16H.	Оглавление	
Терв. примен.	1. АННОТАЦИЯ	3
Перв.	2. ВВЕДЕНИЕ	4
	2.1. ТРЕБОВАНИЯ К НАДЕЖНОСТИ СИСТЕМЫ	4
	2.2. ПЕРЕЧЕНЬ ПРИНЯТЫХ СОКРАЩЕНИЙ	5
	3. ФУНКЦИОНИРОВАНИЕ СИСТЕМ УПРАВЛЕНИЯ	6
	3.1. РЕЖИМ ФУНКЦИОНИРОВАНИЯ	6
	3.2. ИНФОРМАЦИОННЫЕ ФУНКЦИИ	6
Справ. №	3.3. ДИАГНОСТИЧЕСКИЕ ФУНКЦИИ	7
Спра	4. СТРУКТУРА СИСТЕМЫ УПРАВЛЕНИЯ	8
	5. УСТРОЙСТВО И РАБОТА	10
	5.1. СОСТАВ И НАЗНАЧЕНИЕ ЭЛЕМЕНТОВ ШКАФА	
Ш	5.2. ПРИНЦИП РАБОТЫ ШКАФА	10
	6. НАЧАЛО РАБОТЫ С ПАНЕЛЬЮ УПРАВЛЕНИЯ	12
	6.1. ЗАПУСК ПАНЕЛИ УПРАВЛЕНИЯ	
	6.2. УРОВЕНЬ ДОСТУПА	
дата	6.3. ВВОД ДАННЫХ	14
7. //	6.4. ПОДТВЕРЖДЕНИЕ ДЕЙСТВИЙ	15
Под	6.5. ОЧИСТКА АРХИВНЫХ ДАННЫХ	
Ση.	7. ОПИСАНИЕ ОСНОВНЫХ ЧАСТЕЙ ИНТЕРФЕЙСА ПАНЕЛИ УПРАВЛЕНИЯ	
Инв.№ дибл.	8. ОПИСАНИЕ РАБОЧИХ ЭКРАНОВ	
N-GHV	8.1. ГЛАВНЫЙ ЭКРАН	
	8.2. ГРАФИКИ	
Взам. инв.№	8.3. ЖУРНАЛ АВАРИЙ	
зам.	8.4. РЕЖИМНАЯ КАРТА	
9	— 8.5. ЗАЩИТЫ И Б/IOКИРОВКИ	
ата	8.6. РЕГУЛЯТОРЫ	
Подп. и дата	8.7. КОТ/10ВЫЕ НАСТРОЙКИ	
Подг	8.8. ИНЖЕНЕРНЫЕ НАСТРОЙКИ	
	8.8.1. Экраны «Настройка параметров»	
подл.	8.8.2. Экран «Испытание газового тракта»	
льв.N° подл.	Изм Лист №документа Подпись Дата 1704—ГК—АГСВ РЭ	/lucii.

Перв. примен.	8.8.3. Экран «Испытание рабочего режима»	39 40 41
Справ. №	11.3. АВАРИЙНЫЕ СООБЩЕНИЯ	52 54 57 58 60
бл. Подп. и дата		

подл. Подп. и дата | Б

Изм Лист №документа Подпись Дата

1704-ГK-AГСВ РЭ

2. ВВЕДЕНИЕ

Ознакомление с данным руководством является обязательным для оперативного и технического персонала, допускаемого к работе с оборудованием котла.

Настоящее описание предназначено для изучения и правильной эксплуатации шкафа управления котлом ШАУ-05.

2.1. ТРЕБОВАНИЯ К НАДЕЖНОСТИ СИСТЕМЫ

Система управления соответствует п.2.6 ПБ 12-529-03 и обеспечивает:

- безопасность управления розжигом и работой котлоагрегата за счет внедрения современной системы управления на базе промышленного контроллера, отвечающего требованиям к функциональности, защищенности и отказоустойчивости автоматизированных систем;
- простоту и малое время ремонтных работ на уровне контроллера за счет модульности всех его элементов;
- минимизацию ошибок управления за счет блокировок от запрещенных действий и развитой сигнализации;
- улучшение условий работы персонала, задействованного в безопасной эксплуатации котлоагрегата, реализованного через удобный интерфейс системы управления, хранения архива сообщений, автоматического выполнения ответственных операций подготовки котла к розжигу и розжига горелки.

Αδδρεвиαπуρα	Описание	Αδδρεвиαтура	Описание
асу тп	· ·	БРУ	
	система управления		
	шехнологическими		
111 4 1 1	процессами	DIACT	-
ШАЧ	Шкаф автоматики и	ДИСТ	Дистанционный
ווכווו	управления	MECT	Местны <u>-</u>
ШЭУ	Шкаф электропитания и управления	MECI	ТЕСШНЫЦ
ШУД	Шкаф управления	РУЧ	Ручной
дсш	двигателем	131	1 g 11100
ПЧ	Преобразователь	ABTO	Автоматически й
	частотный		
ЗДГ	Задвижка газа	УS	Уходящие газы
ЗДП	Задвижка пара	2	Газ
ЗДПВ	Задвижка питательной	nô	Питательная вода
	воды		
3PB	Заслонка регулирующая	в	Воздух
205	воды	MIALI	Manager
ЗРГ	Заслонка регулирующая газа	МИН	Минимальный (Низкий)
КО	Клапан опрессовки	MAKC	Максимальный (Высокий)
КБ	Клапан безопасности	T	Температура
K3		P	Давление
ПЗК	Предохранительно-	Q	Расход
	запорный клапан		
БГ	Блок газовый	Р в топке	Разрежение в топке котла
ИВН	Источник высокого	ПЛК (PLC)	Программируемый
	напряжения		логический контроллер
	(трансформатор		
	Зажигания)	5 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	
ДВ	Дутьевой вентилятор	ПУ (HMI)	Панель управления
НАВ	Направляющий аппарат	APM (SCADA)	Автоматизированное
ПС	дутьевого вентилятора	E 11014	рабочее место
ДС	Дымосос Направляющий аппарат	БЛОК	Блокировка
НАД	дымососа		
	טטוו וטכטכע		

Изм Лист №документа Подпись Дата

1704-ГK-АГСВ РЭ

3. ФУНКЦИОНИРОВАНИЕ СИСТЕМ УПРАВЛЕНИЯ

Для реализации управляющих, информационных, расчетных и диагностических функций комплекса автоматики предусмотрен контроллер ПЛК, размещенный в шкафу управления котлом. Система управления разработана для круглосуточного ведения технологического процесса, с периодическим контролем параметров работы оперативным персоналом.

3.1. РЕЖИМ ФУНКЦИОНИРОВАНИЯ

Автоматический— ведение процесса без постоянного контроля и вмешательства в процесс работы котла и ИМ;

Дистанционный— режим предусмотрен для предоставления оперативному персоналу самостоятельно управлять ИМ котла через ПУ или АРМ оператора;

Ручной — управление ИМ котла осуществляется с постов местного управления.

3.2. ИНФОРМАЦИОННЫЕ ФУНКЦИИ

- сбор и первичная обработка сигналов аналоговых и дискретных датчиков;
- индикация состояния котла;
- индикация отклонения контролируемых параметров;
- регистрация срабатывания защит с указанием даты и времени;
- хранение и просмотр архива аварийных сообщений в памяти контроллера;
- передача всех исходных данных с датчиков и обработанных данных на верхний уровень управления, в том числе содержания архива аварий.

При наличии верхнего цровня управления дополнительно реализуются: формирование команд управления операциями, регулирующими элементами, отдельными элементами газового оборудования с рабочего места оператора; архива аварийных формирование сообщений. действий onepamopa, технологических событий (изменение режима иправления, розжиги и остановы горелок с указанием даты и времени событий с глубиной хранения до 6мес.; архивирование (εραφυκοβ) формирование трендов всех значимых технологических параметров с глубиной хранения до 6мес.; вывод архивов или графиков заданного периода времени на печать. 3.3. ДИАГНОСТИЧЕСКИЕ ФУНКЦИИ выдача сообщений об отказах в подсистемах ввода/вывода, каналов связи; контроль достоверности входной информации, обрыва сигнала, отказа или выключения датчиков. Изм Лист №докимента Подпись Дата Лисп 1704-ГK-AГСВ РЭ

4. СТРУКТУРА СИСТЕМЫ УПРАВЛЕНИЯ

Основываясь на высокой надежности аппаратных средств и условий эксплуатации, применена централизованная система управления котлоагрегатом для размещения в непосредственной близости от объекта управления. Контроллер с процессором СРИ 1510SP-1PN и свободно набираемым комплектом функциональных элементов ввода/вывода (мезонинов) позволяет достичь оптимального соотношения цена-функциональность-надежность (нет избыточности), упростить обслуживание и использовать как основу для расширения функциональных возможностей за счет модульности построения контроллера и поэтапное добавление элементов или подсистем дополнительного сбора данных, автоматики, управления, мониторинга в любом сочетании элементов ввода/вывода с минимальными затратами.

Оптимальный графический интерфейс технологического пульта шкафа управления позволяет сделать процесс наблюдения и управления удобным и понятным.

Открытый стандартный протокол информационного обмена позволяет использовать систему как часть более широкой информационной сети и осуществлять обмен данными с другими системами.

Система управления котлоагрегатом состоит из трех уровней контроля и управления:

Полевой (низкий) уровень — запорная и регулирующая арматура, датчики и измерительные преобразователи технологических параметров. Тип датчиков и преобразователей определяется спецификацией конкретного проекта.

Контроллерный (средний) уровень — модули ввода/вывода, процессорные модули обработки информации и выдачи управляющих сигналов, порты информационного обмена с пультом индикации и управления, порты обмена с внешней информационной надстройкой (верхним уровнем управления).

Диспетиерский (верхний) уровень, SCADA — рабочая станция оперативного управления. Программный комплекс верхнего уровня управления выполняется на базе персонального компьютера (с возможностью дублирования) с установленной операционной системой Windows10. Для ШАУ ПЛК разработан готовый стандартный программный комплекс верхнего уровня на базе SIEMENS WinCC.

13M	Лист	№документа	Подпись	Дата
	, in the second			

Перв. примен.	Для управления котлом полевой и контроллерный уровень системы является необходимыми обязательным, верхний уровень может отсутствовать. При наличии верхнего уровня управления, выход его из строя не нарушает работу автоматики среднего уровня управления котлом и не оказывает влияние на полевой уровень.
Справ. №	
Подп. и дата	
Инв.№ дибл.	
Взам. инв.№	
Подп. и дата	
Инв.№ подл.	<u>Изм Лист №документа Подпись Дата</u> 1704—ГК—АГСВ РЭ 9

5. УСТРОЙСТВО И РАБОТА

5.1. СОСТАВ И НАЗНАЧЕНИЕ ЭЛЕМЕНТОВ ШКАФА

На передней двери шкафа расположены световые индикаторы, предназначенные для контроля наличия напряжения питания, индикаторы технологического состояния, кнопки основных команд.

Шкаф состоит из контроллера, обслуживающего горелку и котлоагрегат, имеет собственный канал интерфейса, средства ввода/ вывода сигналов, органы управления. Контроллер шкафа передает всю собранную информацию, текущую информацию о состоянии котлоагрегата и ИМ внешнему устройству (АРМ оператора) по интерфейсному каналу связи и исполняет команды управления от внешнего устройства согласно поддерживаемому списку команд. Обслуживание информационных пакетов обмена реализуется на уровне проектных и программных решений для конкретного проекта.

Для иправления настройки котлоагрегата вспомогательного оборидования использиется панель иправления (ПУ), которая обеспечивает иправления клапанами и возможность регулирующими элементами обеспечения возможности наладки (испытательной прокрутки) этих элементов, для ручного розжига горелки (с автоматическим включением защит и блокировок), для ввода настроек (опций, порогов для аналоговых сигналов, задержек), для индикации режима горелки и причины срабатывания защиты.

5.2. ПРИНЦИП РАБОТЫ ШКАФА

Программа шкафа обеспечивает его работу в режиме самостоятельного управляющего устройства для котлоагрегата и горелки. Внешний обмен предназначен для передачи информации и управления от внешнего АРМ оператора. В части управления горелкой шкаф обеспечивает автоматический розжиг и останов горелки с соблюдением блокировок, защит, регулирования газа и воздуха перед горелкой.

Если действия оператора и состояние дискретных датчиков защит и блокировок не противоречат алгоритму защит и блокировок, то ПЛК выдаёт разрешение на управление соответствующего элемента блока ИМ. Если действия оператора и состояние дискретных датчиков защит и блокировок не соответствуют алгоритму защит и блокировок, то программа ПЛК блокирует данную команду. Так же при этом блок управления формирует на средствах

Изм Лист №документа Подпись Дата

1704-ГК-АГСВ РЭ

информационного взаимодействия причину отказа и сигнализацию на средства внешнего управления (пульт и внешняя информационная система). Для наблюдения за состоянием котлоагрегата применена ПУ. На экране ПУ отображается состояние оборудования и параметров котла, вывода аварийных и ручного предипредительных сообщений, цправления оборцдованием (задвижками, регуляторами) и горелки (элементы газового оборудования), а также для настройки алгоритма управляющей программы котла и горелок. Изм Лист №документа Подпись Лист 1704-FK-AFCB P3 11

6. НАЧАЛО РАБОТЫ С ПАНЕЛЬЮ УПРАВЛЕНИЯ

6.1. ЗАПУСК ПАНЕЛИ УПРАВЛЕНИЯ

Панель управления ШАУ является НМІ-интерфейсом между оператором и ПЛК с сенсорным управлением.

Использование перчаток, шариковых ручек, карандашей, отверток и других неспециализированных предметов разрушает со временем сенсорный экран!

Помимо пальцев на сенсорном экране можно работать специальными сенсорными карандашами — стилусами (минимальный радиус наконечника 1,5 мм).

При включении или перезагрузке панели управления ШАУ автоматически загружается главный экран и начинается обмен данными с ПЛК. По умолчанию пользователь получает права оператора.

Время загрузки панели управления составляет около 15 секунд.

На стартовой заставке панели управления возможно откалибровать сенсорный экран, нажав на значок калибровки в правом нижнем углу экрана.

В случае обрыва связи с ПЛК невозможно дальнейшее использование панели управления вплоть до восстановления обмена данными.

6.2. УРОВЕНЬ ДОСТУПА

Управление параметрами котла осуществляется специализированным и подготовленным персоналом.

Доступ к определенным параметрам и функциям ограничивается пользователем и паролем.

В системе предусмотрено 3 пользователя: оператор, инженер и администратор. Основные отличия уровней доступа представлены в таблице ниже:

Изм	/lucm	№документа	Подпись	Дата

Функция	Onepamop	Инженер (engineer)	Администратор (admin)
Очистка архивных данных	-	+	+
Изменение режимной карты	_	+	+
Изменение параметров регуляторов	_	+	+
Изменение режимных настроек	_	+	+
Изменение аварийных настроек	-	+	+
Изменение аварийных уставок котловых параметров	-	+	+
Инженерные настройки параметров	-	+/-	+
Испытание газового тракта	_	+	+
Очистка архивных данных	-	+	+
Изменение пароля	_	+	+

Для смены текущего пользователя нужно в правом верхнем углу экрана нажать на кнопку

После этого появится окно аутентификации пользователя (Рис. 6.1).

Рис. 6.1 Окно ацтентификации пользователя

Для входа под пользователем «Инженер» (engineer)или «Администратор» (admin) необходимо:

- 1. В выпадающем списке выбрать необходимого пользователя.
- 2. Ввести пароль с системной клавиатуры, которая появится после нажатия на поле «Пароль». В пароле недопустимы кириллические символы. После ввода пароля необходимо нажать клавишу «Enter», клавиатура исчезнет.
- 3. Подтвердить вход кнопкой «Войти».
- 4. Если пароль был введен верно, появятся сообщение «Успешно» и кнопки «Сменить пароль» и «Выйти из системы» (Рис. 6.2).

Изм	Лист	№документа	Подпись	Дата

Рис. 6.2 Успешная ацтентификация пользователя

Кнопка «Выйти из системы» предназначена для возврата на уровень доступа по умолчанию— к пользователю «Оператор».

Автоматический возврат на уровень доступа по умолчанию происходит при бездействии пользователей «Инженер» и «Администратор» более 30 минут.

Процедура смены пароля производится по кнопке «Сменить пароль» аналогично входу по паролю.

Закрыть всплывающее окно можно нажав на кнопку 🛭 в правом верхнем углу всплывающего окна.

6.3. ВВОД ДАННЫХ

Ввод данных возможен в поля значений, обозначенных серым прямоугольником (Рис. 6.3).

Рис. 6.3 Поле ввода данных

Для ввода данных в поле значений необходимо:

1. Нажать на значение в сером прямоугольнике, появится цифровая клавиатура (Рис. 6.4).

Рис. 6.4 Цифровая клавиатура для ввода значений

Изм	Лист	№документа	Подпись	Дата

- 2. Ввести необходимое значение. В случае необходимости воспользоваться клавишей сброса «С».
- 3. Подтвердить ввод клавишей «ВВОД».

Окно цифровой клавиатуры можно переместить, удерживая верхнюю светлую полоску.

Выйти из окна цифровой клавиатуры без ввода данных можно нажав на клавишу «Esc».

6.4. ПОДТВЕРЖДЕНИЕ ДЕЙСТВИЙ

Определенные действия оператора, такие как переключение режимов работы, ввод блокировок защит, применение параметров и прочее, требуют дополнительного подтверждения. При этом появляется всплывающее диалоговое окно подтверждения действия (Рис. 6.5).

действия или внесением изменения необходимо нажать кнопку «ОК».

Для продолжения работы с осуществлением

Для продолжения работы без осуществления действия или внесения изменения нужно нажать кнопку «Отмена».

Рис. 6.5 Окно подтверждения действия

Все действия оператора (нажатия на кнопки, переключатели, поля ввода и т.п.) сопровождаются звуковым сигналом.

6.5. ОЧИСТКА АРХИВНЫХ ДАННЫХ

Рис. 6.6 Предупреждение о заполнении памяти панели управления

В случае заполнения памяти панели управления на экране возникнет предупреждающее сообщение (Рис. 6.6).

Для освобождения памяти можно очистить архивные данные графиков и журнала аварий

С ПОМОЩЬЮ КНОПОК

Данное действие возможно только на уровне доступа с парольной защитой и подтверждением.

Изм	/lucm	№документа	Подпись	Дата

1704-FK-AFCB P3

Перв. примен.

Справ. №

ибл. Подп. и дата

Взам.

7. ОПИСАНИЕ ОСНОВНЫХ ЧАСТЕЙ ИНТЕРФЕЙСА ПАНЕЛИ УПРАВЛЕНИЯ

Структура экрана панели управления показана на Рис. 7.1, а описание элементов приведено в таблице ниже:

Рис. 7.1 Структура экрана панели управления

Таблица 7.1 Описание элементов структуры

В главном меню расположены кнопки переключения рабочих Главное меню (1) экранов, которые, в свою очередь, могут иметь подменю. Область отображения сведений о текущем режиме, включая Текущий режим 2) диагностическое информационное сообщение и отсчёт времени. Область отображения аварийных и предупредительных сообщений. При нажатии на эту область отображается всплывающее окно со списком текущих аварийных и Текцщие предипредительных сообщений. аварии и (3)Цвет фона области определяет наличие следующих ситуаций: предипреждения Зеленый – нет аварий и предупреждений Желтый – есть предипреждения Красный – есть аварии Кнопка «Квитирование» позволяет произвести подтверждение всех текущих аварийных и предупредительных сообщений, а Квитирование 4 также снять звуковой сигнал панели управления. Подтвержденные события окрашиваются в Синий цвет.

Изм	/lucm	№документа	Подпись	Дата

1704-FK-AFCB P3

Лерв. примен.		5	Сброс звука	Кнопка «Сброс звука» позволяет произвести снятие звукового сигнала на шкафу ШАУ в случае появления аварии. При этом сброса аварии не происходит.
Перв. 1		6	Смена пользователя	Кнопка «Смена пользователя» позволяет сменить текущий уровень доступа или изменить пароль текущего пользователя.
		7	Текущий пользователь	<i>Область отображения текущего уровня доступа.</i> «Оператор»— <i>пользователь по умолчанию.</i> «engineer»— <i>Инженер.</i> «admin»— А <i>дминистратор.</i>
iB. No		8	Дата/Время	Область отображения текущих даты и времени. При нажатии на эту область отображается всплывающее окно изменения даты/времени (доступно только на уровне доступа с парольной защитой под пользователем «Инженер» (engineer) или «Администратор» (admin)).
oduj		9	Рабочий экран	Область отображения текущего рабочего экрана.
Подп. и дата				
Инв.№ дибл.	-			
Вэам. инв.№				
חמ				

1зм	/lucm	№документа	Подпись	Дата	

8. ОПИСАНИЕ РАБОЧИХ ЭКРАНОВ

8.1. ГЛАВНЫЙ ЭКРАН

Рис. 8.1 Рабочий экран «Главный экран»

На главном экране (Рис. 8.1) представлена основная информация о параметрах технологического процесса, состоянии механизмов, наличии признаков аварийных ситуаций, а также предоставлены команды управления операциями и исполнительными механизмами.

Описание основных элементов и функционала рабочего экрана «Главный экран» приведено в таблице ниже:

Таблица 8.1 Описание элементов главного экрана

Вспомогательная панель управления

На вспомогательной панели управления расположены основные команды управления:
«ВЕНТИЛЯЦИЯ» – команда начала автоматической операции вентиляции топки (с подтверждением).
«РОЗЖИГ» – команда начала автоматической операций опрессовки и розжига (с подтверждением).
«ПЛАНОВЫЙ ОСТАНОВ» – останов котла с последовательным снятием нагрузки (с подтверждением).
«АВАРИЙНЫЙ ОСТАНОВ» – останов котла с отключением аварийных узлов (без подтверждения).
«СБРОС АВАРИИ» – сброс аварийно-предупредительной индикации.

. Также со вспомогательной панели управления можно задавать уставку Р пара в барабане котла.

Изм	/lucm	№документа	Подпись	Дата

Взам.

Инв.№ подл. | По

Индикатор признака аварии <u>Сн порог</u>

Показания параметра

Трубопровод

Тягодутьевой агрегат (ДВ, ДС)

Регулирующая заслонка (ЗРГ, ЗРВ, НАВ, НАД)

Индикатор в виде прямоугольника с красным фоном и поясняющим текстом отображается в случае появления признака аварийной ситуации. Наличие данного индикатора является отображением сработки соответствующего дискретного параметра.

Элемент состоит из 2-х основных частей:

- 1. Место съема параметра (круглый значок с типом параметра). При нажатии на значок показываются/скрываются показания параметра.
- 2. Показания параметра, включая единицу измерения и уставку, если параметр является регулируемым. В случае неисправности датчика цвет показаний меняется на Оранжевый, а в качестве показаний отображаются «***».

Трубопроводы отображаются с учетом заполнения: Черный цвет— трубопровод пуст, Цвет среды— трубопровод заполнен. Цвет среды подразделяется на:

Желтый – *203*

Голубой – воздух

Белый – уходящие газы

Синий — питательная вода

Бледно-красный - пар

Элемент состоит из 4-х частей:

- 1. Изображение тягодутьевого агрегата с учётом выключенного (черный цвет) или рабочего состояния (цвет среды).
- 2. Индикатор режима работы (от ПЧ или от СЕТИ).
- 3. Показания производительности в Гц и шкала производительности в % от О до 100. Показания используются только в режиме работы от ПЧ.
- 4. Индикатор режима управления DMCT (оранжевый значок).

При нажатии на элемент отображается всплывающее окно расширенного статуса и управления агрегатом.
Злемент состоит из 5-ти частей:

- 1. Изображение регулирующего органа с учётом закрытого (черный цвет фона, цвет среды регулирующего органа) или рабочего состояния с указанием угла открытия (цвет среды фона, черный цвет регулирующего органа).
- 2. Шкала конечных состояний (ЗАКРЫТА, СРЕДНЕЕ, ОТКРЫТА) с окрашиванием сработавшего концевого выключателя цветом среды регулируемого параметра.
- 3. Показания и шкала процента открытия.
- 4. Индикатор режима управления ДЙСТ (оранжевый значок).
- 5. Индикатор статуса открытия/закрытия с

Изм Лист №документа Подпись Дата

1704-ГK-АГСВ РЭ

учётом направления (стрелка вверх цвета среды — ОТКРЫВАЕТСЯ, стрелка вниз цвета среды — ЗАКРЫВАЕТСЯ).

При нажатии на элемент отображается всплывающее окно расширенного статуса и управления устройством. Элемент состоит из 2-х частей:

- 1. Изображение задвижки с учётом положения (черный цвет фона – ЗАКРЫТА, розовый цвет фона — СРЕДНЕЕ (промежуточное), цвет среды – ОТКРЫТА).
- 2. Индикатор статуса открытия/закрытия с учётом направления (стрелка вверх цвета среды — — ОТКРЫВАЕТСЯ, стрелка вниз цвета среды — ЗАКРЫВАЕТСЯ).

При нажатии на элемент отображается всплывающее окно расширенного статуса и управления устройством.

Клапан (ПЗК, КО, КЗ, КБ)

Задвижка

(ЗДГ, ЗДПВ, ЗДП)

Изображение клапана с учётом положения (черный цвет фона – ЗАКРЫТ, цвет среды – ОТКРЫТ).
При нажатии на элемент отображается всплывающее окно расширенного статиса и управления механизмом.

Трансформатор зажигания (ИВН)

Индикатор работы ИВН отображается значком «молния» около запальника в случае подачи напряжения на трансформатор зажигания.

При нажатии на запальник отображается всплывающее окно расширенного статуса и управления ИВН.

Всплывающее окно расширенного статуса и управления

Окно расширенного статуса и управления состоит из 3 разделов, разделенных горизонтальными линиями:

- 1. Заголовок, включая основной статус работы или положения механизма.
- 2. Область расширенного статуса с наиболее полной информацией о режимах и состоянии оборудования.
- 3. Область оперативного управления с возможностью изменять режим управления и подавать команды в определенных режимах работы котла.

Изм Лист №документа Подпись Дата

1704-ГК-АГСВ РЭ

npou

NHU

8.2. ГРАФИКИ

Рис. 8.2 Рабочий экран «Графики»

На рабочем экране «Графики» (Рис. 8.2) осуществляется просмотр истории изменения основного и расширенного списка параметров котла. Кнопки переключения режима просмотра находятся в правом нижнем углу экрана.

В левой части экрана находится таблица значений параметров на момент среза по времени. Указать необходимый срез времени можно, нажав на области графиков, при этом появится белая вертикальная линия, которую можно перемещать по оси времени.

В правом верхнем углу экрана имеются инструменты для работы с графиками— настройки и масштабирования (Рис. 8.3).

При нажатии на значок масштабирования появляется выпадающий список с вариантами изменения масштаба: приближение/отдаление по оси Y, возврат к исходному масштабу, приближение/отдаление по оси Y. Также для масштабирования поддерживаются стандартные жесты по сенсорному дисплею.

Рис. 8.3 Инструменты графиков

Изм	/lucm	№документа	Подпись	Дата

При нажатии на значок настроек появляется всплывающее окно с возможностью задать временной диапазон для отображения на графиках. Также в этом окне присутствуют настройки отображения графиков — «Видимость канала» и «Шкала Y».

«Видимость канала» позволяет включать/отключать отображение тех или иных графиков параметров на графиках.

«Шкала Y» позволяет включать/отключать отображение шкал по оси значений.

Рис. 8.4 Настройки графиков

Изм Лист №документа Подпись Дата

1704-ГK-АГСВ РЭ

Лист

22

Очистка архивных данных может быть произведена из расширенного режима (Рис. 8.5) просмотра экрана графиков (см. 6.5 ОЧИСТКА АРХИВНЫХ ДАННЫХ).

Изм	Лист	№документа	Подпись	Дата

NHB.Nº

Взам. инв.№

подл.

NHB.Nº

8.3. ЖУРНАЛ АВАРИЙ

Рис. 8.6 Рабочий экран «Журнал аварий»

На рабочем экране «Журнал аварий» (Рис. 8.6) осуществляется просмотр истории аварийно-предупредительных сообщений, включая время возникновения и ухода.

Цветом фона кодируется тип сообщения:

Красный— активное аварийное сообщение.

Желтый— активное предипредительное сообщение.

Черный—активное сообщение о действии оператора.

Зеленый— ишедшее сообщение.

Синий— квитированное сообщение.

Рис. 8.7 Настройки журнала аварий

Список сообщений можно прокручивать стандартными жестами по дисплею.

В правом верхнем углу экрана имеется инструмент для настройки журнала аварий.

При нажатии на значок настроек появляется всплывающее окно (Рис. 8.7) с возможностью задать временной диапазон для отображения сообщений, а также настроить фильтрацию по типу или статусу сообщения.

Изм	/lucm	№документа	Подпись	Дата

Перв. приме	
_в √ 'д¤ди)	
Подп. и дата	
Пнв.№ дибл.	
Взам. инв.№	
Подп. и дата	
Инв.№ подл.	

Для настройки сообщений по статусу необходимо выставить требуемые галочки в нижней области всплывающего окна.

- «Вызванные события» активные аварии и предупреждения.
- «Подтвержденные события» квитированные пользователем сообщения.
- «Восстановленные события» ушедшие аварии.

Рис. 8.8 Фильтр сообщений по типу

Для настройки фильтрации сообщений по типу необходимо задать диапазон категорий (Рис. 8.8).

Категория «О»— аварийные сообщения.

Категория «1»— предупредительные сообщения.

Категория «2» — сообщения о действиях оператора.

Соответственно, для выбора только аварийных сообщений необходимо задать фильтр «0–0»; для выбора только предупредительных сообщений необходимо задать фильтр «1–1»; для выбора предупредительных и аварийных сообщений необходимо задать фильтр «0–1».

Изм Лист №документа Подпись Дата

1704-FK-AFCB P3

8.4. РЕЖИМНАЯ КАРТА

Рис. 8.9 Рабочий экран «Режимная карта»

На рабочем экране «Режимная карта» (Рис. 8.9) осуществляется задание и просмотр уставок режимной карты работы котла.

В левой области экрана отображаются кривые текущих рабочих параметров режимной карты по точкам от 1 до 8:

Голубой—соотношение «газ-воздух». Белый— разрежение в топке.

По оси абсцисс отмечены значения давления газа, а по оси ординат—значения параметров давления воздуха и разрежения в топке согласно текущей режимной карте.

В правой области экрана находится таблица уставок режимной карты рабочего режима, включая параметры для режимов «Вентиляция» и «Розжиг».

Для применения введенных уставок необходимо нажать кнопку «Применить». Данные действия возможны только на уровне доступа с парольной защитой и подтверждением.

8.5. ЗАЩИТЫ И Б/ЛОКИРОВКИ

Рис. 8.10 Рабочий экран «Защиты и блокировки»

На рабочем экране «Защиты и блокировки» (Рис. 8.10) представлен список аварийных защит котла с возможностью просмотра статуса сработки и их блокировки.

Для введения блокировки защиты необходимо перевести переключатель в положение «БЛОК». Для снятия блокировки защиты нужно перевести переключатель в положение «ЗАШИТА».

Для защиты по отсутствию пламени горелки блокировка снимается через 5 минут. Появляется обратный отсчёт времени блокировки.

Для удобства защиты сгруппированы по средам цветной полоской сбоку:

Хелтый – газ Голубой – воздух Бельй – уходящие газы Синий – питательная вода Бледно-красный – пар

При наличии хотя бы одной введенной блокировки защит появляется соответствующее предупредительное сообщение.

Изм	/lucm	№документа	Подпись	Дата

нампди

8.6. РЕГУЛЯТОРЫ

Рис. 8.11 Рабочий экран «Регуляторы»

На экране «Регуляторы» (Рис. 8.11) предлагается меню перехода к одному из регуляторов:

- Регулятор нагрузки регулятор Р пара с помощью ЗРГ.
- **Регулятор воздуха** регулятор Р воздуха на горелку с помощью ДВ (аналоговый) или НАВ (импульсный).
- **Регулятор разрежения** регулятор разрежения в топке котла с помощью ДС (аналоговый) или НАД (импульсный).
- **Регулятор уровня** регулятор L воды в барабане котла с помощью ЗРВ.

По умолчанию происходит переход на используемый в текущий момент тип регулятора (Рис. 8.12 и Рис. 8.13).

После перехода можно переключиться на режим отображения настроек другого типа регулятора с помощью соответствующих кнопок в левом верхнем углу экрана (Рис. 8.13).

На экране настройки регулятора в зависимости от типа в левой части представлены: текущее значение регулируемого параметра и регулирующее воздействие, текущая уставка по режимной карте, режим работы регулятора, параметры ПИД-регулирования. В правой части экрана настройки регулятора представлены вспомогательные графики (для подробной информации см. раздел ГРАФИКИ). Действия по изменению параметров регуляторов возможны только на уровне доступа с парольной защитой и подтверждением. Изм Лист №документа Подпись. Дата Лисп 1704-FK-AFCB P3

Тодп. и дата

npou

NHUNO

Рис. 8.12 Рабочий экран «Регулятор импульсный»

Рис. 8.13 Рабочий экран «Регулятор аналоговый»

Изм	/lucm	№документа	Подпись	Дата

нампаи

8.7. КОТЛОВЫЕ НАСТРОЙКИ

Рис. 8.14 Рабочий экран «Котловые настройки»

На экране «Котловые настройки» (Рис. 8.14) предлагается меню перехода к следующим настройкам:

- **Режимные настройки** настройки основных режимов работы котла (Рис. 8.15).
- **Аварийные настройки** настройки задержек формирования аварийно— предупредительной сигнализации с возможностью просмотра статуса сработки (Рис. 8.16).
- **Аварийные уставки котловых параметров** настройки пороговых значений аварийно—предупредительной сигнализации по котловым параметрам (Рис. 8.17).

Пороговые значения разделяются на 4 группы:

- **«Нижняя абарийная граница»** при значении параметра ниже данной уставки возникает авария.
- «Нижняя предупредительная граница» при значении параметра ниже данной уставки, но не ниже нижней аварийной, возникает предупреждение.
- «Верхняя предупредительная граница» при значении параметра выше данной уставки, но не выше верхней аварийной, возникает предупреждение.
- **«Верхняя абарийная граница»** при значении параметра выше данной уставки возникает авария.

Рис. 8.15 Рабочий экран «Режимные настройки»

Рис. 8.16 Рабочий экран «Аварийные настройки»

Изм	Лист	№документа	Подпись	Дата

дубл. MHB.Nº L Взам. инв.№

ı					
	Изм	Лист	№документа	Подпись	Дата

Оператор

37.00 кПа

30.50 кПа

0.1

300

МПа

★ ИНЖЕНЕРНЫЕ НАСТРОЙКИ

HOMPOU

8.8. ИНЖЕНЕРНЫЕ НАСТРОЙКИ

Рис. 8.18 Рабочий экран «Инженерные настройки»

На экране «Инженерные настройки» (Рис. 8.18) предлагается меню перехода к следиющим гриппам экранов:

- Настройки параметров—служебные экраны для привязки и настройки сигналов, датчиков и расчётных параметров (Рис. 8.19-Ошибка! Источник ссылки не найден.).
- Наладочные операции—вспомогательные наладочные экраны для розжига и рабочего режима (Рис. 8.21-Рис. 8.22).

8.8.1. Экраны «Настройка параметров»

Окна настройки параметров разбиты на аналоговые входа, аналоговые выхода, дискретные входа и дискретные выхода. Окна находятся под парольной защитой.

Для параметров могут задаваться необходимость использования, привязки к физическому каналу (для администратора), границы изменения, единицы измерения (для давлений), необходимость инверсии (для дискретных входов), коэффициенты и подстановочные значения (для расчётных параметров).

Навигация по окнам производится с помощью кнопок в верхней части экрана (Puc. 8.19-Puc. 8.20).

Изм/*Лист №док*имента Подпись Дата

1704-FK-AFCB P3

Лисп

Группировка параметров производится по трактам:

Желтый – газ Голубой – воздух Белый – уходящие газы Синий – питательная вода Бледно-красный – пар Фиолетовый — внутренние параметры

При нажатии на названии тракта происходит быстрый переход на параметры следующего тракта по циклу (пар-газ-вода-воздух-дым-внутренние-пар).

Рис. 8.19 Рабочий экран «Настройка дискретных параметров»

Взам. инв.№

Изм Лист №докцмента Подпись Дата

1704-FK-AFCB P3

Лист

Оператор

(v)

0.0 Па

©

★ ИНЖЕНЕРНЫЕ НАСТРОЙКИ

✓ ПРИМЕНИТЬ

Взам.

8.8.2. Экран «Испытание газового тракта»

Рис. 8.21 Рабочий экран «Испытание газового тракта»

ВНИМАНИЕ! При работе в окне «Испытание газового тракта» наладочному персоналу необходимо контролировать параметры воздуха и разрежение в топке.

Данный экран (Рис. 8.21) предназначен для осуществления тестовых операций на газовом тракте. Окно находится под парольной защитой.

В верхней части окна находятся основные параметры котла с индикацией аварийных признаков.

В центре экрана располагается мнемосхема газового и воздушного трактов. На левой панели инструментов находятся команды операций «Тестовая опрессовка», «Тестовый розжиг», «Ручной розжиг».

- «Тестовая опрессовка» операция автоматической опрессовки, доступная после проведения вентиляции, проводимая в тестовых целях.
- «Тестовый розжиг» операция автоматического розжига, доступная после проведения вентиляции, проводимая в тестовых целях.
- «Ручной розжиг»— операция розжига, проводимая вручную наладчиком с помощью команд управления клапанами газа.

На правой панели находятся команды управления для ручного розжига. Клапанами можно управлять с помощью переключателей. Нажатие на кнопку «Исходное положение» переводит газовые клапана в исходное положение.

В целях безопасности панель «Ручной розжиг» разблокируется после нажатия на кнопку «Ручной розжиг» и блокируется при повторном нажатии на эту же кнопку.

1зм	Лист	№документа	Подпись	Дата	_

1704-FK-AFCB P3

8.8.3. Экран «Испытание рабочего режима»

Рис. 8.22 Рабочий экран «Испытание рабочего режима»

Данный экран (Рис. 8.22) предназначен для осуществления ручного регулирования и наладки исполнительных механизмов в режиме «РАБОТА».

Экран разбит на панели регуляторов, в каждой из которых приведено состояние исполнительных механизмов, текущие значения регулируемых параметров и уставок, возможность выбора режима регулятора и органы ручного управления исполнительными механизмами.

Hawndu Инв.№ дибл. Взам. инв.№

9. СОСТАВ И НАЗНАЧЕНИЕ ЭЛЕМЕНТОВ ШКАФА

В состав шкафа входят следующие элементы:

- блок управления S7-ET200SP на базе процессора 1510SP-PN;
- комплект модулей аналогового и дискретного ввода/вывода;
- блоки питания SIEMENS SITOP PSU100L 2,5A преобразуют напряжение AC220V в стабилизированное напряжения DC24V постоянного тока. От них осуществляется питание контроллера, дискретных входов, аналоговых датчиков.
- стационарный технологический пцльт иправления для обеспечения тестирования, ручного-дистанционного ИМ иправления, цправления горелки и котлоагрегата. настройки ФЦНКЦИЙ Bce ФЦНКЦИИ пцльта поддерживаются также с верхнего уровня управления.
- клеммы подключения подводимых кабелей.

Шкаф состоит из контроллера, обслуживающего горелку и оборудование котлоагрегата, имеет собственный канал интерфейса, средства ввода/вывода сигналов, органы управления. Контроллер шкафа передает всю собранную информацию о состоянии горелки, котла и их регуляторов внешнему устройству (АРМ оператора) по интерфейсному каналу связи PROFINET и исполняет команды управления от внешнего устройства согласно поддерживаемому списку команд. Обслуживание информационных пакетов обмена реализуется на уровне проектных и программных решений для конкретного проекта.

используется ПУ, Для местного цправления которая οδεςπενυβαεπ регилириющими иправления клапанами элементами возможность П обеспечения возможности наладки (испытательной прокрутки) этих элементов, ручного розжига горелки (с автоматическим включением защит и для блокировок), для ввода настроек (опций, порогов для аналоговых сигналов, задержек), для индикации режима горелки и причины срабатывания защиты. Внутренний информационный обмен между управляющим процессорным модулем и пультом реализован по интерфейсному каналу связи PROFINET.

На передней двери ШАУ расположены световые индикаторы, предназначенные для контроля наличия напряжения питания, индикаторы технологического состояния, кнопки основных команд.

Изм Лист №документа Подпись Дата

1704-ГК-АГСВ РЭ

10. ΠΟДΓΟΤΟΒΚΑ Κ ΠΥΚΥ ΚΟΤΛΑ

Первоначальная подача топлива в газопровод котла может производиться только после того, как будут проверены плотность закрытия запорных органов на подводах топлива к котлу и горелке.

Перед пуском осмотреть топку, конвективный газоход, воздушный и газовый тракты в отношении чистоты, после чего плотно закрыть лазы и люки. Осмотреть снаружи обмуровку котла и убедиться в ее целостности.

Проверить исправность вспомогательной арматуры котла. Убедиться в работоспособности приводов направляющих аппаратов дымососа и вентилятора. Проверить исправность КИП, датчиков защит, дистанционного управления арматурой.

Подготовить к работе и подать напряжение на: щит электропитания, шкаф управления ШАУ, шкаф управления ПУ дутьевого вентилятора и дымососа, цепи управления электрозадвижками котла.

Заполнить котел водой до необходимого уровня. Для этого открыть дренажные вентили, воздушники задвижку на входе воды в котел.

Перед началом операций розжига котла проверить исходное состояние электрифицированной арматуры и выполнение условий розжига, для чего необходимо:

- проверить световую и звуковую сигнализацию нажатием кнопки "Сброс сигнала" на ШАУ;
- проверить исправность газопровода и положение запорных органов (все запорные органы должны быть закрыты, кроме крана на продувочной свече).

11. АЛГОРИТМ РАБОТЫ КОТЛА

11.1 РЕЖИМЫ РАБОТЫ

Системой предусмотрены следующие режимы работы:

ОЖИДАНИЕ.

Система автоматически переходит в этот режим после включения питания шкафа ШАУ; по окончании экстренного останова; после проведения укороченной вентиляции или укороченной опрессовки при аварийном и плановом остановах.

Управление всеми исполнительными механизмами переведено в ручной режим. Имеется возможность управления ими без каких—либо ограничений.

По нажатию на кнопки:

- "Вентиляция" переход в режим вентиляции топки котла;
- "Плановый останов" перевод всех газовых клапанов в исходное состояние, останов дымососа и вентилятора.

ВЕНТИЛЯЦИЯ.

Для предотвращения взрывов вследствие воспламенения взрывоопасной смеси, могущих привести к повреждению оборудования и травмам персонала, предусматривается обязательная вентиляция топки и газоходов непосредственно после погасания факела и перед растопкой котла. При этом шиберы по газовоздушному тракту должны быть установлены в открытое положение, исключающее образование застойных зон в воздухопроводах, горелках, топке и газоходах. У котлов, работающих под разрежением, степень открытия направляющих аппаратов перед дымососами не должна вызывать перегрузки электродвигателей дымососов. Если котел остановлен защитой, действующей на останов дутьевых вентиляторов, то после деблокировки защиты они должны быть включены для выполнения требуемой вентиляции.

При переходе в этот режим все клапана газового блока переводятся в исходное состояние, отключается ИВН и закрывается ЗДГ, происходит проверка нахождения ДС, ДВ, НАД и НАВ в дистанционном режиме. Дымосос и вентилятор разрешается включать до команды начала вентиляции.

Изм\Лист\№документа\Подпись\Дата
1704—ГК—АГСВ РЭ

Лист

41

В случае если дымосос отключен, то производится отключение дутьевого вентилятора и закрытие обоих направляющих аппаратов (для обеспечения правильного включения). Если за контрольное время (60 секунд) ДВ не отключился или НАД не закрылся, то система переходит в режим ожидания и на ПУ появляется соответствующее сообщение.

В случае если дымосос уже включён, проверяется состояние дутьевого вентилятора (для обеспечения правильного включения). Если он отключен, то закрывается его направляющий аппарат. Если за контрольное время (60 секунд) НАВ не закрылся, то система переходит в режим ожидания и на ПУ появляется соответствующее сообщение.

При работе ДВ и ДС от ПЧ: запускается дымосос, на частоте 7 Гц (если он был выключен). Запускается дутьевой вентилятор, на частоте 7 Гц (если он был выключен). Полностью открываются направляющие аппараты ДВ и ДС. Включаются воздуха и разрежения. Проверяется достижение региляторы параметров вентиляции (НАВ и НАД не закрыты, давление воздуха перед горелкой в норме, разряжение в норме).

При работе ДВ и ДС от Сети: поочередно запускается дымосос и дутьевой вентилятор, если они не были включены. После их включения, открывается направляющий аппарат вентилятора на уровень вентиляции, включается импильсный регилятор разрежения. Проверяется достижение параметров вентиляции (НАВ достиг среднего положения, НАД не закрыт, давление воздуха перед горелкой в норме, разряжение в норме).

При достижении параметров вентиляции, в течение определенного времени (задается уставкой), запускаем таймер вентиляции. В период вентиляции постоянно контролируется параметры вентиляции. В случае их отклонения от нормы учет времени вентиляции прекращается. При возвращении параметров в норми, таймер продолжает отсчет времени. Если во время вентиляции произошел аварийный останов, отсчет времени вентиляции будет сброшен и для повтора вентиляции понадобится вновь подавать команду "Вентиляция".

Длительность вентиляции согласно заданноми времени от 10 мин. (задается уставкой). По окончании времени вентиляции система сигнализирует проведенной вентиляции, сообщением об цспешной "Вентиляция испешно проведена". Контроль аварийного разрежения прекращается, регилятор разрежения продолжает работать, контроль включенного состояния дымососа и вентилятора продолжается.

Если после вентиляции происходит состояние, когда в линии горелки открывался ПЗК2, то требуется повторная вентиляция.

Изм Лист №документа Подпись Дата

1704-FK-AFCB P3

Лисп

По нажатию на кнопкц:

- "Розжиг" переход в режим автоматической опрессовки БГ;
- "Тестовая опрессовка" переход в режим тестовой опрессовки БГ;
- "Тестовый розжиг" переход в режим тестового розжига горелки;
- "Ручной розжиг" переход в режим ручного розжига горелки.

ОПРЕССОВКА.

По технологии автоматического розжига горелки производится проверка газовой арматиры горелки, выполнением плотности закрытия опрессовки. Цель опрессовки – блокировка розжига горелки при наличии неплотного БГ. Перед первоначальным розжигом, проверяется газовый блок горелки и, если он не плотен – первоначальный розжиг не выполняется.

При переходе в этот режим, подается команда на открытие ЗДПВ и включение регулятора уровня. Далее проверяется не закрытое состояние ЗДПВ и наличие минимального цровня воды в барабане.

Автоматическая опрессовка газового блока горелки начинается с перевода всех клапанов БГ в исходное состояние, закрытия ЗРГ, открытия ЗДГ. Вводится контроль наличия давления газа перед БГ.

Между ПЗК1 и ПЗК2 газового блока горелки установлен датчик давления контроля минимального и максимального давления опрессовки. Минимальное давления настраивается на давление около ЗкПа. Максимальное давления настраивается на давление 0,5-0,7 от нормального давления газа перед รนวิบยูคพา ฐิงิกหันพา

Опрессовка основана на сравнении утечки газа через отсечные ПЗК с утечкой через калиброванное отверстие дроссельной шайбы, установленной последовательно с клапаном опрессовки. Диаметр отверстия не более 2мм.

Утечка оценивается по динамике изменения давления между клапанами ПЗК1 и ПЗК2. Значение давления постипает в системи путем передачи состояния датчика давления, настроенного на различные величины минимальное (уставка МИН Ргаза между ПЗК1 и ПЗК2) и максимальное давление опрессовки (уставка МАКС Ргаза между ПЗК1 и ПЗК2). Управление опрессовкой производится с помощью нормально открытого клапана безопасности, установленного в линии сброса давления между ПЗК1 и ПЗК2 в атмосферу и нормально закрытого клапана опрессовки, установленного параллельно ПЗК1, обеспечивающего ограниченный

Изм\Лист\№докцмента\Подпись\Дата

1704-FK-AFCB P3

Лисп

шайбой пропуск газа в пространство между ПЗК1 и ПЗК2. Исполнение команд электромагнитными клапанами безопасности и опрессовки – мгновенное.

Этапы опрессовки:

- 1. Закрывание линии связи с атмосферой (включение (закрытие) клапана безопасности) и ожидание в течение некоторого времени (T1=3c) изменения давления между ПЗК1 и ПЗК2. Если давление появилось, то неплотен ПЗК1 или клапан опрессовки, и опрессовка прекращается. Если давление не появилось выполняется 2-й этап.
- 2. Подача газа в пространство между ПЗК1 и ПЗК2 через калиброванное отверстие (включение клапана опрессовки) и ожидание в течение некоторого времени (T2-T1=3c) изменения давления между ПЗК1 и ПЗК2. Если в течение этого времени давление не появилось (уставка МИН Ргаза между ПЗК1 и ПЗК2) значит утечка через ПЗК2 или через клапан безопасности в атмосферу больше пропуска газа через отверстие, т.е. ПЗК2 или клапан безопасности неплотен, опрессовка прекращается. Если в течение этого времени давление между ПЗК1 и ПЗК2 достигает уровня уставки МАКС Ргаза между ПЗК1 и ПЗК2, то в линии клапана опрессовки отсутствует шайба с отверстием или диаметр отверстия слишком велик для объема между ПЗК1 и ПЗК2, опрессовка прекращается. Если по окончании указанного интервала времени величина давления лежит между уставками МИН Ргаза и МАКС Ргаза выполняется 3-й этап.
- 3. Ожидание достижения давлением между ПЗК1 и ПЗК2 уставки датчика МАКС Ргаза между ПЗК1 и ПЗК2 с ограничением времени ожидания Т3=25 секунд.

Если в течение этого времени давление не поднимается до заданного (уставка МАКС Ргаза между ПЗК1 и ПЗК2), то ПЗК2, клапан безопасности или клапан запальника неплотен, опрессовка прекращается.

Если давление достигло уставки МАКС Ргаза между ПЗК1 и ПЗК2, то проверка плотности закрытия газовой арматуры закончена и производится заключительный 4-й этап.

4. Закрывается (выключается) клапан опрессовки блока. Открывается (выключается) клапан безопасности блока.

Изм Лист №документа Подпись Дата

1704-FK-AFCB P3

ИНВ.№ дибл.

Взам. инв.№

Графики изменения давления газа в межклапанном пространстве блока газооборудования БГ при проверке плотности

- 1 плотность арматуры в норме, утечек нет
- 2 неплотен ПЗК1- отказ опрессовки
- 3 неплотен ПЗК2 или клапан запальника, или клапан безопасности— отказ опрессовки
- 4 нет дросселя (давление растет слишком быстро)— отказ опрессовки

После успешного проведения опрессовки появляется сообщение "Опрессовка успешно проведена". Система переводит регуляторы воздуха и разрежения на розжиговые параметры для автоматического розжига котла.

ТЕСТОВАЯ ОПРЕССОВКА.

Переход в тестовую опрессовку возможен только после проведения успешной вентиляции. От тестовой опрессовки отличается тем, что после завершения происходит возврат в режим вентиляции. Также в него можно вернуться в любой момент, нажав на кн. "Вентиляция". При этом все клапана БГ вернутся в исходное положение.

<u>РОЗЖИГ.</u>

Запуск горелки в работу является ответственным мероприятием, для выполнения безопасного розжига необходимо: продуть газопровод через продувочную свечу БГ, путем открытия задвижки на опуске газопровода к котлу. После взятия пробы газа "на хлопок", закрыть кран на продувочной свече; проверить по манометру перед блоком БГ, соответствие величины давления газа рабочему.

Изм	Лист	№документа	Подпись	Дата

1704-ГК-АГСВ РЭ

Инв.№ дибл. Взам. инв. № При начале розжига закрывается ЗРГ. Вводиться контроль закрытого положения ПЗК2 и КЗ.

Этапы розжига:

- Включается контроль котловых параметров защит;
- Снижение давления воздуха и разрежения до уставок розжига;
- Отключаются защиты по низкому давлению воздуха и разрежения;
- Проверяется исходное состояние клапанов газового блока;
- Закрывается клапан безопасности;
- Открывается ПЗК1;
- Включение ИВН (на 6 секцнд);
- Открытие К3;
- Ввод контроля пламени запальника;
- Ожидание времени стабилизации пламени запальника;

Если пламени запальника нет, то операции розжига запальника автоматически повторяются еще один раз, и, если пламени запальника нет при повторных операциях — розжиг прекращается с аварией "Розжиг запальника не удался".

- Временно выключаются регуляторы воздуха и разрежения;
- Открывается ПЗК2, в течение установленного времени открытия;
- Ввод контроля открытого (незакрытого) состояния ПЗК2;
- Запуск обратного отсчета времени на закрытие запальника (25 секунд);
- Вывод контроля пламени запальника и ввод контроля пламени горелки, через 14 секунд после включения ПЗК2.
- Ожидание времени полного открытия ПЗК2.
- Ожидание времени стабилизации пламени горелки;
- Включаются регуляторы воздуха и разрежения;

ТЕСТОВЫЙ РОЗЖИГ.

Переход в тестовый розжиг возможен только после проведения успешной вентиляции. От автоматического розжига отличается тем, что после его завершения не происходит автоматического перехода в режим выхода на минимальную мощность, а система остается в этом же режиме. Для возврата в режим вентиляции необходимо нажать кн. "ВЕНТИЛЯЦИЯ".

	Дата	Подпись	№документа	Лист	13M
1704–ΓK					
776777					

Лисп

ВЫХОД НА МИНИМАЛЬНУЮ МОЩНОСТЬ.

При переходе в этот режим появляется сообщение "Открытие ЗРГ до мощности". Производиться минимальной перевод разряжения и давления воздуха на поддержание значений согласно режимной карте. Система автоматически, импульсно (1сек. импульс/2сек. пауза) переводит ЗРГ от закрытого состояния до позиции концевика минимальной мощности ЗРГ. При дисшижении зпслонкої 2030 положения минимпльной автоматически вводится защита по понижению давления газа перед горелкой и защита по понижению давления воздуха перед горелкой. ЗРГ переводится в ручной режим.

ПРОГРЕВ.

Если есть необходимость прогрева котлоагрегата на низком давлении газа, то необходимо задать параметры прогрева в режимных настройках.

При переходе в этот режим появляется сообщение "В процессе прогрева". Начинается обратный отчет времени прогрева (задается уставкой).

Управление ЗРГ в режиме прогрева котла рекомендуется оставлять в ручном режиме и плавно выводить котел на рабочий режим.

Если перевести ЗРГ в автоматический режим, работа горелки продолжится в соответствии с режимной картой котла. Для предотвращения критичных для котлоагрегата тепловых нагрузок, на регулятор нагрузки, в режиме прогрева, действует ограничение максимального давления газа на горелке (задается уставкой). После завершения времени прогрева происходит автоматический переход в режим РАБОТА.

РАБОТА.

Выполняется программа поддержания давления пара и уровня в барабане котла в соответствии с установленным заданием. Для активации автоматического поддержания давления необходимо перевести регулятор ЗРГ в автоматический режим. Регуляторы разряжение, воздуха и уровня находятся в дистанционном режиме. Система поддерживает разряжение, воздух и уровень воды в автоматическом режиме.

Работа горелки ведется во всем диапазоне регулирования в соответствии с режимной картой котла. Все защиты безопасности активны.

Изм Лист №документа Подпись Дата

1704-ГК-АГСВ РЭ

ЭКСТРЕННЫЙ ОСТАНОВ.

При экстренном останове (при нажатии кнопки на лицевой панели шкафа управления) происходит перевод всех клапанов газового блока в исходное состояние, отключение вентилятора и дымососа. Для выхода из этого режима необходимо отжать кнопку останова на лицевой панели шкафа управления. После этого система перейдет в режим ОЖИДАНИЕ. При любом виде останова котла регулятор уровня воды в барабане продолжает свою работу в автоматическом режиме. После остывания топки котла оператору необходимо отключить его путем перевода в ручной режим и закрытия ЗРВ и ЗДПВ.

АВАРИЙНЫЙ ОСТАНОВ.

При аварийном останове (при срабатывании какой-либо из защит) происходит перевод всех клапанов газового блока в исходное состояние. Вентилятор и дымосос переводятся на поддержание вентиляционных параметров, кроме случая срабатывания защит по отключению двигателя вентилятора или дымососа. После этого происходит переход на постостановочную опрессовку. При любом виде останова котла регулятор уровня воды в барабане продолжает свою работу в автоматическом режиме. После остывания топки котла оператору необходимо отключить его путем перевода в ручной режим и закрытия ЗРВ и ЗДПВ.

ПЛАНОВЫЙ ОСТАНОВ.

Переход в режим планового останова осуществляется по нажатию на кн. "Плановый останов" на ПУ или SCADA. Он отличается от аварийного тем, что перед переводом всех клапанов БГ в исходное состояние, происходит плавное закрытие ЗРГ до значения минимальной мощности. При любом виде останова котла регулятор уровня воды в барабане продолжает свою работу в автоматическом режиме. После остывания топки котла оператору необходимо отключить его путем перевода в ручной режим и закрытия ЗРВ и ЗДПВ.

ПОСТОСТАНОВОЧНАЯ ОПРЕССОВКА.

В этот режим система переходит после планового или аварийного останова. При переходе в этот режим проверяется необходимость его проведения. Он проводится если вентиляция не была проведена или открывался ПЗК2. Также имеется возможность принудительно пропустить пост-

Изм	/lucm	№документа	Подпись	Дата

1704-ГK-AГСВ РЭ

остановочную опрессовку. Для этого необходимо снять галочку разрешения её проведения в режимных настройках.

В этом режиме сначала контролируется исходное положение клапанов газового блока. Затем проверяем, что давление между ПЗК меньше уставки МИН «Ргаза между ПЗК1 и ПЗК2». Закрывается КБ и контролируется, чтобы давление между ПЗК было меньше уставки «МИН Ргаза между ПЗК1 и ПЗК2» в течение заданного времени. Потом открывается КО и контролируется, чтобы за установленное время давление газа между ПЗК превысило уставку «МИН Ргаза между ПЗК1 и ПЗК2». Если этого не произошло, то на ПУ высветится сообщение "Постостановочная опрессовка успешно проведена".

Далее закрывается клапан опрессовки, открывается клапан безопасности и осуществляется автоматический переход в режим укороченной вентиляции.

УКОРОЧЕННАЯ ВЕНТИЛЯЦИЯ.

При переходе в режим укороченной вентиляции, проверяется необходимость его проведения. Укороченная вентиляция проводится, если вентиляция не была проведена или открывался ПЗК2. Также имеется возможность принудительно пропустить укороченную вентиляцию. Для этого необходимо снять галочку разрешения её проведения в режимных настройках.

Укороченная вентиляция проводится в течение времени задаваемого уставкой на ПУ. После её завершения происходит автоматический переход в режим ОЖИДАНИЕ.

11.2. УПРАВЛЕНИЕ ИСПОЛНИТЕЛЬНЫМИ МЕХАНИЗМАМИ

<u>ЗРГ.</u> Управление ЗРГ может находиться в местном или дистанционном режиме (выбирается переключателем БРУ на лицевой панели шкафа управления). В местном режиме ЗРГ управляется кнопками БРУ, в дистанционном – контроллером установленном в шкафу управления. В дистанционном режиме ЗРГ управляется ПИД регулятором и в свою очередь делится на ручной и автоматический режим. В ручном режиме механизм управляется командами с панели оператора или SCADA (открыть, закрыть). В автоматическом режиме происходит автоматическое поддержание температуры воды после котла (задается уставкой на панели оператора или SCADA). Реализовано ограничение на открытие по тах давлению газа в режиме ПРОГРЕВ (Задается уставкой) и ограничение по закрытию ниже режима тіп мощности в режиме ПРОГРЕВ и РАБОТА.

Изм Лист №документа Подпись Дата

1704-ГК-АГСВ РЭ

<u>ЗРВ.</u> Управление ЗРВ может находиться в местном или дистанционном режиме (выбирается переключателем БРУ на лицевой панели шкафа управления). В местном режиме ЗРВ управляется кнопками БРУ, в дистанционном – контроллером установленном в шкафу управления. В дистанционном режиме ЗРВ управляется ПИД регулятором и в свою очередь делится на ручной и автоматический режим. В ручном режиме механизм управляется командами с панели оператора или SCADA (открыть, закрыть). В автоматическом режиме происходит автоматическое поддержание уровня воды в барабане котла (задается уставкой на панели оператора или SCADA).

<u>НАВ</u>. Управление может находиться в местном или дистанционном режиме (выбирается переключателем БРУ на лицевой панели шкафа управления). В местном режиме НАВ управляется кнопками БРУ, в дистанционном – контроллером установленном в шкафу управления. В дистанционном режиме НАВ управляется ПИД регулятором и в свою очередь делится на ручной и автоматический режим. В ручном режиме механизм управляется командами с напели оператора или SCADA (открыть, закрыть). В автоматическом режиме происходит автоматическое управление согласно внутренним алгоритмам.

<u>НАД</u>. Управление может находиться в местном или дистанционном режиме (выбирается переключателем БРУ на лицевой панели шкафа управления). В местном режиме НАД управляется кнопками БРУ, в дистанционном – контроллером установленном в шкафу управления. В дистанционном режиме НАД управляется ПИД регулятором и в свою очередь делится на ручной и автоматический режим. В ручном режиме механизм управляется командами с панели оператора или SCADA (открыть, закрыть). В автоматическом режиме происходит автоматическое управление согласно внутренним алгоритмам.

<u>ЗДГ</u>. Может находиться в ручном или автоматическом режиме управления. В ручном режиме механизм управляется командами с панели оператора или SCADA (открыть, закрыть, стоп). В автоматическом режиме происходит автоматическое управление согласно внутренним алгоритмам. Также имеется управление запретом открытия. ЗДГ имеет разрешение на открытие только при закрытом положении ПЗК1 и ПЗК2, наличии минимального уровня в толке и включенном дутьевом вентиляторе.

<u>КБ.</u> Может находиться в ручном или автоматическом режиме управления. Перевод в ручной режим возможен только при ручном розжиге или в режиме ОЖИДАНИЕ. Во всех остальных случаях механизм находится в автоматическом режиме управления. В нем происходит автоматическое управление согласно внутренним алгоритмам.

Изм Лист №докцмента Подпись Дата

1704-ГК-АГСВ РЭ

<u>КО</u>. Может находиться в ручном или автоматическом режиме управления. Перевод в ручной режим возможен только при ручном розжиге или в режиме ОЖИДАНИЕ. Во всех остальных случаях механизм находится в автоматическом режиме управления. В нем происходит автоматическое управление согласно внутренним алгоритмам.

<u>КЗ.</u> Может находиться в ручном или автоматическом режиме управления. Перевод в ручной режим возможен только при ручном розжиге или в режиме ОЖИДАНИЕ. Во всех остальных случаях механизм находится в автоматическом режиме управления. В нем происходит автоматическое управление согласно внутренним алгоритмам. При розжиге клапан запальника автоматически закрывается через 25 секунд после открытия.

<u>ИВН</u>. Может находиться в ручном или автоматическом режиме управления. Перевод в ручной режим возможен только при ручном розжиге или в режиме ОЖИДАНИЕ. Во всех остальных случаях механизм находится в автоматическом режиме управления. В нем происходит автоматическое управление согласно внутренним алгоритмам. При розжиге ИВН автоматически отключается через 6 секунд после включения.

<u>ПЗК1</u>. Может находиться в ручном или автоматическом режиме управления. Перевод в ручной режим возможен только при ручном розжиге или в режиме ОЖИДАНИЕ. Во всех остальных случаях механизм находится в автоматическом режиме управления. В нем происходит автоматическое управление согласно внутренним алгоритмам.

<u>ПЗК2</u>. Может находиться в ручном или автоматическом режиме управления. Перевод в ручной режим возможен только при ручном розжиге или в режиме ОЖИДАНИЕ. Во всех остальных случаях механизм находится в автоматическом режиме управления. В нем происходит автоматическое управление согласно внутренним алгоритмам.

ЗДПВ. Может находиться в ручном или автоматическом режиме управления. В ручном режиме механизм управляется командами с панели оператора или SCADA (открыть, закрыть, стоп). В автоматическом режиме происходит автоматическое управление согласно внутренним алгоритмам. Также имеется управление запретом закрытия. Разрешение на закрытие имеется только при закрытой ЗДГ и наличии минимального уровня воды в барабане котла.

<u>ЗДП</u>. Может находиться в ручном или автоматическом режиме управления. В ручном режиме механизм управляется командами с панели оператора или SCADA (открыть, закрыть, стоп). В автоматическом режиме происходит автоматическое управление согласно внутренним алгоритмам. Также имеется управление

Изм Лист №документа Подпись Дата

1704-ГК-АГСВ РЭ

Лист

51

запретом закрытия. Закрытие запрещено при максимальном давлении пара в барабане котла.

ДВ. Управление может находиться в местном или дистанционном режиме (выбирается переключателем на лицевой панели шкафа управления двигателем). В местном режиме ДВ управляется вручную, в дистанционном – контроллером установленном в шкафу управления. Дистанционный режим в свою очередь рцчной П автоматический. Задание частоты осуществляется через ПИД регулятор. В ручном режиме ДВ управляется командами с панели оператора или SCADA (включить, отключить), а частота μςπαβκού. автоматическом задается ричной npoucxodum В режиме автоматическое управление согласно внутренним алгоритмам.

ДС. Управление может находиться в местном или дистанционном режиме (выбирается переключателем на лицевой панели шкафа управления двигателем). В местном режиме ДС управляется вручную, в дистанционном – контроллером установленном в шкафу управления. Дистанционный режим в свою очередь автоматический. Задание делится рцчной U частоты осуществляется через ПИД регулятор. В ручном режиме ДС управляется командами с панели оператора или SCADA (включить, отключить), а частота задается рцчной μςπαβκού. В автоматическом npoucxodum режиме автоматическое управление согласно внутренним алгоритмам.

11.3. АВАРИЙНЫЕ СООБЩЕНИЯ

Аварийные сообщения формируются при условии наличия аварийных сигналов с дискретных и(или) аналоговых датчиков в течение определенного времени (задаётся уставкой индивидуально для каждой аварии). Сброс аварийных сообщений происходит по нажатию кнопки "Сброс Аварии" (на панели оператора, на SCADA или физической кнопки на лицевой панели шкафа управления) при условии пропадания условия формирования аварии.

Список возможных аварий:

Повышение давления газа перед БГ. Аварийное сообщение возникает при наличии сигнала на дискретном или аналоговом (сравнивается со значением уставки) датчике. Его формирование происходит при открытом ЗДГ. Разрешение формирования аварии взводится при опрессовке, после открытия ЗДГ, и снимается перед его закрытием.

Понижение давления газа перед БГ. Аварийное сообщение возникает при наличии сигнала на дискретном или аналоговом (сравнивается со значением

Изм Лист №документа Подпись Дата

1704-FK-AFCB P3

уставки) датчике. Его формирование происходит при открытом ЗДГ. Разрешение формирования аварии взводится при опрессовке, после открытия ЗДГ, и снимается перед его закрытием.

Понижение давления газа перед горелкой. Аварийное сообщение возникает при наличии сигнала на дискретном или аналоговом (сравнивается со значением уставки) датчике. Разрешение формирования аварии взводится после выхода на режим минимальной мощности и снимается при плановом, аварийном или экстренном останове.

Повышение давления газа перед горелкой. Аварийное сообщение возникает при наличии сигнала на дискретном или аналоговом (сравнивается со значением уставки) датчике. Разрешение формирования аварии взводится после выхода на режим минимальной мощности и снимается при плановом, аварийном или экстренном останове.

Отключение ДС. Аварийное сообщение возникает при пропадании сигналов включения двигателя дымососа (от ПЧ и от сети) во время работы. Разрешение формирования аварии взводится в режиме ВЕНТИЛЯЦИЯ после включения дымососа и снимается при отключении ДС в режиме ОЖИДАНИЕ, после срабатывания одноименной защиты или при экстренном останове.

Отключение ДВ. Аварийное сообщение возникает при пропадании сигналов включения двигателя вентилятора (от ПЧ и от сети) во время работы. Разрешение формирования аварии взводится в режиме ВЕНТИЛЯЦИЯ после включения вентилятора и снимается при отключении ДВ в режиме ОЖИДАНИЕ, после срабатывания одноименной защиты или при экстренном останове.

Понижение разряжения в топке. Аварийное сообщение возникает при наличии сигнала на дискретном или аналоговом (сравнивается с значением уставки) датчике. Разрешение формирования аварии взводится в режиме ВЕНТИЛЯЦИЯ после успешного окончания вентилирования топки и ожидании дальнейших действий и снимается при переходе на укороченную вентиляцию, при экстренном останове или при срабатывании защит по отключению ДВ или ДС.

Понижение давления воздуха перед горелкой. Аварийное сообщение возникает при наличии сигнала на дискретном или аналоговом (сравнивается с значением уставки) датчике. Разрешение формирования аварии взводится в режиме ВЕНТИЛЯЦИЯ после успешного окончания вентилирования топки и ожидании дальнейших действий и снимается при переходе на укороченную вентиляцию, при экстренном останове или при срабатывании защит по отключению ДВ или ДС.

Изм Лист №документа Подпись Дата

1704-ГK-АГСВ РЭ

Понижение уровня воды в барабане. Аварийное сообщение возникает при наличии сигнала на дискретном или аналоговом (сравнивается с значением уставки) датчике. Разрешение формирования аварии взводится при переходе в режим РОЗЖИГ и снимается при останове котла при закрытии газовых клапанов.

Повышение уровня воды в барабане. Аварийное сообщение возникает при наличии сигнала на дискретном или аналоговом (сравнивается с значением уставки) датчике. Разрешение формирования аварии взводится при переходе в режим РОЗЖИГ и снимается при останове котла при закрытии газовых клапанов.

Повышение давления пара в барабане котла. Аварийное сообщение возникает при наличии сигнала на дискретном или аналоговом (сравнивается с значением уставки) датчике. Разрешение формирования аварии взводится при переходе в режим РОЗЖИГ и снимается при останове котла при закрытии газовых клапанов.

Отсутствие пламени горелки кота. Аварийное сообщение возникает при пропадании сигнала наличия пламени горелки во время работы. Разрешение формирования аварии взводится при розжиге после одновременно со снятием контроля пламени запальника и снимается при аварийном, экстренном или плановом (перед переводом ИМ по газу в исходное состояние) останове.

Нажата кнопка аварийного останова на панели оператора. Аварийное сообщение возникает по нажатию кнопки аварийного останова на панели оператора без задержки времени. Разрешение формирования аварии взводится в режимах ВЕНТИЛЯЦИЯ, ОПРЕССОВКА, РОЗЖИГ, ВЫХОД НА МИНИМАЛЫНУЮ МОЩНОСТЬ, ПРОГРЕВ, РАБОТА, ПЛАНОВЫЙ ОСТАНОВ.

Нажата кнопка абарийного останова на SCADA. Аварийное сообщение возникает по нажатию кнопки аварийного останова на SCADA без задержки времени. Разрешение формирования аварии взводится в режимах ВЕНТИЛЯЦИЯ, ОПРЕССОВКА, РОЗЖИГ, ВЫХОД НА МИНИМАЛЫНУЮ МОЩНОСТЬ, ПРОГРЕВ, РАБОТА, ПЛАНОВЫЙ ОСТАНОВ.

<u>CO2 порог 2</u>. Формируется при наличии сигнала на дискретном датчике.

<u>СН4</u>. Формируется при наличии сигнала на дискретном датчике.

11.4.ПРЕДУПРЕДИТЕЛЬНЫЕ СООБЩЕНИЯ

Предупредительные сообщения формируются при условии наличия сигналов с дискретных и(или) аналоговых датчиков. Сброс предупредительных сообщений

Изм	/lucm	№документа	Подпись	Дата

происходит автоматически при возвращении параметра к нормальному состоянию.

Список возможных предупреждений:

Неисправность датчика XXX. Формируется при определении неисправности аналогового датчика (в том числе обрыв или КЗ линии).

<u>Сработал ограничитель крутящего момента ЗДПВ</u>. Формируется по дискретному датчику.

Сработал ограничитель крутящего момента ЗДП. Формируется по дискретному датчику.

Вызов к шкафу электропитания. Формируется по дискретному датчику.

- ДВ. Необходимо включить QF ПЧ. Формируется по дискретному датчику, если ДВ находится в дистанционном режиме и выбрана работа от ПЧ.
- ДВ. Необходимо включить QF Cemu. Формируется по дискретному датчику, если ДВ находится в дистанционном режиме и выбрана работа от сети.
- ДВ. Неисправность напряжения в Сети ШУД. Формируется по сигналу отсутствия напряжения в ШУД ДВ.
- ДС. Необходимо включить QF ПЧ. Формируется по дискретному датчику, если ДС находится в дистанционном режиме и выбрана работа от ПЧ.
- ДС. Необходимо включить QF Сети. Формируется по дискретному датчику, если ДС находится в дистанционном режиме и выбрана работа от сети.
- <u>ДС. Неисправность напряжения в Сети ШУД</u>. Формируется по сигналу отсутствия напряжения в ШУД ДС.

<u>Нет питания ШЭУ.</u> Формируется по сигналу отсутствия напряжения в ШЭУ.

<u>Питание контроллера от ИБП</u>. Формируется при переключении питания контроллера от ИБП (пропадании штатного питания от сети).

<u>Низкий заряд батареи ИБП</u>. Формируется по сигналу от ИБП.

<u>**Hem питания ЗРГ.**</u> Формируется по сигналу отсутствия напряжения питания ЗРГ.

Нет питания ЗДГ. Формируется по сигналу отсутствия напряжения питания ЗДГ.

Изм Лист №документа Подпись Дата

1704-FK-AFCB P 3

Нет питания НАВ. Формируется по сигналу отсутствия напряжения

питиния НАВ

<u>ПЗК2 не открылся</u>. Предупредительное сообщение возникает при отсутствии сигнала открытого состояния ПЗК2 в течение определенного времени (задается уставкой) после подачи команды на его открытие.

Понижение давления сетевой воды после регулятора. Формируется при наличии сигнала на дискретном или аналоговом (сравнивается со значением уставки) датчике.

Повышение уровня воды в барабане. Формируется при наличии сигнала на дискретном или аналоговом (сравнивается с значением уставки) датчике.

Понижение уровня воды в барабане. Формируется при наличии сигнала на дискретном или аналоговом (сравнивается с значением уставки) датчике.

Повышение давления пара в барабане. Формируется при наличии сигнала на дискретном или аналоговом (сравнивается со значением уставки) датчике.

<u>СО порог 1</u>. Формируется при наличии сигнала на дискретном датчике.

<u>Понижение разряжения в топке</u>. Формируется при наличии сигнала на дискретном или аналоговом (сравнивается с значением уставки) датчике в режиме ВЕНТИЛЯЦИЯ с задержкой времени (задается уставкой).

Понижение давления воздуха перед горелкой. Формируется при наличии сигнала на дискретном или аналоговом (сравнивается с значением уставки) датике в режиме ВЕНТИЛЯЦИЯ с задержкой времени (задается уставкой).

<u>ЗДГ не закрылась</u>. Предупредительное сообщение возникает при отсутствии сигнала закрытого состояния ЗДГ в течение определенного времени (задается уставкой) после подачи команды на её закрытие в режиме укороченной вентиляции.

Имеется блокировка защиты. Формируется если имеется блокировка любой защиты.

11.5.ТЕХНОЛОГИЧЕСКИЕ ЗАЩИТЫ

Технологические защиты формируются по тем же условиям, что и одноименные аварийные сообщения. Сбрасываются сработавшие защиты автоматически при пропадании условия формирования аварии. Каждая защита имеет блокировку (управление блокировками осуществляется с панели оператора). При установленной блокировке защита никогда не срабатывает, даже при наличии условия формирования аварии (аварийные сообщения при этом продолжают так же, как и раньше формироваться). Блокировка по защите

Изм Лист №документа Подпись Дата
1704—ГК—АГСВ РЭ

Лист

57

Инв.№ дубл. Взам. инв.№

"Отсутствие пламени горелки котла" автоматически сбрасывается через 5 минут после взведения. Её также можно отключить вручную в любой момент времени. Все остальные блокировки защит выставляются и сбрасываются только вручную. В случае взведения любой блокировки на панели оператора возникает соответствующее предупредительное сообщение. Срабатывание любой технологической защиты вызывает аварийный останов котла.

Список технологических защит:

- Повышение давления газа перед БГ
- Понижение давления газа перед БГ
- Понижение давления газа перед горелкой
- Повышение давления газа перед горелкой
- Отключение ЛС
- Отключение ДВ
- Понижение разряжения в топке
- Понижение давления воздуха перед горелкой
- Понижение уровня воды в барабане
- Повышение уровня воды в барабане
- Повышение давления в барабане
- Отсутствие пламени горелки котла
- Нажата кнопка аварийного останова на ПУ
- Нажата кнопка аварийного останова на SCADA

11.6. УПРАВЛЕНИЕ СВЕТОВОЙ И ЗВУКОВОЙ СИГНАЛИЗАЦИЕЙ

Индикатор РАБОТА постоянно светится, когда котел находится в режиме РАБОТА, мигает в режимах РОЗЖИГ, ВЫХОД НА МИНИМАЛЬНУЮ МОЩНОСТЬ и ПРОГРЕВ. В остальных режимах он неактивен.

Индикатор АВАРИЯ светится при наличии любой аварии, приводящей к срабатыванию защитного отключения котла, мигает, если собирается условие любой аварии, но время её срабатывания ещё не вышло. В остальных случаях он неактивен.

Изм	Лист	№документа	Подпись	Дата

1704-ГK-АГСВ РЭ

Индикатор ЗАЩИТЫ В НОРМЕ светится, если нет сработавших защит и все они разблокированы, мигает, если нет сработавших защит и взведена блокировка какой-либо защиты. В остальных случаях он неактивен. Индикатор ГОТОВ К РОЗЖИГУ мигает в режиме ВЕНТИЛЯЦИЯ после проведения вентилирования топки и неактивен во всех остальных случаях. Включение звуковой сигнализации происходит при срабатывании любой аварии, приводящей к защитному отключению котла, и сбрасывается после сброса всех аварий или нажатия на кнопку сброса звука на панели оператора. Также имеется возможность проверки звуковой сигнализации. Для этого необходимо нажать на кнопки "Сброс аварии" (находится на лицевой панели шкафа управления) и удерживать её более 2 секунд. В этом случае сработает звуковая сигнализация. Отключение сигнализации произойдет сразу после отпускания кнопки. Взам. инв.№ Изм Лист №документа Подпись Дата Лисп 1704-FK-AFCB P3

