TRABALHO ESTUDOS INDEPENDENTES NOME:

VALOR: 40 PONTOS

ELETRICIDADE

Carga elétrica

A matéria é formada de pequenas partículas, os átomos. Cada átomo, por sua vez, é constituído de partículas ainda menores, no núcleo: os prótons e os nêutrons; na eletrosfera: os elétrons. Às partículas eletrizadas (elétrons e prótons) chamamos "carga elétrica".

Condutores de eletricidade

São os meios materiais nos quais há facilidade de movimento de cargas elétricas, devido a presença de "elétrons livres". Ex: fio de cobre, alumínio, etc.

Isolantes de eletricidade

São os meios materiais nos quais não há facilidade de movimento de cargas elétricas. Ex: vidro, borracha, madeira seca, etc.

Princípios da eletrostática

"Cargas elétricas de mesmo sinal se repelem e de sinais contrários se atraem "

"Num sistema eletricamente isolado, a soma das cargas elétricas é constante."

Corpo neutro -> Nº prótons = Nº elétrons Corpo positivo -> O corpo perdeu elétrons Corpo negativo -> O corpo ganhou elétrons

Medida da carga elétrica

 $\Delta q = - \text{ n.e }$ (se houver excesso de elétrons) $\Delta q = + \text{ n.e }$ (se houver falta de elétrons)

 $e = \pm 1,6.10^{-19} C$

 Δq = quantidade de carga (C) n = número de cargas

e = carga elementar (C)

unidade de carga elétrica no SI é o coulomb (C)

É usual o emprego dos submúltiplos:

1 microcoulomb = $1 \mu C = 10^{-6} C$

 $1 \text{ milecoulomb} = 1 \text{mC} = 10^{-3} \text{C}$

Exercícios

- 1. Na eletrosfera de um átomo de magnésio temos 12 elétrons. Qual a carga elétrica de sua eletrosfera?
- 2. Na eletrosfera de um átomo de nitrogênio temos 10 elétrons. Qual a carga elétrica de sua eletrosfera?
- 3. Um corpo tem uma carga igual a -32. 10⁻⁶ C. Quantos elétrons há em excesso nele?
- 4. É dado um corpo eletrizado com carga + 6,4.10⁻⁶C. Determine o número de elétrons em falta no corpo.
- 5. Quantos elétrons em excesso tem um corpo eletrizado com carga de -16.10⁻⁹ C?

- 6. Qual o erro na afirmação: "Uma caneta é considerada neutra eletricamente, pois não possui nem cargas positivas nem cargas negativas"?
- 7. O que acontece quando se acrescentam elétrons em um ponto de um isolante? E de um condutor?
- 8. Que tipo de carga elétrica se movimenta em um fio metálico?
- 9. O que são elétrons livres? Eles existem nos materiais condutores ou nos isolantes?

- 10. Quantos tipos de carga elétrica existem na natureza? Como se denominam?
- 11. Em que condições temos atração entre duas cargas elétricas? E em que condições elas se repelem?
- 12. O que é ligação terra?

PROCESSOS DE ELETRIZAÇÃO

Eletrização por atrito

Quando dois corpos são atritados, pode ocorrer a passagem de elétrons de um corpo para outro.

Eletrização por contato

Quando colocamos dois corpos condutores em contato, um eletrizado e o outro neutro, pode ocorrer a passagem de elétrons de um para o outro, fazendo com que o corpo neutro se eletrize.

Eletrização por indução

A eletrização de um condutor neutro pode ocorrer por simples aproximação de um corpo eletrizado, sem que haja contato entre eles.

Ligação com a Terra

"Ao se ligar um condutor eletrizado à Terra, ele se descarrega."

Pêndulo eletrostático

O pêndulo eletrostático é constituído de uma esfera leve e pequena. Aproximando-se um corpo eletrizado da esfera neutra, ocorrerá o fenômeno da indução eletrostática na esfera e ela será atraída pelo corpo eletrizado.

Exercícios

- 1. Um corpo A, com carga Q_A = 8μC, é colocado em contato com um corpo B, inicialmente neutro. Em seguida, são afastados um do outro. Sabendo que a carga do corpo B, após o contato, é de 5μC, calcule a nova carga do corpo A.
- 2. Duas esferas metálicas idênticas, de cargas 4. 10-6C e 6.10-6C, foram colocadas em contato. Determine a carga de cada uma após o contato.

- 3. Para evitar a formação de centelhas elétricas, os caminhões transportadores de gasolina costumam andar com uma corrente metálica arrastando-se pelo chão. Explique.
- 4. Segurando na mão uma esfera eletrizada de metal, é possível torná-la eletrizada? Por quê? Como se deve proceder para eletrizar essa esfera?
- 5. Um pedaço de borracha é atritado em uma certa região de sua superfície, adquirindo uma carga negativa naquela região. Esta carga se distribuirá na superfície de borracha? Por que?

- 6. Por que, em dias úmidos, um corpo eletrizado perde sua carga com relativa rapidez?
- 7. Que partícula é transferida de um corpo para o outro no processo de eletrização por atrito?

LEI DE COULOMB

"As cargas elétricas exercem forças entre si. Essas forças obedecem ao princípio da ação e reação, ou seja, têm a mesma intensidade, a mesma direção e sentidos opostos."

F= força de interação entre as cargas (N)

Q = carga(C)

d = distância entre as cargas (m)

K = constante eletrostática (N.m²/C²)

 $K_{v\acute{a}cuo} = 9.10^9 \; N.m^2/C^2$

Exercícios

- 1. Dois corpos foram eletrizados positivamente. Um dos corpos ficou com uma carga de 10⁻⁵ C e o outro com uma carga de 10⁻⁷C. Determine a força de repulsão que aparecerá entre eles, se forem colocados a uma distância de 10⁻³ m um do outro. Considere K_{vácuo} = 9.10⁹ N.m²/C²
- 2. Duas cargas de 8.10⁻⁴C e 2.10⁻³C estão separadas por 6 m, no vácuo. Calcule o valor da força de repulsão entre elas.
- 3. Duas cargas elétricas $Q_1 = 10.10^{-6}$ C e $Q_2 = -2.10^{-6}$ C estão situadas no vácuo e separadas por uma distância de 0,2 m. Qual é o valor da força de atração entre elas?
- 4. Uma carga de 10^{-12} C é colocada a uma distância de 10^{-5} m de uma carga Q. Entre as cargas aparece uma força de atração igual a 27.10^{-4} N. Determine o valor da carga Q. Considere $K_{vácuo} = 9.10^9$ N.m²/C²

- 5. Uma carga de 10⁻⁹ C é colocada a uma distância de 2.10⁻² m de uma carga Q. Entre as cargas aparece uma força de atração igual a 9.10⁻⁵ N. Determine o valor da carga Q. Considere K_{vácuo} = 9.10⁹ N.m²/C²
- 6. A que distância no vácuo devem ser colocadas duas cargas positivas e iguais a 10⁻⁴C, para que a força elétrica de repulsão entre elas tenha intensidade 10 N?
- Colocam-se no vácuo duas cargas elétricas iguais a uma distância de 2 m uma da outra. A intensidade da força de repulsão entre elas é de 3,6.10² N. Determine o valor das cargas.
- 8. Duas cargas elétricas puntiformes positivas e iguais a Q estão situadas no vácuo a 2 m de distância, Sabendo que a força de repulsão mútua tem intensidade 0,1 N, calcule Q.

Questões

- É possível uma carga elétrica ser atraída por três outras cargas fixas e permanecer em equilíbrio? Faça um esquema justificando a resposta.
- 10. Descreva o método utilizado por Coulomb para medir a força elétrica.
- 11. A força de interação elétrica obedece ao princípio da ação e reação?

Exercícios complementares

- 12. A distância entre um elétron e o próton no átomo de hidrogênio é da ordem de 5,3.10⁻¹¹m. Determine a a força de atração eletrostática entre as partículas.
- 13. Uma pequena esfera recebe uma carga de $40\,^{\mu}\text{C}$ e outra esfera, de diâmetro igual, recebe uma carga - $10\,^{\mu}\text{C}$. As esferas são colocadas em contato e afastadas de 5.10^{-2} m. Determine a força de interação entre elas.
- 14. Duas cargas puntiformes Q₁ = 10⁻⁶ C e Q₂ = 4.10⁻⁶ C estão fixas nos pontos A e B e separadas pela distância de 0,3 m no vácuo. Determine a força elétrica resultante sobre uma terceira carga Q₃ = 2.10⁻⁶ C, colocada no ponto médio do segmento AB.

 Q_1 Q_3 Q_2

CAMPO ELÉTRICO

"Existe uma região de influência da carga Q onde qualquer carga de prova q, nela colocada, estará sob a ação de uma força de origem elétrica. A essa região chamamos de campo elétrico."

O campo elétrico E é uma grandeza vetorial. A unidade de E no SI é N/C.

$$\vec{E} = \frac{F}{q}$$

E = Intensidade do campo elétrico (N/C)

F = Força(N)

q = carga de prova (C)

Orientação do campo elétrico

F

Exercícios

- 1. Calcule o valor do campo elétrico num ponto do espaço, sabendo que uma força de 8N atua sobre uma carga de 2C situada nesse ponto.
- 2. Devido ao campo elétrico gerado por uma carga Q, a carga $q = +2.10^{-5}$ fica submetida à força elétrica $F = 4.10^{-2}$ N. Determine o valor desse campo elétrico.
- 3. O corpo eletrizado Q, positivo, produz num ponto P o campo elétrico E, de intensidade 2.10⁵ N/C. Calcule a intensidade da força produzida numa carga positiva q = 4.10⁻⁶ C colocada em P.
- 4. Em um ponto do espaço, o vetor campo elétrico tem intensidade 3,6.10³ N/C. Uma carga puntiforme de 1.10⁻⁵ C colocada nesse ponto sofre a ação de uma força elétrica. Calcule a intensidade da força.
- 5. Uma carga de prova q = -3.10⁻⁶ C, colocada na presença de um campo elétrico E, fica sujeita a uma força elétrica de intensidade 9N, horizontal, da direita para a esquerda. Determine a intensidade do vetor campo elétrico e sua orientação.
- 6. Num ponto de um campo elétrico, o vetor campo elétrico tem direção vertical, sentido para baixo e intensidade 5.10³ N/C. Colocase, neste ponto, uma pequena esfera de peso 2.10⁻³ N e eletrizada com carga desconhecida. Sabendo que a pequena esfera fica em equilíbrio, determine: a) A intensidade, a direção e o sentido da força elétrica que atua na carga; b) O valor da carga.
- 7. Sobre uma carga de 2C, situada num ponto P, age uma força de 6N. No mesmo ponto, se substituirmos a carga de por uma outra de 3C, qual será o valor da força sobre ela?
- 8. Sobre uma carga de 4C, situada num ponto P, atua uma força de 8N. Se substituirmos a carga de 4C por uma outra de 5C, qual será a intensidade da força sobre essa carga quando colocada no ponto P?

Questões

9. O que acontece com um corpo eletrizado quando colocado numa região onde existe um campo elétrico?

Campo elétrico de uma carga puntiforme

"O vetor campo elétrico em um ponto P independe da carga de prova nele colocada."

Q = carga que gera o campo (C)

d = distância da carga ao ponto P

K = constante eletrostática (N.m²/C²)

 $K_{v\acute{a}cuo} = 9.10^9 \text{ N.m}^2/\text{C}^2$

Exercícios

- 1. Calcule o campo elétrico criado por uma carga $Q = 2.10^{-6}$ C, situada no vácuo, em um ponto distante 3.10^{-2} m de Q.
- 2. Calcule o campo elétrico gerado por uma carga Q = 4.10⁻⁶ C, situada no vácuo, em um ponto distante 0,6m de Q. Faça também um esquema representando a carga Q e o vetor campo elétrico.
- 3. Uma carga Q, positiva, gera no espaço um campo elétrico. Num ponto P, a 0,5m dela o campo elétrico tem intensidade E = 14,4.10⁶ N/C. Sendo o meio o vácuo, determine Q.
- 4. Considere uma carga Q, fixa, de -5.10⁻⁶ C, no vácuo. a) Determine o campo elétrico criado por essa carga num ponto A localizado a 0,2 m da carga; b) Determine a força elétrica que atua sobre uma carga q = 4.10⁻⁶ C, colocada no ponto A.
- 5. O diagrama representa a intensidade do campo elétrico, originado por uma carga Q, fixa, no vácuo, em função da distância à carga. Determine: a) o valor da carga Q, que origina o campo; b) o valor do campo elétrico situado num ponto P, a 0,5 m da carga Q.

5

ENERGIA POTENCIAL ELÉTRICA

"Energia potencial corresponde a capacidade da força elétrica realizar trabalho."

 E_P = Energia potencial elétrica (J)

 $Q = carga \ elétrica (C)$

q = carga de prova (C)

d = distância entre as cargas (m)

K = constante eletrostática (N.m²/C²)

 $K_{v\acute{a}cuo} = 9.10^9 \text{ N.m}^2/\text{C}^2$

A energia potencial é uma grandeza escalar. No SI, a energia é medida em Joule (J).

Exercícios

- 6. No campo elétrico produzido por uma carga pontual $Q = 3.10^{-2}$ C, qual é a energia potencial elétrica de uma carga $q = 3.10^{-7}$ C, colocada a 12.10^{-2} m de Q? Considere as cargas no vácuo.
- 7. No campo produzido por uma carga pontual $Q = 5.10^{-3}$ C, qual é a energia potencial elétrica de uma carga $q = -4.10^{-8}$ C, situada a 9.10^{-2} m de Q? Considere as cargas no vácuo.

Ouestões

- 8. Do ponto de vista energético, qual a semelhança entre dois blocos unidos por uma mola, comprimida entre eles, e dois objetos próximos, eletrizados com cargas de mesmo sinal?
- 9. Quando uma carga elétrica se aproxima de outra de sinal contrário, a sua energia potencial elétrica aumenta ou diminui?
- 10. Quando uma carga elétrica se afasta de outra devido à repulsão mútua, a energia potencial

elétrica aumenta ou diminui? Quanto vale a energia potencial no infinito?

POTENCIAL ELÉTRICO

"Com relação a um campo elétrico, interessanos a capacidade de realizar trabalho, associada ao campo em si, independentemente do valor da carga q colocada num ponto P desse campo."

O potencial elétrico, V, é uma grandeza escalar. No SI, o potencial é medido em volt (V)

Exercícios

- A energia potencial elétrica de uma carga q, situada no ponto P de um campo elétrico, vale 40 J. Calcule o potencial elétrico no ponto P, quando q = 5 μC.
- 2. A energia potencial elétrica de uma carga q, situada no ponto P de um campo elétrico vale -20 J. Calcule o potencial elétrico no ponto P, quando q = 0,05 C.
- 3. Uma carga Q tem um potencial de 12 V em um ponto P. Qual é a energia potencial elétrica de uma carga q = 5 μC, colocada no ponto P?
- 4. No campo elétrico produzido por uma carga pontual Q = 4.10⁻⁷ C, calcule o potencial elétrico em um ponto P, situado a 2m de Q. O meio é o vácuo.
- 5. Determine a energia potencial elétrica que uma carga de 5 ^{\(\mu\)}C adquire a 0,1m de uma carga de 0,2 ^{\(\mu\)}C, localizada no vácuo.
- 6. No campo elétrico criado por uma carga elétrica Q= 3 μC, determine: a) o potencial elétrico num ponto P situado a 0,3 m da carga Q; b) a energia potencial elétrica que uma carga q= 2 μC adquire no ponto P. O meio é o vácuo.

POTENCIAL PRODUZIDO POR VÁRIAS CARGAS

"Para obtermos o potencial produzido por várias cargas num mesmo ponto P, calculamos inicialmente o potencial que cada uma produziria se estivesse sozinha, a seguir somamos os potenciais calculados."

$$V_1 = \frac{K.Q_1}{d_1}$$
 , $V_2 = \frac{K.Q_2}{d_2}$, etc

$$\mathbf{V}_{\mathbf{P}} = \mathbf{V}_{!} + \mathbf{V}_{2} + \mathbf{V}_{3}$$

Exercícios

7. Calcule o potencial do ponto P da figura abaixo. Dados: $Q_1 = 10.10^{-6}$ C; $Q_2 = -30.10^{-6}$ C; $Q_3 = 5.10^{-6}$ C. O meio é o vácuo

8. As cargas da figura abaixo estão alinhadas sobre uma reta. Determine o potencial elétrico do ponto P.

RELAÇÃO ENTRE TRABALHO E DIFERENÇA DE POTENCIAL (DDP)

"O trabalho realizado pela força elétrica, no deslocamento de uma carga q de um ponto A até um ponto B, pode ser calculado a partir dos potenciais dos pontos A e B."

$$\tau_{_{AB}} {=} \ q \ (V_{_{A}} {-} \ V_{_{B}}) \qquad \qquad \tau_{_{AB}} {=} \ q.U \label{eq:tau_AB}$$

U = diferença de potencial (ddp), medido em volts.

$$U = V_A - V_B$$

Exercícios

- Determinar o trabalho realizado pela força elétrica para transportar uma carga q = 6.10⁻⁶ C de um ponto A até um ponto B, cujos potenciais são, respectivamente, 60V e 40V.
- 2. Uma partícula eletrizada com carga q=7,5 µ C encontra-se num campo elétrico. A partícula é deslocada de um ponto A (V_A=30V) até um ponto B (V_B=18V). Qual o trabalho da força elétrica?
- 3. Num campo elétrico, transporta-se uma carga q de 2.10⁻⁶C de ponto X até um ponto Y. O trabalho da força elétrica é de -6.10⁻⁵J. Determine a ddp entre os pontos X e Y.
- 4. No campo elétrico de carga Q=3 µC são dados dois pontos, A e B, conforme a figura abaixo. Determine: a) os potenciais elétricos de A e de B; b) o trabalho da força elétrica que atua sobre uma carga elétrica q = 1 µC, no deslocamento de A para B. O meio é o vácuo.

CORRENTE ELÉTRICA

"As cargas elétricas em movimento ordenado constituem a corrente elétrica. As cargas elétricas que constituem a corrente elétrica são os elétrons livres, no caso do sólido, e os íons, no caso dos fluídos."

Intensidade da corrente elétrica

$$i = \frac{\Delta q}{\Delta t}$$

 $\Delta q = n.e$

i = corrente elétrica (A)

 $\Delta q = \text{carga elétrica}(C)$

 $\Delta t = \text{tempo (s)}$

n = número de cargas

e = carga elementar (C)

 $e = 1.6.10^{-19} C$

Unidade de corrente elétrica no SI é ampère (A)

Tipos de corrente

- Corrente contínua

É aquela cujo sentido se mantém constante.

Ex: corrente de uma bateria de carro, pilha, etc.

- Corrente alternada

É aquela cujo sentido varia alternadamente.

Ex: corrente usada nas residências.

Propriedade gráfica

"No gráfico da corrente em função do tempo, a área sob a curva, é numericamente igual a quantidade de carga que atravessa o condutor."

Exercícios

- 1. Por uma secção transversal de um fio de cobre passam 20C de carga em 2 segundos. Qual é a corrente elétrica?
- 2. Em cada minuto, a secção transversal de um condutor metálico é atravessada por uma quantidade de carga elétrica de 12C. Qual a corrente elétrica que percorre o condutor?
- 3. O filamento de uma lâmpada é percorrido por uma corrente de 2A. Calcule a carga elétrica que passa pelo filamento em 20 segundos.
- 4. Um condutor metálico é percorrido por uma corrente de 10.10⁻³A. Qual o intervalo de tempo necessário para que uma quantidade de carga elétrica igual a 3C atravesse uma secção transversal do condutor?
- 5. Pela secção transversal de um condutor metálico passam 6.10^{20} elétrons durante 2s. Qual a corrente elétrica que atravessa o condutor? É dada a carga elétrica elementar: $e = 1,6.10^{-19}$ C.
- 6. Um condutor metálico é percorrido por uma corrente elétrica contínua de 8A. Determine o número de elétrons que atravessam uma secção transversal do condutor em 5s. É dada a carga elétrica elementar: e = 1,6.10⁻¹⁹ C.
- 7. Um condutor é percorrido por uma corrente de intensidade 20A. Calcule o número de elétrons que passam por uma secção transversal do condutor em 1s (e = 1,6.10⁻¹⁹ C).
- 8. O gráfico abaixo ilustra a variação da corrente elétrica em um fio condutor, em função do tempo. Qual é a carga elétrica que passa por uma secção transversal desse condutor, em 5s?

9. O gráfico abaixo representa a corrente elétrica em um fio condutor, em função do tempo. Qual é a carga elétrica que passa por uma secção transversal desse condutor, em 3s?

10. No gráfico tem-se a intensidade da corrente elétrica através de um condutor em função do tempo. Determine a carga que passa por uma secção transversal do condutor em 8s.

Ouestões

- 1. Por que alguns elétrons recebem a denominação de elétrons livres?
- 2. O que diferencia a corrente elétrica produzida por uma pilha da corrente elétrica produzida numa usina hidrelétrica?
- 3. Diga, com suas palavras, o que é uma corrente elétrica.
- 4. O que é necessário para ser estabelecida uma corrente elétrica num fio condutor?
- 5. Em que é usada a fita isolante? Por quê?

Exercícios complementares

- 11. A corrente elétrica de um aquecedor elétrico é 7,5 A. Qual a quantidade de carga elétrica que passa pelo aquecedor em 30 segundos?
- 12. Um fio é atravessado por 2.10²⁰ elétrons em 20s. Qual a intensidade da corrente elétrica nesse fio?
- 13. Uma lâmpada de lanterna é atravessada por uma carga de 90 C no intervalo de tempo de

1 minuto. Qual a intensidade da corrente, em ampère?

EFEITOS DA CORRENTE ELÉTRICA

Na passagem de uma corrente por um condutor observam-se alguns efeitos, que veremos a seguir.

a) Efeito térmico ou efeito Joule

Qualquer condutor sofre um aquecimento ao ser atravessado por uma corrente elétrica.

Esse efeito é a base de funcionamento dos aquecedores elétricos, chuveiros elétricos, secadores de cabelo, lâmpadas térmicas etc.

b) Efeito luminoso

Em determinadas condições, a passagem da corrente elétrica através de um gás rarefeito faz com que ele emita luz. As lâmpadas fluorescentes e os anúncios luminosos. são aplicações desse efeito. Neles há a transformação direta de energia elétrica em energia luminosa.

c) Efeito magnético

Um condutor percorrido por uma corrente elétrica cria, na região próxima a ele, um campo magnético. Este é um dos efeitos mais importantes, constituindo a base do funcionamento dos motores, transformadores, relés etc.

d) Efeito químico

Uma solução eletrolítica sofre decomposição, quando é atravessada por uma corrente elétrica. É a eletrólise. Esse efeito é utilizado, por exemplo, no revestimento de metais: cromagem, niquelação etc.

Questões

- 1. Por meio de qual processo se obtém luz numa lâmpada de filamento?
- 2. Cite um exemplo onde o aquecimento de um fio condutor é inconveniente. Cite um exemplo onde o aquecimento é desejável.
- 3. Qual a propriedade da corrente elétrica que permitiu a construção dos primeiros instrumentos de medida?

4. Compare as lâmpadas incandescentes e as lâmpadas fluorescentes e estabeleça as vantagens e desvantagens de cada um dos tipos.

ELEMENTOS DE UM CIRCUITO ELÉTRICO

Para se estabelecer uma corrente elétrica são necessários, basicamente: um gerador de energia elétrica, um condutor em circuito fechado e um elemento para utilizar a energia produzida pelo gerador. A esse conjunto denominamos circuito elétrico.

a) Gerador elétrico

É um dispositivo capaz de transformar em energia elétrica outra modalidade de energia. O gerador não gera ou cria cargas elétricas. Sua função é fornecer energia às cargas elétricas que o atravessam. Industrialmente, os geradores mais comuns são os químicos e os mecânicos.

- · Químicos: aqueles que transformam energia química em energia elétrica. Exemplos: pilha e bateria.
- · *Mecânicos*: aqueles que transformam energia mecânica em elétrica. Exemplo: dínamo de motor de automóvel.

b) Receptor elétrico

É um dispositivo que transforma energia elétrica em outra modalidade de energia, não exclusivamente térmica. O principal receptor é o motor elétrico, que transforma energia elétrica em mecânica, além da parcela de energia dissipada sob a forma de calor.

1

c) Resistor elétrico

É um dispositivo que transforma toda a energia elétrica consumida integralmente em calor. Como exemplo, podemos citar os aquecedores, o ferro elétrico, o chuveiro elétrico, a lâmpada comum e os fios condutores em geral.

d) Dispositivos de manobra

São elementos que servem para acionar ou desligar um circuito elétrico. Por exemplo, as chaves e os interruptores.

e) Dispositivos de segurança

São dispositivos que, ao serem atravessados por uma corrente de intensidade maior que a prevista, interrompem a passagem da corrente elétrica, preservando da destruição os demais elementos do circuito. Os mais comuns são os fusíveis e os disjuntores.

f) Dispositivos de controle

São utilizados nos circuitos elétricos para medir a intensidade da corrente elétrica e a ddp existentes entre dois pontos, ou, simplesmente, para detectá-las. Os mais comuns são o amperímetro e o voltímetro

· Amperimetro: aparelho que serve para medir a intensidade da corrente elétrica.

· *Voltímetro*: aparelho utilizado para medir a diferença de potencial entre dois pontos de um circuito elétrico.

RESISTORES

"Resistores são elementos de circuito que consomem energia elétrica, convertendo-a integralmente em energia térmica."

Lei de Ohm

U = (ddp) diferença de potencial (V)

 $R = resistência elétrica (\Omega)$

i = corrente elétrica (A)

No SI, a unidade de resistência elétrica é o ohm (Ω)

Curva característica de um resistor ôhmico

$$\frac{U}{\cdot} = R$$
 (constante)

Exercícios

- 1. Um chuveiro elétrico é submetido a uma ddp de 220V, sendo percorrido por uma corrente elétrica de 10A. Qual é a resistência elétrica do chuveiro?
- Determine a ddp que deve ser aplicada a um resistor de resistência 6Ω para ser atravessado por uma corrente elétrica de 2A.

- 3. Uma lâmpada incandescente é submetida a uma ddp de 110V, sendo percorrida por uma corrente elétrica de 5,5A. Qual é, nessas condições, o valor da resistência elétrica do filamento da lâmpada.
- 4. Nos extremos de um resistor de $200\,\Omega$, aplica-se uma ddp de 100V. Qual a corrente elétrica que percorre o resistor?
- 5. Um resistor ôhmico, quando submetido a uma ddp de 20V, é percorrido por uma corrente elétrica de 4 A. Para que o resistor seja percorrido por uma corrente elétrica de 3A, que ddp deve ser aplicada a ele?
- 6. A curva característica de um resistor ôhmico é dada abaixo. Determine sua resistência elétrica.

7. A curva característica de um resistor ôhmico é dada abaixo. Determine sua resistência elétrica R e o valor de i₂.

8. A curva característica de um resistor é dada abaixo. Determine sua resistência elétrica R e o valor de U₂ e i₂.

11

POTÊNCIA DISSIPADA NO RESISTOR

$$P = U.i$$
 $P = R.i^2$ $P = \frac{U^2}{R}$

Unidade de potência no SI: W (watt)

Exercícios

- 9. Quando uma lâmpada é ligada a uma tensão de 120V, a corrente que flui pelo filamento da lâmpada vale 1A. Qual a potência da lâmpada?
- 10. Calcule a corrente que percorre o filamento de uma lâmpada de 120V e 60W.
- 11. Em um resistor, de resistência igual a 10Ω , passa uma corrente com intensidade de 2A. Calcule a potência dissipada no resistor.
- 12. De acordo com o fabricante, um determinado resistor de 100 Ω pode dissipar, no máximo, potência de 1 W. Qual é a corrente máxima que pode atravessar esse resistor?
- 13. Num certo carro, o acendedor de cigarros tem potência de 48W. A ddp no sistema elétrico desse carro é 12V. Qual é a resistência elétrica do acendedor de cigarros?
- 14. Sob tensão de 10V, um determinado resistor dissipa 5W de potência. Qual é a resistência desse resistor?

- 15. Uma lâmpada de filamento apresenta o valor escrito sobre o vidro (40W, 60W, 100W). Qual o significado desse valor?
- 16. que acontecerá se ligarmos uma lâmpada com as inscrições (60W-110V) na tensão 220V. Por quê?
- 17. O que seria um condutor elétrico ideal? Você acha que os fios da instalação de sua casa podem ser considerados condutores ideais?

- 18. Como você explica o aquecimento de fios metálicos, quando uma corrente elétrica passa por eles?
- 19. Indique a principal transformação de energia que ocorre com o funcionamento de: um chuveiro; um liquidificador; uma lâmpada incandescente.

ENERGIA CONSUMIDA

 $E = P. \Delta t$

E = energia (J, KWh)

P = potência (W)

 $\Delta t = \text{tempo (s)}$

No SI a unidade de energia é o joule (J), mas também é muito utilizado o kWh.

1kWh é a energia consumida, com potência de 1kW, durante 1 hora.

Exercícios

- 1. Qual é o consumo de energia, durante um mês, em kWh, de um chuveiro de 4000W, que é utilizado meia hora por dia?
- 2. Qual é o consumo de energia, em kWh de uma lâmpada de 60W que fica acesa 5h por dia durante os 30 dias do mês?
- 3. Em um ferro elétrico, lê-se a inscrição 600W-120V. Isso significa que, quando o ferro elétrico estiver ligado a uma tensão de 120V, a potência desenvolvida será de 600W. Calcule a energia elétrica (em kWh) consumida em 2h.
- 4. Uma torradeira dissipa uma potência de 3000W. Ela é utilizada durante 0,5h. Pedese: a) a energia elétrica consumida em kWh; b) o custo da operação, considerando o preço do kWh igual a R\$ 0,12.
- 5. Uma lâmpada de 100W permanece acesa durante 20h. a) Determine a energia elétrica consumida em kWh; b) Determine o custo que essa lâmpada representa considerando o preço do kWh igual a R\$ 0,12.
- 6. Um ferro elétrico consome uma potência de 1100W quando ligado a uma tensão de 110V. a) Qual a energia consumida (em kWh) em 2 horas; b) Qual é o custo da

- operação para 2 horas, sabendo que o preço do kWh é de R\$ 0,12?
- 7. Um fio de resistência elétrica igual a 50Ω é submetido a uma ddp de 20V. Qual a energia dissipada no fio em 1 minuto?

ASSOCIAÇÃO DE RESISTORES

Associação de resistores em série

"Vários resistores estão associados em série quando são ligados um em seguida do outro, de modo a serem percorridos pela mesma corrente."

$$\stackrel{i}{\longrightarrow} \stackrel{R_1}{\longleftarrow} \stackrel{R_2}{\longleftarrow} \stackrel{R_3}{\longleftarrow} \stackrel{}{\longleftarrow} \stackrel{}{\longrightarrow} \stackrel{}{\longleftarrow} \stackrel{}{\longrightarrow} \stackrel{}{\longleftarrow} \stackrel{}{\longrightarrow} \stackrel{}{$$

 R_{eq} = resistência equivalente (Ω) U = ddp da associação (V)

$$U = U_1 + U_2 + U_3$$

$$i = i_1 = i_2 = i_3$$

$$R_{eq} = R_1 + R_2 + R_3$$

Exercícios

 Considere a associação em série de resistores esquematizada abaixo. Determine:
 a) a resistência equivalente da associação;
 b) a corrente elétrica i;
 c) a ddp em cada resistor.

$$R_{1}=2\Omega$$
 $R_{2}=4\Omega$ $R_{3}=6\Omega$ A $U=36V$

 Na associação representada abaixo, a resistência do resistor equivalente entre os pontos A e B vale 28Ω . Calcule o valor da resistência R_1 .

- 3. Um fogão elétrico, contém duas resistências iguais de 50Ω. Determine a resistência equivalente da associação quando essas resistências forem associadas em série.
- 4. A intensidade da corrente que atravessa os resistores da figura abaixo vale 0,5 A. Calcule: a) a resistência equivalente; b) a ddp em cada resistor; c) a ddp total.

$$\begin{array}{c}
C \\
R_1 = 6\Omega
\end{array}$$

$$\begin{array}{c}
R_2 = 2\Omega
\end{array}$$

- Associam-se em série dois resistores, sendo R₁=10Ω e R₂=15Ω. A ddp entre os extremos da associação é de 100V. Determine: a) a resistência equivalente da associação; b) a corrente que atravessa os resistores; c) a ddp em cada resistor.
- Duas resistências R₁ = 1 Ω e R₂ = 2 Ω estão ligadas em série a uma bateria de 12 V. Calcule: a) a resistência equivalente; b) a corrente total do circuito.

Associação de resistores em paralelo

"Vários resistores estão associados em paralelo quando são ligados pelos terminais de modo que fiquem submetidos à mesma ddp."

IJ

 R_{eq} = resistência equivalente (Ω)

U = ddp da associação (V)

$$U = U_1 = U_2 = U_3$$

$$\mathbf{i} = \mathbf{i}_1 + \mathbf{i}_2 + \mathbf{i}_3$$

$$\frac{1}{R_{eq}} = \frac{1}{R_1} + \frac{1}{R_2} + \frac{1}{R_3}$$

Exercícios

- Duas resistências R₁ = 2Ω e R₂ = 3Ω estão ligadas em paralelo a uma bateria de 12 V. Calcule: a) a resistência equivalente da associação; b) as correntes i₁ e i₂; c) a corrente total do circuito.
- 8. Calcule o resistor equivalente da associação representada pela figura abaixo.

- 9. Um fogão elétrico, contém duas resistências iguais de 50Ω. Determine a resistência equivalente da associação quando essas resistências forem associadas em paralelo.
- 10. Calcule o valor da resistência R_1 , sabendo que a resistência equivalente da associação vale 4Ω .

11. Na associação da figura, a corrente que passa por R₁ é 3A. Calcule: a) a resistência equivalente; b) a corrente que passa por R₂.

12. No circuito esquematizado abaixo determine a resistência equivalente entre A e B.

Associação mista de resistores

Exercícios

1. Determine a resistência equivalente das associações esquematizadas a seguir.

a)

e)

Leituras no Amperímetro e no Voltímetro

- *Amperimetro ideal*: não tem resistência interna (é ligado em série).
- *Voltimetro ideal*: tem resistência interna infinitamente grande (é ligado em paralelo).

Gerador elétrico

"Levando-se em conta a resistência interna do gerador, percebemos que a ddp U entre os terminais é menor do que a força eletromotriz (fem), devido à perda de ddp na resistência interna."

$$U = E - r.i$$

Circuitos elétricos

$$i = \frac{\sum E}{\sum R}$$

 $\sum E$ = soma de todas as forças eletromotrizes do circuito.

 $\sum R = \text{soma de as resistências do mesmo circuito.}$

Exercícios

2. Determine a intensidade da corrente que circula em cada um dos circuitos abaixo.

a)

3. Quais as leituras do amperímetro e do voltímetro no circuito abaixo?

4. No circuito da figura, calcule a leitura do voltímetro ideal V.

5. Determine o valor da resistência desconhecida em cada um dos circuitos abaixo.

6. Calcule o valor de cada uma das correntes nos circuitos abaixo.

Questões

7. Por que nas instalações elétricas residenciais as ligações são todas feitas em paralelo?

- 8. Explique a função de um fusível em um circuito elétrico.
- 9. Num prédio havia muito problema com queima de fusíveis. Um eletricista de esquina deu uma solução bem econômica: trocou todos os fusíveis, colocando fusíveis que suportam maior corrente. O que você acha dessa solução?
- 10. Cite três exemplos de geradores de eletricidade.

CAMPO MAGNÉTICO

"Campo magnético é toda região ao redor de um imã ou de um condutor percorrido por corrente elétrica."

- Pólos magnéticos de mesmo nome se repelem e de nomes constrários se atraem.
- Se seccionarmos um imã ao meio, surgirão novos pólos norte e sul em cada um dos pedaços, constituindo cada um deles um novo imã.

Campo magnético criado por um condutor retilíneo

"Segure o condutor com a mão direita de modo que o polegar aponte no sentido da corrente. Os demais dedos dobrados fornecem o sentido do vetor campo magnético, no ponto considerado. (Regra da mão direita) "

$$B = \frac{\mu . i}{2\pi . r}$$

B = intensidade do vetor campo magnético em um ponto (T)

 μ = permeabilidade magnética do meio (T.m/A) μ_0 = $4\pi.10^{-7}$ T.m/A (no vácuo)

r = distância do ponto ao fio (m)

A unidade de Bno SI é o tesla (T).

Exercícios

- 1. Um fio retilíneo e longo é percorrido por uma corrente elétrica contínua i=2A. Determine o campo magnético num ponto distante 0,5m do fio. Adote $\mu_0=4\pi.10^{-7}$ T.m/A
- 2. Um condutor reto e extenso é percorrido por uma corrente de intensidade 2A. Calcular a intensidade do vetor campo magnético num ponto P localizado a 0,1 m do condutor. O meio é o vácuo.
- 3. A 0,4 m de um fio longo e retilíneo o campo magnético tem intensidade 4.10^{-6} T. Qual é a corrente que percorre o fio? Adote $\mu_0 = 4\pi$ $.10^{-7}$ T.m/A.
- 4. Dada a figura, determine a intensidade do campo magnético resultante no ponto P.

Dados:

$$\mu_0 = 4 \pi . 10^{-7} \text{ T.m/A}.$$

$$i_1 = 4 A$$

$$i_2 = 10 \text{ A}$$

5. Dada a figura, determine a intensidade do campo magnético resultante no ponto P.

Dados:

$$\mu_0 = 4 \, \pi . 10^{-7} \, \text{T.m/A}.$$

$$i_1 = 3A$$

$$i_2 = 5 A$$

Ouestões

6. Como podemos verificar experimentalmente se existe um campo magnético em um certo ponto do espaço?

- 7. O que acontece se colocarmos um imã sobre uma fita magnética?
- 8. Sabe-se que a Lua, ao contrário da Terra, não possui um campo magnético. Sendo assim, poderia um astronauta se orientar em nosso satélite usando uma bússola comum? Explique.

Campo magnético no centro de uma espira circular

$$B = \frac{\mu . i}{2.R}$$

R = raio da espira

Exercícios

1. A espira da figura tem raio 0,2 m e é percorrida por uma corrente de 5A no sentido horário. Determine a intensidade e a orientação do vetor campo magnético no centro da espira. Adote $\mu_0 = 4\pi . 10^{-7} \text{ T.m/A}$.

2. Uma espira circular de raio $R=0,2\pi m$ é percorrida por uma corrente elétrica de intensidade i=8A, conforme a figura. Dê as características do vetor campo magnético no centro da espira. Dado: $\mu_0 = 4\pi.10^{-7}$ T.m/A.

3. Duas espiras circulares concêntricas e coplanares de raios $0.4\pi m$ e $0.8\pi m$ são percorridas por correntes de intensidades 1A e 4A, respectivamente, conforme mostra a figura. Determine a intensidade do vetor campo magnético resultante no centro das espiras. Dado: $\mu_0 = 4\pi.10^{-7}$ T.m/A.

Campo magnético no interior de um solenóide "Um condutor enrolado em forma de espiras é denominado solenóide."

N = número de espiras l = comprimento do solenóide

Exercícios

- 4. Um solenóide de 1 metro de comprimento contém 500 espiras e é percorrido por uma corrente de 2A. Determinar a intensidade do vetor campo magnético no interior do solenóide. Dado: $\mu_0 = 4\pi . 10^{-7} \text{ T.m/A}$.
- 5. Considere um solenóide de 0,16m de comprimento com 50 espiras. Sabendo que o solenóide é percorrido por uma corrente de 20A, determine a intensidade do campo magnético no seu interior.
- 6. Um solenóide de 1 metro de comprimento contém 1000 espiras e é percorrido por uma corrente de i. Sabendo que o vetor campo magnético no seu interior vale 8π. 10⁻⁴ T, determine i. O solenóide está no vácuo.
- 7. No interior de um solenóide de comprimento 0,16m, registra-se um campo magnético de intensidade $5\pi.10^{-4}$ T, quando ele é percorrido por uma corrente de 8A. Quantas espiras tem esse solenóide? Adote $\mu_0 = 4\pi$ $.10^{-7}$ T.m/A

Ouestões

- 9. Explique o princípio de funcionamento de uma campainha.
- 10. O que é um eletroímã? Como funciona?

11. Um aluno estava usando uma bússola para orientar-se no interior da sala de laboratório. Num certo momento, a agulha mudou repentinamente de posição. Como se explicaria esse movimento da agulha?

Força magnética

"Uma carga elétrica q lançada dentro de um campo magnético B, com uma velocidade v, sofre a ação de uma força F.

 $F = qvB sen \theta$

O sentido da força é dado pela regra da mão esquerda.

- A força magnética sobre cargas elétricas assume valor máximo quando elas são lançadas perpendicularmente à direção do campo magnético.

F = qvB

 Cargas elétricas em repouso ou lançadas na mesma direção do campo magnético não sofrem a ação da força magnética.

Exercícios

- 1. Uma partícula de carga 6.10⁻⁸ C é lançada perpendicularmente a um campo magnético uniforme de intensidade 4.10⁻² T, com velocidade 10³ m/s. Determinar a intensidade da força magnética que atua sobre ela.
- 2. Uma carga elétrica puntiforme de 20.10⁻⁶ C, é lançada com velocidade de 4m/s, numa direção perpendicular a um campo magnético, e fica sujeita a uma força de intensidade 8.10⁻⁵ N. Qual a intensidade do campo magnético?
- 3. Uma carga elétrica de 10⁻¹⁵ C é lançada perpendicularmente a um campo magnético de 10⁻² T, ficando sob a ação de uma força de 10⁻¹⁵ N. Determine a velocidade com que a carga foi lançada no campo.
- 4. Uma partícula elétrica de carga $q=4.10^{-6}$ C desloca-se com velocidade 2.10^2 m/s, formando um ângulo $\theta=45^\circ$ com um campo magnético uniforme de intensidade 16.10^4 T, conforme indica a figura. Determine a força magnética que atua sobre a partícula.

5. Represente a força magnética que atua sobre a carga q, lançada com velocidade v num campo magnético B, nos seguintes casos:

- 6. Um campo magnético atua em uma carga em repouso?
- 7. Colocado no campo magnético de um imã, um fio percorrido por uma corrente sofre a

ação de uma força magnética, em determinado sentido. Quais as alternativas possíveis para inverter o sentido dessa força?