Міністерство освіти і науки України Національний технічний університет України «Київський політехнічний інститут імені Ігоря Сікорського" Факультет інформатики та обчислювальної техніки

Кафедра автоматизованих систем обробки інформації і управління

Звіт

з лабораторної роботи № 5 з дисципліни «Алгоритми та структури даних 2. Структури даних»

«Спискові структури даних»

Виконав(ла)	III-13 Лисенко Анастасія Олегівна	20
, ,	(шифр, прізвище, ім'я, по батькові)	
Перевірив	Сопов Олексій Олександрович	
	(прізвище, ім'я, по батькові)	

3MICT

1	МЕТА ЛАБОРАТОРНОЇ РОБОТИ	3
2	ЗАВДАННЯ	4
3	виконання	8
Псевдоко	Д АЛГОРИТМІВ	8
ПРОГРАМНА РЕАЛІЗАЦІЯ		8
Вихідний і	код 8	
Приклади	роботи	8
ВИС	СНОВОК	9
кри	ИТЕРІЇ ОШНЮВАННЯ	10

1 МЕТА ЛАБОРАТОРНОЇ РОБОТИ

Мета роботи — вивчити основні підходи формалізації евристичних алгоритмів і вирішення типових задач з їх допомогою.

2 ЗАВДАННЯ

Розробити алгоритм розв'язання задачі відповідно до варіанту. Виконати програмну реалізацію задачі. Не використовувати вбудовані спискові структури даних (контейнери). Зробити висновок по лабораторній роботі.

Варіанти завдань.

Варіант – **20**

20. Задана послідовність цілих чисел, що містить від'ємні елементи. Використовуючи стек, елементами якого ϵ цілі числа, надрукувати у зворотному порядку всі додатні елементи послідовності.

3 ВИКОНАННЯ

Псевдокод алгоритмів

```
Функція input_sequence():
       stack_num = []
               повторити поки True:
               line = input()
               якщо line[0] == "<":
                      break
               інакше:
                      for element in line.split():
                              stack_num.append(int(element))
               все якщо
        все повторити
 повернути stack_num
 Процедура output(stack_num):
       повторити для _ в stack_num[::-1]:
               top = stack_num.pop()
               якщо top > 0:
                      print(top, end = " ")
               все якшо
       все повторити
       print()
stack = input_sequence()
output(stack)
```

Програмна реалізація

Вихідний код

```
def input_sequence():
    stack_num = []
    print("Enter your sequence of even numbers\n to start new line press ENTER\n
to end input enter '<'\n ")
    while True:
        line = input()
        if line[0] == "<":
            break
        else:
            for element in line.split():
                stack_num.append(int(element))

    return stack_num

def output(stack_num):
    print("resulting text:")
    for _ in stack_num[::-1]:
        top = stack_num.pop()
        if top > 0:
            print(top, end = " ")
    print()
```

```
stack = input_sequence()
output(stack)
```

Приклади роботи

На рисунках 3.1 і 3.2 показані приклади роботи програми.

```
Enter your sequence of even numbers

to start new line press ENTER

to end input enter '<'

1 2 -5 4 -10 6

resulting text:
6 4 2 1
```

Рисунок 3.1 – 6 чисел

```
Enter your sequence of even numbers

to start new line press ENTER

to end input enter '<'

18 -72 65 74 1098 -456 73 87 -2 -6 19 -54 -34

resulting text:

19 87 73 1098 74 65 18
```

Рисунок 3.2 – 13 чисел

ВИСНОВОК

При виконанні даної лабораторної роботи я вивчила основні підходи формалізації евристичних алгоритмів і вирішення типових задач з їх допомогою.

Навчилася працювати зі стеком на мові Python та освоїла основні методи роботи з числами в ньому.

КРИТЕРІЇ ОЦІНЮВАННЯ

За умови здачі лабораторної роботи до 20.04.2022 включно максимальний

бал дорівнює – 5. Після 20.04.2022 максимальний бал дорівнює – 1.

Критерії оцінювання у відсотках від максимального балу:

- псевдокод алгоритму 10%;
- програмна реалізація алгоритму 80%;
- висновок -10%.