

Low Cost, Low Power Precision Op Amp

FEATURES

Offset Voltage	50μV Max
Offset Voltage Drift	1μV/°C Max
Bias Current	250pA Max
Offset Current	250pA Max
Bias and Offset Current Drift	4pA/°C Max
Supply Current	560µA Max
0.1Hz to 10Hz Noise	0.5μVp-p, 2.2pAp-p
CMRR	115dB Min
Voltage Gain	117dB Min
■ PSRR	114dB Min

Guaranteed Operation on Two NiCad Batteries

APPLICATIONS

- Replaces OP-07/OP-77/OP-97/OP-177/AD707/ LT1001 with Improved Price/Performance
- High Impedance Difference Amplifiers
- Logarithmic Amplifiers (Wide Dynamic Range)
- Thermocouple Amplifiers
- Precision Instrumentation
- Active Filters (with Small Capacitors)

DESCRIPTION

LT[®]1097 achieves a new standard in combining low price and outstanding precision performance.

On all operational amplifier data sheets, the specifications listed on the front page are for highly selected, expensive grades, while the specs for the low cost grades are buried deep in the data sheet.

The LT1097 does not have any selected grades, the outstanding specifications shown in the Features section are for its only grade.

The design effort of the LT1097 concentrated on optimizing the performance of all precision specs—at only 350 μ A of supply current. Typical values are 10 μ V offset voltage, 40pA bias and offset currents, 0.2 μ V/°C and 0.4pA/°C drift. Common mode and power supply rejections, voltage gain are typically in excess of 128dB.

All parameters that are important for precision, low power op amps have been optimized. Consequently, using the LT1097 error budget calculations in most applications is unnecessary.

17, LTC and LT are registered trademarks of Linear Technology Corporation.

TYPICAL APPLICATION

Saturated Standard Cell Amplifier

Input Offset Voltage Distribution

LT1097 • G0

ABSOLUTE MAXIMUM RATINGS

Supply Voltage	±20V
Differential Input Current (Note 1)	
Input Voltage	
Output Short Circuit Duration	

Operating Temperature Range-40°C to 85°C Storage Temperature Range-65°C to 150°C Lead Temperature (Soldering, 10 sec)300°C

PACKAGE/ORDER INFORMATION

ELECTRICAL CHARACTERISTICS $V_S = \pm 15 V$, $V_{CM} = 0 V$, $T_A = 25 ^{\circ} C$, unless otherwise noted.

SYMBOL	PARAMETER	CONDITIONS	MIN	LT1097CN Typ	B MAX	MIN	LT1097S8 TYP	MAX	UNITS
V _{OS}	Input Offset Voltage			10	50		10	60	μV
$\frac{\Delta V_{OS}}{\Delta TIME}$	Long Term Input Offset Voltage Stability			0.3			0.3		μV/Mo
I _{OS}	Input Offset Current			40	250		60	350	pA
I _B	Input Bias Current			±40	±250		±50	±350	pA
en	Input Noise Voltage	0.1Hz to 10Hz		0.5			0.5		μVр-р
	Input Noise Voltage Density	$f_0 = 10Hz$ $f_0 = 1000Hz$		16 14			16 14		nV/√ Hz nV/√ Hz
in	Input Noise Current	0.1Hz to 10Hz		2.2			2.4		рАр-р
	Input Noise Current Density	$f_0 = 10Hz$ $f_0 = 1000Hz$		0.03 0.008			0.035 0.008		pA/√Hz pA/√Hz
	Input Resistance Differential Mode Common Mode	(Note 2)	30	80 10 ¹²		25	70 8•10 ¹¹		MΩ Ω
	Input Voltage Range		±13.5	±14.3		±13.5	±14.3		V
CMRR	Common Mode Rejection Ratio	$V_{CM} = \pm 13.5V$	115	130		115	130		dB
PSRR	Power Supply Rejection Ratio	$V_S = \pm 1.2V \text{ to } \pm 20V$	114	130		114	130		dB
A _{VOL}	Large Signal Voltage Gain	$V_0 = \pm 12V, R_L = 10k$ $V_0 = \pm 10V, R_L = 2k$	700 250	2500 1000		700 250	2500 1000		V/mV V/mV
V _{OUT}	Output Voltage Swing	R _L = 10k R _L = 2k	±13 ±11.5	±13.8 ±13		±13 ±11.5	±13.8 ±13		V
SR	Slew Rate		0.1	0.2		0.1	0.2		V/µs
GBW	Gain Bandwidth Product			700			700		kHz
Is	Supply Current			350	560		350	560	μА
	Offset Adjustment Range	R _{POT} = 10k, Wiper to V ⁺		±600			±600		μV
	Minimum Supply Voltage	(Note 3)	±1.2	_		±1.2	_		V

ELECTRICAL CHARACTERISTICS $V_S = \pm 15V, \ V_{CM} = 0V, \ 0^{\circ}C \leq T_A \leq 70^{\circ}C, \ unless \ otherwise \ noted.$

			LT1097CN8			LT1097S8				
SYMBOL	PARAMETER	CONDITIONS		MIN	TYP	MAX	MIN	TYP	MAX	UNITS
V _{OS}	Input Offset Voltage		•		20	100		20	130	μV
	Average Temperature Coefficient of Input Offset Voltage	(Note 4)	•		0.2	1		0.2	1.4	μV/°C
I _{OS}	Input Offset Current		•		60	430		75	570	pA
	Average Temperature Coefficient of Input Offset Current	(Note 4)	•		0.4	4		0.5	5	pA/°C
I _B	Input Bias Current		•		±60	±430		±75	±570	pA
	Average Temperature Coefficient of Input Bias Current	(Note 4)	•		0.4	4		0.5	5	pA/°C
A _{VOL}	Large Signal Voltage Gain	$V_{OUT} = \pm 12V, R_L \ge 10k$ $V_{OUT} = \pm 10V, R_L \ge 2k$	•	450 180	2000 800		450 180	2000 800		V/mV V/mV
CMRR	Common Mode Rejection Ratio	$V_{CM} = \pm 13.5V$	•	112	128		112	128		dB
PSRR	Power Supply Rejection Ratio	$V_S = \pm 1.3 V \text{ to } \pm 20 V$	•	111	128		111	128		dB
	Input Voltage Range		•	±13.5	±14.2		±13.5	±14.2		V
V _{OUT}	Output Voltage Swing	R _L = 10k	•	±13	±13.7		±13	±13.7		V
Is	Supply Current		•		380	700		380	700	μΑ

ELECTRICAL CHARACTERISTICS $V_S = \pm 15V$, $V_{CM} = 0V$, $-40^{\circ}C \le T_A \le 85^{\circ}C$, unless otherwise noted. (Note 5)

					LT1097CN	B	LT1097S8			T
SYMBOL	PARAMETER	CONDITIONS		MIN	TYP	MAX	MIN	TYP	MAX	UNITS
V _{OS}	Input Offset Voltage		•		25	130		30	170	μV
	Average Temperature Coefficient of Input Offset Voltage		•		0.3	1.2		0.3	1.6	μV/°C
I _{OS}	Input Offset Current		•		70	600		85	750	pA
	Average Temperature Coefficient of Input Offset Current		•		0.5	5		0.6	6	pA/°C
I _B	Input Bias Current		•		±70	±600		±85	±750	pA
	Average Temperature Coefficient of Input Bias Current		•		0.5	5		0.6	6	pA/°C
A _{VOL}	Large Signal Voltage Gain	$V_{OUT} = \pm 12V, R_L \ge 10k$ $V_{OUT} = \pm 10V, R_L \ge 2k$	•	300	1700 700		300	1700 700		V/mV V/mV
CMRR	Common Mode Rejection Ratio	$V_{CM} = \pm 13.5V$	•	108	127		108	127		dB
PSRR	Power Supply Rejection Ratio	$V_S = \pm 1.5 V \text{ to } \pm 20 V$	•	108	127		108	127		dB
	Input Voltage Range		•	±13.5	±14		±13.5	±14		V
V _{OUT}	Output Voltage Swing	R _L = 10k	•	±13	±13.6		±13	±13.6		V
I _S	Supply Current		•		400	800		400	800	μА

The lacktriangle denotes specifications which apply over the full operating temperature range.

Note 1: Differential input voltages greater than 1V will cause excessive current to flow through the input protection diodes unless limiting resistance is used.

Note 2: This parameter is guaranteed by design and is not tested.

Note 3: Power supply rejection ratio is measured at the minimum supply voltage.

Note 4: This parameter is not 100% tested.

Note 5: The LT1097 is designed, characterized and expected to meet these extended temperature limits, but is not tested at -40° C and 85°C. Guaranteed I grade parts are available; consult factory.

Input Bias Current vs Temperature

Minimum Supply Voltage, Common Mode Range and Voltage Swing at V_{MIN}

Warm-Up Drift

Input Bias Current Over Common Mode Range

-20

0

3

2

TIME FROM OUTPUT SHORT (MINUTES)

0.1Hz to 10Hz Noise

0.01Hz to 10Hz Noise

Noise Spectrum

Voltage Gain

Gain, Phase Shift vs Frequency

Power Supply Rejection vs Frequency

Common Mode Rejection vs Frequency

Slew Rate, Gain Bandwidth Product vs Overcompensation Capacitor

Small Signal Transient Response

Large Signal Transient Response

Capacitive Load Handling

SCHEMATIC DIAGRAM

APPLICATIONS INFORMATION

The LT1097 is pin compatible to and directly replaces such precision op amps as the OP-07, OP-77, AD707, OP-97, OP-177, LM607 and LT1001 with improved price/performance. Compatibility includes externally nulling the offset voltage, as all of the above devices are trimmed with a potentiometer between Pin 1 and Pin 8 and the wiper tied to V⁺.

The simple difference amplifier can be used to illustrate the all-around excellence of the LT1097. The 50k input resistance is selected to be large enough compared to input signal source resistance. Simultaneously, the 50k resistors should not dominate the precision and noise error budget. Assuming perfect matching between the four resistors, the following table summarizes the input

referred performance obtained using the LT1097 and other popular, low cost precision op amps.

Input offset voltage can be adjusted over a $\pm 600 \mu V$ range with a 10k potentiometer.

The LT1097 is internally compensated for unity gain stability. As shown on the Capacitive Load Handling plot, the LT1097 is stable with any capacitive load. However, the overcompensation capacitor, C_S , can be used to reduce overshoot with heavy capacitive loads, to narrow noise bandwidth or to stabilize circuits with gain in the feedback loop.

 \pm 27V Common Mode Range Difference Amplifier

Frequency Compensation and Optional Offset Nulling

Guaranteed Perfomance, $V_S = \pm 15V$, $T_A = 25^{\circ}C$

PARAMETER	LT1097CN8	OP-77GP	AD707JN	OP-177GP	OP-97FP	UNITS
Error Terms						
V _{OS} Max	50	100	90	60	75	μV
I _{OS} Max•25k	6	70	50	70	4	μV
Gain Min, 10V Out	14	5	3	5	50	μV
CMRR, Min, ±25V In	22	20	13	22	39	μV
PSRR, Min, $V_S = \pm 15V \pm 10\%$	6	9	9	9	9	μV
Sum of All Error Terms	98	204	165	166	177	μV
0.1Hz to 10Hz Noise						
Voltage Noise	0.5	0.38	0.23	0.38	0.5	μVp-p Typ
Current Noise•50k	0.11	0.75	0.7	0.75	0.1	μVp-p Typ
Resistor Noise	0.55	0.55	0.55	0.55	0.55	μVp-р Тур
RMS sum	0.75	1	0.92	1	0.75	μVр-р
Drift with Temp						
TCV _{OS} Max	1	1.2	1	1.2	2	μV/°C
TCI _{OS} Max•25k	0.1	2.1	1	2.1	0.2	μV/°C
Sum of Drift Terms	1.1	3.3	2	3.3	2.2	μV/°C
Supply Current Max	0.56	2	3	2	0.6	mA

APPLICATIONS INFORMATION

The availability of the compensation terminal permits the use of feedforward frequency compensation to enhance slew rate. The voltage follower feedforward scheme bypasses the amplifier's gain stages and slews at nearly 10V/µs.

The inputs of the LT1097 are protected with back-to-back diodes. In the voltage follower configuration, when the input is driven by a fast, large signal pulse (>1V), the input

protection diodes effectively short the output to the input during slewing, and a current, limited only by the output short circuit protection will flow through the diodes.

The use of a feedback resistor, as shown in the voltage follower feedforward diagram, is recommended because this resistor keeps the current below the short circuit limit, resulting in faster recovery and settling of the output.

Follower Feedforward Compensation

Pulse Response of Feedforward Compensation

Test Circuit for Offset Voltage and its Drift with Temperature

TYPICAL APPLICATION

Low Power Comparator with <10µV Hysteresis

PACKAGE DESCRIPTION Dimensions in inches (millimeters) unless otherwise noted.

N8 Package 8-Lead PDIP (Narrow 0.300)

(LTC DWG # 05-08-1510)

^{*}THESE DIMENSIONS DO NOT INCLUDE MOLD FLASH OR PROTRUSIONS. MOLD FLASH OR PROTRUSIONS SHALL NOT EXCEED 0.010 INCH (0.254mm)

S8 Package 8-Lead Plastic Small Outline (Narrow 0.150)

FLASH SHALL NOT EXCEED 0.010" (0.254mm) PER SIDE

SO8 0996

TYPICAL APPLICATION

RELATED PARTS

PART NUMBER	DESCRIPTION	COMMENTS
LT1490/LT1491	Dual/Quad General Purpose Micropower Rail-to-Rail Op Amps	Over-The-Top™ Inputs, 50μA Supply Current Per Amplifier, 2V to 44V Supply Range, 180kHz GBW
LT1492/LT1493	Dual/Quad 5MHz Low Power Single Supply Op Amps	180μV V _{OS} Max, 3V/μs Slew Rate, 550μA Supply Per Amplifier
LT1077	Single Micropower Low V _{OS} Op Amp	60μV V _{OS} Max, 68μA Supply Current, 230kHz GBW, Optimized for 5V Supplies

Over-The-Top is a trademark of Linear Technology Corporation.

This datasheet has been downloaded from:

www. Data sheet Catalog.com

Datasheets for electronic components.