Билет 22: Докажите теорему о нуле непрерывной функции. Докажите

теорему Коши о промежуточном значении для непрерывной функции.

Теорема Коши о промежуточном значении

Теорема (о нуле непрерывной функции). Пусть функция f(x) непрерывна на отрезке [a,b] и принимает на концах отрезка значения разных знаков $(f(a) \cdot f(b) < 0)$.

Тогда существует точка $c \in (a,b)$, в которой f(c) = 0.

Доказательство. \blacktriangleright Предположим для определенности, что f(a) < 0, f(b) > 0.

Построим систему стягивающихся отрезков $\{[a_n,b_n]\}$. Положим

$$a_0 = a, b_0 = b$$
.

Пусть c_0 - середина отрезка $[a_0,b_0]$. Если $f(c_0)=0$, то положим $c=c_0$ - процесс завершен. Если нет, то в качестве $[a_1,b_1]$ выберем ту половину отрезка, на которой функция меняет знак:

если
$$f(c_0) > 0$$
, то $a_1 = a_0$, $b_1 = c_0$;
если $f(c_0) < 0$, то $a_1 = c_0$, $b_1 = b_0$.

Аналогично определяем отрезок $[a_2,b_2]$ по $c_1 = \frac{a_1 + b_1}{2}$:

если
$$f(c_1) > 0$$
, то $a_2 = a_1$, $b_2 = c_1$;
если $f(c_1) < 0$, то $a_2 = c_1$, $b_2 = b_1$,

и так далее. Если процесс оборвется на некотором шаге, то мы сразу определим нужную точку c, если нет, то мы получим систему отрезков

$$[a_0,b_0] \subset [a_1,b_1] \subset ...; \lim_{n\to\infty} (b_n-a_n) = 0.$$

По лемме о вложенных отрезках существует точка c такая, что $\lim_{n\to\infty}a_n=c=\lim_{n\to\infty}b_n$. Из непрерывности функции $f\left(x\right)$ на $\left[a,b\right]$ следует, что $\lim_{n\to\infty}f\left(a_n\right)=f\left(c\right)=\lim_{n\to\infty}f\left(b_n\right)$.

Переходя к пределу в неравенствах $\begin{cases} f(a_n) < 0 \\ f(b_n) > 0 \end{cases}$, $n \in \mathbb{N}$, получим $\begin{cases} f(c) \le 0 \\ f(c) \ge 0 \end{cases}$ то есть f(c) = 0.

Случай f(a) > 0, f(b) < 0 разбирается аналогично. ◀

Теорема (о промежуточном значении). Пусть функция f(x) непрерывна на отрезке [a,b] и $f(a) \neq f(b)$.

Тогда каждое число d, принадлежащее интервалу c концами b точках f(a) и f(b) является значением функции хотя бы b одной точке $c \in [a,b]$, то есть f(c) = d. Доказательство. \blacktriangleright Рассмотрим функцию g(x) = f(x) - d. Очевидно, что $g(a) \cdot g(b) < 0$ и g(x) непрерывна на [a,b]. Тогда по предыдущей теореме существует точка $c \in [a,b]$: g(c) = 0, откуда получаем f(c) = d.

Замечание. Требование непрерывности функции в последних теоремах существенно.

Примером, иллюстрирующим этот факт, может служить функция $f(x) = \operatorname{sgn} x$, определенная на отрезке [-1;1] и не принимающая значения $\frac{1}{2} \in (-1,1) = (\operatorname{sgn}(-1),\operatorname{sgn}(1))$.