

Calories From Food Images

The Capstone Plan

Overview & Problem Statement

- Nutrition is crucial for mental and physical health
- Counting calories and tracking nutrients can be complicated
- Highly individual

There is great opportunity for a machine learning model to provide calorie estimations of foods from images. ""

Project Vision

- **01.** Preprocess Data & Augment Images
- **02.** Modify a pre-trained CNN model (MobileNet/Inception)
- 03. Classify item & segment thumb to estimate calories
- **04.** Deploy a simple website

Impact

Poor Nutrition Increases Risk of:

• Type II diabetes, Heart disease, Stroke & Cancer

Optimal Nutrition Increases:

Ability to achieve fitness goals, mental & physical health

Potential Users:

Vegans, athletes, over/underweight, education & sustainability

Dataset

How do you represent a JPEG file so that you can feed it into a CNN model?

NumPy Arrays

Dataset

17 Unique food classes

3 Mixed food classes

3828 JPEG files

All loaded into a single dictionary as NumPy arrays

img_arr.shape (1520, 2688, 3)

#Check a random image from the loaded dataset
inspect_img = food_ims["Banana"][13]
plt.imshow(inspect_img)

<matplotlib.image.AxesImage at 0x7fa6041ea350>

inspect_img.shape

(224, 397, 3)

Next Steps (where things get spicy...)

- **01.** Preprocess Images & Augment
- **02.** Tensorflow & Transfer Learning
- **03.** Remove top layers, add specific, freeze layers
- **O4.** Train, Evaluate & Iterate

Questions?

