Computational Methods for Statistics (VU) (706.026)

Elisabeth Lex

ISDS, TU Graz

Jan 11, 2023

About today's class

- Motivation why computational methods are beneficial
- Inductive and deductive inference
- Sampling
- Definitions: population, random sample, sampled population, statistic
- Sampling distribution

Materials consist of slides and recommended readings.

Learning Goals

At the end of this unit, you will be able to:

- explain the benefit of using computation in statistics.
- explain sampling and why we need it.
- Define target population, random sample, sampled population, statistic.
- Explain the concept of a sampling distribution.
- Explain the difference between the distribution of a target population, the distribution of a sample, and the sampling distributions of a statistic.
- Create sampling distributions in Python.

Motivation

Doing Statistics With Computer Programs

Statistics Without the Agonizing Pain

If you can write a computer program, you have direct access to fundamental ideas in statistics.

 John Rauser (data scientist at Pinterest) keynote: https://www.youtube.com/watch?v=5Dnw46eC-0o

Research Question: Does drinking beer makes you more attractive to mosquitos?

	241 Save	30 Citation
Beer Consumption Human Attractiveness to Malaria Mosquitoes	49,472 View	327 Share
Thierry Lefèvre on Louis-Clément Gouagna, Kounbobr Roch Dabiré, Eric Elguero, Didier Fontenille, François Renaud, Carlo Costantini, Frédéric Thomas		

Published: March 4, 2010 • https://doi.org/10.1371/journal.pone.0009546

https://journals.plos.org/plosone/article?id=10.1371/journal.pone.0009546

Experiments to Collect Data

Beer				
27	19	20	20	
23	17	21	24	
31	26	28	20	
27	19	25	31	
24	28	24	29	
21	21	18	27	
20				

$$\overline{X}_n = 23.6000$$

$$\overline{Y}_m = 19.2222$$

$$\overline{X}_n - \overline{Y}_m = 4.3778$$

- \bullet Average difference of ≈ 4.4 more mosquitos who were attracted to beer drinkers
- Statistical question: is this difference sufficient evidence to conclude that drinking beer makes you more attractive to mosquitos?
- We can frame this question as a debate between an advocate and a skeptic

Example 1 (Are beer drinkers more attractive to mosquitos?)

Debate between an advocate and a skeptic.

- \bullet Average difference of ≈ 4.4 more mosquitos who were attracted to beer drinkers
- Statistical question: is this difference sufficient evidence to conclude that drinking beer makes you more attractive to mosquitos?
- We can frame this question as a debate between an advocate and a skeptic

Example 1 (Are beer drinkers more attractive to mosquitos?)

Debate between an advocate and a skeptic.

• Advocate's argument:

- \bullet Average difference of ≈ 4.4 more mosquitos who were attracted to beer drinkers
- Statistical question: is this difference sufficient evidence to conclude that drinking beer makes you more attractive to mosquitos?
- We can frame this question as a debate between an advocate and a skeptic

Example 1 (Are beer drinkers more attractive to mosquitos?)

Debate between an advocate and a skeptic.

ullet Advocate's argument: Difference of 4.4 is large as compared to variation in the sample.

- \bullet Average difference of ≈ 4.4 more mosquitos who were attracted to beer drinkers
- Statistical question: is this difference sufficient evidence to conclude that drinking beer makes you more attractive to mosquitos?
- We can frame this question as a debate between an advocate and a skeptic

Example 1 (Are beer drinkers more attractive to mosquitos?)

Debate between an advocate and a skeptic.

- ullet Advocate's argument: Difference of 4.4 is large as compared to variation in the sample.
- Skeptic's argument:

- \bullet Average difference of ≈ 4.4 more mosquitos who were attracted to beer drinkers
- Statistical question: is this difference sufficient evidence to conclude that drinking beer makes you more attractive to mosquitos?
- We can frame this question as a debate between an advocate and a skeptic

Example 1 (Are beer drinkers more attractive to mosquitos?)

Debate between an advocate and a skeptic.

- ullet Advocate's argument: Difference of 4.4 is large as compared to variation in the sample.
- ullet Skeptic's argument: Beer consumption has no effect. The difference of 4.4 is small and could have happened just by chance!

Two approaches to settle the debate

4 Analytical method

Computational method

- Analytical method: difference of means between two samples
- Make assumptions, e.g. on the underlying distribution
- Compute the sampling distribution of the test statistic (T-statistic)
- From the sampling distribution we can compute the p-value

$$T = \frac{\overline{X}_n - \overline{Y}_m}{\sqrt{\frac{s_X^2}{n} + \frac{s_Y^2}{m}}},$$

$$s_X = \frac{1}{n-1} \sum_{i=1}^n (X_i - \overline{X}_n)^2, s_Y = \frac{1}{m-1} \sum_{i=1}^m (Y_i - \overline{Y}_m)^2$$

$$T \sim f(t) = \frac{\Gamma\left(\frac{\nu+1}{2}\right)}{\sqrt{\nu\pi\Gamma\left(\frac{\nu}{2}\right)}} \left(1 + \frac{t^2}{\nu}\right)^{-\frac{\nu+1}{2}}, \nu = \frac{\left(\frac{s_X^2}{n} + \frac{s_Y^2}{m}\right)^2}{\frac{(s_X^2/n)^2}{n-1} + \frac{(s_Y^2/m)^2}{m-1}}$$

- Computational method
- If the skeptic is right: the labels are meaningless

	Beer			
27	19	20	20	
23	17	21	24	
31	26	28	20	
27	19	25	31	
24	28	24	29	
21	21	18	27	
20				

$$\overline{X}_n = 23.6000$$

Water				
21	19	13	22	
15	22	15	22	
20	12	24	24	
21	19	18	16	
23	20			

$$\overline{Y}_m = 19.2222$$

$$\overline{X}_n - \overline{Y}_m = 4.3778$$

Beer				
16	13	20	19	
23	26	20	21	
19	22	20	24	
20	21	20	23	
21	24	25	27	
15	22	24	21	
15				

Water				
28	27	18	31	
21	29	22	24	
27	12	19	17	
24	19	28	31	
20	18			

$$\overline{X}_{n}^{*} = 20.8400$$
 $\overline{Y}_{m}^{*} = 23.0556$ $\overline{X}_{n}^{*} - \overline{Y}_{m}^{*} = -2.2156$

Beer				
19	27	20	17	
22	26	20	24	
23	19	27	20	
31	19	20	18	
18	28	15	21	
27	29	13	19	
24				

Water				
24	21	28	23	
22	21	21	15	
12	24	16	21	
31	20	24	22	
20	25			

$$\overline{X}_n^* = 21.8400$$
 $\overline{Y}_m^* = 21.6667$ $\overline{X}_n^* - \overline{Y}_m^* = 0.1733$

	Beer				
21	18	20	16		
19	20	15	21		
24	20	21	24		
17	21	31	22		
22	12	28	28		
20	19	23	25		
24					

Water				
18	24	29	31	
20	22	24	19	
15	27	20	27	
21	19	27	13	
26	23			

$$\overline{X}_{n}^{*} = 21.2400$$
 $\overline{Y}_{m}^{*} = 22.5000$ $\overline{X}_{n}^{*} - \overline{Y}_{m}^{*} = -1.2600$

Beer				
25	26	16	28	
31	22	19	27	
20	20	21	31	
22	27	22	24	
20	13	21	21	
20	27	18	23	
24				

Water				
12	19	18	23	
20	19	20	15	
24	21	15	24	
29	19	28	21	
24	17			

$$\overline{X}_n^* = 22.7200$$
 $\overline{Y}_m^* = 20.4444$

$$\overline{X}_n^* - \overline{Y}_m^* = 2.2756$$

	Beer				
31	19	19	15		
23	21	24	21		
22	25	28	22		
20	19	29	27		
20	20	24	15		
21	27	23	28		
12					

$$\overline{X}_n^* = 22.2000$$
 $\overline{Y}_m^* = 21.1667$ $\overline{X}_n^* - \overline{Y}_m^* = 1.0333$

Beer				
21	23	23	28	
21	19	29	24	
16	19	28	20	
18	27	21	20	
15	19	24	12	
15	22	24	19	
21				

Water				
20	27	13	21	
20	24	24	31	
22	25	26	31	
18	20	20	17	
22	27			

$$\overline{X}_{n}^{*} = 21.1200$$
 $\overline{Y}_{m}^{*} = 22.6667$ $\overline{X}_{n}^{*} - \overline{Y}_{m}^{*} = -1.5467$

Beer				
20	20	21	21	
16	18	26	23	
24	28	15	21	
13	15	20	27	
28	22	19	20	
24	29	23	24	
20				

$$\overline{X}_{n}^{*} = 21.4800$$
 $\overline{Y}_{m}^{*} = 22.1667$ $\overline{X}_{n}^{*} - \overline{Y}_{m}^{*} = -0.6867$

Beer				
20	28	19	22	
21	15	23	31	
29	24	27	19	
19	27	26	18	
28	27	20	20	
19	16	24	17	
31				

	Water				
20	21	21	22		
25	12	24	18		
24	15	21	21		
13	3 22	24	20		
20	23				

$$\overline{X}_{n}^{*} = 22.8000$$
 $\overline{Y}_{m}^{*} = 20.3333$ $\overline{X}_{n}^{*} - \overline{Y}_{m}^{*} = 2.4667$

 $\overline{X}_{n}^{*} - \overline{Y}_{m}^{*} = 2.4667$, iteration 8

Beer				
28	24	20	19	
21	24	23	15	
29	19	20	20	
25	18	19	24	
19	27	20	15	
26	24	20	22	
21				

Water				
12	17	13	16	
22	23	20	27	
21	21	31	21	
22	31	18	24	
28	27			

$$\overline{X}_n^* = 21.6800 \qquad \overline{Y}_m^* = 21.8889$$

$$\overline{X}_n^* - \overline{Y}_m^* = -0.2089$$

Beer				
23	17	20	20	
28	26	24	29	
19	19	16	18	
22	27	15	19	
21	31	21	12	
25	20	21	20	
27				

	Water				
21	20	22	22		
15	21	24	18		
31	24	27	13		
19	20	23	24		
24	28				

$$\overline{X}_n^* = 21.6000$$
 $\overline{Y}_m^* = 22.0000$
$$\overline{X}_n^* - \overline{Y}_m^* = -0.4000$$

	Beer				
21	24	21	16		
20	19	21	24		
20	29	19	20		
13	25	31	24		
21	15	18	19		
18	22	22	20		
22					

	Water				
19	21	28	24		
20	20	12	28		
23	17	15	26		
31	24	27	27		
27	23				

$$\overline{X}_n^* = 20.9600$$
 $\overline{Y}_m^* = 22.8889$

$$\overline{X}_n^* - \overline{Y}_m^* = -1.9289$$

Beer				
21	23	21	27	
24	22	29	20	
24	15	18	21	
24	20	25	22	
19	20	20	19	
31	20	20	27	
26				

$$\overline{X}_n^* = 22.3200$$
 $\overline{Y}_m^* = 21.0000$ $\overline{X}_n^* - \overline{Y}_m^* = 1.3200$

Beer				
24	15	21	22	
20	31	17	28	
24	18	20	21	
21	20	27	13	
18	31	12	26	
27	21	23	22	
24				

Water					
19	20	20	29		
19	23	28	24		
20	16	22	24		
19	25	27	15		
19	21				

$$\overline{X}_n^* = 21.8400$$
 $\overline{Y}_m^* = 21.6667$ $\overline{X}_n^* - \overline{Y}_m^* = 0.1733$

	Beer				
20	21	27	28		
24	27	31	19		
21	12	19	19		
28	13	22	24		
23	25	21	20		
23	24	22	19		
20					

Water				
24	16	22	17	
15	20	20	29	
18	21	31	15	
18	26	21	27	
20	24			

$$\overline{X}_n^* = 22.0800$$
 $\overline{Y}_m^* = 21.3333$

$$\overline{X}_n^* - \overline{Y}_m^* = 0.7467$$

	Beer				
20	16	17	28		
19	27	24	20		
31	26	23	22		
29	22	19	25		
22	13	21	21		
18	24	28	20		
18					

	Water				
	31	21	21	27	
	24	21	27	15	
	20	19	20	19	
ı	20	24	12	23	
	15	24			
ı					
ı					

$$\overline{X}_{n}^{*} = 22.1200$$

$$\overline{Y}_{m}^{*} = 21.2778$$

$$\overline{X}_n^* - \overline{Y}_m^* = 0.8422$$

Beer				
18	17	20	31	
28	19	20	25	
26	15	28	13	
20	21	18	22	
21	15	24	22	
21	27	23	23	
22				

Water				
19	21	24	20	
19	24	12	21	
20	27	31	27	
20	29	24	24	
19	16			

$$\overline{X}_n^* = 21.5600$$
 $\overline{Y}_m^* = 22.0556$
$$\overline{X}_n^* - \overline{Y}_m^* = -0.4956$$

	Beer				
24	20	15	24		
27	22	21	20		
28	28	21	12		
21	18	25	21		
29	18	31	24		
17	22	13	16		
23					

$$\overline{X}_{n}^{*} = 21.6000$$
 $\overline{Y}_{m}^{*} = 22.0000$ $\overline{X}_{n}^{*} - \overline{Y}_{m}^{*} = -0.4000$

Beer				
15	24	15	28	
19	16	22	21	
24	26	18	20	
20	27	19	19	
21	20	21	18	
20	31	21	25	
28				

Water				
17	31	22	20	
23	23	12	27	
24	21	22	13	
24	20	19	29	
24	27			

$$\overline{X}_n^* = 21.5200$$
 $\overline{Y}_m^* = 22.1111$
$$\overline{X}_n^* - \overline{Y}_m^* = -0.5911$$

 $\overline{X}_{n}^{*} - \overline{Y}_{m}^{*} = -0.5911$, iteration 18

Beer					
22	15	31	22		
23	19	21	12		
18	20	27	20		
24	27	23	25		
27	22	24	17		
20	19	24	13		
21					

$$\overline{X}_{n}^{*} = 21.4400$$
 $\overline{Y}_{m}^{*} = 22.2222$ $\overline{X}_{n}^{*} - \overline{Y}_{m}^{*} = -0.7822$

Beer					
20	21	19	23		
18	24	23	19		
12	17	29	18		
28	22	15	13		
21	27	31	24		
21	19	22	31		
24					

Water						
19	20	24	28			
20	26	27	24			
16	15	25	21			
21	20	22	20			
27	20					

$$\overline{X}_n^* = 21.6400$$
 $\overline{Y}_m^* = 21.9444$

$$\overline{X}_n^* - \overline{Y}_m^* = -0.3044$$

Research Question:)

Does drinking beer makes you more attractive to mosquitos? Yes, it does!

♠ OPEN ACCESS PEER-REVIEWED RESEARCH ARTICLE

Beer Consumption Increases Human Attractiveness to Malaria Mosquitoes

Thierry Lefèvre 🖪, Louis-Clément Gouagna, Kounbobr Roch Dabiré, Eric Elguero, Didier Fontenille, François Renaud, Carlo Costantini, Frédéric Thomas

Published: March 4, 2010 • https://doi.org/10.1371/journal.pone.0009546

241	30
Save	Citation
49,472	327
View	Share

https://journals.plos.org/plosone/article?id=10.1371/journal.pone.0009546

Computational Method

• Computational method: random permutation test

We will see more examples of this method in the course

• Resampling methods: resample and iterate

Key message: if you can program, you can play with statistics

Inductive Inference

Readings

Fahrmeir et al., Statistik: der Weg zur Datenanalyse (Chapters 1.4, 7)

Wasserman, All of Statistics (Chapter 5)

Inductive Inference

- Scientific progress is strongly related to experimentation.
- Experiments result in data.
- We then draw conclusions from the data.
- Frequently, we generalize from a single or from a few experiments.
- Inductive inference is uncertain.
- Statistics provides principles for measuring that uncertainty.
- We measure uncertainty with probabilities.

Deductive Inference

• Inductive inference results in probabilities.

Deductive inference is conclusive:

Example 2 (Right triangles)

Two statements:

- One of the angles of each right triangle is 90° .
- Triangle A is a right triangle.

Conclusion: One of the angles of triangle A is 90° .

Inductive Inference

• Deductive inference: prove theorems in mathematics

• Inductive inference: find new knowledge in empirical research

Example 3 (Rise of Skywalker)

Suppose we want to know what percent of the Austrian population watched the Star Wars movie. The only way to answer this exactly is to ask all Austrians if they watched the movie, which is not feasible. Thus, we ask a few Austrians about the movie, and on the basis of their responses we make probabilistic statements or predictions for the whole population.

Target Population

• We observe a few of the elements of interest.

Based on these, we make a statement about the totality of elements.

Definition 1 (Target population)

We call the totality of elements of interest *target population*.

Example 3 (Rise of Skywalker)

All people living in Austria constitute the target population.

Methodology for inductive inference

• Goal: find out something about a certain target population.

• Impractical - and often impossible - to examine the entire population.

• Examine a sample (a part) of it.

• Make inferences regarding the entire target population.

Sampling

Random Sample

Definition 2 (Random sample)

Let the random variables X_1, X_2, \ldots, X_n have a joint density $f_{X_1, X_2, \ldots, X_n}(x_1, x_2, \ldots, x_n)$ that factors as follows:

$$f_{X_1,X_2,...,X_n}(x_1,x_2,...,x_n) = f(x_1)f(x_2)\cdot \cdots \cdot f(x_n),$$

where $f(\cdot)$ is the common density of each X_i . We then define X_1, X_2, \ldots, X_n to be a random sample of size n from a population with density $f(\cdot)$. Thus, a random sample is a sequence of independent, identically distributed (i.i.d.) random variables.

Remark 1 (Sampling with/without replacement)

When sampling from a finite population, our definition requires to always sample with replacement as otherwise the drawings are not independent.

Random Sample

Example 3 (Rise of Skywalker)

We define X_i as 1 (ith person watched the movie) or as 0 (ith person did not watch the movie). If we sample people so that the variables X_1, X_2, \ldots, X_n are independent and have the same density (all people have the same probability of watching the movie) then the sample is random.

Sampled Population

Definition 3 (Sampled population)

Let X_1, X_2, \ldots, X_n be a random sample from a population with density $f(\cdot)$; then this population is called *sampled population*.

Remark 2 (Distinction between the sampled and the target population)

- With random samples we can only make valid probability statements about sampled population.
- Statements about target population are not valid.
- Unless the target population is also the sampled population.

Example 3 (Rise of Skywalker)

All people living in Austria form the *target population*. We draw a sample from Graz. Thus, Graz residents form the *sampled population*.

Methodology for inductive inference revisited

- Goal: study a population with density $f(\cdot; \theta)$.
- We know the form of the density, but it contains an unknown parameter θ .
- Take a random sample X_1, X_2, \dots, X_n of size n from $f(\cdot; \theta)$.
- We compute the value of some function $t(x_1, x_2, \dots, x_n)$ to estimate θ .

Remark 3 (Terminology clarification)

- $X_i's$ are random variables (mathematical objects).
- $x_i's$ are realizations or data points (concrete observations).

Statistic

 The function, which we compute on some concrete realizations, is called statistic.

Definition 4 (Statistic)

Let X_1, X_2, \ldots, X_n be a random sample of size n from density $f(\cdot)$. Statistic is a function $T_n = t(X_1, X_2, \ldots, X_n)$.

Remark 4 (Properties of statistics)

- A function of a random variable is also a random variable.
 ⇒ each statistic is a random variable.
- ullet Each random variable has a density. \Longrightarrow each statistic has a density.
- ullet For probabilistic properties, we study sampling distribution of T_n .
- For a concrete application, we study $t_n = t(x_1, x_2, \dots, x_n)$.

Statistic

- Statistic cannot depend on unknown parameters θ if we have a density $f(\cdot;\theta)$.
- For example, if the random variable X has a density $f(\cdot;\mu,\sigma^2)$, where μ and σ^2 are unknown, then:
 - $X \mu$ is not a statistic.
 - $ightharpoonup \frac{X}{\sigma}$ is not a statistic.
 - \check{X} , X+4, X^2 , X^3+lnX^2 are all statistics.

Remark 5 (Rule of thumb)

If you can write a computer function to compute a value only from your data, then it is a statistic.

Example: Sample Mean (is a Statistic)

Definition 5 (Sample mean)

Let X_1, X_2, \ldots, X_n be a random sample of size n from the density $f(\cdot)$. Sample mean is defined as the average value:

$$\overline{X}_n = \frac{1}{n} \sum_{i=1}^n X_i.$$

Example 4 (Sampling distribution of the sample mean)

Let X_1, X_2, \ldots, X_n be a random sample with $X_i \sim Exp(\lambda)$. Estimate the sampling distribution of \overline{X}_n by repeatedly drawing random numbers in python with n=100 and $\lambda=0.5$. Repeat the experiment for n=1000.

Notebook 1 (Sample mean)

sample_mean.ipynb

Sampling Distribution of \overline{X}_n

Summary

- Computational methods are extremely useful to efficiently do statistics.
- Sampling: we do not investigate the whole population, but we take a sample, compute a statistic related to the parameter of interest and make an inference.
- We defined: random sample, sampled population, statistic, sampling distribution.
- Sampling distribution of the statistic tells us how close the statistic is to the parameter.

Thank you for your attention - Questions? Next time: sampling continued, inference