Théorie des Langages Rationnels Introducing Automata

Adrien Pommellet, LRE

February 13, 2023

Practical Application

Exercise 1. Find an algorithm that decides the language of the regular expression ab^*a on $\Sigma = \{a, b, c\}$. This algorithm must be efficient: there is **no backtracking**, the word must be read from the left to the right in a single pass.

Answer I

```
0:
   def algo(w):
1:
  i = 0
2: if w[i] != a:
3: return false
4: i += 1
5: while w[i] == b
6:
   i += 1
7: if w[i] != a:
8:
      return false
9: i += 1
10: if i == len(w):
11:
    return true
12: else:
13:
    return false
```

A graphical representation

Answer II

We remove the edges leading to a **false** result and make them **implicit**: any letter that can't be matched to an existing edge triggers a **false** result.

Answer III

We remove the EOF edge leading to the **true** result: instead, we mark the node as **accepting**.

Answer IV

Finally, we name the nodes so it is easier to identify them. The resulting structure is called a **finite automaton**.

A formal definition

Finite automaton

A finite automaton A is made of the five following components:

- A finite set Q of states. A state is a node of the graph.
- A finite alphabet Σ.
- A set of edges $\delta \subseteq Q \times \Sigma \times Q$: an edge is a triplet, and δ is a set of triplets.
- A set of initial states /.
- A set of accepting states F.

We then write $A = (Q, \Sigma, \delta, I, F)$.

Paths

A path labelled by a word $w = w_1 \dots w_n$ is a sequence of consecutive edges labelled by the letters w_1, \dots, w_n starting from an initial state.

Here, $q_0 \xrightarrow{a} q_1 \xrightarrow{a} q_3 \xrightarrow{b} q_3$ is a path labelled by the word aab. We write $q_0 \xrightarrow{aab}_{\mathcal{A}}^* q_3$, meaning that using zero or more edges, we can reach q_3 from q_0 with a path labelled by aab.

Automata and languages

Accepting a word

An automaton \mathcal{A} accepts a word $w \in \Sigma$ if there exists a path from an initial state to a final state labelled by w. Such a path is said to be accepting.

Language of an automaton

The language $\mathcal{L}(\mathcal{A}) = \{ w \in \Sigma^* \mid \mathcal{A} \text{ accepts } w \}$ of an automaton \mathcal{A} is the set of all words in Σ^* accepted by \mathcal{A} . $\mathcal{L}(\mathcal{A})$ is said to be **recognized** by \mathcal{A} .

Refusing words

This automaton accepts the word abc. However:

- The word *aca* is refused as the only path it labels does not **end** in an accepting path. **Passing through** an accepting state is not enough.
- The word acb is refused because there is **no path** starting from q_0 labelled by acb.

Thus, there are two ways to reject words.

Practical Application

Exercise 2. Do the following words belong to the language of the automaton A below?

baba, abab, aaab, aaaa, ε , any word in $\mathcal{L}(a^*ab^*b)$

Answer

The automaton A accepts aaab, abab, aaaa, and any word in $\mathcal{L}(a^*ab^*b)$ but refuses baba and ε .

Equivalent automata

Equivalence

Two automata A_1 and A_2 are said to be equivalent if $\mathcal{L}(A_1) = \mathcal{L}(A_2)$.

As an example, the two following automata are different yet equivalent:

Deterministic automata

Determinism

An automaton A is said to be deterministic and called a **DFA** if:

- It has exactly one initial state.
- For each letter a in Σ and each state q of A, there is from q at most one outgoing edge labelled by a.

It is otherwise non-deterministic (and called a NFA).

The following patterns are not allowed:

$$\operatorname{start} \longrightarrow \overbrace{q_i}$$
 $\operatorname{start} \longrightarrow \overbrace{q_i'}$

Non-determinism and acceptation

A NFA may for a given word w feature multiple paths starting from an initial path and labelled by w. Here, there are **four** paths labelled by ab, only two of these being accepting.

A **single accepting path** is enough for the NFA to accept the word *ab*, regardless of the number of rejecting paths.

Consequences of determinism

The previous definition leads to a simpler property:

Theorem

If an automaton A is deterministic, then for each word w in Σ^* there is **at** most one path labelled by w.

Intuitively, determinism applied to algorithms means that for each input, there is a single, well-defined matching execution. There is no arbitrary choice to be made.

Practical Application

Exercise 3. Find two automata A_1 and A_2 on the alphabet $\Sigma = \{a, b\}$ such that:

- A_1 recognizes the set of all words starting with ab.
- A_2 recognizes the set of all words ending with ab.

Answer

Figure 1: Automaton A_1 .

Figure 2: Automaton A_2 .

What About Determinism?

The automaton A_2 is a NFA. But designing a DFA in that context is a more complex issue that we may answer later...

See you next class!