Asymptotes

The graph of y = f(x) has a **vertical asymptote** at x = a if

either
$$\lim_{x \to a^{-}} f(x) = \pm \infty$$
 or $\lim_{x \to a^{+}} f(x) = \pm \infty$, or both.

Asymptotes

EXAMPLE

Find the vertical asymptotes of $f(x) = \frac{1}{x^2 - x}$. How does the graph approach these asymptotes?

Asymptotes

EXAMPLE

Find the vertical asymptotes of $f(x) = \frac{1}{x^2 - x}$. How does the graph approach these asymptotes?

Solution The denominator $x^2 - x = x(x - 1)$ approaches 0 as x approaches 0 or 1, so f has vertical asymptotes at x = 0 and x = 1.

$$\lim_{x \to 0-} \frac{1}{x^2 - x} = \infty, \qquad \lim_{x \to 1-} \frac{1}{x^2 - x} = -\infty,$$

$$\lim_{x \to 0+} \frac{1}{x^2 - x} = -\infty, \qquad \lim_{x \to 1+} \frac{1}{x^2 - x} = \infty.$$

Asymptotes

EXAMPLE

Find the vertical asymptotes of $f(x) = \frac{1}{x^2 - x}$. How does the graph approach these asymptotes?

Solution The denominator $x^2 - x = x(x - 1)$ approaches 0 as x approaches 0 or 1, so f has vertical asymptotes at x = 0 and x = 1.

$$\lim_{x \to 0-} \frac{1}{x^2 - x} = \infty, \qquad \lim_{x \to 1-} \frac{1}{x^2 - x} = -\infty,$$

$$\lim_{x \to 0+} \frac{1}{x^2 - x} = -\infty, \qquad \lim_{x \to 1+} \frac{1}{x^2 - x} = \infty.$$

$$y = \frac{1}{x^2 - x}$$

$$x = 1$$

Asymptotes

The graph
$$y=f(x)$$
 has a horizontal asymptote at $y=b$ if either

 $\lim_{X\to\infty} f(x)=b$ or $\lim_{X\to-\infty} f(x)=b$.

Asymptotes

EXAMPLE

Find the horizontal asymptotes of

(a)
$$f(x) = \frac{1}{x^2 - x}$$
 and (b) $g(x) = \frac{x^4 + x^2}{x^4 + 1}$.

Asymptotes

EXAMPLE

Find the horizontal asymptotes of

(a)
$$f(x) = \frac{1}{x^2 - x}$$
 and (b) $g(x) = \frac{x^4 + x^2}{x^4 + 1}$.

Solution

(a) The function f has horizontal asymptote y = 0 since

$$\lim_{x \to \pm \infty} \frac{1}{x^2 - x} = \lim_{x \to \pm \infty} \frac{1/x^2}{1 - (1/x)} = \frac{0}{1} = 0.$$

Asymptotes

EXAMPLE

Find the horizontal asymptotes of

(a)
$$f(x) = \frac{1}{x^2 - x}$$
 and (b) $g(x) = \frac{x^4 + x^2}{x^4 + 1}$.

Solution

(a) The function f has horizontal asymptote y = 0 since

$$\lim_{x \to \pm \infty} \frac{1}{x^2 - x} = \lim_{x \to \pm \infty} \frac{1/x^2}{1 - (1/x)} = \frac{0}{1} = 0.$$

(b) The function g has horizontal asymptote y = 1 since

$$\lim_{x \to \pm \infty} \frac{x^4 + x^2}{x^4 + 1} = \lim_{x \to \pm \infty} \frac{1 + (1/x^2)}{1 + (1/x^4)} = \frac{1}{1} = 1.$$

Asymptotes

EXAMPLE

Find the horizontal asymptotes of

(a)
$$f(x) = \frac{1}{x^2 - x}$$
 and (b) $g(x) = \frac{x^4 + x^2}{x^4 + 1}$.

Solution

(a) The function f has horizontal asymptote y = 0 since

$$\lim_{x \to \pm \infty} \frac{1}{x^2 - x} = \lim_{x \to \pm \infty} \frac{1/x^2}{1 - (1/x)} = \frac{0}{1} = 0.$$

(b) The function g has horizontal asymptote y = 1 since

$$\lim_{x \to \pm \infty} \frac{x^4 + x^2}{x^4 + 1} = \lim_{x \to \pm \infty} \frac{1 + (1/x^2)}{1 + (1/x^4)} = \frac{1}{1} = 1.$$

Observe that the graph of g crosses its asymptote twice.

Asymptotes

The straight line y = ax + b (where $a \neq 0$) is an **oblique asymptote** of the graph of y = f(x) if

either
$$\lim_{x \to -\infty} (f(x) - (ax + b)) = 0$$
 or $\lim_{x \to \infty} (f(x) - (ax + b)) = 0$,

or both.

Asymptotes

EXAMPLE

Consider the function $f(x) = \frac{x^2 + 1}{x} = x + \frac{1}{x}$, whose graph is shown. The straight line y = x is a *two-sided* oblique asymptote of the graph of f because

$$\lim_{x \to \pm \infty} (f(x) - x) = \lim_{x \to \pm \infty} \frac{1}{x} = 0.$$

Asymptotes

EXAMPLE The graph of $y = \frac{x e^x}{1 + e^x}$ has a horizontal asymptote y = 0 at the left and an oblique asymptote y = x at the right:

$$\lim_{x \to -\infty} \frac{x e^x}{1 + e^x} = \frac{0}{1} = 0 \quad \text{and}$$

$$\lim_{x \to \infty} \left(\frac{x e^x}{1 + e^x} - x \right) = \lim_{x \to \infty} \frac{x (e^x - 1 - e^x)}{1 + e^x} = \lim_{x \to \infty} \frac{-x}{1 + e^x} = 0.$$

Asymptotes

Asymptotes of a rational function

Suppose that $f(x) = \frac{P_m(x)}{Q_n(x)}$, where P_m and Q_n are polynomials of degree m and n, respectively. Suppose also that P_m and Q_n have no common linear factors. Then

- (a) The graph of f has a vertical asymptote at every position x such that $Q_n(x) = 0$.
- (b) The graph of f has a two-sided horizontal asymptote y = 0 if m < n.
- (c) The graph of f has a two-sided horizontal asymptote y = L, (L ≠ 0) if m = n. L is the quotient of the coefficients of the highest degree terms in P_m and Q_n.
- (d) The graph of f has a two-sided oblique asymptote if m = n + 1. This asymptote can be found by dividing Q_n into P_m to obtain a linear quotient, ax + b, and remainder, R, a polynomial of degree at most n 1. That is,

$$f(x) = ax + b + \frac{R(x)}{Q_n(x)}.$$

The oblique asymptote is y = ax + b.

(e) The graph of f has no horizontal or oblique asymptotes if m > n + 1.

Asymptotes

EXAMPLE

Find the oblique asymptote of $y = \frac{x^3}{x^2 + x + 1}$.

Asymptotes

EXAMPLE Find the oblique asymptote of
$$y = \frac{x^3}{x^2 + x + 1}$$
.

Solution We can either obtain the quotient by long division:

$$\frac{x^3}{x^2 + x + 1} = x - 1 + \frac{1}{x^2 + x + 1}$$

Asymptotes

EXAMPLE Find the oblique asymptote of
$$y = \frac{x^3}{x^2 + x + 1}$$
.

Solution We can either obtain the quotient by long division:

$$\frac{x^3}{x^2 + x + 1} = x - 1 + \frac{1}{x^2 + x + 1}$$

$$y = x - 1$$
 is the oblique asymptote.

Checklist for curve sketching

1. Calculate f'(x) and f''(x), and express the results in factored form.

- 1. Calculate f'(x) and f''(x), and express the results in factored form.
- 2. Examine f(x) to determine its domain and the following items:
 - (a) Any vertical asymptotes. (Look for zeros of denominators.)
 - (b) Any horizontal or oblique asymptotes. (Consider $\lim_{x\to\pm\infty} f(x)$.)
 - (c) Any obvious symmetry. (Is f even or odd?)
 - (d) Any easily calculated intercepts (points with coordinates (x, 0) or (0, y)) or endpoints or other "obvious" points.

- 3. Examine f'(x) for the following:
 - (a) Any critical points.
 - (b) Any points where f' is not defined. (These will include singular points, endpoints of the domain of f, and vertical asymptotes.)
 - (c) Intervals on which f' is positive or negative. It's a good idea to convey this information in the form of a chart such as those used in the examples. Conclusions about where f is increasing and decreasing and classification of some critical and singular points as local maxima and minima can also be indicated on the chart.

- 4. Examine f''(x) for the following:
 - (a) Points where f''(x) = 0.
 - (b) Points where f''(x) is undefined. (These will include singular points, endpoints, vertical asymptotes, and possibly other points as well, where f' is defined but f'' isn't.)
 - (c) Intervals where f'' is positive or negative and where f is therefore concave up or down. Use a chart.
 - (d) Any inflection points.

EXAMPLE Sketch the graph of
$$y = \frac{x^2 + 2x + 4}{2x}$$
.

EXAMPLE Sketch the graph of
$$y = \frac{x^2 + 2x + 4}{2x}$$
.

Solution

Domain: all x except 0. Vertical asymptote: x = 0,

EXAMPLE Sketch the graph of
$$y = \frac{x^2 + 2x + 4}{2x}$$
.

Solution

Domain: all x except 0. Vertical asymptote: x = 0,

$$y = \frac{x}{2} + 1 + \frac{2}{x},$$

y = (x/2) + 1 is an oblique asymptote

EXAMPLE Sketch the graph of
$$y = \frac{x^2 + 2x + 4}{2x}$$
.

Solution

Domain: all x except 0. Vertical asymptote: x = 0,

$$y = \frac{x}{2} + 1 + \frac{2}{x},$$

y = (x/2) + 1 is an oblique asymptote

$$y' = \frac{1}{2} - \frac{2}{x^2} = \frac{x^2 - 4}{2x^2},$$

$$y'' = \frac{4}{x^3}.$$

EXAMPLE Sketch the graph of
$$y = \frac{x^2 + 2x + 4}{2x}$$
.

Solution

Domain: all x except 0. Vertical asymptote: x = 0,

$$y = \frac{x}{2} + 1 + \frac{2}{x},$$

y = (x/2) + 1 is an oblique asymptote

$$y' = \frac{1}{2} - \frac{2}{x^2} = \frac{x^2 - 4}{2x^2},$$

$$y'' = \frac{4}{x^3}.$$

$$CP \qquad ASY \qquad CP$$

$$x \qquad -2 \qquad 0 \qquad 2$$

$$y' \qquad + \qquad 0 \qquad - \qquad \text{undef} \qquad - \qquad 0 \qquad +$$

$$y'' \qquad - \qquad - \qquad \text{undef} \qquad + \qquad +$$

$$y \qquad \nearrow \qquad \text{max} \qquad \searrow \qquad \text{undef} \qquad \searrow \qquad \text{min} \qquad \nearrow$$

EXAMPLE Sketch the graph of
$$y = \frac{x^2 + 2x + 4}{2x}$$
.

Solution

Domain: all x except 0. Vertical asymptote: x = 0,

$$y = \frac{x}{2} + 1 + \frac{2}{x},$$

y = (x/2) + 1 is an oblique asymptote

$$y' = \frac{1}{2} - \frac{2}{x^2} = \frac{x^2 - 4}{2x^2},$$

(-2, -1)

Sketch the graph of
$$f(x) = \frac{x^2 - 1}{x^2 - 4}$$
.

EXAMPLE

Sketch the graph of
$$f(x) = \frac{x^2 - 1}{x^2 - 4}$$
.

Solution

<u>Domain</u>: all x except ± 2 .

Sketch the graph of
$$f(x) = \frac{x^2 - 1}{x^2 - 4}$$
.

Solution

<u>Domain</u>: all x except ± 2 . <u>Vertical asymptotes</u>: x = -2 and x = 2.

Sketch the graph of
$$f(x) = \frac{x^2 - 1}{x^2 - 4}$$
.

Solution

<u>Domain</u>: all x except ± 2 . <u>Vertical asymptotes</u>: x = -2 and x = 2. <u>Horizontal asymptote</u>: y = 1 (as $x \to \pm \infty$).

EXAMPLE

Sketch the graph of
$$f(x) = \frac{x^2 - 1}{x^2 - 4}$$
.

Solution

<u>Domain</u>: all x except ± 2 . <u>Vertical asymptotes</u>: x = -2 and x = 2.

Horizontal asymptote: y = 1 (as $x \to \pm \infty$).

Symmetry: about the y-axis (y is even).

EXAMPLE

Sketch the graph of
$$f(x) = \frac{x^2 - 1}{x^2 - 4}$$
.

Solution

<u>Domain</u>: all x except ± 2 . <u>Vertical asymptotes</u>: x = -2 and x = 2.

Horizontal asymptote: y = 1 (as $x \to \pm \infty$).

Symmetry: about the y-axis (y is even).

EXAMPLE Sketch the graph of
$$f(x) = \frac{x^2 - 1}{x^2 - 4}$$
.

Solution

Domain: all x except ± 2 . Vertical asymptotes: x = -2 and x = 2.

Horizontal asymptote: y = 1 (as $x \to \pm \infty$).

Symmetry: about the y-axis (y is even).

$$f'(x) = \frac{-6x}{(x^2 - 4)^2}, \qquad f''(x) = \frac{6(3x^2 + 4)}{(x^2 - 4)^3}.$$

EXAMPLE

Sketch the graph of
$$f(x) = \frac{x^2 - 1}{x^2 - 4}$$
.

Solution

<u>Domain</u>: all x except ± 2 . <u>Vertical asymptotes</u>: x = -2 and x = 2.

<u>Horizontal asymptote</u>: y = 1 (as $x \to \pm \infty$).

Symmetry: about the y-axis (y is even).

EXAMPLE

Sketch the graph of
$$f(x) = \frac{x^2 - 1}{x^2 - 4}$$
.

Solution

<u>Domain</u>: all x except ± 2 . <u>Vertical asymptotes</u>: x = -2 and x = 2.

Horizontal asymptote: y = 1 (as $x \to \pm \infty$).

Symmetry: about the y-axis (y is even).

f'(x)	$f'(x) = \frac{-6x}{(x^2 - 4)^2},$				$f''(x) = \frac{6(3x^2 + 4)}{(x^2 - 4)^3}.$			
	**	ASY		CP		ASY		,
x		-2		0		2		
f'	+	undef	+	0	2	undef	220	
f''	+	undef	-		<u></u>	undef	+	
f	1	undef	1	max	1	undef	7	

EXAMPLE

Sketch the graph of $y = xe^{-x^2/2}$.

EXAMPLE Sketch the graph of $y = xe^{-x^2/2}$.

Solution We have $y' = (1 - x^2)e^{-x^2/2}$, $y'' = x(x^2 - 3)e^{-x^2/2}$.

EXAMPLE Sketch the graph of $y = xe^{-x^2/2}$.

Solution We have $y' = (1 - x^2)e^{-x^2/2}$, $y'' = x(x^2 - 3)e^{-x^2/2}$.

Domain: all x.

EXAMPLE Sketch the graph of $y = xe^{-x^2/2}$.

Solution We have $y' = (1 - x^2)e^{-x^2/2}$, $y'' = x(x^2 - 3)e^{-x^2/2}$.

Domain: all x.

Horizontal asymptote: y = 0. Note that if $t = x^2/2$, then

 $|xe^{-x^2/2}| = \sqrt{2t} e^{-t} \to 0 \text{ as } t \to \infty \text{ (hence as } x \to \pm \infty \text{)}.$

EXAMPLE Sketch the graph of $y = xe^{-x^2/2}$.

Solution We have $y' = (1 - x^2)e^{-x^2/2}$, $y'' = x(x^2 - 3)e^{-x^2/2}$.

Domain: all x.

Horizontal asymptote: y = 0. Note that if $t = x^2/2$, then

 $|xe^{-x^2/2}| = \sqrt{2t} e^{-t} \to 0 \text{ as } t \to \infty \text{ (hence as } x \to \pm \infty \text{)}.$

Symmetry: about the origin (y is odd). Intercepts: (0, 0).

EXAMPLE Sketch the graph of $y = xe^{-x^2/2}$.

Solution We have $y' = (1 - x^2)e^{-x^2/2}$, $y'' = x(x^2 - 3)e^{-x^2/2}$ Domain: all x. Horizontal asymptote: y = 0. Note that if $t = x^2/2$, then $|xe^{-x^2/2}| = \sqrt{2t} e^{-t} \to 0 \text{ as } t \to \infty \text{ (hence as } x \to \pm \infty \text{)}.$

Symmetry: about the origin (y is odd). Intercepts: (0, 0).

Critical points: $x = \pm 1$; points $(\pm 1, \pm 1/\sqrt{e}) \approx (\pm 1, \pm 0.61)$.

y'' = 0 at x = 0 and $x = \pm \sqrt{3}$; points (0,0), $(\pm\sqrt{3},\pm\sqrt{3}e^{-3/2})\approx (\pm1.73,\pm0.39)$.

EXAMPLE Sketch the graph of $y = xe^{-x^2/2}$.

Solution We have $y' = (1 - x^2)e^{-x^2/2}$, $y'' = x(x^2 - 3)e^{-x^2/2}$

Domain: all x.

Horizontal asymptote: y = 0. Note that if $t = x^2/2$, then

$$|xe^{-x^2/2}| = \sqrt{2t} e^{-t} \to 0 \text{ as } t \to \infty \text{ (hence as } x \to \pm \infty\text{)}.$$

Symmetry: about the origin (y is odd). Intercepts: (0, 0).

Critical points: $x = \pm 1$; points $(\pm 1, \pm 1/\sqrt{e}) \approx (\pm 1, \pm 0.61)$.

$$y'' = 0$$
 at $x = 0$ and $x = \pm \sqrt{3}$;

points (0,0), $(\pm\sqrt{3},\pm\sqrt{3}e^{-3/2})\approx (\pm1.73,\pm0.39)$.

			CP				CP			
	$-\sqrt{3}$		-1		0		1		$\sqrt{3}$	
-		2	0	+		+	0	-		-
=	0	+		+	0	-			0	+
7		1	min	1		1	max	7		/
~	infl	$\overline{}$		$\overline{}$	infl	$\overline{}$		$\overline{}$	infl	_

EXAMPLE

Sketch the graph of $y = xe^{-x^2/2}$.

Solution We have $y' = (1 - x^2)e^{-x^2/2}$, $y'' = x(x^2 - 3)e^{-x^2/2}$

Domain: all x.

Horizontal asymptote: y = 0. Note that if $t = x^2/2$, then

$$|xe^{-x^2/2}| = \sqrt{2t} e^{-t} \to 0 \text{ as } t \to \infty \text{ (hence as } x \to \pm \infty\text{)}.$$

Symmetry: about the origin (y is odd). Intercepts: (0, 0).

Critical points: $x = \pm 1$; points $(\pm 1, \pm 1/\sqrt{e}) \approx (\pm 1, \pm 0.61)$.

y'' = 0 at x = 0 and $x = \pm \sqrt{3}$;

points (0,0), $(\pm\sqrt{3},\pm\sqrt{3}e^{-3/2})\approx(\pm1.73,\pm0.39)$.

EXAMPLE Sketch the graph of $f(x) = (x^2 - 1)^{2/3}$.

EXAMPLE Sketch the graph of $f(x) = (x^2 - 1)^{2/3}$.

Solution
$$f'(x) = \frac{4}{3} \frac{x}{(x^2 - 1)^{1/3}}, \qquad f''(x) = \frac{4}{9} \frac{x^2 - 3}{(x^2 - 1)^{4/3}}.$$

EXAMPLE Sketch the graph of $f(x) = (x^2 - 1)^{2/3}$.

Solution
$$f'(x) = \frac{4}{3} \frac{x}{(x^2 - 1)^{1/3}}, \qquad f''(x) = \frac{4}{9} \frac{x^2 - 3}{(x^2 - 1)^{4/3}}.$$

Domain: all x.

EXAMPLE Sketch the graph of $f(x) = (x^2 - 1)^{2/3}$.

Solution
$$f'(x) = \frac{4}{3} \frac{x}{(x^2 - 1)^{1/3}}, \qquad f''(x) = \frac{4}{9} \frac{x^2 - 3}{(x^2 - 1)^{4/3}}.$$

Domain: all x.

Asymptotes: none. $(f(x) \text{ grows like } x^{4/3} \text{ as } x \to \pm \infty.)$

EXAMPLE Sketch the graph of $f(x) = (x^2 - 1)^{2/3}$.

Solution
$$f'(x) = \frac{4}{3} \frac{x}{(x^2 - 1)^{1/3}}, \qquad f''(x) = \frac{4}{9} \frac{x^2 - 3}{(x^2 - 1)^{4/3}}.$$

Domain: all x.

Asymptotes: none. $(f(x) \text{ grows like } x^{4/3} \text{ as } x \to \pm \infty.)$

Symmetry: about the y-axis (f is an even function).

EXAMPLE Sketch the graph of $f(x) = (x^2 - 1)^{2/3}$.

Solution
$$f'(x) = \frac{4}{3} \frac{x}{(x^2 - 1)^{1/3}}, \qquad f''(x) = \frac{4}{9} \frac{x^2 - 3}{(x^2 - 1)^{4/3}}.$$

Domain: all x.

Asymptotes: none. (f(x)) grows like $x^{4/3}$ as $x \to \pm \infty$.)

Symmetry: about the y-axis (f is an even function).

Intercepts: $(\pm 1, 0), (0, 1)$.

EXAMPLE Sketch the graph of $f(x) = (x^2 - 1)^{2/3}$.

Solution
$$f'(x) = \frac{4}{3} \frac{x}{(x^2 - 1)^{1/3}}, \qquad f''(x) = \frac{4}{9} \frac{x^2 - 3}{(x^2 - 1)^{4/3}}.$$

Domain: all x.

Asymptotes: none. (f(x)) grows like $x^{4/3}$ as $x \to \pm \infty$.)

Symmetry: about the y-axis (f is an even function).

Intercepts: $(\pm 1, 0)$, (0, 1).

Critical points: x = 0; singular points: $x = \pm 1$.

f''(x) = 0 at $x = \pm \sqrt{3}$; points $(\pm \sqrt{3}, 2^{2/3}) \approx (\pm 1.73, 1.59)$; f''(x) not defined at $x = \pm 1$.

EXAMPLE Sketch the graph of $f(x) = (x^2 - 1)^{2/3}$.

Solution
$$f'(x) = \frac{4}{3} \frac{x}{(x^2 - 1)^{1/3}}, \qquad f''(x) = \frac{4}{9} \frac{x^2 - 3}{(x^2 - 1)^{4/3}}.$$

Domain: all x.

Asymptotes: none. (f(x)) grows like $x^{4/3}$ as $x \to \pm \infty$.)

Symmetry: about the y-axis (f is an even function).

Intercepts: $(\pm 1, 0)$, (0, 1).

Critical points: x = 0; singular points: $x = \pm 1$.

f''(x) = 0 at $x = \pm \sqrt{3}$; points $(\pm \sqrt{3}, 2^{2/3}) \approx (\pm 1.73, 1.59)$; f''(x) not defined at $x = \pm 1$.

				SP		CP		SP				
r		$-\sqrt{3}$	-1		0		1			$\sqrt{3}$	3	
r,	-		_	undef	+	0	-	undef	+		+	
77	+	0	-	undef	-		-	undef	-	0	+	
f	1		1	min	1	max	/	min	1		1	
	_	infl	$\overline{}$		$\widehat{}$		$\widehat{}$		$\hat{}$	infl	\sim	

EXAMPLE Sketch the graph of $f(x) = (x^2 - 1)^{2/3}$.

Solution
$$f'(x) = \frac{4}{3} \frac{x}{(x^2 - 1)^{1/3}}, \qquad f''(x) = \frac{4}{9} \frac{x^2 - 3}{(x^2 - 1)^{4/3}}._{y = (x^2 - 1)^{2/3}}$$

$$f''(x) = \frac{4}{9} \frac{x^2 - 3}{(x^2 - 1)^{4/3}}.$$

Domain: all x.

Asymptotes: none. (f(x)) grows like $x^{4/3}$ as $x \to \pm \infty$.)

Symmetry: about the y-axis (f is an even function).

Intercepts: $(\pm 1, 0)$, (0, 1).

Critical points: x = 0; singular points: $x = \pm 1$.

f''(x) = 0 at $x = \pm \sqrt{3}$; points $(\pm \sqrt{3}, 2^{2/3}) \approx (\pm 1.73, 1.5)$

f''(x) not defined at $x = \pm 1$.

(-√3,22/3)	$(\sqrt{3},2^{2/3})$
9);	
	¥ ,

				SP		CP		SP			
x		$-\sqrt{3}$		-1		0	1			$\sqrt{3}$	
f'	=		_	undef	+	0	-	undef	+		+
.77	+	0	-	undef	-		-	undef	-	0	+
f	/		1	min	1	max	/	min	1		1
9	_	infl	^		$\hat{}$		$\widehat{}$		$\hat{}$	infl	\sim

EXAMPLE

A rectangular animal enclosure is to be constructed having one side along an existing long wall and the other three sides fenced. If 100 m of fence are available, what is the largest possible area for the enclosure?

EXAMPLE

A rectangular animal enclosure is to be constructed having one side along an existing long wall and the other three sides fenced. If 100 m of fence are available, what is the largest possible area for the enclosure?

EXAMPLE

A rectangular animal enclosure is to be constructed having one side along an existing long wall and the other three sides fenced. If 100 m of fence are available, what is the largest possible area for the enclosure?

$$x + 2y = 100 \longrightarrow x = 100 - 2y,$$

 $A = A(y) = (100 - 2y)y = 100y - 2y^{2}.$

A rectangular animal enclosure is to be constructed having one EXAMPLE side along an existing long wall and the other three sides fenced. If 100 m of fence are available, what is the largest possible area for the enclosure?

$$x + 2y = 100 \longrightarrow x = 100 - 2y$$
,

$$A = A(y) = (100 - 2y)y = 100y - 2y^{2}$$
.

0<y<50 (so that area makes sense)
The problem turns into finding the absolute maximum of A = 100y-2y2 on [0,50].

A rectangular animal enclosure is to be constructed having one side along an existing long wall and the other three sides fenced.

If 100 m of fence are available, what is the largest possible area for the enclosure?

$$A' = 100 - 4y = 0 \Leftrightarrow y = 25$$

The only critical point of A is $y = 25. \Rightarrow \text{Largest area} = A(25)$
 $0 - 2v. = 1250 \text{ m}^2.$

$$x + 2y = 100 \longrightarrow x = 100 - 2y,$$

 $A = A(y) = (100 - 2y)y = 100y - 2y^2.$

0<y<50 (so that area makes sense)

The problem turns into finding the absolute maximum of $A = 100y - 2y^2$ on [0,50].

A lighthouse L is located on a small island 5 km north of a point A on a straight east-west shoreline. A cable is to be laid from L to point B on the shoreline 10 km east of A. The cable will be laid through the water in a straight line from L to a point C on the shoreline between A and B, and from there to B along the shoreline. The part of the cable lying in the water costs \$5,000/km, and the part along the shoreline costs \$3,000/km.

A lighthouse L is located on a small island 5 km north of a point A on a straight east-west shoreline. A cable is to be laid from L to point B on the shoreline 10 km east of A. The cable will be laid through the water in a straight line from L to a point C on the shoreline between A and B, and from there to B along the shoreline. The part of the cable lying in the water costs \$5,000/km, and the part along the shoreline costs \$3,000/km.

A lighthouse L is located on a small island 5 km north of a point A on a straight east-west shoreline. A cable is to be laid from L to point B on the shoreline 10 km east of A. The cable will be laid through the water in a straight line from L to a point C on the shoreline between A and B, and from there to B along the shoreline. The part of the cable lying in the water costs \$5,000/km, and the part along the shoreline costs \$3,000/km.

$$T = T(x) = 5,000\sqrt{25 + x^2} + 3,000(10 - x), \quad (0 \le x \le 10).$$

A lighthouse L is located on a small island 5 km north of a point A on a straight east-west shoreline. A cable is to be laid from L to point B on the shoreline 10 km east of A. The cable will be laid through the water in a straight line from L to a point C on the shoreline between A and B, and from there to B along the shoreline. The part of the cable lying in the water costs \$5,000/km, and the part along the shoreline costs \$3,000/km.

$$0 = \frac{dT}{dx} = \frac{5,000x}{\sqrt{25 + x^2}} - 3,000.$$

$$5,000x = 3,000\sqrt{25 + x^2}$$

$$25x^2 = 9(25 + x^2)$$

$$16x^2 = 225$$

$$x^2 = \frac{225}{16} = \frac{15^2}{4^2}. \implies x = \pm \frac{15}{4}$$

$$T = T(x) = 5,000\sqrt{25 + x^2} + 3,000(10 - x), \quad (0 \le x \le 10).$$

EXAMPLE

A lighthouse L is located on a small island 5 km north of a point A on a straight east-west shoreline. A cable is to be laid from L to point B on the shoreline 10 km east of A. The cable will be laid through the water in a straight line from L to a point C on the shoreline between A and B, and from there to B along the shoreline. The part of the cable lying in the water costs \$5,000/km, and the part along the shoreline costs \$3,000/km.

$$0 = \frac{dT}{dx} = \frac{5,000x}{\sqrt{25 + x^2}} - 3,000.$$

$$5,000x = 3,000\sqrt{25 + x^2}$$

$$25x^2 = 9(25 + x^2)$$

$$16x^2 = 225$$

$$x^2 = \frac{225}{16} = \frac{15^2}{4^2}. \implies x = \pm \frac{15}{4}$$

$$T = T(x) = 5,000\sqrt{25 + x^2} + 3,000(10 - x), \quad (0 \le x \le 10).$$

$$T(0) = 55,000, T(15/4) = 50,000, T(10) \approx 55,902.$$

EXAMPLE

A lighthouse L is located on a small island 5 km north of a point A on a straight east-west shoreline. A cable is to be laid from L to point B on the shoreline 10 km east of A. The cable will be laid through the water in a straight line from L to a point C on the shoreline between A and B, and from there to B along the shoreline. The part of the cable lying in the water costs \$5,000/km, and the part along the shoreline costs \$3,000/km.

$$0 = \frac{dT}{dx} = \frac{5,000x}{\sqrt{25 + x^2}} - 3,000.$$

$$5,000x = 3,000\sqrt{25 + x^2}$$

$$25x^2 = 9(25 + x^2)$$

$$16x^2 = 225$$

$$x^2 = \frac{225}{16} = \frac{15^2}{4^2}. \implies x = \pm \frac{15}{4}$$

$$T = T(x) = 5,000\sqrt{25 + x^2} + 3,000(10 - x), \quad (0 \le x \le 10).$$

$$T(0) = 55,000, T(15/4) = 50,000, T(10) \approx 55,902.$$

EXAMPLE

Find the length of the shortest ladder that can extend from a vertical wall, over a fence 2 m high located 1 m away from the wall, to a point on the ground outside the fence.

EXAMPLE

Find the length of the shortest ladder that can extend from a vertical wall, over a fence 2 m high located 1 m away from the wall, to a point on the ground outside the fence.

the length L of the ladder

$$L = L(\theta) = \frac{1}{\cos \theta} + \frac{2}{\sin \theta},$$

EXAMPLE

Find the length of the shortest ladder that can extend from a vertical wall, over a fence 2 m high located 1 m away from the wall, to a point on the ground outside the fence.

the length
$$L$$
 of the ladder

$$L = L(\theta) = \frac{1}{\cos \theta} + \frac{2}{\sin \theta},$$

EXAMPLE

Find the length of the shortest ladder that can extend from a vertical wall, over a fence 2 m high located 1 m away from the wall, to a point on the ground outside the fence.

 $L(\theta)$ must have a minimum value on $(0, \pi/2)$, occurring at a critical point.

the length L of the ladder

$$L = L(\theta) = \frac{1}{\cos \theta} + \frac{2}{\sin \theta},$$

EXAMPLE

Find the length of the shortest ladder that can extend from a vertical wall, over a fence 2 m high located 1 m away from the wall, to a point on the ground outside the fence.

the length L of the ladder

$$L = L(\theta) = \frac{1}{\cos \theta} + \frac{2}{\sin \theta},$$

$$\sin^3 \theta = 2\cos^3 \theta \longrightarrow \tan^3 \theta = 2$$

EXAMPLE

Find the length of the shortest ladder that can extend from a vertical wall, over a fence 2 m high located 1 m away from the wall, to a point on the ground outside the fence.

 $0 = L'(\theta) = \frac{\sin \theta}{\cos^2 \theta} - \frac{2\cos \theta}{\sin^2 \theta} = \frac{\sin^3 \theta - 2\cos^3 \theta}{\cos^2 \theta \sin^2 \theta}$

$$\frac{\cos^2 \theta}{\sin^2 \theta} = \frac{\cos^2 \theta \sin^2 \theta}{\cos^2 \theta \sin^2 \theta}$$

 $\sin^3 \theta = 2\cos^3 \theta \longrightarrow \tan^3 \theta = 2$

the length L of the ladder

$$L = L(\theta) = \frac{1}{\cos \theta} + \frac{2}{\sin \theta},$$

$$\sec^2 \theta = 1 + \tan^2 \theta = 1 + 2^{2/3}$$

$$\cos \theta = \frac{1}{(1 + 2^{2/3})^{1/2}}$$

$$\sin \theta = \tan \theta \cos \theta = \frac{2^{1/3}}{(1 + 2^{2/3})^{1/2}}.$$

EXAMPLE

Find the length of the shortest ladder that can extend from a vertical wall, over a fence 2 m high located 1 m away from the wall, to a point on the ground outside the fence.

 $L(\theta)$ must have a minimum value

on $(0, \pi/2)$, occurring at a critical point.

$$0 = L'(\theta) = \frac{\sin \theta}{\cos^2 \theta} - \frac{2\cos \theta}{\sin^2 \theta} = \frac{\sin^3 \theta - 2\cos^3 \theta}{\cos^2 \theta \sin^2 \theta}$$

the length L of the ladder

$$L = L(\theta) = \frac{1}{\cos \theta} + \frac{2}{\sin \theta},$$

where $0 < \theta < \pi/2$.

$$\sec^2 \theta = 1 + \tan^2 \theta = 1 + 2^{2/3}$$

$$\cos \theta = \frac{1}{(1 + 2^{2/3})^{1/2}}$$

$$\sin \theta = \tan \theta \cos \theta = \frac{2^{1/3}}{(1 + 2^{2/3})^{1/2}}.$$

 $\sin^3 \theta = 2\cos^3 \theta \longrightarrow \tan^3 \theta = 2$

Therefore the minimal value of $L(\theta)$ is

$$\frac{1}{\cos\theta} + \frac{2}{\sin\theta} = (1 + 2^{2/3})^{1/2} + 2\frac{(1 + 2^{2/3})^{1/2}}{2^{1/3}}$$

$$= \left(1 + 2^{2/3}\right)^{3/2} \approx 4.16.$$