

微處理機系統與介面技術

LAB 5 -SPI

SPI - Serial Peripheral Interface

- Synchronous serial data communication(can operate in full duplex)
- 4 wire communication(SS,CLK,MOSI,MISO)
- MO has four set SPI

byte sent

SPI register

- SPI->SSR: SPI slave select register
 - SS_LVL
 - AUTOSS
 - 55R

31	30	29	28	27	26	25	24		
	Reserved								
23	22	21	20	19	18	17	16		
	Reserved								
15	14	13	12	11	10	9	8		
	Reserved								
7	6	5	4	3	2	1	0		
Rese	Reserved LTRIG_FLAG		SS_LTRIG	AUTOSS	SS_LVL	SSR			

- SPI->CNTRL: SPI control and status register
 - · SLAVE
 - · CLKP
 - TX_NUM, TX_BIT_LEN
 - TX_NEG, RX_NEG
 - GO_BUSY

31	30	29	28	27	26	25	24	
Reserved								
23	22	21	20	19	18	17	16	
VARCLK_EN	тwов	Reserved	REO	RDER	SLAVE	IE	IF	
15	14	13	12	11	10	9	8	
SP_CYCLE				CLKP	LSB	TX_NUM		
7	6	5	4	3	2	1	0	
TX_BIT_LEN				TX_NEG	RX_NEG	GO_BUSY		

ADXL SPI configuration

- SCLK

 topelay

 thold

 w

 MB

 A5

 Topelay

 Thold

 Th
 - Figure 37. SPI 4-1

- SPI->DIVIDER: Set SPI clock(DIVIDER)
- SPI->SSR
 - SS line is active at low-level edge(SSR.SS_LVL)
 - Disable auto ss(SSR.AUTOSS)
- · SPI->CNTRL
 - Set SPI as master mode(CNTRL.SLAVE)
 - CLK is idle at high(CNTRL.CLKP)
 - CPOL=1, CPHA=1(CNTRL.TX_NEG, RX_NEG)
 - 8 bit data length for each word transmit(CNTRL.TX_BIT_LEN)
 - One word in one transfer(CNTRL.TX_NUM)

SPI Write operation

CCU@Taiwan 中正大學

SPI Read operation

ADXL SPI Read/Write

- Data format
 - Read/Write bit + Multiple-byte bit + 6 bits address
- Configure 0x2D(0x0010_1101) as address, single-byte Read

R/W

MB

A5

A4

A3

A2

A0

• Read + MB + address → 0x1010_1101

ADXL pin configuration

- CS ----->SPI2 CS(GPD0)
- SCL ----->SPI2 CLK(GPD1)
- SDO ----->SPI2 MISO(GPD2)
- SDA(SDI) ---->SPI2 MOSI(GPD3)

Figure 35. 4-Wire SPI Connection Diagram

Bad design for using SPI, we need to remove this resistor then let SPI work \

reatlab.tw

ADXL345

Mark: Don't use SPIO

ADXL345 register map

- ADXL slave address(0x53)
 - Write address: 0xA6
 - Read address: 0xA7
- Initial ADXL345
 - POWER_CTL(0x2D): 0x08
 - DATA_FORMAT(0x31): 0x0B
 - FIFO_CTL(0x38): 0x80
- ADXL data register
 - DATAX0(0x32), DATAX1(0x33)
 - DATAYO(0x34), DATAY1(0x35)
 - DATAZO(0x36), DATAZ1(0x37)

Table 19.

Description
Device ID
Reserved; do not acces
Tap threshold
X-axis offset
Y-axis offset
Z-axis offset
Tap duration
Tap latency
Tap window
Activity threshold

Register 0x31—DATA_FORMAT (Read/Write)

D7	D6	D5	D4	D3	D2	D1	D0
SELF_TEST	SPI	INT_INVERT	0	FULL_RES	Justify	Range	

The DATA_FORMAT register controls the presentation of data to Register 0x32 through Register 0x37. All data, except that for the ± 16 g range, must be clipped to avoid rollover.

SELF_TEST Bit

A setting of 1 in the SELF_TEST bit applies a self-test force to the sensor, causing a shift in the output data. A value of 0 disables the self-test force.

Basic

- Read 3 axis accelerometer and print on putty
- Need to do calibration
 - Result = (Raw data ± offset)/(256 ± offset)

Figure 58. Output Response vs. Orientation to Gravity

```
PuTTY
ADXL init...
Start
x: -0.08, y: -0.04, z: -0.12
x: -0.02, y: -0.01, z: 1.01
x: -0.02, y: -0.01, z: 1.01
x: -0.03, y: -0.01, z: 1.01
x: -0.02, y: -0.01, z: 0.93
x: -0.02, y: -0.02, z: 1.02
x: -0.02, y: -0.02, z: 1.01
x: -0.02, y: -0.02, z: 1.00
x: -0.02, y: -0.02, z: 1.01
x: -0.02, y: -0.02, z: 1.02
x: -0.02, y: -0.01, z: 1.01
x: -0.02, y: -0.02, z: 1.02
x: -0.02, y: -0.02, z: 1.01
x: -0.02, y: -0.01, z: 1.02
x: -0.02, y: -0.01, z: 1.01
```


Tips

- 範例程式: SPI_Loopback
- Easy test: you can read the adxl register 0x00 to test SPI communication is correct or not, it will return 0xE5 if your SPI is right
- Remember to change configuration in the SYS_init
 - Ex. CLK_SEL1(ModuleClock), GPx_MFP, ALT_MFP → change SPI to SPI2
- Do not use AutoSS, SPI.c SPI.h are useful.
- Be careful for the SPI configuration !!!
- You can write the code as the example.c

Demo

- Place: 創新大樓515 找助教 宋皓天
- Demo Time: (二)(三)下午四點~五點 (發完題目第二周和第三周)
- Report deadline: 12/17(五)
- Report title format: LABx_ID_Name.pdf
- · Demo必須在Report deadline前完成
- · Demo前須先上傳程式碼(上傳main所在的.c檔即可)

Graded

• Basic: 80%

• Report & Code: 20%

