Name:	Centre/Index No:
School	Signature

P525/1 CHEMISTRY Paper 1 2 3/4 hours

WAKISSHA

Uganda Advanced Certificate of Education

CHEMISTRY

Paper 1

2 hours 45 minutes

Instructions to Candidates

- Attempt all questions in section A and any six questions from section B.
- All questions are to be answered in the spaces provided.
- A Periodic Table with relevant atomic masses is supplied at the end of the paper.
- Mathematical tables (3 figures) and non-programmable silent scientific calculators may be used.
- Illustrate your answers with equations where applicable.
- Molar gas volume at s.t.p = 22.4 dm^3

	For Examiner's Use Only																
1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	Total

SECTION A (46 MARKS)

Attempt all questions in this section.

1.

(-)	Weite	that	
(a)	Write (i)	equation for the partial dissociation of Calcium phosphate in	water. (01 ma
		7.1	
			4
			(01 mg
	(ii)	expression for the solubility product, Ksp.	(01 ma
	9000 4	1 V = falling phosphoto at 25°C	
(b)		alate the solubility product, Ksp of calcium phosphate at 25°C.	$(2\frac{1}{2} \text{ ma})$
	State	its units.	
(c)	State the s	how the Ksp value in (b) above is affected when Calcium nitraturated solution of calcium phosphate at 25°C.	rate is adde
		the fall	owing pai
com	pounds	reagent that can be used to distinguish between the folls. State what would be observed in each case when a member	r of each p
sepa (a)	rately t	treated with the reagent named. COONa	(02 m
(a)	[((aq) and $CH_3COONa(aq)$	
			a .
	Rea	gent	
	Ohs	servations	
	003	or various	

	(b)	(CH ₃):		and CH_3COCH_3	(02	marks)		
		Obser	vations					
3.	(a)		the formula arium.	ae and state the chemical nat	ure of oxides formed by B	eryllium 2½ marks)		
		El	ement	Formulae of oxide(s)	Chemical nature	e		
		Bery	llium					
		Bari	um					
	(b)	Write (i)	equation(s Beryllium) for the reaction(s) between with sodium hydroxide solu	the oxide(s) of; ution.	(01 mark)		
		(ii)	Barium w	with dilute mineral acids.		(02 marks)		
4.	The liqu	physica id and s	al states of olid respect	chlorine, Bromine and Iod	line at 298K and 760mm	Hg are gas,		
	(a)	State	e reasons wl	hy the physical states vary ar	mong the group VII elemen	nts. (01 mark)		
						19		
	(b)	Writ	te equation((s) for the reaction(s) that take	te place when;	n.		
						(01 mark)		
				•••••				
						Tr. 0		

		(ii)	Iodine is added to dilute potassium hydroxide solution and mixture warmed.	(01 marks)
5.	(a)		blete the following equations for the nuclear reactions.	(½ mark)
		(i)	$ \stackrel{59}{\sim} Co \longrightarrow \stackrel{59}{\sim} Mn + \dots $	(½ mark)
		(ii)	${}_{2}^{4}He + {}_{7}^{14}N \longrightarrow {}_{1}^{1}H + \dots \dots \dots$	921
		(iii)	$^{235}_{92}U + {}^{1}_{0}n \longrightarrow \cdots + {}^{153}_{54}Xe + 3{}^{1}_{0}n$	(½ mark)
	(b)	Identi	ify the type of nuclear reaction that occurs in;	
		(i)	a(i) above.	(½ mark)
		(ii)	a(iii) above.	(½ mark)
	(c)	Calc	ssil was found to contain 0.125g of carbon-14 isotope after 2 ulate the mass of carbon-14 in the living tissue given that the on-14 is 5600 years.	e half-life of (2½ marks)
6.	An o	organic Writ	te the structural formulae and IUPAC names of all possi	(02 marks)
				ncentrated sodium
	(b)	Eachyd (i)	th isomer in (a) above was separately refluxed with controxide solution and the resultant cold mixture tested with Branch State what would be observed in each case.	(02 mark)
		(ii)	isomer with sodium hydroxide.	(02 marks)

	(i)	Define the term weak acid.	(01 mark)
	(ii)	Write an equation to show that butane-1, 4-dioic acid is weak.	(01 mark)
(b)	of sol		
	• • • • • • • • • • • • • • • • • • • •		
	• • • • • • •		
8. (a)		plete the following equations and in each case, write a mechanism eaction.	
	(i)	$\begin{array}{ccc} CH_3CH_2CH_2OH & & \underline{KI/H_3PO_4} \\ & & & \\ & & & \\ \end{array} \rightarrow$	(02 marks)
		,	
		,	
	(ii)	$CH_3COCH_3 \xrightarrow{HCN/\bar{O}H} \rightarrow$	$(2\frac{1}{2} \text{ marks})$
(b)	State	e one reason why H_3PO_4 cannot be replaced by $conc. H_2SO_4$ in (a	(01 mark)

(a) Butane-1, 4-dioic acid is a weak acid.

7.

Propanone reacts with Iodine in acidic medium according to the equation; 9. $\underline{H^+} \rightarrow CH_3COCH_2I + HI$ $CH_3COCH_3(l) + I_2(aq)$ The kinetics of the reaction was examined by measuring the colour intensity of the reaction mixture. Sketch a graph to show how colour intensity varies with time. (01 mark) (i)

Give a reason for your answer in a(i) above. (ii) Briefly outline one other method by which the rate of the reaction in (a) above can (b) (02 marks) be measured. The rate equation for the reaction is given by; (c) Rate = $k[CH_3COCH_3]$ State the effect on the rate of reaction when; concentration of Iodine is doubled while the concentration of propanone (1/2 mark) remains constant. $(\frac{1}{2} \text{ mark})$ temperature is increased. (ii) the concentrations of both Iodine and propanone are doubled. (iii)

(01 mark)

SECTION B (54 MARKS)

Attempt any six questions from this section.

10.	(a)	The p	artition coefficient of solute X between benzene and water at 25°C is 5.0.					
		(i)	State three conditions under which the partition coefficient remains valid at 25°C. (1½ marks)					
		(ii)	Calculate the volume of benzene that extracts 80% of solute X from 50cm ³ of its aqueous solution at 25°C. (2½ marks)					
		(iii)	State one method by which the percentage of solute X extracted in a(ii) above can be increased. (01 mark)					
	(b)	Ions comp	of univalent metal M react with excess aqueous ammonia to form a soluble blex.					
		$M^+(a)$	$M^+(aq) + 2NH_3(aq) \longrightarrow M(NH_3)_2^+(aq)$					
		Shake At eco mold 10cm	n ³ of the aqueous layer required 18.10cm ³ of 0.4M nitric acid for complete					
		neutr	ralization.					
		Calcu (i)	alate the; concentration of free ammonia in the aqueous layer. (2½ marks)					
			· · · · · · · · · · · · · · · · · · ·					
			m 0					

		(11)		(1½ marks)
			· · · · · · · · · · · · · · · · · · ·	
			151 (120)	
11.	(a)	A sat	curated compound R contains 38.710% carbon and 51.613% oxygenerated of R at s.t.p is $2.7662gl^{-1}$.	en.
		(i)	Calculate the empirical formula of R.	(02 marks)
		(ii)	Determine the molecular formula of R.	(02 marks)
		(11)		
	(b)	R re addi	acts with sodium metal to liberate hydrogen gas but gives no effection of sodium carbonate solution.	rvescence on
		(i)	Write the structural formula of R.	(01 mark)
		(ii)	State the reason why R has a higher boiling point than propand	
-				
	(c)		ombines with benzene -1, 4-dicarboxylic acid to form a polymer cylene.	alled
		(i)	State the type of polymerization that leads to the formation	(01mark)
		(::)	Write the structural formula of Terylene.	(01 mark)
		(ii)		

		(iii)	State any one use of Terylene.	(01 mark)
2.			Vanadium and Iron are transition elements which form compou	
	(a)	Calcu	alate the oxidation state of the transition element in each of the	following
			ical species. VO_3^-	(½ mark)
		(ii)	K_2MnO_4	(½ mark)
		(iii)	$Fe(H_2O)_6^{3+}$	(½ mark)
	(b)	State	any two other general properties of transition elements.	(01 mark)
	(c)		idic medium, VO_3^- react according to the half equation. $(aq) + 4H^+(aq) + e^- \longrightarrow VO^{2+}(aq) + 2H_2O(qq)$	l)
		(i)	State what would be observed when the acidified solution of warmed with zinc dust.	VO ₃ is (01 mark)
		(ii)	Write an equation for the redox reaction that occurs in c(i) ab	ove. (1½ marks)
	(d)	State (i)	what would be observed and write an equation for the reaction Sodium hydroxide solution is added to a solution containing ions.	
			Observation	(½ mark)
			Equation	(01 mark)
		(ii)	Hydrogen sulphide gas is bubbled into an aqueous solution of	
			Observation	(01 mark)
			Equation	(1½ mark)
				Turn Ove
			© WAKISSHA	9

			.1.1
13. (a)		contact process, sulphurtrioxide is produced according to the rev	versible
	reaction	$2SO_2(g) + O_2(g) \longrightarrow 2SO_3(g), \Delta H < 0$	
	(i)	. C. dillwinn constant Kc for the re	action. (½ mark)
		1 C 1 law disprise was mixed with 2 males of o	xvgen in a 2
	(ii)	When 1 mole of sulphurdioxide was mixed with 2 moles of or litre vessel and the reaction carried out at 200°C, 1.92 mole remained in the equilibrium mixture. Calculate the variety equilibrium constant, Kc.	es of oxygen
(b)		the effect of each of the following changes on the yield of su a reason for your answer.	lphurtrioxide.
	(i)	increasing the temperature to 350°C.	(01 mark)
	(ii)	absorption of sulphurtrioxide by 98% sulphuric acid.	(01 mark)
(c)	solv	sulphur trioxide obtained is used to prepare sulphuric acid we rent of freezing point 10°C. A solution containing 0.630g of nitriulphuric acid freezes at 8.760°C.	ic acid in 200g
e .	(i)	Calculate the relative formula mass of nitric acid in sulphuric (Cryoscopic constant of sulphuric acid is $6.2^{\circ}\text{C }Kg^{-1}\ mol^{-1}$)	acid. (02 marks)

		(11)	(Theoretical R.F.M of nitric acid = 63.0)	(02 marks)
14.	(a)	State	how each of the following compounds can be prepared.	
		(i)	Lead (IV) oxide.	(1½ marks)
		(::)	T - 1 (IV) - 1 - 1 - 1	
		(ii)	Lead (IV) chloride.	(1½ marks)
			***************************************	•••••
	(b)	Write	e equations for the reaction between;	
	(-)	(i)	Lead (IV) oxide and Manganese (II) sulphate solution in the	presence of
			hot concentrated nitric acid.	(1½ marks)
			······	
		(ii)	Lead (IV) chloride and water	(1½ marks)
	(c)		ssium chromate (VI) solution was added to Lead (II) a wed by excess sodium hydroxide solution.	cetate solution
		(i)	State what was observed.	(01 mark)
		(ii)	Write equation(s) for the reaction(s) that took place.	(02 marks)
15.			on energies of Lithium ions, Rubidium ions and Sulphate ions mol^{-1} respectively.	
	(a)	Wha	t is meant by the term hydration energy?	(01 mark)

	(b)	(i)	Compare the hydration energies of Lithium ions and Rubidium	ions. (01 mark)
		(ii)	Explain your answer in b(i) above.	(02 marks)
	(c)	Calc	ulate the enthalpy of solution of Rubidium sulphate given that the gy of Rubidium sulphate is $-1236 \ kJmol^{-1}$.	e lattice (3½ marks)
	(d)	Stat	e whether Rubidium sulphate is soluble in water or not. Give a rewer.	eason for your (1½ marks)
16.	Wri	te equa	ations to show how the following compounds can be synthesized.	
	(a)	2-h	ydroxyethanoic acid from ethanoic acid.	(03 marks)
	(4)			
	(b)	НС	SO_3H from SO_3H	(3½ marks)

	2-methylpropan-2-ol from propanone.													
The c	conductivity of solution X varies with concentration as shown in the table below													
Con	centration	on (moldm ⁻³)	0.01	0.04	0.09	0.16	0.							
Con	ductivit	$y \Omega^{-1} cm^{-1} \times 10^{-3}$	1.340	4.760	9.360	13.920	17.7							
(a)	What is meant by the term electrolytic conductivity?													
(b)	Plot a graph of molar conductivity against the square root of concentration.													
(0)														
							(05 11							
	From	your graph.					(03 11							
	From (i)	your graph. State whether X is a s	strong or w	eak electro	lyte. Give	a reason fo	or you							
			strong or w	eak electro	lyte. Give	a reason fo	or you							
		State whether X is a sanswer.					or you (01 i							
	(i)	State whether X is a sanswer.					or you (01 i							
		State whether X is a sanswer. Determine the molar	conductivit	ty of X at in	nfinite dilu	ntion.	(01 1							
	(i) (ii)	State whether X is a sanswer. Determine the molar	conductivi	ty of X at in	nfinite dilu	ntion.	(01 1) (1/2 1)							
(c)	(i) (ii) Calcu	State whether X is a sanswer. Determine the molar allate the ratio of X to	conductivit	ty of X at in	nfinite dilu	ntion.	(01 1 (1/2 1) on of							
(c)	(i) (ii) Calcu	State whether X is a sanswer. Determine the molar	conductivit	ty of X at in	nfinite dilu	ntion.	(01 1 (1/2 1) on of							
(c)	(i) (ii) Calcu	State whether X is a sanswer. Determine the molar late the ratio of X to activity $125.4 \Omega^{-1} cm^2$	conductivit	ty of X at in	nfinite dilu	ntion.	(01 1 (1/2 1) on of							
(c)	(i) (ii) Calcu	State whether X is a sanswer. Determine the molar late the ratio of X to activity $125.4 \Omega^{-1} cm^2$ ar conductivity of sodium.	conductivit	ty of X at in loride require $= 109\Omega^{-1}$	nfinite dilu ired to giv	ntion. ve a soluti	(01 1 (1/2 1) on of							
(c)	(i) (ii) Calcu	State whether X is a sanswer. Determine the molar late the ratio of X to activity $125.4 \Omega^{-1} cm^2$ ar conductivity of sodium.	sodium ch	ty of X at in loride require $= 109\Omega^{-1}$	nfinite dilu	ve a soluti	(½) on of (02 n							
(c)	(ii) Calcucondu (Mola	State whether X is a sanswer. Determine the molar late the ratio of X to activity $125.4 \Omega^{-1} cm^2$ ar conductivity of sodium.	sodium ch	ty of X at in loride require = $109\Omega^{-1}$	nfinite dilu	ve a soluti	(½) on of (02 n							

THE PERIODIC TABLE

1	2		~~~~									3	4	5	6	7	8
1 H 1.0													3				2 He 4.0
3 Li 6.9	4 Be 9.0		*			253						5 B 19.8	6 C 12.0	N	8 O 16.0	F	10 Ne 10,2
11 Na 23.0	12 Nig 24.3											13 Al 27.0	14 Si 28.1	15 P 31.0	16 S 32.1	17 Cl 35.4	18 Ar 40.0
19 K 39.1	20 Ca 40.1	21 Sc 45.0	22 Ti 47.9	23 V 50.9	24 Cr 52.0	25 Mn 54.9	26 Fe 55.8	27 Co 58.9	28 Ni 58.7	29 Cn 63.5	30 Zn 65.7	31 Ga 69.7	32 Ge 72.6	33 As 74.9	34 Se 79.0	35 Br 79.9	36 Kr 83.8
37 Rb 85.5	38 Sr 87.6	39 Y 88.9	40 Zr 91.2	41. Nb 92.9	42 Wo 95.9	43 Tc 98.9	44 Ru 101	45 Rh 103	46 Pd 106	47 Ag 108	48 Cd 112	49 In 115	50 Sn 119	51 Sb 122	52 Te 128	53 I 127	54 Xe 131
55 Cs 133	56 Ba 137	.57 La 139	72 Hf 178	73 Th 181	74 W 184	75 Re 186	76 Os 190	77 Ir 192	78 Pt 195	79 Au 197	80 Hg 201	81 Tl 204	82 Pb 207	83 Bi 209	84 Po (209)	85 At (210)	86 Rn (222)
87 Fr (223)	88 Ra (226)	89 Ac (227)		L													
		.1	57 La 139	53 Ce 140	59 Pr 141	60 Nd 144	61 Pm (145)	62 Sm 152	63 Sm 150	64 Eu 152	65 Tb 159	66 Dy 162	67 Ho 165	68 Er 167	69 Tm 169	70 Yb 173	71 Lu 175
			89 Ac (227	90 Th 2312	91 Pa 231		93 Np 237	94 Pu (244)	95 Am (243)	96 Cm (247)	97 Bk (247	98 Cf 251	99 Es (254)	100 Fm (257	101 Mv (256)	102 No (254)	103 Lw

- 1. Indicates atomic number.
- 2. H Indicates relative atomic mass.

END