[Base / RDMA / GR + NIC / GR + RNIC]

Memory Allocation on

INDEX

메모리 할당 비교(white paper)

BASE RDMA GR + NIC GR + RNIC

GAM: Efficient Distributed Memory Management with RDMA and Caching

Accelerating TensorFlow with RDMA for high-performance deep learning

BASE vs RDMA

BASE vs RDMA

CPU 효율 차이

GR + NIC

RDMA requires RDMA-enable NIC

RNICs: iWARP, ROCE NICs

Infiniband: already infused in the IB networks

∴ 일반 NIC을 사용한 GPU RDMA 관련된 연구 자료를 찾기 어렵다

Mellanox Requirements

Table 2 - GPUDirect RDMA System Requirements

Platform	Type and Version
HCAs	 ConnectX®-3 (VPI/EN) ConnectX®-3 Pro ConnectIB® ConnectX®-4 (VPI/EN) ConnectX®-4 Lx ConnectX®-5 (VPI/EN) ConnectX®-6 (VPI/EN) NVIDIA® Tesla™ / Quadro K-Series or Tesla™ / Quadro™ P-Series GPU
Software/Plugins	 MLNX_OFED v2.1-x.x.x or later www.mellanox.com -> Products -> Software -> InfiniBand/VPI Drivers -> Linux SW. Drivers Plugin module to enable GPUDirect RDMA www.mellanox.com -> Products -> Software -> InfiniBand/VPI Drivers -> GPUDirect RDMA (on the left navigation pane) NVIDIA Driver http://www.nvidia.com/Download/index.aspx?lang=en-us NVIDIA CUDA Runtime and Toolkit https://developer.nvidia.com/cuda-downloads NVIDIA Documentation http://docs.nvidia.com/cuda/index.html#getting-started-guides

GR + RNIC

GR + RNIC

P2P Direct Access

P2P Direct Transfers

GR + RNIC

Without GPUDirect

Same data copied three times:

- 1. GPU writes to pinned sysmem1
- 2. CPU copies from sysmem1 to sysmem2
- 3. InfiniBand driver copies from sysmem2

With GPUDirect

Data only copied twice

Sharing pinned system memory makes sysmem-to-sysmem copy unnecessary

GAM: Efficient Distributed Memory Management with RDMA and Caching

Figure 1: Overview of GAM

Figure 5: Architecture of GAM

GAM manages the free memory distributed among multiple nodes to provide a unified memory model.

Accelerating TensorFlow with RDMA for high-performance deep learning

OSU AR-gRPC Architecture

- Adaptive RDMA gRPC
- Features
 - Hybrid Communication engine
 - Adaptive protocol selection between eager and rendezvous
 - Message pipelining and coalescing
 - Adaptive chunking and accumulation
 - Intelligent threshold detection
 - Zero copy transmission
 - Zero copy send/recv

그림 출처

Mellanox 블로그랑 white paper

논문들