3-2 向量组 (例题和作业的答案)

向量组是考研线性代数学习中的第一个难点,而这份习题讲义,基本覆盖了考研的向量组中的所有题型,只要大家吃透这个讲义(包括作业),这章基本就过关了!

套路一 向量组相关性的判定

向量组相关性的判定, 其核心是研究向量组的秩和向量个数之间的关系——因为秩表示了向量组中独立向量的个数, 如果秩小于总向量个数, 就代表有多余向量, 那么整个向量组就相关; 如果秩等于总向量个数, 就代表没有多余向量, 故向量组无关.

接下来, 我把这部分的题目分为"具体型"和"抽象型", 难点是研究抽象型向量组的相关性.

(一) 具体向量组的相关性

解:本题是最简单的类型,只需要将向量拼成矩阵,然后利用初等变换求秩即可.答案为 6.

例题 2 下列向量组中, 线性无关的是()

A.
$$(1,2,3,4)^{\mathrm{T}}$$
, $(2,3,4,5)^{\mathrm{T}}$, $(0,0,0,0)^{\mathrm{T}}$

B.
$$(1,2,3)^{\mathrm{T}}$$
, $(2,3,4)^{\mathrm{T}}$, $(9,8,7)^{\mathrm{T}}$, $(0,\pi,e)^{\mathrm{T}}$

C.
$$(a, 1, 2, 5)^{\mathrm{T}}$$
, $(b, 1, 2, 5)^{\mathrm{T}}$, $(c, 4, 5, 6)^{\mathrm{T}}$, $(d, 0, 0, 0)^{\mathrm{T}}$

D.
$$(a, 1, b, 0, 0)^{\mathrm{T}}$$
, $(c, 0, d, 1, 0)^{\mathrm{T}}$, $(e, 0, f, 0, 1)^{\mathrm{T}}$

解:选D.

A 选项中有零向量, 必然线性相关:

B选项中有4个3维向量, 由于个数>维数, 必然线性相关;

C 选项中有
$$4 \land 4$$
 维向量,故线性相关性可以通过行列式是否为零来判断,而 $\begin{bmatrix} a & b & c & d \\ 1 & 1 & 1 & 0 \\ 2 & 2 & 2 & 0 \\ 5 & 5 & 5 & 0 \end{bmatrix} = 0$,故相关;

D 选项,因为"本身无关,则延长必无关",所以由
$$\begin{pmatrix}1\\0\\0\end{pmatrix}$$
, $\begin{pmatrix}0\\1\\0\end{pmatrix}$, $\begin{pmatrix}0\\1\\0\end{pmatrix}$ 无关,可得 $\begin{pmatrix}a\\1\\b\\0\\0\end{pmatrix}$, $\begin{pmatrix}c\\0\\d\\1\\0\end{pmatrix}$, $\begin{pmatrix}e\\0\\f\\0\\1\end{pmatrix}$ 也无关.

注:个数=维数,求行列式;个数>维数,必相关;个数<维数,拼矩阵,用初等变换求秩.

例题 3 设向量组 $\alpha_1 = (1, t_1, \dots, t_1^{n-1}), \alpha_2 = (1, t_2, \dots, t_2^{n-1}), \dots, \alpha_r = (1, t_r, \dots, t_r^{n-1}),$ 其中 $t_1, t_2, \dots t_r$ 互不相同,请讨论 $\alpha_1, \alpha_2, \dots, \alpha_r$ 的相关性.

解:这是r个n维向量,讨论相关性前需要先讨论r和n的大小关系.

(2)
$$\exists r = n, \quad \mathbb{M} | \boldsymbol{\alpha}_{1}, \boldsymbol{\alpha}_{2}, \dots, \boldsymbol{\alpha}_{r}| = |\boldsymbol{\alpha}_{1}, \boldsymbol{\alpha}_{2}, \dots, \boldsymbol{\alpha}_{n}| = \begin{vmatrix} 1 & 1 & \cdots & 1 \\ t_{1} & t_{2} & \cdots & t_{n} \\ \vdots & \vdots & \ddots & \vdots \\ t_{1}^{n-1} & t_{2}^{n-1} & \cdots & t_{n}^{n-1} \end{vmatrix} = \prod_{1 \leq i < j \leq n} (t_{j} - t_{i}),$$

由于 $t_1, t_2, \dots t_r$ 互不相同, 所以 $|\alpha_1, \alpha_2, \dots, \alpha_r| \neq 0$, 故 $\alpha_1, \alpha_2, \dots, \alpha_r$ 线性无关;

显然
$$a_1', a_2', \dots, a_r'$$
是 $r \land r$ 维向量,仿照(2)中的解法,可得 $|a_1', a_2', \dots, a_r'| = \prod_{1 \le i \le r} (t_j - t_i) \neq 0$,

故 a_1', a_2', \cdots, a_r' 线性无关. 由于"本身无关,则延长必无关",所以此时 a_1, a_2, \cdots, a_r 线性无关.

综上, 若r > n, 相关; 若 $r \le n$, 无关.

注 1: 范德蒙行列式可不只是在第一章中有作用;在后面的学习中我们可以看到,在向量组,方程组, 甚至二次型的正定型中,范德蒙行列式的身影仍然频频出现,希望大家引起重视!

注 2: 具体型向量的相关性很简单,属于期末考试难度,所以不再多耗时间,接下来请看抽象型的例题.

(二) 抽象向量组的相关性

抽象向量的相关性是难点题型,主要考察对"定义"和"性质"的理解. 但其实只要定义用得"溜"、性质背得熟,这类题不过只是纸老虎而已,希望大家能够好好研究以下的这些题目.

例题 4(1994 年,改编) 已知 $\alpha_1,\alpha_2,\alpha_3$ 线性无关,证明: $\alpha_1-\alpha_2-2\alpha_3$, $2\alpha_1+\alpha_2-\alpha_3$, $3\alpha_1+\alpha_2+2\alpha_3$ 也无关.

分析:本题的解法非常多,可以利用初等列变换求秩,也可以利用线性无关的定义,还可以"逆用矩阵乘法".

法1: 利用初等列变换求秩.

$$r(\alpha_{1} - \alpha_{2} - 2\alpha_{3}, 2\alpha_{1} + \alpha_{2} - \alpha_{3}, 3\alpha_{1} + \alpha_{2} + 2\alpha_{3})$$

$$= r(\alpha_{1} - \alpha_{2} - 2\alpha_{3}, 3\alpha_{2} + 3\alpha_{3}, 4\alpha_{2} + 8\alpha_{3})$$

$$= r(\alpha_{1} - \alpha_{2} - 2\alpha_{3}, \alpha_{2} + \alpha_{3}, \alpha_{2} + 2\alpha_{3})$$

$$= r(\alpha_{1}, -\alpha_{3}, \alpha_{2} + 2\alpha_{3})$$

$$= r(\alpha_{1}, \alpha_{2}, \alpha_{3}).$$

由于 $\alpha_1,\alpha_2,\alpha_3$ 线性无关,所以 $\alpha_1-\alpha_2-2\alpha_3$, $2\alpha_1+\alpha_2-\alpha_3$, $3\alpha_1+\alpha_2+2\alpha_3$ 也无关,证毕.

法 2: 利用线性无关的定义

假设存在常数 k_1, k_2, k_3 , 使得 $k_1(\alpha_1 - \alpha_2 - 2\alpha_3) + k_2(2\alpha_1 + \alpha_2 - \alpha_3) + k_3(3\alpha_1 + \alpha_2 + 2\alpha_3) = \mathbf{0}$, 故只需证明 k_1, k_2, k_3 必须全为零即可.

将括号打开, 重新组合, 得到 $(k_1+2k_2+3k_3)\alpha_1+(-k_1+k_2+k_3)\alpha_2+(-2k_1-k_2+2k_3)\alpha_3=0$,

由于 $\mathbf{a}_1, \mathbf{a}_2, \mathbf{a}_3$ 线性无关,由线性无关的定义可知, $\begin{cases} k_1 + 2k_2 + 3k_3 = 0 \\ -k_1 + k_2 + k_3 = 0 \\ -2k_1 - k_2 + 2k_3 = 0 \end{cases}$

由于系数行列式
$$\begin{vmatrix} 1 & 2 & 3 \\ -1 & 1 & 1 \\ -2 & -1 & 2 \end{vmatrix} = \begin{vmatrix} 1 & 2 & 3 \\ 0 & 3 & 4 \\ 0 & 5 & 8 \end{vmatrix} = 3 \times 8 - 5 \times 4 = 4 \neq 0$$
,

故该方程组只有零解, 即 $k_1 = k_2 = k_3 = 0$.

由线性无关的定义可知, $\alpha_1 - \alpha_2 - 2\alpha_3$, $2\alpha_1 + \alpha_2 - \alpha_3$, $3\alpha_1 + \alpha_2 + 2\alpha_3$ 线性无关, 证毕.

法 3: 逆用矩阵乘法

$$?P = (\boldsymbol{a}_1, \boldsymbol{a}_2, \boldsymbol{a}_3), B = (\boldsymbol{a}_1 - \boldsymbol{a}_2 - 2\boldsymbol{a}_3, 2\boldsymbol{a}_1 + \boldsymbol{a}_2 - \boldsymbol{a}_3, 3\boldsymbol{a}_1 + \boldsymbol{a}_2 + 2\boldsymbol{a}_3),$$

易得
$$(\boldsymbol{a}_1 - \boldsymbol{a}_2 - 2\boldsymbol{a}_3, 2\boldsymbol{a}_1 + \boldsymbol{a}_2 - \boldsymbol{a}_3, 3\boldsymbol{a}_1 + \boldsymbol{a}_2 + 2\boldsymbol{a}_3) = (\boldsymbol{a}_1, \boldsymbol{a}_2, \boldsymbol{a}_3) \begin{pmatrix} 1 & 2 & 3 \\ -1 & 1 & 1 \\ -2 & -1 & 2 \end{pmatrix}, 即 \boldsymbol{B} = \boldsymbol{P}\boldsymbol{A}$$

由于 $\alpha_1, \alpha_2, \alpha_3$ 线性无关,故P为列满秩矩阵,所以r(PA) = r(A),即r(B) = r(A) = 3,

所以 $\alpha_1 - \alpha_2 - 2\alpha_3$, $2\alpha_1 + \alpha_2 - \alpha_3$, $3\alpha_1 + \alpha_2 + 2\alpha_3$ 线性无关, 证毕.

注:在使用法 3 时,在将矩阵 $\mathbf{B} = (\mathbf{\alpha}_1 - \mathbf{\alpha}_2 - 2\mathbf{\alpha}_3, 2\mathbf{\alpha}_1 + \mathbf{\alpha}_2 - \mathbf{\alpha}_3, 3\mathbf{\alpha}_1 + \mathbf{\alpha}_2 + 2\mathbf{\alpha}_3)$ 分解为 $\mathbf{P} = (\mathbf{\alpha}_1, \mathbf{\alpha}_2, \mathbf{\alpha}_3)$

乘系数矩阵
$$A = \begin{pmatrix} 1 & 2 & 3 \\ -1 & 1 & 1 \\ -2 & -1 & 2 \end{pmatrix}$$
以后,很多同学会这么去思考:

"因为系数矩阵A是可逆矩阵,而可逆矩阵乘以任何其它矩阵,都不会改变那个矩阵的秩,所以由B = PA可知,r(B) = r(P),再根据 $\alpha_1, \alpha_2, \alpha_3$ 线性无关可知r(P) = 3,所以r(B) = 3,故线性无关。"

上述这个想法, 在应对这道题时, 是没有问题的, 但该方法本身有严重漏洞,

因为对于一般的题目而言,我们无法保证系数矩阵A一定是方阵!如果不是方阵,就谈不上是否可逆,也就推不出后面的一系列结论了.(本题的A之所以恰好是方阵,是因为 α 的个数和B的列数刚好都是 3).

比如,一旦将本题的欲证结论改为"证明 $a_1-a_2-2a_3$, $2a_1+a_2-a_3$ 线性无关",那么逆用矩阵乘法可

以得到
$$(\mathbf{a}_1 - \mathbf{a}_2 - 2\mathbf{a}_3, 2\mathbf{a}_1 + \mathbf{a}_2 - \mathbf{a}_3) = (\mathbf{a}_1, \mathbf{a}_2, \mathbf{a}_3) \begin{pmatrix} 1 & 2 \\ -1 & 1 \\ -2 & -1 \end{pmatrix}$$
,但由于系数矩阵并不是方阵,那么就无法利用

上面的逻辑来解题了.但根据"整体无关→部分无关"的性质可知,这两个向量确实是无关的,所以我们肯定要寻找其它的方法来进行解题;

再比如,就算系数矩阵A是方阵,它也不一定是可逆的方阵——众所周知,可逆矩阵A乘以其它矩阵P,不会改变P的秩,即:若A为可逆矩阵,则r(AP)=r(PA)=r(P);但是如果A不可逆,那么r(AP)和r(PA)就一定不等于r(P)吗?答案是否定的,比如直接取A和P都是零矩阵即可.

所以,无论从哪个角度来看,这种解题思路都不对,我们无法保证系数矩阵A可逆,甚至连A是方阵都无法保证。

那么,正确的思路应该是什么呢?

答:根据《向量组(理论)》第7页的公式(9)可知——列满秩矩阵P,乘在任何矩阵A的左边,都不会改变A本身的秩,即"若P列满秩,则r(PA)=r(A)"。由于本题已知 $\alpha_1,\alpha_2,\alpha_3$ 无关,所以 $P=(\alpha_1,\alpha_2,\alpha_3)$ 列满秩!所以将 $B=(\alpha_1-\alpha_2-2\alpha_3,\ 2\alpha_1+\alpha_2-\alpha_3,\ 3\alpha_1+\alpha_2+2\alpha_3)$ 分解为 $P=(\alpha_1,\alpha_2,\alpha_3)$ 乘以一个系数矩阵

$$A = \begin{pmatrix} 1 & 2 & 3 \\ -1 & 1 & 1 \\ -2 & -1 & 2 \end{pmatrix}$$
以后,应该是根据 P 列满秩,推出 $r(PA) = r(A)$,所以,向量组 $(\alpha_1, \alpha_2, \alpha_3)$ 的秩就是系数矩

阵的秩,问题迎刃而解!

有的同学可能会问——如果题目条件改为"假设 $\alpha_1,\alpha_2,\alpha_3$ 线性相关"呢,那 $P=(\alpha_1,\alpha_2,\alpha_3)$ 就不是列满秩了啊,这种题该怎么做呢?

其实,考试不可能这么考的.因为如果出题人假设 $\alpha_1,\alpha_2,\alpha_3$ 线性相关的话,那我可以直接假设所有的 α_i 全都是零向量,那么这题就没什么意义了;所以,如果要考,前提肯定是 $\alpha_1,\alpha_2,\alpha_3$ 线性无关!

类题 设向量组 $\alpha_1, \alpha_2, \cdots, \alpha_s (s \ge 3)$ 线性无关,且 $\begin{cases} \boldsymbol{\beta}_1 = \boldsymbol{\alpha}_2 + \boldsymbol{\alpha}_3 + \cdots + \boldsymbol{\alpha}_s \\ \boldsymbol{\beta}_2 = \boldsymbol{\alpha}_1 + \boldsymbol{\alpha}_3 + \cdots + \boldsymbol{\alpha}_s \\ \cdots \qquad \cdots \qquad \\ \boldsymbol{\beta}_s = \boldsymbol{\alpha}_1 + \boldsymbol{\alpha}_2 + \cdots + \boldsymbol{\alpha}_{s-1} \end{cases}$,证明: $\boldsymbol{\beta}_1, \boldsymbol{\beta}_2, \cdots, \boldsymbol{\beta}_s$ 线性无关.

解: 本题采用"逆用矩阵乘法"的解法. $(\boldsymbol{\beta}_1, \boldsymbol{\beta}_2, \cdots, \boldsymbol{\beta}_s) = (\boldsymbol{\alpha}_1, \boldsymbol{\alpha}_2, \cdots, \boldsymbol{\alpha}_s) \begin{pmatrix} 0 & 1 & \cdots & 1 \\ 1 & 0 & \cdots & 1 \\ \vdots & \vdots & \ddots & \vdots \\ 1 & 1 & \cdots & 0 \end{pmatrix}$.

又由于 $\boldsymbol{a}_1, \boldsymbol{a}_2, \cdots, \boldsymbol{a}_s$ 线性无关,故 $(\boldsymbol{a}_1, \boldsymbol{a}_2, \cdots, \boldsymbol{a}_s)$ 是列满秩矩阵,故 $r(\boldsymbol{\beta}_1, \boldsymbol{\beta}_2, \cdots, \boldsymbol{\beta}_s) = r(\boldsymbol{A}) = n$. 所以, $\boldsymbol{\beta}_1, \boldsymbol{\beta}_2, \cdots, \boldsymbol{\beta}_s$ 线性无关,证毕.

从例 5 开始, 我们集中训练一些"利用线性无关的定义去证明线性无关"的题, 这类题目非常重要.

例题 5 设A为n阶方阵, $\alpha_1,\alpha_2,\alpha_3$ 为n维列向量, $\alpha_3 \neq 0$, $A\alpha_1 = \alpha_2$, $A\alpha_2 = \alpha_3$, $A\alpha_3 = 0$,证明: $\alpha_1,\alpha_2,\alpha_3$ 无关。解:(要证明抽象向量组线性无关、最根本的方法是使用线性无关的定义)

假设存在常数 k_1,k_2,k_3 , 使得 $k_1\alpha_1+k_2\alpha_2+k_3\alpha_3=\mathbf{0}$, 故只需证明 k_1,k_2,k_3 必须全为零即可.

在上式两边左乘矩阵A, 得 $k_1\alpha_2 + k_2\alpha_3 = 0$; 再次左乘A, 得 $k_1\alpha_3 = 0$,

由于 $\alpha_3 \neq \mathbf{0}$, 所以只能 $k_1 = 0$;

将 $k_1 = 0$ 代入 $k_1\alpha_2 + k_2\alpha_3 = 0$ 中, 可得 $k_2\alpha_3 = 0$,

由于 $\alpha_3 \neq \mathbf{0}$, 所以只能 $k_2 = 0$;

最后,将 $k_1 = k_2 = 0$ 代入 $k_1 \alpha_1 + k_2 \alpha_2 + k_3 \alpha_3 = 0$ 中,可得 $k_3 \alpha_3 = 0$,

由于 $\alpha_3 \neq \mathbf{0}$, 所以只能 $k_3 = 0$.

综上, $k_1 = k_2 = k_3 = 0$, 故 $\alpha_1, \alpha_2, \alpha_3$ 线性无关, 证毕!

考研竞赛凯哥-线性代数一本通

注: 学完相似理论以后,本题可以再加一个问,考察A的行列式、特征值、是否可相似对角化等一系列问题. 在新考纲下,考研线代只有一个大题了,很可能考察这种横跨两条主线的大题.

类题 已知A为n阶矩阵, $\alpha_1,\alpha_2,\alpha_3$ 是n维列向量组,且 $\alpha_1 \neq 0$, $A\alpha_1 = 2\alpha_1$, $A\alpha_2 = \alpha_1 + 2\alpha_2$, $A\alpha_3 = \alpha_2 + 2\alpha_3$. 证明: $\alpha_1,\alpha_2,\alpha_3$ 线性无关.

解:通过上题的解题过程可以发现,这种题最关键的就是"观察哪一个向量不为零"! 比如本题,注意到 $\alpha_1 \neq 0$,所以我们可以猜测最后很可能是通过" $k\alpha_1 = 0$ "来得到系数 $k \neq 0$.

假设存在常数 k_1, k_2, k_3 , 使得 $k_1 \alpha_1 + k_2 \alpha_2 + k_3 \alpha_3 = 0$, 故只需证明 k_1, k_2, k_3 必须全为零即可.

由于 $Aa_1 = 2a_1$, $Aa_2 = a_1 + 2a_2$, $Aa_3 = a_2 + 2a_3$, 故 $(A - 2E)a_1 = 0$, $(A - 2E)a_2 = a_1$, $(A - 2E)a_3 = a_2$.

在 $k_1\alpha_1 + k_2\alpha_2 + k_3\alpha_3 = \mathbf{0}$ 的两边同时左乘A - 2E, 得 $k_2\alpha_1 + k_3\alpha_2 = \mathbf{0}$; 再次左乘A - 2E, 得 $k_3\alpha_1 = \mathbf{0}$.

由于 $\alpha_1 \neq \mathbf{0}$, 所以只能 $k_3 = 0$, 以此类推可以得到 $k_1 = k_2 = k_3 = 0$.

故 $\alpha_1,\alpha_2,\alpha_3$ 线性无关,证毕!

例题 6(1998 年) A 为n 阶方阵, α 为n 维列向量, $A^{k-1}\alpha \neq 0$, $A^k\alpha = 0$,证明: $\alpha, A\alpha, \cdots, A^{k-1}\alpha$ 线性无关.

解: 假设存在常数 k_0, k_1, \dots, k_{n-1} ,使得 $k_0 \alpha + k_1 A \alpha + \dots + k_{n-1} A^{k-1} \alpha = 0$,故只需证明 k_0, \dots, k_{n-1} 全为零即可.

由于 $A^k\alpha=0$,故 $A^{k+1}\alpha=0$ 、 $A^{k+2}\alpha=0$ 、…

 $A^{k-1}\alpha = 0$ 两边同时左乘矩阵 A^{k-1} , 则有 $A^{k-1}\alpha = 0$

由于 $A^{k-1}\alpha \neq \mathbf{0}$, 故只能 $k_0 = 0$;

将 $k_0 = 0$ 代入 $k_0 \boldsymbol{\alpha} + k_1 \boldsymbol{A} \boldsymbol{\alpha} + \dots + k_{n-1} \boldsymbol{A}^{k-1} \boldsymbol{\alpha} = \boldsymbol{0}$ 中,得 $k_1 \boldsymbol{A} \boldsymbol{\alpha} + \dots + k_{n-1} \boldsymbol{A}^{k-1} \boldsymbol{\alpha} = \boldsymbol{0}$,

两边同时左乘矩阵 A^{k-2} ,则有 $k_1A^{k-1}\alpha=0$,可推得 $k_1=0$;

以此类推,最终可得到 $k_0 = k_1 = \cdots = k_{n-1} = 0$. 故 $\alpha, A\alpha, \cdots, A^{k-1}\alpha$ 线性无关.

注:本题的解法很精彩,其结论也很重要——我们在下一个专题里,证明结论"对于任意的n阶方阵A,均有 $r(A^n)=r(A^{n+1})$ "时,需要考察方程组 $A^nX=0$ 和 $A^{n+1}X=0$ 是否同解,其中的某一步就用了这个结论.

例题7 已知 $\alpha_1,\alpha_2,\cdots,\alpha_n$ 是两两正交的非零向量,证明: $\alpha_1,\alpha_2,\cdots,\alpha_n$ 线性无关.

解:假设存在常数 k_1,k_2,\cdots,k_n ,使得 $k_1\alpha_1+k_2\alpha_2+\cdots+k_n\alpha_n=\mathbf{0}$,故只需证明 k_1,k_2,\cdots,k_n 必须全为零即可.

由于 $\alpha_1, \alpha_2, \cdots, \alpha_n$ 是两两正交的非零向量,故对于任意的 $i \neq j$,均有 $(\alpha_i, \alpha_j) = 0$ (这里表示内积!).

所以, $a_1 + k_2 a_2 + \cdots + k_n a_n = 0$ 两边同时与 a_1 做内积, $a_1 = 0$.

由于 α_1 是非零向量,故 $\|\alpha_1\|^2 \neq 0$,故只能 $k_1 = 0$.

同理, 若与 α_2 做内积, 可推得 $k_2=0$.

以此类推,可以得出 $k_1 = k_2 = \cdots = k_n$,所以 $\alpha_1, \alpha_2, \cdots, \alpha_n$ 线性无关,证毕.

注:本题的结论非常重要,它揭示了"线性无关"和"两两正交"之间的关系.请体会下面几道题目中"正交"这个条件在证明线性无关时的作用.

例题 8 设n维列向量 α_1, α_2 无关, β_1, β_2 也无关,且对 $\forall i, j$,均有 α_i 和 β_j 正交.证明: $\alpha_1, \alpha_2, \beta_1, \beta_2$ 线性无关.**解**:采用线性无关的定义进行证明.

假设存在常数 k_1, k_2, l_1, l_2 , 使得 $k_1 \boldsymbol{a}_1 + k_2 \boldsymbol{a}_2 + l_1 \boldsymbol{\beta}_1 + l_2 \boldsymbol{\beta}_2 = \boldsymbol{0}$, 故只需证明 $k_1 = k_2 = l_1 = l_2 = 0$ 即可.

由于"对 $\forall i,j$,均有 α_i 和 β_i 正交",故 $k_1\alpha_1 + k_2\alpha_2$ 和 $l_1\beta_1 + l_2\beta_2$ 也正交!(做一做内积就知道啦~)

所以, $a_1 + k_2 a_2 + l_1 \beta_1 + l_2 \beta_2 = 0$ 的两边同时与 $k_1 a_1 + k_2 a_2$ 做内积, $a_1 + k_2 a_2 = 0$ 0,

故 $k_1\alpha_1 + k_2\alpha_2 = \mathbf{0}$, 又由于 α_1, α_2 线性无关, 所以 $k_1 = k_2 = 0$;

将 $k_1 = k_2 = 0$ 代入可得, $l_1 \beta_1 + l_2 \beta_2 = 0$, 又由于 β_1, β_2 线性无关, 所以 $l_1 = l_2 = 0$.

综上, $k_1=k_2=l_1=l_2=0$, 所以 $\alpha_1,\alpha_2,\beta_1,\beta_2$ 线性无关, 证毕.

注: 充分利用 α_1, α_2 线性无关,从而<u>一次性</u>得出 k_1 和 k_2 均为 0; 同理,利用 β_1, β_2 无关,得出 l_1 和 l_2 也为 0; 这种整体的思想在证明线性无关时非常有用! (尤其是已知某一部分已经无关时!)

例题9 设 $\alpha_1,\alpha_2,\cdots,\alpha_n$ 为n个n维线性无关的列向量,且向量 β 与 $\alpha_1,\alpha_2,\cdots,\alpha_n$ 均正交.证明: $\beta=0$.

法1 由于 $\alpha_1, \alpha_2, \dots, \alpha_n$ 为n个n维无关向量,故任何一个n维向量均可由 $\alpha_1, \alpha_2, \dots, \alpha_n$ 线性表示.

不妨假设 $\beta = k_1 \alpha_1 + k_2 \alpha_2 + \dots + k_n \alpha_n$, 在等式两边同时与 β 做内积, 得 $\|\beta\|^2 = 0$, 即 $\beta = 0$.

法 2 将
$$\boldsymbol{a}_1, \boldsymbol{a}_2, \cdots, \boldsymbol{a}_n$$
 拼成矩阵,令 $\boldsymbol{A} = \begin{pmatrix} \boldsymbol{a}_1^{\mathrm{T}} \\ \boldsymbol{a}_2^{\mathrm{T}} \\ \vdots \\ \boldsymbol{a}_n^{\mathrm{T}} \end{pmatrix}$.

由于
$$oldsymbol{eta}$$
与 $oldsymbol{a}_1, oldsymbol{a}_2, \cdots oldsymbol{a}_n$ 均正交,故 $\begin{pmatrix} oldsymbol{a}_1^{\mathsf{T}} \\ oldsymbol{a}_2^{\mathsf{T}} \\ \vdots \\ oldsymbol{a}_n^{\mathsf{T}} \end{pmatrix} oldsymbol{eta} = \begin{pmatrix} 0 \\ 0 \\ \vdots \\ 0 \end{pmatrix}$,即 $oldsymbol{A}oldsymbol{eta} = oldsymbol{0}$.

因为 $\alpha_1,\alpha_2,\cdots,\alpha_n$ 为n个n维线性无关的列向量,故A可逆,所以由 $A\beta=0$ 可得出 $\beta=0$,证毕.

注:如果有多个向量同时和一个向量正交,那么我们可以构造一个齐次线性方程组!

类题 设n维向量 $\alpha_1,\alpha_2,\cdots \alpha_{n-1}$ 线性无关,且与两个不同的非零向量 β_1,β_2 正交,证明:

(1)
$$\boldsymbol{\alpha}_1, \boldsymbol{\alpha}_2, \cdots \boldsymbol{\alpha}_{n-1}, \boldsymbol{\beta}_1$$
线性无关;

(2) β_1 与 β_2 线性相关.

解: (1) 反证法.

假设 $\alpha_1,\alpha_2,\cdots\alpha_{n-1},oldsymbol{eta}$ 线性相关,则由 $\alpha_1,\alpha_2,\cdots\alpha_{n-1}$ 线性无关可知, $oldsymbol{eta}_1$ 可以由 $\alpha_1,\alpha_2,\cdots\alpha_{n-1}$ 唯一线性表示,不妨假设 $oldsymbol{eta}_1=k_1\alpha_1+k_2\alpha_2+\cdots+k_{n-1}\alpha_{n-1}$,在等式两边同时与 $oldsymbol{eta}_1$ 做内积,得 $\|oldsymbol{eta}_1\|^2=0$,即 $oldsymbol{eta}_1=0$. 这与 $oldsymbol{eta}_1$ 为非零向量矛盾,故假设不成立,故 $oldsymbol{lpha}_1,lpha_2,\cdotslpha_{n-1},oldsymbol{eta}_1$ 线性无关,证毕.

(2) 本题我们采用两种解法.

(法1) 采用反证法.

假设 β_1 与 β_2 线性无关.

由于 $\alpha_1, \alpha_2, \cdots \alpha_{n-1}, \beta_1, \beta_2 \in \mathbb{Z}$ 是n+1个n维向量,个数>维数,故必定相关.

所以存在不全为零的系数 $k_1, k_2, \dots, k_{n-1}, l_1, l_2$, 使得 $k_1 \boldsymbol{\alpha}_1 + k_2 \boldsymbol{\alpha}_2 + \dots + k_{n-1} \boldsymbol{\alpha}_{n-1} + l_1 \boldsymbol{\beta}_1 + l_2 \boldsymbol{\beta}_2 = \boldsymbol{0}$.

做到这儿,不就变成例题8了吗?我们接下来借鉴例题8的解法——

在等式两边与 $l_1\boldsymbol{\beta}_1 + l_2\boldsymbol{\beta}_2$ 做内积,由于 $\boldsymbol{\alpha}_1,\boldsymbol{\alpha}_2,\cdots\boldsymbol{\alpha}_{n-1}$ 与 $\boldsymbol{\beta}_1,\boldsymbol{\beta}_2$ 正交,故结果为 $\|l_1\boldsymbol{\beta}_1 + l_2\boldsymbol{\beta}_2\|^2 = 0$,故 $l_1\boldsymbol{\beta}_1 + l_2\boldsymbol{\beta}_2 = 0$. 根据假设, $\boldsymbol{\beta}_1$ 与 $\boldsymbol{\beta}_2$ 线性无关,故 $l_1 = l_2 = 0$.

将 $l_1 = l_2 = 0$ 代入得, $k_1 \boldsymbol{\alpha}_1 + k_2 \boldsymbol{\alpha}_2 + \dots + k_{n-1} \boldsymbol{\alpha}_{n-1} = \boldsymbol{0}$.

又由于 $\alpha_1, \alpha_2, \cdots \alpha_{n-1}$ 也线性无关,故 $k_1 = k_2 = \cdots = k_{n-1} = 0$,这样就推出了 $k_1, k_2, \cdots, k_{n-1}, l_1, l_2$ 全为零!显然矛盾,这说明假设错误,所以 $\beta_1 = \beta_2$ 只能线性无关,证毕!

(法2) 利用方程组和基础解系的思想.

将
$$\boldsymbol{\alpha}_1, \boldsymbol{\alpha}_2, \cdots, \boldsymbol{\alpha}_{n-1}$$
拼成矩阵,令 $\boldsymbol{A} = \begin{pmatrix} \boldsymbol{\alpha}_1^{\mathrm{T}} \\ \boldsymbol{\alpha}_2^{\mathrm{T}} \\ \vdots \\ \boldsymbol{\alpha}_{n-1}^{\mathrm{T}} \end{pmatrix}$,易得 $\boldsymbol{A}\boldsymbol{\beta}_1 = \boldsymbol{A}\boldsymbol{\beta}_2 = \boldsymbol{0}$.

由于 $\alpha_1,\alpha_2,\cdots\alpha_{n-1}$ 线性无关,故r(A)=n-1,故齐次线性方程组Ax=0的基础解系中只有1个向量. 而由 $A\beta_1=A\beta_2=0$ 可知, β_1,β_2 均是Ax=0的解,故 β_1 与 β_2 必须线性相关,证毕. (法 3) 对方法 2 进行改进.

将
$$\boldsymbol{a}_1, \boldsymbol{a}_2, \cdots, \boldsymbol{a}_{n-1}$$
拼成矩阵 $\boldsymbol{A} = \begin{pmatrix} \boldsymbol{a}_1^{\mathrm{T}} \\ \boldsymbol{a}_2^{\mathrm{T}} \\ \vdots \\ \boldsymbol{a}_{n-1}^{\mathrm{T}} \end{pmatrix}$,再将 $\boldsymbol{\beta}_1, \boldsymbol{\beta}_2$ 拼成矩阵 $\boldsymbol{B} = (\boldsymbol{\beta}_1, \boldsymbol{\beta}_2)$,由向量的正交性可知 $\boldsymbol{A}\boldsymbol{B} = \boldsymbol{O}$.

故 $r(A)+r(B) \leq n$,又由于r(A)=n-1,故 $r(B) \leq 1$. 由于 β_1,β_2 是非零向量,故 $r(B) \geq 1$,故r(B)=1. 这说明 β_1,β_2 线性相关,证毕.

接下来, 看几道利用秩来判断相关性的题目.

例题 10 已知 $\alpha_1, \alpha_2, \alpha_3$ 线性无关, β_1 可由 $\alpha_1, \alpha_2, \alpha_3$ 表示, β_2 不可由 $\alpha_1, \alpha_2, \alpha_3$ 表示,则对任意的k,均有()

A.
$$\boldsymbol{\alpha}_1, \boldsymbol{\alpha}_2, \boldsymbol{\alpha}_3, k\boldsymbol{\beta}_1 + \boldsymbol{\beta}_2$$
 无关

B.
$$\boldsymbol{\alpha}_1, \boldsymbol{\alpha}_2, \boldsymbol{\alpha}_3, k\boldsymbol{\beta}_1 + \boldsymbol{\beta}_2$$
相关

C.
$$\boldsymbol{\alpha}_1, \boldsymbol{\alpha}_2, \boldsymbol{\alpha}_3, \boldsymbol{\beta}_1 + k\boldsymbol{\beta}_2$$
 无关

D.
$$\alpha_1, \alpha_2, \alpha_3, \beta_1 + k\beta_2$$
相关

解: 选 A.

对于A,B选项,由于 β_1 可由 $\alpha_1,\alpha_2,\alpha_3$ 表示,所以一定可以通过恰当的初等列变换,

将 $(\boldsymbol{\alpha}_1, \boldsymbol{\alpha}_2, \boldsymbol{\alpha}_3, k\boldsymbol{\beta}_1 + \boldsymbol{\beta}_2)$ 变为 $(\boldsymbol{\alpha}_1, \boldsymbol{\alpha}_2, \boldsymbol{\alpha}_3, \boldsymbol{\beta}_2)$,故 $r(\boldsymbol{\alpha}_1, \boldsymbol{\alpha}_2, \boldsymbol{\alpha}_3, k\boldsymbol{\beta}_1 + \boldsymbol{\beta}_2) = r(\boldsymbol{\alpha}_1, \boldsymbol{\alpha}_2, \boldsymbol{\alpha}_3, \boldsymbol{\beta}_2)$.

又由于" $\alpha_1,\alpha_2,\alpha_3$ 线性无关, β_2 不可由 $\alpha_1,\alpha_2,\alpha_3$ 表示", 可推出 $\alpha_1,\alpha_2,\alpha_3,\beta_2$ 线性无关(可用反证法证出).

故 $r(\boldsymbol{\alpha}_1,\boldsymbol{\alpha}_2,\boldsymbol{\alpha}_3,\boldsymbol{\beta}_2)=4$, 也即 $r(\boldsymbol{\alpha}_1,\boldsymbol{\alpha}_2,\boldsymbol{\alpha}_3,k\boldsymbol{\beta}_1+\boldsymbol{\beta}_2)=4$, 故选 A, 同时 B 选项自然就错误了;

对于 C, D 选项, 分析方法同时, 可推出 $r(\boldsymbol{\alpha}_1,\boldsymbol{\alpha}_2,\boldsymbol{\alpha}_3,\boldsymbol{\beta}_1+k\boldsymbol{\beta}_2)=r(\boldsymbol{\alpha}_1,\boldsymbol{\alpha}_2,\boldsymbol{\alpha}_3,k\boldsymbol{\beta}_2)$,

当k=0时, 显然相关; $k\neq0$ 时, 显然无关. 所以 C, D 选项均错误.

注:本题可以直接看出答案,无需动笔!我们需要记住:能被别人表示的向量,是多余向量;将多余向量添加到整个向量组中,不会改变该向量组本身的秩,所以在求秩时可以直接将其扔掉.

例题 11 设 n 维 向 量 $a_1, a_2, \dots a_m$ (m < n) 线性 无关,且 $a_{m+1} = k_1 a_1 + k_2 a_2 + \dots k_m a_m$, $k_i \neq 0$ ($i = 1, \dots, m$),证明: $a_1, a_2, \dots, a_m, a_{m+1}$ 中任 意 m 个 向 量 都 线性 无关.

解:由于 $\alpha_1,\alpha_2,\cdots\alpha_m$ 已经线性无关,故只需证明其余的情况也线性无关即可.

不失一般性, 我们只需证明 a_2, \dots, a_m, a_{m+1} 线性无关即可.

 $r(\boldsymbol{\alpha}_2,\cdots,\boldsymbol{\alpha}_m,\boldsymbol{\alpha}_{m+1})$

- $= r(\boldsymbol{a}_2, \cdots, \boldsymbol{a}_m, k_1 \boldsymbol{a}_1 + k_2 \boldsymbol{a}_2 + \cdots k_m \boldsymbol{a}_m)$
- $= r(\boldsymbol{\alpha}_2, \cdots, \boldsymbol{\alpha}_m, k_1 \boldsymbol{\alpha}_1)$
- $= r(\boldsymbol{\alpha}_2, \cdots, \boldsymbol{\alpha}_m, \boldsymbol{\alpha}_1)$
- $= r(\boldsymbol{\alpha}_1, \boldsymbol{\alpha}_2, \cdots, \boldsymbol{\alpha}_m) = m$

故 $\alpha_2, \cdots, \alpha_m, \alpha_{m+1}$ 线性无关. 同理可证明 $\alpha_1, \alpha_3, \cdots, \alpha_m, \alpha_{m+1}$ 也线性无关.

总之, $\alpha_1, \alpha_2, \cdots, \alpha_m, \alpha_{m+1}$ 中任意m 个向量都线性无关, 证毕!

注:对于本题而言,灵活使用秩的性质,比用定义法快得多.

例题 12 (2004 年) $A \neq 0$, $B \neq 0$, AB = 0, 请判断: (1)A的列向量组的相关性; (2)B的行向量组的相关性. **解:** 设 $A_{m \times n}$, $B_{n \times s}$, 由于AB = 0, 故 $r(A) + r(B) \le n$. 又由于 $A \neq 0$ 、 $B \neq 0$,故 $r(A) \ge 1$ 、 $r(B) \ge 1$. 所以 $r(A) \le n - 1$ 、 $r(B) \le n - 1$,故A的列向量组线性相关,B的行向量组也线性无关.

注:考研高频考点:若AB = O,则 $r(A) + r(B) \le n$,其中 $n \neq A$ 的列数(或B的行数).

类题 已知 4 维列向量组 α_1 , α_2 , α_3 线性无关, 如果 4 维非零列向量 β_1 , β_2 , β_3 , β_4 与 α_1 , α_2 , α_3 均正交,则向量组 β_1 , β_2 , β_3 , β_4 的秩为

例题 13 (2006 年) 设 $\alpha_1, \alpha_2, \dots, \alpha_s$ 均为n维列向量, A是 $m \times n$ 矩阵, 则下列说法正确的是()

- A. 若 $\alpha_1, \alpha_2, \dots, \alpha_s$ 线性相关,则 $A\alpha_1, A\alpha_2, \dots, A\alpha_s$ 线性相关.
- B. 若 $\alpha_1, \alpha_2, \cdots, \alpha_s$ 线性相关,则 $A\alpha_1, A\alpha_2, \cdots, A\alpha_s$ 线性无关.
- $C. 若 \alpha_1, \alpha_2, \cdots, \alpha_s$ 线性无关,则 $A\alpha_1, A\alpha_2, \cdots, A\alpha_s$ 线性相关.
- D. 若 $\alpha_1, \alpha_2, \cdots, \alpha_s$ 线性无关,则 $A\alpha_1, A\alpha_2, \cdots, A\alpha_s$ 线性无关.

解:选择题,需要的就是"快、准、狠",所以特殊值法非常好用!

- (1) 取A = 0, 排除选项 B, D.
- (2) 不妨假设m=n=s, 且A为单位矩阵E, 显然排除 C. 故选 A.
- (3) 对于 A 选项,可直接由线性相关的定义推出——

由于 a_1, a_2, \dots, a_s 线性相关,故存在不全为零的系数 k_1, k_2, \dots, k_s ,使得 $k_1 a_1 + k_2 a_2 + \dots + k_s a_s = \mathbf{0}$,在两边同时左乘A,即得 $k_1 A a_1 + k_2 A a_2 + \dots + k_s A a_s = \mathbf{0}$,故 $A a_1, A a_2, \dots, A a_s$ 线性相关,证毕.

题型二 向量的线性表示

讨论 β 能否被 $\alpha_1,\alpha_2,\cdots,\alpha_n$ 线性表示,一般有两种思路——

(1) 看
$$r(A) = r(\overline{A})$$
, 即 $r(a_1, a_2, \dots, a_n, \beta) = r(a_1, a_2, \dots, a_n)$

(2) 先证明出 $k_1 \boldsymbol{\alpha}_1 + k_2 \boldsymbol{\alpha}_2 + \cdots k_n \boldsymbol{\alpha}_n + k_0 \boldsymbol{\beta} = \boldsymbol{0}$, 然后再证明 $k_0 \neq 0$

当β能被表示时,如果还要求出具体的表示方式(表示系数),则可能涉及到解线性方程组的求解.

(一) 具体向量

方法为: 拼矩阵, 行变换, 求秩, 很简单.

例题 14
$$\alpha_1 = \begin{pmatrix} 1 \\ 2 \\ 2 \end{pmatrix}$$
, $\alpha_2 = \begin{pmatrix} -3 \\ -1 \\ 1 \end{pmatrix}$, $\alpha_3 = \begin{pmatrix} 5 \\ -3 \\ -3 \end{pmatrix}$, $\beta = \begin{pmatrix} 0 \\ 11 \\ 5 \end{pmatrix}$, 问 β 能否由 $\alpha_1, \alpha_2, \alpha_3$ 线性表示; 若能, 求出表示系数.

解: 研究 β 被 $α_1,α_2,α_3$ 线性表示的问题, 其实就是研究线性方程组 AX = β 解的问题.

$$(\boldsymbol{\alpha}_1, \boldsymbol{\alpha}_2, \boldsymbol{\alpha}_3, \boldsymbol{\beta}) = \begin{pmatrix} 1 & -3 & 5 & 0 \\ 2 & -1 & -3 & 11 \\ 2 & 1 & -3 & 5 \end{pmatrix} \rightarrow \begin{pmatrix} 1 & -3 & 5 & 0 \\ 0 & 5 & -13 & 11 \\ 0 & 2 & 0 & -6 \end{pmatrix} \rightarrow \begin{pmatrix} 1 & -3 & 5 & 0 \\ 0 & 5 & -13 & 11 \\ 0 & 1 & 0 & -3 \end{pmatrix} \rightarrow \begin{pmatrix} 1 & -3 & 5 & 0 \\ 0 & 1 & 0 & -3 \\ 0 & 0 & -13 & 26 \end{pmatrix},$$

由该阶梯型矩阵可知, $r(a_1,a_2,a_3)=r(a_1,a_2,a_3,\beta)=3$, 故 β 能由 a_1,a_2,a_3 唯一线性表示

若想求出具体的表示系数,可以继续化为行最简形矩阵,则最后一列必定是表示系数,

$$(\boldsymbol{a}_{1}, \boldsymbol{a}_{2}, \boldsymbol{a}_{3}, \boldsymbol{\beta}) \rightarrow \begin{pmatrix} 1 & -3 & 5 & 0 \\ 0 & 1 & 0 & -3 \\ 0 & 0 & -13 & 26 \end{pmatrix} \rightarrow \begin{pmatrix} 1 & -3 & 5 & 0 \\ 0 & 1 & 0 & -3 \\ 0 & 0 & 1 & -2 \end{pmatrix} \rightarrow \begin{pmatrix} 1 & 0 & 0 & 1 \\ 1 & 0 & -3 \\ 0 & 0 & 1 & -2 \end{pmatrix}, \quad \not \boxtimes \boldsymbol{\beta} = \boldsymbol{a}_{1} - 3\boldsymbol{a}_{2} - 2\boldsymbol{a}_{3}.$$

注1: 一定要牢记——初等行变换不会改变列向量组的相关性和表示系数;

注 2: 若某向量能被一个线性无关的向量组线性表示, 那么表示方式一定唯一(即表示系数被唯一确定).

例题 15 已知
$$\boldsymbol{\alpha}_1 = \begin{pmatrix} 1 \\ 0 \\ 1 \\ 0 \end{pmatrix}$$
, $\boldsymbol{\alpha}_2 = \begin{pmatrix} 2 \\ 2 \\ a \\ 2 \end{pmatrix}$, $\boldsymbol{\alpha}_3 = \begin{pmatrix} 3 \\ 1 \\ 1 \\ 1 \end{pmatrix}$, $\boldsymbol{\beta} = \begin{pmatrix} 4 \\ 1 \\ 6 \\ b \end{pmatrix}$, 讨论 $\boldsymbol{\beta}$ 能否由 $\boldsymbol{\alpha}_1, \boldsymbol{\alpha}_2, \boldsymbol{\alpha}_3$ 线性表示.

解:方法与上题相同,只是本题增加了2个参数,所以需要分类讨论.

$$(\boldsymbol{\alpha}_{1},\boldsymbol{\alpha}_{2},\boldsymbol{\alpha}_{3},\boldsymbol{\beta}) = \begin{pmatrix} 1 & 2 & 3 & 4 \\ 0 & 2 & 1 & 1 \\ 1 & a & 1 & 6 \\ 0 & 2 & 1 & b \end{pmatrix} \rightarrow \begin{pmatrix} 1 & 2 & 3 & 4 \\ 0 & 2 & 1 & 1 \\ 0 & a - 2 & -2 & 2 \\ 0 & 0 & 0 & b - 1 \end{pmatrix} \rightarrow \begin{pmatrix} 1 & 2 & 3 & 4 \\ 0 & 2 & 1 & 1 \\ 0 & a & -1 & 3 \\ 0 & 0 & 0 & b - 1 \end{pmatrix} \rightarrow \begin{pmatrix} 1 & 2 & 3 & 4 \\ 0 & 2 & 1 & 1 \\ 0 & 0 & -1 - \frac{a}{2} & 3 - \frac{a}{2} \\ 0 & 0 & 0 & b - 1 \end{pmatrix},$$

(1) 若
$$b=1$$
且 $a=-2$,则 $(\mathbf{\alpha}_1,\mathbf{\alpha}_2,\mathbf{\alpha}_3,\mathbf{\beta}) \rightarrow \begin{pmatrix} 1 & 2 & 3 & 4 \\ 0 & 2 & 1 & 1 \\ 0 & 0 & 0 & 4 \\ 0 & 0 & 0 & 0 \end{pmatrix}$,此时 $r(\mathbf{\alpha}_1,\mathbf{\alpha}_2,\mathbf{\alpha}_3) \neq r(\mathbf{\alpha}_1,\mathbf{\alpha}_2,\mathbf{\alpha}_3,\mathbf{\beta})$,故 $\mathbf{\beta}$ 不能由

 $\alpha_1, \alpha_2, \alpha_3$ 线性表示;

(3) 若
$$b \neq 1$$
,则 $(\mathbf{a}_1, \mathbf{a}_2, \mathbf{a}_3, \mathbf{\beta}) \rightarrow \begin{pmatrix} 1 & 2 & 3 & 0 \\ 0 & 2 & 1 & 0 \\ 0 & 0 & -1 - \frac{a}{2} & 0 \\ 0 & 0 & 0 & 1 \end{pmatrix}$,故无论 a 如何取值,均有 $r(\mathbf{a}_1, \mathbf{a}_2, \mathbf{a}_3) \neq r(\mathbf{a}_1, \mathbf{a}_2, \mathbf{a}_3, \mathbf{\beta})$,

所以 β 不能由 $\alpha_1,\alpha_2,\alpha_3$ 线性表示.

例题 16 若任意的三维列向量均可由 $\alpha_1 = \begin{pmatrix} 1 \\ 0 \\ 1 \end{pmatrix}$, $\alpha_2 = \begin{pmatrix} 1 \\ -2 \\ 3 \end{pmatrix}$, $\alpha_3 = \begin{pmatrix} a \\ 1 \\ 2 \end{pmatrix}$ 线性表示,求a的取值范围.

解:任意的三维列向量均可由 $\alpha_1,\alpha_2,\alpha_3$ 线性表示,这说明 $\alpha_1,\alpha_2,\alpha_3$ 一定线性无关!

故
$$|a_1, a_2, a_3| \neq 0$$
,即 $\begin{vmatrix} 1 & 1 & a \\ 0 & -2 & 1 \\ 1 & 3 & 2 \end{vmatrix} = \begin{vmatrix} 1 & 1 & a \\ 0 & -2 & 1 \\ 0 & 2 & 2-a \end{vmatrix} = -2(2-a)-2=2a-6\neq 0$,故 $a\neq 3$.

注: $n \wedge n$ 维无关向量,能够表示任何一个n 维向量;反之,若任何一个n 维向量都能被 $\alpha_1.\alpha_2, \cdots, \alpha_n$ 线性表示,则 $\alpha_1.\alpha_2, \cdots, \alpha_n$ 一定线性无关.

例题 17 向量组(I) 为:
$$\alpha_1 = \begin{pmatrix} a \\ 1 \\ 1 \end{pmatrix}$$
, $\alpha_2 = \begin{pmatrix} 1 \\ a \\ 1 \end{pmatrix}$, $\alpha_3 = \begin{pmatrix} 1 \\ 1 \\ a \end{pmatrix}$; 向量组(II) 为: $\beta_1 = \begin{pmatrix} 1 \\ 1 \\ a \end{pmatrix}$, $\beta_2 = \begin{pmatrix} -2 \\ a \\ 4 \end{pmatrix}$, $\beta_3 = \begin{pmatrix} -2 \\ a \\ a \end{pmatrix}$,

若(I)可以被(II)表示,但是(II)不可以由(I)表示,求a的值.

解: 先用必要性进行"探路", 求出 a 的初步取值, 然后再讨论这个取值是否满足题意.

由于(I)可以被(II)表示, 但是(II)不可以由(I)表示, 所以r(I) < r(II) (≤ 3), 故 $|\alpha_1, \alpha_2, \alpha_3| = 0$,

即
$$\begin{vmatrix} a & 1 & 1 \\ 1 & a & 1 \\ 1 & 1 & a \end{vmatrix} = (a+2) \begin{vmatrix} 1 & 1 & 1 \\ 1 & a & 1 \\ 1 & 1 & a \end{vmatrix} = (a+2) \begin{vmatrix} 1 & 1 & 1 \\ 0 & a-1 & 0 \\ 0 & 0 & a-1 \end{vmatrix} = (a+2)(a-1)^2, 故 a = -2 或 a = 1.$$

但是,这样得到的a的值只满足必要条件,还需进一步验证.

事实上,"(I)可以被(II)表示,但是(II)不可以由(I)表示"的充要条件是"r(II) = r(II,I)且r(I) < r(II)" (1) 若a = -2,此时需要验证三个秩,分别是r(I)、r(II)、r(II,I).

$$(\boldsymbol{\alpha}_{1},\boldsymbol{\alpha}_{2},\boldsymbol{\alpha}_{3}) = \begin{pmatrix} -2 & 1 & 1 \\ 1 & -2 & 1 \\ 1 & 1 & -2 \end{pmatrix} \rightarrow \begin{pmatrix} 1 & 0 & -1 \\ 0 & 1 & -1 \\ 0 & 0 & 0 \end{pmatrix}, \quad \forall r(I) = 2;$$

$$(\beta_1, \beta_2, \beta_3) = \begin{pmatrix} 1 & -2 & -2 \\ 1 & -2 & -2 \\ -2 & 4 & -2 \end{pmatrix} \rightarrow \begin{pmatrix} 1 & -2 & 0 \\ 0 & 0 & 1 \\ 0 & 0 & 0 \end{pmatrix}, \quad \text{ix } r(\Pi) = 2.$$

不满足r(I) < r(II),故a = -2不符合题意,舍去.

$$(\boldsymbol{\alpha}_1, \boldsymbol{\alpha}_2, \boldsymbol{\alpha}_3) = \begin{pmatrix} 1 & 1 & 1 \\ 1 & 1 & 1 \\ 1 & 1 & 1 \end{pmatrix} \rightarrow \begin{pmatrix} 1 & 1 & 1 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \end{pmatrix}, \quad \& r(I) = 1;$$

$$(II|I) = \begin{pmatrix} 1 & -2 & -2 & | & 1 & 1 & 1 \\ 1 & 1 & 1 & | & 1 & 1 & 1 \\ 1 & 4 & 1 & | & 1 & 1 & 1 \end{pmatrix} \rightarrow \begin{pmatrix} 1 & 0 & 0 & | & 1 & 1 & 1 \\ 0 & 1 & 0 & | & 0 & 0 & 0 \\ 0 & 0 & 1 & | & 0 & 0 & 0 \end{pmatrix}, \quad 故 r(II) = r(II,I) = 3, \quad 满足条件!$$
 综上, $a = 1$.

注: 我们一定要分清楚什么是充分条件,什么是必要条件,什么是充要条件;在理论部分的讲义中我们提到过,如果(I)可以被(II)表示,但(II)不能被(I)表示,则必有r(I) < r(II)——但是很明显,该命题的逆命题并不成立,也就是说,我们无法仅从"r(I) < r(II)"推出"(I)可以被(II)表示,但(II)不能被(I)表示"。事实上,"r(I) < r(II)"只是"(I)可以被(II)表示,但(II)不能被(I)表示"的必要条件而已,更何况 $|a_1,a_2,a_3|=0$ 甚至连r(I) < r(II)都无法保证! 总之,当我们用r(I) < r(II)求出a的值后,必须将a的值回代到题干条件。

甚至连r(I) < r(II)都无法保证! 总之,当我们用r(I) < r(II)求出a的值后,必须将a的值回代到题干条件

检验是否满足"(I)可以被(II)表示,但(II)不能被(I)表示".

(二) 抽象向量

对于抽象向量的线性表示问题, 我们主要利用定义、性质、结论来解决.所以理论部分的那几页讲义, 希望大家熟读、熟背、灵活使用!

例题 18 (1992 年,1998 年) 设 $\alpha_1, \alpha_2, \alpha_3$ 线性相关, $\alpha_2, \alpha_3, \alpha_4$ 线性无关, 问:

α₁能否由α₂和α₃线性表示;
 α

(2) a4能否由a1,a2,a3线性表示.

解: (1) $\alpha_2, \alpha_3, \alpha_4$ 线性无关,所以 α_2, α_3 线性无关,而 $\alpha_1, \alpha_2, \alpha_3$ 线性相关,故 α_1 能被 α_2, α_3 唯一线性表示.

(2) 由于 a_1 能被 a_2, a_3 唯一线性表示,所以问" a_4 能否由 a_1, a_2, a_3 线性表示"就等价于问" a_4 能否由 a_2, a_3 线性表示"。由于 a_2, a_3, a_4 线性无关,所以显然 a_4 不能由 a_2, a_3 线性表示,即 a_4 不能由 a_1, a_2, a_3 线性表示。

注:本题用秩也能轻松解决——

(1) 只需判断 $r(\mathbf{a}_1,\mathbf{a}_2,\mathbf{a}_3)$ 和 $r(\mathbf{a}_2,\mathbf{a}_3)$ 的大小即可.

由题意可知, $r(\boldsymbol{\alpha}_1, \boldsymbol{\alpha}_2, \boldsymbol{\alpha}_3) \leq 2 \operatorname{L} r(\boldsymbol{\alpha}_2, \boldsymbol{\alpha}_3, \boldsymbol{\alpha}_4) = 3$.

由 $r(\alpha_2, \alpha_3, \alpha_4) = 3$ 可知 $r(\alpha_2, \alpha_3) = 2$, 又由于 $r(\alpha_2, \alpha_3) \leqslant r(\alpha_1, \alpha_2, \alpha_3) \leqslant 2$, 所以 $r(\alpha_1, \alpha_2, \alpha_3) = 2$, 故 α_1 能被 α_2, α_3 唯一线性表示.

(2) 只需判断 $r(\mathbf{a}_1, \mathbf{a}_2, \mathbf{a}_3, \mathbf{a}_4)$ 和 $r(\mathbf{a}_1, \mathbf{a}_2, \mathbf{a}_3)$ 的大小即可.

由(1)可知, $r(\alpha_1, \alpha_2, \alpha_3) = 2$;

由于 α_1 能被 α_2 , α_3 线性表示,故 $r(\alpha_1,\alpha_2,\alpha_3,\alpha_4)=r(\alpha_2,\alpha_3,\alpha_4)=3$,故 α_4 不能由 $\alpha_1,\alpha_2,\alpha_3$ 线性表示.

例题 19 (1999 年) 设 β 可由向量组 $\alpha_1,\alpha_2,\dots,\alpha_n$ 表示, 但不能由 $\alpha_1,\alpha_2,\dots\alpha_{n-1}$ 表示, 问:

(1) $\boldsymbol{\alpha}_n$ 能否由 $\boldsymbol{\alpha}_1, \boldsymbol{\alpha}_2, \cdots \boldsymbol{\alpha}_{n-1}$ 线性表示.

(2) a_n 能否由 $a_1, a_2, \cdots a_{n-1}, \beta$ 线性表示.

解: (1) 显然 α_n 不能由 $\alpha_1, \alpha_2, \cdots \alpha_{n-1}$ 线性表示,可以采用反证法进行证明.

假设 α_n 能由 $\alpha_1, \alpha_2, \cdots \alpha_{n-1}$ 线性表示,则存在一组系数 $k_1, k_2, \cdots, k_{n-1}$,使得 $\alpha_n = k_1 \alpha_1 + k_2 \alpha_2 + \cdots + k_{n-1} \alpha_{n-1}$. 由于 β 可由向量组 $\alpha_1, \alpha_2, \cdots, \alpha_n$ 表示,故存在一组系数 l_1, l_2, \cdots, l_n ,使得 $\beta = l_1 \alpha_1 + l_2 \alpha_2 + \cdots + l_n \alpha_n$. 若将 $\alpha_n = k_1 \alpha_1 + k_2 \alpha_2 + \cdots + k_{n-1} \alpha_{n-1}$ 代入 $\beta = l_1 \alpha_1 + l_2 \alpha_2 + \cdots + l_n \alpha_n$,则可推出 β 由 $\alpha_1, \alpha_2, \cdots \alpha_{n-1}$ 表示.

这与题干条件矛盾,故假设错误,即 a_n 不能由 $a_1,a_2,\cdots a_{n-1}$ 线性表示.

考研竞赛凯哥-线性代数一本通

- (2) 利用秩进行分析, 故只需判断 $r(\boldsymbol{\alpha}_1,\boldsymbol{\alpha}_2,\cdots\boldsymbol{\alpha}_{n-1},\boldsymbol{\beta})$ 和 $r(\boldsymbol{\alpha}_1,\boldsymbol{\alpha}_2,\cdots\boldsymbol{\alpha}_{n-1},\boldsymbol{\alpha}_n,\boldsymbol{\beta})$ 的大小即可.
- 由于 β 可由向量组 $\alpha_1, \alpha_2, \cdots, \alpha_n$ 表示,故 $r(\alpha_1, \alpha_2, \cdots \alpha_{n-1}, \alpha_n, \beta) = r(\alpha_1, \alpha_2, \cdots \alpha_{n-1}, \alpha_n)$.
- 又由于 a_n 不能由 $a_1, a_2, \cdots a_{n-1}$ 线性表示,故 $r(a_1, a_2, \cdots a_{n-1}, a_n) = r(a_1, a_2, \cdots a_{n-1}) + 1$.
- 又由于 β 不能由 $\alpha_1, \alpha_2, \cdots \alpha_{n-1}$ 线性表示,故 $r(\alpha_1, \alpha_2, \cdots \alpha_{n-1}, \beta) = r(\alpha_1, \alpha_2, \cdots \alpha_{n-1}) + 1$.
- 综上, $r(\boldsymbol{\alpha}_1, \boldsymbol{\alpha}_2, \cdots \boldsymbol{\alpha}_{n-1}, \boldsymbol{\beta}) = r(\boldsymbol{\alpha}_1, \boldsymbol{\alpha}_2, \cdots \boldsymbol{\alpha}_{n-1}, \boldsymbol{\alpha}_n, \boldsymbol{\beta}) = r(\boldsymbol{\alpha}_1, \boldsymbol{\alpha}_2, \cdots \boldsymbol{\alpha}_{n-1}) + 1$, 故 $\boldsymbol{\alpha}_n$ 能由 $\boldsymbol{\alpha}_1, \boldsymbol{\alpha}_2, \cdots \boldsymbol{\alpha}_{n-1}, \boldsymbol{\beta}$ 表示.
- 例题 20 (1995年) 已知向量组(I): $\alpha_1, \alpha_2, \alpha_3$; (II): $\alpha_1, \alpha_2, \alpha_3, \alpha_4$; (III): $\alpha_1, \alpha_2, \alpha_3, \alpha_5$, 若r(I) = r(II) = 3, r(III) = 4, 证明向量组 $\alpha_1, \alpha_2, \alpha_3, \alpha_5 \alpha_4$ 线性无关.
- 解:由于r(I) = r(II) = 3,所以 α_4 能被 $\alpha_1, \alpha_2, \alpha_3$ 唯一线性表示. 故 $r(\alpha_1, \alpha_2, \alpha_3, \alpha_5 - \alpha_4) = r(\alpha_1, \alpha_2, \alpha_3, \alpha_5) = r(III) = 4$,所以 $\alpha_1, \alpha_2, \alpha_3, \alpha_5 - \alpha_4$ 线性无关,证毕.(这么快?)
- **例题 21** 设 $m \times n$ 的矩阵 A的秩为m(m < n), E_m 表示m阶单位矩阵,则下列说法正确的是()
 - A.A的任意m个列向量都线性无关
 - B. A 的任意一个m 阶子式都不为零
 - C. 若矩阵B满足BA = O,则B = O
 - D.A可以仅通过初等行变换, 化为 $(E_m, \mathbf{0})$ 的形式

解: 选 C.

- 取 $A = \begin{pmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \end{pmatrix}$, 满足题干条件, 但由于A的 3 列元素全为零, 故显然选项 A、B 均错误;
- 取 $A = \begin{pmatrix} 1 & 0 & 0 \\ 0 & 1 & 1 \end{pmatrix}$, 满足题干条件, 但无论如何初等变换, 都无法让最后一列全变成 0, 故选项 D 错误;
- 对于 C 选项,由于 BA = 0,推得 $r(B) + r(A) \le m$,又由于 r(A) = m,故 $r(B) \le 0$,即r(B) = 0, B = 0.

套路三 求极大无关组,并将其余向量用其表示

- [理论依据]: 初等行变换, 不会改变列向量组的相关性与表示系数; 同理, 初等列变换, 也不会改变行向量组的相关性与表示系数.
- [方法总结]: 拼矩阵, 行变换, 化为行最简, 主元所在的列即为一个极大无关组, 其余向量均可由其表示, 且表示系数就是该向量自己的坐标.
- [特别提醒]:一个向量组的极大无关组不一定唯一,所以上面的"方法总结"只是给出了一种寻找极大无关组的方法;但是无论如何,不同极大无关组中所含向量个数必定相同,它们都等于向量组的秩.

例题 22 已知
$$\alpha_1 = \begin{pmatrix} -1 \\ 1 \\ 2 \\ 4 \end{pmatrix}$$
, $\alpha_2 = \begin{pmatrix} 3 \\ 0 \\ 1 \\ 2 \end{pmatrix}$, $\alpha_3 = \begin{pmatrix} 0 \\ 3 \\ 7 \\ 14 \end{pmatrix}$, $\alpha_4 = \begin{pmatrix} -2 \\ 1 \\ 2 \\ 0 \end{pmatrix}$, $\alpha_5 = \begin{pmatrix} 1 \\ 2 \\ 5 \\ 10 \end{pmatrix}$, 求该向量组的一个极大无关组,并

将其余向量用极大无关组表示.

解:将向量组拼成矩阵,然后做初等变换即可.

$$(\boldsymbol{\alpha}_{1},\boldsymbol{\alpha}_{2},\boldsymbol{\alpha}_{3},\boldsymbol{\alpha}_{4},\boldsymbol{\alpha}_{5}) = \begin{pmatrix} -1 & 3 & 0 & -2 & 1 \\ 1 & 0 & 3 & 1 & 2 \\ 2 & 1 & 7 & 2 & 5 \\ 4 & 2 & 14 & 0 & 10 \end{pmatrix} \rightarrow \begin{pmatrix} 1 & 0 & 3 & 1 & 2 \\ 0 & 3 & 3 & -1 & 3 \\ 0 & 1 & 1 & 0 & 1 \\ 0 & 2 & 2 & -4 & 2 \end{pmatrix} \rightarrow \begin{pmatrix} 1 & 0 & 3 & 0 & 2 \\ 0 & 1 & 1 & 0 & 1 \\ 0 & 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 0 & 0 \end{pmatrix},$$

化成行最简以后,主元所在的列即为一个极大无关组,故取 a_1,a_2,a_4 为一个极大无关组,

 $\mathbb{L}\boldsymbol{\alpha}_3 = 3\boldsymbol{\alpha}_1 + 1 \cdot \boldsymbol{\alpha}_2 + 0 \cdot \boldsymbol{\alpha}_3$, $\boldsymbol{\alpha}_5 = 2\boldsymbol{\alpha}_1 + 1 \cdot \boldsymbol{\alpha}_2 + 0 \cdot \boldsymbol{\alpha}_3$.

套路四 向量组等价与矩阵等价

例题 23 向量组(I):
$$\alpha_1 = \begin{pmatrix} 1 \\ 3 \\ 0 \\ 5 \end{pmatrix}$$
, $\alpha_2 = \begin{pmatrix} 1 \\ 2 \\ 1 \\ 4 \end{pmatrix}$, $\alpha_3 = \begin{pmatrix} 1 \\ 1 \\ 2 \\ 3 \end{pmatrix}$; (II): $\beta_1 = \begin{pmatrix} 1 \\ -3 \\ 6 \\ -1 \end{pmatrix}$, $\beta_2 = \begin{pmatrix} a \\ 0 \\ b \\ 2 \end{pmatrix}$. 若(I)与(II)等价, 求 a,b .

解: (I)与(II)等价的充要条件是r(I) = r(II) = r(I,II).

对(I,II)做初等行变换,可同时得出r(I)和r(I,II),故需要再单独考察r(II).

$$(I,II) = \begin{pmatrix} 1 & 1 & 1 & 1 & a \\ 3 & 2 & 1 & -3 & 0 \\ 0 & 1 & 2 & 6 & b \\ 5 & 4 & 3 & -1 & 2 \end{pmatrix} \rightarrow \begin{pmatrix} 1 & 1 & 1 & 1 & a \\ 0 & -1 & -2 & -6 & -3a \\ 0 & 1 & 2 & 6 & b \\ 0 & -1 & -2 & -6 & 2-5a \end{pmatrix} \rightarrow \begin{pmatrix} 1 & 1 & 1 & 1 & a \\ 0 & 1 & 2 & 6 & 3a \\ 0 & 0 & 0 & 0 & b-3a \\ 0 & 0 & 0 & 0 & a-1 \end{pmatrix},$$

显然r(I)=2, 所以, (I)与(II)等价, 必须保证b-3a=a-1=0, 即a=1, b=3.

将
$$a=1$$
, $b=3$ 代入(II)中,得 $\boldsymbol{\beta}_1=\begin{pmatrix}1\\-3\\6\\-1\end{pmatrix}$, $\boldsymbol{\beta}_2=\begin{pmatrix}1\\0\\3\\2\end{pmatrix}$,显然 $\boldsymbol{\beta}_1$, $\boldsymbol{\beta}_2$ 线性无关,即 $r(II)=2$.

所以, 当a=1, b=3时, r(I)=r(II)=r(I,II)=2, 即(I)与(II)等价.

例题 24 (2013 年) 设A,B,C为n阶矩阵,AB=C且B可逆,则()

A. C的行向量组与A的行向量组等价

B. C的列向量组与A的列向量组等价

C. C的行向量组与B的行向量组等价

D. C的列向量组与B的列向量组等价

解:显然选 B,请记住结论(以列向量为例):若向量组(I)经初等列变换变成向量组(II),则(I)(II)等价.

(法1) 由于B可逆,故显然r(A) = r(C),而向量组等价需要三秩相等,即r(A) = r(C) = r(A,C).

接下来证明r(A) = r(A, C). 由于C = AB且B可逆,故A的列向量组可以经过列变换变成C的列向量组,

故r(A,C)=r(A,AB) = r(A,O)=r(A). 综上, r(A)=r(C)=r(A,C), 故A和C的列向量组等价.

数
$$AB = C$$
 即 为 $(\boldsymbol{\alpha}_1, \boldsymbol{\alpha}_2, \dots, \boldsymbol{\alpha}_n)$ $\begin{pmatrix} b_{11} & b_{12} & \cdots & b_{1n} \\ b_{21} & b_{22} & \cdots & b_{2n} \\ \vdots & \vdots & \ddots & \vdots \\ b_{n1} & b_{n2} & \cdots & b_{nn} \end{pmatrix} = (\boldsymbol{c}_1, \boldsymbol{c}_2, \dots, \boldsymbol{c}_n),$

由矩阵的乘法可知,
$$\begin{cases} \boldsymbol{c}_1 = b_{11}\boldsymbol{a}_1 + b_{21}\boldsymbol{a}_2 + \dots + b_{n1}\boldsymbol{a}_n \\ \boldsymbol{c}_2 = b_{12}\boldsymbol{a}_1 + b_{22}\boldsymbol{a}_2 + \dots + b_{n2}\boldsymbol{a}_n \\ \dots & \dots \\ \boldsymbol{c}_n = b_{1n}\boldsymbol{a}_1 + b_{2n}\boldsymbol{a}_2 + \dots + b_{nn}\boldsymbol{a}_n \end{cases},$$

这说明C的列向量组可由A的列向量组表示:

再将AB = C变形为 $CB^{-1} = A$, 重复上述操作,即可推出A的列向量组也可由C的列向量组表示. 综上, $A \rightarrow C$ 的列向量组可以相互表示, 故A, C 的列向量组等价, 选B.

注:如果将条件AB = C改为BA = C,则结论应该如何变化?请证明你的猜想.

类题 已知向量组 $\alpha_1,\alpha_2,\alpha_3,\alpha_4$ 线性无关,则与该向量组等价的向量组是(

A.
$$\alpha_1 + \alpha_2$$
, $\alpha_2 + \alpha_3$, $\alpha_3 + \alpha_4$, $\alpha_4 + \alpha_1$

B.
$$\alpha_1 - \alpha_2$$
, $\alpha_2 - \alpha_3$, $\alpha_3 - \alpha_4$, $\alpha_4 - \alpha_1$

C.
$$\alpha_1 - \alpha_2$$
, $\alpha_2 + \alpha_3$, $\alpha_3 + \alpha_4$, $\alpha_4 - \alpha_1$

D.
$$\alpha_1 + \alpha_2$$
, $\alpha_2 - \alpha_3$, $\alpha_3 - \alpha_4$, $\alpha_4 - \alpha_1$

解:对每个选项逆用矩阵乘法,然后套用上题的结论即可.

对于 A 选项,考查行列式
$$\begin{vmatrix} 1 & 0 & 0 & 1 \\ 1 & 1 & 0 & 0 \\ 0 & 1 & 1 & 0 \\ 0 & 0 & 1 & 1 \end{vmatrix} = \begin{vmatrix} 1 & 1 & 0 & 1 \\ 1 & 1 & 0 & 0 \\ 1 & 1 & 1 & 0 \\ 1 & 1 & 1 & 1 \end{vmatrix} = 0$$
,故排除 A;

对于B选项,考查行列式
$$\begin{vmatrix} 1 & & -1 \\ -1 & 1 & & \\ & -1 & 1 & \\ & & -1 & 1 \end{vmatrix}$$
 $= \begin{vmatrix} 0 & & -1 \\ 0 & 1 & \\ 0 & -1 & 1 \\ 0 & & -1 & 1 \end{vmatrix} = 0$,故排除 B;

对于 C 选项,考查行列式
$$\begin{vmatrix} 1 & -1 \\ -1 & 1 \\ & 1 & 1 \end{vmatrix} = 1 \cdot \begin{vmatrix} 1 & 1 \\ 1 & 1 \\ & 1 & 1 \end{vmatrix} + (-1) \cdot (-1)^{1+4} \begin{vmatrix} -1 & 1 \\ & 1 & 1 \\ & & 1 \end{vmatrix} = 0$$
,故排除 C;

对于 D 选项,考查行列式
$$\begin{vmatrix} 1 & & & -1 \\ 1 & 1 & & \\ & -1 & 1 \\ & & -1 & 1 \end{vmatrix} = 1 \cdot \begin{vmatrix} 1 & & \\ -1 & 1 & \\ & -1 & 1 \end{vmatrix} + (-1) \cdot (-1)^{1+4} \begin{vmatrix} 1 & 1 & \\ & -1 & 1 \\ & & -1 \end{vmatrix} = 2 \neq 0$$
,故 D 对.

例题 25 (2000 年) 设 n 维列向量 $\alpha_1, \alpha_2, \cdots \alpha_m (m < n)$ 无关,则 n 维列向量 $\beta_1, \beta_2, \cdots \beta_m$ 也无关的充要条件是()

A. a_1, a_2, \dots, a_m 可由 $\beta_1, \beta_2, \dots, \beta_m$ 表示

B. $\beta_1, \beta_2, \cdots, \beta_m$ 可由 $\alpha_1, \alpha_2, \cdots \alpha_m$ 表示

C. $\alpha_1, \alpha_2, \cdots, \alpha_m 与 \beta_1, \beta_2, \cdots, \beta_m$ 等价

D. $A = (\boldsymbol{\alpha}_1, \boldsymbol{\alpha}_2, \cdots \boldsymbol{\alpha}_m)$ 与 $B = (\boldsymbol{\beta}_1, \boldsymbol{\beta}_2, \cdots, \boldsymbol{\beta}_m)$ 等价

解:选D.

由于" $\beta_1, \beta_2, \cdots \beta_m$ 线性无关 $\Leftrightarrow r(\beta_1, \beta_2, \cdots \beta_m) = m$ ", 而恰好又有 $r(\alpha_1, \alpha_2, \cdots \alpha_m) = m$,

故对于本题而言, $\beta_1, \beta_2, \cdots \beta_m$ 线性无关 $\Leftrightarrow r(\alpha_1, \alpha_2, \cdots \alpha_m) = r(\beta_1, \beta_2, \cdots \beta_m)$

所以,只需要在 ABCD 四个选项中,找出那个与 " $r(\boldsymbol{\alpha}_1,\boldsymbol{\alpha}_2,\cdots\boldsymbol{\alpha}_m)=r(\boldsymbol{\beta}_1,\boldsymbol{\beta}_2,\cdots\boldsymbol{\beta}_m)$ "等价的选项即可.

选项 A, " $\boldsymbol{a}_1, \dots, \boldsymbol{a}_m$ 可由 $\boldsymbol{\beta}_1, \dots, \boldsymbol{\beta}_m$ 线性表示",等价于 $r(\boldsymbol{\beta}_1, \dots, \boldsymbol{\beta}_m) = r(\boldsymbol{\beta}_1, \dots, \boldsymbol{\beta}_m, \boldsymbol{a}_1, \dots, \boldsymbol{a}_m)$,排除;

选项 B, " β_1, \dots, β_m 可由 $\alpha_1, \dots, \alpha_m$ 线性表示", 等价于 $r(\alpha_1, \dots, \alpha_m) = r(\alpha_1, \dots, \alpha_m, \beta_1, \dots, \beta_m)$, 排除;

选项 C, " β_1, \dots, β_m 与 $\alpha_1, \dots, \alpha_m$ 等价",等价于 $r(\alpha_1, \dots, \alpha_m) = r(\beta_1, \dots, \beta_m) = r(\alpha_1, \dots, \alpha_m, \beta_1, \dots, \beta_m)$,排除;

选项 D, "矩阵 $A = (\boldsymbol{\alpha}_1, \boldsymbol{\alpha}_2, \cdots \boldsymbol{\alpha}_m)$ 与矩阵 $B = (\boldsymbol{\beta}_1, \boldsymbol{\beta}_2, \cdots, \boldsymbol{\beta}_m)$ 等价", 等价于r(A) = r(B),故 D 正确.

$$oldsymbol{lpha}$$
: 本题也可以采用特殊值法对错误选项进行排除. 比如取 $oldsymbol{lpha}_1 = \begin{pmatrix} 1 \\ 0 \\ 0 \\ 0 \end{pmatrix}, oldsymbol{lpha}_2 = \begin{pmatrix} 0 \\ 0 \\ 1 \\ 0 \end{pmatrix}, oldsymbol{eta}_1 = \begin{pmatrix} 0 \\ 0 \\ 0 \\ 1 \\ 0 \end{pmatrix}$

显然 $\alpha_1,\alpha_2,\beta_1,\beta_2$ 线性无关,即"谁也不能表示谁",一次性排除 A、B、C、故选 D.

例题 26 已知
$$A = \begin{pmatrix} 1 & 0 & 0 & 0 \\ -1 & 2 & 0 & 0 \\ 2 & 2 & 1 & -2 \end{pmatrix}$$
, $B = \begin{pmatrix} 1 & 0 & 0 & 0 \\ 0 & 2 & 0 & 0 \\ 0 & 0 & 1 & 0 \end{pmatrix}$,请验证 $A = B$ 等价,并求一个 3 阶可逆矩阵 P 与一个

4 阶可逆矩阵Q, 使得PAQ = B.

解:本题主要考查初等变换和初等矩阵的相互转化.

将A通过初等行变换和列变换变成B,记录下每一次变换对应的初等矩阵,

然后按照左行右列定理,将行变换对应的初等矩阵乘在A左边,列变换对应的乘在右边,即可得到P和Q.

注:本题答案不唯一,所以不给出具体的结果,大家自己算即可.

配套作业

作业1 已知 $\alpha_1 = (1,3,4,-2)^T, \alpha_2 = (2,1,3,t)^T, \alpha_3 = (3,-1,2,0)^T, 若\alpha_1,\alpha_2,\alpha_3$ 线性相关, 求t.

解:将 a_1 , a_2 , a_3 拼成矩阵(a_1 , a_2 , a_3),由于 a_1 , a_2 , a_3 线性相关,所以 $r(a_1$, a_2 , a_3)<3.

对矩阵进行初等行变换,
$$(\boldsymbol{\alpha}_1, \boldsymbol{\alpha}_2, \boldsymbol{\alpha}_3) = \begin{pmatrix} 1 & 2 & 3 \\ 3 & 1 & -1 \\ 4 & 3 & 2 \\ -2 & t & 0 \end{pmatrix} \rightarrow \begin{pmatrix} 1 & 2 & 3 \\ 0 & -5 & -10 \\ 0 & t+4 & 6 \end{pmatrix} \rightarrow \begin{pmatrix} 1 & 2 & 3 \\ 0 & 1 & 2 \\ 0 & t+4 & 6 \\ 0 & 0 & 0 \end{pmatrix}$$

观察前 2 行可知, 矩阵(\mathbf{a}_1 , \mathbf{a}_2 , \mathbf{a}_3)的秩至少为 2, 又由于 $r(\mathbf{a}_1$, \mathbf{a}_2 , \mathbf{a}_3) < 3, 故 $r(\mathbf{a}_1$, \mathbf{a}_2 , \mathbf{a}_3) = 2. 所以, 向量(0,1,2)与向量(0,t+4,6)成比例, 故t=-1.

作业2 已知 $\alpha_1,\alpha_2,\alpha_3,\alpha_4$ 线性无关,问 $\alpha_1+\alpha_2$, $\alpha_2-\alpha_3$, $\alpha_3-\alpha_4$, $\alpha_4-\alpha_1$ 的线性相关性.

解:
$$(\alpha_1 + \alpha_2, \alpha_2 - \alpha_3, \alpha_3 - \alpha_4, \alpha_4 - \alpha_1) = (\alpha_1, \alpha_2, \alpha_3, \alpha_4)$$
 $\begin{pmatrix} 1 & -1 \\ 1 & 1 \\ -1 & 1 \end{pmatrix}$,

由于 $\alpha_1, \alpha_2, \alpha_3, \alpha_4$ 线性无关,故A为列满秩矩阵,故r(B) = r(C).

$$\mathbb{Z} \begin{vmatrix} 1 & & -1 \\ 1 & 1 & & \\ & -1 & 1 & \\ & & -1 & 1 \end{vmatrix} = 1 \cdot \begin{vmatrix} 1 & & \\ -1 & 1 & \\ & -1 & 1 \end{vmatrix} + (-1) \cdot (-1)^{1+4} \begin{vmatrix} 1 & 1 & \\ & -1 & 1 \\ & & -1 \end{vmatrix} = 2 \neq 0, \quad \& r(\mathbf{B}) = r(\mathbf{C}) = 4.$$

故 $\alpha_1 + \alpha_2$, $\alpha_2 - \alpha_3$, $\alpha_3 - \alpha_4$, $\alpha_4 - \alpha_1$ 的线性无关.

作业 3 (2014 年) a_1, a_2, a_3 为 3 维列向量,则"对 $\forall k \Rightarrow l, a_1 + k a_3 \Rightarrow a_2 + l a_3 \Rightarrow k \Rightarrow a_1, a_2, a_3 \Rightarrow k \Rightarrow a_3 \Rightarrow a_4 \Rightarrow a_4 \Rightarrow a_4 \Rightarrow a_5 \Rightarrow a_4 \Rightarrow a_5 \Rightarrow a_4 \Rightarrow a_5 \Rightarrow a_6 \Rightarrow a_$

A. 充要条件

B.充分不必要条件

C. 必要不充分条件

D.既不充分也不必要条件

解: 选 C. 令
$$\mathbf{P} = (\mathbf{a}_1, \mathbf{a}_2, \mathbf{a}_3)$$
, $\mathbf{B} = (\mathbf{a}_1 + k\mathbf{a}_3, \mathbf{a}_2 + l\mathbf{a}_3)$, $\mathbf{A} = \begin{pmatrix} 1 & 0 \\ 0 & 1 \\ k & l \end{pmatrix}$,

逆用矩阵乘法,得
$$(\boldsymbol{\alpha}_1 + k\boldsymbol{\alpha}_3, \boldsymbol{\alpha}_2 + l\boldsymbol{\alpha}_3) = (\boldsymbol{\alpha}_1, \boldsymbol{\alpha}_2, \boldsymbol{\alpha}_3) \begin{pmatrix} 1 & 0 \\ 0 & 1 \\ k & l \end{pmatrix}$$
,即 $\boldsymbol{B} = \boldsymbol{P}\boldsymbol{A}$.

- (1) 若 $\alpha_1, \alpha_2, \alpha_3$ 无关,则P为列满秩矩阵,故r(B) = r(A) = 2,故 $\alpha_1 + k\alpha_3$ 和 $\alpha_2 + l\alpha_3$ 无关;
- (2) 若 $\alpha_1 + k\alpha_3$ 和 $\alpha_2 + l\alpha_3$ 无关,则可假设 α_1, α_2 无关且 $\alpha_3 = 0$,

此时,显然满足"对任意的k和l, $\alpha_1 + k\alpha_3$ 和 $\alpha_2 + l\alpha_3$ 无关",但 $\alpha_1,\alpha_2,\alpha_3$ 相关.

综上,"对任意的k和l, $\alpha_1 + k\alpha_3$ 和 $\alpha_2 + l\alpha_3$ 无关"是" $\alpha_1, \alpha_2, \alpha_3$ 无关"的必要不充分条件.

作业 $\mathbf{3}$ 已知 $\mathbf{B} = \begin{pmatrix} 1 & 2 & 3 \\ 2 & 4 & t \\ 3 & 6 & 9 \end{pmatrix}$, \mathbf{A} 为三阶非零矩阵,且满足 $\mathbf{A}\mathbf{B} = \mathbf{O}$,则下列说法正确的是()

A.t = 6时,A的秩必为1

B. t = 6时, A的秩必为2

 $C. t \neq 6$ 时,A的秩必为1

 $D. t \neq 6$ 时, A的秩必为2

解:由于AB = 0,故 $r(A) + r(B) \le 3$.由于 $A \ne 0$,故 $r(A) \ge 1$.

当t=6时, $r(\mathbf{B})=1$, 此时 $r(\mathbf{A})$ 可以取 1, 也可以取 2;

当 $t \neq 6$ 时, $r(\mathbf{B}) = 2$, 此时 $r(\mathbf{A})$ 只能取 1, 故选 C.

作业 4 (1993 年) 设 $A_{n\times m}$, $B_{m\times n}$, $n\leq m$, 若 AB=E (E 为 n 阶单位矩阵), 证明: B 的列向量组线性无关.

法1 (利用秩)

假设B的列向量组线性相关,则r(B) < n.

由于AB = E, 所以 $r(E) = r(AB) \le r(B) < n$, 这与E为n阶单位矩阵矛盾,

故假设错误, 所以B的列向量组线性无关,

法2 (定义法)

将矩阵B和E进行列分块,令 $B = (\beta_1, \beta_2, \dots, \beta_n)$, $E = (e_1, e_2, \dots, e_n)$,

则 AB = E 变为 $A(\beta_1, \beta_2, \dots, \beta_n) = (e_1, e_2, \dots, e_n)$, 故对任意的i, 均有 $A\beta_i = e_i$.

假设存在常数 k_1, k_2, \dots, k_n , 使得 $k_1 \beta_1 + k_2 \beta_2 + \dots + k_n \beta_n = 0$, 在等式两边同时左乘矩阵A,

由
$$\mathbf{A}\boldsymbol{\beta}_i = \mathbf{e}_i$$
 可得, $k_1\mathbf{e}_1 + k_2\mathbf{e}_2 + \dots + k_n\mathbf{e}_n = \mathbf{0}$, 即 $\begin{pmatrix} k_1 \\ k_2 \\ \vdots \\ k_n \end{pmatrix} = \begin{pmatrix} 0 \\ 0 \\ \vdots \\ 0 \end{pmatrix}$, 故 $k_1 = k_2 = \dots = k_n = 0$.

由线性无关定义可知, B的列向量组线性无关.

注:A的行向量组也无关,我们可以在AB = E 两边求转置,得到 $B^TA^T = E$. 所以,如果通过AB = E 能推出B的列向量线性无关,那么通过 $B^TA^T = E$ 也一定能推出 A^T 的列向量组线性无关,即A的行向量组无关.

作业 5 设 " α_1 和 α_2 " 与 " β_1 和 β_2 "分别为两个线性无关的 3 维向量组. 证明:存在一个非零列向量 $\delta \neq 0$,使得 δ 既可以被 α_1 , α_2 线性表示,也可以被 β_1 , β_2 线性表示.

解:由于 $\alpha_1,\alpha_2,\beta_1,\beta_2$ 是4个3维向量,必相关,故存在不全为零的 k_1,k_2,l_1,l_2 使得 $k_1\alpha_1+k_2\alpha_2-l_1\beta_1-l_2\beta_2=0$,移项,可得 $k_1\alpha_1+k_2\alpha_2=l_1\beta_1+l_2\beta_2$,

令 $\delta = k_1 \alpha_1 + k_2 \alpha_2 = l_1 \beta_1 + l_2 \beta_2$,则 δ 可以被 α_1, α_2 表示,也可以由 β_1, β_2 表示.

若 $\delta = \mathbf{0}$, 则意味着 $k_1\alpha_1 + k_2\alpha_2 = l_1\beta_1 + l_2\beta_2 = \mathbf{0}$.

又由于" α_1 和 α_2 "与" β_1 和 β_2 "均线性无关,所以 $k_1 = k_2 = 0$ 且 $l_1 = l_2 = 0$,

这与 k_1,k_2,l_1,l_2 不全为零矛盾. 综上,存在非零向量 δ ,它既可以被 α_1,α_2 表示,也可以被 β_1,β_2 表示.

作业 6 (2006年) 已知
$$\alpha_1 = \begin{pmatrix} 1+a\\1\\1\\1 \end{pmatrix}$$
, $\alpha_2 = \begin{pmatrix} 2\\2+a\\2\\2 \end{pmatrix}$, $\alpha_3 = \begin{pmatrix} 3\\3\\3+a\\3 \end{pmatrix}$, $\alpha_4 = \begin{pmatrix} 4\\4\\4\\4+a \end{pmatrix}$, 问:

- (1) 当a为何值时, $\alpha_1,\alpha_2,\alpha_3,\alpha_4$ 线性相关;
- (2) 当 $\alpha_1, \alpha_2, \alpha_3, \alpha_4$ 线性相关时,求一个极大无关组,并将其余向量用极大无关组表示.

解: (1) 令
$$|a_1,a_2,a_3,a_4|=0$$
,即 $\begin{vmatrix} 1+a & 2 & 3 & 4 \\ 1 & 2+a & 3 & 4 \\ 1 & 2 & 3+a & 4 \\ 1 & 2 & 3 & 4+a \end{vmatrix} = 0$. 由于"行和相等",故将其余列加到第 1 列,

故当a=0或a=-10时, $\alpha_1,\alpha_2,\alpha_3,\alpha_4$ 线性相关.

(2) 若
$$a = 0$$
,则 $\alpha_1 = \begin{pmatrix} 1 \\ 1 \\ 1 \\ 1 \end{pmatrix}$, $\alpha_2 = \begin{pmatrix} 2 \\ 2 \\ 2 \\ 2 \end{pmatrix}$, $\alpha_3 = \begin{pmatrix} 3 \\ 3 \\ 3 \\ 3 \end{pmatrix}$, $\alpha_4 = \begin{pmatrix} 4 \\ 4 \\ 4 \\ 4 \end{pmatrix}$,取 α_1 为极大无关组,则 $\alpha_k = k\alpha_1(k = 2 \cdot 3 \cdot 4)$.

$$(\boldsymbol{a}_{1}, \boldsymbol{a}_{2}, \boldsymbol{a}_{3}, \boldsymbol{a}_{4}) = \begin{pmatrix} -9 & 2 & 3 & 4 \\ 1 & -8 & 3 & 4 \\ 1 & 2 & -7 & 4 \\ 1 & 2 & 3 & -6 \end{pmatrix} \rightarrow \begin{pmatrix} -9 & 2 & 3 & 4 \\ 10 & -10 & 0 & 0 \\ 10 & 0 & -10 & 0 \\ 10 & 0 & 0 & -10 \end{pmatrix} \rightarrow \begin{pmatrix} -9 & 2 & 3 & 4 \\ 1 & -1 & 0 & 0 \\ 1 & 0 & -1 & 0 \\ 1 & 0 & 0 & -1 \end{pmatrix} \rightarrow$$

$$\begin{pmatrix} -9 & 2 & 3 & 4 \\ 1 & -1 & 0 & 0 \\ 0 & 1 & -1 & 0 \\ 0 & 0 & 1 & -1 \end{pmatrix} \rightarrow \begin{pmatrix} -9 & 2 & 3 & 4 \\ 1 & 0 & 0 & -1 \\ 0 & 1 & 0 & -1 \\ 0 & 0 & 1 & -1 \end{pmatrix} \rightarrow \begin{pmatrix} 1 & 0 & 0 & -1 \\ 0 & 1 & 0 & -1 \\ 0 & 0 & 1 & -1 \\ 0 & 0 & 0 & 0 \end{pmatrix}.$$

由于主元在第1、2、3列,故取 $\alpha_1,\alpha_2,\alpha_3$ 为极大无关组,此时 $\alpha_4=(-1)\cdot\alpha_1+(-1)\cdot\alpha_2+(-1)\cdot\alpha_3$.

作业7(2011年) 若向量组 $\alpha_1 = (1,0,1)^{\mathrm{T}}, \alpha_2 = (0,1,1)^{\mathrm{T}}, \alpha_3 = (1,3,5)^{\mathrm{T}}$ 不能由 $\beta_1 = (1,1,1)^{\mathrm{T}}, \beta_2 = (1,2,3)^{\mathrm{T}}$ $\beta_3 = (3,4,a)^{\mathrm{T}}$ 线性表示. (1) 求a 的值; (2) 将 β_1,β_2,β_3 用 $\alpha_1,\alpha_2,\alpha_3$ 线性表示.

解: (1) 先用必要性进行"探路", 求出a的初步取值, 然后再证明这个取值就是正确答案.

若 β_1 , β_2 , β_3 线性无关,则可表示任意的 3 维向量,故 β_1 , β_2 , β_3 只能线性相关,故 $|\beta_1$, β_2 , $\beta_3|=0$.

$$\begin{vmatrix} 1 & 1 & 3 \\ 1 & 2 & 4 \\ 1 & 3 & a \end{vmatrix} = \begin{vmatrix} 1 & 1 & 3 \\ 0 & 1 & 1 \\ 0 & 2 & a - 3 \end{vmatrix} = \begin{vmatrix} 1 & 1 & 3 \\ 0 & 1 & 1 \\ 0 & 0 & a - 5 \end{vmatrix} = a - 5, \quad \& a = 5.$$

接下来需要证明a=5这个必要条件,的确满足" $\alpha_1,\alpha_2,\alpha_3$ 不能被 β_1,β_2,β_3 线性表示".

由于 $\alpha_1, \alpha_2, \alpha_3$ 不能由 $\beta_1, \beta_2, \beta_3$ 线性表示,这等价于 $r(\beta_1, \beta_2, \beta_3) < r(\beta_1, \beta_2, \beta_3, \alpha_1, \alpha_2, \alpha_3)$,故

$$(\boldsymbol{\beta}_1, \boldsymbol{\beta}_2, \boldsymbol{\beta}_3, \boldsymbol{\alpha}_1, \boldsymbol{\alpha}_2, \boldsymbol{\alpha}_3) = \begin{pmatrix} 1 & 1 & 3 & 1 & 0 & 1 \\ 1 & 2 & 4 & 0 & 1 & 3 \\ 1 & 3 & 5 & 1 & 1 & 5 \end{pmatrix} \rightarrow \begin{pmatrix} 1 & 1 & 3 & 1 & 0 & 1 \\ 0 & 1 & 1 & -1 & 1 & 2 \\ 0 & 2 & 2 & 0 & 1 & 4 \end{pmatrix} \rightarrow \begin{pmatrix} 1 & 1 & 3 & 1 & 0 & 1 \\ 0 & 1 & 1 & -1 & 1 & 2 \\ 0 & 0 & 0 & 2 & -1 & 0 \end{pmatrix},$$

显然,此时 $r(\beta_1,\beta_2,\beta_3)=2$,但 $r(\beta_1,\beta_2,\beta_3,\alpha_1,\alpha_2,\alpha_3)=3$,故a=5符合题意.

$$(2) \ (\boldsymbol{\alpha}_{1},\boldsymbol{\alpha}_{2},\boldsymbol{\alpha}_{3},\boldsymbol{\beta}_{1},\boldsymbol{\beta}_{2},\boldsymbol{\beta}_{3}) = \begin{pmatrix} 1 & 0 & 1 & 1 & 1 & 3 \\ 0 & 1 & 3 & 1 & 2 & 4 \\ 1 & 1 & 5 & 1 & 3 & 5 \end{pmatrix} \rightarrow \begin{pmatrix} 1 & 0 & 1 & 1 & 1 & 3 \\ 0 & 1 & 3 & 1 & 2 & 4 \\ 0 & 1 & 4 & 0 & 2 & 2 \end{pmatrix} \rightarrow \begin{pmatrix} 1 & 0 & 1 & 1 & 1 & 3 \\ 0 & 1 & 3 & 1 & 2 & 4 \\ 0 & 0 & 1 & -1 & 0 & -2 \end{pmatrix}$$

$$\beta_1 = 2\alpha_1 + 4\alpha_2 - \alpha_3, \ \beta_2 = \alpha_1 + 2\alpha_2, \ \beta_3 = 5\alpha_1 + 10\alpha_2 - 2\alpha_3.$$