# Lab 1 Report

## **ECE 154A**

# **Vishal Seenivasan**

## 1. Hours Spent on Lab

This lab took about 10 hours of work across the work total to complete. The majority of my time was spent trying to figure out specific details of Verilog's behavior. Specifically, I had trouble figuring out how to utilize the memreadh function to read in testvectors from the tv file into the ModelSim simulation.

### 2. Table of Test Vectors

| Test                         | F[2:0] | A        | В        | Result         |   | Zero | Over | Car | Neg |
|------------------------------|--------|----------|----------|----------------|---|------|------|-----|-----|
| ADD 0+0                      | 0      | 00000000 | 00000000 | 00000000       | 1 |      | 0    | 0   | 0   |
| ADD 0+(-1)                   | 0      | 00000000 | FFFFFFF  | <b>FFFFFFF</b> | 0 |      | 0    | 0   | 1   |
| ADD 1+(-1)                   | 0      | 00000001 | FFFFFFF  | 00000000       | 1 |      | 0    | 1   | 0   |
| ADD FF+1                     | 0      | 000000FF | 0000001  | 00000100       | 0 |      | 0    | 0   | 0   |
| ADD<br>7FFFFFF+1             | 0      | 7FFFFFF  | 00000001 | 00000008       | 0 |      | 1    | 0   | 1   |
| SUB 0-0                      | 1      | 00000000 | 00000000 | 00000000       | 1 |      | 0    | 1   | 0   |
| SUB 0-(-1)                   | 1      | 00000000 | FFFFFFF  | 0000001        | 0 |      | 0    | 0   | 0   |
| SUB 1-1                      | 1      | 0000001  | 0000001  | 00000000       | 1 |      | 0    | 1   | 0   |
| SUB 100-1                    | 1      | 00000100 | 0000001  | 00000FF        | 0 |      | 0    | 1   | 0   |
| SUB 80000000-1               | 1      | 80000000 | 0000001  | 7FFFFFF        | 0 |      | 1    | 1   | 0   |
| SLT 0,0                      | 5      | 00000000 | 00000000 | 00000000       | 1 |      | 0    | 0   | 0   |
| SLT 0,1                      | 5      | 00000000 | 0000001  | 0000001        | 0 |      | 0    | 0   | 0   |
| SLT 0,-1                     | 5      | 00000000 | FFFFFFF  | 00000000       | 1 |      | 0    | 0   | 0   |
| SLT 1,0                      | 5      | 00000001 | 00000000 | 00000000       | 1 |      | 0    | 0   | 0   |
| SLT -1,0                     | 5      | FFFFFFF  | 00000000 | 0000001        | 0 |      | 0    | 0   | 0   |
| AND<br>FFFFFFFF,<br>FFFFFFF  | 2      | FFFFFFF  | FFFFFFF  | FFFFFFF        | 0 |      | 0    | 0   | 1   |
| AND<br>FFFFFFFF,<br>12345678 | 2      | FFFFFFF  | 12345678 | 12345678       | 0 |      | 0    | 0   | 0   |
| AND 12345678,<br>87654321    | 2      | 12345678 | 87654321 | 02244220       | 0 |      | 0    | 0   | 0   |
| AND 00000000,<br>FFFFFFF     | 2      | 00000000 | FFFFFFF  | 00000000       | 1 |      | 0    | 0   | 0   |
| OR FFFFFFF,<br>FFFFFFF       | 3      | FFFFFFF  | FFFFFFF  | FFFFFFF        | 0 |      | 0    | 0   | 1   |
| OR 12345678,<br>87654321     | 3      | 12345678 | 87654321 | 97755779       | 0 |      | 0    | 0   | 1   |
| OR 00000000,<br>FFFFFFFF     | 3      | 00000000 | FFFFFFF  | FFFFFFF        | 0 |      | 0    | 0   | 1   |
| OR 00000000,<br>00000000     | 3      | 00000000 | 00000000 | 00000000       | 1 |      | 0    | 0   | 0   |

**Table 1. ALU Operations** 

#### 3. alu.v file

```
module alu(input [31:0] a, b,
           input [2:0] f,
           output [31:0] result,
           output zero,
           output overflow,
           output carry,
           output negative);
          wire [31:0] adder b;
          wire [31:0] and result;
          wire [31:0] or result;
          wire [31:0] sum;
          wire [31:0]slt;
          wire cout;
          assign adder b = f[0] ? ~b : b;
          assign and result = a & b;
          assign or result = a | b;
          assign \{cout, sum\} = a + adder b + f[0];
          assign slt[31:1] = 0;
          assign slt[0] = overflow ^ sum[31];
          assign result = (f[2] \& f[0]) ? slt : (f[1] ? (f[0])?
or result : and result) : (f[0]? sum : sum));
          assign zero = &(~result);
          assign overflow = (\sim (f[0] ^ b[31] ^ a[31]) & (a[31] ^
sum[31]) & (~f[1]));
          assign carry = (\sim f[1] \& \sim f[2]) \& cout;
          assign negative = result[31];
endmodule
```

### 4. alu.tv file

### 5. testbench.v file

```
module alu testbench();
  reg[31:0] A, B;
  reg[2:0] control;
  wire[31:0] result;
  wire zero, overflow, carry, negative;
  reg[31:0] expected result;
  reg ex zero, ex overflow, ex carry, ex negative;
  reg[31:0] testvector[0:175];
  integer i;
  alu test unit(
    .a(A),
    .b(B),
    .f(control),
    .result(result),
    .zero(zero),
    .overflow(overflow),
    .carry(carry),
    .negative(negative));
  initial begin
    $readmemh("alu.tv", testvector);
    for (i = 0; i < 175; i = i+8) begin
      control = testvector[i][2:0];
      A = testvector[i+1][31:0];
      B = testvector[i+2][31:0];
      expected result = testvector[i+3][31:0];
      ex zero = testvector[i+4][0];
      ex overflow = testvector[i+5][0];
      ex carry = testvector[i+6][0];
      ex negative = testvector[i+7][0];
```

```
#10;
      if((result == expected result) && (zero == ex zero) &&
(overflow == ex overflow) && (carry == ex carry) && (negative ==
ex negative)) begin
        $display("Test passed");
      end else begin
        $display("Test failed");
        $display("Inputs - control: %b, A: %h, B: %h", control, A,
B);
        $display("Outputs - result: %h, zero: %b, overflow: %b,
carry: %b, negative: %b", result, zero, overflow, carry, negative);
        $display("Expected - result: %h, zero: %b, overflow: %b,
carry: %b, negative: %b", expected result, ex zero, ex overflow,
ex_carry, ex negative);
      end
    end
  end
endmodule
```

### 6. Test Waveforms

