

KONKURS CHEMICZNY

DLA UCZNIÓW GIMNAZJÓW

II ETAP REJONOWY

16 listopada 2012

Ważne informacje:

- 1. Masz 90 minut na rozwiązanie wszystkich zadań.
- 2. W każdym zadaniu zaznacz kółkiem wybraną odpowiedź A, B, C lub D.
- 3. Pisz długopisem lub piórem, nie używaj ołówka ani korektora. Jeżeli się pomylisz, przekreśl błąd i zaznacz inną odpowiedź.
- 4. Na końcu arkusza jest zamieszczony układ okresowy pierwiastków i tabela rozpuszczalności.
- 5. Pamiętaj, że zapisy w brudnopisie nie podlegają ocenie.

Życzymy powodzenia!

Maksymalna liczba punktów	100%
Uzyskana liczba punktów	%
Podpis osoby sprawdzającej	

UCZESTNIKU!

Przed Tobą test wielokrotnego wyboru stanowiący 20 zadań zamkniętych oraz 3 zadania otwarte. Uważnie czytaj każde zadanie zamknięte i zdecyduj, która z podanych odpowiedzi jest według Ciebie poprawna. Pamiętaj, że tylko jedna jest prawdziwa.

Podczas pracy korzystaj z układu okresowego pierwiastków chemicznych oraz tablicy rozpuszczalności soli i wodorotlenków, zastosuj również liczbę Avogadra $N_{\rm A}=6.02\cdot 10^{23}$, oraz objętość molową gazów w warunkach normalnych V=22.4 mol/dm³.

Powodzenia!

1. Określ położenie pierwiastka GERMAN w układzie okresowym pierwiastków chemicznych.

A. numer grupy 14, numer okresu 4

C. numer grupy 4, numer okresu 14

B. numer grupy 4, numer okresu 4

D. numer grupy 14, numer okresu 3

2. Oblicz stopnie utlenienia manganu w związkach chemicznych o podanych w tabeli wzorach.

	KMnO ₄	K ₂ MnO ₄	MnSO ₄
A.	VII	VII	II
B.	– VII	- VI	- II
C.	III	II	III
D.	VII	VI	II

3. Określ, ile i jakich wiązań znajduje się w jonie NH₄.

	Wiązania kowalencyjne spolaryzowane					
	łącznie	w tym koordynacyjne				
A.	3	0				
B.	4	1				
C.	2	2				
D.	3	1				

• Informacja do zadań 4 i 5

Przeprowadzono doświadczenie według opisu: do kolby z wrzącą wodą wprowadzono nad powierzchnię cieczy łyżeczkę z palącym się magnezem, a wydzielający się gaz zbierano do balonika założonego na tubus kolby.

4. Wybierz równanie poprawnie opisujące reakcję zachodzącą podczas doświadczenia.

A.
$$Mg(OH)_2 \rightarrow H_2O_{(gaz)} + MgO$$

C.
$$2Mg + 2H_2O_{(ciecz)} \rightarrow 2MgH_2 + O_2$$

B.
$$Mg + 2H_2O_{(ciecz)} \rightarrow MgO_2 + 2H_2$$

D.
$$Mg + H_2O_{(gaz)} \rightarrow MgO + H_2$$

5. Wskaż substancje pełniące rolę utleniacza i reduktora w reakcji przeprowadzonej w tym doświadczeniu.

	Utleniacz	Reduktor
A.	wodór	magnez
B.	para wodna	magnez
C.	tlenek magnezu	wodór
D.	magnez	para wodna

6. Wskaż liczbę atomów wodoru w jednej cząsteczce wodoru.

A. 2

B. $12.04 \cdot 10^{23}$

C. $6,02 \cdot 10^{23}$

D. $3.01 \cdot 10^{23}$

• Informacja do zadań 7 i 8

Uczeń przeprowadził elektrolizę z użyciem elektrod platynowych jednego roztworu wodnego wybranego spośród roztworów: chlorku sodu, chlorku miedzi(II), siarczanu(VI) sodu i siarczanu(VI) miedzi(II).

Zapisał obserwacje: katoda pokryła się warstwą czerwonej metalicznej substancji, przy anodzie wydzielał się żółtozielony gaz.

- 7. Wskaż roztwór, który uczeń poddał elektrolizie.
 - A. NaCl_(aq)

C. Na₂SO_{4 (aq)}

B. CuCl_{2 (aq)}

D. CuSO_{4 (aq)}

8. Wybierz równania elektrodowe poprawnie opisujące przeprowadzoną przez ucznia elektrolizę.

	Równanie reakcji katodowej	Równanie reakcji anodowej
A.	$Cu \rightarrow Cu^{2+} + 2e$	$Cl_2 + 2e \rightarrow 2Cl^-$
B.	$Na^+ + e \rightarrow Na$	$2H_2O \rightarrow O_2 + 4e + 4H^+$
C.	$Cu^{2+} + 2e \rightarrow Cu$	$2Cl^- \rightarrow Cl_2 + 2e$
D.	$2H_2O + 2e \rightarrow H_2 + 2OH^-$	$2H_2O \rightarrow O_2 + 4e + 4H^+$

9. Wybierz równanie tej reakcji, która <u>nie jest</u> reakcją utleniania-redukcji.

A. $2F_2 + 2H_2O \rightarrow 4HF + O_2$

B. $Zn + Pb(NO_3)_2 \rightarrow Zn(NO_3)_2 + Pb$

C. $Mg + H_2SO_4 \rightarrow MgSO_4 + H_2$

D. $FeCl_3 + 3NaOH \rightarrow Fe(OH)_3 + 3NaCl$

Informacia do zadań 10 i 11

Temperatura, K	273	293	313	333	353
	Rozpuszczalność, g/100 g wody				
Chlorek rtęci(II)	8	7	10	15	25
Chloran(V) potasu	5	7	15	25	35

10. Korzystając z informacji o rozpuszczalności HgCl₂ i KClO₃ w wodzie w zależności od temperatury, zaznacz zdania prawdziwe.

1.	W celu sporządzenia roztworów nasyconych obu soli w T=293 K należy
	odważyć jednakowe masy obu soli i rozpuścić każdą w 100 g wody.
2.	Po ochłodzeniu do <i>T</i> =273 K roztworów obu soli nasyconych w <i>T</i> =293 K,
	wodny roztwór KClO3 nadal pozostanie nasyconym roztworem, a wodny
	roztwór HgCl ₂ stanie się roztworem nienasyconym.
3.	Wprowadzenie 15 g każdej z soli do 100 g wody pozwoli na przygotowanie
	nasyconych roztworów obu soli w <i>T</i> =313 K.
4.	W zakresie temperatur 313 – 353 K lepiej rozpuszczalną solą jest KClO ₃ .

A. zdanie 1, 3, 4

C. zdanie 1 i 4

B. zdanie 1, 2, 4

D. wszystkie zdania

- **11.** Korzystając z podanej informacji, oblicz stężenie procentowe nasyconego roztworu chloranu(V) potasu w *T*=333 K.
 - A. 25%
- B. 20%
- C. 13%
- D. 15%

• Informacja do zadań 12 i 13

W celu usunięcia tlenku azotu(II) z gazów spalinowych można stosować katalityczną redukcję tlenku azotu(II) tlenkiem węgla(II), zachodzącą według równania:

$$2NO + 2CO \xrightarrow{katalizat\sigma} N_2 + 2CO_2$$

12. Przyporządkuj literom X, Y, Z obliczone wartości liczby moli substratu i produktów.

	NO	CO	N_2	CO_2
Liczba moli	X	1	Y	Z

- A. X=1; Y=1; Z=1
- C. X=1; Y=0,5; Z=1
- B. X=2; Y=1; Z=2
- D. X=2; Y=2; Z=4
- 13. Przyporządkuj literom P, R, S obliczone wartości masy substratu i produktów.

	NO	CO	N_2	CO_2
Masa, g	30	P	R	S

- A. P=28; R=28; S=44
- C. P=14; R=14; S=22
- B. P=28; R=14; S=44
- D. P=14; R=7; S=21
- **14.** Uzupełnij schemat ilustrujący doświadczenie, którego celem było otrzymanie chlorowodoru w wyniku reakcji soli kuchennej z kwasem siarkowym(VI).

	substancja X	substancja Y	substancja Z
A.	H_2SO_4	NaCl	HCl
B.	H_2SO_4	HC1	NaCl
C.	H_2SO_3	NaCl	HC1
D.	H_2SO_4	NaCl	Na ₂ SO ₄

15. Wybierz poprawne wartości masy i objętości (w warunkach normalnych) próbki tlenu zawierającej $12,04 \cdot 10^{23}$ cząsteczek tlenu.

	Masa próbki	Objętość próbki
A.	32 g	$22,4 \text{ dm}^3$
B.	64 g	$44.8 \mathrm{dm}^3$
C.	128 g	$44.8 \mathrm{dm}^3$
D.	64 g	$22,4 \text{ dm}^3$

16.	Wskaż parę izotopów. A. $^{36}_{16}\mathrm{Ei}\ ^{33}_{16}\mathrm{E}$	B. ³⁶ ₁₆ E i ³⁷ ₁₇ E	E	C. ³⁷ E i ³⁷ E	D. $^{40}_{18}$ I	Ei ³⁸ E		
17.	Wybierz najskuteczniejsza A. filtracja B. desat				•	stalizacja		
18.	8. Poniżej przedstawiono schemat przemian promieniotwórczych. Literami X, Y i Z oznaczono cząstki emitowane podczas kolejnych przemian. Podaj symbole tych cząstek. $ \begin{array}{c} ^{218}\text{Po} \xrightarrow{X} ^{218}\text{At} \xrightarrow{Y} ^{214}\text{Bi} \xrightarrow{Z} ^{214}\text{Po} \end{array} $							
	A. $X = {}^{4}_{2}\alpha$; $Y = {}^{4}_{2}\alpha$; $Z = {}^{4}_{2}$	$_{-1}^{0}\beta$	C. $X = \frac{4}{2}$	$\alpha; Y = {}^{0}_{-1}\beta; Z$	$Z = {}^{0}_{-1}\beta$			
	B. $X = {}^0_{-1}\beta; Y = {}^0_{-1}\beta; Z =$	$_{2}^{4}\alpha$	D. $X = \frac{1}{2}$	$_{-1}^{0}\beta; Y = {}_{2}^{4}\alpha; Z$	$Z = {}^{0}_{-1}\beta$			
	Informacja do zadań magazynie odczynników dorotlenek żelaza(II), chlor	znajdują się		_	e stałe: wodo	rotlenek sodu,		
19.	Wybierz z magazynu te zmieszaniu powstałych ro A. NaOH i NaCl B. NaOH i CuCl ₂	ztworów spo C. Fe(yraźnie widoc OH				
20.	Wybierz z magazynu te elektrodach platynowych A. NaOH B. Fe(e		raktyczne	otrzymanie tle	-			
kore	Przed Tobą 3 zadania otw sy molowe pierwiastków i związ ektora ani ołówka, błędne zapis nach w karcie odpowiedzi (równ	zków chemiczny y przekreśl. Ka	ych wyrażaj nżde rozwiąz	z dokładnością c zanie zadania po	do liczb całkow	itych. Nie używaj		
					r owouzema:			
21.	Uzupełnij równanie reak (3 pkt).	cji, dobieraj	ąc współo	zynniki meto	odą bilansu	elektronowego		
Utl	enianie:							
Red	dukcja:							
Ró	wnanie reakcji:							
	NaNO ₂ +FeSO ₄ +	$H_2SO_4 \rightarrow$	Na ₂ SC	$e_{4} + Fe_{2}(Se_{2})$	O ₄) ₃ +NC	$O\uparrow +H_2O$		

22. W laboratorium chemicznym Ania i Kasia przeprowadziły doświadczenie według poniższego schematu (4 pkt).

Napisz w formie cząsteczkowej równanie reakcji, która zaszła podczas tego doświadczenia. Wykonaj niezbędne obliczenia i podaj objętość gazu (w warunkach normalnych) otrzymanego przez każdą dziewczynkę, a następnie odpowiedz na pytanie: która z dziewcząt otrzymała większą <u>objętość</u> gazu w baloniku?

D / . 1	
Równanie reakcii:	

	1 1'				1		1	1	1										
U	blio	cze	nıa	:															
																		-	
																		-	
-																			
																		ļ	_

Odpowiedź:	 	 	
1			

23. Do roztworu wodorotlenku sodu dodano 5,0 g stałego NaOH, otrzymując 500,0 g roztworu o stężeniu 1,25 mol/dm³ i gęstości $d \approx 1$ g/cm³. Oblicz stężenie procentowe wyjściowego roztworu. Wynik podaj z dokładnością do dwóch miejsc po przecinku (3 pkt).

Odpowiedź:	 	
1		

	1	UKŁAD OKRESOWY PIERWIASTKÓW CHEMICZNYCH														18		
١.	1,00																	4,00
1	Н					r.	20.07	T										He
	1 wodór	2	1		masa at	omowa [t	_30,97 P _		symbol .	chemiczn	v nionvia	etka	13	14	15	16	17	2 hel
-	6,94	9,01			liczha at	tomow a	-		Syllibol	CHEIHICZH	y piei wia	isika	10,81	12,01	14,01	15,99	18,99	20,28
2	Li	Be			iiczba at	omowa	fosfor_		nazwa n	ierwiastk	а		В	C	N	0	F	Ne
	3	4		5 6 7 8 9													-	10
	lit	beryl						bor	węgiel	azot	tlen	fluor	neon					
	22,99	24,31											26,98	28,09	30,97	32,07	35,45	39,95
3	Na	Mg											Al.	Si	P	Ś	CI	Ár
	11	12											13	14	15	16	17	18
	sód	magnez	3	4	5	6	7	8	9	10	11	12	glin	krzem	fosfor	siarka	chlor	argon
	39,10	40,08	44,96	47,87	50,94	52,00	54,94	55,85	58,93	58,69	63,55	65,41	69,72	72,64	74,92	78,96	79,9	83,79
4	K	Ca	Sc	Ti	V	Cr	Mn	Fe	Co	Ni	Cu	Zn	Ga	Ge	As	Se	Br	Kr
	19	20	21	22	23	24	25	26	27	28	29	30	31	32	33	34	35	36
	potas	wapń	skand	tytan	wanad		mangan		kobalt		miedź	cynk	gal	german		selen	brom	krypton
	85,47	87,62	88,91	91,22	92,91	95,94	98	101,07	102,91	106,42	107,87	112,41	114,82		121,76	127,6	126,9	131,29
5	Rb	Sr	Υ	Zr	Nb	Мо	Tc	Ru	Rh	Pd	Ag	Cd	In	Sn	Sb	Te	- 1	Xe
1	37		39	40	41	42	43	44	45	46	47	48	49	50	51	52	53	54
	rubid	stront	itr	cyrkon	niob	nolibdei	technet	ruten	rod	pallad	srebro	kadm	ind	cyna	antymor	tellur	jod	ksenon
	rubid 132,9	stront 137,33	itr 138,91	cyrkon 178,49	niob 180,95	nolibde i 183,84	technet 186,21	ruten 190,23	rod 192,22	pallad 195,08	srebro 196,97	kadm 200,59	ind 204,38	cyna 207,20	antymor 208,98	tellur 209	jod 210	ksenon 222
6	132,9 Cs	stront 137,33 Ba	itr 138,91 La	cyrkon 178,49 Hf	niob 180,95 Ta	nolibdei 183,84 W	technet 186,21 Re	ruten 190,23 Os	rod 192,22 Ir	pallad 195,08 Pt	srebro 196,97 Au	kadm 200,59 Hg	ind 204,38 TI	cyna 207,20 Pb	antymor 208,98 Bi	209 Po	jod 210 At	ksenon 222 Rn
6	rubid 132,9 Cs 55	stront 137,33 Ba 56	itr 138,91 La 57	cyrkon 178,49 Hf 72	niob 180,95 Ta 73	nolibdei 183,84 W 74	technet 186,21 Re 75	ruten 190,23 Os 76	rod 192,22 Ir 77	pallad 195,08 Pt 78	srebro 196,97 Au 79	kadm 200,59 Hg 80	ind 204,38 TI 81	cyna 207,20 Pb 82	antymor 208,98 Bi 83	209 Po 84	jod 210 At 85	ksenon 222 Rn 86
6	rubid 132,9 Cs 55 cez	stront 137,33 Ba 56 bar	itr 138,91 La 57 Iantan	cyrkon 178,49 Hf 72 hafn	niob 180,95 Ta 73 tantal	nolibdei 183,84 W 74 wolfram	technet 186,21 Re 75 ren	ruten 190,23 Os 76 osm	rod 192,22 Ir 77 iryd	pallad 195,08 Pt	srebro 196,97 Au 79	kadm 200,59 Hg	ind 204,38 TI	cyna 207,20 Pb	antymor 208,98 Bi	209 Po 84	jod 210 At	ksenon 222 Rn
	132,9 Cs 55 cez 237	stront 137,33 Ba 56 bar 226	itr 138,91 La 57 lantan 227	cyrkon 178,49 Hf 72 hafn 261	niob 180,95 Ta 73 tantal	nolibder 183,84 W 74 wolfram 263	technet 186,21 Re 75 ren 264	ruten 190,23 Os 76 osm 265	rod 192,22 Ir 77 iryd 266	pallad 195,08 Pt 78	srebro 196,97 Au 79	kadm 200,59 Hg 80	ind 204,38 TI 81	cyna 207,20 Pb 82	antymor 208,98 Bi 83	209 Po 84	jod 210 At 85	ksenon 222 Rn 86
7	132,9 Cs 55 cez 237 Fr	stront 137,33 Ba 56 bar 226 Ra	itr 138,91 La 57 lantan 227 Ac	cyrkon 178,49 Hf 72 hafn 261 Rf	niob 180,95 Ta 73 tantal 262 Db	nolibder 183,84 W 74 wolfram 263 Sg	186,21 Re 75 ren 264 Bh	ruten 190,23 Os 76 osm 265 Hs	rod 192,22 Ir 77 iryd 266 Mt	pallad 195,08 Pt 78	srebro 196,97 Au 79	kadm 200,59 Hg 80	ind 204,38 TI 81	cyna 207,20 Pb 82	antymor 208,98 Bi 83	209 Po 84	jod 210 At 85	ksenon 222 Rn 86
7	132,9 Cs 55 cez 237 Fr 87	stront 137,33 Ba 56 bar 226 Ra 88	138,91 La 57 lantan 227 Ac 89	cyrkon 178,49 Hf 72 hafn 261 Rf 104	niob 180,95 Ta 73 tantal 262 Db 105	183,84 W 74 wolfram 263 Sg 106	186,21 Re 75 ren 264 Bh 107	ruten 190,23 Os 76 osm 265 Hs	rod 192,22 Ir 77 iryd 266 Mt 109	pallad 195,08 Pt 78	srebro 196,97 Au 79	kadm 200,59 Hg 80	ind 204,38 TI 81	cyna 207,20 Pb 82	antymor 208,98 Bi 83	209 Po 84	jod 210 At 85	ksenon 222 Rn 86
7	132,9 Cs 55 cez 237 Fr	stront 137,33 Ba 56 bar 226 Ra	138,91 La 57 lantan 227 Ac 89	cyrkon 178,49 Hf 72 hafn 261 Rf	niob 180,95 Ta 73 tantal 262 Db 105	nolibder 183,84 W 74 wolfram 263 Sg	186,21 Re 75 ren 264 Bh 107	ruten 190,23 Os 76 osm 265 Hs	rod 192,22 Ir 77 iryd 266 Mt	pallad 195,08 Pt 78	srebro 196,97 Au 79	kadm 200,59 Hg 80	ind 204,38 TI 81	cyna 207,20 Pb 82	antymor 208,98 Bi 83	209 Po 84	jod 210 At 85	ksenon 222 Rn 86
7	132,9 Cs 55 cez 237 Fr 87	stront 137,33 Ba 56 bar 226 Ra 88	138,91 La 57 lantan 227 Ac 89	cyrkon 178,49 Hf 72 hafn 261 Rf 104	niob 180,95 Ta 73 tantal 262 Db 105	183,84 W 74 wolfram 263 Sg 106	186,21 Re 75 ren 264 Bh 107	ruten 190,23 Os 76 osm 265 Hs	rod 192,22 Ir 77 iryd 266 Mt 109	pallad 195,08 Pt 78	srebro 196,97 Au 79	kadm 200,59 Hg 80	ind 204,38 TI 81	cyna 207,20 Pb 82	antymor 208,98 Bi 83	209 Po 84	jod 210 At 85	ksenon 222 Rn 86
7	132,9 Cs 55 cez 237 Fr 87	stront 137,33 Ba 56 bar 226 Ra 88	138,91 La 57 lantan 227 Ac 89	cyrkon 178,49 Hf 72 hafn 261 Rf 104	niob 180,95 Ta 73 tantal 262 Db 105 dubn	nolibdei 183,84 W 74 wolfram 263 Sg 106 seaborg	186,21 Re 75 ren 264 Bh 107 bohr	ruten 190,23 Os 76 osm 265 Hs 108 has	rod 192,22 Ir 77 iryd 266 Mt 109 meitner	pallad 195,08 Pt 78 platyna	96,97 Au 79 złoto	kadm 200,59 Hg 80 rtęć	ind 204,38 TI 81 tal	cyna 207,20 Pb 82 ołów	antymor 208,98 Bi 83 bizmut	tellur 209 Po 84 polon	jod 210 At 85 astat	ksenon 222 Rn 86 radon
7	132,9 Cs 55 cez 237 Fr 87	stront 137,33 Ba 56 bar 226 Ra 88	138,91 La 57 lantan 227 Ac 89	cyrkon 178,49 Hf 72 hafn 261 Rf 104	niob 180,95 Ta 73 tantal 262 Db 105 dubn	nolibdei 183,84 W 74 wolfram 263 Sg 106 seaborg	technet 186,21 Re 75 ren 264 Bh 107 bohr	ruten 190,23 Os 76 osm 265 Hs 108 has	rod 192,22 Ir 77 iryd 266 Mt 109 meitner	pallad 195,08 Pt 78 platyna	srebro 196,97 Au 79 złoto	kadm 200,59 Hg 80 rtęć	ind 204,38 TI 81 tal	cyna 207,20 Pb 82 ołów	antymor 208,98 Bi 83 bizmut	tellur 209 Po 84 polon	jod 210 At 85 astat	222 Rn 86 radon
7	132,9 Cs 55 cez 237 Fr 87	stront 137,33 Ba 56 bar 226 Ra 88 rad	138,91 La 57 lantan 227 Ac 89	cyrkon 178,49 Hf 72 hafn 261 Rf 104	niob 180,95 Ta 73 tantal 262 Db 105 dubn	nolibdei 183,84 W 74 wolfram 263 Sg 106 seaborg	technet 186,21 Re 75 ren 264 Bh 107 bohr	ruten 190,23 Os 76 osm 265 Hs 108 has	rod 192,22 Ir 77 iryd 266 Mt 109 meitner	pallad 195,08 Pt 78 platyna 151,96 Eu	srebro 196,97 Au 79 złoto 157,25 Gd	kadm 200,59 Hg 80 rtęć	ind 204,38 TI 81 tal	cyna 207,20 Pb 82 ołów	antymor 208,98 Bi 83 bizmut	209 Po 84 polon	jod 210 At 85 astat	Rn 86 radon
7	132,9 Cs 55 cez 237 Fr 87	stront 137,33 Ba 56 bar 226 Ra 88	138,91 La 57 lantan 227 Ac 89	cyrkon 178,49 Hf 72 hafn 261 Rf 104	niob 180,95 Ta 73 tantal 262 Db 105 dubn	nolibdei 183,84 W 74 wolfram 263 Sg 106 seaborg	technet 186,21 Re 75 ren 264 Bh 107 bohr	ruten 190,23 Os 76 osm 265 Hs 108 has	rod 192,22 Ir 77 iryd 266 Mt 109 meitner	pallad 195,08 Pt 78 platyna 151,96 Eu 63	srebro 196,97 Au 79 złoto 157,25 Gd 64	kadm 200,59 Hg 80 rtęć	ind 204,38 TI 81 tal	cyna 207,20 Pb 82 ołów 164,93 Ho 67	208,98 Bi 83 bizmut	168,93 Tm 69	jod 210 At 85 astat 173,04 Yb	222 Rn 86 radon
7	132,9 Cs 55 cez 237 Fr 87	stront	itr 138,91 La 57 Iantan 227 Ac 89 aktyn	cyrkon 178,49 Hf 72 hafn 261 Rf 104	niob 180,95 Ta 73 tantal 262 Db 105 dubn	nolibdei 183,84 W 74 wolfram 263 Sg 106 seaborg	technet 186,21 Re 75 ren 264 Bh 107 bohr	ruten 190,23 Os 76 osm 265 Hs 108 has	rod 192,22 Ir 77 iryd 266 Mt 109 meitner	pallad 195,08 Pt 78 platyna 151,96 Eu 63	srebro 196,97 Au 79 złoto 157,25 Gd	kadm 200,59 Hg 80 rtęć	ind 204,38 TI 81 tal 162,5 Dy 66 dysproz	cyna 207,20 Pb 82 ołów 164,93 Ho 67 holm	antymor 208,98 Bi 83 bizmut	209 Po 84 polon	jod 210 At 85 astat	Rn 86 radon
7	132,9 Cs 55 cez 237 Fr 87	stront 137,33 Ba 56 bar 226 Ra 88 rad	itr 138,91 La 57 Iantan 227 Ac 89 aktyn	cyrkon 178,49 Hf 72 hafn 261 Rf 104	niob 180,95 Ta 73 tantal 262 Db 105 dubn	nolibdei 183,84 W 74 wolfram 263 Sg 106 seaborg	technet 186,21 Re 75 ren 264 Bh 107 bohr	ruten 190,23 Os 76 osm 265 Hs 108 has	rod 192,22 Ir 77 iryd 266 Mt 109 meitner 150,36 Sm 62 samar	pallad 195,08 Pt 78 platyna 151,96 Eu 63 europ	\$rebro 196,97 Au 79 złoto 157,25 Gd 64 gadolin	kadm 200,59 Hg 80 rtęć	ind 204,38 TI 81 tal	cyna 207,20 Pb 82 ołów 164,93 Ho 67	208,98 Bi 83 bizmut	168,93 Tm 69 tul	jod 210 At 85 astat 173,04 Yb 70 iterb	Rn 86 radon
7	132,9 Cs 55 cez 237 Fr 87	stront	itr 138,91 La 57 Iantan 227 Ac 89 aktyn	cyrkon 178,49 Hf 72 hafn 261 Rf 104	niob 180,95 Ta 73 tantal 262 Db 105 dubn 140,12 Ce 58 cer 232,04	nolibder 183,84 W 74 wolfram 263 Sg 106 seaborg 140,91 Pr 59 razeody 231,04	technet 186,21 Re 75 ren 264 Bh 107 bohr 144,24 Nd 60 neodym 238,03	ruten 190,23 Os 76 osm 265 Hs 108 has 145 Pm 61 promet 237	rod 192,22 Ir 77 iryd 266 Mt 109 meitner 150,36 Sm 62 samar 244	pallad 195,08 Pt 78 platyna 151,96 Eu 63 europ 243	\$rebro	kadm 200,59 Hg 80 rtęć 158,93 Tb 65 terb 247	ind 204,38 TI 81 tal 162,5 Dy 66 dysproz 251	cyna 207,20 Pb 82 ołów 164,93 Ho 67 holm 252	208,98 Bi 83 bizmut 167,26 Er 68 erb	168,93 Tm 69 tul 209 Po 84 polon	jod 210 At 85 astat 173,04 Yb 70 iterb	222 Rn 86 radon 174,97 Lu 71 lutet 262

ROZPUSZCZALNOŚĆ SOLI I WODOROTLENKÓW W WODZIE (TEMP. 291-298K)

	Na ⁺	K ⁺	NH ₄ ⁺	Mg ²⁺	Ca ²⁺	Sr ²⁺	Ba ²⁺	\mathbf{Ag}^{+}	Cu ²⁺	Zn ²⁺	Al ³⁺	Mn ²⁺	Cr ³⁺	Fe ²⁺	Fe ³⁺	Pb ²⁺	Sn ²⁺	Sn ⁴⁺
OH.	r	r	r	S	S	S	r	n	n	n	n	n	n	n	n	S	n	n
F ⁻	S	r	r	S	S	S	S	r	0	S	S	S	S	S	S	S	r	r
Cl ⁻	r	r	r	r	r	r	r	n	r	r	r	r	S	r	r	S	r	r
Br ⁻	r	r	r	r	r	r	r	n	r	r	r	r	S	r	r	S	r	r
Γ	r	r	r	r	r	r	r	n	0	r	0	0	О	S	0	S	S	r
S^{2-}	r	r	r	0	0	0	0	n	n	n	0	n	О	n	n	n	n	n
SO_3^{2-}	r	r	r	S	S	S	S	S	S	S	0	S	О	S	0	S	0	О
SO ₄ ²⁻	r	r	r	r	S	S	n	S	r	r	r	r	r	r	0	n	r	r
NO ₃	r	r	r	r	r	r	r	r	r	r	r	r	r	r	r	r	0	r
ClO ₃	r	r	r	r	r	r	r	r	r	X	X	X	X	X	X	r	X	X
PO ₄ ³ -	r	r	r	S	n	n	n	n	S	S	S	S	S	S	S	n	0	r
CO_3^{2-}	r	r	r	S	n	n	n	n	S	S	0	S	0	S	0	n	0	О
HCO ₃	S	r	r	S	S	S	0	0	0	0	0	S	О	S	0	0	X	X
SiO ₃ ² -	r	r	0	n	n	0	n	n	n	n	n	n	n	n	n	n	0	О
$\operatorname{CrO_4}^{2-}$	r	r	r	r	S	S	n	n	S	S	0	S	0	0	S	n	0	О

- r substancja dobrze rozpuszczalna
- s substancja słabo rozpuszczalna (osad wytrąca się ze stężonego roztworu)
- n substancja praktycznie nierozpuszczalna
- o substancja w roztworze wodnym nie istnieje
- x związek nie istnieje

BRUDNOPIS