Gravitationele potentiële energie, algemeen

0.1 Gravitationele potentiële energie, algemeen

Beschouw een massa onderhevig aan de universele gravitatiekracht. We gaan opnieuw opzoek naar een potentiële energiefunctie geassocieerd aan deze kracht.

Kiezen we een x-as met de oorsprong op de massa m dan wordt, omdat de kracht steeds naar de oorsprong is gericht, de component van de universele gravitatiekracht op de massa m' gegeven door

$$F(x) = -G\frac{mm'}{x^2}$$

De arbeid die door de gravitatiekracht wordt geleverd bij de verplaatsing van de massa m' van x_a naar x_b wordt dan:

$$W = \int_{x_a}^{x_b} -G \frac{mm'}{x^2} dx$$

$$= -Gmm' \int_{x_a}^{x_b} \frac{1}{x^2} dx$$

$$= -Gmm' \left[-\frac{1}{x} \right]_{x_a}^{x_b}$$

$$\updownarrow$$

$$W = \left(-G \frac{mm'}{x_a} \right) - \left(-G \frac{mm'}{x_b} \right)$$

Author(s): Bart Lambregs

Gravitationele potentiële energie, algemeen

De potentiële energie voor een massa m^\prime wordt bijgevolg geven door

$$E_p = -G\frac{mm'}{x} \tag{1}$$