Greg Langmead

Carnegie Mellon University

April 2025

Summary •0000000

Summary

Summary

Summary

This work brings to HoTT

- connections, curvature, and vector fields
- the index of a vector field
- a theorem in dimension 2 that total curvature = total index

Classical \rightarrow HoTT

Summary

Let M be a smooth 2-manifold without boundary, F_A the curvature of a connection A on the tangent bundle, and X a vector field with isolated zeroes x_1, \ldots, x_n .

$$\frac{1}{2\pi} \int_{M} F_{A} = \sum_{i=1}^{n} \operatorname{index}_{X}(x_{i}) = \chi(M)$$

$$\downarrow \qquad \qquad \downarrow$$

$$\Omega\left(\sum_{\text{faces } f} \flat_{f}\right) = \sum_{\text{faces } f} I_{f}^{X}$$

Classical index

Summary

Near an isolated zero there are only three possibilities: index 0, 1, -1.

Index is the winding number of the field as you move clockwise around the zero.

Poincaré-Hopf theorem

The total index of a vector field is the Euler characteristic.

Examples:

Summary

Rotation: index +1 at each pole = 2

Height: index +1 at each pole = 2

Gauss-Bonnet theorem

Summary

Curvature in 2D is a function $F_A: M \to \mathbb{R}$.

 $\int_M F_A$ sums the values at every point.

Positive and negative curvature cancel: 0

Constant curvature 1, area 4π : 2

Plan

Summary 00000000

- Manifolds
- Classifying maps
- Connections and curvature
- Theorems

Summary

- Symmetry,
 - Bezem, M., Buchholtz, U., Cagne, P., Dundas, B. I., and Grayson, D. R., (2021-) https://github.com/UniMath/SymmetryBook.
- Central H-spaces and banded types, Buchholtz, U., Christensen, J. D., Flaten, J. G. T., and Rijke, E. (2023) arXiv:2301.02636
- Nilpotent types and fracture squares in homotopy type theory, Scoccola, L. (2020) MSCS 30(5). arXiv:1903.03245

Combinatorial manifolds

Manifolds in HoTT

- Recall the classical theory of simplicial complexes
- Define a realization procedure to construct types

Simplicial complexes

Definition

An abstract simplicial complex M of dimension n is an ordered list of sets $M \stackrel{\text{def}}{=} [M_0, \dots, M_n]$ consisting of

- a set M_0 of vertices
- sets M_{ν} of subsets of M_0 of cardinality k+1
- downward closed: if $F \in M_k$ and $G \subseteq F$, |G| = i + 1 then $G \in M_i$

We call the truncated list $M_{< k} \stackrel{\text{def}}{=} [M_0, \dots, M_k]$ the *k*-skeleton of *M*.

Simplicial complexes

Definition

An abstract simplicial complex M of dimension n is an ordered list of sets $M \stackrel{\text{def}}{=} [M_0, \dots, M_n]$ consisting of

- a set M_0 of vertices
- sets M_k of subsets of M_0 of cardinality k+1
- downward closed: if $F \in M_k$ and $G \subseteq F$, |G| = j + 1 then $G \in M_j$

We call the truncated list $M_{\leq k} \stackrel{\text{def}}{=} [M_0, \dots, M_k]$ the *k*-skeleton of *M*.

Simplicial complexes

Example

The complete simplex of dimension n, denoted $\Delta(n)$, is the set $\{0,\ldots,n\}$ and its power set. The (n-1)-skeleton $\Delta(n)_{\leq (n-1)}$ is denoted $\partial\Delta(n)$ and will serve as a combinatorial (n-1)-sphere.

$$\Delta(1)$$
 is visually $0 \cdot - 1$, $\partial \Delta(1)$ is visually $0 \cdot - 1$

We will realize simplicial complexes by means of a sequence of pushouts.

Base case: the realization $\mathbb M$ of a 0-dimensional complex M is M_0 .

In particular the 0-sphere $\partial \Delta(1) \stackrel{\mathsf{def}}{=} \partial \Delta(1)_0$.

For a 1-dim complex $M \stackrel{\text{def}}{=} [M_0, M_1]$ the realization is given by

$$M_1 imes \partial \Delta(1) \stackrel{\mathsf{pr}_1}{\longrightarrow} M_1$$
 $A_0 \downarrow \qquad \qquad \downarrow^{*_{\mathbb{M}}} \downarrow^{*_{\mathbb{M}}}$
 $M_0 = \mathbb{M}_0 \longrightarrow \mathbb{M}_1$

For example the simplicial 1-sphere $\partial \Delta(2) \stackrel{\text{def}}{=} \underbrace{0} \stackrel{1}{\longleftarrow} \underbrace{0}$ is given by

$$\partial\Delta(2)_1 imes \partial\Delta(1) \longrightarrow \partial\Delta(2)_1$$

$$\downarrow \qquad \qquad \downarrow \qquad \qquad \downarrow$$

$$\partial\Delta(2)_0 \longrightarrow \partial\Delta(2)$$
i.e.

$$\{\{0,1\},\{1,2\},\{2,0\}\}\times\{0,1\} \longrightarrow \{\{0,1\},\{1,2\},\{2,0\}\}$$

$$\downarrow \qquad \qquad \downarrow$$

$$\{0,1,2\} \longrightarrow \partial \Delta(2)$$

Or the 1-skeleton of the octahedron \mathbb{O} :

$$\{\{w,g\},\ldots\}\times\{0,1\}\longrightarrow \{\{w,g\},\ldots\}$$

$$\downarrow \qquad \qquad \downarrow \qquad \qquad \downarrow$$

$$\{w,g,\ldots\}\longrightarrow \mathbb{O}_1$$

To realize $M \stackrel{\text{def}}{=} [M_0, M_1, M_2]$ use $\partial \Delta(1), \partial \Delta(2)$:

$$M_{1} \times \partial \Delta(1) \xrightarrow{pr_{1}} M_{1}$$

$$M_{0} = M_{0} \xrightarrow{h_{1}} M_{1} \xrightarrow{*M_{1}} M_{2}$$

$$M_{1} \xrightarrow{h_{2}} \uparrow^{*M_{2}}$$

$$M_{2} \times \partial \Delta(2) \xrightarrow{pr_{1}} M_{2}$$

The full octahedron \mathbb{O} :

The link of a vertex w in a 2-complex is: the sets not containing w but whose union with w is a face.

A combinatorial manifold is a simplicial complex all of whose links are* simplicial spheres.

This will be our model of the tangent space.

^{*}the (classical) geometric realization is homeomorphic to a sphere

Combinatorial manifolds ↔ smooth manifolds

Theorem (Whitehead (1940))

Every smooth n-manifold has a compatible structure of a combinatorial manifold: a simplicial complex of dimension n such that the link is a combinatorial (n-1)-sphere, i.e. its geometric realization is an (n-1)-sphere.

https://ncatlab.org/nlab/show/triangulation+theorem

Combinatorial manifolds ↔ smooth manifolds

Theorem (Whitehead (1940))

Every smooth n-manifold has a compatible structure of a combinatorial manifold: a simplicial complex of dimension n such that the link is a combinatorial (n-1)-sphere, i.e. its geometric realization is an (n-1)-sphere.

https://ncatlab.org/nlab/show/triangulation+theorem

Counterexample: Wikipedia says this is a simplicial complex, but we can see it fails the link condition:

What type families $\mathbb{M} \to \mathcal{U}$ will we consider? Families of torsors, also called principal bundles.

Let G be a (higher) group.

Let G be a (higher) group.

Definition

• A right *G*-object is a type *X* equipped with a homomorphism $\phi: G^{op} \to Aut(X)$.

Let G be a (higher) group.

Definition

- A right G-object is a type X equipped with a homomorphism $\phi: G^{op} \to \operatorname{Aut}(X)$.
- X is a torsor if it is inhabited and the map $(\operatorname{pr}_1, \phi): X \times G \to X \times X$ is an equivalence.

Let G be a (higher) group.

Definition

- A right G-object is a type X equipped with a homomorphism $\phi: G^{op} \to \operatorname{Aut}(X)$.
- X is a torsor if it is inhabited and the map $(\operatorname{pr}_1, \phi): X \times G \to X \times X$ is an equivalence.
- The inverse is (pr_1, s) where $s: X \times X \to G$ is called subtraction (when G is commutative).

Let G be a (higher) group.

Definition

- A right G-object is a type X equipped with a homomorphism $\phi: G^{op} \to \operatorname{Aut}(X)$.
- X is a torsor if it is inhabited and the map $(\operatorname{pr}_1, \phi): X \times G \to X \times X$ is an equivalence.
- The inverse is (pr_1, s) where $s: X \times X \to G$ is called subtraction (when G is commutative).
- Let G_{reg} be the G-torsor consisting of G acting on itself on the right.

Facts

Facts

 \bullet $\Omega(BG, G_{reg}) \simeq G$ and composition of loops corresponds to multiplication in G.

Facts

- $\mathbf{0}$ $\Omega(BG, G_{\text{reg}}) \simeq G$ and composition of loops corresponds to multiplication in G.
- \bigcirc *BG* is connected.

Facts

- $\mathbf{0}$ $\Omega(BG, G_{\text{reg}}) \simeq G$ and composition of loops corresponds to multiplication in G.
- \bigcirc BG is connected.
- **3** 1 & 2 \Longrightarrow BG is a K(G,1).

Facts

- $\mathbf{0}$ $\Omega(BG, G_{\text{reg}}) \simeq G$ and composition of loops corresponds to multiplication in G.
- BG is connected.
- \bullet ev(e): $(G_{reg} =_{BG} X) \to X$ is an equivalence (needed when we have vector fields).

See the Buchholtz et. al. H-spaces paper for more.

How to map into BS^1

To construct maps into BS^1 we lift a family of mere circles. (Remark: the lift is a choice of orientation.)

We will assume we have such a lift when we need it.

How to map into BS^1

To construct maps into BS^1 we lift a family of mere circles. (Remark: the lift is a choice of orientation.)

We will assume we have such a lift when we need it.

Other names:

- $\mathsf{BAut}(S^1) = BO(2) = \mathsf{EM}(\mathbb{Z},1)$ (where $\mathsf{EM}(G,n) \stackrel{\mathsf{def}}{=} \mathsf{BAut}(\mathsf{K}(G,n))$)
- $BS^1 = BSO(2) = K(\mathbb{Z}, 2)$

Connections and curvature

Connections

Connections are extensions of the bundle to higher skeleta.

Recall link

The link of a vertex w in a 2-complex is: the sets not containing w but whose union with w is a face.

Connections on the tangent bundle

An extension T_1 of link to M_1 is called a connection on the tangent bundle.

$T_1: \mathbb{M}_1 \to \mathsf{BAut}(S^1)$ extending link

We will define T_1 on the edge wb, so we need a term $T_1(wb)$: $link(w) =_{BAut(S^1)} link(b)$.

We imagine tipping:

$$T_1(g: \mathsf{link}(w)) \stackrel{\mathsf{def}}{=} w: \mathsf{link}(b), \ldots$$

Use this method to define T_1 on every edge.

$T_1: \mathbb{M}_1 \to \mathsf{BAut}(S^1)$ extending link

Denote the path $wb \cdot br \cdot rw$ by $\partial (wbr)$. Consider $T_1(\partial (wbr))$:

We come back rotated by 1/4 turn. Call this rotation $R: link(w) =_{BAut(S^1)} link(w)$.

Let H_{wbr} : refl_w =_{w=mw} $\partial(wbr)$ be the filler homotopy of the face.

Let H_{wbr} : refl_w =_{w=mw} $\partial(wbr)$ be the filler homotopy of the face.

$$T_2$$
 must live in $T_1(\operatorname{refl}_w) =_{\operatorname{link}(w) =_{\operatorname{BAut}(S^1)}\operatorname{link}(w))} T_1(\partial(wbr)) = R$

Let H_{wbr} : refl_w =_{w=mw} $\partial(wbr)$ be the filler homotopy of the face.

$$T_2$$
 must live in $T_1(\operatorname{refl}_w) =_{\operatorname{link}(w) =_{\operatorname{RAut}(S^1)} \operatorname{link}(w))} T_1(\partial(wbr)) = R$

 T_2 must be a homotopy H_R : id = R between automorphisms of link(w).

Let H_{wbr} : refl_w =_{w=mw} $\partial(wbr)$ be the filler homotopy of the face.

$$T_2$$
 must live in $T_1(\text{refl}_w) =_{\text{link}(w) =_{\text{RAur}(s1)} | \text{link}(w))} T_1(\partial(wbr)) = R$

 T_2 must be a homotopy H_R : id = R between automorphisms of link(w).

For example, a path $H_R(g)$: g = Rg = o. Choose go.

Original inspiration

The definition of a connection

Definition

If $\mathbb{M} \stackrel{\text{def}}{=} \mathbb{M}_0 \xrightarrow{i_0} \cdots \xrightarrow{i_{n-1}} \mathbb{M}_n$ is a combinatorial manifold and all the triangles commute in the diagram:

- The map f_k is a k-bundle on \mathbb{M} .
- The pair given by the map f_k and the proof $f_k \circ i_{k-1} = f_{k-1}$, i.e. that f_k extends f_{k-1} is called a k-connection on the (k-1)-bundle f_{k-1} .

The definition of curvature

Definition (cont.)

The pushout consists of M_2 -many extensions:

Here's the outer square for a single face F:

$$\{F\} imes \partial \Delta(2) \stackrel{\mathsf{pr}_1}{\longrightarrow} \{F\}$$
 $\mathbb{M}_1 \stackrel{\mathbb{A}_1}{\longrightarrow} \mathcal{U}$

The definition of curvature

Definition (cont.)

The pushout consists of M_2 -many extensions:

Here's the outer square for a single face F:

$$\begin{cases}
F \\
 \times \partial \Delta(2) \xrightarrow{\mathsf{pr}_1} \begin{cases}
F \\
 \downarrow \\
 M_1 \xrightarrow{b_F} \mathcal{U}
\end{cases}$$

 $T_1(\partial(F))$ is the curvature at the face F and the filler \flat_F : id $= T_1(\partial F)$ is called a flatness structure for the face F.

The definition of curvature

Definition (cont.)

The pushout consists of M_2 -many extensions:

$$\begin{array}{ccc}
M_2 \times \partial \Delta(2) & \xrightarrow{\operatorname{pr}_1} & M_2 \\
 & & \downarrow & \downarrow \\
 & & M_1 & \xrightarrow{} & M_2 \\
 & & & \downarrow & \uparrow \\
 & & & \downarrow & \downarrow \\
 & \downarrow & \downarrow &$$

Here's the outer square for a single face F:

$$\begin{cases}
F \\
 \times \partial \Delta(2) \xrightarrow{pr_1} \begin{cases}
F \\
 \downarrow \\
 M_1 \xrightarrow{b_F} \mathcal{U}
\end{cases}$$

 $T_1(\partial(F))$ is the curvature at the face F and the filler \flat_F : id $= T_1(\partial F)$ is called a flatness structure for the face F.

The distinction between the path \flat_F and the endpoint $T_1(\partial(F))$ is small enough to be confusing.

Let $T: \mathbb{M} \to BS^1$ be an oriented tangent bundle on a 2-dim combinatorial manifold.

- Bundles of circles can only model nonzero tangent vectors.
- A global section would be a trivialization of T, so there
 is an obstruction.

Let $T: \mathbb{M} \to BS^1$ be an oriented tangent bundle on a 2-dim combinatorial manifold.

- Bundles of circles can only model nonzero tangent vectors.
- A global section would be a trivialization of T, so there is an obstruction.

Our solution:

Let $T: \mathbb{M} \to BS^1$ be an oriented tangent bundle on a 2-dim combinatorial manifold.

- Bundles of circles can only model nonzero tangent vectors.
- A global section would be a trivialization of T, so there is an obstruction.

Our solution:

• A vector field is a term $X : \prod_{m \in M_1} Tm$.

Let $T: \mathbb{M} \to BS^1$ be an oriented tangent bundle on a 2-dim combinatorial manifold.

- Bundles of circles can only model nonzero tangent vectors.
- A global section would be a trivialization of T, so there is an obstruction

Our solution:

- A vector field is a term $X : \prod_{m:\mathbb{M}_1} Tm$.
- It's a nonvanishing vector field on the 1-skeleton.

Let $T: \mathbb{M} \to BS^1$ be an oriented tangent bundle on a 2-dim combinatorial manifold.

- Bundles of circles can only model nonzero tangent vectors.
- A global section would be a trivialization of T, so there is an obstruction

Our solution:

- A vector field is a term $X : \prod_{m : M_1} Tm$.
- It's a nonvanishing vector field on the 1-skeleton.
- We model classical zeros by omitting the faces.

Reminder: pathovers

- Recall pathovers (dependent paths).
- There is an asymmetry: we pick a fiber to display π, the path over p.
- Dependent functions map paths to pathovers: $apd(X)(p) : tr_p(X(a)) = X(b)$ (simply denoted X(p)).

Next goal: define the index of a vector field on a face.

We will try to show the three ingredients of *X* on this face:

vertices.

The value of X on

- The value of X on edges.
- The transport between vertices, interacting with X.

• Denote by X_1 this vector $X(v_1)$: T_1 .

•

- Denote by X_1 this vector $X(v_1)$: T_1 .
- Say T₁₂ is trivial. Denote the transported vector as thinner.
- •
- •

- Denote by X_1 this vector $X(v_1)$: T_1 .
- Say T₁₂ is trivial. Denote the transported vector as thinner.
- Say T₂₃ rotates counterclockwise. Denote the twice-transported vector as dashed.

- Denote by X₁ this vector X(v₁): T₁.
- Say T₁₂ is trivial. Denote the transported vector as thinner.
- Say T₂₃ rotates counterclockwise. Denote the twice-transported vector as dashed.
- Say T₃₁ is trivial. The thrice-transported vecor is dotted.

• *X* on *e*₁₂ is red, etc.

- X on e_{12} is red, etc.
- We translated all results to the end of the loop.

- X on e_{12} is red, etc.
- We translated all results to the end of the loop.
- (Reminds me of scooping ice cream towards the last fiber.)

Index

$$\operatorname{tr}_F \stackrel{\text{def}}{=} \operatorname{tr}(\partial F) : T_1 =_{BS^1} T_1$$
 curvature

$$b_F \stackrel{\text{def}}{=} b(\partial F) \quad : \text{id} =_{(T_1 =_{BS^1} T_1)} \text{tr}_F \quad \text{flatness}$$

$$X_F \stackrel{\text{def}}{=} X(\partial F)$$
 : $\operatorname{tr}_F(X_1) =_{T_1} X_1$ swirling

Index

$$\operatorname{tr}_F \stackrel{\text{def}}{=} \operatorname{tr}(\partial F) : T_1 =_{BS^1} T_1$$
 curvature

$$b_F \stackrel{\text{def}}{=} b(\partial F) \quad : \text{id} =_{(T_1 =_{BS^1} T_1)} \text{tr}_F \quad \text{flatness}$$

$$X_F \stackrel{\text{def}}{=} X(\partial F)$$
 : $\operatorname{tr}_F(X_1) =_{T_1} X_1$ swirling

Recall that T_1 being an S^1 -torsor means we can use subtraction to obtain an equivalence $s(-, X_1) : T_1 \xrightarrow{x \mapsto x - X_1} S^1$.

Definition

The flattened swirling of the vector field X on the face F is the loop

$$L_F^X \stackrel{\mathsf{def}}{=} \flat_F(X_1) \cdot X_F : (X_1 =_{T_1} X_1).$$

The index of the vector field X on the face F is the integer I_F^X such that $\text{loop}_F^{I_F^X} =_{S^1} (L_F^X) - X_1$.

Carnegie Mellon University

Main theorem

Simplifying swirling

Swirling involves concatenating dependent paths. Can we simplify that?

```
T_{13}T_{32}T_{21}X_{1}
T_{13}T_{32}X_{21}:
\left\|T_{13}T_{32}X_{2}\right\|
T_{13}X_{32}:
\left\|T_{13}X_{3}\right\|
X_{13}:
\left\|X_{1}\right\|
```

 T_1

• Def: $\alpha_i \stackrel{\text{def}}{=} s(-, X_i) : T_i \stackrel{\sim}{\to} S^1$ (trivialization on 0-skeleton).

```
T_{13}T_{32}T_{21}X_{1}
T_{13}T_{32}X_{21}:
T_{13}T_{32}X_{2}
T_{13}X_{32}:
T_{13}X_{32}:
T_{13}X_{33}:
T_{13}X_{33}
X_{13}:
T_{13}X_{33}
```

$$T_1$$
 $T_{13}T_{32}T_{21}X_1$
 $T_{13}T_{32}X_{21}: \parallel$
 $T_{13}T_{32}X_2$
 $T_{13}X_{32}: \parallel$
 $T_{13}X_3$
 $X_{13}: \parallel$
 X_1

- Def: $\alpha_i \stackrel{\text{def}}{=} s(-, X_i) : T_i \stackrel{\sim}{\to} S^1$ (trivialization on 0-skeleton).
- Def: $\rho_{ji} \stackrel{\text{def}}{=} \alpha_j(T_{ji}(X_i))$ is the rotation of T_{ji} .

$$\begin{array}{ccc} \mathcal{T}_i & \xrightarrow{\mathcal{T}_{ji}} & \mathcal{T}_j \\ \text{base} \mapsto & X_i \left(\stackrel{\frown}{\alpha_i} \right) & \downarrow \alpha_j \stackrel{\frown}{\gamma} \text{base} \mapsto & X_j \\ & S^1 & \xrightarrow{(-) \odot \rho_{ji}} & S^1 \end{array}$$

 T_1

- Def: $\alpha_i \stackrel{\text{def}}{=} s(-, X_i) : T_i \stackrel{\sim}{\to} S^1$ (trivialization on 0-skeleton).
- Def: $\rho_{ji} \stackrel{\text{def}}{=} \alpha_j(T_{ji}(X_i))$ is the rotation of T_{ji} .

$$\begin{array}{ccc} \mathcal{T}_i & \xrightarrow{\mathcal{T}_{ji}} & \mathcal{T}_j \\ \text{base} \mapsto & X_i \left(\begin{array}{c} \alpha_i \\ \end{array} \right) & \left(\begin{array}{c} \alpha_j \\ \end{array} \right) \text{base} \mapsto & X_j \\ S^1 & \xrightarrow{(-) \odot \rho_{ji}} & S^1 \end{array}$$

• Lemma: $\rho_{ij} = \rho_{ji}^{-1}$ because in T_j : $\rho_{ii} \odot \rho_{ii} \odot X_i = \rho_{ii} \odot T_{ii} X_i = T_{ii} (\rho_{ii} \odot X_i) = T_{ii} T_{ii} X_i = X_i$.

```
T_{13}T_{32}T_{21}X_{1}
T_{13}T_{32}X_{21}:
\left\|T_{13}T_{32}X_{2}\right\|
T_{13}X_{32}:
\left\|T_{13}X_{3}\right\|
X_{13}:
\left\|X_{13}\right\|
```

```
T_{13}T_{32}T_{21}X_1
T_{13}T_{32}X_{21}:
T_{13}T_{32}X_{21}:
T_{13}T_{32}X_2
T_{13}T_{32}X_2
T_{13}X_3
T_{13}X_3
T_{13}X_3
T_{13}X_3
```

$$T_{13}T_{32}T_{21}X_{1}$$
 $T_{13}T_{32}X_{21}$:
 $T_{13}T_{32}X_{2}$
 $T_{13}X_{32}$:
 $T_{13}X_{31}$:
 $T_{13}X_{31}$:
 $T_{13}X_{31}$:
 $T_{13}X_{31}$

- Define $\sigma_{ji} \stackrel{\text{def}}{=} s(X_{ji}, X_j) : \rho_{ji} =_{S^1} \text{ base,.}$ Paths of the form $(a =_{S^1} \text{ base})$ can be multiplied:
 - \odot : $(a = base) \times (b = base) \rightarrow (a \odot b = base)$.
 - $p \odot q = (p \odot b) \cdot q$.

$$T_{13}T_{32}T_{21}X_{1}$$
 $T_{13}T_{32}X_{21}$:
 $T_{13}T_{32}X_{2}$
 $T_{13}X_{32}$:
 $T_{13}X_{32}$:
 $T_{13}X_{3}$
 X_{13} :
 X_{13}

- Define σ_{jj} def = s(X_{ji}, X_j) : ρ_{jj} =_{S¹} base,.
 Paths of the form (a =_{S¹} base) can be multiplied:
 - \odot : $(a = base) \times (b = base) \rightarrow (a \odot b = base)$.
 - $p \odot a = (p \odot b) \cdot a$.
- Lemma: $apd(X)(refl) = refl \implies X_{ii} \cdot T_{ii}X_{ii} = refl_{X_i}$ $\implies \sigma_{ii} \odot \sigma_{ii} = \text{refl}_{\text{base}} (T_{ii} \text{ just translates } X_{ii} \text{ to cat with } X_{ii}).$

Pay off all our assumptions 2: no boundary, commutativity

```
T_1
                                    Definition
T_{13}T_{32}T_{21}X_1 Let F_1,\ldots,F_n be the faces of \mathbb{M}, and \partial F_1,\ldots,\partial F_n be the triangular boundaries. The total swirling is
                                                                                       X_{\text{tot}} \stackrel{\text{def}}{=} \sigma_{\partial F_1} \odot \cdots \odot \sigma_{\partial F_n}
          T_{13}T_{32}X_{2}
       T_{13}X_{32}:
              T_{13}X_{3}
```

Pay off all our assumptions 2: no boundary, commutativity

T_1 Definition $T_{13}T_{32}T_{21}X_1$ Let F_1,\ldots,F_n be the faces of \mathbb{M} , and $\partial F_1,\ldots,\partial F_n$ be the triangular boundaries. The total swirling is $X_{\text{tot}} \stackrel{\text{def}}{=} \sigma_{\partial F_1} \odot \cdots \odot \sigma_{\partial F_n}$ $T_{13}T_{32}X_{2}$ $T_{13}X_{32}$: $T_{13}X_{3}$ We assume that this expression involves every edge once in each direction.

Pay off all our assumptions 2: no boundary, commutativity

T_1 $T_{13}T_{32}T_{21}X_1 \Big|$ $T_{13}T_{32}X_{21}: \Big|$ $T_{13}T_{32}X_2$ $T_{13}X_{32}: \Big|$ $T_{13}X_3$

Definition

 $T_{13}T_{32}T_{21}X_1$ Let F_1,\ldots,F_n be the faces of \mathbb{M} , and $\partial F_1,\ldots,\partial F_n$ be the triangular boundaries. The total swirling is

$$X_{\text{tot}} \stackrel{\text{def}}{=} \sigma_{\partial F_1} \odot \cdots \odot \sigma_{\partial F_n}$$

- We assume that this expression involves every edge once in each direction.
- S^1 is commutative, hence complete cancellation.

Consequence

$$\operatorname{tr}_F \stackrel{\operatorname{def}}{=} \operatorname{tr}(\partial F)$$
 : $T_1 =_{BS^1} T_1$ curvature
$$\flat_F \stackrel{\operatorname{def}}{=} \flat(\partial F) \qquad : \operatorname{id} =_{(T_1 =_{BS^1} T_1)} \operatorname{tr}_F \quad \text{flatness}$$

$$X_F \stackrel{\operatorname{def}}{=} X(\partial F) \qquad : \operatorname{tr}_F(X_1) =_{T_1} X_1 \quad \text{swirling}$$

$$L_F^X \stackrel{\operatorname{def}}{=} \flat_F(X_1) \cdot X_F \quad : (X_1 =_{T_1} X_1) \quad \text{flattened swirling}$$

These can all be totaled in S^1 to give

$$\operatorname{tr}_{\operatorname{tot}} \stackrel{\operatorname{def}}{=} \bigodot_{i} \rho_{\partial F} = \operatorname{base}$$
 $X_{\operatorname{tot}} \stackrel{\operatorname{def}}{=} \bigodot_{i} \sigma_{\partial F} = \operatorname{refl}_{\operatorname{base}}$ $\downarrow^{X}_{\operatorname{tot}} \stackrel{\operatorname{def}}{=} \bigodot_{i} \flat_{\partial F} \odot \sigma_{\partial F} = \bigodot_{i} \flat_{\partial F}$ $\downarrow^{X}_{\operatorname{tot}} \stackrel{\operatorname{def}}{=} \bigodot_{i} \flat_{\partial F} \odot \sigma_{\partial F} = \bigodot_{i} \flat_{\partial F}$

Carnegie Mellon University

Classical proof

[26.2] The difference $\Re(\Delta) - 2\pi \Im_F(s)$ can be found by summing over the edges K_j the change $\Phi(K_j)$ in the illustrated angle $\angle Fw_{||}$ i.e., the rotation of $\mathbf{w}_{||}$ relative to \mathbf{F} .

Figure: Needham, T. (2021) Visual Differential Geometry and Forms.

- The classical proof is discrete-flavored.
- " $\angle Fw_{||}$ " looked a lot like a pathover.
- Hopf's Φ is defined on edges, not loops. We imitated that too.

Thank you!