Matrix Computations Chapter 2 Linear systems and LU decomposition Section 2.2 Pivoting for LU Decomposition

Jie Lu ShanghaiTech University

Pivoting

- Previously, we assume all the pivots are nonzero. What if some $a_{kk}^{(k-1)}$ happens to be zero?
- Gaussian elimination is known to be numerically unstable when a pivot is close to zero
 - Relatively small pivots can cause large entries in L and U and thus non-negligible error in solution due to round-off errors
- Pivoting: Find permutations of A with a proper LU decomposition
 - Partial pivoting, complete pivoting, rook pivoting, etc.

Permutation Matrix

A square matrix with exactly one entry of 1 in each row and each column and 0 elsewhere is a permutation matrix

Example: Let Π be a 4×4 permutation matrix and $A \in \mathbb{R}^4$

$$\boldsymbol{\Pi} = \begin{bmatrix} 0 & 0 & 0 & \mathbf{1} \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & 0 \\ \mathbf{1} & 0 & 0 & 0 \end{bmatrix} \qquad \boldsymbol{A} = \begin{bmatrix} \mathbf{a}_1 & \mathbf{a}_2 & \mathbf{a}_3 & \mathbf{a}_4 \end{bmatrix} = \begin{bmatrix} -\tilde{\mathbf{a}}_1^T - \\ -\tilde{\mathbf{a}}_2^T - \\ -\tilde{\mathbf{a}}_3^T - \\ -\tilde{\mathbf{a}}_4^T - \end{bmatrix}$$

- ΠA is obtained by swapping row 1 and row 4 of A
- AΠ is obtained by swapping column 1 and column 4 of A

$$\Pi \mathbf{A} = \begin{bmatrix} -\tilde{\mathbf{a}}_{4}^{T} - \\ -\tilde{\mathbf{a}}_{2}^{T} - \\ -\tilde{\mathbf{a}}_{3}^{T} - \\ -\tilde{\mathbf{a}}^{T} - \end{bmatrix} \qquad \mathbf{A} \Pi = \begin{bmatrix} \mathbf{a}_{4} & \mathbf{a}_{2} & \mathbf{a}_{3} & \mathbf{a}_{1} \end{bmatrix}$$

Permutation Matrix

Example:

$$\mathbf{P} = \begin{bmatrix} 0 & 1 & 0 & 0 \\ 0 & 0 & 0 & 1 \\ 1 & 0 & 0 & 0 \\ 0 & 0 & 1 & 0 \end{bmatrix}, \qquad \mathbf{PA} = \begin{bmatrix} -\tilde{\mathbf{a}}_2^T - \\ -\tilde{\mathbf{a}}_4^T - \\ -\tilde{\mathbf{a}}_1^T - \\ -\tilde{\mathbf{a}}_3^T - \end{bmatrix}, \qquad \mathbf{AP} = \begin{bmatrix} \mathbf{a}_3 & \mathbf{a}_1 & \mathbf{a}_4 & \mathbf{a}_2 \end{bmatrix}$$

Note that P can be decomposed as

$$\mathbf{P} = \begin{bmatrix} 0 & 1 & 0 & 0 \\ 0 & 0 & 0 & 1 \\ 1 & 0 & 0 & 0 \\ 0 & 0 & 1 & 0 \end{bmatrix} = \begin{bmatrix} 0 & 0 & 0 & 1 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 1 & 0 & 0 & 0 \end{bmatrix} \cdot \begin{bmatrix} 1 & 0 & 0 & 0 \\ 0 & 0 & 0 & 1 \\ 0 & 0 & 1 & 0 \\ 0 & 1 & 0 & 0 \end{bmatrix} \cdot \begin{bmatrix} 0 & 0 & 1 & 0 \\ 0 & 1 & 0 & 0 \\ 1 & 0 & 0 & 0 \\ 0 & 0 & 0 & 1 \end{bmatrix}$$

Interchange Permutations

Let $\Pi_k \in \mathbb{R}^{n \times n}$, $k = 1, \dots, m \le n$ be the $n \times n$ identity matrix \mathbf{I} with row k and row piv(k) swapped, which are called interchange permutations

Let
$$P = \Pi_m \cdots \Pi_1$$

- Π_k is symmetric (but **P** may not be symmetric)
- $\mathbf{P}^T = \mathbf{\Pi}_1 \cdots \mathbf{\Pi}_m$
- If $piv = [1, ..., m]^T$, then $\mathbf{P} = \mathbf{I}$

Computation of $\mathbf{P}\mathbf{x}$, $\mathbf{x} \in \mathbb{R}^n$

```
for k=1:m % overwrite x with Px
    x(k) ↔ x(piv(k)) % swap entry k and entry piv(k)
end
```

Computation of $\mathbf{P}^T \mathbf{x}$, $\mathbf{x} \in \mathbb{R}^n$

```
for k=m:-1:1

x(k) \leftrightarrow x(piv(k))

end
```

No flops needed for permutation (but affect performance nontrivially)

Partial Pivoting

Recall Upper Triangularization in Section 2.1 Given $\mathbf{A}^{(k-1)}$, k = 1, ..., n-1,

- 1. Find $piv(k) = arg \max_{j \in [k,n]} |\mathbf{A}^{(k-1)}(j,k)|$
- 2. Let $\Pi_k \in \mathbb{R}^{n \times n}$ be the interchange permutation that swaps row k and row piv(k) of I
- 3. Determine the Gauss Transformation $\mathbf{M}_k = \mathbf{I}_n \boldsymbol{\tau}^{(k)} \mathbf{e}_k^T$, where

$$\boldsymbol{\tau}^{(k)} = \begin{bmatrix} \mathbf{0}_k \\ (\boldsymbol{\Pi}_k \mathbf{A}^{(k-1)})(k+1:n,k)/(\boldsymbol{\Pi}_k \mathbf{A}^{(k-1)})(k,k) \end{bmatrix}$$

4. $\mathbf{A}^{(k)} = \mathbf{M}_k(\mathbf{\Pi}_k \mathbf{A}^{(k-1)})$ (which satisfies $\mathbf{A}^{(k)}(k+1:n,k) = \mathbf{0}$)

Upon completing the above process, we have

$$\mathbf{M}_{n-1}\mathbf{\Pi}_{n-1}\cdots\mathbf{M}_1\mathbf{\Pi}_1\mathbf{A}=\mathbf{U}$$

Note that all the elements in $\tau^{(k)}(k+1:n)$ are ≤ 1 in absolute value

Partial Pivoting (cont'd)

Example:
$$\mathbf{A} = \begin{bmatrix} 2 & 1 & 1 & 0 \\ 4 & 3 & 3 & 1 \\ 8 & 7 & 9 & 5 \\ 6 & 7 & 9 & 8 \end{bmatrix}$$

Partial Pivoting (cont'd)

Partial Pivoting (cont'd)

Computation of **L** with Partial Pivoting

Define $\mathbf{P} = \mathbf{\Pi}_{n-1} \cdots \mathbf{\Pi}_1$ and for each $k = 1, \dots, n-1$,

$$\widetilde{\mathsf{M}}_k = (\mathsf{\Pi}_{n-1} \cdots \mathsf{\Pi}_{k+1}) \mathsf{M}_k (\mathsf{\Pi}_{k+1} \cdots \mathsf{\Pi}_{n-1})$$

Note: \tilde{M}_k is a Gauss transformation

$$\tilde{\mathbf{M}}_k = (\mathbf{\Pi}_{n-1} \cdots \mathbf{\Pi}_{k+1}) \cdot (\mathbf{I} - \boldsymbol{\tau}^{(k)} \mathbf{e}_k^T) \cdot (\mathbf{\Pi}_{k+1} \cdots \mathbf{\Pi}_{n-1}) = \mathbf{I} - \tilde{\boldsymbol{\tau}}^{(k)} \mathbf{e}_k^T$$

with
$$\tilde{\boldsymbol{\tau}}^{(k)} = \boldsymbol{\Pi}_{n-1} \cdots \boldsymbol{\Pi}_{k+1} \boldsymbol{\tau}^{(k)}$$
 (Why?)

Computation of L with Partial Pivoting (cont'd)

Example: Let n = 4

$$\begin{split} \tilde{\textbf{M}}_3 \tilde{\textbf{M}}_2 \tilde{\textbf{M}}_1 \textbf{P} \textbf{A} &= \textbf{M}_3 \cdot (\textbf{\Pi}_3 \textbf{M}_2 \textbf{\Pi}_3) \cdot (\textbf{\Pi}_3 \textbf{\Pi}_2 \textbf{M}_1 \textbf{\Pi}_2 \textbf{\Pi}_3) \cdot (\textbf{\Pi}_3 \textbf{\Pi}_2 \textbf{\Pi}_1) \textbf{A} \\ &= \textbf{M}_3 \textbf{\Pi}_3 \textbf{M}_2 \textbf{\Pi}_2 \textbf{M}_1 \textbf{\Pi}_1 \textbf{A} = \textbf{U} \end{split}$$

We can easily extend this to general n and obtain

$$\tilde{\mathbf{M}}_{n-1}\cdots \tilde{\mathbf{M}}_1\mathbf{PA}=\mathbf{U}$$

In addition, let

$$\mathbf{L} = \tilde{\mathbf{M}}_{1}^{-1} \cdots \tilde{\mathbf{M}}_{n-1}^{-1} = (\mathbf{I} + \tilde{\tau}^{(1)} \mathbf{e}_{1}^{T}) \cdots (\mathbf{I} + \tilde{\tau}^{(n-1)} \mathbf{e}_{n-1}^{T}) = \mathbf{I} + \sum_{k=1}^{n-1} \tilde{\tau}^{(k)} \mathbf{e}_{k}^{T}$$

where the absolute value of each entry of L is ≤ 1 (Why?)

Therefore, LU decomposition with pivoting is equivalent to

$$PA = LU$$

LU with Partial Pivoting

Find L. U s.t. PA = LU in MATLAB

In the above code, A(k, k:n) represents $\mathbf{U}(k, k:n)$ and A(k+1:n,k) represents $\mathbf{L}(k+1:n,k)$ (We already know the diagonal entries of \mathbf{L} are 1)

 $O(n^2)$ comparisons for searching for the pivots

$$O(2n^3/3)$$
 flops

LU with Complete Pivoting

Complete Pivoting: Permute the largest entry of $A^{(k-1)}(k:n,k:n)$ in absolute value into the (k,k)-entry

• Require both row and column swaps

$$\begin{split} &(\textit{rowpiv}(k), \textit{colpiv}(k)) = \text{arg max}_{(i,j) \in [k,n] \times [k,n]} \, |\mathbf{A}^{(k-1)}(i,j)| \\ &\mathbf{A}^{(k-1)}(k,1:n) \leftrightarrow \mathbf{A}^{(k-1)}(\textit{rowpiv}(k),1:n) \\ &\mathbf{A}^{(k-1)}(1:n,k) \leftrightarrow \mathbf{A}^{(k-1)}(1:n,\textit{colpiv}(k)) \end{split}$$

Then apply Gauss Transform to obtain $\mathbf{A}^{(k)}$ s.t. $\mathbf{A}^{(k)}(k+1:n,k)=\mathbf{0}$

The above Upper Triangularization gives

$$\mathbf{A}^{(k)} = \mathbf{M}_k \mathbf{\Pi}_k \mathbf{A}^{(k-1)} \Gamma_k = \mathbf{M}_k \mathbf{\Pi}_k \cdots \mathbf{M}_1 \mathbf{\Pi}_1 \mathbf{A} \Gamma_1 \cdots \Gamma_k, \quad k = 1, \dots, n-1$$

$$\mathbf{A}^{(n-1)} = \mathbf{U}$$

LU with Complete Pivoting

- $O(n^3)$ comparisons and $O(\frac{2}{3}n^3)$ flops
 - Much more costly than partial pivoting
 - But lead to much smaller bound on growth factor, which reflects the safety of applying Gaussian elimination (cf. Section 3.4.5 in textbook)
- $PAQ^T = LU$
 - $P = \Pi_{n-1} \cdots \Pi_1$, where Π_k interchanges row k and row rowpiv(k) of I
 - $\mathbf{Q} = \mathbf{\Gamma}_{n-1} \cdots \mathbf{\Gamma}_1$, where $\mathbf{\Gamma}_k$ interchanges row k and row colpiv(k) of \mathbf{I}
 - **U** is upper triangular, **L** is unit lower triangular with $|\ell_{ij}| \leq 1$

Solving Linear System via LU with Pivoting

Solve
$$\mathbf{A}\mathbf{x} = \mathbf{b}$$
 using $\mathbf{P}\mathbf{A}\mathbf{Q}^T = \mathbf{L}\mathbf{U}$

- 1. Solve Lz = Pb for z (Forward Substitution $O(n^2)$)
- 2. Solve $\mathbf{U}\mathbf{y} = \mathbf{z}$ for \mathbf{y} (Back Substitution $O(n^2)$)
- 3. Set $\mathbf{x} = \mathbf{Q}^T y$

 $\mathbf{Q} = \mathbf{I}$ for partial pivoting

Discussion

- When you call lu(A) or A\b in MATLAB, it always performs pivoting
- Apart from solving linear systems, LU decomposition is also used to
 - Compute \mathbf{A}^{-1} (solve n linear systems): let $\mathbf{B} = \mathbf{A}^{-1}$

$$AB = I \iff Ab_i = e_i, i = 1, ..., n$$

Compute det(A):

$$\det(\mathbf{A}) = \det(\mathbf{L})\det(\mathbf{U}) = \prod_{i=1}^{n} u_{ii}$$

• Another way of pivoting: Let the pivot be the element in $A^{(k-1)}(k:n,k:n)$ that has the maximal absolute value in both its row and its column (Rook Pivoting)