math in the times of corona, exam 1

June 16, 2020

Problem 1 : Suppose that a and b are two distinct positive real numbers such that $\lfloor na \rfloor$ divides $\lfloor nb \rfloor$ for any positive integer n. Prove that a and b are positive integers.

Problem 2: We call a n*n table *selfish* if we number the row and column with $0, 1, 2, 3, \ldots n-1$ (from left to right an from up to down), and for every $i, j \in \{0, 1, 2, ..., n-1\}$ the value of cell (i, j) is equal to the number of i in row j.

For example we have a *selfish* table for n = 5:

Prove that for n > 5 there is no *selfish* table.

Problem 3 : Let n be a positive integer and let k_0, k_1, \ldots, k_{2n} be nonzero integers such that $k_0 + k_1 + \cdots + k_{2n} \neq 0$. Is it always possible to find a permutation $(a_0, a_1, \ldots, a_{2n})$ of $(k_0, k_1, \ldots, k_{2n})$ so that the equation

$$a_{2n}x^{2n} + a_{2n-1}x^{2n-1} + \cdots + a_0 = 0$$

has no integer roots?

Problem 4 : Let $U = \{1, 2, ..., n\}$, where $n \ge 3$. A subset S of U is said to be split by a permutation of the elements of U if an element not in S occurs in the permutation somewhere between two elements of S.

For example, 13542 splits $\{1, 2, 3\}$ and $\{1, 5\}$ but not $\{3, 4, 5\}$.

Prove that for any n-2 subsets of U, each containing at least 2 and at most n-1 elements, there is an permutation of the elements of U which splits all of them.