Metendyka dyskretna 24 11.2023 Relage: · vochunda zolon ((ogika) · tesria mnazorci · funkye Rebye poreglan Religionnovamora XY-dovelne zbiory relaga R-davolny podstier: RCXXY (xy) GR = xRy x jest v religio zy Wansi Dzwrotność (jest volagi z roby)

króda pora X RX $\bigwedge \times \mathbb{R} \times$ 2) Symetryczność (za advortne)

3) Antygnetrycrna

$$x = 1, y = 5$$
 $(1 RS VSR1 \Rightarrow 1 = 5) \equiv F$
 $(1 RS VSR1 \Rightarrow 1 = 5) \equiv F$
 $(1 RS VSR1 \Rightarrow 1 = 5) \equiv F$
 $(1 RS VSR1 \Rightarrow 1 = 5) \equiv F$
 $(1 RS VSR1 \Rightarrow 1 = 5) \equiv F$
 $(1 RS VSR1 \Rightarrow 1 = 5) \equiv F$
 $(1 RS VSR1 \Rightarrow 1 = 5) \equiv F$
 $(1 RS VSR1 \Rightarrow 1 = 5) \equiv F$
 $(1 RS VSR1 \Rightarrow 1 = 5) \equiv F$
 $(1 RS VSR1 \Rightarrow 1 = 5) \equiv F$
 $(1 RS VSR1 \Rightarrow 1 = 5) \equiv F$
 $(1 RS VSR1 \Rightarrow 1 = 5) \equiv F$
 $(1 RS VSR1 \Rightarrow 1 = 5) \equiv F$
 $(1 RS VSR1 \Rightarrow 1 = 5) \equiv F$
 $(1 RS VSR1 \Rightarrow 1 = 5) \equiv F$
 $(1 RS VSR1 \Rightarrow 1 = 5) \equiv F$
 $(1 RS VSR1 \Rightarrow 1 = 5) \equiv F$
 $(1 RS VSR1 \Rightarrow 1 = 5) \equiv F$
 $(1 RS VSR1 \Rightarrow 1 = 5) \equiv F$
 $(1 RS VSR1 \Rightarrow 1 = 5) \equiv F$
 $(1 RS VSR1 \Rightarrow 1 = 5) \equiv F$
 $(1 RS VSR1 \Rightarrow 1 = 5) \equiv F$
 $(1 RS VSR1 \Rightarrow 1 = 5) \equiv F$
 $(1 RS VSR1 \Rightarrow 1 = 5) \equiv F$
 $(1 RS VSR1 \Rightarrow 1 = 5) \equiv F$
 $(1 RS VSR1 \Rightarrow 1 = 5) \equiv F$
 $(1 RS VSR1 \Rightarrow 1 = 5) \equiv F$
 $(1 RS VSR1 \Rightarrow 1 = 5) \equiv F$
 $(1 RS VSR1 \Rightarrow 1 = 5) \equiv F$
 $(1 RS VSR1 \Rightarrow 1 = 5) \equiv F$
 $(1 RS VSR1 \Rightarrow 1 = 5) \equiv F$
 $(1 RS VSR1 \Rightarrow 1 = 5) \equiv F$
 $(1 RS VSR1 \Rightarrow 1 = 5) \equiv F$
 $(1 RS VSR1 \Rightarrow 1 = 5) \equiv F$
 $(1 RS VSR1 \Rightarrow 1 = 5) \equiv F$
 $(1 RS VSR1 \Rightarrow 1 = 5) \equiv F$
 $(1 RS VSR1 \Rightarrow 1 = 5) \equiv F$
 $(1 RS VSR1 \Rightarrow 1 = 5) \equiv F$
 $(1 RS VSR1 \Rightarrow 1 = 5) \equiv F$
 $(1 RS VSR1 \Rightarrow 1 = 5) \equiv F$
 $(1 RS VSR1 \Rightarrow 1 = 5) \equiv F$
 $(1 RS VSR1 \Rightarrow 1 = 5) \equiv F$
 $(1 RS VSR1 \Rightarrow 1 = 5) \equiv F$
 $(1 RS VSR1 \Rightarrow 1 = 5) \equiv F$
 $(1 RS VSR1 \Rightarrow 1 = 5) \equiv F$
 $(1 RS VSR1 \Rightarrow 1 = 5) \equiv F$
 $(1 RS VSR1 \Rightarrow 1 = 5) \equiv F$
 $(1 RS VSR1 \Rightarrow 1 = 5) \equiv F$
 $(1 RS VSR1 \Rightarrow 1 = 5) \equiv F$
 $(1 RS VSR1 \Rightarrow 1 = 5) \equiv F$
 $(1 RS VSR1 \Rightarrow 1 = 5) \equiv F$
 $(1 RS VSR1 \Rightarrow 1 = 5) \equiv F$
 $(1 RS VSR1 \Rightarrow 1 = 5) \equiv F$
 $(1 RS VSR1 \Rightarrow 1 = 5) \equiv F$
 $(1 RS VSR1 \Rightarrow 1 = 5) \equiv F$
 $(1 RS VSR1 \Rightarrow 1 = 5) \equiv F$
 $(1 RS VSR1 \Rightarrow 1 = 5) \equiv F$
 $(1 RS VSR1 \Rightarrow 1 = 5) \equiv F$
 $(1 RS VSR1 \Rightarrow 1 = 5) \equiv F$
 $(1 RS VSR1 \Rightarrow 1 = 5) \equiv F$
 $(1 RS VSR1 \Rightarrow 1 = 5) \equiv F$
 $(1 RS VSR1 \Rightarrow 1 = 5) \equiv F$
 $(1 RS VSR1 \Rightarrow 1 = 5) \equiv F$
 $(1 RS VSR1 \Rightarrow 1 = 5) \equiv F$
 $(1 RS VSR1 \Rightarrow 1 = 5) \equiv F$
 $(1 RS VSR1 \Rightarrow 1 = 5) \equiv F$
 $(1 RS VSR1 \Rightarrow 1 = 5) \equiv F$
 $(1 RS VSR1 \Rightarrow 1 = 5) \equiv F$
 $(1 RS VSR1 \Rightarrow 1 = 5) \equiv F$
 $(1 RS VSR1 \Rightarrow 1 = 5) \equiv F$
 $(1 RS VSR1 \Rightarrow 1 = 5) \equiv F$
 $(1 RS VSR1 \Rightarrow 1 = 5) \equiv F$
 $(1 RS VSR1 \Rightarrow 1 = 5) \equiv F$
 $(1 RS VSR1 \Rightarrow 1 = 5) \equiv F$
 $(1 RS VSR1$

Relage novadku Rnazymmy relacje cześciowego naradku jeżeli jest ora: entymetryera, i predomia Jereli R jest relage serienge narrogen i jert ena jednoczeńnie znajna to nazywamy je religie (uniarzo luk cathaniteje narzadku) x < yJesti Rjest relaga naradku XRy mneny X { y X napredry, y nortennje no X $\times \in \{1,2,3,4,5\} \ \} \in \{(1,2),(1,3),(1,5),$ 1 12 (2,5); (3,5); 1 { 3 (1, 1), (2, 2), (3, 3), (4:4),(5)}

majnielony nazmuignz (<0,1), <)nymuyny ({27} 0 { 3 } 0 5 , 1) (X, 1) ist nieje element nazniehns to zist, dro elementy X i y to w receipharci y { X. X + & \ X > kinsom Struge clement molosymology i minimalny

Relage vour avoinarci operator == (Class & Mrs) { } // C++ overdon everloshing (\times, R) $R \subseteq X \times X$ R-relagarannarvainas i jeselti jest ana 1) zwratna 2) zymetnyczna 3) prechadnia Zamiast XRy beoleiny pisoe X2 y el. y ktore ron velogi - z x Wasa abstrategi X ornacrana jesto prec CX] $\begin{bmatrix} \dot{x} \end{bmatrix} \cdot = \{ \dot{y} \in X : x \sim y \}$ $X = Z (x \sim y) \Rightarrow [3 \mid x \sim y]$ $[0] = \{..., -9, -6, -3, 0, 3, 6, 9\} = \{3n : n \in \mathbb{Z}\}$ [1]={3n+1:neZ}

