Contents

1	Setting 1.1 vimrc
2	Math
	2.1 Basic Arithmetic
	2.2 Sieve Methods : Prime, Divisor, Euler phi
	2.3 Primality Test
	2.4 Chinese Remainder Theorem
	2.5 Burnside's Lemma
	2.6 Kirchoff's Theorem
3	Data Structure3.1 Fenwick Tree3.2 Order statistic tree

1 Setting

1.1 vimrc

1 set ts=4 sts=4 sw=4 2 set ai si nu

2 Math

2.1 Basic Arithmetic

```
1 typedef long long ll;
 2 typedef unsigned long long ull;
 4 // calculate ceil(a/b)
 5 // |a|, |b| \le (2^63)-1  (does not dover -2^63)
 6 ll ceildiv(ll a, ll b) {
       if (b < 0) return ceildiv(-a, -b);
       if (a < 0) return (-a) / b;
       return ((ull)a + (ull)b - 1ull) / b;
10 }
11
12 // calculate floor(a/b)
|a| // |a|, |b| \le (2^63) - 1 \text{ (does not cover } -2^63)
14 ll floordiv(ll a, ll b) {
       if (b < 0) return floordiv(-a, -b);
       if (a >= 0) return a / b;
17
       return -(11)(((ull)(-a) + b - 1) / b);
18 }
19
```

```
20 // calculate a*b % m
   21 // x86-64 only
 1 22 ll large_mod_mul(ll a, ll b, ll m)
1 23 {
   2.4
          return ll((__int128)a*(__int128)b%m);
   25 }
1 26
1 27 // calculate a*b % m
1 28 // |m| < 2^62, x86 available
   29 // O(logb)
2 30 11 large_mod_mul(11 a, 11 b, 11 m)
2 31 {
 2 32
          a \% = m; b \% = m; ll r = 0, v = a;
2 33
          while (b) {
   34
           if (b\&1) r = (r + v) % m;
           b >>= 1;
 2 36
              v = (v << 1) % m;
2 37
         }
 3 38
          return r;
   39 }
   40
   41 // calculate n^k % m
   42 ll modpow(ll n, ll k, ll m) {
         11 \text{ ret} = 1;
   44
          n %= m;
   45
          while (k) {
   46
          if (k & 1) ret = large_mod_mul(ret, n, m);
   47
           n = large_mod_mul(n, n, m);
   48
              k /= 2;
   49
         }
          return ret;
   51 }
   52
   53 // calculate gcd(a, b)
   54 ll gcd(ll a, ll b) {
          return b == 0 ? a : gcd(b, a % b);
   56 }
   58 // \text{ find a pair (c, d) s.t. ac + bd = gcd(a, b)}
   59 pair<11, 11> extended_gcd(11 a, 11 b) {
       if (b == 0) return \{1, 0\};
   61
          auto t = extended_gcd(b, a % b);
   62
          return { t.second, t.first - t.second * (a / b) };
   63 }
   65 // \text{ find x in } [0,m) \text{ s.t. ax } === \gcd(a, m) \pmod{m}
   66 ll modinverse(ll a, ll m) {
   67
          return (extended_gcd(a, m).first % m + m) % m;
   68 }
   70 // calculate modular inverse for 1 \sim n
   71 void calc_range_modinv(int n, int mod, int ret[]) {
   72
         ret[1] = 1;
          for (int i = 2; i \le n; ++i)
   74
              ret[i] = (ll) (mod - mod/i) * ret[mod%i] % mod;
```

75 }

2.2 Sieve Methods: Prime, Divisor, Euler phi

```
1 // find prime numbers in 1 ~ n
2 // ret[x] = false \rightarrow x is prime
 3 // O(n*loglogn)
 4 void sieve(int n, bool ret[]) {
       for (int i = 2; i * i <= n; ++i)
          if (!ret[i])
               for (int j = i * i; j <= n; j += i)
                   ret[i] = true;
 9 }
11 // calculate number of divisors for 1 \sim n
12 // when you need to calculate sum, change += 1 to += i
13 // O(n*logn)
14 void num_of_divisors(int n, int ret[]) {
       for (int i = 1; i \le n; ++i)
           for (int j = i; j \le n; j += i)
17
               ret[i] += 1:
18 }
20 // calculate euler totient function for 1 \sim n
21 // phi(n) = number of x s.t. 0 < x < n && gcd(n, x) = 1
22 // O(n*loglogn)
23 void euler_phi(int n, int ret[]) {
      for (int i = 1; i \le n; ++i) ret[i] = i;
       for (int i = 2; i \le n; ++i)
        if (ret[i] == i)
27
               for (int j = i; j \le n; j += i)
                   ret[j] -= ret[j] / i;
29 }
```

2.3 Primality Test

```
1 bool test_witness(ull a, ull n, ull s) {
       if (a >= n) a %= n;
      if (a <= 1) return true;
      ull d = n \gg s;
      ull x = modpow(a, d, n);
      if (x == 1 \mid \mid x == n-1) return true;
      while (s-- > 1) {
         x = large_mod_mul(x, x, n);
          x = x * x % n;
          if (x == 1) return false;
11
           if (x == n-1) return true;
12
13
       return false;
14 }
15
16 // test whether n is prime
17 // based on miller-rabin test
18 // O(logn*logn)
```

2.4 Chinese Remainder Theorem

```
1 // \text{ find } x \text{ s.t. } x === a[0] \pmod{n[0]}
 2 //
                      === a[1] \pmod{n[1]}
 3 //
4 // assumption: gcd(n[i], n[j]) = 1
 5 ll chinese_remainder(ll* a, ll* n, int size) {
       if (size == 1) return *a;
       ll tmp = modinverse(n[0], n[1]);
       11 \text{ tmp2} = (\text{tmp} * (a[1] - a[0]) % n[1] + n[1]) % n[1];
       ll ora = a[1];
       ll tgcd = gcd(n[0], n[1]);
11
       a[1] = a[0] + n[0] / tqcd * tmp2;
       n[1] *= n[0] / tgcd;
       ll ret = chinese_remainder(a + 1, n + 1, size - 1);
       n[1] /= n[0] / tgcd;
15
       a[1] = ora;
16
       return ret;
17 }
```

2.5 Burnside's Lemma

경우의 수를 세는데, 특정 transform operation(회전, 반사, ..) 해서 같은 경우들은 하나로 친다. 전체 경우의 수는?

- 각 operation마다 이 operation을 했을 때 변하지 않는 경우의 수를 센다 (단, "아무것도 하지 않는다"라는 operation도 있어야 함!)
- 전체 경우의 수를 더한 후, operation의 수로 나눈다. (답이 맞다면 항상 나누어 떨어져야 한다)

2.6 Kirchoff's Theorem

그래프의 스패닝 트리의 개수를 구하는 정리.

무향 그래프의 Laplacian matrix L를 만든다. 이것은 (정점의 차수 대각 행렬) - (인접행렬) 이다. L에서 행과 열을 하나씩 제거한 것을 L'라 하자. 어느 행/열이든 관계 없다. 그래프의 스패닝 트리의 개수는 det(L')이다.

3 Data Structure

3.1 Fenwick Tree

```
1 const int TSIZE = 100000;
2 int tree[TSIZE + 1];
3
4 // Returns the sum from index 1 to p, inclusive
5 int query(int p) {
6    int ret = 0;
7    for (; p > 0; p -= p & -p) ret += tree[p];
8     return ret;
9 }
10
11 // Adds val to element with index pos
12 void add(int p, int val) {
13    for (; p <= TSIZE; p += p & -p) tree[p] += val;
14 }</pre>
```

3.2 Order statistic tree

```
1 #include <ext/pb_ds/assoc_container.hpp>
2 #include <ext/pb_ds/tree_policy.hpp>
3 #include <ext/pb_ds/detail/standard_policies.hpp>
4 #include <functional>
5 #include <iostream>
6 using namespace gnu pbds;
7 using namespace std;
9 // tree<key_type, value_type(set if null), comparator, ...>
10 using ordered_set = tree<int, null_type, less<int>, rb_tree_tag,
       tree order statistics node update>;
12
13 int main()
14 {
15
       ordered_set X;
16
       for (int i = 1; i < 10; i += 2) X.insert(i); // 1 3 5 7 9
17
       cout << boolalpha;</pre>
18
       cout << *X.find_by_order(2) << endl; // 5
       cout << *X.find_by_order(4) << endl; // 9
19
20
       cout << (X.end() == X.find_by_order(5)) << endl; // true
21
22
       cout \ll X. order of key(-1) \ll endl; // 0
       cout << X.order_of_key(1) << endl; // 0
23
24
       cout \ll X. order of key (4) \ll endl; // 2
25
      X. erase (3);
26
       cout << X.order_of_key(4) << endl; // 1
27
       for (int t : X) printf("%d ", t); // 1 5 7 9
28 }
```