| • conv $C = \left\{ \sum_{i=1}^k \theta_i \mathbf{x}_i \mid \mathbf{x}_i \in C, 0 \leq 0 \leq 1, 1^T 0 = 1 \right\}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | • conv C will be the sma                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | allest convex set that contains C                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | set as long as $C$ is also finite.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| Affine hull:<br>• aff $C = \{\sum_{i=1}^k \theta_i \mathbf{x}_i \mid \mathbf{x}_i \in C \text{ for } i = 1, \dots, k, 1^T 0 = 1\}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | affine set that contains $C$ .<br>vex set, $\theta_i$ is not restricted between 0 and 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | • aff $C$ will always be an                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | infinite set. If aff $C$ contains the origin, it is also a subspace.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| Conic hull:<br>• $A = \left\{ \sum_{i=1}^{k} \theta_i \mathbf{x}_i \mid \mathbf{x}_i \in C, \theta_i > 0 \text{ for } i = 1, \dots, k \right\}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | convex conic that contains $C$ .<br>vex and affine sets, $\theta_i$ does not need to sum up 1.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| Ray:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | et that begins in $\mathbf{x}_0$ and extends infinitely in direction of $\mathbf{v}$ . In other                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| Hyperplane:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | • It is an infinite set $\mathbb{R}^{n}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | $\mathbb{R}^n$ that divides the space into two halfspaces.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| • $\mathcal{H} = \{ \mathbf{x} \mid \mathbf{a}^T \mathbf{x} = b \}$<br>• $\mathcal{H} = \{ \mathbf{x} \mid \mathbf{a}^T (\mathbf{x} - \mathbf{x}_0) = 0 \}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | ne set of vectors perpendicular to $\mathbf{a}$ . It passes through the origin. Figin by $\mathbf{x}_0$ , which is any vector in $\mathcal{H}$ .                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| • $\mathcal{H} = \mathbf{x}_0 + a^{\perp}$ Halfspaces:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | • They are infinite sets                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | of the parts divided by $\mathcal{H}$ .                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| • $\mathcal{H}_{-} = \{ \mathbf{x} \mid \mathbf{a}^{T} \mathbf{x} \le b \}$<br>• $\mathcal{H}_{+} = \{ \mathbf{x} \mid \mathbf{a}^{T} \mathbf{x} \ge b \}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | Sets (                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| Euclidean ball:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | • $B(\mathbf{x}_c, r)$ is a finite set a                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| • $B(\mathbf{x}_c, r) = \{\mathbf{x} \mid   \mathbf{x} - \mathbf{x}_c  _2 \le r\}$<br>• $B(\mathbf{x}_c, r) = \{\mathbf{x} \mid (\mathbf{x} - \mathbf{x}_c)^T (\mathbf{x} - \mathbf{x}_c) \le r\}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | <ul> <li><b>x</b><sub>c</sub> is the center of the</li> <li>r is its radius.</li> </ul>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | ball.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| • $B(\mathbf{x}_c, r) = {\mathbf{x}_c + r   \mathbf{u}   \mid   \mathbf{u}   \le 1}$<br>Ellipsoid:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | ullet E is a finite set as long                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | g as $P$ is a finite matrix.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| • $\mathcal{E} = \{ \mathbf{x} \mid (\mathbf{x} - \mathbf{x}_c)^T \mathbf{P}^{-1} (\mathbf{x} - \mathbf{x}_c) \le 1 \}$<br>• $\mathcal{E} = \{ \mathbf{x}_c + \mathbf{A} \mathbf{u} \mid   \mathbf{u}   \le 1 \}$ , where $\mathbf{A} = \mathbf{P}^{1/2}$ .                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | sitive definite, that is, $\mathbf{P} = \mathbf{P}^{T} > 0$ .                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | <ul><li>The lengths of the sem</li><li>A is invertible. When</li></ul>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | i-axes are given by $\sqrt{\lambda_i}$ .  In it is not, we say that $\mathcal E$ is a degenerated ellipsoid (degenerated                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| Norm cone:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | ellipsoids are also conv                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| Norm cone:<br>• $C = \{(x_1, x_2, \dots, x_n, t) \in \mathbb{R}^{n+1} \mid \mathbf{x} \in \mathbb{R}^n,   \mathbf{x}  _p \le t\} \subseteq \mathbb{R}^{n+1}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | • The cone norm increas                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | ses the dimension of $\mathbf{x}$ in 1.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| Proper cone: $K \subset \mathbb{R}^n$ is a proper cone when it has the followin                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | g properties                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | • The proper cone <i>K</i> is t                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | ne second-order cone, quadratic cone, Lorentz cone or ice-cream cone.  used to define the generalized inequality (or partial ordering) in some                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| <ul> <li>K is a convex cone, i.e., αK ≡ K, α &gt; 0.</li> <li>K is closed.</li> </ul>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | $\bullet \ \mathbf{x} \leq \mathbf{y} \iff \mathbf{y} - \mathbf{x} \in K$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | zed inequality, one must define both the proper cone $K$ and the set $S$ .<br>for $\mathbf{x},\mathbf{y}\in S$ (generalized inequality)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| <ul> <li>K is solid.</li> <li>K is pointed, i.e., -K ∩ K = {0}.</li> </ul>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | $K$ for $\mathbf{x}, \mathbf{y} \in S$ (strict generalized inequality).<br>There $K$ and $S$ are understood from context and the subscript $K$ is                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | l $K = \mathbb{R}^n_+$ (the nonnegative orthant). In this case, $\mathbf{x} \leq \mathbf{y}$ means that                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | matrices, $S_+^n$ is the positive definite n                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | If $K = \mathcal{S}^n_+$ or $K = \mathcal{S}^n_{++}$ , where $\mathcal{S}^n$ denotes the set of symmetric $n \times n$ despace of the positive semidefinite matrices, and $\mathcal{S}^n_{++}$ is the space of the natrices. $\mathcal{S}^n_+$ is a proper cone in $\mathcal{S}^n$ (??). In this case, the generalized                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | positive semidefindenote $X > 0$ and                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | means that $\mathbf{Y} - \mathbf{X}$ is a positive semidefinite matrix belonging to the ite cone $\mathcal{S}^n_+$ in the subspace of symmetric matrices $\mathcal{S}^n$ . It is usual to $\mathbf{X} \succeq 0$ to mean than $\mathbf{X}$ is a positive definite and semidefinite matrix,                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | • Another common                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | the $0 \in \mathbb{R}^{n \times n}$ is a zero matrix.  usage is when $S = \mathbb{R}^n$ and $K = 0 + c_n t^{n-1} \ge 0$ , for $0 \le t \le 1$ . In this case, $\mathbf{x} \le_K \mathbf{y}$ means that                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | $x_1 + x_2t + \dots + x_nt^{n-1} \le$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | $y_1 + y_2t + \dots + y_nt^{n-1}$ .  Ality has the following properties:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | ▶ If $\mathbf{x} \leq_K \mathbf{y}$ and $\mathbf{y} \leq$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | $\mathbf{z}_{K}$ $\mathbf{v}$ , then $\mathbf{x} + \mathbf{u} \leq_{k} \mathbf{y} + \mathbf{v}$ (preserve under addition).<br>$\mathbf{z}_{K}$ $\mathbf{z}$ , then $\mathbf{x} \leq_{K} \mathbf{z}$ (transitivity).                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | $\triangleright \mathbf{x} \leq_K \mathbf{x}$ (reflexivity                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | $\mathbf{x} \leq_K \mathbf{y}$ for $\alpha \geq 0$ (preserve under nonnegative scaling).<br>$\mathbf{y}$ ).<br>$\mathbf{x}_K \mathbf{x}$ , then $\mathbf{x} = \mathbf{y}$ (antisymmetric).                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | • It is called partial order                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | $\mathbf{x} = 1, 2, \ldots, \text{ and } \mathbf{x}_i \to \mathbf{x} \text{ and } \mathbf{y}_i \to \mathbf{y} \text{ as } i \to \infty, \text{ then } \mathbf{x} \leq_K \mathbf{y}.$ ring because $\mathbf{x} \not\succeq_K \mathbf{y}$ and $\mathbf{y} \not\succeq_K \mathbf{x}$ for many $\mathbf{x}, \mathbf{y} \in S$ . When it happens,                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | < and >).                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | the not comparable (this case does not happen in ordinary inequality, element of $S$ with respect to the proper cone $K$ if $\mathbf{x} \leq_K \mathbf{y}$ , $\forall \mathbf{y} \in S$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | (for maximum, $\mathbf{x} \succeq_K \mathbf{y}$ where $\mathbf{x} + K$ denotes the is comparable with $\mathbf{x}$ and $\mathbf{x} = \mathbf{x} + K$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | $x, \forall y \in S$ ). It means that $S \subseteq x + K$ (for the maximum, $S \subseteq x - K$ ), the set $K$ shifted from the origin by $x$ . Note that any point in $K + x$ and is greater or equal to $x$ in the generalized inequality mean. The                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | set $S$ does not necessary unique if it does.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | rily have a minimum (maximum), but the minimum (maximum) is element of $S$ with respect to the proper cone $K$ if $\mathbf{y} \leq_K \mathbf{x}$ only when                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | $\mathbf{y} = \mathbf{x}$ (for the maximal (for the maximal ( $\mathbf{x} + \mathbf{A}$ )                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | element of $S$ with respect to the proper cone $K$ if $\mathbf{y} \leq_K \mathbf{x}$ only when $\mathbf{y} \geq_K \mathbf{x}$ only when $\mathbf{y} = \mathbf{x}$ ). It means that $(\mathbf{x} - K) \cap S = \{\mathbf{x}\}$ for minimal $K \cap S = \{\mathbf{x}\}$ , where $\mathbf{x} - K$ denotes the reflected set $K$ shift by $\mathbf{x}$ . Note is comparable with $\mathbf{x}$ and is less than or equal to $\mathbf{x}$ in the generalized                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | inequality mean. The second when $K = \mathbb{R}_+$ and $S =$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | set $S$ can have many different minimal (maximal) elements.<br>$\mathbb{R}$ (ordinary inequality), the minimal is equal to the minimum and                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | the maximal is equal t  When we say that a s                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| Dual cone:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | nonincreasing scalar fu                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | nctions.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| Dual cone:<br>• $K^* = \{ \mathbf{y} \mid \mathbf{x}^T \mathbf{y} \ge 0, \ \forall \ \mathbf{x} \in K \}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | <ul> <li>• K* is a cone, and it is convex even when the original cone K is nonconvex.</li> <li>• K* has the following properties:</li> <li>▶ K* is closed and convex.</li> </ul>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | $ ightharpoonup K_1 \subseteq K_2 \text{ implies } I$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | ▶ If the closure of <i>I</i>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | G is pointed then $K^*$ has a nonempty interior.<br>of the convex hull of $K$ . Hence, if $K$ is convex and closed, $K^{**} = K$ .                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| Polyhedra:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | or may not be an infinite set.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| • $\mathcal{P} = \left\{ \mathbf{x} \mid \mathbf{a}_{j}^{T} \mathbf{x} \leq b_{j}, j = 1, \dots, m, \mathbf{a}_{j}^{T} \mathbf{x} = d_{j}, j = 1, \dots, p \right\}$<br>• $\mathcal{P} = \left\{ \mathbf{x} \mid \mathbf{A} \mathbf{x} \leq \mathbf{b}, \mathbf{C} \mathbf{x} = \mathbf{d} \right\}, \text{ where } \mathbf{A} = \begin{bmatrix} \mathbf{a}_{1} & \mathbf{a}_{2} & \dots & \mathbf{a}_{m} \end{bmatrix}^{T} \text{ and } \mathbf{a}_{j} = \mathbf{a}_{j}, \mathbf{a}_{j} = \mathbf{a}_{j} = \mathbf{a}_{j}, \mathbf{a}_{j} = \mathbf{a}_{j}, \mathbf{a}_{j} = \mathbf{a}_{j}, \mathbf{a}_{j} = \mathbf{a}_{j}, \mathbf{a}_{j} = \mathbf{a}_{j} = \mathbf{a}_{j}, \mathbf{a}_{j} = a$                                                                                                                                       | $\mathbf{d} \ \mathbf{C} = \begin{bmatrix} \mathbf{c}_1 & \mathbf{c}_2 & \dots & \mathbf{c}_m \end{bmatrix}^T$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | It of the intersection of $m$ halfspaces and $p$ hyperplanes.<br>es, lines, rays line segments, and halfspaces are all special cases of                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| [                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | J                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | $nt$ , $\mathbb{R}^n_+ = \{ \mathbf{x} \in \mathbb{R}^n \mid x_i \le 0 \text{ for } i = 1, \dots n \} = \{ \mathbf{x} \in \mathbb{R}^n \mid \mathbf{I}\mathbf{x} \succeq 0 \}$ , is a spe-                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| Simplex:  • $S = \text{conv } \{\mathbf{v}_m\}_{m=0}^k = \{\sum_{i=0}^k \theta_i \mathbf{v}_i \mid 0 \le \mathbf{\theta} \le 1, 1^T \mathbf{\theta} = 1\}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | • Simplexes are a subfar                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| • $S = \{ \mathbf{x} \mid \mathbf{x} = \mathbf{v}_0 + \mathbf{V} \mathbf{\theta} \}$ , where $\mathbf{V} = \begin{bmatrix} \mathbf{v}_1 - \mathbf{v}_0 & \dots & \mathbf{v}_n - \mathbf{v}_0 \end{bmatrix} \in \mathbb{R}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | <ul> <li>Also called k-dimensio</li> <li>The set {v<sub>m</sub>}<sup>k</sup><sub>m=0</sub> is a sindependent.</li> </ul>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | nal Simplex in $\mathbb{R}^n$ . affinely independent, which means $\{\mathbf v_1 - \mathbf v_0, \dots, \mathbf v_k - \mathbf v_0\}$ are linearly                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| • $S = \{ \mathbf{x} \mid \underbrace{\mathbf{A}_1 \mathbf{x} \leq \mathbf{A}_1 \mathbf{v}_0, 1^T \mathbf{A}_1 \mathbf{x} \leq 1 + 1^T \mathbf{A}_1 \mathbf{v}_0}_{\text{Linear inequalities in } x}, \underbrace{\mathbf{A}_2 \mathbf{x} = \mathbf{A}_2 \mathbf{v}_0}_{\text{Linear equalities in } x} \}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | (1 oryneura form), where $\mathbf{A} =$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | tall matrix, i.e., $\operatorname{rank}(\mathbf{V}) = k$ . All its column vectors are independent. t pseudoinverse.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| $ \begin{bmatrix} \mathbf{A}_1 \\ \mathbf{A}_2 \end{bmatrix} \text{ and } \mathbf{AV} = \begin{bmatrix} \mathbf{I}_{k \times k} \\ 0_{n-k \times n-k} \end{bmatrix} $ \alpha-sublevel set:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | ,                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | we) function, then sublevel sets of $f$ are convexes (concaves) for any                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| • $C_{\alpha} = \{\mathbf{x} \in \text{dom}(f) \mid f(\mathbf{x}) \leq \alpha\}$ (regarding convexity), where<br>• $C_{\alpha} = \{\mathbf{x} \in \text{dom}(f) \mid f(\mathbf{x}) \geq \alpha\}$ (regarding concavity), where                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | $\alpha \in \mathbb{R}$ .                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | ie: a function can have all its sublevel set convex and not be a convex                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | • $C_{\alpha} \subseteq \text{dom}(f)$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| Function Union: $C = A \cup B$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | Convex (convex (convex is a second of the cases).                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | ncave)?                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | nvexity Comments                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| Intersection: $C = A \cap B$<br>Convex function: $f : \text{dom}(f) \to \mathbb{R}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | Yes, if $A$ and $B$ are convex set Yes.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | S.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | • Graphically, the line segment between $(\mathbf{x}, f(\mathbf{x}))$ and $(\mathbf{y}, f(\mathbf{y}))$ lies always above the graph $f$ .                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| <ul> <li>f(θx + (1 - θ)y) ≤ θf(x) + (1 - θ)f(y), where 0 ≤ θ ≤ 1.</li> <li>dom (f) shall be a convex set to f be considered a convex function.</li> </ul>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | <ul> <li>In terms of sets, a function is convex iff a line segment within dom (f), which is a convex set, gives an image set that is also</li> </ul>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | <ul> <li>convex.</li> <li>dom f is convex iff all points for any line segment within dom (f) belong to it</li> </ul>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | belong to it.  • First-order condition: $f$ is convex iff dom $(f)$ is convex and $f(\mathbf{y}) \ge f(\mathbf{x}) + \nabla f(\mathbf{x})^{T}(\mathbf{y} - \mathbf{x}), \forall \mathbf{x}, \mathbf{y} \in \text{dom}(f), \mathbf{x} \ne \mathbf{y}, \text{ being } \nabla f(\mathbf{x}) \text{ the } \mathbf{y} = \mathbf{y}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | gradient vector. This inequation says that the first-order Taylor approximation is a <i>underestimator</i> for convex functions. The first-order condition requires that $f$ is differentiable.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | • If $\nabla f(\mathbf{x}) = 0$ , then $f(\mathbf{y}) \geq f(\mathbf{x}), \forall \mathbf{y} \in \text{dom}(f)$ and $\mathbf{x}$ is a global minimum.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | • Second-order condition: $f$ is convex iff $dom(f)$ is convex and $\mathbf{H} \geq 0$ , that is, the Hessian matrix $\mathbf{H}$ is a positive semidefinite matrix. It means that the graphic of the curvature has a positive                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | (upward) curvature at <b>x</b> . It is important to note that, if $\mathbf{H} > 0, \forall \mathbf{x} \in \text{dom}(f)$ , then $f$ is strictly convex. But is $f$ is strictly convex, not necessarily that $\mathbf{H} > 0, \forall \mathbf{x} \in \text{dom}(f)$ . Therefore,                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| Affine function $f: \mathbb{R}^n \to \mathbb{R}^m$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | Yes, if the domain $S \subseteq \mathbb{R}^n$ is a $f(S) = \{f(\mathbf{x})   \mathbf{x} \in S\} \subseteq \mathbb{R}^m$ is a                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | strict convexity can only be partially characterized.  • The affine function, $f(\mathbf{x}) = \mathbf{A}\mathbf{x} + \mathbf{b}$ , is a broader category that encompasses the linear function, $f(\mathbf{x}) = \mathbf{A}\mathbf{x}$ . The linear function                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| • $f(\mathbf{x}) = \mathbf{A}\mathbf{x} + \mathbf{b}$ , where $\mathbf{A} \in \mathbb{R}^{m \times n}$ , $\mathbf{b} \in \mathbb{R}^m$ , $\mathbf{x} \in \mathbb{R}^n$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | $J(\sim) - \{J(\mathbf{x})   \mathbf{x} \in \mathbf{S}\} \subseteq \mathbb{R}^m \text{ is a}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | JOHNOA.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | encompasses the linear function, $f(\mathbf{x}) = \mathbf{A}\mathbf{x}$ . The linear function has its origin fixed at $0$ after the transformation, whereas the affine function does not necessarily have it (when not, this makes the affine function nonlinear). Graphically, we can think of an                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | affine function as a linear transformation plus a shift from the origin of $\mathbf{b}$ .                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | • A special case of the linear function is when $\mathbf{A} = \mathbf{c}^{T}$ . In this case, we have $f(\mathbf{x}) = \mathbf{c}^{T}\mathbf{x}$ , which is the inner product between the vector $\mathbf{c}$ and $\mathbf{x}$ .                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | <ul> <li>we have f(x) = c<sup>T</sup>x, which is the inner product between the vector c and x.</li> <li>The inverse image of C, f<sup>-1</sup>(C) = {x   f(x) ∈ C}, is also convex.</li> <li>The linear matrix inequality (LMI), A(x) = x<sub>1</sub>A<sub>1</sub> + ··· + x<sub>n</sub>A<sub>n</sub> ≤ B,</li> </ul>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | <ul> <li>we have f(x) = c<sup>T</sup>x, which is the inner product between the vector c and x.</li> <li>The inverse image of C, f<sup>-1</sup>(C) = {x   f(x) ∈ C}, is also convex.</li> <li>The linear matrix inequality (LMI), A(x) = x<sub>1</sub>A<sub>1</sub> + ··· + x<sub>n</sub>A<sub>n</sub> ≤ B, is a special case of affine function. In other words, f(S) = {x   A(x) ≤ B} is a convex set if S is convex. Many optimization problems can be formulated as LMI problems and solved opti-</li> </ul>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| Exponential function $f: \mathbb{R} \to \mathbb{R}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | Yes.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | <ul> <li>we have f(x) = c<sup>T</sup>x, which is the inner product between the vector c and x.</li> <li>The inverse image of C, f<sup>-1</sup>(C) = {x   f(x) ∈ C}, is also convex.</li> <li>The linear matrix inequality (LMI), A(x) = x<sub>1</sub>A<sub>1</sub> + ··· + x<sub>n</sub>A<sub>n</sub> ≤ B, is a special case of affine function. In other words, f(S) = {x   A(x) ≤ B} is a convex set if S is convex. Many optimization</li> </ul>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| Exponential function $f : \mathbb{R} \to \mathbb{R}$<br>• $f(x) = e^{ax} \in \mathbb{R}$ , where $a \in \mathbb{R}$<br>Quadratic function $f : \mathbb{R}^n \to \mathbb{R}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | Yes.  It depends on the matrix <b>P</b> :                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | <ul> <li>we have f(x) = c<sup>T</sup>x, which is the inner product between the vector c and x.</li> <li>The inverse image of C, f<sup>-1</sup>(C) = {x   f(x) ∈ C}, is also convex.</li> <li>The linear matrix inequality (LMI), A(x) = x<sub>1</sub>A<sub>1</sub> + ··· + x<sub>n</sub>A<sub>n</sub> ≤ B, is a special case of affine function. In other words, f(S) = {x   A(x) ≤ B} is a convex set if S is convex. Many optimization problems can be formulated as LMI problems and solved opti-</li> </ul>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| • $f(x) = e^{ax} \in \mathbb{R}$ , where $a \in \mathbb{R}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | <b>)</b> .                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | <ul> <li>we have f(x) = c<sup>T</sup>x, which is the inner product between the vector c and x.</li> <li>The inverse image of C, f<sup>-1</sup>(C) = {x   f(x) ∈ C}, is also convex.</li> <li>The linear matrix inequality (LMI), A(x) = x<sub>1</sub>A<sub>1</sub> + ··· + x<sub>n</sub>A<sub>n</sub> ≤ B, is a special case of affine function. In other words, f(S) = {x   A(x) ≤ B} is a convex set if S is convex. Many optimization problems can be formulated as LMI problems and solved opti-</li> </ul>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| • $f(x) = e^{ax} \in \mathbb{R}$ , where $a \in \mathbb{R}$ Quadratic function $f : \mathbb{R}^n \to \mathbb{R}$ • $f(\mathbf{x}) = a\mathbf{x}^T\mathbf{P}\mathbf{x} + \mathbf{p}^T\mathbf{x} + r \in \mathbb{R}$ , where $\mathbf{x}, \mathbf{p} \in \mathbb{R}^n, \mathbf{P} \in \mathbb{R}^{n \times n}$ , and                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | It depends on the matrix $P$ :  • $f$ is convex iff $P \ge 0$ .                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | <ul> <li>we have f(x) = c<sup>T</sup>x, which is the inner product between the vector c and x.</li> <li>The inverse image of C, f<sup>-1</sup>(C) = {x   f(x) ∈ C}, is also convex.</li> <li>The linear matrix inequality (LMI), A(x) = x<sub>1</sub>A<sub>1</sub> + ··· + x<sub>n</sub>A<sub>n</sub> ≤ B, is a special case of affine function. In other words, f(S) = {x   A(x) ≤ B} is a convex set if S is convex. Many optimization problems can be formulated as LMI problems and solved opti-</li> </ul>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| • $f(x) = e^{ax} \in \mathbb{R}$ , where $a \in \mathbb{R}$ Quadratic function $f : \mathbb{R}^n \to \mathbb{R}$ • $f(\mathbf{x}) = a\mathbf{x}^T \mathbf{P} \mathbf{x} + \mathbf{p}^T \mathbf{x} + r \in \mathbb{R}$ , where $\mathbf{x}, \mathbf{p} \in \mathbb{R}^n, \mathbf{P} \in \mathbb{R}^{n \times n}$ , and $a, b \in \mathbb{R}$ Power function $f : \mathbb{R}_{++} \to \mathbb{R}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | <ul> <li>It depends on the matrix P:</li> <li>f is convex iff P ≥ 0.</li> <li>f is strictly convex iff P &gt; 0.</li> <li>f is concave iff P ≤ 0.</li> <li>f is strictly concave iff P &lt;</li> </ul>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 0.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | <ul> <li>we have f(x) = c<sup>T</sup>x, which is the inner product between the vector c and x.</li> <li>The inverse image of C, f<sup>-1</sup>(C) = {x   f(x) ∈ C}, is also convex.</li> <li>The linear matrix inequality (LMI), A(x) = x<sub>1</sub>A<sub>1</sub> + ··· + x<sub>n</sub>A<sub>n</sub> ≤ B, is a special case of affine function. In other words, f(S) = {x   A(x) ≤ B} is a convex set if S is convex. Many optimization problems can be formulated as LMI problems and solved opti-</li> </ul>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| • $f(x) = e^{ax} \in \mathbb{R}$ , where $a \in \mathbb{R}$ Quadratic function $f : \mathbb{R}^n \to \mathbb{R}$ • $f(\mathbf{x}) = a\mathbf{x}^T \mathbf{P} \mathbf{x} + \mathbf{p}^T \mathbf{x} + r \in \mathbb{R}$ , where $\mathbf{x}, \mathbf{p} \in \mathbb{R}^n, \mathbf{P} \in \mathbb{R}^{n \times n}$ , and $a, b \in \mathbb{R}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | <ul> <li>It depends on the matrix P:</li> <li>f is convex iff P ≥ 0.</li> <li>f is strictly convex iff P &gt; 0.</li> <li>f is concave iff P ≤ 0.</li> <li>f is strictly concave iff P &lt;</li> </ul>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 0.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | <ul> <li>we have f(x) = c<sup>T</sup>x, which is the inner product between the vector c and x.</li> <li>The inverse image of C, f<sup>-1</sup>(C) = {x   f(x) ∈ C}, is also convex.</li> <li>The linear matrix inequality (LMI), A(x) = x<sub>1</sub>A<sub>1</sub> + ··· + x<sub>n</sub>A<sub>n</sub> ≤ B, is a special case of affine function. In other words, f(S) = {x   A(x) ≤ B} is a convex set if S is convex. Many optimization problems can be formulated as LMI problems and solved opti-</li> </ul>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| • $f(x) = e^{ax} \in \mathbb{R}$ , where $a \in \mathbb{R}$ Quadratic function $f : \mathbb{R}^n \to \mathbb{R}$ • $f(\mathbf{x}) = a\mathbf{x}^T \mathbf{P} \mathbf{x} + \mathbf{p}^T \mathbf{x} + r \in \mathbb{R}$ , where $\mathbf{x}, \mathbf{p} \in \mathbb{R}^n, \mathbf{P} \in \mathbb{R}^{n \times n}$ , and $a, b \in \mathbb{R}$ Power function $f : \mathbb{R}_{++} \to \mathbb{R}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | <ul> <li>It depends on the matrix P:</li> <li>f is convex iff P ≥ 0.</li> <li>f is strictly convex iff P &gt; 0.</li> <li>f is concave iff P ≤ 0.</li> <li>f is strictly concave iff P &lt;</li> <li>It depends on a</li> <li>f is convex iff a ≥ 1 or a ≤</li> </ul>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 0.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | <ul> <li>we have f(x) = c<sup>T</sup>x, which is the inner product between the vector c and x.</li> <li>The inverse image of C, f<sup>-1</sup>(C) = {x   f(x) ∈ C}, is also convex.</li> <li>The linear matrix inequality (LMI), A(x) = x<sub>1</sub>A<sub>1</sub> + ··· + x<sub>n</sub>A<sub>n</sub> ≤ B, is a special case of affine function. In other words, f(S) = {x   A(x) ≤ B} is a convex set if S is convex. Many optimization problems can be formulated as LMI problems and solved opti-</li> </ul>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| • $f(x) = e^{ax} \in \mathbb{R}$ , where $a \in \mathbb{R}$ Quadratic function $f : \mathbb{R}^n \to \mathbb{R}$ • $f(\mathbf{x}) = a\mathbf{x}^T \mathbf{P} \mathbf{x} + \mathbf{p}^T \mathbf{x} + r \in \mathbb{R}$ , where $\mathbf{x}, \mathbf{p} \in \mathbb{R}^n, \mathbf{P} \in \mathbb{R}^{n \times n}$ , and $a, b \in \mathbb{R}$ Power function $f : \mathbb{R}_{++} \to \mathbb{R}$ • $f(x) = x^a$ Power of absolute value: $f : \mathbb{R} \to \mathbb{R}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | <ul> <li>It depends on the matrix P:</li> <li>f is convex iff P ≥ 0.</li> <li>f is strictly convex iff P &gt; 0.</li> <li>f is concave iff P ≤ 0.</li> <li>f is strictly concave iff P &lt;</li> <li>It depends on a</li> <li>f is convex iff a ≥ 1 or a ≤</li> <li>f is concave iff 0 ≤ a ≤ 1.</li> </ul>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 0.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | <ul> <li>we have f(x) = c<sup>T</sup>x, which is the inner product between the vector c and x.</li> <li>The inverse image of C, f<sup>-1</sup>(C) = {x   f(x) ∈ C}, is also convex.</li> <li>The linear matrix inequality (LMI), A(x) = x<sub>1</sub>A<sub>1</sub> + ··· + x<sub>n</sub>A<sub>n</sub> ≤ B, is a special case of affine function. In other words, f(S) = {x   A(x) ≤ B} is a convex set if S is convex. Many optimization problems can be formulated as LMI problems and solved opti-</li> </ul>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| • $f(x) = e^{ax} \in \mathbb{R}$ , where $a \in \mathbb{R}$ Quadratic function $f : \mathbb{R}^n \to \mathbb{R}$ • $f(\mathbf{x}) = a\mathbf{x}^T \mathbf{P} \mathbf{x} + \mathbf{p}^T \mathbf{x} + r \in \mathbb{R}$ , where $\mathbf{x}, \mathbf{p} \in \mathbb{R}^n, \mathbf{P} \in \mathbb{R}^{n \times n}$ , and $a, b \in \mathbb{R}$ Power function $f : \mathbb{R}_{++} \to \mathbb{R}$ • $f(x) = x^a$ Power of absolute value: $f : \mathbb{R} \to \mathbb{R}$ • $f(x) =  x ^p$ , where $p \le 1$ .  Logarithm function: $f : \mathbb{R}_{++} \to \mathbb{R}$ • $f(x) = \log x$ Negative entropy function: $f : \mathbb{R}_+ \to \mathbb{R}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | It depends on the matrix $P$ :  • $f$ is convex iff $P \ge 0$ .  • $f$ is strictly convex iff $P > 0$ .  • $f$ is concave iff $P \le 0$ .  • $f$ is strictly concave iff $P < 0$ .  It depends on $a$ .  • $f$ is convex iff $a \ge 1$ or $a \le 0$ .  • $f$ is concave iff $f$ is concave if        | 0.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | <ul> <li>we have f(x) = c<sup>T</sup>x, which is the inner product between the vector c and x.</li> <li>The inverse image of C, f<sup>-1</sup>(C) = {x   f(x) ∈ C}, is also convex.</li> <li>The linear matrix inequality (LMI), A(x) = x<sub>1</sub>A<sub>1</sub>+···+x<sub>n</sub>A<sub>n</sub> ≤ B, is a special case of affine function. In other words, f(S) = {x   A(x) ≤ B} is a convex set if S is convex. Many optimization problems can be formulated as LMI problems and solved optimally.</li> </ul>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| • $f(x) = e^{ax} \in \mathbb{R}$ , where $a \in \mathbb{R}$ Quadratic function $f : \mathbb{R}^n \to \mathbb{R}$ • $f(\mathbf{x}) = a\mathbf{x}^T \mathbf{P} \mathbf{x} + \mathbf{p}^T \mathbf{x} + r \in \mathbb{R}$ , where $\mathbf{x}, \mathbf{p} \in \mathbb{R}^n, \mathbf{P} \in \mathbb{R}^{n \times n}$ , and $a, b \in \mathbb{R}$ Power function $f : \mathbb{R}_{++} \to \mathbb{R}$ • $f(x) = x^a$ Power of absolute value: $f : \mathbb{R} \to \mathbb{R}$ • $f(x) =  x ^p$ , where $p \le 1$ .  Logarithm function: $f : \mathbb{R}_{++} \to \mathbb{R}$ • $f(x) = \log x$ Negative entropy function: $f : \mathbb{R}_+ \to \mathbb{R}$ • $f(x) = x \log x$ Minkwoski distance, $p$ -norm function, or $l_p$ norm function:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | It depends on the matrix $P$ :  • $f$ is convex iff $P \ge 0$ .  • $f$ is strictly convex iff $P > 0$ .  • $f$ is concave iff $P \le 0$ .  • $f$ is strictly concave iff $P < 0$ .  It depends on $a$ .  • $f$ is convex iff $a \ge 1$ or $a \le 0$ .  • $f$ is convex iff $f$ is concave if $f$ is conca       | 0.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | <ul> <li>we have f(x) = c<sup>T</sup>x, which is the inner product between the vector c and x.</li> <li>The inverse image of C, f<sup>-1</sup>(C) = {x   f(x) ∈ C}, is also convex.</li> <li>The linear matrix inequality (LMI), A(x) = x<sub>1</sub>A<sub>1</sub> + ··· + x<sub>n</sub>A<sub>n</sub> ≤ B, is a special case of affine function. In other words, f(S) = {x   A(x) ≤ B} is a convex set if S is convex. Many optimization problems can be formulated as LMI problems and solved opti-</li> </ul>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| • $f(x) = e^{ax} \in \mathbb{R}$ , where $a \in \mathbb{R}$ Quadratic function $f : \mathbb{R}^n \to \mathbb{R}$ • $f(\mathbf{x}) = a\mathbf{x}^T \mathbf{P} \mathbf{x} + \mathbf{p}^T \mathbf{x} + r \in \mathbb{R}$ , where $\mathbf{x}, \mathbf{p} \in \mathbb{R}^n, \mathbf{P} \in \mathbb{R}^{n \times n}$ , and $a, b \in \mathbb{R}$ Power function $f : \mathbb{R}_{++} \to \mathbb{R}$ • $f(x) = x^a$ Power of absolute value: $f : \mathbb{R} \to \mathbb{R}$ • $f(x) =  x ^p$ , where $p \leq 1$ .  Logarithm function: $f : \mathbb{R}_{++} \to \mathbb{R}$ • $f(x) = \log x$ Negative entropy function: $f : \mathbb{R}_+ \to \mathbb{R}$ • $f(x) = x \log x$ Minkwoski distance, $p$ -norm function, or $l_p$ norm function: $f : \mathbb{R}^n \to \mathbb{R}$ • $f(\mathbf{x}) = \ \mathbf{x}\ _p$ , where $p \in \mathbb{N}_{++}$ .                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | It depends on the matrix $P$ :  • $f$ is convex iff $P \ge 0$ .  • $f$ is strictly convex iff $P > 0$ .  • $f$ is concave iff $P \le 0$ .  • $f$ is strictly concave iff $P < 0$ .  It depends on $P$ • $f$ is convex iff $P$ • $f$ is convex iff $P$ • $f$ is convex iff $P$ • $f$ is concave iff $P$ • $f$                                                                                                                           | 0.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | we have $f(\mathbf{x}) = \mathbf{c}^{T}\mathbf{x}$ , which is the inner product between the vector $\mathbf{c}$ and $\mathbf{x}$ .  • The inverse image of $C$ , $f^{-1}(C) = \{\mathbf{x} \mid f(\mathbf{x}) \in C\}$ , is also convex.  • The linear matrix inequality (LMI), $\mathbf{A}(\mathbf{x}) = x_1 \mathbf{A}_1 + \dots + x_n \mathbf{A}_n \leq \mathbf{B}$ , is a special case of affine function. In other words, $f(S) = \{\mathbf{x} \mid \mathbf{A}(\mathbf{x}) \leq \mathbf{B}\}$ is a convex set if $S$ is convex. Many optimization problems can be formulated as LMI problems and solved optimally.  • When it is defined $f(x) _{x=0} = 0$ , $\operatorname{dom}(f) = \mathbb{R}$ .                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| • $f(x) = e^{ax} \in \mathbb{R}$ , where $a \in \mathbb{R}$ Quadratic function $f : \mathbb{R}^n \to \mathbb{R}$ • $f(\mathbf{x}) = a\mathbf{x}^T \mathbf{P} \mathbf{x} + \mathbf{p}^T \mathbf{x} + r \in \mathbb{R}$ , where $\mathbf{x}, \mathbf{p} \in \mathbb{R}^n, \mathbf{P} \in \mathbb{R}^{n \times n}$ , and $a, b \in \mathbb{R}$ Power function $f : \mathbb{R}_{++} \to \mathbb{R}$ • $f(x) = x^a$ Power of absolute value: $f : \mathbb{R} \to \mathbb{R}$ • $f(x) =  x ^p$ , where $p \le 1$ .  Logarithm function: $f : \mathbb{R}_{++} \to \mathbb{R}$ • $f(x) = \log x$ Negative entropy function: $f : \mathbb{R}_+ \to \mathbb{R}$ • $f(x) = x \log x$ Minkwoski distance, $p$ -norm function, or $l_p$ norm function: $f : \mathbb{R}^n \to \mathbb{R}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | It depends on the matrix $P$ :  • $f$ is convex iff $P \ge 0$ .  • $f$ is strictly convex iff $P > 0$ .  • $f$ is concave iff $P \le 0$ .  • $f$ is strictly concave iff $P < 0$ .  It depends on $a$ .  • $f$ is convex iff $a \ge 1$ or $a \le 0$ .  • $f$ is concave iff $f$ is concave if $f$      | 0.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | we have $f(\mathbf{x}) = \mathbf{c}^{T}\mathbf{x}$ , which is the inner product between the vector $\mathbf{c}$ and $\mathbf{x}$ .  • The inverse image of $C$ , $f^{-1}(C) = \{\mathbf{x} \mid f(\mathbf{x}) \in C\}$ , is also convex.  • The linear matrix inequality (LMI), $\mathbf{A}(\mathbf{x}) = x_1 \mathbf{A}_1 + \dots + x_n \mathbf{A}_n \leq \mathbf{B}$ , is a special case of affine function. In other words, $f(S) = \{\mathbf{x} \mid \mathbf{A}(\mathbf{x}) \leq \mathbf{B}\}$ is a convex set if $S$ is convex. Many optimization problems can be formulated as LMI problems and solved optimally.  • When it is defined $f(x) _{x=0} = 0$ , $dom(f) = \mathbb{R}$ .                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| • $f(x) = e^{ax} \in \mathbb{R}$ , where $a \in \mathbb{R}$ Quadratic function $f : \mathbb{R}^n \to \mathbb{R}$ • $f(\mathbf{x}) = a\mathbf{x}^T \mathbf{P} \mathbf{x} + \mathbf{p}^T \mathbf{x} + r \in \mathbb{R}$ , where $\mathbf{x}, \mathbf{p} \in \mathbb{R}^n, \mathbf{P} \in \mathbb{R}^{n \times n}$ , and $a, b \in \mathbb{R}$ Power function $f : \mathbb{R}_{++} \to \mathbb{R}$ • $f(x) = x^a$ Power of absolute value: $f : \mathbb{R} \to \mathbb{R}$ • $f(x) =  x ^p$ , where $p \le 1$ .  Logarithm function: $f : \mathbb{R}_{++} \to \mathbb{R}$ • $f(x) = \log x$ Negative entropy function: $f : \mathbb{R}_+ \to \mathbb{R}$ • $f(x) = x \log x$ Minkwoski distance, $p$ -norm function, or $l_p$ norm function: $f : \mathbb{R}^n \to \mathbb{R}$ • $f(\mathbf{x}) =   \mathbf{x}  _p$ , where $p \in \mathbb{N}_{++}$ .  Maximum element: $f : \mathbb{R}^n \to \mathbb{R}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | It depends on the matrix $P$ :  • $f$ is convex iff $P \ge 0$ .  • $f$ is strictly convex iff $P > 0$ .  • $f$ is concave iff $P \le 0$ .  • $f$ is strictly concave iff $P < 0$ .  It depends on $P$ • $f$ is convex iff $P$ • $f$ is convex iff $P$ • $f$ is convex iff $P$ • $f$ is concave iff $P$ • $f$                                                                                                                           | <b>0</b> .                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | we have $f(\mathbf{x}) = \mathbf{c}^{T}\mathbf{x}$ , which is the inner product between the vector $\mathbf{c}$ and $\mathbf{x}$ .  • The inverse image of $C$ , $f^{-1}(C) = \{\mathbf{x} \mid f(\mathbf{x}) \in C\}$ , is also convex.  • The linear matrix inequality (LMI), $\mathbf{A}(\mathbf{x}) = x_1 \mathbf{A}_1 + \dots + x_n \mathbf{A}_n \leq \mathbf{B}$ , is a special case of affine function. In other words, $f(S) = \{\mathbf{x} \mid \mathbf{A}(\mathbf{x}) \leq \mathbf{B}\}$ is a convex set if $S$ is convex. Many optimization problems can be formulated as LMI problems and solved optimally.  • When it is defined $f(x) _{x=0} = 0$ , $dom(f) = \mathbb{R}$ .                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| • $f(x) = e^{ax} \in \mathbb{R}$ , where $a \in \mathbb{R}$ Quadratic function $f : \mathbb{R}^n \to \mathbb{R}$ • $f(\mathbf{x}) = a\mathbf{x}^T \mathbf{P} \mathbf{x} + \mathbf{p}^T \mathbf{x} + r \in \mathbb{R}$ , where $\mathbf{x}, \mathbf{p} \in \mathbb{R}^n, \mathbf{P} \in \mathbb{R}^{n \times n}$ , and $a, b \in \mathbb{R}$ Power function $f : \mathbb{R}_{++} \to \mathbb{R}$ • $f(x) = x^a$ Power of absolute value: $f : \mathbb{R} \to \mathbb{R}$ • $f(x) =  x ^p$ , where $p \leq 1$ .  Logarithm function: $f : \mathbb{R}_{++} \to \mathbb{R}$ • $f(x) = \log x$ Negative entropy function: $f : \mathbb{R}_+ \to \mathbb{R}$ • $f(x) = x \log x$ Minkwoski distance, $p$ -norm function, or $l_p$ norm function: $f : \mathbb{R}^n \to \mathbb{R}$ • $f(\mathbf{x}) = \ \mathbf{x}\ _p$ , where $p \in \mathbb{N}_{++}$ .  Maximum element: $f : \mathbb{R}^n \to \mathbb{R}$ • $f(\mathbf{x}) = \max\{x_1, \dots, x_n\}$ .  Pointwise maximum (maximum function): $f : \mathbb{R}^n \to \mathbb{R}$ • $f(\mathbf{x}) = \max\{f_1(\mathbf{x}), \dots, f_n(\mathbf{x})\}$ .                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | It depends on the matrix $P$ :  • $f$ is convex iff $P \ge 0$ .  • $f$ is strictly convex iff $P > 0$ .  • $f$ is concave iff $P \le 0$ .  • $f$ is strictly concave iff $P < 0$ .  It depends on $a$ .  • $f$ is convex iff $a \ge 1$ or $a \le 0$ .  • $f$ is concave iff $f$ is concave if $f$ is       | <b>0</b> .                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | <ul> <li>we have f(x) = c<sup>T</sup>x, which is the inner product between the vector c and x.</li> <li>The inverse image of C, f<sup>-1</sup>(C) = {x   f(x) ∈ C}, is also convex.</li> <li>The linear matrix inequality (LMI), A(x) = x<sub>1</sub>A<sub>1</sub>+···+x<sub>n</sub>A<sub>n</sub> ≤ B, is a special case of affine function. In other words, f(S) = {x   A(x) ≤ B} is a convex set if S is convex. Many optimization problems can be formulated as LMI problems and solved optimally.</li> <li>When it is defined f(x) <sub>x=0</sub> = 0, dom (f) = ℝ.</li> <li>It can be proved by triangular inequality.</li> </ul>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| • $f(x) = e^{ax} \in \mathbb{R}$ , where $a \in \mathbb{R}$ Quadratic function $f : \mathbb{R}^n \to \mathbb{R}$ • $f(\mathbf{x}) = a\mathbf{x}^T \mathbf{P} \mathbf{x} + \mathbf{p}^T \mathbf{x} + r \in \mathbb{R}$ , where $\mathbf{x}, \mathbf{p} \in \mathbb{R}^n, \mathbf{P} \in \mathbb{R}^{n \times n}$ , and $a, b \in \mathbb{R}$ Power function $f : \mathbb{R}_{++} \to \mathbb{R}$ • $f(x) = x^a$ Power of absolute value: $f : \mathbb{R} \to \mathbb{R}$ • $f(x) =  x ^p$ , where $p \leq 1$ .  Logarithm function: $f : \mathbb{R}_{++} \to \mathbb{R}$ • $f(x) = \log x$ Negative entropy function: $f : \mathbb{R}_+ \to \mathbb{R}$ • $f(x) = x \log x$ Minkwoski distance, $p$ -norm function, or $l_p$ norm function: $f : \mathbb{R}^n \to \mathbb{R}$ • $f(\mathbf{x}) = \ \mathbf{x}\ _p$ , where $p \in \mathbb{N}_{++}$ .  Maximum element: $f : \mathbb{R}^n \to \mathbb{R}$ • $f(\mathbf{x}) = \max\{x_1, \dots, x_n\}$ .  Pointwise maximum (maximum function): $f : \mathbb{R}^n \to \mathbb{R}$ • $f(\mathbf{x}) = \max\{f_1(\mathbf{x}), \dots, f_n(\mathbf{x})\}$ .                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | It depends on the matrix $P$ :  • $f$ is convex iff $P \ge 0$ .  • $f$ is strictly convex iff $P > 0$ .  • $f$ is concave iff $P \le 0$ .  • $f$ is strictly concave iff $P < 0$ .  It depends on $a$ .  • $f$ is convex iff $a \ge 1$ or $a \le 0$ .  • $f$ is concave iff $f$ is $f$ is concave iff $f$ is $f$       | <b>0</b> .                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | <ul> <li>we have f(x) = c<sup>T</sup>x, which is the inner product between the vector c and x.</li> <li>The inverse image of C, f<sup>-1</sup>(C) = {x   f(x) ∈ C}, is also convex.</li> <li>The linear matrix inequality (LMI), A(x) = x<sub>1</sub>A<sub>1</sub> + · · · + x<sub>n</sub>A<sub>n</sub> ≤ B, is a special case of affine function. In other words, f(S) = {x   A(x) ≤ B} is a convex set if S is convex. Many optimization problems can be formulated as LMI problems and solved optimally.</li> <li>When it is defined f(x) <sub>x=0</sub> = 0, dom (f) = ℝ.</li> <li>It can be proved by triangular inequality.</li> <li>It can be proved by triangular inequality.</li> <li>Its domain dom (f) = ∫<sub>i=1</sub><sup>n</sup> dom (f<sub>i</sub>) is also convex.</li> <li>For each value of x, we have an infinite set of points g(x, y) <sub>y∈ R</sub>. The value f(x) will be the greatest value in the codomain of f that is less than or equal this set.</li> </ul>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| • $f(x) = e^{ax} \in \mathbb{R}$ , where $a \in \mathbb{R}$ Quadratic function $f : \mathbb{R}^n \to \mathbb{R}$ • $f(\mathbf{x}) = a\mathbf{x}^T \mathbf{P} \mathbf{x} + \mathbf{p}^T \mathbf{x} + r \in \mathbb{R}$ , where $\mathbf{x}, \mathbf{p} \in \mathbb{R}^n, \mathbf{P} \in \mathbb{R}^{n \times n}$ , and $a, b \in \mathbb{R}$ Power function $f : \mathbb{R}_{++} \to \mathbb{R}$ • $f(x) = x^a$ Power of absolute value: $f : \mathbb{R} \to \mathbb{R}$ • $f(x) =  x ^p$ , where $p \le 1$ .  Logarithm function: $f : \mathbb{R}_{++} \to \mathbb{R}$ • $f(x) = \log x$ Negative entropy function: $f : \mathbb{R}_+ \to \mathbb{R}$ • $f(x) = x \log x$ Minkwoski distance, $p$ -norm function, or $l_p$ norm function: $f : \mathbb{R}^n \to \mathbb{R}$ • $f(\mathbf{x}) =   \mathbf{x}  _p$ , where $p \in \mathbb{N}_{++}$ .  Maximum element: $f : \mathbb{R}^n \to \mathbb{R}$ • $f(\mathbf{x}) = \max\{x_1, \dots, x_n\}$ .  Pointwise maximum (maximum function): $f : \mathbb{R}^n \to \mathbb{R}$ • $f(\mathbf{x}) = \max\{f_1(\mathbf{x}), \dots, f_n(\mathbf{x})\}$ .  Pointwise infimum:  • $f(x) = \inf_{\mathbf{y} \in \mathcal{A}} g(x, \mathbf{y})$ .                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | It depends on the matrix $P$ :  • $f$ is convex iff $P \ge 0$ .  • $f$ is strictly convex iff $P > 0$ .  • $f$ is concave iff $P \le 0$ .  • $f$ is strictly concave iff $P < 0$ .  It depends on $a$ .  • $f$ is convex iff $a \ge 1$ or $a \le 0$ .  • $f$ is concave iff $0 \le 0$ .  Yes.  Yes.  Yes.  Yes.  Yes.  Yes.  Yes.  Yes.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 0.  ex in $x$ for each $y \in \mathcal{A}$ .                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | <ul> <li>we have f(x) = c<sup>T</sup>x, which is the inner product between the vector c and x.</li> <li>The inverse image of C, f<sup>-1</sup>(C) = {x   f(x) ∈ C}, is also convex.</li> <li>The linear matrix inequality (LMI), A(x) = x<sub>1</sub>A<sub>1</sub> + · · · + x<sub>n</sub>A<sub>n</sub> ≤ B, is a special case of affine function. In other words, f(S) = {x   A(x) ≤ B} is a convex set if S is convex. Many optimization problems can be formulated as LMI problems and solved optimally.</li> <li>When it is defined f(x) <sub>x=0</sub> = 0, dom (f) = ℝ.</li> <li>It can be proved by triangular inequality.</li> <li>It can be proved by triangular inequality.</li> <li>Its domain dom (f) = ∫<sub>i=1</sub><sup>n</sup> dom (f<sub>i</sub>) is also convex.</li> <li>For each value of x, we have an infinite set of points g(x, y) <sub>y∈A</sub>. The value f(x) will be the greatest value in the codomain of f that is less than or equal this set.</li> <li>dom (f) = {x   (x, y) ∈ dom (g) ∀ y ∈ A, inf g(x, y) &gt; -∞}.</li> <li>For each value of x, we have an infinite set of points g(x, y) <sub>y∈A</sub>. The value f(x) will be the least value in the codomain of f that</li> </ul>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| • $f(x) = e^{ax} \in \mathbb{R}$ , where $a \in \mathbb{R}$<br>Quadratic function $f : \mathbb{R}^n \to \mathbb{R}$<br>• $f(\mathbf{x}) = a\mathbf{x}^T \mathbf{P} \mathbf{x} + \mathbf{p}^T \mathbf{x} + r \in \mathbb{R}$ , where $\mathbf{x}, \mathbf{p} \in \mathbb{R}^n, \mathbf{P} \in \mathbb{R}^{n \times n}$ , and $a, b \in \mathbb{R}$<br>Power function $f : \mathbb{R}_{++} \to \mathbb{R}$<br>• $f(x) = x^a$<br>Power of absolute value: $f : \mathbb{R} \to \mathbb{R}$<br>• $f(x) =  x ^p$ , where $p \le 1$ .<br>Logarithm function: $f : \mathbb{R}_{++} \to \mathbb{R}$<br>• $f(x) = \log x$<br>Negative entropy function: $f : \mathbb{R}_+ \to \mathbb{R}$<br>• $f(x) = x \log x$<br>Minkwoski distance, $p$ -norm function, or $l_p$ norm function: $f : \mathbb{R}^n \to \mathbb{R}$<br>• $f(\mathbf{x}) =   \mathbf{x}  _p$ , where $p \in \mathbb{N}_{++}$ .<br>Maximum element: $f : \mathbb{R}^n \to \mathbb{R}$<br>• $f(\mathbf{x}) = \max\{x_1, \dots, x_n\}$ .<br>Pointwise maximum (maximum function): $f : \mathbb{R}^n \to \mathbb{R}$<br>• $f(\mathbf{x}) = \max\{f_1(\mathbf{x}), \dots, f_n(\mathbf{x})\}$ .<br>Pointwise infimum:<br>• $f(x) = \inf_{y \in \mathcal{A}} g(x, y)$ .                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | It depends on the matrix $P$ :  • $f$ is convex iff $P \ge 0$ .  • $f$ is strictly convex iff $P > 0$ .  • $f$ is concave iff $P \le 0$ .  • $f$ is strictly concave iff $P < 0$ .  It depends on $a$ .  • $f$ is convex iff $a \ge 1$ or $a \le 0$ .  • $f$ is concave iff $f$ is $f$ is concave iff $f$ is $f$ is concave iff $f$ is $f$ is $f$ is concave iff $f$ is $f$        | o.  o.  ex in $x$ for each $y \in \mathcal{A}$ .  cave in $x$ for each $y \in \mathcal{A}$ .                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | <ul> <li>we have f(x) = c<sup>T</sup>x, which is the inner product between the vector c and x.</li> <li>The inverse image of C, f<sup>-1</sup>(C) = {x   f(x) ∈ C}, is also convex.</li> <li>The linear matrix inequality (LMI), A(x) = x<sub>1</sub>A<sub>1</sub> + ··· + x<sub>n</sub>A<sub>n</sub> ≤ B, is a special case of affine function. In other words, f(S) = {x   A(x) ≤ B} is a convex set if S is convex. Many optimization problems can be formulated as LMI problems and solved optimally.</li> <li>When it is defined f(x) <sub>x=0</sub> = 0, dom (f) = ℝ.</li> <li>It can be proved by triangular inequality.</li> <li>It can be proved by triangular inequality.</li> <li>Its domain dom (f) = ∫<sub>t=1</sub><sup>n</sup> dom (f<sub>t</sub>) is also convex.</li> <li>For each value of x, we have an infinite set of points g(x, y) <sub>y∈A</sub>. The value f(x) will be the greatest value in the codomain of f that is less than or equal this set.</li> <li>dom (f) = {x   (x, y) ∈ dom (g) ∀ y ∈ A, inf g(x, y) &gt; -∞}.</li> <li>For each value of x, we have an infinite set of points g(x, y) <sub>y∈A</sub>. The value f(x) will be the least value in the codomain of f that is greater than or equal this set.</li> </ul>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| • $f(x) = e^{ax} \in \mathbb{R}$ , where $a \in \mathbb{R}$ Quadratic function $f : \mathbb{R}^n \to \mathbb{R}$ • $f(\mathbf{x}) = a\mathbf{x}^T \mathbf{P} \mathbf{x} + \mathbf{p}^T \mathbf{x} + r \in \mathbb{R}$ , where $\mathbf{x}, \mathbf{p} \in \mathbb{R}^n, \mathbf{P} \in \mathbb{R}^{n \times n}$ , and $a, b \in \mathbb{R}$ Power function $f : \mathbb{R}_{++} \to \mathbb{R}$ • $f(x) = x^a$ Power of absolute value: $f : \mathbb{R} \to \mathbb{R}$ • $f(x) =  x ^p$ , where $p \le 1$ .  Logarithm function: $f : \mathbb{R}_{++} \to \mathbb{R}$ • $f(x) = \log x$ Negative entropy function: $f : \mathbb{R}_+ \to \mathbb{R}$ • $f(x) = x \log x$ Minkwoski distance, $p$ -norm function, or $l_p$ norm function: $f : \mathbb{R}^n \to \mathbb{R}$ • $f(x) =   \mathbf{x}  _p$ , where $p \in \mathbb{N}_{++}$ .  Maximum element: $f : \mathbb{R}^n \to \mathbb{R}$ • $f(\mathbf{x}) = \max\{x_1, \dots, x_n\}$ .  Pointwise maximum (maximum function): $f : \mathbb{R}^n \to \mathbb{R}$ • $f(\mathbf{x}) = \max\{f_1(\mathbf{x}), \dots, f_n(\mathbf{x})\}$ .  Pointwise infimum:  • $f(x) = \inf_{\mathbf{y} \in \mathcal{A}} g(x, \mathbf{y})$ .                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | It depends on the matrix $P$ :  • $f$ is convex iff $P \ge 0$ .  • $f$ is strictly convex iff $P > 0$ .  • $f$ is concave iff $P \le 0$ .  • $f$ is strictly concave iff $P < 0$ .  It depends on $a$ .  • $f$ is convex iff $a \ge 1$ or $a \le 0$ .  • $f$ is concave iff $0 \le 0$ .  Yes.  Yes.  Yes.  Yes.  Yes.  Yes.  Yes.  Yes.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | o.  o.  ex in $x$ for each $y \in \mathcal{A}$ .  cave in $x$ for each $y \in \mathcal{A}$ .                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | <ul> <li>we have f(x) = c<sup>T</sup>x, which is the inner product between the vector c and x.</li> <li>The inverse image of C, f<sup>-1</sup>(C) = {x   f(x) ∈ C}, is also convex.</li> <li>The linear matrix inequality (LMI), A(x) = x<sub>1</sub>A<sub>1</sub> +···+x<sub>n</sub>A<sub>n</sub> ≤ B, is a special case of affine function. In other words, f(S) = {x   A(x) ≤ B} is a convex set if S is convex. Many optimization problems can be formulated as LMI problems and solved optimally.</li> <li>When it is defined f(x) <sub>x=0</sub> = 0, dom (f) = ℝ.</li> <li>It can be proved by triangular inequality.</li> <li>Its domain dom (f) = ∫<sub>i=1</sub><sup>n</sup> dom (f<sub>i</sub>) is also convex.</li> <li>For each value of x, we have an infinite set of points g(x, y) <sub>y∈ R</sub>. The value f(x) will be the greatest value in the codomain of f that is less than or equal this set.</li> <li>dom (f) = {x   (x, y) ∈ dom (g) ∀ y ∈ R, sinf g(x, y) &gt; -∞}.</li> <li>For each value of x, we have an infinite set of points g(x, y) <sub>y∈ R</sub>. The value f(x) will be the least value in the codomain of f that is greater than or equal this set.</li> <li>dom (f) = {x   (x, y) ∈ dom (g) ∀ y ∈ R, sinf g(x, y) &lt; ∞}.</li> <li>In terms of epigraphs, the pointwise supremum of the infinite set</li> </ul>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| • $f(x) = e^{ax} \in \mathbb{R}$ , where $a \in \mathbb{R}$ Quadratic function $f : \mathbb{R}^n \to \mathbb{R}$ • $f(\mathbf{x}) = a\mathbf{x}^T \mathbf{P} \mathbf{x} + \mathbf{p}^T \mathbf{x} + r \in \mathbb{R}$ , where $\mathbf{x}, \mathbf{p} \in \mathbb{R}^n, \mathbf{P} \in \mathbb{R}^{n \times n}$ , and $a, b \in \mathbb{R}$ Power function $f : \mathbb{R}_{++} \to \mathbb{R}$ • $f(x) = x^a$ Power of absolute value: $f : \mathbb{R} \to \mathbb{R}$ • $f(x) =  x ^p$ , where $p \leq 1$ .  Logarithm function: $f : \mathbb{R}_{++} \to \mathbb{R}$ • $f(x) = \log x$ Negative entropy function: $f : \mathbb{R}_+ \to \mathbb{R}$ • $f(x) = x \log x$ Minkwoski distance, $p$ -norm function, or $l_p$ norm function: $f : \mathbb{R}^n \to \mathbb{R}$ • $f(x) = \ \mathbf{x}\ _p$ , where $p \in \mathbb{N}_{++}$ .  Maximum element: $f : \mathbb{R}^n \to \mathbb{R}$ • $f(\mathbf{x}) = \max\{x_1, \dots, x_n\}$ .  Pointwise maximum (maximum function): $f : \mathbb{R}^n \to \mathbb{R}$ • $f(\mathbf{x}) = \max\{f_1(\mathbf{x}), \dots, f_n(\mathbf{x})\}$ .  Pointwise infimum:  • $f(x) = \sup_{\mathbf{y} \in \mathcal{A}} g(x, \mathbf{y})$ .                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | It depends on the matrix $P$ :  • $f$ is convex iff $P \ge 0$ .  • $f$ is strictly convex iff $P > 0$ .  • $f$ is concave iff $P \le 0$ .  • $f$ is strictly concave iff $P < 0$ .  • $f$ is convex iff $a \ge 1$ or $a \le 0$ .  • $f$ is convex iff $a \ge 1$ or $a \le 0$ .  • $f$ is concave iff $f$ is convex if $f$ is convex in $f$ is convex in $f$ is convex in $f$ if $f$ is convex in $f$ if $f$ is convex in $f$ in $f$ is convex in $f$ in $f$ in $f$ in $f$ is convex in $f$   | o.  o.  ex in $x$ for each $y \in \mathcal{A}$ .  cave in $x$ for each $y \in \mathcal{A}$ .                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | <ul> <li>we have f(x) = c<sup>T</sup>x, which is the inner product between the vector c and x.</li> <li>The inverse image of C, f<sup>-1</sup>(C) = {x   f(x) ∈ C}, is also convex.</li> <li>The linear matrix inequality (LMI), A(x) = x<sub>1</sub>A<sub>1</sub>+···+x<sub>n</sub>A<sub>n</sub> ≤ B, is a special case of affine function. In other words, f(S) = {x   A(x) ≤ B} is a convex set if S is convex. Many optimization problems can be formulated as LMI problems and solved optimally.</li> <li>When it is defined f(x) <sub>x=0</sub> = 0, dom (f) = ℝ.</li> <li>It can be proved by triangular inequality.</li> <li>Its domain dom (f) = ∫<sub>i=1</sub><sup>n</sup> dom (f<sub>i</sub>) is also convex.</li> <li>For each value of x, we have an infinite set of points g(x, y) <sub>y∈ A</sub>. The value f(x) will be the greatest value in the codomain of f that is less than or equal this set.</li> <li>dom (f) = {x   (x, y) ∈ dom (g) ∀ y ∈ A, sup g(x, y) &lt; ∞}.</li> <li>For each value of x, we have an infinite set of points g(x, y) <sub>y∈ A</sub>. The value f(x) will be the least value in the codomain of f that is greater than or equal this set.</li> <li>dom (f) = {x   (x, y) ∈ dom (g) ∀ y ∈ A, sup g(x, y) &lt; ∞}.</li> <li>dom (f) = {x   (x, y) ∈ dom (g) ∀ y ∈ A, sup g(x, y) &lt; ∞}.</li> </ul>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| • $f(x) = e^{ax} \in \mathbb{R}$ , where $a \in \mathbb{R}$ Quadratic function $f : \mathbb{R}^n \to \mathbb{R}$ • $f(\mathbf{x}) = a\mathbf{x}^T \mathbf{P} \mathbf{x} + p^T \mathbf{x} + r \in \mathbb{R}$ , where $\mathbf{x}, \mathbf{p} \in \mathbb{R}^n, \mathbf{P} \in \mathbb{R}^{n \times n}$ , and $a, b \in \mathbb{R}$ Power function $f : \mathbb{R}_{++} \to \mathbb{R}$ • $f(x) = x^a$ Power of absolute value: $f : \mathbb{R} \to \mathbb{R}$ • $f(x) =  x ^p$ , where $p \le 1$ .  Logarithm function: $f : \mathbb{R}_{++} \to \mathbb{R}$ • $f(x) = \log x$ Negative entropy function: $f : \mathbb{R}_+ \to \mathbb{R}$ • $f(x) = x \log x$ Minkwoski distance, $p$ -norm function, or $l_p$ norm function: $f : \mathbb{R}^n \to \mathbb{R}$ • $f(x) = \ \mathbf{x}\ _p$ , where $p \in \mathbb{N}_{++}$ .  Maximum element: $f : \mathbb{R}^n \to \mathbb{R}$ • $f(\mathbf{x}) = \max\{x_1, \dots, x_n\}$ .  Pointwise maximum (maximum function): $f : \mathbb{R}^n \to \mathbb{R}$ • $f(x) = \max\{f_1(\mathbf{x}), \dots, f_n(\mathbf{x})\}$ .  Pointwise infimum: • $f(x) = \sup_{\mathbf{y} \in \mathcal{A}} g(x, \mathbf{y})$ .  Minimum function: $f : \mathbb{R}^n \to \mathbb{R}$ • $f(\mathbf{x}) = \sup_{\mathbf{y} \in \mathcal{A}} g(x, \mathbf{y})$ .                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | <ul> <li>It depends on the matrix P:</li> <li>f is convex iff P ≥ 0.</li> <li>f is strictly convex iff P &gt; 0.</li> <li>f is concave iff P ≤ 0.</li> <li>f is concave iff P &lt;</li> <li>It depends on a</li> <li>f is convex iff a ≥ 1 or a ≤</li> <li>f is concave iff 0 ≤ a ≤ 1.</li> <li>Yes.</li> <li>Yes.</li> <li>Yes.</li> <li>Yes.</li> <li>Yes.</li> <li>Yes.</li> <li>Not in most of the cases.</li> <li>Not in most of the cases.</li> </ul>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | o.  o.  ex in $x$ for each $y \in \mathcal{A}$ .  cave in $x$ for each $y \in \mathcal{A}$ .                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | <ul> <li>we have f(x) = c<sup>T</sup>x, which is the inner product between the vector c and x.</li> <li>The inverse image of C, f<sup>-1</sup>(C) = {x   f(x) ∈ C}, is also convex.</li> <li>The linear matrix inequality (LMI), A(x) = x<sub>1</sub>A<sub>1</sub> + ··· + x<sub>n</sub>A<sub>n</sub> ≤ B, is a special case of affine function. In other words, f(S) = {x   A(x) ≤ B} is a convex set if S is convex. Many optimization problems can be formulated as LMI problems and solved optimally.</li> <li>When it is defined f(x) <sub>x=0</sub> = 0, dom (f) = ℝ.</li> <li>It can be proved by triangular inequality.</li> <li>Its domain dom (f) =  \( \begin{align*} \text{dom} \text{dom} \( \text{dom} \) (f<sub>i</sub>) is also convex.</li> <li>For each value of x, we have an infinite set of points g(x, y) <sub>y∈A</sub>. The value f(x) will be the greatest value in the codomain of f that is less than or equal this set.</li> <li>dom (f) = {x   (x, y) ∈ dom (g) ∀ y ∈ A, \text{inf} \( g(x, y) \)  <sub>y∈A</sub>. The value f(x) will be the least value in the codomain of f that is greater than or equal this set.</li> <li>dom (f) = {x   (x, y) ∈ dom (g) ∀ y ∈ A, \text{sup} \( g(x, y) \)  <sub>y∈A</sub>. The value f(x) will be the least value in the codomain of f that is greater than or equal this set.</li> <li>dom (f) = {x   (x, y) ∈ dom (g) ∀ y ∈ A, \text{sup} \( g(x, y) \)  <sub>y∈A</sub>. The value f(x) will be the least value in the codomain of f that is greater than or equal this set.</li> <li>dom (f) = {x   (x, y) ∈ dom (g) ∀ y ∈ A, \text{sup} \( g(x, y) \)  <sub>y∈A</sub>. The value f(x) will be the least value in the codomain of f that is greater than or equal this set.</li> <li>dom (f) = {x   (x, y) ∈ dom (g) ∀ y ∈ A, \text{sup} \( g(x, y) \)  <sub>y∈A</sub>. The value f(x) will be the least value in the codomain of f that is greater than or equal this set.</li> <li>dom (f) = {x   (x, y) ∈ dom (g) ∀ y ∈ A, \text{sup} \( g(x, y) \)  <sub>y∈A</sub>. The value f(x) will be the least value in the codomain of the infinite set of lunctions g(x, y) <sub>y∈A</sub>. Corresponds to the intersection of the following epigraphs: epi f = \( \hat{y} \)  <sub>y∈A</sub>. Or expensional to t</li></ul>                                                   |
| • $f(x) = e^{ax} \in \mathbb{R}$ , where $a \in \mathbb{R}$ Quadratic function $f: \mathbb{R}^n \to \mathbb{R}$ • $f(\mathbf{x}) = a\mathbf{x}^T \mathbf{P} \mathbf{x} + p^T \mathbf{x} + r \in \mathbb{R}$ , where $\mathbf{x}, \mathbf{p} \in \mathbb{R}^n, \mathbf{P} \in \mathbb{R}^{n \times n}$ , and $a, b \in \mathbb{R}$ Power function $f: \mathbb{R}_{++} \to \mathbb{R}$ • $f(x) = x^a$ Power of absolute value: $f: \mathbb{R} \to \mathbb{R}$ • $f(x) =  x ^p$ , where $p \leq 1$ .  Logarithm function: $f: \mathbb{R}_{++} \to \mathbb{R}$ • $f(x) = \log x$ Negative entropy function: $f: \mathbb{R}_+ \to \mathbb{R}$ • $f(x) = \log x$ Minkwoski distance, $p$ -norm function, or $l_p$ norm function: $f: \mathbb{R}^n \to \mathbb{R}$ • $f(x) = \ \mathbf{x}\ _p$ , where $p \in \mathbb{N}_{++}$ .  Maximum element: $f: \mathbb{R}^n \to \mathbb{R}$ • $f(\mathbf{x}) = \max\{x_1, \dots, x_n\}$ .  Pointwise maximum (maximum function): $f: \mathbb{R}^n \to \mathbb{R}$ • $f(x) = \max\{f_1(\mathbf{x}), \dots, f_n(\mathbf{x})\}$ .  Pointwise infimum:  • $f(x) = \sup_{\mathbf{y} \in \mathcal{R}} g(x, \mathbf{y})$ .  Minimum function: $f: \mathbb{R}^n \to \mathbb{R}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | It depends on the matrix $P$ :  • $f$ is convex iff $P \ge 0$ .  • $f$ is strictly convex iff $P > 0$ .  • $f$ is concave iff $P \le 0$ .  • $f$ is strictly concave iff $P < 0$ .  • $f$ is convex iff $a \ge 1$ or $a \le 0$ .  • $f$ is convex iff $a \ge 1$ or $a \le 0$ .  • $f$ is concave iff $f$ is convex if $f$ is convex in $f$ is convex in $f$ is convex in $f$ if $f$ is convex in $f$ if $f$ is convex in $f$ in $f$ is convex in $f$ in $f$ in $f$ in $f$ is convex in $f$   | o.  o.  ex in $x$ for each $y \in \mathcal{A}$ .  cave in $x$ for each $y \in \mathcal{A}$ .                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | <ul> <li>we have f(x) = c<sup>T</sup>x, which is the inner product between the vector c and x.</li> <li>The inverse image of C, f<sup>-1</sup>(C) = {x   f(x) ∈ C}, is also convex.</li> <li>The linear matrix inequality (LMI), A(x) = x<sub>1</sub>A<sub>1</sub> + ···· + x<sub>n</sub>A<sub>n</sub> ≤ B, is a special case of affine function. In other words, f(S) = {x   A(x) ≤ B} is a convex set if S is convex. Many optimization problems can be formulated as LMI problems and solved optimally.</li> <li>When it is defined f(x) <sub>x=0</sub> = 0, dom (f) = ℝ.</li> <li>It can be proved by triangular inequality.</li> <li>It can be proved by triangular inequality.</li> <li>Its domain dom (f) = ∩ dom (f<sub>i</sub>) is also convex.</li> <li>For each value of x, we have an infinite set of points g(x, y) <sub>y∈A</sub>. The value f(x) will be the greatest value in the codomain of f that is less than or equal this set.</li> <li>dom (f) = {x   (x, y) ∈ dom (g) ∀ y ∈ A, inf g(x, y) &gt; -∞}.</li> <li>For each value of x, we have an infinite set of points g(x, y) <sub>y∈A</sub>. The value f(x) will be the least value in the codomain of f that is greater than or equal this set.</li> <li>dom (f) = {x   (x, y) ∈ dom (g) ∀ y ∈ A, sup g(x, y) &lt; ∞}.</li> <li>In terms of epigraphs, the pointwise supremum of the infinite set of functions g(x, y) <sub>y∈A</sub>. The value f(x) will be the least value in the codomain of f that is greater than or equal this set.</li> <li>dom (f) = {x   (x, y) ∈ dom (g) ∀ y ∈ A, sup g(x, y) &lt; ∞}.</li> <li>In terms of epigraphs, the pointwise supremum of the infinite set of functions g(x, y) <sub>y∈A</sub>. The value f(x) will be the least value in the codomain of f that is greater than or equal this set.</li> </ul>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| • $f(x) = e^{ax} \in \mathbb{R}$ , where $a \in \mathbb{R}$ Quadratic function $f : \mathbb{R}^n \to \mathbb{R}$ • $f(\mathbf{x}) = a\mathbf{x}^T \mathbf{P} \mathbf{x} + p^T \mathbf{x} + r \in \mathbb{R}$ , where $\mathbf{x}, \mathbf{p} \in \mathbb{R}^n, \mathbf{P} \in \mathbb{R}^{n \times n}$ , and $a, b \in \mathbb{R}$ Power function $f : \mathbb{R}_{++} \to \mathbb{R}$ • $f(x) =  \mathbf{x} ^p$ , where $p \leq 1$ .  Logarithm function: $f : \mathbb{R}_{++} \to \mathbb{R}$ • $f(x) = \log x$ Negative entropy function: $f : \mathbb{R}_+ \to \mathbb{R}$ • $f(x) = x \log x$ Minkwoski distance, $p$ -norm function, or $l_p$ norm function: $f : \mathbb{R}^n \to \mathbb{R}$ • $f(x) = \ \mathbf{x}\ _p$ , where $p \in \mathbb{N}_{++}$ .  Maximum element: $f : \mathbb{R}^n \to \mathbb{R}$ • $f(\mathbf{x}) = \max\{x_1, \dots, x_n\}$ .  Pointwise maximum (maximum function): $f : \mathbb{R}^n \to \mathbb{R}$ • $f(\mathbf{x}) = \max\{f_1(\mathbf{x}), \dots, f_n(\mathbf{x})\}$ .  Pointwise supremum: • $f(x) = \sup_{\mathbf{y} \in \mathcal{A}} g(x, \mathbf{y})$ .  Minimum function: $f : \mathbb{R}^n \to \mathbb{R}$ • $f(\mathbf{x}) = \sup_{\mathbf{y} \in \mathcal{A}} g(x, \mathbf{y})$ .  Committee $f(\mathbf{x}) = \sup_{\mathbf{y} \in \mathcal{A}} g(x, \mathbf{y})$ .  Minimum function: $f : \mathbb{R}^n \to \mathbb{R}$ • $f(\mathbf{x}) = \sup_{\mathbf{y} \in \mathcal{A}} g(x, \mathbf{y})$ .  Geometric mean function $f : \mathbb{R}^n \to \mathbb{R}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | <ul> <li>It depends on the matrix P:</li> <li>f is convex iff P ≥ 0.</li> <li>f is strictly convex iff P &gt; 0.</li> <li>f is concave iff P ≤ 0.</li> <li>f is concave iff P &lt;</li> <li>It depends on a</li> <li>f is convex iff a ≥ 1 or a ≤</li> <li>f is concave iff 0 ≤ a ≤ 1.</li> <li>Yes.</li> <li>Yes.</li> <li>Yes.</li> <li>Yes.</li> <li>Yes.</li> <li>Yes.</li> <li>Not in most of the cases.</li> <li>Not in most of the cases.</li> </ul>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | o.  o.  ex in $x$ for each $y \in \mathcal{A}$ .  cave in $x$ for each $y \in \mathcal{A}$ .                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | <ul> <li>we have f(x) = c<sup>T</sup>x, which is the inner product between the vector c and x.</li> <li>The inverse image of C, f<sup>-1</sup>(C) = {x   f(x) ∈ C}, is also convex.</li> <li>The linear matrix inequality (LMI), A(x) = x<sub>1</sub>A<sub>1</sub> + ··· + x<sub>n</sub>A<sub>n</sub> ≤ B, is a special case of affine function. In other words, f(S) = {x   A(x) ≤ B} is a convex set if S is convex. Many optimization problems can be formulated as LMI problems and solved optimally.</li> <li>When it is defined f(x) <sub>x=0</sub> = 0, dom (f) = ℝ.</li> <li>It can be proved by triangular inequality.</li> <li>Its domain dom (f) = ∫<sub>i=1</sub><sup>n</sup> dom (f<sub>i</sub>) is also convex.</li> <li>For each value of x, we have an infinite set of points g(x, y) <sub>y∈A</sub>. The value f(x) will be the greatest value in the codomain of f that is less than or equal this set.</li> <li>dom (f) = {x   (x, y) ∈ dom (g) ∀ y ∈ A, sin g(x, y) &gt; -∞}.</li> <li>For each value of x, we have an infinite set of points g(x, y) <sub>y∈A</sub>. The value f(x) will be the least value in the codomain of f that is greater than or equal this set.</li> <li>dom (f) = {x   (x, y) ∈ dom (g) ∀ y ∈ A, sin g(x, y)   √∞ A, y∈A (x, y)   √∞ A, y∈A (</li></ul>                                                                                             |
| • $f(x) = e^{ax} \in \mathbb{R}$ , where $a \in \mathbb{R}$ Quadratic function $f : \mathbb{R}^n \to \mathbb{R}$ • $f(x) = ax^T \mathbf{P} \mathbf{x} + p^T \mathbf{x} + r \in \mathbb{R}$ , where $\mathbf{x}, \mathbf{p} \in \mathbb{R}^n, \mathbf{P} \in \mathbb{R}^{n \times n}$ , and $a, b \in \mathbb{R}$ Power function $f : \mathbb{R}_{++} \to \mathbb{R}$ • $f(x) =  x ^p$ , where $p \leq 1$ .  Logarithm function: $f : \mathbb{R}_{++} \to \mathbb{R}$ • $f(x) = \log x$ Negative entropy function: $f : \mathbb{R}_+ \to \mathbb{R}$ • $f(x) = x \log x$ Minkwoski distance, $p$ -norm function, or $I_p$ norm function: $f : \mathbb{R}^n \to \mathbb{R}$ • $f(x) = \ x\ _p$ , where $p \in \mathbb{N}_{++}$ .  Maximum element: $f : \mathbb{R}^n \to \mathbb{R}$ • $f(x) = \max\{f_1(x), \dots, f_n(x)\}$ .  Pointwise maximum (maximum function): $f : \mathbb{R}^n \to \mathbb{R}$ • $f(x) = \max\{f_1(x), \dots, f_n(x)\}$ .  Pointwise infimum: • $f(x) = \sup_{y \in \mathcal{A}} g(x, y)$ .  Pointwise supremum: • $f(x) = \sup_{y \in \mathcal{A}} g(x, y)$ .  Cosume-exp function: $f : \mathbb{R}^n \to \mathbb{R}$ • $f(x) = \log (e^{x_1} + \dots + e^{x_n})$ Geometric mean function $f : \mathbb{R}^n \to \mathbb{R}$ • $f(x) = \log (e^{x_1} + \dots + e^{x_n})$ Geometric mean function $f : \mathbb{R}^n \to \mathbb{R}$ • $f(x) = \log (e^{x_1} + \dots + e^{x_n})$ Log-determinant function $f : \mathbb{S}^n \to \mathbb{R}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | It depends on the matrix $P$ :  • $f$ is convex iff $P \ge 0$ .  • $f$ is strictly convex iff $P > 0$ .  • $f$ is concave iff $P \le 0$ .  • $f$ is strictly concave iff $P < 0$ .  It depends on $a$ .  • $f$ is convex iff $a \ge 1$ or $a \le 0$ .  • $f$ is concave iff $0 \le a \le 1$ .  Yes.  Yes.  Yes.  Yes.  Yes.  One of is convex in $f$ is convex in $f$ in $f$ in $f$ in $f$ is convex in $f$ | o.  o.  ex in $x$ for each $y \in \mathcal{A}$ .  cave in $x$ for each $y \in \mathcal{A}$ .                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | <ul> <li>we have f(x) = c<sup>T</sup>x, which is the inner product between the vector c and x.</li> <li>The inverse image of C, f<sup>-1</sup>(C) = {x   f(x) ∈ C}, is also convex.</li> <li>The linear matrix inequality (LMI), A(x) = x<sub>1</sub>A<sub>1</sub> + ··· + x<sub>n</sub>A<sub>n</sub> ≤ B, is a special case of affine function. In other words, f(S) = {x   A(x) ≤ B} is a convex set if S is convex. Many optimization problems can be formulated as LMI problems and solved optimally.</li> <li>When it is defined f(x) <sub>x=0</sub> = 0, dom (f) = ℝ.</li> <li>It can be proved by triangular inequality.</li> <li>Its domain dom (f) = ∫<sub>i=1</sub><sup>n</sup> dom (f<sub>i</sub>) is also convex.</li> <li>For each value of x, we have an infinite set of points g(x, y) <sub>y∈A</sub>. The value f(x) will be the greatest value in the codomain of f that is less than or equal this set.</li> <li>dom (f) = {x   (x, y) ∈ dom (g) ∀ y ∈ A, sin g(x, y) &gt; -∞}.</li> <li>For each value of x, we have an infinite set of points g(x, y) <sub>y∈A</sub>. The value f(x) will be the least value in the codomain of f that is greater than or equal this set.</li> <li>dom (f) = {x   (x, y) ∈ dom (g) ∀ y ∈ A, sin g(x, y)   √∞ A, y∈A (x, y)   √∞ A, y∈A (</li></ul>                                                                                             |
| • $f(x) = e^{ax} \in \mathbb{R}$ , where $a \in \mathbb{R}$ Quadratic function $f : \mathbb{R}^n \to \mathbb{R}$ • $f(x) = ax^T P x + p^T x + r \in \mathbb{R}$ , where $x, p \in \mathbb{R}^n, P \in \mathbb{R}^{n \times n}$ , and $a, b \in \mathbb{R}$ Power function $f : \mathbb{R}_{++} \to \mathbb{R}$ • $f(x) =  x ^p$ , where $p \le 1$ .  Logarithm function: $f : \mathbb{R}_{++} \to \mathbb{R}$ • $f(x) = \log x$ Negative entropy function: $f : \mathbb{R}_+ \to \mathbb{R}$ • $f(x) = x \log x$ Minkwoski distance, $p$ -norm function, or $I_p$ norm function: $f : \mathbb{R}^n \to \mathbb{R}$ • $f(x) = \ x\ _p$ , where $p \in \mathbb{N}_{++}$ .  Maximum element: $f : \mathbb{R}^n \to \mathbb{R}$ • $f(x) = \max\{x_1, \dots, x_n\}$ .  Pointwise maximum (maximum function): $f : \mathbb{R}^n \to \mathbb{R}$ • $f(x) = \max\{f_1(x), \dots, f_n(x)\}$ .  Pointwise infimum: • $f(x) = \sup_{y \in \mathcal{R}} g(x, y)$ .  Minimum function: $f : \mathbb{R}^n \to \mathbb{R}$ • $f(x) = \sup_{y \in \mathcal{R}} g(x, y)$ .  Commence of $f(x) = \sup_{y \in \mathcal{R}} g(x, y)$ .  Minimum function: $f : \mathbb{R}^n \to \mathbb{R}$ • $f(x) = \log (e^{x_1} + \dots + e^{x_n})$ Geometric mean function $f : \mathbb{R}^n \to \mathbb{R}$ • $f(x) = \log (e^{x_1} + \dots + e^{x_n})$ Geometric mean function $f : \mathbb{R}^n \to \mathbb{R}$ • $f(x) = \log (e^{x_1} + \dots + e^{x_n})$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | It depends on the matrix $P$ :  • $f$ is convex iff $P \ge 0$ .  • $f$ is strictly convex iff $P > 0$ .  • $f$ is concave iff $P \le 0$ .  • $f$ is convex iff $P \le 0$ .  • $f$ is convex iff $P \le 0$ .  It depends on $P \le 0$ .  • $f$ is convex iff $P \ge 0$ .  • $f$ is convex iff $P \ge 0$ .  • $f$ is convex iff $P \ge 0$ .  Yes.  Yes.  Yes.  Yes.  Yes.  Yes.  Yes.  Yes.  Not in most of the cases.  Yes.  Yes.  Yes.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 0.  O.  Example 1 in $x$ for each $y \in \mathcal{A}$ .  Cave in $x$ for each $y \in \mathcal{A}$ .                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | <ul> <li>we have f(x) = c<sup>T</sup>x, which is the inner product between the vector c and x.</li> <li>The inverse image of C, f<sup>-1</sup>(C) = {x   f(x) ∈ C}, is also convex.</li> <li>The linear matrix inequality (LMI), A(x) = x<sub>1</sub>A<sub>1</sub> + ··· + x<sub>n</sub>A<sub>n</sub> ≤ B, is a special case of affine function. In other words, f(S) = {x   A(x) ≤ B} is a convex set if S is convex. Many optimization problems can be formulated as LMI problems and solved optimally.</li> <li>When it is defined f(x) <sub>x=0</sub> = 0, dom (f) = ℝ.</li> <li>It can be proved by triangular inequality.</li> <li>Its domain dom (f) = f dom (f<sub>1</sub>) is also convex.</li> <li>For each value of x, we have an infinite set of points g(x, y) <sub>y∈3</sub>. The value f(x) will be the greatest value in the codomain of f that is less than or equal this set.</li> <li>dom (f) = {x   (x, y) ∈ dom (g) ∀ y ∈ A, inf g(x, y) &gt; -∞}.</li> <li>For each value of x, we have an infinite set of points g(x, y) <sub>y∈3</sub>. The value f(x) will be the least value in the codomain of f that is greater than or equal this set.</li> <li>dom (f) = {x   (x, y) ∈ dom (g) ∀ y ∈ A, inf g(x, y) &lt; ∞}.</li> <li>In terms of epigraphs, the pointwise supremum of the infinite set of functions g(x, y) <sub>y∈3</sub> corresponds to the intersection of the following epigraphs: epi f = ∩ epi g(·, y)</li> <li>In the composition function, since max {x<sub>1</sub>,,x<sub>n</sub>} ≤ f(x) ≤ max {x<sub>1</sub>,,x<sub>n</sub>} + log n</li> <li>X is positive semidefinite, i.e., X &gt; 0 ∴ X ∈ S<sup>n</sup><sub>++</sub>.</li> <li>The composition function allows us to see a large class of functions</li> </ul>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| • $f(x) = e^{ax} \in \mathbb{R}$ , where $a \in \mathbb{R}$ Quadratic function $f : \mathbb{R}^n \to \mathbb{R}$ • $f(\mathbf{x}) = a\mathbf{x}^T \mathbf{P} \mathbf{x} + p^T \mathbf{x} + r \in \mathbb{R}$ , where $\mathbf{x}, \mathbf{p} \in \mathbb{R}^n, \mathbf{P} \in \mathbb{R}^{n \times n}$ , and $a, b \in \mathbb{R}$ Power function $f : \mathbb{R}_{++} \to \mathbb{R}$ • $f(x) = x^a$ Power of absolute value: $f : \mathbb{R} \to \mathbb{R}$ • $f(x) =  x ^p$ , where $p \leq 1$ .  Logarithm function: $f : \mathbb{R}_{++} \to \mathbb{R}$ • $f(x) = \log x$ Negative entropy function: $f : \mathbb{R}_+ \to \mathbb{R}$ • $f(x) = x \log x$ Minkwooki distance, $p$ -norm function, or $l_p$ norm function: $f : \mathbb{R}^n \to \mathbb{R}$ • $f(x) = \ \mathbf{x}\ _p$ , where $p \in \mathbb{N}_{++}$ .  Maximum element: $f : \mathbb{R}^n \to \mathbb{R}$ • $f(\mathbf{x}) = \max\{x_1, \dots, x_n\}$ .  Pointwise maximum (maximum function): $f : \mathbb{R}^n \to \mathbb{R}$ • $f(\mathbf{x}) = \max\{f_1(\mathbf{x}), \dots, f_n(\mathbf{x})\}$ .  Pointwise infimum:  • $f(x) = \inf_{\mathbf{y} \in \mathcal{A}} g(x, \mathbf{y})$ .  Minimum function: $f : \mathbb{R}^n \to \mathbb{R}$ • $f(\mathbf{x}) = \sup_{\mathbf{y} \in \mathcal{A}} g(x, \mathbf{y})$ .  Log-sum-exp function: $f : \mathbb{R}^n \to \mathbb{R}$ • $f(\mathbf{x}) = \log (e^{x_1} + \dots + e^{x_n})$ Geometric mean function $f : \mathbb{R}^n \to \mathbb{R}$ • $f(\mathbf{x}) = \log (e^{x_1} + \dots + e^{x_n})$ Geometric mean function $f : \mathbb{R}^n \to \mathbb{R}$ • $f(\mathbf{x}) = \log  \mathbf{x} $                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | <ul> <li>It depends on the matrix P:</li> <li>f is convex iff P ≥ 0.</li> <li>f is strictly convex iff P &gt; 0.</li> <li>f is concave iff P ≤ 0.</li> <li>f is concave iff P ≤ 1.</li> <li>It depends on a</li> <li>f is convex iff a ≥ 1 or a ≤</li> <li>f is concave iff 0 ≤ a ≤ 1.</li> <li>Yes.</li> </ul>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | oving statements hold for $\mathbb{R}$ and $\mathbb{R}$ and $\mathbb{R}$ are each $y \in \mathcal{A}$ .  The example of $\mathbb{R}$ and $\mathbb{R}$ and $\mathbb{R}$ are each $\mathbb{R}$ and $\mathbb{R}$ are eac                                                                                                                                                                                                                                                                                                                              | <ul> <li>we have f(x) = c<sup>T</sup>x, which is the inner product between the vector c and x.</li> <li>The inverse image of C, f<sup>-1</sup>(C) = {x   f(x) ∈ C}, is also convex.</li> <li>The linear matrix inequality (LMI), A(x) = x<sub>1</sub>x<sub>1</sub> + ··· + x<sub>n</sub>A<sub>n</sub> ⊆ B, is a special case of affine function. In other words, f(S) = {x   A(x) ≤ B} is a convex set if S is convex. Many optimization problems can be formulated as LMI problems and solved optimally.</li> <li>When it is defined f(x) <sub>x=0</sub> = 0, dom (f) = ℝ.</li> <li>It can be proved by triangular inequality.</li> <li>Its domain dom (f) = ∫<sub>i=1</sub><sup>n</sup> dom (f<sub>i</sub>) is also convex.</li> <li>For each value of x, we have an infinite set of points g(x, y) <sub>y∈A</sub>. The value f(x) will be the greatest value in the codomain of f that is less than or equal this set.</li> <li>dom (f) = {x   (x, y) ∈ dom (g) ∀ y ∈ A, inf g(x, y) &gt; -∞}.</li> <li>For each value of x, we have an infinite set of points g(x, y) <sub>y∈A</sub>. The value f(x) will be the least value in the codomain of f that is greater than or equal this set.</li> <li>dom (f) = {x   (x, y) ∈ dom (g) ∀ y ∈ A, inf g(x, y) &lt; ∞}.</li> <li>In terms of epigraphs, the pointwise supremum of the infinite set of functions g(x, y) <sub>y∈A</sub> corresponds to the intersection of the following epigraphs: epi f = ∫ epi g(x, y)</li> <li>This function is interpreted as the approximation of the maximum element function, since max {x<sub>1</sub>, , x<sub>n</sub>} ≤ f(x) ≤ max {x<sub>1</sub>, , x<sub>n</sub>} + log n</li> <li>X is positive semidefinite, i.e., X &gt; 0 X ∈ S<sup>n</sup><sub>x+</sub>.</li> </ul>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| • $f(x) = e^{ax} \in \mathbb{R}$ , where $a \in \mathbb{R}$ Quadratic function $f : \mathbb{R}^n \to \mathbb{R}$ • $f(\mathbf{x}) = a\mathbf{x}^T \mathbf{P} \mathbf{x} + \mathbf{p}^T \mathbf{x} + r \in \mathbb{R}$ , where $\mathbf{x}, \mathbf{p} \in \mathbb{R}^n, \mathbf{P} \in \mathbb{R}^{n \times n}$ , and $a, b \in \mathbb{R}$ Power function $f : \mathbb{R}_{++} \to \mathbb{R}$ • $f(x) =  \mathbf{x} ^p$ , where $p \le 1$ .  Logarithm function: $f : \mathbb{R}_{++} \to \mathbb{R}$ • $f(x) = \log x$ Negative entropy function: $f : \mathbb{R}_{+} \to \mathbb{R}$ • $f(x) = x \log x$ Minkwoski distance, $p$ -norm function, or $p$ norm function: $f : \mathbb{R}^n \to \mathbb{R}$ • $f(x) =  \mathbf{x}  _p$ , where $p \in \mathbb{N}_{++}$ .  Maximum element: $f : \mathbb{R}^n \to \mathbb{R}$ • $f(x) =  \mathbf{x}  _p$ , where $p \in \mathbb{N}_{++}$ .  Pointwise maximum (maximum function): $f : \mathbb{R}^n \to \mathbb{R}$ • $f(x) = \max \{f_1(x), \dots, f_n(x)\}$ .  Pointwise infimum: • $f(x) = \inf_{\mathbf{y} \in \mathcal{A}} f(x, \mathbf{y})$ .  Pointwise supremum: • $f(x) = \sup_{\mathbf{y} \in \mathcal{A}} g(x, \mathbf{y})$ .  Minimum function: $f : \mathbb{R}^n \to \mathbb{R}$ • $f(x) = \sup_{\mathbf{y} \in \mathcal{A}} g(x, \mathbf{y})$ .  Commodition of $f(x) = \sup_{\mathbf{y} \in \mathcal{A}} f(x, \mathbf{y})$ .  Pointwise supremum: • $f(x) = \sup_{\mathbf{y} \in \mathcal{A}} f(x, \mathbf{y})$ .  Commodition of $f(x) = \sup_{\mathbf{y} \in \mathcal{A}} f(x, \mathbf{y})$ .  Commodition of $f(x) = \sup_{\mathbf{y} \in \mathcal{A}} f(x, \mathbf{y})$ .  Composite function $f(x) = h \cdot g(x) = h(g(x))$ , where:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | It depends on the matrix $P$ :  • $f$ is convex iff $P \ge 0$ .  • $f$ is strictly convex iff $P > 0$ .  • $f$ is concave iff $P \le 0$ .  • $f$ is concave iff $P \le 0$ .  • $f$ is strictly concave iff $P < 0$ .  It depends on $a$ • $f$ is convex iff $a \ge 1$ or $a \le 0$ .  • $f$ is concave iff $0 \le a \le 1$ .  Yes.  Only if $f$ is convex if $f$ is convex if $f$ is convex if $f$ is convex if $f$ is convex. In $f$ is convex if $f$ is convex i | owing statements hold for $\mathbb{R}$ and $g: \mathbb{R}^n \to \mathbb{R}$ :  ave in $x$ for each $y \in \mathcal{A}$ .  cave in $x$ for each $y \in \mathcal{A}$ .                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | <ul> <li>we have f(x) = e<sup>T</sup>x, which is the inner product between the vector c and x.</li> <li>The inverse image of C, f<sup>-1</sup>(C) = {x   f(x) ∈ C}, is also convex.</li> <li>The linear matrix inequality (LMI), A(x) = x<sub>1</sub>A<sub>1</sub> + ····+x<sub>n</sub>A<sub>n</sub> ≤ B, is a special case of affine function. In other words, f(S) = (x   A(x) ≤ B) is a convex set if S is convex. Many optimization problems can be formulated as LMI problems and solved optimally.</li> <li>When it is defined f(x) <sub>x=0</sub> = 0, dom (f) = ℝ.</li> <li>It can be proved by triangular inequality.</li> <li>Its domain dom (f) = f dom (f<sub>t</sub>) is also convex.</li> <li>For each value of x, we have an infinite set of points g(x, y) <sub>y∈ N</sub>. The value f(x) will be the greatest value in the codomain of f that is less than or equal this set.</li> <li>dom (f) = {x   (x, y) ∈ dom (g) ∀ y ∈ A, inf g(x, y) &gt; -∞}.</li> <li>For each value of x, we have an infinite set of points g(x, y) <sub>y∈ N</sub>. The value f(x) will be the least value in the codomain of f that is greater than or equal this set.</li> <li>dom (f) = {x   (x, y) ∈ dom (g) ∀ y ∈ A, inf g(x, y) &gt; ∞}.</li> <li>In terms of epigraphs, the pointwise supremum of the infinite set of functions g(x, y) <sub>y∈ N</sub> corresponds to the intersection of the following epigraphs: epi f =  corresponds to the intersection of the following epigraphs: epi f =  corresponds to the intersection of the maximum clowing time function allows us to see a large class of functions as convex (or concave).</li> <li>X is positive semidefinite, i.e., X &gt; 0 ∴ X ∈ S</li> </ul>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| • $f(x) = e^{ax} \in \mathbb{R}$ , where $a \in \mathbb{R}$ Quadratic function $f : \mathbb{R}^n \to \mathbb{R}$ • $f(x) = ax^T \mathbf{P} \mathbf{x} + p^T \mathbf{x} + r \in \mathbb{R}$ , where $\mathbf{x}, \mathbf{p} \in \mathbb{R}^n, \mathbf{P} \in \mathbb{R}^{n \times n}$ , and $a, b \in \mathbb{R}$ Power function $f : \mathbb{R}_{++} \to \mathbb{R}$ • $f(x) = x^a$ Power of absolute value: $f : \mathbb{R} \to \mathbb{R}$ • $f(x) =  x ^p$ , where $p \le 1$ .  Logarithm function: $f : \mathbb{R}_{++} \to \mathbb{R}$ • $f(x) = \log x$ Negative entropy function: $f : \mathbb{R}_+ \to \mathbb{R}$ • $f(x) = x \log x$ Minkwoski distance, $p$ -norm function, or $I_p$ norm function: $f : \mathbb{R}^n \to \mathbb{R}$ • $f(x) =  \mathbf{x}  _p$ , where $p \in \mathbb{N}_{++}$ .  Maximum element: $f : \mathbb{R}^n \to \mathbb{R}$ • $f(x) = \max\{x_1, \dots, x_n\}$ .  Pointwise maximum (maximum function): $f : \mathbb{R}^n \to \mathbb{R}$ • $f(x) = \max\{f_1(x), \dots, f_n(x)\}$ .  Pointwise infimum: • $f(x) = \inf_{y \in \mathcal{A}} g(x, y)$ .  Minimum function: $f : \mathbb{R}^n \to \mathbb{R}$ • $f(x) = \sup_{y \in \mathcal{A}} g(x, y)$ .  Commetric mean function $f : \mathbb{R}^n \to \mathbb{R}$ • $f(x) = \log(e^{x_1} + \dots + e^{x_n})$ Geometric mean function $f : \mathbb{R}^n \to \mathbb{R}$ • $f(x) = \log(x)$ Log-determinant function $f : \mathbb{R}^n \to \mathbb{R}$ • $f(x) = \log  \mathbf{X} $ Composite function $f = h \circ g : \mathbb{R}^n \to \mathbb{R}$ • $f(x) = \log  \mathbf{X} $ Composite function $f = h \circ g : \mathbb{R}^n \to \mathbb{R}$ • $f(x) = \log  \mathbf{X} $ Composite function $f = h \circ g : \mathbb{R}^n \to \mathbb{R}$ • $f(x) = \log  \mathbf{X} $ Composite function $f = h \circ g : \mathbb{R}^n \to \mathbb{R}$ • $f(x) = h \circ g : \mathbb{R}^n \to \mathbb{R}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | It depends on the matrix P:  • f is convex iff P ≥ 0.  • f is strictly convex iff P > 0.  • f is concave iff P ≤ 0.  • f is concave iff P ≤ 0.  • f is concave iff P ≤ 1.  It depends on a  • f is convex iff a ≥ 1 or a ≤  • f is concave iff 0 ≤ a ≤ 1.  Yes.  It depends on a  • f is convex iff a ≥ 1 or a ≤  • f is concave iff 0 ≤ a ≤ 1.  Yes.  Yes.  Yes.  Yes.  Yes.  Yes.  Yes.  It depends on a  • f is convex iff a ≥ 1 or a ≤  • f is concave iff 0 ≤ a ≤ 1.  Yes.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | owing statements hold for $f$ and $f$ and $f$ are each $f$ and $f$ and $f$ are each $f$ are each $f$ and $f$ are each $f$ and $f$ are each $f$ and $f$ are each $f$ and $f$ are each $f$ and $f$ are each $f$ are each $f$ and $f$ are each $f$ are each $f$ and $f$ are each $f$ and $f$ are each $f$ and $f$ are each $f$ are each $f$ and $f$ are each $f$ are each $f$ and $f$ are each $f$ and $f$ are each $f$ are each $f$ are each $f$ are each $f$ a                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | <ul> <li>we have f(x) = e<sup>T</sup>x, which is the inner product between the vector c and x.</li> <li>The inverse image of C, f<sup>-1</sup>(C) = {x   f(x) ∈ C}, is also convex.</li> <li>The linear matrix inequality (LMI), A(x) = x<sub>1</sub>A<sub>1</sub> + ···· + x<sub>n</sub>A<sub>n</sub> ≤ B, is a special case of affine function. In other words, f(S) is a special case of affine function. In other words, f(S) is a low set if S is convex. Many optimization problems can be formulated as LMI problems and solved optimally.</li> <li>It can be proved by triangular inequality.</li> <li>It can be proved by triangular inequality.</li> <li>For each value of x, we have an infinite set of points g(x, y) _{y \in \mathcal{H}}. The value f(x) will be the greatest value in the codomain of f that is less than or equal this set.</li> <li>dom (f) = {x   (x, y) ∈ dom (g) ∀ y ∈ \mathcal{H}, \sinf g(x, y) &gt; -∞}.</li> <li>For each value of x, we have an infinite set of points g(x, y) _{y ∈ \mathcal{H}}. The value f(x) will be the least value in the codomain of f that is greater than or equal this set.</li> <li>dom (f) = {x   (x, y) ∈ dom (g) ∀ y ∈ \mathcal{H}, \sinf g(x, y) _{y ∈ \mathcal{H}}. The value f(x) will be the least value in the codomain of f that is greater than or equal this set.</li> <li>dom (f) = {x   (x, y) ∈ dom (g) ∀ y ∈ \mathcal{H}, \sinf g(x, y) _{y ∈ \mathcal{H}}. Sinf g(x, y) _{y ∈ \mathcal{H}}. Sinf g(x, y) _{y ∈ \mathcal{H}}.</li> <li>In terms of epigraphs, the pointwise supremum of the infinite set of functions g(x, y) _{y ∈ \mathcal{H}} = \cap \text{epi g(x)}.</li> <li>In terms of epigraphs, the pointwise supremum of the infinite set of functions g(x, y) _{y ∈ \mathcal{H}} = \cap \text{epi g(x)}.</li> <li>This function is interpreted as the approximation of the maximum element function, since max {x_1,, x_n} ≤ f(x) ≤ \maxhcal{H}.</li> <li>The composition function allows us to see a large class of functions as convex (or concave), the remarkable ones are:</li> <li>If g is concave and for g(y) ∈ \maxhcal{H}, then f(x) = h(g(x)) = lf(g(x)) is conevex.</li> <li>If</li></ul>                                                                                                                                               |
| • $f(x) = e^{ax} \in \mathbb{R}$ , where $a \in \mathbb{R}$ Quadratic function $f : \mathbb{R}^n \to \mathbb{R}$ • $f(x) = ax^T \mathbf{P} \mathbf{x} + p^T \mathbf{x} + r \in \mathbb{R}$ , where $\mathbf{x}, \mathbf{p} \in \mathbb{R}^n, \mathbf{P} \in \mathbb{R}^{n \times n}$ , and $a, b \in \mathbb{R}$ Power function $f : \mathbb{R}_{++} \to \mathbb{R}$ • $f(x) = x^a$ Power of absolute value: $f : \mathbb{R} \to \mathbb{R}$ • $f(x) =  x ^p$ , where $p \le 1$ .  Logarithm function: $f : \mathbb{R}_{++} \to \mathbb{R}$ • $f(x) = \log x$ Negative entropy function: $f : \mathbb{R}_+ \to \mathbb{R}$ • $f(x) = x \log x$ Minkwoski distance, $p$ -norm function, or $I_p$ norm function: $f : \mathbb{R}^n \to \mathbb{R}$ • $f(x) =  \mathbf{x}  _p$ , where $p \in \mathbb{N}_{++}$ .  Maximum element: $f : \mathbb{R}^n \to \mathbb{R}$ • $f(x) = \max\{x_1, \dots, x_n\}$ .  Pointwise maximum (maximum function): $f : \mathbb{R}^n \to \mathbb{R}$ • $f(x) = \max\{f_1(x), \dots, f_n(x)\}$ .  Pointwise infimum: • $f(x) = \inf_{y \in \mathcal{A}} g(x, y)$ .  Minimum function: $f : \mathbb{R}^n \to \mathbb{R}$ • $f(x) = \sup_{y \in \mathcal{A}} g(x, y)$ .  Commetric mean function $f : \mathbb{R}^n \to \mathbb{R}$ • $f(x) = \log(e^{x_1} + \dots + e^{x_n})$ Geometric mean function $f : \mathbb{R}^n \to \mathbb{R}$ • $f(x) = \log(x)$ Log-determinant function $f : \mathbb{R}^n \to \mathbb{R}$ • $f(x) = \log  \mathbf{X} $ Composite function $f = h \circ g : \mathbb{R}^n \to \mathbb{R}$ • $f(x) = \log  \mathbf{X} $ Composite function $f = h \circ g : \mathbb{R}^n \to \mathbb{R}$ • $f(x) = \log  \mathbf{X} $ Composite function $f = h \circ g : \mathbb{R}^n \to \mathbb{R}$ • $f(x) = \log  \mathbf{X} $ Composite function $f = h \circ g : \mathbb{R}^n \to \mathbb{R}$ • $f(x) = h \circ g : \mathbb{R}^n \to \mathbb{R}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | It depends on the matrix P:  • f is convex iff P ≥ 0.  • f is strictly convex iff P > 0.  • f is concave iff P ≤ 0.  • f is concave iff P ≤ 0.  • f is concave iff P ≤ 1.  It depends on a  • f is convex iff a ≥ 1 or a ≤  • f is concave iff 0 ≤ a ≤ 1.  Yes.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | o.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | <ul> <li>we have f(x) = e<sup>x</sup>x, which is the inner product between the vector c and x.</li> <li>The inverse image of C, f<sup>-1</sup>(C) = {x   f(x) ∈ C}, is also convex.</li> <li>The linear matrix inequality (LMI), A(x) = x<sub>1</sub>A<sub>1</sub> + ··· + x<sub>n</sub>A<sub>n</sub> ≤ B, is a special case of affine function. In other words, f(S) = {x   A(x) ≤ B}, is a convex set if S is convex. Many optimization problems can be formulated as LMI problems and solved optimially.</li> <li>When it is defined f(x) <sub>x=0</sub> = 0, dom (f) = ℝ.</li> <li>It can be proved by triangular inequality.</li> <li>Its domain dom (f) = ∫ dom (f) is also convex. for each value of x, we have an infinite set of points g(x, y) <sub>y ∈ A</sub>. The value f(x) will be the greatest value in the codomain of f that is less than or equal this set.</li> <li>dom (f) = {x   (x, y) ∈ dom (g) ∀ y ∈ A, inf g(x, y) &gt; -∞}.</li> <li>For each value of x, we have an infinite set of points g(x, y) <sub>y ∈ A</sub>. The value f(x) will be the least value in the codomain of f that is greater than or equal this set.</li> <li>dom (f) = {x   (x, y) ∈ dom (g) ∀ y ∈ A, sup g(x, y) &lt; ∞}.</li> <li>For each value of x, we have an infinite set of points g(x, y) <sub>y ∈ A</sub>. The value f(x) will be the least value in the codomain of f that is greater than or equal this set.</li> <li>dom (f) = {x   (x, y) ∈ dom (g) ∀ y ∈ A, sup g(x, y) &lt; ∞}.</li> <li>In terms of epigraphs, the pointwise supremum of the infinite set of functions g(x, y) <sub>y ∈ A</sub> corresponds to the intersection of the following epigraphs: epi f = ∫ epi g(x, y)</li> <li>This function is interpreted as the approximation of the maximum element function, since max {x<sub>1</sub>,,x<sub>n</sub>} ≤ f(x) ≤ max {x<sub>1</sub>,,x<sub>n</sub>} + log n</li> <li>This function is interpreted as the approximation of the maximum element function, since max {x<sub>1</sub>,,x<sub>n</sub>} ≤ f(x) ≤ max {x<sub>1</sub>,,x<sub>n</sub>} + log n</li> <li>The composition, the remarkable ones are:</li> <li>If g is convex then f(x) = h(g(x)) = exp g(x) is convex.</li> <li>If g is convex and dom (g) ⊆ ℝ<sub>++</sub>, then f(x) = h(g(x)) = g<sup>p</sup>(x) is convex, wher</li></ul>                  |
| • $f(x) = e^{ax} \in \mathbb{R}$ , where $a \in \mathbb{R}$ Quadratic function $f : \mathbb{R}^n \to \mathbb{R}$ • $f(x) = ax^T \mathbf{P} \mathbf{x} + p^T \mathbf{x} + r \in \mathbb{R}$ , where $\mathbf{x}, \mathbf{p} \in \mathbb{R}^n, \mathbf{P} \in \mathbb{R}^{n \times n}$ , and $a, b \in \mathbb{R}$ Power function $f : \mathbb{R}_{++} \to \mathbb{R}$ • $f(x) = x^a$ Power of absolute value: $f : \mathbb{R} \to \mathbb{R}$ • $f(x) =  x ^p$ , where $p \le 1$ .  Logarithm function: $f : \mathbb{R}_{++} \to \mathbb{R}$ • $f(x) = \log x$ Negative entropy function: $f : \mathbb{R}_+ \to \mathbb{R}$ • $f(x) = x \log x$ Minkwoski distance, $p$ -norm function, or $I_p$ norm function: $f : \mathbb{R}^n \to \mathbb{R}$ • $f(x) =  \mathbf{x}  _p$ , where $p \in \mathbb{N}_{++}$ .  Maximum element: $f : \mathbb{R}^n \to \mathbb{R}$ • $f(x) = \max\{x_1, \dots, x_n\}$ .  Pointwise maximum (maximum function): $f : \mathbb{R}^n \to \mathbb{R}$ • $f(x) = \max\{f_1(x), \dots, f_n(x)\}$ .  Pointwise infimum: • $f(x) = \inf_{y \in \mathcal{A}} g(x, y)$ .  Minimum function: $f : \mathbb{R}^n \to \mathbb{R}$ • $f(x) = \sup_{y \in \mathcal{A}} g(x, y)$ .  Commetric mean function $f : \mathbb{R}^n \to \mathbb{R}$ • $f(x) = \log(e^{x_1} + \dots + e^{x_n})$ Geometric mean function $f : \mathbb{R}^n \to \mathbb{R}$ • $f(x) = \log(x)$ Log-determinant function $f : \mathbb{R}^n \to \mathbb{R}$ • $f(x) = \log  \mathbf{X} $ Composite function $f = h \circ g : \mathbb{R}^n \to \mathbb{R}$ • $f(x) = \log  \mathbf{X} $ Composite function $f = h \circ g : \mathbb{R}^n \to \mathbb{R}$ • $f(x) = \log  \mathbf{X} $ Composite function $f = h \circ g : \mathbb{R}^n \to \mathbb{R}$ • $f(x) = \log  \mathbf{X} $ Composite function $f = h \circ g : \mathbb{R}^n \to \mathbb{R}$ • $f(x) = h \circ g : \mathbb{R}^n \to \mathbb{R}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | It depends on the matrix P:  • f is convex iff P ≥ 0.  • f is strictly convex iff P > 0.  • f is concave iff P ≤ 0.  • f is concave iff P ≤ 0.  • f is trictly concave iff P <  It depends on a  • f is convex iff a ≥ 1 or a ≤  • f is concave iff 0 ≤ a ≤ 1.  Yes.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | oving statements hold for $\mathbb{R}$ and $g:\mathbb{R}^n \to \mathbb{R}$ .  cave in $x$ for each $y \in \mathcal{A}$ .  cave in $x$ for each $y \in \mathcal{A}$ .  cave, $\tilde{h}$ is nonincreasing, is case, dom $(h)$ is either acave, $\tilde{h}$ is nonincreasing, oving statements hold for $h$ and $h$ is nonincreasing, oving statements hold for $h$ and $h$ is nonincreasing, oving statements hold for $h$ and $h$ is nonincreasing, oving statements hold for $h$ and $h$ is nonincreasing, oving statements hold for $h$ and $h$ is nonincreasing, oving statements hold for $h$ and $h$ is nonincreasing, oving statements hold for $h$ and $h$ is nonincreasing, over                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | <ul> <li>we have f(x) = c<sup>1</sup>x, which is the inner product between the vector e and x.</li> <li>The inverse image of C, f<sup>-1</sup>(C) = {x   f(x) ∈ C}, is also convex.</li> <li>The linear matrix inequality (LMI), A(x) = x<sub>1</sub>A<sub>1</sub> + ···· + x<sub>n</sub>A<sub>n</sub> ≤ B<sub>i</sub> is a special case of affine function. In other words, f(3) = (x<sub>1</sub>   A(x) ≤ B) is a convex set if 3 is convex. Many optimization problems can be formulated as LMI problems and solved optimally.</li> <li>Its domain dom (f) = <sup>n</sup>/<sub>i=1</sub> dom (f<sub>i</sub>) is also convex.</li> <li>It can be proved by triangular inequality.</li> <li>For each value of x, we have an infinite set of points g(x, y) <sub>y∈A</sub>. The value f(x) will be the greatest value in the codomain of f that is less than or equal this set.</li> <li>dom (f) = {x   (x, y) ∈ dom (g) ∀ y ∈ Ā, inf g(x, y) &gt; -∞}.</li> <li>For each value of x, we have an infinite set of points g(x, y) <sub>y∈A</sub>. The value f(x) will be the least value in the codomain of f that is greater than or equal this set.</li> <li>dom (f) = {x   (x, y) ∈ dom (g) ∀ y ∈ Ā, sing g(x, y) &gt; ∞}.</li> <li>For each value of x, we have an infinite set of points g(x, y) <sub>y∈A</sub>. The value f(x) will be the least value in the codomain of f that is greater than or equal this set.</li> <li>dom (f) = {x   (x, y) ∈ dom (g) ∀ y ∈ Ā, sing g(x, y) &lt; ∞}.</li> <li>In terms of epigraphs: epi f =</li></ul>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| • $f(x) = e^{ax} \in \mathbb{R}$ , where $a \in \mathbb{R}$ Quadratic function $f : \mathbb{R}^n \to \mathbb{R}$ • $f(x) = ax^T \mathbf{P} \mathbf{x} + p^T \mathbf{x} + r \in \mathbb{R}$ , where $\mathbf{x}, \mathbf{p} \in \mathbb{R}^n, \mathbf{P} \in \mathbb{R}^{n \times n}$ , and $a, b \in \mathbb{R}$ Power function $f : \mathbb{R}_{++} \to \mathbb{R}$ • $f(x) = x^a$ Power of absolute value: $f : \mathbb{R} \to \mathbb{R}$ • $f(x) =  x ^p$ , where $p \le 1$ .  Logarithm function: $f : \mathbb{R}_{++} \to \mathbb{R}$ • $f(x) = \log x$ Negative entropy function: $f : \mathbb{R}_+ \to \mathbb{R}$ • $f(x) = x \log x$ Minkwoski distance, $p$ -norm function, or $I_p$ norm function: $f : \mathbb{R}^n \to \mathbb{R}$ • $f(x) =  \mathbf{x}  _p$ , where $p \in \mathbb{N}_{++}$ .  Maximum element: $f : \mathbb{R}^n \to \mathbb{R}$ • $f(x) = \max\{x_1, \dots, x_n\}$ .  Pointwise maximum (maximum function): $f : \mathbb{R}^n \to \mathbb{R}$ • $f(x) = \max\{f_1(x), \dots, f_n(x)\}$ .  Pointwise infimum: • $f(x) = \inf_{y \in \mathcal{A}} g(x, y)$ .  Minimum function: $f : \mathbb{R}^n \to \mathbb{R}$ • $f(x) = \sup_{y \in \mathcal{A}} g(x, y)$ .  Commetric mean function $f : \mathbb{R}^n \to \mathbb{R}$ • $f(x) = \log(e^{x_1} + \dots + e^{x_n})$ Geometric mean function $f : \mathbb{R}^n \to \mathbb{R}$ • $f(x) = \log(x)$ Log-determinant function $f : \mathbb{R}^n \to \mathbb{R}$ • $f(x) = \log  \mathbf{X} $ Composite function $f = h \circ g : \mathbb{R}^n \to \mathbb{R}$ • $f(x) = \log  \mathbf{X} $ Composite function $f = h \circ g : \mathbb{R}^n \to \mathbb{R}$ • $f(x) = \log  \mathbf{X} $ Composite function $f = h \circ g : \mathbb{R}^n \to \mathbb{R}$ • $f(x) = \log  \mathbf{X} $ Composite function $f = h \circ g : \mathbb{R}^n \to \mathbb{R}$ • $f(x) = h \circ g : \mathbb{R}^n \to \mathbb{R}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | It depends on the matrix P:  • f is convex iff P≥ 0.  • f is strictly convex iff P > 0.  • f is concave iff P ≤ 0.  • f is concave iff P ≤ 0.  • f is concave iff P ≤ 0.  • f is convex iff a ≥ 1.  It depends on a  • f is convex iff a ≥ 1 or a ≤  • f is concave iff 0 ≤ a ≤ 1.  Yes.  • f is convex in x if g is co                      | owing statements hold for $\rightarrow \mathbb{R}$ and $g: \mathbb{R}^n \rightarrow \mathbb{R}$ :  avex in $x$ for each $y \in \mathcal{A}$ .  cave in $x$ for each $y \in \mathcal{A}$ .  cave in $x$ for each $y \in \mathcal{A}$ .  cave, $\tilde{h}$ is nonincreasing, is case, dom $(h)$ is either acave, $\tilde{h}$ is nonincreasing, in cave, $\tilde{h}$ is nonincreasing, is case, dom $(h)$ is either acave, $\tilde{h}$ is nonincreasing, in cave, $\tilde{h}$ is nonincreasing, $\tilde{h}$ is                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | <ul> <li>we have f(x) = c<sup>T</sup>x, which is the inner product between the vector c and x.</li> <li>The inverse image of C, f<sup>-1</sup>(C) = {x   f(x) ∈ C}, is also convex.</li> <li>The inverse image of C, f<sup>-1</sup>(C) = {x   f(x) ∈ C}, is also convex.</li> <li>The inverse image of C, f<sup>-1</sup>(C) = {x   f(x) ∈ C}, is also convex.</li> <li>The inverse image of C, f<sup>-1</sup>(C) = {x   f(x) ∈ C}, is also convex.</li> <li>It is a special case of affine function. In other words, f(s) = {x   A(x) ≤ B} is a convex set if s is convex. Many optimization problems can be formulated as LMI problems and solved optimally.</li> <li>It is can be proved by triangular inequality.</li> <li>For each value of x, we have an infinite set of points g(x, y) <sub>y∈SI</sub>. The value f(x) will be the greatest value in the codomain of f that is less than or equal this set.</li> <li>dom (f) = {x   (x, y) ∈ dom (g) ∀ y ∈ A, inf g(x, y) &gt; -∞}.</li> <li>For each value of x, we have an infinite set of points g(x, y) <sub>y∈SI</sub>. The value f(x) will be the least value in the codomain of f that is greater than or equal this set.</li> <li>dom (f) = {x   (x, y) ∈ dom (g) ∀ y ∈ A, sing g(x, y) &gt; -∞}.</li> <li>For each value of x, we have an infinite set of points g(x, y) <sub>y∈SI</sub>. The value f(x) will be the least value in the codomain of f that is greater than or equal this set.</li> <li>dom (f) = {x   (x, y) ∈ dom (g) ∀ y ∈ A, sing g(x, y) &gt; ∞}.</li> <li>In terms of epigraphs, the greatest value in the intersection of the following epigraphs: epi f = ∩ epi g(x, y)</li> <li>In terms of epigraphs, the greatest value in the codomain of the maximum element function, since max {x<sub>1</sub>,,x<sub>n</sub>} ≤ f(x) ≤ max {x<sub>1</sub>,,x<sub>n</sub>} + log n</li> <li>The composition function allows us to see a large class of functions as convex (or concave).</li> <li>For scale composition, the remarkable ones are:</li> <li>If g is concave then f(x) = h(g(x)) = exp g(x) is convex.</li> <li>If g is convex then f(x) = h(g(x)) = exp g(x) is convex.</li> <li>If g is convex then f(x) = h(g(x)) = -log (-g(x)) is convex.</li></ul>                                                                                                 |
| • $f(x) = e^{ax} \in \mathbb{R}$ , where $a \in \mathbb{R}$ Quadratic function $f : \mathbb{R}^n \to \mathbb{R}$ • $f(x) = ax^T \mathbf{P} \mathbf{x} + p^T \mathbf{x} + r \in \mathbb{R}$ , where $\mathbf{x}, \mathbf{p} \in \mathbb{R}^n, \mathbf{P} \in \mathbb{R}^{n \times n}$ , and $a, b \in \mathbb{R}$ Power function $f : \mathbb{R}_{++} \to \mathbb{R}$ • $f(x) = x^a$ Power of absolute value: $f : \mathbb{R} \to \mathbb{R}$ • $f(x) =  x ^p$ , where $p \le 1$ .  Logarithm function: $f : \mathbb{R}_{++} \to \mathbb{R}$ • $f(x) = \log x$ Negative entropy function: $f : \mathbb{R}_+ \to \mathbb{R}$ • $f(x) = x \log x$ Minkwoski distance, $p$ -norm function, or $I_p$ norm function: $f : \mathbb{R}^n \to \mathbb{R}$ • $f(x) =  x  _p$ , where $p \in \mathbb{N}_{++}$ .  Maximum element: $f : \mathbb{R}^n \to \mathbb{R}$ • $f(x) = \max\{x_1, \dots, x_n\}$ .  Pointwise maximum (maximum function): $f : \mathbb{R}^n \to \mathbb{R}$ • $f(x) = \max\{f_1(x), \dots, f_n(x)\}$ .  Pointwise infimum: • $f(x) = \inf_{y \in \mathcal{A}} g(x, y)$ .  Minimum function: $f : \mathbb{R}^n \to \mathbb{R}$ • $f(x) = \sup_{y \in \mathcal{A}} g(x, y)$ .  Commetric mean function $f : \mathbb{R}^n \to \mathbb{R}$ • $f(x) = \log(e^{x_1} + \dots + e^{x_n})$ Geometric mean function $f : \mathbb{R}^n \to \mathbb{R}$ • $f(x) = \log(x)$ Log-determinant function $f : \mathbb{R}^n \to \mathbb{R}$ • $f(x) = \log  \mathbf{X} $ Composite function $f = h \circ g : \mathbb{R}^n \to \mathbb{R}$ • $f(x) = \log  \mathbf{X} $ Composite function $f = h \circ g : \mathbb{R}^n \to \mathbb{R}$ • $f(x) = \log  \mathbf{X} $ Composite function $f = h \circ g : \mathbb{R}^n \to \mathbb{R}$ • $f(x) = \log  \mathbf{X} $ Composite function $f = h \circ g : \mathbb{R}^n \to \mathbb{R}$ • $f(x) = h \circ g : \mathbb{R}^n \to \mathbb{R}^k$ • $f(x) = h \circ g : \mathbb{R}^n \to \mathbb{R}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | It depends on the matrix P:  • f is convex iff P ≥ 0.  • f is convex iff P ≥ 0.  • f is strictly convex iff P > 0.  • f is concave iff P ≤ 0.  • f is convex iff P ≤ 0.  • f is convex iff a ≥ 1 or a ≤  • f is convex iff a ≥ 1 or a ≤  • f is concave iff 0 ≤ a ≤ 1.  Yes.  • f is convex in x if g is convex function for the cases.  Yes.  Yes.  Yes.  Yes.  Yes.  • f is convex in x if g is convex in                      | owing statements hold for $\rightarrow \mathbb{R}$ and $g: \mathbb{R}^n \rightarrow \mathbb{R}$ :  nex in $x$ for each $y \in \mathcal{A}$ .  cave in $x$ for each $y \in \mathcal{A}$ .  cave in $x$ for each $y \in \mathcal{A}$ .  cave, $\tilde{h}$ is nondecreasing, in case, $\tilde{h}$ is nondecreasing, neave, $\tilde{h}$ is nondecreasing, owing statements hold for $\tilde{h} \rightarrow \mathbb{R}$ and $g: \mathbb{R}^n \rightarrow \mathbb{R}^k$ .  owing statements hold for $\tilde{h} \rightarrow \mathbb{R}$ and $\tilde{h} \rightarrow \mathbb{R}$ .                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | <ul> <li>we have f(x) = c<sup>T</sup>x, which is the inner product between the vector e and x.</li> <li>The inverse image of C, f<sup>-1</sup>(C) = {x   f(x) ∈ C}, is also convex.</li> <li>The linear matrix inequality (LMI), A(x) = x<sub>1</sub>A<sub>1</sub> + ···· + x<sub>n</sub>A<sub>n</sub> ≤ B, is a special case of affine function. In other words, f(x) = {x   A(x) ≤ B} is a convex set if 3 is convex. Many optimization problems can be formulated as LMI problems and solved optimally.</li> <li>Its domain dom (f) = f<sub>1</sub> dom (f<sub>1</sub>) is also convex.</li> <li>For each value of x, we have an infinite set of points g(x, y) _{y \in A}. The value f(x) will be the greatest value in the codomain of f that is less than or equal this set.</li> <li>dom (f) = {x   (x, y) ∈ dom (g) ∀ y ∈ A, inf g(x, y) &gt; -∞}.</li> <li>For each value of x, we have an infinite set of points g(x, y) _{y \in A}. The value f(x) will be the least value in the codomain of f that is greater than or equal this set.</li> <li>dom (f) = {x   (x, y) ∈ dom (g) ∀ y ∈ A, inf g(x, y) &gt; -∞}.</li> <li>For each value of x, we have an infinite set of points g(x, y) _{y \in A}. The value f(x) will be the least value in the codomain of f that is greater than or equal this set.</li> <li>dom (f) = {x   (x, y) ∈ dom (g) ∀ y ∈ A, sup g(x, y) &lt; ∞}.</li> <li>In terms of epigraphs, the pointwise supremum of the infinite set of functions g(x, y) _{y \in A} corresponds to the intersection of the following epigraphs: epi f = ∩ epi g(·, y)</li> <li>This function is interpreted as the approximation of the maximum element function, since max {x<sub>1</sub>,,x<sub>n</sub>} ≤ f(x) ≤ max {x<sub>1</sub>,,x<sub>n</sub>} + log n</li> <li>The composition function allows us to see a large class of functions as convex (or concave).</li> <li>For scale composition, the remarkable ones are:</li> <li>If g is convex then f(x) = h(y ≤ x) = xy g(x) is convex.</li> <li>If g is convex and dom (g) ⊆ k<sub>n</sub>, then f(x) = h(g(x)) = log g(x) is convex.</li> <li>If g is convex and dom (g) ⊆ k<sub>n</sub>, then f(x) = h(g(x)) = g<sup>p</sup>(x) is g(x) = xy g(x) is convex.</li> <li>If g is convex and dom (g</li></ul>                                                              |
| • $f(x) = e^{ax} \in \mathbb{R}$ , where $a \in \mathbb{R}$ Quadratic function $f : \mathbb{R}^n \to \mathbb{R}$ • $f(x) = ax^T \mathbf{P} \mathbf{x} + p^T \mathbf{x} + r \in \mathbb{R}$ , where $\mathbf{x}, \mathbf{p} \in \mathbb{R}^n, \mathbf{P} \in \mathbb{R}^{n \times n}$ , and $a, b \in \mathbb{R}$ Power function $f : \mathbb{R}_{++} \to \mathbb{R}$ • $f(x) = x^a$ Power of absolute value: $f : \mathbb{R} \to \mathbb{R}$ • $f(x) =  x ^p$ , where $p \le 1$ .  Logarithm function: $f : \mathbb{R}_{++} \to \mathbb{R}$ • $f(x) = \log x$ Negative entropy function: $f : \mathbb{R}_+ \to \mathbb{R}$ • $f(x) = x \log x$ Minkwoski distance, $p$ -norm function, or $I_p$ norm function: $f : \mathbb{R}^n \to \mathbb{R}$ • $f(x) =  x  _p$ , where $p \in \mathbb{N}_{++}$ .  Maximum element: $f : \mathbb{R}^n \to \mathbb{R}$ • $f(x) = \max\{x_1, \dots, x_n\}$ .  Pointwise maximum (maximum function): $f : \mathbb{R}^n \to \mathbb{R}$ • $f(x) = \max\{f_1(x), \dots, f_n(x)\}$ .  Pointwise infimum: • $f(x) = \inf_{y \in \mathcal{A}} g(x, y)$ .  Minimum function: $f : \mathbb{R}^n \to \mathbb{R}$ • $f(x) = \sup_{y \in \mathcal{A}} g(x, y)$ .  Commetric mean function $f : \mathbb{R}^n \to \mathbb{R}$ • $f(x) = \log(e^{x_1} + \dots + e^{x_n})$ Geometric mean function $f : \mathbb{R}^n \to \mathbb{R}$ • $f(x) = \log(x)$ Log-determinant function $f : \mathbb{R}^n \to \mathbb{R}$ • $f(x) = \log  \mathbf{X} $ Composite function $f = h \circ g : \mathbb{R}^n \to \mathbb{R}$ • $f(x) = \log  \mathbf{X} $ Composite function $f = h \circ g : \mathbb{R}^n \to \mathbb{R}$ • $f(x) = \log  \mathbf{X} $ Composite function $f = h \circ g : \mathbb{R}^n \to \mathbb{R}$ • $f(x) = \log  \mathbf{X} $ Composite function $f = h \circ g : \mathbb{R}^n \to \mathbb{R}$ • $f(x) = h \circ g : \mathbb{R}^n \to \mathbb{R}^k$ • $f(x) = h \circ g : \mathbb{R}^n \to \mathbb{R}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | It depends on the matrix P:  • f is convex iff P ≥ 0.  • f is strictly concave iff P > 0.  • f is concave iff P ≤ 0.  • f is strictly concave iff P <  It depends on a  • f is convex iff a ≥ 1 or a ≤  • f is concave iff 0 ≤ a ≤ 1.  Yes.  Ye                      | owing statements hold for $\mathbb{A}$ . The each $\mathbb{A}$ is nondecreasing, incave, $\tilde{h}$ is nondecreasing in where                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | <ul> <li>we have f(x) = c<sup>T</sup>x, which is the inner product between the vector e and x.</li> <li>The inverse image of C, f<sup>-1</sup>(C) = {x   f(x) ∈ C}, is also convex.</li> <li>The inverse image of C, f<sup>-1</sup>(C) = {x   f(x) ∈ C}, is also convex.</li> <li>The inverse image of C, f<sup>-1</sup>(C) = {x   f(x) ∈ C}, is also convex.</li> <li>The inverse image of C, f<sup>-1</sup>(C) = {x   f(x) ∈ C}, is also convex.</li> <li>[x] A(x) ≤ B} is a convex set if S is convex. Many optimization problems can be formulated as LMI problems and solved optimization problems can be formulated as LMI problems and solved optimization problems can be proved by triangular inequality.</li> <li>It can be proved by triangular inequality.</li> <li>For each value of x, we have an infinite set of points g(x, y) _{y \in R}. The value f(x) will be the greatest value in the codomain of f that is less than or equal this set.</li> <li>dom (f) = {x   (x, y) ∈ dom (g) ∀ y ∈ R, sinf g(x, y) &gt; -∞}.</li> <li>For each value of x, we have an infinite set of points g(x, y) _{y \in R}. The value f(x) will be the lesst value in the codomain of f that is greater than or equal this set.</li> <li>dom (f) = {x   (x, y) ∈ dom (g) ∀ y ∈ R, sup g(x, y) &lt; ∞}.</li> <li>In terms of epigraphs, the pointwise supremum of the infinite set of functions g(x, y) _{y \in R} corresponds to the intersection of the following epigraphs: epi f = ∫ epi g(x, y)</li> <li>This function is interpreted as the approximation of the maximum element function, since max (s<sub>1</sub>,, s<sub>n</sub>) ≤ f(x) ≤ max (s<sub>1</sub>,, s<sub>n</sub>) + logn</li> <li>The composition function allows us to see a large class of functions as convex (or concave).</li> <li>For scale composition, the remarkable ones are:</li> <li>If g is concex and dom (g) ⊆ R<sub>+</sub>, then f(x) = h(g(x)) = log (g) is conceve and dom (g) ⊆ R<sub>+</sub>, then f(x) = h(g(x)) = log (g) is conceve.</li> <li>If g(x) is concave and dom (g) ⊆ R<sub>+</sub>, then f(x) = h o g is convex, where dom (f) = {x   g(x)   s   R<sub>+</sub>, then f(x) = h o g is convex, where dom (f) = R<sub>+</sub>   R<sub>+</sub>   R<sub>+</sub>   R<sub>+</sub>   R<sub>+</sub>   R</li></ul>                                    |
| • $f(x) = e^{ax} \in \mathbb{R}$ , where $a \in \mathbb{R}$ Quadratic function $f : \mathbb{R}^n \to \mathbb{R}$ • $f(x) = ax^T \mathbf{P} \mathbf{x} + p^T \mathbf{x} + r \in \mathbb{R}$ , where $\mathbf{x}, \mathbf{p} \in \mathbb{R}^n, \mathbf{P} \in \mathbb{R}^{n \times n}$ , and $a, b \in \mathbb{R}$ Power function $f : \mathbb{R}_{++} \to \mathbb{R}$ • $f(x) = x^a$ Power of absolute value: $f : \mathbb{R} \to \mathbb{R}$ • $f(x) =  x ^p$ , where $p \le 1$ .  Logarithm function: $f : \mathbb{R}_{++} \to \mathbb{R}$ • $f(x) = \log x$ Negative entropy function: $f : \mathbb{R}_+ \to \mathbb{R}$ • $f(x) = x \log x$ Minkwoski distance, $p$ -norm function, or $I_p$ norm function: $f : \mathbb{R}^n \to \mathbb{R}$ • $f(x) =  x  _p$ , where $p \in \mathbb{N}_{++}$ .  Maximum element: $f : \mathbb{R}^n \to \mathbb{R}$ • $f(x) = \max\{x_1, \dots, x_n\}$ .  Pointwise maximum (maximum function): $f : \mathbb{R}^n \to \mathbb{R}$ • $f(x) = \max\{f_1(x), \dots, f_n(x)\}$ .  Pointwise infimum: • $f(x) = \inf_{y \in \mathcal{A}} g(x, y)$ .  Minimum function: $f : \mathbb{R}^n \to \mathbb{R}$ • $f(x) = \sup_{y \in \mathcal{A}} g(x, y)$ .  Commetric mean function $f : \mathbb{R}^n \to \mathbb{R}$ • $f(x) = \log(e^{x_1} + \dots + e^{x_n})$ Geometric mean function $f : \mathbb{R}^n \to \mathbb{R}$ • $f(x) = \log(x)$ Log-determinant function $f : \mathbb{R}^n \to \mathbb{R}$ • $f(x) = \log  \mathbf{X} $ Composite function $f = h \circ g : \mathbb{R}^n \to \mathbb{R}$ • $f(x) = \log  \mathbf{X} $ Composite function $f = h \circ g : \mathbb{R}^n \to \mathbb{R}$ • $f(x) = \log  \mathbf{X} $ Composite function $f = h \circ g : \mathbb{R}^n \to \mathbb{R}$ • $f(x) = \log  \mathbf{X} $ Composite function $f = h \circ g : \mathbb{R}^n \to \mathbb{R}$ • $f(x) = h \circ g : \mathbb{R}^n \to \mathbb{R}^k$ • $f(x) = h \circ g : \mathbb{R}^n \to \mathbb{R}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | It depends on the matrix P:  • f is convex iff P ≥ 0.  • f is strictly convex iff P > 0.  • f is concave iff P ≤ 0.  • f is strictly concave iff P <  It depends on a  • f is convex iff a ≥ 1 or a ≤  • f is concave iff 0 ≤ a ≤ 1.  Yes.  • f is convex in x if g is convex in d is concave in x if g is convex in the concave in x if g is convex in the concave in x if g is convex in the concave in x if g is convex in the concave in x if g is convex in the concave in x if g is convex in the concave in x if g is convex in the concave in x if g is convex in the concave in x if g is convex in x if x is x if x if x if x if x if x if                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | owing statements hold for $\mathbb{R}$ and $\mathbb{R}$ is nondecreasing, is case, dom $(h)$ is either each $\tilde{h}$ is nondecreasing, is case, dom $(h)$ is either each, $\tilde{h}$ is nondecreasing, is case, dom $(h)$ is either each, $\tilde{h}$ is nondecreasing, is case, dom $(h)$ is either each, $\tilde{h}$ is nondecreasing, is case, dom $(h)$ is either each, $\tilde{h}$ is nondecreasing, each, $\tilde{h}$ is nondecreasing, each, $\tilde{h}$ is nondecreasing in each $\tilde{h}$ is nonde                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | <ul> <li>we have f(x) = c<sup>1</sup>x, which is the inner product between the vector c and x.</li> <li>The inverse image of C, f<sup>-1</sup>(C) = (x   f(x) ∈ C), is also convex.</li> <li>The inverse image of C, f<sup>-1</sup>(C) = (x   f(x) ∈ C), is also convex.</li> <li>The inverse matrix inequality (IAII), A(x) = x, A<sub>1</sub> + ···· + x<sub>1</sub>A<sub>1</sub> ≤ B, is a special case of affine function. In other words, f(x) = (x   A(x) ≤ B) is a convex set if S is convex. Many optimization problems can be formulated as LMI problems and solved optimally.</li> <li>Its domain dom (f) = ∫<sub>1</sub> dom (f<sub>1</sub>) is also convex.</li> <li>For each value of x, we have an infinite set of points g(x, y) _{y ∈ X}. The value f(x) will be the greatest value in the codomain of f that is less than or equal this set.</li> <li>dom (f) = {x   (x, y) ∈ dom (g) ∀ y ∈ X, \( \text{inf} g(x, y) &gt; -∞ \).</li> <li>For each value of x, we have an infinite set of points g(x, y) _{y ∈ X}. The value f(x) will be the least value in the codomain of f that is greater than or equal this set.</li> <li>dom (f) = {x   (x, y) ∈ dom (g) ∀ y ∈ X, \( \text{sing} g(x, y) &gt; -∞ \).</li> <li>For each value of x, we have an infinite set of points g(x, y) _{y ∈ X}. The value f(x) will be the least value in the codomain of f that is greater than or equal this set.</li> <li>dom (f) = {x   (x, y) ∈ dom (g) ∀ y ∈ X, \( \text{sing} g(x, y) &lt; ∞ \).</li> <li>In terms of epigraphs, the pointwise supremum of the infinite set of functions g(x, y) _{y ∈ X} corresponds to the intersection of the following epigraphs: epi f = 0, \( \text{cip} \) cip g(x).</li> <li>This function is interpreted as the approximation of the maximum element function, since max(x<sub>1</sub>,,x<sub>n</sub>) ≤ f(x) ≤ max(x<sub>1</sub>,,x<sub>n</sub>) + log n</li> <li>The composition function, since max(x<sub>1</sub>,,x<sub>n</sub>) ≤ f(x) ≤ max(x<sub>1</sub>,,x<sub>n</sub>) + log n</li> <li>The g(x) = Ax + b is an affine function, then f(x) = h(g(x)) = log g(x) is convex.</li> <li>If g is convex and om (g) ⊆ R<sub>n</sub>, then f(x) = h(g(x)) = reg(x) is convex.</li> <li>If g is convex there g ≥ 1.</li> <li>If g</li></ul>                                                        |
| • $f(x) = e^{ax} \in \mathbb{R}$ , where $a \in \mathbb{R}$ Quadratic function $f : \mathbb{R}^n \to \mathbb{R}$ • $f(x) = ax^T \mathbf{P} \mathbf{x} + p^T \mathbf{x} + r \in \mathbb{R}$ , where $\mathbf{x}, \mathbf{p} \in \mathbb{R}^n, \mathbf{P} \in \mathbb{R}^{n \times n}$ , and $a, b \in \mathbb{R}$ Power function $f : \mathbb{R}_{++} \to \mathbb{R}$ • $f(x) = x^a$ Power of absolute value: $f : \mathbb{R} \to \mathbb{R}$ • $f(x) =  x ^p$ , where $p \le 1$ .  Logarithm function: $f : \mathbb{R}_{++} \to \mathbb{R}$ • $f(x) = \log x$ Negative entropy function: $f : \mathbb{R}_+ \to \mathbb{R}$ • $f(x) = x \log x$ Minkwoski distance, $p$ -norm function, or $I_p$ norm function: $f : \mathbb{R}^n \to \mathbb{R}$ • $f(x) =  x  _p$ , where $p \in \mathbb{N}_{++}$ .  Maximum element: $f : \mathbb{R}^n \to \mathbb{R}$ • $f(x) = \max\{x_1, \dots, x_n\}$ .  Pointwise maximum (maximum function): $f : \mathbb{R}^n \to \mathbb{R}$ • $f(x) = \max\{f_1(x), \dots, f_n(x)\}$ .  Pointwise infimum: • $f(x) = \inf_{y \in \mathcal{A}} g(x, y)$ .  Minimum function: $f : \mathbb{R}^n \to \mathbb{R}$ • $f(x) = \sup_{y \in \mathcal{A}} g(x, y)$ .  Commetric mean function $f : \mathbb{R}^n \to \mathbb{R}$ • $f(x) = \log(e^{x_1} + \dots + e^{x_n})$ Geometric mean function $f : \mathbb{R}^n \to \mathbb{R}$ • $f(x) = \log(x)$ Log-determinant function $f : \mathbb{R}^n \to \mathbb{R}$ • $f(x) = \log  \mathbf{X} $ Composite function $f = h \circ g : \mathbb{R}^n \to \mathbb{R}$ • $f(x) = \log  \mathbf{X} $ Composite function $f = h \circ g : \mathbb{R}^n \to \mathbb{R}$ • $f(x) = \log  \mathbf{X} $ Composite function $f = h \circ g : \mathbb{R}^n \to \mathbb{R}$ • $f(x) = \log  \mathbf{X} $ Composite function $f = h \circ g : \mathbb{R}^n \to \mathbb{R}$ • $f(x) = h \circ g : \mathbb{R}^n \to \mathbb{R}^k$ • $f(x) = h \circ g : \mathbb{R}^n \to \mathbb{R}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | It depends on the matrix P:  • f is convex iff P ≥ 0.  • f is strictly convex iff P > 0.  • f is concave iff P ≤ 0.  • f is concave iff P ≤ 0.  • f is strictly concave iff P <  It depends on a  • f is convex iff a ≥ 1 or a ≤  • f is concave iff 0 ≤ a ≤ 1.  Yes.                        | owing statements hold for $\rightarrow \mathbb{R}$ and $g: \mathbb{R}^n \rightarrow \mathbb{R}$ :  ave in $x$ for each $y \in \mathcal{A}$ .  Eave in $x$ for each $y \in \mathcal{A}$ .  Eave in $x$ for each $y \in \mathcal{A}$ .  Eave in $x$ for each $y \in \mathcal{A}$ .  Eave in $x$ for each $y \in \mathcal{A}$ .  Eave in $x$ for each $y \in \mathcal{A}$ .  Eave in $x$ for each $y \in \mathcal{A}$ .  Eave in $x$ for each $y \in \mathcal{A}$ .  Eave in $x$ for each $y \in \mathcal{A}$ .  Eave in $x$ for each $y \in \mathcal{A}$ .  Eave in $x$ for each $y \in \mathcal{A}$ .  Eave in $x$ for each $y \in \mathcal{A}$ .  Eave in $x$ for each $y \in \mathcal{A}$ .  Eave in $x$ for each $y \in \mathcal{A}$ .  Eave in $x$ for each $y \in \mathcal{A}$ .  Eave in $x$ for each $y \in \mathcal{A}$ .  Eave in $x$ for each $y \in \mathcal{A}$ .  Eave in $x$ for each $y \in \mathcal{A}$ .  Eave in $x$ for each $y \in \mathcal{A}$ .  Eave in $x$ for each $y \in \mathcal{A}$ .  Eave in $x$ for each $y \in \mathcal{A}$ .  Eave in $x$ for each $y \in \mathcal{A}$ .  Eave in $x$ for each $y \in \mathcal{A}$ .  Eave in $x$ for each $y \in \mathcal{A}$ .  Eave in $x$ for each $y \in \mathcal{A}$ .  Eave in $x$ for each $y \in \mathcal{A}$ .  Eave in $x$ for each $y \in \mathcal{A}$ .  Eave in $x$ for each $y \in \mathcal{A}$ .  Eave in $x$ for each $y \in \mathcal{A}$ .  Eave in $x$ for each $y \in \mathcal{A}$ .  Eave in $x$ for each $y \in \mathcal{A}$ .  Eave in $x$ for each $y \in \mathcal{A}$ .                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | <ul> <li>we have f(x) = c<sup>T</sup>x, which is the inner product between the vector c and x.</li> <li>The inverse image of C, f<sup>-1</sup>(C) = {x   f(x) ∈ C}, is also convex.</li> <li>The inverse image of C, f<sup>-1</sup>(C) = {x   f(x) ∈ C}, is also convex.</li> <li>The inverse matrix inequality (LMI), A(x) = x<sub>1</sub>A<sub>1</sub> + ····+x<sub>1</sub>A<sub>2</sub> ≤ B<sub>1</sub> is a special case of affine function. In other words, A(x) = {x   A(x) ≤ B} is a pocal case of affine function.</li> <li>A(x) ≤ B) is a convex set if S is convex. Many optimization problems can be formulated as LMI problems and solved optimally.</li> <li>Its domain dom (f) = f<sub>1</sub> dom (f<sub>1</sub>) is also convex.</li> <li>For each value of x, we have an infinite set of points g(x, y) <sub>y∈Z</sub>. The value f(x) will be the greatest value in the codomain of f that is set than or equal this set.</li> <li>dom (f) = {x   (x, y) ∈ dom (g) ∀ y ∈ A, sing g(x, y) &gt; -∞}.</li> <li>For each value of x, we have an infinite set of points g(x, y) <sub>y∈Z</sub>. The value f(x) will be the least value in the codomain of f that is greater than or equal this set.</li> <li>dom (f) = {x   (x, y) ∈ dom (g) ∀ y ∈ A, sing g(x, y) &lt; ∞}.</li> <li>for each value of x, we have an infinite set of points g(x, y) <sub>y∈Z</sub>. The value f(x) will be the least value in the codomain of f that is greater than or equal this set.</li> <li>dom (f) = {x   (x, y) ∈ dom (g) ∀ y ∈ A, sing g(x, y) &lt; ∞}.</li> <li>In terms of epigraphs, the pointwise supremum of the infinite set of functions g(x, y) <sub>y∈Z</sub>, corresponds to the intersection of the following epigraphs: epi f = (1, e) eig g(x).</li> <li>This function is interpreted as the approximation of the maximum element function, since max (x<sub>1</sub>,,x<sub>n</sub>) ≤ f(x) ≤ max (x<sub>1</sub>,,x<sub>n</sub>) + log n</li> <li>This function is interpreted as the approximation of the maximum element function, since max (x<sub>1</sub>,,x<sub>n</sub>) ≤ f(x) ≤ max (x<sub>1</sub>,,x<sub>n</sub>) + log n</li> <li>The composition, the remarkable ones are:</li> <li>If g is convex then f(x) = h(g(x)) = cxp(x) is convex.</li> <li>If g is convex and dom (g) ⊆ E<sub>n+</sub>, then f(x) =</li></ul> |
| • $f(x) = e^{nx} \in \mathbb{R}$ , where $a \in \mathbb{R}$ Quadratic function $f : \mathbb{R}^n \to \mathbb{R}$ • $f(x) = ax^T \mathbf{P} \mathbf{x} + p^T \mathbf{x} + r \in \mathbb{R}$ , where $\mathbf{x}, \mathbf{p} \in \mathbb{R}^n, \mathbf{P} \in \mathbb{R}^{n \times n}$ , and $a, b \in \mathbb{R}$ Power function $f : \mathbb{R}_{++} \to \mathbb{R}$ • $f(x) =  x ^p$ , where $p \in \mathbb{N}$ .  Power of absolute value: $f : \mathbb{R} \to \mathbb{R}$ • $f(x) =  x ^p$ , where $p \in \mathbb{N}$ .  Logarithm function: $f : \mathbb{R}_{++} \to \mathbb{R}$ • $f(x) = \log x$ Negative entropy function: $f : \mathbb{R}_{+} \to \mathbb{R}$ • $f(x) =  x  \log x$ Minkwoski distance, $p$ -norm function, or $I_p$ norm function: $f : \mathbb{R}^n \to \mathbb{R}$ • $f(x) =  x  \log_p$ , where $p \in \mathbb{N}_{++}$ .  Maximum element: $f : \mathbb{R}^n \to \mathbb{R}$ • $f(x) = \max_i f_i(x), \dots, f_n(x)$ .  Pointwise maximum (maximum function): $f : \mathbb{R}^n \to \mathbb{R}$ • $f(x) = \max_i f_i(x), \dots, f_n(x)$ .  Pointwise supremum: • $f(x) = \sup_{y \in \mathbb{R}} g(x, y)$ .  Minimum function: $f : \mathbb{R}^n \to \mathbb{R}$ • $f(x) = \min_i f_i(x), \dots, f_n(x)$ .  Log-sum-exp function: $f : \mathbb{R}^n \to \mathbb{R}$ • $f(x) = \log_i (e^{x_1} + \dots + e^{x_n})$ Geometric mean function $f : \mathbb{R}^n \to \mathbb{R}$ • $f(x) = \log_i \mathbb{R}^n$                                                                                                                                                                                                                                                                                                                                                                                                                                                        | It depends on the matrix P:  • f is convex iff P ≥ 0.  • f is strictly convex iff P > 0.  • f is concave iff P ≤ 0.  • f is concave iff P ≤ 0.  • f is strictly concave iff P <  It depends on a  • f is convex iff a ≥ 1 or a ≤  • f is concave iff 0 ≤ a ≤ 1.  Yes.  • f is convex in x if g is convex in x if g is convex in the convex in x if g is convex. In the convex in x if g is convex. In the convex in x if g is convex. In the convex in x if g is convex. In the convex in x if g is convex. In the convex in x if g is convex. In the convex in x if g is convex. In the convex in x if g is convex. In the convex in x if g is convex. In the convex in x if g is convex. In the convex in x if g is convex. In the convex in x if g is convex. In the convex in x if g is convex                       | owing statements hold for $\rightarrow \mathbb{R}$ and $g: \mathbb{R}^n \rightarrow \mathbb{R}$ :  next in $x$ for each $y \in \mathcal{A}$ .  cave in $x$ for each $y \in \mathcal{A}$ .  cave in $x$ for each $y \in \mathcal{A}$ .  cave, $\tilde{h}$ is nondecreasing, and $\tilde{h}$ is nondecreasing and $\tilde{h}$ is nondecreasin                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | <ul> <li>we have f(x) = c<sup>1</sup>x, which is the inner product between the vector c and x.</li> <li>The inverse image of C, f<sup>-1</sup>(C) = (x   f(x) ∈ C), is also convex.</li> <li>The inverse image of C, f<sup>-1</sup>(C) = (x   f(x) ∈ C), is also convex.</li> <li>The inverse matrix inequality (IAII), A(x) = x, A<sub>1</sub> + ···· + x<sub>1</sub>A<sub>1</sub> ≤ B, is a special case of affine function. In other words, f(x) = (x   A(x) ≤ B) is a convex set if S is convex. Many optimization problems can be formulated as LMI problems and solved optimally.</li> <li>Its domain dom (f) = ∫<sub>1</sub> dom (f<sub>1</sub>) is also convex.</li> <li>For each value of x, we have an infinite set of points g(x, y) _{y ∈ X}. The value f(x) will be the greatest value in the codomain of f that is less than or equal this set.</li> <li>dom (f) = {x   (x, y) ∈ dom (g) ∀ y ∈ X, \( \text{inf} g(x, y) &gt; -∞ \).</li> <li>For each value of x, we have an infinite set of points g(x, y) _{y ∈ X}. The value f(x) will be the least value in the codomain of f that is greater than or equal this set.</li> <li>dom (f) = {x   (x, y) ∈ dom (g) ∀ y ∈ X, \( \text{sing} g(x, y) &gt; -∞ \).</li> <li>For each value of x, we have an infinite set of points g(x, y) _{y ∈ X}. The value f(x) will be the least value in the codomain of f that is greater than or equal this set.</li> <li>dom (f) = {x   (x, y) ∈ dom (g) ∀ y ∈ X, \( \text{sing} g(x, y) &lt; ∞ \).</li> <li>In terms of epigraphs, the pointwise supremum of the infinite set of functions g(x, y) _{y ∈ X} corresponds to the intersection of the following epigraphs: epi f = 0, \( \text{cip} \) cip g(x).</li> <li>This function is interpreted as the approximation of the maximum element function, since max(x<sub>1</sub>,,x<sub>n</sub>) ≤ f(x) ≤ max(x<sub>1</sub>,,x<sub>n</sub>) + log n</li> <li>The composition function, since max(x<sub>1</sub>,,x<sub>n</sub>) ≤ f(x) ≤ max(x<sub>1</sub>,,x<sub>n</sub>) + log n</li> <li>The g(x) = Ax + b is an affine function, then f(x) = h(g(x)) = log g(x) is convex.</li> <li>If g is convex and om (g) ⊆ R<sub>n</sub>, then f(x) = h(g(x)) = reg(x) is convex.</li> <li>If g is convex there g ≥ 1.</li> <li>If g</li></ul>                                                        |
| • $f(x) = e^{nx} \in \mathbb{R}$ , where $a \in \mathbb{R}$ Quadratic function $f: \mathbb{R}^n \to \mathbb{R}$ • $f(x) = ax^T \mathbf{P} \mathbf{x} + p^T \mathbf{x} + r \in \mathbb{R}$ , where $\mathbf{x}, \mathbf{p} \in \mathbb{R}^n, \mathbf{P} \in \mathbb{R}^{n \times n}$ , and $a, b \in \mathbb{R}$ • $f(x) = x^a$ Power function $f: \mathbb{R}_{++} \to \mathbb{R}$ • $f(x) =  \mathbf{x} ^p$ , where $p \leq 1$ .  Logarithm function: $f: \mathbb{R}_+ \to \mathbb{R}$ • $f(x) = \log x$ Negative entropy function: $f: \mathbb{R}_+ \to \mathbb{R}$ • $f(x) = \log x$ Minkwaski distance, $p$ -norm function, or $l_p$ norm function: $f: \mathbb{R}^n \to \mathbb{R}$ • $f(x) =  \mathbf{x}  _p$ , where $p \in \mathbb{N}_{++}$ .  Maximum element: $f: \mathbb{R}^n \to \mathbb{R}$ • $f(x) = \max\{x_1, \dots, x_n\}$ .  Pointwise maximum (maximum function): $f: \mathbb{R}^n \to \mathbb{R}$ • $f(x) = \max\{f_1(x), \dots, f_n(x)\}$ .  Pointwise infimum: • $f(x) = \sup_{y \in \mathcal{X}} g(x, y)$ .  Minimum function: $f: \mathbb{R}^n \to \mathbb{R}$ • $f(x) = \sup_{y \in \mathcal{X}} g(x, y)$ .  Contains a supremum: • $f(x) = \sup_{y \in \mathcal{X}} g(x, y)$ .  Dog-sum-exp function: $f: \mathbb{R}^n \to \mathbb{R}$ • $f(x) = \log(e^{x_1} + \dots + e^{x_n})$ Geometric mean function $f: \mathbb{R}^n \to \mathbb{R}$ • $f(x) = \log  \mathbf{X} $ Composite function $f = h \circ g: \mathbb{R}^n \to \mathbb{R}$ • $f(x) = \log  \mathbf{X} $ Composite function $f = h \circ g: \mathbb{R}^n \to \mathbb{R}$ • $f(x) = \log  \mathbf{X} $ Composite function $f = h \circ g: \mathbb{R}^n \to \mathbb{R}$ • $f(x) = \mathbb{R}^n \to \mathbb{R}^n$ • $f(x) = \log  \mathbf{X} $ Composite function $f = h \circ g: \mathbb{R}^n \to \mathbb{R}$ • $f(x) = \log  \mathbf{X} $ $f(x) = \mathbb{R}^n \to \mathbb{R}^n$ • $f(x) = $                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | It depends on the matrix P:  • f is convex iff P ≥ 0.  • f is strictly convex iff P > 0.  • f is concave iff P ≤ 0.  • f is concave iff P ≤ 0.  • f is rictly concave iff P <  It depends on a  • f is convex iff a ≥ 1 or a ≤  • f is concave iff 0 ≤ a ≤ 1.  Yes.  Ye                      | owing statements hold for $\Rightarrow \mathbb{R}$ and $g: \mathbb{R}^n \to \mathbb{R}$ :  and $g: \mathbb{R}^n \to \mathbb{R}^n$ :  and                                                                             | <ul> <li>we have f(x) = c<sup>2</sup>x, which is the inner product between the vector c and x.</li> <li>The inverse image of C, f<sup>-1</sup>(C) = (x   f(x) ∈ C), is also convex.</li> <li>The inverse image of C, f<sup>-1</sup>(C) = (x   f(x) ∈ C), is also convex.</li> <li>The inverse image of C, f<sup>-1</sup>(C) = (x   f(x) ∈ C), is also convex.</li> <li>In can be proved by triangular inequality.</li> <li>It can be proved by triangular inequality.</li> <li>It can be proved by triangular inequality.</li> <li>It can be proved by triangular inequality.</li> <li>For each value of x, we have an infinite set of points g(x, y) _{x &gt; 0}. The value f(x) will be the greatest value in the codomain of f that is less than or equal this set.</li> <li>dom (f) = {x   (x, y) ∈ dom (g) ∀ y ∈ A, inst g(x, y) &gt; -∞ }.</li> <li>For each value of x, we have an infinite set of points g(x, y) _{x &gt; 0}. The value f(x) will be the less value in the codomain of f that is greater than or equal this set.</li> <li>dom (f) = {x   (x, y) ∈ dom (g) ∀ y ∈ A, sup g(x, y) &lt; ∞ }.</li> <li>In terms of epigraphs, the pointwise supremum of ten infinite set of functions g(x, y) _{x &gt; 0}.</li> <li>In terms of epigraphs, the pointwise supremum of the infinite set of functions g(x, y) _{x &gt; 0}.</li> <li>This function is interpreted as the approximation of the maximum element function, since max {x<sub>1</sub>,,x<sub>n</sub>} ≤ f(x) ≤ max {x<sub>1</sub>,,x<sub>n</sub>} + log n</li> <li>This function is interpreted as the approximation of the maximum element function, since max {x<sub>1</sub>,,x<sub>n</sub>} ≤ f(x) ≤ max {x<sub>1</sub>,,x<sub>n</sub>} + log n</li> <li>The composition function allows us to see a large class of functions as convex (or oposition, the remarkable ones are:</li> <li>If g is convex then f(x) = h(g(x)) = ep g(x) is convex.</li> <li>If g is convex then f(x) = h(g(x)) = ep g(x) is convex.</li> <li>If g is convex then f(x) = h(g(x)) = -log (-g(x)) is convex.</li> <li>If g is convex then f(x) = h(g(x)) = -log (-g(x)) is convex. where g ≥ 1.</li> <li>If g(x) is convex.</li> <li>F h o g is a convex function.</li> <li>For a c P</li></ul>                                                                                            |
| • $f(x) = e^{nx} \in \mathbb{R}$ , where $a \in \mathbb{R}$ Quadratic function $f : \mathbb{R}^n \to \mathbb{R}$ • $f(x) = ax^T \mathbf{P} \mathbf{x} + p^T \mathbf{x} + r \in \mathbb{R}$ , where $\mathbf{x}, \mathbf{p} \in \mathbb{R}^n, \mathbf{P} \in \mathbb{R}^{n \times n}$ , and $a, b \in \mathbb{R}$ Power function $f : \mathbb{R}_{++} \to \mathbb{R}$ • $f(x) = x^n$ Power of absolute value: $f : \mathbb{R} \to \mathbb{R}$ • $f(x) =  x ^p$ , where $p \leq 1$ .  Logarithm function: $f : \mathbb{R}_{++} \to \mathbb{R}$ • $f(x) =  x p$ , where $p \leq 1$ .  Logarithm function: $f : \mathbb{R}_{+} \to \mathbb{R}$ • $f(x) =  x p$ , where $p \in \mathbb{N}_{++}$ .  Maximum element: $f : \mathbb{R}^n \to \mathbb{R}$ • $f(x) =  x p$ , where $p \in \mathbb{N}_{++}$ .  Maximum element: $f : \mathbb{R}^n \to \mathbb{R}$ • $f(x) = \max_i f_1(x), \dots, f_n(x)$ .  Pointwise maximum (maximum function): $f : \mathbb{R}^n \to \mathbb{R}$ • $f(x) = \max_i f_1(x), \dots, f_n(x)$ .  Pointwise infimum: • $f(x) = \min_i f_2(x, y)$ .  Minimum function: $f : \mathbb{R}^n \to \mathbb{R}$ • $f(x) = \min_i f_1(x), \dots, f_n(x)$ .  Log-sum-exp function: $f : \mathbb{R}^n \to \mathbb{R}$ • $f(x) = \min_i f_1(x), \dots, f_n(x)$ .  Log-sum-exp function: $f : \mathbb{R}^n \to \mathbb{R}$ • $f(x) =  (\Pi_{i=1}^n x_i)^{1/n}$ Log-determinant function $f : \mathbb{R}^n \to \mathbb{R}$ • $f(x) = \log  \mathbb{R}^n \to \mathbb{R}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | It depends on the matrix P:  • f is convex iff P≥ 0.  • f is strictly convex iff P > 0.  • f is trictly concave iff P < 0.  • f is concave iff P ≤ 0.  • f is convex iff a≥ 1 or a≤  • f is convex iff a≥ 1 or a≤  • f is concave iff 0 ≤ a ≤ 1.  Yes.  Yes.  Yes.  Yes.  Yes.  Yes.  Yes.  Yes.  • f is convex in x if g is convex in the following formulation for the cases.  Yes.  Yes.  Yes.  Yes.  Yes.  • f is convex in x if g is convex in the following formulation for fix the following formulation                      | owing statements hold for $\mathbb{R}$ and $g:\mathbb{R}^n\to\mathbb{R}$ .  The cave in $x$ for each $y\in\mathcal{A}$ .  The cave, $h$ is nonincreasing, the cave, $h$ is nonincreasing that $h$ is a set of convex, $h$ is nonincreasing that $h$ is a set of convex, $h$ is nonincreasing that $h$ is nonincrea                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | <ul> <li>we have f(x) = c<sup>2</sup>x, which is the inner product between the vector c and x.</li> <li>The inverse image of C, f<sup>-1</sup>(C) = (x   f(x) ∈ C), is also convex.</li> <li>The inverse image of C, f<sup>-1</sup>(C) = (x   f(x) ∈ C), is also convex.</li> <li>The inverse image of C, f<sup>-1</sup>(C) = (x   f(x) ∈ C), is also convex.</li> <li>In can be proved by triangular inequality.</li> <li>It can be proved by triangular inequality.</li> <li>It can be proved by triangular inequality.</li> <li>It can be proved by triangular inequality.</li> <li>For each value of x, we have an infinite set of points g(x, y) _{x &gt; 0}. The value f(x) will be the greatest value in the codomain of f that is less than or equal this set.</li> <li>dom (f) = {x   (x, y) ∈ dom (g) ∀ y ∈ A, inst g(x, y) &gt; -∞ }.</li> <li>For each value of x, we have an infinite set of points g(x, y) _{x &gt; 0}. The value f(x) will be the less value in the codomain of f that is greater than or equal this set.</li> <li>dom (f) = {x   (x, y) ∈ dom (g) ∀ y ∈ A, sup g(x, y) &lt; ∞ }.</li> <li>In terms of epigraphs, the pointwise supremum of ten infinite set of functions g(x, y) _{x &gt; 0}.</li> <li>In terms of epigraphs, the pointwise supremum of the infinite set of functions g(x, y) _{x &gt; 0}.</li> <li>This function is interpreted as the approximation of the maximum element function, since max {x<sub>1</sub>,,x<sub>n</sub>} ≤ f(x) ≤ max {x<sub>1</sub>,,x<sub>n</sub>} + log n</li> <li>This function is interpreted as the approximation of the maximum element function, since max {x<sub>1</sub>,,x<sub>n</sub>} ≤ f(x) ≤ max {x<sub>1</sub>,,x<sub>n</sub>} + log n</li> <li>The composition function allows us to see a large class of functions as convex (or oposition, the remarkable ones are:</li> <li>If g is convex then f(x) = h(g(x)) = ep g(x) is convex.</li> <li>If g is convex then f(x) = h(g(x)) = ep g(x) is convex.</li> <li>If g is convex then f(x) = h(g(x)) = -log (-g(x)) is convex.</li> <li>If g is convex then f(x) = h(g(x)) = -log (-g(x)) is convex. where g ≥ 1.</li> <li>If g(x) is convex.</li> <li>F h o g is a convex function.</li> <li>For a c P</li></ul>                                                                                            |
| • $f(x) = e^{ax} \in \mathbb{R}$ , where $a \in \mathbb{R}$ Quadratic function $f: \mathbb{R}^n \to \mathbb{R}$ • $f(\mathbf{x}) = a\mathbf{x}^T \mathbf{P} \mathbf{x} + \mathbf{p}^T \mathbf{x} + r \in \mathbb{R}$ , where $\mathbf{x}, \mathbf{p} \in \mathbb{R}^n, \mathbf{P} \in \mathbb{R}^{n \times n}$ , and $a, b \in \mathbb{R}$ • $f(x) = x^a$ Power function $f: \mathbb{R}_+ \to \mathbb{R}$ • $f(x) =  \mathbf{x} ^p$ , where $p \leq 1$ .  Logarithm function: $f: \mathbb{R}_+ \to \mathbb{R}$ • $f(x) =  \log x$ Negative entropy function: $f: \mathbb{R}_+ \to \mathbb{R}$ • $f(x) =  \mathbf{x}  \mathbf{g}$ , where $p \in \mathbb{N}_+$ .  Minkwoold distance, $p$ -norm function, or $l_p$ norm function: $f: \mathbb{R}^n \to \mathbb{R}$ • $f(\mathbf{x}) =  \mathbf{x}  \mathbf{g}$ , where $p \in \mathbb{N}_+$ .  Maximum element: $f: \mathbb{R}^n \to \mathbb{R}$ • $f(\mathbf{x}) = \max \{f_1(\mathbf{x}, \dots, f_n(\mathbf{x})\}$ .  Pointwise maximum (maximum function): $f: \mathbb{R}^n \to \mathbb{R}$ • $f(\mathbf{x}) = \max \{f_1(\mathbf{x}, \dots, f_n(\mathbf{x})\}$ .  Pointwise infimum: • $f(\mathbf{x}) = \min_{y \in \mathcal{X}} f(\mathbf{x}, y)$ .  Pointwise supremum: • $f(\mathbf{x}) = \sup_{y \in \mathcal{X}} g(\mathbf{x}, y)$ .  Minimum function: $f: \mathbb{R}^n \to \mathbb{R}$ • $f(\mathbf{x}) = \sup_{y \in \mathcal{X}} g(\mathbf{x}, y)$ .  Log-sum-exp function: $f: \mathbb{R}^n \to \mathbb{R}$ • $f(\mathbf{x}) = \log(e^{a_1} + \dots + e^{a_n})$ Geometric mean function $f: \mathbb{R}^n \to \mathbb{R}$ • $f(\mathbf{x}) = \log(\mathbf{x})$ Composite function $f: \mathbb{R}^n \to \mathbb{R}$ • $f(\mathbf{x}) = \log(\mathbf{x})$ Composite function $f: \mathbb{R}^n \to \mathbb{R}$ • $f(\mathbf{x}) = \log(\mathbf{x})$ • $f(\mathbf{x}) = (\mathbf{x} \in \text{dom}(g) \mid g(\mathbf{x}) \in \text{dom}(h))$ .                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | It depends on the matrix P:  • f is convex iff P≥ 0.  • f is strictly convex iff P > 0.  • f is strictly concave iff P ≤ 0.  • f is concave iff P ≤ 0.  • f is strictly concave iff P <  It depends on a  • f is convex iff a ≥ 1 or a ≤  • f is concave iff 0 ≤ a ≤ 1.  Yes.  Not in most of the cases.  Yes.  Y                      | owing statements hold for $\Rightarrow \mathbb{R}$ and $g: \mathbb{R}^n \to \mathbb{R}$ :  and $g: $ | <ul> <li>we have f(x) = c<sup>2</sup>x, which is the inner product between the vector c and x.</li> <li>The inverse image of C, f<sup>-1</sup>(C) = {x   f(x) ∈ C}, is also convex.</li> <li>The kinear matrix integrably (LMI), k(x) ∈ X, is also convex.</li> <li>The kinear matrix invegably (LMI), k(x) = x, k(x) + ·····*x, k ≤ B; is a special case of affine function. In other words, f(S) = (x   k(x) ≤ B); is a convex set if S is convex. Many optimization problems can be formulated as LMI problems and solved optimially.</li> <li>It can be proved by triangular inequality.</li> <li>It can be proved by triangular inequality.</li> <li>For each value of x, we have an infinite set of points g(x, y) <sub>y∈X</sub>. The value f(t) will be the greatest value in the codomain of f that is less than or equal this set.</li> <li>dom (f) = {x   (x, y) ∈ dom (g) ∀ y ∈ X, \( \pi_{x} \) \ \ \frac{x}{x} \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \</li></ul>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| • $f(x) = e^{nx} \in \mathbb{R}$ , where $a \in \mathbb{R}$<br>Quadratic function $f : \mathbb{R}^n \to \mathbb{R}$<br>• $f(x) = ax^T \mathbf{P} \mathbf{x} + \mathbf{p}^T \mathbf{x} + r \in \mathbb{R}$ , where $\mathbf{x}, \mathbf{p} \in \mathbb{R}^n, \mathbf{P} \in \mathbb{R}^{n \times n}$ , and $a, b \in \mathbb{R}$<br>Power function $f : \mathbb{R}_{+n} \to \mathbb{R}$<br>• $f(x) = x^n$<br>Power of absolute value: $f : \mathbb{R} \to \mathbb{R}$<br>• $f(x) =  x ^p$ , where $p \leq 1$ .<br>Logarithm function: $f : \mathbb{R}_+ \to \mathbb{R}$<br>• $f(x) =  \log x$<br>Negative entropy function: $f : \mathbb{R}_+ \to \mathbb{R}$<br>• $f(x) = \log x$<br>Minikveski distance, $p$ -norm function, or $t_p$ norm function: $f : \mathbb{R}^n \to \mathbb{R}$<br>• $f(x) =  \mathbb{R}^n _p$ , where $p \in \mathbb{N}_{++}$ .<br>Maximum element: $f : \mathbb{R}^n \to \mathbb{R}$<br>• $f(x) = \max(x_1, \dots, x_n)$ .<br>Pointwise maximum (maximum function): $f : \mathbb{R}^n \to \mathbb{R}$<br>• $f(x) = \max(f_1(x), \dots, f_n(x))$ .<br>Pointwise infimum:<br>• $f(x) = \min(f_1(x), \dots, f_n(x))$ .<br>Pointwise supremum:<br>• $f(x) = \min(f_1(x), \dots, f_n(x))$ .<br>Log-sum-exp function: $f : \mathbb{R}^n \to \mathbb{R}$<br>• $f(x) = \inf(f_1(x), \dots, f_n(x))$ .<br>Log-sum-exp function: $f : \mathbb{R}^n \to \mathbb{R}$<br>• $f(x) = \log  \mathbb{R}^n _{-\infty} = \mathbb{R}^n$<br>• $f(x) = \log  \mathbb{R}^n _{-\infty} = \mathbb$                                                                                                                                                                                                                                                                                                                                                                | It depends on the matrix P:  • f is convex iff P≥ 0.  • f is strictly convex iff P> 0.  • f is trictly concave iff P < 0.  • f is concave iff P ≤ 0.  • f is convex iff a ≥ 1 or a ≤  • f is concave iff 0 ≤ a ≤ 1.  Yes.  Ye                      | over $\hat{h}$ is nonincreasing, is case, $\hat{h}$ is nonincreasing in $\hat{h}$ and $\hat{h}$ is nonincreasing in $\hat{h}$ in $\hat{h}$ in $\hat{h}$ is a set of increasing in $\hat{h}$ i                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | <ul> <li>we have f(x) = c<sup>2</sup>x, which is the inner product between the vector c and x.</li> <li>The inverse image of C, f<sup>-1</sup>(C) = (x   f(x) ∈ C), is also convex.</li> <li>The inverse image of C, f<sup>-1</sup>(C) = (x   f(x) ∈ C), is also convex.</li> <li>The inverse image of C, f<sup>-1</sup>(C) = (x   f(x) ∈ C), is also convex.</li> <li>It is a special case of affine interior.</li> <li>(x   f(x) ≤ B) is a convex set if 3 is convex.</li> <li>Many optimization problems can be formulated as LMI problems and solved optimidly.</li> <li>It can be proved by triangular inequality.</li> <li>It can be proved by triangular inequality.</li> <li>For each value of x, we have an infinite set of points g(x, y) _{x, x, x} = 1 than be f(x) will be the greatest value in the codomain of f that is less than or equal this set.</li> <li>dom (f) = {x   (x, y) ∈ dom (g) ∀ y ∈ R, sign f(x, y) &gt; -∞s}.</li> <li>For each value of x, we have an infinite set of points g(x, y) _{x, x, x} = 1 the value f(x) will be the inset value in the codomain of f that is greater than or equal this set.</li> <li>dom (f) = {x   (x, y) ∈ dom (g) ∀ y ∈ R, sign f(x, y) &lt; ∞s}.</li> <li>In terms of epigraphs, the pointwise supremum of the infinite set of functions g(x, y) _{x, y, y} corresponds to the intersection of the following epigraphs: epi f = f(x) g(x) g(x, y).</li> <li>This function is interpreted as the approximation of the maximum element function, since max (x<sub>1</sub>,,x<sub>n</sub>) ≤ f(x) ≤ max (x<sub>1</sub>,,x<sub>n</sub>) + log x</li> <li>The composition function allows us to see a large class of functions as correct (or concave).</li> <li>The size concave and dom (g) ⊆ E<sub>x</sub>, then f(x) = h(g(x)) = log (x) is convex.</li> <li>If g is concave and dom (g) ⊆ E<sub>x</sub>, then f(x) = h(g(x)) = log (x) is convex.</li> <li>If g is concave and dom (g) ⊆ E<sub>x</sub>, then f(x) = h(g(x)) = log (x) is convex.</li> <li>If g is convex then g(x) = log (x) = log (x) is convex.</li> <li>If g is convex then g(x) = log (x) = log (x) is convex.</li> <li>If g is convex then g(x) = log (x) = log (x) is convex.</li> <li></li></ul>                                                                                                          |
| • $f(x) = e^{nx} \in \mathbb{R}$ , where $a \in \mathbb{R}$ Quadratic function $f: \mathbb{R}^n \to \mathbb{R}$ • $f(\mathbf{x}) = a\mathbf{x}^T \mathbf{P} \mathbf{x} + p^T \mathbf{x} + r \in \mathbb{R}$ , where $\mathbf{x}, \mathbf{p} \in \mathbb{R}^n$ , $\mathbf{P} \in \mathbb{R}^{n \times n}$ , and $a, b \in \mathbb{R}$ Power function $f: \mathbb{R}_+ \to \mathbb{R}$ • $f(x) = \mathbf{x}^n$ Power of absolute value: $f: \mathbb{R} \to \mathbb{R}$ • $f(x) =  \mathbf{x} ^n$ , where $p \leq 1$ .  Logarithm function: $f: \mathbb{R}_+ \to \mathbb{R}$ • $f(x) = \log x$ Negative entropy function: $f: \mathbb{R}_+ \to \mathbb{R}$ • $f(x) = \log x$ Negative entropy function: $f: \mathbb{R}^n \to \mathbb{R}$ • $f(x) = \log x$ Negative entropy function: $f: \mathbb{R}^n \to \mathbb{R}$ • $f(x) = \log x$ $f(x) = \log x$ Pointwise infimum:  • $f(x) = \max_i f_{i_1}(x_1, \dots, f_n(x))$ .  Pointwise maximum (maximum function): $f: \mathbb{R}^n \to \mathbb{R}$ • $f(x) = \max_i f_{i_1}(x_1, \dots, f_n(x))$ .  Pointwise supremun:  • $f(x) = \sup_{y \in \mathcal{I}} g(x, y)$ .  Minimum function: $f: \mathbb{R}^n \to \mathbb{R}$ • $f(x) = \min_i f_{i_1}(x_1, \dots, f_n(x))$ .  Log-sum-exp function: $f: \mathbb{R}^n \to \mathbb{R}$ • $f(x) = \log(e^{x_1} + \dots + e^{x_n})$ Geometric mean function $f: \mathbb{R}^n \to \mathbb{R}$ • $f(x) = \log x$ $f(x) = \log x$ Composite function $f: \mathbb{R}^n \to \mathbb{R}$ • $f(x) = \log x$ • $f(x) = \log x$ Nonnegative weighted sum: $f: \dim(f) \to \mathbb{R}$ • $f(x) = \log x$ Perspective function $f: \mathbb{R}^n \to \mathbb{R}$ • $f(x) = \log x$ • $f(x) = \log x$ Nonnegative maximum $f(x) \to \mathbb{R}^n \to \mathbb{R}$ • $f(x) = \log x$ Perspective function $f: \mathbb{R}^n \to \mathbb{R}$ • $f(x) \to \mathbb{R}^n \to \mathbb{R}^n \to \mathbb{R}$ • $f(x) \to \mathbb{R}^n \to \mathbb{R}$                                                                                                                                                                                                                                                                                                                                                                 | It depends on the matrix P:  • f is convex iff P≥ 0.  • f is strictly convex iff P > 0.  • f is strictly concave iff P < 0.  • f is concave iff P ≤ 0.  • f is convex iff a ≥ 1 or a ≤  • f is convex iff a ≥ 1 or a ≤  • f is concave iff 0 ≤ a ≤ 1.  Yes.  • f is convex in x if g is convex in the following form of the cases.  Yes.                       | over $\hat{h}$ is nonincreasing, is case, $\hat{h}$ is nonincreasing in $\hat{h}$ and $\hat{h}$ is nonincreasing in $\hat{h}$ in $\hat{h}$ in $\hat{h}$ in $\hat{h}$ in $\hat{h}$ is a set of increasing in $\hat{h}$ in                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | <ul> <li>we have f(x) = c*x, which is the inner product between the vector c and x.</li> <li>The inverse image of C, f^1(C) = (x   f(x) ∈ C), is also convex.</li> <li>The finear matrix megability (LMI), A(x) ∈ X, h. + · · · *x, A<sub>0</sub> ≤ B, is a special case of afflite function. In other words, f(S) = (x   A(x) ≤ B) is a convex set if S is convex. Many optimization problems can be formulated as LMI problems and solved optimizing.</li> <li>Its domain dom f(f) = f<sup>0</sup>/1 dom (f) is also convex.</li> <li>For each value of x, we have an infinite set of points g(x, y) _{y=2x}. The value f(S) will be the groutest value in the codomain of f that is less than or equal this set.</li> <li>dom (f) = {x   (x, y) ∈ dom (g) ∀ y ∈ A, larg (x, y) &gt; -∞}.</li> <li>For each value of x, we have an infinite set of points g(x, y) _{y=2x}. The value f(x) will be the grout value in the codomain of f that is greater than or equal this set.</li> <li>dom (f) = {x   (x, y) ∈ dom (g) ∀ y ∈ A, larg (x, y) &lt; ∞}.</li> <li>In terms of epigraphs, the pointwise suprenum of the infinite set of functions g(x, y) _{y=2x} the points g(x, y) _{y=2x} the function is given to function, since max {x_1,, x_n} ≤ f(x) ≤ max {x_1,, x_n} + log x</li> <li>The composition function allows us to see a large class of functions as convex (or concave).</li> <li>For scale composition, the remarkable once are:</li> <li>If g is convex than f(x) = h(g(x)) = exp (g(x)) is convex.</li> <li>If g is convex and dom (g) ⊆ R<sub>++</sub>, then f(x) = h(g(x)) = log (g(x)) = log (x) is convex.</li> <li>If g is convex and dom (g) ⊆ R<sub>++</sub>, then f(x) = h(g(x)) = log (x) is convex, where y ∈ R<sup>0</sup> is g(x) = log (x) is convex.</li> <li>If g is convex than f(x) = h(g(x)) = log (-g(x)) is convex.</li> <li>If g is convex than f(x) = h(g(x)) = log (-g(x)) is convex. where dom (g) = x, then f h(x) = h(g(x)) = exp (x) is convex.</li> <li>If g is convex than f(x) = h(g(x)) = log (-g(x)) is convex.</li> <li>For vector apax+is n, we attend the following the after a pig is convex where dom (g) = x,</li></ul>                                                                                                                                                                 |
| • $f(x) = e^{nx} \in \mathbb{R}$ , where $a \in \mathbb{R}$ Quadratic function $f: \mathbb{R}^n \to \mathbb{R}$ • $f(\mathbf{x}) = a\mathbf{x}^T \mathbf{P} \mathbf{x} + p^T \mathbf{x} + r \in \mathbb{R}$ , where $\mathbf{x}, \mathbf{p} \in \mathbb{R}^n$ , $\mathbf{P} \in \mathbb{R}^{n \times n}$ , and $a, b \in \mathbb{R}$ Power function $f: \mathbb{R}_+ \to \mathbb{R}$ • $f(x) = \mathbf{x}^n$ Power of absolute value: $f: \mathbb{R} \to \mathbb{R}$ • $f(x) =  \mathbf{x} ^n$ , where $p \leq 1$ .  Logarithm function: $f: \mathbb{R}_+ \to \mathbb{R}$ • $f(x) = \log x$ Negative entropy function: $f: \mathbb{R}_+ \to \mathbb{R}$ • $f(x) = \log x$ Negative entropy function: $f: \mathbb{R}^n \to \mathbb{R}$ • $f(x) = \log x$ Negative entropy function: $f: \mathbb{R}^n \to \mathbb{R}$ • $f(x) = \log x$ $f(x) = \log x$ Pointwise infimum:  • $f(x) = \max_i f_{i_1}(x_1, \dots, f_n(x))$ .  Pointwise maximum (maximum function): $f: \mathbb{R}^n \to \mathbb{R}$ • $f(x) = \max_i f_{i_1}(x_1, \dots, f_n(x))$ .  Pointwise supremun:  • $f(x) = \sup_{y \in \mathcal{I}} g(x, y)$ .  Minimum function: $f: \mathbb{R}^n \to \mathbb{R}$ • $f(x) = \min_i f_{i_1}(x_1, \dots, f_n(x))$ .  Log-sum-exp function: $f: \mathbb{R}^n \to \mathbb{R}$ • $f(x) = \log(e^{x_1} + \dots + e^{x_n})$ Geometric mean function $f: \mathbb{R}^n \to \mathbb{R}$ • $f(x) = \log x$ $f(x) = \log x$ Composite function $f: \mathbb{R}^n \to \mathbb{R}$ • $f(x) = \log x$ • $f(x) = \log x$ Nonnegative weighted sum: $f: \dim(f) \to \mathbb{R}$ • $f(x) = \log x$ Perspective function $f: \mathbb{R}^n \to \mathbb{R}$ • $f(x) = \log x$ • $f(x) = \log x$ Nonnegative maximum $f(x) \to \mathbb{R}^n \to \mathbb{R}$ • $f(x) = \log x$ Perspective function $f: \mathbb{R}^n \to \mathbb{R}$ • $f(x) \to \mathbb{R}^n \to \mathbb{R}^n \to \mathbb{R}$ • $f(x) \to \mathbb{R}^n \to \mathbb{R}$                                                                                                                                                                                                                                                                                                                                                                 | It depends on the matrix P:  • f is convex iff P≥ 0.  • f is strictly convex iff P > 0.  • f is strictly concave iff P < 0.  • f is concave iff P ≤ 0.  • f is convex iff a ≥ 1 or a ≤  • f is convex iff a ≥ 1 or a ≤  • f is concave iff 0 ≤ a ≤ 1.  Yes.  • f is convex in x if g is convex in the following form of the cases.  Yes.                       | over $\hat{h}$ is nonincreasing, is case, $\hat{h}$ is nonincreasing in $\hat{h}$ and $\hat{h}$ is nonincreasing in $\hat{h}$ in $\hat{h}$ in $\hat{h}$ in $\hat{h}$ in $\hat{h}$ is a set of increasing in $\hat{h}$ in                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | <ul> <li>we have f(x) = c*x, which is the inner product between the vector c and x.</li> <li>The linear matrix inequality (LMI), A(y) ∈ C), is also convex.</li> <li>The linear matrix inequality (LMI), A(y) = x A<sub>1</sub> + · · · · x<sub>AA</sub> ≤ B<sub>1</sub> is a special case of affitic function.</li> <li>is a special case of affitic function.</li> <li>in (A(x) ≤ B) is a convex set if S is convex. Many optimization problems can be formulated as LMI problems and solved optimally.</li> <li>Its domain dom (f) = n of the function of the function in the codomain of f that is less than or equal this set.</li> <li>dom (f) = {x   (x, y) ∈ dom (g) ∀ y ∈ A<sub>1</sub>, inf g(x, y) &gt; -∞}.</li> <li>For each value of x, we have an infinite set of points g(x, y) _{y,y,z}. The value f(x) will be the less value in the codomain of f that is greater than or equal this set.</li> <li>dom (f) = {x   (x, y) ∈ dom (g) ∀ y ∈ A<sub>1</sub>, inf g(x, y) &gt; -∞}.</li> <li>For each value of x, we have an infinite set of points g(x, y) _{y,y,z}.</li> <li>The value f(x) will be the less value in the codomain of f that is greater than or equal this set.</li> <li>dom (f) = {x   (x, y) ∈ dom (g) ∀ y ∈ A<sub>1</sub>, sup g(x, y) &lt; ∞}.</li> <li>In terms of epigraphs, the pointwise approximation of the following epigraphs: cpi f = n of function g(x, y) _{x,y} corresponds to the intersection of the following epigraphs: cpi f = n of g(x) = n of g(x) = n of function g(x, y) _{x,y} corresponds to the intersection of the maximum determs function, since max (x<sub>1</sub>, x<sub>p</sub>) ≠ log y</li> <li>X is positive semidefinite, i.e., X &gt; 0 X ∈ S_n^n.</li> <li>The composition function allows us to see a large class of functions as convex (or concave).</li> <li>if y is convex then f (x) = h(y(x)) = cop g(x) is convex.</li> <li>if y is convex then f (x) = h(y(x)) = cop g(x) is convex.</li> <li>if y is convex then f (x) = h(y(x)) = cop g(x) is convex.</li> <li>if y is convex then f (x) = h(y(x)) = log (-g(x)) is convex.</li> <li>if y is convex then f (x) = h(y(x)) = log (-g(x)) is convex.</li> <li>if y is</li></ul>                                                                                                                                     |
| • $f(\mathbf{x}) = e^{\mathbf{x}\mathbf{x}} \in \mathbb{R}$ , where $a \in \mathbb{R}$<br>Quadratic function $f: \mathbb{R}^n \to \mathbb{R}$<br>• $f(\mathbf{x}) = e^{\mathbf{x}^n} \mathbf{P} \times \mathbf{P}^T \mathbf{x} + r \in \mathbb{R}$ , where $\mathbf{x}, \mathbf{p} \in \mathbb{R}^n, \mathbb{P} \in \mathbb{R}^{n \times n}$ , and $a, b \in \mathbb{R}$<br>• $f(\mathbf{x}) = e^{\mathbf{x}^n} \mathbf{P} \times \mathbf{P}^T \mathbf{x} + r \in \mathbb{R}$ , where $\mathbf{x}, \mathbf{p} \in \mathbb{R}^n, \mathbb{P} \in \mathbb{R}^{n \times n}$ , and $a, b \in \mathbb{R}$<br>• $f(\mathbf{x}) = \mathbf{x}^n$<br>• $f(\mathbf{x}$                 | It depends on the matrix P:  • f is convex iff P≥ 0.  • f is strictly convex iff P > 0.  • f is strictly concave iff P < 0.  • f is concave iff P ≤ 0.  • f is convex iff a ≥ 1 or a ≤  • f is convex iff a ≥ 1 or a ≤  • f is concave iff 0 ≤ a ≤ 1.  Yes.  • f is convex in x if g is convex in the following form of the cases.  Yes.                       | owing statements hold for $\rightarrow \mathbb{R}$ and $g: \mathbb{R}^n \rightarrow \mathbb{R}$ : ave in $x$ for each $y \in \mathcal{A}$ . Eave in $x$ for each $y \in \mathcal{A}$ . Eave in $x$ for each $y \in \mathcal{A}$ . The cave in $x$ for each $y \in \mathcal{A}$ is nonincreasing, and the cave, $h$ is nonincreasing and $h$ is a vector-vector function, where the cave, $h$ is nonincreasing and $h$ is nonincreasing.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | <ul> <li>we have f(x) = c<sup>2</sup> x, which is the inner product between the vector c and x.</li> <li>The inverse image of C, f<sup>-1</sup>(C) = (x   f(x) ∈ C), is also convex.</li> <li>The inverse image of C, f<sup>-1</sup>(C) = (x   f(x) ∈ C), is also convex.</li> <li>The inverse image of C, f<sup>-1</sup>(C) = (x   f(x) ∈ C), is also convex.</li> <li>It is a special sear of allien intuition. In other words, f(S) = (x   A(x) ≤ B) is a convex set if S is convex. Many optimization problems can be formulated as LMI problems and solved optimolly.</li> <li>Its domain dom (f) = f/1 dom (f) is also convex.</li> <li>For each value of x, we have an infinite set of points g(x, y) <sub>x ∈ X</sub>. The value f(x) will be the greatest value in the codomain of f that is less than or equal this set.</li> <li>dom (f) = {x   (x, y) ∈ dom (g) ∀ y ∈ A, \( \limet{A}\) int g(x, y) &gt; ∞se}.</li> <li>for each value of x, we have an infinite set of points g(x, y) <sub>x ∈ X</sub>. The value f(x) will be the least value in the codomain of f that is greater than or equal this set.</li> <li>dom (f) = {x   (x, y) ∈ dom (g) ∀ y ∈ A, \( \limet{A}\) int g(x, y) &lt; ∞e}.</li> <li>for each value of x, we have an infinite set of points g(x, y) <sub>x ∈ X</sub>.</li> <li>dom (f) = {x   (x, y) ∈ dom (g) ∀ y ∈ A, \( \limet{A}\) in probability is greater than or equal this set.</li> <li>dom (f) = {x   (x, y) ∈ dom (g) ∀ y ∈ A, \( \limet{A}\) in probability (f) is convex.</li> <li>for terms of epigraphs, the pointwise supermum of the infinite set of functions g(x, y) <sub>x ∈ X</sub> corresponds to the intersection of the following epigraphs: epi f - (e) g(x) = (e) g(x) =</li></ul>                                                                                                                               |
| • $f(\mathbf{x}) = e^{\mathbf{x} \mathbf{x}} \in \mathbb{R}$ , where $a \in \mathbb{R}$<br>Quadratic function $f : \mathbb{R}^n \to \mathbb{R}$<br>• $f(\mathbf{x}) = e^{\mathbf{x}} \mathbf{P} \mathbf{x} + p^{T} \mathbf{x} + r \in \mathbb{R}$ , where $\mathbf{x}, \mathbf{p} \in \mathbb{R}^n$ , $\mathbf{P} \in \mathbb{R}^{n \times n}$ , and $a, b \in \mathbb{R}$<br>• $f(\mathbf{x}) = x^n$<br>Power of absolute value: $f : \mathbb{R} \to \mathbb{R}$<br>• $f(\mathbf{x}) =  \mathbf{x} ^n$ , where $p \in \mathbb{N}$ .<br>• $f(\mathbf{x}) =  \mathbf{x} ^n$ , where $p \in \mathbb{N}$ .<br>Logarithm function: $f : \mathbb{R}_+ \to \mathbb{R}$<br>• $f(\mathbf{x}) =  \mathbf{x}  \log \mathbf{x}$<br>Negative entropy function: $f : \mathbb{R}_+ \to \mathbb{R}$<br>• $f(\mathbf{x}) =  \mathbf{x}  \log \mathbf{x}$<br>Minkwoods distance, $p$ -norm function, or $I_p$ norm function: $f : \mathbb{R}^n \to \mathbb{R}$<br>• $f(\mathbf{x}) =  \mathbf{x}  \log \mathbf{x}$<br>• $f(\mathbf{x}) =  \mathbf{x}  \log \mathbf{x}$<br>Maximum element: $f : \mathbb{R}^n \to \mathbb{R}$<br>• $f(\mathbf{x}) =  \mathbf{x}  \otimes f(\mathbf{x}, \mathbf{x})$ .<br>Pointwise maximum (maximum function): $f : \mathbb{R}^n \to \mathbb{R}$<br>• $f(\mathbf{x}) =  \mathbf{x}  \otimes f(\mathbf{x}, \mathbf{x})$ .<br>Pointwise supremum:<br>• $f(\mathbf{x}) =  \mathbf{x}  \otimes f(\mathbf{x}, \mathbf{x})$ .<br>Pointwise supremum:<br>• $f(\mathbf{x}) =  \mathbf{x}  \otimes f(\mathbf{x}, \mathbf{x})$ .<br>Dogsum-exp function: $f : \mathbb{R}^n \to \mathbb{R}$<br>• $f(\mathbf{x}) =  \mathbf{x}  \otimes f(\mathbf{x})$ .<br>$f(\mathbf{x}) =  \mathbf{x}  \otimes f(\mathbf{x})$ .<br>• $f(\mathbf{x}) =  \mathbf{x}  \otimes f(\mathbf{x})$ .<br>• $f(\mathbf{x}) =  \mathbf{x}  \otimes f(\mathbf{x})$ .<br>Pointwise supremum:<br>• $f(\mathbf{x}) = \mathbf{x} \otimes f(\mathbf{x}, \mathbf{x})$ .<br>• $f(\mathbf{x}) = \mathbf{x} \otimes f(\mathbf{x}, \mathbf{x})$ .<br>Pointwise supremum:<br>• $f(\mathbf{x}) = \mathbf{x} \otimes f(\mathbf{x}, \mathbf{x})$ .<br>Pointwise supremum:<br>• $f(\mathbf{x}) = \mathbf{x} \otimes f(\mathbf{x}, \mathbf{x})$ .<br>Pointwise supremum:<br>• $f(\mathbf{x}) = \mathbf{x} \otimes f(\mathbf{x})$ .<br>• $f(\mathbf{x}) = \mathbf{x} $                                                                                                 | It depends on the matrix P:  • f is convex iff P≥ 0.  • f is strictly convex iff P > 0.  • f is concave iff P ≤ 0.  • f is concave iff P ≤ 0.  • f is convex iff a ≥ 1 or a ≤  • f is convex iff a ≥ 1 or a ≤  • f is concave iff 0 ≤ a ≤ 1.  Yes.  • f is convex in x if g is x if                      | owing statements hold for $\rightarrow \mathbb{R}$ and $g: \mathbb{R}^n \rightarrow \mathbb{R}$ : ave in $x$ for each $y \in \mathcal{A}$ . Eave in $x$ for each $y \in \mathcal{A}$ . Eave in $x$ for each $y \in \mathcal{A}$ . The cave in $x$ for each $y \in \mathcal{A}$ is nonincreasing, and the cave, $h$ is nonincreasing and $h$ is a vector-vector function, where the cave, $h$ is nonincreasing and $h$ is nonincreasing.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | <ul> <li>we have f(x) = e<sup>1</sup>x, which is the inner product between the vector c and x.</li> <li>The forcer wait's improving (x,   f(x)   e x), is also convex.</li> <li>The forcer wait's improving (x,   f(x)   e x), a, a, a + · · · · · · · · · · · · · · · · · ·</li></ul>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| • $f(\mathbf{x}) = e^{\mathbf{x}\mathbf{x}} \in \mathbb{R}$ , where $a \in \mathbb{R}$<br>Quadratic function $f: \mathbb{R}^n \to \mathbb{R}$<br>• $f(\mathbf{x}) = e^{\mathbf{x}^n} \mathbf{P} \times \mathbf{P}^T \mathbf{x} + r \in \mathbb{R}$ , where $\mathbf{x}, \mathbf{p} \in \mathbb{R}^n, \mathbb{P} \in \mathbb{R}^{n \times n}$ , and $a, b \in \mathbb{R}$<br>• $f(\mathbf{x}) = e^{\mathbf{x}^n} \mathbf{P} \times \mathbf{P}^T \mathbf{x} + r \in \mathbb{R}$ , where $\mathbf{x}, \mathbf{p} \in \mathbb{R}^n, \mathbb{P} \in \mathbb{R}^{n \times n}$ , and $a, b \in \mathbb{R}$<br>• $f(\mathbf{x}) = \mathbf{x}^n$<br>• $f(\mathbf{x}$                 | It depends on the matrix P:  • f is convex iff P≥ 0.  • f is strictly convex iff P > 0.  • f is concave iff P ≤ 0.  • f is concave iff P ≤ 0.  • f is convex iff a ≥ 1 or a ≤  • f is convex iff a ≥ 1 or a ≤  • f is concave iff 0 ≤ a ≤ 1.  Yes.  • f is convex in x if g is x if                      | owing statements hold for $\rightarrow \mathbb{R}$ and $g: \mathbb{R}^n \rightarrow \mathbb{R}$ : ave in $x$ for each $y \in \mathcal{A}$ . Eave in $x$ for each $y \in \mathcal{A}$ . Eave in $x$ for each $y \in \mathcal{A}$ . The cave in $x$ for each $y \in \mathcal{A}$ is nonincreasing, and the cave, $h$ is nonincreasing and $h$ is a vector-vector function, where the cave, $h$ is nonincreasing and $h$ is nonincreasing.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | <ul> <li>we have f(x) = e<sup>1</sup>x, which is the lamer product between the vector and x.</li> <li>The inverse image of C, f<sup>-1</sup>(C) = (x   f(x)   f(x)   e C), is also convex.</li> <li>The linear notices invessediby (LMV), a(x) = x<sub>1</sub>a, 1 + · · · x<sub>1</sub>a, ≤ B; a special case of after familian. In other words, f(x) = y<sub>1</sub> = x<sub>1</sub>a, ≤ B; a superior case of after familian. In other words, f(x) = problems can be formulated as LMI problems and solved optimally.</li> <li>It can be proved by triangular inequality.</li> <li>Its domain dom (f) =  \( \frac{\hat{\cap{\text{const}}}{\text{const}} \) dom (f) is also convex.</li> <li>For each value of x, we have an infinite set of points g(x, y) _{x &gt; x_1} = \text{The value f(x)} \) will be the greatest value in the codomain of f that is fees than or equal this set.</li> <li>dom (f) = \{x \{ (x, y) \) c dom (g) \( \frac{\text{const}}{\text{const}} \) and f(x) in the feet in the codomain of f that is greater than or equal this set.</li> <li>dom (f) = \{x \{ (x, y) \} \) c dom (g) \( \frac{\text{const}}{\text{const}} \) (x \( \frac{\text{const}}{const</li></ul>                                                                                                                                                          |
| • $f(x) = e^{ax} \in \mathbb{R}$ , where $a \in \mathbb{R}$<br>Quadratic function $f: \mathbb{R}^n \to \mathbb{R}$<br>• $f(x) = ax^n + p^Tx + p \in \mathbb{R}$ , where $x, p \in \mathbb{R}^n$ , $p \in \mathbb{R}^{n \times n}$ , and $a, b \in \mathbb{R}$<br>• $f(x) = x^n$<br>Power function $f: \mathbb{R}_+ \to \mathbb{R}$<br>• $f(x) =  x ^n$ , where $p \in \mathbb{R}$ .<br>• $f(x) =  x ^n$ , where $p \in \mathbb{R}$ .<br>• $f(x) =  a x^n$ , where $p \in \mathbb{R}$ .<br>• $f(x) =  a x^n$<br>Negative entropy function: $f: \mathbb{R}_+ \to \mathbb{R}$<br>• $f(x) =  a x_0$ , where $p \in \mathbb{N}_+$ .<br>Maximum chrunct: $f: \mathbb{R}^n \to \mathbb{R}$<br>• $f(x) =  a x_0$ , where $p \in \mathbb{N}_{++}$ .<br>Maximum chrunct: $f: \mathbb{R}^n \to \mathbb{R}$<br>• $f(x) =  a x_0 + f(x)$ ,, $f_n(x)$ .<br>Pointwise maximum function: $f: \mathbb{R}^n \to \mathbb{R}$<br>• $f(x) =  a x_0 + f(x)$ ,, $f_n(x)$ .<br>Pointwise maximum:<br>• $f(x) =  a x_0 + f(x)$ ,, $f_n(x)$ .<br>Pointwise supremum:<br>• $f(x) =  a x_0 + f(x)$ ,, $f_n(x)$ .<br>Log-sum-exp function: $f: \mathbb{R}^n \to \mathbb{R}$<br>• $f(x) =  a x_0 + f(x)$ ,, $f_n(x)$ .<br>Log-determinant function $f: \mathbb{R}^n \to \mathbb{R}$<br>• $f(x) =  a x_0 + f(x)$ , $f(x) =  a x_0 + f(x)$ , where:<br>• $g: \mathbb{R}^n \to \mathbb{R}$ .<br>• $f(x) =  a x_0 + f(x)$ , $f(x) =  a x_0 + f(x)$ , where:<br>• $g: \mathbb{R}^n \to \mathbb{R}$ .<br>• $f(x) =  a x_0 + f(x)$ , $f(x) =  a x_0 + f(x)$ , where:<br>• $g: \mathbb{R}^n \to \mathbb{R}$ .<br>• $f(x) =  a x_0 + f(x)$ , $f(x) =  a x_0 + f(x)$ , where:<br>• $g: \mathbb{R}^n \to \mathbb{R}$ .<br>• $f(x) =  a x_0 + f(x)$ , where $x \in \mathbb{R}^n$ , $f(x) = f(x)$ , where:<br>• $g: \mathbb{R}^n \to \mathbb{R}^n$ . Is an after function $g^{n+1} = g^{n+1} = g^{n+1}$ .<br>• $f(x) = g^{n+1} = g^{$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | It depends on the matrix P:  • f is convex iff P≥ 0.  • f is strictly convex iff P > 0.  • f is concave iff P ≤ 0.  • f is concave iff P ≤ 0.  • f is convex iff a ≥ 1 or a ≤  • f is convex iff a ≥ 1 or a ≤  • f is concave iff 0 ≤ a ≤ 1.  Yes.  • f is convex in x if g is x if                      | owing statements hold for $\rightarrow \mathbb{R}$ and $g: \mathbb{R}^n \rightarrow \mathbb{R}$ : ave in $x$ for each $y \in \mathcal{A}$ . Eave in $x$ for each $y \in \mathcal{A}$ . Eave in $x$ for each $y \in \mathcal{A}$ . The cave in $x$ for each $y \in \mathcal{A}$ is nonincreasing, and the cave, $h$ is nonincreasing and $h$ is a vector-vector function, where the cave, $h$ is nonincreasing and $h$ is nonincreasing.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | <ul> <li>we have f(x) = e<sup>1</sup>x, which is the inner product between the vector and x.</li> <li>The income image of C, f<sup>-</sup>(C) = (x   f(x)   x   x   x   x   x   x   x   x   x  </li></ul>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| • $f(x) = e^{gx} \in \mathbb{R}$ , where $a \in \mathbb{R}$<br>Quadratic function $f: \mathbb{R}^n \to \mathbb{R}$<br>• $f(x) = ax^T \mathbf{P} + \mathbf{p}^T \mathbf{x} + r \in \mathbb{R}$ , where $\mathbf{x}, \mathbf{p} \in \mathbb{R}^n$ , $\mathbf{p} \in \mathbb{R}^{n \times n}$ , and $a, b \in \mathbb{R}$<br>• $f(x) = ax^n$<br>Power function $f: \mathbb{R}_+ \to \mathbb{R}$<br>• $f(x) = x^n$<br>• $f(x) =  x ^n$ , where $p \leq 1$ .<br>Logarithm function: $f: \mathbb{R}_+ \to \mathbb{R}$<br>• $f(x) = \log x$<br>Negative entropy function: $f: \mathbb{R}_+ \to \mathbb{R}$<br>• $f(x) = \log x$<br>Minkwooki distance, $p$ -norm function, or $I_p$ norm function: $f: \mathbb{R}^n \to \mathbb{R}$<br>• $f(x) =  x  p$ , where $p \in \mathbb{N}_+$ .<br>Maximum element: $f: \mathbb{R}^n \to \mathbb{R}$<br>• $f(x) = \max_{x \in \mathbb{R}} f(x), \dots, f_p(x)$ .<br>Pointwise infimum:<br>• $f(x) = \max_{x \in \mathbb{R}} f(x, y)$ .<br>Pointwise supremum:<br>• $f(x) = \sup_{x \in \mathbb{R}} g(x, y)$ .<br>$f(x) = \sup_{x \in \mathbb{R}} g(x, y)$ .<br>Minimum function: $f: \mathbb{R}^n \to \mathbb{R}$<br>• $f(x) = \sup_{x \in \mathbb{R}} g(x, y)$ .<br>• $f(x) = \sup_{x \in \mathbb{R}} g(x, y)$ .<br>Minimum function: $f: \mathbb{R}^n \to \mathbb{R}$<br>• $f(x) = \lim_{x \in \mathbb{R}} f(x)$ . $f(x) = \lim_{x \in \mathbb{R}} f(x)$ . $f(x) = \lim_{x \in \mathbb{R}} f(x)$ .<br>Integral function $f: \mathbb{R}^n \to \mathbb{R}$<br>• $f(x) = \lim_{x \in \mathbb{R}} f(x)$ . $f(x) = \lim_{x \in \mathbb{R}} f(x)$ . where:<br>• $f(x) = \lim_{x \in \mathbb{R}} f(x)$ . $f(x) = \lim_{x \in \mathbb{R}}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | It depends on the matrix P:  • f is convex iff P≥ 0.  • f is strictly convex iff P > 0.  • f is concave iff P ≤ 0.  • f is concave iff P ≤ 0.  • f is convex iff a ≥ 1 or a ≤  • f is convex iff a ≥ 1 or a ≤  • f is concave iff 0 ≤ a ≤ 1.  Yes.  • f is convex in x if g is x if                      | owing statements hold for $\rightarrow \mathbb{R}$ and $g: \mathbb{R}^n \rightarrow \mathbb{R}$ : ave in $x$ for each $y \in \mathcal{A}$ . Eave in $x$ for each $y \in \mathcal{A}$ . Eave in $x$ for each $y \in \mathcal{A}$ . The cave in $x$ for each $y \in \mathcal{A}$ is nonincreasing, and the cave, $h$ is nonincreasing and $h$ is a vector-vector function, where the cave, $h$ is nonincreasing and $h$ is nonincreasing.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | <ul> <li>where f(x) = (x, which is the linear product between the vector and x.</li> <li>The inverse image of C, g<sup>-1</sup>(C) = (x   f(x)   e(x), is also convex.</li> <li>The linear was air sequelly (LMI), (x(x) = x, x, x + who + x, x, x ≤ B). The linear was air sequelly (LMI), (x(x) = x, x, x + who + x, x, x ≤ B). The linear was air sequelly (LMI), (x(x) = x, x, x + x, x ≤ B).</li> <li>If can be proved by triangular inequality.</li> <li>If can be proved by triangular inequality.</li> <li>If it domain dom (f) = ∫(1 dom (f)) is also convex.</li> <li>For each value of x, we have an infinite set of points g(x, y) _{x,y,y}. The value f(x) will be the greatest value in the codomain of f that is less than or equal this set.</li> <li>dom (f) = {x   (x,y) ∈ dom (g) ∀ y ∈ X, linf g(x,y) &gt; -∞}.</li> <li>For each value of x, we have an infinite set of points g(x,y) _{x,y,y}. The value f(x) will be the most value in the codomain of f that is gener than or equal this set.</li> <li>dom (f) = {x   (x,y) ∈ dom (g) ∀ y ∈ X, linf g(x,y) &gt; -∞}.</li> <li>For each value of x, we have an infinite set of points g(x,y) _{x,y,y}.</li> <li>a for the codomain of x = x in the codomain of the following epigraphs: qui f = ∫(1) qi g(x).</li> <li>In terms of epigraphs, the pointwise expressum of the infinite set of functions g(x) _{x,y,y}.</li> <li>a for the codomain of the following epigraphs: qui f = ∫(1) qi g(x).</li> <li>The composition function allows us to see a large class of functions as convex (or concave).</li> <li>If g is connect and dom (g) ∈ R<sub>x</sub>, then f(x) = b(g(x)) = g(x) in max(x<sub>1</sub>,x<sub>k</sub>) + bg g</li> <li>Y is g is concerve and dom (g) ∈ R<sub>x</sub>, then f(x) = b(g(x)) = g(x) in max(x<sub>1</sub>,x<sub>k</sub>) + bg g</li> <li>If g is convex then f(x) = b(g(x)) = b(g(x)) = g(x) in max(x<sub>1</sub>,x<sub>k</sub>) + bg g</li> <li>If g is convex then f(x) = f(x) + f(x) + f(x) + f(x) = f(x) + f(x) +</li></ul>                                                                                                                                |
| • $f(\mathbf{x}) = e^{a\mathbf{x}} \in \mathbb{R}$ , where $a \in \mathbb{R}$ Quadratic function $f: \mathbb{R}^n \to \mathbb{R}$ • $f(\mathbf{x}) = a\mathbf{x}^T \mathbf{P} \mathbf{x} + p^T \mathbf{x} + r \in \mathbb{R}$ , where $\mathbf{x}, \mathbf{p} \in \mathbb{R}^n$ , $\mathbf{P} \in \mathbb{R}^{n \times n}$ , and $a, b \in \mathbb{R}$ • $f(\mathbf{x}) = a\mathbf{x}^n$ Power of absolute value: $f: \mathbb{R} \to \mathbb{R}$ • $f(\mathbf{x}) = b\mathbf{x}^n$ Power of absolute value: $f: \mathbb{R} \to \mathbb{R}$ • $f(\mathbf{x}) = b\mathbf{x}^n$ Power of absolute value: $f: \mathbb{R} \to \mathbb{R}$ • $f(\mathbf{x}) = b\mathbf{x}^n$ Negative actropy function: $f: \mathbb{R}_+ \to \mathbb{R}$ • $f(\mathbf{x}) = b\mathbf{x}$ Negative currency function: $f: \mathbb{R}_+ \to \mathbb{R}$ • $f(\mathbf{x}) = b\mathbf{x}$ Minkwooki distance, $p$ -norm function, or $I_p$ norm function: $f: \mathbb{R}^n \to \mathbb{R}$ • $f(\mathbf{x}) = a\mathbf{x}(f_1(\mathbf{x}), \dots, f_n(\mathbf{x}))$ .  Pointwise maximum (maximum function): $f: \mathbb{R}^n \to \mathbb{R}$ • $f(\mathbf{x}) = a\mathbf{x}(f_1(\mathbf{x}), \dots, f_n(\mathbf{x}))$ .  Pointwise infimum: • $f(\mathbf{x}) = a\mathbf{x}(f_1(\mathbf{x}), \dots, f_n(\mathbf{x}))$ .  Pointwise supremum: • $f(\mathbf{x}) = a\mathbf{x}(f_1(\mathbf{x}), \dots, f_n(\mathbf{x}))$ .  Log-sum-exp function: $f: \mathbb{R}^n \to \mathbb{R}$ • $f(\mathbf{x}) = b\mathbf{y}(f_1(\mathbf{x}), \dots, f_n(\mathbf{x}))$ .  Log-sum-exp function: $f: \mathbb{R}^n \to \mathbb{R}$ • $f(\mathbf{x}) = a\mathbf{y}(f_1(\mathbf{x}), \dots, f_n(\mathbf{x}))$ .  Log-determinant function $f: \mathbb{R}^n \to \mathbb{R}$ • $f(\mathbf{x}) = (a\mathbf{y}, \mathbf{x})$ • $f(\mathbf{x}) = (a\mathbf{y}, \mathbf{x}$                                                                                                                                                                                                                                                               | It depends on the matrix P:  • f is convex iff P≥ 0.  • f is strictly convex iff P > 0.  • f is concave iff P ≤ 0.  • f is concave iff P ≤ 0.  • f is convex iff a ≥ 1 or a ≤  • f is convex iff a ≥ 1 or a ≤  • f is concave iff 0 ≤ a ≤ 1.  Yes.  • f is convex in x if g is x if                      | over a statement shold for $\mathbb{R}$ and $g: \mathbb{R}^n \to \mathbb{R}$ : and $g: \mathbb{R}^n \to \mathbb{R}$ is nondecreasing, and $g: \mathbb{R}^n \to \mathbb{R}^n$ is nondecreasing, and $g: \mathbb{R}^n \to \mathbb{R}^n$ is nondecreasing, and $g: \mathbb{R}^n \to \mathbb{R}^n$ is nondecreasing in decay, $\tilde{h}$ is nondecreasing in decay, $\tilde$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | <ul> <li>we have \$(x) = e^{-x}x, which is the linear product between the vector and \$x\$.</li> <li>The inverse image of \$C,  f^{-1}(C) =  x    f(x) ∈ C,  s  a decrease convex, and the production of the production problems can be formulated as LMI problems and solved optimally.</li> <li>Its domain dom \$(f) = \begin{align*} \tilde{\phi} \text{ domain dom \$(f) = \begin{align*} \tilde{\phi} \text{ domain dom \$(f) = \begin{align*} \tilde{\phi} \text{ dom \$(f)\$ is also convex.} \end{align*}</li> <li>For each value of \$x\$, we have an infinite set of points \$g(x, y) _{x,y,y}\$. The value \$f(x)\$ will be the greatest value in the codomain of \$f\$ that is greater than or equal this set.</li> <li>dom \$(f) = \begin{align*} \x f \text{ dom \$(g) \text{ y \in \$\mathcal{H}\$, and the infinite set of functions \$g(x, y) _{x,y,y}\$ corresponds to the intersection of the following epigenples \$g(x, y) \in \text{ dom \$(f) = \begin{align*} \x f \text{ dom \$(f) \text{ y \in \$\text{ dom }(f) \text{ production of the following epigenples \$g(x, y) \in \text{ dom \$(f) = \begin{align*} \x f \text{ production of the following epigenples \$g(x, y) \in \text{ dom \$(f) = \begin{align*} \x f \text{ production of the following epigenples \$g(x, y) \in \text{ dom \$(f) = \begin{align*} \x f \text{ dom \$(f) = \begin{align*} \x f \text{ production of the following epigenples \$g(x) \text{ for \$(g) = \begin{align*} \x f \text{ production of the following epigenples \$g(x) \text{ for \$(g) = \begin{align*} \x f \text{ production of the following epigenples \$g(x) \text{ for \$(g) = \begin{align*} \x f \text{ for \$(g) = \begin{align*} \x f \text{ for \$(g) = \begin{align*} \x f  for \$(g) = \begin{al</li></ul>                                                                                                                                                                     |
| • $f(\mathbf{x}) = e^{ax} \in \mathbb{R}$ , where $a \in \mathbb{R}$<br>Quadratic function $f : \mathbb{R}^n \to \mathbb{R}$<br>• $f(\mathbf{x}) = \mathbf{x}^T \mathbf{P} \mathbf{x} + \mathbf{p}^T \mathbf{x} + r \in \mathbb{R}$ , where $\mathbf{x}, \mathbf{p} \in \mathbb{R}^n, \mathbf{P} \in \mathbb{R}^{n \times n}$ , and $a, b \in \mathbb{R}$<br>• $f(\mathbf{x}) = \mathbf{x}^n$<br>Power function $f : \mathbb{R}_+ \to \mathbb{R}$<br>• $f(\mathbf{x}) = \mathbf{x}^n$<br>Fower of absolute value: $f : \mathbb{R} \to \mathbb{R}$<br>• $f(\mathbf{x}) = \mathbf{k} \mathbf{r}^n$ , where $p \leq \mathbb{R}$ .<br>• $f(\mathbf{x}) = \mathbf{k} \mathbf{r}^n$ , where $p \leq \mathbb{R}$ .<br>• $f(\mathbf{x}) = \mathbf{k} \mathbf{r}^n$ , where $p \in \mathbb{R}$ .<br>• $f(\mathbf{x}) = \mathbf{k} \mathbf{r}^n$ , where $p \in \mathbb{R}_+$ .<br>• $f(\mathbf{x}) = \mathbf{k} \mathbf{r}^n$ , where $p \in \mathbb{N}_+$ .<br>• $f(\mathbf{x}) = \mathbf{k} \mathbf{r}^n$ , where $p \in \mathbb{N}_+$ .<br>• $f(\mathbf{x}) = \mathbf{k} \mathbf{x} $ , where $p \in \mathbb{N}_+$ .<br>• $f(\mathbf{x}) = \mathbf{k} \mathbf{x} $ , where $p \in \mathbb{N}_+$ .<br>• $f(\mathbf{x}) = \mathbf{k} \mathbf{x} $ , where $p \in \mathbb{N}_+$ .<br>• $f(\mathbf{x}) = \mathbf{k} \mathbf{x} $ , $f(\mathbf{x})$ ,, $f_{\mathbf{x}}(\mathbf{x})$ .<br>Pointwise infimum:<br>• $f(\mathbf{x}) = \mathbf{k} \mathbf{x} $ , $f(\mathbf{x})$ ,, $f_{\mathbf{x}}(\mathbf{x})$ .<br>Pointwise supremum:<br>• $f(\mathbf{x}) = \mathbf{k} \mathbf{x} $ , $f(\mathbf{x})$ ,, $f_{\mathbf{x}}(\mathbf{x})$ .<br>Integral function $f : \mathbb{R}^n \to \mathbb{R}$<br>• $f(\mathbf{x}) = \mathbf{k} \mathbf{x} $ , $f(\mathbf{x})$ ,, $f_{\mathbf{x}}(\mathbf{x})$ .<br>Log-sum-exp function $f : \mathbb{R}^n \to \mathbb{R}$<br>• $f(\mathbf{x}) = \mathbf{k} \mathbf{x} $ , where $\mathbf{x} \in \mathbb{R}^n$ , $f(\mathbf{x}) = \mathbf{k}$ .<br>• $f(\mathbf{x}) = \mathbf{k} \mathbf{x} $ , where $\mathbf{x} \in \mathbb{R}^n \to \mathbb{R}$ .<br>• $f(\mathbf{x}) = \mathbf{k} \mathbf{x} $ , where $\mathbf{x} \in \mathbb{R}^n \to \mathbb{R}$ .<br>• $f(\mathbf{x}) = \mathbf{k} \mathbf{x} $ , where $\mathbf{x} \in \mathbb{R}^n \to \mathbb{R}$ .<br>• $f(\mathbf{x}) = \mathbf{k} \mathbf{x} $ , where $\mathbf{x} \in \mathbb{R}^n \to \mathbb{R}$ .<br>• $f(\mathbf{x}) = \mathbf{k} \mathbf{x} $ , where $\mathbf{x} \in \mathbb{R}^n \to \mathbb{R}$ .<br>• $f(\mathbf{x}) = \mathbf{k} \mathbf{x} $ , where $\mathbf{x} \in \mathbb{R}^n \to \mathbb{R}$ .<br>• $f(\mathbf{x}) = \mathbf{k} \mathbf{x} $ , where $\mathbf{x} \in \mathbb{R}^n \to \mathbb{R}$ .<br>• $f(\mathbf{x}) = \mathbf{k} \mathbf{x} $ , where $\mathbf{x} \in \mathbb{R}^n \to \mathbb{R}$ .<br>• $f(\mathbf{x}) = \mathbf{k} \mathbf{x} $ , where $\mathbf{x} \in \mathbb{R}^n \to \mathbb{R}$ .<br>• $f(\mathbf{x}) = \mathbf{k} \mathbf{x} $ , where $\mathbf{x} \in \mathbb{R}^n \to \mathbb{R}$ .<br>• $f(\mathbf{x}) = \mathbf{k} \mathbf{x} $ , where $\mathbf{x} \in \mathbb{R}^n \to \mathbb{R}$ .<br>• $f(\mathbf{x}) = \mathbf{k} \mathbf{x} $ , where $\mathbf{x} \in \mathbb{R}^n \to \mathbb{R}$ .<br>• $f(\mathbf{x}) = \mathbf{k} \mathbf{x} $ , where $\mathbf{x} \in \mathbb{R}^n \to \mathbb{R}^n$ .<br>• $f(\mathbf{x}) = \mathbf{k} \mathbf{x} $ , where $\mathbf{x} \in \mathbb{R}^n \to \mathbb{R}^n$ .<br>• $f(\mathbf{x}) = \mathbf{k} \mathbf{x} $ is an eliment of $f(\mathbf{x}$ | It depends on the matrix P:  • f is convex iff P≥ 0.  • f is strictly convex iff P> 0.  • f is concave iff P≤ 0.  • f is concave iff P≤ 0.  • f is convex iff a ≥ 1 or a ≤  • f is convex iff a ≥ 1 or a ≤  • f is concave iff 0 ≤ a ≤ 1.  Yes.  • f is convex in x if g is convex for and g is convex. In the (-∞, a) or (-∞, a).  • f is convex if h is i                      | owing statements hold for $\Rightarrow \mathbb{R}$ and $g: \mathbb{R}^n \to \mathbb{R}$ : avec in $x$ for each $y \in \mathcal{A}$ . Eave in $x$ for each $y \in \mathcal{A}$ . Eave in $x$ for each $y \in \mathcal{A}$ . The proof of $x$ is nondecreasing, it case, $x$ is nondecreasing in the proof of $x$ is a set of convex of $x$ is nondecreasing in the proof of $x$ is nondecreasing.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | <ul> <li>when y(x) = (*x, which is the loner produce between the vester and x.*</li> <li>The inverse image of C, y* (*C) = (x)   f(x) = C), is also convex.</li> <li>The inverse image of C, the lone (*x)   f(x) = x, x,</li></ul>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| • $f(x) = e^{\alpha x} \in \mathbb{R}$ , where $\alpha \in \mathbb{R}$<br>Quadratic function $f : \mathbb{R}^n \to \mathbb{R}$<br>• $f(x) = \alpha x^2 \operatorname{Px} + p^4 x + r \in \mathbb{R}$ , where $x, p \in \mathbb{R}^n, P \in \mathbb{R}^{n \times n}$ , and $a, b \in \mathbb{R}$<br>• $f(x) = a^{n}$<br>Power of absolute value: $f : \mathbb{R} \to \mathbb{R}$<br>• $f(x) = \ln^p$ , where $p \le 1$ .<br>Logarithm function: $f : \mathbb{R}_n \to \mathbb{R}$<br>• $f(x) = \log x$<br>Negative entropy function: $f : \mathbb{R}_n \to \mathbb{R}$<br>• $f(x) = \log x$<br>Minkweski distance, $p$ -norm function, or $I_p$ norm function: $f : \mathbb{R}^n \to \mathbb{R}$<br>• $f(x) = \ \mathbf{x}\ _{f}$ , where $p \in \mathbb{N}_{t+1}$<br>Maximum element: $f : \mathbb{R}^n \to \mathbb{R}$<br>• $f(x) = \ \mathbf{x}\ _{f}$ , where $p \in \mathbb{N}_{t+1}$<br>Maximum element: $f : \mathbb{R}^n \to \mathbb{R}$<br>• $f(x) = \max_{x \in \mathcal{X}} f(x_1, \dots, f_n(x))$ .<br>Pointwise maximum (maximum function); $f : \mathbb{R}^n \to \mathbb{R}$<br>• $f(x) = \max_{x \in \mathcal{X}} f(x_1, \dots, f_n(x))$ .<br>Pointwise supremum:<br>• $f(x) = \min_{x \in \mathcal{X}} f(x_1, \dots, f_n(x))$ .<br>Log-sum-exp function: $f : \mathbb{R}^n \to \mathbb{R}$<br>• $f(x) = \min_{x \in \mathcal{X}} f(x_1, \dots, f_n(x))$ .<br>Log-sum-exp function: $f : \mathbb{R}^n \to \mathbb{R}$<br>• $f(x) = \lim_{x \to \infty} f(x_1, \dots, f_n(x))$ .<br>Log-determinant function $f : \mathbb{R}^n \to \mathbb{R}$<br>• $f(x) = \lim_{x \to \infty} f(x_1, \dots, f_n(x))$ by where $f(x_1, x_2, \dots, x_n) = f(x_1, \dots, f_n(x))$ by $f(x_1, \dots, f_n(x)) = f(x_1, \dots, f_n(x))$ .<br>Projective function $f : \mathbb{R}^n \to \mathbb{R}$<br>• $f(x) = \int x^2 f(x_1, \dots, f_n(x)) = f(x_1, \dots, f_n(x))$ .<br>Projective function $f : \mathbb{R}^n \to \mathbb{R}$<br>• $f(x) = \int x^2 f(x_1, \dots, f_n(x)) = f(x_1, \dots, f_n(x))$ .<br>Projective function $f : \mathbb{R}^n \to \mathbb{R}$<br>• $f(x) = \int x^2 f(x_1, \dots, f_n(x)) = f(x_1, \dots, x_n)$ .<br>Projective function $f : \mathbb{R}^n \to \mathbb{R}^n$<br>• $f(x) = \int x^2 f(x_1, \dots, x_n) = f(x_1, \dots, x_n)$ .<br>Projective function $f : \mathbb{R}^n \to \mathbb{R}^n$<br>• $f(x) = \int x^2 f(x_1, \dots, x_n) = f(x_1, \dots, x_n)$ .<br>Projective function $f : \mathbb{R}^n \to \mathbb{R}^n$<br>• $f(x) = \int x^2 f(x_1, \dots, x_n) = f(x_1, \dots, x_n)$ .<br>Projective function $f : \mathbb{R}^n \to \mathbb{R}^n$<br>• $f(x) = \int x^2 f(x_1, \dots, x_n) = f(x_1, \dots, x_n)$ .                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | It depends on the matrix P:  • f is convex iff P ≥ 0.  • f is strictly convex iff P > 0.  • f is concave iff P ≤ 0.  • f is convex iff a ≥ 1 or a ≤  • f is convex iff a ≥ 1 or a ≤  • f is convex iff a ≥ 1.  Yes.  Ye                      | owing statements hold for $\Rightarrow \mathbb{R}$ and $g: \mathbb{R}^n \to \mathbb{R}$ : avec in $x$ for each $y \in \mathcal{A}$ . Eave in $x$ for each $y \in \mathcal{A}$ . Eave in $x$ for each $y \in \mathcal{A}$ . The proof of $x$ is nondecreasing, it case, $x$ is nondecreasing in the proof of $x$ is a set of convex of $x$ is nondecreasing in the proof of $x$ is nondecreasing.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | <ul> <li>we have f(x) = e<sup>1</sup>x, with is the linear product between the vector and x.</li> <li>The inverse image of C, f<sup>1</sup>(C) = {x}   f(x) ∈ C), is also convex.</li> <li>The inverse image of C, f<sup>1</sup>(C) = {x}   f(x) = C), is also convex.</li> <li>If he does not foreign degrade (1, 10), x(x) = x, x, x = x, x ≤ R is a special case of affine function. In other words, f(x) = (x   A(x) = 8) is a convex set f(x) is convex.</li> <li>If y   x   x   x   x   x   x   x   x   x  </li></ul>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |

