Résumé de sup : probabilités

I. Espaces probabilités finis

1) Univers, événements

L'ensemble des résultats possibles d'une expérience aléatoire est un ensemble Ω appelé **univers**. Ω est l'ensemble des cas possibles ou des éventualités ou des issues. En sup, Ω est fini.

Si Ω est un univers fini. Une partie de Ω est un **événement**. L'ensemble des événements est donc $\mathscr{P}(\Omega)$.

 Ω est l'événement certain, \varnothing est l'événement impossible, un singleton $\{\omega\}$ (où $\omega \in \Omega$) est un événement élémentaire.

2) Opérations sur les événements

Si A et B sont deux événements, $C_{\Omega}A$ est l'événement contraire de A, $A \cup B$ est la réunion de A et B, $A \cap B$ est l'intersection de A et B.

A et B sont incompatibles ssi $A \cap B = \emptyset$. Si $A \subset B$, on dit que A implique B.

 $\text{Un syst\`eme complet d'événements est une famille } (A_i)_{1\leqslant i\leqslant n} \text{ telle que } \forall i\neq j, \ A_i\cap A_j=\varnothing \text{ et } \bigcup_{1\leqslant i\leqslant n} A_i=\Omega.$

3) Probabilité

Soit Ω un univers fini. Une **probabilité** sur Ω est une application P de $\mathscr{P}(\Omega)$ dans [0,1] telle que

- 1) $P(\Omega) = 1$
- 2) pour tous événements A et B tels que $A \cap B = \emptyset$, $P(A \cup B) = P(A) + P(B)$.

Dans ce cas, (Ω, P) est un espace probabilisé.

4) Calculs de probabilités

Théorème.

- $P(\varnothing) = 0$.
- $P(\overline{A}) = 1 P(A)$.
- Si $A \subset B$, $P(A) \leq P(B)$ (croissance d'une probabilité). Dans ce cas, $P(B \setminus A) = P(B) P(A)$.
- $\bullet \ P(A \cup B) = P(A) + P(B) P(A \cap B).$
- ullet Si $A_1, \ldots A_n$ sont deux à deux incompatibles, $P\left(A_1 \cup \ldots \cup A_n\right) = P\left(A_1\right) + \ldots + P\left(A_n\right)$

Si de plus $(A_i)_{1\leqslant i\leqslant n}$ est un système complet d'événements, alors $P\left(A_1\right)+\ldots+P\left(A_n\right)=1$ et pour tout événement B,

$$P(B) = \sum_{i=1}^{n} P(B \cap A_i).$$

Théorème. Pour tout ω de Ω , on pose $\mathfrak{p}_{\omega} = P(\{\omega\})$.

- $\bullet \sum_{\omega \in \Omega} \mathfrak{p}_{\omega} = 1$
- $\forall A \in \mathscr{P}(\Omega), P(A) = \sum_{\omega \in A} p_{\omega}.$

Théorème (cas de l'équiprobabilité des cas possibles).

Si
$$\forall \omega \in \Omega$$
, $p_{\omega} = \frac{1}{\operatorname{card}(\Omega)}$, alors $\forall A \in \mathscr{P}(\Omega)$, $P(A) = \frac{\operatorname{card}(A)}{\operatorname{card}(\Omega)} = \frac{\operatorname{nombre de cas favorables}}{\operatorname{nombre de cas possibles}}$

II. Probabilités conditionnelles

Soit A un événement tel que $P(A) \neq 0$. La probabilité de B sachant A est $P_A(B) = \frac{P(B \cap A)}{P(A)}$.

Théorème. L'application $P_A: \mathscr{P}(\Omega) \to \mathbb{R}$ est une probabilité sur Ω . $B \mapsto P_A(B)$

Théorème. Pour tous A et B, $P(A \cap B) = P_A(B) \times P(A) \text{ si } P(A) \neq 0$. $= P_B(A) \times P(B) \text{ si } P(B) \neq 0$

Théorème (formule des probabilités totales). Soit $(A_i)_{1 \le i \le n}$ un système complet d'événements tels que $\forall i \in [1, n]$, $P(A_i) \ne 0$, alors

$$\forall B \in \mathscr{P}(\Omega), \ P(B) = \sum_{i=1}^{n} P(A_i) \times P_{A_i}(B).$$

 $\mathrm{En\ particulier},\,\mathrm{si}\ P(A)\neq 0\ \mathrm{et}\ P\left(\overline{A}\right)\neq 0,\, P(B)=P(A)\times P_{A}(B)+P\left(\overline{A}\right)\times P_{\overline{A}}(B).$

Théorème (formule de BAYES (inversion d'une probabilité conditionnelle)). Soit $(A_i)_{1 \le i \le n}$ un système complet d'événements tels que $\forall i \in [1, n], P(A_i) \neq 0$, alors pour tout B tel que $P(B) \neq 0$,

$$\forall i \in [\![1,n]\!], \ P_{B}\left(A_{i}\right) = \frac{P\left(A_{i}\right) \times P_{A_{i}}(B)}{\displaystyle\sum_{i=1}^{n} P\left(A_{i}\right) \times P_{A_{i}}(B)}.$$

$$\mathrm{En\ particulier},\ P_{B}(A) = \frac{P\left(A\right) \times P_{A}(B)}{P(A) \times P_{A}(B) + P\left(\overline{A}\right) \times P_{\overline{A}}(B)}.$$

III. Indépendance

A et B sont indépendants si et seulement si $P(A \cap B) = P(A) \times P(B)$. Si $P(A) \neq 0$, il revient au même de dire $P_A(B) = P(B)$.

Théorème. Si A et B sont indépendants, alors A et \overline{B} , \overline{A} et B, \overline{A} et \overline{B} sont indépendants.

Soient A_1, \ldots, A_n , n événements.

 A_1, \ldots, A_n sont deux à deux indépendants $\Leftrightarrow \forall i \neq j, P(A_i \cap A_j) = P(A_i) \times P(A_j)$.

$$A_{1},\,\ldots,\,A_{n}\,\,\mathrm{sont}\,\,\mathbf{ind\acute{e}pendants}\Leftrightarrow\forall I\subset\llbracket1,n\rrbracket,\,\,P\left(\bigcap_{i\in I}A_{i}\right)=\prod_{i\in I}P\left(A_{i}\right).$$

Théorème. indépendants $\stackrel{\Rightarrow}{\not=}$ deux à deux indépendants.

IV. Variables aléatoires sur un univers fini

1) Variables aléatoires. Loi d'une variable aléatoire

Soit Ω un univers fini. Une variable aléatoire associée à cet univers est une application X de Ω dans un certain ensemble E. Si $E = \mathbb{R}$, X est une variable aléatoire réelle.

Variable indicatrice. Soit A un événement. La variable $X: \Omega \rightarrow$ est la variable indicatrice de $\omega \mapsto \begin{cases} 1 \text{ si } \omega \in A \\ 0 \text{ si } \omega \notin A \end{cases}$ l'événement A. On peut la noter 1_A . Elle est utilisée dans une démonstration de l'inégalité de BIENAYMÉ-TCHEBYCHEV.

Quelques notations.

- Si X est une variable aléatoire sur Ω et f une application définie sur $X(\Omega)$, on peut définir $f \circ X$ (souvent notée f(X)). Par exemple, X^2 , \sqrt{X} , e^X ...
- Si A est une partie de E (E = \mathbb{R} en général), l'événement $\{X \in A\}$ est l'événement $X^{-1}(A) = \{\omega \in \Omega / X(\omega) \in A\}$. Si x est un élément de E, l'événement $\{X = x\}$ est l'événement $X^{-1}(\{x\}) = \{\omega \in \Omega / X(\omega) = x\}$. Si X est une variable réelle, $\{X \leq x\} = X^{-1} (] - \infty, x]) = \{\omega \in \Omega / X(\omega) \leq x\}.$

Loi de probabilité d'une variable aléatoire. Soit X une variable aléatoire sur un espace probabilisé fini (Ω, P) .

L'application $X(\Omega) \rightarrow$ est une probabilité sur $X(\Omega)$ appelée loi de X. La loi de X peut aussi être l'application $x \mapsto P(X = x)$

plus générale $\mathscr{P}(X(\Omega))$ \to [0,1] . On note P_X la loi de X. A \mapsto $P(X \in A)$

Théorème. $\sum_{x \in X(\Omega)} P(X = x) = 1$. Pour toute partie A de $X(\Omega)$, $P(X \in A) = \sum_{x \in A} P(X = x)$.

Théorème (loi de f(X)). La loi de f(X) est :

$$\forall y \in f(X(\Omega)), \ P(f(X) = y) = \sum_{x \in f^{-1}(\{y\})} P(X = x).$$

Par exemple, si $Y = X^2$, $P(Y = 1) = P(X^2 = 1) = P(X = 1) + P(X = -1)$.

- 2) Espérance, variance, écart-type
- a) Espérance Si X prend les valeurs x_1, \ldots, x_n , l'espérance de X est

$$E(X) = \sum_{k=1}^{n} x_k P(X = x_k) = \sum_{x \in X(\Omega)} x P(X = x).$$

L'espérance de la variable indicatrice 1_A d'un événement A est P(A).

Théorème (linéarité). L'espérance est une forme linéaire c'est-à-dire E(X+Y)=E(X)+E(Y) et $E(\lambda X)=\lambda E(X)$. En particulier, $E(\alpha X+b)=\alpha E(X)+b$.

Si X est d'espérance nulle, X est centrée. Si X est une variable réelle quelconque, X-E(X) est la variable centrée associé à X.

Théorème (positivité, croissance). Si X est une variable aléatoire réelle positive, alors $E(X) \ge 0$. Si X est Y sont des variables aléatoires telles que $X \le Y$, alors $E(X) \le E(Y)$.

Théorème (inégalité de MARKOV). Si X est une variable réelle positive,

$$\forall \alpha > 0, \ P(X \geqslant \alpha) \leqslant \frac{E(X)}{\alpha}.$$

Démonstration. Soit a > 0. Soit $A = \{X \ge a\}$. Soit $\omega \in \Omega$.

- $\bullet \,\, \mathrm{Si} \,\, \omega \in A, \, 1_A(\omega) = 1 \,\, \mathrm{et} \,\, \frac{X}{a}(\omega) = \frac{X(\omega)}{a} \geqslant \frac{a}{a} = 1 = 1_A(\omega).$
- Si $\omega \notin A$, $1_A(\omega) = 0 \leqslant \frac{X(\omega)}{\alpha}$.

Donc, $\forall \omega \in \Omega$, $1_A(\omega) \leqslant \frac{X}{\alpha}(\omega)$ ou encore $1_A \leqslant \frac{X}{\alpha}$. Par croissance de l'espérance, $E(1_A) \leqslant E\left(\frac{X}{\alpha}\right) = \frac{E(X)}{\alpha}$ avec $E(1_A) = P(A) = E(X \geqslant \alpha)$.

Théorème de transfert. L'espérance de f(X) est $E(f(X)) = \sum_{x \in X(\Omega)} f(x)P(X = x)$.

b) Variance, écart-type.

Définition. Le moment d'ordre k de X est E $(X^k) = \sum_{x \in X(\Omega)} x^k P(X = x)$.

Définition. La variance de X est $V(X) = E\left((X - E(X))^2\right) = \sum_{x \in X(\Omega)} P(X = x) \times (x - E(X))^2$.

Théorème (formule de Koenig-Huygens). $V(X) = E((X - E(X))^2) = E(X^2) - (E(X))^2$.

Théorème. $V(\alpha X + b) = \alpha^2 V(X)$.

Définition. L'écart-type de X est $\sigma(X) = \sqrt{V(X)}$. Une variable X telle que E(X) = 0 et $\sigma(X) = 1$ est dite centrée réduite. Si X est une variable d'écart-type non nul, $\frac{X - E(X)}{\sigma(X)}$ est centrée réduite et est la variable centré réduite associée à X.

Théorème (inégalité de BIENAYMÉ-TCHEBYCHEV).

$$\forall \varepsilon > 0, \ P(|X - E(X)| \geqslant \varepsilon) \leqslant \frac{V(X)}{\varepsilon^2}.$$

 $\begin{array}{l} \textbf{D\'{e}monstration.} \text{ On applique l'in\'{e}galit\'e de Markov \`a la variable } \left(\frac{X-E(X)}{\varepsilon}\right)^2. \text{ L'\'{e}v\'{e}nement } \{|X-E(X)|\geqslant \epsilon\} \text{ est } \\ \text{l'\'{e}v\'{e}nement } \left\{\left(\frac{X-E(X)}{\varepsilon}\right)^2\geqslant 1\right\}. \text{ Puisque la variable } \left(\frac{X-E(X)}{\varepsilon}\right)^2 \text{ est positive et que } 1>0, \\ P\{|X-E(X)|\geqslant \epsilon\}\leqslant \frac{1}{1}E\left(\left(\frac{X-E(X)}{\varepsilon}\right)^2\right)=\frac{1}{\varepsilon^2}E\left((X-E(X))^2\right)=\frac{V(X)}{\varepsilon^2}. \end{array}$

V. Couples de variables aléatoires, n-uplets de variables aléatoires

1) Couples, n-uplets

Définition. Soient Ω un univers fini et X et Y deux variables aléatoires sur Ω à valeurs dans E et E' respectivement. L'application (X,Y): $\Omega \to E \times E'$ est un **couple** de variables aléatoires sur Ω . Si $E = E' = \mathbb{R}$, (X,Y) est $\omega \mapsto (X(\omega),Y(\omega))$

une couple de variables aléatoires réelles sur Ω .

Plus généralement, un n-uplet de variables aléatoires réelles sur Ω est (X_1,\ldots,X_n) : $\Omega \to \mathbb{R}^n$ $\omega \mapsto (X_1(\omega),\ldots,X_n(\omega))$

Définition. Si X et Y sont deux variables aléatoires sur l'espace probabilisé fini (Ω, P) , alors la loi conjointe de X et Y est la loi du couple (X,Y). Donner la loi conjointe du couple (X,Y), c'est donner les $P((X,Y)=(x,y))=P(\{X=x\}\cap\{Y=y\})$, $x \in X(\Omega), y \in Y(\Omega)$. Les lois marginales (car on les retrouve en marge) du couple (X,Y) sont les lois de X et de Y.

Théorème. La loi conjointe détermine les lois marginales :

$$\begin{split} \forall x \in X(\Omega), \ P(X=x) &= \sum_{y \in Y(\Omega)} P(\{X=x\} \cap \{Y=y\}). \\ \forall y \in Y(\Omega), \ P(Y=y) &= \sum_{x \in X(\Omega)} P(\{X=x\} \cap \{Y=y\}). \end{split}$$

Par exemple, si la loi du couple (X, Y) est

X	С	d
а	<u>1</u> 12	<u>1</u> 6
ь	<u>1</u> 8	<u>5</u> 8

la première loi marginale du couple (X,Y) est $P(X=\alpha)=P((X=A)\cap (Y=c))+P(X=\alpha)\cap (Y=d))=\frac{1}{12}+\frac{1}{6}=\frac{1}{4},$ $P(X = b) = \frac{1}{8} + \frac{5}{8} = \frac{3}{4} \dots$

X	С	d	loi de X
α	<u>1</u> 12	<u>1</u>	$\frac{1}{4}$
ь	<u>1</u> 8	<u>5</u> 8	<u>3</u>
loi de Y	<u>5</u> 24	19 24	1

Définition (lois conditionnelles). Si pour tout $y \in Y(\Omega)$, $P(Y = y) \neq 0$, on peut définir la loi de X sachant que Y = y:

$$\forall x \in X(\Omega), \ P_{Y=y}(X=x) = \frac{P((X=x) \cap (Y=y))}{p(Y=y)} = \frac{P((X,Y) = (X,y))}{p(Y=y)}$$

 $\forall x \in X(\Omega), \ P_{Y=y}(X=x) = \frac{P((X=x) \cap (Y=y))}{p(Y=y)} = \frac{P((X,Y)=(x,y))}{p(Y=y)}.$ Si pour tout $x \in X(\Omega), \ P(X=x) \neq 0$, on peut définir la loi de Y sachant que $X=x: \forall y \in Y(\Omega), \ P_{X=x}(Y=y) = X(X,Y)$ $P((X = x) \cap (Y = y))$

$$p(X = x)$$

Les lois conditionnelles sont déterminées par la loi conjointe et les lois marginale et donc par la loi conjointe uniquement.

2) Indépendance

a) de deux variables

Définition. X et Y sont indépendantes si et seulement si $\forall (x,y) \in X(\Omega) \times Y(\Omega), P((X=x) \cap (Y=y)) = P(X=x) \times P(Y=y)$ y).

b) d'un n-uplet de variables

Définition. X_1, \ldots, X_n sont deux à deux indépendantes si et seulement si $\forall i \neq j, X_i$ et X_i sont indépendantes. Ceci équivaut à $\forall i \neq j, \forall (x_i, x_j) \in X_i(\Omega) \times X_j(\Omega), P((X_i = x_i) \cap (X_j = x_j)) = P(X_i = x_i) \times P(X_j = x_j).$

 $\textbf{D\'efinition.} \ X_1, \, \dots, X_n \ \mathrm{sont \ ind\'ependantes \ si \ et \ seulement \ si} \ \forall (x_1, \dots, x_n) \in X_1(\Omega) \times X_n(\Omega), \ \mathrm{les \ \'ev\'enements} \ \{X_1 = x_1\},$ $\dots \{X_n = x_n\}$ sont indépendants.

Théorème. Si les variables X_1, \ldots, X_n sont indépendantes, alors les variables X_1, \ldots, X_n sont deux à deux indépendantes. Réciproque fausse.

Théorème. Si les variables X_1, \ldots, X_n sont indépendantes, alors pour toutes fonctions f_1, \ldots, f_n , les variables $f_1(X_1)$, \dots , $f_n(X_n)$ sont indépendantes.

3) Covariance

a) Cas général

Définition. La covariance du couple (X, Y) est cov(X, Y) = E((X - E(X))(Y - E(Y))).

$$\mathbf{Th\acute{e}or\grave{e}me.}\ \operatorname{cov}(X,Y) = E(XY) - E(X)E(Y)\ \operatorname{avec}\ E(XY) = \sum_{(x,y)\in X(\Omega)\times Y(\Omega)} xy\ P((X=x)\cap (Y=y)).$$

Théorème.
$$V(X+Y) = V(X) + V(Y) + 2cov(X,Y)$$
 et donc aussi $cov(X,Y) = \frac{1}{2}(V(X+Y) - V(X) - V(Y))$.

$$\mathrm{Plus\ g\acute{e}n\acute{e}ralement},\ V\left(X_{1}+\ldots+X_{n}\right)=\sum_{i=1}^{n}V\left(X_{i}\right)+2\sum_{1\leqslant i< j\leqslant n}\mathrm{cov}\left(X_{i},X_{j}\right).$$

 $\mathbf{Th\acute{e}or\grave{e}me.}\;|\mathrm{cov}(X,Y)|\leqslant\sigma(X)\sigma(Y).$

b) Cas de variables indépendantes

Théorème. Si X et Y sont indépendantes,

- E(XY) = E(X)E(Y);
- $\bullet \, \operatorname{cov}(X,Y) = 0 \, ;$
- V(X + Y) = V(X) + V(Y).

 $\textbf{Th\'eor\`eme.} \ \mathrm{Si} \ X_1, \ \ldots, X_n \ \mathrm{sont} \ \mathbf{deux} \ \mathbf{\grave{a}} \ \mathbf{deux} \ \mathbf{ind\'ependantes} \ (\mathrm{et} \ \mathrm{en} \ \mathrm{particulier} \ \mathrm{si} \ X_1, \ \ldots, X_n \ \mathrm{sont} \ \mathrm{ind\'ependantes}),$

$$V(X_1 + ... + X_n) = V(X_1) + ... + V(X_n).$$

Si X_1, \ldots, X_n sont indépendantes (et pas seulement deux à deux indépendantes),

$$E(X_1...X_n) = E(X_1) \times ... \times E(X_n)$$
.