

B41 Nov 8 Lec 1 Notes

Definition:

Let UCR". A point xof U is called an interior point of U if Dr(xo) C U for some r.

Points which are not interior points are called boundary points.

The set of boundary points is denoted ∂U . If every point in U is an interior point, U is said to be open. U is closed if \mathbb{R}^n - U is open.

UCR is said to be bounded if U can be contained in an open ball, DM(0), for sufficiently large M, or, if $|| \times || < M$, for some MER, $\forall x \in U$

A closed and bounded set in IR" is said to be compact.

Definition:

Suppose f: Rn + R is defined on a set U in Rn.

- (i) A point xoEU is said to be a global (absolute) minimum of f on U if $f(x_0) \leq f(x)$ for all $x \in U$.
- (¿¿) A point xo∈U is said to be a global (absolute) maximum of f on U if f(xo)≥f(x) for all x∈U.
- (iii) It to is either of these, it is a global (absolute) extremum.

Theorem: Extreme Value Theorem

Let D be a compact set in \mathbb{R}^n and let $f:D\subset\mathbb{R}^n\to\mathbb{R}$ be continuous. Then f assumes both a (global) maximum and a (global) minimum on D.

Procedure: Let f: Rh + R be continuous on a compact set D. To find the extrema:

- (i) Find the critical points for f on the interior of D.
- (ii). Find the critical points for f restricted to DD, the boundary.
- (iii) (ompute f at each of these critical points.
- (iv), Compare and choose the largest and lor, smallest.

Find the global max and min value of $f(x,y) = x^2 + y^2 - 2x + 2y + 5$ on the set $D = \{(x,y) | x^2 + y^2 \le 4\}$.

Interior of D:

$$f_{x} = 2x - 2 = 0 \Rightarrow x = 1$$

 $f_{y} = 2y + 2 = 0 \Rightarrow y = -1$

(1,-1) & interior of D is a critical point

Let $x = 2\cos\theta$ and $y = 2\sin\theta$, $0 \le \theta \le 2\pi$

Therefore f has two critical points on OD: $(2\cos(3\%), 2\sin(3\%))$ and $(2\cos(7\%), 2\sin(7\%))$ ョ(- 12. 12), (12,-12)

$$f(1,-1)=3$$
 Alobal min on ∂D
 $f(-\sqrt{2},\sqrt{2})=9+4\sqrt{2}$ Global max on ∂D
 $f(\sqrt{2},-\sqrt{2})=9-4\sqrt{2}$

Ex 2:

of f(xiy) = xy2 on the set D= {(xiy) 6 R2 | X20 , y20, x2+y2=3}. Find global max and

On D: L, & L2 & L3

 $L_1:f(x,o)=0$

L2: f(0,y)=0

In D:
$$x>0$$
, $y>0$ and $x^2+y^2<3$

$$fx = y^2 = 0$$
, $fy = 2xy = 0 \Rightarrow y^2 = 0$, $2xy = 0$

$$\Rightarrow y=0$$
 and $0 < x < \sqrt{3}$

$$\Rightarrow (x,0)$$
 on L.

Thus no critical points of f in D.

$$g'(0) = 6\sqrt{3} \sin 0 \cos^2 0 - 3\sqrt{3} \sin^3 0$$

$$= 3\sqrt{3} \sin 0 (2\cos^2 0 - \sin^2 0)$$

$$\Rightarrow \sin 0 = 0 , 2\cos^2 0 - \sin^2 0 = 0$$

Therefore the global max value of f is $f(1, \sqrt{2}) = 2$ on the boundary L_3 . The global min value of f is 0 for all the points on Li & Lz.

The ovem:

Let $f:D \subset \mathbb{R}^n \to \mathbb{R}$ and $g:D \subset \mathbb{R}^n \to \mathbb{R}$ be of class C' and let $x_0 \in D$ and $g(x_0) = C$. Let $S = \{x \in U \mid g(x) = C \mid Assume \mid That \mid \nabla g(x_0) \neq 0 \mid If \mid x_0 \mid is an extremum of <math>f$ on S, then there is a real number λ s.t. $\nabla f(x_0) = \lambda \nabla g(x_0)$.

The ovem:

If f, when constrained to a surface S, has a max or min at xo, then Vf(xo) is perpendicular to s.

Theorem: Lagrange Multiplier

Let $a = (a_1, ..., a_n) \in \mathbb{R}^n$ be an extremum for function $f : \mathbb{R}^n \to \mathbb{R}$, subject to the constraint $g(x_1, ..., x_n) = C$. To find the coordinates of $a = (a_1, ..., a_n)$, we solve the system

A is called the lagrange multiplier.

Then we get a constrained critical point.

Procedure:

- (i) Construct a new function $L: \mathbb{R}^{n+1} \to \mathbb{R}$ by $L(x,\lambda) = f(x) \lambda (g(x) C)$.
- (ii) Finding all the critical points of L about 2 and the constrained critical points of f.
- (iii) Evaluating all the constrained critical points of f. The largest is the maximum value of f and the smallest is the min value of f.

The function L is called the Lagrange function or the Lagrangian.