Math Logic Assignment #5

tags: Math Logic 作业

- ♣ raoxiangyun 520030910366
- **②** Wed, Nov 30, 2022 8:18 PM

1.

(1) Solution:

Therefore, $\vdash (A \land B) \lor (\neg A \lor \neg B)$, $(A \land B) \lor (\neg A \land \neg B)$ is provable.

(2) Solution:

First let's make a truth value table:

A	B	$(A \wedge B) \vee (\neg A \wedge \neg B)$
T	T	T
T	F	F
F	T	F
F	F	T

From the truth value table we know that exists truth assignment V that $\bar{V}((A \wedge B) \vee (\neg A \wedge \neg B)) = False$. Therefore, $(A \wedge B) \vee (\neg A \wedge \neg B)$ is not a tautology. According to the soundness and completeness theorems, we can know that if $\models \alpha$ then $\vdash \alpha$

and if $\vdash \alpha$ then $\models \alpha$. That is, $\models \alpha \iff \vdash \alpha$, and $\nvDash \alpha \iff \nvDash \alpha$. From our conclusion we know that $\nvDash (A \land B) \lor (\neg A \land \neg B)$ is True. Therefore, $\nvDash (A \land B) \lor (\neg A \land \neg B)$ is True. Therefore, $(A \land B) \lor (\neg A \land \neg B)$ is not provable

2.

(1) Solution:

There is no such a set that every set is its member.

- \rightarrow (\neg [There is such a set that every set is its member])
- \rightarrow (¬ $\exists v_1$ [every set is v_1 's member])
- \rightarrow ($\neg \exists v_1 \forall v_2 [v_2 \text{ is } v_1 \text{'s member}]$)
- ightarrow(ightarrow3 $v_1 orall v_2$, $v_2 \in v_1$)

(2) Solution:

Every farmer who owns a donkey needs hay, and every farmer who owns a donkey beats it.

- →[Every farmer who owns a donkey needs hay] \(\triangle \)[every farmer who owns a donkey beats it]
- $\to \forall x$ [if x is a farmer and owns a donkey, x needs hay] $\land \forall x$ [if x is a farmer and owns a donkey, x beats it]
- o orall xFx[if x owns a donkey, x needs hay] $\wedge orall xFx$ [if x owns a donkey, x beats it]
- $o orall x \exists y Fx \lor Dy \lor Oxy \to [\mathsf{x} \ \mathsf{needs} \ \mathsf{hay}] \land \forall x \exists y Fx \lor Dy \lor Oxy \to [\mathsf{x} \ \mathsf{beats} \ \mathsf{it}]$
- $ightarrow orall x \exists y Fx Dy Oxy
 ightarrow Hxy \land \forall x \exists y Fx Dy Oxy
 ightarrow Bxy$

3.

(1) Solution:

[x].

(2) Solution:

[y,z].

(3) Solution:

[z,x].

4.

(1). Solution:

```
\models_{\mathfrak{N}} \exists v_0, v_0 \dot{+} v_0 \dot{=} v_1[s] \Leftrightarrow There is \mathbf{c} \in \mathbb{N}, \models_{\mathfrak{N}} v_0 \dot{+} v_0 \dot{=} v_1[s(v_0|c)] (mark s(v_0|c) as s_1) \Leftrightarrow There is \mathbf{c} \in \mathbb{N}, \models_{\mathfrak{N}} v_0 \dot{+} v_0 \dot{=} v_1[s_1] \Leftrightarrow There is \mathbf{c} \in \mathbb{N}, s_1(v_0) + s_1(v_0) = s_1(v_1) \Leftrightarrow There is \mathbf{c} \in \mathbb{N}, c + c = 2c = s(v_1) From the start we can know that s(v_1) = 2*1 = 2. Therefore, \models_{\mathfrak{N}} \exists v_0, v_0 \dot{+} v_0 \dot{=} v_1[s] holds.
```

(2). Solution:

```
\models_{\mathfrak{N}} \exists v_0, v_0 \dot{\times} v_0 \dot{=} v_1[s] \Leftrightarrow There is \mathsf{c} \in \mathbb{N}, \models_{\mathfrak{N}} v_0 \dot{\times} v_0 \dot{=} v_1[s(v_0|c)] (\mathsf{mark}\ s(v_0|c)\ \mathsf{as}\ s_1) \Leftrightarrow There is \mathsf{c} \in \mathbb{N}, \models_{\mathfrak{N}} v_0 \dot{\times} v_0 \dot{=} v_1[s_1] \Leftrightarrow There is \mathsf{c} \in \mathbb{N}, s_1(v_0) \times s_1(v_0) = s_1(v_1) \Leftrightarrow There is \mathsf{c} \in \mathbb{N}, c \times c = c^2 = s(v_1)
```

We can easily know that $s(v_1)=2*1=2$. It can not be reached by square of natural number. Therefore, $\models_{\mathfrak{N}} \exists v_0, v_0 \dot{\times} v_0 \dot{=} v_1[s]$ doesn't hold.

(3) Solution:

```
\models_{\mathfrak{N}} \forall v_0 \exists v_1, v_0 \dot{=} v_1[s] \\ \Leftrightarrow \text{for all } a \in \mathbb{N} \text{, there is } b \in \mathbb{N} \text{, } \models_{\mathfrak{N}} v_0 \dot{=} v_1[s(v_0|a)(v_1|b)] \text{(mark } s(v_0|a)(v_1|b) \text{ as } s_2 \text{)} \\ \Leftrightarrow \text{for all } a \in \mathbb{N} \text{, there is } b \in \mathbb{N} \text{, } s_2(v_0) = s_2(v_1) \\ \Leftrightarrow \text{for all } a \in \mathbb{N} \text{, there is } b \in \mathbb{N} \text{, } a = b \text{, and it obviously holds.}
```

(4) Solution:

```
 \models_{\mathfrak{N}} \forall v_0 \forall v_1 \quad v_0 \dotplus \dot{1} \dot{<} v_1 \rightarrow \exists v_2 v_0 \dot{<} v_2 \wedge v_2 \dot{<} v_1[s] \\ \Leftrightarrow \text{ for all } a,b \in \mathbb{N}, \models_{\mathfrak{N}} v_0 \dotplus \dot{1} \dot{<} v_1 \rightarrow \exists v_2 v_0 \dot{<} v_2 \wedge v_2 \dot{<} v_1[s(v_0|a)(v_1|b)] \\ (\text{mark } s(v_0|a)(v_1|b) \text{ as } s_2) \\ \Leftrightarrow \text{ for all } a,b \in \mathbb{N}, \models_{\mathfrak{N}} v_0 \dotplus \dot{1} \dot{<} v_1[s_2] \Rightarrow \models_{\mathfrak{N}} \exists v_2 v_0 \dot{<} v_2 \wedge v_2 \dot{<} v_1[s_2] \\ \Leftrightarrow \text{ for all } a,b \in \mathbb{N}, \models_{\mathfrak{N}} v_0 \dotplus \dot{1} \dot{<} v_1[s_2] \Rightarrow \text{ there is } c \in \mathbb{N}, \models_{\mathfrak{N}} v_0 \dot{<} v_2 \wedge v_2 \dot{<} v_1[s_2(v_2|c)] \\ (\text{mark } s_2(v_2|c) \text{ as } s_3) \\ \Leftrightarrow \text{ for all } a,b \in \mathbb{N}, s_2(v_0) + 1 < s_2(v_1) \Rightarrow \text{ there is } c \in \mathbb{N}, s_3(v_0) < s_3(v_2) \wedge s_3(v_2) < s_3(v_1) \\ \Leftrightarrow \text{ for all } a,b \in \mathbb{N}, a+1 < b \Rightarrow \text{ there is } c \in \mathbb{N}, a < c \wedge c < b \\ \text{ First since } a,b \in \mathbb{N}, \text{there is not element } \in \mathbb{N} \text{ that } \in [a,a+1]. \text{ But if } a+1 < b, \text{ then there is at least } a+1 \in [a,b] \text{ and } a+1 \neq a,a+1 \neq b. \text{Therefore,} \\ \models_{\mathfrak{N}} \forall v_0 \forall v_1 \quad v_0 \dotplus \dot{1} \dot{<} v_1 \rightarrow \exists v_2 v_0 \dot{<} v_2 \wedge v_2 \dot{<} v_1[s] \text{ holds.} \\ \end{cases}
```

(5). Solution:

```
\models_{\mathfrak{N}} \forall v_0 \forall v_1 v_0 \dot{<} v_2 \wedge v_2 \dot{<} v_1[s] \Leftrightarrow for all a,b \in \mathbb{N}, \models_{\mathfrak{N}} v_0 \dot{<} v_2 \wedge v_2 \dot{<} v_1[s(v_0|a)(v_1|b)] (mark s(v_0|a)(v_1|b) as s_1) \Leftrightarrow for all a,b \in \mathbb{N}, s_1(v_0) < s_1(v_2) and s_1(v_2) < s_1(v_1) \Leftrightarrow for all a,b \in \mathbb{N}, a < 4 and 4 < b. Obviously, if a=4 or b=4, a < 4 and 4 < b doesn't hold. Therefore, \models_{\mathfrak{N}} \forall v_0 \forall v_1 v_0 \dot{<} v_2 \wedge v_2 \dot{<} v_1[s] doesn't hold.
```

5. Solution:

$$\models_{\mathfrak{A}} (lpha
ightarrow orall xlpha)[s] \ \Leftrightarrow \models_{\mathfrak{A}} lpha[s] \Rightarrow \models_{\mathfrak{A}} orall xlpha[s]$$

If $\models_{\mathfrak{A}} \alpha[s]$, that is, for any assignment, it can't be satisfied. Because x occurs not free in α , so x doesn't affect satisfaction of α . That is $s(y) = s(x|\alpha)(y)$. And obviously, x occurs no free in $\forall x \alpha$ either, and other variable in α that occurs free wasn't been affected by it and they will occur free in $\forall x \alpha$. If s can satisfy α , it can s.t $\forall x \alpha$ according to theorem in slices page 58/77.

In the same way, If s cannot satisfy α , it cannot s.t $\forall x\alpha$ according to theorem in slices page 58/77. Therefore, $\models_{\mathfrak{A}} (\alpha \to \forall x\alpha)[s]$ holds.

6. Solution:

 $orall x(x\dot{\circ}\dot{e}\dot{=}\dot{x}\wedge\dot{e}\dot{\circ}x\dot{=}\dot{x}\wedgeorall aorall borall c(a\dot{\circ}b)\dot{\circ}c\dot{=}a\dot{\circ}(b\dot{\circ}c))$