

Unidirectional Battery Charger using DC-DC SEPIC converter

<u>INSTRUCTOR</u>

Dr. Swami Naidu
Assistant Professor
Department of Electrical Engineering

STUDENT TEAM

Gyanendra Singh 18085026 Divyansh Goyal 18085025

Divya Sonkar 18085024

PROBLEM STATEMENT:

Simulate a unidirectional battery charger circuit feeding power from the grid. The DC-DC SEPIC converter needs to be used for charging current control.

The required details are as follows:

Input AC supply = 230 V AC

Battery details: 48 V, 28 Ah.

Switching frequency, Fs = 30 KHz

THEORY:

A SEPIC is in continuous-conduction mode if the current through the L_1 and L_2 inductors never goes down to zero. The average voltage across the capacitor C_1 and C_2 is equal to the input voltage (Vin) during a steady-state operation of a SEPIC. Due to the fact that capacitors C_1 and C_2 block direct current, the average current through it is zero, rendering inductors L_1 and L_2 the only source of current. Therefore, the average current flow through inductor L_2 is the same as the average current of the load and therefore independent of the voltage input. The following can be written when looking at average voltages:

$$V_{in} = V_{L1} + V_{CS} + V_{L2}$$

Because the average voltage of V_{CS} is equal to V_{in}

$$V_{11} = -V_{12}$$

The two inductors could therefore be wound on the same core. Since the voltages are the same in magnitude they will have zero mutual inductance effect. Here the polarity of the coil is presumed to be correct. The ripple currents of the two inductors will be equal in magnitude as the voltages are equal in magnitude. One can sum up the average currents as follows:

$$i_{D1} = i_{L1} + i_{L2}$$

ON STATE:- The current i_{L1} rises when switch Q is switched on and the current i_{L2} rises in the reverse direction. The energy from the input source raises the current i_{L2} . Because Q is closed for a short time and the instantaneous voltage V_{C1} is approximately V_{in} , the voltage V_{L2} is also around V_{in} . The capacitor C_1 therefore provides the energy to increase the current magnitude in i_{L2} and hence increases the energy in L_2 .

OFF STATE:- The current I_{C1} becomes the same as the current i_{L1} when switch Q_1 is turned off, as the inductors will not permit instantaneous current changes. The current i_{L2} proceeds in the negative path, in fact it never changes direction. The negative i_{L2} will be added to the current iL1 in order to raise the load

current. So while Q is off, both L_2 and L_1 supply energy to the load. During this off process, the coupling capacitor (C_1) is charged by L_1 and will charge L_2 during the on process. Due to capacitor C_1 and inductor L_2 , the SEPIC's boost / buck capabilities are feasible.

Figure-1: SEPIC Converter

Closed-Loop Control System:

The below figure shows the general structure of a closed-loop feedback control system. We used the PI controller for close loop control in the project.

The regulation is based on the current error value and on the integral of these errors

Figure-2: Close Loop Feedback Control

simultaneously. The error represents the difference between the setpoint value which the user wants and the real output. Hence, PI controller should be applied in a feedback loop:

The proportional component provides an output that depends on the instantaneous value of the error. So, it allows fast correction of every error. The integrative component provides an output that is proportional to the accumulated error. The integrative component is a "slow mode" because the error needs enough time to be accumulated to provide a

significant effect. However, for an infinite time for the steady-state, the integrative component allows canceling the error out.

The measured current and the reference current are compared to generate the control current. The duty ratio is changed by the DC-DC PWM generator, which gets the input from the PI controller and hence is used to control the current. Here, since the output voltage is constant, the change in duty ratio forces the current to be changed, and hence we attain current control.

CONVERTER PARAMETERS SELECTION:

1. Duty cycle consideration (D)

On solving, volt-sec balance of both the inductors L₁ and L₂, we found;

$$D = \frac{Vout}{Vin + Vout} = 0.1877$$

Here,
$$V_{\rm m} = 230\sqrt{2} V$$

Rectifier output i.e. Input to the sepic converter, $V_{in} = \frac{2Vm}{\pi} = 207.7v$

And,
$$V_{out}$$
=48v
 $\therefore D = \frac{48}{207.7 + 48} = 0.1877$

2. Inductor Selection (L_1 and L_2)

To ensure Continuous Conduction Mode (CCM)

$$L_1 \ge \frac{(1-D)^2 Ro}{D \cdot 2Fs} \Rightarrow L_1 \ge 1.004*10^{-4}$$

$$L_2 \ge \frac{(1-D)Ro}{2Fs} \Rightarrow L_1 \ge 2.32*10^{-5}$$

For simplicity, we assumed;

$$L_1 = 1 \text{ mH}$$

$$L_2 = 1 \, \text{mH}$$

3. Capacitor Selection (C_1 and C_2)

To ensure that the actual voltage ripple is lower than the limit,

$$C_1 \ge \frac{I_o D}{F_c \Delta V_1} \Rightarrow C_1 \ge 8.4*10^{-5}$$

$$C_2 \ge \frac{I_o D}{F_s \Delta V_2} \Rightarrow C_1 \ge 3.6*10^{-4}$$

Assuming 1% ripple in voltages;

 $\Delta V_1 = 0.01 * V_{in}$

 ΔV_2 =0.01* V_{out}

For simplicity, we assumed;

 $C_1 = 4700 \mu F$

 $C_2 = 4700 \mu F$

Circuit Diagram in MATLAB

Figure-3: Simulation Diagram in MATLAB

WAVEFORMS OBTAINED FOR DIFFERENT REFERENCES

The plots and table for the different reference currents have been shown below:

S.No	REFERENCE CURRENT (A)	INPUT CURRENT (A)		
1	<u>28</u>	<u>27.97</u>		
2	24	23.97		
3	20	19.95		
4	10	9.95		
5	32	31.96		

Figure-4: The plot shows variation of input current (Y-axis) and time (X-axis) for reference current of 28A

Figure-5: The plot shows variation of State of Charge (Y-axis) and time (X-axis) for reference current of 28A

Figure-6: The plot shows variation of input current (Y-axis) and time (X-axis) for reference current of 24A

Figure-7: The plot shows variation of input current (Y-axis) and time (X-axis) for reference current of 20A

Figure-8: The plot shows variation of input current (Y-axis) and time (X-axis) for reference current of 10A

Figure-9: The plot shows variation of input current (Y-axis) and time (X-axis) for reference current of 32A

Conclusion:

The unidirectional battery charger feeding power from the grid is made using the SEPIC converter. The circuit is designed according to the specifications given in the problem statement. The inductances and capacitances values used in the converter circuit are; $L_1 = 1$ mH, $L_2 = 1$ mH and $C_1 = 4700 \mu F$, $C_2 = 4700 \mu F$ respectively. The filter inductance and capacitance are 1mH and 4700 μF . The charging current control is done for the circuit using closed-loop control with a PI controller. The proportional parameter and the integrative parameter used are 10 and 1, respectively, after fine-tuning by conducting different experiments. The current settled down to a near steady-state for 5 different values of given references shown in table above and State of charge for given parameters is found to be increasing.