

CSE 473/573-A L13: EPIPOLAR GEOMETRY

Chen Wang
Spatial AI & Robotics Lab
Department of Computer Science and Engineering

University at Buffalo The State University of New York

Many Slides from Lana Lazebnik

Stereo Vision (binocular camera)

Stereo Vision

Why multiple views?

 Structure and depth are inherently ambiguous from single views.

Why multiple views?

 Structure and depth are inherently ambiguous from single views.

Stereo Vision

- What cues help perceive 3D shape and depth?
 - Shading
 - Focus/Defocus
 - Texture
 - Perspective
 - Motion
 - Occlusion

Shading

Focus/defocus

Same point of view, different camera parameters

3D shape / depth estimates

Texture

Perspective effects

Motion

Occlusion

(a) input image

(c) 3D spatial layout

(b) 2D detection

(d) 2D object mask

X

Animal Binocular Systems

• If stereo is critical for depth perception, navigation, recognition, etc., then this would be a problem

Random dot stereograms

- Julesz 1960: Do we identify local brightness patterns before fusion (monocular) or after (binocular)?
- To test: pair of synthetic images obtained by randomly spraying black dots on white objects

Random dot stereograms

- When viewed monocularly, they appear random; when viewed stereoscopically, see 3D structure.
- Human binocular fusion not directly associated with the physical retinas; must involve the central nervous system.
- High level scene understanding not required for Stereo
- High level scene understanding is arguably better than stereo

Stereo photography and stereo viewers

- Invented by Sir Charles Wheatstone, 1838
- Take two pictures of the same subject from two slightly different viewpoints and display so that each eye sees only one of the images

Stereo photography and stereo viewers

Estimating depth with stereo

- We'll need to consider:
 - Info on camera pose ("calibration")
 - Image point correspondences (feature detection/matching)

Stereo Vision

- Structure from motion (SFM)
 - Shape from "motion" between two views
 - Infer 3D shape of scene from two (multiple) images from different viewpoints

Two cameras, simultaneous views

Single moving camera and static scene

Structure from motion (SFM)

• Stereo correspondence: Given a point in one of the images, where could its corresponding points be in the other images?

Structure from motion (SFM)

 Motion: Given a set of corresponding points in two or more images, compute the camera parameters

Structure from motion (SFM)

• Structure: Given projections of the same 3D point in two or more images, compute the 3D coordinates of that point.

Human eye

- Rough analogy with human visual system:
 - Pupil/Iris: control light passing through lens
 - Retina: contains cells, where image is formed
 - Fovea: highest concentration of cones

Human stereopsis: disparity

 Human eyes fixate on point in space – rotate so that corresponding images form in centers of fovea.

Disparity

Disparity occurs when eyes fixate on one object;
 others appear at different visual angles

Disparity

Disparity:

$$d = r - l = D - F.$$

orsyth & Popce

Camera parameters (Recap)

- Intrinsic params:
 - Focal length, image center, radial distortion parameters
 - Coordinates relative to camera ←→ Pixel coordinates
- Extrinsic params:
 - Rotation matrix and translation vector
 - Camera frame 1 ←→ Camera frame 2

We'll assume for now that these parameters are given and fixed.

Geometry for a simple stereo system

 Assuming parallel optical axes, known camera parameters (i.e., calibrated cameras):

Geometry for a simple stereo system

- Assume parallel optical axes, known camera parameters, i.e., calibrated cameras. What is expression for Z?
- Similar triangles (p_I, P, p_r) and (O_I, P, O_r):

$$\frac{T - x_l + x_r}{Z - f} = \frac{T}{Z}$$

$$Z = f \frac{T}{x_l - x_r}$$

Disparity

Depth from disparity

• If we could find the **corresponding points** in two images, we could **estimate relative depth.**

Image I(x, y)

Disparity map D(x, y)

Image I'(x', y')

$$(x',y') = (x + D(x,y),y)$$

Depth from disparity

• Where do we need to search?

General case (calibrated cameras)

The two cameras need not have parallel optical axes.

Stereo correspondence constraints

Given p in left, where can corresponding point p' be?

Stereo correspondence constraints

Given p in left, where can corresponding point p' be?

Correspondence problem

 Multiple match hypotheses satisfy epipolar constraint, but which is correct?

Stereo correspondence constraints

- Geometry of two views allows us to constrain where the corresponding pixel for image points in the first view must occur in the second view.
- Epipolar constraint
 - Reduces correspondence problem to 1D search along conjugate epipolar lines

Epipolar geometry

- Epipolar Plane
- Epipoles

- Baseline
- Epipolar Lines

Epipolar geometry: terms

- Baseline: line joining the camera centers
- Epipole: point of intersection of baseline with the image plane
- Epipolar plane: plane containing baseline and world point
- Epipolar line: intersection of epipolar plane with image plane
- An epipolar plane intersects the left and right image planes in epipolar lines
- All epipolar lines intersect at the epipole

Epipolar constraint

- Potential matches for p must lie on epipolar line l'.
- Potential matches for p' must lie on epipolar line l.

Rectification

- Searching along epipolar lines at arbitrary orientation is intuitively expensive.
- We prefer searching along the image row.
 - Epipolar lines parallel to the rows of the image.
- This transformation is called rectification.

Stereo Image Rectification

 Reproject image planes onto a common plane parallel to the line between optical centers

Stereo Image Rectification

- Reproject image planes onto a common plane parallel to the line between optical centers
- pixel motion is horizontal after this transformation

Stereo Image Rectification

Rectification using Homography (Recap)

- How to relate two images from the same camera center?
 - how to map a pixel from PP1 to PP2?
- Take as a 2D image warp using projective transform.
- A projective transform is a mapping between any two
 PPs with the same center of projection
 - rectangle should map to arbitrary quadrilateral
 - parallel lines aren't preserved.
 - but straight lines are preserved.
- Called Homography

$$\begin{bmatrix} wx' \\ wy' \\ w \end{bmatrix} = \begin{bmatrix} * & * & * \\ * & * & * \\ * & * & * \end{bmatrix} \begin{bmatrix} x \\ y \\ I \end{bmatrix}$$

$$\mathbf{p}$$

$$\mathbf{H}$$

$$\mathbf{p}$$

Solving for homographies (Recap)

$$\begin{array}{l}
-\left(\frac{wx'}{w}, \frac{wy'}{w}\right) \\
=\left(x', y'\right)
\end{array}$$

To apply a given homography H

- Compute **p**' = **Hp** (regular matrix multiply)
- Convert p' from homogeneous to image

Solving for homographies (Recap)

To **compute** the homography given pairs of corresponding points, we need to set up an equation where the parameters of **H** are the unknowns...

Solving for homographies (Recap)

$$\mathbf{p'} = \mathbf{Hp} \qquad \begin{vmatrix} wx' \\ wy' \\ w \end{vmatrix} = \begin{vmatrix} a & b & c \\ d & e & f \\ g & h & i \end{vmatrix} \begin{vmatrix} x \\ y \\ 1 \end{vmatrix}$$

- •Can set scale factor i=1 or ||H||=1. So, there are 8 unknowns.
- •Set up a system of linear equations:

$$\cdot$$
Ah = b

where vector of unknowns $h = [a, b, c, d, e, f, g, h]^T$

- Need at least 8 equations (4 points), but the more the better...
- •Solve for H. If over-constrained, solve using least-squares:

$$\min \|Ah - b\|^2$$

$$h = (A^T A)^{-1} A^T b$$

Proof of least squares (Recap)

$$F(h) = ||Ah - b||^2 = (Ah - b)^T (Ah - b)^T$$

$$F(h) = h^T A^T A h - h^T A^T b - b^T A h + b^T b$$

$$\bullet \frac{\partial}{\partial h} F(h) = 2A^T A h - A^T b - (b^T A)^T$$

- Setting derivative to 0: $\frac{\partial}{\partial h} F(h) = 0$
- $\bullet A^T A h = A^T b$
- $\bullet h = (A^T A)^{-1} A^T b$

Contents

- Epipolar Geometry
 - Disparity
 - Epipolar line
 - Epipolar constraints
 - Rectification

