IIC3253

Repaso de teoría de grupos

Grupos

Un grupo es un par (G,*), donde G es un conjunto y $*: G \times G \to G$ es una operación que satisface:

Neutro. Existe $e \in G$ tal que para todo $a \in G$

$$e * a = a * e = a$$

Inversos. Para todo $a \in G$ existe $a^{-1} \in G$ tal que

$$a * a^{-1} = a^{-1} * a = e$$

Asociatividad. Para todos $a,b,c\in G$ se tiene

$$(a*b)*c = a*(b*c)$$

Algunos ejemplos

$$(\mathbb{Z},+)$$

$$(\mathbb{Q},+)$$

$$(\mathbb{Q}\setminus\{0\},\cdot)$$

$$(\{0,1,2,3\}, + \mod 4)$$

$$(\mathbb{Z}_n,+)$$

$$\mathbb{Z}_n = \{0,1,\ldots,n-1\}$$

$$(\{1, 2, 3, 4, 5, 6\}, \cdot \mod 7)$$

$$(\{1,2,3,4,5,6\}, \cdot \mod 7)$$

$$(\mathbb{Z}_n^*,\cdot)$$

$$\mathbb{Z}_n^* = \{a \in \{1, \dots, n-1\} \mid \mathit{MCD}(a, n) = 1\}$$

$$(\{1,3,7,9\}, \cdot \mod 10)$$

$$(\{1, 2, 4, 7, 8, 11, 13, 14\}, \cdot \mod 15)$$

Subgrupos

Un subgrupo de (G,*) es un conjunto $H\subseteq G$ tal que (H,*) también es un grupo.

¿Qué subgrupos tiene $(\mathbb{Z}_{10},+)$?

¿Qué subgrupos tiene $(\mathbb{Z}_{10}^*,\cdot)$?

Teorema de Lagrange

Si G es un grupo finito y H es un subgrupo de G, entonces |H| divide a |G|

¿Cuáles son los tamaños de los subgrupos de $(\mathbb{Z}_{10},+)$?

¿Cuáles son los tamaños de los subgrupos de $(\mathbb{Z}_{10}^*, \cdot)$?

Sea (G, *) un grupo y $a \in G$. Usando notación multiplicativa, definimos

$$a^n = \underbrace{a * \cdots * a}_{n \text{ veces}}$$

Además, definimos $\langle a \rangle = \{a^j \mid j \in \mathbb{N}\}$

Considere $(\mathbb{Z}_{10},+)$

$$\langle 0 \rangle = \{0\}$$

$$\langle 2 \rangle = \{0, 2, 4, 6, 8\}$$

$$\langle 3 \rangle = \{0, 1, 2, 3, 4, 5, 6, 7, 8, 9\}$$

Considere $(\mathbb{Z}_{10}^*,\cdot)$

Considere $(\mathbb{Z}_{10}^*,\cdot)$

$$\langle 1 \rangle = \{1\}$$

$$\langle 3 \rangle = \{1, 3, 7, 9\}$$

$$\langle 7 \rangle = \{1, 3, 7, 9\}$$

$$\langle 9 \rangle = \{1, 9\}$$

Dado un grupo (G,*) y $a \in G$, tenemos que $(\langle a \rangle, *)$ es un subgrupo de (G, *)

Grupos cíclicos

Un grupo (G,*) es cíclico si existe $a\in G$ tal que $\langle a
angle = G$

$$(\mathbb{Z}_{10},+)$$
 es cíclico ya que $\langle 3
angle=\{0,1,2,3,4,5,6,7,8,9\}$ $(\mathbb{Z}_{10}^*,\cdot)$ es cíclico ya que $\langle 7
angle=\{1,3,7,9\}$

¿Son todos los grupos cíclicos?

Muestre que (\mathbb{Z}_8^*,\cdot) no es cíclico

Los grupos (\mathbb{Z}_p^*,\cdot) para p primo

Si p es un número primo, entonces (\mathbb{Z}_p^*,\cdot) es un grupo cíclico

 (\mathbb{Z}_7^*,\cdot) es cíclico ya que $\langle 5
angle = \{1,2,3,4,5,6\}$