Differentiation in \mathbb{R} , Taylorentwicklung Musterlösung

Marcus Jung

17.03.2011

Inhaltsverzeichnis

Inhaltsverzeichnis

1	Diffe	rentiation	ı in	\mathbb{R}																
	1.1	Aufgabe	1.													 				
	1.2	Aufgabe	2 .													 				
	1.3	Aufgabe	3.													 				
	1.4	Aufgabe	4 .													 				
	1.5	Aufgabe	5.													 				
	1.6	Aufgabe	6.													 				
	1.7	Aufgabe	7.													 				
	1.8	Aufgabe	8.										٠			 				
	1.9	Aufgabe	9.										٠			 				
	1.10	Aufgabe	10													 				
	1.11	Aufgabe	11										٠			 				
	1.12	Aufgabe	12																	

1 Differentiation in \mathbb{R}

1.1 Aufgabe 1

$$\begin{split} f'(x) &= [e^{ax} sin(\omega x + a)]' = ae^{ax} sin(\omega x + a) = \\ e^{ax} (asin(\omega w + a) + \omega cos(\omega x + a)) \\ f'(x) &= [cos(sin(cos(x^2)))]' = 2x(-sin(x^2))cos(cos(x^2))(-sin(sin(cos(x^2)))) = \\ 2xsin(x^2)cos(cos(x^2))sin(sin(cos(x^2))) \\ f'(x) &= exp(\frac{x^{cos(x)}}{x}x^x)x^{cos(x)}(\frac{cos(x)}{x} - sin(x)ln(x) - \frac{ln(x) + 1}{x^x}) \end{split}$$

1.2 Aufgabe 2

f(x) = |x|

Für den Fall
$$x > 0$$
 ist $f(x) = x \to f'(x) = 1$
Für den Fall $x < 0$ ist $f(x) = -x \to f'(x) = -1$
Wenn $x = 0 = x_0$ und $h \neq 0$ $f'(x_0) = \lim_{h \to 0} \frac{f(x_0 + h) - f(x_0)}{h} = \lim_{h \to 0} \frac{f(0 + h) - f(0)}{h} = \lim_{h \to 0} \frac{|h|}{h}$
Dieser Grenzwert existiert nicht, weil $\frac{|h|}{h} = 1$ für $h > 0$ bzw -1 für $h < 0$

$$f(x) = x\sqrt{|x|}$$
Für den Fall $x > 0$ ist $f(x) = x^{\frac{3}{2}} \to f'(x) = \frac{3}{2}x^{\frac{1}{2}}$
Für den Fall $x < 0$ ist $f(x) = x\sqrt{-x} \to f'(x) = (x(-x)^{\frac{1}{2}})' = (-x)^{\frac{1}{2}} - \frac{1}{2}x(-x)^{-\frac{1}{2}} = (-x)^{\frac{1}{2}} + \frac{1}{2}(-x)(-x)^{-\frac{1}{2}} = (-x)^{\frac{1}{2}} + \frac{1}{2}(-x)^{\frac{1}{2}}$
Für den Fall $x = 0$ und $h \neq 0$ $f'(x_0) = \lim_{h \to 0} \frac{f(x_0 + h) - f(x_0)}{h} = \lim_{h \to 0} \frac{f(0 + h) - f(0)}{h} = \lim_{h \to 0} \frac{h\sqrt{|h|}}{h} = \lim_{h \to 0} \sqrt{|h|} = 0$

1.3 Aufgabe 3

a)
$$|x-1|^3 \ge 0$$
, $|x|^3 \ge 0 \to f(x) \ge 0$
 $f(x) = 0 \longleftrightarrow |x-1|^3 = 0$ und $|x|^3 = 0 \to \text{Wiederspruch} \to f(x) > 0$
 $\lim_{|x| \to 0} (4|x-1|^3 + |x|^3) = +\infty$
b)
 $x < 0: f(x) = -4(x-1)^3 - x^3, f'(x) = -12(x-1)^2 - 3x^2 \text{ stetig}$
 $0 < x < 1: f(x) = -4(x-1)^3 + x^3, f'(x) = -12(x-1)^2 + 3x^2 \text{ stetig}$
 $x > 1: f(x) = 4(x-1)^3 + x^3, f'(x) = 12(x-1)^2 + 3x^2 \text{ stetig}$
 $\lim_{x \to 0-} f'(x) = -12 = \lim_{x \to 0+} f'(x)$
 $\lim_{x \to 1-} f'(x) = 3 = \lim_{x \to 1+} f'(x) \to f'(x) \text{ stetig auf } \mathbb{R}$
c)
 $x < 0: f''(x) = -24(x-1) - 62 = -30x + 24 \text{ stetig}$

1 Differentiation in R

$$0 < x < 1: f''(x) = -24(x-1) + 6x = -18x + 24$$
 stetig $x > 1: f(x) = f''(x) = 24(x-1) + 6x = 30x - 24$ stetig
$$\lim_{x \to 0^-} f''(x) = 24 = \lim_{x \to 0^+} f''(x)$$

$$\lim_{x \to 1^-} f''(x) = 6 = \lim_{x \to 1^+} f''(x) \to f''(x)$$
 stetig auf \mathbb{R} d) Aus a),b),c) folgt $f(x)$ ist für alle x zweimal differenzierbar

1.4 Aufgabe 4

Wenn man $f^{-1}(f(x)) = x$ auf beiden Seiten nach x ableitet, erhält man: $(f^{-1})'(f(x))f'(x) = 1$ Dividiert man durch f'(x), erhält man das gewünschte Ergebnis.

1.5 Aufgabe 5

$$\frac{d}{dx}sin(x) = \lim_{h \to 0} \frac{sin(x+h) - sin(x)}{h} = \lim_{h \to 0} \frac{sin(x)(cos(h) - 1) + cos(x)sin(h)}{h}$$

Mit dem Satz von L'Hopital $(\frac{0}{0})$ folgt dann das Ergebnis. Für cos(x) analog.

1.6 Aufgabe 6

$$\begin{split} & \lim_{x \to 0} x cot(x) = 1 \\ & \lim_{x \to 0} \frac{cos(x) - 1}{sin^2(x)} = \frac{-1}{2} \\ & \lim_{x \to 0} \frac{ln^2(1 + 3x) - 2sin^2(x)}{1 - e^{-x^2}} = 7 \\ & \lim_{x \to 0} \frac{xtan(x)}{1 - cos(x)} = 2 \end{split}$$

1.7 Aufgabe 7

$$f'(x) = 5 \frac{3-4x}{2\sqrt{x}(4x+3)^2}$$

Maximum bei $(\frac{3}{4}, \frac{5\sqrt{3}}{12})$; Wendepunkt: $(\frac{1}{4}, (3+2\sqrt{3})$

1.8 Aufgabe 8

$$D_f = \mathbb{R}$$
 y-Achsensymmetrisch x-Achse: 0, 1, -1, y-Achse: 0 Wertebereich: $[0, \infty[$ Maximum bei: $(\frac{1}{2}, \frac{1}{4}), (\frac{-1}{2}, \frac{1}{4}),$ Minima bei: $(-1, 0), (0, 0), (1, 0)$

1.9 Aufgabe 9

Es gilt:

$$cos(x) = \sum_{k=0}^{\infty} (-1)^k \frac{x^{2k}}{(2k)!}$$

$$sin(x) = \sum_{k=0}^{\infty} (-1)^k \frac{x^{2k+1}}{(2k+1)!}$$

Durch Ableitung der Potenzreihen folgt die Behauptung.

1.10 Aufgabe 10

Es gilt:
$$\frac{1}{\sqrt{1-x^2}} \approx 1 + \frac{1}{2}x^2$$
. Also $E \approx mc^2 + \frac{1}{2}mv^2$

1.11 Aufgabe 11

Es gilt:

 $f(x) = 1 + 2x + x^2 + \frac{1}{2}x^3$. Also gilt für den relativen Fehler bei eier Approximatio durch

die 2. Ordnung:
$$fehler_{rel} = \frac{|f(x) - T_2(x)|}{|f(x)|} = 0,065$$

1.12 Aufgabe 12

a)

Die Funktion $f(x) = exp(\frac{1}{x}lnx)$ ist auf dem Intervall $J =]0, \infty[$ differenzierbar mit der (aus Ketten- und Produktregel gewonnenen) Ableitung:

$$f'(x) = exp(\frac{1}{x}lnx)[\frac{-1}{x^2}lnx + \frac{1}{x^2}] = x^{\frac{1}{x}}\frac{1-lnx}{x^2}$$

 $f'(x) = exp(\frac{1}{x}lnx)[\frac{-1}{x^2}lnx + \frac{1}{x^2}] = x^{\frac{1}{x}}\frac{1-lnx}{x^2}$ Sie ist offensichtlich größer als Null, falls 0 < x < e gilt, gleich Null bei x = e und kleiner Null, falls $e < x < \infty$ gilt. Daher ist aufgrund des Monotoniekriteriums f strickt monoton wachsend im Intervall $0 < x \le e$ und strickt monoton fallend im Intervall $e \le x < \infty$. Insbesondere liegt bei x = e ei isoliertes lokales Maximum von f.

Das Argument $\frac{lnx}{x}$ der Exponentialfunktion in der Definition von f genügt am rechten Itervallende ∞ vo J der Voraussetzung der zweiten l'Hopitalschen Regel. Sie ergibt

$$\lim_{x \to \infty} \frac{\ln x}{x} = \lim_{x \to \infty} \frac{\frac{1}{x}}{1} = 0$$

$$\to \lim_{x \to \infty} x^{\frac{1}{x}} = e^0 = 1$$

Am linken Intervallende von J gilt wegen $\lim_{x\to 0} \ln x = -\infty$ erst recht $\lim_{x\to 0} \frac{\ln x}{x} = -\infty$. Das ergibt wegen $\lim_{y\to -\infty} e^y = 0$ den Grenzwert $\lim_{x\to 0} x^{\frac{1}{x}} = 0$