Introduction to Computing Explorations in Language, Logic, and Machines

Explorations in Language, Logic, and Machines Fall 2009

> David Evans University of Virginia

For the latest version of this book and supplementary materials, visit:

http://computingbook.org

Printed: 19 August 2009

Attribution-Noncommercial-Share Alike 3.0 United States License

Contents

1	Con	nputing	1						
	1.1	Processes, Procedures, and Computers	2						
	1.2	Measuring Computing Power	3						
		1.2.1 Information	4						
		1.2.2 Representing Data	9						
		1.2.3 Growth of Computing Power	13						
	1.3	Science, Engineering, and Liberal Art	14						
	1.4	Summary and Roadmap							
Pa	art I	Defining Procedures							
2	Lan	guage	2 3						
	2.1	Surface Forms and Meanings	23						
	2.2	Language Construction	24						
	2.3	Recursive Transition Networks							
	2.4	Replacement Grammars	31						
	2.5	Summary	39						
3	Pro	Programming 4							
	3.1	Problems with Natural Languages	42						
	3.2	Programming Languages	43						
	3.3	Scheme	45						
	3.4	Expressions	46						
		3.4.1 Primitives	46						
		3.4.2 Application Expressions	47						
	3.5	Definitions	51						
	3.6	Procedures	52						
		3.6.1 Making Procedures	53						
		3.6.2 Substitution Model of Evaluation	53						
	3.7	Decisions	56						
	3.8	Evaluation Rules	58						
	3.9	Summary	60						
4	Prol	Problems and Procedures							
	4.1	Solving Problems	61						
	4.2	Composing Procedures	62						
		4.2.1 Procedures as Inputs and Outputs							
	4.3	Recursive Problem Solving							
	4.4	Evaluating Recursive Applications	74						

	4.5	Developing Complex Programs	7
		4.5.1 Printing	8'
		4.5.2 Tracing	9
	4.6	Summary	3
5	Data	a 8	5
	5.1	Types	35
	5.2	VI	37
			0
		· ·	1
	5.3	•)2
	5.4)4
			95
		5.4.2 Generic Accumulators	96
			9
	5.5	Lists of Lists	
	5.6	Data Abstraction	
	5.7	Summary of Part I	
		·	
Pa	ırt II	Analyzing Procedures	
6		hines 12	
	6.1	History of Computing Machines	
	6.2	Mechanizing Logic	
		r - 0 - 0 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1	
		6 · F · · · · · · · · · · · · · · · · ·	
	6.3	6.2.3 Arithmetic	
	0.5	6.3.1 Turing Machines	
	6.4	Summary	
		·	
7	Cost		
	7.1	Empirical Measurements	
	7.2	Orders of Growth	
		7.2.1 Big O	
		7.2.2 Omega	
		7.2.3 Theta	
	7.3	Analyzing Procedures	
		7.3.1 Input Size	
		7.3.2 Running Time	
		7.3.3 Worst Case Input	
	7.4	Growth Rates	
		7.4.1 No Growth: Constant Time	
		7.4.2 Linear Growth	
		7.4.3 Quadratic Growth	
		7.4.4 Exponential Growth	
		7.4.5 Faster than Exponential Growth	
		7.4.6 Non-terminating Procedures	
	7.5	Summary	0

8	Sort	ing and	l Searching 173
	8.1	Sortin	g
		8.1.1	Best-First Sort
		8.1.2	Insertion Sort
		8.1.3	Quicker Sorting
		8.1.4	Binary Trees
		8.1.5	Quicksort
	8.2	Search	ning
		8.2.1	Unstructured Search
		8.2.2	Binary Search
		8.2.3	Indexed Search
	8.3	ary	
Pa	ırt II	I Im	proving Expressiveness
9	Mut	ation	205
Ŭ	9.1		ment
	9.2		t of Mutation
	0.2	9.2.1	Names, Places, Frames, and Environments 208
		9.2.2	
	9.3		le Pairs and Lists
	9.4		ative Programming
	0.1		List Mutators
			Imperative Control Structures
	9.5		ary
10	Obje	note	223
10	•		zza ging Procedures and State
	10.1		
			Encapsulation
			Messages
	10.2		Object Terminology
	10.2		tance
			Implementing Subclasses
	10.2		Overriding Methods
			t-Oriented Programming
	10.4	Julilli	ary
11	Inte	rpreter	s 241
	11.1		n
			Python Programs
			Data Types
		11.1.3	Applications and Invocations
		11.1.4	Control Statements
	11.2	Parser	
	11.3	Evalua	itor
		11.3.1	Primitives
			If Expressions
		11.3.3	Definitions and Names
			Procedures

Pa	11.5	11.3.5 Application						•	•	. 4	261 262 262 265
		. 1.11.									
12		putability									271
	12.1	Mechanizing Reasoning									
	100	12.1.1 Gödel's Incompleteness Theorem									
		The Halting Problem									
		Universality									
		Proving Non-Computability									
	12.5	Summary	•	•	•	•	•	•	•	. 4	200
13	Intra	actability	n	ot	t y	et	a	va	ıil	a	ble
Li	st o	f Figures									
	1.1	Using three bits to distinguish eight possible values	•	•	•			•	•	•	6
	2.1	Simple recursive transition network									27
	2.2	RTN with a cycle									
	2.3	RTN for Exercise 2.6									28
	2.4	Recursive transition network with subnetworks									
	2.5	Alternate <i>Noun</i> subnetwork									
	2.6	RTN generating "Alice runs"									31
	2.7	Derivation of 37 from <i>Number</i>									34
	2.8	System power relationships									36
	2.9	Converting the <i>Number</i> productions to an RTN									
	2.10	Converting the <i>MoreDigits</i> productions to an RTN.									38
		Converting the <i>Digit</i> productions to an RTN									
	3.1	Running a Scheme program						•			46
	4.1	A procedure maps inputs to an output									62
	4.2	Composition									63
	4.3	Circular Composition									65
	4.4	Recursive Composition									66
	4.5	Cornering the Queen									82
	5.1	Pegboard Puzzle.								•	106
	6.1	Computing <i>and</i> with wine									126
	6.2	Computing logical <i>or</i> and <i>not</i> with wine									
	6.3	Computing <i>and3</i> by composing two <i>and</i> functions.									
	6.4	Sample input devices									

6.5	Sample output devices
6.6	Turing Machine model
6.7	Rules for checking balanced parentheses Turing Machine 139
6.8	Checking parentheses Turing Machine
	6F
7.1	Evaluation of <i>fibo</i> procedure
7.2	Visualization of the sets $O(f)$, $\Omega(f)$, and $\Theta(f)$
7.3	Orders of Growth
8.1	Unbalanced trees
0.1	000
9.1	Sample environments
9.2	Environment created to evaluate (bigger 3 4)
9.3	Environment after evaluating (define inc (make-adder 1)) 211
9.4	Environment for evaluating the body of (<i>inc</i> 149)
9.5	Mutable pair created by evaluating (set-mcdr! pair pair) 213
9.6	MutableList created by evaluating (<i>mlist</i> 1 2 3)
10.1	Environment produced by evaluating:
	Inheritance Hierarchy
	Counter class hierarchy
10.0	Counter class incrarcity.
12.1	Incomplete and inconsistent axiomatic systems
	Universal Turing Machine
	Two-state Busy Beaver Machine
I ict o	fEvalorations
LISUU	f Explorations
1.1	Guessing Numbers
1.1	Twenty Questions
2.1	Power of Language Systems
4.1	Square Roots
4.2	Recipes for π
4.3	Recursive Definitions and Games
5.1	Pascal's Triangle
5.2	Pegboard Puzzle
7.1	Multiplying Like Rabbits
8.1	Searching the Web
12.1	Virus Detection
12.2	
12,2	Day Douroto

O 140	Church Alongo 140
O, 148	Church, Alonzo, 140
Ω , 152	class, 229 , 258
Θ, 153	coffee, 2
π , 80	Colbert, Stephen, 26
Gödel, 274	compiler, 44
Entscheidungsproblem, 140	complete, 272
Elements, 271	compose, 64
Organon, 271	composition, 62
	computability, 271
abacus, 122	computable, 271, 276
abstraction, 16 , 44, 51, 117	computer, 3
accumulate, 69	computing machines, 122
accumulators, 96	cond, 226
Ada, Countess of Lovelace, 41, 123, 141	conditional expression, 226
algorithm, 2 , 61	
aliasing, 217, 217	cons, 87
alphabet, 26	consistent, 272
Analytical Engine, 41	constant time, 159
any-uple, 92	constructors, 229
Apollo Guidance Computer, 13	Corner the Queen, 82
append, 101	countable, 9
application, 54	counter, 207, 224
apply, 228	counting, 122
Aristotle, 271	
	Dahl, Ole Johan, 238
assignment, 205, 205 , 245	data abstraction, 105
asymptotic operators, 148	datatype, 85
axiomatic system, 271	Davis, Miles, 41
Babbage, Charles, 123, 148	debugging, 77
Backus, John, 31	defensive programming, 98, 108
Backus-Naur Form, 31	definition, 51, 206, 228
	depth, 6, 183
base case, 34 , 66	derivation, 32
begin, 206	diagonalization, 9
best-first-sort, 173	dictionary, 249
bigger, 86	digital abstraction, 126
binary numbers, 9	Digital Equipment Corporation, 238
binary question, 4	Dijkstra, Edsger, 85, 241
binary search, 190	discrete, 9
binary tree, 6 , 182, 190	display, 78
binomial expansion, 104	- ·
bit, 4	divide-and-conquer, 62
Bletchley Park, 140	domain names, 35
Bonacci, Filius, 145	DrScheme, 45
Boole, George, 124	dynamic dispatch, 236
Boolean, 47, 85, 124	dynamic programming, 147
Boolean logic, 124	
brute force, 106	Einstein, Albert, 41, 83
busy beaver problem, 284	else, 227
•	encapsulation, 224, 224
car, 87	Engelbart, Douglas, 238
Carroll, Lewis, 241	ENIAC, 237
cdr, 87	Enigma, 140
	~

environment, 208
Epimenides paradox, 274
eq?, 107, 218
equal?, 175
Erdös, Paul, 2
Euclid, 70, 271
Euler, Leonhard, 277
evaluation, 46
evaluation stack, 76
evaluator, 241, 255
exponential, 167
expression, 46
expt, 81

factorial, 67, 67, 103 fcompose, 64 Feynman, Richard, 81 Fibonacci, 145, 149 filtering, 100 Fisher, George, 15 flattening lists, 103 format, 108 Forrester, Jay, 237 Fortran, 31 frame, 208 Franklin, Benjamin, 41 function, 47 functional programming, 215

games, 81 Gardner, Martin, 82 Gauss, Karl, 68 global environment, 208 Goldbach's Conjecture, 277 Goldbach, Christian, 277 Google, 1 grammar, 31 growth rates, 158

halting problem, 275 Heron, 72 higher-order procedure, **63** Hilbert, David, 140, 271 Hopper, Grace, 41, 44, 78

immutable, **213** imperative programming, 215, **215** inc, 64 incompleteness, 274 indexed search, 191

information, 4
information processes, 2
inheritance, 224
inherits, 231
instance variables, 228
interpreter, 44, 241
intractability, 167
intsto, 102
invoke, 229
Isaacs, Rufus, 82

Jefferson, Thomas, 23, 26

Kay, Alan, 238, 239 khipu, 122 King, Martin Luther, 41

lambda, 53 Lambda calculus, 140 language, 23 lazy evaluation, 262, 262 Leibniz, Gottfried, 80, 121, 123 length, 95 let expression, 176 Lin, Maya, 41 linearly, 159 **LISP, 45** list, 93, 92-94 List (Python), 247 list procedures, 94 list-append, 101, 217 list-flatten, 103 list-get-element, 97 list-length, 95

list-map, 99 list-product, 96 list-reverse, 101 list-search, 189 list-sum, 96 Lockhart, Paul, 2 logarithm, **6** logarithmic growth, 181

Mādhava, 80 machine code, 44 magnetic-core memory, 237 map, 99 McCarthy, John, 45 mcons, 213 means of abstraction, 25, 43

means of combination, 25 precedence, 245 measuring input size, 155 primitive, 25 primitive expressions, 46 messages, 225 methods, 228 primitive procedures, 47, 48 Methods (Python), 250 primitives, 255 MIT, 237, 238 Principia Mathematica, 274 mlist, 214 printf, 78 mlist-append, 217 printing, 78 modulo, 70 problem, 61 morpheme, 25 Procedure, 86 mutable lists, 214 procedure, **2**, 52, 53 mutable pair, 213 programmability, 123 programming language, 43 mutators, 205 proof, **272** name, 51 proof by construction, 37 natural language, 23 proposition, 272 natural languages, 42 Python, 220 newline, 78 Newton, Isaac, 41, 239 quadratically, 165 Newton, Issac, 14, 72, 123 random, 177 Nim, 81 recursive definition, 19, 27, 65-77, 116 noncomputable, 271, 276 recursive descent, 254, 254 null. 93 recursive grammar, 33 null?, 93 recursive transition network, 26 Number, 85 reducible, 280 numbers, 47 reduction, 280 Nygaard, Kristen, 238 relaxation, 200 repeat-until, 220 object, 228 object-oriented programming, 223 reverse, 101 Objects (Python), 250 Roebling, John, 41 Olson, Ken, 238 rules of evaluation, 58 override. 234 Russell's paradox, 273 Russell, Bertrand, 265, 273 Pólya, George, 61 Paine, Thomas, 157 scalar, 85 Pair. 87–91 Scheme, 45 pair, **87** searching, 189 parse tree, 32 set, 205 parser, 241 set-mcar, 213 set-mcdr, 213 parsing, 252 Pascal's Triangle, 104 Shakespeare, William, 41 Pascal, Blaise, 43, 104, 122 side effects, 79, 206 Pascaline, 122 Simula, 238 pegboard puzzle, 171, 189 Sketchpad, 238 pixel, 11 Smalltalk, 239 pizza, 1 sorted binary tree, 182 place, **208** sorting, 173-189 postulate, 272 special form, 56 power set, 168 square, 54

square root, 72 stack, 29 state, 52 Steele, Guy, 45 String, 191 string, 26, 248 subclass, 230 substitution, 207 superclass, 230 surface forms, 23 Survivor, 81 Sussman, Gerald, 45 Sutherland, Ivan, 238 syllogisms, 271 Symbol, 107 symbol, 226 tagged list, 107 tail recursive, 71 thunk, **262**, 263 token, **243** tokenizer, 243 Toy Story, 1 tracing, 79 transitive, 174 tree, 182 truth table, 125 truthiness, 26 Turing Machine, 136, 157 Turing, Alan, 136, 140 types, 85 universal computers, 3 universal computing machine, 137 universal programming language, 117, 280 Universal Turing Machine, 279 universality, 117 URL, 195 virus, 281 web, 195 web crawler, 199 web-get, 195 well-balanced, 184 while loop, 219 Whirlwind, 237 worst case, 157 Wulf, William, 15