Fair Allocation of Indivisible Items

- A set N of n agents, a set M of m indivisible items
- Proportionality (Prop): We say that allocation $A = (A_1, ..., A_n)$ is proportional if each agent gets at least 1/n share of the all items, where n is the number of agents, i.e., $v_i(A_i) \ge \frac{1}{n} v_i(M), \quad \forall i$

$$v_i(A_i) \ge \frac{1}{n} v_i(M), \quad \forall i$$

Prop1: We say that A is proportional up to one item if each agent gets at least 1/n share of all items after adding one more item from outside, i.e.,

$$v_i(A_i \cup \{g\}) \ge \frac{1}{n} v_i(M), \qquad g \in M \setminus A_i, \forall i$$

Prop1 Allocation

- \blacksquare Let (p, x) be equilibrium prices and allocations
- Since x is an envy-free allocation \Rightarrow it is also proportional
- We can assume that there is <u>no cycle</u> in the <u>support</u> of x

Q3. Show that	$t = \frac{6}{7}$ -MMS a	llocation exists for
three age	ents.	
2		3 agents!
Step l: Normalize	valuations Vi (M)=3, [€ {1,2,3}]=> Mi <1.
Step2: Suppos	e there is an	Item J St. Vij > 3/4
	s = only two	agents => exists MMS.
if No	\Rightarrow $V_{ij} < \frac{3}{4}$	$\forall i,j = m > 4$
_		2 Vim Vi.
Suppose allo	cation	
A_{1}	Az	Az
	92	A3 g_{1} g_{2} g_{3} g_{4} g_{4} g_{4} g_{4} g_{5} g_{5} g_{4} g_{5} g_{5} g_{7} g_{8}
		9 4 modium =>doesn'e
3	we	can remove it. il 明见 3-ms.
$if < \frac{3}{4} \Rightarrow V_{ii}$	4 < 3	=> two agents.
	keep adding until Vil	$(A_i) \geqslant \frac{3}{4}$
23 N B	VilAX 3+3=1	(As) > 3 Sinilarly we can adding items to Az until U: (Az) > 3 2 = 15 Since Az E[3, 7]
4 []	Vi (A, UAz) >3-	to A_{1} Until $V(A_{1}) \ge \frac{2}{4}$ Since $A_{1} \in \left(\frac{3}{4}, \frac{9}{2}\right]$ then $A_{1} \in \left(\frac{3}{4}, \frac{9}{2}\right]$

$\Delta = \frac{6}{7}$ -MMS allocation for 3 agents.			
Step 1: Normalize valuations $Vi(M)=3$ $i=[1,2,3]=>Mi=1$.			
Step 2: Suppose there is an agent i and item j			
S.t. Vij > 6, we can allocate j to i.			
then there are two agents which must exist I-MNS allocation.			
if Vig < 5 Hi.j. => m > 4.			
Let's order Vi, 7 Viz 3 ? Vim Vi.			
Suppose allocation			
A, A, A,			
g_1 g_2 g_3			
94)			
\mathbb{D} if $V_i(\{g_s,g_{\theta}\}) \geqslant \frac{6}{7}$, we can allocate $\{g_s,g_{\theta}\}$			
to i. without decreasing remaining MMS-value			
then it's a two agents problem.			
(2) if $V_i([g_3, g_4]) \times \frac{3}{7} \Rightarrow V_i(g_j) \leq \frac{3}{14} \forall j \geq 4$.			
keep adding items to Az=19,94? until Vi(Az) > =			

Finally, we can get Vi(A3) < [= , 15].
Similarily, we can add items to Az= {9,} until V: (Az) > 7
$V_{i}(A_{i}) \in [\frac{6}{7}, \frac{15}{14}] = V_{i}(A_{i}) \in [\frac{6}{7}, \frac{9}{7}].$
the A= [A, Az. Az] is the \frac{6}{7}-MMS allocation.
(3). if $V_i(lg_i, g_4l) \in (\frac{3}{7}, \frac{6}{7}) = V_i(g_j) < \frac{3}{7} \forall j \geq 4$.
$V_{i}(g_{j}) > \frac{3}{14} j = 1.2.3.$

Prop1 Allocation

- \blacksquare Let (p, x) be equilibrium prices and allocations
- Since x is an envy-free allocation \Rightarrow it is also proportional
- We can assume that there is no cycle in the support of x

- Pick an agent arbitrarily and make her the root
- Rounding?