南京航空航天大学

第1页(共4页)

二○一八~二○一九 学年 第Ⅱ学期《高等数学》考试试题

考试日期: 2019年6月22日 试卷类型: A 试卷代号:

	班号				学号			姓名			
题号	_		111	四	五	六	七	八	九	+	总分
得分											

一、填空题(每小题 3 分, 共 24 分):

1. 设函数
$$z = \left(\frac{1}{3}\right)^{\frac{y}{x}}$$
,则 $\frac{\partial z}{\partial x}\Big|_{(1,1)} = \frac{1}{3}\ln 3$.

2. 设
$$f(x,y)$$
 连续, 交换二次积分的次序: $\int_0^1 dx \int_{x^2}^1 f(x,y) dy = \int_0^1 dy \int_0^{\sqrt{y}} f(x,y) dx$.

3. 设
$$\Sigma$$
 是 上 半 球 面 $z = \sqrt{4 - x^2 - y^2}$,则曲面积分 $\iint_{\Sigma} \frac{1}{1 + \sqrt{x^2 + y^2 + z^2}} dS = \frac{8\pi}{3}$ 。

$$I = \iint_{S} \frac{1}{1 + \sqrt{4}} dS = \frac{1}{3} \cdot 2\pi \cdot 2^{2}$$

4.
$$\forall \vec{A} = x(1+x^2z) \vec{i} + y(1-x^2z) \vec{j} + z(1-x^2z) \vec{k}$$
, $\forall \vec{A} = 3$.

$$\overrightarrow{div} \stackrel{\rightarrow}{A} = \frac{\partial P}{\partial x} + \frac{\partial Q}{\partial y} + \frac{\partial R}{\partial z} = (1 + 3x^2z) + (1 - x^2z) + (1 - 2x^2z)$$

5. 函数
$$f(x) = \ln(1+2x)$$
 展开成 x 的幂级数为 $\sum_{n=1}^{\infty} \frac{(-1)^{n-1} 2^n}{n} x^n, x \in (-\frac{1}{2}, \frac{1}{2}]$.

$$[\ln(1+x)]' = \frac{1}{1+x} = \sum_{n=0}^{\infty} (-1)^n x^n, \ln(1+x) = \int_0^x \frac{dt}{1+t} = \sum_{n=0}^{\infty} \int_0^x (-1)^n t^n dt = \sum_{n=1}^{\infty} (-1)^{n-1} \frac{x^n}{n}$$

6. 已知幂级数
$$\sum_{n=0}^{\infty} a_n (x-1)^n$$
 在 $x=-1$ 收敛,则该幂级数在 $x=\frac{3}{2}$ 的敛散性为: 绝对收敛.

7. 已知
$$(x+4y)dx+(ax+y^2)dy=0$$
 是全微分方程,则 a = 4.

$$\frac{\partial}{\partial y}(x+4y) = \frac{\partial}{\partial x}(ax+y^2) \Rightarrow 4 = a$$

二、(6分)设 y=y(x)是由方程 $xy = e^x - e^y$ 确定的函数,试计算 $dy|_{x=0}$.

解: 设
$$F(x, y) = xy - e^x + e^y$$
则 $F_x = y - e^x$, $F_y = x + e^y$, $\frac{dy}{dx} = -\frac{x + e^y}{x - e^x}$

三、(8分)设 f 是任意二阶可导函数, 并设 z = f(ay + x), 满足方程 $6\frac{\partial^2 z}{\partial x^2} + \frac{\partial^2 z}{\partial x \partial y} - \frac{\partial^2 z}{\partial y^2} = 0$, 试确定 a 的值.

解:
$$\because \frac{\partial z}{\partial x} = f', \frac{\partial z}{\partial y} = af'; \frac{\partial^2 z}{\partial x^2} = f'', \frac{\partial^2 z}{\partial x \partial y} = af'', \frac{\partial^2 z}{\partial y^2} = a^2 f''$$
 由題设有:

$$6f'' + af'' - a^2f'' = 0 \Rightarrow 6 + a - a^2 = 0 : a = 3, or, a = -2$$

四、(6 分) 计算 $\int_L (x^2 - 2xy) dx + (y^2 - 2xy) dy$,其中 L 是抛物线 $y = x^2$ 上点 (-1, 1) 到 (1, 1) 的一段弧.

$$\text{AF: } I = \int_{-1}^{1} [(x^2 - 2x \cdot x^2) + (x^4 - 2x \cdot x^2) \cdot 2x] dx = 2 \int_{0}^{1} (x^2 - 4x^4) dx = -\frac{14}{15}$$

五、(10分)判别下列级数的敛散性:

(1)
$$(4 \%) \sum_{n=1}^{\infty} \frac{3^n n!}{n^n}$$
.

(2) (6 分) $\sum_{n=1}^{\infty} (-1)^{n+1} \sin \frac{1}{n^a}$, 若收敛, 指明是条件收敛还是绝对收敛.

解: (1)
$$\frac{u_{n+1}}{u_n} = 3 \cdot (\frac{n}{n+1})^n \to \frac{3}{e} > 1$$
 故由"比值判别法"知原级数发散.

(2) 当
$$\alpha \le 0$$
时, $\frac{1}{n^{\alpha}} \in [1,\infty)$, $\lim_{n \to \infty} \sin \frac{1}{n^{\alpha}} \ne 0$ (振荡无极限)此时原级数发散;

当
$$0 < \alpha \le 1$$
 时, $\frac{1}{n} \le \frac{1}{n^{\alpha}} < 1$; $\lim_{n \to \infty} \frac{1}{n^{\alpha}} = 0$, $\sin \frac{1}{n^{\alpha}} > \sin \frac{1}{(n+1)^{\alpha}}$ 由莱布尼茨定理知此时原级

数收敛. 而由
$$\frac{1}{n^{\alpha}} \to 0 (n \to \infty)$$
, $\lim_{n \to \infty} \sin \frac{1}{n^{\alpha}} \bigg/ \frac{1}{n^{\alpha}} = 1$, 知级数 $\sum_{n=1}^{\infty} \bigg| (-1)^{n+1} \sin \frac{1}{n^{\alpha}} \bigg|$, $\sum_{n=1}^{\infty} \frac{1}{n^{\alpha}}$ 同敛

散,而
$$\frac{1}{n} \le \frac{1}{n^{\alpha}}, \sum_{n=1}^{\infty} \frac{1}{n}$$
发散;故此时原级数条件收敛.

同敛散,故当 $\alpha > 1$ 时原级数绝对收敛.

六、
$$(8 分)$$
将函数 $f(x) = \begin{cases} -1 & -\pi \le x < 0 \\ 0 & x = 0 \end{cases}$ 展开成傅里叶级数.
$$1 & 0 < x \le \pi$$

$$\mathbb{R}: a_n = 0 \\ (n = 0, 1, 2, 3, \cdots), b_n = \frac{1}{\pi} \int_{-\pi}^{\pi} f(x) \sin nx dx = \frac{2}{\pi} \int_{0}^{\pi} \sin nx dx = \frac{2}{\pi} (-\frac{1}{n} \cos nx) \Big|_{0}^{\pi}$$

$$= \frac{2}{n\pi} [1 - (-1)^n] = \frac{4\pi}{2k - 1}, (k = 1, 2, 3, \dots) \therefore f(x) = \frac{4}{\pi} \sum_{n=1}^{\infty} \frac{\sin(2n - 1)x}{2n - 1}, x \in (-\pi, 0) \cup (0, \pi)$$

七、(10 分)求幂级数 $\sum_{n=0}^{\infty} (2n+1)x^n$ 的收敛域及和函数, 并求 $\sum_{n=0}^{\infty} \frac{(-1)^n (2n+1)}{2^n}$ 的值.

解:
$$R = \lim_{n \to \infty} \frac{2n+3}{2n+1} = 1, \sum_{n=0}^{\infty} (2n+1)(\pm 1)^n$$
 都发散. 所求收敛域为(-1, 1).

$$\therefore \sum_{n=0}^{\infty} (2n+1)x^n = \frac{1+x}{(1-x)^2}, x \in (-1,1); \sum_{n=0}^{\infty} \frac{(-1)^n (2n+1)}{2^n} = S(-\frac{1}{2}) = \frac{2}{9}.$$

八、(10 分) 计算曲面积分 $I = \iint_{\Sigma} (x^3 + z + 1) dy dz + (y^3 + x + 1) dz dx + (z^3 + 1) dx dy$, 其中

Σ是上半球面 $z = \sqrt{1 - x^2 - y^2}$ 的上侧.

解: 设辅助圆面 $S_0: z = 0, (x, y) \in D_{xy}: x^2 + y^2 \le 1$ 的下侧, 则:

$$I = \iint_{\Sigma + S_0} - \iint_{S_0} = 3 \iiint_{\Omega} (x^2 + y^2 + z^2) dx dy dz - \iint_{S_0} 1 \cdot dx dy = 3 \int_0^{\frac{\pi}{2}} d\varphi \int_0^{2\pi} d\theta \int_0^1 r^4 \sin\theta dr + \pi = \frac{11\pi}{5}$$

十、(8 分)设定义在($-\infty$, $+\infty$)上的函数 f(x),对任意 $x,y \in (-\infty$, $+\infty$),满足 $f(x+y) = f(x)e^y + f(y)e^x$,且 $f'(0) = a(a \neq 0)$,

- (1)证明:对任意 $x \in (-\infty, +\infty)$, f'(x) 存在, 并求出函数 f(x);
- (2)将f(x)展开成(x-1)的幂级数,并求 $f^{(2007)}(1)$.

(1)
$$\boxplus$$
: $\therefore f(x+\Delta x) = f(x)e^{\Delta x} + f(\Delta x)e^{x}$, $f(0) = f(0+0) = f(0) + f(0) \Rightarrow f(0) = 0$

$$a = f'(0) = \lim_{\Delta x \to 0} \frac{f(\Delta x) - f(0)}{\Delta x}, \ f'(x) = \lim_{\Delta x \to 0} \frac{f(x + \Delta x) - f(x)}{\Delta x} = 0$$

$$= \lim_{\Delta x \to 0} \frac{f(x)(e^{\Delta x} - 1) + e^{x}[f(\Delta x) - f(0)]}{\Delta x} = f(x) + e^{x}f'(0) \Rightarrow f'(x) = f(x) + ae^{x}$$

$$\therefore f(x) = axe^x$$

$$\therefore f(x) = axe^{x} = ae\sum_{n=0}^{\infty} \frac{n+1}{n!} (x-1)^{n}, f^{(n)}(1) = ae \cdot \frac{n+1}{n!} \cdot n! = ae(n+1)$$

故
$$f^{(2007)}(1) = 2008ae$$