

Departament d'Estadística i Investigació Operativa

UNIVERSITAT POLITÈCNICA DE CATALUNYA

PROBABILITAT

Novembre 2020

2

BLOC 1 PROBABILITAT

Probabilitat. Propietats

- Siguin A i B dos successos:
 - $-0 \le P(A) \le 1$
 - $P(\neg A) = 1 P(A)$
 - $P(A \cup B) = P(A) + P(B) P(A \cap B)$

Probabilitat condicionada

Per definició, si P(B)>0, llavors P(A|B) és:

$$P(A \mid B) = \frac{P(A \cap B)}{P(B)}$$

- P(A|B) és la probabilitat de que passi A sabent que ha passat B
- P(A ∩ B) és la probabilitat de que passin A i B a la vegada
- En general, $P(A|B) \neq P(B|A) \neq P(A \cap B)$

Bloc 1

Probabilitat. Independencia

La Independència aplicat a 2 esdeveniments A, B és pot comprovar de diverses maneres:

A través de la definició:

-
$$P(A \cap B) = P(A) \cdot P(B)$$

-
$$P(\neg A \cap B) = P(\neg A) \cdot P(B)$$

-
$$P(A \cap \neg B) = P(A) \cdot P(\neg B)$$

$$- P(\neg A \cap \neg B) = P(\neg A) \cdot P(\neg B)$$

A través de la probabilitat condicionada:

-
$$P(A|B) = P(A|\neg B)$$

-
$$P(B|A) = P(B|\neg A)$$

$$- P(A|B) = P(A)$$

-
$$P(B|A) = P(B)$$

Probabilitat condicionada. Representació

Els arbres d'esdeveniments incorporen les probabilitats condicionades i permeten calcular les probabilitats de la intersecció

Bloc 1

Probabilitat a posteriori. Fórmula de Bayes

A partir de la definició de probabilitat condicionada:

$$P(A \mid B) = \frac{P(A \cap B)}{P(B)}$$

i de la probabilitat de la intersecció aïllada de la condicionada complementària:

$$P(B \mid A) = \frac{P(B \cap A)}{P(A)} \to P(B \cap A) = P(A \cap B) = P(B \mid A) \cdot P(A)$$

es dedueix la fórmula de Bayes:

$$P(A \mid B) = \frac{P(B \mid A) \cdot P(A)}{P(B)}$$

que, coneixent P(A) i P(B), permet passar de P(A|B) a P(B|A) i viceversa (usualment en l'enunciat del cas, les probabilitats condicionades en un sentit són conegudes i interessa calcular les condicionades complementàries). [Exemple: si conec la probabilitat de pluja si està ennuvolat i vull conèixer la probabilitat d'ennuvolat si ha plogut]

Prob. a posteriori. Probabilitats totals i Bayes

El **teorema de Bayes** permet canviar el numerador i denominador de la fórmula de probabilitat condicionada per poder fer els càlculs en algunes situacions. Al denominador s'aplica la llei de probabilitats totals.

Amb particions de 2 successos:

$$P(A \mid B) = \frac{P(B \mid A) \cdot P(A)}{P(B \mid A) \cdot P(A) + P(B \mid \neg A) \cdot P(\neg A)}$$

Amb particions de més de 2 successos:

$$P(A_i | B_k) = \frac{P(B_k | A_i) \cdot P(A_i)}{\sum_{j} P(B_k | A_j) \cdot P(A_j)}$$

Bloc 1

BLOC 2 VARIABLE ALEATORIA

Variable aleatòria. Funció de prob. i distr. en VAD

• La **funció de probabilitat** (p_X) en una VAD defineix la probabilitat puntual de cada un dels possibles valors k:

$$p_X(k) = P(X = k)$$
 (complint $\sum_k p_X(k) = 1$)

• La **funció de distribució** (F_X) de probabilitat en una VAD defineix la <u>probabilitat acumulada</u>:

$$F_{X(k)} = P(X \le k) = \sum_{j \le k} p_X(j)$$

Variable aleatòria. Funció de dens. i distr. en VAC

• En el cas VAC, qualsevol **funció positiva**, $f_X(x) \ge 0$, que compleixi la següent propietat és una <u>funció de densitat</u> vàlida:

$$\int_{-\infty}^{+\infty} f_X(x) dx = 1$$

La funció de distribució s'obté amb:

$$F_X(u) = P(X \le u) = \int_{-\infty}^{u} f_X(x) dx$$

- En les VAC, les probabilitats puntuals valen 0
- El límit inferior de la integral de la funció de distribució serà l'inici del domini de la variable aleatòria.

Variable aleatòria. Càlcul de probabilitats

VAD. Atenció a les desigualtats si són estrictes o no!

$$- P(X = k) = p_x(k)$$

-
$$P(X \le k) = F_X(k) = \sum_{j=1}^{k} p_X(j)$$

-
$$P(X < k) = P(X \le k-1) = F_X(k-1)$$

-
$$P(a < X \le b) = P(X \le b) - P(X \le a) = F_x(b) - F_x(a)$$

-
$$P(a \le X \le b) = P(X \le b) - P(X \le a) = F_x(b) - F_x(a-1)$$

-
$$P(a < X < b) = P(X < b) - P(X \le a) = F_x(b-1) - F_x(a)$$

• VAC. És igual si les desigualtats són estrictes o no!

-
$$P(X = k) = 0$$
 ($\neq f_X(k)$)

-
$$P(X \le k) = F_x(k)$$

$$- P(X < k) = P(X \le k) = F_X(k)$$

-
$$P(a \le X \le b) = P(a < X \le b) = P(a < X < b) = F_X(b) - F_X(a)$$

Probabilitats acumulades. Quantils

- Sigui X una variable aleatòria, i α un valor real $(0 \le \alpha \le 1)$ diem que x_{α} és el quantil α de X si es compleix: $F_{X}(x_{\alpha}) = \alpha$
- Calcular un quantil és el problema invers al càlcul de probabilitats acumulades. La funció inversa de la funció de distribució ens retorna x_n

Indicadors de V.A. Com es calculen?

Esperança de X

$$VAD \rightarrow E(X) = \mu_X = \sum_{\forall k} (k \cdot p_X(k))$$
 $VAC \rightarrow E(X) = \mu_X = \int_{-\infty}^{+\infty} x \cdot f_X(x) dx$

Variància de X

$$VAD \rightarrow V(X) = \sigma_X^2 = \sum_{\forall k} \left[\left(k - E(X) \right)^2 \cdot p_X(k) \right] \rightarrow \sigma_X = \sqrt{\sigma_X^2} = \sqrt{V(X)}$$

$$VAC \rightarrow V(X) = \sigma_X^2 = \int_{-\infty}^{+\infty} \left(x - E(X) \right)^2 \cdot f_X(x) dx \rightarrow \sigma_X = \sqrt{\sigma_X^2} = \sqrt{V(X)}$$

• Relació entre Esperança i Variància (en VAD i VAC):

$$V(X) = E[(X - E(X))^{2}] = E(X^{2}) - E(X)^{2}$$

Indicadors de V.A. Propietats

Siguin X i Y dues variables aleatòries, i a i b dos escalars

Propietats de l'Esperança	Propietats de la Variància
E(a+X) = a + E(X)	V(a+X) = V(X)
$E(bX) = b \cdot E(X)$	$V(bX) = b^2 \cdot V(X)$
E(a+bX) = a + b E(X)	$V(a+bX) = b^2 \cdot V(X)$
E(X+Y) = E(X) + E(Y)	V(X+Y) = V(X) + V(Y) si són ind.
$E(X \cdot Y) = E(X) \cdot E(Y)$ si són ind.	V(X·Y) = ?

Funcions de probabilitat en parell de VAD

Funció de probabilitat conjunta de X i Y. És la probabilitat de la intersecció

$$P_{X,Y}(x,y) = P(X=x \cap Y=y)$$

• Funció de probabilitat de X condicionada per Y. Es calcula com la probabilitat conjunta entra la probabilitat marginal de la variable a la que condicionem

$$P_{X/Y=y}(x) = P_{X,Y}(x,y) / P_{Y}(y)$$

X i Y són V.A. independents si i només si:

$$P_{X,Y}(x,y) = P_X(x) \cdot P_Y(y) \iff P_{X/Y=y}(x) = P_X(x) \iff P_{Y/X=x}(y) = P_Y(y)$$

Indicadors de parell de V.A.

• La covariància indica si existeix <u>relació lineal</u> o no, a partir del producte, per cada parell de valors, de la diferència respecte al seu valor esperat

$$VAD \rightarrow Cov(X,Y) = \sum_{\forall x} \sum_{\forall y} (x - E(x))(y - E(y)) \cdot p_{XY}(x,y)$$
$$VAC \rightarrow Cov(X,Y) = \iint_{\forall x,y} (x - E(x))(y - E(y)) \cdot f_{XY}(x,y) \, dxdy$$

 La correlació indica si existeix <u>relació lineal</u> o no relativitzant-ho a valors entre -1 i 1 (a partir de la covariància i dividint per les desviacions corresponents)

$$corr(X,Y) = \rho = \frac{Cov(X,Y)}{\sigma_X \cdot \sigma_Y}$$

Nota: per qualsevol parell de variables X i $Y \rightarrow -1 \le \rho_{X,Y} \le 1$

Nota: La correlació és més interpretable per estar estandarditzada:

- Valors proper a 1 indiquen relació lineal directa entre les dues variables
- Valors proper a -1 indiquen relació lineal inversa entre les dues variables
- Valors proper a 0 indiquen que **no hi ha relació** lineal entre les dues variables
- Si dues variables són independents, tenen covariància i correlació nul·la però l'invers no és cert.

Indicadors de parell de V.A. Propietats

Siguin X i Y dues variables aleatòries, i a i b dos escalars:

Esperança

$$- E(X \cdot Y) = E(X) \cdot E(Y) + Cov(X,Y)$$

Variància

- V(X+Y) = V(X) + V(Y) + 2 Cov(X,Y)
- V(X-Y) = V(X) + V(Y) 2 Cov(X,Y)

Covariància

- Cov(aX, bY) = a·b·Cov(X,Y)
- Cov(X,X) = V(X)

BLOC 3 MODELS DE VARIABLE ALEATORIA

Models de VAD

- **Bernoulli**: Número d'èxits en la realització d'un únic experiment amb 2 possibles resultats: **0** ("no èxit") i **1** ("èxit").
- Binomial: Número d'èxits en la repetició de n proves de Bernoulli independents amb probabilitat constant p
- Geomètrica: Número d'intents (k) d'un experiment de Bernoulli fins observar el primer èxit
- Binomial negativa: Número de repeticions (k) d'un experiment de Bernoulli fins observar r èxits
- Poisson: Número d'ocurrències favorables en un determinat interval de temps o espai

TAULA resum de models de VAD

Distribució	Declaració	Domini	Esperança E(X) = μ _x	Variància V(X) = σ _x ²	
Bernoulli	Bern(p)	0, 1	р	p·q	
Binomial	B(n,p) 0,1,,n		n∙p	n∙p∙q	
Geomètrica	Geom(p)	1,2,3,	1/p	q/p²	
Binomial negativa	BN(r,p)	r, r+1,	r/p	q·r/p²	
Poisson	Ρ(λ)	0, 1, 2,	λ	λ	

$$0$$

$$q = 1 - p$$

 $n \in N$

 $r \in N$

 $\lambda \in R^+$

Models de VAC

- Exponencial: Distribució del temps entre arribades (ocurrències) en un procés de Poisson. Propietat de Markov (o de NO memòria): La distribució de probabilitat d'una variable aleatòria Exponencial no depèn del que hagi passat amb anteriorietat al moment present. Té funció de distribució analítica.
- Uniforme: VAC amb funció de densitat constant en un determinat rang. Té funció de distribució analítica.
- Normal: Model que s'ajusta a valors provinents de múltiples fenòmens trobats en diferents disciplines científiques.

TAULA resum de tots els models rellevants

Distribució	Declaració	Funció de probabilitat o de densitat	Funció distribució	Esperança E(X)	Variància V(X)
Bernoulli	X~Bern(p)	$P_X(k) = \begin{cases} q & k = 0 \\ p & k = 1 \end{cases}$	$F_X(k) = \sum_{i <= k} P_X(i)$	р	$p \cdot q$
Binomial	X~B(n,p)	$P_{X}(k) = \binom{n}{k} \cdot p^{k} \cdot q^{n-k}$ $k = 0,1,,n$ (R:dbinom(k,n,p))	$F_{_{X}}(k) = \sum_{i <= k} P_{_{X}}(i)$ (taules estadístiques) (R:pbinom(k,n,p))	p·n	$p \cdot q \cdot n$
Poisson	X~P(λ) *	$P_X(k) = \frac{\lambda^k \cdot e^{-\lambda}}{k!} k = 0,1,2,$ (R:dpois(k,\lambda))	$F_X(k) = \sum_{i <= k} P_X(i)$ (taules estadístiques) (R:ppois(k, λ))	λ	λ
Exponencial	X~Exp(λ) *	$f_{_{X}}(x)=\lambda\cdot e^{-\lambda\cdot x} x>0$ (R:dexp(x, λ))	$F_X(x) = 1 - e^{-\lambda \cdot x}$ (R:pexp(x, λ))	$\frac{1}{\lambda}$	$\frac{1}{\lambda^2}$
Uniforme	X~U[a,b]	$f_X(x) = \frac{1}{b-a} a < x < b$ $\text{(R:dunif(k,a,b))} \qquad F_X(x) = \frac{x-a}{b-a}$ (R:punif(k,a,b))		$\frac{(a+b)}{2}$	$(b-a)^2/12$
Normal	X~N(μ,σ)	$f_X(x) = \frac{1}{\sigma\sqrt{2\cdot\pi}} e^{-\frac{1}{2}\left(\frac{x-\mu}{\sigma}\right)^2}$ (R:dnorm(k, \mu, \sigma))	$F_X(x) = ?$ (taules estadístiques N(0,1)) (R:pnorm(k, μ , σ))	μ	σ^2

0 <math>q = 1 - p $n \in \mathbb{N}$ $r \in \mathbb{N}$ $\lambda \in \mathfrak{R}^+$

Bloc 1 23

^{*}λ paràmetre del procés Poisson: variables Poisson i Exponencial

Model Normal. Propietats

- La funció de densitat f(x) és simètrica respecte al punt $x = \mu$. Això é molt útil per calcular probabilitats i quantils
- En qualsevol VAC X Normal sempre es compleix:

$$P(\mu - \sigma \le X \le \mu + \sigma) \approx 0.68$$

$$P(\mu - 2\sigma \le X \le \mu + 2\sigma) \approx 0.95$$

$$P(\mu - 3\sigma \le X \le \mu + 3\sigma) \approx 0.99$$

 Com que la combinació lineal de variables Normals és Normal, la estandardització consisteix en:

$$X \sim N(\mu, \sigma) \rightarrow Z = \frac{X - \mu}{\sigma} \sim N(0, 1)$$

Teorema Central del Límit (TCL)

• Siguin X_1 , X_2 , ..., X_n independents i idènticament distribuïdes amb esperança μ i desviació típica σ . Llavors:

$$S_n = \sum X_i \xrightarrow{n \ gran} N(n\mu, \sigma\sqrt{n}) \Rightarrow \frac{S_n - n\mu}{\sigma\sqrt{n}} \xrightarrow{n \ gran} N(0,1)$$

$$\bar{X}_n = \frac{\sum X_i}{n \ gran} N(\mu, \sigma/\sqrt{n}) \Rightarrow \frac{\bar{X}_n - \mu}{\sigma/\sqrt{n}} = \frac{\sum X_i - n\mu}{\sigma\sqrt{n}} \xrightarrow{n \ gran} N(0, 1)$$

- És a dir, amb n gran, la funció de distribució de la variable Suma (S_n) i mitjana (\overline{X}_n) tendeix a una Normal amb uns determinats paràmetres independentment de la distribució de les X_i
- La convergència a la normal és més lenta si la distribució de les X_i és **poc simètrica** o són **variables discretes** (especialment si només pot prendre pocs valors):

TCL. Relacions entre distribucions

Una de les aplicacions pràctiques del TCL és que la distribució Normal es pot emprar com a aproximació d'altres distribucions:

- La **distribució Binomial** amb paràmetres *n* i *p* es pot aproximar per una Normal quan *n* és gran i la *p* no massa extrema (ni molt a prop de 0 ni de 1). Llavors, els paràmetres de la Normal són
 - $-\mu = n \cdot p$
 - $\quad \sigma^2 = \mathbf{n} \cdot \mathbf{p} \cdot (1-\mathbf{p})$
- La distribució de Poisson amb paràmetre λ es pot aproximar per una Normal quan la λ és prou gran. Llavors els paràmetres de la Normal són:

$$- \mu = \lambda$$
$$- \sigma^2 = \lambda$$

Nota: la Binomial es pot aproximar a una Poisson quan la *n* és prou gran i la *p* prou petita