华东理工大学2022 - 2023学年第一学期

开课学院/School: <u>国卓学院</u> ,	专业/Major: <u>化工与制药</u>		
考试形式/Exam format:QCM,	所需时间/Time required:90 分钟/Minutes		

考生姓名/Name: ______ 学号/Student ID: _____ 班级/Class:

任课老师/Teacher_:

题序/Number of	得分/Points per	题序/Number of	得分/Points per
sections	sections	sections	section
1	6	9	6
2	6	10	7
3	6	11	6
4	6	12	6
5	6	13	6
6	6	14	7
7	6	15	7
8	6	16	7
评卷人/Responsible teacher			,

Les documents de cours ne sont pas autorisés.

Pour certaines questions, plusieurs réponses sont possibles.

On donne: $h = 6,62 \cdot 10^{-34} \text{ J.s}$; 1 hartree = 27,21 eV = 4,36 $\cdot 10^{-18} \text{ J}$; $c = 3 \cdot 10^8 \text{ m.s}^{-1}$; $R_H = 109 \cdot 677 \text{ cm}^{-1}$;

1)	a) =	b) □	c) 🗖	d) □	e) 🗖
2)	a) =	b) □	c) 🗆	d) □	e) 🗆
3)	a) 🗆	b) □	c) 🗆	d) =	e) 🗆
4)	a) 🗆	b) □	c) 🗆	d) =	e) 🗆
5)	a) 🗆	b) =	c) 🗆	d) 🗆	e) 🗆
6)	a) =	b) □	c) 🗆	d) 🗆	e) 🗆
7)	a) =	b) 🗆	c) 🗖	d) 🗖	e) 🗆
8)	a) =	b) =	c) 🗆	d) =	e) 🗆
9)	a) =	b) 🗖	c) 🗖	d) 🗖	e) 🏻
10)	a) 🗆	b) =	c) 🗆	d) =	e) 🏻
11)	a) 🗆	b) □	c) =	d) 🗆	e) 🏻
12)	a) =	b) =	c) 🗆	d) 🗆	e) 🏻
13)	a) 🗆	b) 🗆	c) 🗖	d) 🗖	e) =
14)	a) 🗆	b) =	c) 🗖	d) 🗆	e) 🗆
15)	a) 🗆	b) =	c) 🗆	d) 🗆	e) 🗆
16)	a) =	b) =	c) =	d) 🗆	e) 🗆

1) L'expression générale de l'énergie des hydrogénoides en unités atomiques est :

a)
$$E = -\frac{1}{2} \frac{Z^2}{n^2}$$

b)
$$E = -13.6 \frac{Z^2}{n^2}$$
 Faux car il s'agit de l'expression de l'énergie en eV

c)
$$E = -\frac{h^2k^2}{2m}$$
 Faux car cela n'a rien à voir avec les hydrogénoides

d)
$$E = -\frac{\hbar^2 k^2}{2m}$$
 Faux car cela n'a rien à voir avec les hydrogénoides

- e) aucune des affirmations précédentes n'est vraie
- 2) Le potentiel d'ionisation de H (Z=1) en eV vaut :
 - a) 13,6
 - b) 27,2
 - c) 0,5
 - d) -0,5
 - e) aucune des affirmations précédentes n'est vraie

PI (potential d'ionisation) = $|E_H - E_{H^+}|$

$$E_H = -13.6 \text{ eV}$$
 $E_{H^+} = 0$ $PI = 13.6 \text{ eV}$

- 3) Concernant la formule de Rydberg, identifier les affirmations exactes.
 - a) La différence d'énergie entre 2 niveaux caractérisés par les entiers n et p est donnée par la formule

$$\Delta E = R_H \left(\frac{1}{n^2} - \frac{1}{n^2} \right)$$

b) La différence d'énergie entre 2 niveaux caractérisés par les entiers n et p est donnée par la formule

$$\Delta E = h R_H \left(\frac{1}{n^2} - \frac{1}{p^2} \right)$$

- c) La formule s'applique aux systèmes hydrogénoides
- d) La formule s'applique uniquement à l'hydrogène
- e) aucune des affirmations précédentes n'est vraie

Voir le cours

- 4) Un atome d'hydrogène peut :
 - a) dans son état fondamental, émettre un photon de longueur d'onde $\lambda = 97.2$ nm
 - b) dans son état fondamental, émettre un photon de longueur d'onde $\lambda = 486,1$ nm
 - c) dans son premier état excité, émettre un photon de longueur d'onde $\lambda = 97.2$ nm
 - d) dans son premier état excité, émettre un photon de longueur d'onde $\lambda = 121,5$ nm
 - e) aucune des affirmations n'est vraie

L'émission de photon implique la transition d'un état énergétique donné vers un état de plus basse énergie. Cela ne peut donc se produire à l'état fondamental. Le 1^{er} état excité correspond à n = 2, en appliquant la formule de Rydberg

$$\frac{1}{\lambda} = R_H \left(\frac{1}{n^2} - \frac{1}{p^2}\right)$$
 avec $n = 1$ (état fondamental) et $p = 2$ (l^{er} état excité = second état de plus basse énergie), on trouve

5) Un laser hélium-néon émet un faisceau laser de lumière de 0,1 Watt dont la longueur d'onde est égale à 633 nm. Le nombre de photons émis par le laser à chaque minute vaut :

- a) 3,142 10¹⁹
- b) 1,9 10¹⁹
- c) 5,23 10¹⁸
- d) 3,142 10¹⁸
- e) aucune des affirmations précédentes n'est vraie

$$E = P.\Delta t = nhv = \frac{nhc}{\lambda}$$
 avec $P=0.1~W$; $\Delta t = 60s$ et $\lambda = 633$ nm, on trouve $n = 1.9~10^{19}$

- 6) Lorsque l'on évoque l'effet photoélectrique, la fonction de travail du métal est :
 - a) l'énergie à fournir pour observer le courant photoélectrique
 - b) la fréquence du rayonnement à appliquer pour observer le courant photoélectrique
 - c) la tension à appliquer pour annuler le courant photoélectrique
 - d) l'énergie cinétique des photo-électrons
 - e) aucune des affirmations précédentes n'est vraie

Voir le cours

- 7) Les fonctions propres des opérateurs de la mécanique quantique sont :
 - a) orthonormées
 - b) linéaires
 - c) hermitiques
 - d) parallèles
 - e) aucune des affirmations précédentes n'est vraie

Voir le cours

- 8) Soit 2 grandeurs physiques A et B. Si les opérateurs \hat{A} et \hat{B} respectivement associés à ces grandeurs commutent, cela signifie que :
 - a) les 2 opérateurs admettent le même jeu de fonctions propres
 - b) le produit des incertitudes associées à chacune de ces grandeurs est nul
 - c) le produit des incertitudes associées à chacune de ces grandeurs est supérieur à $^{\hbar}\!/_{2}$
 - d) leurs fonctions propres sont orthogonales
 - e) aucune des affirmations précédentes n'est vraie

Voir le cours

- 9) La configuration électronique de l'état fondamental de Si (Z=14) est :
 - a) $(1s)^2(2s)^2(2p)^6(3s)^2(3p)^2$
 - b) $(1s)^2(1p)^6(2s)^2(2p)^4$
 - c) $(1s)^2(2s)^2(2p)^6(3s)^1(3p)^3$
 - d) $(1s)^2(1p)^6(2s)^1(2p)^5$
 - e) aucune des affirmations précédentes n'est vraie

- 10) La règle de Hund doit être invoquée pour déterminer la configuration électronique de l'état fondamental de :
 - a) Ga (Z=31) $[Ga] = [Ar]4s^23d^{10}4p^1$
 - **b) Ge (Z=32)** $[Ge] = [Ar]4s^23d^{10}4^2$: il existe plusieurs possibilités (d'énergies différentes) de distribuer les 2 électrons sur la sous-couche 4p qui impliquent d'invoquer la règle de Hund
 - c) CI (Z=17) $[Cl] = [Ne]3s^23p^5$
 - **d) V (Z=23)** [V]= [Ar]4s²3d³: il existe plusieurs possibilités (d'énergies différentes) de distribuer les 2 électrons sur la sous-couche 4p qui impliquent d'invoquer la règle de Hund
 - e) aucun de ces atomes
- 11) Soit deux électrons non appariés d'un même atome, situés dans une sous-couche 4f, identifier les affirmations exactes
 - a) électron 1 : n = 4 ; l = 2 ; m = -2 ; $m_s = \frac{1}{2}$ électron 2 : n = 4 ; l = 2 ; m = -2 ; $m_s = -\frac{1}{2}$
- → Ces 2 électrons (appariés) sont dans une sous couche 4d
- b) électron 1 : n = 4 ; l = 2 ; m = -2 ; $m_s = \frac{1}{2}$ électron 2 : n = 4 ; l = 2 ; m = -1 ; $m_s = \frac{1}{2}$
- → Ces 2 électrons sont dans une sous-couche 4d
- c) électron 1 : n = 4 ; l = 3 ; m = -2 ; $m_s = \frac{1}{2}$ électron 2 : n = 4 ; l = 3 ; m = 0 ; $m_s = -\frac{1}{2}$
- d) électron 1 : n = 4 ; l = 3 ; m = -2 ; $m_s = \frac{1}{2}$ électron 2 : n = 4 : l = 3 : m = -2 : $m_s = -1$
 - électron 2 : n = 4 ; l = 3 ; m = -2 ; $m_s = -\frac{1}{2}$ \rightarrow Ces 2 électrons 4f sont appariés
- e) aucune des affirmations précédentes n'est vraie
- 12) La normalisation de la fonction d'onde ψ :
 - a) traduit le fait de trouver la particule dans tout l'espace
 - b) consiste à résoudre l'équation $\langle \psi | \psi \rangle = 1$
 - c) consiste à résoudre l'équation $\langle \psi | \hat{H} | \psi \rangle = 1$
 - d) consiste à résoudre l'équation $\frac{\langle\psi|\widehat{H}|\psi\rangle}{\langle\psi|\psi\rangle}=1$
 - e) aucune des affirmations précédentes n'est vraie

Voir le cours

- 13) L'orthogonalité des fonctions d'onde ψ et ϕ :
 - a) traduit le fait de trouver la particule dans tout l'espace
 - b) consiste à résoudre l'équation $\langle \psi | \phi \rangle = 1$
 - c) consiste à résoudre l'équation $\langle \psi | \hat{H} | \psi \rangle = 1$
 - d) consiste à résoudre l'équation $\frac{\langle \psi | \widehat{H} | \psi \rangle}{\langle \phi | \phi \rangle} = 1$
 - e) aucune des affirmations précédentes n'est vraie

Voir le cours

On considère le cas d'une particule de masse m piégée dans un puits bidimensionnel où le potentiel est nul dans les intervalles $0 \le x \le a$ et $0 \le y \le b$ et infini en dehors. On suppose a > b > 0. L'hamiltonien d'un tel système s'écrit :

$$\widehat{H} = -\frac{\hbar^2}{2m} \left(\frac{d^2}{dx^2} + \frac{d^2}{dy^2} \right).$$

La fonction $\Psi(x,y) = N \sin(k_x x) \sin(k_y y)$ (avec k_x et k_y scalaires) est fonction de propre de \widehat{H} .

14) L'énergie d'une particule décrite par la fonction $\Psi(x, y)$ est

a)
$$E = \frac{h^2}{2m} (k_x^2 + k_y^2)$$

b)
$$E = \frac{\hbar^2}{2\pi r} (k_x^2 + k_y^2)$$

c)
$$E = -\frac{\hbar^2}{2m} (k_x^2 + k_y^2)$$

d)
$$E = \frac{h^2}{2m} (k_x^2 k_y^2)$$

e) aucune des affirmations précédentes n'est vraie

$$\begin{split} \widehat{H} &= -\frac{h^2}{2m} \left(\frac{\partial^2}{\partial x^2} + \frac{\partial^2}{\partial y^2} \right) \qquad \neq = N \sin \left(k_x \, x \right) \sin \left(k_y \, y \right) \\ \widehat{H} \not= E \not= \qquad \widehat{H} \not= -\frac{h^2}{2m} \left(\frac{\partial^2}{\partial x^2} + \frac{\partial^2}{\partial y^2} \right) N \sin \left(k_x \, x \right) \sin \left(k_y \, y \right) \\ \widehat{H} \not= -\frac{h^2}{2m} \left[N \sin \left(k_y \, y \right) \frac{\partial^2}{\partial x^2} \left(\sin k_x \, x \right) + N \sin \left(k_x \, x \right) \frac{\partial^2}{\partial y^2} \left(\sin k_y \, y \right) \right] \\ &= -\frac{h^2}{2m} \left[N \sin \left(k_y \, y \right) \left(-k_x^2 \, \sin \left(k_x \, x \right) \right) + N \sin \left(k_x \, x \right) \left(-k_y^2 \sin \left(k_y \, y \right) \right) \right] \\ &= \frac{h^2}{2m} \left(k_x^2 + k_y^2 \right) N \sin \left(k_x \, x \right) \sin \left(k_y \, y \right) \\ &= \frac{h^2}{2m} \left(k_x^2 + k_y^2 \right) \not= \frac{h^2}{2m} \left(k_x^2 +$$

15) L'étude aux limites du puits de potentiel permet de montrer que :

a)
$$k_x = \frac{\pi(n_x + 1/2)}{a}$$
 et $k_y = \frac{\pi(n_y + 1/2)}{a}$ avec n_x et $n_y \in \mathbb{Z}^*$

b)
$$k_x = \frac{n_x \pi}{a}$$
 et $k_y = \frac{n_y \pi}{a}$ avec n_x et $n_y \in \mathbb{Z}^*$

c)
$$k_x = \frac{\pi(n_x + 1/2)}{a}$$
 et $k_y = \frac{\pi(n_y + 1/2)}{a}$ avec n_x et $n_y \in \mathbb{Z}$

d)
$$k_x = \frac{n_x \pi}{a}$$
 et $k_y = \frac{n_y \pi}{a}$ avec n_x et $n_y \in \mathbb{Z}$

e) aucune des affirmations précédentes n'est vraie

Aux limits du prits, la fonction d'onde est mille sont

$$f(0,y) = f(a,y) = 0$$
 $f(x,0) = f(x,b) = 0$
 $f(x,y) = 0$

16) On note la fonction d'onde du système $\psi_{n_x n_y}$. Si le puits bidimensionnel est carré (a=b), on peut dire que :

a) ψ_{11} et ψ_{12} sont orthogonales Oui car ces 2 fonctions sont fonctions propres de \widehat{H}

b) ψ_{21} et ψ_{12} sont orthogonales Oui car ces 2 fonctions sont fonctions propres de \widehat{H}

c) ψ_{21} et ψ_{12} sont dégénérées Oui car les valeurs propres associées (=énergies) sont identiques

si a = b

d) ψ_{11} et ψ_{12} sont dégénérées Non elles ne peuvent l'être pour ces 2 fonctions

e) aucune des affirmations précédentes n'est vraie