MQCPack

Generated by Doxygen 1.8.16

1 Modules Index	1
1.1 Modules List	1
2 Data Type Index	3
2.1 Class Hierarchy	3
3 Data Type Index	5
3.1 Data Types List	5
4 File Index	9
4.1 File List	9
5 Module Documentation	11
5.1 mgc algebra Module Reference	11
5.1.1 Detailed Description	
5.1.2 Function/Subroutine Documentation	
5.1.2.1 bin_coeff()	24
5.1.2.2 factorial()	25
5.1.2.3 matrix_symm2sq_complex()	26
5.1.2.4 matrix_symm2sq_integer()	26
5.1.2.5 matrix_symm2sq_real()	27
5.1.2.6 mqc_allocate_matrix()	28
5.1.2.7 mqc_allocate_r4tensor()	29
5.1.2.8 mqc_allocate_scalar()	30
5.1.2.9 mqc_allocate_vector()	30
5.1.2.10 mqc_complexscalaradd()	31
5.1.2.11 mqc_complexscalardivide()	32
5.1.2.12 mqc_complexscalarmultiply()	33
5.1.2.13 mqc_complexscalarsubtract()	33
5.1.2.14 mqc_complexvectorproduct()	34
5.1.2.15 mqc_crossproduct()	35
5.1.2.16 mqc_deallocate_matrix()	36
5.1.2.17 mqc_deallocate_r4tensor()	36
5.1.2.18 mqc_deallocate_scalar()	36
5.1.2.19 mqc_deallocate_vector()	37
5.1.2.20 mqc_elementmatrixdivide()	38
5.1.2.21 mqc_elementmatrixproduct()	38
5.1.2.22 mqc_elementvectorproduct()	39
5.1.2.23 mqc_givens_matrix()	40
5.1.2.24 mqc_input_complex_scalar()	40
5.1.2.25 mqc_input_integer_scalar()	41

5.1.2.26 mqc_input_real_scalar()
5.1.2.27 mqc_integergtscalar()
5.1.2.28 mqc_integerlescalar()
5.1.2.29 mqc_integerscalaradd()
5.1.2.30 mqc_integerscalardivide()
5.1.2.31 mqc_integerscalarmultiply()
5.1.2.32 mqc_integerscalarsubtract()
5.1.2.33 mqc_integervectorproduct()
5.1.2.34 mqc_length_vector()
5.1.2.35 mqc_matrix_cast_complex()
5.1.2.36 mqc_matrix_cast_integer()
5.1.2.37 mqc_matrix_cast_real()
5.1.2.38 mqc_matrix_columns()
5.1.2.39 mqc_matrix_conjugate_transpose()
5.1.2.40 mqc_matrix_copy_complex2int()
5.1.2.41 mqc_matrix_copy_complex2real()
5.1.2.42 mqc_matrix_copy_int2complex()
5.1.2.43 mqc_matrix_copy_int2real()
5.1.2.44 mqc_matrix_copy_real2complex()
5.1.2.45 mqc_matrix_copy_real2int()
5.1.2.46 mqc_matrix_determinant()
5.1.2.47 mqc_matrix_diag2full()
5.1.2.48 mqc_matrix_diag2symm()
5.1.2.49 mqc_matrix_diagmatrix_put_complex()
5.1.2.50 mqc_matrix_diagmatrix_put_integer()
5.1.2.51 mqc_matrix_diagmatrix_put_real()
5.1.2.52 mqc_matrix_diagmatrix_put_vector()
5.1.2.53 mqc_matrix_diagonalize()
5.1.2.54 mqc_matrix_full2diag()
5.1.2.55 mqc_matrix_full2symm()
5.1.2.56 mqc_matrix_generalized_eigensystem()
5.1.2.57 mqc_matrix_havecomplex()
5.1.2.58 mqc_matrix_havediagonal()
5.1.2.59 mqc_matrix_havefull()
5.1.2.60 mqc_matrix_haveinteger()
5.1.2.61 mqc_matrix_havereal()
5.1.2.62 mqc_matrix_havesymmetric()
5.1.2.63 mqc_matrix_identity()
5.1.2.64 mgc matrix initialize()

5.1.2.65 mqc_matrix_inverse()
5.1.2.66 mqc_matrix_isallocated()
5.1.2.67 mqc_matrix_matrix_at()
5.1.2.68 mqc_matrix_matrix_contraction()
5.1.2.69 mqc_matrix_matrix_put()
5.1.2.70 mqc_matrix_norm()
5.1.2.71 mqc_matrix_rms_max()
5.1.2.72 mqc_matrix_rows()
5.1.2.73 mqc_matrix_scalar_at()
5.1.2.74 mqc_matrix_scalar_put()
5.1.2.75 mqc_matrix_set()
5.1.2.76 mqc_matrix_sqrt()
5.1.2.77 mqc_matrix_svd()
5.1.2.78 mqc_matrix_symm2diag()
5.1.2.79 mqc_matrix_symm2full()
5.1.2.80 mqc_matrix_symm2full_func()
5.1.2.81 mqc_matrix_symmetrize()
5.1.2.82 mqc_matrix_symmmatrix_put_complex()
5.1.2.83 mqc_matrix_symmmatrix_put_integer()
5.1.2.84 mqc_matrix_symmmatrix_put_real()
5.1.2.85 mqc_matrix_symmsymmr4tensor_put_complex()
5.1.2.86 mqc_matrix_symmsymmr4tensor_put_real()
5.1.2.87 mqc_matrix_test_diagonal()
5.1.2.88 mqc_matrix_test_symmetric()
5.1.2.89 mqc_matrix_trace()
5.1.2.90 mqc_matrix_transpose()
5.1.2.91 mqc_matrix_vector_at()
5.1.2.92 mqc_matrix_vector_put()
5.1.2.93 mqc_matrixmatrixdotproduct()
5.1.2.94 mqc_matrixmatrixproduct()
5.1.2.95 mqc_matrixmatrixsubtract()
5.1.2.96 mqc_matrixmatrixsum()
5.1.2.97 mqc_matrixscalarproduct()
5.1.2.98 mqc_matrixvectordotproduct()
5.1.2.99 mqc_outer()
5.1.2.100 mqc_output_complex_scalar()
5.1.2.101 mqc_output_integer_scalar()
5.1.2.102 mqc_output_mqcscalar_scalar()
5.1.2.103 mqc_output_real_scalar()

5.1.2.104 mqc_print_matrix_algebra1()
5.1.2.105 mqc_print_r4tensor_algebra1()
5.1.2.106 mqc_print_scalar_algebra1()
5.1.2.107 mqc_print_vector_algebra1()
5.1.2.108 mqc_r4tensor_at()
5.1.2.109 mqc_r4tensor_havecomplex()
5.1.2.110 mqc_r4tensor_haveinteger()
5.1.2.111 mqc_r4tensor_havereal()
5.1.2.112 mqc_r4tensor_initialize()
5.1.2.113 mqc_r4tensor_put()
5.1.2.114 mqc_realgtscalar()
5.1.2.115 mqc_reallescalar()
5.1.2.116 mqc_realltscalar()
5.1.2.117 mqc_realscalaradd()
5.1.2.118 mqc_realscalardivide()
5.1.2.119 mqc_realscalarmultiply()
5.1.2.120 mqc_realscalarsubtract()
5.1.2.121 mqc_realvectorproduct()
5.1.2.122 mqc_scalar_acos()
5.1.2.123 mqc_scalar_asin()
5.1.2.124 mqc_scalar_atan()
5.1.2.125 mqc_scalar_atan2()
5.1.2.126 mqc_scalar_cmplx()
5.1.2.127 mqc_scalar_complex_conjugate()
5.1.2.128 mqc_scalar_complex_imagpart()
5.1.2.129 mqc_scalar_complex_realpart()
5.1.2.130 mqc_scalar_cos()
5.1.2.131 mqc_scalar_get_abs_value()
5.1.2.132 mqc_scalar_get_intrinsic_complex()
5.1.2.133 mqc_scalar_get_intrinsic_integer()
5.1.2.134 mqc_scalar_get_intrinsic_real()
5.1.2.135 mqc_scalar_get_random_value()
5.1.2.136 mqc_scalar_havecomplex()
5.1.2.137 mqc_scalar_haveinteger()
5.1.2.138 mqc_scalar_havereal()
5.1.2.139 mqc_scalar_isallocated()
5.1.2.140 mqc_scalar_sin()
5.1.2.141 mqc_scalar_sqrt()
5.1.2.142 mqc_scalar_tan()

5.1.2.143 mqc_scalaradd()
5.1.2.144 mqc_scalarcomplexadd()
5.1.2.145 mqc_scalarcomplexdivide()
5.1.2.146 mqc_scalarcomplexexponent()
5.1.2.147 mqc_scalarcomplexmultiply()
5.1.2.148 mqc_scalarcomplexsubtract()
5.1.2.149 mqc_scalardivide()
5.1.2.150 mqc_scalareq()
5.1.2.151 mqc_scalarexponent()
5.1.2.152 mqc_scalarge()
5.1.2.153 mqc_scalargt()
5.1.2.154 mqc_scalargtinteger()
5.1.2.155 mqc_scalargtreal()
5.1.2.156 mqc_scalarintegeradd()
5.1.2.157 mqc_scalarintegerdivide()
5.1.2.158 mqc_scalarintegerexponent()
5.1.2.159 mqc_scalarintegermultiply()
5.1.2.160 mqc_scalarintegersubtract()
5.1.2.161 mqc_scalarle()
5.1.2.162 mqc_scalarleinteger()
5.1.2.163 mqc_scalarlereal()
5.1.2.164 mqc_scalarit()
5.1.2.165 mqc_scalarItreal()
5.1.2.166 mqc_scalarmatrixproduct()
5.1.2.167 mqc_scalarmultiply()
5.1.2.168 mqc_scalarne()
5.1.2.169 mqc_scalarrealadd()
5.1.2.170 mqc_scalarrealdivide()
5.1.2.171 mqc_scalarrealexponent()
5.1.2.172 mqc_scalarrealmultiply()
5.1.2.173 mqc_scalarrealsubtract()
5.1.2.174 mqc_scalarsubtract()
5.1.2.175 mqc_scalarvectordifference()
5.1.2.176 mqc_scalarvectorproduct()
5.1.2.177 mqc_scalarvectorsum()
5.1.2.178 mqc_set_array2tensor()
5.1.2.179 mqc_set_array2vector_complex()
5.1.2.180 mqc_set_array2vector_integer()
5.1.2.181 mqc_set_array2vector_real()

5.1.2.182 mqc_set_complexarray2matrix()
5.1.2.183 mqc_set_integerarray2matrix()
5.1.2.184 mqc_set_matrix2complexarray()
5.1.2.185 mqc_set_matrix2integerarray()
5.1.2.186 mqc_set_matrix2matrix()
5.1.2.187 mqc_set_matrix2realarray()
5.1.2.188 mqc_set_realarray2matrix()
5.1.2.189 mqc_set_vector2complexarray()
5.1.2.190 mqc_set_vector2integerarray()
5.1.2.191 mqc_set_vector2realarray()
5.1.2.192 mqc_set_vector2vector()
5.1.2.193 mqc_vector2diagmatrix()
5.1.2.194 mqc_vector_abs()
5.1.2.195 mqc_vector_argsort()
5.1.2.196 mqc_vector_cast_complex()
5.1.2.197 mqc_vector_cast_integer()
5.1.2.198 mqc_vector_cast_real()
5.1.2.199 mqc_vector_cmplx()
5.1.2.200 mqc_vector_complex_imagpart()
5.1.2.201 mqc_vector_complex_realpart()
5.1.2.202 mqc_vector_conjugate_transpose()
5.1.2.203 mqc_vector_copy_complex2int()
5.1.2.204 mqc_vector_copy_complex2real()
5.1.2.205 mqc_vector_copy_int2complex()
5.1.2.206 mqc_vector_copy_int2real()
5.1.2.207 mqc_vector_copy_real2complex()
5.1.2.208 mqc_vector_copy_real2int()
5.1.2.209 mqc_vector_havecomplex()
5.1.2.210 mqc_vector_haveinteger()
5.1.2.211 mqc_vector_havereal()
5.1.2.212 mqc_vector_initialize()
5.1.2.213 mqc_vector_isallocated()
5.1.2.214 mqc_vector_iscolumn()
5.1.2.215 mqc_vector_maxloc()
5.1.2.216 mqc_vector_maxval()
5.1.2.217 mqc_vector_minloc()
5.1.2.218 mqc_vector_minval()
5.1.2.219 mqc_vector_norm()
5.1.2.220 mqc_vector_pop()

5.1.2.221 mqc_vector_power()
5.1.2.222 mqc_vector_push()
5.1.2.223 mqc_vector_scalar_at()
5.1.2.224 mqc_vector_scalar_increment()
5.1.2.225 mqc_vector_scalar_put()
5.1.2.226 mqc_vector_shift()
5.1.2.227 mqc_vector_sort()
5.1.2.228 mqc_vector_sqrt()
5.1.2.229 mqc_vector_transpose()
5.1.2.230 mqc_vector_unshift()
5.1.2.231 mqc_vector_at()
5.1.2.232 mqc_vector_put()
5.1.2.233 mqc_vectorcomplexdivide()
5.1.2.234 mqc_vectorcomplexproduct()
5.1.2.235 mqc_vectorintegerdivide()
5.1.2.236 mqc_vectorintegerproduct()
5.1.2.237 mqc_vectormatrixdotproduct()
5.1.2.238 mqc_vectorrealdivide()
5.1.2.239 mqc_vectorrealproduct()
5.1.2.240 mqc_vectorscalardivide()
5.1.2.241 mqc_vectorscalarproduct()
5.1.2.242 mqc_vectorvectordifference()
5.1.2.243 mqc_vectorvectordotproduct()
5.1.2.244 mqc_vectorvectorsum()
5.1.2.245 symindexhash()
5.2 mqc_est Module Reference
5.2.1 Function/Subroutine Documentation
5.2.1.1 gen_det_str()
5.2.1.2 get_one_gamma_matrix()
5.2.1.3 mqc_build_ci_hamiltonian()
5.2.1.4 mqc_eigenvalue_eigenvalue_dotproduct()
5.2.1.5 mqc_eigenvalues_add_name()
5.2.1.6 mqc_eigenvalues_allocate()
5.2.1.7 mqc_eigenvalues_array_name()
5.2.1.8 mqc_eigenvalues_array_type()
5.2.1.9 mqc_eigenvalues_at()
5.2.1.10 mqc_eigenvalues_dimension()
5.2.1.11 mqc_eigenvalues_eigenvalues_multiply()
5.2.1.12 mqc_eigenvalues_has_alpha()

5.2.1.13 mqc_eigenvalues_has_beta()
5.2.1.14 mqc_eigenvalues_integral_multiply()
5.2.1.15 mqc_eigenvalues_isallocated()
5.2.1.16 mqc_eigenvalues_output_array()
5.2.1.17 mqc_eigenvalues_output_block()
5.2.1.18 mqc_eri_integral_contraction()
5.2.1.19 mqc_integral_add_name()
5.2.1.20 mqc_integral_allocate()
5.2.1.21 mqc_integral_array_name()
5.2.1.22 mqc_integral_array_type()
5.2.1.23 mqc_integral_at()
5.2.1.24 mqc_integral_conjugate_transpose()
5.2.1.25 mqc_integral_delete_energy_list()
5.2.1.26 mqc_integral_difference()
5.2.1.27 mqc_integral_dimension()
5.2.1.28 mqc_integral_eigenvalues_multiply()
5.2.1.29 mqc_integral_get_energy_list()
5.2.1.30 mqc_integral_has_alpha()
5.2.1.31 mqc_integral_has_alphabeta()
5.2.1.32 mqc_integral_has_beta()
5.2.1.33 mqc_integral_has_betaalpha()
5.2.1.34 mqc_integral_identity()
5.2.1.35 mqc_integral_initialize()
5.2.1.36 mqc_integral_multiply()
5.2.1.37 mqc_integral_isallocated()
5.2.1.38 mqc_integral_matrix_multiply()
5.2.1.39 mqc_integral_norm()
5.2.1.40 mqc_integral_output_array()
5.2.1.41 mqc_integral_output_block()
5.2.1.42 mqc_integral_output_orbitals()
5.2.1.43 mqc_integral_scalar_multiply()
5.2.1.44 mqc_integral_set_energy_list()
5.2.1.45 mqc_integral_sum()
5.2.1.46 mqc_integral_swap_orbitals()
5.2.1.47 mqc_integral_transpose()
5.2.1.48 mqc_matrix_integral_multiply()
5.2.1.49 mqc_matrix_spinblockghf()
5.2.1.50 mqc_matrix_undospinblockghf_eigenvalues()
5.2.1.51 mqc_matrix_undospinblockghf_integral()

5.2.1.52 mqc_print_eigenvalues()	193
5.2.1.53 mqc_print_integral()	194
5.2.1.54 mqc_print_twoeris()	194
5.2.1.55 mqc_print_wavefunction()	194
5.2.1.56 mqc_scalar_integral_multiply()	194
5.2.1.57 mqc_scf_eigenvalues_power()	194
5.2.1.58 mqc_scf_integral_contraction()	195
5.2.1.59 mqc_scf_integral_determinant()	195
5.2.1.60 mqc_scf_integral_diagonalize()	195
5.2.1.61 mqc_scf_integral_generalized_eigensystem()	195
5.2.1.62 mqc_scf_integral_inverse()	195
5.2.1.63 mqc_scf_integral_trace()	195
5.2.1.64 mqc_scf_transformation_matrix()	196
5.2.1.65 mqc_twoeris_allocate()	196
5.2.1.66 mqc_twoeris_at()	196
5.2.1.67 slater_condon()	196
5.2.1.68 twoeri_trans()	197
6 Data Type Documentation	199
6.1 mqc_algebra::abs Interface Reference	199
6.1.1 Detailed Description	199
6.1.2 Member Function/Subroutine Documentation	199
6.1.2.1 mqc_scalar_get_abs_value()	199
6.1.2.2 mqc_vector_abs()	200
6.2 mqc_algebra::acos Interface Reference	201
6.2.1 Detailed Description	201
6.2.2 Member Function/Subroutine Documentation	201
6.2.2.1 mqc_scalar_acos()	201
6.3 mqc_algebra::aimag Interface Reference	202
6.3.1 Detailed Description	202
6.3.2 Member Function/Subroutine Documentation	202
6.3.2.1 mqc_scalar_complex_imagpart()	202
6.3.2.2 mqc_vector_complex_imagpart()	203
6.4 mqc_algebra::asin Interface Reference	204
6.4.1 Detailed Description	204
6.4.2 Member Function/Subroutine Documentation	204
6.4.2.1 mqc_scalar_asin()	204
6.5 mqc_algebra::assignment(=) Interface Reference	205
6.5.1 Detailed Description	

6.9.2.2 mqc_vector_cmplx()	225
6.10 mqc_algebra::conjg Interface Reference	226
6.10.1 Detailed Description	226
6.10.2 Member Function/Subroutine Documentation	226
6.10.2.1 mqc_scalar_complex_conjugate()	226
6.11 mqc_algebra::contraction Interface Reference	227
6.11.1 Detailed Description	227
6.11.2 Member Function/Subroutine Documentation	227
6.11.2.1 mqc_matrix_matrix_contraction()	227
6.12 mqc_est::contraction Interface Reference	228
6.12.1 Member Function/Subroutine Documentation	228
6.12.1.1 mqc_eri_integral_contraction()	228
6.12.1.2 mqc_scf_integral_contraction()	228
6.13 mqc_algebra::cos Interface Reference	228
6.13.1 Detailed Description	228
6.13.2 Member Function/Subroutine Documentation	229
6.13.2.1 mqc_scalar_cos()	229
6.14 mqc_algebra::dagger Interface Reference	229
6.14.1 Detailed Description	230
6.14.2 Member Function/Subroutine Documentation	230
6.14.2.1 mqc_matrix_conjugate_transpose()	230
6.14.2.2 mqc_vector_conjugate_transpose()	230
6.15 mqc_est::dagger Interface Reference	231
6.15.1 Member Function/Subroutine Documentation	231
6.15.1.1 mqc_integral_conjugate_transpose()	231
6.16 mqc_algebra::dot_product Interface Reference	231
6.16.1 Detailed Description	232
6.16.2 Member Function/Subroutine Documentation	232
6.16.2.1 mqc_vectorvectordotproduct()	232
6.17 mqc_est::dot_product Interface Reference	233
6.17.1 Member Function/Subroutine Documentation	233
6.17.1.1 mqc_eigenvalue_eigenvalue_dotproduct()	233
6.18 mqc_algebra::matmul Interface Reference	233
6.18.1 Detailed Description	233
6.18.2 Member Function/Subroutine Documentation	234
6.18.2.1 mqc_matrixmatrixdotproduct()	234
6.18.2.2 mqc_matrixvectordotproduct()	234
6.18.2.3 mqc_vectormatrixdotproduct()	234
6.19 mqc_est::matmul Interface Reference	234

6.19.1 Member Function/Subroutine Documentation	234
6.19.1.1 mqc_eigenvalues_eigenvalues_multiply()	235
6.19.1.2 mqc_eigenvalues_integral_multiply()	235
6.19.1.3 mqc_integral_eigenvalues_multiply()	235
6.19.1.4 mqc_integral_integral_multiply()	235
6.19.1.5 mqc_integral_matrix_multiply()	235
6.19.1.6 mqc_matrix_integral_multiply()	236
6.20 mqc_algebra::matrix_symm2sq Interface Reference	236
6.20.1 Detailed Description	236
6.20.2 Member Function/Subroutine Documentation	236
6.20.2.1 matrix_symm2sq_complex()	236
6.20.2.2 matrix_symm2sq_integer()	237
6.20.2.3 matrix_symm2sq_real()	238
6.21 mqc_algebra::mqc_cast_complex Interface Reference	239
6.21.1 Detailed Description	239
6.21.2 Member Function/Subroutine Documentation	239
6.21.2.1 mqc_matrix_cast_complex()	239
6.21.2.2 mqc_vector_cast_complex()	240
6.22 mqc_algebra::mqc_cast_integer Interface Reference	241
6.22.1 Detailed Description	241
6.22.2 Member Function/Subroutine Documentation	241
6.22.2.1 mqc_matrix_cast_integer()	241
6.22.2.2 mqc_vector_cast_integer()	242
6.23 mqc_algebra::mqc_cast_real Interface Reference	242
6.23.1 Detailed Description	243
6.23.2 Member Function/Subroutine Documentation	243
6.23.2.1 mqc_matrix_cast_real()	243
6.23.2.2 mqc_vector_cast_real()	243
6.24 mqc_est::mqc_determinant Type Reference	244
6.24.1 Member Data Documentation	244
6.24.1.1 nalpstr	244
6.24.1.2 nbetstr	244
6.24.1.3 ndets	245
6.24.1.4 order	245
6.24.1.5 strings	245
6.25 mqc_est::mqc_determinant_string Type Reference	245
6.25.1 Member Data Documentation	245
6.25.1.1 alpha	245
6.25.1.2 beta	245

6.26 mqc_algebra::mqc_have_complex Interface Reference
6.26.1 Detailed Description
6.26.2 Member Function/Subroutine Documentation
6.26.2.1 mqc_matrix_havecomplex()
6.26.2.2 mqc_vector_havecomplex()
6.27 mqc_algebra::mqc_have_int Interface Reference
6.27.1 Detailed Description
6.27.2 Member Function/Subroutine Documentation
6.27.2.1 mqc_matrix_haveinteger()
6.27.2.2 mqc_vector_haveinteger()
6.28 mqc_algebra::mqc_have_real Interface Reference
6.28.1 Detailed Description
6.28.2 Member Function/Subroutine Documentation
6.28.2.1 mqc_matrix_havereal()
6.28.2.2 mqc_vector_havereal()
6.29 mqc_algebra::mqc_matrix Type Reference
6.29.1 Detailed Description
6.29.2 Member Function/Subroutine Documentation
6.29.2.1 at()
6.29.2.2 dagger()
6.29.2.3 det()
6.29.2.4 diag()
6.29.2.5 eigensys()
6.29.2.6 identity()
6.29.2.7 init()
6.29.2.8 inv()
6.29.2.9 mat()
6.29.2.10 mput()
6.29.2.11 norm()
6.29.2.12 print()
6.29.2.13 put()
6.29.2.14 rmsmax()
6.29.2.15 set()
6.29.2.16 sqrt()
6.29.2.17 svd()
6.29.2.18 trace()
6.29.2.19 transpose()
6.29.2.20 vat()
6.29.2.21 vput()

6.30 mqc_algebra::mqc_matrix_diagmatrix_put Interface Reference
6.30.1 Detailed Description
6.30.2 Member Function/Subroutine Documentation
6.30.2.1 mqc_matrix_diagmatrix_put_complex()
6.30.2.2 mqc_matrix_diagmatrix_put_integer()
6.30.2.3 mqc_matrix_diagmatrix_put_real()
6.30.2.4 mqc_matrix_diagmatrix_put_vector()
6.31 mqc_algebra::mqc_matrix_symmmatrix_put Interface Reference
6.31.1 Detailed Description
6.31.2 Member Function/Subroutine Documentation
6.31.2.1 mqc_matrix_symmmatrix_put_complex()
6.31.2.2 mqc_matrix_symmmatrix_put_integer()
6.31.2.3 mqc_matrix_symmmatrix_put_real()
6.32 mqc_est::mqc_matrix_undospinblockghf Interface Reference
6.32.1 Member Function/Subroutine Documentation
6.32.1.1 mqc_matrix_undospinblockghf_eigenvalues()
6.32.1.2 mqc_matrix_undospinblockghf_integral()
6.33 mqc_algebra::mqc_print Interface Reference
6.33.1 Detailed Description
6.33.2 Member Function/Subroutine Documentation
6.33.2.1 mqc_print_matrix_algebra1()
6.33.2.2 mqc_print_r4tensor_algebra1()
6.33.2.3 mqc_print_scalar_algebra1()
6.33.2.4 mqc_print_vector_algebra1()
6.34 mqc_est::mqc_print Interface Reference
6.34.1 Member Function/Subroutine Documentation
6.34.1.1 mqc_print_eigenvalues()
6.34.1.2 mqc_print_integral()
6.34.1.3 mqc_print_twoeris()
6.34.1.4 mqc_print_wavefunction()
6.35 mqc_est::mqc_pscf_wavefunction Type Reference
6.35.1 Member Data Documentation
6.35.1.1 nactive
6.35.1.2 ncore
6.35.1.3 nfrz
6.35.1.4 nval
6.35.1.5 pscf_amplitudes
6.35.1.6 pscf_energies
6.36 mgc_algebra::mgc_r4tensor Type Reference

6.36.1 Detailed Description	70
6.36.2 Member Function/Subroutine Documentation	70
6.36.2.1 at()	70
6.36.2.2 init()	70
6.36.2.3 print()	70
6.36.2.4 put()	71
6.37 mqc_algebra::mqc_scalar Type Reference	71
6.37.1 Detailed Description	71
6.37.2 Member Function/Subroutine Documentation	71
6.37.2.1 abs()	71
6.37.2.2 cval()	72
6.37.2.3 ival()	72
6.37.2.4 print()	72
6.37.2.5 random()	72
6.37.2.6 rval()	72
6.38 mqc_est::mqc_scf_eigenvalues Type Reference	73
6.38.1 Member Function/Subroutine Documentation	73
6.38.1.1 addlabel()	73
6.38.1.2 at()	73
6.38.1.3 getblock()	73
6.38.1.4 getlabel()	73
6.38.1.5 power()	73
6.38.1.6 print()	74
6.39 mqc_est::mqc_scf_integral Type Reference	74
6.39.1 Member Function/Subroutine Documentation	74
6.39.1.1 addlabel()	74
6.39.1.2 deleteelist()	74
6.39.1.3 det()	75
6.39.1.4 diag()	75
6.39.1.5 eigensys()	75
6.39.1.6 getblock()	75
6.39.1.7 getelist()	75
6.39.1.8 getlabel()	75
6.39.1.9 identity()	75
6.39.1.10 init()	76
6.39.1.11 inv()	76
6.39.1.12 norm()	76
6.39.1.13 orbitals()	76
6.39.1.14 print()	76

6.39.1.15 setelist()	276
6.39.1.16 swap()	276
6.39.1.17 trace()	277
6.40 mqc_algebra::mqc_set_array2vector Interface Reference	277
6.40.1 Detailed Description	277
6.40.2 Member Function/Subroutine Documentation	277
6.40.2.1 mqc_set_array2vector_complex()	277
6.40.2.2 mqc_set_array2vector_integer()	278
6.40.2.3 mqc_set_array2vector_real()	279
6.41 mqc_est::mqc_twoeris Type Reference	280
6.41.1 Member Function/Subroutine Documentation	280
6.41.1.1 print()	280
6.42 mqc_algebra::mqc_vector Type Reference	280
6.42.1 Detailed Description	281
6.42.2 Member Function/Subroutine Documentation	281
6.42.2.1 abs()	281
6.42.2.2 argsort()	282
6.42.2.3 at()	282
6.42.2.4 dagger()	282
6.42.2.5 diag()	282
6.42.2.6 init()	282
6.42.2.7 maxloc()	282
6.42.2.8 maxval()	283
6.42.2.9 minloc()	283
6.42.2.10 minval()	283
6.42.2.11 norm()	283
6.42.2.12 pop()	283
6.42.2.13 power()	283
6.42.2.14 print()	284
6.42.2.15 push()	284
6.42.2.16 put()	284
6.42.2.17 shift()	284
6.42.2.18 size()	284
6.42.2.19 sort()	284
6.42.2.20 sqrt()	285
6.42.2.21 transpose()	285
6.42.2.22 unshift()	285
6.42.2.23 vat()	285
6.42.2.24 vput()	285

6.43 mqc_est::mqc_wavefunction Type Reference
6.43.1 Member Function/Subroutine Documentation
6.43.1.1 print()
6.43.2 Member Data Documentation
6.43.2.1 basis
6.43.2.2 charge
6.43.2.3 core_hamiltonian
6.43.2.4 density_matrix
6.43.2.5 fock_matrix
6.43.2.6 mo_coefficients
6.43.2.7 mo_energies
6.43.2.8 mo_symmetries
6.43.2.9 multiplicity
6.43.2.10 nalpha
6.43.2.11 nbasis
6.43.2.12 nbeta
6.43.2.13 nelectrons
6.43.2.14 overlap_matrix
6.43.2.15 scf_density_matrix
6.43.2.16 symmetry
6.43.2.17 wf_complex
6.43.2.18 wf_type
6.44 mqc_algebra::operator(*) Interface Reference
6.44.1 Detailed Description
6.44.2 Member Function/Subroutine Documentation
6.44.2.1 mqc_complexscalarmultiply()
6.44.2.2 mqc_complexvectorproduct()
6.44.2.3 mqc_integerscalarmultiply()
6.44.2.4 mqc_integervectorproduct()
6.44.2.5 mqc_matrixmatrixproduct()
6.44.2.6 mqc_matrixscalarproduct()
6.44.2.7 mqc_realscalarmultiply()
6.44.2.8 mqc_realvectorproduct()
6.44.2.9 mqc_scalarcomplexmultiply()
6.44.2.10 mqc_scalarintegermultiply()
6.44.2.11 mqc_scalarmatrixproduct()
6.44.2.12 mqc_scalarmultiply()
6.44.2.13 mqc_scalarrealmultiply()
6.44.2.14 mgc scalarvectorproduct()

6.44.2.15 mqc_vectorcomplexproduct()
6.44.2.16 mqc_vectorintegerproduct()
6.44.2.17 mqc_vectorrealproduct()
6.44.2.18 mqc_vectorscalarproduct()
6.45 mqc_est::operator(*) Interface Reference
6.45.1 Member Function/Subroutine Documentation
6.45.1.1 mqc_integral_scalar_multiply()
6.45.1.2 mqc_scalar_integral_multiply()
6.46 mqc_algebra::operator(**) Interface Reference
6.46.1 Detailed Description
6.46.2 Member Function/Subroutine Documentation
6.46.2.1 mqc_scalarcomplexexponent()
6.46.2.2 mqc_scalarexponent()
6.46.2.3 mqc_scalarintegerexponent()
6.46.2.4 mqc_scalarrealexponent()
6.47 mqc_algebra::operator(+) Interface Reference
6.47.1 Detailed Description
6.47.2 Member Function/Subroutine Documentation
6.47.2.1 mqc_complexscalaradd()
6.47.2.2 mqc_integerscalaradd()
6.47.2.3 mqc_matrixmatrixsum()
6.47.2.4 mqc_realscalaradd()
6.47.2.5 mqc_scalaradd()
6.47.2.6 mqc_scalarcomplexadd()
6.47.2.7 mqc_scalarintegeradd()
6.47.2.8 mqc_scalarrealadd()
6.47.2.9 mqc_scalarvectorsum()
6.47.2.10 mqc_vectorvectorsum()
6.48 mqc_est::operator(+) Interface Reference
6.48.1 Member Function/Subroutine Documentation
6.48.1.1 mqc_integral_sum()
6.49 mqc_est::operator(-) Interface Reference
6.49.1 Member Function/Subroutine Documentation
6.49.1.1 mqc_integral_difference()
6.50 mqc_algebra::operator(-) Interface Reference
6.50.1 Detailed Description
6.50.2 Member Function/Subroutine Documentation
6.50.2.1 mqc_complexscalarsubtract()
6.50.2.2 mgc_integerscalarsubtract()

6.50.2.3 mqc_matrixmatrixsubtract()
6.50.2.4 mqc_realscalarsubtract()
6.50.2.5 mqc_scalarcomplexsubtract()
6.50.2.6 mqc_scalarintegersubtract()
6.50.2.7 mqc_scalarrealsubtract()
6.50.2.8 mqc_scalarsubtract()
6.50.2.9 mqc_scalarvectordifference()
6.50.2.10 mqc_vectorvectordifference()
6.51 mqc_algebra::operator(.dot.) Interface Reference
6.51.1 Detailed Description
6.51.2 Member Function/Subroutine Documentation
6.51.2.1 mqc_matrixmatrixdotproduct()
6.51.2.2 mqc_matrixvectordotproduct()
6.51.2.3 mqc_vectormatrixdotproduct()
6.51.2.4 mqc_vectorvectordotproduct()
6.52 mqc_algebra::operator(.eq.) Interface Reference
6.52.1 Detailed Description
6.52.2 Member Function/Subroutine Documentation
6.52.2.1 mqc_scalareq()
6.53 mqc_algebra::operator(.ewd.) Interface Reference
6.53.1 Detailed Description
6.53.2 Member Function/Subroutine Documentation
6.53.2.1 mqc_elementmatrixdivide()
6.54 mqc_algebra::operator(.ewp.) Interface Reference
6.54.1 Detailed Description
6.54.2 Member Function/Subroutine Documentation
6.54.2.1 mqc_elementmatrixproduct()
6.54.2.2 mqc_elementvectorproduct()
6.55 mqc_algebra::operator(.ge.) Interface Reference
6.55.1 Detailed Description
6.55.2 Member Function/Subroutine Documentation
6.55.2.1 mqc_scalarge()
6.56 mqc_algebra::operator(.gt.) Interface Reference
6.56.1 Detailed Description
6.56.2 Member Function/Subroutine Documentation
6.56.2.1 mqc_integergtscalar()
6.56.2.2 mqc_realgtscalar()
6.56.2.3 mqc_scalargt()
6.56.2.4 mgc scalargtinteger()

6.56.2.5 mqc_scalargtreal()	34
6.57 mqc_algebra::operator(.le.) Interface Reference	35
6.57.1 Detailed Description	35
6.57.2 Member Function/Subroutine Documentation	36
6.57.2.1 mqc_integerlescalar()	36
6.57.2.2 mqc_reallescalar()	36
6.57.2.3 mqc_scalarle()	37
6.57.2.4 mqc_scalarleinteger()	38
6.57.2.5 mqc_scalarlereal()	39
6.58 mqc_algebra::operator(.lt.) Interface Reference	40
6.58.1 Detailed Description	40
6.58.2 Member Function/Subroutine Documentation	40
6.58.2.1 mqc_realltscalar()	40
6.58.2.2 mqc_scalarlt()	41
6.58.2.3 mqc_scalarltreal()	42
6.59 mqc_algebra::operator(.ne.) Interface Reference	42
6.59.1 Detailed Description	43
6.59.2 Member Function/Subroutine Documentation	43
6.59.2.1 mqc_scalarne()	43
6.60 mqc_algebra::operator(.outer.) Interface Reference	44
6.60.1 Detailed Description	44
6.60.2 Member Function/Subroutine Documentation	44
6.60.2.1 mqc_outer()	44
6.61 mqc_algebra::operator(.x.) Interface Reference	45
6.61.1 Detailed Description	45
6.61.2 Member Function/Subroutine Documentation	45
6.61.2.1 mqc_crossproduct()	45
6.62 mqc_algebra::operator(/) Interface Reference	46
6.62.1 Detailed Description	47
6.62.2 Member Function/Subroutine Documentation	47
6.62.2.1 mqc_complexscalardivide()	47
6.62.2.2 mqc_integerscalardivide()	47
6.62.2.3 mqc_realscalardivide()	48
6.62.2.4 mqc_scalarcomplexdivide()	49
6.62.2.5 mqc_scalardivide()	50
6.62.2.6 mqc_scalarintegerdivide()	50
6.62.2.7 mqc_scalarrealdivide()	51
6.62.2.8 mqc_vectorcomplexdivide()	52
6.62.2.9 mqc_vectorintegerdivide()	52

6.62.2.10 mqc_vectorrealdivide()	353
6.62.2.11 mqc_vectorscalardivide()	354
6.63 mqc_algebra::real Interface Reference	354
6.63.1 Detailed Description	355
6.63.2 Member Function/Subroutine Documentation	355
6.63.2.1 mqc_scalar_complex_realpart()	355
6.63.2.2 mqc_vector_complex_realpart()	356
6.64 mqc_algebra::sin Interface Reference	356
6.64.1 Detailed Description	356
6.64.2 Member Function/Subroutine Documentation	357
6.64.2.1 mqc_scalar_sin()	357
6.65 mqc_algebra::sqrt Interface Reference	357
6.65.1 Detailed Description	358
6.65.2 Member Function/Subroutine Documentation	358
6.65.2.1 mqc_scalar_sqrt()	358
6.66 mqc_algebra::tan Interface Reference	358
6.66.1 Detailed Description	359
6.66.2 Member Function/Subroutine Documentation	359
6.66.2.1 mqc_scalar_tan()	359
6.67 mqc_est::transpose Interface Reference	360
6.67.1 Member Function/Subroutine Documentation	360
6.67.1.1 mqc_integral_transpose()	360
6.68 mqc_algebra::transpose Interface Reference	360
6.68.1 Detailed Description	360
6.68.2 Member Function/Subroutine Documentation	360
6.68.2.1 mqc_matrix_transpose()	360
6.68.2.2 mqc_vector_transpose()	361
7 File Documentation	363
7.1 src/mqc_algebra.F03 File Reference	363
7.2 src/mqc_est.F03 File Reference	376
Index	379

Modules Index

1.1 Modules List

Here is a list of all modules with brief descriptions:

mqc_alg	gebra				
	MQC Algebra conta	ins mathematical	l objects that are	designed to simplify and a	automate vari-
	able use in Fortran				11
mac es	t				181

2 Modules Index

Data Type Index

2.1 Class Hierarchy

This inheritance list is sorted roughly, but not completely, alphabetically:

mqc_algebra::abs	99
mqc_algebra::acos	01
mqc_algebra::aimag	02
mqc_algebra::asin	04
mqc_algebra::assignment(=)	05
mqc_est::assignment(=)	21
mqc_algebra::atan	22
mqc_algebra::atan2	23
mqc_algebra::cmplx	24
mqc_algebra::conjg	26
mqc_algebra::contraction	27
mqc_est::contraction	28
mqc_algebra::cos	28
mqc_algebra::dagger	29
mqc_est::dagger	
mqc_algebra::dot_product	
mqc_est::dot_product	
mqc_algebra::matmul	
mqc_est::matmul	
mqc_algebra::matrix_symm2sq	
mqc_algebra::mqc_cast_complex	
mqc_algebra::mqc_cast_integer	
mqc_algebra::mqc_cast_real	
mqc_est::mqc_determinant	
mqc_est::mqc_determinant_string	
mqc_algebra::mqc_have_complex	
mqc_algebra::mqc_have_int	
mqc_algebra::mqc_have_real	
mqc_algebra::mqc_matrix	
mqc_algebra::mqc_matrix_diagmatrix_put	
mac algebra: mac matrix symmmatrix but	59

Data Type Index

Data Type Index

3.1 Data Types List

Here are the data types with brief descriptions:

mqc_algebra::abs
Takes the absolute value
mqc_algebra::acos
Returns the arccosine
mqc_algebra::aimag
Returns the imaginary part
mqc_algebra::asin
Returns the arcsine
mqc_algebra::assignment(=)
Assigns a variable to the value of another
mqc_est::assignment(=)
mqc_algebra::atan
Returns the arctangent
mqc_algebra::atan2
Returns the arctangent accounting for circle quadrant
mqc_algebra::cmplx
Defines a complex number
mqc_algebra::conjg
Returns the complex conjugate
mqc_algebra::contraction
Contracts two arrays
mqc_est::contraction
mqc_algebra::cos
Returns the cosine
mqc_algebra::dagger
Returns the Hermitian conjugate
mqc_est::dagger
mqc_algebra::dot_product
Returns the dot product
mqc_est::dot_product
mqc_algebra::matmul
Multiplies two arrays

6 Data Type Index

mqc_est::matmul
mqc_algebra::matrix_symm2sq
Sets a symmetric packed intrinsic array as a square packed intrinsic array
mqc_algebra::mqc_cast_complex
Sets an array to complex type
mqc_algebra::mqc_cast_integer
Sets an array to integer type
mqc_algebra::mqc_cast_real
Sets an array to real type
mqc_est::mqc_determinant
mqc_est::mqc_determinant_string
mqc_algebra::mqc_have_complex
Determines in an array is complex type
mqc_algebra::mqc_have_int
Determines in an array is integer type
mqc_algebra::mqc_have_real
Determines in an array is real type
mqc_algebra::mqc_matrix
Rank 2 array variable
mqc_algebra::mqc_matrix_diagmatrix_put
Sets a diagonal packed intinsic array as an MQC Matrix object
mqc_algebra::mqc_matrix_symmmatrix_put
Sets a symmetric packed intrinsic array as an MQC Matrix object
mqc_est::mqc_matrix_undospinblockghf
mqc_algebra::mqc_print
Prints an object
mqc_est::mqc_print
mqc_est::mqc_pscf_wavefunction
mqc_algebra::mqc_r4tensor
Updates the specified element of the MQC Matrix to the specified value
mqc_algebra::mqc_scalar
Rank 0 array variable
mqc_est::mqc_scf_eigenvalues
mqc_est::mqc_scf_integral
mqc_algebra::mqc_set_array2vector
Sets an intrinsic array as an MQC Algebra object
mqc_est::mqc_twoeris
mqc_algebra::mqc_vector
Rank 1 array variable
mgc est::mgc wavefunction
mgc algebra::operator(*)
Multiplies two variables
mgc est::operator(*)
mgc algebra::operator(**)
Exponentials a variable to the power of another
mgc_algebra::operator(+)
Sums two variables
mgc est::operator(+)
mqc_est::operator(-)
mgc algebra::operator(-)
Subtracts two variables
mqc_algebra::operator(.dot.)
Computes the inner product of two arrays

3.1 Data Types List 7

mgc algebra::operator(.eq.)
Determines if two variables are equal
mgc algebra::operator(.ewd.)
Computes the element-wise quotient of two arrays
mgc algebra::operator(.ewp.)
Computes the element-wise product of two arrays
mgc algebra::operator(.ge.)
Determines if a variable is greater than or equal to another
mgc algebra::operator(.gt.)
Determines if a variable is greater than another
mqc_algebra::operator(.le.)
Determines if a variable is less than or equal to another
mqc_algebra::operator(.lt.)
Determines if a variable is less than another
mqc_algebra::operator(.ne.)
Determines if two variables are not equal
mqc_algebra::operator(.outer.)
Computes the outer product of two vectors
mqc_algebra::operator(.x.)
Computes the cross product of two vectors
mqc_algebra::operator(/)
Divides two variables
mqc_algebra::real
Returns the real part
mqc_algebra::sin
Returns the sine
mqc_algebra::sqrt
Returns the square root
mqc_algebra::tan
Returns the tangent
mqc_est::transpose
mqc_algebra::transpose
Returns the transpose

8 Data Type Index

File Index

4.1 File List

Here is a list of all files with brief descriptions:

<pre>src/mqc_algebra.F03</pre>	3	 													 		 				 363
src/mgc_est.F03 .		 							 						 		 				 376

10 File Index

Module Documentation

5.1 mqc_algebra Module Reference

MQC Algebra contains mathematical objects that are designed to simplify and automate variable use in Fortran

Data Types

• interface abs

Takes the absolute value

interface acos

Returns the arccosine

interface aimag

Returns the imaginary part

· interface asin

Returns the arcsine

• interface assignment(=)

Assigns a variable to the value of another

• interface atan

Returns the arctangent

• interface atan2

Returns the arctangent accounting for circle quadrant

interface cmplx

Defines a complex number

interface conjg

Returns the complex conjugate

interface contraction

Contracts two arrays

• interface cos

Returns the cosine

· interface dagger

Returns the Hermitian conjugate

12 Module Documentation

interface dot_product

Returns the dot product

· interface matmul

Multiplies two arrays

· interface matrix_symm2sq

Sets a symmetric packed intrinsic array as a square packed intrinsic array

· interface mgc cast complex

Sets an array to complex type

interface mqc_cast_integer

Sets an array to integer type

interface mqc_cast_real

Sets an array to real type

interface mgc have complex

Determines in an array is complex type

interface mqc_have_int

Determines in an array is integer type

interface mqc have real

Determines in an array is real type

• type mqc_matrix

Rank 2 array variable

interface mqc_matrix_diagmatrix_put

Sets a diagonal packed intinsic array as an MQC Matrix object

· interface mqc_matrix_symmmatrix_put

Sets a symmetric packed intrinsic array as an MQC Matrix object

interface mqc_print

Prints an object

type mqc_r4tensor

Updates the specified element of the MQC Matrix to the specified value

• type mqc_scalar

Rank 0 array variable

interface mqc_set_array2vector

Sets an intrinsic array as an MQC Algebra object

• type mqc_vector

Rank 1 array variable

interface operator(*)

Multiplies two variables

interface operator(**)

Exponentials a variable to the power of another

interface operator(+)

Sums two variables

• interface operator(-)

Subtracts two variables

interface operator(.dot.)

Computes the inner product of two arrays

interface operator(.eq.)

Determines if two variables are equal

interface operator(.ewd.)

Computes the element-wise quotient of two arrays

interface operator(.ewp.)

Computes the element-wise product of two arrays

interface operator(.ge.)

Determines if a variable is greater than or equal to another

interface operator(.gt.)

Determines if a variable is greater than another

interface operator(.le.)

Determines if a variable is less than or equal to another

interface operator(.lt.)

Determines if a variable is less than another

interface operator(.ne.)

Determines if two variables are not equal

• interface operator(.outer.)

Computes the outer product of two vectors

• interface operator(.x.)

Computes the cross product of two vectors

interface operator(/)

Divides two variables

· interface real

Returns the real part

interface sin

Returns the sine

interface sqrt

Returns the square root

· interface tan

Returns the tangent

• interface transpose

Returns the transpose

Functions/Subroutines

integer(kind=int64) function factorial (n)

Factorial returns the factorial of an integer

integer(kind=int64) function bin_coeff (N, K)

Bin_Coeff returns the binomial coefficient of (n,k)

subroutine mqc_allocate_scalar (Scalar, Data_type)

MQC_Allocate_Scalar is used to allocate a scalar type variable of the MQC_Scalar class

• subroutine mqc_deallocate_scalar (Scalar)

MQC_Deallocate_Scalar is used to deallocate a scalar type variable of the MQC_Scalar class

logical function mqc_scalar_isallocated (Scalar)

MQC_Scalar_IsAllocated is used to determine the allocation status of an MQC_Scalar

subroutine mqc_input_integer_scalar (ScalarOut, ScalarIn)

MQC_Input_Integer_Scalar is a subroutine is used to set an intrinsic integer to an MQC_Scalar

subroutine mqc_input_real_scalar (ScalarOut, ScalarIn)

MQC_Input_Real_Scalar is a subroutine is used to set an intrinsic real to an MQC_Scalar

subroutine mqc_input_complex_scalar (ScalarOut, ScalarIn)

MQC_Input_Complex_Scalar is a subroutine is used to set an intrinsic complex to an MQC_Scalar

subroutine mqc_output_mqcscalar_scalar (ScalarOut, ScalarIn)

MQC_Output MQCScalar_Scalar is a subroutine used to output an MQC_scalar equal to an MQC_Scalar

subroutine mqc_output_integer_scalar (ScalarOut, ScalarIn)

MQC_Output_Integer_Scalar is a subroutine used to output an intrinsic integer equal to an MQC_Scalar

• subroutine mgc output real scalar (ScalarOut, ScalarIn)

MQC_Output_Real_Scalar is a subroutine used to output an intrinsic real equal to an MQC_Scalar

• subroutine mqc_output_complex_scalar (ScalarOut, ScalarIn)

MQC Output Complex Scalar is a subroutine used to output an intrinsic complex equal to an MQC Scalar

• subroutine mgc print scalar algebra1 (Scalar, IOut, Header, Blank At Top, Blank At Bottom)

MQC_Print_Scalar_Algebra1 is a subroutine used to print an MQC_Scalar

type(mqc_scalar) function mqc_scalar_cmplx (Scalar1, Scalar2)

MQC_Scalar_Cmplx is a function used to set a complex MQC_Scalar type variable from two other MQC_scalars

type(mqc_scalar) function mqc_scalar_sqrt (Scalar)

MQC_Scalar_Sqrt is a function used to return the square root of an MQC_scalar

type(mqc_scalar) function mqc_scalar_sin (Scalar)

MQC_Scalar_Sin is a function used to return the sine of an MQC_scalar

type(mgc scalar) function mgc scalar cos (Scalar)

MQC_Scalar_Cos is a function used to return the cosine of an MQC_scalar

type(mqc_scalar) function mqc_scalar_tan (Scalar)

MQC_Scalar_Tan is a function used to return the tangent of an MQC_scalar

type(mgc scalar) function mgc scalar asin (Scalar)

MQC_Scalar_ASin is a function used to return the arcsin of an MQC_scalar

type(mqc_scalar) function mqc_scalar_acos (Scalar)

MQC_Scalar_ACos is a function used to return the arccosine of an MQC_scalar

type(mqc_scalar) function mqc_scalar_atan (Scalar)

MQC Scalar ATan is a function used to return the arctangent of an MQC scalar

type(mgc scalar) function mgc scalar atan2 (Scalar)

MQC_Scalar_ATan2 is a function used to return the arctangent of an MQC_scalar accounting for quadrant of Argand diagram

logical function mqc_scalar_havereal (Scalar)

MQC_Scalar_HaveReal is a function that returns TRUE or FALSE indicating whether an MQC_scalar is of type real

logical function mgc scalar haveinteger (Scalar)

MQC_Scalar_HaveInteger is a function that returns TRUE or FALSE indicating whether an MQC_scalar is of type integer

logical function mqc_scalar_havecomplex (Scalar)

MQC_Scalar_HaveComplex is a function that returns TRUE or FALSE indicating whether an MQC_scalar is of type complex

real(kind=real64) function mqc_scalar_get_intrinsic_real (Scalar)

MQC_Scalar_Get_Intrinsic_Real is a function that returns the MQC_scalar value as an intrinsic real

integer(kind=int64) function mgc scalar get intrinsic integer (Scalar)

MQC_Scalar_Get_Intrinsic_Integer is a function that returns the MQC_scalar value as an intrinsic integer

complex(kind=real64) function mqc_scalar_get_intrinsic_complex (Scalar)

MQC_Scalar_Get_Intrinsic_Complex is a function that returns the MQC_scalar value as an intrinsic complex

type(mgc scalar) function mgc scalar get abs value (Scalar)

MQC_Scalar_Get_ABS_Value is a function that returns the absolute value of MQC_scalar variable

• subroutine mqc_scalar_get_random_value (Scalar, Seed, Distribution)

MQC_Scalar_Get_Random_Value is a function that returns a random real value from a specified distribution

type(mgc scalar) function mgc scalaradd (Scalar1, Scalar2)

MQC_ScalarAdd is a function that sums two MQC_Scalar objects

type(mqc_scalar) function mqc_scalarsubtract (Scalar1, Scalar2)

MQC_ScalarSubtract is a function that subtracts two MQC_Scalar objects

type(mgc_scalar) function mgc_scalarmultiply (Scalar1, Scalar2)

MQC_ScalarMultiply is a function that multiplies two MQC_Scalar objects

type(mqc_scalar) function mqc_scalardivide (Scalar1, Scalar2)

MQC_ScalarDivide is a function that divides two MQC_Scalar objects

type(mgc scalar) function mgc scalarexponent (Scalar1, Scalar2)

MQC_Scalar Exponent is a function that raises one MQC_Scalar to the power of another MQC_Scalar

type(mqc_scalar) function mqc_scalarintegerexponent (Scalar, Intln)

MQC_ScalarIntegerExponent is a function that raises an MQC_Scalar to the power of an intrinsic integer

type(mqc_scalar) function mqc_scalarrealexponent (Scalar, RealIn)

MQC_ScalarRealExponent is a function that raises an MQC_Scalar to the power of an intrinsic real

type(mgc scalar) function mgc scalarcomplexexponent (Scalar, Compln)

MQC_ScalarComplexExponent is a function that raises an MQC_Scalar to the power of an intrinsic complex

logical function mqc_scalarne (Scalar1, Scalar2)

MQC ScalarNE is a function that returns TRUE if two MQC Scalar variables are not equal

logical function mqc_scalareq (Scalar1, Scalar2)

MQC_ScalarEQ is a function that returns TRUE if two MQC_Scalar variables are equal

logical function mqc_scalarIt (Scalar1, Scalar2)

MQC_ScalarLT is a function that returns TRUE if the left MQC_Scalar is less than the right MQC_Scalar

• logical function mqc_realltscalar (RealIn, Scalar)

MQC_RealLTScalar is a function that returns TRUE if an intrinsic real is less than a MQC_Scalar

logical function mqc_scalarItreal (Scalar, RealIn)

MQC_ScalarLTReal is a function that returns TRUE if a MQC_Scalar is less than an intrinsic real

logical function mqc_scalargt (Scalar1, Scalar2)

MQC_ScalarGT is a function that returns TRUE if the left MQC_Scalar is greater than the right MQC_Scalar

logical function mqc_integergtscalar (Intln, Scalar)

MQC_IntegerGTScalar is a function that returns TRUE if an intrinsic integer is greater than a MQC_Scalar

logical function mqc_scalargtinteger (Scalar, Intln)

MQC_ScalarGTInteger is a function that returns TRUE if a MQC_Scalar is greater than an intrinsic integer

logical function mgc realgtscalar (RealIn, Scalar)

MQC_RealGTScalar is a function that returns TRUE if an intrinsic real is greater than a MQC_Scalar

logical function mgc scalargtreal (Scalar, RealIn)

MQC_ScalarGTReal is a function that returns TRUE if a MQC_Scalar is greater than an intrinsic real

logical function mgc scalarle (Scalar1, Scalar2)

MQC_ScalarLE is a function that returns TRUE if the left MQC_Scalar is less than or equal the right MQC_Scalar

logical function mqc_reallescalar (RealIn, Scalar)

MQC_RealLEScalar is a function that returns TRUE if an intrinsic real is less than or equal to a MQC_Scalar

• logical function mqc_scalarlereal (Scalar, RealIn)

MQC_ScalarLEReal is a function that returns TRUE if a MQC_Scalar is less than or equal to an intrinsic real

logical function mqc integerlescalar (Intln, Scalar)

MQC_IntegerLEScalar is a function that returns TRUE if an intrinsic integer is less than or equal to a MQC_Scalar

logical function mqc scalarleinteger (Scalar, Intln)

MQC_ScalarLEInteger is a function that returns TRUE if a MQC_Scalar is less than or equal to an intrinsic integer
• logical function mqc_scalarge (Scalar1, Scalar2)

MQC_ScalarGE is a function that returns TRUE if the left MQC_Scalar is greater than or equal the right MQC_← Scalar

- type(mgc scalar) function mgc scalar complex conjugate (ScalarIn)
 - MQC_Scalar_Complex_Conjugate is a function that returns the complex conjugate of an MQC_Scalar
- type(mgc scalar) function mgc scalar complex realpart (ScalarIn)
 - MQC_Scalar_Complex_RealPart is a function that returns the real part of an MQC_Scalar
- type(mqc_scalar) function mqc_scalar_complex_imagpart (ScalarIn)
 - MQC_Scalar_Complex_ImagPart is a function that returns the inaginary part of an MQC_Scalar
- type(mqc_scalar) function mqc_integerscalarmultiply (IntegerIn, Scalar)
 - MQC_IntegerScalarMultiply is a function that is used to multiply an intrinsic integer by an MQC_Scalar
- type(mgc scalar) function mgc scalarintegermultiply (Scalar, IntegerIn)
 - MQC_ScalarIntegerMultiply is a function that is used to multiply an intrinsic integer by an MQC_Scalar
- type(mqc_scalar) function mqc_realscalarmultiply (RealIn, Scalar)
 - MQC_RealScalarMultiply is a function that is used to multiply an intrinsic real by an MQC_Scalar
- type(mqc_scalar) function mqc_scalarrealmultiply (Scalar, RealIn)
 - MQC_ScalarRealMultiply is a function that is used to multiply an intrinsic real by an MQC_Scalar
- type(mqc_scalar) function mqc_complexscalarmultiply (ComplexIn, Scalar)
 - MQC_ComplexScalarMultiply is a function that is used to multiply an intrinsic complex by an MQC_Scalar
- type(mgc_scalar) function mgc_scalarcomplexmultiply (Scalar, ComplexIn)
 - MQC_ScalarComplexMultiply is a function that is used to multiply an intrinsic complex by an MQC_Scalar
- type(mqc_scalar) function mqc_integerscalardivide (IntegerIn, Scalar)
 - MQC_IntegerScalarDivide is a function that is used to divide an intrinsic integer by an MQC_Scalar
- type(mqc_scalar) function mqc_scalarintegerdivide (Scalar, IntegerIn)
 - MQC_ScalarIntegerDivide is a function that is used to divide an MQC_Scalar by an intrinsic integer
- type(mqc_scalar) function mqc_realscalardivide (RealIn, Scalar)
 - MQC_RealScalarDivide is a function that is used to divide an intrinsic real by an MQC_Scalar
- type(mqc_scalar) function mqc_scalarrealdivide (Scalar, RealIn)
 - MQC_ScalarRealDivide is a function that is used to divide an MQC_Scalar by an intrinsic real
- type(mqc_scalar) function mqc_complexscalardivide (ComplexIn, Scalar)
 - MQC_ComplexScalarDivide is a function that is used to divide an intrinsic complex by an MQC_Scalar
- type(mqc_scalar) function mqc_scalarcomplexdivide (Scalar, ComplexIn)
 - MQC_ScalarComplexDivide is a function that is used to divide an MQC_Scalar by an intrinsic complex
- type(mqc_scalar) function mqc_integerscalaradd (IntegerIn, Scalar)
 - MQC_IntegerScalarAdd is a function that is used to multiply an intrinsic integer by an MQC_Scalar
- type(mqc_scalar) function mqc_scalarintegeradd (Scalar, IntegerIn)
 - MQC_ScalarIntegerAdd is a function that is used to sum an intrinsic integer by an MQC_Scalar
- type(mqc_scalar) function mqc_realscalaradd (RealIn, Scalar)
 - MQC_RealScalarAdd is a function that is used to sum an intrinsic real by an MQC_Scalar
- type(mgc scalar) function mgc scalarrealadd (Scalar, RealIn)
 - MQC_ScalarRealAdd is a function that is used to sum an intrinsic real by an MQC_Scalar
- type(mgc_scalar) function mgc_complexscalaradd (ComplexIn, Scalar)
 - MQC_ComplexScalarAdd is a function that is used to sum an intrinsic complex by an MQC_Scalar
- type(mqc_scalar) function mqc_scalarcomplexadd (Scalar, ComplexIn)
 - MQC_ScalarComplexAdd is a function that is used to sum an intrinsic complex by an MQC_Scalar
- type(mgc_scalar) function mgc_integerscalarsubtract (IntegerIn, Scalar)

MQC_IntegerScalarSubtract is a function that is used to subtract an MQC_Scalar from an intrinisic integer

• type(mqc_scalar) function mqc_scalarintegersubtract (Scalar, IntegerIn)

MQC_ScalarIntegerSubtract is a function that is used to subtract an intrinsic integer from an MQC_Scalar

type(mqc_scalar) function mqc_realscalarsubtract (RealIn, Scalar)

MQC_RealScalarSubtract is a function that is used to subtract an MQC_Scalar from an intrinisic real

type(mqc_scalar) function mqc_scalarrealsubtract (Scalar, RealIn)

MQC_ScalarRealSubtract is a function that is used to subtract an intrinsic real from an MQC_Scalar

type(mgc_scalar) function mgc_complexscalarsubtract (ComplexIn, Scalar)

MQC_ComplexScalarSubtract is a function that is used to subtract an MQC_Scalar from an intrinisic complex

type(mqc_scalar) function mqc_scalarcomplexsubtract (Scalar, ComplexIn)

MQC_ScalarComplexSubtract is a function that is used to subtract an intrinsic complex from an MQC_Scalar

• subroutine mgc allocate vector (N, Vector, Data Type)

MQC_Allocate_Vector is used to allocate a vector type variable of the MQC_Vector class

• subroutine mgc deallocate vector (Vector)

MQC_Deallocate_Vector is used to deallocate a vector type variable of the MQC_Vector class

integer(kind=int64) function mqc_length_vector (Vector)

MQC_Length_Vector is used to return the length of an MQC vector

• logical function mqc_vector_havereal (Vector)

MQC_Vector_HaveReal is a function that returns TRUE or FALSE indicating whether the MQC vector has an allocated real vector

logical function mqc_vector_haveinteger (Vector)

MQC_Vector_HaveInteger is a function that returns TRUE or FALSE indicating whether the MQC vector has an allocated integer vector

logical function mgc vector havecomplex (Vector)

MQC_Vector_HaveComplex is a function that returns TRUE or FALSE indicating whether the MQC vector has an allocated complex vector

logical function mqc_vector_iscolumn (Vector)

MQC_Vector_IsColumn is a function that returns TRUE if the MQC vector is a column vector and FALSE if the MQC vector is a row vector

subroutine mqc_vector_copy_int2real (Vector)

MQC_Vector_Copy_Int2Real is a subroutine that copies an integer MQC_Vector into its real vector

subroutine mqc_vector_copy_int2complex (Vector)

MQC_Vector_Copy_Int2Complex is a subroutine that copies an integer MQC_Vector into its complex vector

subroutine mqc_vector_copy_real2int (Vector)

MQC_Vector_Copy_Real2Int is a subroutine that copies a real MQC_Vector into its integer vector

subroutine mgc vector copy real2complex (Vector)

MQC_Vector_Copy_Real2Complex is a subroutine that copies a real MQC_Vector into its complex vector

subroutine mqc_vector_copy_complex2int (Vector)

MQC_Vector_Copy_Complex2Int is a subroutine that copies a complex MQC_Vector into its integer vector

subroutine mqc_vector_copy_complex2real (Vector)

MQC_Vector_Copy_Complex2Real is a subroutine that copies a complex MQC_Vector into its real vector

type(mqc scalar) function mqc vector scalar at (Vec, I)

MQC_Vector_Scalar_At is a function that returns the ith element of a MQC vector as an MQC scalar

type(mgc vector) function mgc vector vector at (Vec, I, J)

MQC_Vector_Vector_At is a function that returns the vector at the specified subvector of MQC_Vector

subroutine mgc set vector2integerarray (ArrayOut, VectorIn)

MQC_Set_Vector2IntegerArray is a subroutine that outputs an MQC vector to a rank 1 intrinsic integer array

subroutine mgc set vector2realarray (ArrayOut, VectorIn)

MQC_Set_Vector2RealArray is a subroutine that outputs an MQC vector to a rank 1 intrinsic real array

subroutine mqc_set_vector2complexarray (ArrayOut, VectorIn)

MQC_Set_Vector2ComplexArray is a subroutine that outputs an MQC vector to a rank 1 intrinsic complex array

subroutine mqc_set_array2vector_integer (VectorOut, ArrayIn)

MQC_Set_Array2Vector_Integer is a subroutine that sets a rank 1 intrinsic integer array equal to a MQC vector

• subroutine mqc_set_array2vector_real (VectorOut, ArrayIn)

MQC_Set_Array2Vector_Real is a subroutine that sets a rank 1 vector intrinsic real array equal to a MQC vector

subroutine mgc set array2vector complex (VectorOut, ArrayIn)

MQC_Set_Array2Vector_Complex is a subroutine that sets a rank 1 vector intrinsic complex array equal to a MQC vector

subroutine mqc_set_vector2vector (VectorOut, VectorIn)

MQC Set Vector2Vector is a subroutine that sets a MQC vector equal to another MQC vector

• type(mqc_vector) function mqc_vectorvectorsum (Vector1In, Vector2In)

MQC_VectorVectorSum is a function that adds two MQC vectors and stores them in another MQC vector

type(mqc_vector) function mqc_vectorvectordifference (Vector1In, Vector2In)

MQC_VectorVectorDifference is a function that subtracts two MQC vectors and stores them in another MQC vector

• type(mqc_vector) function mqc_scalarvectorsum (ScalarIn, VectorIn)

MQC_ScalarVectorSum is a function that adds an MQC scalar to all elements of an MQC vector

type(mqc_vector) function mqc_scalarvectordifference (ScalarIn, VectorIn)

MQC_ScalarVectorDifference is a function that subtracts an MQC scalar from all elements of an MQC vector

• type(mqc_vector) function mqc_elementvectorproduct (Vector1In, Vector2In)

MQC_ElementVectorProduct is a function that multiplies two MQC vectors elementwise and stores them into another MQC vector

type(mgc vector) function mgc vector transpose (Vector)

MQC_Vector_Transpose is a function that returns the transpose of an MQC vector

type(mqc_vector) function mqc_vector_conjugate_transpose (Vector)

MQC_Vector_Conjugate_Transpose is a function that returns the conjugate transpose of an MQC vector

type(mqc_scalar) function mqc_vectorvectordotproduct (Vector1, Vector2)

MQC_VectorVectorDotProduct is a function that returns the dot product of two MQC vectors

• type(mqc_matrix) function mqc_outer (VA, VB)

MQC_Outer is a function that returns the outer product of two MQC vectors

type(mgc_vector) function mgc_crossproduct (Vector1In, Vector2In)

MQC_CrossProduct is a function that returns the cross product of two MQC vectors

subroutine mqc_print_vector_algebra1 (Vector, IOut, Header, Verbose, Blank_At_Top, Blank_At_Bottom)

MQC_Print_Vector_Algebra1 is a subroutine used to print an MQC vector

type(mgc vector) function mgc vector cast integer (VA)

MQC_vector_cast_integer is a function that converts an MQC vector to its integer space

type(mgc vector) function mgc vector cast real (VA)

MQC_vector_cast_real is a function that converts an MQC vector to its real space

type(mqc_vector) function mqc_vector_cast_complex (VA)

MQC_vector_cast_complex is a function that converts an MQC vector to its complex space

subroutine mgc vector scalar put (Vector, Scalar, I)

MQC_Vector_Scalar_Put is a subroutine that updates the value of the ith element of a MQC vector with the value of a MQC scalar

subroutine mqc_vector_scalar_increment (Vector, Scalar, I)

MQC_Vector_Scalar_Increment is a subroutine that increments the value of the ith element of a MQC vector by the value of a MQC scalar

subroutine mgc vector vector put (Vector, VectorIn, I)

MQC_Vector_Vector_Put is a subroutine that updates the values of a subvector of a MQC vector with the values of a MQC vector

subroutine mqc vector initialize (Vector, Length, Scalar)

MQC_Vector_Initialize is a subroutine that initializes a MQC vector

• type(mqc_vector) function mqc_scalarvectorproduct (Scalar, Vector)

MQC_ScalarVectorProduct is a function that returns the product of a MQC scalar with a MQC vector

type(mgc_vector) function mgc_vectorscalarproduct (vector, scalar)

MQC_VectorScalarProduct is a function that returns the product of a MQC vector with a MQC scalar

• type(mqc_vector) function mqc_vectorscalardivide (vector, scalar)

MQC_VectorScalarDivide is a function that returns a MQC vector divided by a MQC scalar

type(mqc_vector) function mqc_realvectorproduct (RealIn, Vector)

MQC_RealVectorProduct is a function that returns the product of an intrinsic real scalar and a MQC vector

type(mqc_vector) function mqc_vectorrealproduct (vector, realIn)

MQC_VectorRealProduct is a function that returns the product of a MQC vector and an intrinsic real scalar

type(mqc_vector) function mqc_vectorrealdivide (vector, realIn)

MQC_VectorRealDivide is a function that returns a MQC vector divided by an intrinsic real integer

type(mqc_vector) function mqc_integervectorproduct (intln, Vector)

MQC_IntegerVectorProduct is a function that returns the product of an intrinsic integer scalar and a MQC vector

type(mqc_vector) function mqc_vectorintegerproduct (vector, intln)

MQC_VectorIntegerProduct is a function that returns the product of a MQC vector and an intrinsic integer scalar

type(mgc vector) function mgc vectorintegerdivide (vector, intln)

MQC_VectorIntegerDivide is a function that returns a MQC vector divided by an intrinsic integer scalar

• type(mqc_vector) function mqc_complexvectorproduct (Compln, Vector)

MQC_ComplexVectorProduct is a function that returns the product of an intrinsic complex scalar and a MQC vector

type(mgc vector) function mgc vectorcomplexproduct (vector, compln)

MQC_VectorComplexProduct is a function that returns the product of a MQC vector and an intrinsic complex scalar

type(mqc_vector) function mqc_vectorcomplexdivide (vector, compln)

MQC_VectorComplexDivide is a function that returns a MQC vector divided by an intrinsic complex scalar

type(mqc_scalar) function mqc_vector_norm (vector, methodIn)

MQC_Vector_Norm is a function that returns the norm of an MQC vector

logical function mqc vector isallocated (Vector)

MQC_Vector_isAllocated is a function that returns TRUE is an MQC vector is allocated and FALSE if it is not

subroutine mgc vector push (Vector, Scalar)

MQC_Vector_Push is a function that adds a value to the end of a MQC vector

subroutine mqc_vector_unshift (Vector, Scalar)

MQC_Vector_Unshift is a function that adds a value to the beginning of a MQC vector

type(mqc_scalar) function mqc_vector_pop (Vector)

MQC_Vector_Pop is a function that removes a value from the end of a MQC vector and returns it

type(mqc_scalar) function mqc_vector_shift (Vector)

MQC_Vector_Shift is a function that removes a value from the beginning of a MQC vector and returns it

type(mqc_scalar) function mqc_vector_maxval (Vector)

MQC_Vector_MaxVal is a function that returns the largest value in an MQC vector

type(mqc_scalar) function mqc_vector_minval (Vector)

MQC_Vector_MinVal is a function that returns the smallest value in an MQC vector

integer function mqc_vector_maxloc (Vector)

MQC_Vector_MaxLoc is a function that returns the index of the largest value in an MQC vector

integer function mqc_vector_minloc (Vector)

MQC Vector MinLoc is a function that returns the index of the smallest value in an MQC vector

type(mgc vector) function mgc vector argsort (Vector)

MQC_Vector_Argsort is a function that returns the indices of an an MQC vector sorted from low to high

• subroutine mgc vector sort (Vector, idx)

MQC_Vector_Sort is a function that returns an MQC vector sorted from low to high unless optional index order is present

• subroutine mqc_vector_sqrt (A)

MQC_Vector_Sqrt is a function that returns the square root of all elements of an MQC vector

type(mqc vector) function mqc vector abs (A)

MQC_Vector_Abs is a function that returns the absolute value of all elements of an MQC vector

• subroutine mgc vector power (A, P)

MQC_Vector_Power is a function that returns the value of all elements of an MQC vector raised to a power

type(mqc_vector) function mqc_vector_complex_realpart (A)

MQC_Vector_Complex_RealPart is a function that returns a MQC vector with elements containing the real part of elements of another MQC vector

type(mqc_vector) function mqc_vector_complex_imagpart (A)

MQC_Vector_Complex_ImagPart is a function that returns a MQC vector with elements containing the imaginary part of elements of another MQC vector

type(mqc_vector) function mqc_vector_cmplx (Vector1, Vector2)

MQC_Vector_Cmplx is a function that takes a MQC vector representing the real part and a MQC vector representing the imaginary part and combines them into another MQC vector

subroutine mqc_matrix_diagonalize (A, EVals, EVecs)

MQC_Matrix_Diagonalize is a subroutine that takes a symmetric or hermitian MQC matrix and returns eigenvalues and eigenvectors

type(mqc_matrix) function mqc_matrix_cast_real (MA)

MQC_Matrix_Cast_Real is a function that converts an MQC matrix to its real space

type(mqc_matrix) function mqc_matrix_cast_integer (MA)

MQC_Matrix_Cast_Integer is a function that converts an MQC matrix to its integer space

• type(mqc_matrix) function mqc_matrix_cast_complex (MA)

MQC_Matrix_Cast_Complex is a function that converts an MQC matrix to its complex space

type(mqc_scalar) function mqc_matrix_scalar_at (Mat, I, J)

MQC_Matrix_Scalar_At is a function that returns the value of an element of a MQC matrix

type(mqc_vector) function mqc_matrix_vector_at (Mat, Rows, Cols)

MQC_Matrix_Vector_At is a function that returns the subvector of an MQC matrix

recursive subroutine mqc_matrix_vector_put (Mat, VectorIn, Rows, Cols)

MQC_Matrix_Vector_Put is a subroutine that writes a subvector to the specified position of a MQC matrix

type(mqc_matrix) function mqc_matrix_matrix_at (Mat, Rows, Cols)

MQC_Matrix_Matrix_At is a function that returns a submatrix of the matrix

subroutine mqc_matrix_diagmatrix_put_vector (diagVectorIn, mat)

MQC_Matrix_DiagMatrix_Put_Vector is a subroutine that returns a diagonal MQC matrix with elements defined by values in a MQC vector

subroutine mqc_matrix_diagmatrix_put_integer (mat, diagMatrixIn)

MQC_Matrix_DiagMatrix_Put_integer is a subroutine that returns a diagonal MQC matrix with elements defined by values in an intrinsic integer vector

subroutine mgc matrix diagmatrix put real (mat, diagMatrixIn)

MQC_Matrix_DiagMatrix_Put_Real is a subroutine that returns a diagonal MQC matrix with elements defined by values in an intrinsic real vector

subroutine mgc matrix diagmatrix put complex (mat, diagMatrixIn)

MQC_Matrix_DiagMatrix_Put_Complex is a subroutine that returns a diagonal MQC matrix with elements defined by values in an intrinsic complex vector

subroutine mgc matrix symmmatrix put integer (mat, symmMatrixIn)

MQC_Matrix_SymmMatrix_Put_Integer is a subroutine that returns a symmetric packed MQC matrix with elements defined by values in an intrinsic integer vector

subroutine mgc matrix symmmatrix put real (mat, symmMatrixIn)

MQC_Matrix_SymmMatrix_Put_Real is a subroutine that returns a symmetric packed MQC matrix with elements defined by values in an intrinsic real vector

subroutine mqc_matrix_symmmatrix_put_complex (mat, symmMatrixIn)

MQC_Matrix_SymmMatrix_Put_Complex is a subroutine that returns a symmetric packed MQC matrix with elements defined by values in an intrinsic complex vector

recursive subroutine mqc_matrix_matrix_put (Mat, MatrixIn, Rows, Cols)

MQC_Matrix_Matrix_Put is a subroutine that writes a submatrix to the specified position of a MQC matrix

integer(kind=int64) function symindexhash (i, j, k, l)

SymIndexHash is a function that returns the index in a vector of a symmetric-packed matrix or rank-4 tensor

type(mqc_matrix) function mqc_elementmatrixproduct (A, B)

MQC_ElementMatrixProduct is a function that returns the element- wise product of two MQC matrices

type(mqc_matrix) function mqc_elementmatrixdivide (A, B)

MQC_ElementMatrixDivide is a function that returns the element- wise quotient of two MQC matrices

logical function mqc_matrix_test_symmetric (Matrix, Option)

MQC_Matrix_Test_Symmetric is a function that tests a MQC matrix for symmetry

logical function mqc matrix test diagonal (Matrix)

MQC_Matrix_Test_Diagonal is a function that tests a MQC matrix to determine if it is diagonal

subroutine mqc_allocate_matrix (M, N, Matrix, Data_Type, Storage)

MQC_Allocate_Matrix is used to allocate a matrix type variable of the MQC_Matrix class

• subroutine mqc_deallocate_matrix (Matrix)

MQC_Deallocate_Matrix is used to deallocate a matrix type variable of the MQC_Matrix class

logical function mgc matrix isallocated (Matrix)

MQC_Matrix_isAllocate is a function that returns the allocation status of a MQC_Matrix variable

subroutine mqc_set_integerarray2matrix (MatrixOut, ArrayIn)

MQC_Set_IntegerArray2Matrix is a subroutine that sets an MQC matrix equal to an intrinsic integer rank-2 array

subroutine mqc_set_realarray2matrix (MatrixOut, ArrayIn)

MQC_Set_RealArray2Matrix is a subroutine that sets an MQC matrix equal to an intrinsic real rank-2 array

subroutine mqc_set_complexarray2matrix (MatrixOut, ArrayIn)

MQC_Set_ComplexArray2Matrix is a subroutine that sets an MQC matrix equal to an intrinsic complex rank-2 array

subroutine mgc set matrix2integerarray (ArrayOut, MatrixIn)

MQC_Set_Matrix2IntegerArray is a subroutine that sets an intrinsic integer rank-2 array equal to an MQC matrix

subroutine mqc_set_matrix2realarray (ArrayOut, MatrixIn)

MQC_Set_Matrix2RealArray is a subroutine that sets an intrinsic real rank-2 array equal to an MQC matrix

subroutine mqc set matrix2complexarray (ArrayOut, MatrixIn)

MQC_Set_Matrix2ComplexArray is a subroutine that sets an intrinsic complex rank-2 array equal to an MQC matrix

subroutine mqc_set_matrix2matrix (MatrixOut, MatrixIn)

MQC_Set_Matrix2Matrix is a subroutine that sets an MQC matrix equal to another MQC matrix

• subroutine mgc print matrix algebra1 (Matrix, IOut, Header, Blank At Top, Blank At Bottom)

MQC_Print_Matrix_Algebra1 is a subroutine used to print an MQC matrix

subroutine mgc matrix copy int2real (Matrix)

MQC_Matrix_Copy_Int2Real is a subroutine used to copy an integer MQC matrix into its real space

subroutine mqc_matrix_copy_int2complex (Matrix)

MQC_Matrix_Copy_Int2Complex is a subroutine used to copy an integer MQC matrix into its complex space

subroutine mqc_matrix_copy_real2int (Matrix)

MQC_Matrix_Copy_Real2Int is a subroutine used to copy a real MQC matrix into its integer space

subroutine mqc_matrix_copy_real2complex (Matrix)

MQC_Matrix_Copy_Real2Complex is a subroutine used to copy a real MQC matrix into its complex space

subroutine mqc_matrix_copy_complex2int (Matrix)

MQC_Matrix_Copy_Complex2Int is a subroutine used to copy a complex MQC matrix into its integer space

subroutine mqc_matrix_copy_complex2real (Matrix)

MQC_Matrix_Copy_Complex2Real is a subroutine used to copy a complex MQC matrix into its real space

integer(kind=int64) function mqc matrix rows (Matrix)

MQC Matrix Rows is a function used to return the number of rows of an MQC matrix

integer(kind=int64) function mgc matrix columns (Matrix)

MQC_Matrix_Columns is a function used to return the number of columns of an MQC matrix

logical function mqc matrix havereal (Matrix)

MQC_Matrix_HaveReal is a function used to indicate if an MQC matrix has an allocated real matrix

logical function mqc matrix haveinteger (Matrix)

MQC_Matrix_HaveInteger is a function used to indicate if an MQC matrix has an allocated integer matrix

logical function mqc_matrix_havecomplex (Matrix)

MQC_Matrix_HaveComplex is a function used to indicate if an MQC matrix has an allocated complex matrix

logical function mqc_matrix_havefull (Matrix)

MQC_Matrix_HaveFull is a function used to indicate if an MQC matrix is stored unpacked

logical function mqc_matrix_havesymmetric (Matrix)

MQC_Matrix_HaveSymmetric is a function used to indicate if an MQC matrix is stored symmetric-packed

logical function mqc_matrix_havediagonal (Matrix)

MQC_Matrix_HaveDiagonal is a function used to indicate if an MQC matrix is stored diagonal-packed

type(mqc_matrix) function mqc_matrix_transpose (Matrix)

MQC_Matrix_Transpose is a function that returns the transpose of a MQC matrix

type(mqc_matrix) function mqc_matrix_conjugate_transpose (Matrix)

MQC_Matrix_Conjugate_Transpose is a function that returns the conjugate transpose of a MQC matrix

type(mqc_matrix) function mqc_matrix_symmetrize (Matrix)

MQC_Matrix_Symmetrize is a function that symmetrizes a MQC matrix

subroutine mgc matrix full2symm (Matrix)

MQC_Matrix_Full2Symm is a subroutine that converts an unpacked MQC matrix to symmetric-packed

subroutine mgc matrix symm2full (Matrix, Option)

MQC_Matrix_Symm2Full is a subroutine that converts a symmetry-packed MQC matrix to unpacked

subroutine mqc_matrix_full2diag (Matrix)

MQC_Matrix_Full2Diag is a subroutine that converts an unpacked MQC matrix to diagonal-packed

subroutine mqc matrix diag2full (Matrix)

MQC_Matrix_Diag2Full is a subroutine that converts a diagonal-packed MQC matrix to unpacked

subroutine mqc_matrix_symm2diag (Matrix)

MQC_Matrix_Symm2Diag is a subroutine that converts a symmetry-packed MQC matrix to diagonal-packed

subroutine mqc matrix diag2symm (Matrix)

MQC_Matrix_Diag2Symm is a subroutine that converts a diagonal-packed MQC matrix to symmetry-packed

type(mgc matrix) function mgc matrix symm2full func (Matrix)

MQC_Matrix_Symm2Full_Func is a function that converts a symmetric- packed MQC matrix to unpacked

subroutine matrix symm2sq integer (N, I Symm, I Sq)

Matrix_Symm2Sq_Integer is a subroutine that converts a symmetric- packed intrinsic integer matrix to a rank-2 intrinsic integer array

subroutine matrix_symm2sq_real (N, A_Symm, A_Sq)

Matrix_Symm2Sq_Real is a subroutine that converts a symmetric- packed intrinsic real matrix to a rank-2 intrinsic real array

subroutine matrix symm2sq complex (N, A Symm, A Sq)

Matrix_Symm2Sq_Complex is a subroutine that converts a symmetric- packed intrinsic complex matrix to a rank-2 intrinsic complex array

type(mgc matrix) function mgc vector2diagmatrix (vector)

MQC_Vector2DiagMatrix is a function that outputs a diagonal MQC matrix with elements defined by an MQC vector

type(mgc matrix) function mgc matrixmatrixsum (MA, MB)

MQC_MatrixMatrixSum is a function that sums two MQC matrices

type(mqc_matrix) function mqc_matrixmatrixsubtract (MA, MB)

MQC MatrixMatrixSubtract is a function that subtracts two MQC matrices

type(mqc_matrix) function mqc_matrixmatrixproduct (MA, MB)

MQC_MatrixMatrixProduct is a function that computes the element- wise product of two MQC matrices

- type(mqc_matrix) function mqc_matrixmatrixdotproduct (MA, MB)
- type(mqc_vector) function mqc_matrixvectordotproduct (MA, VB)
- type(mgc vector) function mgc vectormatrixdotproduct (VA, MB)
- type(mgc matrix) function mgc matrixscalarproduct (Matrix, Scalar)
- type(mgc matrix) function mgc scalarmatrixproduct (Scalar, Matrix)
- type(mgc scalar) function mgc matrix matrix contraction (Matrix1, Matrix2)
- subroutine mqc_matrix_scalar_put (Matrix, Scalar, I, J)
- subroutine mqc_matrix_initialize (Matrix, Rows, Columns, Scalar, Storage)
- subroutine mqc_matrix_identity (matrix, n, m)
- subroutine mgc matrix set (matrix, scalar, storage)
- type(mgc scalar) function mgc matrix norm (matrix, methodIn)
- type(mgc scalar) function mgc matrix determinant (a)
- type(mgc matrix) function mgc matrix inverse (a)
- type(mqc_scalar) function mqc_matrix_trace (matrix)
- subroutine mgc matrix generalized eigensystem (a, bln, eigenvals, reigenvecs, leigenvecs)
- subroutine mqc_matrix_svd (A, EVals, EUVecs, EVVecs)
- subroutine mqc_matrix_rms_max (A, rms_A, max_A)
- subroutine mgc matrix sqrt (A, eVals, eVecs)
- type(mgc matrix) function mgc givens matrix (m size, angle, p, g)
- subroutine mqc_allocate_r4tensor (I, J, K, L, Tensor, Data_Type, Storage)
- subroutine mqc_deallocate_r4tensor (Tensor)
- type(mqc_scalar) function mqc_r4tensor_at (Tensor, I, J, K, L)
- subroutine mqc_r4tensor_put (Tensor, Element, I, J, K, L)
- subroutine mgc print r4tensor algebra1 (Tensor, IOut, Header, blank at top, blank at bottom)
- subroutine mqc set array2tensor (TensorOut, ArrayIn)

- subroutine mqc_r4tensor_initialize (R4Tensor, I, J, K, L, Scalar)
- subroutine mqc_matrix_symmsymmr4tensor_put_real (r4Tensor, symmSymmMatrixIn)
- subroutine mqc_matrix_symmsymmr4tensor_put_complex (r4Tensor, symmSymmMatrixIn)
- logical function mqc_r4tensor_haveinteger (R4Tensor)
- logical function mqc r4tensor havereal (R4Tensor)
- logical function mqc r4tensor havecomplex (R4Tensor)

5.1.1 Detailed Description

MQC Algebra contains mathematical objects that are designed to simplify and automate variable use in Fortran

Purpose:

MQC Algebra contains mathematical objects that are designed to simplify and automate variable use in Fortran. Arrays can be packed for efficient memory use and used for operations completely transparently to the user. Furthermore, there is no need to type arrays, as this can be manipulated on the fly. Arrays carry their own procedures, and use underlying lapack routines for efficiency. The MQC derivd types defined in this package are:

```
    MQC_Scalar: Rank 0 array variable
    MQC_Vector: Rank 1 array variable
    MQC_Matrix: Rank 2 array variable
    MQC_R4Tensor: Rank 3 array variable
```

This module is level 1 in the MQC hierarchy and so depends on level 0 modules.

Note that MQC_Algebra2 provides similar functionality with MQC_Array objects that can dynamically adjust rank. However, the vast majority of work can be performed using MQC_Algebra derived types which have been more developed than MQC_Algebra2 derived types.

5.1.2 Function/Subroutine Documentation

5.1.2.1 bin_coeff()

Bin_Coeff returns the binomial coefficient of (n,k)

Purpose:

Bin_Coeff is a function that returns the binomial coefficient given input integer N and input integer K corresponding to N choose K.

Parameters

in	N	
		N is Integer(kind=int64) The number of objects.
in	K	
		K is Integer(kind=int64) The number of permutations.

Author

L. M. Thompson

Date

2016

5.1.2.2 factorial()

```
integer(kind=int64) function mqc_algebra::factorial ( integer(kind=int64)\text{, intent(in) }n\text{ )}
```

Factorial returns the factorial of an integer

Purpose:

Factorial is a function that returns the factorial of an integer.

Parameters

in	N	
		N is Integer(kind=int64)
		The argument of the factorial function.

Author

L. M. Thompson

Date

2016

5.1.2.3 matrix_symm2sq_complex()

```
subroutine mqc_algebra::matrix_symm2sq_complex ( integer(kind=int64),\ intent(in)\ N,\\ complex(kind=real64),\ dimension(:),\ intent(in)\ A\_Symm,\\ complex(kind=real64),\ dimension(n,n),\ intent(out)\ A\_Sq\ )
```

Matrix_Symm2Sq_Complex is a subroutine that converts a symmetric- packed intrinsic complex matrix to a rank-2 intrinsic complex array

Purpose:

```
\label{lem:matrix_symm2sq_complex} \begin{tabular}{ll} Matrix\_Symm2Sq\_Complex is a subroutine that converts a symmetric-packed intrinsic complex matrix to a rank-2 complex array. \\ TODO: Move this routine to MQC general \\ \end{tabular}
```

Parameters

in	N	
		N is Integer(kind=int64) The leading dimension of symmetric-packed matrix I_Symm. unpacked.
in	A_Symm	
		A_Symm is Complex(kind=real64),Dimension(:) The symmetric-packed intrinsic complex matrix to be unpacked.
out	A_Sq	
		A_Sq is Complex(kind=real64),Dimension(N,N) The upacked intrinsic complex matrix output.

Author

L. M. Thompson

Date

2017

5.1.2.4 matrix_symm2sq_integer()

Matrix_Symm2Sq_Integer is a subroutine that converts a symmetric- packed intrinsic integer matrix to a rank-2 intrinsic integer array

Purpose:

 $\label{lem:matrix_symm2Sq_Integer} \begin{tabular}{ll} Matrix_Symm2Sq_Integer is a subroutine that converts a symmetric-packed intrinsic integer matrix to a rank-2 integer array. \\ TODO: Move this routine to MQC general \\ \end{tabular}$

Parameters

in	N	
		N is Integer(kind=int64) The leading dimension of symmetric-packed matrix I_Symm. unpacked.
in	I_Symm	
		I_Symm is Integer(kind=int64),Dimension(:) The symmetric-packed intrinsic integer matrix to be unpacked.
out	I_Sq	
		I_Sq is $Integer(kind=int64), Dimension(N,N)$ The upacked intrinsic integer matrix output.

Author

H. P. Hratchian

Date

2017

5.1.2.5 matrix symm2sq real()

```
subroutine mqc_algebra::matrix_symm2sq_real (
    integer(kind=int64), intent(in) N,
    real(kind=real64), dimension(:), intent(in) A_Symm,
    real(kind=real64), dimension(n,n), intent(out) A_Sq)
```

Matrix_Symm2Sq_Real is a subroutine that converts a symmetric- packed intrinsic real matrix to a rank-2 intrinsic real array

Purpose:

```
\label{lem:matrix_Symm2Sq_Real} \begin{tabular}{ll} Matrix\_Symm2Sq\_Real is a subroutine that converts a symmetric-packed intrinsic real matrix to a rank-2 real array. \\ TODO: Move this routine to MQC general \\ \end{tabular}
```

Parameters

in	N	
		N is Integer(kind=int64) The leading dimension of symmetric-packed matrix I_Symm. unpacked.
in	A_Symm	
		A_Symm is Real(kind=real64),Dimension(:) The symmetric-packed intrinsic real matrix to be unpacked.
out	A_Sq	
		A_Sq is Real(kind=real64),Dimension(N,N) The upacked intrinsic real matrix output.

Author

H. P. Hratchian

Date

2017

5.1.2.6 mqc_allocate_matrix()

```
subroutine mqc_algebra::mqc_allocate_matrix (
    integer(kind=int64), intent(in) M,
    integer(kind=int64), intent(in) N,
    class(mqc_matrix), intent(inout) Matrix,
    character(len=*), intent(in) Data_Type,
    character(len=*), intent(in) Storage)
```

MQC_Allocate_Matrix is used to allocate a matrix type variable of the MQC_Matrix class

Purpose:

```
MQC_Allocate_Matrix is a subroutine used to allocate a matrix type variable of the MQC_Matrix class. The following options are available:

1. Data_Type = 'Real' declares the MQC_Matrix variable to be of real type.
2. Data_Type = 'Integer' declares the MQC_Matrix variable to be of integer type.
3. Data_Type = 'Complex' declares the MQC_Matrix variable to be of complex type.
1. Data_Type = 'StorFull' declares the MQC_Matrix variable to be unpacked.
2. Data_Type = 'StorSymm' declares the MQC_Matrix variable to be symmetric packed.
3. Data_Type = 'StorDiag' declares the MQC_Matrix variable to be diagonal packed.
```

Parameters

in	М	M is Integer(kind=int64) M is the number of rows of Matrix.
in	N	N is Integer(kind=int64) N is the number of columns of Matrix.
in,out	Matrix	Matrix is Class(MQC_Matrix) The MQC matrix to be allocated.
in	Data_Type	Data_Type is Character(Len=*) = 'Real': the MQC_Scalar is real = 'Integer': the MQC_Scalar is integer = 'Complex': the MQC_Scalar is complex.
in	Storage	Storage is Character(Len=*) = 'StorFull': the MQC_Scalar is unpacked = 'StorSymm': the MQC_Scalar is symmetric packed = 'StorDiag': the MQC_Scalar is diagonal packed.

Author

H. P. Hratchian

L. M. Thompson

Date

2016

5.1.2.7 mqc_allocate_r4tensor()

```
subroutine mqc_algebra::mqc_allocate_r4tensor (
    integer(kind=int64), intent(in) I,
    integer(kind=int64), intent(in) J,
    integer(kind=int64), intent(in) K,
    integer(kind=int64), intent(in) L,
    type(mqc_r4tensor), intent(inout) Tensor,
    character(len=*), intent(in) Data_Type,
    character(len=*), intent(in) Storage)
```

5.1.2.8 mqc_allocate_scalar()

MQC_Allocate_Scalar is used to allocate a scalar type variable of the MQC_Scalar class

Purpose:

```
MQC_Allocate_Scalar is a subroutine used to allocate a scalar type variable
of the MQC_Scalar class. The following options are available:

1. Data_Type = 'Real' declares the MQC_Scalar variable to be of real type.
2. Data_Type = 'Integer' declares the MQC_Scalar variable to be of integer type.
3. Data_Type = 'Complex' declares the MQC_Scalar variable to be of complex type.
```

Parameters

in,out	Scalar	
		Scalar is Type(MQC_Scalar) The name of the MQC_Scalar variable.
in	Data_Type	
		<pre>Data_Type is Character(Len=*) = 'Real': the MQC_Scalar is real = 'Integer': the MQC_Scalar is integer = 'Complex': the MQC_Scalar is complex.</pre>

Author

L. M. Thompson

Date

2016

5.1.2.9 mqc allocate vector()

MQC_Allocate_Vector is used to allocate a vector type variable of the MQC_Vector class

Purpose:

```
MQC_Allocate_Vector is a subroutine used to allocate a vector type variable
of the MQC_Vector class. The following options are available:
```

- 1. Data_Type = 'Real' declares the MQC_Vector variable to be of real type.
- 2. Data_Type = 'Integer' declares the MQC_Vector variable to be of integer type.

 3. Data_Type = 'Complex' declares the MQC_Vector variable to be of complex type.

Parameters

in	N	
		N is Integer($kind=int64$) The length of the MQC_Vector variable
in,out	Vector	
		Vector is Type(MQC_Vector) The name of the MQC_Vector variable
in	Data_Type	
		<pre>Data_Type is Character(Len=*) = 'Real': the MQC_Vector is real = 'Integer': the MQC_Vector is integer = 'Complex': the MQC_Vector is complex</pre>

Author

H. P. Hratchian

Date

2016

5.1.2.10 mqc_complexscalaradd()

```
type(mqc_scalar) function mqc_algebra::mqc_complexscalaradd (
             complex(kind=real64), intent(in) ComplexIn,
             type(mqc_scalar), intent(in) Scalar )
```

MQC_ComplexScalarAdd is a function that is used to sum an intrinsic complex by an MQC_Scalar

Purpose:

 ${\tt MQC_ComplexScalarAdd}$ is a function that is used to sum an intrinsic complex by an MQC_Scalar.

Parameters

in	Complex← In	Complex is Complex(kind=real64) The intrinsic complex variable to sum.
in	Scalar	
		Scalar is Type(MQC_Scalar) The MQC_Scalar variabel to sum.

Author

L. M. Thompson

Date

2019

5.1.2.11 mqc_complexscalardivide()

MQC_ComplexScalarDivide is a function that is used to divide an intrinsic complex by an MQC_Scalar

Purpose:

 $\texttt{MQC_ComplexScalarDivide}$ is a function that is used to divide an intrinsic complex by an $\texttt{MQC_Scalar.}$

Parameters

in	Complex← In	ComplexIn is Complex(kind=real64) The intrinsic complex variable numerator.
in	Scalar	
		Scalar is Type(MQC_Scalar) The MQC_Scalar variable denominator.

Author

L. M. Thompson

Date

2019

5.1.2.12 mqc_complexscalarmultiply()

MQC_ComplexScalarMultiply is a function that is used to multiply an intrinsic complex by an MQC_Scalar

Purpose:

 $\texttt{MQC_ComplexScalarMultiply}$ is a function that is used to multiply an intrinsic complex by an $\texttt{MQC_Scalar.}$

Parameters

in	Complex← In	Complex is Complex(kind=real64) The intrinsic complex variable to multiply.
in	Scalar	
		Scalar is Type(MQC_Scalar) The MQC_Scalar variabel to multiply.

Author

L. M. Thompson

Date

2019

5.1.2.13 mqc_complexscalarsubtract()

MQC_ComplexScalarSubtract is a function that is used to subtract an MQC_Scalar from an intrinisic complex

Purpose:

 $\texttt{MQC_ComplexScalarSubtract}$ is a function that is used to subtract an $\texttt{MQC_Scalar}$ from an intrinisic complex.

Parameters

in	Complex← In	ComplexIn is Complex(kind=real64) The intrinsic complex to subtract from.
in	Scalar	
		Scalar is Type(MQC_Scalar) The MQC_Scalar variable to subtract.

Author

L. M. Thompson

Date

2019

5.1.2.14 mqc_complexvectorproduct()

MQC_ComplexVectorProduct is a function that returns the product of an intrinsic complex scalar and a MQC vector

Purpose:

 $\texttt{MQC_ComplexVectorProduct}$ is a function that returns the product of an intrinsic integer scalar and a MQC vector.

Parameters

in	Comp← In	CompIn is Complex(kind=real64) The intrinsic complex to multiply.
in	Vector	Vector is Type(MQC_Vector) The MQC_Vector to multiply.

Author

L. M. Thompson

Date

2019

5.1.2.15 mqc_crossproduct()

MQC_CrossProduct is a function that returns the cross product of two MQC vectors

Purpose:

 $\mbox{MQC_CrossProduct}$ is a function that returns the cross product of two \mbox{MQC} vectors. The vectors should both be of length 3.

Parameters

in	Vector1← In	VectorlIn is Type(MQC_Vector) The first MQC vector.
in	Vector2← In	Vector2In is Type(MQC_Vector) The second MQC vector.

Author

L. M. Thompson

Date

2016

5.1.2.16 mqc_deallocate_matrix()

MQC_Deallocate_Matrix is used to deallocate a matrix type variable of the MQC_Matrix class

Purpose:

 ${\tt MQC_Deallocate_Matrix}$ is a subroutine used to deallocate a matrix type variable of the ${\tt MQC_Matrix}$ class.

Parameters

Matrix is Class(MQC_Matrix) The MQC matrix to be deallocated.

Author

L. M. Thompson

Date

2016

5.1.2.17 mqc_deallocate_r4tensor()

5.1.2.18 mqc_deallocate_scalar()

MQC_Deallocate_Scalar is used to deallocate a scalar type variable of the MQC_Scalar class

Purpose:

 ${\tt MQC_Deallocate_Scalar}$ is a subroutine used to deallocate a scalar type variable of the ${\tt MQC_Scalar}$ class.

Parameters

in,	out	Scalar	
			Scalar is Type(MQC_Scalar) The name of the MQC_Scalar variable to deallocate.

Author

L. M. Thompson

Date

2016

5.1.2.19 mqc_deallocate_vector()

MQC_Deallocate_Vector is used to deallocate a vector type variable of the MQC_Vector class

Purpose:

 $\mbox{MQC_Deallocate_Vector}$ is a subroutine used to deallocate a vector type variable of the $\mbox{MQC_Vector}$ class.

Parameters

in,out	Vector	
		Vector is Type(MQC_Vector) The name of the MQC_Vector variable to deallocate.

Author

H. P. Hratchian

Date

2016

5.1.2.20 mqc_elementmatrixdivide()

MQC_ElementMatrixDivide is a function that returns the element- wise quotient of two MQC matrices

Purpose:

 $\mbox{MQC_ElementMatrixDivide}$ is a function that returns the element-wise quotient of two \mbox{MQC} matrices.

Parameters

in	Α	
		A is type(mqc_matrix) The matrix with elements being the numerator.
in	В	
		B is type(mqc_matrix) The matrix with elements being the denominator.

Author

X. Sheng

Date

2017

5.1.2.21 mqc_elementmatrixproduct()

MQC_ElementMatrixProduct is a function that returns the element- wise product of two MQC matrices

Purpose:

 $\ensuremath{\mathtt{MQC_ElementMatrixProduct}}$ is a function that returns the element-wise product of two $\ensuremath{\mathtt{MQC}}$ matrices.

Parameters

in	Α	
		A is type(mqc_matrix) The first matrix to element-wise multiply.
in	В	
		B is type(mqc_matrix)

Author

X. Sheng

Date

2017

5.1.2.22 mqc_elementvectorproduct()

MQC_ElementVectorProduct is a function that multiplies two MQC vectors elementwise and stores them into another MQC vector

Purpose:

 ${\tt MQC_ElementVectorProduct}$ is a function that multiplies two ${\tt MQC}$ vectors elementwise and stores them into another ${\tt MQC}$ vector.

Parameters

in	Vector1↔ In	VectorlIn is Type(MQC_Vector) The frist MQC vector to multiply elementwise.
in	Vector2↔ In	Vector2In is Type(MQC_Vector) The second MQC vector to multiply elementwise.

Author

L. M. Thompson

Date

2016

5.1.2.23 mqc_givens_matrix()

```
type(mqc_matrix) function mqc_algebra::mqc_givens_matrix (
    integer(kind=int64), intent(in) m_size,
    real(kind=real64), intent(in) angle,
    integer(kind=int64), intent(in) p,
    integer(kind=int64), intent(in) q)
```

5.1.2.24 mqc_input_complex_scalar()

MQC_Input_Complex_Scalar is a subroutine is used to set an intrinsic complex to an MQC_Scalar

Purpose:

 ${\tt MQC_Input_Complex_Scalar} \ \ {\tt is} \ \ {\tt a} \ \ {\tt subroutine} \ \ {\tt is} \ \ {\tt used} \ \ {\tt to} \ \ {\tt set} \ \ {\tt an intrinsic complex} \ \ {\tt to} \ \ {\tt an MQC_Scalar}.$

Parameters

in,out	ScalarOut	
		ScalarOut is Type(MQC_Scalar) The name of the output variable.
in	ScalarIn	
		ScalarIn is Complex(kind=real64) The value of the input variable.

Author

L. M. Thompson

Date

2017

5.1.2.25 mqc_input_integer_scalar()

MQC_Input_Integer_Scalar is a subroutine is used to set an intrinsic integer to an MQC_Scalar

Purpose:

MQC_Input_Integer_Scalar is a subroutine is used to set an intrinsic integer to an MQC_Scalar.

Parameters

in,out	ScalarOut	
		ScalarOut is Type(MQC_Scalar) The name of the output variable.
in	ScalarIn	
		ScalarIn is Integer(kind=int64) The value of the input variable.

Author

L. M. Thompson

Date

2016

5.1.2.26 mgc input real scalar()

MQC_Input_Real_Scalar is a subroutine is used to set an intrinsic real to an MQC_Scalar

Purpose:

 ${\tt MQC_Input_Integer_Scalar} \ \ {\tt is} \ \ {\tt a} \ \ {\tt subroutine} \ \ {\tt is} \ \ {\tt used} \ \ {\tt to} \ \ {\tt set} \ \ {\tt an intrinsic} \ \ {\tt real} \ \ {\tt to} \ \ {\tt an MQC_Scalar}.$

Parameters

in,out	ScalarOut	
		ScalarOut is Type(MQC_Scalar) The name of the output variable.
in	ScalarIn	
		ScalarIn is Real(kind=real64) The value of the input variable.

Author

L. M. Thompson

Date

2016

5.1.2.27 mqc_integergtscalar()

MQC_IntegerGTScalar is a function that returns TRUE if an intrinsic integer is greater than a MQC_Scalar

Purpose:

 $\ensuremath{\mathtt{MQC_IntegerGTScalar}}$ is a function that returns TRUE if an intrinsic integer is greater than a $\ensuremath{\mathtt{MQC_Scalar}}.$

When dealing with complex numbers, the function returns TRUE if the intrinsic integer is greater than the real part of the MQC_Scalar and FALSE if the intrinsic integer is less than the real part of the MQC_Scalar. If the intrinsic integer is equal to the real part of the MQC_Scalar, the function returns TRUE if the imaginary part of MQC_Scalar is less than zero and FALSE otherwise.

Parameters

in	Intln	
		IntIn is Integer(kind=int64) The intrinsic integer that will be tested.
in	Scalar	
		Scalar is Type(MQC_Scalar) The MQC_Scalar that will be tested.

Author

L. M. Thompson

Date

2019

5.1.2.28 mqc_integerlescalar()

MQC_IntegerLEScalar is a function that returns TRUE if an intrinsic integer is less than or equal to a MQC_ \leftarrow Scalar

Purpose:

 $\texttt{MQC_IntegerLES}$ calar is a function that returns TRUE if an intrinsic integer is less than or equal to a $\texttt{MQC_S}$ calar.

When dealing with complex numbers, the function returns TRUE if the intrinsic integer is less than or equal to the real part of the MQC_Scalar and FALSE if the intrinsic integer is greater than the real part of the MQC_Scalar.

Parameters

in	Intln	
		<pre>IntIn is Integer(kind=int64) The intrinsic integer that will be tested.</pre>
in	Scalar	
		Scalar is Type(MQC_Scalar) The MQC_Scalar that will be tested.

Author

L. M. Thompson

Date

2019

5.1.2.29 mqc_integerscalaradd()

MQC_IntegerScalarAdd is a function that is used to multiply an intrinsic integer by an MQC_Scalar

Purpose:

 $\mbox{MQC_IntegerScalarAdd}$ is a function that is used to sum an intrinsic integer by an $\mbox{MQC_Scalar.}$

Parameters

in	Integer⊷ In	IntegerIn is Integer(kind=int64) The intrinsic integer variable to sum.
in	Scalar	
		Scalar is Type(MQC_Scalar) The MQC_Scalar variable to sum.

Author

L. M. Thompson

Date

2019

5.1.2.30 mqc_integerscalardivide()

MQC_IntegerScalarDivide is a function that is used to divide an intrinsic integer by an MQC_Scalar

Purpose:

 $\mbox{MQC_IntegerScalarDivide}$ is a function that is used to divide an intrinsic integer by an $\mbox{MQC_Scalar.}$

Parameters

in	Integer⊷ In	IntegerIn is Integer(kind=int64) The intrinsic integer variable numerator.
in	Scalar	
		Scalar is Type(MQC_Scalar) The MQC_Scalar variable denominator.

Author

L. M. Thompson

Date

2019

5.1.2.31 mqc_integerscalarmultiply()

MQC_IntegerScalarMultiply is a function that is used to multiply an intrinsic integer by an MQC_Scalar

Purpose:

 $\texttt{MQC_IntegerScalarMultiply}$ is a function that is used to multiply an intrinsic integer by an $\texttt{MQC_Scalar.}$

Parameters

in	Integer⊷ In	IntegerIn is Integer(kind=int64) The intrinsic integer variable to multiply.
in	Scalar	
		Scalar is Type(MQC_Scalar) The MQC_Scalar variable to multiply.

Author

L. M. Thompson

Date

2019

5.1.2.32 mqc_integerscalarsubtract()

MQC_IntegerScalarSubtract is a function that is used to subtract an MQC_Scalar from an intrinisic integer

Purpose:

 ${\tt MQC_IntegerScalarSubtract}$ is a function that is used to subtract an ${\tt MQC_Scalar}$ from an intrinisic integer.

Parameters

in	Integer↔ In	IntegerIn is Integer(kind=int64) The intrinsic integer to subtract from.
in	Scalar	
		Scalar is Type(MQC_Scalar) The MQC_Scalar variable to subtract.

Author

L. M. Thompson

Date

2019

5.1.2.33 mqc_integervectorproduct()

MQC_IntegerVectorProduct is a function that returns the product of an intrinsic integer scalar and a MQC vector

Purpose:

 ${\tt MQC_IntegerVectorProduct}$ is a function that returns the product of an intrinsic integer scalar and a ${\tt MQC}$ vector.

Parameters

in	Intln	
		IntIn is Integer(kind=int64) The intrinsic integer to multiply.
in	Vector	
		Vector is Type(MQC_Vector)

Author

L. M. Thompson

Date

2019

5.1.2.34 mqc_length_vector()

```
integer(kind=int64) function mqc_algebra::mqc_length_vector ( {\tt class}\,({\tt mqc\_vector})\ {\tt \it Vector}\ )
```

MQC_Length_Vector is used to return the length of an MQC vector

Purpose:

 $\mbox{MQC_Length_Vector}$ is used to return the length of an \mbox{MQC} vector. If the vector vector is NOT allocated, the length is returned as 0.

Parameters

ſ	in,out	Vector	
			Vector is Type(MQC_Vector) The name of the MQC_Vector variable whose length will be returned.

Author

H. P. Hratchian

Date

2016

5.1.2.35 mqc_matrix_cast_complex()

MQC_Matrix_Cast_Complex is a function that converts an MQC matrix to its complex space

Purpose:

 $\ensuremath{\mathsf{MQC_Matrix_Cast_Complex}}$ is a function that converts an $\ensuremath{\mathsf{MQC}}$ matrix to its complex space.

Parameters

in	MA	
		MA is Type(MQC_Matrix)
		The MQC matrix to convert.

Author

L. M. Thompson

Date

2017

5.1.2.36 mqc_matrix_cast_integer()

MQC_Matrix_Cast_Integer is a function that converts an MQC matrix to its integer space

Purpose:

 $\ensuremath{\mathsf{MQC_Matrix_Cast_Integer}}$ is a function that converts an $\ensuremath{\mathsf{MQC}}$ matrix to its integer space.

Parameters

in	MA	
		MA is Type(MQC_Matrix) The MQC matrix to convert.

Author

L. M. Thompson

Date

2019

5.1.2.37 mqc_matrix_cast_real()

MQC_Matrix_Cast_Real is a function that converts an MQC matrix to its real space

Purpose:

 $\mbox{MQC_Matrix_Cast_Real}$ is a function that converts an \mbox{MQC} matrix to its real space.

Parameters

in	MA	
		MA is Type(MQC_Matrix)
		The MQC matrix to convert.

Author

X. Sheng

Date

2017

5.1.2.38 mqc_matrix_columns()

MQC_Matrix_Columns is a function used to return the number of columns of an MQC matrix

Purpose:

 $\texttt{MQC_Matrix_Columns}$ is a function used to return the number of columns of an MQC matrix. If the matrix is NOT allocated, the number of columns is returned as 0.

Parameters

in	Matrix	
		Matrix is Type(MQC_Matrix)
		The MQC matrix to be tested.

Author

L. M. Thompson

Date

2016

5.1.2.39 mqc_matrix_conjugate_transpose()

MQC_Matrix_Conjugate_Transpose is a function that returns the conjugate transpose of a MQC matrix

Purpose:

 ${\tt MQC_Matrix_Conjugate_Transpose}$ is a function that returns the conjugate transpose of a ${\tt MQC}$ matrix.

Parameters

in	Matrix	
		Matrix is Type(MQC_Matrix) The MQC matrix to be conjugate transposed.

Author

L. M. Thompson

Date

5.1.2.40 mqc_matrix_copy_complex2int()

MQC_Matrix_Copy_Complex2Int is a subroutine used to copy a complex MQC matrix into its integer space

Purpose:

 ${\tt MQC_Matrix_Copy_Complex2Int}$ is a subroutine used to copy a complex ${\tt MQC}$ matrix matrix into its integer space.

Parameters

in	Matrix	
		Matrix is Type(MQC_Matrix) The MQC matrix to be converted to integer.
		The Mgc Matrix to be converted to integer.

Author

L. M. Thompson

Date

2017

5.1.2.41 mqc matrix copy complex2real()

MQC_Matrix_Copy_Complex2Real is a subroutine used to copy a complex MQC matrix into its real space

Purpose:

 ${\tt MQC_Matrix_Copy_Complex2Real}$ is a subroutine used to copy a complex ${\tt MQC}$ matrix matrix into its real space.

Parameters

in	Matrix	
		Matrix is Type(MQC_Matrix) The MQC matrix to be converted to real.

Author

L. M. Thompson

Date

2017

5.1.2.42 mqc_matrix_copy_int2complex()

MQC_Matrix_Copy_Int2Complex is a subroutine used to copy an integer MQC matrix into its complex space

Purpose:

 ${\tt MQC_Matrix_Copy_Int2Complex}$ is a subroutine used to copy an integer ${\tt MQC}$ matrix into its complex space.

Parameters

in	Matrix	
		Matrix is Type(MQC_Matrix)
		The MQC matrix to be converted to complex.

Author

L. M. Thompson

Date

2017

5.1.2.43 mqc_matrix_copy_int2real()

MQC_Matrix_Copy_Int2Real is a subroutine used to copy an integer MQC matrix into its real space

Purpose:

 ${\tt MQC_Matrix_Copy_Int2Real}$ is a subroutine used to copy an integer ${\tt MQC}$ matrix into its real space.

Parameters

in	Matrix	
		Matrix is Type(MQC_Matrix)
		The MQC matrix to be converted to real.

Author

L. M. Thompson

Date

2016

5.1.2.44 mqc_matrix_copy_real2complex()

MQC_Matrix_Copy_Real2Complex is a subroutine used to copy a real MQC matrix into its complex space

Purpose:

 ${\tt MQC_Matrix_Copy_Real2Complex}$ is a subroutine used to copy a real ${\tt MQC}$ matrix matrix into its complex space.

Parameters

ir	า	Matrix	
			Matrix is Type(MQC_Matrix) The MQC matrix to be converted to complex.

Author

L. M. Thompson

Date

5.1.2.45 mqc_matrix_copy_real2int()

MQC_Matrix_Copy_Real2Int is a subroutine used to copy a real MQC matrix into its integer space

Purpose:

 ${\tt MQC_Matrix_Copy_Real2Int}$ is a subroutine used to copy a real MQC matrix matrix into its integer space.

Parameters

in	Matrix	
		Matrix is Type(MQC_Matrix) The MQC matrix to be converted to integer.

Author

L. M. Thompson

Date

2016

5.1.2.46 mqc_matrix_determinant()

5.1.2.47 mqc_matrix_diag2full()

MQC_Matrix_Diag2Full is a subroutine that converts a diagonal-packed MQC matrix to unpacked

Purpose:

```
MQC\_Matrix\_Diag2Full is a subroutine that converts a diagonal-packed MQC matrix to unpacked. TODO: make tests for diagonal structure more efficient.
```

Parameters

in,out	Matrix	
		Matrix is Type(MQC_Matrix) The MQC matrix to be unpacked

Author

L. M. Thompson

Date

2017

5.1.2.48 mqc_matrix_diag2symm()

MQC_Matrix_Diag2Symm is a subroutine that converts a diagonal-packed MQC matrix to symmetry-packed

Purpose:

```
MQC\_Matrix\_Diag2Symm is a subroutine that converts a diagonal-packed MQC matrix to symmetry-packed. TODO: make tests for diagonal structure more efficient.
```

Parameters

in,out	Matrix	
		Matrix is Type(MQC_Matrix) The MQC matrix to be unpacked.

Author

L. M. Thompson

Date

5.1.2.49 mqc_matrix_diagmatrix_put_complex()

MQC_Matrix_DiagMatrix_Put_Complex is a subroutine that returns a diagonal MQC matrix with elements defined by values in an intrinsic complex vector

Purpose:

 ${\tt MQC_Matrix_DiagMatrix_Put_Complex}$ is a subroutine that returns a diagonal ${\tt MQC}$ matrix with elements defined by values in an intrinsic complex vector.

Parameters

in,out	mat	
		Mat is class(MQC $_$ Matrix) MQC matrix to overwrite with output diagonal matrix.
in	Diag← MatrixIn	DiagMatrixIn is complex(kind=real64),dimension(:) Intrinsic complex vector to write as diagonal matrix.

Author

L. M. Thompson

Date

2017

5.1.2.50 mgc matrix diagmatrix put integer()

MQC_Matrix_DiagMatrix_Put_integer is a subroutine that returns a diagonal MQC matrix with elements defined by values in an intrinsic integer vector

Purpose:

 ${\tt MQC_Matrix_DiagMatrix_Put_integer}$ is a subroutine that returns a diagonal ${\tt MQC}$ matrix with elements defined by values in an intrinsic integer vector.

Parameters

in,out	mat	
		Mat is class(MQC_Matrix) MQC matrix to overwrite with output diagonal matrix.
in	Diag⊷ MatrixIn	DiagMatrixIn is integer(kind=int64),dimension(:) Intrinsic integer vector to write as diagonal matrix.

Author

H. P. Hratchian

Date

2017

5.1.2.51 mqc_matrix_diagmatrix_put_real()

MQC_Matrix_DiagMatrix_Put_Real is a subroutine that returns a diagonal MQC matrix with elements defined by values in an intrinsic real vector

Purpose:

 ${\tt MQC_Matrix_DiagMatrix_Put_Real}$ is a subroutine that returns a diagonal ${\tt MQC}$ matrix with elements defined by values in an intrinsic real vector.

Parameters

in,out	mat	
		Mat is class(MQC_Matrix) MQC matrix to overwrite with output diagonal matrix.
in	Diag← MatrixIn	DiagMatrixIn is real(kind=real64),dimension(:) Intrinsic real vector to write as diagonal matrix.

Author

H. P. Hratchian

Date

2017

5.1.2.52 mqc_matrix_diagmatrix_put_vector()

MQC_Matrix_DiagMatrix_Put_Vector is a subroutine that returns a diagonal MQC matrix with elements defined by values in a MQC vector

Purpose:

 $\texttt{MQC_Matrix_DiagMatrix_Put_Vector}$ is a subroutine that returns a diagonal MQC matrix with elements defined by values in a MQC vector.

Parameters

in	Diag⊷ VectorIn	DiagVectorIn is class(MQC_Vector) Name of the MQC vector to write as diagonal matrix.
in,out	mat	
		Mat is class(MQC_Matrix) MQC matrix to overwrite with output diagonal matrix.

Author

L. M. Thompson

Date

5.1.2.53 mqc_matrix_diagonalize()

MQC_Matrix_Diagonalize is a subroutine that takes a symmetric or hermitian MQC matrix and returns eigenvalues and eigenvectors

Purpose:

 ${\tt MQC_Matrix_Diagonalize}$ is a subroutine that takes a symmetric or hermitian ${\tt MQC}$ matrix and optionally returns eigenvalues to a ${\tt MQC}$ vector and/or eigenvectors to a ${\tt MQC}$ matrix.

Parameters

in	Α	
		A is Class(MQC_Matrix) The MQC matrix to diagonalize.
in,out	EVals	
		EVals is Type(MQC_Vector),Optional Optional MQC vector containing the eigenvalues.
in,out	EVecs	
		EVecs is Type(MQC_Vector),Optional Optional MQC matrix containing the eigenvectors.

Author

X. Sheng

L. M. Thompson

Date

2017

5.1.2.54 mqc_matrix_full2diag()

MQC_Matrix_Full2Diag is a subroutine that converts an unpacked MQC matrix to diagonal-packed

Purpose:

```
{\tt MQC\_Matrix\_Full2Diag} is a subroutine that converts an unpacked MQC matrix to diagonal-packed.  

 TODO: make tests for diagonal structure more efficient.
```

Parameters

in,out	Matrix	
		Matrix is Type(MQC_Matrix) The MQC matrix to be diagonal packed

Author

L. M. Thompson

Date

2016

5.1.2.55 mqc_matrix_full2symm()

MQC_Matrix_Full2Symm is a subroutine that converts an unpacked MQC matrix to symmetric-packed

Purpose:

 ${\tt MQC_Matrix_Full2Symm}$ is a subroutine that converts an unpacked MQC matrix to symmetric-packed. ${\tt TODO:}$ make tests for symmetry more efficient.

Parameters

in,out	Matrix	
		Matrix is Type(MQC_Matrix)
		The MQC matrix to be symmetric packed.

Author

L. M. Thompson

Date

5.1.2.56 mqc_matrix_generalized_eigensystem()

5.1.2.57 mqc matrix havecomplex()

MQC_Matrix_HaveComplex is a function used to indicate if an MQC matrix has an allocated complex matrix

Purpose:

 $MQC_Matrix_HaveComplex$ is a function that returns TRUE if an MQC matrix has an allocated complex matrix and FALSE if it does not.

Parameters

in	Matrix	
		Matrix is Type(MQC_Matrix) The MQC matrix to be tested.

Author

L. M. Thompson

Date

2017

5.1.2.58 mqc_matrix_havediagonal()

MQC_Matrix_HaveDiagonal is a function used to indicate if an MQC matrix is stored diagonal-packed

Purpose:

 $\texttt{MQC_Matrix_HaveDiagonal}$ is a function that returns TRUE if an MQC matrix is stored diagonal-packed and FALSE if it is not.

Parameters

in	Matrix	
		Matrix is Type(MQC_Matrix) The MQC matrix to be tested.
		~

Author

L. M. Thompson

Date

2017

5.1.2.59 mqc_matrix_havefull()

MQC_Matrix_HaveFull is a function used to indicate if an MQC matrix is stored unpacked

Purpose:

 $\texttt{MQC_Matrix_HaveFull}$ is a function that returns TRUE if an MQC matrix is stored unpacked and FALSE if it is not.

Parameters

in	Matrix	
		Matrix is Type(MQC_Matrix) The MQC matrix to be tested.

Author

L. M. Thompson

Date

5.1.2.60 mqc_matrix_haveinteger()

MQC_Matrix_HaveInteger is a function used to indicate if an MQC matrix has an allocated integer matrix

Purpose:

 ${\tt MQC_Matrix_HaveInteger}$ is a function that returns TRUE if an ${\tt MQC}$ matrix has an allocated integer matrix and FALSE if it does not.

Parameters

in	Matrix	
		Matrix is Type(MQC_Matrix)
		The MQC matrix to be tested

Author

L. M. Thompson

Date

2016

5.1.2.61 mqc_matrix_havereal()

MQC_Matrix_HaveReal is a function used to indicate if an MQC matrix has an allocated real matrix

Purpose:

 $\texttt{MQC_Matrix_HaveReal}$ is a function that returns TRUE if an MQC matrix has an allocated real matrix and FALSE if it does not.

Parameters

·
Matrix is Type(MQC_Matrix) The MQC matrix to be tested.

Author

L. M. Thompson

Date

2016

5.1.2.62 mqc_matrix_havesymmetric()

MQC_Matrix_HaveSymmetric is a function used to indicate if an MQC matrix is stored symmetric-packed

Purpose:

 ${\tt MQC_Matrix_HaveSymmetric}$ is a function that returns TRUE if an ${\tt MQC}$ matrix is stored symmetric-packed and FALSE if it is not.

Parameters

in	Matrix	
		Matrix is Type(MQC_Matrix) The MQC matrix to be tested.

Author

L. M. Thompson

Date

2017

5.1.2.63 mqc_matrix_identity()

5.1.2.64 mqc_matrix_initialize()

5.1.2.65 mqc_matrix_inverse()

5.1.2.66 mqc_matrix_isallocated()

MQC_Matrix_isAllocate is a function that returns the allocation status of a MQC_Matrix variable

Purpose:

 $\texttt{MQC_Matrix_isAllocate}$ is a function that returns the allocation status of a $\texttt{MQC_Matrix}$ variable. The function returns TRUE if the matrix is allocated and FALSE if the matrix is not allocated.

Parameters

in,out	Matrix	
		Matrix is Class(MQC_Matr
		The MQC matrix to be tes

Author

L. M. Thompson

Date

5.1.2.67 mqc_matrix_matrix_at()

MQC_Matrix_Matrix_At is a function that returns a submatrix of the matrix

Purpose:

MQC_Matrix_Matrix_At is a function that returns the matrix between rows (I,J) and columns (K,L) of an MQC_Matrix Mat as an MQC_Matrix Matrix. If I, J, K or L is negative, the (N-I+1)th index value is selected.

Parameters

in	Mat	Mat is Class(MQC_Matrix) Name of the input matrix variable
in	rows	Rows is Integer(kind=int64), Dimension(:) If = [A,B]: output is submatrix of rows A to B If (A,B)>0 row count is from first index If (A,B)<0 row count is from last index If = [0]: submatrix of rows equivalent to [1,-1].
in	Cols	Cols is Integer(kind=int64), Dimension(:) If = [A,B]: output is submatrix of columns A to B If (A,B)>0 column count is from first index If (A,B)<0 column count is from last index If = [0]: submatrix of columns equivalent to [1,-1].

Author

L. M. Thompson

Date

2017

5.1.2.68 mqc_matrix_matrix_contraction()

5.1.2.69 mqc_matrix_matrix_put()

MQC_Matrix_Matrix_Put is a subroutine that writes a submatrix to the specified position of a MQC matrix

Purpose:

MQC_Matrix_Matrix_Put is a subroutine that writes a submatrix to the specified position of a MQC matrix. The row and column specification are given as a vector where each vector must contain either zero or two non-zero integers to specify the range of elements that will be overwritten by the submatrix. If the value of an element specification is negative, it counts from the last element back. If the value of an element specification is zero, the whole row/column is specified.

Parameters

in,out	Mat	
		Mat is $Class(MQC_Matrix)$ The MQC matrix from which to return the subvector.
in	Matrix↔ In	MatrixIn is Type(MQC_Matrix) The submatrix to overwrite at the specified elements of Mat.
in	Rows	
		Rows is Integer(kind=int64), Dimension(:) The specification of the rows to include in the subvector. If = [A,B]: output is subvector of rows A to B If (A,B)>0 row count is from first index If (A,B)<0 row count is from last index If = [0]: subvector of rows equivalent to [1,-1].
in	Cols	Cols is Integer(kind=int64), Dimension(:) The specification of the columns to include in the subvector. If = [A,B]: output is subvector of columns A to B If (A,B)>0 column count is from first index If (A,B)<0 column count is from last index If = [0]: subvector of columns equivalent to [1,-1].

Author

L. M. Thompson

Date

2017

5.1.2.70 mqc_matrix_norm()

5.1.2.71 mqc matrix rms max()

5.1.2.72 mqc_matrix_rows()

MQC_Matrix_Rows is a function used to return the number of rows of an MQC matrix

Purpose:

```
{\tt MQC\_Matrix\_Rows} is a function used to return the number of rows of an {\tt MQC} matrix. If the matrix is NOT allocated, the number of rows is returned as 0.
```

Parameters

in	Matrix	
		Matrix is Type(MQC_Matrix) The MOC matrix to be tested.
		The Mgc matrix to be tested.

Author

L. M. Thompson

Date

2016

5.1.2.73 mqc_matrix_scalar_at()

MQC_Matrix_Scalar_At is a function that returns the value of an element of a MQC matrix

Purpose:

MQC_Matrix_Scalar_At is a function that returns the value of (I,J)th element of a MQC matrix as an MQC scalar. If I or J is negative, the (N-I+1)th index is selected.

Parameters

in	Mat	
		Mat is $Class(MQC_Matrix)$ The MQC matrix to return the value of the (I,J)th element.
in	I	
		I is Integer(kind=int64) The row of the element in MQC matrix. If I>0 row count is from first index If I<0 row count is from last index.
in	J	
		J is Integer(kind=int64) The column of the element in MQC matrix. If J>0 row count is from first index If J<0 row count is from last index.

Author

X. Sheng

L. M. Thompson

Date

5.1.2.74 mqc_matrix_scalar_put()

5.1.2.75 mqc_matrix_set()

5.1.2.76 mqc_matrix_sqrt()

5.1.2.77 mqc_matrix_svd()

5.1.2.78 mqc_matrix_symm2diag()

MQC_Matrix_Symm2Diag is a subroutine that converts a symmetry-packed MQC matrix to diagonal-packed

Purpose:

```
MQC_Matrix_Symm2Diag is a subroutine that converts a symmetry-packed MQC matrix to diagonal-packed.

TODO: make tests for diagonal structure more efficient.
```

Parameters

ſ	in,out	Matrix	
			Matrix is Type(MQC_Matrix) The MQC matrix to be diagonal packed.

Author

L. M. Thompson

Date

2017

5.1.2.79 mqc_matrix_symm2full()

MQC Matrix Symm2Full is a subroutine that converts a symmetry-packed MQC matrix to unpacked

Purpose:

```
MQC_Matrix_Symm2Full is a subroutine that converts a symmetry-packed MQC matrix to unpacked. The following options are available:

Option = 'symmetric' unpacks as if matrix is symmetric.

Option = 'antisymmetric' unpacks as if matrix is antisymmetric.

Option = 'hermitian' unpacks as if matrix is hermitian.

Option = 'antihermitian' unpacks as if matrix is antihermitian.

TODO: when different symm storage flags implemented, use these rather than an option
```

Parameters

in,out	Matrix	
		Matrix is Type(MQC_Matrix) The MQC matrix to unpack.
in	Option	
		Option is Character(len=*),Optional = 'symmetric': Unpack as if matrix is symmetric = 'antisymmetric': Unpack as if matrix is antisymmetric = 'hermitian': Unpack as if matrix is hermitian = 'antihermitian': Unpack as if matrix is antihermitian

Author

L. M. Thompson

Date

2016, 2018

5.1.2.80 mqc_matrix_symm2full_func()

MQC_Matrix_Symm2Full_Func is a function that converts a symmetric- packed MQC matrix to unpacked

Purpose:

 ${\tt MQC_Matrix_Symm2Full_Func}$ is a function that converts a symmetric-packed ${\tt MQC}$ matrix to unpacked.

Parameters

in	Matrix	
		Matrix is Type(MQC_Matrix) The MOC matrix to be unpacked.
		The figo matrix to be unpacked.

Author

X. Sheng

Date

2017

5.1.2.81 mqc_matrix_symmetrize()

MQC_Matrix_Symmetrize is a function that symmetrizes a MQC matrix

Purpose:

 $\texttt{MQC_Matrix_Symmetrize}$ is a function that symmetrizes a MQC matrix. TODO: options to antisymmetrize, hermitianize and antihermitianize.

Parameters

ſ	in	Matrix	
			Matrix is Type(MQC_Matrix)
			The MQC matrix to be symmetrized.

Author

L. M. Thompson

Date

2016

5.1.2.82 mqc_matrix_symmmatrix_put_complex()

MQC_Matrix_SymmMatrix_Put_Complex is a subroutine that returns a symmetric packed MQC matrix with elements defined by values in an intrinsic complex vector

Purpose:

 ${\tt MQC_Matrix_SymmMatrix_Put_Complex}$ is a subroutine that returns a symmetric packed MQC matrix with elements defined by values in an intrinsic complex vector

Parameters

in,out	mat	
		Mat is class(MQC_Matrix) MQC matrix to overwrite with output symmetric matrix.
in	Symm⊷ MatrixIn	SymmMatrixIn is complex(kind=real64),dimension(:) Intrinsic complex vector to write as symmetric-packed matrix.

Author

L. M. Thompson

Date

2017

5.1.2.83 mqc_matrix_symmmatrix_put_integer()

MQC_Matrix_SymmMatrix_Put_Integer is a subroutine that returns a symmetric packed MQC matrix with elements defined by values in an intrinsic integer vector

Purpose:

```
MQC_Matrix_SymmMatrix_Put_Integer is a subroutine that returns a symmetric packed MQC matrix with elements defined by values in an intrinsic integer vector.
```

Parameters

in,out	mat	
		Mat is class(MQC_Matrix) MQC matrix to overwrite with output symmetric matrix.
in	Symm⊷ MatrixIn	SymmMatrixIn is integer(kind=int64),dimension(:) Intrinsic integer vector to write as symmetric-packed matrix.

Author

H. P. Hratchian

Date

2017

5.1.2.84 mqc_matrix_symmmatrix_put_real()

MQC_Matrix_SymmMatrix_Put_Real is a subroutine that returns a symmetric packed MQC matrix with elements defined by values in an intrinsic real vector

Purpose:

MQC_Matrix_SymmMatrix_Put_Real is a subroutine that returns a symmetric packed MQC matrix with elements defined by values in an intrinsic real vector.

Parameters

in,out	mat	
		Mat is class(MQC_Matrix) MQC matrix to overwrite with output symmetric matrix.
in	Symm⊷ MatrixIn	SymmMatrixIn is real(kind=real64),dimension(:) Intrinsic real vector to write as symmetric-packed matrix.

Author

H. P. Hratchian

Date

2017

5.1.2.85 mqc_matrix_symmsymmr4tensor_put_complex()

5.1.2.86 mqc_matrix_symmsymmr4tensor_put_real()

5.1.2.87 mqc_matrix_test_diagonal()

MQC_Matrix_Test_Diagonal is a function that tests a MQC matrix to determine if it is diagonal

Purpose:

 ${\tt MQC_Matrix_Test_Diagonal}$ is a function that tests a ${\tt MQC}$ matrix to determine if it is diagonal. The function returns TRUE if the matrix is diagonal and FALSE if the matrix is not diagonal.

Parameters

in	Matrix	
		Matrix is Class(mqc_matrix) The matrix to be tested.

Author

L. M. Thompson

Date

2017

5.1.2.88 mqc_matrix_test_symmetric()

MQC_Matrix_Test_Symmetric is a function that tests a MQC matrix for symmetry

Purpose:

MQC_Matrix_Test_Symmetric is a function that tests a MQC matrix for symmetry specified by optional argument, with the default test being for a symmetric matrix. Note that this function differs from haveSymmetric subroutine which tests how a matrix is packed. The following options are available:

```
    Option = 'symmetric' tests for a symmetric matrix (default).
    Option = 'antisymmetric' tests for an antisymmetric matrix.
    Option = 'hermitian' tests for a hermitian matrix.
    Option = 'antihermitian' tests for an antihermitian matrix.
```

Parameters

in	Matrix	
		Matrix is Class(mqc_matrix) The matrix to be tested for symmetry.
in	Option	
		<pre>Option is Character(len=*),Optional = 'symmetric': symmetric matrix test = 'antisymmetric': antisymmetric matrix test = 'hermitian': hermitian matrix test = 'antihermitian': antihermitian matrix test.</pre>

Author

L. M. Thompson

Date

2017

5.1.2.89 mqc_matrix_trace()

5.1.2.90 mqc_matrix_transpose()

MQC_Matrix_Transpose is a function that returns the transpose of a MQC matrix

Purpose:

 ${\tt MQC_Matrix_Transpose}$ is a function that returns the transpose of a ${\tt MQC}$ matrix.

Parameters

in	Matrix	
		Matrix is Type(MQC_Matrix) The MQC matrix to be transposed.
		110 112 1100 110 110 110 110 110 110 110

Author

L. M. Thompson

X. Sheng

Date

2016, 2017

5.1.2.91 mqc_matrix_vector_at()

MQC_Matrix_Vector_At is a function that returns the subvector of an MQC matrix

Purpose:

MQC_Matrix_Vector_At is a function that returns the subvector of an MQC matrix. The row and column specification are given as a vector where one vector must contain a single non-zero integer to specify the row or column of the subvector, and the other vector must be either zero or two non-zero integers to specify the range of elements that will form the subvector. If the value of an element specification is negative, it counts from the last element back. If the value of an element specification is zero, the whole row/column is specified.

Parameters

in	Mat	
		Mat is Class(MQC_Matrix)
		The MQC matrix from which to return the subvector.
in	Rows	
		Rows is Integer(kind=int64),Dimension(:) The specification of the rows to include in the subvector.
		<pre>If = [A,B]: output is subvector of rows A to B If (A,B)>0 row count is from first index If (A,B)<0 row count is from last index If = [0]: subvector of rows equivalent to [1,-1].</pre>
in	Cols	
		Cols is Integer(kind=int64), Dimension(:) The specification of the columns to include in the subvector. If = [A,B]: output is subvector of columns A to B If (A,B)>0 column count is from first index If (A,B)<0 column count is from last index If = [0]: subvector of columns equivalent to [1,-1].

Author

L. M. Thompson

Date

5.1.2.92 mqc_matrix_vector_put()

MQC_Matrix_Vector_Put is a subroutine that writes a subvector to the specified position of a MQC matrix

Purpose:

MQC_Matrix_Vector_Put is a subroutine that writes a subvector to the specified position of a MQC matrix. The row and column specification are given as a vector where one vector must contain a single non-zero integer to specify the row or column where the subvector will be written, and the other vector must be either zero or two non-zero integers to specify the range of elements that will be overwritten by the subvector. If the value of an element specification is negative, it counts from the last element back. If the value of an element specification is zero, the whole row/column is specified.

Parameters

in,out	Mat	
		Mat is Class(MQC_Matrix) The MQC matrix from which to return the subvector.
in	Vector← In	VectorIn is Type(MQC_Vector) The subvector to overwrite at the specified elements of Mat.
in	Rows	Rows is Integer(kind=int64), Dimension(:) The specification of the rows to include in the subvector. If = [A,B]: output is subvector of rows A to B If (A,B)>0 row count is from first index If (A,B)<0 row count is from last index If = [0]: subvector of rows equivalent to [1,-1].
in	Cols	Cols is Integer(kind=int64), Dimension(:) The specification of the columns to include in the subvector. If = [A,B]: output is subvector of columns A to B If (A,B)>0 column count is from first index If (A,B)<0 column count is from last index If = [0]: subvector of columns equivalent to [1,-1].

Author

L. M. Thompson

Date

2017

5.1.2.93 mqc_matrixmatrixdotproduct()

5.1.2.94 mgc matrixmatrixproduct()

MQC_MatrixMatrixProduct is a function that computes the element- wise product of two MQC matrices

Purpose:

 $\texttt{MQC_MatrixMatrixProduct}$ is a function that computes the element-wise product of two MQC matrices.

Parameters

in	MA	MA is Type(MQC_Matrix) The first MQC matrix.
in	MB	MB is Type(MQC_Matrix) The second MQC matrix.

Author

H. P. Hratchian

Date

5.1.2.95 mqc_matrixmatrixsubtract()

MQC_MatrixMatrixSubtract is a function that subtracts two MQC matrices

Purpose:

 $\texttt{MQC_MatrixMatrixSubtract}$ is a function that subtracts two MQC matrices.

Parameters

in	MA	
		MA is Type(MQC_Matrix) The matrix that MB will be subtracted from.
in	MB	
		MB is Type(MQC_Matrix) The matrix that will be subtracted from MA.

Author

H. P. Hratchian

Date

2017

5.1.2.96 mqc_matrixmatrixsum()

MQC_MatrixMatrixSum is a function that sums two MQC matrices

Purpose:

MQC_MatrixMatrixSum is a function that sums two MQC matrices.

Parameters

in	MA	
		MA is Type(MQC_Matrix) First MQC matrix to sum.
in	MB	
		MB is Type(MQC_Matrix) Second MQC matrix to sum.

Author

H. P. Hratchian

L. M. Thompson

Date

2017, 2018

5.1.2.97 mqc_matrixscalarproduct()

5.1.2.98 mgc matrixvectordotproduct()

5.1.2.99 mqc_outer()

MQC_Outer is a function that returns the outer product of two MQC vectors

Purpose:

 ${\tt MQC_Outer}$ is a function that returns the outer product of two MQC vectors. The first vector should be a column vector, while the second vector should be a row vector.

Parameters

in	VA	
		VA is Type(MQC_Vector) The MQC column vector.
in	VB	
		VB is Type(MQC_Vector) The MQC row vector.

Author

X. Sheng

Date

2017

5.1.2.100 mqc_output_complex_scalar()

MQC_Output_Complex_Scalar is a subroutine used to output an intrinsic complex equal to an MQC_Scalar

Purpose:

MQC_Output_Complex_Scalar is a subroutine used to output an intrinsic complex equal to an MQC_Scalar.

Parameters

	in,out	ScalarOut	
			ScalarOut is Complex(kind=real64) The name of the output variable.
Γ	in	ScalarIn	
			ScalarIn is Type(MQC_Scalar) The value of the input variable.

Author

L. M. Thompson

Date

2017

5.1.2.101 mqc_output_integer_scalar()

MQC_Output_Integer_Scalar is a subroutine used to output an intrinsic integer equal to an MQC_Scalar

Purpose:

MQC_Output_Integer_Scalar is a subroutine used to output an intrinsic integer equal to an MQC_Scalar.

Parameters

in,out	ScalarOut	
		ScalarOut is Integer(kind=int64) The name of the output variable.
in	ScalarIn	
		ScalarIn is Type(MQC_Scalar) The value of the input variable.

Author

L. M. Thompson

Date

2016

5.1.2.102 mqc output mqcscalar scalar()

MQC_Output MQCScalar_Scalar is a subroutine used to output an MQC_scalar equal to an MQC_Scalar

Purpose:

 ${\tt MQC_Output_MQCScalar_Scalar} \ \ {\tt is} \ \ {\tt a} \ \ {\tt subroutine} \ \ {\tt used} \ \ {\tt to} \ \ {\tt output} \ \ {\tt an} \ \ {\tt MQC_Scalar}.$

Parameters

in,out	ScalarOut	
		ScalarOut is Type(MQC_Scalar) The name of the output variable.
in	ScalarIn	
		ScalarIn is Type(MQC_Scalar) The value of the input variable.

Author

L. M. Thompson

Date

2016

5.1.2.103 mqc_output_real_scalar()

MQC_Output_Real_Scalar is a subroutine used to output an intrinsic real equal to an MQC_Scalar

Purpose:

MQC_Output_Complex_Scalar is a subroutine used to output an intrinsic real equal to an MQC_Scalar.

Parameters

in,out	ScalarOut	
		ScalarOut is Real(kind=real64) The name of the output variable.
in	ScalarIn	
		ScalarIn is Type(MQC_Scalar) The value of the input variable.

Author

L. M. Thompson

Date

2016

5.1.2.104 mqc_print_matrix_algebra1()

MQC_Print_Matrix_Algebra1 is a subroutine used to print an MQC matrix

Purpose:

 ${\tt MQC_Print_Matrix_Algebra1}$ is a subroutine used to print an MQC matrix. ${\tt Blank_At_Top}$ and ${\tt Blank_At_Bottom}$ are optional logical arguments to print blank lines before or after output.

Parameters

in	Matrix	
		Matrix is Class(MQC_Matrix)
		The variable to be printed.
in	<i>IOut</i>	
		IOut is Integer(kind=int64)
		The Fortran file number to print to.
in	Header	
		Header is Character(Len=*)
		The title to print along with Matrix.
in	Blank_At_Top	
		Blank_At_Top is Logical,Optional
		<pre>= .True.: print blank line above output = .False.: do not print blank line above output.</pre>
in	Blank_At_Bottom	
		Blank_At_Bottom is Logical,Optional
		<pre>= .True.: print blank line below output = .False.: do not print blank line below output.</pre>

Author

L. M. Thompson

Date

2016

5.1.2.105 mqc_print_r4tensor_algebra1()

5.1.2.106 mqc_print_scalar_algebra1()

MQC_Print_Scalar_Algebra1 is a subroutine used to print an MQC_Scalar

Purpose:

 ${\tt MQC_Print_Scalar_Algebra1}$ is a subroutine used to print an ${\tt MQC_Scalar}$. Blank_At_Top and Blank_At_Bottom are optional logical arguments to print blank lines before or after output.

Parameters

in	Scalar	
		Scalar is Class(MQC_Scalar)
		The variable to be printed.
	10.	
in	IOut	
		IOut is Integer(kind=int64)
		The Fortran file number to print to.
in	Header	
		<pre>Header is Character(Len=*)</pre>
		The title to print along with Scalar.
	Di i Ai T	
in	Blank_At_Top	
		Blank_At_Top is Logical,Optional
		= .True.: print blank line above output
		False.: do not print blank line above output.
Generated	by Doxygen	
in	Blank_At_Bottom	
		Blank_At_Bottom is Logical,Optional
		= .True.: print blank line below output

False .

do not print blank line below output

Author

L. M. Thompson

Date

2016

5.1.2.107 mqc_print_vector_algebra1()

MQC_Print_Vector_Algebra1 is a subroutine used to print an MQC vector

Purpose:

 ${\tt MQC_Print_Vector_Algebra1}$ is a subroutine used to print an MQC vector. ${\tt Blank_At_Top}$ and ${\tt Blank_At_Bottom}$ are optional logical arguments to print blank lines before or after output.

Parameters

in	Vector	
		Vector is Class(MQC_Vector) The variable to be printed.
in	<i>IOut</i>	
		IOut is Integer(kind=int64) The Fortran file number to print to.
in	Header	
		Header is Character(Len=*) The title to print along with Vector.
in	Verbose	
		Verbose is Logical,Optional Adds extra printing to output.
in	Blank_At_Top	
		Blank_At_Top is Logical,Optional = .True.: print blank line above output = .False.: do not print blank line above output.
in	Blank_At_Bottom	
		Blank_At_Bottom is Logical,Optional
		= .True.: print blank line below output = .False.: do not print blank line below output.

Generated by Doxygen

Author

L. M. Thompson

Date

2016

5.1.2.108 mqc_r4tensor_at()

5.1.2.109 mqc_r4tensor_havecomplex()

5.1.2.110 mqc_r4tensor_haveinteger()

5.1.2.111 mqc_r4tensor_havereal()

5.1.2.112 mqc_r4tensor_initialize()

5.1.2.113 mqc_r4tensor_put()

5.1.2.114 mgc realgtscalar()

MQC_RealGTScalar is a function that returns TRUE if an intrinsic real is greater than a MQC_Scalar

Purpose:

```
\ensuremath{\mathtt{MQC\_RealGTScalar}} is a function that returns TRUE if an intrinsic real is greater than a \ensuremath{\mathtt{MQC\_Scalar}}.
```

When dealing with complex numbers, the function returns TRUE if the intrinsic real is greater than the real part of the MQC_Scalar and FALSE if the intrinsic real is less than the real part of the MQC_Scalar. If the intrinsic real is equal to the real part of the MQC_Scalar, the function returns TRUE if the imaginary part of MQC_Scalar is less than zero and FALSE otherwise.

Parameters

in	Real⊷ In	RealIn is Real(kind=real64) The intrinsic real that will be tested.
in	Scalar	
		Scalar is Type (MQC_Scalar)
		The MQC_Scalar that will be tested.

Author

L. M. Thompson

Date

2019

5.1.2.115 mqc_reallescalar()

MQC_RealLEScalar is a function that returns TRUE if an intrinsic real is less than or equal to a MQC_Scalar

Purpose:

 ${\tt MQC_RealLES}$ calar is a function that returns TRUE if an intrinsic real is less than or equal to a ${\tt MQC_Scalar}$.

When dealing with complex numbers, the function returns TRUE if the intrinsic real is less than or equal to the real part of the MQC_Scalar and FALSE if the intrinsic real is greater than the real part of the MQC_Scalar.

Parameters

in	Real⊷ In	RealIn is Real(kind=real64) The intrinsic real that will be tested.
in	Scalar	
		Scalar is Type(MQC_Scalar) The MQC_Scalar that will be tested.

Author

L. M. Thompson

Date

2019

5.1.2.116 mqc_realltscalar()

MQC_RealLTScalar is a function that returns TRUE if an intrinsic real is less than a MQC_Scalar

Purpose:

 $\mbox{MQC_RealLTScalar}$ is a function that returns TRUE if an intrinsic real is less than a $\mbox{MQC_Scalar.}$

When dealing with complex numbers, the function returns TRUE if the intrinsic real is less than the real part of the MQC_Scalar and FALSE if the intrinsic real is greater than the real part of the MQC_Scalar. If the intrinsic real is equal to the real part of the MQC_Scalar, the function returns TRUE if the imaginary part of MQC_Scalar is greater than zero and FALSE otherwise.

Parameters

in	Real← In	RealIn is Real(kind=real64) The intrinsic real that will be tested.
in	Scalar	
		Scalar is Type(MQC_Scalar) The MQC_Scalar that will be tested.

Author

L. M. Thompson

Date

2019

5.1.2.117 mqc_realscalaradd()

MQC RealScalarAdd is a function that is used to sum an intrinsic real by an MQC Scalar

Purpose:

 $\mbox{MQC_RealScalarAdd}$ is a function that is used to sum an intrinsic real by an $\mbox{MQC_Scalar.}$

Parameters

in	realIn	
		RealIn is Real(kind=real64) The intrinsic real variable to sum.
in	Scalar	

Author

L. M. Thompson

Date

2019

5.1.2.118 mqc_realscalardivide()

MQC_RealScalarDivide is a function that is used to divide an intrinsic real by an MQC_Scalar

Purpose:

 $\texttt{MQC_RealScalarDivide}$ is a function that is used to divide an intrinsic real by an $\texttt{MQC_Scalar.}$

Parameters

in	Real⊷ In	RealIn is Real(kind=real64) The intrinsic real variable numerator.
in	Scalar	
		Scalar is Type(MQC_Scalar) The MQC_Scalar variable denominator.

Author

L. M. Thompson

Date

2019

5.1.2.119 mqc_realscalarmultiply()

MQC_RealScalarMultiply is a function that is used to multiply an intrinsic real by an MQC_Scalar

Purpose:

 $\mbox{MQC_RealScalarMultiply}$ is a function that is used to multiply an intrinsic real by an $\mbox{MQC_Scalar.}$

Parameters

in	realIn	
		RealIn is Real(kind=real64) The intrinsic real variable to multiply.
in	Scalar	
		Scalar is Type(MQC_Scalar) The MQC_Scalar variable to multiply.

Author

L. M. Thompson

Date

2019

5.1.2.120 mqc_realscalarsubtract()

MQC_RealScalarSubtract is a function that is used to subtract an MQC_Scalar from an intrinisic real

Purpose:

 $\texttt{MQC_RealScalarSubtract}$ is a function that is used to subtract an $\texttt{MQC_Scalar}$ from an intrinisic real.

Parameters

in	Real⊷ In	RealIn is Real(kind=real64) The intrinsic real to subtract from.
in	Scalar	
		Scalar is Type(MQC_Scalar) The MQC_Scalar variable to subtract.

Author

L. M. Thompson

Date

2019

5.1.2.121 mqc_realvectorproduct()

MQC_RealVectorProduct is a function that returns the product of an intrinsic real scalar and a MQC vector

Purpose:

 $\mbox{MQC_RealVectorProduct}$ is a function that returns the product of an intrinsic real scalar and a \mbox{MQC} vector.

Parameters

In	RealIn is Real(kind=real64) The real intrinsic to multiply.
Vector	Vector is Type(MQC_Vector) The MQC_Vector to multiply.

Author

L. M. Thompson

Date

2019

5.1.2.122 mqc_scalar_acos()

MQC_Scalar_ACos is a function used to return the arccosine of an MQC_scalar

Purpose:

 ${\tt MQC_Scalar_ACos}$ is a function used to return the arccosine of an ${\tt MQC_scalar}$.

Parameters

in	Scalar	
		Scalar is Type(MQC_Scalar) The argument of the function.

Author

L. M. Thompson

Date

2019

5.1.2.123 mqc_scalar_asin()

```
\label{type mqc_scalar} \mbox{type (mqc_scalar) function mqc_algebra::mqc_scalar_asin (} \\ \mbox{type (mqc_scalar), intent(in) } \mbox{\it Scalar} \mbox{\it )}
```

MQC_Scalar_ASin is a function used to return the arcsin of an MQC_scalar

Purpose:

 ${\tt MQC_Scalar_ASin}$ is a function used to return the arcsin of an ${\tt MQC_scalar}.$

Parameters

in	Scalar	
		Scalar is Type(MQC_Scalar) The argument of the function.
		ine argamene er ene raneeren.

Author

L. M. Thompson

Date

2019

5.1.2.124 mqc_scalar_atan()

MQC_Scalar_ATan is a function used to return the arctangent of an MQC_scalar

Purpose:

 ${\tt MQC_Scalar_ATan}$ is a function used to return the arctangent of an ${\tt MQC_scalar}$.

Parameters

in	Scalar	
		Scalar is Type(MQC_Scalar) The argument of the function.

Author

L. M. Thompson

Date

2019

5.1.2.125 mqc_scalar_atan2()

MQC_Scalar_ATan2 is a function used to return the arctangent of an MQC_scalar accounting for quadrant of Argand diagram

Purpose:

 ${\tt MQC_Scalar_ATan2}$ is a function used to return the arctangent of an ${\tt MQC_scalar}$ accounting for quadrant of Argand diagram.

Parameters

in	Scalar	
		Scalar is Type(MQC_Scalar) The argument of the function.

Author

L. M. Thompson

Date

2019

5.1.2.126 mqc_scalar_cmplx()

MQC_Scalar_Cmplx is a function used to set a complex MQC_Scalar type variable from two other MQC_scalars

Purpose:

 ${\tt MQC_Scalar_Cmplx}$ is a function used to set a complex ${\tt MQC_Scalar}$ type variable from two other ${\tt MQC_Scalar}$ variables.

Parameters

in	Scalar1	
		Scalar1 is Type(MQC_Scalar) The real part of MQC_Scalar_Cmplx.
in	Scalar2	
		Scalar2 is Type(MQC_Scalar) The imaginary part of MQC_Scalar_Cmplx.

Author

L. M. Thompson

Date

2019

5.1.2.127 mqc_scalar_complex_conjugate()

```
\label{type mqc_scalar} type (mqc\_scalar) \ function \ mqc\_algebra::mqc\_scalar\_complex\_conjugate \ ( \\ type (mqc\_scalar), \ intent(in) \ \textit{ScalarIn} \ )
```

MQC_Scalar_Complex_Conjugate is a function that returns the complex conjugate of an MQC_Scalar

Purpose:

 $\texttt{MQC_Scalar_Complex_Conjugate}$ is a function that returns the complex conjugate of an $\texttt{MQC_Scalar}.$

Parameters

in	Scalar⊷	
	In	ScalarIn is Type(MQC_Scalar)
		The MQC_Scalar input variable.

Author

L. M. Thompson

Date

2018

5.1.2.128 mqc_scalar_complex_imagpart()

MQC_Scalar_Complex_ImagPart is a function that returns the inaginary part of an MQC_Scalar

Purpose:

 $\texttt{MQC_Scalar_Complex_RealPart}$ is a function that returns the imaginary part of an $\texttt{MQC_Scalar.}$

Parameters

ſ	in	Scalar←	
		In	ScalarIn is Type(MQC_Scalar)
			The MQC_Scalar input variable.

Author

L. M. Thompson

Date

2019

5.1.2.129 mgc scalar complex realpart()

MQC_Scalar_Complex_RealPart is a function that returns the real part of an MQC_Scalar

Purpose:

 $\texttt{MQC_Scalar_Complex_RealPart}$ is a function that returns the real part of an $\texttt{MQC_Scalar.}$

Parameters

in	Scalar⊷	
	In	ScalarIn is Type(MQC_Scalar)
		The MQC_Scalar input variable.

Author

L. M. Thompson

Date

2019

5.1.2.130 mqc_scalar_cos()

MQC_Scalar_Cos is a function used to return the cosine of an MQC_scalar

Purpose:

 ${\tt MQC_Scalar_Cos}$ is a function used to return the cosine of an ${\tt MQC_scalar}.$

Parameters

in	Scalar	
		Scalar is Type(MQC_Scalar) The argument of the function.

Author

L. M. Thompson

Date

2019

5.1.2.131 mqc_scalar_get_abs_value()

```
\label{type mqc_scalar} type (mqc\_scalar) \ function \ mqc\_algebra::mqc\_scalar\_get\_abs\_value \ ( \\ class (mqc\_scalar), \ intent(in) \ \textit{Scalar} \ )
```

MQC_Scalar_Get_ABS_Value is a function that returns the absolute value of MQC_scalar variable

Purpose:

 $\mbox{MQC_Scalar_Get_ABS_Value}$ is a function that returns the absolute value of $\mbox{MQC_scalar}$ variable.

Parameters

in	Scalar	
		Scalar is Class(MQC_Scalar) The MQC_Scalar to be tested.

Author

A. Mahler

Date

2018

5.1.2.132 mqc_scalar_get_intrinsic_complex()

MQC_Scalar_Get_Intrinsic_Complex is a function that returns the MQC_scalar value as an intrinsic complex

Purpose:

 ${\tt MQC_Scalar_Get_Intrinsic_Complex}$ is a function that returns the ${\tt MQC_scalar}$ value as an intrinsic complex.

Parameters

in	Scalar	
		Scalar is Class(MQC_Scalar) The MQC_Scalar to be tested.

Author

L. M. Thompson

Date

2017

5.1.2.133 mqc_scalar_get_intrinsic_integer()

MQC_Scalar_Get_Intrinsic_Integer is a function that returns the MQC_scalar value as an intrinsic integer

Purpose:

 ${\tt MQC_Scalar_Get_Intrinsic_Integer}$ is a function that returns the ${\tt MQC_scalar}$ value as an intrinsic integer.

Parameters

in	Scalar	
		Scalar is Class(MQC_Scalar) The MQC_Scalar to be tested.

Author

L. M. Thompson

Date

2017

5.1.2.134 mgc scalar get intrinsic real()

MQC_Scalar_Get_Intrinsic_Real is a function that returns the MQC_scalar value as an intrinsic real

Purpose:

 ${\tt MQC_Scalar_Get_Intrinsic_Real}$ is a function that returns the ${\tt MQC_scalar}$ value as an intrinsic real.

Parameters

in	Scalar	
		Scalar is Class(MQC_Scalar) The MQC_Scalar to be tested.

Author

L. M. Thompson

Date

2017

5.1.2.135 mqc_scalar_get_random_value()

MQC_Scalar_Get_Random_Value is a function that returns a random real value from a specified distribution

Purpose:

MQC_Scalar_Get_Random_Value is a function that returns a random real value from an optionally specified distribution. Note that the range of values varies by distribution. In addition, a seed can be specified for consistent greneration of the same number. Default options are uniform distribution with random seed. The following options are available:

```
    Distribution = 'uniform' uses a uniform distribution between 0 and 1.
    Distribution = 'gaussian' uses a normal distribution with zero mean and unit variance obtained using the Box-Muller transformation
```

- 3. Distribution = 'exp' uses an exponential distribution (lambda=1.0) returning positive integers.
- 4. Distribution = 'exp01' uses an exponential distribution (lambda=8.0)that gives values in the range 0 and 1.

Parameters

in,out <i>Scalar</i>	
	Scalar is Class(MQC_Scalar)
	The MQC_Scalar to be filled.
in <i>Seed</i>	
	Seed is integer, dimension(:), optional
	Integer array containing seed. Note in gfortran
	only the first two elements affect the value of
	the random number.
in <i>Distribution</i>	
	Distribution is character(len=*),intent(in),optional
	Distribution of the function from which random number
	is selected.
	= 'uniform': uniform between 0 and 1
	= 'gaussian': normal deviation with zero mean and unit variance
	1 3 2 2 3 3 3 3
	= 'exp': exponential decay y=\exp (-x) = 'exp01': exponential decay between 0 and 1 obtained
	1 1
	using $mod(y, 1.0)$ of $y=\ensuremath{\texttt{exp}}$ (-8x). Generated

Author

X. Dong

L. M. Thompson

Date

2019

5.1.2.136 mqc_scalar_havecomplex()

MQC_Scalar_HaveComplex is a function that returns TRUE or FALSE indicating whether an MQC_scalar is of type complex

Purpose:

 ${\tt MQC_Scalar_HaveComplex}$ is a function that returns TRUE or FALSE indicating whether an ${\tt MQC_scalar}$ is of type complex.

Parameters

in	Scalar	
		Scalar is Type(MQC_Scalar) The MQC_Scalar to be tested.

Author

L. M. Thompson

Date

2017

5.1.2.137 mqc_scalar_haveinteger()

MQC_Scalar_HaveInteger is a function that returns TRUE or FALSE indicating whether an MQC_scalar is of type integer

Purpose:

 ${\tt MQC_Scalar_HaveInteger}$ is a function that returns TRUE or FALSE indicating whether an ${\tt MQC_scalar}$ is of type integer.

Parameters

in	Scalar	
		Scalar is Type(MQC_Scalar) The MQC_Scalar to be tested.

Author

L. M. Thompson

Date

2017

5.1.2.138 mqc_scalar_havereal()

MQC_Scalar_HaveReal is a function that returns TRUE or FALSE indicating whether an MQC_scalar is of type real

Purpose:

 ${\tt MQC_Scalar_HaveReal}$ is a function that returns TRUE or FALSE indicating whether an ${\tt MQC_scalar}$ is of type real.

Parameters

in	Scalar	
		Scalar is Type(MQC_Scalar) The MQC_Scalar to be tested.

Author

L. M. Thompson

Date

2017

5.1.2.139 mqc_scalar_isallocated()

MQC_Scalar_IsAllocated is used to determine the allocation status of an MQC_Scalar

Purpose:

 $\mbox{MQC_Scalar_IsAllocated}$ is a subroutine used to determine the allocation status of an $\mbox{MQC_Scalar.}$

Parameters

in,out	Scalar	
		Scalar is Type(MQC_Scalar) The name of the MQC_Scalar variable to check allocation status.

Author

L. M. Thompson

Date

2017

5.1.2.140 mqc_scalar_sin()

MQC_Scalar_Sin is a function used to return the sine of an MQC_scalar

Purpose:

 ${\tt MQC_Scalar_Sin}$ is a function used to return the sine of an ${\tt MQC_scalar}$.

Parameters

in	Scalar	
		Scalar is Type(MQC_Scalar) The argument of the function.

Author

L. M. Thompson

Date

2019

5.1.2.141 mqc_scalar_sqrt()

MQC_Scalar_Sqrt is a function used to return the square root of an MQC_scalar

Purpose:

MQC_Scalar_Sqrt is a function used to return the square root of an MQC_scalar.

Parameters

in	Scalar	
		Scalar is Type(MQC_Scalar) The argument of the function.

Author

L. M. Thompson

Date

2016

5.1.2.142 mqc_scalar_tan()

MQC_Scalar_Tan is a function used to return the tangent of an MQC_scalar

Purpose:

 ${\tt MQC_Scalar_Tan}$ is a function used to return the tangent of an ${\tt MQC_scalar}.$

Parameters

in	Scalar	
		Scalar is Type(MQC_Scalar) The argument of the function.

Author

L. M. Thompson

Date

2019

5.1.2.143 mqc_scalaradd()

MQC_ScalarAdd is a function that sums two MQC_Scalar objects

Purpose:

MQC_ScalarAdd is a function that sums two MQC_Scalar objects.

Parameters

in	Scalar1	
		Scalarl is Type(MQC_Scalar) The first MQC_Scalar to be summed.
in	Scalar2	
		Scalar2 is Type(MOC Scalar)
Generated	by Doxygen	The second MQC_Scalar to be summed.

Author

L. M. Thompson

Date

2016

5.1.2.144 mqc_scalarcomplexadd()

MQC_ScalarComplexAdd is a function that is used to sum an intrinsic complex by an MQC_Scalar

Purpose:

 $\texttt{MQC_ScalarComplexAdd}$ is a function that is used to sum an intrinsic complex by an $\texttt{MQC_Scalar.}$

Parameters

in	Complex← In	Complex is Complex(kind=real64) The intrinsic complex variable to sum.
in	Scalar	
		Scalar is Type(MQC_Scalar) The MQC_Scalar variabel to sum.

Author

L. M. Thompson

Date

2019

5.1.2.145 mqc_scalarcomplexdivide()

MQC_ScalarComplexDivide is a function that is used to divide an MQC_Scalar by an intrinsic complex

Purpose:

 ${\tt MQC_ScalarComplexDivide}$ is a function that is used to divide an ${\tt MQC_Scalar}$ by an intrinsic complex.

Parameters

in	Scalar	
		Scalar is Type(MQC_Scalar) The MQC_Scalar variable numerator.
in	Complex⊷	
	In	ComplexIn is Complex(kind=real64) The intrinsic complex variable denominator.

Author

L. M. Thompson

Date

2019

5.1.2.146 mqc_scalarcomplexexponent()

MQC_ScalarComplexExponent is a function that raises an MQC_Scalar to the power of an intrinsic complex

Purpose:

 $\mbox{MQC_ScalarComplexExponent}$ is a function that raises an $\mbox{MQC_Scalar}$ to the power of an intrinsic complex.

Parameters

in	Scalar	
		Scalar1 is Type(MQC_Scalar) The base value.
in	Comp←	
	In	<pre>CompIn is Complex(kind=real64) The power value.</pre>

Author

L. M. Thompson

Date

2019

5.1.2.147 mqc_scalarcomplexmultiply()

MQC_ScalarComplexMultiply is a function that is used to multiply an intrinsic complex by an MQC_Scalar

Purpose:

 $\texttt{MQC_ScalarComplexMultiply}$ is a function that is used to multiply an intrinsic complex by an $\texttt{MQC_Scalar.}$

Parameters

in	Complex← In	Complex is Complex(kind=real64) The intrinsic complex variable to multiply.
in	Scalar	
		Scalar is Type(MQC_Scalar) The MQC_Scalar variabel to multiply.

Author

L. M. Thompson

Date

2019

5.1.2.148 mqc_scalarcomplexsubtract()

MQC_ScalarComplexSubtract is a function that is used to subtract an intrinsic complex from an MQC_Scalar

Purpose:

 ${\tt MQC_ScalarComplexSubtract}$ is a function that is used to subtract an intrinsic complex from an ${\tt MQC_Scalar.}$

Parameters

in	Scalar	
		Scalar is Type(MQC_Scalar) The MQC_Scalar variable to subtract from.
in	Complex←	
	In	ComplexIn is Complex(kind=real64) The intrinsic complex to subtract.

Author

L. M. Thompson

Date

2019

5.1.2.149 mqc_scalardivide()

MQC_ScalarDivide is a function that divides two MQC_Scalar objects

Purpose:

 ${\tt MQC_ScalarDivide}$ is a function that divides ${\tt MQC_Scalar}$ objects.

Parameters

in	Scalar1	
		Scalarl is Type(MQC_Scalar) The numerator.
in	Scalar2	
		Scalar2 is Type(MQC_Scalar) The denominator.

Author

L. M. Thompson

Date

2016

5.1.2.150 mqc_scalareq()

MQC_ScalarEQ is a function that returns TRUE if two MQC_Scalar variables are equal

Purpose:

```
\ensuremath{\mathsf{MQC\_ScalarEQ}} is a function that returns TRUE if two \ensuremath{\mathsf{MQC\_Scalar}} variables are equal.
```

Parameters

in	Scalar1	
		Scalarl is Type(MQC_Scalar) The first MQC_Scalar that will be tested.
in	Scalar2	
		Scalar2 is Type(MQC_Scalar) The second MQC_Scalar that will be tested.

Author

L. M. Thompson

Date

2016

5.1.2.151 mqc_scalarexponent()

MQC_Scalar Exponent is a function that raises one MQC_Scalar to the power of another MQC_Scalar

Purpose:

```
{\tt MQC\_ScalarExponent} is a function that raises one {\tt MQC\_Scalar} to the power of another {\tt MQC\_Scalar}.
```

Parameters

in	Scalar1	
		Scalar1 is Type(MQC_Scalar) The base value.
in	Scalar2	
		Scalar2 is Type(MQC_Scalar) The power value.

Author

L. M. Thompson

Date

2016

5.1.2.152 mqc_scalarge()

MQC_ScalarGE is a function that returns TRUE if the left MQC_Scalar is greater than or equal the right MQC←_Scalar

Purpose:

 ${\tt MQC_ScalarGE}$ is a function that returns TRUE if the left ${\tt MQC_Scalar}$ is greater than or equal to the right ${\tt MQC_Scalar}.$

When dealing with complex numbers, the function returns TRUE if the left real part is is greater than or equal to the right real part and FALSE if the left real part is less than the right real part.

Parameters

in	Scalar1	
		Scalar1 is Type(MQC_Scalar) The first MQC_Scalar that will be tested.
in	Scalar2	
		Scalar2 is Type(MQC_Scalar) The second MQC_Scalar that will be tested.

Author

L. M. Thompson

Date

2016

5.1.2.153 mqc_scalargt()

MQC_ScalarGT is a function that returns TRUE if the left MQC_Scalar is greater than the right MQC_Scalar

Purpose:

 $\mbox{MQC_ScalarGT}$ is a function that returns TRUE if the left $\mbox{MQC_Scalar}$ is greater than the right $\mbox{MQC_Scalar}.$

When dealing with complex numbers, the function returns TRUE if the left real part is greater than the right real part and FALSE if the left real part is less than the right real part. If the left real part is equal to the right real part, the function returns TRUE if the left imaginary part is greater than the right imaginary part and FALSE otherwise.

Parameters

in	Scalar1	
		Scalar1 is Type(MQC_Scalar) The first MQC_Scalar that will be tested.
in	Scalar2	
		Scalar2 is Type(MQC_Scalar) The second MQC_Scalar that will be tested.

Author

L. M. Thompson

Date

2016

5.1.2.154 mqc_scalargtinteger()

MQC_ScalarGTInteger is a function that returns TRUE if a MQC_Scalar is greater than an intrinsic integer

Purpose:

 $\mbox{MQC_ScalarGTInteger}$ is a function that returns TRUE if a $\mbox{MQC_Scalar}$ is greater than an intrinsic integer.

When dealing with complex numbers, the function returns TRUE if the real part of the MQC_Scalar is greater than the intrinsic integer and FALSE if the real part of the MQC_Scalar is less than the intrinsic integer. If the real part of the MQC_Scalar is equal to the intrinsic integer, the function returns TRUE if the imaginary part of MQC_Scalar is greater than zero and FALSE otherwise.

Parameters

in	Scalar	
		Scalar is Type(MQC_Scalar) The MQC_Scalar that will be tested.
in	Intln	
		IntIn is Integer(kind=int64) The intrinsic integer that will be tested.

Author

L. M. Thompson

Date

2019

5.1.2.155 mqc_scalargtreal()

MQC_ScalarGTReal is a function that returns TRUE if a MQC_Scalar is greater than an intrinsic real

Purpose:

 ${\tt MQC_ScalarGTReal}$ is a function that returns TRUE if a ${\tt MQC_Scalar}$ is greater than an intrinsic real.

When dealing with complex numbers, the function returns TRUE if the real part of the MQC_Scalar is greater than the intrinsic real and FALSE if the real part of the MQC_Scalar is less than the intrinsic real. If the real part of the MQC_Scalar is equal to the intrinsic real, the function returns TRUE if the imaginary part of MQC_Scalar is greater than zero and FALSE otherwise.

Parameters

in	Scalar	
		Scalar is Type(MQC_Scalar) The MQC_Scalar that will be tested.
in	Real⊷	
	In	RealIn is Real(kind=int64) The intrinsic real that will be tested.

Author

L. M. Thompson

Date

2019

5.1.2.156 mqc_scalarintegeradd()

MQC_ScalarIntegerAdd is a function that is used to sum an intrinsic integer by an MQC_Scalar

Purpose:

 $\mbox{MQC_ScalarIntegerSum}$ is a function that is used to sum an intrinsic integer by an $\mbox{MQC_Scalar.}$

Parameters

in	Integer⊷ In	IntegerIn is Integer(kind=int64) The intrinsic integer variable to sum.
in	Scalar	
		Scalar is Type(MQC_Scalar) The MQC_Scalar varibale to sum.

Author

L. M. Thompson

Date

2019

5.1.2.157 mqc_scalarintegerdivide()

MQC_ScalarIntegerDivide is a function that is used to divide an MQC_Scalar by an intrinsic integer

Purpose:

 ${\tt MQC_ScalarIntegerDivide}$ is a function that is used to divide an ${\tt MQC_Scalar}$ by an intrinsic integer.

Parameters

in	Scalar	
		Scalar is Type(MQC_Scalar) The MQC_Scalar variable numerator.
in	Integer←	
	In	IntegerIn is Integer(kind=int64) The intrinsic integer variable denominator.

Author

L. M. Thompson

Date

2019

5.1.2.158 mqc_scalarintegerexponent()

MQC_ScalarIntegerExponent is a function that raises an MQC_Scalar to the power of an intrinsic integer

Purpose:

 $\texttt{MQC_ScalarIntegerExponent}$ is a function that raises an $\texttt{MQC_Scalar}$ to the power of an intrinsic integer.

Parameters

in	Scalar	
		Scalarl is Type(MQC_Scalar) The base value.
in	Intln	
		IntIn is Integer(kind=int64) The power value.

Author

L. M. Thompson

Date

2019

5.1.2.159 mqc_scalarintegermultiply()

MQC_ScalarIntegerMultiply is a function that is used to multiply an intrinsic integer by an MQC_Scalar

Purpose:

 $\mbox{MQC_ScalarIntegerMultiply}$ is a function that is used to multiply an intrinsic integer by an $\mbox{MQC_Scalar.}$

Parameters

in	Integer⇔ In	IntegerIn is Integer(kind=int64) The intrinsic integer variable to multiply.
in	Scalar	
		Scalar is Type(MQC_Scalar) The MQC_Scalar varibale to multiply.

Author

L. M. Thompson

Date

2019

5.1.2.160 mqc_scalarintegersubtract()

MQC_ScalarIntegerSubtract is a function that is used to subtract an intrinsic integer from an MQC_Scalar

Purpose:

 $\texttt{MQC_ScalarIntegerSubtract}$ is a function that is used to subtract an intrinsic integer from an $\texttt{MQC_Scalar.}$

Parameters

in	Scalar	
		Scalar is Type(MQC_Scalar) The MQC_Scalar variable to subtract from.
in	Integer←	
	In	IntegerIn is Integer(kind=int64) The intrinsic integer to subtract.

Author

L. M. Thompson

Date

2019

5.1.2.161 mqc_scalarle()

MQC_ScalarLE is a function that returns TRUE if the left MQC_Scalar is less than or equal the right MQC_Scalar

Purpose:

 ${\tt MQC_ScalarLE}$ is a function that returns TRUE if the left ${\tt MQC_Scalar}$ is less than or equal to the right ${\tt MQC_Scalar.}$

When dealing with complex numbers, the function returns TRUE if the left real part is less than or equal to the right real part and FALSE if the left real part is greater than the right real part.

in	Scalar1	
		Scalarl is Type(MQC_Scalar) The first MQC_Scalar that will be tested.
in	Scalar2	
		Scalar2 is Type(MQC_Scalar) The second MQC_Scalar that will be tested.

Author

L. M. Thompson

Date

2016

5.1.2.162 mqc_scalarleinteger()

MQC_ScalarLEInteger is a function that returns TRUE if a MQC_Scalar is less than or equal to an intrinsic integer

Purpose:

 $\mbox{MQC_ScalarLEInteger}$ is a function that returns TRUE if a $\mbox{MQC_Scalar}$ is less than or equal to an intrinsic integer.

When dealing with complex numbers, the function returns TRUE if the real part of the MQC_Scalar is less than or equal to the intrinsic integer and FALSE if the real part of the MQC_Scalar is greater than the intrinsic integer.

Parameters

ſ	in	Scalar	
			Scalar is Type(MQC_Scalar) The MQC_Scalar that will be tested.
	in	Intln	
			IntIn is Integer(kind=int64) The intrinsic integer that will be tested.

Author

L. M. Thompson

Date

5.1.2.163 mqc_scalarlereal()

MQC_ScalarLEReal is a function that returns TRUE if a MQC_Scalar is less than or equal to an intrinsic real

Purpose:

 ${\tt MQC_ScalarLEReal}$ is a function that returns TRUE if a ${\tt MQC_Scalar}$ is less than or equal to an intrinsic real.

When dealing with complex numbers, the function returns TRUE if the real part of the MQC_Scalar is less than or equal to the intrinsic real and FALSE if the real part of the MQC_Scalar is greater than the intrinsic real.

Parameters

in	Scalar	
		Scalar is Type(MQC_Scalar) The MQC_Scalar that will be tested.
in	Real⊷	
	In	RealIn is Real(kind=int64) The intrinsic real that will be tested.

Author

L. M. Thompson

Date

2019

5.1.2.164 mqc_scalarlt()

MQC_ScalarLT is a function that returns TRUE if the left MQC_Scalar is less than the right MQC_Scalar

Purpose:

MQC_ScalarLT is a function that returns TRUE if the left MQC_Scalar is less than the right MQC_Scalar.

When dealing with complex numbers, the function returns TRUE if the left real part is less than the right real part and FALSE if the left real part is greater than the right real part. If the left real part is equal to the right real part, the function returns TRUE if the left imaginary part is less than the right imaginary part and FALSE otherwise.

Parameters

in	Scalar1	
		Scalar1 is Type(MQC_Scalar) The first MQC_Scalar that will be tested.
in	Scalar2	
		Scalar2 is Type(MQC_Scalar) The second MQC_Scalar that will be tested.

Author

L. M. Thompson

Date

2016

5.1.2.165 mqc_scalarItreal()

MQC_ScalarLTReal is a function that returns TRUE if a MQC_Scalar is less than an intrinsic real

Purpose:

 ${\tt MQC_ScalarLTReal}$ is a function that returns TRUE if a ${\tt MQC_Scalar}$ is less than an intrinsic real.

When dealing with complex numbers, the function returns TRUE if the real part of the MQC_Scalar is less than the intrinsic real and FALSE if the real part of the MQC_Scalar is greater than the intrinsic real. If the real part of the MQC_Scalar is equal to the intrinsic real, the function returns TRUE if the imaginary part of MQC_Scalar is less than zero and FALSE otherwise.

in	Scalar	
		Scalar is Type(MQC_Scalar) The MQC_Scalar that will be tested.
in	Real⊷ In	RealIn is Real(kind=real64) The intrinsic real that will be tested.

Author

L. M. Thompson

Date

2019

5.1.2.166 mqc_scalarmatrixproduct()

5.1.2.167 mqc_scalarmultiply()

MQC_ScalarMultiply is a function that multiplies two MQC_Scalar objects

Purpose:

 ${\tt MQC_ScalarMultiply}$ is a function that multiplies two ${\tt MQC_Scalar}$ objects.

Parameters

in	Scalar1	
		Scalar1 is Type(MQC_Scalar) The first MQC_Scalar to be multiplied.
in	Scalar2	
		Scalar2 is Type(MQC_Scalar) The second MQC_Scalar to be multiplied.

Author

L. M. Thompson

Date

2016

5.1.2.168 mqc_scalarne()

MQC_ScalarNE is a function that returns TRUE if two MQC_Scalar variables are not equal

Purpose:

```
{\tt MQC\_ScalarNE} is a function that returns TRUE if two {\tt MQC\_Scalar} variables are not equal.
```

Parameters

in	Scalar1	
		Scalarl is Type(MQC_Scalar) The first MQC_Scalar that will be tested.
in	Scalar2	
		Scalar2 is Type(MQC_Scalar) The second MQC_Scalar that will be tested.

Author

L. M. Thompson

Date

2016

5.1.2.169 mqc_scalarrealadd()

MQC_ScalarRealAdd is a function that is used to sum an intrinsic real by an MQC_Scalar

Purpose:

```
\ensuremath{\mathsf{MQC\_ScalarRealSum}} is a function that is used to sum an intrinsic real by an \ensuremath{\mathsf{MQC\_Scalar}}.
```

Parameters

in	realIn	
		RealIn is Real(kind=real64) The intrinsic real variable to sum.
in	Scalar	

Author

L. M. Thompson

Date

2019

5.1.2.170 mqc_scalarrealdivide()

MQC_ScalarRealDivide is a function that is used to divide an MQC_Scalar by an intrinsic real

Purpose:

 $\texttt{MQC_ScalarRealDivide}$ is a function that is used to divide an $\texttt{MQC_Scalar}$ by an intrinsic real.

Parameters

in	Scalar	
		Scalar is Type(MQC_Scalar) The MQC_Scalar variable numerator.
in	Real⊷ In	RealIn is Real(kind=real64) The intrinsic real variable denominator.

Author

L. M. Thompson

Date

2019

5.1.2.171 mqc_scalarrealexponent()

MQC_Scalar RealExponent is a function that raises an MQC_Scalar to the power of an intrinsic real

Purpose:

 $\ensuremath{\mathtt{MQC_ScalarRealExponent}}$ is a function that raises an $\ensuremath{\mathtt{MQC_Scalar}}$ to the power of an intrinsic real.

Parameters

in	Scalar	
		Scalar1 is Type(MQC_Scalar) The base value.
in	Real⊷	
	In	RealIn is Real(kind=real64) The power value.

Author

L. M. Thompson

Date

2019

5.1.2.172 mqc_scalarrealmultiply()

MQC_ScalarRealMultiply is a function that is used to multiply an intrinsic real by an MQC_Scalar

Purpose:

 $\texttt{MQC_ScalarRealMultiply}$ is a function that is used to multiply an intrinsic real by an $\texttt{MQC_Scalar.}$

Parameters

in	realIn	
		RealIn is Real(kind=real64) The intrinsic real variable to multiply.
in	Scalar	
		Scalar is Type(MQC_Scalar) The MQC_Scalar variable to multiply.

Author

L. M. Thompson

Date

2019

5.1.2.173 mqc_scalarrealsubtract()

MQC_ScalarRealSubtract is a function that is used to subtract an intrinsic real from an MQC_Scalar

Purpose:

 $\texttt{MQC_ScalarRealSubtract}$ is a function that is used to subtract an intrinsic real from an $\texttt{MQC_Scalar.}$

Parameters

in	Scalar	
		Scalar is Type(MQC_Scalar) The MQC_Scalar variable to subtract from.
in	Real←	
	In	RealIn is Real(kind=real64) The intrinsic real to subtract.

Author

L. M. Thompson

Date

2019

5.1.2.174 mqc_scalarsubtract()

MQC_ScalarSubtract is a function that subtracts two MQC_Scalar objects

Purpose:

 ${\tt MQC_ScalarSubtract}$ is a function that subtracts two ${\tt MQC_Scalar}$ objects.

Parameters

in	Scalar1	
		Scalar1 is Type(MQC_Scalar) The first MQC_Scalar from which Scalar2 will be subtracted.
in	Scalar2	
		Scalar2 is Type(MQC_Scalar) The second MQC_Scalar which will be subtracted from Scalar1.

Author

L. M. Thompson

Date

2016

5.1.2.175 mqc_scalarvectordifference()

MQC_ScalarVectorDifference is a function that subtracts an MQC scalar from all elements of an MQC vector

Purpose:

 ${\tt MQC_ScalarVectorDifference}$ is a function that subtracts an ${\tt MQC}$ scalar from all elements of an ${\tt MQC}$ vector.

Parameters

in	Scalar⊷ In	ScalarIn is Type(MQC_Scalar) The MQC scalar to be subtracted from elements of the the MQC vector.
in	Vector⊷ In	VectorIn is Type(MQC_Vector) The MQC vector with elements from which ScalarIn will be subtracted.

Author

L. M. Thompson

Date

2016

5.1.2.176 mqc_scalarvectorproduct()

MQC_ScalarVectorProduct is a function that returns the product of a MQC scalar with a MQC vector

Purpose:

 $\texttt{MQC_ScalarVectorProduct}$ is a function that returns the product of a MQC scalar with a MQC vector.

in	Scalar	
		Scalar is Type(MQC_Scalar) The MQC_Scalar to multiply.
in	Vector	
		Vector is Type(MQC_Vector) The MQC_Vector to multiply.

Author

X. Sheng

A. D. Mahler

Date

2017, 2019

5.1.2.177 mqc_scalarvectorsum()

MQC_ScalarVectorSum is a function that adds an MQC scalar to all elements of an MQC vector

Purpose:

 $\ensuremath{\mathsf{MQC}}\xspace_{\ensuremath{\mathsf{VectorVectorSum}}}$ is a function that adds an $\ensuremath{\mathsf{MQC}}\xspace$ scalar to all elements of an $\ensuremath{\mathsf{MQC}}\xspace$ vector.

Parameters

in	Scalar⊷ In	ScalarIn is Type(MQC_Scalar) The MQC scalar to add to the MQC vector.
in	Vector⊷ In	VectorIn is Type(MQC_Vector) The MQC vector with elements to sum with ScalarIn.

Author

L. M. Thompson

Date

5.1.2.178 mqc_set_array2tensor()

5.1.2.179 mqc_set_array2vector_complex()

MQC_Set_Array2Vector_Complex is a subroutine that sets a rank 1 vector intrinsic complex array equal to a MQC vector

Purpose:

 $\mbox{MQC_Set_Array2Vector_Complex}$ is a subroutine that sets a rank 1 vector intrinsic complex array equal to a MQC vector.

Parameters

in,out	VectorOut	VectorOut is Type(MQC_Vector) The MQC vector that will be set equal to the rank 1 intrinsic array
in	ArrayIn	ArrayOut is Complex(kind=real64),Dimension(:) The rank 1 intrinsic array whose data will be input into the MQC vector.

Author

L. M. Thompson

Date

5.1.2.180 mqc_set_array2vector_integer()

MQC_Set_Array2Vector_Integer is a subroutine that sets a rank 1 intrinsic integer array equal to a MQC vector

Purpose:

 $\mbox{MQC_Set_Array2Vector_Integer}$ is a subroutine that sets a rank 1 intrinsic integer array equal to a \mbox{MQC} vector

Parameters

in,out	VectorOut	
		VectorOut is Type(MQC_Vector) The MQC vector that will be set equal to the rank 1 intrinsic array
in	ArrayIn	
		ArrayOut is Integer(kind=int64),Dimension(:) The rank 1 intrinsic array whose data will be input into the MQC vector.

Author

H. P. Hratchian

Date

2016

5.1.2.181 mqc_set_array2vector_real()

MQC_Set_Array2Vector_Real is a subroutine that sets a rank 1 vector intrinsic real array equal to a MQC vector

Purpose:

 ${\tt MQC_Set_Array2Vector_Real}$ is a subroutine that sets a rank 1 vector intrinsic real array equal to a ${\tt MQC}$ vector.

Parameters

in,out	VectorOut	
		VectorOut is Type(MQC_Vector) The MQC vector that will be set equal to the rank 1 intrinsic array
in	ArrayIn	
		ArrayOut is Real(kind=real64),Dimension(:) The rank 1 intrinsic array whose data will be input into the MQC vector.

Author

H. P. Hratchian

Date

2016

5.1.2.182 mqc_set_complexarray2matrix()

MQC_Set_ComplexArray2Matrix is a subroutine that sets an MQC matrix equal to an intrinsic complex rank-2 array

Purpose:

 ${\tt MQC_Set_ComplexArray2Matrix}$ is a subroutine that sets an ${\tt MQC}$ matrix equal to an intrinsic complex rank-2 array.

in,out	MatrixOut	
		MatrixOut is Type(MQC $_$ Matrix) The MQC matrix to be set equal to the complex array.
in	ArrayIn	
		ArrayIn is Complex(kind=real64),Dimension(:,:) The complex array to be input into MatrixOut.

Author

L. M. Thompson

Date

2017

5.1.2.183 mqc_set_integerarray2matrix()

MQC_Set_IntegerArray2Matrix is a subroutine that sets an MQC matrix equal to an intrinsic integer rank-2 array

Purpose:

 $\texttt{MQC_Set_IntegerArray2Matrix}$ is a subroutine that sets an MQC matrix equal to an intrinsic integer rank-2 array.

Parameters

in,out	MatrixOut	
		MatrixOut is Type(MQC_Matrix) The MQC matrix to be set equal to the integer array.
in	ArrayIn	
		ArrayIn is Integer(kind=int64),Dimension(:,:) The integer array to be input into MatrixOut.

Author

L. M. Thompson

Date

5.1.2.184 mqc_set_matrix2complexarray()

MQC_Set_Matrix2ComplexArray is a subroutine that sets an intrinsic complex rank-2 array equal to an MQC matrix

Purpose:

 ${\tt MQC_Set_Matrix2ComplexArray}$ is a subroutine that sets an intrinsic complex rank-2 array equal to an ${\tt MQC}$ matrix.

Parameters

in,out	ArrayOut	
		ArrayOut is Complex(kind=real64), Dimension(:,:), Allocatable The complex array to be set equal to the MQC matrix.
in	MatrixIn	
		MatrixIn is Type(MQC_Matrix) The MQC matrix to be input into ArrayOut.

Author

L. M. Thompson

Date

2017

5.1.2.185 mqc_set_matrix2integerarray()

MQC_Set_Matrix2IntegerArray is a subroutine that sets an intrinsic integer rank-2 array equal to an MQC matrix

Purpose:

 $MQC_Set_Matrix2IntegerArray$ is a subroutine that sets an intrinsic integer rank-2 array equal to an MQC matrix.

Parameters

in,out	ArrayOut	
		ArrayOut is Integer(kind=int64),Dimension(:,:),Allocatable The integer array to be set equal to the MQC matrix.
in	MatrixIn	
		MatrixIn is Type(MQC_Matrix) The MQC matrix to be input into ArrayOut.

Author

L. M. Thompson

Date

2016

5.1.2.186 mqc_set_matrix2matrix()

MQC_Set_Matrix2Matrix is a subroutine that sets an MQC matrix equal to another MQC matrix

Purpose:

 $\texttt{MQC_Set_Matrix} \ \texttt{2Matrix}$ is a subroutine that sets an MQC matrix equal to another MQC matrix.

in,out	MatrixOut	
		MatrixOut is Class(MQC_Matrix) The MQC matrix to be set equal to the incoming MQC matrix.
in	MatrixIn	
		MatrixIn is Class(MQC_Matrix) The MQC matrix to be input into MatrixOut.

Author

L. M. Thompson

Date

2016

5.1.2.187 mqc_set_matrix2realarray()

MQC_Set_Matrix2RealArray is a subroutine that sets an intrinsic real rank-2 array equal to an MQC matrix

Purpose:

 $\mbox{MQC_Set_Matrix}2\mbox{RealArray}$ is a subroutine that sets an intrinsic real rank-2 array equal to an MQC matrix.

Parameters

in,out	ArrayOut	
		ArrayOut is Real(kind=real64),Dimension(:,:),Allocatable The real array to be set equal to the MQC matrix.
in	MatrixIn	
		MatrixIn is Type(MQC_Matrix) The MQC matrix to be input into $ArrayOut.$

Author

L. M. Thompson

Date

5.1.2.188 mqc_set_realarray2matrix()

MQC_Set_RealArray2Matrix is a subroutine that sets an MQC matrix equal to an intrinsic real rank-2 array

Purpose:

 $\mbox{MQC_Set_RealArray2Matrix}$ is a subroutine that sets an \mbox{MQC} matrix equal to an intrinsic real rank-2 array.

Parameters

in,out	MatrixOut	
		MatrixOut is Type(MQC_Matrix) The MQC matrix to be set equal to the real array.
in	ArrayIn	
		ArrayIn is Real(kind=real64),Dimension(:,:) The real array to be input into MatrixOut.

Author

L. M. Thompson

Date

2016

5.1.2.189 mqc_set_vector2complexarray()

MQC_Set_Vector2ComplexArray is a subroutine that outputs an MQC vector to a rank 1 intrinsic complex array

Purpose:

```
{\tt MQC\_Set\_Vector2ComplexArray} is a subroutine that outputs an {\tt MQC} vector to a rank 1 intrinsic complex array.
```

Parameters

in,out	ArrayOut	
		ArrayOut is Complex(kind=real64),Dimension(:) The rank 1 intrinsic array which will receive the contents of MQC_Vector.
in	VectorIn	
		<pre>VectorIn is Type(MQC_Vector) The MQC_Vector whose data will be output into the intrinsic array.</pre>

Author

L. M. Thompson

Date

2017

5.1.2.190 mqc_set_vector2integerarray()

MQC_Set_Vector2IntegerArray is a subroutine that outputs an MQC vector to a rank 1 intrinsic integer array

Purpose:

 $\texttt{MQC_Set_Vector2IntegerArray}$ is a subroutine that outputs an MQC vector to a rank 1 intrinsic integer array.

in,out	ArrayOut	
		ArrayOut is Integer(kind=int64),Dimension(:) The rank 1 intrinsic array which will receive the contents of MQC_Vector.
in	VectorIn	
		VectorIn is Type(MQC_Vector) The MQC_Vector whose data will be output into the intrinsc array.

Author

H. P. Hratchian

Date

2016

5.1.2.191 mqc_set_vector2realarray()

MQC_Set_Vector2RealArray is a subroutine that outputs an MQC vector to a rank 1 intrinsic real array

Purpose:

 ${\tt MQC_Set_Vector2RealArray}$ is a subroutine that outputs an ${\tt MQC}$ vector to a rank 1 intrinsic real array.

Parameters

	in,out	ArrayOut	ArrayOut is Real(kind=real64),Dimension(:) The rank 1 intrinsic array which will receive the contents of MQC_Vector.
-	in	VectorIn	VectorIn is Type(MQC_Vector) The MQC_Vector whose data will be output into the intrinsic array.

Author

H. P. Hratchian

Date

5.1.2.192 mqc_set_vector2vector()

MQC_Set_Vector2Vector is a subroutine that sets a MQC vector equal to another MQC vector

Purpose:

 $\texttt{MQC_Set_Vector2Vector}$ is a subroutine that sets a MQC vector equal to another MQC vector.

Parameters

in,out	VectorOut	
		VectorOut is Type(MQC_Vector) The MQC vector that will be set equal to VectorIn.
in	VectorIn	
		VectorIn is Type(MQC_Vector) The MQC vector whose contents will be copied to VectorOut.

Author

H. P. Hratchian

L. M. Thompson

Date

2016

5.1.2.193 mqc_vector2diagmatrix()

MQC_Vector2DiagMatrix is a function that outputs a diagonal MQC matrix with elements defined by an MQC vector

Purpose:

 ${\tt MQC_Vector2DiagMatrix}$ is a function that outputs a diagonal ${\tt MQC}$ matrix with elements defined by an ${\tt MQC}$ vector.

Parameters

in	Vector	
		Vector is Class(MQC_Vector)
		MQC vector defining diagonal elements of output matrix.

Author

X. Sheng

Date

2017

5.1.2.194 mqc_vector_abs()

MQC_Vector_Abs is a function that returns the absolute value of all elements of an MQC vector

Purpose:

 $\mbox{MQC_Vector_Sqrt}$ is a function that returns the absolute value of all elements of an MQC vector.

Parameters

i	n	Α	
			A is Class(MQC_Vector) The name of the MQC_Vector variable.

Author

L. M. Thompson

Date

5.1.2.195 mqc_vector_argsort()

MQC_Vector_Argsort is a function that returns the indices of an an MQC vector sorted from low to high

Purpose:

 $\ensuremath{\mathsf{MQC_Vector_Argsort}}$ is a function that returns the indices of an $\ensuremath{\mathsf{MQC}}$ vector sorted from low to high.

Parameters

in	Vector	
		Vector is Class(MQC_Vector)
		The name of the MQC_Vector variable.

Author

L. M. Thompson

Date

2019

5.1.2.196 mgc vector cast complex()

MQC_vector_cast_complex is a function that converts an MQC vector to its complex space

Purpose:

 $\ensuremath{\mathsf{MQC_vector_cast_complex}}$ is a function that converts an $\ensuremath{\mathsf{MQC}}$ vector to its complex space.

in	VA	
		VA is Class(MQC_Vector) The MQC vector to convert.

Author

L. M. Thompson

Date

2017

5.1.2.197 mqc_vector_cast_integer()

MQC_vector_cast_integer is a function that converts an MQC vector to its integer space

Purpose:

 $\ensuremath{\mathsf{MQC}}\xspace\xspace$ vector is a function that converts an $\ensuremath{\mathsf{MQC}}\xspace$ vector to its integer space.

Parameters

in	VA	
		VA is Type (MQC_Vector)
		The MQC vector to convert.

Author

L. M. Thompson

Date

2019

5.1.2.198 mqc_vector_cast_real()

```
type(mqc_vector) function mqc_algebra::mqc_vector_cast_real ( type(mqc\_vector)\text{, intent(in) } VA\text{ )}
```

MQC_vector_cast_real is a function that converts an MQC vector to its real space

Purpose:

 $\ensuremath{\mathsf{MQC_vector_cast_real}}$ is a function that converts an $\ensuremath{\mathsf{MQC}}$ vector to its real space.

Parameters

in	VA	
		VA is Class(MQC_Vector) The MQC vector to convert.

Author

X. Sheng

Date

2017

5.1.2.199 mqc_vector_cmplx()

MQC_Vector_Cmplx is a function that takes a MQC vector representing the real part and a MQC vector representing the imaginary part and combines them into another MQC vector

Purpose:

 $\texttt{MQC_Vector_Cmplx}$ is a function that takes a MQC vector representing the real part and a MQC vector representing the imaginary part and combines them into another MQC vector.

Parameters

in	Vector1	
		Vector1 is Type(MQC_Vector) The MQC vector containing the real part.
in	Vector2	
		Vector2 is Type(MQC_Vector) The MQC vector containing the imaginary part.

Author

L. M. Thompson

Date

2019

5.1.2.200 mqc_vector_complex_imagpart()

MQC_Vector_Complex_ImagPart is a function that returns a MQC vector with elements containing the imaginary part of elements of another MQC vector

Purpose:

MQC_Vector_Complex_ImagPart is a function that returns a MQC vector with elements containing the imaginary part of elements of another MQC vector.

Parameters

Author

L. M. Thompson

Date

2019

5.1.2.201 mqc_vector_complex_realpart()

MQC_Vector_Complex_RealPart is a function that returns a MQC vector with elements containing the real part of elements of another MQC vector

Purpose:

 $\texttt{MQC_Vector_Complex_RealPart}$ is a function that returns a MQC vector with elements containing the real part of elements of another MQC vector.

Parameters

in	Α	
		A is Class(MQC_Vector) The name of the MQC_Vector variable.

Author

L. M. Thompson

Date

2019

5.1.2.202 mqc_vector_conjugate_transpose()

MQC_Vector_Conjugate_Transpose is a function that returns the conjugate transpose of an MQC vector

Purpose:

 $\mbox{MQC_Vector_Conjugate_Transpose}$ is a function that returns the conjugate transpose of an $\mbox{MQC_vector.}$

Parameters

j	in	Vector	
			Vector is Type(MQC_Vector) The MQC vector to conjugate transpose.

Author

L. M. Thompson

Date

5.1.2.203 mqc_vector_copy_complex2int()

MQC_Vector_Copy_Complex2Int is a subroutine that copies a complex MQC_Vector into its integer vector

Purpose:

 ${\tt MQC_Vector_Copy_Complex2Int}$ is a subroutine that copies a complex ${\tt MQC_Vector}$ into its integer vector.

Parameters

in,out	Vector	
		Vector is Type(MQC_Vector) The MQC_Vector to be tested.

Author

L. M. Thompson

Date

2017

5.1.2.204 mqc vector copy complex2real()

MQC_Vector_Copy_Complex2Real is a subroutine that copies a complex MQC_Vector into its real vector

Purpose:

 ${\tt MQC_Vector_Copy_Complex2Real}$ is a subroutine that copies a complex ${\tt MQC_Vector}$ into its real vector.

Author

L. M. Thompson

Date

2017

5.1.2.205 mqc_vector_copy_int2complex()

MQC_Vector_Copy_Int2Complex is a subroutine that copies an integer MQC_Vector into its complex vector

Purpose:

 ${\tt MQC_Vector_Copy_Int2Complex}$ is a subroutine that copies an integer ${\tt MQC_Vector}$ into its complex vector.

Parameters

in,out	Vector	
		Vector is Type(MQC_Vector) The MQC_Vector to be tested.

Author

L. M. Thompson

Date

2017

5.1.2.206 mqc_vector_copy_int2real()

MQC_Vector_Copy_Int2Real is a subroutine that copies an integer MQC_Vector into its real vector

Purpose:

 ${\tt MQC_Vector_Copy_Int2Real}$ is a subroutine that copies an integer ${\tt MQC_Vector}$ into its real vector.

Parameters

in,out	Vector	
		Vector is Type(MQC_Vector) The MQC_Vector to be tested.

Author

H. P. Hratchian

Date

2016

5.1.2.207 mqc_vector_copy_real2complex()

MQC_Vector_Copy_Real2Complex is a subroutine that copies a real MQC_Vector into its complex vector

Purpose:

 ${\tt MQC_Vector_Copy_Real2Complex}$ is a subroutine that copies a real ${\tt MQC_Vector}$ into its complex vector.

Parameters

in,out	Vector	
		Vector is Type(MQC_Vector) The MQC_Vector to be tested.

Author

L. M. Thompson

Date

5.1.2.208 mqc_vector_copy_real2int()

MQC_Vector_Copy_Real2Int is a subroutine that copies a real MQC_Vector into its integer vector

Purpose:

 ${\tt MQC_Vector_Copy_Real2Int}$ is a subroutine that copies a real ${\tt MQC_Vector}$ into its integer vector.

Parameters

in,out	Vector	
		Vector is Type(MQC_Vector) The MQC_Vector to be tested.

Author

L. M. Thompson

Date

2016

5.1.2.209 mqc vector havecomplex()

MQC_Vector_HaveComplex is a function that returns TRUE or FALSE indicating whether the MQC vector has an allocated complex vector

Purpose:

 ${\tt MQC_Vector_HaveComplex}$ is a function that returns TRUE or FALSE indicating whether the MQC vector has an allocated complex vector.

in,out	Vector

Author

L. M. Thompson

Date

2017

5.1.2.210 mqc_vector_haveinteger()

MQC_Vector_HaveInteger is a function that returns TRUE or FALSE indicating whether the MQC vector has an allocated integer vector

Purpose:

 ${\tt MQC_Vector_HaveInteger}$ is a function that returns TRUE or FALSE indicating whether the MQC vector has an allocated integer vector.

Parameters

in,out	Vector	
		Vector is Type(MQC_Vector) The MQC_Vector to be tested.

Author

H. P. Hratchian

Date

2016

5.1.2.211 mqc_vector_havereal()

MQC_Vector_HaveReal is a function that returns TRUE or FALSE indicating whether the MQC vector has an allocated real vector

Purpose:

 ${\tt MQC_Vector_HaveReal}$ is a function that returns TRUE or FALSE indicating whether the MQC vector has an allocated real vector.

Parameters

in	Vector	
		Vector is Type(MQC_Vector) The MQC_Vector to be tested.

Author

H. P. Hratchian

Date

2016

5.1.2.212 mqc_vector_initialize()

MQC_Vector_Initialize is a subroutine that initializes a MQC vector

Purpose:

 $\mbox{MQC_Vector_Initialize}$ is a subroutine that initializes a \mbox{MQC} vector. Default element values are 0.0, or otherwise vector can be initialized with optional argument.

Parameters

in,out	Vector	
		Vector is Class(MQC_Vector) The MQC_Vector to intialize.
in	Length	
		Length is Integer(kind=int64) The length to initialize vector
in	Scalar	
		Scalar is Class(*),Optional Value to set each element of Vector. If not present, the value is set to 0.0. Can be of type integer, real, complex or MQC_Scalar.

Author

L. M. Thompson

Date

2017

5.1.2.213 mqc_vector_isallocated()

MQC_Vector_isAllocated is a function that returns TRUE is an MQC vector is allocated and FALSE if it is not

Purpose:

 $\texttt{MQC_Vector_isAllocated}$ is a function that returns TRUE is an MQC vector is allocated and FALSE if it is not.

Parameters

in,out	Vector	
		Vector is Class(MQC_Vector)
		The name of the MQC_Vector variable

Author

L. M. Thompson

Date

2017

5.1.2.214 mqc_vector_iscolumn()

MQC_Vector_IsColumn is a function that returns TRUE if the MQC vector is a column vector and FALSE if the MQC vector is a row vector

Purpose:

 ${\tt MQC_Vector_IsColumn}$ is a function that returns TRUE if the ${\tt MQC}$ vector is a column vector and FALSE if the ${\tt MQC}$ vector is a row vector.

Parameters

in,out	Vector	
		Vector is Type(MQC_Vector) The MQC_Vector to be tested.

Author

L. M. Thompson

Date

2016

5.1.2.215 mqc_vector_maxloc()

MQC_Vector_MaxLoc is a function that returns the index of the largest value in an MQC vector

Purpose:

 $\ensuremath{\mathsf{MQC_Vector_MaxLoc}}$ is a function that returns the index of the largest value in an $\ensuremath{\mathsf{MQC}}$ vector.

Parameters

in	Vector	
		Vector is Class(MQC_Vector)
		The name of the MQC_Vector variable.

Author

L. M. Thompson

Date

2019

5.1.2.216 mqc_vector_maxval()

MQC_Vector_MaxVal is a function that returns the largest value in an MQC vector

Purpose:

 $\texttt{MQC_Vector_MaxVal}$ is a function that returns the largest value in an MQC vector.

Parameters

variable.
7a

Author

L. M. Thompson

Date

2017

5.1.2.217 mqc_vector_minloc()

MQC_Vector_MinLoc is a function that returns the index of the smallest value in an MQC vector

Purpose:

 $\texttt{MQC_Vector_MinLoc}$ is a function that returns the index of the smallest value in an MQC vector.

Parameters

in	Vector	
		Vector is Class(MQC_Vector)
		The name of the MQC_Vector variable.

Author

L. M. Thompson

Date

2019

5.1.2.218 mqc_vector_minval()

MQC_Vector_MinVal is a function that returns the smallest value in an MQC vector

Purpose:

 $\ensuremath{\mathsf{MQC_Vector_MinVal}}$ is a function that returns the smallest value in an $\ensuremath{\mathsf{MQC}}$ vector.

Parameters

in	Vector	
		Vector is Class(MQC_Vector)
		The name of the MQC_Vector variable.

Author

L. M. Thompson

Date

2017

5.1.2.219 mqc_vector_norm()

MQC_Vector_Norm is a function that returns the norm of an MQC vector

Purpose:

```
MQC_Vector_Norm is a function that returns the norm of an MQC vector. The
following options are available:

1. methodIn = 'M' uses the maximum absolute value max(abs(A(i))).
2. methodIn = '1' uses the one norm.
3. methodIn = 'I' uses the infinity norm.
4. methodIn = 'F' uses the Frobenius norm (default).
```

Parameters

in,out	Vector	
		Vector is Class(MQC_Vector) The name of the MQC_Vector variable.
in	Method←	
	In	<pre>MethodIn is Character(len=1) = 'M': max(abs(A(i))) = '1': one norm = 'I': infinity norm = 'F': Frobenius norm.</pre>

Author

L. M. Thompson

Date

2017

5.1.2.220 mqc_vector_pop()

MQC_Vector_Pop is a function that removes a value from the end of a MQC vector and returns it

Purpose:

 $\ensuremath{\text{MQC_Vector_Pop}}$ is a function that removes a value from the end of a $\ensuremath{\text{MQC}}$ vector and returns it.

Parameters

in,out	Vector	
		Vector is Class(MQC_Vector) The name of the MQC_Vector variable.

Author

L. M. Thompson

Date

2017

5.1.2.221 mqc_vector_power()

MQC_Vector_Power is a function that returns the value of all elements of an MQC vector raised to a power

Purpose:

```
{\tt MQC\_Vector\_Power} is a function that returns the value of all elements of an {\tt MQC} vector raised to a power. The power can be integer, real, complex or an {\tt MQC} scalar.
```

Parameters

in	Α	A is Class(MQC_Vector)
		The name of the MQC_Vector variable.
in	P	
		P is $Class(\star)$ The power to raise elements of the MQC vector.

Author

L. M. Thompson

Date

2019

5.1.2.222 mqc_vector_push()

MQC_Vector_Push is a function that adds a value to the end of a MQC vector

Purpose:

 ${\tt MQC_Vector_Push}$ is a function that adds a value to the end of a ${\tt MQC}$ vector.

Parameters

in,out	Vector	
		Vector is Class(MQC_Vector) The name of the MQC_Vector variable.
in	Scalar	
		Scalar is Type(MQC_Scalar) The value that will be added to the end of Vector.

Author

L. M. Thompson

Date

2017

5.1.2.223 mqc_vector_scalar_at()

```
\label{limits}  \begin{tabular}{ll} type (mqc\_scalar) & function mqc\_algebra::mqc\_vector\_scalar\_at ( & class (mqc\_vector) & Vec, & integer (kind=int64), & intent(in) & I \end{tabular}
```

MQC_Vector_Scalar_At is a function that returns the ith element of a MQC vector as an MQC scalar

Purpose:

 ${\tt MQC_Vector_Scalar_At}$ is a function that returns the ith element of a MQC vector as an MQC scalar. If the location of the element is negative the it is counted from the end of MQC vector.

Parameters

ir	1 1	Vec	
			Vec is Class(MQC_Vector) The MQC_Vector to extract the Ith element.
ir	1 /	I	
			I is Integer(kind=int64) The location of the element in Vec to return. If I is negative it is counted from the last element of Vec.

Author

X. Sheng

Date

2017

5.1.2.224 mqc_vector_scalar_increment()

MQC_Vector_Scalar_Increment is a subroutine that increments the value of the ith element of a MQC vector by the value of a MQC scalar

Purpose:

 ${\tt MQC_Vector_Scalar_Increment}$ is a subroutine that increments the value of the ith element of a MQC vector by the value of a MQC scalar. If the location of the element is negative then it is counted from the end of MQC vector.

Parameters

Vector	
	Vector is Class(MOC Vector)
	The MQC_Vector to update at the Ith element.
Scalar	
	Scalar is Type(MQC_Scalar)
	The MQC_Scalar to update the Ith element.
1	
	I is Integer(kind=int64)
	The location of the element in Vector to update. If I
by Doxygen	is negative it is counted from the last element of Vector.

Author

L. M. Thompson

Date

2017

5.1.2.225 mqc_vector_scalar_put()

MQC_Vector_Scalar_Put is a subroutine that updates the value of the ith element of a MQC vector with the value of a MQC scalar

Purpose:

 ${\tt MQC_Vector_Scalar_Put}$ is a subroutine that updates the value of the ith element of a MQC vector with the value of a MQC scalar. If the location of the element is negative then it is counted from the end of MQC vector.

Parameters

in	Vector	
		Vector is Class(MQC_Vector) The MQC_Vector to update at the Ith element.
in	Scalar	
		Scalar is Type(MQC_Scalar) The MQC_Scalar to update Vector at element I.
in	1	
		I is Integer(kind=int64) The location of the element in Vector to update. If I is negative it is counted from the last element of Vector.

Author

L. M. Thompson

Date

2017

5.1.2.226 mqc_vector_shift()

MQC_Vector_Shift is a function that removes a value from the beginning of a MQC vector and returns it

Purpose:

 $\ensuremath{\mathsf{MQC_Vector_Pop}}$ is a function that removes a value from the beginning of a MQC vector and returns it.

Parameters

in,out	Vector	
		Vector is Class(MQC_Vector)
		The name of the MQC_Vector variable.

Author

L. M. Thompson

Date

2017

5.1.2.227 mqc_vector_sort()

MQC_Vector_Sort is a function that returns an MQC vector sorted from low to high unless optional index order is present

Purpose:

 $\mbox{MQC_Vector_Sort}$ is a function that returns an \mbox{MQC} vector sorted from low to high unless optional argument idx is present which gives the new order of the vector.

Parameters

in,out	Vector	
		Vector is $Class(MQC_Vector)$ The name of the MQC_Vector variable.
in	idx	
		idx is Type(MQC_Vector),Optional The new order of indices after sort.

Author

L. M. Thompson

Date

2019

5.1.2.228 mqc_vector_sqrt()

MQC_Vector_Sqrt is a function that returns the square root of all elements of an MQC vector

Purpose:

 $\ensuremath{\text{MQC_Vector_Sqrt}}$ is a function that returns the square root of all elements of an $\ensuremath{\text{MQC}}$ vector.

Parameters

in	Α	
		A is $Class(MQC_Vector)$ The name of the MQC_Vector variable.

Author

L. M. Thompson

Date

2019

5.1.2.229 mqc_vector_transpose()

MQC_Vector_Transpose is a function that returns the transpose of an MQC vector

Purpose:

 ${\tt MQC_Vector_Transpose}$ is a function that returns the transpose of an ${\tt MQC}$ vector.

Parameters

in	Vector	
		Vector is Type(MQC_Vector) The MQC vector to transpose.

Author

H. P. Hratchian

Date

2016

5.1.2.230 mqc_vector_unshift()

MQC_Vector_Unshift is a function that adds a value to the beginning of a MQC vector

Purpose:

 $\ensuremath{\mathsf{MQC}}\xspace_{\ensuremath{\mathsf{Vector}}\xspace_{\ensuremath{\mathsf{Unshift}}}\xspace}$ is a function that adds a value to the beginning of a MQC vector.

Parameters

in,out	Vector		
		Vector is $Class(MQC_Vector)$ The name of the MQC_Vector variable.	
in	Scalar		
Generated by Dox	ygen	Scalar is Type(MQC_Scalar) The value that will be added to the beginning of Vector.	

Author

L. M. Thompson

Date

2017

5.1.2.231 mqc_vector_vector_at()

MQC_Vector_Vector_At is a function that returns the vector at the specified subvector of MQC_Vector

Purpose:

 ${\tt MQC_Vector_Vector_At}$ is a function that returns the vector at the specified subvector of ${\tt MQC_Vector}.$ Negative values of I or J indicate that counting proceeds from the last element rather than the first as with positive numbers.

Parameters

in	Vec	
		Vec is Class(MQC_Vector) The MQC_Vector from which the subvector will be extracted.
in	1	
		I is Integer(kind=int64) The location of the first subvector element in Vec. If I is negative it is counted from the last element of Vec.
in	J	
		J is Integer(kind=int64) The location of the last subvector element in Vec. If J is negative it is counted from the last element of Vec.

Author

L. M. Thompson

Date

2017

5.1.2.232 mqc_vector_vector_put()

MQC_Vector_Vector_Put is a subroutine that updates the values of a subvector of a MQC vector with the values of a MQC vector

Purpose:

 ${\tt MQC_Vector_Put}$ is a subroutine that updates the values of a subvector of a MQC vector starting at element I with the values of a MQC vector. Negative I counts from the end of vector.

Parameters

in	Vector	
		Vector is Class(MQC_Vector) The MQC_Vector to update starting at the Ith element.
in	Vector⊷	
	In	VectorIn is Class(MQC_Vector) The subvector with values to insert into Vector.
in	1	
		I is Integer(kind=int64) The location of the first subvector element in Vector to update. If I is negative it is counted from the last element of Vector.

Author

L. M. Thompson

Date

2017

5.1.2.233 mqc_vectorcomplexdivide()

MQC_VectorComplexDivide is a function that returns a MQC vector divided by an intrinsic complex scalar

Purpose:

 $\texttt{MQC_VectorComplexDivide}$ is a function that returns a MQC vector divided by an intrinsic complex scalar.

Parameters

in	Vector	
		Vector is Type(MQC_Vector) The MQC_Vector to divide.
in	Comp←	
	In	CompIn is Complex(kind=comp64) The intrinsic complex scalar to divide by.

Author

L. M. Thompson

Date

2019

5.1.2.234 mqc_vectorcomplexproduct()

MQC_VectorComplexProduct is a function that returns the product of a MQC vector and an intrinsic complex scalar

Purpose:

 $\texttt{MQC_VectorComplexProduct}$ is a function that returns the product of a MQC vector and an intrinsic complex scalar.

Parameters

in	Vector	
		Vector is Type(MQC_Vector) The MQC_Vector to multiply.
in	Comp←	
	In	CompIn is Complex(kind=real64) The integer complex to multiply.

Author

L. M. Thompson

Date

2019

5.1.2.235 mqc_vectorintegerdivide()

MQC_VectorIntegerDivide is a function that returns a MQC vector divided by an intrinsic integer scalar

Purpose:

 $\ensuremath{\mathtt{MQC_VectorIntegerDivide}}$ is a function that returns a $\ensuremath{\mathtt{MQC}}$ vector divided by an intrinsic integer scalar.

Parameters

	in	Vector	
			Vector is Type(MQC_Vector) The MQC_Vector to divide.
Ī	in	Intln	
			IntIn is Integer(kind=int64) The intrinsic integer scalar to divide by.

Author

L. M. Thompson

Date

2019

5.1.2.236 mqc_vectorintegerproduct()

MQC_VectorIntegerProduct is a function that returns the product of a MQC vector and an intrinsic integer scalar

Purpose:

 $\texttt{MQC_VectorIntegerProduct}$ is a function that returns the product of a MQC vector and an intrinsic integer scalar.

Parameters

in	Vector	
		Vector is Type(MQC_Vector) The MQC_Vector to multiply.
in	Intln	
		<pre>IntIn is Integer(kind=int64) The integer intrinsic to multiply.</pre>

Author

L. M. Thompson

Date

2019

5.1.2.237 mqc_vectormatrixdotproduct()

5.1.2.238 mqc_vectorrealdivide()

MQC_VectorRealDivide is a function that returns a MQC vector divided by an intrinsic real integer

Purpose:

 $\ensuremath{\mathsf{MQC_VectorRealDivide}}$ is a function that returns a MQC vector divided by an intrinsic real scalar.

Parameters

in	Vector	
		Vector is Type(MQC_Vector) The MQC_Vector to divide.
in	Real⊷	
	In	RealIn is Real(kind=real64) The intrinsic real scalar to divide by.

Author

L. M. Thompson

Date

2019

5.1.2.239 mqc_vectorrealproduct()

MQC_VectorRealProduct is a function that returns the product of a MQC vector and an intrinsic real scalar

Purpose:

 $\texttt{MQC_VectorRealProduct}$ is a function that returns the product of a MQC vector and an intrinsic real scalar.

Parameters

	in	Vector	
			Vector is Type(MQC_Vector) The MQC_Vector to multiply.
ĺ	in	Real←	
		In	RealIn is Real(kind=real64) The real intrinsic to multiply.

Author

L. M. Thompson

Date

2019

5.1.2.240 mqc_vectorscalardivide()

MQC_VectorScalarDivide is a function that returns a MQC vector divided by a MQC scalar

Purpose:

 $\texttt{MQC_VectorScalarDivide}$ is a function that returns a MQC vector divided by a MQC scalar.

Parameters

-	in	Vector	
			Vector is Type(MQC_Vector) The MQC_Vector to divide.
-	in	Scalar	
			Scalar is Type(MQC_Scalar) The MQC_Scalar to divide by.

Author

A. D. Mahler

Date

2019

5.1.2.241 mqc_vectorscalarproduct()

MQC_VectorScalarProduct is a function that returns the product of a MQC vector with a MQC scalar

Purpose:

 $\mbox{MQC_VectorScalarProduct}$ is a function that returns the product of a \mbox{MQC} vector with a \mbox{MQC} scalar.

Parameters

-	in	Vector	
			Vector is Type(MQC_Vector) The MQC_Vector to multiply.
-	in	Scalar	
			Scalar is Type(MQC_Scalar) The MQC_Scalar to multiply.

Author

X. Sheng

Date

2017

5.1.2.242 mgc_vectorvectordifference()

MQC_VectorVectorDifference is a function that subtracts two MQC vectors and stores them in another MQC vector

Purpose:

 ${\tt MQC_VectorVectorDifference}$ is a function that subtracts two ${\tt MQC}$ vectors and stores them in another ${\tt MQC}$ vector.

Parameters

in	Vector1← In	VectorlIn is Type(MQC_Vector) The first MQC vector from which the second will be subtracted.
in	Vector2← In	Vector2In is Type(MQC_Vector) The second MQC vector that will be subtracted from the first.

Author

L. M. Thompson

Date

2016

5.1.2.243 mqc_vectorvectordotproduct()

MQC_VectorVectorDotProduct is a function that returns the dot product of two MQC vectors

Purpose:

 $MQC_VectorVectorDotProduct$ is a function that returns the dot product of two MQC vectors. The first vector should be a row vector, while the second vector should be a column vector. The vectors should be of the same length.

Parameters

in	Vector1	
		Vector1 is Type(MQC_Vector) The MQC row vector.
in	Vector2	
		<pre>Vector2 is Type(MQC_Vector) The MQC column vector.</pre>

Author

- H. P. Hratchian
- L. M. Thompson

Date

2016

5.1.2.244 mqc_vectorvectorsum()

MQC_VectorVectorSum is a function that adds two MQC vectors and stores them in another MQC vector

Purpose:

 $\ensuremath{\mathsf{MQC_VectorSum}}$ is a function that adds two MQC vectors and stores them in another MQC vector.

Parameters

in	Vector1↔ In	Vector1In is Type(MQC_Vector) The first MQC vector that will be summed.
in	Vector2⊷	
	In	Vector2In is Type(MQC_Vector) The second MQC vector that will be summed.

Author

L. M. Thompson

Date

2016

5.1.2.245 symindexhash()

```
integer(kind=int64) function mqc_algebra::symindexhash (
    integer(kind=int64), intent(in) i,
    integer(kind=int64), intent(in) j,
    integer(kind=int64), intent(in), optional k,
    integer(kind=int64), intent(in), optional l)
```

SymIndexHash is a function that returns the index in a vector of a symmetric-packed matrix or rank-4 tensor

Purpose:

SymIndexHash is a function that returns the index in a vector of a symmetric-packed matrix or rank-4 tensor. If a matrix is tested, it is assumed lower-triangular row-wise stored.

Parameters

in	1	
		I is integer(kind=int64)
		The first index of the matrix/rank-4 tensor.
in	J	
		I is integer(kind=int64)
		The second index of the matrix/rank-4 tensor.
in	K	
		K is integer(kind=int64),Optional The third index of the rank-4 tensor. This argument is
		only required when taking hash of a rank-4 tensor.
in	L	
		L is integer(kind=int64),Optional The fourth index of the rank-4 tensor. This argument is only required when taking hash of a rank-4 tensor.

Author

X. Sheng

L. M. Thompson

Date

2017

5.2 mqc_est Module Reference

Data Types

interface assignment(=)

- · interface contraction
- interface dagger
- · interface dot product
- · interface matmul
- type mgc determinant
- · type mgc determinant string
- · interface mqc_matrix_undospinblockghf
- interface mgc print
- type mqc_pscf_wavefunction
- type mgc scf eigenvalues
- type mqc scf integral
- type mqc_twoeris
- type mqc_wavefunction
- interface operator(*)
- interface operator(+)
- interface operator(-)
- interface transpose

Functions/Subroutines

- subroutine mqc_print_wavefunction (wavefunction, iOut, label)
- subroutine mgc print integral (integral, iOut, header, blank at top, blank at bottom)
- subroutine mgc print eigenvalues (eigenvalues, iOut, header, blank at top, blank at bottom)
- subroutine mgc print twoeris (twoERIs, iOut, header, blank at top, blank at bottom)
- logical function mqc_integral_isallocated (Integral)
- logical function mqc_eigenvalues_isallocated (Eigenvalues)
- logical function mqc_integral_has_alpha (integral)
- logical function mgc integral has beta (integral)
- logical function mgc integral has alphabeta (integral)
- logical function mgc integral has betaalpha (integral)
- · logical function mgc eigenvalues has alpha (eigenvalues)
- logical function mqc_eigenvalues_has_beta (eigenvalues)
- character(len=64) function mgc integral array type (integral)
- character(len=64) function mqc eigenvalues array type (eigenvalues)
- character(len=64) function mqc_integral_array_name (integral)
- character(len=64) function mgc eigenvalues array name (eigenvalues)
- subroutine mgc integral add name (integral, arrayName)
- subroutine mqc eigenvalues add name (eigenvalues, arrayName)
- integer(kind=int64) function mqc_integral_dimension (integral, label, axis)
- integer(kind=int64) function mqc_eigenvalues_dimension (eigenvalues, label)
- subroutine mqc_twoeris_allocate (twoERIs, storageType, integralType, alpha, beta, alphaBeta, betaAlpha)
- subroutine mgc integral allocate (integral, arrayName, arrayType, alpha, beta, alphaBeta, betaAlpha)
- subroutine mqc_eigenvalues_allocate (eigenvalues, arrayName, arrayType, alpha, beta)
- subroutine mgc integral identity (integral, nAlpha, nBeta, label, nAlpha2, nBeta2)
- subroutine mqc_integral_initialize (integral, nAlpha, nBeta, scalar, label, nAlpha2, nBeta2)
- type(mgc matrix) function mgc integral output block (integral, blockName)
- type(mqc_scf_integral) function mqc_integral_output_orbitals (integral, orbString, alphaOrbsIn, betaOrbsIn, axis)
- type(mqc_scf_integral) function mqc_integral_swap_orbitals (integral, alphaOrbsIn, betaOrbsIn, axis)
- type(mqc vector) function mqc eigenvalues output block (eigenvalues, blockName)
- subroutine mgc integral output array (matrixOut, integralIn)

- subroutine mqc_eigenvalues_output_array (vectorOut, eigenvaluesIn)
- type(mgc scf integral) function mgc integral matrix multiply (integralA, matrixB, label)
- type(mqc_scf_integral) function mqc_matrix_integral_multiply (matrixA, integralB, label)
- type(mqc_scf_integral) function mqc_integral_sum (integralA, integralB)
- type(mgc scf integral) function mgc integral difference (integralA, integralB)
- type(mgc scf integral) function mgc integral integral multiply (integralA, integralB, label)
- type(mqc_scf_integral) function mqc_scalar_integral_multiply (scalar, integral)
- type(mqc scf integral) function mqc integral scalar multiply (integral, scalar)
- type(mgc scf integral) function mgc integral eigenvalues multiply (integralA, eigenvaluesB, label)
- type(mqc_scf_integral) function mqc_eigenvalues_integral_multiply (eigenvaluesA, integralB, label)
- type(mgc scf eigenvalues) function mgc eigenvalues eigenvalues multiply (eigenvaluesA, eigenvaluesB, label)
- type(mgc scalar) function mgc eigenvalue eigenvalue dotproduct (eigenvalueA, eigenvalueB)
- type(mqc_scf_integral) function mqc_integral_transpose (integral, label)
- type(mqc_scf_integral) function mqc_integral_conjugate_transpose (integral, label)
- type(mgc scalar) function mgc integral norm (integral, methodIn)
- subroutine mgc matrix spinblockghf (array, nelec, multi, elist)
- subroutine mqc_matrix_undospinblockghf_eigenvalues (eigenvaluesIn, vectorOut)
- subroutine mgc matrix undospinblockghf integral (integralIn, matrixOut)
- type(mqc_scalar) function mqc_scf_integral_contraction (integral1, integral2)
- type(mgc scf integral) function mgc eri integral contraction (eris, integral, label)
- subroutine mgc scf integral generalized eigensystem (integralA, integralB, eVals, rEVecs, IEVecs)
- subroutine mgc scf integral diagonalize (integral, eVals, eVecs)
- type(mgc scf integral) function mgc scf integral inverse (integral)
- type(mgc scalar) function mgc scf integral trace (integral)
- type(mqc_scalar) function mqc_scf_integral_determinant (integral)
- subroutine mqc_integral_set_energy_list (integral, elist)
- integer(kind=int64) function, dimension(:), allocatable mqc_integral_get_energy_list (integral)
- subroutine mqc_integral_delete_energy_list (integral)
- subroutine mqc scf eigenvalues power (eigenvalues, power)
- type(mqc_scalar) function mqc_twoeris_at (twoERIs, i, j, k, I, spinBlock)
- type(mgc scalar) function mgc integral at (integral, i, j, spinBlock)
- type(mqc_scalar) function mqc_eigenvalues_at (eigenvalues, i, spinBlock)
- subroutine mgc scf transformation matrix (overlap, transform matrix, nBasUse)
- subroutine gen_det_str (IOut, IPrint, NBasisIn, NAlphaIn, NBetaIn, Determinants, NCoreIn)
- subroutine twoeri_trans (IOut, IPrint, MO_Coeff, ERIs, MO_ERIs, UHF)
- subroutine mqc_build_ci_hamiltonian (IOut, IPrint, NBasis, Determinants, MO_Core_Ham, MO_ERIs, UHF, CI
 —Hamiltonian)
- type(mqc_matrix) function get_one_gamma_matrix (iOut, iPrint, nBasisIn, nState, determinants, ci_amplitudes, nCoreIn, nOrbsIn)

5.2.1 Function/Subroutine Documentation

5.2.1.1 gen_det_str()

```
subroutine mqc_est::gen_det_str (
    integer(kind=int64) IOut,
    integer(kind=int64) IPrint,
    type(mqc_scalar) NBasisIn,
    type(mqc_scalar) NAlphaIn,
    type(mqc_scalar) NBetaIn,
    type(mqc_determinant) Determinants,
    type(mqc_scalar), optional NCoreIn)
```

5.2.1.2 get_one_gamma_matrix()

5.2.1.3 mqc_build_ci_hamiltonian()

5.2.1.4 mqc_eigenvalue_eigenvalue_dotproduct()

5.2.1.5 mqc_eigenvalues_add_name()

5.2.1.6 mqc_eigenvalues_allocate()

5.2.1.7 mqc_eigenvalues_array_name()

5.2.1.8 mqc_eigenvalues_array_type()

5.2.1.9 mqc_eigenvalues_at()

5.2.1.10 mqc_eigenvalues_dimension()

5.2.1.11 mqc_eigenvalues_eigenvalues_multiply()

5.2.1.12 mqc_eigenvalues_has_alpha()

5.2.1.13 mqc_eigenvalues_has_beta()

5.2.1.14 mqc_eigenvalues_integral_multiply()

5.2.1.15 mqc_eigenvalues_isallocated()

5.2.1.16 mqc_eigenvalues_output_array()

5.2.1.17 mqc_eigenvalues_output_block()

5.2.1.18 mqc_eri_integral_contraction()

5.2.1.19 mqc_integral_add_name()

5.2.1.20 mqc_integral_allocate()

5.2.1.21 mqc_integral_array_name()

5.2.1.22 mqc_integral_array_type()

5.2.1.23 mqc_integral_at()

5.2.1.24 mqc_integral_conjugate_transpose()

5.2.1.25 mqc_integral_delete_energy_list()

5.2.1.26 mqc_integral_difference()

5.2.1.27 mqc_integral_dimension()

5.2.1.28 mqc_integral_eigenvalues_multiply()

5.2.1.29 mqc_integral_get_energy_list()

5.2.1.30 mqc_integral_has_alpha()

5.2.1.31 mqc_integral_has_alphabeta()

5.2.1.32 mqc_integral_has_beta()

5.2.1.33 mqc_integral_has_betaalpha()

5.2.1.34 mqc integral identity()

5.2.1.35 mqc_integral_initialize()

5.2.1.36 mqc_integral_integral_multiply()

5.2.1.37 mqc_integral_isallocated()

5.2.1.38 mqc_integral_matrix_multiply()

5.2.1.39 mqc_integral_norm()

5.2.1.40 mqc_integral_output_array()

5.2.1.41 mqc_integral_output_block()

5.2.1.42 mqc_integral_output_orbitals()

5.2.1.43 mqc_integral_scalar_multiply()

5.2.1.44 mqc_integral_set_energy_list()

5.2.1.45 mqc integral sum()

5.2.1.46 mgc integral swap orbitals()

5.2.1.47 mqc_integral_transpose()

5.2.1.48 mqc_matrix_integral_multiply()

5.2.1.49 mgc matrix spinblockghf()

5.2.1.50 mqc_matrix_undospinblockghf_eigenvalues()

5.2.1.51 mqc_matrix_undospinblockghf_integral()

5.2.1.52 mgc print eigenvalues()

194 Module Documentation

5.2.1.53 mqc_print_integral()

5.2.1.54 mqc_print_twoeris()

5.2.1.55 mgc print wavefunction()

5.2.1.56 mqc_scalar_integral_multiply()

5.2.1.57 mqc_scf_eigenvalues_power()

5.2.1.58 mqc_scf_integral_contraction()

5.2.1.59 mqc scf integral determinant()

5.2.1.60 mqc_scf_integral_diagonalize()

5.2.1.61 mqc_scf_integral_generalized_eigensystem()

5.2.1.62 mqc_scf_integral_inverse()

5.2.1.63 mqc_scf_integral_trace()

196 Module Documentation

5.2.1.64 mqc_scf_transformation_matrix()

5.2.1.65 mqc_twoeris_allocate()

5.2.1.66 mqc twoeris at()

5.2.1.67 slater_condon()

```
type(mqc_scalar) function mqc_est::slater_condon (
    integer(kind=int64), intent(in) IOut,
    integer(kind=int64), intent(in) IPrint,
    type(mqc_scalar), intent(in) NBasisIn,
    type(mqc_determinant), intent(in) Determinants,
    integer(kind=int64), intent(in) L_A_String,
    integer(kind=int64), intent(in) L_B_String,
    integer(kind=int64), intent(in) R_A_String,
    integer(kind=int64), intent(in) R_B_String,
    type(mqc_scf_integral), intent(in) Core_Hamiltonian,
    type(mqc_twoeris), intent(in) ERIs,
    logical, intent(in) UHF)
```

5.2.1.68 twoeri_trans()

```
subroutine mqc_est::twoeri_trans (
    integer(kind=int64) IOut,
    integer(kind=int64) IPrint,
    type(mqc_scf_integral), intent(in) MO_Coeff,
    type(mqc_twoeris), intent(in) ERIs,
    type(mqc_twoeris), intent(out) MO_ERIs,
    logical UHF)
```

198 Module Documentation

Chapter 6

Data Type Documentation

6.1 mqc_algebra::abs Interface Reference

Takes the absolute value

Public Member Functions

- type(mqc_scalar) function mqc_scalar_get_abs_value (Scalar)
 - MQC_Scalar_Get_ABS_Value is a function that returns the absolute value of MQC_scalar variable
- type(mqc_vector) function mqc_vector_abs (A)

MQC_Vector_Abs is a function that returns the absolute value of all elements of an MQC vector

6.1.1 Detailed Description

Takes the absolute value

6.1.2 Member Function/Subroutine Documentation

6.1.2.1 mqc_scalar_get_abs_value()

MQC_Scalar_Get_ABS_Value is a function that returns the absolute value of MQC_scalar variable

Purpose:

 ${\tt MQC_Scalar_Get_ABS_Value}$ is a function that returns the absolute value of ${\tt MQC_scalar}$ variable.

in	Scalar	
		Scalar is Class(MQC_Scalar) The MQC_Scalar to be tested.

Author

A. Mahler

Date

2018

6.1.2.2 mqc_vector_abs()

MQC_Vector_Abs is a function that returns the absolute value of all elements of an MQC vector

Purpose:

 $\texttt{MQC_Vector_Sqrt}$ is a function that returns the absolute value of all elements of an MQC vector.

Parameters

in	Α	
		A is Class(MQC_Vector) The name of the MQC_Vector variable.

Author

L. M. Thompson

Date

2019

The documentation for this interface was generated from the following file:

• src/mqc_algebra.F03

6.2 mqc_algebra::acos Interface Reference

Returns the arccosine

Public Member Functions

type(mqc_scalar) function mqc_scalar_acos (Scalar)
 MQC_Scalar_ACos is a function used to return the arccosine of an MQC_scalar

6.2.1 Detailed Description

Returns the arccosine

6.2.2 Member Function/Subroutine Documentation

6.2.2.1 mqc_scalar_acos()

MQC_Scalar_ACos is a function used to return the arccosine of an MQC_scalar

Purpose:

 $\texttt{MQC_Scalar_ACos}$ is a function used to return the arccosine of an $\texttt{MQC_scalar}.$

Parameters

in	Scalar	
		Scalar is Type(MQC_Scalar) The argument of the function.

Author

L. M. Thompson

Date

2019

The documentation for this interface was generated from the following file:

• src/mqc_algebra.F03

6.3 mqc_algebra::aimag Interface Reference

Returns the imaginary part

Public Member Functions

- type(mqc_scalar) function mqc_scalar_complex_imagpart (ScalarIn)
 - MQC_Scalar_Complex_ImagPart is a function that returns the inaginary part of an MQC_Scalar
- type(mgc vector) function mgc vector complex imagpart (A)

MQC_Vector_Complex_ImagPart is a function that returns a MQC vector with elements containing the imaginary part of elements of another MQC vector

6.3.1 Detailed Description

Returns the imaginary part

6.3.2 Member Function/Subroutine Documentation

6.3.2.1 mgc scalar complex imagpart()

MQC Scalar Complex ImagPart is a function that returns the inaginary part of an MQC Scalar

Purpose:

```
\texttt{MQC\_Scalar\_Complex\_RealPart} is a function that returns the imaginary part of an \texttt{MQC\_Scalar.}
```

in	Scalar⊷	
	In	ScalarIn is Type(MQC_Scalar)
		The MQC_Scalar input variable.

Author

L. M. Thompson

Date

2019

6.3.2.2 mqc_vector_complex_imagpart()

MQC_Vector_Complex_ImagPart is a function that returns a MQC vector with elements containing the imaginary part of elements of another MQC vector

Purpose:

 $\texttt{MQC_Vector_Complex_ImagPart}$ is a function that returns a MQC vector with elements containing the imaginary part of elements of another MQC vector.

Parameters

Author

L. M. Thompson

Date

2019

The documentation for this interface was generated from the following file:

src/mqc_algebra.F03

6.4 mqc_algebra::asin Interface Reference

Returns the arcsine

Public Member Functions

type(mqc_scalar) function mqc_scalar_asin (Scalar)
 MQC_Scalar_ASin is a function used to return the arcsin of an MQC_scalar

6.4.1 Detailed Description

Returns the arcsine

6.4.2 Member Function/Subroutine Documentation

6.4.2.1 mqc_scalar_asin()

MQC_Scalar_ASin is a function used to return the arcsin of an MQC_scalar

Purpose:

 $\ensuremath{\mathsf{MQC_Scalar_ASin}}$ is a function used to return the arcsin of an $\ensuremath{\mathsf{MQC_scalar}}.$

Parameters

in	Scalar	
		Scalar is Type(MQC_Scalar) The argument of the function.

Author

L. M. Thompson

Date

2019

The documentation for this interface was generated from the following file:

src/mqc algebra.F03

6.5 mgc algebra::assignment(=) Interface Reference

Assigns a variable to the value of another

Public Member Functions

• subroutine mqc_input_integer_scalar (ScalarOut, ScalarIn)

MQC_Input_Integer_Scalar is a subroutine is used to set an intrinsic integer to an MQC_Scalar

subroutine mqc_input_real_scalar (ScalarOut, ScalarIn)

MQC_Input_Real_Scalar is a subroutine is used to set an intrinsic real to an MQC_Scalar

subroutine mqc_input_complex_scalar (ScalarOut, ScalarIn)

MQC_Input_Complex_Scalar is a subroutine is used to set an intrinsic complex to an MQC_Scalar

subroutine mgc output mgcscalar scalar (ScalarOut, ScalarIn)

MQC_Output MQCScalar_Scalar is a subroutine used to output an MQC_scalar equal to an MQC_Scalar

subroutine mqc_output_integer_scalar (ScalarOut, ScalarIn)

MQC_Output_Integer_Scalar is a subroutine used to output an intrinsic integer equal to an MQC_Scalar

• subroutine mqc_output_real_scalar (ScalarOut, ScalarIn)

MQC_Output_Real_Scalar is a subroutine used to output an intrinsic real equal to an MQC_Scalar

subroutine mqc_output_complex_scalar (ScalarOut, ScalarIn)

MQC_Output_Complex_Scalar is a subroutine used to output an intrinsic complex equal to an MQC_Scalar

subroutine mqc_set_vector2vector (VectorOut, VectorIn)

MQC_Set_Vector2Vector is a subroutine that sets a MQC vector equal to another MQC vector

subroutine mqc_set_vector2integerarray (ArrayOut, VectorIn)

MQC_Set_Vector2IntegerArray is a subroutine that outputs an MQC vector to a rank 1 intrinsic integer array

• subroutine mgc set vector2realarray (ArrayOut, VectorIn)

MQC_Set_Vector2RealArray is a subroutine that outputs an MQC vector to a rank 1 intrinsic real array

subroutine mqc_set_vector2complexarray (ArrayOut, VectorIn)

MQC_Set_Vector2ComplexArray is a subroutine that outputs an MQC vector to a rank 1 intrinsic complex array

• subroutine mqc_set_array2vector_integer (VectorOut, ArrayIn)

MQC_Set_Array2Vector_Integer is a subroutine that sets a rank 1 intrinsic integer array equal to a MQC vector

• subroutine mqc_set_array2vector_real (VectorOut, ArrayIn)

MQC_Set_Array2Vector_Real is a subroutine that sets a rank 1 vector intrinsic real array equal to a MQC vector

subroutine mqc_set_array2vector_complex (VectorOut, ArrayIn)

MQC_Set_Array2Vector_Complex is a subroutine that sets a rank 1 vector intrinsic complex array equal to a MQC vector

subroutine mqc_set_matrix2matrix (MatrixOut, MatrixIn)

MQC_Set_Matrix2Matrix is a subroutine that sets an MQC matrix equal to another MQC matrix

subroutine mqc_set_matrix2integerarray (ArrayOut, MatrixIn)

MQC_Set_Matrix2IntegerArray is a subroutine that sets an intrinsic integer rank-2 array equal to an MQC matrix

subroutine mgc set matrix2realarray (ArrayOut, MatrixIn)

MQC_Set_Matrix2RealArray is a subroutine that sets an intrinsic real rank-2 array equal to an MQC matrix

subroutine mqc_set_matrix2complexarray (ArrayOut, MatrixIn)

MQC_Set_Matrix2ComplexArray is a subroutine that sets an intrinsic complex rank-2 array equal to an MQC matrix

subroutine mqc_set_integerarray2matrix (MatrixOut, ArrayIn)

MQC_Set_IntegerArray2Matrix is a subroutine that sets an MQC matrix equal to an intrinsic integer rank-2 array

subroutine mgc set realarray2matrix (MatrixOut, ArrayIn)

MQC_Set_RealArray2Matrix is a subroutine that sets an MQC matrix equal to an intrinsic real rank-2 array

• subroutine mgc set complexarray2matrix (MatrixOut, ArrayIn)

MQC_Set_ComplexArray2Matrix is a subroutine that sets an MQC matrix equal to an intrinsic complex rank-2 array

subroutine mqc_set_array2tensor (TensorOut, ArrayIn)

6.5.1 Detailed Description

Assigns a variable to the value of another

6.5.2 Member Function/Subroutine Documentation

6.5.2.1 mqc_input_complex_scalar()

MQC Input Complex Scalar is a subroutine is used to set an intrinsic complex to an MQC Scalar

Purpose:

MQC_Input_Complex_Scalar is a subroutine is used to set an intrinsic complex to an MQC_Scalar.

Parameters

in,out	ScalarOut	
		ScalarOut is Type(MQC_Scalar) The name of the output variable.
in	ScalarIn	
		ScalarIn is Complex(kind=real64) The value of the input variable.

Author

L. M. Thompson

Date

2017

6.5.2.2 mqc_input_integer_scalar()

MQC_Input_Integer_Scalar is a subroutine is used to set an intrinsic integer to an MQC_Scalar

Purpose:

 ${\tt MQC_Input_Integer_Scalar} \ \ is \ \ a \ \ subroutine \ \ is \ used \ \ to \ set \ \ an \ \ intrinsic \ \ integer \ \ to \ \ an \ \ {\tt MQC_Scalar}.$

Parameters

in,out	ScalarOut	
		ScalarOut is Type(MQC_Scalar) The name of the output variable.
in	ScalarIn	
		ScalarIn is Integer(kind=int64) The value of the input variable.

Author

L. M. Thompson

Date

2016

6.5.2.3 mqc_input_real_scalar()

MQC_Input_Real_Scalar is a subroutine is used to set an intrinsic real to an MQC_Scalar

Purpose:

 ${\tt MQC_Input_Integer_Scalar} \ \ {\tt is} \ \ {\tt a} \ \ {\tt subroutine} \ \ {\tt is} \ \ {\tt used} \ \ {\tt to} \ \ {\tt set} \ \ {\tt an} \ \ {\tt intrinsic} \ \ {\tt real} \ \ {\tt to} \ \ {\tt an} \ \ {\tt MQC_Scalar}.$

Parameters

in,out	ScalarOut	
		ScalarOut is Type(MQC_Scalar) The name of the output variable.
in	ScalarIn	
		ScalarIn is Real(kind=real64) The value of the input variable.

Author

L. M. Thompson

Date

2016

6.5.2.4 mqc_output_complex_scalar()

MQC_Output_Complex_Scalar is a subroutine used to output an intrinsic complex equal to an MQC_Scalar

Purpose:

MQC_Output_Complex_Scalar is a subroutine used to output an intrinsic complex equal to an MQC_Scalar.

Parameters

in,out	ScalarOut	
		ScalarOut is Complex(kind=real64) The name of the output variable.
in	ScalarIn	
		ScalarIn is Type(MQC_Scalar) The value of the input variable.

Author

L. M. Thompson

Date

2017

6.5.2.5 mqc_output_integer_scalar()

MQC_Output_Integer_Scalar is a subroutine used to output an intrinsic integer equal to an MQC_Scalar

Purpose:

 ${\tt MQC_Output_Integer_Scalar} \ is \ a \ subroutine \ used \ to \ output \ an \ intrinsic \ integer \ equal \ to \ an \ {\tt MQC_Scalar}.$

Parameters

in,out	ScalarOut	
		ScalarOut is Integer(kind=int64) The name of the output variable.
in	ScalarIn	
		ScalarIn is Type(MQC_Scalar) The value of the input variable.

Author

L. M. Thompson

Date

2016

6.5.2.6 mqc_output_mqcscalar_scalar()

MQC_Output MQCScalar_Scalar is a subroutine used to output an MQC_scalar equal to an MQC_Scalar

Purpose:

 ${\tt MQC_Output_MQCScalar_Scalar} \ \ is \ a \ subroutine \ used \ to \ output \ an \ {\tt MQC_Scalar} \ \ equal \ to \ an \ {\tt MQC_Scalar}.$

Parameters

in,out	ScalarOut	
		ScalarOut is Type(MQC_Scalar) The name of the output variable.
in	ScalarIn	
		ScalarIn is Type(MQC_Scalar) The value of the input variable.

Author

L. M. Thompson

Date

2016

6.5.2.7 mqc_output_real_scalar()

MQC_Output_Real_Scalar is a subroutine used to output an intrinsic real equal to an MQC_Scalar

Purpose:

MQC_Output_Complex_Scalar is a subroutine used to output an intrinsic real equal to an MQC_Scalar.

Parameters

in,out	ScalarOut	
		ScalarOut is Real(kind=real64) The name of the output variable.
in	ScalarIn	
		ScalarIn is Type(MQC_Scalar) The value of the input variable.

Author

L. M. Thompson

Date

2016

6.5.2.8 mqc_set_array2tensor()

```
subroutine mqc_algebra::assignment(=)::mqc_set_array2tensor ( type\left(mqc\_r4tensor\right), \; intent\left(inout\right) \; \textit{TensorOut}, \\ class(*), \; dimension\left(:,:,:,:\right), \; intent\left(in\right) \; \textit{ArrayIn} \; )
```

6.5.2.9 mqc_set_array2vector_complex()

MQC_Set_Array2Vector_Complex is a subroutine that sets a rank 1 vector intrinsic complex array equal to a MQC vector

Purpose:

 ${\tt MQC_Set_Array2Vector_Complex}$ is a subroutine that sets a rank 1 vector intrinsic complex array equal to a ${\tt MQC}$ vector.

Parameters

in,out	VectorOut	
		VectorOut is Type(MQC_Vector) The MQC vector that will be set equal to the rank 1 intrinsic array
in	ArrayIn	
		ArrayOut is Complex(kind=real64),Dimension(:) The rank 1 intrinsic array whose data will be input into the MQC vector.

Author

L. M. Thompson

Date

2017

6.5.2.10 mqc_set_array2vector_integer()

MQC_Set_Array2Vector_Integer is a subroutine that sets a rank 1 intrinsic integer array equal to a MQC vector

Purpose:

 ${\tt MQC_Set_Array2Vector_Integer}$ is a subroutine that sets a rank 1 intrinsic integer array equal to a ${\tt MQC}$ vector

Parameters

in,out	VectorOut	VectorOut is Type(MQC_Vector) The MQC vector that will be set equal to the rank 1 intrinsic array
in	ArrayIn	ArrayOut is Integer(kind=int64),Dimension(:) The rank 1 intrinsic array whose data will be input into the MQC vector.

Author

H. P. Hratchian

Date

2016

6.5.2.11 mqc_set_array2vector_real()

MQC_Set_Array2Vector_Real is a subroutine that sets a rank 1 vector intrinsic real array equal to a MQC vector

Purpose:

 $\mbox{MQC_Set_Array2Vector_Real}$ is a subroutine that sets a rank 1 vector intrinsic real array equal to a \mbox{MQC} vector.

Parameters

in,out	VectorOut	
		VectorOut is Type(MQC_Vector) The MQC vector that will be set equal to the rank 1 intrinsic array
in	ArrayIn	
		ArrayOut is Real(kind=real64),Dimension(:) The rank 1 intrinsic array whose data will be input into the MQC vector.

Author

H. P. Hratchian

Date

2016

6.5.2.12 mqc_set_complexarray2matrix()

MQC_Set_ComplexArray2Matrix is a subroutine that sets an MQC matrix equal to an intrinsic complex rank-2 array

Purpose:

 ${\tt MQC_Set_ComplexArray2Matrix}$ is a subroutine that sets an ${\tt MQC}$ matrix equal to an intrinsic complex rank-2 array.

Parameters

in,out	MatrixOut	
		MatrixOut is Type(MQC_Matrix)
		The MQC matrix to be set equal to the complex array.
in	ArrayIn	
		<pre>ArrayIn is Complex(kind=real64),Dimension(:,:)</pre>
		The complex array to be input into MatrixOut.
onorated by Day	l and	

Author

L. M. Thompson

Date

2017

6.5.2.13 mqc_set_integerarray2matrix()

MQC_Set_IntegerArray2Matrix is a subroutine that sets an MQC matrix equal to an intrinsic integer rank-2 array

Purpose:

 $\texttt{MQC_Set_IntegerArray2Matrix}$ is a subroutine that sets an MQC matrix equal to an intrinsic integer rank-2 array.

Parameters

in,out	MatrixOut	
		MatrixOut is Type(MQC $_$ Matrix) The MQC matrix to be set equal to the integer array.
in	ArrayIn	
		ArrayIn is Integer(kind=int64),Dimension(:,:) The integer array to be input into MatrixOut.

Author

L. M. Thompson

Date

2016

6.5.2.14 mqc_set_matrix2complexarray()

MQC_Set_Matrix2ComplexArray is a subroutine that sets an intrinsic complex rank-2 array equal to an MQC matrix

Purpose:

 ${\tt MQC_Set_Matrix2ComplexArray}$ is a subroutine that sets an intrinsic complex rank-2 array equal to an ${\tt MQC}$ matrix.

Parameters

in,out	ArrayOut	
		ArrayOut is Complex(kind=real64), Dimension(:,:), Allocatable The complex array to be set equal to the MQC matrix.
in	MatrixIn	
		MatrixIn is Type(MQC_Matrix) The MQC matrix to be input into ArrayOut.

Author

L. M. Thompson

Date

2017

6.5.2.15 mqc_set_matrix2integerarray()

MQC_Set_Matrix2IntegerArray is a subroutine that sets an intrinsic integer rank-2 array equal to an MQC matrix

Purpose:

 ${\tt MQC_Set_Matrix2IntegerArray}$ is a subroutine that sets an intrinsic integer rank-2 array equal to an ${\tt MQC}$ matrix.

in,out	ArrayOut	
		ArrayOut is Integer(kind=int64),Dimension(:,:),Allocatable The integer array to be set equal to the MQC matrix.
in	MatrixIn	
		MatrixIn is Type(MQC_Matrix) The MQC matrix to be input into ArrayOut.

Author

L. M. Thompson

Date

2016

6.5.2.16 mqc_set_matrix2matrix()

MQC_Set_Matrix2Matrix is a subroutine that sets an MQC matrix equal to another MQC matrix

Purpose:

 $\texttt{MQC_Set_Matrix} \texttt{2Matrix}$ is a subroutine that sets an MQC matrix equal to another MQC matrix.

Parameters

in,out	MatrixOut	
		MatrixOut is Class(MQC_Matrix) The MQC matrix to be set equal to the incoming MQC matrix.
in	MatrixIn	
		MatrixIn is Class(MQC_Matrix) The MQC matrix to be input into MatrixOut.

Author

L. M. Thompson

Date

2016

6.5.2.17 mqc_set_matrix2realarray()

MQC_Set_Matrix2RealArray is a subroutine that sets an intrinsic real rank-2 array equal to an MQC matrix

Purpose:

 $\mbox{MQC_Set_Matrix}2\mbox{RealArray}$ is a subroutine that sets an intrinsic real rank-2 array equal to an MQC matrix.

Parameters

in,out	ArrayOut	
		ArrayOut is Real(kind=real64),Dimension(:,:),Allocatable The real array to be set equal to the MQC matrix.
in	MatrixIn	
		MatrixIn is Type(MQC_Matrix) The MQC matrix to be input into $ArrayOut.$

Author

L. M. Thompson

Date

2016

6.5.2.18 mqc_set_realarray2matrix()

MQC_Set_RealArray2Matrix is a subroutine that sets an MQC matrix equal to an intrinsic real rank-2 array

Purpose:

 $MQC_Set_RealArray2Matrix$ is a subroutine that sets an MQC matrix equal to an intrinsic real rank-2 array.

Parameters

in,out	MatrixOut	
		MatrixOut is Type(MQC_Matrix) The MQC matrix to be set equal to the real array.
in	ArrayIn	
		ArrayIn is Real(kind=real64),Dimension(:,:) The real array to be input into MatrixOut.

Author

L. M. Thompson

Date

2016

6.5.2.19 mqc_set_vector2complexarray()

MQC Set Vector2ComplexArray is a subroutine that outputs an MQC vector to a rank 1 intrinsic complex array

Purpose:

 ${\tt MQC_Set_Vector2ComplexArray}$ is a subroutine that outputs an ${\tt MQC}$ vector to a rank 1 intrinsic complex array.

in,out	ArrayOut	
		ArrayOut is Complex(kind=real64),Dimension(:) The rank 1 intrinsic array which will receive the contents of MQC_Vector.
in	VectorIn	
		VectorIn is Type(MQC_Vector) The MQC_Vector whose data will be output into the intrinsic array.

Author

L. M. Thompson

Date

2017

6.5.2.20 mqc_set_vector2integerarray()

MQC_Set_Vector2IntegerArray is a subroutine that outputs an MQC vector to a rank 1 intrinsic integer array

Purpose:

 $\texttt{MQC_Set_Vector2IntegerArray}$ is a subroutine that outputs an MQC vector to a rank 1 intrinsic integer array.

Parameters

in,out	ArrayOut	
		ArrayOut is Integer(kind=int64),Dimension(:) The rank 1 intrinsic array which will receive the contents of MQC_Vector.
in	VectorIn	
		VectorIn is Type(MQC_Vector) The MQC_Vector whose data will be output into the intrinsc array.

Author

H. P. Hratchian

Date

2016

6.5.2.21 mqc_set_vector2realarray()

MQC_Set_Vector2RealArray is a subroutine that outputs an MQC vector to a rank 1 intrinsic real array

Purpose:

 $\mbox{MQC_Set_Vector2RealArray}$ is a subroutine that outputs an \mbox{MQC} vector to a rank 1 intrinsic real array.

Parameters

in,out	ArrayOut	
		ArrayOut is Real(kind=real64),Dimension(:) The rank 1 intrinsic array which will receive the contents of MQC_Vector.
in	VectorIn	
1	Vectoriii	

Author

H. P. Hratchian

Date

2016

6.5.2.22 mqc_set_vector2vector()

MQC_Set_Vector2Vector is a subroutine that sets a MQC vector equal to another MQC vector

Purpose:

 $\mbox{MQC_Set_Vector}\mbox{2Vector}$ is a subroutine that sets a MQC vector equal to another \mbox{MQC} vector.

Parameters

in, ou	ıt <i>VectorOut</i>	
		VectorOut is Type(MQC_Vector) The MQC vector that will be set equal to VectorIn.
in	VectorIn	
		VectorIn is Type(MQC_Vector) The MQC vector whose contents will be copied to VectorOut.

Author

H. P. Hratchian

L. M. Thompson

Date

2016

The documentation for this interface was generated from the following file:

• src/mqc_algebra.F03

6.6 mqc_est::assignment(=) Interface Reference

Public Member Functions

- subroutine mqc_integral_output_array (matrixOut, integralIn)
- subroutine mqc_eigenvalues_output_array (vectorOut, eigenvaluesIn)

6.6.1 Member Function/Subroutine Documentation

6.6.1.1 mqc_eigenvalues_output_array()

6.6.1.2 mqc_integral_output_array()

The documentation for this interface was generated from the following file:

• src/mqc_est.F03

6.7 mqc_algebra::atan Interface Reference

Returns the arctangent

Public Member Functions

type(mqc_scalar) function mqc_scalar_atan (Scalar)
 MQC_Scalar_ATan is a function used to return the arctangent of an MQC_scalar

6.7.1 Detailed Description

Returns the arctangent

6.7.2 Member Function/Subroutine Documentation

6.7.2.1 mqc scalar atan()

MQC_Scalar_ATan is a function used to return the arctangent of an MQC_scalar

Purpose:

 $\ensuremath{\mathtt{MQC_Scalar_ATan}}$ is a function used to return the arctangent of an $\ensuremath{\mathtt{MQC_scalar}}.$

in	Scalar	
		Scalar is Type(MQC_Scalar) The argument of the function.
		The argument of the function.

Author

L. M. Thompson

Date

2019

The documentation for this interface was generated from the following file:

• src/mqc_algebra.F03

6.8 mgc algebra::atan2 Interface Reference

Returns the arctangent accounting for circle quadrant

Public Member Functions

type(mqc_scalar) function mqc_scalar_atan2 (Scalar)

MQC_Scalar_ATan2 is a function used to return the arctangent of an MQC_scalar accounting for quadrant of Argand diagram

6.8.1 Detailed Description

Returns the arctangent accounting for circle quadrant

6.8.2 Member Function/Subroutine Documentation

6.8.2.1 mqc_scalar_atan2()

MQC_Scalar_ATan2 is a function used to return the arctangent of an MQC_scalar accounting for quadrant of Argand diagram

Purpose:

 $\texttt{MQC_Scalar_ATan2}$ is a function used to return the arctangent of an $\texttt{MQC_scalar}$ accounting for quadrant of Argand diagram.

in	Scalar	
		Scalar is Type(MQC_Scalar) The argument of the function.

Author

L. M. Thompson

Date

2019

The documentation for this interface was generated from the following file:

src/mqc algebra.F03

6.9 mqc_algebra::cmplx Interface Reference

Defines a complex number

Public Member Functions

- type(mqc_scalar) function mqc_scalar_cmplx (Scalar1, Scalar2)
 - MQC_Scalar_Cmplx is a function used to set a complex MQC_Scalar type variable from two other MQC_scalars
- type(mqc_vector) function mqc_vector_cmplx (Vector1, Vector2)

MQC_Vector_Cmplx is a function that takes a MQC vector representing the real part and a MQC vector representing the imaginary part and combines them into another MQC vector

6.9.1 Detailed Description

Defines a complex number

6.9.2 Member Function/Subroutine Documentation

6.9.2.1 mqc_scalar_cmplx()

MQC_Scalar_Cmplx is a function used to set a complex MQC_Scalar type variable from two other MQC_scalars

Purpose:

```
{\tt MQC\_Scalar\_Cmplx} is a function used to set a complex {\tt MQC\_Scalar} type variable from two other {\tt MQC\_Scalar} variables.
```

in	Scalar1	
		Scalar1 is Type(MQC_Scalar) The real part of MQC_Scalar_Cmplx.
in	Scalar2	
		Scalar2 is Type(MQC_Scalar) The imaginary part of MQC_Scalar_Cmplx.

Author

L. M. Thompson

Date

2019

6.9.2.2 mqc_vector_cmplx()

MQC_Vector_Cmplx is a function that takes a MQC vector representing the real part and a MQC vector representing the imaginary part and combines them into another MQC vector

Purpose:

 $\mbox{MQC_Vector_Cmplx}$ is a function that takes a MQC vector representing the real part and a MQC vector representing the imaginary part and combines them into another MQC vector.

Parameters

in	Vector1	
		Vector1 is Type(MQC_Vector) The MQC vector containing the real part.
in	Vector2	
		Vector2 is Type(MQC_Vector) The MQC vector containing the imaginary part.

Author

L. M. Thompson

Date

2019

The documentation for this interface was generated from the following file:

• src/mqc_algebra.F03

6.10 mgc algebra::conjg Interface Reference

Returns the complex conjugate

Public Member Functions

type(mqc_scalar) function mqc_scalar_complex_conjugate (ScalarIn)
 MQC_Scalar_Complex_Conjugate is a function that returns the complex conjugate of an MQC_Scalar

6.10.1 Detailed Description

Returns the complex conjugate

6.10.2 Member Function/Subroutine Documentation

6.10.2.1 mqc_scalar_complex_conjugate()

```
\label{type mqc_scalar} type (mqc\_scalar] function mqc\_algebra::conjg::mqc\_scalar\_complex\_conjugate ( \\ type (mqc\_scalar), intent(in) \textit{ScalarIn} )
```

MQC_Scalar_Complex_Conjugate is a function that returns the complex conjugate of an MQC_Scalar

Purpose:

 $\texttt{MQC_Scalar_Complex_Conjugate}$ is a function that returns the complex conjugate of an $\texttt{MQC_Scalar.}$

in	Scalar⊷	
	In	ScalarIn is Type(MQC_Scalar)
		The MQC_Scalar input variable.

Author

L. M. Thompson

Date

2018

The documentation for this interface was generated from the following file:

• src/mqc_algebra.F03

6.11 mqc_algebra::contraction Interface Reference

Contracts two arrays

Public Member Functions

type(mqc_scalar) function mqc_matrix_matrix_contraction (Matrix1, Matrix2)

6.11.1 Detailed Description

Contracts two arrays

6.11.2 Member Function/Subroutine Documentation

6.11.2.1 mqc_matrix_matrix_contraction()

The documentation for this interface was generated from the following file:

src/mqc_algebra.F03

6.12 mgc est::contraction Interface Reference

Public Member Functions

- type(mqc_scalar) function mqc_scf_integral_contraction (integral1, integral2)
- type(mqc_scf_integral) function mqc_eri_integral_contraction (eris, integral, label)

6.12.1 Member Function/Subroutine Documentation

6.12.1.1 mqc_eri_integral_contraction()

6.12.1.2 mqc_scf_integral_contraction()

The documentation for this interface was generated from the following file:

• src/mqc_est.F03

6.13 mqc_algebra::cos Interface Reference

Returns the cosine

Public Member Functions

```
    type(mqc_scalar) function mqc_scalar_cos (Scalar)
    MQC_Scalar_Cos is a function used to return the cosine of an MQC_scalar
```

6.13.1 Detailed Description

Returns the cosine

6.13.2 Member Function/Subroutine Documentation

6.13.2.1 mqc scalar cos()

MQC_Scalar_Cos is a function used to return the cosine of an MQC_scalar

Purpose:

MQC_Scalar_Cos is a function used to return the cosine of an MQC_scalar.

Parameters

in	Scalar	
		Scalar is Type(MQC_Scalar) The argument of the function.

Author

L. M. Thompson

Date

2019

The documentation for this interface was generated from the following file:

src/mqc algebra.F03

6.14 mqc_algebra::dagger Interface Reference

Returns the Hermitian conjugate

Public Member Functions

- type(mqc_vector) function mqc_vector_conjugate_transpose (Vector)
 - MQC_Vector_Conjugate_Transpose is a function that returns the conjugate transpose of an MQC vector
- type(mqc_matrix) function mqc_matrix_conjugate_transpose (Matrix)

MQC_Matrix_Conjugate_Transpose is a function that returns the conjugate transpose of a MQC matrix

6.14.1 Detailed Description

Returns the Hermitian conjugate

6.14.2 Member Function/Subroutine Documentation

6.14.2.1 mqc_matrix_conjugate_transpose()

MQC_Matrix_Conjugate_Transpose is a function that returns the conjugate transpose of a MQC matrix

Purpose:

 ${\tt MQC_Matrix_Conjugate_Transpose}$ is a function that returns the conjugate transpose of a ${\tt MQC}$ matrix.

Parameters

in	Matrix	
		Matrix is Type(MQC_Matrix) The MQC matrix to be conjugate transposed.

Author

L. M. Thompson

Date

2016

6.14.2.2 mqc_vector_conjugate_transpose()

```
\label{type mqc_vector} type (\texttt{mqc\_vector}) \  \, \text{function mqc\_algebra::} \\ \text{dagger::} \\ \text{mqc\_vector\_conjugate\_transpose} \  \, (\\ \\ \text{class}(\texttt{mqc\_vector}), \  \, \text{intent(in)} \  \, \textit{Vector} \  \, )
```

MQC_Vector_Conjugate_Transpose is a function that returns the conjugate transpose of an MQC vector

Purpose:

 $\ensuremath{\mathtt{MQC_Vector_Conjugate_Transpose}}$ is a function that returns the conjugate transpose of an $\ensuremath{\mathtt{MQC}}$ vector.

j	in	Vector	
			Vector is Type(MQC_Vector) The MQC vector to conjugate transpose.

Author

L. M. Thompson

Date

2017

The documentation for this interface was generated from the following file:

• src/mqc_algebra.F03

6.15 mqc_est::dagger Interface Reference

Public Member Functions

• type(mqc_scf_integral) function mqc_integral_conjugate_transpose (integral, label)

6.15.1 Member Function/Subroutine Documentation

6.15.1.1 mqc_integral_conjugate_transpose()

The documentation for this interface was generated from the following file:

• src/mqc_est.F03

6.16 mqc_algebra::dot_product Interface Reference

Returns the dot product

Public Member Functions

type(mqc_scalar) function mqc_vectorvectordotproduct (Vector1, Vector2)
 MQC_VectorVectorDotProduct is a function that returns the dot product of two MQC vectors

6.16.1 Detailed Description

Returns the dot product

6.16.2 Member Function/Subroutine Documentation

6.16.2.1 mgc_vectorvectordotproduct()

MQC VectorVectorDotProduct is a function that returns the dot product of two MQC vectors

Purpose:

 ${\tt MQC_VectorVectorDotProduct}$ is a function that returns the dot product of two ${\tt MQC}$ vectors. The first vector should be a row vector, while the second vector should be a column vector. The vectors should be of the same length.

Parameters

in	Vector1	
		Vector1 is Type(MQC_Vector) The MQC row vector.
in	Vector2	
		Vector2 is Type(MQC_Vector) The MQC column vector.

Author

- H. P. Hratchian
- L. M. Thompson

Date

2016

The documentation for this interface was generated from the following file:

src/mgc algebra.F03

6.17 mgc est::dot product Interface Reference

Public Member Functions

• type(mgc scalar) function mgc eigenvalue eigenvalue dotproduct (eigenvalueA, eigenvalueB)

6.17.1 Member Function/Subroutine Documentation

6.17.1.1 mgc eigenvalue eigenvalue dotproduct()

The documentation for this interface was generated from the following file:

• src/mqc_est.F03

6.18 mqc_algebra::matmul Interface Reference

Multiplies two arrays

Public Member Functions

- type(mqc_matrix) function mqc_matrixmatrixdotproduct (MA, MB)
- type(mqc_vector) function mqc_matrixvectordotproduct (MA, VB)
- type(mqc_vector) function mqc_vectormatrixdotproduct (VA, MB)

6.18.1 Detailed Description

Multiplies two arrays

6.18.2 Member Function/Subroutine Documentation

6.18.2.1 mqc_matrixmatrixdotproduct()

6.18.2.2 mgc matrixvectordotproduct()

6.18.2.3 mqc_vectormatrixdotproduct()

The documentation for this interface was generated from the following file:

• src/mqc_algebra.F03

6.19 mqc_est::matmul Interface Reference

Public Member Functions

- type(mgc scf integral) function mgc integral matrix multiply (integralA, matrixB, label)
- type(mqc_scf_integral) function mqc_matrix_integral_multiply (matrixA, integralB, label)
- type(mqc_scf_integral) function mqc_integral_integral_multiply (integralA, integralB, label)
- type(mgc scf integral) function mgc integral eigenvalues multiply (integralA, eigenvaluesB, label)
- type(mgc scf integral) function mgc eigenvalues integral multiply (eigenvaluesA, integralB, label)
- type(mqc_scf_eigenvalues) function mqc_eigenvalues_eigenvalues_multiply (eigenvaluesA, eigenvaluesB, label)

6.19.1 Member Function/Subroutine Documentation

6.19.1.1 mqc_eigenvalues_eigenvalues_multiply()

6.19.1.2 mqc_eigenvalues_integral_multiply()

6.19.1.3 mqc_integral_eigenvalues_multiply()

6.19.1.4 mqc_integral_integral_multiply()

6.19.1.5 mgc integral matrix multiply()

6.19.1.6 mqc_matrix_integral_multiply()

The documentation for this interface was generated from the following file:

src/mqc est.F03

6.20 mqc_algebra::matrix_symm2sq Interface Reference

Sets a symmetric packed intrinsic array as a square packed intrinsic array

Public Member Functions

subroutine matrix symm2sq integer (N, I Symm, I Sq)

Matrix_Symm2Sq_Integer is a subroutine that converts a symmetric- packed intrinsic integer matrix to a rank-2 intrinsic integer array

subroutine matrix symm2sq real (N, A Symm, A Sq)

Matrix_Symm2Sq_Real is a subroutine that converts a symmetric- packed intrinsic real matrix to a rank-2 intrinsic real array

subroutine matrix_symm2sq_complex (N, A_Symm, A_Sq)

Matrix_Symm2Sq_Complex is a subroutine that converts a symmetric- packed intrinsic complex matrix to a rank-2 intrinsic complex array

6.20.1 Detailed Description

Sets a symmetric packed intrinsic array as a square packed intrinsic array

6.20.2 Member Function/Subroutine Documentation

6.20.2.1 matrix symm2sq complex()

Matrix_Symm2Sq_Complex is a subroutine that converts a symmetric- packed intrinsic complex matrix to a rank-2 intrinsic complex array

Purpose:

```
Matrix_Symm2Sq_Complex is a subroutine that converts a symmetric-packed intrinsic complex matrix to a rank-2 complex array.

TODO: Move this routine to MQC general
```

in	N	
		N is Integer(kind=int64) The leading dimension of symmetric-packed matrix I_Symm. unpacked.
in	A_Symm	
		A_Symm is Complex(kind=real64),Dimension(:) The symmetric-packed intrinsic complex matrix to be unpacked.
out	A_Sq	
		A_Sq is Complex(kind=real64),Dimension(N,N) The upacked intrinsic complex matrix output.

Author

L. M. Thompson

Date

2017

6.20.2.2 matrix_symm2sq_integer()

```
subroutine mqc_algebra::matrix_symm2sq::matrix_symm2sq_integer ( integer(kind=int64),\ intent(in)\ N,\\ integer(kind=int64),\ dimension(:),\ intent(in)\ I\_Symm,\\ integer(kind=int64),\ dimension(n,n),\ intent(out)\ I\_Sq\ )
```

Matrix_Symm2Sq_Integer is a subroutine that converts a symmetric- packed intrinsic integer matrix to a rank-2 intrinsic integer array

Purpose:

```
\label{lem:matrix_symm2sq_Integer} \mbox{ a subroutine that converts a symmetric-packed intrinsic integer matrix to a rank-2 integer array.} \\ \mbox{TODO: Move this routine to MQC general}
```

Parameters

in	N	N is Integer(kind=int64) The leading dimension of symmetric-packed matrix I_Symm. unpacked.
in	I_Symm	
Generated b	y Doxygen	<pre>I_Symm is Integer(kind=int64),Dimension(:) The symmetric-packed intrinsic integer matrix to be unpacked.</pre>
out	I_Sq	
		I_Sq is Integer(kind=int64),Dimension(N,N)

Author

H. P. Hratchian

Date

2017

6.20.2.3 matrix_symm2sq_real()

```
subroutine mqc_algebra::matrix_symm2sq::matrix_symm2sq_real ( integer(kind=int64),\ intent(in)\ \textit{N},\\ real(kind=real64),\ dimension(:),\ intent(in)\ \textit{A\_Symm},\\ real(kind=real64),\ dimension(n,n),\ intent(out)\ \textit{A\_Sq}\ )
```

Matrix_Symm2Sq_Real is a subroutine that converts a symmetric- packed intrinsic real matrix to a rank-2 intrinsic real array

Purpose:

```
Matrix_Symm2Sq_Real is a subroutine that converts a symmetric-packed intrinsic real matrix to a rank-2 real array. TODO: Move this routine to MQC general
```

Parameters

in	N	N is Integer(kind=int64) The leading dimension of symmetric-packed matrix I_Symm. unpacked.
in	A_Symm	A_Symm is Real(kind=real64),Dimension(:) The symmetric-packed intrinsic real matrix to be unpacked.
out	A_Sq	A_Sq is Real(kind=real64),Dimension(N,N) The upacked intrinsic real matrix output.

Author

H. P. Hratchian

Date

2017

The documentation for this interface was generated from the following file:

• src/mqc_algebra.F03

6.21 mqc_algebra::mqc_cast_complex Interface Reference

Sets an array to complex type

Public Member Functions

- type(mqc_vector) function mqc_vector_cast_complex (VA)
 - MQC_vector_cast_complex is a function that converts an MQC vector to its complex space
- type(mqc_matrix) function mqc_matrix_cast_complex (MA)

MQC_Matrix_Cast_Complex is a function that converts an MQC matrix to its complex space

6.21.1 Detailed Description

Sets an array to complex type

6.21.2 Member Function/Subroutine Documentation

6.21.2.1 mqc_matrix_cast_complex()

MQC_Matrix_Cast_Complex is a function that converts an MQC matrix to its complex space

Purpose:

 $\ensuremath{\mathsf{MQC_Matrix_Cast_Complex}}$ is a function that converts an $\ensuremath{\mathsf{MQC}}$ matrix to its complex space.

in	MA	
		MA is Type(MQC_Matrix)
		The MQC matrix to convert.

Author

L. M. Thompson

Date

2017

6.21.2.2 mqc_vector_cast_complex()

```
\label{type (mqc_vector)} $$ function mqc_algebra::mqc_cast_complex::mqc_vector_cast_complex ( type (mqc_vector), intent(in) $VA$ )
```

MQC_vector_cast_complex is a function that converts an MQC vector to its complex space

Purpose:

 $\ensuremath{\text{MQC_vector_cast_complex}}$ is a function that converts an $\ensuremath{\text{MQC}}$ vector to its complex space.

Parameters

in	VA	
		VA is Class(MQC_Vector)
		The MQC vector to convert.

Author

L. M. Thompson

Date

2017

The documentation for this interface was generated from the following file:

• src/mqc_algebra.F03

6.22 mgc algebra::mgc cast integer Interface Reference

Sets an array to integer type

Public Member Functions

• type(mqc_vector) function mqc_vector_cast_integer (VA)

MQC_vector_cast_integer is a function that converts an MQC vector to its integer space

type(mqc_matrix) function mqc_matrix_cast_integer (MA)

MQC_Matrix_Cast_Integer is a function that converts an MQC matrix to its integer space

6.22.1 Detailed Description

Sets an array to integer type

6.22.2 Member Function/Subroutine Documentation

6.22.2.1 mqc_matrix_cast_integer()

MQC Matrix Cast Integer is a function that converts an MQC matrix to its integer space

Purpose:

 $\ensuremath{\text{MQC_Matrix_Cast_Integer}}$ is a function that converts an $\ensuremath{\text{MQC}}$ matrix to its integer space.

Parameters

in	MA	
		MA is Type(MQC_Matrix)
		The MQC matrix to convert.

Author

L. M. Thompson

Date

2019

6.22.2.2 mqc_vector_cast_integer()

MQC_vector_cast_integer is a function that converts an MQC vector to its integer space

Purpose:

 $\ensuremath{\mathsf{MQC}}\xspace\xspace\xspace$ vector is a function that converts an $\ensuremath{\mathsf{MQC}}\xspace\xspa$

Parameters

in	VA	
		VA is Type(MQC_Vector)
		The MQC vector to convert.

Author

L. M. Thompson

Date

2019

The documentation for this interface was generated from the following file:

• src/mgc algebra.F03

6.23 mqc_algebra::mqc_cast_real Interface Reference

Sets an array to real type

Public Member Functions

• type(mqc_vector) function mqc_vector_cast_real (VA)

MQC_vector_cast_real is a function that converts an MQC vector to its real space

type(mqc_matrix) function mqc_matrix_cast_real (MA)

MQC_Matrix_Cast_Real is a function that converts an MQC matrix to its real space

6.23.1 Detailed Description

Sets an array to real type

6.23.2 Member Function/Subroutine Documentation

6.23.2.1 mqc_matrix_cast_real()

MQC_Matrix_Cast_Real is a function that converts an MQC matrix to its real space

Purpose:

 $\ensuremath{\text{MQC_Matrix_Cast_Real}}$ is a function that converts an $\ensuremath{\text{MQC}}$ matrix to its real space.

Parameters

in	MA	
		MA is Type(MQC_Matrix)
		The MQC matrix to convert.

Author

X. Sheng

Date

2017

6.23.2.2 mqc_vector_cast_real()

MQC_vector_cast_real is a function that converts an MQC vector to its real space

Purpose:

 $\ensuremath{\mathsf{MQC_vector_cast_real}}$ is a function that converts an $\ensuremath{\mathsf{MQC}}$ vector to its real space.

in	VA	
		VA is Class(MQC_Vector) The MQC vector to convert.

Author

X. Sheng

Date

2017

The documentation for this interface was generated from the following file:

• src/mqc_algebra.F03

6.24 mqc_est::mqc_determinant Type Reference

Public Attributes

- type(mqc_determinant_string) strings
- character(len=64) order
- integer(kind=int64) ndets
- integer(kind=int64) nalpstr
- integer(kind=int64) nbetstr

6.24.1 Member Data Documentation

6.24.1.1 nalpstr

integer(kind=int64) mqc_est::mqc_determinant::nalpstr

6.24.1.2 nbetstr

integer(kind=int64) mqc_est::mqc_determinant::nbetstr

6.24.1.3 ndets

integer(kind=int64) mqc_est::mqc_determinant::ndets

6.24.1.4 order

character(len=64) mqc_est::mqc_determinant::order

6.24.1.5 strings

type(mqc_determinant_string) mqc_est::mqc_determinant::strings

The documentation for this type was generated from the following file:

• src/mqc_est.F03

6.25 mqc_est::mqc_determinant_string Type Reference

Public Attributes

- type(mqc_matrix) alpha
- type(mqc_matrix) beta

6.25.1 Member Data Documentation

6.25.1.1 alpha

 $\verb|type(mqc_matrix)| mqc_est::mqc_determinant_string::alpha|\\$

6.25.1.2 beta

type(mqc_matrix) mqc_est::mqc_determinant_string::beta

The documentation for this type was generated from the following file:

src/mqc_est.F03

6.26 mgc algebra::mgc have complex Interface Reference

Determines in an array is complex type

Public Member Functions

• logical function mqc_vector_havecomplex (Vector)

MQC_Vector_HaveComplex is a function that returns TRUE or FALSE indicating whether the MQC vector has an allocated complex vector

logical function mqc_matrix_havecomplex (Matrix)

MQC_Matrix_HaveComplex is a function used to indicate if an MQC matrix has an allocated complex matrix

6.26.1 Detailed Description

Determines in an array is complex type

6.26.2 Member Function/Subroutine Documentation

6.26.2.1 mqc matrix havecomplex()

MQC_Matrix_HaveComplex is a function used to indicate if an MQC matrix has an allocated complex matrix

Purpose:

 ${\tt MQC_Matrix_HaveComplex}$ is a function that returns TRUE if an ${\tt MQC}$ matrix has an allocated complex matrix and FALSE if it does not.

Parameters

in	Matrix	
		Matrix is Type(MQC_Matrix) The MQC matrix to be tested.

Author

L. M. Thompson

Date

2017

6.26.2.2 mqc_vector_havecomplex()

MQC_Vector_HaveComplex is a function that returns TRUE or FALSE indicating whether the MQC vector has an allocated complex vector

Purpose:

 $\texttt{MQC_Vector_HaveComplex}$ is a function that returns TRUE or FALSE indicating whether the MQC vector has an allocated complex vector.

Parameters

in,out	Vector	
		Vector is Type(MQC_Vector) The MQC_Vector to be tested.

Author

L. M. Thompson

Date

2017

The documentation for this interface was generated from the following file:

• src/mqc_algebra.F03

6.27 mqc_algebra::mqc_have_int Interface Reference

Determines in an array is integer type

Public Member Functions

logical function mqc_vector_haveinteger (Vector)

MQC_Vector_HaveInteger is a function that returns TRUE or FALSE indicating whether the MQC vector has an allocated integer vector

logical function mqc_matrix_haveinteger (Matrix)

MQC_Matrix_HaveInteger is a function used to indicate if an MQC matrix has an allocated integer matrix

6.27.1 Detailed Description

Determines in an array is integer type

6.27.2 Member Function/Subroutine Documentation

6.27.2.1 mqc_matrix_haveinteger()

MQC_Matrix_HaveInteger is a function used to indicate if an MQC matrix has an allocated integer matrix

Purpose:

 ${\tt MQC_Matrix_HaveInteger}$ is a function that returns TRUE if an ${\tt MQC}$ matrix has an allocated integer matrix and FALSE if it does not.

Parameters

in	Matrix	
		Matrix is Type(MQC_Matrix) The MQC matrix to be tested.

Author

L. M. Thompson

Date

2016

6.27.2.2 mqc_vector_haveinteger()

MQC_Vector_HaveInteger is a function that returns TRUE or FALSE indicating whether the MQC vector has an allocated integer vector

Purpose:

 $\texttt{MQC_Vector_HaveInteger}$ is a function that returns TRUE or FALSE indicating whether the MQC vector has an allocated integer vector.

Parameters

Vector is Type(MQC_Vector The MQC_Vector to be tes

Author

H. P. Hratchian

Date

2016

The documentation for this interface was generated from the following file:

• src/mqc_algebra.F03

6.28 mqc_algebra::mqc_have_real Interface Reference

Determines in an array is real type

Public Member Functions

• logical function mqc_vector_havereal (Vector)

MQC_Vector_HaveReal is a function that returns TRUE or FALSE indicating whether the MQC vector has an allocated real vector

logical function mqc_matrix_havereal (Matrix)

MQC_Matrix_HaveReal is a function used to indicate if an MQC matrix has an allocated real matrix

6.28.1 Detailed Description

Determines in an array is real type

6.28.2 Member Function/Subroutine Documentation

6.28.2.1 mqc_matrix_havereal()

MQC_Matrix_HaveReal is a function used to indicate if an MQC matrix has an allocated real matrix

Purpose:

 ${\tt MQC_Matrix_HaveReal}$ is a function that returns TRUE if an MQC matrix has an allocated real matrix and FALSE if it does not.

Parameters

in	Matrix	
		Matrix is Type(MQC_Matrix) The MQC matrix to be tested.

Author

L. M. Thompson

Date

2016

6.28.2.2 mqc_vector_havereal()

MQC_Vector_HaveReal is a function that returns TRUE or FALSE indicating whether the MQC vector has an allocated real vector

Purpose:

 $\mbox{MQC_Vector_HaveReal}$ is a function that returns TRUE or FALSE indicating whether the MQC vector has an allocated real vector.

in	Vector	
		Vector is Type(MQC_Vector) The MQC_Vector to be tested.

Author

H. P. Hratchian

Date

2016

The documentation for this interface was generated from the following file:

• src/mqc_algebra.F03

6.29 mqc_algebra::mqc_matrix Type Reference

Rank 2 array variable

Public Member Functions

Procedure, public print => mqc_print_matrix_algebra1

Print the MQC Matrix

• Procedure, public init => mqc_matrix_initialize

Initialize the MQC Matrix with a specified value

• Procedure, public identity => mqc_matrix_identity

Initialize the MQC Matrix as the identity matrix

Procedure, public set => mgc matrix set

Set all elements in the MQC Matrix to a specified value

• Procedure, public norm => mqc_matrix_norm

Returns the norm of the MQC Matrix

• Procedure, public transpose => mqc matrix transpose

Returns the transpose of the MQC Matrix

• Procedure, public dagger => mqc_matrix_conjugate_transpose

Returns the Hemitian transpose of the MQC Matrix

Procedure, public diag => mqc matrix diagonalize

Returns the eigenvalues and eigenvalues of a symmetric or hermitian MQC Matrix

Procedure, public svd => mqc_matrix_svd

Computes the singular value decomposition of the MQC Matrix

Procedure, public eigensys => mqc_matrix_generalized_eigensystem

Solves the generalized eigenproblem of the MQC Matrix

• Procedure, public inv => mqc matrix inverse

Returns the inverse of the MQC Matrix

Procedure, public det => mqc matrix determinant

Returns the determinant of the MQC Matrix

• Procedure, public trace => mqc matrix trace

Returns the trace of the MQC Matrix

Procedure, public rmsmax => mqc matrix rms max

Returns the root mean square deviation and maximum deviation of elements of the MQC Matrix

• Procedure, public sqrt => mqc_matrix_sqrt

Returns the square root of the MQC Matrix elements

Procedure, public at => mqc_matrix_scalar_at

Returns the value of the specified element of the MQC Matrix

Procedure, public vat => mqc_matrix_vector_at

Returns the vector of the specified subvector of the MQC Matrix

Procedure, public mat => mqc_matrix_matrix_at

Returns the matrix of the specified submatrix of the MQC Matrix

Procedure, public put => mqc_matrix_scalar_put

Updates the specified element of the MQC Matrix to the specified value

Procedure, public vput => mqc_matrix_vector_put

Updates the specified subvector of the MQC Matrix to the specified vector

Procedure, public mput => mqc_matrix_matrix_put

Updates the specified submatrix of the MQC Matrix to the specified matrix

6.29.1 Detailed Description

Rank 2 array variable

6.29.2 Member Function/Subroutine Documentation

```
6.29.2.1 at()
```

```
Procedure, public mqc_algebra::mqc_matrix::at ( )
```

Returns the value of the specified element of the MQC Matrix

6.29.2.2 dagger()

```
Procedure, public mqc_algebra::mqc_matrix::dagger ( )
```

Returns the Hemitian transpose of the MQC Matrix

```
6.29.2.3 det()
Procedure, public mqc_algebra::mqc_matrix::det ( )
Returns the determinant of the MQC Matrix
6.29.2.4 diag()
Procedure, public mqc_algebra::mqc_matrix::diag ( )
Returns the eigenvalues and eigenvalues of a symmetric or hermitian MQC Matrix
6.29.2.5 eigensys()
Procedure, public mqc_algebra::mqc_matrix::eigensys ( )
Solves the generalized eigenproblem of the MQC Matrix
6.29.2.6 identity()
Procedure, public mqc_algebra::mqc_matrix::identity ( )
Initialize the MQC Matrix as the identity matrix
6.29.2.7 init()
Procedure, public mqc_algebra::mqc_matrix::init ( )
Initialize the MQC Matrix with a specified value
6.29.2.8 inv()
```

Procedure, public mqc_algebra::mqc_matrix::inv ()

Returns the inverse of the MQC Matrix

```
6.29.2.9 mat()
```

```
Procedure, public mqc_algebra::mqc_matrix::mat ( )
```

Returns the matrix of the specified submatrix of the MQC Matrix

6.29.2.10 mput()

```
Procedure, public mqc_algebra::mqc_matrix::mput ( )
```

Updates the specified submatrix of the MQC Matrix to the specified matrix

6.29.2.11 norm()

```
Procedure, public mqc_algebra::mqc_matrix::norm ( )
```

Returns the norm of the MQC Matrix

6.29.2.12 print()

```
Procedure, public mqc_algebra::mqc_matrix::print ( )
```

Print the MQC Matrix

6.29.2.13 put()

```
Procedure, public mqc_algebra::mqc_matrix::put ( )
```

Updates the specified element of the MQC Matrix to the specified value

6.29.2.14 rmsmax()

```
Procedure, public mqc_algebra::mqc_matrix::rmsmax ( )
```

Returns the root mean square deviation and maximum deviation of elements of the MQC Matrix

```
6.29.2.15 set()
Procedure, public mqc_algebra::mqc_matrix::set ( )
Set all elements in the MQC Matrix to a specified value
6.29.2.16 sqrt()
Procedure, public mqc_algebra::mqc_matrix::sqrt ( )
Returns the square root of the MQC Matrix elements
6.29.2.17 svd()
Procedure, public mqc_algebra::mqc_matrix::svd ( )
Computes the singular value decomposition of the MQC Matrix
6.29.2.18 trace()
Procedure, public mqc_algebra::mqc_matrix::trace ( )
Returns the trace of the MQC Matrix
6.29.2.19 transpose()
Procedure, public mqc_algebra::mqc_matrix::transpose ( )
Returns the transpose of the MQC Matrix
6.29.2.20 vat()
```

Procedure, public mqc_algebra::mqc_matrix::vat ()

Returns the vector of the specified subvector of the MQC Matrix

6.29.2.21 vput()

```
Procedure, public mqc_algebra::mqc_matrix::vput ( )
```

Updates the specified subvector of the MQC Matrix to the specified vector

The documentation for this type was generated from the following file:

• src/mqc_algebra.F03

6.30 mqc_algebra::mqc_matrix_diagmatrix_put Interface Reference

Sets a diagonal packed intinsic array as an MQC Matrix object

Public Member Functions

• subroutine mqc_matrix_diagmatrix_put_integer (mat, diagMatrixIn)

MQC_Matrix_DiagMatrix_Put_integer is a subroutine that returns a diagonal MQC matrix with elements defined by values in an intrinsic integer vector

• subroutine mgc matrix diagmatrix put real (mat, diagMatrixIn)

MQC_Matrix_DiagMatrix_Put_Real is a subroutine that returns a diagonal MQC matrix with elements defined by values in an intrinsic real vector

subroutine mqc_matrix_diagmatrix_put_complex (mat, diagMatrixIn)

MQC_Matrix_DiagMatrix_Put_Complex is a subroutine that returns a diagonal MQC matrix with elements defined by values in an intrinsic complex vector

• subroutine mqc_matrix_diagmatrix_put_vector (diagVectorIn, mat)

MQC_Matrix_DiagMatrix_Put_Vector is a subroutine that returns a diagonal MQC matrix with elements defined by values in a MQC vector

6.30.1 Detailed Description

Sets a diagonal packed intinsic array as an MQC Matrix object

6.30.2 Member Function/Subroutine Documentation

6.30.2.1 mqc_matrix_diagmatrix_put_complex()

MQC_Matrix_DiagMatrix_Put_Complex is a subroutine that returns a diagonal MQC matrix with elements defined by values in an intrinsic complex vector

Purpose:

MQC_Matrix_DiagMatrix_Put_Complex is a subroutine that returns a diagonal MQC matrix with elements defined by values in an intrinsic complex vector.

in,out	mat	
		Mat is class(MQC_Matrix) MQC matrix to overwrite with output diagonal matrix.
in	Diag⊷ MatrixIn	DiagMatrixIn is complex(kind=real64),dimension(:) Intrinsic complex vector to write as diagonal matrix.

Author

L. M. Thompson

Date

2017

6.30.2.2 mqc_matrix_diagmatrix_put_integer()

MQC_Matrix_DiagMatrix_Put_integer is a subroutine that returns a diagonal MQC matrix with elements defined by values in an intrinsic integer vector

Purpose:

 $\texttt{MQC_Matrix_DiagMatrix_Put_integer}$ is a subroutine that returns a diagonal MQC matrix with elements defined by values in an intrinsic integer vector.

Parameters

in,out	mat	
		Mat is ${ m class}({ m MQC_Matrix})$ MQC matrix to overwrite with output diagonal matrix.
in	Diag⊷ MatrixIn	DiagMatrixIn is integer(kind=int64),dimension(:) Intrinsic integer vector to write as diagonal matrix.

Author

H. P. Hratchian

Date

2017

6.30.2.3 mqc_matrix_diagmatrix_put_real()

MQC_Matrix_DiagMatrix_Put_Real is a subroutine that returns a diagonal MQC matrix with elements defined by values in an intrinsic real vector

Purpose:

 ${\tt MQC_Matrix_DiagMatrix_Put_Real}$ is a subroutine that returns a diagonal ${\tt MQC}$ matrix with elements defined by values in an intrinsic real vector.

Parameters

in,out	mat	
		Mat is class(MQC_Matrix) MQC matrix to overwrite with output diagonal matrix.
in	Diag⊷ MatrixIn	DiagMatrixIn is real(kind=real64),dimension(:) Intrinsic real vector to write as diagonal matrix.

Author

H. P. Hratchian

Date

2017

6.30.2.4 mqc_matrix_diagmatrix_put_vector()

MQC_Matrix_DiagMatrix_Put_Vector is a subroutine that returns a diagonal MQC matrix with elements defined by values in a MQC vector

Purpose:

 ${\tt MQC_Matrix_DiagMatrix_Put_Vector}$ is a subroutine that returns a diagonal ${\tt MQC}$ matrix with elements defined by values in a ${\tt MQC}$ vector.

Parameters

in	Diag⊷ VectorIn	DiagVectorIn is class(MQC_Vector) Name of the MQC vector to write as diagonal matrix.
in,out	mat	
		Mat is class(MQC_Matrix) MQC matrix to overwrite with output diagonal matrix.

Author

L. M. Thompson

Date

2018

The documentation for this interface was generated from the following file:

• src/mqc algebra.F03

6.31 mqc_algebra::mqc_matrix_symmmatrix_put Interface Reference

Sets a symmetric packed intrinsic array as an MQC Matrix object

Public Member Functions

subroutine mqc matrix symmmatrix put integer (mat, symmMatrixIn)

MQC_Matrix_SymmMatrix_Put_Integer is a subroutine that returns a symmetric packed MQC matrix with elements defined by values in an intrinsic integer vector

subroutine mqc_matrix_symmmatrix_put_real (mat, symmMatrixIn)

MQC_Matrix_SymmMatrix_Put_Real is a subroutine that returns a symmetric packed MQC matrix with elements defined by values in an intrinsic real vector

subroutine mqc_matrix_symmmatrix_put_complex (mat, symmMatrixIn)

MQC_Matrix_SymmMatrix_Put_Complex is a subroutine that returns a symmetric packed MQC matrix with elements defined by values in an intrinsic complex vector

6.31.1 Detailed Description

Sets a symmetric packed intrinsic array as an MQC Matrix object

6.31.2 Member Function/Subroutine Documentation

6.31.2.1 mqc_matrix_symmmatrix_put_complex()

MQC_Matrix_SymmMatrix_Put_Complex is a subroutine that returns a symmetric packed MQC matrix with elements defined by values in an intrinsic complex vector

Purpose:

 ${\tt MQC_Matrix_SymmMatrix_Put_Complex}$ is a subroutine that returns a symmetric packed MQC matrix with elements defined by values in an intrinsic complex vector.

Parameters

in,out	mat	
		Mat is class(MQC_Matrix) MQC matrix to overwrite with output symmetric matrix.
in	Symm⊷ MatrixIn	SymmMatrixIn is complex(kind=real64),dimension(:) Intrinsic complex vector to write as symmetric-packed matrix.

Author

L. M. Thompson

Date

2017

6.31.2.2 mqc_matrix_symmmatrix_put_integer()

MQC_Matrix_SymmMatrix_Put_Integer is a subroutine that returns a symmetric packed MQC matrix with elements defined by values in an intrinsic integer vector

Purpose:

 $MQC_Matrix_SymmMatrix_Put_Integer$ is a subroutine that returns a symmetric packed MQC matrix with elements defined by values in an intrinsic integer vector.

Parameters

in,out	mat	
		Mat is class(MQC_Matrix) MQC matrix to overwrite with output symmetric matrix.
in	Symm⊷ MatrixIn	SymmMatrixIn is integer(kind=int64),dimension(:) Intrinsic integer vector to write as symmetric-packed matrix.

Author

H. P. Hratchian

Date

2017

6.31.2.3 mqc_matrix_symmmatrix_put_real()

MQC_Matrix_SymmMatrix_Put_Real is a subroutine that returns a symmetric packed MQC matrix with elements defined by values in an intrinsic real vector

Purpose:

 ${\tt MQC_Matrix_SymmMatrix_Put_Real}$ is a subroutine that returns a symmetric packed MQC matrix with elements defined by values in an intrinsic real vector.

in,out	mat	
		Mat is class(MQC_Matrix) MQC matrix to overwrite with output symmetric matrix.
in	Symm⊷ MatrixIn	SymmMatrixIn is real(kind=real64),dimension(:) Intrinsic real vector to write as symmetric-packed matrix.

Author

H. P. Hratchian

Date

2017

The documentation for this interface was generated from the following file:

• src/mqc_algebra.F03

6.32 mqc_est::mqc_matrix_undospinblockghf Interface Reference

Public Member Functions

- subroutine mqc_matrix_undospinblockghf_eigenvalues (eigenvaluesIn, vectorOut)
- subroutine mqc_matrix_undospinblockghf_integral (integralIn, matrixOut)

6.32.1 Member Function/Subroutine Documentation

6.32.1.1 mqc_matrix_undospinblockghf_eigenvalues()

```
subroutine mqc_est::mqc_matrix\_undospinblockghf::mqc_matrix\_undospinblockghf_eigenvalues ( type(mqc_scf_eigenvalues), intent(in) \ eigenvaluesIn, \\ type(mqc_vector), intent(out) \ vectorOut)
```

6.32.1.2 mqc_matrix_undospinblockghf_integral()

The documentation for this interface was generated from the following file:

src/mqc est.F03

6.33 mgc algebra::mgc print Interface Reference

Prints an object

Public Member Functions

- subroutine mqc_print_scalar_algebra1 (Scalar, IOut, Header, Blank_At_Top, Blank_At_Bottom)
 - MQC_Print_Scalar_Algebra1 is a subroutine used to print an MQC_Scalar
- subroutine mqc_print_vector_algebra1 (Vector, IOut, Header, Verbose, Blank_At_Top, Blank_At_Bottom)

MQC_Print_Vector_Algebra1 is a subroutine used to print an MQC vector

- subroutine mqc_print_matrix_algebra1 (Matrix, IOut, Header, Blank_At_Top, Blank_At_Bottom)
 - MQC_Print_Matrix_Algebra1 is a subroutine used to print an MQC matrix
- subroutine mqc_print_r4tensor_algebra1 (Tensor, IOut, Header, blank_at_top, blank_at_bottom)

6.33.1 Detailed Description

Prints an object

6.33.2 Member Function/Subroutine Documentation

6.33.2.1 mqc_print_matrix_algebra1()

MQC_Print_Matrix_Algebra1 is a subroutine used to print an MQC matrix

Purpose:

```
MQC_Print_Matrix_Algebral is a subroutine used to print an MQC matrix. Blank_At_Top and Blank_At_Bottom are optional logical arguments to print blank lines before or after output.
```

in	Matrix	
		Matrix is Class(MQC_Matrix)
		The variable to be printed.
in	<i>IOut</i>	
		IOut is Integer(kind=int64)
		The Fortran file number to print to.
in	Header	
		Header is Character(Len=*)
		The title to print along with Matrix.
in	Blank_At_Top	
		Blank_At_Top is Logical,Optional
		= .True.: print blank line above output = .False.: do not print blank line above output.
		raise do not print brank fine above output.
in	Blank_At_Bottom	
		Blank_At_Bottom is Logical,Optional
		= .True.: print blank line below output = .False.: do not print blank line below output.
		raise do not print brank fine below output.

Author

L. M. Thompson

Date

2016

6.33.2.2 mqc_print_r4tensor_algebra1()

6.33.2.3 mqc_print_scalar_algebra1()

MQC_Print_Scalar_Algebra1 is a subroutine used to print an MQC_Scalar

Purpose:

 ${\tt MQC_Print_Scalar_Algebra1}$ is a subroutine used to print an ${\tt MQC_Scalar}$. Blank_At_Top and Blank_At_Bottom are optional logical arguments to print blank lines before or after output.

Parameters

in	Scalar	
		Scalar is Class(MQC_Scalar) The variable to be printed.
in	<i>IOut</i>	
		IOut is Integer(kind=int64) The Fortran file number to print to.
in	Header	
		Header is Character(Len=*) The title to print along with Scalar.
in	Blank_At_Top	
		Blank_At_Top is Logical,Optional = .True.: print blank line above output = .False.: do not print blank line above output.
in	Blank_At_Bottom	
		Blank_At_Bottom is Logical,Optional = .True.: print blank line below output = .False.: do not print blank line below output.

Author

L. M. Thompson

Date

2016

6.33.2.4 mqc_print_vector_algebra1()

MQC_Print_Vector_Algebra1 is a subroutine used to print an MQC vector

Purpose:

 ${\tt MQC_Print_Vector_Algebra1}$ is a subroutine used to print an ${\tt MQC}$ vector. ${\tt Blank_At_Top}$ and ${\tt Blank_At_Bottom}$ are optional logical arguments to print blank lines before or after output.

Parameters

in	Vector	
		Vector is Class(MQC_Vector) The variable to be printed.
in	<i>IOut</i>	
		IOut is Integer(kind=int64) The Fortran file number to print to.
in	Header	
		Header is Character(Len=*) The title to print along with Vector.
in	Verbose	
		Verbose is Logical,Optional Adds extra printing to output.
in	Blank_At_Top	
		Blank_At_Top is Logical,Optional = .True.: print blank line above output = .False.: do not print blank line above output.
in	Blank_At_Bottom	
		Blank_At_Bottom is Logical,Optional = .True.: print blank line below output = .False.: do not print blank line below output.

Author

L. M. Thompson

Date

2016

The documentation for this interface was generated from the following file:

• src/mqc_algebra.F03

6.34 mqc_est::mqc_print Interface Reference

Public Member Functions

- subroutine mqc_print_wavefunction (wavefunction, iOut, label)
- subroutine mqc_print_integral (integral, iOut, header, blank_at_top, blank_at_bottom)
- subroutine mqc_print_eigenvalues (eigenvalues, iOut, header, blank_at_top, blank_at_bottom)
- subroutine mqc_print_twoeris (twoERIs, iOut, header, blank_at_top, blank_at_bottom)

6.34.1 Member Function/Subroutine Documentation

6.34.1.1 mqc_print_eigenvalues()

6.34.1.2 mqc_print_integral()

6.34.1.3 mqc_print_twoeris()

6.34.1.4 mqc_print_wavefunction()

The documentation for this interface was generated from the following file:

src/mqc_est.F03

6.35 mqc_est::mqc_pscf_wavefunction Type Reference

Inheritance diagram for mqc_est::mqc_pscf_wavefunction:

Public Attributes

- integer(kind=int64) ncore
- integer(kind=int64) nval
- integer(kind=int64) nactive
- integer(kind=int64) nfrz
- type(mqc_matrix) pscf_amplitudes
- type(mqc_vector) pscf_energies

Additional Inherited Members

6.35.1 Member Data Documentation

6.35.1.1 nactive

integer(kind=int64) mqc_est::mqc_pscf_wavefunction::nactive

6.35.1.2 ncore

integer(kind=int64) mqc_est::mqc_pscf_wavefunction::ncore

6.35.1.3 nfrz

integer(kind=int64) mqc_est::mqc_pscf_wavefunction::nfrz

6.35.1.4 nval

integer(kind=int64) mqc_est::mqc_pscf_wavefunction::nval

6.35.1.5 pscf_amplitudes

6.35.1.6 pscf_energies

 $\verb|type(mqc_vector)| mqc_est::mqc_pscf_wavefunction::pscf_energies|\\$

The documentation for this type was generated from the following file:

• src/mqc_est.F03

6.36 mqc_algebra::mqc_r4tensor Type Reference

Updates the specified element of the MQC Matrix to the specified value

Public Member Functions

• Procedure, public print => mqc_print_r4tensor_algebra1

Print the MQC R4Tensor

• Procedure, public at => mqc_r4tensor_at

Return the specified element in the MQC R4Tensor

• Procedure, public put => mqc_r4tensor_put

Update the specified element in the MQC R4Tensor with the specified value

Procedure, public init => mqc_r4tensor_initialize

Initialize the MQC R4Tensor

6.36.1 Detailed Description

Updates the specified element of the MQC Matrix to the specified value

Rank 4 array variable

6.36.2 Member Function/Subroutine Documentation

```
6.36.2.1 at()
```

Procedure, public mqc_algebra::mqc_r4tensor::at ()

Return the specified element in the MQC R4Tensor

6.36.2.2 init()

Procedure, public mqc_algebra::mqc_r4tensor::init ()

Initialize the MQC R4Tensor

6.36.2.3 print()

Procedure, public mqc_algebra::mqc_r4tensor::print ()

Print the MQC R4Tensor

6.36.2.4 put()

```
Procedure, public mqc_algebra::mqc_r4tensor::put ( )
```

Update the specified element in the MQC R4Tensor with the specified value

The documentation for this type was generated from the following file:

• src/mqc_algebra.F03

6.37 mqc_algebra::mqc_scalar Type Reference

Rank 0 array variable

Public Member Functions

- Procedure, public print => mqc_print_scalar_algebra1
 - Print the MQC Scalar
- Procedure, public rval => mqc_scalar_get_intrinsic_real
 - Return the value of MQC Scalar as an intrinsic real
- Procedure, public ival => mqc_scalar_get_intrinsic_integer
 - Return the value of MQC Scalar as an intrinsic integer
- Procedure, public cval => mqc_scalar_get_intrinsic_complex
 - Return the value of MQC Scalar as an intrinsic complex
- Procedure, public abs => mqc_scalar_get_abs_value
 - Take the absolute value of the MQC Scalar
- Procedure, public random => mqc_scalar_get_random_value

Return a random value to the MQC Scalar

6.37.1 Detailed Description

Rank 0 array variable

6.37.2 Member Function/Subroutine Documentation

6.37.2.1 abs()

```
Procedure, public mqc_algebra::mqc_scalar::abs ( )
```

Take the absolute value of the MQC Scalar

6.37.2.2 cval()

```
Procedure, public mqc_algebra::mqc_scalar::cval ( )
```

Return the value of MQC Scalar as an intrinsic complex

6.37.2.3 ival()

```
Procedure, public mqc_algebra::mqc_scalar::ival ( )
```

Return the value of MQC Scalar as an intrinsic integer

6.37.2.4 print()

```
Procedure, public mqc_algebra::mqc_scalar::print ( )
```

Print the MQC Scalar

6.37.2.5 random()

```
Procedure, public mqc_algebra::mqc_scalar::random ( )
```

Return a random value to the MQC Scalar

6.37.2.6 rval()

```
Procedure, public mqc_algebra::mqc_scalar::rval ( )
```

Return the value of MQC Scalar as an intrinsic real

The documentation for this type was generated from the following file:

• src/mqc_algebra.F03

6.38 mqc_est::mqc_scf_eigenvalues Type Reference

Public Member Functions

- Procedure, public print => mqc_print_eigenvalues
- Procedure, public getlabel => mqc_eigenvalues_array_name
- Procedure, public addlabel => mqc_eigenvalues_add_name
- Procedure, public getblock => mqc_eigenvalues_output_block
- Procedure, public power => mqc_scf_eigenvalues_power
- Procedure, public at => mqc_eigenvalues_at

6.38.1 Member Function/Subroutine Documentation

6.38.1.1 addlabel() Procedure, public mqc_est::mqc_scf_eigenvalues::addlabel () 6.38.1.2 at() Procedure, public mqc_est::mqc_scf_eigenvalues::at () 6.38.1.3 getblock() Procedure, public mqc_est::mqc_scf_eigenvalues::getblock () 6.38.1.4 getlabel() Procedure, public mqc_est::mqc_scf_eigenvalues::getlabel () 6.38.1.5 power() Procedure, public mqc_est::mqc_scf_eigenvalues::power ()

6.38.1.6 print()

```
Procedure, public mqc_est::mqc_scf_eigenvalues::print ( )
```

The documentation for this type was generated from the following file:

• src/mqc_est.F03

6.39 mgc est::mgc scf integral Type Reference

Public Member Functions

- Procedure, public print => mqc_print_integral
- Procedure, public getlabel => mqc integral array name
- Procedure, public addlabel => mqc_integral_add_name
- Procedure, public getblock => mqc_integral_output_block
- Procedure, public identity => mqc integral identity
- Procedure, public init => mqc integral initialize
- Procedure, public diag => mgc scf integral diagonalize
- Procedure, public eigensys => mqc scf integral generalized eigensystem
- Procedure, public inv => mqc_scf_integral_inverse
- Procedure, public trace => mqc_scf_integral_trace
- Procedure, public det => mqc_scf_integral_determinant
- Procedure, public norm => mqc_integral_norm
- Procedure, public setelist => mqc integral set energy list
- Procedure, public getelist => mqc_integral_get_energy_list
- Procedure, public deleteelist => mqc_integral_delete_energy_list
- Procedure, public orbitals => mqc_integral_output_orbitals
- Procedure, public swap => mqc_integral_swap_orbitals

6.39.1 Member Function/Subroutine Documentation

6.39.1.1 addlabel()

```
Procedure, public mqc_est::mqc_scf_integral::addlabel ( )
```

6.39.1.2 deleteelist()

```
Procedure, public mqc_est::mqc_scf_integral::deleteelist ( )
```

6.39.1.3 det() Procedure, public mqc_est::mqc_scf_integral::det () 6.39.1.4 diag() Procedure, public mqc_est::mqc_scf_integral::diag () 6.39.1.5 eigensys() Procedure, public mqc_est::mqc_scf_integral::eigensys () 6.39.1.6 getblock() Procedure, public mqc_est::mqc_scf_integral::getblock () 6.39.1.7 getelist() Procedure, public mqc_est::mqc_scf_integral::getelist () 6.39.1.8 getlabel() Procedure, public mqc_est::mqc_scf_integral::getlabel ()

6.39.1.9 identity()

Procedure, public mqc_est::mqc_scf_integral::identity ()

6.39.1.10 init()

Procedure, public mqc_est::mqc_scf_integral::init ()

6.39.1.11 inv()

Procedure, public mqc_est::mqc_scf_integral::inv ()

6.39.1.12 norm()

Procedure, public mqc_est::mqc_scf_integral::norm ()

6.39.1.13 orbitals()

Procedure, public mqc_est::mqc_scf_integral::orbitals ()

6.39.1.14 print()

Procedure, public mqc_est::mqc_scf_integral::print ()

6.39.1.15 setelist()

Procedure, public mqc_est::mqc_scf_integral::setelist ()

6.39.1.16 swap()

Procedure, public mqc_est::mqc_scf_integral::swap ()

6.39.1.17 trace()

```
Procedure, public mqc_est::mqc_scf_integral::trace ( )
```

The documentation for this type was generated from the following file:

• src/mqc_est.F03

6.40 mqc_algebra::mqc_set_array2vector Interface Reference

Sets an intrinsic array as an MQC Algebra object

Public Member Functions

- subroutine mqc_set_array2vector_integer (VectorOut, ArrayIn)
 - MQC_Set_Array2Vector_Integer is a subroutine that sets a rank 1 intrinsic integer array equal to a MQC vector
- subroutine mqc_set_array2vector_real (VectorOut, ArrayIn)
 - MQC_Set_Array2Vector_Real is a subroutine that sets a rank 1 vector intrinsic real array equal to a MQC vector
- subroutine mgc set array2vector complex (VectorOut, ArrayIn)

MQC_Set_Array2Vector_Complex is a subroutine that sets a rank 1 vector intrinsic complex array equal to a MQC vector

6.40.1 Detailed Description

Sets an intrinsic array as an MQC Algebra object

6.40.2 Member Function/Subroutine Documentation

6.40.2.1 mqc set array2vector complex()

MQC_Set_Array2Vector_Complex is a subroutine that sets a rank 1 vector intrinsic complex array equal to a MQC vector

Purpose:

```
{\tt MQC\_Set\_Array2Vector\_Complex} is a subroutine that sets a rank 1 vector intrinsic complex array equal to a MQC vector.
```

Parameters

in,out	VectorOut	
		VectorOut is Type(MQC_Vector) The MQC vector that will be set equal to the rank 1 intrinsic array
in	ArrayIn	
		ArrayOut is Complex(kind=real64),Dimension(:) The rank 1 intrinsic array whose data will be input into the MQC vector.

Author

L. M. Thompson

Date

2017

6.40.2.2 mqc_set_array2vector_integer()

MQC_Set_Array2Vector_Integer is a subroutine that sets a rank 1 intrinsic integer array equal to a MQC vector

Purpose:

 $\mbox{MQC_Set_Array2Vector_Integer}$ is a subroutine that sets a rank 1 intrinsic integer array equal to a MQC vector

Parameters

in,out	VectorOut	
		VectorOut is Type(MQC_Vector) The MQC vector that will be set equal to the rank 1 intrinsic array
in	ArrayIn	
		ArrayOut is Integer(kind=int64),Dimension(:) The rank 1 intrinsic array whose data will be input into the MQC vector.

Author

H. P. Hratchian

Date

2016

6.40.2.3 mqc_set_array2vector_real()

MQC_Set_Array2Vector_Real is a subroutine that sets a rank 1 vector intrinsic real array equal to a MQC vector

Purpose:

 ${\tt MQC_Set_Array2Vector_Real}$ is a subroutine that sets a rank 1 vector intrinsic real array equal to a ${\tt MQC}$ vector.

Parameters

in,out	VectorOut	
		VectorOut is Type(MQC_Vector) The MQC vector that will be set equal to the rank 1 intrinsic array
in	ArrayIn	
		ArrayOut is Real(kind=real64),Dimension(:) The rank 1 intrinsic array whose data will be input into the MQC vector.

Author

H. P. Hratchian

Date

2016

The documentation for this interface was generated from the following file:

src/mqc_algebra.F03

6.41 mgc est::mgc twoeris Type Reference

Public Member Functions

• procedure, public print => mgc print twoeris

6.41.1 Member Function/Subroutine Documentation

6.41.1.1 print()

```
procedure, public mqc_est::mqc_twoeris::print ( )
```

The documentation for this type was generated from the following file:

src/mqc est.F03

6.42 mgc algebra::mgc vector Type Reference

Rank 1 array variable

Public Member Functions

Procedure, public print => mqc print vector algebra1

Print the MQC Vector

• Procedure, public size => mqc_length_vector

Returns the length of the MQC Vector

• Procedure, public init => mgc vector initialize

Initilizes the MQC Vector

• Procedure, public norm => mqc_vector_norm

Returns the norm of the MQC Vector

Procedure, public transpose => mqc_vector_transpose

Returns the transpose of the MQC Vector

Procedure, public dagger => mqc_vector_conjugate_transpose

Returns the Hermitian conjugate of the MQC Vector

Procedure, public at => mqc_vector_scalar_at

Returns the value at the specified element of the MQC Vector

Procedure, public vat => mqc_vector_vector_at

Returns the subvector between specified element of the MQC Vector

Procedure, public put => mqc_vector_scalar_put

Updates the specified element of the MQC_Vector with the specified value

Procedure, public vput => mqc_vector_vector_put

Updates the specified subvector of the MQC_Vector with the specified vector

Procedure, public push => mqc_vector_push

Appends the specified value to the end of the MQC_Vector

Procedure, public unshift => mqc_vector_unshift

Prepends the specified value to the beginning of the MQC_Vector

• Procedure, public pop => mqc_vector_pop

Removes the last element of the MQC_Vector and returns the value

Procedure, public shift => mqc_vector_shift

Removes the first element of the MQC_Vector and returns the value

Procedure, public maxval => mqc_vector_maxval

Returns the maximum value in the MQC_Vector

• Procedure, public minval => mqc_vector_minloc

Returns the minimum value in the MQC_Vector

• Procedure, public maxloc => mqc_vector_maxval

Returns the location of the maximum value in the MQC_Vector

• Procedure, public minloc => mqc_vector_minloc

Returns the location of the minimum value in the MQC_Vector

Procedure, public argsort => mqc_vector_argsort

Returns the indices of the MQC_Vector sorted from low to high

Procedure, public sort => mqc vector sort

Returns the MQC_Vector sorted from low to high unless vector specifying index order is provided

Procedure, public sqrt => mqc_vector_sqrt

Returns the square root of each element in the MQC_Vector

Procedure, public abs => mqc_vector_abs

Returns the absolute value of each element in the MQC_Vector

• Procedure, public power => mgc vector power

Returns each element in the MQC_Vector raised to a specified power

Procedure, public diag => mqc matrix diagmatrix put vector, mqc vector2diagmatrix

Returns a diagonal MQC Matrix with values specified by the MQC_Vector

6.42.1 Detailed Description

Rank 1 array variable

6.42.2 Member Function/Subroutine Documentation

6.42.2.1 abs()

Procedure, public mqc_algebra::mqc_vector::abs ()

Returns the absolute value of each element in the MQC Vector

```
6.42.2.2 argsort()
Procedure, public mqc_algebra::mqc_vector::argsort ( )
Returns the indices of the MQC_Vector sorted from low to high
6.42.2.3 at()
Procedure, public mqc_algebra::mqc_vector::at ( )
Returns the value at the specified element of the MQC Vector
6.42.2.4 dagger()
Procedure, public mqc_algebra::mqc_vector::dagger ( )
Returns the Hermitian conjugate of the MQC Vector
6.42.2.5 diag()
Procedure, public mqc_algebra::mqc_vector::diag ( )
Returns a diagonal MQC Matrix with values specified by the MQC_Vector
6.42.2.6 init()
Procedure, public mqc_algebra::mqc_vector::init ( )
Initilizes the MQC Vector
6.42.2.7 maxloc()
```

Procedure, public mqc_algebra::mqc_vector::maxloc ()

Returns the location of the maximum value in the MQC_Vector

```
6.42.2.8 maxval()

Procedure, public mqc_algebra::mqc_vector::maxval ( )

Returns the maximum value in the MQC_Vector

6.42.2.9 minloc()

Procedure, public mqc_algebra::mqc_vector::minloc ( )

Returns the location of the minimum value in the MQC_Vector

6.42.2.10 minval()

Procedure, public mqc_algebra::mqc_vector::minval ( )
```

6.42.2.11 norm()

Procedure, public mqc_algebra::mqc_vector::norm ()

Returns the minimum value in the MQC_Vector

Returns the norm of the MQC Vector

6.42.2.12 pop()

Procedure, public mqc_algebra::mqc_vector::pop ()

Removes the last element of the MQC_Vector and returns the value

6.42.2.13 power()

Procedure, public mqc_algebra::mqc_vector::power ()

Returns each element in the MQC_Vector raised to a specified power

```
6.42.2.14 print()
Procedure, public mqc_algebra::mqc_vector::print ( )
Print the MQC Vector
6.42.2.15 push()
Procedure, public mqc_algebra::mqc_vector::push ( )
Appends the specified value to the end of the MQC_Vector
6.42.2.16 put()
Procedure, public mqc_algebra::mqc_vector::put ( )
Updates the specified element of the MQC_Vector with the specified value
6.42.2.17 shift()
Procedure, public mqc_algebra::mqc_vector::shift ( )
Removes the first element of the MQC_Vector and returns the value
6.42.2.18 size()
Procedure, public mqc_algebra::mqc_vector::size ( )
Returns the length of the MQC Vector
6.42.2.19 sort()
```

 $\textbf{Returns the MQC_Vector sorted from low to high unless vector specifying index order is provided} \\$

Procedure, public mqc_algebra::mqc_vector::sort ()

```
6.42.2.20 sqrt()
```

```
Procedure, public mqc_algebra::mqc_vector::sqrt ( )
```

Returns the square root of each element in the MQC_Vector

6.42.2.21 transpose()

```
Procedure, public mqc_algebra::mqc_vector::transpose ( )
```

Returns the transpose of the MQC Vector

6.42.2.22 unshift()

```
Procedure, public mqc_algebra::mqc_vector::unshift ( )
```

Prepends the specified value to the beginning of the MQC_Vector

6.42.2.23 vat()

```
Procedure, public mqc_algebra::mqc_vector::vat ( )
```

Returns the subvector between specified element of the MQC Vector

6.42.2.24 vput()

```
Procedure, public mqc_algebra::mqc_vector::vput ( )
```

Updates the specified subvector of the MQC_Vector with the specified vector

The documentation for this type was generated from the following file:

• src/mqc_algebra.F03

6.43 mqc_est::mqc_wavefunction Type Reference

Inheritance diagram for mqc_est::mqc_wavefunction:

Public Member Functions

Procedure, public print => mqc_print_wavefunction

Public Attributes

- type(mqc_scf_integral) mo_coefficients
- type(mqc_scf_eigenvalues) mo_energies
- type(mqc_scf_eigenvalues) mo_symmetries
- type(mqc_scf_integral) core_hamiltonian
- type(mqc_scf_integral) fock_matrix
- type(mqc_scf_integral) density_matrix
- type(mqc_scf_integral) scf_density_matrix
- type(mqc_scf_integral) overlap_matrix
- type(mqc_scalar) nalpha
- type(mqc_scalar) nbeta
- type(mqc_scalar) nelectrons
- type(mqc_scalar) nbasis
- type(mqc_scalar) charge
- type(mqc_scalar) multiplicity
- character(len=256) basis
- character(len=256) symmetry
- character(len=256) wf type
- · logical wf complex

6.43.1 Member Function/Subroutine Documentation

6.43.1.1 print()

Procedure, public mqc_est::mqc_wavefunction::print ()

6.43.2 Member Data Documentation

6.43.2.1 basis

character(len=256) mqc_est::mqc_wavefunction::basis

6.43.2.2 charge

type(mqc_scalar) mqc_est::mqc_wavefunction::charge

6.43.2.3 core_hamiltonian

 $\verb|type(mqc_scf_integral)| mqc_est:: mqc_wavefunction:: core_hamiltonian| \\$

6.43.2.4 density_matrix

 $\verb|type(mqc_scf_integral)| mqc_est::mqc_wavefunction::density_matrix|\\$

6.43.2.5 fock_matrix

type(mqc_scf_integral) mqc_est::mqc_wavefunction::fock_matrix

6.43.2.6 mo_coefficients

 $\label{type:condition:mo_coefficients} \mbox{type:(mqc_scf_integral) mqc_est::mqc_wavefunction::mo_coefficients}$

6.43.2.7 mo_energies

6.43.2.8 mo_symmetries

type(mqc_scf_eigenvalues) mqc_est::mqc_wavefunction::mo_symmetries

6.43.2.9 multiplicity

type(mqc_scalar) mqc_est::mqc_wavefunction::multiplicity

6.43.2.10 nalpha

type(mqc_scalar) mqc_est::mqc_wavefunction::nalpha

6.43.2.11 nbasis

type(mqc_scalar) mqc_est::mqc_wavefunction::nbasis

6.43.2.12 nbeta

type(mqc_scalar) mqc_est::mqc_wavefunction::nbeta

6.43.2.13 nelectrons

type(mqc_scalar) mqc_est::mqc_wavefunction::nelectrons

6.43.2.14 overlap_matrix

 $\verb|type(mqc_scf_integral)| mqc_est:: mqc_wavefunction:: overlap_matrix|\\$

6.43.2.15 scf_density_matrix

 $\verb|type(mqc_scf_integral)| mqc_est:: mqc_wavefunction:: scf_density_matrix|\\$

6.43.2.16 symmetry

character(len=256) mqc_est::mqc_wavefunction::symmetry

6.43.2.17 wf_complex

logical mqc_est::mqc_wavefunction::wf_complex

6.43.2.18 wf_type

character(len=256) mqc_est::mqc_wavefunction::wf_type

The documentation for this type was generated from the following file:

• src/mqc_est.F03

6.44 mqc_algebra::operator(*) Interface Reference

Multiplies two variables

Public Member Functions

type(mqc_scalar) function mqc_scalarmultiply (Scalar1, Scalar2)

MQC_ScalarMultiply is a function that multiplies two MQC_Scalar objects

type(mgc_scalar) function mgc_integerscalarmultiply (IntegerIn, Scalar)

MQC_IntegerScalarMultiply is a function that is used to multiply an intrinsic integer by an MQC_Scalar

type(mgc scalar) function mgc scalarintegermultiply (Scalar, IntegerIn)

MQC_ScalarIntegerMultiply is a function that is used to multiply an intrinsic integer by an MQC_Scalar

type(mqc_scalar) function mqc_realscalarmultiply (RealIn, Scalar)

MQC_RealScalarMultiply is a function that is used to multiply an intrinsic real by an MQC_Scalar

type(mgc scalar) function mgc scalarrealmultiply (Scalar, RealIn)

MQC_ScalarRealMultiply is a function that is used to multiply an intrinsic real by an MQC_Scalar

type(mqc_scalar) function mqc_complexscalarmultiply (ComplexIn, Scalar)

MQC_ComplexScalarMultiply is a function that is used to multiply an intrinsic complex by an MQC_Scalar

type(mqc_scalar) function mqc_scalarcomplexmultiply (Scalar, ComplexIn)

MQC_ScalarComplexMultiply is a function that is used to multiply an intrinsic complex by an MQC_Scalar

type(mqc_vector) function mqc_scalarvectorproduct (Scalar, Vector)

MQC_ScalarVectorProduct is a function that returns the product of a MQC scalar with a MQC vector

type(mgc_vector) function mgc_vectorscalarproduct (vector, scalar)

MQC_VectorScalarProduct is a function that returns the product of a MQC vector with a MQC scalar

- type(mgc matrix) function mgc scalarmatrixproduct (Scalar, Matrix)
- type(mgc matrix) function mgc matrixscalarproduct (Matrix, Scalar)
- type(mgc_vector) function mgc_realvectorproduct (RealIn, Vector)

MQC_RealVectorProduct is a function that returns the product of an intrinsic real scalar and a MQC vector

type(mqc_vector) function mqc_vectorrealproduct (vector, realIn)

MQC_VectorRealProduct is a function that returns the product of a MQC vector and an intrinsic real scalar

type(mqc_vector) function mqc_integervectorproduct (intln, Vector)

MQC_IntegerVectorProduct is a function that returns the product of an intrinsic integer scalar and a MQC vector

• type(mqc_vector) function mqc_vectorintegerproduct (vector, intln)

MQC_VectorIntegerProduct is a function that returns the product of a MQC vector and an intrinsic integer scalar

• type(mqc_vector) function mqc_complexvectorproduct (Compln, Vector)

MQC_ComplexVectorProduct is a function that returns the product of an intrinsic complex scalar and a MQC vector

type(mqc_vector) function mqc_vectorcomplexproduct (vector, compln)

MQC_VectorComplexProduct is a function that returns the product of a MQC vector and an intrinsic complex scalar

type(mgc matrix) function mgc matrixmatrixproduct (MA, MB)

MQC_MatrixMatrixProduct is a function that computes the element- wise product of two MQC matrices

6.44.1 Detailed Description

Multiplies two variables

6.44.2 Member Function/Subroutine Documentation

6.44.2.1 mgc_complexscalarmultiply()

MQC_ComplexScalarMultiply is a function that is used to multiply an intrinsic complex by an MQC_Scalar

Purpose:

 $\texttt{MQC_ComplexScalarMultiply}$ is a function that is used to multiply an intrinsic complex by an $\texttt{MQC_Scalar.}$

Parameters

in	Complex← In	Complex is Complex(kind=real64) The intrinsic complex variable to multiply.
in	Scalar	
		Scalar is Type(MQC_Scalar) The MQC_Scalar variabel to multiply.

Author

L. M. Thompson

Date

2019

6.44.2.2 mqc_complexvectorproduct()

MQC_ComplexVectorProduct is a function that returns the product of an intrinsic complex scalar and a MQC vector

Purpose:

 $\texttt{MQC_ComplexVectorProduct}$ is a function that returns the product of an intrinsic integer scalar and a MQC vector.

Parameters

in	Comp⊷ In	CompIn is Complex(kind=real64) The intrinsic complex to multiply.
in	Vector	
		Vector is Type(MQC_Vector) The MQC_Vector to multiply.

Author

L. M. Thompson

Date

2019

6.44.2.3 mqc_integerscalarmultiply()

MQC_IntegerScalarMultiply is a function that is used to multiply an intrinsic integer by an MQC_Scalar

Purpose:

 $\texttt{MQC_IntegerScalarMultiply}$ is a function that is used to multiply an intrinsic integer by an $\texttt{MQC_Scalar.}$

Parameters

in	Integer⊷ In	IntegerIn is Integer(kind=int64) The intrinsic integer variable to multiply.
in	Scalar	
		Scalar is Type(MQC_Scalar) The MQC_Scalar variable to multiply.

Author

L. M. Thompson

Date

2019

6.44.2.4 mqc_integervectorproduct()

MQC_IntegerVectorProduct is a function that returns the product of an intrinsic integer scalar and a MQC vector

Purpose:

 ${\tt MQC_IntegerVectorProduct}$ is a function that returns the product of an intrinsic integer scalar and a ${\tt MQC}$ vector.

Parameters

in	Intln	
		IntIn is Integer(kind=int64) The intrinsic integer to multiply.
in	Vector	
		Vector is Type(MQC_Vector) The MQC_Vector to multiply.

Author

L. M. Thompson

Date

2019

6.44.2.5 mqc_matrixmatrixproduct()

MQC_MatrixMatrixProduct is a function that computes the element- wise product of two MQC matrices

Purpose:

 $\texttt{MQC_MatrixMatrixProduct}$ is a function that computes the element-wise product of two MQC matrices.

Parameters

in	MA	
		MA is Type(MQC_Matrix) The first MQC matrix.
in	MB	
		MB is Type(MQC_Matrix) The second MQC matrix.

Author

H. P. Hratchian

Date

2017

6.44.2.6 mqc_matrixscalarproduct()

6.44.2.7 mqc_realscalarmultiply()

MQC_RealScalarMultiply is a function that is used to multiply an intrinsic real by an MQC_Scalar

Purpose:

 $\mbox{MQC_RealScalarMultiply}$ is a function that is used to multiply an intrinsic real by an $\mbox{MQC_Scalar.}$

Parameters

in	realIn	
		RealIn is Real(kind=real64) The intrinsic real variable to multiply.
in	Scalar	
		Scalar is Type(MQC_Scalar) The MQC_Scalar variable to multiply.

Author

L. M. Thompson

Date

2019

6.44.2.8 mqc_realvectorproduct()

MQC_RealVectorProduct is a function that returns the product of an intrinsic real scalar and a MQC vector

Purpose:

 $\texttt{MQC}_\texttt{RealVectorProduct}$ is a function that returns the product of an intrinsic real scalar and a MQC vector.

Parameters

in	Real← In	RealIn is Real(kind=real64) The real intrinsic to multiply.
in	Vector	Vector is Type(MQC_Vector) The MQC_Vector to multiply.

Author

L. M. Thompson

Date

2019

6.44.2.9 mqc_scalarcomplexmultiply()

MQC_ScalarComplexMultiply is a function that is used to multiply an intrinsic complex by an MQC_Scalar

Purpose:

 $\texttt{MQC_ScalarComplexMultiply}$ is a function that is used to multiply an intrinsic complex by an $\texttt{MQC_Scalar.}$

Parameters

in	Complex← In	Complex is Complex(kind=real64) The intrinsic complex variable to multiply.
in	Scalar	
		Scalar is Type(MQC_Scalar) The MQC_Scalar variabel to multiply.

Author

L. M. Thompson

Date

2019

6.44.2.10 mqc_scalarintegermultiply()

MQC_ScalarIntegerMultiply is a function that is used to multiply an intrinsic integer by an MQC_Scalar

Purpose:

 $\mbox{MQC_ScalarIntegerMultiply}$ is a function that is used to multiply an intrinsic integer by an $\mbox{MQC_Scalar.}$

Parameters

in	Integer⊷ In	IntegerIn is Integer(kind=int64) The intrinsic integer variable to multiply.
in	Scalar	
		Scalar is Type(MQC_Scalar) The MQC_Scalar varibale to multiply.

Author

L. M. Thompson

Date

2019

6.44.2.11 mqc_scalarmatrixproduct()

6.44.2.12 mqc_scalarmultiply()

MQC_ScalarMultiply is a function that multiplies two MQC_Scalar objects

Purpose:

 ${\tt MQC_ScalarMultiply}$ is a function that multiplies two ${\tt MQC_Scalar}$ objects.

Parameters

in	Scalar1	
		Scalar1 is Type(MQC_Scalar) The first MQC_Scalar to be multiplied.
in	Scalar2	
		Scalar2 is Type(MQC_Scalar) The second MQC_Scalar to be multiplied.

Author

L. M. Thompson

Date

2016

6.44.2.13 mqc_scalarrealmultiply()

MQC_ScalarRealMultiply is a function that is used to multiply an intrinsic real by an MQC_Scalar

Purpose:

 $\mbox{MQC_ScalarRealMultiply}$ is a function that is used to multiply an intrinsic real by an $\mbox{MQC_Scalar.}$

Parameters

in	realIn	
		RealIn is Real(kind=real64) The intrinsic real variable to multiply.
in	Scalar	
		Scalar is Type(MQC_Scalar) The MQC_Scalar variable to multiply.

Author

L. M. Thompson

Date

2019

6.44.2.14 mqc_scalarvectorproduct()

MQC_ScalarVectorProduct is a function that returns the product of a MQC scalar with a MQC vector

Purpose:

 $\ensuremath{\mathsf{MQC_Scalar}}\xspace$ VectorProduct is a function that returns the product of a MQC scalar with a MQC vector.

Parameters

in	Scalar	
		Scalar is Type(MQC_Scalar) The MQC_Scalar to multiply.
in	Vector	
		Vector is Type(MQC_Vector) The MQC_Vector to multiply.

Author

X. Sheng

A. D. Mahler

Date

2017, 2019

6.44.2.15 mqc_vectorcomplexproduct()

MQC_VectorComplexProduct is a function that returns the product of a MQC vector and an intrinsic complex scalar

Purpose:

 $\mbox{MQC_VectorComplexProduct}$ is a function that returns the product of a \mbox{MQC} vector and an intrinsic complex scalar.

Parameters

in	Vector	
		Vector is Type(MQC_Vector) The MQC_Vector to multiply.
in	Comp←	
	In	CompIn is Complex(kind=real64) The integer complex to multiply.

Author

L. M. Thompson

Date

2019

6.44.2.16 mqc_vectorintegerproduct()

MQC_VectorIntegerProduct is a function that returns the product of a MQC vector and an intrinsic integer scalar

Purpose:

 $\texttt{MQC_VectorIntegerProduct}$ is a function that returns the product of a MQC vector and an intrinsic integer scalar.

Parameters

in	Vector	
		Vector is Type(MQC_Vector) The MQC_Vector to multiply.
in	Intln	
		<pre>IntIn is Integer(kind=int64) The integer intrinsic to multiply.</pre>

Author

L. M. Thompson

Date

2019

6.44.2.17 mqc_vectorrealproduct()

MQC_VectorRealProduct is a function that returns the product of a MQC vector and an intrinsic real scalar

Purpose:

 $\mbox{MQC_VectorRealProduct}$ is a function that returns the product of a MQC vector and an intrinsic real scalar.

Parameters

in	Vector	
		Vector is Type(MQC_Vector) The MQC_Vector to multiply.
in	Real⊷	
	In	RealIn is Real(kind=real64) The real intrinsic to multiply.

Author

L. M. Thompson

Date

2019

6.44.2.18 mqc_vectorscalarproduct()

MQC_VectorScalarProduct is a function that returns the product of a MQC vector with a MQC scalar

Purpose:

 $\mbox{MQC_VectorScalarProduct}$ is a function that returns the product of a \mbox{MQC} vector with a \mbox{MQC} scalar.

Parameters

-	in	Vector	
			Vector is Type(MQC_Vector) The MQC_Vector to multiply.
-	in	Scalar	
			Scalar is Type(MQC_Scalar) The MQC_Scalar to multiply.

Author

X. Sheng

Date

2017

The documentation for this interface was generated from the following file:

• src/mqc_algebra.F03

6.45 mqc_est::operator(*) Interface Reference

Public Member Functions

- type(mqc_scf_integral) function mqc_scalar_integral_multiply (scalar, integral)
- type(mqc_scf_integral) function mqc_integral_scalar_multiply (integral, scalar)

6.45.1 Member Function/Subroutine Documentation

6.45.1.1 mqc_integral_scalar_multiply()

6.45.1.2 mgc scalar integral multiply()

The documentation for this interface was generated from the following file:

src/mqc est.F03

6.46 mqc algebra::operator(**) Interface Reference

Exponentials a variable to the power of another

Public Member Functions

- type(mqc_scalar) function mqc_scalarexponent (Scalar1, Scalar2)
 - MQC Scalar Exponent is a function that raises one MQC Scalar to the power of another MQC Scalar
- type(mqc_scalar) function mqc_scalarintegerexponent (Scalar, IntIn)
 - MQC_ScalarIntegerExponent is a function that raises an MQC_Scalar to the power of an intrinsic integer
- type(mqc_scalar) function mqc_scalarrealexponent (Scalar, RealIn)
 - MQC_ScalarRealExponent is a function that raises an MQC_Scalar to the power of an intrinsic real
- type(mqc_scalar) function mqc_scalarcomplexexponent (Scalar, Compln)
 - MQC_ScalarComplexExponent is a function that raises an MQC_Scalar to the power of an intrinsic complex

6.46.1 Detailed Description

Exponentials a variable to the power of another

6.46.2 Member Function/Subroutine Documentation

6.46.2.1 mqc_scalarcomplexexponent()

MQC_ScalarComplexExponent is a function that raises an MQC_Scalar to the power of an intrinsic complex

Purpose:

 $\mbox{MQC_ScalarComplexExponent}$ is a function that raises an $\mbox{MQC_Scalar}$ to the power of an intrinsic complex.

Parameters

in	Scalar	
		Scalar1 is Type(MQC_Scalar) The base value.
in	Comp←	
	In	CompIn is Complex(kind=real64) The power value.

Author

L. M. Thompson

Date

2019

6.46.2.2 mqc_scalarexponent()

MQC_Scalar Exponent is a function that raises one MQC_Scalar to the power of another MQC_Scalar

Purpose:

 ${\tt MQC_ScalarExponent}$ is a function that raises one ${\tt MQC_Scalar}$ to the power of another ${\tt MQC_Scalar}.$

in	Scalar1	
		Scalar1 is Type(MQC_Scalar) The base value.
in	Scalar2	
		Scalar2 is Type(MQC_Scalar) The power value.

Author

L. M. Thompson

Date

2016

6.46.2.3 mqc_scalarintegerexponent()

MQC_ScalarIntegerExponent is a function that raises an MQC_Scalar to the power of an intrinsic integer

Purpose:

 $\texttt{MQC_ScalarIntegerExponent}$ is a function that raises an $\texttt{MQC_Scalar}$ to the power of an intrinsic integer.

Parameters

in	Scalar	
		Scalar1 is Type(MQC_Scalar) The base value.
in	Intln	
		IntIn is Integer(kind=int64) The power value.

Author

L. M. Thompson

Date

2019

6.46.2.4 mqc_scalarrealexponent()

MQC_Scalar RealExponent is a function that raises an MQC_Scalar to the power of an intrinsic real

Purpose:

 $\ensuremath{\mathtt{MQC_ScalarRealExponent}}$ is a function that raises an $\ensuremath{\mathtt{MQC_Scalar}}$ to the power of an intrinsic real.

Parameters

in	Scalar	
		Scalarl is Type(MQC_Scalar) The base value.
in	Real⊷	
	In	RealIn is Real(kind=real64) The power value.

Author

L. M. Thompson

Date

2019

The documentation for this interface was generated from the following file:

• src/mqc_algebra.F03

6.47 mqc_algebra::operator(+) Interface Reference

Sums two variables

Public Member Functions

type(mqc_scalar) function mqc_scalaradd (Scalar1, Scalar2)

MQC_ScalarAdd is a function that sums two MQC_Scalar objects

type(mqc_scalar) function mqc_integerscalaradd (IntegerIn, Scalar)

MQC_IntegerScalarAdd is a function that is used to multiply an intrinsic integer by an MQC_Scalar

type(mqc_scalar) function mqc_scalarintegeradd (Scalar, IntegerIn)

MQC_ScalarIntegerAdd is a function that is used to sum an intrinsic integer by an MQC_Scalar

• type(mqc_scalar) function mqc_realscalaradd (RealIn, Scalar)

MQC_RealScalarAdd is a function that is used to sum an intrinsic real by an MQC_Scalar

• type(mqc_scalar) function mqc_scalarrealadd (Scalar, RealIn)

MQC_ScalarRealAdd is a function that is used to sum an intrinsic real by an MQC_Scalar

• type(mqc_scalar) function mqc_complexscalaradd (ComplexIn, Scalar)

MQC_ComplexScalarAdd is a function that is used to sum an intrinsic complex by an MQC_Scalar

type(mqc_scalar) function mqc_scalarcomplexadd (Scalar, ComplexIn)

MQC_ScalarComplexAdd is a function that is used to sum an intrinsic complex by an MQC_Scalar

type(mqc_vector) function mqc_vectorvectorsum (Vector1In, Vector2In)

MQC_VectorVectorSum is a function that adds two MQC vectors and stores them in another MQC vector

• type(mqc_vector) function mqc_scalarvectorsum (ScalarIn, VectorIn)

MQC_ScalarVectorSum is a function that adds an MQC scalar to all elements of an MQC vector

type(mgc matrix) function mgc matrixmatrixsum (MA, MB)

MQC_MatrixMatrixSum is a function that sums two MQC matrices

6.47.1 Detailed Description

Sums two variables

6.47.2 Member Function/Subroutine Documentation

6.47.2.1 mgc complexscalaradd()

MQC ComplexScalarAdd is a function that is used to sum an intrinsic complex by an MQC Scalar

Purpose:

 $\mbox{MQC_ComplexScalarAdd}$ is a function that is used to sum an intrinsic complex by an $\mbox{MQC_Scalar.}$

in	Complex← In	Complex is Complex(kind=real64) The intrinsic complex variable to sum.
in	Scalar	
		Scalar is Type(MQC_Scalar) The MQC_Scalar variabel to sum.

Author

L. M. Thompson

Date

2019

6.47.2.2 mqc_integerscalaradd()

MQC_IntegerScalarAdd is a function that is used to multiply an intrinsic integer by an MQC_Scalar

Purpose:

 $\texttt{MQC_IntegerScalarAdd}$ is a function that is used to sum an intrinsic integer by an $\texttt{MQC_Scalar.}$

Parameters

in	Integer⊷ In	IntegerIn is Integer(kind=int64) The intrinsic integer variable to sum.
in	Scalar	
		Scalar is Type(MQC_Scalar) The MQC_Scalar variable to sum.

Author

L. M. Thompson

Date

2019

6.47.2.3 mqc_matrixmatrixsum()

MQC_MatrixMatrixSum is a function that sums two MQC matrices

Purpose:

MQC_MatrixMatrixSum is a function that sums two MQC matrices.

Parameters

in	MA	
		MA is Type(MQC_Matrix) First MQC matrix to sum.
in	MB	
		MB is Type(MQC_Matrix) Second MQC matrix to sum.

Author

H. P. Hratchian

L. M. Thompson

Date

2017, 2018

6.47.2.4 mqc_realscalaradd()

MQC_RealScalarAdd is a function that is used to sum an intrinsic real by an MQC_Scalar

Purpose:

 $\ensuremath{\mathsf{MQC_RealScalarAdd}}$ is a function that is used to sum an intrinsic real by an $\ensuremath{\mathsf{MQC_Scalar}}.$

in	realIn	
		RealIn is Real(kind=real64) The intrinsic real variable to sum.
in	Scalar	
		Scalar is Type(MQC_Scalar) The MQC_Scalar variable to sum.

Author

L. M. Thompson

Date

2019

6.47.2.5 mqc_scalaradd()

MQC_ScalarAdd is a function that sums two MQC_Scalar objects

Purpose:

 ${\tt MQC_ScalarAdd}$ is a function that sums two ${\tt MQC_Scalar}$ objects.

Parameters

in	Scalar1	
		Scalar1 is Type(MQC_Scalar) The first MQC_Scalar to be summed.
in	Scalar2	
		Scalar2 is Type(MQC_Scalar) The second MQC_Scalar to be summed.

Author

L. M. Thompson

Date

2016

6.47.2.6 mqc_scalarcomplexadd()

MQC_ScalarComplexAdd is a function that is used to sum an intrinsic complex by an MQC_Scalar

Purpose:

 $\mbox{MQC_ScalarComplexAdd}$ is a function that is used to sum an intrinsic complex by an $\mbox{MQC_Scalar.}$

Parameters

in	Complex← In	Complex is Complex(kind=real64) The intrinsic complex variable to sum.
in	Scalar	
		Scalar is Type(MQC_Scalar) The MQC_Scalar variabel to sum.

Author

L. M. Thompson

Date

2019

6.47.2.7 mqc_scalarintegeradd()

MQC_ScalarIntegerAdd is a function that is used to sum an intrinsic integer by an MQC_Scalar

Purpose:

 $\ensuremath{\mathsf{MQC_ScalarIntegerSum}}$ is a function that is used to sum an intrinsic integer by an $\ensuremath{\mathsf{MQC_Scalar}}.$

in	Integer⊷ In	IntegerIn is Integer(kind=int64) The intrinsic integer variable to sum.
in	Scalar	
		Scalar is Type(MQC_Scalar) The MQC_Scalar varibale to sum.

Author

L. M. Thompson

Date

2019

6.47.2.8 mqc_scalarrealadd()

MQC_ScalarRealAdd is a function that is used to sum an intrinsic real by an MQC_Scalar

Purpose:

 $\ensuremath{\mathsf{MQC_ScalarRealSum}}$ is a function that is used to sum an intrinsic real by an $\ensuremath{\mathsf{MQC_Scalar}}.$

Parameters

in	realIn	
		RealIn is Real(kind=real64) The intrinsic real variable to sum.
in	Scalar	
		Scalar is Type(MQC_Scalar) The MQC_Scalar variable to sum.

Author

L. M. Thompson

Date

2019

6.47.2.9 mqc_scalarvectorsum()

MQC_ScalarVectorSum is a function that adds an MQC scalar to all elements of an MQC vector

Purpose:

 $\ensuremath{\text{MQC_VectorVectorSum}}$ is a function that adds an $\ensuremath{\text{MQC}}$ scalar to all elements of an $\ensuremath{\text{MQC}}$ vector.

Parameters

in	Scalar⊷ In	ScalarIn is Type(MQC_Scalar) The MQC scalar to add to the MQC vector.
in	Vector⊷	
	In	VectorIn is Type(MQC_Vector) The MQC vector with elements to sum with ScalarIn.

Author

L. M. Thompson

Date

2016

6.47.2.10 mqc_vectorvectorsum()

```
\label{type mqc_vector} type (\texttt{mqc\_vector}) \ \ function \ \ \texttt{mqc\_algebra}:: operator(+):: \texttt{mqc\_vector} vectors \texttt{um} \ \ (  type (\texttt{mqc\_vector}), \ \ intent(in) \ \ \textit{Vector1In},   type (\texttt{mqc\_vector}), \ \ intent(in) \ \ \textit{Vector2In} \ )
```

MQC_VectorVectorSum is a function that adds two MQC vectors and stores them in another MQC vector

Purpose:

 ${\tt MQC_VectorVectorSum}$ is a function that adds two ${\tt MQC}$ vectors and stores them in another ${\tt MQC}$ vector.

in	Vector1↔ In	VectorlIn is Type(MQC_Vector) The first MQC vector that will be summed.
in	Vector2← In	Vector2In is Type(MQC_Vector) The second MQC vector that will be summed.

Author

L. M. Thompson

Date

2016

The documentation for this interface was generated from the following file:

• src/mqc_algebra.F03

6.48 mqc_est::operator(+) Interface Reference

Public Member Functions

• type(mqc_scf_integral) function mqc_integral_sum (integralA, integralB)

6.48.1 Member Function/Subroutine Documentation

6.48.1.1 mqc_integral_sum()

The documentation for this interface was generated from the following file:

src/mqc_est.F03

6.49 mgc est::operator(-) Interface Reference

Public Member Functions

type(mqc_scf_integral) function mqc_integral_difference (integralA, integralB)

6.49.1 Member Function/Subroutine Documentation

6.49.1.1 mqc_integral_difference()

The documentation for this interface was generated from the following file:

src/mgc est.F03

6.50 mqc algebra::operator(-) Interface Reference

Subtracts two variables

Public Member Functions

- type(mgc scalar) function mgc scalarsubtract (Scalar1, Scalar2)
 - MQC_ScalarSubtract is a function that subtracts two MQC_Scalar objects
- type(mqc_scalar) function mqc_integerscalarsubtract (IntegerIn, Scalar)
 - MQC_IntegerScalarSubtract is a function that is used to subtract an MQC_Scalar from an intrinisic integer
- type(mqc_scalar) function mqc_scalarintegersubtract (Scalar, IntegerIn)
 - MQC_ScalarIntegerSubtract is a function that is used to subtract an intrinsic integer from an MQC_Scalar
- type(mqc_scalar) function mqc_realscalarsubtract (RealIn, Scalar)
 - MQC_RealScalarSubtract is a function that is used to subtract an MQC_Scalar from an intrinisic real
- type(mqc_scalar) function mqc_scalarrealsubtract (Scalar, RealIn)
 - MQC_ScalarRealSubtract is a function that is used to subtract an intrinsic real from an MQC_Scalar
- type(mqc_scalar) function mqc_complexscalarsubtract (ComplexIn, Scalar)
 - MQC_ComplexScalarSubtract is a function that is used to subtract an MQC_Scalar from an intrinisic complex
- type(mqc scalar) function mqc scalarcomplexsubtract (Scalar, ComplexIn)
- MQC_ScalarComplexSubtract is a function that is used to subtract an intrinsic complex from an MQC_Scalar
- type(mgc_vector) function mgc_vectorvectordifference (Vector1In, Vector2In)
 - MQC_VectorVectorDifference is a function that subtracts two MQC vectors and stores them in another MQC vector
- type(mqc_vector) function mqc_scalarvectordifference (ScalarIn, VectorIn)
 - MQC_ScalarVectorDifference is a function that subtracts an MQC scalar from all elements of an MQC vector
- type(mqc_matrix) function mqc_matrixmatrixsubtract (MA, MB)
 - MQC_MatrixMatrixSubtract is a function that subtracts two MQC matrices

6.50.1 Detailed Description

Subtracts two variables

6.50.2 Member Function/Subroutine Documentation

6.50.2.1 mqc_complexscalarsubtract()

MQC_ComplexScalarSubtract is a function that is used to subtract an MQC_Scalar from an intrinisic complex

Purpose:

 ${\tt MQC_ComplexScalarSubtract}$ is a function that is used to subtract an ${\tt MQC_Scalar}$ from an intrinisic complex.

Parameters

in	Complex← In	ComplexIn is Complex(kind=real64) The intrinsic complex to subtract from.
in	Scalar	
		Scalar is Type(MQC_Scalar) The MQC_Scalar variable to subtract.

Author

L. M. Thompson

Date

2019

6.50.2.2 mqc_integerscalarsubtract()

MQC_IntegerScalarSubtract is a function that is used to subtract an MQC_Scalar from an intrinisic integer

Purpose:

 ${\tt MQC_IntegerScalarSubtract}$ is a function that is used to subtract an ${\tt MQC_Scalar}$ from an intrinisic integer.

Parameters

in	Integer⊷ In	IntegerIn is Integer(kind=int64) The intrinsic integer to subtract from.
in	Scalar	
		Scalar is Type(MQC_Scalar) The MQC_Scalar variable to subtract.

Author

L. M. Thompson

Date

2019

6.50.2.3 mqc_matrixmatrixsubtract()

MQC_MatrixMatrixSubtract is a function that subtracts two MQC matrices

Purpose:

 ${\tt MQC_MatrixMatrixSubtract}$ is a function that subtracts two ${\tt MQC}$ matrices.

Parameters

in	MA	
		MA is Type(MQC $_$ Matrix) The matrix that MB will be subtracted from.
in	MB	
		MB is Type(MQC_Matrix) The matrix that will be subtracted from MA.

Author

H. P. Hratchian

Date

2017

6.50.2.4 mqc_realscalarsubtract()

MQC_RealScalarSubtract is a function that is used to subtract an MQC_Scalar from an intrinisic real

Purpose:

 $\texttt{MQC}_\texttt{RealScalarSubtract}$ is a function that is used to subtract an $\texttt{MQC}_\texttt{Scalar}$ from an intrinisic real.

Parameters

in	Real⊷ In	RealIn is Real(kind=real64) The intrinsic real to subtract from.
in	Scalar	
		Scalar is Type(MQC_Scalar) The MQC_Scalar variable to subtract.

Author

L. M. Thompson

Date

2019

6.50.2.5 mqc_scalarcomplexsubtract()

MQC_ScalarComplexSubtract is a function that is used to subtract an intrinsic complex from an MQC_Scalar

Purpose:

 $\mbox{MQC_ScalarComplexSubtract}$ is a function that is used to subtract an intrinsic complex from an $\mbox{MQC_Scalar.}$

Parameters

in	Scalar	
		Scalar is Type(MQC_Scalar) The MQC_Scalar variable to subtract from.
in	Complex⊷	
	In	ComplexIn is Complex(kind=real64) The intrinsic complex to subtract.

Author

L. M. Thompson

Date

2019

6.50.2.6 mqc_scalarintegersubtract()

```
\label{type mqc_scalar} type (\texttt{mqc\_scalar}) \ function \ \texttt{mqc\_algebra::operator(-)::mqc\_scalar}integers ubtract \ ($type(\texttt{mqc\_scalar})$, intent(in) $Scalar$, $integer(\texttt{kind=int64})$, intent(in) $IntegerIn$ )
```

MQC_ScalarIntegerSubtract is a function that is used to subtract an intrinsic integer from an MQC_Scalar

Purpose:

 $MQC_ScalarIntegerSubtract$ is a function that is used to subtract an intrinsic integer from an MQC_Scalar .

Parameters

in	Scalar	
		Scalar is Type(MQC_Scalar) The MQC_Scalar variable to subtract from.
in	Integer← In	IntegerIn is Integer(kind=int64)
		The intrinsic integer to subtract.

Author

L. M. Thompson

Date

2019

6.50.2.7 mqc_scalarrealsubtract()

MQC_ScalarRealSubtract is a function that is used to subtract an intrinsic real from an MQC_Scalar

Purpose:

 $\texttt{MQC_ScalarRealSubtract}$ is a function that is used to subtract an intrinsic real from an $\texttt{MQC_Scalar.}$

Parameters

	in	Scalar	
			Scalar is Type(MQC_Scalar) The MQC_Scalar variable to subtract from.
ſ			
	in	Real⊷	

Author

L. M. Thompson

Date

2019

6.50.2.8 mqc_scalarsubtract()

MQC_ScalarSubtract is a function that subtracts two MQC_Scalar objects

Purpose:

MQC_ScalarSubtract is a function that subtracts two MQC_Scalar objects.

Parameters

in	Scalar1	
		Scalar1 is Type(MQC_Scalar) The first MQC_Scalar from which Scalar2 will be subtracted.
in	Scalar2	
		Scalar2 is Type(MQC_Scalar) The second MQC_Scalar which will be subtracted from Scalar1.

Author

L. M. Thompson

Date

2016

6.50.2.9 mqc_scalarvectordifference()

MQC_ScalarVectorDifference is a function that subtracts an MQC scalar from all elements of an MQC vector

Purpose:

 $\ensuremath{\mathsf{MQC_ScalarVectorDifference}}$ is a function that subtracts an $\ensuremath{\mathsf{MQC}}$ scalar from all elements of an $\ensuremath{\mathsf{MQC}}$ vector.

in	Scalar⊷ In	ScalarIn is Type(MQC_Scalar) The MQC scalar to be subtracted from elements of the the MQC vector.
in	Vector⊷ In	VectorIn is Type(MQC_Vector) The MQC vector with elements from which ScalarIn will be subtracted.

Author

L. M. Thompson

Date

2016

6.50.2.10 mqc_vectorvectordifference()

$\mbox{MQC_VectorVectorDifference}$ is a function that subtracts two \mbox{MQC} vectors and stores them in another \mbox{MQC} vector

Purpose:

 $\texttt{MQC_VectorVectorDifference}$ is a function that subtracts two MQC vectors and stores them in another MQC vector.

Parameters

in	Vector1← In	VectorlIn is Type(MQC_Vector) The first MQC vector from which the second will be subtracted.
in	Vector2← In	Vector2In is Type(MQC_Vector) The second MQC vector that will be subtracted from the first.

Author

L. M. Thompson

Date

2016

The documentation for this interface was generated from the following file:

• src/mqc_algebra.F03

6.51 mqc_algebra::operator(.dot.) Interface Reference

Computes the inner product of two arrays

Public Member Functions

- type(mqc_scalar) function mqc_vectorvectordotproduct (Vector1, Vector2)
 MQC_VectorVectorDotProduct is a function that returns the dot product of two MQC vectors
 - mac_vector vector both roduct is a function that returns the dot product or two mac vector
- type(mqc_vector) function mqc_vectormatrixdotproduct (VA, MB)
- type(mqc_vector) function mqc_matrixvectordotproduct (MA, VB)
- type(mqc_matrix) function mqc_matrixmatrixdotproduct (MA, MB)

6.51.1 Detailed Description

Computes the inner product of two arrays

6.51.2 Member Function/Subroutine Documentation

6.51.2.1 mqc_matrixmatrixdotproduct()

6.51.2.2 mqc_matrixvectordotproduct()

6.51.2.3 mqc_vectormatrixdotproduct()

6.51.2.4 mqc_vectorvectordotproduct()

MQC_VectorVectorDotProduct is a function that returns the dot product of two MQC vectors

Purpose:

 ${\tt MQC_VectorVectorDotProduct}$ is a function that returns the dot product of two ${\tt MQC}$ vectors. The first vector should be a row vector, while the second vector should be a column vector. The vectors should be of the same length.

Parameters

in	Vector1	
		Vector1 is Type(MQC_Vector) The MQC row vector.
in	Vector2	
		Vector2 is Type(MQC_Vector) The MQC column vector.

Author

- H. P. Hratchian
- L. M. Thompson

Date

2016

The documentation for this interface was generated from the following file:

• src/mqc_algebra.F03

6.52 mqc_algebra::operator(.eq.) Interface Reference

Determines if two variables are equal

Public Member Functions

logical function mqc_scalareq (Scalar1, Scalar2)
 MQC_ScalarEQ is a function that returns TRUE if two MQC_Scalar variables are equal

6.52.1 Detailed Description

Determines if two variables are equal

6.52.2 Member Function/Subroutine Documentation

6.52.2.1 mqc_scalareq()

MQC_ScalarEQ is a function that returns TRUE if two MQC_Scalar variables are equal

Purpose:

```
\ensuremath{\mathsf{MQC\_ScalarEQ}} is a function that returns TRUE if two \ensuremath{\mathsf{MQC\_Scalar}} variables are equal.
```

in	Scalar1	
		Scalar1 is Type(MQC_Scalar) The first MQC_Scalar that will be tested.
in	Scalar2	
		Scalar2 is Type(MQC_Scalar) The second MQC_Scalar that will be tested.

Author

L. M. Thompson

Date

2016

The documentation for this interface was generated from the following file:

• src/mqc_algebra.F03

6.53 mgc algebra::operator(.ewd.) Interface Reference

Computes the element-wise quotient of two arrays

Public Member Functions

type(mqc_matrix) function mqc_elementmatrixdivide (A, B)
 MQC_ElementMatrixDivide is a function that returns the element- wise quotient of two MQC matrices

6.53.1 Detailed Description

Computes the element-wise quotient of two arrays

6.53.2 Member Function/Subroutine Documentation

6.53.2.1 mqc_elementmatrixdivide()

MQC_ElementMatrixDivide is a function that returns the element- wise quotient of two MQC matrices

Purpose:

 $\mbox{MQC_ElementMatrixDivide}$ is a function that returns the element-wise quotient of two \mbox{MQC} matrices.

	in	Α	
			A is type(mqc_matrix) The matrix with elements being the numerator.
П		_	
	in	B	

Author

X. Sheng

Date

2017

The documentation for this interface was generated from the following file:

• src/mqc_algebra.F03

6.54 mqc_algebra::operator(.ewp.) Interface Reference

Computes the element-wise product of two arrays

Public Member Functions

- type(mgc_vector) function mgc_elementvectorproduct (Vector1In, Vector2In)
 - MQC_ElementVectorProduct is a function that multiplies two MQC vectors elementwise and stores them into another MQC vector
- type(mqc_matrix) function mqc_elementmatrixproduct (A, B)

MQC_ElementMatrixProduct is a function that returns the element- wise product of two MQC matrices

6.54.1 Detailed Description

Computes the element-wise product of two arrays

6.54.2 Member Function/Subroutine Documentation

6.54.2.1 mqc_elementmatrixproduct()

MQC_ElementMatrixProduct is a function that returns the element- wise product of two MQC matrices

Purpose:

 $\mbox{MQC_ElementMatrixProduct}$ is a function that returns the element-wise product of two \mbox{MQC} matrices.

Parameters

in	Α	
		A is type(mqc_matrix) The first matrix to element-wise multiply.
in	В	
		B is type(mqc_matrix) The second matrix to element-wise multiply.

Author

X. Sheng

Date

2017

6.54.2.2 mqc_elementvectorproduct()

```
type(mqc_vector) function mqc_algebra::operator(.ewp.)::mqc_elementvectorproduct ( type(mqc_vector), intent(in) Vector1In, type(mqc_vector), intent(in) Vector2In)
```

MQC_ElementVectorProduct is a function that multiplies two MQC vectors elementwise and stores them into another MQC vector

Purpose:

 ${\tt MQC_ElementVectorProduct}$ is a function that multiplies two ${\tt MQC}$ vectors elementwise and stores them into another ${\tt MQC}$ vector.

in	Vector1↔ In	VectorlIn is Type(MQC_Vector) The frist MQC vector to multiply elementwise.
in	Vector2↔ In	Vector2In is Type(MQC_Vector) The second MQC vector to multiply elementwise.

Author

L. M. Thompson

Date

2016

The documentation for this interface was generated from the following file:

• src/mqc_algebra.F03

6.55 mqc_algebra::operator(.ge.) Interface Reference

Determines if a variable is greater than or equal to another

Public Member Functions

• logical function mqc_scalarge (Scalar1, Scalar2)

MQC_ScalarGE is a function that returns TRUE if the left MQC_Scalar is greater than or equal the right MQC_← Scalar

6.55.1 Detailed Description

Determines if a variable is greater than or equal to another

6.55.2 Member Function/Subroutine Documentation

6.55.2.1 mqc_scalarge()

MQC_ScalarGE is a function that returns TRUE if the left MQC_Scalar is greater than or equal the right MQC←_Scalar

Purpose:

 ${\tt MQC_ScalarGE}$ is a function that returns TRUE if the left ${\tt MQC_Scalar}$ is greater than or equal to the right ${\tt MQC_Scalar}.$

When dealing with complex numbers, the function returns TRUE if the left real part is is greater than or equal to the right real part and FALSE if the left real part is less than the right real part.

Parameters

in	Scalar1	
		Scalar1 is Type(MQC_Scalar) The first MQC_Scalar that will be tested.
in	Scalar2	
		Scalar2 is Type(MQC_Scalar) The second MQC_Scalar that will be tested.

Author

L. M. Thompson

Date

2016

The documentation for this interface was generated from the following file:

• src/mqc_algebra.F03

6.56 mqc_algebra::operator(.gt.) Interface Reference

Determines if a variable is greater than another

Public Member Functions

logical function mqc scalargt (Scalar1, Scalar2)

MQC_ScalarGT is a function that returns TRUE if the left MQC_Scalar is greater than the right MQC_Scalar

logical function mqc_scalargtinteger (Scalar, Intln)

MQC ScalarGTInteger is a function that returns TRUE if a MQC Scalar is greater than an intrinsic integer

logical function mqc_integergtscalar (Intln, Scalar)

MQC_IntegerGTScalar is a function that returns TRUE if an intrinsic integer is greater than a MQC_Scalar

logical function mqc_scalargtreal (Scalar, RealIn)

MQC_ScalarGTReal is a function that returns TRUE if a MQC_Scalar is greater than an intrinsic real

logical function mqc_realgtscalar (RealIn, Scalar)

MQC_RealGTScalar is a function that returns TRUE if an intrinsic real is greater than a MQC_Scalar

6.56.1 Detailed Description

Determines if a variable is greater than another

6.56.2 Member Function/Subroutine Documentation

6.56.2.1 mqc_integergtscalar()

MQC_IntegerGTScalar is a function that returns TRUE if an intrinsic integer is greater than a MQC_Scalar

Purpose:

 $\texttt{MQC_IntegerGTScalar}$ is a function that returns TRUE if an intrinsic integer is greater than a $\texttt{MQC_Scalar}.$

When dealing with complex numbers, the function returns TRUE if the intrinsic integer is greater than the real part of the MQC_Scalar and FALSE if the intrinsic integer is less than the real part of the MQC_Scalar. If the intrinsic integer is equal to the real part of the MQC_Scalar, the function returns TRUE if the imaginary part of MQC_Scalar is less than zero and FALSE otherwise.

Parameters

in	Intln	
		IntIn is Integer(kind=int64) The intrinsic integer that will be tested.
in	Scalar	
		Scalar is Type(MQC_Scalar)
Generated	by Doxygen	The MQC_Scalar that will be tested.

Author

L. M. Thompson

Date

2019

6.56.2.2 mqc_realgtscalar()

MQC_RealGTScalar is a function that returns TRUE if an intrinsic real is greater than a MQC_Scalar

Purpose:

 $\ensuremath{\mathtt{MQC_RealGTScalar}}$ is a function that returns TRUE if an intrinsic real is greater than a $\ensuremath{\mathtt{MQC_Scalar}}.$

When dealing with complex numbers, the function returns TRUE if the intrinsic real is greater than the real part of the MQC_Scalar and FALSE if the intrinsic real is less than the real part of the MQC_Scalar. If the intrinsic real is equal to the real part of the MQC_Scalar, the function returns TRUE if the imaginary part of MQC_Scalar is less than zero and FALSE otherwise.

Parameters

in	Real⊷ In	RealIn is Real(kind=real64) The intrinsic real that will be tested.
in	Scalar	
		Scalar is Type(MQC_Scalar) The MQC_Scalar that will be tested.

Author

L. M. Thompson

Date

2019

6.56.2.3 mqc_scalargt()

MQC_ScalarGT is a function that returns TRUE if the left MQC_Scalar is greater than the right MQC_Scalar

Purpose:

 ${\tt MQC_ScalarGT}$ is a function that returns TRUE if the left ${\tt MQC_Scalar}$ is greater than the right ${\tt MQC_Scalar}.$

When dealing with complex numbers, the function returns TRUE if the left real part is greater than the right real part and FALSE if the left real part is less than the right real part. If the left real part is equal to the right real part, the function returns TRUE if the left imaginary part is greater than the right imaginary part and FALSE otherwise.

Parameters

in	Scalar1	
		Scalar1 is Type(MQC_Scalar) The first MQC_Scalar that will be tested.
in	Scalar2	
		Scalar2 is Type(MQC_Scalar) The second MQC_Scalar that will be tested.

Author

L. M. Thompson

Date

2016

6.56.2.4 mqc_scalargtinteger()

MQC_ScalarGTInteger is a function that returns TRUE if a MQC_Scalar is greater than an intrinsic integer

Purpose:

 $\mbox{MQC_ScalarGTInteger}$ is a function that returns TRUE if a $\mbox{MQC_Scalar}$ is greater than an intrinsic integer.

When dealing with complex numbers, the function returns TRUE if the real part of the MQC_Scalar is greater than the intrinsic integer and FALSE if the real part of the MQC_Scalar is less than the intrinsic integer. If the real part of the MQC_Scalar is equal to the intrinsic integer, the function returns TRUE if the imaginary part of MQC_Scalar is greater than zero and FALSE otherwise.

Parameters

in	Scalar	
		Scalar is Type(MQC_Scalar) The MQC_Scalar that will be tested.
in	Intln	
		<pre>IntIn is Integer(kind=int64) The intrinsic integer that will be tested.</pre>

Author

L. M. Thompson

Date

2019

6.56.2.5 mqc_scalargtreal()

MQC_ScalarGTReal is a function that returns TRUE if a MQC_Scalar is greater than an intrinsic real

Purpose:

 $\mbox{MQC_ScalarGTReal}$ is a function that returns TRUE if a $\mbox{MQC_Scalar}$ is greater than an intrinsic real.

When dealing with complex numbers, the function returns TRUE if the real part of the MQC_Scalar is greater than the intrinsic real and FALSE if the real part of the MQC_Scalar is less than the intrinsic real. If the real part of the MQC_Scalar is equal to the intrinsic real, the function returns TRUE if the imaginary part of MQC_Scalar is greater than zero and FALSE otherwise.

in	Scalar	
		Scalar is Type(MQC_Scalar) The MQC_Scalar that will be tested.
in	Real⊷	
	In	RealIn is Real(kind=int64) The intrinsic real that will be tested.

Author

L. M. Thompson

Date

2019

The documentation for this interface was generated from the following file:

src/mqc_algebra.F03

6.57 mgc algebra::operator(.le.) Interface Reference

Determines if a variable is less than or equal to another

Public Member Functions

- logical function mqc_scalarle (Scalar1, Scalar2)
 - MQC_ScalarLE is a function that returns TRUE if the left MQC_Scalar is less than or equal the right MQC_Scalar
- logical function mqc_scalarlereal (Scalar, RealIn)
 - MQC_ScalarLEReal is a function that returns TRUE if a MQC_Scalar is less than or equal to an intrinsic real
- logical function mqc_reallescalar (RealIn, Scalar)
 - MQC_RealLEScalar is a function that returns TRUE if an intrinsic real is less than or equal to a MQC_Scalar
- logical function mqc_scalarleinteger (Scalar, Intln)
- MQC_ScalarLEInteger is a function that returns TRUE if a MQC_Scalar is less than or equal to an intrinsic integer
- logical function mqc_integerlescalar (Intln, Scalar)

MQC_IntegerLEScalar is a function that returns TRUE if an intrinsic integer is less than or equal to a MQC_Scalar

6.57.1 Detailed Description

Determines if a variable is less than or equal to another

6.57.2 Member Function/Subroutine Documentation

6.57.2.1 mqc_integerlescalar()

MQC_IntegerLEScalar is a function that returns TRUE if an intrinsic integer is less than or equal to a MQC_ \leftarrow Scalar

Purpose:

 $\mbox{MQC_IntegerLES}\mbox{calar}$ is a function that returns TRUE if an intrinsic integer is less than or equal to a $\mbox{MQC_Scalar}$.

When dealing with complex numbers, the function returns TRUE if the intrinsic integer is less than or equal to the real part of the MQC_Scalar and FALSE if the intrinsic integer is greater than the real part of the MQC_Scalar.

Parameters

in	Intln	
		IntIn is Integer(kind=int64) The intrinsic integer that will be tested.
in	Scalar	
		Scalar is Type(MQC_Scalar)

Author

L. M. Thompson

Date

2019

6.57.2.2 mqc_reallescalar()

MQC_RealLEScalar is a function that returns TRUE if an intrinsic real is less than or equal to a MQC_Scalar

Purpose:

 $\mbox{MQC_RealLES}\mbox{calar}$ is a function that returns TRUE if an intrinsic real is less than or equal to a $\mbox{MQC_S}\mbox{calar}.$

When dealing with complex numbers, the function returns TRUE if the intrinsic real is less than or equal to the real part of the MQC_Scalar and FALSE if the intrinsic real is greater than the real part of the MQC_Scalar.

Parameters

in	Real← In	RealIn is Real(kind=real64) The intrinsic real that will be tested.
in	Scalar	
		Scalar is Type(MQC_Scalar) The MQC_Scalar that will be tested.

Author

L. M. Thompson

Date

2019

6.57.2.3 mqc_scalarle()

MQC_ScalarLE is a function that returns TRUE if the left MQC_Scalar is less than or equal the right MQC_Scalar

Purpose:

 ${\tt MQC_ScalarLE}$ is a function that returns TRUE if the left ${\tt MQC_Scalar}$ is less than or equal to the right ${\tt MQC_Scalar.}$

When dealing with complex numbers, the function returns TRUE if the left real part is less than or equal to the right real part and FALSE if the left real part is greater than the right real part.

Parameters

in	Scalar1	
		Scalar1 is Type(MQC_Scalar) The first MQC_Scalar that will be tested.
in	Scalar2	
		Scalar2 is Type(MQC_Scalar) The second MQC_Scalar that will be tested.

Author

L. M. Thompson

Date

2016

6.57.2.4 mqc_scalarleinteger()

MQC_ScalarLEInteger is a function that returns TRUE if a MQC_Scalar is less than or equal to an intrinsic integer

Purpose:

 ${\tt MQC_ScalarLEInteger}$ is a function that returns TRUE if a ${\tt MQC_Scalar}$ is less than or equal to an intrinsic integer.

When dealing with complex numbers, the function returns TRUE if the real part of the MQC_Scalar is less than or equal to the intrinsic integer and FALSE if the real part of the MQC_Scalar is greater than the intrinsic integer.

Parameters

in	Scalar	
		Scalar is Type(MQC_Scalar) The MQC_Scalar that will be tested.
in	Intln	
		IntIn is Integer(kind=int64) The intrinsic integer that will be tested.

Author

L. M. Thompson

Date

2019

6.57.2.5 mqc_scalarlereal()

MQC_ScalarLEReal is a function that returns TRUE if a MQC_Scalar is less than or equal to an intrinsic real

Purpose:

 ${\tt MQC_ScalarLEReal}$ is a function that returns TRUE if a ${\tt MQC_Scalar}$ is less than or equal to an intrinsic real.

When dealing with complex numbers, the function returns TRUE if the real part of the MQC_Scalar is less than or equal to the intrinsic real and FALSE if the real part of the MQC_Scalar is greater than the intrinsic real.

Parameters

in	Scalar	
		Scalar is Type(MQC_Scalar) The MQC_Scalar that will be tested.
in	Real⊷	
	In	RealIn is Real(kind=int64) The intrinsic real that will be tested.

Author

L. M. Thompson

Date

2019

The documentation for this interface was generated from the following file:

src/mqc_algebra.F03

6.58 mgc algebra::operator(.lt.) Interface Reference

Determines if a variable is less than another

Public Member Functions

• logical function mqc_scalarIt (Scalar1, Scalar2)

MQC_ScalarLT is a function that returns TRUE if the left MQC_Scalar is less than the right MQC_Scalar

logical function mqc_scalarItreal (Scalar, RealIn)

MQC_ScalarLTReal is a function that returns TRUE if a MQC_Scalar is less than an intrinsic real

• logical function mqc_realltscalar (RealIn, Scalar)

MQC_RealLTScalar is a function that returns TRUE if an intrinsic real is less than a MQC_Scalar

6.58.1 Detailed Description

Determines if a variable is less than another

6.58.2 Member Function/Subroutine Documentation

6.58.2.1 mqc_realltscalar()

MQC RealLTScalar is a function that returns TRUE if an intrinsic real is less than a MQC Scalar

Purpose:

 $\mbox{MQC_RealLTScalar}$ is a function that returns TRUE if an intrinsic real is less than a $\mbox{MQC_Scalar.}$

When dealing with complex numbers, the function returns TRUE if the intrinsic real is less than the real part of the MQC_Scalar and FALSE if the intrinsic real is greater than the real part of the MQC_Scalar. If the intrinsic real is equal to the real part of the MQC_Scalar, the function returns TRUE if the imaginary part of MQC_Scalar is greater than zero and FALSE otherwise.

Parameters

in	Real⊷ In	RealIn is Real(kind=real64) The intrinsic real that will be tested.
in	Scalar	
	Julian	Scalar is Type(MQC_Scalar) The MQC_Scalar that will be tested.

Author

L. M. Thompson

Date

2019

6.58.2.2 mqc_scalarIt()

MQC_ScalarLT is a function that returns TRUE if the left MQC_Scalar is less than the right MQC_Scalar

Purpose:

 $\texttt{MQC_ScalarLT}$ is a function that returns TRUE if the left $\texttt{MQC_Scalar}$ is less than the right $\texttt{MQC_Scalar}$.

When dealing with complex numbers, the function returns TRUE if the left real part is less than the right real part and FALSE if the left real part is greater than the right real part. If the left real part is equal to the right real part, the function returns TRUE if the left imaginary part is less than the right imaginary part and FALSE otherwise.

Parameters

in	Scalar1	
		Scalar1 is Type(MQC_Scalar) The first MQC_Scalar that will be tested.
in	Scalar2	
		Scalar2 is Type(MQC_Scalar) The second MQC_Scalar that will be tested.

Author

L. M. Thompson

Date

2016

6.58.2.3 mqc_scalarItreal()

MQC_ScalarLTReal is a function that returns TRUE if a MQC_Scalar is less than an intrinsic real

Purpose:

 ${\tt MQC_ScalarLTReal}$ is a function that returns TRUE if a ${\tt MQC_Scalar}$ is less than an intrinsic real.

When dealing with complex numbers, the function returns TRUE if the real part of the MQC_Scalar is less than the intrinsic real and FALSE if the real part of the MQC_Scalar is greater than the intrinsic real. If the real part of the MQC_Scalar is equal to the intrinsic real, the function returns TRUE if the imaginary part of MQC_Scalar is less than zero and FALSE otherwise.

Parameters

in	Scalar	
		Scalar is Type(MQC_Scalar) The MQC_Scalar that will be tested.
in	Real⊷	
	In	RealIn is Real(kind=real64) The intrinsic real that will be tested.

Author

L. M. Thompson

Date

2019

The documentation for this interface was generated from the following file:

src/mqc algebra.F03

6.59 mqc_algebra::operator(.ne.) Interface Reference

Determines if two variables are not equal

Public Member Functions

logical function mqc_scalarne (Scalar1, Scalar2)

MQC_ScalarNE is a function that returns TRUE if two MQC_Scalar variables are not equal

6.59.1 Detailed Description

Determines if two variables are not equal

6.59.2 Member Function/Subroutine Documentation

6.59.2.1 mqc_scalarne()

MQC_ScalarNE is a function that returns TRUE if two MQC_Scalar variables are not equal

Purpose:

```
\ensuremath{\mathtt{MQC\_ScalarNE}} is a function that returns TRUE if two \ensuremath{\mathtt{MQC\_Scalar}} variables are not equal.
```

Parameters

in	Scalar1	
		Scalarl is Type(MQC_Scalar) The first MQC_Scalar that will be tested.
in	Scalar2	
		Scalar2 is Type(MQC_Scalar) The second MQC_Scalar that will be tested.

Author

L. M. Thompson

Date

2016

The documentation for this interface was generated from the following file:

src/mqc_algebra.F03

6.60 mqc_algebra::operator(.outer.) Interface Reference

Computes the outer product of two vectors

Public Member Functions

type(mqc_matrix) function mqc_outer (VA, VB)
 MQC_Outer is a function that returns the outer product of two MQC vectors

6.60.1 Detailed Description

Computes the outer product of two vectors

6.60.2 Member Function/Subroutine Documentation

6.60.2.1 mqc_outer()

MQC_Outer is a function that returns the outer product of two MQC vectors

Purpose:

 ${\tt MQC_Outer}$ is a function that returns the outer product of two ${\tt MQC}$ vectors. The first vector should be a column vector, while the second vector should be a row vector.

Parameters

in	VA	
		VA is Type(MQC_Vector) The MQC column vector.
in	VB	
		VB is Type(MQC_Vector) The MQC row vector.

Author

X. Sheng

Date

2017

The documentation for this interface was generated from the following file:

• src/mqc_algebra.F03

6.61 mqc_algebra::operator(.x.) Interface Reference

Computes the cross product of two vectors

Public Member Functions

type(mqc_vector) function mqc_crossproduct (Vector1In, Vector2In)
 MQC_CrossProduct is a function that returns the cross product of two MQC vectors

6.61.1 Detailed Description

Computes the cross product of two vectors

6.61.2 Member Function/Subroutine Documentation

6.61.2.1 mqc_crossproduct()

```
\label{type mqc_vector} type (\texttt{mqc\_vector}) \ \ function \ \ \texttt{mqc\_algebra::operator(.x.)::mqc\_crossproduct} \ \ (  type (\texttt{mqc\_vector}), \ \ intent(in) \ \ \textit{Vector1In},   type (\texttt{mqc\_vector}), \ \ intent(in) \ \ \textit{Vector2In} \ )
```

MQC_CrossProduct is a function that returns the cross product of two MQC vectors

Purpose:

```
{\tt MQC\_CrossProduct} is a function that returns the cross product of two {\tt MQC} vectors. The vectors should both be of length 3.
```

Parameters

in	Vector1←	
	In	VectorlIn is Type(MQC_Vector) The first MQC vector.
in	Vector2←	
	In	Vector2In is Type(MQC_Vector) The second MQC vector.

Author

L. M. Thompson

Date

2016

The documentation for this interface was generated from the following file:

• src/mqc_algebra.F03

6.62 mqc_algebra::operator(/) Interface Reference

Divides two variables

Public Member Functions

- type(mqc_scalar) function mqc_scalardivide (Scalar1, Scalar2)
 - MQC_ScalarDivide is a function that divides two MQC_Scalar objects
- type(mqc_scalar) function mqc_integerscalardivide (IntegerIn, Scalar)
 - MQC_IntegerScalarDivide is a function that is used to divide an intrinsic integer by an MQC_Scalar
- type(mqc_scalar) function mqc_scalarintegerdivide (Scalar, IntegerIn)
 - MQC_ScalarIntegerDivide is a function that is used to divide an MQC_Scalar by an intrinsic integer
- type(mgc_scalar) function mgc_realscalardivide (RealIn, Scalar)
 - MQC_RealScalarDivide is a function that is used to divide an intrinsic real by an MQC_Scalar
- type(mqc_scalar) function mqc_scalarrealdivide (Scalar, RealIn)
 - MQC_ScalarRealDivide is a function that is used to divide an MQC_Scalar by an intrinsic real
- type(mqc_scalar) function mqc_complexscalardivide (ComplexIn, Scalar)
- MQC_ComplexScalarDivide is a function that is used to divide an intrinsic complex by an MQC_Scalar
- type(mqc_scalar) function mqc_scalarcomplexdivide (Scalar, ComplexIn)
 - MQC_ScalarComplexDivide is a function that is used to divide an MQC_Scalar by an intrinsic complex
- type(mgc_vector) function mgc_vectorscalardivide (vector, scalar)
 - MQC_VectorScalarDivide is a function that returns a MQC vector divided by a MQC scalar
- type(mqc_vector) function mqc_vectorrealdivide (vector, realln)
 - MQC_VectorRealDivide is a function that returns a MQC vector divided by an intrinsic real integer
- type(mgc vector) function mgc vectorintegerdivide (vector, intln)
 - MQC_VectorIntegerDivide is a function that returns a MQC vector divided by an intrinsic integer scalar
- type(mqc_vector) function mqc_vectorcomplexdivide (vector, compln)
 - MQC_VectorComplexDivide is a function that returns a MQC vector divided by an intrinsic complex scalar

6.62.1 Detailed Description

Divides two variables

6.62.2 Member Function/Subroutine Documentation

6.62.2.1 mqc_complexscalardivide()

MQC_ComplexScalarDivide is a function that is used to divide an intrinsic complex by an MQC_Scalar

Purpose:

 $\texttt{MQC_ComplexScalarDivide}$ is a function that is used to divide an intrinsic complex by an $\texttt{MQC_Scalar.}$

Parameters

in	Complex← In	ComplexIn is Complex(kind=real64) The intrinsic complex variable numerator.
in	Scalar	Scalar is Type(MQC_Scalar) The MOC Scalar variable denominator.
		The Mgo_beatal valiable denominator.

Author

L. M. Thompson

Date

2019

6.62.2.2 mqc_integerscalardivide()

MQC_IntegerScalarDivide is a function that is used to divide an intrinsic integer by an MQC_Scalar

Purpose:

 $\mbox{MQC_IntegerScalarDivide}$ is a function that is used to divide an intrinsic integer by an $\mbox{MQC_Scalar.}$

Parameters

in	Integer↔ In	IntegerIn is Integer(kind=int64) The intrinsic integer variable numerator.
in	Scalar	
		Scalar is Type(MQC_Scalar) The MQC_Scalar variable denominator.

Author

L. M. Thompson

Date

2019

6.62.2.3 mqc_realscalardivide()

MQC_RealScalarDivide is a function that is used to divide an intrinsic real by an MQC_Scalar

Purpose:

 $\texttt{MQC_RealScalarDivide}$ is a function that is used to divide an intrinsic real by an $\texttt{MQC_Scalar.}$

Parameters

in	Real⊷ In	RealIn is Real(kind=real64) The intrinsic real variable numerator.
in	Scalar	
		Scalar is Type(MQC_Scalar) The MQC_Scalar variable denominator.

Author

L. M. Thompson

Date

2019

6.62.2.4 mqc_scalarcomplexdivide()

MQC_ScalarComplexDivide is a function that is used to divide an MQC_Scalar by an intrinsic complex

Purpose:

 $\texttt{MQC_ScalarComplexDivide}$ is a function that is used to divide an $\texttt{MQC_Scalar}$ by an intrinsic complex.

Parameters

in	Scalar	
		Scalar is Type(MQC_Scalar) The MQC_Scalar variable numerator.
in	Complex⊷	
	In	ComplexIn is Complex(kind=real64) The intrinsic complex variable denominator.

Author

L. M. Thompson

Date

2019

6.62.2.5 mqc_scalardivide()

MQC_ScalarDivide is a function that divides two MQC_Scalar objects

Purpose:

MQC_ScalarDivide is a function that divides MQC_Scalar objects.

Parameters

in	Scalar1	
		Scalarl is Type(MQC_Scalar) The numerator.
in	Scalar2	
		Scalar2 is Type(MQC_Scalar) The denominator.

Author

L. M. Thompson

Date

2016

6.62.2.6 mqc_scalarintegerdivide()

MQC_ScalarIntegerDivide is a function that is used to divide an MQC_Scalar by an intrinsic integer

Purpose:

 ${\tt MQC_ScalarIntegerDivide}$ is a function that is used to divide an ${\tt MQC_Scalar}$ by an intrinsic integer.

Parameters

in	Scalar	
		Scalar is Type(MQC_Scalar) The MQC_Scalar variable numerator.
in	Intogor	
T 11	Integer⊷	

Author

L. M. Thompson

Date

2019

6.62.2.7 mqc_scalarrealdivide()

MQC_ScalarRealDivide is a function that is used to divide an MQC_Scalar by an intrinsic real

Purpose:

 $\ensuremath{\mathsf{MQC_ScalarRealDivide}}$ is a function that is used to divide an $\ensuremath{\mathsf{MQC_Scalar}}$ by an intrinsic real.

Parameters

in	Scalar	
		Scalar is Type(MQC_Scalar) The MQC_Scalar variable numerator.
in	Real←	
	In	RealIn is Real(kind=real64) The intrinsic real variable denominator.

Author

L. M. Thompson

Date

2019

6.62.2.8 mqc_vectorcomplexdivide()

MQC_VectorComplexDivide is a function that returns a MQC vector divided by an intrinsic complex scalar

Purpose:

 $\texttt{MQC_VectorComplexDivide}$ is a function that returns a MQC vector divided by an intrinsic complex scalar.

Parameters

in	Vector	
		Vector is Type(MQC_Vector) The MQC_Vector to divide.
in	Comp⇔	
	ln	CompIn is Complex(kind=comp64) The intrinsic complex scalar to divide by.

Author

L. M. Thompson

Date

2019

6.62.2.9 mqc_vectorintegerdivide()

MQC_VectorIntegerDivide is a function that returns a MQC vector divided by an intrinsic integer scalar

Purpose:

 $\texttt{MQC_VectorIntegerDivide}$ is a function that returns a MQC vector divided by an intrinsic integer scalar.

Parameters

in	Vector	
		Vector is Type(MQC_Vector) The MQC_Vector to divide.
in	Intln	
		IntIn is Integer(kind=int64) The intrinsic integer scalar to divide by.

Author

L. M. Thompson

Date

2019

6.62.2.10 mqc_vectorrealdivide()

MQC_VectorRealDivide is a function that returns a MQC vector divided by an intrinsic real integer

Purpose:

 $\ensuremath{\mathsf{MQC}}\xspace_{\ensuremath{\mathsf{VectorRealDivide}}}$ is a function that returns a MQC vector divided by an intrinsic real scalar.

Parameters

in	Vector	
		Vector is Type(MQC_Vector) The MQC_Vector to divide.
in	Real⊷	
	In	RealIn is Real(kind=real64) The intrinsic real scalar to divide by.

Author

L. M. Thompson

Date

2019

6.62.2.11 mqc_vectorscalardivide()

MQC_VectorScalarDivide is a function that returns a MQC vector divided by a MQC scalar

Purpose:

```
\texttt{MQC\_VectorScalarDivide} is a function that returns a \texttt{MQC} vector divided by a \texttt{MQC} scalar.
```

Parameters

in	Vector	
		Vector is Type(MQC_Vector) The MQC_Vector to divide.
in	Scalar	
T11	Scalai	

Author

A. D. Mahler

Date

2019

The documentation for this interface was generated from the following file:

• src/mqc_algebra.F03

6.63 mqc_algebra::real Interface Reference

Returns the real part

Public Member Functions

type(mqc_scalar) function mqc_scalar_complex_realpart (ScalarIn)

MQC_Scalar_Complex_RealPart is a function that returns the real part of an MQC_Scalar

type(mqc_vector) function mqc_vector_complex_realpart (A)

MQC_Vector_Complex_RealPart is a function that returns a MQC vector with elements containing the real part of elements of another MQC vector

6.63.1 Detailed Description

Returns the real part

6.63.2 Member Function/Subroutine Documentation

6.63.2.1 mqc_scalar_complex_realpart()

MQC_Scalar_Complex_RealPart is a function that returns the real part of an MQC_Scalar

Purpose:

```
{\tt MQC\_Scalar\_Complex\_RealPart} is a function that returns the real part of an {\tt MQC\_Scalar.}
```

Parameters

in	Scalar⊷	
	In	ScalarIn is Type(MQC_Scalar)
		The MQC_Scalar input variable.

Author

L. M. Thompson

Date

2019

6.63.2.2 mqc_vector_complex_realpart()

MQC_Vector_Complex_RealPart is a function that returns a MQC vector with elements containing the real part of elements of another MQC vector

Purpose:

 ${\tt MQC_Vector_Complex_RealPart}$ is a function that returns a MQC vector with elements containing the real part of elements of another MQC vector.

Parameters

in	Α	
		A is $Class(MQC_Vector)$ The name of the MQC_Vector variable.

Author

L. M. Thompson

Date

2019

The documentation for this interface was generated from the following file:

• src/mqc_algebra.F03

6.64 mqc_algebra::sin Interface Reference

Returns the sine

Public Member Functions

type(mqc_scalar) function mqc_scalar_sin (Scalar)
 MQC_Scalar_Sin is a function used to return the sine of an MQC_scalar

6.64.1 Detailed Description

Returns the sine

6.64.2 Member Function/Subroutine Documentation

6.64.2.1 mqc_scalar_sin()

MQC_Scalar_Sin is a function used to return the sine of an MQC_scalar

Purpose:

MQC_Scalar_Sin is a function used to return the sine of an MQC_scalar.

Parameters

in	Scalar	
		Scalar is Type(MQC_Scalar) The argument of the function.

Author

L. M. Thompson

Date

2019

The documentation for this interface was generated from the following file:

• src/mqc_algebra.F03

6.65 mqc_algebra::sqrt Interface Reference

Returns the square root

Public Member Functions

• type(mqc_scalar) function mqc_scalar_sqrt (Scalar)

MQC_Scalar_Sqrt is a function used to return the square root of an MQC_scalar

6.65.1 Detailed Description

Returns the square root

6.65.2 Member Function/Subroutine Documentation

6.65.2.1 mqc_scalar_sqrt()

MQC_Scalar_Sqrt is a function used to return the square root of an MQC_scalar

Purpose:

 $\ensuremath{\mathsf{MQC_Scalar_Sqrt}}$ is a function used to return the square root of an $\ensuremath{\mathsf{MQC_scalar}}.$

Parameters

in	Scalar	
		Scalar is Type(MQC_Scalar) The argument of the function.

Author

L. M. Thompson

Date

2016

The documentation for this interface was generated from the following file:

• src/mqc_algebra.F03

6.66 mqc_algebra::tan Interface Reference

Returns the tangent

Public Member Functions

type(mqc_scalar) function mqc_scalar_tan (Scalar)
 MQC_Scalar_Tan is a function used to return the tangent of an MQC_scalar

6.66.1 Detailed Description

Returns the tangent

6.66.2 Member Function/Subroutine Documentation

6.66.2.1 mqc_scalar_tan()

```
\label{type mqc_scalar} type (mqc\_scalar) \ function \ mqc\_algebra::tan::mqc\_scalar\_tan \ ( \\ type (mqc\_scalar), \ intent(in) \ \textit{Scalar} \ )
```

MQC_Scalar_Tan is a function used to return the tangent of an MQC_scalar

Purpose:

 ${\tt MQC_Scalar_Tan}$ is a function used to return the tangent of an ${\tt MQC_scalar_}$

Parameters

ſ	in	Scalar	
			Scalar is Type(MQC_Scalar) The argument of the function.

Author

L. M. Thompson

Date

2019

The documentation for this interface was generated from the following file:

src/mqc_algebra.F03

6.67 mgc est::transpose Interface Reference

Public Member Functions

type(mqc_scf_integral) function mqc_integral_transpose (integral, label)

6.67.1 Member Function/Subroutine Documentation

6.67.1.1 mqc_integral_transpose()

The documentation for this interface was generated from the following file:

• src/mqc_est.F03

6.68 mqc_algebra::transpose Interface Reference

Returns the transpose

Public Member Functions

type(mqc_vector) function mqc_vector_transpose (Vector)

MQC_Vector_Transpose is a function that returns the transpose of an MQC vector

type(mqc_matrix) function mqc_matrix_transpose (Matrix)

MQC_Matrix_Transpose is a function that returns the transpose of a MQC matrix

6.68.1 Detailed Description

Returns the transpose

6.68.2 Member Function/Subroutine Documentation

6.68.2.1 mqc_matrix_transpose()

MQC Matrix Transpose is a function that returns the transpose of a MQC matrix

Purpose:

 ${\tt MQC_Matrix_Transpose}$ is a function that returns the transpose of a ${\tt MQC}$ matrix.

Parameters

in	Matrix	
		Matrix is Type(MQC_Matrix) The MQC matrix to be transposed.

Author

L. M. Thompson

X. Sheng

Date

2016, 2017

6.68.2.2 mqc_vector_transpose()

MQC_Vector_Transpose is a function that returns the transpose of an MQC vector

Purpose:

 ${\tt MQC_Vector_Transpose}$ is a function that returns the transpose of an ${\tt MQC}$ vector.

Parameters

Vector is Type(MQC_Vector) The MQC vector to transpose.

Author

H. P. Hratchian

Date

2016

The documentation for this interface was generated from the following file:

• src/mqc_algebra.F03

Chapter 7

File Documentation

7.1 src/mqc_algebra.F03 File Reference

Data Types

• type mqc_algebra::mqc_scalar

Rank 0 array variable

• type mqc_algebra::mqc_vector

Rank 1 array variable

• type mqc_algebra::mqc_matrix

Rank 2 array variable

• type mqc_algebra::mqc_r4tensor

Updates the specified element of the MQC Matrix to the specified value

• interface mqc_algebra::mqc_print

Prints an object

• interface mqc_algebra::contraction

Contracts two arrays

• interface mqc_algebra::conjg

Returns the complex conjugate

• interface mqc_algebra::mqc_have_real

Determines in an array is real type

• interface mqc_algebra::mqc_have_int

Determines in an array is integer type

interface mqc_algebra::mqc_have_complex

Determines in an array is complex type

interface mqc_algebra::mqc_cast_integer

Sets an array to integer type

interface mqc_algebra::mqc_cast_real

Sets an array to real type

interface mqc_algebra::mqc_cast_complex

Sets an array to complex type

interface mqc_algebra::matmul

364 File Documentation

Multiplies two arrays

• interface mqc_algebra::transpose

Returns the transpose

interface mqc_algebra::dagger

Returns the Hermitian conjugate

• interface mqc_algebra::cmplx

Defines a complex number

interface mqc_algebra::sqrt

Returns the square root

• interface mqc_algebra::abs

Takes the absolute value

interface mqc_algebra::real

Returns the real part

• interface mqc_algebra::aimag

Returns the imaginary part

• interface mgc_algebra::sin

Returns the sine

• interface mqc_algebra::cos

Returns the cosine

• interface mqc_algebra::tan

Returns the tangent

• interface mqc_algebra::asin

Returns the arcsine

• interface mqc_algebra::acos

Returns the arccosine

• interface mqc_algebra::atan

Returns the arctangent

• interface mqc_algebra::atan2

Returns the arctangent accounting for circle quadrant

interface mgc_algebra::mgc_set_array2vector

Sets an intrinsic array as an MQC Algebra object

interface mqc_algebra::mqc_matrix_symmmatrix_put

Sets a symmetric packed intrinsic array as an MQC Matrix object

interface mgc algebra::mgc matrix diagmatrix put

Sets a diagonal packed intinsic array as an MQC Matrix object

interface mqc_algebra::matrix_symm2sq

Sets a symmetric packed intrinsic array as a square packed intrinsic array

interface mqc_algebra::dot_product

Returns the dot product

interface mqc_algebra::assignment(=)

Assigns a variable to the value of another

interface mqc_algebra::operator(+)

Sums two variables

interface mqc_algebra::operator(-)

Subtracts two variables

interface mqc_algebra::operator(*)

Multiplies two variables

interface mqc_algebra::operator(/)

Divides two variables

interface mqc_algebra::operator(**)

Exponentials a variable to the power of another

interface mqc_algebra::operator(.ne.)

Determines if two variables are not equal

interface mqc_algebra::operator(.eq.)

Determines if two variables are equal

interface mqc_algebra::operator(.lt.)

Determines if a variable is less than another

interface mqc_algebra::operator(.gt.)

Determines if a variable is greater than another

• interface mqc_algebra::operator(.le.)

Determines if a variable is less than or equal to another

interface mqc_algebra::operator(.ge.)

Determines if a variable is greater than or equal to another

interface mqc_algebra::assignment(=)

Assigns a variable to the value of another

interface mqc_algebra::operator(.dot.)

Computes the inner product of two arrays

interface mqc_algebra::operator(*)

Multiplies two variables

interface mgc_algebra::operator(/)

Divides two variables

interface mqc_algebra::operator(+)

Sums two variables

interface mqc_algebra::operator(-)

Subtracts two variables

interface mqc_algebra::operator(.ewp.)

Computes the element-wise product of two arrays

interface mqc_algebra::operator(.ewd.)

Computes the element-wise quotient of two arrays

interface mqc_algebra::operator(.x.)

Computes the cross product of two vectors

interface mqc_algebra::operator(.outer.)

Computes the outer product of two vectors

interface mqc_algebra::assignment(=)

Assigns a variable to the value of another

• interface mqc_algebra::operator(+)

Sums two variables

interface mqc_algebra::operator(-)

Subtracts two variables

interface mqc_algebra::operator(*)

Multiplies two variables

• interface mqc_algebra::operator(.dot.)

Computes the inner product of two arrays

interface mqc_algebra::assignment(=)

Assigns a variable to the value of another

366 File Documentation

Modules

· module mgc algebra

MQC Algebra contains mathematical objects that are designed to simplify and automate variable use in Fortran

Functions/Subroutines

integer(kind=int64) function mgc algebra::factorial (n)

Factorial returns the factorial of an integer

integer(kind=int64) function mqc_algebra::bin_coeff (N, K)

Bin Coeff returns the binomial coefficient of (n.k)

subroutine mqc_algebra::mqc_allocate_scalar (Scalar, Data_type)

MQC_Allocate_Scalar is used to allocate a scalar type variable of the MQC_Scalar class

• subroutine mqc_algebra::mqc_deallocate_scalar (Scalar)

MQC Deallocate Scalar is used to deallocate a scalar type variable of the MQC Scalar class

logical function mgc algebra::mgc scalar isallocated (Scalar)

MQC_Scalar_IsAllocated is used to determine the allocation status of an MQC_Scalar

subroutine mqc_algebra::mqc_input_integer_scalar (ScalarOut, ScalarIn)

MQC_Input_Integer_Scalar is a subroutine is used to set an intrinsic integer to an MQC_Scalar

subroutine mqc_algebra::mqc_input_real_scalar (ScalarOut, ScalarIn)

MQC Input Real Scalar is a subroutine is used to set an intrinsic real to an MQC Scalar

• subroutine mqc_algebra::mqc_input_complex_scalar (ScalarOut, ScalarIn)

MQC_Input_Complex_Scalar is a subroutine is used to set an intrinsic complex to an MQC_Scalar

• subroutine mqc_algebra::mqc_output_mqcscalar_scalar (ScalarOut, ScalarIn)

MQC_Output MQCScalar_Scalar is a subroutine used to output an MQC_scalar equal to an MQC_Scalar

• subroutine mqc_algebra::mqc_output_integer_scalar (ScalarOut, ScalarIn)

MQC_Output_Integer_Scalar is a subroutine used to output an intrinsic integer equal to an MQC_Scalar

• subroutine mqc_algebra::mqc_output_real_scalar (ScalarOut, ScalarIn)

MQC_Output_Real_Scalar is a subroutine used to output an intrinsic real equal to an MQC_Scalar

subroutine mqc_algebra::mqc_output_complex_scalar (ScalarOut, ScalarIn)

MQC_Output_Complex_Scalar is a subroutine used to output an intrinsic complex equal to an MQC_Scalar

subroutine mqc_algebra::mqc_print_scalar_algebra1 (Scalar, IOut, Header, Blank_At_Top, Blank_At_Bottom)

MQC_Print_Scalar_Algebra1 is a subroutine used to print an MQC_Scalar

type(mgc scalar) function mgc algebra::mgc scalar cmplx (Scalar1, Scalar2)

MQC_Scalar_Cmplx is a function used to set a complex MQC_Scalar type variable from two other MQC_scalars

type(mqc_scalar) function mqc_algebra::mqc_scalar_sqrt (Scalar)

MQC_Scalar_Sqrt is a function used to return the square root of an MQC_scalar

type(mqc_scalar) function mqc_algebra::mqc_scalar_sin (Scalar)

MQC_Scalar_Sin is a function used to return the sine of an MQC_scalar

type(mqc_scalar) function mqc_algebra::mqc_scalar_cos (Scalar)

MQC_Scalar_Cos is a function used to return the cosine of an MQC_scalar

type(mqc_scalar) function mqc_algebra::mqc_scalar_tan (Scalar)

MQC_Scalar_Tan is a function used to return the tangent of an MQC_scalar

type(mqc_scalar) function mqc_algebra::mqc_scalar_asin (Scalar)

MQC_Scalar_ASin is a function used to return the arcsin of an MQC_scalar

type(mqc_scalar) function mqc_algebra::mqc_scalar_acos (Scalar)

MQC_Scalar_ACos is a function used to return the arccosine of an MQC_scalar

type(mqc_scalar) function mqc_algebra::mqc_scalar_atan (Scalar)

MQC Scalar ATan is a function used to return the arctangent of an MQC scalar

type(mqc_scalar) function mqc_algebra::mqc_scalar_atan2 (Scalar)

MQC_Scalar_ATan2 is a function used to return the arctangent of an MQC_scalar accounting for quadrant of Argand diagram

logical function mqc_algebra::mqc_scalar_havereal (Scalar)

MQC_Scalar_HaveReal is a function that returns TRUE or FALSE indicating whether an MQC_scalar is of type real

logical function mgc algebra::mgc scalar haveinteger (Scalar)

MQC_Scalar_HaveInteger is a function that returns TRUE or FALSE indicating whether an MQC_scalar is of type integer

logical function mgc algebra::mgc scalar havecomplex (Scalar)

MQC_Scalar_HaveComplex is a function that returns TRUE or FALSE indicating whether an MQC_scalar is of type complex

real(kind=real64) function mgc algebra::mgc scalar get intrinsic real (Scalar)

MQC_Scalar_Get_Intrinsic_Real is a function that returns the MQC_scalar value as an intrinsic real

integer(kind=int64) function mgc algebra::mgc scalar get intrinsic integer (Scalar)

MQC_Scalar_Get_Intrinsic_Integer is a function that returns the MQC_scalar value as an intrinsic integer

complex(kind=real64) function mgc algebra::mgc scalar get intrinsic complex (Scalar)

MQC Scalar Get Intrinsic Complex is a function that returns the MQC scalar value as an intrinsic complex

type(mqc_scalar) function mqc_algebra::mqc_scalar_get_abs_value (Scalar)

MQC_Scalar_Get_ABS_Value is a function that returns the absolute value of MQC_scalar variable

subroutine mqc_algebra::mqc_scalar_get_random_value (Scalar, Seed, Distribution)

MQC Scalar Get_Random_Value is a function that returns a random real value from a specified distribution

type(mqc_scalar) function mqc_algebra::mqc_scalaradd (Scalar1, Scalar2)

MQC_ScalarAdd is a function that sums two MQC_Scalar objects

type(mqc_scalar) function mqc_algebra::mqc_scalarsubtract (Scalar1, Scalar2)

MQC_ScalarSubtract is a function that subtracts two MQC_Scalar objects

type(mqc_scalar) function mqc_algebra::mqc_scalarmultiply (Scalar1, Scalar2)

MQC_ScalarMultiply is a function that multiplies two MQC_Scalar objects

• type(mqc_scalar) function mqc_algebra::mqc_scalardivide (Scalar1, Scalar2)

MQC_ScalarDivide is a function that divides two MQC_Scalar objects

type(mqc_scalar) function mqc_algebra::mqc_scalarexponent (Scalar1, Scalar2)

MQC_ScalarExponent is a function that raises one MQC_Scalar to the power of another MQC_Scalar

• type(mqc_scalar) function mqc_algebra::mqc_scalarintegerexponent (Scalar, Intln)

MQC_ScalarIntegerExponent is a function that raises an MQC_Scalar to the power of an intrinsic integer

type(mqc_scalar) function mqc_algebra::mqc_scalarrealexponent (Scalar, RealIn)

MQC_ScalarRealExponent is a function that raises an MQC_Scalar to the power of an intrinsic real

• type(mqc_scalar) function mqc_algebra::mqc_scalarcomplexexponent (Scalar, Compln)

MQC_ScalarComplexExponent is a function that raises an MQC_Scalar to the power of an intrinsic complex

logical function mqc_algebra::mqc_scalarne (Scalar1, Scalar2)

MQC_ScalarNE is a function that returns TRUE if two MQC_Scalar variables are not equal

logical function mqc algebra::mqc scalareq (Scalar1, Scalar2)

MQC_ScalarEQ is a function that returns TRUE if two MQC_Scalar variables are equal

logical function mgc algebra::mgc scalarlt (Scalar1, Scalar2)

MQC_ScalarLT is a function that returns TRUE if the left MQC_Scalar is less than the right MQC_Scalar

logical function mqc algebra::mqc realltscalar (Realln, Scalar)

MQC_RealLTScalar is a function that returns TRUE if an intrinsic real is less than a MQC_Scalar

368 File Documentation

- logical function mqc_algebra::mqc_scalarltreal (Scalar, RealIn)
 - MQC_ScalarLTReal is a function that returns TRUE if a MQC_Scalar is less than an intrinsic real
- logical function mqc_algebra::mqc_scalargt (Scalar1, Scalar2)
 - MQC_ScalarGT is a function that returns TRUE if the left MQC_Scalar is greater than the right MQC_Scalar
- logical function mqc_algebra::mqc_integergtscalar (Intln, Scalar)
- MQC_IntegerGTScalar is a function that returns TRUE if an intrinsic integer is greater than a MQC_Scalar
- logical function mgc algebra::mgc scalargtinteger (Scalar, Intln)
- MQC_ScalarGTInteger is a function that returns TRUE if a MQC_Scalar is greater than an intrinsic integer
- logical function mqc algebra::mqc realgtscalar (RealIn, Scalar)
 - MQC_RealGTScalar is a function that returns TRUE if an intrinsic real is greater than a MQC_Scalar
- logical function mgc algebra::mgc scalargtreal (Scalar, RealIn)
 - MQC_ScalarGTReal is a function that returns TRUE if a MQC_Scalar is greater than an intrinsic real
- logical function mgc algebra::mgc scalarle (Scalar1, Scalar2)
- MQC_ScalarLE is a function that returns TRUE if the left MQC_Scalar is less than or equal the right MQC_Scalar
- logical function mqc_algebra::mqc_reallescalar (RealIn, Scalar)
 - MQC_RealLEScalar is a function that returns TRUE if an intrinsic real is less than or equal to a MQC_Scalar
- logical function mgc algebra::mgc scalarlereal (Scalar, RealIn)
 - MQC_ScalarLEReal is a function that returns TRUE if a MQC_Scalar is less than or equal to an intrinsic real
- logical function mqc_algebra::mqc_integerlescalar (Intln, Scalar)
- MQC_IntegerLEScalar is a function that returns TRUE if an intrinsic integer is less than or equal to a MQC_Scalar
- logical function mqc_algebra::mqc_scalarleinteger (Scalar, Intln)
 - MQC_ScalarLEInteger is a function that returns TRUE if a MQC_Scalar is less than or equal to an intrinsic integer
- logical function mqc_algebra::mqc_scalarge (Scalar1, Scalar2)
 - MQC_ScalarGE is a function that returns TRUE if the left MQC_Scalar is greater than or equal the right MQC_← Scalar
- type(mqc_scalar) function mqc_algebra::mqc_scalar_complex_conjugate (ScalarIn)
 - MQC_Scalar_Complex_Conjugate is a function that returns the complex conjugate of an MQC_Scalar
- type(mqc_scalar) function mqc_algebra::mqc_scalar_complex_realpart (ScalarIn)
 - MQC_Scalar_Complex_RealPart is a function that returns the real part of an MQC_Scalar
- type(mqc_scalar) function mqc_algebra::mqc_scalar_complex_imagpart (ScalarIn)
 - MQC_Scalar_Complex_ImagPart is a function that returns the inaginary part of an MQC_Scalar
- type(mqc_scalar) function mqc_algebra::mqc_integerscalarmultiply (IntegerIn, Scalar)
 - MQC_IntegerScalarMultiply is a function that is used to multiply an intrinsic integer by an MQC_Scalar
- type(mqc_scalar) function mqc_algebra::mqc_scalarintegermultiply (Scalar, IntegerIn)
 - MQC_ScalarIntegerMultiply is a function that is used to multiply an intrinsic integer by an MQC_Scalar
- type(mqc_scalar) function mqc_algebra::mqc_realscalarmultiply (RealIn, Scalar)
 - MQC_RealScalarMultiply is a function that is used to multiply an intrinsic real by an MQC_Scalar
- type(mqc_scalar) function mqc_algebra::mqc_scalarrealmultiply (Scalar, RealIn)
 - MQC_ScalarRealMultiply is a function that is used to multiply an intrinsic real by an MQC_Scalar
- type(mqc_scalar) function mqc_algebra::mqc_complexscalarmultiply (ComplexIn, Scalar)
 - MQC_ComplexScalarMultiply is a function that is used to multiply an intrinsic complex by an MQC_Scalar
- type(mqc_scalar) function mqc_algebra::mqc_scalarcomplexmultiply (Scalar, ComplexIn)
 - MQC_ScalarComplexMultiply is a function that is used to multiply an intrinsic complex by an MQC_Scalar
- type(mqc_scalar) function mqc_algebra::mqc_integerscalardivide (IntegerIn, Scalar)
 - MQC_IntegerScalarDivide is a function that is used to divide an intrinsic integer by an MQC_Scalar
- type(mqc_scalar) function mqc_algebra::mqc_scalarintegerdivide (Scalar, IntegerIn)
 - MQC_ScalarIntegerDivide is a function that is used to divide an MQC_Scalar by an intrinsic integer

type(mqc_scalar) function mqc_algebra::mqc_realscalardivide (RealIn, Scalar)

MQC_RealScalarDivide is a function that is used to divide an intrinsic real by an MQC_Scalar

type(mqc_scalar) function mqc_algebra::mqc_scalarrealdivide (Scalar, RealIn)

MQC_ScalarRealDivide is a function that is used to divide an MQC_Scalar by an intrinsic real

type(mgc scalar) function mgc algebra::mgc complexscalardivide (ComplexIn, Scalar)

MQC_ComplexScalarDivide is a function that is used to divide an intrinsic complex by an MQC_Scalar

type(mqc_scalar) function mqc_algebra::mqc_scalarcomplexdivide (Scalar, ComplexIn)

MQC_ScalarComplexDivide is a function that is used to divide an MQC_Scalar by an intrinsic complex

type(mqc_scalar) function mqc_algebra::mqc_integerscalaradd (IntegerIn, Scalar)

MQC_IntegerScalarAdd is a function that is used to multiply an intrinsic integer by an MQC_Scalar

type(mqc_scalar) function mqc_algebra::mqc_scalarintegeradd (Scalar, IntegerIn)

MQC_ScalarIntegerAdd is a function that is used to sum an intrinsic integer by an MQC_Scalar

type(mgc scalar) function mgc algebra::mgc realscalaradd (RealIn, Scalar)

MQC_RealScalarAdd is a function that is used to sum an intrinsic real by an MQC_Scalar

type(mgc scalar) function mgc algebra::mgc scalarrealadd (Scalar, RealIn)

MQC ScalarRealAdd is a function that is used to sum an intrinsic real by an MQC Scalar

type(mqc scalar) function mqc algebra::mqc complexscalaradd (ComplexIn, Scalar)

MQC_ComplexScalarAdd is a function that is used to sum an intrinsic complex by an MQC_Scalar

type(mqc scalar) function mqc algebra::mqc scalarcomplexadd (Scalar, ComplexIn)

MQC_ScalarComplexAdd is a function that is used to sum an intrinsic complex by an MQC_Scalar

type(mqc scalar) function mqc algebra::mqc integerscalarsubtract (IntegerIn, Scalar)

MQC_IntegerScalarSubtract is a function that is used to subtract an MQC_Scalar from an intrinisic integer

type(mqc_scalar) function mqc_algebra::mqc_scalarintegersubtract (Scalar, IntegerIn)

MQC_ScalarIntegerSubtract is a function that is used to subtract an intrinsic integer from an MQC_Scalar

• type(mgc scalar) function mgc algebra::mgc realscalarsubtract (RealIn, Scalar)

MQC_RealScalarSubtract is a function that is used to subtract an MQC_Scalar from an intrinisic real

• type(mgc scalar) function mgc algebra::mgc scalarrealsubtract (Scalar, RealIn)

MQC_ScalarRealSubtract is a function that is used to subtract an intrinsic real from an MQC_Scalar

type(mgc scalar) function mgc algebra::mgc complexscalarsubtract (ComplexIn, Scalar)

MQC_ComplexScalarSubtract is a function that is used to subtract an MQC_Scalar from an intrinisic complex

type(mqc_scalar) function mqc_algebra::mqc_scalarcomplexsubtract (Scalar, ComplexIn)

MQC_ScalarComplexSubtract is a function that is used to subtract an intrinsic complex from an MQC_Scalar

subroutine mgc algebra::mgc allocate vector (N, Vector, Data Type)

MQC_Allocate_Vector is used to allocate a vector type variable of the MQC_Vector class

subroutine mqc_algebra::mqc_deallocate_vector (Vector)

MQC_Deallocate_Vector is used to deallocate a vector type variable of the MQC_Vector class

integer(kind=int64) function mqc_algebra::mqc_length_vector (Vector)

MQC_Length_Vector is used to return the length of an MQC vector

logical function mgc algebra::mgc vector havereal (Vector)

MQC_Vector_HaveReal is a function that returns TRUE or FALSE indicating whether the MQC vector has an allocated real vector

logical function mgc algebra::mgc vector haveinteger (Vector)

MQC_Vector_HaveInteger is a function that returns TRUE or FALSE indicating whether the MQC vector has an allocated integer vector

logical function mqc_algebra::mqc_vector_havecomplex (Vector)

MQC_Vector_HaveComplex is a function that returns TRUE or FALSE indicating whether the MQC vector has an allocated complex vector

logical function mqc algebra::mqc vector iscolumn (Vector)

370 File Documentation

MQC_Vector_IsColumn is a function that returns TRUE if the MQC vector is a column vector and FALSE if the MQC vector is a row vector

subroutine mqc_algebra::mqc_vector_copy_int2real (Vector)

MQC_Vector_Copy_Int2Real is a subroutine that copies an integer MQC_Vector into its real vector

subroutine mgc algebra::mgc vector copy int2complex (Vector)

MQC_Vector_Copy_Int2Complex is a subroutine that copies an integer MQC_Vector into its complex vector

subroutine mqc_algebra::mqc_vector_copy_real2int (Vector)

MQC_Vector_Copy_Real2Int is a subroutine that copies a real MQC_Vector into its integer vector

subroutine mgc algebra::mgc vector copy real2complex (Vector)

MQC_Vector_Copy_Real2Complex is a subroutine that copies a real MQC_Vector into its complex vector

• subroutine mqc_algebra::mqc_vector_copy_complex2int (Vector)

MQC_Vector_Copy_Complex2Int is a subroutine that copies a complex MQC_Vector into its integer vector

subroutine mgc algebra::mgc vector copy complex2real (Vector)

MQC_Vector_Copy_Complex2Real is a subroutine that copies a complex MQC_Vector into its real vector

type(mqc_scalar) function mqc_algebra::mqc_vector_scalar_at (Vec, I)

MQC_Vector_Scalar_At is a function that returns the ith element of a MQC vector as an MQC scalar

type(mqc_vector) function mqc_algebra::mqc_vector_vector_at (Vec, I, J)

MQC_Vector_Vector_At is a function that returns the vector at the specified subvector of MQC_Vector

• subroutine mqc_algebra::mqc_set_vector2integerarray (ArrayOut, VectorIn)

MQC_Set_Vector2IntegerArray is a subroutine that outputs an MQC vector to a rank 1 intrinsic integer array

• subroutine mqc_algebra::mqc_set_vector2realarray (ArrayOut, VectorIn)

MQC_Set_Vector2RealArray is a subroutine that outputs an MQC vector to a rank 1 intrinsic real array

subroutine mgc algebra::mgc set vector2complexarray (ArrayOut, VectorIn)

MQC_Set_Vector2ComplexArray is a subroutine that outputs an MQC vector to a rank 1 intrinsic complex array

subroutine mqc algebra::mqc set array2vector integer (VectorOut, ArrayIn)

MQC_Set_Array2Vector_Integer is a subroutine that sets a rank 1 intrinsic integer array equal to a MQC vector

subroutine mqc_algebra::mqc_set_array2vector_real (VectorOut, ArrayIn)

MQC_Set_Array2Vector_Real is a subroutine that sets a rank 1 vector intrinsic real array equal to a MQC vector

• subroutine mqc_algebra::mqc_set_array2vector_complex (VectorOut, ArrayIn)

MQC_Set_Array2Vector_Complex is a subroutine that sets a rank 1 vector intrinsic complex array equal to a MQC vector

subroutine mgc algebra::mgc set vector2vector (VectorOut, VectorIn)

MQC Set Vector2Vector is a subroutine that sets a MQC vector equal to another MQC vector

• type(mqc_vector) function mqc_algebra::mqc_vectorvectorsum (Vector1In, Vector2In)

MQC_VectorVectorSum is a function that adds two MQC vectors and stores them in another MQC vector

type(mgc vector) function mgc algebra::mgc vectorvectordifference (Vector1In, Vector2In)

MQC_VectorVectorDifference is a function that subtracts two MQC vectors and stores them in another MQC vector

• type(mqc_vector) function mqc_algebra::mqc_scalarvectorsum (ScalarIn, VectorIn)

MQC_ScalarVectorSum is a function that adds an MQC scalar to all elements of an MQC vector

type(mqc vector) function mqc algebra::mqc scalarvectordifference (ScalarIn, VectorIn)

MQC_ScalarVectorDifference is a function that subtracts an MQC scalar from all elements of an MQC vector

type(mqc_vector) function mqc_algebra::mqc_elementvectorproduct (Vector1In, Vector2In)

MQC_ElementVectorProduct is a function that multiplies two MQC vectors elementwise and stores them into another MQC vector

type(mqc_vector) function mqc_algebra::mqc_vector_transpose (Vector)

MQC_Vector_Transpose is a function that returns the transpose of an MQC vector

type(mqc_vector) function mqc_algebra::mqc_vector_conjugate_transpose (Vector)

MQC_Vector_Conjugate_Transpose is a function that returns the conjugate transpose of an MQC vector

type(mqc_scalar) function mqc_algebra::mqc_vectorvectordotproduct (Vector1, Vector2)

MQC VectorVectorDotProduct is a function that returns the dot product of two MQC vectors

type(mqc matrix) function mqc algebra::mqc outer (VA, VB)

MQC_Outer is a function that returns the outer product of two MQC vectors

type(mqc_vector) function mqc_algebra::mqc_crossproduct (Vector1In, Vector2In)

MQC_CrossProduct is a function that returns the cross product of two MQC vectors

subroutine mqc_algebra::mqc_print_vector_algebra1 (Vector, IOut, Header, Verbose, Blank_At_Top, Blank_At←
 Bottom)

MQC_Print_Vector_Algebra1 is a subroutine used to print an MQC vector

• type(mqc_vector) function mqc_algebra::mqc_vector_cast_integer (VA)

MQC_vector_cast_integer is a function that converts an MQC vector to its integer space

type(mqc_vector) function mqc_algebra::mqc_vector_cast_real (VA)

MQC_vector_cast_real is a function that converts an MQC vector to its real space

type(mqc_vector) function mqc_algebra::mqc_vector_cast_complex (VA)

MQC_vector_cast_complex is a function that converts an MQC vector to its complex space

• subroutine mgc algebra::mgc vector scalar put (Vector, Scalar, I)

MQC_Vector_Scalar_Put is a subroutine that updates the value of the ith element of a MQC vector with the value of a MQC scalar

subroutine mgc algebra::mgc vector scalar increment (Vector, Scalar, I)

MQC_Vector_Scalar_Increment is a subroutine that increments the value of the ith element of a MQC vector by the value of a MQC scalar

subroutine mgc algebra::mgc vector vector put (Vector, VectorIn, I)

MQC_Vector_Vector_Put is a subroutine that updates the values of a subvector of a MQC vector with the values of a MQC vector

• subroutine mgc algebra::mgc vector initialize (Vector, Length, Scalar)

MQC_Vector_Initialize is a subroutine that initializes a MQC vector

type(mqc_vector) function mqc_algebra::mqc_scalarvectorproduct (Scalar, Vector)

MQC_ScalarVectorProduct is a function that returns the product of a MQC scalar with a MQC vector

type(mqc_vector) function mqc_algebra::mqc_vectorscalarproduct (vector, scalar)

MQC_VectorScalarProduct is a function that returns the product of a MQC vector with a MQC scalar

type(mqc_vector) function mqc_algebra::mqc_vectorscalardivide (vector, scalar)

MQC_VectorScalarDivide is a function that returns a MQC vector divided by a MQC scalar

type(mqc_vector) function mqc_algebra::mqc_realvectorproduct (RealIn, Vector)

MQC_RealVectorProduct is a function that returns the product of an intrinsic real scalar and a MQC vector

type(mqc_vector) function mqc_algebra::mqc_vectorrealproduct (vector, realln)

MQC_VectorRealProduct is a function that returns the product of a MQC vector and an intrinsic real scalar

type(mqc_vector) function mqc_algebra::mqc_vectorrealdivide (vector, realIn)

MQC VectorRealDivide is a function that returns a MQC vector divided by an intrinsic real integer

type(mgc vector) function mgc algebra::mgc integervectorproduct (intln, Vector)

MQC_IntegerVectorProduct is a function that returns the product of an intrinsic integer scalar and a MQC vector

type(mqc_vector) function mqc_algebra::mqc_vectorintegerproduct (vector, intln)

MQC_VectorIntegerProduct is a function that returns the product of a MQC vector and an intrinsic integer scalar

type(mqc_vector) function mqc_algebra::mqc_vectorintegerdivide (vector, intln)

MQC_VectorIntegerDivide is a function that returns a MQC vector divided by an intrinsic integer scalar

type(mgc vector) function mgc algebra::mgc complexvectorproduct (Compln, Vector)

372 File Documentation

MQC_ComplexVectorProduct is a function that returns the product of an intrinsic complex scalar and a MQC vector

type(mqc vector) function mqc algebra::mqc vectorcomplexproduct (vector, compln)

MQC_VectorComplexProduct is a function that returns the product of a MQC vector and an intrinsic complex scalar

type(mqc_vector) function mqc_algebra::mqc_vectorcomplexdivide (vector, compln)

MQC_VectorComplexDivide is a function that returns a MQC vector divided by an intrinsic complex scalar

type(mqc_scalar) function mqc_algebra::mqc_vector_norm (vector, methodIn)

MQC_Vector_Norm is a function that returns the norm of an MQC vector

logical function mqc algebra::mqc vector isallocated (Vector)

MQC_Vector_is Allocated is a function that returns TRUE is an MQC vector is allocated and FALSE if it is not

subroutine mqc algebra::mqc vector push (Vector, Scalar)

MQC_Vector_Push is a function that adds a value to the end of a MQC vector

subroutine mgc algebra::mgc vector unshift (Vector, Scalar)

MQC_Vector_Unshift is a function that adds a value to the beginning of a MQC vector

type(mqc_scalar) function mqc_algebra::mqc_vector_pop (Vector)

MQC_Vector_Pop is a function that removes a value from the end of a MQC vector and returns it

type(mqc_scalar) function mqc_algebra::mqc_vector_shift (Vector)

MQC_Vector_Shift is a function that removes a value from the beginning of a MQC vector and returns it

type(mqc_scalar) function mqc_algebra::mqc_vector_maxval (Vector)

MQC_Vector_MaxVal is a function that returns the largest value in an MQC vector

type(mgc scalar) function mgc algebra::mgc vector minval (Vector)

MQC_Vector_MinVal is a function that returns the smallest value in an MQC vector

integer function mqc_algebra::mqc_vector_maxloc (Vector)

MQC_Vector_MaxLoc is a function that returns the index of the largest value in an MQC vector

integer function mqc_algebra::mqc_vector_minloc (Vector)

MQC_Vector_MinLoc is a function that returns the index of the smallest value in an MQC vector

type(mqc_vector) function mqc_algebra::mqc_vector_argsort (Vector)

MQC_Vector_Argsort is a function that returns the indices of an an MQC vector sorted from low to high

subroutine mqc_algebra::mqc_vector_sort (Vector, idx)

MQC_Vector_Sort is a function that returns an MQC vector sorted from low to high unless optional index order is present

subroutine mqc algebra::mqc vector sqrt (A)

MQC_Vector_Sqrt is a function that returns the square root of all elements of an MQC vector

type(mqc_vector) function mqc_algebra::mqc_vector_abs (A)

MQC_Vector_Abs is a function that returns the absolute value of all elements of an MQC vector

subroutine mqc_algebra::mqc_vector_power (A, P)

MQC_Vector_Power is a function that returns the value of all elements of an MQC vector raised to a power

type(mqc_vector) function mqc_algebra::mqc_vector_complex_realpart (A)

MQC_Vector_Complex_RealPart is a function that returns a MQC vector with elements containing the real part of elements of another MQC vector

type(mgc vector) function mgc algebra::mgc vector complex imagpart (A)

MQC_Vector_Complex_ImagPart is a function that returns a MQC vector with elements containing the imaginary part of elements of another MQC vector

type(mqc_vector) function mqc_algebra::mqc_vector_cmplx (Vector1, Vector2)

MQC_Vector_Cmplx is a function that takes a MQC vector representing the real part and a MQC vector representing the imaginary part and combines them into another MQC vector

subroutine mqc_algebra::mqc_matrix_diagonalize (A, EVals, EVecs)

MQC_Matrix_Diagonalize is a subroutine that takes a symmetric or hermitian MQC matrix and returns eigenvalues and eigenvectors

type(mgc matrix) function mgc algebra::mgc matrix cast real (MA)

MQC_Matrix_Cast_Real is a function that converts an MQC matrix to its real space

type(mqc_matrix) function mqc_algebra::mqc_matrix_cast_integer (MA)

MQC_Matrix_Cast_Integer is a function that converts an MQC matrix to its integer space

type(mqc_matrix) function mqc_algebra::mqc_matrix_cast_complex (MA)

MQC_Matrix_Cast_Complex is a function that converts an MQC matrix to its complex space

• type(mgc scalar) function mgc algebra::mgc matrix scalar at (Mat, I, J)

MQC_Matrix_Scalar_At is a function that returns the value of an element of a MQC matrix

type(mqc_vector) function mqc_algebra::mqc_matrix_vector_at (Mat, Rows, Cols)

MQC_Matrix_Vector_At is a function that returns the subvector of an MQC matrix

• recursive subroutine mqc_algebra::mqc_matrix_vector_put (Mat, VectorIn, Rows, Cols)

MQC_Matrix_Vector_Put is a subroutine that writes a subvector to the specified position of a MQC matrix

type(mqc matrix) function mqc algebra::mqc matrix matrix at (Mat, Rows, Cols)

MQC_Matrix_Matrix_At is a function that returns a submatrix of the matrix

subroutine mgc algebra::mgc matrix diagmatrix put vector (diagVectorIn, mat)

MQC_Matrix_DiagMatrix_Put_Vector is a subroutine that returns a diagonal MQC matrix with elements defined by values in a MQC vector

subroutine mqc_algebra::mqc_matrix_diagmatrix_put_integer (mat, diagMatrixIn)

MQC_Matrix_DiagMatrix_Put_integer is a subroutine that returns a diagonal MQC matrix with elements defined by values in an intrinsic integer vector

subroutine mqc_algebra::mqc_matrix_diagmatrix_put_real (mat, diagMatrixIn)

MQC_Matrix_DiagMatrix_Put_Real is a subroutine that returns a diagonal MQC matrix with elements defined by values in an intrinsic real vector

subroutine mqc_algebra::mqc_matrix_diagmatrix_put_complex (mat, diagMatrixIn)

MQC_Matrix_DiagMatrix_Put_Complex is a subroutine that returns a diagonal MQC matrix with elements defined by values in an intrinsic complex vector

subroutine mqc_algebra::mqc_matrix_symmmatrix_put_integer (mat, symmMatrixIn)

MQC_Matrix_SymmMatrix_Put_Integer is a subroutine that returns a symmetric packed MQC matrix with elements defined by values in an intrinsic integer vector

subroutine mqc_algebra::mqc_matrix_symmmatrix_put_real (mat, symmMatrixIn)

MQC_Matrix_SymmMatrix_Put_Real is a subroutine that returns a symmetric packed MQC matrix with elements defined by values in an intrinsic real vector

• subroutine mgc algebra::mgc matrix symmmatrix put complex (mat, symmMatrixIn)

MQC_Matrix_SymmMatrix_Put_Complex is a subroutine that returns a symmetric packed MQC matrix with elements defined by values in an intrinsic complex vector

recursive subroutine mgc algebra::mgc matrix matrix put (Mat, MatrixIn, Rows, Cols)

MQC_Matrix_Matrix_Put is a subroutine that writes a submatrix to the specified position of a MQC matrix

integer(kind=int64) function mqc_algebra::symindexhash (i, j, k, l)

SymIndexHash is a function that returns the index in a vector of a symmetric-packed matrix or rank-4 tensor

type(mgc matrix) function mgc algebra::mgc elementmatrixproduct (A, B)

MQC_ElementMatrixProduct is a function that returns the element- wise product of two MQC matrices

type(mgc matrix) function mgc algebra::mgc elementmatrixdivide (A, B)

MQC_ElementMatrixDivide is a function that returns the element- wise quotient of two MQC matrices

logical function mgc algebra::mgc matrix test symmetric (Matrix, Option)

374 File Documentation

MQC_Matrix_Test_Symmetric is a function that tests a MQC matrix for symmetry

logical function mqc_algebra::mqc_matrix_test_diagonal (Matrix)

MQC_Matrix_Test_Diagonal is a function that tests a MQC matrix to determine if it is diagonal

subroutine mqc algebra::mqc allocate matrix (M, N, Matrix, Data Type, Storage)

MQC_Allocate_Matrix is used to allocate a matrix type variable of the MQC_Matrix class

subroutine mqc_algebra::mqc_deallocate_matrix (Matrix)

MQC_Deallocate Matrix is used to deallocate a matrix type variable of the MQC_Matrix class

logical function mqc_algebra::mqc_matrix_isallocated (Matrix)

MQC_Matrix_isAllocate is a function that returns the allocation status of a MQC_Matrix variable

subroutine mgc algebra::mgc set integerarray2matrix (MatrixOut, ArrayIn)

MQC_Set_IntegerArray2Matrix is a subroutine that sets an MQC matrix equal to an intrinsic integer rank-2 array

subroutine mqc_algebra::mqc_set_realarray2matrix (MatrixOut, ArrayIn)

MQC_Set_RealArray2Matrix is a subroutine that sets an MQC matrix equal to an intrinsic real rank-2 array

• subroutine mqc_algebra::mqc_set_complexarray2matrix (MatrixOut, ArrayIn)

MQC_Set_ComplexArray2Matrix is a subroutine that sets an MQC matrix equal to an intrinsic complex rank-2 array

subroutine mqc_algebra::mqc_set_matrix2integerarray (ArrayOut, MatrixIn)

MQC_Set_Matrix2IntegerArray is a subroutine that sets an intrinsic integer rank-2 array equal to an MQC matrix

subroutine mqc_algebra::mqc_set_matrix2realarray (ArrayOut, MatrixIn)

MQC_Set_Matrix2RealArray is a subroutine that sets an intrinsic real rank-2 array equal to an MQC matrix

subroutine mgc_algebra::mgc_set_matrix2complexarray (ArrayOut, MatrixIn)

MQC_Set_Matrix2ComplexArray is a subroutine that sets an intrinsic complex rank-2 array equal to an MQC matrix

subroutine mgc algebra::mgc set matrix2matrix (MatrixOut, MatrixIn)

MQC_Set_Matrix2Matrix is a subroutine that sets an MQC matrix equal to another MQC matrix

subroutine mgc algebra::mgc print matrix algebra1 (Matrix, IOut, Header, Blank At Top, Blank At Bottom)

MQC_Print_Matrix_Algebra1 is a subroutine used to print an MQC matrix

subroutine mqc_algebra::mqc_matrix_copy_int2real (Matrix)

MQC_Matrix_Copy_Int2Real is a subroutine used to copy an integer MQC matrix into its real space

subroutine mqc_algebra::mqc_matrix_copy_int2complex (Matrix)

MQC_Matrix_Copy_Int2Complex is a subroutine used to copy an integer MQC matrix into its complex space

• subroutine mqc_algebra::mqc_matrix_copy_real2int (Matrix)

MQC_Matrix_Copy_Real2Int is a subroutine used to copy a real MQC matrix into its integer space

subroutine mqc_algebra::mqc_matrix_copy_real2complex (Matrix)

MQC_Matrix_Copy_Real2Complex is a subroutine used to copy a real MQC matrix into its complex space

• subroutine mqc_algebra::mqc_matrix_copy_complex2int (Matrix)

MQC_Matrix_Copy_Complex2Int is a subroutine used to copy a complex MQC matrix into its integer space

• subroutine mqc_algebra::mqc_matrix_copy_complex2real (Matrix)

MQC_Matrix_Copy_Complex2Real is a subroutine used to copy a complex MQC matrix into its real space

integer(kind=int64) function mgc_algebra::mgc_matrix_rows (Matrix)

MQC_Matrix_Rows is a function used to return the number of rows of an MQC matrix

• integer(kind=int64) function mgc algebra::mgc matrix columns (Matrix)

 ${\it MQC_Matrix_Columns} \ is \ a \ function \ used \ to \ return \ the \ number \ of \ columns \ of \ an \ MQC \ matrix$

logical function mqc_algebra::mqc_matrix_havereal (Matrix)

MQC_Matrix_HaveReal is a function used to indicate if an MQC matrix has an allocated real matrix

logical function mqc_algebra::mqc_matrix_haveinteger (Matrix)

MQC_Matrix_HaveInteger is a function used to indicate if an MQC matrix has an allocated integer matrix

logical function mqc_algebra::mqc_matrix_havecomplex (Matrix)

MQC_Matrix_HaveComplex is a function used to indicate if an MQC matrix has an allocated complex matrix

logical function mgc algebra::mgc matrix havefull (Matrix)

MQC_Matrix_HaveFull is a function used to indicate if an MQC matrix is stored unpacked

logical function mqc_algebra::mqc_matrix_havesymmetric (Matrix)

MQC_Matrix_HaveSymmetric is a function used to indicate if an MQC matrix is stored symmetric-packed

logical function mgc algebra::mgc matrix havediagonal (Matrix)

MQC_Matrix_HaveDiagonal is a function used to indicate if an MQC matrix is stored diagonal-packed

type(mqc_matrix) function mqc_algebra::mqc_matrix_transpose (Matrix)

MQC_Matrix_Transpose is a function that returns the transpose of a MQC matrix

type(mqc matrix) function mqc algebra::mqc matrix conjugate transpose (Matrix)

MQC_Matrix_Conjugate_Transpose is a function that returns the conjugate transpose of a MQC matrix

type(mqc_matrix) function mqc_algebra::mqc_matrix_symmetrize (Matrix)

MQC_Matrix_Symmetrize is a function that symmetrizes a MQC matrix

subroutine mgc algebra::mgc matrix full2symm (Matrix)

MQC_Matrix_Full2Symm is a subroutine that converts an unpacked MQC matrix to symmetric-packed

subroutine mqc_algebra::mqc_matrix_symm2full (Matrix, Option)

MQC_Matrix_Symm2Full is a subroutine that converts a symmetry-packed MQC matrix to unpacked

subroutine mqc_algebra::mqc_matrix_full2diag (Matrix)

MQC_Matrix_Full2Diag is a subroutine that converts an unpacked MQC matrix to diagonal-packed

subroutine mgc algebra::mgc matrix diag2full (Matrix)

MQC_Matrix_Diag2Full is a subroutine that converts a diagonal-packed MQC matrix to unpacked

subroutine mqc_algebra::mqc_matrix_symm2diag (Matrix)

MQC_Matrix_Symm2Diag is a subroutine that converts a symmetry-packed MQC matrix to diagonal-packed

subroutine mqc algebra::mqc matrix diag2symm (Matrix)

MQC_Matrix_Diag2Symm is a subroutine that converts a diagonal-packed MQC matrix to symmetry-packed

type(mqc_matrix) function mqc_algebra::mqc_matrix_symm2full_func (Matrix)

MQC_Matrix_Symm2Full_Func is a function that converts a symmetric- packed MQC matrix to unpacked

subroutine mqc_algebra::matrix_symm2sq_integer (N, I_Symm, I_Sq)

Matrix_Symm2Sq_Integer is a subroutine that converts a symmetric- packed intrinsic integer matrix to a rank-2 intrinsic integer array

subroutine mqc_algebra::matrix_symm2sq_real (N, A_Symm, A_Sq)

Matrix_Symm2Sq_Real is a subroutine that converts a symmetric- packed intrinsic real matrix to a rank-2 intrinsic real array

subroutine mqc_algebra::matrix_symm2sq_complex (N, A_Symm, A_Sq)

Matrix_Symm2Sq_Complex is a subroutine that converts a symmetric- packed intrinsic complex matrix to a rank-2 intrinsic complex array

type(mqc matrix) function mqc algebra::mqc vector2diagmatrix (vector)

MQC_Vector2DiagMatrix is a function that outputs a diagonal MQC matrix with elements defined by an MQC vector

type(mqc_matrix) function mqc_algebra::mqc_matrixmatrixsum (MA, MB)

MQC_MatrixMatrixSum is a function that sums two MQC matrices

type(mqc_matrix) function mqc_algebra::mqc_matrixmatrixsubtract (MA, MB)

MQC_MatrixMatrixSubtract is a function that subtracts two MQC matrices

type(mqc matrix) function mqc algebra::mqc matrixmatrixproduct (MA, MB)

MQC_MatrixMatrixProduct is a function that computes the element- wise product of two MQC matrices

- type(mqc matrix) function mqc algebra::mqc matrixmatrixdotproduct (MA, MB)
- type(mqc vector) function mqc algebra::mqc matrixvectordotproduct (MA, VB)

376 File Documentation

- type(mqc_vector) function mqc_algebra::mqc_vectormatrixdotproduct (VA, MB)
- type(mgc matrix) function mgc algebra::mgc matrixscalarproduct (Matrix, Scalar)
- type(mgc matrix) function mgc algebra::mgc scalarmatrixproduct (Scalar, Matrix)
- type(mqc_scalar) function mqc_algebra::mqc_matrix_matrix_contraction (Matrix1, Matrix2)
- subroutine mqc_algebra::mqc_matrix_scalar_put (Matrix, Scalar, I, J)
- subroutine mgc algebra::mgc matrix initialize (Matrix, Rows, Columns, Scalar, Storage)
- subroutine mgc algebra::mgc matrix identity (matrix, n, m)
- subroutine mgc algebra::mgc matrix set (matrix, scalar, storage)
- type(mqc_scalar) function mqc_algebra::mqc_matrix_norm (matrix, methodIn)
- type(mgc scalar) function mgc algebra::mgc matrix determinant (a)
- type(mgc matrix) function mgc algebra::mgc matrix inverse (a)
- type(mqc_scalar) function mqc_algebra::mqc_matrix_trace (matrix)
- subroutine mgc algebra::mgc matrix generalized eigensystem (a, bln, eigenvals, reigenvecs, leigenvecs)
- subroutine mqc_algebra::mqc_matrix_svd (A, EVals, EUVecs, EVVecs)
- subroutine mgc algebra::mgc matrix rms max (A, rms A, max A)
- subroutine mgc algebra::mgc matrix sqrt (A, eVals, eVecs)
- type(mgc matrix) function mgc algebra::mgc givens matrix (m size, angle, p, q)
- subroutine mqc_algebra::mqc_allocate_r4tensor (I, J, K, L, Tensor, Data_Type, Storage)
- subroutine mqc_algebra::mqc_deallocate_r4tensor (Tensor)
- type(mqc_scalar) function mqc_algebra::mqc_r4tensor_at (Tensor, I, J, K, L)
- subroutine mqc_algebra::mqc_r4tensor_put (Tensor, Element, I, J, K, L)
- subroutine mqc_algebra::mqc_print_r4tensor_algebra1 (Tensor, IOut, Header, blank_at_top, blank_at_bottom)
- subroutine mqc_algebra::mqc_set_array2tensor (TensorOut, ArrayIn)
- subroutine mgc algebra::mgc r4tensor initialize (R4Tensor, I, J, K, L, Scalar)
- subroutine mqc algebra::mqc matrix symmsymmr4tensor put real (r4Tensor, symmSymmMatrixIn)
- subroutine mgc algebra::mgc matrix symmsymmr4tensor put complex (r4Tensor, symmSymmMatrixIn)
- logical function mqc_algebra::mqc_r4tensor_haveinteger (R4Tensor)
- logical function mqc_algebra::mqc_r4tensor_havereal (R4Tensor)
- logical function mqc_algebra::mqc_r4tensor_havecomplex (R4Tensor)

7.2 src/mgc est.F03 File Reference

Data Types

- type mqc_est::mqc_scf_integral
- type mqc_est::mqc_scf_eigenvalues
- type mqc_est::mqc_wavefunction
- type mqc_est::mqc_pscf_wavefunction
- type mgc est::mgc determinant string
- type mqc_est::mqc_determinant
- type mqc_est::mqc_twoeris
- interface mqc_est::mqc_print
- interface mqc_est::matmul
- interface mqc_est::dot_product
- interface mqc_est::transpose
- interface mgc est::dagger
- interface mgc est::contraction
- · interface mgc est::mgc matrix undospinblockghf
- interface mqc est::assignment(=)
- interface mqc_est::operator(+)
- interface mqc_est::operator(-)
- interface mqc est::operator(*)

Modules

module mqc_est

Functions/Subroutines

- subroutine mqc_est::mqc_print_wavefunction (wavefunction, iOut, label)
- subroutine mqc_est::mqc_print_integral (integral, iOut, header, blank_at_top, blank_at_bottom)
- subroutine mgc est::mgc print eigenvalues (eigenvalues, iOut, header, blank at top, blank at bottom)
- subroutine mgc est::mgc print twoeris (twoERIs, iOut, header, blank at top, blank at bottom)
- logical function mqc_est::mqc_integral_isallocated (Integral)
- logical function mqc_est::mqc_eigenvalues_isallocated (Eigenvalues)
- logical function mqc est::mqc integral has alpha (integral)
- logical function mgc est::mgc integral has beta (integral)
- logical function mgc est::mgc integral has alphabeta (integral)
- logical function mgc est::mgc integral has betaalpha (integral)
- logical function mqc_est::mqc_eigenvalues_has_alpha (eigenvalues)
- logical function mgc est::mgc eigenvalues has beta (eigenvalues)
- character(len=64) function mgc est::mgc integral array type (integral)
- character(len=64) function mqc_est::mqc_eigenvalues_array_type (eigenvalues)
- character(len=64) function mgc est::mgc integral array name (integral)
- character(len=64) function mgc est::mgc eigenvalues array name (eigenvalues)
- subroutine mqc_est::mqc_integral_add_name (integral, arrayName)
- subroutine mgc est::mgc eigenvalues add name (eigenvalues, arrayName)
- integer(kind=int64) function mgc est::mgc integral dimension (integral, label, axis)
- integer(kind=int64) function mgc est::mgc eigenvalues dimension (eigenvalues, label)
- subroutine mqc_est::mqc_twoeris_allocate (twoERIs, storageType, integralType, alpha, beta, alphaBeta, beta
 — Alpha)
- subroutine mgc est::mgc integral allocate (integral, arrayName, arrayType, alpha, beta, alphaBeta, betaAlpha)
- subroutine mqc_est::mqc_eigenvalues_allocate (eigenvalues, arrayName, arrayType, alpha, beta)
- subroutine mgc est::mgc integral identity (integral, nAlpha, nBeta, label, nAlpha2, nBeta2)
- subroutine mqc_est::mqc_integral_initialize (integral, nAlpha, nBeta, scalar, label, nAlpha2, nBeta2)
- type(mqc_matrix) function mqc_est::mqc_integral_output_block (integral, blockName)
- type(mqc_scf_integral) function mqc_est::mqc_integral_output_orbitals (integral, orbString, alphaOrbsIn, beta
 OrbsIn, axis)
- type(mgc scf integral) function mgc est::mgc integral swap orbitals (integral, alphaOrbsIn, betaOrbsIn, axis)
- type(mgc vector) function mgc est::mgc eigenvalues output block (eigenvalues, blockName)
- subroutine mqc_est::mqc_integral_output_array (matrixOut, integralIn)
- subroutine mqc_est::mqc_eigenvalues_output_array (vectorOut, eigenvaluesIn)
- type(mqc_scf_integral) function mqc_est::mqc_integral_matrix_multiply (integralA, matrixB, label)
- type(mqc scf integral) function mqc est::mqc matrix integral multiply (matrixA, integralB, label)
- type(mqc_scf_integral) function mqc_est::mqc_integral_sum (integralA, integralB)
- type(mgc scf integral) function mgc est::mgc integral difference (integralA, integralB)
- type(mgc scf integral) function mgc est::mgc integral integral multiply (integralA, integralB, label)
- type(mqc_scf_integral) function mqc_est::mqc_scalar_integral_multiply (scalar, integral)
- type(mqc_scf_integral) function mqc_est::mqc_integral_scalar_multiply (integral, scalar)
- type(mqc_scf_integral) function mqc_est::mqc_integral_eigenvalues_multiply (integralA, eigenvaluesB, label)
- type(mgc scf integral) function mgc est::mgc eigenvalues integral multiply (eigenvaluesA, integralB, label)
- type(mqc_scf_eigenvalues) function mqc_est::mqc_eigenvalues_eigenvalues_multiply (eigenvaluesA, eigenvaluesB, label)

378 File Documentation

• type(mqc_scalar) function mqc_est::mqc_eigenvalue_eigenvalue_dotproduct (eigenvalueA, eigenvalueB)

- type(mqc_scf_integral) function mqc_est::mqc_integral_transpose (integral, label)
- type(mqc_scf_integral) function mqc_est::mqc_integral_conjugate_transpose (integral, label)
- type(mqc_scalar) function mqc_est::mqc_integral_norm (integral, methodIn)
- subroutine mgc est::mgc matrix spinblockghf (array, nelec, multi, elist)
- subroutine mgc est::mgc matrix undospinblockghf eigenvalues (eigenvalues In, vectorOut)
- subroutine mgc est::mgc matrix undospinblockghf integral (integralIn, matrixOut)
- type(mgc scalar) function mgc est::mgc scf integral contraction (integral1, integral2)
- type(mqc_scf_integral) function mqc_est::mqc_eri_integral_contraction (eris, integral, label)
- subroutine mgc est::mgc scf integral generalized eigensystem (integralA, integralB, eVals, rEVecs, IEVecs)
- subroutine mgc est::mgc scf integral diagonalize (integral, eVals, eVecs)
- type(mqc_scf_integral) function mqc_est::mqc_scf_integral_inverse (integral)
- type(mqc_scalar) function mqc_est::mqc_scf_integral_trace (integral)
- type(mgc scalar) function mgc est::mgc scf integral determinant (integral)
- subroutine mqc_est::mqc_integral_set_energy_list (integral, elist)
- integer(kind=int64) function, dimension(:), allocatable mqc_est::mqc_integral_get_energy_list (integral)
- subroutine mgc est::mgc integral delete energy list (integral)
- subroutine mqc_est::mqc_scf_eigenvalues_power (eigenvalues, power)
- type(mqc scalar) function mqc est::mqc twoeris at (twoERIs, i, j, k, I, spinBlock)
- type(mqc_scalar) function mqc_est::mqc_integral_at (integral, i, j, spinBlock)
- type(mqc_scalar) function mqc_est::mqc_eigenvalues_at (eigenvalues, i, spinBlock)
- subroutine mgc est::mgc scf transformation matrix (overlap, transform matrix, nBasUse)
- subroutine mgc est::gen det str (IOut, IPrint, NBasisIn, NAlphaIn, NBetaIn, Determinants, NCoreIn)
- type(mqc_scalar) function mqc_est::slater_condon (IOut, IPrint, NBasisIn, Determinants, L_A_String, L_B_String, R A String, R B String, Core Hamiltonian, ERIs, UHF)
- subroutine mqc_est::twoeri_trans (IOut, IPrint, MO_Coeff, ERIs, MO_ERIs, UHF)
- subroutine mqc_est::mqc_build_ci_hamiltonian (IOut, IPrint, NBasis, Determinants, MO_Core_Ham, MO_ERIs, UHF, CI_Hamiltonian)
- type(mqc_matrix) function mqc_est::get_one_gamma_matrix (iOut, iPrint, nBasisIn, nState, determinants, ci_
 amplitudes, nCoreIn, nOrbsIn)

Index

abs	mqc_algebra::mqc_matrix, 253
mqc_algebra::mqc_scalar, 271	mqc_est::mqc_scf_integral, 275
mqc_algebra::mqc_vector, 281	
addlabel	factorial
mqc_est::mqc_scf_eigenvalues, 273	mqc_algebra, 25
mqc_est::mqc_scf_integral, 274	fock_matrix
alpha	mqc_est::mqc_wavefunction, 287
mqc_est::mqc_determinant_string, 245	
argsort	gen_det_str
mqc_algebra::mqc_vector, 281	mqc_est, 183
at	get_one_gamma_matrix
mqc_algebra::mqc_matrix, 252	mqc_est, 184
mqc_algebra::mqc_r4tensor, 270	getblock
mqc_algebra::mqc_vector, 282	mqc_est::mqc_scf_eigenvalues, 273
mqc_est::mqc_scf_eigenvalues, 273	mqc_est::mqc_scf_integral, 275
qo_ooqo_ooo.goa.a.oo, _ o	getelist
basis	mqc_est::mqc_scf_integral, 275
mqc_est::mqc_wavefunction, 287	getlabel
beta	mqc_est::mqc_scf_eigenvalues, 273
mqc_est::mqc_determinant_string, 245	mqc_est::mqc_scf_integral, 275
bin_coeff	
mqc_algebra, 24	identity
mqo_aigeora, 24	mqc_algebra::mqc_matrix, 253
charge	mqc_est::mqc_scf_integral, 275
mqc_est::mqc_wavefunction, 287	init
core_hamiltonian	mqc_algebra::mqc_matrix, 253
mqc_est::mqc_wavefunction, 287	mqc_algebra::mqc_r4tensor, 270
cval	mqc_algebra::mqc_vector, 282
mqc_algebra::mqc_scalar, 271	mqc_est::mqc_scf_integral, 275
mqo_aigebramqo_scalar, 271	inv
dagger	mqc_algebra::mqc_matrix, 253
mqc_algebra::mqc_matrix, 252	mqc_est::mqc_scf_integral, 276
mqc_algebra::mqc_vector, 282	ival
deleteelist	mqc_algebra::mqc_scalar, 272
	mqc_aigebramqc_scalar, 272
mqc_est::mqc_scf_integral, 274 density matrix	mat
•	mqc_algebra::mqc_matrix, 253
mqc_est::mqc_wavefunction, 287	matrix_symm2sq_complex
det	mqc_algebra, 25
mqc_algebra::mqc_matrix, 252	mqc_algebra::matrix_symm2sq, 236
mqc_est::mqc_scf_integral, 274	
diag	matrix_symm2sq_integer
mqc_algebra::mqc_matrix, 253	mqc_algebra, 26
mqc_algebra::mqc_vector, 282	mqc_algebra::matrix_symm2sq, 237
mqc_est::mqc_scf_integral, 275	matrix_symm2sq_real
	mqc_algebra, 27
eigensys	mgc_algebra::matrix_symm2sg, 238

maxloc	mqc_matrix_columns, 49
mqc_algebra::mqc_vector, 282	mqc_matrix_conjugate_transpose, 50
maxval	mqc_matrix_copy_complex2int, 50
mqc_algebra::mqc_vector, 282	mqc_matrix_copy_complex2real, 51
minloc	mqc_matrix_copy_int2complex, 52
mqc_algebra::mqc_vector, 283	mqc_matrix_copy_int2real, 52
minval	mqc_matrix_copy_real2complex, 53
mqc_algebra::mqc_vector, 283	mqc_matrix_copy_real2int, 53
mo_coefficients	mqc_matrix_determinant, 54
mqc_est::mqc_wavefunction, 287	mqc_matrix_diag2full, 54
mo_energies	mqc_matrix_diag2symm, 55
mqc_est::mqc_wavefunction, 287	mqc_matrix_diagmatrix_put_complex, 55
mo_symmetries	mqc_matrix_diagmatrix_put_integer, 56
mqc_est::mqc_wavefunction, 288	mqc_matrix_diagmatrix_put_real, 57
mput	mqc_matrix_diagmatrix_put_vector, 58
mqc_algebra::mqc_matrix, 254	mqc_matrix_diagonalize, 58
mqc_algebra, 11	mqc_matrix_full2diag, 59
bin_coeff, 24	mqc_matrix_full2symm, 60
factorial, 25	mqc_matrix_generalized_eigensystem, 60
matrix_symm2sq_complex, 25	mqc_matrix_havecomplex, 61
matrix_symm2sq_integer, 26	mqc_matrix_havediagonal, 61
matrix_symm2sq_real, 27	mqc_matrix_havefull, 62
mqc_allocate_matrix, 28	mqc_matrix_haveinteger, 62
mqc_allocate_r4tensor, 29	mqc_matrix_havereal, 63
mqc_allocate_scalar, 29	mqc_matrix_havesymmetric, 64
mqc_allocate_vector, 30	mqc_matrix_identity, 64
mqc_complexscalaradd, 31	mqc_matrix_initialize, 64
mqc_complexscalardivide, 32	mqc_matrix_inverse, 65
mqc_complexscalarmultiply, 33	mqc_matrix_isallocated, 65
mqc_complexscalarsubtract, 33	mqc_matrix_matrix_at, 65
mqc_complexvectorproduct, 34	mqc_matrix_matrix_contraction, 66
mqc_crossproduct, 35	mqc_matrix_matrix_put, 66
mqc_deallocate_matrix, 35	mqc_matrix_norm, 68
mqc_deallocate_r4tensor, 36	mqc_matrix_rms_max, 68
mqc_deallocate_scalar, 36	mqc_matrix_rows, 68
mqc_deallocate_vector, 37	mqc_matrix_scalar_at, 69
mqc_elementmatrixdivide, 37	mqc_matrix_scalar_put, 69
mqc_elementmatrixproduct, 38	mqc_matrix_set, 70
mqc_elementvectorproduct, 39	mqc_matrix_sqrt, 70
mqc_givens_matrix, 40	mqc_matrix_svd, 70
mqc_input_complex_scalar, 40	mqc_matrix_symm2diag, 70
mqc_input_integer_scalar, 41	mqc_matrix_symm2full, 71
mqc_input_real_scalar, 41	mqc_matrix_symm2full_func, 72
mqc_integergtscalar, 42	mqc_matrix_symmetrize, 72
mqc_integerlescalar, 43	mqc_matrix_symmmatrix_put_complex, 73
mqc_integerscalaradd, 43	mqc_matrix_symmmatrix_put_integer, 74
mqc_integerscalardivide, 44	mqc_matrix_symmmatrix_put_real, 74
mqc_integerscalarmultiply, 45	mqc_matrix_symmsymmr4tensor_put_complex, 75
mqc_integerscalarsubtract, 46	mqc_matrix_symmsymmr4tensor_put_real, 75
mqc_integervectorproduct, 46	mqc_matrix_test_diagonal, 75
mqc_length_vector, 47	mqc_matrix_test_symmetric, 76
mqc_matrix_cast_complex, 47	mqc_matrix_trace, 77
mqc_matrix_cast_integer, 48	mqc_matrix_transpose, 77
mqc_matrix_cast_real, 49	mqc_matrix_vector_at, 77

mqc_matrix_vector_put, 78	mqc_scalarcomplexexponent, 111
mqc_matrixmatrixdotproduct, 80	mqc_scalarcomplexmultiply, 112
mqc_matrixmatrixproduct, 80	mqc_scalarcomplexsubtract, 113
mqc_matrixmatrixsubtract, 80	mqc_scalardivide, 113
mqc_matrixmatrixsum, 81	mqc_scalareq, 114
mqc_matrixscalarproduct, 82	mqc_scalarexponent, 115
mqc_matrixvectordotproduct, 82	mqc_scalarge, 115
mqc_outer, 82	mqc_scalargt, 116
mqc_output_complex_scalar, 83	mqc_scalargtinteger, 117
mqc_output_integer_scalar, 84	mqc_scalargtreal, 118
mqc_output_mqcscalar_scalar, 84	mqc_scalarintegeradd, 118
mqc_output_real_scalar, 85	mqc_scalarintegerdivide, 119
mqc_print_matrix_algebra1, 86	mqc_scalarintegerexponent, 120
mqc_print_r4tensor_algebra1, 87	mqc_scalarintegermultiply, 121
mqc_print_scalar_algebra1, 87	mqc_scalarintegersubtract, 121
mqc_print_vector_algebra1, 88	mqc_scalarle, 122
mqc_r4tensor_at, 89	mqc_scalarleinteger, 123
mqc_r4tensor_havecomplex, 89	mqc_scalarlereal, 123
mqc_r4tensor_haveinteger, 89	mqc_scalarlt, 124
mqc_r4tensor_havereal, 89	mqc_scalarltreal, 125
mqc_r4tensor_initialize, 89	mqc_scalarmatrixproduct, 126
mqc_r4tensor_put, 90	mqc_scalarmultiply, 126
mqc_realgtscalar, 90	mqc_scalarne, 127
mqc_reallescalar, 91	mqc_scalarrealadd, 127
mqc_realltscalar, 91	mqc_scalarrealdivide, 128
mqc_realscalaradd, 92	mqc_scalarrealexponent, 129
mqc_realscalardivide, 93	mqc_scalarrealmultiply, 129
mqc_realscalarmultiply, 94	mqc_scalarrealsubtract, 130
mqc_realscalarsubtract, 94	mqc_scalarsubtract, 131
mqc_realvectorproduct, 95	mqc_scalarvectordifference, 131
mqc_scalar_acos, 96	mqc_scalarvectorproduct, 132
mqc_scalar_asin, 96	mqc_scalarvectorsum, 133
mqc_scalar_atan, 97	mqc_set_array2tensor, 133
mqc_scalar_atan2, 97	mqc_set_array2vector_complex, 134
mqc_scalar_cmplx, 98	mqc_set_array2vector_integer, 134
mqc_scalar_complex_conjugate, 99	mqc_set_array2vector_real, 135
mqc_scalar_complex_imagpart, 99	mqc_set_complexarray2matrix, 136
mqc_scalar_complex_realpart, 100	mqc_set_integerarray2matrix, 137
mqc_scalar_cos, 101	mqc_set_matrix2complexarray, 137
mqc_scalar_get_abs_value, 101	mqc_set_matrix2integerarray, 138
mqc_scalar_get_intrinsic_complex, 102	mqc_set_matrix2matrix, 139
mqc_scalar_get_intrinsic_integer, 102	mqc_set_matrix2realarray, 140
mqc_scalar_get_intrinsic_real, 103	mqc_set_realarray2matrix, 140
mqc_scalar_get_random_value, 104	mqc_set_vector2complexarray, 141
mqc_scalar_havecomplex, 105	mqc_set_vector2integerarray, 142
mqc_scalar_haveinteger, 105	mqc_set_vector2realarray, 143
mqc_scalar_havereal, 106	mqc_set_vector2vector, 143
mqc_scalar_isallocated, 107	mqc_vector2diagmatrix, 144
mqc_scalar_sin, 107	mqc_vector_abs, 145
mqc_scalar_sqrt, 108	mqc_vector_argsort, 145
mqc_scalar_tan, 108	mqc_vector_cast_complex, 146
mqc_scalaradd, 109	mqc_vector_cast_integer, 147
mqc_scalarcomplexadd, 110	mqc_vector_cast_real, 147
mqc_scalarcomplexdivide, 110	mqc_vector_cmplx, 148

mqc_vector_complex_imagpart, 149	mqc_algebra::asin, 204
mqc_vector_complex_realpart, 149	mqc_scalar_asin, 204
mqc_vector_conjugate_transpose, 150	mqc_algebra::assignment(=), 205
mqc_vector_copy_complex2int, 150	mqc_input_complex_scalar, 206
mqc_vector_copy_complex2real, 151	mqc_input_integer_scalar, 207
mqc_vector_copy_int2complex, 152	mqc_input_real_scalar, 207
mqc_vector_copy_int2real, 152	mqc_output_complex_scalar, 208
mqc_vector_copy_real2complex, 153	mqc_output_integer_scalar, 209
mqc_vector_copy_real2int, 153	mqc_output_mqcscalar_scalar, 209
mqc_vector_havecomplex, 154	mqc_output_real_scalar, 210
mqc_vector_haveinteger, 155	mqc_set_array2tensor, 211
mqc_vector_havereal, 155	mqc_set_array2vector_complex, 211
mqc_vector_initialize, 157	mqc_set_array2vector_integer, 212
mqc_vector_isallocated, 158	mqc_set_array2vector_real, 212
mqc_vector_iscolumn, 158	mqc_set_complexarray2matrix, 213
mqc_vector_maxloc, 159	mqc_set_integerarray2matrix, 214
mqc_vector_maxval, 159	mqc set matrix2complexarray, 214
mqc_vector_minloc, 160	mqc_set_matrix2integerarray, 215
mqc_vector_minval, 161	mqc_set_matrix2matrix, 216
mqc_vector_norm, 161	mqc_set_matrix2realarray, 217
mgc_vector_norm; 101	mqc_set_realarray2matrix, 217
mqc_vector_power, 163	mqc_set_vector2complexarray, 218
· — — —	mqc_set_vector2integerarray, 219
mqc_vector_push, 164	
mqc_vector_scalar_at, 164	mqc_set_vector2realarray, 220
mqc_vector_scalar_increment, 165	mqc_set_vector2vector, 220
mqc_vector_scalar_put, 166	mqc_algebra::atan, 222
mqc_vector_shift, 166	mqc_scalar_atan, 222
mqc_vector_sort, 167	mqc_algebra::atan2, 223
mqc_vector_sqrt, 168	mqc_scalar_atan2, 223
mqc_vector_transpose, 168	mqc_algebra::cmplx, 224
mqc_vector_unshift, 169	mqc_scalar_cmplx, 224
mqc_vector_vector_at, 170	mqc_vector_cmplx, 225
mqc_vector_vector_put, 170	mqc_algebra::conjg, 226
mqc_vectorcomplexdivide, 171	mqc_scalar_complex_conjugate, 226
mqc_vectorcomplexproduct, 172	mqc_algebra::contraction, 227
mqc_vectorintegerdivide, 173	mqc_matrix_matrix_contraction, 227
mqc_vectorintegerproduct, 173	mqc_algebra::cos, 228
mqc_vectormatrixdotproduct, 174	mqc_scalar_cos, 229
mqc_vectorrealdivide, 174	mqc_algebra::dagger, 229
mqc_vectorrealproduct, 176	mqc_matrix_conjugate_transpose, 230
mqc_vectorscalardivide, 177	mqc_vector_conjugate_transpose, 230
mqc_vectorscalarproduct, 177	mqc_algebra::dot_product, 231
mqc_vectorvectordifference, 178	mqc_vectorvectordotproduct, 232
mqc_vectorvectordotproduct, 179	mqc_algebra::matmul, 233
mqc_vectorvectorsum, 180	mqc_matrixmatrixdotproduct, 234
symindexhash, 180	mqc_matrixvectordotproduct, 234
mqc_algebra::abs, 199	mqc_vectormatrixdotproduct, 234
mqc_scalar_get_abs_value, 199	mqc_algebra::matrix_symm2sq, 236
mqc_vector_abs, 200	matrix_symm2sq_complex, 236
mqc_algebra::acos, 201	matrix_symm2sq_integer, 237
mqc_scalar_acos, 201	matrix_symm2sq_real, 238
mqc_algebra::aimag, 202	mqc_algebra::mqc_cast_complex, 239
mqc_scalar_complex_imagpart, 202	mqc_matrix_cast_complex, 239
mqc_vector_complex_imagpart, 203	mqc_vector_cast_complex, 240

nqc_algebra::mqc_east_integer, 241 mqc_vector_cast_integer, 242 mqc_algebra::mqc_cast_real, 243 mqc_vector_cast_integer, 242 mqc_algebra::mqc_cast_real, 243 mqc_vector_cast_real, 243 mqc_vector_cast_real, 243 mqc_vector_cast_real, 243 mqc_vector_cast_real, 243 mqc_vector_cast_integer, 246 mqc_matrix_havecomplex, 246 mqc_vector_havecomplex, 247 mqc_algebra::mqc_have_real, 249 mqc_matrix_havecreal, 250 mqc_vector_havereal, 250 mqc_algebra::mqc_matrix_251 at, 252 dagger, 252 det, 252 det, 253 iont, 253 iont, 253 iont, 253 iont, 253 mqt, 254 print, 256 mqc_algebra::mqc_matrix_diagmatrix_put_ complex, 256 mqc_matrix_diagmatrix_put_ complex, 260 mqc_matrix_symmmatrix_put_ complex, 260 mqc_print_r4tensor_algebra1, 264 mqc_print_vector_algebra1, 263 mqc_print_vector_algebra1, 264 mqc_print_vector_algebra1, 265 mqc_algebra::mqc_f4tensor, 269 at, 270 init_t270 mqc_algebra::mqc_f4tensor, 269 at, 270 mqc_algebra::mqc_set_array2vector, 277 mqc_algebra::mqc_set_array2vector, 277 mqc_algebra::mqc_set_array2vector, 277 mqc_set_array2vector_complex_v27 mqc_set_array2vector_complex_complex_set_array2vector_real, 279 mqc_set_array2vector_complex_complex_set_array2vector_real, 279 mqc_set_array2vector_real, 279 mqc_set_array2vector_complex_complex_set_arra		
mgc_vector_cast_integer, 242 mgc_algebra::mgc_ast_real, 242 mgc_matrix_cast_real, 243 mgc_vector_cast_real, 243 mgc_vector_cast_real, 243 mgc_algebra::mgc_avec_omplex, 246 mgc_matrix_havecomplex, 246 mgc_matrix_havecomplex, 247 mgc_algebra::mgc_have_real, 249 mgc_matrix_havereal, 250 mgc_vector_havereal, 250 mgc_algebra::mgc_matrix_put_real, 251 at, 252 dagger, 252 delt, 252 delt, 252 diag, 253 identity, 253 init, 253 init, 253 mgt_t, 253 mgt_t, 254 print, 255 syd_t, 255 syd_t, 255 syd_t, 255 syd_t, 255 syd_t, 255 syd_t, 255 mgc_matrix_diagmatrix_put_real, 258 mgc_matrix_diagmatrix_put_real, 258 mgc_matrix_diagmatrix_put_real, 258 mgc_algebra::mgc_matrix_symmmatrix_put_integer, 257 mgc_matrix_diagmatrix_put_real, 258 mgc_algebra::mgc_matrix_symmmatrix_put_real, 261 mgc_matrix_symmmatrix_put_real, 263 mgc_print_matrix_algebra1, 263 mgc_print_vector_algebra1, 264 mgc_print_vector_algebra1, 264 mgc_print_vector_algebra1, 264 mgc_print_vector_algebra1, 264 mgc_print_vector_algebra1, 264 mgc_print_vector_algebra1, 264 mgc_print_vector_algebra1, 265 mgc_algebra::mgc_ritlesor_269 at, 270 mdc_algebra::mgc_set_array2vector, 277 mdc_set_array2vector_complex_277 mdc_set_array2vector_complex_277 mdc_set_array2vector_complex_277 mdc_set_array2vector_complex_277 mdc_set_array2vector_complex_278 mdc_set_array2vector_complex_278 mdc_set_array2vector_complex_279 mdc_set_array2vector_complex_	mqc_algebra::mqc_cast_integer, 241	print, 270
mqc_algebra::mqc_cast_real, 242 mqc_algebra::mqc_have_complex, 246 mqc_wector_cast_real, 243 mqc_selgebra::mqc_have_complex, 246 mqc_wector_havecomplex, 246 mqc_wector_havecomplex, 247 mqc_algebra::mqc_have_int, 247 mqc_algebra::mqc_have_int, 247 mqc_algebra::mqc_have_int, 247 mqc_yector_havecomplex, 248 mqc_vector_havereal, 249 mqc_wector_havereal, 250 mqc_vector_havereal, 250 mqc_vector_havereal, 250 mqc_vector_havereal, 250 mqc_glegbra::mqc_matrix, 251 at, 252 dagger, 252 dagger, 252 dagger, 252 dagger, 252 daggers, 253 identity, 253 imt, 253 imt, 253 mqt, 254 port, 255 trace, 255 trace, 255 trace, 255 trace, 255 trace, 255 trace, 255 mqc_matrix_diagmatrix_put_complex, 266 mqc_matrix_diagmatrix_put_willeger, 257 mqc_matrix_diagmatrix_put_willeger, 258 mqc_algebra::mqc_matrix_byt_complex, 266 mqc_matrix_symmmatrix_put_willeger, 260 mqc_matrix_symmmatrix_put_unleger, 260 mqc_matrix_salgebra1, 263 mqc_print_matrix_patrix_put_real, 259 mqc_integerexponent, 306 mqc_complexvectorproduct, 293 mqc_complexvectorproduct, 294 mqc_realvectorproduct, 293 mqc_scalarrouplipy, 296 mqc_realvectorproduct, 293 mqc_scalarrouplexmultiply, 294 mqc_integerexponent, 305 mqc_scalarrouplexmultiply, 296 mqc_algebra::mqc_print_matrix_put_ender, 260 mqc_matrix_salgebra1, 264 mqc_print_matrix_put_ender, 265 mqc_algebra::mqc_prin	mqc_matrix_cast_integer, 241	put, 270
mgc_matrix_cast_real, 243 mgc_algebra::mgc_have_complex, 246 mgc_matrix_havecomplex, 246 mgc_actor_havecomplex, 247 mgc_algebra::mgc_have_int, 247 mgc_algebra::mgc_have_int, 247 mgc_matrix_haveinteger, 248 mgc_algebra::mgc_have_int, 249 mgc_matrix_havereal, 250 mgc_algebra::mgc_matrix_spin_test mgc_matrix_patrix_spin_test at, 252 dagger, 252 det, 252 det, 252 det, 253 ivit, 253 ivit, 253 ivit, 253 impt_1254 port, 254 port, 254 port, 254 port, 254 port, 254 port, 254 port, 255 svd, 255 svd, 255 vat, 255 vat, 255 vat, 255 vat, 255 mgc_algebra::mgc_matrix_diagmatrix_put_test_patrix_symmmatrix_put_integer, 257 mgc_matrix_diagmatrix_put_test_patrix_symmmatrix_put_test_patrix_patrix_symmmatrix_put_test_patrix_gatrix_spin_test_patrix_gatrix_spin_test_patrix_gatrix_spin_test_patrix_gatrix_spin_test_patrix_gatrix_spin_test_patrix_gatrix_spin_test_patrix_gatrix_spin_test_patrix_gatrix_patrix_spin_test_patrix_gatrix_patrix_gatrix_patrix_gatrix_patrix_gatrix_patrix_gatrix_patrix_gatrix_patrix_gatrix_patrix_gatrix_patrix_gatrix_patrix_gatrix_patrix_gatrix_patrix_gatrix_patrix_gatrix_patrix_gatrix_patrix_gatrix_patrix_gatrix_patrix_gatrix_patrix_gatrix_	mqc_vector_cast_integer, 242	mqc_algebra::mqc_scalar, 271
mqc_vector_cast_real, 243 mqc_algebra::mqc_have_complex, 246 mqc_watrix_haveomplex, 247 mqc_algebra::mqc_have_int, 247 mqc_algebra::mqc_have_int, 247 mqc_vector_have_mel, 248 mqc_vector_have_int, 247 mqc_vector_have_int, 247 mqc_set_array2vector_complex, 277 mqc_set_array2vector_complex, 277 mqc_set_array2vector_complex, 277 mqc_set_array2vector_complex, 277 mqc_set_array2vector_omplex, 277 mqc_set_array2vector_real, 279 mqc_algebra::mqc_matrix_bave_intel_set_289 mqc_algebra::mqc_matrix_bave_intel_set_280 abs, 281 mqc_slegbra::mqc_matrix_bat_all_set_al		
mqc_algebra::mqc_have_complex, 246 mqc_wetor_havecomplex, 247 mqc_algebra::mqc_have_int, 247 mqc_algebra::mqc_have_int, 247 mqc_algebra::mqc_have_int, 247 mqc_algebra::mqc_have_int, 247 mqc_algebra::mqc_have_int, 248 mqc_vector_haveinteger, 248 mqc_algebra::mqc_have_real, 249 mqc_wetor_havereal, 250 mqc_vector_havereal, 250 mqc_vector_havereal, 251 at, 252 dagger, 252 dagger, 252 det, 252 diag, 253 eigensys, 253 iont, 253 int, 253 int, 253 int, 253 int, 253 mput, 254 norm, 254 port, 254 port, 254 port, 254 port, 254 port, 254 set, 255 yot, 255 transpose, 255 transpose, 255 transpose, 255 transpose, 255 transpose, 255 mqc_algebra::mqc_matrix_diagmatrix_put_eal, 258 mqc_algebra::mqc_matrix_symmmatrix_put_vector, 258 mqc_algebra::mqc_matrix_symmmatrix_put_eal, 258 mqc_matrix_diagmatrix_put_real, 258 mqc_matrix_symmmatrix_put_linteger, 257 mqc_matrix_symmmatrix_put_eal, 258 mqc_matrix_symmmatrix_put_eal, 258 mqc_gerint_matrix_symmmatrix_put_eal, 258 mqc_matrix_symmmatrix_put_eal, 258 mqc_matrix_symmmatrix_put_eal, 258 mqc_matrix_symmmatrix_put_eal, 258 mqc_print_r4tensor_algebra1, 264 mqc_print_scalar_algebra1, 264 mqc_print_vector_algebra1, 264 mqc_print_vector_algebra1, 264 mqc_print_vector_algebra1, 264 mqc_print_vector_algebra1, 265 mqc_algebra::mqc_prind_vector, 277 mqc_set_array2vector_complex, 277 mqc_set_array2vector_real, 279 mqc_algebra::mqc_set_array2vector_real, 279 mqc_algebra::mqc_set_array2vector_real, 279 mqc_set_array2vector_real, 279 mqc_set_array2ve	mqc_matrix_cast_real, 243	cval, 271
mgc_matrix_havecomplex, 246 mgc_elgebra::mgc_have_int, 247 mgc_glebra::mgc_have_int, 247 mgc_matrix_haveinteger, 248 mgc_vector_haveinteger, 248 mgc_elgebra::mgc_have_real, 250 mgc_algebra::mgc_havereal, 250 mgc_elgebra::mgc_matrix_251 at, 252 dagger, 252 det, 252 det, 252 det, 252 det, 252 det, 253 identity, 253 init, 253 mat, 253 mat, 253 mat, 253 mat, 254 port, 255 svd, 255 trace, 255 trace, 255 trace, 255 trace, 255 mgc_algebra::mgc_matrix_diagmatrix_put_complex, 256 mgc_matrix_diagmatrix_put_complex, 256 mgc_matrix_diagmatrix_put_real, 258 mgc_matrix_diagmatrix_put_real, 258 mgc_matrix_symmmatrix_put_complex, 260 mgc_scalarcomplexymonent, 304 mgc_scalarropoter(**), 289 mgc_scalarropoted, 291 mgc_complexvectorproduct, 293 mgc_matrix_startixproduct, 293 mgc_matrix_startixproduct, 294 mgc_realvectorproduct, 295 mgc_scalarcomplexmultiply, 296 mgc_scalarcomplexmultiply, 296 mgc_scalarcomplexmultiply, 296		ival, 272
mqc_vector_havecomplex, 247 mqc_algebra::mqc_have_int, 247 mqc_algebra::mqc_have_int, 247 mqc_algebra::mqc_have_int, 248 mqc_vector_haveinteger, 248 mqc_algebra::mqc_have_int, 250 mqc_vector_havereal, 250 mqc_lalgebra::mqc_matrix, 251 at, 252 dagger, 252 dagger, 252 det, 252 diag, 253 eigensys, 253 init, 253 init, 253 init, 253 init, 253 mat, 253 mat, 253 mput, 254 print, 254 print, 254 print, 254 print, 254 set, 254 set, 254 set, 255 svd, 255 trace, 255 trace, 255 trace, 255 trace, 255 vqt, 255 mqc_algebra::mqc_matrix_diagmatrix_put_elomplex, 256 mqc_matrix_diagmatrix_put_elomplex, 256 mqc_matrix_diagmatrix_put_elomplex, 256 mqc_matrix_diagmatrix_put_elomplex, 256 mqc_matrix_diagmatrix_put_elomplex, 256 mqc_matrix_diagmatrix_put_elomplex, 256 mqc_matrix_diagmatrix_put_elomplex, 256 mqc_matrix_symmmatrix_put_complex, 256 mqc_matrix_symmmatrix_put_elomplex, 260 mqc_matrix_selomplex, 260 m	mqc_algebra::mqc_have_complex, 246	print, 272
mqc_algebra::mqc_have_int, 247 mqc_matrix_haveinteger, 248 mqc_yector_haveinteger, 248 mqc_algebra::mqc_have_real, 250 mqc_matrix_havereal, 250 mqc_matrix_havereal, 250 mqc_algebra::mqc_matrix, 251 at, 252 dagger, 252 det, 252 diag, 253 eigensys, 253 identity, 253 mat, 253 mut, 253 mut, 253 mut, 254 put, 254 put, 254 put, 254 put, 255 svd, 255 svd, 255 svd, 255 mqc_matrix_diagmatrix_put_complex, 256 mqc_matrix_diagmatrix_put_complex, 256 mqc_algebra::mqc_matrix_diagmatrix_put_complex, 256 mqc_algebra::mqc_matrix_diagmatrix_put_eal, 258 mqc_algebra::mqc_matrix_diagmatrix_put_eal, 258 mqc_algebra::mqc_matrix_but_mateger, 257 mqc_algebra::mqc_matrix_but_mateger, 257 mqc_algebra::mqc_matrix_but_mateger, 257 mqc_algebra::mqc_matrix_but_mateger, 257 mqc_matrix_diagmatrix_put_complex, 256 mqc_matrix_diagmatrix_put_complex, 256 mqc_algebra::mqc_matrix_but_mateger, 257 mqc_algebra::mqc_matrix_but_mateger, 257 mqc_matrix_symmmatrix_put_tomplex, 260 mqc_matrix_symmmatrix_put_taled mqc_print_scalar_algebra1, 264 mqc_print_scalar_algebra1, 264 mqc_print_scalar_algebra1, 264 mqc_print_scalar_algebra1, 264 mqc_print_scalar_algebra1, 265 mqc_algebra::mqc_vector, 280 mqc_sel_array2vector_neplex, 277 mqc_sel_array2vector_real, 279 mqc_sel	mqc_matrix_havecomplex, 246	random, 272
mqc_matrix_haveinteger, 248 mqc_algebra::mqc_hever_nakeinteger, 248 mqc_algebra::mqc_haveinteger, 249 mqc_matrix_havereal, 250 mqc_yector_havereal, 250 mqc_yector_havereal, 250 mqc_yector_havereal, 251 at, 252 dagger, 252 dagger, 252 det, 252 diag, 253 eigensys, 253 identity, 253 init, 253 init, 253 init, 253 init, 253 init, 253 mput, 254 ppint, 254 ppint, 254 ppint, 254 ppint, 255 set, 254 set, 255 syd, 255 trace, 255 trace, 255 trace, 255 trace, 255 trace, 255 mqc_matrix_diagmatrix_put_real, 256 mqc_matrix_diagmatrix_put_real, 258 mqc_matrix_diagmatrix_put_real, 258 mqc_matrix_diagmatrix_put_real, 258 mqc_matrix_symmmatrix_put_complex, 260 mqc_matrix_symmmatrix_put_neller, 260 mqc_matrix_symmmatrix_put_neller, 260 mqc_matrix_symmmatrix_put_real, 261 mqc_algebra::mqc_print, 263 mqc_print_retensor_algebra1, 264 mqc_print_scalar_algebra1, 264 mqc_print_vector_algebra1, 265 mqc_algebra::mqc_retor_complex, 277 mqc_set_array2vector_real, 279 mqc_set_a	mqc_vector_havecomplex, 247	rval, <mark>272</mark>
mqc_vector_haveinteger, 248 mqc_algebra::mqc_have_real, 249 mqc_matrix_havereal, 250 mqc_vector_havereal, 250 mqc_vector_havereal, 250 mqc_algebra::mqc_matrix, 251 at, 252 dagger, 252 det, 252 det, 253 identity, 253 init, 253 init, 253 mat, 253 mat, 253 mput, 254 norm, 254 print, 254 print, 254 print, 254 print, 255 svd, 255 trace, 255 trace, 255 trace, 255 trace, 255 trace, 255 trace, 255 mqc_matrix_diagmatrix_put_complex, 256 mqc_matrix_diagmatrix_put_complex, 256 mqc_matrix_diagmatrix_put_complex, 256 mqc_matrix_diagmatrix_put_complex, 256 mqc_matrix_diagmatrix_put_treal, 258 mqc_algebra::mqc_matrix_diagmatrix_put_teger, 278 mqc_algebra::mqc_matrix_diagmatrix_put, 256 mqc_matrix_diagmatrix_put_treal, 258 mqc_algebra::mqc_matrix_diagmatrix_put, 259 mqc_matrix_symmmatrix_put_complex, 260 mqc_matrix_symmmatrix_put_teger, 275 mqc_algebra::mqc_matrix_diagmatrix_put, 259 mqc_matrix_symmmatrix_put_teger, 280 mqc_print_tratensor_algebra1, 264 mqc_print_tratix_algebra1, 264 mqc_print_tratix_algebra1, 264 mqc_print_tratix_algebra1, 264 mqc_print_tratix_algebra1, 265 mqc_algebra::mqc_retarsor, 269 at, 270 mqc_set_array2vector_real, 279 mqc_algebra::mqc_vector, 280 mqc_get_array2vector_real, 279 mqc_algebra::mqc_vector, 280 mqc_set_array2vector_real, 279 mqc_algebra::mqc_vector, 280 mqc_set_array2vector_real, 279 mqc_algebra::mqc_vector, 280 abs, 281 argsort, 281 at, 282 dagger, 282 diag, 282 diag, 282 maxloc, 282 maxl	mqc_algebra::mqc_have_int, 247	mqc_algebra::mqc_set_array2vector, 277
mqc_algebra::mqc_have_real, 250 mqc_algebra::mqc_wector_havereal, 250 mqc_algebra::mqc_matrix_ 251 at, 252 dagger, 252 det, 252 diag, 253 eigensys, 253 identity, 253 init, 253 init, 253 init, 253 init, 253 mqc_beta detailed mqc_reatrix_ 254 print, 254 print, 254 print, 254 print, 255 svd, 255 trace, 255 trace, 255 trace, 255 vqt, 255 mqc_matrix_ diagmatrix_put_ complex, 256 mqc_matrix_ diagmatrix_put_ complex, 256 mqc_matrix_ diagmatrix_put_ complex, 256 mqc_matrix_ diagmatrix_put_ complex, 256 mqc_matrix_ symmmatrix_put_ 1259 mqc_matrix_ symmmatrix_put_ 1259 mqc_matrix_ symmmatrix_put_ 259 mqc_print_ yestor_ algebra1, 264 mqc_print_ scalar_algebra1, 264 mqc_print_ scalar_algebra1, 265 mqc_glebra::mqc_real_excorr_ real_ 279 mqc_slagebra::mqc_vector_ real_ 279 mqc_slagebra::mqc_vector_ real_ 279 mqc_slagebra::mqc_vector_ real_ 280 abs, 281 at, 282 dagger, 282 diag, 282 init, 282 maxloc, 282 maxloc, 282 maxloc, 282 minloc, 282 minloc, 282 minloc, 283 minval, 282 minloc, 282 minloc, 282 minloc, 282 minloc, 282 minloc, 282 maxloc, 282 diag, 282 init, 282 maxloc, 282 diag, 282 init, 282 maxloc, 282 diag, 282 init, 282 maxloc,	mqc_matrix_haveinteger, 248	mqc_set_array2vector_complex, 277
mqc_matrix_havereal, 250 mqc_vector_havereal, 250 mqc_vector_havereal, 250 mqc_vector_havereal, 250 abs, 281 at, 252 dagger, 252 dagger, 252 diag, 253 eigensys, 253 identity, 253 mint, 253 mat, 253 mpt, 254 print, 254 print, 254 print, 254 print, 254 set, 254 set, 255 svd, 255 trace, 255 trace, 255 trace, 255 trace, 255 mqc_algebra:mqc_matrix_put_complex, 256 mqc_matrix_diagmatrix_put_teder, 257 mqc_algebra:mqc_matrix_put_ninteger, 257 mqc_algebra:mqc_matrix_put_minteger, 257 mqc_matrix_symmmatrix_put_tinteger, 257 mqc_algebra:mqc_matrix_symmmatrix_put_teder, 260 mqc_matrix_symmmatrix_put_teder, 260 mqc_patrix_symmmatrix_put_teder, 260 mqc_patrix_symmmatrix_put_teder, 260 mqc_patrix_symmmatrix_put_teder, 260 mqc_patrix_symmmatrix_put_teder, 260 mqc_print_rdensor_algebra1, 264 mqc_print_scalar_algebra1, 264 mqc_print_scalar_algebra1, 264 mqc_print_scalar_algebra1, 265 mqc_glegbra::mqc_relrector_algebra mqc_relrector_product, 294 mqc_realsecalarmultiply, 296	mqc_vector_haveinteger, 248	mqc_set_array2vector_integer, 278
mqc_vector_havereal, 250 mqc_algebra::mqc_matrix, 251 at, 252 dagger, 252 det, 252 det, 252 det, 252 diag, 253 eigensys, 253 identity, 253 init, 253 mat, 254 put, 254 put, 254 put, 254 put, 254 set, 255 set, 255 set, 255 set, 255 set, 255 set, 255 mqc_matrix_diagmatrix_put_complex, 256 mqc_matrix_diagmatrix_put_integer, 257 mqc_matrix_diagmatrix_put_eal, 258 mqc_matrix_diagmatrix_put_end, 258 mqc_matrix_symmmatrix_put_integer, 260 mqc_matrix_symmmatrix_put_end, 261 mqc_algebra::mqc_print_etensor_algebrat, 264 mqc_print_scalar_algebrat, 264 mqc_print_scalar_algebrat, 264 mqc_print_scalar_algebrat, 264 mqc_print_scalar_algebrat, 264 mqc_print_scalar_algebrat, 265 mqc_algebra::mqc_retrensor, 269 at, 270 abs, 281 argsort, 281 argsort, 281 at, 282 dagger, 282 dagger, 282 diag, 282 init, 282 maxval, 282 maxval, 282 minloc, 283 maxval, 283 minval, 284 minoc, 283 minval, 283 minval, 283 minval, 284 minoc, 283 minval, 284 put, 284 spt, 28	mqc_algebra::mqc_have_real, 249	
mqc_algebra::mqc_matrix, 251 ar, 252 at, 282 dagger, 252 dagger, 282 dagger, 282 det, 252 diag, 282 init, 282 eigensys, 253 maxval, 282 identity, 253 maxval, 282 init, 253 minloc, 283 mort, 253 minval, 283 mput, 254 pop, 283 porr, 284 pop, 283 porrit, 254 print, 284 put, 254 por, 283 print, 254 power, 283 print, 284 pover, 283 print, 284 put, 284 set, 254 size, 284 set, 255 size, 284 set, 255 size, 284 strace, 255 size, 284 transpose, 255 vat, 285 vat, 255 size, 284 mqc_algebra::mqc_matrix_diagmatrix_put_real, 256 mqc_matrix_diagmatrix_put_real, 258 mqc_algebra::mqc_matrix_symmmatrix_put_real, 258 mqc_scalarcomplexexponent, 303 mqc_algebra::mqc_print_vector_, 258 mqc_scalarcepsponent, 305 mqc_algebra::mqc_print_yeat, 260 mqc_m	mqc_matrix_havereal, 250	mqc_algebra::mqc_vector, 280
at, 252 dagger, 252 dagger, 252 det, 252 diag, 253 eigensys, 253 eigensys, 253 maxloc, 282 init, 282 maxval, 282 init, 253 milloc, 283 minv, 253 mat, 253 mat, 253 mat, 253 mut, 254 port, 254 port, 254 print, 254 print, 254 print, 254 put, 254 set, 254 set, 254 set, 255 set, 255 set, 255 set, 255 set, 255 svat, 255 mqc_algebra::mqc_matrix_diagmatrix_put, 256 mqc_matrix_diagmatrix_put_elotor, 257 mqc_matrix_diagmatrix_put_elotor, 258 mqc_matrix_diagmatrix_put_integer, 257 mqc_matrix_diagmatrix_put_elotor, 258 mqc_matrix_symmmatrix_put_elotor, 258 mqc_matrix_symmmatrix_put_leger, 260 mqc_matrix_symmmatrix_put_real, 261 mqc_algebra::mqc_print_elenor_algebrat, 263 mqc_print_r4tensor_algebrat, 264 mqc_print_scalar_algebrat, 264 mqc_print_scalar_algebrat, 264 mqc_print_scalar_algebrat, 264 mqc_print_scalar_algebrat, 265 mqc_algebra::mqc_r4tensor, 269 at, 270 at, 282 dagger, 282 diag, 282 init, 282 maxloc, 282 maxval, 282 mintoc, 283 maxloc, 282 maxval, 282 minto, 282 maxval, 282 minto, 282 maxval, 282 minto, 282 maxvoc, 282 minto, 283 mirval, 282 mintoc, 283 mirval, 283 mirval, 283 mirval, 282 mintoc, 283 mirval, 282 mintoc, 283 mirval, 282 mintoc, 283 mirval, 284 por, 284 por, 284 por, 284 po	• — —	abs, 281
dagger, 252 det, 252 det, 252 diag, 253 eigensys, 253 identity, 253 init, 253 init, 253 inv, 253 mat, 253 mut, 254 print, 254 print, 254 print, 254 print, 255 set, 254 set, 255 svd, 255 trace, 255 trace, 255 vput, 255 mqc_algebra::mqc_matrix_put_cetor, 258 mqc_matrix_diagmatrix_put_cetor, 258 mqc_matrix_gymmmatrix_put_cetor, 258 mqc_matrix_symmmatrix_put_real, 261 mqc_algebra::mqc_print, 263 mqc_print_retlersor_algebra1, 264 mqc_print_scalar_algebra1, 264 mqc_print_scalar_algebra1, 264 mqc_print_scalar_algebra1, 264 mqc_print_scalar_algebra1, 264 mqc_print_scalar_algebra1, 265 mqc_algebra::mqc_retlensor_algebra1, 264 mqc_print_scalar_algebra1, 264 mqc_print_scalar_algebra1, 265 mqc_algebra::mqc_retlensor_algebra1, 265 mqc_algebra::mqc_retlensor_algebra1, 266 mqc_print_scalar_algebra1, 266 mqc_pr	mqc_algebra::mqc_matrix, 251	argsort, 281
det, 252 diag, 253 diag, 253 eigensys, 253 maxloc, 282 maxval, 282 init, 253 mat, 253 mat, 253 mput, 254 port, 254 port, 254 port, 254 port, 254 port, 255 set, 255 set, 255 set, 255 vat, 255 vat, 255 mqc_matrix_diagmatrix_put_complex, 256 mqc_matrix_diagmatrix_put_eal, 258 mqc_matrix_diagmatrix_put_eal, 258 mqc_matrix_symmmatrix_put_eal, 258 mqc_matrix_symmmatrix_put_eal, 258 mqc_matrix_symmmatrix_put_eal, 261 mqc_print_scalar_algebra1, 264 mqc_print_scalar_algebra1, 264 mqc_print_scalar_algebra1, 265 mqc_algebra::mqc_rateport, 269 mqc_algebra::mqc_rateport, 269 mqc_algebra::mqc_rateport, 263 mqc_print_ratensor_algebra1, 264 mqc_print_scalar_algebra1, 265 mqc_algebra::mqc_rateport, 269 mqc_algebra::mqc_rateport, 269 mqc_algebra::mqc_print_vector, 269 mqc_algebra::mqc_rateport, 269 mqc_algebra::mqc_rateport, 269 mqc_algebra::mqc_rateport, 263 mqc_print_ratensor_algebra1, 264 mqc_print_scalar_algebra1, 265 mqc_algebra::mqc_raterix_put_matrix_put	at, 252	at, 282
eigensys, 253 eigensys, 253 maxloc, 282 identity, 253 mint, 253 mint, 253 mat, 253 mat, 253 mat, 254 pop, 283 mourt, 254 pop, 283 power, 283 poust, 284 rmsmax, 254 set, 254 set, 254 set, 255 svd, 255 trace, 255 trace, 255 vat, 255 vat, 255 vat, 255 mqc_algebra::mqc_matrix_diagmatrix_put, 256 mqc_matrix_diagmatrix_put_complex, 256 mqc_matrix_diagmatrix_put_linteger, 257 mqc_matrix_diagmatrix_put_linteger, 257 mqc_matrix_diagmatrix_put_linteger, 257 mqc_matrix_diagmatrix_put_complex, 256 mqc_matrix_diagmatrix_put_complex, 256 mqc_matrix_diagmatrix_put_complex, 256 mqc_matrix_symmmatrix_put_complex, 260 mqc_matrix_symmmatrix_put_linteger, 260 mqc_matrix_salar_untliply, 291 mqc_complexvectorproduct, 291 mqc_integerscalarmultiply, 292 mqc_integerscalarmultiply, 292 mqc_integerscalarmultiply, 292 mqc_integerscalarmultiply, 292 mqc_integerscalarmultiply, 292 mqc_integerscalarmultiply, 295 mqc_galgebra::mqc_ritensor, 269 mqc	dagger, 252	dagger, 282
eigensys, 253 identity, 253 identity, 253 init, 253 init, 253 mat, 253 mat, 253 mat, 253 mat, 253 mput, 254 port, 254 print, 254 print, 254 print, 254 print, 254 put, 254 set, 254 set, 254 set, 255 svd, 255 trace, 255 transpose, 255 vat, 255 mqc_algebra::mqc_matrix_put_complex, 256 mqc_matrix_diagmatrix_put_real, 258 mqc_matrix_diagmatrix_put_real, 258 mqc_algebra::mqc_matrix_put_complex, 260 mqc_matrix_symmmatrix_put_real, 261 mqc_print_scalar_algebra1, 263 mqc_print_scalar_algebra1, 264 mqc_print_scalar_algebra1, 265 mqc_algebra::mqc_realsebra1, 264 mqc_print_scalar_algebra1, 265 mqc_algebra::mqc_realsebra1, 264 mqc_print_scalar_algebra1, 265 mqc_algebra::mqc_realsebra1, 264 mqc_print_vector_algebra1, 265 mqc_algebra::mqc_realsedra1, 265 mqc_algebra::mqc_realsedra1, 264 mqc_print_vector_algebra1, 265 mqc_algebra::mqc_realsedra1, 265 mqc_algebra::mqc_realsedra1, 264 mqc_print_vector_algebra1, 265 mqc_algebra::mqc_realsedra1, 294 mqc_realsedarmultiply, 292 mqc_matrixscalarproduct, 293 mqc_realsedarmultiply, 296 mqc_realsedorproduct, 295 mqc_scalarcomplexmultiply, 296	det, 252	diag, 282
identity, 253 init, 253 init, 253 init, 253 mat, 253 mat, 254 mput, 254 norm, 254 put, 254 put, 254 put, 254 set, 254 set, 255 svd, 255 trace, 255 trace, 255 vput, 255 mqc_algebra::mqc_matrix_put_integer, 257 mqc_matrix_diagmatrix_put_complex, 256 mqc_matrix_diagmatrix_put_real, 258 mqc_algebra::mqc_matrix_gummatrix_put_complex, 260 mqc_matrix_symmmatrix_put_complex, 260 mqc_matrix_symmmatrix_put_complex, 260 mqc_print_matrix_symmmatrix_put_real, 261 mqc_print_scalar_algebra1, 264 mqc_print_scalar_algebra1, 264 mqc_print_scalar_algebra1, 265 mqc_algebra::mqc_r4tensor, 269 at, 270 mqc_galarcomplexmultiply, 296 mqc_algebra::mqc_r4tensor, 269 at, 270 mqc_scalarcomplexmultiply, 296 mqc_matrix_calagebra1, 264 mqc_print_vector_algebra1, 265 mqc_algebra::mqc_r4tensor, 269 at, 270 mmc_scalarcomplexmultiply, 296 mmc_calgebra::mqc_realvectorproduct, 293 mqc_matrix_scalar_product, 294 mqc_realvectorproduct, 295 mqc_scalarcomplexmultiply, 296 mqc_realvectorproduct, 295 mqc_realvectorproduct, 295 mqc_realvectorproduct, 295 mqc_scalarcomplexmultiply, 296	diag, 253	init, 282
init, 253 inv, 253 inv, 253 mat, 253 mat, 253 mat, 253 mput, 254 port, 254 port, 254 put, 254 put, 254 put, 254 set, 255 set, 255 strace, 255 trace, 255 trace, 255 transpose, 255 vat, 255 wput, 255 mqc_algebra::mqc_matrix_diagmatrix_put, 256 mqc_matrix_diagmatrix_put_econplex, 256 mqc_matrix_diagmatrix_put_econplex, 258 mqc_algebra::mqc_matrix_bymmmatrix_put, 258 mqc_matrix_diagmatrix_put_econplex, 260 mqc_matrix_symmmatrix_put_complex, 260 mqc_matrix_symmmatrix_put_eal, 261 mqc_print_vector_algebra1, 263 mqc_print_vector_algebra1, 264 mqc_print_vector_algebra1, 265 mqc_lagebra::mqc_r4tensor, 269 at, 270 mqc_scalarcomplexmultiply, 296 mqc_gealseverorpoduct, 293 mqc_ratrix_scalarproduct, 294 mqc_scalarcomplexmultiply, 296 mqc_gealseverorpoduct, 295 mqc_gealseverorpoduct, 293 mqc_matrix_scalarproduct, 294 mqc_gealseverorpoduct, 295 mqc_gealseverorpoduct, 295 mqc_gealseverorpoduct, 295 mqc_gealseverorpoduct, 295 mqc_gealserorpoduct, 295 mqc_gealseverorpoduct, 295 mqc_gealserorpoduct, 296 mqc_gealserorpoduct, 296 mqc_gealserorpoduct,	eigensys, 253	maxloc, 282
inv, 253 mat, 253 mat, 253 mput, 254 pop, 283 pop, 283 power, 283 popint, 254 print, 254 print, 254 put, 254 put, 254 put, 254 set, 254 set, 254 set, 255 set, 255 strace, 255 trace, 255 trace, 255 vat, 255 wput, 255 mqc_algebra::mqc_matrix_diagmatrix_put, 256 mqc_matrix_diagmatrix_put_complex, 256 mqc_matrix_diagmatrix_put_complex, 256 mqc_matrix_diagmatrix_put_teal, 258 mqc_matrix_diagmatrix_put_real, 258 mqc_matrix_diagmatrix_put_complex, 250 mqc_matrix_diagmatrix_put_teal, 258 mqc_matrix_diagmatrix_put_teal, 258 mqc_algebra::mqc_matrix_symmmatrix_put, 259 mqc_matrix_symmmatrix_put_teal, 261 mqc_algebra::mqc_print_e63 mqc_print_matrix_algebra1, 263 mqc_print_r4tensor, algebra1, 264 mqc_print_vector_algebra1, 265 mqc_algebra::mqc_r4tensor, 269 at, 270 mqc_scalarcomplexmultiply, 296 mqc_scalarmultiply, 294 mqc_gealsectorproduct, 295 mqc_scalarcomplexmultiply, 296 mqc_gealsectorproduct, 295 mqc_geals	identity, 253	
mat, 253 mput, 254 norm, 254 print, 254 print, 254 put, 254 put, 254 put, 254 set, 254 set, 255 set, 255 svd, 255 trace, 255 trace, 255 vat, 255 vat, 255 mqc_algebra::mqc_matrix_put_complex, 256 mqc_matrix_diagmatrix_put_complex, 256 mqc_matrix_diagmatrix_put_eter, 257 mqc_algebra::mqc_matrix_put_complex, 260 mqc_matrix_symmmatrix_put_complex, 260 mqc_matrix_symmmatrix_put_linteger, 260 mqc_algebra::mqc_print, 263 mqc_print_r4tensor_algebra1, 264 mqc_print_vector_algebra1, 264 mqc_print_vector_algebra1, 265 mqc_algebra::mqc_r4tensor, 269 at, 270 norm, 283 pope, 283 power, 283 print, 283 put, 284 size, 284 stranspose, 285 unshift, 285 vput, 285 vput, 285 vput, 285 mqc_algebra::operator(**), 303 mqc_algebra::operator(**), 303 mqc_scalarcomplexexponent, 304 mqc_scalarcomplexexponent, 305 mqc_scalarcalexponent, 306 mqc_algebra::operator(**), 289 mqc_omplexectorproduct, 291 mqc_omplexectorproduct, 291 mqc_matrix_scalarproduct, 294 mqc_print_vector_algebra1, 265 mqc_realvectorproduct, 295 mqc_scalarcomplexmultiply, 296	init, 253	minloc, 283
mput, 254 norm, 254 print, 254 print, 254 put, 254 set, 254 set, 255 set, 255 svd, 255 trace, 255 transpose, 255 vat, 255 vput, 255 mqc_algebra::mqc_matrix_diagmatrix_put, 256 mqc_matrix_diagmatrix_put_complex, 256 mqc_matrix_diagmatrix_put_el, 256 mqc_matrix_diagmatrix_put_el, 256 mqc_matrix_diagmatrix_put_el, 256 mqc_matrix_diagmatrix_put_el, 256 mqc_matrix_diagmatrix_put_el, 256 mqc_matrix_diagmatrix_put_el, 258 mqc_matrix_diagmatrix_put_el, 258 mqc_matrix_gymmmatrix_put_el, 259 mqc_matrix_symmmatrix_put_el, 259 mqc_matrix_symmmatrix_put_el, 260 mqc_matrix_symmmatrix_put_el, 261 mqc_algebra::mqc_print, 263 mqc_print_matrix_algebra1, 264 mqc_print_scalar_algebra1, 264 mqc_print_vector_algebra1, 265 mqc_algebra::mqc_r4tensor, 269 at, 270 mqc_scalarcomplexuselar mqc_print_vector_algebra1, 264 mqc_print_vector_algebra1, 265 mqc_scalarcomplexueltiply, 296 mqc_galgebra::mqc_r4tensor, 269 mqc_galgebra::mqc_galgebra put, 284 put, 284 put, 284 size, 284 size, 284 sqrt, 284 sqrt, 284 size, 284 sqrt, 284 size, 284 sqrt, 284 size, 284 sqrt, 284 size, 284 sqrt, 284 sqrt, 284 size, 284 sqrt, 284 size, 284 sqrt, 284 size, 284 sqrt, 284 size, 284 sqrt, 284 sqrt, 284 sqrt, 284 sqrt, 284 size, 284 sqrt, 284 sq	inv, 253	minval, 283
norm, 254 print, 254 print, 254 put, 254 put, 254 rmsmax, 254 set, 254 set, 255 svd, 255 trace, 255 transpose, 255 vat, 255 mqc_algebra::mqc_matrix_diagmatrix_put, 256 mqc_matrix_diagmatrix_put_ector, 258 mqc_matrix_diagmatrix_put_ector, 258 mqc_matrix_diagmatrix_put_ector, 258 mqc_matrix_symmmatrix_put_ector, 258 mqc_matrix_symmmatrix_put_ector, 260 mqc_matrix_symmmatrix_put_eal, 261 mqc_print_rdensor_algebra1, 264 mqc_print_scalar_algebra1, 265 mqc_algebra::mqc_rdensor, 269 at, 270 mqc_algebra::mqc_rdensor, 269 at, 270 mqc_algebra::mqc_rdensor, 269 at, 270 mqc_algebra::mqc_rdensor, 269 at, 270 power, 283 print, 283 push, 284 put, 284 stift, 284 sift, 284 sift, 284 sift, 284 sift, 284 sift, 284 sort, 284 transpose, 285 vat, 285 vput, 285 vput, 285 vput, 285 vput, 285 mqc_algebra::operator(**), 303 mqc_scalarcomplexexponent, 303 mqc_scalarrealexponent, 304 mqc_scalarrealexponent, 305 mqc_scalarrealexponent, 306 mqc_scalarrealexponent, 306 mqc_algebra::operator(*), 289 mqc_complexscalarmultiply, 291 mqc_integerscalarmultiply, 291 mqc_matrixxcalarproduct, 293 mqc_matrixxcalarproduct, 293 mqc_realvectorproduct, 293 mqc_realvectorproduct, 295 mqc_scalarcomplexmultiply, 296	mat, 253	norm, 283
print, 254 put, 254 put, 254 rmsmax, 254 set, 254 set, 255 set, 255 svd, 255 trace, 255 transpose, 255 vat, 255 wqc_algebra::mqc_matrix_diagmatrix_put_complex, 256 mqc_matrix_diagmatrix_put_integer, 257 mqc_matrix_diagmatrix_put_real, 258 mqc_matrix_diagmatrix_put_vector, 258 mqc_algebra::mqc_matrix_put_integer, 250 mqc_matrix_symmmatrix_put_complex, 260 mqc_algebra::mqc_print, 263 mqc_print_matrix_algebra1, 264 mqc_print_vector_algebra1, 264 mqc_print_vector_algebra1, 265 mqc_algebra::mqc_r4tensor, 269 mqc_algebra::mqc_r4tensor, 269 mqc_algebra::mqc_r4tensor, 269 mqc_algebra::mqc_r4tensor, 269 mqc_algebra::mqc_r4tensor, 269 mqc_algebra::mqc_r4tensor, 269 mqc_scalarcomplexxexponent, 303 mqc_scalarcomplexxexponent, 303 mqc_scalarroduct, 294 mqc_realvectorproduct, 295 mqc_scalarcomplexxexponent, 305 mqc_scalarcomplexxexponent, 306	mput, 254	pop, <mark>283</mark>
put, 254 rmsmax, 254 set, 254 set, 255 set, 255 svd, 255 trace, 255 transpose, 255 vat, 255 vput, 255 mqc_algebra::mqc_matrix_but_complex, 256 mqc_matrix_diagmatrix_put_complex, 256 mqc_matrix_diagmatrix_put_else mqc_matrix_diagmatrix_put_real, 258 mqc_algebra::mqc_matrix_symmmatrix_put_c59 mqc_algebra::mqc_matrix_but_integer, 257 mqc_algebra::mqc_matrix_symmmatrix_put_else mqc_matrix_symmmatrix_put_else mqc_matrix_symmmatrix_put_else mqc_matrix_symmmatrix_put_else mqc_matrix_symmmatrix_put_else mqc_matrix_symmmatrix_put_else mqc_matrix_symmmatrix_put_else mqc_matrix_symmmatrix_put_real, 261 mqc_algebra::mqc_print, 263 mqc_print_matrix_algebra1, 264 mqc_print_scalar_algebra1, 264 mqc_print_vector_algebra1, 265 mqc_algebra::mqc_r4tensor, 269 at, 270 mqc_scalarcomplex mqc_print_vector_algebra1, 265 mqc_scalarcomplex mqc_print_vector_algebra1, 265 mqc_scalarcomplex mqc_realscalarmultiply, 294 mqc_realscalarcomplexmultiply, 296	norm, 254	power, 283
rmsmax, 254 set, 254 set, 255 set, 255 svd, 255 trace, 255 transpose, 255 vat, 255 vat, 255 mqc_algebra::mqc_matrix_diagmatrix_put, 256 mqc_matrix_diagmatrix_put_eal, 258 mqc_matrix_diagmatrix_put_real, 258 mqc_matrix_diagmatrix_put_ector, 258 mqc_matrix_symmmatrix_put_ector, 258 mqc_matrix_symmmatrix_put_complex, 260 mqc_matrix_symmmatrix_put_edl mqc_matrix_symmmatrix_put_edl mqc_matrix_symmmatrix_put_edl mqc_matrix_symmmatrix_put_edl mqc_matrix_symmmatrix_put_edl mqc_matrix_symmmatrix_put_edl mqc_matrix_symmmatrix_put_edl mqc_matrix_symmmatrix_put_edl mqc_matrix_symmmatrix_put_edl mqc_matrix_symmmatrix_put_real, 261 mqc_glebra::mqc_print, 263 mqc_print_matrix_algebra1, 264 mqc_print_scalar_algebra1, 264 mqc_print_scalar_algebra1, 265 mqc_algebra::mqc_r4tensor, 269 at, 270 mqc_scalarcomplex mqc_print_scalar_algebra1, 265 mqc_scalarcomplex mqc_realscalarmultiply, 294 mqc_realscalarcomplexmultiply, 296	print, 254	print, 283
set, 254 sqrt, 255 svd, 255 svd, 255 trace, 255 transpose, 255 vat, 255 vput, 255 mqc_algebra::mqc_matrix_diagmatrix_put, 256 mqc_matrix_diagmatrix_put_integer, 257 mqc_algebra::mqc_matrix_put_integer, 257 mqc_algebra::mqc_matrix_put_ecal, 258 mqc_algebra::mqc_matrix_symmmatrix_put, 259 mqc_matrix_symmmatrix_put_econplex, 260 mqc_matrix_symmmatrix_put_econplex, 260 mqc_matrix_symmmatrix_put_econplex, 260 mqc_matrix_symmmatrix_put_elal, 261 mqc_algebra::mqc_print, 263 mqc_print_matrix_algebra1, 264 mqc_print_scalar_algebra1, 264 mqc_algebra::mqc_r4tensor, 269 at, 270 shift, 284 size, 284 sort, 284 sqrt, 285 sqrt, 284 sqr, 284 sqr, 284 sqr, 285 vut, 285 vput, 285 vqt, 285 vput, 285 vput, 285 vput, 285 pqc_algebra::operator(**), 303 mqc_algebra::operator(**), 303 mqc_algebra::operator(**), 303 mqc_algebra::operator(**), 303 mqc_algebra::operator(**), 303 mqc_algebra::operator(**), 303 mqc_algebra::operator(**), 289 mqc_scalaromplexextorenti, 304 mqc_scalaromplexextorenti, 304 mqc_scalaromplexextorenti,	put, 254	push, 284
sqrt, 255 svd, 255 trace, 255 transpose, 255 vat, 255 vput, 255 vput, 255 mqc_algebra::mqc_matrix_diagmatrix_put_complex, 256 mqc_matrix_diagmatrix_put_real, 258 mqc_algebra::mqc_matrix_put_ecomplex, 259 mqc_algebra::mqc_matrix_put_ocomplex, 259 mqc_algebra::mqc_matrix_put_integer, 257 mqc_algebra::mqc_matrix_put_ecomplex, 260 mqc_matrix_symmmatrix_put_complex, 260 mqc_matrix_symmmatrix_put_ecomplex, 260 mqc_matrix_symmmatrix_put_real, 261 mqc_algebra::mqc_print, 263 mqc_print_matrix_algebra1, 264 mqc_print_scalar_algebra1, 264 mqc_algebra::mqc_r4tensor, 269 at, 270 size, 284 sort, 284 sort, 284 sqrt, 285 sqrt, 284 sqrt, 284 sqrt, 284 sqrt, 285 sqrt, 286 sqrt, 285 sqrt, 285 sqrt, 285 sqrt, 285 sqrt, 285 sqrt, 285 sq	rmsmax, 254	put, 284
svd, 255 trace, 255 trace, 255 transpose, 255 vat, 255 vput, 255 mqc_algebra::mqc_matrix_diagmatrix_put, 256 mqc_matrix_diagmatrix_put_integer, 257 mqc_algebra::mqc_matrix_guamtrix_put_vector, 258 mqc_algebra::mqc_matrix_symmmatrix_put_complex, 250 mqc_algebra::mqc_matrix_symmmatrix_put, 259 mqc_algebra::mqc_matrix_symmmatrix_put_complex, 260 mqc_matrix_symmmatrix_put_complex, 260 mqc_matrix_symmmatrix_put_complex, 260 mqc_matrix_symmmatrix_put_integer, 260 mqc_matrix_symmmatrix_put_real, 261 mqc_algebra::mqc_print, 263 mqc_print_matrix_algebra1, 263 mqc_print_r4tensor_algebra1, 264 mqc_print_vector_algebra1, 265 mqc_algebra::mqc_r4tensor, 269 at, 270 sort, 284 sqrt, 284 transpose, 285 unshift, 285 vput, 285 mqc_algebra::operator(**), 303 mqc_algebra::operator(**), 303 mqc_scalarcomplexexponent, 303 mqc_scalarrealexponent, 304 mqc_algebra::operator(**), 289 mqc_algebra::operator(**), 289 mqc_complexscalarmultiply, 291 mqc_complexvectorproduct, 291 mqc_complexvectorproduct, 291 mqc_integervectorproduct, 293 mqc_matrixxatrixproduct, 293 mqc_matrixscalarproduct, 293 mqc_realscalarmultiply, 294 mqc_realvectorproduct, 295 at, 270 mqc_scalarcomplexmultiply, 296	set, 254	shift, 284
trace, 255 transpose, 255 vat, 255 vput, 255 mqc_algebra::mqc_matrix_diagmatrix_put, 256 mqc_matrix_diagmatrix_put_complex, 256 mqc_matrix_diagmatrix_put_integer, 257 mqc_matrix_diagmatrix_put_real, 258 mqc_matrix_diagmatrix_put_vector, 258 mqc_algebra::mqc_matrix_symmmatrix_put, 259 mqc_matrix_symmmatrix_put_complex, 260 mqc_matrix_symmmatrix_put_integer, 260 mqc_matrix_symmmatrix_put_real, 261 mqc_algebra::mqc_print, 263 mqc_print_matrix_algebra1, 264 mqc_print_scalar_algebra1, 264 mqc_algebra::mqc_r4tensor, 269 at, 270 mqc_scalarcomplexexponent, 303 mqc_scalarcomplexexponent, 305 mqc_scalarrealexponent, 306 mqc_scalarrealexponent, 306 mqc_scalarrealexponent, 306 mqc_algebra::operator(*), 289 mqc_complexscalarmultiply, 291 mqc_complexectorproduct, 291 mqc_integerscalarmultiply, 292 mqc_print_r4tensor_algebra1, 264 mqc_print_vector_algebra1, 265 mqc_realscalarmultiply, 294 mqc_scalarcomplexmultiply, 296 mqc_scalarcomplexmultiply, 296	• *	
transpose, 255 vat, 255 vput, 255 vput, 255 mqc_algebra::mqc_matrix_diagmatrix_put, 256 mqc_matrix_diagmatrix_put_complex, 256 mqc_matrix_diagmatrix_put_integer, 257 mqc_matrix_diagmatrix_put_real, 258 mqc_matrix_diagmatrix_put_vector, 258 mqc_algebra::mqc_matrix_symmmatrix_put, 259 mqc_matrix_symmmatrix_put_complex, 260 mqc_matrix_symmmatrix_put_integer, 260 mqc_matrix_symmmatrix_put_real, 261 mqc_algebra::mqc_print, 263 mqc_print_matrix_algebra1, 264 mqc_print_vector_algebra1, 265 mqc_algebra::mqc_r4tensor, 269 at, 270 transpose, 285 unshift, 285 vput, 285 vput, 285 mqc_algebra::operator(**), 303 mqc_scalarcomplexexponent, 303 mqc_scalarrealexponent, 304 mqc_scalarrealexponent, 305 mqc_scalarrealexponent, 306 mqc_algebra::operator(*), 289 mqc_algebra::operator(*), 289 mqc_complexscalarmultiply, 291 mqc_algebra::mqc_print_c63 mqc_integerscalarmultiply, 292 mqc_matrixscalarpoduct, 293 mqc_matrixscalarpoduct, 293 mqc_realvectorproduct, 294 mqc_realvectorproduct, 295 mqc_scalarcomplexmultiply, 296	svd, 255	sort, 284
vat, 255 vput, 255 vput, 255 mqc_algebra::mqc_matrix_diagmatrix_put, 256 mqc_matrix_diagmatrix_put_complex, 256 mqc_matrix_diagmatrix_put_integer, 257 mqc_matrix_diagmatrix_put_real, 258 mqc_matrix_diagmatrix_put_vector, 258 mqc_algebra::mqc_matrix_symmatrix_put_complex, 260 mqc_matrix_symmmatrix_put_integer, 260 mqc_matrix_symmmatrix_put_integer, 260 mqc_matrix_symmmatrix_put_real, 261 mqc_algebra::mqc_print, 263 mqc_print_matrix_algebra1, 264 mqc_print_vector_algebra1, 265 mqc_algebra::mqc_r4tensor, 269 at, 270 unshift, 285 vat, 285 vput, 285 mqc_algebra::operator(**), 303 mqc_algebra::operator(**), 303 mqc_scalarcomplexexponent, 304 mqc_scalarexponent, 305 mqc_scalarrealexponent, 304 mqc_scalarrealexponent, 305 mqc_scalarrealexponent, 304 mqc_scalarrealexponent, 305 mqc_scalarrealexponent, 304 mqc_scalarrealexponent, 305 mqc_scalarrealexponent, 305 mqc_scalarrealexponent, 305 mqc_scalarrealexponent, 305 mqc_scalarrealexponent, 304 mqc_scalarrealexponent, 305 mqc_scalarrealexponent, 306 mqc_s		sqrt, 284
vput, 255 mqc_algebra::mqc_matrix_diagmatrix_put, 256 mqc_matrix_diagmatrix_put_complex, 256 mqc_matrix_diagmatrix_put_integer, 257 mqc_matrix_diagmatrix_put_real, 258 mqc_matrix_diagmatrix_put_vector, 258 mqc_algebra::mqc_matrix_symmmatrix_put, 259 mqc_matrix_symmmatrix_put_complex, 260 mqc_matrix_symmmatrix_put_integer, 260 mqc_matrix_symmmatrix_put_real, 261 mqc_algebra::mqc_print, 263 mqc_print_matrix_algebra1, 264 mqc_print_scalar_algebra1, 264 mqc_algebra::mqc_r4tensor, 269 at, 270 vat, 285 vput, 285 mqc_algebra::operator(**), 303 mqc_scalarcomplexexponent, 304 mqc_scalarrealexponent, 305 mqc_scalarrealexponent, 306 mqc_algebra::operator(*), 289 mqc_scalarrealexponent, 305 mqc_scalarrealexponent, 306 mqc_scalarrealexponent, 306 mqc_scalarrealexponent, 306 mqc_scalarrealexponent, 306 mqc_algebra::operator(*), 289 mqc_algebra:	transpose, 255	•
mqc_algebra::mqc_matrix_diagmatrix_put, 256 mqc_matrix_diagmatrix_put_complex, 256 mqc_matrix_diagmatrix_put_integer, 257 mqc_matrix_diagmatrix_put_real, 258 mqc_matrix_diagmatrix_put_real, 258 mqc_matrix_diagmatrix_put_vector, 258 mqc_algebra::mqc_matrix_symmmatrix_put, 259 mqc_matrix_symmmatrix_put_complex, 260 mqc_matrix_symmmatrix_put_complex, 260 mqc_matrix_symmmatrix_put_integer, 260 mqc_matrix_symmmatrix_put_real, 261 mqc_algebra::mqc_print, 263 mqc_print_matrix_algebra1, 263 mqc_print_r4tensor_algebra1, 264 mqc_print_vector_algebra1, 264 mqc_print_vector_algebra1, 265 mqc_algebra::mqc_r4tensor, 269 at, 270 mqc_scalarcomplexexponent, 303 mqc_scalarrealexponent, 305 mqc_scalarrealexponent, 306 mqc_scalarrealexponent, 306 mqc_scalarrealexponent, 306 mqc_scalarrealexponent, 306 mqc_scalarrealexponent, 305 mqc_scalarrealexponent, 306 mqc_scalarrealexponent, 305 mqc_scalarrealexponent, 306 mqc_scalarrealexponent, 305 mqc_scalarrealexponent, 306 mqc_scalarrealexponent, 306 mqc_algebra::operator(*), 289 mq		unshift, 285
mqc_matrix_diagmatrix_put_complex, 256 mqc_matrix_diagmatrix_put_integer, 257 mqc_matrix_diagmatrix_put_real, 258 mqc_matrix_diagmatrix_put_vector, 258 mqc_algebra::mqc_matrix_symmmatrix_put_complex, 260 mqc_matrix_symmmatrix_put_integer, 260 mqc_matrix_symmmatrix_put_real, 261 mqc_algebra::mqc_print, 263 mqc_print_matrix_algebra1, 264 mqc_print_vector_algebra1, 265 mqc_algebra::mqc_r4tensor, 269 at, 270 mqc_scalarcomplexexponent, 303 mqc_scalarrealexponent, 306 mqc_scalarrealexponent, 306 mqc_scalarrealexponent, 306 mqc_scalarrealexponent, 306 mqc_algebra::operator(*), 289 mqc_scalarrealexponent, 306 mqc_algebra::operator(*), 289 mqc_scalarrealexponent, 306 mqc_algebra::operator(*), 289 mqc_scalarrealexponent, 306 mqc_algebra::operator(*), 289 mqc_scalarrealexponent, 306 mqc_scalarrealexponent, 306 mqc_scalarrealexponent, 305 mqc_scalarrealexponent, 306 mqc_scalarrealexponent, 306 mqc_scalarrealexponent, 306 mqc_scalarrealexponent, 306 mqc_scalarrealexponent, 306 mqc_scalarrealexponent, 306 mqc_scalarrealexponent, 305 mqc_scalarrealexponent, 306 mqc	•	
mqc_matrix_diagmatrix_put_integer, 257 mqc_matrix_diagmatrix_put_real, 258 mqc_matrix_diagmatrix_put_vector, 258 mqc_algebra::mqc_matrix_symmmatrix_put_complex, 260 mqc_matrix_symmmatrix_put_integer, 260 mqc_matrix_symmmatrix_put_real, 261 mqc_matrix_symmmatrix_put_real, 261 mqc_algebra::mqc_print, 263 mqc_print_matrix_algebra1, 264 mqc_print_scalar_algebra1, 264 mqc_print_vector_algebra1, 265 mqc_algebra::mqc_r4tensor, 269 at, 270 mqc_scalarcomplexexponent, 303 mqc_scalarexponent, 304 mqc_scalarexponent, 305 mqc_scalarrealexponent, 306 mqc_scalarrealexponent, 305 mqc_scalarrealexponent, 305 mqc_scalarrealexponent, 306 mqc_scalarrealexponent, 305 mqc_scalarrealexponent, 305 mqc_scalarrealexponent, 306 mqc_scalarrealexponent, 306 mqc_scalarrealexponent, 305 mqc_scalarrealexponent, 305 mqc_scalarrealexponent, 306 mqc_scalarrealexponent, 305 mqc_scalarrealexponent, 305 mqc_scalarrealexponent, 306 mqc_scalarrealexpon	· = ·	•
mqc_matrix_diagmatrix_put_real, 258 mqc_matrix_diagmatrix_put_vector, 258 mqc_algebra::mqc_matrix_symmmatrix_put, 259 mqc_matrix_symmmatrix_put_complex, 260 mqc_matrix_symmmatrix_put_integer, 260 mqc_matrix_symmmatrix_put_real, 261 mqc_matrix_symmmatrix_put_real, 261 mqc_algebra::mqc_print, 263 mqc_print_matrix_algebra1, 263 mqc_print_r4tensor_algebra1, 264 mqc_print_vector_algebra1, 265 mqc_algebra::mqc_r4tensor, 269 at, 270 mqc_scalarexponent, 304 mqc_scalarrealexponent, 305 mqc_scalarrealexponent, 306 mqc_scalarrealexponent, 305 mqc_scalarrealexponent, 306 mqc_scalarrealexponent,		•
mqc_matrix_diagmatrix_put_vector, 258 mqc_algebra::mqc_matrix_symmmatrix_put, 259 mqc_matrix_symmmatrix_put_complex, 260 mqc_matrix_symmmatrix_put_integer, 260 mqc_matrix_symmmatrix_put_real, 261 mqc_algebra::mqc_print, 263 mqc_print_matrix_algebra1, 263 mqc_print_r4tensor_algebra1, 264 mqc_print_vector_algebra1, 265 mqc_algebra::mqc_r4tensor, 269 at, 270 mqc_scalarintegerexponent, 305 mqc_scalarrealexponent, 306 mqc_scalarrealexponent, 306 mqc_scalarrealexponent, 306 mqc_scalarrealexponent, 306 mqc_algebra::operator(*), 289 mqc_complexscalarmultiply, 291 mqc_complexvectorproduct, 291 mqc_integerscalarmultiply, 292 mqc_integervectorproduct, 293 mqc_matrixmatrixproduct, 293 mqc_matrixscalarproduct, 294 mqc_realscalarmultiply, 294 mqc_realvectorproduct, 295 mqc_scalarintegerexponent, 305 mqc_scalarintegerexponent, 306 mqc_scalarrealexponent, 306 mqc_scalarreal		. —
mqc_algebra::mqc_matrix_symmmatrix_put, 259 mqc_matrix_symmmatrix_put_complex, 260 mqc_matrix_symmmatrix_put_integer, 260 mqc_matrix_symmmatrix_put_integer, 260 mqc_matrix_symmmatrix_put_real, 261 mqc_algebra::mqc_print, 263 mqc_print_matrix_algebra1, 263 mqc_print_r4tensor_algebra1, 264 mqc_print_scalar_algebra1, 264 mqc_print_vector_algebra1, 265 mqc_realscalarmultiply, 294 mqc_algebra::mqc_r4tensor, 269 at, 270 mqc_scalarrealexponent, 306 mqc_scalarrealexponent, 306 mqc_algebra::operator(*), 289 mqc_complexscalarmultiply, 291 mqc_complexscalarmultiply, 292 mqc_integerscalarmultiply, 292 mqc_integerscalarmultiply, 293 mqc_matrixscalarproduct, 293 mqc_matrixscalarproduct, 294 mqc_realscalarmultiply, 294 mqc_realscalarmultiply, 294 mqc_scalarcomplexmultiply, 296		
mqc_matrix_symmmatrix_put_complex, 260 mqc_matrix_symmmatrix_put_integer, 260 mqc_matrix_symmmatrix_put_real, 261 mqc_algebra::mqc_print, 263 mqc_print_matrix_algebra1, 264 mqc_print_scalar_algebra1, 264 mqc_print_vector_algebra1, 265 mqc_print_vector_algebra1, 265 at, 270 mqc_matrix_symmmatrix_put_real, 261 mqc_complexvectorproduct, 291 mqc_complexvectorproduct, 291 mqc_complexvectorproduct, 291 mqc_integerscalarmultiply, 292 mqc_integervectorproduct, 293 mqc_matrixmatrixproduct, 293 mqc_matrixscalarproduct, 294 mqc_realscalarmultiply, 294 mqc_realvectorproduct, 295 mqc_scalarcomplexmultiply, 296		
mqc_matrix_symmmatrix_put_integer, 260 mqc_matrix_symmmatrix_put_real, 261 mqc_algebra::mqc_print, 263 mqc_print_matrix_algebra1, 263 mqc_print_r4tensor_algebra1, 264 mqc_print_scalar_algebra1, 265 mqc_print_vector_algebra1, 265 mqc_print_vector_algebra1, 265 mqc_print_vector_algebra1, 265 mqc_print_vector_algebra1, 265 mqc_print_vector_algebra1, 265 mqc_realscalarmultiply, 294 mqc_algebra::mqc_r4tensor, 269 at, 270 mqc_scalarcomplexmultiply, 296		
mqc_matrix_symmmatrix_put_real, 261 mqc_algebra::mqc_print, 263 mqc_print_matrix_algebra1, 263 mqc_print_r4tensor_algebra1, 264 mqc_print_scalar_algebra1, 264 mqc_print_vector_algebra1, 265 mqc_print_vector_algebra1, 265 mqc_algebra::mqc_r4tensor, 269 at, 270 mqc_scalarcomplexmultiply, 296 mqc_scalarcomplexmultiply, 296 mqc_scalarcomplexmultiply, 296		•
mqc_algebra::mqc_print, 263 mqc_integerscalarmultiply, 292 mqc_print_matrix_algebra1, 263 mqc_print_r4tensor_algebra1, 264 mqc_print_scalar_algebra1, 264 mqc_print_vector_algebra1, 265 mqc_print_vector_algebra1, 265 mqc_realscalarmultiply, 294 mqc_algebra::mqc_r4tensor, 269 at, 270 mqc_scalarcomplexmultiply, 296		
mqc_print_matrix_algebra1, 263 mqc_print_r4tensor_algebra1, 264 mqc_print_scalar_algebra1, 264 mqc_print_scalar_algebra1, 264 mqc_print_vector_algebra1, 265 mqc_realscalarmultiply, 294 mqc_algebra::mqc_r4tensor, 269 at, 270 mqc_scalarcomplexmultiply, 296 mqc_scalarcomplexmultiply, 296		. —
mqc_print_r4tensor_algebra1, 264 mqc_matrixmatrixproduct, 293 mqc_print_scalar_algebra1, 264 mqc_matrixscalarproduct, 294 mqc_print_vector_algebra1, 265 mqc_realscalarmultiply, 294 mqc_algebra::mqc_r4tensor, 269 mqc_realvectorproduct, 295 at, 270 mqc_scalarcomplexmultiply, 296		
mqc_print_scalar_algebra1, 264 mqc_matrixscalarproduct, 294 mqc_print_vector_algebra1, 265 mqc_realscalarmultiply, 294 mqc_algebra::mqc_r4tensor, 269 mqc_realvectorproduct, 295 at, 270 mqc_scalarcomplexmultiply, 296		· — · · · · · · · · · · · · · · · · · ·
mqc_print_vector_algebra1, 265 mqc_realscalarmultiply, 294 mqc_algebra::mqc_r4tensor, 269 mqc_realvectorproduct, 295 at, 270 mqc_scalarcomplexmultiply, 296		
mqc_algebra::mqc_r4tensor, 269 mqc_realvectorproduct, 295 at, 270 mqc_scalarcomplexmultiply, 296		
at, 270 mqc_scalarcomplexmultiply, 296		
\cdot	• - •	• - •
ınıt, 2/0 mqc_scalarintegermultiply, 296		
	init, 2/0	mqc_scalarintegermultiply, 296

mqc_scalarmatrixproduct, 297	mqc_scalarleinteger, 338
mqc_scalarmultiply, 297	mqc_scalarlereal, 339
mqc_scalarrealmultiply, 298	mqc_algebra::operator(.lt.), 340
mqc_scalarvectorproduct, 299	mqc_realltscalar, 340
mqc_vectorcomplexproduct, 299	mqc_scalarlt, 341
mqc_vectorintegerproduct, 300	mgc scalarltreal, 341
mqc_vectorrealproduct, 301	mqc_algebra::operator(.ne.), 342
mqc_vectorscalarproduct, 301	mqc_scalarne, 343
mqc_algebra::operator(+), 306	mqc_algebra::operator(.outer.), 344
mqc_complexscalaradd, 307	mqc_outer, 344
mqc_integerscalaradd, 308	mqc_algebra::operator(.x.), 345
mgc matrixmatrixsum, 309	mqc_crossproduct, 345
mqc_realscalaradd, 309	mqc_algebra::operator(/), 346
mqc_scalaradd, 310	mqc_complexscalardivide, 347
mqc_scalarcomplexadd, 311	mqc_integerscalardivide, 347
mqc_scalarintegeradd, 311	mqc_realscalardivide, 348
mqc_scalarrealadd, 312	mqc_scalarcomplexdivide, 349
mqc_scalarvectorsum, 313	mqc_scalardivide, 349
mgc vectorvectorsum, 313	mqc_scalarintegerdivide, 350
mqc algebra::operator(-), 315	mqc_scalarrealdivide, 351
mqc_complexscalarsubtract, 316	mqc_vectorcomplexdivide, 352
mqc_integerscalarsubtract, 316	mqc_vectorintegerdivide, 352
mqc_matrixmatrixsubtract, 317	mqc_vectorrealdivide, 353
mqc_realscalarsubtract, 318	mgc vectorscalardivide, 354
mqc_scalarcomplexsubtract, 318	mqc_algebra::real, 354
mqc_scalarintegersubtract, 319	mqc_scalar_complex_realpart, 355
mqc_scalarrealsubtract, 320	mqc_vector_complex_realpart, 355
mqc_scalarsubtract, 320	mqc_algebra::sin, 356
mqc_scalarvectordifference, 321	mqc_scalar_sin, 357
mqc_vectorvectordifference, 322	mqc_algebra::sqrt, 357
mqc_algebra::operator(.dot.), 323	mqc_scalar_sqrt, 358
mqc_matrixmatrixdotproduct, 323	mqc_algebra::tan, 358
mqc_matrixvectordotproduct, 323	mqc_scalar_tan, 359
mgc_vectormatrixdotproduct, 324	mqc_algebra::transpose, 360
mqc_vectorMatrixdotproduct, 324	mqc_matrix_transpose, 360
mqc_algebra::operator(.eq.), 325	mqc_vector_transpose, 361
mqc_scalareq, 325	mgc allocate matrix
	. — —
mqc_algebra::operator(.ewd.), 326 mqc_elementmatrixdivide, 326	mqc_algebra, 28 mqc_allocate_r4tensor
mqc_algebra::operator(.ewp.), 327	mqc_algebra, 29
mqc_elementmatrixproduct, 327	
mqc_elementvectorproduct, 328	mqc_allocate_scalar mqc_algebra, 29
• —	• — •
mqc_algebra::operator(.ge.), 329	mqc_allocate_vector
mqc_scalarge, 329	mqc_algebra, 30
mqc_algebra::operator(.gt.), 330	mqc_build_ci_hamiltonian
mqc_integergtscalar, 331	mqc_est, 184
mqc_realgtscalar, 332	mqc_complexscalaradd
mqc_scalargt, 332	mqc_algebra, 31
mqc_scalargtinteger, 333	mqc_algebra::operator(+), 307
mqc_scalargtreal, 334	mqc_complexscalardivide
mqc_algebra::operator(.le.), 335	mqc_algebra, 32
mqc_integerlescalar, 336	mqc_algebra::operator(/), 347
mqc_reallescalar, 336	mqc_complexscalarmultiply
mqc_scalarle, 337	mqc_algebra, 33

mqc_algebra::operator(*), 291	mqc_algebra, 38
mqc_complexscalarsubtract	mqc_algebra::operator(.ewp.), 327
mqc_algebra, 33	mqc_elementvectorproduct
mqc_algebra::operator(-), 316	mqc_algebra, 39
mqc_complexvectorproduct	mqc_algebra::operator(.ewp.), 328
mqc_algebra, 34	mqc_eri_integral_contraction
mqc_algebra::operator(*), 291	mqc_est, 187
mqc_crossproduct	mqc_est::contraction, 228
mqc_algebra, 35	mqc_est, 181
mqc_algebra::operator(.x.), 345	gen_det_str, 183
mqc_deallocate_matrix	get_one_gamma_matrix, 184
mqc_algebra, 35	mqc_build_ci_hamiltonian, 184
mqc_deallocate_r4tensor	mqc_eigenvalue_eigenvalue_dotproduct, 184
mqc_algebra, 36	mqc_eigenvalues_add_name, 184
mqc_deallocate_scalar	mqc_eigenvalues_allocate, 185
mqc_algebra, 36	mqc_eigenvalues_array_name, 185
mqc_deallocate_vector	mqc_eigenvalues_array_type, 185
mqc_algebra, 37	mqc_eigenvalues_at, 185
mqc_eigenvalue_eigenvalue_dotproduct	mqc_eigenvalues_dimension, 185
mqc_est, 184	mqc_eigenvalues_eigenvalues_multiply, 186
mqc_est::dot_product, 233	mqc_eigenvalues_has_alpha, 186
mqc_eigenvalues_add_name	mqc_eigenvalues_has_beta, 186
mqc_est, 184	mqc_eigenvalues_integral_multiply, 186
mqc_eigenvalues_allocate	mqc_eigenvalues_isallocated, 186
mqc_est, 185	mqc_eigenvalues_output_array, 186
mqc_eigenvalues_array_name	mqc_eigenvalues_output_block, 187
mqc_est, 185	mqc_eri_integral_contraction, 187
mqc_eigenvalues_array_type	mqc_integral_add_name, 187
mqc_est, 185	mqc_integral_allocate, 187
mqc_eigenvalues_at	mqc_integral_array_name, 187
mqc_est, 185	mqc_integral_array_type, 188
mqc_eigenvalues_dimension	mqc_integral_at, 188
mqc_est, 185	mqc_integral_conjugate_transpose, 188
mqc_eigenvalues_eigenvalues_multiply	mqc_integral_delete_energy_list, 188
mqc_est, 186	mgc integral difference, 188
mqc_est::matmul, 234	mqc_integral_dimension, 188
mqc_eigenvalues_has_alpha	mqc_integral_eigenvalues_multiply, 189
mgc est, 186	mqc_integral_get_energy_list, 189
mqc_eigenvalues_has_beta	mqc_integral_has_alpha, 189
mqc_est, 186	mqc_integral_has_alphabeta, 189
mqc_eigenvalues_integral_multiply	mqc_integral_has_beta, 189
mqc_est, 186	mqc_integral_has_betaalpha, 189
mgc est::matmul, 235	mqc_integral_identity, 190
mqc_eigenvalues_isallocated	mqc_integral_initialize, 190
mgc est, 186	mqc_integral_integral_multiply, 190
mqc_eigenvalues_output_array	mqc_integral_isallocated, 190
mqc_est, 186	mqc_integral_matrix_multiply, 190
mqc_est::assignment(=), 222	mgc integral norm, 191
mqc_eigenvalues_output_block	mqc_integral_output_array, 191
mqc_est, 187	mqc_integral_output_block, 191
mqc_elementmatrixdivide	mqc_integral_output_orbitals, 191
mqc_algebra, 37	mqc_integral_scalar_multiply, 191
mqc_algebra::operator(.ewd.), 326	mqc_integral_set_energy_list, 192
mqc_elementmatrixproduct	mqc_integral_sum, 192
· — · · · · · · · · · · · · · · · · · ·	· — • • · · · · · · · · · · · · · · · ·

mqc_integral_swap_orbitals, 192	mqc_print_integral, 267
mqc_integral_transpose, 192	mqc_print_twoeris, 267
mqc_matrix_integral_multiply, 192	mqc_print_wavefunction, 268
mqc_matrix_spinblockghf, 193	mqc_est::mqc_pscf_wavefunction, 268
mqc_matrix_undospinblockghf_eigenvalues, 193	nactive, 268
mqc_matrix_undospinblockghf_integral, 193	ncore, 269
mqc_print_eigenvalues, 193	nfrz, 269
mqc_print_integral, 193	nval, <mark>269</mark>
mqc_print_twoeris, 194	pscf_amplitudes, 269
mqc_print_wavefunction, 194	pscf_energies, 269
mqc_scalar_integral_multiply, 194	mqc_est::mqc_scf_eigenvalues, 273
mqc_scf_eigenvalues_power, 194	addlabel, 273
mqc_scf_integral_contraction, 194	at, 273
mqc_scf_integral_determinant, 195	getblock, 273
mqc_scf_integral_diagonalize, 195	getlabel, 273
mqc_scf_integral_generalized_eigensystem, 195	power, 273
mqc_scf_integral_inverse, 195	print, 273
mqc_scf_integral_trace, 195	mqc_est::mqc_scf_integral, 274
mqc_scf_transformation_matrix, 195	addlabel, 274
mqc_twoeris_allocate, 196	deleteelist, 274
mqc_twoeris_at, 196	det, 274
slater_condon, 196	diag, 275
twoeri_trans, 196	eigensys, 275
mqc_est::assignment(=), 221	getblock, 275
mqc_eigenvalues_output_array, 222	getelist, 275
mqc_integral_output_array, 222	getlabel, 275
mqc_est::contraction, 228	identity, 275
mqc_eri_integral_contraction, 228	init, 275
mqc_scf_integral_contraction, 228	inv, 276
mqc_est::dagger, 231	norm, 276
mqc_integral_conjugate_transpose, 231	orbitals, 276
mqc_est::dot_product, 233	print, 276
mqc_eigenvalue_eigenvalue_dotproduct, 233	setelist, 276
mqc_est::matmul, 234	swap, 276
mqc_eigenvalues_eigenvalues_multiply, 234	trace, 276
mqc_eigenvalues_integral_multiply, 235	mqc_est::mqc_twoeris, 280
mqc_integral_eigenvalues_multiply, 235	print, 280
mqc_integral_integral_multiply, 235	mqc_est::mqc_wavefunction, 286
mqc_integral_matrix_multiply, 235	basis, 287
mqc_matrix_integral_multiply, 235	charge, 287
mqc_est::mqc_determinant, 244	core_hamiltonian, 287
nalpstr, 244	density_matrix, 287
nbetstr, 244	fock_matrix, 287
ndets, 244	mo_coefficients, 287
order, 245	mo_energies, 287
strings, 245	mo_symmetries, 288
mqc_est::mqc_determinant_string, 245	multiplicity, 288
alpha, 245	nalpha, 288
beta, 245	nbasis, 288
mqc_est::mqc_matrix_undospinblockghf, 262	nbeta, 288
mqc_matrix_undospinblockghf_eigenvalues, 262	nelectrons, 288
mqc_matrix_undospinblockghf_integral, 262	overlap_matrix, 288
mqc_est::mqc_print, 267	print, 286
mqc_print_eigenvalues, 267	scf_density_matrix, 289
	•

symmetry, 289	mqc_integral_conjugate_transpose
wf_complex, 289	mqc_est, 188
wf_type, 289	mqc_est::dagger, 231
mqc_est::operator(*), 302	mqc_integral_delete_energy_list
mqc_integral_scalar_multiply, 302	mqc_est, 188
mqc_scalar_integral_multiply, 303	mqc_integral_difference
mqc_est::operator(+), 314	mqc_est, 188
mqc_integral_sum, 314	mqc_est::operator(-), 315
mqc_est::operator(-), 315	mqc_integral_dimension
mqc_integral_difference, 315	mqc_est, 188
mqc_est::transpose, 360	mqc_integral_eigenvalues_multiply
mqc_integral_transpose, 360	mqc_est, 189
mqc_givens_matrix	mqc_est::matmul, 235
mqc_algebra, 40	mqc_integral_get_energy_list
mqc_input_complex_scalar	mqc_est, 189
mqc_algebra, 40	mqc_integral_has_alpha
mqc_algebra::assignment(=), 206	mqc_est, 189
mqc_input_integer_scalar	mqc_integral_has_alphabeta
mqc_algebra, 41	mqc_est, 189
mqc_algebra::assignment(=), 207	mqc_integral_has_beta
mqc_input_real_scalar	mqc_est, 189
mqc_algebra, 41	mqc_integral_has_betaalpha
mqc_algebra::assignment(=), 207	mqc_est, 189
mqc_integergtscalar	mqc_integral_identity
mqc_algebra, 42	mqc_est, 190
mqc_algebra::operator(.gt.), 331	mqc_integral_initialize
mqc_integerlescalar	mqc_est, 190
mqc_algebra, 43	mqc_integral_integral_multiply
mqc_algebra::operator(.le.), 336	mqc_est, 190
mqc_integerscalaradd	mqc_est::matmul, 235
. — •	mqc_integral_isallocated
mqc_algebra; 43	
mqc_algebra::operator(+), 308	mqc_est, 190
mqc_integerscalardivide	mqc_integral_matrix_multiply
mqc_algebra, 44	mqc_est, 190
mqc_algebra::operator(/), 347	mqc_est::matmul, 235
mqc_integerscalarmultiply	mqc_integral_norm
mqc_algebra, 45	mqc_est, 191
mqc_algebra::operator(*), 292	mqc_integral_output_array
mqc_integerscalarsubtract	mqc_est, 191
mqc_algebra, 46	mqc_est::assignment(=), 222
mqc_algebra::operator(-), 316	mqc_integral_output_block
mqc_integervectorproduct	mqc_est, 191
mqc_algebra, 46	mqc_integral_output_orbitals
mqc_algebra::operator(*), 293	mqc_est, 191
mqc_integral_add_name	mqc_integral_scalar_multiply
mqc_est, 187	mqc_est, 191
mqc_integral_allocate	mqc_est::operator(*), 302
mqc_est, 187	mqc_integral_set_energy_list
mqc_integral_array_name	mqc_est, 192
mqc_est, 187	mqc_integral_sum
mqc_integral_array_type	mqc_est, 192
mqc_est, 188	mqc_est::operator(+), 314
mqc_integral_at	mqc_integral_swap_orbitals
mqc_est, 188	mqc_est, 192

mqc_integral_transpose	mqc_algebra, 60
mqc_est, 192	mqc_matrix_generalized_eigensystem
mqc_est::transpose, 360	mqc_algebra, 60
mqc_length_vector	mqc_matrix_havecomplex
mqc_algebra, 47	mqc_algebra, 61
mqc_matrix_cast_complex	mqc_algebra::mqc_have_complex, 246
mqc_algebra, 47	mqc_matrix_havediagonal
mqc_algebra::mqc_cast_complex, 239	mqc_algebra, 61
mqc_matrix_cast_integer	mqc_matrix_havefull
mqc_algebra, 48	mqc_algebra, 62
mqc_algebra::mqc_cast_integer, 241	mqc_matrix_haveinteger
mqc_matrix_cast_real	mqc_algebra, 62
mqc_algebra, 49	mqc_algebra::mqc_have_int, 248
mqc_algebra::mqc_cast_real, 243	mqc_matrix_havereal
mqc_matrix_columns	mqc_algebra, 63
mqc_algebra, 49	mqc_algebra::mqc_have_real, 250
mqc_matrix_conjugate_transpose	mqc_matrix_havesymmetric
mqc_algebra, 50	mqc_algebra, 64
mqc_algebra::dagger, 230	mqc_matrix_identity
mqc_matrix_copy_complex2int	mqc_algebra, 64
mqc_algebra, 50	mqc_matrix_initialize
mqc_matrix_copy_complex2real	mqc_algebra, 64
mqc_algebra, 51	mqc_matrix_integral_multiply
mqc_matrix_copy_int2complex	mgc est, 192
mqc_algebra, 52	mqc_est::matmul, 235
mqc_matrix_copy_int2real	mqc_matrix_inverse
mqc_algebra, 52	mqc_algebra, 65
mqc_matrix_copy_real2complex	mqc_matrix_isallocated
mqc_algebra, 53	mqc_algebra, 65
mqc_matrix_copy_real2int	mqc_matrix_matrix_at
mqc_algebra, 53	mqc_algebra, 65
mqc_matrix_determinant	mqc_matrix_matrix_contraction
mqc_algebra, 54	mqc_algebra, 66
mqc_matrix_diag2full	mqc_algebra::contraction, 227
mqc_algebra, 54	mqc_matrix_matrix_put
mqc_matrix_diag2symm	mqc_algebra, 66
mqc_algebra, 55	mqc_matrix_norm
mqc_matrix_diagmatrix_put_complex	mqc_algebra, 68
mqc_algebra, 55	mqc_matrix_rms_max
mqc_algebra::mqc_matrix_diagmatrix_put, 256	mqc_algebra, 68
mqc_matrix_diagmatrix_put_integer	mqc_matrix_rows
mqc_algebra, 56	mqc_algebra, 68
mqc_algebra::mqc_matrix_diagmatrix_put, 257	mqc_matrix_scalar_at
mqc_matrix_diagmatrix_put_real	mqc_algebra, 69
mqc_algebra, 57	mqc_matrix_scalar_put
mqc_algebra::mqc_matrix_diagmatrix_put, 258	mqc_algebra, 69
mgc matrix diagmatrix put vector	mqc_matrix_set
mqc_algebra, 58	mqc_algebra, 70
mqc_algebra::mqc_matrix_diagmatrix_put, 258	mqc_matrix_spinblockghf
mqc_matrix_diagonalize	mqc_est, 193
mqc_algebra, 58	mqc_matrix_sqrt
mqc_matrix_full2diag	mqc_algebra, 70
mqc_algebra, 59	mqc_matrix_svd
mqc_matrix_full2symm	mqc_algebra, 70
· - - · ·	i — O / -

mqc_matrix_symm2diag	mqc_algebra, 82
mqc_algebra, 70	mqc_algebra::operator(*), 294
mqc_matrix_symm2full	mqc_matrixvectordotproduct
mqc_algebra, 71	mqc_algebra, 82
mqc_matrix_symm2full_func	mqc_algebra::matmul, 234
mqc_algebra, 72	mqc_algebra::operator(.dot.), 323
mqc_matrix_symmetrize	mqc_outer
mqc_algebra, 72	mqc_algebra, 82
mqc_matrix_symmmatrix_put_complex	mqc_algebra::operator(.outer.), 344
mqc_algebra, 73	mqc_output_complex_scalar
mqc_algebra::mqc_matrix_symmmatrix_put, 260	mqc_algebra, 83
mqc_matrix_symmmatrix_put_integer	mqc_algebra::assignment(=), 208
mqc_algebra, 74	mqc_output_integer_scalar
mqc_algebra::mqc_matrix_symmmatrix_put, 260	mqc_algebra, 84
mqc_matrix_symmmatrix_put_real	mqc_algebra::assignment(=), 209
mqc_algebra, 74	mqc_output_mqcscalar_scalar
mqc_algebra::mqc_matrix_symmmatrix_put, 261	mqc_algebra, 84
mqc_matrix_symmsymmr4tensor_put_complex	mqc_algebra::assignment(=), 209
mqc_algebra, 75	mqc_output_real_scalar
mqc_matrix_symmsymmr4tensor_put_real	mqc_algebra, 85
mqc_algebra, 75	mqc_algebra::assignment(=), 210
mqc_matrix_test_diagonal	mqc_print_eigenvalues
mqc_algebra, 75	mqc_est, 193
mqc_matrix_test_symmetric	mqc_est::mqc_print, 267
mqc_algebra, 76	mqc_print_integral
mqc_matrix_trace	mqc_est, 193
mqc_algebra, 77	mqc_est::mqc_print, 267
mqc_matrix_transpose	mqc_print_matrix_algebra1
mqc_algebra, 77	mqc_algebra, 86
mqc_algebra::transpose, 360	mqc_algebra::mqc_print, 263
mqc_matrix_undospinblockghf_eigenvalues	mqc_print_r4tensor_algebra1
mqc_est, 193	mqc_algebra, 87
mqc_est::mqc_matrix_undospinblockghf, 262	mqc_algebra::mqc_print, 264
mqc_matrix_undospinblockghf_integral	mqc_print_scalar_algebra1
mqc_est, 193	mgc_algebra, 87
mqc_est; 750 mqc_est::mqc_matrix_undospinblockghf, 262	mqc_algebra::mqc_print, 264
mqc_matrix_vector_at	mqc_print_twoeris
• — — —	mgc est, 194
mqc_algebra, 77 mqc_matrix_vector_put	mgc est::mgc print, 267
mqc_algebra, 78	mqc_print_vector_algebra1
mqc matrixmatrixdotproduct	mqc_algebra, 88
. —	mqc_algebra::mqc_print, 265
mqc_algebra, 80	
mqc_algebra::matmul, 234	mqc_print_wavefunction
mqc_algebra::operator(.dot.), 323	mqc_est, 194
mqc_matrixmatrixproduct	mqc_est::mqc_print, 268
mqc_algebra, 80	mqc_r4tensor_at
mqc_algebra::operator(*), 293	mqc_algebra, 89
mqc_matrixmatrixsubtract	mqc_r4tensor_havecomplex
mqc_algebra, 80	mqc_algebra, 89
mqc_algebra::operator(-), 317	mqc_r4tensor_haveinteger
mqc_matrixmatrixsum	mqc_algebra, 89
mqc_algebra, 81	mqc_r4tensor_havereal
mqc_algebra::operator(+), 309	mqc_algebra, 89
mqc_matrixscalarproduct	mqc_r4tensor_initialize

mqc_algebra, 89	mqc_scalar_get_abs_value
mqc_r4tensor_put	mqc_algebra, 101
mqc_algebra, 90	mqc_algebra::abs, 199
mqc_realgtscalar	mqc_scalar_get_intrinsic_complex
mqc_algebra, 90	mqc_algebra, 102
mqc_algebra::operator(.gt.), 332	mqc_scalar_get_intrinsic_integer
mqc_reallescalar	mqc_algebra, 102
mqc_algebra, 91	mqc_scalar_get_intrinsic_real
mqc_algebra::operator(.le.), 336	mqc_algebra, 103
mqc_realltscalar	mqc_scalar_get_random_value
mqc_algebra, 91	mqc_algebra, 104
mqc_algebra::operator(.lt.), 340	mqc_scalar_havecomplex
mqc_realscalaradd	mqc_algebra, 105
mqc_algebra, 92	mqc_scalar_haveinteger
mqc_algebra::operator(+), 309	mqc_algebra, 105
mqc_realscalardivide	mqc_scalar_havereal
mqc_algebra, 93	mqc_algebra, 106
mqc_algebra::operator(/), 348	mqc_scalar_integral_multiply
mqc_realscalarmultiply	mqc_est, 194
mqc_algebra, 94	mqc_est::operator(*), 303
mqc_algebra::operator(*), 294	mqc_scalar_isallocated
mqc_realscalarsubtract	mqc_algebra, 107
mqc_algebra, 94	mqc_scalar_sin
mqc_algebra::operator(-), 318	mqc_algebra, 107
mqc_realvectorproduct	mqc_algebra::sin, 357
mqc_algebra, 95	mqc_scalar_sqrt
mqc_algebra::operator(*), 295	mqc_algebra, 108
mqc_scalar_acos	mqc_algebra::sqrt, 358
mqc_algebra, 96	mqc_scalar_tan
mqc_algebra::acos, 201	mqc_algebra, 108
mqc_scalar_asin	mqc_algebra::tan, 359
mqc_algebra, 96	mqc_scalaradd
mqc_algebra::asin, 204	mqc_algebra, 109
mqc_scalar_atan mqc_algebra, 97	mqc_algebra::operator(+), 310
· — ·	mqc_scalarcomplexadd
mqc_algebra::atan, 222	mqc_algebra; 110
mqc_scalar_atan2	mqc_algebra::operator(+), 311
mqc_algebra, 97	mqc_scalarcomplexdivide mqc_algebra, 110
mqc_algebra::atan2, 223 mqc_scalar_cmplx	mqc_algebra::operator(/), 349
	mqc_scalarcomplexexponent
mqc_algebra, 98 mqc_algebra::cmplx, 224	mqc_algebra, 111
mqc_scalar_complex_conjugate	mqc_algebra::operator(**), 303
mqc_algebra, 99	mqc_aigebraoperator(**), 303
mqc_algebra::conjg, 226	mqc_algebra, 112
mqc_scalar_complex_imagpart	mqc_algebra::operator(*), 296
mqc_algebra, 99	mqc_scalarcomplexsubtract
mqc_algebra::aimag, 202	mqc_algebra, 113
mqc_scalar_complex_realpart	mqc_algebra::operator(-), 318
mqc_algebra, 100	mqc_scalardivide
mqc_algebra::real, 355	mqc_algebra, 113
mqc_scalar_cos	mqc_algebra::operator(/), 349
mqc_algebra, 101	mqc_scalareq
mqc_algebra::cos, 229	mqc_algebra, 114
40_4.905.4000, 220	mgo_aigobia, 11-7

mqc_algebra::operator(.eq.), 325	mqc_algebra::operator(.ne.), 343
mqc_scalarexponent	mqc_scalarrealadd
mqc_algebra, 115	mqc_algebra, 127
mqc_algebra::operator(**), 304	mqc_algebra::operator(+), 312
mqc_scalarge	mqc_scalarrealdivide
mqc_algebra, 115	mqc_algebra, 128
mqc_algebra::operator(.ge.), 329	mqc_algebra::operator(/), 351
mqc_scalargt	mqc_scalarrealexponent
mqc_algebra, 116	mqc_algebra, 129
mqc_algebra::operator(.gt.), 332	mqc_algebra::operator(**), 306
mqc_scalargtinteger	mqc_scalarrealmultiply
mqc_algebra, 117	mqc_algebra, 129
mqc_algebra::operator(.gt.), 333	mqc_algebra::operator(*), 298
mqc_scalargtreal	mqc_scalarrealsubtract
mqc_algebra, 118	mqc_algebra, 130
mqc_algebra::operator(.gt.), 334	mqc_algebra::operator(-), 320
mqc_scalarintegeradd	mqc_scalarsubtract
mqc_algebra, 118	mqc_algebra, 131
mqc_algebra::operator(+), 311	mqc_algebra::operator(-), 320
mqc_scalarintegerdivide	mqc_scalarvectordifference
mgc algebra, 119	mqc_algebra, 131
mqc_algebra::operator(/), 350	mqc_algebra::operator(-), 321
mqc_scalarintegerexponent	mqc_scalarvectorproduct
mqc_algebra, 120	mqc_algebra, 132
mqc_algebra::operator(**), 305	mqc_algebra::operator(*), 299
mqc_scalarintegermultiply	mqc_scalarvectorsum
mqc_algebra, 121	mqc_algebra, 133
mqc_algebra::operator(*), 296	mqc_algebra::operator(+), 313
mqc_scalarintegersubtract	mqc_scf_eigenvalues_power
mqc_algebra, 121	mqc_est, 194
mqc_algebra::operator(-), 319	mqc_scf_integral_contraction
mqc_scalarle	mqc_est, 194
mqc_algebra, 122	mqc_est::contraction, 228
mqc_algebra::operator(.le.), 337	mqc_scf_integral_determinant
mqc_scalarleinteger	mqc_est, 195
mqc_algebra, 123	mqc_scf_integral_diagonalize
mqc_algebra::operator(.le.), 338	mqc_est, 195
mqc_scalarlereal	mqc_scf_integral_generalized_eigensystem
mqc_algebra, 123	mqc_est, 195
mqc_algebra::operator(.le.), 339	mqc_scf_integral_inverse
mqc_scalarlt	mqc_est, 195
mqc_algebra, 124	mqc_scf_integral_trace
mqc_algebra::operator(.lt.), 341	mqc_est, 195
mqc_scalarItreal	mqc_scf_transformation_matrix
mqc_algebra, 125	mqc_est, 195
mqc_algebra::operator(.lt.), 341	mqc_set_array2tensor
mqc_scalarmatrixproduct	mqc_algebra, 133
mqc_algebra, 126	mqc_algebra::assignment(=), 211
mqc_algebra::operator(*), 297	mqc_set_array2vector_complex
mqc_scalarmultiply	mqc_algebra, 134
mqc_algebra, 126	mqc_algebra::assignment(=), 211
mqc_algebra::operator(*), 297	mqc_algebra::mqc_set_array2vector, 277
mqc_scalarne	
• —	mqc_set_array2vector_integer
mqc_algebra, 127	mqc_algebra, 134

mqc_algebra::assignment(=), 212	mqc_algebra, 147
mqc_algebra::mqc_set_array2vector, 278	mqc_algebra::mqc_cast_integer, 242
mqc_set_array2vector_real	mqc_vector_cast_real
mqc_algebra, 135	mqc_algebra, 147
mqc_algebra::assignment(=), 212	mqc_algebra::mqc_cast_real, 243
mqc_algebra::mqc_set_array2vector, 279	mqc_vector_cmplx
mqc_set_complexarray2matrix	mqc_algebra, 148
mqc_algebra, 136	mqc_algebra::cmplx, 225
mqc_algebra::assignment(=), 213	mqc_vector_complex_imagpart
mqc_set_integerarray2matrix	mqc_algebra, 149
mqc_algebra, 137	mqc_algebra::aimag, 203
mqc_algebra::assignment(=), 214	mqc_vector_complex_realpart
mqc_set_matrix2complexarray	mqc_algebra, 149
mqc_algebra, 137	mqc_algebra::real, 355
mqc_algebra::assignment(=), 214	mqc_vector_conjugate_transpose
mqc_set_matrix2integerarray	mqc_algebra, 150
mqc_algebra, 138	mqc_algebra::dagger, 230
mqc_algebra::assignment(=), 215	mqc_vector_copy_complex2int
mqc_set_matrix2matrix	mqc_algebra, 150
mqc_algebra, 139	mqc_vector_copy_complex2real
mqc_algebra::assignment(=), 216	mqc_algebra, 151
mqc_set_matrix2realarray	mqc_vector_copy_int2complex
mqc_algebra, 140	mqc_algebra, 152
mqc_algebra::assignment(=), 217	mqc_vector_copy_int2real
mqc_set_realarray2matrix	mqc_algebra, 152
mqc_algebra, 140	mqc_vector_copy_real2complex
mqc_algebra::assignment(=), 217	mqc_algebra, 153
mqc_set_vector2complexarray	mqc_vector_copy_real2int
mqc_algebra, 141	mqc_algebra, 153
mqc_algebra::assignment(=), 218	mqc_vector_havecomplex
mqc_set_vector2integerarray	mqc_algebra, 154
mqc_algebra, 142	mqc_algebra::mqc_have_complex, 247
mqc_algebra::assignment(=), 219	mqc_vector_haveinteger
mqc_set_vector2realarray	mqc_algebra, 155
mqc_algebra, 143	mqc_algebra::mqc_have_int, 248
mqc_algebra::assignment(=), 220	mqc_vector_havereal
mqc_set_vector2vector	mqc_algebra, 155
mqc_algebra, 143	mqc_algebra::mqc_have_real, 250
mqc_algebra::assignment(=), 220	mqc_vector_initialize
mqc_twoeris_allocate	mqc_algebra, 157
mqc_est, 196	mqc_vector_isallocated
mqc_twoeris_at	mqc_algebra, 158
mqc_est, 196	mqc_vector_iscolumn
mqc_vector2diagmatrix	mqc_algebra, 158
mqc_algebra, 144	mqc_vector_maxloc
mqc_vector_abs	mqc_algebra, 159
	• — •
mqc_algebra, 145 mqc_algebra::abs, 200	mqc_vector_maxval
	mqc_algebra, 159
mqc_vector_argsort	mqc_vector_minloc
mqc_algebra, 145	mqc_algebra, 160
mqc_vector_cast_complex	mqc_vector_minval
mqc_algebra, 146	mqc_algebra, 161
mqc_algebra::mqc_cast_complex, 240	mqc_vector_norm
mqc_vector_cast_integer	mqc_algebra, 161

mqc_vector_pop	mqc_algebra::operator(*), 301
mqc_algebra, 162	mqc_vectorvectordifference
mqc_vector_power	mqc_algebra, 178
mqc_algebra, 163	mqc_algebra::operator(-), 322
mqc_vector_push	mqc_vectorvectordotproduct
mqc_algebra, 164	mqc_algebra, 179
mqc_vector_scalar_at	mqc_algebra::dot_product, 232
mqc_algebra, 164	mqc_algebra::operator(.dot.), 324
mqc_vector_scalar_increment	mqc_vectorvectorsum
mqc_algebra, 165	mqc_algebra, 180
mqc_vector_scalar_put	mqc_algebra::operator(+), 313
mqc_algebra, 166	multiplicity
mqc_vector_shift	mqc_est::mqc_wavefunction, 288
mqc_algebra, 166	
mqc_vector_sort	nactive
mqc_algebra, 167	mqc_est::mqc_pscf_wavefunction, 268
mqc_vector_sqrt	nalpha
mqc_algebra, 168	mqc_est::mqc_wavefunction, 288
mqc_vector_transpose	nalpstr
mqc_algebra, 168	mqc_est::mqc_determinant, 244
mqc_algebra::transpose, 361	nbasis
mqc_vector_unshift	mqc_est::mqc_wavefunction, 288
mqc_algebra, 169	nbeta
mgc vector vector at	mqc_est::mqc_wavefunction, 288
mqc_algebra, 170	nbetstr
mqc_vector_vector_put	mqc_est::mqc_determinant, 244
mqc_algebra, 170	ncore
mqc_vectorcomplexdivide	mqc_est::mqc_pscf_wavefunction, 269
	ndets
mqc_algebra, 171	mqc_est::mqc_determinant, 244
mqc_algebra::operator(/), 352	nelectrons
mqc_vectorcomplexproduct	mqc_est::mqc_wavefunction, 288
mqc_algebra, 172	nfrz
mqc_algebra::operator(*), 299	mqc_est::mqc_pscf_wavefunction, 269
mqc_vectorintegerdivide	norm
mqc_algebra, 173	mqc_algebra::mqc_matrix, 254
mqc_algebra::operator(/), 352	mqc_algebra::mqc_vector, 283
mqc_vectorintegerproduct	mqc_est::mqc_scf_integral, 276
mqc_algebra, 173	nval
mqc_algebra::operator(*), 300	mqc_est::mqc_pscf_wavefunction, 269
mqc_vectormatrixdotproduct	qs_sstqs_pssta.rs.tst.tst.,
mqc_algebra, 174	orbitals
mqc_algebra::matmul, 234	mgc est::mgc scf integral, 276
mqc_algebra::operator(.dot.), 324	order
mqc_vectorrealdivide	mqc_est::mqc_determinant, 245
mqc_algebra, 174	overlap_matrix
mqc_algebra::operator(/), 353	mqc_est::mqc_wavefunction, 288
mqc_vectorrealproduct	qs_ooqoare.aoo, 200
mqc_algebra, 176	рор
mqc_algebra::operator(*), 301	mqc_algebra::mqc_vector, 283
mqc_vectorscalardivide	power
mqc_algebra, 177	mqc_algebra::mqc_vector, 283
mqc_algebra::operator(/), 354	mqc_est::mqc_scf_eigenvalues, 273
mqc_vectorscalarproduct	print
mqc_algebra, 177	mqc_algebra::mqc_matrix, 254
40_00000,	90_4190514190_11141117, 201

mqc_algebra::mqc_r4tensor, 270	trace
mqc_algebra::mqc_scalar, 272	mqc_algebra::mqc_matrix, 255
mqc_algebra::mqc_vector, 283	mqc_est::mqc_scf_integral, 276
mqc_est::mqc_scf_eigenvalues, 273	transpose
mqc_est::mqc_scf_integral, 276	mqc_algebra::mqc_matrix, 255
mqc_est::mqc_twoeris, 280	mqc_algebra::mqc_vector, 285
mqc_est::mqc_wavefunction, 286	twoeri trans
pscf_amplitudes	mgc est, 196
mqc_est::mqc_pscf_wavefunction, 269	
pscf_energies	unshift
mqc_est::mqc_pscf_wavefunction, 269	mqc_algebra::mqc_vector, 285
push	, _ ,
mqc_algebra::mqc_vector, 284	vat
	mqc_algebra::mqc_matrix, 255
put	mqc_algebra::mqc_vector, 285
mqc_algebra::mqc_matrix, 254	vput
mqc_algebra::mqc_r4tensor, 270	mqc_algebra::mqc_matrix, 255
mqc_algebra::mqc_vector, 284	mqc_algebra::mqc_vector, 285
	7 - 3
random	wf_complex
mqc_algebra::mqc_scalar, 272	mqc_est::mqc_wavefunction, 289
rmsmax	wf_type
mqc_algebra::mqc_matrix, 254	mqc_est::mqc_wavefunction, 289
rval	
mqc_algebra::mqc_scalar, 272	
scf_density_matrix	
mqc_est::mqc_wavefunction, 289	
set	
mqc_algebra::mqc_matrix, 254	
setelist	
mqc_est::mqc_scf_integral, 276	
shift	
mqc_algebra::mqc_vector, 284	
size	
mqc_algebra::mqc_vector, 284	
slater_condon	
mqc_est, 196	
sort	
mqc_algebra::mqc_vector, 284	
sqrt	
mqc_algebra::mqc_matrix, 255	
mqc_algebra::mqc_vector, 284	
src/mqc algebra.F03, 363	
src/mqc_est.F03, 376	
strings	
mqc_est::mqc_determinant, 245	
svd	
mqc_algebra::mqc_matrix, 255	
. — .	
swap mqc_est::mqc_scf_integral, 276	
symindexhash	
mqc_algebra, 180	
symmetry	
mqc_est::mqc_wavefunction, 289	