华东师范大学期末试卷(A卷)

2013 - 2014 学年 第二学期

课程名称: 高等数学A(二)		二) 课程	涅性质: 专业必修	考试日期: 201	4. 06. 23
学生姓名	,		学 号_		
专	lk		年级/班级_	2013	_
_	=	三	总 分	阅卷人签名	
一、填空	题(每小题	4分,共20分	(*)		
1. $\lim_{(x,y)\to(0,1)} (1+xy)^{\frac{1}{x}} = \underline{\hspace{1cm}}$.					
2. 已知 $z = f(xy^2, x^2y)$,其中函数 f 一阶可导,则 $dz = $					
3. 已知 $f(x,y)$ 连续,交换积分顺序 $\int_0^4 dy \int_{-\sqrt{4-y}}^{\frac{1}{2}(y-4)} f(x,y) dx =$					
4. 函数 $y(x)$ 满足微分方程 $\frac{dy}{dx} - y = e^x$,且 $y _{x=0} = 1$,则方程的特解为					
5. 设当 $0 \le x < \frac{\pi}{2}$ 时, $f(x) = 1$; 当 $\frac{\pi}{2} \le x < \pi$ 时, $f(x) = 0$, $s(x) = \sum_{n=1}^{\infty} b_n \sin nx$ 是 $f(x)$ 用的正弦级数,则 $s(\frac{\pi}{2}) = \underline{\hspace{1cm}}$.					
二、简答	题 (本题共4()分,要求绐	台出主要解题步骤	聚)	
1. (6分)	解微分方程($(xy + x^2 + y^2)$	$(2)dx - x^2dy = 0 $	$x \neq 0$).	

2. (6分) 求微分方程 $y'' - 3y' + 2y = e^{-x}$ 的通解.

3. (6分) 求函数 $f(x) = \frac{1}{2x^2 - 3x + 1}$ 在点 x = 0处的幂级数展开式.

4. (10分) 判别下列级数的敛散性.

$$(1)\sum_{n=1}^{+\infty}\frac{1}{\sqrt{n+2}+\sqrt{n}};$$

$$(2) \sum_{n=1}^{+\infty} (-1)^n \frac{n}{e^n}.$$

5. (12分) 设函数f(x)在($-\infty$, $+\infty$)内具有连续一阶导数,L是上半平面(y > 0)内有向分段光滑曲线,其起点和终点分别为(1,2), (2,1),记

$$I = \int_{L} \frac{1}{y} [1 + y^{2} f(xy)] dx + \frac{x}{y^{2}} [y^{2} f(xy) - 1] dy.$$

(1) 证明曲线积分I与积分路径无关; (2) 计算I的值.

- 三、解答题 (本题共40分,要求给出主要解题步骤)
 - 1. (8分) 求二元函数 $f(x,y) = 3x^2 + 6x \frac{1}{3}y^3 + 2y^2 + 1$ 的极值.

2. (8分) 计算曲线积分 $\oint_{\mathcal{L}}(z-y)dx+(x-z)dy+(x-y)dz$, 其中 L = 2 上是 $x^2+y^2=1$ 与x-y+z=2的交线,从z 轴负向看为顺时针方向.

3. (8分) 求幂级数 $\sum_{n=1}^{+\infty} \frac{2n-1}{2^n} x^{2(n-1)}$ 的收敛域与和函数.

5. (8分) 设 $\varphi(x)$ 连续,且满足 $\varphi(x)=e^x+\int\limits_0^xt\varphi(t)dt-x\int\limits_0^x\varphi(t)dt,$ 求 $\varphi(x)$.