ALGEBRAIC GEOMETRY

BEIJING INSTITUTE OF TECHNOLOGY, 2019

Exercises for chapter 4: Affine algebraic groups

Exercise Let G be an affine algebraic group over an algebraically closed field \mathbb{K} and A a, not necessarily commutative, \mathbb{K} -algebra.

- (a) Show that $\operatorname{Hom}_{\mathbb{K}}(\mathbb{K}[G], A)$, the space of \mathbb{K} -linear maps from $\mathbb{K}[G]$ to A, is a \mathbb{K} -algebra.
- (b) Show that $\operatorname{Hom}_{\operatorname{alg}}(\mathbb{K}[G], A)$, the set of \mathbb{K} -algebra homomorphisms from $\mathbb{K}[G]$ to A, is a group.
- (c) Show that for $G = GL_n(\mathbb{K})$ and A being commutative, $\operatorname{Hom}_{\operatorname{alg}}(\mathbb{K}[GL_n(\mathbb{K})], A)$ is isomorphic to $GL_n(A)$, the group of invertible $n \times n$ -matrices with entries in A.
- (d) Is the claim from c) still true if A is not commutative?
- (e) Show that for A commutative and finite dimensional one can give A the structure of an affine algebraic variety such that the multiplication $m: A \times A \to A$ is a morphism of affine varieties.
- (f) Show that for A commutative and finite dimensional one can give $\operatorname{Hom}_{\operatorname{alg}}(\mathbb{K}[G], A)$ the structure of an affine algebraic group over \mathbb{K} .