Gurbahash Phonsa ::: Basics of

Software Project Management

Project Scheduling Tracking

SPM Charts

Project Scheduling and Tracking

- Scheduling is the process of deciding:
 - In what sequence a set of activities will be performed.
 - When they should start and be completed.
- Tracking is the process of determining how well you are sticking to the cost estimate and schedule.

PERT charts

- A PERT chart shows the sequence in which tasks must be completed.
 - PERT = Program Evaluation and Review Technique
 - In each node of a PERT chart, you typically show the elapsed time and effort estimates.
 - The critical path indicates the minimum time in which it is possible to complete the project.

Example of a PERT chart

Gantt Chart

Software Project

Software Project

Management 5

Gantt charts

- A Gantt chart is used to graphically present the start and end dates of each software engineering task
 - One axis shows time.
 - The other axis shows the activities that will be performed.
 - O The black bars are the top-level tasks.
 - O The white bars are subtasks
 - The diamonds are *milestones*:
 - Important deadline dates, at which specific events may occur

Example of a Gantt chart

Sequence of Activities of The Project -House Building

Software

Number	Activity	Predecessor	Duration
1	Design house and obtain financing		3 months
2	Lay foundation	1	2 months
3	Order and receive materials	1	1 month
4	Build house	2,3	3 months
5	Select paint	2, 3	1 month
6	Select carper	5	1 month
7 Project Management	Finish work Gurbakash Phonsa ::: Basics of SP	4, 6	1 month

Gantt Chart for House Building Project

Gantt Chart

Two Types of Gantt Charts

Person-Centered View To determine people's load Joe A2 **A3** Mary Toby **A3** Clara **A3** Time

Activity-Centered View

To identify teams working together on the same tasks

Choose one view, stay with it. Usually base the view on the WBS structure Managing Experienced Teams:

- 1. Person-centered view
- 2. Managing Beginners: Activity oriented view

gurbahash Phonsa ::: Basics of
SpM
Software Project
Management
13

CPM

Critical Path Methos

Critical Path Method

- Definition: In CPM activities are shown as a network of precedence relationships using activity-on-node network construction
 - Single estimate of activity time
 - O Deterministic activity times

O Critical Path:

- Is that the sequence of activities and events where there is no "slack" i.e.. Zero slack
- Longest path through a network
- o minimum project completion time

Activity On-Node

Earliest start Duration Earliest finish

Activity label, activity description

Latest start Float Latest finish

Id.	Activity Name	Duration (days)	Precedents
A	Floating the tender	5	
В	Short listing	5	A
С	Biding	4	В
D	Assigning Contract	8	В
Е	Allocation of task	10	D
G	Monitoring	2	В
Н	Completing	8	G
Z	System Installation	0	C,E,H

CPM

A **critical path** is the longest path in the network. Each node which falls under critical path has zero or negative float (Slack).

There are 3 steps to calculate CPM:

- 1. Forward Pass To calculate the Early Start(ES) and Early Finish(EF) of node.
- 2. Backward Pass To calculate Late Start (LS) and Late Finish(LF) of node.
- 3. Calculate Float and Thus CPM.

The Forward Pass

Node A:

The activity starts on day zero, since A activity duration is for 5 days, the early finish will take Early Start and duration i.e.:

$$A(EF) = A(ES) + Duration$$

 $A(EF) = 0 + 5 = 5$

Node B:

Since there is only one node which precedes activity B. The relationship is F->S. That means that activity B can start only when activity A ends. Hence

$$B(ES) = A(EF) = 5$$

 $B(EF) = B(ES) + Duration = 5 + 5 = 10$

Activity C:
$$C(ES) = B(EF) = 10$$
, also $C(EF) = C(ES) + Duration = 10 + 4 = 14$

Forward pass calculations

Calculation for backward pass

Node H

Node H has only one node preceding it in backward pass (node Z). Hence

$$H(LF) = Z(LS) = 28$$

$$H(LS) = H(LF) - H(Duration) = 28 - 8 = 20$$

Node E

Node E has only one node preceding it in backward pass (node Z). Hence

$$E(LF) = Z(LS) = 28$$

$$E(LS) = E(LF) - E(Duration) = 28 - 10 = 18$$

Node C

Node C has only one node preceding it in backward pass (node Z). Hence

$$C(LF) = C(LS) = 28$$

$$C(LS) = C(LF) - C(Duration) = 28 - 4 = 24$$

More then one forward node

Node B

Since Node B is where most of the activities are merging in backward pass i.e. C, D and G, this is where we need to pay more attention. In backward pass the node B's Latest Finish (LF) would be earliest or all the nodes Late Start i.e.

$$B(LF) = Least | C(LS) \text{ or } D(LS) \text{ or } G(LS)|$$

$$B(LF) = Least | 24 \text{ or } 10 \text{ or } 18 |$$

$$B(LF) = 10$$

$$B(LS) = B(LF) - B(Duration) = 10 - 5 = 5$$

Backward pass calculation

Calculating Total Float or Slack

Total float

Total amount of time that a schedule activity may be delayed from its early start date without delaying the project finish date, or intermediary milestone. It is calculated using:

Activity (ES) – Activity (LS) or activity (EF) Activity(LF) – Both will give you same results.

Free Float

This is an amount of time that a schedule activity can be delayed without delaying the early start of any immediately following schedule activities.

E.g. – For activity C

$$C \text{ (Total Float)} = C \text{ (LS)} - C(ES) = 24 - 10 = 14$$

C (Free Float) = ES of next activity – C(EF)

$$C ext{ (Free Float)} = Z(ES) - C(EF) = 28 - 14 = 14$$

Critical Path

The Critical path

Calculate the Total float for all activities as per the formula.

All nodes which have zero or negative float/slack forms the CRITICAL PATH.

A,B,D,E and Z forms the critical path

Example to construct a CPM

Id.	Activity Name	Duration (weeks)	Precedents
Α	Hardware selection	7	
В	Software design	4	
С	Hardware Installation	6	Α
D	Coding	4	В
E	Data Preparation	5	В
F	User Documentation	9	
G	User Training	5	E,F
Н	System Installation	3	C,D

Solution