Fourth Worksheet, MATH 7233

September 29, 2021

Definition (Chromatic number). Let G(V, E) be a graph, and S be a finite set. A function $c: V \to S$ is a proper coloring if for all edges $xy \in E$ one has $c(x) \neq c(y)$. The set S is usually called the set of colors.

The chromatic number of G, denoted $\chi(G)$, is the smallest integer k such that there is a proper coloring $c: V \to S$ with |S| = k.

- * 1. Compute $\chi(K_n), \chi(C_n), \chi(S_n)$. What can we say about $\chi(T)$ is T is a tree?
 - 2. Show that in the graph connectedness game, if the answering person plays according to the "Evil Elf' strategy, the game will not end in fewer than n(n-1)/2 questions.
 - 3. Let G be a graph without isolated nodes. Show that G has an Euler tour if and only if it is connected and all its degrees are even.
 - 4. Let G(V, E) be a graph. We define it's Laplace matrix $L = L_G := D_G A_G$, where D_G is the diagonal matrix containing the degrees. Let $f: V \to \mathbb{R}$ be a function, also considered as a vector in \mathbb{R}^V .
 - (a) Show that

$$\sum_{i \in V} \deg(i) f(i)^2 - \sum_{i} \sum_{j \sim v} f(i) f(j) = f^T L f = \sum_{(ij) \in E} (f(i) - f(j))^2$$

(b) Let us say that f is nice if

$$f(v) = \frac{1}{\deg(v)} \sum_{w \sim v} f(w),$$

that is, if the value of the function at any node is equal to the average of the values of its neighbors. Describe all nice functions on a graph!

5. Let G be a tournament (aka complete graph with all edges oriented). We say a node $x \in V(G)$ is a *pseudo champion* if for any $y \neq x$ there is an oriented path of length 1 or 2 from x to y. (In tournament language x beat y or x beat some z who beat y.)

Prove that any tournament has a pseudo champion!

- 6. Let $k \geq 3$. Clearly, if a graph has K_k as a subgraph, then $\chi(G) \geq k$. Show an example of a graph for each k that does not contain K_k as a subgraph, yet $\chi(G) = k$. (Hint: start with k = 3.)
- 7. Show that if a simple graph has no triangles, then $e \leq n^2/4$. (Hint: count cherries!)
- 8. Let G be a graph on 9 vertices. Show that either G contains a triangle, or G^c contains a K_4 subgraph.