

핵심운영체제

04 파일시스템

운영체제가 파일을 관리하는 방법을 알아봅시다

- 01 파일과 파일 시스템
- 02 디스크 할당
- 03 링크
- 04 마운트

01 파일과 파일 시스템

컴퓨터에서 정보를 담는 논리적인 저장 단위

• 파일은 비휘발성 기억장치에 저장되어 있다.

파일을 관리하기 위한 정보들

- 파일 이름
- 유형
- 저장된 위치
- 파일 크기
- 권한
- 생성된 시간, 변경된 시간
- •

☑ 디렉토리 (directory)

파일에 대한 여러 정보를 가지고 있는 특수한 파일

- 해당 디렉토리에 속한 파일의 이름과 속성들을 포함하고 있음
- 검색, 생성, 삭제 등의 기능을 제공

파일들을 쉽게 접근할 수 있도록 관리하는 체제

- 파일 시스템은 크게 디스크, 네트워크, 그리고 특수 용도의 파일 시스템으로 나뉨
- 운영 체제는 각각 파일 시스템을 가지고 있음

02 디스크 할당

⊘ 순차 접근 저장장치

- 앞에서부터 순서대로 읽어야 하는 저장 장치
- 원하는 지점을 찾기 어렵고 빨리 감기와 되감기 기능이 필요하다

◎ 직접 접근 저장장치

- 헤드를 옮겨 원하는 부분부터 접근이 가능
- 모든 데이터를 읽지 않고도 바로 원하는 곳에 접근이 가능

◈ 하드 디스크

- 플래터 사이사이에 정보를 읽고 쓸 수 있는 헤드가 들어가 있음
- 플래터가 회전하고 헤드가 정보를 읽어오는 방식

◈ 하드 디스크

- 트랙(Track): 플래터에서 띠 모양의 영역
- 섹터(Sector): 하드 드라이브의 최소 기억 단위

◈ 하드 디스크와 SSD

- 하드 디스크와 다르게 물리적인 기계 장치가 없이 전기 장치로만 구성되어 있음
- 모터와 같은 기계 장치가 없어서 하드 디스크에 비해서 훨씬 빠름

❷ 파일 할당

하드 디스크

1	2	3	4	5
7	8	9	10	11
12	13	14	15	16
18	19	20	21	22
24	25	26	27	28
30	31	32	33	34
36	37	38	39	40
42	43	44	45	46
	7 12 18 24 30 36	7 8 12 13 18 19 24 25 30 31 36 37	7 8 9 12 13 14 18 19 20 24 25 26 30 31 32 36 37 38	7 8 9 10 12 13 14 15 18 19 20 21 24 25 26 27 30 31 32 33 36 37 38 39

저장할 파일

- 하드 디스크는 블록이라는 단위로 나누어 번호를 붙임
- 파일을 저장하는 방법들이 여러가지가 있음

연속 할당 (Contiguous Allocation)

0	1	2	3	4	5
6	7	8	9	10	11
11	12	13	14	15	16
17	18	19	20	21	22
23	24	25	26	27	28
29	30	31	32	33	34
35	36	37	38	39	40
41	42	43	44	45	46

• 앞에서부터 차례대로 데이터를 입력하는 방식

- 헤드의 이동을 최소화하여 입출력 속도가 빠름
- 순차 접근과 직접 접근이 모두 가능

- 할당과 삭제를 반복할 경우 중간에 구멍이 생기는 외부 단편화가 발생
- 파일이 계속 커지는 경우에는 매우 부적절한 방법

데이터와 다음을 가리키는 포인터로 구성되어 한 줄로 연결된 자료구조

- 길이가 계속 변화하는 데이터에 적합한 자료구조
- 데이터를 읽고 포인터를 보고 다음 노드로 이동하는 작업을 반복하여 데이터를 읽음

화살표 데이터와 다음을 가리키는 포인터로 구성되어 한 줄로 연결된 자료구조

- 길이가 계속 변화하는 데이터에 적합한 자료구조
- 데이터를 읽고 포인터를 보고 다음 노드로 이동하는 작업을 반복하여 데이터를 읽음

아래를 보세요 ↓

엘리스 최고

个 위를 보세요

엘리스 최고

个 위를 보세요

아래를 보세요 ↓

엘리스최고 ← 왼쪽을 보세요

오른쪽을 보세요 →

↑ 위를 보세요

연결 할당 (Linked Allocation)

- 연결리스트와 같은 방식으로 파일을 할당
- 데이터와 주소를 저장하는 공간으로 나눠서 사용

• 외부 단편화 문제가 없다.

- 헤드가 여러 번 움직여야 한다.
- 직접 접근이 불가능하다.
- 한 칸이 손상되면 나머지 모든 데이터를 읽을 수 없다.

❷ 연결 할당의 단점

직접 접근이 불가능

이 파일의 3번째 칸은 어디인가요?

- 시작 위치를 알아도 화살표를 따라가지 않으면 다음 위치를 알 수 없음
- 한 파일은 무조건 처음부터 접근해야 함

❷ 연결 할당의 단점

한 칸이 손상되면 나머지 모든 데이터를 읽을 수 없음

- 화살표가 손상되면 다음으로 읽을 곳이 어디인지 알 수 없음

화살표들을 모아서 하나의 표로 저장해두자

1	
•••	
9	12
•••	
12	31
•••	
16	9
•••	
31	-1
•••	

0	1	2	3	4	5
6	7	8	9	10	11
11	12	13	14	15	16
17	18	19	20	21	22
23	24	25	26	27	28
29	30	31	32	33	34
35	36	37	38	39	40
41	42	43	44	45	46

- 각 칸이 다음은 어디로 연결되는지 FAT라는 테이블에 기록
- FAT만 읽어 두면 원하는 칸부터 접근하는 직접 접근도 가능
- 손상되어도 FAT를 보면 다음 칸이 어디인지 알 수 있음

FAT

FAT크기에 따라서 최대 파일 크기와 파티션의 크기가 제한됨

1	
•••	
9	12
•••	
12	31
•••	
16	9
•••	
31	-1
•••	

0	1	2	3	4	5
6	7	8	9	10	11
11	12	13	14	15	16
17	18	19	20	21	22
23	24	25	26	27	28
29	30	31	32	33	34
35	36	37	38	39	40
41	42	43	44	45	46

- (FAT에 기록할 수 있는 칸의 수) * (한 칸의 크기) 보다 큰 저장 장치에서는 사용할 수 없음
- 칸 번호의 자릿수를 늘림: 표가 커질수록 검색하는 시간이 증가
- 칸의 크기를 늘림: 작은 파일도 큰 칸에 저장하면서 단편화 발생

FAT에서 주소를 표시하는 비트 수를 변경하면서 발전

1	
•••	
9	12
•••	
12	31
•••	
16	9
•••	
31	-1
•••	

0	1	2	3	4	5
6	7	8	9	10	11
11	12	13	14	15	16
17	18	19	20	21	22
23	24	25	26	27	28
29	30	31	32	33	34
35	36	37	38	39	40
41	42	43	44	45	46

- 칸의 번호를 몇 비트로 기록할 것인지에 따라 버전이 달라짐
- FAT16, FAT32, exFAT가 그 예시
- 표가 아닌 트리의 형태로 저장하는 NFTS 방식도 등장

색인 할당 (Indexed Allocation)

- 번호들을 순서대로 한 칸에 기록
- 번호들이 기록된 칸을 인덱스 블록이라고 부름

- 인덱스 블록을 읽으면 직접 접근이 가능
- 외부 단편화 문제가 발생하지 않는다.

- 이 표를 저장하기 위해 파일마다 한 칸을 사용해야 한다
- 한 칸에 들어갈 수 없을 정도로 큰 파일은 저장할 수 없다

색인 할당 (Indexed Allocation)

- 번호들을 순서대로 한 칸에 기록
- 번호들이 기록된 칸을 인덱스 블록이라고 부름
- 파일이 인덱스 테이블의 위치를 가리킴

F1 Inode 12351

- 파일 유형
- 파일 접근 권한
- 파일 시간 정보
- •
- 파일이 저장된 블록 위치

F2 Inode 52231

- 파일 유형
- 파일 접근 권한
- 파일 시간 정보
- •
- 파일이 저장된 블록 위치

- 파일에 대한 모든 정보가 기록
- 각 노드에 번호를 부여함
- 모든 파일과 디렉토리는, 고유한 inode를 가짐

❷ 바로가기

- 바로가기를 삭제해도 원본 파일이 삭제되지 않음
- 바로가기를 실행하는 것은 해당 파일을 실행하는 것과 동일

❷ 심볼릭 링크와 하드링크

리눅스의 바로가기 기능

- 원본파일이 삭제되거나 경로가 변하면 링크가 끊어짐
- 링크 파일을 수정하면 원본 파일의 내용이 동일하게 수정됨
- 링크 파일도 별도의 inode를 가짐

하드 링크 (Hard link)

하드 링크 (Hard link)

하드 링크 (Hard link)

- 원본 파일을 이동하거나 삭제해도 하드 링크 파일은 그대로 사용할 수 있음
- 링크 파일을 수정하면 원본 파일도 수정됨
- 링크가 원본파일의 inode를 공유함

❷ 링크 생성하기

• 심볼릭 링크 생성

ln -s [원본파일] [심볼릭 링크 파일]

• 하드 링크 생성

ln [원본파일] [하드 링크 파일]

❷ 링크의 활용방법

• 대량의 데이터를 복사하는 대신 사용

- 대량의 데이터를 같은 폴더에 복사하는 대신 링크를 이용해 비슷한 편의성을 얻을 수 있음
- 여러 위치에 같은 데이터가 저장된 것처럼 사용할 수 있지만, 하드 디스크 용량은 한 번만 차지하고 있음
- 수정하면 원본도 같이 수정되는 점을 유의하면서 사용해야 함

04 마운트

물리적인 장치를 특정 디렉토리에 연결하는 것

- 새로운 물리 장치를 사용하기 위해서는 반드시 마운트를 해야함
- 일부 운영체제에서는 자동으로 마운트를 실행함

❷ 마운트가 필요한 이유

마운트를 해야 운영체제가 저장 장치를 인식하여 접근이 가능

- 저장 장치의 파일 시스템에 접근하려면 먼저 인식시키는 작업이 필요
- 운영체제가 저장 장치를 인식하도록 하는 작업이 마운트

❷ 마운트의 대상

대부분의 저장장치

플로피 디스크

❷ 왜 지금까지 몰랐을까

대부분 자동으로 마운트를 해주기 때문

플로피 디스크

❷ 윈도우에서 마운트

드라이브에 각 장치를 자동으로 마운트

플로피 디스크

❷ 리눅스에서 마운트

❷ 리눅스에서 마운트

❷ 리눅스에서 마운트

❷ 파일 시스템의 목록 확인하기

lsblk -p

• 파일 시스템의 목록을 확인하는 명령어

NAME	MAJ:MIN	RM	SIZE	RO	TYPE	MOUNTPOINT
/dev/sda	8:0	0	20G	0	disk	
-/dev/sda1	8:1	0	15.8G	0	part	/mnt/stateful_p
-/dev/sda2	8:2	0	16M	0	part	
-/dev/sda3	8:3	0	2G	0	part	
`-/dev/mapper/vroot	253:0	0	1.9G	1	dm	/
-/dev/sda4	8:4	0	16M	0	part	
-/dev/sda5	8:5	0	2G	0	part	
-/dev/sda6	8:6	0	512B	0	part	
l-/dev/sda7	8:7	0	512B	0	part	
-/dev/sda8	8:8	0	16M	0	part	/usr/share/oem
l-/dev/sda9	8:9	0	512B	0	part	
-/dev/sda10	8:10	0	512B	0	part	
-/dev/sda11	8:11	0	8M	0	part	
`-/dev/sda12	8:12	0	32M	0	part	

• NAME: 장치 이름

• TYPE: 장치 유형

• Disk: 디스크

• Part: 파티션

• MOUNTPOINT: 마운트된 위치

❷ 마운트 하기

sudo mount [옵션] [장치] [디렉토리]

- 장치: 장치의 이름
- 디렉토리: 이 장치를 연결할 디렉토리 이름
- 옵션에 -t 를 추가하면 파일 시스템의 유형을 입력(예: ext4)