天体rp过程中关键核反应 截面及共振态性质的研究

何建军

核天体物理组 中科院近代物理研究所

主要内容

- 近期实验简介
- 明年实验简介
- 未来研究展望

近期实验简介

兰州实验

实验题目: ¹⁷F+p共振弹性散射

实验时间: 2009年11月份已完成

合作单位:

近物所,原子能院,上海应物所,北京大学

物理目标

天体场所:

X射线暴

研究目标:

突破热CNO循环进入到rp过程的关键反应: $^{14}O(\alpha,p)^{17}F$

实验装置

兰州重离子国家实验室设施图

实验概况

供東时间: 共约13.5天(打靶10天)

●東流情况:

✓初级束: ²⁰Ne (70 MeV/u,200 ~ 400 enA)

✓次级束: ¹⁷F(靶上: 4.2 MeV/u, 1~2kcps)

测量装置

实验终端布局图

粒子鉴别

次级束鉴别:

TOF技术完全可以清楚地 鉴别出¹⁷F!

反冲粒子鉴别 (ΔE -E):

实验结果

结论:本工作计算的核天体物理反应率和以前的实验结果有相当大的不同。

在低温区,最小是以前结果的0.2倍;在高温区,是以前结果的1.5-3.5倍。文章已投稿,进一步数据处理进行中。

明年实验简介

日本实验

实验题目: $p(^{21}Na, p\gamma)$, $p(^{21}Na, \alpha\gamma)$

实验预定: 2011年2月28日 - 3月9日(9天)

合作单位:

中国: 近物所,原子能院,上海应物所,北大

日本: 东京、九州、东北、筑波、山形

英国: 爱丁堡大学

物理目标

●Wiescher等人预言:

X射线暴环境下,¹⁸Ne(α, p)²¹Na反应很可能是从热CNO循环中突破出来进入到rp过程的一个关键核反应。

实验目标 $-(\mathbf{p},\mathbf{p}'\gamma)$

²¹Na(p, p), ²¹Na(p, p'γ) 共振弹性、非弹性散射

- 研究复合核 22 Mg的共振态特性(E_{r} , J^{π} , Γ_{p})
- 测定非弹性散射的分支比 $(\Gamma_{p}/\Gamma_{p'})$

实验目标 $-(\mathbf{p},\alpha)$

²¹Na(p,α)¹⁸Ne核反应截面测量

未来研究展望

兰州实验装置上的研究展望

● 明年准备进行一个实验(调研中)

科学目标:

研究天体核反应 $^{14}O(\alpha, p)^{17}$ F的反应率

研究手段:

测量¹⁸Ne激发能级的能量、自旋宇称及谱学S因子实验: ²⁰Ne(p, t)¹⁸Ne的角分布测量

如果在国内无法实现,可考虑到日本(如东京大学, 大阪大学,筑波大学)进行实验

日本实验装置上的研究展望

● 2011年6月将到日本RIKEN提一个束流申请

科学目标:

研究天体核反应 $^{14}O(\alpha, p)^{17}$ F的反应率

研究手段:

p(17F,p)共振弹性散射; p(17F, α)截面测量

今年底与英国爱丁堡大学联合提一个束流申请 科学目标:

研究天体核反应 $^{30}P(p,\gamma)^{31}S$ 的反应率

研究手段:

测量 31 S的镜像核 31 P的谱学S因子 (通过 30 P(d,p) 31 P反应)

谢 谢!