Quando precisar use os seguintes valores para constantes: Aceleração da gravidade: $10\,\mathrm{m/s^2}$. Calor específico da água: $1,0\,\mathrm{cal/g.K.}$ Conversão de unidade: $1,0\,\mathrm{cal}=4,2\,\mathrm{J.}$ Massa específica da água: $1\mathrm{g/cm^3}$. Massa da Terra: $6,0\times10^{24}\mathrm{kg.}$ Raio da Terra: $6,4\times10^6\mathrm{m.}$ Constante de Boltzman: $k_B=1,4\times10^{-23}\mathrm{J/K.}$ Constante dos gases: $R=8,3\,\mathrm{J/mol.K.}$ Massa atômica de alguns elementos químicos: $M_C=12\,\mathrm{u}$, $M_O=16\,\mathrm{u}$, $M_N=14\,\mathrm{u}$, $M_{Ar}=40\,\mathrm{u}$, $M_{Ne}=20\,\mathrm{u}$, $M_{He}=4\,\mathrm{u}$. Velocidade do som no ar: $340\,\mathrm{m/s.}$ Massa específica do mercúrio: $13,6\,\mathrm{g/cm^3.}$ Permeabilidade magnética do vácuo: $4\pi\times10^{-7}\,\mathrm{Tm/A.}$ Constante de Gravitação universal $G=6,7\times10^{-11}m^3/\mathrm{kg.s^2.}$

Questão 1. Ondas gravitacionais foram previstas por Einstein em 1916 e diretamente detectadas pela primeira vez em 2015. Sob determinadas condições, um sistema girando com velocidade angular w irradia tais ondas com potência proporcional a $Gc^{\beta}Q^{\gamma}w^{\delta}$, em que G é a constante de gravitação universal; c, a velocidade da luz e Q, uma grandeza que tem unidade em kg.m². Assinale a opção correta.

A ()
$$\beta = -5, \ \gamma = 2, \ e \ \delta = 6$$

D ()
$$\beta = 0 \ \gamma = 1, \ e \ \delta = 3$$

B ()
$$\beta = -3/5$$
, $\gamma = 4/3$, e $\delta = 4$

E ()
$$\beta = -10$$
, $\gamma = 3$, e $\delta = 9$

C ()
$$\beta = -10/3$$
, $\gamma = 5/3$, e $\delta = 5$

Questão 2. Um bastão rígido e uniforme, de comprimento L, toca os pinos P e Q fixados numa parede vertical, interdistantes de a, conforme a figura. O coeficiente de atrito entre cada pino e o bastão é μ , e o ângulo deste com a horizontal é α . Assinale a condição em que se torna possível o equilíbrio estático do bastão.

A ()
$$L > a(1 + \tan \alpha/\mu)$$

B ()
$$L \ge a(-1 + \tan \alpha/\mu)$$

C ()
$$L \ge a(1 + \tan \alpha / 2\mu)$$

D ()
$$L \ge a(-1 + \tan \alpha/2\mu)$$

E ()
$$L \ge a(1 + \tan \alpha/\mu)/2$$

Questão 3. Na figura, o vagão move-se a partir do repouso sob a ação de uma aceleração a constante. Em decorrência, desliza para trás o pequeno bloco apoiado em seu piso de coeficiente de atrito μ . No instante em que o bloco percorrer a distância L, a velocidade do bloco, em relação a um referencial externo, será igual a

A ()
$$g\sqrt{L}/\sqrt{a-\mu g}$$

B ()
$$g\sqrt{L}/\sqrt{a+\mu g}$$

C ()
$$\mu g \sqrt{L}/\sqrt{a-\mu g}$$

$$\mathbf{D} \ (\) \ \mu g \sqrt{2L} / \sqrt{a - \mu g}$$

$$\mathbf{E} \ (\) \ \mu g \sqrt{2L} / \sqrt{a + \mu g}$$

Questão 4. Carregada com um potencial de 100 V, flutua no ar uma bolha de sabão condutora de eletricidade, de 10 cm de raio e 3.3×10^{-6} cm de espessura. Sendo a capacitância de uma esfera condutora no ar proporcional ao seu raio, assinale o potencial elétrico da gota esférica formada após a bolha estourar.

Questão 5. Considere um automóvel com tração dianteira movendo-se aceleradamente para a frente. As rodas dianteiras e traseiras sofrem forças de atrito respectivamente para:

Questão 6. Na figura, um tubo fino e muito leve, de área de seção reta S e comprimento a, encontra-se inicialmente cheio de água de massa M e massa específica ρ . Graças a uma haste fina e de peso desprezível, o conjunto forma um pêndulo simples de comprimento L medido entre o ponto de suspensão da haste e o centro de massa inicial da água. Posto a oscilar, no instante inicial começa a pingar água pela base do tubo a uma taxa constante $r = -\Delta M/\Delta t$. Assinale a expressão da variação temporal do período do pêndulo.

A ()
$$2\pi\sqrt{L}/\sqrt{g}$$

B ()
$$2\pi\sqrt{\rho LS-rt}/\sqrt{\rho Sg}$$

C ()
$$2\pi\sqrt{\rho LS + rt}/\sqrt{\rho Sg}$$

D ()
$$2\pi\sqrt{2\rho LS - rt}/\sqrt{2\rho Sg}$$

$$\mathbf{E} \ (\) \ 2\pi\sqrt{2\rho LS + rt}/\sqrt{2\rho Sg}$$

Questão 7. Na figura, a extremidade de uma haste delgada livre, de massa m uniformemente distribuída, apoia-se sem atrito sobre a massa M do pêndulo simples. Considerando o atrito entre a haste e o piso, assinale a razão M/m para que o conjunto permaneça em equilíbrio estático.

A ()
$$\tan \phi/2 \tan \theta$$

$$\mathbf{B}$$
 () $(1 - \tan \phi)/4 \mathrm{sen}\theta \cos \phi$

C ()
$$(\sin 2\phi \cot \theta - 2\sin^2 \theta)/4$$

D ()
$$(\operatorname{sen}\phi \cot \theta - 2\operatorname{sen}^2 2\theta)/4$$

E ()
$$(\sin 2\phi \cot \theta - \sin^2 \theta)/4$$

Questão 8. Em um experimento no vácuo, um pulso intenso de laser incide na superfície de um alvo sólido, gerando uma nuvem de cargas positivas, elétrons e átomos neutros. Uma placa metálica, ligada ao terra por um resistor R de 50 Ω , é colocada a 10 cm do alvo e intercepta parte da nuvem, sendo observado no osciloscópio o gráfico da variação temporal da tensão sobre o resistor. Considere as seguintes afirmativas:

- I. A área indicada por M no gráfico é proporcional à carga coletada de elétrons, e a indicada por N é proporcional à de cargas positivas coletadas.
- II. A carga total de elétrons coletados que atinge a placa é aproximadamente do mesmo valor (em módulo) que a carga total de cargas positivas coletadas, e mede aproximadamente 1 nC.
- III. Em qualquer instante a densidade de cargas positivas que atinge a placa é igual à de elétrons.

Esta(ão) correta(as) apenas

Questão 9. Uma placa é feita de um metal cuja função trabalho W é menor que $h\nu$, sendo ν uma frequência no intervalo do espectro eletromagnético visível e h a constante de Planck. Deixada exposta, a placa interage com a radiação eletromagnética proveniente do Sol absorvendo uma potência P. Sobre a ejeção de elétrons da placa metálica nesta situação é correto afirmar que os elétrons

- A () não são ejetados instantaneamente, já que precisam de um tempo mínimo para acúmulo de energia.
- B () podem ser ejetados instantaneamente com uma mesma energia cinética para qualquer elétron.
- C () não podem ser ejetados pois a placa metálica apenas reflete toda a radiação.
- **D** () podem ser ejetados instantaneamente, com energia que depende da frequência da radiação absorvida e da energia do elétron no metal.
- E () não podem ser ejetados instantaneamente e a energia cinética após a ejeção depende da frequência da radiação absorvida e da energia do elétron no metal.

Questão 10. A figura mostra dois anteparos opacos à radiação, sendo um com fenda de tamanho variável d, com centro na posição x=0, e o outro com dois fotodetectores de intensidade da radiação, tal que F_1 se situa em x=0 e F_2 , em x=L>4d. No sistema incide radiação eletromagnética de comprimento de onda λ constante. Num primeiro experimento, a relação entre d e λ é tal que $d\gg\lambda$, e são feitas as seguintes afirmativas: I. Só F_1 detecta radiação. III. F_1 e F_2 detectam radiação. III. F_1 não detecta e F_2 detecta radiação. Num segundo experimento, d é reduzido até à ordem do comprimento de λ e, neste caso, são feitas estas afirmativas: IV. F_2 detecta radiação de menor intensidade que a detectada em F_1 . V. Só F_1 detecta radiação. VI. Só F_2 detecta radiação. Assinale as afirmativas possíveis para a detecção da radiação em ambos os experimentos.

A () I, II e IVB () I, IV e VC () II, IV e VD () III, V e VI

E () I, IV e VI

Questão 11. Um sistema é constituído por uma sequência vertical de N molas ideais interligadas, de mesmo comprimento natural ℓ e constante elástica k, cada qual acoplada a uma partícula de massa m. Sendo o sistema suspenso a partir da mola 1 e estando em equilíbrio estático, pode-se afirmar que o comprimento da

- **A** () mola 1 é igual a $\ell + (N-1)mg/k$.
- **B** () mola 2 é igual a $\ell + Nmg/k$.
- C () mola 3 é igual a $\ell + (N-2)mg/k$.
- **D** () mola N-1 é igual a $\ell+mg/k$.
- **E** () mola N é igual a ℓ .

Questão 12. Elétrons com energia cinética inicial de 2 MeV são injetados em um dispositivo (bétatron) que os acelera em uma trajetória circular perpendicular a um campo magnético cujo fluxo varia a uma taxa de 1 000 Wb/s. Assinale a energia cinética final alcançada pelos elétrons após 500 000 revoluções.

A () 498 MeV

D () 504 MeV

B () 500 MeV

E () 506 MeV

C () 502 MeV

Questão 13. Uma carga q de massa m é solta do repouso num campo gravitacional g onde também atua um campo de indução magnética uniforme de intensidade B na horizontal. Assinale a opção que fornece a altura percorrida pela massa desde o repouso até o ponto mais baixo de sua trajetória, onde ela fica sujeita a uma aceleração igual e oposta à que tinha no início.

A () $g(m/qB)^2$

- **C** () $2g(m/qB)^2$
- **E** () $g(m/qB)^2/2$

B () $g(qB/m)^2$

D () $2g(qB/m)^2$

Questão 14. Um automóvel percorre um trecho retilíneo de uma rodovia. A figura mostra a velocidade do carro em função da distância percorrida, em km, indicada no odômetro. Sabendo que a velocidade escalar média no percurso é de 36 km/h, assinale respectivamente o tempo total dispendido e a distância entre os pontos inicial e final do percurso.

- **A** () 9 min e 2 km.
- **B** () 10 min e 2 km.
- C () 15 min e 2 km.
- **D** () 15 min e 3 km.
- **E** () 20 min e 2 km.

Questão 15. Num experimento que mede o espectro de emissão do átomo de hidrogênio, a radiação eletromagnética emitida pelo gás hidrogênio é colimada por uma fenda, passando a seguir por uma rede de difração. O espectro obtido é registrado em chapa fotográfica, cuja parte visível é mostrada na figura.

Pode-se afirmar que

- A () O modelo de Bohr explica satisfatoriamente as linhas do espectro visível do átomo de Hidrogênio.
- ${f B}$ () Da esquerda para a direita as linhas correspondem a comprimentos de onda do violeta ao vermelho.
- C () O espaçamento entre as linhas adjacentes decresce para um limite próximo ao infravermelho.
- ${\bf D}$ ($\,$) As linhas do espectro encontrado são explicadas pelo modelo de Rutherford.
- **E** () Balmer obteve em 1885 a fórmula empírica para o comprimento de onda: $\lambda = R\left(\frac{1}{2^2} \frac{1}{n^2}\right)$, em que $n = 3, 4 \cdots$ e R é a constante de Rydberg.

Questão 16. Com os motores desligados, uma nave executa uma trajetória circular com período de 5 400 s próxima à superfície do planeta em que orbita. Assinale a massa específica média desse planeta.

- **A** () 1.0 g/cm^3
- **B** () 1.8 g/cm^3
- $C () 2,4 g/cm^3$
- $D () 4.8 \text{ g/cm}^3$
- $E () 20.0 \text{ g/cm}^3$

Questão 17. Um emissor E_1 de ondas sonoras situa-se na origem de um sistema de coordenadas e um emissor E_2 , num ponto do seu eixo y, emitindo ambos o mesmo sinal de áudio senoidal de comprimento de onda λ , na frequência de 34 kHz. Mediante um receptor R situado num ponto do eixo x a 40 cm de E_1 , observa-se a interferência construtiva resultante da superposição das ondas produzidas por E_1 e E_2 . É igual a λ a diferença entre as respectivas distâncias de E_2 e E_1 até R. Variando a posição de E_2 ao longo de y, essa diferença chega a 10λ . As distâncias (em centímetros) entre E_1 e E_2 nos dois casos são

C () 12,8 e 26,4.

E () 12,8 e 128

D () 39 e 30.

Questão 18. Uma transformação cíclica XYZX de um gás ideal indicada no gráfico $P \times V$ opera entre dois extremos de temperatura, em que YZ é um processo de expansão adiabática reversível. Considere R=2,0 cal/mol.K = 0,082 atm. ℓ /mol.K , $P_Y=20$ atm, $V_Z=4,0$ ℓ , $V_Y=2,0$ ℓ e a razão entre as capacidades térmicas molar, a pressão e a volume constante, dada por $C_P/C_V=2,0$. Assinale a razão entre o rendimento deste ciclo e o de uma máquina térmica ideal operando entre os mesmos extremos de temperatura.

B () 0,44

C () 0,55

D () 0,75

E () 2,25

Questão 19. Uma onda harmônica propaga-se para a direita com velocidade constante em uma corda de densidade linear $\mu = 0.4$ g/cm. A figura mostra duas fotos da corda, uma num instante t = 0 s e a outra no instante t = 0.5 s. Considere as seguintes afirmativas:

- I. A velocidade mínima do ponto P da corda é de 3 m/s.
- ${\bf II.}$ O ponto P realiza um movimento oscilatório com período de 0,4 s.
- III. A corda está submetida a uma tensão de $0.36~\mathrm{N}.$

Assinale a(s) afirmativa(s) possível(possíveis) para o movimento da onda na corda

B () II.

C () III.

 \mathbf{D} () I e II.

E () II e III.

Questão 20. Água de um reservatório é usada para girar um moinho de raio R com velocidade angular w constante graças ao jato que flui do orifício de área S situado a uma profundidade h do seu nível. Com o jato incidindo perpendicularmente em cada pá, com choque totalmente inelástico, calcule o torque das forças de atrito no eixo do moinho, sendo ρ e g, respectivamente, a massa específica da água e a aceleração da gravidade.

A ()
$$2\rho ghRS$$

B ()
$$\rho R^2 Sw \sqrt{2gh}$$

C ()
$$2\rho ghRS(1-\sqrt{2gh}/wR)$$

$$\mathbf{D} \ (\) \ 2\rho ghRS(1-wR/\sqrt{2gh})$$

E ()
$$\rho R^2 Sw\sqrt{2gh}(1-wR/\sqrt{2gh})$$

As Questões de 21 a 30 devem ser resolvidas no caderno de soluções

Questão 21. Em queda livre a partir do repouso, um imã atravessa longitudinalmente o interior de um tubo de plástico, sem tocar-lhe as paredes, durante um intervalo de tempo Δt . Caso este tubo fosse de metal, o tempo para essa travessia seria maior, igual ou menor que Δt ? Justifique sua resposta.

Questão 22. Suponha que a atmosfera de Vênus seja composta dos gases CO₂, N₂, Ar, Ne e He, em equilíbrio térmico a uma temperatura T = 735 K. a) Determine a razão entre a velocidade quadrática média das moléculas de cada gás e a velocidade de escape nesse planeta. b) Que conclusão pode ser obtida sobre a provável concentração desses gases nessa atmosfera? Obs.: Considere Vênus com o raio igual ao da Terra e a massa igual a 0,810 vezes a desta.

Questão 23. De uma planície horizontal, duas partículas são lançadas de posições opostas perfazendo trajetórias num mesmo plano vertical e se chocando elasticamente no ponto de sua altitude máxima – a mesma para ambas. A primeira partícula é lançada a 30° e aterriza a 90° , também em relação ao solo, a uma distância L de seu lançamento. A segunda é lançada a 60° em relação ao solo. Desprezando a resistência do ar, determine: a) a relação entre as massas das partículas, b) a distância entre os pontos de lançamento e c) a distância horizontal percorrida pela segunda partícula.

Questão 24. Duas cordas de mesmo comprimento, de densidades lineares μ_1 e μ_2 , tendo a primeira o dobro da massa da outra, são interconectadas formando uma corda única afixada em anteparos interdistantes de ℓ . Dois pulsos propagam-se ao mesmo tempo em sentidos opostos nessa corda. Determine o instante e a posição em que os pulsos se encontram sabendo que a corda está submetida a uma tensão T.

Questão 25. Dispondo de até 5 resistências R, monte um circuito no interior da caixa da figura, tal que a) com uma bateria de tensão V entre os terminais AB, um voltímetro entre os terminais CD mede uma diferença de potencial V/2, e b) com essa bateria entre os terminais CD, um amperímetro entre os terminais AB mede uma corrente igual a V/3R.

Questão 26. Mediante um fio inextensível e de peso desprezível, a polia da figura suporta à esquerda uma massa de 60 kg, e à direita, uma massa de 55 kg tendo em cima outra de 5 kg, de formato anelar, estando este conjunto a 1 m acima da massa da esquerda. Num dado instante, por um dispositivo interno, a massa de 5 kg é lançada para cima com velocidade $v=10~{\rm m/s}$, após o que, cai e se choca inelasticamente com a de 55 kg. Determine a altura entre a posição do centro de massa de todo o sistema antes do lançamento e a deste centro logo após o choque.

Questão 27. Em equilíbrio, o tubo emborcado da figura contém mercúrio e ar aprisionado. Com a pressão atmosférica de 760 mm de Hg a uma temperatura de 27°C, a altura da coluna de mercúrio é de 750 mm. Se a pressão atmosférica cai a 740 mm de Hg a uma temperatura de 2°C, a coluna de mercúrio é de 735 mm. Determine o comprimento ℓ aparente do tubo.

Questão 28. Deseja-se aquecer uma sala usando uma máquina térmica de potência P operando conforme o ciclo de Carnot, tendo como fonte de calor o ambiente externo à temperatura T_1 . A troca de calor através das paredes se dá a uma taxa $\kappa(T_2 - T_1)$, em que T_2 é a temperatura da sala num dado instante e κ , uma constante com unidade em J/s.K. Pedem-se: a) A temperatura final de equilíbrio da sala. b) A nova temperatura de equilíbrio caso se troque a máquina térmica por um resistor dissipando a mesma potência P. c) Entre tais equipamentos, indique qual o mais adequado em termos de consumo de energia. Justifique.

Questão 29. Num ponto de coordenadas (0,0,0) atua na direção x um campo de indução magnética com 2×10^{-5} T de intensidade. No espaço em torno deste ponto coloca-se um fio retilíneo, onde flui uma corrente de 5 A, acarretando nesse ponto um campo de indução magnética resultante de $2\sqrt{3} \times 10^{-5}$ T na direção y. Determine o lugar geométrico dos pontos de intersecção do fio com o plano xy.

Questão 30. A figura mostra uma lente semiesférica no ar de raio $R = \sqrt{3}/2$ m com índice de refração $n = \sqrt{3}$. Um feixe de luz paralelo incide na superfície plana, formando um ângulo de 60° em relação a x. a) Indique se há raio refratado saindo da lente paralelamente aos incidentes. b) Se houver, ele incide a que distância do centro da lente? c) Para quais ângulos θ será iluminado o anteparo esférico de raio 2R de mesmo centro da lente?

