世界知的所有権機関 国 際 事 務 局

PCT

特許協力条約に基づいて公開された国際出願

(51) 国際特許分類6 H04N 5/92, 7/24, G11B 20/10, 20/12	A1	(11) 国際公開番号	WO97/13364
		-(43)_国際公開日	1997年4月-10日(10.04.97)
(21) 国際出願番号 PCT/ (22) 国際出願日 1996年9月27日 (30) 優先権データ 特願平7/276710 1995年9月29日(29.09.95) 特願平8/41583 1996年2月28日(28.02.96) (71) 出願人 松下電器産業株式会社 (MATSUSHITA ELECTRIC INDUSTRIAL CO., LTD.)[JP/JP] 〒571 大阪府門真市大字門真1006番地 Osaka, (JP) (72) 発明者 柏木吉一郎(KASHIWAGI, Yoshiichiro) 〒614 京都府八幡市男山香呂2 A59-501 Kyoto, (JP) 長谷部巧(HASEBE, Takumi) 〒614 京都府八幡市第山香呂2 A59-501 Kyoto, (JP) 津賀一宏(TSUGA, Kazuhiro) 〒665 兵庫県宝塚市花屋敷つつじガ丘9-33 Hyogo, (JP) 中村和彦(NAKAMURA, Kazuhiko) 〒573 大阪府枚方市香里ケ丘11丁目35-53 Osaka, (JP)		04 森 美裕(MORI, Yoshihin 〒573 大阪府枚方市東香76) 小塚雅之(KOZUKA, Mas 〒572 大阪府寝屋川市石福島能久(FUKUSHIMA, 〒536 大阪府大阪市城市河原俊之(KAWARA, Tos 〒573-01 大阪府校方市河東谷 易(AZUMATANI, 〒569 大阪府高槻市昭和四十576 大阪府交野市沙県松井健一(MATSUI, Kenie 〒572 大阪府東屋川市香(74) 代東月山 東山	ro) 序里元町15-14 Osaka, (JP) ayuki) 5 海南町19-1-1207 Osaka, (JP) Yoshihisa) 尾区関目6丁目14番C-508 Osaka, (JP) shiyuki) 車田駅前1-18-16 Osaka, (JP) Yasushi) 中台町1丁目7-22 Osaka, (JP) byuki) 上坂6-6-101 Osaka, (JP) chi) 野里西之町22-7 Osaka, (JP)
(54)Title: METHOD AND DEVICE FOR SEAMLES SYSTEM TIME INFORMATION		添付公開書類 国際調査報告書 RODUCING A BIT STREA	AM CONTAINING NONCONTINUOUS
 (54)発明の名称―-非連続システム時間情報を有すると	<u></u>	-r-y	土力伝文も安信
 2000 2400 2500 2600 5401 2006 S471 57 548	3801		2002 mechanism control section 2004 motor 2006 signel processing section 2100 scanario selecting section 2300 decoding system control section
2400 2500 2600 S83 2006 1557 2008 1557 2008 1557 15 585	3801 	9 5:05 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5	2004 motor 2008 signal processing section 2100 scanario selecting section 2300 decoding system control section 2400 etream buffer 2500 system decoder 2600 video buffer
 2400 2500 2600 SB3 SB3 SB3 SB5 SB5	3801 1 73- 189 7779 1865 7779 1867 777- 1888 777- 1807 777- 1807 777- 1808 777- 1808 777- 1809 777-	93100 3400 3500 9 3105 3500 9 3105 3600 3100 3400 3600	2004 motor 2008 signal processing section 2100 scanario selecting section 2300 decoding system control section 2400 etream buffer 2500 system decoder

A large-capacity optical disk (M) on which a plurality of system streams containing mutually-interleaved moving picture data and audio data are recorded. The system streams (VOB) are smoothly connected to each other. In each system stream (VOB) recorded on the disk (M), the STC which is referred to by signal processing decoders (3801, 3100, and 3200) in decoding the first system stream and the STC which is referred to by the signal processing decoders (3801, 3100, 3200) in decoding the second system stream which is successively reproduced after the first-system-stream-are-switched-to-each-other. A reproducing-device-(DCD)-for-reproducing-the-data-from-the-disk-(M)-is also disclosed.

	(5.7) 要約	
	本発明は、動画像データとオーディオデータをインターリーブした構成で	•
	あるシステムストリームを複数記録した大容量光ディスク (M) において、	
	システムストリーム (VOB) 同士のスムーズな接続を行なうための光ディ	
	スク (M) 並びにその再生装置 (DCD) を提供する。 光ディスク (M) に	_
	記録するシステムストリーム (VOB) において、第1のシステムストリー	•
	ムのデコードにおいて信号処理用デコーダ(3801、3100、3200)	3
	が参照するSTCと第1のシステムストリームに続いて連続再生される第	
	2のシステムストリームのデコードにおいて信号処理用デコーダ(380	
	1、3-1-0-0、3-2-0-0)が参照するSTCを切替える。	
1		
	情報としての用途のみ	
	PCTに基づいて公開される国際出願をパンフレット第一頁にPCT加盟国を同定するために使用されるコード AL アルバニア EE エストニア LR リベリア RU ロシア連邦	
	AM / N/A - / LS U/F SD X - Ø V	
	BB ハルハドス GB イギリス MC モナコ SK スロヴァキア共和国 BE ベルギニ GE グルジア MD モルドバ SN セネガル BF ブルギナ・ファソ GH ガーナ MG マダガスカル S2 スワジランド	
	B J ベナン	
	CA カナダ IS アイスランド MR モーリタニア TR トルコ CF 中央アフリカ共和国 IT イタリー MW マラウイ TT トリニダード・トバゴ CG コンゴー JP 日本 MX メキシコ UA ウクライナ	
	CI コート・ジボアール KG キルギスタン NL オランダ US 米国 CM カメルーン KP 朝鮮民主主義人民共和国 NO ノルウェー UZ ウズベキスタン共和国 CN 中国 KR 大岐民国 NZ ニュー・ジーランド VN ヴィットナム	
	C2 チェッコ共和国 K2 カザブスタン PL ポーランド ŶÜ ユーゴスラピア DE ドイツ LT リヒデンシュタイン PT ポルトガル DK デンマーク LK スリランカ RO ルーマニア	
	DE ドイツ し リヒテンシュタイン PT ポルトガル	

明細書

5

技術分野

この発明は、非連続システム時間情報を有するビットストリームのシームレス再生方法及び装置に関し、特に、一連の関連付けられた内容を有する各タイトルを構成する動画像データ、オーディオデータ、副映像データの情報を搬送するビットストリームに様々な処理を施して、ユーザーの要望に応じた内容を有するタイトルを構成するべくビットストリームを生成し、その生成されたビットストリームを所定の記録媒体に効率的に記録する記録装置と記録媒体、及び再生する再生装置及びオーサリングシステムに用いられるビットストリームに関する。

15

25

10

背景技術

近年、レーザーディスクやビデオCD等を利用したシステムに於いて、動画像、オーディオ、副映像などのマルチメディアデータをデジタル処理して、一連の関連付けられた内容を有するタイトルを構成するオーサリングシ

20 ステムが実用化されている。

特に、ビデオCDを用いたシステムに於いては、約600Mバイトの記憶 容量を持ち本来ディジタルオーディオの記録用であったCD媒体上に、MP EGと呼ばれる高圧縮率の動画像圧縮手法により、動画像データの記録を実 現している。カラオケをはじめ従来のレーザーディスクのタイトルがビデオ CDに置き替わりつつある。

15

20

年々、各タイトルの内容及び再生品質に対するユーザーの要望は、より複雑及び高度になって来ている。このようなユーザーの要望に応えるには、従来より深い階層構造を有するビットストリームにて各タイトルを構成する必要がある。このようにより深い階層構造を有するビットストリームにより、構成されるマルチメディアデータのデータ量は、従来の十数倍以上になる。更に、タイトルの細部に対する内容を、きめこまかく編集する必要があり、それには、ビットストリームをより下位の階層データ単位でデータ処理及び制御する必要がある。

このように、多階層構造を有する大量のデジタルビットストリームを、各 10 階層レベルで効率的な制御を可能とする、ビットストリーム構造及び、記録 再生を含む高度なデジタル処理方法の確立が必要である。更に、このような デジタル処理を行う装置、この装置でデジタル処理されたビットストリーム 情報を効率的に記録保存し、記録された情報を迅速に再生することが可能な 記録媒体も必要である。

このような状況に鑑みて、記録媒体に関して言えば、従来用いられている 光ディスクの記憶容量を高める検討が盛んに行われている。光ディスクの記 憶容量を高めるには光ビームのスポット径Dを小さくする必要があるが、レーザの波長をえ、対物レンズの開口数をNAとすると、前記スポット径D は、1/NAに比例し、1が小さくNAが大きいほど記憶容量を高めるのに 好適である。

ところが、NAが大きいレンズを用いた場合、例えば米国特許5、235、581に記載の如く、チルトと呼ばれるディスク面と光ビームの光軸の相対 的な傾きにより生じるコマ収差が大きくなり、これを防止するためには透明 基板の厚さを薄くする必要がある。透明基板を薄くした場合は機械的強度が

25 弱くなると言う問題がある。

25

また、データ処理に関しては、動画像、オーディオ、グラフィックスなどの信号データを記録再生する方式として従来のMPEG1より、大容量データを高速転送が可能なMPEG2が開発され、実用されている。MPEG2では、MPEG1と多少異なる圧縮方式、データ形式が採用されている。MPEG1とMPEG2の内容及びその違いについては、ISO11172、及びISO13818のMPEG規格書に詳述されているので説明を省く。MPEG2に於いても、ビデオエンコードストリームの構造に付いては、規定しているが、システムストリームの階層構造及び下位の階層レベルの処理方法を明らかにしていない。

- 上述の如く、従来のオーサリングシステムに於いては、ユーザーの種々の 要求を満たすに十分な情報を持った大量のデータストリームを処理することができない。さらに、処理技術が確立したとしても、大容量のデータスト リームを効率的に記録、再生に十分用いることが出来る大容量記録媒体がないので、処理されたデータを有効に繰り返し利用することができない。
- 15 言い換えれば、タイトルより小さい単位で、ビットストリームを処理する には、記録媒体の大容量化、デジタル処理の高速化と言うハードウェア、及 び先練されたデータ構造を含む高度なデジタル処理方法の考案と言うソフ トウェアに対する過大な要求を解消する必要があった。
- 本発明は、このように、ハードウェア及びソフトウェアに対して高度な要 20 求を有する、タイトル以下の単位で、マルチメディアデータのビットストリームを制御して、よりユーザーの要望に合致した効果的なオーサリングシステムを提供することを目的とする。

更に、複数のタイトル間でデータを共有して光ディスクを効率的に使用するために、複数のタイトルを共通のシーンデータと、同一の時間軸上に配される複数のシーンを任意に選択して再生するマルチシーン制御が望ましい。

10

しかしながら、複数のシーン、つまりマルチシーンデータを同一の時間軸上に配する為には、マルチシーンの各シーンデータを連続的に配列する必要がある。その結果、選択した共通シーンと選択されたマルチシーンデータの間に、非選択のマルチシーンデータを挿入せざるを得ないので、マルチシーンデータを再生する際に、この非選択シーンデータの部分で、再生が中断されると言う問題が予期される。

つまり、本来1本のストリームであったタイトル編集単位であるVOBを 切断して別々のストリームにした場合を除き、別々のVOBを単に続けて再 生するだけではシームレス再生を行うことはできない。これは、VOBを構 成するビデオ、オーディオ、サブピクチャはそれぞれ、同期をとりながら再 生する必要があるが、この同期をとるための機構がVOB毎に閉じているた め単純に接続したのでは、VOBの接続点における同期機構が正常に働かな いことによる。

本発明に於いては、このようなマルチシーンデータに於いても、各シーン

15 のデータが中断なく再生されるシームレス再生を可能にする再生装置を提
供することを目的とする。なお、本出願は日本国特許出願番号H7-276

710(1995年9月29日出願)及びH8-041583(1996年
2月28日出願)に基づいて出願されるものであって、該両明細書による開
示事項はすべて本発明の開示の一部となすものである

20

25

発明の開示

本発明は、少なくとも動画像データとオーディオデータをインターリープ した1つ以上のシステムストリームとシステムストリーム間の接続情報を 入力とするシステムストリーム再生装置であって、システムストリームの再 生基準クロックであるSICを発生するSIC部と、SICを基準として動作する少 なくとも1つ以上の信号処理用デコーダと、該信号処理用デコーダに転送されるシステムストリームデータを一時記憶するデコーダバッファと、第1のシステムストリームのデコードにおいて該信号処理用デコーダが参照するSTCと第1のシステムストリームに続いて連続再生される第2のシステムストリームのデコードにおいて該信号処理用デコーダが参照するSTCを切替えるSTC切替え部を具備することを特徴とするシステムストリーム連続再生装置である。

図面の簡単な説明

10 図1は、マルチメディアビットストリームのデータ構造を示す図であり、図2は、オーサリングエンコーダを示す図であり、

図3は、オーサリングデコーダを示す図であり、

図4は、単一の記録面を有するDVD記録媒体の断面を示す図であり、

図5は、単一の記録面を有するDVD記録媒体の断面を示す図であり、

15 図6は、単一の記録面を有するDVD記録媒体の断面を示す図であり、

図7は、複数の記録面(片面2層型)を有するDVD記録媒体の断面を示す

図であり、....

図8は、複数の記録面(両面1層型)を有するDVD記録媒体の断面を示す

図であり、

20 図9は、DVD記録媒体の平面図であり、

図10は、DVD記録媒体の平面図であり、

図11は、片面2層型DVD記録媒体の展開図であり、

図12は、片面2層型DVD記録媒体の展開図であり、

図13は、両面一層型DVD記録媒体の展開図であり、

25 図14は、両面一層型DVD記録媒体の展開図であり、

	図15は、マルチレイティッドタイトルストリームの一例を示す図であり、
	図16は、VTSのデータ構造を示す図であり、
	図17は、システムストリームのデータ構造を示す図であり、
	図18は、システムストリームのデータ構造を示す図であり、
5	図19は、システムストリームのパックデータ構造を示す図であり、
	図20は、ナブパックNVのデータ構造を示す図であり、
	図21は、DVDマルチシーンのシナリオ例を示す図であり、
	図22は、DVDのデータ構造を示す図であり、
	図23は、マルチアングル制御のシステムストリームの接続を示す図であ
10	り、
	図24は、マルチシーンに対応するVOBの例を示す図であり、
	図25は、DVDオーサリングエンコーダを示す図であり、
	図26は、DVDオーサリングデコーダを示す図であり、
	図27は、VOBセットデータ列を示す図であり、
15	図28は、VOBデータ列を示す図であり、
	図29は、エンコードパラメータを示す図であり、
	図3.0は、DVDマルチシーンのプログラムチェーン構成例を示す図であ
	n,
_	図3-1は、DVDマルチシーンのVOB構成例を示す図であり、
20	図32は、同期制御部のブロック図であり、
	一図33は、マルチアングル制御の概念を示す図であり、
	図34は、エンコード制御フローチャートを示す図であり、
	図35は、非シームレス切り替えマルチアングルのエンコードパラメータ生
	成フローチャートを示す図であり、

	図36は、エンコードパラメータ生成の共通フローチャートを示す図であ
	ŋ,
•	図37は、シームレス切り替えマルチアングルのエンコードパラメータ生成
•	フローチャートを示す図であり、
5	図38は、パレンタル制御のエンコードパラメータ生成フローチャートを示
	す図であり、
	図39は、STC生成部のブロック図を示す図であり、
	図40は、VOG接続時のSCRとPTSの関係を示す図であり、
	図41は、デコーダ同期制御部のブロック図を示す図であり、
10	図42は、同期機構制御部のブロック図を示す図であり、
	- 図4-3 は、同期機構制御部のフローチャートを示す図であり、
	図44は、VOG中のSCRとPTSの関係を示す図であり、
	図45は、VOG接続時のSCRとPTSの関係を示す図であり、
	図46は、VOG接続時のSCRとPTSの関係を示す図であり、
15	図47は、VOG中のSCRとPTSの関係を示す図であり、
	図48は、VOG中のSCRとPTSの関係を示す図であり、
	図49は、フォーマッタ動作フローチャートを示す図であり、
	図50は、非シームレス切り替えマルチアングルのフォーマッタ動作サブル
	ーチンフローチャートを示す図であり、
20	図51は、シームレス切り替えマルチアングルのフォーマッタ動作サブルー
•	チンフローチャートを示す図であり、
	図52は、パレンタル制御のフォーマッタ動作サブルーチンフローチャート
	を示す図であり、
	図53は、単一シーンのフォーマッタ動作サブルーチンフローチャートを示
25	す図であり、

	図54は、デコードシステムテーブルを示す図であり、
	図55は、デコードテーブルを示す図であり、
	図56は、デコーダのフローチャートを示す図であり、
	図57は、PGC再生のフローチャートを示す図であり、
5	図58は、ストリームバッファ内のデータデコード処理フローチャートを示
	す図であり、
	図59は、各デコーダの同期処理フローチャートを示す図であり、
	図60は、非シームレス用同期処理フローチャートを示す図であり、
	図61は、シームレス用同期処理フローチャートを示す図であり、
10	図62は、ストリームバッファへのデータ転送のフローチャートを示す図で
	あり、
	図63は、非マルチアングルのデコード処理フローチャートを示す図であ
	9 、
	図64は、インターリーブ区間のデコード処理フローチャートを示す図であ
15	<u>n</u>
	図65は、連続ブロック区間のデコード処理フローチャートを示す図であ
	<u>n</u> ,
	図66は、非マルチアングルのデコード処理フローチャートを示す図であ
20	図67は、シームレスマルチアングルデコード処理フローチャートを示す図
	であり、
	図68は、非シームレスマルチアングルデコード処理フローチャートを示す
	図であり、
	図69はストリームバッファのプロック図であり、

図70は、単一シーンのエンコードパラメータ生成フローチャートを示す図であり、

図71は、インターリーブブロック構成例を示す図であり、

図72は、VTSのVOBブロック構成例を示す図であり、

5 図73は、連続ブロック内のデータ構造を示す図であり、

図74は、インターリーブブロック内のデータ構造を示す図である。

発明を実施するための最良の形態

本発明をより詳細に説明するために、添付の図面に従ってこれを説明す

10 る。

15

20

25

いる。

オーサリングシステムのデータ構造

先ず、図1を参照して、本発明に於ける記録装置、記録媒体、再生装置および、それらの機能を含むオーサリングシステムに於いて処理の対象されるマルチメディアデータのビットストリームの論理構造を説明する。ユーザが内容を認識し、理解し、或いは楽しむことができる画像及び音声情報を1タイトルとする。このタイトルとは、映画でいえば、最大では一本の映画の完全な内容を、そして最小では、各シーンの内容を表す情報量に相当する。所定数のタイトル分の情報を含むビットストリームデータから、ビデオタイトルセットVTSが構成される。以降、簡便化の為に、ビデオタイトルセットをVTSと呼称する。VTSは、上述の各タイトルの中身自体を表す映像、オーディオなどの再生データと、それらを制御する制御データを含んで

所定数のVTSから、オーサリングシステムに於ける一ビデオデータ単位 であるビデオゾーンVZが形成される。以降、簡便化の為にビデオゾーンを VZと呼称する。一つのVZに、K+1個のVTS#0~VTS#K (Kは、

20

25

○を含む正の整数)が直線的に連続して配列される。そしてその内一つ、好ましくは先頭のVTS#Oが、各VTSに含まれるタイトルの中身情報を表すビデオマネージャとして用いられる。この様に構成された、所定数のVZから、オーサリングシステムに於ける、マルチメディアデータのビットストリームの最大管理単位であるマルチメディアビットストリームMBSが形成される。

オーサリングエンコーダEC

図2に、ユーザーの要望に応じた任意のシナリオに従い、オリジナルのマルチメディアビットストリームをエンコードして、新たなマルチメディアビ

ットストリームMBSを生成する本発明に基づくオーサリングエンコーダ

ECの一実施形態を示す。なお、オリジナルのマルチメディアビットストリームは、映像情報を運ぶビデオストリームSt1、キャプション等の補助映像情報を運ぶサブピクチャストリームSt3、及び音声情報を運ぶオーディオストリームSt5から構成されている。ビデオストリーム及びオーディオストリームは、所定の時間の間に対象から得られる画像及び音声の情報を含むストリームである。一方、サブピクチャストリームは一画面分、つまり瞬間の映像情報を含むストリームである。必要であれば、一画面分のサブピクチャをビデオメモリ等にキャプチャして、そのキャプチャされたサブピクチャ画面を継続的に表示することができる。

15

20

とは言うまでもない。このような複数のタイトルの音声、映像、補助映像情報を有するマルチメディアソースデータを、マルチタイトルストリームと呼称する。

オーサリングエンコーダECは、編集情報作成部100、エンコードシステム制御部200、ビデオエンコーダ300、ビデオストリームバッファ400、サブピクチャエンコーダ500、サブピクチャストリームバッファ60、オーディオエンコーダ700、オーディオストリームバッファ800、システムエンコーダ900、ビデオゾーンフォーマッタ1300、記録部1200、及び記録媒体Mから構成されている。

オーサリングエンコーダECは、オリジナルのマルチメディアタイトルの

映像、サブピクチャ、及び音声に関するユーザの要望に応じてマルチメディアビットストリームMBSの該当部分の編集を指示するシナリオデータとして出力できる編集情報生成部100を備えている。編集情報作成部100は、好ましくは、ディスプレイ部、スピーカ部、キーボード、CPU、及びソースストリームバッファ部等で構成される。編集情報作成部100は、上述の外部マルチメディアストリーム源に接続されており、マルチメディアソースデータSt1、St3、及びSt5の供給を受ける。

ユーザーは、マルチメディアソースデータをディスプレイ部及びスピーカ を用いて映像及び音声を再生し、タイトルの内容を認識することができる。 更に、ユーザは再生された内容を確認しながら、所望のシナリオに沿った内 容の編集指示を、キーボード部を用いて入力する。編集指示内容とは、複数 のタイトル内容を含む各ソースデータの全部或いは、其々に対して、所定時

20

間毎に各ソースデータの内容を一つ以上選択し、それらの選択された内容 を、所定の方法で接続再生するような情報を言う。

CPUは、キーボード入力に基づいて、マルチメディアソースデータのそれぞれのストリームSt1、St3、及びSt5の編集対象部分の位置、長さ、及び各編集部分間の時間的相互関係等の情報をコード化したシナリオデータSt7を生成する。

ソースストリームバッファは所定の容量を有し、マルチメディアソースデータの各ストリームSt1、St3、及びSt5を所定の時間Td遅延させた後に、出力する。

10 これは、ユーザーがシナリオデータSt7を作成するのと同時にエンコードを行う場合、つまり逐次エンコード処理の場合には、後述するようにシナリオデータSt7に基づいて、マルチメディアソースデータの編集処理内容を決定するのに若干の時間Tdを要するので、実際に編集エンコードを行う場合には、この時間Tdだけマルチメディアソースデータを遅延させて、編集エンコードと同期する必要があるからである。このような、逐次編集処理の場合、遅延時間Tdは、システム内の各要素間での同期調整に必要な程度であるので、通常ソースストリームバッファは半導体メモリ等の高速記録媒体で構成される。

しかしながら、タイトルの全体を通してシナリオデータS t 7を完成させた後に、マルチメディアソースデータを一気にエンコードする、いわゆるバッチ編集時に於いては、遅延時間 T d は、一タイトル分或いはそれ以上の時間必要である。このような場合には、ソースストリームバッファは、ビデオテープ、磁気ディスク、光ディスク等の低速大容量記録媒体を利用して構成できる。つまり、ソースストリームバッファは遅延時間 T d 及び製造コスト

25 に応じて、適当な記憶媒体を用いて構成すれば良い。

10

エンコードシステム制御部200は、編集情報作成部100に接続されており、シナリオデータSt7を編集情報作成部100から受け取る。エンコードシステム制御部200は、シナリオデータSt7に含まれる編集対象部の時間的位置及び長さに関する情報に基づいて、マルチメディアソースデータの編集対象分をエンコードするためのそれぞれのエンコードパラメータデータ及びエンコード開始、終了のタイミング信号St9、St11、及びSt13をそれぞれ生成する。なお、上述のように、各マルチメディアソースデータSt1、St3、及びSt5は、ソースストリームバッファによって、時間Td遅延して出力されるので、各タイミングSt9、St11、及びSt13と同期している。

つまり、信号S t 9はビデオストリームS t 1からエンコード対象部分を 抽出して、ビデオエンコード単位を生成するために、ビデオストリームS t 1をエンコードするタイミングを指示するビデオエンコード信号である。同 様に、信号S t 1 1 は、サブピクチャエンコード単位を生成するために、サ プピクチャストリームS t 3をエンコードするタイミングを指示するサブ ピクチャストリームエンコード信号である。また、信号S t 1 3は、オーデ ィオエンコード単位を生成するために、オーディオストリームS t 5をエン コードするタイミングを指示するオーディオエンコード信号である。

エンコードシステム制御部200は、更に、シナリオデータSt7に含ま 20 れるマルチメディアソースデータのそれぞれのストリームSt1、St3、 及びSt5のエンコード対象部分間の時間的相互関係等の情報に基づいて、 エンコードされたマルチメディアエンコードストリームを、所定の相互関係 になるように配列するためのタイミング信号St21、St23、及びSt 25を生成する。

10

エンコードシステム制御部200は、1ビデオゾーンVZ分の各タイトルのタイトル編集単位 (VOB) に付いて、そのタイトル編集単位 (VOB) の再生時間を示す再生時間情報 I Tおよびビデオ、オーディオ、サブピクチャのマルチメディアエンコードストリームを多重化 (マルチプレクス) するシステムエンコードのためのエンコードパラメータを示すストリームエンコードデータSt33を生成する。

エンコードシステム制御部200は、所定の相互的時間関係にある各ストリームのタイトル編集単位 (VOB) から、マルチメディアビットストリームMBSの各タイトルのタイトル編集単位 (VOB) の接続または、各タイトル編集単位を重畳しているインターリーブタイトル編集単位 (VOBs) を生成するための、各タイトル編集単位 (VOB) をマルチメディアビットストリームMBSとして、フォーマットするためのフォーマットパラメータを規定する配列指示信号St39を生成する。

ビデオエンコーダ300は、編集情報作成部100のソースストリームバッファ及び、エンコードシステム制御部200に接続されており、ビデオストリームSt1とビデオエンコードのためのエンコードパラメータデータ及びエンコード開始終了のタイミング信号のSt9、例えば、エンコードの開始終了タイミング、ビットレート、エンコード開始終了時にエンコード条件、素材の種類として、NTSC信号またはPAL信号あるいはテレシネ素材であるかなどのパラメータがそれぞれ入力される。ビデオエンコーダ300は、ビデオエンコード信号St9に基づいて、ビデオストリームSt15を生成する。

同様に、サブピクチャエンコーダ500は、編集情報作成部100のソー 25 スパッファ及び、エンコードシステム制御部200に接続されており、サブ

10

25

ムSt29として出力する。

ピクチャストリームS t 3とサブピクチャストリームエンコード信号S t 11がそれぞれ入力される。サブピクチャエンコーダ500は、サブピクチャストリームエンコードのためのパラメータ信号S t 11に基づいて、サブピクチャストリームS t 3の所定の部分をエンコードして、サブピクチャエンコードストリームS t 17を生成する。

オーディオエンコーダ700は、編集情報作成部100のソースバッファ及び、エンコードシステム制御部200に接続されており、オーディオストリームSt5とオーディオエンコード信号St13がそれぞれ入力される。オーディオエンコーダ700は、オーディオエンコードのためのパラメータデータ及びエンコード開始終了タイミングの信号St13に基づいて、オーディオストリームSt5の所定の部分をエンコードして、オーディオエンコードストリームSt19を生成する。

ビデオストリームバッファ400は、ビデオエンコーダ300に接続されており、ビデオエンコーダ300から出力されるビデオエンコードストリー
15 ムSt15を保存する。ビデオストリームバッファ400は更に、エンコードシステム制御部200に接続されて、タイミング信号St21の入力に基づいて、保存しているビデオエンコードストリームSt15を、調時ビデオエンコードストリームSt25を、調時ビデオエンコードストリームSt25を、

同様に、サブピクチャストリームバッファ600は、サブピクチャエンコ - ダ500に接続されており、サブピクチャエンコーダ500から出力され るサブピクチャエンコードストリームSt17を保存する。サブピクチャス トリームバッファ600は更に、エンコードシステム制御部200に接続さ れて、タイミング信号St23の入力に基づいて、保存しているサブピクチャエンコードストリームSt17を、調時サブピクチャエンコードストリー

20

25

また、オーディオストリームバッファ800は、オーディオエンコーダ700に接続されており、オーディオエンコーダ700から出力されるオーディオエンコードストリームSt19を保存する。オーディオストリームバッファ800は更に、エンコードシステム制御部200に接続されて、タイミング信号St25の入力に基づいて、保存しているオーディオエンコードストリームSt31として出力する。

システムエンコーダ900は、ビデオストリームバッファ400、サブピクチャストリームバッファ600、及びオーディオストリームバッファ800に接続されており、調時ビデオエンコードストリームSt27、調時サブピクチャエンコードストリームSt29、及び調時オーディオエンコードSt31が入力される。システムエンコーダ900は、またエンコードシステム制御部200に接続されており、ストリームエンコードデータSt33が入力される。

15 システムエンコーダ 9 0 0 は、システムエンコードのエンコードパラメータデータ及びエンコード開始終了タイミングの信号St 3 3に基づいて、各調時ストリームSt 2.7、St 2.9、及びSt 3 1に多重化処理を施して、タイトル編集単位(VOB)St 3 5を生成する。

ビデオゾーンフォーマッタ1300は、システムエンコーダ900に接続されて、タイトル編集単位St35を入力される。ビデオゾーンフォーマック1300は更に、エンコードシステム制御部200に接続されて、マルチメディアビットストリームMBSをフォーマットするためのフォーマットパラメータデータ及びフォーマット開始終タイミングの信号St39を入力される。ビデオゾーンフォーマッタ1300は、タイトル編集単位St35を、ユー9に基づいて、1ビデオゾーンVZ分のタイトル編集単位St35を、ユー

ザの要望シナリオに沿う順番に、並べ替えて、編集済みマルチメディアビットストリームSt43を生成する。

このユーザの要望シナリオの内容に編集された、マルチメディアビットストリームSt43は、記録部1200に転送される。記録部1200は、編集マルチメディアビットストリームMBSを記録媒体Mに応じた形式のデ

ータSt43に加工して、記録媒体Mに記録する。この場合、マルチメディアビットストリームMBSには、予め、ビデオゾーンフォーマッタ1300によって生成された媒体上の物理アドレスを示すボリュームファイルストラクチャVFSが含まれる。

10 また、エンコードされたマルチメディアビットストリームS t 3 5 を、以
下に述べるようなデコーダに直接出力して、編集されたタイトル内容を再生
するようにしても良い。この場合は、マルチメディアビットストリームMB
Sには、ボリュームファイルストラクチャVFSは含まれないことは言うまでもない。

15 オーサリングデコーダDC

20

25

次に、図3を参照して、本発明にかかるオーサリングエンコーダECによって、編集されたマルチメディアピットストリームMBSをデコードして、ユーザの要望のシナリオに沿って各タイトルの内容を展開する、オーサリングデコーダDCの一実施形態について説明する。なお、本実施形態に於いては、記録媒体Mに記録されたオーサリングエンコーダECによってエンコードされたマルチメディアビットストリームSt45は、記録媒体Mに記録されている。

オーサリングデコーダDCは、マルチメディアビットストリーム再生部2000、シナリオ選択部2100、デコードシステム制御部2300、ストリームバッファ2400、システムデコーダ2500、ビデオバッファ26

00、サブピクチャバッファ2700、オーディオバッファ2800、同期 制御部2900、ビデオデコーダ3800、サブピクチャデコーダ310 0、オーディオデコーダ3200、合成部3500、ビデオデータ出力端子 3600、及びオーディオデータ出力端子3700から構成されている。 5 マルチメディアビットストリーム再生部2000は、記録媒体Mを駆動さ せる記録媒体駆動ユニット2004、記録媒体Mに記録されている情報を読 み取り二値の読み取り信号S t 5 7を生成する読取ヘッドユニット200 6、読み取り信号ST57に種々の処理を施して再生ビットストリームSt 61を生成する信号処理部2008、及び機構制御部2002から構成され 10 る。機構制御部2002は、デコードシステム制御部2300に接続され て、マルチメディアビットストリーム再生指示信号St53を受けて、それ ぞれ記録媒体駆動ユニット(モータ)2004及び信号処理部2008をそ れぞれ制御する再生制御信号S t 55及びS t 59を生成する。 デコーダDCは、オーサリングエンコーダECで編集されたマルチメディ 15 アタイトルの映像、サブピクチャ、及び音声に関する、ユーザの所望の部分 が再生されるように、対応するシナリオを選択して再生するように、オーサ リングデコーダDCに指示を与えるシナリオデータとして出力できるシナ リオ選択部2100を備えている。 <u>・シナリオ選択部2100は、好ましくは、キーボード及びCPU等で構成</u> される。ユーザーは、オーサリングエンコーダECで入力されたシナリオの 20 内容に基づいて、所望のシナリオをキーボード部を操作して入力する。CP Uは、キーボード入力に基づいて、選択されたシナリオを指示するシナリオ 選択データSt51を生成する。シナリオ選択部2100は、例えば、赤外 線通信装置等によって、デコードシステム制御部2300に接続されてい 25 る。デコードシステム制御部2300は、St51に基づいてマルチメディ

アビットストリーム再生部2000の動作を制御する再生指示信号S t 5 3を生成する。

ストリームバッファ2400は所定のバッファ容量を有し、マルチメディアビットストリーム再生部2000から入力される再生信号ビットストリ

- ームS t 6 1 を一時的に保存すると共に、及び各ストリームのアドレス情報 及び同期初期値データを抽出してストリーム制御データS t 6 3 を生成す る。ストリームバッファ 2 4 0 0 は、デコードシステム制御部 2 3 0 0 に接 続されており、生成したストリーム制御データS t 6 3 をデコードシステム 制御部 2 3 0 0 に供給する。

デコードシステム制御部2300は、システムクロックSt79に基づい
15 て、所定の間隔でストリーム読出信号St65を生成し、ストリームバッフ
ァ2400に入力する。

ストリームバッファ2400は、読出信号S t 65に基づいて、再生ビットストリームS t 61を所定の間隔で出力する。

デコードシステム制御部2300は、更に、シナリオ選択データSt51

20 に基づき、選択されたシナリオに対応するビデオ、サブピクチャ、オーディ
オの各ストリームのIDを示すデコードストリーム指示信号St69を生成して、システムデコーダ2500に出力する。

システムデコーダ2500は、ストリームバッファ2400から入力され てくるビデオ、サブピクチャ、及びオーディオのストリームを、デコード指

25 示信号S t 6 9 の指示に基づいて、それぞれ、ビデオエンコードストリーム

20

St71としてビデオバッファ2600に、サブピクチャエンコードストリームSt73としてサブピクチャバッファ2700に、及びオーディオエンコードストリームSt75としてオーディオバッファ2800に出力する。システムデコーダ2500は、各ストリームSt67の各最小制御単位での再生開始時間 (PTS) 及びデコード開始時間 (DTS) を検出し、時間情報信号St77を生成する。この時間情報信号St77は、デコードシステム制御部2300を経由して、同期制御データSt81として同期制御部2900に入力される。

同期制御部2900は、同期制御データSt81として、各ストリームに ついて、それぞれがデコード後に所定の順番になるようなデコード開始タイミングを決定する。同期制御部2900は、このデコードタイミングに基づいて、ビデオストリームデコード開始信号St89を生成し、ビデオデコーダ3800に入力する。同様に、同期制御部2900は、サブピクチャデコード開始信号St91及びオーディオデコード開始信号t93を生成し、サブピクチャデコード開始信号St91及びオーディオデコード開始信号t93を生成し、サブピクチャデコーダ3100及びオーディオデコーダ3200にそれぞれ入力する。

ビデオデューダ3800は、ビデオストリームデュード開始信号St89に基づいて、ビデオ出力要求信号St84を生成して、ビデオバッファ2600に対して出力する。ビデオバッファ2600はビデオ出力要求信号St84を受けて、ビデオストリームSt83をビデオデューダ3800に出力する。ビデオデューダ3800は、ビデオストリームSt83に含まれる再生時間情報を検出し、再生時間に相当する量のビデオストリームSt83の入力を受けた時点で、ビデオ出力要求信号St84を無効(disable)にする。このようにして、所定再生時間に相当するビデオストリームがビデオデ

コーダ3800でデコードされて、再生されたビデオ信号St104が合成部3500に出力される。

同様に、サブピクチャデコーダ3100は、サブピクチャデコード開始信号St91に基づいて、サブピクチャ出力要求信号St86を生成し、サブ ピクチャバッファ2700に供給する。サブピクチャバッファ2700は、サブピクチャ出力要求信号St86を受けて、サブピクチャストリームSt85をサブピクチャデコーダ3100に出力する。サブピクチャデコーダ3100は、サブピクチャアコーダ3100に出力する。サブピクチャデコーダ3100は、サブピクチャストリームSt85をデいて、所定の再生時間に相当する量のサブピクチャストリームSt85をデコードして、サブピクチャ信号St99を再生して、合成部3500に出力される。

合成部3500は、ビデオ信号St104及びサブピクチャ信号St99を重畳させて、マルチピクチャビデオ信号St105を生成し、ビデオ出力 端子3600に出力する。

15 オーディオデコーダ3200は、オーディオデコード開始信号St93に基づいて、オーディオ出力要求信号St88を生成し、オーディオバッファ2800は、オーディオ出力要求信号St88を受けて、オーディオストリームSt87をオーディオデコーダ3200に出力する。オーディオデコーダ3200は、オーディオストリームSt87に含まれる再生時間情報に基づいて、所定の再生時間に相当する量のオーディオストリームSt87をデコードして、オーディオ出力端子3700に出力する。

このようにして、ユーザのシナリオ選択に応答して、リアルタイムにユーザの要望するマルチメディアビットストリームMBSを再生する事ができる。つまり、ユーザが異なるシナリオを選択する度に、オーサリングデコー

ダDCはその選択されたシナリオに対応するマルチメディアビットストリームMBSを再生することによって、ユーザの要望するタイトル内容を再生することができる。

以上述べたように、本発明のオーサリングシステムに於いては、基本のタイトル内容に対して、各内容を表す最小編集単位の複数の分岐可能なサブストリームを所定の時間的相関関係に配列するべく、マルチメディアソースデータをリアルタイム或いは一括してエンコードして、複数の任意のシナリオに従うマルチメディアビットストリームを生成する事ができる。

また、このようにエンコードされたマルチメディアビットストリームを、

- 10 複数のシナリオの内の任意のシナリオに従って再生できる。そして、再生中であっても、選択したシナリオから別のシナリオを選択し(切り替えて)も、その新たな選択されたシナリオに応じた(動的に)マルチメディアビットストリームを再生できる。また、任意のシナリオに従ってタイトル内容を再生中に、更に、複数のシーンの内の任意のシーンを動的に選択して再生するこ
 - このように、本発明に於けるオーサリングシステムに於いては、エンコードしてマルチメディアビットストリームMBSをリアルタイムに再生するだけでなく、繰り返し再生することができる。尚、オーサリングシステムの詳細に関しては、本特許出願と同一出願人による1996年9月27日付けの日本国特許出願に開示されている。

$\overline{\mathrm{D}\mathrm{V}\mathrm{D}}$

とができる。

15

20

図4に、単一の記録面を有するDVDの一例を示す。本例に於けるDVD 記録媒体RC1は、レーザー光線LSを照射し情報の書込及び読出を行う情 報記録面RS1と、これを覆う保護層PL1からなる。更に、記録面RS1

25 の裏側には、補強層BL1が設けられている。このように、保護層PL1側

15

20

25

の面を表面SA、補強層BL1側の面を裏面SBとする。この媒体RC1のように、片面に単一の記録層RS1を有するDVD媒体を、片面一層ディスクと呼ぶ。

図5に、図4のC1部の詳細を示す。記録面RS1は、金属薄膜等の反射 膜を付着した情報層4109によって形成されている。その上に、所定の厚さT1を有する第1の透明基板4108によって保護層PL1が形成される。所定の厚さT2を有する第二の透明基板4111によって補強層BL1が形成される。第一及び第二の透明基盤4108及び4111は、その間に設けられ接着層4110によって、互いに接着されている。

さらに、必要に応じて第2の透明基板4111の上にラベル印刷用の印刷 層4112が設けられる。印刷層4112は補強層BL1の基板4111上 の全領域ではなく、文字や絵の表示に必要な部分のみ印刷され、他の部分は 透明基板4111を剥き出しにしてもよい。その場合、裏面SB側から見ると、印刷されていない部分では記録面RS1を形成する金属薄膜4109の 反射する光が直接見えることになり、例えば、金属薄膜がアルミニウム薄膜 である場合には背景が銀白色に見え、その上に印刷文字や図形が浮き上がって見える。 印刷層4112は、補強層BL1の全面に設ける必要はなく、用途に応じて部分的に設けてもよい。

図6に、更に図5のC2部の詳細を示す。光ビームLSが入射し情報が取り出される表面SAに於いて、第1の透明基板4108と情報層4109の接する面は、成形技術により凹凸のピットが形成され、このピットの長さと間隔を変えることにより情報が記録される。つまり、情報層4109には第1の透明基板4108の凹凸のピット形状が転写される。このピットの長さや間隔はCDの場合に比べ短くなり、ピット列で形成する情報トラックもピッチも狭く構成されている。その結果、面記録密度が大幅に向上している。

また、第1の透明基板4108のピットが形成されていない表面SA側 は、平坦な面となっている。第2の透明基板4111は、補強用であり、第 1の透明基板4108と同じ材質で構成される両面が平坦な透明基板であ る。そして所定の厚さT1及びT2は、共に同じく、例えばO.6mmが好 5 ましいが、それに限定されるものでは無い。 情報の取り出しは、CDの場合と同様に、光ビームLSが照射されること により光スポットの反射率変化として取り出される。DVDシステムに於い ては、対物レンズの開口数NAを大きく、そして光ビームの波長λ小さする ことができるため、使用する光スポットLsの直径を、CDでの光スポット の約1/1.6に絞り込むことができる。これは、CDシステムに比べて、 10 約1.6倍の解像度を有することを意味する。 DVDからのデータ読み出しには、波長の短い650nmの赤色半導体レ ーザと対物レンズのNA (開口数) を0.6mmまで大きくした光学系とが 用いれらる。これと透明基板の厚さTをO.6mmに薄くしたこととがあい まって、直径120mmの光ディスクの片面に記録できる情報容量が5Gバ 15 イトを越える。 -D-V-Dシステムは、上述のように、単一の記録面R-S-1-を有する片側一層-ディスクRC1に於いても、CDに比べて記録可能な情報量が10倍近いた め、単位あたりのデータサイズが非常に大きい動画像を、その画質を損なわ 20 ずに取り扱うことができる。その結果、従来のCDシステムでは、動画像の 画質を犠牲にしても、再生時間が74分であるのに比べて、DVDでは、高 画質動画像を2時間以上に渡って記録再生可能である。このようにDVD は、動画像の記録媒体に適しているという特徴がある。 図7及び図8に、上述の記録面RSを複数有するDVD記録媒体の例を示 25 す。図7のDVD記録媒体RC2は、同一側、つまり表側SAに、二層に配

された第一及び半透明の第二の記録面RS1及びRS2を有している。第一の記録面RS1及び第二の記録面RS2に対して、それぞれ異なる光ビームLS1及びLS2を用いることにより、同時に二面からの記録再生が可能である。また、光ビームLS1或いはLS2の一方にて、両記録面RS1及びRS2に対応させても良い。このように構成されたDVD記録媒体を片面二層ディスクと呼ぶ。この例では、2枚の記録層RS1及びRS2を配したが、必要に応じて、2枚以上の記録層RSを配したDVD記録媒体を構成できることは、言うまでもない。このようなディスクを、片面多層ディスクと呼ぶ。

- 一方、図8のDVD記録媒体RC3は、反対側、つまり表側SA側には第一の記録面RS-1が、そして裏側SBには第二の記録面RS-2、それぞ設けれている。これらの例に於いては、一枚のDVDに記録面を二層もうけた例を示したが、二層以上の多層の記録面を有するように構成できることは言うまでもない。図7の場合と同様に、光ビームLS1及びLS2を個別に設けても良いし、一つの光ビームで両方の記録面RS1及びRS2の記録再生に用いることもできる。このように構成されたDVD記録媒体を両面一層ディスクと呼ぶ。また、片面に2枚以上の記録層RSを配したDVD記録媒体を構成できることは、言うまでもない。このようなディスクを、両面多層ディスクと呼ぶ。
- 20 図9及び図10に、DVD記録媒体RCの記録面RSを光ビームLSの照射側から見た平面図をそれぞれ示す。DVDには、内周から外周方向に向けて、情報を記録するトラックTRが螺旋状に連続して設けられている。トラックTRは、所定のデータ単位毎に、複数のセクターに分割されている。尚、図9では、見易くするために、トラック1周あたり3つ以上のセクターに分
- 25 割されているように表されている。

通常、トラックTRは、図9に示すように、ディスクRCAの内周の端点 I Aから外周の端点OAに向けて時計回り方向DrAに巻回されている。このようなディスクRCAを時計回りディスク、そのトラックを時計回りトラックTRAと呼ぶ。また、用途によっては、図10に示すように、ディスク RCBの外周の端点OBから内周の端点IBに向けて、時計周り方向DrB に、トラックTRBが巻回されている。この方向DrBは、内周から外周に向かって見れば、反時計周り方向であるので、図9のディスクRCAと区別するために、反時計回りディスクRCB及び反時計回りトラックTRBと呼ぶ。上述のトラック巻回方向DrA及びDrBは、光ビームが記録再生の為 にトラックをスキャンする動き、つまりトラックパスである。トラック巻回方向DrAの反対方向RdAが、ディスクRCAを回転させる方向である。トラック巻回方向DrBの反対方向RdBが、ディスクRCBを回転させる方向である。

図11に、図7に示す片側二層ディスクRC2の一例であるディスクRC 2 o の展開図を模式的に示す。下側の第一の記録面RS1は、図9に示すように時計回りトラックTRAが時計回り方向DrAに設けられている。上側の第二の記録面RS2には、図12に示すように反時計回りトラックTRBが反時計回り方向DrBに設けられている。この場合、上下側のトラック外周端部〇B及び〇Aは、ディスクRC2 o の中心線に平行な同一線上に位置している。上述のトラックTRの巻回方向DrA及びDrBは、共に、ディスクRCに対するデータの読み書きの方向でもある。この場合、上下のトラックの巻回方向は反対、つまり、上下の記録層のトラックパスDrA及びDrBが対向している。

対向トラックパスタイプの片側二層ディスクRC2oは、第一記録面RS 1に対応してRdA方向に回転されて、光ビームLSがトラックパスDrA

15

20

25

に沿って、第一記録面RS1のトラックをトレースして、外周端部OAに到達した時点で、光ビームLSを第二の記録面RS2の外周端部OBに焦点を結ぶように調節することで、光ビームLSは連続的に第二の記録面RS2のトラックをトレースすることができる。このようにして、第一及び第二の記録面RS1及びRS2のトラックTRAとTRBとの物理的距離は、光ビームLSの焦点を調整することで、瞬間的に解消できる。その結果、対向トラックパスタイプの片側二層ディスクRCoに於いては、上下二層上のトラックを一つの連続したトラックTRとして処理することが容易である。故に、図1を参照して述べた、オーサリングシステムに於ける、マルチメディアデータの最大管理単位であるマルチメディアビットストリームMBSを、一つの媒体RC2oの三層の記録層RS1及びRS2に連続的に記録することができる。

尚、記録面RS1及びRS2のトラックの巻回方向を、本例で述べたのと 反対に、つまり第一記録面RS1に反時計回りトラックTRBを、第二記録 面に時計回りトラックTRAを設け場合は、ディスクの回転方向をRdBに 変えることを除けば、上述の例と同様に、両記録面を一つの連続したトラッ クTRを有するものとして用いる。よって、簡便化の為にそのような例に付いての図示等の説明は省く。このように、DVDを構成することによって、 長大なタイトルのマルチメディアビットストリームMBSを一枚の対向ト ラックパスタイプ片面二層ディスクRC20に収録できる。このようなDV

図12に、図7に示す片側二層ディスクRC2の更なる例RC2pの展開 図を模式に示す。第一及び第二の記録面RS1及びRS2は、図9に示すよ うに、共に時計回りトラックTRAが設けられている。この場合、片側二層 ディスクRC2pは、RdA方向に回転されて、光ビームの移動方向はトラ

10

15

25

ックの巻回方向と同じ、つまり、上下の記録層のトラックパスが互いに平行である。この場合に於いても、好ましくは、上下側のトラック外周端部OA及びOAは、ディスクRC2pの中心線に平行な同一線上に位置している。それ故に、外周端部OAに於いて、光ビームLSの焦点を調節することで、図11で述べた媒体RC2oと同様に、第一記録面RS1のトラックTRAの外周端部OAから第二記録面RS2のトラックTRAの外周端部OAへ瞬間的に、アクセス先を変えることができる。

しかしながら、光ビームLSによって、第二の記録面RS2のトラックTRAを時間的に連続してアクセスするには、媒体RC2pを逆(反RdA方向に)回転させれば良い。しかし、光りビームの位置に応じて、媒体の回転方向を変えるのは効率が良くないので、図中で矢印で示されているように、光ビームLSが第一記録面RS1のトラック外周端部OAに達した後に、光ビームを第二記録面RS2のトラック内周端部IAに、移動させることで、論理的に連続した一つのトラックとして用いることができ。また、必要であれば、上下の記録面のトラックを一つの連続したトラックとして扱わずに、それぞれ別のトラックとして、各トラックにマルチメディアビットストリームMBSを一タイトルづつ記録してもよい。このようなDVD媒体を、片面二層平行トラックパス型ディスクと呼ぶ。

図13に、図8に示す片面にそれぞれ一層の記録面RS1及びRS2を有する両面一層型のDVD媒体RC3の一例RC3sの展開図を示す。一方の

記録面RS1は、時計回りトラックTRAが設けられ、他方の記録面RS2には、反時計回りトラックTRBが設けられている。この場合に於いても、好ましくは、両記録面のトラック外周端部OA及びOBは、ディスクRC3の中心線に平行な同一線上に位置している。これらの記録面RS1とRS2は、トラックの巻回方向は反対であるが、トラックパスが互いに面対称の関係にある。このようなディスクRC3sを両面一層対称トラックパス型ディスクと呼ぶ。この両面一層対称トラックパス型ディスクRC3sは、第一の記録媒体RS1に対応してRdA方向に回転される。その結果、反対側の第二の記録媒体RS2のトラックパスは、そのトラック巻回方向DrBと反対の方向、つまりDrAである。この場合、連続、非連続的に関わらず、本質的に二つの記録面RS1及びRS2に同一の光ビームLSでアクセスする事は実際的ではない。それ故に、表裏の記録面のそれぞれに、マルチメディアビットストリームMSBを記録する。

図14に、図8に示す両面一層DVD媒体RC3の更なる例RC3aの展開図を示す。両記録面RS1及びRS2には、共に、図9に示すように時計回りトラックTRAが設けられている。この場合に於いても、好ましくは、両記録面側RS1及びRS2のトラック外周端部OA及びOAは、ディスクRC3aの中心線に平行な同一線上に位置している。但し、本例に於いては、先に述べた両面一層対象トラックパス型ディスクRC3sと違って、これらの記録面RS1とRS2上のトラックは非対称の関係にある。このようなディスクRC3aを両面一層非対象トラックパス型ディスクと呼ぶ。この両面一層非対象トラックパス型ディスクRC3sは、第一の記録媒体RS1に対応してRdA方向に回転される。その結果、反対側の第二の記録面RS2のトラックパスは、そのトラック巻回方向DrAと反対の方向、つまりD

25 r B方向である。

15

20

10

15

20

故に、単一の光ビームLSを第一記録面RS1の内周から外周へ、そして 第二記録面RS2の外周から内周へと、連続的に移動させれば記録面毎に異なる光ビーム源を用意しなくても、媒体PC3aを表裏反転させずに両面の 記録再生が可能である。また、この両面一層非対象トラックパス型ディスク では、両記録面RS1及びRS2のトラックパスが同一である。それ故に、 媒体PC3aの表裏を反転することにより、記録面毎に異なる光ビーム源を 用意しなくても、単一の光ビームLSで両面の記録再生が可能であり、その 結果、装置を経済的に製造することができる。尚、両記録面RS1及びRS 2に、トラックTRAの代わりにトラックTRBを設けても、本例と基本的 に同様である。

上述の如く、記録面の多層化によって、記録容量の倍増化が容易なDVD システムによって、1枚のディスク上に記録された複数の動画像データ、複数のオーディオデータ、複数のグラフィックスデータなどをユーザとの対話操作を通じて再生するマルチメディアの領域に於いてその真価を発揮する。 つまり、従来ソフト提供者の夢であった。ひとつの映画を製作した映画の品

つまり、従来ソフト提供者の夢であった、ひとつの映画を製作した映画の品質をそのまま記録で、多数の異なる言語圏及び多数の異なる世代に対して、 一つの媒体により提供することを可能とする。

パレンタル

従来は、映画タイトルのソフト提供者は、同一のタイトルに関して、全世界の多数の言語、及び欧米各国で規制化されているパレンタルロックに対応した個別のパッケージとしてマルチレイティッドタイトルを制作、供給、管理しないといけなかった。この手間は、たいへん大きなものであった。また、これは、高画質もさることながら、意図した通りに再生できることが重要である。このような願いの解決に一歩近づく記録媒体がDVDである。

25 マルチアングル

また、対話操作の典型的な例として、1つのシーンを再生中に、別の視点からのシーンに切替えるというマルチアングルという機能が要求されている。これは、例えば、野球のシーンであれば、バックネット側から見た投手、捕手、打者を中心としたアングル、バックネット側から見た内野を中心としたアングル、センター側から見た投手、捕手、打者を中心としたアングルなどいくつかのアングルの中から、ユーザが好きなものをあたかもカメラを切り替えているように、自由に選ぶというようなアプリケーションの要求がある。

DVDでは、このような要求に応えるべく動画像、オーディオ、グラフィックスなどの信号データを記録する方式としてビデオCDと同様のMPE Gが使用されている。ビデオCDとDVDとでは、その容量と転送速度および再生装置内の信号処理性能の差から同じMPEG形式といっても、MPE G1とMPEG2という多少異なる圧縮方式、データ形式が採用されている。ただし、MPEG1とMPEG2の内容及びその違いについては、本発明の趣旨とは直接関係しないため説明を省略する(例えば、ISO11172、ISO13818のMPEG規格書参照)。

本発明に掛かるDVDシステムのデータ構造に付いて、図16、図17、 図18、図19、及び図20を参照して、後で説明する。

マルチシーン

20 上述の、パレンタルロック再生及びマルチアングル再生の要求を満たすために、各要求通りの内容のタイトルを其々に用意していれば、ほんの一部分の異なるシーンデータを有する概ね同一内容のタイトルを要求数だけ用意して、記録媒体に記録しておかなければならない。これは、記録媒体の大部分の領域に同一のデータを繰り返し記録することになるので、記録媒体の記25 憶容量の利用効率を著しく疎外する。さらに、DVDの様な大容量の記録媒

体をもってしても、全ての要求に対応するタイトルを記録することは不可能 である。この様な問題は、基本的に記録媒体の容量を増やせれば解決すると も言えるが、システムリソースの有効利用の観点から非常に望ましくない。 DVDシステムに於いては、以下にその概略を説明するマルチシーン制御 5 を用いて、多種のバリエーションを有するタイトルを最低必要限度のデータ でもって構成し、記録媒体等のシステムリソースの有効活用を可能としてい る。つまり、様々なバリエーションを有するタイトルを、各タイトル間での 共通のデータからなる基本シーン区間と、其々の要求に即した異なるシーン 群からなるマルチシーン区間とで構成する。そして、再生時に、ユーザが各 マルチシーン区間での特定のシーンを自由、且つ随時に選択できる様にして 10 おく。なお、パレンタルロック再生及びマルチアングル再生を含むマルチシ ーン制御に関して、後で、図21を参照して説明する。 DVDシステムのデータ構造 図22に、本発明に掛かるDVDシステムに於ける、オーサリングデータ 15 のデータ構造を示す。 DVDシステムでは、マルチメディアビットストリー ムMBSを記録する為に、リードイン領域LI、ボリューム領域VSと、リ ードアウト領域LOに3つに大別される記録領域を備える。 リードイン領域LIは、光ディスクの最内周部に、例えば、図9及び図1 0で説明したディスクに於いては、そのトラックの内周端部 I A及び I Bに 20 位置している。リードイン領域LIには、再生装置の読み出し開始時の動作

リードアウト領域LOは、光ディスクの最外周に、つまり図9及び図10で説明したトラックの外周端部OA及びOBに位置している。このリードアウト領域LOには、ボリューム領域VSが終了したことを示すデータ等が記

25 録される。

安定用のデータ等が記録される。

10

15

20

ボリューム領域VSは、リードイン領域LIとリードアウト領域LOの間に位置し、2048バイトの論理セクタLSが、n+1個(nは0を含む正の整数)一次元配列として記録される。各論理セクタLSはセクタナンバー(#0、#1、#2、・・#n)で区別される。更に、ボリューム領域VSは、m+1個の論理セクタLS#0~LS#m(mはnより小さい0を含む正の整数)から形成されるボリューム/ファイル管理領域VFSと、n-m個の論理セクタLS#m+1~LS#nから形成されるファイルデータ領域FDSに分別される。このファイルデータ領域FDSは、図1に示すマルチメディアビットストリームMBSに相当する。

ボリューム/ファイル管理領域VFSは、ボリューム領域VSのデータをファイルとして管理する為のファイルシステムであり、ディスク全体の管理に必要なデータの収納に必要なセクタ数m(mはnより小さい自然数)の論理セクタLS#0からLS#mによって形成されている。このボリューム/ファイル管理領域VFSには、例えば、ISO9660、及びISO13346などの規格に従って、ファイルデータ領域FDS内のファイルの情報が記録される。

ファイルデータ領域FDSは、n-m個の論理セクタLS#m+1~LS #nから構成されており、それぞれ、論理セクタの整数倍(2048×I、Iは所定の整数)のサイズを有するビデオマネージャVMGと、及びk個のビデオタイトルセットVTS#1~VTS#k(kは、100より小さい自然数)を含む。

ビデオマネージャVMGは、ディスク全体のタイトル管理情報を表す情報 を保持すると共に、ボリューム全体の再生制御の設定/変更を行うためのメ ニューであるボリュームメニューを表す情報を有する。ビデオタイトルセッ

トVTS#k 'は、単にビデオファイルとも呼び、動画、オーディオ、静止 画などのデータからなるタイトルを表す。

図16は、図22のビデオタイトルセットVTSの内部構造を示す。ビデオタイトルセットVTSは、ディスク全体の管理情報を表すVTS情報(VTSI)と、マルチメディアビットストリームのシステムストリームであるVTSタイトル用VOBS (VISIT_VOBS) に大別される。先ず、以下にVTS情報について説明した後に、VTSタイトル用VOBSについて説明する。

VTS情報は、主に、VTSI管理テーブル (VISI_MAT) 及びVTSPG

10 C情報テーブル (VIS_POCIT) を含む。

VTSI管理テーブルは、ビデオタイトルセットVTSの内部構成及び、 ビデオタイトルセットVTS中に含まれる選択可能なオーディオストリー ムの数、サブピクチャの数およびビデオタイトルセットVTSの格納場所等 が記述される。

15 VTSPGC情報管理テーブルは、再生順を制御するプログラムチェーン (PGC)を表すi個(iは自然数)のPGC情報VTS_PCCI#I~VTS_PCCI#I を記録したテーブルである。各エントリーのPGC情報VTS_PCCI#Iは、プログラムチェーンを表す情報であり、j個(jは自然数)のセル再生情報 C_PBI#I~C_PBI#jから成る。各セル再生情報C_PBI#jは、セルの再生順字や再 20 生に関する制御情報を含む。

また、プログラムチェーンPGCとは、タイトルのストーリーを記述する 概念であり、セル(後述)の再生順を記述することでタイトルを形成する。 上記VTS情報は、例えば、メニューに関する情報の場合には、再生開始時 に再生装置内のバッファに格納され、再生の途中でリモコンの「メニュー」

25 キーが押下された時点で再生装置により参照され、例えば#1のトップメニ

10

20

ューが表示される。階層メニューの場合は、例えば、プログラムチェーン情報VIS_POCI#Iが「メニュー」キー押下により表示されるメインメニューであり、#2から#9がリモコンの「テンキー」の数字に対応するサブメニュー、#10以降がさらに下位層のサブメニューというように構成される。また例えば、#1が「メニュー」キー押下により表示されるトップメニュー、#2以降が「テン」キーの数字に対応して再生される音声ガイダンスというように構成される。

メニュー自体は、このテーブルに指定される複数のプログラムチェーンで 表されるので、階層メニューであろうが、音声ガイダンスを含むメニューで あろうが、任意の形態のメニューを構成することを可能にしている。

ニまた例えば、映画の場合には、再生開始時に再生装置内のバッファに格納され、PGC内に記述しているセル再生順序を再生装置が参照し、システムストリームを再生する。

ここで言うセルとは、システムストリームの全部または一部であり、再生 15 時のアクセスポイントとして使用される。たとえば、映画の場合は、タイト ルを途中で区切っているチャプターとして使用する事ができる。

尚、エントリーされたPGC情報C_PBI#jの各々は、セル再生処理情報及び、セル情報テーブルを含む。再生処理情報は、再生時間、繰り返し回数などのセルの再生に必要な処理情報から構成される。ブロックモード(CBM)、セルブロックタイプ(OBT)、シームレス再生フラグ(SPF)、インターリーププロック配置フラグ(IAF)、STC再設定フラグ(STCDF)、

セル再生時間 (C_PBIM)、シームレスアングル切替フラグ (SACF)、セル 先頭VOBU開始アドレス (C_FVOBU_SA)、及びセル終端VOBU開始アド レス (C_LVOBU_SA) から成る。 ここで言う、シームレス再生とは、DVDシステムに於いて、映像、音声、 副映像等のマルチメディアデータを、各データ及び情報を中断する事無く再 生することであり、詳しくは、図23及び図24参照して後で説明する。

ブロックモードCBMは複数のセルが1つの機能ブロックを構成してい

- 5 るか否かを示し、機能ブロックを構成する各セルのセル再生情報は、連続的 にPGC情報内に配置され、その先頭に配置されるセル再生情報のCBMに は、"ブロックの先頭セル"を示す値、その最後に配置されるセル再生情報 のCBMには、"ブロックの最後のセル"を示す値、その間に配置されるセル再生情報 のCBMには、"ブロックの最後のセル"を示す値、その間に配置されるセル再生情報のCBMには"ブロック内のセル"を示す値を示す。
- 10 セルブロックタイプOBTは、ブロックモードCBMで示したプロックの種類を示すものである。例えばマルチアングル機能を設定する場合には、各アングルの再生に対応するセル情報を、前述したような機能ブロックとして設定し、さらにそのブロックの種類として、各セルのセル再生情報のOBTに"アングル"を示す値を設定する。
- 15 シームレス再生フラグSPFは、該セルが前に再生されるセルまたはセルブロックとシームレスに接続して再生するか否かを示すフラグであり、前セルまたは前セルブロックとシームレスに接続して再生する場合には、該セルのセル再生情報のSPFにはフラグ値1を設定する。そうでない場合には、フラグ値0を設定する。
- 20 インターリープアロケーションフラグ I A F は、該セルがインターリープ 領域に配置されているか否かを示すフラグであり、インターリープ領域に配置されている場合には、該セルのインターリープアロケーションフラグ I A Fにはフラグ値 1 を設定する。そうでない場合には、フラグ値 0 を設定する。

20

STC再設定フラグSTCDFは、同期をとる際に使用するSTC

(System Time Clock) をセルの再生時に再設定する必要があるかないかの情 報であり、再設定が必要な場合にはフラグ値1を設定する。 そうでない場合 には、フラグ値0を設定する。

シームレスアングルチェンジフラグSACFは、該セルがアングル区間に 5 属しかつ、シームレスに切替える場合、 該セルのシームレスアングルチェン ジフラグSACFにはフラグ値1を設定する。そうでない場合には、フラグ 値0を設定する。

セル再生時間 (C PBTM) はセルの再生時間をビデオのフレーム数精度で示 10 している。

C_LVOBU_SAは、セル終端VOBU開始アドレスを示し、その値はVTSタ イトル用VOBS(VISIT VOBS)の先頭セルの論理セクタからの距離をセク タ数で示している。C-FVOBU-SAはセル先頭VOBU開始アドレスを示し、V TSタイトル用VOBS (VISIT VOBS) の先頭セルの論理セクタから距離を セクタ数で示している。

次に、 VTSタイトル用VOBS、つまり、1マルチメディアシステム ストリームデータVISTT VOBSに付いて説明する。システムストリームデータ VISIT VOBSは、ビデオオブジェクトVOBと呼ばれるi個(iは自然数)の システムストリームSSからなる。 各ビデオオブジェクトVOB#1~VOB#iは、 少なくとも1つのビデオデータで構成され、場合によっては最大8つのオー ディオデータ、最大32の副映像データまでがインターリーブされて構成さ れる。

各ビデオオブジェクトVOBは、a個(aは自然数)のセルC#1~C# gから成る。各セルCは、r個(rは自然数)のビデオオブジェクトユニッ

25 トVOBU#1 ~VOBU#rから形成される。

10

15

20

各VOBUは、ビデオエンコードのリフレッシュ周期であるGOP (Grope Of Picture) の複数個及び、それに相当する時間のオーディオおよびサブピクチャからなる。また、各VOBUの先頭には、該VOBUの管理情報であるナブパックNVを含む。ナブパックNVの構成については、図19を参照して後述する。

図17に、ビデオゾーンVZ (図22) の内部構造を示す。同図に於いて、ビデオエンコードストリームSt15は、ビデオエンコーダ300によってエンコードされた、圧縮された一次元のビデオデータ列である。オーディオエンコードストリームSt19も、同様に、オーディオエンコーダ700によってエンコードされた、ステレオの左右の各データが圧縮、及び統合された一次元のオーディオデータ列である。また、オーディオデータとしてサラウンド等のマルチチャネルでもよい。

システムストリームS t 3 5 は、図 2 2 で説明した、2 0 4 8 バイトの容量を有する論理セクタ L S # n に相当するバイト数を有するパックが一次元に配列された構造を有している。システムストリームS t 3 5 の先頭、つまり V O B U の先頭には、ナビゲーションパック N V と呼ばれる、システムストリーム内のデータ配列等の管理情報を記録した、ストリーム管理パックが配置される。

ビデオエンコードストリームS・t 1 5及びオーディオエンコードストリームS t 1 9は、それぞれ、システムストリームのパックに対応するバイト数毎にパケット化される。これらパケットは、図中で、V 1、V 2、V 3、V 4、・・、及びA 1、A 2、・・と表現されている。これらパケットは、ビデオ、オーディオ各データ伸長用のデコーダの処理時間及びデコーダのバッファサイズを考慮して適切な順番に図中のシステムストリームS t 3 5

ームの構造を表す。

としてインターリープされ、パケットの配列をなす。例えば、本例ではV1、 V2、A1、V3、V4、A2の順番に配列されている。

図17では、一つの動画像データと一つのオーディオデータがインターリープされた例を示している。しかし、DVDシステムに於いては、記録再生容量が大幅に拡大され、高速の記録再生が実現され、信号処理用LSIの性能向上が図られた結果、一つの動画像データに複数のオーディオデータや複数のグラフィックスデータである副映像データが、一つのMPEGシステムストリームとしてインターリープされた形態で記録され、再生時に複数のオーディオデータや複数の副映像データから選択的な再生を行うことが可能となる。図18に、このようなDVDシステムで利用されるシステムストリ

図18に於いても、図17と同様に、パケット化されたビデオエンコードストリームSt15は、V1、V2、V3、V4、・・・と表されている。但し、この例では、オーディオエンコードストリームSt19は、一つでは無く、St19A、St19B、及びSt19Cと3列のオーディオデータ列がソースとして入力されている。更に、副画像データ列であるサブピクチャエンコードストリームSt17も、St17A及びSt17Bと二列のデータがソースとして入力されている。これら、合計6列の圧縮データ列が、一つのシステムストリームSt35にインターリーブされる。

20 ビデオデータはMPEG方式で符号化されており、GOPという単位が圧縮の単位になっており、GOP単位は、標準的にはNTSCの場合、15フレームで1GOPを構成するが、そのフレーム数は可変になっている。インターリープされたデータ相互の関連などの情報をもつ管理用のデータを表すストリーム管理パックも、ビデオデータを基準とするGOPを単位とする 間隔で、インターリープされる事になり、GOPを構成するフレーム数が変

10

20

25

われば、その間隔も変動する事になる。DVDでは、その間隔を再生時間長で、0.4秒から1.0秒の範囲内として、その境界はGOP単位としている。もし、連続する複数のGOPの再生時間が1秒以下であれば、その複数GOPのビデオデータに対して、管理用のデータパックが1つのストリーム中にインターリーブされる事になる。

DVDではこのような、管理用データパックをナブパックNVと呼び、このナブパックNVから、次のナブパックNV直前のパックまでをビデオオブジェクトユニット(以下VOBUと呼ぶ)と呼び、一般的に1つのシーンと定義できる1つの連続した再生単位をビデオオブジェクトと呼び(以下VOBと呼ぶ)、1つ以上のVOBUから構成される事になる。また、VOBが複数集まったデータの集合をVOBセット(以下VOBSと呼ぶ)と呼ぶ。これらは、DVDに於いて初めて採用されたデータ形式である。

このように複数のデータ列がインターリーブされる場合、インターリーブ

されたデータ相互の関連を示す管理用のデータを表すナビゲーションパックNVも、所定のパック数単位と呼ばれる単位でインターリープされる必要がある。GOPは、通常12から15フレームの再生時間に相当する約0.5秒のビデオデータをまとめた単位であり、この時間の再生に要するデーターパケット数に一つのストリーム管理パケットがインターリープされると考えられる。

図19は、システムストリームを構成する、インターリープされたビデオ データ、オーディオデータ、副映像データのパックに含まれるストリーム管 理情報を示す説明図である。同図のようにシステムストリーム中の各データ は、MPEG2に準拠するパケット化およびパック化された形式で記録され る。ビデオ、オーディオ、及び副画像データ共、パケットの構造は、基本的 に同じである。 DVDシステムに於いては、1パックは、前述の如く20

4 8バイトの容量を有し、PESパケットと呼ばれる1パケットを含み、パ ックヘッダPKH、パケットヘッダPTH、及びデータ領域から成る。 パックヘッダPKH中には、そのパックが図26におけるストリームバッ ファ2400からシステムデコーダ2500に転送されるべき時刻、つまり AV同期再生のための基準時刻情報、を示すSCRが記録されている。MP EGに於いては、このSCRをデコーダ全体の基準クロックとすること、を 想定しているが、DVDなどのディスクメディアの場合には、 個々のプレー ヤに於いて閉じた時刻管理で良い為、別途にデコーダ全体の時刻の基準とな るクロックを設けている。 また、パケットヘッダPTH中には、 そのパケッ 10 トに含まれるビデオデータ或はオーディオデータがデコードされた後に再 生出力として出力されるべき時刻を示すPTSや、ビデオストリームがデコ ードされるべき時刻を示すDTSなどが記録されているPTSおよびDT Sは、パケット内にデコード単位であるアクセスユニットの先頭がある場合 に置かれ、PTSはアクセスユニットの表示開始時刻を示し、DTSはアク 15 セスユニットのデコード開始時刻を示している。また、PTSとDTSが同 時刻の場合、DTSは省略される。

更に、パケットヘッダPTHには、ビデオデータ列を表すビデオパケット であるか、プライベートパケットであるか、MPEGオーディオパケットで あるかを示す8ビット長のフィールドであるストリーム I Dが含まれてい

20 る。

ここで、プライベートパケットとは、MPEG2の規格上その内容を自由に定義してよいデータであり、本実施形態では、プライベートパケット1を使用してオーディオデータ(MPEGオーディオ以外)および副映像データを搬送し、プライベートパケット2を使用してPCIパケットおよびDSI

25 パケットを搬送している。

15

20

25

プライベートパケット1およびプライベートパケット2はパケットへッダ、プライベートデータ領域およびデータ領域からなる。プライベートデータ領域には、記録されているデータがオーディオデータであるか副映像データであるかを示す、8ビット長のフィールドを有するサブストリームIDが含まれる。プライベートパケット2で定義されるオーディオデータは、リニアPCM方式、AC-3方式それぞれについて#0~#7まで最大8種類が設定可能である。また副映像データは、#0~#31までの最大32種類が設定可能である。

データ領域は、ビデオデータの場合はMPEG2形式の圧縮データ、オー 10 ディオデータの場合はリニアPCM方式、AC-3方式又はMPEG方式の データ、副映像データの場合はランレングス符号化により圧縮されたグラフ ィックスデータなどが記録されるフィールドである。

また、MPEG2ビデオデータは、その圧縮方法として、固定ビットレート方式(以下「CBR」とも記す)と可変ビットレート方式(以下「VBR」とも記す)が存在する。固定ビットレート方式とは、ビデオストリームが一定レートで連続してビデオバッファへ入力される方式である。これに対して、可変ビットレート方式とは、ビデオストリームが間欠して(断続的に)ビデオバッファへ入力される方式であり、これにより不要な符号量の発生を抑えることが可能である。DVDでは、固定ビットレート方式および可変ビットレート方式とも使用が可能である。MPEGでは、動画像データは、可変長符号化方式で圧縮されるために、GOPのデータ量が一定でない。さらに、動画像とオーディオのデコード時間が異なり、光ディスクから読み出した動画像データとオーディオデータの時間関係とデコーダから出力される動画像データとオーディオデータの時間関係が一致しなくなる。このため、動画像とオーディオの時間的な同期をとる方法を、図26を参照して、

後程、詳述するが、一先ず、簡便のため固定ビットレート方式を基に説明を する。

図20に、ナブパックNVの構造を示す。ナブパックNVは、PCIパケットとDSIパケットからなり、先頭にパックヘッダPKHを設けている。

5 PKHには、前述したとおり、そのパックが図26におけるストリームバッファ2400からシステムデコーダ2500に転送されるべき時刻、つまりAV同期再生のための基準時刻情報、を示すSCRが記録されている。

PCIパケットは、PCI情報: (PCI_GI) と非シームレスマルチアングル情報 (NSML_AGLI) を有している。

 10
 PCI情報 (PCI_GI) には、該VOBUに含まれるビデオデータの先頭ビデオフレーム表示時刻 (VOBU_S_PTM) 及び最終ビデオフレーム表示時刻 (VOBU E PTM) をシステムクロック精度 (90KHz) で記述する。

#シームレスマルチアングル情報 (NSML_AGLI) には、アングルを切り替えた場合の読み出し開始アドレスをVOB先頭からのセクタ数として記述する。この場合、アングル数は9以下であるため、領域として9アングル分のアドレス記述領域 (NSML AGL CI DSTA~NSML AGL C9 DSTA) を有す。

DSIパケットにはDSI情報 (DSI_GI)、シームレス再生情報 (SML_PBI) およびシームレスマルチアングル再生情報 (SML_AGLI) を有している。

DSI情報 (DSI_GI) として該VOBU内の最終パックアドレス (VOBU_EA)
20 をVOBU先頭からのセクタ数として記述する。

シームレス再生に関しては後述するが、分岐あるいは結合するタイトルを シームレスに再生するために、連続読み出し単位を I LVUとして、システ ムストリームレベルでインターリーブ (多重化) する必要がある。複数のシ ステムストリームが I LVUを最小単位としてインターリーブ処理されて

25 いる区間をインターリーブブロックと定義する。

10

このようにILVUを最小単位としてインターリープされたストリームをシームレスに再生するために、シームレス再生情報(SML_PBI)を記述する。シームレス再生情報(SML_PBI)には、該VOBUがインターリーブブロックかどうかを示すインターリーブユニットフラグ(ILVU flag)を記述する。このフラグはインターリープ領域に(後述)に存在するかを示すものであり、インターリーブ領域に存在する場合でであり、インターリーブ領域に存在する場合でであり、インターリーブ領域に存在する場合でであり、インターリーブ領域に存在する場合でであり、インターリーブ領域に存在する場合でであり、インターリーブ領域に存在する場合でであり、インターリーブの対応である。そうでない場合には、フラグ値のを設定する。

また、該VOBUがインターリーブ領域に存在する場合、該VOBUがILVUの最終VOBUかを示すユニットエンドフラグ (UNIT END Flag) を記述する。ILVUは、連続読み出し単位であるので、現在読み出しているVOBUが、ILVUの最後のVOBUであれば"1"を設定する。そうでない

該VOBUがインターリープ領域に存在する場合、該VOBUが属する I LVUの最終パックのアドレスを示す I LVU最終パックアドレス

15 (ILWI EA) を記述する。ここでアドレスとして、該VOBUのNVからのセクタ数で記述する。

場合には、フラグ値0を設定する。

__また、該VOBUがインターリーブ領域に存在する場合、次のILVUの 開始アドレス (NT_ILVU_SA)を記述する。ここでアドレスとして、該VOBU のNVからのセクタ数で記述する。

20 また、2つのシステムストリームをシームレスに接続する場合に於いて、 特に接続前と接続後のオーディオが連続していない場合(異なるオーディオ の場合等)、接続後のビデオとオーディオの同期をとるためにオーディオを 一時停止(ポーズ)する必要がある。例えば、NTSCの場合、ビデオのフ レーム周期は約33.33msecであり、オーディオAC3のフレーム周期は32msec

25 である。

10

20

このためにオーディオを停止する時間および期間情報を示すオーディオ 再生停止時刻1 (VOBU_A_STP_PTML)、オーディオ再生停止時刻2 (VOBU_A_STP_PTM2)、オーディオ再生停止期間1 (VOB_A_GAP_LEN1)、オー ディオ再生停止期間2 (VOB_A_GAP_LEN2) を記述する。この時間情報はシス テムクロック精度(90KHz)で記述される。

また、シームレスマルチアングル再生情報 (SM_AGLI)として、アングルを切り替えた場合の読み出し開始アドレスを記述する。このフィールドはシームレスマルチアングルの場合に有効なフィールドである。このアドレスは該VOBUのNVからのセクタ数で記述される。また、アングル数は9以下であるため、領域として9アングル分のアドレス記述領域:

(SML_AGL_C1_DSTA ~ SML_AGL_C9_DSTA) を有す。

DVDエンコーダ

図25に、本発明に掛かるマルチメディアビットストリームオーサリングシステムを上述のDVDシステムに適用した場合の、オーサリングエンコーダECDの一実施形態を示す。DVDシステムに適用したオーサリングエンコーダECD(以降、DVDエンコーダと呼称する)は、図2に示したオーサリングエンコーダECに、非常に類似した構成になっている。DVDオーサリングエンコーダECDは、基本的には、オーサリングエンコーダECのビデオゾーンフォーマッタ1300が、VOBバッファ1000とフォーマッタ1100にとって変わられた構造を有している。言うまでもなく、本発明のエンコーダによってエンコードされたビットストリームは、DVD媒体Mに記録される。以下に、DVDオーサリングエンコーダECDの動作をオーサリングエンコーダECと比較しながら説明する。

25 ダECと同様に、編集情報作成部100から入力されたユーザーの編集指示

DVDオーサリングエンコーダECDに於いても、オーサリングエンコー

内容を表すシナリオデータSt7に基づいて、エンコードシステム制御部2 00が、各制御信号St9、St11、St13、St21、St23、S t25、St33、及びSt39を生成して、ビデオエンコーダ300、サ プピクチャエンコーダ500、及びオーディオエンコーダ700を制御す る。尚、DVDシステムに於ける編集指示内容とは、図25を参照して説明 5 したオーサリングシステムに於ける編集指示内容と同様に、複数のタイトル 内容を含む各ソースデータの全部或いは、其々に対して、所定時間毎に各ソ ースデータの内容を一つ以上選択し、それらの選択された内容を、所定の方 法で接続再生するような情報を含むと共に、更に、以下の情報を含む。 つまり、マルチタイトルソースストリームを、所定時間単位毎に分割した 10 **編集単位に含まれるストリーム数、各ストリーム内のオーディオ数やサブピ** クチャ数及びその表示期間等のデータ、パレンタルあるいはマルチアングル など複数ストリームから選択するか否か、設定されたマルチアングル区間で のシーン間の切り替え接続方法などの情報を含む。 15 尚、DVDシステムに於いては、シナリオデータSt7には、メディアソ ースストリームをエンコードするために必要な、VOB単位での制御内容、 つまり、マルチアングルであるかどうか、パレンタル制御を可能とするマル チレイティッドタイトルの生成であるか、後述するマルチアングルやパレン タル制御の場合のインターリーブとディスク容量を考慮した各ストリーム 20 のエンコード時のビットレート、各制御の開始時間と終了時間、前後のスト リームとシームレス接続するか否かの内容が含まれる。エンコードシステム 制御部200は、シナリオデータSt7から情報を抽出して、エンコード制 御に必要な、エンコード情報テーブル及びエンコードパラメータを生成す る。エンコード情報テーブル及びエンコードパラメータについては、後程、 25 図27、図28、及び図29を参照して詳述する。

25

システムストリームエンコードパラメータデータ及びシステムエンコード開始終了タイミングの信号St33には上述の情報をDVDシステムに適用してVOB生成情報を含む。VOB生成情報として、前後の接続条件、オーディオ数、オーディオのエンコード情報、オーディオID、サブピクチャ数、サブピクチャID、ビデオ表示を開始する時刻情報(VPTS)、オーディオ再生を開始する時刻情報(APTS)等がある。更に、マルチメディア尾ビットストリームMBSのフォーマットパラメータデータ及びフォーマット開始終了タイミングの信号St39は、再生制御情報及びインターリーブ情報を含む。

10 ビデオエンコーダ300は、ビデオエンコードのためのエンコードパラメータ信号及びエンコード開始終了タイミングの信号St9に基づいて、ビデオストリームSt1の所定の部分をエンコードして、ISO13818に規定されるMPEG2ビデオ規格に準ずるエレメンタリーストリームを生成する。そして、このエレメンタリーストリームをビデオエンコードストリームSt15として、ビデオストリームバッファ400に出力する。

MPEG2ビデオ規格に準ずるエレメンタリストリームを生成するが、ビデオエンコードパラメータデータを含む信号St9に基に、エンコードパラメータとして、エンコード開始終了タイミング、ビットレート、エンコード開始終了時にエンコード条件、素材の種類として、NTSC信号またはPAL信号あるいはテレシネ素材であるかなどのパラメータ及びオープンGOP或いはクローズドGOPのエンコードモードの設定がエンコードパラメータとしてそれぞれ入力される。

ここで、ビデオエンコーダ300に於いてISO13818に規定される

MPEG2の符号化方式は、基本的にフレーム間の相関を利用する符号化である。つまり、符号化対象フレームの前後のフレームを参照して符号化を

行う。しかし、エラー伝播およびストリーム途中からのアクセス性の面で、他のフレームを参照しない (イントラフレーム) フレームを挿入する。このイントラフレームを少なくとも1フレームを有する符号化処理単位をGOPと呼ぶ。

5 このGOPに於いて、完全に該GOP内で符号化が閉じているGOPがクローズドGOPであり、前のGOP内のフレームを参照するフレームが該GOP内に存在する場合、該GOPをオープンGOPと呼ぶ。

従って、クローズドGOPを再生する場合は、該GOPのみで再生できるが、オープンGOPを再生する場合は、一般的に1つ前のGOPが必要であ

10 る。

また、GOPの単位は、アクセス単位として使用する場合が多い。例えば、 タイトルの途中からの再生する場合の再生開始点、映像の切り替わり点、あ るいは早送りなどの特殊再生時には、GOP内のフレーム内符号化フレーム であるいフレームのみをGOP単位で再生する事により、高速再生を実現す

15 る。

20

25

サブピクチャエンコーダ500は、サブピクチャストリームエンコード信 号St11に基づいて、サブピクチャストリームSt3の所定の部分をエン コードして、ビットマップデータの可変長符号化データを生成する。そして、この可変長符号化データをサブピクチャエンコードストリームSt17 として、サブピクチャストリームバッファ600に出力する。

ーオーディオエンコーダ 700は、オーディオエンコード信号St 13に基づいて、オーディオストリームSt 5の所定の部分をエンコードして、オーディオエンコードデータを生成する。このオーディオエンコードデータとしては、ISO11172に規定されるMPEG1オーディオ規格及びISO 13818に規定されるMPEG2オーディオ規格に基づくデータ、また、

20

25

AC-3オーディオデータ、及びPCM (LPCM) データ等がある。これ らのオーディオデータをエンコードする方法及び装置は公知である。

ビデオストリームバッファ400は、ビデオエンコーダ300に接続されており、ビデオエンコーダ300から出力されるビデオエンコードストリームSt15を保存する。ビデオストリームバッファ400は更に、エンコー

ドシステム制御部200に接続されて、タイミング信号St21の入力に基づいて、保存しているビデオエンコードストリームSt15を、調時ビデオエンコードストリームSt15を、調時ビデオ

同様に、サブピクチャストリームバッファ600は、サブピクチャエンコ
10 ーダ500に接続されており、サブピクチャエンコーダ500から出力され
るサブピクチャエンコードストリームS・t 1 7を保存する。サブピクチャストリームバッファ600は更に、エンコードシステム制御部200に接続されて、タイミング信号S・t 23の入力に基づいて、保存しているサブピクチャエンコードストリームS t 17を、調時サブピクチャエンコードストリームS t 29として出力する。

また、オーディオストリームバッファ800は、オーディオエンコーダ700に接続されており、オーディオエンコーダ700から出力されるオーディオエンコードストリームSt19を保存する。オーディオストリームバッファ800は更に、エンコードシステム制御部200に接続されて、タイミング信号St25の入力に基づいて、保存しているオーディオエンコードストリームSt31として出力する。

システムエンコーダ900は、ビデオストリームバッファ400、サブピ クチャストリームバッファ600、及びオーディオストリームバッファ80 0に接続されており、調時ビデオエンコードストリームSt27、調時サブ ピクチャエンコードストリームSt29、及び調時オーディオエンコードSt31が入力される。システムエンコーダ900は、またエンコードシステム制御部200に接続されており、システムエンコードのためのエンコードパラメータデータを含むSt33が入力される。

5 システムエンコーダ900は、エンコードパラメータデータ及びエンコード開始終了タイミング信号St33に基づいて、各調時ストリームSt27、St29、及びSt31に多重化(マルチプレクス)処理を施して、最小タイトル編集単位(VOBs)St35を生成する。

VOBバッファ1000はシステムエンコーダ900に於いて生成され

たVOBを一時格納するバッファ領域であり、フォーマッタ1100では、
St39に従ってVOBバッファ1100から調時必要なVOBを読み出

し1ビデオゾーンVZを生成する。また、同フォーマッタ1100に於いて

はファイルシステム(VFS)を付加してSt43を生成する。

このユーザの要望シナリオの内容に編集された、ストリームSt43は、 15 記録部1200に転送される。記録部1200は、編集マルチメディアビットストリームMBSを記録媒体Mに応じた形式のデータSt43に加工して、記録媒体Mに記録する。

DVDデコーダ

次に、図26を参照して、本発明に掛かるマルチメディアビットストリー
20 ムオーサリングシステムを上述のDVDシステムに適用した場合の、オーサリングデコーダDCの一実施形態を示す。DVDシステムに適用したオーサリングエンコーダDCD(以降、DVDデコーダと呼称する)は、本発明にかかるDVDエンコーダECDによって、編集されたマルチメディアビットストリームMBSをデコードして、ユーザの要望のシナリオに沿って各タイ25 トルの内容を展開する。なお、本実施形態に於いては、DVDエンコーダE

10

15--

20

CDによってエンコードされたマルチメディアビットストリームS t 45 は、記録媒体Mに記録されている。DVDオーサリングデコーダDCDの基本的な構成は図3に示すオーサリングデコーダDCと同一であり、ビデオデコーダ3801と合成部3500の間にリオーダバッファ3300と切替器3400が挿入されている。なお、切替器3400は同期制御部2900に接続されて、切替指示信号St103の入力を受けている。

DVDオーサリングデコーダDCDは、マルチメディアビットストリーム 再生部2000、シナリオ選択部2100、デコードシステム制御部230 0、ストリームバッファ2400、システムデコーダ2500、ビデオバッ ファ2600、サブピクチャバッファ2700、オーディオバッファ280 0、同期制御部2900、ビデオデコーダ3801、リオーダバッファ33 00、サブピクチャデコーダ3100、オーディオデコーダ3200、セレクタ3400、合成部3500、ビデオデータ出力端子3600、及びオーディオデータ出力端子3700から構成されている。

せる記録媒体駆動ユニット2004、記録媒体Mに記録されている情報を読み取り二値の読み取り信号St57を生成する読取ヘッドユニット2006、読み取り信号ST57に種々の処理を施して再生ビットストリームSt61を生成する信号処理部2008、及び機構制御部2002から構成される。機構制御部2002は、デコードシステム制御部2300に接続されて、マルチメディアビットストリーム再生指示信号St53を受けて、それぞれ記録媒体駆動ユニット(モータ)2004及び信号処理部2008をそれぞれ制御する再生制御信号St55及びSt59を生成する。

マルチメディアビットストリーム再生部2000は、記録媒体Mを駆動さ

10

20

25

デコーダDCは、オーサリングエンコーダECで編集されたマルチメディアタイトルの映像、サブピクチャ、及び音声に関する、ユーザの所望の部分が再生されるように、対応するシナリオを選択して再生するように、オーサリングデコーダDCに指示を与えるシナリオデータとして出力できるシナリオ選択部2100を備えている。

シナリオ選択部2100は、好ましくは、キーボード及びCPU等で構成される。ユーザーは、オーサリングエンコーダECで入力されたシナリオの内容に基づいて、所望のシナリオをキーボード部を操作して入力する。CPUは、キーボード入力に基づいて、選択されたシナリオを指示するシナリオ選択データSt51を生成する。シナリオ選択部2100は、例えば、赤外線通信装置等によって、デコードシステム制御部2300に接続されて、生成したシナリオ選択信号St51をデコードシステム制御部2300に入力する。

デコードシステム制御部2300は、デコードシステム制御部2300で生成されたシナリオ選択データSt51に基づいてマルチメディアビットストリーム再生部2000の動作を制御する再生指示信号St53を生成する。デコードシステム制御部2300は、更に、シナリオデータSt53からユーザの再生指示情報を抽出して、デコード制御に必要な、デコード情報テーブルを生成する。デコード情報テーブルについては、後程、図54、

20

及び図55を参照して詳述する。更に、デコードシステム制御部2300 は、ストリーム再生データSt63中のファイルデータ領域FDS情報から、ビデオマネージャVMG、VTS情報VTSI、PGC情報C_PBI#j、セル再生時間(C_PBIM)等の光ディスクMに記録されたタイトル情報を抽出してタイトル情報St200を生成する。

ここで、ストリーム制御データSt63は図19におけるパック単位に生成される。ストリームバッファ2400は、デコードシステム制御部2300に接続されており、生成したストリーム制御データSt63をデコードシステム制御部2300に供給する。

デコードシステム制御部2300は、システムクロックSt79に基づい

15 て、所定の間隔でストリーム読出信号St65を生成し、ストリームバッフ

ァ2400に入力する。この場合の読み出し単位はパックである。

コードシステム制御部2300では、ストリームバッファ2400から抽出したストリーム制御データ中のSCRと、同期制御部2900からのシステムクロックSt79を比較し、St63中のSCRよりもシステムクロックSt79が大きくなった時点で読み出し要求信号St65を生成する。このような制御をパック単位に行うことで、パック転送を制御する。

ここでストリーム読み出し信号St65の生成方法について説明する。デ

デコードシステム制御部2300は、更に、シナリオ選択データSt51 に基づき、選択されたシナリオに対応するビデオ、サブピクチャ、オーディ

10

20

オの各ストリームの I Dを示すデコードストリーム指示信号 S t 6 9 を生成して、システムデコーダ 2 5 0 0 に出力する。

タイトル中に、例えば日本語、英語、フランス語等、言語別のオーディオ等の複数のオーディオデータ、及び、日本語字幕、英語字幕、フランス語字幕等、言語別の字幕等の複数のサブピクチャデータが存在する場合、それぞれにIDが付与されている。つまり、図19を参照して説明したように、ビデオデータ及び、MPEGオーディオデータには、ストリームIDが付与され、サブピクチャデータ、AC3方式のオーディオデータ、リニアPCM及びナブパックNV情報には、サブストリームIDが付与されている。ユーザはIDを意識することはないが、どの言語のオーディオあるいは字幕を選択するかをシナリオ選択部2100で選択する。英語のオーディオを選択すれば、シナリオ選択部2100で選択する。英語のオーディオに対応するIDがデーコードシステム制御部2300に搬送される。さらに、デコードシステ

15 搬送して渡す。

システムデコーダ2500は、ストリームバッファ2400から入力されてくるビデオ、サブピクチャ、及びオーディオのストリームを、デコード指示信号St69の指示に基づいて、それぞれ、ビデオエンコードストリームSt71としてビデオバッファ2600に、サブピクチャエンコードストリームSt73としてサブピクチャバッファ2700に、及びオーディオエンコードストリームSt75としてオーディオバッファ2800に出力する。つまり、システムデコーダ2500は、シナリオ選択部2100より入力される、ストリームのIDと、ストリームバッファ2400から転送されるパックのIDが一致した場合にそれぞれのバッファ(ビデオバッファ260

ム制御部2300はシステムデコーダ2500にそのIDをSt69上に

0、サブピクチャバッファ2700、オーディオバッファ2800)に該パックを転送する。

システムデコーダ2500は、各ストリームSt67の各最小制御単位での再生開始時間 (PTS) 及び再生終了時間 (DTS) を検出し、時間情報信号St77は、デコードシステム制御部2300を経由して、St81として同期制御部2900に入力される。

同期制御部2900は、この時間情報信号St81に基づいて、各ストリームについて、それぞれがデコード後に所定の順番になるようなデコード開始タイミングを決定する。同期制御部2900は、このデコードタイミングに基づいて、ビデオストリームデコード開始信号St89を生成し、ビデオデコーダ3801に入力する。同様に、同期制御部2900は、サブピクチャデコード開始信号St91及びオーディオエンコード開始信号St93を生成し、サブピクチャデコーダ3100及びオーディオデコーダ3200にそれぞれ入力する。

15 ビデオデコーダ3801は、ビデオストリームデコード開始信号St89 に基づいて、ビデオ出力要求信号St84を生成して、ビデオバッファ26 00に対して出力する。ビデオバッファ2600はビデオ出力要求信号St84を受けて、ビデオストリームSt83をビデオデコーダ3801に出力する。ビデオデコーダ3801は、ビデオストリームSt83に含まれる再20 生時間情報を検出し、再生時間に相当する量のビデオストリームSt83の入力を受けた時点で、ビデオ出力要求信号St84を無効にする。このようにして、所定再生時間に相当するビデオストリームがビデオデコーダ3801でデコードされて、再生されたビデオ信号St95がリオーダーバッファ3300と切替器3400に出力される。

10

15

20

25

ビデオエンコードストリームは、フレーム間相関を利用した符号化であるため、フレーム単位でみた場合、表示順と符号化ストリーム順が一致していない。従って、デコード順に表示できるわけではない。そのため、デコードを終了したフレームを一時リオーダバッファ3300に格納する。同期制御部2900に於いて表示順になるようにSt103を制御しビデオデコーダ3801の出力St95と、リオーダバッファSt97の出力を切り替え、合成部3500に出力する。

同様に、サブピクチャデコーダ3100は、サブピクチャデコード開始信号St91に基づいて、サブピクチャ出力要求信号St86を生成し、サブピクチャバッファ2700は、ビデオ出力要求信号St84を受けて、サブピクチャストリームSt85をサブピクチャデコーダ3100に出力する。サブピクチャデコーダ3100は、サブピクチャストリームSt85に含まれる再生時間情報に基づいて、所定の再生時間に相当する量のサブピクチャストリームSt85をデコードして、サブピクチャ信号St99を再生して、合成部3500に出力する。

一合成部3500は、セレクタ3400の出力及びサブピクチャ信号St99を重畳させて、映像信号St105を生成し、ビデオ出力端子3600に出力する。

オーディオデコーダ3200は、オーディオデコード開始信号St93に基づいて、オーディオ出力要求信号St88を生成し、オーディオバッファ2800は、オーディオ出力要求信号St88を受けて、オーディオストリームSt87をオーディオデコーダ3200に出力する。オーディオデコーダ3200は、オーディオストリームSt87に含まれる再生時間情報に基づいて、所定の再生時間に相当す

15

20

る量のオーディオストリームS t 8 7をデコードして、オーディオ出力端子 3 7 0 0 に出力する。

このようにして、ユーザのシナリオ選択に応答して、リアルタイムにユーザの要望するマルチメディアビットストリームMBSを再生する事ができる。つまり、ユーザが異なるシナリオを選択する度に、オーサリングデコーダDCDはその選択されたシナリオに対応するマルチメディアビットストリームMBSを再生することによって、ユーザの要望するタイトル内容を再生することができる。

尚、デコードシステム制御部2300は、前述の赤外線通信装置等を経由して、シナリオ選択部2100にタイトル情報信号St200を供給してもよい。シナリオ選択部2100は、タイトル情報信号St200に含まれるストリーム再生データSt63中のファイルデータ領域FDS情報から、光ディスクMに記録されたタイトル情報を抽出して、内蔵ディスプレイに表示することにより、インタラクティブなユーザによるシナリオ選択を可能とする。

また、上述の例では、ストリームバッファ2400、ビデオバッファ26 00、サブピクチャバッファ2700、及びオーディオバッファ2800、 及びリオーダバッファ3300は、機能的に異なるので、それぞれ別のバッ ファとして表されている。しかし、これらのバッファに於いて要求される読 込み及び読み出し速度の数倍の動作速度を有するバッファメモリを時分割 で使用することにより、一つのバッファメモリをこれら個別のバッファとし て機能させることができる。

マルチシーン

図21を用いて、本発明に於けるマルチシーン制御の概念を説明する。既 25 に、上述したように、各タイトル間での共通のデータからなる基本シーン区

間と、其々の要求に即した異なるシーン群からなるマルチシーン区間とで構 成される。同図に於いて、シーン1、シーン5、及びシーン8が共通シーン である。共通シーン1とシーン5の間のアングルシーン及び、共通シーン5 とシーン8の間のパレンタルシーンがマルチシーン区間である。マルチアン グル区間に於いては、異なるアングル、つまりアングル1、アングル2、及 5 びアングル3、から撮影されたシーンの何れかを、再生中に動的に選択再生 できる。パレンタル区間に於いては、異なる内容のデータに対応するシーン 6及びシーン7の何れかをあらかじめ静的に選択再生できる。 このようなマルチシーン区間のどのシーンを選択して再生するかという シナリオ内容を、ユーザはシナリオ選択部2100にて入力してシナリオ選 10 択データSt51として生成する。図中に於いて、シナリオ1では、任意の アングルシーンを自由に選択し、パレンタル区間では予め選択したシーン6 を再生することを表している。同様に、シナリオ2では、アングル区間では、 自由にシーンを選択でき、パレンタル区間では、シーン7が予め選択されて 15 いることを表している。 以下に、図21で示したマルチシーンをDVDのデータ構造を用いた場合 の、PGC情報VIS_PCCIについて、図30、及び図31を参照して説明する。 図30には、図21に示したユーザ指示のシナリオを図16のDVDデ -タ構造内のビデオタイトルセットの内部構造を表すVTS Iデータ構造 20 で記述した場合について示す。図において、図21のシナリオ1、シナリオ 2は、図16のVTS I中のプログラムチェーン情報VTS_PGCIT内 の2つプログラムチェーンVIS_POCI#1とVIS_POCI#2として記述される。すな わち、シナリオ1を記述するVIS_POCI#Iは、シーン1に相当するセル再生情 報C__PBI#1、マルチアングルシーンに相当するマルチアングルセルブ 25 ロック内のセル再生情報C_PBI#2, セル再生情報C_PBI#3, セ

ル再生情報C__PBI#4、シーン5に相当するセル再生情報C__PBI#5、シーン6に相当するセル再生情報C__PBI#6、シーン8に相当するC__PBI#7からなる。

図31には、図21に示したユーザ指示のシナリオを図16のDVDデータ構造内のビデオタイトルセット用のマルチメディアビットストリームであるVOBデータ構造VTSTT_VOBSで記述した場合について示

15 す。

20

図において、図21のシナリオ1とシナリオ2の2つのシナリオは、1つのタイトル用VOBデータを共通に使用する事になる。各シナリオで共有する単独のシーンはシーン1に相当するVOB#1、シーン5に相当するVOB#5、シーン8に相当するVOB#8は、単独のVOBとして、インターリーププロックではない部分、すなわち連続ブロックに配置される。

シナリオ1とシナリオ2で共有するマルチアングルシーンにおいて、それ ぞれアングル1はVOB#2、アングル2はVOB#3、アングル3はVO B#4で構成、つまり1アングルを1VOBで構成し、さらに各アングル間 の切り替えと各アングルのシームレス再生のために、インターリーブプロッ

25 クとする。

また、シナリオ1とシナリオ2で固有なシーンであるシーン6とシーン7 は、各シーンのシームレス再生はもちろんの事、前後の共通シーンとシーム レスに接続再生するために、インターリーブブロックとする。

以上のように、図21で示したユーザ指示のシナリオは、DVDデータ構 5 造において、図30に示すビデオタイトルセットの再生制御情報と図31に 示すタイトル再生用VOBデータ構造で実現できる。

シームレス

20

上述のDVDシステムのデータ構造に関連して述べたシームレス再生について説明する。シームレス再生とは、共通シーン区間同士で、共通シーン

区間とマルチシーン区間とで、及びマルチシーン区間同士で、映像、音声、
副映像等のマルチメディアデータを、接続して再生する際に、各データ及び情報を中断する事無く再生することである。このデータ及び情報再生の中断の要因としては、ハードウェアに関連するものとして、デコーダに於いて、ソースデータ入力される速度と、入力されたソースデータをデコードする速

度のバランスがくずれる、いわゆるデコーダのアンダーフローと呼ばれるものがある。

更に、再生されるデータの特質に関するものとして、再生データが音声のように、その内容或いは情報をユーザが理解する為には、一定時間単位以上の連続再生を要求されるデータの再生に関して、その要求される連続再生時間を確保出来ない場合に情報の連続性が失われるものがある。このような情報の連続性を確保して再生する事を連続情報再生と、更にシームレス情報再生と呼ぶ。また、情報の連続性を確保出来ない再生を非連続情報再生と呼び、更に非シームレス情報再生と呼び、更に非シームレス情報再生と呼ぶ。尚、言うまでまでもなく連続情報再生と呼び、更に非シームレス情報再生と呼ぶ。尚、言うまでまでもなく連続情報再生と呼ば、更に非シームレス情報再生と呼ぶ。尚、言うまでまでもなく連続情報再生と呼ば、更に非シームレス情報再生と呼ぶ。

上述の如く、シームレス再生には、バッファのアンダーフロー等によって 物理的にデータ再生に空白あるいは中断の発生を防ぐシームレスデータ再 生と、データ再生自体には中断は無いものの、ユーザーが再生データから情 報を認識する際に情報の中断を感じるのを防ぐシームレス情報再生と定義 する。

シームレスの詳細

→ なお、このようにシームレス再生を可能にする具体的な方法については、
図23及び図24参照して後で詳しく説明する。

インターリーブ

上述のDVDデータのシステムストリームをオーサリングエンコーダE
 Cを用いて、DVD媒体上の映画のようなタイトルを記録する。しかし、同一の映画を複数の異なる文化圏或いは国に於いても利用できるような形態で提供するには、台詞を各国の言語毎に記録するのは当然として、さらに各文化圏の倫理的要求に応じて内容を編集して記録する必要がある。このような場合、元のタイトルから編集された複数のタイトルを1枚の媒体に記録するには、DVDという大容量システムに於いてさえも、ビットレートを落とさなければならず、高画質という要求が満たせなくなってしまう。そこで、共通部分を複数のタイトルで共有し、異なる部分のみをそれぞれのタイトル毎に記録するという方法をとる。これにより、ビットレートをおとさず、1枚の光ディスクに、国別あるいは文化圏別の複数のタイトルを記録する事ができる。

1枚の光ディスクに記録されるタイトルは、図21に示したように、パレンタルロック制御やマルチアングル制御を可能にするために、共通部分(シーン)と非共通部分(シーン)のを有するマルチシーン区間を有する。

10

パレンタルロック制御の場合は、一つのタイトル中に、性的シーン、暴力的シーン等の子供に相応しくない可謂成人向けシーンが含まれている場合、このタイトルは共通のシーンと、成人向けシーンと、未成年向けシーンから構成される。このようなタイトルストリームは、成人向けシーンと非成人向けシーンを、共通シーン間に、設けたマルチシーン区間として配置して実現する。

また、マルチアングル制御を通常の単一アングルタイトル内に実現する場合には、それぞれ所定のカメラアングルで対象物を撮影して得られる複数のマルチメディアシーンをマルチシーン区間として、共通シーン間に配置する事で実現する。ここで、各シーンは異なるアングルで撮影されたシーンの例を上げている、同一のアングルであるが、異なる時間に撮影されたシーンであっても良いし、またコンピュータグラフィックス等のデータであっても良い。

複数のタイトルでデータを共有すると、必然的に、データの共有部分から

非共有部分への光ビームLSを移動させるために、光学ピックアップを光ディスク(RC1)上の異なる位置に移動することになる。この移動に要する時間が原因となって音や映像を途切れずに再生する事、すなわちシームレス再生が困難であるという問題が生じる。このような問題点を解決するするには、理論的には最悪のアクセス時間に相当する時間分のトラックバッファ

(ストリームバッファ2400)を備えれば良い。一般に、光ディスクに記録されているデータは、光ピックアップにより読み取られ、所定の信号処理が施された後、データとしてトラックバッファに一旦蓄積される。蓄積されたデータは、その後デコードされて、ビデオデータあるいはオーディオデータとして再生される。

25 インターリーブの定義

15

前述のような、あるシーンをカットする事や、複数のシーンから選択を可能にするには、記録媒体のトラック上に、各シーンに属するデータ単位で、互いに連続した配置で記録されるため、共通シーンデータと選択シーンデータとの間に非選択シーンのデータが割り込んで記録される事態が必然的におこる。このような場合、記録されている順字にデータを読むと、選択したシーンのデータにアクセスしてデコードする前に、非選択シーンのデータにアクセスせざるを得ないので、選択したシーンへのシームレス接続が困難である。

しかしながら、DVDシステムに於いては、その記録媒体に対する優れた ランダムアクセス性能を活かして、このような複数シーン間でのシームレス 接続が可能である。つまり、各シーンに属するデータを、所定のデータ量を 有する複数の単位に分割し、これらの異なるシーンの属する複数の分割デー タ単位を、互いに所定の順番に配置することで、ジャンプ性能範囲に配置す る事で、それぞれ選択されたシーンの属するデータを分割単位毎に、断続的 にアクセスしてデコードすることによって、その選択されたシーンをデータ が途切れる事なく再生する事ができる。つまり、シームレスデータ再生が保 証される。

インターリーブプロック、ユニット構造

図24及び図71を参照して、シームレスデータ再生を可能にするインタ -リープ方式を説明する。図24では、1つのVOB(VOB-A)から複数のVOB(VOB-B、VOB-D、VOB-C)へ分岐再生し、その後 1つのVOB(VOB-E)に結合する場合を示している。図71では、これらのデータをディスク上のトラックTRに実際に配置した場合を示している。

図71に於ける、VOB-AとVOB-Eは再生の開始点と終了点が単独なビデオオブジェクトであり、原則として連続領域に配置する。また、図24に示すように、VOB-B、VOB-C、VOB-Dについては、再生の開始点、終了点を一致させて、インターリーブ処理を行う。そして、そのインターリーブ処理された領域をディスク上の連続領域にインターリーブ領域を再生の領域として配置する。さらに、上記連続領域とインターリーブ領域を再生の順番に、つまりトラックパスDェの方向に、配置している。複数のVOB、すなわちVOBSをトラックTR上に配置した図を図71に示す。

図71では、データが連続的に配置されたデータ領域をブロックとし、そのプロックは、前述の開始点と終了点が単独で完結しているVOBを連続して配置している連続ブロック、開始点と終了点を一致させて、その複数のVOBをインターリーブしたインターリーブブロックの2種類である。それらのプロックが再生順に、図72に示すように、ブロック1、ブロック2、ブロック3、・・・、ブロック7と配置されている構造をもつ。

- 15 図7-2に於いて、VISIT_VOBSは、ブロック1、2、3、4、5、6、及び7から構成されている。ブロック1には、VOB1が単独で配置されている。同様に、ブロック2、3、5、及び7には、それぞれ、VOB2、3、6、及び10が単独で配置されている。つまり、これらのブロック2、3、5、及び7は、連続ブロックである。
- 一方、プロック4には、VOB4とVOB5がインターリープされて配置されている。同様に、プロック6には、VOB7、VOB8、及びVOB9の三つのVOBがインターリープされて配置されている。つまり、これらのプロック4及び6は、インターリープブロックである。

図73に連続ブロック内のデータ構造を示す。同図に於いて、VOBSに 25 VOB-i、VOB-jが連続ブロックとして、配置されている。連続ブロ

ック内のVOB-i及びVOB-jは、図16を参照して説明したように、 更に論理的な再生単位であるセルに分割されている。図ではVOB-i及び VOB-jのそれぞれが、3つのセルCELL#1、CELL#2、CEL L#3で構成されている事を示している。セルは1つ以上のVOBUで構成 されており、VOBUの単位で、その境界が定義されている。セルはDVD の再生制御情報であるプログラムチェーン(以下PGCと呼ぶ)には、図1 6に示すように、その位置情報が記述される。つまり、セル開始のVOBU と終了のVOBUのアドレスが記述されている。図73に明示されるよう に、連続プロックは、連続的に再生されるように、VOBもその中で定義されるとか。

次に、図74にインターリーブブロック内のデータ構造を示す。インターリーブプロックでは、各VOBがインターリーブユニットILVU単位に分割され、各VOBに属するインターリーブユニットが交互に配置される。そして、そのインターリーブユニットとは独立して、セル境界が定義される。同図に於いて、VOB-kは四つのインターリーブユニットILVUk1、ILVUk2、ILVUk3、及びILVUk4に分割されると共に、二つのセルCELL#1k、及びCELL#2kが定義されている。同様に、VOB-mはILVUm1、ILVUm2、ILVUm3、及びILVUm4 に分割されると共に、二つのセルCELL#1m、及びCELL#2mが定義されている。つまり、インターリーブユニットILVUには、ビデオデータとオーディオデータが含まれている。

図74の例では、二つの異なるVOB-kとVOB-mの各インターリー ブユニットILVUk1、ILVUk2、ILVUk3、及びILVUk4 とILVUm1、ILVUm2、ILVUm3、及びILVUm4がインタ

ーリープブロック内に交互に配置されている。二つのVOBの各インターリープユニットILVUを、このような配列にインターリープする事で、単独のシーンから複数のシーンの1つへ分岐、さらにそれらの複数シーンの1つから単独のシーンへのシームレスな再生が実現できる。このようにインターリープすることで、多くの場合の分岐結合のあるシーンのシームレス再生可能な接続を行う事ができる。

マルチシーン

ここで、本発明に基づく、マルチシーン制御の概念を説明すると共にマルチシーン区間に付いて説明する。

10 異なるアングルで撮影されたシーンから構成される例が挙げている。しかし、マルチシーンの各シーンは、同一のアングルであるが、異なる時間に撮影されたシーンであっても良いし、またコンピュータグラフィックス等のデータであっても良い。言い換えれば、マルチアングルシーン区間は、マルチシーン区間である。

15 パレンタル

図15を参照して、パレンタルロックおよびディレクターズカットなどの 複数タイトルの概念を説明する。

図15にパレンタルロックに基づくマルチレイティッドタイトルストリームの一例を示す。一つのタイトル中に、性的シーン、暴力的シーン等の子 20 供に相応しくない所謂成人向けシーンが含まれている場合、このタイトルは 共通のシステムストリームSSa、SSb、及びSSeと、成人向けシーン を含む成人向けシステムストリームSScと、未成年向けシーンのみを含む 非成人向けシステムストリームSSdから構成される。このようなタイトルストリームは、成人向けシステムストリームSScと非成人向けシステムス

15

20

という。

トリームSSdを、共通システムストリームSSbとSSeの間に、設けたマルチシーン区間にマルチシーンシステムストリームとして配置する。

上述の用に構成されたタイトルストリームのプログラムチェーンPGC

に記述されるシステムストリームと各タイトルとの関係を説明する。成人向タイトルのプログラムチェーンPGC1には、共通のシステムストリームSSa、SSb、成人向けシステムストリームSSc及び、共通システムストリームSSeが順番に記述される。未成年向タイトルのプログラムチェーンPGC2には、共通のシステムストリームSSa、SSb、未成年向けシステムストリームSScが順番に記述される。

このように、成人向けシステムストリームSScと未成年向けシステムストリームSSdをマルチシーンとして配列することにより、各PGCの記述に基づき、上述のデコーディング方法で、共通のシステムストリームSSa及びSSbを再生したのち、マルチシーン区間で成人向けSScを選択して再生し、更に、共通のシステムストリームSSeを再生することで、成人向けの内容を有するタイトルを再生できる。また、一方、マルチシーン区間で、未成年向けシステムストリームSSdを選択して再生することで、成人向けシーンを含まない、未成年向けのタイトルを再生することができる。このように、タイトルストリームに、複数の代替えシーンからなるマルチシーン区間を用意しておき、事前に該マルチ区間のシーンのうちで再生するシーンを選択しておき、その選択内容に従って、基本的に同一のタイトルシーンから異なるシーンを有する複数のタイトルを生成する方法を、パレンタルロック

なお、パレンタルロックは、未成年保護と言う観点からの要求に基づいて、 25 パレンタルロックと呼ばれるが、システムストリーム処理の観点は、上述の

如く、マルチシーン区間での特定のシーンをユーザが予め選択することにより、静的に異なるタイトルストリーム生成する技術である。一方、マルチアングルは、タイトル再生中に、ユーザが随時且つ自由に、マルチシーン区間のシーンを選択することにより、同一のタイトルの内容を動的に変化させる技術である。

また、パレンタルロック技術を用いて、いわゆるディレクターズカットと 呼ばれるタイトルストリーム編集も可能である。ディレクターズカットと は、映画等で再生時間の長いタイトルを、飛行機内で供さる場合には、劇場 での再生と異なり、飛行時間によっては、タイトルを最後まで再生できな 10 い。このような事態にさけて、予めタイトル制作責任者、つまりディレクタ 一の判断で、タイトル再生時間短縮の為に、カットしても良いシーンを定め ておき、そのようなカットシーンを含むシステムストリームと、シーンカッ トされていないシステムストリームをマルチシーン区間に配置しておくこ とによって、制作者の意志に沿っシーンカット編集が可能となる。このよう 15 なパレンタル制御では、システムストリームからシステムストリームへのつ なぎ目に於いて、再生画像をなめらかに矛盾なくつなぐ事、すなわちビデ オ、オーディオなどバッファがアンダーフローしないシームレスデータ再生 と再生映像、再生オーディオが視聴覚上、不自然でなくまた中断する事なく 再生するシームレス情報再生が必要になる。

20 マルチアングル

25

図33を参照して、本発明に於けるマルチアングル制御の概念を説明する。通常、マルチメディアタイトルは、対象物を時間Tの経過と共に録音及 び撮影(以降、単に撮影と言う)して得られる。#SC1、#SM1、#S M2、#SM3、及び#SC3の各プロックは、それぞれ所定のカメラアン グルで対象物を撮影して得られる撮影単位時間T1、T2、及びT3に得ら