Exam 2

Denis Ostroushko

2022-12-08

Problem 1

We begin this problem by summarizing the data available to us, and continue this summary into the ${\bf 1}$ - ${\bf A}$ Section. The data set contains 112 observations for 112 participants in the study.

One of the participants has a missing value of baseline NNAL measurement. This variable is important for our analysis, therefore we will omit this observation. The final data set includes 111 observations.

1 - A

Problem 1-A asks us to fit a logistic regression model using two log-transformed baseline measurements. We are interested in evaluating how the two variables are balanced between the two experiment arms, arm 5 and arm 6.

		Baseline I	log NNAL	Baseline Log TNE		
Arm	N	Mean	SD	Mean	SD	
5	35	0.0265297	0.8009900	3.963363	0.7431000	
6	76	0.2704350	0.7677647	4.097586	0.5577623	

Baseline Log NNAL Measurements Between Two Groups

Baseline Log TNE Measurements Between Two Groups

Fit the Model

Model statement

Summary and plot by group

1 - B

Evaluate variances and outliers

F Test for variances - two tailed test at $\alpha = 0.05, 95\%$ confidence level

https://www.itl.nist.gov/div898/handbook/eda/section3/eda359.htm#:~:text=An%20F%2Dtest%20(Snedecor%20and,the%20No outliers, no stat. difference between groups in F tests -> conduct a T test

[1] -0.06284174

[1] 0.4929838

t

1.543411

[1] 0.1272329

1 - C

effect size

Based on some literature review, many psychology and social science data analysis methods refer to this method as Cohen's d. All sources I reviewed state that in practice effect sizes between 0.2 and 0.5 are considered as Medium size. I will rely on a test instead because we have more accessible and straightforward way to get a confidence interval, without using a Delta Method and other method from statistical theory.

Problem 2

[1] 551

[1] 25

Comment on outliers and describe the data set

2 - A

Add model statement here

Predictor	Estiamte	Exponentiated Estiamte	Standard Error	Z Value	P value
Treatment	0.002623	1.002626	0.118131	0.022204	0.982285

Interpret the absolute lack of difference between the two groups

2 - B

Predictor	Estiamte	Exponentiated Estiamte	Standard Error	Z Value	P value
GENDER2	-0.087586	0.916140	0.120380	-0.727583	0.466869
age	0.017906	1.018067	0.003979	4.499976	0.000007
Treatment	0.032936	1.033485	0.118417	0.278139	0.780906
Race	-0.202888	0.816370	0.196934	-1.030232	0.302901
'HLA-Match'	-0.508781	0.601228	0.185197	-2.747244	0.006010

 ${\bf 2}$ - ${\bf C}$ Make a table with model estimates from

Model	Predictor	Estiamte	Exponentiated Estiamte	Standard Error	Z Value	P value
Full	Treatment	0.032936	1.033485	0.118417	0.278139	0.780906
Treatment Only	Treatment	0.002623	1.002626	0.118131	0.022204	0.982285