Machine Learning: Homework #4

Due on November 20, 2017 at 09:59am

 $Professor\ Dr.\ Stephan\ Guennemann$

Marc Meissner - 03691673

Problem 1

Load the notebook 04_homework_linear_regression.ipynb from Piazza. Fill in the missing code and run the notebook. Convert the evaluated notebook to pdf and add it to the printout of your homework.

Solution

PDF added to the end of homework.

Problem 2

Let's assume we have a dataset where each datapoint, (x_i, y_i) is weighted by a scalar factor which we will call t_i . We will assume that $t_i > 0$ for all i. This makes the sum of squares error function look like the following:

$$E_{\text{weighted}}(w) = \frac{1}{2} \sum_{i=1}^{N} t_i [w^T \Phi(x_i) - y_i]^2$$

Find the equation for the value of w that minimizes this error function. Furthermore, explain how this weighting factor, t_i , can be interpreted in terms of

- 1) the variance of the noise on the data and
- 2) data points for which there are exact copies in the dataset.

Solution

Writing the equation above in matrix form and setting the derivative to zero:

$$E_{\text{weighted}}(W) = \frac{1}{2}(Y - \Phi W)^T T(Y - \Phi W)$$

$$\begin{split} 0 &= \frac{\partial}{\partial w} \frac{1}{2} (Y^T - W^T \Phi^T) T (Y - \Phi W) \\ &= \frac{\partial}{\partial w} \frac{1}{2} (Y^T T Y - Y^T T \Phi W - W^T \Phi^T T Y + W^T \Phi^T T \Phi W) \\ &= \frac{\partial}{\partial w} \frac{1}{2} (-2 Y^T T \Phi W + W^T \Phi^T T \Phi W) \\ &= -Y^T T \Phi + \frac{1}{2} (\Phi^T T \Phi + (\Phi^T T \Phi)^T) W \end{split}$$

$$W = (\Phi^T T \Phi)^{-1} \Phi^T T Y$$

 t_i can be interpreted in two ways:

- 1) The higher t_i , the more trust we put into the data point (x_i, y_i) . Therefore, it can be seen as an inverse variance parameter that models the uncertainty of individual data points.
- 2) Imagine $t_i = 2$ for a certain i. The result of the error function would be the same as if we had the i'th data point twice. Consequently, t_i can be seen as the number of identical copies of the i'th data point.

Problem 3

Show that the following holds: The ridge regression estimates can be obtained by ordinary least squares regression on an augmented dataset: Augment the design matrix $\Phi \in \mathbb{R}^{NxM}$ with M additional rows $\sqrt{\lambda}I_{MxM}$ and augment y with M zeros.

Solution

$$E_{\text{normal}}(w) = \frac{1}{2}(\Phi w - y)^T(\Phi w - y)$$

With augmented matrices:

$$= \frac{1}{2} \begin{bmatrix} \left(\frac{\Phi}{\sqrt{\lambda}}\right) & w - \left(\frac{y}{0}\right) \end{bmatrix}^{T} \begin{bmatrix} \left(\frac{\Phi}{\sqrt{\lambda}}\right) & w - \left(\frac{y}{0}\right) \end{bmatrix}^{T} \\ = \frac{1}{2} \begin{bmatrix} \left(\frac{\Phi w - y}{\sqrt{\lambda}w}\right) \end{bmatrix}^{T} \begin{bmatrix} \left(\frac{\Phi w - y}{\sqrt{\lambda}w}\right) \end{bmatrix} \\ = \frac{1}{2} \left[\left((\Phi w - y)^{T} | (\sqrt{\lambda}w)^{T}\right) \right] \begin{bmatrix} \left(\frac{\Phi w - y}{\sqrt{\lambda}w}\right) \end{bmatrix} \\ = \frac{1}{2} \left[(\Phi w - y)^{T} (\Phi w - y) + (\sqrt{\lambda}w)^{T} (\sqrt{\lambda}w) \right] \\ = \frac{1}{2} \left[(\Phi w - y)^{T} (\Phi w - y) + \lambda w^{T} w \right] \\ = E_{\text{ridge}}(W)$$

Problem 4

It turns out that the conjugate prior for the situation when we have an unknown mean and unknown precision is a normal-gamma distribution (See section 2.3.6 in Bishop). This is also true when we have a conditional Gaussian distribution of the linear regression model. This means that if our likelihood is as follows:

$$p(y|\Phi, w, \beta) = \prod_{i=1}^{N} \mathcal{N}(y_i|w^T \Phi(x_i), \beta^{-1})$$

Then the conjugate prior for both w and β is

$$p(w,\beta) = \mathcal{N}(w|m_0,\beta^{-1}S_0)\operatorname{Gamma}(\beta|a_0,b_0)$$

Show that the posterior distribution takes the same form as the prior, i.e.

$$p(w, \beta|D) = \mathcal{N}(w|m_N, \beta^{-1}S_N) \operatorname{Gamma}(\beta|a_N, b_N)$$

Also be sure to give the expressions for m_N , S_N , a_N , and b_N .

Solution

Solution

04_homework_linear_regression

November 16, 2017

1 Programming assignment 4: Linear regression

1.1 Your task

In this notebook code skeleton for performing linear regression is given. Your task is to complete the functions where required. You are only allowed to use built-in Python functions, as well as any numpy functions. No other libraries / imports are allowed.

1.2 Load and preprocess the data

I this assignment we will work with the Boston Housing Dataset. The data consists of 506 samples. Each sample represents a district in the city of Boston and has 13 features, such as crime rate or taxation level. The regression target is the median house price in the given district (in \$1000's).

More details can be found here: http://lib.stat.cmu.edu/datasets/boston

```
In [3]: X , y = load_boston(return_X_y=True)

# Add a vector of ones to the data matrix to absorb the bias term
# (Recall slide #7 from the lecture)
X = np.hstack([np.ones([X.shape[0], 1]), X])
# From now on, D refers to the number of features in the AUGMENTED dataset (i.e. include
# Split into train and test
test_size = 0.2
X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=test_size)
```

1.3 Task 1: Fit standard linear regression

```
(Augmented) feature matrix.
            y : array, shape [N]
                Regression targets.
            Returns
            _____
            w : array, shape [D]
                Optimal regression coefficients (w[0] is the bias term).
            HHHH
            # TODO
            h1 = np.matmul(np.transpose(X), X)
            h2 = np.linalg.inv(h1)
            w = np.matmul(np.matmul(h2,np.transpose(X)),y)
            return w
1.4 Task 2: Fit ridge regression
In [5]: def fit_ridge(X, y, reg_strength):
            """ Fit ridge regression model to the data.
            Parameters
            _____
            X : array, shape [N, D]
                (Augmented) feature matrix.
            y : array, shape [N]
                Regression targets.
            reg\_strength: float
                L2 regularization strength (denoted by lambda in the lecture)
            Returns
            _____
            w : array, shape [D]
                Optimal regression coefficients (w[0] is the bias term).
            11 11 11
            # TODO
            D = np.size(X, 1)
            w1 = np.linalg.inv(np.matmul(np.transpose(X),X) + reg_strength*np.identity(D))
            w = np.matmul(np.matmul(w1,np.transpose(X)),y)
            return w
```

X : array, shape [N, D]

1.5 Task 3: Generate predictions for new data

```
In [6]: def predict_linear_model(X, w):
            """Generate predictions for the given samples.
            Parameters
            _____
            X : array, shape [N, D]
                (Augmented) feature matrix.
            w : array, shape [D]
                Regression coefficients.
            Returns
            _____
            y\_pred : array, shape [N]
                Predicted regression targets for the input data.
            11 11 11
            # TODO
            y_pred = np.matmul(X,w)
            return y_pred
```

1.6 Task 4: Mean squared error

```
In [7]: def mean_squared_error(y_true, y_pred):
            """Compute mean squared error between true and predicted regression targets.
            Reference: `https://en.wikipedia.org/wiki/Mean_squared_error`
            Parameters
            _____
            y_true : array
                True regression targets.
            y_pred : array
                Predicted regression targets.
            Returns
            _____
            mse : float
                Mean squared error.
            11 11 11
            # TODO
            mse = ((y_true-y_pred) ** 2).mean(axis=None)
            return mse
```

1.7 Compare the two models

The reference implementation produces * MSE for Least squares \approx 23.98 * MSE for Ridge regression \approx 21.05

You results might be slightly (i.e. $\pm 1\%$) different from the reference soultion due to numerical reasons.

```
In [8]: # Load the data
       np.random.seed(1234)
       X , y = load_boston(return_X_y=True)
       X = np.hstack([np.ones([X.shape[0], 1]), X])
        test size = 0.2
        X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=test_size)
        # Ordinary least squares regression
        w_ls = fit_least_squares(X_train, y_train)
        y_pred_ls = predict_linear_model(X_test, w_ls)
        mse_ls = mean_squared_error(y_test, y_pred_ls)
        print('MSE for Least squares = {0}'.format(mse_ls))
        # Ridge regression
        reg_strength = 1
        w_ridge = fit_ridge(X_train, y_train, reg_strength)
        y_pred_ridge = predict_linear_model(X_test, w_ridge)
        mse_ridge = mean_squared_error(y_test, y_pred_ridge)
        print('MSE for Ridge regression = {0}'.format(mse_ridge))
MSE for Least squares = 23.984307611774046
MSE for Ridge regression = 21.051487033771537
```