Rigidity of quadratic Poisson algebras

Nonassociative Online Day December 18, 2023

> Jason Gaddis Miami University

Miami University

My collaborators

This talk is based on work from three papers:

- "Reflection groups and rigidity of quadratic Poisson algebras" (G, Veerapen, Wang)
- "Cancellation and skew cancellation for Poisson algebras" (G, Wang, Yee)
- "The Zariski cancellation problem for Poisson algebras" (G, Wang)

Setup

Let \Bbbk be a field which is algebraically closed and characteristic zero. All algebras are $\Bbbk\text{-algebras}.$

Definition

A Poisson algebra is an associative commutative algebra A equipped with a bracket $\{,\}$ such that

- $(A, \{,\})$ is a Lie algebra and,
- for each $a \in A$, $\{a, -\}$ is a derivation on A.

A Poisson homomorphism $\phi:A\to B$ between Poisson algebras A and B is an algebra homomorphism satisfying

$$\phi(\{a, a'\}_A) = \{\phi(a), \phi(a')\}_B \quad \text{for all } a, a' \in A.$$

A Poisson automorphism is a bijective Poisson homomorphism $A \rightarrow A$.

Shephard-Todd-Chevalley

Recall that a reflection of a polynomial ring is a graded automorphism that fixes a codimension 1 subspace.

Theorem (Shephard-Todd-Chevalley Theorem)

The invariant ring $\mathbb{k}[x_1,\ldots,x_n]^G$ by a finite linear group G is polynomial if and only if G is generated by reflections.

If $A = k[x_1, ..., x_n]$ has Poisson structure, then the invariant ring naturally has Poisson structure. Suppose $a, a' \in A^G$. If g is a Poisson automorphism of A, then

$${a, a'} = {g(a), g(a')} = g({a, a'}),$$

so
$$\{a, a'\} \in A^G$$
.

Question

Let $A = \mathbb{k}[x_1, \dots, x_n]$ be a Poisson algebra. What properties/structures on A are preserved by taking invariants?

Shephard-Todd-Chevalley

Let $A=\Bbbk[x_1,\ldots,x_n]$ be a Poisson algebra and consider the natural grading on A. We say A is quadratic if $\{x_i,x_j\}\in A_2$ for all i,j. A quadratic Poisson polynomial algebra is skew-symmetric if $\{x_i,x_j\}=q_{ij}x_ix_j$ for some scalars q_{ij} (with $q_{ij}=-q_{ji}$) for all i,j.

A $\operatorname{Poisson}$ reflection is simply a reflection that is also a (graded) Poisson automorphism.

Theorem (G, Veerapen, Wang)

Let $A = \mathbb{k}[x_1, \dots, x_n]$ be a skew-symmetric Poisson algebra and let G be a finite subgroup of graded Poisson automorphisms of A. Then A^G has skew-symmetric Poisson structure if and only if G is generated by Poisson reflections.

This is a natural analogue of a theorem for skew polynomial algebras by Kirkman, Kuzamonovich, and Zhang.

If A^G has skew-symmetric Poisson structure, then A^G is a polynomial ring and so by the STC, G is generated by reflections, which are necessarily Poisson reflections. The other direction is harder.

Shephard-Todd-Chevalley

Example

Let $A = \mathbb{k}[x, y]$ with $\{x, y\} = pxy \ (p \neq 0)$. Let g be a Poisson automorphism. Then

$$g(x) = \mu x, g(y) = \nu y$$
 or $g(x) = \mu y, g(y) = \nu x,$

for some scalars $\mu, \nu \in \mathbb{k}^{\times}$. But the second one is impossible since it would give

$$\mu\nu pxy = g(pxy) = g(\{x,y\}) = \{g(x),g(y)\} = \{\mu y,\nu x\} = -\mu\nu pxy.$$

Now if g is a reflection, then either $\mu=1$ or $\nu=1$, and the other is an mth root of unity.

Suppose $\nu=1$. Then the invariant ring is $\Bbbk[x^m,y]$ and the Poisson bracket is

$$\{x^m, y\} = mx^{m-1}\{x, y\} = mpx^m y.$$

So, the invariant ring has skew-symmetric Poisson structure.

Block decomposition

Let $A = \mathbb{k}[x_1, \dots, x_n]$ be a skew-symmetric Poisson algebra such that $\{x_i, x_j\} = q_{ij}x_ix_j$. Set $[n] = \{1, 2, \dots, n\}$.

For $i \in [n]$, the block of i is

$$B_i = \{i' \in [n] : q_{ik} = q_{i'k} \text{ for all } k \in [n]\}.$$

We define an equivalence relation on [n] using blocks $(i \sim j \text{ if and only if } B_i = B_j)$.

Let $W \subset [n]$ be a complete collection of distinct representatives of the relation. The corresponding block decomposition of [n] is

$$[n] = \bigcup_{i \in W} B_i.$$

Block decomposition

Let $A = \mathbb{k}[x_1, \dots, x_n]$ be a skew-symmetric Poisson algebra such that $\{x_i, x_j\} = q_{ij}x_ix_j$.

Let $w \in W$. Let $\operatorname{GrAut}_P^w(A)$ be the subgroup of $\operatorname{GrAut}_P(A)$ consisting of (graded) automorphisms θ satisfying $\theta(x_s) = x_s$ for all $s \notin B_w$, and $\theta(x_s) \in \bigoplus_{i \in B_w} \Bbbk x_i$ for all $s \in B_w$. Every Poisson reflection belongs to $\operatorname{GrAut}_P^w(A)$ for some $w \in W$.

Suppose G is a subgroup of GrAut(A) generated by Poisson reflections. Set

$$G_w = G \cap \operatorname{GrAut}_P^w(A).$$

Each generator of G belongs to some G_w , each G_w is generated by Poisson reflections, and

$$G=\prod_{w\in W}G_w.$$

Consider w=1 so $B_w=\{1,\ldots,k\}$. Then x_1,\ldots,x_k generate a Poisson subalgebra of A, denoted A_w . We have $A^{G_w}=A^{G_w}_w[x_{k+1},\ldots,x_n]$. By STC, $A^{G_w}_w=\Bbbk[u_1,\ldots,u_k]$ with u_i homogeneous in the x_1,\ldots,x_k . If u_i has degree d_i , then

$$\{u_i,u_j\}=0 \quad \text{and} \quad \{u_i,x_j\}=d_iq_{1j}u_ix_j \text{ for } j>k.$$

Now we use the fact that if $w' \in W$ with $B_{w'} \neq B_w$, then $G_{w'}$ and G_w commute so $G_{w'}$ acts on A^{G_w} .

Example

Let A = k[x, y] with $\{x, y\} = pxy \ (p \neq 0)$.

Let g be a Poisson automorphism defined by $g(x)=\mu x$ and g(y)=y, where μ is a primitive mth root of unity, m>1. The invariant ring is $A^{\langle g\rangle}=\Bbbk[X,Y]$ (where $X=x^m$ and Y=y) with bracket $\{X,Y\}=mpXY$.

Then $A \ncong A^{\langle g \rangle}$, which can be shown easily using the following theorem:

Theorem (G, Wang)

Let A and B be two connected graded Poisson algebras finitely generated in degree one. If $A \cong B$ as (ungraded) Poisson algebras, then $A \cong B$ as graded Poisson algebras.

The predecessor to this theorem is a result for associative algebras by Bell and Zhang.

Conjecture

Let $A = \mathbb{k}[x_1, \dots, x_n]$ be a skew-symmetric Poisson algebra and G a finite subgroup of $GrAut_P(A)$. Then $A^G \cong A$ implies G is trivial.

Definition

Let A be a (graded) Poisson algebra and let G be a finite subgroup of the (graded) Poisson automorphisms of A. We say A is (graded) rigid if $A^G \cong A$ as Poisson algebras implies that G is trivial.

We have several additional examples of rigid Poisson algebras.

Example

Let $\mathfrak g$ be a finite-dimensional Lie algebra. There is a natural Poisson structure on $S(\mathfrak g)$ obtained by setting

$$\{x,y\} = [x,y]$$
 for all $x,y \in \mathfrak{g}$.

We call this the Kostant-Kirillov bracket. This is not a quadratic structure, but we can homogenize by introducing a Poisson central element variable t (so the associative structure is $S(\mathfrak{g})[t]$) with relations

$$\{x,y\} = [x,y]t$$
 for all $x,y \in \mathfrak{g}$.

If $\mathfrak g$ has no 1-dimensional Lie ideal, then this homogenized algebra is graded rigid.

Let M_n denote the ring of $n \times n$ matrices for some $n \ge 2$. The Poisson bracket on the polynomial ring $\mathcal{O}(M_n) = \mathbb{k}[x_{ij}]_{1 \le i,j \le n}$ is given by

$$\{x_{im}, x_{j\ell}\} = 0, \quad \{x_{i\ell}, x_{im}\} = x_{i\ell}x_{im}, \quad \{x_{i\ell}, x_{j\ell}\} = x_{i\ell}x_{j\ell}, \quad \{x_{i\ell}, x_{jm}\} = 2x_{im}x_{j\ell}$$

with i < j and $\ell < m$. This Poisson bracket can be realized as the semiclassical limit of the family of $n \times n$ quantum matrices $\{\mathcal{O}_q(M_n)\}$ for $q \in \mathbb{k}^\times$.

When n > 2, one can show that the Poisson algebra $\mathcal{O}(M_n)$ has no Poisson reflections.

In the case n=2, the Poisson reflections are certain scalar automorphisms and one can compute the invariant ring directly and show that the invariant ring is not isomorphic to $\mathcal{O}(M_n)$.

Hence, for all n, $\mathcal{O}(M_n)$ is graded rigid.

Consider the *n*th Weyl Poisson algebra $\mathcal{P}_n = \Bbbk[x_1,\ldots,x_n,y_1,\ldots,y_n]$ with Poisson bracket

$$\{x_i, y_j\} = \delta_{ij}, \qquad \{x_i, x_j\} = \{y_i, y_j\} = 0.$$

(This is \mathbb{Z} -graded but not \mathbb{N} -graded.)

The Weyl Poisson algebra \mathcal{P}_n is rigid by a result of Tikaradze.

Consider the homogenized Weyl Poisson algebra $\mathcal{H}_n = \mathbb{k}[x_1,\dots,x_n,y_1,\dots,y_n,z]$ with Poisson bracket

$$\{x_i, y_j\} = \delta_{ij}z^2, \qquad \{x_i, x_j\} = \{y_i, y_j\} = \{z, -\} = 0.$$

Again, one can compute the Poisson reflections of \mathcal{H}_n directly. In this case, the only nontrivial Poisson reflection groups are given by $G = \langle g \rangle$ for some order 2 automorphism g. In this case, $\mathcal{H}_n^G \ncong \mathcal{H}_n$, so \mathcal{H}_n is graded rigid.

Unimodular Poisson algebras

Let $A = \mathbb{k}[x_1, \dots, x_n]$ be a Poisson algebra with bracket $\{-, -\}$. The modular derivation of A is given by

$$\phi_{\eta}(f) := \sum_{j=1}^{n} \frac{\partial \{f, x_{j}\}}{\partial x_{j}}$$
 for all $f \in A$.

We say A is unimodular if $\phi_{\eta} = 0$.

The unimodularity condition is closely connected with the Calabi–Yau condition for associative algebras. In particular, A is unimodular if and only if its Poisson enveloping algebra U(A) is Calabi–Yau.

Let A = k[x, y] be a Poisson algebra. Then A is unimodular if and only if A is the Weyl Poisson algebra.

Let $A = \mathbb{k}[x, y, z]$ be a Poisson algebra. Then A is unimodular if and only if there exists a nonzero $f \in A$ (called the potential) such that the bracket is given by

$$\{x,y\} = \frac{\partial}{\partial z}f, \quad \{y,z\} = \frac{\partial}{\partial x}f, \quad \{z,x\} = \frac{\partial}{\partial y}f.$$

Unimodular Poisson algebras

Let A = k[x, y, z] be a Poisson algebra with potential

$$f_{p,q} := \frac{p}{3}(x^3 + y^3 + z^3) + qxyz, \quad p, q \in \mathbb{k}.$$

Generically, A has no Poisson reflections and is then trivially graded rigid.

If A has Poisson reflections, then A is Poisson isomorphic to a Poisson algebra with potential $f_{0,q}$. In this case, A has skew-symmetric structure and we can compute the invariant ring by Poisson reflections explicitly. Again, we obtain $A^G \cong A$ implies G is trivial, so A is graded rigid.

Theorem (Chengyuan Ma)

Let $A = \mathbb{k}[x_1, x_2, x_3]$ be a unimodular quadratic Poisson algebra and let G be a finite subgroup of Poisson automorphisms. Then A is a graded rigid.

Zariski cancellation

The Zariski Cancellation Problem

Let Y be an affine variety. Does an isomorphism $Y \times \mathbb{A}^1 \cong \mathbb{A}^{n+1}$ imply an isomorphism $Y \cong \mathbb{A}^n$?

Generalizations

Zariski cancellation

Now we consider a different type of rigidity.

Definition

An algebra A is cancellative if an isomorphism $A[x] \cong B[x]$ implies $A \cong B$ for any algebra B.

Cancellation Question

Under what conditions is an algebra A cancellative?

Example

- (1) The polynomial rings $\mathbb{k}[x]$ and $\mathbb{k}[x,y]$ are cancellative over any field. (Abhynankar, Eakin, Heinzer) (Fujita) (Russell) (Crachiola, Makar-Limanov) (Bhatwadekar, Gupta)
- (2) The polynomial ring $\mathbb{k}[x,y,z]$ is **not** cancellative for a field \mathbb{k} of positive characteristic. (Asanuma) (Gupta)

The question in the case of zero characteristic is still open.

Noncommutative Zariski cancellation

Bell and Zhang initiated a study of the Zariski cancellation problem in the noncommutative setting.

Example

The following are cancellative assuming the algebra is affine.

- (1) Noncommutative domains of Gelfand-Kirillov (GK) dimension two. (Bell, Zhang)
- (2) Domains of GK dimension one over k. (Bell, Hamidizadeh, Huang, Venegas)
- (3) Path algebras of finite quivers. (Lezama, Wang, Zhang)
- (4) Noetherian prime algebras of GK dimension three that are not PI. (Tang, Venegas, Zhang)

Poisson Zariski cancellation

Poisson Cancellation Question

Under what conditions is a Poisson algebra A Poisson cancellative?

Many of the results for noncommutative algebras have analogues in the Poisson setting. However, there is no formal mechanism to translate between the two.

Theorem (G, Wang)

Let A be a Poisson algebra with trivial Poisson center. Then A is Poisson cancellative.

Proof.

Suppose $\phi:A[t]\to B[t]$ is a Poisson algebra isomorphism for some Poisson algebra B. Since $\mathcal{Z}_P(A)=\Bbbk$, then $\mathcal{Z}_P(A[t])=\Bbbk[t]$ and $\mathcal{Z}_P(B[t])=\mathcal{Z}_P(B)[t]$. But ϕ restricts to an isomorphism of Poisson centers so $\Bbbk[t]\cong\mathcal{Z}_P(B)[t]$. Thus, $\mathcal{Z}_P(B)$ is a domain with $\mathrm{Kdim}\mathcal{Z}_P(B)=0$. It follows that $\mathcal{Z}_P(B)$ is a field, so $\mathcal{Z}_P(B)=\Bbbk$. Now if I=(t) in A, then ϕ maps I to $\phi(I)$ and so

$$A \cong A[t]/I \cong B[t]/\phi(I) \cong B$$

(Actually more is true: A is universally Poisson cancellative.)

Poisson discriminants

Goal

Show that quadratic Poisson algebras on $\Bbbk[x,y,z]$ with nontrivial bracket are cancellative.

Lemma

If A is an affine Poisson domain with nontrivial bracket and $\operatorname{Kdim} A = 3$, then $\operatorname{Kdim} \mathcal{Z}_P(A) \leq 1$. If in addition, $\mathcal{Z}_P(A)$ is connected graded and $\mathcal{Z}_P(A) \not\cong \mathbb{k}[t]$, then A is Poisson cancellative.

A consequence of this lemma is that we need only consider the case $\mathcal{Z}_P(A) = \mathbb{k}[t]$.

Definition

For a property \mathcal{P} , the \mathcal{P} -discriminant ideal of A, denoted $I_{\mathcal{P}}(A)$ is the intersection of all $\mathfrak{m} \in \mathsf{Maxspec}(\mathcal{Z}_{\mathcal{P}}(A))$ such that $A/\mathfrak{m}A$ does not have property \mathcal{P} .

In the special case such that $I_{\mathcal{P}}(A)=(d)$ is a principal ideal of $\mathcal{Z}_{\mathcal{P}}(A)$, we call d the \mathcal{P} -discriminant of A.

When $\mathcal{Z}_P(A)$ is a domain, the \mathcal{P} -discriminant is unique up to a unit of $\mathcal{Z}_P(A)$.

Poisson discriminants

Lemma

Let A be a noetherian connected graded Poisson domain that is generated in degree 1. Assume $\mathcal{Z}_P(A) = \Bbbk[t]$ for some homogeneous element $t \in A$ of positive degree. Then A is Poisson cancellative in either of the following cases:

- (1) The $\mathcal P$ -Poisson discriminant is t for some property $\mathcal P$ of A.
- (2) We have $\operatorname{gldim} A/(t)=\infty$ and $\operatorname{either} \operatorname{gldim} A/(t-1)<\infty$ or $\operatorname{gldim} A<\infty$.

We may now assume $\mathcal{Z}_P(A) = \mathbb{k}[t]$ and $gldim A/(t) < \infty$, so $A = \mathbb{k}[x, y, t]$ with $t \in \mathcal{Z}_P(A)$ and $\{x, y\} = f \in A_2$.

Some Poisson classification problems

Theorem (G, Wang, Yee)

(I) Let $A = \mathbb{k}[x, y]$ be a Poisson algebra such that $\{x, y\} = f$ with $f \in A_{\leq 2}$. Then up to a change of variables, the possibilities for f are

(1)
$$f = 0$$
, (4a) $f = x^2$, (5a) $f = \lambda xy$ with $\lambda \in \mathbb{k}^{\times}$,

(2)
$$f = 1$$
, (4b) $f = x^2 + 1$, (5b) $f = \lambda xy + 1$ with $\lambda \in \mathbb{k}^{\times}$.

(3) f = x,

Moreover, the Poisson algebras determined by f above are pairwisely nonisomorphic with the exception of replacing λ by $-\lambda$ in (5a) and (5b).

- (II) Let $A = \mathbb{k}[x, y, t]$ be an \mathbb{N} -graded Poisson algebra with t Poisson central and $\{x, y\} = f \in A_2$. Then up to a change of variables, the possibilities for f are
- (1) f = 0, (4a) $f = x^2$, (5a) $f = \lambda xy$ with $\lambda \in \mathbb{k}^{\times}$,
- (2) $f = t^2$, (4b) $f = x^2 + t^2$, (5b) $f = \lambda xy + t^2$ with $\lambda \in \mathbb{k}^{\times}$.
- (3) f = xt, $(4c) f = x^2 + yt$,

Moreover, the Poisson algebras determined by f above are pairwisely nonisomorphic with the exception of replacing λ by $-\lambda$ in (5a) and (5b).

Poisson cancellation

We now consider the cases (2)-(5) from part (II) of the previous theorem. Set

$$\mathfrak{m}_{\alpha} = (t - \alpha) \in \mathsf{Maxspec}(\mathcal{Z}_P(A)).$$

In cases (2,3,4b), we find a property \mathcal{P} such that the \mathcal{P} -discriminant is t.

- (2) $f=t^2$. Let $\mathcal P$ be the property that $A/\mathfrak m_\alpha A$ is Poisson simple.
- (3) f = xt. Let \mathcal{P} be the property that $A/\mathfrak{m}_{\alpha}A$ does not have trivial Poisson bracket.
- (4b) $f = x^2 + t^2$. Let \mathcal{P} be the property that $A/\mathfrak{m}_{\alpha}A$ is not isomorphic to A/\mathfrak{m}_0A .

We handle case (4a) differently.

(4a) $f=x^2$. In this case, $A\cong A'\otimes \Bbbk[t]$ where $A'=\Bbbk[x,y]$ with Poisson bracket $\{x,y\}=x^2$. Since A' is cancellative and $\Bbbk[t]$ is cancellative, then A is Poisson cancellative.

Cases (4c) and (5b) are similar to (4b), while (5a) is similar to (4a).

Theorem (G, Wang, Yee)

Let A be a quadratic polynomial Poisson algebra on k[x, y, z] with nontrivial bracket, then A is Poisson cancellative.

Poisson cancellation

We are able to show some additional families of Poisson algebras are Poisson cancellative:

- A is a noetherian connected graded Poisson domain generated in degree 1 and a graded isolated singularity with Kdim $\mathcal{Z}_P(A) \leq 1$.
- ullet The dth Veronese algebra $A^{(d)},\ d\geq 1,$ of a quadratic polynomial Poisson algebra on three variables.
- ullet The Poisson algebra $PS(\mathfrak{g})$ with Kostant-Kirillov bracket where \mathfrak{g} is a non-abelian Lie algebra of dimension ≤ 3 .

Thank You!