speed

Một thành phố du lịch có n địa điểm được kết nối với nhau bằng m con đường hai chiều. Con đường thứ k $(1 \le k \le m)$ kết nối địa điểm i_k với j_k và cho các phương tiện đi với tốc độ đúng bằng s_k .

Để khuyến khích khách du lịch đi lại an toàn trong thành phố, lãnh đạo thành phố muốn xác định giá trị s_{min} và s_{max} tương ứng là tốc độ tối thiểu và tốc độ tối đa để khi một phương tiện duy trì vận tốc trong đoạn từ s_{min} đến s_{max} thì có thể đi đến tất cả thành phố xuất phát từ một bất kì thành phố. Giá trị s_{min} và s_{max} cần thỏa mãn thêm điều kiện $s_{max} - s_{min}$ đạt giá trị nhỏ nhất, nếu có nhiều bộ s_{min} và s_{max} thỏa mãn, cần tìm bộ mà s_{min} nhỏ nhất.

Input

- Dòng đầu chứa các số nguyên dương *n*, *m*;
- Dòng thứ k $(1 \le k \le m)$ trong m dòng tiếp theo chứa ba số nguyên dương i_k, j_k, s_k cho biết có một con đường hai chiều nối giữa hai địa điểm i_k, j_k $(1 \le i_k, j_k \le n)$ với yêu cầu tốc độ là s_k $(1 \le s_k \le 10^9)$.

Output

- Gồm hai số nguyên s_{min} và s_{max} xác định được.

Dữ liệu vào	Kết quả ra
3 5	2 3
1 2 1	
1 2 2	
1 2 5	
2 3 3	
2 3 6	

Subtask 1: $n \le 100$; $m \le 1000$;

Subtask 2: $n \le 1000$; $m \le 10000$;