Геометрия - 9 класс

Теорема синусов

Теорема косинусов

 $c^2 = a^2 + b^2 - 2ab\cos\nu$

свойство диагоналей параллелограмма

 $d_1^2 + d_2^2 = 2(a^2 + b^2)$

Формулы площади

треугольника $S = \frac{1}{2}ab \sin \gamma$

параллелограмма

четырехугольника $S = \frac{1}{2}d_1d_2\sin\gamma$

Векторы на плоскости

вектор - направленный отрезок (величина + направление) противоположный вектор (та же величина, противоположное направление) $\overrightarrow{BA} = -\overrightarrow{AB}$

сумма векторов:

правило треугольника

правило параллелограмма

правило много-

разность векторов: $\vec{a} - \vec{b} = \vec{a} + (-\vec{b})$ (сумма с противоположным вектором)

произведение вектора на число:

величина меняется в к раз, величина меняется в k при k < 0 направление меняется на противоположное

коллинеарные (параллельные) векторы: $\vec{a} \parallel \vec{b}$ $\vec{a} \uparrow \uparrow \vec{b}$ (сонаправленные) или

 $\vec{a} \uparrow \downarrow \vec{b}$ (противоположно направленные)

$$\vec{a} \parallel \vec{b} \Rightarrow \exists k : \vec{b} = k\vec{a}$$

 $\vec{a} \parallel \vec{b}, \vec{a}\{x_a; y_a\}, \vec{b}\{x_b; y_b\} \Rightarrow \frac{x_a}{y_b} = \frac{y_a}{y_b}$ (или $x_b = y_b = 0$)

разложение вектора по двум неколлинеарным векторам: $\vec{c} = k_a \vec{a} + k_b \vec{b} \quad (k_a, k_b -$

коэффициенты разложения)

Метод координат на плоскости

разложение вектора по координатным векторам \vec{l}, \vec{j} : $\vec{a} = x\vec{i} + y\vec{i} \Rightarrow$ координаты вектора $\vec{a} \{x; y\}$

координаты векторов (суммы, разности, произведения на число):

$$\begin{split} \vec{a}\{x_a;y_a\}, \ \vec{b}\{x_b;y_b\} \Rightarrow \ (\vec{a} \pm \vec{b}) \ \{x_a \pm x_b; \ y_a \pm y_b\} \\ k\vec{a} \ \{kx_a; \ ky_a\} \end{split}$$

связь между координатами точек и векторов:

координаты точки (А) равны координатам ее радиус-вектора (\overrightarrow{OA}) $\overrightarrow{AB} \{x_b - x_a; y_b - y_a\}$

длина вектора:
$$|\vec{a}| = \sqrt{x^2 + y^2}$$

$$|\overrightarrow{AB}| = \sqrt{(x_b - x_a)^2 + (y_b - y_a)^2}$$

середина отрезка: $M\left\{\frac{x_a+x_b}{2}; \frac{y_a+y_b}{2}\right\}$

- точка М делит отрезок АВ в отношении $m: n = \lambda \Rightarrow M\left\{\frac{x_a + \lambda x_b}{1 + \lambda}; \frac{y_{a+} \lambda y_b}{1 + \lambda}\right\}$

т. п —
$$x \to m \{ \frac{1}{1+x}, \frac{1}{1+x} \}$$
- точка пересечения медиан треугольны

- точка пересечения медиан треугольника $M\left\{\frac{x_a+x_b+x_z}{2}; \frac{y_a+y_b+y_z}{2}\right\}$

скалярное произведение векторов:

$$\overline{ab} = \vec{a} \cdot \vec{b} = x_a x_b + y_a y_b = |\vec{a}| |\vec{b}| \cos \varphi$$
 $\Rightarrow \cos \varphi = \frac{\overline{ab}}{|\vec{a}| |\vec{b}|} (\varphi - y$ гол между векторами)

$$\vec{a} \perp \vec{b} \iff \overline{ab} = 0 \quad (\vec{a}, \vec{b} \neq \vec{0})$$

 $\angle \varphi - ocmp \omega \vec{u} \iff \overline{ab} > 0$
 $\angle \varphi - my no \vec{u} \iff \overline{ab} < 0$

Правильные многоугольники

(все стороны и углы равны)

угол n-угольника $\alpha_n = \frac{n-2}{n} 180^\circ$

сторона п-угольника

$$a_n = 2R \cdot \sin \frac{180}{n} = 2r \cdot tg \frac{180}{n} =$$
площадь п-угольника $S_n = pr$

Окружность

длина окружности площадь круга

уравнение окружности

$$(x - x_0)^2 + (y - y_0)^2 = R^2$$

радиуса *R* с центром в точке (x₀; y₀)

взаимное расположение окружностей

- концентрические
- касающиеся внутренним образом
- касающиес внешним образом

теоремы Чевы и Менелая

пусть точки N, M, K лежат на сторонах треугольника (или продолжениях сторон)

прямые AN, BK, CM пересекаются в одной точке \Leftrightarrow

прямой ⇔

Движения

движение - отображение плоскости на саму себя (т.е. каждой точке плоскости ставится в соответствие другая точка плоскости), при котором сохраняется расстояние между точками

Данная	Центральная	Осевая	Параллельный	Поворот
фигура	симметрия	симметрия	перенос	
			\vec{p}	X

Уравнения прямой

- с угловым коэффициентом:

$$y = kx + b$$

npямыe ∥ ecлu k1 = k2 (b1 ≠ b2)

прямые \bot если $k1 \cdot k2 = -1$ угол между прямыми: $tg \ \varphi = \left| \frac{k_1 - k_2}{1 + b \cdot b} \right|$

- общее (через нормаль):

 $ax + by + c = 0 \Rightarrow$

 $\vec{n}(a;b)$ - нормальный вектор (\perp прямой) если прямая проходит через точку $(x_0;y_0)$ $\Rightarrow a(x-x_0)+b(y-y_0)=0$

расстояние от точки М до прямой:

 \vec{n} (a;b) $(x_0;y_0)$

угол между прямыми равен углу между их нормалями

- каноническое (через две точки):

$$\frac{x - x_1}{x_2 - x_1} = \frac{y - y_1}{y_2 - y_1}$$

(через точку и направляющий вектор):

$$\frac{x - x_0}{x_a} = \frac{y - y_0}{y_a}$$

- в отрезках: $\frac{x}{a} + \frac{y}{b} = 1$

- параметрическое: $\begin{cases} x = a_1 t + x_0 \\ y = a_2 t + y_0 \end{cases}$

нормальное: $x \cos \alpha + y \sin \alpha - p = 0$ (подставив координаты точки получим расстояние от точки до прямой)

метод площадей (или объемов) для нахождения высоты часто в задачах для нахождения высоты используют формулы площади (или объема), записанные разными способами

np: найти высоту h

$$S_{\Delta} = \frac{1}{2}ab = \frac{1}{2}ch$$

$$\Rightarrow h = \frac{ab}{\sqrt{a^2 + b^2}}$$