2 LPs and gradient descent in Stats/ML [25 points] (Sashank)

A [4+4+5]

(a) Suppose β optimizes (1). Define

$$\beta_i^+ := \left\{ \begin{array}{ll} \beta_i : & \beta_i \ge 0 \\ 0 : & \text{else} \end{array} \right.,$$

 $\beta^- := \beta^+ - \beta$. Then, $y = X\beta = X(\beta^+ - \beta^-)$ and $\beta^+, \beta^- \ge 0$, so (β^+, β^-) is feasible for (2). Since $1^T(\beta^+ + \beta^-) = \sum_{i=1}^p |\beta_i| = \|\beta\|_1$, the optimum for (2) is at most $\|\beta_1\|$.

(b) Suppose (β^+, β^-) optimizes (2). Define $\beta := \beta^+ - \beta^-$. Then, $y = X(\beta^+ - \beta^-) = X\beta$, so β is feasible for (1). Since $\|\beta\|_1 = \sum_{i=1}^p |\beta_i| = 1^T(\beta^+ + \beta^-)$, the optimum for (1) is at most, and therefore equal to, the optimum for (1).

(c)

B [6+6]

(a) Rewriting in vector notation (where $h_j(x) = x_j \in \mathbb{R}^n$ is the j^{th} feature vector), we have

$$\hat{\alpha}_j = \underset{\alpha_j \in \mathbb{R}}{\operatorname{argmin}} \|\alpha_j h_j(x) + \hat{y} - y\|_2^2 = \underset{\alpha_j \in \mathbb{R}}{\operatorname{argmin}} \|\alpha_j x_j + \hat{y} - y\|_2^2 = \underset{\alpha_j \in \mathbb{R}}{\operatorname{argmin}} \|\alpha_j x_j - (y - \hat{y})\|_2^2,$$

from which it is apparent that $\hat{\alpha}_i$ is the length of the projection of $y - \hat{y}$ onto x_i ,

$$\hat{\alpha}_j = \left\langle \frac{x_j}{\|x_j\|}, y - \hat{y} \right\rangle = \left[\langle x_j, y - \hat{y} \rangle. \right]$$
 (1)

Note that, rewriting terms as vectors, g is a gradient of the 2-norm recentered at y:

$$g = \frac{\partial L(y, \hat{y})}{\partial \hat{y}} = \frac{\partial \|y - \hat{y}\|_2^2}{\partial \hat{y}} = 2(\hat{y} - y).$$

Thus, rewriting again in vector notation, we have

$$j = \underset{\ell \in \{1, \dots, M\}}{\operatorname{argmin}} \| - g - \hat{\alpha}_{\ell} h_{\ell}(x) \|_{2}^{2} = \underset{\ell \in \{1, \dots, M\}}{\operatorname{argmin}} \| \hat{\alpha}_{\ell} x_{\ell} - (y - \hat{y}) \|_{2}^{2}.$$

From (1), it is clear that this term is just the error of approximating $(y - \hat{y})$ by its projection onto x_i . This error is minimized by maximizing the inner product of x_i and $y - \hat{y}$, and hence

$$j = \underset{\ell \in \{1, \dots, M\}}{\operatorname{argmax}} |\langle x_j, y - \hat{y} \rangle|.$$
(2)

We could make this derivation a bit more rigorous (find roots of the derivative to compute $\hat{\alpha}_j$, and then obtain (2) via some algebra), but these arguments give much better intuition.

¹sss1@andrew.cmu.edu

(b)
$$\hat{\alpha}_j = \operatorname*{argmin}_{\alpha_j \in \mathbb{R}} \sum_{i=1}^n \log \left(1 + \exp(-2y_i(\hat{y}_i + \alpha_j h_j(x_i)))\right).$$

I don't see a good way of minimizing this analytically. A simple way to approximately minimize this in practice would be to find the α_j values that minimize each term of the sum, and then try values of α_j (perhaps uniformly) in the interval surrounded by those values.