```
import library
```

import pandas as pd

import numpy as np

import matplotlib.pyplot as plt

→ Import CSV as DataFrame

df = pd.read_csv('https://github.com/YBI-Foundation/Dataset/raw/main/Fish.csv')

→ Get first 5 rows

df.head()

	Category	Species	Weight	Height	Width	Length1	Length2	Length3	1
0	1	Bream	242.0	11.5200	4.0200	23.2	25.4	30.0	
1	1	Bream	290.0	12.4800	4.3056	24.0	26.3	31.2	
2	1	Bream	340.0	12.3778	4.6961	23.9	26.5	31.1	
3	1	Bream	363.0	12.7300	4.4555	26.3	29.0	33.5	
4	1	Bream	430.0	12.4440	5.1340	26.5	29.0	34.0	

Get information of the dataframe

df.info()

<class 'pandas.core.frame.DataFrame'>
RangeIndex: 159 entries, 0 to 158
Data columns (total 8 columns):
Column Non-Null Count Dtype
--- 0 Category 159 non-null int64
1 Species 159 non-null object
2 Weight 159 non-null float64
3 Height 159 non-null float64
4 Width 159 non-null float64
5 Length1 159 non-null float64
5 Length2 159 non-null float64
6 Length2 159 non-null float64
7 Length3 159 non-null float64

dtypes: float64(6), int64(1), object(1)

memory usage: 10.1+ KB

df.info()

<class 'pandas.core.frame.DataFrame'> RangeIndex: 159 entries, 0 to 158 Data columns (total 8 columns):

- 0. 0 0.	(, •
#	Column	Non-Null Count	Dtype
0	Category	159 non-null	int64
1	Species	159 non-null	object
2	Weight	159 non-null	float64
3	Height	159 non-null	float64
4	Width	159 non-null	float64
5	Length1	159 non-null	float64
6	Length2	159 non-null	float64
7	Length3	159 non-null	float64
dtype	es: float6	4(6), int64(1),	object(1)
memoi	ry usage:	10.1+ KB	

Get the summary statistics

df.describe()

	Category	Weight	Height	Width	Length1	Length2	Length3
count	159.000000	159.000000	159.000000	159.000000	159.000000	159.000000	159.000000
mean	3.264151	398.326415	8.970994	4.417486	26.247170	28.415723	31.227044
std	1.704249	357.978317	4.286208	1.685804	9.996441	10.716328	11.610246
min	1.000000	0.000000	1.728400	1.047600	7.500000	8.400000	8.800000
25%	2.000000	120.000000	5.944800	3.385650	19.050000	21.000000	23.150000
50%	3.000000	273.000000	7.786000	4.248500	25.200000	27.300000	29.400000
75%	4.500000	650.000000	12.365900	5.584500	32.700000	35.500000	39.650000
max	7.000000	1650.000000	18.957000	8.142000	59.000000	63.400000	68.000000

→ Get shape of Dataframe

df.shape

(159, 8)

→ Get column names

```
df.columns
```

```
dtype='object')
y = df['Weight']
y.shape
    (159,)
У
          242.0
    0
    1
          290.0
    2
          340.0
    3
          363.0
    4
          430.0
          . . .
          12.2
    154
    155
          13.4
           12.2
    156
    157
           19.7
    158
           19.9
    Name: Weight, Length: 159, dtype: float64
X=df[['Height', 'Width', 'Length1',
      'Length2', 'Length3']]
X = df.drop(['Category', 'Species', 'Weight'], axis = 1)
X.shape
    (159, 5)
Χ
```

	Height	Width	Length1	Length2	Length3	1
0	11.5200	4.0200	23.2	25.4	30.0	
1	12.4800	4.3056	24.0	26.3	31.2	
2	12.3778	4.6961	23.9	26.5	31.1	
3	12.7300	4.4555	26.3	29.0	33.5	
4	12.4440	5.1340	26.5	29.0	34.0	

Add Comstant to Features (X) for Intercept Estimation

```
155 24300 12600 117 124 135 import statsmodels.api as sm
```

/usr/local/lib/python3.7/dist-packages/statsmodels/tools/_testing.py:19: FutureWarning: pandas import pandas.util.testing as tm

```
X = sm.add_constant(X)
```

/usr/local/lib/python3.7/dist-packages/statsmodels/tsa/tsatools.py:117: FutureWarning: In a fut x = pd.concat(x[::order], 1)

X.head()

	const	Height	Width	Length1	Length2	Length3	1
0	1.0	11.5200	4.0200	23.2	25.4	30.0	
1	1.0	12.4800	4.3056	24.0	26.3	31.2	
2	1.0	12.3778	4.6961	23.9	26.5	31.1	
3	1.0	12.7300	4.4555	26.3	29.0	33.5	
4	1.0	12.4440	5.1340	26.5	29.0	34.0	

Get Train Test Split

```
from sklearn.model_selection import train_test_split

X_train, X_test, y_train, y_test = train_test_split(X,y, test_size = 0.3, random_state = 2529)

X_train.shape, X_test.shape, y_train.shape, y_test.shape
```

```
((111, 6), (48, 6), (111,), (48,))
```

- Get Model Train

```
import statsmodels.api as sm

model = sm.OLS(y_train,X_train).fit()
```

→ Get Model Prediction

```
y_pred = model.predict(X_test)
y_pred
            485.768263
     6
     54
             502.247209
     80
             94.723820
     138
             876.571171
     91
             184.078918
     48
             219.301305
     52
             322.325322
     103
             376.223260
     57
            372.357305
           -182.675371
     149
           -160.604868
     153
     108
            454.335862
     90
            159.597558
     118
             843.485252
     131
             587.216806
             299.535214
     100
     15
             597.729508
     46
            197.146054
     132
            639.890467
     79
             91.200679
     64
            150.954248
     35
           -103.083206
            627.197128
     133
     116
            795.691769
     31
            814.687330
     146
           -204.149651
     53
            329.987469
            715.892880
     1
             359.756344
     117
            792.324392
     9
            532.703671
     12
             552.008323
            433.484727
     129
            687.617503
     111
     147
            -204.763625
```

125

120

932.536683

810.742342

```
158
            -80.062172
     51
            284.362879
     34
           907.080360
     23
           642.582834
     127
           959.338482
     21
           675.287923
     113
           718.863055
     109
          623.898492
     101
           376.483470
     10
            530.838281
     157
            -86.235707
     dtype: float64
y_pred.shape
     (48,)
```

→ Get Model Evaluation

```
from sklearn.metrics import mean_squared_error, mean_absolute_error, mean_absolute_percentage_error,
mean_squared_error(y_test, y_pred)
     16397.34452441141
mean_absolute_percentage_error(y_test, y_pred)
     2.508285347160016
mean_absolute_percentage_error(y_test, y_pred)
     2.508285347160016
r2_score(y_test, y_pred)
```

Get Model Summary

0.8349141424416875

```
print(model.summary())
```

OLS Regression Results ______

Dep. Variable: Weight R-squared:

Model:			OLS Adj.	R-squared:		0.891
Method:		Least Squa	ires F-sta	tistic:		181.2
Date:	T	ue, 26 Apr 2	.022 Prob	(F-statistic	:):	5.84e-50
Time:		07:19	:46 Log-L	ikelihood:		-689.20
No. Observ	ations:		111 AIC:			1390.
Df Residua	ls:		105 BIC:			1407.
Df Model:			5			
Covariance		nonrob				
	coef	std err		P> t		
const	-519.2834		-14.983		-588.005	-450.562
Height	29.8643	10.826	2.759	0.007	8.398	51.330
Width	2.2594	26.105	0.087	0.931	-49.502	54.020
Length1	58.3379	52.151	1.119	0.266	-45.068	161.743
Length2	8.5339	51.806	0.165	0.869	-94.189	111.256
Length3	-36.1521	21.444	-1.686	0.095	-78.671	6.367
	:=======	========				
Omnibus:				n-Watson:		2.008
Prob(Omnib	ous):		•	e-Bera (JB):		4.993
Skew:		0.	391 Prob(•		0.0824
Kurtosis:		3.	684 Cond.	No.		331.

Warnings:

[1] Standard Errors assume that the covariance matrix of the errors is correctly specified.

fig = sm.graphics.plot_partregress_grid(model)

Get future Predictions

Steps to follow

Extract a random row using sample function Separate X and y Predict

df_new = df.sample(1)

```
Category Species Weight Height Width Length1 Length2 Length3

121 3 Perch 1015.0 12.3808 7.4624 37.0 40.0 42.4
```

X_new = df_new[['Height', 'Width', 'Length1', 'Length2', 'Length3']]

X_new = sm.add_constant(X_new, has_constant = 'add')

/usr/local/lib/python3.7/dist-packages/statsmodels/tsa/tsatools.py:117: FutureWarning: In a full x = pd.concat(x[::order], 1)

X_new

	const	Height	Width	Length1	Length2	Length3	1
121	1.0	12.3808	7.4624	37.0	40.0	42.4	

X_new.shape

(1, 6)

y_pred_new = model.predict(X_new)

y_pred_new

121 834.329616 dtype: float64

• ×