WIA2005: Algorithm Design and Analysis

Lecture 5: Divide & Conquer Algorithm

Asmiza A. Sani

Semester 2, Session 2023/24

Learning objectives

- The student will know and understand the following:
 - Algorithm design paradigm: Divide and Conquer
 - Merge sort
 - Quick sort

Algorithm Design Paradigm

- When we are designing an algorithm, there are several high-level approach that can be taken to solve a certain class of problems.
- Common ones are:
 - Divide and conquer
 - Recursively breaking down a problem into 2 or more sub-problems of the same type.
 - No overlapping sub-problem.
 - Dynamic programming
 - Breaking down a problem into a collection of simpler problem.
 - Sub-problem must overlap.
 - Greedy algorithms
 - Making a locally optimal decision at each stage.
- Others:
 - Brute force
 - Backtracking

The Divide and Conquer Design Paradigm

- The Divide and Conquer algorithm apply the concept of dividing problems into smaller sub-problem.
- The approach:
 - 1. Divide the problem (instance) into subproblems.
 - 2. Conquer the subproblems by solving them recursively.
 - 3. Combine subproblem solutions.

Merge Sort Algorithm

- Merge sort is a sorting algorithm that follows the divide and conquer approach.
- The approach:

1. Divide: Trivial.

2. Conquer: Recursively sort 2 subarrays.

3. Combine: Linear-time merge.

Merge Sort Algorithm

```
\begin{aligned} & \mathsf{MERGE\text{-}SORT}(A,p,r) \\ & 1 \quad \text{if } p < r \\ & 2 \quad \quad q = \lfloor (p+r)/2 \rfloor \\ & 3 \quad \quad \mathsf{MERGE\text{-}SORT}(A,p,q) \\ & 4 \quad \quad \mathsf{MERGE\text{-}SORT}(A,q+1,r) \\ & 5 \quad \quad \mathsf{MERGE}(A,p,q,r) \end{aligned}
```

```
MERGE(A, p, q, r)
 1 \quad n_1 = q - p + 1
2 n_2 = r - q
 3 let L[1..n_1 + 1] and R[1..n_2 + 1] be new arrays
4 for i = 1 to n_1
   L[i] = A[p+i-1]
6 for j = 1 to n_2
   R[j] = A[q+j]
8 L[n_1 + 1] = \infty
9 R[n_2 + 1] = \infty
   j = 1
   for k = p to r
13
       if L[i] \leq R[j]
          A[k] = L[i]
   i = i + 1
   else A[k] = R[j]
17
          j = j + 1
```

Merge operation

(c)

Merge operation Cont...

Merge Sort operation

Running Time Complexity - Merge Sort

- 1. Divide: Trivial.
- 2. Conquer: Recursively sort 2 subarrays.
- 3. Combine: Linear-time merge.
- Recurrence relation:

 $T(n) = 2T(n/2) + \Theta(n)$ # subproblems | work dividing and combining

What is running time complexity of Merge Sort?

Running Time Complexity

1. Divide: Trivial.

2. Conquer: Recursively sort 2 subarrays.

3. Combine: Linear-time merge.

Using Master Theorem

 $T(n) = \Theta(n \log n)$

Quicksort Algorithm

- Approach (Quicksort an *n*-element array):
 - 1. Divide: Partition the array into two subarrays around a pivot x such that elements in lower subarray $\leq x \leq$ elements in upper subarray.
 - 2. Conquer: Recursively sort the two subarrays.
 - 3. Combine: Trivial.
 - Key: Linear-time partitioning subroutine.

Quicksort Algorithm

```
QUICKSORT(A, p, r) PARTITION(A, p, r)

1 if p < r

2 q = PARTITION(A, p, r)

3 QUICKSORT(A, p, q - 1)

4 QUICKSORT(A, q + 1, r)

5 i = i + 1

6 exchange A[i] with A[j]

7 exchange A[i + 1] with A[r]

8 return i + 1
```

Quicksort Algorithm

- Array entry A[r] becomes the pivot element x.
- Lightly shaded array elements are all in the first partition with values no greater than x.
- Heavily shaded elements are in the second partition with values greater than x.
- The unshaded elements have not yet been put in one of the first two partitions, and the final white element is the pivot x.

Running Time Complexity

- Assume all input elements are distinct (else use the 3-way quicksort).
- In practice, there are better partitioning algorithms for when duplicate input elements may exist.

Running time: $T(n) = T(k) + T(n-k-1) + \Theta(n)$

Running time depends on the input array and the partition strategy.

When will the worst-case behaviour happen in Quicksort?

Worst Case of Quicksort

- Input sorted or reverse sorted.
- Partition around min or max element.
- One side of partition always has no elements.
- Using back-substitution method:

$$T(n) = T(0) + T(n-1) + \Theta(n)$$

$$= \Theta(1) + T(n-1) + \Theta(n)$$

$$= T(n-1) + \Theta(n)$$

$$= \Theta(n^{2})$$
(arithmetic series)

How will the Recursion Tree of Quicksort look like?

$$T(n) = T(0) + T(n-1) + cn$$

Best-case analysis

- To see how Quicksort can ensure $\Theta(n \log n)$ running time on any input, we need to understand what is the partition condition that guarantee this.
- If we're lucky, PARTITION splits the array evenly:

$$T(n) = 2T(n/2) + \Theta(n)$$

$$=\Theta(n \log n)$$
 (same as merge sort)

• But what if the split is always

$$\frac{1}{10}:\frac{9}{10}$$

Are we still going to get $\Theta(n \log n)$

running time? Or we are reaching $\Theta(n^2)$?

$$T(n) = T(\frac{1}{10}n) + T(\frac{9}{10}n) + \Theta(n)$$

What is the solution to this recurrence?

More Intuition

- Here, we can further see, how Quicksort can still perform in $\Theta(n \log n)$.
- Suppose we have alternate Good, Not Good,.... partition each time:

$$G(n) = 2N(n/2) + \Theta(n)$$
 Good

$$N(n) = G(n-1) + \Theta(n)$$
 Not Good

Solving:

$$G(n)$$
 = $2(G(n/2 - 1) + \Theta(n/2)) + \Theta(n)$
= $2G(n/2 - 1) + \Theta(n)$

How can we make sure we are usually having a good partition?

 $= \Theta(n \log n)$ • Good!

Average case intuition of quick sort

Randomized Quicksort

- To make sure that Quicksort will always have a lucky $O(n \log n)$ running time:
 - IDEA: Partition around a random element.
 - Running time is independent of the input order.
 - No assumptions need to be made about the input distribution.
 - No specific input elicits the worst-case behaviour.
 - The worst case is determined only by the output of a random-number generator.

Additional common problem solve using divide and conquer approach

Binary Search Algorithm

- Find an element in a sorted array:
 - 1. Divide: Check middle element.
 - 2. Conquer: Recursively search 1 subarray.
 - 3. Combine: Trivial.

• Find an element in a sorted array:

1. Divide: Check middle element.

2. Conquer: Recursively search 1 subarray.

3. Combine: Trivial.

• Example: Find 9 in the following array A

3 5 7 8 9 12 15

- Find an element in a sorted array:
 - 1. Divide: Check middle element.
 - 2. Conquer: Recursively search 1 subarray.
 - 3. Combine: Trivial.
- Example: Find 9 in the following array A

- Find an element in a sorted array:
 - 1. Divide: Check middle element.
 - 2. Conquer: Recursively search 1 subarray.
 - 3. Combine: Trivial.
- Example: Find 9 in the following array A

- Find an element in a sorted array:
 - 1. Divide: Check middle element.
 - 2. Conquer: Recursively search 1 subarray.
 - 3. Combine: Trivial.
- Example: Find 9 in the following array A

- Find an element in a sorted array:
 - 1. Divide: Check middle element.
 - 2. Conquer: Recursively search 1 subarray.
 - 3. Combine: Trivial.
- Example: Find 9 in the following array A

- Find an element in a sorted array:
 - 1. Divide: Check middle element.
 - 2. Conquer: Recursively search 1 subarray.
 - 3. Combine: Trivial.
- Example: Find 9 in the following array A

Running time complexity

Powering a number

Problem: Compute a^n , where $n \in \mathbb{N}$.

Naive algorithm: $\Theta(n)$.

Powering a number

Problem: Compute a^n , where $n \in \mathbb{N}$.

Naive algorithm: $\Theta(n)$.

Divide-and-conquer algorithm:

$$a^{n} = \begin{cases} a^{n/2} \cdot a^{n/2} & \text{if } n \text{ is even;} \\ a^{(n-1)/2} \cdot a^{(n-1)/2} \cdot a & \text{if } n \text{ is odd.} \end{cases}$$

$$T(n) = T(n/2) + \Theta(1) \implies T(n) = \Theta(\lg n).$$

Fibonacci numbers

Recursive definition:

$$F_n = \begin{cases} 1 & \text{if } n = 0; \\ 2 & \text{if } n = 1; \\ F_{n-1} + F_{n-2} & \text{if } n \ge 2. \end{cases}$$

0 1 1 2 3 5 8 13 21 34 L

Computing Fibonacci numbers

Bottom-up:

- Compute $F_0, F_1, F_2, ..., F_n$ in order, forming each number by summing the two previous.
- Running time: $\Theta(n)$.

Naive recursive squaring:

 $F_n = \frac{\Phi^n}{\sqrt{5}}$ rounded to the nearest integer.

- Recursive squaring: $\Theta(\lg n)$ time.
- This method is unreliable, since floatingpoint arithmetic is prone to round-off errors.

Recursive squaring

Theorem:
$$\begin{bmatrix} F_{n+1} & F_n \\ F_n & F_{n-1} \end{bmatrix} = \begin{bmatrix} 1 & 1 \\ 1 & 0 \end{bmatrix}^n.$$

Algorithm: Recursive squaring.

Time =
$$\Theta(\lg n)$$
.

Proof of theorem. (Induction on n.)

Base
$$(n = 1)$$
:
$$\begin{bmatrix} F_2 & F_1 \\ F_1 & F_0 \end{bmatrix} = \begin{bmatrix} 1 & 1 \\ 1 & 0 \end{bmatrix}^1.$$

Recursive squaring

Inductive step $(n \ge 2)$:

$$\begin{bmatrix} F_{n+1} & F_n \\ F_n & F_{n-1} \end{bmatrix} = \begin{bmatrix} F_n & F_{n-1} \\ F_{n-1} & F_{n-2} \end{bmatrix} \cdot \begin{bmatrix} 1 & 1 \\ 1 & 0 \end{bmatrix}$$
$$= \begin{bmatrix} 1 & 1 \\ 1 & 0 \end{bmatrix}^{n-1} \cdot \begin{bmatrix} 1 & 1 \\ 1 & 0 \end{bmatrix}$$
$$= \begin{bmatrix} 1 & 1 \\ 1 & 0 \end{bmatrix}^n$$

Matrix Multiplication

Suppose that we partition each of A, B, and C into four $n/2 \times n/2$ matrices

$$A = \begin{pmatrix} A_{11} & A_{12} \\ A_{21} & A_{22} \end{pmatrix}, \quad B = \begin{pmatrix} B_{11} & B_{12} \\ B_{21} & B_{22} \end{pmatrix}, \quad C = \begin{pmatrix} C_{11} & C_{12} \\ C_{21} & C_{22} \end{pmatrix}, \tag{4.9}$$

so that we rewrite the equation C = A.B as

$$\begin{pmatrix} C_{11} & C_{12} \\ C_{21} & C_{22} \end{pmatrix} = \begin{pmatrix} A_{11} & A_{12} \\ A_{21} & A_{22} \end{pmatrix} \cdot \begin{pmatrix} B_{11} & B_{12} \\ B_{21} & B_{22} \end{pmatrix}. \tag{4.10}$$

Equation (4.10) corresponds to the four equations

$$C_{11} = A_{11} \cdot B_{11} + A_{12} \cdot B_{21}, \qquad (4.11)$$

$$C_{12} = A_{11} \cdot B_{12} + A_{12} \cdot B_{22}, \qquad (4.12)$$

$$C_{21} = A_{21} \cdot B_{11} + A_{22} \cdot B_{21}, \qquad (4.13)$$

$$C_{22} = A_{21} \cdot B_{12} + A_{22} \cdot B_{22}. \qquad (4.14)$$

Matrices simple algorithm

```
n = A.rows
let C be a new n \times n matrix
if n == 1
     c_{11} = a_{11} \cdot b_{11}
else partition A, B, and C as in equations (4.9)
     C_{11} = \text{SQUARE-MATRIX-MULTIPLY-RECURSIVE}(A_{11}, B_{11})
          + SQUARE-MATRIX-MULTIPLY-RECURSIVE (A_{12}, B_{21})
     C_{12} = \text{SQUARE-MATRIX-MULTIPLY-RECURSIVE}(A_{11}, B_{12})
          + SQUARE-MATRIX-MULTIPLY-RECURSIVE (A_{12}, B_{22})
     C_{21} = \text{SQUARE-MATRIX-MULTIPLY-RECURSIVE}(A_{21}, B_{11})
          + SQUARE-MATRIX-MULTIPLY-RECURSIVE (A_{22}, B_{21})
     C_{22} = \text{SQUARE-MATRIX-MULTIPLY-RECURSIVE}(A_{21}, B_{12})
          + SQUARE-MATRIX-MULTIPLY-RECURSIVE (A_{22}, B_{22})
```

Running time

$$T(n) = \begin{cases} \Theta(1) & \text{if } n = 1, \\ 8T(n/2) + \Theta(n^2) & \text{if } n > 1. \end{cases}$$
 (4.17)

From master methods:

$$T(n) = \Theta(n^3).$$

Reference

- MIT open courseware, Introduction to Algorithms, 2005.
- Cormen, Lieserson and Rivest, Introduction to Algorithms, Third Edition, MIT Press, 2009.

We are also going to look at Heapsort today.