

Linear Algebra

ightharpoonup We begin with recollections from the theory of linear algebra \Rightarrow Fields. Vector Spaces. Algebras

▶ Recast linear information processing as operators in the algebra of endomorphisms of a vector space

Field ("Definition")

A field F is a set where a sum and a multiplication are defined

▶ Define numbers and the operations we perform on them \Rightarrow Reals $F = \mathbb{R}$. Complexes $F = \mathbb{C}$

► There are two operations defined ⇒ The sum and the product

Field (Definition)

A field F is a set with two binary operations: Addition (+) and multiplication (\cdot) . Such that:

- \Rightarrow Both are associative $\Rightarrow \alpha + (\beta + \gamma) = (\alpha + \beta) + \gamma$, and $\alpha \cdot (\beta \cdot \gamma) = (\alpha \cdot \beta) \cdot \gamma$
- \Rightarrow Both are commutative $\Rightarrow \alpha + \beta = \beta + \alpha$, and $\alpha \cdot \beta = \beta \cdot \alpha$
- \Rightarrow Both have identity elements $\Rightarrow \alpha + 0 = \alpha$, and $\alpha \cdot 1 = \alpha$
- \Rightarrow Additive inverse \Rightarrow For all $\alpha \in F$, there exists $-\alpha$ such that $\alpha + (-\alpha) = 0$
- \Rightarrow Multiplicative inverse \Rightarrow For all $\alpha \in F$, $\alpha \neq 0$, there exists α^{-1} such that $\alpha \cdot (\alpha^{-1}) = 1$
- \Rightarrow Distributive property $\Rightarrow \alpha \cdot (\beta + \gamma) = (\alpha \cdot \beta) + (\alpha \cdot \gamma)$

Vector Space ("Definition")

A vector space M over the field F is a set whose elements can be added together and can be also multiplied by elements of the field F. A set of arrows.

- ▶ Define the signals we want to process \Rightarrow Vectors in \mathbb{R}^n . Functions in $L_2([0,1])$. Sequences
- In addition to the field operations we add two more operations
 - \Rightarrow The addition of signals and the multiplication of signals by scalars

Vector Space (Definition)

A vector space M over the field F is a set with two operations: Vector addition (+) and scalar multiplication (\times) . Such that

- \Rightarrow Vector addition is associative \Rightarrow x + (y + z) = (x + y) + z
- \Rightarrow Vector addition is commutative \Rightarrow x + y = y + x
- \Rightarrow Vector addition has an identity element $\Rightarrow x + 0 = x$
- \Rightarrow Vector addition has an inverse \Rightarrow For all $x \in M$, there exists -x such that x + (-x) = 0

Vector Space (Definition)

A vector space M over the field F is a set with two operations: Vector addition (+) and scalar multiplication (\times) . Such that

- \Rightarrow Scalar and field multiplication are compatible $\Rightarrow \alpha \times (\beta \times x) = (\alpha \cdot \beta) \times x$
- \Rightarrow Scalar multiplication has an identity element $\Rightarrow 1 \times x = x$
- \Rightarrow Distributive property w.r.t vector addition $\Rightarrow \alpha \times (x + y) = (\alpha \times x) + (\alpha \times y)$
- \Rightarrow Distributive property w.r.t field addition \Rightarrow $(\alpha + \beta) \times x = (\alpha \times x) + (\beta \times x)$

Associative Algebra (Definition)

An associative algebra A is a vector space with a bilinear map $A \times A \to A$ mapping $(a, b) \to a * b$ and such that (a * b) * c = a * (b * c).

- ▶ An algebra with unity is one with an identity element 1 such that 1*a = a*1 = a
- ▶ The algebra is commutative if for all $a, b \in A$ we have a * b = b * a
- ► Add a fifth operation to define the linear transformation of a signal ⇒ Endomorphisms

- ▶ Signals are the entities we want to process \Rightarrow They are elements x of a vector space M
 - \Rightarrow We can add two signals $\Rightarrow y = x_1 + x_2$
 - \Rightarrow We can scale signals with elements of a field $\Rightarrow y = \alpha \times x$

- ▶ Set of vectors with *n* components $\Rightarrow M = \mathbb{R}^n \Rightarrow Graph$ signals. Or discrete signals
- ▶ Set of finite energy functions in [0,1] \Rightarrow $M = L_2([0,1])$ \Rightarrow Graphon signals
- ightharpoonup Sequences (discrete time). Functions in $\mathbb R$ (continuous time). Sequences with two indexes (images)

► An endomorphism e is a linear map from the vector space M into itself

$$e(\alpha_1 \times x_1 + \alpha_2 \times x_2) = (\alpha_1 \times ex_1) + (\alpha_2 \times ex_2)$$

▶ If $M = \mathbb{R}^n \Rightarrow \text{Square matrix multiplications} \Rightarrow y = \text{Ex}$

► If $M = L_2([0,1])$ \Rightarrow Linear functionals \Rightarrow y(u) = $\int_0^1 E(u,v)x(v) dv$

▶ The space of all the endomorphisms in M is $End(M) \Rightarrow All$ Matrices. Or all linear functionals

▶ The set End(M) of endomorphisms of a vector space M is (another) vector space

lacktriangle The sum operation yields the endomorphism $e=e_1+e_2$ defined as

$$ex = e_1x + e_2x$$

lacktriangle Scalar multiplication yields the endomorphism $e'=\alpha e$ defined as

$$e'x = \alpha \times (ex)$$

▶ The set of square matrices of given dimension or the set of linear functionals is a vector space

▶ It has more structure, though \Rightarrow End(M) is also an associative algebra with unity

- ▶ Product $e = e_1 * e_2$ ⇒ Composition of endomorphisms ⇒ $ex = e_1(e_2x)$
- ▶ The product of two matrices $\Rightarrow E = E_1E_2$
- ► Composed functional \Rightarrow y(w) = $\int_0^1 E_1(w,v) \left[\int_0^1 E_2(u,v) x(v) dv \right] du$

Linear Algebra => Process signals (vectors) by composing linear maps (endomorphisms)

Signal Processing in the Algebra of Endomorphisms

▶ An endomorphism is the set of all linear transformations that can be applied to a signal

▶ There is no structure in the space of endomorphisms \Rightarrow Learning in End(M) does not scale

▶ Introducing structure ≡ Restricting the set of allowable endomorphisms

 \Rightarrow We accomplish this with an Algebra and a Representation to define sets of convolutional filters

Algebraic Signal Processing

▶ The algebra of endomorphisms of a vector space does not leverage signal structure

► Convolutional filters use algebras and homomorphisms to restrict allowable linear transformations

From Linear Algebra to Signal Processing

- ightharpoonup The signals we want to process live in a vector space M
- ▶ Linear processing with elements e of the algebra End(M)
- ► This is too general ⇒ Restrict allowable operations
 - ⇒ To those that represent another (more restrictive) algebra
- ► Have to define homomorphisms and representations

Algebra Homomorphism

Let A and A' be two algebras. A homomorphism is a map $\rho:A\to A'$ that preserves the operations of A. I.e., for all $a,b\in A$ we have that

- \Rightarrow The homomorphism preserves the sum $\Rightarrow \rho(a+b) = \rho(a) + \rho(b)$
- \Rightarrow The homomorphism preserves the product $\Rightarrow \rho(a*b) = \rho(a)*'\rho(b)$
- \Rightarrow The homomorphism preserves the scalar product $\Rightarrow \rho(\alpha \times a) = \alpha \times \rho(a)$

- \triangleright Doing operations on the algebra A is the same as carrying operations on the algebra A'
 - \Rightarrow The converse need not be true. Algebra A' may be "richer." May have more elements

Representation

Consider an algebra A, a vector space M, and a homomorphism ρ from A to End(M),

$$\rho: A \to \operatorname{End}(M)$$
.

The pair (M, ρ) is said to be a representation of the associative algebra A

- ► Ties the abstract algebra A to concrete operations on signals that live in the vector space M
- ▶ We say that $a \in A$ is a filter \Rightarrow The action of a on signal x produces the filtered signal $y = \rho(a)x$

- ► A polynomial over the field F is an expression of the form $\Rightarrow a = \sum_{k=0}^{\infty} a_k t^k$
- ▶ The coefficients a_k are elements of the field F. The sum $\sum_{k=1}^{K}$ and the powers t^k are just symbols.
- ► The Algebra of polynomials over F is the set of all polynomials along with the operations

Scalar multiplication

Vector sum

Algebra product

$$(\alpha \times a) = \sum_{k=0}^{K} (\alpha \cdot a_k) t^k$$

$$(a+b)=\sum_{k=0}^{K}(a_k+b_k)t^k$$

$$(\alpha \times a) = \sum_{k=0}^{K} (\alpha \cdot a_k) t^k \qquad (a+b) = \sum_{k=0}^{K} (a_k + b_k) t^k \qquad (a*b) = \sum_{k=0}^{K} \left[\sum_{j=0}^{k} a_j \cdot b_{k-j} \right] t^k$$

- ▶ Signals x in Vector space $M = \mathbb{R}^n \Rightarrow \text{Endomorphisms End}(M) = \mathbb{R}^{n \times n}$ (square matrices E)
- ► Processing with E is too general ⇒ Suppose that x is supported on a graph with shift operator S
- lacktriangle Define the homomorphism ho from the algebra of polynomials to $\operatorname{End}(M)=\mathbb{R}^{n\times n}$ in which we map

$$a = \sum_{k=0}^{K} a_k t^k \quad \rightarrow \quad \rho(a) = \sum_{k=0}^{K} a_k S^k$$

ightharpoonup Algebra of polynomials + Homomorphism $ho \equiv G$ Graph signal processing on shift operator S

Algebraic Signal Processing (ASP)

- ▶ An Algebraic SP model is a triplet (A, M, ρ)
- ightharpoonup A is an Algebra with unity where filters $h \in A$ live
 - ⇒ It defines the rules of convolutional signal processing
- ► *M* is a vector space
 - \Rightarrow The space containing the signals x we want to process
- ightharpoonup ho is a homomorphism from A to the endomorphisms of M
 - \Rightarrow Instantiates the abstract filter h in the space End(M)
- ▶ Any $h \in A$ is a filter which operates on signals according to the homomorphism $\Rightarrow y = \rho(h)x$

Polynomials in an Algebra and Polynomial Functions

▶ Given an element of an algebra $a \in A$ and a set of coefficients $h_k \in F$, a polynomial is

$$p_A(a) = h_0 \times 1 + h_1 \times a + h_2 \times (a * a) + h_3 \times (a * a * a) + \dots = \sum_k h_k a^k$$

 \blacktriangleright We know that $p_A(a) \in A$ because we start from $a \in A$ and use algebra operations throughout

▶ The element $p_A(a) \in A$ is generated from $a \in A$ using the operations of the algebra $(\times, +, *)$

▶ We use the algebra's operations ⇒ If we change the algebra, the "same" polynomial is different

▶ For $a' \in A'$ the "same" polynomial performs different operations to generate $p_{A'}(a') \in A'$

$$p_{A'}(a') = h_0 \times' 1 +' h_1 \times' a +' h_2 \times' (a*'a) +' h_3 \times' (a*'a*'a) +' \dots = \sum_k h_k (a')^k$$

▶ We use the operations $(\times', +', *')$ of the algebra A'.

A related object is the polynomial function over the field F

▶ Consider given coefficients $h_k \in F$ and a variable $\lambda \in F$. The polynomial function p_F takes values

$$p_F(\lambda) = h_0 \cdot 1 + h_1 \cdot \lambda + h_2 \cdot (\lambda \cdot \lambda) + h_3 \cdot (\lambda \cdot \lambda \cdot \lambda) + \ldots = \sum_k h_k \lambda^k$$

- ▶ It is function of $\lambda \Rightarrow p_F : F \to F$. Defined in terms of the operations $(\cdot, +)$ of the field F.
- ► Resemblance to frequency responses is not coincidental

▶ Generalize to multiple elements \Rightarrow For set of elements $A = a_1 \dots a_r \subseteq A$ define the polynomial

$$p_{\mathcal{A}}(\mathcal{A}) = \sum_{k_1,\ldots,k_r} h_{k_1,\ldots,k_r} a_1^{k_1} \ldots a_r^{k_r}$$

- \blacktriangleright Associated with the set of coefficients $h_{k_1,\ldots,k_r} \in F$. Algebra Operations. An element of the algebra
- ▶ For the same set of coefficients we define the polynomial function $p_F(\lambda_1, ..., \lambda_r) = p_F(\mathcal{L})$

$$p_{\mathsf{F}}(\mathcal{L}) = \sum_{k_1, \dots k_r} h_{k_1, \dots, k_r} \lambda_1^{k_1} \dots \lambda_r^{k_r}$$

▶ A different (simpler) object.. A function with variables $\lambda_i \in F$. Operations performed on the field F

Generators, Shift Operators, and Frequency Representations

► Algebraic Signal Processing is an abstraction of Convolutional Information Processing

► Three central components ⇒ generators, shift operators, and frequency representations

Definition (Generators)

The set $\mathcal{G} \subseteq A$ generates A if all $h \in A$ can be represented as polynomials of the elements of \mathcal{G} ,

$$h = \sum_{k_1,...k_r} h_{k_1,...,k_r} \, g_1^{k_1} \dots g_r^{k_r} = p_A(G)$$

- ▶ The elements $g \in \mathcal{G}$ are the generators of A. And $h = p_A(\mathcal{G})$ is the polynomial that generates h
 - ⇒ Filters can be built from the generating set using the operations of the algebra
- \blacktriangleright Given the algebra, the generators are given \Rightarrow Filter h is completely specified by its coefficients

ightharpoonup The algebra of polynomials of a single variable t is generated by the polynomial g=t

 \Rightarrow Algebra elements are expressions $h = \sum_k h_k t^k \Rightarrow$ They can be generated as $h = \sum_k h_k t^k$

- Algebra of polynomials of two variables x and y is generated by the polynomials $g_1 = x$ and $g_2 = y$
 - \Rightarrow Algebra elements are expressions $h = \sum_k h_{kl} x^k y^l \Rightarrow \mathsf{Can} \; \mathsf{be} \; \mathsf{generated} \; \mathsf{as} \quad h = \sum_k h_{kl} x^k y^l$

Definition (Shift Operators)

Let (M, ρ) be a representation of A and $\mathcal{G} \subseteq A$ a generator set of A. We say S is a shift operator if

$$\mathsf{S} = \rho(\mathsf{g}), \quad \text{for some } \mathsf{g} \in \mathcal{G}$$

The set $S = {\rho(g), g \in G}$ is the shift operator set of the representation (M, ρ) of algebra A.

▶ Generators g of Algebra A mapped to shift operators S in the space End(M) of endomorphisms of M

Theorem (Filters as Polynomials on Shift Operators)

Let (M, ρ) be a representation of A with generators $g_i \in \mathcal{G}$ and shift operators $S_i = \rho(g_i) \in \mathcal{S}$.

The representation $\rho(h)$ of filter h is a polynomial on the shift operator set,

$$h = p_A(\mathcal{G}) = \sum_{k_1,...,k_r} h_{k_1,...,k_r} g_1^{k_1} ... g_r^{k_r} \Rightarrow \rho(h) = p_M(\mathcal{S}) = \sum_{k_1,...k_r} h_{k_1,...,k_r} S_1^{k_1} ... S_r^{k_r}$$

Proof: The theorem is true because the homomorphism ρ preserves the operations of the algebra

$$\rho(h) = \rho\left(\sum_{k_1,\ldots,k_r} h_{k_1,\ldots,k_r} \, g_1^{k_1} \ldots g_r^{k_r}\right) = \sum_{k_1,\ldots,k_r} h_{k_1,\ldots,k_r} \, \rho(g_1)^{k_1} \ldots \rho(g_r)^{k_r}$$

- ightharpoonup ASP \Rightarrow Vector space \equiv Signals + Algebra \equiv Filters + Homomorphism \equiv Filter Instantiation.
- ▶ In principle, the homomorphism $\rho: A \to \operatorname{End}(M)$ has to be specified for all possible filters $h \in A$.
- ▶ In reality, it suffices to specify ρ for the generator set

$$g_i \Rightarrow S_i = \rho(g_i)$$

- ▶ Other filters are polynomials on $g_i \Rightarrow h = p_A(G)$
- ▶ Which instantiate to polynomials on $S_i \Rightarrow \rho(h) = p_M(S)$

- ightharpoonup ASP \Rightarrow Vector space \equiv Signals + Algebra \equiv Filters + Homomorphism \equiv Filter Instantiation.
- In principle, the homomorphism $\rho: A \to \operatorname{End}(M)$ has to be specified for all possible filters $h \in A$.
- ightharpoonup In reality, it suffices to specify ho for the generator set

$$g_i \Rightarrow S_i = \rho(g_i)$$

- ▶ Other filters are polynomials on $g_i \Rightarrow h = p_A(G)$
- ▶ Which instantiate to polynomials on $S_i \Rightarrow \rho(h) = p_M(S)$

- ightharpoonup ASP \Rightarrow Vector space \equiv Signals + Algebra \equiv Filters + Homomorphism \equiv Filter Instantiation.
- ▶ In principle, the homomorphism $\rho: A \to \operatorname{End}(M)$ has to be specified for all possible filters $h \in A$.
- ▶ In reality, it suffices to specify ρ for the generator set

$$g_i \Rightarrow S_i = \rho(g_i)$$

- ▶ Other filters are polynomials on $g_i \Rightarrow h = p_A(G)$
- ▶ Which instantiate to polynomials on $S_i \Rightarrow \rho(h) = p_M(S)$

▶ GSP \Rightarrow Signals in \mathbb{R}^n + Algebra of Polynomials + Homomorphism ρ defined by the map

$$h = \sum_{k=0}^{K} h_k \mathbf{t}^k \quad \rightarrow \quad \rho(h) = \sum_{k=0}^{K} h_k S^k$$

- **Equivalent** to the (much) simpler specification of the homomorphism $\Rightarrow \rho(t) = S$
 - \Rightarrow This is possible because the algebra of polynomials is generated by g=t

Definition (Frequency Representation)

In an algebra A with generators $g_i \in \mathcal{G}$ we are given the filter h expressed as the polynomial

$$h = \sum_{k_1,...k_r} h_{k_1,...,k_r} \, g_1^{k_1} \ldots g_r^{k_r} = p_A(G)$$

The frequency representation of h over the field F^1 is the polynomial function with variables $\lambda_i \in \mathcal{L}$

$$p_F(\mathcal{L}) = \sum_{k_1,\ldots,k_r} h_{k_1,\ldots,k_r} \lambda_1^{k_1} \ldots \lambda_r^{k_r}$$

► The two polynomials are different creatures ⇒ The frequency representation is a simpler object

 $^{^1}$ The field is unspecified in the definition. But unless otherwise noted F refers to the field over which the vector space M is defined

Three Polynomials (or More)

▶ The central components of an ASP model are three different polynomials

 \Rightarrow The filter. The filter's instantiation on the space of endomorphisms The frequency response

▶ These three polynomials have the same coefficients. They are related. But similar though they look

 \Rightarrow They are different objects. They utilize different operations. They have different meanings.

P1: The Filter

 \triangleright A polynomial on the elements g_i of the generator set \mathcal{G} of the algebra A

$$p_{A}(\mathcal{G}) = \sum_{k_1,\ldots,k_r} h_{k_1,\ldots,k_r} \, \mathbf{g_1}^{k_1} \ldots \mathbf{g_r}^{k_r}$$

- ▶ Sum, product, and scalar product are the operations of the algebra A
- ▶ The abstract definition of a filter. Untethered to a specific signal model

P2: The Instantiation of the Filter in the space of Endomorphisms End(M)

ightharpoonup A polynomial on the elements $S_i = \rho(g_i)$ of the shift operator set \mathcal{S}

$$p_{M}(S) = \sum_{k_1,\ldots,k_r} h_{k_1,\ldots,k_r} S_1^{k_1} \ldots S_r^{k_r}$$

- ▶ Sum, product, and scalar product are the operations of the algebra of Endomorphisms of M
- ▶ The concrete effect that a filter has on a signal x. Tethered to a specific signal model

■ "Or more" ⇒ The same abstract filter can be instantiated in multiple signal models

P3: The Frequency Response

▶ A polynomial function where the variables $\lambda_i \in \mathcal{L}$ take values on the field F

$$p_F(\mathcal{L}) = \sum_{k_1, \dots, k_r} h_{k_1, \dots, k_r} \lambda_1^{k_1} \dots \lambda_r^{k_r}$$

- \triangleright Sum and product are the operations of field F. \Rightarrow E.g., a polynomial with real variables
- ► Simpler representation of a filter. Untethered to a specific signal model (except for the field)

► The tool we use for analysis.

To explain discriminability, stability and transferability
The tool we use for analysis.

- (P1) Abstract filter $\Rightarrow p_A(t) = \sum_{k=0}^{N} h_k t^k$. Abstract definition. Untethered to any specific graph
- (P2) Filter instantiated on a graph $\Rightarrow p_M(S) = \sum_{k=0}^K h_k S^k$. Concrete instantiation. Tethered to S
 - \Rightarrow On another graph $\Rightarrow p_M(\hat{S}) = \sum_{k=0}^K h_k \hat{S}^k$. Concrete instantiation. Tethered to \hat{S}
 - \Rightarrow On a graphon $\Rightarrow p_M(T_W) = \sum_{k=0}^K h_k T_W^{(k)}$. Concrete instantiation. Tethered to graphon W
- (P3) Frequency response $\Rightarrow p_F(\lambda) = \sum_{k=0}^K h_k \lambda^k$. Simple function of one variable. Same for all instances

Convolutional Information Processing

▶ Algebraic filters are a generic abstraction of the common features of convolutional signal processing

▶ Graph, time, and image convolutions can be expressed as particular cases of algebraic filters

Specification of ASP Models

- ► To specify an ASP model we need to specify
 - \Rightarrow A vector space M where signals x live
 - \Rightarrow An algebra A where convolutional filters h live
 - \Rightarrow A homomorphism ρ mapping filters to End(M)

▶ The signal x is processed to the output $\Rightarrow y = \rho(h)x$

Specification of ASP Models

- ► To specify an ASP model we need to specify
 - \Rightarrow A vector space M where signals x live
 - \Rightarrow An algebra A where convolutional filters h live
 - \Rightarrow The images $S = \rho(g)$ of the algebra generators g

► The signal x is processed to the output $\Rightarrow y = \rho(h)x$

Task

Process signals x that are supported on a graph with n nodes. A matrix representation of the graph is given in the matrix S.

Graph Signal Processing (GSP)

- ► GSP in the graph S is a particular case of ASP in which
 - $\Rightarrow M = \mathbb{R}^n \Rightarrow \text{Vectors with } n \text{ components}$
 - $\Rightarrow A = P(t) \Rightarrow$ The algebra of polynomials $h = \sum_{k} h_k t^k$
 - \Rightarrow Shift operator $\rho(t) = S \Rightarrow$ Resulting in filters

$$\rho(h) = \rho\left(\sum_{k} h_{k} t^{k}\right) = \sum_{k} h_{k} S^{k}$$

Processing x with filter $\rho(h)$ yields output $\Rightarrow y = \rho(h)x = \rho\left(\sum_{k} h_k t^k\right)x = \sum_{k} h_k S^k x$

Task

Process signals x supported on a graphon W. The signals have finite energy. I.e, $x \in L_2([0,1])$

ightharpoonup WSP in the graphon W is a particular case of ASP

$$\Rightarrow M = L_2([0,1]) \Rightarrow$$
 Finite-energy functions in $[0,1]$

$$\Rightarrow A = P(t) \Rightarrow$$
 The algebra of polynomials $h = \sum_{k} h_k t^k$

- \triangleright WSP in the graphon W is a particular case of ASP
 - \Rightarrow Shift operator is $\rho(t) = T_W$ defined as

$$(T_w x)(u) = \int_0^1 W(u, v) x(v) dv$$

 \Rightarrow This mapping of the generator t yields filters

$$\rho(\mathbf{h}) = \rho\left(\sum_{k} \mathbf{h}_{k} \mathbf{t}^{k}\right) = \sum_{k} \mathbf{h}_{k} T_{w}^{k}$$

Task

Process sequences X with values $(X)_n = x_n$ for integer indexes $n \in \mathbb{Z}$. The sequences have finite energy. We say that $X \in L_2(\mathbb{Z})$

▶ DTSP is a particular case of ASP in which

$$\Rightarrow M = L_2(\mathbb{Z}) \Rightarrow$$
 Finite-energy sequences in \mathbb{Z}

$$\Rightarrow A = P(t) \Rightarrow$$
 The algebra of polynomials $h = \sum_{k} h_k t^k$

- ► DTSP is a particular case of ASP in which
 - \Rightarrow Shift operator is a time shift $\rho(t) = S$ such that

$$(SX)_n = (X)_{n-1}$$

 \Rightarrow This mapping of the generator t yields filters

$$\rho(h) = \rho\left(\sum_{k} h_{k} t^{k}\right) = \sum_{k} h_{k} S^{k}$$

where S^k represents k applications of S

Task

Process images, defined as sequences X with values $(X)_{mn}=x_{mn}$ that depend on two integer indexes $m,n\in\mathbb{Z}$. The sequences have finite energy. We say that $X\in L_2(\mathbb{Z}^2)$

► IP is a particular case of ASP in which

$$\Rightarrow M = L_2(\mathbb{Z}^2) \Rightarrow$$
 Finite-energy sequences in \mathbb{Z}^2

$$\Rightarrow A = P(x, y) \Rightarrow$$
 Two-letter polynomials $h = \sum_{k} h_{kl} x^{k} y^{l}$

- ► IP is a particular case of ASP in which
 - \Rightarrow Two shift operators $\rho(\mathbf{x}) = S_{\mathbf{x}}$ and $\rho(\mathbf{y}) = S_{\mathbf{y}}$

$$(S_x X)_{mn} = (X)_{(m-1)n} \quad (S_y X)_{mn} = (X)_{m(n-1)}$$

 \Rightarrow This mapping of the generators x and y yields filters

$$\rho(h) = \rho\left(\sum_{k} h_{k} t^{k}\right) = \sum_{k} h_{kl} S_{x}^{k} S_{y}^{l}$$

 S_x^k or S_x^k represent k or l applications of S_x or S_l

ASP is a Generic Analysis Tool

Algebraic SP encompasses Graph SP, graphon SP, Time SP, and Image SP as particular cases

⇒ Other particular cases exist. Notably, Group SP

▶ ASP provides a framework for fundamental analyses that hold for all forms of convolutional filters

Algebraic Neural Networks

▶ We introduce Algebraic Neural Networks (AlgNNs) to generalize neural convolutional networks

- ► Algebraic Neural Networks (AlgNNs) are stacked layered structures
 - \Rightarrow Each layer consists of the algebraic signal model $(A_{\ell}, M_{\ell}, \rho_{\ell})$ and $\sigma_{\ell} \Rightarrow$ nonlinearity and pooling
- ▶ The output at layer ℓ in the AlgNN is given by

$$\mathsf{x}_\ell = \sigma_\ell \left(
ho_\ell(\mathsf{a}_\ell) \mathsf{x}_{\ell-1}
ight) \; \; \mathsf{with} \; \; \mathsf{a}_\ell \in \mathsf{A}_\ell$$

► The operation is equivalent to

$$\mathsf{x}_\ell = \Phi(\mathsf{x}_{\ell-1}, \mathcal{P}_\ell, \mathcal{S}_\ell)$$

 $\Rightarrow \mathcal{P}_{\ell} \subset A_{\ell}$ represents the properties of the filters and \mathcal{S}_{ℓ} is the shifts associated to (M_{ℓ}, ρ_{ℓ})

▶ Algebraic Neural Network $\{(A_{\ell}, M_{\ell}, \rho_{\ell})\}_{\ell=1}^3$ architecture with three layers.

► The processing at each layer can be performed by a family of filters

$$\mathsf{x}^{\mathit{f}}_{\ell} = \sigma_{\ell} \left(\sum_{\mathit{g}=1}^{\mathit{F}_{\ell}}
ho_{\ell}(\mathit{a}^{\mathit{gf}}_{\ell}) \mathsf{x}^{\mathit{g}}_{\ell-1}
ight)$$

- \Rightarrow where a_ℓ^{gf} is the filter processing gth feature $\mathsf{x}_{\ell-1}^g$ and F_ℓ is the number of features
- ▶ Layers may use (different) specific algebraic signal models $(A_{\ell}, M_{\ell}, \rho_{\ell})$
- ▶ Trainable parameters are the filters $\{a_\ell^{fg}\}_{\ell fg}$. Numerically, we train directly on $\rho_\ell(a_\ell^{fg})$.

- ▶ The pooling increases the computational efficiency and improve the performance
- ▶ The operation is attributed to the composition operator $\sigma_\ell = P_\ell \circ \eta_\ell$

- $\Rightarrow \eta_\ell$ is a pointwise nonlinearity and P_ℓ is a pooling operator
- lacktriangle The operator σ_ℓ is only assumed to be Lipschitz and to have zero as a fixed point $\sigma_\ell(0)=0$
- ▶ The pooling operator P_{ℓ} projects elements from a given vector space M_{ℓ} to another $M_{\ell+1}$

- Traditional CNNs particularize the algebraic signal model in AlgNNs as the typical signal model.
- Make $M = \mathbb{C}^N$ and A the polynomial algebra in the variable t and module $t^N 1$
 - \Rightarrow S = C is the cyclic shift operator satisfying $C^k = C^{k \mod N}$.
- ▶ The fth feature at layer ℓ is given by

$$\mathsf{x}_\ell^{\mathit{f}} = \sigma_\ell \left(\sum_{g=1}^{F_\ell} \sum_{i=0}^{\mathsf{K}-1} h_i^{\mathit{gf}} \, C_\ell^i \mathsf{x}_{\ell-1}^g
ight)$$

▶ In this case P_{ℓ} is a sampling operator while $\eta_{\ell}(u) = \max\{0, u\}$ is the ReLU.

- ► The GNNs particularize the algebraic signal model in AlgNNs as the graph signal model.
- ▶ Let $M = \mathbb{C}^N$ with components x_n of $x \in M$ associated with graph nodes
- ▶ Let A be the polynomial algebra with elements $a = \sum_{k=0}^{K-1} h_k t^k$
 - \Rightarrow The homomorphism filter is given by $\rho(a) = \sum_{k=0}^{K-1} h_k S^k$
 - \Rightarrow S \in $\mathbb{C}^{N \times N}$ is the graph matrix representation, e.g., adjacency matrix, Laplacian matrix, etc.
- ▶ The fth feature at layer ℓ is given by

$$\mathsf{x}_{\ell}^{\mathsf{f}} = \sigma_{\ell} \left(\sum_{g=1}^{\mathsf{F}_{\ell}} \sum_{k=0}^{\mathsf{K}-1} h_{k}^{\mathsf{g}\mathsf{f}} \mathsf{S}^{k} \mathsf{x}_{\ell-1}^{\mathsf{g}} \right)$$

Perturbation Models

▶ We define perturbations in the context of algebraic signal processing

- ▶ To define perturbations (deformations) in ASP we recall the notion of generator of an algebra
- ▶ Generators: The set $\mathcal{G} \subseteq A$ generates A if all $a \in A$ are polynomial functions of elements of \mathcal{G}
- ▶ Shift Operators: The set S of homomorphism images $S = \rho(g)$ is the set of shift operators
- Definitions of generators and shift operators allows writing filters as polynomials on shift operators

$$\rho(\mathsf{a}) = p_\mathsf{M}(\rho(\mathcal{G})) = p_\mathsf{M}(\mathcal{S}) = p(\mathcal{S})$$

- lacktriangle We define perturbations of Algebraic models as perturbations of shift operators $\Rightarrow \tilde{S} = S + T(S)$
- ▶ The ASP model (A, M, ρ) is consequently perturbed to the triplet $(A, M, \tilde{\rho})$ such that

$$\tilde{
ho}(a) = p_M(\tilde{
ho}(g)) = p_M(\tilde{S})$$

That is, the polynomials that define filters are the same. But they use the perturbed shift operator

- ▶ Graphs \Rightarrow Shift operator S represents a graph \Rightarrow Perturbed operator $\tilde{\mathsf{S}}$ represents different graph
- ightharpoonup Time \Rightarrow S represents translation equivariance \Rightarrow \tilde{S} represents quasi-translation equivariance

▶ Our definition limits the perturbation of the homomorphism to the perturbation of the shift operator

- ⇒ Motivated by practice: seen in graph, discrete time, group and graphon signals
- lacktriangle The model perturbs the homomorphism ho but not the algebra $A \Rightarrow A$ define the type of operations
- lacktriangle Notice that a perturbation $\tilde{x}=Tx$ acting on the signal x can be interpreted as a transformation of S

$$S\tilde{x} = S(Tx) = (ST)x = \tilde{S}x$$

► We will consider a first order generic model of small perturbation for the shift operator(s) S

ightharpoonup It includes an absolute or additive perturbation T_0 and a relative or multiplicative perturbation T_1S

$$\mathsf{T}(\mathsf{S}) = \textcolor{red}{\mathsf{T_0}} + \mathsf{T_1}\mathsf{S}$$

- ▶ The operators T_0 and T_1 are compact normal with norms satisfying that $\|T_0\| \le 1$ and $\|T_1\| \le 1$
- $\blacktriangleright \ \|\mathsf{T}_0\| \leq 1, \ \|\mathsf{T}_1\| \leq 1 \ \text{not strong requirements as our interest is on perturbations with} \ \|\mathsf{T}(\mathsf{S})\| \ll 1$

ightharpoonup Apply the same filter h to the same signal x on different graphs shift operators S and \tilde{S}

$$H(S)x = \sum_{k=0}^{K-1} h_k S^k x \qquad H(\tilde{S})x = \sum_{k=0}^{K-1} h_k \tilde{S}^k x$$

- ► Filter $H(S) \times \Rightarrow$ Coefficients h_k . Input signal x. Instantiated on shift S
- ► Filter $H(\tilde{S})x \Rightarrow$ Same Coefficients h_k . Same Input signal x. Instantiated on perturbed shift \tilde{S}

 $\blacktriangleright \mbox{ Perturbed model \tilde{S} is the matrix $\tilde{S}=T_0+T_1S$ } \Rightarrow T_0 \mbox{ additive and T_1 relative perturbations}$

Stability Theorems

▶ We define the notion of stability in the context of algebraic signal processing

▶ We discuss the stability properties of algebraic filters and algebraic neural networks

▶ In the algebraic signal model (A, M, ρ) filters are defined by the operators $\rho(a) \in \text{End}(M)$, $a \in A$

▶ If A is generated by the set $\mathcal{G} \subset A \implies a \in A$ can be written as a = p(g) with $g \in \mathcal{G}$, p: polynomial

▶ Any filter $H \in End(M)$ is defined by operators p(S) where $S = \rho(g)$ \Rightarrow Filters are functions of S

▶ Filters are polynomial functions of the shift operators $S \in S$ \Rightarrow We use denote filters as p(S)

Stable Operators:

We say operator p(S) is stable if there exist constants C_0 , $C_1 > 0$ such that

$$\left\| p(\mathsf{S})\mathsf{x} - p(\tilde{\mathsf{S}})\mathsf{x} \right\| \leq \left[C_0 \sup_{\mathsf{S} \in \mathcal{S}} \|\mathsf{T}(\mathsf{S})\| + C_1 \sup_{\mathsf{S} \in \mathcal{S}} \left\| D_\mathsf{T}(\mathsf{S}) \right\| + \mathcal{O}\left(\|\mathsf{T}(\mathsf{S})\|^2 \right) \right] \left\| \mathsf{x} \right\|$$

for all $x \in \mathcal{M}$ and $D_T(S)$ denoting the Fréchet derivative of T.

- $ightharpoonup \|p(S)x-p(\tilde{S})x\|$ is bounded by the size of the deformation. Measured by value and rate of change
- ► Stability is not a given ⇒ Counter examples in GNN and processing of time signals.

► Filters are polynomials on shift operators ⇒ Isomorphic to polynomials with complex variables

▶ Lipschitz Filter: Polynomial $p : \mathbb{C} \to \mathbb{C}$ is Lipschitz if $\|p(\lambda) - p(\mu)\| \le L_0 \|\lambda - \mu\|$ for some L_0

- ▶ Integral Lipschitz: Polynomial $p: \mathbb{C} \to \mathbb{C}$ is Integral Lipschitz if $\left\|\lambda \frac{dp(\lambda)}{d\lambda}\right\| \leq L_1$ for some L_1
- Restricted attention to algebras with a single generator. Generalizations are cumbersome but ready

Theorem (Stability of Algebraic Filters)

A filter that is Lipschitz and Integral Lipschitz is stable, i.e.

$$\left\| \rho(\mathsf{S}) \mathsf{x} - \rho(\tilde{\mathsf{S}}) \mathsf{x} \right\| \leq \left[(1+\delta) \left(L_0 \sup_{\mathsf{S}} \|\mathsf{T}(\mathsf{S})\| + L_1 \sup_{\mathsf{S}} \|D_{\mathsf{T}}(\mathsf{S})\| \right) + \mathcal{O}(\|\mathsf{T}(\mathsf{S})\|^2) \right] \|\mathsf{x}\|$$

- ► Good news ⇒ Algebraic filters can be made stable to perturbations
- lacktriangle Alas, we either have stability or discriminability. Integral Lipschitz Filter $\Rightarrow \left\|\lambda \frac{dp(\lambda)}{d\lambda}\right\| \leq L_1$
- Commutativity factor affects stability constant but does not generate instability

Theorem (Stability of Algebraic Neural Networks, Single Layer)

Let $\Phi_{\ell}(S,x)$ and $\Phi_{\ell}(\tilde{S},x)$ be the operators associated with layer ℓ of an Algebraic NN. If the layer filters are Lipschitz and Integral Lipschitz,

$$\left\|\Phi_{\ell}(\mathsf{S},\mathsf{x}) - \Phi_{\ell}(\tilde{\mathsf{S}},\mathsf{x})\right\| \leq \left[(1+\delta) \left(L_0 \sup_{\mathsf{S}} \|\mathsf{T}(\mathsf{S})\| + L_1 \sup_{\mathsf{S}} \|D_{\mathsf{T}}(\mathsf{S})\| \right) + \mathcal{O}(\|\mathsf{T}(\mathsf{S})\|^2) \right] \|\mathsf{x}\|$$

- ► Good news ⇒ Algebraic NNs can be made stable to perturbations. It's the same bound
- ▶ Individual layers lose discriminability. Integral Lipschitz Filter $\Rightarrow \left\|\lambda \frac{dp(\lambda)}{d\lambda}\right\| \leq L_1$
- ► Nonlinearity mixes frequency components ⇒ Recover discriminability in subsequent layers

Theorem (Stability of Algebraic Neural Networks, Multi-Layer)

Let $\Phi(S,x)$ and $\Phi(\tilde{S},x)$ be the operators associated with an Algebraic NN on L layers. If the layer filters are Lipschitz and Integral Lipschitz,

$$\left\|\Phi(\mathsf{S},\mathsf{x}) - \Phi(\tilde{\mathsf{S}},\mathsf{x})\right\| \leq L\left[(1+\delta)\left(L_0\sup_{\mathsf{S}}\|\mathsf{T}(\mathsf{S})\| + L_1\sup_{\mathsf{S}}\|\mathcal{D}_\mathsf{T}(\mathsf{S})\|\right) + \mathcal{O}(\|\mathsf{T}(\mathsf{S})\|^2)\right]\|\mathsf{x}\|$$

It is still the same bound \Rightarrow simply scaled by the number of layers L

Theorem (Stability of Algebraic Neural Networks, Multiple Generators)

Let $\Phi(S,x)$ and $\Phi(\tilde{S},x)$ be the operators associated with an Algebraic NN with M generators on

L layers. If the layer filters are Lipschitz and Integral Lipschitz,

$$\left\| \Phi(\mathsf{S},\mathsf{x}) - \Phi(\tilde{\mathsf{S}},\mathsf{x}) \right\| \leq \mathit{ML} \left[(1+\delta) \left(\mathit{L}_0 \sup_{\mathsf{S}} \|\mathsf{T}(\mathsf{S})\| + \mathit{L}_1 \sup_{\mathsf{S}} \|\mathit{D}_\mathsf{T}(\mathsf{S})\| \right) + \mathcal{O}(\|\mathsf{T}(\mathsf{S})\|^2) \right] \|\mathsf{x}\|$$

It is still the same bound \Rightarrow simply scaled by the number of generators M and layers L

Spectral Representations

▶ In this lecture we discuss of notion of spectral decompositions in algebraic signal models

▶ Recalling algebraic signal model $(A, M, \rho) \Rightarrow A$: algebra, M: vector space and ρ : homomorphism

▶ Where (M, ρ) is a representation of A \Rightarrow Each representation of A defines an algebraic signal model

▶ Given (M_1, ρ_1) and (M_2, ρ_2) representations of $A \Rightarrow$ we can define a direct sum $(M_1 \oplus M_2, \rho)$

▶ Where the action of $\rho(a)$ on $M_1 \oplus M_2$ is given according to $\rho(a)(x_1 \oplus x_2) = (\rho_1(a)x_1 \oplus \rho_2(a)x_2)$

Definition (Subrepresentation)

Let (M, ρ) be a representation of A. Then, a representation (U, ρ) of A is a subrepresentation of (M, ρ) if $U \subseteq M$ and U is invariant under all operators $\rho(a)$ for all $a \in A$, i.e. $\rho(a)u \in U$ for all $u \in U$ and $a \in A$.

Definition (Irreducible Representations)

A representation (M, ρ) with $M \neq 0$ is irreducible or simple if the only subrepresentations of (M, ρ) are $(0, \rho)$ and (M, ρ) .

Definition (Intertwining operators)

Let (M_1, ρ_1) and (M_2, ρ_2) be two representations of an algebra A. A homomorphism or interwining operator $\phi: M_1 \to M_2$ is a linear operator which commutes with the action of A, i.e.

$$\phi(\rho_1(a)v) = \rho_2(a)\phi(v),$$

And, ϕ is said to be an isomorphism of representations if it is an isomorphism of vectors spaces.

▶ If (M_1, ρ_1) and (M_2, ρ_2) are isomorphic representations we use the notation $(M_1, \rho_1) \cong (M_2, \rho_2)$

Definition (Fourier decomposition)

For (A, M, ρ) we say that there is a spectral or Fourier decomposition of (M, ρ) if

$$(M,
ho)\congigoplus_{(U_i,\phi_i)\in\operatorname{Irr}\{A\}}(U_i,\phi_i)^{\oplus m(U_i,M)}$$

where $m(U_i, M)$ indicates the number of irreducible subrepresentations of (M, ρ) that are isomorphic to (U_i, ϕ_i) . Any signal $x \in M$ can be therefore represented by the map Δ given by

$$\Delta: M \to \bigoplus_i U_i^{\oplus m(U_i,M)} \times \mapsto \hat{x}$$

The projection of \hat{x} in each U_i are the Fourier components represented by $\hat{x}(i)$.

▶ It is worth pointing out that the Fourier decomposition of any representation is defined by two sums

$$(M, \rho) \cong \bigoplus_{(U_i, \phi_i) \in \operatorname{Irr}\{A\}} (U_i, \phi_i)^{\oplus m(U_i, M)}$$

Non isomorphic subrepresentations (external) and one (internal) for Isomorphic subrepresentations

lack on the frequencies of the representation while lack on components associated to a given frequency

 $lackbox{} \Delta$ is an intertwining operator $\Rightarrow \Delta(\rho(a)x) = \rho(a)\Delta(x) \Rightarrow \text{convolution } \rho(a)x = \Delta^{-1}(\rho(a)\Delta(x))$

Fourier Decompositions

▶ The projection of $\rho(a)x$ on U_i is given by $\phi_i(a)\hat{x}(i)$ where $\phi_i:A\to \text{End}(U_i)$ is a homomorphism

▶ The collection of the projections of $\rho(a)x$ on U_i for all i is the spectral representation of $\rho(a)x$

lacktriangle The product in $\phi_i(a)\hat{\mathbf{x}}(i)$ translates into different operations depending on the dimension of U_i

▶ If dim $(U_i) = 1$, the operator $\phi_i(a)$ is a scalar while if dim $(U_i) > 1$ and finite $\phi_i(a)$ is a matrix

- ▶ The link between A and Fourier decomposition is exclusively given by $\phi_i(a)$ which is acting on $\hat{x}(i)$
- ▶ Not possible by selecting filters in A to modify the spaces U_i in the spectral decomposition of (M, ρ)
- lacktriangle Two sources of differences between two operators $\rho(a)$ and $\tilde{\rho}(a)$ associated to (\mathcal{M}, ρ) and $(\mathcal{M}, \tilde{\rho})$
- lacktriangle One source of difference can be modified by selecting subsets of A and this is embedded in ϕ_i and $\tilde{\phi}_i$
- lacktriangle Second source of difference \Rightarrow the difference between the spaces U_i and \tilde{U}_i and cannot be modified

▶ In CNNs the filtering is defined by the polynomial algebra $A = \mathbb{C}[t]/(t^N - 1)$, therefore, we have

$$\rho(a) \mathbf{x} = \sum_{i=1}^{N} \frac{\phi_i}{\phi_i} \left(\sum_{k=0}^{K-1} h_k \mathbf{t}^k \right) \hat{\mathbf{x}}(i) \mathbf{u}_i = \sum_{i=1}^{N} \sum_{k=0}^{K-1} h_k \left(e^{-\frac{2\pi i j}{N}} \right)^k \hat{\mathbf{x}}(i) \mathbf{u}_i,$$

- $\mathbf{v}_i(\mathbf{v}) = \frac{1}{\sqrt{N}} e^{\frac{2\pi j \nu i}{N}}$ is the *i*th column vector of the DFT matrix and $\phi_i(t) = e^{-\frac{2\pi j i}{N}}$ its eigenvalue
- ▶ In GNNs the filtering is defined by the polynomial algebra $A = \mathbb{C}[t]$, therefore we have

$$\rho(a)\mathbf{x} = \sum_{i=1}^{N} \frac{\phi_i}{\phi_i} \left(\sum_{k=0}^{K-1} h_k \mathbf{t}^k \right) \hat{\mathbf{x}}(i) \mathbf{u}_i = \sum_{i=1}^{N} \sum_{k=0}^{K-1} h_k \lambda_i^{\ k} \hat{\mathbf{x}}(i) \mathbf{u}_i$$

ightharpoonup u_i is the *i*th eigenvector of $\rho(t) = S$, which is the matrix graph, and $\phi_i(t) = \lambda_i$ its *i*th eigenvalue