Fig-1-equations

Ave Bisesi

2022-08-10

Cooperation

$$\begin{split} \frac{dE}{dt} &= \mu_e \times E \times \frac{\alpha_{e,s} \times S}{(\alpha_{e,s} \times S) + \kappa_e} \times (R - E) - (\zeta_{e,2} \times gen \times E) - (\delta_e \times E) \\ \frac{dS}{dt} &= \mu_s \times S \times \frac{\alpha_{s,e} \times E}{(\alpha_{s,e} \times E) + \kappa_s} \times (R - S) - (\zeta_{s,1} \times sp \times S) - (\zeta_{s,2} \times gen \times S) - (\delta_s \times S) \\ \frac{dgen}{dt} &= (\gamma_{s,2} \times gen \times S) + (\gamma_{e,2} \times gen \times E) - (\delta_g \times gen) \\ \frac{dsp}{dt} &= (\gamma_{s,1} \times sp \times S) - (\delta_p \times sp) \end{split}$$

Competition

$$\frac{dE}{dt} = \mu_e \times E \times (R - E - (\beta_{e,s} \times S)) - (\zeta_{e,2} \times gen \times E) - (\delta_e \times E)$$

$$\frac{dS}{dt} = \mu_s \times S \times (R - S - (\beta_{s,e} \times E)) - (\zeta_{s,1} \times sp \times S) - (\zeta_{s,2} \times gen \times S) - (\delta_s \times S)$$

$$\frac{dgen}{dt} = (\gamma_{s,2} \times gen \times S) + (\gamma_{e,2} \times gen \times E) - (\delta_g \times gen)$$

$$\frac{dsp}{dt} = (\gamma_{s,1} \times sp \times S) - (\delta_p \times sp)$$

Parameter	Default Value	Description	
$\alpha_{\rm j,i}$	1.0	Cooperation coefficient, benefit of host species i to host species j	
$eta_{\mathbf{j},\mathbf{i}}$	0.9	Competition coefficient, effect of host species i on host species j	
$\mu_{ m i}$	0.5	Intrinsic growth rate of host species i	
$\gamma_{\mathrm{i,x}}$	0.02	Efficiency of predator with range x on host species i	
$\zeta_{\mathrm{i,x}}$	0.001	Consumption rate of predator with range x on host species i	
$\delta_{ m i}$	0.03	Natural rate of death for species i	
$\kappa_{ m i}$	1.0	Half-saturation Monod constant of species i	
\mathbf{R}	1.0 (coop) or	System carrying capacity	
	2.0 (comp)		

Trade-off	Parameter Combinations	Significance
None	$\gamma_{i,2} = \gamma_{i,1}$ and $\zeta_{i,2} = \zeta_{i,1}$	Generalist and specialist predators are parametrically identical
Benefit of specialism	$\gamma_{i,2} \neq \gamma_{i,1} \text{ or } \zeta_{i,2} \neq \zeta_{i,1}$	Specialist and generalist predators differ in their ability to kill hosts
Host rate	$\mu_{ m i} eq \mu_{ m j}$	Host species coexistence in the absence of predators is biased or impossible
Generalist preference	$\gamma_{i,2} \neq \gamma_{j,2} \text{ or } \zeta_{i,2} \neq \zeta_{j,2}$	Generalist predators are better at killing one host than another