DAI Assignment-1

Aditya Neeraje, Balaji Karedla, Moulik Jindal

September 3, 2024

Contents

	hemagic	_
1.1	Task A	1
1.2	Task B	1
1.3	Task C	1
1.4	Task D	2
1.5	Task E	3
1.6	Task F	3
1.7	Task G	4

1 Mathemagic

1.1 Task A

For a Bernoulli random variable $X \sim Ber(p)$, P[X=0]=1-p, P[X=1]=p and $P[X=n]=0 \forall n \geq 2$.

$$G_{Ber}(z) = \sum_{n=0}^{\infty} P[X = n] z^n$$

= $P[X = 0] + P[X = 1] z$
 $G_{Ber} = (1 - p) + pz$

1.2 Task B

When $X \sim Bin(n, p)$, $P[X = k] = \binom{n}{k} p^k (1 - p)^{n-k} \ \forall k \in \mathbb{Z}, 0 \le k \le n$. $P[X = k] = 0 \ \forall k > n$.

$$G_{Bin}(z) = \sum_{k=0}^{\infty} P[X = n] z^k$$

$$= \sum_{k=0}^{n} \binom{n}{k} p^k (1-p)^{n-k} z^k$$

$$= \sum_{k=0}^{n} \binom{n}{k} (pz)^k (1-p)^{n-k}$$

$$= (pz + (1-p))^n$$

$$G_{Bin}(z) = G_{Ber}(z)^n$$

1.3 Task C

Let X_1 and X_2 be two random variables which take up non-negative integers and let $X = X_1 + X_2$.

$$G_X(z) = \sum_{n=0}^{\infty} P[X = n] z^n$$

$$= \sum_{n=0}^{\infty} \sum_{i=0}^{n} (P[X_1 = i] P[X_2 = n - i]) z^n$$

$$= \sum_{i=0}^{\infty} \sum_{n=i}^{\infty} (P[X_1 = i] P[X_2 = n - i]) z^n$$

$$= \sum_{i=0}^{\infty} \sum_{n=i}^{\infty} (P[X_1 = i] z^i) (P[X_2 = n - i] z^{n-i})$$

$$= \sum_{i=0}^{\infty} P[X_1 = i] z^i \sum_{n=i}^{\infty} P[X_2 = n - i] z^{n-i}$$

$$= \sum_{i=0}^{\infty} P[X_1 = i] z^i \sum_{n=0}^{\infty} P[X_2 = n] z^n$$

$$G_X(z) = G_{X_1}(z) G_{X_2}(z)$$

For k = 1, $G_{\Sigma}(z) = G(z)^k$. If for k = n - 1, $G_{\Sigma}(z) = G(z)^k$, then for k = n,

$$G_{\Sigma}(z) = G_{X_1 + X_2 + \dots + X_{n-1}}(z)G_{X_n}(x)$$

$$= \prod_{i=1}^n G_{X_i}(z)G_{\Sigma}(z)$$

$$= G(z)^k$$

From the Principle of Mathematical Induction, for all $k \in \mathbb{N}$, $G_{\Sigma}(z) = G(z)^k$

1.4 Task D

When $X \sim Geo(p)$, $P[X = n] = (1 - p)^{n-1}p$ and P[X = 0] = 0.

$$G_{Geo}(z) = \sum_{n=0}^{\infty} P[X = n] z^n$$

$$= \sum_{n=1}^{\infty} (1 - p)^{n-1} p z^n$$

$$= pz \sum_{n=1}^{\infty} ((1 - p)z)^{n-1}$$

$$= \frac{pz}{1 - (1 - p)z}$$

1.5 Task E

 $X \sim Bin(n,p)$ and $Y \sim NegBin(n,p)$. $Y = \sum_{k=1}^{n} Y_k$ where $Y_k \sim Geo(p)$.

$$G(Y) = G(Y_1 + Y_2 + \dots + Y_n)$$

$$= G(Y_1)G(Y_2) \dots G(Y_n)$$

$$= \left(\frac{pz}{1 - (1 - p)z}\right)^n$$

$$G_Y^{(n,p)}(z) = \left(\frac{pz}{1 - (1 - p)z}\right)^n$$

$$= \left(\frac{1}{\frac{1}{pz} + (1 - \frac{1}{p})}\right)^n$$

$$G_X^{(n,p^{-1})}(z^{-1}) = \left(\frac{1}{pz} + (1 - \frac{1}{p})\right)^n$$

$$\implies G_Y^{(n,p)}(z) = \left(G_X^{(n,p^{-1})}(z^{-1})\right)^{-1}$$

1.6 Task F

 $P[Y = k] = {\binom{k-1}{n-1}} p^n (1-p)^{k-n}.$

$$G_Y^{(n,p)}(z) = \sum_{k=0}^{\infty} P[Y=k] z^k$$

$$= \sum_{k=n}^{\infty} \binom{k-1}{n-1} p^n (1-p)^{k-n} z^k$$

$$\left(\frac{1}{pz} + \left(1 - \frac{1}{p}\right)\right)^{-n} = \sum_{k=n}^{\infty} \binom{k-1}{n-1} p^n (1-p)^{k-n} z^k$$

Substitute x = z, p = 2

$$\left(\frac{1}{2x} + \frac{1}{2}\right)^{-n} = \sum_{k=n}^{\infty} {k-1 \choose n-1} 2^n (-1)^{k-n} x^k$$

$$x^n (1+x)^{-n} = \sum_{k=n}^{\infty} {k-1 \choose n-1} (-1)^{k-n} x^k$$

$$(1+x)^{-n} = \sum_{k=n}^{\infty} {k-1 \choose n-1} (-1)^{k-n} x^{k-n}$$

$$(1+x)^{-n} = \sum_{r=0}^{\infty} {n+r-1 \choose n-1} (-1)^r x^r$$

$$(1+x)^{-n} = \sum_{r=0}^{\infty} {n+r-1 \choose r} (-1)^r x^r$$

1.7 Task G

$$G(z) = \sum_{n=0}^{\infty} P[X = n] z^n$$

$$G'(z) = \sum_{n=0}^{\infty} n P[X = n] z^{n-1}$$

$$G'(1) = \sum_{n=0}^{\infty} n P[X = n]$$

$$G'(1) = E[X]$$

For Bernoulli random variable $X \sim Ber(p)$,

$$G_{Ber}(z) = (1 - p) + pz$$

$$G'_{Ber}(z) = p$$

$$G'_{Ber}(1) = p$$

$$E[X] = p$$

For Binomial random variable $X \sim Bin(n, p)$,

$$G_{Bin}(z) = (pz + (1-p))^n$$

 $G'_{Bin}(z) = np(pz + (1-p))^{n-1}$
 $G'_{Bin}(1) = np$
 $E[X] = np$

For Geometric random variable $X \sim Geo(p)$,

$$\begin{split} G_{Geo}(z) &= \frac{pz}{1 - (1 - p)z} \\ G'_{Geo}(z) &= \frac{p}{(1 - (1 - p)z)^2} \\ G'_{Geo}(1) &= \frac{p}{p^2} \\ E[X] &= \frac{1}{p} \end{split}$$

For Negative Binomial random variable $X \sim NegBin(n, p)$,

$$G_{NegBin}(z) = \left(\frac{pz}{1 - (1 - p)z}\right)^n$$

$$G'_{NegBin}(z) = n\left(\frac{pz}{1 - (1 - p)z}\right)^{n-1} \frac{p}{(1 - (1 - p)z)^2}$$

$$G'_{NegBin}(1) = n\left(\frac{p}{p}\right)^{n-1} \frac{p}{p^2}$$

$$E[X] = \frac{n}{p}$$