

Permissioned Blockchains:

Data Security, Privacy and

Challenges

Yusen Wu

Frost Institute for **Data Science and Computing**

Background

Blockchain components: Distributed ledger database

The journal records an immutable log of all transactions and is maintained by nodes in the blockchain network

Background

Hyperledger

Ordering services

Three nodes

Three members

Background 3/125

Why it named "Permissioned"?

Permissioned Blockchains are the Future

- 1. Enhanced Privacy
- 2. Better Performance and Scalability
- 3. Lower Transaction Costs
- 4. Compliance with Regulations
 - Meets data governance requirements (e.g., GDPR, HIPAA) by controlling who can access or modify data.
 - Enables auditability and transparency while ensuring confidentiality.

Background 5/

Workflows

- User A sends a write request to Blockchain Client.
- 2 Invoke Smart Contracts function to write the data into a simulation environment for endorsements

- **3** Collect enough endorsements and reply to client A
- Send the message to ordering services for preparing the announcements.
- BFT leader node will collect enough transactions and send the block to all the peer nodes. Before add to the blockchain, all the nodes will check the block number: if is it in sequence?

Background 6/125

Interesting Blockchain Applications

Funded by IBM

Bringing Trust and Privacy-preserving Smart Contracts to Clinical Trials in Healthcare. Hyperleder Global Forum, June 8-10, 2021

Current: Remote Monitoring and lot

Immutable Audit Trails: Every medical transaction, once recorded on the blockchain, is permanent. This immutability ensures that medical histories, treatment records, and other critical information can't be altered maliciously or accidentally, establishing a clear and unchangeable history for each patient.

Blockchain Applications

Blockchain with Edge, off-chain on-chain System

Yusen Wu, et al. PPFChain: Privacy-Preserving Fine-grained On-chain and Off-chain System. IEEE Transactions on Information Forensics and Security (2024 TIFS)

Some other real applications: Blockchain with Signatures

Verify signer identity beyond the standard practice of clicking an emailed link.

Contact Sales

Blockchain with IoT

Attribute or Role-based Access Control

The Web3 Stack

Blockchain with ...

- Blockchain with Secure Medical Data Sharing / Decentralized Identity Management / Certificate Managements/ Supply chain Traceability / Automated Insurance Claims / Voting Systems / Finance / Grading, etc.
 - Bring trust to the Data and Transactions
- Evidence Storage & Digital Notarization
 - Courts, law firms, and government agencies need tamper-proof records for legal disputes.

Conclusions for Blockchains

- **Decentralization**: Unlike centralized systems, where a single entity has control, blockchain operates on a peer-to-peer network, distributing control among many participants.
- **Immutability**: Once data is added to a blockchain, it's nearly impossible to change. This ensures historical data integrity.
- Transparency (public): Most blockchains are transparent, allowing any user to track and verify transactions.
- Privacy (permissioned/private): Permissioned blockchains can bring access control to improve the data privacy.
- Security: Transactions must be agreed upon before they're recorded.
 After validation, they're encrypted and linked to the previous transaction.
- Trust: Transactions are transparent and can be verified by any user, ensuring trust without the need for intermediaries.
- **Traceability**: Goods in a supply chain, for instance, can be tracked, ensuring authenticity and reducing fraud.

Blockchain Applications

Challenge A: Data Quality

https://guggero.github.io/blockchain-demo/#!/block

Challenges 19/125

- Pre-processing with AI & Data Sketching: Use machine learning and data sketches for real-time anomaly detection and outlier filtering before data is written to the blockchain.
- Using Smart Contract to Analyze the Data Quality (Static).

 AI models for anomaly detection + TEE (Trusted Execution **Environment)**

Challenge B: Smart Contract Security

Weak Access Control & Unauthorized Access

- In permissioned blockchains, role-based access control (RBAC) is crucial. If access permissions are misconfigured, an unauthorized user could invoke or modify smart contracts, leading to unauthorized data manipulation.
- In **permissioned blockchains**, smart contracts can often be **upgraded** post-deployment.

Low quality Smart contracts

- Use AI to write smart contracts
- Use AI to check the low-quality codes in Smart Contracts
- Use AI to check access control

Challenges 22/1

Challenge C: BFT Efficiency

BFT is the main challenge for system efficiency

Challenges 24/125

Exploring Consensus With Parallel Proposals: The Difference Between PBFT and BBCA-Chain

Memory Pool for Blocks

Blockchain (DAG/Directed Acyclic Graph)

Feature	DAG (e.g., IOTA, Nano)	Blockchain (e.g., Bitcoin, Ethereum)
Transaction Speed	Fast (Parallel Processing)	Slower (Sequential Blocks)
Consensus	Asynchronous (Self-validation)	Synchronous (Mining/PoS)
Mining Required?	No	Yes (for PoW systems)
Scalability	High (No Block Size Limits)	Limited by block size
Transaction Fees	Low / Feeless	High (Especially on Ethereum)
Forks	No forks	Forks can happen (e.g., Bitcoin hard forks)
Security Model	Depends on network adoption	High with established PoW/PoS

DAG query may be time-consuming

Solution: State Database Instead of Full-Chain Lookup

•Instead of searching through the entire blockchain for transaction history (like Ethereum or Bitcoin), Hyperledger Fabric stores the latest state of data in a key-value database (state DB).

Common Questions be Asked from Previous Presentation

- 1: Why there are the different types of blockchains?
- 2: Have you thought to Combine different blockchains?
- 3: Al combine with Blockchains

Frost Institute for **Data Science and Computing**