AEM - Metody bazujące na lokalnym przeszukiwaniu

Dawid Białek 131731, Bartosz Mila 131804 18 maja 2020

1. Krótki opis zadania.

Należy zaimplementować trzy metody:

- (MSLS) Multiple start local search Lokalne przeszukiwanie z różnych losowych punktów startowych,
- (ILS1) Iterated local search Iteracyjne przeszukiwanie lokalne z niewielką perturbacją,
- (ILS2) Iterated local search Iteracyjne przeszukiwanie lokalne z Large-scale neighborhood search, tj. większą perturbacją typu Destry-Repair.

2. Opis zaimplementowanych algorytmów w pseudokodzie.

(MSLS) Multiple start local search:

- Utwórz losową ścieżkę między 100 punktami.
- Dopóki znajdujesz rozwiązania zmniejszające długość ścieżki:
 - Dla każdej krawedzi ze ścieżki:
 - Dla każdej innej krawędzi ze ścieżki:
 - Sprawdź koszt wymiany tych dwóch krawędzi.
 - o Dla każdego wierzchołka ze ścieżki:
 - Dla każdego wierzchołka spoza ścieżki:
 - Sprawdź koszt wymiany tych dwóch wierzchołków.
 - Wprowadź najlepsze znalezione rozwiązanie, tzn. zamień dwie odpowiednie krawędzie lub wymień dwa odpowiednie punkty.

(ILS1) Iterated local search 1:

- Utwórz losową ścieżkę między 100 punktami.
- Dopóki znajdujesz rozwiązania zmniejszające długość ścieżki:
 - Dla każdej krawędzi ze ścieżki:
 - Dla każdej innej krawędzi ze ścieżki:
 - Sprawdź koszt wymiany tych dwóch krawędzi.
 - Dla każdego wierzchołka ze ścieżki:
 - Dla każdego wierzchołka spoza ścieżki:
 - Sprawdź koszt wymiany tych dwóch wierzchołków.

- Wprowadź najlepsze znalezione rozwiązanie, tzn. zamień dwie odpowiednie krawędzie lub wymień dwa odpowiednie punkty.
- Spróbuj wymienić 2 losowe wierzchołki i 2 losowe krawędzie.
- Wprowadź znalezione rozwiązanie, jeśli zmniejsza ono długość ścieżki.

(ILS2) Iterated local search 2:

- Utwórz losową ścieżkę między 100 punktami.
- Dopóki znajdujesz rozwiązania zmniejszające długość ścieżki:
 - Dla każdej krawędzi ze ścieżki:
 - Dla każdej innej krawędzi ze ścieżki:
 - Sprawdź koszt wymiany tych dwóch krawędzi.
 - Dla każdego wierzchołka ze ścieżki:
 - Dla każdego wierzchołka spoza ścieżki:
 - Sprawdź koszt wymiany tych dwóch wierzchołków.
 - Wprowadź najlepsze znalezione rozwiązanie, tzn. zamień dwie odpowiednie krawędzie lub wymień dwa odpowiednie punkty.
 - Spróbuj wyrzucić 20% wierzchołków ze ścieżki oraz naprawić rozwiązanie za pomocą metody heurystycznej greedy cycle.
 - Wprowadź znalezione rozwiązanie, jeśli zmniejsza ono długość ścieżki.

3. Wyniki eksperymentu obliczeniowego.

Instancja A	MSLS	ILS1	ILS2
Najkrótsza ścieżka	15885	15037	13361
Średnia ścieżka	17376	16870	14044
Najdłuższa ścieżka	19050	18652	14554
Minimalny czas [s]	6.203	7.303	7.429
Średni czas [s]	7.301	7.334	7.519
Maksymalny czas [s]	8.301	7.356	7.606

Tabela 1. Wyniki długości ścieżek i czasu działania na wykonywanych algorytmów dla zbioru A

Instancja B	MSLS	ILS1	ILS2
Najkrótsza ścieżka	16002	15946	13379
Średnia ścieżka	17317	17148	14452

Najdłuższa ścieżka	19169	18040	15047
Minimalny czas [s]	6.223	6.656	6.684
Średni czas [s]	6.646	6.673	6.887
Maksymalny czas [s]	6.930	6.686	6.953

Tabela 2. Wyniki długości ścieżek i czasu działania na wykonywanych algorytmów dla zbioru B

4. Wizualizacje najlepszych rozwiązań dla każdej kombinacji.

Instancja A:

Rysunek 3. ILS2

Instancja B:

6. Wnioski.

Algorytm ILS1 pozwolił na małe usprawnienie znajdowania ścieżki przez algorytm MSLS. Spowodowane jest to modyfikowaniem niewielkiej liczby wierzchołków / krawędzi. Algorytm ILS2 zgodnie z przewidywaniami pozwolił już na usprawnienie znaczące - ze względu na modyfikowanie znacznie większej części ścieżki.

7. Kod programu (np. w postaci linku).

https://github.com/Kurkum/AEM