C477: Computational Optimisation Constrained Optimisation – Algorithms

Panos Parpas
Department of Computing
Imperial College London

www.doc.ic.ac.uk/~pp500 p.parpas@imperial.ac.uk

Outline

1. Projected Methods

- Reminder: Descent Methods
- Projected Gradient Methods
- Projected Gradient with Linear Constraints

2. Lagrangian Methods (Primal/Dual Methods)

- Lagrangian Methods with Equality Constraints
- Lagrangian Methods with Inequality Constraints

3. Penalty Methods

Additional material:

- Chapter 22 in An Introduction to Optimization, Chong & Zhak, Third Edition.
- Chapter 12, 13 in Linear and Nonlinear Programming, Luenberger & Ye, Third Edition.

Outline

1. Projected Methods

- Reminder: Descent Methods
- Projected Gradient Methods
- Projected Gradient with Linear Constraints

2. Lagrangian Methods (Primal/Dual Methods)

- Lagrangian Methods with Equality Constraints
- Lagrangian Methods with Inequality Constraints

3. Penalty Methods

Problem Formulation

$$\min f(x)$$
s.t. $h(x) = 0$
 $g(x) \le 0$

- Where $f: \mathbb{R}^n \to \mathbb{R}$, $g: \mathbb{R}^n \to \mathbb{R}^p$, $m \le n$ and $h: \mathbb{R}^n \to \mathbb{R}^m$
- As before $h_i(x) = 0$, i = 1, ..., m are equality constraints
- $g_i(\mathbf{x}) \leq 0$, i = 1, ..., p are inequality constraints
- The feasible region is $\Omega = \{x \in \mathbb{R}^n \mid h(x) = 0, g(x) \leq 0\}.$

Reminder: Descent Methods – Unconstrained

- Given a point x_k .
- Transition to the next point,

$$\mathbf{x}_{k+1} = \mathbf{x}_k + \alpha_k \mathbf{d}_k$$

3 where $\alpha_k \in \arg\min f(x_k + \alpha_k d_k)$ (if an exact step-size strategy is used)

$$\frac{d_k = -\nabla f(x_k)}{d_k = -\nabla^2 f(x_k)^{-1} \nabla f(x_k)}$$
 (Newton Raphson)

But what if x is required to stay within some feasible set Ω ?

Reminder: Descent Methods – Unconstrained

- Given a point x_k .
- Transition to the next point,

$$\mathbf{x}_{k+1} = \mathbf{x}_k + \alpha_k \mathbf{d}_k$$

3 where $\alpha_k \in \arg\min f(x_k + \alpha_k d_k)$ (if an exact step-size strategy is used)

$$d_k = -\nabla f(x_k)$$
 (steepest descent)
 $d_k = -\nabla^2 f(x_k)^{-1} \nabla f(x_k)$ (Newton Raphson)

But what if x is required to stay within some feasible set Ω ?

Basic idea: Project point back into feasible set.

$$m{x}_{k+1} = egin{cases} m{x}_{k+1} & ext{if } m{x}_{k+1} \in \Omega \ \Pi[m{x}_{k+1}] & ext{otherwise} \end{cases}$$

Basic idea: Project point back into feasible set.

$$m{x}_{k+1} = egin{cases} m{x}_{k+1} & ext{if } m{x}_{k+1} \in \Omega \ \Pi[m{x}_{k+1}] & ext{otherwise} \end{cases}$$

$$^{\bullet}x_k$$

 Ω

Basic idea: Project point back into feasible set.

$$m{x}_{k+1} = egin{cases} m{x}_{k+1} & ext{if } m{x}_{k+1} \in \Omega \ \Pi[m{x}_{k+1}] & ext{otherwise} \end{cases}$$

 Ω

Basic idea: Project point back into feasible set.

$$m{x}_{k+1} = egin{cases} m{x}_{k+1} & ext{if } m{x}_{k+1} \in \Omega \ \Pi[m{x}_{k+1}] & ext{otherwise} \end{cases}$$

 Ω

Example: Box constraints

Suppose that the constraint set is, $\Omega = \{x \in \mathbb{R}^n \mid l_i \leq x_i \leq u_i\}$ Define $y = \Pi[x]$ as follows,

$$y_i = \begin{cases} u_i & \text{if } x_i > u_i \\ x_i & \text{if } l_i \le x_i \le u_i \\ l_i & \text{if } x_i < l_i \end{cases}$$

A concise way to write the above is $y_i = \min\{u_i, \max\{l_i, x_i\}\}\$

The point $\Pi[x]$ is called the projection of x into y.

In general the projection operator is defined as,

$$\Pi[x] = \arg\min_{z \in \Omega} \frac{1}{2} ||z - x||_2^2$$

Interpretation: $\Pi[x]$ is the closest point in Ω to x

Example: Box constraints

Suppose that the constraint set is, $\Omega = \{x \in \mathbb{R}^n \mid l_i \leq x_i \leq u_i\}$ Define $y = \Pi[x]$ as follows,

$$y_i = \begin{cases} u_i & \text{if } x_i > u_i \\ x_i & \text{if } l_i \le x_i \le u_i \\ l_i & \text{if } x_i < l_i \end{cases}$$

A concise way to write the above is $y_i = \min\{u_i, \max\{l_i, x_i\}\}\$

The point $\Pi[x]$ is called the projection of x into y. In general the projection operator is defined as,

$$\Pi[x] = \arg\min_{z \in \Omega} \frac{1}{2} ||z - x||_2^2$$

Interpretation: $\Pi[x]$ is the closest point in Ω to x

Practical Remarks on Projection Methods

$$\Pi[x] = \arg\min_{z \in \Omega} \frac{1}{2} ||z - x||_2^2$$

Projection problem can be as hard as the original problem

Suppose the original problem is:

$$\min \frac{1}{2} ||x||^2$$

s.t. $x \in \Omega$.

If $\mathbf{0} \notin \Omega$, $\Pi[\mathbf{0}]$ is as difficult as the original problem.

Projection not always well defined

If $\boldsymbol{\Omega}$ is convex then projection is well defined.

But for some Ω the $\arg\min$ may not be well defined.

Projected Gradient Methods

- Given a point x_k .
- Transition to the next point,

$$\mathbf{x}_{k+1} = \mathbf{\Pi}[\mathbf{x}_k - \alpha_k \mathbf{\nabla} f(\mathbf{x}_k)]$$

■ Where $\alpha_k \in \arg\min f(\prod [x_k - \alpha_k \nabla f(x_k)])$ (if an exact step-size strategy is used)

Example: Projected Gradient Methods

Consider the problem

$$\min \frac{1}{2} \mathbf{x}^{\top} \mathbf{Q} \mathbf{x}$$

s.t. $\|\mathbf{x}\|_2^2 = 1$

where $Q \in \mathbb{R}^{n \times n}$ is a symmetric positive definite matrix. Suppose that a projected gradient method with fixed step size strategy is applied to this problem.

a. Derive a formula for the update equation for the algorithm (i.e. write an explicit formula for x_{k+1} as a function of x_k , Q, and fixed step size α). You may assume that the argument in the projection operator is never zero.

Example: Projected Gradient Methods

a. Derive a formula for the update equation for the algorithm (i.e. write an explicit formula for x_{k+1} as a function of x_k , Q, and fixed step size α). You may assume that the argument in the projection operator is never zero.

Example: Projected Gradient Methods

a. The projection problem is

$$\Pi^* = \min_{z} \frac{1}{2} ||x - z||_2^2$$
s.t. $||z||_2^2 = 1$

Note that for any feasible z (i.e. $||z||_2^2 = 1$).

$$\begin{split} \frac{1}{2}\|\pmb{x} - \pmb{z}\|_2^2 &= \frac{1}{2}\|\pmb{z}\|_2^2 + \frac{1}{2}\|\pmb{x}\|_2^2 - \pmb{x}^\top \pmb{z} \\ &\geq \frac{1}{2} + \frac{1}{2}\|\pmb{x}\|_2^2 - \|\pmb{x}\|_2\|\pmb{z}\|_2 \text{ (from Cauchy-Schwarz inequality)} \\ &= \frac{1}{2} + \frac{1}{2}\|\pmb{x}\|_2^2 - \|\pmb{x}\|_2 \end{split}$$

Therefore $\Pi^* \geq \frac{1}{2} + \frac{1}{2}\|x\|^2 - \|x\|$. If we choose $z = x/\|x\|$ the objective function is equal to $\frac{1}{2} + \frac{1}{2}\|x\|^2 - \|x\|$. Therefore $z = x/\|x\|_2$ is the optimal solution of the projected problem. We now have,

$$\mathbf{x}_{k+1} = \beta_k(\mathbf{x}_k - \alpha \mathbf{Q} \mathbf{x}_k) = \beta_k(\mathbf{I} - \alpha \mathbf{Q}) \mathbf{x}_k$$

Projected Gradient with Linear Constraints

$$\min f(x)$$
 s.t. $Ax = b$

Where

- \bullet $f: \mathbb{R}^n \to \mathbb{R}$
- $ullet A \in \mathbb{R}^{m \times n}, m < n \text{ and } \operatorname{rank}(A) = m, b \in \mathbb{R}^m.$

Derivation of the projection matrix

Suppose that

- x_k is feasible i.e. $Ax_k = b$
- d_k is a descent but not a feasible direction.

Direction will be feasible if,

$$Ax_{x+1} = A(x_k + \alpha_k d_k) = b$$

 $Ax_k + \alpha_k Ad_k = b$

So if,

$$Ad_k = 0$$

then $Ax_{x+1} = b$.

Derivation of the projection matrix

The projection problem is,

$$\min \frac{1}{2} \|\boldsymbol{d} - \boldsymbol{d}_k\|_2^2$$

s.t. $A\boldsymbol{d} = 0$

The projection operator is the matrix $\mathbf{P} = \mathbf{I} - \mathbf{A}^{\top} (\mathbf{A} \mathbf{A}^{\top})^{-1} \mathbf{A}$.

Derivation of the projection matrix

The projection problem is,

$$\min \frac{1}{2} \|\boldsymbol{d} - \boldsymbol{d}_k\|_2^2$$

s.t. $A\boldsymbol{d} = 0$

The projection operator is the matrix $P = I - A^{\top} (AA^{\top})^{-1} A$. To see this note that the first order conditions for this problem are,

$$\boldsymbol{d} - \boldsymbol{d}_k + \boldsymbol{A}^{\top} \boldsymbol{\lambda} = 0$$

Therefore $\lambda = (AA^{\top})^{-1}Ad_k$. Substituting this relationship back into the first order condition we obtain that the optimum solution is,

$$\boldsymbol{d} = (\boldsymbol{I} - \boldsymbol{A}^{\top} (\boldsymbol{A} \boldsymbol{A}^{\top})^{-1} \boldsymbol{A}) \boldsymbol{d}_{k}$$

Properties of the projection matrix

Given a set of linear constraints,

$$Ax = b$$

with $A \in \mathbb{R}^{m \times n}$, m < n and $\operatorname{rank}(A) = m$, $b \in \mathbb{R}^m$. Then,

$$\boldsymbol{P} = \boldsymbol{I} - \boldsymbol{A}^{\top} (\boldsymbol{A} \boldsymbol{A}^{\top})^{-1} \boldsymbol{A}$$

is called the projection matrix.

Exercise: Show that the following statements are true for the projection matrix defined above.

- $\mathbf{2} \mathbf{P}^{\top} = \mathbf{P}$

Properties of the projection matrix

1.
$$P^{\top}P = P$$

$$P^{\top} = (I - A^{\top}(AA^{\top})^{-1}A)^{\top} = I - A^{\top}((AA^{\top})^{-1})^{\top}A$$

(where we used the property that for two matrices B C the following holds: $(BC)^{\top} = C^{\top}B^{\top}$). The result follows by direct calculation,

$$P^{\top}P = (I - A^{\top}((AA^{\top})^{-1})^{\top}A)(I - A^{\top}(AA^{\top})^{-1}A)$$

$$= P - A^{\top}((AA^{\top})^{-1})^{\top}A + A^{\top}((AA^{\top})^{-1})^{\top}AA^{\top}(AA^{\top})^{-1}A$$

$$= P - A^{\top}((AA^{\top})^{-1})^{\top}A + A^{\top}((AA^{\top})^{-1})^{\top}A$$

$$= P$$

Properties of the projection matrix

2. $\mathbf{P}^{\top} = \mathbf{P}$. Note that,

$$P^{\top}(I - P) = (I - A^{\top}((AA^{\top})^{-1})^{\top}A)(A^{\top}(AA^{\top})^{-1}A)$$

$$= A^{\top}(AA^{\top})^{-1}A - A^{\top}((AA^{\top})^{-1})^{\top}AA^{\top}(AA^{\top})^{-1}A$$

$$= A^{\top}(AA^{\top})^{-1}A - A^{\top}((AA^{\top})^{-1})^{\top}A$$

$$= A^{\top}(AA^{\top})^{-1}A - A^{\top}(AA^{\top})^{-1}A = 0$$

Therefore using the property of the projection matrix in the previous slide we obtain $P^\top = P^\top P = P$ (In the derivation of 2. we used the property that for an invertible matrix B then $(B^\top)^{-1} = (B^{-1})^\top$).

Projected Gradient with Linear Constraints

General Iterative algorithm:

$$\mathbf{x}_{k+1} = \Pi[\mathbf{x}_k - \alpha_k \nabla f(\mathbf{x}_k)]$$

If projection is on the set $\Omega = \{x \in \mathbb{R}^n \mid Ax = b\}$ then,

$$\boldsymbol{x}_{k+1} = \boldsymbol{x}_k - \alpha_k \boldsymbol{P} \boldsymbol{\nabla} f(\boldsymbol{x}_k)$$

where $P = I - A^{\top} (AA^{\top})^{-1} A$, and x_0 was assumed to be in Ω .

Projected Gradient with Linear Constraints

Theorem (Feasibility)

In the projected gradient algorithm with linear constraints, if x_0 is feasible, then $Ax_k = b$, $k \ge 0$.

Proof.

Proof is by induction. Assume that $Ax_k = b$ we show that $Ax_{k+1} = b$. First note that,

$$AP\nabla f(x_k) = A(I - A^{\top}(AA^{\top})^{-1}A)\nabla f(x_k) = (A - A)\nabla f(x_k) = 0.$$

Therefore,

$$Ax_{k+1} = A(x_k - \alpha_k P \nabla f(x_k))) = Ax_k - \alpha_k A P \nabla f(x_k) = b,$$

as required.

Projected Gradient and Descent Property

$$x_{k+1} = x_k - \alpha_k P \nabla f(x_k)$$

where $P = I - A^{\top} (AA^{\top})^{-1} A$, and x_0 was assumed to be in Ω .

So far we know that if x_0 is feasible then all the iterates x_k will also be feasible.

But is this a descent algorithm?

Projected Gradient and Descent Property

Theorem

If $\{x_k\}$ is the sequence of points generated by the projected gradient algorithm (with the exact step-size strategy). If $P\nabla f(x_k) \neq 0$ then $f(x_{k+1}) < f(x_k)$.

Proof.

Projected Gradient and Descent Property

Theorem

If $\{x_k\}$ is the sequence of points generated by the projected gradient algorithm (with the exact step-size strategy). If $P\nabla f(x_k) \neq 0$ then $f(x_{k+1}) < f(x_k)$.

Proof.

We first recall that,

$$\boldsymbol{x}_{k+1} = \boldsymbol{x}_k - \alpha_k \boldsymbol{P} \boldsymbol{\nabla} f(\boldsymbol{x}_k),$$

Let $\phi_k(\alpha) = f(\mathbf{x}_k - \alpha P \nabla f(\mathbf{x}_k))$ and the step-size is chosen such that $\alpha_k \in \arg\min_{\alpha > 0} \phi_k(\alpha)$. We therefore have,

$$\phi_k(\alpha_k) \le \phi_k(\alpha), \forall \alpha \ge 0.$$

Using the chain rule we obtain,

$$\frac{d\phi_k}{d\alpha}(0) = -\nabla f(\mathbf{x}_k)^{\top} \mathbf{P} \nabla f(\mathbf{x}_k)$$

But since $P = P^{T}P$ we get,

$$\frac{d\phi_k}{d\alpha}(0) = -\nabla f(\mathbf{x}_k)^{\top} \mathbf{P}^{\top} \mathbf{P} \nabla f(\mathbf{x}_k) = -\|\mathbf{P} \nabla f(\mathbf{x}_k)\|^2 < 0,$$

since $P\nabla f(x_k) \neq 0$ by assumption. Thus there exists $\bar{\alpha} > 0$ such that $\phi_k(0) > \phi_k(\alpha)$ for all $\alpha \in (0, \bar{\alpha}]$.

Projected Gradient and Convergence

The convergence of the algorithm is based on the previous Theorem and the following result.

Theorem

Let x^* be a feasible point then $P\nabla f(x^*) = 0$ if and only if x^* satisfies the Lagrange condition.

Proof.

Projected Gradient and Convergence

The convergence of the algorithm is based on the previous Theorem and the following result.

Theorem

Let x^* be a feasible point then $P\nabla f(x^*) = 0$ if and only if x^* satisfies the Lagrange condition.

Proof.

We need to show that $P\nabla f(x^*)=\mathbf{0}$ if and only if $\nabla f(x^*)=A^{\top}\lambda^*$ for some $\lambda^*\in\mathbb{R}^m$. If $P\nabla f(x^*)=0$ then let $\lambda^*=(AA^{\top})^{-1}A\nabla f(x^*)$ we then have,

$$0 = P\nabla f(x^*) = \nabla f(x^*) - A^{\top} (AA^{\top})^{-1} A \nabla f(x^*) = \nabla f(x^*) - A^{\top} \lambda^*$$

therefore $\nabla f(x^*) = A^{\top} \lambda^*$.

For the other direction, suppose that $\nabla f(x^*) = A^{\top} \lambda^*$ then,

$$P\nabla f(x^*) = PA^{\top}\lambda^* = (I - A^{\top}(AA^{\top})^{-1}A)A^{\top}\lambda^* = A^{\top}\lambda^* - A^{\top}\lambda^* = 0.$$

П

Summary Projected Gradient Methods

- Fast and easy algorithm to implement.
- All the algorithms (including Newton method) can be used in conjunction with projection.

Outline

1. Projected Methods

- Reminder: Descent Methods
- Projected Gradient Methods
- Projected Gradient with Linear Constraints

2. Lagrangian Methods (Primal/Dual Methods)

- Lagrangian Methods with Equality Constraints
- Lagrangian Methods with Inequality Constraints

3. Penalty Methods

Lagrangian Algorithms

Equality Constrained Problem

$$\min f(\mathbf{x})$$
 s.t. $\mathbf{h}(\mathbf{x}) = 0$

Where $f: \mathbb{R}^n \to \mathbb{R}$, $h: \mathbb{R}^n \to \mathbb{R}^m$ and $m \le n$.

First Order Conditions

$$L(x,\lambda) = f(x) + \lambda^{\top} h(x)$$
 (Lagrangian) $\nabla f(x) + \nabla h(x) \lambda = \mathbf{0}$ (First Order Conditions) $h(x) = \mathbf{0}$

Lagrangian Algorithms

Lagrangian Algorithm

$$x_{k+1} = x_k - \alpha_k(\nabla f(x_k) + \nabla h(x_k)\lambda_k)$$

$$\lambda_{k+1} = \lambda_k + \beta_k h(x_k)$$

- **Update equation for** x: same as applying the steepest descent method for minimising $L(x, \lambda)$ over x with no constraints
- Update equation for λ : same as applying the steepest descent method for maximising $L(x, \lambda)$ over λ
- Only gradients are used so method is called first order method.

The General Case

Equality Constrained Problem

$$\min f(x)$$
s.t. $h(x) = 0$
 $g(x) \leq 0$

First Order Conditions

$$L(x,\lambda)=f(x)+\lambda^{\top}h(x)+\mu^{\top}g(x)$$
 (Lagrangian) $\nabla f(x)+\nabla h(x)\lambda+\nabla g(x)\mu=0$ (First Order Conditions) $\mu_ig_i(x)=0$ $\mu\geq 0$ $h(x)=0$ $g(x)\leq 0$

Lagrangian Algorithm – Inequality constraints

Lagrangian Algorithm

$$x_{k+1} = x_k - \alpha_k (\nabla f(x_k) + \nabla h(x_k) \lambda_k + \nabla g(x_k) \mu_k)$$

$$\lambda_{k+1} = \lambda_k + \beta_k h(x_k)$$

$$\mu_{k+1} = P_+ [\mu_k + \gamma_k g(x_k)]$$

- P_+ is the projection to the positive part of \mathbb{R}^p applied component wise.
- **Update equation for** x: same as applying the steepest descent method for minimising $L(x, \lambda, \mu)$ with no constraints
- Update equation for λ : same as applying the steepest descent method for maximising $L(x, \lambda, \mu)$ over λ
- Update equation for μ : same as applying the projected steepest descent method for maximising $L(x, \lambda, \mu)$ over μ
- Only gradients are used so method is called *first order method*.

Lagrangian Algorithm Theory

- Can be shown that method converges to a KKT point.
- Complementarity condition also satisfied.
- Rate of convergence is linear (since it is based on steepest descent method)
- No guarantees it will converge to the global minimum or that second order conditions will be satisfied.

Outline

1. Projected Methods

- Reminder: Descent Methods
- Projected Gradient Methods
- Projected Gradient with Linear Constraints

2. Lagrangian Methods (Primal/Dual Methods)

- Lagrangian Methods with Equality Constraints
- Lagrangian Methods with Inequality Constraints

3. Penalty Methods

Basic Idea: Convert the constrained optimisation problem to an unconstrained problem

Original constrained problem:

$$\min_{x} f(x)$$
$$x \in \Omega$$

Modified unconstrained problem:

$$\min_{x} f(x) + \gamma P(x)$$

Where:

- ullet γ is a positive scalar called the **penalty parameter.**
- $P: \mathbb{R}^n \to \mathbb{R}$ is called the penalty function. The aim of this function is to penalise points outside Ω

Basic Idea: Convert the constrained optimisation problem to an unconstrained problem

Original constrained problem:

$$\min_{\mathbf{x}} f(\mathbf{x})$$
$$\mathbf{x} \in \Omega$$

Modified unconstrained problem:

$$\min_{x} f(x) + \gamma P(x)$$

Where

- ullet γ is a positive scalar called the **penalty parameter.**
- $P: \mathbb{R}^n \to \mathbb{R}$ is called the penalty function. The aim of this function is to penalise points outside Ω

Basic Idea: Convert the constrained optimisation problem to an unconstrained problem

Original constrained problem:

$$\min_{\mathbf{x}} f(\mathbf{x})$$
$$\mathbf{x} \in \Omega$$

Modified unconstrained problem:

$$\min_{x} f(x) + \gamma P(x)$$

Where:

- ullet γ is a positive scalar called the **penalty parameter.**
- $P: \mathbb{R}^n \to \mathbb{R}$ is called the penalty function. The aim of this function is to penalise points outside Ω

Original constrained problem:

$$\min_{x} f(x)$$
s.t. $g_i(x) \le 0$ $i = 1, ..., p$.

Penalty Function:

$$P(\mathbf{x}) = \sum_{i=1}^{p} g_i^+(\mathbf{x})$$

where

$$g_i^+(\mathbf{x}) = \max\{0, g_i(\mathbf{x})\} = \begin{cases} 0 & \text{if } g_i(\mathbf{x}) \leq 0 \\ g_i(\mathbf{x}) & \text{if } g_i(\mathbf{x}) > 0 \end{cases}$$

The penalty function defined above is also called the <u>absolute value</u> penalty function since it is equal to $\sum_{i=1}^{p} |g_i(x)|$

Example

Suppose the feasible region is given by,

$$g_1(x) = x - 2 \le 0.$$

 $g_2(x) = -(x+1)^3 \le 0$

The penalty function is defined as follows,

$$g_1^+(x) = \max\{0, g_1(x)\} = \begin{cases} 0 & \text{if } x \le 2\\ x - 2 & \text{otherwise} \end{cases}$$

$$g_2^+(x) = \max\{0, g_2(x)\} = \begin{cases} 0 & \text{if } x \ge -1 \\ -(x+1)^3 & \text{otherwise} \end{cases}$$

So,

$$P(x) = g_1^+(x) + g_2^+(x) = \begin{cases} x - 2 & \text{if } x > 2\\ 0 & \text{if } -1 \le x \le 2\\ -(x + 1)^3 & \text{if } x < -1 \end{cases}$$

Example

The absolute value penalty function may not be differentiable everywhere (e.g. last example P(x) is not differentiable at x=2). Some differentiable & widely used alternatives are:

The Courant-Beltrami penalty function

$$P(x) = \sum_{i=1}^{p} (g_i^+(x))^2$$

Logarithmic Barrier function

$$P(\mathbf{x}) = -\sum_{i=1}^{p} \log(-g_i(\mathbf{x}))$$

Inverse Barrier function

$$P(\mathbf{x}) = -\sum_{i=1}^{p} \frac{1}{g_i(\mathbf{x})}$$

For the two barrier functions the convention is to let the penalty parameter γ go to zero

The Logarithmic Barrier Function associated with the constraint,

$$-1 \le x \le 1$$

The Inverse Barrier Function associated with the constraint,

$$-1 \le x \le 1$$

Penalty Methods Summary

- Penalty methods convert the problem into an unconstrained problem and use unconstrained algorithms (e.g. Steepest Descent, Newton Method etc..)
- Logarithmic Barrier Methods are very popular for solving convex optimisation problems (these are polynomial time algorithms)
- Convergence results exists that guarantee that these methods will converge to a KKT point as $\gamma \to \infty$ (or zero in the case of barrier penalty functions)
- Because of the penalty parameter problem becomes ill conditioned