Machine Learning

Training vs testing
Teoría de la generalización

Angel Vázquez-Patiño angel.vazquezp@ucuenca.edu.ec

Departamento de Ciencias de la Computación Universidad de Cuenca

4 de noviembre de 2017

Objetivos

- 1. Entender qué es el número efectivo de hipótesis de un hypothesis set
- 2. Entender qué es la función de crecimiento
- Entender la necesidad de acotar la función de crecimiento
- Entender el significado de la definición de VC dimension
- Conocer qué es la cota de la generalización VC

Teoría de la generalización Angel Vázquez-Patiño 2

Contenido

Número efectivo de hipótesis Cota de la función de crecimiento VC dimension Cota de la generalización VC

Teoría de la generalización Angel Vázquez-Patiño 3/85

Training vs testing

- · Training set ejemplo de examen
- La intención es ayudar al estudiante a que le vaya bien en el examen "real"
- ¿Por qué no dar el examen "real"?
- El objetivo no es una buena calificación, sino aprender la materia
- Si fuera el caso, no se podría ver qué tan bien se ha aprendido
- · Lo mismo en el enfoque training y test set

Teoría de la generalización Angel Vázquez-Patiño 4/85

Teoría de la generalización

Teoría de la generalización

Angel Vázquez-Patířo 5/85

Teoría de la generalización

- Error out-of-sample $E_{
 m out}$ mide qué tan bien el entrenamiento en D ha generalizado los datos que no han sido visto antes
- $E_{\mbox{\tiny out}}$ se basa en el rendimiento sobre todo el input space X
- $E_{
 m out}$ se estima con una muestra de datos "frescos" que no hayan sido usados en el entrenamiento (test set)

Teoría de la generalización Angel Vázquez-Patiño 6/85

Teoría de la generalización

- $E_{\rm in}$ se basa en los data points usados para el entrenamiento
- Se tiene el beneficio de conocer la salida (y) de cada x y se ajusta de acuerdo a eso
- Puede no reflejarse el mismo rendimiento en el test set

Teoría de la generalización

Angel Vázquez-Patiño

Teoría de la generalización

Error de generalización

- Diferencia entre $E_{\rm in}$ y $E_{\rm out}$
- · La desigualdad de Hoeffding brinda una forma de caracterizar el error de generalización con una delimitación probabilística

$$\mathbb{P}[|E_{in}(g) - E_{out}(g)| > \epsilon] \le 2Me^{-2\epsilon^2 N}, \quad \forall \epsilon > 0$$

Angel Vázquez-Patiño

Teoría de la generalización

Error de generalización

$$\mathbb{P}[|E_{in}(g) - E_{out}(g)| > \epsilon] \le 2Me^{-2\epsilon^2 N}, \quad \forall \epsilon > 0$$

- Nivel de tolerancia δ , e.g. $\delta = 0.05$
- Denotando el miembro derecho por δ ,

$$\delta = 2Me^{-2\epsilon^2 N}$$

, se puede decir con una confianza de $1-\delta$ que

$$|E_{\rm in}(h) - E_{\rm out}(h)| \le \epsilon$$

Teoría de la generalización Angel Vázquez-Patiño

Teoría de la generalización

Error de generalización

$$|E_{\rm in}(g) - E_{\rm out}(g)| \le \epsilon$$

$$\delta = 2Me^{-2\epsilon^2 N}$$

$$\frac{\delta}{2M} = \frac{1}{e^{2\epsilon^2 N}} \implies e^{2\epsilon^2 N} = \frac{2M}{\delta}$$

$$\epsilon = \sqrt{\frac{1}{2N} \ln \frac{2M}{\delta}}$$

Teoría de la generalización

Error de generalización

$$|E_{\rm in}(g) - E_{\rm out}(g)| \le \epsilon$$

• Error bound

$$\epsilon = \sqrt{\frac{1}{2N} \ln \frac{2M}{\delta}}$$

 Generalization bound (cota de la generalización)

$$E_{\text{out}}(g) \le E_{\text{in}}(g) + \sqrt{\frac{1}{2N} \ln \frac{2M}{\delta}}$$

Teoría de la generalización

Error de generalización

El error bound

$$\epsilon = \sqrt{\frac{1}{2N} \ln \frac{2M}{\delta}}$$

depende del tamaño de H (M)

- · Casi todos los modelos de aprendizaje tienen un \mathcal{H} infinito (e.g. perceptrón)
- Cómo estudiar la generalización en esos modelos

Teoría de la generalización

Angel Vázquez-Patiño

Teoría de la generalización

Error de generalización

- Lo deseable es reemplazar M con un valor finito para que el límite tenga sentido
- Recordando la forma en que se obtuvo M ...

Teoría de la generalización

Angel Vázguez-Patiño

10

$\begin{aligned} &\text{Probabilidad al rescate} \\ &\text{``}|E_{\text{in}}(g) - E_{\text{out}}(g)| > \epsilon\text{'`} \quad \Rightarrow \quad \text{``} \quad |E_{\text{in}}(h_1) - E_{\text{out}}(h_1)| > \epsilon \\ &\text{or } |E_{\text{in}}(h_2) - E_{\text{out}}(h_2)| > \epsilon \\ &\cdots \\ &\text{or } |E_{\text{in}}(h_M) - E_{\text{out}}(h_M)| > \epsilon\text{''} \\ &\text{Propiedad deseada:} \\ &\text{las hipótesis } h_{\text{m}}\text{'s son fijas} \end{aligned}$

Probabilidad al rescate

Regla de probabilidad

if
$$\mathcal{B}_1 \Longrightarrow \mathcal{B}_2$$
, then $\mathbb{P}[\mathcal{B}_1] \leq \mathbb{P}[\mathcal{B}_2]$

Union bound

$$\mathbb{P}[\mathcal{B}_1 \text{ or } \mathcal{B}_2 \text{ or } \cdots \text{ or } \mathcal{B}_M] \leq \mathbb{P}[\mathcal{B}_1] + \mathbb{P}[\mathcal{B}_2] + \cdots + \mathbb{P}[\mathcal{B}_M]$$

· Usando las dos reglas se tiene que

Teoría de la generalización Angel Vázquez-Patiño

Probabilidad al rescate

$$\begin{split} \mathbb{P}[\ |E_{\mathrm{in}}(g) - E_{\mathrm{out}}(g)| > \epsilon \] & \leq \quad \mathbb{P}[\quad |E_{\mathrm{in}}(h_1) - E_{\mathrm{out}}(h_1)| > \epsilon \\ & \quad \text{or} \ |E_{\mathrm{in}}(h_2) - E_{\mathrm{out}}(h_2)| > \epsilon \\ & \quad \cdots \\ & \quad \text{or} \ |E_{\mathrm{in}}(h_M) - E_{\mathrm{out}}(h_M)| > \epsilon \] \\ & \leq \quad \sum_{m=1}^M \mathbb{P}\left[|E_{\mathrm{in}}(h_m) - E_{\mathrm{out}}(h_m)| > \epsilon \right]. \end{split}$$

$$\mathbb{P}[|E_{in}(h) - E_{out}(h)| > \epsilon] \le 2Me^{-2\epsilon^2 N}, \quad \forall \epsilon > 0$$

Teoría de la generalización

Angel Vázquez-Patiño

Patiño 16/85

Teoría de la generalización

Error de generalización

• Si los eventos $\mathcal{B}_1,~\mathcal{B}_2,~...,~\mathcal{B}_M$ están muy traslapados

 $\mathbb{P}[\mathcal{B}_1 \text{ or } \mathcal{B}_2 \text{ or } \cdots \text{ or } \mathcal{B}_M] \leq \mathbb{P}[\mathcal{B}_1] + \mathbb{P}[\mathcal{B}_2] + \cdots + \mathbb{P}[\mathcal{B}_M]$

· La probabilidad es altamente sobre estimada

Teoría de la generalización

Angel Vázquez-Patiño

17/85

Teoría de la generalización

- El área total de B1, ...
 o BM es más
 pequeña que la suma
 de B1, ..., BM
 individuales
- Cierto pero sobre estimado
- En un modelo de aprendizaje común muchas h's son parecidas

Teoría de la generalización

Angel Vázquez-Patiño

Función de crecimiento

- Cantidad que formaliza el número efectivo de hipótesis
- Reemplaza a M en la acotación de la generalización

$$E_{\mathrm{out}}(g) \le E_{\mathrm{in}}(g) + \sqrt{\frac{1}{2N} \ln \frac{2M}{\delta}}$$

Teoría de la generalización

Angel Vázquez-Patiño

Número efectivo de hipótesis

Función de crecimiento

- Cantidad combinatoria que captura qué tan diferentes son las hipótesis en ${\mathcal H}$
- Cuánto solapamiento hay en los diferentes eventos de

$$|E_{\mathrm{in}}(h_1) - E_{\mathrm{out}}(h_1)| > \epsilon$$

or $|E_{\mathrm{in}}(h_2) - E_{\mathrm{out}}(h_2)| > \epsilon$
...

or $|E_{\rm in}(h_M) - E_{\rm out}(h_M)| > \epsilon$ "

Teoría de la generalización Angel Vázquez-Patiño

Número efectivo de hipótesis Definir la función de crecimiento y estudiar sus propiedades básicas Cómo acotar el valor de la función de crecimiento Reemplazar M en la acotación de la generalización con la función de crecimiento

Angel Vázquez-Patiño

Número efectivo de hipótesis

Función de crecimiento

- Función objetivo f binaria
- Cada $h \in \mathcal{H}$ mapea X hacia $\{-1, +1\}$
- · La definición de función de crecimiento se basa en el número de diferentes hipótesis que \mathcal{H} puede implementar pero sólo sobre un número finito de muestras y no del \mathcal{X} entero

Teoría de la generalización

Angel Vázquez-Patiño

Teoría de la generalización

Dicotomía

- Si se aplica $h \in \mathcal{H}$ a una muestra finita x1, ..., $xN \in \mathcal{X}$, se obtiene una N-tupla h(x1), ..., h(xN) de ± 1 's
- La N-tupla se llama dicotomía ya que divide x1, ...xN en dos grupos: h(xn) = -1 y h(xn) = +1
- Cada $h \in \mathcal{H}$ genera una dicotomía en x1, ...xN pero dos h's diferentes generan la misma dicotomía si dan el mismo patrón de ± 1 's en esa muestra particular

Teoría de la generalización

Angel Vázquez-Patiño

DE 40E

Número efectivo de hipótesis

Dicotomía

Definición

• Sea $\mathbf{x_1}, ..., \mathbf{x_N} \in \mathcal{X}$. Las dicotomías generadas por \mathcal{H} en estos puntos son definidos por

$$\mathcal{H}(\mathbf{x}_1,\cdots,\mathbf{x}_N) = \{(h(\mathbf{x}_1),\cdots,h(\mathbf{x}_N)) | h \in \mathcal{H}\}$$

- Un $\mathcal{H}(\mathbf{x_1}, ..., \mathbf{x_N})$ grande significa un \mathcal{H} más diverso que genera más dicotomías en $\mathbf{x_1}, ..., \mathbf{x_N}$
- La función de crecimiento está basada en el número de dicotomías

Teoría de la generalización

Angel Vázquez-Patiño

Número efectivo de hipótesis

Función de crecimiento

Definición

• La función de crecimiento para un hypothesis set $\mathcal H$ está definida por

$$m_{\mathcal{H}}(N) = \max_{\mathbf{x}_1, \dots, \mathbf{x}_N \in \mathcal{X}} |\mathcal{H}(\mathbf{x}_1, \dots, \mathbf{x}_N)|$$

donde | • | denota la cardinalidad de un conjunto

Teoría de la generalización

Angel Vázquez-Patiño

27/85

Número efectivo de hipótesis

Función de crecimiento

Definición

$$m_{\mathcal{H}}(N) = \max_{\mathbf{x}_1, \dots, \mathbf{x}_N \in \mathcal{X}} |\mathcal{H}(\mathbf{x}_1, \dots, \mathbf{x}_N)|$$

- En palabras, $m_{\mathcal{H}}(\mathbf{N})$ es el número máximo de dicotomías que pueden ser generadas por \mathcal{H} en **cualquier** muestra de \mathbf{N} puntos
- Para calcular $m_{\mathcal{H}}(\mathbf{N})$ se considera todas las posibles elecciones de \mathbf{N} puntos $\mathbf{x_1}, ..., \mathbf{x_N}$ de \mathcal{X} y se toma la que da el mayor número de dicotomías

Teoría de la generalización

Angel Vázquez-Patiño

28/85

Número efectivo de hipótesis

Función de crecimiento

- Como M, $m_{\mathcal{H}}(\mathbf{N})$ es una medida del número de hipótesis en \mathcal{H} , excepto que una hipótesis es ahora considerada en \mathbf{N} puntos y no en el \mathcal{X} completo
- Ya que $\mathcal{H}(\mathbf{x_1},...,\mathbf{x_N})\subseteq\{-1,+1\}^{\mathrm{N}}$, el valor de $m_{\mathcal{H}}(\mathrm{N})$ es, a lo sumo, $|\{-1,+1\}^{\mathrm{N}}|$ por lo tanto

$$m_{\mathcal{H}}(N) \le 2^N$$

Teoría de la generalización

Angel Vázquez-Patiño

29/85

Número efectivo de hipótesis

Función de crecimiento

- Si \mathcal{H} es capaz de generar todas las posibles dicotomías en x1,...,xN, entonces $\mathcal{H}(x1,...,xN)$ ={-1, +1} $^{\mathbb{N}}$ y se dice que \mathcal{H} puede shatter (romper/destrozar/estallar) x1,...,xN
- Significa que \mathcal{H} es tan diverso como puede ser posible en la muestra $\mathbf{x_1}, ..., \mathbf{x_N}$ particular

Teoría de la generalización

Angel Vázquez-Patiño

Función de crecimiento

Ejemplo

- \mathcal{X} , un plano Euclideano
- \mathcal{H} , un perceptrón de dos dimensiones

Teoría de la generalización Angel Vázquez-Patiño 31/85

Función de crecimiento

Ejemplo

- \mathcal{X} , un plano Euclideano
- \mathcal{H} , un perceptrón de dos dimensiones
- $\lambda m_{\mathcal{H}}(3)$ y $m_{\mathcal{H}}(4)$?

Teoría de la generalización

Angel Vázquez-Patiño

$$m_{\mathcal{H}}(N) = \max_{\mathbf{x}_1, \dots, \mathbf{x}_N \in \mathcal{X}} |\mathcal{H}(\mathbf{x}_1, \dots, \mathbf{x}_N)|$$

Ceoría de la generalización Angel Vázquez-Patiño

Número efectivo de hipótesis

Función de crecimiento

Ejemplos

- Encontrar una fórmula para $m_{\mathcal{H}}(N)$
- · Rayos positivos
- · Intervalos positivos

Teoría de la generalización

Angel Vázquez-Patiño

Número efectivo de hipótesis

Definir la función de crecimiento y estudiar sus propiedades básicas

Cómo acotar el valor de la función de crecimiento

Reemplazar ${\cal M}$ en la acotación de la generalización con la función de crecimiento

Teoría de la generalización Angel

Angel Vázquez-Patiño

58/85

Acotar la función de crecimiento

Teoría de la generalización Angel Vázquez-Patiño

Acotar la función de crecimiento

• El hecho más importante acerca de las funciones de crecimiento es que si la condición

$$m_{\mathcal{H}}(N) = 2^N$$

se rompe en algún punto, se puede delimitar

 $m_{\mathcal{H}}(N)$

para todos los valores de ${\cal N}$ por un polinomio simple basado en este punto de quiebre

Teoría de la generalización

Angel Vázquez-Patiño

atiño

Delimitar la función de crecimiento

- El hecho de que el límite es polinomial es crucial
- · Si no hay un punto de quiebre

$$m_{\mathcal{H}}(N)$$

será

$$m_{\mathcal{H}}(N) = 2^N$$

• para todo valor de N

Teoría de la generalización

Angel Vázquez-Patiño

C4 105

Delimitar la función de crecimiento

• Si se reemplaza M en el límite de la generalización

$$E_{\rm out}(g) \le E_{\rm in}(g) + \sqrt{\frac{1}{2N} \ln \frac{2M}{\delta}}$$

- por $m_{\mathcal{H}}(N)$ en el límite

$$\sqrt{\frac{1}{2N}\ln\frac{2M}{\delta}}$$

 el error de la generalización no podría llegar a ser cero sin importar cuántos ejemplos de entrenamiento se tengan

Teoría de la generalización

Angel Vázquez-Patiño

Delimitar la función de crecimiento

- Sin embargo, si $m_{\mathcal{H}}(N)$ puede ser limitado por un polinomio, el error de la generalización se acercará a cero según $N \to \infty$
- Va a haber una buena generalización dado un suficiente número de ejemplos

Teoría de la generalización

Angel Vázquez-Patiño

zquez-Patiño 63/

Delimitar la función de crecimiento

Teorema

• Si $m_{\mathcal{H}}(k) < 2^k$ para algún valor de k, entonces

$$m_{\mathcal{H}}(N) \leq \sum_{i=0}^{k-1} \binom{N}{i} \quad ext{para todo } N$$

- Polinomial en N de grado k-1
- Si $\mathcal H$ tiene un punto de quiebre, se tiene lo que se necesita para asegurar una buena generalización, un límite polinomial en $m_{\mathcal H}(N)$

Teoría de la generalización

Angel Vázquez-Patiño

64/85

Delimitar la función de crecimiento

$$E_{\mathrm{out}}(g) \le E_{\mathrm{in}}(g) + \sqrt{\frac{1}{2N} \ln \frac{2M}{\delta}}$$

 $m_{\mathcal{H}}(N)$

$$m_{\mathcal{H}}(N) \le \sum_{i=0}^{k-1} \binom{N}{i}$$

Teoría de la generalización

Angel Vázquez-Patiño

65/85

VC dimension

Teoría de la generalización

Angel Vázquez-Patiño

VC dimension

• El teorema delimita la función de crecimiento completa $m_{\mathcal{H}}$ en términos de cualquier punto de quiebre

$$E_{\text{out}}(g) \le E_{\text{in}}(g) + \sqrt{\frac{1}{2N} \ln \frac{2m_{\mathcal{H}}(N)}{\delta}}$$

$$m_{\mathcal{H}}(N) \le \sum_{i=0}^{k-1} \binom{N}{i}$$

Teoría de la generalización

Angel Vázquez-Patiño

67/85

VC dimension

 Se tiene así una definición de un solo parámetro que caracteriza la función de crecimiento

La Vapnik-Chervonenkis dimension

• La VC dimension de un hypothesis set \mathcal{H} , denotado por $d_{\mathrm{vc}}(\mathcal{H})$ o simplemente d_{vc} es el valor más grande de N para el cual $m_{\mathcal{H}}(N){=}2^{\mathrm{N}}$. Si $m_{\mathcal{H}}(N){=}2^{\mathrm{N}}$ para todo N, entonces $d_{\mathrm{vc}}(\mathcal{H}){=}\infty$

Teoría de la generalización

Angel Vázquez-Patiño

68/85

VC dimension

- Si d_{vc} es la VC dimension de \mathcal{H} , entonces $k=d_{\mathrm{vc}}+1$ es un punto de quiebre para $m_{\mathcal{H}}$ ya que $m_{\mathcal{H}}(N)$ no puede ser igual a 2^N para cualquier $N>d_{\mathrm{vc}}$ por definición
- No existe un punto de quiebre más pequeño ya que $\mathcal H$ puede romper d_{vc} puntos, así puede romper cualquier subgrupo de estos puntos

Teoría de la generalización

Angel Vázquez-Patiño

Vázguez-Patiño

VC dimension

• Ya que $k=d_{\rm vc}+1$ es un punto de quiebre para $m_{\mathcal{H}}$, el teorema puede ser reescrito en términos de la VC dimension

$$m_{\mathcal{H}}(N) \le \sum_{i=0}^{d_{\text{vc}}} \binom{N}{i}$$

- Así, la VC dimension es el orden de la cota polinomial en $m_{\mathcal{H}}(N)$
- Una mayor simplificación

$$m_{\mathcal{H}}(N) \le N^{d_{\mathrm{vc}}} + 1$$

Teoría de la generalización

Angel Vázquez-Patiño

VC dimension

$$E_{\mathrm{out}}(g) \stackrel{?}{\leq} E_{\mathrm{in}}(g) + \sqrt{\frac{1}{2N} \ln \frac{2m_{\mathcal{H}}(N)}{\delta}}$$

VC dimension

Dos tipos de modelos

- · Modelos buenos
 - $d_{\rm vc}$ finito
 - N suficientemente grande, $E_{
 m in}$ cerca a $E_{
 m out}$
 - Rendimiento in-sample generaliza out-sample
- · Modelos malos
 - $d_{
 m ve}$ infinito
 - No importa que tan grande sea N, no se puede hacer conclusiones de generalización de E_{in} a E_{out}

Teoría de la generalización

Angel Vázquez-Patiño

VC dimension

- Para entender mejor el concepto se puede calcular para un modelo de aprendizaje
- Se puede calcular d_{vc} exactamente para el perceptrón

Dos pasos

- 1) Se muestra que d_{vc} es al menos cierto valor
- 2) Se muestra que a lo mucho el mismo valor
- Diferencia lógica en argumentar 1) y 2)

e la generalización Angel Vázquez-Patiño

VC dimension

En el perceptrón

- Buen caso para intuir qué es $d_{\rm vc}$ ya que ${
 m d}+1$ es además el número de parámetros del modelo
- Se podría ver a $d_{\rm vc}$ como una medida de número efectivo de parámetros
- Mientras más parámetros tiene el modelo, más diverso es \mathcal{H} , lo cual es reflejado en un valor más grande de la función de crecimiento $m_{\mathcal{H}}(N)$
- En los perceptrones los parámetros efectivos corresponden a $w_0, ..., w_d$

Teoría de la generalización Angel Vázquez-Patiño 77/85

VC dimension

En el perceptrón

- No en todo modelo es tan obvio los parámetros efectivos (implícitos)
- $d_{\rm vc}$ mide estos parámetros eficaces (grados de libertad) que permiten al modelo expresar un grupo diverso de hipótesis
- La diversidad no necesariamente es buena en el contexto de la generalización
- E.g. el conjunto de todas las posibles hipótesis son tan diversas como se quiera, así $m_{\mathcal{H}}(N){=}2^{N}$ para todo N y $d_{\mathrm{ve}}(N)=\infty$. No generalización

Teoría de la generalización Angel Vázquez-Patiño 78/85

