A Book of Abstract Algebra (2nd Edition)

So f(x) has no zeros in a and thus is irreducible over a a.

Then there exist an extension field E of $_2$ containing a zero α of f(x).

Since every element β of a simple extension $E=F\left(\alpha\right)$ can be uniquely expressed in the form $\beta=b_0+b_1\alpha+...+b_{n-1}\alpha^{n-1} \text{ where } b_i\in F \text{ and } \alpha \text{ is algebraic over } F \text{ , } _2\left(\alpha\right) \text{ has }$ elements $0,\ 1,\ \alpha,\ \alpha^2,\ 1+\alpha,\ 1+\alpha+\alpha^2,\ 1+\alpha^2,\ \alpha+\alpha^2.$

This gives a field of eight elements.

Comment