Assignment 3 Part 2: ShiDong Xu 1006521890 Liang Chen 1005735126

$\mathbf{Q}\mathbf{1}$

(a) Closures:

L+ = LNOSMQRP M+ = MP N+ = NMQRP O+ = OS

DFs that violate BCNF:

 $\begin{aligned} M &\to P \\ N &\to MQR \\ O &\to S \end{aligned}$

(b) First level of split using $N\to MQR$ Left relation NMQRP with FD $N\to MQRP$ and $M\to P$ Right relation NLOS with FD $O\to S$ and $L\to NO$

Second level of split on the left relation on $M \to P$ Left side we have MP with FD $M \to P$ Right side we have MNQR with FD $N \to MQR$

Second second of split on the right relation on $O \to S$ Left side we have OS with FD $O \to S$ Right side we have OLN with FD $L \to NO$

So in the end, we have: relation LNO with $L \to NO$ relation MNQR with $N \to MQR$ relation MP with $M \to P$ relation OS with $O \to S$

- (c) The schema does preserve dependencies, because every single FD inside the original set of FDs are preserved in the final schema, no more, no less.
- (d) We start with:

L	Μ	Ν	О	Р	Q	R	S
1	10	n	О	11	12	13	14
15	m	n	16	17	q	r	18
19	m	20	21	р	22	23	24
25	26	27	О	28	29	30	s

Because we have $N \to MQR$, we make these changes:

L	M	N	О	Р	Q	R	S
1	10 m	n	О	11	12 q	13 r	14
15	m	n	16	17	q	r	18
19	m	20	21	р	22	23	24
25	26	27	О	28	29	30	s

Because we have $O \to S$, we make these changes:

L	Μ	N	О	Р	Q	R	S
1	10 m	n	О	11	12 q	13 r	14s
15	m	n	16	17	q	r	18
19	m	20	21	р	22	23	24
25	26	27	О	28	29	30	S

Lastly, Because we have $M \to P$, we make these changes:

L	M	Ν	О	Р	Q	R	S
1	10 m	n	О	11 p	12 q	13 r	14s
15	m	n	16	17	q	r	18
19	m	20	21	р	22	23	24
25	26	27	О	28	29	30	S

We observe that the tuple $\langle l, m, n, o, p, q, r, s \rangle$ does occur (first row). The Chase Test has succeeded.

$\mathbf{Q2}$

- (a) Step 1: Split the RHSs to get our initial set of FDs, S1:
 - (a) $ACD \rightarrow E$
 - (b) $B \to C$
 - (c) $B \to D$
 - (d) $BE \to A$
 - (e) $BE \to C$
 - (f) $BE \to F$
 - (g) $D \to A$
 - (h) $D \to B$
 - (i) $E \to A$
 - (j) $E \to C$

Step 2: For each FD, try to reduce the LHS:

- (a) No sublist of ACD can yield E, Therefore, cannot reduce.
- (b) LHS has only one element. Therefore, cannot reduce.
- (c) LHS has only one element. Therefore, cannot reduce.
- (d) B+ = BCDAB, since we only need to consider B to yield A, we can reduce this to new FD $B \to A$
- (e) from above we know that B+=BCDAB, we can reduce this to new FD $B\to C$
- (f) E+=EAC. Therefore, cannot be reduced.
- (g) LHS has only one element. Therefore, cannot reduce.

- (h) LHS has only one element. Therefore, cannot reduce.
- (i) LHS has only one element. Therefore, cannot reduce.
- (j) LHS has only one element. Therefore, cannot reduce.

Therefore, we have a new set of FDs, S2:

- (a) $ACD \rightarrow E$
- (b) $B \to C$
- (c) $B \to D$
- (d) $B \to A$
- (e) $B \to C$
- (f) $BE \to F$
- (g) $D \to A$
- (h) $D \to B$
- (i) $E \to A$
- (j) $E \to C$

Step 3: Try to eliminate each FD.

- (a) $ACD+_{S2-a} = ACDB$, We need this FD.
- (b) $B+_{S2-b}=BDAC$, We got C, therefore, we DO NOT need this FD.
- (c) $B+_{S2-b-c} = BAC$, We need this FD.
- (d) $B+_{S2-b-d} = BDA$, We got A, therefore, we DO NOT need this FD.
- (e) $B+_{S2-b-d-e} = BDA$, We need this FD.
- (f) $BE+_{S2-b-d-f} = BEACD$, We need this FD.
- (g) $D+_{S2-b-d-g} = DBC$, We need this FD.
- (h) $D+_{S2-b-d-h} = DA$, We need this FD.
- (i) $E+_{S2-b-d-i} = EC$, We need this FD.
- (j) $E+_{S2-b-d-i} = EA$, We need this FD.

Our final set of FDs is:

- (a) $ACD \rightarrow E$
- (b) $B \to C$
- (c) $B \to D$
- (d) $BE \rightarrow F$
- (e) $D \to A$
- (f) $D \to B$ (g) $E \to A$
- (h) $E \to C$
- (b) We first organize all the attributes into 4 categories.

	Attribute	appears on LHS	Appears on RHS	Conclusion
	G, H	-	-	must be in every key
ĺ	none	✓	-	must be in every key
	F	-	✓	is not in any key
	A, B, C, D, E	~	✓	must check

Next, we examine all combinations of A, B, C, D, E, and each combination must include G and H. AGH+=AGH, not a key. BGH+=BGHCDAEF, Therefore, BGH is a key. CGH+=CGH, not a key.

```
DGH+=DGHABCEF, Therefore, DGH is a key. EGH+=EGHAC, not a key.
```

All other possibilities include BGH or DGH, because we can never get B or D with only A, C, E. 2 keys for relation: BGH and DGH.

- (c) Firstly, with the set of minimal basis FDs, we combine all FDs with the same LHS:
 - (a) $ACD \rightarrow E$
 - (b) $B \to CD$
 - (c) $BE \to F$
 - (d) $D \to AB$
 - (e) $E \to AC$

Second, For each FD, construct a relation:

- (a) ACDE
- (b) *BCD*
- (c) BEF
- (d) DAB
- (e) EAC

Third, for each relation, remove ones that are a sublist of another:

- (a) ACDE
- (b) *BCD*
- (c) BEF
- (d) *DAB*

Next, Check if any relation is a superkey:

This is not possible, because attribute G and H did not appear in any FDs, neither LHS nor RHS.

Final, add another relation that is a key (BGH):

- (a) ACDE
- (b) BCD
- (c) *BEF*
- (d) DAB
- (e) *BGH*
- (d) This schema does allow redundancy, relation (a) is the one that has an FD that violates BCNF: Projection of the FDs onto (a), Consider the original FD $E \to AC$, find closure of E we have: E+=EAC. Therefore, the projection is $E \to AC$, which violates BCNF. E does not yield every attribute in the relation ACDE.

Therefore, This schema allows redundancy.