Алгоритмы и структуры данных-1 SET 2. Задача A3.

Осень 2024. Клычков М. Д.

Пункт 1. Для начала стоит вспомнить, что нам известно об асимптотике алгоритма Штрассена. На лекции было доказано, что $T_{\rm III} = O(n^{\log_2 7})$. От нас требуется найти алгоритм, выражающийся рекуррентным соотношением

 $T(n) = a \cdot T\left(\frac{n}{4}\right) + \Theta(n^2) \tag{1}$

Заметим, что для данного рекуррентного соотношения возможно применение мастер-теоремы.

при
$$\log_4 a = 2 \Leftrightarrow a = 16$$
: $T(n) = O(n^2 \log_4 n)$ (2)

при
$$\log_4 a > 2 \Leftrightarrow a > 16$$
: $T(n) = O(n^{\log_4 a})$ (3)

при
$$\log_4 a < 2 \Leftrightarrow a < 16$$
: $T(n) = O(n^2)$ (4)

На лекции отмечалось, что умножение квадратных матриц может быть реализовано только за $O(n^{2+\varepsilon}), \, \varepsilon > 0$. Воспользуемся этой информацией и уберем из рассмотрения (4), так как в этом случае $T(n) = O(n^2)$.

Покажем, что нам подходит случай (2). Достаточно, чтобы $T(n) = O(T_{\rm III}(n))$ или, подставив конкретную T(n), $O(n^2 \log_4 n) = O(n^{\log_2 7})$

$$n^{2} \log_{4} n \le c n^{\log_{2} 7}$$

$$\log_{4} n \le c n^{\log_{2} 7 - 2}$$

$$\log_{4} n \le c n^{\log_{2} 1.75} \Leftrightarrow \log n = O(n^{\log_{2} 1.75})$$

А последнее мы принимаем за истину (знания о порядке роста функций).

Рассмотрим оставшийся случай (3). Тут все действия будут схожи с предыдущим пунктом, только остается решить уравнение с параметром. Нам нужно найти такие a, что $T(n) = O(T_{\rm III}(n))$ или, подставив конкретную T(n), $O(n^{\log_4 a}) = O(n^{\log_2 7}) \Leftrightarrow \log_4 a \leq \log_2 7$

$$\frac{1}{2}\log_2 a \le \log_2 7$$
$$\log_2 a \le \log_2 49$$
$$a \le 49$$