

(1) BUNDESREPUBLIK **DEUTSCHLAND**

® Offenlegungsschrift ® DE 19735103 A 1

(f) Int. Cl. 6: A 61 C 8/00

DEUTSCHES PATENTAMT

197 35 103.4 (7) Aktenzeichen: ② Anmeideteg: 13. 8.97

(4) Offenlegungstag: 29. 10. 98

(iii) Innere Priorität:

197 16 857.4

22.04.97

(ii) Anmelder:

Gieloff, Burkhardt R., Dr.med.dent., 79211 Denzlingen, DE

(4) Vertreter:

Hiebsch Peege Behrmann, 78224 Singen

@ Erfinder:

Gieloff, Burkhardt R., Dr.med.dent., 79211 Denzlingen, DE; Klatt, Jürgen Christian, Dr.med.dent., 79211 Denzlingen, DE

Die folgenden Angaben sind den vom Anmelder eingereichten Unterlegen entnommen

- Zahnmedizinisches Implantat sowie Instrument zum Einsatz eines Implantats
- Bei einem zahnmedizinischen Implantat mit zapfenartig zylindrischem Körper sowie einer Anschlußfläche für Zahnersatz ist an den zapfenartig zylindrischen Körper als Führungsteil des Implantats ein diesem gegenüber sich querschnittlich erweiterndes Kopfstück unregelmäßigen bzw. nicht rotationssymmetrischen Querschnitts angeformt. Zwischen dem Zapfenstück und dem Kopfstück kann eine Zwischenzone vorgesehen und deren Winkel von der Außenfläche zur Längsachse des Zapfenstückes größer sein als der Winkel der Längsachse mit der Außenfläche des Kopfstückes.

Beschreibung

Die Erfindung betrifft ein zahnmedizinisches Implantat mit zapfenartig zylindrischem Körper sowie einer – bevorzugt wenigstens eine Aufnahmeöffnung für ein Verbindungselement eines Zahnersatzes aufweisende – Anschlußfläche für Zahnersatz. Zudem erfaßt die Erfindung ein Instrument zum Herstellen einer Knochenkavität in einem Kieferknochen mit einem dem Querschnitt einer Bohrung etwa entsprechendem Bereich an einer Antriebseinrichtung zum Einsatz eines Implantats.

In der zahnärztlichen Implantologie werden im allgemeinen Schrauben oder Zylinderimplantate verwendet. Um diese in den Kieferknochen einzubringen, muß zunächst ein knöchernes Lager geschaffen werden. Das Implantatlager 15 wird mit Knochenfräsen unterschiedlichen Durchmessers und verschiedener Länge in den Knochen rotierend gebohrt. Da Bohrungen naturgemäß rotationssymmetrisch sind, folgt daraus auch zwangsläufig, daß die wurzelförmigen Zahnimplantate ebenfalls rotationssymmetrisch sein müssen – dies 20 im Gegensatz zu natürlichen Zähnen, die normalerweise nie rotationssymmetrische Querschnitte anbieten.

Werden im Durchmesser kreisförmige Implantate eingesetzt, so kommt es bei der prothetischen Versorgung dieser Implantate zu Schwierigkeiten. Da der Zahnersatz, also die 25 Kronen, auf den Implantaten den natürlichen Zahnkronen entsprechen sollen, muß mit Hilfe sog. Mesiostrukturen der Übergang vom kreisrunden Querschnitt des Implantats zur ellipsoiden Form des Aufbaus geschaffen werden. Solche Verfahren sind aufwendig, teuer und bringen erhebliche 30 Nachteile für die Schleimhautdurchtrittstelle des Implantats mit sich, wo die Verschraubungen dieser Mesiostrukturen durchgeführt werden müssen. Ein weiteres Problem rotationssymmetrischer Implantatprofile ist die freie Verdrehmöglichkeit der Aufbauten. Letzterer kann durch das Einfrä- 35 sen mehrkantiger Aufnahmen in die Implantat/Suprastruktur-Verbindungsstelle Rinhalt geboten werden. Dadurch wird aber das Implantat im Aufnahmebereich der Suprastruktur geschwächt, da hier die Durchmesser ohnehin 3, 5-4 mm nicht überschreiten dürfen.

Diese Diskrepanz zwischen Zahndurchmesser einerseits und rundem Implantatdurchmesser andererseits hat u, a, folgende Nachteile:

- ungünstige Ästhetik;
- ungünstige Biomechanik;
- schwierige hygienische Voraussetzungen;
- hobe Kosten durch erforderliche Mesiostrukturen.

Anatomische – also dem natürlichen Zahnaufbau entsprechende – Implantatformen könnten dagegen – wie die natürlichen Zahnwurzeln – aus dem Knochen bis in das Zahnfleisch reichen und problemlos mit Kronen versorgt werden, da sie im Querschnitt den natürlichen Zahnwurzeln entsprechen. Solche elliptische oder auch z. T. rhombische Querschnitt sind aber nicht mit rotierenden Instrumenten paßgenau in den Knochen einfräsbar.

Ziel der Rrfindung ist es daher, ein System zu entwickeln, mit dem die Präparation unterschiedlicher genauer asymmetrischer Implantatlager im Knochen möglich ist, damit Implantate nicht mehr zwangsweise kreisrunde Querschnitte aufweisen müssen und sich besser an der anatomischen Form orientieren können. Zudem soll ein dafür geeignetes Instrument angeboten werden.

Zur Lösung dieser Aufgabe führen die Lehren der unabhängigen Patentansprüche; die Unteransprüche geben günstige Weiterbildungen an.

Erfindungsgemäß ist an den zapfenartig zylindrischen

Körper als Führungsteil des Implantats ein diesem gegentüber sich querschnittlich erweiterndes Kopfstück unregelmäßigen bzw. nicht rotationssymmetrischen Querschnittes angeformt; der nicht rotationssymmetrische Querschnitt sichert das Implantat bzw. die Suprastruktur gegen ein Verdrehen, so daß dank dieser Ausgestaltung auch bei der prothetischen Versorgung solcher Implantate der Aufwand geringer bleibt.

Kieferknochen mit einem dem Querschnitt einer Bohrung etwa entsprechendem Bereich an einer Antriebseinrichtung 100 zum Einsatz eines Implantats.

In der zahnärztlichen Implantologie werden im allgemeinen Schrauben oder Zylinderimplantate verwendet. Um diese in den Kieferknochen einzubringen, muß zunächst ein knöchernes Lager geschaffen werden. Das Implantatlager 100 kel der Längsachse mit der Außenfläche des Kopfstückes. Das Verhältnis des Winkels für das Zapfenstück zum Winkel knöchernes Lager geschaffen werden. Das Implantatlager 100 kel der Längsachse mit der Außenfläche des Kopfstückes. Das Verhältnis des Winkels für das Zapfenstück zum Winkel knöchernes Lager geschaffen werden. Das Implantatlager 100 kel der Längsachse des Zapfenstückes des Kopfstückes. Das Verhältnis des Winkels für das Zapfenstück zum Winkel knöchernes Lager geschaffen werden. Das Implantatlager 100 kel der Längsachse des Zapfenstückes des Kopfstückes. Das Verhältnis des Winkels für das Zapfenstück zum Winkel knöchernes Lager geschaffen werden. Das Implantatlager 100 kel der Längsachse des Zapfenstückes des Kopfstückes. Das Verhältnis des Winkels für das Zapfenstück zum Winkel knöchernes Lager geschaffen werden. Das Implantatlager 100 kel der Längsachse des Zapfenstückes des Kopfstückes. Das Verhältnis des Winkels für das Zapfenstück zum Winkel knöchernes Lager geschaffen werden. Das Implantatlager 100 kel der Längsachse des Zapfenstückes des Kopfstückes. Das Verhältnis des Winkels für das Zapfenstück zum Winkel knöchernes Lager geschaffen werden. Das Implantation des Verhältnis des Winkels für das Zapfenstück zum Winkel knöchernes Lager geschaffen werden. Das Implantation des Verhältnis des Winkels für das Zapfenstück zum Winkel knöchernes Lager geschaffen werden. Das Implantation des Verhältnis des Winkels für das Zapfenstück zum Winkel knöchernes Lager geschaffen werden. Das Implantation des Verhältnis des Winkels für das Zapfenstück zum Winkel knöchernes knöchernes knöchernes knöchernes knöchernes knöchernes knöchernes knöchernes knö

Obwohl alle nicht rotationssymmetrischen Querschnitte von der Erfindung umfaßt werden, sind angenähert elliptische Querschnitte des Kopfstückes, teilrhombische Querschnitte und rechteckige Querschnitte mit Bugspitze – also in Draufsicht der Sicht auf einen Kahn ähnelnd – bevorzugt,

Um derart gestaltete Implantat einsetzen zu können, bedarf es einer besonderen Ausführung der entsprechenden Knochenkavität im Kieferknochen; die Implantateinheilung erfordert eine genaue Kongruenz zwischen Implantatbett und Implantat,

Dank der Erfindung, kann der mündungsnahe Bereich einer eine rotationssymmetrischer Bohrung zur Aufnahme des Implantats enthaltenden Knochenkavität durch einen in deren Achsrichtung verlaufenden Fräsvorgang querschnittlich asymmetrisch aufgeweitet werden. Dazu wird zuerst eine rotationssymmetrische Bohrung üblicher Art in den Kieferknochen gesetzt, anschließend mit einem in dieser geführte Instrument gegenüber dem Kieferknochen auf- und abbewegt sowie asymmetrisch durch ein oszillierende Vertikalbewegung spanabhebend verformt.

Ein derartiges erfindungsgemäßes Instrument weist einen Kopfteil asymmetrischen Querschnittes mit an seiner Außenseite vorgesehenen Fräselementen auf sowie einen dem Kopfteil zugeordneten rotationssymmetrischen Führungsteil – zum Einsetzen in jene Bohrung –, wobei das Instrument in Richtung der Längsachse des Führungsteils von der Antriebseinrichtung hin und her bewegbar ausgebildet ist.

Dank dieser Erfindung eines asymmetrischen Implantates 45 mit entsprechend asymmetrischem Implantatbettaufbereiter wird die zugrundeliegende Aufgabe in bestechender Weise gelöst. Der Implantataufbereiter ist erfindungsgemäß eine Knochenfräse oder -feile, die durch schnelle oszillierende Vertikalbewegungen das knöcherne Lager aufzubereiten vermag. Zunächst wird in den Knochen mit berkömmlichen Implantatbettfräsern eine zylindrische Bohrung eingebracht; der untere zylindrische Führungsteil des Knochenfräsers wird dazu in diese Pilotbohrung eingesetzt. Um nun im oberen Knochenbereich ein zahnähnliches asymmetrisches Knochenlager zu erhalten, wird mit dem oberen Teil des asymmetrischen Knochenfräsers durch schnelle Auf- und Abbewegungen das Knochenlager erweitert. Durch stufenweises Vorgeben mit aufeinander abgestimmten Aufbereitern lassen sich praktisch alle notwendigen Formen erzielen. In das so vorbereitete Implantatlager können jetzt entsprechende anatomische Implantate eingesetzt und nach erfolgter Einheilung die Implantate dann ohne größeren Aufwand mit Zahnersatz versehen werden.

Im Rahmen der Erfindung liegen verschiedene asymmetrische Knochenfeilen mit unterschiedlichen Querschnitten, Steigungen und Rormen für die mechanische Aufbereitung des Implantatbettlagers.

Weitere Vorteile, Merkmale und Einzelheiten der Erfin-

3

dung ergeben sich aus der nachfolgenden Beschreibung bevorzugter Ausführungsbeispiele sowie anhand der Zeichnung; diese zeigt in

Fig. 1: eine Schrägsicht auf eine Seite eines natürlichen Zahnes in einem geschnitten dargestellten Kieferknochen; Fig. 2: den im Kieferknochen sitzenden Zahn in Prontan-

Fig. 3, 4: den Wiedergaben in Fig. 1, 2 entsprechende Darstellungen einer Zahnkrone auf einem zylindrischen Implantat;

Fig. 5, 6: jeweils eine Zahnkrone auf einem anatomischen Implantat in dem geschnitten dargestellten Kieferknochen;

Fig. 7, 8: Schrägsichten auf unterschiedliche anatomische Implantatformen;

Fig. 9 bis 13: skizzenhafte Schrägsichten zu verschiedenen Schritten des Einbaus eines anatomischen Implantats in einen geschnitten dargestellten Kieferknochen;

Fig. 14: eine Schrägsicht auf einen fertigen Zahn in Frontansicht;

Fig. 15: den Längsschnitt durch Fig. 14;

Fig. 16: eine vergrößerte Schrägsicht auf ein Behandlungsgerät für den Kieferknochen;

Fig. 17 bis 19: gegenüber Fig. 16 verkleinerte Beispiele für Querschnitte des Behandlungsgerätes.

Ein natürlicher Schneidezahn 10 aus Zahnkrone 12, 25 Zahnhals 14 und Zahnwurzel 16 lagert mit letzterer in einem Zahnfach oder einer Alveole 18 eines Kieferknochens 20. Dieser ist von – den Zahnhals 14 umschließendem – Bindegewebe 22 und Epithel 24 überlagert. Aus Gründen der Übersichtlichkeit sind z. B. Zahnhöhle und Pulpe des Zahnes 10 in der Zeichnung ebenso vernachlässigt wie Zahnzement, Zahnwurzelhaut und Zahnfleischsaum. Die Alveole oder Knochenkavität 18 ist der Unregelmäßigkeit der Zahnwurzel 16 angepaßt.

Um Schrauben oder Zylinderimplantate für Zahnersatz in 35 den Kieferknochen 20 einzubringen, muß zunächst ein knöchemes Lager geschaffen werden, da eine genaue Kongruenz zwischen Implantatbett und Implantat gefordert ist. Mit einem Knochenfräser wird eine rotationssymmetrische Bohrung – in unterschiedlichen Durchmessern und verschiedener Länge – als Implantatlager in den Kieferknochen 20 gebohrt. Für diese Implantatlager müssen alle wurzelförmigen Zahnimplantate ebenfalls rotationssymmetrisch sein – im Gegensatz zu den natürlichen Zähnen 10 nach Fig. 1, 2, die keine rotationssymmetrischen Querschnitte anbieten.

Bei einem in Fig. 3, 4 gezeigten querschnittlich kreisförmigen Implantat 26 für eine künstliche Krone 28 muß mit Hilfe einer sog. Mesiostruktur 30 der Übergang von der Anschluß-fläche 32 des Implantats 26 zur elliptoiden Anschlußfläche 34 der Krone 28 geschaffen werden. Die Verschraubungen dieser Mesiostruktur 30 erfolgen im Schleimhautdurchtrittsbereich. Gegen die Rotationsmöglichkeit der Aufbauten werden – hier nicht erkennbare – sechskantige Aufnahmen in die Implantat/Suprastruktur-Verbindungsstelle eingefrüst.

Anatomische Implantate 36, 36_a nach der Erfindung reichen- wie die natürlichen Zahnwurzeln – aus dem Kieferknochen 20 bis in das Zahnfleisch bzw. das Bindegewebe 22 und können problemlos mit Kronen 28 versorgt werden, beispielsweise gemäß Fig. 14, 15 unter Zwischenschaltung eines in die Krone 28 eingefügten, mit einem Gewindeschaft 38 versehenen hutartigen Kupplungsbolzens 40, der auf die in Fig. 12 bis 15 oben liegende, eine Gewindebohrung 42 aufweisende Anschlußfläche 44 des Implantats 36, 36_a aufgesetzt wird.

Die Implantate 36, 36, sind analog zu den natürlichen Zahnwurzeln 16 mit elliptischen oder auch z. T. rhombischen Querschnitten ausgestattet, können aber nicht mit ro-

4

tierenden Instrumenten paßgenau in den Kieferknochen 20 eingefräst werden. Die querschnittliche Form der anatomischen Implantate 36, 36a selbst geht aus der Zeichnung nicht hervor, in Längserstreckung verjüngt sich das Implantat 36 von seiner Anschlußfläche 44 zuerst mit trichterartiger Außenfläche 46 und geht allmählich in ein Zapfenstück 48 über; in Fig. 6, 7 ist das trichterartige Kopfstück 50 durch eine sich ihm gegenüber stark verjüngende Zwischenzone 52 mit dem Zapfenstück 48a verbunden. Hier beträgt der Winkel w zwischen der Längsachse A des Zapfenstücks 48 und der Außenfläche 46 des Kopfstücks 50 etwa 8°, der Winkel w zwischen Längsachse A und der Außenfläche 53 der Zwischenzone 52 etwa 25°.

Die nicht rotationssymmetrischen Querschnitte sichern die Suprastruktur gegen ein Verdrehen, so daß auch bei der prothetischen Versorgung solcher Implantate 36, 36, der Aufwand geringer bleibt.

Zum Pestlegen dieser anatomischen Implantate 36, 36, wird zunächst in den Kieferknochen 20 gemäß Fig. 9 mit einem – an einem Bohrwerkzeug 54 festliegenden – herkömmlichen Implantatbettfräser 56 zylindrischen Querschnittes eine entsprechende Pilotbohrung 58 des Durchmessers d eingebracht. Um im oberen Knochenbereich ein zahnähnliches asymmetrisches Knochenlager zu erhalten, wird dann ein erfindungsgemäßer Implantatbettaufbereiter oder Knochenfräser 60 asymmetrischer Ausgestaltung an einem Werkzeug 62 mit Hubantrieb eingesetzt.

In jene Pilotbohrung 58 wird ein unterer zylindrischer Führungsteil 64 des Implantatbettaufbereiters bzw. des Knochenfräsers 60 eingesetzt, während ein daran anschließender oberer Teil 66 des Knochenfräsers 60 das knöcherne Lager durch schnelle oszillierende Vertikalbewegungen gemäß Pfeil y aufbereitet bzw. erweitert. Der Knochenfräser 60 der Fig. 10, 11, 16 zeigt den unteren zylindrischen Teil oder Führungsschaft 64 der Länge a mit kalottenartig gerundetem Ende 68 sowie den darüber beginnenden oberen Teil 66, der sich in Stufen nach oben hin bis zu einer Firstfläche 70 erweitert; mit 72 sind – die Stufen bildende – nach außen und abwärts weisende Schneidkanten bezeichnet.

Von der Firstfläche 70 ragt – bevorzugt in der Längsachse M des Führungsschaftes 64 ein Anschlußschaft 74 für die Kopplung der Knochenfräse 60 an das Werkzeug oder Aufbereitungsgerät 62 auf, das als zahnärztliches Handstück, Ultraschallhandstück od. dgl. ausgebildet ist und die erwähnten oszillierenden Bewegungen hervorruft.

Dieser Anschlußschaft 74 läßt an seinem freien Ende 75 bei 76 ein Eintrittsloch für eine Kühlflüssigkeit erkennen; diese zirkuliert in einem nicht dargestellten Innenkühlsystem, das im Führungsteil 64 Austrittslöcher 78 für Kühlund Spülflüssigkeit anbietet, Das Kühlmittel wird zur Vermeidung einer Knochenüberhitzung sowie zur Spülung während des Aufbereitungsvorganges eingeleitet, und es tritt an verschiedenen Stellen im unteren Bereich wieder aus, Dadurch wird das Instrument gespült und ein Verkleben 55 durch Knochenspäne verhindert,

In ein durch diese Knochenfräse 60 aufbereitetes asymmetrisches Implantatlager 80 können dann gemäß Fig. 12, 13 entsprechende anatomische Implantate 36, 36, eingesetzt werden. Nach erfolgter Einheilung werden letztere ohne größeren Aufwand in beschriebener Weise mit Zahnersatz 28 versehen.

Die Zeichnung zeigt nur einige Ausführungen der Knochenfräse 60. An deren Oberteil 66 als aktivem Teil mit den Schneidkanten 72 – die auch gezahnt oder diamantenbesetzt sein können – schließt der zylindrische untere Führungsteil 64 an. Diese Aufbereiter 60 können verschiedene Querschnitte, Steigungen und Formen aufweisen und aufeinander abgestimmt sein.

6

Günstige Querschnittsformen des oberen Teils 66 des Knochenfräsers 60 – und damit auch der Anschlußfläche 44 – des anatomischen Implantates 36, 36_a zeigen die Fig. 17 bis 19, nämlich eine Tropfenform, ein einseitig mit einer Einformung versehenes Oval sowie ein Rechteck mit gerundeten Beken und einem Bugteil 82,

Patentansprüche

- 1. Zahnmedizinisches Implantat mit zapfenartig zylinderischem Körper sowie einer Anschlußfläche für Zahnersatz, dadurch gekennzeichnet, daß an den zapfenartig zylindrischen Körper (48, 48_a) als Führungsteil des Implantats (36, 36_a) ein diesem gegenüber sich querschnittlich erweiterndes Kopfstück (50) unregelmäßigen bzw. nicht rotationssymmetrischen Querschnitts angeformt ist.
- Implantat nach Anspruch 1, dadurch gekennzeichnet, daß zwischen dem Zapfenstück (48a) und dem Kopfstück (50) eine Zwischenzone (52) vorgesehen 20 und deren Winkel (w1) von der Außenfläche (53) zur Längsachse (A) des Zapfenstückes größer ist als der Winkel (w) der Längsachse mit der Außenfläche (46) des Kopfstückes.
- Implantat nach Anspruch 2, gekennzeichnet durch 25 ein Verhältnis des Winkels (w) für das Zapfenstück (48_k) zum Winkel (w₁) der Zwischenzone (52) von 1:2 bis 1:4, bevorzugt etwa 1:3.
- 4. Implantat nach einem der Ansprüche 1 bis 3, gekennzeichnet durch einen angenähert elliptischen 30 Ouerschnitt des Kopfstückes (50).
- Implantat nach einem der Ansprüche 1 bis 3, gekennzeichnet durch einen teilrhombischen Querschnitt des Kopfstückes (50).
- Implantat nach einem der Ansprüche 1 bis 3, gekennzeichnet durch einen etwa rechteckigen Querschnitt mit Bugspitze (82) des Kopfstückes (50).
- 7. Instrument zum Herstellen einer Knochenkavität in einem Kieferknochen zur Aufnahme eines Implantats mit einem den Querschnitt einer Bohrung etwa entspre- 40 chenden Bereich an einer Antriebseinrichtung zum Einsatz eines Implantats nach wenigstens einem der voraufgehenden Ansprüche, dadurch gekennzeichnet, daß das Instrument (60) einen Kopfteil (66) asymmetrischen Querschnittes mit an seiner Außenseite vorgese- 45 benen Fräselementen sowie einen dem Kopfteil zugeordneten rotationssymmetrischen Führungsteil (64) aufweist, wobei das Instrument in Richtung (y) der Längsachse (M) des Führungsteils von der Antriebseinrichtung (62) hin- und herbewegbar ausgebildet ist. 50 8. Instrument nach Anspruch 7, dadurch gekennzeichnet, daß sich der Kopfteil (66) in Richtung (y) der Längsachse (M) des Führungsteils (64) querschnittlich
- 9. Instrument nach Anspruch 7 oder 8, dadurch gekennzeichnet, daß sich der Kopfteil (66) stufenförmig erweitert.
- Instrument nach Anspruch 9, dadurch gekennzeichnet, daß die Stufen des Kopfteils (66) Schneidkanten (72) bilden.
- Instrument nach Anspruch 9 oder 10, dadurch gekennzeichnet, daß die Stufen des Kopfteils (66) mit Diamanten od. dgl. spanabbebenden Elementen versehen sind.
- 12. Instrument nach einem der Ansprüche 7 bis 11, gekennzeichnet durch ein Kühlsystem mit zumindest einem kopfwärtigen Eintrittsloch (76) und wenigstens einem im Führungsteil (64) vorgesehenen Austrittsloch

(78)

- Instrument nach wenigstens einem der Ansprüche
 bis 12, dadurch gekennzeichnet, daß das Führungsteil
 (64) mit einem teilkalottenartigen Ende (68) versehen
- 14. Instrument nach wenigstens einem der Ansprüche 7 bis 12, gekennzeichnet durch einen angenähert elliptischen Querschnitt des Kopfteils (66) bzw. dessen Firstfläche (70).
- 15. Instrument nach wenigstens einem der Ansprüche 7 bis 12, gekennzeichnet durch einen teilrhombischen Querschnitt des Kopfteils (66) bzw. dessen Firstfläche (70).
- 16. Instrument nach wenigstens einem der Ansprüche 7 bis 12, gekennzeichnet durch einen etwa rechteckigen Querschnitt mit Bugspitze (82) des Kopfteils (66) bzw. dessen Firstfläche (70).

Hierzu 3 Seite(n) Zeichnungen

- Leerseite -

Nummer: Int. Cl.⁶: Offenlegungstag: DE 197 35 103 A1 A 61 C 8/00 29. Oktober 1998

