

Data & Storage Services

CERN / CASTOR Tape Archive (CTA) Motivations and context

2015 Program of work

What is CTA?

- A third party copy engine for tape that provides:
 - A simple interface to tape
 - A tape resource scheduler
- CTA has no disk storage and will not stage files
- Remote storage will provide adequate bandwidth for tape
- CTA does not depend on Oracle
- There will be a separate architecture presentation

Motivations

- Simplicity
- Profit from the evolution of tape access
 - Away from random access
 - Towards bulk archival and retrieval
- Provide EOS with direct access to tape
- All of tape in one place
 - Hardware catalogue, queues, policies, scheduling, ...
 - Global and consistent view
 - No scheduling decisions based on partial information
 - Simple and powerful platform for future improvements
 - Self-contained unit within the DSS toolbox

CTA architecture

Problem dimensions

- Peak performance of CASTOR tape sustained over 2 months
 - 83 million files, 25 PetaBytes per month
 - Average file size = 300 MegaBytes
 - Average user request rate = 34 Hz
 - Peak user request rate = 70 Hz
- Current data rate of CASTOR is ≈ 5 times less than peak
 - 6 PetaBytes per month
- Target user request rate
 - 350 Hz average
 - 700 Hz peak

CASTOR and CTA

- CTA will run alongside the current CASTOR
- Share tape file metadata (CASTOR nsd)

- No need to migrate the actual tape files
- Several options for co-existence

Questions for DSS

Namespaces?

Data movers and garbage collectors?

Namespaces?

- A technical meeting is being organized
- Which technology?
 - EOS mgm
 - CASTOR nsd
 - Something else?
- How many?
 - One super namespace for multiple tiers of storage
 - Many EOS and one archive
 - Many EOS and many archive
- What is the recovery strategy?

Data movers and garbage collectors?

- What do we have?
 - HSM CASTOR
 - Automatic recall Is anybody asking for this?
 - Automatic archive
 - Automatic garbage collection
 - Assisted EOS archiver
 - Driven by power users
 - An archive is a namespace tree within EOS
 - Users can freeze, archive, purge and retrieve archives
 - You're on your own ATLAS and CMS
 - Third party copies between EOS and CASTOR
- What are we missing?
 - Automatic archive from EOS to CASTOR / CTA

Reserve slides

Reserve slides beyond this point

CASTOR tape server

- It is a TCP/IP server with respect to receiving mount commands from the CASTOR drive scheduler (VDQM)
- It is a TCP/IP client with respect to the CASTOR stagers from where it gets the lists of files to be transferred
- It is a TCP/IP client with respect to the remote file systems with which it transfers the contents of files to and from memory.
- Runs on a standard PC connected to a tape drive and the tape library in which the drive is installed
- Controls the mounting, loading, positioning, unloading and un-mounting of the tape even in the event of hardware and software failures
- Transfers data from remote file systems to memory to tape and vice versa. Memory is used to smooth bursty disks transfers and to parallelise slow disk transfers
- Memory is used to map the multi-stream approach of disk with the sequential one file after another format of tape

Tape scheduling

- Storing the physical layout and capabilities of the tape hardware
 - Which tapes and drives are located in which libraries
 - Which tapes are compatible with which drives
- Keeping track of the current status of the tape drives
 - FREE or BUSY
- Queuing user requests
- Mapping tapes to user tape pools
- Routing user files to user tape pools
- Limiting the number of tape mounts
 - Reduce inefficiency due to costly mounts/un-mounts
 - Reduce ware and tare on the tape hardware

Possible CASTOR improvements

- Merge the tape drive scheduler and tape catalogue daemons
 - One daemon instead of two
 - A single tape resource database
 - Move all drive scheduler and tape catalogue logic to PL/SQL procedures
 - Queues and prioritise tape write requests based on tape pools as opposed to tapes
 - Atomically schedule of tapes and drives when writing to tape
 - Heartbeat mechanism to identify unreachable tape servers and automatically stop scheduling them
 - Pre-emptive scheduling to enable true background repack and tape verification activities
 - Support libraries that contain drives with asymmetric read/write capabilities
 - Replace CUPV for tape authorisation requirements
- The stager/tapegateway should no longer control the fseq of individual write requests
 - The tape server should simply report where files have been written (VID + fseq + block ID)