## **MBS 240**

# Introduction to Bacteriology

Mrs Chishala.M.Kapambwe-Muchemwa

## **Objectives**

- By the end of this lecture, you should know and understand:
  - Microbiology and Bacteriology
  - Bacteria and its classification:
    - By shape and structure
    - By cell wall
    - Metabolism
    - Food needs for growth and survival
    - Bacterial reproduction genetics
  - Bacterial Normal flora

### Microbiology and Bacteriology

• Microbiology is the Study of Microorganisms, amongst them: Bacteria, Viruses, Parasites and Fungi

• Bacteriology is the studies in detail, the morphology, ecology, reproduction and genetics as well as the biochemistry of Bacteria

### **Bacteria**

- In any direction you look, you will see bacteria at work
- Are enormously successful and diverse organisms
- Have caused some serious disease outbreaks like TB, cholera, typhoid fever and plague
- Bacteria:
  - Help some plants grow by capturing nitrogen from the air
  - Degrade waste like dead plants, oil, sewage
  - Some cause food spoilage
  - Others are useful in the food industry in making of yoghurt and cheese
  - Are found on the skin, hair, teeth, intestines....
  - Belong to a group of living organisms called PROKARYOTES: and are Eubacteria: the `True Bacteria`

- Are single-celled (unicellular)
- Reproduce asexually, by binary fission
- Lack of membrane-bound organelles
  - Mitochondria
  - Golgi bodies
  - Endoplasmic reticulum
- Have a DNA that forms long circular molecules but is not contained within a defined nucleus
- May be motile using flagella
- Surrounded by complex cell wall in two forms:
  - Gram-positive: have a thick peptidoglycan layer
  - Gram-negative: have a thinner peptidoglycan layer with an inner and outer membrane
- Sometimes surrounded by a thick capsule
- Are classified by both phenotypic and genotypic data

### Bacteria composition/Structure

- 1. Flagella: Hair like structures useful for locomotion towards nutrients and away from toxic substances
  - Protein component(flagellin) which is strongly antigenic
- 2. Pili: Are a protein composed projections from the surface that enable bacteria to adhere to host tissue surfaces (common pilus) and special pilus(sex pilus) for conjugation
- 3. Capsule/Glycocalyx: Composed of polysaccharide and protein functioning as a buffer to environment, for protection and immune evasion, cell protection and surface attachment
- 4. Cell wall: for bacterial shape determination, cell protection and prevent cell lysis
- 5. Cytoplasmic membrane: composed of proteins and phospholipids. Functioning as a cell boundary, regulation of the in-flow and out-flow of materials and site for enzymatic reactions

- 6. Have cytoplasm with the following components inside:
  - DNA chromosome
  - Plasmids –Extrachromosomal genetic material
  - mRNA
  - Ribosomes
  - Proteins

7. Endospores: for dormancy when nutrients and environment are no conducive e.g. Bacillus and Clostridium

### **Bacterial Cell**



### **Bacteria classification**

- Bacteria can be classified by:
  - 1. Shape
  - 2. Cell wall characteristics
  - 3. Growth requirements
  - 4. Oxygen/Carbon dioxide requirements
  - 5. Biochemical tests
  - 6. Flagella

### **Bacterial shapes**

#### Bacterial shapes:

- 1. Coccus
- 2. Coccobacillus
- 3. Bacillus
- 4. Vibrio
- 5. Spirillum
- 6. Spirochete



### **Cell wall structures**

- There are 2 main types of bacteria according to the cell wall structure. They can be:
  - 1. Gram positive
  - 2. Gram negative
- Mycoplasma are none of the above because they lack a cell wall
- Mycobacteria are also an exception due to a peculiar cell wall structure



## Comparison of G-ve and G+ve cell walls

| Characteristic      | G+ve                                         | G-ve                                     |
|---------------------|----------------------------------------------|------------------------------------------|
| Gram stain          | Purple as they keep the crystal violet stain | Pink/Red as they keep the safranin stain |
| Periplasmic region  | No                                           | Yes                                      |
| Outer membrane      | No                                           | Yes                                      |
| Teichoic acid       | Yes                                          | No                                       |
| Peptidoglycan       | Yes, thick layer ~60-90 %                    | Yes, thin layer ~10 %                    |
| Lipopolysaccharides | No                                           | Yes                                      |
| Porin proteins      | No                                           | Yes                                      |

### Mycobacteria

- A supposed G+ve bacteria, but is not, is Mycobacteria- acid-fast bacteria
- This is so because:
  - The peptidoglycan layer has a different chemical basis for cross linking to the lipoprotein layer
  - Acid-fast bacteria have a very thick lipid cell wall (60% lipid and little peptidoglycan). The outer envelope has a variety of complex lipid: mycolic acids
  - Cell wall is impermeable to gram stain
- Mycolic acids create a waxy layer which alters both the staining properties of Mycobacteria giving it the ability to resist drying and other environmental factors
- Cell wall also impermeable to nutrients
  - Hence slow growth



### MYCOBACTERIUM TUBERCULOSIS (TB)

#### WAXY CELL WALL

L'ACID-FAST"

#### ZIEHL-NEELSEN STAIN





### **Growth requirements**

- Minimum requirements for bacterial growth: C, N, an energy source, water & various ions
- Fastidious bacteria:
  - Need special nutrition supplements and conditions for their growth
  - They are difficult to grow in laboratories as they require specific nutrients and conditions.
  - E.g Neisseria gonorrhoeae need haemoglobin or blood to grow
    - -Campylobacter spp. and Helicobacter spp need elevated carbon dioxide levels to grow
- Non-fastidious bacteria:
  - do not require any special nutrition supplements and conditions for their growth
  - No specialised substances or conditions are essential for its growth.
  - E.g Pseudomonas aeruginosa, Staphylococcus aureus

### Oxygen requirements: Anaerobic Vs aerobic environments

- Obligate anaerobes
  - Bacteria that cannot grow in the presence of O<sub>2</sub>
  - E.g. Clostridium perfringens (causes gas gangrene)
- Obligate aerobes
  - Require O<sub>2</sub> for growth & metabolism
  - E.g. *Mycobacterium tuberculosis* (Mtb)
- Facultative anaerobes
  - Grow in either the presence or absence of O<sub>2</sub>
  - Most bacterial species are facultative
- Microaerophilic
  - reduced Oxygen conc
- Capnophilic
  - high conc of carbon dioxide

## Other ways of classifying bacteria

- Biochemical test reactions: these help distinguish between pathogenic and non pathogenic bacteria:
  - Bile solubility
  - Catalase
  - Citrate utilization
  - Beta-glucuronidase
  - DNA-ase
  - Oxidase
  - Urease
  - Litmus milk decolourization
  - Lysine decarboxylase
  - Coagulase
  - Indole
  - Motility

<sup>\*</sup>Read more about these tests

### Flagella



## **Bacterial reproduction (Asexual reproduction)**

- Reproduce by binary fission-producing 2 identical daughter cells with no genetic recombination
- This is where the cell elongates and the DNA chromosome replicates
- Binary fission can be fast for some bacteria, esp. the ones that cause food poisoning like E.coli O157:H7
- Growth rate dependent on nutritional status of surrounding environment
  - requires sufficient metabolites to support synthesis of bacterial components
  - E.g. E. coli replicates in 20-30 min in nutrient rich environment.
    - 1-2hrs in nutrient depleted environment
  - MTB take up to 24hrs to replicate
- Replication follows cascade of regulatory events
  - Key proteins and RNA
- Chromosomal replication initiates cell division

#### BACTERIA REPRODUCE BY BINARY FISSION

Most bacteria reproduce by an asexual process called binary fission. In this process, the cell elongates and the chromosome (DNA) replicates (FIGURE 4.14).



FIGURE 4.14

#### Binary Fission of Bacteria

(a) As a result of DNA replication and binary fission, two cells are formed, each genetically identical to the parent cell. (b) A false color transmission electron micrograph of a cell of Bacillus licheniformis undergoing binary fission. The invagination of the cell membrane is evident. (Bar = 0.25 µm.)

## **Bacterial reproduction (Sexual reproduction)**

- In sexual reproduction, 2 parents are involved and the offspring will not be genetically identical
- The 3 ways in which bacteria exchange genes in nature are:
- 1. Transformation- is when DNA is acquired directly from the environment having been released from another species
- 2. Transduction-a Bacteriophage which is a virus that attacks the bacteria, transfers the genes between bacteria
- 3. Conjugation-which is a cell to cell contact as DNA crosses a sex pilus from donor to recipient



Figure 3—14. Mechanisms of bacterial gene transfer. (From Rosenthal KS, Tan J: Rapid Reviews Microbiology and Immunology. St. Louis, Mosby, 2002.)

An Transposon is a genetic element cell that can copy itself and insert the copy into another DNA molecule. They are called `jumping genes` and can transfer an antibiotic resistance gene from a plasmid to a chromosome and vice versa



### Normal flora

- Human body harbors >10 million microbes-the Normal flora
- They live outside and inside the human body without causing disease
- Some establish a lifelong relationship with the body eg E.coli in the large intestines
- Others reside for a short period of time
- There is a Symbiotic relationship between the body and the microorganism

- Symbiotic relationship:
  - Mutualism: both the body and microbe benefit-Lactobacillus in the vagina gets nutrients producing acid that prevents overgrowth of other microbes
  - Commensalism: the relationship only favours the microbe

• But some parts of a normal healthy human hosts are free of these normal flora like the CSF, Blood, Urinary bladder, fallopian tubes, uterus, middle ear, kidney

- Normal flora derived from the host:
  - Supply of nutrients
  - Stable environment
  - Constant temperature
  - Protection
  - Transport

- Host benefits from normal flora;
  - Produce vitamins and nutrients
  - Competition with pathogens thus inhibit pathogens
  - Production of substances that inhibit pathogens
  - Stimulate development and activity of immune system
- Bacteria at one site may be a commensal but might be pathogenic at another e.g.
  - E. coli is commensal in GIT but pathogenic in the urinary tract
- Antibiotic overuse causes antibiotic associated diarrhoea
  - *C. difficile* antibiotic associated diarrhoea (CDAD) and Pseudomembranous colitis (inflammation of the large intestines)

### References and further readings

- Patrick .R. Murray, (5<sup>th</sup> Edition), *Medical Microbiology* (currently in library)
- Mims et al, (4<sup>th</sup> Edition), *Medical Microbiology* (currently in library)
- Monica Cheesbrough, Part 2 (2nd Edition), *District Laboratory Practice in Tropical Countries* (currently in library)
- Jeffrey Pommerville (7<sup>th</sup> Edition) *Alcamo`s Fundamentals of Microbiology*