Modal team logics for modelling Free Choice inference

Maria Aloni, Aleksi Anttila, Fan Yang

Helsinki Logic Seminar

Motivation: Free Choice (FC)

Aloni: Bilateral state-based modal logic (BSML) accounts for FC

Motivation: Free Choice (FC)

Aloni: Bilateral state-based modal logic (BSML) accounts for FC

BSML is not expressively complete. The following extensions are:

BSML^w: BSML with the global (inquisitive) disjunction w

BSML[∅]: BSML with an "emptiness" operator ∅

Motivation: Free Choice (FC)

Aloni: Bilateral state-based modal logic (BSML) accounts for FC

BSML is not expressively complete. The following extensions are:

BSML[™]: BSML with the global (inquisitive) disjunction ₩

 $BSML^{\oslash}$: BSML with an "emptiness" operator \oslash

 $BSML < BSML^{\circ} < BSML^{\circ} = Modal Team Logic (MTL)$

Motivation: Free Choice (FC)

Aloni: Bilateral state-based modal logic (BSML) accounts for FC

BSML is not expressively complete. The following extensions are:

BSML[™]: BSML with the global (inquisitive) disjunction ₩

 $BSML^{\oslash}$: BSML with an "emptiness" operator \oslash

 $BSML < BSML^{\circ} < BSML^{\circ} = Modal Team Logic (MTL)$

Natural deduction axiomatizations

You may have coffee or tea.

You may have coffee or tea.

→You may have coffee and you may have tea.

(# You may have both coffee and tea.)

You may have coffee or tea.

→You may have coffee and you may have tea.

(≠ You may have both coffee and tea.)

A possible formalization:

$$(\dagger)$$

$$\Diamond (\phi \lor \psi) \to \Diamond \phi$$

→You may have coffee and you may have tea.

(\neq You may have both coffee and tea.)

You may have coffee or tea.

A possible formalization:

$$\diamondsuit\left(\phi\vee\psi\right)\to\diamondsuit\phi$$

(2, †)

Problem:

- $\Diamond p$
- $\Diamond (p \lor q)$ (1, classical modal logic)
 - 3.

Bilateral State-based Modal Logic

Team semantics for modal logic

$$M = (W, R, V)$$

standard Kripke semantics

$$M, w \models \phi$$

$$w \in W$$

$$w_q$$
 w

$$w_p \models p$$

state-based/team semantics

$$M, s \models \phi$$

$$s \subseteq W$$

$$\{w_p, w_{pq}\} \models p$$

Bilateralism

" ϕ is assertable in s"

 $s \models \phi$

" ϕ is rejectable in s"

 $s = \phi$

Bilateralism

"
$$\phi$$
 is assertable in s "

"
$$\phi$$
 is rejectable in s "

$$s \models \phi$$

$$s = \phi$$

Bilateral negation

$$s \models \neg \phi$$

$$\Longrightarrow$$

$$s = \phi$$

$$s = \neg \phi$$

$$\Longrightarrow$$

$$s \models \phi$$

$$\phi := p \mid \neg \phi \mid (\phi \land \phi) \mid (\phi \lor \phi) \mid \diamondsuit \phi \mid \text{NE}$$

$$\phi := p \mid \neg \phi \mid (\phi \land \phi) \mid (\phi \lor \phi) \mid \diamondsuit \phi \mid \text{NE}$$

$$\begin{array}{lll} s \vDash p & \iff & \forall w \in s \colon w \in V(p) \\ s \vDash \neg \phi & \iff & s \vDash \phi \\ s \vDash \phi \land \psi & \iff & s \vDash \phi \text{ and } s \vDash \psi \\ s \vDash \phi \lor \psi & \iff & \exists t, t' \colon t \cup t' = s \text{ and } t \vDash \phi \text{ and } t' \vDash \psi \\ s \vDash \Diamond \phi & \iff & \forall w \in s \colon \exists t \subseteq R[w] \colon t \neq \emptyset \text{ and } t \vDash \phi \\ s \vDash \text{NE} & \iff & s \neq \emptyset \end{array}$$

$$R[w] = \{v \in W \mid wRv\}$$

$$\phi := p \mid \neg \phi \mid (\phi \land \phi) \mid (\phi \lor \phi) \mid \diamondsuit \phi \mid \text{NE}$$

$$\begin{array}{lll} s \vDash p & \iff & \forall w \in s \colon w \in V(p) \\ s \vDash \neg \phi & \iff & s \vDash \phi \\ s \vDash \phi \land \psi & \iff & s \vDash \phi \text{ and } s \vDash \psi \\ s \vDash \phi \lor \psi & \iff & \exists t, t' \colon t \cup t' = s \text{ and } t \vDash \phi \text{ and } t' \vDash \psi \\ s \vDash \Diamond \phi & \iff & \forall w \in s \colon \exists t \subseteq R[w] \colon t \neq \emptyset \text{ and } t \vDash \phi \\ s \vDash \text{NE} & \iff & s \neq \emptyset \end{array}$$

$$R[w] = \{v \in W \mid wRv\}$$

$$s \models p \iff \forall w \in s : w \in V(p)$$

$$\phi := p \mid \neg \phi \mid (\phi \land \phi) \mid (\phi \lor \phi) \mid \diamondsuit \phi \mid \text{NE}$$

$$\begin{array}{lll} s \vDash p & \iff & \forall w \in s \colon w \in V(p) \\ s \vDash \neg \phi & \iff & s \vDash \phi \\ s \vDash \phi \land \psi & \iff & s \vDash \phi \text{ and } s \vDash \psi \\ s \vDash \phi \lor \psi & \iff & \exists t, t' \colon t \cup t' = s \text{ and } t \vDash \phi \text{ and } t' \vDash \psi \\ s \vDash \Diamond \phi & \iff & \forall w \in s \colon \exists t \subseteq R[w] \colon t \neq \emptyset \text{ and } t \vDash \phi \\ s \vDash \text{NE} & \iff & s \neq \emptyset \end{array}$$

$$R[w] = \{v \in W \mid wRv\}$$

$$\phi := p \mid \neg \phi \mid (\phi \land \phi) \mid (\phi \lor \phi) \mid \diamondsuit \phi \mid \text{NE}$$

$$\begin{array}{lll} s \vDash p & \iff & \forall w \in s \colon w \in V(p) \\ s \vDash \neg \phi & \iff & s \vDash \phi \\ s \vDash \phi \land \psi & \iff & s \vDash \phi \text{ and } s \vDash \psi \\ s \vDash \phi \lor \psi & \iff & \exists t, t' \colon t \cup t' = s \text{ and } t \vDash \phi \text{ and } t' \vDash \psi \\ s \vDash \Diamond \phi & \iff & \forall w \in s \colon \exists t \subseteq R[w] \colon t \neq \emptyset \text{ and } t \vDash \phi \\ s \vDash \text{NE} & \iff & s \neq \emptyset \end{array}$$

$$R[w] = \{v \in W \mid wRv\}$$

Tensor disjunction ∨

$$s \vDash \phi \lor \psi \iff \exists t, t' \colon t \cup t' = s \text{ and } t \vDash \phi \text{ and } t' \vDash \psi$$

The non-emptiness atom NE

$$s \models \text{NE} \iff s \neq \emptyset$$

The modality
$$\diamondsuit$$

$$R[w] = \{v \in W \mid wRv\}$$

$$s \models \Diamond \phi \iff \forall w \in s : \exists t \subseteq R[w] : t \neq \emptyset \text{ and } t \models \phi$$

The modality \diamondsuit

$$R[w] = \{v \in W \mid wRv\}$$

$$s \models \Diamond \phi \iff \forall w \in s : \exists t \subseteq R[w] : t \neq \emptyset \text{ and } t \models \phi$$

The modality \diamondsuit

$$R[w] = \{v \in W \mid wRv\}$$

$$s \models \Diamond \phi \iff \forall w \in s : \exists t \subseteq R[w] : t \neq \emptyset \text{ and } t \models \phi$$

$$\phi := p \mid \neg \phi \mid (\phi \land \phi) \mid (\phi \lor \phi) \mid \diamondsuit \phi \mid \text{NE}$$

$$\begin{array}{lll} s \vDash p & \iff & \forall w \in s \colon w \in V(p) \\ s \vDash \neg \phi & \iff & s \vDash \phi \\ s \vDash \phi \land \psi & \iff & s \vDash \phi \text{ and } s \vDash \psi \\ s \vDash \phi \lor \psi & \iff & \exists t, t' \colon t \cup t' = s \text{ and } t \vDash \phi \text{ and } t' \vDash \psi \\ s \vDash \Diamond \phi & \iff & \forall w \in s \colon \exists t \subseteq R[w] \colon t \neq \emptyset \text{ and } t \vDash \phi \\ s \vDash \text{NE} & \iff & s \neq \emptyset \end{array}$$

$$R[w] = \{v \in W \mid wRv\}$$

Accounting for ${\rm FC}$

The empty team \varnothing supports contradictions such as $p \land \neg p$ NE represents lack of contradiction

Accounting for FC

The empty team \varnothing supports contradictions such as $p \land \neg p$ NE represents lack of contradiction

FC is caused by an intrusion of the pragmatic principle "avoid stating a contradiction" (NE) into meaning composition:

Accounting for FC

The empty team \emptyset supports contradictions such as $p \land \neg p$ NE represents lack of contradiction

 $_{
m FC}$ is caused by an intrusion of the pragmatic principle "avoid stating a contradiction" (NE) into meaning composition:

You may have coffee or tea.

$$(\diamondsuit(c \lor t))^+ \vDash \diamondsuit c \land \diamondsuit t$$

You may have coffee or tea.

$$(\diamondsuit(c \lor t))^+ \vDash \diamondsuit c \land \diamondsuit t$$

i.e.
$$\diamondsuit(((c \land NE) \lor (t \land NE)) \land NE) \land NE \models \diamondsuit c \land \diamondsuit t$$

You may have coffee or tea.

$$(\diamondsuit(c \lor t))^+ \vDash \diamondsuit c \land \diamondsuit t$$

i.e.
$$\diamondsuit(((c \land NE) \lor (t \land NE)) \land NE) \land NE \models \diamondsuit c \land \diamondsuit t$$

i.e.
$$\diamondsuit((c \land NE) \lor (t \land NE)) \models \diamondsuitc \land \diamondsuitt$$

$$\Diamond ((c \land NE) \lor (t \land NE))$$

$$\Diamond c \land \Diamond t$$

$$\Diamond ((c \land NE) \lor (t \land NE))$$

 \models

$$\Diamond c \land \Diamond t$$

$$\{w\} \models \Diamond((c \land NE) \lor (t \land NE))$$
 since

$$\Diamond ((c \land NE) \lor (t \land NE))$$

 \models

$$\Diamond c \land \Diamond t$$

$$\{w\} \models \Diamond((c \land NE) \lor (t \land NE))$$
 since $\{w_c\} \models c$ and $\{w_t\} \models t$

$$\Diamond ((c \land NE) \lor (t \land NE))$$

$$\models$$

$$\Diamond c \land \Diamond t$$

$$\{w\} \models \Diamond((c \land NE) \lor (t \land NE))$$
 since $\{w_c\} \models c$ and $\{w_t\} \models t$

for the same reason, $\{w\} \models \Diamond c \land \Diamond t$

BSML^w: BSML with the global disjunction w

$$s \models \phi \lor \psi \iff s \models \phi \text{ or } s \models \psi$$

BSML^w: BSML with the global disjunction w

$$s \models \phi \lor \psi \iff s \models \phi \text{ or } s \models \psi$$

BSML[∅]: *BSML* with the emptiness/circle operator ∅

$$s \models \emptyset \phi \iff s \models \phi \text{ or } s = \emptyset$$

BSML^w: BSML with the global disjunction w

$$s \models \phi \lor \psi \iff s \models \phi \text{ or } s \models \psi$$

BSML[∅]: *BSML* with the emptiness/circle operator ∅

$$s \models \emptyset \phi \iff s \models \phi \text{ or } s = \emptyset$$

For classical formulas α (no NE, W, \emptyset):

$$s \models \alpha \iff \forall w \in s : \{w\} \models \alpha \iff \forall w \in s : w \models \alpha$$

Semantics (=)

Preliminaries

$$\Box := \neg \diamondsuit \neg$$

$$s \models \Box \phi \iff \forall w \in s : R[w] \models \phi$$

Preliminaries

Semantics (=)

 $\neg \alpha$ behaves classically when α is classical

$$\Box := \neg \diamondsuit \neg$$

$$s \models \Box \phi \iff \forall w \in s : R[w] \models \phi$$

You may not have coffee or tea.

→ You may not have coffee and you may not have tea.

$$\neg \diamondsuit (c \lor t) \rightarrow (\neg \diamondsuit c \land \neg \diamondsuit t)$$

You may not have coffee or tea.

→ You may not have coffee and you may not have tea.

$$\neg \diamondsuit (c \lor t) \rightarrow (\neg \diamondsuit c \land \neg \diamondsuit t)$$

In BSML:
$$(\neg \diamondsuit (b \lor c))^+ \models \neg \diamondsuit b \land \neg \diamondsuit c$$
.

For classical α : $\alpha \equiv \emptyset(\alpha \land NE)$

Using ∅ we can define a function which cancels pragmatic enrichment:

For classical $\alpha:(\alpha^+)^-\equiv\alpha$

Closure properties

 ϕ is downward closed: $[M, s \models \phi \text{ and } t \subseteq s] \Longrightarrow M, t \models \phi$ ϕ is union closed: $[M, s \models \phi \text{ for all } s \in S \neq \varnothing] \Longrightarrow M, \bigcup S \models \phi$ ϕ has the empty team property: $M, \varnothing \models \phi$ for all M ϕ is flat: $M, s \models \phi \iff M, \{w\} \models \phi \text{ for all } w \in s$

flat \iff downward closed & union closed & empty team property

Classical formulas are flat

Classical formulas are flat

Formulas with NE may lack downward closure and the empty team property:

Classical formulas are flat

Formulas with NE may lack downward closure and the empty team property:

$$\begin{cases} w_p, w_q \end{cases} & \models (p \land \text{NE}) \lor (q \land \text{NE}) \\ \{w_q \} & \not\models (p \land \text{NE}) \lor (q \land \text{NE}) \end{cases}$$

Formulas with w may lack union closure:

$$\begin{cases} \{w_p\} & \vDash p \otimes q \\ \{w_q\} & \vDash p \otimes q \\ \{w_p, w_q\} & \not\vDash p \otimes q \end{cases}$$

The modal dependence logic modalities \diamondsuit and \boxdot

t is a successor team of s $sRt : \iff t \subseteq R[s] \text{ and } R[w] \cap t \neq \emptyset \text{ for all } w \in s$ $R[s] = \{v \in W \mid \exists w \in s : wRv\}$

The modal dependence logic modalities \diamondsuit and \boxdot

t is a successor team of s $sRt: \iff t \subseteq R[s] \text{ and } R[w] \cap t \neq \emptyset \text{ for all } w \in s$ $R[s] = \{v \in W \mid \exists w \in s : wRv\}$

$$s \vDash \otimes \phi$$
 \iff $\exists t : sRt \text{ and } t \vDash \phi$ $s \vDash \Box \phi$ \iff $R[s] \vDash \phi$

$$s \models \Diamond \phi \qquad \iff \qquad \forall w \in s : \exists t \subseteq R[w] : t \models \phi \text{ and } t \neq \emptyset$$
$$s \models \Box \phi \qquad \iff \qquad \forall w \in s : R[w] \models \phi$$

Preliminaries

000000000000000000000000

 $s \vDash \Box \phi$

t is a successor team of s $sRt: \iff t \subseteq R[s] \text{ and } R[w] \cap t \neq \emptyset \text{ for all } w \in s$ $R[s] = \{v \in W \mid \exists w \in s : wRv\}$

$$s \models \diamondsuit \phi \qquad \Longleftrightarrow \qquad \exists t : sRt \text{ and } t \models \phi$$

$$s \models \boxdot \phi \qquad \Longleftrightarrow \qquad R[s] \models \phi$$

$$s \models \diamondsuit \phi \qquad \Longleftrightarrow \qquad \forall w \in s : \exists t \subseteq R[w] : t \models \phi \text{ and } t \neq \emptyset$$

If ϕ is downward closed, $\otimes \phi \models \Diamond \phi$ and $\square \phi \models \square \phi$ If ϕ is union closed and has the empty team property, $\Diamond \phi \models \Diamond \phi$ and $\Box \phi \models \Box \phi$ If ϕ is flat, $\Diamond \phi \equiv \Diamond \phi$ and $\Box \phi \equiv \Box \phi$

 $\forall w \in s : R[w] \models \phi$

Aloni's free choice explanation does not work with ♦:

$$sRs$$
 and $s \models (p \land \text{NE}) \lor (q \land \text{NE})$
Therefore $s \models \diamondsuit((p \land \text{NE}) \lor (q \land \text{NE}))$

Aloni's free choice explanation does not work with ♦:

$$sRs$$
 and $s \models (p \land \text{NE}) \lor (q \land \text{NE})$
Therefore $s \models \diamondsuit((p \land \text{NE}) \lor (q \land \text{NE}))$

s is the the only successor team of s and $s \not\models p$ Therefore $s \not\models \otimes p$ so $\otimes ((p \land \text{NE}) \lor (q \land \text{NE})) \not\models \otimes p \land \otimes q$

Expressive Power

Fix a finite set of proposition symbols Φ

Pointed team model: (M, s) where M is a model over Φ ; s is a team on M

Team property: set of pointed team models

$$||\phi|| \coloneqq \{(M,s) \mid M,s \vDash \phi\}$$

Expressive Power

Fix a finite set of proposition symbols Φ

Pointed team model: (M, s) where M is a model over Φ ; s is a team on M

Team property: set of pointed team models

$$||\phi|| \coloneqq \{(M,s) \mid M,s \vDash \phi\}$$

Theorem

$$\{||\phi|| \mid \phi \in BSML^{\mathsf{w}}\}$$

=

{property $P \mid P$ is invariant under team k-bisimulation for some $k \in \mathbb{N}$ }

$$s \backsimeq_k s' : \Longleftrightarrow$$

$$s \Leftrightarrow_k s' : \iff$$
 forth: $\forall w \in s : \exists w' \in s' : w \Leftrightarrow_k w'$

Preliminaries

$$s \Leftrightarrow_k s' : \iff$$

forth: $\forall w \in s : \exists w' \in s' : w \Leftrightarrow_k w'$ back: $\forall w' \in s' : \exists w \in s : w \Leftrightarrow_k w'$

Preliminaries

$$s \Leftrightarrow_k s' : \iff$$

forth: $\forall w \in s : \exists w' \in s' : w \Leftrightarrow_k w'$ back: $\forall w' \in s' : \exists w \in s : w \Leftrightarrow_{\nu} w'$

$$s \Leftrightarrow s' : \iff \forall k \in \mathbb{N} : s \Leftrightarrow_k s'$$

$$s \Leftrightarrow_k s' : \iff$$

forth: $\forall w \in s : \exists w' \in s' : w \Leftrightarrow_k w'$ back: $\forall w' \in s' : \exists w \in s : w \Leftrightarrow_k w'$

$$s \Leftrightarrow s' : \iff \forall k \in \mathbb{N} : s \Leftrightarrow_k s'$$

Theorem (bisimulation invariance)

$$s \Leftrightarrow_k s'$$

$$\Longrightarrow$$

$$s \equiv^k s'$$

$$s \leftrightarrow s'$$

$$\Longrightarrow$$

$$s \equiv s'$$

Property *P* is invariant under team *k*-bisimulation:

$$[(M,s) \in P \text{ and } M, s \hookrightarrow_k M', s'] \implies (M',s') \in P$$

Theorem

$$\{||\phi|| \mid \phi \in BSML^{\mathsf{w}}\}$$

{property $P \mid P$ is invariant under team k-bisimulation for some $k \in \mathbb{N}$ }

$$\chi^0_{M,w} := \bigwedge \{ p \mid w \in V(p) \} \land \bigwedge \{ \neg p \mid w \notin V(p) \} \quad (p \in \Phi)$$

$$\chi_{M,w}^{0} := \bigwedge \{ p \mid w \in V(p) \} \land \bigwedge \{ \neg p \mid w \notin V(p) \} \quad (p \in \Phi)$$

$$\chi_{M,w}^{k+1} := \chi_{M,w}^{k} \land \bigwedge_{v \in R[w]} \diamondsuit \chi_{M,v}^{k} \land \Box \bigvee_{v \in R[w]} \chi_{M,v}^{k}$$

$$\chi_{M,w}^{0} := \bigwedge \{ p \mid w \in V(p) \} \land \bigwedge \{ \neg p \mid w \notin V(p) \} \quad (p \in \Phi)$$

$$\chi_{M,w}^{k+1} := \chi_{M,w}^{k} \land \bigwedge_{v \in R[w]} \diamondsuit \chi_{M,v}^{k} \land \Box \bigvee_{v \in R[w]} \chi_{M,v}^{k}$$

$$w' \models \chi_{w}^{k} \iff w \cong_{k} w'$$

$$\chi^{0}_{M,w} := \bigwedge \{ p \mid w \in V(p) \} \land \bigwedge \{ \neg p \mid w \notin V(p) \} \quad (p \in \Phi)$$

$$\chi^{k+1}_{M,w} := \chi^{k}_{M,w} \land \bigwedge_{v \in R[w]} \diamondsuit \chi^{k}_{M,v} \land \Box \bigvee_{v \in R[w]} \chi^{k}_{M,v}$$

$$w' \models \chi^{k}_{w} \iff w \cong_{k} w'$$

Characteristic formulas for teams:

$$\begin{array}{lll} \Theta^k_{M,s} & := & \bot & \text{if } s = \varnothing & \left(\bot := p \land \neg p\right) \\ \Theta^k_{M,s} & := & \bigvee_{w \in s} \left(\chi^k_{M,w} \land \text{NE}\right) & \text{if } s \neq \varnothing \end{array}$$

Preliminaries

$$\chi_{M,w}^{0} := \bigwedge \{ p \mid w \in V(p) \} \land \bigwedge \{ \neg p \mid w \notin V(p) \} \quad (p \in \Phi)$$

$$\chi_{M,w}^{k+1} := \chi_{M,w}^{k} \land \bigwedge_{v \in R[w]} \diamondsuit \chi_{M,v}^{k} \land \Box \bigvee_{v \in R[w]} \chi_{M,v}^{k}$$

$$w' \models \chi_{w}^{k} \iff w \Leftrightarrow_{k} w'$$

Characteristic formulas for teams:

$$\begin{array}{lll} \Theta^k_{M,s} & := & \bot & \text{if } s = \emptyset & (\bot := p \land \neg p) \\ \Theta^k_{M,s} & := & \bigvee_{w \in s} (\chi^k_{M,w} \land \text{NE}) & \text{if } s \neq \emptyset & \\ & s' \models \Theta^k_s \iff s \backsimeq_k s' & \end{array}$$

References

$$\Theta_s^k = \bigvee_{w \in s} (\chi_w^k \wedge NE)$$
 $s' \models \Theta_s^k \iff s \Leftrightarrow_k s'$

$$\Theta^k_s = \bigvee_{w \in s} (\chi^k_w \wedge \text{NE})$$

$$s' \models \Theta_s^k \iff s \bowtie_k s'$$

Proof.

Preliminaries

Case 1 :
$$s = \emptyset$$
.

Then
$$\Theta_s^k = \bot$$
 and $s \rightleftharpoons_k s' \iff s' = \varnothing \iff s' \models \bot$.

$$\Theta^k_s = \bigvee_{w \in s} (\chi^k_w \wedge \text{NE})$$

$$s' \models \Theta_s^k \iff s \bowtie_k s'$$

Proof.

Preliminaries

Case 1 : $s = \emptyset$.

Then $\Theta_s^k = \bot$ and $s \cong_k s' \iff s' = \varnothing \iff s' \models \bot$.

Case 2: $s \neq \emptyset$.

←=:

Let $w \in s$. Let $w' \in s'$ be s.t. $w \hookrightarrow_k w'$.

$$\Theta^k_s = \bigvee_{w \in s} (\chi^k_w \wedge \text{NE})$$

$$s' \models \Theta_s^k \iff s \bowtie_k s'$$

Proof.

Preliminaries

Case 1 : $s = \emptyset$.

Then $\Theta_s^k = \bot$ and $s \cong_k s' \iff s' = \varnothing \iff s' \models \bot$.

Case 2: $s \neq \emptyset$.

⇐=:

Let $w \in s$. Let $w' \in s'$ be s.t. $w \rightleftharpoons_k w'$.

Then $w' \models \chi_w^k$

$$\Theta_s^k = \bigvee_{w \in s} (\chi_w^k \wedge \text{NE})$$

$$s' \models \Theta_s^k \iff s \bowtie_k s'$$

BSML[∅] axiomatization

Proof.

Preliminaries

Case 1 : $s = \emptyset$.

Then $\Theta_s^k = \bot$ and $s \cong_k s' \iff s' = \varnothing \iff s' \models \bot$.

Case 2: $s \neq \emptyset$.

⇐=:

Let $w \in s$. Let $w' \in s'$ be s.t. $w \Leftrightarrow_k w'$.

Then $w' \models \chi_w^k$ so $\{w'\} \models \chi_w^k$ and $\{w'\} \models \chi_w^k \land \text{NE}$.

$$\Theta_s^k = \bigvee_{w \in s} (\chi_w^k \wedge NE)$$

$$s' \models \Theta_s^k \iff s \bowtie_k s'$$

Preliminaries

Case 1 : $s = \emptyset$.

Then $\Theta_s^k = \bot$ and $s \Leftrightarrow_{\iota} s' \iff s' = \emptyset \iff s' \models \bot$

Case 2: $s \neq \emptyset$.

Let $w \in s$. Let $w' \in s'$ be s.t. $w \Leftrightarrow_k w'$.

Then $w' \models \chi_w^k$ so $\{w'\} \models \chi_w^k$ and $\{w'\} \models \chi_w^k \land NE$.

So $\forall w \in s : \exists \{w'\} \subseteq s' : \{w'\} \models \chi_{w}^{k} \land NE$. And $\forall \{w'\} \subseteq s' : \exists w \in s : \{w'\} \models \chi_w^k \land NE$.

$$\Theta_s^k = \bigvee_{w \in s} (\chi_w^k \wedge NE)$$

$$s' \models \Theta_s^k \iff s \bowtie_k s'$$

Preliminaries

Case
$$1: s = \emptyset$$
.

Then
$$\Theta_s^k = \bot$$
 and $s \Leftrightarrow_k s' \iff s' = \varnothing \iff s' \models \bot$.

Case 2:
$$s \neq \emptyset$$
.

Let $w \in s$. Let $w' \in s'$ be s.t. $w \Leftrightarrow_{\nu} w'$.

Then $w' \models \chi_{...}^k$ so $\{w'\} \models \chi_{w}^{k}$ and $\{w'\} \models \chi_{w}^{k} \wedge NE$.

So $\forall w \in s : \exists \{w'\} \subseteq s' : \{w'\} \models \chi_{w}^{k} \land NE$. And $\forall \{w'\} \subseteq s' : \exists w \in s : \{w'\} \models \chi_w^k \land NE$.

Therefore $s' \models \bigvee (\chi_w^k \land NE)$, i.e. $s' \models \Theta_s^k$.

$$\Theta_s^k = \bigvee_{w \in s} (\chi_w^k \wedge NE)$$

$$s' \models \Theta_s^k \iff s \bowtie_k s'$$

Preliminaries

Case $1 \cdot s = \emptyset$

Then $\Theta_a^k = \bot$ and $s \Leftrightarrow_{\iota} s' \iff s' = \emptyset \iff s' \models \bot$

 $s' \models \Theta_s^k$ implies there are $s'_w \subseteq s' \ (\forall w \in s)$ s.t.

 $s'_{uv} \models \chi_{uv}^k \wedge \text{NE} \text{ and } s' = \bigcup_{w \in S} s'_{uv}$

Case 2: $s \neq \emptyset$.

Let $w \in s$. Let $w' \in s'$ be s.t. $w \Leftrightarrow_{\nu} w'$.

Then $w' \models \chi_w^k$ so $\{w'\} \models \chi_{w}^{k}$ and $\{w'\} \models \chi_{w}^{k} \wedge NE$.

So $\forall w \in s : \exists \{w'\} \subseteq s' : \{w'\} \models \chi_{w}^{k} \land NE$. And $\forall \{w'\} \subseteq s' : \exists w \in s : \{w'\} \models \chi_{...}^k \land NE$. Therefore $s' \models \bigvee (\chi_w^k \land NE)$, i.e. $s' \models \Theta_s^k$.

28/60

$$\Theta_s^k = \bigvee_{w \in s} (\chi_w^k \wedge NE)$$

$$s' \models \Theta_s^k \iff s \bowtie_k s'$$

Proof.

Preliminaries

Case $1 \cdot s = \emptyset$

Then $\Theta_a^k = \bot$ and $s \Leftrightarrow_k s' \iff s' = \emptyset \iff s' \models \bot$

Case 2: $s \neq \emptyset$.

 $s' \models \Theta_s^k$ implies there are $s'_w \subseteq s' \ (\forall w \in s)$ s.t. $s'_{uv} \models \chi_{uv}^k \wedge \text{NE} \text{ and } s' = \bigcup_{w \in s} s'_{uv}$

Want to show:

 $\forall w' \in s' : \exists w \in s : w \Leftrightarrow_{k} w'$ $\forall w \in S : \exists w' \in S' : w \Leftrightarrow_{L} w'$

Let $w \in s$. Let $w' \in s'$ be s.t. $w \Leftrightarrow_{\nu} w'$.

Then $w' \models \chi_w^k$ so $\{w'\} \models \chi_{w}^{k}$ and $\{w'\} \models \chi_{w}^{k} \wedge NE$.

So $\forall w \in s : \exists \{w'\} \subseteq s' : \{w'\} \models \chi_{w}^{k} \land NE$. And $\forall \{w'\} \subseteq s' : \exists w \in s : \{w'\} \models \chi_w^k \land NE$. Therefore $s' \models \bigvee (\chi_w^k \land NE)$, i.e. $s' \models \Theta_s^k$.

$$\Theta_s^k = \bigvee_{w \in s} (\chi_w^k \wedge \text{NE})$$

$$s' \models \Theta_s^k \iff s \bowtie_k s'$$

Proof.

Preliminaries

Case 1 :
$$s = \emptyset$$
.

Then $\Theta_a^k = \bot$ and $s \Leftrightarrow_k s' \iff s' = \emptyset \iff s' \models \bot$

Case 2: $s \neq \emptyset$.

Let $w \in s$. Let $w' \in s'$ be s.t. $w \Leftrightarrow_k w'$.

Then $w' \models \chi_w^k$ so $\{w'\} \models \chi_{w}^{k}$ and $\{w'\} \models \chi_{w}^{k} \wedge NE$.

So $\forall w \in s : \exists \{w'\} \subseteq s' : \{w'\} \models \chi_{w}^{k} \land NE$. And $\forall \{w'\} \subseteq s' : \exists w \in s : \{w'\} \models \chi_{w}^{k} \land NE$. Therefore $s' \models \bigvee (\chi_w^k \land NE)$, i.e. $s' \models \Theta_s^k$.

 $s' \models \Theta_s^k$ implies there are $s'_w \subseteq s'$ ($\forall w \in s$) s.t.

 $s'_{uv} \models \chi_{uv}^k \wedge \text{NE} \text{ and } s' = \bigcup_{w \in s} s'_{uv}$

Want to show:

 $\forall w' \in s' : \exists w \in s : w \Leftrightarrow_{\iota} w'$ $\forall w \in s : \exists w' \in s' : w \Leftrightarrow_{\nu} w'$

Let $w' \in s'$. Then for some $w \in s$ we have $w' \in s'_{w}$.

$$\Theta_s^k = \bigvee_{w \in s} (\chi_w^k \wedge \text{NE})$$

$$s' \models \Theta_s^k \iff s \bowtie_k s'$$

Preliminaries

Case 1 :
$$s = \emptyset$$
.

Then
$$\Theta_s^k = \bot$$
 and $s \Leftrightarrow_k s' \iff s' = \varnothing \iff s' \models \bot$.

Case 2:
$$s \neq \emptyset$$
.

Let $w \in s$. Let $w' \in s'$ be s.t. $w \Leftrightarrow_k w'$.

Then
$$w' \models \chi_w^k$$
 so $\{w'\} \models \chi_w^k$ and $\{w'\} \models \chi_w^k \land \text{NE}$.

So
$$\forall w \in s : \exists \{w'\} \subseteq s' : \{w'\} \models \chi_w^k \land \text{NE}.$$

And $\forall \{w'\} \subseteq s' : \exists w \in s : \{w'\} \models \chi_w^k \land \text{NE}.$
Therefore $s' \models \bigvee (\chi_w^k \land \text{NE})$, i.e. $s' \models \Theta_s^k$.

⇒:

 $s' \models \Theta_s^k$ implies there are $s'_w \subseteq s' \ (\forall w \in s)$ s.t. $s'_w \models \chi''_w \land \text{NE}$ and $s' \models \bigcup_{w \in s} s'_w$.

Want to show:

 $\forall w' \in s' : \exists w \in s : w \rightleftharpoons_k w'$ $\forall w \in s : \exists w' \in s' : w \rightleftharpoons_k w'.$

Let $w' \in s'$. Then for some $w \in s$ we have $w' \in s'_w$. Since $s'_w \models \chi^k_w \land \text{NE}$, we have $s'_w \models \chi^k_w$.

$$\Theta_s^k = \bigvee_{w \in s} (\chi_w^k \wedge \text{NE})$$

$$s' \models \Theta_s^k \iff s \bowtie_k s'$$

Preliminaries

Case 1 :
$$s = \emptyset$$
.

Then
$$\Theta_s^k = \bot$$
 and $s \cong_k s' \iff s' = \varnothing \iff s' \models \bot$.

Case 2:
$$s \neq \emptyset$$
.

Let $w \in s$. Let $w' \in s'$ be s.t. $w \Leftrightarrow_{\iota} w'$.

Then
$$w' \models \chi_w^k$$
 so $\{w'\} \models \chi_w^k \text{ and } \{w'\} \models \chi_w^k \land \text{NE}.$

So
$$\forall w \in s : \exists \{w'\} \subseteq s' : \{w'\} \models \chi_w^k \land \text{NE}.$$

And $\forall \{w'\} \subseteq s' : \exists w \in s : \{w'\} \models \chi_w^k \land \text{NE}.$
Therefore $s' \models \bigvee (\chi_w^k \land \text{NE})$, i.e. $s' \models \Theta_s^k$.

 $s' \models \Theta_s^k$ implies there are $s'_w \subseteq s'$ ($\forall w \in s$) s.t. $s'_{uv} \models \chi_{uv}^k \wedge \text{NE} \text{ and } s' = \bigcup_{w \in s} s'_{uv}$

Want to show:

 $\forall w' \in s' : \exists w \in s : w \Leftrightarrow_{\iota} w'$ $\forall w \in S : \exists w' \in S' : w \Leftrightarrow_{L} w'$

Let $w' \in s'$. Then for some $w \in s$ we have $w' \in s'_{\dots}$. Since $s'_{\dots} \models \chi^k_{\dots} \land NE$, we have $s'_{\dots} \models \chi^k_{\dots}$. So $w' \models \chi_w^k$ whence $w \Leftrightarrow w'$.

$$\Theta_s^k = \bigvee_{w \in s} (\chi_w^k \wedge NE)$$

$$s' \models \Theta_s^k \iff s \bowtie_k s'$$

Preliminaries

Case 1 :
$$s = \emptyset$$
.

Then $\Theta_a^k = \bot$ and $s \Leftrightarrow_{\iota} s' \iff s' = \emptyset \iff s' \models \bot$

Case 2: $s \neq \emptyset$.

Let $w \in s$. Let $w' \in s'$ be s.t. $w \Leftrightarrow_{\iota} w'$.

Then $w' \models \chi_w^k$ so $\{w'\} \models \chi_{w}^{k}$ and $\{w'\} \models \chi_{w}^{k} \wedge NE$.

So $\forall w \in s : \exists \{w'\} \subseteq s' : \{w'\} \models \chi_{w}^{k} \land NE$. And $\forall \{w'\} \subseteq s' : \exists w \in s : \{w'\} \models \chi_w^k \land NE$. Therefore $s' \models \bigvee (\chi_w^k \land NE)$, i.e. $s' \models \Theta_s^k$.

 $s' \models \Theta_s^k$ implies there are $s'_w \subseteq s' \ (\forall w \in s)$ s.t.

 $s'_{uv} \models \chi_{uv}^k \wedge \text{NE} \text{ and } s' = \bigcup_{w \in s} s'_{uv}$

Want to show:

 $\forall w' \in s' : \exists w \in s : w \Leftrightarrow_{\iota} w'$ $\forall w \in S : \exists w' \in S' : w \Leftrightarrow_{L} w'$

Let $w' \in s'$. Then for some $w \in s$ we have $w' \in s'_{w}$. Since $s'_{w} \models \chi^{k}_{w} \land NE$, we have $s'_{w} \models \chi^{k}_{w}$. So $w' \models \chi_w^k$ whence $w \Leftrightarrow w'$.

Let $w \in s$.

$$\Theta_s^k = \bigvee_{w \in s} (\chi_w^k \wedge \text{NE})$$

$$s' \models \Theta_s^k \iff s \bowtie_k s'$$

Proof.

Preliminaries

Case 1 :
$$s = \emptyset$$
.

Then
$$\Theta_s^k = \bot$$
 and $s \hookrightarrow_k s' \iff s' = \varnothing \iff s' \models \bot$.

Case 2:
$$s \neq \emptyset$$
.

Let $w \in s$. Let $w' \in s'$ be s.t. $w \Leftrightarrow_{\iota} w'$.

Then
$$w' \models \chi_w^k$$
 so $\{w'\} \models \chi_w^k$ and $\{w'\} \models \chi_w^k \land \text{NE}$.

So
$$\forall w \in s : \exists \{w'\} \subseteq s' : \{w'\} \models \chi_w^k \land \text{NE.}$$
 Let $w \in s$. Then And $\forall \{w'\} \subseteq s' : \exists w \in s : \{w'\} \models \chi_w^k \land \text{NE.}$ $s_w' \models \chi_w^k \land \text{NE.}$

Therefore
$$s' \models \bigvee_{w \in s} (\chi_w^k \wedge \text{NE})$$
, i.e. $s' \models \Theta_s^k$.

 $s' \models \Theta_s^k$ implies there are $s'_w \subseteq s'$ ($\forall w \in s$) s.t. $s'_{uv} \models \chi_{uv}^k \wedge \text{NE} \text{ and } s' = \bigcup_{w \in s} s'_{uv}$

Want to show:

 $\forall w' \in s' : \exists w \in s : w \Leftrightarrow_{\iota} w'$ $\forall w \in S : \exists w' \in S' : w \Leftrightarrow_{L} w'$

Let $w' \in s'$. Then for some $w \in s$ we have $w' \in s'_{w}$. Since $s'_{w} \models \chi^{k}_{w} \land NE$, we have $s'_{w} \models \chi^{k}_{w}$. So $w' \models \chi_w^k$ whence $w \Leftrightarrow w'$.

Let $w \in s$. Then there is some $s'_w \subseteq s'$ such that

$$\Theta_s^k = \bigvee_{w \in s} (\chi_w^k \wedge \text{NE})$$

$$s' \models \Theta_s^k \iff s \bowtie_k s'$$

Preliminaries

Case $1 \cdot s = \emptyset$

Then $\Theta_a^k = \bot$ and $s \Leftrightarrow_{\iota} s' \iff s' = \emptyset \iff s' \models \bot$

Case 2: $s \neq \emptyset$.

Let $w \in s$. Let $w' \in s'$ be s.t. $w \Leftrightarrow_{\iota} w'$.

Then $w' \models \chi_w^k$ so $\{w'\} \models \chi_{w}^{k}$ and $\{w'\} \models \chi_{w}^{k} \wedge NE$.

So $\forall w \in s : \exists \{w'\} \subseteq s' : \{w'\} \models \chi_{w}^{k} \land NE$.

Therefore $s' \models \bigvee (\chi_w^k \land \text{NE})$, i.e. $s' \models \Theta_s^k$. $w' \in S_w'$.

 $s' \models \Theta_s^k$ implies there are $s'_w \subseteq s'$ ($\forall w \in s$) s.t.

 $s'_{uv} \models \chi_{uv}^k \wedge \text{NE} \text{ and } s' = \bigcup_{w \in s} s'_{uv}$

Want to show:

 $\forall w' \in s' : \exists w \in s : w \Leftrightarrow_{\iota} w'$ $\forall w \in S : \exists w' \in S' : w \Leftrightarrow_{L} w'$

Let $w' \in s'$. Then for some $w \in s$ we have $w' \in s'_{w}$. Since $s'_{w} \models \chi^{k}_{w} \land NE$, we have $s'_{w} \models \chi^{k}_{w}$. So $w' \models \chi_w^k$ whence $w \Leftrightarrow w'$.

Let $w \in s$. Then there is some $s'_w \subseteq s'$ such that And $\forall \{w'\} \subseteq s' : \exists w \in s : \{w'\} \models \chi_w^k \land \text{NE. } s_w' \models \chi_w^k \land \text{NE. Since } s_w' \models \text{NE, there is some}$

$$\Theta_s^k = \bigvee_{w \in s} (\chi_w^k \wedge NE)$$

$$s' \models \Theta_s^k \iff s \bowtie_k s'$$

Case $1 \cdot s = \emptyset$

Then $\Theta_a^k = \bot$ and $s \Leftrightarrow_k s' \iff s' = \emptyset \iff s' \models \bot$

Case 2: $s \neq \emptyset$.

Let $w \in s$. Let $w' \in s'$ be s.t. $w \Leftrightarrow_{\iota} w'$.

Then $w' \models \chi_w^k$ so $\{w'\} \models \chi_{w}^{k}$ and $\{w'\} \models \chi_{w}^{k} \wedge NE$.

So $\forall w \in s : \exists \{w'\} \subseteq s' : \{w'\} \models \chi_{w}^{k} \land NE$.

Therefore $s' \models \bigvee (\chi_w^k \land NE)$, i.e. $s' \models \Theta_s^k$. $w' \in s'_w$. Then $w' \models \chi_w^k$ and so $w \rightleftharpoons_k w'$.

 $s' \models \Theta_s^k$ implies there are $s'_w \subseteq s'$ ($\forall w \in s$) s.t. $s'_{uv} \models \chi_{uv}^k \wedge \text{NE} \text{ and } s' = \bigcup_{w \in s} s'_{uv}$

Want to show:

 $\forall w' \in s' : \exists w \in s : w \Leftrightarrow_{\iota} w'$ $\forall w \in S : \exists w' \in S' : w \Leftrightarrow_{L} w'$

Let $w' \in s'$. Then for some $w \in s$ we have $w' \in s'_{w}$. Since $s'_{w} \models \chi'_{w} \land NE$, we have $s'_{w} \models \chi'_{w}$. So $w' \models \chi_w^k$ whence $w \Leftrightarrow w'$.

Let $w \in s$. Then there is some $s'_w \subseteq s'$ such that And $\forall \{w'\} \subseteq s' : \exists w \in s : \{w'\} \models \chi_w^k \land \text{NE. } s_w' \models \chi_w^k \land \text{NE. Since } s_w' \models \text{NE, there is some}$ Characteristic formulas for properties (disjunctive normal form):

for *P* invariant under *k*-bisimulation:

$$M', s' \models \bigvee_{(M,s)\in P} \Theta_s^k \iff (M',s') \in P$$

Characteristic formulas for properties (disjunctive normal form):

for *P* invariant under *k*-bisimulation:

$$M', s' \models \bigvee_{(M,s)\in P} \Theta_s^k \iff (M',s') \in P$$

Theorem

$$\{||\phi|| \mid \phi \in BSML^{w}\}$$

{property $P \mid P$ is invariant under team k-bisimulation for some $k \in \mathbb{N}$ }

Property *P* is *union closed*:

$$\{(M, s_i) \mid i \in I \neq \emptyset\} \subseteq P \implies (M, \bigcup_{i \in I} s_i) \subseteq P$$

Property *P* is *union closed*:

$$\{(M, s_i) \mid i \in I \neq \emptyset\} \subseteq P \implies (M, \bigcup_{i \in I} s_i) \subseteq P$$

Property *P* has the *empty team property*:

$$(M,s) \in P \implies (M,\emptyset) \in P$$

Property *P* is *union closed*:

$$\{(M, s_i) \mid i \in I \neq \emptyset\} \subseteq P \implies (M, \bigcup_{i \in I} s_i) \subseteq P$$

Property *P* has the *empty team property*:

$$(M,s) \in P \implies (M,\emptyset) \in P$$

Theorem

$$\{||\phi|| \mid \phi \in BSML^{\emptyset}\}$$

 $\mathbb{U} := \{P \mid P \text{ is union closed and invariant under } k\text{-bisimulation for some } k \in \mathbb{N}\}$

Lemma

For $\phi \in BSML$: ϕ has the empty team property $\implies \phi$ is downward closed.

Lemma

For $\phi \in BSML$: ϕ has the empty team property $\implies \phi$ is downward closed.

Consider $||(p \land \text{NE}) \lor (\neg p \land \text{NE})|| \cup ||\bot|| \in \mathbb{U}$. Assume $||\psi|| = ||(p \land \text{NE}) \lor (\neg p \land \text{NE})||$ for $\psi \in BSML$.

Lemma

For $\phi \in BSML$: ϕ has the empty team property $\implies \phi$ is downward closed.

Consider
$$\|(p \wedge \text{NE}) \vee (\neg p \wedge \text{NE})\| \cup \|\bot\| \in \mathbb{U}$$
.
Assume $\|\psi\| = \|(p \wedge \text{NE}) \vee (\neg p \wedge \text{NE})\|$ for $\psi \in BSML$.
If $\{w_p, w_{\neg p}\} \models (p \wedge \text{NE}) \vee (\neg p \wedge \text{NE})$, then $\{w_p, w_{\neg p}\} \models \psi$.

Lemma

For $\phi \in BSML$: ϕ has the empty team property $\implies \phi$ is downward closed.

Consider $\|(p \wedge \text{NE}) \vee (\neg p \wedge \text{NE})\| \cup \|\bot\| \in \mathbb{U}$. Assume $\|\psi\| = \|(p \wedge \text{NE}) \vee (\neg p \wedge \text{NE})\|$ for $\psi \in BSML$. If $\{w_p, w_{\neg p}\} \models (p \wedge \text{NE}) \vee (\neg p \wedge \text{NE})$, then $\{w_p, w_{\neg p}\} \models \psi$. By downward closure $\{w_p\} \models \psi$. $\{w_p\} \in \|(p \wedge \text{NE}) \vee (\neg p \wedge \text{NE})\| \cup \|\bot\|$, a contradiction.

Lemma

For $\phi \in BSML$: ϕ has the empty team property $\implies \phi$ is downward closed.

Consider $||(p \land \text{NE}) \lor (\neg p \land \text{NE})|| \cup ||\bot|| \in \mathbb{U}$. Assume $||\psi|| = ||(p \land \text{NE}) \lor (\neg p \land \text{NE})||$ for $\psi \in BSML$. If $\{w_p, w_{\neg p}\} \models (p \land \text{NE}) \lor (\neg p \land \text{NE})$, then $\{w_p, w_{\neg p}\} \models \psi$. By downward closure $\{w_p\} \models \psi$. $\{w_p\} \in ||(p \land \text{NE}) \lor (\neg p \land \text{NE})|| \cup ||\bot||$, a contradiction.

In $BSML^{\odot}$: $\|(p \land NE) \lor (\neg p \land NE)\| \cup \|\bot\| = \| \oslash ((p \land NE) \lor (\neg p \land NE))\|$

$$s' \models \Theta_s^k$$
 \iff $s \bowtie_k s'$
 $s' \models \varnothing \Theta_s^k$ \iff $s \bowtie_k s' \text{ or } s = \varnothing$

$$s' \models \Theta_s^k$$
 \iff $s \bowtie_k s'$
 $s' \models \varnothing \Theta_s^k$ \iff $s \bowtie_k s' \text{ or } s = \varnothing$

Characteristic formulas for union-closed properties with the empty team property:

$$M', s' \models \bigvee_{(M,s) \in P} \oslash \Theta_s^k \iff (M', s') \in P$$

$$s' \models \Theta_s^k$$
 \iff $s \bowtie_k s'$
 $s' \models \varnothing \Theta_s^k$ \iff $s \bowtie_k s' \text{ or } s = \varnothing$

Characteristic formulas for union-closed properties with the empty team property:

$$M', s' \models \bigvee_{(M,s) \in P} \oslash \Theta_s^k \iff (M', s') \in P$$

Characteristic formulas for union-closed properties without the empty team property:

$$M', s' \models (\bigvee_{(M,s) \in P} \oslash \Theta_s^k) \land \text{NE} \iff (M', s') \in P$$

$$s' \models \Theta_s^k$$
 \iff $s \bowtie_k s'$
 $s' \models \varnothing \Theta_s^k$ \iff $s \bowtie_k s' \text{ or } s = \varnothing$

Characteristic formulas for union-closed properties with the empty team property:

$$M', s' \models \bigvee_{(M,s) \in P} \oslash \Theta_s^k \iff (M', s') \in P$$

Characteristic formulas for union-closed properties without the empty team property:

$$M', s' \models (\bigvee_{(M,s) \in P} \oslash \Theta_s^k) \land \text{NE} \iff (M',s') \in P$$

Theorem

Preliminaries

$$\{||\phi|| \mid \phi \in \mathit{BSML}^{\varnothing}\}$$

 $\{P \mid P \text{ is union closed and invariant under } k\text{-bisimulation for some } k \in \mathbb{N}\}$

$$M', s' \models \bigvee_{(M,s) \in P} \oslash \Theta_s^k \iff (M', s') \in P$$

Proof.

Preliminaries

 \iff : Let $(M', s') \in P$.

$$M', s' \models \bigvee_{(M,s) \in P} \oslash \Theta_s^k \iff (M', s') \in P$$

Proof.

$$\Leftarrow$$
: Let $(M', s') \in P$.

$$s' \models \Theta_{s'}^k \text{ so } s' \models \emptyset \Theta_{s'}^k.$$

$$M', s' \models \bigvee_{(M, s) \in P} \oslash \Theta_s^k \iff (M', s') \in P$$

Proof.

$$\Leftarrow$$
: Let $(M', s') \in P$.

$$s' \models \Theta_{s'}^k$$
 so $s' \models \emptyset \Theta_{s'}^k$.

$$\forall (M,s) \in P : \emptyset \models \emptyset \Theta^k_s.$$

$$M', s' \models \bigvee_{(M,s) \in P} \oslash \Theta_s^k \iff (M', s') \in P$$

Proof.

$$\Leftarrow$$
: Let $(M', s') \in P$.

$$s' \models \Theta_{s'}^k$$
 so $s' \models \emptyset \Theta_{s'}^k$.

$$\forall (M,s) \in P : \varnothing \models \varnothing \Theta_s^k$$
.

$$s' = s' \cup \emptyset$$
.

$$M', s' \models \bigvee_{(M,s) \in P} \oslash \Theta_s^k \iff (M', s') \in P$$

Proof.

Preliminaries

$$\Leftarrow$$
: Let $(M', s') \in P$.

$$s' \models \Theta_{s'}^k$$
 so $s' \models \emptyset \Theta_{s'}^k$.

$$\forall (M,s) \in P : \varnothing \models \varnothing \Theta_s^k$$
.

$$s' = s' \cup \emptyset$$
.

Therefore $s' \models \bigvee_{(M,s) \in P} \oslash \Theta_s^k$.

References

For P union-closed; with the empty team property; invariant under k-bisimulation:

$$M', s' \models \bigvee_{(M,s) \in P} \oslash \Theta_s^k \iff (M', s') \in P$$

Proof.

Preliminaries

$$\Longrightarrow$$
: Assume $s' \models \bigvee_{M,s \in P} \oslash \Theta_s^k$.

$$\iff$$
: Let $(M', s') \in P$.

$$s' \models \Theta_{s'}^k$$
 so $s' \models \emptyset \Theta_{s'}^k$.

$$\forall (M,s) \in P : \varnothing \models \varnothing \Theta_s^k.$$

$$s' = s' \cup \emptyset$$
.

Therefore $s' \models \bigvee_{(M,s) \in P} \oslash \Theta_s^k$.

References

For P union-closed; with the empty team property; invariant under k-bisimulation:

$$M', s' \models \bigvee_{(M,s)\in P} \oslash \Theta_s^k \iff (M',s') \in P$$

Proof.

$$\Longrightarrow$$
: Assume $s' \models \bigvee_{M,s \in P} \oslash \Theta_s^k$.

$$\iff$$
: Let $(M', s') \in P$.

Then
$$s' = \bigcup T$$
 where

$$s' \models \Theta_{s'}^k \text{ so } s' \models \oslash \Theta_{s'}^k.$$

$$\forall t \in T : t = \emptyset \text{ or } \exists (M_t, s_t) \in P : t \models \Theta_{s_t}^k$$

$$\forall (M,s) \in P : \varnothing \models \varnothing \Theta_s^k.$$

$$s' = s' \cup \emptyset$$
.

Therefore
$$s' \models \bigvee_{(M,s) \in P} \oslash \Theta_s^k$$
.

References

For P union-closed; with the empty team property; invariant under k-bisimulation:

$$M', s' \models \bigvee_{(M,s) \in P} \oslash \Theta_s^k \iff (M', s') \in P$$

Proof.

Preliminaries

$$\Longrightarrow$$
: Assume $s' \models \bigvee_{M,s \in P} \oslash \Theta_s^k$.

$$\Leftarrow$$
: Let $(M', s') \in P$.

Then
$$s' = \bigcup T$$
 where $\forall t \in T : t = \emptyset$ or $\exists (M_t, s_t) \in P : t \models \Theta_c^k$.

$$s' \models \Theta_{s'}^k \text{ so } s' \models \emptyset \Theta_{s'}^k.$$

$$\forall t \in T : t = \emptyset \text{ or } \exists (M_t, s_t) \in T : t \models S_{s_t}$$

 $\forall t \in T : t = \emptyset \text{ or } \exists (M_t, s_t) \in P : t \Leftrightarrow_k s_t$

$$\forall (M,s) \in P : \varnothing \models \varnothing \Theta_s^k.$$

$$V(M,3) \in I : \emptyset \vdash \emptyset O_s.$$

$$s' = s' \cup \emptyset$$
.

Therefore

$$s' \vDash \bigvee_{(M,s) \in P} \oslash \Theta_s^k$$
.

$$M', s' \models \bigvee_{(M,s) \in P} \oslash \Theta_s^k \iff (M', s') \in P$$

Proof.

$$\Longrightarrow$$
: Assume $s' \models \bigvee_{M,s \in P} \oslash \Theta_s^k$.

$$\Leftarrow$$
: Let $(M', s') \in P$.

Then
$$s' = \bigcup T$$
 where

$$s' \models \Theta_{s'}^k \text{ so } s' \models \emptyset \Theta_{s'}^k.$$

$$\forall t \in T : t = \emptyset \text{ or } \exists (M_t, s_t) \in P : t \models \Theta_{s_t}^k$$

$$\forall t \in T : t = \emptyset \text{ or } \exists (M_t, s_t) \in P : t \rightleftharpoons_k s_t$$

$$\forall (M,s) \in P : \varnothing \models \varnothing \Theta_s^k.$$

If
$$\forall t : t = \emptyset$$
, then $s' = \emptyset \in P$ by the empty team property.

$$s' = s' \cup \emptyset$$
.

Therefore
$$s' \models \bigvee_{(M,s)\in P} \oslash \Theta_s^k$$
.

BSML axiomatization

$$M', s' \models \bigvee_{(M,s) \in P} \oslash \Theta_s^k \iff (M', s') \in P$$

Proof.

Preliminaries

$$\Longrightarrow$$
: Assume $s' \models \bigvee_{M,s \in P} \oslash \Theta_s^k$.

$$\Leftarrow$$
: Let $(M', s') \in P$.

Then
$$s' = \bigcup T$$
 where

$$s' \models \Theta_{s'}^k \text{ so } s' \models \emptyset \Theta_{s'}^k.$$

$$\forall t \in T : t = \emptyset \text{ or } \exists (M_t, s_t) \in P : t \models \Theta_{s_t}^k$$

$$\forall t \in T : t = \emptyset \text{ or } \exists (M_t, s_t) \in P : t \rightleftharpoons_k s_t$$

$$\forall (M,s) \in P : \varnothing \models \varnothing \Theta_s^k.$$

If
$$\forall t: t = \emptyset$$
, then $s' = \emptyset \in P$ by the empty team property.

$$s' = s' \cup \emptyset$$
.

Otherwise let
$$T' = \{t \in T \mid t \neq \emptyset\}$$
 and consider $M = \bigcup \{M_t \mid t \in T'\}$ and its team $u = \bigcup \{s_t \mid t \in T'\}$.

Therefore $s' \models \bigvee_{(M,s) \in P} \oslash \Theta_s^k$. For P union-closed; with the empty team property; invariant under k-bisimulation:

$$M', s' \models \bigvee_{(M,s) \in P} \oslash \Theta_s^k \iff (M', s') \in P$$

Proof.

Preliminaries

$$\iff$$
: Let $(M', s') \in P$.

$$s' \models \Theta_{s'}^k \text{ so } s' \models \emptyset \Theta_{s'}^k.$$

$$\forall (M,s) \in P : \varnothing \models \varnothing \Theta_s^k.$$

$$s' = s' \cup \emptyset$$
.

Therefore
$$s' \models \bigvee_{(M,s) \in P} \oslash \Theta_s^k$$
.

$$\implies$$
: Assume $s' \models \bigvee_{M,s \in P} \oslash \Theta_s^k$.

Then
$$s' = \bigcup T$$
 where $\forall t \in T : t = \emptyset$ or $\exists (M_t, s_t) \in P : t \models \Theta_{s_t}^k$

$$\forall t \in T : t = \emptyset \text{ or } \exists (M_t, s_t) \in P : t \Leftrightarrow_k s_t$$

If
$$\forall t : t = \emptyset$$
, then $s' = \emptyset \in P$ by the empty team property.

Otherwise let
$$T' = \{t \in T \mid t \neq \emptyset\}$$
 and consider $M = \bigcup \{M_t \mid t \in T'\}$ and its team $u = \bigcup \{s_t \mid t \in T'\}$. $(M, u) \in P$ by invariance and union closure.

And
$$s' \Leftrightarrow_k u \text{ so } s' \in P$$
.

Theorem

$$\{||\phi|| \mid \phi \in \mathsf{BSMLI}\}$$

 $\{P \mid P \text{ is invariant under } k\text{-bisimulation for some } k \in \mathbb{N}\}$

Characteristic formulas: $\bigvee_{(M,s)\in P} \Theta_s^k$

Theorem

$$\{||\phi|| \mid \phi \in \mathsf{BSMLE}\}$$

 $\{P \mid P \text{ is union closed and invariant under } k\text{-bisimulation for some } k \in \mathbb{N}\}$

Characteristic formulas: $\bigvee_{(M,s)\in P} \oslash \Theta_s^k$ $(\bigvee_{(M,s)\in P} \oslash \Theta_s^k) \land \text{NE}$

 α and β : classical formulas (no NE or W).

Non-modal portion (adapted from the system for PT^+):

 \neg introduction

 \neg elimination

$$\begin{bmatrix} \alpha \\ D^* \\ \frac{1}{\neg \alpha} \neg I(*) \end{bmatrix}$$

$$\begin{array}{ccc}
D_1 & D_2 \\
\alpha & \neg \alpha
\end{array}$$

(*) The undischarged assumptions in D^* do not contain NE.

$$\wedge \ introduction$$

∧ elimination

$$\frac{D_1}{\frac{\phi}{\phi \wedge \psi}} \wedge I$$

$$\frac{D}{\phi \wedge \psi} \wedge E$$

$$\frac{\phi \wedge \psi}{\psi} \wedge E$$

w introduction

w elimination

$$\frac{D}{\phi \otimes \psi} \otimes I$$

$$\frac{D}{\psi}$$
 w/

$$\begin{array}{ccc}
 & [\phi] & [\psi] \\
D & D_1 & D_2 \\
\hline
 & \phi w \psi & \chi & \chi \\
\hline
 & \chi & w E
\end{array}$$

Preliminaries

∨ weak introduction

$$\frac{D}{\phi \vee \psi} \vee I(**$$

∨ weakening

$$\frac{D}{\frac{\phi}{\phi \vee \phi}} \vee W$$

∨ weak elimination

$$\begin{array}{ccc} & [\phi] & [\psi] \\ D & D_1^* & D_2^* \\ \frac{\phi \lor \psi}{\chi} & \frac{\chi}{\chi} \lor E(*,\dagger) \end{array}$$

∨ weak substitution

$$\begin{array}{ccc} & & [\psi] \\ D & D_1^* \\ \hline -\frac{\phi \vee \psi}{\phi \vee \chi} & \chi \\ \hline \end{array} \vee \textit{Sub}(*)$$

- (*) The undischarged assumptions in D_1^*, D_2^* do not contain NE.
- $(**) \psi$ may not contain NE.
- (†) χ may not contain \forall outside the scope of a \diamondsuit .

 $\lor \ commutativity$

 \lor associativity

$$\frac{D}{\psi \vee \psi} Com \vee$$

$$\frac{D}{\frac{(\phi \lor \psi) \lor \chi}{\phi \lor (\psi \lor \chi)}} Ass \lor$$

 $\lor \lor \lor distributivity$

$$\frac{D}{(\phi \lor (\psi \lor \chi))}$$
 Distr $\lor \lor$

$$\perp$$
 Elimination

$$\frac{D}{\frac{\phi \vee \bot}{\phi}} \bot E$$

⊥ contraction

$$\bot := \bot \land NE$$

⊥ elimination

$$\begin{array}{c}
D \\
\frac{\parallel}{\phi} \parallel E
\end{array}
\qquad \qquad \begin{array}{c}
D \\
\frac{\parallel \vee \phi}{} \parallel Ct$$

Preliminaries

¬NE elimination

$$\frac{D}{\frac{\neg NE}{|}} \neg NE E$$

De Morgan 1
$$D$$

$$\neg(\phi \land \psi)$$

$$DM$$

De Morgan 2 D $\neg(\phi \lor \psi)$ DM_2

Double \neg elimination

$$\frac{D}{\neg \neg \phi} D \wedge \frac{\neg \neg \phi}{\phi} D \wedge \frac{\neg \phi}{\phi} D$$

De Morgan 3
$$D$$

$$\frac{\neg(\phi \otimes \psi)}{\neg \phi \wedge \neg \psi} DM_3$$

Modal portion—basic rules:

Preliminaries

		□ monotonicity	
$ \begin{array}{ccc} [\phi] & & \\ D' & D & \\ \frac{\psi & \diamondsuit \phi}{\diamondsuit \psi} \diamondsuit \textit{Mon}(*) & \end{array} $	$[\phi_1]\dots[\phi_n] \ D' \ \psi$	D_1 $\Box \phi_1 \qquad \dots$ $\Box \psi$	D_n $\Box \phi_n$ $\Box Mon(*)$
$\frac{D}{\frac{\neg \diamondsuit \phi}{\Box \neg \phi}} Inter \diamondsuit \Box$			
(*) D' does not contain undischarged assumptions.			

New modal rules:

 Preliminaries

$$\frac{D}{\diamondsuit(\phi\lor(\psi\land \text{NE}))}$$
 $\diamondsuit Sep$

$$\diamondsuit\psi$$
 \diamondsuit Sep

□ instantiation

$$\frac{\Box(\phi \land \text{NE})}{\diamondsuit \phi} \Box \textit{Inst}$$

$$\frac{D_1}{\diamondsuit \phi} \frac{D_2}{\diamondsuit (\phi \lor \psi)} \diamondsuit Join$$

$$\begin{array}{c|c}
D_1 & D_2 \\
\hline
\Box \phi & \diamondsuit \psi \\
\hline
\Box (\phi \lor \psi) & \Box \diamondsuit \text{ Join}
\end{array}$$

$$s \models \Diamond \phi \iff \forall w \in s : \exists t \subseteq R[w] : t \neq \emptyset \text{ and } t \models \phi \\
s \models \Box \phi \iff \forall w \in s : R[w] \models \phi$$

$$s \models \Diamond (p \lor (q \land NE))$$
$$s \models \Diamond q$$

$$s \models \Diamond \phi \iff \forall w \in s : \exists t \subseteq R[w] : t \neq \emptyset \text{ and } t \models \phi$$

 $s \models \Box \phi \iff \forall w \in s : R[w] \models \phi$

$$\frac{D}{\diamondsuit(\phi\lor(\psi\land\text{NE}))}\diamondsuit\textit{Sep} \qquad \frac{D_1}{\diamondsuit\phi}\diamondsuit\psi$$

Preliminaries

$$s \models \Diamond (p \lor (q \land NE))$$
$$s \models \Diamond q$$

$$s \models \Diamond p \land \Diamond q$$
$$s \models \Diamond (p \lor q)$$

$$s \models \Diamond \phi \iff \forall w \in s : \exists t \subseteq R[w] : t \neq \emptyset \text{ and } t \models \phi$$

$$s \models \Box \phi \iff \forall w \in s : R[w] \models \phi$$

$$\frac{\diamondsuit(\phi \lor (\psi \land \text{NE}))}{\diamondsuit \psi} \diamondsuit Sep$$

$$\frac{\mathcal{O}_1}{\diamondsuit \phi} \frac{\mathcal{O}_2}{\diamondsuit \psi} \diamondsuit \textit{Join}$$

$$\begin{array}{c|c}
D_1 & D_2 \\
\hline
\Box \phi & \diamondsuit \psi \\
\hline
\Box (\phi \lor \psi) & \Box \diamondsuit Join
\end{array}$$

$$s \models \Diamond (p \lor (q \land NE))$$
$$s \models \Diamond q$$

$$s \models \Diamond p \land \Diamond q$$
$$s \models \Diamond (p \lor q)$$

$$s \vDash \Box p \land \Diamond q$$
$$s \vDash \Box (p \lor q)$$

$$\begin{array}{l} s \vDash \Diamond \phi \iff \forall w \in s : \exists t \subseteq R[w] : t \neq \emptyset \text{ and } t \vDash \phi \\ s \vDash \Box \phi \iff \forall w \in s : R[w] \vDash \phi \end{array}$$

$$\Diamond ((\phi \land \text{NE}) \lor (\psi \land \text{NE})) \qquad \dashv \vdash \qquad \Diamond \phi \land \Diamond \psi \qquad \textit{FC}$$

$$\Diamond ((\phi \land \text{NE}) \lor (\psi \land \text{NE})) \qquad \dashv \vdash \qquad \Diamond \phi \land \Diamond \psi \qquad \textit{FC}$$

$$\frac{D}{\frac{\Box(\phi \land \text{NE})}{\diamondsuit \phi}} \Box \textit{Inst}$$

Corresponds to $(\Box \phi)^+ \models \Diamond \phi$ — "ought implies may" for pragmatically enriched formulas.

Lemma:
$$\phi \in BSML^{\mathbb{W}} \implies \forall k \ge \text{modal depth}(\phi) : \exists P : \phi \dashv \vdash \bigvee_{(M,s) \in P} \Theta$$

Lemma:
$$\phi \in BSML^{\mathbb{W}} \implies \forall k \ge \text{modal depth}(\phi) : \exists P : \phi \dashv \vdash \bigvee_{(M,s) \in P} \Theta_s^k$$

$$\phi \vDash \psi$$

Lemma:
$$\phi \in BSML^{\otimes} \implies \forall k \ge \text{modal depth}(\phi) : \exists P : \phi \dashv \vdash \bigvee_{(M,s) \in P} \Theta_s^k$$

$$\phi \vDash \psi \quad \Longrightarrow \quad \bigvee_{(M,s)\in P} \Theta_s^{\kappa} \vDash \bigvee_{(N,t)\in Q} \Theta_s^{\kappa}$$

Lemma:
$$\phi \in BSML^{\otimes} \implies \forall k \ge \text{modal depth}(\phi) : \exists P : \phi \dashv \vdash \bigvee_{(M,s) \in P} \Theta_s^k$$

$$\phi \vDash \psi \quad \Longrightarrow \quad \bigvee_{(M,s)\in P} \Theta_s^k \vDash \bigvee_{(N,t)\in Q} \Theta_t^k$$

$$\implies \forall (M,s) \in P : \exists (N,t) \in Q : \quad s \bowtie_k t$$

Lemma:
$$\phi \in BSML^{\otimes} \implies \forall k \ge \text{modal depth}(\phi) : \exists P : \phi \dashv \vdash \bigvee_{(M,s) \in P} \Theta_s^k$$

$$\phi \vDash \psi \quad \Longrightarrow \quad \bigvee_{(M,s)\in P} \Theta_s^k \vDash \bigvee_{(N,t)\in Q} \Theta_t^k$$

$$\implies \forall (M,s) \in P : \exists (N,t) \in Q : \quad s \cong_k t \\ \Theta_s^k \dashv \vdash \Theta_t^k$$

$$\mathsf{Lemma:} \quad \phi \in \mathit{BSML}^{\mathbb{W}} \quad \Longrightarrow \quad \forall \, k \geq \mathsf{modal} \, \, \mathsf{depth}(\phi) : \exists \, P : \quad \phi \dashv \vdash \bigvee_{(M,s) \in P} \Theta^k_s$$

$$\phi \vDash \psi \quad \Longrightarrow \quad \bigvee_{(M,s)\in P} \Theta_s^k \vDash \bigvee_{(N,t)\in Q} \Theta_t^k$$

$$\implies \forall (M,s) \in P : \exists (N,t) \in Q : \quad s \hookrightarrow_k t \\ \Theta_s^k \dashv \vdash \Theta_t^k$$

$$\implies \bigvee_{(M,s)\in P} \Theta_s^k \vdash \bigvee_{(N,t)\in Q} \Theta_t^k$$

$$\mathsf{Lemma:} \quad \phi \in \mathit{BSML}^{\mathbb{W}} \quad \Longrightarrow \quad \forall \, k \geq \mathsf{modal} \, \, \mathsf{depth}(\phi) : \exists \, P : \quad \phi \dashv \vdash \bigvee_{(M,s) \in P} \Theta_s^k$$

$$\phi \vDash \psi \quad \Longrightarrow \quad \bigvee_{(M,s)\in P} \Theta_s^k \vDash \bigvee_{(N,t)\in Q} \Theta_t^k$$

$$\implies \forall (M,s) \in P : \exists (N,t) \in Q : \quad s \hookrightarrow_k t \\ \Theta_s^k \dashv \vdash \Theta_t^k$$

$$\Longrightarrow \bigvee_{(M,s)\in P} \Theta^k_s \vdash \bigvee_{(N,t)\in Q} \Theta^k_t \quad \Longrightarrow \quad \phi \vdash \psi$$

Exclude w-rules and $\vee NEE$; and add:

Exclude w-rules and ∨NE*E*; and add:

$$\oslash \phi \equiv \phi \otimes \bot$$

 $BSML^{\oslash}$

 $BSML^{w}$

 \oslash introduction

 $\frac{\bot}{\oslash \phi} \oslash I$

 $\frac{D}{\phi} \otimes I$

Exclude w-rules and ∨NE*E*; and add:

$$\emptyset \phi \equiv \phi \otimes \bot$$

BSMI [∅]

 $BSML^{w}$

∅ introduction $\emptyset I$ **⊘NE** introduction

NE introduction

TWNE NE/

Exclude w-rules and VNE*E*; and add:

$$\oslash \phi \equiv \phi \vee \bot \qquad \qquad \neg \oslash \phi \equiv \neg \phi$$

$$BSMI^{\vee}$$

BSMI [∅]

BSML[∅]

∅ elimination

$$\begin{array}{ccc}
 & [\phi(\bot/[\varnothing\psi,m])] & [\phi(\psi/[\varnothing\psi,m])] \\
D & D_1 & D_2 \\
\hline
\phi & \chi & \chi \\
\hline
\chi & & \chi & & \chi \\
\hline
\chi & & & \chi & & & \chi
\end{array}$$

(*) The occurrence at index m is not within the scope of \neg or \diamondsuit .

$BSML^{w}$

w elimination

$$\begin{array}{ccc}
 & [\phi] & [\psi] \\
D & D_1 & D_2 \\
\hline
 & \phi w \psi & \chi & \chi \\
\hline
 & \chi & & \chi \\
 & \chi & \chi \\
\hline
 & \chi & \chi \\
\hline
 & \chi & \chi \\
\hline
 & \chi & \chi \\
 & \chi$$

$$BSML^{\circ}$$

♦ elimination

 $\Diamond \chi_1 \vee \Diamond \chi_2$

$$\begin{array}{c} D \\ \diamondsuit(\phi \le \psi) \\ \hline \diamondsuit\phi \lor \diamondsuit\psi \end{array} Conv \diamondsuit \le \lor \lor$$

♦ w ∨ conversion

(*) The occurrence at index *m* is not within the scope of a modality which occurs in ϕ , and not within the scope of \neg (except if the \neg forms part of \Box).

 D_1 , D_2 do not contain undischarged assumptions.

$BSML^{\oslash}$

♦ elimination

$$\begin{array}{ccc}
 & [\phi(\bot/[\varnothing\psi,m])] & [\phi(\psi/[\varnothing\psi,m])] \\
D & D_1 & D_2 \\
 & & \chi_1 & \chi_2 \\
\hline
 & & & & & & & \\
\hline
 & &$$

□⊘ elimination

$$\begin{array}{ccc} & \left[\phi(\bot/[\oslash\psi,m])\right] & \left[\phi(\psi/[\oslash\psi,m])\right] \\ D & D_1 & D_2 \\ \hline \Box \phi & \chi_1 & \chi_2 \\ \hline \hline \Box \chi_1 \lor \Box \chi_2 & \Box \oslash E(*) \end{array}$$

(*) The occurrence at index m is not within the scope of a modality which occurs in ϕ , and not within the scope of \neg (except if the \neg forms part of \square).

 D_1, D_2 do not contain undischarged assumptions.

 $BSML^{w}$

 $\Diamond \ \lor \lor \ \mathsf{conversion}$

 $\frac{D}{\diamondsuit(\phi \le \psi)}$ $\frac{\diamondsuit(\phi \le \psi)}{\diamondsuit\phi \lor \diamondsuit\psi} \quad Conv \diamondsuit \le \psi \lor$

 $\square \ \lor \ \lor \ conversion$

 $\frac{D}{\Box(\phi \otimes \psi)}$ $\Box \phi \vee \Box \psi$ Conv \Boxes \wedge \varphi

$$\phi \in \mathsf{BSMLE} \implies \forall \, k \geq \mathsf{md}(\phi) : \exists \, P : \quad \phi \dashv \vdash \bigvee_{(M,s) \in P} \oslash \Theta^k_s \quad \text{or} \quad \phi \dashv \vdash (\bigvee_{(M,s) \in P} \oslash \Theta^k_s) \land \mathsf{NE}$$

$$\phi \in \mathsf{BSMLE} \implies \forall \, k \ge \mathsf{md}(\phi) : \exists P : \quad \phi \dashv \vdash \bigvee_{(M,s) \in P} \oslash \Theta_s^k \quad \text{or} \quad \phi \dashv \vdash (\bigvee_{(M,s) \in P} \oslash \Theta_s^k) \land \mathsf{NE}$$

$$\phi \models \psi$$

$$\phi \in \mathsf{BSMLE} \implies \forall k \ge \mathsf{md}(\phi) : \exists P : \quad \phi \dashv \vdash \bigvee_{(M,s) \in P} \otimes \Theta_s^k \quad \text{or} \quad \phi \dashv \vdash (\bigvee_{(M,s) \in P} \otimes \Theta_s^k) \land \mathsf{NE}$$

$$\phi \models \psi \implies \bigvee_{(M,s) \in P} \otimes \Theta_s^k \models \bigvee_{(N,t) \in Q} \otimes \Theta_t^k$$

$$\phi \in \mathsf{BSMLE} \implies \forall \, k \geq \mathsf{md}(\phi) : \exists \, P : \quad \phi \dashv \vdash \bigvee_{(M,s) \in P} \oslash \Theta^k_s \quad \text{or} \quad \phi \dashv \vdash (\bigvee_{(M,s) \in P} \oslash \Theta^k_s) \land \mathsf{NE}$$

$$\phi \vDash \psi \quad \Longrightarrow \quad \bigvee_{s} \oslash \Theta^k_s \vDash \bigvee_{s} \oslash \Theta^k_t$$

$$(M,s)\in P$$
 $(N,t)\in Q$

$$\implies \forall (M,s) \in P : \exists R \subseteq Q : s \bowtie_k \uplus R$$

$$\phi \in \mathsf{BSMLE} \implies \forall \, k \geq \mathsf{md}(\phi) : \exists \, P : \quad \phi \dashv \vdash \bigvee_{(M,s) \in P} \oslash \Theta^k_s \quad \text{or} \quad \phi \dashv \vdash (\bigvee_{(M,s) \in P} \oslash \Theta^k_s) \land \mathsf{NE}$$

$$\phi \models \psi \quad \Longrightarrow \quad \bigvee_{(M,s)\in P} \oslash \Theta_s^k \models \bigvee_{(N,t)\in Q} \oslash \Theta_t^k$$

$$\implies \forall (M,s) \in P : \exists R \subseteq Q : s \bowtie_k \uplus R$$

$$\bigvee_{(N,t)\in Q} \oslash \Theta^k_t \equiv \bigvee_{R\subseteq Q} \Theta^k_{\uplus R}$$

$$\phi \in \mathsf{BSMLE} \implies \forall \, k \geq \mathsf{md}(\phi) : \exists \, P : \quad \phi \dashv \vdash \bigvee_{(M,s) \in P} \oslash \Theta^k_s \quad \text{or} \quad \phi \dashv \vdash (\bigvee_{(M,s) \in P} \oslash \Theta^k_s) \land \mathsf{NE}$$

$$\phi \models \psi \quad \Longrightarrow \quad \bigvee_{(M,s)\in P} \oslash \Theta^k_s \models \bigvee_{(N,t)\in Q} \oslash \Theta^k_t$$

$$\implies \forall (M,s) \in P : \exists R \subseteq Q : \quad s \Leftrightarrow_k \biguplus R \\ \Theta_s^k \vdash \bigvee_{(N,t) \in R} \oslash \Theta_t^k$$

$$\bigvee_{(N,t)\in Q} \oslash \Theta_t^k \equiv \bigvee_{R\subseteq Q} \Theta_{\uplus R}^k$$

$$\phi \in \mathsf{BSMLE} \implies \forall \, k \geq \mathsf{md}(\phi) : \exists P : \quad \phi \dashv \vdash \bigvee_{(M,s) \in P} \oslash \Theta_s^k \quad \text{or} \quad \phi \dashv \vdash (\bigvee_{(M,s) \in P} \oslash \Theta_s^k) \land \mathsf{NE}$$

$$\phi \vDash \psi \quad \Longrightarrow \quad \bigvee_{(M,s)\in P} \Diamond \Theta_s^k \vDash \bigvee_{(N,t)\in Q} \Diamond \Theta_t^k$$

$$\Rightarrow \forall (M,s) \in P : \exists R \subseteq Q : \quad s \Leftrightarrow_k \biguplus R \\ \Theta_s^k \vdash \bigvee_{(N,t) \in R} \oslash \Theta_t^k \\ \Theta_s^k \vdash \bigvee_{(N,t) \in Q} \oslash \Theta_t^k$$

$$\bigvee_{(N,t)\in Q} \oslash \Theta_t^k \equiv \bigvee_{R\subseteq Q} \Theta_{\uplus R}^k$$

$$\phi \in \mathsf{BSMLE} \implies \forall \, k \geq \mathsf{md}(\phi) : \exists P : \quad \phi \dashv \vdash \bigvee_{(M,s) \in P} \oslash \Theta_s^k \quad \mathsf{or} \quad \phi \dashv \vdash (\bigvee_{(M,s) \in P} \oslash \Theta_s^k) \land \mathsf{NE}$$

$$\phi \models \psi \quad \Longrightarrow \quad \bigvee_{(M,s)\in P} \otimes \Theta_s^k \models \bigvee_{(N,t)\in Q} \otimes \Theta_t^k$$

$$\Rightarrow \forall (M,s) \in P : \exists R \subseteq Q : \quad s \Leftrightarrow_k \biguplus R \\ \Theta_s^k \vdash \bigvee_{(N,t) \in R} \oslash \Theta_t^k \\ \Theta_s^k \vdash \bigvee_{(N,t) \in Q} \oslash \Theta_t^k \\ \oslash \Theta_s^k \vdash \bigvee_{(N,t) \in Q} \oslash \Theta_t^k$$

$$\bigvee_{(N,t)\in Q} \oslash \Theta_t^k \equiv \bigvee_{R\subseteq Q} \Theta_{\uplus R}^k$$

$$\phi \in \mathsf{BSMLE} \implies \forall k \ge \mathsf{md}(\phi) : \exists P : \quad \phi \dashv \vdash \bigvee_{(M,s) \in P} \oslash \Theta_s^k \quad \text{or} \quad \phi \dashv \vdash (\bigvee_{(M,s) \in P} \oslash \Theta_s^k) \land \mathsf{NE}$$

$$\phi \models \psi \implies \bigvee \oslash \Theta_s^k \models \bigvee \oslash \Theta_t^k$$

$$(M,s)\in P$$
 $(N,t)\in Q$

$$\Rightarrow \forall (M,s) \in P : \exists R \subseteq Q : \quad s \underset{k}{\Leftrightarrow_k} \biguplus R \\ \Theta_s^k \vdash \bigvee_{\substack{(N,t) \in R \\ (N,t) \in Q}} \varnothing \Theta_t^k$$

$$\Theta_s^k \vdash \bigvee_{\substack{(N,t) \in Q \\ (N,t) \in Q}} \varnothing \Theta_t^k$$

$$\bigvee_{(N,t)\in Q} \oslash \Theta^k_t \equiv \bigvee_{R\subseteq Q} \Theta^k_{t \mid R}$$

$$\implies \bigvee_{(M,s)\in P} \otimes \Theta_s^k \vdash \bigvee_{(N,t)\in Q} \otimes \Theta_t^k$$

Lemma:

$$\phi \in \mathsf{BSMLE} \implies \forall k \ge \mathsf{md}(\phi) : \exists P : \quad \phi \dashv \vdash \bigvee_{(M,s) \in P} \oslash \Theta_s^k \quad \text{or} \quad \phi \dashv \vdash (\bigvee_{(M,s) \in P} \oslash \Theta_s^k) \land \mathsf{NE}$$

$$\phi \models \psi \implies \bigvee \oslash \Theta_s^k \models \bigvee \oslash \Theta_t^k$$

 $(N,t)\in Q$

$$\rightarrow \forall (M, s) \in P : \exists P \in O : s \leftrightarrow \exists P \in P$$

 $(M,s)\in P$

$$\Rightarrow \forall (M,s) \in P : \exists R \subseteq Q : \quad s \underset{k}{\Leftrightarrow_{k}} \biguplus R \\ \Theta_{s}^{k} \vdash \bigvee_{\substack{(N,t) \in R \\ (N,t) \in Q}} \varnothing \Theta_{t}^{k}$$

$$\otimes \Theta_{s}^{k} \vdash \bigvee_{\substack{(N,t) \in Q \\ (N,t) \in Q}} \varnothing \Theta_{t}^{k}$$

$$\bigvee_{(N,t)\in Q} \Diamond \Theta_t^k \equiv \bigvee_{R\subseteq Q} \Theta_{t|R}^k$$

$$\Longrightarrow \bigvee_{(M,s)\in P} \otimes \Theta_s^k \vdash \bigvee_{(N,t)\in Q} \otimes \Theta_t^k \quad \Longrightarrow \quad \phi \vdash \psi$$

BSML axiomatization

Exclude w-rules and $\vee NEE$ from $BSML^{w}$ and add:

BSML axiomatization

Exclude w-rules and $\vee NEE$ from $BSML^{w}$ and add:

BSML

⊥NE translation

$$\begin{array}{ccc} & \left[\phi(\psi \land 1/[\psi,m])\right] & \left[\phi(\psi \land \text{NE}/[\psi,m])\right] \\ D & D_1 & D_2 \\ \hline \phi & \chi & \chi \\ \hline \chi & & 1 \text{NE} \textit{Trs}(*) \end{array}$$

(*) The occurrence at index m is not within the scope of \neg or \diamondsuit .

$BSML^{w}$

 $_{\rm NE}^{\rm NE}$ introduction

TW NE NE/

BSML[∅]

 $BSML^{w}$

$$\begin{array}{ccc} \left[\phi(\psi \wedge \bot/[\psi,m])\right] & \left[\phi(\psi \wedge \text{NE}/[\psi,m])\right] \\ D_1 & D_2 \\ \hline \phi & \chi_1 & \chi_2 \\ \hline & \Diamond \chi_1 \vee \Diamond \chi_2 & \Diamond \bot \text{NE} \textit{Trs}(*) \end{array}$$

 $\diamondsuit \lor \lor \mathsf{conversion}$

- (*) The occurrence at index m is not within the scope of a modality which occurs in ϕ , and not within the scope of \neg (except if the \neg forms part of \square).
- D_1, D_2 do not contain undischarged assumptions.

BSML[∅]

□⊥NE translation

(*) The occurrence at index m is not within the scope of a modality which occurs in ϕ , and not within the scope of \neg (except if the \neg forms part of \square).

 D_1, D_2 do not contain undischarged assumptions.

 $BSML^{w}$

 $\diamondsuit \lor \lor \mathsf{conversion}$

 $\frac{D}{\diamondsuit(\phi \le \psi)}$ $\frac{\diamondsuit(\phi \le \psi)}{\diamondsuit\phi \lor \diamondsuit\psi} \quad Conv \diamondsuit \le \psi \lor$

□ w ∨ conversion

 $\frac{D}{\Box(\phi \otimes \psi)}$ $\Box \phi \vee \Box \psi$ Conv \Boxes \wedge \varphi

Old rules in [7]/[2] which are derivable:

$$\Gamma^k$$
: set of all non-equivalent $\Theta^k_{s_i}$ over Φ , where $s_i \neq \emptyset$

$$NE \equiv \bigvee \Gamma^k$$

BSML

NE elimination

(*) The occurrence at index m is not within the scope of \neg or \diamondsuit ; $k \in \mathbb{N}$; $\{\Theta_{s_1}, \ldots, \Theta_{s_n}\} = \Gamma^k$.

$BSML^{w}$

w elimination

 $\begin{array}{ccc}
 & [\phi] & [\psi] \\
D & D_1 & D_2 \\
\hline
 & \phi w \psi & \chi & \chi \\
\hline
 & \chi & w E
\end{array}$

 $\frac{\chi_n}{}$ $\Diamond_{\rm NE}E(*)$

 $\frac{\chi_n}{}$ DNEE(*)

BSML

♦NE elimination

$$[\phi(\Theta_{s_1}^k/[\text{NE},m])]$$
 $[\phi(\Theta_{s_n}^k/[\text{NE},m])]$

$$\chi_1$$
 $\forall_{i \in I} \diamondsuit \chi_i$

 χ_1

Preliminaries

 $\Box \phi$

$$[\phi(\Theta_{s_1}^k/[\text{NE},m])] \qquad [\phi(\Theta_{s_n}^k/[\text{NE},m])]$$

$$\bigvee_{i \in I} \Box \chi_i$$

(*) The occurrence at index m is not within the scope of a modality which occurs in ϕ , and not within the scope of \neg (except if the \neg forms part of \square); D_1, \ldots, D_n do not contain undischarged assumptions; $k \in \mathbb{N}$; $\{\Theta_{s_1}, \ldots, \Theta_{s_n}\} = \Gamma^k$.

$BSML^{w}$

$$\frac{\Diamond(\phi \otimes \psi)}{\Diamond\phi \vee \Diamond\psi} Conv \diamondsuit \otimes \vee$$

□ w ∨ conversion

55/60

$$\begin{array}{cccc} & [\phi(\Theta_{s_1}^k/[\operatorname{NE},m])] & & [\phi(\Theta_{s_n}^k/[\operatorname{NE},m])] \\ D & D_1 & D_n \\ \hline \phi & \chi & \cdots & \chi \\ \hline & \chi & \end{array}$$

Let $\chi_s^k \coloneqq \bigvee_{w \in s} \chi_w^k$. By classical completeness $\vdash \chi_s^k$, where s is such that for each k-th Hintikka formula $\chi_{w'}^k$, there is a $w \in s$ such that $\chi_w^k \dashv \vdash \chi_{w'}^k$.

$$\begin{array}{cccc} & [\phi(\Theta_{s_1}^k/[\text{NE},m])] & & [\phi(\Theta_{s_n}^k/[\text{NE},m])] \\ D & D_1 & D_n \\ \hline \phi & \chi & \cdots & \chi \\ \hline & \chi & \end{array}$$

Let $\chi_s^k \coloneqq \bigvee_{w \in s} \chi_w^k$. By classical completeness $\vdash \chi_s^k$, where s is such that for each k-th Hintikka formula $\chi_{w'}^k$, there is a $w \in s$ such that $\chi_w^k \dashv \vdash \chi_{w'}^k$.

Then it can be shown that $\phi \vdash \phi(\chi_s^k \land \text{NE}/[\text{NE}, m])$. Let $\psi := \phi(\chi_s^k \land \text{NE}/[\text{NE}, m])$.

$$\begin{array}{cccc} & [\phi(\Theta_{s_1}^k/[\text{NE},m])] & & [\phi(\Theta_{s_n}^k/[\text{NE},m])] \\ D & D_1 & D_n \\ \hline \phi & \chi & \cdots & \chi \\ \hline & \chi & \end{array}$$

Let $\chi_s^k \coloneqq \bigvee_{w \in s} \chi_w^k$. By classical completeness $\vdash \chi_s^k$, where s is such that for each k-th Hintikka formula $\chi_{w'}^k$, there is a $w \in s$ such that $\chi_w^k \dashv \vdash \chi_{w'}^k$.

Then it can be shown that $\phi \vdash \phi(\chi_s^k \land \text{NE}/[\text{NE}, m])$. Let $\psi \coloneqq \phi(\chi_s^k \land \text{NE}/[\text{NE}, m])$. Consider the case in which |s| = 2. Let $\chi_s^k = \chi_{u_s}^k \lor \chi_{u_s}^k$.

$$\begin{array}{cccc} & [\phi(\Theta_{s_1}^k/[\text{NE},m])] & & [\phi(\Theta_{s_n}^k/[\text{NE},m])] \\ D & D_1 & D_n \\ \hline \phi & \chi & \cdots & \chi \\ \hline & \chi & \end{array}$$

Let $\chi_s^k \coloneqq \bigvee_{w \in s} \chi_w^k$. By classical completeness $\vdash \chi_s^k$, where s is such that for each k-th Hintikka formula $\chi_{w'}^k$, there is a $w \in s$ such that $\chi_w^k \dashv \vdash \chi_{w'}^k$.

Then it can be shown that $\phi \vdash \phi(\chi_s^k \land \text{NE}/[\text{NE}, m])$. Let $\psi \coloneqq \phi(\chi_s^k \land \text{NE}/[\text{NE}, m])$.

Consider the case in which |s| = 2. Let $\chi_s^k = \chi_{w_1}^k \vee \chi_{w_2}^k$.

Assume $\psi(\chi_{w_1}^k \wedge \bot/\chi_{w_1}^k)(\chi_{w_2}^k \wedge \bot/\chi_{w_2}^k)$ for $\bot \text{NE} \textit{Trs}$. This is equivalent to $\phi(\bot \wedge \text{NE}/[\text{NE}, m])$, which gives χ via the \bot -rules.

$$\begin{array}{cccc} & [\phi(\Theta_{s_1}^k/[\text{NE},m])] & & [\phi(\Theta_{s_n}^k/[\text{NE},m])] \\ D & D_1 & D_n \\ \hline \phi & \chi & \cdots & \chi \\ \hline & \chi & \end{array}$$

Let $\chi_s^k \coloneqq \bigvee_{w \in s} \chi_w^k$. By classical completeness $\vdash \chi_s^k$, where s is such that for each k-th Hintikka formula $\chi_{w'}^k$, there is a $w \in s$ such that $\chi_w^k \dashv \vdash \chi_{w'}^k$.

Then it can be shown that $\phi \vdash \phi(\chi_s^k \land \text{NE}/[\text{NE}, m])$. Let $\psi \coloneqq \phi(\chi_s^k \land \text{NE}/[\text{NE}, m])$.

Consider the case in which |s| = 2. Let $\chi_s^k = \chi_{w_1}^k \vee \chi_{w_2}^k$.

Assume $\psi(\chi_{w_1}^k \wedge \bot/\chi_{w_1}^k)(\chi_{w_2}^k \wedge \bot/\chi_{w_2}^k)$ for $\bot \text{NE} \textit{Trs}$. This is equivalent to $\phi(\bot \wedge \text{NE}/[\text{NE}, m])$, which gives χ via the \bot -rules.

Assume $\psi(\chi_{w_1}^k \wedge 1/\chi_{w_1}^k)(\chi_{w_2}^k \wedge \text{NE}/\chi_{w_2}^k)$ for INE Trs. This is equivalent to $\phi(\chi_{w_2}^k \wedge \text{NE}/[\text{NE}, m])$, which gives χ by assumption.

Preliminaries

$$\begin{array}{cccc} & [\phi(\Theta_{s_1}^k/[\text{NE},m])] & & [\phi(\Theta_{s_n}^k/[\text{NE},m])] \\ D & D_1 & D_n \\ \hline \phi & \chi & \cdots & \chi \\ \hline & & \chi & \end{array}$$

(*) The occurrence at index m is not within the scope of \neg or \diamondsuit ; $k \in \mathbb{N}$; $\{\Theta_{s_1}, \ldots, \Theta_{s_n}\} = \Gamma^k$.

Let $\chi_s^k := \bigvee_{w \in s} \chi_w^k$. By classical completeness $\vdash \chi_s^k$, where s is such that for each k-th Hintikka formula $\chi_{w'}^k$, there is a $w \in s$ such that $\chi_{w'}^k \dashv \vdash \chi_{w'}^k$.

Then it can be shown that $\phi \vdash \phi(\chi_s^k \land \text{NE}/[\text{NE}, m])$. Let $\psi := \phi(\chi_s^k \land \text{NE}/[\text{NE}, m])$.

Consider the case in which |s| = 2. Let $\chi_s^k = \chi_{Ws}^k \vee \chi_{Ws}^k$.

Assume $\psi(\chi_{w_1}^k \wedge \bot/\chi_{w_2}^k)(\chi_{w_2}^k \wedge \bot/\chi_{w_2}^k)$ for $\bot NE Trs$. This is equivalent to $\phi(\bot \wedge NE/[NE, m])$, which gives χ via the \perp -rules.

Assume $\psi(\chi_{w_1}^k \wedge 1/\chi_{w_2}^k)(\chi_{w_2}^k \wedge NE/\chi_{w_2}^k)$ for 1 NE Trs. This is equivalent to $\phi(\chi_{w_2}^k \wedge NE/[NE, m])$, which gives γ by assumption.

Similarly $\psi(\chi_{\mathsf{MG}}^k \wedge \mathsf{NE}/\chi_{\mathsf{MG}}^k)(\chi_{\mathsf{MG}}^k \wedge \bot/\chi_{\mathsf{MG}}^k) \vdash \chi$ and $\psi(\chi_{\mathsf{MG}}^k \wedge \mathsf{NE}/\chi_{\mathsf{MG}}^k)(\chi_{\mathsf{MG}}^k \wedge \mathsf{NE}/\chi_{\mathsf{MG}}^k) \vdash \chi$.

So $\psi \vdash \chi$ by iterated applications of $\bot NE Trs$.

The idea: simulate the disjunctive normal forms using "instantiations" [7]. In an instantiation ϕ_f for a formula ϕ , each atom η is replaced by some Θ_s^0 such that $s \models \psi$:

$$\phi \qquad \Longrightarrow \qquad \phi_f
p \lor (q \land \text{NE}) \qquad \Longrightarrow \qquad \Theta_{s_p}^0 \lor (\Theta_{s_q}^0 \land \Theta_{\text{NE}}^0)$$

The idea: simulate the disjunctive normal forms using "instantiations" [7]. In an instantiation ϕ_f for a formula ϕ , each atom η is replaced by some Θ_s^0 such that $s \models \psi$:

$$\begin{array}{ccc}
\phi & \Longrightarrow & \phi_f \\
p \lor (q \land \text{NE}) & \Longrightarrow & \Theta^0_{s_p} \lor (\Theta^0_{s_q} \land \Theta^0_{\text{NE}})
\end{array}$$

 F_{ϕ} : the set of all instantiations of ϕ

The idea: simulate the disjunctive normal forms using "instantiations" [7]. In an instantiation ϕ_f for a formula ϕ , each atom η is replaced by some Θ_s^0 such that $s \models \psi$:

$$\phi \qquad \Longrightarrow \qquad \phi_f \\
p \lor (q \land \text{NE}) \qquad \Longrightarrow \qquad \Theta_{s_p}^0 \lor (\Theta_{s_q}^0 \land \Theta_{\text{NE}}^0)$$

 F_{ϕ} : the set of all instantiations of ϕ Since for each atom η we have $\psi \equiv \bigvee_{(M,s)\in P} \Theta^0_s$, where $P = ||\eta|| = \{(M,s) \mid M,s \models \psi\}$, then assuming that \forall distributes over everything:

And given rules that simulate w:

$$\forall \phi_f \in F_\phi : \phi_f \vdash \phi$$
 if $\forall \phi_f \in F_\phi : \Gamma, \phi_f \vdash \psi$, then $\Gamma, \phi \vdash \psi$

Solution: we treat maximal modal subformulas as atoms: $p \land \diamondsuit \Box q \Longrightarrow \Theta^0_{s_p} \land \Theta^2_{s_{\diamondsuit \Box q}}$.

Solution: we treat maximal modal subformulas as atoms: $p \land \diamondsuit \Box q \Longrightarrow \Theta^0_{s_p} \land \Theta^2_{s_{\diamondsuit \Box q}}$.

Lemma (w-distributive form): $\phi \in \mathsf{BSML}$ implies $\phi \dashv \vdash \phi'$ where ϕ' does not contain NE within the scope of a \diamondsuit , and is in negation normal form

Solution: we treat maximal modal subformulas as atoms: $p \land \diamondsuit \Box q \Longrightarrow \Theta^0_{s_p} \land \Theta^2_{s_{\diamondsuit \Box q}}$.

Lemma (w-distributive form): $\phi \in \mathsf{BSML}$ implies $\phi \dashv \vdash \phi'$ where ϕ' does not contain NE within the scope of a \diamondsuit , and is in negation normal form

An instantiation ϕ_f of ϕ in w-distributive form: each NE is replaced by some $\Theta^0_{s_f}$ where $s_f \models \text{NE}$ each $\eta \in \{p, \neg p, \diamondsuit \psi, \Box \psi\}$ is replaced by some $\chi^k_{s_f} = \bigvee_{w \in s_f} \chi^k_w \ (s_f \models \eta; \ k = md(\eta))$

Solution: we treat maximal modal subformulas as atoms: $p \land \diamondsuit \Box q \Longrightarrow \Theta^0_{s_p} \land \Theta^2_{s_{\diamondsuit \Box q}}$.

Lemma (w-distributive form): $\phi \in \mathsf{BSML}$ implies $\phi \dashv \vdash \phi'$ where ϕ' does not contain NE within the scope of a \diamondsuit , and is in negation normal form

An instantiation ϕ_f of ϕ in w-distributive form: each NE is replaced by some $\Theta^0_{s_f}$ where $s_f \models \text{NE}$ each $\eta \in \{p, \neg p, \diamondsuit \psi, \Box \psi\}$ is replaced by some $\chi^k_{s_f} = \bigvee_{w \in s_f} \chi^k_w \ (s_f \models \eta; \ k = md(\eta))$

$$\begin{split} \phi &\equiv \bigvee F_{\phi} \\ \forall \phi_f \in F_{\phi} : \phi_f \vdash \phi \end{split}$$
 if $\forall \phi_f \in F_{\phi} : \Gamma, \phi_f \vdash \psi$, then $\Gamma, \phi \vdash \psi$

$$\implies \bigvee^{\phi \models \psi} F_{\phi} \models \bigvee F_{\psi}$$

$$\implies \bigvee^{\phi \models \psi} F_{\phi} \models \bigvee F_{\psi}$$

$$\forall \phi_f : \forall k \ge md(\phi) : \exists sf_1, sf_2 :$$
$$\phi_f \dashv \vdash \Theta_{sf_1}^k \lor \chi_{sf_2}^k$$

$$\implies \bigvee^{\phi \models \psi} F_{\phi} \models \bigvee F_{\psi}$$

$$\implies \bigvee_{(sf_1,sf_2)\in A} \Theta^k_{sf_1} \vee \chi^k_{sf_2} \models \bigvee_{(sg_1,sg_2)\in B} \Theta^k_{sg_1} \vee \chi^k_{sg_2}$$

$$\forall \phi_f : \forall k \ge md(\phi) : \exists sf_1, sf_2 :$$
$$\phi_f \dashv \vdash \Theta^k_{sf_1} \lor \chi^k_{sf_2}$$

$$\implies \bigvee^{\phi \models \psi} F_{\phi} \models \bigvee F_{\psi}$$

$$\Rightarrow \bigvee_{(sf_1,sf_2)\in A} \Theta^k_{sf_1} \vee \chi^k_{sf_2} \models \bigvee_{(sg_1,sg_2)\in B} \Theta^k_{sg_1} \vee \chi^k_{sg_2}$$

$$\forall \phi_f : \forall k \ge md(\phi) : \exists sf_1, sf_2 :$$
$$\phi_f \dashv \vdash \Theta_{sf_1}^k \lor \chi_{sf_2}^k$$

$$\Theta_{s_1}^k \vee \chi_{s_2}^k \equiv \bigvee_{t \subseteq s_2} \Theta_{s_1 \uplus t}^k
\forall t \subseteq s_2 : \Theta_{s_1 \uplus t}^k \vdash \Theta_{s_1}^k \vee \chi_{s_2}^k
[\forall t \subseteq s_2 : \Gamma, \Theta_{s_1 \uplus t}^k \vdash \psi]
\Longrightarrow \Gamma, \Theta_{s_1}^k \vee \chi_{s_2}^k \vdash \psi$$

$$\implies \bigvee^{\phi \models \psi} F_{\phi} \models \bigvee F_{\psi}$$

$$\implies \bigvee_{(\mathit{sf}_1,\mathit{sf}_2) \in A} \Theta^k_{\mathit{sf}_1} \vee \chi^k_{\mathit{sf}_2} \vDash \bigvee_{(\mathit{sg}_1,\mathit{sg}_2) \in B} \Theta^k_{\mathit{sg}_1} \vee \chi^k_{\mathit{sg}_2}$$

$$\implies \bigvee_{(sf_1,sf_2)\in A} \bigvee_{t\subseteq sf_2} \Theta^k_{sf_1\uplus t} \vDash \bigvee_{(sg_1,sg_2)\in B} \bigvee_{u\subseteq sg_2} \Theta^k_{sg_1\uplus u}$$

$$\forall \phi_f : \forall k \ge md(\phi) : \exists sf_1, sf_2 :$$

$$\phi_f \dashv \vdash \Theta^k_{sf_1} \lor \chi^k_{sf_2}$$

$$\Theta_{s_1}^k \vee \chi_{s_2}^k \equiv \bigvee_{t \subseteq s_2} \Theta_{s_1 \uplus t}^k$$

$$\forall t \subseteq s_2 : \Theta_{s_1 \uplus t}^k \vdash \Theta_{s_1}^k \vee \chi_{s_2}^k$$

$$[\forall t \subseteq s_2 : \Gamma, \Theta_{s_1 \uplus t}^k \vdash \psi]$$

$$\Longrightarrow \Gamma, \Theta_{s_1}^k \vee \chi_{s_2}^k \vdash \psi$$

$$\implies \bigvee^{\phi \models \psi} F_{\phi} \models \bigvee F_{\psi}$$

$$\implies \bigvee_{(sf_1,sf_2)\in A} \Theta^k_{sf_1} \vee \chi^k_{sf_2} \models \bigvee_{(sg_1,sg_2)\in B} \Theta^k_{sg_1} \vee \chi^k_{sg_2}$$

$$\implies \bigvee_{(sf_1,sf_2)\in A} \bigvee_{t\subseteq sf_2} \Theta^k_{sf_1\uplus t} \models \bigvee_{(sg_1,sg_2)\in B} \bigvee_{u\subseteq sg_2} \Theta^k_{sg_1\uplus u}$$

$$\forall (sf_1, sf_2) \in A, t \subseteq sf_2 : \exists (sg_1, sg_2) \in B, u \subseteq sg_2 : \\ \Theta^k_{sf_1 \uplus t} \Leftrightarrow_k \Theta^k_{sg_1 \uplus u}$$

$$\forall \phi_f : \forall k \ge md(\phi) : \exists sf_1, sf_2 :$$

 $\phi_f \dashv \vdash \Theta^k_{sf_1} \lor \chi^k_{sf_2}$

BSML axiomatization

0000000

$$\Theta_{s_1}^k \vee \chi_{s_2}^k \equiv \bigvee_{t \subseteq s_2} \Theta_{s_1 \uplus t}^k
\forall t \subseteq s_2 : \Theta_{s_1 \uplus t}^k \vdash \Theta_{s_1}^k \vee \chi_{s_2}^k
[\forall t \subseteq s_2 : \Gamma, \Theta_{s_1 \uplus t}^k \vdash \psi]
\Longrightarrow \Gamma, \Theta_{s_1}^k \vee \chi_{s_2}^k \vdash \psi$$

$$\implies \bigvee^{\phi \models \psi} F_{\phi} \models \bigvee F_{\psi}$$

$$\implies \bigvee_{(sf_1,sf_2)\in A} \Theta^k_{sf_1} \vee \chi^k_{sf_2} \models \bigvee_{(sg_1,sg_2)\in B} \Theta^k_{sg_1} \vee \chi^k_{sg_2}$$

$$\implies \bigvee_{(sf_1,sf_2)\in A} \bigvee_{t\subseteq sf_2} \Theta^k_{sf_1\uplus t} \models \bigvee_{(sg_1,sg_2)\in B} \bigvee_{u\subseteq sg_2} \Theta^k_{sg_1\uplus u}$$

$$\forall (sf_1, sf_2) \in A, t \subseteq sf_2 : \exists (sg_1, sg_2) \in B, u \subseteq sg_2 : \\ \Theta^k_{sf_1 \uplus t} \stackrel{\leftrightarrow}{\rightleftharpoons}_k \Theta^k_{sg_1 \uplus u} \\ \Theta^k_{sf_1 \uplus t} \dashv \vdash \Theta^k_{sg_1 \uplus u} \vdash \Theta^k_{sg_1} \lor \chi^k_{sg_2} \vdash \psi_g \vdash \psi$$

$$\forall \phi_f : \forall k \ge md(\phi) : \exists sf_1, sf_2 :$$

 $\phi_f \dashv \vdash \Theta^k_{sf_1} \lor \chi^k_{sf_2}$

RSMI axiomatization

0000000

$$\Theta_{s_1}^k \vee \chi_{s_2}^k \equiv \bigvee_{t \subseteq s_2} \Theta_{s_1 \uplus t}^k
\forall t \subseteq s_2 : \Theta_{s_1 \uplus t}^k \vdash \Theta_{s_1}^k \vee \chi_{s_2}^k
[\forall t \subseteq s_2 : \Gamma, \Theta_{s_1 \uplus t}^k \vdash \psi]
\Longrightarrow \Gamma, \Theta_{s_1}^k \vee \chi_{s_2}^k \vdash \psi$$

$$\implies \bigvee^{\phi \models \psi} F_{\phi} \models \bigvee F_{\psi}$$

$$\implies \bigvee_{(sf_1,sf_2)\in A} \Theta^k_{sf_1} \vee \chi^k_{sf_2} \models \bigvee_{(sg_1,sg_2)\in B} \Theta^k_{sg_1} \vee \chi^k_{sg_2}$$

$$\implies \bigvee_{(sf_1,sf_2)\in A}\bigvee_{t\subseteq sf_2}\Theta^k_{sf_1\uplus t}\models \bigvee_{(sg_1,sg_2)\in B}\bigvee_{u\subseteq sg_2}\Theta^k_{sg_1\uplus u}$$

$$\forall (sf_1, sf_2) \in A, t \subseteq sf_2 : \exists (sg_1, sg_2) \in B, u \subseteq sg_2 : \\ \Theta^k_{sf_1 \uplus t} \Leftrightarrow_k \Theta^k_{sg_1 \uplus u} \\ \Theta^k_{sf_1 \uplus t} \dashv \vdash \Theta^k_{sg_1 \uplus u} \vdash \Theta^k_{sg_1} \lor \chi^k_{sg_2} \vdash \psi_g \vdash \psi$$

$$\implies \forall (sf_1, sf_2) \in A : \Theta^k_{sf_1} \lor \chi^k_{sf_2} \vdash \psi$$

$$\forall \phi_f : \forall k \ge md(\phi) : \exists sf_1, sf_2 :$$

$$\phi_f \dashv \vdash \Theta^k_{sf_1} \lor \chi^k_{sf_2}$$

$$\Theta_{s_1}^k \vee \chi_{s_2}^k \equiv \bigvee_{t \subseteq s_2} \Theta_{s_1 \uplus t}^k
\forall t \subseteq s_2 : \Theta_{s_1 \uplus t}^k \vdash \Theta_{s_1}^k \vee \chi_{s_2}^k
[\forall t \subseteq s_2 : \Gamma, \Theta_{s_1 \uplus t}^k \vdash \psi]
\Longrightarrow \Gamma, \Theta_{s_1}^k \vee \chi_{s_2}^k \vdash \psi$$

$$\implies \bigvee_{\phi} F_{\phi} \models \bigvee_{\psi} F_{\psi}$$

Preliminaries

$$\implies \bigvee_{(sf_1,sf_2)\in A} \Theta^k_{sf_1} \vee \chi^k_{sf_2} \models \bigvee_{(sg_1,sg_2)\in B} \Theta^k_{sg_1} \vee \chi^k_{sg_2}$$

$$\implies \bigvee_{(sf_1,sf_2)\in A}\bigvee_{t\subseteq sf_2}\Theta^k_{sf_1\uplus t}\models \bigvee_{(sg_1,sg_2)\in B}\bigvee_{u\subseteq sg_2}\Theta^k_{sg_1\uplus u}$$

$$\forall (sf_1, sf_2) \in A, t \subseteq sf_2 : \exists (sg_1, sg_2) \in B, u \subseteq sg_2 : \\ \Theta^k_{sf_1 \uplus t} \Leftrightarrow_k \Theta^k_{sg_1 \uplus u} \\ \Theta^k_{sf_1 \uplus t} \dashv \vdash \Theta^k_{sg_1 \uplus u} \vdash \Theta^k_{sg_1} \lor \chi^k_{sg_2} \vdash \psi_g \vdash \psi$$

$$\implies \forall (sf_1, sf_2) \in A : \Theta_{sf_1}^k \vee \chi_{sf_2}^k \vdash \psi$$

$$\implies \forall \phi_f \in F_\phi : \phi_f \vdash \psi$$

$$\forall \phi_f : \forall k \ge md(\phi) : \exists sf_1, sf_2 :$$

 $\phi_f \dashv \vdash \Theta_{sf_1}^k \lor \chi_{sf_2}^k$

$$\Theta_{s_1}^k \vee \chi_{s_2}^k \equiv \bigvee_{t \subseteq s_2} \Theta_{s_1 \uplus t}^k
\forall t \subseteq s_2 : \Theta_{s_1 \uplus t}^k \vdash \Theta_{s_1}^k \vee \chi_{s_2}^k
[\forall t \subseteq s_2 : \Gamma, \Theta_{s_1 \uplus t}^k \vdash \psi]
\Longrightarrow \Gamma, \Theta_{s_1}^k \vee \chi_{s_2}^k \vdash \psi$$

$$\implies \bigvee^{\phi \models \psi} F_{\phi} \models \bigvee F_{\psi}$$

$$\implies \bigvee_{(sf_1,sf_2)\in A} \Theta^k_{sf_1} \vee \chi^k_{sf_2} \models \bigvee_{(sg_1,sg_2)\in B} \Theta^k_{sg_1} \vee \chi^k_{sg_2}$$

$$\implies \bigvee_{(sf_1,sf_2)\in A}\bigvee_{t\subseteq sf_2}\Theta^k_{sf_1\uplus t}\models \bigvee_{(sg_1,sg_2)\in B}\bigvee_{u\subseteq sg_2}\Theta^k_{sg_1\uplus u}$$

$$\forall (sf_1, sf_2) \in A, t \subseteq sf_2 : \exists (sg_1, sg_2) \in B, u \subseteq sg_2 : \\ \Theta^k_{sf_1 \uplus t} \Leftrightarrow_k \Theta^k_{sg_1 \uplus u} \\ \Theta^k_{sf_1 \uplus t} \dashv \vdash \Theta^k_{sg_1 \uplus u} \vdash \Theta^k_{sg_1} \lor \chi^k_{sg_2} \vdash \psi_g \vdash \psi$$

$$\implies \forall (sf_1, sf_2) \in A : \Theta^k_{sf_1} \vee \chi^k_{sf_2} \vdash \psi$$

$$\implies \forall \phi_f \in F_\phi : \phi_f \vdash \psi$$

$$\implies \phi \vdash \psi$$

$$\forall \phi_f : \forall k \ge md(\phi) : \exists sf_1, sf_2 :$$
 $\phi_f \dashv \vdash \Theta^k_{sf_1} \lor \chi^k_{sf_2}$

$$\Theta_{s_1}^k \vee \chi_{s_2}^k \equiv \bigvee_{t \subseteq s_2} \Theta_{s_1 \uplus t}^k$$

$$\forall t \subseteq s_2 : \Theta_{s_1 \uplus t}^k \vdash \Theta_{s_1}^k \vee \chi_{s_2}^k$$

$$[\forall t \subseteq s_2 : \Gamma, \Theta_{s_1 \uplus t}^k \vdash \psi]$$

$$\Longrightarrow \Gamma, \Theta_{s_1}^k \vee \chi_{s_2}^k \vdash \psi$$

References

- Maria Aloni. Logic and conversation: the case of free choice, 2021. URL https://semanticsarchive.net/Archive/ThiNmIzM/Aloni21.pdf. Preprint.
- [2] Aleksi Anttila. The logic of free choice. Axiomatizations of state-based modal logics. Master's thesis, University of Amsterdam, 2021.
- [3] Lauri Hella and Johanna Stumpf. The expressive power of modal logic with inclusion atoms. *Electronic Proceedings in Theoretical Computer Science*, 193:129–143, 9 2015. ISSN 2075-2180. doi: 10.4204/eptcs.193.10. URL http://dx.doi.org/10.4204/EPTCS.193.10.
- [4] Lauri Hella, Kerkko Luosto, Katsuhiko Sano, and Jonni Virtema. The expressive power of modal dependence logic. *CoRR*, abs/1406.6266, 2014. URL http://arxiv.org/abs/1406.6266.
- [5] Juha Kontinen, Julian-Steffen Müller, Henning Schnoor, and Heribert Vollmer. A van Benthem theorem for modal team semantics. CoRR, abs/1410.6648, 2014. URL http://arxiv.org/abs/1410.6648.
- [6] Fan Yang. Modal dependence logics: axiomatizations and model-theoretic properties. Logic Journal of the IGPL, 25(5):773–805, 10 2017.
- [7] Fan Yang and Jouko Väänänen. Propositional team logics. Annals of Pure and Applied Logic, 168 (7):1406–1441, 7 2017.

