

9~13 page 🔹

KUBIG CONTEST 머신러닝 분반 < 심리 성향 예측 >

이은찬 이수찬 이영노 임채명 정은미

9~13 page 💲

EDA

Modeling Ensemble

데이터 살펴보기 변수 살펴보기

🗓 Data analysis

9~13 page 💃

심리 성향 테스트를 활용하여 설문자의 투표 여부를 맞추는 알고리즘

voted - 지난 해 국가 선거 투표 여부 (1=Yes, 2=No) => **(0=Yes, 1=No)**

9~13 page ♣

Q A (a~t): 비식별화를 위해 일부 질문은 Secret 처리

Oa: Secret

Qb: The biggest difference between most criminals and other people is that the criminals are stupid enough to get caught.

Oc: Anyone who completely trusts anyone else is asking for trouble.

Od: Secret

Qe: P.T. Barnum was wrong when he said that there's a sucker born every minute.

Qf: There is no excuse for lying to someone else.

Og : Secret

Qh: Most people forget more easily the death of their parents than the loss of their property.

Oi : Secret

Qj: It is safest to assume that all people have a vicious streak and it will come out when they are given a chance,

Ok : All in all, it is better to be humble and honest than to be important and dishonest.

OL: Secret.

Qm: It is hard to get ahead without cutting corners here and there,

On: Secret

Qo: The best way to handle people is to tell them what they want to hear.

Qp: Secret

Qq: Most people are basically good and kind.

Or: One should take action only when sure it is morally right.

Qs: It is wise to flatter important people.
Ot: Secret

1=Disagree, 2=Slightly disagree, 3=Neutral, 4=Slightly agree, 5=Agree.

=> 마키아벨리즘 성향을 파악

데이터 EDA / 데이터 전처리

9~13 page 💲

Q A (a~t): 비식별화를 위해 일부 질문은 Secret 처리

Qm: It is hard to get ahead without cutting corners here and there.

Qq: Most people are basically good and kind.

1=Disagree, 2=Slightly disagree, 3=Neutral, 4=Slightly agree, 5=Agree.

=> 방향이 반대

Secret 문항 변수도 방향 전환이 필요함을 확인

데이터 EDA / 데이터 전처리

Data analysis

9~13 page 🔹

Q A (a~t): 비식별화를 위해 일부 질문은 Secret 처리

Secret 변수까지 방향 바꾼 후

```
🗓 Data analysis
```

9~13 page 💃

Q A (a~t): 비식별화를 위해 일부 질문은 Secret 처리

```
1 flipping_columns = ["OeA", "OfA", "OkA", "OqA", "OrA"]
2 for data in dataset:
3   for flip in flipping_columns:
4     data[flip] = 6 - data[flip]
5
6
7 flipping_secret_columns = ["OaA", "OdA", "OgA", "OIA", "OnA"]
8 for data in dataset:
9   for flip in flipping_secret_columns:
10   data[flip] = 6 - data[flip]
```

이를 바탕으로

- 1. 모든 변수 모델링 포함
- 2. 마키아벨리즘 성향을 나타내는 하나의 파생 변수 생성
- 각각 Tactic/ Morality/ View를 나타내는
 세 개의 파생 변수 생성

🔃 데이터 EDA / 데이터 전처리

Data analysis 9

9~13 page 💃

tp__(01~07): items were rated "I see myself as:" ____ such that

tp01: Extraverted, enthusiastic.

tp02: Critical, quarrelsome.

tp03: Dependable, self-disciplined.

tp04: Anxious, easily upset.

tp05: Open to new experiences, complex.

tp06: Reserved, quiet.

 $tp 07 \\ \vdots \\ Sympathetic, warm.$

tp08: Disorganized, careless.

tp09: Calm, emotionally stable.

tp10: Conventional, uncreative.

상반되는 질문들을 방향을 맞춰주고 성향에 따라 새로운 5개의 파생변수 생성

9~13 page 🗘

wr_(01~13): 실존하는 해당 단어의 정의를 앎 wf (01~03): 허구인 단어의 정의를 앎

1. 모든 변수 포함하여 모델링

- 2. Wr_ 변수 13개가 나타내는 정보가 동일, 모든 변수가 필요하지 않다고 판단하여 임의로 5개 선택
 - 3. 존재하지 않는 3개의 단어를 선택한 응답자는 신뢰도가 낮다고 평가하여
 - 이를 위해 허구의 단어를 안다고 거짓말한 사람과 진실로 답한 사람을 구별하는 파생변수 생성

9~13 page 💃

familysize : 형제자매 수

9~13 page 💃

age_group: 연령

- 10대인지 아닌지가 투표 여부에 큰 영향 => 새로운 파생 변수

9~13 page 💃

그 외 변수

hand : 필기하는 손

index

결과에 큰 영향을 끼치지 않을 것으로 판단하여 제거

결과에 큰 영향을 끼치지 않을 것으로 판단하여 제거

Q_E(a~t) : 질문을 답할 때까지의 시간

모두 합하여 새로운 하나의 Delay 변수 생성 결과에 큰 영향을 끼치지 않을 것으로 판단하여 제거

데이터 EDA / 데이터 전처리

📋 Data analysis

9~13 page 💃

train,info()

```
USA
               45532 Non-hull float64
37
38
   QsE
               45532 non-null
                              int64
39
   QtA
               45532 non-null float64
   Qt F
40
               45532 non-null__int64
   age_group
               45532 non-null object
   education
               45532 non-null
   engnat
               45532 non-null
                              int64
   familysize
               45532 non-null
   gender
               45532 non-null
                              object
   hand
               45532 non-nul I
   married
               45532 non-null
   гасе
               45532 non-null object
   religion
               45532 non-null
                              object
50
   tp01
               45532 non-null
51
   tp02
               45532 non-null
                              int64
   tp03
               45532 non-null
                              int64
   tp04
               45532 non-null
                              int64
   tp05
               45532 non-null
```

범주형 변수 -> 수치형 변수

1. Label encoding

2. one-hot encoding

3. autoML자체처리

9~13 page 💃

Best AUC 전처리 set

Index Column 제거 방향 전환한 Q_A Score 변수 모두 사용 Categorical 변수는 그대로 유지 => autoML자체처리

9~13 page 💲

Train size 할당

pycaret의 setup함수 사용(train_size = 0.8)하여 모델의 AUC 비교 - Catboost의 AUC가 0.7657로 최고 성능

Train size 할당X

GradientBoostingClassifier의 AUC가 0.7669로 0.12%p 소폭 상승

AUTOML

	Model	Accuracy	AUC	Recall	Prec.	F1	Kappa	MCC	TT (Sec)
gbc	Gradient Boosting Classifier	0.6959	0.7669	0.7584	0.6378	0.6929	0.3962	0.4021	25.256
lightgbm	Light Gradient Boosting Machine	0.6963	0.7663	0.7561	0.6389	0.6925	0.3967	0.4022	1.090
lda	Linear Discriminant Analysis	0.6931	0.7629	0.7277	0.6418	0.6820	0.3877	0.3906	0.851
et	Extra Trees Classifier	0.6925	0.7623	0.7495	0.6358	0.6880	0.3889	0.3940	6.600
ada	Ada Boost Classifier	0.6887	0.7575	0.7319	0.6354	0.6802	0.3800	0.3836	4.833
rf	Random Forest Classifier	0.6908	0.7566	0.7494	0.6339	0.6868	0.3857	0.3910	8.430
dt	Decision Tree Classifier	0.6084	0.6050	0.5692	0.5670	0.5680	0.2099	0.2100	1.502
nb	Naive Bayes	0.5084	0.5321	0.4226	0.4487	0.3081	0.0017	0.0029	0.065
lr	Logistic Regression	0.5471	0.5267	0.0050	0.4837	0.0098	-0.0002	0.0003	2.538
knn	K Neighbors Classifier	0.5117	0.5103	0.4606	0.4602	0.4603	0.0145	0.0145	36.296
qda	Quadratic Discriminant Analysis	0.4528	0.5004	0.9993	0.4525	0.6229	0.0007	0.0131	0.486
dummy	Dummy Classifier	0.5477	0.5000	0.0000	0.0000	0.0000	0.0000	0.0000	0.020
svm	SVM - Linear Kernel	0.4986	0.0000	0.4941	0.4507	0.4702	-0.0036	-0.0036	0.315
ridge	Ridge Classifier	0.6931	0.0000	0.7275	0.6419	0.6820	0.3877	0.3906	0.121

9~13 page 💲

AUTOML

H

Blending

· validation set에 대한 예측값을 학습에 이용

Soft Voting

최종 0.778의 점수 9~13 page 💃

- 1. 성능을 높이기 위해 복잡한 전처리를 하는게 무조건 능사는 아님
- 2. validation set 설정 시 split값에 따라 결과가 다르게 나타날 수 있음
 - 3. 머신러닝에는 생각보다 많은 randomness가 존재하기 때문에 안정된 모델을 만들기 위해서는 이를 해결해야 함

