# 4.4 TMS70C02, TMS70C42, and TMS70C82 Specifications (Wide Voltage)

Table 4–20. Absolute Maximum Ratings Over Operating Free-Air Temperature Range for the TMS70C02, TMS70C42, and TMS70C82 (Unless Otherwise Noted)

| Supply voltage range, V <sub>CC</sub> † – 0.3V to 7 V           |
|-----------------------------------------------------------------|
| Input voltage range                                             |
| Output voltage range – 0.3V to VCC+0.3 V                        |
| Maximum I/O buffer current (per pin)                            |
| Storage temperature range – 55°C to 150°C                       |
| I <sub>CC</sub> , I <sub>SS</sub> (maximum into pin 25 or 40)   |
| Continuous power dissipation 0.5 W                              |
| † Unless otherwise noted, all voltages are with respect to VSS. |

Stresses beyond those listed under "Absolute Maximum Ratings" may cause permanent damage to the device. This is a stress rating only and functional operation of the device at these or any other conditions beyond those indicated in the "Recommended Operating Conditions" section of this specification is not implied. Exposure to absolute maximum rated conditions for extended periods may affect device reliability.

Table 4-21. Recommended Operating Conditions for the TMS70C02, TMS70C42, and TMS70C82

|                 |                                |                                                       | Min                 | Nom      | Max                | Unit |
|-----------------|--------------------------------|-------------------------------------------------------|---------------------|----------|--------------------|------|
| Vcc             | Supply voltage                 |                                                       | 2.5                 |          | 6.0                | ٧    |
| V <sub>IH</sub> | High-level input voltage       | MC and XTAL2 pins,<br>VCC = 2.5 to 6 V                | 0.8V <sub>CC</sub>  |          |                    | ٧    |
|                 |                                | All other input pins,<br>VCC = 3 to 6 V               | 0.70V <sub>CC</sub> |          | *                  | ٧    |
|                 |                                | All other input pins,<br>V <sub>CC</sub> = 2.5 to 3 V | 0.75V <sub>CC</sub> |          |                    | V    |
| V <sub>IL</sub> | Low-level input voltage        | MC and XTAL2 pins,<br>V <sub>CC</sub> = 2.5 to 6 V    |                     |          | 0.2V <sub>CC</sub> | ٧    |
| =               |                                | All other input pins,<br>VCC = 2.5 to 6 V             |                     |          | 0.3V <sub>CC</sub> | ٧    |
| TA              | Operating free-air temperature | Commercial<br>(TMS70C42NL)                            | 0                   | <u>.</u> | 70                 | °C   |
|                 |                                | Industrial<br>(TMS70C42NA)                            | - 40                |          | 85                 | °C   |

Electrical Characteristics Over Full Range of Operating Conditions for the TMS70C02, Table 4–22. TMS70C42, and TMS70C82

|     | Parameter                   | Test Conditions                                                                                                                  | Min  | Typt | Max  | Unit |
|-----|-----------------------------|----------------------------------------------------------------------------------------------------------------------------------|------|------|------|------|
| lį  | Input current               | MC pin, V <sub>IN</sub> = V <sub>SS</sub> or V <sub>CC</sub><br>All others, V <sub>IN</sub> = V <sub>SS</sub> to V <sub>CC</sub> |      | ±0.1 | ±5   | μА   |
| CI  | Input capacitance           |                                                                                                                                  |      | 5    |      | pF   |
| VOH | High-level output voltage ‡ | V <sub>CC</sub> = 2.5 V, I <sub>OH</sub> = - 50 mA                                                                               | 2.25 | 2.4  |      | V    |
|     |                             | V <sub>CC</sub> = 4.0 V, I <sub>OH</sub> = -0.4 mA                                                                               | 3.2  | 3.6  |      | V    |
|     |                             | $V_{CC} = 5.0 \text{ V}, I_{OH} = -0.7 \text{ mA}$                                                                               | 3.9  | 4.5  |      | V    |
|     |                             | V <sub>CC</sub> = 6.0 V, l <sub>OH</sub> = -1.0 mA                                                                               | 4.6  | 5.4  |      | V    |
| VOL | Low-level output voltage ‡  | V <sub>CC</sub> = 2.5 V, I <sub>OL</sub> = 0.4 mA                                                                                |      | 0.2  | 0.35 | V    |
|     |                             | V <sub>CC</sub> = 4.0 V, I <sub>OL</sub> = 1.6 mA                                                                                |      | 0.4  | 0.8  | ٧    |
|     |                             | V <sub>CC</sub> = 5.0 V, I <sub>OL</sub> = 2.5 mA                                                                                |      | 0.6  | 1.1  | ٧    |
|     |                             | V <sub>CC</sub> = 6.0 V, l <sub>OL</sub> = 3.4 mA                                                                                |      | 0.8  | 1.4  | V    |
| ЮН  | Output source current       | V <sub>CC</sub> = 2.5 V, V <sub>OH</sub> = 2.25 V                                                                                | -50  | -200 |      | μΑ   |
|     |                             | V <sub>CC</sub> = 4.0 V, V <sub>OH</sub> = 3.2 V                                                                                 | -0.4 | -1.4 |      | mA   |
|     |                             | V <sub>CC</sub> = 5.0 V, V <sub>OH</sub> = 3.9 V                                                                                 | -0.7 | -2.2 |      | mA   |
|     |                             | V <sub>CC</sub> = 6.0 V, V <sub>OH</sub> = 4.6 V                                                                                 | -1.0 | -3.3 |      | mA   |
| loL | Output sink current         | V <sub>CC</sub> = 2.5 V, V <sub>OL</sub> = 0.35 V                                                                                | 0.4  | 0.9  |      | mA   |
|     |                             | V <sub>CC</sub> = 4.0 V, V <sub>OL</sub> = 0.8 V                                                                                 | 1.6  | 3.5  |      | mA   |
|     |                             | V <sub>CC</sub> = 5.0 V, V <sub>OL</sub> = 1.1 V                                                                                 | 2.5  | 5.5  |      | mA   |
|     |                             | V <sub>CC</sub> = 6.0 V, V <sub>OL</sub> = 1.4 V                                                                                 | 3.4  | 8.0  |      | mA   |

Figure 4–15. Output Loading Circuit for Test for the TMS70C02, TMS70C42, and TMS70C82



Note: Rise and fall times are measured between the maximum low level and the minimum high level using the 10% and 90% points.

 <sup>†</sup> V<sub>CC</sub> = 5 V, T<sub>A</sub> = 25°C
‡ Output levels ensure 400 mV of noise margin over specified input levels.

Table 4–23. Supply Current Requirements for the TMS70C02, TMS70C42, and TMS70C82

|     | Parameter                            | Test Co                      | onditions               | Min Typ  | Max  | Unit         |
|-----|--------------------------------------|------------------------------|-------------------------|----------|------|--------------|
| lcc | Operating mode                       | f <sub>OSC</sub> = 7.0 MHz,  | V <sub>CC</sub> = 5.0 V | 17       | 24.5 | mA           |
|     |                                      | $f_{OSC} = 3.0 \text{ MHz},$ | V <sub>CC</sub> = 5.0 V | 7.2      | 10.5 | mA           |
|     |                                      | $f_{OSC} = 0.5 \text{ MHz},$ | V <sub>CC</sub> = 5.0 V | 1.2      | 1.8  | mA           |
|     |                                      | f <sub>osc</sub> = Z MHz,    | V <sub>CC</sub> = 5.0 V | 2.4      | 3.5  | mA/<br>MHz   |
|     |                                      | $f_{OSC} = 0.5 \text{ MHz},$ | V <sub>CC</sub> = 2.5 V | 0.4      | 1.2  | mA           |
| ICC | Wake-up mode 1                       | $f_{OSC} = 7.0 \text{ MHz},$ | V <sub>CC</sub> = 5.0 V | 2400     | 5600 | μА           |
|     | (one timer and UART active)          | $f_{OSC} = 3.0 \text{ MHz},$ | V <sub>CC</sub> = 5.0 V | 1200     | 3300 | μА           |
|     |                                      | f <sub>osc</sub> = 0.5 MHz,  | V <sub>CC</sub> = 5.0 V | 250      | 800  | μ <b>Α</b> ' |
| lcc | Wake-up mode 2                       | f <sub>osc</sub> = 7.0 MHz,  | V <sub>CC</sub> = 5.0 V | 960      | 3400 | μА           |
|     | (one timer active and UART inactive) | f <sub>OSC</sub> = 3.0 MHz,  | V <sub>CC</sub> = 5.0 V | 480      | 2000 | μА           |
|     |                                      | f <sub>OSC</sub> = 0.5 MHz,  | V <sub>CC</sub> = 5.0 V | 140      | 550  | μА           |
| lcc | Wake-up mode 3                       | f <sub>osc</sub> = 7.0 MHz,  | V <sub>CC</sub> = 5.0 V | 1500     | 2400 | μА           |
|     | (UART active only)                   | fosc = 3.0 MHz,              | V <sub>CC</sub> = 5.0 V | 800      | 1500 | μA           |
|     |                                      | f <sub>osc</sub> = 0.5 MHz,  | V <sub>CC</sub> = 5.0 V | 180      | 600  | μA           |
| lcc | Halt OSC-ON                          | $f_{OSC} = 7.0 \text{ MHz},$ | V <sub>CC</sub> = 5.0 V | 560      | 1280 | μА           |
|     |                                      | f <sub>OSC</sub> = 3.0 MHz,  | V <sub>CC</sub> = 5.0 V | 240      | 560  | μА           |
|     |                                      | f <sub>osc</sub> = 1.0 MHz,  | V <sub>CC</sub> = 5.0 V | 80       | 200  | μА           |
|     |                                      | fosc = Z MHz                 |                         | (See Not | e 2) | μΑ           |
| lcc | Hait OSC-OFF                         |                              |                         | 5        | 10   | μА           |

Notes: 1) All inputs = V<sub>CC</sub> or V<sub>SS</sub> (except XTAL2). All I/O and output pins are open.

2) Maximum current = 180(Z) + 20 μA.

Table 4–24. Recommended Crystal/Clockin Operating Conditions Over Full Operating Range for the TMS70C02, TMS70C42, and TMS70C82

|                   | Parameter                 | Test<br>Conditions                    | Min | Typ† | Max  | Unit |
|-------------------|---------------------------|---------------------------------------|-----|------|------|------|
| fosc              | Crystal frequency         | V <sub>CC</sub> = 2.5 V               | 0.5 |      | 0.8  | MHz  |
|                   |                           | V <sub>CC</sub> = 4.0 V               | 0.5 |      | 5.0  | MHz  |
|                   |                           | V <sub>CC</sub> = 5.0 V               | 0.5 |      | 7.0  | MHz  |
|                   |                           | V <sub>CC</sub> = 6.0 V               | 0.5 |      | 7.5  | MHz  |
|                   | CLKIN duty cycle          |                                       | 47  |      | 53   | %    |
| t <sub>c(P)</sub> | CLKIN cycle time          | V <sub>CC</sub> = 2.5 V               | 333 |      | 2000 | ns   |
|                   |                           | V <sub>CC</sub> = 4.0 V               | 167 |      | 2000 | ns   |
|                   |                           | V <sub>CC</sub> = 5.0 V               | 143 |      | 2000 | ns   |
|                   |                           | V <sub>CC</sub> = 6.0 V               | 133 |      | 2000 | ns   |
| <sup>t</sup> c(C) | Internal state cycle time | V <sub>CC</sub> = 2.5 V               | 666 |      | 4000 | ns   |
|                   |                           | V <sub>CC</sub> = 4.0 V               | 333 |      | 4000 | ns   |
|                   |                           | V <sub>CC</sub> = 5.0 V               | 286 |      | 4000 | ns   |
|                   |                           | V <sub>CC</sub> = 6.0 V               | 267 |      | 4000 | ns   |
| tw(PH)            | CLKIN pulse duration high |                                       | 50  |      |      | ns   |
| tw(PL)            | CLKIN pulse duration low  |                                       | 50  |      |      | ns   |
| t <sub>r</sub>    | CLKIN rise time           |                                       | 1   |      | 30   | ns   |
| tf                | CLKIN fall time           |                                       |     |      | 30   | ns   |
| td(PL-CH)         | CLKIN fall to CLKOUT rise | · · · · · · · · · · · · · · · · · · · |     | 110  | 250  | ns   |

<sup>†</sup>  $V_{CC} = 5 \text{ V}, T_A = 25^{\circ}\text{C}.$ 

Figure 4–16. Clock Timing for the TMS70C02, TMS70C42, and TMS70C82







Figure 4–18. Typical Operating Current vs. Supply Voltage for the TMS70C02, TMS70C42, and TMS70C82



Figure 4–19. Typical Operating I<sub>CC</sub> vs. Oscillator Frequency for the TMS70C02, TMS70C42, and TMS70C82



Figure 4-20. Typical Operating Current vs. Supply Voltage for the TMS70C02, TMS70C42, and TMS70C82



Figure 4–21. Typical Output Source Characteristics for the TMS70C02, TMS70C42, and TMS70C82



Figure 4-22. Typical Output Sink Characteristics for the TMS70C02, TMS70C42, and TMS70C82



## 4.4.1 Serial Port Timing

### 4.4.1.1 Internal Serial Clock

Table 4-25. Timing Parameters for Internal Serial Clock for the TMS70C02, TMS70C42, and TMS70C82

|                       | Parameter                        | Тур                   | Unit |
|-----------------------|----------------------------------|-----------------------|------|
| <sup>t</sup> d(CL-SL) | CLKOUT low to SCLK low           | 1/4 t <sub>c(C)</sub> | ns   |
| <sup>t</sup> d(CL-TD) | CLKOUT low to new TXD data       | 1/4 t <sub>C(C)</sub> | ns   |
| <sup>t</sup> d(RD-CL) | RXD data valid before CLKOUT low | 1/4 t <sub>c(C)</sub> | ns   |
| t <sub>d(RD)</sub>    | RXD data valid time              | 1/2 t <sub>c(C)</sub> | ns   |

Figure 4-23. Timing Diagram for Internal Serial Clock for the TMS70C02, TMS70C42, and TMS70C82



Notes: 1) The CLKOUT signal is not available in single-chip mode.

2) CLKOUT =  $t_{C(C)}$ .

### 4.4.1.2 External Serial Clock

Table 4-26. Timing Parameters for External Serial Clock for the TMS70C02, TMS70C42, and TMS70C82

|                       | Parameter                            | Тур                      | Unit |
|-----------------------|--------------------------------------|--------------------------|------|
| <sup>t</sup> d(RD-CL) | RXD data valid before CLKOUT low     | 1/4 t <sub>C</sub> (C)   | ns   |
| <sup>t</sup> d(RD)    | RXD data valid time                  | 1/2 t <sub>c(C)</sub>    | ns   |
| td(SB-TD)             | Start of SCLK sample to new TXD data | 3 1/4 t <sub>c(C)</sub>  | ns   |
| <sup>t</sup> d(SE-TD) | End of SCLK sample to new TXD data   | 2 1/4 t <sub>C</sub> (C) | ns   |
| td(CL-S)              | Clockout low to SCLK transition      | t <sub>C</sub> (C)       | ns   |

Figure 4-24. Timing Diagram for External Serial Clock for the TMS70C02, TMS70C42, and TMS70C82



Notes: 1) The CLKOUT signal is not available in single-chip mode.

2) CLKOUT =  $t_{C(C)}$ .

3) SCLK sampled; if SCLK = 1 then 0, fall transition found.

4) SCLK sampled; if SCLK = 0 then 1, rise transition found.

## 4.5 TMS70C02, TMS70C42, and TMS70C82 Specifications (5V $\pm$ 10%)

Table 4–27. Absolute Maximum Ratings Over Operating Free-Air Temperature Range for the TMS70C02, TMS70C42, and TMS70C82 (Unless Otherwise Noted)

| Supply voltage range, V <sub>CC</sub> † – 0.3 V to 7 V          |
|-----------------------------------------------------------------|
| Input voltage range 0.3 V to V <sub>CC</sub> +0.3 V             |
| Output voltage range 0.3 V to V <sub>CC</sub> +0.3 V            |
| Maximum I/O buffer current (per pin)                            |
| Storage temperature range – 55°C to 150°C                       |
| ICC, ISS (maximum into pin 25 or 40                             |
| Continuous power dissipation                                    |
| † Unless otherwise noted, all voltages are with respect to VSS. |

Stresses beyond those listed under "Absolute Maximum Ratings" may cause permanent damage to the device. This is a stress rating only and functional operation of the device at these or any other conditions beyond those indicated in the "Recommended Operating Conditions" section of this specification is not implied. Exposure to absolute maximum rated conditions for extended periods

Table 4-28. Recommended Operating Conditions for the TMS70C02, TMS70C42, and TMS70C82

may affect device reliability.

|     |                          | -                          | Min                | Nom | Max                | Unit |
|-----|--------------------------|----------------------------|--------------------|-----|--------------------|------|
| VCC | Supply voltage           |                            | 4.5                |     | 5.5                | ٧    |
| VIH | High-level input voltage | MC and XTAL2 pins          | 0.8V <sub>CC</sub> |     |                    | ٧    |
|     |                          | All other input pins       | 0.7V <sub>CC</sub> |     |                    | ٧    |
| VIL | Low-level input voltage  | MC and XTAL2 pins          |                    |     | 0.3V <sub>CC</sub> | ٧    |
|     |                          | All other input pins       |                    |     | 0.2V <sub>CC</sub> | ٧    |
| TA  | Operating temperature    | Commercial<br>(TMS70C42NL) | 0                  |     | 70                 | °C   |
|     |                          | Industrial<br>(TMS70C42NA) | -40                |     | 85                 | °C   |

Table 4–29. Electrical Characteristics Over Full Range of Operating Conditions for the TMS70C02, TMS70C42, and TMS70C82

|     | Parameter                        | Test Conditions                                                                                                                  | Min      | Typt | Max         | Unit |
|-----|----------------------------------|----------------------------------------------------------------------------------------------------------------------------------|----------|------|-------------|------|
| ų   | Input leakage current            | MC pin, V <sub>IN</sub> = V <sub>SS</sub> or V <sub>CC</sub><br>All others, V <sub>IN</sub> = V <sub>SS</sub> to V <sub>CC</sub> |          | ±0.1 | ±5          | μА   |
| CI  | Input capacitance                |                                                                                                                                  |          | 5    |             | pF   |
| ۷он | High-level output voltage        | $V_{CC} = 5.0 \text{ V}, I_{OH} = -0.3 \text{ mA}$                                                                               | VCC-0.05 | 4.7  |             | V    |
| VOL | Low-level output voltage         | V <sub>CC</sub> = 5.0 V, I <sub>OL</sub> = 1.4 mA                                                                                |          | 0.2  | 0.4         | V    |
| ЮН  | High-level output source current | V <sub>OH</sub> = V <sub>CC</sub> - 0.5 V                                                                                        | -0.3     | -1.2 | <del></del> | mA   |
|     |                                  | V <sub>OH</sub> = 2.5 V min                                                                                                      | -1.0     | -3.0 |             | mA   |
| loL | Output sink current              | V <sub>OL</sub> = 0.4 V                                                                                                          | 1.4      | 2.0  |             | mA   |

<sup>†</sup> Rise and fall times are measured between the maximum low level and the minimum high level using the 10% and 90% points.

Table 4-30. AC Characteristics for Input/Output Ports† for the TMS70C02, TMS70C42, and TMS70C82

| Parameter                                    | Test Conditions                                  | Min | Typt | Max | Unit |
|----------------------------------------------|--------------------------------------------------|-----|------|-----|------|
| t <sub>r(IO)</sub> I/O port output rise time | C <sub>load</sub> = 15 pF, V <sub>CC</sub> = 5 V |     | 35   | 60  | ns   |
| tf(IO) I/O port output fall time             | C <sub>load</sub> = 15 pF, V <sub>CC</sub> = 5 V |     | 20   | 50  | ns   |

<sup>†</sup> Rise and fall times are measured between the maximum low level and the minimum high level using the 10% and 90% points.

Figure 4-25. Output Loading Circuit for Test for the TMS70C02, TMS70C42, and TMS70C82



**Note:** Rise and fall times are measured between the maximum low level and the minimum high level using the 10% and 90% points.

Figure 4–26. Measurement Points for Switching Characteristics for the TMS70C02, TMS70C42, and TMS70C82



Table 4–31. Supply Current Requirements for the TMS70C02, TMS70C42, and TMS70C82

|     | Parameter                             | Test Conditions            | Min Typ | Max       | Unit       |
|-----|---------------------------------------|----------------------------|---------|-----------|------------|
| ō   | Supply current                        | f <sub>OSC</sub> = 6.0 MHz | 15      | 24        | mA         |
|     |                                       | f <sub>osc</sub> = 3.0 MHz | 7.2     | 12        | mA         |
|     |                                       | f <sub>osc</sub> = 1.0 MHz | 2.4     | 4.0       | mA         |
|     |                                       | f <sub>OSC</sub> = Z MHz   | 2.4     | 4.0       | mA/<br>MHz |
| lcc | Wake-up mode 1                        | f <sub>OSC</sub> = 6.0 MHz | 2400    | 5400      | μА         |
|     | (one timer and UART active)           | f <sub>osc</sub> = 3.0 MHz | 1200    | 2900      | μА         |
|     |                                       | f <sub>OSC</sub> = 1.0 MHz | 650     | 1500      | μА         |
| ICC | Wake-up mode 2                        | f <sub>OSC</sub> = 6.0 MHz | 960     | 3200      | μА         |
|     | (one timer active, and UART inactive) | f <sub>OSC</sub> = 3.0 MHz | 480     | 1800      | μА         |
|     |                                       | f <sub>OSC</sub> = 1.0 MHz | 350     | 1000      | μА         |
| lcc | Wake-up mode 3                        | f <sub>OSC</sub> = 6.0 MHz | 1500    | 2200      | μА         |
|     | (UART active only)                    | f <sub>OSC</sub> = 3.0 MHz | 800     | 1300      | μА         |
|     |                                       | f <sub>OSC</sub> = 1.0 MHz | 400     | 1100      | μА         |
| ICC | Halt OSC-ON                           | fosc = 6.0 MHz             | 480     | 1120      | μА         |
|     |                                       | f <sub>osc</sub> = 3.0 MHz | 240     | 560       | μА         |
|     |                                       | f <sub>OSC</sub> = 1.0 MHz | 80      | 200       | μА         |
|     |                                       | f <sub>osc</sub> = Z MHz   | (Se     | e Note 2) | μА         |
| Icc | Halt OSC-OFF                          |                            | 5       | 10        | μА         |

Notes: 1) All inputs = V<sub>CC</sub> or V<sub>SS</sub> (except XTAL2). All output pins are open.

2) Maximum current =  $180(Z) + 20 \mu A$ .

Table 4–32. Recommended Crystal/Clockin Operating Conditions Over Full Operating Range for the TMS70C02, TMS70C42, and TMS70C82

|                       | Parameter                       | Min | Тур         | Max  | Unit |
|-----------------------|---------------------------------|-----|-------------|------|------|
| fosc                  | CLKIN frequency                 | 0.5 |             | 6.0  | MHz  |
|                       | CLKIN duty cycle                | 45  |             | 55   | %    |
| t <sub>c(P)</sub>     | CLKIN cycle time                | 167 |             | 2000 | ns   |
| <sup>t</sup> c(C)     | Internal state cycle time       | 333 |             | 4000 | ns   |
| t <sub>w(PH)</sub>    | CLKIN pulse duration high       | 70  |             |      | ns   |
| <sup>t</sup> w(PL)    | CLKIN pulse duration low        | 70  | <del></del> |      | ns   |
| t <sub>r</sub>        | CLKIN rise time                 |     |             | 30   | ns   |
| tf                    | CLKIN fall time                 |     |             | 30   | ns   |
| <sup>t</sup> d(PL-CH) | CLKIN fall to CLKOUT rise delay |     | 110         | 250  | ns   |

<sup>†</sup>  $V_{CC} = 5 \text{ V}, T_{A} = 25^{\circ}\text{C}$ 

Figure 4-27. Clock Timing for the TMS70C02, TMS70C42, and TMS70C82



**Note:** Period of internal clock  $t_{c(C)} = 2 \times t_{c(P)} = 2 / f_{osc}$ . Timings are given in  $t_{c(C)}$ .

Table 4-33. Memory Interface Timings† for the TMS70C02, TMS70C42, and TMS70C82

|                        | Parameter                                         | Min                        | Typt                       | Max                                   | Unit |
|------------------------|---------------------------------------------------|----------------------------|----------------------------|---------------------------------------|------|
| <sup>t</sup> c(C)      | CLKOUT cycle time                                 | 333                        |                            | 4000                                  | ns   |
| tw(CH)                 | CLKOUT high pulse duration                        | 0.5t <sub>C(C)</sub> - 90  | 0.5t <sub>c(C)</sub>       | 0.5t <sub>C(C)</sub> +90              | ns   |
| <sup>t</sup> w(CL)     | CLKOUT low pulse duration                         | 0.5t <sub>C(C)</sub> - 90  | 0.5t <sub>c(C)</sub>       | 0.5t <sub>C(C)</sub> +90              | ns   |
| <sup>t</sup> d(CH-JL)  | Delay time, CLKOUT rise to ALATCH fall            | 0.5t <sub>C(C)</sub> - 50  | 0.5t <sub>c(C)</sub>       |                                       | ns   |
| <sup>t</sup> w(JH)     | ALATCH high pulse duration                        | 0.25t <sub>C(C)</sub> -50  | 0.25t <sub>c(C)</sub>      | · · · · · · · · · · · · · · · · · · · | ns   |
| <sup>t</sup> su(HA–JL) | Setup time, high address valid before ALATCH fall | 0.25t <sub>C(C)</sub> - 45 | 0.25t <sub>C(C)</sub>      |                                       | ns   |
| tsu(LA-JL)             | Setup time, low address valid before ALATCH fall  | 0.25t <sub>C(C)</sub> - 45 | 0.25t <sub>C(C)</sub>      |                                       | ns   |
| <sup>t</sup> d(JL–LA)  | Delay time, low address valid after ALATCH fall   | 0.5t <sub>C(C)</sub> - 35  | 0.5t <sub>C(C)</sub>       |                                       | ns   |
| tsu(RW-JL)             | Setup time, R/W valid before ALATCH fall          | 0.25t <sub>C(C)</sub> - 40 | 0.25t <sub>C(C)</sub>      |                                       | ns   |
| th(EH-RW)              | Hold time, R/W valid after ENABLE rise            | 0.5t <sub>C(C)</sub> - 60  | 0.5t <sub>c(C)</sub>       |                                       | ns   |
| th(EH-HA)              | Hold time, high address valid after ENABLE rise   | 0.5t <sub>C(C)</sub> - 60  | 0.5t <sub>C(C)</sub>       |                                       | ns   |
| <sup>t</sup> su(Q–EH)  | Setup time, data out valid before ENABLE rise     | 0.5t <sub>C(C)</sub> -70   | 0.5t <sub>C(C)</sub>       |                                       | ns   |
| <sup>t</sup> h(EH–Q)   | Hold time, data out valid after ENABLE rise       | 0.5t <sub>C(C)</sub> - 60  | 0.5t <sub>c(C)</sub>       |                                       | ns   |
| <sup>t</sup> d(LA–EL)  | Delay time, low address high-Z to ENABLE fall     | .25t <sub>C(C)</sub> - 45  | 0.25t <sub>C(C)</sub>      |                                       | ns   |
| td(EH-A)               | Delay time, ENABLE rise to next address drive     | 0.5t <sub>C(C)</sub> -60   | 0.5t <sub>C(C)</sub>       |                                       | ns   |
| <sup>t</sup> d(EL–D)   | Delay time, data in after ENABLE fall             | 0.75t <sub>C(C)</sub> -160 | 0.75t <sub>c(C)</sub>      |                                       | ns   |
| <sup>t</sup> a(A–D)    | Access time, data in from valid address           | 1.5t <sub>C(C)</sub> - 200 | 1.5t <sub>C(C)</sub> - 100 |                                       | ns   |
| <sup>t</sup> d(A–EH)   | Delay time, ENABLE high after address valid       | 1.5t <sub>C(C)</sub> - 50  | 1.5t <sub>c(C)</sub>       |                                       | ns   |
| <sup>t</sup> h(EH–D)   | Hold time, Data input valid after ENABLE rise     | 0                          |                            |                                       | ns   |
| <sup>t</sup> d(EH–JH)  | Delay time, ENABLE rise to ALATCH rise            | 0.5t <sub>C(C)</sub> - 60  | 0.5t <sub>C</sub> (C)      | ·                                     | ns   |
| <sup>t</sup> d(CH–EL)  | Delay time, CLKOUT rise to ENABLE fall            |                            | 30                         |                                       | ns   |

<sup>†</sup>  $V_{CC} = 5 \text{ V} \pm 10\%$ ,  $t_{C(C)} = 2/\text{freq}$ CLKIN duty cycle = 50%  $t_{OSC} = 0.5 \text{ to } 6.0 \text{ MHz}$ 

Table 4–34. Memory Interface Timings at 6 MHz† for the TMS70C02, TMS70C42, and TMS70C82

|                        | Parameter                                         | Min | Typt | Max | Unit |
|------------------------|---------------------------------------------------|-----|------|-----|------|
| t <sub>C</sub> (C)     | CLKOUT cycle time                                 |     | 333  |     | ns   |
| <sup>t</sup> w(CH)     | CLKOUT high pulse duration                        | 76  | 166  | 252 | ns   |
| <sup>t</sup> w(CL)     | CLKOUT low pulse duration                         | 76  | 162  | 252 | ns   |
| fd(CH-JL)              | Delay time, CLKOUT rise to ALATCH fall            | 116 | 166  |     | ns   |
| <sup>t</sup> w(JH)     | ALATCH active duration                            | 33  | 83   |     | ns   |
| <sup>t</sup> su(AH–JL) | Setup time, high address valid before ALATCH fall | 38  | 83   |     | ns   |
| <sup>t</sup> su(LA–JL) | Setup time, low address valid before ALATCH fall  | 38  | 83   |     | ns   |
| <sup>t</sup> d(JL–LA)  | Delay time, low address hold after ALATCH fall    | 131 | 166  |     | ns 💂 |
| <sup>t</sup> d(RW-JL)  | Delay time, R/W valid before ALATCH fall          | 43  | 83   |     | ns   |
| th(EH-RW)              | Hold time, R/W valid after ENABLE rise            | 106 | 166  |     | ns   |
| th(EH-HA)              | Hold time, high address valid after ENABLE rise   | 106 | 166  |     | ns   |
| tsu(Q-EH)              | Setup time, data out valid before ENABLE rise     | 96  | 166  |     | ns   |
| th(EH-Q)               | Hold time, data out valid after ENABLE rise       | 106 | 166  | •   | ns   |
| td(LA-EL)              | Delay time, low address high-Z to ENABLE fall     | 38  | 83   |     | ns   |
| td(EH-A)               | Delay time, ENABLE rise to next address drive     | 106 | 166  |     | ns   |
| td(EL-D)               | Delay time, data in after ENABLE fall             | 90  | 250  |     | ns   |
| ta(A-D)                | Access time, data in from valid address           | 300 | 400  |     | ns   |
| td(A-EH)               | Delay time, ENABLE high after address valid       | 450 | 500  |     | ns   |
| th(EH-D)               | Hold time, data input valid after ENABLE rise     | 0   |      |     | ns   |
| td(EH−JH)              | Delay time, ENABLE rise to ALATCH rise            | 106 | 166  |     | ns   |
| td(CH-EL)              | Delay time, CLKOUT rise to ENABLE fall            |     | 30   |     | ns   |

<sup>†</sup>  $V_{CC} = 5 \text{ V} \pm 10\%$ ,  $t_{C(C)} = 2/\text{freq}$ CLKIN duty cycle = 50%  $f_{OSC} = 0.5 \text{ to } 6.0 \text{ MHz}$ 

Figure 4–28. Read and Write Cycle Timing for the TMS70C02, TMS70C42, and TMS70C82



# 4.5.1 Serial Port Timing

#### 4.5.1.1 Internal Serial Clock

Table 4-35. Timing Parameters for Internal Serial Clock for the TMS70C02, TMS70C42, and TMS70C82

|                       | Parameter                        | Тур                   | Unit |
|-----------------------|----------------------------------|-----------------------|------|
| <sup>t</sup> d(CL-SL) | CLKOUT low to SCLK low           | 1/4 t <sub>c(C)</sub> | ns   |
| td(CL-TD)             | CLKOUT low to new TXD data       | 1/4 t <sub>c(C)</sub> | ns   |
| <sup>t</sup> d(RD-CL) | RXD data valid before CLKOUT low | 1/4 t <sub>c(C)</sub> | ns   |
| <sup>t</sup> d(RD)    | RXD data valid time              | 1/2 t <sub>c(C)</sub> | ns - |

Figure 4-29. Timing Diagram for Internal Serial Clock for the TMS70C02, TMS70C42, and TMS70C82



Notes: 1) The CLKOUT signal is not available in single-chip mode.

2) CLKOUT =  $t_{C(C)}$ .

#### 4.5.1.2 External Serial Clock

Table 4-36. Timing Parameters for External Serial Clock for the TMS70C02, TMS70C42, and TMS70C82

|                       | Parameter                            | Тур                     | Unit |
|-----------------------|--------------------------------------|-------------------------|------|
| <sup>t</sup> d(RD-CL) | RXD data valid before CLKOUT low     | 1/4 t <sub>C(C)</sub>   | ns   |
| <sup>t</sup> d(RD)    | RXD data valid time                  | 1/2 t <sub>c(C)</sub>   | ns   |
| <sup>t</sup> d(SB-TD) | Start of SCLK sample to new TXD data | 3 1/4 t <sub>C(C)</sub> | ns   |
| <sup>t</sup> d(SE-TD) | End of SCLK sample to new TXD data   | 2 1/4 t <sub>C(C)</sub> | ns   |
| <sup>t</sup> d(CL-S)  | Clockout low to SCLK transition      | t <sub>C</sub> (C)      | ns   |

Figure 4-30. Timing Diagram for External Serial Clock for the TMS70C02, TMS70C42, and TMS70C82



Notes: 1) The CLKOUT signal is not available in single-chip mode.

- 2)  $CLKOUT = t_{C(C)}$ .
- 3) SCLK sampled; if SCLK = 1 then 0, fall transition found.
- 4) SCLK sampled; if SCLK = 0 then 1, rise transition found.