BMWG – Containerized Infrastructure Benchmarking

November 1-5, 2021 Online

Hackathon Plan

- The main goal is to figure out container networking performance impacts by various resource options.
 - Related Draft: Considerations for Benchmarking Network Performance in Containerized Infrastructures https://tools.ietf.org/html/draft-dcn-bmwg-containerized-infra
 - Two main features
 - Implementing containerized infrastructure with various network models
 - Verifying performance impacts depending on configuration settings

Hackathon Plan

Plan for Hackathon-112

BMWG - Containerized Infrastructure Benchmarking

- Champion(s)
 - Younghan Kim <younghak at ssu.ac.kr>
 - Minh-Ngoc Tran(mipearlska1307 at dcn.ssu.ac.kr)
 - KJ Sun(gomjae at dcn.ssu.ac.kr)
- Project(s)
 - Benchmarking packet loss rate in Multi-Pods scenario with different acceleration technologies
 - VPP, OVS/DPDK
 - Multi-Pods scenario performance Impact depending on different resources allocation (NUMA, memory, ...)
- · Specification(s)
 - https://datatracker.ietf.org/doc/html/draft-dcn-bmwg-containerized-infra

What got done

Benchmarking Scenario – Multi Pods

* Traffic is transmit from generator through 2 pods and vSwitches

- * In both case, Multus CNI and Userspace CNI plugin are used to create multiple interface of VNF
- * C-VNF : dpdk-l2fwd

What got done

Benchmarking Scenario – NUMA Alignment

- * CNF 1: receives incoming packets from T-Gen then transmit to CNF2
- * CNF 2: transmits packets back to T-Gen
- * In the scenario where both 2 CNFs are placed in different NUMA, Placement of receiving incoming packet CNF vs vSwitch is considered
- * We don't consider both 2 CNFS in different node with vSwitch case, as it degrades performance in single-pod scenario

What got done

Benchmarking Configuration

Hardware – Worker Node

СРИ	Intel(R) Xeon(R) Gold 5220R CPU @ 2.20GHz
	48 CPU cores * 2 NUMA nodes
Memory	256GB: 32GB x 4DIMMs x 2 NUMA nodes @ 2400MHz
NIC	Intel Corporation Ethernet Network Adapter X71-
	40Gbps
Microcode	0x5003102
Intel NIC	0x1572
Device ID	
Intel NIC	
Firmware	6.01 0x800035cf 1.1747.0
version	
BIOS setting	CPU Power and Performance Policy < Performance >
	CPU C-state Disabled
	CPU P-state Disabled
	Intel(R) Hyper-Threading Tech Enabled
	Turbo Boost Disabled

Traffic Generator : T-Rex (v2.92)

Name	T-Rex
Version	2.92
Benchmark	T-Rex Non Drop Rate application (accepted
method	percentage of drop rate is less than 0.1%)

Software

Operating System	CentOS Linux 7
Linux Kernel Version	3.10.0-1160.31.1.el7.x86_64
GCC version	gcc version 4.8.5 20150623 (Red Hat 4.8.5-44)
DPDK version	20.11
Hugepages	1Gi

Testbed Design Figure

What we learned

Benchmarking Performance Results OVS-DPDK (Throughput) OVS-DPDK (%line rate) ■ s1 ■ s2 ■ s3 ■ s4 ■ s5 ■ s6 VPP (Throughput) VPP (%line rate)

■s1 ■s2 ■s3 ■s4 ■s5 ■s6

IETF Hackathon – BMWG: Containerized Infrastructure Benchmarking

What we learned

- Benchmarking Performance Results
 - 1. VPP outperforms OVS
 - 2. NUMA alignment:
 - **vSwitch and NIC:** almost the same, place on different nodes slightly degrade performance in 1024+ packet size (\$1,2,3 vs \$4,5,6)
 - CNFs and vSwitch: separate placement of CNFs significantly degrade performance 10-15% (s1 vs 2,3 and s4 vs 5,6)
 - Receiving packet CNF1 and vSwitch:
 - OVS-DPDK: CNF1 and vSwitch in same node has higher performance (s2 > s3, s5 > s6)
 - VPP: CNF1 and vSwitch in different nodes has higher performance (s3 > s2, s6 > s5)

What we learned

- Future Works
 - Troubleshooting CNF1, vSwitch NUMA alignment result
 - Consider multiple vSwitches case (1 vSwitch each NUMA node)
 - Plan to discuss the results with other related community (e.g., ViNePERF in Anuket)

Wrap Up

Team members:

Younghan Kim (SSU)

KJ Sun (SSU)

Minh Ngoc Tran(SSU)

Hokeun Lim (SSU)

Phuong Bac Ta(SSU)

Git repo:

https://github.com/huyng14/bmwg-container-networking

IETF Korea Forum:

Remote Hackathon Event at Busan

with I2NSF, IPWAVE (SKKU team)

