, Sutton, Richmond upon Thames and Merton (see fig 3.1.3).

Daniel Guterman - 08/02/2020

fig 3.1.3

City of London has a significantly lower crime rate because it i is the 33rd principal division of Greater London but it is not a London borough. It has an area of 1.12 square miles and a population of 7000 as of 2013 which suggests that it is a small area (see fig 3.1.3.1). Hence we will consider the next borough with the lowest crime rate as the safest borough in London which is Kingston upon Thames.

3.1.4 Neighborhoods in Kingston upon Thames:

There are 15 neighborhoods in the royal borough of Kingston upon Thames, they are visualised on a map using folium on python (see fig 3.1.4).

Fig 3.1.4

Daniel Guterman - 08/02/2020

3.2 Modelling Using the final dataset containing the neighborhoods in Kingston upon Thames along with the latitude and longitude, we can find all the venues within a 500 meter radius of each neighborhood by connecting to the Foursquare API. This returns a json file containing all the venues in each neighborhood which is converted to a pandas dataframe. This data frame contains all the venues along with their coordinates and category (see fig 3.2.1).

	Neighborhood	Neighborhood Latitude	Neighborhood Longitude	Venue	Venue Latitude	Venue Longitude	Venue Category
0	Berrylands	51.393781	-0.284802	Surbiton Racket & Fitness Club	51.392676	-0.290224	Gym / Fitness Center
1	Berrylands	51.393781	-0.284802	Alexandra Park	51.394230	-0.281206	Park
2	Berrylands	51.393781	-0.284802	K2 Bus Stop	51.392302	-0.281534	Bus Stop
3	Berrylands	51.393781	-0.284802	Cafe Rosa	51.390175	-0.282490	Café
4	Canbury	51,417499	-0.305553	The Boater's Inn	51.418546	-0.305915	Pub

Fig 3.2.1

One hot encoding is done on the venues data. (One hot encoding is a process by which categorical variables are converted into a form that could be provided to ML algorithms to do a better job in prediction). The Venues data is then grouped by the Neighborhood and the mean of the venues are calculated, finally the 10 common venues are calculated for each of the neighborhoods.

To help people find similar neighborhoods in the safest borough we will be clustering similar neighborhoods using K - means clustering which is a form of unsupervised machine learning algorithm that clusters data based on predefined cluster size. We will use a cluster size of 5 for this project that will cluster the 15 neighborhoods into 5 clusters. The reason to conduct a K- means clustering is to cluster neighborhoods with similar venues together so that people can shortlist the area of their interests based on the venues/amenities around each neighborhood.

4. Results

After running the K-means clustering we can access each cluster created to see which neighborhoods were assigned to each of the five clusters. Looking into the neighborhoods in the first cluster (see fig 4.1)

	Neighborhood	Borough	Latitude	Longitude	Cluster Labels	1st Most Common Venue	2nd Most Common Venue	3rd Most Common Venue	4th Most Common Venue	5th Most Common Venue	6th Most Common Venue	7th Most Common Venue	8th Most Common Venue
1	Canbury	Kingston upon Thames	51.417499	-0.305553	0	Pub	Café	Plaza	Fish & Chips Shop	Supermarket	Spa	Shop & Service	Park
4	Hook	Kingston upon Thames	51.367898	-0.307145	0	Bakery	Convenience Store	Indian Restaurant	Fish & Chips Shop	Wine Shop	Food	Electronics Store	Farmers Market
5	Kingston upon Thames	Kingston upon Thames	51.409627	-0.306262	0	Coffee Shop	Café	Burger Joint	Sushi Restaurant	Pub	Record Shop	Cosmetics Shop	Market
7	Malden Rushett	Kingston upon Thames	51.341052	-0.319076	0	Convenience Store	Pub	Garden Center	Restaurant	Fast Food Restaurant	Discount Store	Dry Cleaner	Electronics Store
9	New Malden	Kingston upon Thames	51.405335	-0.263407	0	Gastropub	Gym	Sushi Restaurant	Supermarket	Korean Restaurant	Indian Restaurant	Fish & Chips Shop	Dry Cleaner
10	Norbiton	Kingston upon Thames	51.409999	-0.287396	0	Indian Restaurant	Pub	Food	Italian Restaurant	Platform	Grocery Store	Farmers Market	Dry Cleaner
12	Seething Wells	Kingston upon Thames	51.392642	-0.314366	0	Indian Restaurant	Coffee Shop	Italian Restaurant	Pub	Café	Wine Shop	Fast Food Restaurant	Chinese Restaurant
13	Surbiton	Kingston upon Thames	51.393756	-0.303310	0	Coffee Shop	Pub	Supermarket	Breakfast Spot	Grocery Store	Gastropub	French Restaurant	Train Station
14	Tolworth	Kingston upon Thames	51.378876	-0.282860	0	Grocery Store	Pharmacy	Furniture / Home Store	Train Station	Pizza Place	Discount Store	Coffee Shop	Bus Stop

Fig 4.1

Daniel Guterman - 08/02/2020

The cluster one is the biggest cluster with 9 of the 15 neighborhoods in the borough Kingston upon Thames. Upon closely examining these neighborhoods we can see that the most common venues in these neighborhoods are Restaurants, Pubs, Cafe, Supermarkets, and stores. Looking into the neighborhoods in the second, third and fifth clusters, we can see these clusters have only one neighborhood in each. This is because of the unique venues in each of the neighborhoods, hence they couldn't be clustered into similar neighborhoods (see figures 4.2, 4.3 and 4.4).

	Neighborhood	Borough	Latitude	Longitude	Cluster Labels	1st Most Common Venue	2nd Most Common Venue	3rd Most Common Venue	4th Most Common Venue			7th Most Common Venue		9th Most Common Venue
2	Chessington	Kingston upon Thames	51.358336	-0.298622	1	Fast Food Restaurant	Wine Shop	Golf Course	German Restaurant	Gastronuh	Garden Center	Furniture / Home Store	Fried Chicken Joint	French Restaurant

Fig 4.2

The second cluster has one neighborhood which consists of Venues such as Restaurants, Golf courses, and wine shops.

	Neighborhood	Borough	Latitude	Longitude	Cluster Labels	1st Most Common Venue	2nd Most Common Venue	3rd Most Common Venue		5th Most Common Venue				
11	Old Malden	Kingston upon Thames	51.382484	-0.25909	2	Train Station	Pub	Food	Gastropub	Garden Center	Furniture / Home Store	Fried Chicken Joint	French Restaurant	Deli / Bodega

Fig 4.3

The third cluster has one neighborhood which consists of Venues such as Train stations, Restaurants, and Furniture shops.

	Neighborhood	Borough	Latitude	Longitude	Cluster Labels	1st Most Common Venue	2nd Most Common Venue	3rd Most Common Venue		5th Most Common Venue			8th Most Common Venue	9th Most Common Venue
6	Kingston Vale	Kingston upon Thames	51.43185	-0.258138	4	Grocery Store	Bar	Italian Restaurant	Soccer Field	Garden Center	Furniture / Home Store	Fried Chicken Joint	French Restaurant	Department Store

Fig 4.4

The fifth cluster has one neighborhood which consists of Venues such as Grocery shops, Bars, Restaurants, Furniture shops, and Department stores. We will look into the neighbourhoods in the fourth cluster (see fig 4.5).

	Neighborhood	Borough	Latitude	Longitude	Cluster Labels	1st Most Common Venue	2nd Most Common Venue	3rd Most Common Venue	2.7	5th Most Common Venue		7th Most Common Venue	8th Most Common Venue	9th Most Common Venue
0	Berrylands	Kingston upon Thames	51.393781	-0.284802	3	Gym / Fitness Center	Park	Café	Bus Stop	Wine Shop	Fish & Chips Shop	Electronics Store	Farmers Market	Fast Food Restaurant
8	Motspur Park	Kingston upon Thames	51.390985	-0.248898	3	Park	Gym	Restaurant	Soccer Field	Bus Stop	Wine Shop	Fast Food Restaurant	Dry Cleaner	Electronics Store

Fig 4.5

The fourth cluster has two neighborhoods in it, these neighborhoods have common venues such as Parks, Gym/Fitness centers, Bus Stops, Restaurants, Electronics Stores and Soccer fields etc.

Daniel Guterman - 08/02/2020

Visualizing the clustered neighborhoods on a map using the folium library (see fig 4.6).

Fig 4.6

Each cluster is color coded for the ease of presentation, we can see that majority of the neighborhood falls in the red cluster which is the first cluster. Three neighborhoods have their own cluster (Blue, Purple and Yellow), these are clusters two three and five. The green cluster consists of two neighborhoods which is the 4th cluster.

5. Discussion

The aim of this project is to help people who want to buy the best and safest asset for Air B&B in London, while taking into consideration the crime rate and the popularity of an area based on common venues in it. For example, if a person is looking for a neighborhood with good connectivity and public transportation, we can see that Clusters 3 and 4 have Train stations and Bus stops as the most common venues. If a person is looking for a neighborhood with stores and restaurants in a proximity, then the neighborhoods in the first cluster is suitable. The choices of neighborhoods may vary from person to person, depanding on his business approach – Does he believe that good public transport is more important than popular resturants.

6.Conclusion

This project helps a person get a better understanding of the neighborhoods with respect to the most common venues in that neighborhood. It is always helpful to make use of technology to stay one step ahead i.e. finding out more about places before purchasing an asset. We have just taken safety as a primary concern to shortlist the safest borough of London. The future of this project includes taking other factors such as cost of living in the areas into consideration to shortlist the borough, such as filtering areas based on a predefined budget.