ASSIGNMENT-1 Report

ON

DNS DUMPSTER

B.E.(IT) V -Sem

BY

APPALA MEENAKSHI SINDHUJA (160123737001)

UNDER THE GUIDANCE OF

Mr. U.SAI RAM

Assistant Professor IT Department, CBIT.

DEPARTMENT OF INFORMATION TECHNOLOGY CHAITANYA BHARATHI INSTITUTE OF TECHNOLOGY (A)

(Affiliated to Osmania University; Accredited by NBA and NAAC, ISO 9001:2015 Certified Institution), GANDIPET, HYDERABAD – 500 075

Website: www.cbit.ac.in

2024-25

GIT LINK:

https://github.com/appalameenakshisindhuja/Cybersecurity_aasn_1-

CERTIFICATE

This is to certify that the project work entitled "DNS DUMPSTER" submitted to CHAITANYA BHARATHI INSTITUTE OF TECHNOLOGY, in partial fulfillment of the requirements for the completion of Assignment-1 in V Sem of B.E. In Information Technology during the Academic Year 2024-25, is a record of original work done by Appala Meenakshi Sindhuja during the period of study in the Department of IT, CBIT, Hyderabad.

ACKNOWLEDGEMENTS

I would like to express my sincere gratitude to my faculty Mr. U. Sai Ram for his continuous guidance, encouragement, and support throughout this task. His valuable insights and mentorship have greatly helped me in understanding the practical aspects of cybersecurity and in successfully completing this report.

I would also like to thank the resources provided by **dnsdumpster.com**, which enabled me to perform DNS reconnaissance and gain hands-on experience with domain analysis.

TABLE OF CONTENTS

		Page. No
1	List of Figures	V
2	List of tables	vi
3	List of Abbreviations	vii
4	Abstract	viii
5	Tools used	viii
6	Security features	viii
7	Methodologies	X
8	Results	X
9	Protocols explored	xiii
10	Summary	xvi
11	Outcomes	xvii
12	Conclusion	xviii

LIST OF FIGURES

Figure 1	flow chart of footprinting a domain
Figure 2	System locations
Figure 3	Hosting Networks
Figure 4	Services Banners
Figure 5	IP address and MAC address
Figure 6	IP address ranges
Figure 7	Subnet details
Figure 8	Port Number ,state and protocols
Figure 9	Domain Names
Figure 10	Map of the footprint with entire information

LIST OF TABLES

Table 1	Address Records
Table 2	MX records
Table 3	NS REcords

LIST OF ABBREVIATIONS

DNS: Domain Name System

IP:Internet Protocol

ASN:Autonomous System Network

ICANN:Internet Corporation for Assigned Names

and Numbers

AS112: Autonomous System 112

CDN: Content Delivery Network:

FTP:File Transfer Protocol

A: Address

MX:Mail Exchange

NS:Name Server

TXT:Text

ABSTRACT

This report details the findings from a DNS analysis of the iana.org domain using the DNSDumpster tool. The objective is to provide a comprehensive overview of the domain's DNS records, including A records, MX records, NS records, and TXT records, to understand its public-facing infrastructure from a reconnaissance perspective.

Tool explored:DNSDUMPSTER

A free online domain research tool that can discover hosts related to a domain. It provides a visual representation of DNS records and network mapping, which is crucial for understanding an organization's attack surface

SECURITY FEATURES

Footprinting and Reconnaissance

Quickly mapping an organisations attack surface is an essential skill for network attackers (penetration testers, bug bounty hunters or Mr Robot) as well as those who are defending the network (network security folks, system administrators, blue teams etc).

A detailed footprint of an organisations Internet facing systems is a tactical resource that can be used by both attackers and defenders. By developing an understanding of the attack surface skilled security analysts are able to quickly identify weak areas in the attack surface.

Discovered assets such as old servers, custom web applications and forgotten services are often the first crumbs in a trail that leads to a compromise.

Attack Surface Discovery is Time Critical

Penetration Testers need to quickly identify the weak spots so that they can gain access and ensure that the engagement is successful. The nature of a penetration test is time constrained so the faster areas to attack are identified the more likely the test will be a success.

Bug Bounty Hunters need to quickly identify weak spots to find the bugs and get the bounty. Since a hunter is competing against others in the race to find bugs, being faster can often mean getting paid. This is not to say that more involved deeper bug discoveries do not take time to develop, but a quick wins give you time to go for more.

Footprinting a Domain is an Iterative Process

After working through the process of footprinting a domain, you will quickly realise how it is a cyclic process. The output from searching against the domain, provides new inputs into the same domain search process. This can go on for quite some time, with both **time** and **scope** factors in the value of continuing the discovery.

Figure 1:flow chart of footprinting a domain

METHODOLOGY

- 1. Go to the website: https://dnsdumpster.com/
- 2. Enter a domain to test (ensure that the domain is safe to use without any malicious redirects
- 3. The domain name I have chosen for analysation is iana.org
- 4. Click on the three dota and you can explore different protocols
- 5. Analyse the results

RESULTS

1.System Locations: specifies the countries wheerever this domain is available in worldmap

Figure 2 :system locations

2. Hosting Networks: different networks / hosting providers that are serving

resoures for the

iana.org.

Figure 3 :hosting networks

ICANN-LAX

- Hosting infrastructure located in Los Angeles, managed by ICANN.
- Likely one of the primary datacenters handling DNS and web services for IANA.

ICANN-DC

- Hosting infrastructure in Washington D.C. (another ICANN data center).
- Provides redundancy and geographical distribution for resilience.

AS112-PROJECT

- A special network project (AS112) used for handling misdirected reverse DNS queries.
- It's a collaborative effort across multiple organizations to reduce unnecessary load on the root DNS system.

ICANN-ANYCASTED-

- Refers to ICANN's **anycast DNS network**, where multiple servers across the globe share the same IP addresses.
- Ensures faster response times and global availability for DNS services.

FASTLY

- A global Content Delivery Network (CDN) provider.
- Likely used by ICANN/IANA to cache and serve web content more efficiently worldwide
- 3.1 Services: It tells you **what kind of server software** is running on the target's IPs.Example: Apache, Nginx, GitHub Pages, FTP, etc.
- 3.2 Banners: A "banner" is information that a service leaks when you connect to it (like a handshake message). Example: "Apache" banner tells us the server is running Apache web server software.

Figure 4:Services/banners

Serurity perspective :why it matters

Attackers use service/banner info to identify software versions \rightarrow which can reveal vulnerabilities.

Example: If Apache is outdated, it may have known exploits.

Defensive teams can use this data to:

- Remove banner information (banner-grabbing hardening).
- Patch/upgrade services.
- Minimize exposed services.
- Enables fingerprinting for targeted explotits

Protocols explored

<u>Dnslookup</u>: Used for translating domainnames to their corresponding IP address

```
A : 192.175.48.6
AAAA : 2620:4f:8000::6
```

Figure:5: IP address and MAC address

<u>Anslookup:</u> the IP address ranges (IPv4 & IPv6) that belong to the AS112 Project. These ranges are globally advertised by multiple AS112 nodes around the world to catch misdirected reverse DNS queries.

```
'112","AS112-PROJECT, US","DNS-OARC","dns-oarc.net","DNS-OARC is a non-profit organi
2620:4f:8000::/48
192.31.196.0/24
192.175.48.0/24
2001:4:112::/48
```

Figure:6: IP address ranges

<u>Subnetlookup:</u> A subnet lookup is the process of identifying the network block (subnet) that an IP address belongs.

Figure 7: Subnet details

```
Address
            = 192.175.48.0
Network
          = 192.175.48.0/24
         = 255.255.255.0
Netmask
Broadcast = 192.175.48.255
Wildcard Mask = 0.0.0.255
Hosts Bits = 8
Max. Hosts = 256
Host Range = 192.175.48.1 - 192.175.48.254
IP Class
            = C
CIDR Notation = 192.175.48.0/24
IP Version = IPv4
Is Private = No
DNS Hostname = rfc1918-net.root-servers.org
```

nmap: A powerful network scanning tool used for port scanning, service detection, OS fingerprinting, and vulnerability assessment.

```
×
Starting Nmap 7.80 ( https://nmap.org ) at 2025-08-30 10:10 UTC
Nmap scan report for blackhole-1.iana.org (192.175.48.6)
Host is up (0.021s latency).
PORT
        STATE
                 SERVICE
                               VERSION
21/tcp
        closed
                 ftp
22/tcp filtered ssh
23/tcp closed
                 telnet
80/tcp closed
                http
110/tcp closed
                 pop3
143/tcp closed
                 imap
443/tcp closed
                 https
3389/tcp closed
                 ms-wbt-server
Service detection performed. Please report any incorrect results at https://nmap.org
Nmap done: 1 IP address (1 host up) scanned in 1.99 seconds
```

Figure:8: Port Number, state and protocols

Reverse IP: The Reverse IP (Reverse DNS Lookup) protocol is a method to find the domain name associated with an IP address.

```
postergenerator.cricket.com.au
stadium-maps.cricket.com.au
ticketing.cricket.com.au
ns2.pctulsa.net
ns2.rdlusa.net
blackhole-2.iana.org
```

Figure:9: Domain names

A Records (Subdomains from dataset)

Host	IP	ASN	ASN Name	Open Services (from DB)
blackhole-1.iana.org	192.175.48.6	112	AS112- PROJECT United States	8
blackhole-2.iana.org	192.175.48.42	112	AS112- PROJECT United States	6
handbook.int.iana.org	185.199,108.153	54113	FASTLY United States	http: GitHub.com, title: Site not found, tech: GitHub Pages Varnish, https: GitHub.com, title: Site not found, cn: .github.io, tech: GitHub Pages Varnish
itar.iana.org	192.0.43.12	40528	ICANN- LAX United States	http: unknown server, tech: Apache HTTP Server, https: Apache, title: 302 Found, cn: .iana.org, o: Internet Corporation For Assigned Names and Numbers, tech: Apache HTTP Server
lists.iana.org	192.0.33.32	40528	ICANN- LAX United States	https: nginx, title: 503 Service Temporarily Unavailable, cn: .iana.org, o: Internet Corporation For Assigned Names and Numbers, tech: Nginx
prisoner.iana.org	192.175.48.1	112	AS112- PROJECT United States	3

Table 1: :Address record

An A Record (Address Record) maps a domain name (like iana.org) to its IPv4 address (like 199.43.132.53).

MX Records

Priority	Host	IP	ASN	ASN Name
10	pechora6.icann.org	192.0.46.72	16876	ICANN-DC United States
10	pechora7.icann.org	192.0.33.73	40528	ICANN-LAX United States
10	pechora8.icann.org	192.0.46.74	16876	ICANN-DC United States
10	pechoral.icann.org	192.0.33.71	40528	ICANN-LAX United States

TAble 2: MX Records

An MX Record (Mail Exchange Record) specifies the mail server responsible for receiving emails for a domain.

NS Records

Host	IP	ASN	ASN Name
c.iana-servers.net	199.43.134.53	12041	AS-AFILIAS1 United States
ns.icann.org	199.4.138.53	26710	ICANN-ANYCASTED-SERVICES United States
a.iana-servers.net	199.43.135.53	26710	ICANN-ANYCASTED-SERVICES United States
b.iana-servers.net	199.43.133.53	26710	ICANN-ANYCASTED-SERVICES United States

TAble 3:NS Records

An NS Record (Name Server Record) specifies the authoritative DNS servers for a domain.

Purpose:

It tells the internet **which servers are responsible** for answering queries about a particular domain (like iana.org).

TXT Records

- "v=spf1 redirect=icann.org"
- "c9e864a6c53444038d34fe3a22513b74"
- "hibp-verify=dweb_deeci9b66kmruhrzqi0rgz1m"
- "docusign=b2d7c7b0-4627-494b-a7aa-682ee87c265d"
- "smartsheet-site-validation=CcnvONgQ2ibuzf2zHZxgPaWUqTwt-Sjr"
- "google-site-verification=iIqTTcUxND4wZOeVe5Ho728rH3JOSDnssYsYJ7pUtQQ"
- "MS=ms22660639"

A **TXT Record (Text Record)** is a type of DNS record that allows domain owners to store arbitrary text in the DNS.

Primarily used for security and verification (not for mapping domains to IPs).

SUMMARY

Generated on: 20	25-08-29 17:01:50		
	Top 5 Banners		
Name			Count
Apache			5
GitHub.com			2
nginx			1
421 Please use fl	tp.iana		1
	Top 5 ASN		
ASN	ASN Name	Network Range	Count
40528	ICANN-LAX	192.0.32.0/22	7
16876	ICANN-DC	192.0.44.0/22	4
112	AS112-PROJECT	192.175.48.0/24	3
26710	ICANN-ANYCASTED-SERVICES	199.43.133.0/24	3
54113	FASTLY	185.199.108.0/24	1
	Top 5 Countries	5	
Name			Count
INGITIC			

OUTCOMES

Gained practical knowledge of **DNS reconnaissance** using DNSDumpster.

Learned the role of A, MX, NS, and TXT records in domain infrastructure.

Understood how to interpret hosting/network information and ASN details.

Acquired skills to analyze services and banners for potential vulnerabilities.

Realized the importance of **DNS footprinting** in penetration testing and OSINT.

Developed awareness of **security best practices** like minimizing exposed services, hardening banners, and securing DNS configurations.

CONCLUSION

The DNSDumpster tool provided valuable insights into the DNS infrastructure of iana.org. The analysis revealed various A records, MX records, NS records, and TXT records, along with associated hosting networks and open services. This information is crucial for understanding the domain's attack surface and can be used for security assessments, threat analysis, and network management. The tool effectively consolidates publicly available DNS information, making it a powerful resource for reconnaissance and research in cybersecurity

figure 10: Map for the footprint fot domain