## CSE 574:Programming Assignment 3

INSTRUCTOR: DR. MINGCHEN GAO

# Classification and Regression

Submitted by:

Muthuvel Palanisamy Person #: 50246815

Due Date: May 10, 2018





Figure 1: Comparison of for different classes in Binomial Logistic Regression

## 1 Logistic Regression

# 1.1 Binomial Logistic Regression(40 code + 15 report = 55 points)

Final Error from Gradient Descent = 0.09734

Training Data Accuracy = 92.75%

Validation Data Accuracy = 91.49%

Test Data Accuracy = 91.87%

0 and 1 are among the classes with the highest accuracy while digits like 8 and 5 have lower accuracy in Binary Logistic Regression. Digit 8 has the lowest accuracy in validation data.

For many classes, the training error is slight lower than the test error. See Figure 1 for Comparison of Accuracy of Different classes



Figure 2: Comparison of for different classes in Multinomial Logistic Regression

# 1.2 Multinomial Logistic Regression(10 code + 10 report = 20 points)

Final Error from Gradient Descent = 0.02458

Training Data Accuracy = 91.86%

Validation Data Accuracy = 93.37%

Test Data Accuracy = 93.95%

Similar to Binomial Logistic Regression, 0 and 1 are among the classes with the highest accuracy while digits like 8 and 5 have lower accuracy in Multinomial Logistic Regression. But Multinomial logistic regression tends to produces more similar accuracies in training as well as testing comparatively for data from a same class. See Figure 2 for Comparison of Accuracy of Different classes

## 1.3 Comparison and Analysis

\* On comparing Binomial and Multinomial Logistic Regression, the latter produces slightly better accuracy on the test data.



Figure 3: Comparison of the Accuracy of Regression Models

- \* Both perform well and give out an accuracy greater than 90%. See Figure 3 for comparison chart.
- \* Though not applicable to this case, a very low training error generally causes over fitting which may need regularization.
- \* Multinomial Logistic Regression is clearly faster that its binary counterpart

# 2 Support Vector Machines(20 code + 25 report = 45 points)

### 2.1 Using Linear Kernel (with default parameters)

Training Data Accuracy = 97.29%

Validation Data Accuracy = 93.64%

Test Data Accuracy = 93.78%

#### 2.2 Using Radial Bias Function

#### 2.2.1 When $\gamma = 1$

In Radial Bias Function, when  $\gamma=1$ , the accuracy is very low for validation and test data data: over fitting occurs when  $\gamma=1$ . Hence it is ideal to avoid this setting in SVM with Radial Kernel

Training Data Accuracy = 98.15%

Validation Data Accuracy = 12.12%

Test Data Accuracy = 13.76%

#### 2.2.2 When $\gamma = default$

Training Data Accuracy = 94.30%

Validation Data Accuracy = 94.02%

Test Data Accuracy = 94.42%

#### 2.2.3 When C = [1, 10, 20, ..., 100]

As the value of C increases from 0 to 100, the accuracy increases gradually and converges to an optimum vale. We can infer that C needs to sufficiently larger, but too large values of C does not have any much impact on the accuracy after a point. Table 1 shows detailed output accuracies when C value is varied from 1 to 100. Figure 4 shows how accuracy varies for different values of C.

### 2.3 Comparison and Analysis

- \*  $\gamma = 1$  causes overfitting and hence produced very low test accuracy this might because large gamma leads to high bias and low variance models
- \* Linear SVM is comparatively faster than than radial. The latter with gamma = 1 took around 3 hours to run for the MNIST dataset
- \* Radial SVM provides better accuracy in comparison with Linear SVM. This might be because Linear SVM might under fit the data

| $\mathbf{C}$ | Training Accuracy | Validation Accuracy | Test Accuracy |
|--------------|-------------------|---------------------|---------------|
| 1            | 94.30%            | 94.02%              | 94.42%        |
| 10           | 97.13%            | 96.18%              | 96.10%        |
| 20           | 98.95%            | 96.90%              | 96.67%        |
| 30           | 98.37%            | 97.10%              | 97.04%        |
| 40           | 99.10%            | 97.23%              | 97.19%        |
| 50           | 99.00%            | 97.31%              | 97.19%        |
| 60           | 99.29%            | 97.38%              | 97.16%        |
| 70           | 99.34%            | 97.36%              | 97.26%        |
| 80           | 99.43%            | 97.39%              | 97.33%        |
| 90           | 99.54%            | 97.36%              | 97.34%        |
| 100          | 99.61%            | 97.41%              | 97.40         |

Table 1: SVM with Radial Bias Function



Figure 4: C vs Accuracy in SVM with Radial Bias Function

| Model      | Training Accuracy | Validation Accuracy | Test Accuracy | Time (s) |
|------------|-------------------|---------------------|---------------|----------|
| BLR        | 92.75%            | 91.59%              | 91.87%        | 706      |
| MLR        | 91.86%            | 93.37%              | 93.95%        | 150      |
| Linear SVM | 97.29%            | 93.64%              | 93.78%        | 1018     |
| Radial SVM | 94.30%            | 94.02%              | 94.42%        | 1270     |

Table 2: Comparison of Different Classifiers

- \* Radial SVM with properly tuned parameters will always be better than Linear SVM if not equal
- \* It is clear that the accuracy of Training data is always greater than that of testing data from Figure 4

# 3 Comparison of SVM and Logistic Regression

- $\ast$  Radial SVM provides the best accuracy but takes more time to train. Check table 2.
- \* Multinomial Logistic Regression takes the least time with good efficiency. Refer Figure 5 and 6  $\,$



Figure 5: Accuracy of Different Classifiers



Figure 6: Time Taken to train different Classifiers