Enrollment No.....

- OR iii The rotor of a turbo super charger of mass 9 kg is keyed to the centre of 7
 - a 25 mm diameter shaft 40 cm between bearings, determine:
 - (a) The critical speed of shaft,
 - (b) The amplitude of vibration of the rotor at a speed of 3200 rpm, if the eccentricity is 0.015 mm. and
 - (c) The vibratory force transmitted to the bearings at this speed.

Assume the shaft to be simply supported and that the shaft material has a density of 8 x 10^3 kg/m³, Take E = 2.1 x 10^{11} N/m².

- Describe the demerit of dynamic vibration absorber with suitable 3 diagram.
 - ii. Determine the frequency of the system shown in Fig. 4. 7 Given $K_1 = K_2 = 40 \text{ N/m}$, K = 60 N/m, $m_1 = m_2 = 10 \text{ kg}$.

OR iii. Determine the two natural frequencies and mode shapes for the system 7 shown in Fig. 5. The string is stretched with the large tension T.

- Q.6 Write short note on any two:
 - Quality factor and half power points
 - ii. Vibrometer

5

iii. Working of FFT analyzer

Faculty of Engineering End Sem (Even) Examination May-2022

AU3EL08/ME3EL02 Mechanical Vibrations

Programme: B.Tech. Branch/Specialisation: AU/ME

Duration: 3 Hrs. Maximum Marks: 60

All questions are compulsory Internal choices if any are indicated. Answers of

		s) should be written in full instead of	•	S O1
Q.1	i.	Natural frequency of a system is due to-		1
		(a) Free vibration	(b) Forced Vibration	
		(c) Resonance	(d) None of these	
	ii. The main properties of a vibrating system are-		stem are-	1
		(a) Mass and stiffness	(b) Mass, stiffness and damping	
		(c) Stiffness and damping	(d) Damping and stiffness	
	iii.	A system is said to be over damped i	f damping factor for the system is-	1
		(a) More than one	(b) Equal to one	
		(c) Less than one	(d) Equal to zero	
	iv.	The amount of damping, necessa	ry for a system to be critically	1
		damped, is known as-		
		(a) Damped factor	(b) Magnification factor	
		(c) Critical damping co-efficient	(d) Logarithmic decrement	
	v.	peed the phase difference between	1	
		displacement and centrifugal force is-		
		(a) 0° (b) 45°	(c) 90° (d) 180°	
	vi. A node means a section where the amplitude of vibrati		nplitude of vibration is-	1
		(a) Maximum	(b) Half of maximum	
		(c) One fourth of the maximum	(d) Zero	
	vii. There are n rotors mounted on the shaft and when subjected to			1
		vibration there will be-		
		(a) n nodes	(b) $(n-1)$ nodes	
		(c) $(n + 1)$ nodes	(d) Any number of nodes	
	viii.	In matrix iteration the natural frequency can be determined by using-		1
		(a) Flexibility influence coefficients	(b) Rayleigh Method	
		(c) Both (a) and (b)	(d) None of these	
			рт	\cap

- ix. Dynamic vibration absorber is suitable for-
 - (a) Constant speed machines
- (b) Varying speed machines

1

1

3

- (c) Zero speed range machines
- (d) None of these
- x. Accelerometer is designed with-
 - (a) Low frequency

(b) High frequency

(c) Zero frequency

- (d) None of these
- Q.2 i. Differentiate between damped and transient vibration.
 - ii. Find the natural frequency of the system shown in Fig. 1 K_1 =5000 N/m, K_2 = K_3 = 8000 N/m, m=25 kg

iii. In an Indicator mechanism as shown in Fig. 2, the crank arm is pivoted 5 at point O and has a mass moment inertia I. Find the natural frequency of the system. In the figure symbols have their usual meanings.

OR iv. Determine the natural frequency of the mass $m=15\ kg$ as shown in 5 Fig. 3, assuming that the cords do not stretch and slide over the pulley rim. Assume that the pulley has no mass.

 K_1 =8000 N/m, K_2 = 6000 N/m

- Q.3 i. Differentiate between Coulomb and Structural damping.
 - ii. The disc of a torsional pendulum has a moment of inertia of 8 600 kg-cm². The brass shaft of pendulum has a diameter of 10 cm and length of 40 cm. When the pendulum is vibrates in viscous oil, the amplitude on the same side of the rest position are 9°, 6° and 4° successive cycles. Determine:
 - (a) Logarithmic decrement (b) Damping torque at unit velocity
 - (c) Periodic time of vibration

 Assume for the brees shaft G = 4.4 y

Assume for the brass shaft, $G = 4.4 \times 10^{10} \text{ N/m}^2$.

- OR iii. A gun barrel of mass 600 kg has a recoil spring of stiffness 8 294000N/m. If the barrel recoils 1.3 meters on firing, determine,
 - (a) The initial recoil velocity of the barrel,
 - (b) The critical damping coefficient of the dashpot which is engaged at the end of the recoil stroke.
 - (c) The time required for the barrel to return to a position 5 cm from the initial position
- Q.4 i. Discuss in brief, transmissibility and isolation.
 - ii. A machine supported symmetrically on four springs has a mass of 7 80 kg. The mass of the reciprocating parts is 2.2 kg which move through a vertical stroke of 100 mm with simple harmonic motion. Neglecting damping, determine the combined stiffness of the springs so that the force transmitted to the foundation is 1/20th of the impressed force. The machine crankshaft rotates at 800 rpm.
 - If, under actual working conditions, the damping reduces the amplitudes of successive vibrations by 30%, find:
 - (a) The force transmitted to the foundation at 800 rpm,
 - (b) The force transmitted to the foundation at resonance, and
 - (c) The amplitude of the vibrations at resonance.

P.T.O.

3

Marking Scheme AU3EL08/ME3EL02 Mechanical Vibrations

Q.1	i.	Natural frequency of a system is due to-		1
		(a) Free vibration		
	ii.	The main properties of a vibrating system are-		1
		(b) Mass, stiffness and damping		
	iii.	A system is said to be over damped if damping fac	tor for the system is-	1
		(a) More than one		
	iv. The amount of damping, necessary for a system to be cr			
		damped, is known as-		
		(c) Critical damping co-efficient		
	v. For shaft speed more than critical speed the phase difference between			
		displacement and centrifugal force is-		
		(d) 180°		
	vi.	vi. A node means a section where the amplitude of vibration is-		
	(d) Zero			
	vii. There are n rotors mounted on the shaft and when subjected t			
		vibration there will be-		
		(b) $(n-1)$ nodes		
	viii. In matrix iteration the natural frequency can be determined by us			1
		(a) Flexibility influence coefficients		
	ix. Dynamic vibration absorber is suitable for-			1
		(a) Constant speed machines		
	х.	Accelerometer is designed with-		1
		(b) High frequency		
Q.2	i.	Damped vibration	1 mark	2
		Transient vibration	1 mark	
	ii.	Find the natural frequency of the		3
		Equivalence Stiffness - 3809.52 N/m	2 marks	
		Natural frequency – 1.96 Hz	1 mark	
	iii.	Kinetic energy of the system	1 mark	5
		Potential energy of the system	1 mark	
		Differentiation of total energy	1 mark	
		Natural frequency of the system	2 marks	
OR	iv.	Movement of mass m	2 marks	5
		Equivalent stiffness	1 mark	
		Natural frequency of the mass - 2.9 Hz	2 marks	

Q.3	i.	Differentiate between		2
		Coulomb damping	1 mark	
		Structural damping	1 mark	
	ii.	(a) Logarithmic decrement – 0.405	1 mark	8
		(b) Damping torque at unit velocity – 32.83 N-m/rad	4 marks	
		(c) Periodic time of vibration $-1.48 \times 10^{-3} \text{ sec}$	3 marks	
OR	iii.	A gun barrel of mass 600 kg has a recoil spring	of stiffness	8
		294000N/m. If the barrel recoils 1.3 meters on firing, determ	mine,	
		(a) The initial recoil velocity of the barrel- 28.77 m/sec		
		(b) The critical damping coefficient – 26563 N-sec/m	1 mark	
(c) The time required for the barrel to return to a position 5 cm from initial position			cm from the	
		Natural frequency	1 mark	
		Time period	1 mark	
		Time of recoil	1 mark	
		Constant value using initial condition	1 mark	
		Total time	2 marks	
				_
Q.4	i.	Transmissibility	1.5 marks	3
		Isolation	1.5 marks	_
	ii.	Natural frequency	1 mark	7
		Combined Stiffness	1 mark	
		(a) The force transmitted to the foundation at 800 rpm	2 marks	
		(b) The force transmitted to the foundation at resonance	2 marks	
ΟD		(c) The amplitude of the vibrations at resonance	1 mark	_
OR	r			7
		(b) The amplitude of vibration of the rotor at a speed of 3200 rpm,		
		the eccentricity is 0.015 mm 2 marks		
		(c) The vibratory force transmitted to the bearings at this sp	2 marks	
			2 marks	
Q.5	i.	Demerit of dynamic vibration absorber	2 marks	3
C		Diagram	1 mark	
	ii.	FBD	2 marks	7
		Equation of motion	2 marks	
		Rearrange in matrix form	1 mark	
		Frequency	2 marks	
OR	iii.		2 marks	7
		Natural frequencies	3 marks	
		Mode shapes for the system	2 marks	
		•		

Q.6		Write short note on any two:		
	i.	Quality factor	2 marks	5
		Half power point	1 mark	
		Diagram with complete explanation	2 marks	
	ii.	Vibrometer		5
		Principle	1 mark	
		Working	2 marks	
		Diagram / graph	2 marks	
	iii.	Working of FFT analyzer		5
		Working principle	2 marks	
		Graph velocity Vs Acceleration explanation	2 marks	
		Graph	1 marks	
