Regresión Lineal Introducción

Problema de Regresión

Ejemplos

Horas	Nota	
2	1	
5	3.2	
7	4.5	
9	6	
10	4	
11	4.5	
13.4	5.5	
14	3	
15	5	

Si un nuevo alumno estudió x = 20hs, ¿cuál será su nota?

Modelo de Regresión Lineal (RL)

- Asunción
 - Relación x y es lineal
 - Modelo más simple
- Modelo

$$\circ$$
 y = m × x + b

$$\circ f(x) = m \times x + b$$

¿Cómo predecir con modelo de Regresión Lineal?

- Supongamos
 - \circ **m** = 0.5
 - \circ **b** = 2
 - $f(x) = 0.2 \times + 2$
- ¿Qué nota **predice** el modelo si **x=20**?

o
$$f(20) = m \times 20 + b$$

= 0,2 × 20 + 2
= 6

Predice y=nota=6

Valores de **m** y **b**

 Valores de m y b definen la recta

- parámetros del modelo
 - o **m** indica la pendiente
 - **b** la ordenada a la origen

Valores de **m** y **b**

 Valores de m y b definen la recta

$$\circ$$
 - **m** = 0.20, **b** = 2

$$\circ$$
 m = 0.20, **b** = 3

$$\circ$$
 - **m** = 0.26, **b** = 2

$$\circ$$
 - m = -0.20, **b** = 8

 Valores de m y b definen la recta

$$\circ$$
 - $f(x)=0.20 \times x + 2$

$$\circ$$
 - f(x)=0.20 × x + 3

$$\circ$$
 - f(x)=0.26 × x + 2

$$\circ$$
 - f(x)=0.20 × x + 8

- Cada recta es un modelo distinto
- Misma familia de modelos
 - Regresión Lineal

Elección de m y b. Función de error

- Dado un conjunto de ejemplos
 - o ¿Cómo elegir **m** y **b**?
 - Función de puntaje para cada m y b
 - Función de error E(m,b)
 - Ejemplo

$$E(-) = 1.62$$

$$E(-) = 5.12$$

$$\blacksquare$$
 E(\blacksquare) = 1.44

E:(m,b): Error cuadrático del modelo para el

- Primero, definimos el **error** para un solo ejemplo
- E_i(m,b)
 - Error del ejemplo i para m y b
 - Distancia cuadrática entre
 - y: valor esperado
- $f(x_i)$: valor predicho $E_i(m,b) = (y_i f(x_i))^2$ $= (y_i - m x_i + b)^2$

E_i(m,b): Error cuadrático del modelo para el

ejemplo

•
$$\mathbf{E_i} = (y_i - f(x_i))^2$$

- Ejemplo
 - Estudió 2 horas, nota 1

$$x_i = 2$$

o
$$f(x_i) = f(2) = 0.2 \times 2 + 2$$

= 2.4

$$y_i - f(x_i) = 1 - 2.4 = -1.4$$

$$(y_i - f(x_i))^2 = (-1.4)^2 = 1.96$$

$$\circ$$
 E_i = 1.96

E_i(m,b): Error cuadrático del modelo para el

1 2

$$y_i - f(x_i) = -1.4$$

 $|y_i - f(x_i)| = 1.4$
 $(y_i - f(x_i))^2 = 1.96$
 $(y_i - f(x_i))^4 = 3.84$

- $E_i = (y_i f(x_i))^2$
 - ¿Por qué esta función de error?
- ¿Por qué no usar y;-f(x;)?
 - Valores negativos
- ¿Por qué no usar $|y_i-f(x_i)|$?
 - Valor absoluto
 - No es una función derivable
 - Difícil de optimizar
- ¿Qué efecto tiene el 2?
 - Penaliza más errores grandes
 - \circ 0.5²=0.25, 1²=1, 5²=25
- ¿Por qué no usar (y;-f(x;))4?
 - o Posible, pero penalizaría demasiado

E(m,b): Error cuadrático medio de los ejemplos

- E(m,b): Error cuadrático medio
 - Función de error **natural** para RL
 - Promedio de los E;
- $E(m,b) = (1/n) \sum_{i=1}^{n} E_{i}(m,b)$

Ejemplo de cálculo de E para m=0.2 y b=2

m = 0.2		$f(x_i)$	$f(x_i)-y_i$	E.
b=2		0.2 * 2 + 2 = 2.4	2.4 - 1 = 1.4	$(1.4)^2 = 1.96$
		0.2 * 10 + 2 = 4	4 - 4 = 0	$(0)^2 = 0$
estudio	nota	0.2 * 14 + 2 = 4.8	4.8 - 5 = -0.2	$(-0.2)^2 = 0.04$
2	1	0.2*30+2=8	8 - 9 = -1	$(-1)^2 = 1$
10	4	0.2 * 40 + 2 = 10	10 - 10 = 0	$(0)^2 = 0$
14	5			
30	9	Error cuadrático medio		

10 $E = \frac{1}{n} \sum_{i}^{n} E_{i} = \frac{1.96 + 0 + 0.04 + 1 + 0}{5} = \frac{3}{5} = 0.6$

Comprendiendo E(m,b)

- Asumamos b=0
 - Queda 1 parámetro: m
 - Probamos con m=...

- Error E(m,b) = E(m,0)
 - o 1D
 - Forma una parábola

Resumen

- Regresión Lineal
 - \circ f(x)=m x + b
 - Modelo más simple
 - Asume relación lineal entre x e y
 - Aproximada
- Parámetros
 - m pendiente
 - o **b** ordenada al origen
- Función de error **E**
 - Error cuadrático medio
 - o Promedio de error de cada ejemplo **E**i
 - Permite elegir valores óptimos de m y b

Ejercicio: Archivo Regresión Lineal - Modelo.ipynb

Probar

- Modificar los parámetros m y b. Observar como cambia la recta y el error
- Modificar el valor de la variable new_x, observar los valores de f(new_x) que predice el modelo (punto verde)

Interpretar

- ¿Qué me dice el modelo respecto a la nota que obtienen los alumnos que no estudiaron nada?
- ¿Cuánto puedo esperar que aumente mi nota por cada hora de estudio?
- ¿Cuando es más fácil la materia? (en relación a m)
- ¿Cuando baja el error? ¿Puede ser 0?