Tarea #3

Fecha de Entrega: 27-Ago-2013 Matricula:

Entrega un reporte de solución por escrito a cada uno de los siguientes problemas.

1. *(40 puntos)* Analizar cada uno de los siguientes segmentos de pseudocódigo, e indicar cuál es la complejidad del algoritmo representado. Suponer siempre que la "instrucción" es una operación básica.

CASO A:

for
$$(j = 1; j \le n; j = j * 2)$$

instrucción;

CASO B:

for
$$(j = 1; j <= n; j++)$$

for $(k = 0; k < n/5; k++)$
instrucción;

CASO C:

CASO D:

$$\begin{array}{l} j=n;\\ while \ j>0 \ \ do\\ \{ \ for \ (k=j; \ k<=n; \ k=k*2)\\ instrucción;\\ j=j/2;\\ \} \end{array}$$

- 2. (20 puntos) A continuación se muestran 2 casos en los que para cada uno se muestran 2 algoritmos. Ambos algoritmos en cada caso, sirven para resolver el mismo problema.
 - a) Identifica cuál es el problema que está resolviéndose en cada caso.
 - b) Haz un análisis de la complejidad de cada algoritmo.
 - c) Indica para cada caso, cuál es el algoritmo que más convendría elegir para la implementación de la solución al problema, justificando tu respuesta.

CASO A:

Algoritmo A1:

Algoritmo A2:

$$s = 0;$$

 $for x = 1 to n do$
 $for y = 1 to n do$
 $for y = 1 to n do$
 $s = s + a[j,j];$
 $s = s + a[x,y];$

CASO B:

Algoritmo B1:

$$r = 1;$$

 $fo(int j=1; j \le n; j++)$
 $r = r * x$

3. (40 puntos) Desarrolla un algoritmo que dado un arrelo A que contiene n distintos enteros positivos, generé un arreglo de dos dimensiones B, en donde en la posición B[i][j] = B[j][i] = A[i]+A[i+1]+...+A[j-1]+A[j]. Se calificará eficiencia.