Билеты по алгебре II семестр

Тамарин Вячеслав

21 мая $2020\ \mbox{г}.$

Оглавление

Вопрос 1	Подгруппа, порожденная множеством. Явное описание. Примеры образующих в D_n и $\mathrm{GL}_n(K)$. По-	
	нятие циклической группы.	2
	і Подгруппа, порожденная множеством	2
	іі Примеры образующих в D_n и $\mathrm{GL}_n(K)$	2
Вопрос 2	Порядок элемента. Эквивалентное определение. Соотношение $g^n = e$ и порядок элемента g . Порядок	
	элемента в группе \mathbb{Z}/n	3

Вопрос 1 Подгруппа, порожденная множеством. Явное описание. Примеры образующих в D_n и $\mathrm{GL}_n(K)$. Понятие циклической группы.

Подгруппа, порожденная множеством

Определение 1: Подгруппа, прожденная множеством

G — группа, $X \subset G$. Наименьшая группа $H \leqslant G$, содержащая X называется подгруппой, порожденной X.

Обозначение. $\langle X \rangle$.

Замечание. Эта группа всегда существует и совпадает с $\bigcap_{X\subset L\leq G}L=\langle X\rangle$

Утверждение (Явное описание порожденной подгруппы).

$$\langle X \rangle = \{ x_1^{\varepsilon_1} \cdot \ldots \cdot x_n^{\varepsilon_n} \mid x_i \in X, \ \varepsilon_i = \pm 1 \}.$$

Для n=1 считаем, что такое произведение равно нейтральному элементу.

Доказательство.

- Любой элемент $x_1^{\varepsilon_1} \cdot \ldots \cdot x_n^{\varepsilon_n}$ должен принадлежать подгруппе, порожденной X, из чего следует это включение.
- 3аметим, что заданное множество подгруппа G: произведение двух элементов и обратный элемент имеют такой же вид, нейтральный — случай с n=0. Поэтому это множество — подгруппа G, содержащая X. Так как $\langle X \rangle$ — минимальная группа с этим свойством, получаем нужное включение.

Определение 2: Группа, порожденная множеством

Группа G называется порожденной множеством X, если $\langle X \rangle = G$. Если X конечно, имеет место обозначение $G = \langle x_1, \ldots, x_n \rangle$. Все x_i называются образующими G. Если для группы G существует такой конечный набор, она называется конечно порожденной.

Определение 3: Циклическая подгруппа

G — группа, $g \in G$. Подгруппа вида $\langle g \rangle = \{g^n \mid n \in \mathbb{Z}\}$ называется циклической подгруппой, порожденной g.

Определение 4: Циклическая группа

Группа G называется циклической, если она порождена одним элементом, то есть $\exists g \in G \colon G = \langle g \rangle$.

Примеры образующих в D_n и $\mathrm{GL}_n(K)$

Образующие D_n Заметим, что одним элементом эта группа порождена быть не может, так как она не абелева. **Утверждение.** Поворот f_{φ} на угол $\varphi=\frac{2\pi}{n}$ и симметрия f_l относительно одной из разрешенных прямых. Тогда $\langle f_{\varphi}, f_{l} \rangle = D_{n}$

 \mathcal{A} оказательство. Любой поворот на $\frac{2\pi k}{n}$ можно получить повтором f_{φ}^k . Докажем, что

$$\left|\left\{f_l^{\varepsilon}f_{\varphi}^k \mid \varepsilon \in \{0,1\}, \ k \in \{0,\dots,n-1\}\right\}\right| = 2n.$$

Пусть $f_l^{\varepsilon_1} f_{\varphi}^{k_1} = f_l^{\varepsilon_2} f_{\varphi}^{k_2}$. Тогда $f_l^{\varepsilon_1-\varepsilon_2} f_{\varphi}^{k_1-k_2} = \mathrm{id}$. Если $\varepsilon_1 = \varepsilon_2$, $f_{\varphi}^{k_1-k_2} = \mathrm{id} \Longrightarrow k_1 = k_2$. Иначе $f_l^{\varepsilon} = f_{\varphi}^k$, но поворот не может быть равен симметрии, так как при симметрии на месте остается только прямая, а при повороте либо одна точка, либо все пространство.

Образующие $GL_n(K)$ Здесь образующими будут матрицы элементарных преобразований: транспозиций (которые можно выразить через оставшиеся), псевдоотражения (домножение на число) и трансвекции (прибавление одной строки к другой, умноженной на число).

Вопрос 2 Порядок элемента. Эквивалентное определение. Соотношение $g^n=e$ и порядок элемента g. Порядок элемента в группе \mathbb{Z}/n

Определение 5: Порядок элемента

Порядок элемента $g \in G$ — количество элементов в подгруппе $\langle g \rangle$.

Обозначение. ord g

Lemma 1. Пусть $g \in G$. Если ord g конечен, то ord g = n, где n — наименьшее натуральное число, что $g^n = e$, иначе такого n не существует.

Доказательство.

• Пусть $g^n = e$. Докажем, что ord $g \leqslant n$. Рассмотрим $\{e, g, g^2, \dots, g^n, \dots\}$. Начиная с g^n элементы повторяются. А именно

$$g^m = g^{nq+r} = g^r.$$

Следовательно, различных элементов группы $\langle g \rangle$ всего n.

- Пусть ord $g = \infty$ и $g^n = e$ при $n \in \mathbb{N}$, но в группе $\langle g \rangle$ не более n элементов. Противоречие.
- Пусть $m = \text{ ord } g < \infty$. Рассмотрим $\{e, g, \dots g^m\}$. Здесь m+1 элемент, поэтому там есть два равных. Пусть $g^i = g^j \Longrightarrow g^{i-j} = e$. Но тогда $|\langle g \rangle| \leqslant i-j$. Значит, $i = m, j = 0, g^m = e$. Также получаем, что до этого ни один $g^k = e$, поэтому, m и есть минимальное.

Утверждение. Пусть $g \in G$, $g^n = e$, $n \in \mathbb{N}$. Тогда $n \in \mathbb{N}$ ord n.

Доказательство. Поделим с остатком $n=q\cdot \mathrm{ord}\ g+r,\ 0\leqslant r<\mathrm{ord}\ g.$ Тогда $e=g^n=g^r.$ Если $r\neq 0,$ то $g^r\neq e.$ Следовательно, r=0.

Lemma 2. Пусть G — группа, $g \in G$. Тогда существует такой единственный гомоморфизм $f \colon \mathbb{Z} \to G, \ f(1) = g$.

Доказательство. Такой гомоморфизм существует (как задан в условии, все условия выполняются). Заметим, что $g(n) = g(1)^n = g^n$. Поэтому он задан однозначно.

Теорема 1: Об изоморфмности циклической группы

Пусть $g \in G$ Если ord g = n, то $\langle g \rangle$ изоморфна группе \mathbb{Z}/n . Если ord $g = \infty$, то $\langle g \rangle$ изоморфна \mathbb{Z} .

Доказательство.

- Пусть ord g = n. Построим $f: \mathbb{Z}/n \to G$ так $f(\overline{k}) = g^k$. Проверим корректность: пусть $k_1 \equiv k_2 \pmod{n}$, то есть $k_1 = k_2 + sn \Longrightarrow g^{k_1} = g^{k_2} \cdot g^{sn} = g^{k_2}$. Из свойств элементов \mathbb{Z}/n и f следуют необходимые условия гомоморфизма. Также заметим, что это биекция.
- Пусть ord $g = \infty$. Построим гомоморфизм $f: f(1) = g \Longrightarrow f(n) = g(1)^n = g^n$. Он сюрьективен, проверим инъективность: пусть $\ker f \neq 0$, тогда $\exists k \in \mathbb{N} : g^k = e$, а тогда $\langle g \rangle$ конечна. Противоречие.