Data Engineering - ML

Tuesday, 26 July 2022

Amazon S3

- Amazon S3 allows people to store objects (files) in "buckets" (directories)
- · Buckets must have a globally unique name
- . Objects (files) have a Key. The key is the FULL path:
 - <my_bucket>/my_file.txt
 - <my_bucket>/my_folder1/another_folder/my_file.txt
- . This will be interesting when we look at partitioning
- · Max object size is 5TB
- Object Tags (key / value pair up to 10) useful for security / lifecycle

AWS S3 for Machine Learning

- Backbone for many AWS ML services (example: SageMaker)
- · Create a "Data Lake"
 - Infinite size, no provisioning
 - 99.99999999% durability
 - Decoupling of storage (S3) to compute (EC2, Amazon Athena, Amazon Redshift Spectrum, Amazon Rekognition, and AWS Glue)
- · Centralized Architecture
- Object storage => supports any file format
- · Common formats for ML: CSV, JSON, Parquet, ORC, Avro, Protobuf

Amazon S3 Lifecycle - Transition

- You can transition objects between storage classes
- For infrequently accessed object, move them to STANDARD_IA
- For archive objects you don't need in real-time, GLACIER or DEEP_ARCHIVE
- Moving objects can be automated using a lifecycle configuration

Amazon S3 Encryption

- There are 4 methods of encrypting objects in S3
- SSE-S3: encrypts S3 objects using keys handled & managed by AWS
- SSE-KMS: use AWS Key Management Service to manage encryption keys
 - Additional security (user must have access to KMS key)
 - Audit trail for KMS key usage
- SSE-C: when you want to manage your own encryption keys
- Client Side Encryption
- From an ML perspective, SSE-S3 and SSE-KMS will be most likely used

SSE-S3

Amazon S3 Security

- User based
 - IAM policies which API calls should be allowed for a specific user
- Resource Based
 - Bucket Policies bucket wide rules from the S3 console allows cross account
 - Ohiert Access Control List (ACL) finer grain

Amazon S3

S3 Durability and Availability

- · Durability:
 - High durability (99.99999999%, 11 9's) of objects across multiple AZ
 - If you store 10,000,000 objects with Amazon S3, you can on average expect to incur a loss of a single object once every 10,000 years
 - · Same for all storage classes
- · Availability:
 - · Measures how readily available a service is
 - · Varies depending on storage class
 - Example: S3 standard has 99.99% availability = not available 53 minutes a year

AWS S3 Data Partitioning

- Pattern for speeding up range queries (ex: AWS Athena)
- By Date: s3://bucket/my-data-set/year/month/day/hour/data_00.csv
- By Product: s3://bucket/my-data-set/product-id/data_32.csv
- · You can define whatever partitioning strategy you like!
- Data partitioning will be handled by some tools we use (e.g. AWS Glue)

S3 Lifecycle rules

- Transition actions: It defines when objects are transitioned to another storage class.
 - Move objects to Standard IA class 60 days after creation
 - · Move to Glacier for archiving after 6 months
- Expiration actions: configure objects to expire (delete) after some time
 - Access log files can be set to delete after a 365 days
 - Can be used to delete old versions of files (if versioning is enabled)
 - Can be used to delete incomplete multi-part uploads
- Rules can be created for a certain prefix (ex s3://mybucket/mp3/*)
- Rules can be created for certain objects tags (ex Department: Finance)

Amazon S3 Encryption SSE-KMS

Amazon S3 Security S3 Bucket Policies

- JSON based policies
 - · Resources: buckets and objects
 - · Actions: Set of API to Allow or Deny
 - Effect: Allow / Deny
 - Principal: The account or user to apply the policy to

- Resource Based
 - Bucket Policies bucket wide rules from the S3 console allows cross account
 - Object Access Control List (ACL) finer grain
 - Bucket Access Control List (ACL) less common

S3 Default Encryption vs Bucket Policies

 The old way to enable default encryption was to use a bucket policy and refuse any HTTP command without the proper headers:

```
"Condition": {
    "StringNotEquals": {
        "s3:x-amz-server-side-encryption": "AE$256"
    }
}
```

• The new way is to use the "default encryption" option in S3

AWS Kinesis Overview

- Kinesis is a managed alternative to Apache Kafka
- Great for application logs, metrics, IoT, clickstreams
- · Great for "real-time" big data
- Great for streaming processing frameworks (Spark, NiFi, etc...)
- Data is automatically replicated synchronously to 3 AZ
- Kinesis Streams: low latency streaming ingest at scale
- Kinesis Analytics: perform real-time analytics on streams using SQL
- Kinesis Firehose: load streams into S3, Redshift, ElasticSearch & Splunk
- Kinesis Video Streams: meant for streaming video in real-time

Kinesis (Data) Streams Overview: Real-Time Streaming, Broadcast

· Streams are divided in ordered Shards / Partitions

- Data retention is 24 hours by default, can go up to 365 days
- · Ability to reprocess / replay data
- · Multiple applications can consume the same stream
- · Once data is inserted in Kinesis, it can't be deleted (immutability)
- Records can be up to IMB in size

Kinesis Data Streams Limits

- Producer:
 - IMB/s or 1000 messages/s at write PER SHARD
 - "ProvisionedThroughputException" otherwise
- Consumer Classic:
 - 2MB/s at read PER SHARD across all consumers
 - 5 API calls per second PER SHARD across all consumers
- Data Retention:
 - 24 hours data retention by default
 - · Can be extended to 365 days

Kinesis Data Firehose: Near Real-Time Streamin, Ingest & Store, Auto-Scale

- · Fully Managed Service, no administration
- Near Real Time (60 seconds latency minimum for non full batches)
- \bullet Data Ingestion into Redshift / Amazon S3 / ElasticSearch / Splunk
- · Automatic scaling
- Supports many data formats
- Data Conversions from CSV / ISON to Parquet / ORC (only for S3)

- · Actions: Set of API to Allow or Deny
- · Effect: Allow / Deny
- · Principal:The account or user to apply the policy to
- Use S3 bucket for policy to:
 - · Grant public access to the bucket
 - · Force objects to be encrypted at upload
 - · Grant access to another account (Cross Account)

S3- Security (EXAM)

- Networking VPC Endpoint Gateway:
 - Allow traffic to stay within your VPC (instead of going through public web)
 - Make sure your private services (AWS SageMaker) can access S3
 - · Very important for AWS ML Exam
- · Logging and Audit:
 - · S3 access logs can be stored in other S3 bucket
 - · API calls can be logged in AWS CloudTrail
- Tagged Based (combined with IAM policies and bucket policies)
 - Example: Add tag Classification=PHI to your objects

AWS Kinesis Overview

Architecture

Kinesis (Data) Streams - Capacity Mode: Provisioned, On-Demand

- · Provisioned mode:
 - You choose the number of shards provisioned, scale manually or using API
 - Each shard gets IMB/s in (or 1000 records per second)
 - Each shard gets 2MB/s out (classic or enhanced fan-out consumer)
 - · You pay per shard provisioned per hour
- · On-demand mode:
 - · No need to provision or manage the capacity
 - Default capacity provisioned (4 MB/s in or 4000 records per second)
 - · Scales automatically based on observed throughput peak during the last 30 days
 - Pay per stream per hour & data in/out per GB

Kinesis Data Firehose - Architecture

- Automatic scaling
- Supports many data formats
- Data Conversions from CSV / JSON to Parquet / ORC (only for S3)
- Data Transformation through AWS Lambda (ex: CSV => JSON)
- Supports compression when target is Amazon S3 (GZIP, ZIP, and SNAPPY)
- · Pay for the amount of data going through Firehose

Kinesis Data Streams vs Firehose

- Streams
 - · Going to write custom code (producer / consumer)
 - Real time (~200 ms latency for classic, ~70 ms latency for enhanced fan-out)
 - · Automatic scaling with On-demand Mode
 - · Data Storage for I to 365 days, replay capability, multi consumers
- Firehose
 - · Fully managed, send to S3, Splunk, Redshift, ElasticSearch
 - · Serverless data transformations with Lambda
 - · Near real time (lowest buffer time is I minute)
 - · Automated Scaling
 - No data storage

Transformation failures

Delivery Failures

AWS Destinatio

Amazon S3

Kinesis

Q

Kinesis Data Analytics - SQL or Flink Live Analytics, Serverless

- · Use cases
 - . Streaming ETL: select columns, make simple transformations, on streaming data
 - · Continuous metric generation; live leaderboard for a mobile game
 - · Responsive analytics: look for certain criteria and build alerting (filtering)
- Features
 - Pay only for resources consumed (but it's not cheap)
 - · Serverless; scales automatically
 - Use IAM permissions to access streaming source and destination(s)
 - · SQL or Flink to write the computation
 - · Schema discovery
 - Lambda can be used for pre-processing

Machine Learning on KDA - RANDOM CUT FOREST: Anomaly RECENT HISTORY

RANDOM_CUT_FOREST

- SQL function used for anomaly detection on numeric columns in a stream
- Example: detect anomalous subway ridership during the NYC marathon
- · Uses recent history to compute model

Kinesis Video Streams - 1 Stream per producer

- Producers:
 - security camera, body-worn camera, AWS DeepLens, smartphone camera, audio feeds, images, RADAR data, RTSP camera.
 - One producer per video stream
- · Video playback capability
- Consumers
 - build your own (MXNet,Tensorflow)
 - AWS SageMaker
 - Amazon Rekognition Video
- Keep data for I hour to 10 years

- 1 Kinesis Summary

Kinesis Data Analytics

Machine Learning on KDA - HOTSPOTS, DENSE REGIONS

HOTSPOTS

- locate and return information about relatively dense regions in your data
- Example: a collection of overheated servers in a data center

Kinesis Video Streams - Architecture

Use-Case Architecture

https://www.amazon.com/blocs/machine-learning/analyze-live-sideo-at-scale-in-mail-time-using-amazon-literal-aideo-atteams-and-anazon-sacemaker/

Kinesis Summary

- Kinesis Data Stream: create real-time machine learning applications
- Kinesis Data Firehose: ingest massive data near-real time
- Kinesis Data Analytics: real-time ETL / ML algorithms on streams
- Kinesis Video Stream: real-time video stream to create ML applications

GLUE Data Catalog - Schema Metadata for Data Sources

- Metadata repository for all your tables
 - · Automated Schema Inference
 - Schemas are versioned
- Integrates with Athena or Redshift Spectrum (schema & data discovery)
- Glue Crawlers can help build the Glue Data Catalog

GLUE Crawlers - Infer Schema for Data Sources

- Crawlers go through your data to infer schemas and partitions
- Works JSON, Parquet, CSV, relational store
- Crawlers work for: S3, Amazon Redshift, Amazon RDS
- Run the Crawler on a Schedule or On Demand
- Need an IAM role / credentials to access the data stores

GLUE ETL - Serverless ETL Spark Platform

- Transform data, Clean Data, Enrich Data (before doing analysis)
 - · Generate ETL code in Python or Scala, you can modify the code
 - · Can provide your own Spark or PySpark scripts
 - · Target can be S3, JDBC (RDS, Redshift), or in Glue Data Catalog
- Fully managed, cost effective, pay only for the resources consumed
- · Jobs are run on a serverless Spark platform
- Glue Scheduler to schedule the jobs
- · Glue Triggers to automate job runs based on "events"

Athena - Serverless Interactive SQL Query (Presto)

AWS Data Stores for Machine Learning

• DynamoDR: • C3:

Use-Case Architecture

MXNet

GLUE Data Catalog

Glue and S3 Partitions

- · Glue crawler will extract partitions based on how your S3 data is organized
- Think up front about how you will be querying your data lake in S3
- · Example: devices send sensor data every hour
- · Do you query primarily by time ranges?
 - If so, organize your buckets as s3://my-bucket/dataset/yyyy/mm/dd/device
- · Do you query primarily by device?
 - If so, organize your buckets as s3://my-bucket/dataset/device/yyyy/mm/dd

GLUE ETL Transformations - Bundled, ML, Format Conv., Spark

- Bundled Transformations:
 - DropFields, DropNullFields remove (null) fields
 - Filter specify a function to filter records
 - Join to enrich data
 - Map add fields, delete fields, perform external lookups
- Machine Learning Transformations:
 - FindMatches ML identify duplicate or matching records in your dataset, even when the records do not have a common unique identifier and no fields match exactly.
- · Format conversions: CSV, JSON, Avro, Parquet, ORC, XML
- Apache Spark transformations (example: K-Means)

AWS Data Stores for Machine Learning

OLAP Online Analytical Processing (Redshift) - Data Stored in Columns **OLTP Online Transaction Processing (RDS)** - Data Stored in Rows

- NoSQL data store, serverless, provision read/write capacity
- · Useful to store a machine learning model served by your application

- · S3:
 - Object storage
 - · Serverless, infinite storage
 - · Integration with most AWS Services

OpenSearch (previously ElasticSearch):

- · Indexing of data
- · Search amongst data points
- Clickstream Analytics

ElastiCache:

- Caching mechanism
- · Not really used for Machine

· Redshift:

- · Data Warehousing, SQL analytics (OLAP - Online analytical processing)
- · Load data from S3 to Redshift
- Use Redshift Spectrum to query data directly in S3 (no loading)

- · RDS, Aurora:
 - · Relational Store, SQL (OLTP -Online Transaction Processing)
 - · Must provision servers in advance

Learning

AWS Data Pipelines - Pipeline Orchestrator with EC2

- ETL service to move data from one store to another
- Does not contain actual ETL code, orchestrate the code.
- Destinations include S3, RDS, DynamoDB, Redshift and EMR
- Manages task dependencies
- · Retries and notifies on failures
- · Data sources may be on-premises
- · Highly available

AWS Glue vs Data Pipelines

- Glue:
 - Glue ETL Run Apache Spark code, Scala or Python based, focus on the ETL
 - Glue ETL Do not worry about configuring or managing the resources
 - · Data Catalog to make the data available to Athena or Redshift Spectrum
- Data Pipeline:
 - · Orchestration service
 - More control over the environment, compute resources that run code, & code
 - · Allows access to EC2 or EMR instances (creates resources in your own account)

AWS Batch - Serverless, Docker based batch jobs

- · Run batch jobs as Docker images
- Dynamic provisioning of the instances (EC2 & Spot Instances)
- · Optimal quantity and type based on volume and requirements
- · No need to manage clusters, fully serverless
- You just pay for the underlying EC2 instances
- · Schedule Batch Jobs using CloudWatch Events
- · Orchestrate Batch Jobs using AWS Step Functions

AWS Data Migration Service (DMS) - Database Migration

- · Quickly and securely migrate databases to AWS, resilient, self healing
- · The source database remains available during the migration
- · Supports:
 - Homogeneous migrations: ex Oracle to Oracle
 - Heterogeneous migrations: ex Microsoft SQL Server to Aurora
- Continuous Data Replication using CDC
- · You must create an EC2 instance to perform the replication tasks

AWS Data Pipelines - Architecture

AWS Glue vs Batch

- · Glue:
 - Glue ETL Run Apache Spark code, Scala or Python based, focus on the ETL
 - Glue ETL Do not worry about configuring or managing the resources
 - · Data Catalog to make the data available to Athena or Redshift Spectrum
- · Batch:
 - For any computing job regardless of the job (must provide Docker image)
 - · Resources are created in your account, managed by Batch
 - · For any non-ETL related work, Batch is probably better

AWS Glue vs DMS

- · Glue:
 - Glue ETL Run Apache Spark code, Scala or Python based, focus on the ETL
 - Glue ETL Do not worry about configuring or managing the resources
 - Data Catalog to make the data available to Athena or Redshift Spectrum
- · AWS DMS:
 - · Continuous Data Replication
 - · No data transformation
 - · Once the data is in AWS, you can use Glue to transform it

AWS Step Functions - Visual Design Workflows (upto Wait 1 year)

- Use to design workflows
- Easy visualizations
- Advanced Error Handling and Retry mechanism outside the code
- Audit of the history of workflows
- · Ability to "Wait" for an arbitrary amount of time
- Max execution time of a State Machine is I year

Example - Tune ML Model

AWS Step Functions Example - Train ML Model

Full Data Engineering Pipelines

Real-Time Layer

Full Data Engineering Pipelines

Video Layer

Batch Layer

Analytics Layer

Amazon DynamoDB AWS Data Pipeline Amazon S3 CSV Amazon S3 CSV Cleanup Task MySQL On-Premise AWS Database Migration Service (DMS) Amazon RDS Aws Data Pipeline Crawler Crawler Amazon RDS Aws Data Pipeline Crawler Crawler Amazon RDS Aws Data Pipeline Crawler Amazon RDS

Data Engineering Summary

Here's a quick summary of all the services we've mentioned

- Amazon S3: Object Storage for your data
- VPC Endpoint Gateway: Privately access your S3 bucket without going through the public internet
- Kinesis Data Streams: real-time data streams, need capacity planning, real-time applications
- Kinesis Data Firehose: near real-time data ingestion to S3, Redshift, ElasticSearch, Splunk

- Kinesis Data Analytics: SQL transformations on streaming data
- Kinesis Video Streams: real-time video feeds
- Glue Data Catalog & Crawlers: Metadata repositories for schemas and datasets in your
- Glue ETL: ETL Jobs as Spark programs, run on a serverless Spark Cluster

- DynamoDB: NoSQL store
 Redshift: Data Warehousing for OLAP, SQL language
 Redshift Spectrum: Redshift on data in S3 (without the need to load it first in Redshift)
 RDS / Aurora: Relational Data Store for OLTP, SQL language
- ElasticSearch: index for your data, search capability, clickstream analytics
- ElastiCache: data cache technology
 Data Pipelines: Orchestration of ETL jobs between RDS, DynamoDB, S3. Runs on EC2
- instances

 Batch: batch jobs run as Docker containers not just for data, manages EC2 instances for you
 DMS: Database Migration Service, 1-to-1 CDC replication, no ETL
- Step Functions: Orchestration of workflows, audit, retry mechanisms