Probability Notes

Duncan MacIntyre

September 27, 2023

Contents

1	Some measure theory	2
2	Probability spaces	3
3	Random variables	3

1 Some measure theory

Definition 1.1. Let Ω be a set. A <u>topology</u> on Ω is a collection $\mathcal{A} \subset P(\Omega)$ that is closed under unions and finite intersections with $\Omega, \emptyset \in \mathcal{A}$. For $E \subset \Omega$, if $E \in \mathcal{A}$, we call E open, and if $E^C \in \mathcal{A}$, we call E closed.

For example, if (X, d) is a metric space, $\mathcal{A} = \{E | E = \bigcup_i N_{r_i}(x_i)\}$ is a topology on X.

Gap!!! The example should be proven.

Definition 1.2. Let Ω be a set and $\mathcal{S} \subset P(\Omega)$. Then the topology generated by \mathcal{S} is

 $\mathcal{A} = \{E \subset \Omega | E \text{ is a union of finite intersections of sets in } \mathcal{S}.\}$

Gap!!! The definition should be more explicit.

Gap!!! Examples and Furstenberg's theorem should be added here

Definition 1.3. Let Ω be a set. An <u>algebra</u> is a collection $\mathcal{A} \subset P(\Omega)$ that is closed under finite unions and compliments with $\Omega \in \mathcal{A}$. If an algebra is also closed under countable unions, we call it a σ -algebra.

Theorem 1.4. Algebras are closed under finite intersections and σ -algebras are closed under countable intersections.

Proof. Let \mathcal{A} be an algebra and let $A_1, \ldots, A_n \in \mathcal{A}$. Then $A_1^C, \ldots, A_n^C \in \mathcal{A}$, so $(\cap_{i=1}^n A_i)^C = \bigcup_{i=1}^n A_i^C \in \mathcal{A}$, so $\cap_{i=1}^n A_i \in \mathcal{A}$. The proof for σ -algebras is similar.

Definition 1.5. Let f be a σ -algebra on a set Ω . A <u>measure</u> on f is a function $\mu: f \to [0, \infty]$ such that $\mu(\emptyset) = 0$ and for all disjoint $(A_i)_{i \in \mathbb{N}} \in f$ we have $\mu(\cup_i A_i) = \sum_i \mu(A_i)$. We call (Ω, f, μ) a measure space.

Gap!!! Add examples of measures and probability measures.

Theorem 1.6. An intersection of σ -algebras is also a σ -algebra.

Proof. Let (\mathcal{A}_i) be uncountably many σ -algebras. Let $A \in \cap \mathcal{A}_i$. Then $A^C \in \mathcal{A}_i$ for all \mathcal{A}_i , so $A^C \in \cap \mathcal{A}_i$. Similarly, let $(A_j)_{j \in \mathbb{N}} \in \cap \mathcal{A}_i$. Then $\cup_j A_j \in \mathcal{A}_i$ for all \mathcal{A}_i , so $\cup_j A_j \in \cap \mathcal{A}_i$.

Theorem 1.6 motivates the following definition.

Definition 1.7. Let $\mathcal{A} \subset \Omega$. The $\underline{\sigma}$ -algebra generated by $\underline{\mathcal{A}}$ is the intersection of all σ -algebras that contain \mathcal{A} . We denote it by $\sigma(\mathcal{A})$.

We can think of $\sigma(\mathcal{A})$ as the smallest σ -algebra containing \mathcal{A} .

Notation 1.8. A Borel σ -algebra is a σ -algebra generated by a topology. We will use \Re to denote the Borel σ -algebra of \mathbb{R} that is generated by the usual open set topology.

Gap!!! This section needs to be continued with product spaces, the upper/lower continuity of measures, the construction of the Lebesgue measure, the Caratheodory theorem, and the Dynkin uniqueness theorem.

2 Probability spaces

Definition 2.1. Let (Ω, f, \mathbb{P}) be a measure space. If $\mathbb{P}(f) = 1$, we call \mathbb{P} a probability measure, we call (Ω, f, \mathbb{P}) a probability space, and we call an element of f an <u>event</u>.

Notation 2.2. It is common to use a shorthand notation for events. We often write {condition} to mean $\{\omega \in \Omega \mid \text{ condition}\}\$ and we often write $\mathbb{P}(\text{condition})$ to mean $\mathbb{P}(\{\omega \in \Omega \mid \text{ condition}\})$.

Definition 2.3. If $(A_i)_{i\in\mathbb{N}}$ are a sequence of events, " A_i occurring infinitely often" is the event

$${A_i \text{ i.o.}} = \bigcap_{m \in \mathbb{N}} \bigcup_{n > m} A_n$$

and " A_i occurring eventually" is the event

$${A_i \text{ eventually}} = \bigcup_{m \in \mathbb{N}} \bigcap_{n \ge m} A_n.$$

Remark. $\{A_i \text{ i.o.}\}\$ is the set of elements $\omega \in \Omega$ that belong in infinitely many of the events (A_i) and $\{A_i \text{ eventually}\}\$ is the set of elements $\omega \in \Omega$ that belong in all (A_i) after a certain point. We note that $\{A_i \text{ eventually}\} \subset \{A_i \text{ i.o.}\}$.

Gap!!! Add the Borel-Cantelli Lemma here.

Definition 2.4. Let (Ω, f, \mathbb{P}) be a probability space. Events $(A_i)_{i \in I} \in f$ are called <u>independent</u> if for any finite $J \subset I$ we have $\mathbb{P}(\cap_{j \in J} A_j) = \prod_{i \in J} \mathbb{P}(A_j)$.

Theorem 2.5. If (A_n) are independent and for all n we define either $B_n = A_n$ or $B_n = A_n^C$ then all (B_n) are independent.

Gap!!! Prove the above theorem.

Gap!!! Add the Goldberg conjecture discussion here, as an example.

Definition 2.6. Let (Ω, f, \mathbb{P}) be a probability space. Collections $(\mathcal{A}_i) \subset f$ are called <u>independent</u> if for any sequence $(A_i) \in f$ with $A_i \in \mathcal{A}_i$ the (A_i) are independent.

3 Random variables

Definition 3.1. Let $(\Omega_1, \ell_1, \mu_1)$ and $(\Omega_2, \ell_2, \mu_2)$ be measure spaces. A function $g: \Omega_1 \to \Omega_2$ is called <u>measurable</u> if for all $A \in \ell_2$ we have $g^{-1}(A) \in \ell_1$.

Definition 3.2. A <u>random variable</u> on a probability space (Ω, f, \mathbb{P}) is a measurable function $X : \Omega \to \mathbb{R}$.

Gap!!! Add some examples of random variables.