Assignment - 1

Dheeraj Dagar - 220355

1. Prove that there is no positive integer n such that $n^2 + n^3 = 100$: We can use a contradiction to prove this statement. Suppose there exists a positive integer n such that $n^2 + n^3 = 100$.

$$n^2 + n^3 = 100$$

$$n^3 = 100 - n^2$$

$$n^3 = (10 - n)(10 + n)$$
 which implies
$$n(1 + n) = 10$$
 must be an integer factor.

However, solving this for n such that $1 \le n \le 9$ (as n must be a positive integer less than 10), we find no such integer exists that satisfies $n^2 + n^3 = 100$. Therefore, no positive integer n meets the criteria.

- 2. Prove that $n^2 + 1 \ge 2n$ for positive integers $1 \le n \le 4$: We can use direct verification for each integer within the given range.
 - For n = 1:

$$1^2 + 1 = 2 \ge 2 \times 1 = 2$$

• For n=2:

$$2^2 + 1 = 5 > 2 \times 2 = 4$$

• For n=3:

$$3^2 + 1 = 10 > 2 \times 3 = 6$$

• For n=4:

$$4^2 + 1 = 17 > 2 \times 4 = 8$$

Thus, the inequality $n^2 + 1 \ge 2n$ holds for all positive integers n within the range from 1 to 4.

3. Find a compound proposition involving $p,\ q,\ r,$ and s that is true when exactly three of these propositional variables are true and false otherwise:

A compound proposition that meets this condition is:

$$(p \land q \land r \land \neg s) \lor (p \land q \land \neg r \land s) \lor (p \land \neg q \land r \land s) \lor (\neg p \land q \land r \land s)$$

4. Show that

$$\exists x (P(x) \to Q(x))$$
 and $\forall x P(x) \to \exists x Q(x)$

always have the same truth value.

We will prove that these statements are logically equivalent.

Case 1: Suppose $\exists x (P(x) \to Q(x))$ is true.

This implies there is some x for which $P(x) \to Q(x)$ holds true. If P(x) is true, then Q(x) must be true for this x, ensuring $\exists x Q(x)$ is true. Thus, $\forall x P(x) \to \exists x Q(x)$ holds true.

Case 2: Suppose $\exists x(P(x) \to Q(x))$ is false.

This implies $P(x) \to Q(x)$ is false for all x. Therefore, if $\forall x P(x)$ is true, Q(x) must be false for some x, making $\exists x Q(x)$ false. Hence, $\forall x P(x) \to \exists x Q(x)$ is false.

Thus, both statements always have the same truth value, proving their logical equivalence.

5. Suppose that A and B are sets such that the power set of A is a subset of the power set of B. Does it follow that $A \subseteq B$?

Given $\mathcal{P}(A) \subseteq \mathcal{P}(B)$, we aim to show $A \subseteq B$.

Every subset of A is also a subset of B by the given condition. Particularly, each element x in A forms the subset $\{x\}$ which must also be in B. Thus, all elements of A are in B, proving $A \subseteq B$.

6. Prove that $A \subseteq B$ if and only if $A \cap B = A$:

To show $A \subseteq B$ if and only if $A \cap B = A$, we consider both implications:

1. If $A \subseteq B$, then $A \cap B = A$:

Assuming $A \subseteq B$, any $x \in A$ is also in B, thus $x \in A \cap B$. Conversely, if $x \in A \cap B$, then $x \in A$. Therefore, $A \cap B = A$.

2. If $A \cap B = A$, then $A \subseteq B$:

Assuming $A \cap B = A$, for any $x \in A$, it follows $x \in A \cap B$, which implies $x \in B$. Hence, $A \subseteq B$.

Both implications together show that $A \subseteq B$ if and only if $A \cap B = A$.