EXAMEN ANALYSE FONCTIONNELLE

GABRIEL DOSPINESCU

Il est conseillé de choisir quelques exercices et de les traiter en profondeur, plutôt que de toucher superficiellement à tous les exercices (l'examen est volontairement beaucoup trop long!).

Notations et conventions:

- ullet Tous les espaces localement convexes sont sur le corps des scalaires $\mathbb C$
- \bullet On note X' le dual continu d'un espace localement convexe X. Si X est un Banach, on note B_X sa boule unité fermée.
- Pour $1 \leq p < \infty$ on note ℓ^p l'espace des suites complexes (a_n) telles que $||(a_n)||_p := (\sum_{n\geq 1} |a_n|^p)^{1/p} < \infty$. Convention analogue pour les espaces L^p . L'espace ℓ^∞ est celui des suites bornées de nombres complexes.
- \bullet On note c_0 l'espace des suites de nombres complexes qui tendent vers 0, muni de la norme sup.
- Si X est un espace topologique on note C(X) l'espace des fonctions continues $f: X \to \mathbb{C}$.
- \bullet Si X est un espace de Banach on note B(X) l'espace des applications linéaires continues $T:X\to X.$

Exercice 1 ("questions de cours")

- (1) Soient X, Y des espaces de Banach et soit $T: X \to Y$ une application linéaire. Montrer que T est continue si et seulement si l'application $T: X^w \to Y^w$ est continue, où X^w (respectivement Y^w) est l'espace X (respectivement Y) muni de la topologie faible.
- (2) Soit (a_n) une suite de nombres complexes telle que $(a_n x_n) \in c_0$ pour toute suite $(x_n) \in c_0$. Montrer que $(a_n) \in \ell^{\infty}$.
- (3) Soit $1 \leq p < \infty$. Pour tout entier $k \geq 1$ on note $x_k = (1, \frac{1}{2^k}, \frac{1}{2^{2k}}, ...)$. Montrer que l'espace vectoriel engendré par $x_1, x_2, ...$ est dense dans ℓ^p .
- (4) Soit K un espace compact et soient (f_n) une suite dans C(K) et $f \in C(K)$. Montrer que les deux assertions suivantes sont équivalentes:
 - a) la suite (f_n) converge faiblement vers f dans C(K) (muni de la norme sup).
 - b) On a $\sup_n ||f_n||_{\infty} < \infty$ et $\lim_{n \to \infty} f_n(x) = f(x)$ pour tout $x \in K$.

Date: November 19, 2021.

2

(5) Montrer que dans un espace de Hilbert toute suite orthonormale converge faiblement vers 0.

Exercice 2 ("espaces L^p ")

- (1) Soit V un sous-espace vectoriel fermé de $L^1([0,1])$ tel que pour tout $f \in V$ il existe p > 1 (qui dépend donc de f) tel que $f \in L^p([0,1])$.
 - a) Montrer que pour tout entier $n \geq 1$ l'ensemble $F_n = \{f \in V | ||f||_{1+1} \leq$ n} est fermé dans V.
 - b) Montrer qu'il existe p > 1 tel que $V \subset L^p([0,1])$.
 - c) Donner un exemple de tel espace V, qui est de dimension infinie.
- (2) Soit 1 , <math>I = [0,1] et soit $T: L^p(I) \to L^p(I)$ une application linéaire continue. On suppose que T(f) est une fonction continue pour tout $f \in L^p(I)$.
 - a) Montrer que l'application $T: L^p(I) \to C(I)$ est continue si l'on munit C(I) de la norme sup.
 - b) Montrer que $T(B_{L^p(I)})$ est faiblement compact dans C(I).
 - c) En déduire que T est compact.
 - d) Donner un exemple de telle application non nulle T.

Exercice 3 ("opérateurs 2-sommants dans un Hilbert")

Soit H un espace de Hilbert séparable. On dit que $T \in B(H)$ est 2-sommant s'il existe une constante c > 0 telle que pour tout $n \ge 1$ et tous $x_1, ..., x_n \in H$ on ait

$$\sum_{k=1}^{n} ||T(x_k)||^2 \le c^2 \sup_{\ell \in B_{H'}} \sum_{k=1}^{n} |\ell(x_k)|^2.$$

On note

$$\pi_2(T) = \inf\{c > 0 | \sum_{k=1}^n ||T(x_k)||^2 \le c^2 \sup_{\ell \in B_{H'}} \sum_{k=1}^n |\ell(x_k)|^2, \ \forall n \ge 1, \forall x_1, ..., x_n \in H\}.$$

(1) On suppose que T est 2-sommant et on se donne une base orthonormale (e_n) de H. Montrer que

$$\sum_{n\geq 1} ||T(e_n)||^2 \leq \pi_2(T)^2.$$

(2) On suppose qu'il existe une base orthonormale (e_n) de H telle que

$$c^2 := \sum_{n \ge 1} ||T(e_n)||^2 < \infty.$$

- a) Montrer que T est compact.
- b) Montrer qu'il existe une base orthonormale (f_k) de H et une suite (λ_k) telle que $\lambda_k \geq 0$ et $T^*T(f_k) = \lambda_k f_k$ pour tout k. c) Montrer que $\sum_{k\geq 1} \lambda_k = c^2$.

 - d) Montrer que T est 2-sommant et que $\pi_2(T) \leq c$.

Exercice 4 ("un isomorphisme remarquable")

Cet exercice est plus difficile que ceux ci-dessus. Soit I = [0, 1]. On se propose de montrer que les espaces de Banach ℓ^{∞} et $L^{\infty}(I)$ sont isomorphes.

(1) Construire une isométrie linéaire $\iota: \ell^{\infty} \to L^{\infty}(I)$.

- (2) a) Montrer que la sphère unité de $L^1(I)$ possède une suite dense. b) Construire une isométrie linéaire $j: L^{\infty}(I) \to \ell^{\infty}$.
- (3) Soient X, Y des espaces de Banach, soit $\iota: X \to Y$ une isométrie linéaire et soit $T: X \to \ell^{\infty}$ une application linéaire continue. Montrer qu'il existe une application linéaire continue $\hat{T}: Y \to \ell^{\infty}$ telle que $\hat{T} \circ \iota = T$ et $||\hat{T}|| = ||T||$. On admet que ce résultat est aussi valable pour $L^{\infty}(I)$ à la place de ℓ^{∞} .
- (4) Montrer qu'il existe des espaces de Banach X, Y tels que $\ell^{\infty} \simeq L^{\infty}(I) \oplus X$ et $L^{\infty}(I) \simeq \ell^{\infty} \oplus Y$.
- (5) Montrer que si Z est un des espaces ℓ^{∞} ou $L^{\infty}(I)$, alors Z et $Z \oplus Z$ sont des espaces de Banach isomorphes. En déduire que ℓ^{∞} et $L^{\infty}(I)$ sont des espaces de Banach isomorphes.

Exercice 5 ("topologie de la convergence uniforme sur les compacts") Cet exercice est plus difficile que ceux ci-dessus. Soit X un espace de Banach.

- (1) Soit (x_n) une suite dans X qui converge vers 0, et soit $K_{(x_n)}$ l'adhérence de l'enveloppe convexe de $\{x_1, x_2, ...\}$. a) Montrer que $K_{(x_n)} = \{\sum_{n \geq 1} a_n x_n | a_n \in [0, 1], \sum_{n \geq 1} a_n \leq 1\}$. b) Montrer que $K_{(x_n)}$ est compact.
- (2) Montrer réciproquement que tout compact de X est contenu dans $K_{(x_n)}$ pour une suite convenable (x_n) qui converge vers 0.

On munit B(X) de la topologie définie par la famille de semi-normes $p_K(T) = \sup_{x \in K} ||Tx||$, pour K parcourant les compacts de X.

- (3) Soit (x_n) une suite dans X et soit (ℓ_n) une suite dans X' telles que $\sum_{n\geq 1} ||\ell_n||$. $||x_n|| < \infty$. Montrer qu'en posant $\phi(T) = \sum_{n > 1} \ell_n(T(x_n))$ on obtient une forme linéaire continue sur B(X).
- (4) Soit ϕ une forme linéaire continue sur B(X).
 - a) Montrer qu'il existe une suite (x_n) qui tend vers 0 et une constante c > 0 telles que $|\phi(T)| \le c \sup_{n \ge 1} ||T(x_n)||$ pour tout $T \in B(X)$.
 - b) Montrer qu'il existe des suites (x_n) dans X et (ℓ_n) dans X' telles que $\sum_{n>1} ||\ell_n|| \cdot ||x_n|| < \infty \text{ et } \phi(T) = \sum_{n>1} \ell_n(T(x_n)) \text{ pour tout } T \in B(X).$