Lycée Pierre Mendès France – Tunis

Terminale EDS Mathématiques – Groupe 3

Évaluation: Suites et récurrence

Mardi 23 septembre 2025 – Durée : 1 heure

Consignes:

- La rédaction doit être claire, complète et rigoureuse. Chaque résultat doit être justifié.
- Écrire de manière lisible et aérée.
- Utiliser de préférence un stylo noir, ou à défaut un stylo bleu.
- Toute tentative de brouillon illisible ou de rédaction bâclée sera pénalisée.

Exercice 1 (5 points) – Monotonie par récurrence

On considère la suite (u_n) définie par :

$$u_0 = 1$$
, $u_{n+1} = \frac{u_n}{2} + 3$ pour tout $n \in \mathbb{N}$.

- 1. Calculer u_1 et u_2 .
- 2. Démontrer par récurrence que $u_{n+1} \ge u_n$ pour tout $n \in \mathbb{N}$.

Exercice 2 (5 points)

On considère la suite (v_n) définie par :

$$v_0 = 0$$
, $v_{n+1} = v_n + \frac{1}{2^n}$ pour tout $n \in \mathbb{N}$.

- 1. Calculer v_1, v_2, v_3 .
- 2. Démontrer par récurrence que, pour tout $n \in \mathbb{N}$, on a $v_n = 2 \frac{1}{2^{n-1}}$.

Exercice 3 (5 points) – Expression explicite par récurrence

On considère la suite (w_n) définie par :

$$w_0 = 2$$
, $w_{n+1} = 3w_n - 2$ pour tout $n \in \mathbb{N}$.

- 1. Calculer w_1 et w_2 .
- 2. Démontrer par récurrence que, pour tout $n, w_n = 1 + 3^n$.

Exercice 4 (5 points) – Propriété numérique

On définit la suite (p_n) par :

$$p_0 = 1$$
, $p_{n+1} = p_n + 2n + 1$.

- 1. Calculer p_1, p_2, p_3 .
- 2. Démontrer par récurrence que, pour tout $n \in \mathbb{N}$, $p_n = n^2 + 1$.

Barème indicatif:

Ex.1:5 pts Ex.2:5 pts Ex.3:5 pts Ex.4:5 pts

Total: 20 points