

Faculty of Science and Engineering Department of Mathematics & Statistics

MID TERM ASSESSMENT PAPER

MODULE CODE: MA4003 SEMESTER: Autumn 2010/11

MODULE TITLE: Engineering Mathematics 3 DURATION OF EXAMINATION: 45 minutes

LECTURER: Dr. M. Burke PERCENTAGE OF TOTAL MARKS: 20 %

Colour: Yellow

INSTRUCTIONS TO CANDIDATES: Answer all questions. All questions carry equal marks. Use the Answer Sheet below.

Answer Sheet

STUDENT'S NAME: STUDENT'S ID NUMBER:

For each question, place an "X" in the box of your choice.

Question	a	b	c	d	e	Do not write in this column
1				X		
2	X					
3			X			
4					X	
5				X		
6					X	
7				X		
8				X		
9			X			
10			X			

Table of Laplace Transforms

$f(t), t \ge 0$	$F(s) = \mathcal{L}[f(t)]$
1	$\frac{1}{s}$
t	$\frac{1}{s^2}$
t^n	$\frac{n!}{s^{n+1}}$
e^{at}	$\frac{1}{s-a}$
$t^n e^{at}$	$\frac{n!}{(s-a)^{n+1}}$
$\sinh at$	$\frac{a}{s^2-a^2}$
$\cosh at$	$\frac{s}{s^2-a^2}$
$\frac{1}{a-b}(e^{at} - e^{bt})$	$\frac{1}{(s-a)(s-b)}$
$\frac{a}{a-b}e^{at} - \frac{b}{a-b}e^{bt}$	$\frac{s}{(s-a)(s-b)}$
$\sin at$	$\frac{a}{s^2+a^2}$
$\cos at$	$\frac{s}{s^2+a^2}$
f'(t)	sF(s) - f(0)
f''(t)	$s^2 F(s) - s f(0) - f'(0)$
$\int_0^t f(\tau) d\tau$	$\frac{1}{s}F(s)$
$e^{at}f(t)$	F(s-a)
Heaviside $u_a(t)$	$\frac{e^{-as}}{s}$
$f(t-a)u_a(t)$	$e^{-as}F(s)$
Ramp $R(t-a)$	$\frac{e^{-as}}{s^2}$
tf(t)	-F'(s)
$rac{f(t)}{t}$	$\int_{s}^{\infty} F(\sigma) d\sigma$
$(f * g)(t) \equiv \int_0^t f(t - \tau)g(\tau) d\tau$	F(s)G(s)
f(t) = f(t+p)	$\frac{1}{1 - e^{-sp}} \int_0^p f(t)e^{-st} dt$

All f(t) are defined for $t \ge 0$.

1. The Laplace Transform of $\cosh 2t - \sinh 2t$ is

(a)
$$\frac{2s-2}{(s^2-1)^2}$$
 (b) $\frac{1}{s-2}$ (c) $\frac{1}{s}$ (d) $\frac{1}{s+2}$ (e) $\frac{s-2}{(s^2-4)^2}$

2. The *Laplace* Transform of $e^{3t}(t+1)$ is

(a)
$$\frac{s-2}{(s-3)^2}$$
 (b) $\frac{2s+1}{s^2(s-3)}$ (c) $\frac{3s^2-5s-3}{s^2(s-3)}$ (d) $\frac{2s+1}{s^2(s+3)}$ (e) $\frac{s+4}{(s+3)^2}$

3. The Laplace Transform of $f(t) = \cos(t-3)u_3(t)$ is

(a)
$$\frac{3}{s^2+9}e^{-3s}$$
 (b) $\frac{e^{-3}}{s(s^2+1)}$ (c) $\frac{s}{s^2+1}e^{-3s}$ (d) $\frac{s}{s^2+9}e^{-3s}$ (e) $\frac{3}{s^2+1}e^{-s}$

4. The inverse *Laplace* transform of $\frac{s}{s^2-2s+1}$ is

(a)
$$(1-t)e^{-t}$$
 (b) te^{t} (c) $e^{-t}\cos t$ (d) $e^{t}\cos t$ (e) $(1+t)e^{t}$

5. The inverse *Laplace* transform of $\frac{s-2}{s^2+5s+6}$ is

(a)
$$e^{-3t}$$
 (b) $-\frac{1}{7}e^t + \frac{8}{7}e^{-6t}$ (c) $2e^{-2t} - e^{3t}$ (d) $5e^{-3t} - 4e^{-2t}$ (e) e^{3t}

6. The convolution of t with t^2 (also denoted by $t * t^2$) is given by

(a)
$$\frac{t^3}{6}$$
 (b) t^3 (c) $\frac{t^4}{4}$ (d) $\frac{t^4}{6}$ (e) $\frac{t^4}{12}$

7. The period of $\sin\left(\frac{\pi x}{2}\right)$ is

(a) 1 (b) 2 (c)
$$2\pi$$
 (d) 4 (e) 4π

8. The functions $f(x) = 1 - x^4$ and $g(x) = x^2 \sin x$ defined on -1 < x < 1 have the property that

- (a) both are even (b) both are odd (c) f is odd and g is even
- (d) f is even and g is odd (e) neither is even nor odd

9. The function $f(x) = \begin{cases} -1, & \text{if } -1 < x < 0 \\ 1, & \text{if } 0 < x < 1 \end{cases}$ is periodic with period 2. It has a *Fourier* Series $\sum_{n=1}^{\infty} b_n \sin(n\pi x)$ where b_n is given by

(a)
$$\frac{2}{n\pi}(-1)^n$$
 (b) $\frac{4}{n\pi}(-1)^n$ (c) $\frac{2}{n\pi}(1-\cos(n\pi))$ (d) $\frac{2}{n}$ (e) $\frac{4}{n}$

10. The coefficient $\ a_0$ in the *Fourier* Series for the periodic function $f(x) = x \cos x$ if $-\pi < x < \pi$ with period 2π has the value

(a)
$$-2$$
 (b) $-\frac{4}{\pi}$ (c) 0 (d) $\frac{2}{3}$ (e) $\frac{2}{3}\pi$