	COMPUTER SCI CIAL INTELLIG			OF COMPUTER SCIENCE IGINEERING	
Program Name: B. Tech		Assignment Type: Lab		Academic Year: 2025-26	
Course Coordinator Name		Dr.Vairachilai Shenbagavel			
Instructor(s) Name		Srinivas Komakula			
Course Code	23CA201SE402	Course Title	Explainable AI (P)		
Year/Sem	III/V	Regulation	R24		
Date and Day of Assignment	28-07-2025	Time(s)	09:00AM -05:00PM 0 23CSBTB50		
Duration	2 Hours	Applicable to Batches			

Assignment Number: 01

Q. No.	Question	Expected Time to complete
1	Code Nest – Tech Training Platform	

Context

Code Nest tracks how launching coding challenges influences the number of active users on their platform.

Challenges Launched (x)	Active Users (y)
1	120
2	160
3	200
1	130
2	170

Objective:

Understand and explain the relationship between the number of coding challenges launched and the resulting user engagement using Linear Regression and SHAP values.

Instructions:

- 1. Perform Linear Regression
 - Independent Variable (x): Number of Challenges Launched
 - Dependent Variable (y): Active Users
 - Derive the regression equation:

 $y^=a+b\cdot x \cdot \{y\} = a+b \cdot cdot \cdot xy^=a+b\cdot x$

- 2. Calculate the Baseline Value
 - Compute the average of all y-values (i.e., mean active users)
- 3. SHAP Value Calculation
 - For each record:

 $SHAP\ Value=y^-Baseline \ \{SHAP\ Value\} = \ \{y\} - \ \{Baseline\} \\ SHAP\ Value=y^-Baseline$

• Attribute this SHAP value to the input variable (Challenges Launched)

4. Generate a Prediction Table:

x (Challeng	Actual y (Users)	Predict ed y	Basel ine	SHAP Value	Interpreta tion	
es)						

5. Interpretations

For each row:

- Explain how the number of challenges affected the predicted engagement.
- Indicate whether the model overpredicted or underpredicted the actual number of active users.
- Suggest insights (e.g., "1 challenge yields less engagement boost than expected").

Expected Outputs:

- Regression line equation
- Baseline value
- Table with predictions, SHAP values, and interpretation
- Final summary:
 - Model performance
 - o Strength of influence from "Challenges Launched"
 - Whether relationship is strong/linear
 - o SHAP-based feature attribution clarity

Q. No.	Question	Expected Time to complete
2	echBytes – Webinar Attendance using Multiple Linear Regression and SHAP Analysis	

Objective:

Evaluate how the number of reminder emails and topic relevance score impact webinar attendance using Multiple Linear Regression and interpret results through SHAP values.

Given Dataset:

Emails Sent	Topic Score	Attendanc
(X_1)	(X_2)	e (y)
100	8	200
80	6	160
120	9	230
90	5	150
70	4	130

Tasks:

1. Perform Multiple Linear Regression Analysis

- o Independent variables: Emails Sent and Topic Score
- Dependent variable: Attendance

2. Compute the Baseline Value

Use the average of the attendance values

3. Calculate SHAP Values

- o Calculate SHAP Value
- Distribute SHAP contributions between Emails Sent and Topic Score

4. Compute Model Predictions for Each Record

- o Apply the regression equation
- Validate the SHAP decomposition: Prediction = Baseline + SHAP(Emails)
- + SHAP(Topic Score)

5. Interpret the SHAP Contributions

- o For each row, explain the influence of each input
- o Compare actual vs predicted attendance
- o Indicate whether the model overestimated or underestimated and why

Q. No.	Question	Expected Time to complete
3	Regression with Diabetes Dataset	

Objective:

Understand how patient features influence disease progression using Multiple Linear Regression and SHAP value analysis.

Tasks

- 1. Perform Multiple Linear Regression Analysis
 - Use all available features from the Diabetes dataset as independent variables.
 - Fit a Multiple Linear Regression model to predict disease progression.
- 2. Calculate the Baseline Value
 - Compute the **mean** of the target variable (disease progression scores) from the training data.
 - This will serve as the **baseline prediction**.
- 3. Calculate SHAP Values
 - Apply SHAP to compute **feature contributions** to each prediction.
 - Use model coefficients to proportionally attribute the difference from the baseline to each feature.
- 4. Compute Final Prediction for Each Record
 - For every test record, verify that:

$Prediction = Baseline + SHAP(Feature_1) + SHAP(Feature_2) + ... + SHAP(Feature_n)$

- 5. Interpret the Results
 - For each patient record:
 - o Explain how each feature contributed to the predicted disease progression.
 - o Compare the **predicted value** vs the **actual observed value**.
 - o Comment on whether the model **overpredicted or underpredicted** and **why**, based on SHAP values.

Objective:

Investigate how student background and behavior influence final exam scores using Multiple Linear Regression and SHAP value analysis.

Tasks

- 1. Perform Multiple Linear Regression Analysis
 - Use all relevant student attributes (e.g., study time, parental education, absences, etc.) as independent variables.
 - Fit a regression model to predict the **final exam score**.
- 2. Calculate the Baseline Value
 - Compute the **mean of the final exam scores** from the training set.
 - This serves as the **baseline prediction** (expected value).
- 3. Calculate SHAP Values
 - Use SHAP to compute the contribution of each student attribute to the final exam score prediction.
 - Distribute the prediction deviation from the baseline among the features.

Q. No.	Question	Expected Time to complete
4	Regression with Student Performance Dataset	

Objective:

Understand how patient features influence disease progression using Multiple Linear Regression and SHAP value analysis.

Tasks

- 1. Perform Multiple Linear Regression Analysis
 - Use all available features from the Diabetes dataset as independent variables.
 - Fit a Multiple Linear Regression model to predict disease progression.
- 2. Calculate the Baseline Value

- Compute the **mean** of the target variable (disease progression scores) from the training data.
 - This will serve as the **baseline prediction**.
- 3. Calculate SHAP Values
 - Apply SHAP to compute **feature contributions** to each prediction.
 - Use model coefficients to proportionally attribute the difference from the baseline to each feature.
- 4. Compute Final Prediction for Each Record
 - For every test record, verify that:

Prediction = Baseline + SHAP(Feature₁) + SHAP(Feature₂) + ... + SHAP(Feature_n)

- 5. Interpret the Results
 - For each patient record:
 - o Explain how each feature contributed to the predicted disease progression.
 - o Compare the **predicted value** vs the **actual observed value**.
 - o Comment on whether the model **overpredicted or underpredicted** and **why**, based on SHAP values.