Departamento de Matemática da Universidade de Aveiro

ANÁLISE MATEMÁTICA II - 2º sem. 2010/11

EXERCÍCIOS 9

1. Determine a solução geral do sistema

$$\dot{\mathbf{x}}(t) = \begin{pmatrix} 1 & 1 \\ 1 & -1 \end{pmatrix} \mathbf{x}(t)$$

2. Determine a solução geral do sistema

$$\dot{\mathbf{x}}(t) = \begin{pmatrix} 4 & 1 & 0 \\ 3 & 2 & 0 \\ 2 & 3 & 4 \end{pmatrix} \mathbf{x}(t)$$

3. Mostre que

(a)
$$L[t^n](s) = \frac{n!}{s^{n+1}}$$
 $s > 0$, $n \in \mathbb{N}_0$. (b) $L[e^{at}](s) = \frac{1}{s-a}$, $s > a$, $a \in \mathbb{R}$.

(b)
$$L[e^{at}](s) = \frac{1}{s-a}, \quad s > a, \ a \in \mathbb{R}.$$

(b)
$$L[\sin(at)](s) = \frac{a}{s^2 + a^2}$$
 $s > 0, a \in \mathbb{R}$

(b)
$$L[\sin(at)](s) = \frac{a}{s^2 + a^2}, \quad s > 0, \quad a \in \mathbb{R}.$$
 (c) $L[\cos(at)](s) = \frac{s}{s^2 + a^2}, \quad s > 0, \quad a \in \mathbb{R}.$

(d)
$$L[\sinh(at)](s) = \frac{a}{s^2 - a^2}, \quad s > |a|, \ a \in \mathbb{R}.$$
 (e) $L[\cosh(at)](s) = \frac{s}{s^2 - a^2}, \quad s > |a|, \ a \in \mathbb{R}.$

(e)
$$L[\cosh(at)](s) = \frac{s}{s^2 - a^2}$$
 $s > |a|, a \in \mathbb{R}$.

4. Determine as transformadas de Laplace das funções f de $t \geq 0$ dadas pelas seguintes expressões:

(a)
$$f(t) = 4\sin t \cos t + 2e^{-t}$$
. (b) $f(t) = t^5 + \cos(2t)$. (c) $f(t) = 2e^{3t} - \sin(5t)$.

(b)
$$f(t) = t^5 + \cos(2t)$$
.

(c)
$$f(t) = 2e^{3t} - \sin(5t)$$

(d)
$$f(t) = e^{2t} (\sin t + \cos t)$$

(e)
$$f(t) = (1 - H_{\pi}(t)) \sin t$$
.

(d)
$$f(t) = e^{2t}(\sin t + \cos t)$$
. (e) $f(t) = (1 - H_{\pi}(t))\sin t$. (f) $f(t) = (t - 2)^2 e^{2(t - 2)} H_2(t)$.

5. Determine as transformadas inversas de Laplace das funções F de s (consideradas em domínios adequados):

(a)
$$F(s) = \frac{7}{(s-1)^3} + \frac{1}{(s-1)^2 - 4}$$
. (b) $F(s) = \frac{e^{-\pi s}}{s^2 + 16}$. (c) $F(s) = \frac{12}{(s+3)^4}$.

(b)
$$F(s) = \frac{e^{-\pi s}}{s^2 + 16}$$

(c)
$$F(s) = \frac{12}{(s+3)^4}$$

(d)
$$F(s) = \frac{s}{s^2 - 3s - 4}$$

(d)
$$F(s) = \frac{s}{s^2 - 3s - 4}$$
. (e) $F(s) = \frac{2}{s^3 - 4s^2 + 5s}$. (f) $F(s) = \frac{1}{s^4 - 1}$.

(f)
$$F(s) = \frac{1}{s^4 - 1}$$
.

6. Determine a solução do PVI usando a transformada de Laplace:

(a)
$$y'' - 3y' + 2y = 6e^{-x}$$

com
$$y(0) = 9$$
 e $y'(0) = 6$,

(b)
$$y''' + y'' - 5y' + 3y = 6\sinh(2x)$$
 com $y(0) = y'(0) = 0$ e $y''(0) = 4$,

$$com \ u(0) = u'(0) = 0$$
 e $u''(0) = 4$

(c)
$$y'' - 6y' + 9y = 0$$

com
$$y(0) = 1$$
 e $y'(0) = 0$,

(d)
$$y'' + 4y = \cos(2x)$$

com
$$y(0) = 0$$
 e $y'(0) = 1$,

(e)
$$y''' + y'' - 4y' - 4y = 2 - 4x$$

(e)
$$y''' + y'' - 4y' - 4y = 2 - 4x$$
 com $y(0) = \frac{1}{2}$ e $y'(0) = y''(0) = 0$.