

Universidade Federal São João del Rei Curso de Ciência da Computação

Exercícios Avaliativos Introdução à Modelagem Computacional

Discente: Julio Cesar da Silva Rodrigues

Docente: Alexandre Bittencourt Pigozzo

Maio 2023

O modelo construído utilizando a ferramenta *Insight Maker* que representa a ocorrência das reações é exibido na Figura 1.

Figura 1: Modelo de Reações Químicas

Foi criado um conjunto de stocks representando as moléculas hipotéticas que correspondem as populações A, B e C (e seus níveis de concentração).

Foram criados dois fluxos direcionados para C, e ambos possuem a mesma modelagem do número de reações, multiplicando a taxa k_1 pelas concentrações de A e B ao longo do tempo, produzindo C.

$$\frac{dA}{dt} = k_1 \cdot A \cdot B \qquad \frac{dB}{dt} = k_1 \cdot A \cdot B$$

De forma semelhante, foram criados dois fluxos para representar a reação de volta, desta vez com uma taxa k_2 com que a concentração de moléculas de C "derivam" A e B, aumentando suas concentrações.

$$\frac{dC}{dt} = k_2 \cdot C$$

Uma simulação* inicial foi realizada (Figura 2), utilizando as condições iniciais à seguir:

- A = 2
- B = 1
- C = 0
- $k_1 = 0.1$
- $k_2 = 0.05$

Figura 2: Reações Químicas ao Longo do Tempo

 $^{^{\}ast}$ Todas as simulações deste exercício foram realizadas com passo de tempo 0.01 e mensurado em dias.

Alterando Parâmetros, Condições Iniciais e Análises

Para o parâmetro k_1 , foi observado que elevações em seu valor implicam no aumento da concentração de C em relação as concentrações de A e B, que se mostram inferiores como é mostrado na Figura 3. As condições iniciais da simulação são detalhadas à seguir:

- \bullet A=2
- B = 1
- \bullet C=0
- $k_1 = 1$
- $k_2 = 0.05$

Figura 3: Reações Químicas ao Longo do Tempo Variando k_1

Em contrapartida, atribuindo valores muito baixos para k_1 produzem um efeito inverso, com C apresentando uma concentração menor em relação as concentrações de A e B ao longo do tempo na simulação.

Para o parâmetro k_2 , foi observado que elevações em seu valor implicam em pouco decréscimo nas concentrações de A e B, enquanto o crescimento de C se mostra relativamente discreto, com concentração final inferior as de A e B como é mostrado na Figura 4. As condições iniciais da simulação são detalhadas à seguir:

- A = 2
- B = 1
- \bullet C=0
- $k_1 = 0.1$
- $k_2 = 0.5$

Figura 4: Reações Químicas ao Longo do Tempo Variando k_2

Além disso, a atribuição de valores muito baixos para k_2 produzem um efeito ainda mais discrepante, com C apresentando uma crescimento quase desprezível em relação as concentrações de A e B ao longo do tempo na simulação.

Em resumo, para as condições iniciais em que as concentrações de A e B são superiores a de C, valores extremos de k_1 aceleram ou inibem o aumento da concentração de C e decréscimo nas concentrações de A e B. Valores extremos de k_2 tendem a estagnar rapidamente as concentrações de A e B ao longo do tempo e inibir proporcionalmente a síntese de C.

Por fim, foi realizada uma última simulação (Figura 5), desta vez com a concentração inicial de C superior às concentrações de A e B, sem alterar as taxas iniciais de k_1 e k_2 . O resultado obtido foi o esperado, com a concentração de C apresentando decréscimo, e as concentrações de A e B apresentando crescimento, uma situação inversa à aquela observada na primeira simulação. As condições iniciais da simulação são detalhadas à seguir:

- A = 1
- B = 0
- C = 3
- $k_1 = 0.1$
- $k_2 = 0.05$

Figura 5: Impacto das Condições Iniciais na Simulação

Para a modelagem de cada uma das EDOs, assume-se como significado de cada variável:

- A: Concentração de moléculas do tipo A;
- B: Concentração de moléculas do tipo B;
- C: Concentração de moléculas do tipo C;
- k_1 : Probababilidade da reação (síntese) entre duas moléculas quaisquer A e B para produzir C (A + B $\stackrel{k_1}{\Longrightarrow}$ C);
- k_2 : Probababilidade da reação (decomposição) de uma molécula qualquer C para produzir A e B (C \Longrightarrow A + B).

Reação com A e B

$$\frac{dA}{dt} = -k_1 \cdot A \cdot B + k_2 \cdot C$$

$$\frac{dB}{dt} = -k_1 \cdot A \cdot B + k_2 \cdot C$$

Como apenas existe uma única reação entre A e B de forma conjunta, é utilizada a mesma EDO para modelar suas concentrações ao longo do tempo. O termo $-k_1AB$ representa o decréscimo (sinal negativo) nas concentrações de A e B com uma taxa k_1 , conforme a ocorrência das reações. Já o termo k_2C , representa o aumento (sinal positivo) na concentração de moléculas do tipo C, com uma taxa k_2 à medida que as reações ocorrem, com A e B derivando C (reação de síntese).

Reação com C

$$\frac{dC}{dt} = k_1 \cdot A \cdot B - k_2 \cdot C$$

O termo k_1AB representa o aumento (sinal positivo) nas concentrações de A e B com uma taxa k_1 , conforme a ocorrência das reações. Já o termo $-k_2C$, representa o decréscimo (sinal negativo) na concentração de moléculas do tipo C, com uma taxa k_2 à medida que as reações ocorrem, com C decompondo-se em A e B (reação de decomposição).

Resultados

Por fim, foram realizadas simulações utilizando os mesmos parâmetros explorados no modelo sintetizado na plataforma *Insight Maker* para testar o funcionamento correto, e principalmente, a concordância entre resultados para investigar possíveis incoerências. Os resultados obtidos foram extremamente parecidos com aqueles sumarizados pelos gráficos apresentados nas Figuras 2, 3, 4 e 5 (inclusive as análises).

Para efeitos de comparação e checagens, os resultados obtidos com o modelo desenvolvido em linguagem *Python* são exibidos nas Figuras 6, 7, 8 e 9:

Figura 6: Reações Químicas ao Longo do Tempo

Figura 7: Reações Químicas ao Longo do Tempo Variando $k_1\,$

Figura 8: Reações Químicas ao Longo do Tempo Variando $k_2\,$

Figura 9: Impacto das Condições Iniciais na Simulação

EDOs

• Produto P

$$\frac{dP}{dt} = k_3 \cdot ES$$

• Substância I

$$\frac{dI}{dt} = -(k_4 \cdot E \cdot I) + (k_5 \cdot EI)$$

• Substrato S

$$\frac{dS}{dt} = -(k_1 \cdot S \cdot E) + (k_2 \cdot ES)$$

• Complexo Temporário ES

$$\frac{dES}{dt} = k_1 \cdot E \cdot S - k_2 \cdot ES - k_3 \cdot ES$$
$$= (k_1 \cdot E \cdot S) - (ES \cdot (k_2 + k_3))$$

• Complexo Temporátio EI

$$\frac{dEI}{dt} = (k_4 \cdot E \cdot I) - (k_5 \cdot EI)$$

• Enzima E

$$\frac{dE}{dt} = k_2 \cdot ES + k_3 \cdot ES + k_5 \cdot EI - k_1 \cdot S \cdot E - k_4 \cdot E \cdot I$$

= $(ES \cdot (k_2 + k_3)) + (k_5 \cdot EI) - (k_1 \cdot S \cdot E) - (k_4 \cdot E \cdot I)$

Resultados Iniciais

Nesta subseção, serão apresentados alguns dos resultados obtidos nos testes e simulações realizadas. É importante citar de antemão, que os valores passo de tempo (dt) e o tempo total de simulação (t_{final}) , foram sempre constantes (0,1 e 100). Além disto, o método utilizado na resolução foi o Runge-Kutta de 4^a ordem.

Primeira Simulação

No primeiro teste realizado, os parâmetros e condições iniciais foram fixados com o mesmo valor. O resultado pode ser observado na Figura 10, cuja execução se deu com os seguintes valores:

- E = S = I = P = ES = EI = 20;
- $k_1 = k_2 = k_3 = k_4 = k_5 = 0.1$.

Figura 10: Impacto de parâmetros iguais na simulação

Embora os valores das condições iniciais e taxas sejam exatamente os mesmos entre si, podemos observar alguns comportamentos interessantes do modelo. A variação das populações alcança a estabilidade por volta de t=40, e apenas duas populações apresentam crescimento ao final da simulação, em relação às condições iniciais.

Nos primeiros instantes de tempo, E e S reagem rapidamente formando ES, cuja população cresce exponencialmente brevemente (e as populações de E e S diminuem). Logo após, esse crescimento não só estagna, como começa a decrescer exponencialmente devido à reação de volta ($ES \rightarrow E + S$) e a reação de ida ($ES \rightarrow E + P$). Como não existe reação de volta entre E, P e ES ($E + P \rightarrow ES$), a população de E volta a crescer, e ES tende à zero.

Já na segunda reação cinética $(E+I\leftrightarrow EI)$, como a enzima E participa na síntese e decomposição em todas as reações, esta descresce rapidamente, para então crescer e se estabilizar novamente. Neste momento, as concentração de ES e S já estagnaram (tendem à zero), assim como a população de I. Por isto, EI cresce em função logarítimica até se estagnar em t=20.

Segunda Simulação

No segundo teste realizado, as taxas e condições iniciais foram subitamente alteradas. As reações de síntese de S, E e P foram suprimidas $(ES \rightarrow S + E \ e \ ES \rightarrow E + P)$, fixando as taxas k_2 e k_3 como nulas. O resultado pode ser observado na Figura 11, cuja execução se deu com os seguintes valores:

- $E = S = I = EI = 10 \mid P = 13 \mid ES = 15;$
- $k_2 = k_3 = 0 \mid k_4 = k_5 = 0,01 \mid k_1 = 0,2;$

Figura 11: Variações bruscas nos parâmetros na simulação

Como k_3 é igual à zero, a reação de síntese $\{ES \to E + P\}$ não ocorre. Logo, a população de P permanece inalterada durante toda a simulação. A não ocorrência da reação $\{ES \to S + E\}$, com k_2 igual à zero, impede qualquer decomposição do complexo ES em qualquer substância. Logo, o crescimento da mesma é dado por uma função inicialmente exponencial, que se estagna a partir de t=20.

Quanto às outras reações do sistema, a população de S tende à zero rapidamente devido as reações com E para síntese de ES, e as reações com I para a produção de EI. Como k_2 e k_3 são iguais à zero, e as taxas k_4 e k_5 são muito baixas comparadas à k_1 , as populações de E e S não possuem "chances para se recompor" em relação às condições iniciais. Por fim, com o esgotamento rápido da enzima E na síntese de ES, EI e I sofrem pouca variação

Terceira Simulação

No terceiro teste realizado, as taxas e condições iniciais foram subitamente alteradas novamente. A reação de síntese de ES foi suprimidas $(S + E \rightarrow ES)$, fixando a taxa k_1 como nula. O resultado pode ser observado na Figura 12, cuja execução se deu com os seguintes valores:

•
$$E = I = EI = 15 \mid P = 0 \mid ES = 20 \mid S = 5;$$

•
$$k_2 = k_3 = 0, 1 \mid k_4 = 0, 01 \mid k_1 = 0 \mid k_5 = 0, 4;$$

Figura 12: Variações bruscas nos parâmetros na simulação

Ao contrário da segunda simulação, como k_1 é igual à zero, a reação de síntese $\{S+E\to ES\}$ não ocorre. Logo, a população de ES tende à zero rapidamente. Em contrapartida, as taxas k_2 e k_3 são diferentes de zero, sintetizando S, E e P desde que a população inicial de ES seja diferente de zero.

Como a taxa k_4 é relativamente baixa, ocorrem poucas reações de síntese de EI, o que mantém a população da mesma e de I com pouca variação no início da simulação, e estáveis a partir de t=20. Outra consequência disto, é de que as populações de E, S e P crescem exponencialmente no começo e se estagnam também em t=20. Isto é auxiliado pelo fato de que, a taxa k_5 se apresenta bastante alta, sintetizando um grande volume de enzimas E e substratos S a partir da decomposição dos complexos temporários ES e EI.

Por fim, existem certas constantes neste modelo. Supondo que não existam condições extremas, como taxas iguais à zero, a produção de um complexo, seja ele EI ou ES, inibe a produção do segundo. Por isto, a concavidade das curvas dos mesmos tendem à ser opostas. Além disto, como P não possui reação de decomposição em nenhuma substância, o crescimento da população do mesmo sempre ocorre na maioria das simulações, supondo novamente que uma ou mais taxas e populações seja diferente de zero.

Letra A

- Jula A
- \bullet I A melhor solução obtida foi {0,12596218 | 0,01300145 | 0,85244477}, com erro associado de aproximadamente 0,26.
- II

Figura 13: Evolução do Erro (Evolução Diferencial)

- III
- IV

Letra B

- \bullet I A melhor solução obtida foi {0,665573 | 0,330446 | 0,151489}, com erro associado de aproximadamente 0,29.
- II

Figura 14: Evolução do Erro (Algoritmo Genético)

- III
- IV

Embora os parâmetros utilizados nos algoritmos tenham sido os mesmos, o algoritmo de Evolução Diferencial apresentou o menor erro.

Exercício 5

1º Cenário

Neste primeiro cenário, foram realizados dois testes, cada um executando cinco simulações distintas. Os resultados são sumarizados nas Figuras 15, 16 e 17, e 18, 19 e 20, respectivamente.

• Primeiro Teste

Figura 15: Suscetíveis

Figura 16: Infectados

Figura 17: Recuperados

• Segundo Teste

Figura 18: Suscetíveis

Figura 19: Infectados

Figura 20: Recuperados

Entre os dois testes, podemos observar uma dispersão maior no segundo caso, embora a disposição geral das curvas das simulações sejam similares.

2º Cenário

Neste segundo cenário, também foram realizados dois testes, cada um executando cinco simulações distintas. Os resultados são sumarizados nas Figuras 21, 22 e 23, e 24, 25 e 26, respectivamente.

• Primeiro Teste

Figura 21: Suscetíveis

Figura 22: Infectados

Figura 23: Recuperados

• Segundo Teste

Figura 24: Suscetíveis

Figura 25: Infectados

Figura 26: Recuperados

Novamente, entre os dois testes, podemos observar uma dispersão maior no segundo caso, embora a disposição geral das curvas das simulações sejam similares.

Análise Geral

Observando o conjunto de simulações, fica evidente que as curvas sem vacinação correspondentes às populações de infectados e recuperados tendem a crescer alguns instantes de tempo mais cedo. Isto porque a população inicial de suscetíveis é quase o dobro do segundo caso.

Outro detalhe interessante, é de que a curva da população de suscetíveis apresenta um leve crescimento logo nos instantes de tempo finais sem vacinação. Quanto maior a texa de vacinação, menos variação e entropia as curvas tendem a apresentar.

Por fim, a aplicação da vacina em instantes de tempo posteriores, provavelmente postergaria o processo de redução da população de suscetíveis e infectados, deslocando as curvas no eixo de tempo.

Referências

- Repositório com implementações de métodos e modelos de Alexandre Bittencourt Pigozzo: https://github.com/alexbprr/ComputationalModeling;
- Material disponível no portal didático na disciplina de Introdução à Modelagem Computacional.