Supervised Learning: SVM Method + Model evaluation methods

KASHTANOVA VICTORIYA INRIA, EPIONE

SVM (Support Vector Machine) Method

SVM (Support Vector Machine) Method

Linear SVM (Separable classes)

- Every data-sample : $x \in \mathbb{R}^D$
- Decision Boundary : \mathcal{H} : $w^T x + b = 0$
- Distance Measure of Hyper plane : $d_{\mathcal{H}}(x_0) = \frac{|w^T x + b|}{||w||_2}$
- Goal: $w^* = argmax_w[\min_n d_{\mathcal{H}}(x_n)]$

Linear SVM (Separable classes)

- Every data-sample : $x \in \mathbb{R}^D$
- Decision Boundary : \mathcal{H} : $w^T x + b = 0$
- Distance Measure of Hyper plane : $d_{\mathcal{H}}(x_0) = \frac{|w^T x + b|}{||w||_2}$

 $w^* = argmax_w \frac{1}{||w||_2} [\min_n y_n [w^T x + b]]$

• Goal: $w^* = argmax_w[\min_n d_{\mathcal{H}}(x_n)]$ $y_n[w^Tx + b] = \begin{cases} \geq 0, class A \\ < 0, class B \end{cases}$

Let
$$\min_{n} y_n[w^T x + b] = 1$$

$$w^* = argmax_w \frac{1}{||w||_2}$$

Linear SVM (Separable classes)

- Every data-sample : $x \in \mathbb{R}^D$
- Decision Boundary : $\mathcal{H}: w^T x + b = 0$
- Distance Measure of Hyper plane : $d_{\mathcal{H}}(x_0) = \frac{|w^T x + b|}{||w||_2}$
- Goal: $w^* = argmax_w[\min_n d_{\mathcal{H}}(x_n)]$ $y_n[w^Tx + b] = \begin{cases} \geq 0, class A \\ < 0, class B \end{cases}$

$$w^* = argmax_w \frac{1}{\left| |w| \right|_2} \left[\min_n y_n [w^T x + b] \right]$$

$$y_n[w^T x + b] \ge 1, \forall n$$

$$\min_{w} \frac{1}{2} ||w||_2$$

Final form SVM optimization problem:

$$\min_{w} \frac{1}{2} ||w||_{2} + C \sum_{n} \xi_{n}$$

$$s. t. y_{n} [w^{T}x + b] \ge 1 - \xi_{n}, \forall n$$

$$\xi_{n} \ge 0, \forall n$$

Final form SVM optimization problem:

$$\min_{w} \frac{1}{2} ||w||_{2} + C \sum_{n} \xi_{n}$$

$$s. t. y_{n} [w^{T}x + b] \ge 1 - \xi_{n}, \forall n$$

$$\xi_{n} \ge 0, \forall n$$

Final form SVM optimization problem:

$$\min_{w} \frac{1}{2} ||w||_{2} + C \sum_{n} \xi_{n}$$

$$s. t. y_{n} [w^{T}x + b] \ge 1 - \xi_{n}, \forall n$$

$$\xi_{n} \ge 0, \forall n$$

$$\varphi(x):\mathbb{R}^D\to\mathbb{R}^M$$

Final form SVM optimization problem:

$$\min_{w} \frac{1}{2} ||w||_{2} + C \sum_{n} \xi_{n}$$

$$s. t. y_{n} [w^{T}x + b] \ge 1 - \xi_{n}, \forall n$$

$$\xi_{n} \ge 0, \forall n$$

 $\varphi(x): \mathbb{R}^D \to \overline{\mathbb{R}^M}$

The Most Final form SVM optimization problem:

$$\min_{w,\{\xi_n\}} \frac{1}{2} ||w||_2 + C \sum_n \xi_n$$

$$s. t. y_n [w^T \varphi(x) + b] \ge 1 - \xi_n, \forall n$$

$$\xi_n \ge 0, \forall n$$

Kernel SVM

Problem : Don't know the nature of $\varphi(x)$ transformation

Idea: Rewrite Optimization problem without determining $\varphi(x)$

It's possible via applying Lagrange multipliers optimization method, Dual Form of SVM, Mercer Theorem etc.

Kernel SVM

Problem : Don't know the nature of $\varphi(x)$ transformation

Idea : Rewrite Optimization problem without determining $\varphi(x)$

$$\min_{w, \{\xi_n\}} \frac{1}{2} ||w||_2 + C \sum_n \xi_n$$

$$s. t. y_n [w^T \varphi(x) + b] \ge 1 - \xi_n, \xi_n \ge 0, \forall n$$

Dual Form: $\varphi * \varphi^T = K(x, x')$

$$\begin{cases} \max L(\lambda) = \sum_{k=1}^{m} \lambda_k - \sum_{k=1}^{m} \sum_{l=1}^{m} \lambda_k \lambda_l y_k y_l K(x_k, x_l) \\ s. t. 0 \le \lambda_k \le C \end{cases}$$

Kernel SVM

Kernel exemples :

- \circ linear: $k(x,x')=x^Tx'$
- \circ polynomial: $k(x,x')=(x^Tx'+1)^d$ of different power $d=2,3,\ldots$
- \circ gauss-RBG: $k(x,x') = \exp(-rac{1}{2\sigma}|x-x'|^2)$

SVC with linear kernel SVC with polynomial (degree 3) kernel

SVM: Advantages & Drawbacks

- Good interpretability of the model
- Effective in high dimensional spaces
- Memory efficient

- **High sensitivity to the noise** in input data
- Slow training on large dataset

Model evaluation methods

Performance measures for Classification

- Simple Accuracy
- Precision
- Recall
- F-beta mesure
- ROC (and AUC)

Confusion matrix

Predicted class P N True False Positives Negatives (TP) (FN) Actual Class False True Negatives Positives (FP) (TN)

• Accuracy =
$$\frac{(TP + TN)}{(TP + TN + FP + FN)} = \frac{(TP + TN)}{N}$$

(fraction of correct predictions)

• Accuracy =
$$\frac{(TP + TN)}{(TP + TN + FP + FN)} = \frac{(TP + TN)}{N}$$

(fraction of correct predictions)

• Accuracy =
$$\frac{(TP + TN)}{(TP + TN + FP + FN)} = \frac{(TP + TN)}{N}$$

(fraction of correct predictions)

• Precision = $\frac{TP}{(TP+FP)}$ (fraction of correctly predicted positive values to all values predicted positive)

• Recall =
$$\frac{TP}{(TP + FN)}$$

(completeness, fraction of correctly predicted positive values to all positive values)

• Precision = $\frac{TP}{(TP+FP)}$ (fraction of correctly predicted positive values to all values predicted positive)

$$\Rightarrow$$
 Precision $=\frac{0}{0}$

• Recall =
$$\frac{TP}{(TP + FN)}$$

(completeness, fraction of correctly predicted positive values to all positive values)

$$\Rightarrow \mathsf{Recall} = \frac{0}{0+10} = \mathbf{0}$$

Example 1&2

Predicted class P N True False Negatives Positives (TP) (FN) Actual Class False True Negatives Positives (FP) (TN)

All is NOT Tumor:

Accuracy = 99,9%
Precision =
$$\frac{0}{0}$$

Recall = 0

Example 1&2

Predicted class P N True False Positives Negatives (TP) (FN) Actual Class False True Positives Negatives (FP) (TN)

All is NOT Tumor:

Accuracy = 99,9%
Precision =
$$\frac{0}{0}$$

Recall = 0

All is Tumor:

Accuracy = 0,1%

Precision = 0,001

Recall = 1

System 1:

- Precision= 70%
- Recall = 60%

System 2:

- Precision = 80%
- Recall = 50%

•
$$\mathbf{F}_{\beta} = \frac{1}{\left(\beta * \frac{1}{\operatorname{Precision}} + (1 - \beta) * \frac{1}{\operatorname{Recall}}\right)}$$
 (greater β , greater importance of Precision)

•
$$\mathbf{F_1} = \frac{\mathbf{2TP}}{(\mathbf{2TP} + \mathbf{FP} + \mathbf{FN})}$$
 (harmonic mean of precision and recall, $\beta = 0.5$)

System 1:

- Precision= 70%
- Recall = 60%

System 2:

- Precision = 80%
- Recall = 50%

$$\beta = 0.5$$

$$F_{\beta} =$$

$$F_{\beta} =$$

System 1:

- Precision= 70%
- Recall = 60%

System 2:

- Precision = 80%
- Recall = 50%

$$\beta = 0.5$$

$$F_{\beta} = 0.6461$$

$$F_{\beta} = 0.6153$$

$$\beta = 0.95$$
 (Pression is more important)

$$F_{\beta} =$$

$$F_{\beta} =$$

System 1:

- Precision= 70%
- Recall = 60%

System 2:

- Precision = 80%
- Recall = 50%

$$\beta = 0.5$$

$$F_{\beta} = 0.6461$$

$$F_{\beta} = 0.6153$$

 $m{\beta} = \mathbf{0.95}$ (Pression is more important)

$$F_{\beta} = 0.6942$$

$$F_{\beta} = 0.7766$$

ROC (Receiver operating characteristic)

• Sensitivity =
$$\frac{TP}{P} = \frac{TP}{(TP + FN)} = TPR$$
 (True positive rate, TPR, Recall)
• Specificity = $\frac{TN}{N} = \frac{TN}{(FP + TN)} = 1 - FPR$ (True negative rate, TNR)

ROC (AUC)

- Sensitivity = $\frac{TP}{P} = \frac{TP}{(TP + FN)} = TPR$ (True positive rate, TPR, Recall)
- Specificity = $\frac{TN}{N} = \frac{TN}{(FP + TN)} = 1 FPR$ (True negative rate, TNR)

ROC (AUC)

• Sensitivity = $\frac{TP}{P} = \frac{TP}{(TP + FN)} = TPR$ (True positive rate, TPR, Recall)

• Specificity = $\frac{TN}{N} = \frac{TN}{(FP + TN)} = 1 - FPR$ (True negative rate, TNR)

Sources

- MIT course "Introduction to Computational Thinking and Data Science" (Prof. Eric Grimson, Prof. John Guttag)
- Open Machine Learning Course (by Yury Kashnitsky, mlcourse.ai)
- YouTube lections "Algorithms and Concepts" (by CodeEmporium)