```
MATO -27-Przeksztaticenia
                                                                GNIONE
Zad. 1.
 Które z następujących przekształceń są liniowe?
  (a) F: \mathbb{R}^2 \to \mathbb{R}^3, F([x_1, x_2]) = [x_1 x_2, 0, 0]
  F: u \ni W: linione, ady:

1) \forall u, v \in V : F(u+v) = F(u) + F(v)

2) \forall u \in v \forall u \in K : F(u+v) = \alpha F(u)
2) F(du) = F((ux_1, dx_2)) = (dx_1x_2, 0, 0)
     \alpha F(u) = \alpha \cdot F([x_1, x_2]) = \alpha \cdot [x_1 \cdot x_2] \cdot 0, D = [\alpha x_1 \cdot x_2] \cdot 0, D
          [dx1x210,0] 7 [dx1.x2,0,0] de d70 1 d11
                            NIE YEST LIMIONS
  (b) F: \mathbb{R}^2 \to \mathbb{R}^3, F([x_1, x_2]) = [x_1 + 2x_2, x_1 - x_2, x_1]
                                                     u=[x1,x2], v=[91,y2]
    F(u)= F([x1, x2])
  1) F(u) + F(V) = [x1+2x2,x1-x2,x1] + [y1+2y2,41-y2,41
  = | x1+y1+2(x2+y2), x1+y1-x2-y2, x1+y1)
 F(u+v) = F([x_1+y_1, x_2+y_2]) = [x_1+y_1 + 2x_2 + 2y_2, x_1+y_1 - x_2-y_2]
                                                                          ×1+y1
  2) 2F(u) = F(du)
     F(du) = F((dx1, 0x2)) = [(xx+20x2)dx1-dx2, <x1]
   QF(u)= d. F([x1,x2])= d. [x1+2x2,x1-x2,x1=[dx1+ddx2,dx1-dx,xx]
                              JEST LINIOWE
```

(a)
$$F: R^3 \to R^2$$
, $F([x_1, x_2, x_3]) = [x_1 + 2, x_2]$

(b) $F(u+v) \stackrel{?}{=} F(u) + F(v)$

(c) $F(u) + F(v) = F([x_1, x_2, x_3]) + F([y_1, y_2, y_3]) = [x_1 + \lambda, x_2] + [y_1 + \lambda, y_3]$

(d) $F: R^3 \to R^3$, $F([x_1, x_2, x_3]) = [x_1 + \lambda, x_3]$

(e) $F(u+v) = F([x_1 + y_1, x_2 + y_2, x_3 + y_3]) = [x_1 + \lambda, x_3]$

(f) $F: R^3 \to R^3$, $F([x_1, x_2, x_3]) = [x_1 + \lambda, x_3]$

(g) $F: R^3 \to R^3$, $F([x_1, x_2, x_3]) = [x_1 + \lambda, x_3]$

(g) $F: R^3 \to R^3$, $F([x_1, x_2, x_3]) = [x_1 + \lambda, x_3]$

(g) $F: R^3 \to R^3$, $F([x_1, x_2, x_3]) = [x_1 + \lambda, x_3]$

(g) $F(u+v) \stackrel{?}{=} F(u) + F(v)$

(h) $F(u+v) \stackrel{?}{=} F([x_1 + y_1, x_2 + y_2, x_3 + y_3]) = [x_1 + \lambda, x_2 + y_3, x_3 + y_3]$

(h) $F(u+v) = F([x_1 + y_1, x_2 + y_2, x_3 + y_3]) = [x_1 + \lambda, x_2 + y_3, x_3 + y_3]$

(e) $F(u+v) = F([x_1 + y_1, x_2 + y_2, x_3 + y_3]) = [x_1 + \lambda, x_2 + y_3, x_3 + y_3]$

(f) $F(u+v) \neq F(u) + F(v)$

(g) $F(u+v) \neq F(u) + F(v)$

(h) $F(u+v) \neq F(u) + F(v)$

2ad.2.								
7-7-1-3								
Niech $F: C \to C$, $F(z) = \overline{z}$. Pol					przestrze	eni wektoro	owej $C(\mathbb{R})$.).
Czy F jest przekształceniem lini			ktorowej C	(C):				
$C(\mathbb{R})$:	F/2)	= =						
1) F(z)+F(z)=F(z								
1) (4) (4) = 17 2	1+22/							
$F(z_1) + F(z_2) = \bar{z}_1 +$	-							
(4) (42) 41	2							
F(2,+22) = =================================	$\frac{1}{2} + \frac{1}{2}$							
(3, 2) 2, 2	71 2		-/					
	F(2,)+	P(zz)	= 1(z,	+2 ₂)	W			
a) $F(\alpha 2) = \alpha F(2)$	F(2,)+		, c D	7				
α) $r(\alpha 2) = \alpha + (2)$			QE IK					
F(2) = 2 = 2 = 2	7							
[] 46 -46	(p	M (2)	SSUL 151	eczywist	Sic	ے اما ک	nie 2	mienia
αF/z)= <>			- ,,,	J.,	J	, ,		
(6)								
	YEST	L11	MEMOIN	1				
	U							
C (C)								
	$\alpha \in C$							
2) F(d2) = aF(2)								
F(2) = ZZ								
$\alpha F(z) = \alpha \cdot \overline{2}$								
np. dla $\alpha = i$ $F(dz) = iz = -iz$ $\alpha F(z) = iz$								
0 (1) - 1313								
+(dz) - 62 - 62								
AF(2) = 13	1	VIF	MEST	LINION	JYM			
0. (0) = 02			0					

Przekształcenie liniowe $F: \mathbb{Z}_7^2 \to \mathbb{Z}_7^2$ dane jest przez przyporządkowanie $[1,5] \mapsto [3,5]$ oraz $[3,4] \mapsto [5,6]$. Dla dowolnego wektora $v = [x_1, x_2] \in \mathbb{Z}_7^2$ obliczyć F(v).

$$F([1,5]) = [3,5] \qquad F([3,4]) = [5,6] \qquad F([x_1,x_2]) = [5,6] \qquad F([1,5]) = [5,$$

$$A \cdot \begin{bmatrix} 1 & 3 \end{bmatrix} = \begin{bmatrix} 3 & 5 \end{bmatrix}$$

$$A = \begin{bmatrix} 5 & 6 \end{bmatrix}$$

$$A = \begin{bmatrix} 3 & 5 \end{bmatrix} \cdot \begin{bmatrix} 1 & 3 \end{bmatrix} = \begin{bmatrix} 1 & 3 & 5 \end{bmatrix}$$

$$A = \begin{bmatrix} 3 & 5 & 5 \end{bmatrix} \cdot \begin{bmatrix} 1 & 3 & 5 \end{bmatrix} = \begin{bmatrix} 1 & 3 & 5 \end{bmatrix}$$

$$A = \begin{bmatrix} 3 & 5 \\ 5 & 6 \end{bmatrix} \cdot \begin{bmatrix} 6 & 6 \\ 3 & 5 \end{bmatrix}$$

$$\begin{bmatrix} 3 & 5 \\ 5 & 4 \end{bmatrix}$$

Zord. 5.

Dla każdego z podanych przekształceń liniowych F wyznaczyć macierz przekształcenia w bazach standardowych odpowiednich przestrzeni wektorowych. Podać bazy i wymiary podprzestrzeni jądra KerF i obrazu ImF.

(a) $F: \mathbb{R}^3 \to \mathbb{R}^2$, $F([x_1, x_2, x_3]) = [x_1 + x_2, x_2 + x_3]$

bazy standardone: [1,00],

F(u) = F([1,0,0]) = [1,0]

F(v)=F([0,1,0)=[1,1)

F(w)=F([0,0,1))=[0,1)

 $A = \begin{bmatrix} \Lambda & \Lambda & O \\ O & \Lambda & \Lambda \end{bmatrix}$

Mozdro Kerf-abiór neszystkich nektorów takich, zo F(u)=[0,0,...]

 $A \times = O$

 $\begin{bmatrix} 1 & 1 & 0 \\ 0 & 1 & 1 \end{bmatrix} \cdot \begin{bmatrix} x_1 \\ x_2 \\ x_3 \end{bmatrix} = \begin{bmatrix} 0 \\ 0 \end{bmatrix}$

 $\begin{bmatrix} 1 & 1 & 0 \\ 0 & 1 & 1 \end{bmatrix} \begin{bmatrix} x_2 \\ x_3 \end{bmatrix} \begin{bmatrix} x_1 + x_2 \\ x_2 + x_3 \end{bmatrix}$

 $\begin{bmatrix} \times_1 + \times_2 \\ \times_2 + \times_3 \end{bmatrix} = \begin{bmatrix} 0 \\ 0 \\ - \end{bmatrix}$

 $x_1 + x_2 = 0 = x_2 = -x_1$ $x_2 + x_3 = 0 = x_3 = x_1$

 $\begin{bmatrix} \times_1, \times_2, \times_3 \end{bmatrix} = t \begin{bmatrix} \Lambda_1 - \Lambda_1, \Lambda \end{bmatrix}$

$$\begin{bmatrix} 2 \times_{1} - \kappa_{2} + \times_{9} \\ \times_{1} - \kappa_{2} + \times_{9} \\ - \times_{1} + 3 \times_{2} - 3 \times_{3} \\ 8 \times_{1} + 2 \times_{2} + 2 \times_{3} \end{bmatrix} = 0$$

$$\begin{bmatrix} 1 & 2 & -1 & 0 & \pi_{2} - 2 \pi_{3} \\ 2 & -1 & 0 & \pi_{3} - 2 \pi_{3} \\ 2 & -1 & 0 & \pi_{3} - 2 \pi_{3} \end{bmatrix}$$

$$\begin{bmatrix} 1 & 2 & -1 & 0 & \pi_{3} - 2 \pi_{3} \\ 2 & -1 & 0 & \pi_{3} - 2 \pi_{3} \end{bmatrix}$$

$$\begin{bmatrix} 1 & 2 & -1 & 0 & \pi_{3} - 2 \pi_{3} \\ 2 & -1 & 0 & \pi_{3} - 2 \pi_{3} \end{bmatrix}$$

$$\begin{bmatrix} 1 & 2 & -1 & 0 & \pi_{3} - 2 \pi_{3} \\ -1 & 2 & -1 & 0 & \pi_{3} - 2 \pi_{3} \end{bmatrix}$$

$$\begin{bmatrix} 1 & 2 & -1 & 0 & \pi_{3} - 2 \pi_{3} \\ -1 & 2 & -1 & 0 & \pi_{3} - 2 \pi_{3} \end{bmatrix}$$

$$\begin{bmatrix} 1 & 2 & -1 & 0 & \pi_{3} - 2 \pi_{3} \\ -1 & 2 & -1 & 0 & \pi_{3} - 2 \pi_{3} \end{bmatrix}$$

$$\begin{bmatrix} 1 & 2 & -1 & 0 & \pi_{3} - 2 \pi_{3} \\ -1 & 2 & -1 & 0 & \pi_{3} - 2 \pi_{3} \end{bmatrix}$$

$$\begin{bmatrix} 1 & 2 & -1 & 0 & \pi_{3} - 2 \pi_{3} \\ -1 & 2 & -1 & 0 & \pi_{3} - 2 \pi_{3} \end{bmatrix}$$

$$\begin{bmatrix} 1 & 2 & -1 & 0 & \pi_{3} - 2 \pi_{3} \\ -1 & 2 & -1 & 0 & \pi_{3} - 2 \pi_{3} \end{bmatrix}$$

$$\begin{bmatrix} 1 & 2 & -1 & 0 & \pi_{3} - 2 \pi_{3} \\ -1 & 2 & -1 & 0 & \pi_{3} - 2 \pi_{3} \end{bmatrix}$$

$$\begin{bmatrix} 1 & 2 & -1 & 0 & \pi_{3} - 2 \pi_{3} \\ -1 & 2 & -1 & 0 & \pi_{3} - 2 \pi_{3} \end{bmatrix}$$

$$\begin{bmatrix} 1 & 2 & -1 & 0 & \pi_{3} - 2 \pi_{3} \\ -1 & 2 & -1 & 0 & \pi_{3} - 2 \pi_{3} \end{bmatrix}$$

$$\begin{bmatrix} 1 & 2 & -1 & 0 & \pi_{3} - 2 \pi_{3} \\ -1 & 2 & -1 & 0 & \pi_{3} - 2 \pi_{3} \end{bmatrix}$$

$$\begin{bmatrix} 1 & 2 & -1 & 0 & \pi_{3} - 2 \pi_{3} \\ -1 & 2 & -1 & 0 & \pi_{3} - 2 \pi_{3} \end{bmatrix}$$

$$\begin{bmatrix} 1 & 2 & -1 & 0 & \pi_{3} - 2 \pi_{3} \\ -1 & 2 & -1 & 0 & \pi_{3} - 2 \pi_{3} \end{bmatrix}$$

$$\begin{bmatrix} 1 & 2 & -1 & 0 & \pi_{3} - 2 \pi_{3} \\ -1 & 2 & -1 & 0 & \pi_{3} - 2 \pi_{3} \end{bmatrix}$$

$$\begin{bmatrix} 1 & 2 & -1 & 0 & \pi_{3} - 2 \pi_{3} \\ -1 & 2 & -1 & 0 & \pi_{3} - 2 \pi_{3} \end{bmatrix}$$

$$\begin{bmatrix} 1 & 2 & -1 & 0 & \pi_{3} - 2 \pi_{3} \\ -1 & 2 & -1 & 0 & \pi_{3} - 2 \pi_{3} \end{bmatrix}$$

$$\begin{bmatrix} 1 & 2 & -1 & 0 & \pi_{3} - 2 \pi_{3} \\ -1 & 2 & -1 & 0 & \pi_{3} - 2 \pi_{3} \end{bmatrix}$$

$$\begin{bmatrix} 1 & 2 & -1 & 0 & \pi_{3} - 2 \pi_{3} \\ -1 & 2 & -1 & 0 & \pi_{3} - 2 \pi_{3} \end{bmatrix}$$

$$\begin{bmatrix} 1 & 2 & -1 & 0 & \pi_{3} - 2 \pi_{3} \\ -1 & 2 & -1 & 0 & \pi_{3} - 2 \pi_{3} \end{bmatrix}$$

$$\begin{bmatrix} 1 & 2 & -1 & 0 & \pi_{3} - 2 & \pi_{3} - 2 \pi_{3} \\ -1 & 2 & -1 & 0 & \pi_{3} - 2 \end{bmatrix}$$

$$\begin{bmatrix} 1 & 2 & -1 & 0 & \pi_{3} - 2 & \pi_{3} - 2 & \pi_{3} - 2 \\ -1 & 2 & -1 & 0 & \pi_{3} - 2 \end{bmatrix}$$

$$\begin{bmatrix} 1 & 2 & -1 & 0 & \pi_{3} - 2 & \pi_{3} - 2 & \pi_{3} - 2 & \pi_{3} - 2 \\ -1 & 2 & -1 & 0 & \pi_{3} - 2 & \pi_{3} - 2 \end{bmatrix}$$

$$\begin{bmatrix} 1 & 2 & -1 & 0 & \pi_{3} - 2 & \pi_{3} - 2 & \pi_{3} - 2 & \pi$$

$$\begin{bmatrix} 2 & -1 \\ -6 & 3 \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \end{bmatrix} = 0$$

$$\begin{bmatrix} 2 & -1 \\ -6 & 3 \end{bmatrix} \begin{bmatrix} 2x_1 - x_2 \\ -6x_1 + 3x_2 \end{bmatrix} = \begin{bmatrix} 3 \\ 0 \end{bmatrix}$$

$$2x_1 - x_2 = 0 = 7 \quad x_2 = 2x_1$$

$$Kerf = \mathcal{L}([1, 2])$$

$$dim Kerf = 1$$

$$\begin{bmatrix} 2 & -1 & 0 \\ -6 & 3 & 0 \end{bmatrix}$$

$$\lim_{x \to \infty} F = \mathcal{L}([2, -6])$$

$$\lim_{x \to \infty}$$

