Introduction
Delivery Methods
Methodology
Evaluation
Conclusion

A Case for Hybrid Content Distribution for Interactive Video-on-Demand

Andrew MacQuire, Andrew Brampton, Nicholas J. P. Race and Laurent Mathy {macquire,brampton,race,laurent}@comp.lancs.ac.uk Computing Department Lancaster University, UK

> Michael Fry michael.fry@usyd.edu.au University of Sydney

Thursday 18th September FMN'08

Introduction
Delivery Methods
Methodology
Evaluation
Conclusion

Outline

- Introduction
- Delivery Methods
 - Push
 - Pull
 - Hybrid
- Methodology
 - Variables
 - Metrics
- Evaluation
 - Group size
 - Peer-to-Peer Usage
 - Additional Nodes
- Conclusion

Introduction

- Increasing demand for high-bitrate interactive media results in difficult issues for Content Distribution Networks (CDNs)
- Approaches to content delivery can be broadly categorised into push and pull
- We investigate problems with these methods under various delivery scenarios using a custom simulation environment, and propose a compromise: a hybrid push/pull approach

Introduction

- Increasing demand for high-bitrate interactive media results in difficult issues for Content Distribution Networks (CDNs)
- Approaches to content delivery can be broadly categorised into push and pull
- We investigate problems with these methods under various delivery scenarios using a custom simulation environment, and propose a compromise: a hybrid push/pull approach

Introduction

- Increasing demand for high-bitrate interactive media results in difficult issues for Content Distribution Networks (CDNs)
- Approaches to content delivery can be broadly categorised into push and pull
- We investigate problems with these methods under various delivery scenarios using a custom simulation environment, and propose a compromise: a hybrid push/pull approach

The Push Approach

- Predetermined segments are pushed to clients regardless of exactly what they require
 - High degree of redundancy to be exploited
 - Yet little flexibility for the user

Our model - **TBCP periodic broadcast trees**

- The Tree Building Control Protocol is a form of Application-Level Multicast (ALM) overlay that builds efficient shortest-path trees
- "An Overlay Tree Building Control Protocol" Mathy et al.
- Periodic broadcast provides quasi-Video-on-Demand over multiple multicast channels

The Push Approach

- Predetermined segments are pushed to clients regardless of exactly what they require
 - High degree of redundancy to be exploited
 - Yet little flexibility for the user

Our model - TBCP periodic broadcast trees

- The Tree Building Control Protocol is a form of Application-Level Multicast (ALM) overlay that builds efficient shortest-path trees
- "An Overlay Tree Building Control Protocol" Mathy et al.
- Periodic broadcast provides quasi-Video-on-Demand over multiple multicast channels

The Pull Approach

- Requests for particular segments are actively responded to
 - Many clients consuming different sections of content good for interactivity
 - Yet costly to handle clients individually

Our model - **Peer-to-Pee**i

- Simple BitTorrent-like overlay, optimised for streaming with common techniques
 - Sliding window
 - Increased frequency of optimistic unchoking

The Pull Approach

- Requests for particular segments are actively responded to
 - Many clients consuming different sections of content good for interactivity
 - Yet costly to handle clients individually

Our model - Peer-to-Peer

- Simple BitTorrent-like overlay, optimised for streaming with common techniques
 - Sliding window
 - Increased frequency of optimistic unchoking

Taking a Hybrid Push/Pull Approach

- Attempt to gain the advantages of both approaches, while negating the disadvantages
- Push most segments to clients, yet allow them to pull in those they require

Our model - ALM with P2P Patching

- Combines the previous approaches
- Clients use the push TBCP trees, but patch into them with the pull P2P approach

Taking a Hybrid Push/Pull Approach

- Attempt to gain the advantages of both approaches, while negating the disadvantages
- Push most segments to clients, yet allow them to pull in those they require

Our model - ALM with P2P Patching

- Combines the previous approaches
- Clients use the push TBCP trees, but patch into them with the pull P2P approach

- Audience size
 - Varied groups up to 500 clients considered
- Nature of the content (workload)
 - Simple start-to-finish viewing
 - Interactivity model "Characterising User Interactivity for Sports Video-on-Demand" - Brampton et al., NOSSDAV'07
- Network resources
 - Additional content nodes with varied placement
- Peer-to-peer usage
 - Artificial limitation to show the increasing impact of mixing P2P with ALM

- Audience size
 - Varied groups up to 500 clients considered
- Nature of the content (workload)
 - Simple start-to-finish viewing
 - Interactivity model "Characterising User Interactivity for Sports Video-on-Demand" - Brampton et al., NOSSDAV'07
- Network resources
 - Additional content nodes with varied placement
- Peer-to-peer usage
 - Artificial limitation to show the increasing impact of mixing P2P with ALM

- Audience size
 - Varied groups up to 500 clients considered
- Nature of the content (workload)
 - Simple start-to-finish viewing
 - Interactivity model "Characterising User Interactivity for Sports Video-on-Demand" - Brampton et al., NOSSDAV'07
- Network resources
 - Additional content nodes with varied placement
- Peer-to-peer usage
 - Artificial limitation to show the increasing impact of mixing P2P with ALM

- Audience size
 - Varied groups up to 500 clients considered
- Nature of the content (workload)
 - Simple start-to-finish viewing
 - Interactivity model "Characterising User Interactivity for Sports Video-on-Demand" - Brampton et al., NOSSDAV'07
- Network resources
 - Additional content nodes with varied placement
- Peer-to-peer usage
 - Artificial limitation to show the increasing impact of mixing P2P with ALM

- Several metrics considered to assess network cost and potential user satisfaction:
 - Normalised network stress
 - Total data exchanged on the network normalised to the worst case
 - Average fraction of timely segments
 - Segments received in time for playback per client against how many they actually required
 - Segment utility
 - Number of segments sent over network versus those used for playback

- Several metrics considered to assess network cost and potential user satisfaction:
 - Normalised network stress
 - Total data exchanged on the network normalised to the worst case
 - Average fraction of timely segments
 - Segments received in time for playback per client against how many they actually required
 - Segment utility
 - Number of segments sent over network versus those used for playback

- Several metrics considered to assess network cost and potential user satisfaction:
 - Normalised network stress
 - Total data exchanged on the network normalised to the worst case
 - Average fraction of timely segments
 - Segments received in time for playback per client against how many they actually required
 - Segment utility
 - Number of segments sent over network versus those used for playback

- Several metrics considered to assess network cost and potential user satisfaction:
 - Normalised network stress
 - Total data exchanged on the network normalised to the worst case
 - Average fraction of timely segments
 - Segments received in time for playback per client against how many they actually required
 - Segment utility
 - Number of segments sent over network versus those used for playback

Normalised network cost of an interactive workload with varied group size

User satisfaction with an interactive workload and varied group size

Segment utility for an interactive workload with varied group size

Segment utility for a start-to-finish workload with varied group size

Network cost for an interactive workload with varied P2P usage

Network cost for a start-to-finish workload with varied P2P usage

User satisfaction for an interactive workload with varied P2P usage

User satisfaction for a start-to-finish workload with varied P2P usage

Overall network stress with additional shared-content nodes

Overall network stress with additional redundant-content nodes

- For the workloads considered...
 - Pull (P2P) works well for interactive content, but is network intensive
 - Push (ALM) can be more efficient, but struggles with interactivity and larger groups
 - ...and a hybrid approach can offer a good compromise
 - In all cases, additional, well-placed content nodes are beneficial
- Much potential for future work in this field

- For the workloads considered...
 - Pull (P2P) works well for interactive content, but is network intensive
 - Push (ALM) can be more efficient, but struggles with interactivity and larger groups
 - ...and a hybrid approach can offer a good compromise
 - In all cases, additional, well-placed content nodes are beneficial
- Much potential for future work in this field

- For the workloads considered...
 - Pull (P2P) works well for interactive content, but is network intensive
 - Push (ALM) can be more efficient, but struggles with interactivity and larger groups
 - ...and a hybrid approach can offer a good compromise
 - In all cases, additional, well-placed content nodes are beneficial
- Much potential for future work in this field

- For the workloads considered...
 - Pull (P2P) works well for interactive content, but is network intensive
 - Push (ALM) can be more efficient, but struggles with interactivity and larger groups
 - ...and a hybrid approach can offer a good compromise
 - In all cases, additional, well-placed content nodes are beneficial
- Much potential for future work in this field

- For the workloads considered...
 - Pull (P2P) works well for interactive content, but is network intensive
 - Push (ALM) can be more efficient, but struggles with interactivity and larger groups
 - ...and a hybrid approach can offer a good compromise
 - In all cases, additional, well-placed content nodes are beneficial
- Much potential for future work in this field

- For the workloads considered...
 - Pull (P2P) works well for interactive content, but is network intensive
 - Push (ALM) can be more efficient, but struggles with interactivity and larger groups
 - ...and a hybrid approach can offer a good compromise
 - In all cases, additional, well-placed content nodes are beneficial
- Much potential for future work in this field

Introduction
Delivery Methods
Methodology
Evaluation
Conclusion

Thank you for listening.

Any questions?

A Case for Hybrid Content Distribution for Interactive Video-on-Demand

Andrew MacQuire, Andrew Brampton, Nicholas J. P. Race and Laurent Mathy {macquire,brampton,race,laurent}@comp.lancs.ac.uk Computing Department Lancaster University, UK

> Michael Fry michael.fry@usyd.edu.au University of Sydney

