5) Сколько однозначных непрерывных функций y = y(x) (1— $\delta < x < 1 + \delta$) удовлетворяет уравнению

(1), если y(1) = 1 и δ достаточно мало?

3366. Уравнение $x^2 + y^2 = x^4 + y^4$ определяет у как многозначную функцию от x. В каких областях эта функция 1) однозначна, 2) двузначна, 3) трехзначна, 4) четырехзначна? Определить точки ветвления этой функции и ее однозначные непрерывные ветви.

3367. Найти точки ветвления и непрерывные однозначные ветви y=y (x) (— $1\leqslant x\leqslant 1$) многозначной функции y, определяемой уравнением $(x^2+y^2)^2=$

 $= x^2 - y^2.$

3368. Пусть f(x) — непрерывна при a < x < b и $\phi(y)$ — монотонно возрастает и непрерывна при c < y < d. В каком случае уравнение $\phi(y) = f(x)$ определяет однозначную функцию $y = \phi^{-1}(f(x))$?

Рассмотреть примеры: a) $\sin y + \sin y = x$; б) $e^{-y} =$

= - $\sin^2 x$.

3369. Пусть

$$x = y + \varphi(y), \tag{1}$$

где $\varphi(0) = 0$ и $|\varphi'(y)| \le k < 1$ при — a < y < a. До-казать, что при — $\varepsilon < x < \varepsilon$ существует единственная дифференцируемая функция y = y(x), удовлетворяющая уравнению (1), и такая, что y(0) = 0.

3370. Пусть y = y(x) — неявная функция, **опре**де-

ляемая уравнением

$$x = ky + \varphi(y),$$

где постоянная $k \neq 0$, и $\phi(y)$ — дифференцируемая периодическая функция периода ω такая, что $|\phi'(y)| < |k|$. Доказать, что

$$y=\frac{x}{k}+\psi(x),$$

где $\psi(x)$ — периодическая функция с периодом |k| ω .

Найти y' и y'' для функций y, определяемых следующими уравнениями:

3371.
$$x^2 + 2xy - y^2 = a^2$$
. 3372. $\ln \sqrt{x^2 + y^2} = \arctan \frac{y}{x}$.

3373.
$$y - \varepsilon \sin y = x \quad (0 < \varepsilon < 1)$$
.

3374.
$$x^y = y^x$$
 $(x \neq y)$. 3375. $y = 2x \operatorname{arctg} \frac{y}{x}$.