Solution Set 2

Due Monday, October 6, 2008

- 1. For each sequence, state whether it is bounded (and if so, above or below) and whether it is monotone (and if so, (non)increasing or (non)decreasing).
 - (a) $a_n = 2^n$. Bounded below but not above. Increasing.
 - (b) $b_n = \sin n$. Bounded both below and above. Not monotone.
 - (c) $c_n = \frac{4n}{n+1}$. Bounded both below and above. Increasing.
 - (d) $d_n = \frac{\sqrt{n+1}}{\sqrt{n}}$. Bounded both below and above. Decreasing.
 - (e) $e_n = (-1)^n \cdot n!$. Not bounded. Not monotone.
 - (f) $f_n = \cos\left(\frac{1}{n}\right)$. Bounded both below and above. Increasing.
 - (g) $g_n = 17$. Bounded both below and above. Nondecreasing and nonincreasing.
 - **(h)** $h_n = |5 n| n$. Bounded both below and above. Nonincreasing.
- 2. Suppose a_n is a bounded sequence. Is the sequence $b_n = 17 \cdot a_n$ also bounded? Why or why not? **Yes.** If b_n is bounded above by U and below by L, then for all $n \in \mathbb{N}$, we have $L \leq a_n \leq U$. Multiplying this inequality by 17 gives

$$17 \cdot L \le 17 \cdot a_n \le 17 \cdot U$$

for all $n \in \mathbb{N}$. This means b_n is bounded above by $17 \cdot U$ and below by $17 \cdot L$.

- 3. Suppose a_n is a bounded sequence, and $a_n \neq 0$. Is the sequence $b_n = 1/a_n$ also bounded? Why or why not?
 - **No.** Let $a_n = 1/n$. Then a_n is bounded, but $b_n = 1/a_n = n$, which is not a bounded sequence.
- 4. Suppose a_n is a decreasing sequence. Is the sequence $b_n = 2a_n + 3$ also decreasing? Why or why not?

Yes. We assume for all $n \in \mathbb{N}$ that $a_n > a_{n+1}$. Multiplying both sides by 2 and adding 3 gives the inequality

$$2a_n + 3 > 2a_{n+1} + 3$$
 for all $n \in \mathbb{N}$.

This means $b_n > b_{n+1}$ for all $n \in \mathbb{N}$, so b_n is decreasing.

5. Suppose a_n is an increasing sequence. Is the sequence $b_n = a_n^2$ also increasing? Why or why not? **No.** Suppose $a_n = -1/n$. This is an increasing sequence, but $a_n^2 = 1/n^2$ is not increasing.