Курс «Бізнес аналітика» Домашнє завдання №1 (від 22.09.2020)

Виконав студент: Микола Трохимович

Заняття 1. Економічне моделювання. Елементи поведінкової економіки. Функція корисності економічного агента. Крива індиферентності, оптимальна споживча в'язка і крива попиту. Метод безризикового еквіваленту.

Завдання 1 (6 балів).

1.1 (3 бали) У стародавньому Римі ввечері після застілля всі розходилися по своїх кімнатах, а господар будинку гасив світильники в загальній залі, щоб олива даремно не витрачається. Але раби крали залишки оливи! Дуже важко було запам'ятати, скільки в кожній лампі залишилося оливи. І зливати оливу не можна — в пристойному будинку світильники завжди повинні бути в стані максимальної готовності. Що придумав господар будинку, щоб раби перестали красти оливу?

Відповідь: Так як світильники завжди повинні бути в стані максимальної готовності - можна ввечері, погасивши їх, наповнювати повністю оливою. Таким чином не треба запам'ятовувати скільки оливи залишилося, так як вони будуть повні, а раби не можуть красти оливу, так як господар тоді точно помітить це.

1.2 (3 бали). Спробуйте знайти аналогію запропонованого вами рішення 1.1 при розв'язку реальної бізнес-проблеми.

- **а)** При транспортуванні нафти чи інших рідин наприклад залізницею заповнювати повні ємності, що полегшить облік та унеможливить крадіжки.
- б) Деколи в дрібному рітейлі недобросовісні працівники (продавці) можуть обманювати власника і розміщувати подекуди якийсь свій нелегальний товар на торгових площах в обхід власника (колись був такий випадок). Якщо ж всі торгові площі були б забиті повністю така б проблема не виникала б. Аналогічно, якщо компанія надає якісь послуги, наприклад перукарня, то було б добре, якби час майстра був повністю забитий з метою унеможливити якісь підробітки, що йдуть поза основним бюджетом.

Завдання 2 (6 балів).

2.1 (3 бали). Відомо, що африканські риби протоптери можуть кілька місяців жити поза водою в норах під затверділим шаром бруду. Місцеві жителі ходять на рибалку на протоптерів з лопатами і мотиками. Як же місцеві жителі зберігають спійману рибу?

Відповідь: Рибу можна викопувати разом з цим затверділим шаром бруду і зберігати її прямо з ним. Таким чином риба буде жива в ньому і буде зберігатися довгий період часу.

2.2 (3 бали). Спробуйте знайти аналогію запропонованого вами рішення 2.1 при розв'язку реальної бізнес-проблеми.

- **а)** Щось схоже з газом наприклад. Його видобувають з родовищ (місць залягань під землею), а потім ці ж місця можуть використовуватися як газосховища для зберігання запасів газу наприклад імпортованого з за кордону.
- **б)** Можна так само вирішувати проблему з транспортуванням зелені наприклад. ЇЇ часто продають разом з горщиком з землею. Таким чином вона довше залишається свіжою і не в'яне.

Завдання 3 (6 балів).

3.1 (3 бали). Відомо, що електричний вугор з Амазонки може вразити жертву електричним струмом напругою 500 вольт. Чому місцеві жителі перед ловом вугрів заганяють у річку стадо корів?

Відповідь: Корова набагато більша за людину, тому їй такий удар струмом є набагато менш серйозним ніж людині, вони його напевно і не відчувають. Тому вугри просто випускають весь свій запал на корів обороняючись від стада, а потім люди просто ловлять вже беззахисних вугрів.

3.2 (3 бали). Спробуйте знайти аналогію запропонованого вами рішення 3.1 при розв'язку реальної бізнес-проблеми.

- а) Наприклад в специфіці роботи аутсорс ІТ компанії, особливо коли йде мова про проекти пов'язані з роботою з даними прослідковується такий патерн: на першому етапі роботи з потенційним клієнтом(прісейл) залучаються дорогі спеціалісти, для того щоб клієнт був схильний продовжити співпрацю і підписати контракт. Далі, коли контракт підписаний, то до розробки вже залучаються дешевші, менш досвідчені спеціалісти, щоб збільшити маржу.
- **б)** Є зразки(samples) продуктів, які використовуються в маркетингу (парфуми, ручки, тощо). І вони зазвичай кращої якості ніж фактична партія. Знову ж таки, підписується контракт по факту побачених зразків, а далі вже завозиться зничайна партія, коли після підписання. Це як після підписання контракту, перевага вже переходить на іншу сторону, так як змінюються відповідальності.

Завдання 4 (6 балів).

4.1 (3 бали). Колись в давнину люди придумали цікавий спосіб ловити мавп з допомогою великої дині. Вони робили невеличкий отвір в дині і клали туди жменьку рису. Мавпа підходила до дині, просувала лапу всередину і ... Що ж відбувалось далі?

Відповідь: Мавпа просуває лапу і зжимає рис в кулаку. Але так як отвір вузький, то лапа пролазить, а зжатий кулак вже ні. Відповідно лапа застрягає в дині, бо не хоче розжати кулак і відпускати рис. Так люди її і ловлять.

4.2 (3 бали). Спробуйте знайти аналогію запропонованого вами рішення 4.1 при розв'язку реальної бізнес-проблеми.

Відповідь: Деколи виникає ситуація, коли треба відмовитися від якогось напрямку в бізнесі, так як він шкідливий. Наприклад зробили ви ресторанчик, а тут всіх застав карантин і його закрили. Таким чином прибутку немає, але постійно треба платити за оренду, зарплату і інші витрати. Деколи треба прийняти рішення закрити ресторан, хоча це і складне рішення, так як вкладено багато сил і енергії в нього, і він потенційно може бути дуже успішний. Але це треба зробити, щоб вижити бізнесу.

Завдання 5 (6 балів).

5.1 (3 бали). Кокосова пальма без особливого догляду за нею дає тубільцям і їжу, і напої, і матеріал для текстилю, і будматеріали, і паливо. Чому ж католицькі місіонери змушували острівних аборигенів вирубувати кокосову пальму?

Відповідь: Я відразу думав, що це щось пов'язане з релігією, але не міг зрозуміти що. Цю задачу довелося гуглити. Виявляється згідно Біблії, людина повинна заробляти хліб насущний у поті чола свого, а пальма ж називалася "деревом ледарів". Місіонери боялися, що аборигени будуть мати блага без необхідної праці і це негативно впливає на моральність пастви.

5.2 (3 бали). Спробуйте знайти аналогію запропонованого вами рішення 5.1 при розв'язку реальної бізнес-проблеми.

- 1) Інвестиції в новий напрямок. Розвиток бізнесу. Наприклад розвиваємо ми продуктову компанію в одній країні, можна спокійно сидіти на одному місці отримувати прибуток, але ми можемо і перекинути ресурси в розвиток в інших країнах. Таким Чином ми отримуємо певну шкоду робочому напрямку, але думаємо наперед і пробуємо промаштабувати і збільшити бізнес. Думаємо не сьогоднішнім а завтрашнім.
- 2) Можна тут також провести аналогією з процесами в аутсорс компанії. У працівників буває період, коли є перерва між проектами, так званий "бенч". Тоді по-факту немає завдань. Але це ж неправильно нічого не робити, так як ти деградуєш, звикаєш нічого не робити, тому існує хороша практика проходити в цей час додаткові курси, робити міні дослідницькі проекти, розвиватися.

Завдання 6. (10 балів)

6.1 (5 балів) Визначте області допустимих значень параметра у та w, що роблять сім'ю функцій $u(w) = \frac{w^y}{y}$ добре визначеною сім'єю функцій корисності від багатства економічного агента, тобто u' > 0, u'' < 0.

Розв'язок:

$$u'=rac{du}{dw}=w^{y-1}>0$$
 $u''=rac{du'}{dw}=(y-1)\,w^{y-2}<0$, обидві умови мають виконуватися одночасно

Для знаходження допустимих значень використаю WolframAlpha:

Примітка: Графік має певну неточність, а саме для приблизно $w > 70 \, {\rm тодi} \, y < -150 \, {\rm можемо}$ бачити, що значення не попадають в область допустимих значень. Проте це пов'язано з асимптотикою машинних обчислень, так як при великих значеннях функції набувають значення дуже близька до нуля, а нуль не повинен входити в цю область.

Як бачимо область допустимих значень зображена на графіку вище. Опишемо її аналітично:

1) w < 0: - неможливо, бо одна з умов не буде справджуватися

2) w>0 тоді y<1 - допустимі значення параметрів у та w, що роблять сім'ю функцій добре визначеною.

Відповідь: w > 0, y < 1, $y \ne 0$ — бо тоді функція не визначена 6.2 (5 балів) Зобразіть графічно кілька функцій корисності $u(w) = \frac{w^y}{y}$ для різних допустимих значень у і для 0 < w < 10 на одному рисунку.

Завдання 7. (10 балів).

Вибір оптимальної в'язки споживчих товарів за умов бюджетних обмежень. Нехай ціни на товари 1, 2, 3 відповідно дорівнюють p_1 , p_2 , та p_3 , а початковий рівень багатства дорівнює W. Функція корисності від споживання товарів 1, 2 та 3 в кількостях x_1 , x_2 , та x_3 визначається формулою $u(x_1, x_2, x_3)$.

Припустимо, що економічний агент хоче придбати м'ясо для домогосподарства. У цього для цього виділено бюджет 1000 грн. Економічний агент вибирає серед курятини, яловичини та свинини. Ціна за 1 кг курятини – 80 грн., свинини – 120 грн., яловичини – 150 грн. Нехай функція задоволення економічного агента від споживання м'яса, враховуючи його смакові якості, корисність і т.п., виражається формулою:

$$u(x_1, x_2, x_3) = (x_1)^{\alpha_1} \times (x_2)^{\alpha_2} \times (x_3)^{\alpha_3}$$
 (1) $u(x_1, x_2, x_3) = (x_1)^{\alpha_1} + (x_2)^{\alpha_2} + (x_3)^{\alpha_3}$ (2) де $\alpha_1 = 0.5$, $\alpha_2 = 0.7$, $\alpha_3 = 0.85$.

Знайдіть оптимальну в'язку споживання м'яса для даного економічного агента, який має функцію задоволення 1) або 2), якщо W = 1000 грн.

Відповідь:

Нам потрібно розв'язати таку оптимізаційну задачу для кожної з $u(x_1,x_2,x_3)$: $u(x_1,x_2,x_3)\to max$, за умови, що $p_1x_1+p_2x_2+p_3x_3\leq W,\ x_1\geq 0,\ x_2\geq 0, x_3\geq 0$ де $p_1=80,\ p_2=120,\ p_3=150,\ W=1000$

Для розв'язку використаємо Python (код доданий в файлу додатку) і отримаємо такі розв'язки:

```
Найкраще значення функції корисності 1: 8.616181988764245 x1 = 3.048965059731902 x2 = 2.8457132071948403 x3 = 2.763981402398934

Найкраще значення функції корисності 2: 6.29044684111407 x1 = 1.8378792314701498 x2 = 2.1863389885748217 x3 = 3.937393219022801
```

Де x_1, x_2, x_3 оптимальні значення для кількості товару, за яких максимізуються відповідні функції корисності.

Завдання 8. (10 балів).

Оптимальний розподіл часу. Припустимо, що економічний агент бажає оптимально розподілити вільних від сну, їди та гігієнічних потреб 16 годин свого часу. Від вільного часу, годин дозвілля у агент отримує задоволення як і від годин праці x, які приносять йому прибуток p кожна. Нехай ця функція корисності записується у вигляді u(xp, y) причому x + y = 16.

Припустимо, що функція задоволення

$$u(x,y) = (p \times x)^{0.7} \times y^{0.5}$$

$$u(x,y) = (p \times x)^{0.5} + y^{0.7}$$
(4)

$$u(x,y) = (p \times x)^{0.5} + y^{0.7}$$
 (4)

де p = 30 у.о.

Знайдіть оптимальний розподіл часу економічного агента, який максимізує свою функцію задоволення, виражену формулами (3) та (4).

Розв'язок:

Аналогічно з попередньою задачею використаю Python (код додав в додатку) і розвяжу таку оптимізаційну задачу а саме для кожної u(x,y) знайду таки x,y: $u(x,y) \to max$, за умови, що $x+y=16, x \ge 0, y \ge 0$.

Отримав такі результати:

Найкраще значення функції задоволення (3): 133.3413943536007

x = 9.33313042081636

y = 6.666869579183641

Найкраще значення функції задоволення (4): 22.213310119096

x = 15.028693254621526

y = 0.9713067453784756

Завдання 9. (20 балів). Лотерейний підхід до інвестування.

Припустимо, що інвестор розглядає можливість інвестування у проект X, вартість якого наступного року оцінюється згідно до такої «лотереї»:

Стан ринку	1	2	3	4	5
Ймовірність, p_i	0,2	0,2	0,3	0,2	0,1
Вартість, X_i	10000	15000	25000	50000	60000

9.1 (5 балів) Знайдіть очікувану вартість проекту X наступного року, тобто

$$E(X) = \sum_{i=1}^{5} p_i \times X_i$$

9.2 (5 балів) Знайдіть стандартне відхилення вартості інвестиційного проекту X (міру ризиковості проекту X), тобто

$$\sigma(X) = \sqrt{\sum_{i=1}^{5} p_i \times (X_i - E(X))^2}$$

9.3 (10 балів) Яку найбільшу суму готовий би був заплатити інвестор за цей інвестиційний проект, якщо у нього багатство W=100 тис. у.о., а функція задоволення від багатства $U(W)=\sqrt{W}$, де **W** вимірюється в тис. у.о.

Розв'язок: Використовуючи Python

```
In [23]: p = np.array([0.2,0.2,0.3,0.2,0.1])
s = np.array([10000,15000,25000,50000,60000])

mean = np.dot(p,s.T)

sqrt = np.sqrt(np.dot(np.power(s-mean, 2), p.T))

print('Очікувана вартість проекту: ', str(mean))
print('Міра ризиковості проекту: ', str(round(sqrt,3)))

Очікувана вартість проекту: 28500.0
```

Міра ризиковості проекту: 17327.723

- **1)** E(X) = 0.2 * 10000 + 0.2 * 15000 + 0.3 * 25000 + 0.2 * 50000 + 0.1 * 60000 = 28500
- **2)** $\sigma(X) = 17327.723$

3) Згідно з конспектом:

Якщо інвестор володіє багатством W і хоче придбати інвестиційний проект X, то безризиковим еквівалентом СЕ при купівлі проекту X називається величина СЕ, що визначається з рівняння:

$$u(W) = \sum_{i=1}^{n} p_i \times u(W - CE + X_i)$$
 (4)

Якщо СЕ - безризиковий еквівалент інвестиційного проекту, W – багатство інвестора, а X – очікувана вартість інвестиційного проекту, то безризиковий еквівалент інвестиційного проекту визначається зі співвідношення:

$$u(W) = E(u(W + X - CE))$$

Підставимо наші умови $\sqrt{W} = E(\sqrt{(+ - CE)})$ Розвяжемо за допомогою Wolfram:

Відповідь: СЕ = 27785,5

Завдання 10. (20 балів).

Розглянемо економічного агента з добре визначеною функцією корисності та рівнем багатства W. Припустимо, що виплати по проекту характеризуються наступною лотереєю L = (G, B; p). Припустимо, що W=20, G=44, B=7, p=0.35 і $u(W) = \sqrt[3]{W}$. Зобразимо схематично дану лотерею L

- **10.1 (10 балів)** Знайдіть максимальну ціну, за яку б інвестор погодився придбати цей проект.
- **10.2 (10 балів)** Знайдіть мінімальну ціну, за яку б інвестор погодився продати цей проект, якщо ним він вже володіє, маючи ще й багатство W.

Розв`язок:

1) Знайдемо максимальну ціну $P_{\it B}$ за яку б інвестор погодився придбати проект. Ціна повинна задовольняти

$$u(W) = pu(W - P_B + G) + (1 - p)u(W - P_B + B)$$

Використовуючи Wolfram Alpha:

Маємо P_B = 16.06

2) Знайдемо мінімальну ціну P_S :

Ціну P_{S} повинна задовольняти:

$$u(W + P_S) = pu(W + G) + (1 - p)u(W + B)$$

або

$$P_s = u^{-1}(pu(W+G) + (1-p)u(W+B)) - W$$

$$P_s = (0.35(20+44)^{\frac{1}{3}} + 0.65(20+7)^{\frac{1}{3}})^3 - 20 = 17.6$$

<u>Відповідь:</u> 1) максимальна ціна $P_B = 16.06$, 2) мінімальна ціна $P_S = 17.6$