Partial Differential Equation - HW 4

SungBin Park, 20150462

December 24, 2018

Problem 1

I'll use some theorem from topology and functional analysis, and I'll follow the proof in Real Analysis, Gerland B. Folland.

Theorem 1. (The Baire Category Theorem) Let X be a complete metric space. Then,

- (a) If $\{U_n\}_1^{\infty}$ is a sequence of open dense subsets of X, i,e, $\overline{\bigcup_1^{\infty}U_n} = X$, then $\bigcap_1^{\infty}U_n$ is dense in X.
- (b) X is not a countable union of nowhere dense sets.

Proof. For (a), I'll show that nonempty open set V in X have intersection with $\cap_1^{\infty} U_n$ using induction. Since U_1 is open dense subset of X, $U_1 \cap W$ is open and nonempty, so there exists $B(x_0, r_0) \subset U_1 \cap W$ such that $0 < r_0 < 1$. For n > 0, choose x_n and r_n by follows: assume that for j < n, x_j and r_j are chosen. Then, $B(x_{n-1}, r_{n-1}) \cap U_n$ is nonempty and open. Choose $x_n \in B(x_{n-1}, r_{n-1}) \cap U_n$ and choose $0 < r_n < 2^{-n}$ such that $B(x_n, r_n) \subset B(x_{n-1}, r_{n-1})$. For $n, m \ge N, x_n, x_m \in B(x_N, r_N)$, and $r_N \to 0$ as $N \to \infty$. Therefore, $\{x_n\}$ is a Cauchy sequence in X and have limit point $x \in X$. Since $x_n \in B(r_N, x_N)$ for

all $n \ge N$, $x \in \overline{B(x_N, r_N)} \subset U_N \cap B(x_0, r_0) \subset U_N \cap W$ for all N, implying $(\bigcap_{n=1}^{\infty} U_n) \cap W \ne \phi$. For (b), If $\{E_n\}_{n=1}^{\infty}$ is a sequence of nowhere dense subsets in X, then $\{\overline{E_n}\}$ are a open dense sets since for fixed n and for any $x \in \overline{E}$, $B(x,r) \cap \overline{E}^c \neq \phi$ for all r > 0. Since $\cap (\overline{E_n})^c \neq \phi$, $\cup E_n \subset \cup \overline{E_n} \neq X$.

Theorem 2. (Open Mapping Theorem) Let X and Y be Banach spaces. If T is a surjective bounded linear functional from X to Y, T is a open map.

Proof. If T(B(0,1)) contains a ball of radius r>0, T is open map since for any open set $x\in U$ in X, it contains open ball B(x,r), r>0 and T(B(x,r))=T(x)+T(B(0,r))=T(x)+rT(B(0,1)), which is open set in Y centered at T(x). Therefore, I'll show that T(B(0,1)) contains a ball of radius r>0. I'll denote $B(0,r) = B_r$.

Since $X = \bigcup_{n=1}^{\infty} B_n$ and T is surjective, $Y = T(\bigcup_{n=1}^{\infty} B_n)$. If $T(B_1)$ is nowhere dense, $T(B_n)$ are nowhere dense since dialation in Y induces homeomorphism. However, this is impossible by the Baire Category Theorem since Y is complete. Therefore, $\overline{T(B_1)}$ contains an open ball in Y and let it $B(y_0, 4r)$ for some $y_0 \in Y, r > 0$. Choose $y_1 = Tx_1 \in T(B_1)$ such that $||y_1 - y_0|| \le 2r$; then $B(y_1, 2r) \subset B(y_0, 4r) \subset \overline{T(B_1)}$, so if ||y|| < 2r,

$$y = -Tx_1 + (y_1 + y) \in \overline{T(-x_1 + B_1)} \subset \overline{T(B_2)}.$$

Dividing both by 2, we get if ||y|| < r, $y \in \overline{T(B_1)}$. I need to change $\overline{T(B_1)}$ to $T(B_1)$.

As noted above, dialation induces homeomorphism, so if $||y|| < r/2^n$, $y \in \overline{T(B_{1/2^n})}$. Suppose that $y \in r/2$, then there exists $x_1 \in B_{1/2}$ such that $||y - Tx_1|| \le r/4$. Proceeding this argument, we can find x_n satisfying $\left\|y-T\sum_{i=1}^n x_i\right\| \le r/2^{n+1}$. Since X is complete and $\left\|\sum_{i=n}^m x_i\right\| \le 2^{-n+1}$, it has convergent point x and $\|x\| \le 1$ and Tx=y since $\|Tx-y\|=0$ in Y. Therefore, $T(B_1)$ contains all y in $\|y\| < r/2$.

Theorem 3. (Closed Graph Theorem) If X and Y are Banach spaces and $T: X \to Y$ is a closed linear map, then T is bounded.

Proof. Let π_1 and π_2 be the projection of $\Gamma(T) := \{(x, Tx) \in X \times Y\}$ to X and Y, then these maps are onto. It is clear that π_1 and π_2 are bounded linear functional. ALso, $X \times Y$ and $\Gamma(T)$ is complete since X and Y are complete and $\Gamma(T)$ is closed as T is closed. Since π_1 is a bijection between $\Gamma(T)$ and X, π_1^{-1} is continuous since π_1 bounded and continuous. Thus, $T = \pi_2 \circ \pi_1^{-1}$ is bounded.

If $\eta \in \rho(A)$, $A - \eta Id$ is one-to-one and onto by definition. Therefore, we can consider the inverse $(A - \eta Id)^{-1}$. I'll first show that this is closed linear map.

Linearity: Fix $y_1, y_2 \in X$ and $r \in \mathbb{R}$ or \mathbb{C} . Then, there uniquely exists x_1 and x_2 in X such that $(A - \eta \operatorname{Id})(x_i) = y_i$ for each i and $(A - \eta \operatorname{Id})(rx_i) = ry_i$. Therefore, $(A - \eta \operatorname{Id})^{-1}(y_i) = x_i$ and $(A - \eta \operatorname{Id})^{-1}(y_1 + ry_2) = x_1 + rx_2$. Thus, $(A - \eta \operatorname{Id})$ is bijective and linear.

Closedness: Suppose $y_n \to y$ in X and $(A - \eta \operatorname{Id})^{-1}(y_n) \to x$. We need to show that $(A - \eta \operatorname{Id})^{-1}(y) = x$. The second assumption implies that $y_n \to (A - \eta \operatorname{Id})(x)$ since $(A - \eta \operatorname{Id})$ is continuous. (Note that boundedness implies continuity if X is normed vector space and the map is linear.) The normed topology in Banach space gives Hausdorff property: if $x_1 \neq x_2$, $r = ||x_1 - x_2|| > 0$ and $B(x_1, r/3)$, $B(x_2, r/3)$ gives disjoint neighborhoods of each x_i . Therefore, y_n converges to same point and $(A - \eta \operatorname{Id})(x) = y$.

Since X is Banach space and $(A - \eta \operatorname{Id})^{-1} : X \to X$ is closed linear map, it is bounded by the Closed Graph Theorem.

Problem 2

- (a) I'll check the condition for inner product.
 - (1) For all $u, u_* \in \mathcal{H}$,

$$\overline{(u_*, u)}_{\mathcal{H}} = \overline{\int_{\Omega} (v_* + iw_*)(v - iw) + (Dv_* + iDw_*)(Dv - iDw)dx}$$

$$= \int_{\Omega} (v_* - iw_*)(v + iw) + (Dv_* - iDw_*)(Dv + iDw)dx \text{ since } v, w, v_*, w_* : X \to \mathbb{R}$$

$$= (u, u_*)_{\mathcal{H}}.$$

(2) For $a, b \in \mathbb{C}$ and $u, u_*, u_{**} \in \mathcal{H}$,

$$(au + bu_*, u_{**})_{\mathcal{H}} = \int_{\Omega} ((av + bv_*) + i(aw + bw_*))(v_{**} - iw_{**})$$

$$+ (D(av + bv_*) + iD(aw + bw_*))(Dv_{**} - iDw_{**})dx$$

$$= a \int_{\Omega} (v + iw)(v_{**} - iw_{**}) + (Dv + iDw)(Dv_{**} - iDw_{**})dx$$

$$+ b \int_{\Omega} (v_* + iw_*)(v_{**} - iw_{**}) + (Dv_* + iDw_*)(Dv_{**} - iDw_{**})dx$$

$$= a(u, u_{**})_{\mathcal{H}} + b(u_*, u_{**})_{\mathcal{H}}.$$

(3) For nonzero $u \in \mathcal{H}$,

$$(u,u)_{\mathcal{H}} = \int_{\Omega} (v+iw)(v-iw) + (Dv+iDw)(Dv-iDw)dx$$
$$= \int_{\Omega} v^2 + w^2 + |Dv|^2 + |Dw|^2 dx$$
$$= ||v||_{H_0^1(\Omega)}^2 + ||w||_{H_0^1(\Omega)}^2 \in (0,\infty).$$

If both $\|v\|_{H_0^1(\Omega)}^2$ and $\|w\|_{H_0^1(\Omega)}^2$ are zero, v=w=0 in $H_0^1(\Omega)$ and it means u=0, which is contradiction

Therefore, $(\cdot, \cdot)_{\mathcal{H}}$ yields an inner product in \mathcal{H} .

(b) First, note that \mathcal{H} is a Hilbert space.(First, $H_0^1(\Omega)$ is a Hilbert space as a closed subspace of Hilbert space $H^1(\Omega)$. Assume that $\{u_j\}_{j=1}^{\infty}$ is a Cauchy sequence in \mathcal{H} about the norm defined above. By (3) in (a), $(u_i - u_j, u_i - u_j)_{\mathcal{H}} = \|\operatorname{Re}(u_i - u_j)\|_{H_0^1(\Omega)}^2 + \|\operatorname{Im}(u_i - u_j)\|_{H_0^1(\Omega)}^2$ and both $\operatorname{Re}(u_i - u_j)$ and $\operatorname{Im}(u_i - u_j)$ are Cauchy sequence. Therefore, it has a convergent subsequence and \mathcal{H} is a Hilbert space.) I'll first show that the bilinear form B is bounded.

Bilinearity: For $u_1, u_2, v_1, v_2 \in \mathcal{H}$ and $c \in \mathbb{C}$,

$$B[cu_1 + u_2, v_1] = \int_{\Omega} a_{ij} \partial_i (cu_1 + u_2) \partial \overline{v}_1 \, dx$$

$$= c \int_{\Omega} a_{ij} \partial_i u_1 \partial \overline{v}_1 \, dx + \int_{\Omega} a_{ij} \partial_i u_2 \partial \overline{v}_1 \, dx$$

$$= cB[u_1, v_1] + B[u_2, v_1]$$

and

$$B[u_1, cv_1 + v_2] = \int_{\Omega} a_{ij} \partial_i u_1 \partial(c\overline{v}_1 + \overline{v}_2) dx$$

$$= \overline{c} \int_{\Omega} a_{ij} \partial_i u_1 \partial \overline{v}_1 dx + \int_{\Omega} a_{ij} \partial_i u_2 \partial \overline{v}_1 dx$$

$$= \overline{c} B[u_1, v_1] + B[u_2, v_1]$$

Boundedness: For $u, v \in \mathcal{H}$,

$$\begin{split} |B[u,v]| &= \left| \int_{\Omega} a_{ij} \partial_i u \partial_j \overline{v} \ dx \right| \\ &= \left| \int_{\Omega} a_{ij} \partial_i (\operatorname{Re}(u) + i \operatorname{Im}(u)) \partial_j (\operatorname{Re}(v) - i \operatorname{Im}(v)) \ dx \right| \\ &= \left| \int_{\Omega} a_{ij} (\partial_i \operatorname{Re}(u) \partial_j \operatorname{Re}(v) - \partial_i \operatorname{Im}(u) \partial_j \operatorname{Im}(v)) \right| \ dx \\ &+ \left| \int_{\Omega} a_{ij} (\partial_i \operatorname{Re}(u) \partial_j \operatorname{Im}(v) + \partial_i \operatorname{Im}(u) \partial_j \operatorname{Re}(v)) \right| \ dx \right| \\ &\leq \int_{\Omega} \frac{1}{\mu} (|D(\operatorname{Re}(u))||D(\operatorname{Re}(v))| + |D(\operatorname{Im}(u))||D(\operatorname{Im}(v))|) \ dx \\ &+ \int_{\Omega} \frac{1}{\mu} (|D(\operatorname{Re}(u))||D(\operatorname{Im}(v))| + |D(\operatorname{Im}(u))||D(\operatorname{Re}(v))|) \ dx \\ &= \frac{1}{\mu} \left(\|D(\operatorname{Re}(u))\|_{L^2(\Omega)} + \|D(\operatorname{Im}(u))\|_{L^2(\Omega)} \right) \left(\|D(\operatorname{Re}(v))\|_{L^2(\Omega)} + \|D(\operatorname{Im}(v))\|_{L^2(\Omega)} \right) \\ &\leq \frac{1}{\mu} \|u\|_{\mathcal{H}} \|v\|_{\mathcal{H}}. \end{split}$$

In the middle step (*), I used the diagonalizable of positive definite matrix of A: For unit vector $\eta_1 \in \mathbb{R}^n$, it can be decomposed by the eigenvectors of A, so if

$$\eta_1 = \sum_{i=1}^n b_i \xi_i$$

for unit eigenvectors of $A \{\xi_i\}$, then

$$A\eta_1 = \sum_{i=1}^n \lambda_i b_i \xi_i$$

and, for unit vector $\eta_2 \in \mathbb{R}^n$ with decomposition $\eta_2 = \sum_{i=1}^n c_i \xi_i$,

$$\eta_2^T A \eta_1 = \sum_{i=1}^n \lambda_i c_i b_i \le \max\{|\lambda_i|\} = \frac{1}{\mu}$$

since all the eigenvalues are not bigger than $\frac{1}{\mu}$ and are not smaller than $\mu > 0$.

Therefore, it is bounded in \mathcal{H} . Fix $u \in \mathcal{H}$ and consider a bounded linear functional T on \mathcal{H} such that T(v) = B[u, v] for all $v \in \mathcal{H}$. I can use the Riesz Representation Thereom and find a unique element $w \in \mathcal{H}$ satisfying

$$B[u,v] = (w,v)_{\mathcal{H}}$$

for all $v \in \mathcal{H}$. It means we can find $w \in \mathcal{H}$ satisfying above for each $u \in \mathcal{H}$, so we can construct $\mathcal{L}: \mathcal{H} \to \mathcal{H}$ such that $\mathcal{L}(u) = w$. I need to show that this is bounded linear functional.

Linearity: For $\lambda_1, \lambda_2 \in \mathbb{C}$, $u_1, u_2, v \in \mathcal{H}$,

$$(\mathcal{L}(\lambda_1 u_1 + \lambda_2 u_2), v)_{\mathcal{H}} = B[\lambda_1 u_1 + \lambda_2 u_2, v]$$

$$= \lambda_1 B[u_1, v] + \lambda_2 B[u_2, v]$$

$$= \lambda_1 (\mathcal{L}(u_1), v)_{\mathcal{H}} + \lambda_2 (\mathcal{L}(u_2), v)_{\mathcal{H}}$$

$$= (\lambda_1 \mathcal{L}(u_1) + \lambda_2 \mathcal{L}(u_2), v)_{\mathcal{H}}$$

for all $v \in \mathcal{H}$. By the uniqueness part of the Riesz Representation Theorem, $\mathcal{L}(\lambda_1 u_1 + \lambda_2 u_2) = \lambda_1 \mathcal{L}(u_1) + \lambda_2 \mathcal{L}(u_2)$.

Boundedness: For $u \in \mathcal{H}$,

$$\|\mathcal{L}u\|_{\mathcal{H}}^2 = (\mathcal{L}u, \mathcal{L}u)_{\mathcal{H}} = B[u, \mathcal{L}u] \le \frac{1}{u} \|u\|_{\mathcal{H}} \|\mathcal{L}u\|_{\mathcal{H}}$$

Therefore, $\|\mathcal{L}u\|_{\mathcal{H}} \leq \frac{1}{\mu} \|u\|_{\mathcal{H}}$ and \mathcal{L} is bounded.

(c) First, \mathcal{L}^* is well-defined since if $v_1 = v_2$ in \mathcal{H} , $(u, \mathcal{L}^*v_1) = (\mathcal{L}u, v_1) = (\mathcal{L}u, v_2) = (u, \mathcal{L}^*v_2)$ for all $u \in \mathcal{H}$, so $\mathcal{L}^*v_1 = \mathcal{L}^*v_2$.

Since (a_{ij}) is real valued and $a_{ij} = a_{ji}$, $B[u,v] = B[\overline{v},\overline{u}] = \overline{B[v,u]}$. Using this relation, for fixed $u \in \mathcal{H}$ and all $v \in \mathcal{H}$,

$$(\mathcal{L}^*u,v)_{\mathcal{H}}=\overline{(v,\mathcal{L}^*u)_{\mathcal{H}}}=\overline{(\mathcal{L}v,u)_{\mathcal{H}}}=\overline{B[v,u]}=B[\overline{v},\overline{u}]=B[u,v]=(\mathcal{L}u,v)_{\mathcal{H}}.$$

Therefore, $(\mathcal{L}u, v)_{\mathcal{H}} = (\mathcal{L}^*u, v)_{\mathcal{H}}$ for all v and by Riesz Representation Theorem again, $\mathcal{L}^*u = \mathcal{L}u$ for all $u \in \mathcal{H}$.

(d) Suppose u is a nontrivial weak solution for the eigenvalue problem. By computing inner product;

$$\int_{\Omega} (Lu)\overline{v} = \int_{\Omega} -\partial_j (a_{ij}\partial_i u)\overline{v} = \int_{\Omega} a_{ij}\partial_i u\partial_j \overline{v} = B[u,v]$$

for all $v \in \mathcal{H}$ since the real part and imaginary part of u, v are in $H_0^1(\Omega)$. Therefore, we can define the condition of weak solution u to satisfy

$$B[u,v] = (\lambda u, v)_{L^2(\Omega)}$$

for all $v \in \mathcal{H}$. However, as u = 0 on $\partial \Omega$, $u \in \mathcal{H}$ and

$$B[u,u] = (\mathcal{L}u,u)_{\mathcal{H}} = (\mathcal{L}^*u,u)_{\mathcal{H}} = (u,\mathcal{L}u)_{\mathcal{H}} = \overline{(\mathcal{L}u,u)_{\mathcal{H}}} = \overline{B[u,u]}$$

and it makes $\lambda(u,u)_{L^2(\Omega)}=(\lambda u,u)_{L^2(\Omega)}=\overline{(\lambda u,u)_{L^2(\Omega)}}=\overline{\lambda(u,u)_{L^2(\Omega)}}$. The only case to consider is that $(u,u)_{L^2(\Omega)}\neq 0$. Assume that $(u,u)_{L^2(\Omega)}=0$, then $\|u\|_{\mathcal{H}}=\|Du\|_{H^1_0(\Omega)}>0$. However, it means

$$|B[u,u]| = \left| \int_{\Omega} a_{ij} \partial_i u \partial_j \overline{u} \, dx \right| \ge \mu \|Du\|^2 > 0$$

which is contradiction since $B[u,u]=(\lambda u,u)_{L^2(\Omega)}=\lambda(u,u)_{L^2(\Omega)}=0$. Therefore, $\lambda\in\mathbb{R}$.

Problem 3

Since $u \in H^1(\Omega)$ is a weak solution to

$$\begin{cases} Lu = f & \text{in } \Omega \\ u = g & \text{in } \partial\Omega, \end{cases}$$

for all $v \in H_0^1(\Omega)$,

$$B[u,v] = \int_{\Omega} fv \ dx$$

where the bilinear form $B[\cdot,\cdot]$ is defined by

$$\int_{\Omega} \sum_{i,j} a_{ij} \partial_i u \partial_j v + \sum_i b_i v \partial_i u + cuv \ dx.$$

Define $w = u - g \in H^1(\Omega)$ (since $g \in H^1(\Omega)$), then B[u,v] = B[w+g,v] = B[w,v] + B[g,v], and

$$B[w,v] = \int_{\Omega} fv - \sum_{i,j} a_{ij} \partial_i g \partial_j v + \sum_i b_i v \partial_i g + cgv \, dx$$

and w is a weak solution for

$$\begin{cases} Lw = Lu - Lg = f - Lg & \text{in } \Omega \\ w = 0 & \text{on } \partial\Omega. \end{cases}$$

I'll show the boundedness by contradiction. Assume that there exists $\{u_k'\}_{k=1}^{\infty}$, $\{f_k'\}$, $\{g_k'\}$ satisfying

$$||u_k'||_{L^2(\Omega)} > k \left(||f_k'||_{L^2(\Omega)} + ||g_k'||_{H^1(\Omega)} \right)$$

and the boundary value problem. Let $u_k = \frac{u_k'}{\|u_k'\|_{L^2(\Omega)}}$, $f_k = f_k'/\|u_k'\|_{L^2(\Omega)}$, $g_k = g_k'/\|u_k'\|_{L^2(\Omega)}$, then u_k also satisfies the boundary value problem for f_k and g_k and the inequality

$$||u_k||_{L^2(\Omega)} > k \left(||f_k||_{L^2(\Omega)} + ||g_k||_{H^1(\Omega)} \right).$$

Since $||u_k||_{L^2(\Omega)} = 1$ for all k, $||f_k||_{L^2(\Omega)}$, $||g_k||_{H^1(\Omega)} \to 0$ as $k \to \infty$. By a variation of energy estimation,

$$\|u_k\|_{H^1(\Omega)}^2 \le C \left(\|f_k\|_{L^2(\Omega)} \|u_k\|_{L^2(\Omega)} + \|u_k\|_{L^2(\Omega)}^2 \right)$$

for the constant C not depending on f_k and u_k . (By the ellipticity condition, there exists $\theta > 0$ such that

$$\begin{split} \theta \int_{\Omega} |Du|^2 dx &\leq \int_{\Omega} a_{ij} \partial_i u \partial_j u dx \\ &= B[u,u] - \int_{\Omega} b_i u \partial_i u + c u^2 dx \\ &= B[u,u] + \sum_i \|b_i\|_{L^{\infty}} \int_{\Omega} \int_{\Omega} |Du| |u| dx + \|c\|_{L^{\infty}} \int_{\Omega} u^2 dx \end{split}$$

and by Cauchy's inequality,

$$\int_{\Omega} \int_{\Omega} |Du| |u| dx \le \epsilon \int_{\Omega} |Du|^2 dx + \frac{1}{4\epsilon} \int_{\Omega} u^2 dx$$

for $\epsilon > 0$. By choosing small enough ϵ to satisfy

$$\epsilon \sum_{i} \|b_i\|_{L^{\infty}} < \theta/2,$$

we get

$$\frac{\theta}{2} \int_{\Omega} \left| Du \right|^2 dx \le B[u, u] + C \int_{\Omega} u^2 dx$$

for constant C. By adding $\frac{\theta}{2} \int_{\Omega} u^2 dx$ on both side, we get

$$\|u\|_{H^1(\Omega)}^2 \le C(B[u,u] + \|u\|_{L^2(\Omega)}^2) \le C'\left(\|f_k\|_{L^2(\Omega)} \|u_k\|_{L^2(\Omega)} + \|u_k\|_{L^2(\Omega)}^2\right)$$

which is the above inequality.)

Since $\|f_k\|_{L^2(\Omega)} \to 0$ and $\|u_k\|_{L^2(\Omega)}^2 = 1$, $\|u_k\|_{H^1(\Omega)}$ is uniformly bounded. Therefore, by compact embedding theorem, (For n > 2, we can use Rellich-Kondrachov Theorem and for n = 2, we choose p close enough to n = 2 such that $2 < p^*$ and as $H^1(\Omega) \subset W^{1,p}(\Omega)$, we again use Rellich-Kondrachov Theorem. For n = 1, since $n , it can be done by Morrey's inequality and Arzela-Ascoli compactness theorem, which was the last HW.) there exists subsequence <math>\{u_{k_j}\}_{j=1}^{\infty}$ such that

$$\begin{cases} u_{k_j} \rightharpoonup u & \text{weakly in } H^1(\Omega) \\ u_{k_j} \to u & \text{in } L^2(\Omega) \end{cases}$$

where $u \in H^1(\Omega)$. (Note that $H^1(\Omega)$ is a Hilbert space.) Since $||u_{k_j}||_{L^2(\Omega)} = 1$ for all j, $||u||_{L^2(\Omega)} = 1$. Also,

$$\begin{cases} \lim_{k_j \to \infty} B[u_{k_j}, \eta] = \lim_{k_j \to \infty} (f_{k_j}, \eta)_{L^2(\Omega)} = 0 & \text{By } L^2 \text{ convergence} \\ \lim_{k_j \to \infty} B[u_{k_j}, \eta] = B[u, \eta] & \text{By } H^1 \text{ weak convergence.} \end{cases}$$

for all $\eta \in H_0^1(\Omega)$. Therefore, u is a nontrivial weak solution of the BVP:

$$\begin{cases} Lu = 0 & \text{in } \Omega \\ u = 0 & \text{in } \partial\Omega, \end{cases}$$

However, this is impossible by the given condition. Therefore, there exists C not depending on u, f, g such that

$$||u||_{L^2(\Omega)} \le C \left(||f||_{L^2(\Omega)} + ||g||_{H^1(\Omega)} \right)$$

Also, by the above equation,

$$\begin{split} \|u\|_{H^{1}(\Omega)}^{2} &\leq C \left(\|f\|_{L^{2}(\Omega)} \|u\|_{L^{2}(\Omega)} + \|u\|_{L^{2}(\Omega)}^{2} \right) \\ &\leq C \left(\|f\|_{L^{2}(\Omega)} \|u\|_{H^{1}(\Omega)} + \|u\|_{L^{2}(\Omega)} \|u\|_{H^{1}(\Omega)} \right) \\ &\leq C' \left(\|f\|_{L^{2}(\Omega)} + \|g\|_{H^{1}(\Omega)} \right) \|u\|_{H^{1}(\Omega)} \end{split}$$

and

$$||u||_{H^1(\Omega)} \le C \left(||f||_{L^2(\Omega)} + ||g||_{H^1(\Omega)} \right) ||u||_{H^1(\Omega)}$$

where the constant C not depending on u, f, g.

Problem 4

(a) By computation,

$$\int_{\Omega} -v \triangle u + cuv \ dx = \int_{\Omega} -\sum_{i=1}^{n} \partial_{i}(v\partial_{i}u) + \partial_{i}v\partial_{i}u + cuv \ dx$$

$$= \int_{\partial\Omega} -\sum_{i=1}^{n} (v\partial_{i}u) \nu^{i} dS + \int_{\Omega} -\partial_{i}v\partial_{i}u + cuv \ dx$$

$$= \int_{\partial\Omega} v \nabla u \cdot \boldsymbol{\nu}_{\text{in}} dS + \int_{\Omega} \partial_{i}v\partial_{i}u + cuv \ dx$$

$$= \int_{\partial\Omega} gv \ dS + \int_{\Omega} \partial_{i}v\partial_{i}u + cuv \ dx$$

$$= \int_{\Omega} fv \ dx$$

for $u, v \in H^1(\Omega)$ and $\boldsymbol{\nu}_{\text{out}} = (\nu^1, \nu^2, \dots, \nu^n)$ outward unit normal vector on $\partial\Omega$. Therefore, the definition of weak solution of this problem:

$$B[u,v] = \int_{\Omega} \nabla u \nabla v + cuv \ dx = \int_{\Omega} fv \ dx - \int_{\partial \Omega} gv \ dS$$

makes sense.

(b) First, note that $H^1(\Omega)$ is a Hilbert space. Define a bilinear form $B[\cdot,\cdot]$ by

$$\int_{\Omega} \nabla u \nabla v + cuv \ dx.$$

I'll show that this is well-defined elliptic form on $H^1(\Omega)$.

Bilinear: For $u_1, u_2, v_1, v_2 \in H^1(\Omega)$ and $a \in \mathbb{R}$ or \mathbb{C} ,

$$B[au_1 + u_2, v_1] = \int_{\Omega} \nabla (au_1 + u_2) \nabla v_1 + c(au_1 + u_2) v_1 \, dx$$

$$= a \int_{\Omega} \nabla u_1 \nabla v_1 + cu_1 v_1 \, dx + \int_{\Omega} \nabla u_2 \nabla v_1 + cu_2 v_1 \, dx$$

$$= aB[u_1, v_1] + B[u_2, v_1]$$

and

$$B[u_1, av_1 + v_2] = \int_{\Omega} \nabla u_1 \nabla (av_1 + v_2) + cu_1 (av_1 + v_2) dx$$

$$= a \int_{\Omega} \nabla u_1 \nabla v_1 + cu_1 v_1 dx + \int_{\Omega} \nabla u_1 \nabla v_2 + cu_1 v_2 dx$$

$$= aB[u_1, v_1] + B[u_1, v_2]$$

Boundedness: For $u, v \in H^1(\Omega)$,

$$\begin{split} |B[u,v]| &= \left| \int_{\Omega} \nabla u \nabla v + cuv \ dx \right| \\ &\leq \|Du\|_{L^{2}(\Omega)}^{1/2} \|Dv\|_{L^{2}(\Omega)}^{1/2} + \|c\|_{L^{\infty}(\Omega)} \|u\|_{L^{2}(\Omega)} \|v\|_{L^{2}(\Omega)} \\ &\leq C(\|u\|_{L^{2}(\Omega)} + \|Du\|_{L^{2}(\Omega)}) (\|v\|_{L^{2}(\Omega)} + \|Dv\|_{L^{2}(\Omega)}) \\ &= C\|u\|_{H^{1}(\Omega)} \|v\|_{H^{1}(\Omega)} \end{split}$$

for constant C depending only on Ω and c.

Coercivity: For $u \in H^1\Omega$,

$$B[u, u] = \int_{\Omega} \nabla u \nabla u + cu^{2} dx$$

$$= \|Du\|_{L^{2}(\Omega)}^{2} + \|c\|_{L^{\infty}(\Omega)} \|u\|_{L^{2}(\Omega)}^{2}$$

$$\geq \min\{1, \mu_{0}\} \|u\|_{H^{1}(\Omega)}^{2}$$

Furthermore, define $I(f,g):H^1(\Omega)\to\mathbb{R}$ by

$$I: v \mapsto \int_{\Omega} fv \ dx - \int_{\Omega} gv \ dS.$$

Then, this is bounded linear function on $H^1(\Omega)$ since it is definitely linear and $I(v) = \left| \int_{\Omega} f v \ dx \right| + \left| \int_{\Omega} g v \ dS \right| \le \|f\|_{L^2(\Omega)} \|v\|_{H^1(\Omega)} + C \|g\|_{L^2(\partial\Omega)} \|v\|_{H^1(\Omega)}$. (In the final step, I used trace inequality.)

By Lax-Millgram theorem, there exists a unique element $u \in H^1(\Omega)$ such that

$$B[u, v] = I(v)$$

for all $v \in H^1(\Omega)$. Therefore, there exists unique weak solution to the boundary value problem.

(c) If $u \in H^1(\Omega)$ is a weak solution to the boundary value problem,

$$\min\{1,\mu_0\}\|u\|_{H^1(\Omega)}^2 \leq |B[u,u]| = |I(u)| \leq \|f\|_{L^2(\Omega)}\|u\|_{H^1(\Omega)} + C\|g\|_{L^2(\partial\Omega)}\|u\|_{H^1(\Omega)}$$

so,

$$||u||_{H^1(\Omega)} \le C'(||f||_{L^2(\Omega)} + ||g||_{L^2(\partial\Omega)})$$

for some C < C' constants depending only on c, Ω .

Problem 5

(a) For $u, v \in H^1(\Omega)$,

(i)

$$(v,u)_{H^1} = \int_{\Omega} \nabla u \cdot \nabla v \, dx + \int_{\partial \Omega} uv \, dS$$
$$= \int_{\Omega} \nabla v \cdot \nabla u \, dx + \int_{\partial \Omega} vu \, dS$$
$$= (u,v)_{H^1}$$

Therefore, $(u, v)_{H^1} = (v, u)_{H^1}$.

(ii) Since Ω is bounded and ∂U is C^{∞} , consider a trace operator, which is bounded linear operator,

$$T: H^1(\Omega) \to L^2(\partial\Omega)$$

such that $Tu = u|_{\partial\Omega}$ for $u \in H^2(\Omega) \cap C(\bar{\Omega})$ and $||Tu||_{L^2(\partial\Omega)} \leq C||u||_{H^1(\Omega)}$ for all $u \in H^1(\Omega)$ with the constant C only depending on p and Ω .

$$\begin{aligned} |(u,v)_{H^{1}}| &= \left| \int_{\Omega} \nabla u \cdot \nabla v \, dx + \int_{\partial \Omega} uv \, dS \right| \\ &\leq \int_{\Omega} |Du| |Dv| \, dx + \int_{\partial \Omega} |u| |v| \, dS \\ &\leq \|Du\|_{L^{2}(\Omega)} \|Dv\|_{L^{2}(\Omega)} + \|Tu\|_{L^{2}(\Omega)} \|Tv\|_{L^{2}(\Omega)} \\ &\leq C(\|Du\|_{L^{2}(\Omega)} \|Dv\|_{L^{2}(\Omega)} + \|u\|_{H^{1}(\Omega)} \|v\|_{H^{1}(\Omega)}) \\ &\leq C'(\|u\|_{H^{1}(\Omega)} \|v\|_{H^{1}(\Omega)}) \end{aligned}$$

for some C, C' constant independent on u, v.

(iii) For nonzero $u \in H^1(\Omega)$,

$$(u,u)_{H^1} = \int_{\Omega} \nabla u \cdot \nabla u \, dx + \int_{\partial \Omega} u^2 \, dS$$
$$= \|Du\|_{L^2(\Omega)}^2 + \|Tu\|_{L^2(\partial \Omega)}^2 \in (0,\infty)$$

Therefore, $(\cdot,\cdot)_{H^1}$ is an inner product on $H^1(\Omega)$.(Linearity: For $a,b\in\mathbb{R}$ and $u_1,u_2,v\in H^1(\Omega)$, $(au_1+bu_2,v)_{H^1}=\int_{\Omega}\nabla(au_1+bu_2)\cdot\nabla v\ dx+\int_{\partial\Omega}(au_1+bu_2)v\ dS=a\int_{\Omega}\nabla u_1\cdot\nabla v\ dx+a\int_{\partial\Omega}u_1v\ dS+b\int_{\Omega}\nabla u_2\cdot\nabla v\ dx+b\int_{\partial\Omega}u_2v\ dS=a(u_1,v)_{H^1}+b(u_2,v)_{H^1}$.) I need to show the coercivity.

I'll prove the coercivity by contradiction. Suppose there exists a sequence $\{u_k\}_{k=1}^{\infty} \subset H^1(\Omega)$ such that

$$||u_k||_{H^1(\Omega)}^2 > k(u_k, u_k)_{H^1}.$$

For such u_k , take $v_k = u_k/\|u_k\|_{H^1(\Omega)}$. Then, $\|v_k\|_{H^1(\Omega)} = 1$ and satisfies the above relation. As $k \to \infty$, $(v_k, v_k)_{H^1} \to 0$.

Since $\{v_k\}$ is a bounded sequence in $H^1(\Omega)$, which is compactly embedded in $L^2(\Omega)$, (I already explained how to deal for various dimension n in Problem 3.) so there exists a subsequence $\{v_{k_i}\}_{i=1}^{\infty}$ such that

$$\begin{cases} v_{k_j} \rightharpoonup v & \text{weakly in } H^1(\Omega) \\ v_{k_j} \to v & \text{in } L^2(\Omega) \end{cases}$$

since $H^1(\Omega)$ is Hilbert space...(Should I write the unique limit point?) As $v \in H^1(\Omega)$ and $\|v_{k_j}\|_{H^1(\Omega)} = 1$ for all k_j , $\|v\|_{H^1(\Omega)} \le 1$. Since $\|Dv_{k_j}\|_{L^2(\Omega)}^2 \le (v_{k_j}, v_{k_j})_{H^1} \le \frac{1}{k_j}$, $\|Dv_{k_j}\|_{L^2(\Omega)}^2 \to 0$

as $_{k_{j}} \to \infty$ and it means $\|v\|_{L^{2}(\Omega)} = 1$, $\|v\|_{H^{1}(\Omega)} = 0$ and $\|Dv\|_{L^{2}(\Omega)} = 0$. (If not, for some N, $\|v_{N}\|_{H^{1}(\Omega)}^{2} = \|v_{N}\|_{L^{2}(\Omega)}^{2} + \|Dv_{N}\|_{L^{2}(\Omega)}^{2} < 1$, which is contradiction.) Also,

$$\|v_k - v\|_{H^1(\Omega)}^2 = \|v_{k_j} - v\|_{L^2(\Omega)}^2 + \|D(v_{k_j} - v)\|_{L^2(\Omega)}^2 \le \|v_{k_j} - v\|_{L^2(\Omega)}^2 + \|Dv_{k_j}\|_{L^2(\Omega)}^2 + \|D(v_{k_j} - v)\|_{L^2(\Omega)}^2 \to 0$$
 as $k_j \to \infty$, $v_{k_j} \to v$ in $H^1(\Omega)$.

Since $||Tv_{k_j}||_{L^2(\partial\Omega)}^2 \le (v_{k_j}, v_{k_j})_{H^1} < \frac{1}{k_i}$,

$$||Tv||_{L^{2}(\partial\Omega)} \leq ||T(v-v_{k_{j}})||_{L^{2}(\partial\Omega)} + ||Tv_{k_{j}}||_{L^{2}(\partial\Omega)} \leq \frac{1}{\sqrt{k_{j}}} + C||v-v_{k_{j}}||_{H^{1}(\Omega)}$$

where the C is given by the Trace Theorem. Therefore, $||Tv||_{L^2(\partial\Omega)} = 0$.

Summarising the fact, $v \in H^1(\Omega)$ and Tv = 0 on $\partial\Omega$, so $v \in H^1_0(\Omega)$ and $\|Dv\|_{L^2(\Omega)} = 0$. For n > 2, $\|v\|_{L^2(\Omega)} \le C\|Dv\|_{L^2(\Omega)}$ for the constant C depending only on n, and Ω , so $\|v\|_{L^2(\Omega)} = 0$. For n = 2, we can find p near to 2 and get $\|v\|_{L^2(\Omega)} \le C\|Dv\|_{L^p(\Omega)}$. Since $\|Dv\|_{L^2(\Omega)} = 0 \Rightarrow \|Dv\|_{L^p(\Omega)} = 0$, $\|v\|_{L^2(\Omega)} = 0$. For n = 1, since Dv = 0 a.e. in Ω , v is constant a.e. in Ω and since p = 2 > 1, we can identify this as a continuous function. (Modify the measure zero part.) Since $v \in C(\overline{U})$, $Tv = v|_{\partial}U$ and if $\|v\|_{L^2(\Omega)} = 0$, $Tv \neq 0$, which is contradiction. Therefore, $\|v\|_{L^2(\Omega)} = 0$ also in n = 1 case. Finally, this result shows that v = 0, but $\|v\|_{H^1(\Omega)} \neq 0$, which is contradiction.

Thus, there exists C not depending on $u \in H^1(\Omega)$ such that

$$||u||_{H^1(\Omega)}^2 \le C(u,u)_{H^1}.$$

(b) I'll rewrite $(u, v)_{H^1}$ by B[u, v]. Consider a BVP:

$$\begin{cases} -\triangle u = f & \text{in } \Omega \\ \nabla u \cdot \mathbf{n}_{\text{in}} - u = 0 & \text{on } \partial \Omega \end{cases}$$

for $f \in L^2(\Omega)$. Then, the weak solution of the BVP should satisfy

$$B[u,v] = \int_{\Omega} fv \ dx$$

for all $v \in H^1(\Omega)$. (This result is from problem 4 (a).)

Assume that there exists eigenvalue λ and the corresponding nontrivial weak solution $u \in H^1(\Omega)$. Then, for all $v \in H^1(\Omega)$,

$$B[u,v] = (\lambda u, v)_{L^2(\Omega)}$$

If we put u as v,

$$B[u,u] = (\lambda u, u)_{L^2(\Omega)} = \lambda ||u||_{L^2(\Omega)} > 0$$

since $||u||_{H^1(\Omega)} > 0$. If λ is not real, it is nonsense. Also, if $\lambda \leq 0$, it is contradiction to coercivity of B. Therefore, every eigenvalue of (EVP) is a positive real.

(c) Since B is symmetric bounded linear function with coercivity, By the Lax-Millgram Theorem, there exists unique weak solution $u \in H^1(\Omega)$ to the BVP for each f. Let's define $L^{-1}: L^2(\Omega) \to L^2(\Omega)$ by sending f to u. Now, I claim that L^{-1} is bounded, linear, compact operator. It is linear since if $L^{-1}(f_1) = u_1$ and $L^{-1}(f_2) = u_2$, then the unique weak solution to $rf_1 + f_2$ is $ru_1 + u_2$ for $r \in \mathbb{R}$ and

 $L^{-1}(rf_1+f_2)=ru_1+u_2$. Also, L^{-1} is bounded. It requires same argument used in problem 3. If there is no constant C such that $||u||_{L^2(\Omega)} \leq C||f||_{L^2(\Omega)}$, there is a nontrivial weak solution to

$$\begin{cases} Lu = 0 & \text{in } \Omega \\ \nabla u \cdot \boldsymbol{n}_{\text{in}} - u = 0 & \text{on } \partial \Omega \end{cases}$$

and since we just showed that $\lambda=0$ can not be an eigenvalue, this is impossible. Finally, L^{-1} is compact: if $\{f_k\}_{k=1}^{\infty}$ is uniformly bounded in $L^2(\Omega)$ and let $u_k=L^{-1}f_k$, then by coercivity, there exists $\beta>0$ such that $\beta\|u_k\|_{H^1(\Omega)}^2\leq B[u_k,u_k]=(f_k,u_k)_{L^2(\Omega)}\leq \|f_k\|_{L^2(\Omega)}\|u_k\|_{H^1(\Omega)}$ and $\|u_k\|_{H^1(\Omega)}\leq C$ for all k. By Rellich-Kondrachov Compactness Theorem (and for n=2,1 cases as described in previous) there exists $u_k\to u$ in $L^2(\Omega)$ and it means L^{-1} is compact.

u is a weak solution of the EVP in the problem if and only if $L^{-1}(\lambda u) = u$ if and only if $u - \lambda L^{-1}u = 0$. Since $\lambda > 0$, we can denote $\left(L^{-1} - \frac{1}{\lambda}\mathrm{Id}\right)u = 0$... Therefore, $\lambda \in \Sigma$ if and only if $\frac{1}{\lambda} \in \sigma_p(L^{-1}) \setminus \{0\}$ and $\Sigma = \left\{\lambda \in \mathbb{R} \mid \frac{1}{\lambda} \in \sigma_p\left(L^{-1}\right) \setminus \{0\}\right\}$.

Since $L^{-1}: L^2(\Omega) \to L^2(\Omega)$ and $L^2(\Omega)$ separable as the domain of the function is open set $\Omega \subset \mathbb{R}^n$. Also, L^{-1} : symmetric: Fix $f, g \in L^2(\Omega)$ and let $\omega = L^{-1}f$, $\xi = L^{-1}g$, then $\omega, \xi \in H^1(\Omega)$ and

$$(L^{-1}f, g)_{L^{2}(\Omega)} = \int_{\Omega} g\omega dx$$

$$= \int_{\Omega} \nabla \xi \cdot \nabla \omega dx + \int_{\partial \Omega} \xi \omega dS$$

$$= \int_{\Omega} \nabla \omega \cdot \nabla \xi dx + \int_{\partial \Omega} \omega \xi dS$$

$$= \int_{\Omega} f \xi dx$$

$$= (f, L^{-1}g).$$

Therefore, there exists countable orthonormal basis of $L^2(\Omega)$ consisting of eigenvectors of L^{-1} . By Fredholm alternative, the dimension of null space of $(\operatorname{Id} - \lambda L^{-1})$ for $\lambda \in \Sigma$ is finite. Therefore, $|\Sigma| = \infty$. Since L^{-1} is compact and the dimension of $L^2(\Omega)$ is infinite, $\sigma(L^{-1}) \setminus \{0\} = \sigma_p(L^{-1}) \setminus \{0\}$ and $\sigma(L^{-1}) \setminus \{0\}$ is a sequence tending to 0. Therefore, Σ consists of the eigenvalues monotonic increasing to ∞

(d) In the (c), I showed that there exists countable orthonormal basis of separable space $L^2(\Omega)$ consisting of eigenvectors of compact and symmetric bounded linear operator L^{-1} . I need to show that this is orthogonal basis of $H^1(\Omega)$.

$$B[w_i, w_i] = (Lw_i, w_i)_{L^2(\Omega)} = (Lw_i, w_i)_{L^2(\Omega)} = B[w_i, w_i]$$

If
$$i \neq j$$
, $(Lw_i, w_j)_{L^2(\Omega)} = \lambda_i(w_i, w_j)_{L^2(\Omega)} = 0$. If $i = j$, $(Lw_i, w_i)_{L^2(\Omega)} = \lambda_i$.

Finally, assume that $\{w_i\}$ can not span $H^1(\Omega)$. Then, there exists nontrivial $\xi \in H^1(\Omega)$ such that $B[w_i, \xi] = 0$ for all w_i . Then, $B[w_i, \xi] = (\lambda_i w_i, \xi)_{L^2(\Omega)} = 0$ and $\lambda_i > 0$ for all i. Therefore, $\xi = 0$, which is contradiction. Therefore, $\{w_i\}$ spans $H^1(\Omega)$. Thus, $\{w_i\}$ forms a orthogonal basis of $H^1(\Omega)$.

Problem 6

(Step 1) In problem 5 (d), we found a set of functions $\{w_k\}_{k=1}^{\infty} \subset H^1(\Omega) \cap C^{\infty}(\Omega)$ such that

(i) $\{w_k\}$ forms an orthornormal basis of $L^2(\Omega)$, and

(ii) $\{w_k\}$ forms an orthogonal basis of $H^1(\Omega)$ with respect to the inner product $(\cdot, \cdot)_{H^1} = B[\cdot, \cdot]$. The weak solution of (IBVP-P) should satisfies

$$(u'(t), v)_{L^{2}(\Omega)} + B[u(t), v] = (f(t), v)_{L^{2}(\Omega)}$$

for $v \in H^1(\Omega)$ and a.e. time $0 \le t \le T$ and u(0) = g.

- (Step 2) I'll use Galerkin approximation. Fix $m \in \mathbb{N}$ and set $u_m(t,x) = \sum_{k=1}^m d_k(t)w_k(x)$. I need to find $\{d_k\}_{k=1}^m$ satisfying
 - (i) $(u'_m(t,\cdot), w_k)_{L^2(\Omega)} + B[u_m(t), w_k] = (f(t,\cdot), w_k)_{L^2(\Omega)}$ for $1 \le j \le m$.

(ii)
$$u_m(0,x) = \sum_{k=1}^m d_k(0)w_k(x) = g^{(m)}(x)$$
 where $g^{(m)}(x) = \sum_{k=1}^m G_k w_k(x)$, $G_k = (g, w_k)_{L^2(\Omega)}$.

Note that u_m satisfies boundary condition $\nabla u_m \cdot \boldsymbol{n}_{\text{in}} - u_m = 0$ on $(0, T] \times \partial \Omega$ since $w_k = 0$ on $\partial \Omega$ for all k.

Define
$$f^{(m)}(t,x) := \sum_{k=1}^{m} F_k(t) w_k(x)$$
 where $F_k(t) = (f(t,\cdot), w_k)_{L^2(\Omega)}$.

Note that (i) holds if and only if $d'_j(t) + \lambda_j d_j(t) = F_j(t)$ for $0 < t \le T$ and $1 \le j \le m$, and (ii) holds if and only if $d_j(0) = G_j = (g, w_j)_{L^2(\Omega)}$:

$$(\sum_{k=1}^{m} d'_k(t)w_k(x), w_j)_{L^2(\Omega)} + B[\sum_{k=1}^{m} d_k(t)w_k(x), w_j] = (f(t, \cdot), w_j)_{L^2(\Omega)} \Leftrightarrow d'_j(t) + \lambda_j d_j(t) = F_j(t)$$

and

$$\sum_{k=1}^{m} d_k(0)w_k(x) = \sum_{k=1}^{m} G_k w_k(x)$$

$$\Leftrightarrow \left(\sum_{k=1}^{m} d_k(0)w_k(x), w_j(x)\right)_{L^2(\Omega)} = \left(\sum_{k=1}^{m} G_k w_k(x), w_j(x)\right)_{L^2(\Omega)} \text{ For all } 1 \leq j \leq m$$

$$\Leftrightarrow d_j(0) = G_j \text{ For all } 1 \leq j \leq m$$

Since each $F_j(t)$, $G_j(t)$ are smooth, by the uniqueness existence of ODEs, the initial value problem for each j:

$$\begin{cases} d'_j(t) + \lambda_j d_j(t) = F_j(t) & 0 < t \le T \\ d_j(0) = G_j = (g, w_j)_{L^2(\Omega)} \end{cases}$$

has a unique smooth solution d_j for $1 \leq j \leq m$. With these d_j , $u_m(t,x) = \sum_{k=1}^m d_k(t)w_k(t)$ satisfies (i),(ii) and 0 on $(0,T] \times \partial \Omega$.

What I want is that as $m \to \infty$, $u_m \to u \in L^2((0,T); H^1(\Omega))$, $u' \in L^2((0,T); H^1_*(\Omega))$.

For now, I'll accept the proposition:

Proposition 1. For each u_m satisfies

$$\max_{t \in [0,T]} \|u_m(t)\|_{L^2(\Omega)} + \|u_m(t)\|_{L^2(0,t;H^1(\Omega))} + \|u_m'\|_{L^2(0,T;H^1_*(\Omega))} \le C \left(\|f\|_{L^2(0,T;L^2(\Omega))} + \|g\|_{L^2(\Omega)} \right)$$

for some constant C depending only on Ω, T .

(Step 3) By the proposition, we get the fact that $\{u_m\}$ is uniformly bounded in $L^2(0,T;H^1(\Omega))$ and $\{u'_m\}$ is uniformly bounded in $L^2(0,T;H^1_*(\Omega))$. Since $L^2(0,T;H^1(\Omega))$ and $L^2(0,T;H^1_*(\Omega))$ are Hilbert space since $L^2(0,T)$ is..., there is a subsequence such that

$$\begin{cases} u_{m_k} \rightharpoonup u & \text{in } L^2(0,T;H^1(\Omega)) \\ u'_{m_k} \rightharpoonup u' & \text{in } L^2(0,T;H^1_*(\Omega)) \end{cases}$$

(We know that $u'_{m_k} \rightharpoonup w \in L^2(0,T;H^1_*(\Omega))$. I'll show that u'=w. For $\phi \in C^\infty_c(0,T)$ and $v \in H^1(\Omega)$,

$$\begin{split} \langle \int_0^T \phi'(t) u(t) dt, v \rangle &= \int_0^T \langle \phi'(t) u(t), v \rangle dt = \int_0^T \langle u(t), \phi'(t) v \rangle dt \\ &= \int_0^T \lim_{m_k \to \infty} \langle u_{m_k}(t), \phi'(t) v \rangle dt = \lim_{m_k \to \infty} \int_0^T \langle u_{m_k}(t), \phi'(t) v \rangle dt \\ &= \lim_{m_k \to \infty} \langle \int_0^T u_{m_k}(t) \phi'(t) dt, v \rangle = \lim_{m_k \to \infty} \langle \int_0^T u'_{m_k}(t) \phi(t) dt, v \rangle \\ &= \int_0^T \lim_{m_k \to \infty} \langle u'_{m_k}(t), \phi(t) v \rangle dt = \int_0^T \langle w(t), \phi(t) v \rangle dt \\ &= \langle \int_0^T w(t) \phi(t) dt, v \rangle. \end{split}$$

The $\langle \cdot, \cdot, \rangle$ represent the action of $H^1_*(\Omega)$ to $H^1(\Omega)$ and the commutativity of $\langle \cdot, \cdot, \rangle$ and integral is by smoothness of ϕ and riemann sum argument. The commutativity of limit and integral is by the boundedness of U and (0,T) and integrability of u,v,ϕ with dominance convergence theorem. Therefore, u'=w.)

Now, I'll show that u is the weak solution to (IBVP-P).

Since $\nabla u_{m_k} \cdot \boldsymbol{n}_{\text{in}} - u_{m_k} = 0$ on $(0, T] \times \partial \Omega$ for all m_k , $\nabla u \cdot \boldsymbol{n}_{\text{in}} - u = 0$ on $(0, T] \times \partial \Omega$.

Fix $N \in \mathbb{N}$ and fix $m_k \geq N$. Consider $u_{m_k} = \sum_{i=1}^{m_k} d_i(t) w_i(x)$. Fix $j \in \{1, \dots, N\}$ and let $\alpha(t)$ be a smooth function. Then,

$$\int_{0}^{T} \alpha(s) \left((u'_{m_{k}}(s), w_{j})_{L^{2}(\Omega)} + B[u_{m_{k}}(s), w_{j}] \right) ds = \int_{0}^{T} (f^{(m_{l})}(t), w_{j})_{L^{2}(\Omega)} \alpha(s) ds$$

$$\Leftrightarrow \int_{0}^{T} (u'_{m_{k}}(s), \alpha(s)w_{j})_{L^{2}(\Omega)} + B[u_{m_{k}}(s), \alpha(s)w_{j}] ds = \int_{0}^{T} (f^{(m_{k})}(t), w_{j})_{L^{2}(\Omega)} \alpha(s) ds$$

By the weak convergence, as $m_k \to \infty$,

$$\int_0^T (u'(s), \alpha(s)w_j)_{L^2(\Omega)} + B[u(s), \alpha(s)w_j]ds = \int_0^T (f(t), w_j)_{L^2(\Omega)}\alpha(s)ds$$

Since $\alpha(s)$ is arbitrary, we can let $\alpha(s) \to \delta(s-t)$ (such as standard mollifier) and get

$$(u'(t), w_j)_{L^2(\Omega)} + B[u(t), w_j] = (f(t), w_j)_{L^2(\Omega)}$$

Since N is arbitrarily fixed, this is true for all j. Since the function $\sum_{i=1}^{n} d_i(x)w_i(x)$ with coefficient $d_i(x) \in H^1(\Omega)$ is dense in $H^1(\Omega)$, we get

$$(u'(t), v)_{L^2(\Omega)} + B[u(t), v] = (f(t), v)_{L^2(\Omega)}$$

for $v \in H^1(\Omega)$ and a.e. time $0 \le t \le T$.

I still need to check the initial condition. For the same circumstance with one more condition $\alpha(T) = 0$,

$$\begin{split} &\int_0^T (u'(s),\alpha(s)w_j)_{L^2(\Omega)} + B[u(s),\alpha(s)w_j]ds = \int_0^T (f(t),w_j)_{L^2(\Omega)}\alpha(s)ds \\ \Rightarrow &\int_0^T -(u(s),(\alpha(s)w_j)')_{L^2(\Omega)} + B[u(s),\alpha(s)w_j]ds = \int_0^T (f(t),w_j)_{L^2(\Omega)}\alpha(s)ds + (u(0),\alpha(0)w_j)) \end{split}$$

and

$$\begin{split} & \int_0^T (u'_{m_k}(s), \alpha(s)w_j)_{L^2(\Omega)} + B[u_{m_k}(s), \alpha(s)w_j] ds = \int_0^T (f^{(m_k)}(t), w_j)_{L^2(\Omega)} \alpha(s) ds \\ & \Rightarrow \int_0^T -(u_{m_k}(s), (\alpha(s)w_j)')_{L^2(\Omega)} + B[u_{m_k}(s), \alpha(s)w_j] ds = \int_0^T (f^{(m_k)}(t), w_j)_{L^2(\Omega)} \alpha(s) ds + (u_{m_k}(0), (\alpha(0)w_j)). \end{split}$$

Letting $m_k \to \infty$ and by weak convergence,

$$\int_{0}^{T} -(u(s), (\alpha(s)w_{j})')_{L^{2}(\Omega)} + B[u(s), \alpha(s)w_{j}]ds = \int_{0}^{T} (f(t), w_{j})_{L^{2}(\Omega)}\alpha(s)ds + (g(0), (\alpha(0)w_{j}))$$

as $u_{m_k}(0) = g^{(m_k)}$ and $\lim_{m_k \to \infty} u_{m_k}(0) = \lim_{m_k \to \infty} g^{(m_k)} = g$. This is true for all $\alpha \in C^{\infty}((0,T))$ and for all j, u(0) = g(0).

The left one is to show the proposition. For readability, I again write the proposition:

For each u_m satisfies

$$\max_{t \in [0,T]} \|u_m(t)\|_{L^2(\Omega)} + \|u_m(t)\|_{L^2(0,t;H^1(\Omega))} + \|u_m'\|_{L^2(0,T;H^1_*(\Omega))} \le C\left(\|f\|_{L^2(0,T;L^2(\Omega))} + \|g\|_{L^2(\Omega)}\right)$$

for some constant C depending only on Ω, T .

I'll start from this equation:

$$\left(\sum_{k=1}^{m} d'_{k}(t)w_{k}(x), w_{j}\right)_{L^{2}(\Omega)} + B\left[\sum_{k=1}^{m} d_{k}(t)w_{k}(x), w_{j}\right] = (f(t, \cdot), w_{j})_{L^{2}(\Omega)}$$

Note that $d_k(t)$ are calculated for fixed m. On each side for fixed j, multiply $d_j(t)$ and sum about j, then we get

$$(u'_m(t), u_m(t))_{L^2(\Omega)} + B[u_m(t), u'_m(t)] = (f(t, \cdot), u_m(t))_{L^2(\Omega)}$$

for a.e. $0 \le t \le T$. For fixed $t \in [0,T]$, $(u'_m, u_m)_{L^2(\Omega)} = \frac{d}{dt} \left(\frac{1}{2} \|u_m\|_{L^2(\Omega)}^2\right)$ and $|(f, u_m)| \le \frac{1}{2} \|f\|_{L^2(\Omega)}^2 + \frac{1}{2} \|u_m\|_{L^2(\Omega)}^2$. Furthermore, I'll use the proof of variation of energy estimation used in problem 3: there exists $\beta, \gamma > 0$ such that

$$\beta \|u_m\|_{H^1(\Omega)}^2 \le B[u_m, u_m, t] + \gamma \|u_m\|_{L^2(\Omega)}^2.$$

Mixing these inequalities, we get

$$\frac{d}{dt} \left(\|u_m\|_{L^2(\Omega)}^2 \right) + 2\beta \|u_m\|_{H^1(\Omega)}^2 \le C_1 \|u_m\|_{L^2(\Omega)}^2 + C_2 \|f\|_{L^2(\Omega)}^2. \tag{1}$$

for a.e. $0 \le t \le T$ and constant C_1, C_2 not depending on u_m, f .

Now, let

$$\eta(t) \coloneqq \left\| u_m(t) \right\|_{L^2(\Omega)}^2$$

and

$$\xi(t) \coloneqq \|f(t)\|_{L^2(\Omega)}^2.$$

Then,

$$\eta'(t) \le C_1 \eta(t) + C_2 \xi(t)$$

for a.e. $0 \le t \le T$ and by differential form of Gronwall's inequality,

$$\eta(t) \le e^{C_1 t} \left(\eta(0) + C_2 \int_0^t \xi(s) ds \right)$$

for $0 \le t \le T$. Since $\eta(0) = \|u_m(0)\|_{L^2(\Omega)}^2 \le \|g\|_{L^2(\Omega)}^2$, (Note that $u_m(0)$ is the projection of g.)

$$\max_{t \in [0,T]} \left\| u_m(t) \right\|_{L^2(\Omega)}^2 \le C \left(\left\| g \right\|_{L^2(\Omega)}^2 + \left\| f \right\|_{L^2(0,T;L^2(\Omega))}^2 \right).$$

Also, integrating (1) from 0 to T generates the relation:

$$||u_m||_{L^2(0,T;H^1(\Omega))}^2 = \int_0^T ||u_m||_{H^1(\Omega)}^2 dt \le C \left(||g||_{L^2(\Omega)}^2 + ||f||_{L^2(0,T;L^2(\Omega))}^2 \right)$$

Finally, I'll estimate $\|u_m'\|_{L^2(0,T;H^1_*(\Omega))}$. Fix $v \in H^1(\Omega)$ with $\|v\|_{H^1(\Omega)} \leq 1$ and denote $v = v^1 + v^2$ by $v_1 \in \text{span}\left(\{w_i\}_{i=1}^m\right)$ and $(v_2,w_i) = 0$ for $i \in \{1,\ldots,m\}$. Since v_1 is the projection to $\text{span}\left(\{w_i\}_{i=1}^m\right)$, $\|v^1\|_{H^1(\Omega)} \leq \|v\|_{H^1(\Omega)} \leq 1$. Using the previous equation: $(u_m'(t,\cdot),w_k)_{L^2(\Omega)} + B[u_m(t),w_k] = (f(t,\cdot),w_k)_{L^2(\Omega)}$, we can write

$$(u'_m(t,\cdot),v^1)_{L^2(\Omega)} + B[u_m(t),v^1] = (f(t,\cdot),v^1)_{L^2(\Omega)}$$

for a.e. $0 \le t \le T$. Since $u'_m \in \text{span}(\{w_i\}_{i=1}^m)$,

$$(u'_m, v)_{L^2(\Omega)} = (u'_m, v^1)_{L^2(\Omega)} = (f, v^1) - B[u_m(t), v^1].$$

Therefore,

$$|(u'_m, v)_{L^2(\Omega)}| \le C (||f||_{L^2(\Omega)} + ||u_m||_{H^1(\Omega)})$$

since $||v^1||_{H^1(\Omega)} \leq 1$. (Also, by boundedness of $B[\cdot,\cdot]$: $|B[u_m,v^1;t]| \leq \theta ||u_m(t)||_{H^1(\Omega)}$ for some constant θ .) Since $||v||_{H^1(\Omega)} = 1$ and RHS is independent to v,

$$\|u'_m\|_{H^1(\Omega)} \le C \left(\|f\|_{L^2(\Omega)} + \|u_m\|_{H^1(\Omega)}\right)$$

and

$$\|u_m'\|_{L^2(0,T;H^1_*(\Omega))} = \int_0^T \|u_m'\|_{H^1_*(\Omega)} \ dt \leq C' \left(\|g\|_{L^2(\Omega)} + \|f\|_{L^2(0,T;L^2(\Omega))}\right)$$

for some constant C'. (Note that we already showed that $||u_m||^2_{L^2(0,T;H^1(\Omega))}$ is bounded by $||g||_{L^2(\Omega)}$ and $||f||_{L^2(0,T;L^2(\Omega))}$.

Summarizing all the results, we get

$$\max_{t \in [0,T]} \|u_m(t)\|_{L^2(\Omega)} + \|u_m(t)\|_{L^2(0,t;H^1(\Omega))} + \|u_m'\|_{L^2(0,T;H^1_*(\Omega))} \leq C \left(\|f\|_{L^2(0,T;L^2(\Omega))} + \|g\|_{L^2(\Omega)}\right)$$

for some C. This is true for all m since the estimation constant does not depending on u_m, f, g .