Force Field

Lecture 6: Empirical Force Field Models

Force Field

$$U(R) = \sum_{bonds} k_r (r - r_{eq})^2 \qquad bond$$

$$+ \sum_{angles} k_{\theta} (\theta - \theta_{eq})^2 \qquad angle$$

$$+ \sum_{dihedrals} k_{\phi} (1 + \cos[n\phi - \gamma]) \qquad dihedral$$

$$+ \sum_{impropers} k_{\omega} (\omega - \omega_{eq})^2 \qquad improper$$

$$+ \sum_{i < j} k_{\omega} (\omega - \omega_{eq})^2 \qquad van \ der \ Waals$$

$$+ \sum_{i < j} \epsilon_{ij} \left[\left(\frac{r_m}{r_{ij}} \right)^{12} - 2 \left(\frac{r_m}{r_{ij}} \right)^6 \right] \qquad van \ der \ Waals$$

$$+ \sum_{i < j} \frac{q_i q_j}{4 \pi \sigma_i r_i} \qquad electrostatic$$

$$\mathscr{V}(\mathbf{r}^{N}) = \sum_{\text{bonds}} \frac{k_{i}}{2} (l_{i} - l_{i,0})^{2} + \sum_{\text{angles}} \frac{k_{i}}{2} (\theta_{i} - \theta_{i,0})^{2} + \sum_{\text{torsions}} \frac{V_{n}}{2} (1 + \cos(n\omega - \gamma))$$

$$+ \sum_{i=1}^{N} \sum_{j=i+1}^{N} \left(4\varepsilon_{ij} \left[\left(\frac{\sigma_{ij}}{r_{ij}} \right)^{12} - \left(\frac{\sigma_{ij}}{r_{ij}} \right)^{6} \right] + \frac{q_{i}q_{j}}{4\pi\varepsilon_{0}r_{ij}} \right)$$

Bond rotation (torsion)

δ+ δ-

Non-bonded interactions (van der Waals)

Bond

$$v(l) = D_e \{1 - \exp[-a(l - l_0)]\}^2$$

$$v(l) = \frac{k}{2}(l - l_0)^2$$

Bond	l ₀ (Å)	<i>k</i> (kcal mol ^{−1} Å ²)
Csp ³ -Csp ³	1.523	317
Csp ³ —Csp ³ Csp ³ —Csp ²	1.497	317
Csp ² =Csp ²	1.337	690
Csp ² =O	1.208	777
Csp ³ —Nsp ³	1.438	3 67
C-N (amide)	1 345	719

Angle

$$\nu(\theta) = \frac{k}{2}(\theta - \theta_0)^2$$

Angle	θ_{0}	k (kcal mol ⁻¹ deg ⁻¹)
Csp ³ -Csp ³ -Csp ³	109.47	0.0099
Csp ³ —Csp ³ —H	109.47	0.0079
H-Csp ³ -H	109.47	0 0070
Csp ³ —Csp ² —Csp ³	117.2	0.0099
Csp ³ -Csp ² =Csp ²	121.4	0.0121
$Csp^3 - Csp^2 = O$	122.5	0.0101

Proper Dihedral Angle

$$v(\omega) = \sum_{n=0}^{N} \frac{V_n}{2} \left[1 + \cos(n\omega - \gamma) \right]$$

$$\nu(\omega) = \sum_{n=0}^{N} C_n \cos(\omega)^n$$

Improper Dihedral Angle and United Atom Approximation

$$\mathcal{V}(\mathbf{r}^{N}) = \sum_{\text{bonds}} \frac{k_{i}}{2} (l_{i} - l_{i,0})^{2} + \sum_{\text{angles}} \frac{k_{i}}{2} (\theta_{i} - \theta_{i,0})^{2} + \sum_{\text{torsions}} \frac{V_{n}}{2} (1 + \cos(n\omega - \gamma))$$

$$+ \sum_{i=1}^{N} \sum_{j=i+1}^{N} \left(4\varepsilon_{ij} \left[\left(\frac{\sigma_{ij}}{r_{ij}} \right)^{12} - \left(\frac{\sigma_{ij}}{r_{ij}} \right)^{6} \right] + \frac{q_{i}q_{j}}{4\pi\varepsilon_{0}r_{ij}} \right)$$

Electrostatics

$$\mathscr{V} = \sum_{i=1}^{N_{\rm A}} \sum_{j=1}^{N_{\rm B}} \frac{q_i q_j}{4\pi \varepsilon_0 r_{ij}}$$

