

Estatística?

Mas vai trabalhar com o que?

Fernanda Borém

- 26 anos
- Graduada em Estatística UFES
- Pós graduada em Estatística Aplicada
- Pós graduanda em Estatística para Ciência de Dados
- Cientista de Dados no Ifood

Cénario em 2017

Jornal da USP

https://jornal.usp.br > Universidade

Cursos da USP: Estatística é considerada a profissão do ...

22 de ago. de 2017 — Apesar de pouco conhecida, a estatística — ciência que coleta, analisa e sumariza dados — **é reconhecida como a profissão do futuro** na era do Big ...

O Futuro das Coisas

https://ofuturodascoisas.com > estatistica-uma-das-profis...

Estatística: uma das profissões do futuro

17 de abr. de 2017 — O **"estatístico** do **futuro"** não deveria apenas realizar cálculos e análise dos dados, coisas que softwares irão assumir por completo. É preciso ...

Superinteressante

https://super.abril.com.br > cultura > 6-razoes-para-acre...

6 razões para acreditar que estatística é a profissão do futuro

15 de abr. de 2011 — US\$ 12 bilhões são gastos por ano com pesquisas que geram informações capazes de aumentar em até 100% o lucro de uma empresa.

Na faculdade...

Iniciação Científica

Adolescentes em situação de violência no Espírito Santo:

uma análise dos casos notificados

Tratamento de dados

Dados públicos dos hospitais do ES

Análise Descritiva

Análise de dados reais utilizando R

Comunicação

Interface com profissionais da saúde

Estágio em tech na Wine

Wine tech

E-Commerce de vinhos

15 vagas

3000 candidatos

O poder da graduação

Em estatística

Construção de bases em SQL

Arquitetura e Engenharia de dados

Analista de Bl na Wine

UX: Experiência do Usuário

Análise dos dados de usuários

Problema com bases de dados

Falta de dados essenciais para o negócio

Criação do time de pesquisa

Estruturação do processo de pesquisa do zero.

Planejamento

Alinhamento

Preparação

Aplicação

Conclusão

Objetivo do teste Definição do público Definição do roteiro Cenário Autorização Disposição das pessoas Produzir protótipos Organizar local Setup softwares Pai/Mãe e Tio/Tia Condução do teste Registro do teste Streaming Mensuração Planilha de métricas Resultados Plano de ação Apresentação

	Tamanho da amostra para estimar uma proporção	Tamanho da amostra para estimar uma média
Amostra aleatória simples	$\frac{p(1-p)}{e^2}$	$\frac{\sigma^2}{e^2}$
Amostra estratificada proporcional	$\frac{\sum_{h=1}^{L} W_h p_h (1 - p_h)}{e^2}$	$\frac{\sum_{h=1}^{L} W_h \sigma_h^2}{e^2}$
Amostra estratificada ótima	$\frac{\left(\sum_{h=1}^{L} W_h \sqrt{p_h (1-p_h)}\right)^2}{e^2}$	$\frac{\left(\sum_{h=1}^{L}W_{h}\sigma_{h}\right)^{2}}{e^{2}}$

Problemas de assertividade

Omissão de opniões

Criação do time de experimentação

Apenas com a teoria em mente

Variação	Visitas	Conversões	Conversão	Diferença
Original	342	69	20,18%	0%
Sem telefone	299	145	53,90%	+167%

Clusterização de clientes

Recomendação para cada grupo

Melhoria no clube wine

Personalização do APP

Analista de dados no Ifood - Parte 1

Experimentação em CRM

Time de marketing do Ifood

Automatização de processos estatísticos

Cálculo de amostras, chatbots.

Workshops educativos

Aulas e palestras sobre estatística e conceitos básicos para times de negócios

Analista de dados no Ifood - Parte 2

Time de retenção

Testes de cupons para grupos específicos

Modelos de classificação de clientes

Machine Learning

Primeiro contato com DS

Entendimento das variáveis, códigos e melhorias

 $RU = wF \times Feynman + wM \times MP + wT \times TP + wM \times Mecanica$ $MP = Mediana\ Entre\ Pedidos$ $TP = Tempo\ Sem\ Pedido$

Dias até o Próximo Pedido	Dias sem Pedir	Mês para Investir	Razão de Urgência	Bucket
1	8	мо	8,00	9
5	14	мо	2,80	ε
22	28	мо	1,27	7
9	11	мо	1,22	6
3	1	м0	0,33	3
21	4	мо	0,19	2
37	23	M1	0,62	9
33	16	M1	0,48	8
46	20	M1	0,43	6
54	20	M1	0,37	4
54	19	MI	0,35	3
42	1	M1	0,02	1

Prioridade

Cientista de Dados no Ifood - Parte 3

Marketing Mix Modeling (MMM)

Sessões = baseline

- tendência + sazonalidade + efeito_feriado efeitos temporais e naturais
- + orders + pushes_clicked + n_accounts + installs + ...
- + spend_google + spend_tiktok + spend_youtube
- + spend_tv + spend_eventos + spend_out_of_home +
- + erro

Comportamento orgânico

Métricas de negócio

Investimento de mídia

Toda variação que não puder ser atribuído a comportamento "orgânico"

```
InputCollect <- robyn_inputs(
  dt_input = Robyn::dt_simulated_weekly,
  dt_holidays = Robyn::dt_prophet_holidays,
  date_var = "DATE",
  dep var = "revenue".
  dep_var_type = "revenue",
  prophet_vars = c("trend", "season", "holiday").
  prophet_country = "DE",
  context_vars = c("competitor_sales_B", "events"),
  paid_media_spends = c("tv_S", "ooh_S", "print_S", "facebook_S", "search_S"),
  paid_media_vars = c("tv_S", "ooh_S", "print_S", "facebook_I", "search_clicks_P"),
  organic_vars = "newsletter",
  factor vars = "events".
  window_start = "2016-11-23",
  window_end = "2018-08-22",
  adstock = "geometric",
  # To be defined separately
  hyperparameters = NULL,
  calibration_input = NULL
```

Common probability distribution used to model adstocking curves

Geometric adstock

Peak occurs at the beginning and starts to diminish from the start. It is usually modelled by a geometric or exponential distribution.

There is a delay in the peak. It is usually used to represent offline marketing or in segments on which it takes a while until the customers take action (e.g. car selling).

Saídas do modelo em R

Adj.R2: train = 0.9344, val = 0.7782, test = 0.9565 | NRMSE: train = 0.0586, val = 0.5718, test = 0.2704 | DECOMP.RSSD = 0.408 | MAPE = 0.7773

Budget Allocation Onepager for Model ID 3_130_15

Adj. R2: train = 0.9344, val = 0.7782, test = 0.9565 | NRMSE: train = 0.0586, val = 0.5718, test = 0.2704 | DECOMP.RSSD = 0.408 | MAPE = 0.77 Simulation date range: 2018-12-10 to 2018-12-31 (4 weeks) | Scenario: max_response

Total Budget Optimization Result

Budget Allocation per Channel*

		Initial				Bounded				Bounded x	3		
	facebook_S	2.9%	8.8%	5.62	4.37	4.4%	9.7%	5.08	3.63	7.3%	11.9%	4.24	2.42
sels	ooh_S	5%	6.7%	2.54	0.55	3.5%	5.1%	3.39	0.58	0.5%	3.8%	20	0.68
Chan	print_S	4.4%	7.8%	3.3	1.4	6.6%	7.7%	2.65	1.31	11.1%	8.9%	2.08	1.14
Paid	search_S	20.3%	49.9%	4.59	5.61	30.4%	60.3%	4.54	3.29	50.7%	67.9%	3.47	0.96
	tv_S	67.4%	26.7%	0.74	0.84	55.1%	17.2%	0.71	0.86	30.5%	7.4%	0.63	0.72
		spend%	response%	ROAS	mROAS	spend%	response%	ROAS	mROAS	spend%	response%	ROAS	mROAS

Simulated Response Curve for Selected Allocation Period

O Carryover O Initial O Bounded O Bounded x3

* ROAS = total response / raw spend | mROAS = marginal response / marginal spend
*When reallocating budget, mROAS converges across media within respective bounds
*Detted lines show budget oplimization lower-upper ranges per media

- Existe incrementabilidade nessa campanha?
- Quais dias foram os mais incrementais?
- Quais os canais mais eficientes?
- Quantos dias posso ficar sem ações até que o efeito suma?
- Qual o valor ótimo de investimento para cada meio?

Mercado aquecido

Alta procura e altos salários

41,6%	 	Computação / TI / Eng. Software Sistemas de Informação
20,8%		Área de Engenharia
15,7%		Economia / Administração Contabilidade / Finanças
7,2%	<u> </u>	Estatística/ Matemática Matemática Computacional
2,6%	*	Física / Química
2,5%	(A)	Marketing / Publicidade Comunicação / Jornalismo
2,4%	AF.	Ciências Biológicas / Farmácia Medicina / Área da Saúde
7,2%	000	Outras

Ser estatistico é diferencial

Capacidade analítica, conhecimento especializado, conhecimento de negócios e comunicação.

*Obs: As estimativas salariais são aproximações. No momento da pesquisa não coletamos o salário bruto dos participantes, portanto as aproximações foram feitas com base em faixas salariais (presumindo uma distribuição uniforme dentro das faixas).

Obrigada!

linkedin.com/in/fernandaborem

• • •

