Exact Algorithms for NP-hard problems

Advanced Algorithms: Part 2, Lecture 4

Today

- Discuss Dynamic Programming homework assignment
- Dynamic Programming over a tree decomposition
 - Some practice with & properties of tree decompositions
 - Vertex cover over a tree decomposition
 - Nice tree decompositions (vertex cover)
 - Constructing a tree decomposition & clique tree

Woeginger, exercise 33: Scheduling with precedence constraints and release times

Given

- 1-machine, set J of n jobs, each with a length p_i and a release time r_i
- precedence constraints (partial order), i.e. i precedes j iff i→j Find
- non-preemptive schedule with completion times C_i for each job j
- obeying precedence constraints and release times, and with
- minimum sum of completion times $\Sigma_j^n C_j$
- Q. Recursive formulation for optimal value for jobs S without release times?

$$\begin{split} \mathsf{OPT}[S] &= \mathsf{min}_{j \in \mathsf{LAST}(S)} \; \{ \; \mathsf{OPT}[S \text{-} \{j\}] \; + \; p(S) \; \} \\ &\quad \mathsf{where} \; \mathsf{LAST}(S) \; \mathsf{is} \; \mathsf{set} \; \mathsf{of} \; \mathsf{jobs} \; \mathsf{in} \; S \; \mathsf{without} \; \mathsf{successor} \; \mathsf{in} \; S \; \mathsf{and} \; p(S) \text{-} \Sigma_{i \in S} p_i \; . \end{split}$$

Q. How to additionally deal with the release times?

Woeginger, exercise 33: Scheduling with precedence constraints and release times

with release times a job can be scheduled with a gap (wait until release):

- So completion time is not just sum of earlier processing times.
- Let T[S] denote the completion time of optimally scheduling all jobs in S.

```
Q. Then OPT[S] = ...?

OPT[S] = min_{j \in LAST(S)} \{ OPT[S-\{j\}] + T[S] \}
```

Q. How to express T[S] recursively? Hint: it's the completion time of a job... which job? How to compute?

Woeginger, exercise 33: Scheduling with precedence constraints and release times

with release times a job can be scheduled with a gap (wait until release):

- So completion time is not just sum of earlier processing times.
- Let T[S] denote the completion time of optimally scheduling all jobs in S.

```
\mathsf{OPT}[\mathsf{S}] = \mathsf{min}_{\mathsf{j} \in \mathsf{LAST}(\mathsf{S})} \left\{ \ \mathsf{OPT}[\mathsf{S} \text{-} \{\mathsf{j}\}] + \mathsf{T}[\mathsf{S}] \ \right\}
```

A.
$$T[S] = f(j^*)$$

where $j^* = arg min_{j \in LAST(S)} \{ OPT[S-\{j\}] + f(j) \}$
where $f(j) = max(T[S-\{j\}], r_j) + p_j$

Recall: Tree decomposition

Q. Given a graph G, what is (the definition of) a tree decomposition?

Recall: Tree decomposition

Definition

A tree decomposition of a graph G = (V, E) is

- a pair (Tr = (T,F), {Vt : t∈T})
- where Tr is a tree such that
 - $\bigcup_{t \in T} V_t = V$
 - $\{u,v\} \in E \Rightarrow \{u,v\} \subseteq V_t \text{ for some } t \in T$
 - $\forall v \in V : T_v = \{t \in T : v \in V_t\}$ is connected in Tr

(vertex coverage) (edge coverage) (coherence)

Main properties:

When removing tree node/edge, subgraphs:

- Share no vertices
- Share no edges

Q. Why is the pair $(Tr = (T,F), \{Vt : t \in T\})$ not a tree decomposition of G?

A. It contradicts coherence: 3 occurs in bags of top and bottom node of the tree, but not in bags of all other nodes on (tree) path between these.

tree (T,F) with bags V_t:

graph G:

Q. Why is the pair (Tr = (T,F), $\{V_t : t \in T\}$) not a tree decomposition of G?

tree (T,F) with bags V_t:

graph G:

Q. What is the treewidth of the following graph?

Q. What is the treewidth of the following graph?

Q. What is the treewidth of the following graph?

Treewidth: some easy observations

to support reasoning about tree decompositions and treewidth

Q. If H is a subgraph of G what do we know about the relation between their treewidths?

Treewidth: some easy observations

Observation 1

If H is a subgraph of G then $tw(H) \le tw(G)$.

Take the tree decomposition of G with minimum width and consider the subset $\{V_t \cap H: t \in T\}$. This generates a tree decomposition T' of H. Observe: width(T') \leq tw(G) and thus tw(H) \leq tw(G).

Q. If G = (V, E) has two unconnected components A and B such that $A \cup B = V$ what do we know about tw(G)?

Treewidth: some more easy observations

Observation 1

If H is a subgraph of G then $tw(H) \le tw(G)$.

Take the tree decomposition of G with minimum width and consider the bags $\{V_t \cap H: t \in T\}$. This generates a tree decomposition of H with at most the same width.

Observation 2

If G = (V, E) has two unconnected components A and B such that $A \cup B = V$ then $tw(G) = max\{tw(A), tw(B)\}$

Take tree decompositions of A and of B with minimum width,

Take a (root) node V₀ from the tree decomposition of A and a root node V₀ from B.

Connect V₀ and V₀. This is a tree decomposition of G with width max{tw(A),tw(B)}.

No smaller tree decomposition exists, because then one would for either A or B (using observation 1).

Maximum Treewidth

Q. For any graph G = (V, E), wat is the maximum treewidth?

Hint: Use *constructive* proof: provide "algorithm" to produce tree decomposition with this width.

Observation 3

For every graph G = (V, E) it holds that $tw(G) \le |V|-1$.

For every G = (V, E) a single bag $V_t = V$ forms a tree $T_t = (\{t\}, \emptyset)$ of width |V| - 1

Q. For which graph G = (V, E) do you think this is the smallest treewidth possible?

Maximum Treewidth

Observation 4: Let G = (V, E) be a clique. Show that tw(G) = |V|-1

Proof (idea: point out which tree node contains all vertices)

- 1. Take an arbitrary tree decomposition T for G with root node t.
- 2. For every $v \in V$, find the node t_v closest to t such that $v \in V_{tv}$.
- 3. Then take the w∈V associated with the tree node t_w with maximum distance from t.
- 4. For every x the following holds: since G is a clique, edge (x,w) needs to be covered, and thus x should be somewhere in the subtree of V_{tw} .
- 5. So every other vertex x should be in V_{tw} (by coherence): $|V_{tw}| = |V|$ Together with Observation 1, this implies tw(G) = |V|-1.

Tree decomposition properties: separating tree edge

Observation 5. Let a tree decomposition (Tr=(T,F), $\{V_t : t \in T\}$) of G=(V,E) be given. **Remove a tree-edge (t_x,t_y) from T*.** Let resulting components of T be X and Y. Remove $V_x \cap V_y$ from G.

Are the components $G_1 = \dot{G}_X - (V_X \cap V_y)$ and $G_2 = G_Y - (V_X \cap V_y)$ separated?

Tree decomposition properties: separating tree edge

Observation. Let a tree decomposition (Tr=(T,F), $\{V_t : t \in T\}$) of G=(V,E) be given. Remove a tree-edge (t_x,t_y) from T. Let resulting components of T be X and Y. Remove $V_x \cap V_y$ from G.

Are the components $G_1 = G_X - (V_x \cap V_y)$ and $G_2 = G_Y - (V_x \cap V_y)$ separated?

Q. Why don't G_1 and G_2 share a vertex?

Follows from coherence: Suppose $w \in V_1 \cap V_2$. Let t_1 and t_2 be the respective tree nodes in X and Y containing w. Then every tree node t on the path in T from t_1 to t_2 contains w. But then $w \in V_x$ and $w \in V_y$. So $w \notin V_1 \cap V_2$.

Tree decomposition properties: separating tree edge

Observation. Let a tree decomposition (Tr=(T,F), $\{V_t : t \in T\}$) of G=(V,E) be given. Remove a tree-edge (t_x,t_y) from T. Let resulting components of T be X and Y. Remove $V_x \cap V_y$ from G.

Are the components $G_1 = G_X - (V_X \cap V_y)$ and $G_2 = G_Y - (V_X \cap V_y)$ separated?

Pf. G_1 and G_2 don't share any vertex:

Follows from coherence: Suppose $w \in V_1 \cap V_2$. Let t_1 and t_2 be the respective tree nodes in X and Y containing w. Then every tree node t on the path in T from t_1 to t_2 contains w. But then $w \in V_x$ and $w \in V_y$. So $w \notin V_1 \cap V_2$.

Q. Why is there no edge (u,v) from G_1 to G_2 ? Follows from edge coverage:

1. $\{u,v\}$ implies a node $a\in T$ with $u,v\in V_a$

2. w.l.o.g. let V_a be in X

3. hence $v \in V_z$ for every z on path a - b in \mathcal{T}

4. so $v \in V_x \cap V_v$; contradiction

implied by coherence

Q/

 V_{x}

Q/

 $V_{x} \cap V_{y}$

Q. Add edge (red,blue). Which of the following statements can we use to prove that the treewidth of this graph is at least 3? Give all that apply.

- A. For every graph G = (V, E) it holds that $tw(G) \le |V|-1$.
- B. If H is a subgraph of G then $tw(H) \le tw(G)$.
- C. If G = (V, E) has two unconnected components A and B such that $A \cup B = V$ then $tw(G) = max\{tw(A), tw(B)\}$.
- D. Let G = (V, E) be a clique. Then tw(G) = |V|-1.

Dynamic programming over tree decomposition

First, similar to last week's lecture on max. weight independent set:

- min. weight vertex cover over a tree
- min. weight vertex cover over a nice tree decomposition

Weighted Vertex cover

Given

- an undirected graph G=(V,E)
- weights w_u for every u in V
- a nonnegative integer k

Decide

■ is there a subset of vertices $C \subseteq V$ with sum of weights less than k such that each edge in E has one endpoint in C?

Note: The following discusses the same idea of DP using a tree decomposition, but for a minimum weighted vertex cover (=of all edges) instead of maximum weighted independent set (=no neighbors).

Start again simple: what if G is a tree itself?

Minimum Weighted Vertex Cover on Trees

Q. What are possible subproblems for a node u?

The two subproblems are:

- 1. include u and *possibly include* children of u, or
- 2. don't include u and include all children of u.

Idea. Use different notation for OPT with and without a node u.

- OPT_{in} (u) = min weight of vertex cover subtree rooted at u, containing u.
- OPT_{out}(u) = min weight of vertex cover subtree rooted at u, not containing u.
- Q. How to express these formally (recursively)?

children(u) = $\{v, w, x\}$

Weighted Vertex Cover on Trees

Idea. Use different notation for OPT with and without u.

- OPT_{in} (u) = min weight of vertex cover subtree rooted at u, containing u.
- OPT_{out}(u) = min weight of vertex cover subtree rooted at u, not containing u.
- Q. How to express these formally (recursively)?

$$OPT_{in}(u) = w_u + \sum_{v \in children(u)} \min \{OPT_{in}(v), OPT_{out}(v)\}$$

$$OPT_{out}(u) = \sum_{v \in \text{children}(u)} OPT_{in}(v)$$

NB: $\Sigma ... = 0$ if u has no children

$$OPT(u) = \min \{OPT_{in}(u), OPT_{out}(u)\}$$

Weighted Vertex Cover on Trees: DP Algorithm

Claim. The following dynamic programming algorithm efficiently finds a minimum weighted vertex cover in trees.

- Q. What is the space and runtime of this algorithm?
- A. Takes O(n) space and time: O(1) time amortized per vertex since we visit vertices in postorder and examine each edge exactly once.

Weighted Vertex Cover: dynamic programming over a tree decomposition

Vertex cover. Given a graph G=(V,E), find a set S⊆V of minimum weight that covers all edges.

Idea. Similar to Maximum Weight Independent Set:

- 1. Use a tree decomposition T of G to construct a search tree.
- 2. Do dynamic programming over T to find minimum weight vertex covers of subgraph of G (induced by all pieces/bags in tree with root V_t).
- 3. Brute force over all vertex covers in every piece/bag of T.

Instead of $OPT_{in}(t)$ and $OPT_{out}(t)$ we now define OPT(t,U) where U contains the vertices from V_t that are selected in the cover.

Weighted Vertex Cover: dynamic programming over a tree decomposition

Express weight of minimum vertex cover recursively using children:

OPT(t,U) = w(U) + $\Sigma_{i=1,...,d}$ minimum weights of vertex covers of graphs induced by subtrees with roots at V_{tir} consistent with U

Minimize weight over *all* vertex covers $U_i \subseteq V_{ti}$ in G *consistent with* U. (Nodes selected by U in $V_t \cap V_{ti}$ should be the same as nodes selected by U_i in $V_t \cap V_{ti}$, so U_i should be a vertex cover for which $U_i \cap V_t = U \cap V_{ti}$.)

$$\mathsf{OPT}(\mathsf{t,U}) = \mathsf{w(U)} + \sum_{i=1}^d \min_{U_i \subseteq V_{t_i}} \left\{ \sup_{\mathbf{u} \in \mathsf{V}} \mathsf{t}_i \left\{ \sup_{\mathbf{u} \in \mathsf{V}} \mathsf{t}_i \cup \mathsf{U}_i \cap \mathsf{V} \right\} \right\} = \mathsf{U} \cap \mathsf{Vti} \text{ and for every } \{u,v\} \in \mathsf{E} \cap \mathsf{Vti} \ u \text{ or } v \text{ is in } U_i \right\}$$

the second condition ensures U_i is a vertex cover of V_{ti}

Dynamic programming over a tree decomposition

```
To find a maximum weight vertex cover maximum weight independent set of G, given a tree decomposition (T, \{V_t\}) of G:

Root T at a node r

For each node t of T in post-order

If t is a leaf then

For each independent set U of V_t

f_t(U) = w(U)

NB: f_t(U) = OPT(t, U)

Else

For each independent set U of V_t

f_t(U) is determined by the recurrence (with table look-ups)

Endif

Endfor

Return max \{f_r(U): U \subseteq V_r \text{ is independent}\}.
```

- Q. Given a graph with n nodes, and a tree decomposition of width w. What is the *space* required by this algorithm?
- A. For a given tree node t, we store a value for each vertex cover U: $O(2^{w+1})$ with at most n tree nodes this is thus $O(n2^{w+1})$.

Dynamic programming over a tree decomposition

```
To find a maximum weight vertex cover maximum weight independent set of G, given a tree decomposition (T, \{V_t\}) of G:

Root T at a node r

For each node t of T in post-order

If t is a leaf then

For each independent set U of V_t

f_t(U) = w(U)

NB: f_t(U) = OPT(t, U)

Else

For each independent set U of V_t

f_t(U) is determined by the recurrence (with table look-ups)

Endif

Endfor

Return max \{f_r(U): U \subseteq V_r \text{ is independent}\}.
```

- Q. Given a graph with n nodes, and a tree decomposition of width w. What is the *runtime* of this algorithm?
- A. One calculation of $OPT_t(U)$ takes $O(2^{w+1}wd)$, where d is #children. Needs to be done for each vertex cover U: $O(2^{w+1})$ times. So $O(4^{w+1}wn)$, because |T| is at most O(n) children in total.

Weighted Vertex Cover: dynamic programming over a tree decomposition

Express weight of minimum vertex cover recursively using children:

OPT(t,U) = w(U) + $\Sigma_{i=1,...,d}$ minimum weights of vertex covers of graphs induced by subtrees with roots at V_{ti} , consistent with U

Minimize weight over *all* vertex covers $U_i \subseteq V_{ti}$ in G *consistent with* U. (Nodes selected by U in $V_t \cap V_{ti}$ should be the same as nodes selected by U_i in $V_t \cap V_{ti}$, so U_i should be a vertex cover for which $U_i \cap V_t = U \cap V_{ti}$.)

complex; to define & to guarantee correctness...

Dynamic programming over a *nice* tree decomposition

Reasoning about (constructing an algorithm for) subsets and multiple children can become quite complex...

Suppose the tree decomposition is *nice*:

- just one child with a small change in the bag or
- two children which are equivalent

To give the required recursive function $OPT_t(U)$ representing the minimum weight of a vertex cover *consistent* with U would be much easier.

Nice tree decomposition

For complicated dynamic programming algorithms (and their proofs), *nice* tree decompositions make life easier. See (Bodlaender, 1997).

Definition

A rooted tree decomposition (Tr = (T,F), { $V_t : t \in T$ }) of G is nice if for every $t \in T$:

• $|V_t| = 1$ (leaf), or

- Note: terms reason from bottom to top
- t has one child t' with $V_t \subset V_{t'}$ and $|V_t| = |V_{t'}| 1$ (forget), or
- t has one child t' with $V_{t'} \subset V_t$ and $|V_t| = |V_{t'}| + 1$ (*introduce*), or
- t has two children t_1 and t_2 with $V_t = V_{t1} = V_{t2}$ (join).

Given a tree decomposition of width w of G, in polynomial time we can construct a nice tree decomposition (Tr = (T,F), { $Vt : t \in T$ }) of G of width w, with |T| in O(wn), where n = |V(G)|.

Bodlaender, H. Treewidth: Algorithmic Techniques and Results. In *Mathematical Foundations of Computer Science*, pages 19-36, 1997.

Example: Nice Tree decomposition

Recall: Tree decomposition

Weighted vertex cover over nice tree decomposition

Leaf:
$$|V_t| = 1$$
. Q. Define OPT(t,U) for every U. OPT(t, $\{v\}$) = w($\{v\}$) for $V_t = \{v\}$ OPT(t, \emptyset) = 0

Forget:
$$V_t = V_{t'} \setminus \{v\}$$
 (So parent V_t does not have v) OPT $(t,U) = \min\{ OPT(t',U), OPT(t',U\cup\{v\}) \}$

Join: two children t_1 and t_2 with $V_t = V_{t1} = V_{t2}$ OPT $(t,U) = OPT(t_1,U) + OPT(t_2,U) - w(U)$

Q. How to obtain minimal weight from root node r? A. $min_{U \subset Vr}$ { OPT(r,U) }

Before we had $OPT_{in}(u)$ and $OPT_{out}(u)$ to represent the optimal values for the decision on u. Now we need the optimal values for all subsets U of V_t .

Pf. Vt contains one vertex, so \emptyset and $\{v\}$ are both covers and cost are determined.

Pf. two options consistent with U; consider both and choose the best

Pf. if v not in U: need to make sure U is a cover (1st and 3rd line); otherwise, add weight of v and consistent subproblem

Pf. add weights of two consistent subproblems and remove overlap

Constructing a tree decomposition (Ch.10.5)

Bad news. Constructing a tree decomposition of width less than k is an NP-complete problem.

Good news.

- There are efficient algorithms for special cases (e.g. chordal graphs).
- There is a FPT algorithm that is linear in n (but exponential in k) and produces a tree decomposition of *linear size* (Bodlaender, 1996)
- There is a ratio 4 approximation of O*(2w) (in Ch.10.5).
- There is a polynomial time O(log n) approximation.
- There are good and very fast heuristics (e.g. minimum degree).

Reproducing algorithm from Ch.10.5 not required at exam.

The minimum degree heuristic

min-degree(G):

- If G is a clique, create node t with all vertices and return T=({t},{})
- Otherwise:
 - -Take vertex *v* of minimum degree
 - -Make neighbors of *v* a clique
 - -Remove v_r and repeat on rest of G: T' = min-degree(G $\{v\}$)
 - -Create node t_v with bag $\{v\} \cup N(v)$, connect to node of tree decomposition T' containing neighbors
 - -return T'∪t_v

It's a heuristic, but often works well! (Try it on the cycle graph.)

NB: Also reason about a lower bound as we did earlier!

Special case: Clique tree

Definition

A *clique tree* of G is a tree decomposition ($Tr = (T,F), \{V_t : t \in T\}$) where every bag V_t is a clique in G.

- Q. Any tree decomposition of G can be made into a clique tree of some graph G' with V'⊇V and E'⊇E. How?
- A. connect all vertices in every bag

Optional: All-Pairs-Shortest-Paths (own research, time permitting)

Tree decomposition (clique trees) can be used for solving problems in P!

Floyd-Warshall (1962, dynamic programming)
 O(n³)

Johnson (1977, Bellman-Ford, Dijkstra)
 O(nm + n² log n)

• Chleq / Snowball by Planken, de Weerdt (2011) $O(n^2w_d)$ where w_d is the width of the clique tree.

Snowball is theoretically better than Johnson if w_d is o(log n).

All-Pairs-Shortest-Paths (own research)

1-Slide Summary on Tree Decomposition

Tree decomposition

- (nice) tree decomposition is a tree of bags defined on top of a graph
 meeting vertex coverage, edge coverage and coherence conditions
- children represent subproblems that are independent apart from parent
- runtime is exponential in size of the bags (the width)
- treewidth tw(G) of a graph G is smallest width of any tree decomposition **Properties** (with proofs):
- For every graph G = (V, E) it holds that $tw(G) \le |V|-1$.
- If H is a subgraph of G then $tw(H) \le tw(G)$.
- If G = (V, E) has two unconnected components A and B such that $A \cup B = V$ then $tw(G) = max\{tw(A), tw(B)\}$
- Let G = (V, E) be a clique. Then tw(G) = |V|-1.
- "Removing" a tree-node or tree-edge separates the graph.

Examples

- weighted independent set using a (nice) tree decomposition
- weighted vertex cover using a (nice) tree decomposition

Study Advice

Please read remaining parts of two papers and chapter 10 (about 10 pages are new:)

- 1. Section 10.3 from Jon Kleinberg and Eva Tardos, *Algorithm Design*, 2006.
- 2. Gerhard Woeginger, Exact algorithms for NP-hard problems: A survey, *Combinatorial Optimization*, LNCS 3570, pp 187-207, 2003: Section 4 for DP, section 5 for Preprocessing [section 6 for local search is optional]

Homework

- Independent set over a nice tree decomposition
- Weighted max cut