CSci 243 Homework 4

Due: Wednesday, October 5, end of day Carlo Mehegan

- 1. (10 points) For sets A, B, and C, prove that $(B-A) \cup (C-A) = (B \cup C) A$
 - (a) by using set properties and propositional calculus
 - (b) by using a membership table

\boldsymbol{A}	$\boldsymbol{\mathit{B}}$	C	B-A	C-A	$(B-A)\cup (C-A)$	$B \cup C$	$\mid (B \cup C) - A$
0	0	0	0	0	0	0	0
1	0	0	0	0	0	0	0
0	1	0	1	0	0	0	0
1	1	0	0	0	0	0	0
0	0	1	0	1	0	0	0
1	0	1	0	0	0	0	0
0	1	1	1	1	1	1	1
1	1	1	0	0	0	1	0

- 2. (5 points) Find these values.
 - (a) [1.1]

= 1

- (b) [1.1]= 2
- (c) [-0.1]= -1
- $(d) \begin{bmatrix} -0.1 \\ = 0$
- (e) $\left\lfloor \frac{1}{2} + \left\lceil \frac{1}{2} \right\rceil \right\rfloor$ = 1
- 3. (8 points) Determine whether each of these functions from \mathbb{Z} or $\mathbb{Z} \times \mathbb{Z}$ to \mathbb{Z} is one-to-one, onto, both, or neither. Justify your answer.
 - (a) f(n) = 2n 1

one-to-one: yes; each value of n corresponds to only one value of f(n).

onto: no; for f(n) = 0, no possible value for n in range \mathbb{Z} . n would have to equal $\frac{1}{2}$, so f(n) doesn't map to each value in range \mathbb{Z} .

(b) f(n) = |n| + 1

one-to-one: no; some values of f(n) correspond to multiple values of n. ex. f(1) = 2, f(-1) = 2.

onto: no; all values of f(n) are greater than zero, not mapping to each value in range \mathbb{Z} .

(c) $f(n) = n^3$

one-to-one: yes; each value of n corresponds to only one value of f(n).

onto: yes; f(n) maps to each value in range \mathbb{Z} .

(d) $f(n) = \lfloor \frac{n}{2} \rfloor$

one-to-one: no; two values of n correspond to each value of f(n).

onto: yes; f(n) maps to each value in range \mathbb{Z} .

- 4. (12 points) A quick review of algebra. Answer the following:
 - (a) Simplify: $(q^3p^{2/3})(\sqrt{p^3}q^{-1}) = q^2p^{\frac{13}{6}}$
 - (b) Simplify: $aa^2a^4a^7a^5a^3 = a^{22}$
 - (c) Simplify to have no x, y in the same factors: $(\log(xy)\log(x/y) = (\log x)^2 + (\log y)^2$
 - (d) Add the fractions to produce one fraction: $\frac{2}{x^2+4x+4} + \frac{1}{x+2} = \frac{x+4}{(x+2)(x+2)}$
 - (e) If $x, y, z, d \in \mathbb{R}$, are the following True or False?
 - i. $x < y \land z < d \rightarrow xz < yd$ False
 - ii. $x < y \land z < d \rightarrow xd < yz$ False
 - iii. $x > 0 \land y > 0 \land x < y \land z < d \rightarrow xd < yz$ False
 - iv. $x > 0 \land y > 0 \land z > 0 \land d > 0 \land x < y \land z < d \rightarrow xd < yz$ False
 - (f) Solve for *x*:
 - i. $10^{3x+5} = 100$

$$x = -1$$

ii.
$$3^{x^2}(9^x) = 1/3$$

$$x = -1$$

iii.
$$\log_x 64 = 2$$

$$x = 8$$

iv.
$$\log_3(2x+1) = \log_9(x^2)$$

 $x = -\frac{1}{2}$