Se define un $AFN - \varepsilon$ como una quinteta $(Q, \Sigma, \delta, q_0, F)$, donde todos los componentes, excepto δ , son como en los modelos anteriores.

 δ se define como $\delta(q, a) = p$ que consta de todos los estados p que son accesibles desde q, a traves de una transicion etiquetada a, que puede ser ε o un elemento de Σ .

Cerradura ε de un estado p. $\varepsilon - c(p)$

Es el conjunto de todos los estados de Q que son accesibles desde p con trayectorias etiquetadas por ε unicamente. $\varepsilon - c(p) \neq \emptyset$ ya que p pertenece a su propia cerradura ε

Cerradura ε de un conjunto P de estados. $\varepsilon - c(P)$

Para
$$P \subseteq Q$$
, se tiene $\varepsilon - c(P) = \bigcup \varepsilon - c(p)$, $p \in P$

$$\varepsilon - c(\lbrace q_0, q_1 \rbrace) = \varepsilon - c(q_0) \cup \varepsilon - c(q_1) = \lbrace q_0, q_1, q_2 \rbrace$$

Definicion de δ^*

$$\delta^{*}(q, \varepsilon) = \varepsilon - c(q)$$

$$\delta^{*}(q, \omega a) = \varepsilon - c(\delta(\delta^{*}(q, \omega), a)), \quad \omega \in \Sigma^{*}, \quad a \in \Sigma$$

$$\delta^{*}(R, a) = \bigcup \delta(q, a) \quad q \in R, \quad a \in \Sigma$$

$$\delta^{*}(R, \omega) = \bigcup \delta(q, \omega) \quad q \in R, \quad \omega \in \Sigma^{*}$$

El lenguaje aceptado por $M = (Q, \Sigma, \delta, q_0, F)$ es :

$$L(M) = \left\{ \omega \mid \delta^* \left(q_0, \omega \right) \cap F \neq \emptyset \right\}$$

EJEMPLO: Determinar si la cadena 110 es parte de L(M).

ESTADOS	0	1	ε	
q_0	Ø	$\{q_1\}$	Ø	0
q_1	Ø	$\left\{q_{1}\right\}$	$\{q_2\}$	0
q_2	$\{q_2\}$	Ø	Ø	1

1. Calcular todas las cerraduras epsilon para TODOS los estados del automata.

$$\begin{split} \varepsilon - c \Big(q_0 \Big) &= \big\{ q_0 \big\} = \delta^* \Big(q_0, \varepsilon \Big) \\ \varepsilon - c \Big(q_1 \Big) &= \big\{ q_1, q_2 \big\} = \delta^* \Big(q_1, \varepsilon \Big) \\ \\ \varepsilon - c \Big(q_2 \Big) &= \big\{ q_2 \big\} = \delta^* \Big(q_2, \varepsilon \Big) \end{split}$$

$$\delta^* \big(q_0, 110 \big) = \varepsilon - c \Big(\delta \Big(\delta^* \big(q_0, 11 \big), 0 \Big) \Big) = \varepsilon - c \Big(\delta \big(\big\{ q_1, q_2 \big\}, 0 \big) \Big) = \varepsilon - c \Big(\delta \big(\big\{ q_1 \big\}, 0 \big) \cup \delta \big(\big\{ q_2 \big\}, 0 \big) \Big) = \varepsilon - c \Big(\big\{ q_2 \big\} \Big) = \left\{ q_2 \right\} \Big)$$

$$\delta^* \big(q_0, 11 \big) = \varepsilon - c \Big(\delta \Big(\delta^* \big(q_0, 1 \big), 1 \big) \Big) = \varepsilon - c \Big(\delta \big(\big\{ q_1, q_2 \big\}, 1 \big) \Big) = \varepsilon - c \Big(\delta \big(\big\{ q_1 \big\}, 1 \big) \cup \delta \big(\big\{ q_2 \big\}, 1 \big) \Big) = \varepsilon - c \Big(\big\{ q_1 \big\} \Big) = \left\{ q_1, q_2 \right\}$$

$$\delta^* \big(q_0, 1 \big) = \varepsilon - c \Big(\delta \Big(\delta^* \big(q_0, \varepsilon \big), 1 \big) \Big) = \varepsilon - c \Big(\delta \Big(\big\{ q_0 \big\}, 1 \big) \Big) = \varepsilon - c \Big(\delta \Big(\big\{ q_1 \big\}, q_2 \big\} \Big)$$