

DPP – 5 (Kinematics)

Video Solut	ion on Website:-	https://physicsaholics.com/home/courseDetails/41			
Video Solutio	on on YouTube:-	https://youtu.be/kClwa-XyH2I			
Vritten Solut	ion on Website:-	https://physicsaholics.com/note/notesDetalis/85			
v		al velocity u at some angle θ has a range R. If the initial me angle of projection, then the range will be: (b) $R/2$			
	c) R	(d) 4R			
h (,		nitial velocity of 100m/s at an angle of 30° above the he throwing point will the ball attain its original level? (b) 486 m			
•	c) 866 m	(d) 746 m			
W	hich he can throw it, will b				
•	a) h/2 c) 2h	(b) h (d) 3h			
p (2	The range of a projectile for rojection is 45° . The range a) 90° c) 60°	r a given initial velocity is maximum when the angle of will be minimum, if the angle of projection is: (b) 180 ⁰ (d) 75 ⁰			
Q 5. A	A stone is projected from the ground with velocity 25 m/s. Two seconds later, it just clears a wall 5 m high. The angle of projection of the stone is: $(g = 10 \text{ m/s}^2)$				
	(a) 30 ⁰ (c) 50.2 ⁰	(b) 45 ⁰ (d) 60 ⁰			
(-		es of projection of a projectile at angles $(45^0 + \theta)$ and ranges described by the projectile are in the ratio of:			
•	a) 2:1 c) 1:1	(b) 1:2 (d) 2:3			
Q 7. T	The equation of trajectory	of a projectile is $y = 10x - \left(\frac{5}{9}\right)x^2$ If we assume $g =$			
	$0 m/s^2$, the range of projection				
	a) 36	(b) 18			
(, · -	\-\ \ -\ \ -			

hysicsaholics

(c) 24

(d) 9

A projectile can have the same range R for, two angles of projection at a given speed. If T_1 and T_2 be the times of flight in two cases, then find out relation between T_1 , T_2

(a)
$$R = T_1 T_2 \frac{g}{2}$$

(b)
$$R = T_1 T_2 \frac{2}{a}$$

(c)
$$T_1T_2 = \frac{R}{g}$$

(b)
$$R = T_1 T_2 \frac{2}{g}$$

(d) $R = \frac{T_1 T_2}{g}$

- A body is projected with initial velocity of $(8\hat{i} + 6\hat{j}) m/s$. The horizontal range is? Q9. $(g = 9.8 \, m/s^2)$
 - (a) 9.6 m

(c) $50 \, m$

- (b) 14 *m* (d) 19.2 *m*
- Q 10. If time of flight of a projectile is 10 seconds. Range is 500 m. The maximum height attained by it will be:
 - (a) 50 m

(b) 100 m

(c) 125 m

- (d) 150 m
- Q 11. An aeroplane is flying horizontally with a velocity of 600 km/h at a height of 1960 m. When it is vertically above of a point A on the ground, a bomb is released from it. The bomb strikes the ground at point B. The distance AB is:
 - (a) 1200 m

(b) $0.33 \, km$

(c) $3.33 \, km$

(d) 33 km

Answer Key

Q.1) d	Q.2) c	Q.3) c	Q.4) a	Q.5) a
Q.6) c	Q.7) b	Q.8) a	Q.9) a	Q.10) c
Q.11) c		•	•	