Binary Trees

Binary Trees

- A special class of trees: max degree for each node is 2 (children)
- Recursive definition: A binary tree is a finite set of nodes that is either empty or consists of a root and two disjoint binary trees called *the left subtree* and *the right subtree*.
- A binary tree is composed of zero or more nodes
 - A binary tree may be empty (contain no nodes)
 - If not empty, a binary tree has a root node
 - Every node in the binary tree is reachable from the root node by a unique path
 - A node with neither a left child nor a right child is called a leaf

Example

Samples of Binary Trees

Full BT vs. Complete BT

Full binary tree of depth 3

Arithmetic Expression Tree

- Binary tree associated with an arithmetic expression
 - internal nodes: operators
 - external nodes: operands
- Example: arithmetic expression tree for the expression
 - $(2 \times (a 1) + (3 \times b))$

Decision Tree

- Binary tree associated with a decision process
 - internal nodes: questions with yes/no answer
 - external nodes: decisions
- Example: dining decision

Binary Trees

Properties

Notation: depth(tree) = MAX {depth(leaf)} = height(root)

• max # of leaves = 2^{depth(tree)}

• max # of nodes = $2^{depth(tree)+1} - 1$

• max depth = n-1

Balance

An unbalanced binary tree

In most applications, a reasonably-balanced binary tree is desirable.

 Similar binary trees: Given two binary trees T and T' are said to be similar if both these trees have the same structure.

Copies of binary trees: Two binary trees T and T' are said to be copies if they
have similar structure and same content at the corresponding nodes.

Complete Binary Trees

- A complete binary tree is a binary tree which satisfies two properties.
 - First, in a complete binary tree every level, except possibly the last, is completely filled.
 - Second, all nodes appear as far left as possible
- In a complete binary tree T_n , there are exactly n nodes and level r of T can have at most 2^r nodes.
- The formula to find the parent, left child and right child can be given as:
- If K is a parent node, then its left child can be calculated as 2 * K and its right child can be calculated as 2 * K + 1.
 - For example, the children of node 4 are 8 (2*4) and 9 (2*4+1).

Similarly, the parent of node K can be calculated as | K/2 |.

Minimum Number Of Nodes

- Minimum number of nodes in a binary tree whose height is h.
- At least one node at each of first h levels.

Maximum Number Of Nodes

All possible nodes at first h levels are present.

- Let n be the number of nodes in a binary tree whose height is h.
- h+1 <= n <= 2^{h+1} 1
- log₂(n+1) <= h+1 <= n

Maximum number of nodes

$$S = 1 + 2 + 4 + 8 + \dots + 2^{h}$$

$$2S = 2 + 4 + 8 + ... + 2^{h} + 2^{h+1} = S - 1 + 2^{h+1}$$

$$S = -1 + 2^{h+1}$$

Full Binary Tree

• A full binary tree of a given height h has $2^{h+1} - 1$ nodes.

Height 3 full binary tree.

Example

In a complete binary tree every level, except possibly the last, is filled, and all nodes in the last level are as far left as possible. It can have between 1 and 2^h nodes at the last level h.

Complete binary tree with 10 nodes.

Example showing the growth of a complete binary tree:

Numbering Nodes in A Full Binary Tree

- Number the nodes 1 through $2^{h+1} 1$.
- Number by levels from top to bottom.
- Within a level number from left to right.
 - Parent of node i is node i / 2, unless i = 1.
- Node 1 is the root and has no parent.
 - Left child of node i is node 2i, unless 2i > n, where n is the number of nodes.
 - If 2i > n, node i has no left child.
 - Right child of node i is node 2i+1, unless
 2i+1 > n, where n is the number of nodes.
 - If 2i+1 > n, node i has no right child.

Representation of Binary tree

- Implicit and explicit representation
 - Implicit representation
 - Sequential / Linear representation, using arrays.
 - Explicit representation
 - Linked list representation, using pointers.

Sequential Representation

- This representation is static.
- Block of memory for an array is allocated, before storing the actual tree.
- Once the memory is allocated, the size of the tree will be fixed.
- Nodes are stored level by level, starting from the zeroth level.
- Root node is stored in the starting memory location, as the first element of the array.

Sequential Representation

Consider a linear array TREE

Rules for storing elements in TREE are:

- The root R of T is stored in location 1 (index 0).
- 2. For any node with index i 1<i<=n:
 - 1. PARENT(i)= i/2
 For the node when i=1,there is no parent.
 - LCHILD(i)=2*i
 If 2* i >n, then i has no left child
 - 3. RCHILD(i)=2*i+1

 If 2*i+1>n, then i has no right child.

Sequential Representation - Example

- TREE[1] will store the data of the root element.
- The children of a node K will be stored in location (2*K) and (2*K+1).
- The maximum size of the array TREE is given as (2^{h+1}-1), where h is the height of the tree.
- An empty tree or sub-tree is specified using NULL. If TREE[1]
 NULL, then the tree is empty.

						8				
45	22	77	11	30	90		15	25		88

Sequential Representation - Example

1	2	3	4	5	6	7	8	9	10	11	12	13	14	15
+	_	*	A	В	С	/							D	Е

Conceptual tree

Example

Actual storage organization

Conceptual tree

Actual storage organization

<u>Sequential Representation - Advantages:</u>

- 1. Any node can be accessed from any other node by calculating the index.
- 2. Here, data are stored simply without any pointers to their successor or predecessor.
- 3. In programming languages, where dynamic memory allocation is not possible (like BASIC, FROTRAN), only array representation is possible.
- 4. Inserting a new node and deletion of an existing node is easy.

<u>Sequential Representation - Disadvantages:</u>

- Other than full binary trees, majority of the array entries may be empty.
- 2. It allows only static representation. It is not possible to enhance the tree structure, if the array structure is limited.

Array Implementation - Summary

- We can embed the nodes of a binary tree into a one-dimensional array by defining a relationship between the position of each parent node and the position of its children.
 - 1. left_child of node i is 2*i
 - 2. right_child of node i is 2*i+1
 - 3. parent of node i is i/2 (integer division)
- How much space is required for the array to represent a tree of depth d?

 $2^{d+1} - 1$ (must assume full tree)

Draw the tree structure whose array representation is given:

1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16
А	В		С				D								Е

Linked Representation

- Each binary tree node is represented as an object whose data type is binaryTreeNode.
- The space required by an n node binary tree is n * (space required by one node).

• It consist of three parallel arrays DATA, LC and RC

- Each node N of T will correspond to a location K such that:
 - DATA[K] contains the data at the node N
 - LC[K] contains the location of the left child of node N
 - RC[K] contains the location of the right child of node N

Linked Representation Example

Some Binary Tree Operations

- Determine the height.
- Determine the number of nodes.
- Make a clone.
- Determine if two binary trees are clones.
- Display the binary tree.
- Evaluate the arithmetic expression represented by a binary tree.
- Obtain the infix form of an expression.
- Obtain the prefix form of an expression.
- Obtain the postfix form of an expression.

Example

Conceptual tree

Actual storage organization

Example

Binary Tree ADT

```
///////// Accessors ///////////
int size ();
void postOrder(TreeNode* ptr);
void postOrder(TreeNode* ptr);
void preOrder(TreeNode* ptr);
///////// Mutators ///////////
void AddLeft(TreeNode* p, char c);
void AddRight(TreeNode* p,char c);
```

Tree Class

Example

Represent using array and linked list

