UNIFEI	Universidade Federal de Itajubá Instituto de Engenharia de Sistemas e Tecnologias da Informação — IESTI			
4º Laboratório Prof. Enzo Seraphim				
Exercício Único	Campo Minado			

- 1) [Opcional se já foi feito] Obtenha o programa visuAlg 3.0 de autoria: Antonio Carlos Nicolodi em licença AFL (Academic Free License):
- Entre no site https://sourceforge.net/projects/visualg30/ e faça download do arquivo compactado VISUALG3_REV60.rar e o descompacte em um local
- Execute o arquivo visualg30.exe que está no subdiretório visualg3.0.7
- 2) Escreva o algoritmo abaixo, deixando os comentários de (1) até (4) que serão substituídos por novas linhas de algoritmos. O algoritmo vai representar o jogo campo minado sendo baseado na manipulação de duas matrizes 10x10:
- visual que representa os resultados das jogadas do usuário.
- **gabarito** que representa o gabarito sorteado no início do jogo com bombas aleatórias e a contagens dos vizinhos.

```
algoritmo "minado"
var
    visual, gabarito: vetor[1..10,1..10] de caracter
    i, j, lin, col, sorlin, sorcol, jogadas : inteiro
    temBomba : logico
inicio
  jogadas <- 0
  temBomba <- falso;
  //(1)
  //(3)
  enquanto (temBomba = falso) e (jogadas < 90) faca</pre>
      //(2)
      escreval("jogadas=", jogadas)
      escreva("digite linha: ")
      leia(lin)
      escreva ("digite coluna: ")
      leia(col)
      //(4)
  fimenquanto
  se (jogadas = 90) entao
     escreval("ganhou")
  senao
     escreval("perdeu")
  fimse
fimalgoritmo
```

- 3) Use os menus Arquivo | Salvar Como, salve o algoritmo em uma pasta desejada com o nome lab04.
- 4) Execute o algoritmo (tecla F9 ou clique no botão) e observe que o algoritmo fica imprimindo "jogadas=0", solicitando linha e coluna indefinidamente. Pressione a tecla <Esc> para parar a execução do algoritmo.
- 5) Substitua o comentário //(1) por:
- Use de dois laços de repetição for, um dentro do outro, para percorrer os 2 índices das matrizes visual e gabarito (ambas de mesma dimensão).
- Dentro desses dois laços de repetição for atribua a cada célula i,j da matriz visual o caractere "?" e atribua a cada célula i,j da matriz de gabarito o caractere " ".

UNIFEI	Universidade Federal de Itajubá Instituto de Engenharia de Sistemas e Tecnologias da Informação — IESTI
4º Laboratório	Prof. Enzo Seraphim
Exercício Único	Campo Minado

- 6) Substitua o comentário //(2) por:
- Use de dois laços de repetição **for**, um dentro do outro, para percorrer os 2 índices das matrizes.
- Dentro desses dois laços de repetição for imprima o valor da célula i, j da matriz gabarito sem pular linha (escreva). Para melhorar a visualização, imprima o valor da matriz gabarito entre colchetes [].
- Após o termino do laço mais interno imprima na tela o pular de linha (escreval).

7) Para te	estar exec	cute o algo	oritmo (t	ecla F9	ou clique	no botã	о <u></u> 🖳) е	observe se	obteve c	נ
resultado	abaixo:									
гэ	Г٦	ГЭ	гэ	Г٦	гэ	Г٦	гэ	ГЭ	ГЭ	

[]	[]	[]	[]	[]	[]	[]	[]	[]	[]
[]	[]	[]	[]	[]	[]	[]	[]	[]	[]
[]	[]	[]	[]	[]	[]	[]	[]	[]	[]
[]	[]	[]	[]	[]	[]	[]	[]	[]	[]
[]	[]	[]	[]	[]	[]	[]	[]	[]	[]
[]	[]	[]	[]	[]	[]	[]	[]	[]	[]
[]	[]	[]	[]	[]	[]	[]	[]	[]	[]
[]	[]	[]	[]	[]	[]	[]	[]	[]	[]
[]	[]	[]	[]	[]	[]	[]	[]	[]	[]
[]	[]	[]	[]	[]	[]	[]	[]	[]	[]

Pressione a tecla < Esc > para parar a execução do algoritmo.

- 8) Substitua o comentário //(3) por:
- Use de um laço de repetição **for** que repete 10x seus comandos internos.
- Dentro do laço de repetição **for** use de uma variável **sorlin** para receber a função randi(10) + 1. A função randi retorna um inteiro aleatório entre 0 até 9.
- Dentro do laço de repetição **for** use de outra variável **sorcol** para receber a função randi(10) + 1. A função randi retorna um inteiro aleatório entre 0 até 9.
- Dentro do laço de repetição for atribua a célula sorlin, sorcol da matriz gabarito o caractere "*" que representa a bomba.

9) Para testar	execute o	algoritmo	(tecla F	9 ou	clique	no	botão !!!)	е	observe	se	obteve	10
asteriscos que	podem est	ar em dife	rentes p	osiçõ	es do r	esu	ıltado abaix	co:				

[]	[]	[]	[]	[*]	[]	[]	[]	[]	[]
[]	[*]	[]	[]	[]	[]	[]	[]	[]	[]
[]	[]	[]	[]	[]	[]	[]	[]	[*]	[]
[]	[]	[*]	[]	[]	[]	[]	[]	[]	[]
[]	[]	[]	[]	[]	[]	[]	[]	[]	[]
[]	[]	[]	[*]	[]	[]	[]	[]	[*]	[]
[]	[]	[]	[]	[]	[*]	[]	[]	[]	[]
[]	[]	[]	[]	[]	[]	[]	[*]	[]	[]
[]	[]	[*]	[]	[]	[]	[]	[]	[]	[]
[]	[]	[]	[]	[]	[]	[*]	[]	[]	[]

Pressione a tecla <Esc> para parar a execução do algoritmo.

10) Modifique o programa para imprimir o valor da célula i, j da matriz **visual** em vez da matriz gabarito, pois o jogados não pode saber o gabarito.

UNIFEI	Universidade Federal de Itajubá Instituto de Engenharia de Sistemas e Tecnologias da Informação — IESTI
4º Laboratório	Prof. Enzo Seraphim
Exercício Único	Campo Minado

11) Para testar execute o algoritmo (tecla F9 ou clique no botão) e observe se obteve o resultado abaixo:

[?]	[?]	[?]	[?]	[?]	[?]	[?]	[?]	[?]	[?]
[?]	[?]	[?]	[?]	[?]	[?]	[?]	[?]	[?]	[?]
[?]	[?]	[?]	[?]	[?]	[?]	[?]	[?]	[?]	[?]
[?]	[?]	[?]	[?]	[?]	[?]	[?]	[?]	[?]	[?]
[?]	[?]	[?]	[?]	[?]	[?]	[?]	[?]	[?]	[?]
[?]	[?]	[?]	[?]	[?]	[?]	[?]	[?]	[?]	[?]
[?]	[?]	[?]	[?]	[?]	[?]	[?]	[?]	[?]	[?]
[?]	[?]	[?]	[?]	[?]	[?]	[?]	[?]	[?]	[?]
[?]	[?]	[?]	[?]	[?]	[?]	[?]	[?]	[?]	[?]
[?]	[?]	[?]	[?]	[?]	[?]	[?]	[?]	[?]	[?]

- 12) Substitua o comentário //(4) por:
- Desvio condicional **se** para verificar se a célula lin, col da matriz gabarito tem bomba "*".
 - o Se existir bomba na célula atribua à variável temBomba o valor verdadeiro.
 - o Senão existir bomba na célula atribua à variável temBomba o valor falso.
- Faça outro desvio condicional se para verificar se a célula lin,col da matriz visual nunca foi jogada, ou seja, tem caractere "?"
 - Se existir o caractere "?" na célula de visual: atribua o valor da célula lin,col da matriz visual com o valor da célula lin,col da matriz gabarito; e incremente a variável jogadas
- 13) Para testar execute o algoritmo (tecla F9 ou clique no botão) e verifique se comporta como o esperado para o campo minado.
- 14) [Opcional] Existem momentos que são apresentadas apenas 9 ou 8 bobas, pois a randomização pode sortear a mesma linha e coluna mais de uma vez. Pense em como mudar o sorteio para garantir que sempre exista 10 bombas na matriz de gabarito.
- 15) [Desafio] Para contabilizar a quantidade de bombas ao redor de cada célula. Após o laço de repetição **for** que fez o sorteio das bombas:
- Use de dois laços de repetição for, um dentro do outro, para percorrer os 2 índices da matriz visual
- Dentro do laço de repetição for use do desvio condicional se para verificar se a célula i,j da matriz visual está vazia.
- Se estiver vazio a célula i,j atribua zero para uma variável contador e use de 8 desvios condicional se para verificar se existe bomba em uma das oito posições vizinhas da célula i,j e se existir bomba incremente a variável contador. Os vizinhos de uma célula i,j da matriz visual são:

i-1, j-1	i-1, j	i-1, j+1		
i, j-1	i, j	i, j+1		
i+1, j-1	i+1, j	i+1, j+1		