

# IEEE International Symposium on Multimedia (ISM2012)

#### Authors:

Davi Miara Kiapuchinski Carlos Raimundo Erig Lima Celso A. Alves Kaestner

# **Spectral Noise Gate Technique Applied to Birdsong Preprocessing on Embedded Unit**

Federal University of Technology - Paraná Brazil, 12/11/12

#### Introduction – Bird Automatic Classification





(Vilches et. al., 2006)

#### Introduction – Bird Automatic Classification



|                  | Feature Set |       |         |
|------------------|-------------|-------|---------|
| Classifier       | Sound Ruler | IOIHC | MARSYAS |
| Naïve Bayes      | 99.7        | 43.5  | 86.9    |
| kNN (k=3)        | 96.8        | 57.4  | 98.4    |
| J4.8             | 99.0        | 61.0  | 99.7    |
| MLP              | 98.7        | 68.0  | 99.7    |
| SVM (Polynomial) | 97.8        | 53.5  | 99.4    |
| SVM (Pearson)    | 99.4        | 64.3  | 99.4    |

Lopes, Silla, Koerich e Kaestner (2011)

#### Introduction – Problems



- → Concern with the environment;
- → Fauna control;
- → The miss of additional information;
- Human and animal safety.
- → The difficulty with real samples and situations;

# Introduction – Proposal



- → Micro-controlled embedded system;
- → Pre-process audio signal;
- → Suitable real environments;
- → Extract sound characteristics;

# **Audio Processing**



- → A wide variety of noises in a real envinroment;
- → The large spectral frequency width;
- → XenoCanto community, Cornell Lab of Ornitology, CENIPA, ...

#### **Audio Processing**





# Proposed Approach



- → To delivering to the automatic classify a clean and prepared sound:
  - → Preparation and filtering the signal;
  - → Feature extraction;
  - → Materialization in a embedded environment;

# Proposed Approach – S. N. G. Algorithm





#### Proposed Approach – Feature Extraction



- → Skewness
- → Kurtosis
- → Spectral Centroid
- → Spectral Rolloff
- → Zero Crossing Rate

### Proposed Approach – Hardware Architecture









→ SPI, USB host, RS232, PWM, DMA, RTC, AC97, I2C ...



→ AD Conversor, 8 channels, 10 bits resolution, 500 KSPS;



→ Linux kernel 2.6.32.2;



→ ARM GCC 4.3.2 cross compiler.





# **Experiments - Recording**



# → Recording;

- → Mono channel microphone;
- → Samples stored in memory FLASH; and
- → 8 or 16 bits, up to 44,100 Hz of sample rate.

# Experiments – Spectral Analysis



- → Spectral Analysis and pre-processing;
  - → FFT
  - → Windows Function: Hamming, Hanning, Bartlett.





| Characteristic            | Value                    |  |
|---------------------------|--------------------------|--|
| Total size WAV. file      | 48,044                   |  |
| Total size fo the data    | 24,000                   |  |
| Number of bits per sample | 16                       |  |
| Recording data and hour   | Fri Mar 16 10:36:07 2012 |  |
| Zero crossing rate        | 0.0875748                |  |
| Data Sum                  | -1.39276                 |  |
| Values not equal zero     | 23,191                   |  |
| Employed windowing        | BARTLETT                 |  |
| Centroid of the data      | 0.763369                 |  |
| Skewness                  | 0.735164                 |  |
| Data Kurtosis             | 121.12                   |  |
| Data Rolloff              | 1,991.21                 |  |

# Experiments – Example of the use of the filter





# Experiments





#### Discussion







#### Discussion





#### **Final Remarks**







#### **Final Remarks**



- → Softwares, utilized libraries:
- → Raven Lite Free Version, Sound Ruler, Audacity, MASYAS, SoX, ....
  - → ARM-linux, GCC e G++, Embedded Linux

#### **Final Remarks**



# → Acknowledgment

→ Araucaria Foundation and CNPQ.









#### Main References



- → E. Vilches, I.A. Escobar, E.E. Vallejo and C.E. Taylor, "Data mining applied to acoustic bird species recognition," in Proceedings of the 18th International Conference on Pattern Recognition (ICPR '06), vol. 3, pp. 400–403, Hong Kong, August 2006
- → I. Agranat, "Automatically identifying animal species from their vocalizations,"
   2009 Acoustics. Inc., Concord, Massachusetts, p. 22, 2009.
- → M. T. Lopes, L. L. Gioppo, T. T. Higushi, Celso A. A. Kaestner, C. N. Silla Jr., A. L. Koerich: Automatic Bird Species Identification for Large Number of Species. IEEE International Symposium on Multimídia, Dana Point, CA, USA, December 2011: 117-122.
- → C. Silla, C. A. A. Kaestner e A. L. Koerich, "Automatic Music Genre Classification using Ensemble of Classifiers," Proceedings of the IEEE International Conference on Systems, Man and Cybernetics (SMC'07), Montreal, Canada, pp. 1687-1692, Oct. 2007

#### THE END

# Davi Miara davi.miara@ctim.mar.mil.br