Supersymmetry and the Rationally Extended Harmonic Oscillator

Rajesh Kumar

kr.rajesh.phy@gmail.com

Model College Dumka

Sido Kanhu Murmu University Dumka, Jharkhand, India-814110

Collaborator: Dr. Rajesh Kumar Yadav, S.K.M.U, Dumka

Supersymmetry

Introduction

Figure: Particles of the Standard Model (left) and their hypothetical supersymmetric counterparts.

What is it?

Supersymmetry is an extension of the Standard Model that aims to fill some of the gaps. It predicts a partner particle for each particle in the Standard Model.

 $Q|boson\rangle \rightarrow |fermion\rangle$

 $\mathbf{Q}^{\dagger} | \mathbf{fermion} \rangle \rightarrow | \mathbf{boson} \rangle$

¹Figure source: https://arstechnica.com/science/2014/04/

Symmetry of Matter

Pursey and Abraham-Moses Potentials

 $Q|boson\rangle \propto |fermion\rangle$ and $Q^{\dagger}|fermion\rangle \propto |boson\rangle$

Superhamiltonian and Supercharges

Exceptional Hermite Polynomial

$$\mathbf{H} = egin{bmatrix} H^{(1)} & 0 \ 0 & H^{(2)} \end{bmatrix}; \quad \mathbf{Q} = egin{bmatrix} 0 & 0 \ A & 0 \end{bmatrix}; \quad \mathbf{Q}^\dagger = egin{bmatrix} 0 & A^\dagger \ 0 & 0 \end{bmatrix}$$

Linear operators A and A^{\dagger} and Partner Hamiltonians $H^{(1)}$ and $H^{(2)}$

•
$$A = \frac{\hbar}{\sqrt{2m}} \frac{d}{dx} + W(x)$$

•
$$A^{\dagger} = -\frac{\hbar}{\sqrt{2m}} \frac{d}{dx} + W(x)$$

$$H^{(1)} = A^{\dagger}A$$

$$\bullet$$
 $H^{(2)} - \Delta \Delta^{\dagger}$

Figure: Scheme of the energy spectra of two supersymmetric partner Hamiltonians and their connection via the operators A and A^{\dagger} .

Introduction

Possible Ground State from known eigenfunctions of SHO

$$\psi_{0}(x) \propto H_{0}(x)e^{-\frac{1}{2}x^{2}}, \qquad \rightarrow \phi_{0}(-ix) \qquad \propto e^{\frac{1}{2}x^{2}}, \\ \psi_{1}(x) \propto H_{1}(x)e^{-\frac{1}{2}x^{2}}, \qquad \rightarrow \phi_{1}(-ix) \qquad \propto ixe^{\frac{1}{2}x^{2}}, \\ \psi_{2}(x) \propto H_{2}(x)e^{-\frac{1}{2}x^{2}}, \qquad \rightarrow \phi_{2}(-ix) \qquad \propto (2x^{2}+1)e^{\frac{1}{2}x^{2}}, \\ \psi_{3}(x) \propto H_{3}(x)e^{-\frac{1}{2}x^{2}}, \qquad \rightarrow \phi_{3}(-ix) \qquad \propto (2x^{3}+3x)e^{\frac{1}{2}x^{2}}$$

The ϕ_m satisfies the Schrödinger equation but isn't normalizable. Its reciprocal gives normalizable wavefunctions for even m with $H^{(2)}$, yielding exceptional Hermite polynomials. 2

²Source: Kumar R, Yadav RK, Khare A. Rationally Extended Harmonic Oscillator potential, Isospectral Family and the Uncertainity Relations. arXiv preprint arXiv:2304.11314 2023 Apr 22.

Simple Harmonic Oscillator

Introduction

Figure: Simple Harmonic Oscillator

³ Figure: Stewart, James. Essential calculus: Early transcendentals.

What if we delete some state from the spectrum?

Figure: Equally Spaced Spectrum

Resultant eigenfunction is a function of X_m Polynomial

Figure: Equally Spaced Spectrum

Introduction

$\hat{\boldsymbol{V}}(\boldsymbol{x}) = x^2 - 2\log Wr \left[H_2(x)\right]$

Rationally Extended Harmonic Oscillator

$$\hat{H}_n(x) \propto Wr [H_2(x), H_n(x)]$$

$$\eta(x) = \frac{e^{-x^2}}{Wr [H_2(x)]^2}$$

XOP with missing degree of 2

Orthogonality Factor

- There is a new potential that has a complete set of orthogonal polynomials $\hat{H}_n(x)$, except for the degree of 2.
- The degrees of the polynomials are n = 0, 1, 3, 4, 5, ...
- The spectrum of the new potential is identical to that of the Simple Harmonic Oscillator (SHO) potential.

Example-Contd... SHO eigenfunctions

Figure: The potential is represented by a bold black line, while the initial eigenfunctions are depicted with thin lines.

Example-Contd... REHO eigenfunctions

Figure: The potential is represented by a bold black line, while the initial eigenfunctions are depicted with thin lines.

Story so far

Introduction

•

$$V(x)=x^2$$

•

$$\hat{V}(x,m) = V(x) - 2\left[\frac{\mathcal{H}''_m}{\mathcal{H}_m} - \left(\frac{\mathcal{H}'_m}{\mathcal{H}_m}\right)^2 + 1\right]$$

and

$$\mathcal{H}_m(x) = (-1)^m H_m(ix)$$

4 5

⁴Reference: Fellows, Jonathan M., and Robert A. Smith. "Factorization solution of a family of quantum nonlinear oscillators." Journal of Physics A: Mathematical and Theoretical 42.33 (2009): 335303.

⁵Marquette, Ian, and Christiane Quesne. "Two-step rational extensions of the harmonic oscillator: exceptional orthogonal polynomials and ladder operators." Journal of Physics A: Mathematical and Theoretical 46.15 (2013): 155201.

One parameter family of potentials

$$\tilde{V}(x, m, \lambda) = \hat{V}(x, m) - 2\frac{d^2}{dx^2} \ln \left[\mathcal{I}_m(x) + \lambda\right]$$

where

$$\mathcal{I}_m(x) = \frac{2^m m!}{\sqrt{\pi}} \int_{-\infty}^{\infty} \left[\frac{e^{-\frac{x'^2}{2}}}{\mathcal{H}_m(x')} \right]^2 dx'$$

6

Introduction

⁶Reference: A. Khare, U. Sukhatme, J. Phys. A: Math. Gen. 26 (1993) L901-L905 (₹) (₹) (₹)

Pursey and Abraham-Moses Potentials

- In the limit of $\lambda = 0$, there is a loss of boundstate and the corresponding potential is called the Pursey potential.
- An analogous situation occurs in the limit of $\lambda = 1$ and the potential is called the Abraham-Moses potential.

Graphical representation of one parameter family of potentials

Figure: Positive λ

Figure: Negative λ

Figure: Pursey and Abraham Moses Potentials

Summary

- One starts with a potential V(x) and a known solution $\psi(x)$ of the Schrödinger equation and generates a family of new potentials using the concept of SUSY QM.
- The new potentials are isospectral to the original potential.
- Pursey and Abraham-Moses potentials are special cases of the one-parameter family of potentials, and they are strictly isospectral to the original potential $V(x) = x^2$.
- One might expect that the uncertainty would decrease as we increase m, but shockingly, the uncertainty increases as we increase m.
- The Simple Harmonic Oscillator only gives the least uncertainty.

Thank You

