本科生《计算机视觉》 基于深度学习的视觉理解与生成 第四节分割

黄雷

人工智能研究院

huangleiAl@buaa.edu.cn

2023年10月19日

主要内容

- 深度学习基础
 - -神经网络及反向传播算法
 - 卷积神经网络中的视觉表示思想
- 视觉理解任务
 - 目标检测
 - 分割
- 视觉生成
 - 深度生成模型
 - 图像翻译任务详解
- 深度神经网络训练技巧

Segmentation

Semantic Segmentation

Instance Segmentation

Panoptic Segmentation

outline

- Semantic Segmentation
- Instance Segmentation
- Panoptic Segmentation
- Prompt based Segmentation
- Image Translation---Dense prediction

Semantic Segmentation

object classes	building	grass	tree	cow	sheep	sky	airplane	water	face	car
bicycle	flower	sign	bird	book	chair	road	Cat	dog	body	boat

The Task

Evaluation metric

- Pixel classification!
- Accuracy?
 - Heavily unbalanced
 - Common classes are overemphasized
- Intersection over Union
 - Average across classes and images
- Per-class accuracy
 - Compute accuracy for every class and then average

Things vs Stuff

THINGS

- Person, cat, horse, etc
- Constrained shape
- Individual instances with separate identity
- May need to look at objects

STUFF

- Road, grass, sky etc
- Amorphous, no shape
- No notion of instances
- Can be done at pixel level
- "texture"

Challenges in data collection

- Precise localization is hard to annotate
- Annotating every pixel leads to heavy tails
- Common solution: annotate few classes (often things), mark rest as "Other"
- Common datasets: PASCAL VOC 2012 (~1500 images, 20 categories), COCO (~100k images, 20 categories)

Simple Routine

Another Routine

Run "fully convolutional" network to get all pixels at once

Noh et al Learning Deconvolution Network for Semantic Segmentation, ICCV 2015

Typical 3 x 3 convolution, stride 2 pad 1

3 x 3 "deconvolution", stride 2 pad 1

- Pass image through convolution and subsampling layers
- Final convolution with #classes outputs
- Get scores for subsampled image
- Upsample back to original size

outline

- Semantic Segmentation
- Instance Segmentation
- Panoptic Segmentation
- Prompt based Segmentation
- Image Translation---Dense prediction

Instance Segmentation

Instance Segmentation

Instance Segmentation

Top-Down

Object Detection+ mask prediction

Instance Segmentation

Top-Down

Region Proposal + Semantic segmentation

Bottom Up

Semantic segmentation + Group

Instance Segmentation

outline

- Semantic Segmentation
- Instance Segmentation
- Panoptic Segmentation
- Prompt based Segmentation
- Image Translation---Dense prediction

Panoptic Segmentation

Semantic segmentation + Group

Panoptic Segmentation

outline

- Semantic Segmentation
- Instance Segmentation
- Panoptic Segmentation
- Prompt based Segmentation
- Image Translation---Dense prediction

Segment Anything Model(SAM)

Segment Anything Model(SAM)

Vision Prompter

outline

- Semantic Segmentation
- Instance Segmentation
- Panoptic Segmentation
- Prompt based Segmentation
- Image Translation---Dense prediction

Image-to-image translation problems

Image-to-image translation problems

- Segmentation
- Optical flow estimation
- Depth estimation
- Normal estimation
- Boundary detection
- •

谢谢!

