Linear Algebra

Warren Alphonso

May 18, 2019

A very reductionist summary of key Linear Algebra concepts.

1 Systems of Linear Equations

Definition 1.1. A **linear equation** is an equation that can be written in the form

$$a_1x_1 + ... + a_nx_n = b$$

where b and the coefficients a_k are real or complex numbers.

We can record the important information of a system of linear equations in a matrix. Given the system

$$x_1 - 2x_2 + x_3 = 0$$

$$2x_2 - 8x_3 = 8$$

$$5x_1 - 5x_3 = 10$$

we place the coefficients of each variable aligned in columns

$$\begin{bmatrix} 1 & -2 & 1 \\ 0 & 2 & -8 \\ 5 & 0 & -5 \end{bmatrix}$$

This is called the **coefficient matrix** and

$$\begin{bmatrix} 1 & -2 & 1 & 0 \\ 0 & 2 & -8 & 8 \\ 5 & 0 & -5 & 10 \end{bmatrix}$$

is called the **augmented matrix**. The size of a matrix is described as $\mathbf{m} \times \mathbf{n}$ where m denotes the number of rows and n the number of columns.

Definition 1.2. Elementary Row Operations:

- 1. (Replacement) Replace one row by the sum of itself and a multiple of another row.
- 2. (Interchange) Interchange two rows.

3. (Scaling) Multiply all entries in a row by a nonzero constant.

Definition 1.3. Row Echelon form denotes a matrix with:

- 1. All nonzero rows are above any rows of all zeros.
- 2. Each leading entry of a row is in a column to the right of the leading entry of the row above it.
- 3. All entries in column below a leading entry are zeros.

Reduced Row Echelon form means the leading entry in nonzero rows is 1.

Parallelogram Rule for Addition: If \mathbf{u} and \mathbf{v} in \mathbb{R}^2 are represented as points on the plane, then $\mathbf{u} + \mathbf{v}$ corresponds to the fourth vertex of the parallelogram whose other vertices are 0, \mathbf{u} , and \mathbf{v} .

Definition 1.4. Span $\{v_1,...,v_p\}$ denotes the set of all vectors formed by $c_1v_1 + ... + c_pv_p$.

Definition 1.5. A set of vectors $\{v_1, ..., v_p\}$ is said to be **linearly independent** if the equation

$$c_1v_1 + \dots + c_pv_p = 0$$

has only the trivial solution.

Theorem 1. If a set contains more vectors than there are entries in each vector, then the set is linearly independent. That is, the set $\{v_1, ..., v_p\}$ in \mathbb{R}^n is linearly dependent if p > n.

Proof. Let $A = [v_1 \cdots v_p]$. Then A is $n \times p$, and the equation Ax = 0 corresponds to a system of n equations in p unknowns. In Ax = b, the x vector must have dimension p, so if p > n, then there are more variables than equations, so Ax = 0 has a nontrivial solution, and the columns of A are linearly dependent.

An alternate way to conceptualize matrix multiplication: A **transformation** (or **function** or **mapping**) T from \mathbb{R}^n to \mathbb{R}^m is a rule that assigns to each vector x in \mathbb{R}^n a vector T(x) in \mathbb{R}^m . The set \mathbb{R}^n is called the **domain** of T and \mathbb{R}^m is called the **codomain** of T. The set of all images T(x) is called the **range** of T.

Definition 1.6. A transformation T is **linear** if they preserve vector addition and scalar multiplication. That is:

- 1. T(u+v) = T(u) + T(v)
- 2. T(cu) = cT(u) for all scalars c

Every matrix transformation is a linear transformation. These two requirements mean that T(0) = 0 for linear transformations.

Theorem 2. Let $T: \mathbb{R}^n \to \mathbb{R}^m$ be a linear transformation. Then there exists a unique matrix A such that

$$T(x) = Ax$$

In fact, A is the $m \times n$ matrix whose jth column is the vector $T(e_j)$, where e_j is the jth column of the identity matrix in \mathbb{R}^n :

$$A = [T(e_1) \cdots T(e_n)]$$

Proof. Write $x = I_n x = [e_1 \cdots e_n] x = x_1 e_1 + \cdots + x_n e_n$, and use the linearity of T to compute

$$T(x) = T(x_1e_1 + \dots + x_ne_n) = x_1T(e_1) + \dots + x_nT(e_n)$$

$$\begin{bmatrix} T(e_1)\cdots T(e_n) \end{bmatrix} \begin{bmatrix} x_1 \\ \vdots \\ x_n \end{bmatrix} = Ax$$

Definition 1.7. A mapping $T: \mathbb{R}^n \to \mathbb{R}^m$ is **onto** \mathbb{R}^m if each b in \mathbb{R}^m is the image of at least one x in \mathbb{R}^n .

Definition 1.8. A mapping $T: \mathbb{R}^n \to \mathbb{R}^m$ is **one-to-one** if each b in \mathbb{R}^m is the image of at most one x in \mathbb{R}^n .

2 Matrix Algebra

Definition 2.1. If A is an $m \times n$ matrix and B is an $n \times p$ matrix, then

$$AB = A \begin{bmatrix} b_1 & b_2 & \cdots & b_p \end{bmatrix} = \begin{bmatrix} Ab_1 & Ab_2 & \cdots & Ab_p \end{bmatrix}$$

Definition 2.2. Let A be an $m \times n$ matrix and let B and C have sizes for which the indicated sums and products are defined.

- 1. A(BC) = (AB)C
- 2. A(B+C) = AB + AC
- 3. (B+C)A = BA + CA
- 4. r(AB) = (rA)B = A(rB)
- 5. $I_m A = A = AI_n$

Warnings:

- 1. In general, $AB \neq BA$
- 2. If AB = AC, then it is **not true** in general that B = C

3. If AB = 0, then it is **not true** always that A = 0 or B = 0

Definition 2.3. The **transpose** of A is the matrix whose columns are formed from the corresponding rows of A, denoted by A^T .

- $\bullet \ (A^T)^T = A$
- $\bullet \ (A+B)^T = A^T + B^T$
- $\bullet \ (cA)^T = rA^T$
- $\bullet \ (AB)^T = B^T A^T$

Definition 2.4. An $n \times n$ matrix A is **invertible** if there is an $n \times n$ matrix A^{-1} such that $A^{-1}A = I$.

- $(A^{-1})^{-1} = A$
- If A and B are $n \times n$ invertible matrices then so is AB. And $(AB)^{-1} = B^{-1}A^{-1}$
- $(A^T)^{-1} = (A^{-1})^T$

To compute the inverse, solve the equation AB = I, by row-reducing the augmented matrix [A I], until you get [I B].

Definition 2.5. A subspace of \mathbb{R}^n is any set H in \mathbb{R}^n that is closed under addition and scalar multiplication. That is:

- 1. The zero vector is in H
- 2. For each u and v in H, the sum u + v is in H
- 3. For each u in H and each scalar c, the vector cu is in H

Definition 2.6. The **column space** of matrix A is the set of all linear combinations of the columns of A, denoted by Col(A).

Definition 2.7. The **null space** of a matrix A is the set of all solutions for Ax = 0, denoted by Nul(A).

Definition 2.8. A basis for a subspace H in \mathbb{R}^n is a linearly independent set in H that spans H.

Using the basis for a subspace H is preferable because any vector in H can only be written in one way as a linear combination of the basis vectors.

Proof. Suppose $\mathbb{B} = \{b_1, ..., b_p\}$ is a basis for H, and suppose a vector x in H can be generated in two ways:

$$x = c_1b_1 + \dots + c_pb_p$$
 and $x = d_1b_1 + \dots + d_pb_p$

Subtracting gives us:

$$0 = (c_1 - d_1)b_1 + \dots + (c_p - d_p)b_p$$

Since \mathbb{B} is linearly independent, the weights must all be zero, so $c_j = d_j$ so the two representations are really just the same.

Definition 2.9. The dimension of a nonzero subspace H is the number of vectors in any basis for H. The dimension of the zero subspace $\{0\}$ is defined to be zero.

Definition 2.10. The **rank** of a matrix A is the dimension of the column space of A

Theorem 3. If a matrix A has n columns, then Rank(A) + Dim(Nul(A)) = n.

Proof. An intuitive understanding for this can be achieved by restating the theorem as follows:

$$(num of pivot columns) + (num of nonpivot columns) = (num of columns)$$