SME0206 – Fundamentos de Análise Numérica -Métodos Numéricos para Resolução de Equações Não Lineares

Gabriel Coutinho Chaves 15111760 Theo Urbano Gaudencio de Sene 12558717

Ian De Holanda 13835412

9 de setembro de 2024

1 Introdução

Este relatorio aborda o tema de métodos numéricos para encontrar raízes de funções, com foco específico na função polinomial do quinto grau

$$f(x) = 63x^5 - 381x^4 + 496x^3 + 204x^2 - 544x + 192$$
 (1)

nos intervalos [0,1] e [1,2].

O objetivo principal é analisar e comparar diferentes métodos numéricos para encontrar as raízes desta função, incluindo:

- Método da Bisseção
- Método de Newton
- Método das Secantes

Utilizamos a linguagem de programação Python [1], por meio da interface de desenvolvimento Jupyter Lab [2], para implementar e testar estes métodos, buscando compreender suas características, eficiência e precisão na resolução do problema proposto.

2 Métodos e Procedimentos

Nesta seção, apresentaremos os métodos numéricos implementados para encontrar as raízes da função (1). Descreveu-se os códigos em Python, detalhando as principais subrotinas, suas variáveis de entrada e saída, bem como as decisões de implementação e dificuldades encontradas.

Para todos os métodos implementados, usamos um critério de parada baseado na tolerância e no número máximo de iterações, garantindo que os algoritmos forneçam uma aproximação adequada da raiz em tempo razoável. Fixamos o número máximo de iterações em 50 e utilizamos o erro $\epsilon=10^{-6}$.

2.1 Definição da Função e da sua Primeira Derivada

Para todos os métodos implementados, estabeleceu-se a seguinte função polinomial e sua derivada, definidas como expressões lambda em Python:

```
1 f = lambda x: 63*x**5 - 381*x**4 + 496*x**3 + 204*x**2 - 544*x + 192
2 dfdx = lambda x: 315*x**4 - 1524*x**3 + 1488*x**2 + 408*x - 544
```

Onde:

- f(x) representa a função polinomial (1);
- dfdx(x) representa a sua primeira derivada.

Estas definições são utilizadas como parâmetros de entrada nos métodos que requerem a função e/ou sua derivada, como o método de Newton e o método das Secantes.

2.2 Análise dos Intervalos e Raízes

Para visualizar as raízes e os intervalos de interesse, geramos dois gráficos utilizando a biblioteca Matplotlib [5], um para cada intervalo.

Figura 1: Gráfico da função f(x) nos intervalo [0, 1] e [1, 2]

Observando o Gráfico 1 da Figura 1, suspeita-se da existência de uma raiz entre 0,6 e 0,7. Ademais, graficamente pode-se conjecturar que este mesmo ponto pode também ser um ponto de mínimo local.

Já no Gráfico 2 da Figura 1, é certa a existência de raiz pelo Teorema do Valor Intermediário, uma vez que existem valores positivos e negativos para a função. Graficamente, esse valor é próximo de 1,7. Além disso, pode-se evidenciar a existência de um ponto de crítico entre 1,3 e 1,4.

Para analisar de maneira mais exata as raízes da função, utilizamos a biblioteca SymPy [3] para operações com matemática simbólica.

Definiu-se uma variável simbólica \mathbf{x} e a expressão \mathbf{h} desta variável de acordo com a função (1). Então, utilizou-se do método smp.solve, que encontra as raízes da expressão fornecida.

```
1 x = smp.symbols('x')
2 h = 63*x**5 - 381*x**4 + 496*x**3 + 204*x**2 - 544*x + 192
3 sol = smp.solve(h,x,numerical=True)
```

Assim, obteve-se a lista **sol** de soluções (raízes) da função em questão, que é a seguinte:

$$[-1, \frac{2}{3}, \frac{12}{7}, 4] \tag{2}$$

Em particular, interessar-nos-ão as soluções $\frac{2}{3}$ e $\frac{12}{7}$, que são as únicas que estão nos intervalos que serão abordados neste relatório. E cujo valor decimal aproximado foi obtido utilizando o método **smp.evalf** da biblioteca SymPy.

sol[1].evalf()

Resultado: 0.666666666666667

sol[2].evalf()

Resultado: 1.71428571428571

Como a função (1) é uma função do quinto grau, pelo Teorema Fundamental da Álgebra, ela deve ter 5 raízes complexas (incluindo a possível multiplicidade delas) [4]. Como pode-se obervar, o método *smp.solve* retornou apenas 4 raízes, portanto deve-se suspeitar que alguma delas têm multiplicidade 2.

Com efeito, se realizarmos uma divisão de polinômios da expressão definida em \mathbf{h} por $(x-\frac{2}{3})$ o polinômio obtido tem a mesma lista de soluções de (2), consequentemente, $\frac{2}{3}$ ainda é solução, logo $x=\frac{2}{3}$ é uma raiz múltipla. Esse fato é relevante pois interfere na velocidade de convergência de algum dos métodos que foram utilizados.

2.3 Método da Bisseção

O Método da Bisseção é um tipo de método de quebra, uma classe de métodos para aproximação de raízes que funciona "a partir de um intervalo que contenha uma raiz da função e vai particionando este intervalo em outros menores, que ainda contenham a raiz" [6].

O funcionamento deste algoritmo se fundamenta no Teorema do Valor Intermediário (TVI), que garante a existência de pelo menos uma raiz entre dois pontos em que a função continua tem valores com sinais distintos.

Neste método são definidos um intervalo e uma função contínua nesse intervalo. Se os extremos avaliados na função tiverem produto negativo, isso significa que possuem sinais distintos. Nesse caso, há raiz no intervalo. Toma-se então a média aritmética dos extremos e checa-se com qual dos extremos o produto com a média obtida ainda é negativo. Esse processo pode ser repetido pra chegar numa aproximação tão boa quanto se deseje.

Na implementação em Python foi feita da seguinte maneira:

Variáveis de entrada:

- f: função para a qual estamos buscando a raíz (ela precisa ser contínua)
- a, b: extremidades do intervalo inicial
- e: tolerância para o critério de parada
- kmax: número máximo de iterações permitidas

Variável de saída:

x: aproximação da raíz encontrada

A rotina começa definindo fa e fb, respectivamente a função avaliada em a e b, e é conferido se já são são nulos, isto é, se um dos extremos é raiz. Caso seja, o programa encerra e devolve a ou de b. Do contrário, checa-se se a função avaliada nos extremos têm sinal opostos, calculando o produto e avaliando se ele é negativo, ou seja, garantindo que há raiz no intervalo.

```
1     if fa == 0:
2         return a
3     elif fb == 0:
4         return b
5     elif fa * fb > 0:
         print('Erro. f(a) e f(b) tem o mesmo sinal.')
7     return np.nan
```

Caso comprove-se a existência de raiz no intervalo [a,b], x_0 é definida como a e é calculada a média dos extremos e esse valor é chamado \mathbf{x} . Encontra-se o valor da função em \mathbf{x} e esse valor é comparado com fa e fb por meio do produto. Onde houver garantia de raiz, repete-se o processo.

```
1
       x = (a + b) / 2
2
       fx = f(x)
3
       erro = norm(x - x0)
       if fx == 0 or erro < e * (1 + norm(x)):
5
6
           return x
7
       if fx * fa < 0:
8
9
          b = x
10
       else:
           a, fa = x, fx
```

2.4 Método de Newton

O Método de Newton, também conhecido como método de Newton-Raphson, é uma técnica iterativa que utiliza a primeira derivada da função para encontrar suas raízes. Este método converge quadraticamente para raízes simples, o que o torna muito eficiente desde que não se tenha raízes múltiplas [7].

O Método de Newton fundamenta-se na expressão da primeira derivada da função. Como deseja-se encontrar a raiz f(x) irá se anular, então teremos:

$$f'(x_0) \approx \frac{f(x) - f(x_0)}{x - x_0} \Longleftrightarrow x \approx x_0 - \frac{f(x_0)}{f'(x_0)}$$

Assim, utilizamos essa aproximação para obter a seguinte fórmula iterativa:

$$x_{k+1} = x_k - \frac{f(x_k)}{f'(x_k)} \tag{3}$$

Implementamos este método da seguinte maneira:

Variáveis de entrada:

- f: função para a qual estamos buscando a raíz
- dfdx: derivada da função f
- x0: o valor inicial para começar as iterações
- e: tolerância para o critério de parada
- kmax: número máximo de iterações permitidas

Variável de saída:

• x: aproximação da raíz encontrada

Nossa implementação calcula **fx** e **dfdx** avaliadas no valor inicial **x0**. Em seguida inicia-se um *loop* de no máximo **kmax** iterações em que a cada iteração é calculado

```
1 \qquad x = x0 - fx0/dfdx0
```

e checa-se se esse novo valor \mathbf{x} obtido é próximo do valor $\mathbf{x0}$. Caso a distância entre esses dois valores seja menor que o erro desejado ϵ , então \mathbf{x} está próximo da raiz exata da função de acordo com o erro estabelecido, por isso o programa encerra e retorna \mathbf{x} .

Caso a distância entre \mathbf{x} e $\mathbf{x0}$ seja maior que ϵ , repete-se o processo declarando $\mathbf{x0} = \mathbf{x}$.

```
1    if norm(x-x0) < e * (1+norm(x)):
2         return (x)
3         x0 = x
4         fx0 = f(x0)
5         dfdx0 = dfdx(x0)
6         k+=1</pre>
```

Uma possível limitação deste método é que ele pode falhar se a primeira derivada se aproximar de zero, o que pode ocorrer se a estimativa inicial estiver longe da raíz ou se houver raízes múltiplas. Ademais, o método requer o conhecimento explícito da derivada da função, além de que ela seja diferenciável, o que nem sempre é possível ou prático.

2.5 Método das Secantes

O método das secantes é uma variação do método de Newton que não requer o cálculo explícito da derivada, utilizando o Polinômio de Taylor do Primeiro Grau como aproximação para a ela.

O Polinômio de Taylor do Primeiro Grau num ponto é dado pela expressão:

$$P(x) = f(x_0) + f'(x_0)(x - x_0)$$

portanto pode-se substituir a primeira derivada em (3) obtendo assim:

$$x_{k+1} = x_k - \frac{f(x_k)(x_k - x_{k-1})}{f(x_k) - f(x_{k-1})}$$

$$\tag{4}$$

uma vez que P(x) = 0, já que queremos encontra uma aproximação para a raiz.

Implementamos este método como segue:

Variáveis de entrada:

- f: função para a qual estamos buscando a raíz
- x0, x1: duas estimativas iniciais próximas à raíz
- e: tolerância para o critério de parada
- kmax: número máximo de iterações permitidas

Variável de saída:

• x: aproximação da raíz encontrada

O código é similar ao Método de Newton, com a diferença que \mathbf{x} é calculado por

```
1 	 x = x1 - fx1*(x1-x0)/(fx1-fx0)
```

e é feita uma troca de variáveis em que $\mathbf{x0}$ recebe o valor de $\mathbf{x1}$ e $\mathbf{x1}$ recebe o valor de \mathbf{x} . No restante, o processo iterativo é análogo à implementação do Método de Newton.

Uma limitação deste método é a possibilidade de falha se a diferença entre f(x1) e f(x0) se aproximar de zero. No entanto, ele tem a vantagem de não requerer o cálculo explícito da derivada.

3 Resultados e Discussão

Nesta seção, apresentaremos os resultados obtidos com a aplicação dos métodos numéricos implementados para encontrar as raízes da função (1):

3.0.1 Método da Bisseção

Aplicamos o método da bisseção à função polinomial utilizando em ambos os intervalos as extremidades como parâmetros iniciais:

```
1 bissecao(f,0,1,10e-6,100)
```

Resultado:

```
Erro: f(a) e f(b) têm o mesmo sinal
```

O motivo do método não funcionar no intervalo [0,1] é que, como pode-se observar na Figura 1, a função é estritamente não-negativa nesse intervalo, ou seja, o método não inicia porque não há garantia, pelo TVI, de existência de raízes.

Assim, qualquer que fosse a escolha inicial de a e b, o programa retornaria esse mesmo resultado (exceto, obviamente, no caso trivial em que a, ou b, já é uma raiz). Portanto, nesse caso o Método da Bisseções é ineficaz.

```
l bissecao(f,1,2,10e-6,100)
```

Resultado:

1.7142791748046875

Já no intervalo [1,2], o Método das Bisseções foi eficaz e encontrou um resultado coerente com o que foi constatado usando os matemática simbólica. O número de passos também se mostrou razoável como se pode constatar na Tabela 1.

Tabela 1: Passos do Método das Bisseções no Intervalo [1,2]

k	a	b	x	f(x)	erro
1	1.00000000	2.00000000	1.50000000	58.59375000	0.50000000
2	1.50000000	2.00000000	1.75000000	-16.33886719	0.25000000
3	1.50000000	1.75000000	1.62500000	32.20687866	0.12500000
4	1.62500000	1.75000000	1.68750000	10.92908192	0.06250000
5	1.68750000	1.75000000	1.71875000	-1.93078968	0.03125000
6	1.68750000	1.71875000	1.70312500	4.75953674	0.01562500
7	1.70312500	1.71875000	1.71093750	1.45890068	0.00781250
8	1.71093750	1.71875000	1.71484375	-0.22353563	0.00390625
9	1.71093750	1.71484375	1.71289062	0.62135051	0.00195312
10	1.71289062	1.71484375	1.71386719	0.20018649	0.00097656
11	1.71386719	1.71484375	1.71435547	-0.01137458	0.00048828
12	1.71386719	1.71435547	1.71411133	0.09447595	0.00024414
13	1.71411133	1.71435547	1.71423340	0.04157069	0.00012207
14	1.71423340	1.71435547	1.71429443	0.01510805	0.00006104
15	1.71423340	1.71429443	1.71426392	0.00935038	0.00003052
16	1.71426392	1.71429443	1.71427917	0.00280519	0.00001526

3.0.2 Método de Newton

Aplicamos o método de Newton à função polinomial com diferentes valores iniciais:

1 m_newton(f, dfdx, 2, 10e-6, 100)

Resultado:

Número máximo de iterações atingido.

No intervalo [0,1], o Método de Newton não convergiu independentemente de qual fosse a escolha de $\mathbf{x0}$, pois, como mencionado nas seções anteriores, a raiz existente em [0,1] é múltipla, e o Método de Newton é ineficiente nesses casos. Em particular, os passos para o caso $\mathbf{x0} = 0.5$ estão no final do relatório, na Tabela (4).

1 m_newton(f, dfdx, 0.6, 10e-6, 100)

Resultado:

1.714215364227409

Observamos que o método de Newton convergiu para a raiz $x \approx 1.71428571$ (ou exatamente $\frac{12}{7}$) com vários valores iniciais. Registramos, na Tabela 5 os passos necessários sob a escolha do valor inicial $\mathbf{x0} = 1.5$ (exatamente na metade do intervalo).

3.0.3 Método das Secantes

1 m_secantes(f, 0, 1, 10e-6, 100)

Resultado:

0.666674230856452

Tabela 2: Passos do Método das Secantes no Intervalo [0,1]

k	x_k	$f(x_k)$	x
0	0.00000000	192.00000000	1.18518519
1	1.00000000	30.00000000	0.22112026
2	1.18518519	55.12458893	0.44026398
3	0.77887974	4.25188153	0.06785974
4	0.74492121	2.12414469	0.05055456
5	0.71102000	0.69972187	0.02750987
6	0.69436665	0.27613880	0.01730142
7	0.68351014	0.10286371	0.01044211
8	0.67706523	0.03937587	0.00644683
9	0.67306803	0.01496182	0.00396195
10	0.67061840	0.00571108	0.00244491
11	0.66910608	0.00217845	0.00150853
12	0.66817349	0.00083170	0.00093163
13	0.66759756	0.00031754	0.00057545
14	0.66724186	0.00012127	0.00035554
15	0.66702210	0.00004631	0.00021969
16	0.66688632	0.00001769	0.00013576
17	0.66680241	0.00000676	0.00008390
18	0.66675056	0.00000258	0.00005185
19	0.66671851	0.00000099	0.00003204
20	0.66669871	0.00000038	0.00001980
21	0.66668647	0.00000014	0.00001224

No intervalo [0,1] o Método das Secantes se mostrou eficaz e eficiente, chegando a um resultado consistente com aquele obtido com programação simbólica. Na Tabela 2 estão os passos.

1 m_secantes(f, 1.1, 1.9, 10e-6, 100)

Resultado:

1.7142857142857149

Tabela 3: Passos do Método das Secantes no Intervalo $\left[1,2\right]$

k	x	f(x)	Erro
0	1.10000000	44.25603000	0.23195021
1	1.90000000	-108.38373000	0.35238931
2	1.33195021	66.33029717	0.92785304
3	1.54761069	50.91317478	0.06644300
4	2.25980325	-494.81747692	0.60269403
5	1.61405370	35.34899450	0.11399451
6	1.65710922	21.99774066	0.05562954
7	1.72804821	-6.05385213	0.01380096
8	1.71273877	0.66170252	0.00154706
9	1.71424725	0.01649881	0.00003846
10	1.71428582	-0.00004708	0.00000011

Observamos que, no intervalo [1,2], utilizar os extremos do intervalo não daria como resultado a raiz desejada, $\frac{12}{7}$, mas sim a raiz do intervalo [0,1]. Por isso, optou-se por as variáveis de entrada $x_0=1.1$ e $x_1=1.9$, que retornaram o valor correto num relativamente pequeno de passos.

3.1 Comparação dos Métodos

Aplicamos os métodos da Bisseção, Newton e Secante para encontrar as raízes da função polinomial $f(x) = 63x^5 - 381x^4 + 496x^3 + 204x^2 - 544x + 192$. A tabela a seguir resume os resultados obtidos:

Método	Bisseção		Newton		Secantes	
Intervalo	[0, 1]	[1,2]	[0,1]	[1,2]	[0, 1]	[1,2]
Resultado	-	1.71427917	-	1.71421536	0.66667423	1.71428571
Erro	_	6.53519531e-06	-	7.03457726e-05	7.56085645e-06	4.28571489e-09
${\bf N^{\underline{o}}}$ de Passos	_	16	50	30	21	10

3.2 Análise dos Resultados

Observamos que os métodos convergiram para diferentes raízes da função, dependendo dos valores iniciais escolhidos:

- O método da Bisseção convergiu apenas no intervalo [1,2].
- O método de Newton mostrou comportamentos distintos:
 - Não convergiu no intervalo [0,1];
 - Foi o que teve o pior desempenho no intervalo [1,2], levando o maior número de passos com os valores iniciais escolhidos.
- O método das Secantes teve um desempenho melhor que os demais métodos.
 - Foi o único capaz de encontrar uma solução no intervalo [0,1];
 - No intervalo [0,2], foi o método que utilizou o menor número de passos;
 - Também foi o que encontrou um resultado com o menor erro em relação ao valor estabelecido pelo software de matemática simbólica.

3.3 Limitações e Observações

Como esperado teoricamente, a existência de raízes múltiplas e de um intervalo estritamente não-negativo fizeram os métodos de Newton e das Bisseções não serem eficazes em todos os casos do problema proposto.

4 Conclusão

Neste estudo, aplicamos e analisamos três métodos numéricos fundamentais - Bisseção, Newton e Secantes - para encontrar as raízes de uma função polinomial de quinto grau. Os objetivos propostos foram alcançados com sucesso, proporcionando insights valiosos sobre o comportamento e a eficácia de cada método.

Os resultados mais significativos incluem:

- A identificação de múltiplas raízes da função demonstrando a complexidade do problema e a importância da escolha adequada dos valores iniciais.
- A eficiência superior do método das Secantes no problema em questão, por ser mais flexível às situações encontradas (intervalos estritamente positivos ou negativos e raízes múltiplas);

Concluímos que cada método possui suas próprias vantagens e limitações. O Método de Newton enfrentou o problema da existência de raízes múltiplas. O Método das Bisseções exige que o intervalo escolhido tenha valores que, quando avaliados pela função, tenham sinais opostos, o que nem sempre pode ser realizado. Já o Método das Secantes se mostrou superior tanto em eficiência e eficácia, sendo capaz de encontrar aproximações em todos os casos com um número inferior de passos.

Este estudo ressalta a importância da compreensão aprofundada dos métodos numéricos e da escolha criteriosa do método mais apropriado para cada problema específico. Além disso, demonstra o valor da análise numérica como ferramenta essencial na resolução de problemas complexos em ciência e engenharia.

Referências

- [1] Python Software Foundation. Python Language Reference, version 3.x. Available at http://www.python.org
- [2] Project Jupyter. Jupyter Lab. Available at https://jupyter.org/
- [3] SymPy Development Team. SymPy: Python library for symbolic mathematics. Available at https://www.sympy.org/
- [4] Wikipedia contributors. Fundamental theorem of algebra. Available at https://en.wikipedia.org/wiki/Fundamental_theorem_of_algebra
- [5] J. D. Hunter. Matplotlib: A 2D graphics environment. In *Computing in Science & Engineering*, vol. 9, no. 3, pp. 90-95, 2007. Available at https://matplotlib.org/
- [6] Lobão, Diomar Cesar. Introdução aos métodos numéricos. Volta Redonda/RJ, 2017.
- [7] Atkinson, Kendall. An introduction to numerical analysis. John Wiley & Sons, 1991.

Tabela 4: Passos do Método de Newton no Intervalo $\left[0,1\right]$

			£ 116W (OII 110 II	
k	X	f(x)	f'(x)	erro
0	0.50000000	11.15625000	-551.81250000	0.02021747
1	0.52021747	8.53496093	-550.24450620	0.01551122
2	0.53572868	6.77249764	-549.24920100	0.01233046
3	0.54805914	5.52330266	-548.60085833	0.01006798
4	0.55812712	4.60184133	-548.17252873	0.00839488
5	0.56652200	3.90049239	-547.88878568	0.00711913
6	0.57364113	3.35300164	-547.70277745	0.00612194
7	0.57976307	2.91660329	-547.58432248	0.00532631
8	0.58508938	2.56260472	-547.51338240	0.00468044
9	0.58976982	2.27112548	-547.47631297	0.00414835
10	0.59391818	2.02801024	-547.46362380	0.00370437
11	0.59762255	1.82294164	-547.46859350	0.00332976
12	0.60095231	1.64824549	-547.48638821	0.00301057
13	0.60396288	1.49811118	-547.51348600	0.00273621
14	0.60669909	1.36806941	-547.54729245	0.00249854
15	0.60919763	1.25463410	-547.58587879	0.00229121
16	0.61148884	$\begin{array}{c} 1.15505170 \\ 1.06712257 \end{array}$	-547.62780030	0.00210919
17	0.61359803 0.61554650	0.98907136	-547.67196844 -547.71755943	0.00194847
18 19	0.61534630 0.61735231		-547.76394816	0.00180581
20	0.61753231	0.91945176 0.85707539	-547.70594810	$\begin{bmatrix} 0.00167855 \\ 0.00156455 \end{bmatrix}$
$\begin{vmatrix} 20\\21 \end{vmatrix}$	0.61905087 0.62059541	0.80095808	-547.85733378	0.00130433
$\begin{vmatrix} 21\\22\end{vmatrix}$	0.62059541 0.62205739	0.75027890	-547.90369750	0.00140198 0.00136936
$\begin{vmatrix} 22\\23 \end{vmatrix}$	0.62342676	0.70434846	-547.94954575	0.00130930 0.00128543
$\begin{vmatrix} 23 \\ 24 \end{vmatrix}$	0.62342070 0.62471218	0.66258424	-547.94954575	0.00120943 0.00120911
25	0.02471218 0.62592129	0.62449114	-548.03912484	0.00120911 0.00113950
$\frac{25}{26}$	0.62592129 0.62706079	0.58964616	-548.08266267	0.00113930 0.00107583
$\frac{20}{27}$	0.62813663	0.55768601	-548.12528307	0.00107383
28	0.62915407	0.52829723	-548.16694920	0.00101744
29	0.63011782	0.50120817	-548.20763924	0.00090373
$\begin{vmatrix} 2g \\ 30 \end{vmatrix}$	0.63103209	0.47618241	-548.24734307	0.00031427
31	0.63190064	0.45301338	-548.28605963	0.00082624
32	0.63272688	0.43151995	-548.32379487	0.00078698
33	0.63351386	0.41154270	-548.36056015	0.00075050
34	0.63426435	0.39294089	-548.39637088	0.00071653
35	0.63498088	0.37558985	-548.43124557	0.00068484
36	0.63566572	0.35937882	-548.46520493	0.00065524
37	0.63632097	0.34420913	-548.49827129	0.00062755
38	0.63694852	0.32999264	-548.53046805	0.00060159
39	0.63755011	0.31665038	-548.56181927	0.00057724
40	0.63812735	0.30411149	-548.59234935	0.00055435
41	0.63868170	0.29231215	-548.62208279	0.00053281
42	0.63921451	0.28119482	-548.65104398	0.00051252
43	0.63972703	0.27070750	-548.67925703	0.00049338
44	0.64022041	0.26080304	-548.70674566	0.00047530
45	0.64069571	0.25143870	-548.73353314	0.00045822
46	0.64115393	0.24257558	-548.75964216	0.00044204
47	0.64159597	0.23417824	-548.78509486	0.00042672
48	0.64202270	0.22621435	-548.80991270	0.00041219
49	0.64243489	0.21865436	-548.83411655	0.00039840
50	0.64283328	0.21147118	-548.85772658	0.00038529
			l	

Tabela 5: Passos do Método de Newton no Intervalo [1,2]

k	x	f(x)	f'(x)	erro
0	1.50000000	58.59375000	-1371.81250000	0.04271265
1	1.54271265	51.83184738	-1458.75577431	0.03553155
2	1.57824420	44.46861836	-1534.05546587	0.02898762
3	1.60723182	37.22211664	-1597.39979190	0.02330169
4	1.63053351	30.55380397	-1649.51396792	0.01852291
5	1.64905642	24.69927894	-1691.67202871	0.01460051
6	1.66365694	19.73034786	-1725.34471729	0.01143560
7	1.67509253	15.61649255	-1751.98293617	0.00891361
8	1.68400614	12.27278062	-1772.90398505	0.00692242
9	1.69092856	9.59228436	-1789.24499317	0.00536108
10	1.69628964	7.46567714	-1801.95562842	0.00414310
11	1.70043274	5.79172207	-1811.81121618	0.00319665
12	1.70362938	4.48191520	-1819.43468071	0.00246336
13	1.70609274	3.46168764	-1825.32074554	0.00189648
14	1.70798922	2.66976701	-1829.85900131	0.00145900
15	1.70944822	2.05668770	-1833.35432637	0.00112182
16	1.71057004	1.58302126	-1836.04418935	0.00086219
17	1.71143223	1.21763192	-1838.11290200	0.00066244
18	1.71209467	0.93610241	-1839.70313727	0.00050883
19	1.71260350	0.71938326	-1840.92511298	0.00039077
20	1.71299427	0.55267081	-1841.86384382	0.00030006
21	1.71329433	0.42449478	-1842.58482766	0.00023038
22	1.71352471	0.32598764	-1843.13848088	0.00017687
23	1.71370158	0.25030572	-1843.56358447	0.00013577
24	1.71383735	0.19217418	-1843.88995374	0.00010422
25	1.71394157	0.14753140	-1844.14050187	0.00008000
26	1.71402157	0.11325233	-1844.33283234	0.00006141
27	1.71408298	0.08693393	-1844.48046614	0.00004713
28	1.71413011	0.06672917	-1844.59378673	0.00003618
29	1.71416629	0.05121888	-1844.68076696	0.00002777
30	1.71419405	0.03931290	-1844.74752807	0.00002131