SN-L PROBLEM

固定翼飞控+像素级中文 OSD

版本 v1.5 软件版本 v4.2+

乐飞模型

2018/8/7

警告:

请严格遵守国家相关法律法规,进行安全飞行。我们不提倡飞多高,飞多远,在充分安全的环境下体验航模的乐趣,创造良好的航模运动的环境!使用飞控前必须要充分了解各个安全细节,深刻地认识到飞行是带有一定的风险性。飞机上的设备和任何电子产品都不可能做到完全的可靠,使用司南(SN_L)固定翼飞控你应对该产品做出评估,并按相关法规使用本系统,系统提供者不对任何使用该产品造成的直接或间接损失和后果负责。

i. 目录

—	. 接口:		3
_	. 飞行模式:		3
	. 模式切换:		
四	. 飞控安装:		
五	. OSD 主画团	ā:	
六	. 遥控器:		6
七	. 开机注意事	事项 :	7
八	. 飞前检查:		7
九	. 起飞:		7
+	. OSD 设定项	页	8
+-	固件升级		9

特性:

- ▶ 超迷你体积,38*25mm;超轻重量 6.8g
- ▶ 像素级 OSD, 免电脑调参, 画面细腻, 全中文菜单
- ▶ F4 高性能处理器,内置加速度,陀螺仪,磁罗盘,气压计
- > 支持固件升级
- ▶ 支持 PPM, SBUS 接口接收机, 独立 RSSI 接口
- ▶ 支持 6 路 PWM 输出,接口自定义,接线灵活
- ▶ 支持全机型,6种飞行模式

一.接口:

RSSI	遥控器信号强度接口,自动识别电压型或者 PWM 型信号		
PPM	PPM/SBUS 接口,自动识别类型		
A1	AUX1 接口,可设置多种输出类型,复用其他所有接口,比如副翼或者油门		
A2	AUX2 接口,可设置多种输出类型,复用其他所有接口,比如副翼或者油门		
AIL	副翼舵机接口		
ELE	升降舵机		
THR	电调信号接口		
RUD	航向舵机接口		
GPS	由左到右分别是 TX,RX,5V,地;支持 GPS 即插即用,无需设置 GPS 模块		
PMU	连接外部 BEC 与电流计模块,连接图传以及摄像头设备		

二.飞行模式:

手动	飞控直接输出遥控器控制信号	
自稳	摇杆会中飞机也回中,摇杆控制的时角度,角度范围可以设置	
回家	不管飞机飞多远,此模式下飞机都会返航回家	
盘旋 飞机会原地盘旋,高度保持。		
定高定向 高度保持,GPS 有效的情况下则是定高定向		
特技 陀螺仪增稳模式,实现稳定的 3D 飞行		
从模式	当主模式开关切到这个模式时,模式将会由从模式开关决定	

- ▶ **回家模式**当返航时的高度高于设定高度,比如在高度为 150m 的情况下返航,如果设定的返航高度是 120m,则飞机先按 150m 高度返航,当接近家的位置后再降低高度到 120m;如果返航高度低于 30m,则飞机会优先爬高到 30m 后才会掉头或者转弯。返航途中摇杆无法控制飞机,但是油门可通过油门摇杆提高。
- **定高定向模式**,拨打横滚摇杆则脱离自动控制模式,油门脱离自动控制,完全由遥控器控制;拨打俯仰摇杆则飞机爬升或者俯冲,方向仍旧锁定;拨打方向摇杆则飞机缓慢改变锁定方向

巡航模式下,油门处于半可控状态; 即如果遥控器的油门摇杆高于自动输出的油门,则飞控输出油门摇杆的值; 否则输出根据 速度自动计算的油门值。

三.模式切换

飞控默认将遥控器通道 5 设置为主模式开关,所以必须将遥控器的 5 通道设置到一个三段开关;从模式开关在遥控器校准的时候可以选择也可以不用,从模式开关两段或者三段都可以。

例:

位置	主模式	从模式
1	自稳	回家
2	从模式	盘旋
3	定高	手动

例: 当主模式开关切到位置 1,则当前模式是自稳;若主模式开关切到位置 2,则当前模式由从模式开关决定,要么是回家,要么是盘旋。

如果主模式中没有"从模式",则始终都切换不到从模式。

四.飞控安装:

① BEC接口介绍

接电池

接电调

② 飞控供电方式介绍

- ▶ PMU 模块为 12V-3A , 5V-3A 供电模块, 输入电压为 11-36V。
- ➤ 接收机和舵机的电由外部供电(比如电调自带的稳压器);如果电调没有自带的稳压器可以使用 PMU 上面的 5V 输出供电,但请注意这样可能会引入干扰。
- ▶ 飞控和 GPS 由 PMU 供电。
- ▶ PMU 的 12V 和 5V 都有接口输出供给其他模块供电,比如 5V 的摄像头,相机充电,LED 等。
- ▶ 请注意不要让 PMU 超载,大功率设备需要独立供电。
- ▶ 电流计可测得最大电流 85A 。

③ 飞控安装方向

3种安装方式: <基本设置> -> <安装方向>

0度	飞控箭头指向机头
180 度	飞控箭头指向机尾
90 度	飞控箭头指向机头左边

飞控安装应尽量避免震动源,远离电机;尽量安装在靠近集体重心的位置。

改变安装方向后务必重新校准水平

④ 飞控接线

接口机型	AIL	ELE	THR	RUD
三角翼	舵机 1	舵机 2	油门	
垂尾	副翼舵机	升降舵机	油门	方向舵机
V尾	副翼舵机	升降舵机1	油门	升降舵机 2

接线技巧: 利用 AUX 接口复用功能可以简化接线布局

⑤ 飞机感度方向判断

五.OSD 主画面:

飞机方位:画面中心指示图标也是家的位置,箭头指向家说明当前机头是指向家的位置飞行,箭头离中心图标越远说明离家距离越远,位置比例自动缩放。

如果 OSD 画面不正常,请检查图传与摄像头是否插反以及 PMU 两端的接头是否插紧。

某些宽动态(WDR)的摄像头可能会导致 OSD 画面错乱,或者抖动,可以尝试关闭 WDR;尽管我们已经测试过了多种支持 WDR 的摄像头都可以正常工作,但不可避免的还是会出现不兼容的现像。

建议使用 PAL 制式的摄像头,这样可以得到更加精细丰富的画面。

六. 遥控器:

相关视频请登录"www.lefeirc.com"

▶ 遥控器校准

只支持单线通信方式 PPM 或者 SBUS, 当遥控器第一次接入到飞控后, 飞控会弹出一个校准画面:

画面 1: 复位摇杆位置,拨打主模式开关进入下一步	清除所有偏置,摇杆归位,遥控器不要设置行程限制
画面 2: 油门摇杆推到最大,拨打主模式开关进入下一步	这一步校准油门最大值
画面 3: 油门摇杆推到最小,拨打主模式开关进入下一步	校准油门最小值
画面 4: 将副翼摇杆打到左边最大的同时拨打主模式开关进入下一步	校准副翼摇杆行程
画面 5: 将升降摇杆打到下边最大的同时拨打主模式开关进入下一步	校准升降摇杆行程
画面 6: 将方向摇杆打到左边最大的同时拨打主模式开关进入下一步	校准方向摇杆行程
画面 7: 拨打从模式开关,拨打主模式开关进入下一步	如果不需要从模式开关,可以直接拨打主模式开关结束校准

▶ 手动进入校准模式: 进入<基本设置> -> <遥控器>

如果遥控器校准出现了问题,不能从 OSD 设置项中进入遥控器校准模式,请将遥控器的四个摇杆打到任意一边,然后给飞控上电,直到 OSD 显示进入校准画面为止!

必须保证油门、副翼、升降、方向、四个摇杆处于信号中前四个通道。

已经校准过了, 但是开机后还是会进入校准画面的情况:

- ① 检查校准后是不是微调过遥控器偏置了
- ② 没等 OSD 初始化完成就拨打了遥控器

▶ 失控保护

- ① 使用 PPM 接收机飞控无法识别到遥控器是否失控,需要提前设置,设置方法:遥控器关机,看飞控切到哪个模式,把此时的模式换成回家模式即可。
- ② SBUS 可自动识别出接收机是否失控。

可进入 OSD 设定项 <基本设置> -> <失控保护>

失控保护模式	GPS 有效	GPS 无效	
保持	保持当前模式	保持当前模式	
回家	回家	切到自稳,关闭油门,盘旋降低高度降落(1)	
自稳	切到自稳,关闭油门,盘旋降低高度降落	切到自稳,关闭油门,盘旋降低高度降落	

① 副翼左偏 10 度, 机头向下 15 度,油门关闭

▶ 校准电调

- ① 将飞控切换到手动模式
- ② 将 PMU 的电调那一头断电
- ③ 将油门摇杆推到最大
- ④ 将电调上电
- ⑤ 听到滴滴两声后将油门摇杆拉到最低

➤ RSSI

支持独立 RSSI 以及 RSSI 信号通道在 SBUS 或者 PPM 信号中;可通过设置进行选择。

独立 RSSI 自动识别 RSSI 信号类型,PWM 或者 AD 型;某些型号的接收机的 RSSI 信号可能会导致 OSD 画面闪烁,这是由于 RSSI 调制成高频脉冲信号导致的。

飞控不会根据 RSSI 信号值的大小进行失控返航的保护措施。

七.开机注意事项:

- → 开机前请先打开遥控器,如果开机后才打开遥控器,请不要拨打摇杆直到飞控接收到遥控器信号后再拨打摇杆。
- ◆ 开机开始会有一段启动画面,此时飞控正在后台进行初始化,需要等待大概10s的时间。
- ◆ 开机后如果已经校准过遥控器了,但是仍然进入了校准画面,第一种情况是遥控器微调了偏置,第二种情况是开机过程中打了 摇杆。

八.飞前检查:

1	检查舵面反馈是否正确		
2	检查固件版本,保持固件最新		
3	检查飞控姿态线是否水平,如果长时间未校准或者温度变化过大,则需要重新校准		
4	检查电池电压是否处于报警电压之上		
5	确认各个模式的位置		
6	确认"家"的位置已经更新。		
7	确认返航基础油门,大风天气需要提高基础油门,确保飞机不会失速。		
8	确认机体震动,可打开加速度曲线显示。震动过大会导致姿态紊乱,建议保持水平飞行时震动幅度保持在警戒线内。		

▶ 震动曲线检查

检查震动情况可在飞机平飞或者地面测试。<OSD>-<波形显示>选择加速度

① 震动情况良好, 飞机平飞的时候震动点散落在两条警戒线以内

② 震动大, 震动点大部分都落在警戒线外, 容易导致飞机姿态错乱

对于小型机来说,震动大首先要检查的就是飞控是否安装在电机的附近;其次检查桨平衡。如果机舱过于狭小不可避免的需要把飞控安装在离电机很近的地方,可以考虑使用减震海绵或者减震平台。

▶ 水平校准

水平校准时确保飞机水平且静止的状态。

- ① 更换安装方向后需要进行水平校准。
- ② 长时间未校准或者温差变化过大需要重新进行校准。

九.起飞:

- ① 当屏幕中央出现一个小箭头时即表示飞控已经获取到"家"的位置;此时可以起飞。不接 GPS 则不需要检查此项。
- ② 两种辅助起飞的方式:
- ▶ 定高模式: 将油门推到足够的动力, 抛出去后飞机会自动爬升到 10 m的高度位置。

▶ 回家模式: <mark>将油门摇杆推离最低位</mark>(如果油门摇杆处于最低位高度低于 20m 则电机始终不会启动),设置好"起飞速度",将飞机 抛出,当飞机的速度达到设置的"起飞速度"后将会自动爬升盘旋在家的位置。建议手抛速度 2-3m/s,弹射速度 10-15m/s。

十 . OSD 操作

▶ 摇杆操作

进入 OSD 菜单	快速上下拨打模式开关两次
摇杆左打	退出当前画面或者退出选中模式
摇杆右打	进入菜单或者选中设置项
摇杆上打或者下打	移动光标或者选择数据
摇杆保持上打或者下达状态	快速移动光标或者快速设置参数

*飞机处于飞行状态下,不会进入设置菜单

▶ 飞行总结

降落后 OSD 画面会显示飞行总结,各个部件分别显示最大值。需要重启才能消除飞行总结。

▶ 基础设定项

	^			
1.3 副翼感度	默认感度可适应大部分机型,用户自己调节需掌握一定的规律,一般性翼展越大感度越大,三角翼感			
1.4 升降感度	度相对较小, V 尾升降感度相对较小。			
1.5 航向感度	航向感度只有在	垂尾机型才起作用,∨尾和三角翼下航向舵是手动控制的,飞控不参与。		
1.1 机型	支持垂尾, V 尾,	三角翼		
1.2 安装方向	见<飞控安装>			
1.7 模式	选择飞行模式			
1.8 警告电压	电压警告值, 低于	电压警告值,低于此值 OSD 会提示电压低的信息		
1.9 AUX	用来设置 AUX 通道的功能			
2.0 遥控器	进入遥控器校准画面			
2.1 失控保护	选择失控保护模式			
2.2 回家位置	重新设置家的位置	重新设置家的位置		
2.3 复位	复位所有的数据,慎重选择; 需要重启飞控生效			
1.6 舵机	副翼大小	调节摇杆的 exp,值越大,摇杆中心附近控制量越小;仅在手动模式下生效。		
	副翼偏置	调节舵机偏置,可以用来微调舵面。		
	副翼舵最大	调节摇杆的打舵量, 值越小,摇杆控制舵机的行程越小		

▶ 高级设定项

HAXX			
2.1 增稳感度	高度控制感度 未使用		
	速度控制感度	自动导航情况下,油门呈波浪形变化则需要减小此值	
	控制前馈/手动控制	调节范围 0~100;值越大手感越灵活,默认 70 。此值过大也会导致飞机抖动,	
		小型飞机建议设置到 35-45 左右	
2.2 控制速度	控制飞机横滚和俯仰的旋转速度,值越大,飞机越灵活,大翼展飞机可设置大一点。		
2.3 最大副翼角度	自稳模式下,摇杆可控制的角度范围。		
2.4 最大升降角度			
2.5 安全高度	回家模式下的最低高度,当飞机返航后会按照此高度盘旋		
2.6 盘旋半径			
2.7 最小地速	暂时未使用		

2.8 起飞速度	回家模式下,触发电机启动的速度;用于辅助起飞;手抛 3-5m/s;弹射 15m/s;		
2.9 巡航速度	自动导航下飞机的速度。		
3.0 巡航基础油门	返航和定向定高模式下的基础油门,大风天气需要提高防止飞机顺风失速。		
3.1 巡航最大油门	返航和定向定高模式下的最大油门,防止电流过大,有一些动力太足的飞机也可以适当减小。		

➢ OSD

4.5 波形显示	关闭		
	油门	显示油门实时动态曲线	
	加速度	显示机体震动情况,上下两根虚线是警戒线	
	信号强度	显示 RSSI,满量程 100	
	速度	显示飞行地速	
4.6 黑电平	设置画面像素点黑色电平,一般不需要修改		
4.1 水平偏置	设置画面水平偏置		
4.2 垂直偏置	设置画面垂直	1偏置	
4.3 姿态线样式	选择姿态线风格		
4.4 位置显示	设置是否显示 GPS 坐标信息		
4.7 显示姿态	设置是否显示姿态		

▶ 传感器

1 1 101 HA		
3.1 校准水平	校准飞控水平位以及陀螺仪静态偏置。	
	务必保证飞机水平且静止。	
3.2 校准电压	设置电压偏置	
3.3 校准罗盘	未使用	
信号强度	设置信号强度类型:"0"=独立 RSSI 通道接线	
	"1-18"=映射对应的遥控器通道	
3.4 校准信号强度	跟据中文提示操作。	

飞行过程中,当震动过大导致加速度传感器不能正常工作,可能会导致飞机姿态随着时间慢慢偏向一边,此时的现像就是当飞机平飞,姿态线是水平的但是地平线歪的,如果陀螺仪没有校准好或者长时间没有校准,角度偏移的速度会更快以至于飞机无法正常飞行。所以要注意两点①保证飞机平飞的适合震动曲线大部分时间都在警戒线内②校准水平 ,重新校定陀螺仪偏置。

十一. 固件升级

固件更新已经更多动态,请参考网址 www.lefeirc.com

第一步,下载升级软件和驱动并安装:

如果官方提供的驱动无法安装,可利用驱动精灵或者驱动人生这样的软件进行安装驱动。

第二步, 下载最新固件, 并仔细阅读升级内容提要:

第三步, 打开 FL 软件:

第四步,连接飞控:

一开始不要给飞控上电。

将升级小板接口接到 GPS 接口,并接上电脑;在电脑管理中查看串口号。然后在软件里面选择相应的串口号并点击"connect"

第五步, 加载固件, 并更新

电击"open"按钮加载下载的 bin 文件,然后点击 flash;

电脑会出现 10s 倒计时, 请在 10s 内给飞控上电;

飞控上电后就会进行固件刷写; 100%说明刷写成功!