Орбитальная устойчивость

Пусть $X(t, X_0)$ — решение автономной системы и γ_0 — его траектория (орбита) в фазовом пространстве, а $d(P, \gamma_0) = \min_{t \ge 0} |X(t, X_0) - P|$ – расстояние от точки P до γ_0 . Множество P точек фазового пространства, для которых $d(P,\gamma) < \varepsilon$ назовем **-окрестностью** траектории γ .

Пусть γ_1 — траектория решения $X(t, X_1)$.

<u>Определение</u>. Решение $X(t, X_0)$ называется **орбитально устойчивым**, если $\forall \ arepsilon > 0 \ \exists \delta > 0$, что при всех X_1 , для которых $|X_1 - X_0| < \delta$, траектория γ_1 принадлежит -окрестности траектории γ_0 .

- А) Из устойчивости по Ляпунову следует орбитальная устойчивость.
- Б) Обратное утверждение неверно.

Утверждение А) очевидно (сравните оба определения).

Утверждение Б) поясним на примере.

Сначала рассмотрим две задачи

$$x'' + \omega^2 x = 0$$
 , $x(0) = 1$; $x'(0) = 0$ (1)

$$x'' + \omega^2 x = 0$$
, $x(0) = 1 + \delta$; $x'(0) = 0$ (2)

Умножаем на x' и интегрируем от 0 до t.

$$(x'(t))^2 + (x(t))^2 = 1$$
 и $(x'(t))^2 + (x(t))^4 = (1 + \delta)^2$

Переходим к фазовым переменным

$$x_2^2 + \omega^2 x_1^2 = 1$$
 (3)
 $x_2^2 + \omega^2 x_1^2 = (1 + \delta)^2$ (4)

$$x_2^2 + \omega^2 x_1^2 = (1 + \delta)^2 \tag{4}$$

Орбиты, задаваемые уравнениями (3) и (4), - эллипсы . Они при малом δ практически не отличимы друг от друга. Орбитальная устойчивость очевидна. Имеет место и устойчивость по Ляпунову (не асимптотическая), так как $\lambda_{1.2} = \pm \omega i$. Точка $(x_1(t); x_2(t))$ фазового пространства перемещается по этим орбитам с одинаковым периодом $T=2\pi/\omega$. При этом из близости начальных точек следует близость решений при всех $t \geq 0$, как и должно быть при устойчивости по Ляпунову...

Теперь рассмотрим нелинейные уравнения

$$x'' + 2x^3 = 0$$
 , $x(0) = 1$; $x'(0) = 0$ (5)

$$x'' + 2x^3 = 0$$
, $x(0) = 1 + \delta$; $x'(0) = 0$. (6)

Здесь ситуация существенно иная.

В фазовых переменных из (5) и (6) получаем

$$x_2^2 + x_1^4 = 1$$
 (7)
 $x_2^2 + x_1^4 = (1 + \delta)^4$ (8)

$$x_2^2 + x_1^4 = (1 + \delta)^4 \tag{8}$$

Орбиты (7) и (8) похожи "сдавленный" по вертикали эллипс и при малом δ практически не отличимы друг от друга. Поэтому орбитальная устойчивость имеет место. В то же время устойчивости по Ляпунову здесь нет. Ограничусь правдоподобными рассуждениями. Заметим, что все решения задач (1), (2), (5) и (6) – периодические (почему?), но для (1) и (2) период одинаковый - $T=2\pi/\omega$. Поэтому фазовые точки перемещаются по своим орбитам синхронно.

Для задач (5) и (6) это не так. На рис.1 изображены графики функций $x_1(t,0)$ и $x_1(t,\delta)$ (решений задач (5) и (6), при $\delta=0.1$). Видно, что периоды этих решений не совпадают. Поэтому движение фазовых точек $(x_1(t,0);x_2(t,0))$ и $(x_1(t,\delta);x_2(t,\delta))$ по своим орбитам "рассогласовано", близость начальных точек теряется с увеличением t.

