3.2.2 Pseudo-Code

1: Control "LeftLDR" by the microcontroller

2: Control "RightLDR" by the microcontroller

3: Control "Solenoid" by the microcontroller

4: Control "Enable" pin of the motor driver by the microcontroller

5: Control "step" pin of the motor driver through microcontroller

6: Control "dir" pin of the motor driver by the microcontroller

7: int LeftSensorValue ← 0

8: int RightSensorValue ← 0

9: **boolean** MotorMode ← true

10: int ShadePosition ← 0

11: const int minLimit ← *

12: const int maxLimit ← *

13: **long** initialTime ← Read time from computer

14: long presentTime ← 0

14: **const int** tolerance ← *

15: **const int** MotorRotationalSpeed ← *

16: const int Step ← *

17: Solenoid ← Set the solenoid output low

18: **int** dir ← *

These statements basically mean that while designing the actual code, all the pins connected and controlled by the microcontroller would be defined and configured

PADC value stored from the left sensor
PADC value stored from the right sensor
PADC value stored from the right sensor
Passically orders the motor to power up or shut down
PShade set vertically initially as a reference position (in degrees)
PLower boundary limit for shade position. The value is in degrees
PUpper boundary limit for shade position. The value is in degrees
PThey are meant for time tracking so that the rest mode can be defined appropriately by reading time from the computer
PBasically defines the level of accuracy under which the sensors work
PDefines the speed of rotation of the stepper motor
PDefines the no. of steps the motor should rotate in every single revolution of the motor
PInitially solenoid locks the system for security; to keep shade in position

Defines the direction of rotation of the motor according to the control structure evaluation

At the device start-up, the solenoid is set to low as well as the motor is turned on in order to be completely sure that the shade remains fixed & locked in its position with the desired amount of holding torque needed from the motor as well as keeping it still mechanically.

19: while true do	▶Forever Loop; runs as soon as system switched on & powered
20: LeftSensorValue ← LeftLDR	►Microcontroller reads & stores ADC value from left sensor
21: RightSensorValue ← RightLDR	▶ Microcontroller reads & stores ADC value from right sensor
22: MotorMode ← false	
23: Enable MotorMode	►Motor disabled/shutdown to save power
24: presentTime ← Read time from computer every iteration	▶ Reading current time to check further for rest mode
25: if (presentTime – initialTime < 10 minutes) then	▶Check for rest mode
26: Solenoid ← Set the solenoid output low	▶Locks system with solenoid; shade fixed in position
27: else	
28: MotorMode true	
29: Enable ← MotorMode	▶Motor enabled/powered up
30: Label: A	A label to redirect the code for reiteration according to the need
31: LeftSensorValue ← LeftLDR	►Microcontroller reads & stores ADC value from left sensor
32: RightSensorValue RightLDR	►Microcontroller reads & stores ADC value from right sensor
33: if (ShadePosition > minLimit && ShadePosition < maxLimit) then	Condition to check for physical shade position
34: if (LeftSensorValue > (RightSensorValue + tolerance)) then	▶Condition;Check for difference b/w the photodiode values
35: Solenoid ← Set the solenoid output high	▶Unlocking system via solenoid
36: Rotate motor clockwise with defined speed and steps	▶Motor rotation for shade compensation
37: Solenoid ← Set the solenoid output low	▶Locking the system via solenoid
38: Shade position calculated* and updated to the "ShadePosit	ion" variable
39: Go to Label: A	▶To check until the shade has been compensated
40: else if (RightSensorValue > (LeftSensorValue + tolerance)) ther	1
41: Solenoid ← Set the solenoid output high	▶Unlocking system via solenoid
42: Rotate motor counter clockwise with defined speed and ste	ps
43: Solenoid ← Set the solenoid output low	▶Locking the system via solenoid
44: Shade position calculated* and updated to the "ShadePosit	ion" variable
45: Go to Label: A	>To check until the shade has been compensated
46: else if ((LeftSensorValue - RightSensorValue) <= tolerance or equal to zero) then	
47: MotorMode ← false	

Group Project 02 | HSRW | SS 20/21

48:	Enable ← MotorMode	►Motor disabled/shutdown
49:	Solenoid \leftarrow Set the solenoid output low	▶Locking the system via solenoid
50:	else	▶For line no. 34
51:	end if	▶For line no. 34
52:	else	▶For line no. 33
53:	Solenoid ← Set the solenoid output low	▶Locking the system via solenoid
54:	MotorMode ← false	
55:	Enable ← MotorMode	>Motor disabled/shutdown
56:	end if	▶For line no. 33
57: init	ialTime ← Read time from the computer every iteration of the loop	▶Initial time updated for the next execution of the loop
58:	end if	⊳For line no. 25
59: en	d while	▶For line no. 19