Day 7: Brownian Motions

Dain Kim

December 28th

Today's Reading

[L] Chapter 2.2-2.3

Dain Kim

Review: Sample Paths

Let E be a metric space equipped with its Borel σ -algebra.

Let (X_t) , $t \in T$, be a stochastic process with values in E. The *sample paths* of X are the mappings $t \mapsto X_t(\omega)$ for a fixed $\omega \in \Omega$.

Two stochastic processes X_t and Y_t are *modifications* to each other if

$$P(X_t = Y_t) = 1.$$

Review: Kolmogorov Continuity Criterion

Theorem (Kolmogorov Continuity Criterion)

For a process X(t), $t \in [a, b]$, assume that there exist positive constants q, ϵ , and C such that

$$\mathbf{E}|X(t)-X(s)|^q \leq C|t-s|^{1+\epsilon}$$
 for all $s,t\in[a,b]$.

Then the process X has a continuous modification \widetilde{X} . Moreover, there is a modification whose sample paths are α -Hőlder continuous for $\alpha \in (0, \epsilon/q)$, that is, for each sample path ω , there exists a constant $C_{\alpha}(\omega)$ such that

$$|\tilde{X}_t(\omega), \tilde{X}_s(\omega)| \leq C_{\alpha}(\omega)|t-s|^{\alpha}.$$

Review: Pre-Brownian Motions

If G is a Gaussian white noise on \mathbb{R}^+ with intensity its Lebesgue measure, the random process $(B_t)_{t\in(0,\infty)}$ defined by

$$B_t = G(\mathbb{1}_{[0,t]})$$

is a pre-Brownian motion.

The covariance is

$$\mathbf{E}[B_sB_t] = \mathbf{E}[G([0,s])G([0,t])] = \int_0^\infty \mathbb{1}_{[0,s]}\mathbb{1}_{[0,t]}(r)dr = \min(s,t).$$

Review: Characterizations of pre-Brownian motions

Proposition

Let X(t), $t \ge 0$, be a real-valued stochastic process. The followings are equivalent:

- 1) X(t), $t \ge 0$, is a pre-Brownian motion
- 2) X(t), $t \ge 0$, is a centered Gaussian process with covariance $K(s,t) = \min(s,t)$
- 3) X(0) = 0 a.s., and for every $0 \le s < t$, the random variable X(t) X(s) is independent of $\sigma(X(r), r \le s)$ and distributed according to N(0, t s).
- 4) X(0) = 0 a.s., and for every $0 = t_0 < t_1 < ... < t_p$, the variables $X_{t_i} X_{t_{i-1}}$, $1 \le i \le p$, are independent, and are distributed according to $N(0, t_i t_{i-1})$.

Dain Kim Day

Brownian Motions

A stochastic process (B_t) , $t \ge 0$, is a *Brownian motion* if

- 1) (B_t) , $t \ge 0$, is a pre-Brownian motion.
- 2) All sample paths of B are continuous.

So, does Brownian motion exist?

Modifications of pre-Brownian motions

If (B_t) , $t \ge 0$, is a pre-Brownian motion, then (B_t) satisfies the Kolmogorov Continuity Criterion for q > 2 and $\epsilon = \frac{q}{2} - 1$.

Let $X \sim N(0,1)$, then $B_t - B_s = \sqrt{t-s}X$ for any s < t. Therefore,

$$\mathbf{E}[|B_t - B_s|^q] = (t - s)^{q/2} \mathbf{E}[|X|^q] < C_q (t - s)^{q/2}.$$

Hence, each pre-Brownian motion has a modification whose sample paths are continuous.

Dain Kim

Basic Propoerties

Proposition

- 1) $-B_t$ is also a Brownian motion
- 2) For every $\lambda > 0$, $B_t^{\lambda} = \frac{1}{\lambda} B_{\lambda^2 t}$ is a Brownian motion
- 3) For every $s \ge 0$, $B_t^{(s)} = B_{s+t} B_s$ is a Brownian motion and is independent of $\sigma(B_r, r \le s)$.

But multiple stochastic process B_t with probability spaces $(\Omega, \mathcal{F}, \mathbf{P})$ satisfy the Brownian condition.

Dain Kim

The Wiener measure

 $C(\mathbb{R}^+,\mathbb{R})$: the space of all continuous functions $f:\mathbb{R}^+\to\mathbb{R}$ equipped with the σ -algebra \mathcal{C} generated by coordinate mappings $\omega\mapsto\omega(t)$.

Given a Brownian motion B, consider the mapping

$$\Omega \to C(\mathbb{R}^+, \mathbb{R})$$
 $\omega \mapsto (t \mapsto B_t(\omega)).$

The Wiener measure $W(d\omega)$ is defined as the image of the probability measure $\mathbf{P}(d\omega)$.

The Wiener measure

For $0 = t_0 < t_1 < \cdots < t_n$ and $A_0, A_1, \ldots, A_n \in \mathcal{B}(\mathbb{R})$, define a cylinder set of the form

$$A = \{\omega \in C(\mathbb{R}^+, \mathbb{R}) : \omega(t_0) \in A_0, \omega(t_1) \in A_1, \dots, \omega(t_n) \in A_n\}.$$

Then A is measurable and

$$W(\{\omega : \omega(t_0) \in A_0, \omega(t_1) \in A_1, \dots, \omega(t_n) \in A_n\})$$

$$= \mathbf{P}(B_{t_0} \in A_9, B_{t_1} \in A_1, \dots, B_{t_n} \in A_n)$$

$$= \mathbb{1}_{A_0}(0) \int_{A_1 \times \dots \times A_n} \frac{dx_1 \cdots dx_n}{(2\pi)^{n/2} \sqrt{t_1(t_2 - t_1) \cdots (t_n - t_{n-1})}} \cdot \exp\left(-\sum_{i=1}^n \frac{(x_i - x_{i-1})^2}{2(t_i - t_{i-1})}\right)$$

The probability is independent of the choice of Brownian motions.

Canonical process

Consider a special probability space

$$\Omega = \mathcal{C}(\mathbb{R}^+,\mathbb{R}), \quad \mathcal{F} = \mathcal{C}, \quad \mathbf{P}(d\omega) = W(d\omega).$$

Then the canonical process

$$X_t(\omega) = \omega(t)$$

is a Brownian motion. This is a *canonical construction* of Brownian motion.

Blumenthal's zero-one law

Let (B_t) , $t \ge 0$, be a Brownian motion. Define σ -algebras

$$\mathcal{F}_t = \sigma(B_s, s \leq t)$$

and let

$$\mathcal{F}_{0+} = \bigcap_{s>0} \mathcal{F}_s.$$

Then \mathcal{F}_{0+} is trivial. That is, for any $A \in \mathcal{F}_{0+}$,

$$P(A) = 0 \text{ or } 1.$$

Blumenthal's zero-one law

Theorem

The σ -algebra \mathcal{F}_{0+} is trivial. That is, for any $A \in \mathcal{F}_{0+}$, P(A) = 0 or 1.

Proof. Fix time steps $0 < t_1 < t_2 < \cdots < t_k$. Let $g: \mathbb{R}^k \to \mathbb{R}$ be a bounded continuous function. Fix $A \in \mathcal{F}_{0+}$. Then for $\epsilon < t_1$,

$$\mathbf{E}[\mathbb{1}_{A}g(B_{t_{1}},\ldots,B_{t_{k}})] = \lim_{\epsilon \to 0+} \mathbf{E}[\mathbb{1}_{A}g(B_{t_{1}} - B_{\epsilon},\ldots,B_{t_{k}} - B_{\epsilon})]$$

$$= \lim_{\epsilon \to 0+} \mathbf{P}(A)\mathbf{E}[g(B_{t_{1}} - B_{\epsilon},\ldots,B_{t_{k}} - B_{\epsilon})]$$

$$= \mathbf{P}(A)E[g(B_{t_{1}},\ldots,B_{t_{k}})].$$

Therefore, \mathcal{F}_{0+} is independent of $\sigma(B_{t_1},\ldots,B_{t_k})$. Since this is true for arbitrary $t_1 < t_2 < \cdots < t_k$, we conclude that \mathcal{F}_{0+} is independent of $\sigma(B_t,t>0) = \sigma(B_t,t\geq 0)$. Hence, $\mathcal{F}_{0+} \subset \sigma(B_t,t\geq 0)$ is independent of itself, which gives the theorem.

Stopping time and Brownian motion

Proposition

1) For every $\epsilon > 0$,

$$\sup_{0\leq s\leq \epsilon} B_s>0, \quad \inf_{0\leq s\leq \epsilon} B_s<0, \quad \text{a.s.}$$

2) For every $a \in \mathbb{R}$, let the stopping time $T_a = \inf\{t \geq 0 : B_t = a\}$. Then

$$T_a < \infty$$
, a.s.

Therefore,

$$\limsup_{t \to \infty} B_t = +\infty, \quad \liminf_{t \to \infty} B_t = -\infty, \quad \text{a.s.}$$

Corollary

For any nontrivial interval $I \subset \mathbb{R}$, $t \mapsto B_t$ is not monotone on I, a.s.

Infinite variation

The function $t \mapsto B_t$ has infinite variation, a.s.