Федеральное государственное автономное образовательное учреждение высшего образования

Университет ИТМО

Дисциплина: Моделирование

Учебно-исследовательская работа 2 «ИССЛЕДОВАНИЕ СИСТЕМ МАССОВОГО ОБСЛУЖИВАНИЯ НА МАРКОВСКИХ МОДЕЛЯХ»

Вариант 2/5

Выполнили:

Марков Петр Денисович Кривоносов Егор Дмитриевич Нечкасова Олеся Алексеевна

Группа: Р34111

Преподаватель:

Алиев Тауфик Измайлович

2022 г.

Санкт-Петербург

Оглавление

Цель работы	3
Задание	3
Исходные данные	3
Таблица 1. Параметры структурной и функциональной организации исследуемых систем	3
Таблица 2. Параметры нагрузки	3
Рисунок 1. Графическое представление СИСТЕМЫ_1	4
Рисунок 2. Графическое представление СИСТЕМЫ_2	5
Выполнение	5
Таблица 3. Состояния Марковского процесса (СИСТЕМА_1 и СИСТЕМА_2)	5
Рисунок 3. Граф переходов Марковского процесса (СИСТЕМА_1)	7
Рисунок 4. Граф переходов Марковского процесса (СИСТЕМА_2)	7
Таблица 4. Матрица интенсивностей переходов (СИСТЕМА_1)	8
Таблица 5. Матрица интенсивностей переходов (СИСТЕМА_2)	9
Рассчитаем значения стационарных вероятностей, используя программу MARK.	10
Таблица 6. Стационарные вероятности состояний (СИСТЕМА_1 и СИСТЕМА_2)	10
Таблица 7. Характеристики СИСТЕМЫ_1 и СИСТЕМЫ_2	11
Рисунок 5. Сравнение рассчитанных характеристик систем	13
Сравнение	14
Таблица 8. Сравнение характеристик, при разных значениях q СИСТЕМЫ_2	14
Вывод	15

Цель работы

Изучение метода марковских случайных процессов и его применение для исследования простейших моделей - систем массового обслуживания (СМО) с однородным потоком заявок.

Задание

Разработка и расчет марковских моделей одно- и многоканальных СМО с однородным потоком заявок и выбор наилучшего варианта построения СМО в соответствии с заданным критерием эффективности. В процессе исследований для расчета характеристик функционирования СМО используется программа МАРК.

Исходные данные

Таблица 1. Параметры структурной и функциональной организации исследуемых систем

Panuaut	СИСТ	EMA_1	СИСТЕ	Критерий	
Вариант	П	EH	П	EH	Критерий эффект.
2	2	2/1	2 (H ₃)	2/1	(б)

- **СИСТЕМА_1** имеет два обслуживающих прибора. Емкость накопителя перед первым прибором 2, перед вторым 1
- **CИСТЕМА_2** имеет два обслуживающих прибора и в одном из них длительность обслуживания распределена по гиперэкспоненциальному закону с коэффициентом вариации 3. Емкость накопителя перед первым прибором 2, перед вторым 1
- Критерий эффективности является минимальные потери заявок.

Таблица 2. Параметры нагрузки

Номер	Интенс. потока	Ср. длит. обслуж.	-	анятия прибора
варианта	λ , c^{-1}	b, c	П1	П2
5	0.5	10	0.5	0.5

- Интенсивность потока: $\lambda = 0.5 c^{-1}$
- Средняя длительность обслуживания: b = 10 c

- Интенсивность обслуживания: $\mu = 0.1 c^{-1}$
- Вероятность занятия приборов в СИСТЕМА_1 и СИСТЕМА_2:

$$\circ \quad p = p_{11} = p_{12} = p_{21} = p_{22} = 0.5$$

- Параметр $q \le \frac{2}{1+y^2} = \frac{2}{1+3^2} = 0.2$. Выбираем q = 0.1
- $b'_1 = [1 + \sqrt{\frac{1-q}{2q}(v^2 1)}]b = 70 => \mu'_1 = \frac{1}{70} \approx 0.0143$
- $b'_{2} = [1 \sqrt{\frac{q}{2(1-q)}(v^{2}-1)}]b = 3.33(3) => \mu'_{1} = \frac{3}{10} = 0.3$
- Проверка условия $qb'_1 + (1-q)b'_2 = b => 0.1*70 + 0.9*\frac{10}{3} = 10$

Рисунок 1. Графическое представление СИСТЕМЫ_1

Рисунок 2. Графическое представление СИСТЕМЫ_2

Выполнение

Принятые обозначения

- П1 / П2 / E1 / E2:
 - о П1 описывает, обрабатывает заявку (1) или нет (0) первый прибор.
 - П1 описывает, обрабатывает заявку (1) или нет (0) второй прибор.
 - Е1 описывает, емкость накопителя первого прибора.
 - Е2 описывает, емкость накопителя второго прибора.

Таблица 3. Состояния Марковского процесса (СИСТЕМА_1 и СИСТЕМА_2)

Номер состояния	СИСТЕМА_1	СИСТЕМА_2
	П1 / П2 / Е1 / Е2	П1 / П2 / Е1 / Е2
E ₀	0/0/0/0	0/0/0/0
E ₁	1/0/0/0	0 / 1 ₁ / 0 / 0
E ₂	1/0/1/0	0 / 1 ₂ / 0 / 0
E ₃	1/0/2/0	0 / 1 ₁ / 0 / 1

E ₄	0/1/0/0	0 / 1 ₂ / 0 / 1
E ₅	0/1/0/1	1/0/0/0
E ₆	1/1/0/0	1/0/1/0
E ₇	1/1/1/0	1/0/2/0
E ₈	1/1/2/0	1 / 1, / 0 / 0
E ₉	1/1/0/1	1 / 1 ₂ / 0 / 0
E ₁₀	1/1/1/1	1/1,/1/0
E ₁₁	1/1/2/1	1 / 1 ₂ / 1 / 0
E ₁₂		1/1,/2/0
E ₁₃		1/12/2/0
E ₁₄		1/1,/0/1
E ₁₅		1 / 1 ₂ / 0 / 1
E ₁₆		1/1,/1/1
E ₁₇		1/12/1/1
E ₁₈		1/1,/2/1
E ₁₉		1/12/2/1

Рисунок 3. Граф переходов Марковского процесса (СИСТЕМА_1)

Рисунок 4. Граф переходов Марковского процесса (СИСТЕМА_2)

Таблица 4. Матрица интенсивностей переходов (СИСТЕМА_1)

C1	E ₀	E ₁	E ₂	E ₃	E ₄	E ₅	E ₆	E ₇	E ₈	E ₉	E ₁₀	E ₁₁
E ₀	-0.5	0.25			0.25							
E ₁	0.1	-0.6	0.25				0.25					
E ₂		0.1	-0.6	0.25				0.25				
E ₃			0.1	-0.35					0.25			
E ₄	0.1				-0.6	0.25	0.25					
E ₅					0.1	-0.35				0.25		
E ₆		0.1			0.1		-0.7	0.25		0.25		
E ₇			0.1				0.1	-0.7	0.25		0.25	
E ₈				0.1				0.1	-0.45			0.25
E ₉						0.1	0.1			-0.45	0.25	
E ₁₀								0.1		0.1	-0.45	0.25
E ₁₁									0.1		0.1	-0.2

Таблица 5. Матрица интенсивностей переходов (СИСТЕМА_2)

C2	E ₀	E ₁	E ₂	E ₃	E ₄	E ₅	E ₆	E ₇	E ₈	E ₉	E ₁₀	E ₁₁	E ₁₂	E ₁₃	E ₁₄	E ₁₅	E ₁₆	E ₁₇	E ₁₈	E ₁₉
E ₀	-0.5000	0.0250	0.2250			0.2500														
E ₁	0.0143	-0.5143		0.2500					0.2500											
E ₂	0.3000		-0.8000		0.2500					0.2500										
E ₃		0.0014	0.0129	-0.2643											0.2500					
E ₄		0.0300	0.2700		-0.5500											0.2500				
E ₅	0.1000					-0.6000	0.2500		0.0250	0.2250										
E ₆						0.1000	-0.6000	0.2500			0.0250	0.2250								
E ₇							0.1000	-0.3500					0.0250	0.2250						
E ₈		0.1000				0.0143			-0.6143		0.2500				0.2500					
E ₉			0.1000			0.3000				-0.9000		0.2500				0.2500				
E ₁₀							0.0143		0.1000		-0.6143		0.2500				0.2500			
E ₁₁							0.3000			0.1000		-0.9000		0.2500				0.2500		
E ₁₂								0.0143			0.1000		-0.3643						0.2500	
E ₁₃								0.3000				0.1000		-0.6500						0.2500
E ₁₄				0.1000					0.0014	0.0129					-0.3643		0.2500			
E ₁₅					0.1000				0.0300	0.2700						-0.6500		0.2500		
E ₁₆											0.0014	0.0129			0.1000		-0.3643		0.2500	
E ₁₇											0.0300	0.2700				0.1000		-0.6500		0.2500
E ₁₈													0.0014	0.0129			0.1000		-0.1143	
E ₁₉													0.0300	0.2700				0.1000		-0.4000

Рассчитаем значения стационарных вероятностей, используя программу MARK.

Таблица 6. Стационарные вероятности состояний (СИСТЕМА_1 и СИСТЕМА_2)

Номер	СИСТЕ	EMA_1	СИСТЕМА_2		
состояния	П1 / П2 / Е1 / Е2	Вероятность	П1 / П2 / Е1 / Е2	Вероятность	
1	0/0/0/0	0.0040	0/0/0/0	0.0070	
2	1/0/0/0	0.0101	0/11/0/0	0.0013	
3	1/0/1/0	0.0253	0/12/0/0	0.0057	
4	1/0/2/0	0.0632	0/1 ₁ /0/1	0.0208	
5	0/1/0/0	0.0101	0/12/0/1	0.0047	
6	0/1/0/1	0.0253	1/0/0/0	0.0176	
7	1/1/0/0	0.0253	1/0/1/0	0.0450	
8	1/1/1/0	0.0632	1/0/2/0	0.1089	
9	1/1/2/0	0.1579	1/11/0/0	0.0030	
10	1/1/0/1	0.0632	1/12/0/0	0.0143	
11	1/1/1/1	0.1579	1/1 ₁ /1/0	0.0066	
12	1/1/2/1	0.3947	1/12/1/0	0.0358	
13			1/1 ₁ /2/0	0.0193	
14			1/12/2/0	0.0887	
15			1/11/0/1	0.0518	
16			1/12/0/1	0.0119	
17			1/11/1/1	0.1292	
18			1/12/1/1	0.0297	
19			1/11/2/1	0.3249	
20			1/12/2/1	0.0740	

Таблица 7. Характеристики СИСТЕМЫ_1 и СИСТЕМЫ_2

Хар-ка	Прибор	Расчетная формула	СИСТ.1	СИСТ.2
	П1 (С1)	$y_{11} = \lambda/\mu \times P$	2.5	-
	П2 (С1)	$y_{12} = \lambda/\mu \times P$	2.5	-
Harnyaya	Сумм. (С1)	$y_1 = \lambda/\mu$	5.0	-
Нагрузка	П1 (C2)	$y_{21} = \lambda/\mu \times P$	-	2.5
	П2 (C2)	$y_{22} = \lambda/\mu \times P$	-	2.5
	Сумм. (C2)	$y_2 = \lambda/\mu$	-	5.0
	П1 (С1)	$\rho_{11} = 1 - (p_1 + p_5 + p_6)$	0.9606	-
	П2 (C1)	$\rho_{12} = 1 - (p_1 + p_2 + p_3 + p_4)$	0.8974	-
2050/0/20	Сумм. (С1)	$\rho_1 = (\rho_{11} + \rho_{12})/2$	0.9290	-
Загрузка	П1 (C2)	$\rho_{21} = 1 - (p_1 + p_2 + p_3 + p_4 + p_5)$	-	0.9607
	П2 (C2)	$\rho_{22} = 1 - (p_1 + p_6 + p_7 + p_8)$	-	0.8217
	Сумм. (C2)	$\rho_2 = (\rho_{21} + \rho_{22})/2$	-	0.8912
	П1 (С1)	$L_{11} = (p_3 + p_8 + p_{11}) + 2(p_4 + p_9 + p_{12})$	1.4780	-
	П2 (C1)	$L_{12} = p_6 + p_{10} + p_{11} + p_{12}$	0.6411	-
	Сумм. (С1)	$L_{1} = L_{11} + L_{12}$	2.1191	-
Длина очереди	П1 (С2)	$L_{11} = (p_7 + p_{11} + p_{12} + p_{17} + p_{18}) + 2(p_8 + p_{13} + p_{14} + p_{19} + p_{20})$	-	1.4779
	П2 (С2)	$L_{12} = p_{4} + p_{5} + p_{15} + p_{16} + p_{17} + p_{18} \\ + p_{19} + p_{20}$	-	0.6470

	Сумм. (С2)	$L_{_{2}}=L_{_{21}}+L_{_{22}}$	-	2.1249
	П1 (С1)	$m_{11} = L_{11} + \rho_{11}$	2.4388	-
	П2 (С1)	$m_{12} = L_{12} + \rho_{12}$	1.5385	-
Число заявок	Сумм. (С1)	$m_{_{1}} = m_{_{11}} + m_{_{12}}$	3.9773	-
число заявок	П1 (C2)	$m_{21} = L_{21} + \rho_{21}$	-	2.4386
	П2 (C2)	$m_{22} = L_{22} + \rho_{22}$	-	1.4687
	Сумм. (С2)	$m_2^{} = m_{21}^{} + m_{22}^{}$	-	3.9073
	П1 (С1)	$w_{11} = L_{11}/\lambda'_{11}$	15.3878	-
	П2 (С1)	$w_{12} = L_{12}/\lambda'_{12}$	7.1452	-
Время	Сумм. (С1)	$w_1 = L_1/\lambda'_1$	11.4068	-
ожидания	П1 (С2)	$w_{21} = L_{21}/\lambda'_{21}$	-	15.3868
	П2 (С2)	$w_{22} = L_{22}/\lambda'_{22}$	-	7.3314
	Сумм. (С2)	$w_2 = L_2/\lambda'_2$	-	11.5296
	П1 (С1)	$u_{11} = m_{11}/\lambda'_{11}$	25.3909	-
	П2 (С1)	$u_{12} = m_{12}/\lambda'_{12}$	17.1468	-
Время	Сумм. (С1)	$u_1 = m_1/\lambda'_1$	21.4092	-
пребывания	П1 (C2)	$u_{21} = m_{21}/\lambda'_{21}$	-	25.3889
	П2 (С2)	$u_{22} = m_{22}/\lambda'_{22}$	-	16.6425
	Сумм. (С2)	$u_2 = m_2/\lambda'_2$	-	21.2008
Вероятность потери	П1 (С1)	$\pi_{11} = p_4 + p_9 + p_{12}$	0.6158	-

	П2 (С1)	$\pi_{12} = p_6 + p_{10} + p_{11} + p_{12}$	0.6411	-
	Сумм. (С1)	$\pi_1 = P \times (\pi_{11} + \pi_{12})$	0.6285	-
	П1 (C2)	$\boldsymbol{\pi}_{21} = \boldsymbol{p}_8 + \boldsymbol{p}_{13} + \boldsymbol{p}_{14} + \boldsymbol{p}_{19} + \boldsymbol{p}_{20}$	-	0.6158
	П2 (С2)	$\boldsymbol{\pi}_{22} = \boldsymbol{p}_4 + \boldsymbol{p}_5 + \boldsymbol{p}_{15} + \boldsymbol{p}_{16} + \boldsymbol{p}_{17} + \boldsymbol{p}_{18} \\ + \boldsymbol{p}_{19} + \boldsymbol{p}_{20}$	1	0.6470
	Сумм. (С2)	$\pi_2 = P \times (\pi_{21} + \pi_{22})$	-	0.6314
	П1 (С1)	$\lambda'_{11} = \lambda \times P \times (1 - \pi_{11})$	0.0961	-
	П2 (С1)	$\lambda'_{12} = \lambda \times P \times (1 - \pi_{12})$	0.0897	-
Производите	Сумм. (С1)	$\lambda'_{1} = \lambda \times (1 - \pi_{1})$	0.1858	-
льность	П1 (C2)	$\lambda'_{21} = \lambda \times P \times (1 - \pi_{21})$	-	0.0961
	П2 (C2)	$\lambda'_{22} = \lambda \times P \times (1 - \pi_{22})$	-	0.0883
	Сумм. (С2)	$\lambda'_2 = \lambda \times (1 - \pi_2)$	-	0.1843

Рисунок 5. Сравнение рассчитанных характеристик систем

Сравнение

Сравним полученные характеристики обеих систем:

- Системы имеют одинаковую нагрузку, что ожидаемо при одинаковых параметрах нагрузки, заданных по варианту.
- Система 1 имеет большее значение загрузки, чем система 2. (4.09% разница)
- Система 1 имеет меньше значение длины очереди, чем система 2. (0.27% разница)
- Система 1 имеет большее число заявок в системе, чем система 2.(1.76% разница)
- Система 1 имеет меньше время ожидания, чем система 2. Это говорит о том, что система 1 значительно быстрее обрабатывает заявки. (1.07% разница)
- Система 1 имеет большее время пребывания заявки в системе, чем система 2. (0.98% разница)
- Система 1 имеет меньше вероятность потери заявки, чем система 2. Так как данный параметр является критерием эффективности, стоит выбрать первую систему. (0.46% разница)
- Система 1 имеет больше производительность, чем система 2. (0.81% разница)

Сравнение параметров при различных значениях q. Как видно из таблицы, лучшие значения можно достичь при выборе q=0.10, поэтому этот выбор является оптимальным из трех рассчитанных систем.

Таблица 8. Сравнение характеристик, при разных значениях q СИСТЕМЫ 2

	Система 1	Система 2 (q=0.10)	Система 2 (q=0.15)	Система 2 (q=0.05)
Нагрузка	5	5	5	5
Загрузка	0.9292	0.8912	0.8810	0.9105
Длина очереди	2.1191	2.1249	2.1562	2.1332
Число заявок	3.9775	3.9073	3.9182	3.9541
Время ожидания	11.4068	11.5296	12.2199	11.7048
Время пребывания	21.4103	21.2008	22.2057	21.6960
Вероятность потери	0.6285	0.6314	0.6471	0.6355
Производительность	0.1858	0.1843	0.1765	0.1823

Выбирая лучший вариант организации, стоит отдать предпочтение системе 1, так как она показывает лучшие значения не только по вероятности потери заявки, но и по остальным параметрам.

Вывод

В начале выполнения УИР были проанализированы состояния марковских процессов для систем 1 и 2. На их основе были построены графы переходов марковских процессов, а впоследствии и матрицы интенсивностей переходов. С помощью программы МАРК были получены значения стационарных вероятностей, используя полученные матрицы интенсивностей переходов. Получив значения стационарных вероятностей, можно было приступать к этапу расчета характеристик для систем 1 и 2. Полученные характеристики для систем 1 и 2 были сопоставлены. В результате выяснилось, что система 1 имеет наименьшую вероятность потери заявки. Именно поэтому ей было отдано предпочтение при выборе наилучшей реализации из данных двух.