LECTURE 7: ROBUST LINEAR OPTIMIZATION

- 1. Motivation
- 2. Robust model
- 3. Solution methods

Motivation

- Example: Pharmaceutic decision making (from Prof. Tom Luo)
- One active agent A for treating a disease.
- Two possible drugs: D_1 , D_2
- Two possible raw material: R_1 , R_2

Data sheet

	D_1	D_2
Selling Price	(200	(000
(\$/1K packs)	6,200	6,900
Agent A (grams/1K packs)	0.5	0.6
Man Power	90	100
(hr/1K packs)		
Equipment Usage (hr/1K packs)	40	50
Operating Cost (\$/1K packs)	700	800

	Buying Price (\$/kg)	Content of A (g/kg)
R_1	100	0.01
R_2	199	0.02

Budget (\$)	Man Power (hr)	Equipment (hr)	Storage (kg)
100,000	2,000	800	1,000

LP formulation

Max
$$6200D_1 + 6900D_2 - 100R_1 - 199R_2 - 700D_1 - 800D_2$$

s. t.
 $0.01R_1 + 0.02R_2 - 0.5D_1 - 0.6D_2 \geq 0$ (Balance of A)
 $R_1 + R_2 \leq 1000$ (Storage)
 $90D_1 + 100D_2 \leq 2000$ (ManPower)
 $40D_1 + 50D_2 \leq 800$ (Equipment)
 $100R_1 + 199R_2 + 700D_1 + 800D_2 \leq 100000$ (Budget)
 $R_1, R_2, D_1, D_2 \geq 0$

Optimal Solution:

Another Feasible Solution:

$$z^* = 9205.79$$

$$\bar{z} = 8294.5$$

$$R_1^* = 0, \qquad R_2^* = 438.79$$

$$D_1^* = 17.55, \quad D_2^* = 0$$

$$\bar{x}$$

$$\bar{z} = 877.73, \quad \bar{R}_2 = 0$$

$$\bar{z} = \bar{z} = 877.73, \quad \bar{R}_2 = 0$$

Situation analysis

Error / Uncertainty in Data

	Content of Agent A (g/Kg)		
R_1	$0.01 \rightarrow \pm 0.5\%$	$\left[0.00995, 0.00105\right]$	
R_2	$0.02 \rightarrow \pm 2\%$	$\left[0.00196, 0.00204\right]$	

① x^* becomes infeasible.

③ z^* is reduced from \$ 9205.79 to \$7286.29.

② To keep the same plan

This means the profit is reduced by 21%.

$$\left\{ \begin{array}{l} R_1^* = 0, \quad R_2^* = 438.79 \\ D_2^* = 0 \end{array} \right\} \text{ remains the same } \ \ \bar{x} \text{ remains feasible with a profit of $8294.5}$$

 D_1^* has to be reduced to $D_1^* \times 0.98 = 17.201$

This is a more "robust" solution!

Robust LP model

$$\min z = c^T x + d$$

$$s.t. \quad Ax \le b$$

$$x \ge 0$$

Data:

$$\begin{bmatrix} A & b \\ c^T & d \end{bmatrix}_{(m+1)\times(n+1)}$$

Dimension: (m, n)

Common Practice:

(m, n) are certain

data set
$$\begin{bmatrix} A & b \\ c^T & d \end{bmatrix}$$
 typically uncertain

Source of Uncertainty:

- some entries may be missing
- measurement error
- prediction error
- quality statistics

:

Simple form robust LP

• Define
$$[A_0-\Delta A,\ A_0+\Delta A] = \mathfrak{A}$$

$$[b_0-\Delta b,\ b_0+\Delta b] = \mathfrak{B}$$

$$[c_0-\Delta c,\ c_0+\Delta c] = \mathfrak{C}$$

$$[d_0-\Delta d,\ d_0+\Delta d] = \mathfrak{D}$$

Consider

$$\min \left\{ c^T x + d \mid Ax \leq b, \ x \geq 0 \right\}$$

$$A \in \mathfrak{A}$$

$$(RLP) \begin{array}{ccc} b \in \mathfrak{B} \\ c \in \mathfrak{C} \\ d \in \mathfrak{D} \end{array} \qquad \begin{array}{ccc} \underline{\text{Question: What does this (RLP) mean}} \\ \text{mathematically?} \end{array}$$

Assumptions in decision making

(A1): x must be determined "here and now".

- (A2): Decision maker is fully responsible for all consequences of data uncertainty.
- \Rightarrow x must be "robust feasible". i.e.,

$$\begin{array}{ccc} Ax & \leq & b \\ x & \geq & 0 \end{array} \quad \forall \ A \in \mathfrak{A} \ \ and \ b \in \mathfrak{B}$$

(A3): Conservative decision is adopted.

$$\Rightarrow \underset{c \in \mathfrak{C}}{\operatorname{Min}} \operatorname{Max}\{c^{T}x + d \mid x \text{ is robust feasible}\}\$$

Mathematics involved

①
$$A \in \mathfrak{A} \Leftrightarrow A = A_0 + t_{\mathfrak{a}} \Delta A, t_{\mathfrak{a}} \in [-1, 1]$$
 $b \in \mathfrak{B} \Leftrightarrow b = b_0 + t_{\mathfrak{b}} \Delta b, t_{\mathfrak{b}} \in [-1, 1]$
 $c \in \mathfrak{C} \Leftrightarrow c = c_0 + t_{\mathfrak{c}} \Delta c, t_{\mathfrak{c}} \in [-1, 1]$
 $d \in \mathfrak{D} \Leftrightarrow d = d_0 + t_{\mathfrak{d}} \Delta d, t_{\mathfrak{d}} \in [-1, 1]$

②
$$x$$
 is robust feasible
$$\Leftrightarrow \begin{cases} Ax \leq b & \forall A \in \mathfrak{A} \text{ and } b \in \mathfrak{B} \\ x \geq 0 \end{cases}$$

$$\Leftrightarrow \begin{cases} (A_0 + t_{\mathfrak{a}} \Delta A)x \leq b_0 + t_{\mathfrak{b}} \Delta b, & \forall t_{\mathfrak{a}} \in [-1, 1] \\ x \geq 0 & \forall t_{\mathfrak{b}} \in [-1, 1] \end{cases}$$

x is robust feasible

Semi-infinite LP

(RLP) becomes

Min y

s. t.

$$(RLP)_{SI} \begin{cases} (c_0 + t_{\mathfrak{c}} \Delta c)^T x + (d_0 + t_{\mathfrak{d}} \Delta d) \leq y, \\ \forall t_{\mathfrak{c}} \in [-1, 1] \\ t_{\mathfrak{d}} \in [-1, 1] \end{cases}$$
$$(A_0 + t_{\mathfrak{d}} \Delta A) x \leq b_0 + t_{\mathfrak{b}} \Delta b, \\ \forall t_{\mathfrak{a}} \in [-1, 1] \\ t_{\mathfrak{b}} \in [-1, 1] \end{cases}$$
$$x \geq 0$$

Properties of (RLP)sı

- It is a linear programming problem with n + 1 variables and infinitely many constraints
- It is a semi-infinite linear programming problem.

Question: How to solve $(RLP)_{SI}$?

Solution method 1

- Discretization method
 - Pick k points from $[-1, 1]^4$
 - Use these points to construct a regular linear program
 - As $k \to +\infty$, LP solutions approach a solution of $(RLP)_{SI}$
- Pros: Solved by LP
- Cons: An approximation solution

Solution method 2

- ② Cutting Plane method
- Consider

$$\operatorname{Min} \sum_{j=1}^{n} c_j x_j$$

(LSIP) s.t.
$$\sum_{j=1}^{n} f_j(t) x_j \le g(t), \ \forall \ t \in T$$

$$x_j \geq 0, j = 1, \dots, n$$

Step 1: Let $\varepsilon > 0$ be sufficiently small, K and M be sufficiently large.

Choose any $t^1 \in T$ and set k = 1, $T_1 = \{t^1\}$, $z^0 = M$.

Solution method 2

Step 2: Find an optimal solution x^k to

$$Min \sum_{j=1}^{n} c_j x_j$$

$$(LP_k)$$
 s.t. $\sum_{j=1}^{n} f_j(t^i) x_j \leq g(t^i), i = 1, ..., k$

$$x_j \geq 0$$
.

Set
$$z^k = c^T x^k$$
.

Let $\Phi_{k+1}(t) \triangleq g(t) - \sum_{j=1}^{n} f_j(t) x_j^k, \ \forall \ t \in T$.

Find a minimizer t^{k+1} of $\Phi_{k+1}(t)$ over T and calculate $\Phi_{k+1}(t^{k+1})$.

Step 3: If $\Phi_{k+1}(t^{k+1}) \ge 0$ or $|z^k - z^{k-1}| < \epsilon$ for k > K, then stop and output x^k as an optimal solution.

Otherwise, set

$$T_{k+1} = T_k \cup \{t^{k+1}\} \text{ and } k \leftarrow k+1.$$

Go to Step 2.

Computational bottleneck

Find a minimizer t^{k+1} of $\Phi_{k+1}(t)$ over T

$$\Phi_{k+1}(t) \triangleq g(t) - \sum_{j=1}^{n} f_j(t) x_j^k, \ \forall \ t \in T.$$