Linear Algebra

Sartaj UI Hasan

Department of Mathematics Indian Institute of Technology Jammu Jammu, India - 181221

Email: sartaj.hasan@iitjammu.ac.in

Lecture 26 (Oct 16, 2019)

Linear Transformation

Proposition 28

Two finite-dimensional vector spaces V and W (over the same field \mathbb{F}) are isomorphic if and only if dim $V = \dim W$.

Remark: In particular, it follows that every vector space V of dimension n over \mathbb{R} is isomorphic to \mathbb{R}^n . We can certainly exploit our familiarity with \mathbb{R}^n in proving results about finite-dimensional spaces.

Proof of Proposition 28:

$$[\Longrightarrow]$$

Suppose V and W are isomorphic, i.e., there exists an isomorphism $T:V\longrightarrow W$. If dim V=n and $\{v_1,\ldots,v_n\}$ is a basis of V. Then by Proposition 27 (a), $\{T(v_1),\ldots,T(v_n)\}$ is a basis of W, and hence, dim W=n.

$$[\Longleftarrow]$$

Suppose V and W have the same dimension, say n. Let $\{v_1,\ldots,v_n\}$ be a basis of V and let $\{w_1,\ldots,w_n\}$ be a fixed basis of W. By Prop 26(b), there exists a unique linear transformation $T:V\longrightarrow W$ such that $T(v_i)=w_i, i=1,\ldots,n$. But now, from Prop 27(b), it follows that T is an isomorphism.

Rank of a Linear Transformation

Definition: If $T:V\longrightarrow W$ be a linear transformation, then Range $(T)=\{w\in W:w=T(v)\text{ for some }v\in V\}$ —this is the standard definition of the range of any function.

Remark: Range (T) is a subspace of W (exercise!)

Definition: The rank of T is the dimension of the range of T.

Remark: If V is finite-dimensional, then it is easy to see that $rank(T) \le dim V$ (exercise!!)

Recall: We have already defined the kernel or null space of a linear transformation T as Ker (T) =Nul (T) = $\{v \in V : T(v) = 0\}$ and see

transformation I as Ker (I) =Nul (I) = { $v \in V : I(v) = 0$ } and see that it is a subspace of V. If Ker T is finite-dimensional, then its dimension is called the **nullity** of T.

Theorem 3 (Rank-Nullity Theorem for Linear Transformation):

Suppose that $T:V\longrightarrow W$ is a linear transformation and V is finite-dimensional. Then:

$$rank(T) + nullity(T) = dim V$$

Proof of Theorem 3 (Rank-Nullity Theorem)

Suppose that dim V = n and nullity(T) = k. Then let $\{v_1, v_2, \ldots, v_k\}$ be a basis for Nul T and expand this to a basis B of V by inserting the additional vectors v_{k+1}, \ldots, v_n .

Claim: The vectors $T(v_{k+1}), \ldots, T(v_n)$ form a basis for Range(T).

Firstly, all the vectors $T(v_1), \ldots, T(v_n)$ surely span Range(T), and since $T(v_1) = T(v_2) = \cdots = T(v_k) = 0$, actually $T(v_{k+1}), \ldots, T(v_n)$ span Range(T).

Secondly, suppose that $c_{k+1}T(v_{k+1})+c_{k+2}T(v_{k+2})+\cdots+c_nT(v_n)=0$ Then $T(c_{k+1}v_{k+1}+c_{k+2}v_{k+2}+\cdots+c_nv_n)=0$. Hence, $c_{k+1}v_{k+1}+c_{k+2}v_{k+2}+\cdots+c_nv_n$ belongs to Nul T. Therefore $c_{k+1}v_{k+1}+c_{k+2}v_{k+2}+\cdots+c_nv_n=b_1v_1+b_2v_2+\cdots+b_kv_k$ or $b_1v_1+b_2v_2+\cdots+b_kv_k-c_{k+1}v_{k+1}-c_{k+2}v_{k+2}-\cdots-c_nv_n=0$, which implies that $b_1=b_2=\cdots=b_k=c_{k+1}=c_{k+2}=\cdots=c_n=0$. In particular, $c_{k+1}=c_{k+2}=\cdots=c_n=0$, which proves the linear independence of the vectors $T(v_{k+1}),\ldots,T(v_n)$. This proves the claim. Hence Rank T+ Nullity $T=(n-k)+k=n=\dim V$. **Observation:** We have already noted that if T is a linear transformation on a finite-dimensional space V, then range T is also finite-dimensional of dimension at most dim V. The Rank-Nullity Theorem makes this numerically precise.

Review - Basis and Dimension

- **Definition:** Let V be a vector space. A basis for V is a linearly independent set S of vectors such that $V = \operatorname{Span} S$.
- **Definition:** A space *V* which has a (finite) basis is said to be finite dimensional.
- Proposition 13: If V is a finite-dimensional vector space, then any two bases of V have the same number of elements.
- **Definition:** The dimension of a finite-dimensional space is the number of elements in a basis for *V*. This is written dim *V*.
- Three examples of finite dimensional spaces: \mathbb{R}^n , $\mathbb{R}^{m \times n}$, $\mathbb{R}_n[t]$. Their dimensions are n, mn, n+1, respectively.

Very Important Theorem (VIT)-Version 2.0 The Invertible Matrix Theorem (TIMT)

Theorem 1: The following are equivalent for an $m \times m$ square matrix A:

- A is invertible.
- **a** A is row equivalent to the identity matrix I_m .
- \bigcirc The homogeneous system AX = 0 has only the trivial solution.
- ① The system of equations AX = b has at least one solution for every b in \mathbb{R}^m .

- **1** The columns of A form a basis for \mathbb{R}^m .
- ① Det $A \neq 0$.