$\{x\} \times Y$

Compattezza dei prodotti finiti

Teor. $\forall n \in \mathbb{N}, \forall X_1, \dots, X_n$ spazi top. compatti $\Rightarrow X_1 \times \dots \times X_n$ compatto.

Dim. Basta dimostrarlo per n=2 e fare induzione su n.

Supponiamo X e Y compatti e dimostriamo che $X \times Y$ è compatto.

 $\forall \mathcal{W} = \{U_{\alpha} \times V_{\alpha}\}_{\alpha \in A}$ ricoprimento aperto basico di $X \times Y$, $\forall x \in X \rightsquigarrow$

$$V_{\alpha,x} := (U_{\alpha} \times V_{\alpha}) \cap (\{x\} \times Y) \Rightarrow$$

 $\mathcal{V}_x = \{V_{\alpha,x}\}_{\alpha \in A}$ ricoprimento aperto di $\{x\} \times Y \cong Y \stackrel{Y \text{ cpt}}{\Longrightarrow} \exists A_x \subset A$ finito t.c. $\mathcal{V}_x' = \{V_{\alpha,x}\}_{\alpha \in A_x}$ sottoricoprimento di \mathcal{V}_x e $\emptyset \notin \mathcal{V}_x' \Rightarrow x \in U_\alpha$, $\forall \alpha \in A_x$

$$\Rightarrow$$
 $x \in U_x' := \bigcap_{\alpha \in A_x} U_\alpha$ (intersezione finita) \Rightarrow

 U_x' aperto in $X \rightsquigarrow \mathcal{U} = \{U_x'\}_{x \in X}$ ricoprimento aperto di $X \overset{X \text{ cpt}}{\leadsto} \{U_{x_1}', \ldots, U_{x_k}'\}$ sottoricoprimento finito di \mathcal{U} per $X \rightsquigarrow$

$$A':=igcup_{i=1}^k A_{x_i}\subset A$$
 sottoinsieme finito \Rightarrow

 $\forall (x, y) \in X \times Y \rightsquigarrow x \in U'_{x_i} \rightsquigarrow (x_i, y) \in V_{\alpha, x_i}$ per un certo $\alpha \in A_{x_i} \subset A' \Rightarrow (x, y) \in U'_{x_i} \times V_{\alpha} \subset U_{\alpha} \times V_{\alpha} \in \mathcal{W}'$. Quindi $X \times Y$ è compatto. \square

Cor. I^n compatto $\forall n \geqslant 1$.

Def. Il diametro di uno spazio metrico (X, d) è definito come

$$diam(X) = \sup\{d(x, y) \mid x, y \in X\} \in \mathbb{R} \cup \{\infty\}.$$

 $X \in limitato$ se diam $(X) < \infty$.

Teorema di Heine-Borel. $X \subset \mathbb{R}^n$ è compatto $\Leftrightarrow X$ è chiuso e limitato.

 $Dim. \implies X$ compatto e \mathbb{R}^n di Hausdorff $\Rightarrow X$ chiuso in \mathbb{R}^n .

 $\{B(0,k)\cap X\}_{k\in\mathbb{N}}$ ricoprimento aperto di $X \rightsquigarrow$ sottoricoprimento finito $\Rightarrow X \subset B(0,k)$ con k massimo raggio $\Rightarrow X$ limitato.

 $\exists k \in \mathbb{N} \text{ t.c. } X \subset B(0,k) \subset [-k,k]^n \Rightarrow X \text{ chiuso in } [-k,k]^n \cong I^n \text{ compatto} \Rightarrow X \text{ compatto}.$

Cor. B^n , S^n e T^n sono compatti.

Cor. \mathbb{R}^n è localmente compatto.

Cor. $X \subset \mathbb{R}$ compatto non vuoto $\Rightarrow X$ ha massimo e minimo.

Dim. X chiuso e limitato $\Rightarrow \sup X \in Cl_{\mathbb{R}} X = X \Rightarrow \sup X = \max X$. \square

Cor. $f: X \to \mathbb{R}$ continua e X compatto \Rightarrow f ha massimo e minimo.

Dim. $f(X) \subset \mathbb{R}$ compatto $\Rightarrow f(X)$ ha max e min $\Rightarrow f$ ha max e min. \square

Enunciamo senza dimostrazione il seguente teorema di compattezza per prodotti arbitrari di spazi compatti.

Teorema di Tychonoff. $\{X_i\}_{i\in I}$ spazi compatti $\Rightarrow \prod_{i\in I} X_i$ compatto.

Esempio. Il cubo di Hilbert $[0,1]^{\mathbb{N}}$ è compatto.

Compattezza per successioni

Def. Uno spazio X è compatto per successioni o sequenzialmente compatto se ogni successione in X ammette una sottosuccessione convergente.

N.B. La compattezza per ricoprimenti e la compattezza per successioni sono nozioni distinte e in generale nessuna delle due implica l'altra. Esistono esempi di spazi compatti ma non compatti per successioni e viceversa.

Il seguente teorema è noto dall'Analisi e non lo dimostriamo.

Teorema di Bolzano-Weierstrass. $X \subset \mathbb{R}^n$ è compatto per successioni $\Leftrightarrow X$ è chiuso e limitato.

Dai teoremi di Heine-Borel e Bolzano-Weierstrass si ha:

Cor. $X \subset \mathbb{R}^n$ è compatto $\Leftrightarrow X$ è compatto per successioni.

In generale vale il teorema seguente che enunciamo senza dimostrazione.

Teor. Uno spazio metrizzabile è compatto ⇔ è compatto per successioni.

Relazione d'equivalenza indotta

Def. $f: X \to Y \rightsquigarrow \sim_f: \forall x_1, x_2 \in X, x_1 \sim_f x_2 \stackrel{\text{def}}{\Longleftrightarrow} f(x_1) = f(x_2)$ relazione d'equivalenza indotta da f.

Oss. $f: X \to Y$ continua $\leadsto \bar{f}: X/\sim_f \to Y$, $\bar{f}([x]) := f(x)$ ben definita, continua e iniettiva, infatti $f = \bar{f} \circ \pi$. \bar{f} è detta f passata al quoziente.

Oss. $f: X \to Y$ continua, X/\sim_f compatto e Y di Hausdorff $\Rightarrow \bar{f}: X/\sim_f \to Y$ immersione (\bar{f} omeo se f è anche suriettiva).

Def. $A \subset X \rightsquigarrow X/A \stackrel{\text{def}}{=} X/(a_1 \sim a_2, \forall a_1, a_2 \in A)$. $A \in X/A$ è un punto.

Esempio. $[0, 1]/\{0, 1\} = [0, 1]/(0 \sim 1) \cong S^1$

$$f: [0,1] \to S^1$$
, $f(x) = (\cos(2\pi x), \sin(2\pi x))$

identifica 0 e 1 \Rightarrow \bar{f} : [0, 1]/{0, 1} \rightarrow S^1 omeo.

Spazi proiettivi

Caso reale. $\pi: \mathbb{R}^{n+1} - \{0\} \to \mathbb{RP}^n$. $S^n \subset \mathbb{R}^{n+1}$.

 $\pi|_{S^n}: S^n \to \mathbb{R}\mathsf{P}^n$ continua e suriettiva $\Rightarrow \mathbb{R}\mathsf{P}^n$ compatto.

Infatti
$$[x] = \pi \left(\frac{x}{\|x\|} \right)$$
, $\forall [x] \in \mathbb{R} \mathsf{P}^n$.

Oss. $\forall x, y \in S^n$, $[x] = [y] \Leftrightarrow x = \pm y$.

Immersione in \mathbb{R}^N . $\forall i, j \in \{0, ..., n\} \rightsquigarrow$

$$\varphi_{ij}: \mathbb{R}\mathsf{P}^n \to \mathbb{R}$$

$$arphi_{ij}([x_0,\ldots,x_n]) \mathrel{\mathop:}= rac{x_i x_j}{x_0^2 + \cdots + x_n^2}$$

ben definita e continua perché $arphi_{ij} \circ \pi$ è continua

$$\varphi_{ij}([x]) = \varphi_{ij}([y]), \ \forall i, j \in \{0, ..., n\} \Rightarrow [x] = [y].$$

 $\varphi: \mathbb{R}\mathsf{P}^n \to \mathbb{R}^{(n+1)^2}$ con componenti φ_{ij} (in un certo ordine) continua iniettiva $\Rightarrow \varphi$ immersione $\Rightarrow \mathbb{R}\mathsf{P}^n$ metrizzabile (\Rightarrow di Hausdorff) e II-numerabile.

Retta proiettiva reale. $\mathbb{RP}^1 \cong S^1/(x \sim -x, \, \forall \, x \in S^1) \cong I/\{0, 1\} \cong S^1$

Caso complesso. $\pi: \mathbb{C}^{n+1} - \{0\} \to \mathbb{C}P^n$. $S^{2n+1} \subset \mathbb{C}^{n+1} \cong \mathbb{R}^{2n+2}$.

 $\pi|_{S^{2n+1}}: S^{2n+1} \to \mathbb{C}\mathsf{P}^n$ continua e suriettiva $\Rightarrow \mathbb{C}\mathsf{P}^n$ compatto.

Infatti
$$[x] = \pi\left(\frac{x}{\|x\|}\right)$$
, $\forall [x] \in \mathbb{CP}^n$.

 $\textbf{Oss.} \ \forall \, x,y \in S^{2n+1}, \ [x] = [y] \Leftrightarrow \exists \, \alpha \in S^1 \subset \mathbb{C} \ \text{t.c.} \ x = \alpha y.$

Immersione in \mathbb{C}^N . $\forall i, j \in \{0, ..., n\} \sim \rightarrow$

$$\varphi_{ij}: \mathbb{C}\mathsf{P}^n \to \mathbb{C}$$

$$arphi_{ij}([x_0,\ldots,x_n]):=rac{x_iar{x}_j}{|x_0|^2+\cdots+|x_n|^2}$$

ben definita e continua perché $\varphi_{ij} \circ \pi$ è continua.

$$\varphi_{ij}([x]) = \varphi_{ij}([y]), \ \forall i, j \in \{0, ..., n\} \Rightarrow [x] = [y].$$

 $\varphi: \mathbb{CP}^n \to \mathbb{C}^{(n+1)^2}$ con componenti φ_{ij} (in un certo ordine) continua iniettiva $\Rightarrow \varphi$ immersione $\Rightarrow \mathbb{CP}^n$ metrizzabile (\Rightarrow di Hausdorff) e II-numerabile.