Matrixmultiplikation (Forts.)

Proposition

$$A, A' \in R^{m \times n}, B, B' \in R^{n \times l}, C \in R^{l \times k}$$

$$ightharpoonup A(BC) = (AB)C$$

$$ightharpoonup$$
 $\mathrm{E}_m A = A \mathrm{E}_n = A$

$$(A + A')B = AB + A'B$$
$$A(B + B') = AB + AB'$$

$$A(D+D)=AD+AD$$

Matrixmultiplikation (Forts.)

Korollar

 $R^{n \times n}$ wird ein Ring mit:

- ► Multiplikation:
- ► Eins:

Bemerkung

 $R^{n \times n}$ ist nicht kommutativ für $n \ge 2$.

Matrixmultiplikation (Forts.)

Definition

Allgemeine lineare Gruppe vom Grad n über R:

$$\mathrm{GL}_n(R) := (R^{n \times n})^{\times}$$

Beispiel

$$A = \begin{pmatrix} 1 & 2 \\ -1 & -1 \end{pmatrix} \in \operatorname{GL}_2(\mathbb{Z})$$
 mit

$$A^{-1} = \begin{pmatrix} -1 & -2 \\ 1 & 1 \end{pmatrix}$$

Transposition von Matrizen

Definition

 $A \in R^{m \times n}$

Transponierte von A:

$$A^t =$$

Beispiel

$$\begin{pmatrix} 1 & 0 & -2 \\ 2 & -1 & 3 \end{pmatrix}^t =$$

Transposition von Matrizen (Forts.)

Proposition

$$A, B \in R^{m \times n}, C \in R^{n \times l}, D \in GL_n(R)$$

$$ightharpoonup (A^t)^t = A$$

$$(A+B)^t = A^t + B^t$$

$$(AC)^t = C^t A^t$$

$$ightharpoonup$$
 E_n^t $=\mathrm{E}_n$

▶
$$D^t \in GL_n(R)$$
 mit $(D^t)^{-1} = (D^{-1})^t$

13. Dezember 2018

Lineare Gleichungssysteme

Lineare Gleichungssysteme

Setup

- ► *K* Körper
- ▶ $m, n \in \mathbb{N}$

Ein lineares Gleichungssystem (LGS) aus m Gleichungen und n Unbekannten x_j für $j \in \underline{n}$ über K:

$$a_{11}x_1 + a_{12}x_2 + \dots + a_{1n}x_n = b_1$$

 $a_{21}x_1 + a_{22}x_2 + \dots + a_{2n}x_n = b_2$
 \vdots
 $a_{m1}x_1 + a_{m2}x_2 + \dots + a_{mn}x_n = b_m$

wobei $a_{ij}, b_i \in K$ für $i \in \underline{m}, j \in \underline{n}$.

Kurz:

$$\sum_{j=1}^{n} a_{ij} x_j = b_i$$

für alle $i \in \underline{m}$.

Definition

Gegeben sie ein LGS über K wie oben.

Eine Lösung des LGS ist ein
$$n$$
-Tupel $\begin{pmatrix} s_1 \\ \vdots \\ s_n \end{pmatrix} \in K^n \ (=K^{n\times 1})$ mit

$$\sum_{j=1}^n a_{ij}s_j = b_i$$

für alle $i \in \underline{n}$.

Matrix-Formulierung für LGS

Gegeben sie ein LGS über K wie oben.

Definition

- ▶ $A := (a_{ii}) \in K^{m \times n}$: Koeffizientenmatrix des LGS
- ▶ $b := (b_i) \in K^m$: rechte Seite des LGS

$$(A,b) = \begin{pmatrix} a_{11} & \cdots & a_{1n} & b_1 \\ \vdots & & \vdots & \vdots \\ a_{m1} & \cdots & a_{mn} & b_m \end{pmatrix} \in K^{m \times (n+1)}:$$
 erweiterte Koeffizientenmatrix

- ▶ Lösungsmenge: $\mathbb{L}(A, b) \subseteq K^n$
- ▶ Das LGS heißt homogen, falls $b = 0 \in K^m$.
- ▶ Das LGS heißt *inhomogen*, falls $b \neq 0 \in K^m$.

Matrix-Formulierung für LGS (Forts.)

Bemerkung

$$\mathbb{L}(A,b) = \{ s \in K^n \mid As = b \}$$

Matrix-Formulierung für LGS (Forts.)

Schreibweise

Schreiben LGS mit erweiterter Koeffizientenmatrix (A, b) formal:

$$Ax = b$$
.

Beispiel

Das LGS

$$2x_1 + x_2 - x_3 = 5$$

 $x_1 - x_2 = 1$

wird als Matrixgleichung geschrieben:

$$\underbrace{\begin{pmatrix} 2 & 1 & -1 \\ 1 & -1 & 0 \end{pmatrix}}_{A} \cdot \underbrace{\begin{pmatrix} x_1 \\ x_2 \\ x_3 \end{pmatrix}}_{x} = \underbrace{\begin{pmatrix} 5 \\ -1 \end{pmatrix}}_{b}.$$

Matrix-Formulierung für LGS (Forts.)

Es sei $A \in K^{m \times n}$ und $b \in K^m$.

Definition

$$\varphi_A: K^n \to K^m, \quad v \mapsto Av$$

Bemerkung

▶ Für jedes $s \in \mathbb{L}(A, b)$ gilt

$$\mathbb{L}(A, b) = s + \mathbb{L}(A, 0) := \{s + u \mid u \in \mathbb{L}(A, 0)\}.$$

- ▶ Bild von φ_A : $\varphi_A(K^n) = \{b \in K^m \mid Ax = b \text{ lösbar}\}.$
- ▶ Faser von φ_A zu $b \in K^m$:

$$\varphi_A^{-1}(\{b\}) = \{s \in K^n \mid As = b\} = \mathbb{L}(A, b).$$

Beispiel

$$K = \mathbb{R}$$

Lösungen sind z.B.
$$\begin{pmatrix} 1 \\ -1 \\ 0 \\ 2 \end{pmatrix}$$
 und $\begin{pmatrix} 1 \\ 2 \\ 1 \\ 2 \end{pmatrix}$.

Wie findet man alle Lösungen?

Beispiele

Es sei $K = \mathbb{R}$ und m = n = 2. Nehme x, y statt x_1, x_2 .

$$x + y = 2$$

$$x - y = 0$$

$$x + y = 2$$

$$x + y = 0$$

$$x + y = 2$$

$$3x + 3y = 6$$

Satz

Die Lösungsmenge eines LGS ändert sich nicht, wenn

- ► zwei Gleichungen vertauscht werden, oder
- ▶ das c-fache ($c \in K$) einer Gleichung zu einer anderen addiert wird, oder
- eine Gleichung mit einem $c \in K$ $(c \neq 0)$ multipliziert wird.

Definition

Die Umformungen aus dem Satz heißen Äquivalenzumformungen.

Beispiel

Es sei $K = \mathbb{R}$ und m = n = 2. Nehme x, y statt x_1, x_2 .

$$x + y = 2$$

$$x - y = 0$$

Das LGS

hat die erweiterte Koeffizientenmatrix

$$\begin{pmatrix} 1 & 2 & 0 & 1 & 1 \\ 1 & 2 & 2 & 3 & 5 \\ 2 & 4 & 0 & 3 & 5 \\ 0 & 0 & 3 & 2 & 3 \end{pmatrix} \in \mathbb{Q}^{4 \times 5}.$$

Die Äquivalenzumformungen des LGS können an dieser Matrix durchgeführt werden.

Elementare Transformationen

Definition

Eine elementare Zeilentransformation ist eine Abbildung

$$t: K^{m \times n} \to K^{m \times n}, \quad A \mapsto t(A),$$

von einem der drei Typen τ, α, μ , wobei $1 \le i, j \le m$ und $c \in K$:

- $ightharpoonup au_{ij}$: vertauscht die *i*-te und *j*-te Zeile von A.
- ▶ $\alpha_{ij}(c)$, $i \neq j$: addiert das c-fache der j-ten Zeile zur i-ten Zeile von A.
- ▶ $\mu_i(c)$ mit $c \neq 0$: multipliziert die *i*-te Zeile von A mit c.

Schreibweise

 $A \rightsquigarrow B$, falls $B \in K^{m \times n}$ aus $A \in K^{m \times n}$ durch eine endliche Folge elementarer Zeilentransformationen hervorgeht.

Elementare Transformationen (Forts.)

Beispiel

$$K = \mathbb{Q}, m = 3, n = 4.$$

$$\begin{pmatrix} 1 & 2 & 3 & 4 \\ 0 & 0 & 1 & 1 \\ -1 & -1 & 5 & 6 \end{pmatrix} \qquad \stackrel{\tau_{23}}{\leadsto} \qquad \begin{pmatrix} 1 & 2 & 3 & 4 \\ -1 & -1 & 5 & 6 \\ 0 & 0 & 1 & 1 \end{pmatrix}$$

$$\stackrel{\alpha_{12}(2)}{\leadsto} \quad \begin{pmatrix} -1 & 0 & 13 & 16 \\ -1 & -1 & 5 & 6 \\ 0 & 0 & 1 & 1 \end{pmatrix}$$

$$\begin{array}{ccccc}
\mu_2(-1) & \begin{pmatrix}
-1 & 0 & 13 & 16 \\
1 & 1 & -5 & -6 \\
0 & 0 & 1 & 1
\end{pmatrix}$$

Elementare Transformationen (Forts.)

Bemerkung

Es seien $(A, b), (A', b') \in K^{m \times (n+1)}$ erweiterte Koeffizientenmatrizen von LGS.

Ist $(A, b) \rightsquigarrow (A', b')$, dann ist

$$\mathbb{L}(A,b)=\mathbb{L}(A',b').$$

Zeilenstufenform

Definition

Es sei $A \in K^{m \times n}$.

- ▶ z_i sei die i-te Zeile von A, i = 1, ..., m.
- ▶ $k_i \in n + 1$: (Anzahl der führenden Nullen von z_i) + 1.
- ► A hat Zeilenstufenform, wenn gilt:

$$k_1 < k_2 < \cdots < k_r < k_{r+1} = \cdots = k_m = n+1$$

für ein $0 \le r \le m$.

▶ In diesem Fall: r: Stufenzahl, k_1, \ldots, k_r : Stufenindizes von A.

Bemerkung

Die Nullmatrix hat Zeilenstufenform (Fall r = 0).

Zeilenstufenform

A hat genau dann Zeilenstufenform, wenn A die Gestalt hat:

- \blacksquare und \star sind beliebige Elemente aus K, aber $\blacksquare \neq 0$;
- \blacksquare steht in der *i*-ten Zeile genau an der Stelle k_i .

Zeilenstufenform (Forts.)

Satz

 $A \in K^{m \times n}$ kann durch eine Folge elementarer Transformationen auf Zeilenstufenform gebracht werden.

Zeilenstufenform (Forts.)

Algorithmus (Gauß)

Eingabe: $A = (a_{ii}) \in K^{m \times n}$.

Ausgabe: $A' \in K^{m \times n}$ mit $A \rightsquigarrow A'$ und A' hat Zeilenstufenform.

Für j = 1, ..., n bezeichne s_i die j-te Spalte von A.

- 1. Ist A die Nullmatrix oder eine $(1 \times n)$ -Matrix, dann Stopp.
- 2. Setze $k := \min\{1 \le j \le n \mid s_i \ne 0\}$.
- 3. Wähle ein *i* mit $a_{ik} \neq 0$ und wende τ_{1i} an. $(\tau_{11}$ ist erlaubt.)
- 4. Für jedes $i=2,\ldots,m$ wende $\alpha_{i1}(-\frac{a_{ik}}{a_{1k}})$ an.
- 5. Führe 1. 5. rekursiv mit $(a_{ij})_{\substack{2 \le i \le m \\ k < j \le n}} \in K^{(m-1)\times (n-k)}$ aus.

(Nach den Schrittten 3. und 4. wird die **transformierte** Matrix wieder mit (a_{ij}) bezeichnet.)