

# **UES 009 Mechanics Truss\_Method of Sections**



#### Dr. Kishore Khanna

**Mechanical Engineering Department**Thapar Institute of Engineering and Technology, Patiala

#### Trusses



#### Trusses



**Gliwice Transmission Tower, Poland** 

#### Trusses: Method of Analysis

Method of Joints: only two of three equilibrium equations were applied at each joint because the procedures involve concurrent forces at each joint







#### Method of Sections

Take advantage of the 3<sup>rd</sup> or moment equation of equilibrium by selecting an entire section of truss









#### Trusses



The forces in selected members of this truss can readily be determined using the method of sections.

#### METHOD OF SECTION

When we need to find the force in only a few members of a truss, we can analyze the truss using the <u>method of sections</u>. It is based on the principle that if the truss is in equilibrium then any segment of the truss is also in equilibrium. In this method an <u>imaginary section</u>, is used to cut each member into two parts and thereby "expose" each internal force as "external" to the free-body diagrams shown.

#### METHOD OF SECTION



## Trusses: Method of Sections

| It is not always necessary to determine the forces in all of the members of a truss.                 |
|------------------------------------------------------------------------------------------------------|
| If several forces only are of interest, it may be advantageous to use the method of sections instead |
| of the method of joints.                                                                             |
| In this case, the truss is divided by a cut into two parts.                                          |
| The cut has to be made in such a way that it either goes through three members that do not all       |
| belong to the same joint, or passes through one joint and one member.                                |
| If the support reactions are computed in advance, the free-body diagram for each part of the truss   |
| contains only three unknown forces that can be determined by the three conditions of                 |
| equilibrium.                                                                                         |

#### Trusses: Method of Sections

 $\square$  Forces are required in member 1,2, and 3.



A cutting plane is passed through these members to cut the truss into two parts



Apply the equilibrium conditions to the free-body diagram of either part

#### Trusses: Method of Sections

Apply the equilibrium conditions to the free-body diagram of left part



Computing the support reactions, the forces in members 1-3 are now known

Ex: Determine the forces in the members AC, AD and BC using method of Sections



A Section is cut through AD, AC, and BC to cut the Truss in two parts



Considering the Upper Part for Equilibrium

$$\Sigma F_{\chi} = 0;$$
  
 $1000 - AC \cos 45 = 0; AC = 1414 \ kN(T)$ 

In 
$$\triangle EFC$$
,  $EF = (1m) \sin 60 = 0.866m$   
 $\sum M_C = 0$ ,  
 $(1000 \times 0.866) - AD \times 1 = 0$ ;  
 $AD = 866kN(T)$ 

$$\Sigma F_y = 0$$
;  $-AD - BC - AC \sin 45 = 0$ ;  $BC = -1866 \, kN$ ;  $BC = 1866 \, kN$ ( $Comp$ .)

## Method of Sections: Helpful Hint

- ☐ There is no harm in assigning one or more of the forces in the wrong direction as long as the calculations are consistent with the assumption.
- ☐ A negative answer will show the need for reversing the direction of the force.

Find out internal forces in members FH, GH and GI.

Solution: Find out reactions at the supports

$$\sum M_A = 0 = -(5 \text{ m})(6 \text{ kN}) - (10 \text{ m})(6 \text{ kN}) - (15 \text{ m})(6 \text{ kN})$$
$$-(20 \text{ m})(1 \text{ kN}) - (25 \text{ m})(1 \text{ kN}) + (30 \text{ m}) V_L$$



$$V_L = 7.5 \, kN$$

$$\Sigma F_Y = 0; V_A + V_L = 20kN;$$
  
 $V_A = 12.5 kN$   
 $\Sigma F_H = 0; H_A = 0$ 

Pass a section through members FH, GH, and GI and take the right-hand section as a free body.





$$\tan \alpha = \frac{FG}{GL} = \frac{8 \text{ m}}{15 \text{ m}} = 0.5333$$
  $\alpha = 28.07^{\circ}$ 

IMH:0



Apply the conditions for static equilibrium to determine the desired member forces.

$$\sum M_{H} = 0$$
(7.50 kN )(10 m) - (1 kN )(5 m) -  $F_{GI}$  (5.33 m) = 0
$$F_{GI} = +13.13 \text{ kN}$$

$$F_{GI} = 13.13 \text{ kN}$$

#### Method of Sections: Example Solution





$$\sum M_G = 0$$

$$(7.5 \text{ kN})(15 \text{ m}) - (1 \text{ kN})(10 \text{ m}) - (1 \text{ kN})(5 \text{ m})$$

$$+ (F_{FH} \cos \alpha)(8 \text{ m}) = 0$$

$$F_{FH} = -13.82 \text{ kN}$$

$$F_{FH} = 13.82 \,\mathrm{kN} \left(C\right)$$

#### Method of Sections: Example Solution





$$\tan \beta = \frac{GI}{HI} = \frac{5 \text{ m}}{\frac{2}{3} (8 \text{ m})} = 0.9375$$
  $\beta = 43.15^{\circ}$   
 $\sum M_L = 0$   
 $(1 \text{ kN})(10 \text{ m}) + (1 \text{ kN})(5 \text{ m}) + (F_{GH} \cos \beta)(15 \text{ m}) = 0$   
 $F_{GH} = -1.371 \text{ kN}$ 

$$F_{GH} = 1.371 \,\mathrm{kN}$$
 C

Calculate the force in member DJ of the Howe roof truss as shown. Neglect any horizontal components of force at the supports.

#### **Solution:**

☐ Calculate reactions at supports:

$$V_A + V_G = 30kN;$$
  
 $\Sigma M_A = 0;$   
 $10 \times 4 + 10 \times 8 + 10 \times 16 - V_G \times 24 = 0;$   
 $V_G = 11.67 \ kN \ \text{and} \ V_A = 18.33 \ kN$ 

☐ Take a section that cuts the member DJ

 $\square$  It is not possible to pass a section through DJ without cutting four members whose forces are un known.



- $\square$  It is not possible to pass a section through DJ without cutting four members whose forces are un known.
- ☐ It is necessary to consider first the adjacent section 1 before analysing section 2.















#### Method of Sections: Exercise Problems

Exercise: Calculate the forces in members BC, BE, and EF.



Ans. 
$$BC = 21 \text{ kN } T$$
,  $BE = 8.41 \text{ kN } T$   
 $EF = 29.5 \text{ kN } C$ 

#### Method of Sections: Exercise Problems

Determine the forces in members *CG* and *GH* for the truss loaded and supported as shown.



Ans. CG = 70.7 kN T, GH = 100 kN T

# Thank you





By the analysis of section 1, CJ is obtained from

$$[\Sigma M_A = 0]$$
  $0.707CJ(12) - 10(4) - 10(8) = 0$ 

$$CJ = 14.14 \text{ kN } C$$

$$[\Sigma M_J = 0]$$
  $0.894CD(6) + 18.33(12) - 10(4) - 10(8) = 0$   $CD = -18.63 \text{ kN}$ 

The moment of CD about J is calculated here by considering its two components as acting through D. The minus sign indicates that CD was assigned in the wrong direction.

Hence, 
$$CD = 18.63 \text{ kN } C$$





From the free-body diagram of section 2, which now includes the known value of CJ, a balance of moments about G is seen to eliminate DE and JK. Thus,

$$[\Sigma M_G = 0]$$
  $12DJ + 10(16) + 10(20) - 18.33(24) - 14.14(0.707)(12) = 0$ 

