CS/B.TECH(N)/ODD/SEM-1/B8M-101/2019-20

MAULANA ABUL KALAM AZAD UNIVERSITY OF TECHNOLOGY, WEST BENGAL

Paper Code: BSM-101

PUID: 01004 (To be mentioned in the main answer script)

MATHEMATICS – 1A

Time Allotted: 3 Hours

Full Marks : 70

The figures in the margin indicate full marks.

Candidates are required to give their answers in their own words as far as practicable.

GROUP - A

(Multiple Choice Type Questions)

- Choose the correct alternatives for any ten of the 1. $10 \times 1 = 10$ following:
 - The matrix $\begin{pmatrix} \cos \theta & \sin \theta \\ -\sin \theta & \cos \theta \end{pmatrix}$ is

 - a) Symmetric b) Skew-symmetric
- Singular d) Orthogonal.
 - In the MVT f(h) = f(0) + hf'(0h), 0 < 0 < 1, if ii)

 $f(x) = \frac{1}{1+x}$ and h = 3 then the value of 0 is

a)

 $-b) - \frac{1}{3}$

.d) none of these.

++-1301/1(N)

Turn over

CS/B.TECH(N)/ODD/SEM-I/BSM-101/2019-20

- iii) The value of the integral $\int_{-\infty}^{\infty} xe^{-x^2} dx$ is
 - a) 2√π

b) –2√π

c) $\frac{\sqrt{\pi}}{2}$

- •d) 0.
- iv) If $T: V \to W$ is a linear transformation then Nullity of T + Rank of T equals to
 - $\hat{\mathbf{a}}$ dimension of V
 - b) dimension of W
 - c) dimension of V + W
 - d) none of these.
- · v) The sum of the eigenvalues of the matrix

$$\begin{pmatrix} 1 & 0 & -1 \\ 0 & 2 & -2 \\ 3 & 0 & -3 \end{pmatrix} is$$

a) ì

b) 5

,c) 4

- -d} 0.
- vi) If A is a skew-symmetric matrix then P^TAP is
 - a) Symmetric
 - , b) Skew-symmetric
 - c) Symmetric and Skew-symmetric
 - d) none of these.

++-1301/1(N)

2

- vii) For which of the following function Rolle's theorem is not applicable?
 - $f(x) = x^2 5x + 6$ in [2, 3]
 - b) $f(x) = \sin x$ in $[-\pi, \pi]$
 - c) $f(x) = \cos x \text{ in } [-\pi, \pi]$
 - _ d) $f(x) = \cos\left(\frac{1}{x}\right)$ in $[-\pi, \pi]$.
- wiii) If $\sin x = x \frac{x^3}{\lambda} + \frac{x^5}{\mu} \frac{x^7}{5040} + \dots$ then value of λ

nand μ are

- a) 6 and 120
- b) 60 and 1200
- (c) 600 and 1200 d) none of these.

- d) $\frac{3\pi}{2}$.
- The value of 'a' for which $\lim_{x\to 0} \frac{2x + a \sin 2x}{x^2}$ exists

finitely le

Turn over

CS/B.TECH(N)/ODD/SEM-1/BSM-101/2019-20

xi) If
$$\vec{F} = y^2 z \vec{i} + z^2 z \vec{j} + x^2 y \vec{k}$$
, then \vec{F} is

- a) Irrotational
- b) Solenoidal
- c) both (a) and (b)
- d) none of these.
- xii) The value of the paraboloid generated by revolving the part of the parabola $x^2 = 4ay$, a > 0 between the ordinates y = 0 and y = a about its axis is
 - _a) 2na³ cubic units
 - b) 4πa³ cubic units
 - c) $\frac{4}{3}\pi a^3$ cubic units
 - d) $\frac{8}{3}\pi a^3$ cubic units.

GROUP - B

(Short Auswer Type Questions)

Answer any three of the following. $3 \times 5 = 15$

2. Use Laplace's expansion to prove that

$$\begin{vmatrix} x & y & z & w \\ -y & x & w & -z \\ -z & -w & x & y \\ -w & z & -y & x \end{vmatrix} = (x^2 + y^2 + z^2 + w^2)^2.$$

3. Using Lagrange's Mean Value Theorem prove that $\frac{\pi}{6} + \frac{\sqrt{3}}{15} < \sin^{-1}\left(\frac{3}{5}\right) < \frac{\pi}{6} + \frac{1}{8}.$

• • -1301/1(N)

CS/B.TECH(N)/ODD/SEM-1/BSM-101/2019-20

4. Solve the following system of equations by Gauss Jordan's method:

2x-y-z=0, x+2y-z=2, 3x-y-z=1.

- Prove that the vectors (1, 0, 1), (1, 1, 0), (1, -1, 1),
 (1, 2, -3) are linearly dependent.
- 6. Prove that the set $S = \{(x,y,z) \in \mathbb{R}^3 : x^2 + y^2 = z^2\}$ is not a subspace of \mathbb{R}^3 .

GROUP - C

| Long Answer Type Questions |

Answer any three of the following. $3 \times 15 = 45$

- 7. a) Find the eigenvalues and eigenvectors of the matrix $\begin{pmatrix} 1 & -1 & 2 \\ 2 & -2 & 4 \\ 3 & -3 & 6 \end{pmatrix}$.
 - b) Prove that the determinant of every orthogonal matrix is 1 or -1.
 - c) Find the evolute of the curve $\int x^{2/3} + y^{2/3} = a^{2/3}$.

6+3+6

- 8. a) Prove that the transformation $T: \mathbb{R}^2 \to \mathbb{R}^3$ defined by T(x,y) = (x-y,x+y,y) is a linear transformation from \mathbb{R}^2 to \mathbb{R}^3 .
 - b) The line segment x+y=1, $0 \le y \le 1$ is revolved about y axis to generate a curve. Find the lateral surface area of the cone.

• •-1301/1(N)

5

Turn over

CS/B.TECH(N)/ODD/SEM-1/BSM-101/2019-20

- c) Examine the function $f(x,y) = x^3 y^3 + 3x^2 + 3y^2 9x \text{ for extrema}$ and indicate the saddle point, if any. 5 + 5 + 5
- 9. a) Diagonalize, if possible, the matrix $\begin{pmatrix} 1 & -1 & 1 \\ -1 & 1 & -1 \\ 1 & -1 & 1 \end{pmatrix}$.
 - b) Use Cayley-Hamilton theorem to find the inverse of the matrix $\begin{pmatrix} 1 & 0 & 2 \\ 0 & -1 & 1 \\ 0 & 0 & 1 \end{pmatrix}$.
 - c) Apply Gram-Schmidt process to the vectors (1, 0, 1), (1, 0, -1), (1, 3, 4) to obtain an orthogonal basis for R³ with the standard inner product.
- 10. a) Prove that $\int_{0}^{\pi/2} \sin^{p} x dx \times \int_{0}^{\pi/2} \sin^{p-1} x dx = \frac{\pi}{2(p+1)}$.
 - b) Using Mean Value Theorem prove that $0 < \frac{1}{x} \log \frac{e^x 1}{x} < 1.$
 - c) Let T be a linear transformation of IR² into itself that maps (1, 1) to (-2, 3) and (1, -1) to (4, 5). Determine the matrix representation of T with respect to the basis { (1, 0), (0, 1) }.
 5+5+5

- 11. a) Find the real value of z for which the rank of the matrix $\begin{pmatrix} 1+z & 2 & 3 & 4 \\ 1 & 2+z & 3 & 4 \\ 1 & 2 & 3+z & 4 \\ 1 & 2 & 3 & 4+z \end{pmatrix}$ is less than 4.
 - b) Find the basis and dimension of the Subspace W of IR^3 where W = ((x, y, z): x + 2y + z = 0 and 2x + y + 3z = 0).
 - c) If $\lim_{x \to 0} \frac{\sin 2x + a \sin x}{x^3}$ be finite, find the value of .

 'a' and the limit. 5 + 5 + 5