- 1. Quais são as expressões das portas lógicas AND, OR, NAND, NOR, XOR e COIN-CIDÊNCIA de duas entradas?
- 2. Crie um inversor a partir de uma porta NAND.
- 3. Crie um inversor a partir de uma porta NOR.
- 4. Crie portas NOR e OR a partir de portas NAND, AND e Inversores.
- 5. Crie portas NAND e AND a partir de portas NOR, OR e Inversores.
- 6. Esquematize o circuito COINCIDÊNCIA, utilizando apenas portas NOR.
- 7. Esquematize o circuito XOR, utilizando apenas 4 portas NAND.
- 8. Considere o circuito esquematizado abaixo e diga sua expressão lógica.

- 9. Desenhe o circuito e monte sua tabela verdade:
 - (a) $A \odot (B \oplus C)$
 - (b) $A \oplus (B \odot C)$
 - (c) $(\overline{(A.\overline{C})} + \overline{(A.B.C)}) \odot A$
 - (d) B.Te + A.Te + A.B
 - (e) $\overline{(P+Q)} \odot (P+Q)$
 - (f) $(\overline{P} + P).(P + Q)$
 - (g) $\overline{(\overline{P}+R)} + (R+\overline{Q}+P)$
 - (h) $(K.\overline{L}.\overline{M}) \odot \overline{(K.M)} \odot (K.L)$
 - (i) $(\overline{(L.K)}.\overline{M}) \oplus ((K.\overline{M}) \odot L)$
 - (j) $\overline{(\overline{(A \oplus B)} + ((\overline{B}.\overline{C}) + (\overline{B}.C.\overline{D}))}$

(k)
$$(A \oplus B) + \overline{(A.B + B.\overline{C} + A.\overline{B}.C.\overline{D})}$$

10. Crie a expressão a partir da tabela verdade:

(a)	\mathbf{A}	В	\mathbf{S}
	0	0	0
	0	1	1
	1	0	0
	1	1	1

В

 $C \mid S$

$$(e) \begin{array}{|c|c|c|c|c|c|c|} \hline \mathbf{A} & \mathbf{B} & \mathbf{C} & \mathbf{S} \\ \hline 0 & 0 & 0 & 1 \\ \hline 0 & 0 & 1 & 0 \\ \hline 0 & 1 & 0 & 0 \\ \hline 0 & 1 & 1 & 1 \\ \hline \end{array}$$

	Α	В	\mathbf{C}	S
(h)	0	0	0	1
	0	0	1	0
	0	1	0	1
	1	1	1	1

	0	0	0	0
	0	0	1	0
	0	1	0	1
(c)	0	1	1	1
	1	0	0	1
	1	0	1	1
	1	1	0	0
	1	1	1	0