UNIDAD 2: MODELO DE MAPEO Y REDUCCIÓN

EXTENSIONES

Blanca Vázquez Febrero 2020

Mining of Massive Datasets
Jure Leskovec, Anand Rajaraman, Jeff Ullman
Stanford University
http://www.mmds.org

MODELO MAPREDUCE

MODELO MAPREDUCE EN PARALELO

AMBIENTE: MAPREDUCE

El ambiente del modelo MapReduce se encarga de:

- Particionar los datos de entrada
- · Planificar la ejecución de los programas en todo el clúster
- Agrupar por llaves (en la práctica esto es un cuello de botella)
- · Manejo de fallas
- · Administrar la comunicación entre máquinas

Nodo maestro

Se encarga de la coordinación de las actividades en el clúster de cómputo.

- Estatus de las tareas / nodos: esperando, en progreso, completada
- · Planifica las tareas de mapeo y reducción
- Cuando una tarea de mapeo está completa, el maestro envía la localización y tamaño de los archivos intermedios (R) a los nodos de reducción.
- Para detectar fallas, periódicamente el maestro hace 'ping' a los nodos

FLUJOS DE DATOS EN MAPREDUCE

- Las entradas y salidas son almacenadas en el sistema de archivo distribuido (DFS).
 - Las tareas de mapeo son planificadas en nodos cercanos a la localización física de los datos
- Los resultados intermedios son almacenados en sistemas locales de archivos (nodos de mapeo y reducción): evitar tráfico en la red y sobrecarga de datos
- Las salidas son frecuentemente la entrada hacia otra tarea de mapeo.

Manejo de fallas

· Cuando falla el nodo de mapeo

- Las tareas de mapeo completadas o en progreso se vuelven a programar para su ejecución
- Los nodos de reducción son notificados indicando que la tarea de mapeo fue reprogramada.

· Cuando falla el nodo de reducción

 Únicamente las tareas en progreso son reprogramadas hacia otro nodo.

· Cuando falla el nodo de maestro

- Todas las tareas de mapeo y reducción son abortadas / canceladas.
- · El cliente es notificado

¿CUÁNTAS TAREAS DE MAPEO Y REDUCCIÓN DEBEMOS PLANIFICAR?

Objetivo: identificar M (número de tareas de mapeo) y R (número de tareas de reducción) que deben ser planificadas

¿CUÁNTAS TAREAS DE MAPEO Y REDUCCIÓN DEBEMOS PLANIFICAR?

Objetivo: identificar M (número de tareas de mapeo) y R (número de tareas de reducción) que deben ser planificadas

- El número de tareas M debe ser más grande que el número de nodos en el clúster.
- Mejora el balanceo de cargas y acelera la recuperación en caso de fallas.

¿CUÁNTAS TAREAS DE MAPEO Y REDUCCIÓN DEBEMOS PLANIFICAR?

Objetivo: identificar M (número de tareas de mapeo) y R (número de tareas de reducción) que deben ser planificadas

- El número de tareas M debe ser más grande que el número de nodos en el clúster.
- Mejora el balanceo de cargas y acelera la recuperación en caso de fallas.
- · Usualmente R es más pequeño que M.
- El archivo de salida se reparte en los R nodos.

PROBLEMAS CON MAPREDUCE

Leskovec, A.Rajaraman, J. Ullman: Mining of Massive Datasets, http://www.mmds.org

Problema: MapReduce incurre en gastos considerables debido a la replicación de datos, E/S de disco, serialización.

PROBLEMAS CON MAPREDUCE

MapReduce tiene dos limitaciones principales

- Dificultad para programar directamente en MapReduce: muchos problemas no son fácilmente descritos en MapReduce.
- Cuellos de botella: para preservar la persistencia de los datos, el tiempo que se toma en dividir y almacenar los datos es considerable.

PROBLEMAS CON MAPREDUCE

En resumen: MapReduce no está totalmente planeado para aplicaciones muy grandes

 Muchas veces es necesario encadenar múltiples tareas de mapeo y reducción

Apache Spark extiende el modelo de programación MapReduce

SPARK: CARACTERÍSTICAS

- Permite el procesamiento de datos distribuidos basado en clúster
- · Se basa en un sistema de operaciones (transformaciones
 - acciones) realizadas sobre colecciones de datos distribuidos (RDD)
- · Sistema de cómputo expresivo, no limitado a MapReduce.
- · Actualmente, es el sistema más popular de flujo de datos

Extensiones al modelo MapReduce

- Más rápido
 - · Evita guardar resultados intermedios a disco
 - Activa la caché de datos para consultas repetitivas (ejemplo, para aprendizaje máquina)
- Spark presenta su ejecución por grafos dirigidos acíclicos (DAGs)
- · Presenta funciones extras (más allá de M-R)
- Compatible con Hadoop

SPARK: VISTA GENERAL

- Es código abierto (Apache Foundation)
- · Soporta Java, Scala y Python
- Principal contribución: Conjunto de datos distribuidos y resilentes (RDD)
- Integra APIs de alto nivel
 - En las versiones más recientes de Spark incluye dataframes y datasets
 - Ofrece APIs para agregar datos, lo cual permite soportar SQL.

¿QUÉ ES UN DATASET?

¿Qué es un dataset?

- · Es un conjunto de datos
- · Puede contener cualquier tipo de información

Imagen tomada de IMF BUSINESS SCHOOL

RESILENT DISTRIBUTED DATASET (RDD)

Son datasets distribuidos tolerantes a fallos capaces de operar en paralelo

- · Son un tipo de estructura principal de Spark
- · Los RDDs están particionados sobre los nodos del clúster
- No son inmutables: cuando transformamos un RDD, realmente estamos creado uno nuevo (grafos DAG)
- · Distribuye los datos en modo lectura
- Tolerante a fallos
- · Los RDDs pueden ser creados desde Hadoop

¿CÓMO SE CREA UN RDD?

Existen dos formas comunes para crear un RDD:

- · A través del objeto SparkContext
- · A partir de conjuntos de datos externos

CREANDO UN RDD USANDO SPARKCONTEXT

El método *SparkContext.parallelize* nos permite crear un RDD a partir de una lista o tupla:

```
lista = ['en','un','lugar','de','la','mancha']
listardd = sc.parallelize(lista,4)
```

- · sc es una instancia de la clase SparkContext
- la lista se pasa como argumento a sc y se paralelizará automáticamente por Spark
- El programador puede decidir en cuántas partes debe paralelizarse un RDD (ej., 4)

CREANDO UN RDD USANDO CONJUNTOS DE DATOS EXTERNOS

A partir de una fuente de almacenamiento utilizando la función *textFile* del SparkContext:

```
texto = sc.textFile("loremipsum.txt")
```

- Como argumento se pasa un archivo (texto, binario) almacenado en disco
- · El método textFile cargaría el archivo como un RDD.

ACCIONES SOBRE RDDS

- Los RDDs no son valiosos solamente por los datos que contienen, sino por las operaciones que podemos realizar sobre ellos.
- Spark proporcionar un conjunto de acciones para procesar y extraer información: collect (), reduce(), count(), first, foreach()

Acción: collect()

collect() retorna todos los elementos de un RDD como una lista de Python.

```
rdd = sc.parallelize([4, 1, 2, 6, 1, 5, 3, 3, 2, 4])
lista = rdd.collect()
print ("El tercer elemento de la lista es%d"% lista[2])
>> El tercer elemento de la lista es 2
print(lista)
Importante: si el RDD es muy grande, podemos tener
```

problemas al volcar toda la colección en memoria.

25

Acción: count()

```
count() retorna el número elementos del RDD.
rdd = sc.parallelize([4, 1, 2, 6, 1, 5, 3, 3, 2, 4])
print("El RDD contiene%d elementos"% rdd.count())
>> El RDD contiene 10 elementos
```

Acción: countByValue()

countByValue() retorna un diccionario con el número de apariciones de cada elemento en un RDD.

```
rdd = sc.parallelize([4, 1, 2, 6, 1, 5, 3, 3, 2, 4])
rdd.countByValue()
>> 1: 2, 2: 2, 3: 2, 4: 2, 5: 1, 6: 1
```

Acción: reduce()

reduce(func) agrega los elementos de un RDD según la función que se le pase como parámetro. La función debe cumplir con las siguientes propiedades para que pueda ser calculada en paralelo.

- Conmutativa (A + B) = B + A
 Asegurando que el resultado será independiente del orden de los elementos en el RDD.
- Asociativa (A + B) + C = A + (B + C))
 Asegurando que cualquiera de los dos elementos asociados en la agregación a la vez no afecta el resultado final.

EJEMPLO: REDUCE()

Crea un RDD que multiplique por 2 sus valores y sumar los resultados:

```
rdd = sc.parallelize([1, 1, 1, 1, 2, 2, 2, 3, 3, 4])
rdd2 = rdd.map(lambda x: x*2)
tSum = rdd2.reduce(lambda x,y: x+y)
print (tSum)
>>> 40
```

EJEMPLO: REDUCE()

Crea un diccionario con elementos (x,1) y suma las apariciones por elemento

```
rdd_text = sc.parallelize(['red', 'red', 'blue',
    'green', 'green', 'yellow'])
rdd_aux = rdd_text.map(lambda x: (x,1))
rdd_result = rdd_aux.reduceByKey(lambda x,y: x+y)
print (rdd_result.collect())
>> [('blue', 1), ('green', 2), ('yellow', 1), ('red',
2)]
```

Acción: foreach()

foreach() ejecuta la función que se le pasa por parámetro sobre cada elemento del RDD.

```
rdd = sc.parallelize([4, 1, 2, 6, 1, 5, 3, 3, 2, 4])
def impar(x):
    if x% 2 == 1:
    print ("%d es impar"% x)
rdd.foreach(impar)
>> 1 es impar
1 es impar
5 es impar
3 es impar
3 es impar
```

Acción: saveAsTextFile()

saveAsTextFile(directorio) guarda el RDD como un conjunto de archivos de texto dentro de directorio.

ACCIÓN: COLLECTASMAP()

collectAsMap() retorna los elementos de un RDD clave/valor como un diccionario de python.

```
sc.parallelize ([('a','b'),('c','d')]).collectAsMap()
>> 'a': 'b', 'c': 'd'
```

ACCIONES VARIAS

Función	Valor que retorna
first()	Devuelve el primer valor del RDD
mean()	Devuelve el valor medio
variance()	Devuelve la varianza
stdev()	Devuelve la desviación estándar
take(n)	Devuelve una lista con los n elementos del RDD

TRANSFORMACIONES

No siempre se podrá ejecutar las acciones directamente sobre un RDD, debido a las siguientes razones

- · El RDD podría no estar en un formato adecuado
- El RDD podría tener más datos de los necesarios a analizar (calcular la media de edades)
- · El RDD podría no contener todos los datos necesarios

TRANSFORMACIONES

Antes de realizar acciones sobre los RDD, **primero deben** realizarse transformaciones sobre los RDDs

- Para garantizar que cada RDD contenga los datos unificados, filtrados y formateados para evitar errores
- Al aplicar una transformación sobre un RDD original, regresará un nuevo RDD
- · Las transformaciones no modifican el RDD original
- Spark evalúa las transformaciones de manera 'perezosa' (lazy evaluation)

TRANSFORMACIONES MÁS COMUNES

Las transformaciones construyen RDDs a través de operaciones como: map(), filter(), sample() y union().

TRANSFORMACIÓN: MAP()

map(func) retorna un nuevo RDD, resultado de pasar cada uno de los elementos de un RDD original como parámetro de la función

```
rdd = sc.parallelize([4, 0, 2, 6, 1, 5, 3, 9, 7, 8])
t1 = rdd.map(lambda x: x*2)
t1.collect()
>> [8, 0, 4, 12, 2, 10, 6, 18, 14, 16]
```

TRANSFORMACIÓN: FILTER()

filter(func) retorna un nuevo RDD que contiene los
elementos que cumplen la función

```
num = sc.parallelize ([1,2,3,4,5,6,100,2000,4000])
menor50 = num.filter(lambda x : x < 50)
menor50.collect()
>> [1, 2, 3, 4, 5, 6]
```

TRANSFORMACIÓN: DISTINCT()

distinct() retorna un nuevo RDD que contiene una sola copia de los diferentes elementos del RDD

```
num=sc.parallelize([1,2,3,4,4,3,2,5])
num.distinct().collect()
>> [4, 1, 5, 2, 3]
```

TRANSFORMACIÓN: UNION()

```
union() retorna un nuevo RDD que contiene la unión de los
elementos de un RDD y del que se le pasa como argumento
city1=sc.parallelize(['Barcelona','Madrid','Paris'])
city2=sc.parallelize(['Madrid','Londres','Roma'])
city1.union(city2).collect()
>> ['Barcelona', 'Madrid', 'Paris', 'Madrid',
'Londres', 'Roma']
```

TRANFORMACIONES VARIAS

Función	Valor que retorna
intersection()	Devuelve la intersección de 2 RDDs
keys()	Devuelve únicamente las llaves del RDD
sortBy(func)	Ordena un RDD según un criterio

GRAFO ACÍCLICO DIRIGIDO (DAG)

J. Leskovec, A.Rajaraman, J. Ullman: Mining of Massive Datasets, http://www.mmds.org

CARACTERÍSTICAS DEL DAG

- Cada tarea de Spark crea un DAG para se ejecuten en un clúster
- Los DAG pueden tener cualquier número de estados (MapReduce, tiene 2 estado predefinidos)
- · Caché de datos
- Los DAG permiten programar hilos complejos de ejecución en paralelo.

COMPONENTES DEL ECOSISTEMA DE HADOOP

Imagen tomada de https://bit.ly/2JgZwjx

MÓDULOS DE APACHE SPARK

J. Leskovec, A.Rajaraman, J. Ullman: Mining of Massive Datasets, http://www.mmds.org

REFERENCIAS

 Conceptos básicos de Spark http://reader.digitalbooks.pro/content/preview/books/41061/book/OEBPS/Text/capitulo_3.html