Topology - HW

Todor Antic (89191001)

March 23, 2020

Exercise 1. By definition a subset $U \subset \mathbb{R}$ is open if it is a union of open intervals. Now suppose $f : \mathbb{R} \to \mathbb{R}$ is any function. Show that $f^{-1}(a,b)$ is open whenever (a,b) is an open interval if and only if $f^{-1}(U)$ is open whenever U is open.

Solution 1.

 \implies : Suppose f is a real function, and $f^{-1}(a,b)$ is open for every open interval (a,b). Now if U is open in \mathbb{R} , then $U = \bigcup (a_i,b_i)$. Now we WTS $f^{-1}(\bigcup (a_i,b_i)) = \bigcup f^{-1}(a_i,b_i)$:

$$f^{-1}(\bigcup(a_i,b_i)) = \{x \in \mathbb{R} | f(x) \in \bigcup(a_i,b_i)\} = \{x \in \mathbb{R} | \exists i \text{s.t.} f(x) \in (a_i,b_i)\} = \bigcup\{x \in \mathbb{R} | f(x) \in (a_i,b_i)\} = \bigcup f^{-1}(a_i,b_i)$$

So $f^{-1}(U)$ is a union of open intervals, thus open.

⇐ : By an entirely similar argument we can show that the converse holds.

Exercise 2. Let X be a space and each of B_1, B_2, \ldots, B_n is closed. Show that $B_1 \cup B_2$ is closed, show that \emptyset is closed and X is closed. Show that $\bigcap_{n=1}^{\infty} B_n$ is closed.

Solution 2.

- (1): B_i is closed, then B_i^c is open, and as union of open sets needs to be open, $B_1^c \cup B_2^c$ is open, hence it's complement is closed, so $B_1 \cup B_2$ is closed.
- (2): X is closed because $X^c = \emptyset$ is open by definition. \emptyset is closed because $\emptyset^c = X$ and X is open in X by definition.
- (3): $\bigcap_{n=1}^{\infty} B_n$ is complement of $\bigcup_{n=1}^{\infty} B_n^c$ which is an open set, so our set is closed.

Exercise 3. Suppose X is a space and $B \subset X$. Show l(B) is closed if $\{x\}$ is closed for every $x \in X$. Show $B \cup l(B)$ is closed. Show that $\bar{B} = B \cup l(B)$. Show that B is closed if and only if $l(B) \subset B$

Solution 3.

First let's show that closed set contains all of it's limit points. Let X be a space and $S \subset X$ be closed. Let $x \in l(S)$, therefore $\forall U \in T_x$ s.t. $x \in U$ has the following property: $U \cap (S \setminus \{x\}) \neq \emptyset$. Now suppose $x \notin S$, then $U := X \setminus S$ is open and $x \in U$, but $U \cap (S \setminus \{x\}) = \emptyset$, giving us a contradiction.

Now we can show that l(B) is closed if $\{x\}isclosed \forall x \in X$. First we take S := l(l(B)) and show $S \subset l(B)$. Take $x \in S$, by definition $\forall \text{open } U$ contains $y \in l(B)$ s.t. $y \neq x$. Now $U \setminus \{x\}$ is an open neighborhood of y, so by applying definition of l(B), we get $z \in ((U \setminus \{x\}) \cap B)$ s.t. $z \neq y$. As this holds for all open neighborhoods of x, we get that $x \in l(B)$, hence $S = l(l(B)) \subset l(B) \implies l(B)$ is closed.

Now let's show that (1): $B \cup l(B) \subset \bar{B}$ and (2): $\bar{B} \subset B \cup l(B)$:

- (1): Take $x \in B \cup l(B)$, if $x \in B$ then, $x \in \bar{B}$ by definition so let $x \in l(B)$, and suppose $x \notin \bar{B}$ for contradiction. Now $xin\bar{B}^c$ which is an open set, hence \exists open U s.t. $x \in UU \cap \bar{B} = \emptyset$, even further $U \cap B = \emptyset$, giving us a contradiction.
- (2): Take $x \in \bar{B}$, even further assume $x \in (\bar{B} \setminus B)$. Now let $x \notin l(B)$, then $\exists U$ s.t. $U \cap B = \{x\}$ so $x \in B$.

Exercise 4. Suppose (X, d) is a metric space and τ_d is a topology generated by the open metric balls. Show that $U \in \tau_d$ if and only if U is a union of open metric balls.

Solution 4.

 \Longrightarrow : Suppose $U \in \tau_d$ is an open set, and assume it's nonempty. Now if U = X, U is a union of all open balls in τ_d as $X \in \tau_d$ because X is an open ball in d for any metric d. Now if $U \neq X$, but $Uin\tau_d$ that means that U is an open ball or a union of open balls, as union of sets in τ_d is still in τ_d .

 \iff : If U is a union of open metric balls, then each component of U is in τ_d , hence $U \in \tau_d$.

Exercise 5. s Let $X = \mathbb{R}$ and $d_1(x,y) = |x-y|$ and $d_2(x,y) = 2|x-y|$ be metrics. Show that $\tau_{d1} = \tau_{d2}$.

Solution 5.

Let's show that open sets in d_1 and d_2 are the same. Take U open in d_1 , now $\forall x \in U \exists \varepsilon_1$ s.t. $B_{\varepsilon 1}(x) \subset U$. Now to prove that U is open in d_2 just take $\varepsilon_2 = \varepsilon_1/2$ and your "epsilon ball" is in U.

Exercise 6. Suppose $f: X \to Y$ is a continuous and $\lim_{n \to \infty} x_n = x$. Show $\lim_{n \to \infty} f(x_n) = f(x)$.

Solution 6.

Suppose $U \in T_x$ is an open set containing x, by definition of convergence $\exists N$ s.t. $[n > N] \implies x_n \in U$. Now, as f is continuous, we get $f(U) \in T_y$ and $f(x) \in U$, now we want to find N_2 s.t. $[n > N] \implies f(x_n) \in f(U)$. So take $N_2 = N$ and plug it in. Now $[n > N_2] \implies x_n \in U \implies f(x_n) \in f(U)$, as we wanted.

Exercise 7. Consider \mathbb{R} with following weird topology. Declare $U \subset \mathbb{R}$ open if and only if $\mathbb{R} \setminus U$ is empty, finite or countably infinite(or if $U = \emptyset$). Show that this is a topology. Now let $Y = \{0, 1\}$ be a set with discrete topology. Define $f : \mathbb{R} \to Y$ so that f(x) = 0 iff $x \leq 0$. Is f continuous? Suppose $x_n \to x$. Must $\{x_n\}$ be eventually constant? Is it true that $x_n \to x \Longrightarrow f(x_n) \to f(x)$?

Solution 7.

First let's show that $T_{\mathbb{R}}$ is a topology. $\emptyset \in T_{\mathbb{R}}$ by definition and $\mathbb{R} \in T_mathbbR$ as $\mathbb{R} \setminus \mathbb{R} = \emptyset$, so yes it is a topology.

Now to prove f is continuous. Let $U = \{0\}$, U is closed in \mathbb{R} , but $U = f^{-1}(\{0\})$ which is open in Y, so f isn't continuous.

Exercise 8. Suppose X is metrizable, Y is any space and $f: X \to Y$ is a function. Show f is continuous if and only if $x_n \to x \implies f(x_n) \to f(x)$.

Solution 8.

 \Longrightarrow :

Exercise 9. Show that convergent sequences have unique limits in T_2 spaces.

Solution 9.

Let x_n be a convergent sequence and suppose $x_n \to x$ and $x_n \to y$ s.t. $x \neq y$. Now take $U, V \in \tau$ such that $x \in U$ and $y \in V$ but $U \cap V = \emptyset$. Now $x_n \in U$ infinitely often and $x_n \in V$ infinitely often, thus $x_n \in (U \cap V)$ infinitely often, contradicting properties of T_2 space.

Exercise 10. Show that space X is T_1 iff $\{x\}$ is closed $\forall x \in X$.

Solution 10.

 \implies : Suppose X is T_1 . Then $\forall y \in \{x\}^c \exists U_y \in \tau \text{ s.t. } y \in U_y, x \notin U_y$. Now $\bigcup U_y$ is open and is exactly the complement of $\{x\}$, so $\{x\}$ is closed.

 $\Leftarrow=$: Suppose $\{x\}$ is closed $\forall x \in X$, then $\{x\}^c \in \tau$ and $y \in \{x\}^c, \forall y \neq x$ and $x \notin \{x\}^c$ so space is T_1 .

Exercise 11. Let $X = \{a, b\}$ with the following open sets: \emptyset , $\{a\}$, $\{a, b\}$. Is $X T_0$? Is $X T_1$?

Solution 11.

X is T_0 as we can find $U \in \tau$, such that $a \in U$, but $b \notin U$, just take $U = \{a\}$. On the other hand X isn't T_1 as we can't find a set in τ containing b that doesn't contain a.

Exercise 12. Find a space that is not T_0 .

Solution 12.

Just take any two point space with indiscrete topology. It is not T_0 as we can't get $U \in \tau$ containing just one point but not the other.

Exercise 13. (Check that $h: \mathbb{R} \to \mathbb{R}$ defined so that h(x) = 3x is a homeomorphism.

Solution 13.

First let's check if h is continuous. As we're working in \mathbb{R} , all open sets are unions of open intervals, now if we take $U \in \tau$ in the codomain, and assume U is of the form $\bigcup_{i \in I} (a_i, b_i)$, then $f^{-1}(U) = \bigcup_{i \in I} (\frac{a_i}{3}, \frac{b_i}{3})$, which is obviously open. By similar argument the invers is continuous and hence h is homeomorphism.

Exercise 14. Show that (A, τ_A) is a space, assuming $A \subset X$ and τ_A is a subspace topology.

Solution 14.

To show that $(A.\tau_A)$ is a space we need to show $A \in \tau_A$ and $\emptyset \in \tau_A$. To show this we have to find $U \in \tau_X$ such that $U \cap A = A$, and $V \in \tau_X$ such that $V \cap A = \emptyset$. Let's take U = X, and $V = \emptyset$, by definition U, V satisfy our needs, so (A, τ_A) is a space with a subspace topology.

Exercise 15. Suppose (X, τ_X) and (Y, τ_Y) are spaces, $f: X \to Y$ is a continuous and $A \subset X$. Let (A, τ_A) be the space with subspace topology. Show f|A is continuous.

Solution 15.

Let $U \in \tau_Y$ and let $V \in \tau_X$ be $f^{-1}(U)$. Now by definition $(f|A)^{-1} = A \cap V$ and hence open in the subspace topology, so f|A is continuous.

Exercise 16. Is discrete topology in fact a topology? Is course topology in fact a topology?

Solution 16.

- (1): Discrete topology is a topology because $X \in 2^X$ and $\emptyset \in 2^X$ and $\tau_X = 2^X$.
- (2): Course topology is a topology because by definition it only contains empty set and the whole set.

Exercise 17. Show that the space (X, τ_X) has the discrete topology if and only if $\{x\}$ is open in $X \forall x \in X$ if and only if $\forall (Y, \tau_Y)$, and all functions $f: X \to Y$ are continuous.

Solution 17.

 \Longrightarrow : Let X be a space with discrete topology, thus every $U \subset X$ is open, and $\{x\} \subset X$, hence $\{x\}$ is open. Now take $v \in \tau_Y$ and any $f: X \to Y$, now $f^{-1}(V) \subset X \implies f^{-1}(V) \in \tau_X$, so f is continuous.

 \Leftarrow : Suppose any function $f: X \to Y$ is continuous. That means that if $\forall y \in Y$, $\{y\} \in \tau_Y$, $f^{-1}(y) = \{x\}$ is open, so $\{x\} \in \tau_X$. But now, any $\bigcup_{i \in I} \{x_i\} \in \tau_X$, so any subset of X is open, so X has discrete topology.

Exercise 18. Show that the space (X, τ_X) has course topology if and only if for all spaces (Y, τ_Y) and all functions $f: Y \to X$, f is continuous.

Solution 18.

 \Longrightarrow : Assume (X,τ_X) has course topology, and let (Y,τ_Y) be any space and $fY\to X$ be any function. Now to show that f is continuous we need to check that X and \emptyset have open preimages, however this is easy as $f^{-1}(X)=Y$ and $f^{-1}(\emptyset)=\emptyset$ which are open by definition of a topology. \Leftarrow : Suppose $(Y,\tau_Y),(X,\tau_X)$ are spaces and any $f:Y\to X$ is continuous. Suppose X has a not course topology, then we can always construct an f_i that sends a closed set in Y to an open set in X, except for X and \emptyset as $f^{-1}(X)=Y$ by definition and $f^{-1}(\emptyset)=\emptyset$ which are open in Y, so X has course topology.

Exercise 19. If (X, τ_a) is finer than (X, τ_b) , which of the following functions is guaranteed to be continuous? $idx : (X, \tau_a) \to (X, \tau_b)$ or $jdx : (X, \tau_b) \to (X, \tau_a)$? Is either guaranteed to be homeomorphism?

Solution 19.

Assume, $\tau_b \subset \tau_a$, now this guarantees that idx is continuous, but jdx isn't continuous, and thus neither is a homeomorphism.

Exercise 20. If (X, τ_a) is finer than (X, τ_b) , which space is likely to have more convergent sequences?

Solution 20.

Courser topology is likely to have more convergent sequences as all convergent sequences in τ_a converge in τ_b , but the converse doesn't need to hold.

Exercise 21. Suppose (X, τ_X) is a space, $A \subset X$, and (A, τ_A) has the subspace topology. Show that if $F \subset A$, then F is closed in (A, τ_A) if and only if $F = A \cap C$, and C is closed in X.

Solution 21.

 \Longrightarrow : Let F be closed in A, then $F^c \in \tau_A$ and $\exists U \in \tau_X$ such that $F^c = A \cap U$, so now $F = A \cap U^c$ and U^c is closed in X exactly like we wanted.

 \Leftarrow : Take $F = U \cap A$ for some closed $U \in X$, then $F^c = U^c \cap A$, and since $U^c \in \tau_X$ we know $F^c \in \tau_A$, and hence F is closed in A.

Exercise 22. \mathbb{R} with usual topology is connected.

Solution 22.

Let $A \subset \mathbb{R}$ be open, nonempty and $A \neq \mathbb{R}$, now we need to show A is not closed. Let $a \in A$ and take $c \notin A$, a < c. Now define a set $Z = \{x | x \in \mathbb{R}, [a,x] \subset A\}$, and let $b = \sup(Z)$. By definition of Z, $b \notin Z$, but $b \in \bar{Z}$, so $b \in l(Z)$. Now, $b \notin Z \implies b \notin A$ and $b \in \bar{Z} \implies b \in \bar{A}$, so $l(A) \not\subset A$, hence A is closed.

Exercise 23. Suppose X is a space and $A \subset X$ is connected. Show that \bar{A} is connected.

Solution 23.

Take $Y \subset X = \bar{A}$, now A is dense in Y. Take nonempty $U \subset Y$ and assume U is clopen in Y, now we want to show U = Y. By definition U is clopen in A, further, either $U \cap A = A$ or $U \cap A = \emptyset$. To show that intersection is nonempty take $x \in U$, now if $x \notin A$, then $x \in \bar{A} \implies x \in l(A)$. Now by definition of a limit point $\forall S \in \tau$ s.t. $x \in S$, $S \cap A \neq \emptyset$, and as $U \in \tau$, we can't have $U \cap A = \emptyset$, so $U \cap A = A$. Now:

$$A \subset U \implies \bar{A} \subset \bar{U} \implies Y \subset \bar{U} \implies Y = U$$

As we wanted to show.

Exercise 24. Suppose X is a space and let $a \in X$. Now assume that A_i is connected and $a \in A_i$ $\forall i \in I$. Show that if $\bigcup_{i \in I} A_i = X$, X is connected.

Solution 24.

Suppose $U \subset X$ is clopen, and $U \neq \emptyset$, now by definition, U^c is clopen. Assume $a \in U$, now we want to prove $X \subset U$. To do this, let's get $x \in A_i$, note that $A_i \cap U$ is clopen and $a \in A_i \cap U$, hence $A_i \cap U = A_i$, so $x \in U$. Hence, X = U, \forall clopen and nonempty $U \in X$, so X is connected.

Exercise 25. If X is a space and $a \in X$, then there is a unique component $A \subset X$, such that $a \in A$.

Solution 25.

Take $a \in X$ and let A_i be the union of all connected subsets B such that $a \in B$. Now A_i is connected. Furthermore A_i is maximal by it's definition. Now if A and B are components and $A \cap B \neq \emptyset$, then $A \cup B$ is connected, hence A = B. Thus the component containing any $x \in X$ is unique.

Exercise 26. Suppose (X, τ_X) is connected and $f: (X, \tau_X) \to (Y, \tau_Y)$ is a continuous surjection. Show that (Y, τ_Y) is connected.

Solution 26.

Take a clopen, nonempty $U \subset Y$ and show that U = Y. Assume opposite for contradiction, now $f^{-1}(U)$ and $(f^{-1}(U))^c$ are both open, but the only nonempty set satisfying that is X, so now $f^{-1}(U) = X$, and as f is surjective that means that U = Y. So Y is connected.

Exercise 27. Suppose X is a space and $A \subset X$ is a component of X. Why is A closed?

Solution 27.

By definition A is a maximal connected set and is therefore clopen, and any clopen set is closed.

Exercise 28. Suppose X is a space and $A \subset X$ is closed, $B \subset X$ is closed and $f : A \to Y$ and $g : B \to Y$ are continuous such that $f|A \cap B = g|A \cap B$. Then $h = f \cup g : A \cup B \to Y$ is continuous.

Solution 28.

Firstly, let $K \subset Y$ be closed, then $h^{-1}(K) = (h^{-1}(K) \cap A) \cup (h^{-1}(K) \cap B) = h^{-1}(K) \cap (A \cup B)$. So now $h^{-1}(K)$ is the union of two closed subsets of X. Thus by subspace topology, h^{-1} is closed in $A \cup B$

Exercise 29. Suppose (Y, τ_Y) is a space and $X \subset Y$. Show that the following are equivalent. The subspace (X, τ_X) is compact. If $\{V_i\}$ is a collection of open sets in τ_Y covering X, there exists finitely many sets $\{V_1, V_2, \ldots, V_n\} \subset \{V_i\}$ such that $V \subset \bigcup_{i=1}^n V_i$.

Solution 29.

 \implies : If X is compact then every open cover yields a finite subcover. Now take $\{V_i\}$ to be the open cover and by definition it will yield a finite subcover, i.e $\{V_1, V_2, \ldots, V_n\}$. Converse is entirely similar

Exercise 30. [0,1] is compact using the subspace topology of \mathbb{R} .

Solution 30.

Since every open U in \mathbb{R} is a union of open intervals, it suffices to prove the special case when [0,1] is covered by open intervals. Suppose $[0,1] \subset \bigcup_{i \in I} (a_i,b_i)$.

Now let $K = \{x \in [0,1] | [0,x] \text{ can be covered by finitely many } (a_i,b_i)\}$. $0 \in K \implies K \neq \emptyset$. If $x \in K$ and 0 < y < x, then $y \in K$, and since $K \subset [0,1]$, we can express K as either [0,b] or [0,b). Now let b be sup(K), so $b \in K$, now if we take b < 1, we can always find another $a \in K$ such that a > k, contradicting maximality of b, hence b = 1, K = [0,1], [0,1] is compact.

Exercise 31. Suppose (X, τ_X) is a compact space, and $f: (X, \tau_X) \to (Y, \tau_Y)$ is a continuous surjection. Show that (Y, τ_Y) is a compact space.

Solution 31.

Take a family of open covers $O \in \tau_Y$ covering Y and prove that it yields a finite subcover. Firstly note that $f^{-1}(O) \in \tau_X$ and thus yields a finite subcover, thus the image of that finite subcover is open in Y and covers Y. so Y is compact.

Exercise 32. Supoose (X, τ_X) is a compact space and $A \subset X$ is closed. Prove that A, τ_A is compact.

Solution 32.

Cover A by open sets from X and throw in the open set $V = X \setminus A$, that gives us an open cover of X, now take the finite subcover guaranteed by compactness of X, and throw out V, notice we have covered A.

Exercise 33. Let $X = \{1, 2, 3, ...\}$ with a funny topology. Let's call it the closed finite topology, a topology where every finite set is closed. Which of the T_1, T_2 axioms are true? Do convergent sequences have unique limits? Is X compact? Are compact subsets closed?

Solution 33.

Let's check for T_1 first, as only finite sets are closed, this is pretty easy to confirm as for two distinct points $x, y \in X$, we can take $U_x = X \setminus \{y\}$ and $U_y = X \setminus \{x\}$, both will be open as they're infinite and they satisfy the T_1 axiom.

Now for T_2 , we firstly take sets $E, O \in \tau_X$ such that E contains all even numbers and O contains all the even ones, it is obvious that $E \cap O = \emptyset$, now for any two distinct points x, y, take $U_x = E \setminus \{y\} \cup \{x\}$ if $y \in E$ or $U_x = E \cup \{x\}$ otherwise, now for U_y take $U_y = O \setminus \{x\} \cup \{y\}$ if $x \in O$ or $U_y = O \cup \{y\}$ otherwise. Obviously U_x and U_y are open and disjoint, hence satisfying the properties of T_2 space. Now by definition convergent sequences have unique limits.

Now to check if X is compact. Let $K = \{x \in X | \{1, ..., x\} \text{ can be covered by a finite amount of open sets}\}$, now show that K = X. As long as $\{1, 2, ..., x\}$ is finite, it is compact, so now K is unbounded, so K = X.

Exercise 34. Show that $W \subset X \times Y$ is open iff W is a union of sets of the form $U_i \times V_i$ with U_i open in X and V_i open in Y.

Solution 34.

 \Longrightarrow : Let W be open in $X \times Y$, now by definition of topology W is either a cartesian product $U \times V$ where $U \in X$, $V \in Y$ or the union of such sets. Converse follows similar logic.

Exercise 35. Given functions $f: W \to X$ and $g: W \to Y$ define $(f,g): W \to X \times Y$ as (f,g)(w) = (f(w),g(w)). Show that (f,g) is continuous if and only if f and g are continuous.

Solution 35.

 \implies : Assume (f,g) is continuous, that means that if U is open in $X \times Y$, then f(U) is open in X and g(U) is open in Y as by the definition of product topology, so in order for $(f,g)^{-1}(U)$ to be open in W, then $f^{-1}(U)$ and $g^{-1}(U)$ have to be open in W, thus f and g are continuous. \iff : Assume f and g are continuous and let U, V be open in X, Y respectively. Now $Z = U \times V$ is open in $X \times Y$, and $f^{-1}(U), g^{-1}(V)$ are open in W, and by definition of $(f,g), (f,g)^{-1}(Z)$ is open in Z so (f,g) is continuous.

Exercise 36. Note that sets of the form $V_{i1} \cap V_{i2} \cap \cdots \cap V_{in}$ must be open. Show that any open set $V \subset \prod_{i \in I} X_i$ is a union of sets of the previous format.

Solution 36.

 \Longrightarrow : Assume U_i is of form $V_{i1} \times V_{i2} \times \cdots \times V_{in}$, then U_i is open. Now take $S \in \tau$ and show that $S = \bigcup U_i$. If $S = X \times Y$, then $S = \bigcup_{i \in I} U_i$, as we will have $U_i = C_{ij}$ at least once for each V_{ij} and the union of all open sets is for sure equal to the space. Now if $S = \emptyset$ just take all empty U_i and you're done.

Exercise 37. Take a function $f: W \to \prod_{i \in I} X_i$ and show it is continuous iff each function $\pi_i: W \to X_i$ is continuous.

Solution 37.

 \implies : Suppose f is continuous and construct $id_j:\prod_{i\in I}X_i\to X_j$, by definition each id_j is continuous. Now note that $f\circ id_j=\pi_j$ for each j, and as composition of two continuous functions is continuous, each π_j is continuous.

 \Leftarrow : Suppose each pi_i is continuous. Let $S = \prod_{i \in I} U_i$ be open in $\prod_{i \in I} X_i$, then $f^{-1}(S) = \bigcap_{i \in I} \pi_i^{-1}(U_i)$, a countable intersection of open sets, hence countable.

Exercise 38. Show what are convergent sequences in the countable product $X_1 \times X_2 \times \ldots$

Solution 38.

My best guess is that convergent sequences in countable product $\prod_{i \in I} X_i$ are sequences x_n such that $\pi_i(x_n)$ converges in X_i .

Exercise 39. If X_1 is not compact, prove that $X_1 \times X_2 \dots$ is not compact.

Solution 39.

Suppose that the product is countable for contradiction, then for every open cover O in the product, we can find a finite subcover O_{λ} , as O_{λ} is open, it is a union of open sets, and thus its components are open in each X_i , so O_1 but can't be finite in X_1 , thus O doesn't yield an open cover, so the product is not compact.

Exercise 40. Show that if each X_n is sequentially compact, then the countable product $\prod_{i=1}^n X_i$ is sequentially compact.

Solution 40.

We consider a sequence of sequences, where each is a subsequence of the last. Define $x_0 = a_1, a_2, \ldots$ to be our original sequence, and construct $x_1 = a_1 1, a_1 2$ to be a sequence where our first component converges (guaranteed by sequential compactness).

Now similarly build x_n to be a subsequence of x_{n-1} such that the n-th component converges. Now consider:

More specifically consider the sequence on the diagonal of the "matrix", each $a_m m$ converges in the X_m and thus the whole sequence converges in the product and it is the subsequence of x_0 , hence the product is sequentially compact.

Exercise 41. if $X \times Y$ are spaces using the product topology, define $f: X \times Y \to X$ as f(x,y) = x. Which among the following are guaranteed? The function f is continuous? The function f is open and closed?

Solution 41.

None of these is guaranteed as open set $U \subset X$ can have multiple elements in it's preimage, some of which will be neither open nor closed if $V \subset Y$ is closed.

Exercise 42. If $X \times Y$ is compact, is X compact?

Solution 42.

By previous exercise, we know that if one component is not compact, the whole product is not compact.

Exercise 43. Prove that every metric space is $Hausdorff(T_2)$.

Solution 43.

Let X be a metri space with metric d. Get two distinct points $x, y \in X$, To find U containing x but not y just let U be the open ball with radius $\frac{d(x,y)}{2}$ centered at x, and do the same for y.

Exercise 44. If X is T_2 and Y is T_2 , prove that $X \times Y$ is T_2 .

Solution 44.

Take points (x,y) and (a,b) in $X \times Y$, now if we take a set $U \subset X$ such that $x \in U$ but $a \notin U$, existance of U is given to us by X being T_2 and we find a similar $V \subset Y$ for y and b, $U \times V$ will be open in product space and $(x,y) \in U \times V$ but $(a,b) \notin U \times V$. now we can find the same set containing (a,b), thus $X \times Y$ is T_2 .

Exercise 45. content...