3.36pt

V. Freire (EACH-USP) ACH2053 2025

1/7

ACH2053 – Introdução à Estatística Aula 05b: Integral Dupla

Valdinei Freire

valdinei.freire@usp.br

http://www.each.usp.br/valdinei

Escola de Artes, Ciências e Humanidades - USP

2025

Integral Dupla

Considere uma função de duas variáveis f(x,y) e uma região $A\in\mathbb{R}^2$. O volume 1 limitado pelas superfícies z=f(x,y) e z=0, e contidos na região A é denotado por:

$$\iint_A f(x,y) dx dy$$

V. Freire (EACH-USP) ACH2053 2025

2/7

 $^{^{1}}$ Volumes abaixo de z=0 são computados como negativo.

Função Característica

Considere uma região A indicada pela função característica:

$$\chi_A(x,y) = \begin{cases} 1, & \text{se } (x,y) \in A \\ 0, & \text{se } (x,y) \notin A \end{cases}$$

e uma região retangular $R=[a,b]\times [c,d]$ tal que $A\subseteq R$, então:

$$\iint_{A} f(x,y)dxdy = \iint_{R} f(x,y)\chi_{A}(x,y)dxdy$$

Teorema de Fubini

Considere a região $R = [a, b] \times [c, d]$, então:

$$\iint_{R} f(x,y)dxdy = \int_{a}^{b} \left[\int_{c}^{d} f(x,y)dy \right] dx = \int_{c}^{d} \left[\int_{a}^{b} f(x,y)dx \right] dy$$

Exercício

Calcule:

Teorema de Fubini

Considere a região $A=\{(x,y)\in\mathbb{R}^2: a\leq x\leq b \text{ e } c(x)\leq y\leq d(x)\}$, então:

$$\iint_A f(x,y)dxdy = \int_a^b \left[\int_{c(x)}^{d(x)} f(x,y)dy \right] dx$$

Exercício

- ▶ Calcule o volume sob a função $f(x,y) = x^2y$, onde $0 \le y \le x \le 1$.
- ▶ Calcule o volume sob a função f(x,y) = xy, onde $y \in [0,1]$, x é positivo e $x \leq y^2$.