1장. 기본 개념

목치

- System Life Cycle의 개념
- 알고리즘 명세(Algorithm Specification)
- 데이터 추상화(Data Abstraction)
- 성능 분석(Performance Analysis)
- 성능 측정(Performance Measurement)

1. System Life Cycle의 개념

- 요구사항 분석 단계(Requirements)
 - 문제와 결과 정보를 규정
- 시스템 분석 단계(Analysis)
 - 상향식 설계(Bottom-up Analysis)
 - 세부 기능의 구현을 초기에 강조
 - 결과 프로그램 = 세부 기능들의 조합
 - 단점: 주어진 문제의 고유 특성을 고려하지 않는 설계가 될 위험이 있음.
 - 하향식 설계(Top-down Analysis)
 - 프로그램을 관리 가능한 세그먼트들로 분할
 - 단점: "도미노 효과"가 발생 가능

牌和 野 野型 午 %

-

System Life Cycle의 개념(2)

- 설계 단계(Design)
 - 데이터와 연산의 관점에서 접근
 - 데이터 관점: 추상적 데이터 타입(Abstract Data Type)
 - 연산의 관점: 알고리즘(Algorithm)
 - 프로그래밍 언어에 독립적
- 구현 단계(Refinement and Coding)
 - 데이터의 구현 방법을 선택
 - 데이터에 대한 각 연산들의 구현 알고리즘을 선택
 - 구현 단계의 주요 고려 사항: 성능(Performance)

System Life Cycle의 개념(3)

- 검증 단계(Verification)
 - 정확성 증명(Correctness Proof)
 - 수학적 기법: 시간이 많이 소요. 경우에 따라 불가능
 - 정확하다고 알려져 있는 알고리즘을 사용
 - 구현 단계 이전이나 구현 중에 진행 가능
 - 검사(Testing) 개발자가 Testing 안찬세 発
 - 실행 코드와 테스트 데이터가 요구됨
 - 양질의 테스트 데이터는 실행 코드의 모든 부분을 검사
 - 프로그램의 실행 시간도 측정
 - 오류 제거(Error Removal)
 - 경우에 따라 가장 많은 시간이 소요될 수 있음
 - 문서화가 되어 있지 않으면서, 뒤죽박죽 섞여있는 코드에서 오류를 제거: Programmer's nightmare!
- 좋은 프로그램이라?
 - 문서화 (袖, 帙, 참 幅)
 - 전체 프로그램이 기능적으로 깔끔하게 분리
 - 각 부분은 인자 전달(메시지 전달, 함수 호출 등)로 상호 동작

2. 알고리즘 명세

- 알고리즘의 정의
 - 어떤 일을 수행하기 위한 유한 개의 명령어들의 나열.
- 모든 알고리즘들이 만족해야 할 조건들
 - 입력(Input): <u>0 혹은 그 이상</u>의 입력이 존재
 - 출력(Output): 적어도 <u>하나 이상</u>의 결과물이 출력
 - 명확성(Definiteness): 알고리즘을 구성하는 명령어들의 의미는 명확하여야 하며, 애매모호해서는 안 된다.
 - 유한성(Finiteness): 알고리즘은 한정된 수의 명령어들을 수행한 후 종료하여야 한다.
 - 실행가능성(Effectiveness): 모든 명령어들은 실행 가능하여야 한다.

알고리즘의 예

- 코끼리를 냉장고에 넣는 방법 알괴칭치 (입력: 냉장고와 코끼리, 출력: 코끼리가 들어간 냉장고)
 - 1. 냉장고 문을 연다.
 - 2. 코끼리를 냉장고에 넣는다. ← 婚%&X
 - 3. 냉장고 문을 닫는다.
- 라면을 끓이는 법 생2%0 (입력: 라면 재료, 출력: 맛있게 끓인 라면)
 - 1. 냄비에 물을 500ml 넣고 거품이 날 때까지 끓인다.
 - 2. 라면과 수프를 함께 넣는다.
 - 3. 거품이 나면 불을 끈다.

알고리즘의 예: Selection Sorting(1)

- 문제
 - n ≥ 1 개의 정수를 정렬하는 프로그램을 작성
- 단순한 해결 방법
 - 현재까지 정렬되지 않은 정수들 중에서 가장 작은 것을 찾아 정렬 리스트에 추가하자.
 - 알고리즘이 아니다. 왜?
 - 애매모호한 명령어를 포함
 - 초기에 정수들을 어디에, 그리고 어떻게 저장할 것인가? 에 대한 설명이 없음.
 - 뿐만 아니라, 정렬 리스트를 어떻게 구성할 지에 대한 설명도 없음.

4

Selection Sorting(2)

■ 보다 구체적인 해결 방법

```
for (i = 0; i < n; i++) {
    Examine list[i] to list[n-1];
    Suppose that the smallest integer is at list[min];
    Interchange list[i] and list[min];</pre>
```

- 매크로와 함수
 - 매크로: 효율적(실행 시간)
 - 함수: 디버깅 용이(실행 코드의 크기)

Program 1.3: Swap 함수

```
void swap(int *x, int *y)
{
    int temp = *x;

    *x = *y;
    *y = temp;
}
```

Program 1.4: Selection Sorting 함수(1)

```
#include <stdio.h>
#include <stdlib.h>
#define MAX_SIZE 101
#define SWAP(x,y,t) ((t)=(x), (x)=(y), (y)=(t)) // 매크로로 구현
void sort(int [ ], int);  // selection sort
void main(void)
{
    int i, n, list[MAX_SIZE];
    printf("Enter the number of numbers to generate: ");
    scanf("%d", &n);
    if (n<1 || n>MAX_SIZE) { // error 처리
            fprintf(stderr, "Improper value of n\n");
            exit(1);
    for (i=0; i<n; i++) { // n개의 정수를 random하게 생성
            list[i] = rand() \% 1000;
            printf("%d ", list[i]);
```

Program 1.4: Selection Sorting 함수(2)

```
sort(list, n);
             // sort 함수를 호출. 인자는 배열과 정수의 개수
  printf("\n Sorted array:\n ");
  for (i = 0; i < n; i++)
       printf("%d ", list[i]); // 정렬된 정수를 출력
  printf("\n");
void sort(int list[], int n)
  int i, j, min, temp;
  for (i = 0; i < \underline{n-1}; i++) {
                                  // list[i]부터 list[n-1]까지 정렬.
       // 최소값이 i에 있다고 일단 가정
      for (j = i+1; j < n; j++)
                                   // i 위치 다음의 모든 놈들에 대해
                                   // 더 작은 것이 있으면
        if (list[j] < list[min])</pre>
                                   // 최소값을 이 놈으로...
           min = j;
      SWAP(list[i], list[min], temp); // 최소값과 i의 내용을 교체
```

-

Selection Sorting - 정의

■ 가장 작은 것부터 찾은 후, 차례대로 저장하자.

Selection Sorting - 분석 (비교 횟수)

Selection Sorting의 성능

■ 데이터 수가 n개일 때, 비교 연산의 수

$$\sum_{i=1}^{n-1} k = \frac{n(n-1)}{2}$$

예 2: 이진 검색(Binary Search)

智智能明: 豐利 別 위해

- 문제
 - 가정: 서로 다른 n ≥ 1 개의 정수가 list[] 배열에 <u>정렬</u>
 - key가 주어질 때, list[i] = key인 i를 발견하여 출력.

$$N \rightarrow \frac{N}{2} \rightarrow \frac{N}{4} \rightarrow \cdots$$

- 해결 방법
 - Step 1
 - left = 0. right = n-1. middle = (left+right)/2로 설정
 - Step 2
 - list[middle]과 key를 비교
- 초기 알고리즘: Program 1.5
- 최종 알고리즘: Program 1.7

Program 1.5: 이진 검색의 초기 해

```
while ( there are more integers to check ) {
    middle = ( left + right ) / 2;
    if ( key < list [ middle ] )
        right = middle - 1;
    else if ( key == list [middle ] )
        return middle;
    else left = middle + 1;
}</pre>
```

```
Program 1.7: 이진 검색
int binsearch(int list[], int key, int left, int right)
{
  /*search list[0] <= list[1] <= ... <= list[n-1] for key.
       Return its position if found. Otherwise return -1 */
  int middle; // left = 0, right = n-1 로 전달
  while (left <= right) {</pre>
                                           = 0
       middle = (left + right)/2;
       switch (compare(list[middle], key)) {
              case -1: left = middle + 1; // key가 크다
                       break;
              case 0: return middle; // 같다
              case 1: right = middle - 1; // key가 작다
```

return -1;

-

Program 1.6: Compare의 구현 방법

Macro

```
#define compare(x, y)(((x)<(y))? -1:((x)==(y))? 0:1)
```

■ 함수 호출

```
int compare( int x, int y )
{
    // x와 y를 비교하여 경우에 따라 -1, 0, 1을 출력 if ( x < y ) return -1;
    else if ( x == y ) return 0;
    else return 1;
}
```

१५ ४२ : ०१ इस

Example: 이진 검색

(1) case 1: key = 8

(2) case 2: key = 15

1장. 기본 개념 (Page 19)

재귀 알고리즘(Recursive Algorithms)

- 재귀 알고리즘의 특징
 - 문제 자체가 재귀적일 경우 적합(예: 피보나치 수열) [ơ) > f(n-1) ↑ f(n-2)
 - 이해하기가 용이하나, 비효율적일 수 있음
- 재귀 알고리즘을 작성하는 방법
- 재귀 호출을 종료하는 경계 조건을 설정각 단계마다 경계 조건에 접근하도록 알고리즘의 재귀 호출
 - 재귀 알고리즘의 두 가지 예
 - 이진 검색
 - 순열(Permutations)

이진 검색의 재귀 알고리즘

```
int binsearch(int list[], int key, int left, int right)
/*search list[0] <= list[1] <= ... <= list[n-1] for key.
        Return its position if found. Otherwise return -1 */
   int middle;
   if (left <= right) {</pre>
        middle = (left + right) / 2;
        switch (compare(list[middle], key)) {
             case -1: return binsearch(list, key, middle+1, right);
             case 0: return middle;
             case 1: return binsearch(list, key, left, middle-1);
   return -1;
```


예 1.4: 순열(Permutations)

- 문제 정의
 - n ≥ 1 개의 원소를 갖는 집합에 대해 이 집합의 모든 원소들에 대한 순열을 출력하라.
 - 예: 집합 {a, b, c}에 대해 순열의 집합 =
 - {(a, b, c), (a, c, b), (b, a, c), (b, c, a), (c, a, b), (c, b, a)}
 - n개의 원소에 대한 순열의 수는 n!
- 재귀적인 해결 방법: 집합 {a, b, c, d}를 가정
 - a가 먼저 나온 후, {b, c, d}로 구성된 모든 순열
 - b가 먼저 나온 후, {a, c, d}로 구성된 모든 순열
 - c가 먼저 나온 후, {a, b, d}로 구성된 모든 순열
 - d가 먼저 나온 후, {a, b, c}로 구성된 모든 순열

Program 1.9: 순열을 출력하는 재귀함수

```
void perm(char *list, int n)
  // list[i]에서 list[n]까지의 원소로 구성된 모든 순열 출력
  // {a, b, c, d}의 경우 초기 호출 = perm(list, 0, 3)
  int j, temp;
  if (i == n) { // 단 하나의 순열만 존재. 그냥 출력하자...
       for (i = 0; i <= n; i++)
              printf("%c", list[j]);
       printf("\n");
         // 하나 이상의 순열 존재. 재귀적으로 출력
       for (j = i; j \le n; j++) {
              SWAP(list[i], list[j], temp);
              perm(list, i+1, n);
              SWAP(list[i], list[j], temp);
```

perm() 함수의 동작 과정

{a,b,C,d} 計学 perm(list,0,3)
bcda 中部 景質되と 5質
bacd
(bcad

-

3. 데이터 추상화(Data Abstraction)

■ C 언어에서 데이터 타입

기본형: char, int, float, double

확장형: short, long, unsigned

■ 그룹화: array, struct, union

■ 포인터

■ 데이터 타입의 정의

■ 데이터 객체의 모음 및 그 데이터 객체에 적용 가능한 연산들의 집합

• 예: int

■ 객체: {0, 1, -1, 2, -2, ..., INT_MAX, INT_MIN}

■ 연산: {+, -, *, /, %, ...}

1

추상적 데이터 타입(Abstract Data Type)

- 데이터 객체의 내부 표현양식을 아는 것이 도움이 될까?
 - Yes, but dangerous!
- Abstract Data Type (ADT)의 정의
 - <u>데이터 객체 및 연산의 명세</u>와 <u>데이터 객체의 내부 표현양식/연산의 구현</u> 내용을 분리
 - 예: Ada package, C++ class
- ADT에서 연산의 명세
 - 구성 요소: 함수 이름, 인자들의 타입, 결과들의 타입
 - 함수의 호출 방법 및 결과물이 무엇인지를 설명
 - 함수의 내부 동작과정 및 구현 방법은 은폐
 - Information Hiding

연산 명세에서 내부 함수들의 종류

- 생성자(Creator/Constructor)
 - 데이터 객체의 새로운 인스턴스 생성
- Transformer
 - 기존 인스턴스를 이용하여 새로운 인스턴스를 생성
- 관찰자(Observer/Reporter)
 - 인스턴스에 대한 정보를 출력

ADT의 예: Natural Number

```
ADT Natural Number
   객체: 0부터 시작하여 컴퓨터로 표현할 수 있는 최대 정수(INT_MAX)까지의 범위에 속하는 정수들의 집합
   함수:
    for all x, y \in Natural\_Number; TRUE, FALSE \in Boolean
    and where +, -, <, and == are the usual integer operations
    Nat_No Zero() ::= 0
ત્રાસ્ત્રુ⊱્ર Boolean Is_Zero(x) ::= if (x) return FALSE
                               else return TRUE
야의 경두
    Nat_No Add(x, y) ::= if ((x + y) \le INT_MAX) return x + y
                               else return INT_MAX
    Boolean Equal(x, y) ::= if (x == y) return TRUE
                               else return FALSE
    Nat_No Successor(x) ::= if ( x == INT_MAX ) return x
                               else return x + 1
    Nat_No Subtract(x, y) ::= if (x < y) return 0, else return x - y
end Natural_Number
```

4

4. 성능 분석(Performance Analysis)

- 프로그램의 평가 기준
 - 주어진 문제를 해결
 - 정확성(Correctness)
 - 문서화(Documentation)
 - 모듈화(Modularization)
 - 가독성(Readability)
 - 공간 효율성(Space efficiency)
 - └■ 시간 효율성(Time efficiency)

```
골수적인 요소
좋은 프로그래밍
습관
성능과 관련
```

්성능 분석(Complexity theory, Simulation) vs. 성능 측정(Benchmarking) 골표 생아영

복잡도(Complexity)의 정의

- 공간 복잡도: 프로그램 실행에 소요되는 메모리
- 시간 복잡도: 프로그램의 실행 시간

-

4.1 공간 복잡도(Space Complexity)

- 고정적인 공간 요구사항
 - 입력과 출력 크기에 무관한 공간들
 - 예: 명령어 공간, 단순 변수나 상수를 위한 공간, ...
- 가변적인 공간 요구사항: **S**_p(**I**)
 - I의 수나 크기, 그리고 I/O의 횟수 등에 따라 가변적인 공간
- 프로그램 P의 전체 공간 요구 S(P) = c + S_p(I)
- 예: 단순 산술 함수 S_{abc}(I) = 0 곳에知

```
float abc( float a, float b, float c ) {
    return a+b+b*c + (a+b-c)/(a+b) + 4.0;
}
```

예: 배열에 저장된 원소들의 합: Program 1.11

Program 1.11과 Program 1.12

觉碧熟

1장. 기본 개념 (Page 31)

4.2 시간 복잡도(Time Complexity)

- T_p = 컴파일 시간 + 실행 시간
 - 컴파일 시간은 고정 & 한번만 필요
 - 질문: Tp를 어떻게 계산할까?
 - T_p 는 컴파일러 option과 하드웨어 사양에 따라 가변
 - 프로그램 단계 수(Program Step)을 활용하자.

Program Step

- 정의: 실행 시간이 프로그램의 특성과는 무관한 프로그램의 문법적인 혹은 논리적인 단위
- Program step의 계산: count를 이용
- 예: Program 1.13 ~ Program 1.18

Program 1.13: Count 이용 예(1)

```
float sum(float list[], int n)
\{
  float tempsum = 0; count++; // for assignment
  int i;
  for (i = 0; i < n; i++) {
      count++; // for the for loop
      count++; // for assignment
      tempsum += list[i];
  count++; // last execution of for
  count++; // for return
  return tempsum;
```

Program 1.14: 1.13의 단순화

Program 1.15: Count 이용 예(2)

Program 1.16: 행렬 더하기

Program 1.17: Count 이용 예(3)

```
void add(int a[][MAX_SIZE], int b[][MAX_SIZE],
                   int c[][MAX_SIZE], int rows, int cols)
  int i, j;
  for (i = 0; i < rows; i++) {
      count++; // for i for loop
      for (j = 0; j < cols; j++) {
            count++; // for j for loop
            c[i][j] = a[i][j] + b[i][j];
            count++; // for assignment statement
      count++; // last time of j for loop
  count++; // last time of i for loop
```

Program 1.18: 1.17의 단순화

Step Count Table (1)

Statement	s/e	Frequency	Total step
Float sum(float list[], int n)	0	0	0
{	0	0	0
float tempsum = 0;	1	1	1
int i;	0	0	0
for (i = 0; i < n; i++)	1	n+1	n+1
tempsum += list[i];	1	n	n
return tempsum;	1	1	1
}	0	0	0
Total			2n+3

Step Count Table (2)

Statement	s/e	Frequency	Total step
Float rsum(float list[], int n)	0	0	0
{	0	0	0
if (n)	1	n+1	n+1
return rsum(list, n-1)+ list[n-1];	1	n	n
return list[0];	1	1	1
}	0	0	0
Total			2n+2

Step Count Table (3)

Statement	s/e	Frequency	Total step
void add(int a [] [MAX_SIZE])	0	0	0
{	0	0	0
int i, j;	0	0	0
for (i = 0; i < rows; i++)	1	rows+1	rows+1
for $(j = 0; j < cols; j++)$	1	rows · (cols+1)	rows · cols + rows
c[i][j] = a[i][j] + b[i][j];	1	rows · cols	rows · cols
}	0	0	0
Total		2rows ·	cols + 2rows + 1

step: nol परेश स्म

4.3 근사 표현(O, Ω, Θ) 사가 기강에서 제임 글의

- 동기
 - 정확한 step count를 계산하는 것은 쉽지 않다.
 - Program step의 정의 자체가 정확하지 않다.
 - 100n + 10과 30n + 30의 비교
- 접근 방법
 - $T_{n}(n) = c_{1}n^{2} + c_{2}n$ 이라고 가정
 - n이 충분히 클 경우, 임의의 c₃에 대해 T_p(n) > c₃n
- 정의**:** f(n) = **O**(g(n)) iff

1001+10=0(n)

- \downarrow \exists (c and $n_0 > 0$) such that $f(n) \leq cg(n)$ for all $n, n \geq n_0$.

$$N^{2} + 10^6 N^2 = O(N^3)$$
 $N^{2} + 10^6 N^2 = C + N^2$, $N \ge N_0$ C ? $C = 10^{-1} 6^6$
 $10^6 + 10^{-10^2}$
 $10 \cdot 11$
 $N^{2} + 10^6$
 $10^{10} + 10^{10}$
 $10 \cdot 10^{1$

근사 표현(1): f(n) = O(g(n))

Example

■
$$3n + 2 = O(n)$$
 as $3n + 2 \le 4n$ for all $n \ge 2$

■ 3n + 3 = O(n) as $3n + 3 \le 4n$ for all $n \ge 3$

■ 100n + 6 = O(n) as $100n + 6 \le 101n$ for all $n \ge 6$

■ $10n^2 + 4n = O(n^2)$ as $10n^2 + 4n \le 11n^2$ for all $n \ge 5$

• $6*2^n + n^2 = O(2^n)$ as $6*2^n + n^2 \le 7*2^n$ for all $n \ge 4$

■ f(n) = O(g(n))일 경우, g(n)은 f(n)의 upper bound

■
$$10n^2 + 4n = O(n^4)$$
 as $10n^2 + 4n \le 10n^4$ for all $n \ge 2$

• **Theorem**: If $f(n) = a_m n^m + ... + a_1 n + a_0$, then $f(n) = O(n^m)$.

• Proof:
$$\sum_{i=0}^{m} |a_i| n^i \le n^m \sum_{i=0}^{m} |a_i| n^{i-m} \le n^m \sum_{i=0}^{m} |a_i|$$
, for all $n \ge 1$

100 N²+4N=0(h) X 100 N²+4N CC · N N=No 19 19 19

근사 표현(2): $f(n) = \Omega(g(n))$ \mathcal{G}_{Mego}

- 정의**:** f(n) = Ω(g(n)) iff
 - \exists (c and $n_0 > 0$) such that $f(n) \ge cg(n)$ for all $n, n \ge n_0$.
 - g(n)은 f(n)의 lower bound

Example

- $3n + 2 = \Omega(n)$ as $3n + 2 \ge 3n$ for all $n \ge 1$
- $10n^2 + 4n = \Omega(n^2)$ as $10n^2 + 4n \ge 10n^2$, $\forall n \ge 1$
- $6*2^n + n^2 = \Omega(2^n)$ as $6*2^n + n^2 \ge 6*2^n$, $\forall n \ge 1$
- $3n + 2 = \Omega(1)$, $10n^2 + 4n = \Omega(n)$, $6*2^n + n^2 = \Omega(n^2)$
- **Theorem**: If $f(n) = a_m n^m + ... + a_1 n + a_0$ and $a_m > 0$, then $f(n) = \Omega(n^m)$.

-

- 정의: f(n) = ⊖(g(n)) iff
 - \exists (c₁, c₂, and n₀ > 0) such that c₁g(n) \leq f(n) \leq c₂g(n) for all n, n \geq n₀.
 - g(n)은 f(n)의 lower bound이면서 upper bound임
- Example

 - $10n^2 + 4n + 2 = \Theta(n^2)$, $6*2^n + n^2 = \Theta(2^n)$
 - $3n + 2 \neq \Theta(1)$, $3n + 2 \neq \Theta(n^2)$
- **Theorem**: If $f(n) = a_m n^m + ... + a_1 n + a_0$ and $a_m > 0$, then $f(n) = Θ(n^m)$.

예제 프로그램들의 근사 표현

•
$$T_{sum}(n) = 2n + 3 = \Theta(n)$$

- $T_{rsum}(n) = 2n + 2 = \Theta(n)$
- $T_{add}(row, col) = 2row * col + 2row + 1 = \Theta (row * col)$
- Binary Search: $\Theta(\log_2 n) \leftarrow \text{see Program 1.6}$
 - T(n) = T(n/2) + 1
 - T(1) = 1
- Permutation: $\Theta(n^{2*}n!)$ \leftarrow see Program 1.8
 - $T_{perm}(0, n) = (n + 1) * T_{perm}(1, n)$
 - $T_{perm}(n, n) = n + 1$
- Magic Square (Figure 1.6 & Program 1.23)

$$T(n) = T(\frac{n}{2}) + 1 \rightarrow \Theta(\log_2 n)$$

$$T(\frac{n}{4}) + 1$$

$$T(\frac{4}{8}) + 1$$

$$T(1) + 1$$

예: Magic Square

- Magic Square의 정의
 - $\mathbf{n} \times \mathbf{n}$ 행렬에 $\mathbf{1}$ 부터 \mathbf{n}^2 까지의 정수를 채우는데, 각 행과 열, 그리고 대각선 의 합이 모두 동일.
- n = 5인 magic square (합은 65)

input outpu

15	8	1	24	17
16	14	7	5	23
22	20	13	6	4
3	21	19	12	10
9	2	25	18	11

6		8
J	5	3
2	9	4

Program 1.23: Magic Square (1)

```
#include <stdio.h>
#define MAX_SIZE 15
                             // Square의 최대 크기
void main(void)
                             // 순차적으로 magic square 작성
  int square[MAX_SIZE][MAX_SIZE];
  int i, j, row, column;
                          // 배열의 첨자들
                             // Square의 크기로 입력 받음.
  int size;
                             // 1부터 size * size까지 증가
  int count;
  printf("Enter the size of the square: ");
  scanf("%d", &size);
  if (size < 1 | size > MAX_SIZE + 1) { // 입력 오류 검사
     printf("Error! Size is out of range\n");
     return;
```

OJ OF X

Program 1.23: Magic Square (2)

```
// square의 크기는 홀수여야 함.
if (!(size % 2)) {
    print("Error! Size is even\n");
    return;
for (i = 0; i < size; i++) // square의 모든 원소를
   for (j = 0; j < size; j++) // 0으로 초기화
          square[i][j] = 0;
square[0][size / 2] = 1; // 첫 행의 중간부터 시작
i = 0;
               // i는 현재 행 번호
                   // j는 현재 열 번호
i = size / 2;
for (count = 2; count <= size * size; count++) {
   row = (i-1 < 0) ? (size-1) : (i-1);  // 위쪽 행 column = (j-1 < 0) ? (size-1) : (j-1);  // 왼쪽 열
    if (square[row][column] != 0) {
          i = (++i) % size; // 못 갈 경우, 아래로
```


Program 1.23: Magic Square (3)

```
// 갈 수 있을 경우, i와 j를 대각선 위로.
   else {
         i = row;
         j = column;
   square[i][j] = count; // 변경된 위치에 다음 수 추가
// 생성된 magic square를 출력
printf("Magic Square of size %d : \n\n", size);
for (i = 0; i < size; i++) {
    for (j = 0; j < size; j++) {
         printf("%5d", square[i][j]);
               // 한 줄에 한 행씩 출력
   printf("\n");
printf("\n\n");
                                       Time Complexity =
```

512C

5. 성능 측정(Performance Measurement)

- 알고리즘의 복잡도 함수를 그래프로 표시
- Selection Sort의 실제 실행 시간을 측정한 후 그래프로 표시

대표적인 복잡도 함수의 그래프

Program 1.24: Selection sort의 시간 측정(1)

```
#include <stdio.h>
#include <time.h>
#define MAX SIZE 1601
#define ITERATIONS 26
#define SWAP(x, y, t) ((t) = (x), (x) = (y), (y) = (t))
void main(void) // 다양한 배열 크기에 대해
               // Selection sort의 실행 시간을 측정
  int i, j, position;
  int list[MAX SIZE];
  int sizelist[] = \{0, 10, 20, 30, 40, 50, 60, 70, 80,
  90, 100, 200, 300, 400, 500, 600, 700, 800, 900, 1000,
  1100, 1200, 1300, 1400, 1500, 1600}; // 배열의 크기
  clock_t start, stop; // 시작 시간과 종료 시간
  double duration; // 경과 시간 = stop - start
  printf(" n time\n");
```


Program 1.24: Selection sort의 시간 측정(2)

```
for (i = 0; i < ITERATIONS; i++) { // 26개의 배열 크기
   for (j = 0; j < sizelist[i]; j++)
          list[j] = sizelist[i] - j; // 역순으로 초기에 저장

    # start = clock();  // 시작 시간 측정

   sort(list, sizelist[i]); // sort 함수 호출

メ stop = clock();  // 종료 시간 측정

   // CLOCKS_PER_SEC = 초당 클럭의 수. Macro: 1000
   duration = ((double) (stop - start)) / CLOCKS_PER_SEC;
    printf("%6d %.2f\n", sizelist[i], duration);
```

Selection Sort의 시간 복잡도는?

Program 1.24의 실행 결과

п	Time	п	Time
30 · · · 100	.00	900	1.86
200	.11	1000	2.31
300	.22	1100	2.80
400	.38	1200	3.35
500	.60	1300	3.90
600	.82	1400	4.54
700	1.15	1500	5.22
800	1.48	1600	5.93

■ Note: 요즘 컴퓨터로 실행할 경우...

실행 결과를 그래프로 그리면?

Intel Core i7-4790 @ 3.60GHz, 8.00GB RAM

E110(E) 2821 अस्टि गर्भाः Z loggi 儿让等张 = log2+ log2+ log2+ ... +log2 对强烈烈X $= \log_2(1 \times 2 \times 3 \times \dots \times n)$ $= \log_2(1) \times 2 \times 3 \times \dots \times n$ 6 (n. | m2) ० (1) श्रेष्ठ लाजहार 31501 ETP 1 N2435 t(n)=2t(n/4) h>1 0(n) $t cn = 2t(\frac{n}{4}) = 2.2t(\frac{n}{16}) = 2t(\frac{n}{4})$

7/12 CN (FELS) FULSO3 7/2 12 156	9)		
2억 포기법 ((gn)× O(h²): O(N²×logn) 기다당시, 한당식 , 국제동03 퀴그 봉 (투운			