Matematická analýza 1

2025/2026

Contents

1	Výroková logika					
	1.1	Výrok	1			
	1.2	Negace výroku	1			
	1.3	Složené výroky	2			
		1.3.1 Pravdivost implikace	2			
		1.3.2 Vztahy v implikaci	2			

1 Výroková logika

1.1 Výrok

Výrok – oznamovací věta, u které má smysl se bavit o pravdivosti, avšak pravdivost nemusí být zjistitelná. O výroku, pro který lze o pravdivosti rozhodnout a zároveň je pravdivý říkáme, že je dokazatelný.

Příklady:

- Venku prší. je výrok.
- 1 + 1 = 2 je výrok.
- Běž ven. není výrok.
- x + 2 = 3 není výrok.

1.2 Negace výroku

Negace výroku – má opačnou pravdivostní hodnotu. "Není pravda, že A." Zapisuje se jako $\rceil A$

1.3 Složené výroky

Složené výroky – výroky lze spojovat do složených výroků pomocí logických spojek.

- Konjukce (∧) "A a zároveň B."
- Disjukce (V) "A nebo B."
- Implikace (⇒) "Pokud A, potom B." "Je-li A, potom B."
- Ekvivalence (\Leftrightarrow) "A právě tehdy, když B." (Pozn.: $(A \Rightarrow B) \land (A \Rightarrow B)$)

Tabulka pravdivostních hodnot:

A	В	ΓA	$A \wedge B$	$A \vee B$	$A \Rightarrow B$	$A \Leftrightarrow B$
1	1	0	1	1	1	1
1	0	0	0	1	0	0
0	1	1	0	1	1	0
0	0	1	0	0	1	1

1.3.1 Pravdivost implikace

Implikace $A \Rightarrow B$ je pravdivá vždy, když platí předpoklad A a současně i závěr B, nebo když předpoklad A neplatí.

Například (Pozn.: m|n značí "n je dělitelné m".):

$$6|2 \Rightarrow 3|2$$

Jestliže 6 dělí 2, pak 3 dělí 2. Tato implikace je pravdivá, protože podmínka "6 dělí 2" není splněna. Implikace tedy nic neslibuje, pokud předpoklad neplatí.

Za zmínku stojí i související pojmy:

- $A \Rightarrow B$ je obměněná implikace.
- $B \Rightarrow A$ se nazývá **obrácená implikace**.

1.3.2 Vztahy v implikaci

Implikace $A \Rightarrow B$. A je **dostačující podmínka** pro B. B je **nutná podmínka** pro A. Ukážeme si to na příkladu.

$$\forall (n \in \mathbb{N}) : 6|n \Rightarrow 3|n$$

Přeloženo: pro každé přirozené n platí: jestliže číslo 6 dělí n, pak číslo 3 dělí n. Výrok "6|n" je pouze dostačující podmínkou, protože každé n, které je dělitelné třemi, nezaručuje, že je zároveň dělitelné šesti.