

Available online at www.sciencedirect.com

ScienceDirect

Electronic Notes in Theoretical Computer Science

Electronic Notes in Theoretical Computer Science 345 (2019) 261–269

www.elsevier.com/locate/entcs

Induced Topologies on the Poset of Finitely Generated Saturated Sets

Xiaoquan Xu^{1,2}

School of Mathematics and Statistics
Minnan Normal University
Zhangzhou, China
and
Department of Mathematics
Nanchang Normal University
Nanchang, China

Wenfeng Zhang³

School of Mathematics and Computer Science Jiangxi Science and Technology Normal University Nanchang, China

Abstract

In [7], Heckmann and Keimel proved that a dcpo P is quasicontinuous iff the poset $\mathbf{Fin}\ P$ of nonempty finitely generated upper sets ordered by reverse inclusion is continuous. We generalize this result to general topological spaces in this paper. More precisely, for any T_0 space (X,τ) and $U\in\tau$, we construct a topology $\tau_{\mathcal{F}}$ generated by the basic open subsets $U_{\mathcal{F}}=\{\uparrow F\in\mathbf{Fin}\ X\colon F\subseteq U\}$. It is shown that a T_0 space (X,τ) is a hypercontinuous lattice iff $\tau_{\mathcal{F}}$ is a completely distributive lattice. In particular, we prove that if a poset P satisfies property DINT op , then P is quasi-hypercontinuous iff $\mathbf{Fin}\ P$ is hypercontinuous.

Keywords: Hypercontinuous poset, quasicontinuous domain, Scott topology, upper topology

1 Introduction and Preliminaries

Quasicontinuous domains were introduced by Gierz, Lawson and Stralka (see [4]) as a common generalization of both generalized continuous lattices (see [5]) and continuous domains (see [6]). It was proved that quasicontinuous domains equipped with the Scott topologies are precisely the spectra of distributive hypercontinuous

¹ Supported by the National Natural Science Foundation of China (Nos. 11661057, 11701238, 11626121) and the Natural Science Foundation of Jiangxi Province (Nos. 20161BAB2061004, 20161BAB211017)

² Corresponding author. Email: xiqxu2002@163.com

³ Email: zhangwenfeng2100@163.com

lattices. In [7], Heckmann and Keimel proved that a dcpo P is quasicontinuous iff the poset $\mathbf{Fin}\ P$ of nonempty finitely generated upper sets ordered by reverse inclusion is continuous. In this paper, we generalize this result to general topological spaces. Firstly, for any T_0 space (X,τ) and $U\in\tau$, we construct a topology $\tau_{\mathcal{F}}$ generated by the basic open subsets $U_{\mathcal{F}}=\{\uparrow F\in\mathbf{Fin}\ X\colon F\subseteq U\}$. Then we show that a T_0 space (X,τ) is a hypercontinuous lattice iff $\tau_{\mathcal{F}}$ is a completely distributive lattice. In particular, we prove that for a dcpo P, if the Scott topology $\sigma(P)$ is hypercontinuous or $\sigma(\mathbf{Fin}\ P)$ is completely distributive, then $\sigma(P)_{\mathcal{F}}=\sigma(\mathbf{Fin}\ P)$. Furthermore, it is proved that if a poset P satisfies property DINT op , then P is quasi-hypercontinuous iff $\mathbf{Fin}\ P$ is hypercontinuous.

For a poset P, let $P^{(<\omega)} = \{F \subseteq P : F \text{ is finite}\}$ and $\operatorname{Fin} P = \{\uparrow F : F \in P^{(<\omega)}\}$. For all $x \in P$, $A \subseteq P$, let $\uparrow x = \{y \in P : x \leq y\}$ and $\uparrow A = \bigcup_{a \in A} \uparrow a; \downarrow x$ and $\downarrow A$ are defined dually. For a poset P, the topology generated by the collection of sets $P \setminus \downarrow x$ (as a subbase) is called the *upper topology* and denoted by v(P); the *lower topology* on P is dually defined and denoted by $\omega(P)$. A subset U of P is called $Scott\ open\ provided\ that <math>U = \uparrow U$ and $D \cap U \neq \emptyset$ for all directed sets $D \subseteq P$ with $\bigvee D \in U$ whenever $\bigvee D$ exists. The topology formed by all the Scott open sets of P is called the $Scott\ topology$ on P, written as $\sigma(P)$.

If P is a poset, more generally a preordered set, we introduce a preorder \leq on the powerset of P, sometimes called the *Smyth preorder*, by $A \leq B$ iff $\uparrow B \subseteq \uparrow A$. Throughout the paper, **Fin** P is always endowed with the Smyth preorder.

Definition 1.1 ([6,11]) Let P be a poset.

- (1) For any two elements x and y in P, we write $x \ll y$, if for each directed subset $D \subseteq P$ with $\bigvee D$ existing, $y \leq \bigvee D$ implies $x \leq d$ for some $d \in D$. The set $\{y \in P : y \ll x\}$ will be denoted $\downarrow x$ and $\{y \in P : x \ll y\}$ denoted $\uparrow x$.
- (2) P is called a *continuous poset* if $x = \bigvee \downarrow x$ and $\downarrow x$ is directed for all $x \in P$.
- (3) P is called an algebraic poset if $x = \bigvee \{y \in P : y \ll y \leq x\}$ for all $x \in P$ and the set $\{y \in P : y \ll y \leq x\}$ is directed.

Definition 1.2 ([5,6]) Let P be a poset.

- (1) We define a relation \prec on P by $x \prec y \Leftrightarrow y \in int_{v(P)} \uparrow x$.
- (2) P is called a hypercontinuous poset if $\{u \in P : u \prec x\}$ is directed and $x = \bigvee \{u \in P : u \prec x\}$ for each $x \in P$. A complete lattice which is hypercontinuous as a poset is called a hypercontinuous lattice.
- (3) P is called a *hyperalgebraic poset* if $\{u \in P : u \prec u \leq x\}$ is directed and $x = \bigvee \{u \in P : u \prec u \leq x\}$ for each $x \in P$. A complete lattice which is hyperalgebraic as a poset is called a *hyperalgebraic lattice*.

Theorem 1.3 ([1,11]) Let P be a poset. Then the following conditions are equivalent:

- (1) P is a continuous poset;
- (2) For all $x \in U \in \sigma(P)$, there exists $y \in P$ such that $x \in int_{\sigma(P)} \uparrow y \subseteq \uparrow y \subseteq U$;

(2) $\sigma(P)$ is a completely distributive lattice.

Theorem 1.4 ([5,6]) Let P be a poset. Then the following conditions are equivalent:

- (1) P is a hypercontinuous poset;
- (2) For all $x \in U \in v(P)$, there exists $y \in P$ such that $x \in int_{v(P)} \uparrow y \subseteq \uparrow y \subseteq U$;
- (2) v(P) is a completely distributive lattice.

Definition 1.5 ([2,3]) A T_0 space (X, τ) is called a web space if for each $x \in X$ and $Y \subseteq X$ with $x \in cl_{\tau}Y$, one has $x \in cl_{\tau}(\downarrow x \cap \downarrow Y)$.

Definition 1.6 ([10]) A poset P is called *meet continuous* if for any $x \in P$ and any directed set D, if $\bigvee D$ exists and $x \leq \bigvee D$, then $x \in cl_{\sigma(P)}(\downarrow x \cap \downarrow D)$.

Theorem 1.7 ([2,3]) Let P be a poset. Then the following conditions are equivalent:

- (1) P is meet continuous;
- (2) P is a web space endowed with the Scott topology;
- (3) For any Scott open set U and any $x \in P$, $\uparrow(U \cap \downarrow x)$ is Scott open.

The proof of the following lemma is similar to that of the analogous results for dcpos in [6].

Lemma 1.8 If F is a finite set in a meet continuous poset P, then we have

$$int_{\sigma(P)} \uparrow F \subseteq \bigcup \{ \uparrow x : x \in F \}.$$

2 Quasicontinuous domains and quasihypercontinuous posets

Definition 2.1 ([4,6]) Let P be a dcpo.

- (1) For all $F, G \subseteq P$, we say that G is way below F and write $G \ll F$ if for every directed set $D \subseteq P, \bigvee D \in \uparrow F$ implies $d \in \uparrow G$ for some $d \in D$.
- (2) P is called a quasicontinuous domain if $\{\uparrow F \in \mathbf{Fin}\ P : F \ll x\}$ is directed and $\uparrow x = \bigcap \{\uparrow F \in \mathbf{Fin}\ P : F \ll x\}$ for each $x \in P$.
- (3) P is called a quasialgebraic domain if $\{\uparrow F \in \mathbf{Fin} \ P : F \ll F \ll x\}$ is directed and $\uparrow x = \bigcap \{\uparrow F \in \mathbf{Fin} \ P : F \ll F \ll x\}$ for each $x \in P$.

Definition 2.2 ([12]) Let P be a poset.

- (1) We define a relation \prec on 2^P by $F \prec G \Leftrightarrow G \subseteq int_{v(P)} \uparrow F$.
- (2) P is called a *quasi-hypercontinuous poset* if $\{\uparrow F \in \mathbf{Fin}\ P : F \prec x\}$ is directed and $\uparrow x = \bigcap \{\uparrow F \in \mathbf{Fin}\ P : F \prec x\}$ for each $x \in P$.
- (3) P is called a *quasi-hyperalgebraic poset* if $\{\uparrow F \in \mathbf{Fin}\ P : F \prec F \prec x\}$ is directed and $\uparrow x = \bigcap \{\uparrow F \in \mathbf{Fin}\ P : F \prec F \prec x\}$ for each $x \in P$.

Theorem 2.3 ([4,6]) Let P be a dcpo. Then the following conditions are equivalent:

- (1) P is a quasicontinuous domain;
- (2) For all $x \in U \in \sigma(P)$, there exists $F \in P^{(<\omega)}$ such that $x \in int_{\sigma(P)} \uparrow F \subseteq \uparrow F \subseteq U$;
- (3) $\sigma(P)$ is a hypercontinuous lattice.

Theorem 2.4 ([6]) Let P be a dcpo. Then the following conditions are equivalent:

- (1) P is a quasialgebraic domain;
- (2) For all $x \in U \in \sigma(P)$, there exists $F \in P^{(<\omega)}$ such that $x \in int_{\sigma(P)} \uparrow F = \uparrow F \subseteq U$;
- (3) $\sigma(P)$ is a hyperalgebraic lattice.

Theorem 2.5 ([12]) Let P be a poset. Then the following conditions are equivalent:

- (1) P is a quasi-hypercontinuous poset;
- (2) For all $x \in U \in v(P)$, there exists $F \in P^{(<\omega)}$ such that $x \in int_{v(P)} \uparrow F \subseteq \uparrow F \subseteq U$;
- (3) v(P) is a hypercontinuous lattice.

According to [10], a poset P is called a quasicontinuous poset (resp., quasial-gebraic poset) if for all $x \in U \in \sigma(P)$, there exists $F \in P^{(<\omega)}$ such that $x \in int_{\sigma(P)} \uparrow F \subseteq \uparrow F \subseteq U$ (resp., $x \in int_{\sigma(P)} \uparrow F = \uparrow F \subseteq U$).

Theorem 2.6 Let P be a poset. Then the following two conditions are equivalent:

- (1) P is an algebraic poset;
- (2) P is a meet continuous and quasialgebraic poset.

Proof. $(1) \Rightarrow (2)$: Obviously.

(2) \Rightarrow (1): CLAIM: Let $x \in P$ and $F \subseteq P$ be finite. If $x \in int_{\sigma(P)} \uparrow F = \uparrow F$, then there exists $t \in F$ with $t \in \downarrow x \cap K(P)$.

Proof of Claim. Since F is finite, $\uparrow F = \uparrow \text{Min}(F)$ where Min(F) is the set of all minimal elements in F. By Lemma 1.8, $x \in \uparrow \text{Min}(F) = \uparrow F = int_{\sigma(P)} \uparrow F = int_{\sigma(P)} \uparrow \text{Min}(F) \subseteq \bigcup \{ \uparrow t : t \in \text{Min}(F) \}$. So there exists $t \in \text{Min}(F)$ with $t \ll x$. Since $\uparrow \text{Min}(F) \subseteq \bigcup \{ \uparrow t : t \in \text{Min}(F) \}$, there exists $s \in \text{Min}(F)$ with $s \ll t$, hence $s \leq t$. So s = t since s, $t \in \text{Min}(F)$. Thus $t \in \downarrow x \cap K(P)$.

Firstly, we show that $x = \bigvee (\downarrow x \cap K(P))$ for all $x \in P$. Clearly, x is an upper bound of $\downarrow x \cap K(P)$. Let y be any upper bound of $\downarrow x \cap K(P)$ and assume $x \nleq y$. Then $x \in P \setminus \downarrow y \in \sigma(P)$. By (2), there exists $F \in P^{(<\omega)}$ such that $x \in int_{\sigma(P)} \uparrow F = \uparrow F \subseteq P \setminus \downarrow y$. By Claim, there exists $t \in F$ with $t \in \downarrow x \cap K(P)$, a contradiction to $\downarrow x \cap K(P) \subseteq \downarrow y$.

Then we show that $\downarrow x \cap K(P)$ is directed for all $x \in P$. On the one hand, since P is quasialgebraic, there exists $G \in P^{(<\omega)}$ such that $x \in int_{\sigma(P)} \uparrow G = \uparrow G \subseteq P$. By Claim, there is a $y \in G$ with $y \in \downarrow x \cap K(P)$. Thus $\downarrow x \cap K(P) \neq \emptyset$. On the other hand, let $u, v \in \downarrow x \cap K(P)$. Then $x \in \uparrow u \cap \uparrow v \in \sigma(P)$. By (2), there exists $H \in P^{(<\omega)}$ such that $x \in int_{\sigma(P)} \uparrow H = \uparrow H \subseteq \uparrow u \cap \uparrow v$. By Claim, there exists $m \in H$ with $m \in \downarrow x \cap K(P)$. Whence $m \in \uparrow u \cap \uparrow v$. Hence $\downarrow x \cap K(P)$ is directed. \Box

Proposition 2.7 Let P be a poset. Then the following two conditions are equivalent:

- (1) P is a quasi-hyperalgebraic poset;
- (2) For all $x \in U \in v(P)$, there exists $F \in P^{(<\omega)}$ such that $x \in int_{v(P)} \uparrow F = \uparrow F \subseteq U$:
- (3) v(P) is a hyperalgebraic lattice.

Proof. (1) \Rightarrow (2): For all $U \in v(P)$ with $x \in U$, there exists $H \in P^{(<\omega)}$ such that $x \in P \setminus H \subseteq U$. For all $h \in H$, by (1), there exists $F_h \in P^{(<\omega)}$ such that $x \in int_{v(P)} \uparrow F_h = \uparrow F_h \subseteq P \setminus h$. Since $H \in P^{(<\omega)}$ and $\{ \uparrow F \in \mathbf{Fin} \ P : x \in int_{v(P)} \uparrow F = \uparrow F \}$ is directed, there exists $G \in P^{(<\omega)}$ such that $x \in int_{v(P)} \uparrow G = \uparrow G \subseteq \bigcap_{h \in H} \uparrow F_h \subseteq \bigcap_{h \in H} P \setminus h = P \setminus H \subseteq U$.

 $(2) \Rightarrow (1): \text{ Suppose } \uparrow F_1, \ \uparrow F_2 \in \{\uparrow F \in \mathbf{Fin} \ P : x \in int_{v(P)} \uparrow F = \uparrow F\}. \text{ Then } x \in int_{v(P)} \uparrow F_1 \cap int_{v(P)} \uparrow F_2 \in v(P). \text{ By } (2), \text{ there is } F_3 \in P^{(<\omega)} \text{ such that } x \in int_{v(P)} \uparrow F_3 = \uparrow F_3 \subseteq int_{v(P)} \uparrow F_1 \cap int_{v(P)} \uparrow F_2 \subseteq \uparrow F_1 \cap \uparrow F_2. \text{ Therefore, } \{\uparrow F \in \mathbf{Fin} \ P : x \in int_{v(P)} \uparrow F = \uparrow F\} \text{ is directed. Clearly, } \uparrow x \subseteq \bigcap \{\uparrow F \in \mathbf{Fin} \ P : x \in int_{v(P)} \uparrow F = \uparrow F\}. \text{ If } z \notin \uparrow x, \text{ then } x \in P \setminus \downarrow z \in v(P). \text{ By } (2), \text{ there is } G \in P^{(<\omega)} \text{ with } x \in int_{v(P)} \uparrow G = \uparrow G \subseteq P \setminus \downarrow z. \text{ It follows that } z \notin \bigcap \{\uparrow F \in \mathbf{Fin} \ P : x \in int_{v(P)} \uparrow F = \uparrow F\}. \text{ Therefore, } \uparrow x = \bigcap \{\uparrow F \in \mathbf{Fin} \ P : x \in int_{v(P)} \uparrow F = \uparrow F\}.$

 $(2) \Leftrightarrow (3)$: This follows from Lemma 3.3 of [13].

It is similar to the proof of Theorem 2.6, we have the following

Theorem 2.8 Let P be a poset. Then the following two conditions are equivalent:

- $(1)\ P\ is\ a\ hyperalgebraic\ poset;$
- (2) P is a meet continuous and quasi-hyperalgebraic poset.

3 Induced topologies on the poset of finitely generated saturated sets

Definition 3.1 ([2]) Let (X, τ) be a T_0 space.

- (1) (X, τ) is called a *c-space* if for all $x \in U \in \tau$, there exist $y \in X$ and $V \in \tau$ such that $x \in V \subseteq \uparrow y \subseteq U$.
- (2) (X, τ) is called a *locally hypercompact space* if for all $x \in U \in \tau$, there exists $F \in X^{(<\omega)}$ and $V \in \tau$ such that $x \in V \subseteq \uparrow F \subseteq U$.

Theorem 3.2 ([1]) Let (X, τ) be a T_0 space. The following conditions are equivalent:

- (1) X is a c-space;
- (2) τ is a completely distributive lattice.

Theorem 3.3 ([2,8]) Let (X,τ) be a T_0 space. The following conditions are equivalent:

- (1) X is locally hypercompact;
- (2) τ is a hypercontinuous lattice.

Let (X,τ) be a T_0 space. For all $U \in \tau$, let $U_{\mathcal{F}} = \{ \uparrow F \in \mathbf{Fin} \ X \colon F \subseteq U \}$. The topology generated by the basic open subsets $U_{\mathcal{F}}$ is denoted by $\tau_{\mathcal{F}}$.

It is easy to get the following

Proposition 3.4 Let (X, τ) be a T_0 space.

- (1) $\emptyset_{\mathcal{F}} = \emptyset$, $X_{\mathcal{F}} = \mathbf{Fin} X$.
- (2) For all $U, V \in \tau$, $(U \cap V)_{\mathcal{F}} = U_{\mathcal{F}} \cap V_{\mathcal{F}}$.

Theorem 3.5 Let (X,τ) be a T_0 space. Then the following two conditions are equivalent:

- (1) τ is a hypercontinuous lattice;
- (2) $\tau_{\mathcal{F}}$ is a completely distributive lattice.

Proof. (1) \Rightarrow (2): For any $\uparrow G \in \mathcal{U} = \bigcup_{i \in I} (U_i)_{\mathcal{F}}$, there exists $i \in I$ such that $\uparrow G \subseteq U_i$. By Theorem 3.3, for each $g \in G$, there exists $F_g \in X^{(<\omega)}$ such that $g \in int_{\tau} \uparrow F_g \subseteq \uparrow F_g \subseteq U_i$. Let $F = \bigcup_{g \in G} F_g$ and $V = int_{\tau} \uparrow F$. Obviously, F is finite.

Thus $\uparrow G \in V_{\mathcal{F}} \subseteq \uparrow_{\mathbf{Fin}X}(\uparrow F) \subseteq (U_i)_{\mathcal{F}} \subseteq \mathcal{U}$. Thus $\tau_{\mathcal{F}}$ is completely distributive by Theorem 3.2.

 $(2) \Rightarrow (1)$: Let $U \in \tau$ with $x \in U$. Then $\uparrow x \in U_{\mathcal{F}}$. By (2), there exists $\uparrow F \in \mathbf{Fin}$ P such that $\uparrow x \in int_{\tau_F} \uparrow_{\mathbf{Fin}X} (\uparrow F) \subseteq \uparrow_{\mathbf{Fin}X} (\uparrow F) \subseteq U_F$. Thus there exists $V \in \tau$ such that $\uparrow x \in V_{\mathcal{F}} \subseteq \uparrow_{\mathbf{Fin}X}(\uparrow F) \subseteq U_{\mathcal{F}}$. Hence $x \in V \subseteq \uparrow F \subseteq U$. Therefore, τ is hypercontinuous by Theorem 3.3.

Similarly, we have the following

Theorem 3.6 Let (X,τ) be a T_0 space. Then the following two conditions are equivalent:

- (1) τ is a hyperalgebraic lattice:
- (2) $\tau_{\mathcal{F}}$ is a completely distributive and algebraic lattice.

Lemma 3.7 Let P be a poset. Then $\bigvee_{d \in D} \uparrow F_d$ exists in $\mathbf{Fin} \ P$ iff $\bigcap_{d \in D} \uparrow F_d \in \mathbf{Fin} \ P$ for all $\{ \uparrow F_d : d \in D \} \subseteq \mathbf{Fin} \ P$. In that case $\bigcap_{d \in D} \uparrow F_d = \bigvee_{d \in D} \uparrow F_d$.

in **Fin** P and $\uparrow F \nleq \uparrow x$, a contradiction.

Proposition 3.8 For any poset P, Fin P is a meet continuous poset.

Proof. For all $\uparrow F \in \mathbf{Fin} \ P$ and $\mathcal{U} \in \sigma(\mathbf{Fin} \ P)$, we show that $\uparrow_{\mathbf{Fin}P}(\downarrow_{\mathbf{Fin}P}(\uparrow F) \cap \mathcal{U}) \in \sigma(\mathbf{Fin} \ P)$. For all directed sets $\{\uparrow F_d : d \in D\} \subseteq \mathbf{Fin} \ P$ with $\bigvee_{d \in D} \uparrow F_d \in \uparrow_{\mathbf{Fin}P}(\downarrow_{\mathbf{Fin}P}(\uparrow F) \cap \mathcal{U})$, there exists $\uparrow G \in \mathcal{U}$ with $\uparrow G \leq \uparrow F$ such that $\uparrow G \leq \bigvee_{d \in D} \uparrow F_d$. By Lemma 3.7, we have $\bigcap_{d \in D} \uparrow F_d \subseteq \uparrow G$. Thus $\uparrow G = \uparrow G \cup \bigcap_{d \in D} \uparrow F_d = \bigcap_{d \in D} (\uparrow G \cup \uparrow F_d) \in \mathcal{U}$. Hence there exists $f \in \mathcal{U} \cap f_d \in \mathcal{U} \cap f_d \in \mathcal{U}$. Thus $f \in \mathcal{U} \cap f_d \in f_d \cap f_d \in \mathcal{U}$ which implies $f \in \mathcal{U} \cap f_d \in \mathcal{U} \cap f_d \in \mathcal{U} \cap f_d \in \mathcal{U}$. Whence $f \in \mathcal{U} \cap f_d \in \mathcal{U} \cap f_d \in \mathcal{U}$. Hence $f \in \mathcal{U} \cap f_d \in \mathcal{U} \cap f_d \in \mathcal{U}$. Thus $f \in \mathcal{U} \cap f_d \in \mathcal{U}$.

Lemma 3.9 Let P be a dcpo. Then $\sigma(P)_{\mathcal{F}} \subseteq \sigma(\mathbf{Fin}\ P)$.

Proof. For all $U \in \sigma(P)$, we show $U_{\mathcal{F}} = \{ \uparrow F \in \mathbf{Fin} \ P : \uparrow F \subseteq U \} \in \sigma(\mathbf{Fin} \ P)$. Obviously, $U_{\mathcal{F}} = \uparrow_{\mathbf{Fin}P}U_{\mathcal{F}}$. For all directed sets $\{ \uparrow F_d : d \in D \} \subseteq \mathbf{Fin} \ P$ with $\bigvee_{d \in D} \uparrow F_d \in U_{\mathcal{F}}$, by Lemma 3.7, we have $\bigcap_{d \in D} \uparrow F_d = \uparrow H \in \mathbf{Fin} \ P$ and $\uparrow H \subseteq U$. By Rudin's Lemma [6, III-3.3], there exists $d \in D$ such that $\uparrow F_d \subseteq U$. Whence $\uparrow F_d \in U_{\mathcal{F}}$. Hence $U_{\mathcal{F}} \in \sigma(\mathbf{Fin} \ P)$.

Lemma 3.10 Let P be a poset and $U \in \sigma(\mathbf{Fin}\ P)$. Then $U = \bigcup U = \bigcup \{\uparrow F \in \mathbf{Fin}\ P : \uparrow F \in U\} \in \sigma(P)$.

Proof. Let $y \in \uparrow U$. Let $x \in U$ such that $x \leq y$. Then there exists $\uparrow F \in \mathcal{U}$ such that $x \in \uparrow F$. Thus $\uparrow y \subseteq \uparrow x \subseteq \uparrow F$, i.e., $\uparrow F \leq \uparrow x \leq \uparrow y$. Since $\mathcal{U} \in \sigma(\mathbf{Fin}\ P)$, $\uparrow y \in \mathcal{U}$. Whence $y \in U$. Hence $\uparrow U = U$.

For all directed sets $D \subseteq P$ with $\bigvee D \in U$, we have $\bigcap_{d \in D} \uparrow d = \uparrow \bigvee D \in \mathcal{U}$. Thus there exists $d \in D$ such that $\uparrow d \in \mathcal{U}$. So $d \in U$.

Theorem 3.11 Let P be a dcpo. If $\sigma(P)$ is hypercontinuous or $\sigma(\mathbf{Fin}\ P)$ is completely distributive, then $\sigma(P)_{\mathcal{F}} = \sigma(\mathbf{Fin}\ P)$.

Proof. Let $\uparrow F \in \mathcal{U} \in \sigma(\mathbf{Fin}\ P)$. If $\sigma(P)$ is hypercontinuous, then $\uparrow F = \bigcap \{\uparrow G \in \mathbf{Fin}\ P : \uparrow F \subseteq int_{\sigma(P)} \uparrow G\}$ and $\{\uparrow G \in \mathbf{Fin}\ P : \uparrow F \subseteq int_{\sigma(P)} \uparrow G\}$ is directed. Thus there exists $\uparrow G \in \mathbf{Fin}\ P$ such that $\uparrow F \subseteq int_{\sigma(P)} \uparrow G \subseteq \uparrow G \in \mathcal{U}$. Let $V = int_{\sigma(P)} \uparrow G$. Then $\uparrow F \in V_{\mathcal{F}} \subseteq \uparrow_{\mathbf{Fin}P} (\uparrow G) \subseteq \mathcal{U}$. Hence $\mathcal{U} \in \sigma(P)_{\mathcal{F}}$.

If $\sigma(\mathbf{Fin}\ P)$ is completely distributive, then there is $\uparrow H \in \mathbf{Fin}\ P$ with $\uparrow F \in int_{\sigma(\mathbf{Fin}P)} \uparrow_{\mathbf{Fin}\mathbf{P}} (\uparrow H) \subseteq \uparrow_{\mathbf{Fin}\mathbf{P}} (\uparrow H) \subseteq \mathcal{U}$. Let $W = \bigcup int_{\sigma(\mathbf{Fin}P)} \uparrow_{\mathbf{Fin}\mathbf{P}} (\uparrow H)$. Then by Lemma 3.10, $W \in \sigma(P)$ and $\uparrow F \in W_{\mathcal{F}} \subseteq \uparrow_{\mathbf{Fin}P} (\uparrow H) \subseteq \mathcal{U}$. Therefore, $\mathcal{U} \in \sigma(P)_{\mathcal{F}}$. By Lemma 3.9, we have $\sigma(P)_{\mathcal{F}} = \sigma(\mathbf{Fin}\ P)$.

By Theorem 3.5 and Theorem 3.11, we get the following

Corollary 3.12 Let P be a dcpo. Then the following two conditions are equivalent:

- (1) $\sigma(P)$ is a hypercontinuous lattice;
- (2) $\sigma(\mathbf{Fin}\ P)$ is a completely distributive lattice.

By Theorem 1.3, Theorem 2.3 and Corollary 3.12, we have the following

Corollary 3.13 ([7]) Let P be a dcpo. Then the following two conditions are equivalent:

- (1) P is a quasicontinuous domain;
- (2) **Fin** P is a continuous poset.

By Theorem 5.6 of [10] and Proposition 3.8, we have the following

Corollary 3.14 Let P be a poset. Then the following two conditions are equivalent:

- (1) **Fin** P is a continuous poset;
- (2) **Fin** P is a quasicontinuous poset.

By Theorem 2.6 and Proposition 3.8, we have the following

Corollary 3.15 Let P be a poset. Then the following two conditions are equivalent:

- (1) **Fin** P is an algebraic poset;
- (2) **Fin** P is a quasialgebraic poset.

A poset P is said to have property DINT (see [9]) if every set closed in the lower topology is a directed intersection of finitely generated upper sets.

Theorem 3.16 Let P be a poset satisfying property $DINT^{op}$. Then $v(\mathbf{Fin} P) = v(P)_{\mathcal{F}}$.

Proof. For all $\uparrow F \in \mathbf{Fin}\ P$, we have $\mathbf{Fin}\ P \setminus \downarrow_{\mathbf{Fin}P} (\uparrow F) = \bigcup_{u \in F} (P \setminus \downarrow u)_{\mathcal{F}}$. Thus $v(\mathbf{Fin}\ P) \subseteq v(P)_{\mathcal{F}}$.

Conversely, it is clear that $P_{\mathcal{F}} = \mathbf{Fin} \ P \in v(\mathbf{Fin} \ P)$. For any nonempty set $U \in v(P)$ with $U \neq P$, we show $U_{\mathcal{F}} \in v(\mathbf{Fin} \ P)$. Since P satisfies property DINT^{op}, there exists a directed family $\{\downarrow F_d : F_d \in P^{(<\omega)} \text{ and } d \in D\}$ such that $U = P \setminus \bigcap_{d \in D} \downarrow F_d = \bigcup_{d \in D} (P \setminus \downarrow F_d)$. Thus $U_{\mathcal{F}} = (\bigcup_{d \in D} (P \setminus \downarrow F_d))_{\mathcal{F}} = \bigcup_{d \in D} (P \setminus \downarrow F_d)_{\mathcal{F}}$. We claim that $(P \setminus \downarrow F_d)_{\mathcal{F}} \in v(\mathbf{Fin} \ P)$ for all $d \in D$. For all $\uparrow G \in (P \setminus \downarrow F_d)_{\mathcal{F}}$, we have $\uparrow G \subseteq P \setminus \downarrow F_d$, i.e., $\uparrow h \not\subseteq \uparrow G$ for all $h \in F_d$. Thus $\uparrow G \in \bigcap_{h \in F_d} (\mathbf{Fin} \ P \setminus \downarrow_{\mathbf{Fin}P} (\uparrow h)) = \bigcap_{h \in F_d} (\mathbf{Fin} \ P \setminus \downarrow_{\mathbf{Fin}P} (\uparrow h))$

Fin $P \setminus \bigcup_{h \in F_d} \downarrow_{\mathbf{Fin}P} (\uparrow h) = \mathbf{Fin} \ P \setminus \downarrow_{\mathbf{Fin}P} \{ \uparrow h : h \in F_d \} \in v(\mathbf{Fin} \ P)$. Therefore, $U_F \in v(\mathbf{Fin} \ P)$.

Problem 3.17 Is property DINT^{op} necessary to derive Theorem 3.16?

By Theorem 1.4, Theorem 2.5, Theorem 3.5 and Theorem 3.16, we have the following

Corollary 3.18 Let P be a poset satisfying property $DINT^{op}$. Then the following two conditions are equivalent:

- (1) P is a quasi-hypercontinuous poset;
- (2) **Fin** P is a hypercontinuous poset.

Corollary 3.19 Let P be a semilattice. Then the following two conditions are equivalent:

- (1) P is a quasi-hypercontinuous poset;
- (2) **Fin** P is a hypercontinuous poset.

Similarly, we have the following two corollaries.

Corollary 3.20 Let P be a poset. Then the following two conditions are equivalent:

- (1) **Fin** P is a hypercontinuous poset;
- (2) **Fin** P is a quasi-hypercontinuous poset.

Corollary 3.21 Let P be a poset. Then the following two conditions are equivalent:

- (1) **Fin** P is a hyperalgebraic poset;
- (2) **Fin** P is a quasi-hyperalgebraic poset.

References

- Erné, M., Scott convergence and Scott topology on partially ordered sets II, in: B. Banaschewski, R.-E. Hoffman (Eds.), Continuous Lattices, Bremen 1979, in: Lecture Notes in Math., 871, Springer-Verlag, Berlin, Heidelberg, New York, 1981, pp.61-96.
- [2] Erné, M., Infinite distributive laws versus local connectedness and compactness properties, Topology and its Applications 156, (2009), 2054-2069.
- [3] Erné, M., A. Pultr and J. Sichler, Closure Frames and Web Spaces, KAM-DIMATIA Series 2000-501, DAM and ITI, Charles University, Prague, 2000.
- [4] Gierz, G., J.D. Lawson and A.R. Stralka, Quasicontinuous posets, Houston J. Math. 9 (1983), 191-208.
- [5] Gierz, G., and J.D. Lawson, Generalized continuous and hypercontinuous lattices, Rocky Mt. J. Math. 11 (1981), 271-296.
- [6] Gierz, G. et al., Continuous Lattices and Domains, Cambridge University Press, Cambridge, 2003.
- [7] Heckmann, R., and K. Keimel, Quasicontinuous Domains and the Smyth Powerdomain, Electronic Notes in Theoretical Computer Science 298)2013), 215-232.
- [8] Lawson, J.D., T₀-spaces and pointwise convergence, Topology and its Applications 21 (1985), 73-76.
- [9] Lawson, J.D., The upper interval topology, Property M, and compactness, Electronic Notes in Theoretical Computer Science, 1998.
- [10] Mao, X. X., and L. S. Xu, Quasicontinuity of Posets via Scott Topology and Sobrification, Order 23 (2006), 359-369.
- [11] Xu, L. S., Continuity of posets via Scott topology and sobrification, Topology and its Applications 153 (2006), 1886-1894.
- [12] Xu, X. Q., and Y. M. Liu, The Scott topology and Lawson topology on a Z-quasicontinuous domain (in Chinese), Chin. Ann. of Math. 3 (2003), 365-376.
- [13] Xu, X. Q., and J. B. Yang, Topological representations of distributive hypercontinuous lattices, Chin. Ann. Math. 2 (2009), 199-206.