Operációs rendszerek 1. – 7. előadás Külső készülékek kezelése - Biztonság

Soós Sándor

Nyugat-magyarországi Egyetem Simonyi Károly Műszaki, Faanyagtudományi és Művészeti Kar Informatikai és Gazdasági Intézet

 $\hbox{E-mail: soossandor@inf.nyme.hu}$

Tartalomjegyzék.

Tartalomjegyzék

1.	Ismétlés	1						
	1.1. Emlékeztető az előző órákról	1						
2.	Külső készülékek és külső kapcsolatok							
	2.1. A számítógép belseje és a külvilág	5						
	2.2. Védelem és biztonság	7						
3.	Befejezés							
	3.1. Emlékeztető kérdések	13						

1. Ismétlés

1.1. Emlékeztető az előző órákról

Tárak, tárhierarchia,.

• A tárak hierarchikus rendbe szervezettek:

külső tárak, harmadlagos tárolók				
háttértárak, másodlagos tárolók				
operatív tár, memória				
a processzor regiszterei				

- A tárak jellemzői hierarchia szintek szerint:
 - Minél magasabb szinten van egy tároló:
 - * annál nagyobb méretű
 - * annál lassabb működésű
 - $\ast\,$ annál nagyobb egységekben címezhető
 - * annál hosszabb a tárolási idő
- Alapvető ellentmondás:
 - $-\,$ A különböző tárolási szintek hatékony kezelése a rendszer teljesítményének egyik kulcsa
 - A műveletek elvégzéséhez az adatoknak a processzor regisztereiben kell lenniük. (Miért?)

- Az összes szükséges adat szinte soha nem fér el a regiszterekben, sokszor a memóriában sem, néha még a háttértárakon sem
- $\bf A$ megoldás: az adatokat rendszeresen mozgatni kell a tárolási szintek között
- Hogyan?
 - * regiszterek ↔ memória: processzor
 - * memória ↔ háttértár: fájlműveletek
 - * háttértár ↔ külső tárak: felhasználói beavatkozás
- Adatok elérése, címzés a különböző tárolószinteken:
 - regiszterek: minden regiszternek külön neve van, bizonyos műveletek csak bizonyos regiszterekkel végezhetők el
 - **memória**: minden memóriarekesz külön-külön címezhető
 - háttértár: fájlonként, azon belül rekordonként, blokkonként címezhető
 - -külső tár: médiánként címezhető, melyik CD/DVD lemezen, szalagon található a keresett adat
- Az adatok mozgatása kétféleképpen történhet:
 - Explicit: (világosan kifejezett) pl. egy utasítással betöltünk egy fájlt a memóriába
 - 2. **Implicit**: (rejtett, közvetett) a rendszer végzi a háttérben a kényelem fokozása, vagy a hatékonyság növelése érdekében
- A rejtett adatmozgatás tipikus fajtái:

1. Virtualizálás

- Az alacsonyabb szinten lévő tár címzési módját kiterjesztjük a magasabb szintre
- Ezzel megnöveljük az alacsonyabb szintű tár méretét (látszólag), de lassabban működik
- Példa: virtuális memória, lemezen tárolódik, de memória módjára kezeljük, nem fájlként

2. Gyorsítótár (cache)

- Magasabb szintű elérési módon kezelünk egy alacsonyabb szintű tárat
- Sokkal gyorsabb
- De a mérete sokkal kisebb, mint a szimulált tár szokásos mérete
- Kulcsfontosságú az adatmozgatás szervezése
- Lokalitási elv: ha egy adatra szükség van, akkor nagy valószínűséggel a környezetében lévő adatokra is szükség lesz

- Ezt használjuk ki a gyorsítótárak adatokkal való feltöltésekor
- Megfelelő adatcserélési algoritmusokkal és a gyorsítótárak megfelelő méretezésével 80-99%-os találati arány is elérhető

Jellegzetes gyorsítótárak:

- Processzorba épített hardver-gyorsítótárak (utasítás- és adatcache), a memóriában lévő adatok aktuális részét teszik gyorsabban elérhetővé a processzor számára
- A memóriában kialakított átmeneti tárterületek (buffer-cache) az éppen használatban lévő fájlok adatai egy részének tárolására
- Memóriában kialakított virtuális diszk (RAM-diszk, elektronikus diszk)
- A harmadlagos tárak fájlrendszereit tároló mágneslemez területek
- Mire kell vigyázni a virtuális tárakkal kapcsolatban?
 - Mi történik, ha szabálytalanul állítjuk le az operációs rendszert?
 - A memóriában lévő adatok váratlanul elvesznek
 - A rejtett adatmozgatások félbeszakadnak
 - A háttértárakon lévő adatok inkonzisztens állapotban maradnak
 - A mágneslemezeken lévő adatokat nem tudjuk elérni a hagyományos eszközökkel, ha azok adminisztrációja nem hibátlan
- Hogyan tudunk védekezni az ilyen hibák ellen?
 - Szünetmentes tápegység, akkumulátoros táplálás, notebook
 - Vigyázat! Nem csak áramszünet miatt állhat le szabálytalanul az operációs rendszer!
 - Biztonságos szoftvermegoldások (pl. naplózó fájlrendszer, minden végrehajtott műveletet naplóz a rendszer, így rendszerhiba esetén visszaállítható a korábbi állapot

Háttértárak kezelése.

- A memória tartalma addig él, amíg a számítógép működik
- A folyamat szempontjából a memóriában lévő adatok addig élnek, amíg a folyamat fut
- Ha valamilyen adatot meg akar őrizni, akkor háttértárra kell menteni
- A háttértárra írandó adatokat fájlokba kell szervezni
- A felhasználó szempontjából az operációs rendszer legfontosabb feladata a fájlok kezelése (DOS-Disk Operating System)

Fájlkezelés.

- A másodlagos és harmadlagos tárolókon csak fájlokban lehet adatokat tárolni
- A fájlok kezelése az operációs rendszer feladata
- Két szint:
 - 1. A fájlok, mint tárolási egységek kezelése (egyben)
 - Fájlnév
 - Hierarchikus könyvtárszerkezet
 - Egy, vagy több gyökér (root)
 - Katalógusfájl (directory)
 - Kötetek (volume)
 - Mount
 - A fájl azonosítása: elérési út + fájlnév
 - 2. A fájlokban lévő adatok kezelése
 - Fájlmodellek
 - Fájlműveletek

Fájlmodellek.

- A fájlban lévő adatok elérésére háromféle fájlmodell használatos:
 - 1. Soros elérésű (szekvenciális, sequential) fájl
 - mint a mágnesszalag
 - csak sorban lehet írni és olvasni
 - fájlpointer
 - 2. Közvetlen elérésű (direct) fájl
 - bármelyik adatelem bájt, vagy rekord elérhető a sorszáma alapján
 - 3. Indexelt, index-szekvenciális elérésű (index sequential access method, ISAM) fájl
 - adatrekordok, adatmezők
 - kulcsmező(k) alapján lehet elérni az adatokat
 - indextábla, indexfájl, rendezett kulcsok, mutató az adatra
 - adatbázis

Fájlműveletek.

- 1. Megnyitás (open)
- 2. Lezárás (close)
- 3. Végrehajtás (execution)
- 4. Létrehozás (create)
- 5. Törlés (delete)
- 6. Adatelérés, írás, olvasás (write, read)
- 7. Hozzáírás, hozzáfűzés (append)
- 8. Pozícionálás (seek)

.

Ismétlés vége

2. Külső készülékek és külső kapcsolatok

2.1. A számítógép belseje és a külvilág

A számítógép belseje és a külvilág,.

- Eddig a virtuális gépek olyan objektumaival foglalkoztunk, amelyek a számítógép belsejében találhatók:
 - processzor
 - folyamatok
 - tárak
- Most nézzük, hogyan kapcsolódik a számítógép a külvilághoz!
- Ezeket az eszközöket összefoglaló szóval perifériának nevezzük:
- A határvonal nem éles, pl. a külső tárakat is szoktuk perifériának nevezni

- Nagyon sokféle periféria létezik és ezek száma folyamatosan nő
- Ahhoz, hogy az operációs rendszerek használni tudják ezeket, minden eszközzel nagyobbá és bonyolultabbá kellene válniuk
- Hogy ezt elkerüljük, szabványos módszereket alakítunk ki a perifériák kezelésére
- Két fő típus: (igazából nagyon hasonlítanak egymásra)

- Fájl

- * Mindent fájlként kezelünk, amibe lehet írni és lehet belőle olvasni
- * Az eszközöket különböző fájlműveletekkel kezeljük: megnyitás, lezárás, írás, olvasás, léptetés, stb.
- * Ilyen eszközök például: képernyő, nyomtató, terminál
- $\ast\,$ A fájlműveletek implementálásakor vesszük figyelembe az egyéni részleteket

- Logikai periféria

- * Absztrakt (virtuális) bemeneti/kimeneti (B/K, I/O) eszköz
- * A programozónak nem kell foglalkoznia azzal, hogy milyen valóságos eszköz van a logikai periféria mögött
- * Ezt nevezzük készülékfüggetlen programozásnak
- * A program futtatásakor az operációs rendszer majd hozzárendel valamilyen fizikai eszközt minden logikai perifériához
- * A fizikai eszköz gyártója ír egy eszközmeghajtó programot (device driver), ami ténylegesen megvalósítja a logikai műveleteket

Hálózati kapcsolatok kezelése,.

- Speciális eset az, amikor a számítógéphez csatlakozó külső eszköz maga is egy számítógép
- Ennek megvalósítására speciális eszközöket építünk a számítógépekbe (hálózati csatoló network adapter). Ez a fizikai eszköz
- Logikai szinten (szoftveresen) logikai csatlakozókat (socket) hoz létre az operációs rendszer
- Ha összekapcsoljuk két különböző számítógép socketjeit, akkor ezen a kapcsolaton keresztül kommunikálhat egymással a két számítógép
- Ezután egyszerűen fájl típusú perifériaként kezeljük a kapcsolatot
- Egyre közelít egymáshoz a két számítógép és a két folyamat közötti kommunikáció módja, működhetnek üzenetsorok, csővezetékek, különböző pufferek két távoli számítógép között

2.2. Védelem és biztonság

Védelem és biztonság,.

- Amíg egy számítógépet csak egy felhasználó használ és nem kapcsoljuk össze a külvilággal, addig a védelem és a biztonság kérdése nem játszik nagy szerepet
- Amikor egy számítógépet egynél több felhasználó használ, vagy összekapcsoljuk azt a külvilággal, akkor feltétlenül védelmezni kell belülről és kívülről egyaránt

Definíciók:

1. Védelem:

- Védelemnek nevezzük eljárásoknak és módszereknek azon rendszerét, mely lehetőséget teremt a számítógép erőforrásainak programok, folyamatok, illetve felhasználók által történő elérésének szabályozására
- A rendszer belső objektumaival foglalkozik

2. Biztonság:

- A rendszer biztonsága annak a mértéke, hogy mennyire lehetünk bizonyosak a számítógépes rendszer, illetve a rendszerben tárolt adatok sérthetetlenségében
- A rendszer külvilággal való kapcsolatával foglalkozik

Védelem,.

• Tehát védelemnek fogjuk nevezni a rendszer biztonságának azt a részterületét, ami azzal foglalkozik, hogy a rendszerben legálisan jelenlévő objektumok milyen módon férhetnek hozzá egymáshoz

• Például:

- Milyen fájlokhoz férhet hozzá egy felhasználó?
- Milyen memóriaterületet írhat/olvashat egy folyamat?

• Rendszermodell

- A rendszer különböző objektumok halmaza (hardver-szoftver eszközök, fájlok, processzorok, szemaforok, várakozási sorok, adatszerkezetek, nyomtatók, tárolók, stb.)
- Az objektumokat valamilyen módon tudjuk azonosítani, névvel, számmal, \dots

- $-\,$ Az objektumok a típusuktól függően különböző műveletekkel rendelkeznek, ezekkel kezelhetők
- A folyamatok ilyen műveletek sorozatai
- (Lásd később Objektum-orientált programozás, OOP!)
- Minden művelethez rendelhetünk jogosultsági előírásokat
- A műveletet csak az végezheti el, aki rendelkezik a szükséges jogosultságokkal
- Hogyan szervezzük meg a védelmet?
- Ideális helyzet, legbiztonságosabb
 - Minden folyamat minden pillanatban csak azokat a jogosítványokat birtokolja, amelyekre szüksége van a következő művelet végrehajtásához
- Miért jó ez?
 - Központilag szabályozzuk a jogosultságokat (odaadjuk-elvesszük)
 - Mindig lehet tudni, hogy ki-mit képes megcsinálni
 - ⊕ Könnyen visszakereshető a "tettes"
 - Csökkentjük a véletlen hibázás esélyét
- Miért nem jó ez?
 - ⊖ Óriási adminisztratív terhelést okoz
 - ⊖ Gyakorlatban megvalósíthatatlan
 - ⊖ Csak nagyon speciális rendszerekben képzelhető el

Védelmi tartomány,.

- A megoldás: Védelmi tartományok kialakítása
- Védelmi tartomány:
 - Objektumokon végrehajtható műveletekre szóló jogosítványok gyűjteménye
 - Tartalmazhat egy adott objektumon végezhető különböző műveleteket
 - Tartalmazhat különböző objektumokat is rajtuk végezhető műveletekkel
 - Egy-egy objektum-művelet páros több tartományban is szerepelhet
 - A védelmi tartomány lehet statikus, vagy dinamikus

Statikus: egy folyamat futása alatt végig ugyanabban a tartományban marad

Dinamikus: a folyamat tartományt válthat a futása során

- A védelmi tartományokat egy elérési mátrixban definiálhatjuk
- Lássunk egy-egy példát egy statikus és egy dinamikus tartományokat leíró elérési táblázatra!

Elérési mátrix statikus védelmi tartományokkal

		objektumok				
		adat.txt	doc.doc	help.bat	nyomtató	
ok	A	olvasás		olvasás		
tartományok	В				nyomtatás	
tom	С		olvasás	végrehajtás		
tar	D	olvasás, írás		olvasás, írás		

1. ábra. Elérési mátrix statikus védelmi tartományokkal

Elérési mátrix dinamikus védelmi tartományokkal

		objektumok			tartományok				
		adat.txt	doc.doc	help.bat	printer	A	В	С	D
L.	Α	olvasás		olvasás			váltás		
inyok	В				nyomta- tas			váltás	váltás
tartományok	С		olvasás	yégre- hajtás					
ta	D	olyasás írás		olyasás írás		váltás			

- 2. ábra. Elérési mátrix dinamikus védelmi tartományokkal
- A védelmi tartományok használata
 - A folyamat elinduláskor besoroljuk azt valamelyik védelmi tartományba
 - Ez meghatározza, hogy mit tehet meg a folyamat és mit nem
 - Ha dinamikus tartományokat használ a rendszer, akkor a folyamat megteheti, hogy átvált egy másik engedélyezett tartományba

Biztonság,.

- Eddig a védelemmel foglalkoztunk, ami a rendszer belső problémája volt, most áttérünk a rendszer külső védelmére, ezt nevezzük **biztonság**nak
 - Egy számítógépes rendszer biztonsága, annak a bizonyosságnak mértéke, hogy a rendszer, illetve a rendszerben tárolt információ nem sérülhet meg, vagy illetéktelenül nem kerülhet ki a rendszerből
- A védelem keretében alapvetően véletlen problémák, programhibák, programok káros mellékhatásai ellen védekezik a rendszer
- Ezzel szemben a biztonság érdekében fel kell készülnünk a szándékos és rosszindulatú támadásokra is
- Megvalósítható-e tökéletesen biztonságos rendszer?
- Nincsen abszolút biztonságos rendszer
- Csak relatívan lehet vizsgálni a kérdést
- Legyen "drágább" a támadás, mint az elérhető haszon
- Ha egyszerűen pénzről lenne szó, akkor ez könnyen mérhető lenne, de
 - mennyibe kerül az adat?
 - mennyibe kerül egy adat illetéktelen megváltoztatása?
 - mennyi kárt okoz egy adat illetéktelen megszerzése, és/vagy eltüntetése?
- Ezeket a kérdéseket kell mérlegelni és megválaszolni a biztonsági rendszer megtervezésekor
- Csak úgy lehet elérni a kívánt biztonságot, ha teljes rendszert építünk ki
 - Nem tekinthetünk biztonságosnak egy rendszert, ha informatikailag mindent megtettünk a védelem érdekében, de a nyilvános folyosón áll a szerver, ahol bárki elviheti
- A sérülések oka lehet:
 - véletlen
 - szándékos
 - * adatok illetéktelen olvasása
 - * adatok illetéktelen módosítása
 - * adatok tönkretétele

Felhasználók azonosítása.

- A rendszerhez való jogosulatlan hozzáférés megakadályozásának első lépése a felhasználók azonosítása
- Három módszer:
 - 1. a felhasználó azonosítása személyes tulajdonságai alapján: ujjlenyomat, retinamintázat, aláírás, stb. (Biometrikus azonosítás)
 - 2. a felhasználó azonosítása a birtokában lévő tárgyak alapján: kulcs, azonosító kártya, stb.
 - 3. a felhasználó azonosítása csak általa ismert információ alapján: név, jelszó, esetleg algoritmus
- Az 1. és 2. kategória esetén szükség van speciális perifériákra
- A legelterjedtebb módszer a jelszavas azonosítás

Jelszavas azonosítás.

- Nem igényel speciális eszközt
- Veszélyek:
 - a jelszó megfejtése, kitalálása
 - a jelszó ellopása, lehallgatása
- Védekezés a jelszófejtés ellen:
 - Nehezen kitalálható jelszó választása
 - Megfelelő hosszúságú jelszavak
 - A jelszavak gyakori cseréje
 - Hiba esetén lassítás, letiltás
- Védekezés a jelszólopás ellen
 - Nem jelenik meg a jelszó a képernyőn
 - Csak titkosított csatornán engedünk bejelentkezést
 - A jelszót egyirányú kódolással tároljuk
 - A kódolt jelszavakat is csak a rendszergazda olvashatja
 - Ne írjuk fel a jelszót!
 - Jelszó helyett algoritmikus azonosítás

Külső támadások,.

- Fajtái:
 - Vírusok, férgek
 - Szolgáltatásbénítás (DoS)
 - Betörés (hacker, cracker)
- Férgek:
 - önálló életre képes, és magától terjed
 - nem kell hozzá hordozó program
- Vírusok:
 - hordozó programra van szüksége
 - azt megfertőzve terjed
- Védekezés:
 - Tűzfal
 - Állandóan futó, rendszeresen frissített vírusvédelmi program
- Szolgáltatásbénítás
 - Denial of Service
 - -Olyan mennyiségű kérést intézünk a szerverhez, amennyit nem tud kiszolgálni
- Hacker
 - nem ártó szándékú, feltöri a gépet és értesíti a rendszergazdát
- Cracker
 - Rossz szándékú
- Védekezés
 - Tűzfal
 - Biztonsági frissítések rendszeres telepítése
 - Friss alkalmazások használata
 - Körültekintő konfigurálás
 - * Csak a szükséges programok fussanak
 - * Csak a szükséges dolgokat érjék el a felhasználók

- A rendszer állandó figyelése, naplózása
- Gyanú esetén riasztás

• Tűzfal (firewall)

- Eredetileg olyan házfal, amin nincs ablak, ezért lassabban terjed át rajta a tűz
- Az informatikában olyan (biztonságos) gép, vagy program, amin a védett gép vagy hálózat forgalma áthalad, és csak azok a csomagok mehetnek rajta keresztül, amelyeket kimondottan megengedünk
- A gyakorlatban ez leggyakrabban azt jelenti, hogy portszintű szűrést végzünk a forráscím (és a célcím) ill. további feltételek vizsgálata alapján
- Ma már elengedhetetlen minden számítógépen

3. Befejezés

3.1. Emlékeztető kérdések

Emlékeztető kérdések.

- 1. Milyen módokon kezelhetjük egységes formában a különböző perifériákat?
- 2. Hogyan kezeli az operációs rendszer a hálózati kapcsolatokat?
- 3. Mit nevezünk "Védelem"-nek ebben az összefüggésben?
- 4. Mit nevezünk "Biztonság"-nak ebben az összefüggésben?
- 5. Hogyan szervezzük meg a rendszer védelmét?
- 6. Mit nevezünk védelmi tartománynak? Hogyan lehet definiálni, dokumentálni? Milyen fajtái vannak?
- 7. Milyen lehetőségek vannak a felhasználók azonosítására?
- 8. Mire kell figyelni a jelszavas védelem kialakításakor?
- 9. Milyen külső támadásokra kell felkészülni a rendszer tervezésekor?
- 10. Hogyan védekezhetünk ezek ellen?

Befejezés.

Köszönöm a figyelmet!