上海大学 2011	\sim	2012 学年秋季学期试卷(A 着	失)
厂泄入子 2011	\sim	2012 字平似学子别以表(A 4	天)

成绩

课程名: <u>线性代数(A)</u>课程号: <u>01013009</u> 学分: <u>3</u> 应试人声明:

我保证遵守《上海大学学生手册》中的《上海大学考场规则》,如有考试违纪、作 弊行为,愿意接受《上海大学学生考试违纪、作弊行为界定及处分规定》的纪律处分。

题号	 1 1	111	四	五.	六	七	八
得分							

一、填空题: (本大题含 10 小题,每小题 3 分,共 30 分)

(提示:请在每小题的空格中填上正确答案。错填或不填均无分。)

1. 由三维列向量 $\vec{\alpha}$, $\vec{\beta}$, $\vec{\gamma}$ 构成矩阵 $\mathbf{A} = (\vec{\alpha}, \vec{\beta}, \vec{\gamma})$ 和 $\mathbf{B} = (2\vec{\alpha} + \vec{\beta}, \vec{\gamma}, 3\vec{\beta})$, 若行列式 $|\mathbf{A}| = 1$, 则行

列式 |**B**| = _____;

2. 若三阶行列式的第1列元素依次为1,2,3,第3列元素的代数余子式依次为-1,2,x,则

x = _____;

- 3. 设 $\mathbf{A} \stackrel{\cdot}{=} m \times n$ 矩阵,且 $\mathbf{A} \mathbf{B} = \mathbf{C} \mathbf{A}$,则 \mathbf{B} 一定是 阶矩阵;
- 4. 当 x = 时,矩阵 $\begin{pmatrix} 1 & 2 & 1 \\ 2 & x & 1 \\ 1 & 1 & 0 \end{pmatrix}$ 的秩达到最小;
- 5. 设矩阵 A 满足 $\mathbf{A}^2 + \mathbf{A} 3\mathbf{E} = \mathbf{O}$, 则 $(\mathbf{A} \mathbf{E})^{-1} =$;

- 7. 设向量组(1,2,3), (3,-1,2), (2,3,k)线性相关,则 $k = _____$;
- 8. 设非零向量 $\vec{\alpha}$ 和 $\vec{\beta}$ 正交,则内积 $\left[4\vec{\alpha},6\vec{\beta}+\frac{\vec{\alpha}}{2\|\vec{\alpha}\|^2}\right]=$ _____;
- 9. 设1和2是二阶矩阵 A 的特征值,则行列式 $|A^2 2A^{-1} + 3E| = ______;$
- **10.** 设**A** 的秩为 2 , $\vec{\eta}_1, \vec{\eta}_2, \vec{\eta}_3$ 是三元非齐次线性方程组 $\vec{A}\vec{x} = \vec{b}$ 的三个解,若 $\vec{\eta}_1 = (2,1,2)^T$ 以及 $\vec{\eta}_2 + \vec{\eta}_3 = (1,0,1)^T$,那么 $\vec{A}\vec{x} = \vec{b}$ 的通解 $\vec{x} =$

草 稿 纸

注: 教师应使用计算机处理试题的文字、公式、图表等; 学生应使用水笔或圆珠笔答题。

二、单项选择题: (本大题含5小题,每小题2分,共10分)

(提示: 在每小题列出的备选项中只有一个符合题目要求,请将其代码填写在题后的括号内。 错选、多选或未选均无分。)

1. 设 \mathbf{A} 和 \mathbf{B} 都 是 n 阶 可 逆 矩 阵,则下 列 结 论 错 误 的 是

A.
$$(AB)^{-1} = B^{-1}A^{-1}$$

$$\mathbf{B.} \quad |\mathbf{A} \, \mathbf{B}| = |\mathbf{B} \, \mathbf{A}|$$

$$\mathbf{C.} \quad (\mathbf{A} + \mathbf{B})^T = \mathbf{A}^T + \mathbf{B}$$

C.
$$(A + B)^T = A^T + B^T$$
D. $(A + B)^{-1} = A^{-1} + B^{-1}$

2. 设 **A** 和 **B** 都是 *n* 阶可逆矩阵,若 **C** = $\begin{pmatrix} \mathbf{O} & \mathbf{B} \\ \mathbf{A} & \mathbf{O} \end{pmatrix}$,则 **C**⁻¹ =

$$\mathbf{A.} \quad \left(\begin{array}{cc} \mathbf{A}^{-1} & \mathbf{O} \\ \mathbf{O} & \mathbf{B}^{-1} \end{array} \right)$$

$$\mathbf{B.} \quad \begin{pmatrix} \mathbf{O} & \mathbf{A}^{-1} \\ \mathbf{B}^{-1} & \mathbf{O} \end{pmatrix}$$

$$\mathbf{C.} \quad \left(\begin{array}{cc} \mathbf{O} & \mathbf{B}^{-1} \\ \mathbf{A}^{-1} & \mathbf{O} \end{array} \right)$$

$$\mathbf{D.} \begin{pmatrix} \mathbf{B}^{-1} & \mathbf{O} \\ \mathbf{O} & \mathbf{A}^{-1} \end{pmatrix}$$

3. 设 $\mathbf{A} = \begin{pmatrix} 1 & 2 & 1 \\ 2 & 1 & 2 \end{pmatrix}$, \mathbf{B} 是非零矩阵, 若 $\mathbf{A}\mathbf{B} = \mathbf{O}$, 则

A.
$$r(B) = 3$$

B.
$$r(\mathbf{B}) = 2$$

C. r(B) = 1

D. $r(\mathbf{B})$ 的值不确定

4. 设 A 和 B 是同阶的正交阵,则下列结论错误的是

A. A + B 为正交阵

B. AB 为正交阵

C. $\mathbf{A}^T \mathbf{B}^T$ 为正交阵

D.
$$||\mathbf{A}|| ||\mathbf{B}|| < 0$$
 时, $||\mathbf{A}|| + ||\mathbf{B}|| = 0$

5. n 阶方阵 A 与对角矩阵相似的充要条件是

A. A 是实对称矩阵

B. A 是非奇异矩阵

C. A 有 n 个线性无关的特征向量 D. A 有 n 个不同特征值

三、(本大题 8 分) 计算行列式 D = 2 3 -2 3 3 -2 3 2 -2 3 2 3

解:

苴 稿 纸

			0	0	0	0 \	
皿 (未上販 10 公)	⊒ fra A OE	4	0	0	0	 ,且 X 满足矩阵方程 XA = 2(E – X),	
H,	四、(本八度 IU 为) LMA-2E =	$\mathbf{L} \mathbf{M} \mathbf{A} - 2 \mathbf{E} =$	4 4 0 0 , EAR MERET AA	\mathbf{A} , \mathbf{A} , \mathbf{A} , \mathbf{A}			
			4	4	4	0	

试求 X (其中 E 是单位矩阵)。

解:

草 稿 纸

五、(本大题 12 分) 求向量组 $\vec{a}_1 = (1,1,2,3)^T$, $\vec{a}_2 = (1,-1,1,1)^T$, $\vec{a}_3 = (1,3,3,5)^T$, $\vec{a}_4 = (4,-2,5,6)^T$ 的秩和它的一个极大无关组,并将其它向量用此极大无关组线性表示。

六、(本大题 12 分) 试讨论 k 取何值时,线性方程组 $\begin{cases} kx_1 + x_2 + x_3 = k \\ 2x_1 + 2x_2 + kx_3 = 0 \end{cases}$ 有无穷多解,并在有无穷多解的情况下求出其通解。	八、(本大题 8 分) 设向量组 $\vec{\alpha}_1$, $\vec{\alpha}_2$, $\vec{\alpha}_3$, $\vec{\alpha}_4$ 线性无关,向量组 $\vec{\alpha}_1$, $\vec{\alpha}_2$, $\vec{\alpha}_3$, $\vec{\alpha}_5$ 线性相关,试证明向量组 $\vec{\alpha}_1$, $\vec{\alpha}_2$, $\vec{\alpha}_3$, $\vec{\alpha}_4$ = $\vec{\alpha}_5$ 线性无关。证明:
	MT-201:
籽: 七、(本大题 10 分)设二次型 $f = x_1^2 + x_2^2 + x_3^2 + 2ax_1x_2 + 2x_1x_3$ 经过一正交变换化为标准形	
$f = y^2 + 2y^2$ 试确完条数 a 以及所用的正态变换	
$f=y_2^2+2y_3^2$,试确定参数 a 以及所用的正交变换。 解:	草稿纸