

 $(A) Na_2O < Al_2O_3 < MgO$ 

(C) Al<sub>2</sub>O<sub>3</sub> < MgO < Na<sub>2</sub>O



TARGET: IIT-JEE 2023 **NURTURE COURSE** 

| RA   | CE # 11                                                     | CHEM                                                                               | NICAL BONDING                                                              |                                                                                                                                                 | CHEMISTRY                       |
|------|-------------------------------------------------------------|------------------------------------------------------------------------------------|----------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------|
| Ioni | c bond                                                      |                                                                                    |                                                                            |                                                                                                                                                 | _                               |
| 1.   | State whether the fo                                        | ollowing are ionic or coval                                                        | ent:                                                                       |                                                                                                                                                 |                                 |
|      | (i) Na <sub>2</sub> S<br>(vi) C <sub>2</sub> H <sub>4</sub> | (ii) $SnCl_4$<br>(vii) $CaCl_2$                                                    | (iii) diamond<br>(viii) HCl gas                                            | (iv) CaC <sub>2</sub><br>(ix) NH <sub>4</sub> <sup>+</sup>                                                                                      | (v)NaH<br>(x) KBr               |
| 2.   | Indicate whether the formula of the com-                    | ne following pairs of elements pound formed.                                       | ents form ionic or covale                                                  | nt compounds and write                                                                                                                          | down the molecular              |
|      | (i) Sodium and chlo                                         | orine (ii) carbon and sulpl                                                        | hur (iii) sulphur and ox                                                   | ygen (iv) calcium and h                                                                                                                         | ydrogen                         |
| 3.   | What type of bonds                                          | s are present in the following                                                     | ng molecules?                                                              |                                                                                                                                                 |                                 |
|      | (i) MgF <sub>2</sub><br>(vi) HNO <sub>3</sub>               | (ii) BrCl                                                                          | (iii) CBr <sub>4</sub>                                                     | (iv) H <sub>2</sub> SO <sub>4</sub>                                                                                                             | (v) SO <sub>2</sub>             |
| 4.   | Most predominantly                                          | y ionic compounds are obt                                                          | tained by the combination                                                  | of elements of the grou                                                                                                                         | ps:                             |
|      | (A) 1 and 7                                                 | (B) 2 and 6                                                                        | (C) 4 and 8                                                                | (D) 3 and 5                                                                                                                                     |                                 |
| 5.   | Which set have stro                                         | ongest tendency to form an                                                         | ions:                                                                      |                                                                                                                                                 |                                 |
|      | (A) Ga, In, Te                                              | (B) Na, Mg, Al                                                                     | (C) N, O, F                                                                | (D) V, Cr, Mn                                                                                                                                   |                                 |
| 6.   | Which lewis dot str                                         | ructure for O <sup>2-</sup> ion is correc                                          | ct–                                                                        |                                                                                                                                                 |                                 |
|      | (A) :O××                                                    | $(B) \left[ \vdots \overset{\circ}{\circ} \overset{\times}{\circ} \right]^{2^{-}}$ | $(C) \left[ \begin{array}{c} \vdots \\ \vdots \\ \end{array} \right]^{2-}$ | (D) $\left[ \overset{\times}{\overset{\times}{\overset{\times}{\circ}}}\overset{\times}{\overset{\times}{\overset{\times}{\circ}}}\right]^{2-}$ |                                 |
| 7.   | Which of the follow                                         | ving bonds is most polar?                                                          |                                                                            |                                                                                                                                                 |                                 |
|      | (A) O – H                                                   | (B) P – H                                                                          | (C) C - F                                                                  | (D) S – Cl                                                                                                                                      |                                 |
| 8.   |                                                             | dY have following electron<br>d formed by combination of                           | _                                                                          |                                                                                                                                                 | $s^2 2s^2 2p^6 3s^2 3p^5$ , The |
|      | (A) XY <sub>2</sub>                                         | $(B) X_5 Y_2$                                                                      | $(C) X_2 Y_5$                                                              | (D) XY <sub>5</sub>                                                                                                                             |                                 |
| 9.   | The electronegativi                                         | ty of O,F,N, Cl and H are                                                          | 3.5, 4.0, 3.0, 3.2 and 2.1                                                 | respectively. The stronges                                                                                                                      | st bond will be                 |
|      | (A) F – H                                                   | (B) H – Cl                                                                         | (C) N – H                                                                  | (D) O – H                                                                                                                                       |                                 |
| 10.  | Ionic bonds are usu                                         | ally formed by combination                                                         | on of elements with                                                        |                                                                                                                                                 |                                 |
|      | (A) high ionisation                                         | potential and low electron                                                         | affinity (B) low ionisation                                                | on potential and high elec                                                                                                                      | etron affinity                  |
|      | (C) high ionisation                                         | potential and high electron                                                        | n affinity(D) low ionisation                                               | on potential and low elect                                                                                                                      | tron affinity                   |
| Latt | ice energy                                                  |                                                                                    |                                                                            |                                                                                                                                                 |                                 |
| 11.  | For lattice energy th                                       | he following statements are                                                        | e false :                                                                  |                                                                                                                                                 |                                 |
|      | (A) it increases with                                       | h increase in charge on cat                                                        | ion.                                                                       |                                                                                                                                                 |                                 |
|      | (B) it increases with                                       | h increase in charge on ani                                                        | on.                                                                        |                                                                                                                                                 |                                 |
|      | (C) it increases with                                       | h decrease in inter ionic di                                                       | stance                                                                     |                                                                                                                                                 |                                 |
|      | (D) it increases with                                       | h increase in size of cation                                                       | s and anions.                                                              |                                                                                                                                                 |                                 |
| 12.  | Which of the follow                                         | ving sequences represents                                                          | the correct order of lattice                                               | e energies ?                                                                                                                                    |                                 |
|      | (A) $\text{LiI} > \text{LiBr} < \text{Li}$                  | iCl < LiF                                                                          | (B) $KBr < KCl < K$                                                        | KF < KI                                                                                                                                         |                                 |
|      | (C) NaF < NaCl < 1                                          | NaBr > Na <b>I</b>                                                                 | (D) LiF > LiCl > L                                                         | iBr > Li <b>I</b>                                                                                                                               |                                 |
| 13.  | ` '                                                         | ed order of decreasing lattic                                                      | * *                                                                        |                                                                                                                                                 |                                 |
|      | (A) $CaO > MgBr_2 > $                                       | _                                                                                  | (B) $MgBr_2 > CaO$                                                         | > CsI                                                                                                                                           |                                 |
|      | (C) $\operatorname{Cs} I > \operatorname{MgBr}_2 >$         | · CaO                                                                              | (D) $\operatorname{Cs} I > \operatorname{CaO} > N$                         | $\mathrm{MgBr}_{2}$                                                                                                                             |                                 |
| 14   | Which of the follow                                         | ving is the right order of la                                                      | ittice energy                                                              |                                                                                                                                                 |                                 |

**CHEMISTRY** ADI/E-11

(B)  $MgO < Al_2O_3 < Na_2O$ (D)  $Na_2O < MgO < Al_2O_3$ 





TARGET: IIT-JEE 2022

If it is known that on heating a ionic compound of a polyhalide with a cation it decomposese into more stable halide of that cation due to high lattice energy, for example  $CsI_3 \xrightarrow{\Delta} CsI + I_3$ 

The complex compound Rb[IBrCl] after strong heating will

- (A) RbI + BrCl
- (B) RbCl + IBr
- (C) RbBr + ICl
- (D) None

# **Hydration energy**

- Find the correct ionic mobility order-
  - (A)  $F^-$  (aq) >  $Cl^-$  (aq) (B)  $Li^+$  (aq) >  $Be^{2+}$  (aq) (C)  $Ca^{2+}$  (aq) >  $Ba^{2+}$ (aq)(D)  $Li^+$  (aq) <  $Al^{3+}$  (aq)
- Choose the INCORRECT order of hydrated size of the ions -17.

$$({\rm A}) \ F^{\Theta}_{({\rm aq.})} > C l^{\Theta}_{({\rm aq.})} > B r^{\Theta}_{({\rm aq.})} > I^{\Theta}_{({\rm aq.})}$$

(B) 
$$Rb_{(aq.)}^{\oplus} > K_{(aq.)}^{\oplus} > Na_{(aq.)}^{\oplus} > Li_{(aq.)}^{\oplus}$$

(C) 
$$Na_{(aq.)}^{\oplus} > Mg_{(aq.)}^{2+} > Al_{(aq.)}^{3+}$$

(D) 
$$Be_{(aq.)}^{2+} > Mg_{(aq.)}^{2+} > Ca_{(aq.)}^{2+} > Sr_{(aq.)}^{2+}$$

- 18. Find the INCORRECT ionic mobility order from the following options-

(B)  $Mg^{2+}_{(aq.)} < Sr^{2+}_{(aq.)}$ 

$$\begin{split} &(A)\;Be^{2+}_{\quad (aq.)} < Li^{+}_{\quad (aq.)} \\ &(C)\;Fe^{2+}_{\quad (aq.)} < Fe^{3+}_{\quad \ (aq.)} \end{split}$$

(D)  $Br_{(aq.)}^- < I_{(aq.)}^-$ 

# Polarisation (Fajan's rule)

Polarisibility of halide ions increases in the order

(A) F-, I-, Br-, Cl-

- (B) Cl<sup>-</sup>, Br<sup>-</sup>, I<sup>-</sup>, F<sup>-</sup>
- (C) I<sup>-</sup>, Br<sup>-</sup>, Cl<sup>-</sup>, F<sup>-</sup>
- (D) F-, Cl-, Br-, I-

20. Which of the following is most covalent?

(A) AIF,

- (B) AlCl,
- (C) AlBr<sub>3</sub>
- (D) AlI,
- 21. Among LiCl, BeCl<sub>2</sub>, BCl<sub>3</sub> and CCl<sub>4</sub>, the covalent bond character follows the order -

(A)  $LiCl < BeCl_2 > BCl_3 > CCl_4$ 

(B)  $LiCl > BeCl_2 < BCl_2 < CCl_4$ 

(C) LiCl < BeCl<sub>2</sub> < BCl<sub>3</sub> < CCl<sub>4</sub>

- (D) LiCl > BeCl<sub>2</sub> > BCl<sub>3</sub> > CCl<sub>4</sub>
- 22. Which has maximum covalent character?

(A) NaCl

- (B) SiCl<sub>4</sub>
- (C) AlCl<sub>3</sub>
- (D) MgCl,

- 23. Choose the correct statement
  - (A) A cation with pseudo noble gas configuration is more polarising than the cation with noble gas configuration.
  - (B) Small cation has minimum capacity to polarise an anion.
  - (C) Small anion has maximum polarizability.
  - (D) None of these
- 24. Magnesium cation has plarisation power close to that of :-

(1)  $Li^{+}$ 

- (2)  $Na^{+}$
- $(3) K^{+}$
- $(4) \text{ Cs}^+$
- 25. Which of the following combination of ion will have highest polarisation:-

(A) Fe<sup>2+</sup>, Br<sup>-</sup>

- (B) Ni<sup>4+</sup>, Br<sup>-</sup>
- (C) Ni<sup>2+</sup>, Br<sup>-</sup> (D) Fe, Br<sup>-</sup>
- 26. An ion without pseudo-inert gas configuration is:

- (B)  $Cd^{2+}$
- (D)  $Fe^{3+}$

#### SIMILAR QUESTIONS BELONGS TO NCERT TEXT BOOK

Problem - 4.1, 4.2, 4.3

Excercise - 4.4, 4.5, 4.6, 4.12, 4.19, 4.20





**RACE #12** CHEMICAL BONDING **CHEMISTRY** 

### Lewis theory and formal charge

- 1. In ammonium ion, bond in between ammonia molecule and a proton is form by-
  - (A) Complete transfer of electron from NH<sub>3</sub> to H<sup>+</sup> (B) electrostatic attraction between NH<sub>4</sub> & H<sup>+</sup>
  - (C) equal contribution of electrons by NH<sub>3</sub> & H<sup>+</sup> (D) One sided sharing of electrons
- 2. The correct structure of CO and NO<sub>2</sub> are-

(A) 
$$: C = 0:, 0 = N = 0$$

(B) : 
$$C \triangleq O$$
:,  $\left[O = N - O$ :  $\left[O = N - O\right]\right]$ ]

(C): 
$$C = 0$$
:  $\left[ O = N \rightarrow 0 : \right]^{-}$ 

$$(D) : \vec{C} = \vec{O} :, \left[ :O = O : \rightarrow N \right]^{-}$$

Lewis structure of  $O_3$  is drawn as  $O_3$ : therefore formal charge on oxygen atoms are— **3.** 

(B) 
$$0, +1, -1$$

(C) 
$$0, +1, +1$$
 (D)  $-1, +1, +1$ 

# Paragraph for Q.4 to Q.5

The formal charge of an atom in a polyatomic molecule or ion may be defined as the difference between the number of valence electrons of that atom in an isolated or free state and the number of electrons assigned to that atom in the Lewis structure. It is

expressed as:



Find the formal charge on "O" atom in given structure (I) & (II) respectively: 4.

$$(I) : \overset{\cdot \cdot \cdot}{\bigcirc} - C \equiv N : \qquad \qquad (II) : \overset{\cdot \cdot \cdot}{\bigcirc} = C = N :$$

(II) 
$$: O=C=N$$

$$(A) -1, -1$$

$$(B) -2, 0$$

$$(C) -1, 0$$

(D) 
$$0, -1$$

- Select correct about  $CO_3^{2-}$  carbonate ion in one of the lewis structure based on the presence of two single 5. bonds and one double bond between carbon and oxygen atoms:
  - (A) Total number of lone pair = 8
  - (B) Formal charge on two oxygen = -1 and one oxygen = zero
  - (C) Oxidation number of C = +4 & Formal charge on <math>C = zero
  - (D) All are correct
- 6. The Lewis theory does not account for the-
  - (A) cause of bond formation

(B) Shape of molecules

(C) Strength of chemical bond

- (D) All
- 7. Draw the Lewis structure and find Formal charge of each atom:
  - 1. CO
- CO<sub>2</sub>
- $NO_2^-$
- $NO_3^-$
- CCl<sub>3</sub>
- COCl<sub>2</sub>

- 7.  $N_3^-$
- $O_3$
- 9. CH<sub>3</sub>Cl
- 10. NH<sub>4</sub><sup>+</sup> 11. NH<sub>2</sub>Cl
- OCN-12.

- 13. CN-
- 14. SCN<sup>-</sup>
- 15. HCN
- 16. HNC
- 17.  $SiF_{4}$
- 18. SnCl<sub>2</sub>-

**CHEMISTRY** ADI/E-13





|     |          |                                |             | ] '(0                          | galai Ai   | iuly 515 till 0                | agii ooniiii                     | 2040 EXC: 0:00                |                 |                    |          |                  |
|-----|----------|--------------------------------|-------------|--------------------------------|------------|--------------------------------|----------------------------------|-------------------------------|-----------------|--------------------|----------|------------------|
|     | 19.      | BF <sub>4</sub>                | 20.         | BH <sub>4</sub>                | 21.        | BeF <sub>4</sub> <sup>2-</sup> | 22.                              | H <sub>3</sub> O <sup>+</sup> | 23.             | SO <sub>3</sub>    | 24.      | $SO_2$           |
|     | 25.      | CO <sub>3</sub> <sup>2-</sup>  | 26.         | NO <sub>2</sub> Cl             | 27.        | NOCl                           | 28.                              | $F_2O$                        | 29.             | $SO_4^{2-}$        | 30.      | $PO_4^{3-}$      |
|     | 31.      | SF <sub>2</sub>                | 32.         | $CF_4$                         | 33.        | PF <sub>5</sub>                | 34.                              | PF <sub>4</sub> +             | 35.             | PCl <sub>3</sub>   | 36.      | PCl <sub>5</sub> |
|     | 37.      | SI <sub>2</sub>                | 38.         | SF <sub>6</sub>                | 39.        | SO <sub>4</sub> <sup>2-</sup>  | 40.                              | POCl <sub>3</sub>             | 41.             | ClO <sub>4</sub> - | 42.      | $OF_2$           |
|     | 44.      | $NO_3^-$                       | 45.         | $ClO_4^-$                      | 46.        | PCl <sub>4</sub> <sup>+</sup>  | 47.                              | $I_3^+$                       | 48. <b>C</b>    | $ClO_3^-$          | 49.      | OCl <sub>2</sub> |
|     | 50.      | SnCl <sub>3</sub> <sup>-</sup> | 51.         | HPO <sub>3</sub> <sup>2-</sup> | 52.        | SO <sub>3</sub> <sup>2-</sup>  | 53.                              | IO <sub>3</sub> -             | 54.             | $XeO_3$            | 55.      | $NO_2^-$         |
| 8.  | Whic     | ch of the follo                | owing s     | species does                   | not ob     | ey octet r                     | ule ?                            |                               |                 |                    |          |                  |
|     | (A) S    | SiF <sub>4</sub>               |             | (B) PCl <sub>5</sub>           |            | (0                             | C) <b>I</b> Cl                   |                               | (D) I           | $3F_4$             |          |                  |
| 9.  | Нуре     | ervalent comp                  | ound i      | s(are):                        |            |                                |                                  |                               |                 |                    |          |                  |
|     | (A) S    | $SO_3$                         |             | (B) $PO_4^{-3}$                |            | (0                             | C) SO <sub>4</sub> <sup>-2</sup> |                               | (D) A           | All of these       |          |                  |
| 10. | The o    | octet rule is n                | ot vali     | d for the mo                   | lecule :   | :                              |                                  |                               |                 |                    |          |                  |
|     | (A) (    | $CO_2$                         |             | (B) $H_2O$                     |            | ((                             | C) $SF_2$                        |                               | (D) A           | $Al_2(CH_3)_6$     |          |                  |
| 11. | In wh    | nich of the ex                 | citatio     |                                |            | 5                              |                                  |                               |                 |                    |          |                  |
|     |          | n ground stat                  |             | -                              |            |                                | _                                |                               |                 | In double ex       | cited st | ate              |
| 12. | Whic     | ch of the follo                | wing o      | configuration                  | shows      | s second                       | excitation                       | state of Iod                  | line            |                    |          |                  |
|     | (A) [    | 11 11 1                        | 1 1         |                                |            | (1                             | B) [1] [1]                       | 111 1                         |                 |                    |          |                  |
|     | (C)      | 11 1 1                         | 1 1         | 1                              |            | (1                             | D) 1                             | 1 1 1                         | 1 1 1           |                    |          |                  |
| 13. | High     | est extent of                  | variabl     | e covalency                    | is exhi    | bited by.                      |                                  |                               |                 |                    |          |                  |
|     | (A) F    | and S                          |             | (B) N and O                    | O          | (0                             | C) N and                         | P                             | (D) I           | and Cl             |          |                  |
| 14. | Whic     | ch of the follow               | wing sp     |                                |            |                                |                                  |                               |                 |                    |          |                  |
|     | (I) C    | $10_4^-$                       |             | (II) BF <sub>3</sub>           | (III)      | $SO_4^{-2}$                    | (IV                              | $CO_{3}^{-2}$                 |                 |                    |          |                  |
|     |          | , II, III                      |             | (B) I, III                     | (C) I      |                                |                                  | I, III, IV                    |                 |                    |          |                  |
| 15. |          | the number                     |             |                                | _          |                                |                                  | ing having                    | 14 elec         | trons.             |          |                  |
|     | $Mg^{2}$ | + , Na+, N <sup>3-</sup>       | $, S^{2-},$ | K+, CN-, N                     | $N_2$ , NO | O+, PH <sub>3</sub> ,          | P <sup>+</sup>                   |                               |                 |                    |          |                  |
| VBT | base     | d questions                    |             |                                |            |                                |                                  |                               |                 |                    |          |                  |
| 16. | _        | ma bond is f                   |             | by the overl                   | apping     | of                             |                                  |                               |                 |                    |          |                  |
|     | ` ′      | -s orbital alo                 |             |                                |            |                                |                                  |                               |                 | and p orbita       | als alon | e                |
|     |          | -s, s-p or p-                  | _           | _                              |            |                                | D) p–p orl                       | bital along t                 | he sides        |                    |          |                  |
| 17. |          | ch overlappin                  | g is inv    |                                |            |                                |                                  |                               |                 |                    |          |                  |
|     | ` ′      | –s overlap                     |             | (B) p–p ove                    | -          |                                | C) s–d ove                       | erlap                         | (D) s           | –p overlap         |          |                  |
| 18. |          | ch of the follo                | owing l     |                                |            |                                |                                  |                               | . <del></del> . |                    |          | . 111            |
| 10  |          | onic bond                      |             | (B) Metalli                    |            |                                | C) Covale                        |                               |                 | Both covalen       | ıt & me  | tallic           |
| 19. |          | ch of the follo                | owing o     | -                              | torme      |                                |                                  | ritation state                | _               |                    |          |                  |
|     | (A) S    | $F_4$                          |             | $(B) SF_6$                     |            | ((                             | $C)$ $SF_2$                      |                               | (D) I           | None               |          |                  |

# SIMILAR QUESTIONS BELONGS TO NCERT TEXT BOOK

Excercise - 4.13, 4.19, 4.22, 4.23, 4.25, 4.26

E-14/ADI CHEMISTRY





**RACE #13** CHEMICAL BONDING **CHEMISTRY** 

| 4  | XX 71 · 1 | •      | •        |          | C 1           |    |
|----|-----------|--------|----------|----------|---------------|----|
| I. | Which     | is not | a charac | teristic | of $\pi$ -bor | าต |

- (A)  $\pi$  bond is formed when a sigma bond already formed
- (B)  $\pi$  bond are formed from hybrid orbitals
- (C)  $\pi$  bond may be formed by the overlapping of p-orbitals
- (D)  $\pi$ -bond results from lateral overlap of atomic orbitals
- 2. Which of the following atomic orbital overlappings would not lead to bond formation?



- (B) (i) (ii) (iii) (C) (i) (iii) (v) (D) (ii) only Which of the following overlaps is **INCORRECT** [assuming z-axis to be the internuclear axis]
- **3.** (a)  $2 p_v + 2 p_v \rightarrow \pi \ 2 p_v$  (b)  $2 p_z + 2 p_z \rightarrow \sigma \ 2 p_z$  (c)  $2 p_x + 2 p_x \rightarrow \pi \ 2 p_x$  (d)  $2 p_v + 3 d_{xv} \rightarrow \pi (2 p - 3 d)$ (A) 'a' & 'b' (B) 'b' & 'd' (C) only 'd' (D) None of these
- Which of the following can lead to  $\pi$ -bond formation. 4.
- $(B) d_{xy} d_{xy}$ (D)  $d_{x^2-y^2} - p_x$  $(A) d_{xy} - d_{yz}$  $(C) d_{xy} - p_{x}$
- If the molecular axis is Z then which of the following overlapping is not possible. 5.
  - (A)  $p_z + p_z = \sigma$  bond (B)  $p_x + p_y = \pi$  bond (C)  $p_x + p_x = \pi$  bond (D)  $p_y + p_y = \pi$  bond
- Which of the following molecule(s) is/are having  $2p\pi 3d\pi$  bonding -6.
- (C) PO<sub>4</sub>3-(D)  $SO_4^{2-}$ (A) SO, (B) NO,-
- 7. Strongest bond is formed by the head on overlapping of:
  - (A) 2s- and 2p- orbitals (B) 2p- and 2p- orbitals
  - (C) 2s- and 2s- orbitals (D) All
- 8.  $\pi$  bond is formed

(A) NaCl

(A) All

- (A) By overlapping of hybridised orbitals (B) Overlapping of s - s orbitals
- (C) Head on overlapping of p -p orbitals (D) By p - p collateral overlapping
- Weakest bond is formed by the orbital overlapping of 9.
- (A)  $sp^2 s$ (B)  $sp^{3} - p$ (C) s - s(D) p - p co-lateral
- 10. Overlapping of 2 hybrid orbitals can lead to the formation of

(B) LiH

- (A) Ionic bond (B)  $\pi$  -bond (C)  $\sigma$  –bond (D) (B) and (C) both
- 11. Which of the following bonds is most stable?
- (A) 1s 1s(B) 2p - 2p(C) 2s - 2p(D) 1s - 2p
- 12. Which of the following statements is not correct?
  - (A) Double bonds is shorter than a single bond (B)  $\sigma$  – bond is weaker than a  $\pi$  bond
    - (C) Double bond is stronger than a single bond (D) Covalent bond is stronger than a hydrogen bond
- 13. Which of the following compounds has an atom without stable duplet or octet configuration?
- $(C) B_2H_6$ **CHEMISTRY ADI/E-15**

(D) HF





| 14. | Answer the following                                                                        | :                                                                           |                                             |                                                            |  |  |  |
|-----|---------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------|---------------------------------------------|------------------------------------------------------------|--|--|--|
|     | (i) What is the co-valency of carbon in $C_2H_4$ and $C_2H_2$ ?                             |                                                                             |                                             |                                                            |  |  |  |
|     | (ii) What types of bonds and how many of each are present in NH <sub>4</sub> <sup>+</sup> ? |                                                                             |                                             |                                                            |  |  |  |
| 15. | The bonds present in l                                                                      | $N_2O_5(g)$ are:                                                            |                                             |                                                            |  |  |  |
|     | (A) only ionic                                                                              |                                                                             | (B) covalent and co-ord                     | dinate                                                     |  |  |  |
|     | (C) only covalent                                                                           |                                                                             | (D) covalent and ionic                      |                                                            |  |  |  |
| 16. | The compound which                                                                          | contains both ionic and co                                                  | ovalent bonds is:                           |                                                            |  |  |  |
|     | (A) CH <sub>4</sub>                                                                         | (B) H <sub>2</sub>                                                          | (C) KCN                                     | (D) KCl                                                    |  |  |  |
| 17. | Which one of the follo                                                                      | owing molecules are forme                                                   | ed by p-p overlapping?                      |                                                            |  |  |  |
|     | (A) Cl <sub>2</sub>                                                                         | (B) HCl                                                                     | (C)H <sub>2</sub> O                         | (D) NH <sub>3</sub>                                        |  |  |  |
| 18. | Find $\sigma$ and $\pi$ bonds in                                                            | the following molecules:                                                    | •                                           |                                                            |  |  |  |
|     | (i) CH <sub>3</sub> CH <sub>3</sub> , (ii) C                                                | $CH_2 = CH_2$ , (iii) $HC \equiv CH$                                        | $H_{1}$ , (iv) $CH_{2} = CHCOOH$ , (        | (v) $C_2(CN)_4$ (vi) $H_2S_2O_8$ (vii) $H_2S_4O_6$         |  |  |  |
| 19. | •                                                                                           | formed by the overlap of to bllowing overlaps is accept                     |                                             | as Aand B. If the bond is formed along the                 |  |  |  |
|     | (A) s orbital of A and p <sub>z</sub> orbital of B                                          |                                                                             | (B) p <sub>x</sub> orbital of A and         | p <sub>v</sub> orbital of B                                |  |  |  |
|     | (C) p <sub>z</sub> orbital of A and                                                         |                                                                             | (D) $p_x$ orbital of A and                  | •                                                          |  |  |  |
| 20. | =                                                                                           | ls which can form a co-ord                                                  |                                             |                                                            |  |  |  |
|     | (A) $(C_2H_5)_3B$ and $(CH_3)_3N$                                                           |                                                                             | (B) HCl and HBr                             |                                                            |  |  |  |
|     | (C) BF <sub>3</sub> and NH <sub>3</sub>                                                     |                                                                             | (D) (A) & (C) both                          |                                                            |  |  |  |
| VSE | PR theory based quest                                                                       | tion                                                                        |                                             |                                                            |  |  |  |
| 21. | The shape of sulphate                                                                       | ion is                                                                      |                                             |                                                            |  |  |  |
|     | (A) Hexagonal                                                                               | (B) Square planar                                                           | (C) Trigonal bipyramida                     | al (D) Tetrahedral                                         |  |  |  |
| 22. | In which following set                                                                      | of compound/ion has linea                                                   | ar shape?                                   |                                                            |  |  |  |
|     | $(A) CH_4, NH_4^+, BH_4^-$                                                                  | (B) $CO_3^{-2}$ , $NO_4^-$ , $BF_3$                                         | (C) $NO_2^+$ , $CO_2$ , $XeF_2$             | (D) BeCl <sub>2</sub> , BCl <sub>3</sub> , CH <sub>4</sub> |  |  |  |
| 23. | Shape of a molecule h                                                                       | aving 4 bond pairs and tw                                                   | o lone pairs of electrons, v                | vill be                                                    |  |  |  |
|     | (A) Square planar                                                                           | (B) Tetra hedral                                                            | (C) Linear                                  | (D) Octa hedral                                            |  |  |  |
| 24. | Hybridisation in XeOl                                                                       | $F_2$ , $XeO_2F_2$ is $sp^3d$ . But shape                                   | pe will be respectively                     |                                                            |  |  |  |
|     | (A) T, 'V' shape                                                                            |                                                                             | (B) T shape, distorted trigonal bipyramidal |                                                            |  |  |  |
|     | (C) Both have T shape                                                                       |                                                                             | (D) T shape, irregular o                    | ctahedral                                                  |  |  |  |
| 25. | The shape of IF <sub>4</sub> will                                                           | be                                                                          |                                             |                                                            |  |  |  |
|     | (A) Square planar                                                                           | (B) See Saw                                                                 | (C) Pentagonal bipyran                      | nidal(D) Distorted tetrahedual                             |  |  |  |
| 26. | Which following comp                                                                        | pound, has four bond pair a                                                 | and one lone pair on central                | atom?                                                      |  |  |  |
|     | $(A) NH_4^+$                                                                                | (B) ICl <sub>4</sub>                                                        | $(C) SF_4$                                  | (D) XeF <sub>4</sub>                                       |  |  |  |
| 27. | A σ bonded molecule                                                                         | e MX <sub>3</sub> is T-shaped. The                                          | number of non-bonding 1                     | pairs of electrons is                                      |  |  |  |
|     | (A) 0                                                                                       | (B) 2                                                                       |                                             |                                                            |  |  |  |
|     | (C) 1                                                                                       | (D) Can be predicted                                                        | only if atomic number of                    | f M is known.                                              |  |  |  |
| 28. | Incorrect code regard                                                                       | ing shape is                                                                |                                             |                                                            |  |  |  |
|     | (A) Linear : $N_3^-$ , (CN                                                                  | N) <sub>2</sub> , ICl <sub>2</sub>                                          | (B) Pyramidal : $CH_3^-$ ,                  | NH <sub>3</sub> , XeO <sub>3</sub>                         |  |  |  |
|     | (C) Trigonal planar :                                                                       | CH <sub>3</sub> <sup>⊕</sup> , CH <sub>3</sub> CH <sub>3</sub> <sup>Θ</sup> | (D) Tetrahedral: SiH <sub>4</sub>           | , $\mathrm{NH_4}^+$ , $\mathrm{XeO_4}$                     |  |  |  |





|            | , , , , , , , , , , , , , , , , , , , , | I Regulai Aliaiyala (                             | anough continuous Excroise                         |                                            |                                   |  |
|------------|-----------------------------------------|---------------------------------------------------|----------------------------------------------------|--------------------------------------------|-----------------------------------|--|
| 29.        | In molecules of the type                | e AX <sub>2</sub> L <sub>n</sub> (where L represe | ents lone pairs and n is it                        | ts number) there exists a                  | bond between                      |  |
|            | element A and X. The $\angle$           | X A X bond angle.                                 |                                                    |                                            |                                   |  |
|            | (A) Always decreases if                 | n increases                                       | (B) Always increases if a                          | n increases                                |                                   |  |
|            | (C) Will be maximum for                 | or $n = 3, 0$                                     | (D) No effect of value of                          | f n                                        |                                   |  |
| 30.        | Which of the following                  | pairs of species have ident                       | tical shapes?                                      |                                            |                                   |  |
|            | (A) $NO_2^+$ and $NO_2^-$               | (B) PCl <sub>5</sub> and BrF <sub>5</sub>         | (C) $XeF_4$ and $ICl_4^-$                          | (D) $\mathrm{TeCl_4}$ and $\mathrm{XeO_4}$ |                                   |  |
| 31.        | The shape of CFClBrI w                  | vill be                                           |                                                    |                                            |                                   |  |
|            | (A) Irregular tetrahedral               | (B) Octahedral                                    | (C) See-saw                                        | (D) Trigonal bipyramida                    | al                                |  |
| 32.        | The structure of O <sub>3</sub> and     | $N_3^-$ are -                                     |                                                    |                                            |                                   |  |
|            | (A) both linear(B) Linear               | r and bent respectively.                          | (C) both bent                                      | (D) Bent and linear resp                   | ectively.                         |  |
| 33.        | Which of the following                  | shape can not be obtained                         | from sp <sup>3</sup> d <sup>2</sup> hybridisation. |                                            |                                   |  |
|            | (A) Square planar                       | (B) Square pyramidal                              | (C) Tetrahedral                                    | (D) Octahedral                             |                                   |  |
| Hybi       | ridisation                              |                                                   |                                                    |                                            |                                   |  |
| 34.        | Hybridization of orbitals               | s of carbon in CH <sub>4</sub> is nece            | ssary to explain which of                          | the following?                             |                                   |  |
|            | (A) Equality of strength                |                                                   |                                                    |                                            |                                   |  |
|            | (C) Tetravalency of carb                | on                                                | (D) Carbon has complete                            | e octate                                   |                                   |  |
| 35.        | The d- orbitals involved                | in sp³d hybridisation is                          |                                                    |                                            |                                   |  |
|            | (A) $d_{x^2-y^2}$                       | (B) $d_{z^2}$                                     | (C) $d_{xy}$                                       | (D) $d_{xz}$                               |                                   |  |
| 36.        | Hybridization of 2 <sup>nd</sup> &      | 3 <sup>rd</sup> carbon in CH≡C–CH                 | =CH <sub>2</sub> are respectively:-                |                                            |                                   |  |
|            | (A) sp & $sp^2$                         | (B) $sp^3 \& sp^2$ (C) $sp^2$                     | & sp (D) $sp^2 \& sp^2$                            |                                            |                                   |  |
| <b>37.</b> | Which of the following                  | contains Co-ordinate and                          | covalent bonds.                                    |                                            |                                   |  |
|            | (a) $N_2H_5^+$                          | (b) $H_3O^+$                                      | (c) HCl                                            | (d) H <sub>2</sub> O Correct answ          | er is                             |  |
|            | (A) a & d                               | (B) a & b                                         | (C) c & d                                          | (D) Only a                                 |                                   |  |
| 38.        | Predict the hybridisation               | on the central atom of fo                         | llowing molecules:                                 |                                            |                                   |  |
|            | 1. ICl <sub>4</sub> <sup>-</sup>        | 2. BeF <sub>2</sub>                               | 3. CO <sub>2</sub>                                 | 6. BF <sub>3</sub>                         | 36. ICl <sub>2</sub> <sup>-</sup> |  |
|            | 7. $CH_2 = CH_2$                        | 9. HNO <sub>3</sub>                               | $10.\ \mathrm{HNO}_2$                              | 11. SO <sub>2</sub>                        | 12. SO <sub>3</sub>               |  |
|            | 13. HCO <sub>3</sub> <sup>-</sup>       | 14. $CO_3^{-2}$                                   | 15. NHO <sub>4</sub>                               | 16. SnCl <sub>2</sub>                      | 17. AlCl <sub>3</sub>             |  |
|            | 18. CH <sub>4</sub>                     | 19. NH <sub>4</sub> <sup>+</sup>                  | 20. BF <sub>4</sub> <sup>-</sup>                   | 22.NF <sub>3</sub>                         | 23. PF <sub>3</sub>               |  |
|            | 24. AsCl <sub>3</sub>                   | 25. NH <sub>3</sub>                               | 27. H <sub>2</sub> O                               | 28. OF <sub>2</sub>                        | 30. PCl <sub>5</sub>              |  |
|            | 31. SbCl <sub>5</sub>                   | 32. SF <sub>6</sub>                               | 33. SeF <sub>6</sub>                               | 34. PF <sub>6</sub> <sup>-</sup>           | 37. ICl <sub>5</sub>              |  |

# SIMILAR QUESTIONS BELONGS TO NCERT TEXT BOOK

Excercise - 4.33, 4.34, 4.36, 4.40

38. XeF₄

**CHEMISTRY ADI/E-17** 



**CHEMISTRY** 

**RACE #14** CHEMICAL BONDING

| 1. | Which starred carbon atom | in the following molecules | does not show sp2 hybridisation |
|----|---------------------------|----------------------------|---------------------------------|
|    |                           |                            |                                 |

- (A) CH,C\*HO
- (B) CH, C\*OCl
- $(C) (C^*H_3)_3 N \rightarrow O$
- (D) CH<sub>3</sub>C\*OCH<sub>2</sub>C\*OOC<sub>2</sub>H<sub>5</sub>

#### 2. In which of the following 'N' atom is sp<sup>2</sup> hybridised

- (A) NH<sub>3</sub>
- (B)  $NH_4^+$
- (C) NH.
- (D)  $B_3N_3H_6$

3. Carbon atoms in 
$$C_2(CN)_2$$
 are :

(A) All sp-hybridised

(B) sp<sup>3</sup>, sp<sup>2</sup>, sp—hybridised

(C) sp<sup>2</sup>, sp, sp<sup>3</sup>—hybridised

(D) sp, sp<sup>3</sup>, sp<sup>2</sup>—hybridised.

4. 
$$BF_3 + F^- \to BF_4^-$$

What is the hybridiation state of B in  $BF_3$  and  $BF_4^-$ ?

- (A)  $sp^2$ ,  $sp^3$
- (B)  $sp^3$ ,  $sp^3$
- (C)  $sp^2$ ,  $dsp^2$
- (D)  $sp^2d$ ,  $sp^2$

#### In a change from $PCl_3 \longrightarrow PCl_5$ , the hybrid state of P changes from 5.

- (A)  $sp^2$  to  $sp^3$
- (B)  $sp^3$  to  $sp^2$
- (C)  $sp^3$  to  $sp^3d$
- (D)  $sp^3$  to  $dsp^2$

$$(A) H2O + H+ \longrightarrow H3O+$$

(B) 
$$NF_3 + F^+ \longrightarrow NF_4^+$$

(C) 
$$BF_3 + F^- \longrightarrow BF_4^-$$

(D) 
$$NH_3 + H^+ \longrightarrow NH_4^+$$

### Column-I

# (P) BH,-

- (Q) ICl,+
- (R) ICl<sub>2</sub>-
- (S) ICl<sub>4</sub>-

#### Column-II

- (1) 2 bond pair and 3 lone pair
- (2) 4 bond pair and no lone pair
- (3) 3 bond pair and 1 lone pair
- (4) 2 bond pair and 2 lone pair
- (5) 4 bond pair and 2 lone pair

(A) 
$$P = 2$$
;  $Q = 4$ ;  $R = 3$ ;  $S = 1$ 

(B) 
$$P = 2$$
;  $Q = 4$ ;  $R = 1$ ;  $S = 5$ 

(C) 
$$P = 2$$
;  $Q = 1$ ;  $R = 5$ ;  $S = 4$ 

(D) 
$$P = 2$$
;  $Q = 1$ ;  $R = 3$ ;  $S = 4$ 

#### **Dipole Moment.**

Which bond angle  $\theta$  would result in the maximum dipole moment for the triatomic molecule  $XY_2$  shown below 10.



- (A)  $\theta = 90^{\circ}$
- (B)  $\theta = 120^{\circ}$
- (C)  $\theta = 0^{\circ}$
- (D)  $\theta = 180^{\circ}$

#### 11. Which of the following molecule is/are non polar

- (A) XeF,
- (B) PCl<sub>2</sub>F<sub>2</sub>
- (C) XeF<sub>4</sub>
- (D) All

- (A) CH<sub>4</sub>
- (B) CCl<sub>4</sub>
- (C) CO,
- (D) CHCl<sub>3</sub>

- (A)  $BF_3 > NF_3 > NH_3$  (B)  $NF_3 > BF_3 > NH_3$
- (C)  $NH_3 > NF_3 > BF_3$
- (D)  $NH_3 > BF_3 > NF_3$





| 14. | Arrange in | order | of incre | asing   | dinole | moment : | BF                            | HSE     | 0.1                                |
|-----|------------|-------|----------|---------|--------|----------|-------------------------------|---------|------------------------------------|
| LT. | 1 minge in | oraci | or merc  | using ' | dipoic | moment.  | $\mathbf{p}_{\mathbf{r}_{3}}$ | 11,0,1. | $\mathbf{L}_{\lambda}\mathbf{O}$ . |

| <b>15.</b> | In which    | tuna of mai | lagula tha | dinala ma   | mant maril | be non zero. |
|------------|-------------|-------------|------------|-------------|------------|--------------|
| 15.        | III WIIICII | type of mo  | iecuie, me | uipoie illo | mem may i  | de non zero. |

 $(A) AB_2L_2$ 

 $(B) AB_{2}L_{2}$ 

 $(C) AB_{4} L_{2}$ 

 $(D) AB_{4}$ 

Where A – Central atom, B – Bonded atom, L – Lone pair

(A) 31%

(B) 41.6%

(C) 39.6%

(D) None of these

#### **17.** Column-I

(a)  $XeO_4^{2-}$ 

Column-II

(p) sp<sup>3</sup> with zero dipole moment

(b) PCl<sub>2</sub>F<sub>2</sub>

(q) sp<sup>3</sup>d with nonzero dipole moment

(c) XeO<sub>2</sub>F<sub>2</sub>

(r) Shows resonance stability

(d)  $SO_4^{2-}$ 

(s) No lone pair on central atom

(A) CO<sub>2</sub>

(B) SF<sub>4</sub>

(C) XeF<sub>4</sub>

(D) CF

19. Which of the following molecule is planer as well as polar:

(A) PCl<sub>2</sub>

(B) SF<sub>4</sub>

(C) ClF<sub>3</sub>

(D) None of thes

# Hydrogen bond

20. The order of strength of hydrogen bond is:

(A) Cl-H....Cl > N-H....N > O-H....O > F-H....F (B) N-H....N > Cl-H....Cl > O-H....O > F-H....F

(C) O-H....O > N-H....N > Cl-H....Cl > F-H....F (D) F-H....F > O-H....O > N-H....N > Cl-H....Cl

Which one among the following does not have hydrogen bonds? 21.

(A) boric acid (solid)

(B)  $N_2H_4$  (liquid)

(C) H<sub>2</sub>O<sub>2</sub> (liquid)

(D) C<sub>6</sub>H<sub>6</sub> (liquid)

Which of the following substances does not exhibit H-bonding with water? 22.

(A) CH<sub>2</sub>CH<sub>2</sub>OH

(B)  $CH_3 - CH_3 - CH_$ 

#### I. When ice is melted, hydrogen bond starts breaking, molecule of water come closer by moving into vacant 23. space. As a result, density of water decreases upto 4°C.

**II.** Due to open cage like structure, ice has a relatively large volume for a given mass of liquid water.

**III.** In ice, there are four water molecules attached tetrahedrally.

Which of the above statement is/are true.

(A) I, II and III

(B) I and III

(C) II and III

(D) II only

(A) Hydrogen atom should be bonded to a highly electronegative atom

(B) The size of electronegative atom should be small

(C) There should be a lone pair of electron on the electronegative atom.

(D) All of the above





| 25          | Assertion - Acet | ulene is not   | coluble in H               | O but is high | hly soluble in acetone. |
|-------------|------------------|----------------|----------------------------|---------------|-------------------------|
| <i>4</i> 5. | Assertion: Acet  | viene is not s | soluble ili H <sub>2</sub> | O but is mig  | my soluble in accione.  |

**Reason :-** Acetylene forms intermolecular H-bond with acetone easily but not with H<sub>2</sub>O as water molecules themselves are highly associated through intermolecular H-bonding.

(A) A

(B) B

(C) C

(D) D

**26.** Match the column :-

Column-I

(a) Chloral hydrate

(b) HF

(c) H<sub>3</sub>BO<sub>3</sub>

(d)  $H_2SO_4$ 

Column-II

(P) Form Zig-zag chain

(Q) Form 2–D–sheet structure

(R) Have low volatility

(S) Intramolecular H-bond

(T) Inter molecular H-bond

27. The maximum possible number of hydrogen bonds in which H<sub>2</sub>O<sub>2</sub> molecule can participate:-

(A) 6

(B) 4

(C) 5

(D) 8

**28.** *Statement 1:-* Boiling point of HF is lesser than water.

Statement 2:- Hydrogen bond strength is stronger in water.

- (A) Statement-1 and Statement-2 are true, Statement-2 is a correct explanation of Statement-1.
- (B) Statement-1 and Statement-2 are true, Statement-2 is not the correct explanation of Statement-1.
- (C) Statement-1 is true and Statement-2 is false.
- (D) Statement-1 is false and Statement-2 is true.
- **29.** Which of following statement is incorrect:
  - (A) Boiling point of H<sub>2</sub>O<sub>2</sub> is greater than that of H<sub>2</sub>O
  - (B) Ethylene glycol is less viscous than glycerol
  - (C) o-nitrophenol can be separated from its meta and para isomer using its steam volatile property
  - (D) In ice each 'O' atom is tetrahedrally arranged by four H-atom which are all covalently bonded.

31. When two ice cubes are pressed over each other, they unit to form one cube. Which of the following force is responsible for holding them together

(A) Vander Waal's forces (B) Hydrogen bond

(C) Covalent attraction

(D) Dipole-dipole attraction.

32. Arrange the following gases in the increasing order of their intermolecular forces of attraction ( $CO_2$ ,  $H_2O$ ,  $H_2$ ):

 $(A) H_{2} < CO_{2} < H_{2}O$ 

(B)  $H_2O < CO_2 < H_2$ 

 $(C) CO_2 < H_2O < H_2$ 

(D)  $H_2O < H_2 < CO_2$ .

33. Which is **incorrect** order for net dipole moment -

(A) HF > HCl > HBr > HI

(B)  $CH_3 - F > CD_3 - F$ 

(C) SO<sub>3</sub> > SO<sub>2</sub>

(D)  $CH_3 - CH = CHCl$  (cis)  $> CH_3 - CH = CHCl$  (trans)

**34.** Classify the type of force of attraction existing in the sample of following compounds:

(i)  $CH_3 - O - CH_3$ 

(ii) sugar

(iii) ice

(iv) CH<sub>3</sub> CO CH<sub>3</sub>

 $(v) CH_3 - OH$ 

(vi) N(CH<sub>3</sub>)<sub>3</sub> (x) (aq.) Na<sup>+</sup> (vii) gold (xi) CCl<sub>4</sub> (viii) CH<sub>3</sub> — NH<sub>2</sub> (xii) diamond

(ix) H<sub>2</sub>S (xiii) Cl<sub>2</sub>

(xiv) NH<sub>4</sub>Cl

(xv) HCl and Cl,

(xvi) Ar

NCERT HOME WORK:

Exercise Q 4.16,4.22,4.23. Q 4.39





RACE # 15 CHEMICAL BONDING CHEMISTRY

#### MOT

1. The following graph is given, between total energy and distance between the two nuclei for species  $H_2^+$ ,  $H_2$ ,  $He_2^+$  &  $He_2$ , which of the following statements is correct:



- (A)  $\text{He}_2^+$  is more stable than  $\text{H}_2^+$ .
- (B) Bond dissociation energy of H<sub>2</sub><sup>+</sup> is more than bond dissociation energy of He<sub>2</sub><sup>+</sup>.
- (C) Since bond orders of He, and H, are equal hence both will have equal bond dissociation energy.
- (D) Bond length of H<sub>2</sub><sup>+</sup> is less than bond length of H<sub>2</sub>.

### 2. Match the following:

Column Column

- (A)  $N_2^+$  is stable than  $N_2^-$  (p) due to one have higher electrons in antibonding than other
- (B) NO can easily loose its electron than  $N_2$
- (q) one have B.O. 3 and other have 2.5
- (C) NO have large bond length than NO<sup>+</sup>
- (r) It is easy to remove electron from higher energy level
- (D) He, + exist but less stable than H,+
- (s) ABMO has more energy than corresponding BMO
- 3. How many nodal plane is/are present in  $\sigma_{1s}$  bonding molecular orbital?
  - (A) zero
- (B) 1

(C) 2

- (D) 3
- **4.** Which of the following combination of orbitals is correct?

 $(A) \ \ + \ \ + \ \ + \ \ \rightarrow \ \ + \ \ (B) \ \ + \ \ + \ \ () \ \rightarrow \ \ ($ 



- **5.** Which of the following statements is not correct regarding bonding molecular orbitals?
  - (A) Bonding molecular orbitals possess less energy than the atomic orbitals from which they are formed
  - (B) Bonding molecular orbtials have low electron density between the two nuclei
  - (C) Every electron in bonding molecular orbitals contributes to the attraction between atoms
  - (D) They are formed when the lobes of the combining atomic orbtials have the same sign

CHEMISTRY ADI/E-21



**TARGET: IIT-JEE 2022** 

Fill in the blanks:

| Malagula avian               | MO configuration | Dand ander | Magnetic Behavious |
|------------------------------|------------------|------------|--------------------|
| Molecule or ion              | MO configuration | Bond order | Magnetic Behaviour |
| $H_2$                        | (σ1s²)           | 1          | Diamagnetic        |
| H <sub>2</sub> <sup>+</sup>  | _                | _          | _                  |
| $H_2^-$                      | _                | _          | -                  |
| He <sub>2</sub>              | _                | _          | -                  |
| N <sub>2</sub>               | -                | -          | -                  |
| O <sub>2</sub>               | -                | _          | -                  |
| O <sub>2</sub> <sup>+</sup>  | _                | _          | -                  |
| O <sub>2</sub> <sup>2+</sup> | -                | _          | -                  |
| F <sub>2</sub>               | -                | _          | -                  |
| Ne <sub>2</sub>              | -                | _          | -                  |
| СО                           | -                | -          | -                  |
| CN                           | -                | -          | -                  |
| CN⁻                          | -                | -          | -                  |

- 8. In the following which of the two are paramagnetic
  - (a) N,
- (b) CO
- $(c) B_{2}$
- $(d) NO_2$
- Then Correct answer is

- (A) a and c
- (B) b and c
- (C) c and d
- (D) b and d
- Of the following species, which has the highest bond order and shortest bond length ?NO, NO+, NO2+, NO-9.
- 10. Which of the following pairs of species would you expect to have largest difference in magnetic moment?
  - $(A) O_{2}, O_{2}^{+}$
- (B)  $O_{2}, O_{2}^{2-}$
- $(C) O_2^+, O_2^{2-}$
- (D)  $O_2^-, O_2^+$

- Order of stability of  $N_2$ ,  $N_2^+$  and  $N_2^-$  is 11.
  - (A)  $N_2 > N_2^+ > N_2^-$  (B)  $N_2^+ > N_2 > N_2^-$  (C)  $N_2^- > N_2 > N_2^+$  (D)  $N_2^- = N_2^+ > N_2^-$

- 12. Which of the following forms only  $\pi$ -bond using M.O. theory :
  - (A) Li<sub>2</sub>
- (B) C<sub>2</sub>
- (C) N<sub>2</sub>
- (D)  $O_2$

- According to M.O. theory HOMO in  $O_2^-$  is : 13.
  - (A)  $\pi 2p_x = \pi 2p_y$  (B)  $\pi 2p_x = \pi 2p_y$
- (C)  $\sigma 2p_z$
- (D)  $\sigma 2p_z$



(A) 331 gm



TARGET : IIT-JEE 2023 NURTURE COURSE

RACE # 16 STOICHIOMETRY CHEMISTRY

| RACE # 10           | SICICHIOMETRY | CHEMISIKI |
|---------------------|---------------|-----------|
| Racie etaichiamatry |               |           |

| Dasi | e storemometry                                  |                                                     |                                        |                                                        |
|------|-------------------------------------------------|-----------------------------------------------------|----------------------------------------|--------------------------------------------------------|
| 1.   | What is the weight of ox                        | ygen required for the co                            | omplete combustion of 2.8              | kg of ethylene (C <sub>2</sub> H <sub>4</sub> )        |
|      | (A) 2.8 kg                                      | (B) 6.4 kg                                          | (C) 6.72 kg                            | (D) 9.6 kg                                             |
| 2.   | At 25°C for complete co                         | mbustion of 5 mol prop                              | ane $(C_3H_8)$ . The required          | volume of O <sub>2</sub> at STP will be.               |
|      | (A) 5.6 L                                       | (B) 560 L                                           | (C) 360 L                              | (D) 360 L                                              |
| 3.   | According to the following                      | ng reaction the minimum                             | m quantity in gm of H <sub>2</sub> S n | needed to precipitate 63.5 gm of Cu <sup>2+</sup> ions |
|      | will be nearly $Cu^{+2}$ +                      | $H_2S \rightarrow CuS + 2H^+$                       |                                        |                                                        |
|      | (A) 63.5 gm                                     | (B) 31.75 gm                                        | (C) 34 gm                              | (D) 20 gm                                              |
| 4.   | When 280 gm of ethylen                          | e polymerises to polyet                             | hylene according to the eq             | uation.                                                |
|      | $n(CH_2 = CH_2) \longrightarrow$                | -(CH <sub>2</sub> -CH <sub>2</sub> ) <sub>n</sub> - |                                        |                                                        |
|      | The weight and mole of                          | polyethylene formed wi                              | ll be-                                 |                                                        |
|      |                                                 | 280                                                 | 280 280                                | 10                                                     |
|      | (A) 280, 10n                                    | $(B) \xrightarrow{n}, n$                            | (C) $\frac{280}{n}$ , 280              | (D) 280, $\frac{10}{n}$                                |
| 5.   | 27 gm of Al with react co                       | ompletely with:                                     |                                        |                                                        |
|      | $4Al + 3O_2 \longrightarrow 2Al_2$              |                                                     |                                        |                                                        |
|      | (A) 24 gm of O <sub>2</sub>                     | . 3                                                 | (B) 0.75 moles of O                    | 2                                                      |
|      | (C) 16.8 L of $O_2$ at 1atm                     | ,273K                                               | (D) 0.75 N <sub>A</sub> molecul        | es of O <sub>2</sub>                                   |
| 6.   | 1.5 g of oxygen is produ                        | ced by heating KClO <sub>3</sub> .                  | How much KCl is produce                | ed in the reaction:                                    |
|      | $2KClO_3(s) \longrightarrow 2KO$                | $Cl(s) + 3O_2(g) \uparrow$                          |                                        |                                                        |
|      | (A) $4.15 \times 10^2 \text{ mol}$              | (B) 4.33 g                                          | (C) $3.12 \times 10^{-2}$ mol          | (D) 2.33 g                                             |
| Prob | olem based on limiting re                       | agent                                               |                                        |                                                        |
| 7.   | For the reaction: $7A + 13$                     | $3B + 15C \longrightarrow 17P$                      |                                        |                                                        |
|      | If 15 moles of A, 26 mol                        | es of B & 30.5 moles of                             | f C are taken initially then           | limiting reactant is                                   |
|      | (A) A                                           | (B) B                                               | (C) C                                  | (D) None of these                                      |
| 8.   | For the reaction: $2A + 3$                      | $6B \rightarrow 4C + D$ , 5 moles of                | of A and 8 moles of B will             | produce                                                |
|      | (A) 4 moles of C, 1 mole                        | e of D                                              | (B) 20 moles of C, 5                   | 5 moles of D                                           |
|      | (C) 10 moles of C, 2.5 n                        | noles of D                                          | (D) $\frac{32}{3}$ moles of C,         | $\frac{8}{3}$ moles of D                               |
| 9.   | For reaction A + 2 B —                          | → C. The amount of C fo                             | ormed by starting the reacti           | ion with 5 moles of A and 8 moles of B is:             |
|      | (A) 5 mol                                       | (B) 8 mol                                           | (C) 16 mol                             | (D) 4 mol                                              |
| 10.  |                                                 |                                                     |                                        | on of 5 moles of S and 6 moles of O <sub>2</sub> gas   |
|      | (A) 2 moles                                     | (B) 6 moles                                         | (C) 4 moles                            | (D) 8 moles                                            |
| 11.  | 446 g of PbO, 46 g of N                         | $O_2$ and 16 g of $O_2$ are al                      | lowed to react according to            | o the equation                                         |
|      | 1                                               |                                                     |                                        |                                                        |
|      | $PbO + 2NO_2 + \frac{1}{2}O_2$                  | $\rightarrow Pb(NO_3)_2$                            |                                        |                                                        |
|      | The amount of Pb(NO <sub>3</sub> ) <sub>2</sub> | , that can be produced is                           | (At. wt. of Pb = 207)                  |                                                        |

CHEMISTRY ADI/E-23

(C) 165.5 gm

(D) None of these

(B) 662 gm



|                                   |                                                                                                                                                                      | _ ,                                                      | •                                     |                                                    |  |  |  |  |  |
|-----------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------|---------------------------------------|----------------------------------------------------|--|--|--|--|--|
| 12.                               | The mass of P <sub>4</sub> O <sub>10</sub> produ                                                                                                                     | uced if 440 gm of P <sub>4</sub> S <sub>3</sub> is n     | nixed with 384 gm of O <sub>2</sub>   | is $P_4S_3 + O_2 \longrightarrow P_4O_{10} + SO_2$ |  |  |  |  |  |
|                                   | (A) 568 gm                                                                                                                                                           | (B) 426 gm                                               | (C) 284 gm                            | (D) 396 gm                                         |  |  |  |  |  |
| 13.                               | 0.6 mol of barium chlor                                                                                                                                              | ride in solution is mixed wi                             | th 0.2 mol of sodium pho              | sphate, the amount of barium phosphate             |  |  |  |  |  |
|                                   | produced is                                                                                                                                                          |                                                          |                                       |                                                    |  |  |  |  |  |
|                                   | (A) 0.1 mol                                                                                                                                                          | (B) 0.3 mol                                              | (C) 0.4 mol                           | (D) 0.5 mol                                        |  |  |  |  |  |
| 14.                               | What is the number of m                                                                                                                                              | noles of Fe(OH) <sub>3</sub> that can be                 | e produced by allowing 1              | mole of $Fe_2S_3$ , 2mole of $H_2O$ and 3 mole     |  |  |  |  |  |
|                                   | of O <sub>2</sub> to react                                                                                                                                           |                                                          |                                       |                                                    |  |  |  |  |  |
|                                   | $2Fe_2S_3 + 6H_2O + 3O_2$                                                                                                                                            | $\longrightarrow$ 4Fe(OH) <sub>3</sub> + 6S              |                                       |                                                    |  |  |  |  |  |
|                                   | (A) 2                                                                                                                                                                | (B) 1.33                                                 | (C) 3.52                              | (D) None                                           |  |  |  |  |  |
| 15.                               | 28 gm lithium is mixed                                                                                                                                               | with 48 gm O <sub>2</sub> to react acc                   | ording to the following re            | eaction.                                           |  |  |  |  |  |
|                                   |                                                                                                                                                                      | $\text{Li} + \text{O}_2 \rightarrow \text{Li}_2\text{O}$ |                                       |                                                    |  |  |  |  |  |
|                                   | The mass of Li <sub>2</sub> O forme                                                                                                                                  | ed is:                                                   |                                       |                                                    |  |  |  |  |  |
|                                   | (A) 30 gm                                                                                                                                                            | (B) 35 gm                                                | (C) 45 gm                             | (D) 60 gm                                          |  |  |  |  |  |
| 16.                               | Three substances A, B a                                                                                                                                              | nd C can react to form D a                               | nd E as shwon:                        |                                                    |  |  |  |  |  |
| $2A + 3B + C \rightarrow 4D + 2E$ |                                                                                                                                                                      |                                                          |                                       |                                                    |  |  |  |  |  |
|                                   | If molar masses of A, B, C and D are 40, 30, 20 and 15 respectively and 285 gm of mixture of A, B and C is rea then maximum mass of E which can be obtained will be: |                                                          |                                       |                                                    |  |  |  |  |  |
|                                   |                                                                                                                                                                      |                                                          |                                       |                                                    |  |  |  |  |  |
|                                   | (A) 285 gm                                                                                                                                                           | (B) 200 gm                                               | (C) 195 gm                            | (D) 100 gm                                         |  |  |  |  |  |
| 17.                               |                                                                                                                                                                      | assium chlorate need to be                               |                                       |                                                    |  |  |  |  |  |
|                                   | (A) $\frac{1}{2}$ mol                                                                                                                                                | (B) $\frac{1}{3}$ mol                                    | (C) $\frac{1}{4}$ mol                 | (D) $\frac{2}{3}$ mol                              |  |  |  |  |  |
| 18.                               | In the reaction $4A + 2B$                                                                                                                                            | $+3C \rightarrow A_4B_2C_3$ what will be                 | be the number of moles of             | product formed ? Starting from 2 moles             |  |  |  |  |  |
|                                   | of A, 1.2 moles of B and                                                                                                                                             | d 1.44 moles of C.                                       |                                       |                                                    |  |  |  |  |  |
|                                   | (A) 0.5                                                                                                                                                              | (B) 0.6                                                  | (C) 0.48                              | (D) 4.64                                           |  |  |  |  |  |
| 19.                               |                                                                                                                                                                      | etal gives 14.8 g of its nitri                           |                                       | tal is:                                            |  |  |  |  |  |
|                                   | (A) 12                                                                                                                                                               | (B) 20                                                   | (C) 40                                | (D) 14.8                                           |  |  |  |  |  |
| 20.                               |                                                                                                                                                                      | 1 g of sulphur, the amoun                                | t of Ag <sub>2</sub> S formed will be | :                                                  |  |  |  |  |  |
|                                   | [Atomic weight of Ag =                                                                                                                                               |                                                          |                                       |                                                    |  |  |  |  |  |
|                                   | (A) 7.75 g                                                                                                                                                           | (B) 0.775 g                                              | (C) 11 g                              | (D) 10 g                                           |  |  |  |  |  |
| 21.                               | According to following                                                                                                                                               |                                                          |                                       |                                                    |  |  |  |  |  |
|                                   | $A + BO_3 \rightarrow A_3O_4 +$                                                                                                                                      | $B_2O_3$                                                 |                                       |                                                    |  |  |  |  |  |
|                                   | The number of moles of                                                                                                                                               | FA <sub>3</sub> O <sub>4</sub> produced if 1 mole of     | of A is mixed with 1 mole             | e of BO <sub>3</sub> is:                           |  |  |  |  |  |
|                                   | (A) 3                                                                                                                                                                | (B) $\frac{1}{2}$                                        | (C) $\frac{1}{3}$                     | (D) $\frac{2}{3}$                                  |  |  |  |  |  |
|                                   |                                                                                                                                                                      | 2                                                        | 3                                     | 3                                                  |  |  |  |  |  |





RACE # 17 STOICHIOMETRY CHEMISTRY

| D L | 1 | hasad | ~ | <br> |
|-----|---|-------|---|------|
|     |   |       |   |      |

3 litre of mixture of propane  $(C_3H_8)$  & butane  $(C_4H_{10})$  on complete combustion gives 10 litre  $CO_2$ . Find the composition of mixture.

 $(A)C_3H_8$  2L and  $C_4H_{10}$  1L (B)  $C_3H_8$  3L and  $C_4H_{10}$  0L(C)C $_3H_8$  1.5L and  $C_4H_{10}$  1.5L(D)  $C_3H_8$  0L and  $C_4H_{10}$  3L

2. 0.01 mole of iodoform (CHI<sub>3</sub>) reacts with Ag to produce a gas whose volume at NTP is  $2\text{CHI}_3 + 6\text{Ag} \longrightarrow 6\text{AgI}(s) + \text{C}_2\text{H}_2(g)$ 

2011, 1 0/16

- (A) 224 ml (B) 112 ml
- (C) 336 ml
- (D) None of these
- 3. One mole mixture of  $CH_4$  and air (containing 80%  $N_2$  20%  $O_2$  by volume) of a composition such that when underwent combustion gave maximum heat (assume combustion of only  $CH_4$ ). Then which of the statements are correct, regarding composition of initial mixture. (X presents mole fraction).
  - (A)  $X_{CH_4} = \frac{1}{11}, X_{O_2} = \frac{2}{11}, X_{N_2} = \frac{8}{11}$
- (B)  $X_{CH_4} = \frac{3}{8}, X_{O_2} = \frac{1}{8}, X_{N_2} = \frac{1}{2}$

(C)  $X_{CH_4} = \frac{1}{6}, X_{O_2} = \frac{1}{6}, X_{N_2} = \frac{2}{3}$ 

- (D) Data insufficient
- 4. A mixture of KBr and NaBr weighing 0.560 gm was treated with aqueous Ag<sup>+</sup> and all the bromide ion was recovered as 0.970 gm of pure AgBr. The fraction by weight of KBr in the sample is (approximately)

(A) 0.25

- (B) 0.50
- (C) 0.40
- (D) 0.28
- 5. 40 gram of a carbonate of an alkali metal or alkaline earth metal containing some inert impurities was made to react with excess HCl solution. The liberated CO<sub>2</sub> occupied 12.315 lit. at 1 atm & 300 K. The correct option is
  - (A) Mass of impurity is 1 gm and metal is Be
- (B) Mass of impurity is 3 gm and metal is Li
- (C) Mass of impurity is 5 gm and metal is Be
- (D) Mass of impurity is 2 gm and metal is Mg

#### Problem based on % yield and % purity

**6.** Calculate the weight of lime (CaO) obtained by heating 200 kg of 95% pure lime stone (CaCO<sub>3</sub>).

(A) 104.4 kg

- (B) 105.4 kg
- (C) 212.8 kg
- (D) 106.4 kg
- 7. A silver coin weighing 11.34 g was dissolved in nitric acid. When sodium chloride was added to the solution all the silver (present as AgNO<sub>3</sub>) was precipitated as silver chloride. The weight of the precipitated silver chloride was 14.35 g. Calculate the percentage of silver in the coin

(A) 4.8%

- (B) 95.2%
- (C) 90%
- (D) 80%

**8.** For the reaction

$$2\text{Fe}(\text{NO}_3)_3 + 3\text{Na}_2\text{CO}_3 \rightarrow \text{Fe}_2(\text{CO}_3)_2 + 6\text{NaNO}_3$$

initially 2.5 mol of  $Fe(NO_3)_2$  and 3.6 mol of  $Na_2CO_3$  is taken. If 6.3 mol of  $NaNO_3$  is obtained then % yield of given reaction is

(A) 50%

- (B) 84%
- (C) 87.5%
- (D) 100%
- 9. For the reaction,  $2x + 3y + 4z \longrightarrow 5w$  Initially if 1 mole of x, 3 mole of y and 4 mole of z is taken and 1.25 mole of w is obtained then % of this reaction is

(A) 25%

- (B) 50%
- (C) 75%
- (D) None of these

CHEMISTRY ADI/E-25

# Problem based on sequential and parallel reaction

10. 120 g Mg was burnt in air to give a mixture of MgO and Mg<sub>3</sub>N<sub>2</sub>. The mixture is now dissolved in HCl to form MgCl<sub>2</sub> and NH<sub>4</sub>Cl, if 107 gram NH<sub>4</sub>Cl is produced. Then the moles of MgCl<sub>2</sub> formed is:

 $Mg + \frac{1}{2}O_2 \longrightarrow MgO$ 

.... (i)

 $3Mg + N_2 \longrightarrow Mg_3N_2$ 

.... (ii)

 $MgO + 2HCl \longrightarrow MgCl_2 + H_2O$ 

.... (iii)

 $Mg_3N_2 + 8HCl \longrightarrow 2NH_4Cl + 3MgCl_2$ 

.... (iv)

(A) 3 moles

(B) 6 moles

(C) 5 moles

(D) 10 moles

### Paragraph Question No. 11 to 13

NaBr, used to produced AgBr for use in photography can be self prepared as follows:

 $Fe + Br_2 \longrightarrow FeBr_2$ 

... (i)

 $FeBr_2 + Br_2 \longrightarrow Fe_3Br_8$ 

... (ii) (not balanced)

 $Fe_3Br_8 + Na_2CO_3 \longrightarrow NaBr + CO_2 + Fe_3O_4$ 

... (iii) (not balanced)

- 11. Mass of iron required to produce 4120 gm NaBr
  - (A) 420 gm
- (B) 840 kg
- (C) 840 gm
- (D) 420 kg
- 12. If the yield of (ii) is 50% and (iii) reaction is 60% then mass of iron required to produce 2060 gm NaBr
  - (A) 25 mol
- (B) 50 mol
- (C) 75 mol
- (D) 100 mol
- 13. If yield of (iii) reaction is 90% then mole of CO, formed when 1030 gm NaBr is formed
  - (A) 20

(B) 5

(C) 10

- (D) 40
- 14. Two substance  $P_4 \& O_2$  are allowed to react completely to form mixture of  $P_4O_6 \& P_4O_{10}$  leaving none of the reactants. Using this information calculate the composition of final mixture when mentioned amount of  $P_4 \& O_2$  are taken.

$$P_4 + 3O_2 \longrightarrow P_4O_{6,} \quad P_4 + 5O_2 \longrightarrow P_4O_{10}$$

(i) If 1 mole  $P_4$  & 4 mole of  $O_2$ 

(ii)If 3 mole P<sub>4</sub> & 11 mole of O<sub>2</sub>

- (iii) If 3 mole  $P_4$  & 13 mole of  $O_2$
- **15.** Sulphur trioxide may be prepared by the following two reactions :

$$S_g + 8O_2(g) \rightarrow 8SO_2(g)$$
,

$$2SO_2(g) + O_2(g) \rightarrow 2SO_3(g)$$

How many grams of SO<sub>3</sub> will be produced from 1 mol of S<sub>8</sub>?

# HOME WORK

#### NCERT 1.1





RACE # 18 CONCENTRATION TERMS CHEMISTRY

|     | OL                              | 00.102.                                                                      | 1110 111011                                  | 0.12//011                                              |
|-----|---------------------------------|------------------------------------------------------------------------------|----------------------------------------------|--------------------------------------------------------|
| Con | centration terms                |                                                                              |                                              |                                                        |
| 1.  | 8 g NaOH is dissol              | ved in one litre of solution, i                                              | ts molarity is                               |                                                        |
|     | (A) 0.8 M                       | (B) 0.4 M                                                                    | (C) 0.2 M                                    | (D) 0.1 M                                              |
| 2.  | For preparing 0.1 M             | M solution of H <sub>2</sub> SO <sub>4</sub> in one li                       | itre, we need H <sub>2</sub> SO <sub>4</sub> |                                                        |
|     | (A) 0.98 g                      | (B) 4.9 g                                                                    | (C) 49.0 g                                   | (D) 9.8 g                                              |
| 3.  | What is mass perce              | ent of the solute in the solution                                            | on obtained by mixing 5 g                    | of the solute in 50 g of water?                        |
|     | (A) 10 %                        | (B) 9.1 %                                                                    | (C) 91 %                                     | (D) 50 %                                               |
| 4.  | The number of mol               | les of NaCl present in its 250                                               | 0 cm <sup>3</sup> , 0.5 M solution are       |                                                        |
|     | (A) 0.5 mol                     | (B) 0.25 mol                                                                 | (C) 0.125 mol                                | (D) 12.5 mol                                           |
| 5.  | How many grams of               | of NaOH are needed to prepa                                                  | re 250 cm <sup>3</sup> of 0.4 M NaOI         | H solution ?                                           |
|     | (A) 8 g                         | (B) 40 g                                                                     | (C) 80 g                                     | (D) 4 g                                                |
| 6.  | The molarity of sug             | gar $(C_{12}H_{22}O_{11})$ solution if its                                   | s 20 g are dissolved in 2 lit                | re solution, is                                        |
|     | (A) 0.029 M                     | (B) 0.29 M                                                                   | (C) 2.9 M                                    | (D) 0.0029 M                                           |
| 7.  | Determine mole fra              | action of CH <sub>3</sub> OH in a solution                                   | n obtained by mixing 1.2                     | mole CH <sub>3</sub> OH with 4.8 mole H <sub>2</sub> O |
|     | (A) 0.8                         | (B) 0.2                                                                      | (C) 0.25                                     | (D) 0.5                                                |
| 8.  | Calculate the volum             | me in litre of 0.1 M solution                                                | of HCl which contains 0.3                    | 65 g HCl ?                                             |
|     | (A) $10^{-2}$ L                 | (B) 0.1 L                                                                    | (C) 1 L                                      | (D) 10 L                                               |
| 9.  | The molarity of a H             | HCl solution, which is 1.825                                                 | % (w/v) is:                                  |                                                        |
|     | (A) M/10                        | (B) M/2                                                                      | (C) M/5                                      | (D) M/20                                               |
| 10. | What volume of a 0              | 0.8 M solution contains 100                                                  | millimoles of the solute?                    |                                                        |
|     | (A) 80 mL                       | (B) 125 mL                                                                   | (C) 125 L                                    | (D) 80 L                                               |
| 11. |                                 | volume of 0.40 M Ba(OH) <sub>2</sub> the molarity of the OH <sup>-</sup> ion |                                              | 50.0 mL of 0.30 M NaOH solution to get                 |
|     | (A) 33 mL                       | (B) 66 mL                                                                    | (C) 133 mL                                   | (D) 100 mL                                             |
| 12. | Equal moles of H <sub>2</sub> O | O and NaCl are present in a s                                                | solution. Hence, molality of                 | of NaCl solution is:                                   |
|     | (A) 0.55                        | (2) 55.5                                                                     | (C) 1.00                                     | (D) 0.18                                               |
| 13. | Calculate molality              | of a solution in which 5.6 g                                                 | KOH is dissolved in 200 g                    | water                                                  |
|     | (A) 0.5 m                       | (B) 1.5 m                                                                    | (C) 1.5 m                                    | (D) 0.05 m                                             |
| 14. | 1000 g aqueous sol              | lution of CaCO <sub>3</sub> contains 10                                      | g of calcium carbonate. Co                   | oncentration of solution is                            |
|     | (A) 10 ppm                      | (B) 100 ppm                                                                  | (C) 1000 ppm                                 | (D) 10000 ppm                                          |
| 15. | Calculate the molar             | rity when                                                                    | ult 500 ml solution                          |                                                        |

CHEMISTRY ADI/E-27

(b) 56 gm of KOH dissolved in water to result 500 ml solution





15. The mole fraction of I<sub>2</sub> in C<sub>6</sub>H<sub>6</sub> is 0.02, then molality of solution approxmately will be:

(A) 0.16

(B) 0.26

(C) 2.6

(D) 1.6

**Interconversions of different conentration terms** 

Arrange in increasing order of Molarity of solute in following solutions considering water as solvent. Show your calculations:

(i) 224 gm/lit. KOH

(ii) 11.2% w/v KOH

(iii) 5m KOH (d = 0.64 gm/ml)

(A) (ii) < (iii) < (i)

(B) (iii) < (ii) < (i)

(C) (iii) < (i) < (ii)

(D) (i) < (ii) < (iii)

18. A solution of A(mol. wt. = 20) and B(mol. wt. = 10), [Mole fraction  $X_p = 0.6$ ] having density 0.7 gm/ml then molarity and molality of B in this solution will be \_\_\_\_\_ and \_\_\_\_ respectively.

(A) 30 M, 75 m

(B) 75 m, 30 M

(C) 7.5 m, 30 M

(D) None of these

19. Match the column:

Column I

(A) 16% w/v.  $H_2C_2O_4$  (d = 1.1602 g/ml.)

(B) 17.45 % w/v  $H_2SO_4$  (d = 1.1745 g/ml)

(C) Pure water

(D) 5 % w/w NaOH (d = 1.2 gm/ml)

Column II

(P) 1.78 M

(Q) 1.78 m

(R) 1.5 M

(S) 55.5 M

20. Column I

(A) 10 M MgO

 $(d_{solution} = 1.20 \text{ gm/ml})$ 

Solute: MgO, Solvent: H2O

(B) 40% w/v NaOH

 $(d_{solution} = 1.6 \text{ gm/ml})$ 

Solute: NaOH, Solvent: H2O

(C) 8 m CaCO<sub>3</sub>

Solute: CaCO<sub>3</sub>, Solvent: H<sub>2</sub>O

(D) 0.6 mol fraction of 'X'

(molecular mass = 20)

in 'Y' (molecular mass 25)

Solute: X, Solvent: Y

Column II

(P)  $W_{\text{solvent}} = 120 \text{ gm per } 100 \text{ ml of solution}$ 

(Q)  $W_{\text{solution}} = 150 \text{ gm per } 100 \text{ gm solvent}$ 

(R)  $W_{\text{solute}} = 120 \text{ gm per } 100 \text{ gm of solvent}$ 

(S)  $W_{\text{solvent}} = 125 \text{ gm per } 100 \text{ gm of solute}$ 



 $(A) N_2O$ 



TARGET: IIT-JEE 2023 **NURTURE COURSE** 

**STOICHIOMETRY** CHEMISTRY **RACE #19** 

| Missing of colutions |  |  |  |
|----------------------|--|--|--|

| Mixi | ng of solutions                                                                                                                                                                                  |                                                                                 |                                       | -                                                                                   |  |  |  |  |
|------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------|---------------------------------------|-------------------------------------------------------------------------------------|--|--|--|--|
| 1.   | 20 mL of 0.2M Al,                                                                                                                                                                                | $(SO_4)_3$ is mixed with 30 mL                                                  | of 0.6 M BaCl <sub>2</sub> . Calcular | te the mass of BaSO <sub>4</sub> formed in solution.                                |  |  |  |  |
|      | $BaCl_2 + Al_2(SO_4)_3$                                                                                                                                                                          | $\rightarrow$ BaSO <sub>4</sub> + AlCl <sub>3</sub>                             | -                                     | •                                                                                   |  |  |  |  |
| 2.   |                                                                                                                                                                                                  |                                                                                 | 00 ml of 4.0 M BaCl <sub>2</sub> sol  | ution. The concentration of Cl- ions in the                                         |  |  |  |  |
|      | resulting solution is                                                                                                                                                                            | S                                                                               |                                       |                                                                                     |  |  |  |  |
|      | (A) 7 M                                                                                                                                                                                          | (B) 6 M                                                                         | (C) 5.5 M                             | (D) 5 M                                                                             |  |  |  |  |
| 3.   |                                                                                                                                                                                                  | •                                                                               | <u> </u>                              | o that in resulting solution the concentration ng total volume of solution 1000 ml. |  |  |  |  |
|      | (A) 400 ml NaCl, 6                                                                                                                                                                               | 600 ml CaCl <sub>2</sub>                                                        | (B) 600 ml NaCl,                      | 400 ml CaCl <sub>2</sub>                                                            |  |  |  |  |
|      | (C) 800 ml NaCl, 2                                                                                                                                                                               | 200 ml CaCl <sub>2</sub>                                                        | (D) None of these                     |                                                                                     |  |  |  |  |
| 4.   |                                                                                                                                                                                                  | e precipitation of AgCl, cal<br>with 4 L of 1 M NaCl solu                       |                                       | lar concentration of all the ions if 2 L of 2                                       |  |  |  |  |
|      | (A) 4 M                                                                                                                                                                                          | (B) 2 M                                                                         | (C) 3 M                               | (D) 2.5M                                                                            |  |  |  |  |
| 5.   |                                                                                                                                                                                                  | volume of 0.40 M Ba(OH) <sub>2</sub><br>the molarity of the OH <sup>-</sup> ion | •                                     | o 50.0 mL of 0.30 M NaOH solution to get                                            |  |  |  |  |
|      | (A) 33 mL                                                                                                                                                                                        | (B) 66 mL                                                                       | (C) 133 mL                            | (D) 100 mL                                                                          |  |  |  |  |
| 6.   | How many grams of sodium dichromate, $Na_2Cr_2O_7$ , should be added to a 50.0mL volumetric flask to prepare 0.025 M $Na_2Cr_2O_7$ when the flask is filled to the mark with water ?             |                                                                                 |                                       |                                                                                     |  |  |  |  |
| 7.   | Calculate molarity                                                                                                                                                                               | of NaOH in a solution made                                                      | e by mixing 2 lit. of 1.5 M           | NaOH, 3 lit. of 2M NaOH and 1 lit. water.                                           |  |  |  |  |
| 8.   | How would you prepare exactly 3.0 litre of 1.0 M NaOH by mixing proportions of stock solution of 2.50 M NaOH and 0.40 M NaOH. No water is to be used. Find the ratio of the volume $(v_1/v_2)$ . |                                                                                 |                                       |                                                                                     |  |  |  |  |
| 9.   |                                                                                                                                                                                                  |                                                                                 |                                       | and mass percent of H <sub>2</sub> SO <sub>4</sub> is 9.8%, is                      |  |  |  |  |
|      | (A) 9.8 M                                                                                                                                                                                        | (B) 1.2 M                                                                       | (C) 0.6 M                             | (D) 1.8 M                                                                           |  |  |  |  |
| 10.  | What volume of 0.2 reaction?                                                                                                                                                                     | 250 MHNO <sub>3</sub> (nitric acid) rea                                         | cts with 50mL of 0.150M               | Na <sub>2</sub> CO <sub>3</sub> (sodium carbonate) in the following                 |  |  |  |  |
|      | $2HNO_3(aq) + N$                                                                                                                                                                                 | $\text{Na}_2\text{CO}_3(\text{aq}) \rightarrow 2\text{NaNO}_3(\text{aq})$       | $+ H_2O(l) + CO_2(g)$                 |                                                                                     |  |  |  |  |
| 11.  | 20 ml of 0.2 M Al <sub>2</sub>                                                                                                                                                                   | $(SO_4)_3$ is mixed with 20 ml                                                  | of 0.6 M BaCl <sub>2</sub> . Concentr | ration of Al3+ ion in the solution will be                                          |  |  |  |  |
|      | (A) 0.2 M                                                                                                                                                                                        | (B) 10.3 M                                                                      | (C) 0.1 M                             | (D) 0.25 M                                                                          |  |  |  |  |
| 12.  | 5 g of $K_2SO_4$ was dissolved in water to prepare 250 mL of solution. What volume of this solution should be used so that 2.33 g of $BaSO_4$ may be precipitated from $BaCI_2$ solution.        |                                                                                 |                                       |                                                                                     |  |  |  |  |
|      | $K_2SO_4 + BaCl_2 \longrightarrow BaSO_4 + 2KCl$                                                                                                                                                 |                                                                                 |                                       |                                                                                     |  |  |  |  |
|      | (A) 87 mL                                                                                                                                                                                        | (B) 174 mL                                                                      | (C) 8.7 mL                            | (D) 17.4 mL                                                                         |  |  |  |  |
| EUD  | IOMETRY                                                                                                                                                                                          |                                                                                 |                                       |                                                                                     |  |  |  |  |
| 13.  | $C_6H_5OH(g) + O_2(g)$                                                                                                                                                                           | $g) \longrightarrow CO_2(g) + H_2O(l)$                                          |                                       |                                                                                     |  |  |  |  |
|      | -                                                                                                                                                                                                | me change if 30 ml of $C_6H_5$                                                  | OH (g) is burnt with exces            | ss amount of oxygen, is                                                             |  |  |  |  |
|      | (A) 30 ml                                                                                                                                                                                        | (B) 60 ml                                                                       | (C) 20 ml                             | (D) 10 ml                                                                           |  |  |  |  |
| 14.  | 10 ml of a compou                                                                                                                                                                                | und containing 'N' and 'O'                                                      | is mixed with 30 ml of I              | H, to produce H <sub>2</sub> O ( $l$ ) and 10 ml of N <sub>2</sub> (g).             |  |  |  |  |
|      |                                                                                                                                                                                                  | of compound if both reacta                                                      |                                       |                                                                                     |  |  |  |  |

CHEMISTRY ADI/E-29

 $(C) N_2O_3$ 

(D)  $N_{2}O_{5}$ 

(B)  $NO_2$ 





| 15. | When 20 ml of mixture of $O_2$ and $O_3$ is heated, the volume becomes 29 ml and disappears in alkaline pyragallol solution. What is the volume precent of $O_2$ in the original mixture?                                                                                                                                                |                                                                                             |                           |                                                                                                      |  |  |  |
|-----|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------|---------------------------|------------------------------------------------------------------------------------------------------|--|--|--|
|     | (A) 90%                                                                                                                                                                                                                                                                                                                                  | (B) 10%                                                                                     | (C) 18%                   | (D) 2%                                                                                               |  |  |  |
| 16. |                                                                                                                                                                                                                                                                                                                                          | pressure of CO <sub>2</sub> was found                                                       |                           | The mixture was completely burnt to CO <sub>2</sub> and same temperature and volume, the fraction of |  |  |  |
|     | (A) 0.125                                                                                                                                                                                                                                                                                                                                | (B) 0.5                                                                                     | (C) 0.87                  | (D) 0.25                                                                                             |  |  |  |
| 17. | contraction of 23 n                                                                                                                                                                                                                                                                                                                      | <u>~</u>                                                                                    | s corresponds to room tem | nd exploded & cooled. There was a volume perature (27°C) and one atmospheric pressure. re            |  |  |  |
|     | (A) 6.5: 13.5                                                                                                                                                                                                                                                                                                                            | (B) $5:15$                                                                                  | (C) 9:11                  | (D) 7:13                                                                                             |  |  |  |
| 18. |                                                                                                                                                                                                                                                                                                                                          | of C <sub>4</sub> H <sub>10</sub> in a gaseous mixtul volume (in ml) of CO <sub>2</sub> pro |                           | is 40. When 200 ml of the mixture is burnt in                                                        |  |  |  |
|     | (A) 220                                                                                                                                                                                                                                                                                                                                  | (B) 340                                                                                     | (C) 440                   | (D) 560                                                                                              |  |  |  |
|     |                                                                                                                                                                                                                                                                                                                                          | C                                                                                           | OMPREHENSION              |                                                                                                      |  |  |  |
|     | A 10 ml mixture of $N_2$ , a alkane & $O_2$ undergo combustion in Eudiometry tube. There was contraction of 2 ml, whe residual gases are passed through KOH. To the remaining mixture comprising of only one gas excess $H_2$ was added & after combustion the gas produced is absorbed by water, causing a reduction in volume of 8 ml. |                                                                                             |                           |                                                                                                      |  |  |  |
| 19. | Gas produced afte                                                                                                                                                                                                                                                                                                                        | er introduction of H <sub>2</sub> in the r                                                  | nixture ?                 |                                                                                                      |  |  |  |
|     | $(A) H_2O$                                                                                                                                                                                                                                                                                                                               | $(B) CH_4$                                                                                  | $(C) CO_2$                | (D) NH <sub>3</sub>                                                                                  |  |  |  |
| 20. | Volume of N <sub>2</sub> pres                                                                                                                                                                                                                                                                                                            | sent in the mixture?                                                                        |                           |                                                                                                      |  |  |  |
|     | (A) 2 ml                                                                                                                                                                                                                                                                                                                                 | (B) 4 ml                                                                                    | (C) 6 ml                  | (D) 8 ml                                                                                             |  |  |  |
| 21. | Volume of O <sub>2</sub> rem                                                                                                                                                                                                                                                                                                             | ained after the first combus                                                                | tion?                     |                                                                                                      |  |  |  |
|     | (A) 4 ml                                                                                                                                                                                                                                                                                                                                 | (B) 2 ml                                                                                    | (C) 0 ml                  | (D) 8 ml                                                                                             |  |  |  |
| 22. | Identify the hydro                                                                                                                                                                                                                                                                                                                       | carbon.                                                                                     |                           |                                                                                                      |  |  |  |
|     | (A) CH <sub>4</sub>                                                                                                                                                                                                                                                                                                                      | (B) $C_2H_6$                                                                                | $(C) C_3H_8$              | (D) $C_4H_{10}$                                                                                      |  |  |  |
|     |                                                                                                                                                                                                                                                                                                                                          |                                                                                             |                           |                                                                                                      |  |  |  |
|     |                                                                                                                                                                                                                                                                                                                                          |                                                                                             |                           |                                                                                                      |  |  |  |

E-30/ADI CHEMISTRY





**RACE # 20 REDOX REACTION CHEMISTRY** 

| 7 | vnes  | of | redox       | reaction   | and  | oxidation | number  |
|---|-------|----|-------------|------------|------|-----------|---------|
| _ | , , , | O. | 1 0 4 0 2 1 | . I cucuon | ullu | OMIGUIOII | HUHHOUL |

| 1. | Calculate individual and average Oxidation number (if required) of the marked element and also draw the structure of |
|----|----------------------------------------------------------------------------------------------------------------------|
|    | the following compounds or molecules.                                                                                |

- (1)  $Na_{2}S_{2}O_{3}$
- (2) Na<sub>2</sub>  $\underline{S}_4 O_6$
- (3)  $H_{2}SO_{5}$
- $(4) H, \underline{S}, O_8$

- $(5) H_{2}S_{2}O_{7}$
- (6) <u>S</u><sub>e</sub>
- $(7) (CH_3)_{2}SO$
- (8) HNO<sub>4</sub>

- $(9) C_{3}O_{2}$
- $(10) \Omega sO_4$
- $(11) \, \underline{PH}_{3}$
- $(12) CrO_4^{2-}$

- $(13) Cr_{2}O_{7}^{2}$
- (14) Cr  $O_2Cl_2$
- (15) <u>Cr</u>O<sub>5</sub>
- (16) Na<sub>2</sub>H PO<sub>4</sub>

- (17) <u>Fe</u>S,
- $(18) \, \underline{C}_6 H_{12} O_6$
- (19)  $\underline{N}H_4 \underline{N}O_3$
- 2. Calculate individual and average Oxidation number (if required) of the marked element and also draw the structure of the following compounds or molecules.
  - $(1) FNO_3$
  - (2) CaO<u>C</u>l<sub>2</sub>
- $(3) \underline{X}eO_3F_2$
- (4) Li <u>Al</u> H<sub>4</sub>
- $(5) \text{ Na}_{3} \underline{\text{Al}} F_{6}$

- (6) <u>P</u><sub>4</sub>
- (7) <u>O</u><sub>3</sub>
- (8)  $\underline{I}(\underline{I}O_3)_3$
- $(9) \underline{Fe}_{3}O_{4}$

- $(10) \text{ Cs}\underline{I}_{3}$
- $(11) \text{ KO}_{3}$
- $(12) \, \underline{O}_2 F_2$
- $(13) H_{2}SiF_{6}$

- (14) <u>P</u>(OH)<sub>3</sub>
- (15) <u>P</u>OCl<sub>3</sub>
- (16) <u>Si</u>(OH)<sub>4</sub>
- $(17) \text{ Mg}_{2}\underline{C}_{3}$

- (18) Ca<u>C</u>,
- (19) Be,<u>C</u>
- The reaction  $3ClO^{-}(aq.) \rightarrow ClO_{3}^{-}(aq.) + 2Cl^{-}(aq.)$  is an example of **3.** 
  - (A) oxidation
- (B) reduction
- (C) disproportionation
- (D) decomposition reaction
- 4. White phosphorus reacts with caustic soda, the products are PH<sub>3</sub> and NaH<sub>2</sub>PO<sub>2</sub>. This reaction is an example of
  - (A) Oxidation
- (B) Reduction
- (C) Disproportionation (D) Neutralisation

- In the reaction  $4P + 3KOH + 3H_2O \rightarrow 3KH_2PO_2 + PH_3$ 5.
  - (A) P undergoes reduction only
- (B) P undergoes oxidation only
- (C) P undergoes both oxidation and reduction
- (D) neither undergoes oxidation nor reduction
- Which of the following species does not show disproportionation:-6.
  - (A) ClO-
- (B) ClO<sub>2</sub>
- $(C) ClO_2^-$
- (D) ClO<sub>4</sub>
- 7. Which of the following reagent can act as reducing agent with SO<sub>2</sub>:-
- (B) KMnO<sub>4</sub>
- (C) H<sub>2</sub>O
- $(D) H_2S$
- 8. Which of the following can only acts as oxidising agent?
  - (A) KMnO<sub>4</sub>
- (B) K<sub>2</sub>MnO<sub>4</sub>
- (C) H,O,
- (D) SO,
- 9. Which will be the proper alternative in place of A in the following equation

$$2Fe^{3+}(aq) + Sn^{2+}(aq) \rightarrow 2Fe^{2+}(aq) + A$$

- (A)  $Sn^{4+}$
- (B)  $Sn^{3+}$
- (C) Sn<sup>2+</sup>
- (D)  $Sn^0$
- 10. Which of the following reactions does not involve either oxidation or reduction?
  - $(A) VO^{2+} \rightarrow V_2O_3$
- (B) Na  $\rightarrow$  Na<sup>+</sup>
- (C)  $Zn^{+2} \rightarrow Zn$
- (D)  $CrO_4^{-2} \rightarrow Cr_2O_7^{-2}$

ADI/E-31 **CHEMISTRY** 



- Identify the oxidant and the reductant in the following reactions: 11.
  - (A)  $KMnO_4 + KCl + H_2SO_4 \longrightarrow MnSO_4 + K_2SO_4 + H_2O + Cl_2$
  - (B)  $FeCl_2 + H_2O_2 + HCl \longrightarrow FeCl_3 + H_2O$
  - (C)  $Cu + HNO_3$  (dil)  $\longrightarrow Cu (NO_3)_2 + H_2O + NO$
  - (D)  $Na_2HAsO_2 + KBrO_3 + HCl \longrightarrow NaCl + KBr + H_2AsO_4$
  - (E)  $I_2 + Na_2S_2O_3 \longrightarrow Na_2S_4O_6 + NaI$

# n-factor calculation

- **12.** Find the **n** factor in following non-redox interaction.
  - (a) Of base
    - (i)  $Ba(OH)_2 + HCl \rightarrow BaCl_2 + H_2O$
- (ii)  $Al(OH)_3 + H_2SO_4 \rightarrow Al(OH) (HSO_4)_2 + H_2O$

- (b) Of acid
  - $\text{(i) $H_3$SbO}_4 \xrightarrow{\text{KOH}} \text{KH}_2\text{SbO}_4 + \text{H}_2\text{O} \\ \text{(ii) $H_3$SbO}_4 + \text{KOH} \rightarrow \text{K}_2\text{HSbO}_4 + \text{H}_2\text{O} \\ \text{(iii) $H_3$SbO}_4 + \text{KOH} \rightarrow \text{K}_2\text{HSbO}_4 + \text{H}_2\text{O} \\ \text{(iii) $H_3$SbO}_4 + \text{KOH} \rightarrow \text{K}_2\text{HSbO}_4 + \text{H}_2\text{O} \\ \text{(iii) $H_3$SbO}_4 + \text{KOH} \rightarrow \text{K}_2\text{HSbO}_4 + \text{H}_2\text{O} \\ \text{(iii) $H_3$SbO}_4 + \text{KOH} \rightarrow \text{K}_2\text{HSbO}_4 + \text{H}_2\text{O} \\ \text{(iii) $H_3$SbO}_4 + \text{KOH} \rightarrow \text{K}_2\text{HSbO}_4 + \text{K}_2\text{HSbO}_4$
- Find the **n** factor of underlined compound in following interaction 13.
  - (i)  $\underline{Pb(NO_3)_2} + \underline{Cr_2(SO_4)_3} \longrightarrow \underline{PbSO_4} + \underline{Cr(NO_3)_3}$  (ii)  $\underline{KMnO_4} + \underline{MnSO_4} \longrightarrow \underline{MnO_2}$
  - $(iii)\underline{P}_{4} \longrightarrow \underline{H}_{2}\underline{PO}_{2} + \underline{PH}_{3}$
- In the reaction,  $2S_2O_3^{2-} + I_2 \rightarrow S_4O_6^{2-} + 2I^-$ , the eq. wt. of  $S_4O_6^{-2}$  is equal to its -14.
  - (A) Mol. wt.
- (B) Mol. wt./2
- (C)  $2 \times \text{mol. wt.}$
- (D) Mol. wt./6

- 15. Equivalent weight of  $NH_3$  in the change  $N_2 \rightarrow NH_3$  is :
- (B) 17
- (C) 17/2
- (D) 17/3
- The molecular weight of the compounds (a) Na<sub>2</sub>SO<sub>4</sub>, (b) Na<sub>3</sub>PO<sub>4</sub>. 12H<sub>2</sub>O and (c) Ca<sub>3</sub>(PO<sub>4</sub>)<sub>2</sub> respectively are X, Y and **16.** Z. the correct set of their equivalent weights will be -
  - $\text{(A) (a)} \ \frac{X}{2} \ \text{(b)} \ \frac{Y}{3} \ \text{(c)} \ \frac{Z}{6} \quad \text{(B) (a)} \ X \ \text{(b)} \ \frac{Y}{3} \ \text{(c)} \ \frac{Z}{3} \quad \text{(C) (a)} \ \frac{X}{2} \ \text{(b)} \ Y \ \text{(c)} \ \frac{Z}{3} \quad \text{(D) (a)} \ X \ \text{(b)} \ Y \ \text{(c)} \ Z$
- **17.** In the following change -

 $3\text{Fe} + 4\text{H}_2\text{O} \rightarrow \text{Fe}_3\text{O}_4 + 4\text{H}_2$ . If the atomic weight of iron is 56, then its equivalent weight of Fe will be

- (C) 63
- When one mole  $NO_3$  is converted into 1 mole  $NO_2$ , 0.5 mole  $N_2$  and 0.5 mole  $N_2O$  respectively. It accepts x, y and z 18. mole of electrons - x , y and z are respectively -
- (B) 1, 2, 3
- (C) 2, 1, 3
- (D) 2, 3, 4
- 19. In the reaction  $2\text{CuSO}_4 + 4\text{KI} \longrightarrow \text{Cu}_2\text{I}_2 + \text{I}_2 + 2\text{K}_2\text{SO}_4$  the equivalent weight of Cu in CuSO<sub>4</sub>
  - (A) 31.75
- (C) 127
- (D) 15.88

20. In the following reaction hydrazine is oxidized to  $N_2$ .

$$N_2H_4 + OH^- \longrightarrow N_2 + H_2O + e$$

The equivalent weight of N<sub>2</sub>H<sub>4</sub> (hydrazine) is

- (B) 16
- (C) 32
- (D) 64
- Calculate the equivalent mass of each oxidant and reductant in: 21.
  - (a)  $FeSO_4 + KClO_3 \rightarrow KCl + Fe_2(SO_4)_3$
- (b)  $Na_2SO_3 + Na_2CrO_4 \rightarrow Na_2SO_4 + Cr(OH)_3$
- (c)  $\operatorname{Fe_3O_4} + \operatorname{KMnO_4} \to \operatorname{Fe_2O_3} + \operatorname{MnO_2}$
- (d) KI +  $K_2Cr_2O_7 \rightarrow Cr^{3+} + 3I_2$





#### Answer key

#### **RACE: 11**

- (i) Na<sub>2</sub>S → ionic, (ii) SnCl<sub>4</sub> → ionic, (iii) Diamond → covalent, (iv) CaC<sub>2</sub> → ionic
  (v) NaH → ionic, (vi) C<sub>2</sub>H<sub>4</sub> → covalent, (vii) CaCl<sub>2</sub> → ionic, (viii) HCl(g) → covalent
  (ix) NH<sub>4</sub><sup>+</sup> → covalent, (x) KBr → ionic
- 2. (i) ionic  $\rightarrow$  NaCl, (ii) Covalent  $\rightarrow$  CS<sub>2</sub>, (iii) Covalent  $\rightarrow$  SO<sub>2</sub>, (iv) ionic  $\rightarrow$  CaH<sub>2</sub>
- 3. (i) ionic, (ii) covalent, (iii) covalent, (iv) covalent, (v) covalent, (vi) covalent
- **4.** (A) **5.** (C) **6.** (B) **7.** (C) **8.** (A) **9.** (A) **10.** (B)
- 11. (D) 12. (D) 13. (A) 14. (D) 15. (B) 16. (B) 17. (B)
- **18.** (C) **19.** (D) **20.** (D) **21.** (C) **22.** (B) **23.** (A) **24.** (A)
- **25.** (B) **26.** (D)

### **RACE: 12**

- **1.** (D) **2.** (B) **3.** (B) **4.** (C) **5.** (D) **6.** (D) **8.** (B)
- **9.** (D) **10.** (C) **11.** (C) **12.** (C) **13.** (A) **14.** (4) **15.** (3)
- **16.** (C) **17.** (D) **18.** (C) **19.** (A)

### **RACE: 13**

- **1.** (B) **2.** (B) **3.** (D) **4.** (BC) **5.** (B) **6.** (A) **7.** (B)
- **8.** (D) **9.** (D) **10.** (C) **11.** (A) **12.** (B) **13.** (B)
- **14.** (i) 4 (ii) Two types (i) Covalent three (ii) Co-ordinate one **15.** (B) **16.** (C) **17.** (A)
- **18** (i) $\sigma = 7$ ,  $\pi = 0$  (ii)  $\sigma = 5$ ,  $\pi = 1$  (iii)  $\sigma = 3$ ,  $\pi = 2$  (iv)  $\sigma = 8$ ,  $\pi = 2$  (v)  $\sigma = 5$ ,  $\pi = 6$  (vi)  $\sigma = 11$ ,  $\pi = 4$  (vii)  $\sigma = 11$ ,  $\pi = 4$
- **19.** (D) **20.** (D) **21.** (D) **22.** (C) **23.** (A) **24.** (B) **25.** (B)
- **26.** (C) **27.** (B) **28.** (C) **29.** (C) **30.** (C) **31.** (A) **32.** (D)
- **33.** (C) **34.** (A) **35.** (B) **36.** (3) **37.** (B)
- 38. (1)  $sp^3d^2(2) sp$  (3) sp (4)  $sp^2$  (36)  $sp^3d$ (7)  $sp^2$ (9)  $sp^2$  (10)  $sp^2$  (11)  $sp^2$  (12)  $sp^2$  $(13) sp^2$  $(14) \text{ sp}^2(15) \text{ sp}^2(16) \text{ sp}^2(17) \text{ sp}^2(18) \text{ sp}^3(19) \text{ sp}^3(20) \text{ sp}^3(22) \text{ sp}^3(23) \text{ sp}^3(24) \text{ sp}^3(25) \text{ sp}^3(27) \text{ sp}^3(27$  $(28) sp^{3}$  $(30) sp^3d$  $(31) sp^3d$  $(32) sp^3d^2$  $(33) sp^3d^2$  $(34) sp^3d^2$ (37) $sp^3d^2$  $sp^3d^2$  (38)

### **RACE: 14**

- **1.** (C) **2.** (D) **3.** (A) **4.** (A) **5.** (C) **6.** (C) **7.** (B)
- **10.** (C) **11.** (D) **12.** (D) **13.** (C) **14.**  $H_2O > H_2S > BF_3$  **15.** (A)
- **16.** (B) **17.** a-qr, b-qs, c-q, d-prs **18.** (C) **19.** (C) **20.** (D) **21.** (D)
- **22.** (C) **23.** (C) **24.** (D) **25.** (A) **26.**a–S, b–p, c–Q, d–TR **27.** (B)
- **28.** (C) **29.** (D) **31.** (B) **32.** (A) **33.** (A)
- 34. (i) diple-dipole (ii)H-bonding (iii)H-bonding (iv)dipole-dipole (vi) dipole-dipole (vii) Metallic (viii) H-bonding (v) H-bonding dipole-dipole (x) ion-dipole (xi) London-forces (xii) co-valent bond (ix) (xiii) London forces (xiv) Ionic (xv) dipole-induced dipole (xvi)London forces

#### **RACE: 15**

7. 1. (B) 2. A-p, B-r, C-q, D-s **3.** (A) 4. (C) 5. (B) 8. (C) 9.  $NO^+$ 10. (B) 11. (A) 12. (B) 13. (B)

CHEMISTRY ADI/E-33





#### **RACE: 16**

| 1. (D) 2. (B) 3. (C) 4. (D) 5. (ABCD) 6. (D) 7. (C) | 1. | (D) | 2. | (B) | 3. | (C) | 4. | (D) | 5. | (ABCD) | 6. | (D) | 7. | (C) |
|-----------------------------------------------------|----|-----|----|-----|----|-----|----|-----|----|--------|----|-----|----|-----|
|-----------------------------------------------------|----|-----|----|-----|----|-----|----|-----|----|--------|----|-----|----|-----|

## **RACE: 17**

**14.** (i)
$$P_4O_6 = 0.5 \text{ mole}, P_4O_{10} = 0.5 \text{ mole}$$
, (ii)  $P_4O_6 = 2 \text{ mole}, P_4O_{10} = 1 \text{ mole}$ , (iii)  $P_4O_6 = 1 \text{ mole}, P_4O_{10} = 2 \text{ mole}$ 

# **RACE: 18**

19. 
$$(A) \rightarrow P,Q; (B) \rightarrow P,Q; (C) \rightarrow S (D) \rightarrow R$$
 20.  $(A) \rightarrow Q (B) \rightarrow P (C) \rightarrow S (D) \rightarrow R$ 

# **RACE: 19**

#### **RACE: 20**

**12.** (a) (i) 2 (ii) 2 (b)(i) 1 (ii) **2 13.** (i) 2, 6, 2, 3 (ii) 
$$3, 2, \frac{6}{5}$$
 (iii)  $3, 1, 3$ 

21. (a) 
$$FeSO_4 = \frac{152}{1} = 152$$
  $KClO_3 = \frac{122.5}{6} = 20.4$  (b)  $Na_2SO_3 = \frac{126}{2} = 63$   $Na_2CrO_4 = \frac{162}{4} = 40.5$ 

(c) 
$$Fe_3O_4 = \frac{232}{1} = 232$$
  $KMnO_4 = \frac{158}{3} = 52.67$  (d)  $KI = \frac{166}{1}$   $K_2Cr_2O_7 = \frac{294}{6} = 49$