

Genomes, Genes, Proteins Why Bionformatics?

Rita Casadio

BIOCOMPUTING GROUP University of Bologna, Italy

Syllabus:

- 1) The "omic" revolution
- 2) Next Generation Sequencing Data
- 3) Omics and data archives
- 4) The ingredients of biological complexity at the cell level
- 5) Open problems in the omic era

The "omic" revolution

The analysis of the components of a living organism in its entirety

The New Genomics: Global Views of Biology

Landmarks:

- ·1920 Winkler uses the expression "Genome" for the haploid chromosome set
- •1995 The first complete genome of the bacterium *Haemophilus influenzae* (Fleischman et al., Science 269, 496) only one aploid chromosome and all the regoins are coding
- •2001 The first draft of the human genome assembled by Celera and by the International Human Genome Sequencing Consortium

Sequencing human DNA: some time ago...the draft

15/02/2001

16/02/2001

Our closest living relative Pan troglodytes

1/09/2005

alignment

Comparison at a molecular level....

Divergence: 6 million years ago

Changes: 35 millions single nucleotides

Human DNA: 3,272,187,692 Chimp DNA: 2,733,948,177

Tetraodon to human had a second secon

October 2004

END OF THE BEGINNING

Finishing the euchromatic sequence of the human genome

International Human Genome Sequencing Consortium*

November 2004

The Human Variome

http://www.ornl.gov/hgmis=

SNPs: Single Nucleotide Polymorphisms

HUGO

PRESIDENT'S MESSAGE

In 2007, the HUGO Council honored me by selecting me as your President-elect. Since then, our Council and I have sought to enhance the strength of HUGO, to embark on initiatives that will move HUGO into new intellectual territory – conceptual domains that will place HUGO again at the forefront of this new convergence of genomic sciences, medicine, and social policy ...

THE HUGO JOURNAL

Submission

nome I search I contact os I co

Fostering/international-proteomie-initiatives/to-better-understand human disease

Human Proteome Project

INFORMATION

Register for our Newsletter

First Name:

First name

Last Name:

Last name

Email Address:

Continue

Welcome to the Human Proteome Organisation's (HUPO) website

The Human Proteome Organisation (HUPO) is an international scientific organization representing and promoting proteomics through international cooperation and collaborations by fostering the development of new technologies, techniques and training. Should you have any questions regarding our activities or how you can become involved in our organization, please click the <u>contact us</u> link in the top right-hand corner and the HUPO Secretariat, based in Montreal Canada, would be happy to assist you.

Results of HUPO Board of Directors election - Click here

HUPO 11th Annual World Congress, Boston 2012, September 9-13 Voting Period for HUPO Board of Directors between August 15 and September 5, 2011

Next Generation Sequencing Technology allows an unprecedent rate of DNA /RNA sequencing (>4TB per week)

> 3000 fully sequenced genomes; 1000 human genomes; 10,000 human exoms

Name	Number of Machines
North America	854
Europe	501
Asia	361
Australia	71
South America	16
Africa	11

Burnina HSeg2000

Dealing with genomic data....

Scott D. Kahn Science 331, 728 (2011)

Fig. 1. A doubling of sequencing output every 9 months has outpaced and overtaken performance improvements within the disk storage and high-performance computation fields.

The "omic" era-RESULTS

Genome Sequencing Projects:

Archaea: 121 species

In Progress: 90 species

Bacteria: 1731 species

In Progress: 5140 species

Eukaryotes:

Complete-150
In Progress-1365

http://www.ncbi.nlm.nih.gov/

Update:
December 2011

(about 20,876 genes and 181,744 transcripts in the human genome) Genes in DNA...

>protein kinase

acctgttgatggegacagggactgtatgetgatet atgetgatgcatgcatgctgactactgatgtgggg gctattgacttgatgtctate....

differen depend varia Ove

...with
different effects
depending on
variability

... in methabolic pathways

Over 50 millions of single mutations are known

...code for proteins...

Overall: from Genotype to Phenotype

...proteins correspond to functions...

Proteins interact

roteins

From 5000 to 10000 proteins per tissue

...when they are expressed

Where to search/check for neutral variations

Single Nucleotide Polymorphism

PubMed	Nucleot	ide Proteir	Genome	Structure	PopSet	Taxonomy	OMIM	Books	SNP
Search for SNP on NCBI Reference Assembly									
Search Er	ntrez SN	Р	✓ for			Go			

BUILD STATISTICS:

Organism	dbSNP Build	Genome Build	Number of Submissions (ss#'s)	Number of RefSNP Clusters (rs#'s) (# validated)	Number of (rs#'s) in gene
Homo sapiens	135	<u>37.3</u>	<u>178,140,935</u>	52,327,221 (41,740,143)	21,247,880
Mus musculus	132	<u>37.1</u>	<u>26,991,031</u>	15,522,011 (6,439,098)	6,696,618
Pongo abelii	132		10,225,850	10,065,309 (0)	
Pongo pygmaeus	127		7,854,083	7,854,081 (0)	
Rattus norvegicus	130	<u>4.1</u>	6,472,989	119,436 (1,605)	1,024,738
Gallus gallus	131	<u>2.1</u>	<u>11,318,097</u>	3,504,588 (3,269,983)	1,452,147
Glycine max	127		6,378,350	6,352,034 (234)	
Phoenix dactylifera	133		3,518,029	3,429,753 (0)	
Oryza sativa	128	<u>4.1</u>	5,872,306	5,359,569 (21,773)	<u>1,897,895</u>
Bos taurus	131	<u>4.1</u>	4,931,454	2,210,557 (13,881)	677,906
Zea mays	128		<u>4,556,997</u>	4,351,393 (80)	

Where to check variations for disease association

OMIM Entry Statistics:

Prefix	Autosomal	X Linked	Y Linked	Mitochondrial	Totals
* Gene description	13,052	640	48	35	13,775
+ Gene and phenotype, combined	159	6	0	2	167
# Phenotype description, molecular basis known	3,074	258	4	28	3,364
% Phenotype description or locus, molecular basis unknown	1,655	136	5	0	1,796
Other, mainly phenotypes with suspected mendelian basis	1,798	129	2	0	1,929
Totals	19,738	1,169	59	65	21,031

http://www.ncbi.nlm.nih.gov/Omim/mimstats.html

Where to find disease associated variations in proteins

Release: 2011 12 of 14-Dec-2011

http://www.uniprot.org/docs/humsavar

BIOINFORMATICS

Data Bases

(Biosequences, Structures, Genomes, DNA Chips, Proteomes, Interatomics, Literature)

- ·Implementation
- ·Data Mining
- ·Links

- ·Sequence analysis
- ·Functional genomics
- ·Proteomics

Systems Biology

Models for:

Interatomics, Methabolomics, Evolving complex biosystems (Cell, Organism,..)

The ingredients of biological complexity at the cell level From genes to proteins and their interaction

The basic information flow: from DNA to proteins A,T,C,G

>BGAL_SULSO BETA-GALACTOSIDASE Sulfolobus solfataricus MYSFPNSFRFGWSQAGFQSEMGTPGSEDPNTDWYKWVHDPENMAAGLVSG DLPENGPGYWGNYKTFHDNAQKMGLKIARLNVEWSRIFPNPLPRPQNFDE SKQDVTEVEINENELKRLDEYANKDALNHYREIFKDLKSRGLYFILNMYH WPLPLWLHDPIRVRRGDFTGPSGWLSTRTVYEFARFSAYIAWKFDDLVDE YSTMNEPNVVGGLGYVGVKSGFPPGYLSFELSRRHMYNIIQAHARAYDGI

From genes...

A,C,D,E,F,G,H,I,K,L M,N,P,Q,R,S,T,V,Y,W

...to Proteins

The Data Bases of Biological Sequences and Structures

GenBank: 135,440,990 sequences 126,551,501,141 nucleotides

>BGAL_SULSO BETA-GALACTOSIDASE Sulfolobus solfataricus MYSFPNSFREGMSQAGFQSEMGTPGSEDPNTDWYKWYHDPEMMAAGLYSG DLPPNGFGYWGNYKFFDNAQKMGLKIARLNVEWSRIFFNPLPRPQNFDE SKQDVTEVEINEMELKRLDEYANKDALNHYREIFKDLKSRGLYFILNMYH WPLPLWHDDIRVRRGDFTGPSGWLSTRTVYEFARFSAYIAWKFDDLVDE YSTMNEDNVVGGLGYYGVKSGFPPGYLSFELSRRHMYNIIQAHARAYDGI KSYSKKEVGIIYANSSFQPLTDKDMEAVEMAENDNRWWFFDALIRGEITR GNEKIVRDDLKGRLDWIGVNYYTRTVVKRTEKGYVSLGGYGGGCERNSVS LAGLPTSDFGWEFFPEGLYDVLTKYWNRYHLYMYVTENGIADDADYQRPY YLVSHVYQVHRAINSGADVRGYLHWSLADNYEWASGFSMRFGLLKVDYNT KRLYWRPSALVYKEIATNGAITDEIBHLNSVPPVKPLRH

UniProt/Tremble:

18,215,214

sequences residues

5,957,253,786

10

UniProt/SwissProt:

533,049

sequences

189,064,225

residues

PDB:

75,4633 structures

membrane proteins <2%

≅43 HGE!

Update:
December 2011

all Categories Author M Macromolecule

Seguence Cligand

Search | All Categories:

흐 e.q., PDB ID, molecule name, author

Customize This Page

MyPDB

Hide

Login to your Account Register a New Account

‡ Home

Hide

News & Publications Usage/Reference Policies Deposition Policies Website FAO Deposition FAQ Contact Us About Us Careers External Links Sitemap New Website Features

‡ Deposition

Hide

All Deposit Services

Biological Macromolecular Resource

Full Description

Structural View of Biology

Molecule of Complex I

Complex: transport

Full Artic

Protein Stru Superbugs

Antibiotics Natural ai might exp

E.G:: RNA Polymerase II Elongation Complex

In terms of proteomics, interactomics refers to proteinprotein interaction networks

Protein function

Open menus

GO function vocabulary:

http://www.geneontology.org/

process and a hexose is a type of monosaccharide.

The Ontologies

- Cellular component
- Biological process
- Molecular function

Ontology Structure

The Gene Ontology is a **controlled vocabulary**, a set of standard terms—words and phrases—used for indexing and retrieving information. In addition to defining terms, GO also defines the **relationships** between the terms, making it a **structured** vocabulary.

GO as a Graph

The structure of GO can be described in terms of a graph, where each GO term is a node, and the relationships between the terms are arcs between the nodes. The relationships used in GO are **directed**—for example, a mitochondrion is an organelle, but an organelle is not a mitochondrion—and the graph is **acyclic**, meaning that cycles are not allowed in the graph. The ontologies resemble a hierarchy, as child terms are more specialized and parent terms are less specialized, but unlike a hierarchy, a term may have more than one parent term. For example, the biological process term hexose biosynthetic process has two parents, hexose metabolic process and monosaccharide biosynthetic process. This is because biosynthetic process is a type of metabolic

Gene Ontology classification:

E.G: The human cytoplasmic aspartate transaminase

Molecular Function

molecular function catalytic activity transferase activity transferase activity, transferring nitrogenous transaminase activity L-aspartate:2oxoglutarate aminotransfera se activity

GO:0004069

GO:0005829

Cellular component

What did we learn:

A shift of paradigm....to describe protein-protein and protein/DNA/RNA interactions

A protein is a node characterised by a degree of connections (number of possible interactions or number of other proteins/molecules with which it can interact)

Nucleotide sugars GLYCOLYSIS me tabolism Pentose and glucuronate interconversions 2.7.1.41 Starch and sucros α-D-Glucose-1P me tabolism 3.1.3.10 5.4.2.2 Galactose me tabolism 2.7.1.69 O D-Glucose (extracellular) 3.1.3.9 ∞-D-Glucose 2.7.1.1 3.1.6.3 2.7.1.2 2.7.1.63 α-D-Glucoæ-6P ♣(aerobic decarboxylation) D-Glucose 5.1.3.15 5.3.1.9 5.1.3.3 6-sulfate 2.7.1.2 ♣ β-D-Fructoæ-6P 5.3.1.9 β-D-Glucose-6P 2.7.1.63 Pentose 2.7.1.11 phosphate 3.1.3.11 pathway 2.7.1.69 Fructose and Åβ-D-Fructose-1,6P2 mannoæ metabolism (extracellular) √ Glyceralde hyde-3P 5.3.1.1 Photosynthesis glycerate-2,3P2 Galactose 1.2.1.12 me tabolism Glycerolipid Glycerate-1,3P2 5.4.2.4 me tabolism Glycerate-2,3P2 3.6.1.7 2.7.2.3 5.4.2.4 3.1.3.13 Thiamine 5.4.2.1 GLUCONEOGENESIS Glycerate-2PC Phe,Tyr & Trp 4.2.1.11 Aminophosphonate me tabolism Citrate cycle Pyruvate me tabolism 2.7.1.40 Tryptophan me tabolism Lysine biosynthesis Pyruvate 1.1.1.27 Acetyl-CoA ThPP 2-Hvdroxv Synthesis and Propagoate metabolism ethyl-ThPP 1.2.4.1 1.2.4.1 of ketone bodies 4.1.1.1 C5-Branched dibasic acid metabolism dihydrolipoamide 6.2.1.1 1.8.1.4 Liposmide Butanoate metabolism 4.1.1.1 Dihydrolipoamide Pantothenate and CoA biosynthesis 1.1.1.1 Ethanol Acetalde hyde Acetate 1.1.1.2 Alanine and aspartate metabolism 1.1.1.71 D-Alanine metabolism 1.1.99.8 1.2.1.3 1.2.1.5 Tyrosine metabolism 00010 9/27/01

Metabolic Pathways: chemicals and protein interactions

E.G: Glycolysis and Gluconeogenesis

Kyoto Encyclopedia of Genes and Genomes http://www.genome.jp/kegg/

DATA -INTEGRATION

The "omic" era Genomics 0 **Transcriptomics** m p **Proteomics** e **Metabolomics** X Regulomics Systems Biology

Functional Genomics

From genes to functions and backward

Genomic Data Sources: towards cell modelling in silico

Life's Complexity Pyramid

Zoltán N. Oltvai and Albert-László Barabási

evidence for the existence networks: For example, the nizes itself into a protein

A "BIG" problem of the "omic era" after genome sequencing:

translation

10	20	30	40	50	60	70
1	1	1	1	1	1	1
TEKLWVTVYY	GVPVWKEATT	TLFCASDAKA	YDTEVHNVWA	THACVPTDPN	PQEVVLVNVT	ENFINHURNDE
80	90	100	110	120	130	140
1	1	1	1	1	I	
VEQMHEDIIS	LWDQSLKPCV	KLTPLCVSLK	CTDLKNDTNT	NSSSGRMIME	KGEIKNCSFN	ISTSIRGKV
150	160	170	180	190	200	210
	1	1	1		1	
KEYAFFYKLD	IIPIDNDTTS	YKLTSCNTSV	ITQACPKVSF	EPIPIHYCAP	AGFAILKONN	KTFNGTGPCT
220	230	240	250	260	270	280
	1	1	1	1	1	
NVSTVQCTHG	IRPVVSTQLL	LNGSLAEEEV	VIRSVNFTDN	AKTIIVQLNT	SVEINCTRPN	NNTRKRIRIC
290	300	310	320	330	340	350
	1	1	1			1
RGPGRAFVTI	GKIGNMRQAH	CNISRAKWNN	TLKQIASKLR	EQFGNNKTII	FKQSSGGDPE	IVTHSFNCGO
360	370	380	390	400	410	420
1	1	1	1	1	1	
EFFYCNSTQL	FNSTWFNSTW	STEGSNINTEG	SDTITLPCRI	KGIINMWQKV	GKAMYAPPIS	GQIRCSSNI
430	440	450	460	470	480	
1	1	1	1		1	
GLLLTRDGGN	SNNESEIFRP	GGGDMRDNWR	SELYKYKVVK	IEPLGVAPTK	AKRRVVQREK	R

Protein sequences (~17 millions)

that are endowed

with

Protein structures and functions

Protein sequence Annotation: to endow with structural and functional features protein sequences after gene

Genomic data and the problem of protein validation

Data production→Data analysis

DNA sequencing →gene recognition → protein translation

Experiments to validate protein structure and function produce data in a time >> than that required to deposit putative protein sequences into data bases

UniProt KB: The largest annotation resource

Fig. 1 UniProtKB serves as a knowledge repository and as a central hub that provides links to numerous other databases. New protein sequences are integrated in UniProtKB/TrEMBL and annotated by an automated procedure. UniProtKB/Swiss-Prot entries are manually annotated, combining carefully checked protein sequences with information from the scientific literature, protein 3D-structures, and specialised databases, together with feedback from the scientific community

Ursula Hinz • *The UniProt Consortium* Cell. Mol. Life Sci. (2010) 67:1049–1064

The UniProt Universe

WELCOME

The mission of UniProt is to provide the scientific community with a comprehensive, high-quality and freely accessible resource of protein sequence and functional information.

What we provide

Transfer of annotation in silico by homology search

```
ADH1_SULSO ------MRAVRLVEIGKP--LSLQEIGVPKPKGPQVLIKVEAAGVCHSDVHMRQGRFGNLRIVE
ADH_CLOBE ------MKGFAMLGINKLG---WIEKERPVAGSYDAIVRPLAVSPCTSDIHTVFEGA-----
ADH_THEBR ------MKGFAMLSIGKVG---WIEKEKPAPGPFDAIVRPLAVAPCTSDIHTVFEGA-----
ADH1_SOLTU MSTTVGQVIRCKAAVAWEAGKP--LVMEEVDVAPPQKMEVRLKILYTSLCHTDVYFWEAKG-----
ADH2_LYCES MSTTVGQVIRCKAAVAWEAGKP--LVMEEVDVAPPQKMEVRLKILYTSLCHTDVYFWEAKG-----
ADH1_ASPFL ----MSIPEMQWAQVAEQKGGP--LIYKQIPVPKPGPDEILVKVRYSGVCHTDLHALKGDW-----
```

Sequence comparison is performed with alignment programs

Sequence identity $\geq 30 \% \implies 3D ?$; Similar function ??

Methods for similarity searches:

BLAST, Psi-BLAST (http://www.ncbi.nlm.nih.gov/BLAST/)

Altschul et al., (1990) J Mol Biol 215:403-410

Altschul et al., (1998) Nucleic Acids Res. 25:3389-3402

Pfam (http://pfam.wustl.edu/hmmsearch.shtml)

Bateman et al., (2000) Nucleic Acids Research 28:263-266

Release 2011_11 of 16-Nov-2011 of UniProtKB/TrEMBL contains 18,215,214 sequence entries

Protein existence (PE):	entries	
1: Evidence at protein level	13085	0.07%
2: Evidence at transcript level	547306	3.00%
3: Inferred from homology	3857630	21.18%
4: Predicted	13797193	75.75%

Release 2011_11 of 16-Nov-11 of UniProtKB/Swiss-Prot contains 533,049 sequence entries

Protein existence (PE):	entrie	S
1: Evidence at protein level	73298	13.8%
2: Evidence at transcript level	69925	13.1%
3: Inferred from homology	373485	70.1%
4: Predicted	14452	2.7%
5: Uncertain	1889	0.4%

Only 3.4 % sequences has evidence at the protein and trascript level and only 0.4 % proteins have structures in the Protein Data Bank.

How can we infer function and structure from sequence?

Summing up.....

Open problems in the genome era after DNA sequencing

- 1) Genome assembly
- 2) Genome annotation (e.g. exon/intron boundaries)
- 3) Finding alternative splicing variants
- 4) Protein structural and functional annotation
- 5) Annotation of SNP variants
- 6) Correlation among SNPs and diseases
- 7) Simulation of cell complexity