Stepwise Height Harmony as Partial Transparency

NELS 50 October 25, 2019

Caitlin Smith

Johns Hopkins University with support from Microsoft Research Al

Introduction

 Harmony: spreading of some phonological property throughout domain

$$/o-a-a/ \to [o-o-o]$$

 Transparency: some segments are apparently skipped by harmony process

$$/o-i-a/ \rightarrow [o-i-o]$$

 Partial harmony: segment takes on phonological property of trigger to only partial degree

Stepwise/Partial Height Harmony

- Stepwise/partial height harmony: vowels raise one step along height scale, approaching height of trigger without necessarily reaching it
- Nzebi (Bantu; Gabon) raising harmony (Guthrie 1968, Clements 1991, Parkinson 1996, Kirchner 1996):

Non-Raising Context	Raising Context	Gloss	
b <u>e</u> tə	b <u>i</u> t-i	'carry'	
β <u>ox</u> mə	β <u>ux</u> m-i	'breathe'	
s <u>e</u> bə	s <u>e</u> b-i	'laugh'	
m <u>o</u> nə	m <u>o</u> n-i	'see'	
s <u>a</u> lə	s <u>e</u> l-i	'work'	

Difficulties of Analyzing Stepwise Height Harmony

Nzebi Raising Harmony

- Different height changes manipulate different vowel features (e.g., [±high] vs. [±low] vs. [±ATR])
- Scalar height features: undesirable predictions about possible direction of feature change (low to high vs. high to low) in stepwise harmony
- Stepwise harmonies involve chain shifts (X → Y → Z), requiring additional theoretical machinery in constraint-based grammars

Proposal: Partial Transparency in a Gestural Model of Harmony

Gestural Harmony Model (Smith 2016, 2017ab, 2018):

- Subsegmental units of phonological representation are goal-based, dynamically-defined gestures
- Harmony is result of extension of gesture to overlap gestures of other segments in a word
- Transparency to harmony is result of blending gestures with different target articulatory states

Proposals:

- Partial transparency/partial undergoing is result of blending gestures of similar strengths
- 2) Stepwise partial height harmony is type of partial transparency

Gestures as Phonological Units

Gestural Parameters

 Gestures: dynamically-defined, goal-based units of phonological representation (Browman & Goldstein 1986, 1989)

- Target articulatory state:
 - Constriction location
 - Constriction degree
- Blending strength (α): ability to command vocal tract articulators
- Ability to self-activate and self-deactivate (Smith 2016, 2017ab, 2018)

Constriction Location and Degree for Consonantal Gestures

- Constriction location of gesture specifies target point along vocal tract surface
- Constriction degree of gesture specifies distance between active articulator and constriction location point

Constriction Location and Degree for Vowel Gestures

- Each vowel includes two tongue body gestures:
 - Constriction location 'upper surface'
 - Constriction location 'back surface'
- Constriction degree of upper surface gesture determines vowel height
- Constriction degree of back surface gesture determines vowel backness

Constriction Location and Degree for Vowel Gestures

- Each vowel includes two tongue body gestures:
 - Constriction location 'upper surface'
 - Constriction location 'back surface'
- Constriction degree of upper surface gesture determines vowel height
- Constriction degree of back surface gesture determines vowel backness

Gestural Parameters

 Gestures: dynamically-defined, goal-based units of phonological representation (Browman & Goldstein 1986, 1989)

- Target articulatory state:
 - Constriction location
 - Constriction degree
- Blending strength (α): ability to command vocal tract articulators
- Ability to self-activate and self-deactivate (Smith 2016, 2017ab, 2018)

Harmony and Transparency via Gestural Blending

Gestural Activation and Deactivation

(Smith 2016, 2017ab, 2018)

Example: Rounding Harmony

Transparency as Gestural Blending

- Transparency: competition between two concurrently active antagonistic gestures (Smith 2016, 2018)
- Gestural antagonism: two concurrently active gestures with opposing target articulatory states
 - Lip protrusion vs. lip spreading
 - wide upper surface constriction vs. narrow upper surface constriction

Gestural Strength and Blending

 Antagonistic gestures: gestures with conflicting target articulatory states

 Antagonism resolved by blending target articulatory states of concurrently active gestures according to Task Dynamic Model of speech production (Saltzman & Munhall 1989, Fowler & Saltzman 1993)

$$\frac{\text{Target}_1 * \alpha_1 + \text{Target}_2 * \alpha_2}{\alpha_1 + \alpha_2} = \text{Blended Target}$$

Example: Transparency in Rounding Harmony

Advantages of Transparency via Gestural Blending

- Correctly predicts which segments can be transparent within nasal harmony and rounding harmony
- Avoids over-generation of predicted transparent segments (Smith 2016, 2018)
- Harmony is represented locally (without skipping), resulting in gestural antagonism with transparent segments

Prediction: Partial Transparency via Gestural Blending

- Full transparency: overlapped gesture of transparent segment is much stronger than harmonizing gesture (e.g. 10-to-1)
- Identical or similar blending strengths of harmonizing gesture and overlapped gesture predicts partial transparency/partial undergoing of harmony
- Partial transparency attested in Coeur d'Alene Salish faucal (retraction) harmony (Smith 2017c, 2018)

Stepwise Height Harmony in Nzebi

Nzebi Stepwise/Partial Height Harmony

(Guthrie 1968, Clements 1991, Parkinson 1996, Kirchner 1996)

Non-Raising Context	Raising Context	Gloss
[b <u>e</u> tə]	[b <u>i</u> t-i]	'carry'
[β <u>o</u> zmə]	[β <u>u</u> m-i]	'breathe'
[s <u>s</u> bə]	[s <u>e</u> b-i]	'laugh'
[m <u>o</u> nə]	[m <u>o</u> n-i]	'see'
[s <u>a</u> lə]	[s <u>ɛ</u> l-i]	'work'

Nzebi: Analysis

- Vowel raising harmony due to overlap by anticipatory upper surface narrowing gesture of suffix high vowel /i/
- Vowels of different heights have antagonistic target states for upper surface constriction degree, resulting in gestural blending

Nzebi Gestural Strength Parameters

- Relatively weak narrow-mid vowels /e/ and /o/ do not resist raising and surface as narrow
- Wide-mid vowels /ɛ/ and /ɔ/ surface as narrow-mid, partially resisting raising to narrow due to strength equal with trigger gesture
- Strong vowel /a/ surfaces as wide-mid, mostly resisting raising due to strength greater than trigger gesture

Gestural Blending Strength Calculations

Vowel	Target Constriction Degree	Strength	$\frac{4*10 + 8*1}{10 + 1} = 4.36 \text{ mm}$
/i/, /u/	4 mm	10	4*10 + 12*10 = 8 mm
/e/, /o/	8 mm	1	10 + 10
/e/, /ɔ/	12 mm	10	4*10 + 16*20 = 12 mm
/a/	16 mm	20	$\frac{10+20}{10+20}$

Nzebi: Analysis

- Narrow-mid vowels /e/ and /o/ fully undergo harmony
- Relative gestural blending strengths favor target constriction degree (narrow upper surface constriction) of high vowels

Gestural Blending Strength Calculations

Vowel	Target Constriction Degree	Strength	$\frac{4*10 + 8*1}{10 + 1} = 4.36 \text{ mm}$
/i/, /u/	4 mm	10 —	4*10 + 12*10 = 8 mm
/e/, /o/	8 mm	1	10 + 10
/c/, /ɔ/	12 mm	10	4*10 + 16*20 = 12 mm
/a/	16 mm	20	$\frac{+10+1020}{10+20} = 1211111$

Nzebi: Analysis

- Overlap between gestures of wide-mid vowels /ɛ/ and /ɔ/ and narrow /i/ produces narrow-mid [e] and [o]
- Intermediate blended articulatory state due to equal gestural strengths

Gestural Blending Strength Calculations

Vowel	Target Constriction Degree	Strength	$\frac{4*10 + 8*1}{10 + 1} = 4.36 \text{ mm}$
/i/, /u/	4 mm	10	4*10 + 12*10 = 8 mm
/e/, /o/	8 mm	1	$\frac{4*10 + 12*10}{10 + 10} = 8 \text{ mm}$
/c/, /ɔ/	12 mm	10	4*10 + 16*20 = 12 mm
/a/	16 mm	20 —	10 + 20

Nzebi: Analysis

- Overlap between gestures of wide vowel /a/ and narrow /i/ produces wide-mid vowel [ε]
- Blending strengths slightly favor target constriction degree of wide vowel

Featural Approaches to Stepwise/Partial Height Harmony

Binary Vowel Height Features

- In vowel inventory with more than two heights, multiple binary features must be used to distinguish them (e.g., [±high], [±low], [±ATR])
- Stepwise height harmony may involve spreading/assimilation of two or more different features in a single harmony process

Stepwise Partial Height Harmony as Chain Shift

Stepwise height harmony produces apparent chain shifts:

$$a \rightarrow \epsilon \rightarrow e \rightarrow i$$
 $0 \rightarrow 0 \rightarrow u$

 Non-derivational frameworks (Optimality Theory, Harmonic Grammar) encounter difficulty with chain shifts and other derivationally opaque phonological patterns

Stepwise Partial Height Harmony as Chain Shift

- Synchronic chain shifts in Optimality Theory via conjunction of faithfulness constraints (Kirchner 1996, Moreton & Smolensky 2002)
- Nzebi (Kirchner 1996): conjoined constraints IDENT(high)&IDENT(ATR)
 and IDENT(low)&IDENT(ATR) prevent raising more than single step
- Independently motivated individual constraints can produce unattested patterns when conjoined (Itô & Mester 1998, Fukazawa & Lombardi 2003, Pater 2009)
- Ganging of weighted constraints in Harmonic Grammar does not produce chain shifts (Magri 2018)

Underlying and Derived Vowels

• Underlying mid-high vowel /e/:

Tongue Body back surface wide₁

Tongue Body upper surface narrow-mid₁

■ Mid-high vowel [e] derived by blending /ɛ/₁ and /i/₂:

Tongue Body back surface wide Tongue Body back surface wide Tongue Body upper surface wide-mid upper surface narrow upper surface narro

Conclusion

Conclusion

- Stepwise/partial height harmony can be analyzed as case of partial transparency to harmony
- Partial transparency is predicted by gestural model of harmony in which transparency is modeled as competition/blending of gestures with antagonistic target states
- Avoids issues that arise in analyses that rely on binary or scalar height features and additional grammatical mechanisms