בחינה לדוגמה 4 סמסטר 2020ב

מבנה הבחינה: בבחינה שש שאלות. עליכם לענות על חמש מהן.

שאלה 1

פונקציית המעברים של מכונת טיורינג הוגדרה כך (הגדרה 3.3 בספר):

$$\delta: Q \times \Gamma \to Q \times \Gamma \times \{L,R\}$$

הפונקציה קובעת, לכל מצב שבו המכונה נמצאת ולכל סמל סרט שנמצא תחת הראש הקורא-כותב, איזה סמל סרט ייכתב, לאיזה כיוון ינוע הראש הקורא-כותב, ולאיזה מצב המכונה תעבור.

במכונת טיורינג מילולית פונקציית המעברים מוגדרת כך:

$$\delta: Q \times \Gamma^* \to Q \times \Gamma \times \{L,R\}$$

הצעד של המכונה נקבע לפי המצב שבו המכונה נמצאת ולפי **המילה** שכתובה על הסרט מהסמל שבריבוע השמאלי ביותר של הסרט ועד הריבוע שעליו נמצא הראש הקורא-כותב.

למשל, אם תוכן הסרט הוא \$\$a $\sqcup ab \sqcup \$$a$ הראש נמצא על ה-\$ השמאלי, אזי הצעד הבא של המשל, אם תוכן הסרט הוא $a \sqcup ab \sqcup \$$ המכונה נמצאת שבו המכונה נמצאת ולפי המילה

הוכיחו: אפשר לבנות מכונות טיורינג מילוליות לזיהוי שפות שאינן מזוהות-טיורינג.

הדרכה: הוכיחו שאפשר לבנות מכונת טיורינג מילולית לכל שפה שהיא.

שאלה 2

 $:EPSILON_{ ext{TM}}$ נגדיר את השפה

 $EPSILON_{TM} = \{ \langle M \rangle \mid M \text{ accepts the empty word} \}$

זוהי שפת התיאורים של מכונות טיורינג, שמקבלות את המילה הריקה. (כש-M מתחילה לפעול על סרט שכולו רווחים, היא מסיימת במצב המקבל).

- $A_{\text{TM}} \leq_{\text{m}} EPSILON_{\text{TM}}$ ביית מיפוי של $A_{\text{TM}} \neq A_{\text{TM}}$ ל-
- ב. הציגו רדוקציית מיפוי של $EPSILON_{TM}$ ל- $EPSILON_{TM}$ ב. הציגו רדוקציית

שאלה 3

 $\overline{EQ_{CFG}} = \{ < G, H > | G \text{ and } H \text{ are CFGs and } L(G) \neq L(H) \}$ נעיין בשפה

. $\overline{\mathit{EQ}_{\mathrm{CFG}}}$ לשפה (verifier) א. הציעו מאמת

יְּכְרוּ שמאמת **תמיד עוצר** (ומקבל, אם האימות c שכנע אותו שמילת הקלט שייכת לשפה, ודוחה, אם c לא שכנע אותו שמילת הקלט שייכת לשפה).

ב. הוכיחו: לא קיים לשפה $\overline{EQ_{ ext{CFG}}}$ מאמת בעל זמן ריצה פולינומיאלי בגודל הקלט.

שאלה 4

בעיית הקבוצות הנחתכות (XS) היא הבעיה הבאה:

 $(k \le n)$ א קבוצות סופיות ומספר טבעי n : הקלט

השאלה: האם יש ב-n הקבוצות הסופיות k קבוצות, שכל שתים מהן אינן זרות זו לזו (החיתוך של כל שתיים מהן איננו ריק)!

: נציג את הבעיה כשפה

 $XS = \{ <\!\! S_1, S_2, ..., S_n, k \!\!> \mid$ לוו זו זו לזו אורות שכל שתיים לא קבוצות, שמהן א קבוצות סופיות אורים לא זרות אורים א

הדרכה: הוכיחו שהיא שייכת ל-NP, והראו רדוקציה בזמן פולינומיאלי של

שאלה 5

: הבעיה HITTING-SET מוגדרת כד

-היא תת- S_i (כל S_i היא תת-קבוצות של S_i (כל S_i היא תחף אוסף אוסף וא קבוצה של S_i (כל S_i היא תת- S_i מספר טבעי S_i מספר טבעי S_i

השאלה : האם יש ל-S תת-קבוצה T בגודל k כך שלכל $j \le T \cap S_i \neq \emptyset$ (כלומר, האם יש ל- $S_i \neq \emptyset$ תת-קבוצות S_i איננו ריק!) ל- $S_i \neq S_i$ תת-קבוצות איננו ריק!

.VERTEX-COVER ≤L HITTING-SET : הוכיחו

מוגדרת בעמוד 312 בספר). VERTEX-COVER

עליכם לתאר את הרדוקציה, להוכיח שהיא תקפה, ולהוכיח בפירוט שהיא יכולה להתבצע **במקום לוגריתמי**.

שאלה 6

הוכיחו: אם P=NP, אז יש אלגוריתם **בעל זמן ריצה פולינומיאלי** לבעיה הבאה:

 ϕ בוליאנית בוליאנית ϕ

 ϕ אם ϕ אם ϕ אם ϕ לא ספיקה, יוחזר "לא".

(האלגוריתם מקבל כקלט נוסחה בוליאנית ϕ . אם אין ל- ϕ השמה מספקת, מוחזר "לאי". אם יש ל- ϕ השמה מספקת, מוחזרת אחת ההשמות המספקות של ϕ . כלומר, מוחזרת הצבה של 0-ים ו-1-ם למשתנים של ϕ , כך שהערך של ϕ בהצבה הזו הוא 1).

SAT-, אז יש אלגוריתם בעל זמן ריצה פולינומיאלי ל-P=NP, אז יש אלגוריתם בעל אם

 ϕ אפשר לקרוא לאלגוריתם הזה כמה פעמים, כדי למצוא הצבה למשתנים של