Université Mohamed V Souissi Rabat

Ecole Nationale Supérieure d'Informatique et d'Analyse des Systèmes

ENSIAS

AEM_Ens

MPRE

Ecole Nationale Supérieure d'Informatique et d'Analyse des Systèmes

> ENSIAS 3A

> > VEM_Ensi

MPR

2

ENSIAS

3A

MPRF

Pr. A. ELManouar

AEM Engi

MPR

ENSIAS_3ABI

Management de portefeuille et Risques financiers

Pr. A. ELManouar

EM_Ensias

MPRI

4

ENSIAS

AEM_Ensias

MPRF

Agenda

CHO: Marchés de capitaux et financiers

- Marché interbancaire, Marché des titres et créances négociables
- Marché primaire, Marché boursier
- Finalité des marchés, Salles & Métiers de marchés...
- TI et marchés (SdeM, ingénierie et TI...)

CHI: Management de portefeuille

- Théorie de portefeuille
- Frontières efficaces, Portefeuille efficaces
- SML, CML & CAPM
- Pratique marchés au Maroc

CHII: Management des risques financiers

- Risques financiers
 - Marchés financiers et produits dérivés

 - Risques et normes internationales
 Mesures, analyse et stratégies de couverture
- Introduction à l'ingénierie financière
 - Modélisation de la gestion des risques et théorie des options Digressions
- Références (voir Class)

AEM_Ensias

Activités

A0 Formation

- Cours
- Appl.

Al Participation

- Participation élèves / Class
- Projets

All Évaluation

- Exam
- Projets

MPR

Mondialisation

Mondialisation = Internationalisation des Economies

+ Internationalisation des Firmes (FMN)

+ Globalisation financière

Différentes sphères:

 Commerce, Multinationales, Production et Travail (DIPP), Droit, Culture, Finance...

EM Ensias

AEM_Ensias

8

Marches de capitaux et Marchés financiers

MPR

AE

MARCHES DE CAPITAUX

- Marché monétaire
 - Marché interbancaire
 - Marché des titres et créances négociables
- Marché financier
 - Marché primaire
 - Marché boursier

AEM_Ensias

MPRF

10

MARCHES DE CAPITAUX

- Marchés de capitaux
- Marchés des changes et interbancaires
- Marchés de taux long terme
- Marchés à terme fermes
- Marchés à terme conditionnels
- Instruments hybrides : swap de taux et de devises...

VEM_Ensia

1

Finalité des marchés de capitaux

- · Assurer la collecte de l'épargne
- Permettre le financement des investissements
- Etre le lieu d'échange des valeurs au travers
 - lieux géographiques : Euronext, Liffe, CME
 - lieux non matérialisés : téléphone, télématique, Globex

EM_Ensias

12

Fonctions des MK

- Maximisation des O et D de capitaux grâce à facilité d'accès concrétisée par:
 - Les prix
 - La liquidité
- Il y a deux méthode de fixation d'un prix
 - Le fixing
 - Le continu
- Liquidité permet d'absorber un volume sans volatilité (sans variation trop forte des prix)
- Rôles importants
 - Allocations des ressources
 - Mise à disposition de prix en permanence
 - Mise à disposition et possibilité de traiter des volumes importants
 - Sécurité des opérations
 - Allocation de risque

AEM_Ensias

13

Risques financiers

Risque financiers

- Risque de taux
- Risque de change
- Risque de cours des matières premières
- Risque de crédit/contrepartie

Différents instruments financiers (produits dérivés,...), ont été créés à l'origine, pour permettre aux opérateurs de se couvrir contre différents types de risques financiers

AEM_Ensias

14

Différents acteurs

- Banque centrale
- Acteurs publics
 - Etat et collectivités locales
 - Entreprises publiques
- Acteurs privés
 - Entreprises
- Autres acteurs
 - OPCVM
 - Particuliers

AEM_Ensias

15

Marché de Gré à Gré / Marché organisé

- Marché de gré à gré
 - Lien direct entre deux opérateurs
 - Pas de contrôle d'un organisme intermédiaire
 - + marché sur mesure
 - - risque de contrepartie
- Marché organisé
 - Pas de relation directes entre les contreparties
 - Passage par un intermédiaire habilité
 - Présence d'un organisme de tutelle (Matif, CBOT, Liffe...)
 - + Sécurité, liquidité
 - - marché non continu

M_Ensias

16

MARCHE MONETAIRE

- Marché interbancaire
- Marché des titres et créances négociables
 - Etat: BTN
 - Entreprises :BT
 - Banques: CD

MPR

17

Titres

- Titres de créances négociables
- Obligations
- TCN
 - Plusieurs sectorisations possibles
 - En fonction des titres émis
 - A court terme 1 AN (CD ECP)
 - A moyen et long terme + 1 an BTMN
 - En fonction de l'émetteur
 - Etat BTAN
 - Privés CD , BTMN
- Produits des actions et ses dérivés (options...)

18

TCN

- · Certificat de dépôt
- Le <u>certificat de dépôt</u> est un <u>dépôt à terme</u> représenté par un <u>titre de créance</u> négociable dématérialisé, sous la forme d'un billet au porteur ou à ordre émis par un établissement financier autorisé.
- Le montant minimal est de 1 million de francs. Sa durée doit être comprise entre 1 jour et 1 an à échéance fixe.
- Le <u>rendement</u> est très proche du marché monétaire. L'avantage substantiel est la négociabilité du titre sur un <u>marché secondaire</u> qui permet d'éviter les lourdes pénalités liées aux dénouements anticipés des dépôts à terme. En contrepartie, le <u>certificat de dépôt</u> comporte un <u>risque</u> de taux.

AEM_Ensias

19

Marché financier

- Marché des valeurs mobilières
- Bourse

EM_Ensias

Salles & Métiers de marchés

- SdeM
- MdeM
- Activités des SdeM

AFM Ensi

Métiers des SdeM

- Gagner de l'argent?
- Activités/Métiers

Risque

- Trading : Spéculer
- Market-making : Assurer la liquidité du marché
- Arbitrage : Exploiter les écarts entre les différents marchés +
- Courtage: Intermédiation (Sales et courtage)

Marchés Internationaux des changes et interbancaires

- Taux de référence au jour le jour
- Taux de référence à Terme
- Règle de base : bid/offer
- Date d'opéré et date de valeur
- Positions (long, short)

AEM Engine

Taux de référence

- Taux marchés internationaux
- Taux de référence au jj
 - EONIA (TJJ)
 - European Overnight Index Average
 - Taux moyen pondéré des opérations de prêt interbancaire au jour le jour consenties par les 57 banques de la zone Euroribor
 - Il est diffusé tous les jours à 19h00 Sur le marché international des capitaux
 - LIBOR
 - London Interbank Offered Rate:
 - Il s'agit d'un taux offert sur les euro monnaies constatées à 11h00
 - Il y a un LIBOR par devise
 - Périodicité quotidienne

AEM_Ensias

25

Taux de référence à terme

- EURIBOR
 - European Interbank Offered Rate
 - Taux interbancaire européen calculé pour des durées de 1 à 12 mois à partir de taux fournis par 57 banques
 - Diffusé quotidiennement à 11h00
- T4M
 - Taux moyen mensuel du marché monétaire
 - · Moyenne arithmétique des taux journaliers
 - Périodicité mensuelle
 - Utilisé comme taux de référence pour le découvert et les crédits de trésorerie

TAM

Taux annuel monétaire

AEM Er

26

MARCHE DE TAUX LONG TERME

• Marché Obligataires, Marché primaire – marché secondaire

MARCHES A TERME FERMES

- Change comptant
- Change à terme
- Swap (swap cambiste)
- FRA
- Euturos
- .

• MARCHES A TERME CONDITIONNELS:

- Options
- INSTRUMENTS HYBRIDES : LES SWAPS DE TAUX ET DE DEVISE
 - Swap de taux d'intérêt
 - Swaptions
 - •

FM Encise

CH I Management de portefeuille

M_Ensia

MPR

28

CH I_1 Management de portefeuille

MODELISATION DE LA GESTION DE PORTEFEUILLE FE & PE

AEM_Ensias

MPR

29

Risque

- Modèles classiques
 - Maximiser Rendement pour un risque donné

Risque = Volatilité

- Intérêt au Risque interne
 - Asymmetric volatility (volatitilé assymétrique)
 - Semi-variance
 - Extreme value analysis
 - Regime-switching,
 - Jump processes
 - Etc.

30

Allocation d'actifs

- Types d'allocation d'actifs
 - Allocation Strategique
 - Allocation Tactique
- Type d'information
 - Inconditionnelle
 - Conditionnelle (contingeante)

AEM_Ensias

31

Mesures du Risque

- Analyse Moyenne-Variance (M-V)
- Modèles multifacteurs (multivarié) pour M-V
- Déviation moyenne absolue "Mean-absolute deviation"
- Modèles de Regret
- Semi-variance, downside /shortfall risk
- Optimisation par scénario "Scenario optimization"
 - VAR
 - VaR contingeant " Conditional Value at Risk (CVAR) «
 - •
- Etc.

AEM_Ensias

MPR

33

Théorie de Portefeuille

- Frontière Efficace pour Titres Risqués
 - Portefeuille à deux titres
 - Portefeuille à M Titres
 - Portefeuilles à M Portefeuilles
 - CML
- •FE Pour portefeuilles avec Titres risqués et Titre certain
 - CAPM
 - SML

AEM Ensia

MPR

34

Théorie de Portefeuille Introduction

Théorie de Gestion de Portefeuille

Pour chaque titre, on a:

- Taux de rendement r_{xt.}
- Taux de rendement moyen (espéré, anticipé) E(r_x)
- Variance de x: $Var(r_{xt}) = \sigma_x^2 = \sigma_{xx}$
- Ecart type : (σ_x) risque
- Covariance de x et y : $Cov(r_{xt,}, r_{yt}) = \sigma_{xy}$ Corrélation entre x et y : $corr(r_{xt,}, r_{yt}) = \rho_{xy}\sigma_x\sigma_y$

TGP: Introduction

Modèle de Portefeuille : Modèle de Moyenne-Variance

Distribution normale (ou lognormale) de séries historiques (longues) de rendements : Portefeuille (ou titre) peut être caractérisé par Rendement (Moyenne) et Risque (Variance ou Ecart Type): l'investisseur rationnel averse au risque s'intéresse aux seuls rendement et risque du protefeuille : Modèle de Markowitz

Introduction: Statistiques

Taux de rendement (continu) du titre \mathbf{x} au temps \mathbf{t} avec dividende (d): $\mathbf{r}_{xt} = \mathbf{Ln} \left(\mathbf{P}_{xt} + \mathbf{d}_{t} \right) / \mathbf{P}_{x,t-1}$

Taux de rendement (continu) du titre x au temps t sans dividende (simplification): $r_{xt} = Ln (P_{xt} / P_{x,t-1})$

(Taux de rendement (discret) du titre x au temps t :

$$(r_{xt} = (P_{xt} / P_{x,t-1}) - 1))$$

Taux de rendement moyen (espéré, anticipé) de x :

$$E(r_{xt_t}) = \Sigma_t \alpha_t r_{xt} = (1/N) \Sigma_t r_{xt}$$

AEM_Ensias

MPF

Introduction: Statistiques

Variance et Ecart –type de x:

$$Var(r_{xt}, r_{xt}) = (1/N) \Sigma_t (r_{xt} - E(r_{xt}))^2 = \sigma_x^2 = \sigma_{xx}$$

Ecart type

$$\sigma_x = [Var(r_{xt.} r_{xt})]^{1/2}$$
: Risque

Covariance de x et y :

$$Cov(r_{xt,}, r_{yt}) = (1/N) \Sigma_{t} [(r_{xt} - E(r_{xt,})(r_{yt} - E(r_{yt,}))] = \sigma_{xy}$$

M Ensias

MPR

38

Introduction: Statistiques

Coefficient de corrélation : -1 < pxy <1

- $\bullet \rho_{xy} = 1 \rightarrow$ $r_{x, et} r_y$ sont positivement parfaitement reliés : $r_{xt} = a + b r_{yt}$ avec b>0
- $r_{x,\,et}\,r_y$ sont négativement parfaitement reliés : $r_{xt,} = a + b r_{yt}$ avec b<0
- $r_{x, et} r_y$ sont ne sont pas reliés (si $r_{x, et}$ r_{y} sont indépendants, alors ρ_{xy} =0)

Introduction: Statistiques

Rendement espéré (moyen) du portefeuille

$$E(r_{pt}) = \lambda E(r_{xt}) + (1 - \lambda)E(r_{yt}) = 0,40E(r_{xt}) + 0,60E(r_{yt})$$

= 0,40x 3,53% + 0,60x 4,59% = 4,17%

$$\begin{aligned} \text{Var}(\textbf{r}_{\text{pt}}) &= \lambda^2 \, \sigma_{\text{x}}^{\ 2} + (1 - \lambda)^2 \sigma_{\text{y}}^{\ 2} + 2\lambda \, (1 - \lambda) \, \text{Cov}(\textbf{r}_{\text{xt}}, \textbf{r}_{\text{yt}}) \\ &= \lambda^2 \, \sigma_{\text{x}}^{\ 2} + (1 - \lambda)^2 \sigma_{\text{y}}^{\ 2} + 2\lambda \, (1 - \lambda) \, \rho_{\text{xy}} \, \sigma_{\text{x}} \sigma_{\text{y}} \\ &= 0.40^2 \, \textbf{x1,02\%} + 0.60^2 \, \textbf{x2,87\%} \end{aligned}$$

+ 2x0,4x0,6x**0,27090x10,09%** x **16,96%** =**1,42%**

	Prix des Titres (Stock prices)					
		Titre1	Titre2			
n	Mois	CREDIT EQDOM	CREDOR			
0	déc-96	740,00	463,00			
1	janv-97	870,00	693,00			
2	févr-97	945,00	650,00			
3	mars-97	1 025,00	600,00			
4	avr-97	1 180,00	870,00			
5	mai-97	952,00	900,00			
6	juin-97	1 050,00	725,00			
7	juil-97	1 000,00	790,00			
8	août-97	1 145,00	800,00			
9	sept-97	1 170,00	825,00			
10	oct-97	1 145,00	850,00			
11	nov-97	1 150,00	819,00			
12	déc-97	1 130,00	803,00			

	Calcul du re	ndement	des titres	
	Titre1		Titre	2
Mois	Prix (p ₁)	R(r ₁)	Prix (p2)	R(r ₂)
déc-96	740,00		463,00	
janv-97	870,00	16,18%	693,00	40,33%
févr-97	945,00	8,27%	650,00	-6,41%
mars-97	1 025,00	8,13%	600,00	-8,00%
avr-97	1 180,00	14,08%	870,00	37,16%
mai-97	952,00	-21,47%	900,00	3,39%
juin-97	1 050,00	9,80%	725,00	-21,62%
juil-97	1 000,00	-4,88%	790,00	8,59%
août-97	1 145,00	13,54%	800,00	1,26%
sept-97	1 170,00	2,16%	825,00	3,08%
oct-97	1 145,00	-2,16%	850,00	2,99%
nov-97	1 150,00	0,44%	819,00	-3,72%
déc-97	1 130,00	-1,75%	803,00	-1,97%

Rendement continu: Rc	= Ln(Pi _n /Pi _{n-1})	i=1	,2; et n=1,	,,,,12
Rendement discret : Rd	= (Pi _n /Pi _{n-1}) - 1	l i=1	,2; et n=1,	,,,,12
	Rc	Rd	Rc	Rd
Moyenne mensuelle (Rı	m) 3,53%	4,03%	4,59%	4,59%
Variance (population) mensue	lle 1,02%		2,87%	
Ecart type (stand. dev. Sigma) mensu	uel 10,09%	9,66%	16,96%	15,26%
Moyenne annue	lle 42,33%		55,06%	
Variance annue	lle 12,22%		34,50%	
Ecart type annu	uel 34,96%		58,74%	

	Tit	re1	Titre	2		
Mois	R(r ₁)	p ₁ - Rm ₁	R(r ₂)	p2- Rm ₂	Produit	
déc-96					(p ₁ - Rm ₁) x (p ₂ - Rm ₂)	
janv-97	0,1618	0,1266	0,4033	0,3574	0,0452	
févr-97	0,0827	0,0474	-0,0641	-0,1099	-0,0052	
mars-97	0,0813	0,0460	-0,0800	-0,1259	-0,0057	
avr-97	0,1408	0,1055	0,3716	0,3257	0,0343	
mai-97	-0,2147	-0,2500	0,0339	-0,0120	0,0030	
juin-97	0,0980	0,0627	-0,2162	-0,2621	-0,0164	
juil-97	-0,0488	-0,0841	0,0859	0,0400	-0,0033	
août-97	0,1354	0,1001	0,0126	-0,0333	-0,0033	
sept-97	0,0216	-0,0137	0,0308	-0,0151	0,0002	
oct-97	-0,0216	-0,0569	0,0299	-0,0160	0,0009	
nov-97	0,0044	-0,0309	-0,0372	-0,0830	0,0025	
déc-97	-0,0175	-0,0528	-0,0197	-0,0656	0,0034	
		Covariance	0,00464	< Moyenne(Pi	roduit)	
			0,00464	< Covariance(R(r ₁),R(r ₂))	
		Correlation	0,27090	< Coeff.Corr(R	(r,),R(r,))	

Cas Général: Portefeuille à M titres avec λ_i la part relative de chaque titre i (matrices)

Vecteur colonne des parts relatives des titres dans $\Lambda = \begin{bmatrix} \lambda_1 \\ \lambda_2 \\ \lambda_i \end{bmatrix}$. λ_m

$$\mathbf{\Lambda} = \begin{pmatrix} \lambda_1 \\ \lambda_2 \\ \lambda_i \\ \cdot \\ \lambda_m \end{pmatrix}$$

$$\Sigma_i \lambda_i = 1$$
; $i = 1...m$

Transposé de Λ (vecteur ligne):

$$\boldsymbol{\Lambda}^{T} = [\lambda_{1,} \, \lambda_{2,} \, \lambda_{3,}, \, \lambda_{m}]$$

Rendement espéré du portefeuille

$$E(r_p) = \sum_{i=1}^{M} \lambda_i E(r_i)$$

$$\boldsymbol{E}(\mathbf{r}_{p}) = \begin{pmatrix} E(\mathbf{r}_{1}) \\ E(\mathbf{r}_{2}) \\ \vdots \\ E(\mathbf{r}_{i}) \\ \vdots \\ E(\mathbf{r}_{m}) \end{pmatrix}$$

$$E(\mathbf{r}_p)^T = [E(\mathbf{r}_1), E(\mathbf{r}_2), \dots, E(\mathbf{r}_i), \dots, E(\mathbf{r}_m)]$$

MPRF

Variance du portefeuille

$$\operatorname{var}(r_p) = \sum_{i=1}^{M} \lambda_i i^2 \operatorname{var}(r_i) + \sum_{i,j=1}^{M} 2\lambda_i \lambda_j \operatorname{cov}(r_i, r_j)$$

$$\operatorname{var}(r_p) = \sum_{i} \sum_{j} \lambda_i \lambda_j \sigma i_j$$

AEM_Ensia

MPR

Variance du portefeuille

var(r_p) sous forme matricielle (variance-covariance)

MPRF

Part	sigma	Rm
	16,96%	4,59%
0	16,96%	4,59%
0,05	16,25%	4,54%
0,10	15,56%	4,48%
0,15	14,89%	4,43%
0,2	14,24%	4,38%
0,25	13,62%	4,32%
0,30	13,02%	4,27%
0,35	12,45%	4,22%
0,40	11,92%	4,16%
0,45	11,43%	4,11%
0,50	10,98%	4,06%
0,55	10,58%	4,01%
0,60	10,24%	3,95%
0,65	9,97%	3,90%
0,70	9,76%	3,85%
0,75	9,62%	3,79%
0,80	9,57%	3,74%
0,85	9,58%	3,69%
0,90	9,68%	3,63%
0,95	9,85%	3,58%
1	10,09%	

CALCUL Re	ndement n	noyen et	Risque (Sigm	ıa)
P	roportion de	EQD (Titre1	l): 0,5	
U	Itilisation commande D	Oonnées (Data) Tab	ole d'Excel	
Mois	n	R _{1t}	R _{2t}	R _{pt}
janv-97	1	16,18%	40,33%	28,269
févr-97	2	8,27%	-6,41%	0,939
mars-97	3	8,13%	-8,00%	0,069
avr-97	4	14,08%	37,16%	25,629
mai-97	5	-21,47%	3,39%	-9,04%
juin-97	6	9,80%	-21,62%	-5,919
juil-97	7	-4,88%	8,59%	1,85%
août-97	8	13,54%	1,26%	7,409
sept-97	9	2,16%	3,08%	2,629
oct-97	10	-2,16%	2,99%	0,419
nov-97	11	0,44%	-3,72%	-1,649
déc-97	12	-1,75%	-1,97%	-1,86%
			moyenne	4,06%
			variance	1,219
			Ecart type	10,989

Portefeuille efficient (efficace)

$$\min \operatorname{Var}(r_p) = \min \sum_{i} \sum_{j} \lambda_i \lambda_j \sigma_{ij}$$

S/C $\Sigma_{i}\lambda_{i} r_{i} = \mu = E(r_{p})$ $\Sigma_{i}\lambda_{i} = 1 ; i = 1...m$

AEM_Ensia

MPR

51

Portefeuille efficient (efficace)

Cas de 2 titres risqués

EM_Ensias

MPR

2

CAS2: r = 0			
Ecart Type (sigma) : $s(r_p) = [l_i^2]$	$s^2(r_i) + l_j^2 s^2(r_j)]^{1/2}$		
$\int s(r_p) < I_i s(r_i) + I_j s(r_i) $			
Part dans I	Part dans J	E(r _p)	Sigma
100%	0%	5,00%	4,00%
75%	25%	5,75%	3,91%
50%	50%	6,50%	5,39%
25%	75%	7,25%	7,57%
0%	100%	8,00%	10,009

CAS3:	r = -1			
Ecart Type	(sigma) s(r _p):	$s(r_p) = \pm [l_i s$	(r _i) - l _j s(r _j)]	
Si	$I_i >= s(r_j)/[s(r_i) + s$	(r _j)]		racine > 0
Si	$I_i \le s(r_i)/[s(r_i) + s$	(r _i)]		racine < 0
Part dans I	Part dans J	E(r _p)	Sigma _p	
100,0%	0,0%	5,00%	4,00%	racine > 0
75,0%	25,0%	5,75%	0,50%	racine > 0
71,4%	28,6%	5,86%	0,00%	racine > 0
50,0%	50,0%	6,50%	3,00%	racine < 0
25,0%	75,0%	7,25%	6,50%	racine < 0
0,0%	100,0%	8,00%	10,00%	racine < 0
s : Portefeuille	e à risque nul (sig	ma=0): (5 <i>,</i> 8	6%, 0%)	
$(r_p) = I_i s (r_i) + I_j s (r_i)$	_i) = 0			
Deux titres : I _j = 1-	•			
(r _p) = I _i s (r _i) + (1- I	,)s(r _j) = 0			
$= s(r_i) / [s(r_i) + s(r_i)]$	(r _i)]			

Frontière efficace (portefeuilles efficients)

- <u>FE</u> est l'ensemble des <u>portefeuilles efficients</u> (Black 1972) : ensemble de toutes les combinaisons convexes de toute paire de portefeuilles efficaces
- 2 portefeuilles sur l'Enveloppe sont suffisants pour établir toute l'Enveloppe de portefeuilles possibles

AFM Ensia

MPR

63

Frontière efficace (PE)

Si $X=X_1$, X_2 ,... X_m et $Y=Y_1$, Y_2 ,... Y_m sont deux portefeuilles efficaces (PE) , alors pour une constante a, W est un PE :

$$W = aX + (1-a)Y = \begin{pmatrix} aX_1 + (1-a)Y_1 \\ . \\ aX_i + (1-a)Y_i \\ . \\ . \\ . \\ aX_m + (1-a)Y_m \end{pmatrix}$$

E I E I E

MPR

64

Frontière efficace (PE)

Rendement espéré de W:

$$E(r_w) = aE(r_x) + (1-a)E(r_v)$$

Variance de W:

$$Var(r_w) = a^2 \sigma_x^2 + (1-a)^2 \sigma_y^2 + 2a (1-a) Cov(r_{x_x} r_y)$$

$$Var(r_w) = a^2 \sigma_x^2 + (1-a)^2 \sigma_y^2 + 2a (1-a) X^T Z Y$$

ACA Cocio

MPF

PORTEFEUILLE AVEC 4 TITRES

(ACTIFS FINANCIERS RISQUES)

Variance-covariance	(4	titres
---------------------	----	--------

0,2	-0,2	0,4	0,4
-0,2	0,6	0,2	0,04
0,4	0,2	0,8	0,12
0,4	0,04	0,12	1

Rm

12%	
16%	
20%	
200/	

Portefeuille 1 : P₁

0,25	0,5	0,2	0,05

Portefeuille 2: P,

0,2		0,2	(),05	0,55
	Moyenn	e Variance	Sigma	Covarian	ce Corrélation
P ₁	16,50%	0,2414	49,13%		
(P1, P2)				0,1934	0,5962
P ₂	23,10%	0,4359	66,02%		

66

Calcul du ren	dement/risque des d	combinaisons
des Po	ortefeuille1 et Portef	euille2
Proportio	0,3	
Rm _p (0,3*R	0,2112	
	iance	0,3165 0,5626
Ecar	t Type	
Part	Sigma	R
	56,26%	21,12%
0	66,02%	23,10%
0,1	62,47%	22,44%
0,2	59,20%	21,78%
0,3	56,26%	21,12%
0,4	53,70%	20,46%
0,5	51,58%	19,80%
0,6	49,95%	19,14%
0,7	48,86%	18,48%
0,8	48,35%	17,82%
0,9	48,45%	17,16%
1	49,13%	16,50%
1,1	50,39%	15,84%
1,2	52,17%	15,18%

CHI_2 Management de portefeuille

MODELISATION DE LA GESTION DE PORTEFEUILLE CAPM

AEM_Ensia

MPR

Portefeuilles efficaces

- PE & CAPM
- 2 versions CAPM

✓ CAPM à zéro-bêta de Black

✓ CAPM à titre certain (sans risque): SML

- CML vs SML
- Test du CAPM

✓ Estimation du β & SML

M_Ensias

MPR

70

Portefeuilles efficaces

$$\mathbf{R} = \mathbf{E}(\mathbf{r}_p) = \begin{bmatrix} E(\mathbf{r}_1) \\ E(\mathbf{r}_2) \\ \vdots \\ E(\mathbf{r}_i) \\ \vdots \\ E(\mathbf{r}_m) \end{bmatrix}$$

$$\mathbf{R}^{T} = E(\mathbf{r}_{p})^{T} = [E(\mathbf{r}_{1}), E(\mathbf{r}_{2}), \dots, E(\mathbf{r}_{i}), \dots, E(\mathbf{r}_{m})]$$

Portefeuilles efficaces

$$\mathbf{Z} = \begin{pmatrix} \mathbf{G}_{11} & \mathbf{G}_{12} & \mathbf{G}_{13} & \dots & \dots & \mathbf{G}_{lm} \\ \mathbf{G}_{21} & \mathbf{G}_{22} & \mathbf{G}_{23} & \dots & \dots & \mathbf{G}_{2m} \\ \vdots & \vdots & \vdots & \vdots & \vdots \\ \mathbf{G}_{ml} & \mathbf{G}_{m2} & \mathbf{G}_{m3} & \dots & \dots & \mathbf{G}_{nm} \end{pmatrix} ; \mathbf{X} = \begin{bmatrix} \mathbf{x}_{1} \\ \mathbf{x}_{2} \\ \vdots \\ \mathbf{x}_{m} \end{bmatrix} ; \mathbf{X} = \begin{bmatrix} \mathbf{x}_{1} \\ \mathbf{x}_{2} \\ \vdots \\ \mathbf{x}_{m} \end{bmatrix} ; \mathbf{X} = \begin{bmatrix} \mathbf{x}_{1} \\ \mathbf{x}_{2} \\ \vdots \\ \mathbf{x}_{m} \end{bmatrix} ; \mathbf{X} = \begin{bmatrix} \mathbf{x}_{1} \\ \mathbf{x}_{2} \\ \vdots \\ \mathbf{x}_{m} \end{bmatrix} ; \mathbf{X} = \begin{bmatrix} \mathbf{x}_{1} \\ \mathbf{x}_{2} \\ \vdots \\ \mathbf{x}_{m} \end{bmatrix} ; \mathbf{X} = \begin{bmatrix} \mathbf{x}_{1} \\ \mathbf{x}_{2} \\ \vdots \\ \mathbf{x}_{m} \end{bmatrix} ; \mathbf{X} = \begin{bmatrix} \mathbf{x}_{1} \\ \mathbf{x}_{2} \\ \vdots \\ \mathbf{x}_{m} \end{bmatrix} ; \mathbf{X} = \begin{bmatrix} \mathbf{x}_{1} \\ \mathbf{x}_{2} \\ \vdots \\ \mathbf{x}_{m} \end{bmatrix} ; \mathbf{X} = \begin{bmatrix} \mathbf{x}_{1} \\ \mathbf{x}_{2} \\ \vdots \\ \mathbf{x}_{m} \end{bmatrix} ; \mathbf{X} = \begin{bmatrix} \mathbf{x}_{1} \\ \mathbf{x}_{2} \\ \vdots \\ \mathbf{x}_{m} \end{bmatrix} ; \mathbf{X} = \begin{bmatrix} \mathbf{x}_{1} \\ \mathbf{x}_{2} \\ \vdots \\ \mathbf{x}_{m} \end{bmatrix} ; \mathbf{X} = \begin{bmatrix} \mathbf{x}_{1} \\ \mathbf{x}_{2} \\ \vdots \\ \mathbf{x}_{m} \end{bmatrix} ; \mathbf{X} = \begin{bmatrix} \mathbf{x}_{1} \\ \mathbf{x}_{2} \\ \vdots \\ \mathbf{x}_{m} \end{bmatrix} ; \mathbf{X} = \begin{bmatrix} \mathbf{x}_{1} \\ \mathbf{x}_{2} \\ \vdots \\ \mathbf{x}_{m} \end{bmatrix} ; \mathbf{X} = \begin{bmatrix} \mathbf{x}_{1} \\ \mathbf{x}_{2} \\ \vdots \\ \mathbf{x}_{m} \end{bmatrix} ; \mathbf{X} = \begin{bmatrix} \mathbf{x}_{1} \\ \mathbf{x}_{2} \\ \vdots \\ \mathbf{x}_{m} \end{bmatrix} ; \mathbf{X} = \begin{bmatrix} \mathbf{x}_{1} \\ \mathbf{x}_{2} \\ \vdots \\ \mathbf{x}_{m} \end{bmatrix} ; \mathbf{X} = \begin{bmatrix} \mathbf{x}_{1} \\ \mathbf{x}_{2} \\ \vdots \\ \mathbf{x}_{m} \end{bmatrix} ; \mathbf{X} = \begin{bmatrix} \mathbf{x}_{1} \\ \mathbf{x}_{2} \\ \vdots \\ \mathbf{x}_{m} \end{bmatrix} ; \mathbf{X} = \begin{bmatrix} \mathbf{x}_{1} \\ \mathbf{x}_{2} \\ \vdots \\ \mathbf{x}_{m} \end{bmatrix} ; \mathbf{X} = \begin{bmatrix} \mathbf{x}_{1} \\ \mathbf{x}_{2} \\ \vdots \\ \mathbf{x}_{m} \end{bmatrix} ; \mathbf{X} = \begin{bmatrix} \mathbf{x}_{1} \\ \mathbf{x}_{2} \\ \vdots \\ \mathbf{x}_{m} \end{bmatrix} ; \mathbf{X} = \begin{bmatrix} \mathbf{x}_{1} \\ \mathbf{x}_{2} \\ \vdots \\ \mathbf{x}_{m} \end{bmatrix} ; \mathbf{X} = \begin{bmatrix} \mathbf{x}_{1} \\ \mathbf{x}_{2} \\ \vdots \\ \mathbf{x}_{m} \end{bmatrix} ; \mathbf{X} = \begin{bmatrix} \mathbf{x}_{1} \\ \mathbf{x}_{2} \\ \vdots \\ \mathbf{x}_{m} \end{bmatrix} ; \mathbf{X} = \begin{bmatrix} \mathbf{x}_{1} \\ \mathbf{x}_{2} \\ \vdots \\ \mathbf{x}_{m} \end{bmatrix} ; \mathbf{X} = \begin{bmatrix} \mathbf{x}_{1} \\ \mathbf{x}_{2} \\ \vdots \\ \mathbf{x}_{m} \end{bmatrix} ; \mathbf{X} = \begin{bmatrix} \mathbf{x}_{1} \\ \mathbf{x}_{2} \\ \vdots \\ \mathbf{x}_{m} \end{bmatrix} ; \mathbf{X} = \begin{bmatrix} \mathbf{x}_{1} \\ \mathbf{x}_{2} \\ \vdots \\ \mathbf{x}_{m} \end{bmatrix} ; \mathbf{X} = \begin{bmatrix} \mathbf{x}_{1} \\ \mathbf{x}_{2} \\ \vdots \\ \mathbf{x}_{m} \end{bmatrix} ; \mathbf{X} = \begin{bmatrix} \mathbf{x}_{1} \\ \mathbf{x}_{2} \\ \vdots \\ \mathbf{x}_{m} \end{bmatrix} ; \mathbf{X} = \begin{bmatrix} \mathbf{x}_{1} \\ \mathbf{x}_{2} \\ \vdots \\ \mathbf{x}_{m} \end{bmatrix} ; \mathbf{X} = \begin{bmatrix} \mathbf{x}_{1} \\ \mathbf{x}_{2} \\ \vdots \\ \mathbf{x}_{m} \end{bmatrix} ; \mathbf{X} = \begin{bmatrix} \mathbf{x}_{1} \\ \mathbf{x}_{2} \\ \vdots \\ \mathbf{x}_{m} \end{bmatrix} ; \mathbf{X} = \begin{bmatrix} \mathbf{x}_{1} \\ \mathbf{x}_{2} \\ \vdots \\ \mathbf{x}_{m} \end{bmatrix} ; \mathbf{X} = \begin{bmatrix} \mathbf{x}_{1} \\ \mathbf{x}_{2} \\ \vdots \\ \mathbf{x}_{m} \end{bmatrix} ; \mathbf{X} = \begin{bmatrix} \mathbf{x}_{1} \\ \mathbf{x}_{2} \\ \vdots \\ \mathbf{x}_{m} \end{bmatrix} ; \mathbf{X} = \begin{bmatrix} \mathbf{x}_{1} \\ \mathbf{x}_{2} \\ \vdots \\ \mathbf{x}_{m} \end{bmatrix} ; \mathbf{X} = \begin{bmatrix} \mathbf{x}_{1} \\ \mathbf$$

X (vecteur colonne) représente un portefeuille composé uniquement des titres risqués dont x, est la part du portefeuille investie dans le titre i; la somme des x, est égale à 1

MPRF

Rendement espéré du Portefeuille

Rendement espéré du Portefeuille X est:

$$E(r_x) = X^T * R = \sum_{i=1}^T x_i E(r_i)$$

Variance (covariance) du Portefeuille

Variance du rendement Portefeuille X est:

$$Var(X) = \sigma_{x}^{2} = \sigma_{xx} = X^{T}ZX = \sum_{i=1}^{T} \sum_{j=1}^{T} x_{i} x_{i} \sigma_{ij}$$

Covariance des rendements de X et Y:

Cov (X,Y) =
$$\sigma_{xy} = X^T Z Y = \sum_{i=1} \sum_{j=1} x_i y_i \sigma_{ij}$$

 $\sigma_{xy} = \sigma_{yx}$

AEM_Ensias

MPF

et

CAPM

Le rendement espéré d'un titre (portefeuille) est fonction (linéaire) de son risque systématique

Risque Total = {Risque systématique (RS) (ou risque non diversifiable)}

+ {Risque non systématique (RNS) (diversifiable }

EM_Ensias

MPR

74

Risque systématique (RS)

- RS risque attribuable aux mouvements globaux du marché en particulier et de l'économie en général
- Facteurs : inflation, fluctuations des taux d'intérêt, récession, perturbations politiques (changement de gouvernement...), etc.
- RS est fonction du Bêta β du titre (portefeuille)
- Le coefficient β mesure la volatilité du titre (portefeuille) par rapport à la volatilité du marché (risque relatif) :

$$\beta > 1$$
, $\beta = 1$, $\beta < 1$

AEM_Ensias

MPF

75

Risque non systématique (RNS)

- Risque lié à des facteurs spécifiques à la firme ou ensemble de firmes (secteur)
- Facteurs: Investissements, contrats, erreurs de gestion, poursuites judiciaires, changement de goûts des consommateurs, etc.
- Il est possible d'éliminer (théoriquement) tout le RNS par la diversification
- Par conséquent le RNS ne devrait pas avoir d'impact sur le rendement exigé par l'investisseur

EM_Ensias

MPR

76

Risque & CAPM

■ Portefeuille parfaitement diversifié PPD(CML)

RT = RS et
$$\beta$$
 = 1

■ Portefeuille imparfaitement (non parfaitement) diversifié PID (SML)

RT = RS + RNS et
$$\beta \neq 1$$

AEM_Ensias

MPRI

78

CML

$$E(R_p) = r + [E(R_M) - r]\sigma(R_p)/\sigma(R_M) : CML$$

Si $r = r_f$ (taux sans risque "Bon de trésor")

Portefeuille:

- \blacksquare Part du BT dans portefeuille α
- Part du portefeuille de marché (1 α)

$$E(R_p) = \alpha r_f + (1 - \alpha) E(R_M)$$

$$\sigma(R_p) = (1 - \alpha) \sigma(R_M)$$

CML:Ensemble de combinaisons d'actif non risqué et du portefeuille de marché avec $\alpha \ge 0$

AEM_Ensias

MPF

SML

$$\begin{split} & E(R_{p}) = r + [E(R_{M}) - r] \ \beta_{p} = r + \theta \ \beta_{p} \\ & (pour un seul titre i: E(R_{i}) = r + [E(R_{M}) - r] \ \beta_{i} = r + \theta \beta_{i}) \end{split}$$

$$\beta_{p} = \text{Cov} (R_{p}, R_{M}) / \sigma^{2}(R_{M})$$

$$= \rho (R_{p}, R_{M}) \sigma(R_{p}) \sigma(R_{M}) / \sigma^{2}(R_{M})$$

 θ : Prime par unité de risque

Actif non risqué

$$\mathsf{E}(\mathsf{R}_p) = \mathsf{r}_f + \left[\mathsf{E}(\mathsf{R}_M) - \mathsf{r}_f\right] \, \pmb{\beta}_p = \mathsf{r}_f + \theta \, \, \pmb{\beta}_p$$

EM_Ensi

MPR

80

Théorème de séparation

Quand le marché est en équilibre et que la composition du portefeuille risqué (portefeuille du marché) est la même pour tous les investisseurs, alors seule la proportion des fonds investis dans le titre sans risque et dans le portefeuille du marché varie d'un investisseur à l'autre selon le degré d'aversion au risque.

Ce théorème est connu dans la TP sous le nom du <u>théorème</u> <u>de séparation</u>

EM_Ensias

MPR

32

latrice Varia	nce-covaria	ance	RM	RM – Cte
acrice varia	Tice-covaria		moyen	(5,75%)
0,05	-0,15	0,05	0,06	0,0025
0,25	0,02	-0,025	0,05	-0,0075
0,02	0,25	0,15	0,07	0,0125
-0,025	0,15	0,6	0,08	0,0225
	0,05 0,25 0,02	0,05 -0,15 0,25 0,02 0,02 0,25	0,25 0,02 -0,025 0,02 0,25 0,15	atrice Variance-covariance 0,05 -0,15 0,05 0,06 0,25 0,02 -0,025 0,05 0,02 0,25 0,15 0,07

	Portefe	uille X	Portefeuille Y 0,0575		
Constante	0,0	0			
	S	Х	S	Y	
T1	0,2810	0,4365	0,0291	0,5962	
T2	0,1405	0,2182	-0,0355	-0,7263	
Т3	0,1419	0,2205	0,0289	0,5904	
T4	0,0803	0,1247	0,0264	0,5398	
Moyenne		6,25%		8,40%	
Var		9,71%		54,15%	
Sigma		31,17%		73,58%	
Cov(x,y)	0,1027	Calcul	Part de X : a	0,3000	
Corr(x,y)	0,4476	d'un	RM _P	0,0655	
		portfeuille	Sigma _p	0,2462	

(Commande Données Table)				
Part a	Sigma _p	R_{p}	Por	tefeuille
-0,4	0,9807	0,0925		
-0,3	0,9186	0,0904	0,0904	А
-0,2	0,8569	0,0883		
0	0,7358	0,0840	0,0840	Υ
0,1	0,6768	0,0818		
0,2	0,6191	0,0797	0,0797	В
0,5	0,4593	0,0732		
0,7	0,3734	0,0690		
0,9	0,3203	0,0647	0,0647	M Marché
1,0	0,3117	0,0625	0,0625	х
1,2	0,3350	0,0582		
1,3	0,3644	0,0561		
1,6	0,4965	0,0496	0,0496	F

CHII Management de risques financiers Introduction à l'ingénierie financière

CHII Management de risques financiers

Introduction à l'ingénierie financière

Modélisation de la Gestion du Risque et Théorie des Options

AEM_Ensias

MPRI

Retour sur le Risque

- Analyse Moyenne-Variance (M-V)
- Modèles multifacteurs (multivarié) pour M-V
- Déviation moyenne absolue "Mean-absolute deviation"
- Modèles de Regret
- Optimisation par scénario "Scenario optimization ".
 - VAR
 - VaR contingeant « Conditional Value at Risk (CVAR) "
 - Portefeuille efficace, Frontière éfficace Put/call
 - Stratégies de Management de risque
 - Strategies dynamiques de portefeuille

EM_Ensias

MPRF

90

Risques financiers

Risque financiers

- Risque de taux
- Risque de change
- Risque de cours des matières premières
- Risque de crédit/contrepartie

Différents instruments financiers (produits dérivés,...), ont été créés à l'origine, pour permettre aux opérateurs de se couvrir contre différents types de risques financiers

AEM_Ensias

91

Risques bancaires

Risques bancaires

Risque de signature, risque de liquidité, risque de marché, risque de taux d'intérêt, risque de taux de change, risque systémique, risque opérationnel

Réforme Bâle II

Nouvel accord sur les fonds propres L'approche basée sur la notation interne ou IRB (internal rating based) proposée par le Comité de Bâle passer la mesure du capital réglementaire d'un calcul arithmétique (ratio Cooke) à un calcul probabiliste (ratio Mac donough).

M Ensia

92

Ratio Cooke

Ratio international de solvabilité appliqué depuis 1988 par les banques

Il définit les exigences en fonds propres qu'elles doivent respecter en fonction des risques pris

Ratio Cooke: Fonds propres/8% * Risques pondérés

rapport ne doit, en principe, pas excéder 8% c'est à dire que pour un total actif de 100, la banque doit avoir au moins 8 de fonds propres)

AEM_Ensias

93

Ratio McDonough

Bâle II : Une réforme sophistiquée de la gestion des risques bancaires à l'échelle mondiale

Réforme Bâle II: Ratio McDonough

Ratio McDonough

Fonds propres/Risques crédit+marché+ opérationnels ≥ 8%

EM Ensias

94

Réforme Bâle II

Institutions impliquées

- •Institué par le Comité de Bâle
- •représenté par les pays du G10 et le Luxembourg
- •Destiné aux Banques et institutions financières dans plus de 100 pays dans le monde

Objectifs

- •Assurer la stabilité du système financier international et la protection de l'épargnant
- •Améliorer le dispositif « Bâle I », qui avait instauré le ratio de solvabilité Cooke en 1988

Date & Echéancier

2004: Publication de l'accord
2005: Lancement des dispositifs
2007: Application de l'accord

•2010 : Abandon définitif de l'ancien ratio Cooke

AEM_Ensias

95

Bâle II: Périmètre de la réforme Pilier 1 - Calcul des fonds propres réglementaires selon le véritable profil de risque des institutions financières pour : • Risque de crédit • Risque de marché • Risque opérationnel Pilier 2 - Gouvernance des risques : • Autres risques : Concentration, réputation, résiduel • Processus internes de gestion des risques II• Revue de ces dispositifs par les autorités de tutelle • Pilier 3 - Discipline de marché : • Nouvelles exigences en terme de reporting • Communication financière Ш AEM Ensia Dispositif permettant calcul des fonds propres adapté au profil de risque de l'établissement 96

Mesures de Risque

Semi-variance: Downside ou shortfall risk

- Distribution asysmétrique
- Downside ou shortfall risk: probabilité (seuil par ex 5%) de perte d'un certain montant spécifié a priori
- Si loi normal: Varaiance ≡ shortfall risk

VaR (Value at Risk)

- Démarche inverse du Shortfall
- Montant de la perte pour une probabilité (seuil par ex 5%) spécifiée

AEM_Ensias

99

VaR

Définition: VaR (Value at Risk)

- Mesure agrégée de la prise de risque globale
- Indicateur synthétique, introduit en 1994 par la banque d'affaires JP MORGAN, qui rend compte de la perte minimale pour un niveau de risque et un horizon de temps donné.

Bale II et Capital réglementaire

- Bale II autorise les banques à déterminer leur capital nécessaire pour répondre au risque de marché par un modèle interne utilisant la VaR(99%, 10j).
- Le capital réglementaire exigé vaut généralement 3 fois la VaR (99%, 10j).

Calcul de la VaR: 3 méthodes principales

- Méthode historique
- Méthode paramétrique (analytique) ou approche variance-covariance
- Simulation de Monte Carlo

EM_Ensias

100

Risque de Crédit : Variables

- IRBA Internal Rating Base Approach (i.e. méthodologie de calcul des fonds propres réglementaire où la mesure du risque est basée dans une large mesure sur les données internes de l'établissement, par opposition à la méthode standard où cette mesure est effectuée exclusivement sur la base de coefficients réglementaires.
- EAD Exposition lors du défaut (exposure at default)
- PD Probabilité de défaut
- LGD Perte en cas de défaut (loss given default)
- M Maturité
- C Facteur de Corrélation

AEM_Ensia

102

Produits dérivés

Un **produit dérivé** « *derivative product* » est un instrument financier (IAS 39) : c'est un contrat entre deux parties, un acheteur et un vendeur, qui fixe des flux financiers futurs fondés sur ceux d'un actif sous- jacent, réel ou théorique, généralement financier.

- Sa valeur varie en fonction de l'évolution du sous-jacent (taux ou du prix)
- Ne requiert aucun ou faible placement net initial
- Règlement s'effectue à une date future

VEM Ensias

104

Produits dérivés

Options

- Options Vanilla
- Options exotiques

Deux générations d'options exotiques:

- Options de première génération : caps, floors, swaptions européens. Ces options sont essentiellement utilisées sur le marché des taux d'intérêt;
- Options de seconde génération, les path-dependent : lookbacks, asiatiques, à barrière, digitales, composées, à choix différé.

AEM_Ensias

Dérivés de 2ème génération : Options (Vanilla: CALL, PUT)

Dérivés de 3ème génération (Options Exotiques)

Également appelés produits hybrides ou « exotiques».

- - option à barrière: option exerçable à une condition supplémentaire
 - Swaption (des bermudes): option sur swap à dates données

Produits dérivés

Options exotiques

Options Barrières (option standard (C ou P) avec outstrikes/Instrikes situés dans la direction "out-of-the-money/in-the-money" de l'option)

- •Knock Out / Knock In
- Kick Out / Kick In
- Kick Out with Rebate
- Double Knock Out (DKO)

Options Payout

- •Lock Out
- Double Lock Out
- •Lock Out / Lock In
- Digital

110

MPRF 55

AEM_Ensias

GROP

- 1. Caractéristiques et propriétés des Options
- 2. Evaluation (pricing) des Options
 - Modèle binomial

- Modèle Black-Scholes
- 3. Gestion du risque: utilisation des options comme couverture de risque
- 4. Options en tant qu'instruments d'investissement (placements) et de spéculation

AEM_Ensias

MPRI

111

Options

Valeur (Prix) d'Option = VI (IV)+ VT(TV)

Call
$$C = (S - E) + TV$$
; Put $P = (E - S) + TV$

OE: TV = 0;

OA: TV \geq 0 (T \rightarrow 0)

112

Modèle Binomial d'Evaluation des Options

Modèle simple à 1 périodes (2 dates) / 2 actifs

- Date 0 et Date 1
- Deux actifs: Action A, obligation (BT) B
- Vente de Call sur action
- Taux d'intérêt : r = 7%
- Prix A (temps 0): S₀ = 400, Exercice (E) X = 400
- Prix A (temps 1): +10% ou -5%
- Maturité: Temps 1

AEM_Ensias

MPR

113

MBEO

Modèle simple à 1 périodes / 2 actifs

Calcul du Prix de l'option Call (C) : Arbitrage (pricing by arbitrage)

Il existe une combinaison Action / Obligation qui reproduit les mêmes résultats d'une option Call (ou option Put)

```
440A + 1,07B = 40
```

380A + 1,07B = 0

A = 0,6667; B = -236,760

 $C = 0,6667*X -236,760*P_B$

C = 0,6667*400 - 236,760*1 = 29,9065

M_Ensia

MPRF

114

MBEO

Prix contingents (selon états de la nature)

Deux possibilités:

Haut (Etat 1) : prix augmente de u et prix de marché $P_{\rm u}$

Bas (Etat 2) : prix baisse de d et prix de marché P_d

Prix d'Action : $P_u *S*(1+u) + P_d *S*(1+d) = S$

Prix d'Obligation : $P_u^*(1+r) + P_d^*(1+r) = P_b = 1$

 $P_u^*(1+r) + P_d^*(1+r) = P_u^*(1+u) + P_d^*(1+d)$

 $P_u = (r-d)/(1+r)(u+d) & P_d = (u-r)/(1+r)(u+d)$

 $C = P_u max[S(1+u) - X, 0] + P_d max[S(1+d) - X, 0]$

 $P = P_u max[X - S(1+u), 0] + P_d max[X - S(1+d), 0]$

. . . .

MBEO

$$\begin{split} &P_u = (r-d) \ / (1+r)(u+d) = [0,07 - (-0,05)] / (1+0,07)(0,1-(-0,05)) = 0,7477 \\ &P_d = (u-r)/(1+r)(u+d) = (0,1-0,07)/(1+0,07)(0,1-(-0,05)) = 0,1869 \end{split}$$

 $C = P_u max[S(1+u) - X, 0] + P_d max[S(1+d) - X, 0]$

C = 0.7477*40 + 0.1869*0 = 29,9065

 $P = P_u max[X - S(1+u), 0] + P_d max[X - S(1+d), 0]$

P = 0.7477*0 + 0.1869*20 = 3.7383

116

MPRF

MPRF 58

AEM_Ensias

MBEO Application				
Données de base				
S _o	400			
X	400			
Haut Up	0,1			
1+Up	1,1			
Bas Down	-0,05			
1+Down	0,95			
r	0,07			
1+r	1,07			

MBEO: Forme Générale

Il n'est pas nécessaire de passer par la solution de récurrence (*back-ward*) pour trouver la solution (Prix de l'Option)

Il existe une formulation générale pour l'évaluation multi périodes des options

Call C =
$$\sum_{h=0}^{n} {n \choose h} p_u^h p_d^{n-h} \max[S_0(1+u)^h (1+d)^{n-h} - X, 0]$$

Put
$$P = \sum_{h=0}^{n} {n \choose h} p_u^h p_d^{n-h} \max[X - S_0(1+u)^h (1+d)^{n-h}, 0]$$

MPRE

121

MBEO: Forme Générale

Résultat Final	Nombre Haut h	Nombre Bas	Prix de R P _R	Nombre Sentiers N _s	Valeur = R x P _R x N _s
185,6400	4	0	0,3125	1	58,0091
105,7800	3	1	0,0781	4	33,0543
36,8100	2	2	0,0195	6	4,3134
0,0000	1	3	0,0049	4	0,0000
0,0000	0	4	0,0012	1	0,0000

Prix de l'Option (C ou P) : Total

95,3769

MPR

122

AEM_Ensias

Prix Co	ntingents			
	Pu	0,7477		
	Pd	0,18692		
R =	105,78	est obtenu ave	ec 3 haut e	t 1 Bas
PR =	=(Pu) ^h x (Pd) ^b =	0,07812047		
Ns =	Nombre de péri	odes n		
	Nombre de Haut	h J		
Ns =	$\binom{n}{h} = \binom{4}{3} =$	Combin(4;3) =	4	Coefficient binomial
aleur d'un R =	$R \times P_R \times N_s =$	33,0543		

Modèle Back & Scholes d'évaluation des options

- 1. Caractéristiques et propriétés des Options
- 2. Evaluation (pricing) des Options
 - Modèle Binomial
 - Modèle B&S
- 3. Gestion du risque: utilisation des options comme couverture de risque
- 4. Options en tant qu'instruments d'investissement (placements) et de spéculation

24

Définitions

C = SN(d₁) - Xe^{-rT}N(d₂)

$$d_1 = ln(S/X) + (r + \sigma^2/2)T] / \sigma T^{0,5}$$

$$d_2 = d_1 - \sigma T^{0,5}$$

$$P = Xe^{-rT}N(-d_2) - SN(-d_1)$$

$$Parité : P + S = C + Xe^{-rT}$$

$$P = C - S + Xe^{-rT}$$

Définitions

- N : Distribution cumulée suivant une loi normale centrée et réduite (moyenne μ = 0 et écart type σ = 1)
- Propriété : N(x) + N(-x) = 1
- Simulation des prix du titre S selon loi lognormale:

$$S_{t+\Delta t}/S_t = \exp(\mu \Delta t + \sigma Z \Delta t^{0.5})$$

Exemple: T=1an, soit 250 jours ouvrés:

 $\Delta t = 1/250 = 0,004$

26

Définit	ions		
s	400	Prix courant du titre	
x	400	Exercise	
r	7,00%	Taux d'intérêt sans risque	
т	0,5	Maturité (temps en années) de l'option	
Sigma	30%	Volatilité	AEM_Ensias
			130

d_1	0,2711	(LN(S/X)+(r+0.5*sigma^2)*T)/(sigma*Racine(T))
d ₂	0,0589	d ₁ - sigma*Racine(T)
N(d ₁)	0,6068	LOI.NORMALE.STANDARD(d ₁)
N(d ₂)	0,5235	LOI.NORMALE.STANDARD(d ₂)
Call	40,54	$S*N(d_1)-X*exp(-r*T)*N(d_2)$
Put	26,78	C - S + X*Exp(-r*T): (parité P-C)
	26,78	X*exp(-r*T)*N(-d ₂) - S*N(-d ₁): formule directe

	011	Simulation
VI	Call	Prix
0,000000	0,01553	200
0,000000	0,48602	250
0,000000	4,10962	300
0,000000	16,25376	350
0,000000	29,33623	380
0,000000	40,53503	400
20,000000	53,54119	420
40,000000	68,12478	440
60,000000	84,02759	460
80,000000	100,99372	480
100,000000	118,78992	500

S	400	Sigma	Call
X	450	10%	8,38169
r	7,00%	15%	15,94076
Т	1	20%	23,77724
Sigma	10,00%	25%	31,71395
0.8	_0,00,0	30%	39,68636
d_1	-0,4278	35% 40%	47,66357 55,62753
d_2	-0,5278	40 <i>%</i> 45%	63,56614
-	0.0044	50%	71,47025
$N(d_1)$	0,3344	55%	79,33236
$N(d_2)$	0,2988	60%	87,14601
		65%	94,90541
Call price	8,3817	70%	102,60526

Stratégies de couverture

- 1. Options existe sur marché:
 - Achat d'option
- 2. Options n'existe pas sur marché ou couverture pour portefeuille:
 - On construit stratégie avec titre risqué et titre non risqué reproduisant le même résultat qu'une option (option fictive)

AEM Enci

137

Stratégies de couverture

P : portefeuille avec vente (short) de titre risqué (S) et achat (long) de titre non risqué (X)

Investir dans titre et un P:

S+P = S +
$$Xe^{-rT}N(-d_2) - SN(-d_1)$$

= $SN(d_1) + Xe^{-rT}N(-d_2)$

(Pour t <T, on remplace T par 1-t)

EM_Ensi

138

Stratégies de couverture

Chercher part dans actif risqué $\alpha\colon$

$$\alpha = SN(d_1) / SN(d_1) + Xe^{-rT}N(-d_2)$$

 $1 - \alpha$: part de l'actif non risqué

Stratégie:

- Ajuster constamment α en fonction de l'évolution du prix du titre risqué
- On peut immuniser complètement le portefeuille en cherchant Sigma = 0

AEM_Ensi

139

Merci de votre participation

&

Bonne chance

EM_Ensi

140