Amendments to the Claims

The listing of claims will replace all prior versions, and listings of claims in the application:

Listing of claims:

Claim 1. (Currently amended) A compound of Formula I:

$$\begin{pmatrix} \mathbf{R_1} \\ \mathbf{n} \\ \mathbf{n$$

in which

n is selected from 1, 2 and 3;

Z is selected from C and S(O); each

Y is independently selected from -CR₄=:

wherein R₄ is selected from hydrogen, cyano, hydroxyl, C₁₋₆alkyl, C₁₋₆alkoxy, halo-substituted-C₁₋₆alkyl and halo-substituted-C₁₋₆alkoxy;

- R_1 is selected from halo, cyano, hydroxyl, $C_{1\text{-}6}$ alkyl, $C_{1\text{-}6}$ alkoxy, halo-substituted- $C_{1\text{-}6}$ alkyl, halo-substituted- $C_{1\text{-}6}$ alkoxy and $-C(O)OR_4$; wherein R_4 is selected from hydrogen, cyano, hydroxyl, $C_{1\text{-}6}$ alkyl, $C_{1\text{-}6}$ alkoxy, halo-substituted- $C_{1\text{-}6}$ alkyl and halo-substituted- $C_{1\text{-}6}$ alkoxy;
- R₂ is selected from C₆₋₁₀aryl, and C₃₋₁₂cycloalkyl; wherein any aryl or cycloalkyl of R₂ is optionally substituted with 1 to 5 radicals independently selected from halo, hydroxy, cyano, nitro, C₁₋₆alkyl, C₁₋₆alkoxy, halo-substituted-C₁₋₆alkyl, halo-substituted-C₁₋₆alkoxy, -C(O)NR₅R₅, -OR₅, -OC(O)R₅, -NR₅R₆, -C(O)R₅ and -NR₅C(O)R₅:

wherein:

R₅ and R₆ are independently selected from hydrogen, C₁₋₆alkyl, C₁. 6alkoxy, halo-substituted-C₁₋₆alkyl, halo-substituted-C₁₋₆alkoxy, C₆.

Molteni et al. Application Serial No.: 10/589,087

 $_{10}$ aryl- $C_{0.4}$ alkyl, and $C_{3.12}$ cycloalkyl- $C_{0.4}$ alkyl; wherein any aryl or cycloalkyl of R_5 is optionally substituted with 1 to 4 radicals independently selected from halo, hydroxy, cyano, nitro, $C_{1.6}$ alkyl, $C_{1.6}$ alkoxy, halo-substituted- $C_{1.6}$ alkoxy;

R₃ is selected from C₆₋₁₀aryl and C₃₋₁₂cycloalkyl; wherein any aryl or cycloalkyl of R₃ is substituted with 1 to 5 radicals independently selected from halo, C₁₋₆alkoxy, halo-substituted-C₁₋₆alkyl, halo-substituted-C₁₋₆alkoxy, -OXR₇, -OXC(O)NR₇R₈, -OXC(O)NR₇XC(O)OR₈, -OXC(O)NR₇XC(O)C₈, -OXC(O)NR₇XNR₇R₈, -OXC(O)NR₇XS(O)₀₋₂R₈, -OXC(O)NR₇XNR₇C(O)R₈, -OXC(O)C₇, -OXOR₇, -OXR₉, -XR₉, -OXC(O)R₉, -OXC(O)R₉, -OXC(O)R₉, -OXC(O)R₉, -OXC(O)R₉, -OXC(O)R₈]₂; wherein:

X is a selected from a bond and C₁₋₆alkylene wherein any methylene of X can optionally be replaced with a divalent radical selected from C(O), NR₇, S(O)₂ and O;

 R_7 and R_8 are independently selected from hydrogen, cyano, C_{1-6} alkyl, halo-substituted- C_{1-6} alkyl, C_{2-6} alkenyl and C_{3-12} cycloalkyl- C_{0-4} alkyl; R_9 is selected from C_{6-10} aryl- C_{0-4} alkyl and C_{3-12} cycloalkyl- C_{0-4} alkyl;

wherein any alkyl of R₉ can have a hydrogen replaced with

-C(O)OR₁₀; and any aryl or cycloalkyl of R₉ is optionally substituted
with 1 to 4 radicals independently selected from halo. C_{1.5}alkyl, C_{2.}

 $_{12}$ cycloalkyl, halo-substituted- C_{1-6} alkyl, C_{1-6} alkoxy, halo-substituted- C_{1-6} alkoxy, -XC(O)OR $_{10}$, -XC(O)R $_{10}$, -

 $XC(O)NR_{10}R_{10}$, $-XS(O)_{0-2}NR_{10}R_{10}$ and $-XS(O)_{0-2}R_{10}$; wherein:

 R_{10} is independently selected from hydrogen and C_{1-6} alkyl; and thepharmaceutically acceptable salts, hydrates, solvates and isomers thereof or a pharmaceutically acceptable salt or isomer thereof.

Claim 2. (Previously presented) The compound of claim 1 of Formula Ia:

in which

n is selected from 1, 2 and 3;

Y is selected from -CH=:

 R_1 is selected from halo, $C_{1\text{-}6}$ alkyl, and $-C(O)OR_4$; wherein R_4 is selected from hydrogen and $C_{1\text{-}6}$ alkyl;

 R_2 is selected from C_{6-10} aryl and C_{3-12} cycloalkyl; wherein any aryl or cycloalkyl of R_2 is optionally substituted with 1 to 4 radicals independently selected from halo, hydroxy, C_{1-6} alkyl, halo-substituted- C_{1-6} alkyl and $-OC(O)R_5$; wherein R_5 is selected

from hydrogen and C₁₋₆alkyl; and

R₃ is selected from C₆₋₁₀aryl and C₃₋₁₂cycloalkyl; wherein any aryl or cycloalkyl of R₃ is
substituted with 1 to 5 radicals independently selected from halo, hydroxyl, C₁.

6alkoxy, halo-substituted-C1-6alkyl, halo-substituted-C1-6alkoxy, -OXR7,

-OXC(O)NR7R8, -OXC(O)NR7XC(O)OR8, -OXC(O)NR7XOR8.

 $-OXC(O)NR_7XNR_7R_8$, $-OXC(O)NR_7XS(O)_{0.2}R_8$, $-OXC(O)NR_7XNR_7C(O)R_8$,

 $-OXC(O)NR_7XC(O)XC(O)OR_8, -OXC(O)NR_7R_9, -OXC(O)OR_7, -OXOR_7, -OXR_9, \\$

-XR₉, -OXC(O)R₉ and -OXC(O)NR₇CR₇[C(O)R₈]₂;

wherein

X is a selected from a bond and C₁₋₆alkylene;

R₇ and R₈ are independently selected from hydrogen, cyano, C₁₋₆alkyl, halo-substituted-C₁₋₆alkyl, C₂₋₆alkenyl and C₁₋₁₂cycloalkyl-C₁₋₆alkyl;

R₉ is selected from C₆₋₁₀aryl-C₀₋₄alkyl and C₃₋₁₂cycloalkyl-C₀₋₄alkyl; wherein any alkyl of R₀ can have a hydrogen replaced with

-C(O)OR₁₀; and any aryl or cycloalkyl of R₉ is optionally substituted

Molteni et al. Application Serial No.: 10/589,087

with 1 to 4 radicals independently selected from halo, C_{1-6} alkyl, C_{3-12} cycloalkyl, halo-substituted- C_{1-6} alkyl, C_{1-6} alkoxy, halo-substituted- C_{1-6} alkoxy, - $XC(O)OR_{10}$, - $XC(O)R_{10}$, - $CR_{10}(NR_{10}R_{10})$ = NOR_{10} , - $XC(O)NR_{10}R_{10}$, - $XS(O)_{0.2}NR_{10}R_{10}$ and - $XS(O)_{0.2}R_{10}$; wherein

R₁₀ is independently selected from hydrogen and C₁₋₆alkyl.

Claim 3. (Previously presented) The compound of claim 2 in which

- R₁ is selected from fluoro, chloro, methyl and -C(O)OCH₃; and
- R₂ is selected from phenyl, cyclohexyl, cyclopentyl, and naphthyl; wherein any aryl or cycloalkyl of R₂ is optionally substituted with 1 to 4 radicals independently selected from fluoro, chloro, bromo, hydroxy, methyl, ethyl, propyl, t-butyl, amino, dimethylamino, methoxy, trifluoromethyl, trifluoromethoxy and -OC(O)CH₃.

Claim 4. (Previously presented) The compound of claim 3 in which R_3 is phenyl substituted with 1 to 5 radicals independently selected from fluoro, chloro, bromo, methoxy, hydroxyl,

 $difluoromethoxy, -OCH_2C(O)NH_2, -OCH_2C(O)OCH_3, -OCH_2C(O)NHCH_3, \\$

 $-OCH_{2}C(O)N(CH_{3})_{2}, -R_{9}, -OR_{9}, -OCH_{2}R_{9}, -OCH_{2}C(O)R_{9}, -OCH_{2}C(O)NHR_{9}, \\$

 $-OCH_{2}C(O)N(CH_{3})R_{9}, -OCH_{2}C(O)NHCH_{2}R_{9}, -OCH_{2}CN, -OCH_{2}C_{2}H_{3}, -OCH_{2}C_{2}H_{4}, -OCH_{2}C_{2}H_{4$

 $-O(CH_2)_2OH, -OCH_2C(O)NH(CH_2)_2C(O)OC_2H_5, -OCH_2C(O)NH(CH_2)_2CH_2F, \\$

-OCH2C(O)NHCH2CH2F, -OCH2C(O)NH(CH2)2C(O)OH,

 $-OCH_{2}C(O)NHCH(CH_{2}R_{9})C(O)OC_{2}H_{5}, -OCH_{2}C(O)NHC(O)(CH_{2})_{2}C(O)OCH_{3}, \\$

-OCH2C(O)NH(CH2)2NHC(O)CH3, -OCH2C(O)NHCH2C(O)C2H5,

-OCH₂C(O)NH(CH₂)₂C(O)OC₄H₉, -OCH₂C(O)NHCH₂C(O)OC₂H₅,

 $-OCH_2C(O)NHCH[C(O)OC_2H_5]_2, -S(O)_2CH_3, -OCH_2C(O)NHCH_2CF_3, \\$

 $-OCH_{2}C(O)NHCH_{2}C(O)(CH_{2})_{2}C(O)OCH_{3}, \\ -OCH_{2}C(O)N(CH_{3})CH_{2}C(O)OCH_{3}, \\ -OCH_{2}C(O)N(CH_{3})CH_{3}C(O)OCH_{3}, \\ -OCH_{2}C(O)CH_{3}C(O)CH_{3}C(O)CH_{3}C(O)CH_{3}C(O)CH_{3}C(O)CH_{3}C(O)CH_{3}C(O)CH_{3}C(O)CH_{3}C(O)C$

-OCH2C(O)NH(CH2)3OC2H5, -OCH2C(O)NH(CH2)3OCH(CH3)2, -OCH2C(O)NH(CH2)2SCH3,

-OCH2C(O)NHCH2CH(CH3)2, -OCH2C(O)NHCH(CH3)CH2OH,

-OCH2C(O)NHCH2CH(CH3)C2H5, -OCH2C(O)NHCH(CH3)C(O)OC2H5,

-OCH₂C(O)NHCH₂CH(CH₃)₂ and -OCH₂C(O)(CH₂)₃OCH(CH₃)₂;

wherein

Molteni et al. Application Serial No.: 10/589,087

R₉ is phenyl, cyclopropyl-methyl, phenethyl; wherein any alkyl of R₉ can have a hydrogen replaced with -C(O)OC₂H₅; wherein any aryl of R₉ is optionally substituted with 1 to 4 radicals independently selected from methyl, ethyl, cyclopropyl, methoxy, trifluoromethyl, -OC(O)CH₃, -COOH, -S(O)₂NH₂, -CH(NH₂)=NOH, -C(O)OC₂H₅, -CH₂C(O)OH, -CH₂C(O)OC₂H₅, -CH₂C(O)OCH₃, -C(O)NH₂, -C(O)NHCH₃ and -C(O)CH₃.

Claim 5. (Original) A pharmaceutical composition comprising a therapeutically effective amount of a compound of Claim 1 in combination with a pharmaceutically acceptable excipient.

Claim 6. (Cancelled) A method for treating a disease or disorder in an animal in which modulation of LXR activity can prevent, inhibit or ameliorate the pathology and/or symptomatology of the disease, which method comprises administering to the animal a therapeutically effective amount of a compound of Claim I.

Claim 7. (Cancelled) The method of claim 6 wherein the diseases or disorder are selected from eardiovascular disease, diabetes, neurodescenerative diseases and inflammation.

Claim 8. (Cancelled).

Claim 9. (Cancelled) A method for treating a disease or disorder in an animal in which modulation of LXR activity can prevent, inhibit or ameliorate the pathology and/or symptomatology of the disease, which method comprises administering to the animal a therapeutically effective amount of a compound of Claim I.

Claim 10. (Cancelled) The method of claim 9 further comprising administering a therapeutically effective amount of a compound of Claim 1 in combination with another therapeutically relevant agent.

Claim 11. (Currently amended) The compound of claim1 selected from:

