9.4

$$N=25$$
 $n=4$
 $k=N=\frac{25}{4}=6.25\approx 6$
 $k=N=\frac{1-k}{4}=6.25\approx 6$

Serial Number	5	1/] 17	23	
Random Variable (x)	7	8	7	9	

Total number of signals Iday,
$$\overline{X} = N\overline{z}$$

= 193.75

S.e.
$$(\bar{x}) = \sqrt{v(\bar{z})} = \sqrt{0.1925} = 0.439$$

$$v(\bar{z}) = \frac{N-n}{Nn} s^{2} = \frac{25-4}{25\pi 4} \cdot \left(\frac{11}{12}\right) = \frac{77}{400} = 0.1925$$

$$s^{2} = \frac{1}{3} \left[243 - \frac{961}{4} \right] = \frac{11}{12}$$

9.5

Number	"1	16	69	12	19
Signal	1	8	2	0	4

A)
$$\mathcal{R} = \frac{15}{5} = 3$$

$$X = N_{\overline{x}} = 30 \times 3 = 90$$

$$S^{2} = 10$$

$$S^{2} = 10$$

$$V(\overline{x}) = 30 - 5 \times 10 = 5$$
Total number of faded signals is $90 \mid 5.e. (\overline{x}) = \sqrt{5}3 = 1.291$

$$n = \frac{z^2}{1^2} = \frac{(1.96)^2 \times 0.45 \times 0.55}{(0.1)^2} = 95.1$$

9.7

$$\bar{z} = \frac{70}{4} = 17.5$$
 ≈ 18

9.7

| Number | 11 | 16 | 09 | 12 |
|
$$\overline{x} = \frac{70}{4} = 17.5$$
| $\frac{5^2}{3} = \frac{1}{3} \left((2245) - \frac{4900}{4} \right) = 340$
| $\frac{5^2}{3} = \frac{1}{3} \left((2245) - \frac{4900}{4} \right) = 340$
| $\frac{1}{3} = \frac{1}{3} = \frac{1}{3}$

9.8

$$n = \frac{z^2 p_1^2}{J^2} = \frac{(1.96)^2 \times 0.3 \times 0.7}{(0.05)^2} = 322.69$$

$$323$$