Óptica geométrica

Estudiaremos:

Reflexión, refracción y dispersión de la luz.

Utilizaremos el concepto de "rayo Luminoso":

El **rayo luminoso** es la línea imaginaria que representa la dirección por la que la luz se propaga.

Principios del modelo del "rayo luminoso"

1º) Principio de propagación rectilínea: la luz se propaga en línea recta en los medios isótropos y homogéneos.

Medios <u>isótropos</u> son aquellos en los que la velocidad de la luz es la misma independientemente de la dirección en la que se propague; <u>homogéneos</u> son aquellos medios que tienen idénticas propiedades intensivas en todos sus puntos.

- 2º) Principio de independencia de las partes que forman un haz: si se interrumpe la marcha de algunos rayos de un haz mediante un cuerpo opaco, el resto de los rayos sigue su marcha sin experimentar cambio alguno.
- 3º) Principio de independencia de los haces de luz: la marcha de un haz de luz no se ve afectada por la presencia de otros haces que se superpongan con él en alguna región del espacio.
- 4º) Principio de reversibilidad: el camino seguido por los rayos luminosos no cambia si se supone inverso su sentido de propagación.

Reflexión de la luz

Todos los cuerpos reflejan la luz

Especular	Difusa
En en superficies brillantes, lisas y bien pulidas.	En superficies mate, sin brillo, rugosas.

Leyes de la reflexión

EE'(espejo)
I (rayo incidente)
R (rayo reflejado)
α (ángulo de incidencia)
ß (ángulo de reflexión)
i (punto de incidencia)
N (recta normal)

- 1º) El rayo incidente, la recta normal y el rayo reflejado son coplanares, es decir, están incluidos en el plano de incidencia, que es el plano del dibujo.
- 2ª) Los ángulos de incidencia y de reflexión son congruentes.

Espejos planos

La imagen en los espejos planos es siempre virtual (los rayos reflejados no se cortan sino sus prolongaciones y se ven por lo tanto a través del espejo) También es derecha, del mismo tamaño que el objeto y equidistante con este respecto al espejo.

Espejos planos. Problema 3

```
ABC y AB'C' son triángulos
semejantes -->
h / I = d / d' -->
I = d'.h/d -->
I = 2m. 3m/5m --> I = 1,2m
```


Espejos no planos

Esféricos Cilíndricos Parabólicos, etc.

Estudiamos los esféricos que no deforman la imagen ya que tiene simetría esférica. Pero sí pueden aumentarla o disminuirla o invertirla.

Espejos Esféricos

Los espejos esféricos tienen forma de casquete (una parte de una esfera hueca). Pueden ser:

Espejo convexo

Elementos de los espejos esféricos

Como tienen simetría los estudiaremos en una única dirección. Cortando el casquete con un plano que pase por el centro obtenemos este perfil:

Espejos esféricos. Propiedad del foco.

Como se reflejan los rayos en un espejo esférico?

Siguiendo las leyes de la reflexión ya enunciadas.

Por suerte, existen rayos principales cuyos reflejados son muy sencillos de identificar.

Espejos esféricos. Marcha de rayos principales

Marcha de rayos principales en espejos convexos con luz proveniente de la derecha

Características de la imagen:

- Naturaleza
- Orientación respecto al objeto
- Tamaño relativo al objeto.

Formación gráfica de imágenes en espejos esféricos. Todos los casos

Formación gráfica de imágenes en espejos esféricos. Todos los casos

https://micro.magnet.fsu.edu/primer/java/mirrors/concave.html

https://micro.magnet.fsu.edu/primer/java/mirrors/convex.html

Obtención analítica de imágenes. Sistema de referencia

Eje x: Contrario a la luz incidente siempre positivo. (Muy importante)

Eje y: No es relevante, en general se considera hacia arriba positivo.

Cómo son los signos de f, x, x', y e y' en este caso?

Importante:

f siempre positiva en cóncavos f siempre negativa en convexos

Expresiones matemáticas para la resolución analítica.

$$2.f = R_{curvatura}$$

Ojo! El radio de curvatura de un espejo tiene signo!

Aumento o agrandamiento lateral

$$A = \frac{y'}{y} = -\frac{x'}{x}$$

Expresiones matemáticas para la resolución analítica.

$$A = \frac{y'}{y} = -\frac{x'}{x}$$

$$\frac{1}{x} + \frac{1}{x'} = \frac{1}{f}$$

Cuestiones:

- 1. Qué sigifica x'<0?
- 2. Qué sigifica A<0?
- 3. En que caso puede ser A=-2/3?
- 4. En que caso puede ser A=0,5
- 5. Qué significa |A|<1?E que casos se da?
- 6. En que caso puede ser A=1/3?
- 7. En que caso puede ser |A|=1/2?

Suia órica Problema 6)

1 magen a 4 cm por detrás del espego

La imagen virtual -> x'=-4 cm

Tarea:

Hacer los problemas 4 y 5 de la guía de óptica.