What the App is That? Deception and Countermeasures in the Android User Interface

Antonio Bianchi

Jacopo Corbetta

Luca Invernizzi

Yanick Fratantonio

Christopher Kruegel

Giovanni Vigna

antoniob@cs.ucsb.edu

jacopo@cs.ucsb.edu

invernizzi@cs.ucsb.edu

yanick@cs.ucsb.edu

chris@cs.ucsb.edu

vigna@cs.ucsb.edu

University of California, Santa Barbara

36th IEEE Symposium on Security and Privacy Session: Android Security May 20th, 2015

What am I interacting with? SECLOD

Motivation

1) No origin indication

No information about the app a user is interacting with

2) No graphical separation

An app can "jump" on-top of another An app can draw on-top of another

3) Incomplete compartmentalization

An app can know the app a user is currently interacting with

Motivation

<attack video>

Contributions

- **Systematic study**Study of the different techniques that can be used to perform "GUI-confusion" attacks in Android
- Market-level defense based on static analysis
- On-device defense
 based on UI modifications
 → evaluated with a user-study

Attacks

Exploiting missing graphical separation:

Category	Attack vector	Mentioned in
Draw on top	UI-intercepting draw-over Non-UI-intercepting draw-over Toast message	[3], [5] [3], [4], [5] [3], [10]
App switch	startActivity API Screen pinning moveTaskTo APIs killBackgroundProcesses API Back / power button (passive) Sit and wait (passive)	[6] — — — —
Fullscreen	non-"immersive" fullscreen "immersive" fullscreen "inescapable" fullscreen	— — —

Attacks

Exploiting missing graphical separation:

Attacks

Automatic state-exploration:

automatic study of the complex Android API

interesting finding:
 it is possible to create "inescapable"
 fullscreen windows

Exploiting incomplete compartmentalization:

getting information about user interaction with other applications

- getRunningTask API (up to Android 4.4)
- /proc/cess_pid>/cgroups
- /proc/cess_pid>/statm [Chen 2014]

[Chen 2014] Qi Alfred Chen, Zhiyun Qian, and Z. Morley Mao.
"Peeking into Your App Without Actually Seeing it: Ui State Inference and Novel Android Attacks."
USENIX Security 2014

Defense

- Automatic at Market-level
 - Using static analysis to automatically identify applications that can potentially perform "GUI-confusion" attacks

An app is classified as potentially malicious iff:

- 1) It uses a technique to detect which app the user is interacting with.
- 2) It uses a technique to jump/draw on-top of other apps.

We use code slicing techniques to detect called APIs and their parameters

3) There is a connection between code locations where 1) and 2) happen.

Control flow analysis

A detected sample (from the *svpeng* malware family)

Dataset	Detected
500 randomly selected apps	2: "app-lockers"
500 "top free" apps on Google Play	2: "app-lockers"21: interfering with UI (e.g., showing disruptive ads)3: false positives
1,260 apps from the "Android Malware Genome" project	21: samples from the <i>DroidKungFu</i> malware family, aggressively displaying an Activity on top of any other 4: false positives

Dataset	Detected	
500 randomly selected apps	2: "app-lockers"	
500 "top free" apps on Google Play	2: "app-lockers"	
riay	21: interfering with UI (e.g., showing disruptive ads)	
	3: false positives	
1,260 apps from the "Android Malware Genome" project	21: samples from the <i>DroidKungFu</i> malware family, aggressively displaying an Activity on top of any other	
	4: false positives	

Dataset	Detected		
500 randomly selected apps	2: "app-lockers"		
500 "top free" apps on Google	2: "app-lockers"		
Play	21: interfering with UI (e.g., showing disruptive ads)		
	3: false positives		
1,260 apps from the "Android Malware Genome" project	21: samples from the <i>DroidKungFu</i> malware family, aggressively displaying an Activity on top of any other 4: false positives		

Modifications to the Android graphical user interface

Allow users to reliably know what they are interacting with

- Understanding the "origin" of an app

We cannot trust the Market!

- Understanding the "origin" of an app
 - We rely on the already-existing SSL Extended Validation (EV) infrastructure to validate the *author* of an app.
 - An app must specify a domain D (controlled by the app's developer)
 - D must contain a file with the public key used to sign the app.
 - D needs to be certified using an SSL EV certificate
 - We show the "organization name" from the EV certificate of *D*.

- Showing the security indicator in an unobtrusive but reliable way.
 - We use the "navigation bar" to show a security indicator
 - We use a "secret image"
 - only known to the user and the operating system (selected by the user during device first-boot)
 - avoid malicious "fullscreen" apps spoofing the security indicator

Defense - Dynamic

<defense video>

- User study
 - Evaluating the effectiveness of our on-device defense
 - Subjects recruited on Mechanical Turk
 - Subjects interact with an emulated device using their browser

- 308 subjects divided in 3 groups
 - G1
 - stock Android system (no on-device defense)
 - G2
 - on-device defense in place
 - no additional training
 - G3
 - on-device defense in place
 - subjects aware of the possibility of attacks
 - subjects received additional training about security-indicator functionality

- Subjects are asked to interact with the Facebook app multiple times
- After each interaction, subjects are asked if they think they have interacted with the original Facebook app
- 4 interactions (in randomized order) are evaluated
 - B_1 and B_2
 - the subject is not attacked

- A_{std}
 the malicious app covers the legitimate one

- A_{full}
 the malicious app also shows a spoofed security indicator (by using a fullscreen Window)

Answering correctly during:	G1 stock Android	G2 on-device defense unaware of attacks no additional training	G3 on-device defense aware of attacks additional training
A _{std}	19.19%	64.52%	68.97%
A _{full}	17.17%	76.34%	74.14%
all 4 interactions	2.02%	53.76%	56.90%

Answering correctly during:	G1 stock Android	G2 on-device defense unaware of attacks no additional training		o	G3 on-device defense aware of attacks additional training	
A _{std}	19.19%		64.52%		68.97%	
A _{full}	17.17%		76.34%		74.14%	
all 4 interactions	2.02%		53.76%		56.90%	

Answering correctly during:	G1 stock Android	G2 on-device defense unaware of attacks no additional training		G3 on-device defense aware of attacks additional training	
A _{std}	19.19%		64.52%	68.97%	
A _{full}	17.17%		76.34%	74.14%	
all 4 interactions	2.02%		53.76%	56.90%	

Conclusions

 We studied the problem of "GUI-confusion" attacks in Android

- We propose:
 - a market-level defense, based on static analysis
 - an on-device defense based on UI modifications
 - → evaluated with a user study

 Source code of the on-device defense: https://github.com/ucsb-seclab/android_ui_deception

Questions?