Zadanie 12. (0-1)

Funkcja f określona jest wzorem $f(x) = \frac{2x^3}{x^6 + 1}$ dla każdej liczby rzeczywistej x. Wtedy $f\left(-\sqrt[3]{3}\right)$ jest równa

A.
$$-\frac{\sqrt[3]{9}}{2}$$

B.
$$-\frac{3}{5}$$
 C. $\frac{3}{5}$

C.
$$\frac{3}{5}$$

D.
$$\frac{\sqrt[3]{3}}{2}$$

Zadanie 13. (0–1)

W okregu o środku w punkcie S poprowadzono cięciwe AB, która utworzyła z promieniem AS kat o mierze 31° (zobacz rysunek). Promień tego okręgu ma długość 10. Odległość punktu S od cięciwy AB jest liczbą z przedziału

$$\mathbf{A.}\left\langle \frac{9}{2}, \frac{11}{2} \right\rangle$$

B.
$$\left(\frac{11}{2}, \frac{13}{2}\right)$$

$$\mathbf{C} \cdot \left(\frac{13}{2}, \frac{19}{2}\right)$$

$$\mathbf{D.}\left(\frac{19}{2},\frac{37}{2}\right)$$

Zadanie 14. (0-1)

Czternasty wyraz ciągu arytmetycznego jest równy 8, a różnica tego ciągu jest równa $\left(-\frac{3}{2}\right)$.

Siódmy wyraz tego ciągu jest równy

A.
$$\frac{37}{2}$$

B.
$$-\frac{37}{2}$$
 C. $-\frac{5}{2}$ **D.** $\frac{5}{2}$

C.
$$-\frac{5}{2}$$

D.
$$\frac{5}{2}$$

Zadanie 15. (0-1)

Ciąg (x, 2x+3, 4x+3) jest geometryczny. Pierwszy wyraz tego ciągu jest równy

 $\mathbf{A} \cdot -4$

B. 1

C. 0

D. -1

Zadanie 16. (0-1)

Przedstawione na rysunku trójkaty ABC i PQR sa podobne. Bok AB trójkata ABC ma długość

A. 8

B. 8,5

C. 9.5

D. 10

Strona 6 z 24