Chemistry 12 **REVIEW - REACTION KINETICS**

1. Write expressions with which you could express *rates* for the following reactions. (Hint: look at what happens to reactants and products.) Recall that *solid or liquids* can lose or gain *mass*, *gases* can lose or gain *volume* and *aqueous solutions* can increase or decrease in *concentration*. ("a" is done as an example.)

a)
$$Mg(s) + 2HCl(aq) \rightarrow H_{2(g)} + MgCl_{2(aq)}$$

or reaction rate =
$$\frac{\text{decrease in [HCl]}}{\text{unit time}}$$

or reaction rate =
$$\frac{\text{increase in } [MgCl_2]}{\text{unit time}}$$

b)
$$AgNO_{3(aq)} + NaCl_{(aq)} \rightarrow NaNO_{3(aq)} + AgCl_{(s)}$$

c)
$$C_{(s)} + O_{2(g)} \rightarrow CO_{2(g)}$$

- 2. For each of the following reactions find a *quantity* or *property* which could be monitored in order to measure the rate of reaction. ("a" is done as an example.)
 - a) $3H_{2(g)} + N_{2(g)} \rightarrow 2NH_{3(g)}$
 - pressure will <u>decrease</u> as reaction proceeds because you are going from **4 moles** of reactants to **2 moles** of products. Assuming you have a constant volume, less moles exert less pressure.

b)
$$CaCO_{3(s)} \rightarrow CaO_{(s)} + CO_{2(g)}$$

- <u>Two</u> things could be monitored here. Look at the **states** of everything carefully.
- 1 open system:
- 2 closed system:

c)
$$2NO_{2(g)} \rightarrow N_2O_{4(g)}$$
 brown colourless

Two things could be monitored here.

One is obvious. Look at the **states** of everything carefully for the other one.

3. A chemist wishes to determine the rate of reaction of beryllium with hydrochloric acid. The equation for the reaction is:

$$Be_{(s)} + 2HCl_{(aq)} \rightarrow H_{2(g)} + BeCl_{2(aq)}$$

A piece of beryllium is dropped into 1.00 L of $HCl_{(aq)}$ and the following data were obtained:

Time	Mass of Beryllium		
0 s	0.020 g		
4 s	0.018 g		
8 s	0.016 g		
12 s	0.014 g		
16 s	0.012 g		
20 s	0.010 g		

- a) Calculate the *Rate of Reaction* in *grams* of Be consumed per second.
- b) Calculate the Rate of Reaction in moles of Be consumed per second.
- c) What will happen to the [HCl] as the reaction proceeds?_____

4. When *pentane* (C₅H₁₂) is burned in air (*oxygen*), the products *carbon dioxide* and *water* are formed.

a) Write a *balanced formula equation* for this reaction.

- b) If pentane is consumed at an average rate of 2.16 grams/s, determine the rate of consumption of pentane in *moles/s*.
- c) If pentane is consumed at an average rate of 0.030 moles/s, determine the rate of consumption of *oxygen* in moles/s.
- d) If pentane is consumed at an average rate of 0.030 moles/s, determine the rate of production of CO_2 in moles/s.
- e) If pentane is consumed at an average rate of 0.030 moles/s, determine the rate of production of CO_2 in **grams/s**.
- 5. On the following set of axes, draw the shape of the curve you would expect if you plotted the *[HCI] vs. Time*, starting immediately after the two reactants are mixed. The equation for the reaction is:

8.

collision?

Explain how you got that particular shape. Be detailed.

- 6. How many possible collisions are there between 3 H₂ molecules and 3 I₂ molecules? (a diagram may help)
- a) In a room filled with H_2 and O_2 there are about 10^{32} collisions per second. Explain 7. why the reaction between H₂ and O₂ at room temperature is so slow as to be unnoticeable!
 - b) Suggest *two* ways in which the reaction in question "7a" could be *speeded up*.

1._____

What might be done to a *solid catalyst* in order to make it more efficient?

a) The following diagram shows a graph of Number of Particles vs. the Kinetic Energy for 9. a sample of molecules colliding:

Approximately what fraction of the molecules in the sample have enough energy for an effective

- b) On the diagram in question "a", draw the curve you would expect at a higher temperature in which the rate of the reaction is *doubled*. *Be careful to be accurate! Label it.*
- 10. a) When two moles of A react with one mole of B, a reaction occurs in which three moles of C are formed and 34.5 kJ of heat are given of D. Write an equation for this reaction showing the heat of reaction (ΔH) at the right of the equation.

b) Write a *thermochemical equation* for the reaction in (a) (ie. the Heat Term is right in the equation.)

c) Write a thermochemical equation which shows what happens when 3 moles of C decompose to form two moles of A and I mole of B. (See the reaction in "b")

d) What would happen to the *temperature* of the surroundings if the reaction mentioned in "a" was carried out? ______ This type of reaction which <u>releases</u> heat is called

e) In the reaction mentioned in question "a" which has *more enthalpy*, the reactants or the products?

f) What is meant by *enthalpy*?

11. Use the following *Potential Energy Diagram* to answer all the questions below:

Unit 1 - Keview Sneei

What is the value of ΔH for the <i>forward</i> reaction?							
What is the value of the <i>activation energy</i> for the <i>forward</i> reaction?							
What is the value of the <i>activation energy</i> for the <i>reverse</i> reaction?							
Which is a stronger bond, AA or AB?							
Explain your answer to (d)							
Which species is the <i>activated complex</i> ?							
Which set of species has the <i>lowest potential energy</i> ?							
Is the reaction as written endothermic or exothermic?							
What is the <i>minimum energy needed</i> to <i>start</i> the reaction $AB + A \rightarrow A_2 + B$?							
What happens to the <i>kinetic energy</i> (speed) of AB and A as the reaction on as							
shown on the graph proceeds past the activated complex and toward the products?							
For A ₂ and B to form the <i>activated complex</i> they must have the proper <i>energy</i> and the proper							
For A ₂ and B to form the <i>activated complex</i> they must have the proper <i>energy</i> and the proper If a catalyst C is used in this reaction, it takes place by means of a different							
For A_2 and B to form the <i>activated complex</i> they must have the proper <i>energy</i> and the proper							
For A ₂ and B to form the <i>activated complex</i> they must have the proper <i>energy</i> and the proper If a catalyst C is used in this reaction, it takes place by means of a different mechanism. This one involves two steps.							
For A ₂ and B to form the <i>activated complex</i> they must have the proper <i>energy</i> and the proper If a catalyst C is used in this reaction, it takes place by means of a different mechanism. This one involves two steps. $A_2 + C \rightarrow AC + A$ (slow)							
For A_2 and B to form the <i>activated complex</i> they must have the proper <i>energy</i> and the proper If a catalyst C is used in this reaction, it takes place by means of a different mechanism. This one involves two steps. $A_2 + C \rightarrow AC + A \qquad \text{(slow)}$ $AC + B \rightarrow AB + C \qquad \text{(fast)}$ Draw another curve on the graph with another colour showing the catalyzed reaction. (Remember it has two steps so it should have two bumps! Also be aware							

Unit 1 - Review Sheet

p) What effect did the *catalyst* have on the *activation energy* for the *forward* reaction?

For the reverse reaction?

q) What effect did the catalyst have on the ΔH of the forward reaction?

The reverse reaction?

12. Name four instances in which *catalysts* are used in industry or everyday life and tell *which catalysts* are used.

- 13. Describe what happens to the *kinetic energy*, *potential energy* and the *total energy* of reactant molecules as they approach each other.
- 14. Explain *why* a lower *activation energy* for a reaction leads to a greater reaction rate at a given temperature.
- 15. A small piece of zinc reacts with 2.0 M HCl to produce 12.0 mL of H₂ gas in 30.0 seconds at STP. Calculate the *rate of reaction* @ STP.
 - a) In mL of H₂/second
 - b) In moles of H₂/second
- 16. Which of the following reactions is *most likely* to have the *greatest rate* at room temperature?
 - a) $Ag^{+}_{(aq)} + I^{-}_{(aq)} \rightarrow AgI_{(s)}$
 - b) $H_{2(g)} + Cl_{2(g)} \rightarrow 2HCl_{(g)}$
 - c) $C_3H_{8(g)} + 5O_{2(g)} \rightarrow 3CO_{2(g)} + 4H_2O_{(g)}$
 - d) $Fe_{(s)} + S_{(s)} \rightarrow FeS_{(s)}$

Explain how you arrived at your answer.

17. State whether the following are *endothermic* or *exothermic*.

a) S + O₂
$$\rightarrow$$
 SO₂ Δ H = -297 kJ

b)
$$NO_2 + 33.8 \text{ kJ} \rightarrow 1/2 N_2 + O_2$$

c)
$$N_2 + O_2 + 90.4 \text{ kJ} \rightarrow 2\text{NO}$$

d)
$$N_2H_4 + O_2 \rightarrow N_2 + H_2O + 627.6 \text{ kJ}$$

18. Consider the reaction:

$$Ca_{(s)} + 2HBr_{(aq)} \rightarrow H_{2(g)} + CaBr_{2(aq)} + heat$$

State whether the following changes would *increase the rate* or not?:

- a) Let the CaBr₂ solution evaporate without changing the temperature.
- b) Allow the $H_{2(g)}$ to escape
- c) Decrease the temperature.
- d) Increase the temperature.
- e) Increase the [HBr] .

19. Consider the *rate* of the following reaction:

$$Sn_{(s)} + 2HCl_{(aq)} \rightarrow H_{2(g)} + SnCl_{2(aq)}$$

- a) Is it dependent on *temperature*? ______. Explain your answer.
- b) Is it dependent on *pressure*? ______. Explain your answer.
- c) Is it dependent on *surface area*? ______. Explain your answer.

20. Consider the following reaction:

$$2NO_{(g)} + 2H_{2(g)} \rightarrow N_{2(g)} + 2H_{2}O_{(g)}$$

Data collected for the above reaction was used to construct the following graph:

From this graph, determine the *rate of reaction* in *moles of NO consumed per second*.

21. Use the following *Potential Energy Diagram* to answer the questions below:

a) Determine the *Activation Energy* for the *forward* reaction... _____kJ

b) Determine the *Activation Energy* for the *reverse* reaction.... kJ

c) What is the *Enthalpy Change* (ΔH) for the *forward* reaction?.. kJ

d) What is the *Enthalpy Change* (ΔH) for the *reverse* reaction?.. kJ

Unit 1 - Review Sheet

f)	The reverse reaction is	thermic.	
g)	Which species or set of species forms the	e Activated Complex?	
h)	Which bond is stronger, AB or BC	?	Give a reason for
	VOUR ONGWOR		

e) The *forward* reaction is ______thermic.

- i) Particles from which species or set of species is moving the *fastest*? _______

 State how you arrived at your answer. ______
- j) Particles from which species or set of species is moving *most slowly*?

 State how you arrived at your answer.
- k) The compound "AB" is a gas and the element "C" is a solid. What effect would grinding "C" into a fine powder have on the graph shown here?
- 22. What two requirements must be met before a collision between two reactant particles is *effective*?
- 23. Describe what happens to two reactant particles which collide with *less* energy than the *Activation Energy*.

24. Given the following *Potential Energy Diagram* for a 3 step reaction, answer the questions below

PROGRESS OF REACTION

a) Which arrow indicates the <i>activation energy</i> for the <i>first</i> step of the reverse reaction?	
b) Which arrow indicates the <i>activation energy</i> for the <i>first</i> step of the forward reaction?	
c) Which arrow indicates the <i>activation energy</i> for the <i>second</i> step of the forward reaction?	
d) Which arrow indicates the <i>enthalpy change</i> (ΔH) <i>or "heat of reaction"</i> for the <i>overall</i> forward reaction?	
e) Which arrow indicates the <i>enthalpy change</i> (ΔH) <i>or "heat of reaction"</i> for the <i>overall</i> reverse reaction?	
f) Which arrow indicates the <i>activation energy</i> for the <i>overall</i> forward reaction?	
g) Which step would be the <i>rate determining step</i> in the <i>forward</i> reaction?	
Given the reaction: $HCOOH \rightarrow CO + H_2O$	
a) This reaction, without a catalyst, is very slow at room temperature. Suggest why.	
b) This reaction is thought to take place by means of the following mechanism when the cata	lyst
H^+ is added:	
Step 1: $HCOOH + H^+ \rightarrow HCOOH_2^+$ (fast)	
Step 2: $HCOOH_2^+ \rightarrow H_2O + HCO^+$ (slow)	
Step 3: $HCO^+ \rightarrow CO + H^+$ (fast)	
c) Identify the two <i>intermediates</i>	
d) Identify the <i>catalyst</i> in this mechanism	
e) Another catalyst is discovered which increases the rate of only Step 1. How will this affect	t the
rate of the <i>overall reaction</i> ? Explain your answer.	
f) Which step has the greatest <i>activation energy</i> ?	
g) How many "bumps" will the potential energy diagram for the catalyzed reaction have?	
1.) Which was is called the most of security in this was hearing?	
h) Which step is called the <i>rate determining step</i> in this mechanism?	
i) In order to have successful collisions, the colliding particles must have both the proper	
amount of <i>energy</i> and the proper	

Unit 1 - Review Sheet

f) On the set of axes below, draw the shape of the curve you might expect for the reaction in this question. The overall reaction is *exothermic*! Make sure you get the "bumps" the correct relative sizes.

Potential

Energy

Progress of Reaction

26. Given the following mechanism, answer the questions below:

Step 1: $O_3 + NO \rightarrow NO_2 + O_2$ (slow)

Step 2: $NO_2 + O \rightarrow NO + O_2$ (fast)

a) Give the equation for the *overall reaction*.

b) What could the *catalyst* be in this mechanism?

- c) What is an *intermediate* in this mechanism?
- 28. The equation for an *overall* reaction is: $I^- + OCl^- \rightarrow IO^- + Cl^$
 - a) The following is a proposed *mechanism* for this reaction. One of the species has been left out. *Determine what that species is and write it in the box.* Make sure the *charge* is correct if it has one!

Step 1: $OCl^- + H_2O \rightarrow HOCl + OH^-$ (fast)

Step 2: I^- + \longrightarrow $IOH + Cl^-$ (slow)

Step 3: $IOH + OH \rightarrow IO + H_2O$ (fast)

b) Which species in the mechanism above acts as a *catalyst*?

c) Which three species in the mechanism above are *intermediates*?

d) Step ______ is the *rate determining step*.

e) On the set of axes below, draw the shape of the curve you might expect for the reaction in this question. The overall reaction is *endothermic*! Make sure you get the "bumps" the correct relative sizes.

Pot Ene	ential ergy					

Progress of Reaction