	Assignment 1 Due by 11:59pm Sept. 18, 2023 Theory Questions (Question 1: 9 points, Question 2: 4 points, Question 3: 12 points)
	1. Suppose I is a 5×5 image, K is a 3×3 convolving kernel. Compute the convolution of the image I with K, with the given settings. 1 1 0 0 1 1 1 0 1 1
	1 0 1 0 0 0 1 1 0 0 0 0 1 1 0
	0 1 0 1 0 1 0 1 0
	K: $ \hbox{a) Zero padding, stride} = 1. $ $ \hbox{b) Zero padding, stride} = 2. $ $ \hbox{c) No padding, stride} = 1. $
	$\begin{bmatrix} 2 & 1 & 1 & 2 & 1 \\ 2 & 2 & 3 & 1 & 2 \\ 1 & 4 & 1 & 2 & 1 \\ 2 & 1 & 3 & 2 & 0 \\ 0 & 2 & 2 & 1 & 1 \end{bmatrix}$
	Answer: a) [[2,1,1,2,1], [2,2,3,1,2], [1,4,1,2,1], [2,1,3,2,0], [0,2,2,1,1]] $\begin{bmatrix} 2 & 1 & 1 & 2 & 1 \\ 2 & 2 & 3 & 1 & 2 \\ 1 & 4 & 1 & 2 & 1 \\ 2 & 1 & 3 & 2 & 0 \\ 0 & 2 & 2 & 1 & 1 \end{bmatrix}$
	b) [[2,1,1], [1,1,1], [0,2,1]] $ \begin{bmatrix} 2 & 1 & 1 \\ 1 & 1 & 1 \\ 0 & 2 & 1 \end{bmatrix} $ c) [[2,3,1], [4,1,2], [1,3,2]] $ \begin{bmatrix} 2 & 1 & 1 \\ 1 & 1 & 1 \\ 0 & 2 & 1 \end{bmatrix} $
	$\begin{bmatrix} 2 & 3 & 1 \\ 4 & 1 & 1 \\ 1 & 3 & 2 \end{bmatrix}$ 2.Let I be the input. Write the output using average pooling with 2×2 kernel, stride $= 2$.
	1 5 0 8 5 4 5 2 6 3 1 7
	I : Answer: [[4.25,4.25], [4.25,3.75]]->Rounded Up [[5,5], [5,4]] Actual: \[\begin{array}{c} 4.25 & 4.25 \\ 4.25 & 3.75 \end{array} \end{array} \] Rounded:
	$\begin{bmatrix} 5 & 5 \\ 5 & 4 \end{bmatrix}$ 3. I is a 5×5 RGB image. K is a 3×3 convolving kernel with all its weights equal to -1 . b is the bias equal to 1 .
	0 1 0 1 0 1 0 1 0 1 0 1 0 1 0
	1 0 1 0 1 The R channel is given as 0 1 2 3 4
	5 6 7 8 9 9 8 7 6 5 0 1 2 3 4
	The G channel is given as 3 3 3 3 3 3 2 2 2 3
	3 2 1 2 3 3 2 2 2 3 3 3 3 3 3
	The B channel is given as
	Programming Questions (Question 4: 45 points, Question 5, 30 points) 4. Load mnist dataset. Normalize the data. Split the data into training, validation and testing set. Build a CNN network with convolution layers, pooling layers to classify the number.
	Plot the training loss and validation loss as a function of epochs. Plot the both training accuracy and validation accuracy as a function of epochs. Print the testing accuracy. Note: Initial code has been provided to import the necessary packages and load the dataset. Now that we have introduced PyTorch programming, you should use it to solve the
In [1]:	import torch import torch.optim as optim import torch.utils as utils from torch.utils.data import DataLoader
	<pre>import torchvision import torchvision.transforms as transforms import matplotlib.pyplot as plt import tensorflow as tf import tensorflow.keras as keras from tensorflow.keras import datasets, layers, models</pre> Loading Dataset
In [2]: In [3]:	<pre>transform = transforms.Compose([transforms.ToTensor(), transforms.Normalize((0.5,), (0.5,))]) training_data = torchvision.datasets.MNIST(root='./data', train=True, download=True, transform=transform) testing_data = torchvision.datasets.MNIST(root='./data', train=False, download=True, transform=transform) train_loader = torch.utils.data.DataLoader(dataset = training_data,</pre>
In [4]:	<pre>test_loader = torch.utils.data.DataLoader(dataset = testing_data,</pre>
	<pre>self.conv1 = nn.Conv2d(1, 32, kernel_size=3) self.conv2 = nn.Conv2d(32, 64, kernel_size=3) self.pool = nn.MaxPool2d(kernel_size=2, stride=2) self.fc1 = nn.Linear(64 * 5 * 5, 128) self.fc2 = nn.Linear(128, 10) # 10 output classes for MNIST def forward(self, x): x = self.pool(torch.relu(self.conv1(x))) x = self.pool(torch.relu(self.conv2(x)))</pre>
	<pre>x = x.view(-1, 64 * 5 * 5) # Reshape for fully connected layer x = torch.relu(self.fc1(x)) x = self.fc2(x) return x # Initialize the network net = Net()</pre> Training CNN
In [5]:	<pre>optimizer = optim.SGD(net.parameters(), lr = 0.001, momentum = 0.9) epochs = 10 train_losses = [] validation_losses = [] train_accuracy = [] validation_accuracy = []</pre> <pre>for epoch in range(epochs):</pre>
	<pre>running_loss = 0.0 correct_train = 0 total_train = 0 for i, data in enumerate(train_loader, 0): inputs, labels = data optimizer.zero_grad() outputs = net(inputs) loss = criterion(outputs, labels) loss.backward() optimizer.step()</pre>
	<pre>running_loss += loss.item() _, predicted = torch.max(outputs.data, 1) total_train += labels.size(0) correct_train += (predicted == labels).sum().item() train_losses.append(running_loss / len(train_loader)) train_accuracy.append(100 * correct_train / total_train) # Validation</pre>
	<pre>correct_val = 0 total_val = 0 running_val_loss = 0.0 with torch.no_grad(): for data in test_loader: images, labels = data outputs = net(images) loss = criterion(outputs, labels) running_val_loss += loss.item()</pre>
	_, predicted = torch.max(outputs.data, 1) total_val += labels.size(0) correct_val += (predicted == labels).sum().item() validation_losses.append(running_val_loss / len(test_loader)) validation_accuracy.append(100 * correct_val / total_val) print(f"Epoch {epoch+1}/{epochs}, " f"Train Loss: {train_losses[-1]:.4f}, " f"Validation Loss: {validation_losses[-1]:.4f}, "
	f"Train Accuracy: {train_accuracy[-1]:.2f}%, " f"Validation Accuracy: {validation_accuracy[-1]:.2f}%") Epoch 1/10, Train Loss: 0.9330, Validation Loss: 0.2601, Train Accuracy: 76.69%, Validation Accuracy: 92.37% Epoch 2/10, Train Loss: 0.2056, Validation Loss: 0.1451, Train Accuracy: 93.89%, Validation Accuracy: 95.89% Epoch 3/10, Train Loss: 0.1335, Validation Loss: 0.1015, Train Accuracy: 96.07%, Validation Accuracy: 96.89% Epoch 4/10, Train Loss: 0.1044, Validation Loss: 0.0808, Train Accuracy: 96.90%, Validation Accuracy: 97.62% Epoch 5/10, Train Loss: 0.0875, Validation Loss: 0.0713, Train Accuracy: 97.37%, Validation Accuracy: 97.78% Epoch 6/10, Train Loss: 0.0760, Validation Loss: 0.0604, Train Accuracy: 97.73%, Validation Accuracy: 98.09% Epoch 7/10, Train Loss: 0.0677, Validation Loss: 0.0565, Train Accuracy: 97.98%, Validation Accuracy: 98.25%
In [6]:	Epoch 8/10, Train Loss: 0.0617, Validation Loss: 0.0552, Train Accuracy: 98.13%, Validation Accuracy: 98.17% Epoch 9/10, Train Loss: 0.0563, Validation Loss: 0.0466, Train Accuracy: 98.33%, Validation Accuracy: 98.47% Epoch 10/10, Train Loss: 0.0521, Validation Loss: 0.0481, Train Accuracy: 98.44%, Validation Accuracy: 98.34% Training Loss and Validation Loss plt.figure(figsize = (12, 4)) plt.subplot(1, 2, 1) plt.plot(range(1, epochs + 1), train_losses, label = 'Train Loss') plt.plot(range(1, epochs + 1), validation_losses, label = 'Validation Loss')
Out[6]:	plt.xlabel('Epochs') plt.legend() <matplotlib.legend.legend 0x177997b10="" at=""> Train Loss — Validation Loss</matplotlib.legend.legend>
	0.8 - 0.6 - SS 0.4 -
	0.2 - 2 4 6 8 10 Epochs
In [7]:	<pre>plt.plot(range(1, epochs + 1), train_accuracy, label = 'Train Accuracy') plt.plot(range(1, epochs + 1), validation_accuracy, label = 'Validation Accuracy') plt.xlabel('Epochs') plt.ylabel('Accuracy (%)') plt.legend()</pre>
	95 - (1)
	We have a second of the second
	Train Accuracy Validation Accuracy 2 4 6 8 10 Epochs
In [8]:	<pre>correct = 0 total = 0 with torch.no_grad(): for data in test_loader: images, labels = data outputs = net(images) , predicted = torch.max(outputs.data, 1)</pre>
	total += labels.size(0) correct += (predicted == labels).sum().item() print(f"Accuracy on the test images: {100 * correct / total}%") Accuracy on the test images: 98.34% 5.Load cifar10 dataset. Build a CNN network with convolution layers to classify the images. Print the accuracy.
In [9]:	<pre>Tune the hyper parameters if needed to get a good accuracy. transform = transforms.Compose([transforms.RandomHorizontalFlip(), transforms.RandomCrop(32, padding=4), transforms.ToTensor(), transforms.Normalize((0.5, 0.5, 0.5), (0.5, 0.5, 0.5))]) training_data = torchvision.datasets.CIFAR10(root='./data', train=True, download=True, transform=transform)</pre>
In [10]:	test_data = torchvision.datasets.CIFAR10(root='./data', train=False, download=True, transform=transform) Files already downloaded and verified Files already downloaded and verified trainloader = torch.utils.data.DataLoader(training_data, batch_size = 64, shuffle = True) testloader = torch.utils.data.DataLoader(test_data, batch_size = 64, shuffle = False) Building CNN
In [11]:	<pre>class Net(nn.Module): definit(self): super(Net, self)init() self.conv1 = nn.Conv2d(3, 64, kernel_size=3, padding=1) self.conv2 = nn.Conv2d(64, 128, kernel_size=3, padding=1) self.pool = nn.MaxPool2d(kernel_size=2, stride=2) self.fc1 = nn.Linear(128 * 8 * 8, 512) self.fc2 = nn.Linear(512, 10)</pre>
	<pre>def forward(self, x): x = self.pool(torch.relu(self.conv1(x))) x = self.pool(torch.relu(self.conv2(x))) x = x.view(-1, 128 * 8 * 8) x = torch.relu(self.fc1(x)) x = self.fc2(x) return x # Initialize the network net = Net()</pre>
In [12]:	Training CNN
	<pre>for i, data in enumerate(trainloader, 0): inputs, labels = data optimizer.zero_grad() outputs = net(inputs) loss = criterion(outputs, labels) loss.backward() optimizer.step() running_loss += loss.item()</pre>
	<pre>print(f"Epoch {epoch + 1}/{epochs}, Loss: {running_loss / len(trainloader):.4f}") Epoch 1/20, Loss: 1.4948 Epoch 2/20, Loss: 1.1475 Epoch 3/20, Loss: 0.9180 Epoch 4/20, Loss: 0.9180 Epoch 5/20, Loss: 0.8572 Epoch 6/20, Loss: 0.8096 Epoch 7/20, Loss: 0.7757 Epoch 8/20, Loss: 0.7417 Epoch 9/20, Loss: 0.7210</pre>
	Epoch 9/20, Loss: 0.7210 Epoch 10/20, Loss: 0.6959 Epoch 11/20, Loss: 0.6756 Epoch 12/20, Loss: 0.6605 Epoch 13/20, Loss: 0.6449 Epoch 14/20, Loss: 0.6254 Epoch 15/20, Loss: 0.6124 Epoch 16/20, Loss: 0.6058 Epoch 17/20, Loss: 0.5857 Epoch 18/20, Loss: 0.5785
In [13]:	<pre>Epoch 19/20, Loss: 0.5700 Epoch 20/20, Loss: 0.5671 Accuracy correct = 0 total = 0 with torch.no_grad(): for data in testloader: images, labels = data</pre>
In [14]: In [15]:	<pre>Tuning Hyper Parameter trainloader = torch.utils.data.DataLoader(training_data, batch_size = 128, shuffle = True) testloader = torch.utils.data.DataLoader(test_data, batch_size = 128, shuffle = False) class Net(nn.Module): definit(self): super(Net, self)init()</pre>
	<pre>self.conv1 = nn.Conv2d(3, 64, kernel_size=3, padding=1) self.conv2 = nn.Conv2d(64, 128, kernel_size=3, padding=1) self.pool = nn.MaxPool2d(kernel_size=2, stride=2) self.fc1 = nn.Linear(128 * 8 * 8, 512) self.fc2 = nn.Linear(512, 10) def forward(self, x): x = self.pool(torch.relu(self.conv1(x))) x = self.pool(torch.relu(self.conv2(x))) x = x.view(-1, 128 * 8 * 8)</pre>
In [16]:	<pre>x = x.view(-1, 128 * 8 * 8) x = torch.relu(self.fc1(x)) x = self.fc2(x) return x # Initialize the network net = Net() criterion = nn.CrossEntropyLoss() optimizer = optim.Adam(net.parameters(), lr = 0.001)</pre>
	<pre>optimizer = optim.Adam(net.parameters(), lr = 0.001) epochs = 20 for epoch in range(epochs): running_loss = 0.0 for i, data in enumerate(trainloader, 0): inputs, labels = data optimizer.zero_grad() outputs = net(inputs) loss = criterion(outputs, labels) loss.backward()</pre>
	Epoch 5/20, Loss: 0.8368 Epoch 6/20, Loss: 0.7812 Epoch 7/20, Loss: 0.7436 Epoch 8/20, Loss: 0.7106 Epoch 9/20, Loss: 0.6809 Epoch 10/20, Loss: 0.6571 Epoch 11/20, Loss: 0.6319 Epoch 12/20, Loss: 0.6052 Epoch 13/20, Loss: 0.5872 Epoch 14/20, Loss: 0.5713
In [17]:	Epoch 15/20, Loss: 0.5542 Epoch 16/20, Loss: 0.5371 Epoch 17/20, Loss: 0.5309 Epoch 18/20, Loss: 0.5127 Epoch 19/20, Loss: 0.5028 Epoch 20/20, Loss: 0.4925 correct = 0 total = 0 with torch.no_grad():
	Accuracy on the test images: 78.00%