TRIGONOMETRÍA

PROGRAMA ACADÉMICO VIRTUAL

Ciclo Anual Virtual Uni

Docente Rodolfo Condori

CIRCUNFERENCIA TRIGONOMÉTRICA II

OBJETIVOS

☐ Representar la variación del seno y coseno de un número real en la C. T.

- ☐ Determinar el valor máximo y mínimo del seno y coseno de los arcos
- Resolver los problemas de la práctica dirigida y tipo de admisión

¿Cómo nos ayuda la variación del seno en la física?

Existen muchos
fenómenos periódicos
que pueden ser
analizados con la razón
trigonométrica seno,
por ejemplo.
La corriente alterna,
el movimiento
armónico
simple, ondas
electromagnéticas.

¿Qué estudiamos la clase anterior?

SENO

El sen θ es la ordenada del extremo del arco.

COSENO

El $\cos\theta$ es la abscisa del extremo del arco θ .

Ejemplos:

Entonces el extremo de cada arco θ se puede expresar como $(cos\theta; sen\theta)$, asi por ejemplo:.

También se aplica cuando el arco gira en sentido horario

Propiedades con arcos simétricos

Con extremos de arco simetricos al eje Y

En el gráfico se tiene que $\theta+\alpha$ son suplementarios

Se cumple:

$$sen\alpha = sen\theta$$
 $cos\theta = -cos\alpha$

Con extremos de arco simétricos al eje X

En el gráfico se tiene que:

$$sen\theta = -sen\phi$$

 $cos\theta = cos\phi$

Observación

Puntos simétricos al eje Y: A y B, C y D

Puntos simétricos al eje X: A y D, B y C

<u>Ejemplo</u>

Encontrar el seno y coseno de los arcos simétricos de $\frac{\pi}{3}$

Variación del Seno

Para estudiar la variación del seno es necesario úbicar los valores numéricos del seno sobre una recta numérica real

Esto se logra proyectando el extremo del arco sobre una recta numérica vertical.

Aplicación 1

Si $\theta \in \mathbb{R}$, Halle la variación de $H=sen^2\theta + 2sen\theta$

A)
$$\left\langle \frac{1}{2}; 1 \right\rangle$$
 B) $\left[-1; 3 \right]$ C) $\left\langle \frac{1}{2}; \frac{\sqrt{3}}{2} \right\rangle$ D) $\left\langle 0; \frac{1}{2} \right\rangle$

Resolución

Nos piden la variación de $H=sen^2\theta + 2sen\theta$

Completamos cuadrados

$$H=sen^2\theta + 2sen\theta + 1 - 1$$

$$H=(sen\theta + 1)^2 - 1 \dots (I)$$

$$\forall \theta \in \mathbb{R}$$
 $-1 \leq sen\theta \leq 1$

formamos la expresión (I)

$$0 \le sen\theta + 1 \le 2$$

Elevamos al cuadrado

$$0 \le (sen\theta + 1)^2 \le 4$$

 $H \in [-1; 3]$

Aplicación 2

Si $\theta \in [0; \frac{2\pi}{\Omega}]$, Halle la variación de sen3 θ

A)
$$<\frac{1}{4}; \frac{1}{3}$$
 B) $<\frac{1}{2}; \frac{3}{4}$ C) $<0; \frac{3}{4}$

B)
$$<\frac{1}{2}; \frac{3}{4}$$

C) < 0;
$$\frac{3}{4}$$
]

Resolución

Del dato

$$0 \le \theta \le \frac{2\pi}{9}$$

Multiplicamos por 3

$$0 \le 3\theta \le \frac{2\pi}{3}$$

Graficamos en la C.T. los arcos de la forma 3θ

EJEMPLO 3

Si $\theta \in \langle \frac{\pi}{6}; \frac{5\pi}{6} \rangle$, Halle la variación del sen θ

A)
$$\left\langle \frac{1}{2}; 1 \right\rangle$$
 B) $\left[\frac{1}{2}; 1 \right]$ C) $\left\langle \frac{1}{2}; \frac{\sqrt{3}}{2} \right\rangle$ D) $\left\langle 0; \frac{1}{2} \right\rangle$

Resolución

Graficamos los arcos en la C.T. y proyectamos los extremos de cada

EJEMPLO 4

Si sen $\theta \in [0;1>$, Halle la variación del θ , tal que $\theta \in [0;2\pi]$

$$A) < \frac{\pi}{4}; \frac{\pi}{3}]$$

B)
$$<\frac{\pi}{2}; \frac{3\pi}{4}$$
]

A)
$$<\frac{\pi}{4}; \frac{\pi}{3}$$
] B) $<\frac{\pi}{2}; \frac{3\pi}{4}$] C) $<\frac{\pi}{2}; \frac{3\pi}{4}$] D)[0; π] $-\{\frac{\pi}{2}\}$

D)[0;
$$\pi$$
] - $\{\frac{\pi}{2}\}$

Resolución

Aqui los valores del seno se proyectan sobre la CT, para ubicar los arcos

VARIACIÓN DEL COSENO

EN LOS CUADRANTES

IC	$0 < \cos \theta < 1$
IIC	$-1 < \cos\theta < 0$
IIIC	$-1 < \cos\theta < 0$
IVC	$0 < \cos\theta < 1$

En la C.T Si $\theta \in \mathbb{R}$

 $-1 \le \cos\theta \le 1$

cosθ M<u>áximo</u>

Si θ $\in <\frac{\pi}{3}$; $\frac{2\pi}{3}$], Halle la variación del cosθ

A)
$$\left\langle \frac{1}{2}; 1 \right\rangle$$
 B) $\left[\frac{1}{2}; 1 \right]$ C) $\left[-\frac{1}{2}; \frac{1}{2} \right\rangle$ D) $\left\langle 0; \frac{1}{2} \right\rangle$

Resolución

EJEMPLO 4

Si $\cos\theta \in [-1;0>$, Halle la variación del θ , tal que $\theta \in <0;2\pi>$

$$A) < \frac{\pi}{4}; \frac{\pi}{3}]$$

B)
$$<\frac{\pi}{2}; \frac{3\pi}{2}>$$

$$C) < \frac{\pi}{2}; \frac{3\pi}{4}]$$

A)
$$<\frac{\pi}{4}; \frac{\pi}{3}$$
] B) $<\frac{\pi}{2}; \frac{3\pi}{2}$ C) $<\frac{\pi}{2}; \frac{3\pi}{4}$] D) $<0;\pi$] $-\{\frac{\pi}{2}\}$

Aqui los valores del seno se proyectan sobre la CT, para ubicar los arcos

De la C.T.

$$\frac{\pi}{2} < \theta < 3\frac{\pi}{2}$$

$$\theta \in \langle \frac{\pi}{2}; 3\frac{\pi}{2} \rangle$$

PROBLEMA EXAMEN-UNI 2008- II

Para $\alpha \in \left[\frac{\pi}{6}; \frac{11\pi}{6}\right]$ >, calcule la variación de $M = \sin^2 \alpha - \sin \alpha + 1.$

A)
$$\left[\frac{3}{4}; \frac{7}{4} > ,\right]$$

C) $\left(\frac{3}{4}; 3\right]$

B))
$$[\frac{3}{4}; \frac{7}{4}]$$

C)
$$<\frac{3}{4}$$
; 3]

B))
$$\left[\frac{3}{4}; \frac{7}{4}\right]$$

D) $\left[\frac{3}{4}; 3 > \right]$

E)
$$[\frac{3}{4};3]$$

DESAFIO

Para $\alpha \in \left[\frac{2\pi}{3}; \frac{5\pi}{3}\right]$, calcule la variación de $M = \cos^2 \alpha + 2$.

 $A)\left[\frac{3}{4};\frac{7}{4}\right]$

B)[2; 3]

C) $\left[\frac{7}{4};4\right]$

 $D)\left[\frac{9}{4};4\right]$

 $E)\left[\frac{7}{4}; \frac{9}{4}\right]$

Bibliografía

- ☐ Lumbreras Editores. (2017). Temas Selectos "Identidades trigonométricas", Lima, Perú
- ☐ Lumbreras Editores. (2018). Trigonometría, Una visión analítica de las funciones , Lima , Perú
- ☐ Lumbreras Editores. (2016). Trigonometría Esencial, Lima, Perú

- ☐ PIXABAY. (2020). pixabay.com, Imágenes libres de derecho de autor , Lima , Perú
- ☐ Juan Carlos Sandoval Peña . (1981). Trigonometría Moderna , 631 pag , Lima , Perú

— ACADEMIA —

