1

Assignment 16

AVVARU BHARAT - EE20MTECH11008

Download the latex-tikz codes from

https://github.com/Bharat437/Matrix Theory/tree/master/Assignment16

1 Problem

(UGC,JUNE 2014,75):

Let **A** be 5×5 matrix and let **B** be obtained by changing one element of **A**. Let r and s be the ranks of **A** and **B** respectively. Which of the following statements is/are correct?

- 1) $s \le r + 1$
- 2) $r 1 \le s$
- 3) s = r 1
- 4) $s \neq r$

2 Explanation

Theorem	If M and N are two matrices whose ranks are $rank(M)$ and $rank(N)$ respectively. The	en
	$rank(\mathbf{M} + \mathbf{N}) \le rank(\mathbf{M}) + rank(\mathbf{N})$ (2.0.1)	

TABLE 1: Definitions and theorem used

3 Solution

Option	Solution	True/
		False
1.	Given matrix A has rank r and B has rank s . Also given matrix B is obtained by changing only one element of A . Lets assume another matrix P whose addition to matrix A results to matrix B as below.	
	$\mathbf{A} + \mathbf{P} = \mathbf{B} \tag{3.0.1}$	
	Since matrix P consists only single element we can say that $rank(P) = 1$ From (2.0.1), (3.0.1), we get	True
	$rank(\mathbf{A} + \mathbf{P}) \le rank(\mathbf{A}) + rank(\mathbf{P}) $ (3.0.2)	
	$\implies rank(\mathbf{B}) \le rank(\mathbf{A}) + rank(\mathbf{P}) \tag{3.0.3}$	
	$\implies s \le r + 1 \tag{3.0.4}$	
2.	From (3.0.1), If $\mathbf{P} = -\mathbf{Q}$ then we can get as below	

	$\mathbf{A} - \mathbf{Q} = \mathbf{B}$ $\Rightarrow \mathbf{B} + \mathbf{Q} = \mathbf{A}$ (3.0.5)	
	$\Rightarrow \mathbf{b} + \mathbf{Q} = \mathbf{A} \tag{5.0.0}$	"
	Since matrix \mathbf{Q} also consists only single element we can say that $rank(Q) = 1$ From (2.0.1), (3.0.6), we get	True
	$rank(\mathbf{B} + \mathbf{Q}) \le rank(\mathbf{B}) + rank(\mathbf{Q})$ (3.0.7)	')
	$\implies rank(\mathbf{A}) \le rank(\mathbf{B}) + rank(\mathbf{Q}) \tag{3.0.8}$	3)
	$\implies r \le s + 1 \tag{3.0.9}$))
	$\implies r - 1 \le s \tag{3.0.10}$))
3.	Let matrix \mathbf{A} be identity matrix then $rank(\mathbf{A})$ is 5 and matrix \mathbf{B} can be	
	$\mathbf{A} = \mathbf{I}_{5 \times 5} \tag{3.0.11}$.)
	$\mathbf{B} = \begin{pmatrix} 1 & 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 & 0 \\ 0 & 0 & 1 & 0 & 0 \\ 0 & 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 0 & 1 \end{pmatrix} $ (3.0.12)	False
	Then $rank(\mathbf{B})$ is also 5. Therefore $s = r - 1$ is always not true.	
4.	Similarly from (3.0.11),(3.0.12) we can say that $s \neq r$ is not true always.	False

TABLE 2: Solution