More Elimination of Left-Recursion

In general

$$S \rightarrow S \alpha_1 \mid ... \mid S \alpha_n \mid \beta_1 \mid ... \mid \beta_m$$

- All strings derived from S start with one of $\beta_1,...,\beta_m$ and continue with several instances of $\alpha_1,...,\alpha_n$
- Rewrite as

$$S \rightarrow \beta_1 S' \mid \dots \mid \beta_m S'$$

 $S' \rightarrow \alpha_1 S' \mid \dots \mid \alpha_n S' \mid \epsilon$

Contd., Removal of left recursion due to many productions ...

• Left recursion may also be introduced by two or more grammar rules.

• For example:
$$S \rightarrow Aa \mid b$$

 $A \rightarrow Ac \mid Sd \mid E$

AACTSATE

AACTSA

• After the first step (substitute S by its RHS in the rules) the grammar becomes,

$$S \rightarrow Aa \mid b$$

 $A \rightarrow Ac \mid Aad \mid bd \mid E$

Removal of left recursion due to many productions ...

- Split productions into α and β
- General rule: If we have A \rightarrow A α 1 | A α 2 | ... | β 1 | β 2 | ... Then rewrite as:
 - $A \rightarrow \beta 1 A' \mid \beta 2 A' \mid ...$
 - A' $\rightarrow \alpha 1$ A' | $\alpha 2$ A' | ... | ϵ

 $S \rightarrow Aa \mid b$ $A \rightarrow Ac \mid Aad \mid bd \mid \epsilon$

- Left-recursive parts (α):
 - · Ac $\rightarrow \alpha 1 = c$
 - · Aad $\rightarrow \alpha 2 = ad$
- Non-left-recursive parts (β):
 - · (**β1)** bd
 - · (**β2)** ε

Removal of left recursion due to many productions ...

Rewrite A without left recursion

$$A \rightarrow bd A' \mid A'$$

 $A' \rightarrow c A' \mid ad A' \mid \epsilon$

After the second step (removal of left recursion) the grammar becomes

$$S \rightarrow Aa \mid b$$

$$A \rightarrow bdA' \mid A'$$

$$A' \rightarrow cA' \mid adA' \mid \in$$

Left Factoring

 In top-down parsing when it is not clear which production to choose for expansion of a symbol

Defer (accept) the decision till we have seen enough input

- In general, if A $\rightarrow \alpha\beta1 \mid \alpha\beta2$
- Defer (Accept) decision by expanding $A \rightarrow \alpha A'$
- we can then expand A' $\rightarrow \beta 1$ or $\beta 2$

Therefore A
$$\rightarrow \alpha\beta1 \mid \alpha\beta2$$
 $\rightarrow \rightarrow$ transforms to $\rightarrow \rightarrow$ $A \rightarrow \alpha A'$
A' $\rightarrow \beta1 \mid \beta2$

Here:

- α = the common prefix
- A' = a new non-terminal that handles the "rest of the options."

Dangling else problem again

Dangling else problem can be handled by left factoring

```
stmt → if expr then stmt else stmt
| if expr then stmt
```

can be transformed to

stmt
$$\rightarrow$$
 if expr then stmt S'
S' \rightarrow else stmt | \in

Left Factoring:

- 1. The common prefix **□** is if (Expr) Stmt.
- 2. The varying suffixes β_1 is else Stmt and β_2 is ϵ (the empty string, meaning "nothing").

Rule:
$$A \rightarrow \alpha A'$$

 $A' \rightarrow \beta 1 \mid \beta 2$

Summary of Recursive Descent

- Simple and general parsing strategy Left-recursion must be eliminated first ... but that can be done automatically
- Unpopular because of backtracking
- Thought to be too inefficient
- In practice, backtracking is eliminated by restricting the grammar

Predictive Parsers

- Like recursive-descent but parser can "predict" which production to use
 - By looking at the next few tokens
 - No backtracking
- Predictive parsers accept LL(k) grammars
 - L means "left-to-right" scan of input
 - L means "leftmost derivation"
 - k means "predict based on k tokens of lookahead"
- In practice, LL(1) is used

Predictive parsing Contd.,

Predictive parser can be implemented by maintaining an external stack

Parsing algorithm

- The parser considers 'X' the symbol on top of stack, and 'a' the current input symbol
- These two symbols determine the action to be taken by the parser
- Assume that '\$' is a special token that is at the bottom of the stack and terminates the input string.

```
if X = a = $ then halt

if X = a ≠ $ then pop(x) and ip++

if X is a non terminal
    then if M[X,a] = {X → UVW}
        then begin pop(X); push(W,V,U)
        end
    else error
```

LL(1) Languages

- In recursive-descent, for each non-terminal and input token there may be a choice of production
- LL(1) means that for each non-terminal and token there is only one production
- Can be specified via 2D tables
 - One dimension for current non-terminal to expand
 - One dimension for next token
 - A table entry contains one production

Contd., with Left Factoring

Here:

- α = the common prefix
 - A' = a new non-terminal that handles the "rest of the options."

Formula of left factoring

$$A \rightarrow \alpha \beta 1 | \alpha \beta 2$$

can be written as

$$A \rightarrow \alpha A'$$
, $A' \rightarrow \beta 1 \mid \beta 2$

Apply to Expression Grammar: $E \rightarrow T + E \mid T$

Here, both productions start with common prefix T. So, $\alpha = T$, $\beta 1 = +E$, $\beta 2 = \epsilon$.

After factoring

$$E \rightarrow TX$$
, $X \rightarrow +E|\epsilon$

Apply to Term Grammar T→(E) | int | int*T

Here, int is the common prefix.

So
$$\alpha$$
 = int, and β 1=*T, β 2 = ϵ

$$T \rightarrow (E) \mid intY$$

$$Y \rightarrow *T | \epsilon$$

final grammar became:

$$E \rightarrow TX$$
, $X \rightarrow +E \mid \epsilon$
 $T \rightarrow (E) \mid intY, Y \rightarrow *T \mid \epsilon$

Left-Factoring Example

Recall the grammar

$$E \rightarrow T + E \mid T$$

 $T \rightarrow (E) \mid int \mid int * T$

Factor out common prefixes of productions

$$E \rightarrow T X$$

 $X \rightarrow + E \mid \epsilon$
 $T \rightarrow (E) \mid \text{int } Y$
 $Y \rightarrow * T \mid \epsilon$

LL(1) Parsing Table Example

Left-factored grammar

$$E \rightarrow TX$$
 $X \rightarrow + E \mid \epsilon$
 $T \rightarrow (E) \mid int Y$ $Y \rightarrow * T \mid \epsilon$

The LL(1) parsing table:

	int	*	+	()	\$
Е	ΤX			ΤX		
X			+ E		3	3
Т	int Y			(E)		
У		* T	3		3	3

Contd.,

$$egin{aligned} E &
ightarrow TX \ T &
ightarrow (E) \mid int \ Y \ X &
ightarrow + E \mid arepsilon \ Y &
ightarrow *T \mid arepsilon \end{aligned}$$

FIRST sets:

- FIRST(E) = FIRST(T) = { (, int }
- FIRST(T) = { (, int }
- FIRST(X) = $\{+, \epsilon\}$
- FIRST(Y) = $\{ *, \epsilon \}$

FOLLOW sets:

- FOLLOW(E) = {), \$ }
- FOLLOW(T) = FIRST (X) U FOLLOW (E) = { +,), \$ }
- FOLLOW (X) = FOLLOW (E) = {), \$ }
- FOLLOW (Y) = FOLLOW (T) = { +,), \$}

	int	*	+	()	\$
Ε	ΤX			ΤX		
Х			+ E		ε	ε
Т	int Y			(E)		
У		* T	3		8	3