Relation, I

李昂生

Discrete Mathematics U CAS 5, June May, 2018

Outline

- 1. Definitions
- 2. Relational database
- 3. Representations of relations
- 4. Exercises

General view

- Relation is a concept basic to all the sciences
- Relations as mathematical objects can be mathematically studied
- Mathematical definition of relations is the model for the study of relations in other disciplines
- There are wide applications, especially relational database for CS
 - **Question** Is this sufficient for big data?
- New directions: discovering and predicting links from data, that are noisy, structured or unstructured, big data

Binary Relation

Definition 1

Let A, B be two sets. A **binary relation** from A to B is a subset of $A \times B$, i.e.

$$R \subseteq A \times B$$
.

Remark

- Relation R is a set of Ordered pairs (a, b) for a ∈ A and b ∈ B.
- Relation is directed.

Relations as Extensions of Functions

Given two sets A, B and a binary relation R from A to B, we define a **partial function**

$$f_R: A \to B$$
 (1)

as follows:

For every $a \in R$, if there is a $b \in B$ such that $(a, b) \in R$, then choose a unique such b and define $f_R(a) = b$. Then,

- (i) R is an extension of f_R .
- (ii) f_R is a partial function from A to B.

We thus call f_R a **Selection function** of R.

Intuition and background

Therefore, relations extend functions or maps in two ways:

- 1) Partial functions are allowed
- 2) One element may link to many elements

Why?

- Reasonable
- The extensions allow wider applications in all areas of sciences

Relations of Functions

Given two sets A, B, let $f: A \rightarrow B$ be a function from A to B.

Define the **relation of function** f as follows:

$$R_f = \{(a, f(a)) \mid a \in A\}.$$
 (2)

Relations on Sets

Definition 2

Let A be a set. A relation on A is a relation from A to A, i.e.,

$$R \subseteq A \times A$$
.

Reflexivity

Definition 3

A relation R on a set A is called **reflexive**, if for every $a \in A$, $(a, a) \in R$ holds.

Examples:

- ≤ for numbers, < is not
- .

$$(a,b) \in R \iff a|b.$$

Symmetric relations

Definition 4

- 1. A relation R on a set A is called **Symmetric**, if $(b, a) \in R$ whenever $(a, b) \in R$, for all $a, b \in A$.
- 2. A relation R on a set A is called **antisymmetric** if for all $a, b, c \in A$,

$$[(a,b)\in R\ \&\ (b,a)\in R]\Rightarrow a=b.$$

Transitivity

Definition 5

A relation R on a set A is called **transitive**, if for all $a, b, c \in A$,

$$[(a,b)\in R\ \&\ (b,c)\in R]\Rightarrow (a,c)\in R.$$

Operations of Relations as Sets

Relations are sets, for which the usual operations of sets apply, including, for instance:

- $R_1 \cup R_2$
- R₁ ∩ R₂
- R̄
- *R*₁ \ *R*₂
- R₁ ⊕ R₂

Composition of Relations

Definition 6

Let A, B, and C be three sets. $R \subseteq A \times B$, $S \subseteq B \times C$ be two relations. Define the **COMPOSITION** of R and S by:

$$S \circ R = \{(a, c) \mid (\exists b \in B)[(a, b) \in R, \& (b, c) \in S]\}.$$
 (3)

Power of Relations

Definition 7

Let *R* be a relation on a set *A*. Define the power of relations by:

$$R^1 = R,$$

 $R^{n+1} = R^n \circ R.$

Transitivity Characterisation

Theorem 8

Let A be a set and R be a relation on A. Then, R is transitive if and only if $R^2 \subseteq R$. Trivial.

n-ary Relations

Definition 9

Let A_1, A_2, \dots, A_n be sets. An *n*-ary relation on these sets is a subset of $A_1 \times A_2 \times \dots \times A_n$, i.e.,

$$R \subseteq A_1 \times A_2 \times \cdots \times A_n. \tag{4}$$

The sets A_1, A_2, \dots, A_n are called the *domains* of R and n is called the *dimension* (degree, in the textbook) of R.

Database

A database consists of records, which are *n*-tuples, made up of fields. The fields are the entries of the *n*-tuples.

Example:

A database of the form:

(Name, ID number, Age, Sex, Profession)

The relations are represented by a Table, in which

- the entries are the attributes
- Some entries are unique to an n-tuple, and called primary key

Relational Data Model

A database that are expressed by relations supports the following operations for data:

- Inserting records
- Deleting records
- Updating records
- Searching a record
- Combining records
- Classifying records, etc

Selection Operator

Given an n-ary relation $R \subseteq A_1 \times A_2 \times \cdots \times A_n$ and a condition C, the **selection operator** $S_C(R)$ finds the set of all the n-tuples in R that satisfy the condition C.

Projection Operator

Definition 10

The **projection operator** $P_{i_1\cdots i_k}$ where $1 \le i_1 < \cdots i_k \le n$, maps the *n*-tuple (a_1, a_2, \cdots, a_n) to $(a_{i_1}, \cdots, a_{i_k})$.

The Join Operator

Definition 11

Let R and S be m- and n-dimensional relations, respectively. For $p \le m, n$, the *join operator* $J_p(R, S)$ is defined as follows:

$$(a_1, \cdots, a_{m-p}, c_1, \cdots, c_p, b_1, \cdots, b_{n-p}) \in J_p(R, S).$$
 (5)

if:

$$(a_1,\cdots,a_{m-p},c_1,\cdots,c_p)\in R,$$

and

$$(c_1,\cdots,c_p,b_1,\cdots,b_{n-p})\in\mathcal{S}.$$

More materials: Database theory

New Challenge

Real-world data are dynamically evolving, high-dimensional and noisy. That is, for an item of the form

$$(a_1,a_2,\cdots,a_n)$$

it is possible that

- a_i's are noisy
- a_i's are dynamically evolving
- n is large

The classic database theory apparently fails to support the analysis of the data.

This urgently calls for a new database theory that supports real-world data analysis.

Remarks

- Binary relations
- List of ordered pairs
- Table
- Why new representations?

Matrix Representation

Let *A*, *B* be finite sets and *R* be a relation from *A* to *B*. Suppose that *A*, *B* are ordered as they are listed as follows:

$$A=\{a_1,a_2,\cdots,a_m\}$$

$$B=\{b_1,b_2,\cdots,b_n\}.$$

The matrix representation of R, written M_R , is defined by a matrix with entry m_{ij} given by

$$m_{ij} = \begin{cases} 1, & \text{if } (a_i, b_j) \in R, \\ 0, & \text{o.w.} \end{cases}$$
 (6)

Matrices of Relations on a Set

Theorem 12

Given a set A and a relation R on A, let M_R be the matrix representation of R. Then,

- (1) R is symmetric if and only if M_R is a symmetric matrix.
- (2) If R is an antisymmetric relation, then for any $i \neq j$,

$$m_{ij}\cdot m_{ji}=0.$$

Operations

Theorem 13

Let R_1 , R_2 be two relations on a set A. Then,

1.

$$\mathit{M}_{R_1 \cup R_2} = \mathit{M}_{R_1} \vee \mathit{M}_{R_2}.$$

2.

$$M_{R_1\cap R_2}=M_{R_1}\wedge M_{R_2}.$$

Composition

Theorem 14

Given sets A, B and C, and relations $R \subseteq A \times B$ and $S \subseteq B \times C$, we have

$$M_{S\circ R}=M_R\odot M_S.$$

Proof.

Let
$$M_{S \circ R} = (t_{ij})$$
, $M_R = (r_{ij})$ and $M_S = (s_{ij})$.
Then.

 $t_{ij} = 1$ is and only if there is a k such that $r_{ik} = s_{kj} = 1$.

Questions

- 1. What is the algebraic theory of relations?
- 2. What is the algebraic representation of high-dimensional relations?

Directed Graphs

Definition 15

A directed graph or digraph is a pair G = (V, E) of vertices V and directed edges E.

For a pair $(a, b) \in E$,

- we assume there is a direction from a to b
- a is called initial vertex
- b is called terminal vertex.

A binary relation $R \subseteq A \times B$ is naturally represented by a directed bipartite graph G = (A, B, E) where $(a, b) \in E$ if $(a, b) \in R$, i.e., E = R. Therefore,

Binary relations = Directed bipartite graphs

Questions

- What is the theory of binary relations from the graphic approach study?
- Again, what is the graphic representation for high-dimensional relations?

Exercises

- 1. How many relations are there on a set with *n* elements that are
 - 1.1 symmetric?
 - 1.2 antisymmetric?
 - 1.3 asymmetric?
 - 1.4 irreflexive?
 - 1.5 reflexive and symmetric?
 - 1.6 neither reflexive n irreflexive?
- 2. Given the directed graph representations of two relations, how can the directed graph of the union, intersection, symmetric difference, difference and composition of these relations be found?

谢谢!