Project Development mase Model Performance Test

Date	13 November 2022	
Team ID	PNT2022TMID40752	
Project Name	Project – Web Phishing Detection	
Maximum Marks	10 Marks	

Model Performance Testing:

Project team shall fill the following information in model performance testing template.

S.No.	Parameter	Values	Screenshot		
1.	Metrics	Classification Model: Gradient Boosting Classification Accuray Score- 97.4%	In [3] Acapating the closelylation report of the model print(merrica aleasification report(glows, print(period)) president result filescene support 1 & 0.00 & 0.50 & 0.57		
2.	Tune the Model	Hyperparameter Tuning - 97% Validation Method – KFOLD & Cross Validation Method	Wilcoxon signed-tent test is (55) within ord Creat statistics must for a sign of the more schools for a sign of the more schools for a sign of the more schools for a sign of the sig		

1. METRICS:

CLASSIFICATION REPORT:

In [52]:	#computing the classification report of the model
	<pre>print(metrics.classification_report(y_test, y_test_gbc))</pre>

	precision	recall	f1-score	support
-1	0.99	0.96	0.97	976
1	0.97	0.99	0.98	1235
accuracy			0.97	2211
macro avg	0.98	0.97	0.97	2211
weighted avg	0.97	0.97	0.97	2211

PERFORMANCE:

Out[83]:		ML Model	Accuracy	f1_score	Recall	Precision
	0	Gradient Boosting Classifier	0.974	0.977	0.994	0.986
	1	CatBoost Classifier	0.972	0.975	0.994	0.989
	2	Random Forest	0.969	0.972	0.992	0.991
	3	Support Vector Machine	0.964	0.968	0.980	0.965
	4	Decision Tree	0.958	0.962	0.991	0.993
	5	K-Nearest Neighbors	0.956	0.961	0.991	0.989
	6	Logistic Regression	0.934	0.941	0.943	0.927
	7	Naive Bayes Classifier	0.605	0,454	0.292	0.997
	8	XGBoost Classifier	0.548	0.548	0.993	0.984
	9	Multi-layer Perceptron	0.543	0.543	0.989	0.983

2. TUNE THE MODEL - HYPERPARAMETER TUNING

VALIDATION METHODS: KFOLD & Cross Folding

Wilcoxon signed-rank test

```
In [78]: #KFOLD and Cross Validation Model
         from scipy.stats import wilcoxon
         from sklearn.datasets import load_iris
         from sklearn.ensemble import GradientBoostingClassifier
         from xgboost import XGBClassifier
         from sklearn.model_selection import cross_val_score, KFold
         # Load the dataset
        X = load iris().data
         y = load_iris().target
        # Prepare models and select your CV method
        model1 = GradientBoostingClassifier(n_estimators=100)
         model2 = XGBClassifier(n_estimators=100)
         kf = KFold(n_splits=20, random_state=None)
         # Extract results for each model on the same folds
         results_model1 = cross_val_score(model1, X, y, cv=kf)
         results_model2 = cross_val_score(model2, X, y, cv=kf)
         stat, p = wilcoxon(results_model1, results_model2, zero_method='zsplit');
         stat
Out[78]: 95.0
```

5x2CV combined F test