

TTI109 - Estatística

Aula 10 - Distribuições Discretas de Probabilidade 02

- Há muitos experimentos probabilísticos para os quais os resultados de cada tentativa podem ser reduzidos a dois resultados: sucesso e fracasso.
- Tais experimentos são chamados de experimentos binomiais.

Definição

Um **experimento binomial** é um experimento probabilístico que satisfaz as seguintes condições:

1. O experimento tem um número fixo de tentativas, em que <u>cada tentativa é</u> independente das outras.

- 2. Há apenas dois resultados possíveis para cada tentativa, que podem ser classificados como sucesso (S) ou fracasso (F).
- 3. A probabilidade de um sucesso é a mesma para cada tentativa.
- 4. A variável aleatória x conta o número de tentativas com sucesso

a.		
SO	1	SUCESSO
	FRACASSO	audice .
	- 146	A CONTRACTOR
а.		

-			~
SIMB		DECO	RICAO
			KII VII
SHAID	ULU	DLJU	NIGAU
			3

- n O número de tentativas.
- p A probabilidade de sucesso em uma única tentativa.
- q A probabilidade de fracasso em uma única tentativa (q = 1 p).
- A variável aleatória representa a contagem do número de sucessos em n tentativas: x = 0, 1, 2, 3, ..., n.

EXEMPLO Uma carta de um baralho comum é escolhida ao acaso e então é verificado se a carta é de paus ou não. A seguir, a carta é devolvida.

- O experimento é repetido cinco vezes, .
- O resultado para cada tentativa pode ser classificado em duas categorias:
 - = tirar uma carta de paus
 - = tirar uma carta de outro naipe

Tentativa	Resultado	S ou F?
1	10	F
2	9 + + + + + + + + + + 6	S
3	* * * * * * * * * * * * * * * * * * *	F
4	5	F
5	+	S

EXEMPLO Uma carta de um baralho comum é escolhida ao acaso e então é verificado se a carta é de paus ou não. A seguir, a carta é devolvida.

• As probabilidades de sucesso e fracasso são:

 A variável aleatória representa o número de cartas de paus selecionadas nas cinco tentativas:

Identificando e compreendendo experimentos binomiais

1. Um certo procedimento cirúrgico tem 85% de chances de sucesso. Um médico realiza o procedimento em oito pacientes. A variável aleatória representa o número de cirurgias com sucesso.

Binomial ou não?

É um experimento binomial pois:

- 1 Cada cirurgia representa uma tentativa. Há oito cirurgias () e cada uma é independente das outras.
- 2 Há apenas dois resultados possíveis para cada cirurgia sucesso ou fracasso.
- 3 A probabilidade de sucesso para cada cirurgia é de .
- A variável aleatória representa o número de cirurgias com sucesso.

Identificando e compreendendo experimentos binomiais

2. Uma jarra contém cinco bolas de gude vermelhas, nove azuis e seis verdes. Você escolhe três bolas aleatoriamente, *sem reposição*. A variável aleatória representa o número de bolas vermelhas.

Binomial ou não?

Não é um experimento binomial!

A seleção de bola de gude representa uma tentativa e selecionar uma bolinha vermelha é um sucesso. Na primeira tentativa, a probabilidade de sucesso é 5/20. Porém, como a bola não é reposta, a probabilidade de sucesso nas tentativas subsequentes não é mais 5/20.

As tentativas não são independentes!!!

- Há várias formas de encontrar a probabilidade de sucessos em tentativas de um experimento binomial.
- Uma delas é usar um diagrama de árvore e a regra da multiplicação. Outra, é usar a função massa de probabilidade binomial (pmf).

Em um experimento binomial, a probabilidade de exatamente sucessos em tentativas é:

$$P(x) = C_{n,x}p^{x}q^{n-x} = {n \choose x}p^{x}(1-p)^{n-x} = \frac{n!}{(n-x)!x!}p^{x}(1-p)^{n-x}$$

Calculando uma probabilidade binomial

Cirurgias do manguito rotador têm 90% de chance de sucesso. A cirurgia é realizada em três pacientes. Determine a probabilidade de ela ser um sucesso em exatamente dois pacientes. (*Fonte: The Orthopedic Center of St. Louis.*)

Método 1: Diagrama de árvore e regra da multiplicação

Método 2: Probabilidade Binomial

Método 1: Diagrama de árvore e regra da multiplicação

1ª cirurgia	2ª cirurgia	3ª cirurgia	R	esultado	Número de sucess	Probabilidade
		s		SSS	3	$\frac{9}{10} \cdot \frac{9}{10} \cdot \frac{9}{10} = \frac{729}{1.000}$
s –		— F	1	SSF	2	$\frac{9}{10} \cdot \frac{9}{10} \cdot \frac{1}{10} = \frac{81}{1.000}$
		s	2	SFS	2	$\frac{9}{10} \cdot \frac{1}{10} \cdot \frac{9}{10} = \frac{81}{1.000}$
		— F		SFF	1	$\frac{9}{10} \cdot \frac{1}{10} \cdot \frac{1}{10} = \frac{9}{1.000}$
		s	3	FSS	2	$\frac{1}{10} \cdot \frac{9}{10} \cdot \frac{9}{10} = \frac{81}{1.000}$
_ F-		— F		FSF	1	$\frac{1}{10} \cdot \frac{9}{10} \cdot \frac{1}{10} = \frac{9}{1.000}$
		s		FFS	1	$\frac{1}{10} \cdot \frac{1}{10} \cdot \frac{9}{10} = \frac{9}{1.000}$
	— r —	— F		FFF	0	$\frac{1}{10} \cdot \frac{1}{10} \cdot \frac{1}{10} = \frac{1}{1.000}$

São <u>3 ocorrências de</u>
<u>exatamente dois</u>
<u>sucessos</u>, cada uma
com probabilidade
81/1000. Logo:

Método 2: Probabilidade Binomial

Temos, e. Assim, a probabilidade de que exatamente duas cirurgias do manguito rotador sejam bem sucedidas é:

 Ao listar os valores possíveis de com as correspondentes probabilidades, determina-se uma distribuição de probabilidade binomial.

EXEMPLO Em uma pesquisa, indivíduos adultos foram solicitados para que indicassem quais dispositivos utilizavam para acessar mídias sociais. Os resultados estão na figura.

Sete participantes da pesquisa são selecionados aleatoriamente e indagados se utilizam um *telefone celular* para acessar mídia social. Construa uma distribuição de probabilidade binomial para o número de adultos que respondeu sim.

Temos e. Os valores possíveis para estão no conjunto.

x	P(x)
0	0,0134
1	0,0798
2	0,2040
3	0,2897
4	0,2468
5	0,1261
6	0,0358
7	0,0044
	$\Sigma P(x) = 1$

Média, variância e desvio padrão

Embora seja possível usar as fórmulas para média, variância e desvio padrão de uma distribuição discreta de probabilidade, as propriedades de uma distribuição binomial resultam em fórmulas muito mais simples.

Parâmetros populacionais de uma distribuição binomial

Média $\mu = np$

Como q=1-p: $\begin{cases} \sigma^2 = np(1-p) \\ \sigma = \sqrt{np(1-p)} \end{cases}$ Variância: $\sigma^2 = npq$

Desvio padrão: $\sigma = \sqrt{npa}$

EXEMPLO Em Pittsburgh, Pensilvânia, cerca de 56% dos dias em um ano são nublados. Calcule a média, a variância e o desvio padrão para o número de dias nublados durante o mês de junho. Interprete os resultados e determine quaisquer valores incomuns. (Fonte: *National Climatic Data Center*).

(dias em junho) (56% dias nublados)

Interpretação:

- Em média, há 16,8 dias nublados durante o mês de junho.
- O desvio padrão é de aproximadamente 2,7 dias.
- Valores que distam mais do que dois desvios padrões da média são considerados incomuns. Como o desvio padrão é de aproximadamente 2,7 dias:

TTI109 - Estatística

Aula 10 - Distribuições Discretas de Probabilidade 02

