Rendering techniques

Tristan Gouge

Contents

1	Global Illumination			1	
	1.1	What	is Global illumination	1	
2	Physics		3		
	2.1 The physics behind the images				
		2.1.1	Electronic waves, light transport equation	3	
		2.1.2	Poynting vector, Radiance, Radiant energy	3	
		2.1.3	The rendering equation	4	

1 Global Illumination

1.1 What is Global illumination

Definition 1.1.1 (Global Illumination). *Global illumination* or *indirect illumination* is a set of algorithms that take into account not only direct light (from light sources) but also indirect lights (reflections, diffusion, ...)

2 Physics

2.1 The physics behind the images

2.1.1 Electronic waves, light transport equation

Definition 2.1.1 (Electromagnetic radiation). It consists of waves of EM which propagate through space It's behaviour is determined by the Maxwell equations:

- $\operatorname{div} \vec{E} = \frac{\rho}{\epsilon_0}$,
- $\operatorname{rot} \vec{E} = -\frac{\partial \vec{B}}{\partial t}$,
- $\operatorname{div} \vec{B} = 0$,
- rot $\vec{B} = \mu_0 \left(\vec{j} + \epsilon_0 \frac{\partial \vec{E}}{\partial t} \right)$.

Where \vec{j} is the current density, ρ is the charge density.

Theorem 2.1.1 (Light transport equation). Every solution to Maxwell equation respect the following transport equation

- $\Delta \vec{E} = \frac{1}{c_0^2} \frac{\partial^2 \vec{E}}{\partial t^2}$
- $\Delta \vec{B} = \frac{1}{c_0^2} \frac{\partial^2 \vec{B}}{\partial t^2}$

where $c_0^2 = \mu_0 \epsilon_0$ and Δ is the Laplacian.

2.1.2 Poynting vector, Radiance, Radiant energy...

Definition 2.1.2 (Poynting vector). The Poynting vector is the vector defined by:

$$\vec{\Pi} = \frac{\vec{E} \wedge \vec{B}}{\mu_0}.$$

Theorem 2.1.2 (Poynting theorem).

$$-\frac{\partial u}{\partial t} = \operatorname{div} \vec{\Pi} + \vec{j} \cdot \vec{E}$$

Where $u = \frac{1}{2} \left(\epsilon_0 E^2 + \frac{B^2}{\mu_0} \right)$ is the local electromagnetic energy, j is the current density.

Definition 2.1.3 (Radiant Energy). It is the energy of an electromagnetic radiation, given by The radiant energy flux is given by

$$\Phi_e = \frac{\mathrm{d}Q_e}{\mathrm{d}t}$$

where

$$Q_e = \int_{\Sigma} \vec{\Pi} \cdot \vec{n} \, dA$$

and Σ is a closed surface.

Theorem 2.1.3.

$$\Phi_e \approx \int_\Sigma \left< |\Pi| \right> \cos \alpha \ \mathrm{d}A$$

Where α is the angle between $\vec{\Pi}$ and \vec{n} .

Definition 2.1.4 (Radiance). The radiance is the radiant flux emitted, reflected, transmitted or received by a given surface, per unit solid angle per unit projected area

$$L_{e,\Omega} = \frac{\partial^2 \Phi_e}{\partial \Omega \, \partial (A \cos \theta)}, \label{eq:LeOmega}$$

where Ω is the solid angle, $A\cos\theta$ the projected area.

2.1.3 The rendering equation

Definition 2.1.5. The rendering equation is an equation that gives the relation between the outgoing radiance along an output direction ω_o at a given point, and the incoming radiance:

$$L_o(\vec{x},\omega_o,t) = L_e(\vec{x},\omega_o,t) + \int_{\Omega} f_r(\vec{x},\omega_i,\omega_o,t) L_i(\vec{x},\omega_i,\omega_o,t) (\omega_i \cdot \vec{n}) \, \mathrm{d}\omega_i.$$

where L_o is the total outgoind radiance along ω_0 , \vec{x} the position, t the time, L_e the emitted radiance, L_i the incoming radiance, f_r is the BRDF function.

The equation can also be modified to take into account the wavelength

The previous equation has some limitations: it can't model non-linear effects, interference, polarization...

See transient rendering (Definition ??) and volume rendering (Definition ??).

Definition 2.1.6 (Bidirectional reflectance distribution function — BRDF).

[1]

Bibliography

[1] Eric Haines. Ray Tracing Gems. URL: https://link.springer.com/book/10. 1007/978-1-4842-4427-2 (visited on 10/22/2022).