(9) BUNDESREPUBLIK

DEUTSCHLAND

① Offenlegungsschrift① DE 3543890 A1

(5) Int. Cl. 4: G 05 B 24/02

> G 06 F 3/023 H 03 K 17/965 H 01 C 10/12 H 01 C 13/02

DEUTSCHES PATENTAMT

(1) Aktenzeichen: (2) Anmeldetag:

P 35 43 890.8 12. 12. 85

Offenlegungstag: 19. 6.87

71) Anmelder:

Deutsche Thomson-Brandt GmbH, 7730

1 Villingen-Schwenningen, DE

(72) Erfinder:

Oberjatzas, Günter, Dipl.-Ing., 3013 Barsinghausen, DE

Recherchenergebnisse nach § 43 Abs. 1 PatG:

WO 81/00 275 WO 81/00 274

DE-Z: etz, Bd.103. 1982, H.10, S.514-517; DE-Z: RME, Jg.46, 1980, 11, S.311,312,315; DE-Z: Messen + prüfen/automatik, Mai 1983, S.268-273:

DE-Firmenschrift:Konstruktionshinweise Kontaktmatten, Schaltelemente aus Silikonelastomer für die Elektronik, der Firma Carl Freudenberg, Nr. 30D 143382 Hö;

JP-Patents Abstracts of Japan, P-24, August 22, 1980, Vol.4, No.118, 55-72235; JP-Patents Abstracts of Japan, E-157.December 8, 1979, Vol.3, No.149, 54-127626; US-Z: IBM Technical Disclosure Bulletin, Vol.26, Nr.4, Sept.1983, S.1967, 1968;

(S) Eingabeelement

Die Erfindung betrifft ein Eingabeelement, insbesondere eine Fernbedienung. Erfindungsgemäß werden Stoffe, insbesondere Kontaktgummimatten, verwendet, mit denen sowohl eine Funktion ausgelöst als auch druckabhängig gesteuert werden kann.

DE 3543890 A

Patentansprüche

- t. Eingabeelement mit einem oder mehreren Stoften (10), die eine veränderbare Stellgröße, insbesondere Impedanz, aufweisen, zum Auslösen einer oder mehrerer Funktionen durch eine Stellgrößenänderung, dadurch gekennzeichnet, daß zur Erreugung einer oder mehrerer Steuersignale (B. C. D) Stellgrößenänderungen ausgewertet werden und abhängig vom Druck auf den oder die Stoffe 10 (10) die Steuersignale (B. C. D) veränderbar sind.
- 2. Eingabeelement nach Anspruch 1, dadurch gekennzeichnet, daß eine Steuerung (21) angeordnet ist, die die Stellgrößenanderung auswertet.
- 3. Eingabeelement nach Anspruch 2, dadurch ge- 15 kennzeichnet, daß die Steuerung (21) ein oder mehrere Steuersignale (B. C. D) erzeugt.
- 4. Eingabeelement nach Anspruch 1 und/oder 3, dadurch gekennzeichnet, daß das oder die Steuersiten steuern.
- 5. Eingabeelement nach einem oder mehreren der Ansprüche 1-4, dadurch gekennzeichnet, daß ein Positionsanzeiger (Cursor, 23) gesteuert ist.
- 6. Eingabeelement nach einem oder mehreren der 25 einer Cursorsteuerung. Ansprüche 1 - 5, dadurch gekennzeichnet, daß der Positionsanzeiger (23) auf einem Bildschirm (24)
- 7. Eingabeelement nach einem oder mehreren der Ansprüche I - 6, dadurch gekennzeichnet, daß als 30 Stoff Kontaktgummiplatten (10) verwendet sind.
- 8. Eingabeelement nach Anspruch 1 und/oder 7. dadurch gekennzeichnet, daß als Stoff elektrisch leitendes Moosgummi (10) verwendet ist.
- 9. Eingabeelement nach einem oder mehreren der 35 Ansprüche 1-6, dadurch gekennzeichnet, daß als Stoffe Gas und ein Drucksensor (38) verwendet
- 10. Eingabeelement nach einem oder mehreren der Ansprüche 1 - 6. dadurch gekennzeichnet, daß als 40 Stoff Flüssigkeiten und ein Drucksensor (38) verwendet sind.
- 11. Eingabeelement nach Anspruch 9 und/oder 10. dadurch gekennzeichnet, daß der Druck dadurch ausgewertet wird, daß eine Flüssigkeit und/oder ein 45 Gas zusammengepreßt werden und eine von dem Drucksensor (38) gelieferte Stellgröße ausgewertet wird (Fig. 8).
- 12. Eingabeelement nach einem oder mehreren der Ansprüche 1 – 8, dadurch gekennzeichnet, daß der 50 Druck eine geformte Kontaktmatte deformiert, so daß der Übergangswiderstand zwischen zwei leitenden Flächen sich kontinuierlich ändert (Fig. 6, 7). 13. Eingabeelement nach Anspruch 12. dadurch gekennzeichnet, daß die geformte Kontaktgummi- 55 matte eine spitze, eine längliche und/oder eine runde Kontaktfläche aufweist (Fig. 6, 7).

Beschreibung

Die Erfindung betrifft ein Eingabeelement gemäß dem Oberbegriff des Patentanspruchs 1.

Der Artikel "Von der Klickfeder zur Kontaktgummimatte", erschienen auf den Seiten 311 und 312 im Heft 11 der Zeitschrift RME (Radio Mentor Elektronik) Jahr- 65 gang 46 (1980) beschreibt die Herstellungsmöglichkeiten von Tastaturen mit einer Kontaktgummimatte. Die Kontaktgummimatte wird als Schalter und Kontakt

dargestellt.

Der Erfindung liegt die Aufgabe zugrunde, eine einfache Einrichtung zu schaffen, mit der eine Stellgröße kontinuierlich geändert werden kann.

Diese Aufgabe wird durch die im Patentanspruch 1 angegebenen Maßnahmen gelöst. Vorteilhafte Weiterbildungen der Erfindung sind in Unteransprüchen genannt.

Eine Kontaktgummimatte, im folgenden Moosgummi genannt, ist ein Stoff, der seine Impedanz aufgrund von äußeren mechanischen Einflüssen, speziell beim Zusammenpresssen, ändert. Diese Änderung der Impedanz kann vorteilhaft dazu benutzt werden, um Eingabeelemente herzustellen, die einen Stellgrößenverlauf mit unterschiedlichem Gradienten erfordern. Vorteilhaft kann ein Eingabeelement so angepaßt werden, daß eine Vielzahl physiologisch kontrollierter Stellgrößenänderungen ermöglicht werden.

Zum besseren Verständnis der Erfindung wird nachgnale (B. C. D) eine oder mehrere Geschwindigkei- 20 stehend ein Ausführungsbeispiel anhand von Zeichnungen näher erläutert.

Es zeigen

Fig. 1 ein Tastenfeld einer Cursorsteuerung.

Fig. 2 eine Anordnung von Kontaktgummiplatten in

Fig. 3 einen Multiplexer zur Abfrage einer Cursorsteuerung.

Fig. 4 eine Cursorsteuerung, die einen Cursor auf einem Bildschirm bewegt,

Fig. 5 eine Cursorsteuerung mit zwei Ausgängen.

Fig. 6 einen Stempel und zwei leitende Platten,

Fig. 7 die Wirkung des Stempels auf diese Platten und Fig. 8 einen Drucksensor.

Fig. 1 zeigt ein Tastenfeld einer Cursorsteuerung (Positionsanzeigesteuerung), die einen Cursor (Positionsanzeiger) über einen Bildschirm bewegt. Beim Drücken auf eines der Felder 1-9 wird erstens eine gewünschte Richtung und über die Stärke des Druckes zweitens eine gewünschte Stellgröße eingegeben. Vorteilhaft kann diese Stellgröße dazu benutzt werden, um eine Geschwindigkeit zu steuern. Bei einer Korrektur von Text, der auf einem Bildschirm sichtbar ist, wird der Cursor über kleine, mittlere oder weite Strecken über den Bildschirm bewegt. Mit der Cursorsteuerung kann der Cursor schneller oder langsamer, je nach Druck, an eine gewünschte Position gesteuert werden. Das Feld 9 steuert den Cursor in eine Ausgangsposition, z.B. Bildschirmmitte. Das Feld 1 steuert den Cursor nach links und oben, das Feld 2 nach oben, das Feld 3 nach rechts und oben und die Felder 4-8 entsprechend in die anderen Richtungen.

Vorteilhaft kann eine einfachere Version mit drei Feldern 2.6 und 9 zur Einstellung einer Zeitanzeige benutzt werden. Die Felder 2 und 6 geben die Stellrichtungen vorwärts oder rückwärts an und druckabhängig wird die Stellgeschwindigkeit vorgegeben. Vorteilhaft werden Sekunden, Minuten und Stunden einer Zeitanzeige zwar abhängig voneinander aber gleichzeitig eingestellt. Werden 60 Sekunden erreicht, wird die Minutenanzeige 60 umgeschaltet, ebenso wird bei Erreichen einer vollen Minutenzahl (60) die Stundenanzeige umgeschaltet. Bei geringer Druckausübung auf ein Tastenfeld 2 oder 6 werden die Sekunden physiologisch wahrnehmbar weitergeschaltet. Wird der Druck auf ein Tastenfeld 2 oder 6 erhöht, so werden die Sekunden schneller, physiologisch nicht mehr wahrnehmbar weitergeschaltet, dafür werden dann die Minuten schneller, jedoch physiologisch wahrnehmbar weitergeschaltet. Bei einer weiteren

Erhöhung des Druckes auf ein Tastenfeld 2 oder 6 werden die Minuten schneller, physiologisch nicht mehr wahrnehmbar weitergeschaltet, die Stundenanzeige wird dann schneller, jedoch noch physiologisch wahrnehmbar weitergeschaltet. Die Umschaltungen in der Anzeige der Minuten und Sekunden ist dann von einem Betrachter nicht mehr wahrnehmbar. Das Feld 9 steuert die Zeitanzeige einer Uhr in eine Ausgangsposition, z.B. 00.00.00 Uhr. Eine weitere Anwendungsmöglichkeit ist die Eingabe in einen Tuner, um einen Sender abzustim- 10

Fig. 2 zeigt elektrisch leitendes Moosgummi 10, eine elektrisch leitende Grundplatte 11, elektrisch leitende Platten 12, 13 und das Feld 5 mit einer Folientastatur. Der nichtleitende Kunststoff 14 läßt sich leicht durch- 15 drücken. Durch den Druck auf den nichtleitenden Kunststoff 14 wird das darunterliegende elektrisch leitende Moosgummi 10 zusammengedrückt und verändert seine Impedanz. Diese Impedanzänderung wird ausgewertet. Erstens führt die Veränderung der Ru- 20 heimpedanz zum Auslösen der gewünschten Funktion und zweitens wird durch die Impedanzänderung eine Steuergröße verändert. Die Impedanz ist bei Moosgummi 10 ein Widerstand, der beim Zusammendrücken des Moosgummis 10 geringer wird. Die elektrisch lei- 25 tenden Moosgummistücke 10 sind nicht miteinander verbunden. Jedem Feld 1-9, im folgenden Tasten genannt, sind ein elektrisch leitendes Moosgummi 10 und zwei elektrisch leitende Platten 12 und 13 zugeordnet. Vorteilhaft sind die Zwischenräume 15 mit elektrisch 30 A (gestrichelt gezeichnet) steht für einen großen Widernichtleitendem Füllmaterial aufgefüllt, um das elektrisch leitende Moosgummi 10 in einer ortsfesten Lage zu hal-

Fig. 3 zeigt einen Multiplexer 16, der über einen Schalter 17 eine Cursorsteuerung multiplext. Über eine 35 Signalleitungen 35 ein verschieden großer Strom 11. Spannungsquelle (UB+) und einen Vorwiderstand 19 wird an Platten 13 eine Spannung angelegt. Die Platten 13 sind auf der Moosgummiplatte 10 angeordnet. Auf der den Platten 13 gegenüberliegenden Seite der Moosgummiplatte 10 sind weitere Platten 12 angeordnet, die 40 über elektrisch leitende Verbindungsdrähte 18 zum Multiplexschalter 17 führen. Der Multiplexschalter 17 führt zum Ausgang A. Bei Druck auf eine der platten 13 wird das Moosgummi 10 zwischen den Platten 12 und 13 zusammengedrückt und ändert seine Impedanz, damit 45 ergibt sich ein größerer Stromfluß am Ausgang A. der Stromfluß steht für eine Auswertung zur Verfügung.

Fig. 4 zeigt eine Alternative mit mehreren Moosgummistücken 10. an die über Vorwiderstände 19 eine Spannung + UB angelegt ist. Der Schalter 17 des Multi- 50 plexers 16 multiplext über Verbindungsdrähte 18 die Moosgummistücke 10 und legt Spannungswerte an einen Analog/Digital-Wandler (A/D-Wandler) 20. Der A/D-Wandler 20 wandelt analoge Spannungs- und/oder Stromwerte in Digitalsignale, die an eine Steuerung 21 55 zur Auswertung angelegt sind. Die Steuerung 21 taktet über eine Taktleitung 22 den Multiplexer 16 und den A/D-Wandler 20. Die Steuerung 21 steuert den Cursor (Positionsanzeiger) 23 mit der Steuergröße D, auf dem Bildschirm 24 ein blinkender Strich unter dem u des 60 Wortes Kuh je nach Tastendruck mit unterschiedlicher Geschwindigkeit in verschiedene Richtungen. Bei Druck auf die Taste 7 wird der Cursor 23 in die linke untere Bildschirmhälfte geführt. Mit zunehmender Druckstärke auf die Taste 7 wird der Widerstand des 65 Moosgummis 10 geringer, es fließt ein größerer Strom von der Spannungsquelle UB+ über den Vorwiderstand 19, das Moosgummistück 10 und den Multiplexer

16 zum Widerstand 30. Der A/D-Wandler 20 registriert den größeren Spannungsabfall am Widerstand 30 und legt eine entsprechende Bitkombination an die Steuerung 21. die Geschwindigkeit des Cursors 23 erhöht sich.

Fig. 5 zeigt ein Eingabeelement mit Tasten 1 – 9, dem Multiplexer 16, dem A/D-Wandler 20, der Steuerung 21. einem D/A-Wandler 25, einem Multiplex-Speicher 26, einem Port-Baustein 27. einem Digitalausgang B. einem Analogausgang C, einem Steuer- und Adressenbus (AD-Bus) 28 und einem bidirektionalen Datenbus 29. Der Datenbus weist acht, der AD-Bus n Datenleitungen auf. Die Busse verbinden die Steuerung 21 mit dem A'D-Wandler 20, dem Portbaustein 27 und dem D/A-Wandler 25. Vorteilhaft ist die Steuerung ein Mikroprozessor. Solch ein Mikroprozessorsystem ist z.B. beschrieben in den Siemens Handbüchern Mikroprozessor System SAB 8085, Datenbuch, München 80/81 und Mikrocomputer Bausteine, peripherie, Datenbuch München 1979/1980. Der Multiplex-Speicher 26 ist ein Multiplexer und ein Analog-Speicher, über den n verschiedene Steuersignale auf n verschiedene Ausführer gegeben werden können.

Fig. 6 zeigt zwei leitende Platten 31 und einen Steinpel 32. Der Stempel 32 ist eine Kontaktmatte, in Richtung 33 bewegbar gelagert und kann auf die beiden leitenden Platten 32 abgesenkt werden. Der Stempel 32 weist ein rundes und längliches Ende 34 auf.

Beim Aufsetzen auf die leitenden Platten 31 werden Flächen A, B, C gemäß Fig. 7 erzeugt. Die kleine Fläche stand, die mittlere Fläche B (punktiert-gestrichelt gezeichnet) für einen mittleren Widerstand und die große Fläche C (ausgezogen gezeichnet) für einen kleinen Widerstand. Je nach Druck auf den Stempel fließt durch

Fig. 8 zeigt eine Kammer 37, die je nach Druck auf eine Seite dieser Kammer 37 über ein Rohr 39 ein Gas oder eine Flüssigkeit in einen Drucksensor 38 leitet. Zum Drucksensor 38 führen zwei weitere Signalleitungen 36. Je nach Druck wird ein Strom 12 durch die Signalleitungen 36 beeinflußt.

Fig.8