Dynamic Routing

Maimoona Khilji

Institute of Management Science

Course Code: Data Communication and Computer Networking

Muhammad Saad Rashad

3rd January, 2022

Task: Dynamic Routing

Table of Content	
Variable Subnet Mask	5
For A:	5
For B:	5
For C:	6
For D:	6
For E:	7
For F:	7
For G:	8
For H:	8
Router Configuration	9

 Router-1
 9

 Router-2
 10

 Router-3
 11

 Router-4
 12

 Dynamic Routing:
 14

Implement RIPv2 and EIGRP in same topology/network

- 1. Take 4 routers in the topology
- 2. Network ID for the whole topology is: 192.168.10.0
- 3. It means subnetting(VLSM) would be required

Create variable subnets of Class C IP 192.168.10.0 for given topology

In above topology, we have to create 8 subnets of different length:

A: number of hosts=2

B: number of hosts=30

C: number of hosts=2

D: number of hosts=60

E: number of hosts=2

F: number of hosts=12

G: number of hosts=2

H: number of hosts=30

Variable Subnet Mask

IP: 192.168.11.0

Subnet: 255.255.255.0

For A:

We need IPs for 2 hosts. We will turn on 6 bits in host part of IP.

11111111	11111111	11111111	11111100	IP (Binary)
255	255	255	252	Subnet Mask
8	8	8	6	Bits = 30

Now we will find the range of IP for A

Range= Total number of hosts in class C – number of hosts in updated subnet

So network A will consist of 4 IPs.

For B:

We need IPs for 30 hosts. We will turn on 3 bits in host part of IP.

11111111	11111111	11111111	11100000	IP (Binary)
255	255	255	224	Subnet Mask
8	8	8	3	Bits = 27

Now we will find the range of IP for B

Range= Total number of hosts in class C – number of hosts in updated subnet

So network B will consist of 32 IPs.

For C:

We need IPs for 2 hosts. We will turn on 6 bits in host part of IP.

11111111	11111111	11111111	11111100	IP (Binary)
255	255	255	252	Subnet Mask
8	8	8	6	Bits = 30

Now we will find the range of IP for C

Range= Total number of hosts in class C – number of hosts in updated subnet

Range=
$$256 - 252$$

So network C will consist of 4 IPs.

For D:

We need IPs for 60 hosts. We will turn on 2 bits in host part of IP.

11111111	11111111	11111111	11000000	IP (Binary)
255	255	255	192	Subnet Mask
8	8	8	2	Bits = 26

Now we will find the range of IP for D

Range= Total number of hosts in class C – number of hosts in updated subnet

So network D will consist of 64 IPs.

For E:

We need IPs for 2 hosts. We will turn on 6 bits in host part of IP.

11111111	11111111	11111111	11111100	IP (Binary)
255	255	255	252	Subnet Mask
8	8	8	6	Bits = 30

Now we will find the range of IP for E

Range= Total number of hosts in class C – number of hosts in updated subnet

Range=
$$256 - 252$$

So network E will consist of 4 IPs.

For F:

We need IPs for 12 hosts. We will turn on 4 bits in host part of IP.

11111111	11111111	11111111	11110000	IP (Binary)
255	255	255	240	Subnet Mask
8	8	8	4	Bits = 28

Now we will find the range of IP for F

Range= Total number of hosts in class C – number of hosts in updated subnet

So network F will consist of 12 IPs.

For G:

We need IPs for 2 hosts. We will turn on 6 bits in host part of IP.

11111111	11111111	11111111	11111100	IP (Binary)
255	255	255	252	Subnet Mask
8	8	8	6	Bits = 30

Now we will find the range of IP for G

Range= Total number of hosts in class C – number of hosts in updated subnet

So network G will consist of 4 IPs.

For H:

We need IPs for 30 hosts. We will turn on 3 bits in host part of IP.

11111111	11111111	11111111	11100000	IP (Binary)
255	255	255	224	Subnet Mask
8	8	8	3	Bits = 27

Now we will find the range of IP for H

Range= Total number of hosts in class C – number of hosts in updated subnet

Range= 256 - 224

Range= 32

So network H will consist of 32 IPs.

H 192.168.10.122 /27 192.168.10.153 /27

Subnet	Number of hosts	IP Range Start	IP Range End
	required		
A	2	192.168.10. 0 /31	192.168.10.2 /31
В	30	192.168.10. 2 /27	192.168.10.33 /27
С	2	192.168.10.34 /31	192.168.10. 35 /31
D	60	192.168.10.36 /26	192.168.10.99 /26
Е	2	192.168.10.100 /31	192.168.10.101 /31
F	12	192.168.10.102 /28	192.168.10.117 /28
G	2	192.168.10.118 /31	192.168.10.119 /31
Н	30	192.168.10.120 /27	192.168.10.151 /27

Router Configuration

Router-1

Interface Configuration

Router>en

Router#conf ter

Enter configuration commands, one per line. End with CNTL/Z.

Interface FastEthernet0/1

Router(config)#int fa0/1

Router(config-if)#ip address 192.168.10.2 255.255.252

Router(config-if)#no shutdown

Router(config-if)#

%LINK-5-CHANGED: Interface FastEthernet0/1, changed state to up

%LINEPROTO-5-UPDOWN: Line protocol on Interface FastEthernet0/1, changed state to up

Router(config-if)#exit

Interface FastEthernet0/0

Router(config)#int fa0/0

Router(config-if)#ip address 192.168.10.37 255.255.255.252

Router(config-if)#no shutdown

Router(config-if)#

%LINK-5-CHANGED: Interface FastEthernet0/0, changed state to up

Router(config-if)#exit

Interface Ethernet1/0

Router(config)#int Eth1/0

Router(config-if)#ip address 192.168.10.5 255.255.255.224

Router(config-if)#no shutdown

Router(config-if)#

%LINK-5-CHANGED: Interface Ethernet1/0, changed state to up

%LINEPROTO-5-UPDOWN: Line protocol on Interface Ethernet1/0, changed state to up

Router(config-if)#exit

RIPv2 Configuration

outer>en

Router#conf

Configuring from terminal, memory, or network [terminal]? ter

Enter configuration commands, one per line. End with CNTL/Z.

Router(config)#router rip

Router(config-router)#version 2

Router(config-router)#network 192.168.10.0

Router(config-router)#network 192.168.10.36

Router(config-router)#network 192.168.10.4

Router(config-router)#no auto-summary

Router(config-router)#end

Router#

%SYS-5-CONFIG I: Configured from console by console

Router#

Router-2 Interface Configuration

Router>en

Router#conf ter

Enter configuration commands, one per line. End with CNTL/Z.

Interface FastEthernet0/0

Router(config)#int fa0/0

Router(config-if)#ip address 192.168.10.37 255.255.255.252

Router(config-if)#no shutdown

Router(config-if)#

%LINK-5-CHANGED: Interface FastEthernet0/1, changed state to up

Router(config-if)#exit

Interface FastEthernet0/1

Router(config)#int fa0/1

Router(config-if)#ip address 192.168.10.105 255.255.255.252

Router(config-if)#no shutdown

Router(config-if)#

%LINK-5-CHANGED: Interface FastEthernet0/1, changed state to up

Router(config-if)#exit

Interface Ethernet1/0

Router(config)#int Eth1/0

Router(config-if)#ip address 192.168.10.41 255.255.255.192

Router(config-if)#no shutdown

Router(config-if)#

%LINK-5-CHANGED: Interface Ethernet1/0, changed state to up

%LINEPROTO-5-UPDOWN: Line protocol on Interface Ethernet1/0, changed state to up

Router(config-if)#exit

RIPv2 Configuration

Router>en

Router#conf ter

Enter configuration commands, one per line. End with CNTL/Z.

Router(config)#router rip

Router(config-router)#version 2

Router(config-router)#network 192.168.10.36

Router(config-router)#network 192.168.10.40

Router(config-router)#network 192.168.10.104

Router(config-router)#no auto-summary

Router(config-router)#end

Router#

%SYS-5-CONFIG_I: Configured from console by console

Router#

Router-3 Interface Configuration

Router#conf ter

Enter configuration commands, one per line. End with CNTL/Z.

Interface FastEthernet0/1

Router(config)#int fa0/1

Router(config-if)#ip address 192.168.10.1 255.255.255.252

Router(config-if)#no shutdown

Router(config-if)#

%LINK-5-CHANGED: Interface FastEthernet0/1, changed state to up

Router(config-if)#exit Router(config)#

Interface FastEthernet0/0

Router(config)#int fa0/0

Router(config-if)#ip address 192.168.10.122 255.255.255.252

Router(config-if)#no shutdown

Router(config-if)#

%LINK-5-CHANGED: Interface FastEthernet0/0, changed state to up

%LINEPROTO-5-UPDOWN: Line protocol on Interface FastEthernet0/0, changed state to up

Router(config-if)#exit

Interface Ethernet1/0

Router#conf ter

Enter configuration commands, one per line. End with CNTL/Z.

Router(config)#int Eth1/0

Router(config-if)#ip address 192.168.10.124 255.255.255.224

Router(config-if)#no shutdown

Router(config-if)#

%LINK-5-CHANGED: Interface Ethernet 1/0, changed state to up

%LINEPROTO-5-UPDOWN: Line protocol on Interface Ethernet1/0, changed state to up

Router(config-if)#exit

EIGRP Configuration

Router>en

Router#conf ter

Enter configuration commands, one per line. End with CNTL/Z.

Router(config)#router eigrp 10

Router(config-router)#network 192.168.10.104

Router(config-router)#network 192.168.10.108

Router(config-router)#network 192.168.10.120

Router(config-router)#no auto-summary

Router(config-router)#end

Router#

%SYS-5-CONFIG_I: Configured from console by console

Router#

Router-4

Interface Configuration

Router>en

Router#conf ter

Enter configuration commands, one per line. End with CNTL/Z.

Interface FastEthernet0/0

Router(config)#int fa0/0

Router(config-if)#ip address 192.168.10.105 255.255.255.252

Router(config-if)#no shutdown

Router(config-if)#exit

Interface FastEthernet0/1

Router(config)#int fa0/1

Router(config-if)#ip address 192.168.10.121 255.255.255.252

Router(config-if)#no shutdown

Router(config-if)#

%LINK-5-CHANGED: Interface FastEthernet0/1, changed state to up

Router(config-if)#exit

Router(config)#

Interface Ethernet1/0

Router(config)#int Eth1/0

Router(config-if)#ip address 192.168.10.109 255.255.255.240

Router(config-if)#no shutdown

Router(config-if)#

%LINK-5-CHANGED: Interface Ethernet 1/0, changed state to up

%LINEPROTO-5-UPDOWN: Line protocol on Interface Ethernet 1/0, changed state to up

Router(config-if)#exit

Router(config)#

EIGRP Configuration

Router>en

Router#conf ter

Enter configuration commands, one per line. End with CNTL/Z.

Router(config)#router eigrp 10

Router(config-router)#network 192.168.10.0

Router(config-router)#network 192.168.10.124

Router(config-router)#network 192.168.10.120

Router(config-router)#no auto-summary

Router(config-router)#end

Router#

%SYS-5-CONFIG_I: Configured from console by console

Router#

Dynamic Routing:

- Ripv2 is implemented in Router 1 and Router 2.
- EIGRP is implemented in Router 3 and Router 4.

Ping

• If we ping **from** Pc "R4-1" connected to Router 4 **to** PC "R3-1" connected to Router 3 (EIGRP is implemented in both routers)

• If we ping **from** Pc "R4-1" connected to Router 4 **to** PC "R1-1" connected to Router 3 (EIGRP is implemented in both routers)

Note:

We can't ping if two different routing protocols are implement in topology.

That's why, I changed the dynamic routing of Router-1 and Router-2 to EIGRP protocol.

Router-1

EIGRP Configuration

Router#conf ter

Enter configuration commands, one per line. End with CNTL/Z.

Router(config)#no router rip

Router(config)#router eigrp 10

Router(config-router)#network 192.168.10.0

Router(config-router)#network 192.168.10.4

Router(config-router)#network 192.168.10.36

Router(config-router)#no auto-summary

Router(config-router)#end

Router#

%SYS-5-CONFIG_I: Configured from console by console

Router#

Router-2

EIGRP Configuration

Router#conf ter

Enter configuration commands, one per line. End with CNTL/Z.

Router(config)#router eigrp 10

Router(config-router)#network 192.168.10.36

Router(config-router)#network 192.168.10.40

Router(config-router)#network 192.168.10.104

Router(config-router)#no auto-summary

Router(config-router)#end

Router#

%SYS-5-CONFIG_I: Configured from console by console

Router#

Ping

• Now if we ping **from** Pc "R4-1" connected to Router 4 **to** PC "R1-1" connected to Router 3 (EIGRP is implemented in both routers)
