Name: (Print)

Due: June 26, 2019

- 1. (5 points) Given the following input (3412, 3413, 1741, 3269, 2909, 6291, 6373, 5129) and the hash function $h(k) = k \mod 10$, which of the following statement(s) are true? Choose all correct ones.
 - A. 3269, 2909, 5129 hash to the same value
 - B. 3412 and 3413 hash to the same value
 - C. 1741, 6291 hash to the same value
 - D. 3413, 3269, 6291, 6373 each hashes to a different value
- **2.** (5 points) The keys 14, 18, 33, 4, 3, 23, 25 and 5 are inserted into an initially empty hash table in this given order. The hash table has 10 slots and uses chaining with hash function $h(k) = k \mod 10$. What is the hash table after inserting all keys? (multiple numbers in the same slot represents a linked list to chain the numbers together in that order)

0	
1	
2	
3	3, 23, 33
4	4, 14 5, 25
2 3 4 5 6	5, 25
6	
7	
8	18
9	
	A

0	
1	
2	
2 3 4 5 6	23, 3, 33
4	23, 3, 33 4, 14 5, 25
5	5, 25
6	
7	
8	18
9	
E	3

0	
1	
2	
3	33, 23, 3
4	14, 4
2 3 4 5 6 7	14, 4 25, 5
6	
8	18
9	
	С

0	
1	
2	
2 3 4 5 6	33, 3, 23
4	14, 4
5	14, 4 25, 5
7	
8	18
9	
,,,,	D

3. (5 points) The keys 14, 18, 33, 4, 3, 23, 25 and 5 are inserted into an initially empty hash table in this given order. The hash table has 10 slots and uses <u>open addressing</u> with hash function $h(k) = k \mod 10$ and <u>linear probing</u>. What is the hash table after inserting all keys?

0		0			0		0	5
1		1			1		1	
2		2	5		2		2	
3	23	3	33		3	33	3	33
4	4	4	14		4	14	4	14
5	5	5	4		5	25	5	4
6		6	3		6		6	3
7		7	23		7		7	23
8	18	8	18		8	18	8	18
9		9	25		9		9	25
				. '				
A		В			C		D	

4. (5 points) (1) What is the load factor in Problem 2 above?

(2) What is the load factor in Problem 3 above?

4. (20 points) Design and Analysis of an Algorithm

Consider an unsorted array A of n integers; design an efficient algorithm that accepts \underline{A} , n and \underline{s} as the inputs and determines if the array contains two integers such that they add up to a specific target number s. That is: if we can find A[i] + A[j] == s ($1 \le i, j \le n, i \ne j$), the algorithm should return TRUE, otherwise return FALSE.

Design requirement:

- the *efficient* algorithm you are going to design should provide an O(nlgn) running time, rather than an $O(n^2)$ running-time solution.
- To keep your answers brief, you may use any algorithms that we have learned from lectures and the textbook as subroutines (this means you do NOT need to re-write those algorithms, just call them with the proper input/output).
- (1) (12 points) Algorithm Pseudocode (please use textbook conventions):

(2) (8 points) What is the running time of the algorithm that you designed? Justify your answer.