Exercise Session XI: DNS Security

Network Security

Matteo Scarlata

December 3rd, 2020

ETH Zurich

Context: Domain Name System

```
HOST: 192.5.89.50: KENTARUS.ARPA, KENTARUS: SUN-2/120: UNIX: TCP/TELNET, TCP/SMTP, TCP/FTP, ICMP, UDP:
HOST: 192.12.59.50: MCCDB-ERATOSTHENES.ARPA, MCCDB-ERATOSTHENES, ERATOSTHENES: SUN-2/170: UNIX:
TCP/TELNET,TCP/FTP,TCP/SMTP,ICMP,UDP :
HOST: 192.5.89.51: TAUCETI.ARPA, TAUCETI: SUN-2/120: UNIX: TCP/TELNET, TCP/SMTP.TCP/FTP.ICMP, UDP:
HOST: 192.12.59.51: MCCDB-ACKERMANN.ARPA, MCCDB-ACKERMANN, ACKERMANN: SUN-2/50: UNIX:
TCP/TELNET, TCP/FTP, TCP/SMTP, ICMP, UDP:
HOST: 192.12.59.52: MCCDB-HILBERT.ARPA, MCCDB-HILBERT, HILBERT: SUN-2/50: UNIX:
TCP/TELNET, TCP/FTP, TCP/SMTP, ICMP, UDP:
HOST: 192.12.59.53: MCCDB-SUPPES.ARPA, MCCDB-SUPPES, SUPPES: SUN-2/50: UNIX: TCP/TELNET, TCP/FTP, TCP/SMTP, ICMP, UDP
HOST: 192.12.59.54: MCCDB-ZERMELO.ARPA, MCCDB-ZERMELO, ZERMELO: SUN-2/50: UNIX:
TCP/TELNET, TCP/FTP, TCP/SMTP, ICMP, UDP:
HOST: 192.5.2.55, 192.12.12.1: WISC-SPOOL.ARPA, WISC-SPOOL, LOOPS, NEEDLE: VAX-11/750: UNIX:
TCP/TELNET, TCP/FTP, TCP/SMTP, TCP/ECHO, TCP/FINGER, ICMP:
HOST: 192.12.59.55: MCCDB-TARTAGLIA.ARPA, MCCDB-TARTAGLIA, TARTAGLIA: SUN-2/50: UNIX:
TCP/TELNET, TCP/FTP, TCP/SMTP, ICMP, UDP:
HOST: 192.12.59.56: MCCDB-VIETE.ARPA, MCCDB-VIETE, VIETE: SUN-2/50: UNIX: TCP/TELNET, TCP/FTP, TCP/SMTP, ICMP, UDP:
HOST: 192.12.59.57: MCCDB-LEGENDRE.ARPA, MCCDB-LEGENDRE, LEGENDRE: SUN-2/50: UNIX:
TCP/TELNET, TCP/FTP, TCP/SMTP, ICMP, UDP:
HOST: 192.5.38.60: SRI-GILLIGAN.ARPA, SRI-GILLIGAN, GILLIGAN, SRI-SACO: SUN-120: UNIX:
TCP/TELNET, TCP/FTP, TCP/SMTP, UDP, ICMP :
HOST: 192.5.89.61: ZOTZ.ARPA, ZOTZ, SOATS: SUN-2/120: UNIX: TCP/TELNET, TCP/SMTP, TCP/FTP, ICMP, UDP:
HOST: 192.5.89.62: TZEC.ARPA, TZEC, ZAKE: SUN-2/120: UNIX: TCP/TELNET, TCP/SMTP, TCP/FTP, ICMP, UDP:
HOST: 192.5.89.63: XUL.ARPA, XUL, SHOOL: SUN-2/120: UNIX: TCP/TELNET, TCP/FTP, TCP/SMTP, ICMP, UDP:
HOST: 192.12.5.63: SRI-MARVIN.ARPA, SRI-MARVIN, MARVIN: SUN-2/170: UNIX: TCP/SMTP, TCP/TELNET, TCP/FTP:
HOST: 192.5.89.64: YAXKIN.ARPA, YAXKIN, YOSHKEEN: SUN-2/120: UNIX: TCP/TELNET, TCP/FTP, TCP/SMTP, ICMP, UDP:
HOST: 192.5.89.65: MOL.ARPA, MOL, MOLE: SUN-2/120: UNIX: TCP/TELNET, TCP/FTP, TCP/SMTP, ICMP, UDP:
HOST: 192.1.2.66, 8.4.0.12: BBNF.ARPA, BBNF, BBN-TENEXF: DEC-2040T: TOPS20:
TCP/FTP, TCP/TELNET, TCP/SMTP, TCP/TIME, UDP/TIME:
HOST: 192.5.89.66: KANKIN.ARPA, KANKIN, CONKEEN: SUN-2/120: UNIX: TCP/TELNET, TCP/FTP, TCP/SMTP, ICMP, UDP:
HOST: 192.5.89.67: ZIP.ARPA, ZIP, SEEP: SUN-2/120: UNIX: TCP/TELNET, TCP/FTP, TCP/SMTP, ICMP, UDP:
HOST: 192.5.89.68: POP.ARPA, POP, POPE: SUN-2/120: UNIX: TCP/TELNET, TCP/FTP, TCP/SMTP, ICMP, UDP:
HOST: 192.5.89.69: MUAN.ARPA, MUAN, MWAHN: SUN-2/120: UNIX: TCP/TELNET, TCP/FTP, TCP/SMTP, ICMP, UDP:
HOST: 192.5.89.70: UO.ARPA, UO, WOE: SUN-2/120: UNIX: TCP/TELNET, TCP/FTP, TCP/SMTP, ICMP, UDP:
HOST: 192.5.89.71: BUN.ARPA, BUN: SUN-2/120: UNIX: TCP/TELNET, TCP/FTP, TCP/SMTP, ICMP, UDP:
HOST: 192.5.89.72: FUN.ARPA, FUN: SUN-2/120: UNIX: TCP/TELNET, TCP/FTP, TCP/SMTP, ICMP, UDP:
HOST: 192.5.89.73: NUN.ARPA, NUN: SUN-2/120: UNIX: TCP/TELNET, TCP/FTP, TCP/SMTP, ICMP, UDP:
```

HAST . 102 5 80 7/ . PHN APPA PHN . SHN_2/120 . HNTY . TCD/TELNET TCD/ETD TCD/SMTD TCMD HDD .

HOSTS.TXT (TCP/IP, DOMAIN NAME(The Initial and Temporary Domain))

See also RFC 897, RFC 881, and RFC 921.

Date	Version	File	NET	GATEWAY	HOST
1984-03-27	340	HOSTS.TXT (*1)	135	69	732
1984-04-19	343	HOSTS.TXT (*1)	139	72	756
1984-04-27	344	HOSTS.TXT (*1)	140	73	766
1984-06-25	353	HOSTS.TXT (*1)	144	79	841
1984-07-13	359	HOSTS.TXT (*1)	147	82	877
1984-11-28	405	HOSTS.TXT (*1)	185	96	1122
1984-12-21	412	HOSTS.TXT (*1)	187	98	1138
1985-01-02	413	HOSTS.TXT (*1)	187	98	1142

https://github.com/ttkzw/hosts.txt

```
$ cat /etc/hosts
127.0.0.1 localhost loopback
::1 localhost
```


Exercises

http://unixwiz.net/techtips/iguidekaminsky-dns-vuln.html

http://unixwiz.net/techtips/iguidekaminsky-dns-vuln.html

http://unixwiz.net/techtips/iguidekaminsky-dns-vuln.html

http://unixwiz.net/techtips/iguidekaminsky-dns-vuln.html

```
dig @a.nic.ch. ethz.ch
;; AUTHORITY SECTION:
ethz.ch.
                                                   ns2.ethz.ch.
                         3600
                                  ΙN
                                          NS
ethz.ch.
                         3600
                                  ΙN
                                          NS
                                                   ns2.switch.ch.
ethz.ch.
                         3600
                                  ΙN
                                          NS
                                                   ns1.ethz.ch.
```

```
dig @a.nic.ch. ethz.ch
;; AUTHORITY SECTION:
ethz.ch.
                         3600
                                           NS
                                                   ns2.ethz.ch.
                                  IN
ethz.ch.
                                                   ns2.switch.ch.
                         3600
                                  IN
                                           NS
ethz.ch.
                         3600
                                           NS
                                                   ns1.ethz.ch.
                                  IN
;; ADDITIONAL SECTION:
ns2.ethz.ch.
                                                   2001:67c:10ec::b
                         3600
                                           AAAA
                                  IN
ns2.switch.ch.
                                                   2001:620:0:ff::2f
                         3600
                                  IN
                                           AAAA
ns1.ethz.ch.
                         3600
                                  IN
                                           AAAA
                                                   2001:67c:10ec::a
```

```
dig @a.nic.ch. ethz.ch
;; AUTHORITY SECTION:
ethz.ch.
                         3600
                                           NS
                                                   ns2.ethz.ch.
                                  IN
ethz.ch.
                                                   ns2.switch.ch.
                         3600
                                  IN
                                           NS
ethz.ch.
                         3600
                                           NS
                                                   ns1.ethz.ch.
                                  IN
;; ADDITIONAL SECTION:
ns2.ethz.ch.
                                                   2001:67c:10ec::b
                         3600
                                          AAAA
                                  IN
ns2.switch.ch.
                         3600
                                  IN
                                          AAAA
                                                   2001:620:0:ff::2f
ns1.ethz.ch.
                         3600
                                  IN
                                          AAAA
                                                   2001:67c:10ec::a
```

```
dig @ns1.attacker.com. attacker.com
;; AUTHORITY SECTION:
attacker.com.
                         3600
                                 IN
                                          NS
                                                  ns2.attacker.com
attacker.com.
                                          NS
                                                  ns1.google.com
                         3600
                                  ΙN
;; ADDITIONAL SECTION:
ns2.attacker.com
                         3600
                                 ΙN
                                                  1.3.3.7
                                          Α
ns1.google.com
                                                  1.3.3.7
                         3600
                                 IN
```

Q2.1: DNS Lame Delegations

"authoritative" response. If not, this is called a "lame delegation". A lame delegations exists when a nameserver is delegated responsibility for providing nameservice for a zone (via NS records) but is not performing nameservice for that zone (usually because it is not set up as a primary or secondary for the zone).

The "classic" lame delegation can be illustrated in this example:

podunk.xx. IN NS ns1.podunk.xx. IN NS ns0.widget.com.

"podunk.xx" is a new domain which has recently been created, and "ns1.podunk.xx" has been set up to perform nameservice for the zone. They haven't quite finished everything yet and haven't made sure that the hostmaster at "ns0.widget.com" has set up to be a proper

https://www.ietf.org/rfc/rfc1912.txt

```
dig @a.nic.ch. ethz.ch
;; AUTHORITY SECTION:
ethz.ch.
                         3600
                                           NS
                                                   ns2.ethz.ch.
                                  IN
ethz.ch.
                                                   ns2.switch.ch.
                         3600
                                  IN
                                           NS
ethz.ch.
                         3600
                                           NS
                                                   ns1.ethz.ch.
                                  IN
;; ADDITIONAL SECTION:
ns2.ethz.ch.
                                                   2001:67c:10ec::b
                         3600
                                          AAAA
                                  IN
ns2.switch.ch.
                         3600
                                  IN
                                          AAAA
                                                   2001:620:0:ff::2f
ns1.ethz.ch.
                         3600
                                  IN
                                          AAAA
                                                   2001:67c:10ec::a
```

```
dig @ns1.attacker.com. attacker.com
;; AUTHORITY SECTION:
attacker.com.
                         3600
                                 IN
                                          NS
                                                  ns2.attacker.com
attacker.com.
                                          NS
                                                  ns1.google.com
                         3600
                                  ΙN
;; ADDITIONAL SECTION:
ns2.attacker.com
                         3600
                                 ΙN
                                                  1.3.3.7
                                          Α
ns1.google.com
                                                  1.3.3.7
                         3600
                                 IN
```

Q2.1: DNS Lame Delegations

```
"authoritative" response. If not, this is called a "lame delegation". A lame delegations exists when a nameser is delegated responsibility for providing nameservice at or cords) but is not performing nameservice at or cords).
```

The "classic" lame del con car e illustrated in this example:

```
nodu .xx ns1.podunk.xx.
NS ns0.widget.com.
```

"ns pourme.xx" has been set up to perform nameservice for the zone.

"ns pourme.xx" has been set up to perform nameservice for the zone.

"haven't quite finished everything yet and haven't made sure that the hostmaster at "ns0.widget.com" has set up to be a proper

https://www.ietf.org/rfc/rfc1912.txt

DNS: 2009 Kaminsky Attack

http://unixwiz.net/techtips/iguidekaminsky-dns-vuln.html

DNS: 2009 Kaminsky Attack

http://unixwiz.net/techtips/iguidekaminsky-dns-vuln.html

DNS: 2009 Kaminsky Attack

Use random ports!

$$\frac{2^{16}}{L} \times \frac{2^{11}}{L} = 2^{27} = 134 \text{ million}$$
Source ports
Query ID

DNS: 2009 Fix

DNS: 2009 Fix

$$\frac{2^{16}}{L} \times \frac{2^{11}}{L} = 2^{27} = 134 \text{ million}$$
Source ports
Query ID

DJB Was Right

One nameserver is notable for having gotten **both** the query-id and source-port randomness right from the start: DJBDNS by the legendary Daniel J. Bernstein.

Though long a lightning rod for controversy, he's clearly walked the walk on security: there's been just one minor security vulnerability in DJBDNS.

Use random ports!

$$\frac{2^{16}}{L} \times \frac{2^{11}}{L} = 2^{27} = 134 \text{ million}$$
Source ports
Query ID

$$\frac{2^{16}}{L} \times \frac{2^{11}}{L} = 2^{27} = 134 \text{ million}$$
Source ports
Query ID

+ IPID (predictable)

Q2.3: Forwarders

Q2.3: Forwarders

Q2.4: Fragmenting Forwarder

Q2.4: Fragmenting Forwarder


```
x.attacker.com CNAME y.attacker.com
y.attacker.com CNAME victim.com
victim.com A a.t.k.r
```

Spoofed 2nd fragment

(b) Response received by DNS forwarder

"authoritative" response. If not, this is called a "lame delegation". A lame delegations exists when a nameserver is delegated responsibility for providing nameservice for a zone (via NS records) but is not performing nameservice for that zone (usually because it is not set up as a primary or secondary for the zone).

The "classic" lame delegation can be illustrated in this example:

podunk.xx. IN NS ns1.podunk.xx. IN NS ns0.widget.com.

"podunk.xx" is a new domain which has recently been created, and "ns1.podunk.xx" has been set up to perform nameservice for the zone. They haven't quite finished everything yet and haven't made sure that the hostmaster at "ns0.widget.com" has set up to be a proper

 ${\tt x.attacker.com}$ ${\tt CNAME}$ ${\tt y.attacker.com}$

y.attacker.com CNAME victim.com

victim.com A a.t.k.r

Spoofed 2nd fragment

(b) Response received by DNS forwarder

"author till land not in not, this is called a "lame delivative." Le delivations exists when a nameserver is like ted as instructy for providing nameservice for a zone (via NS not) but not performing nameservice for that zone (usually land of is not set up as a primary or secondary for the zone).

The "classic" lame delegation can be illustrated in this example:

podunk.xx. IN NS ns1.podunk.xx. IN NS ns0.widget.com.

"podunk.xx" is a new domain which has recently been created, and "ns1.podunk.xx" has been set up to perform nameservice for the zone. They haven't quite finished everything yet and haven't made sure that the hostmaster at "ns0.widget.com" has set up to be a proper

Q2.6: Mitigations

Q2.6: Mitigations

```
x.attacker.com CNAME y.attacker.com
y.attacker.com CNAME victim.com
victim.com A a.t.k.r
```

Caching by record: victim.com -> a.t.k.r

Caching by query: victim.com -> new query

attacker.com -> ca

Slide from Tommaso Ciussani

Slide from Tommaso Ciussani

Q3: Hard to fix

- 1. DNS not authenticated!
- 2. BGP!
- 3. Recursive resolvers cached the wrong authoritative answer!

Warning: Potential Security Risk Ahead

Firefox detected a potential security threat and did not continue to wrong.host.badssl.com. If you visit this site, attackers could try to steal information like your passwords, emails, or credit card details.

What can you do about it?

The issue is most likely with the website, and there is nothing you can do to resolve it. You can notify the website's administrator about the problem.

Learn more...

Go Back (Recommended)

Advanced...

DoH

DoH

DoH: Firefox

DoH: Chrome

Google Public DNS


```
new DohProviderEntry(
205
              "Switch", base::nullopt /* provider_id_for_histogram */,
206
              {"130.59.31.251", "130.59.31.248", "2001:620:0:ff::2",
207
               "2001:620:0:ff::3"},
208
              {"dns.switch.ch"} /* dns_over_tls_hostnames */,
209
              "https://dns.switch.ch/dns-query", "" /* ui_name */,
210
              "" /* privacy_policy */, false /* display_globally */,
211
              {} /* display_countries */),
212
213
      }};
214
      return *providers;
215 }
```

DoH: Fallback

How does Firefox handle split-horizon DNS?

If Firefox fails to resolve a domain via DoH, it will fall back to the DNS. This means that any domains that are only available on the ordinary DNS (because they aren't public) will be resolved that way. If you have a domain that is publicly resolvable but resolves differently internally, then you should use enterprise settings to disable DoH.

such as family-safe filtering, and therefore avoid breaking user expectations. Furthermore, if there's any hiccup with the DNS-over-HTTPS connection, Chrome will fall back to the regular DNS service of the user's current provider by default, in order to avoid any disruption, while periodically retrying to secure the DNS communication. Finally, to avoid an issue that otherwise could arise