Today's Agenda

Exploring Dataset 1

1. Review the descriptive statistics

2. Build univariate visualizations

Justin Leinaweaver (Spring 2022)

Dataset 1: The Motivating Problem

The Quantitative Analysis Approach

What drives economic investment in US states?

Why do some states attract greater investment by companies and individuals than others?

Dataset 1: Let's Develop a Model

The Quantitative Analysis Approach

1. Literature Review

- 2. Exploratory Data Analysis
 - Descriptive Statistics
 - Univariate Visualizations

Dataset 1: Descriptive Statistics

Predictors to Analyze (5): Min wage, unemployment, population, homeowner rate and manufacturing

```
Mean= AVERAGEMedian= MEDIANStandard deviation= STDEV.SMinimum= MINMaximum= MAX25th Percentile= QUARTILE.EXC (quart = 1)75th Percentile= QUARTILE.EXC (quart = 3)
```

Dataset 1: Descriptive Statistics

mean	sd	
69.1	5.1	
241.9	243.2	
9.3	1.9	
6575.4	7403.7	
7.4	1.8	
	69.1 241.9 9.3 6575.4	

Variable	Minimum	pct25	median	pct75	Maximum
homeowner_rate	53.6	67	69.7	72.4	78.2
manufacturing_thousands	9.5	59	167.7	328.5	1261.7
min_wage	7.2	7	9	11	13.5
population_thousands	582.3	1855	4561.3	7625.6	39368.1
unemployment	4.3	6	7.3	8.4	13

Variable	mean	sd	Minimum	pct25	median	pct75	Maximum
homeowner_rate	69.1	5.1	53.6	67	69.7	72.4	78.2
manufacturing_thousands	241.9	243.2	9.5	59	167.7	328.5	1261.7
min_wage	9.3	1.9	7.2	7	9	11	13.5
population_thousands	6575.4	7403.7	582.3	1855	4561.3	7625.6	39368.1
unemployment	7.4	1.8	4.3	6	7.3	8.4	13

Identify the THREE predictors with the LEAST variation across the states.

Identify the THREE predictors with the MOST variation across the states.

Resources on Moodle

Class Videos and Resources Gharani, L. (2016, Feb 9). 3 Tips for Impressive Excel Charts. How to make a bar plot in Excel 365 How to make box plots in Excel 365 How to make scatter plots in Excel 365 Creating Simple OLS Regressions (Excel 365) Formatting an OLS Regression Table

0

Univariate Visualizations

Numerical / Continuous Data

Histogram

The standard way to show a statistical distribution - keep the gaps between columns small to highlight the 'shape' of the data.

Boxplot

Summarise multiple distributions by showing the median (centre) and range of the data

Categorical / Discrete Data

Column

The standard way to compare the size of things. Must always start at 0 on the axis.

Bar

See above. Good when the data are not time series and labels have long category names.

Numerical / Continuous Data

Boxplot

Summarise multiple distributions by showing the median (centre) and range of the data

Use **ONLY** the descriptive statistics for **GDP** to draw a boxplot **by hand**.

Numerical / Continuous Data

Boxplot

Summarise multiple distributions by showing the median (centre) and range of the data

Use **Excel** to draw a boxplot of **GDP**.

Notes: Changed fill color, added an axis label and increased font size.

Numerical / Continuous Data

Histogram

The standard way to show a statistical distribution - keep the gaps between columns small to highlight the 'shape' of the data.

Boxplot

Summarise multiple distributions by showing the median (centre) and range of the data

Univariate Analyses

GDP_millions
413481.7
537275.4
32796.7
92470
241839.8
542802.3
3091871.5

Numerical / Continuous Data

Histogram

The standard way to show a statistical distribution - keep the gaps between columns small to highlight the 'shape' of the data.

Boxplot

Summarise multiple distributions by showing the median (centre) and range of the data

By hand, draw a histogram of GDP rate

Remember: Use the box plot to build your histogram

Numerical / Continuous Data

Histogram

The standard way to show a statistical distribution - keep the gaps between columns small to highlight the 'shape' of the data.

Boxplot

Summarise multiple distributions by showing the median (centre) and range of the data

Use Excel to check your histogram of GDP rate

'Format Axis' and set the number of bins to 5

5

0

4. Univariate Viz of GDP Categories

Column

The standard way to compare the size of things. Must always start at 0 on the axis.

Bar

See above. Good when the data are not time series and labels have long category names. Categorical / Discrete Data

By hand, make a bar plot of gdp category

4. Univariate Viz of GDP Categories

Column

The standard way to compare the size of things. Must always start at 0 on the axis.

Bar

See above. Good when the data are not time series and labels have long category names.

Categorical / Discrete Data

Use **Excel** to check your bar plot of **gdp** category

Three ways to visualize GDP

Use Excel to make an appropriate univariate visualization for each of the remaining variables in the dataset.

Developing a Model: Univariate Analyses

• How effective are descriptive stats in helping us "see" the visualization without actually seeing it?

Developing a Model: Univariate Analyses

- How effective are descriptive stats in helping us "see" the visualization without actually seeing it?
- Which is more useful the descriptive stats or the visualization? Why?

Developing a Model: Univariate Analyses

- How effective are descriptive stats in helping us "see" the visualization without actually seeing it?
- Which is more useful the descriptive stats or the visualization? Why?
- Finally, in what specific ways does univariate analysis help us develop a model to answer our motivating question?