

<u>Gameboard</u>

Maths

Area Between Two Curves 1ii

Area Between Two Curves 1ii

Figure 1 shows the curve $y = \mathrm{e}^{3x} - 6\mathrm{e}^{2x} + 32$.

Figure 1: The curve $y = e^{3x} - 6e^{2x} + 32$.

Part A x-coordinate

Give the exact x-coordinate of the minimum point and verify that the y-coordinate of the minimum point is 0.

The following symbols may be useful: \times

Part B Area of shaded region

Find the exact area of the shaded region enclosed by the curve and the coordinate axes.

The following symbols may be useful: e

Used with permission from UCLES A-level Maths papers, 2003-2017.

<u>Gameboard</u>

Maths

Integration - Trig Manipulations 4i

Integration - Trig Manipulations 4i

Find the exact value of $\int_0^{\frac{\pi}{6}} (1-\sin 3x)^2 \mathrm{d}x$.

The following symbols may be useful: pi

Used with permission from UCLES A-level Maths papers, 2003-2017.

Gameboard:

STEM SMART Single Maths 47 - Integration Revision

<u>Gameboard</u>

Maths

Integration by Substitution 1ii

Integration by Substitution 1ii

Use the substitution $x=rac{1}{3}\sin heta$ to find the exact value of

$$\int_0^{rac{1}{6}} rac{1}{(1-9x^2)^{rac{3}{2}}} \mathrm{d}x$$

Used with permission from UCLES A-level Maths papers, 2003-2017.

Gameboard:

STEM SMART Single Maths 47 - Integration Revision

<u>Gameboard</u>

Maths

Integration by Substitution 3i

Integration by Substitution 3i

Part A Substitution

Find the expression that appears to the right of the integral sign after the substitution $u=\mathrm{e}^x+1$ has been applied to $\int \frac{\mathrm{e}^{2x}}{\mathrm{e}^x+1} \mathrm{d}x$. Include $\mathrm{d}u$ in your answer.

The following symbols may be useful: du, u

Part B Integral

Hence find the exact value of $\int_0^1 rac{\mathrm{e}^{2x}}{\mathrm{e}^x+1} \mathrm{d}x$.

The following symbols may be useful: e

Used with permission from UCLES A-level Maths papers, 2003-2017.

Gameboard:

STEM SMART Single Maths 47 - Integration Revision

<u>Gameboard</u>

Maths

Integration by Parts 4ii

Integration by Parts 4ii

Find
$$\int_0^1 16x \mathrm{e}^{4x} \mathrm{d}x$$
, in an exact form.

The following symbols may be useful: e

Used with permission from UCLES A-level Maths papers, 2003-2017.

Gameboard:

STEM SMART Single Maths 47 - Integration Revision

<u>Gameboard</u>

Maths

Integration by Parts 3i

Integration by Parts 3i

Find
$$\int_0^\pi \left(x^2+5x+7
ight)\sin x\,\mathrm{d}x.$$

The following symbols may be useful: pi

Used with permission from UCLES A-level Maths papers, 2003-2017.

Gameboard:

STEM SMART Single Maths 47 - Integration Revision

Gameboard

Maths

Algebraic Division 1i

Algebraic Division 1i

Part A Algebraic Division

Use algebraic division to express $\frac{x^3-2x^2-4x+13}{x^2-x-6}$ in the form $Ax+B+\frac{Cx+D}{x^2-x-6}$, where A,B,C, and D are constants.

The following symbols may be useful: x

Part B Partial Fractions

Express the term of the form $\frac{Cx+D}{x^2-x-6}$ from the above part in partial fractions.

The following symbols may be useful: x

Part C Integral

Hence find $\int_4^6 rac{x^3-2x^2-4x+13}{x^2-x-6} \mathrm{d}x$, giving your answer in the form $a+\ln b$.

Used with permission from UCLES A-level Maths papers, 2003-2017.

Gameboard:

STEM SMART Single Maths 47 - Integration Revision

Gameboard

Maths

Integration of Differential Equations 3i

Integration of Differential Equations 3i

Part A Partial Fractions

Express

$$\frac{16+5x-2x^2}{(x+1)^2(x+4)}$$

in partial fractions.

The following symbols may be useful: x

Part B Specific Solution

It is given that

$$rac{\mathrm{d} y}{\mathrm{d} x} = rac{(16 + 5x - 2x^2)y}{(x+1)^2(x+4)}$$

and that $y=rac{1}{256}$ when x=0. Use this condition to find an expression for $\ln(y)$.

The following symbols may be useful: e, ln(), log(), x, y

Part C Exact Value of y

Find the exact value of y when x=2. Give your answer in the form Ae^2 .

The following symbols may be useful: e, ln(), log(), x, y

Used with permission from UCLES A-level Maths papers, 2003-2017.

Gameboard:

STEM SMART Single Maths 47 - Integration Revision

<u>Gameboard</u>

Maths

Modelling - Advanced 2ii

Modelling - Advanced 2ii

At time t seconds, the radius of a spherical balloon is r cm. The balloon is being inflated so that the rate of increase of its radius is inversely proportional to the square root of its radius. When t=5, r=9 and, at this instant, the radius is increasing at $1.08 \, \mathrm{cm \, s^{-1}}$.

Part A Differential equation

Write down a differential equation to model this situation. Your answer should include a constant k, whose value you do not need to determine yet.

The following symbols may be useful: Derivative(r, t), k, r, t

Part B Solution

Solve the differential equation to express r in terms of t. Your answer should include some numerical constants, which should be converted to exact fractions.

The following symbols may be useful: r, t

Part C Initial condition

How much air (in ${
m cm}^3$) is in the balloon initially? Write your answer as an exact expression.

The following symbols may be useful: pi

Used with permission from UCLES A-level Maths papers, 2003-2017.