

Ingeniero Electrónico, Magister en Ingeniería con énfasis en electrónica y estudiante del doctorado en ingeniería con énfasis en eléctrica y electrónica de la UDFJC

Diego Alejandro Barragán Vargas

Docente de electrónica Universidad Santo Tomás de Aquino

Enlace de Interés:

https://scholar.google.com/citations?hl=es&user=Bp3QMQMAAAAJ

Sesión 2- PRACTICA DE LABORATORIO

14 de Agosto, Bogotá D.C.

CONTENIDO TEXTO COMPLEMENTARIO

Introducción a la Inteligencia Artificial

1. Quiz

Para repasar:

¿Qué es la Inteligencia?

¿Qué nos hace Inteligentes?

¿Los seres vivos son inteligentes?

Fuente: https://pixabay.com/es/illustrations/rompecabezas-cuota-pensar-cerebro-1746552/

Todos los seres vivos tienen cierto grado de inteligencia!!!

> ¿Qué es la Inteligencia?

Una definición apropiada podría ser: La inteligencia es un conjunto habilidades cognitivas conductuales que permite la adaptación eficiente al ambiente físico y social.

Sin embargo:

Fuentes:

¿Qué es la inteligencia?

http://www.scielo.org.co/scielo.php?script=sci_arttext&pid=S0370-

sión de Galton

https://books.google.es/books?hl=es&lr=&id=YUQ2DgAAQBAJ&oi=fnd&pg=PA19&dg=qu%C3%A9+es+la+inteligencia%3F&ots =xe5d9-b-B8&sig=ROOkP7Ea6kvICvI3qgJnOyE5B2A#v=onepage&q=qu%C3%A9%20es%20la%20inteligencia%3F&f=false

¿Qué es la Inteligencia?

Breve Cronología:

2.

Lewis Terman y Maud Robert Yerkes-Inventa dos Merril-Nueva Escala B-S pruebas de Inteligencia

William Stern y el Cl

Lewis Terman y la Escala

Stanford-Binet

Escala Binet-Simon (B-S)

Visión de Binet

Spearman y el factor s

Spearman y el factor g

c3%b3n-discusi%c3%b3n-problemas-7164948/

Raven-Test de Matrices **Progresivas**

Howard Gardner y otros expositores

http://www.scielo.org.co/pdf/racefn/v35n134/v35n134a09.pdf

Historia: https://riucv.ucv.es/bitstream/handle/20.500.12466/1240/80530101.pdf?sequence=1&isAllowed=y

Evolución del

concepto

Recordando Conceptos de Inteligencia Artificial

Algunos autores como:

Fuente:

https://pixabay.com/es/vectors/divert ido-robot-pensar-pensando-2029433/

Existen diferentes puntos de vista:

Jhon McCarthy

Es la ciencia de la ingeniería para hacer máquinas inteligentes.

Nils Nilsson

El objetivo de trabajo de la IA es el de construir máquinas que ejecuten tareas que normalmente requieren inteligencia humana.

Eugene Charniak Es el estudio de las facultades mentales a través del uso de modelos computacionales.

Marvin Minsky

La IA es la construcción de programas informáticos que realicen tareas, por el momento, ejecutadas por el ser humano porque exigen procesos mentales de alto nivel.

Frank Bill

Es un subcampo de las ciencias de la computación que se avoca a la construcción de programas extremadamente complejos que no siempre trabajan correctamente.

Charles Bundy

La IA es un intento de hacer a los computadores tan incompetentes como los humanos, es decir, hacer que las máquinas piensen como las personas con su mismo nivel de imperfección.

Fuente: https://revistasenlinea.saber.ucab.edu.ve/index.php/t

Fundamentos de la Inteligencia Artificial

La Inteligencia Artificial (IA) busca crear sistemas que realicen tareas que normalmente requieren inteligencia humana.

Se basa en:

Algoritmos de Búsqueda

4.

Resolución de problemas mediante exploración de posibilidades.

Representación del Conocimiento

Estructurar información para su uso por máquinas.

Razonamiento Automatizado

Derivar conclusiones lógicas a partir de datos.

Aprendizaje Automático

Mejorar el desempeño mediante experiencia.

Probabilidades

Análisis de datos estocásticos que enriquezcan los datos.

5.

Conceptos Clave para Resolución de Problemas

Espacio de Estados Conjunto de todas las configuraciones posibles de un problema.

> **Ejemplo:** En el 8-puzzle, cada disposición de fichas es un estado único...

Espacio de Acciones Operaciones que permiten transitar entre estados.

> **Ejemplo:** En un laberinto: mover arriba/abajo/izquierda/derecha.

Retroalimentación numérica que guía al agente... Recompensa

Ejemplo: +10 por llegar a la meta, -1 por cada movimiento.

Ambientes Contexto donde opera la gente.

Resultados deterministas vs Resultados Resultados observables vs Resultados Estocásticos **Parcialmente Observables**

Resultados Discretos vs Continuo: Resultados estático vs dinámico: El ambiente cambia independientemente del agente. Estados/acciones finito vs infinitos.

Práctica de Laboratorio

Primer Punto

Desarrollar un algoritmo sencillo que resuelva el problema del 8-puzzle, teniendo presente que para el 8-puzzle se usa un cajón cuadrado en el que hay situados 8 bloques cuadrados y hay un noveno cuadro sin rellenar.

Cada bloque tiene un número y el bloque adyacente al hueco puedo deslizarse hacia a él.

El juego consiste en transformar la posición inicial en la posición final mediante el deslizamiento de los bloques

Se expone el siguiente ejemplo donde se tiene el siguiente estado final e inicial:

2	8	3
1	6	4
7		5

Estado inicial

1	2	3
8		4
7	6	5

Estado final

https://www.cs.us.es/~jalonso/cursos/d-pl-04/temas/tema-4.pdf

Segundo Punto

En este punto se desea visualizar un algoritmo que use el concepto de espacio de estados, espacio de acciones y el estado meta, para ello se darán varias situaciones donde el estudiante debe generar soluciones sencillas.

Problema de Ejemplo:

Problema de la Lámpara (Espacio de Estados y Acciones)

Tenemos una lámpara que puede estar ENCENDIDA o APAGADA. Queremos cambiarla de estado

Exploración paso a paso

Definir los estados posibles.

estados = ["ENCENDIDA", "APAGADA"]

Definir el estado inicial y el estado meta.

estado_actual = "APAGADA"
estado_meta = "ENCENDIDA"

Definir las acciones posibles.

```
def acciones_disponibles(estado):
    return ["PRENDER", "APAGAR"] # Siempre disponibles
```

Crear función para cambiar de estado

```
def cambiar_estado(estado, accion):
    if accion == "PRENDER":
        return "ENCENDIDA"
    elif accion == "APAGAR":
        return "APAGADA"
```

Simular

```
print(f"Estado inicial: {estado_actual}")
accion = "PRENDER"
estado_actual = cambiar_estado(estado_actual, accion)
print(f"Después de {accion}: {estado_actual}")

# Verificar si llegamos al estado meta
if estado_actual == estado_meta:
    print(";Meta alcanzada!")
```


Estado inicial: APAGADA

Después de PRENDER: ENCENDIDA

¡Meta alcanzada!

Mascota Virtual (Recompensas y Ambiente)

"Tenemos una mascota virtual que puede estar CONTENTA o TRISTE. Le damos comida para hacerla feliz."

Desarrollar un sistema similar al ejemplo anteriormente expuesto.

Buscando el Tesoro (Espacio de Estados con Coordenadas)

"Un pirata está en una isla (0,0) y quiere encontrar un tesoro en (2,2). Puede moverse $\uparrow \rightarrow \downarrow \leftarrow$ "

Desarrollar un sistema similar al ejemplo anteriormente expuesto.

Tercer Punto

Desarrollar un laberinto simple, por ejemplo para un mundo 2x2.

Acciones: \rightarrow , \downarrow

Tarea:

Implementar función de movimiento.

Encontrar camino de (0,0) a (0,1).

Agregar obstáculo en (0,1) y probar diferentes caminos

Consejos para la implementación:

Siempre comenzar definiendo los estados posibles

Listar todas las acciones disponibles

Crear tablas de transición de estados (si A y acción X → entonces B)

Usar diccionarios para mapear recompensas

Probar con valores fijos antes de hacerlo dinámico

Desarrollar un laberinto simple, pero ahora para un mundo de 3x3.

Nota: Crear un repositorio y anexar el laboratorio 1 con un readme de introducción y un documento de overleaf que explique de forma detallada cada uno de los puntos.

