

C-3701, Simin-daero 365-40l, Dongan-gu, Anyang-si, Gyeonggi-do, 14057, Korea Tel: +82-31-425-6200 / Fax: +82-31-424-0450 www.kes.co.kr Test report No.: KES-RF-15T0069 Page (1) of (51)

TEST REPORT

Part 15 Subpart C 15.247

Equipment under test API

Model name API

FCC ID XYCAPI

Applicant Aram Huvis Co., Ltd.

Manufacturer Aram Huvis Co., Ltd.

Date of test(s) 2015.08.20 ~2015.09.07

Date of issue 2015.09.07

Issued to

Aram Huvis Co., Ltd.

801-ho, 560 Dunchon-daero Jungwon-gu Seongnam-si Gyeonggi-do Rep. of Korea Tel: +82-31-732-6320 / Fax: +82-31-732-6330

Issued by

KES Co., Ltd.

C-3701, Simin-daero 365-40, Dongan-gu, Anyang-si, Gyeonggi-do,431-716, Korea 473-29, Gayeo-ro, Yeoju-si, Gyeonggi-do, 12658, Korea Tel: +82-31-425-6200 / Fax: +82-31-424-0450

Test and report completed by :	Report approval by:
ister	Cagley
Kwang-yeol Choo	Jeff Do
Test engineer	Technical manager

KES Co., Ltd.C-3701, Simin-daero 365-401,
Dongan-gu, Anyang-si, Gyeonggi-do, 14057, Korea
Tel: +82-31-425-6200 / Fax: +82-31-424-0450 www.kes.co.kr

Test report No.: KES-RF-15T0069 Page (2) of (51)

Revision history

Revision	Date of issue	Test report No.	Description
-	2015.09.07	KES-RF-15T0069	Initial

KES Co., Ltd.C-3701, Simin-daero 365-401,
Dongan-gu, Anyang-si, Gyeonggi-do, 14057, Korea
Tel: +82-31-425-6200 / Fax: +82-31-424-0450 www.kes.co.kr

Test report No.: KES-RF-15T0069 Page (3) of (51)

TABLE OF CONTENTS

1.	General in	nformation	4
	1.1.	EUT description	4
		Frequency/channel operations	
1.3	Devi	ice information	4
2.		of tests	
3.	Test resul	ts	
	3.1	Radiated spurious emissions & band edge	7
	3.2	Conducted spurious emissions & band edge	15
	3.3.	6 dB bandwidth	28
	3.4.	Peak Output power	36
	3.5.	Power spectral density	38
	3.6.	AC conducted emission	46
App	endix A.	Measurement equipment	49
Ann	endix B	Test setup photo	50

C-3701, Simin-daero 365-401, Dongan-gu, Anyang-si, Gyeonggi-do, 14057, Korea Tel: +82-31-425-6200 / Fax: +82-31-424-0450 www.kes.co.kr Test report No.: KES-RF-15T0069 Page (4) of (51)

1. General information

Applicant: Aram Huvis Co., Ltd.

Applicant address: 801-ho, 560 Dunchon-daero Jungwon-gu Seongnam-si Gyeonggi-do Rep. of Korea

Test site: KES Co., Ltd.

Test site address: C-3701, Simin-daero 365-40, Dongan-gu, Anyang-si, Gyeonggi-do,14057, Korea

473-29, Gayeo-ro, Yeoju-si, Gyeonggi-do, 12658, Korea

Rule part(s): Part 15.247

Test device serial No.: Production Pre-production Engineering

1.1. EUT description

Equipment under test API

2 412 MHz ~ 2 462 MHz (11b/g/n HT20)

Frequency range $\begin{array}{c} 2.422 \text{ MHz} & \sim 2.452 \text{ MHz} & (110 \text{ Hz}) \\ 2.422 \text{ MHz} & \sim 2.452 \text{ MHz} & (111 \text{ HT}40) \end{array}$

Model: API

Modulation technique DSSS, OFDM

Number of channels 11

Antenna specification PCB antenna & 3.77 dBi

Power source Internal Rechargeable Battery (DC 3.7 V)

1.2. Frequency/channel operations

Ch.	Frequency (Mb)	Mode			
1	2 412	11b/g/n_HT20			
6	2 437	11b/g/n_HT20			
11	2 462	11b/g/n_HT20			

Ch.	Frequency (Mb)	Mode
3	2 422	11n_HT40
	•	
	•	•
6	2 437	11n_HT40
		·
•	•	•
9	2 452	11n_HT40

1.3 Device information

- The device duty cycles are as follows: 802.11b/g/n HT20, $40 \ge 98$ percent.

C-3701, Simin-daero 365-401, Dongan-gu, Anyang-si, Gyeonggi-do, 14057, Korea Tel: +82-31-425-6200 / Fax: +82-31-424-0450 www.kes.co.kr Test report No.: KES-RF-15T0069 Page (5) of (51)

2. Summary of tests

Reference	Parameter	Test results
15.205 15.209	Radiated spurious emission and band edge	Pass
15.247(d)	Conducted spurious emission and band edge	Pass
15.247(a)(2)	6 dB bandwidth	Pass
15.247(b)(3)	Peak output power	Pass
15.247(e)	Power spectral density	Pass
15.207	AC conducted emissions	Pass

Test procedures;

The EUT was tested per the guidance of ANSI C63.10-2009 was used to reference the appropriate EUT setup for radiated spurious emissions testing, the guidance provided in KDB 558074_v03r03 were used in the measurement of the EUT.

C-3701, Simin-daero 365-401, Dongan-gu, Anyang-si, Gyeonggi-do, 14057, Korea Tel: +82-31-425-6200 / Fax: +82-31-424-0450 www.kes.co.kr Test report No.: KES-RF-15T0069 Page (6) of (51)

Pre-scanned maximum output power

Preliminary tests were performed in different data rate as below table and the highest power data rates(802.11b, 802.11g, 802.11n_HT20, 802.11n_HT40) were chosen for full test in the following section to demonstrate compliance to the FCC limit line.

802.11b

channel	Detector	Conducted power(dB m)						
	Detector	Data rate(Mbps)						
	mode	1	2	5.5	11			
Low		8.52	8.49	8.44	8.38			
Middle	Peak	<mark>9.47</mark>	9.40	9.36	9.31			
High		10.09	9.97	9.91	9.86			

802.11g

channel	Detector			Co	onducted p	power(dB 1	m)		
	mode	Data rate(Mbps)							
	mode	6	9	12	18	24	36	48	54
Low		<u>14.33</u>	14.31	14.28	14.22	14.20	14.22	14.19	14.16
Middle	Peak	15.42	15.39	15.37	15.32	15.35	15.30	15.28	15.27
High		<u>15.81</u>	15.78	15.73	15.75	15.71	15.68	15.64	15.61

802.11n(HT20)

Test mode	Detector			Co	onducted p	power(dB i	m)		
	mode	Data rate(Mbps)							
	mode	MCS0	MCS1	MCS2	MCS3	MCS4	MCS5	MCS6	MCS7
Low		<u>14.12</u>	14.09	14.07	14.02	13.96	13.98	13.89	13.85
Middle	Peak	<u>15.11</u>	15.09	15.06	15.02	15.05	14.96	14.93	14.91
High		<u>15.65</u>	15.61	15.57	15.54	15.50	15.49	15.49	15.44

802.11n(HT40)

channel	Detector			Co	onducted j	power(dB i	m)				
	Detector mode		Data rate(Mbps)								
	mode	MCS0	MCS1	MCS2	MCS3	MCS4	MCS5	MCS6	MCS7		
Low		14.08	14.05	13.99	13.97	13.95	14.01	13.93	13.89		
Middle	Peak	<u>14.95</u>	14.91	14.89	14.88	14.85	14.83	14.80	14.77		
High		<u>15.04</u>	15.01	14.94	14.96	14.93	14.90	14.87	14.83		

C-3701, Simin-daero 365-401, Dongan-gu, Anyang-si, Gyeonggi-do, 14057, Korea Tel: +82-31-425-6200 / Fax: +82-31-424-0450 www.kes.co.kr Test report No.: KES-RF-15T0069 Page (7) of (51)

3. Test results

3.1 Radiated spurious emissions & band edge

Test setup

The diagram below shows the test setup that is utilized to make the measurements for emission from 9 kHz to 30 MHz Emissions.

The diagram below shows the test setup that is utilized to make the measurements for emission from 30 Mz to 1 Gz emissions.

C-3701, Simin-daero 365-401, Dongan-gu, Anyang-si, Gyeonggi-do, 14057, Korea Tel: +82-31-425-6200 / Fax: +82-31-424-0450 www.kes.co.kr Test report No.: KES-RF-15T0069 Page (8) of (51)

Test procedure

Radiated emissions from the EUT were measured according to the dictates in section 11.0 & 12.0 of KDB 558074 v03r03 and ANSI C63.10-2009

- 1. The EUT was placed on the top of a rotating table 0.8 meters above the ground at a 3 meter anechoic chamber test site or open area test site. The table was rotated 360 degrees to determine the position of the highest radiation.
- 2. During performing radiated emission below 10½, the EUT was set 3 meters away from the interference receiving antenna, which was mounted on the top of a variable height antenna tower. During performing radiated emission above 1 0½, the EUT was set 3 meter away from the interference receiving antenna.
- 3. The antenna is a broadband antenna, and its height is varied from 1 meter to 4 meters above the ground to determine the maximum value of the field strength. Both horizontal and vertical polarizations of the antenna are set to make the measurement.
- 4. For each suspected emission, the EUT was arranged to its worst case and then the antenna was tuned to heights from 1 meter to 4 meters and the table was turned from 0 degrees to 360 degrees to find the maximum reading.
- 5. The test receiver system was set to peak detect function and specified bandwidth with maximum hold mode
- 6. If the emission level of the EUT in peak mode was 10 dBlower than the limit specified, then testing could be stopped and the peak values of the EUT would be reported. Otherwise the emissions that did not have10 dB margin would be retested one by one using peak, quasi-peak or average method as specified and then reported in a data sheet

C-3701, Simin-daero 365-401, Dongan-gu, Anyang-si, Gyeonggi-do, 14057, Korea Tel: +82-31-425-6200 / Fax: +82-31-424-0450 www.kes.co.kr Test report No.: KES-RF-15T0069 Page (9) of (51)

Note.

All data rates and modes were investigated for radiated spurious emissions. Only the radiated emissions of the configuration that produced the worst case emissions are reported in this section.

1. Average Field Strength Measurements per Section 12.2.5.1

Analyzer center frequency was set to the frequency of the radiated spurious emission of interest.

Set RBW = 1 M/z.

Set VBW = 3 MHz (\geq 3 x RBW).

Set detector = power average(RMS).

Set sweep time = auto.

Trace (RMS) averaging was performed over at least 100 traces.

2. Peak Field Strength Measurements per Section 12.2.4

Analyzer center frequency was set to the frequency of the radiated spurious emission of interest.

Set RBW = 1 Mz.

Set VBW = 3 MHz (\geq 3 x RBW).

Set detector = Peak.

Set sweep time = auto.

Trace mode = max hold.

Allow sweeps to continue until the trace stabilizes.

Limit

According to 15.209(a), for an intentional radiator devices, the general required of field strength of radiated emissions from unintentional radiators at a distance of 3 meters shall not exceed the following values:

Frequency (Mb)	Distance (Meters)	Radiated (µV/m)
0.009 ~ 0.490	300	2 400 / F(kHz)
0.490 ~ 1.705	30	24 000 / F(kllz)
1.705 ~ 30.0	30	30
30 ~ 88	3	100**
88 ~ 216	3	150**
216 ~ 960	3	200**
Above 960	3	500

^{**}Except as provided in paragraph (g), fundamental emissions from intentional radiators operating under this Section shall not be located in the frequency bands $54 \sim 72\,$ Mb, $76 \sim 88\,$ Mb, $174 \sim 216\,$ Mb or $470 \sim 806\,$ Mb. However, operation within these frequency bands is permitted under other sections of this Part, e.g., Sections 15.231 and 15.241.

C-3701, Simin-daero 365-401, Dongan-gu, Anyang-si, Gyeonggi-do, 14057, Korea Tel: +82-31-425-6200 / Fax: +82-31-424-0450 www.kes.co.kr Test report No.: KES-RF-15T0069 Page (10) of (51)

Test results (Below 30 Mb)

Channel: 01 / 802.11g

Operating frequency: 2 472 Mb (Worst case)

Distance of measurement: 3 meter

Frequency (MHz)	Level (dBμV)	Ant. Pol.	Correction factors (dB/m)	F _d (dB)	Field strength (dBµV/m)	Limit (dBµV/m)	Margin (dB)		
	No emission has been detected								

Test results (Below 1 000 Mz)

Channel: 01 / 802.11g

Operating frequency: 2 472 Mb (Worst case)

Distance of measurement: 3 meter

Frequency (MHz)	Level (dBµV)	Ant. Pol.	Correction factors (dB/m)	Field strength (dBµV/m)	Limit (dBµV/m)	Margin (dB)
	Emission 1	evels are not repor	ted much lower th	nan the limits by o	ver 20 dB	

- 2. Actual = Reading + Ant. factor + Cable loss
- 3. Detector mode: Quasi peak
- 4. To get a maximum emission level from the EUT, the EUT was moved throughout the XY, XZ and YZ planes.

C-3701, Simin-daero 365-401, Dongan-gu, Anyang-si, Gyeonggi-do, 14057, Korea Tel: +82-31-425-6200 / Fax: +82-31-424-0450 www.kes.co.kr Test report No.: KES-RF-15T0069 Page (11) of (51)

Test results (Above 1 000 Mb)

802.11b // Low channel

Ra	Radiated emissions		Ant.	Correction	on factors	Total	Liı	mit
Frequency (MHz)	Reading (dBµV)	Detector mode	Pol.	Ant. factor (dB/m)	Amp + CL (dB)	Actual (dBµV/m)	Limit (dBµV/m)	Margin (dB)
2387.90	45.39	Peak	Н	29.09	-30.05	44.43	74.00	29.57
2387.90	44.26	Peak	V	29.09	-30.05	43.30	74.00	30.70
4824.00	42.16	Peak	Н	33.88	-25.67	50.37	74.00	23.63
4824.00	40.08	Peak	V	33.88	-25.67	48.29	74.00	25.71

802.11b // Middle channel

Ra	Radiated emissions		Ant.	Correction	on factors	Total	Liı	mit
Frequency (MHz)	Reading (dBµV)	Detector mode	Pol.	Ant. factor (dB/m)	Amp + CL (dB)	Actual (dBµV/m)	Limit (dBµV/m)	Margin (dB)
4874.00	41.54	Peak	Н	34.12	-25.55	50.11	74.00	23.89
4874.00	40.58	Peak	V	34.12	-25.55	49.15	74.00	24.85

802.11b // **High channel**

Ra	Radiated emissions			Correction	on factors	Total	Liı	mit
Frequency (MHz)	Reading (dBµV)	Detector mode	Pol.	Ant. factor (dB/m)	Amp + CL (dB)	Actual (dΒμV/m)	Limit (dBµV/m)	Margin (dB)
2487.70	46.24	Peak	Н	29.40	-29.83	45.81	74.00	28.19
2487.70	45.32	Peak	V	29.40	-29.83	44.89	74.00	29.11
4924.00	38.54	Peak	Н	34.36	-25.43	47.47	74.00	26.53
4924.00	36.82	Peak	V	34.36	-25.43	45.75	74.00	28.25

- 2. Radiated emissions measured in frequency above 1 000 Mbz were made with an instrument using peak/average detector mode.
- 3. Average test would be performed if the peak result were greater than the average limit.
- 4. Actual = Reading + Ant. factor + Amp + CL (Cable loss)
- 5. To get a maximum emission level from the EUT, the EUT was moved throughout the XY, XZ and YZ planes.

C-3701, Simin-daero 365-401, Dongan-gu, Anyang-si, Gyeonggi-do, 14057, Korea Tel: +82-31-425-6200 / Fax: +82-31-424-0450 www.kes.co.kr Test report No.: KES-RF-15T0069 Page (12) of (51)

802.11g // Low channel

Ra	Radiated emissions		Ant.	Correction	on factors	Total	Liı	Limit	
Frequency (MHz)	Reading (dBµV)	Detector mode	Pol.	Ant. factor (dB/m)	Amp + CL (dB)	Actual (dBµV/m)	Limit (dBµV/m)	Margin (dB)	
2389.80	46.27	Peak	Н	29.10	-30.05	45.32	74.00	28.68	
2389.80	45.38	Peak	V	29.10	-30.05	44.43	74.00	29.57	
4824.00	41.59	Peak	Н	33.88	-25.67	49.80	74.00	24.20	
4824.00	39.95	Peak	V	33.88	-25.67	48.16	74.00	25.84	

802.11g // Middle channel

Ra	Radiated emissions		Ant.	Correction	on factors	Total	Liı	mit
Frequency (MHz)	Reading (dBµV)	Detector mode	Pol.	Ant. factor (dB/m)	Amp + CL (dB)	Actual (dBµV/m)	Limit (dBµV/m)	Margin (dB)
4874.00	40.87	Peak	Н	34.12	-25.55	49.44	74.00	24.56
4874.00	40.16	Peak	V	34.12	-25.55	48.73	74.00	25.27

802.11g // High channel

002VII 9 // 111 B11 VII VIII VIII VIII VIII VIII VI									
Ra	Radiated emissions		Ant.	Correction	on factors	Total	Limit		
Frequency (MHz)	Reading (dBµV)	Detector mode	Pol.	Ant. factor (dB/m)	Amp + CL (dB)	Actual (dBµV/m)	Limit (dBµV/m)	Margin (dB)	
2483.70	47.52	Peak	Н	29.39	-29.84	47.07	74.00	26.93	
2483.70	45.79	Peak	V	29.39	-29.84	45.34	74.00	28.66	
4924.00	38.26	Peak	Н	34.36	-25.43	47.19	74.00	26.81	
4924.00	36.91	Peak	V	34.36	-25.43	45.84	74.00	28.16	

- 2. Radiated emissions measured in frequency above 1 000 Mbz were made with an instrument using peak/average detector mode.
- 3. Average test would be performed if the peak result were greater than the average limit.
- 4. Actual = Reading + Ant. factor + Amp + CL (Cable loss)
- 5. To get a maximum emission level from the EUT, the EUT was moved throughout the XY, XZ and YZ planes.

C-3701, Simin-daero 365-401, Dongan-gu, Anyang-si, Gyeonggi-do, 14057, Korea Tel: +82-31-425-6200 / Fax: +82-31-424-0450 www.kes.co.kr Test report No.: KES-RF-15T0069 Page (13) of (51)

802.11n(HT20) // Low channel

Ra	diated emissio	ons	Ant.	Correction	on factors	Total	Liı	mit
Frequency (MHz)	Reading (dBµV)	Detector mode	Pol.	Ant. factor (dB/m)	Amp + CL (dB)	Actual (dBμV/m)	Limit (dBµV/m)	Margin (dB)
2389.80	46.12	Peak	Н	29.10	-30.05	45.17	74.00	28.83
2389.80	45.19	Peak	V	29.10	-30.05	44.24	74.00	29.76
4824.00	40.98	Peak	Н	33.88	-25.67	49.19	74.00	24.81
4824.00	39.24	Peak	V	33.88	-25.67	47.45	74.00	26.55

802.11n(HT20) // Middle channel

Ra	Radiated emissions		Ant.	Correction	on factors	Total	Liı	mit
Frequency (MHz)	Reading (dBµV)	Detector mode	Pol.	Ant. factor (dB/m)	Amp + CL (dB)	Actual (dBµV/m)	Limit (dBµV/m)	Margin (dB)
4874.00	40.25	Peak	Н	34.12	-25.55	48.82	74.00	25.18
4874.00	39.75	Peak	V	34.12	-25.55	48.32	74.00	25.68

802.11n(HT20) // High channel

	ovacim(iiiao) // iiigh chumici										
Ra	diated emissio	ons	Ant.	Correction factors		Total	Limit				
Frequency (MHz)	Reading (dBµV)	Detector mode	Pol.	Ant. factor (dB/m)	Amp + CL (dB)	Actual (dBµV/m)	Limit (dBµV/m)	Margin (dB)			
2483.70	47.12	Peak	Н	29.39	-29.84	46.67	74.00	27.33			
2483.70	45.60	Peak	V	29.39	-29.84	45.15	74.00	28.85			
4924.00	38.04	Peak	Н	34.36	-25.43	46.97	74.00	27.03			
4924.00	36.54	Peak	V	34.36	-25.43	45.47	74.00	28.53			

- 2. Radiated emissions measured in frequency above 1 000 Mbz were made with an instrument using peak/average detector mode.
- 3. Average test would be performed if the peak result were greater than the average limit.
- 4. Actual = Reading + Ant. factor + Amp + CL (Cable loss)
- 5. To get a maximum emission level from the EUT, the EUT was moved throughout the XY, XZ and YZ planes.

C-3701, Simin-daero 365-401, Dongan-gu, Anyang-si, Gyeonggi-do, 14057, Korea Tel: +82-31-425-6200 / Fax: +82-31-424-0450 www.kes.co.kr Test report No.: KES-RF-15T0069 Page (14) of (51)

802.11n(HT40) // Low channel

Ra	Radiated emissions		Ant.	Correction	on factors	Total	Liı	mit
Frequency (MHz)	Reading (dBµV)	Detector mode	Pol.	Ant. factor (dB/m)	Amp + CL (dB)	Actual (dBµV/m)	Limit (dBµV/m)	Margin (dB)
2389.40	46.02	Peak	Н	29.09	-30.05	45.07	74.00	28.93
2389.40	45.11	Peak	V	29.09	-30.05	44.16	74.00	29.84
4844.00	40.04	Peak	Н	33.97	-25.62	48.40	74.00	25.60
4844.00	38.98	Peak	V	33.97	-25.62	47.34	74.00	26.66

802.11n(HT40) // Middle channel

Ra	Radiated emissions			Correction	on factors	Total	Liı	mit
Frequency (MHz)	Reading (dBµV)	Detector mode	Pol.	Ant. factor (dB/m)	Amp + CL (dB)	Actual (dBµV/m)	Limit (dBµV/m)	Margin (dB)
4874.00	39.81	Peak	Н	34.12	-25.55	48.38	74.00	25.62
4874.00	39.21	Peak	V	34.12	-25.55	47.78	74.00	26.22

802.11n(HT40) // High channel

oozoniii (iii io) // iiigii chamici								
Radiated emissions			Ant.	Correction factors		Total	Limit	
Frequency (MHz)	Reading (dBµV)	Detector mode	Pol.	Ant. factor (dB/m)	Amp + CL (dB)	Actual (dBµV/m)	Limit (dBµV/m)	Margin (dB)
2485.00	46.08	Peak	Н	29.39	-29.83	45.64	74.00	28.36
2485.00	45.21	Peak	V	29.39	-29.83	44.77	74.00	29.23
4904.00	37.78	Peak	Н	34.26	-25.48	46.56	74.00	27.44
4904.00	36.31	Peak	V	34.26	-25.48	45.09	74.00	28.91

- 2. Radiated emissions measured in frequency above 1 000 Mb were made with an instrument using peak/average detector mode.
- 3. Average test would be performed if the peak result were greater than the average limit.
- 4. Actual = Reading + Ant. factor + Amp + CL (Cable loss)
- 5. To get a maximum emission level from the EUT, the EUT was moved throughout the XY, XZ and YZ planes.

C-3701, Simin-daero 365-401, Dongan-gu, Anyang-si, Gyeonggi-do, 14057, Korea Tel: +82-31-425-6200 / Fax: +82-31-424-0450 www.kes.co.kr Test report No.: KES-RF-15T0069 Page (15) of (51)

3.2 Conducted spurious emissions & band edge

Test procedure

All data rates and modes were investigated for conducted spurious emissions. Only the conducted emissions of the configuration that produced the worst case emissions are reported in this section.

Per the guidance of KDB 558074_v03r03, section 11.2&11.3,

1. Use the following spectrum analyzer setting

Center frequency: Low and high channel.

Set the span to encompass frequency range to be measured.

Set the RBW = 100 kHz.

Set the VBW = 300 kHz (\geq 3x RBW).

Detector = peak.

Sweep time = auto couple.

Trace mode= max hold.

Allow trace to fully stabilize.

Use the peak market function to determine the maximum PSD level.

2. Ensure that the amplitude of all unwanted emissions outside of the authorized frequency band (excluding restricted frequency bands) are attenuated by at least the minimum requirements specified in 11.1 a) or 11.1 b). Report the three highest emissions relative to the limit.

Limit

According to 15.247(d), in any 100 kHz bandwidth outside the frequency band in which the spread spectrum or digitally modulated intentional radiator is operating, the radio frequency power that is produced by the intentional radiator shall be at least 20 dB below that in the 100 kHz bandwidth within the band that contains the highest level of the desired power, based on either an RF conducted or a radiated measurement, provided the transmitter demonstrates compliance with the peak conducted power limits. If the transmitter complies with the conducted power limits based on the use of RMS averaging over a time interval, as permitted under paragraph(b)(3) of this section, the attenuation required under this paragraph shall be 30 dB instead of 20 dB. Attenuation below the general limits specified in section 15.209(a) is not required. In addition, radiated emission which in the restricted band, as define in section 15.205(a), must also comply the radiated emission limits specified in section 15.209(a) (see section 15.205(c))

C-3701, Simin-daero 365-401, Dongan-gu, Anyang-si, Gyeonggi-do, 14057, Korea Tel: +82-31-425-6200 / Fax: +82-31-424-0450 www.kes.co.kr Test report No.: KES-RF-15T0069 Page (16) of (51)

Test results for conducted spurious emission

802.11b // Low channel

C-3701, Simin-daero 365-401, Dongan-gu, Anyang-si, Gyeonggi-do, 14057, Korea Tel: +82-31-425-6200 / Fax: +82-31-424-0450 www.kes.co.kr Test report No.: KES-RF-15T0069 Page (17) of (51)

C-3701, Simin-daero 365-401, Dongan-gu, Anyang-si, Gyeonggi-do, 14057, Korea Tel: +82-31-425-6200 / Fax: +82-31-424-0450 www.kes.co.kr Test report No.: KES-RF-15T0069 Page (18) of (51)

802.11b // High channel

C-3701, Simin-daero 365-401, Dongan-gu, Anyang-si, Gyeonggi-do, 14057, Korea Tel: +82-31-425-6200 / Fax: +82-31-424-0450 www.kes.co.kr Test report No.: KES-RF-15T0069 Page (19) of (51)

802.11g // Low channel

C-3701, Simin-daero 365-40l, Dongan-gu, Anyang-si, Gyeonggi-do, 14057, Korea Tel: +82-31-425-6200 / Fax: +82-31-424-0450 www.kes.co.kr Test report No.: KES-RF-15T0069 Page (20) of (51)

C-3701, Simin-daero 365-401, Dongan-gu, Anyang-si, Gyeonggi-do, 14057, Korea Tel: +82-31-425-6200 / Fax: +82-31-424-0450 www.kes.co.kr Test report No.: KES-RF-15T0069 Page (21) of (51)

802.11g // High channel

C-3701, Simin-daero 365-401, Dongan-gu, Anyang-si, Gyeonggi-do, 14057, Korea Tel: +82-31-425-6200 / Fax: +82-31-424-0450 www.kes.co.kr Test report No.: KES-RF-15T0069 Page (22) of (51)

802.11n(HT20) // Low channel

C-3701, Simin-daero 365-401, Dongan-gu, Anyang-si, Gyeonggi-do, 14057, Korea Tel: +82-31-425-6200 / Fax: +82-31-424-0450 www.kes.co.kr Test report No.: KES-RF-15T0069 Page (23) of (51)

C-3701, Simin-daero 365-401, Dongan-gu, Anyang-si, Gyeonggi-do, 14057, Korea Tel: +82-31-425-6200 / Fax: +82-31-424-0450 www.kes.co.kr Test report No.: KES-RF-15T0069 Page (24) of (51)

802.11n(HT20) // High channel

C-3701, Simin-daero 365-401, Dongan-gu, Anyang-si, Gyeonggi-do, 14057, Korea Tel: +82-31-425-6200 / Fax: +82-31-424-0450 www.kes.co.kr Test report No.: KES-RF-15T0069 Page (25) of (51)

802.11n(HT40) // Low channel

C-3701, Simin-daero 365-401, Dongan-gu, Anyang-si, Gyeonggi-do, 14057, Korea Tel: +82-31-425-6200 / Fax: +82-31-424-0450 www.kes.co.kr Test report No.: KES-RF-15T0069 Page (26) of (51)

C-3701, Simin-daero 365-401, Dongan-gu, Anyang-si, Gyeonggi-do, 14057, Korea Tel: +82-31-425-6200 / Fax: +82-31-424-0450 www.kes.co.kr Test report No.: KES-RF-15T0069 Page (27) of (51)

802.11n(HT40) // High channel

C-3701, Simin-daero 365-401, Dongan-gu, Anyang-si, Gyeonggi-do, 14057, Korea Tel: +82-31-425-6200 / Fax: +82-31-424-0450 www.kes.co.kr Test report No.: KES-RF-15T0069 Page (28) of (51)

3.3. 6 dB bandwidth

Test setup	_		
EUT		Attenuator	Spectrum analyzer

Test procedure

KDB 558074 v03r03 – section 8.1 option 1 or section 8.2 option 2.

Option 1:

- a) Set RBW = 100 kHz.
- b) Set the video bandwidth(VBW) $\geq 3 \times RBW$.
- c) Detector = peak.
- d) Trace mode = \max hold.
- e) Sweep = auto couple.
- f) Allow the trace to stabilize.
- g) Measure the maximum width of the emission that is constrained by the frequencies associated with the two outermost amplitude points (upper and lower frequencies) that are attenuated by 6 dB relative to the maximum level measured in the fundamental emission.

Option 2:

The automatic bandwidth measurement capability of an instrument may be employed using the X bandwidth mode with X set to 6 dB, if the functionality described above (i.e., RBW = 100 kHz, VBW \geq 3 × RBW, peak detector with maximum hold) is implemented by the instrumentation function. When using this capability, care shall be taken so that the bandwidth measurement is not influenced by any intermediate power nulls in the fundamental emission that might be \geq 6 dB.

Limit

According to \$15.247(a)(2), systems using digital modulation techniques may operate $902 \sim 928$ MHz, $2400 \sim 2483.5$ MHz, and $5725 \sim 5850$ MHz bands. The minimum 6 dB bandwidth shall be at least 500 kHz.

KES Co., Ltd.C-3701, Simin-daero 365-401,
Dongan-gu, Anyang-si, Gyeonggi-do, 14057, Korea
Tel: +82-31-425-6200 / Fax: +82-31-424-0450 www.kes.co.kr

Test report No.: KES-RF-15T0069 Page (29) of (51)

Test results

Operation mode	Frequency(Mz)	6 dB bandwidth(Mb)	Limit(tb)	
	2 412	7.12		
802.11b	2 437	7.12		
	2 462	7.12		
	2 412	16.59		
802.11g	2 437	16.59	0.5	
	2 462	16.59		
	2 412	17.80	0.3	
802.11n (HT20)	2 437	17.80		
(11120)	2 462	17.71		
	2 422	36.58		
802.11n (HT40)	2 437	36.58		
(11110)	2 452	36.47		

C-3701, Simin-daero 365-401, Dongan-gu, Anyang-si, Gyeonggi-do, 14057, Korea Tel: +82-31-425-6200 / Fax: +82-31-424-0450 www.kes.co.kr

Test report No.: KES-RF-15T0069 Page (30) of (51)

802.11b // Low channel

802.11b // Middle channel

C-3701, Simin-daero 365-401, Dongan-gu, Anyang-si, Gyeonggi-do, 14057, Korea Tel: +82-31-425-6200 / Fax: +82-31-424-0450 www.kes.co.kr Test report No.: KES-RF-15T0069 Page (31) of (51)

802.11g // Low channel

C-3701, Simin-daero 365-401, Dongan-gu, Anyang-si, Gyeonggi-do, 14057, Korea Tel: +82-31-425-6200 / Fax: +82-31-424-0450 www.kes.co.kr

Test report No.: KES-RF-15T0069 Page (32) of (51)

802.11g // Middle channel

C-3701, Simin-daero 365-401, Dongan-gu, Anyang-si, Gyeonggi-do, 14057, Korea Tel: +82-31-425-6200 / Fax: +82-31-424-0450 www.kes.co.kr

Test report No.: KES-RF-15T0069 Page (33) of (51)

802.11n(HT20) // Low channel

802.11n(HT20) // Middle channel

C-3701, Simin-daero 365-401, Dongan-gu, Anyang-si, Gyeonggi-do, 14057, Korea Tel: +82-31-425-6200 / Fax: +82-31-424-0450 www.kes.co.kr

Test report No.: KES-RF-15T0069 Page (34) of (51)

802.11n(HT20) // High channel

C-3701, Simin-daero 365-401, Dongan-gu, Anyang-si, Gyeonggi-do, 14057, Korea Tel: +82-31-425-6200 / Fax: +82-31-424-0450 www.kes.co.kr Test report No.: KES-RF-15T0069 Page (35) of (51)

802.11n(HT40) // Middle channel

802.11n(HT40) // High channel

C-3701, Simin-daero 365-401, Dongan-gu, Anyang-si, Gyeonggi-do, 14057, Korea Tel: +82-31-425-6200 / Fax: +82-31-424-0450 www.kes.co.kr Test report No.: KES-RF-15T0069 Page (36) of (51)

3.4. Peak Output power Test setup EUT Attenuator Wideband Power Sensor(with PC)

Test procedure

All data rates and modes were investigated for conducted spurious emissions. Only the conducted emissions of the configuration that produced the worst case emissions are reported in this section.

KDB 558074 v03r03 – section 9.1.2

The maximum peak conducted output power may be measured using a broadband peak RF power meter. The power meter shall have a video bandwidth that is greater than or equal to the DTS bandwidth and shall utilize a fast-responding diode detector.

Limit

According to §15.247(b)(3), For systems using digital modulation in the 902~928 Mb, 2 400~2 483.5 Mb, and 5 725~5 850 Mb bands: 1 Watt. As an alternative to a peak power measurement, compliance with the one Watt limit can be based on a measurement of the maximum conducted out-put power. Maximum Conducted Out-put Power is defined as the total transmit power delivered to all antennas and antenna elements averaged across all symbols in the signaling alphabet when the transmitter is operating at its maximum power control level. Power must be summed across all antennas and antenna elements. The average must not include any time intervals during which the transmitter is off or is transmitting at a reduced power level. If multiple modes of operation are possible (e.g., alternative modulation methods), the maximum conducted output power is the highest total transmit power occurring in any mode.

According to §15.247(b)(4), The conducted output power limit specified in paragraph (b) of this section is based on the use of antennas with directional gains that do not exceed 6 dBi. Except as shown in paragraph (c) of this section, if transmit-ting antennas of directional gain greater than 6 dBi are used, the conducted output power from the intentional radiator shall be reduced below the stated values in paragraphs (b)(1), (b)(2), and (b)(3) of this section, as appropriate, by the amount in dB that the directional gain of the antenna exceeds 6 dBi.

KES Co., Ltd.C-3701, Simin-daero 365-401,
Dongan-gu, Anyang-si, Gyeonggi-do, 14057, Korea
Tel: +82-31-425-6200 / Fax: +82-31-424-0450 www.kes.co.kr

Test report No.: KES-RF-15T0069 Page (37) of (51)

Test results

Test mode	Frequency(Mb)	Results (dBm)	Limit(dBm)
	2 412	8.52	
802.11b	2 437	9.47	
	2 462	10.09	
	2 412	14.33	
802.11g	2 437	15.42	
	2 462	15.81	20
	2 412	14.12	30
802.11n(HT20)	2 437	15.11	
	2 462	15.65	
	2 422	14.08	
802.11n(HT40)	2 437	14.95	
	2 452	15.04	

C-3701, Simin-daero 365-401, Dongan-gu, Anyang-si, Gyeonggi-do, 14057, Korea Tel: +82-31-425-6200 / Fax: +82-31-424-0450 www.kes.co.kr Test report No.: KES-RF-15T0069 Page (38) of (51)

3.5. Power spectral density

Test procedure

KDB 558074_v03r03- section 10.2

Measurement procedure

- a) Set analyzer center frequency to DTS channel center frequency.
- b) Set the span to 1.5 times the DTS channel bandwidth.
- c) Set the RBW to: $3 \text{ kHz} \leq \text{RBW} \leq 100 \text{ kHz}$.
- d) Set the VBW ≥ 3 RBW.
- e) Detector = peak.
- f) Sweep time = auto couple.
- g) Trace mode = max hold.
- h) Allow trace to fully stabilize.
- i) Use the peak marker function to determine the maximum amplitude level within the RBW.
- j) If measured value exceeds limit, reduce RBW (no less than 3 kHz) and repeat.

Limit

According to §15.247€, For digitally modulated systems, the power spectral density conducted from the intentional radiator to the antenna shall not be greater than 8 dBm in any 3 kHz band during any time interval of continuous transmission. This power spectral density shall be determined in accordance with the provisions of paragraph (b) of this section. The same method of determining the conducted output power shall be used to determine the power spectral density.

KES Co., Ltd.C-3701, Simin-daero 365-401,
Dongan-gu, Anyang-si, Gyeonggi-do, 14057, Korea
Tel: +82-31-425-6200 / Fax: +82-31-424-0450 www.kes.co.kr

Test report No.: KES-RF-15T0069 Page (39) of (51)

Test results

Operation mode	Frequency(Mb)	Measured PSD(dBm)	Limit(dBm)
	2 412	-19.94	
802.11b	2 437	-17.62	
	2 462	-17.68	
	2 412	-21.54	
802.11g	2 437	-20.76	
	2 462	-20.03	0
000.11	2 412	-22.18	8
802.11n (HT20)	2 437	-20.61	
(11120)	2 462	-20.26	
	2 422	-24.50	
802.11n (HT40)	2 437	-23.97	
(11170)	2 452	-23.46	

C-3701, Simin-daero 365-401, Dongan-gu, Anyang-si, Gyeonggi-do, 14057, Korea Tel: +82-31-425-6200 / Fax: +82-31-424-0450 www.kes.co.kr Test report No.: KES-RF-15T0069 Page (40) of (51)

802.11b // Low channel

802.11b // Middle channel

C-3701, Simin-daero 365-401, Dongan-gu, Anyang-si, Gyeonggi-do, 14057, Korea Tel: +82-31-425-6200 / Fax: +82-31-424-0450 www.kes.co.kr Test report No.: KES-RF-15T0069 Page (41) of (51)

802.11b // High channel

C-3701, Simin-daero 365-401, Dongan-gu, Anyang-si, Gyeonggi-do, 14057, Korea Tel: +82-31-425-6200 / Fax: +82-31-424-0450 www.kes.co.kr

Test report No.: KES-RF-15T0069 Page (42) of (51)

802.11g // Middle channel

802.11g // High channel

C-3701, Simin-daero 365-401, Dongan-gu, Anyang-si, Gyeonggi-do, 14057, Korea Tel: +82-31-425-6200 / Fax: +82-31-424-0450 www.kes.co.kr

Test report No.: KES-RF-15T0069 Page (43) of (51)

802.11n(HT20) // Low channel

802.11n(HT20) // Middle channel

C-3701, Simin-daero 365-401, Dongan-gu, Anyang-si, Gyeonggi-do, 14057, Korea Tel: +82-31-425-6200 / Fax: +82-31-424-0450 www.kes.co.kr Test report No.: KES-RF-15T0069 Page (44) of (51)

802.11n(HT20) // High channel

802.11n(HT40) // Low channel

C-3701, Simin-daero 365-401, Dongan-gu, Anyang-si, Gyeonggi-do, 14057, Korea Tel: +82-31-425-6200 / Fax: +82-31-424-0450 www.kes.co.kr

Test report No.: KES-RF-15T0069 Page (45) of (51)

802.11n(HT40) // Middle channel

802.11n(HT40) // High channel

C-3701, Simin-daero 365-401, Dongan-gu, Anyang-si, Gyeonggi-do, 14057, Korea Tel: +82-31-425-6200 / Fax: +82-31-424-0450 www.kes.co.kr Test report No.: KES-RF-15T0069 Page (46) of (51)

3.6. AC conducted emission

Frequency range of measurement

150 kHz to 30 MHz

Instrument settings

IF Band Width: 9 klb

Test procedures

The EUT was placed on a non-metallic table 0.8m above the metallic, grounded floor and 0.4m from the reference ground plane wall. The distance to other metallic surfaces was at least 0.8m. Amplitude measurements were performed with a quasi-peak detector and an average detector.

Limit

According to 15.207(a), for an intentional radiator that is designed to be connected to the public utility (AC) power line, the radio frequency voltage that is conducted back onto the AC power line on any frequency or frequencies, within the band 150 kHz to 30 MHz, shall not exceed the limits in the following table, as measured using a 50uH/50 ohm line impedance stabilization network (LISN). Compliance with the provision of this paragraph shall on the measurement of the radio frequency voltage between each power line and ground at the power terminal. The lower applies at the boundary between the frequencies ranges.

Engager of Emission (Alls)	Conducted limit (dBµV/m)			
Frequency of Emission (脏)	Quasi-peak	Average		
0.15 - 0.50	66 - 56*	56 - 46*		
0.50 - 5.00	56	46		
5.00 – 30.0	60	50		

Note.

- a) Decreases with the logarithm of the frequency.
- b) All AC Conducted emission at channels are almost the same, so that <u>802.11b High channel</u> was chosen at representative in final test.

C-3701, Simin-daero 365-401, Dongan-gu, Anyang-si, Gyeonggi-do, 14057, Korea Tel: +82-31-425-6200 / Fax: +82-31-424-0450 www.kes.co.kr Test report No.: KES-RF-15T0069 Page (47) of (51)

 $Test\ results-TX_H$

Test Report

Common Information

Test Description: Conducted Emission

Model No.: API Mode FCC Operator Name: KES

Final Result

Frequency	QuasiPeak	CAverage	Limit	Margin	Meas.	Bandwidth	Line	Corr.
(MHz)	(dBµV)	(dBµV)	(dBµV)	(dB)	Time	(kHz)		(dB)
					(ms)			
0.155000	-	5.58	55.73	50.15	1000.0	9.000	L1	9.7
0.155000	18.96		65.73	46.77	1000.0	9.000	L1	9.7
1.285000	-	-3.02	46.00	49.02	1000.0	9.000	L1	9.7
1.285000	3.39	1	56.00	52.61	1000.0	9.000	L1	9.7
1.300000	1	-5.04	46.00	51.04	1000.0	9.000	L1	9.7
1.300000	0.96	-	56.00	55.04	1000.0	9.000	L1	9.7
16.775000	1	-5.19	50.00	55.19	1000.0	9.000	L1	10.1
16.775000	-3.14	-	60.00	63.14	1000.0	9.000	L1	10.1
23.775000		3.04	50.00	46.96	1000.0	9.000	L1	10.1
23.775000	8.86		60.00	51.14	1000.0	9.000	L1	10.1

C-3701, Simin-daero 365-401, Dongan-gu, Anyang-si, Gyeonggi-do, 14057, Korea Tel: +82-31-425-6200 / Fax: +82-31-424-0450 www.kes.co.kr Test report No.: KES-RF-15T0069 Page (48) of (51)

 $Test\ results-TX_N$

Test Report

Common Information

Test Description: Conducted Emission

Model No.: API Mode FCC Operator Name: KES

Final_Result

Frequency	QuasiPeak	CAverage	Limit	Margin	Meas.	Bandwidth	Line	Corr.
(MHz)	(dBµV)	(dBµV)	(dBµV)	(dB)	Time	(kHz)		(dB)
					(ms)			
0.150000		12.61	56.00	43.39	1000.0	9.000	N	9.6
0.150000	27.48		66.00	38.52	1000.0	9.000	N	9.6
3.540000	-	-3.41	46.00	49.41	1000.0	9.000	N	9.8
3.540000	2.20		56.00	53.80	1000.0	9.000	N	9.8
16.835000		2.86	50.00	47.14	1000.0	9.000	N	10.0
16.835000	5.15		60.00	54.85	1000.0	9.000	N	10.0
23.945000		-0.80	50.00	50.80	1000.0	9.000	N	10.0
23.945000	4.04		60.00	55.96	1000.0	9.000	N	10.0

KES Co., Ltd.C-3701, Simin-daero 365-401,
Dongan-gu, Anyang-si, Gyeonggi-do, 14057, Korea
Tel: +82-31-425-6200 / Fax: +82-31-424-0450 www.kes.co.kr

Test report No.: KES-RF-15T0069 Page (49) of (51)

Appendix A. **Measurement equipment**

Equipment	Manufacturer	Model	Serial No.	Calibration interval	Calibration due.
Spectrum Analyzer	R&S	FSV30	100736	1 year	2016.07.25
8360B Series Swept Signal Generator	HP	83630B	3844A00786	1 year	2016.01.23
Attenuator	HP	8494B	2630A12857	1 year	2016.01.22
Power Meter	Anritsu	ML2495A	1438001	1 year	2016.01.22
Pulse Power Sensor	Anritsu	MA2411B	1339205	1 year	2016.01.26
Loop Antenna	R&S	HFH2-Z2.335.4711.52	826532	2 years	2017.03.03
Trilog-broadband antenna	Schwarzbeck	VULB 9163	9168-713	2 years	2017.05.15
Horn antenna	A.H.	SAS-571	781	2 years	2017.05.07
High Pass Filter	WAINWRIGHT INSTRUMENT	WHJS3000-10TT	1	1 year	2016.07.24
Low Pass Filter	WEINSCHEL	WLK1.0/18G-10TT	1	1 year	2016.07.24
Preamplifier	HP	8447F	2805A02570	1 year	2016.01.23
Brodband preamplifier	Schwarzbeck	BBV9718	9718-246	1 years	2015.10.23
EMI Test Receiver	R&S	ESR3	101781	1 year	2016.05.06
EMI Test Receiver	R&S	ESU26	100552	1 year	2016.05.06
EMI Test Receiver	R&S	ESR3	101783	1 year	2016.05.06
LISN	R&S	ENV216	101137	1 year	2016.02.10

Peripheral devices

_	1 cripheral devices							
Device Manufacturer AC adaptor Ktec		Manufacturer	Model No.	Serial No.				
		KSAPK0110500200D5	N/A					
	Notebook Computer	Samsung Electronics	NT-R519	ZKPA93ES900086Z				