A Book of Abstract Algebra (2nd Edition)

1 Bookmark

Show all steps: ON

Problem

Let G be a group; let H and K be subgroups of G, with H a normal subgroup of G. Prove the following:

By the FHT, $K/(H K) \cong HK/H$. (This is referred to as the *first isomorphism theorem*.)

Step-by-step solution

Step 1 of 4

Suppose that *G* is any group and let *H*, *K* are the subgroups of *G*, with *H* a normal subgroup of *G*. Consider a mapping $f: K \to HK/H$ defined by

$$f(k) = Hk$$
, for all $x \in K$.

Objective is to prove that $K/(H - K) \cong HK/H + H = K$, by using fundamental homomorphism theorem.

According to the fundamental homomorphism theorem, if $f: G \to H$ is a homomorphism of Gonto H, with kernel K then

$$H \cong G/K$$

Consider the following result: the set HK will form the subgroup of G if and only if HK = KH.

Comment

Step 2 of 4

First prove that f is a homomorphism from K onto HK/H.

Let $x, y \in K$. Then

$$f(xy) = Hxy$$
$$= Hx \cdot Hy$$
$$= f(x) \cdot f(y)$$

This holds for all $x, y \in K$. Therefore, f is a homomorphism. Next, let $Hx \in HK/H$. It implies that $x \in HK$. Or for some $h \in H$ and $k \in K$, x = hk. Since HK = KH, there exists $h' \in H$ and $k' \in K$ such that hk = k'h'Now, f(k') = Hk'=(Hh')k'=H(h'k')=H(k'h').The second and last equality is obtained by the coset property. At last, it implies that f(k') = HxThat is, *f* is onto. Comment **Step 3** of 4 Now, it is remaining to show that $\ker f = H$ K. Let $x \in K$. If $x \in Kerf$ then f(x) = Hbecause H is the identity of quotient group HK/H. And then, Hx = HIt implies that $x \in H$. Therefore, $x \in H$ K. Thus, $\ker f \subseteq H$ K. Now let $x \in H$ K. Then $x \in H$, $x \in K$. Also then Hx = H and f(x) = H. It implies that $x \in Kerf$. On combining the equations, one gets $\ker f = H K$ Comment **Step 4** of 4

Hence, by fundamental homomorphism theorem it conclude that

$$K/(H \quad K) \cong HK/H$$

Comment