Backtracking Algorithms

Dr. Jonathan Phillips

Utah State University

Backtracking Algorithm

- Steps
 - Incrementally build a solution candidate
 - Abandon partial candidate (AKA backtrack) as soon as deemed invalid
- More efficient than "brute force" method
- Gives us an ordered method to build a solution

- Problem: Place 8 queens on a standard chessboard, such that no queen is attacking any other
- Brute Force solution
 - Try all combinations of positioning 8 queens until one is discovered
 - There are C(64, 8) unique positions: 4,426,165,396


```
Begin
     place queen 1 at grid[1,1]
     n = 2, (x, y) = (1, 1)
     Loop until n = 9
               place queen n at grid[x, y]
               If no violations
               Then
                        n = n + 1, (x, y) + 1
               Else
                        (x, y) + 1
                         If no next square
                                  n = n - 1, (x, y) = (position of queen n) + 1
                         Endif
               End If
     EndLoop
End
```



```
Begin
     place queen 1 at grid[1,1]
     n = 2, (x, y) = (1, 1)
     Loop until n = 9
               place queen n at grid[x, y]
               If no violations
               Then
                        n = n + 1, (x, y) + 1
               Else
                        (x, y) + 1
                         If no next square
                                  n = n - 1, (x, y) = (position of queen n) + 1
                         Endif
               End If
     EndLoop
End
```

1				
	2			

```
Begin
     place queen 1 at grid[1,1]
     n = 2, (x, y) = (1, 1)
     Loop until n = 9
               place queen n at grid[x, y]
               If no violations
               Then
                        n = n + 1, (x, y) + 1
               Else
                        (x, y) + 1
                         If no next square
                                  n = n - 1, (x, y) = (position of queen n) + 1
                         Endif
               End If
     EndLoop
End
```

1				
	2			
		3		

```
Begin
     place queen 1 at grid[1,1]
     n = 2, (x, y) = (1, 1)
     Loop until n = 9
               place queen n at grid[x, y]
               If no violations
               Then
                        n = n + 1, (x, y) + 1
               Else
                        (x, y) + 1
                         If no next square
                                  n = n - 1, (x, y) = (position of queen n) + 1
                         Endif
               End If
     EndLoop
End
```

1					
		2			
			3		
	4				

```
Begin
     place queen 1 at grid[1,1]
     n = 2, (x, y) = (1, 1)
     Loop until n = 9
               place queen n at grid[x, y]
               If no violations
               Then
                        n = n + 1, (x, y) + 1
               Else
                        (x, y) + 1
                         If no next square
                                  n = n - 1, (x, y) = (position of queen n) + 1
                         Endif
               End If
     EndLoop
End
```

1						
		2				
				3		
	4					
			5			

```
Begin
     place queen 1 at grid[1,1]
     n = 2, (x, y) = (1, 1)
     Loop until n = 9
               place queen n at grid[x, y]
               If no violations
               Then
                        n = n + 1, (x, y) + 1
               Else
                        (x, y) + 1
                         If no next square
                                  n = n - 1, (x, y) = (position of queen n) + 1
                         Endif
               End If
     EndLoop
End
```

1						
		2				
				3		
	4					
			5			
					6	

```
Begin
     place queen 1 at grid[1,1]
     n = 2, (x, y) = (1, 1)
     Loop until n = 9
               place queen n at grid[x, y]
               If no violations
               Then
                        n = n + 1, (x, y) + 1
               Else
                        (x, y) + 1
                         If no next square
                                  n = n - 1, (x, y) = (position of queen n) + 1
                         Endif
               End If
     EndLoop
End
```

1					
		2			
			3		
	4				
					5

```
Begin
     place queen 1 at grid[1,1]
     n = 2, (x, y) = (1, 1)
     Loop until n = 9
               place queen n at grid[x, y]
               If no violations
               Then
                        n = n + 1, (x, y) + 1
               Else
                        (x, y) + 1
                         If no next square
                                  n = n - 1, (x, y) = (position of queen n) + 1
                         Endif
               End If
     EndLoop
End
```

1						
		2				
				3		
	4					
						5
			6			

```
Begin
     place queen 1 at grid[1,1]
     n = 2, (x, y) = (1, 1)
     Loop until n = 9
               place queen n at grid[x, y]
               If no violations
               Then
                        n = n + 1, (x, y) + 1
               Else
                        (x, y) + 1
                         If no next square
                                  n = n - 1, (x, y) = (position of queen n) + 1
                         Endif
               End If
     EndLoop
End
```

1						
		2				
				3		
	4					
						5
			6			
					7	

```
Begin
     place queen 1 at grid[1,1]
     n = 2, (x, y) = (1, 1)
     Loop until n = 9
               place queen n at grid[x, y]
               If no violations
               Then
                        n = n + 1, (x, y) + 1
               Else
                        (x, y) + 1
                         If no next square
                                  n = n - 1, (x, y) = (position of queen n) + 1
                         Endif
               End If
     EndLoop
End
```

1						
		2				
				3		
	4					
						5
			6			

```
Begin
     place queen 1 at grid[1,1]
     n = 2, (x, y) = (1, 1)
     Loop until n = 9
               place queen n at grid[x, y]
               If no violations
               Then
                        n = n + 1, (x, y) + 1
               Else
                        (x, y) + 1
                         If no next square
                                  n = n - 1, (x, y) = (position of queen n) + 1
                         Endif
               End If
     EndLoop
End
```

1					
		2			
			3		
	4				
					5
				6	

Can we apply Backtracking to Sudoku?

• Yes!!!

By Simpsons contributor [GFDL (http://www.gnu.org/copyleft/fdl.html) or CC BY-SA 3.0 (https://creativecommons.org/licenses/by-sa/3.0)], via Wikimedia Commons

```
initialize grid to all zero
n=1, (x,y) = firstSquareInPlay
Loop
   place n at grid[x,y]
   If no violations
   Then
      n=1, (x,y) = nextSquareInPlay
      If off grid
      Then
         SUCCESS
      EndIf
   Else
      n=n+1
      If n is 10
      Then
         place 0 at grid[x,y]
         (x, y) = prevSquareInPlay
         If off grid
         Then
            FAIL
         Else
            n=grid[x,y]+1
         EndIf
      EndIf
   EndIf
EndLoop
```

Violations:

- n already exists in row
- n already exists in column
- n already exists in 3x3 box

```
initialize grid to all zero
n=1, (x,y) = firstSquareInPlay
Loop
   place n at grid[x,y]
   If no violations
   Then
      n=1, (x,y) = nextSquareInPlay
      If off grid
      Then
          SUCCESS
      EndIf
   Else
      n=n+1
      If n is 10
      Then
          place 0 at grid[x,y]
          (x, y) = prevSquareInPlay
          If off grid
          Then
             FAIL
          Else
             n=grid[x,y]+1
          EndIf
      EndIf
   EndIf
EndLoop
```

5	3			7				
6			1	9	5			
	9	8					6	
8				6				3
4			8		3			1
7				2				6
	6					2	8	
			4	1	9			5
				8			7	9

```
initialize grid to all zero
n=1, (x,y) = firstSquareInPlay
Loop
   place n at grid[x,y]
   If no violations
   Then
      n=1, (x,y) = nextSquareInPlay
      If off grid
       Then
          SUCCESS
      EndIf
   Else
      n=n+1
      If n is 10
       Then
          place 0 at grid[x,y]
          (x, y) = prevSquareInPlay
          If off grid
          Then
             FAIL
          Else
             n=grid[x,y]+1
          EndIf
      EndIf
   EndIf
EndLoop
```

5	3	1		7				
6			1	9	5			
	9	8					6	
8				6				3
4			8		3			1
7				2				6
	6					2	8	
			4	1	9			5
				8			7	9

```
initialize grid to all zero
n=1, (x,y) = firstSquareInPlay
Loop
   place n at grid[x,y]
   If no violations
   Then
      n=1, (x,y) = nextSquareInPlay
      If off grid
       Then
          SUCCESS
      EndIf
   Else
      n=n+1
      If n is 10
       Then
          place 0 at grid[x,y]
          (x,y) = prevSquareInPlay
          If off grid
          Then
             FAIL
          Else
             n=grid[x,y]+1
          EndIf
      EndIf
   EndIf
EndLoop
```

5	3	1	2	7				
6			1	9	5			
	9	8					6	
8				6				3
4			8		3			1
7				2				6
	6					2	8	
			4	1	9			5
				8			7	9

```
initialize grid to all zero
n=1, (x,y) = firstSquareInPlay
Loop
   place n at grid[x,y]
   If no violations
   Then
       n=1, (x,y) = nextSquareInPlay
       If off grid
       Then
          SUCCESS
       EndIf
   Else
       n=n+1
       If n is 10
       Then
          place 0 at grid[x,y]
          (x, y) = prevSquareInPlay
          If off grid
          Then
             FAIL
          Else
             n=grid[x,y]+1
          EndIf
       EndIf
   EndIf
EndLoop
```

5	3	1	2	7	4			
6			1	9	5			
	9	8					6	
8				6				3
4			8		3			1
7				2				6
	6					2	8	
			4	1	9			5
				8			7	9

```
initialize grid to all zero
n=1, (x,y) = firstSquareInPlay
Loop
   place n at grid[x,y]
   If no violations
   Then
      n=1, (x,y) = nextSquareInPlay
      If off grid
      Then
          SUCCESS
      EndIf
   Else
      n=n+1
      If n is 10
      Then
         place 0 at grid[x,y]
          (x,y) = prevSquareInPlay
          If off grid
          Then
             FAIL
          Else
             n=grid[x,y]+1
          EndIf
      EndIf
   EndIf
EndLoop
```

5	3	1	2	7	4	8		
6			1	9	5			
	9	8					6	
8				6				3
4			8		3			1
7				2				6
	6					2	8	
			4	1	9			5
				8			7	9

```
initialize grid to all zero
n=1, (x,y) = firstSquareInPlay
Loop
   place n at grid[x,y]
   If no violations
   Then
      n=1, (x,y) = nextSquareInPlay
      If off grid
       Then
          SUCCESS
      EndIf
   Else
      n=n+1
      If n is 10
       Then
          place 0 at grid[x,y]
          (x, y) = prevSquareInPlay
          If off grid
          Then
             FAIL
          Else
             n=grid[x,y]+1
          EndIf
      EndIf
   EndIf
EndLoop
```

5	3	1	2	7	4	8	9	
6			1	9	5			
	9	8					6	
8				6				3
4			8		3			1
7				2				6
	6					2	8	
			4	1	9			5
				8			7	9

```
initialize grid to all zero
n=1, (x,y) = firstSquareInPlay
Loop
   place n at grid[x,y]
   If no violations
   Then
      n=1, (x,y) = nextSquareInPlay
      If off grid
       Then
          SUCCESS
      EndIf
   Else
      n=n+1
      If n is 10
       Then
          place 0 at grid[x,y]
          (x,y) = prevSquareInPlay
          If off grid
          Then
             FAIL
          Else
             n=grid[x,y]+1
          EndIf
      EndIf
   EndIf
EndLoop
```

5	3	1	2	7	4	9		
6			1	9	5			
	9	8					6	
8				6				3
4			8		3			1
7				2				6
	6					2	8	
			4	1	9			5
				8			7	9

```
initialize grid to all zero
n=1, (x,y) = firstSquareInPlay
Loop
   place n at grid[x,y]
   If no violations
   Then
      n=1, (x,y) = nextSquareInPlay
      If off grid
       Then
          SUCCESS
      EndIf
   Else
      n=n+1
      If n is 10
       Then
          place 0 at grid[x,y]
          (x,y) = prevSquareInPlay
          If off grid
          Then
             FAIL
          Else
             n=grid[x,y]+1
          EndIf
      EndIf
   EndIf
EndLoop
```

5	3	1	2	7	6			
6			1	9	5			
	9	8					6	
8				6				3
4			8		3			1
7				2				6
	6					2	8	
			4	1	9			5
				8			7	9

```
initialize grid to all zero
n=1, (x,y) = firstSquareInPlay
Loop
   place n at grid[x,y]
   If no violations
   Then
      n=1, (x,y) = nextSquareInPlay
      If off grid
      Then
          SUCCESS
      EndIf
   Else
      n=n+1
      If n is 10
      Then
         place 0 at grid[x,y]
          (x,y) = prevSquareInPlay
          If off grid
          Then
             FAIL
          Else
             n=grid[x,y]+1
          EndIf
      EndIf
   EndIf
EndLoop
```

5	3	1	2	7	6	4		
6			1	9	5			
	9	8					6	
8				6				3
4			8		3			1
7				2				6
	6					2	8	
			4	1	9			5
				8			7	9

```
initialize grid to all zero
n=1, (x,y) = firstSquareInPlay
Loop
   place n at grid[x,y]
   If no violations
   Then
      n=1, (x,y) = nextSquareInPlay
      If off grid
      Then
          SUCCESS
      EndIf
   Else
      n=n+1
      If n is 10
      Then
          place 0 at grid[x,y]
          (x, y) = prevSquareInPlay
          If off grid
          Then
             FAIL
          Else
             n=grid[x,y]+1
          EndIf
      EndIf
   EndIf
EndLoop
```

5	3	1	2	7	6	4	9	
6			1	9	5			
	9	8					6	
8				6				3
4			8		3			1
7				2				6
	6					2	8	
			4	1	9			5
				8			7	9

```
initialize grid to all zero
n=1, (x,y) = firstSquareInPlay
Loop
   place n at grid[x,y]
   If no violations
   Then
      n=1, (x,y) = nextSquareInPlay
      If off grid
       Then
          SUCCESS
      EndIf
   Else
      n=n+1
      If n is 10
       Then
          place 0 at grid[x,y]
          (x,y) = prevSquareInPlay
          If off grid
          Then
             FAIL
          Else
             n=grid[x,y]+1
          EndIf
      EndIf
   EndIf
EndLoop
```

5	3	1	2	7	6	4	9	8
6			1	9	5			
	9	8					6	
8				6				3
4			8		3			1
7				2				6
	6					2	8	
			4	1	9			5
				8			7	9

```
initialize grid to all zero
n=1, (x,y) = firstSquareInPlay
Loop
   place n at grid[x,y]
   If no violations
   Then
      n=1, (x,y) = nextSquareInPlay
      If off grid
      Then
          SUCCESS
      EndIf
   Else
      n=n+1
      If n is 10
      Then
          place 0 at grid[x,y]
          (x, y) = prevSquareInPlay
          If off grid
          Then
             FAIL
          Else
             n=grid[x,y]+1
          EndIf
      EndIf
   EndIf
EndLoop
```

5	3	1	2	7	6	4	9	8
6	2		1	9	5			
	9	8					6	
8				6				3
4			8		3			1
7				2				6
	6					2	8	
			4	1	9			5
				8			7	9

```
initialize grid to all zero
n=1, (x,y) = firstSquareInPlay
Loop
   place n at grid[x,y]
   If no violations
   Then
      n=1, (x,y) = nextSquareInPlay
      If off grid
       Then
          SUCCESS
      EndIf
   Else
      n=n+1
      If n is 10
       Then
          place 0 at grid[x,y]
          (x,y) = prevSquareInPlay
          If off grid
          Then
             FAIL
          Else
             n=grid[x,y]+1
          EndIf
      EndIf
   EndIf
EndLoop
```

5	3	1	2	7	6	4	9	8
6	2	4	1	9	5			
	9	8					6	
8				6				3
4			8		3			1
7				2				6
	6					2	8	
			4	1	9			5
				8			7	9

```
initialize grid to all zero
n=1, (x,y) = firstSquareInPlay
Loop
   place n at grid[x,y]
   If no violations
   Then
      n=1, (x,y) = nextSquareInPlay
      If off grid
      Then
          SUCCESS
      EndIf
   Else
      n=n+1
      If n is 10
      Then
          place 0 at grid[x,y]
          (x, y) = prevSquareInPlay
          If off grid
          Then
             FAIL
          Else
             n=grid[x,y]+1
          EndIf
      EndIf
   EndIf
EndLoop
```

5	3	1	2	7	6	4	9	8
6	2	4	1	9	5	3		
	9	8					6	
8				6				3
4			8		3			1
7				2				6
	6					2	8	
			4	1	9			5
				8			7	9

```
initialize grid to all zero
n=1, (x,y) = firstSquareInPlay
Loop
   place n at grid[x,y]
   If no violations
   Then
      n=1, (x,y) = nextSquareInPlay
      If off grid
       Then
          SUCCESS
      EndIf
   Else
      n=n+1
      If n is 10
       Then
          place 0 at grid[x,y]
          (x,y) = prevSquareInPlay
          If off grid
          Then
             FAIL
          Else
             n=grid[x,y]+1
          EndIf
      EndIf
   EndIf
EndLoop
```

5	3	1	2	7	6	4	9	8
6	2	4	1	9	5	7		
	9	8					6	
8				6				3
4			8		3			1
7				2				6
	6					2	8	
			4	1	9			5
				8			7	9

```
initialize grid to all zero
n=1, (x,y) = firstSquareInPlay
Loop
   place n at grid[x,y]
   If no violations
   Then
      n=1, (x,y) = nextSquareInPlay
      If off grid
       Then
          SUCCESS
      EndIf
   Else
      n=n+1
      If n is 10
       Then
          place 0 at grid[x,y]
          (x,y) = prevSquareInPlay
          If off grid
          Then
             FAIL
          Else
             n=grid[x,y]+1
          EndIf
      EndIf
   EndIf
EndLoop
```

5	3	1	2	7	6	4	9	8
6	2	7	1	9	5			
	9	8					6	
8				6				3
4			8		3			1
7				2				6
	6					2	8	
			4	1	9			5
				8			7	9

```
initialize grid to all zero
n=1, (x,y) = firstSquareInPlay
Loop
   place n at grid[x,y]
   If no violations
   Then
      n=1, (x,y) = nextSquareInPlay
      If off grid
      Then
          SUCCESS
      EndIf
   Else
      n=n+1
      If n is 10
      Then
         place 0 at grid[x,y]
          (x,y) = prevSquareInPlay
          If off grid
          Then
             FAIL
          Else
             n=grid[x,y]+1
          EndIf
      EndIf
   EndIf
EndLoop
```

5	3	1	2	7	6	4	9	8
6	2	7	1	9	5	3		
	9	8					6	
8				6				3
4			8		3			1
7				2				6
	6					2	8	
			4	1	9			5
				8			7	9

```
initialize grid to all zero
n=1, (x,y) = firstSquareInPlay
Loop
   place n at grid[x,y]
   If no violations
   Then
      n=1, (x,y) = nextSquareInPlay
      If off grid
      Then
          SUCCESS
      EndIf
   Else
      n=n+1
      If n is 10
      Then
         place 0 at grid[x,y]
          (x,y) = prevSquareInPlay
          If off grid
          Then
             FAIL
          Else
             n=grid[x,y]+1
          EndIf
      EndIf
   EndIf
EndLoop
```

5	3	1	2	7	6	4	9	8
6	4		1	9	5			
	9	8					6	
8				6				3
4			8		3			1
7				2				6
	6					2	8	
			4	1	9			5
				8			7	9

```
initialize grid to all zero
n=1, (x,y) = firstSquareInPlay
Loop
   place n at grid[x,y]
   If no violations
   Then
      n=1, (x,y) = nextSquareInPlay
      If off grid
       Then
          SUCCESS
      EndIf
   Else
      n=n+1
      If n is 10
       Then
          place 0 at grid[x,y]
          (x,y) = prevSquareInPlay
          If off grid
          Then
             FAIL
          Else
             n=grid[x,y]+1
          EndIf
      EndIf
   EndIf
EndLoop
```

5	3	1	2	7	6	4	9	8
6	4	7	1	9	5			
	9	8					6	
8				6				3
4			8		3			1
7				2				6
	6					2	8	
			4	1	9			5
				8			7	9

```
initialize grid to all zero
n=1, (x,y) = firstSquareInPlay
Loop
   place n at grid[x,y]
   If no violations
   Then
      n=1, (x,y) = nextSquareInPlay
      If off grid
       Then
          SUCCESS
      EndIf
   Else
      n=n+1
      If n is 10
       Then
          place 0 at grid[x,y]
          (x, y) = prevSquareInPlay
          If off grid
          Then
             FAIL
          Else
             n=grid[x,y]+1
          EndIf
      EndIf
   EndIf
EndLoop
```

5	3	1	2	7	6	4	9	8
6	4	7	1	9	5	3		
	9	8					6	
8				6				3
4			8		3			1
7				2				6
	6					2	8	
			4	1	9			5
				8			7	9