Assignment Date	19 September 2022
Student Name	isravel
Team ID Number	PNT2022TMID28949
Maximum Marks	2 Marks

Question-1:

Download the dataset:

Question-2:

Load the dataset.

Solution:

import pandas as pd
df=pd.read_csv('/content/Churn_Modelling.csv')

Question-3:

Perform Below Visualizations.

1)Univariate Analysis

Solution:

```
import matplotlib.pyplot as plt import
numpy as np
df_ex_0=df.loc[df['Exited']==0]
df_ex_1=df.loc[df['Exited']==1]
plt.plot(df_ex_0['Balance'],np.zeros_like(df_ex_0['Balance']),color='green')
plt.xlabel('Balance') plt.show()
```


2)Bi - Variate Analysis

Solution:

import seaborn as sns
sns.FacetGrid(df,hue='Exited',size=5).map(plt.scatter,'CreditScore','Balance').add_legend()

1) Multivariate Analysis

Solution:

sns.pairplot(df,hue='Exited',height=5)

Question-4:

Perform descriptive statistics on the dataset.

Solution: df.describe(include='all')

Question-5:

Handle the Missing values.

Solution:

df.isnull().sum()

```
Handling Missing Values

In [13]: df.isnull().sum()

Out[13]: RowNlumber 0 CustomerId 0 Surname 0 CreditScore 0 Geography 0 Gender 0 Age 0 Tenure 0 Balance 0 NumOfProducts 0 HasCrCard 0 IsActiveNember 0 EstimatedSalary 0 Exited 0 dtype: int64
```

Question-6:

Find the outliers and replace the outliers

Solution:

import seaborn as sns sns.boxplot(df['Balance'])

Question-7:

Check for Categorical columns and perform encoding.

Solution:

from sklearn.preprocessing import LabelEncoder from
collections import Counter as count le=LabelEncoder()
df['Geography']=le.fit_transform(df['Geography'])
df['Gender']=le.fit_transform(df['Gender'])
df['Surname']=le.fit_transform(df['Surname'])

Question-8:

Split the data into dependent and independent variables.

Solution:

x=df.iloc[:,0:13]
y=df['Exited']

```
Dependent and Independent variables

In [20]: x=df.iloc[:,0:13]

In [21]: y=df['Exited']
```

Question-9:

Scale the independent variables

Solution: from sklearn.preprocessing import StandardScaler sc=StandardScaler() sc_xtrain=sc.fit_transform(xtrain) sc_xtest=sc.transform(xtest)

Question-10:

Testing and training data

Solution: from sklearn.model_selection import train_test_split xtrain,xtest,ytrain,ytest=train_test_split(x,y,test_size=0.3,random_state=10)