IP – Internet Protocol

Agenda

- Introdução
- IPv4
- Classes de Endereços
- Endereços inválidos
- Endereços reservados
- Máscara de rede
- Endereço de rede e broadcast
- Exemplos
- Sub máscaras
- Notação CIDR

Introdução

- O IP é o protocolo mais popular e utilizado em todas as redes que compõem a Internet e usam a arquitetura TCP/IP. Esse protocolo permite a existência de uma rede de datagramas baseada no melhor esforço, com entrega não confiável e sem conexão, visando ser minimalista e eficiente.
- Roteadores são usados para repassar os datagramas IP através das redes interconectadas.
- Como vimos, para que haja comunicação no modelo TCP/IP, é necessário que cada máquina seja identificada unicamente. Por isso é necessário que cada dispositivo ligado à rede tenha um endereço próprio, que deve ser único no segmento de rede.
- O endereço IP permite que redes que utilizem este protocolo se comuniquem mesmo se estiverem em redes distintas.
- A atribuição de um endereço IP pode ser realizada de modo estático ou dinâmico, sendo o estático atribuído manualmente, enquanto o dinâmico é adquirido através de DHCP (Dynamic Host Configuration Protocol).
- Veremos nessa aula o IPv4.

Formato do Datagrama IP

32 bits					
Versão	Comprimento do cabeçalho	Tipo de serviço	Comprimento do datagrama (bytes)		
Identificador de 16 bits		Flags	Deslocamento de fragmentação (13 bits)		
Protocolo Tempo de vida da camada superior		Soma de verificação do cabeçalho			
Endereço IP de 32 bits da fonte					
Endereço IP de 32 bits do destino					
Opções (se houver)					
Dados					

Quanto overhead com TCP?

- 20 bytes de TCP (por padrão, mas pode ser mais)
- 20 bytes de IP
- = 40 bytes + overhead da camada de aplicação

Formato do Datagrama IP

- Versão 4 bits que identificam a versão do datagrama IP
- Comprimento do cabeçalho 4 bits, define o tamanho do cabeçalho, que pode ser variável devido ao campo opções. No mínimo são 20 Bytes.
- Tipo de serviço (ToS) 8 bits que podem ser utilizados para diferenciar pacotes, como por ex: datagramas de tempo real.
- Comprimento do datagrama 16 bits que define todo o tamanho do datagrama, incluindo cabeçalho e dados em bytes de oito bits.
- Identificador (16 bits), flags (3 bits), deslocamento de fragmentação (13 bits) Esses três campos têm a ver com a fragmentação do IP.
- Tempo de vida (TTL) 8 bits, o TTL (time to live) é decrescido em cada comutador e quando zera é descartado.
- Protocolo da camada superior 8 bits que identificam o protocolo utilizado. Valores típicos são: ICMP (1), TCP (6) e UDP (17)
- Checksum campo de verificação de erros para o cabeçalho (não dos dados) do datagrama IPv4.
- Endereço de origem/Endereço de destino 32 bits cada um.
- Opções Campos do cabeçalho adicionais opcionais, normalmente não utilizados.

O Endereço IPv4

- É um endereço composto por 32 bits, divididos em 4 grupos de 8 bits.
- Cada grupo é separado por um ponto e representado por 3 caracteres, que representam números decimais de 0 à 255.
- Uma parte do endereço representa a rede em que se encontra e outra o host.
- Exemplo de endereço IP:
 - 172.16.30.5

Classes de endereços IPv4

- Os endereços IP são divididos em classes
 - Classe A: 1.0.0.0 até 127.255.255.255
 - 16.777.216 computadores (máximo de 126 redes);
 - Classe B: 128.0.0.0 até 191.255.255.255
 - 65.536 computadores (máximo de 16.384 redes);
 - Classe C: 192.0.0.0 até 223.255.255.255
 - 256 computadores (máximo de 2.097.150 redes);
 - Classe D: 224.0.0.0 até 239.255.255.255
 - Multicast
 - Classe E: 240.0.0.0 até 247.255.255.254
 - Reservado pela IETF

Classes de endereços IPv4

Endereços Válidos

Classes de endereços IPv4

- Classe A permite poucas redes, mas uma grande quantidade de máquinas nelas. Para isso, o primeiro byte é usado como identificador da rede e os demais servem como identificador dos computadores;
- Classe B permite uma quantidade de redes e computadores intermediária em relação às outras classes. Para isso, usa-se os dois primeiros bytes do endereço IP para identificar a rede e os restantes para identificar os computadores;
- Classe C permite maior quantidade de redes, mas com poucas máquinas em cada uma. Assim, os três primeiros bytes são usados para identificar a rede e o último é utilizado para identificar as máquinas.

Endereços IPv4 inválidos para host

- 0.xxx.xxx.xxx
 - Zero identifica uma rede
- 127.xxx.xxx.xxx
 - 127 utilizado em loopback (própria máquina)
- 255.xxx.xxx.xxx ou xxx.255.255.255:
 - Nenhum identificador de rede ou host pode ser 255, pois é utilizado para broadcasting (envio a todos hosts).
- xxx.0.0.0 ou xxx.xxx.0.0 ou xxx.xxx.xxx.0
 - Nenhum identificador de host pode ser somente 0, pois identifica uma rede

End. reservados RFC 1918, 3030 e 3927

- Se todos os computadores utilizassem endereço IPv4 únicos, os mesmos já teriam se esgotado em poucos anos de uso.
- Por isso a RFC 1918 definiu 3 faixa de endereços privados, que são usados apenas em redes internas e não são válidos para a internet:
 - 192.168.0.0/16 (192.168.0.0 a 19.168.255.255)
 - 172.16.0.0/12 (172.16.0.0 a 172.31.255.255)
 - 10.0.0.0/8 (10.0.00 a 10.255.255.255).
- Posteriormente as RFCs 3330 e 3927 definiram também a faixa: 169.254.0.0/16, chamada Zeroconf, para a configuração de endereço sem o uso de um servidor DHCP.

Outros endereços IPv4 Reservados

0.0.0/8	Rede corrente (só endereço de origem)	RFC 1700
10.0.0.0/8,172.16.0.0/12,192.168.0.0/16	Rede Privada	RFC 1918
14.0.0.0/8	Rede Pública	RFC 1700
39.0.0.0/8	Reservado	RFC 1797
127.0.0.0/8	Localhost	RFC 3330
128.0.0.0/16	Reservado (IANA)	RFC 3330
169.254.0.0/16	Zeroconf	RFC 3927
191.255.0.0/16	Reservado (IANA)	RFC 3330
192.0.2.0/24	Documentação	RFC 3330
192.88.99.0/24	IPv6 para IPv4	RFC 3068
198.18.0.0/15	Teste de benchmark de redes	RFC 2544
223.255.255.0/24	Reservado	RFC 3330
224.0.0.0/4	Multicasts (antiga rede Classe D)	RFC 3171
240.0.0.0/4	Reservado (antiga rede Classe E)	RFC 1700
255.255.255	Broadcast	

NAT – Network Address Translation

 Para que endereços privados acessem a Internet, utiliza-se a NAT (Network Address Translation), que permite uma rede utilizar endereços internos e apenas um válido na Internet.

Tabela de tradução NAT			
Lado da WAN	Lado da LAN		
138.76.29.7, 5001	10.0.0.1, 3345		
2024	0.000		

NAT – Network Address Translation

- Algumas vantagens do uso de NAT:
 - Rede local inteira usa apenas um endereço IP válido, no que se refere ao mundo exterior.
 - Pode mudar os endereços da rede local sem notificar o mundo exterior.
 - Pode mudar de ISP sem alterar os endereços na rede local.
 - Hosts da rede local não são explicitamente endereçáveis ou visíveis pelo mundo exterior (uma questão de segurança).
- Algumas desvantagens:
 - Quebra o paradigma fim a fim
 - Dificulta o funcionamento de aplicações P2P
 - O acesso a hosts internos à partir da internet depende de um redirecionamento

- Sub rede é uma divisão de uma rede de computadores em mais de uma rede. Só é possível um host com endereço em uma sub rede se comunicar com outro host com endereço de outra sub rede utilizando roteamento de camada 3.
- A máscara de rede, ou máscara de sub rede, é uma identificação de 32 bits que permite identificar qual parte do endereço IP se refere ao host e qualquer parte se refere à rede, além dos endereços válidos que compõem aquela sub-rede.
- As máscaras de rede padrão variam de acordo com a classe:

classe A: 255.0.0.0

classe B: 255.255.0.0

classe C: 255.255.255.0

Decimal

255 255 0

Rede Rede Host

Binário

11111111 11111111 11111111 00000000

Rede Rede Host

Endereço de Rede e Broadcast

- O primeiro endereço de uma faixa de IP, identifica a rede
- O último endereço é utilizado para identificar o broadcast.
- Por exemplo: A faixa de endereço 192.168.0.0, com a máscara de rede 255.255.255.0, tem endereços de 192.168.0.0 até 192.168.0.255
 - Endereço de identificação da rede: 192.168.0.0
 - Endereço de broadcast: 192.168.0.255
 - Endereços válidos para host: 192.168.0.1 até 192.168.0.254

Exemplo

Endereço IP 98.158.201.128

Classe do Endereço: Classe A

Parte referente à rede: 98.

Parte referente ao host: 158.201.128

Mascara de sub-rede padrão : 255.0.0.0 (rede.host.host.host)

Exemplos

•	Endereço IP	208.137.106.103
Ex	emplo 1:	
•	Máscara da sub-rede (padrão)	255.255.255.0
•	Parte referente à rede	208.137.106.
•	Parte referente ao host	103
Ex	emplo 2:	
•	Máscara da sub-rede	255.255.0.0
•	Parte referente à rede	208.137.
•	Parte referente ao host	106.103
Ex	emplo 3:	
•	Máscara da sub-rede	255.0.0.0
•	Parte referente à rede	208.
•	Parte referente ao host	137.106.103

Imagine a seguinte situação:

- Você recebeu uma faixa de rede classe C (203.100.151.0) para conectar a sua empresa à Internet, portanto:
 - 203.100.151.0 é o endereço de sua rede na Internet
 - 203.100.151.255 é o endereço de broadcast
 - Do endereço 203.100.151.1 até o 203.100.151.254 é a faixa de endereços para endereçar os hosts. Então há 254 endereços livres para usar.

Mas então surge uma nova necessidade:

 Dividir a rede em segmentos separados para isolar diferentes departamentos.

Com o uso de máscaras de sub rede é possível dividir um octeto em partes, ou seja dividir uma faixa de rede em sub redes. Então, se ao invés de usar 255.255.255.0, for utilizado 255.255.255.192, teríamos:

Decimal: 255 255 192

Binário: 11111111 11111111 11 11 0000000 Rede Rede Rede Rede Host

Assım, teriamos zrz=4 sub redes, cada uma com zro=64 endereços, com 62 válidos para host. Considerando o endereço anterior 203.100.151.0, teríamos:

203.100.151.0/255.255.255.192	sub rede 1	sub rede 2	sub rede 3	sub rede 4
Identificação da rede	203.100.151.0	203.100.151.64	203.100.151.128	203.100.151.192
Primeiro ender. válido p/ host	203.100.151.1	203.100.151.65	203.100.151.129	203.100.151.193
Último ender. válido p/ host	203.100.151.62	203.100.151.126	203.100.151.190	203.100.151.254
Broadcast	203.100.151.63	203.100.151.127	203.100.151.191	203.100.151.255

Considerando IP Classe C					
Máscara Quant. sub redes		Quant. Hosts por sub rede			
255.255.255.128	- 2 sub redes	- 126 hosts			
255.255.255.192	- 4 sub redes	- 62 hosts			
255.255.255.224	- 8 sub redes	- 30 hosts			
255.255.255.240	- 16 sub redes	- 14 hosts			
255.255.255.248	- 32 sub redes	- 6 hosts			
255.255.255.252	- 64 sub redes	- 2 hosts			
255.255.255.254	- 128 sub redes	- 2 hosts - RFC3021			

Decimal	Binário
128	10000000
192	11000000
224	11100000
240	11110000
248	11111000
252	11111100
254	11111110
255	11111111

Obs: a máscara 255.255.255.254 ou /31, definida pela RFC3021 permite a utilização de 2 endereços em redes ponto a ponto, mas depende de equipamentos compatíveis, em geral, um endereço está no nó do ISP enquanto o outro no nó do cliente e não há endereço de broadcast.

203.100.151.0/255.255.255.128	sub rede 1	sub rede 2		
Identificação da rede	203.100.151.0	203.100.151.128		
Broadcast	203.100.151.127	203.100.151.255		
203.100.151.0/255.255.255.192	sub rede 1	sub rede 2	sub rede 3	sub rede 4
Identificação da rede	203.100.151.0	203.100.151.64	203.100.151.128	203.100.151.192
Broadcast	203.100.151.63	203.100.151.127	203.100.151.191	203.100.151.255
203.100.151.0/255.255.255.224	sub rede 1	sub rede 2	sub rede 3	sub rede 4
Identificação da rede	203.100.151.0	203.100.151.32	203.100.151.64	203.100.151.96
Broadcast	203.100.151.31	203.100.151.63	203.100.151.95	203.100.151.127
	sub rede 5	sub rede 6	sub rede 7	sub rede 8
Identificação da rede	203.100.151.128	203.100.151.160	203.100.151.192	203.100.151.224
Broadcast	203.100.151.159	203.100.151.191	203.100.151.223	203.100.151.255
203.100.151.0/255.255.255.240	sub rede 1	sub rede 2	sub rede 3	sub rede 4
Identificação da rede	203.100.151.0	203.100.151.16	203.100.151.32	203.100.151.48
Broadcast	203.100.151.15	203.100.151.31	203.100.151.47	203.100.151.63
	sub rede 5	sub rede 6	sub rede 7	sub rede 8
Identificação da rede	203.100.151.64	203.100.151.80	203.100.151.96	203.100.151.112
Broadcast	203.100.151.79	203.100.151.95	203.100.151.111	203.100.151.127
	sub rede 9	sub rede 10	sub rede 11	sub rede 12
Identificação da rede	203.100.151.128	203.100.151.144	203.100.151.160	203.100.151.176
Broadcast	203.100.151.143	203.100.151.159	203.100.151.175	203.100.151.191
	sub rede 13	sub rede 14	sub rede 15	sub rede 16
Identificação da rede	203.100.151.192	203.100.151.208	203.100.151.224	203.100.151.241
Broadcast	203.100.151.207	203.100.151.223	203.100.151.240	203.100.151.255

CIDR - Classless Inter-Domain Routing

- Notação simplificada que representa o valor da mascara de sub rede, é permite o uso de comprimento variável (VLSM - Variable Length Subnet Masks).
- Elimina o problema das classes fixas e permite alocar blocos de endereços menores e mais próximos da realidade.
- Permite a agregação de prefixos, reduzindo o número de entradas nas tabelas de roteamento, que tinham um crescimento também acelerado.
- Representado por um prefixo referente ao tamanho da máscara da sub-rede. A identificação é apresentada por:
 - /n , onde n é o número de bits 1 da máscara de rede.

Notação CIDR

- **192.168.0.0 /24** se refere a:
 - 192.168.0.0/255.255.255.0, pois contando os 24 bits da Esquerda para Direita, temos:
 - 11111111.11111111.11111111.00000000
- 192.168.0.0 /22 se refere a:
 - 192.168.0.0 255.255.252.0 , pois contando os 22 bits da Esquerda para Direita, temos:
 - 11111111.11111111.11111100.00000000

Bibliografia

- TANEMBAUM, A.S. REDES DE COMPUTADORES
- SCRINGER et al. TCP/IP, a Bíblia.

