

Giai-tich-1 dang-van-vinh cau-hoi-trac-nghiem-giai-tich-1 - [cuuduongthancong

Giải tích II (Trường Đại học Bách khoa Hà Nội)

Scan to open on Studocu

Trung tâm BDVH Tân Bách Khoa.

Biên soạn: TS Đặng Văn Vinh.

Câu hỏi trắc nghiệm: Giải tích 1.

Câu 1 : Tìm tất cả giá trị thực cuả a để $f(x)=\left\{\begin{array}{ll} \dfrac{\arctan x}{|x|}, & x\neq 0\\ a, & x=0 \end{array}\right.$ liên tục tại x=0 (a) a=0. (b) a=1. (d) Ba câu kia sai. (d) a=-1.

Câu 2 : Cho hàm số y=y(x) xác định bởi $x=\arctan t, y=\frac{t^5}{2}$. Tính y'(x) tại $x=\frac{\pi}{3}$ (a) Không xác định. (b) Một đáp án khác. (c) $\frac{45}{8}$.

Câu 3 : Đạo hàm cấp 4 của hàm số $f(x) = e^{-x^2}$ tại x = 0 là (a) $f^{(4)}(0) = -4$. (b) $f^{(4)}(0) = 8$. (c) $f^{(4)}(0) = -12$.

Câu 4 : Giá trị của $I = \cos(\arcsin(-\frac{1}{2}))$ là

- (a) $\frac{2\pi}{3}$. (b) $\frac{-1}{2}$.

Câu 5: Tính $I=\lim_{n\to +\infty}\left(\frac{2n+1}{n+3}\right)^{\frac{3n+2}{n-5}}$ (a) I=8. (b) $I=+\infty$. (c) $I=e^2$.

Câu 6 : Tính giới hạn $I = \lim_{x \to 0} (1 + 4x^2 e^{2x})^{\frac{1}{x^2}}$ (a) I = 0. (b) I = 1. (c) $I = \sqrt[4]{e}$.

Câu 7: Hàm số nào trong số các hàm sau đây liên tục với mọi x nhưng không có đạo hàm hữu hạn tại ít nhất một điểm

- (a) $\cos x$.
- (b) 4^{-x} .
- \bigcirc x|x|.
- (d) $x^{1/3}$.

Câu 8): Tìm khai triển Maclaurin của $f(x) = \ln^2(1+x)$ đến cấp 3 Tim khai trien Maciaurii 2... (a) $f(x) = 2x^2 - 3x^3 + o(x^3)$.

 $f(x) = 2x^2 + 3x^3 + o(x^3).$

(a) $f(x) = x^2 + x^3 + o(x^3)$.

Câu 9 : Tính $\lim_{n \to +\infty} n(\sqrt[n]{2} - 1)$ (a) 0.

(c) 1.

∄. (d)

Câu 10: Tìm y'(0), biết y = y(x) là hàm ẩn xác định từ phương trình $xy + \ln y = 1, y < e^2$.

- (a) $y'(0) = e^2$. (b) $y'(0) = -e^2$.
- (c) y'(0) = e. (d) y'(0) = -e.

Câu 11 : Tính $\lim_{x\to 0}(\frac{1}{x \lg x}-\frac{1}{x^2})$ (a) $\frac{1}{3}$. (b) 1.

Câu 12 : Tính đạo hàm $f^{(10)}(0)$ với $f(x) = (2x + 3)\cos x^2$.

- (a) $\frac{10!}{12}$.
- **b** Ba câu kia sai. \bigcirc $\frac{-\cdot 10!}{\circ}$.

Câu 13 : Tìm $d^2y(0)$ của hàm $y = \cos^2 2x$.

(d) $d^2y(0) = -4dx^2$.

Câu 14 : Cho hai vô cùng bé $\alpha(x) = x - \sin x$; $\beta(x) = mx^3$, $m \in \mathbb{R}$, $m \neq 0$. Khẳng định nào đúng? (a) $\alpha(x)$ là vô cùng bé bâc thấp hơn $\beta(x)$. (b) $\alpha(x)$ và $\beta(x)$ là hai vô cùng bé tương đương. (c) $\alpha(x)$ là vô cùng bé bậc cao hơn $\beta(x)$ nếu m đủ nhỏ. $\alpha(x)$ và $\beta(x)$ là hai vô cùng bé cùng bậc.

Câu 15 : Cho $f(x)=\left\{\begin{array}{ll} \frac{e^{2x}+e^{-2x}-2}{2x^2},&x\neq 0\\ 2a+1,&x=0\end{array}\right.$ Với giá trị nào của a thì hàm liên tục tại x=0? $a = \frac{-3}{2}.$ $a = \frac{-3}{2}.$ a = 1. $a = \frac{1}{2}.$ a = 2.

Câu 16 : Vi phân của hàm số $f(x) = \ln(1+x^2)$ tại x = 1 là (a) df(1) = 2dx. (c)

Câu 17 : The vi phân cấp 2 $d^2y(0)$ của hàm $y = x3^x$. (a) $2 \ln 3 dx^2$. (b) Ba câu kia sai.

Câu 18 : Tính $I=\sqrt{6+\sqrt{6+\sqrt{6+\dots}}}$ 3. (b) Ba câu kia sai. (c) ∞ .

Câu 20 : Tính $I = \lim_{x \to 0} \frac{e^{x^2} - \cos x}{\sin^2 x + 3\sin^5 x}$ (a) $I = \frac{1}{3}$. (b) I = 3. (c) Ba câu kia sai. (d) $I = \frac{3}{2}$.

Câu 22 : Tìm đạo hàm $I = y^{(10)}(0)$, biết $y = (x^4 + 1) \ln(x + 1)$.

(a) $I = \frac{4}{15}$.

(b) Ba câu kia sai.

(c) $I = \frac{2}{15}$.

(d) $I = \frac{-4}{15}$.

(b) Các câu kia sai.

Câu 24 : Cho $f(x) = \frac{1}{(1-x)^2}, x \neq 1$. Tính $f^{(n)}(x)$ $(x \neq 1)$ (a) $\frac{(n+1)!}{(1-x)^{n+1}}$. (b) $\frac{(-1)^n(n+1)}{(1-x)^{n+2}}$. (c) $\frac{(-1)^n(n+1)!}{(1-x)^{n+2}}$.

This document is available free of charge on

f liên tục tại x = 0.

 $f'(0) = 2x; \forall x \in \mathbb{R}.$

Câu 38	Tìn	n miền xác định của	a hàm $f(x) = (1 + \frac{1}{x})^x$				
	<u>a</u>	Ba câu kia sai.		©	x < -1.	@	$x \neq 0$.
Câu 39 :	Tìm (a)	$\alpha; \beta$ sao cho các v $\alpha = 1; \beta = 3.$	α or	ing đ	Giving $f(x) = x \cos x$ $\alpha = \frac{1}{3}; \beta = 3.$	sin	$x; g(x) = \alpha x^{\beta}$ $\alpha = -\frac{1}{3}; \beta = 3.$
Câu 40 :	<u>a</u>	h khai triển Maclaus $f(x) = 2x + 3x^3 - f(x) = 3x - 3x^3 + 3x^3$, ,	\bigcirc	$f(x) = 3x^2 + 3x^3 - 3x^3$	$x^{5} +$	$-o(x^5)$.
Câu 41 :	Tín a	h $I = \lim_{x \to 0} \frac{\sin x - t}{x^3 + \arcsin x}$ $I = \frac{1}{4}$.	$\frac{\operatorname{an} x}{\operatorname{in} x^3}$ $\bullet I = 1.$	©	Ba câu kia sai. (<u>a</u>	$I = \frac{-1}{4}.$
Câu 42 :	Cho	$\frac{y}{2} = f(x)$ xác định $\frac{\pi}{2}$.	bởi $x \arctan(x) + y(y^2 + \frac{\pi}{2})$.	+ 1) ©	=0. Tính $f'(0)Các câu kia sai.$	@	$\frac{\pi}{6}$.
Câu 43		$y'(x) = \frac{\sin t + t \cos t}{e^t + 3t^2}$ $y'(x) = \sin t + t \cos t$	xác định bởi $x=e^t+t$ $\frac{\mathbf{s}t}{\mathbf{s}t}.$	3, y = ©	$y'(x) = t \sin t. \text{ Tính } y'(x)$ $y'(x) = (e^t + 3t^2)(\sin t)$ $y'(x) = \frac{e^t + 3t^2}{\sin t + t \cos t}$		$t\cos t$).
Câu 44 :	bé	đó tương đương.	$a(x) = x - \frac{x^2}{2} - \ln(1 + x)$ $a = \frac{1}{2}, b = 2.$		4484.		
Câu 45	(a)	a khai triển Taylor $4+8(x-1)+7(x-1)$ $1+x^2+2x^3+o(x-1)$	của $f(x) = 1 + x^2 + 2x$ $(x-1)^2 + 2(x-1)^3 + o(x^6)$. ©	n cấp 6 trong lân cận Ba câu kia sai. $8(x-1) + 3(x-1)^2$		
Câu 46 :	Tín ⓐ		$(x)^{\cot g x}$ (b) e^5 .	©	-1.	<u>@</u>	e.
Câu 47	- Pa	o hàm cấp 5 của hà	$\lim_{x \to \infty} f(x) = xe^x \text{ tại } x = 1$	1 là	0	(3)	20

Câu 48 : Cho $f(x) = \sqrt{1 - e^{-x^2}}$. Tính $f'_{+}(0) - f'_{-}(0)$

Câu 48 : Cho $f(x) = \sqrt{1 - e^{-x^2}}$. Tính $f'_+(0) - f'_-(0)$ (a) 2. (b) Các câu kia sai. (c) -2. (d) 3.

Câu 49 : Tính $I=\lim_{n\to +\infty} \sqrt[n]{n^4+5^n}$ (a) I=1. (b) I=5. (c) $\not\equiv$. (d) I=2.

Câu 50 : Cho dãy số $x_n=\sqrt[n]{2^n+3^n}$. Tính $I=\lim_{n\to\infty}x_n$ ⓐ $\not\exists I$. ⓑ I=2. ⓒ I=1.

CuuDuongThanCong.com

- Câu 53 : Cho $f_1(x) = x \arcsin(x), f_2(x) = \arccos(3x)$. Khẳng định nào đúng?

 (a) f_1 chắn, f_2 lẻ .

 (b) f_1 chắn, f_2 không chắn, không lẻ.

 (d) f_1 và f_2 đều chắn.
- Câu 54 : Tìm khai triển Maclaurin của $f(x) = e^{\sin x}$ đến cấp 3 ⓐ $f(x) = 1 + x + \frac{x^2}{2} + o(x^3)$. ⓒ $f(x) = 1 + x - \frac{x^2}{2} + o(x^3)$. ⓑ $f(x) = x + \frac{x^2}{2} + o(x^3)$. ⓓ Các câu kia đều sai.
- Câu 56 : Cho hàm số $y = (2x + 3) \sin x$. Tính $y^{(10)}(0)$.

 (a) Ba câu kia sai. (b) 10!. (c) 20!.
- Câu 58 : Tìm hệ số của số hạng chứa x^10 trong khai triển Maclaurint của hàm $f(x) = x^2 \cos x$ (a) 8!. (b) $\frac{1}{10!}$. (c) 10!. (d) Ba câu kia sai.
- Câu 60 : Tìm khai triển Maclaurin của $f(x) = \frac{6}{1 + \sin x}$ đến cấp 3

 (a) $f(x) = 6 6x + 6x^2 5x^3 + o(x^3)$. (c) $f(x) = 6 + 6x 6x^2 6x^3 + o(x^3)$.

 (b) $f(x) = 6 6x + 6x^2 6x^3 + o(x^3)$. (d) Ba câu kia sai.
- Câu 61 Giá trị của $I=ch^2(x)-sh^2(x)$ là (a) I=0. (b) I=1. (c) I=sh(2x). (d) I=ch(4x).
- Câu 62 : Cho $f(x) = x + (x 1) \arcsin \sqrt{\frac{x}{x + 1}}$. Tính f'(1).

 (a) f'(1) = -1. (b) f'(1) = 0. (c) $f'(1) = 1 + \frac{\pi}{4}$. (d) f'(1) = 1.
- Câu 63 : Tính $\lim_{x\to 0} (1+\sin(2x^2))^{\frac{2}{x^2}}$ (a) e^4 . This documents average on constant e^4 . Sownloaded by Phong Kha (khaphong 217 @gmail.com)

(a) 1.

(d) -1.

Câu 67 : Tính giới hạn $I = \lim_{x\to 0} \frac{1}{r^3} (e^{x-\sin x} - 1)$

- (a) I = -1. (b) I = I.
- I=0.

Câu 68 : Cho hàm số y = y(x) xác định bởi $x = \operatorname{arctg} t, y = t^4$. Tính y'(x) tại $x = \frac{\pi}{4}$ © Không xác định. d 6.

- a Ba câu kia sai.

Câu 69: Tính $\lim_{x\to 0} \frac{1-\cos x + \ln(1+ \lg^2 2x) + 2\arcsin^3 x}{1-\cos x + \sin^2 x}$

(d) 3.

Câu 70 : Cho dãy số $x_n = \frac{\sin \sqrt{n}}{\sqrt{n}}$. Tính $I = \lim_{n \to \infty} x_n$

- (a) I = 0. (b) $I = \frac{1}{2}$. (c) I = 1.

Câu 71 : Đạo hàm y''(x) của hàm số y(x) cho bởi phương trình tham số $\begin{cases} x(t) = e^{2t} \\ u(t) = t^3 \end{cases}$ là

- (a) $\frac{t(1+t)}{2}$. (b) $\frac{3t(1-t)}{2e^{4t}}$.
- © Ba câu kia sai.
- (d) 3t(1-t).

Câu 72 : Cho y=y(x) là hàm ẩn xác định từ phương trình $e^{xy}+2x-3y=0$. Tìm I=y'(x) ⓐ $\frac{ye^{xy}+2}{3-xe^{xy}}$. ⓑ $\frac{ye^{xy}+2}{re^{xy-3}}$. ⓒ $\frac{e^{xy}+2}{3-e^{xy}}$. ⓓ Ba câu

- d Ba câu kia sai.

Câu 73 : Tìm miền xác định của hàm $f(x) = \arcsin(\ln x)$.

- (a) $(0, +\infty)$.

Câu 74 : Cho $f(x)=\left\{ egin{array}{ll} e^x, & x\geq 0 \\ ax^2+bx, & x<0 \end{array}
ight.$ Tìm tất cả các giá trị thực của a,b để f có đạo hàm liên tục

- (a) a = 1; b = 1. (b) a = 1; b = 2.
- (c) $\forall a \in \mathbb{R}; b = 1.$
- d Ba câu kia sai.

Câu 75 : Vô cùng lớn nào sau đây có bậc cao nhất, khi $x \to +\infty$ (a) $3x + \ln^3 x$.
(b) $x \ln x$.
(c) $\sqrt{3x}$

- (d) $x(2 + \sin^4 x)$.

Câu 76 : Tìm khai triển Maclaurin của $f(x) = e^x \cos(2x)$ đến cấp 3.

- (a) $f(x) = 1 + x + 2x^2 + 5x^3 + o(x^3)$.
- © Ba câu kia sai.
- $f(x) = 1 + x + 3x^2 11x^3 + o(x^3).$
- ① $f(x) = 1 2x + x^2 + x^3 + o(x^3)$.

Câu 77 : Tìm khai triển Maclaurin của $f(x) = \frac{8x^2}{2 + x^3}$ đến cấp 10. $f(x) = 4x^2 + 2x^5 + x^8 + o(x^{10}).$ © $f(x) = 4x^2 - 2x^5 + x^8 + 6x^{10}) + o(x^{10})$. (d) $f(x) = 4x^2 - 2x^5 + x^8 + o(x^{10})$. (b) Ba câu kia sai. Câu 78 : Dùng vi phân để tính gần đúng $\sin(178^\circ)$ với $f(x)=\sin 2x,\;x=89^\circ,\;x_0=90^\circ$ (a) Ba câu kia sai. (b) $\pi/90$. (c) $\pi/180$. Câu 79 : Cho hàm số $f(x) = x^2 \ln(1 + \sqrt{x})$. Khi đó (a) f'(0) = 0. © f'(0) không tồn tại. (b) $f'(x) = 2x \ln(1 + \sqrt{x}); \forall x > 0.$ Các câu kia sai. Câu 80 : Tìm khai triển Maclaurin của f(x) = shx đến cấp 3 © $f(x) = x + \frac{x^3}{6} + o(x^3)$. ② $f(x) = x + \frac{x^2}{2} + o(x^3)$. (a) $f(x) = 1 + \frac{x^2}{2} + \frac{x^3}{6} + o(x^3)$. (b) Các câu kia sai. Câu 81 : Tính $\lim_{x\to 0} (\cos x)^{\frac{2}{x^2}}$ (a) e. (c) e^{-1} . (b) 1. Các câu kia sai. Câu 82 : Tính $\lim_{x\to+\infty}\frac{1}{x}\ln\frac{e^{2x}+x^2}{x^2}$ Ba câu kia sai 2. (c) (d) ∄. Câu 83 : Tìm khai triển Maclaurint của $f(x) = \ln(2 + x)$ đến cấp 3

(a) $f(x) = \frac{x}{2} - \frac{x^2}{4} + \frac{x^3}{6} + o(x^3)$.

(b) $f(x) = \ln 2 + \frac{x}{2} - \frac{x^2}{8} + \frac{x^3}{24} + o(x^3)$. $f(x) = \ln 2 + \frac{x}{2} - \frac{x^2}{12} + \frac{x^3}{24} + o(x^3).$ Câu 84 : Tìm TẤT CẢ các VCL bậc cao nhất trong số các hàm sau (khi $x \to +\infty$): 2^x , x^2 , $x^2 + \sin^4 x$, $x \ln x$ (b) Ba câu kia sai. $x \ln x$. Câu 85 : Vô cùng lớn nào sau đây có bậc cao nhất (khi $x \to +\infty$) $\sqrt{3x^2+1}\ln(2x)$. **b** Ba câu kia sai. (d) $x \ln(x^2 + 3)$. (c) $x \ln x$. (d) Ba câu kia sai. Câu 87 : Cho $f(x)=\left\{ \begin{array}{ll} e^{\frac{1}{x}}, & x\neq 0 \\ a, & x=0 \end{array} \right.$. Tìm tất cả a để f liên tục trên $I\!\!R$?

Câu 88 : Cho $f(x)=\left\{\begin{array}{ll} \frac{e^x+e^{-x}-2}{\sin^2(x)}, & x\neq 0\\ 3a-2, & x=0 \end{array}\right.$. Với giá trị nào của a thì hàm liên tục tại x=0?
(a) a=-1.
(b) a=0.
(c) Ba câu kia sai.
(d) a=1.

Ba câu kia sai. (b)

0.

Câu 89 : Tính $I=\lim_{x\to 0}(1+2x^4\cos x)^{1/x^4}$ (a) $I=e^2$. This document/is available free of charge on Catalogue Studocu

Câu 90 : Cho $f(x)=|x^2-4x|+3$. Khẳng định nào đúng? (a) $\not \exists f'(4)$. (b) Ba câu kia sai. (c) f'(4)=-4. (d) f'(4)=4.

CuuDuongThanCong.com