# A shared memory parallel implementation of the Eulerian-Lagrangian coupling equations for a Stokes Solver

Sachin Natesh

Courant Institute, NYU

July 20, 2020

# Stokes flow and Eulerian-Lagrangian coupling

- Suppose we have  $N_p$  particles with Lagrangian coordinates  $\mathbf{y}_k$  immersed in a Stokes fluid in a triply periodic domain  $\Omega$ . Consider a uniform grid G on  $\Omega$  with spacing h. The  $N^3$  grid nodes  $\mathbf{x} \in G$  are called Eulerian coordinates.
- Given forces  $f(y_k)$  on the particles, what is their velocity?

$$\eta \nabla^2 \mathbf{u}(\mathbf{x}) - \nabla \rho(\mathbf{x}) = -\mathbf{f}(\mathbf{x}), \quad \nabla \cdot \mathbf{u}(\mathbf{x}) = 0.$$
 (1)

• We need a way to spread forces on the particles to the Eulerian grid, solve (1), and interpolate the fluid velocity u(x) locally around each particle:

spread 
$$\forall x \in G: \quad f(x) = \sum_{k=1}^{N_p} f(y_k) \Delta(x - y_k)$$
 (2)

interpolate 
$$\forall k : \quad \mathbf{v}(\mathbf{y}_k) = \sum_{\mathbf{x} \in G} \mathbf{u}(\mathbf{x}) \Delta(\mathbf{x} - \mathbf{y}_k) h^3$$
 (3)

## Domain decomposition

- In (2)-(3),  $\Delta$  is a finitely supported, symmetric spreading 'kernel' of width wh, for  $w \in \mathbb{Z}^+$ , i.e. if  $|x^i y_k^i| > wh/2$  for i = 1, 2 or 3, then  $\Delta(\mathbf{x} \mathbf{y}_k) = 0$ .
- This means a Lagrangian coordinate y<sub>k</sub> only 'talks' to a certain w × w × w subarray of the Eulerian grid G.
- All particles above and below  $\mathbf{y}_k$  and within h/2 in x, y talk to the same  $w \times w \times N$  subarray of  $G \Rightarrow$  partition the 3D grid into groups of columns!
- Loop over the w<sup>2</sup> groups of columns and parallelize over the columns in each group.



# Algorithm outline

- Construct an array first(i,j) that gives the *index* k of the first particle in column i,j. Along with this, construct an array next(k) that gives the *index* of the *next particle in the column with particle* k.
- If there is a particle in the column, gather the lagrangian coordinates and forces from the global arrays into cache-aligned local ones.
- **Outpute** Open the global indices of the  $w \times w \times N$  subarray of G influenced by the column. Use them to gather the Eulerian forces for one column into cache-aligned memory.
- Get the  $w \times w \times w$  kernel weights for each particle in the column  $\Rightarrow$  vectorize over particles with #pragma omp simd.
- Use the kernel weights and Lagrangian forces to update the Eulerian forces for the column ⇒ vectorize over Eulerian points.
- scatter the results back the global Eulerian grid.
- Interpolation is just the weighted adjoint of spreading, so the implementations mirror each other somewhat.

## Results



### Results



### References

## [MP97]



David M. Mcqueen and Charles S. Peskin, *Shared-memory parallel vector implementation of the immersed boundary method for the computation of blood flow in the beating mammalian heart*, Journal of Supercomputing **11** (1997), no. 3, 213–236 (English (US)).