Fast sparse period estimation

Robby. G. McKilliam, I. Vaughan. L. Clarkson and Barry. G. Quinn

robby.mckilliam@unisa.edu.au

Received signal model

Receive L noisy M-ary phase-shifted-keyed (M-PSK) symbols of the form

$$y_i = \alpha_0 s_i + w_i, \qquad i = 1, \ldots, L.$$

- $a_0 = \rho_0 e^{j\theta_0}$ is the unknown carrier phase θ_0 and amplitude ρ_0 ,
- \circ s_1, \ldots, s_l are transmitted M-PSK symbols,
- $w_1, \ldots, w_L \in \mathbb{C}$ are i.i.d. circularly symmetric complex random variables representing noise.

Interested in estimating ρ_0 and θ_0 .

Least squares estimator

If all symbols s_1, \ldots, s_L are known

$$\hat{a}_{\text{uc}} = \arg\min_{\alpha \in \mathbb{C}} \sum_{i=1}^{L} |y_i - as_i|^2 = \frac{1}{L} \sum_{i=1}^{L} y_i s_i^*.$$

More interested in the practical situation where symbols are not known,

$$\hat{a} = \arg\min_{a \in \mathbb{C}} \min_{s_1, \dots, s_L} \sum_{i=1}^L |y_i - as_i|^2.$$

This estimator can be computed in $O(L \log L)$ operations.

Theorem (Almost sure convergence)

Let $R_i \geqslant 0$ and $\Phi_i \in [-\pi, \pi)$ be real random variables satisfying

 $R_i e^{j\Phi_i} = 1 + \frac{W_i}{Q_0 s_i},$

and define the continuous function

$$G(x) = \mathbb{E}R_1 \cos\langle x + \Phi_1 \rangle.$$

If G(x) is uniquely maximised at x=0 over the interval $\left[-\frac{\pi}{M},\frac{\pi}{M}\right)$, then:

 \bigcirc $\langle \hat{\theta} - \theta_0 \rangle \rightarrow 0$ almost surely as $L \rightarrow \infty$,

 $\bigcirc \hat{\rho} \rightarrow \rho_0 G(0)$ almost surely as $L \rightarrow \infty$,

where $\langle \cdot \rangle$ takes its argument 'modulo $\frac{2\pi}{M}$ ' into $[-\frac{\pi}{M}, \frac{\pi}{M}]$.

Theorem (Asymptotic normality)

Let $f(r, \phi)$ be the joint pdf of R_1 and Φ_1 , and let

$$g(\phi) = \int_{0}^{\infty} rf(r,\phi) dr.$$

Put $\hat{\lambda}_L = \langle \hat{\theta} - \theta_0 \rangle$ and $\hat{m}_L = \hat{\rho} - \rho_0 G(0)$. The distribution of $(\sqrt{L}\hat{\lambda}_L, \sqrt{L}\hat{m}_L)$ converges to the bivariate normal with zero mean and covariance matrix

$$\begin{pmatrix} H^{-2}A & 0 \\ 0 & \rho_0^2 B \end{pmatrix}$$

as $L \to \infty$, where

$$H = G(0) - 2\sin\left(\frac{\pi}{M}\right)\sum_{k=0}^{M-1}g\left(\frac{2\pi}{M}k + \frac{\pi}{M}\right),\,$$

$$A = \mathbb{E}R_1^2 \sin^2 \langle \Phi_1 \rangle$$
, $B = \mathbb{E}R_1^2 \cos^2 \langle \Phi_1 \rangle - G^2(0)$.

Simulations

Figure: Computation time in milliseconds versus *N* for the periodogram, least squares, and quantized periodogram estimators computed using the chirp z-transform and a single fast Fourier transform.