Ideals, Varieties, and Algorithms notes

Jasper Ty

Contents

Geometry, Algebra, and Algorithms			2
I	Polynomials and Affine Space		2
	I.I	Monomials, polynomials	2
	1.2	Polynomial rings	3
	1.3	Exercises	6
2	Affine Varieties		
	2.I	Definition	6
	2.2	Examples	7
3	Para	metrization of affine varieties	8
4	Idea	ls	8
5	Polynomials of One Variable		
	5.1	Euclidean division	IO
G	roehi	ner Bases	12

Geometry, Algebra, and Algorithms

1 Polynomials and Affine Space

Convention 1.1. We let \mathbf{k} denote an arbitrary ground field.

1.1 Monomials, polynomials

Definition 1.2. A monomial in x_1, \ldots, x_n is a formal product

$$x_1^{\alpha_1}x_2^{\alpha_2}\cdots x_n^{\alpha_n}$$
.

The underlying data for a monomial is just a n-tuple $\alpha = (\alpha_1, \ldots, \alpha_n)$ of nonnegative integers.

To each monomial we assign a degree which is computed in the obvious way.

Definition 1.3. The *degree* of a monomial $x_1^{\alpha_1} x_2^{\alpha_2} \cdots x_n^{\alpha_n}$ is a nonnegative integer defined by

$$\deg x_1^{\alpha_1} x_2^{\alpha_2} \cdots x_n^{\alpha_n} := \alpha_1 + \cdots + \alpha_n.$$

To make calculations easier, we have a common and convenient notation.

Definition 1.4. We define *multi-index notation* for monomials by

$$x^{\alpha}:=x_1^{\alpha_1}x_2^{\alpha_2}\cdots x_n^{\alpha_n},$$

where $\alpha = (\alpha_1, \dots, \alpha_n)$ is any *n*-tuple of nonnegative integers.

For example, we can compactly define the degree of a monomial by setting deg $x^{\alpha} := |\alpha|$.

Definition 1.5. A *polynomial* f in x_1, \ldots, x_n in \mathbf{k} is a finite formal linear combination of monomials with coefficients in \mathbf{k} , which we write

$$f = \sum_{\alpha \text{ is a } n\text{-tuple}} c_{\alpha} x^{\alpha}, \quad c_{\alpha} \in \mathbf{k}.$$

That this is finite means that c_{α} is zero for all but finitely many α — the sum is interpreted to be exactly over all the α for which c_{α} is nonzero.

The number c_{α} is called the *coefficient* of x^{α} in f. The *terms* of f are the $c_{\alpha}x^{\alpha}$ for which $c_{\alpha} \neq 0$. If f is nonzero, the *total degree of* f is defined to be

$$\deg f := \max_{\substack{\alpha \text{is a } n \text{-tuple} \\ c_{\alpha} \neq 0}} \left(\deg x^{\alpha} \right).$$

In other words, the largest degree among all the terms of f.

Finally, the set of all polynomials in x_1, \ldots, x_n in **k** is denoted **k**[x_1, \ldots, x_n].

The underlying data for a polynomial can be expressed as a function coeff $f(\alpha_1, \ldots, \alpha_n)$ giving a coefficient $c_{\alpha} \in \mathbf{k}$ for each monomial x^{α} . That the sum is finite can be interpreted as coeff f having finite support.

Or, it can also be expressed as a large n-dimensional array with entries in \mathbf{k} , and the tuples α are coordinates into this array for which the coefficients of x^{α} are given.

This is really also a kind of *normal form* for *polynomial expressions*, an expression tree where nodes are the ring operations $(+, \times)$ and whose leaves are terms $c_{\alpha}x^{\alpha}$ — we can always associate any such tree with the "correct" element of $\mathbf{k}[x_1, \ldots, x_n]$.

1.2 Polynomial rings

Now, we give polynomials their algebraic structure.

Definition 1.6. Let $f = \sum_{\alpha} a_{\alpha} x^{\alpha}$ and $g = \sum_{\alpha} b_{\alpha} x^{\alpha}$ be two polynomials; elements of $\mathbf{k}[x_1, \dots, x_n]$. The *sum* of f and g is defined by

$$f+g:=\sum_{\alpha}(a_{\alpha}+b_{\alpha})x^{\alpha}.$$

The *product* of f and g is defined by

$$fg := \sum_{\gamma} \sum_{\alpha+\beta=\gamma} (a_{\alpha}b_{\beta}) x^{\gamma}.$$

where $\alpha + \beta$ means the coordinate-wise sum of α and β ; $(\alpha + \beta)_i = (\alpha_i + \beta_i)$.

This turns $\mathbf{k}[x_1, \dots, x_n]$ into a *ring*, and so we call it a *polynomial ring*.

Definition 1.7. The *affine space* of dimension n over \mathbf{k} is the set \mathbf{k}^n , i.e all n-tuples of elements in \mathbf{k} .

In high school, we study polynomials *as functions*— we now give the formal presentation of that perspective.

Definition 1.8. Any polynomial $f = \sum_{\alpha} c_{\alpha} x^{\alpha} \in \mathbf{k}[x_1, \dots, x_n]$ gives rise to a function $f : \mathbf{k}^n \to \mathbf{k}$ defined, informally, by replacing all x_i 's with a_i 's. More precisely,

$$f(a_1,\ldots,a_n) := \sum_{\alpha} c_{\alpha} a_1^{\alpha_1} a_2^{\alpha_2} \cdots a_n^{\alpha_n}.$$

where now the sum is carried out in k— the terms themselves are products in k.

Now we ask: what is the difference between "f=0 as a polynomial" and " $f\equiv 0$ as a function"?

Example 1.9. Consider the polynomial $f = x^2 - x \in \mathbb{F}_2[x]$. When we evaluate this in \mathbb{F}_2 , we find that

$$1^2 - 1 = 0$$

$$0^2 - 0 = 0$$
.

Hence $f \equiv 0$, as a function $\mathbb{F}_2^2 \to \mathbb{F}_2$. However, f is evidently not the zero polynomial.

Proposition 1.10. If **k** is an infinite field, then in $\mathbf{k}[x_1, \dots, x_n]$, f = 0 as a polynomial if and only if $f \equiv 0$ as a function.

Proof. f = 0 as a polynomial obviously gives us the zero function.

For the other direction, we use induction.

We start with "the easy part of the fundamental theorem of algebra" — that a nonzero univariate polynomial of degree m has at most m roots. This is proven later, using the division algorithm. With it, we have a proof of the statement when n=1, the one-variable case!

Since, if we take a polynomial $f \in \mathbf{k}[x]$ and it happens to be zero as a function, it has infinitely many roots. Then we take the contrapositive of the aforementioned

fact— if a polynomial has infinitely many roots, it cannot be a nonzero polynomial, hence it is the zero polynomial.

Now, assume the statement holds for n, that is, if $g : \mathbf{k}^n \to \mathbf{k}$ is the zero function, then $g \in \mathbf{k}[x_1, \dots, x_n]$ is the zero polynomial.

Take some $f \in \mathbf{k}[x_1, \dots, x_{n+1}]$, and assume that $f : \mathbf{k}^{n+1} \to \mathbf{k}$ is the zero function. We can "sum by rows" and group together terms by *their power of* x_{n+1} , so we write

$$f = \sum_{i=0}^{\deg f} g_i x_{n+1}^i,$$

where $g_i \in \mathbf{k}[x_1, \dots, x_n]$. Now, we do *partial application* and evaluate f at all coordinates *except* at x_{n+1} , which we leave as a variable.

$$f(a_1,\ldots,a_n,x_{n+1}) = \sum_{i=0}^{\deg f} g_i(a_1,\ldots,a_n)x_{n+1}^i,$$

This turns all the g_i 's into coefficients in **k**, and so we have a polynomial in **k**[x_{n+1}]. Repeating the same logic, we must have that all the $g_i(a_1, \ldots, a_n)$'s are zero, since $f(a_1, \ldots, a_n, x_{n+1})$ is the zero map.

Then, since (a_1, \ldots, a_n) was arbitrary, it must be that g_i are zero as functions. But by the induction hypothesis, this means that they are zero as polynomials.

Hence, $g_i = 0$ for all i, and f = 0 as a polynomial, proving the case n + 1. By induction, we have proven the theorem.

Corollary 1.11. If **k** is an infinite field, then f = g as polynomials if and only if f = g as functions.

Proof. f = g as polynomials implying f = g as functions is trivial.

If f = g as functions, then f - g is the zero polynomial. Hence, f - g = 0 in $\mathbf{k}[x_1, \dots, x_n]$, so f = g as polynomials.

We have a fairly special result for \mathbb{C} .

Theorem 1.12 (The fundamental theorem of algebra). Every nonconstant polynomial $f \in \mathbb{C}[x]$ has a root in \mathbb{C} .

Proof. Omitted.

A field **k** which satisfies the above property, which is that every nonconstant polynomial in $\mathbf{k}[x]$ has a root in \mathbf{k} , is called an *algebraically closed field*.

1.3 Exercises

Exercise 1.1. Prove that \mathbb{F}_2 is a field.

Not doing this one.

- **Exercise 1.2.** (a) Consider the polynomial $g(x, y) = x^2y + y^2x \in \mathbb{F}_2[x, y]$. Show that g(x, y) = 0 for every $(x, y) \in \mathbb{F}_2^2$, and explain why this does not contradict Proposition 1.10.
 - (b) Find a nonzero polynomial in $\mathbb{F}_2[x, y, z]$ which vanishes at every point of \mathbb{F}_2^3 . Try to find one involving all three variables.
 - (c) Find a nonzero polynomial in $\mathbb{F}_2[x_1,\ldots,x_n]$ which vanishes at every point of \mathbb{F}_2^n . Can you find one in which all of x_1,\ldots,x_n appear?

g = (xy)(x+y), so it is nonzero if and only if $xy \ne 0$ and $x+y \ne 0$. This means that xy = 1 and x + y = 1. The former implies that x = y = 1, the latter implies that $x \ne y$, a contradiction.

This does not contradict Proposition 1.10 since it does not satisfy the conditions— \mathbb{F}_2 is not an infinite field.

g(x, y, z) = (xyz)(x + y) is a nonzero polynomial which vanishes at every point of \mathbb{F}_2^3 for the same reason.

For the general case, $g(x_1, \ldots, x_n) = (x_1 \cdots x_n)(x_1 + x_2)$ works.

2 Affine Varieties

2.1 Definition

Definition 2.1. Let **k** be a field, and let f_1, \ldots, f_s be polynomials in $\mathbf{k}[x_1, \ldots, x_n]$. Then the *affine variety* $\mathbf{V}(f_1, \ldots, f_s)$ is defined by

$$\mathbf{V}(f_1,\ldots,f_s):=\Big\{(a_1,\ldots,a_n)\in\mathbf{k}^n:f_i(a_1,\ldots,a_n)=0\text{ for all }1\leq i\leq s\Big\},$$

that is, the exact subset of \mathbf{k}^n for which all the f_i vanish.

Morally, the affine variety is defined by *solutions* of the system of polynomial equations defined by

$$f_1(x_1, \dots, x_n) = 0$$

$$f_2(x_1, \dots, x_n) = 0$$

$$\dots$$

$$f_s(x_1, \dots, x_n) = 0$$

2.2 Examples

Example 2.2. The variety $\mathbf{V}(x^2 + y^2 - 1)$ cuts out the unit circle in the plane. Moreover, all conic sections are varieties of the form

$$\mathbf{V}(ax^2 + bxy + cy^2 + dx + ey + f).$$

Example 2.3. The graph of $y = \frac{x^3 - 1}{x}$ is an affine variety—it is $\mathbf{V}(xy - x^3 + 1)$.

TODO: 3D affine variety examples

Definition 2.4. A *linear variety* is a variety defined by linear equations, i.e polynomials whose total degree is at most 1.

Lemma 2.5. If $V, W \subseteq \mathbf{k}^n$ are affine varieties, then so are $V \cup W$ and $V \cap W$.

Proof. Let $V = \mathbf{V}(f_1, \dots, f_s)$ and $W = \mathbf{V}(g_1, \dots, g_t)$. We can explicitly give $V \cup W$ and $V \cap W$: they are

$$V \cap W = \mathbf{V}(f_1, \dots, f_s, g_1, \dots, g_t)$$
$$V \cup W = \mathbf{V}(f_i g_j : 1 \le i \le s, 1 \le j \le t).$$

The first equality is obvious.

For the second equality, pick out a point in V, then all the f_i vanish at that point, so all the $f_i g_j$ vanish at that point. Similarly if it is in W, then all the g_j vanish at that point, and so do the $f_i g_j$. Then, $V \cup W \subseteq \mathbf{V}(f_i g_j)$.

For the reverse inclusion, pick out a point of $\mathbf{V}(f_i g_j)$. If all the f_i vanish at that point, it is in V and we are done. If not, then it must be that all the g_j vanish, hence it is in W. This completes the proof.

Parametrization of affine varieties 3

A parametrization of a variety is

Definition 3.1. Let **k** be a field. A *rational function* in t_1, \ldots, t_m with coefficients in **k** is a quotient f/g of two polynomials $f, g \in \mathbf{k}[t_1, \dots, t_m]$, where g is not the zero polynomial.

Equality of two rational functions f/g and h/k is decided by the equality kf = 1

The set of all the aforementioned functions is denoted $\mathbf{k}(t_1,\ldots,t_m)$.

Definition 3.2. Let $V = \mathbf{V}(f_1, \dots, f_s) \subseteq \mathbf{k}^n$ be an affine variety. A *rational parametric representation* of V is a set of rational functions $r_1, \ldots, r_n \in \mathbf{k}(t_1, \ldots, t_m)$ such that the points

$$x_1 = r_1(t_1, \dots, t_m)$$

$$x_2 = r_2(t_1, \dots, t_m)$$

$$\vdots$$

$$x_n = r_n(t_1, \dots, t_m)$$

lie in *V*. Moreover, *V* must be the *smallest* affine variety containing these points.

Ideals

We have the following idea from abstract algebra, the analogue of a normal subgroup of a group.

Definition 4.1. Let R be a commutative ring. A subset $I \subseteq R$ is called an *ideal* if it satisfies:

- (i) $0 \in I$. (ii) $x + y \in I$ for all $x, y \in I$. (iii) $ax \in I$ for all $x \in I$ and $a \in R$.

Translated for our polynomial rings, an ideal is a subset $I \subseteq \mathbf{k}[x_1, \dots, x_n]$ such that

- (i) $0 \in I$.
- (ii) $f + g \in I$ for all $f, g \in I$.
- (iii) $hf \in I$ for all $f \in I$ and $h \in \mathbf{k}[x_1, \dots, x_n]$.

Now, we give a way of *producing* ideals in $\mathbf{k}[x_1, \dots, x_n]$.

Definition 4.2. Let $f_1, \ldots, f_s \in \mathbf{k}[x_1, \ldots, x_n]$. The *ideal generated by* f_1, \ldots, f_s , denoted $\langle f_1, \ldots, f_s \rangle$, is the set

$$\langle f_1,\ldots,f_s\rangle \coloneqq \left\{\sum_{i=1}^s h_i f_i: h_1,\ldots,h_s \in \mathbf{k}[x_1,\ldots,x_n]\right\}.$$

This can vaguely be imagined as *shrink wrapping* an ideal structure on the set $\{f_1, \ldots, f_s\}$. We're adding the extra elements which the properties of ideals allow for, and exactly only those elements.

Lemma 4.3. The ideal generated by f_1, \ldots, f_s is in fact an ideal.

Proof. Set $I = \langle f_1, \dots, f_s \rangle$. By picking $h_i = 0$ for all i, we show that $0 \in I$. If $f, g \in I$, then let

$$f = \sum_{i=1}^{s} b_i f_i$$

$$g = \sum_{i=1}^{s} b_i' f_i,$$

where $h_i \in \mathbf{k}[x_1, \dots, x_n]$ and $h'_i \in \mathbf{k}[x_1, \dots, x_n]$. Then

$$f + g = \sum_{i=1}^{s} (h_i + h'_i) f_i,$$

which shows that $f + g \in I$. Finally, if we pick $h \in \mathbf{k}[x_1, \dots, x_n]$, we have that

$$hf = \sum_{i=1}^{s} (hh_i)f_i,$$

which shows that $hf \in I$.

Definition 4.4. Let I be an ideal. We say that I is *finitely generated* if it is equal to $\langle f_1, \ldots, f_s \rangle$ for some $f_1, \ldots, f_s \in \mathbf{k}[x_1, \ldots, x_n]$, in which case we say that f_1, \ldots, f_s are a *basis* for I.

Definition 4.5. Let $V \subseteq \mathbf{k}^n$ be an affine variety. Then the *ideal of* V, $\mathbf{I}(V)$, is

$$I(V) := \{ f \in \mathbf{k}[x_1, \dots, x_n] : f(a_1, \dots, a_n) = 0 \text{ for all } (a_1, \dots, a_n) \in V \}.$$

Lemma 4.6. If $V \subseteq \mathbf{k}^n$ is an affine variety, then $\mathbf{I}(V)$ is in fact an ideal.

Theorem 4.7.

$$\mathbf{I}(\mathbf{V}(y-x^2,z-x^3)) = \langle y-x^2,z-x^3 \rangle.$$

5 Polynomials of One Variable

5.1 Euclidean division

Definition 5.1. Given a nonzero polynomial $f \in \mathbf{k}[x]$, let

$$f = a_0 x^m + a_1 x^{m-1} + \dots + a_m,$$

where $a_i \in \mathbf{k}$ and $a_i \neq 0$. Then we say that $a_0 x^m$ is the *leading term* of f, denoted $LT(f) = a_0 x^m$.

There is an important fact about leading terms in polynomial rings over a field:

Proposition 5.2. If **k** is a field, then for all $f, g \in \mathbf{k}[x]$,

$$\deg f \leq \deg g \iff \mathrm{LT}(f) \text{ divides } \mathrm{LT}(g).$$

This unlocks for us the division algorithm.

Proposition 5.3 (The division algorithm). Let **k** be a field and let g be a nonzero polynomial in **k**[x]. Then every $f \in \mathbf{k}[x]$ can be written as

$$f = qg + r$$

where $q, r \in \mathbf{k}[x]$ and either r = 0 or $\deg r < \deg g$. Furthermore, q, r are *unique*, and there is an algorithm for finding q and r.

Proof. The algorithm which finds *q* and *r* is the following:

```
 \begin{aligned} \mathbf{Data:} & f, g \\ \mathbf{Result:} & q, r \\ \mathbf{begin} \\ & | & q \leftarrow 0; \\ & r \leftarrow f; \\ & \mathbf{while} \ r \neq 0 \ \mathbf{and} \ LT(g) \ divides \ LT(r) \ \mathbf{do} \\ & | & q \leftarrow q + \mathrm{LT}(r)/\mathrm{LT}(g); \\ & | & r \leftarrow r - (\mathrm{LT}(r)/\mathrm{LT}(g))g; \\ & \mathbf{end} \end{aligned}
```

First, we prove that the result has the properties we want: that f = qg + r, and either r = 0 or $\deg r < \deg g$.

The first property, f = qg + r, is actually a *loop invariant* of the while block. At the first iteration, where q = 0 and r = f, clearly f = qg + r. Now, supposing f = qg + r, we have that

$$\begin{split} f &= qg + r \\ &= qg + r + 0 \\ &= qg + r + \left(\frac{\mathrm{LT}(r)}{\mathrm{LT}(g)}g - \frac{\mathrm{LT}(r)}{\mathrm{LT}(g)}g\right) \\ &= \left(qg + \frac{\mathrm{LT}(r)}{\mathrm{LT}(g)}g\right) + \left(r - \frac{\mathrm{LT}(r)}{\mathrm{LT}(g)}g\right) \\ &= \left(q + \frac{\mathrm{LT}(r)}{\mathrm{LT}(g)}\right)g + \left(r - \frac{\mathrm{LT}(r)}{\mathrm{LT}(g)}g\right). \end{split}$$

Hence, if we put $q \leftarrow q + \mathrm{LT}(r)/\mathrm{LT}(g)$ and $r \leftarrow (\mathrm{LT}(r)/\mathrm{LT}(g))g$, we still have f = qg + r.

Next, we show that if the above terminates, it must be that the statement " $r \neq 0$ and LT(g) divides LT(r)" is false, which means that either r = 0 or LT(g) does not divide LT(r).

For the latter part, we recall the previous proposition, Proposition 5.2, and perform *biconditional negation*. Namely, we derive from

$$\deg f \leq \deg g \iff LT(f) \text{ divides } LT(g)$$

the statement

$$\deg f > \deg g \iff \mathrm{LT}(f)$$
 does not divide $\mathrm{LT}(g)$,

by negating both sides of the \iff . Now, we can say that "LT(g) does not divide LT(r)" is equivalent to "deg $g > \deg r$ ". Hence, the algorithm terminates precisely when either r = 0 or deg $r < \deg g$.

Finally, we have to conclude that the algorithm terminates at all.

Now, we can prove the "easy half of the fundamental theorem of algebra"

Corollary 5.4. If **k** is a field and $f \in \mathbf{k}[x]$ is a nonzero polynomial, then f has at most deg f roots in **k**.

Proof. We prove this by induction on the degree of f. If the degree of f is zero, \Box

Moreover, the division algorithm has implications for the algebraic structure of $\mathbf{k}[x]$.

Definition 5.5. Let R be a ring. A ring is said to be a *principal ideal domain*, or a PID, if every ideal of R is of the form $\langle x \rangle$, where $x \in R$.

Corollary 5.6. If **k** is a field, then $\mathbf{k}[x]$ is a PID.

Groebner Bases