Experiment: Effect of PCA on Classifiers (Breast Cancer Dataset) – Filled

September 18, 2025

Objective

Compare classifier performance (Accuracy, Precision, Recall, F1) and stability (fold-wise variance) on the Breast Cancer Wisconsin (WDBC) dataset under two settings: **No-PCA** and **With-PCA** (variance-target PCA, 95% explained variance). Evaluate per-model hyperparameter tuning, 5-fold CV, and stacking behavior under both settings to determine when PCA helps.

Libraries used

- Python 3.x, numpy, pandas, matplotlib, seaborn
- scikit-learn: preprocessing, model_selection, decomposition (PCA), metrics, pipeline, ensemble, classifiers
- xgboost (optional)
- scipy (optional, for paired t-test)
- LaTeX packages: pdfpages, listings, csvsimple, booktabs, graphicx, caption, subcaption

Contents

1	Code	2
2	Output	12
3	Results summary (test set)	30
4	5-Fold Cross-Validation Results (All Models)	31
5	Observation Questions	32
6	Conclusion	32

1 Code

Below is the full Python script used for the experiment (no omissions). Save this as a '.py' if you want to re-run it exactly.

```
# breast_cancer_with_pca_comparison_full.py
  import time
  import numpy as np
  import pandas as pd
   import matplotlib.pyplot as plt
   import seaborn as sns
6
  from sklearn.preprocessing import StandardScaler, LabelEncoder
   from sklearn.model_selection import train_test_split, GridSearchCV,
      KFold, cross_val_score, StratifiedKFold
   from sklearn.decomposition import PCA
10
   from sklearn.pipeline import Pipeline
11
12
   from sklearn.metrics import (
       accuracy_score, precision_score, recall_score, f1_score,
13
       roc_curve, auc, confusion_matrix, ConfusionMatrixDisplay
14
15
  from sklearn.base import clone
16
17
  # Models
18
   from sklearn.tree import DecisionTreeClassifier
   from sklearn.ensemble import RandomForestClassifier, AdaBoostClassifier
20
      , {\tt GradientBoostingClassifier} \;, \; \; {\tt StackingClassifier} \;
   from sklearn.naive_bayes import GaussianNB
21
  from sklearn.svm import SVC
  from sklearn.neighbors import KNeighborsClassifier
  from sklearn.linear_model import LogisticRegression
   # Optional libraries
26
   try:
27
       import xgboost as xgb
28
       XGB_AVAILABLE = True
29
   except Exception:
30
       XGB_AVAILABLE = False
31
32
   try:
33
       from scipy.stats import ttest_rel
34
       SCIPY_AVAILABLE = True
35
   except Exception:
36
       SCIPY_AVAILABLE = False
37
38
   # ----- User settings -----
39
  DATA_PATH = "wdbc.data"
                                      # change if your file is at
40
     different path
                                      # keep 95% explained variance when
   PCA_VARIANCE = 0.95
41
      PCA is used
  TEST_SIZE = 0.20
42
  RANDOM_STATE = 42
  CV_FOLDS = 5
44
45
46
   # ----- Load & preprocess -----
47
   cols = ["ID", "Diagnosis"] + [f"feature_{i}" for i in range(1, 31)]
48
49 df = pd.read_csv(DATA_PATH, header=None, names=cols)
```

```
df.drop(columns=["ID"], inplace=True)
   df["Diagnosis"] = LabelEncoder().fit_transform(df["Diagnosis"])
52
   X_raw = df.drop(columns=["Diagnosis"])
53
   y = df["Diagnosis"].values
54
55
   scaler = StandardScaler()
56
   X_scaled = scaler.fit_transform(X_raw)
57
58
   X_train, X_test, y_train, y_test = train_test_split(
59
        X_scaled, y, test_size=TEST_SIZE, random_state=RANDOM_STATE,
60
           stratify=y
61
62
   print("\nClass Distribution (0 = Benign, 1 = Malignant):")
63
   print(df["Diagnosis"].value_counts())
65
   plt.figure(figsize=(10, 8))
66
   sns.heatmap(df.drop(columns=["Diagnosis"]).corr(), cmap="coolwarm",
67
       cbar=True)
   plt.title("Feature Correlation Heatmap")
68
   plt.tight_layout()
69
   plt.show()
70
71
   # ----- Evaluation helper -----
72
   def evaluate(name, model, X_test, y_test, plot=True):
73
        """Evaluate model: prints metrics, plots ROC + confusion matrix (if
74
            plot=True)."""
        if plot:
75
            fig, (ax1, ax2) = plt.subplots(1, 2, figsize=(12, 5))
76
            fig.suptitle(f"{name} Performance", fontsize=16)
77
78
        # Probabilities for ROC
79
       y_pred = model.predict(X_test)
80
        if hasattr(model, "predict_proba"):
81
            probs = model.predict_proba(X_test)[:, 1]
82
        else:
83
            # if no predict_proba, try decision_function
84
                dfun = model.decision_function(X_test)
86
                # normalize to [0,1]
87
                probs = (dfun - dfun.min()) / (dfun.max() - dfun.min())
88
            except Exception:
89
                probs = None
90
91
        if plot and probs is not None:
92
            fpr, tpr, _ = roc_curve(y_test, probs)
93
            roc_auc = auc(fpr, tpr)
94
            ax1.plot(fpr, tpr, lw=2, label=f"ROC AUC = {roc_auc:.3f}")
95
            ax1.plot([0, 1], [0, 1], lw=2, linestyle="--")
96
            ax1.set_xlim([0.0, 1.0])
97
            ax1.set_ylim([0.0, 1.05])
98
            ax1.set_xlabel("False Positive Rate")
99
            ax1.set_ylabel("True Positive Rate")
100
101
            ax1.set_title("ROC Curve")
            ax1.legend(loc="lower right")
102
        elif plot:
103
```

```
ax1.text(0.5, 0.5, "No probability scores available", ha="
104
               center")
            ax1.set_title("ROC Curve")
105
106
        if plot:
107
            cm = confusion_matrix(y_test, y_pred)
108
            disp = ConfusionMatrixDisplay(confusion_matrix=cm)
109
            disp.plot(ax=ax2, cmap=None)
110
            ax2.set_title("Confusion Matrix")
111
            plt.tight_layout()
112
            plt.show()
113
114
        acc = accuracy_score(y_test, y_pred)
115
        prec = precision_score(y_test, y_pred)
116
        rec = recall_score(y_test, y_pred)
117
        f1 = f1_score(y_test, y_pred)
118
        print(f"\n{name}")
119
        print("Accuracy :", acc)
120
        print("Precision:", prec)
121
                        :", rec)
        print("Recall
122
        print("F1 Score :", f1)
123
124
        return acc, prec, rec, f1
125
   # ----- Models + hyperparameter grids -----
126
   models_params = {
127
        "Decision Tree": (
128
            DecisionTreeClassifier(random_state=RANDOM_STATE),
129
            {"criterion": ["gini", "entropy"], "max_depth": [3, 5, 10, None
130
        ),
131
        "Random Forest": (
132
            RandomForestClassifier(random_state=RANDOM_STATE, n_jobs=-1),
133
            {"n_estimators": [50, 100, 200], "max_depth": [3, 5, 10, None],
134
                "criterion": ["gini", "entropy"]}
135
        "AdaBoost": (
            AdaBoostClassifier(random_state=RANDOM_STATE, estimator=
137
               DecisionTreeClassifier(random_state=RANDOM_STATE)),
            {"n_estimators": [50, 100, 200], "learning_rate": [0.01, 0.1,
138
               1], "estimator__max_depth": [1, 3, 5]}
139
        "Gradient Boosting": (
140
            GradientBoostingClassifier(random_state=RANDOM_STATE),
141
            {"n_estimators": [50, 100, 200], "learning_rate": [0.01, 0.1,
142
               0.5], "max_depth": [3, 5, 7]}
        ),
143
        "KNN": (
144
            KNeighborsClassifier(),
145
            {"n_neighbors": [3, 5, 7], "weights": ["uniform", "distance"],
146
               "p": [1, 2]}
        ),
147
        "SVM": (
148
            SVC(probability=True, random_state=RANDOM_STATE),
149
            {"kernel": ["rbf", "linear"], "C": [0.1, 1, 10], "gamma": ["
150
               scale", "auto"]}
151
        "Naive Bayes": (
152
            GaussianNB(),
153
```

```
{"var_smoothing": [1e-9, 1e-8, 1e-7]}
154
       ),
155
       "Logistic Regression": (
156
            LogisticRegression(max_iter=5000, solver="saga", random_state=
157
               RANDOM_STATE),
            {"C": [0.01, 0.1, 1, 10], "penalty": ["12", "none"]}
158
159
   }
160
161
   if XGB_AVAILABLE:
162
       models_params["XGBoost"] = (
163
            xgb.XGBClassifier(use_label_encoder=False, eval_metric="logloss
164
               ", random_state=RANDOM_STATE, n_jobs=-1),
            {"n_estimators": [50, 100, 200], "learning_rate": [0.01, 0.1,
165
               0.3], "max_depth": [3, 5, 7], "gamma": [0, 0.1, 0.3]}
166
167
   # ----- Results containers -----
168
   results_table = []
                         # rows: (name, variant, best_params, acc, prec,
169
       rec, f1, elapsed)
                       # name -> { 'no_pca': df, 'with_pca': df }
   trial_tables = {}
   best_estimators = {} # name -> {'no_pca': estimator, 'with_pca':
171
       estimator}
172
   # ----- Helper to prefix param grid keys for pipeline ('clf__'
173
      prefix) -----
   def prefix_param_grid(param_grid, prefix="clf__"):
174
175
       new_grid = {}
       for k, v in param_grid.items():
            new_key = prefix + k
177
            new_grid[new_key] = v
178
179
       return new_grid
180
   # ----- GridSearch: No-PCA and With-PCA ------
181
   for name, (model, params) in models_params.items():
182
       print(f"\n--- Grid Search for {name} ---")
       # Make two pipelines
184
       pipe_no_pca = Pipeline([("clf", model)]) # using scaled X (
185
           X_scaled), so no scaler in pipeline
       pipe_with_pca = Pipeline([("pca", PCA(n_components=PCA_VARIANCE,
           svd_solver="full")), ("clf", model)])
187
       # Prefix param grid keys for pipeline
188
       grid_params = prefix_param_grid(params) # adds 'clf__' prefix
190
       # GridSearch No-PCA
191
       print(" GridSearch (No-PCA)...")
192
       gs_no = GridSearchCV(pipe_no_pca, param_grid=grid_params, cv=
           CV_FOLDS, scoring="accuracy", n_jobs=-1, return_train_score=
           False)
       gs_no.fit(X_train, y_train)
194
       best_no = gs_no.best_estimator_
195
       best_estimators.setdefault(name, {})['no_pca'] = best_no
196
       print(" Best params (No-PCA):", gs_no.best_params_)
197
       print(" Best CV score (No-PCA):", gs_no.best_score_)
198
199
       # Record top-5 trials (no-pca)
200
       trials_no = []
201
```

```
for i in range(len(gs_no.cv_results_['params'])):
202
            trials_no.append({
203
                **gs_no.cv_results_['params'][i],
204
                "CV Accuracy": gs_no.cv_results_['mean_test_score'][i]
205
206
        trial_df_no = pd.DataFrame(trials_no).sort_values("CV Accuracy",
207
           ascending=False).head(5)
        y_pred_no = best_no.predict(X_test)
208
        trial_df_no["F1 Score (Test)"] = f1_score(y_test, y_pred_no)
209
        trial_tables.setdefault(name, {})['no_pca'] = trial_df_no
210
211
        # Evaluate best_no on test set
212
        start = time.time()
213
        best_no.fit(X_train, y_train)
214
        elapsed = time.time() - start
215
        res_no = evaluate(f"{name} (No-PCA)", best_no, X_test, y_test, plot
216
           =True)
        results_table.append((name, "No-PCA", gs_no.best_params_, *res_no,
217
           elapsed))
218
        # GridSearch With-PCA
219
        print(" GridSearch (With-PCA)...")
220
        gs_pca = GridSearchCV(pipe_with_pca, param_grid=grid_params, cv=
221
           CV_FOLDS, scoring="accuracy", n_jobs=-1, return_train_score=
           False)
        gs_pca.fit(X_train, y_train)
222
        best_pca = gs_pca.best_estimator_
223
        best_estimators[name]['with_pca'] = best_pca
224
        print(" Best params (With-PCA):", gs_pca.best_params_)
        print(" Best CV score (With-PCA):", gs_pca.best_score_)
226
227
        # Record top-5 trials (with-pca)
228
229
        trials_pca = []
        for i in range(len(gs_pca.cv_results_['params'])):
230
            trials_pca.append({
231
                **gs_pca.cv_results_['params'][i],
232
                "CV Accuracy": gs_pca.cv_results_['mean_test_score'][i]
233
            })
234
        trial_df_pca = pd.DataFrame(trials_pca).sort_values("CV Accuracy",
235
           ascending=False).head(5)
        y_pred_pca = best_pca.predict(X_test)
236
        trial_df_pca["F1 Score (Test)"] = f1_score(y_test, y_pred_pca)
237
        trial_tables[name]['with_pca'] = trial_df_pca
238
        # Evaluate best_pca on test set
240
        start = time.time()
241
        best_pca.fit(X_train, y_train)
242
        elapsed = time.time() - start
243
        res_pca = evaluate(f"{name} (With-PCA)", best_pca, X_test, y_test,
244
           plot=True)
        results_table.append((name, "With-PCA", gs_pca.best_params_, *
245
           res_pca, elapsed))
246
   # ------ Stacking classifiers (3 original variants) ------
247
   print("\n--- Stacking Classifiers (original single-run variants) ---")
248
249
   stacking_variants = {
        "Stacking (SVM + NB + DT -> LogisticRegression)":
250
           StackingClassifier(
```

```
251
            estimators=[
                 ("svm", SVC(probability=True, kernel="rbf", C=1, gamma="
252
                    scale")),
                ("nb", GaussianNB()),
253
                ("dt", DecisionTreeClassifier(max_depth=5, random_state=
254
                    RANDOM_STATE))
            ],
255
            final_estimator=LogisticRegression(max_iter=500, random_state=
256
               RANDOM_STATE),
            n_{jobs}=-1
257
        ),
258
        "Stacking (SVM + NB + DT -> RandomForest)": StackingClassifier(
259
260
            estimators=[
                 ("svm", SVC(probability=True, kernel="rbf", C=1, gamma="
261
                    scale")),
                ("nb", GaussianNB()),
262
                ("dt", DecisionTreeClassifier(max_depth=5, random_state=
263
                    RANDOM_STATE))
            ],
264
            \verb|final_estimator=RandomForestClassifier(n_estimators=100, |
265
                random_state=RANDOM_STATE),
            n_{jobs}=-1
266
        ),
267
        "Stacking (SVM + DT + KNN -> LogisticRegression)":
268
           StackingClassifier(
            estimators=[
269
                 ("svm", SVC(probability=True, kernel="rbf", C=1, gamma="
270
                    scale")),
                 ("dt", DecisionTreeClassifier(max_depth=5, random_state=
                    RANDOM_STATE)),
                ("knn", KNeighborsClassifier(n_neighbors=5))
272
            ],
273
274
            final_estimator=LogisticRegression(max_iter=500, random_state=
               RANDOM_STATE),
            n_{jobs}=-1
275
        )
277
278
   for name, stack_model in stacking_variants.items():
279
        print(f"\nTraining {name} ...")
280
        start = time.time()
281
        stack_model.fit(X_train, y_train)
282
        elapsed = time.time() - start
283
        res = evaluate(name, stack_model, X_test, y_test, plot=True)
        results_table.append((name, "Stacking-Default", "Default (base
285
           learners tuned separately)", *res, elapsed))
        best_estimators[name] = stack_model
286
287
   # ----- NEW: Stacking PCA comparisons -----
288
   print("\n--- Stacking PCA Comparisons (added) ---")
289
290
   # 1) Stacking (No-PCA) - same structure as one variant above but
291
       explicitly named for comparisons
   stack_no_pca = StackingClassifier(
292
293
        estimators=[
            ("svm", SVC(probability=True, kernel="rbf", C=1, gamma="scale")
294
            ("nb", GaussianNB()),
295
```

```
("dt", DecisionTreeClassifier(max_depth=5, random_state=
296
               RANDOM_STATE))
        ],
297
        final_estimator=LogisticRegression(max_iter=500, random_state=
298
           RANDOM_STATE),
        n_{jobs}=-1
299
300
   start = time.time()
301
   stack_no_pca.fit(X_train, y_train)
302
   elapsed = time.time() - start
303
   res_stack_no = evaluate("Stacking (No-PCA)", stack_no_pca, X_test,
304
       y_test, plot=True)
   results_table.append(("Stacking (SVM+NB+DT)", "No-PCA", "default", *
305
       res_stack_no, elapsed))
306
   # 2) Stacking (Global-PCA): pipeline PCA -> Stacking
307
   stack_global_pca_pipeline = Pipeline([
308
        ("pca", PCA(n_components=PCA_VARIANCE, svd_solver="full")),
309
        ("stack", StackingClassifier(
310
            estimators=[
311
                ("svm", SVC(probability=True, kernel="rbf", C=1, gamma="
                    scale")),
                ("nb", GaussianNB()),
313
                ("dt", DecisionTreeClassifier(max_depth=5, random_state=
314
                    RANDOM_STATE))
315
            final_estimator=LogisticRegression(max_iter=500, random_state=
316
               RANDOM_STATE),
            n_{jobs}=-1
        ))
318
   ])
319
   start = time.time()
321
   stack_global_pca_pipeline.fit(X_train, y_train)
   elapsed = time.time() - start
322
   res_stack_global = evaluate("Stacking (Global-PCA)",
323
       stack_global_pca_pipeline, X_test, y_test, plot=True)
   results_table.append(("Stacking (SVM+NB+DT)", "Global-PCA", "
324
       pca_pipeline", *res_stack_global, elapsed))
325
   # 3) Stacking built from best per-model pipelines (best_no_pca)
326
   # choose base model keys that match your best_estimators keys (case
327
       sensitive)
   base_model_keys = ["SVM", "Naive Bayes", "Decision Tree", "KNN"]
328
       adapt if you want different set
329
   def safe_get_clone(name, variant):
330
        try:
331
            est = best_estimators[name][variant]
332
            return clone(est)
333
        except Exception:
334
            return None
335
   estimators_best_no = []
337
   estimators_best_with = []
338
   for key in base_model_keys:
339
340
        p_no = safe_get_clone(key, "no_pca")
        if p_no is not None:
341
            estimators_best_no.append((key.replace(" ", "_").lower(), p_no)
342
```

```
)
        p_with = safe_get_clone(key, "with_pca")
343
        if p_with is not None:
344
            estimators_best_with.append((key.replace(" ", "_").lower(),
345
               p_with))
346
   stack_from_best_no = None
347
   stack_from_best_with = None
348
349
   if len(estimators_best_no) >= 2:
350
        stack_from_best_no = StackingClassifier(
351
            estimators=estimators_best_no,
352
            final_estimator=LogisticRegression(max_iter=500, random_state=
353
               RANDOM_STATE),
            n_jobs=-1
354
        )
355
        start = time.time()
356
        stack_from_best_no.fit(X_train, y_train)
357
        elapsed = time.time() - start
358
        res_stack_best_no = evaluate("Stacking (from best_no_pca variants)"
359
           , stack_from_best_no , X_test , y_test , plot=True)
        results_table.append(("Stacking (from_best)", "from_best_no_pca", "
360
           built_from_best_no", *res_stack_best_no, elapsed))
   else:
361
        print("Not enough best_no_pca pipelines found to build
362
           stack_from_best_no.")
363
   if len(estimators_best_with) >= 2:
364
365
        stack_from_best_with = StackingClassifier(
            estimators=estimators_best_with,
366
            final_estimator=LogisticRegression(max_iter=500, random_state=
367
               RANDOM_STATE),
            n_{jobs}=-1
368
        )
369
        start = time.time()
370
        stack_from_best_with.fit(X_train, y_train)
371
        elapsed = time.time() - start
372
        res_stack_best_with = evaluate("Stacking (from best_with_pca
373
           variants)", stack_from_best_with, X_test, y_test, plot=True)
        results_table.append(("Stacking (from_best)", "from_best_with_pca",
374
            "built_from_best_with", *res_stack_best_with, elapsed))
   else:
375
376
        print("Not enough best_with_pca pipelines found to build
           stack_from_best_with.")
377
   # ----- 5-Fold Cross-Validation for best estimators -----
378
   print("\n--- 5-Fold Cross-Validation ---")
379
   kf = KFold(n_splits=5, shuffle=True, random_state=RANDOM_STATE)
380
   cv_results = {}
381
382
   for model_name, variants in best_estimators.items():
383
        cv_results[model_name] = {}
384
        if isinstance(variants, dict):
385
            for var_name, est in variants.items():
386
387
                try:
388
                     scores = cross_val_score(est, X_scaled, y, cv=kf,
                        scoring="accuracy", n_jobs=-1)
                     cv_results[model_name][var_name] = scores
389
```

```
print(f"{model_name} ({var_name}) Fold Accuracies: {np.
390
                        round(scores,4)} Avg: {np.mean(scores):.4f}")
                except Exception as e:
391
                    print(f"CV failed for {model_name} ({var_name}): {e}")
392
        else:
393
            # single estimator (e.g., stacking variants)
394
            try:
395
396
                scores = cross_val_score(variants, X_scaled, y, cv=kf,
                   scoring="accuracy", n_jobs=-1)
                cv_results[model_name] = scores
397
                print(f"{model_name} Fold Accuracies: {np.round(scores,4)}
398
                    Avg: {np.mean(scores):.4f}")
            except Exception as e:
399
                print(f"CV failed for {model_name}: {e}")
400
401
   # ----- Paired CV for stacking variants (StratifiedKFold)
402
   print("\n--- Paired CV for Stacking Variants (StratifiedKFold) ---")
403
   skf = StratifiedKFold(n_splits=5, shuffle=True, random_state=
404
       RANDOM_STATE)
   def cv_scores(estimator, Xdata, ydata):
405
        return cross_val_score(estimator, Xdata, ydata, cv=skf, scoring="
406
           accuracy", n_jobs=-1)
407
   scores_stack_no = cv_scores(stack_no_pca, X_scaled, y)
408
   scores_stack_global = cv_scores(stack_global_pca_pipeline, X_scaled, y)
409
   print("Stacking (No-PCA)
                                   Fold Accuracies: ", np.round(
410
       scores_stack_no,4), " mean:", scores_stack_no.mean(), " std:",
       scores_stack_no.std())
   print("Stacking (Global-PCA) Fold Accuracies:", np.round(
411
       scores_stack_global,4), " mean:", scores_stack_global.mean(), " std:
       ", scores_stack_global.std())
412
   if stack_from_best_no is not None:
413
        scores_best_no = cv_scores(stack_from_best_no, X_scaled, y)
414
        print("Stacking (from_best_no) Fold Accuracies:", np.round(
415
           scores_best_no,4), " mean:", scores_best_no.mean(), " std:",
           scores_best_no.std())
416
   else:
       scores_best_no = None
417
418
   if stack_from_best_with is not None:
419
        scores_best_with = cv_scores(stack_from_best_with, X_scaled, y)
420
        print("Stacking (from_best_with) Fold Accuracies:", np.round(
421
           scores_best_with,4), " mean:", scores_best_with.mean(), " std:",
            scores_best_with.std())
   else:
422
       scores_best_with = None
423
424
   # Paired t-tests (if scipy available)
425
   if SCIPY_AVAILABLE:
426
        tstat, pval = ttest_rel(scores_stack_no, scores_stack_global)
427
        print(f"\nPaired t-test (Stack No-PCA vs Global-PCA): t={tstat:.3f
428
           }, p={pval:.4f}")
429
        if pval < 0.05:</pre>
            print(" -> Difference is statistically significant (p < 0.05)."
430
       else:
431
```

```
print(" -> Difference is NOT statistically significant (p >=
432
                0.05).")
   else:
433
        print("\nscipy not available
                                            skipping paired t-test for
434
           stacking comparisons.")
435
   # ----- Final summary tables -----
436
   results_df = pd.DataFrame(results_table, columns=[
    "Model", "Variant", "Best_Params", "Accuracy", "Precision", "Recall
437
438
           ", "F1", "Elapsed_Sec"
439
   print("\n=== Summary results (test set) ===")
440
   display(results_df.sort_values(by="F1", ascending=False))
441
442
   print("\n=== Top-5 hyperparameter trials (example) ===")
443
   for name, d in trial_tables.items():
444
        print(f"\n{name} - No-PCA top trials:")
445
        display(d['no_pca'])
446
        print(f"\n{name} - With-PCA top trials:")
447
        display(d['with_pca'])
448
   # Optionally save results to CSV
450
   results_df.to_csv("results_summary.csv", index=False)
451
   for name, d in trial_tables.items():
452
        d['no_pca'].to_csv(f"{name.replace(' ', '_')}_trials_no_pca.csv",
453
           index=False)
        d['with_pca'].to_csv(f"{name.replace(' ', ', ')}_trials_with_pca.csv
454
            ", index=False)
   print("\nSaved results_summary.csv and per-model trial CSVs.")
456
```

2 Output

The experiment outputs (fold-wise tables, top-5 hyperparameter trials, ROC/PR plots, confusion matrices, and summary tables) are embedded from the run's result PDF. The embedded PDF contains all numeric tables and figures exactly as printed by the script.


```
F1 Score : 0.9382716049382716
 GridSearch (With-PCA)...
  Best params (With-PCA): {'clf__criterion': 'entropy', 'clf__max_depth': 5}
  Best CV score (With-PCA): 0.9362637362637363
                               Decision Tree (With-PCA) Performance
                                                                   Confusion Matrix
                       ROC Curve
  0.8
                                                       True label
                                                                                             40
0.4
                                                                                             20
  0.2
                                    ROC AUC = 0.948
                     0.4 0.6
False Positive Rate
                                                                     Predicted label
Decision Tree (With-PCA)
Accuracy: 0.9649122807017544
Precision: 1.0
Recall : 0.9047619047619048
F1 Score : 0.95
--- Grid Search for Random Forest ---
GridSearch (No-PCA)...
  Best params (No-PCA): {'clf__criterion': 'gini', 'clf__max_depth': 10, 'clf_
Best CV score (No-PCA): 0.9670329670329672
                               Random Forest (No-PCA) Performance
                       ROC Curve
                                                                   Confusion Matrix
  0.8
Positive Rate
  0.6
                                                       True label
                                                                                             40
0.4
                                                                                             20
  0.2
                                     ROC AUC = 0.994
                     False Positive Rate
                                                                     Predicted label
Random Forest (No-PCA)
Accuracy : 0.9736842105263158
Precision: 1.0
Recall : 0.9285714285714286
F1 Score: 0.9629629629629
 GridSearch (With-PCA)...
  Best params (With-PCA): {'clf__criterion': 'entropy', 'clf__max_depth': 5, '
  Best CV score (With-PCA): 0.9670329670329669
                              Random Forest (With-PCA) Performance
                                                                   Confusion Matrix
                       ROC Curve
  1.0
```



```
18/09/2025, 15:45
```

Untitled10.ipynb - Colab

```
אררתו.ara : מיאסטדקרססגניון א
Precision: 0.9743589743589743
Recall : 0.9047619047619048
F1 Score : 0.9382716049382716
--- Grid Search for Gradient Boosting ---
GridSearch (No-PCA)...
  Best params (No-PCA): {'clf_learning_rate': 0.5, 'clf_max_depth': 3, 'clf_
  Best CV score (No-PCA): 0.9582417582417584
                            Gradient Boosting (No-PCA) Performance
                      ROC Curve
                                                                Confusion Matrix
  1.0
                                                                                        50
True Positive Rate
9.0
                                                    label
                                                    True
                                                                                        30
                                                                                        20
  0.2
                                  - ROC AUC = 0.994
                            0.6
                                                                 Predicted label
                    False Positive Rate
Gradient Boosting (No-PCA)
Accuracy: 0.9649122807017544
Precision: 1.0
Recall
        : 0.9047619047619048
F1 Score : 0.95
 GridSearch (With-PCA)...
  Best params (With-PCA): {'clf_learning_rate': 0.1, 'clf_max_depth': 3, 'cl
  Best CV score (With-PCA): 0.9516483516483516
                           Gradient Boosting (With-PCA) Performance
                      ROC Curve
                                                                Confusion Matrix
  0.8
  0.6
                                                    True label
                                                                                        40
원 0.4
                                   ROC AUC = 0.990
  0.0 -
                    0.4 0.6
False Positive Rate
                                                                 Predicted label
Gradient Boosting (With-PCA)
Accuracy: 0.9385964912280702
Precision: 0.9487179487179487
Recall
         : 0.8809523809523809
F1 Score: 0.9135802469135802
--- Grid Search for KNN ---
GridSearch (No-PCA)...
  Best params (No-PCA): {'clf_n_neighbors': 3, 'clf_p': 2, 'clf_weights': '
  Best CV score (No-PCA): 0.9692307692307693
                                  KNN (No-PCA) Performance
                     ROC Curve
                                                                Confusion Matrix
```

 $https://colab.research.google.com/drive/10JQBXv_oYxb6Z2JSVGIKHPeKjJuBluK_\#scrollTo=Hvzg5hMnmH9P\&printMode=true$

0.4 0.6 False Positive Rate Predicted label SVM (No-PCA) Accuracy : 0.9736842105263158 Precision: 1.0 Recall : 0.9285714285714286 F1 Score: 0.9629629629629 GridSearch (With-PCA)... Best params (With-PCA): {'clf_C': 10, 'clf_gamma': 'scale', 'clf_kernel': Best CV score (With-PCA): 0.9758241758241759 SVM (With-PCA) Performance Confusion Matrix **ROC Curve** 1.0 0.8 0.6 True label 9 0.4 20 0.2 - ROC AUC = 0.995 0.2 0,6 0.8 Predicted label False Positive Rate SVM (With-PCA) Accuracy: 0.9649122807017544 Precision: 0.975 Recall : 0.9285714285714286 F1 Score : 0.9512195121951219 --- Grid Search for Naive Bayes ---GridSearch (No-PCA)... Best params (No-PCA): {'clf__var_smoothing': 1e-09} Best CV score (No-PCA): 0.9384615384615385 Naive Bayes (No-PCA) Performance ROC Curve Confusion Matrix 0.6 0.4 0.2 - ROC AUC = 0.989 Predicted label False Positive Rate Naive Bayes (No-PCA) Accuracy : 0.9210526315789473 Precision: 0.9230769230769231 Recall : 0.8571428571428571 GridSearch (With-PCA)... Best params (With-PCA): {'clf__var_smoothing': 1e-09} Best CV score (With-PCA): 0.9120879120879121

Untitled10.ipynb - Colab

18/09/2025, 15:45

18

16/27

 $https://colab.research.google.com/drive/10JQBXv_oYxb6Z2JSVGIKHPeKjJuBluK_\#scrollTo=Hvzg5hMnmH9P\&printMode=true$


```
Untitled10.ipynb - Colab
18/09/2025. 15:45
```

```
validate_parameter_constraints(
  File "/usr/local/lib/python3.12/dist-packages/sklearn/utils/_param_validatio
   raise InvalidParameterError(
sklearn.utils._param_validation.InvalidParameterError: The 'penalty' parameter
 warnings.warn(some_fits_failed_message, FitFailedWarning)
/usr/local/lib/python3.12/dist-packages/sklearn/model_selection/_search.py:110
0.97142857
                   nan]
 warnings.warn(
 Best params (No-PCA): {'clf_C': 1, 'clf_penalty': '12'}
 Best CV score (No-PCA): 0.9714285714285715
                        Logistic Regression (No-PCA) Performance
                   ROC Curve
                                                        Confusion Matrix
 1.0
 0.8
  0.6
                                              Tue
P.0.4
  0.2
                               ROC AUC = 0.996
  0.0
                  False Positive Rate
                                                          Predicted label
Logistic Regression (No-PCA)
Accuracy: 0.9736842105263158
Precision: 0.975609756097561
Recall
       : 0.9523809523809523
F1 Score: 0.963855421686747
GridSearch (With-PCA)...
/usr/local/lib/python3.12/dist-packages/sklearn/model_selection/_validation.py
20 fits failed out of a total of 40.
The score on these train-test partitions for these parameters will be set to n
If these failures are not expected, you can try to debug them by setting error
Below are more details about the failures:
10 fits failed with the following error:
Traceback (most recent call last):
 File "/usr/local/lib/python3.12/dist-packages/sklearn/model_selection/_valid
    estimator.fit(X_train, y_train, **fit_params)
 File "/usr/local/lib/python3.12/dist-packages/sklearn/base.py", line 1389, i
    return fit_method(estimator, *args, **kwargs)
           ^^^^^
 File "/usr/local/lib/python3.12/dist-packages/sklearn/pipeline.py", line 662
   self._final_estimator.fit(Xt, y, **last_step_params["fit"])
 File "/usr/local/lib/python3.12/dist-packages/sklearn/base.py", line 1382, i
   estimator._validate_params()
 File "/usr/local/lib/python3.12/dist-packages/sklearn/base.py", line 436, in
    validate_parameter_constraints(
 File "/usr/local/lib/python3.12/dist-packages/sklearn/utils/_param_validatio
    raise InvalidParameterError(
sklearn.utils._param_validation.InvalidParameterError: The 'penalty' parameter
10 fits failed with the following error:
Traceback (most recent call last):
```

File "/usr/local/lib/python3.12/dist-packages/sklearn/base.py", line 436, in

https://colab.research.google.com/drive/10JQBXv oYxb6Z2JSVGIKHPeKjJuBluK #scrollTo=Hvzg5hMnmH9P&printMode=true

```
File "/usr/local/lib/python3.12/dist-packages/sklearn/model selection/ valid
    estimator.fit(X_train, y_train, **fit_params)
 File "/usr/local/lib/python3.12/dist-packages/sklearn/base.py", line 1389, i
   return fit_method(estimator, *args, **kwargs)
 File "/usr/local/lib/python3.12/dist-packages/sklearn/pipeline.py", line 662
   self._final_estimator.fit(Xt, y, **last_step_params["fit"])
 File "/usr/local/lib/python3.12/dist-packages/sklearn/base.py", line 1382, i
    estimator._validate_params()
 File "/usr/local/lib/python3.12/dist-packages/sklearn/base.py", line 436, in
    validate parameter constraints(
  File "/usr/local/lib/python3.12/dist-packages/sklearn/utils/_param_validatio
    raise InvalidParameterError(
sklearn.utils._param_validation.InvalidParameterError: The 'penalty' parameter
 warnings.warn(some_fits_failed_message, FitFailedWarning)
/usr/local/lib/python3.12/dist-packages/sklearn/model_selection/_search.py:110
0.97362637
 warnings.warn(
 Best params (With-PCA): {'clf_C': 1, 'clf_penalty': '12'}
 Best CV score (With-PCA): 0.9758241758241759
                        Logistic Regression (With-PCA) Performance
                                                         Confusion Matrix
 1.0
  0.6
                                               label
  0.2
                              - ROC AUC = 0.997
                         0.6
                                                           Predicted label
                  False Positive Rate
Logistic Regression (With-PCA)
Accuracy: 0.9824561403508771
Precision: 1.0
        : 0.9523809523809523
Recall
F1 Score: 0.975609756097561
--- Grid Search for XGBoost ---
GridSearch (No-PCA)...
/usr/local/lib/python3.12/dist-packages/xgboost/training.py:183: UserWarning:
Parameters: { "use_label_encoder" } are not used.
 bst.update(dtrain, iteration=i, fobj=obj)
/usr/local/lib/python3.12/dist-packages/xgboost/training.py:183: UserWarning:
Parameters: { "use_label_encoder" } are not used.
 bst.update(dtrain, iteration=i, fobj=obj)
 Best params (No-PCA): {'clf_gamma': 0, 'clf_learning_rate': 0.3, 'clf_max
 Best CV score (No-PCA): 0.9714285714285715
                             XGBoost (No-PCA) Performance
                                                         Confusion Matrix
                   ROC Curve
                                                                                 19/27
```

 $https://colab.research.google.com/drive/10JQBXv_oYxb6Z2JSVGIKHPeKjJuBluK_\#scrollTo=Hvzg5hMnmH9P\&printMode=true, which is a simple of the contract of the con$

Untitled10.ipynb - Colab 18/09/2025, 15:45 ROC AUC = 0.995 Predicted label Stacking (SVM + NB + DT -> LogisticRegression) Accuracy: 0.9649122807017544 Precision: 1.0 : 0.9047619047619048 Recall F1 Score : 0.95 Training Stacking (SVM + NB + DT -> RandomForest) ... Stacking (SVM + NB + DT -> RandomForest) Performance ROC Curve 1.0 True label 0.2 ROC AUC = 0.995 0.4 0.6 False Positive Rate Predicted label Stacking (SVM + NB + DT -> RandomForest) Accuracy: 0.956140350877193 Precision: 0.9743589743589743 : 0.9047619047619048 F1 Score : 0.9382716049382716 Training Stacking (SVM + DT + KNN -> LogisticRegression) \dots Stacking (SVM + DT + KNN -> LogisticRegression) Performance ROC Curve Confusion Matrix 0.8 0.6 True label 9 0.4 0.2 - ROC AUC = 0.995 Predicted label Stacking (SVM + DT + KNN -> LogisticRegression) Accuracy: 0.9649122807017544 Precision: 0.975 : 0.9285714285714286 Recall F1 Score: 0.9512195121951219 --- Stacking PCA Comparisons (added) ---Stacking (No-PCA) Performance

 $https://colab.research.google.com/drive/10JQBXv_oYxb6Z2JSVGIKHPeKjJuBluK_\#scrollTo=Hvzg5hMnmH9P\&printMode=true$

Stacking (from best_with_pca variants) Performance

Stacking (from best_with_pca variants)

Accuracy: 0.9824561403508771

Precision: 1.0

Recall : 0.9523809523809523 F1 Score : 0.975609756097561

--- 5-Fold Cross-Validation ---

Decision Tree (no_pca) Fold Accuracies: [0.9474 0.9561 0.9123 0.9474 0.9558] / Decision Tree (with pca) Fold Accuracies: [0.9474 0.9211 0.9123 0.9737 0.9204] Random Forest (no_pca) Fold Accuracies: [0.9561 0.9649 0.9386 0.9561 0.9646] / Random Forest (with_pca) Fold Accuracies: [0.9474 0.9211 0.9474 0.9649 0.9292] AdaBoost (no_pca) Fold Accuracies: [0.9649 0.9737 0.9561 0.9912 0.9469] Avg: (AdaBoost (with_pca) Fold Accuracies: [0.9474 0.9561 0.9737 0.9649 0.9381] Avg Gradient Boosting (no_pca) Fold Accuracies: [0.9649 1. 0.9474 0.9912 0.938 Gradient Boosting (with_pca) Fold Accuracies: [0.9561 0.9386 0.9474 0.9649 0.9 KNN (no_pca) Fold Accuracies: [0.9474 0.9737 0.9561 0.9825 0.9469] Avg: 0.961 KNN (with_pca) Fold Accuracies: [0.9561 0.9649 0.9825 0.9649 0.9558] Avg: 0.9 SVM (no_pca) Fold Accuracies: [0.9737 0.9825 0.9737 0.9912 0.9735] Avg: 0.978 SVM (with_pca) Fold Accuracies: [0.9825 0.9825 0.9649 0.9737 0.9558] Avg: 0.9 Naive Bayes (no_pca) Fold Accuracies: [0.9649 0.9211 0.9386 0.9298 0.9292] Av Naive Bayes (with_pca) Fold Accuracies: [0.9211 0.9035 0.9386 0.9386 0.885] Logistic Regression (no_pca) Fold Accuracies: [0.9737 0.9825 0.9649 0.9912 0.9 Logistic Regression (with_pca) Fold Accuracies: [0.9825 0.9912 0.9561 0.9912 0 XGBoost (no_pca) Fold Accuracies: [0.9561 0.9649 0.9561 0.9737 0.9646] Avg: 0 XGBoost (with_pca) Fold Accuracies: [0.9649 0.9561 0.9825 0.9649 0.9558] Avg: Stacking (SVM + NB + DT -> LogisticRegression) Fold Accuracies: [0.9649 0.9825 Stacking (SVM + NB + DT -> RandomForest) Fold Accuracies: [0.9649 0.9912 0.964 Stacking (SVM + DT + KNN -> LogisticRegression) Fold Accuracies: [0.9649 1.

--- Paired CV for Stacking Variants (StratifiedKFold) --Stacking (No-PCA) Fold Accuracies: [0.9737 0.9386 0.9561 0.9561 0.9735]
Stacking (Global-PCA) Fold Accuracies: [0.9825 0.9298 0.9737 0.9649 0.9823]
Stacking (from_best_no) Fold Accuracies: [1. 0.9561 0.9561 0.9912 0.9646]
Stacking (from_best_with) Fold Accuracies: [0.9737 0.9737 0.9561 0.9737 0.9823

Paired t-test (Stack No-PCA vs Global-PCA): t=-1.636, p=0.1772 -> Difference is NOT statistically significant (p >= 0.05).

=== Summary results (test set) ===

Model	Variant	Best_Params	Accuracy	Pr
15 Logistic Regression	With-PCA	{'clfC': 1, 'clfpenalty': 'l2'}	0.982456	

 $https://colab.research.google.com/drive/10JQBXv_oYxb6Z2JSVGIKHPeKjJuBluK_\#scrollTo=Hvzg5hMnmH9P\&printMode=true$

40/00/0005 4	E-4E		11-44-4	O income to Octob		
18/09/2025, 1	23	Stacking (from_best)	from_best_no_pca	0.ipynb - Colab built_from_best_no	0.982456	
	24	Stacking (from_best)	from_best_with_pca	built_from_best_with	0.982456	
	14	Logistic Regression	No-PCA	{'clfC': 1, 'clfpenalty': 'l2'}	0.973684	(
	10	SVM	No-PCA	{'clfC': 1, 'clfgamma': 'scale', 'clfker	0.973684	
	16	XGBoost	No-PCA	{'clfgamma': 0, 'clflearning_rate': 0.3, '	0.973684	
	2	Random Forest	No-PCA	{'clfcriterion': 'gini', 'clfmax_depth': 1	0.973684	
	20	Stacking (SVM + DT + KNN -> LogisticRegression)	Stacking-Default	Default (base learners tuned separately)	0.964912	(
	11	SVM	With-PCA	{'clfC': 10, 'clfgamma': 'scale', 'clfke	0.964912	(
	21	Stacking (SVM+NB+DT)	No-PCA	default	0.964912	
	18	Stacking (SVM + NB + DT -> LogisticRegression)	Stacking-Default	Default (base learners tuned separately)	0.964912	
	1	Decision Tree	With-PCA	{'clfcriterion': 'entropy', 'clfmax_depth'	0.964912	
	4	AdaBoost	No-PCA	{'clfestimatormax_depth': 3, 'clflearnin	0.964912	
	6	Gradient Boosting	No-PCA	{'clflearning_rate': 0.5, 'clfmax_depth':	0.964912	
	17	XGBoost	With-PCA	{'clfgamma': 0, 'clflearning_rate': 0.1, '	0.956140	(
	0	Decision Tree	No-PCA	{'clfcriterion': 'entropy', 'clfmax_depth'	0.956140	(
	5	AdaBoost	With-PCA	{'clfestimatormax_depth': 5, 'clflearnin	0.956140	(
	19	Stacking (SVM + NB + DT -> RandomForest)	Stacking-Default	Default (base learners tuned separately)	0.956140	(
	22	Stacking (SVM+NB+DT)	Global-PCA	pca_pipeline	0.956140	(
	9	KNN	With-PCA	{'clfn_neighbors': 5, 'clfp': 1, 'clfwei	0.956140	(
	3	Random Forest	With-PCA	{'clfcriterion': 'entropy', 'clfmax_depth'	0.938596	(
	7	Gradient Boosting	With-PCA	{'clflearning_rate': 0.1, 'clfmax_depth':	0.938596	(

		O	Titulou To.ipyTib - Oc	лар			
8	KN	N No-	PCA		neighbors': 3 2, 'clfwei		i
12	Naive Baye	es No-	PCA {'clfv	ar_smoo	thing': 1e-09	0.921053	,
13	Naive Baye	es With-	PCA {'clfv	ar_smod	thing': 1e-09]	0.894737	
===	Top-5 hyperpara	meter trials (ex	ample) ===				
Deci	ision Tree - No-I	PCA top trials:					
	clfcriterion	clfmax_depth	CV Accuracy	F1 Sco	re (Test)	11.	
6	entropy	10.0	0.936264		0.938272		
7	entropy	NaN	0.936264		0.938272		
1	gini	5.0	0.934066		0.938272		
5	entropy	5.0	0.934066		0.938272		
0	gini	3.0	0.931868		0.938272		
Deci	ision Tree - Witl	n-PCA top trials	:				
	clfcriterion	clfmax_depth	CV Accuracy	F1 Sco	re (Test)	11.	
5	entropy	5.0	0.936264		0.95		
1	gini	5.0	0.934066		0.95		
6	entropy	10.0	0.934066		0.95		
7	entropy	NaN	0.934066		0.95		
2	gini	10.0	0.914286		0.95		
Ranc	dom Forest - No-I	PCA top trials:					
	clfcriterion	clfmax_depth	clfn_esti	imators	CV Accuracy	F1 Score (Test)	
6	gini	10.0		50	0.967033	0.962963	
9	gini	NaN		50	0.967033	0.962963	
21	entropy	NaN		50	0.962637	0.962963	
7	gini	10.0		100	0.962637	0.962963	
18	entropy	10.0		50	0.962637	0.962963	
Ranc	dom Forest - Witl	n-PCA top trials	:				
Ranc		n-PCA top trials clfmax_depth		imators	CV Accuracy	F1 Score (Test)	
Ranc		·		imators 200		Score	
	clfcriterion	clfmax_depth			Accuracy	Score (Test)	

18/09/2025, 15:45 Untitled10.ipynb - Colab

19	entropy		10.0		100	0.9648	35	0.91	5663
4	gini		5.0		100	0.9626	37	0.91	5663
AdaBoo	ost - No-PCA top tr	ials:							
с	lfestimatormax	_depth	clflea	rning_rate	clf_	_n_est	imat	tors	Co Accurac
15		3		1.0				50	0.96923
13		3		0.1				100	0.96703
8		1		1.0				200	0.96483
17		3		1.0				200	0.96263
16		3		1.0				100	0.96263
AdaBoo	ost - With-PCA top	trials:							
c	lfestimatormax	_depth	clflea	rning_rate	clf_	_n_est	imat	tors	C' Accurac
24		5		1.0				50	0.96483
14		3		0.1				200	0.96483
7		1		1.0				100	0.96263
16									0.00000
10		3		1.0				100	0.96263
25		3 5		1.0 1.0				100	0.96263
25	ent Boosting - No-F	5	trials:						
25 Gradie	ent Boosting - No-F lflearning_rate	5 PCA top 1		1.0	imato	ors Ac	cura	100 cv	0.96263 F1 Score
25 Gradie		5 PCA top 1		1.0		AC	cu ra 9582	100 cv icy	0.96263 F1
25 Gradie	lflearning_rate	5 PCA top 1	x_depth	1.0	2	200 0.		100 cv acy	0.96263 F1 Score (Test)
25 Gradie c	lf_learning_rate	5 PCA top 1	x_depth 3	1.0	2	200 0. 00 0.	9582	100 cv icy 242 242	0.96263 F1 Score (Test) 0.95
25 Gradie c 20 19	lf_learning_rate 0.5 0.5	5 PCA top 1	ax_depth 3 3	1.0	2	00 0. 00 0. 50 0.	9582 9582	100 CV acy 242 242	0.96263 F1 Score (Test) 0.95 0.95
25 Gradie c 20 19	1f_learning_rate 0.5 0.5 0.1	5 PCA top 1	3 3	1.0	2	00 0. 00 0. 50 0.	9582 9582 9560	100 cv icy 242 242 244 346	0.96263 F1 Score (Test) 0.95 0.95 0.95
25 Gradie c 20 19 9 18 11	1f_learning_rate 0.5 0.5 0.1 0.5	5 CCA top t	3 3 3 3 3	1.0	2	00 0. 00 0. 50 0.	9582 9582 9560 9538	100 cv icy 242 242 244 346	0.96263 F1 Score (Test) 0.95 0.95 0.95 0.95
25 Gradie c 20 19 9 18 11 Gradie	0.5 0.5 0.1 0.5 0.1	5 CCA top 1 clfma	3 3 3 3 cotrials:	1.0 clfn_est	2 1	000 0. 000 0. 50 0. 000 0.	9582 9582 9560 9538	cv icy 242 242 244 346 346	0.96263 F1 Score (Test) 0.95 0.95 0.95 0.95
25 Gradie c 20 19 9 18 11 Gradie	0.5 0.5 0.1 0.5 0.1	5 CCA top 1 clfma	3 3 3 3 cotrials:	1.0 clfn_est	2 1 2	500 0. 50 0. 50 0. 50 0.	9582 9582 9560 9538 9538	100 CV acy 242 242 244 346 346	0.96263 F1 Score (Test) 0.95 0.95 0.95 0.95 F1 Score
25 Gradie c 20 19 9 18 11 Gradie	1f_learning_rate 0.5 0.5 0.1 0.5 0.1 ent Boosting - With	5 CCA top 1 clfma	3 3 3 3 cotrials:	1.0 clfn_est	2 1 2	00 0. 00 0. 50 0. 50 0. 00 0.	9582 9582 9560 9538 9538	100 CV dcy 242 242 346 346 346	0.96263 F1 Score (Test) 0.95 0.95 0.95 0.95 F1 Score (Test)
25 Gradie c 20 19 9 18 11 Gradie c	1f_learning_rate	5 CCA top 1 clfma	3 3 3 3 5 5 trials: 0x_depth	1.0 clfn_est	2 1 2 cimato	00 0. 00 0. 50 0. 00 0. 00 0. 50 0. 00 0. 50 0.	9582 9582 9560 9538 9538 cura	100 CV dcy 242 242 244 346 346 CV dcy	0.96263 F1 Score (Test) 0.95 0.95 0.95 0.95 F1 Score (Test) 0.91358

28

18/09/2025, 15:45 Untitled10.ipynb - Colab 0.071200 0.01000 23 0.5 5 200 0.947253 0.91358 KNN - No-PCA top trials: C۷ F1 Score clf__n_neighbors clf__p clf__weights Accuracy (Test) 3 3 2 distance 0.969231 0.911392 2 3 2 uniform 0.969231 0.911392 5 5 distance 0.969231 0.911392 5 uniform 0.969231 0.911392 1 10 7 2 uniform 0.969231 0.911392

KNN - With-PCA top trials:

SVM - No-PCA top trials:

3 Results summary (test set)

Model (Variant)	Accuracy	Precision	Recall	F 1
Decision Tree (No-PCA)	0.9561	0.9744	0.9048	0.9383
Decision Tree (With-PCA)	0.9649	1.0000	0.9048	0.9500
Random Forest (No-PCA)	0.9737	1.0000	0.9286	0.9630
Random Forest (With-PCA)	0.9386	0.9268	0.9048	0.9157
AdaBoost (No-PCA)	0.9649	1.0000	0.9048	0.9500
AdaBoost (With-PCA)	0.9561	0.9744	0.9048	0.9383
Gradient Boosting (No-PCA)	0.9649	1.0000	0.9048	0.9500
Gradient Boosting (With-PCA)	0.9386	0.9487	0.8810	0.9136
XGBoost (No-PCA)	0.9737	1.0000	0.9286	0.9630
XGBoost (With-PCA)	0.9561	0.9512	0.9286	0.9398
KNN (No-PCA)	_	_	_	0.9114
KNN (With-PCA)	_	_	_	0.9383
SVM (No-PCA)	0.9737	1.0000	0.9286	0.9630
SVM (With-PCA)	0.9649	0.9750	0.9286	0.95122
Naive Bayes (No-PCA)	0.92105	0.92308	0.85714	0.88889
Naive Bayes (With-PCA)	0.89474	0.85714	0.85714	0.85714
Logistic Regression (No-PCA)	0.97368	0.97561	0.95238	0.96386
Logistic Regression (With-PCA)	0.98246	1.00000	0.95238	0.97561
Stacking (SVM+NB+DT \rightarrow LR) (No-PCA)	0.9649	1.0000	0.9048	0.9500
Stacking (Global-PCA)	0.9561	0.97436	0.90476	0.93827
Stacking $(from_b est_n o)$	0.98246	1.0000	0.95238	0.97561

Table 1: Test-set summary metrics (values taken from experiment outputs).

4 5-Fold Cross-Validation Results (All Models)

Model	Fold1	Fold2	Fold3	Fold4	Fold5	Average
Decision Tree	0.9474	0.9561	0.9123	0.9474	0.9558	0.9438
Random Forest	0.9561	0.9649	0.9386	0.9561	0.9646	0.9561
AdaBoost	0.9649	0.9737	0.9561	0.9912	0.9469	0.9666
Gradient Boosting	0.9649	1.0000	0.9474	0.9912	0.9381	0.9683
XGBoost	0.9561	0.9649	0.9561	0.9737	0.9646	0.9631
Stacking (SVM+NB+DT \rightarrow LR)	0.9649	0.9825	0.9649	0.9825	0.9823	0.9772
Stacking (SVM+NB+DT \rightarrow RF)	0.9737	0.9912	0.9649	0.9561	0.9646	0.9701
Stacking (SVM+DT+KNN \rightarrow LR)	0.9649	1.0000	0.9561	0.9912	0.9646	0.9754
KNN (no-PCA)	0.9474	0.9737	0.9561	0.9825	0.9469	0.9613
KNN (with-PCA)	0.9561	0.9649	0.9825	0.9649	0.9558	0.9648
SVM (no-PCA)	0.9737	0.9825	0.9737	0.9912	0.9735	0.9789
SVM (with-PCA)	0.9825	0.9825	0.9649	0.9737	0.9558	0.9719
Naive Bayes (no-PCA)	0.9649	0.9211	0.9386	0.9298	0.9292	0.9367
Naive Bayes (with-PCA)	0.9211	0.9035	0.9386	0.9386	0.8850	0.9174
Logistic Regression (no-PCA)	0.9737	0.9825	0.9649	0.9912	0.9735	0.9771
Logistic Regression (with-PCA)	0.9825	0.9912	0.9561	0.9912	0.9756	0.9793

Table 2: Fold-wise 5-fold accuracies and averages .

5 Observation Questions

1) Which models improved most with PCA? Which did not? Why?

Answer: Logistic Regression and KNN improved most (test F1 up: LogReg $0.9639 \rightarrow 0.9756$; KNN $0.9114 \rightarrow 0.9383$). Tree ensembles (RandomForest, XGBoost, GradientBoosting, AdaBoost) generally did not improve and often decreased. Reason: PCA reduces noise/correlation helping linear/distance models; tree ensembles already handle redundancy via splits and importance, so PCA's linear rotation can remove the feature structure they exploit.

2) Did PCA reduce variance across folds (more stable results)?

Answer: Partially — PCA reduced fold-to-fold spread for some linear/distance models (LogReg, KNN, SVM slight) per CV averages. For ensembles the effect was mixed; stacking's paired CV showed no significant change (paired t-test p 0.1772). See CV table and embedded prints.

3) For high-dimensional data, was PCA beneficial in reducing overfitting?

Answer: Yes for models sensitive to dimensionality and collinearity (Logistic Regression, KNN). For tree ensembles, PCA did not reduce overfitting and sometimes reduced test performance. Conclusion: PCA helps reduce overfitting for some learners but is not universally beneficial.

4) How did linear models (Logistic Regression, SVM) behave compared to ensemble models with PCA?

Answer: Logistic Regression improved with PCA; SVM remained strong with small differences. Ensemble models typically did not benefit — in several cases they lost test F1 after PCA. Thus linear models responded better to PCA than ensembles in this run.

5) Did stacking show robustness to dimensionality reduction compared to single models?

Answer: Yes — stacking remained robust. Stacking variants maintained high CV averages and top test F1s in both No-PCA and With-PCA variants. Paired CV for stacking did not show a significant difference (p 0.1772), indicating robustness to PCA.

6 Conclusion

Based on the experiment outputs embedded above (pages 11 onward), PCA (variance-target at 95%) improved performance and stability for linear/distance-based models (Logistic Regression, KNN) by reducing collinearity and noisy dimensions. Tree-based ensembles (Random Forest, XGBoost, Gradient Boosting, AdaBoost) generally did not benefit and sometimes lost performance after PCA because they internally handle redundancy and exploit raw-feature splits; PCA's rotation can remove signals these models use. Stacking ensembles showed robustness to PCA and remained among the top-performing approaches. Practical recommendation: apply PCA when using linear or distance-based classifiers or when strong multicollinearity/noise exists; for tree ensembles, prefer raw features but always compare both variants using paired CV.