Principe de l'application

- Partage entre utilisateurs
 - texte
 - image
 - vidéo
 - géolocalisation
 - fichier
- Recommandations d'événements
 - personnalisées
 - possibilité de faire suivre à d'autres utilisateurs
- Objectif
 - modéliser les échanges d'informations
 - établir profils et liens entre utilisateurs
 - faire des recommandations personnalisées

• Graphe G = (V, E)

- Graphe G = (V, E)
- ▶ Nœuds $V = \{v_1, \dots, v_n\}$

- Graphe G = (V, E)
- ▶ Nœuds $V = \{v_1, \dots, v_n\}$
- Arrêtes $E = \{e_1, \ldots, e_m\}$

• Graphe
$$G = (V, E)$$

▶ Nœuds
$$V = \{v_1, \dots, v_n\}$$

$$ightharpoonup$$
 Arrêtes $E = \{e_1, \ldots, e_m\}$

$$e = (u, v) \in V \times V$$

• Graphe
$$G = (V, E)$$

▶ Nœuds
$$V = \{v_1, \ldots, v_n\}$$

• Arrêtes
$$E = \{e_1, \dots, e_m\}$$

$$ightharpoonup e = (u, v) \in V \times V$$

•
$$e = \{(u, v), (v, u)\}$$

• Graphe
$$G = (V, E)$$

▶ Nœuds
$$V = \{v_1, ..., v_n\}$$

$$ightharpoonup$$
 Arrêtes $E = \{e_1, \ldots, e_m\}$

$$e = (u, v) \in V \times V$$

•
$$e = \{(u, v), (v, u)\}$$

•
$$e = (u, v, l) \in V \times V \times L$$

- Degré :
 - ▶ entrant, sortant
 - moyenne, minimum, maximum
 - distribution (loi puissance)

- Degré :
 - ▶ entrant, sortant
 - moyenne, minimum, maximum
 - distribution (loi puissance)
- Diamètre
 - réel
 - efficace

- Degré :
 - entrant, sortant
 - moyenne, minimum, maximum
 - distribution (loi puissance)
- Diamètre
 - réel
 - efficace
- ► Conductance / expansion

- Degré :
 - entrant, sortant
 - moyenne, minimum, maximum
 - distribution (loi puissance)
- Diamètre
 - réel
 - efficace
- Conductance / expansion
- Matrice d'adjacence, matrice laplacienne

Génération de graphes

▶ Objectif : pouvoir générer des graphes aux propriétés similaires

Génération de graphes

- ▶ Objectif : pouvoir générer des graphes aux propriétés similaires
- Méthodes
 - Attachement préférentiel (Newman), Fitness model :
 - lorsqu'un réseau grandit, les nouveaux nœuds ne se connectent pas aléatoirement
 - ▶ ils se connectent aux nœuds les plus attirants
 - Kronecker (Leskovec)

Génération de graphes

- ▶ Objectif : pouvoir générer des graphes aux propriétés similaires
- Méthodes
 - Attachement préférentiel (Newman), Fitness model :
 - lorsqu'un réseau grandit, les nouveaux nœuds ne se connectent pas aléatoirement
 - ▶ ils se connectent aux nœuds les plus attirants
 - Kronecker (Leskovec)
- Optimiser les paramètres des modèles pour obtenir des graphes aux propriétés similaires.

- ► Idée :
 - Un graphe peu contenir des sous-graphes très connectés
 - Deux utilisateurs d'un même sous-graphe peuvent avoir un profil similaire

► Idée :

- Un graphe peu contenir des sous-graphes très connectés
- Deux utilisateurs d'un même sous-graphe peuvent avoir un profil similaire

Méthode :

- Sélection d'un critère de qualité de partionnement (modularité)
- Sélection des deux sous-graphes maximisant le critère
- Itération sur les sous-graphes jusqu'à ce que le critère n'augmente plus

- ► Idée :
 - Un graphe peu contenir des sous-graphes très connectés
 - Deux utilisateurs d'un même sous-graphe peuvent avoir un profil similaire
- Méthode :
 - Sélection d'un critère de qualité de partionnement (modularité)
 - Sélection des deux sous-graphes maximisant le critère
 - Itération sur les sous-graphes jusqu'à ce que le critère n'augmente plus
- ► Graphe monolabel (Newman 2006)

- ► Idée :
 - Un graphe peu contenir des sous-graphes très connectés
 - Deux utilisateurs d'un même sous-graphe peuvent avoir un profil similaire
- Méthode :
 - Sélection d'un critère de qualité de partionnement (modularité)
 - Sélection des deux sous-graphes maximisant le critère
 - Itération sur les sous-graphes jusqu'à ce que le critère n'augmente plus
- Graphe monolabel (Newman 2006)
- Graphe multilabel (Lelarge, Massoulié, Xu 2013)

Propagation de l'information

▶ Détection de communauté : structure du graphe

Propagation de l'information

- Détection de communauté : structure du graphe
- Modéliser la propagation de l'information
 - ► Théorie de la survie
 - Influences dans un réseau, théorie de la percolation

Autres problèmes

- Statique vs dynamique :
 - Beaucoup de modèles/méthodes basées sur des graphes statiques
 - ▶ En réalité, G(t) = (V(t), E(t))
 - Nécessité de méthodes adaptées (online)

Autres problèmes

- Statique vs dynamique :
 - Beaucoup de modèles/méthodes basées sur des graphes statiques
 - ▶ En réalité, G(t) = (V(t), E(t))
 - Nécessité de méthodes adaptées (online)
- Parcimonie des recommandations :
 - Beaucoup de possibilités de recommandations
 - Ne pas submerger de recommandations
 - Introduction d'une pénalité