1.	$f(x) = x^3 - \frac{10\sqrt{x} - 4x}{x^2} \qquad x > 0$	
	(a) Show that the equation $f(x) = 0$ has a root α in the interval [1.4, 1.5]	(2)
	(b) Determine $f'(x)$.	(3)
	(c) Using $x_0 = 1.4$ as a first approximation to α , apply the Newton-Raphso once to $f(x)$ to calculate a second approximation to α , giving your answer places.	n procedure to 3 decimal
	P.W. C.	(2)

$$f(x) = x^2 - \frac{3}{\sqrt{x}} - \frac{4}{3x^2}, \quad x > 0$$

- (a) Show that the equation f(x) = 0 has a root α in the interval [1.6, 1.7] (2)
- (b) Taking 1.6 as a first approximation to α , apply the Newton-Raphson process once to f(x) to find a second approximation to α . Give your answer to 3 decimal places.

econd approximan		

3.

$$f(x) = x^2 + \frac{3}{x} - 1, \quad x < 0$$

The only real root, α , of the equation f(x) = 0 lies in the interval [-2, -1].

(a) Taking -1.5 as a first approximation to α, apply the Newton-Raphson procedure once to f(x) to find a second approximation to α, giving your answer to 2 decimal places.
 (5)

(3)

(b) Show that your answer to part (a) gives α correct to 2 decimal places.	

4.	$f(x) = x^3 - \frac{1}{2x} + x^{\frac{3}{2}}, \qquad x > 0$	
	The root α of the equation $f(x) = 0$ lies in the interval [0.6, 0.7].	
	 (a) Taking 0.6 as a first approximation to α, apply the Newton-Raphson process once to f(x) to obtain a second approximation to α. Give your answer to 3 decimal places. (5) 	
	(b) Show that your answer to part (a) is correct to 3 decimal places. (2)	
_		

5.	$f(x) = \ln(2x - 5) + 2x^2 - 30, x > 2.5$	
	(a) Show that $f(x) = 0$ has a root α in the interval [3.5, 4]	(2)
	A student takes A as the first approximation to a	(2)
	A student takes 4 as the first approximation to α .	
	Given $f(4) = 3.099$ and $f'(4) = 16.67$ to 4 significant figures,	
	(b) apply the Newton-Raphson procedure once to obtain a second approximation for α , giving your answer to 3 significant figures.	
		(2)
	(c) Show that α is the only root of $f(x) = 0$	(2)

6.

Figure 2

Figure 2 shows a sketch of part of the curve with equation y = f(x) where

$$f(x) = 8\sin\left(\frac{1}{2}x\right) - 3x + 9 \qquad x > 0$$

and *x* is measured in radians.

The point *P*, shown in Figure 2, is a local maximum point on the curve.

Using calculus and the sketch in Figure 2,

(a) find the x coordinate of P, giving your answer to 3 significant figures.

(4)

The curve crosses the x-axis at $x = \alpha$, as shown in Figure 2.

Given that, to 3 decimal places, f(4) = 4.274 and f(5) = -1.212

(b) explain why α must lie in the interval [4, 5]

(1)

(c) Taking $x_0 = 5$ as a first approximation to α , apply the Newton-Raphson method once to f(x) to obtain a second approximation to α .

Show your method and give your answer to 3 significant figures.

(2)