

SEQUENCE LISTING

RECEIVED
OCT 22 2001

TECH CENTER 1600/2900

<110> MCGILL UNIVERSITY
SZYF, Moshe
BHATTACHARYA, Sanjoy K.
RAMCHANDANI, Shyam

<120> DNA DEMETHYLASE, THERAPEUTIC AND
DIAGNOSTIC USES THEREOF

<130> 1770-183 "PCT" FC/1d

<150> CA 2,220,805
<151> 1997-11-12

<150> CA 2,230,991
<151> 1998-05-11

<160> 10

<170> FastSEQ for Windows Version 3.0

C1
<210> 1
<211> 1804
<212> DNA
<213> Unknown

<220>
<223> cDNA encoding human demethylase

<400> 1

ccgctctgcg	ggcgaaaa	gtctccggga	tccaaaggc	tcggttacgg	aagaagcgca	60
gagccggctg	ggggggggc	tggatgcgcg	cgcacccggg	gggaggccgc	tgctgcccgg	120
agcaggagga	ggggagagc	gcggcgccgc	gcagcggcgc	tggcggcgac	tccgccccatag	180
agcagggggg	ccagggcagc	gcgcgcgc	cgtccccgg	gagcggcggt	cgcaggaaag	240
gcgcctgggg	cgccggccgt	ggccgggggc	ggtggaaagca	ggcggcccccgg	ggcggcgccgg	300
tctgtggccg	tggcgtggc	cgtggccgg	gtcgccggccg	tggccggggc	cggggccgg	360
gccgcggccg	tccccagagt	ggcggcagcg	gccttggcgg	cgacggcgcc	ggcggcgccgg	420
gcggctgcgg	cgtccgcagc	ggtggcgccg	tcgcggggcc	gcgggatcct	gtccctttcc	480
cgtcgccgg	ctcgccggcc	gggcccaggg	gaccggggc	cacggagac	gggaagagga	540
tggactgccc	ggccctcccc	cccgatgta	agaaggagga	agtgtacca	aatcagggc	600
tcagtgtcg	caagagcgat	gtctactact	tcagtccaag	tggtaagaag	ttcagaagta	660
aacctcagct	ggcaagatac	ctggaaatg	ctgttgcac	tagcagttt	gacttcagga	720
ccggcaagat	gatgcctagt	aaattacaga	agaacaagca	gagactccgg	aatgaccccc	780
tcaatcagaa	caagggtaaa	ccagaccta	acacaacatt	gccaatttgc	caaactgcac	840
caattttcaa	gcaaccagta	accaaattca	cgaaccaccc	gagcaataag	gtgaagtcag	900
accccccacgg	gatgaatgaa	caaccacgtc	agctttctg	ggagaagagg	ctacaaggac	960
ttagcgcac	agatgtaca	gaacaaatta	taaaaacat	ggagctacct	aaaggtcttc	1020
aaggagtcgg	tccaggttagc	aatgacgaga	cccttctgtc	tgctgtggcc	agtgtttac	1080
acacaagctc	tgcgcctcatc	acaggacaag	tctctgtgc	cgtggaaaag	aaccctgtctg	1140
tttggcttaa	cacatctcaa	ccctctgtc	aagctttcat	tgttacagat	gaagacatta	1200
ggaaacacgga	agagcgagtc	caacaagtac	gcaagaaact	ggaggaggca	ctgtggccg	1260
acatcctgtc	ccgggctgcg	gacacggagg	aagtagacat	tgacatggac	agtggagatg	1320
aggcgtaaga	atatgatcag	gtaaacttgc	actgaccttc	cccaagagca	aattgtctaga	1380
aacagaattt	aaacatttcc	actgggttcc	gcctgttaaga	aaaagtgtac	ctgagcacat	1440
agctttttaa	tagcactaac	caatgcctt	ttagatgtat	ttttgtatgt	tatatctatt	1500
attccaaatg	atgttttattt	tgaatcctag	gacttaaat	gagtctttta	taatagcaag	1560
cagggccctt	ccgggtgcagt	gcagtttga	ggccaggtgc	agtctactgg	aaaggttagca	1620
cttacgtgaa	atatttgttt	ccccacagt	ttaatataa	acagatcagg	agtaccaaataat	1680

aagtttccca attaaagatt attatacttc actgtatata aacagattt tatactttat 1740
tgaaagaaga tacctgtaca ttcttccatc atcactgtaa agacaataa atgactatat 1800
tcac 1804

<210> 2
<211> 411
<212> PRT
<213> Unknown

<220>
<223> predicted amino acid of human demethylase

<400> 2

Met	Arg	Ala	His	Pro	Gly	Gly	Gly	Arg	Cys	Cys	Pro	Glu	Gln	Glu	Glu
1					5				10			15			
Gly	Glu	Ser	Ala	Ala	Gly	Gly	Ser	Gly	Ala	Gly	Gly	Asp	Ser	Ala	Ile
					20				25			30			
Glu	Gln	Gly	Gly	Gln	Gly	Ser	Ala	Leu	Ala	Pro	Ser	Pro	Val	Ser	Gly
					35				40			45			
Val	Arg	Arg	Glu	Gly	Ala	Arg	Gly	Gly	Arg	Gly	Arg	Gly	Arg	Trp	
					50				55			60			
Lys	Gln	Ala	Gly	Arg	Gly	Gly	Val	Cys	Gly	Arg	Gly	Arg	Gly	Arg	
					65				70			75			80
Gly	Arg	Gly													
					85				90			95			
Pro	Pro	Ser	Gly	Ser	Gly	Leu	Gly	Gly	Asp	Gly	Gly	Cys	Gly		
					100				105			110			
Gly	Gly	Ser	Gly	Gly	Gly	Gly	Ala	Pro	Arg	Arg	Glu	Pro	Val	Pro	
					115				120			125			
Phe	Pro	Ser	Gly	Ser	Ala	Gly	Pro	Gly	Pro	Arg	Gly	Pro	Arg	Ala	Thr
					130				135			140			
Glu	Ser	Gly	Lys	Arg	Met	Asp	Cys	Pro	Ala	Leu	Pro	Pro	Gly	Trp	Lys
					145				150			155			160
Lys	Glu	Glu	Val	Ile	Arg	Lys	Ser	Gly	Leu	Ser	Ala	Gly	Lys	Ser	Asp
					165				170			175			
Val	Tyr	Tyr	Phe	Ser	Pro	Ser	Gly	Lys	Lys	Phe	Arg	Ser	Lys	Pro	Gln
					180				185			190			
Leu	Ala	Arg	Tyr	Leu	Gly	Asn	Thr	Val	Asp	Leu	Ser	Ser	Phe	Asp	Phe
					195				200			205			
Arg	Thr	Gly	Lys	Met	Met	Pro	Ser	Lys	Leu	Gln	Lys	Asn	Lys	Gln	Arg
					210				215			220			
Leu	Arg	Asn	Asp	Pro	Leu	Asn	Gln	Asn	Lys	Gly	Lys	Pro	Asp	Leu	Asn
					225				230			235			240
Thr	Thr	Leu	Pro	Ile	Arg	Gln	Thr	Ala	Ser	Ile	Phe	Lys	Gln	Pro	Val
					245				250			255			
Thr	Lys	Val	Thr	Asn	His	Pro	Ser	Asn	Lys	Val	Lys	Ser	Asp	Pro	Gln
					260				265			270			
Arg	Met	Asn	Glu	Gln	Pro	Arg	Gln	Leu	Phe	Trp	Glu	Lys	Arg	Leu	Gln
					275				280			285			
Gly	Leu	Ser	Ala	Ser	Asp	Val	Thr	Glu	Gln	Ile	Ile	Lys	Thr	Met	Glu
					290				295			300			
Leu	Pro	Lys	Gly	Leu	Gln	Gly	Val	Gly	Pro	Gly	Ser	Asn	Asp	Glu	Thr
					305				310			315			320
Leu	Leu	Ser	Ala	Val	Ala	Ser	Ala	Leu	His	Thr	Ser	Ser	Ala	Pro	Ile
					325				330			335			
Thr	Gly	Gln	Val	Ser	Ala	Ala	Val	Glu	Lys	Asn	Pro	Ala	Val	Trp	Leu
					340				345			350			
Asn	Thr	Ser	Gln	Pro	Leu	Cys	Lys	Ala	Phe	Ile	Val	Thr	Asp	Glu	Asp
					355				360			365			
Ile	Arg	Lys	Gln	Glu	Glu	Arg	Val	Gln	Gln	Val	Arg	Lys	Lys	Leu	Glu
					370				375			380			

Glu Ala Leu Met Ala Asp Ile Leu Ser Arg Ala Ala Asp Thr Glu Glu
385 390 395 400
Met Asp Ile Glu Met Asp Ser Gly Asp Glu Ala
405 410

<210> 3
<211> 1589
<212> DNA
<213> Unknown

<220>
<223> cDNA sequence of human dMTase2

<400> 3
cacgcgcggg cgggtggcg gaggcccc cctagcgggg gctgtgaagc gcggggaggg 60
ggcccgagcgg gtggcgaagc cggcgccgc cccgctgggg gcggagggcg gaggcccgtg 120
ggacagaaca gctgcggcga gtggcggcg cggagggcg cgaatcggcg acgagccccc 180
gggtcgcaac ttgcagaagc ggccgcggcg gcccgcattgg ccacggcggg cggaaaagcc 240
ggggcgcaat ggagcggaaag aggtgggagt gcccggcgct cccgcagggc tggaaaggg 300
aagaagtgcc caggaggtcg gggctgtcg cccgcacag ggtatgtctt tactatagcc 360
ccagcggaa gaagttccgc agcaagccac aactggcagc ttacctggc ggatccatgg 420
acctcagcac ctgcacttc cgacccggaa agatgttcat gaacaagatg aataagagtc 480
gccagcgtgt gcgtatgat ttttcaacc aggtcaaggg caagcctgac ctgaacacccg 540
cgctgcctgt acggcagact gcatccatct tcaagcaacc ggtgaccaag atcacaacc 600
accccagcaa caaggtcaag agcgaccgc agaaggcagt ggaccagccg aggtagctt 660
tctgggagaa gaagctaagt ggattgatg ccttgacat tgcagaagaa ctggtcagga 720
ccatggactt gccccaaaggc ctgcaggag tggccctgg ctgtacagat gagacgctgc 780
tgtcagccat tgcgagtgc ctacacacca gcacccctgcc cattacaggc cagctctctg 840
cagccgtgga gaagaaccct ggtgtgtggc tgaacactgc acagccactg tgcaaagcct 900
tcatggtgc acatgacgc acatggaaagc aggaggagct ggtacacgcgt acggaaagc 960
gcctggagga ggcactgtg gccgacatgc tagtcatgt ggaggagctt gcccggac 1020
gggaggcacc actggacaag gcctgtgcag aggaggaaga ggaggaggaa gaggaggagg 1080
aagagccgga gccagagcga gtgtagcaca ggtgcctgc ccaagtcgt gctgcagact 1140
gccttcagcc ttgcctggac caggtagggg ccagacctgt aggaggcagc cgtccaccc 1200
ctttccaaag cctctgtt ccaggtctca gtgcaggag cccctgtgg ccttgaactc 1260
acttgtccct ggcgtgcctg gcaggaagcc ccacactgaa agcagatgag cagtgaccca 1320
actgagaggg cacctggaca cagtcaccc cctgcctct tatcatagga caaggcctt 1380
cttggcaccc aggagctggg agccgtgtt ggtgtggag gaagttctg gaaacacacc 1440
tggctatgcc caccttatgt ccctaaggct attacaggcc agggtttggc ctgctccggc 1500
ccacaggctt gcccggctc cccacactga gggcagcag cccaccagga agtcactttc 1560
cttcaataaa ctgtatggtag gaacttgg 1589

<210> 4
<211> 291
<212> PRT
<213> Unknown

<220>
<223> predicted amino acid sequence of human dMTase2

<400> 4
Met Glu Arg Lys Arg Trp Glu Cys Pro Ala Leu Pro Gln Gly Trp Glu
1 5 10 15
Arg Glu Glu Val Pro Arg Arg Ser Gly Leu Ser Ala Gly His Arg Asp
20 25 30
Val Phe Tyr Tyr Ser Pro Ser Gly Lys Lys Phe Arg Ser Lys Pro Gln
35 40 45
Leu Ala Arg Tyr Leu Gly Gly Ser Met Asp Leu Ser Thr Phe Asp Phe
50 55 60
Arg Thr Gly Lys Met Leu Met Ser Lys Met Asn Lys Ser Arg Gln Arg
65 70 75 80

Val Arg Tyr Asp Ser Ser Asn Gln Val Lys Gly Lys Pro Asp Leu Asn
 85 90 95
 Thr Ala Leu Pro Val Arg Gln Thr Ala Ser Ile Phe Lys Gln Pro Val
 100 105 110
 Thr Lys Ile Thr Asn His Pro Ser Asn Lys Val Lys Ser Asp Pro Gln
 115 120 125
 Lys Ala Val Asp Gln Pro Arg Gln Leu Phe Trp Glu Lys Lys Leu Ser
 130 135 140
 Gly Leu Asn Ala Phe Asp Ile Ala Glu Glu Leu Val Lys Thr Met Asp
 145 150 155 160
 Leu Pro Lys Gly Leu Gln Gly Val Gly Pro Gly Cys Thr Asp Glu Thr
 165 170 175
 Leu Leu Ser Ala Ile Ala Ser Ala Leu His Thr Ser Thr Met Pro Ile
 180 185 190
 Thr Gly Gln Leu Ser Ala Ala Val Glu Lys Asn Pro Gly Val Trp Leu
 195 200 205
 Asn Thr Thr Gln Pro Leu Cys Lys Ala Phe Met Val Thr Asp Glu Asp
 210 215 220
 Ile Arg Lys Gln Glu Glu Leu Val Gln Gln Val Arg Lys Arg Leu Glu
 225 230 235 240
 Glu Ala Leu Met Ala Asp Met Leu Ala His Val Glu Glu Leu Ala Arg
 245 250 255
 Asp Gly Glu Ala Pro Leu Asp Lys Ala Cys Ala Glu Asp Asp Asp Glu
 260 265 270
 Glu Asp Glu Glu Glu Glu Glu Pro Asp Pro Asp Pro Glu Met
 275 280 285
 Glu His Val
 290

C
 <210> 5

<211> 1966

<212> DNA

<213> Unknown

<220>

<223> cDNA sequence of mouse dMTasel

<400> 5

gggggcgtgg	cccccagaag	gcggagacaa	gatggccgcc	catagcgctt	ggaggaccta	60
agaggcggtg	gccggggcca	cgccccgggc	aggagggcccg	ctctgtgcgc	gcccgcctca	120
tgtatgcttc	gcgcgtcccc	cgcgccgcgc	gctgcgggcg	gggcgggtct	ccgggattcc	180
aagggctcg	ttacccaaga	agcgccagcgc	cggtctggga	gggggctgga	tgcgccgcga	240
cccgggggga	ggccgctgct	gccccggagca	ggaggaggggg	gagagtgcgg	ccggcggcag	300
ccgcgtggc	ggcgactccg	ccatagagca	ggggggccag	ggcagcgcgc	tcgccccgtc	360
cccggtgagc	ggcgccgcga	gggaaggcgc	tcggggccgc	ggccgtggcc	ggggggcggtg	420
gaagcaggcg	ggccggggcg	gcggcgctcg	tggccgtggc	cggggccggg	gccgtggccg	480
gggacgggga	cgggccgggg	gcccggggcg	cgccgcgtccc	ccgagtgccg	gcagcggcct	540
tggccggcgcac	ggcgccggct	gcggccggcg	cggcagcggt	ggcggccggcg	ccccccggcg	600
ggagccgggtc	cctttcccg	cggggagcgc	ggggccgggg	cccaggggac	cccggggcac	660
ggagagcggg	aaaggatgg	attggccccc	cctccccc	ggatggaaa	aggaggaagt	720
gatccgaaaa	tctggctaa	gtgctggcaa	gagcgatgtc	tactactca	gtccaagtgg	780
taagaagttc	agaagcaagc	ctcagttggc	aaggtagctg	ggaaatactg	ttgatctcag	840
cagttttgac	ttcagaactg	gaaagatgt	gcctagtaaa	ttacagaaga	acaaacagag	900
actgcgaaac	gatccctca	atcaaaaataa	ggtaaacca	gacttgaaa	caacattggcc	960
aatttagacaa	acagcatcaa	tttcaaaaca	accggtaacc	aaagtccaaa	atcatcctag	1020
taataaaatgt	aaatcagacc	cacaacgaat	gaatgaacag	ccacgtcagc	tttctggga	1080
gaagaggcgt	caaggactta	gtgcatacga	tgtaacagaa	caaattataa	aaaccatggaa	1140
actacccaaa	ggtcttcaag	gagttggtcc	agtagcaat	gatgagaccc	tttatctgc	1200
tgttgcagt	gcttgcaca	caagctctgc	gccaatcaca	ggcaagtct	ccgctgctgt	1260
ggaaaagaac	cctgtgttt	ggcttaaacac	atctcaaccc	ctctgcaaaag	cttttattgt	1320
cacagatgaa	gacatcagga	aacaggaaga	gcgagtagac	caagtacgca	agaaatttggaa	1380

agaagcactg	atggcagaca	tcttgcg	agctgtgtat	acagaagaga	tggatattga	1440
aatggacagt	ggagatgaag	cctaagaata	tgttcaggta	actttcgacc	gactttcccc	1500
aagrgaaaat	tccttagaaat	tgaacaaaaa	tgtttccact	ggcttttgcc	tgtaagaaaa	1560
aaaatgtacc	cgagcacata	gagctttta	atagcactaa	ccaatgcctt	tttagatgt	1620
tttttgcgtt	atatatctat	tattcaaaaa	atcatgtta	ttttgagttc	taggactta	1680
aatttagtctt	ttgttatatc	aagcaggacc	ctaagatgaa	gctgagctt	tgatgccagg	1740
tgcaatctac	tggaaatgt	gcacttacgt	aaaacattt	tttccccac	agttttaata	1800
agaacagatc	aggaattcta	aataaattt	ccagttaaag	attattgt	tttcactgt	1860
tataaacata	tttttatact	ttattgaaag	gggacacctg	tacattcttc	catcatca	1920
gtaaaagacaa	ataaaatgatt	atattcacaa	aaaaaaaaaa	aaaaaaa		1966

<210> 6
<211> 414
<212> PRT
<213> Unknown

<220>
<223> predicted amino acid sequence of mouse dMTasel

<400> 6
 Met Arg Ala His Pro Gly Gly Gly Arg Cys Cys Pro Glu Gln Glu Glu
 1 5 10 15
 Gly Glu Ser Ala Ala Gly Gly Ser Gly Ala Gly Gly Asp Ser Ala Ile
 20 25 30
 Glu Gln Gly Gly Gln Gly Ser Ala Leu Ala Pro Ser Pro Val Ser Gly
 35 40 45
 Val Arg Arg Glu Gly Ala Arg Gly Gly Arg Gly Arg Gly Arg Trp
 50 55 60
 Lys Gln Ala Ala Arg Gly Gly Val Cys Gly Arg Gly Arg Gly Arg
 65 70 75 80
 Gly Arg
 85 90 95
 Pro Gln Ser Gly Gly Ser Gly Leu Gly Asp Gly Gly Gly Ala
 100 105 110
 Gly Gly Cys Gly Val Gly Ser Gly Gly Gly Val Ala Pro Arg Arg Asp
 115 120 125
 Pro Val Pro Phe Pro Ser Gly Ser Ser Gly Pro Gly Pro Arg Gly Pro
 130 135 140
 Arg Ala Thr Glu Ser Gly Lys Arg Met Asp Cys Pro Ala Leu Pro Pro
 145 150 155 160
 Gly Trp Lys Lys Glu Glu Val Ile Arg Lys Ser Gly Leu Ser Ala Gly
 165 170 175
 Lys Ser Asp Val Tyr Tyr Phe Ser Pro Ser Gly Lys Lys Phe Arg Ser
 180 185 190
 Lys Pro Gln Leu Ala Arg Tyr Leu Gly Asn Ala Val Asp Leu Ser Ser
 195 200 205
 Phe Asp Phe Arg Thr Gly Lys Met Met Pro Ser Lys Leu Gln Lys Asn
 210 215 220
 Lys Gln Arg Leu Arg Asn Asp Pro Leu Asn Gln Asn Lys Gly Lys Pro
 225 230 235 240
 Asp Leu Asn Thr Thr Leu Pro Ile Arg Gln Thr Ala Ser Ile Phe Lys
 245 250 255
 Gln Pro Val Thr Lys Phe Thr Asn His Pro Ser Asn Lys Val Lys Ser
 260 265 270
 Asp Pro Gln Arg Met Asn Glu Gln Pro Arg Gln Leu Phe Trp Glu Lys
 275 280 285
 Arg Leu Gln Gly Leu Ser Ala Ser Asp Val Thr Glu Gln Ile Ile Lys
 290 295 300
 Thr Met Glu Leu Pro Lys Gly Leu Gln Gly Val Gly Pro Gly Ser Asn
 305 310 315 320
 Asp Glu Thr Leu Leu Ser Ala Val Ala Ser Ala Leu His Thr Ser Ser

325	330	335
Ala Pro Ile Thr Gly Gln Val Ser Ala	Ala Val Glu Lys Asn Pro Ala	
340	345	350
Val Trp Leu Asn Thr Ser Gln Pro Leu Cys Lys Ala Phe Ile Val Thr		
355	360	365
Asp Glu Asp Ile Arg Lys Gln Glu Glu Arg Val Gln Gln Val Arg Lys		
370	375	380
Lys Leu Glu Glu Ala Leu Met Ala Asp Ile Leu Ser Arg Ala Ala Asp		
385	390	395
Thr Glu Glu Val Asp Ile Asp Met Asp Ser Gly Asp Glu Ala		400
405	410	

<210> 7
<211> 2392
<212> DNA
<213> Unknown

<220>
<223> cDNA sequence of mouse dMTase2

C1
<400> 7

agcggggccga ggagccgggc gcaatggagc ggaagaggtg ggagtccccg ggcctccgc	60
agggctggga gagggaaagaa gtgcccagaa ggtcggggct gtcggccggc cacagggatg	120
tcttttacta tagcccgagc gggagaagaat tcccgaccaa gccgcagctg gcgctacc	180
tgggcggctc catggacctg agcacccctcg acttccgcac gggcaagatg ctgtatgagca	240
agatgaacaa gagccgcag cgcgtgcgt acgactccctc caaccaggc aaggccaagc	300
ccgacctgaa cacggcgctg cccgtgcgc agacggcgtc catcttaag cagccggtga	360
ccaagattac caaccacccc agcaacaagg tcaagagcga cccgcagaag gcgggtggacc	420
agccgcgcca gctcttctgg gagaagaagc tgagcggctt gaacgccttc gacattgctg	480
aggagcttgtt caagaccatg gacccccc agggctgcga ggggttggga cctggctgca	540
cggatgagac gctgctgtcg gccatgcgc gcgcctgcga cactagcacc atgcccattca	600
cgggacagct ctcggccgcgtt gttggagaaga accccggcgt atggctcaac accacgcagc	660
ccctgtgcaa agccttcatg gtgaccgcg aggacatcag gaagcaggaa gagctgtgc	720
agcaggtgcg gaagcggctg gaggaggcgc tgatggccga catgctggcg cacgtggagg	780
agctggcccg tgacggggag ggcgcgtgg acaaggcctg cgctgaggac gacgacgagg	840
aagacgagga ggaggaggag gaggaggcccg accccggaccc ggagatggag cacgtctagg	900
gcagaggccc tgccagagac ccgtgctgcc tgctggagcc gcctgcagac gcggtcctcg	960
gccccacgtg aaccaggcgc ggcggcgaag cccaggcttgc gagacacccca ggaggaaggc	1020
cgtgctcttg getcccttcct cggccgcgtcc ccacttcccg gggcctcggg gcacacagct	1080
ggggctgccc ccacccgaaa gaccctccac gctcgctc tacagagtcc ggcttcggga	1140
agtgcggggt gtccttggc cctgccttgc tccctacgc ctttggctc gaggccagct	1200
cctcccccattt cccgtgtcc cagctcccttgc agactggaga gcagccagca ggtgcccggc	1260
agcttcggcgc cacggcttgc tgacagctgg gagggtttct cggcttggag cgtagttt	1320
aaaactcaca tcacccactg tgcagcgtga ggacgggact ctggcttgct gtggggggca	1380
tgcaggacgg cgccactctc tgccctgcga tgccgtctgg ggtgccacag agcttcaccc	1440
tgccttgatgtt gctgtcccag ggaggccgt ctccttcaat aaatgttaca cagtcgaggc	1500
acgtcatcgg gcagcccttc ctgtgtgcga acggcagcct tcgcttctga aaaccaaact	1560
ccagccgcgtc ccagtcggga cttggctgcgc cggcgctgccc agaatgtcc actgcccagcc	1620
ggccccccctg cctcggtttt ccttctgttt agtggcgaca caggcacccca gctttggggt	1680
ggtgtgtacgc ctcccagggg tgccaggagc cactgggaca gggtgaggct cccagacgct	1740
cctcgagggtt cccagctctc cagggagctt ctggcccaag gcgttcttgc gggatctgct	1800
ccttaacccc ccagtgcctt ggcgagggca ggttccaagc cacagacgcc tgccccgagt	1860
gacttttgcg gccagtcctt gggtgccttc ctggccctgt cttgcccagt gagggttccct	1920
aacgggtggg ttcawtggcc tggcccvagc gagccccac ctgcattgac cttaggccc	1980
tagagaggggc ctgtccccgtt gctgcccag ccaaggatct ggtcgtgcgc ccagggggac	2040
tgatgggcaa gagtcgcccc tggctgtgg ctgtgaccat ccctgtatgg gcctgaccgc	2100
gggagctgag gaagcgcgc tccaccgtct gccttccaag gacccgcata gaggcagtgg	2160
gctggcagct tcctgtgttcc cctgttcaga gtcaaagcac aaatcctcag gacgggctca	2220
aggggccaggg cagccgaggaa aagctccagg tggggaccac gtcttcttgc ggttggtgcc	2280
cactggctgg gacccttgc agtgggggtgg cctccctct gtctgcttgc tgagggagc	2340
cgtggcgctg gggacgtgac tgaataaagc caccatgggtt ggtatgtctt gg	2392

<210> 8
<211> 285
<212> PRT
<213> Unknown

<220>
<223> predicted amino acid sequence of mouse dMTase2

<400> 8
Met Glu Arg Lys Arg Trp Glu Cys Pro Ala Leu Pro Gln Gly Trp Glu
1 5 10 15
Arg Glu Glu Val Pro Arg Arg Ser Gly Leu Ser Ala Gly His Arg Asp
20 25 30
Val Phe Tyr Tyr Ser Pro Ser Gly Lys Lys Phe Arg Ser Lys Pro Gln
35 40 45
Leu Ala Arg Tyr Leu Gly Gly Ser Met Asp Leu Ser Thr Phe Asp Phe
50 55 60
Arg Thr Gly Lys Met Leu Met Asn Lys Met Asn Lys Ser Arg Gln Arg
65 70 75 80
Val Arg Tyr Asp Ser Ser Asn Gln Val Lys Gly Lys Pro Asp Leu Asn
85 90 95
Thr Ala Leu Pro Val Arg Gln Thr Ala Ser Ile Phe Lys Gln Pro Val
100 105 110
Thr Lys Ile Thr Asn His Pro Ser Asn Lys Val Lys Ser Asp Pro Gln
115 120 125
Lys Ala Val Asp Gln Pro Arg Gln Leu Phe Trp Glu Lys Lys Leu Ser
130 135 140
Gly Leu Ser Ala Phe Asp Ile Ala Glu Glu Leu Val Arg Thr Met Asp
145 150 155 160
Leu Pro Lys Gly Leu Gln Gly Val Gly Pro Gly Cys Thr Asp Glu Thr
165 170 175
Leu Leu Ser Ala Ile Ala Ser Ala Leu His Thr Ser Thr Leu Pro Ile
180 185 190
Thr Gly Gln Leu Ser Ala Ala Val Glu Lys Asn Pro Gly Val Trp Leu
195 200 205
Asn Thr Ala Gln Pro Leu Cys Lys Ala Phe Met Val Thr Asp Asp Asp
210 215 220
Ile Arg Lys Gln Glu Glu Leu Val Gln Gln Val Arg Lys Arg Leu Glu
225 230 235 240
Glu Ala Leu Met Ala Asp Met Leu Ala His Val Glu Glu Leu Ala Arg
245 250 255
Asp Gly Glu Ala Pro Leu Asp Lys Ala Cys Ala Glu Glu Glu Glu
260 265 270
Glu Glu Glu Glu Glu Pro Glu Pro Glu Arg Val
275 280 285

<210> 9
<211> 17
<212> DNA
<213> Unknown

<220>
<223> sense primer for amplification of MBD domain
of the putative demethylase candidate cDNA

<400> 9

ctggcaagag cgatgtc

<210> 10
<211> 22

<212> DNA

<213> Unknown

<220>

<223> antisense primer for amplification of MBD domain
of the putative demethylase candidate cDNA

<400> 10

agtctggttt acccttattt tg