Лабораторная работа № 3 Изучение режимов движения жидкости

Цель работы: закрепление знаний по разделу "Режимы течения жидкостей", визуальное наблюдение характера и структуры потока жидкости при разных скоростях движения и приобретение навыков по установлению режима течения.

Обработка опытных данных

Коэффициент Кориолиса

7)

	Обработка опытных банных
1)	Объем воды, вытекшей за время опыта
	$V = S_6 \cdot \Delta H = \underline{\qquad} cm^3,$
где	$S_6 = 620 \text{ cm}^2 - \text{площадь сечения мерного бака;}$
	ΔH — приращение уровня воды в баке за время опыта, см.
2)	Расход воды
	$Q = V/t = \underline{\qquad} cm^3/c,$
	t — время опыта.
3)	Средняя скорость движения воды
	$\upsilon_{\mathrm{cp}} = Q / S_{\Pi} = $ cm/c,
где	$S_{\scriptscriptstyle \Pi}-$ площадь живого сечения потока воды, определяется как площадь
попе	речного сечения круглой трубы диаметром $d=0,7$ см.
4)	Кинематический коэффициент вязкости воды
	$v = \frac{0,0178}{1 + 0,0337 \cdot T + 0,000221 \cdot T^2} = \underline{\qquad} C_{T},$
	$1 + 0.0337 \cdot T + 0.000221 \cdot T^2 = \frac{1}{1 + 0.0337 \cdot T + 0.000221 \cdot T^2}$
где	T – температура воды в период опыта, °С.
5)	Число Рейнольдса
	$Re = \frac{v \cdot d}{v} = \underline{\qquad}$
	Re
6)	Максимальная скорость воды в трубопроводе (только для ламинар-
ного	режима)
	$v_{\text{max}} = L/t_{\text{cp}} = \underline{\qquad} cm/c,$
где	$t_{ m cp}-$ среднее время прохождения частицами воды контрольного
учас	тка;
	$t_{\rm cp} = t_i/n = \underline{\qquad \qquad } c.$
	Длина контрольного участка $L = $ см.

Результаты измерений и вычисления записываются в таблицу 3.1.

 $\alpha = \frac{\upsilon_{max}}{\upsilon_{cp}} = \underline{\hspace{2cm}}.$

Таблица 3.1. - Результаты измерений и расчетов

Наименование измеренных и вы-	именование измеренных и вы-					
численных величин	1	2	3	4	5	6
1. Приращение уровня воды в						
баке ΔH , см						
2. Время опыта t, с						
3. Объем вытекшей воды V , см 3						
4. Расход воды Q , см 3 /с						
5. Средняя скорость $\upsilon_{\rm cp}$, см/с						
6. Число Рейнольдса Re						
7. Время прохождения частицей						
струйки мерного участка t_i , с						
7. Температура воды <i>T</i> , °C						
8. Кинематический коэффициент						
вязкости V , cm^2/c						
9. Максимальная скорость υ_{max} ,						
см/с						
10. Коэффициент Кориолиса α						

По результатам расчетов в масштабе строится график зависимости $\mathrm{Re}=f(\upsilon)$, на котором нужно показать зоны различных режимов движения и точки перехода от одного режима к другому.

Лабораторная работа №4

Исследование характеристики короткого простого трубопровода

Цель работы: закрепление знаний по разделу "Расчет простого трубопровода", определение коэффициента сопротивления трубопровода, определение потерь давления в трубопроводе, построение характеристики простого трубопровода.

Ofnahama	10 001171 10 0100 0	41014010011414
Обработка	результатов	измерении

	Измерить параметры гидроцилиндра:
	ход поршня $h = $ м;
	диаметр поршня $D = $ м; диаметр штока $d_{\text{шт}} = $ м
	время движения штока внутрь гидроцилиндра $t_{\text{шт}} = $ c.
1)	Определить расход жидкости, поступающей в гидроцилиндр $Q_{\text{п}}$
Q_{max}	при полностью закрытом дросселе 4 по формуле
	$Q_{\text{max}} = Q_{\text{II}} = S \cdot v = \frac{\pi \cdot (D^2 - d_{\text{IIIT}}^2)}{4} \cdot \frac{L}{4} = \frac{1}{2} \cdot \frac{1}{4} = \frac{1}{2} \cdot \frac{1}{4} \cdot \frac{1}{4} = \frac{1}{4} \cdot \frac{1}{4} \cdot \frac{1}{4} \cdot \frac{1}{4} = \frac{1}{4} \cdot \frac{1}{4} \cdot \frac{1}{4} \cdot \frac{1}{4} \cdot \frac{1}{4} = \frac{1}{4} \cdot \frac{1}{4} \cdot \frac{1}{4} \cdot \frac{1}{4} \cdot \frac{1}{4} = \frac{1}{4} \cdot \frac{1}{4}$

2) Определить текущее значение расхода на гидромоторе по формуле

 $\eta_{\text{об.гм}}$ где $V_{0\text{гм}}=2~\text{см}^3=2\cdot 10^{-6}~\text{м}^3$ — рабочий объем гидромотора; $n_{\text{гм.тек}}$ —текущая частота вращения гидромотора, об/с; $\eta_{\text{об.гм}}=0.98$ — объемный КПД гидромотора.

3) Определить расход жидкости в трубопроводе по формуле

$$Q_{\text{TP}} = Q_{\text{max}} - Q_{\text{TEK}} =$$
_______M³/c.

4) Определить скорость движения жидкости в трубопроводе по формуле

$$v = \frac{4 \cdot Q_{\text{rp}}}{\pi \cdot d^2} = 141543 \cdot Q_{\text{rp}} = \underline{\qquad} \text{m/c},$$

где d = 3 мм = 0,003 м - внутренний диаметр трубопровода.

5) Определить режим движения жидкости по формуле числа Рейнольдса

Re =
$$\frac{\upsilon \cdot d}{\upsilon} = \frac{\upsilon \cdot 0,003}{20 \cdot 10^{-6}} = 150 \cdot \upsilon =$$
______,

где $\nu = 20 \text{ cCt}$ – кинематический коэффициент вязкости рабочей жидкости.

6) Определить коэффициент гидравлического трения в зависимости от режима движения жидкости

$$\lambda =$$

7) Рассчитать потери давления в петле трубопровода по формуле

$$\Delta p_{\rm p} = \left(\lambda \cdot \frac{l}{d} + \sum \zeta\right) \cdot \frac{\rho \cdot \upsilon^2}{2} = \underline{\qquad} \Pi a,$$

где	l = 3,8 м и $d = 0,003$ м — длина и диаметр трубопровода;						
	$\rho = 890 \ \text{кг/m}^3 - \text{плотность рабочей жидкости;}$						
	$\sum \zeta = 11 \cdot \zeta_{\pi} + 2 \cdot \zeta_{\pi p} = 3,65 -$	суммарный коэффиц	иент сопротивления				
(план	вные повороты $\zeta_{_{\Pi}} = 0,\!15$ и тр	оойники $\zeta_{Tp} = 1$).					
8)	Определить потери давления $\Delta p_{\rm on}$ в петле трубопровода по формуле						
	$\Delta p_{ ext{off}} = p_{ ext{вх}}$ - $p_{ ext{вых}} =$		_атм.				
9)							
	$\Delta p_{ ext{off}} =$	атм, $\Delta p_{\rm p} =$	атм.				
	Данные экспериментов и расчетов занести в таблицу 4.1.						

Таблица 4.1 – Результаты расчетов и измерений

№ оп.	Частота Расход вращения гидромо-		Скорость		Давление		Потери давления		
	мотора, $n_{\scriptscriptstyle{\Gamma M.Tek}},$ об/мин	тора, $Q_{\text{гм.тек}}$, M^3/c	Расход,	движения жидкости, υ, м/с	λ	1	на выходе, $p_{\text{вых}}$, атм	опыт, $\Delta p_{ m on}$	расчет, Δp_{p}
1									
2									
3									
4									
5									
6									

Построить графики зависимостей потерь давления от расхода жидкости в трубопроводе $\Delta p_{\rm p}=f(Q_{\rm tp}),~\Delta p_{\rm on}=f(Q_{\rm tp}).$