$$3-c.6.$$
 \times $0 \le P \le 1$
 $P(3 < x) = S + 3(t) dt$
 $1. + 3(x) > 0$
 $2. P(3 < + 0) = S + 3(t) dt = 1$
 $1. + 0 = 0$
 $1. + 0 = 0$
 $1. + 0 = 0$
 $1. + 0 = 0$
 $1. + 0 = 0$
 $1. + 0 = 0$
 $1. + 0 = 0$
 $1. + 0 = 0$
 $1. + 0 = 0$
 $1. + 0 = 0$
 $1. + 0 = 0$
 $1. + 0 = 0$
 $1. + 0 = 0$
 $1. + 0 = 0$
 $1. + 0 = 0$
 $1. + 0 = 0$
 $1. + 0 = 0$
 $1. + 0 = 0$
 $1. + 0 = 0$
 $1. + 0 = 0$
 $1. + 0 = 0$
 $1. + 0 = 0$
 $1. + 0 = 0$
 $1. + 0 = 0$
 $1. + 0 = 0$
 $1. + 0 = 0$
 $1. + 0 = 0$
 $1. + 0 = 0$
 $1. + 0 = 0$
 $1. + 0 = 0$
 $1. + 0 = 0$
 $1. + 0 = 0$
 $1. + 0 = 0$
 $1. + 0 = 0$
 $1. + 0 = 0$
 $1. + 0 = 0$
 $1. + 0 = 0$
 $1. + 0 = 0$
 $1. + 0 = 0$
 $1. + 0 = 0$
 $1. + 0 = 0$
 $1. + 0 = 0$
 $1. + 0 = 0$
 $1. + 0 = 0$
 $1. + 0 = 0$
 $1. + 0 = 0$
 $1. + 0 = 0$
 $1. + 0 = 0$
 $1. + 0 = 0$
 $1. + 0 = 0$
 $1. + 0 = 0$
 $1. + 0 = 0$
 $1. + 0 = 0$
 $1. + 0 = 0$
 $1. + 0 = 0$
 $1. + 0 = 0$
 $1. + 0 = 0$
 $1. + 0 = 0$
 $1. + 0 = 0$
 $1. + 0 = 0$
 $1. + 0 = 0$
 $1. + 0 = 0$
 $1. + 0 = 0$
 $1. + 0 = 0$
 $1. + 0 = 0$
 $1. + 0 = 0$
 $1. + 0 = 0$
 $1. + 0 = 0$
 $1. + 0 = 0$
 $1. + 0 = 0$
 $1. + 0 = 0$
 $1. + 0 = 0$
 $1. + 0 = 0$
 $1. + 0 = 0$
 $1. + 0 = 0$
 $1. + 0 = 0$
 $1. + 0 = 0$
 $1. + 0 = 0$
 $1. + 0 = 0$
 $1. + 0 = 0$
 $1. + 0 = 0$
 $1. + 0 = 0$
 $1. + 0 = 0$
 $1. + 0 = 0$
 $1. + 0 = 0$
 $1. + 0 = 0$
 $1. + 0 = 0$
 $1. + 0 = 0$
 $1. + 0 = 0$
 $1. + 0 = 0$
 $1. + 0 = 0$
 $1. + 0 = 0$
 $1. + 0 = 0$
 $1. + 0 = 0$
 $1. + 0 = 0$
 $1. + 0 = 0$
 $1. + 0 = 0$
 $1. + 0 = 0$
 $1. + 0 = 0$
 $1. + 0 = 0$
 $1. + 0 = 0$
 $1. + 0 = 0$
 $1. + 0 = 0$
 $1. + 0 = 0$
 $1. + 0 = 0$
 $1. + 0 = 0$
 $1. + 0 = 0$
 $1. + 0 = 0$
 $1. + 0 = 0$
 $1. + 0 = 0$
 $1. + 0 = 0$
 $1. + 0 = 0$
 $1. + 0 = 0$
 $1. + 0 = 0$
 $1. + 0 = 0$
 $1. + 0 = 0$
 $1. + 0 = 0$
 $1. + 0 = 0$
 $1. + 0 = 0$
 $1. + 0 = 0$
 $1. + 0 = 0$
 $1. + 0 = 0$
 $1. + 0 = 0$
 $1. + 0 = 0$
 $1. + 0 = 0$
 $1. + 0 = 0$
 $1. + 0 = 0$
 $1. + 0 = 0$
 $1. + 0 = 0$
 $1. + 0 = 0$
 $1. + 0 = 0$
 $1. + 0 = 0$
 $1. + 0 = 0$
 $1. + 0 = 0$
 $1. + 0 = 0$
 $1. + 0 = 0$
 $1. + 0 = 0$
 $1. + 0 = 0$
 $1. + 0 =$

your - recornier $\sum_{k=1}^{6} k \cdot p_k = 3.5$ Spocaro ky ouk 3.5 $0,3^2+\frac{1}{3}$ $f_3(x) dy$

Sin (3)

$$\cos(3)$$

 $\cos(3)$
 $\cos(3)$
 $\cos(3)$
 $\sin(3)$
 $\cos(3)$
 $\cos(3)$
 $= \pm \left(3^2 - 23 \cdot \pm 3 + (\pm 3)^2\right) = 1$
 $= \pm \left(3^2 - 2 \pm 3 \cdot \pm 3 + (\pm 3)^2\right) = 1$
 $= \pm \left(3^2 - 2 \pm 3 \cdot \pm 3 + (\pm 3)^2\right) = 1$
 $= \pm \left(3^2 - 2 \pm 3 \cdot \pm 3 + (\pm 3)^2\right) = 1$
 $= \pm \left(3^2 - 2 \pm 3 \cdot \pm 3 + (\pm 3)^2\right) = 1$
 $= \pm \left(3^2 - 2 \pm 3 \cdot \pm 3 + (\pm 3)^2\right) = 1$
 $= \pm \left(3^2 - 2 \pm 3 \cdot \pm 3 + (\pm 3)^2\right) = 1$
 $= \pm \left(3^2 - 2 \pm 3 \cdot \pm 3 + (\pm 3)^2\right) = 1$
 $= \pm \left(3^2 - 2 \pm 3 \cdot \pm 3 + (\pm 3)^2\right) = 1$
 $= \pm \left(3^2 - 2 \pm 3 \cdot \pm 3 + (\pm 3)^2\right) = 1$
 $= \pm \left(3^2 - 2 \pm 3 \cdot \pm 3 + (\pm 3)^2\right) = 1$
 $= \pm \left(3^2 - 2 \pm 3 \cdot \pm 3 + (\pm 3)^2\right) = 1$
 $= \pm \left(3^2 - 2 \pm 3 \cdot \pm 3 + (\pm 3)^2\right) = 1$
 $= \pm \left(3^2 - 2 \pm 3 \cdot \pm 3 + (\pm 3)^2\right) = 1$
 $= \pm \left(3^2 - 2 \pm 3 \cdot \pm 3 + (\pm 3)^2\right) = 1$
 $= \pm \left(3^2 - 2 \pm 3 \cdot \pm 3 + (\pm 3)^2\right) = 1$
 $= \pm \left(3^2 - 2 \pm 3 \cdot \pm 3 + (\pm 3)^2\right) = 1$
 $= \pm \left(3^2 - 2 \pm 3 \cdot \pm 3 + (\pm 3)^2\right) = 1$
 $= \pm \left(3^2 - 2 \pm 3 \cdot \pm 3 + (\pm 3)^2\right) = 1$
 $= \pm \left(3^2 - 2 \pm 3 \cdot \pm 3 + (\pm 3)^2\right) = 1$
 $= \pm \left(3^2 - 2 \pm 3 \cdot \pm 3 + (\pm 3)^2\right) = 1$
 $= \pm \left(3^2 - 2 \pm 3 \cdot \pm 3 + (\pm 3)^2\right) = 1$
 $= \pm \left(3^2 - 2 \pm 3 \cdot \pm 3 + (\pm 3)^2\right) = 1$
 $= \pm \left(3^2 - 2 \pm 3 \cdot \pm 3 + (\pm 3)^2\right) = 1$
 $= \pm \left(3^2 - 2 \pm 3 \cdot \pm 3 + (\pm 3)^2\right) = 1$
 $= \pm \left(3^2 - 2 \pm 3 \cdot \pm 3 + (\pm 3)^2\right) = 1$
 $= \pm \left(3 + 2 \cdot \pm 3 + (\pm 3)^2\right) = 1$
 $= \pm \left(3 + 2 \cdot \pm 3 + (\pm 3)^2\right) = 1$
 $= \pm \left(3 + 2 \cdot \pm 3 + (\pm 3)^2\right) = 1$
 $= \pm \left(3 + 2 \cdot \pm 3 + (\pm 3)^2\right) = 1$
 $= \pm \left(3 + 2 \cdot \pm 3 + (\pm 3)^2\right) = 1$
 $= \pm \left(3 + 2 \cdot \pm 3 + (\pm 3)^2\right) = 1$
 $= \pm \left(3 + 2 \cdot \pm 3 + (\pm 3)^2\right) = 1$
 $= \pm \left(3 + 2 \cdot \pm 3 + (\pm 3)^2\right) = 1$
 $= \pm \left(3 + 2 \cdot \pm 3 + (\pm 3)^2\right) = 1$
 $= \pm \left(3 + 2 \cdot \pm 3 + (\pm 3)^2\right) = 1$
 $= \pm \left(3 + 2 \cdot \pm 3 + (\pm 3)^2\right) = 1$
 $= \pm \left(3 + 2 \cdot \pm 3 + (\pm 3)^2\right) = 1$
 $= \pm \left(3 + 2 \cdot \pm 3 + (\pm 3)^2\right) = 1$
 $= \pm \left(3 + 2 \cdot \pm 3 + (\pm 3)^2\right) = 1$
 $= \pm \left(3 + 2 \cdot \pm 3 + (\pm 3)^2\right) = 1$
 $= \pm \left(3 + 2 \cdot \pm 3 + (\pm 3)^2\right) = 1$
 $= \pm \left(3 + 2 \cdot \pm 3 + (\pm 3)^2\right) = 1$
 $= \pm \left(3 + 2 \cdot \pm 3 + (\pm 3)^2\right) = 1$
 $= \pm \left(3 + 2 \cdot \pm 3 + (\pm 3)^2\right) = 1$
 $= \pm \left(3 + 2 \cdot \pm 3 + (\pm 3)^2\right) = 1$
 $= \pm \left(3 + 2 \cdot \pm 3 + (\pm 3)^2\right) = 1$
 $= \pm \left(3 + 2 \cdot \pm 3 + (\pm 3)^2\right) = 1$
 $= \pm \left(3 + 2 \cdot \pm 3 + (\pm 3)^2\right) = 1$
 $= \pm \left(3 + 2 \cdot$

$$D_3 \ge 0$$
 $D(3 \pm \eta) = ?$
Echu $3, \eta - \text{Mezabucanum}$
 $D(3 \pm \eta) = D_3 + D\eta$
Echu $3, \eta - 3 \alpha$ Bucanum
 $D(3 \pm \eta) = D_3 + D\eta \pm 2 \cos(3, \eta)$
 $3 = \eta$
 $\cos(3, 3) = D_3$
 $\cot(3, 3) = D_$

2.
$$\sqrt{D_3} \cdot D\eta \neq 0$$
 $2 \cdot \sqrt{D_3} \cdot D\eta \neq 0$
 $2 \cdot \sqrt{D_3} \cdot D\eta \neq 0$
 $2 \cdot \sqrt{D_3} \cdot D\eta = 0$

corr = nopumbo Barrians
creneno nun. 3 a b.

1. Normans apyrna cosortiu

Bi
$$B_{j} = \emptyset$$
 $= i + i$
 $B_{i} = 1$
 $P(3 = 5)$

1. $3 \times Be(p), p > 0$
 $P(3 = 1) = p$
 $E_{3} = p$
 $D_{3} = p(1-p)$

2.
$$3 \sim \text{Pois}(\lambda)$$
, $\lambda \neq 0$

$$P(3 = k) = e^{-\lambda} \cdot \frac{\lambda k}{k!}$$

$$k \in N \cup 10 = 2+$$

$$E_3 = \sum_{k=1}^{\infty} k \cdot e^{-\lambda} \cdot \frac{\lambda^k}{k!} = \sum_{k=1}^{\infty} (k-3)! = \sum_{k=1}^$$

$$= \sum_{k=2}^{\infty} k(k-1)e^{-\lambda} \frac{\lambda^{k}}{k!} + \lambda =$$

$$= e^{-\lambda} \cdot \lambda^{2} + \lambda = \lambda^{2} + \lambda$$

$$= e^{-\lambda} \cdot \lambda^{2} + \lambda + \lambda^{2} = \lambda^{2} + \lambda$$

$$= e^{-\lambda} \cdot \lambda^{2} + \lambda + \lambda^{2} = \lambda^{2} + \lambda$$

$$= e^{-\lambda} \cdot \lambda^{2} + \lambda + \lambda^{2} = \lambda^{2} + \lambda$$

$$= e^{-\lambda} \cdot \lambda^{2} + \lambda + \lambda^{2} = \lambda^{2} + \lambda$$

$$= e^{-\lambda} \cdot \lambda^{2} + \lambda + \lambda^{2} = \lambda^{2} + \lambda$$

$$= e^{-\lambda} \cdot \lambda^{2} + \lambda + \lambda^{2} = \lambda^{2} + \lambda$$

$$= e^{-\lambda} \cdot \lambda^{2} + \lambda + \lambda^{2} = \lambda^{2} + \lambda$$

$$= e^{-\lambda} \cdot \lambda^{2} + \lambda + \lambda^{2} = \lambda^{2} + \lambda$$

$$= e^{-\lambda} \cdot \lambda^{2} + \lambda^{2} + \lambda^{2} = \lambda^{2} + \lambda$$

$$= e^{-\lambda} \cdot \lambda^{2} + \lambda^{2} + \lambda^{2} + \lambda^{2} = \lambda^{2} + \lambda$$

$$= e^{-\lambda} \cdot \lambda^{2} + \lambda^{2} +$$

