

Responsable: Jefes Académicos		
Código: Página 1/11		
Revisión: 1		
Emisión:		

Nombre de la asignatura (1): LENGUAJES DE INTERFAZ

Carrera (2): INGENIERIA EN SISTEMAS COMPUTACIONALES

Clave de la asignatura (3): SCC-1014

Horas teoría - Horas prácticas - Créditos (4): 2 - 2 - 4

1. Caracterización de la asignatura (5)

Esta asignatura aporta al perfil del Ingeniero en Sistemas Computacionales las siguientes habilidades:

- Implementa aplicaciones computacionales para solucionar problemas de diversos contextos, integrando diferentes tecnologías, plataformas o dispositivos
- Desarrolla y administra software para apoyar la productividad y competitividad de las organizaciones cumpliendo con estándares de calidad.
- Coordina y participa en equipos multidisciplinarios para la aplicación de soluciones innovadoras en diferentes contextos.
- Diseña e implementa interfaces para la automatización de sistemas de hardware y desarrollo del software asociado.

La presente asignatura aporta los conocimientos para el diseño e implementación de interfaces hombre-máquina y máquina-máquina para la automatización de sistemas. El desarrollo, implementación y administración de software de sistemas o de aplicación que cumpla con los estándares de calidad con el fin de apoyar la productividad y competitividad de las organizaciones. Para que desempeñe sus actividades profesionales considerando los aspectos legales, éticos, sociales y de desarrollo sustentable y a la vez le permita poseer las habilidades metodológicas de investigación que fortalezcan el desarrollo cultural, científico y tecnológico en el ámbito de sistemas computacionales y disciplinas afines.

2. Objetivo(s) general(es) del curso (Competencias específicas a desarollar) (6)

Desarrollar software para establecer la interfáz hombre-máquina y máquina-máquina.

VER 1.0 Formato para la Instrumentación Didáctica	ELABORÓ	REVISÓ	AUTORIZÓ	Página	VER
para la Formación y Desarrollo de Competencias.	J.A. /	D.N.U. /	J.G.C.L. /	1/11	1.0

Responsable: Jefes Académicos		
Código: Página 2/11		
Revisión: 1		
Emisión:		

3. Análisis por unidad

Unidad (7): 01 Tema (8): Introducción al lenguaje ensamblador

Competencia específica de la unidad (9):

- Conoce la arquitectura y organización de un procesador y la estructura de un programa en ensamblador e identifica la relación entre ambos

Actividades de aprendizaje (11):

Actividades de enseñanza (12):

examen teórico examen practico practicas

Criterios de evaluación de la unidad (10):

Desarrollo de competencias genéricas (13):

Horas teórico prácticas (14):

10

- Investigar la estructura y organización de un procesador (CPU). Discutir y formalizar grupalmente lo investigado.
- Analizar los registros más importantes que contiene un CPU, así como las funciones de los mismos.
- Describir modos de direccionamiento a memoria y efectuar ejercicios.
- Realizar ejemplos sencillos de cómo estructurar un programa fuente y que esté despliegue mensajes en el monitor con instrucciones básicas en lenguaje ensamblador

* Estar atento * No faltar a clase * Realizar las practicas propuestas en casa (y laboratorios)
*Participación en clase preguntar cualquier duda *
Apoyo al maestro en presentación de temas alternativos que ayuden al incremento del conocimiento de los estudiantes. *Poseer habilidades de Análisis de problemas, e identificación de componentes de hardware asociadas al software.
*Utilizar algún lenguaje de programación de alto nivel.

Procesar e interpretar datos.
Representar e interpretar conceptos
en diferentes formas. Modelar fenómenos
y situaciones. Pensamiento lógico,
algorítmico, heurístico, analítico y
sintáctico. Potenciar las
habilidades para el uso de tecnologías
de información. Resolución de
problemas. Analizar la factibilidad
de las soluciones. Optimizar
soluciones. Toma de decisiones.

Fuentes de información (15):

-Raspberry Pi Assembly Language Programming ARM Processor Coding (2019), Stephen Smith, APRESS. -PRÁCTICAS DE ENSAMBLADOR BASADAS EN RASPBERRY PI, ANTONIO JOSÉ VILLENA GODOY UNIVERSIDAD DE MÁLAGA. -Assembly Language using the Raspberry Pi: A

Apoyos didácticos (16):

Examen practico Lista de Cotejo Exposiciones Demostraciones

VER 1.0 Formato pa	ra la Instrumentación Didáctica
para la Formación	Desarrollo de Competencias.

E	LΑ	В	OR	(
	J.	Α	/	

REVISÓ D.N.U. / AUTORIZÓ J.G.C.L. / Página 2/11 VER 1.0

Responsable: Jefes Académicos		
Código: Página 3/11		
Revisión: 1		
Emisión:		

Hardware Software Bridge (2017) Robert DunneRaspberry Pi Computer Architecture	
Essentials, Andrew K. Dennis (2016)	

Responsable: Jefes Académicos		
Código:	Página 4/11	
Revisión: 1		
Emisión:		

3. Análisis por unidad

Unidad (7): 02 Tema (8): Programación básica

Competencia específica de la unidad (9):

Criterios de evaluación de la unidad (10):

- Conoce y aplica instrucciones del lenguaje ensamblador, para programar aplicaciones de interfaz .

examen teórico examen practico practicas

Actividades de aprendizaje (11):

Actividades de enseñanza (12):

Desarrollo de competencias Horas teórico genéricas (13): prácticas (14):

18

- Realizar investigación y listar las principales instrucciones de programación en lenguaje ensamblador.
- Desarrollar programas por medio de prácticas en lenguaje ensamblador, los cuales ejemplifiquen las diferentes instrucciones y funciones básicas así como la forma de estructurarlas.

* Estar atento * No faltar a clase * Realizar las practicas propuestas en casa (y laboratorios)
*Participación en clase preguntar cualquier duda * Apoyo al maestro en presentación de temas alternativos que ayuden al incremento del conocimiento de los estudiantes. Poseer habilidades de Análisis de problemas, e identificación de componentes de hardware asociadas al software. Utilizar algún lenguaje de programación en alto nivel.

Procesar e interpretar datos.
Representar e interpretar conceptos
en diferentes formas. Modelar fenómenos
y situaciones. Pensamiento lógico,
algorítmico, heurístico, analítico y
sintáctico. Potenciar las
habilidades para el uso de tecnologías
de información. Resolución de
problemas. Analizar la factibilidad
de las soluciones. Optimizar
soluciones. Toma de decisiones.

Fuentes de información (15):

-Raspberry Pi Assembly Language Programming ARM Processor Coding (2019), Stephen Smith, APRESS. -PRÁCTICAS DE ENSAMBLADOR BASADAS EN RASPBERRY PI, ANTONIO JOSÉ VILLENA GODOY UNIVERSIDAD DE MÁLAGA. -Assembly Language using the Raspberry Pi: A Hardware Software Bridge (2017) Robert Dunne. -Raspberry Pi Computer Architecture

Apoyos didácticos (16):

Examen practico Lista de Cotejo Exposiciones Demostraciones

VER 1.0 Formato pa	ra la Instrumentación Didáctica
para la Formación y	Desarrollo de Competencias.

E	LABO)R	Э
	J.A.	/	

REVISÓ D.N.U. / AUTORIZÓ J.G.C.L. / Página 4/11 VER 1.0

Responsable: Jefes Académicos		
Código: Página 5/11		
Revisión: 1		
Emisión:		

Essentials, Andrew K. Dennis (2016)	

Responsable: Jefes Académicos					
Código: Página 6/11					
Revisión: 1					
Emisión:					

3. Análisis por unidad

Unidad (7): 03 Tema (8): Modularización

Competencia específica de la unidad (9):

Criterios de evaluación de la unidad (10):

examen teórico examen practico practicas

- Aplica macros y procedimientos en el desarrollo de aplicaciones de software orientado a interfaz en lenguaje ensamblador.

Actividades de aprendizaje (11):

Actividades de enseñanza (12):

Desarrollo de competencias Horas teórico genéricas (13): prácticas (14):

- Realizar investigaciones sobre los conceptos macro y procedimiento, analizando sus semejanzas y diferencias.
- Analizar el funcionamiento de un programa que no utiliza macros o procedimientos en su funcionamiento, todo esto utilizando un software que permita obtener datos estadísticos del funcionamiento de los programas en depuración.
- Desarrollar programas en un lenguaje de programación que haga uso de macros o procedimientos, posteriormente analizar el funcionamiento interno de los programas desarrollados haciendo el uso del software que permita obtener datos estadísticos sobre el funcionamiento de los mismos.

* Estar atento * No faltar a clase * Realizar las practicas propuestas en casa (y laboratorios)
*Participación en clase preguntar cualquier duda * Apoyo al maestro en presentación de temas alternativos que ayuden al incremento del conocimiento de los estudiantes. Poseer habilidades de Análisis de problemas, e identificación de componentes de hardware asociadas al software. Utilizar algún lenguaje de programación en alto nivel.

Procesar e interpretar datos.
Representar e interpretar conceptos
en diferentes formas. Modelar fenómenos
y situaciones. Pensamiento lógico,
algorítmico, heurístico, analítico y
sintáctico. Potenciar las
habilidades para el uso de tecnologías
de información. Resolución de
problemas. Analizar la factibilidad
de las soluciones. Optimizar
soluciones. Toma de decisiones.

Fuentes de información (15):

Apoyos didácticos (16):

ı			l			l	
	VER 1.0 Formato para la Instrumentación Didáctica	ELABORÓ	REVISÓ	AUTORIZÓ	Página	VER	
İ	para la Formación y Desarrollo de Competencias.	J.A. /	D.N.U. /	J.G.C.L. /	6/11	1.0	

Responsable: Jefes Académicos					
Código: Página 7/11					
Revisión: 1					
Emisión:					

-Raspberry Pi Assembly Language Programming ARM Processor Coding (2019), Stephen
Smith, APRESSPRÁCTICAS DE ENSAMBLADOR BASADAS EN RASPBERRY PI, ANTONIO JOSÉ
VILLENA GODOY UNIVERSIDAD DE MÁLAGAAssembly Language using the Raspberry Pi: A
Hardware Software Bridge (2017) Robert DunneRaspberry Pi Computer Architecture
Essentials, Andrew K. Dennis (2016)

Examen practico Lista de Cotejo Exposiciones Demostraciones

Responsable: Jefes Académicos					
Código: Página 8/11					
Revisión: 1					
Emisión:					

3. Análisis por unidad

Unidad (7): 04 Tema (8): Programación de dispositivos

Competencia específica de la unidad (9):

- Programar interfaces de software y hardware para la manipulación de puertos y dispositivos de computadora.

Criterios de evaluación de la unidad (10):

Prototipo de proyecto final funcional documento terminado en formato APA

Actividades de aprendizaje (11):

Actividades de enseñanza (12):

Desarrollo de competencias Horas teórico genéricas (13): prácticas (14):

16

- Analizar el funcionamiento del buffer de video de una computadora, mediante la lectura en modo texto del mismo.
- Desarrollar programas en lenguaje ensamblador para acceder a los dispositivos de almacenamiento de la computadora.
- Diseñar una interfaz de hardware utilizando algún tipo de integrado programable (ej. Microcontrolador).
- Diseñar una interfaz de software en algún lenguaje de programación para controlar la interfaz de hardware utilizando los puertos paralelos, seriales y USB de la computadora.

* Estar atento * No faltar a clase * Realizar las practicas propuestas en casa (y laboratorios)

*Participación en clase preguntar cualquier duda * Apoyo al maestro en presentación de temas alternativos que ayuden al incremento del conocimiento de los estudiantes. Poseer habilidades de Análisis de problemas, e identificación de componentes de hardware asociadas al software. Utilizar algún lenguaje de programación en alto nivel.

Procesar e interpretar datos.
Representar e interpretar conceptos
en diferentes formas. Modelar fenómenos
y situaciones. Pensamiento lógico,
algorítmico, heurístico, analítico y
sintáctico. Potenciar las
habilidades para el uso de tecnologías
de información. Resolución de
problemas. Analizar la factibilidad
de las soluciones. Optimizar
soluciones. Toma de decisiones.

Fuentes de información (15):

-Raspberry Pi Assembly Language Programming ARM Processor Coding (2019), Stephen Smith, APRESS. -PRÁCTICAS DE ENSAMBLADOR BASADAS EN RASPBERRY PI, ANTONIO JOSÉ

Apoyos didácticos (16):

Examen practico Lista de Cotejo Exposiciones Demostraciones

VER 1.0 Formato para la Instrumentación Didáctica	ELABORÓ	REVISÓ	AUTORIZÓ	Página	VER
para la Formación y Desarrollo de Competencias.	J.A. /	D.N.U. /	J.G.C.L. /	8/11	1.0

Responsable: Jefes Académicos					
Código: Página 9/11					
Revisión: 1					
Emisión:					

	VILLENA GODOY UNIVERSIDAD DE MÁLAGAAssembly Language using the Raspberry Pi: A	
İ	Hardware Software Bridge (2017) Robert DunneRaspberry Pi Computer Architecture	
	Essentials, Andrew K. Dennis (2016)	

□ = Evaluación formativa.

Responsable: Jefes Académicos					
Código:	Página 10/11				
Revisión: 1					
Emisión:					

TR = Tiempo real.

TP = Tiempo planeado.

Calendarizaciór	de e	valuación	(semanas)	(17):
-----------------	------	-----------	-----------	-----	----

 Δ = Evaluación diagnóstica.

5	Sem.	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16
	T.P.																
-	T.R.																

O = Evaluación sumativa.

Nombre y firma del docente (18)	Vo.Bo. Jefe del Departamento (19)

Responsable: Jefes Académicos				
Código:	Página 11/11			
Revisión: 1				
Emisión:				

INSTRUCCIONES DE LLENADO

Número	Descripción
1.	Anotar el nombre de la asignatura.
2.	Anotar la carrera a la que se le imparte la asignatura.
3.	Anotar la Clave de la asignatura.
4.	Anotar el número de horas teoría - horas práctica y créditos de la asignatura (Ej. 2-2-4).
5.	Describir la caracterización de la asignatura.
6.	Anotar el objetivo general del curso (Competencias específicas a desarrollar).
7.	Anotar el número y nombre de la unidad.
8.	Anotar el número y nombre del tema.
9.	Anotar la competencia (s) especifica de la unidad.
10.	Anotar los criterios de evaluación de la unidad.
11.	Anotar las actividades de aprendizaje.
12.	Anotar las actividades de enseñanza.
13.	Anotar el desarrollo de competencias genéricas.
14.	Anotar las horas teórico ? prácticas.
15.	Anotar las fuentes de información.
16.	Anotar los apoyos didácticos.
17.	Anotar la colerización de evaluación (semanas).
18.	Anotar nombre y firma del Docente.
19.	Firma del visto bueno del Jefe del Departamento.

VER 1.0 Formato para la Instrumentación Didáctica	ELABORÓ	REVISÓ	AUTORIZÓ	Página	VER
para la Formación y Desarrollo de Competencias.	J.A. /	D.N.U. /	J.G.C.L. /	11/11	1.0