Discussion on data/solution updates

ECCO Meeting, California Institute of Technology, Pasadena November 6-8, 2017

- What vital data sets have we been using?
- ☐ How to make sure we keep up with data sets for future estimates?
- ☐ How to share data processing responsibilities?
- □ Define plans for maintaining "central" estimates up-to-date

Data sets used in v4r3

Variable	Observations			
Sea level	TOPEX/Poseidon (1993-2005), Jason-1 (2002-2008), Jason-2 (2008-2015), Geosat-Follow-On (2001-2007), CryoSat-2 (2011-2015), ERS-1/2 (1992-2001), ENVISAT (2002-2012), SARAL/AltiKa (2013-2015)			
Global mean sea level	Average of mean sea level curves from AVISO, CSIRO, NOAA			
Temperature profiles	Argo floats (1995-2015), XBTs (1992-2008), CTDs (1992-2011), Southern Elephant seals as Oceanographic Samplers (SEaOS; 2004-2010), Ice-Tethered Profilers (ITP, 2004-2011)			
Temperature (moorings)	Beaufort Gyre, Bering/Davis/Fram Straits (coverage?)			
Salinity profiles	Argo floats (1997-2015), CTDs (1992-2011), SEaOS (2004-2010)			
Salinity (moorings)	Beaufort Gyre, Bering/Davis/Fram Straits (coverage?)			
Sea surface temperature	ture AVHRR (1992-2013)			
Sea surface salinity	Aquarius (2011-2013)			
Sea-ice concentration	SSM/I DMSP-F11 (1992-2000) and -F13 (1995-2009) and SSMIS DMSP-F17 (2006-2015)			
Ocean bottom pressure	GRACE (2002-2014), including global mean ocean mass			
TS climatology	World Ocean Atlas 2009			
Mean dynamic topography	DTU13 (1992-2012)			

Data sets used in v4r3

Data	Filename	Version	Souce	Post-processed by
GRACE OBP	GRACE_jpl_rl05m_withland_YYYY	One	JPL (http://grace.jpl.nasa.gov/data/get-data/jpl_global_mascons/j	Katherine Quinn (1/7/2016)
Global mean OBP	GRACE_jpl_rl05m_SpatialMean.asc	One	JPL (http://grace.jpl.nasa.gov/data/get-data/jpl_global_mascons/)	Katherine Quinn (1/7/2016)
RADS TP/J1/J2 SSH	RADS_TJ_mar2016_YYYY		RADS	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,
RADS GFO/C2 SSH	RADS GFO C2 mar2016 YYYY		RADS	
RADS ERS/ENVISAT/SARAL/AltiKa SSH	RADS_ERS_ENV_SA_mar2016_YYYY		RADS	
MDT	mdt_dtu13.bin	DTU13	DTU	Katherine Quinn (12/10/2014)
Global mean SSH	ensemble_avg_gmsl.asc		AVISO, CSIRO, NOAA	Christopher Piecuch (03/07/2016
NOAA NSIDC Sea-ice concentration	on 'AA_NSIDC_DAILY_MAPPED_TO_LLC90_YYYY.bin		NOAA/NSIDC	lan Fenty
Aquarius SSS	monthlyAQ_v3_092011-122013_YYYY		Aquarius	Nadya vinogradova (06/13/2014
Reynolds SST	reynolds_oiv2_r1_YYYY		NOAA/NCDC	
WOA09 Climatology T	T_monthly_woa09	WOA09	NOAA/NODC	
WOA09 Climatology S	S_monthly_woa09	WOA09	NOAA/NODC	
Profile data				
Argo TS go_YYYY_feb2016_llc90_step_09_20160308.nc			Argo	lan Fenty
CTD TS	:td_Arctic_NordicSeas_GAMMA_20150915.nc		CTD	lan Fenty
CTD TS	ctdhilat_nodupices_GAMMA_20150915.nc		CTD	lan Fenty
CTD TS	ctdlowlat_GAMMA_20150915.nc		CTD	lan Fenty
XBTT	xbt_GAMMA_20150915.nc		XBT	lan Fenty
CLIMODE TS	climode_GAMMA_20150915.nc		CLIMODE	lan Fenty
ICES TS	s19922012hi_pot_theta_GAMMA_20150915.nc		ICES	lan Fenty
ICES TS	s19922012lo_pot_theta_GAMMA_20150915.nc		ICES	lan Fenty
ITP TS	itp_GAMMA_20150915.nc		ITP	lan Fenty
SEaOS TS	seals_GAMMA_20150915.nc		SEaOS	lan Fenty
Beaufort Gyre mooring TS beaufortgyremooring_GAMMA_20150915.nc			lan Fenty	
Bering Strait mooring TS	beringstraitmooring_GAMMA_20150915.nd	;		lan Fenty
Davis Strait mooring TS	davisstraitmooring_GAMMA_20150915.nc			lan Fenty
Fram Strait mooring TS	framstraitmooring_GAMMA_20150915.nc			lan Fenty

Data updating (I) ☐ Sea level (JPL/MIT) ☐ Global mean sea level (AER/JPL) ☐ Ocean bottom pressure (AER/JPL) ☐ Grids □Global mean ☐ Mean dynamic topography...upcoming DTU17

(AER/UTA)

Data updating (II)

- ☐ SST (JPL/MIT)
- □ SSS...update Aquarius through end of mission, upcoming v5...(AER/JPL)

□ Sea-ice concentration…An using OSISAF/daily/until April 2015 (UTA/JPL)

Data updating (III)

□ Temperature profiles □Argo (MIT/JPL) □XBT (JPL/MIT) □CTD (JPL/MIT) **□SEaOS** (??) □ICES (JPL) □ITP...updates through 2015 by An, used in ASTE, from J. Toole and R. Krischfield (UTA/JPL) □ Salinity profiles (as for T profiles) ☐ Temperature/salinity (moorings)...updates for western Arctic/Fram Strait by An, used in ASTE (UTA/JPL)

JPL Updating ECCO Central Product

- Update the adjoint Central Estimate on an annual basis;
 - Redo the 25+ year optimization starting from existing solution,
 - Just redo the last ~5-years annually (re-)adjusting timevariable controls.
- Extend the adjoint Central Estimate in "near real-time" with Kalman filter/RTS smoother

JPL ECCO Near Real-Time Analysis

- Updated quarterly
- Presently available for 01/1993-08/2017
- Kalman filter & RTS smoother
- Highlights @ http://ecco.jpl.nasa.gov/
- data: SSH, temperature profiles
- controls: winds

Pros:

- Computationally inexpensive,
- Stable & robust,
- Formal uncertainty estimates,

Cons:

 Less comprehensive an estimate than the adjoint,

JPL ECCO Approximate KFS

1) Time-asymptotic approximation (Fukumori et al., JPO, 1993);

$$\mathbf{P}_{\mathsf{t}}^{f} \approx \mathbf{P}^{f}$$

2) State reduction (Fukumori and Rizzoli, JGR, 1995).

$$\delta \mathbf{x} \approx \mathbf{B} \delta \mathbf{x}', \ \dim(\delta \mathbf{x}) \ \dim(\delta \mathbf{x}')$$

$$\mathbf{P} \equiv \left\langle \delta \mathbf{x} \delta \mathbf{x}^T \right\rangle \approx \mathbf{B} \left\langle \delta \mathbf{x}' \delta \mathbf{x'}^T \right\rangle \mathbf{B}^T \approx \mathbf{B} \mathbf{P'} \mathbf{B}^T$$

3) Partitioning (Fukumori, MWR, 2002).

$$\delta \mathbf{x} \approx \mathbf{B}_{1} \delta \mathbf{x}_{1}' + \mathbf{B}_{L} \delta \mathbf{x}_{L}' \approx \sum_{i}^{L} \mathbf{B}_{i} \delta \mathbf{x}_{i}'$$

$$\dim(\delta \mathbf{x}) \quad \dim(\delta \mathbf{x}_{i}')$$

$$\mathbf{P} \approx \sum_{i}^{L} \mathbf{B}_{i} \mathbf{P}_{i}' \mathbf{B}_{i}^{T}, \quad \mathbf{P}_{i}' \equiv \left\langle \delta \mathbf{x}_{i}' \delta \mathbf{x}_{i}'^{T} \right\rangle$$

ECCO Approximate KFS

- Global barotropic cell: global 6°× 6° grid, barotropic UVH
- 7 regional baroclinic cells: regional 5°× 3° grid, baroclinic UVD (5

gravest modes)

JPL Skill (Geodetic Applications)

Comparison to independent data: ECCO assimilation explains observed polar motion better than ocean simulation does.

Coherence of observed & modeled excitation

(Gross et al., 2003, JGR)

Error Estimate

Model-data residuals should be comparable to expectation 1st order Consistency HP_{sim}H^T – HP^TH^T simulation - forecast residual 60N 30N 30N 30S 30S 60S 60S 90E 180 90W 0 90E 180 90W forecast - analysis residual $\mathbf{HP}^f \mathbf{H}^T - \mathbf{HP}^a \mathbf{H}^T$ 60N 60N 30N 30N 30S 30S 60S 60S 90E 180 180 90W -2