

Mathématiques

Bac MATHS (TOP 50-2) Classe :

Série 14: Isométries

Nom du Prof: M. ZOGHBI Naoufel

O Sousse (Khezama - Sahloul) Nabeul / Sfax / Bardo / Menzah El Aouina / Ezzahra / CUN / Bizerte / Gafsa / Kairouan / Medenine / Kébili / Monastir / Gabes / Djerba / Jendouba / Sidi Bouzid / Siliana / Béja / Zaghouan

Exercice 1

(5) 20 min

4 pts

On donne, dans le plan est orienté dans le sens direct, un carré OABC de centre Ω . On note I et J et K les milieux respectifs de [OA], [OC] et [AB].

- 1°) Soit $f = S_{(OB)} \circ S_{(\Omega_I)}$. Caractériser f.
- 2°) Soit g une isométrie sans point fixes qui transforme O en C et I en J.
 - a) Déterminer g(A).
 - b) Montrer que g est une symétrie glissante.
 - c) Soit D=g(K). Montrer que O est le milieu de [ID].
 - **d)** Vérifier que $g = t_{\overline{AO}} \circ S_{(AC)}$.
 - e) En déduire les éléments caractéristiques de g.
- **3°)** Soit $\varphi = g^{-1}$ of.
 - a) Déterminer $\varphi(O)$ et $\varphi(I)$ puis caractériser φ .
 - **b)** Trouver alors l'ensemble (S) des points M du plan tels que f(M)=g(M).

Exercice 2

(5) 20 min

4 pts

Dans le plan orienté, on considère un carré ABCD de centre O et de sens direct. On désigne par I et J les milieux respectifs des segments [AB] et [BC]. On note O' le symétrique du point O par rapport à (AB).

- 1°)a) Caractériser les applications f=S(OC)OS(OJ) et g= S(OJ)OS(DC).
 - **b)** En déduire la nature et les éléments caractéristiques de l'application ϕ =fog.
- **2°)**Soit l'application $h=S_{(BD)}o \varphi$.
 - a) Vérifier que h(C)=A, h(D)=B puis prouver que h(O)=O'.
 - b) Montrer que h n'a pas de points invariants, puis déduire sa nature.
- **3°)** Soit l'application $S=S_{(BC)}$ o $t_{\overline{\Delta B}}$.
 - a) Caractériser S.
 - **b)** Montrer que h=g o S.

Exercice 3

(\$ 20 min

4 pts

Le plan est muni d'un repère orthonormé direct (O,\vec{u},\vec{v}) . Soit m un nombre complexe différent

de 1. On considère l'équation (E) : $z^2 - (1-i)(m+1)z - i(m^2+1) = 0$ d'inconnue complexe z .

- 1°) Résoudre dans \mathbb{C} l'équation (E) .
- **2°)** On désigne par A , M_1 et M_2 les points d'affixes respectives (1-i), (m-i) et (1-im).

Soit l'application f du plan $\bf P$ dans lui-même qui , à tout point $\bf M$ d'affixe $\bf z$, associe le point $\bf M'$ d'affixe $\bf z'$ tel que $\bf z'=-iz+2$.

- a) Montrer que f est une isométrie.
- **b)** Justifier f admet un unique point invariant que l'on déterminera. En déduire la nature et les éléments caractéristiques de f .
- c) Déterminer la nature du triangle AM_1M_2 .
- **3°)** On suppose , dans cette question , que $m=e^{i\theta}$ où $\theta\in\left]-\pi;\pi\right]\setminus\left\{0\right\}.$

- a) Déterminer et construire l'ensemble des points M_1 quand θ décrit $]-\pi;\pi]\setminus\{0\}$. En déduire l'ensemble des points M_2 .
- **b)** Soit I le milieu du segment [M₁M₂]. Déterminer l'affixe de M₁ pour que la distance AI soit maximale.

Exercice 4

(S) 30 min

4 pts

Le plan est orienté dans le sens direct. On considère un triangle ABC rectangle en C, inscrit dans un cercle ($\mathscr C$) centre O tel que $\left(\overline{AC};\overline{AB}\right) \equiv \frac{\pi}{3} \left[2\pi\right]$.

On désigne par I le milieu de[BC], D le symétrique de C par rapport à (AB) et E le symétrique de O par rapport à I.

- 1°) montre que[DE] est un diamètre de (%).
- 2°) Soit $k=S_{(BC)}\circ S_{(AB)}$ et $h=S_{(ED)}\circ S_{(OA)}$.
 - a) Caractériser chacune des isométries k, h et hok-1
 - b) Déterminer l'image de la droite (BD) par k.
 - c) Soit M un point du plan n'appartenant pas à la droite (BD). On pose M'=k(M) et M''=h(M)
 - i) Montrer que le quadrilatère BM'CM" est un parallélogramme.
 - ii) Où faut-il placer M pour que BM'CM" soit un losange.
- 3°) On se propose de déterminer les isométries f de P qui vérifient: f(E)=A et f(C)=D.
 - a) Soit g l'isométrie telle que: $f = t_{\overline{EA}}$ og . Montrer que $g = R_{\left(E, -\frac{2\pi}{3}\right)}$ ou $g = S_{(ED)}$
 - **b)** On suppose que g=R $_{\left(\mathsf{E},-\frac{2\pi}{3}\right)}$. Déterminer les droites Δ et Δ' tels que:

$$\mathsf{R}_{\left(\mathsf{E},-\frac{2\pi}{3}\right)}\!\!=\!\!\mathsf{S}_{\left(\mathsf{EB}\right)}\!\mathsf{oS}_{_{\Delta}} \text{ et } \mathsf{t}_{\overline{\mathsf{EA}}}\!\!=\!\!\mathsf{S}_{_{\Delta'}}\!\mathsf{oS}_{\left(\mathsf{EB}\right)}. \text{ Caract\'eriser alors f.}$$

c) On suppose que $g=S_{(ED)}$. Montrer que f est une symétrie glissante. (On pourra considérer le point H projeté orthogonal de A sur (ED)).

Exercice 5

(\$ 30 min

4 pts

Soit AEFD un rectangle tel que AE = 2AD et $(\overrightarrow{AE}; \overrightarrow{AD}) = \frac{\pi}{2} [2\pi]$.

On désigne par B et C les milieux respectifs des segments [AE] et [DF] et par I et J les centres respectifs des carrée ABCD et BEFC.

- 1°) Soit f l'isométrie du plan telle que : f(A) = E; f(B) = B et f(D) = F.
 - a) Déterminer les images des droites (AB) ; (BC) et (DC) par f.
 - **b)** En déduire que f(C) = C.
- c) Caractériser alors l'isométrie f.
- **2°)** Soit g l'isométrie du plan telle que : g(E) = C ; g(F) = D et g(C) = A et R la rotation de centre B et d'angle $-\frac{\pi}{2}$.
 - a) Déterminer les images des points E, F et C par l'application R o g.
 - **b)** En déduire que g est la rotation de centre B et d'angle $\frac{\pi}{2}$.

- c) Caractériser l'application : $t = S_{(EF)}$ o $S_{(BC)}$.
- d) Déterminer les droites Δ et Δ' telles que :
 - $R = S_{\Delta} \circ S_{(BC)}$ et $t = S_{(BC)} \circ S_{\Delta'}$
- e) Caractériser alors l'application R o t.
- 3°) Soit h l'isométrie du plan telle que : h(A) = C; h(B) = F et h(D) = B.
 - a) Montrer que h ne fixe aucun point du plan.
 - b) En déduire que h est une symétrie glissante.
 - c) Montrer que la droite (IJ) est l'axe de h et \overrightarrow{IJ} est son vecteur.
 - d) Caractériser alors chacune des applications suivantes : h o $S_{(IJ)}$ et $t_{jj} \circ h$.

(S) 25 min

4 pts

D

В

С

Le plan est muni d'un repère orthonormé direct $\left(O,\vec{u},\vec{v}\right)$. Soit m un nombre complexe.

I/ On considère l'équation (E) : $(i-1)z^2 - (1-i)(m-i)z - 2(m-i)^2 = 0$ d'inconnue complexe z .

On prend dans cette question m un nombre complexe distinct de i.

- **1°)** Résoudre dans \mathbb{C} l'équation (E) . On note z_1 et z_2 les solutions de (E).
- 2°) On désigne par M_1 et M_2 les points d'affixes respectives z_1 et z_2 .

Déterminer l'ensemble décrit par chacun des points M_1 et M_2 lorsque |m| varie et $arg(m) \equiv \frac{\pi}{4} [2\pi]$.

II/ Soit l'application f du plan \mathbf{P} dans lui-même qui , à tout point M d'affixe z , associe le point M' d'affixe z' tel que $z' = (1+im)\bar{z} + (1-i)(m-i)$.

- 1°) Montrer que f est une isométrie du plan si, et seulement si, $m=i+e^{i\theta}$ où $\theta\in\left]-\pi;\pi\right].$
- **2°)a)** On pose $m = i + e^{i\theta}$ où $\theta \in [-\pi; \pi]$. Soient M(z) un point de P et M'' = $f \circ f(M)$.

Montrer que l'affixe z" de M" est z" = $z + (1-i)(e^{i\theta} - 1)$.

En déduire que si $\theta \neq 0$ alors f n'admet aucun point invariant.

b) On pose $m = i + e^{i\theta}$ où $\theta \in \left] -\pi; \pi\right] \setminus \left\{0\right\}$.

Soit A le point d'affixe 1, déterminer les affixes des points A' = f(A) et A'' = f'(A').

Montrer que f n'est pas une translation puis donner sa nature.

3°) On pose m= 1+i. Déterminer l'ensemble des points invariants par f puis caractériser f.

