Sapiens:
Foundation
for Human
Vision
Models
Xiantong

Methods

Experiment

Conclusion

# Sapiens: Foundation for Human Vision Models

Xiantong Xiang

Shandong University

Tuesday, December 3rd, 2024

Khirodkar R, Bagautdinov T, Martinez J, et al. Sapiens: Foundation for Human Vision Models [A]. 2024: arXiv:2408.12569. arXiv: 2408.12569.

# Contents

Sapiens: Foundation for Human Vision Models

> Kianton Xiang

Background

Experiment

Experiment

Conclusion

Background

2 Methods

3 Experiment

# Background

Sapiens: Foundation for Human Vision Models

Xianton Xiang

Background

Methods

Experiment

- $\bullet$  leveraging large datasets and scalable model architectures is key for generalization
- What type of data is most effective for pretraining?
- the critical impact of label quality on the model's in-the-wild performance

#### Dataset

Sapiens: Foundation for Human Vision Models

Xiantong Xiang

Methods

Experiment

- Humans-300M
- approximately 1 billion in-the-wild images
- Figure provides an overview of the distribution of the number of people per image in our dataset, noting that over 248 million images contain multiple subjects



# Pretraining

Sapiens: Foundation for Human Vision Models

Xiantong Xiang

Background

Methods

Experiment

. . .

- Masked-Autoencoder (MAE)
  - Encoder: maps the visible image to a latent representation
  - $\bullet$   $\, {\bf Decoder} :$  reconstructs the original image from this latent representation
- an image  $\Rightarrow$  regular non-overlapping patches (fixed patch size)



Sapiens: Foundation for Human Vision Models

Xiantong Xiang

Methods

Experiment

Conclusion

#### • Heatmap Prediction:

- detect the locations of K keypoints from an input image  $I \in \mathbb{R}^{H \times W \times 3}$
- each of K heatmaps represents the probability of the corresponding keypoint being at any spatial location
- Pose Estimation Transformer  $\mathcal{P}$ :
  - Input:  $I \in \mathbb{R}^{H \times W \times 3}$
  - Output:  $y \in \mathbb{R}^{H \times W \times K}$

K heatmaps corresponding to the ground truth keypoints

• Minimize the mean squared loss:

$$\mathcal{L}_{\text{pose}} = \text{MSE}(y, \hat{y})$$

Sapiens: Foundation for Human Vision Models

Xiantong Xiang

Methods

. .

231p 011111011





B kps c) Face – 243 kps d) Body-Part Segmentation: 28 Classes

- Compared to existing formats with at most 68 facial keypoints, their annotations consist of 243 facial keypoints, including representative points around the eyes, lips, nose, and ears.
- annotated 1 million images at 4K resolution

# Body-Part Segmentation

Sapiens: Foundation for Human Vision Models

Xiantong Xiang

Backgroun

Methods

Experiment

Conclusion

• Method: adopt the same encoder-decoder architecture and initialization scheme

• minimize the weighted cross-entropy loss

$$\mathcal{L}_{\text{seg}} = \text{WeightedCE}(p, \hat{p})$$

- ullet finetune S across two part-segmentation vocabularies
  - a standard set with C = 20
  - a new larger vocabulary with C=28
- annotate 100K images at 4K resolution

# Depth Estimation

Sapiens: Foundation for Human Vision Models

Xiantong Xiang

Methods

Experiment

Conclusion

#### Method

- adopt the architecture used for segmentation
- the decoder output channel is set to 1 for regression
- The  $\mathcal{L}_{\text{depth}}$  loss for  $\mathcal{D}$  is defined as follows:

$$\Delta d = \log(d) - \log \left( \hat{d} \right)$$

$$\overline{\Delta d} = \frac{1}{M} \sum_{i=1}^{M} \Delta d_i, \quad \overline{(\Delta d)^2} = \frac{1}{M} \sum_{i=1}^{M} (\Delta d_i)^2$$

$$\mathcal{L}_{\mathrm{depth}} = \sqrt{\overline{(\Delta d)^2} - \frac{1}{2} (\overline{\Delta d})^2}$$

groundtruth depth map  $d \in \mathbb{R}^{H \times W}$ ,  $\hat{d} = D(I)$ , the number of human pixels M

# Depth Estimation

Sapiens: Foundation for Human Vision Models

Xiantong Xiang

Баскугоип

Methods

Experiment

- the relative depth estimation:
  - normalize d to the range [0,1] using max and min depths
- render **500**, **000** synthetic images using 600 highresolution photogrammetry human scans
- 4K resolution



## Surface Normal Estimation

Sapiens: Foundation for Human Vision Models

> Xiantong Xiang

Background

Methods

Experiment

-----

Method

- adopt the same architecture
- the decoder output channel is set 3
- ullet the loss  $\mathcal{L}_{\mathrm{normal}}$  is only computed for human pixels

$$\mathcal{L}_{\text{normal}} = \|n - \hat{n}\|_1 + (1 - n \cdot \hat{n})$$

Sapiens: Foundation for Human Vision Models

Xiantong Xiang

Dackgrou

Methods

Experiment

Conclusion

• Pretrain: 1024 A100 GPUs for 18 days

- AdamW optimizer
- The learning schedule
  - a brief linear warm-up
  - cosine annealing for pretraining
  - linear decay for finetuning
- differential learning rates
  - lower learning rates for initial layers
  - progressively higher rates for subsequent layers

Sapiens: Foundation for Human Vision Models

Xiantong Xiang

Dackgrou

Methods

Experiment

 $\operatorname{Conclusion}$ 

| Model                | Input Size        | Body |      | Foot |      | Face |      | Hand |      | Whole-body  |             |
|----------------------|-------------------|------|------|------|------|------|------|------|------|-------------|-------------|
|                      |                   | AP   | AR   | AP   | AR   | AP   | AR   | AP   | AR   | AP          | AR          |
| DeepPose [98]        | $384 \times 288$  | 32.1 | 43.5 | 25.3 | 41.2 | 37.8 | 53.9 | 15.7 | 31.6 | 23.9        | 37.2        |
| SimpleBaseline [106] | $384 \times 288$  | 52.3 | 60.1 | 49.8 | 62.5 | 59.6 | 67.3 | 41.4 | 51.8 | 44.6        | 53.7        |
| HRNet [93]           | $384 \times 288$  | 55.8 | 62.6 | 45.2 | 55.4 | 58.9 | 64.5 | 39.3 | 47.6 | 45.7        | 53.9        |
| ZoomNAS [110]        | $384 \times 288$  | 59.7 | 66.3 | 48.1 | 57.9 | 74.5 | 79.2 | 49.8 | 60.6 | 52.1        | 60.7        |
| ViTPose+-L [112]     | $256 \times 192$  | 61.0 | 66.8 | 62.4 | 68.2 | 50.1 | 55.7 | 41.5 | 47.3 | 47.8        | 53.6        |
| ViTPose+-H [112]     | $256 \times 192$  | 61.6 | 67.4 | 63.2 | 69.0 | 50.7 | 56.3 | 42.0 | 47.8 | 48.3        | 54.1        |
| RTMPose-x [54]       | $384 \times 288$  | 57.1 | 63.7 | 55.3 | 66.8 | 74.4 | 78.5 | 46.3 | 55.0 | 51.9        | 59.6        |
| DWPose-m [115]       | $256 \times 192$  | 54.2 | 61.4 | 49.9 | 63.0 | 68.5 | 74.2 | 40.1 | 50.0 | 47.7        | 55.8        |
| DWPose-1 [115]       | $384 \times 288$  | 57.9 | 64.2 | 56.5 | 67.4 | 74.3 | 78.4 | 49.3 | 57.4 | 53.1        | 60.6        |
| Sapiens-0.3B (Ours)  | $1024 \times 768$ | 58.1 | 64.5 | 56.8 | 67.7 | 74.5 | 78.6 | 49.6 | 57.7 | 53.4 (+0.3) | 60.9 (+0.3) |
| Sapiens-0.6B (Ours)  | $1024 \times 768$ | 59.8 | 65.5 | 64.7 | 72.3 | 75.2 | 79.0 | 52.1 | 60.3 | 56.2 (+2.8) | 62.4 (+2.1) |
| Sapiens-1B (Ours)    | $1024 \times 768$ | 62.9 | 68.2 | 68.3 | 75.1 | 76.4 | 79.7 | 55.9 | 63.4 | 59.4 (+5.9) | 65.3 (+5.1) |
| Sapiens-2B (Ours)    | $1024 \times 768$ | 64.7 | 69.9 | 69.4 | 76.2 | 76.9 | 79.9 | 57.1 | 64.4 | 61.1(+7.6)  | 67.1(+7.0)  |

- Sapiens-0.3B exceeds VitPose+-L by +5.6 AP
- Sapiens-0.6B outperforms VitPose+-H by +7.9 AP
- Sapiens-2B, a significant improvement of +7.6 AP to the prior art

### Conclusion

Sapiens: Foundation for Human Vision Models

Xianton Xiang

Баскдгои

Experiment

- largescale pretraining on a large curated dataset, which is specifically tailored to understanding humans
- scaled highresolution and high-capacity vision transformer backbones
- high-quality annotations on augmented studio and synthetic data