HUST

ĐẠI HỌC BÁCH KHOA HÀ NỘI HANOI UNIVERSITY OF SCIENCE AND TECHNOLOGY

ONE LOVE. ONE FUTURE.

ĐẠI HỌC BÁCH KHOA HÀ NỘI HANOI UNIVERSITY OF SCIENCE AND TECHNOLOGY

C BASIC

BINARY SEARCH

ONE LOVE. ONE FUTURE.

CONTENT

- Binary search
- Checking the existence (P.06.13.01)
- Pairs of numbers with a given sum (P.06.13.02)

BINARY SEARCH

- Given a sequence a_1, a_2, \ldots, a_n in non-decreasing order. Given k, find i such that $a_i = k$.
- Binary search
 - Consider the mid element a_m with m = (1+n)/2
 - If $a_m = k$ then return m
 - If $a_m < k$ then do binary search in a_{m+1} , a_{m+2} , ..., a_n
 - Otherwise, do binary search in $a_1, a_2, ..., a_{m-1}$.

```
bSearch(a[1..n], L, R, k){
   if L > R then return -1; // not found
   if L = R then {
      if a[L] = k then return L; else return -1;
   }
   m = (L+R)/2;
   if a[m] = k then return m;
   if a[m] < k then return bSearch(a[1..n], m+1, R, k);
   else return bSearch(a[1..n], L, m-1, k);
}</pre>
```

CHECKING THE EXISTENCE (P.06.13.01)

- Given a sequence a_1, a_2, \ldots, a_n . Perform the queries with the form:
 - check k: return 1 if k appears in the given sequence, otherwise return 0
- Data
 - Line 1: a positive integer *n* (1 <= *n* <= 100000)
 - Line 2: $a_1, a_2, ..., a_n$ where $(1 \le a_i \le 1000000)$
 - Next lines, each line a query with the above form
 - Input data ends with a line "#"
- Result
 - Each line corresponds to a query in the input data

stdin	stdout
5	1
13334	1
check 3	0
check 3	0
check 10	0
check 5	
check 8	
#	

CHECKING THE EXISTENCE - PSEUDOCODE

- Algorithm
 - Sort a_1, a_2, \ldots, a_n in non-decreasing order
 - For each query check *k*: do binary search for *k* in the sorted sequence.

```
Run() {
  read a[1..n] from the stdin;
 sort(a[1..n]) in a non-decreasing order;
 while true do {
     cmd = read a string from stdin;
     if cmd = "#" then break;
     if cmd = "check" then {
        k = read an integer from stdin;
        i = bSearch(a[1..n], 1, n, k);
        if i > -1 then write(1); else write(0);
```

PAIRS OF NUMBERS WITH A GIVEN SUM (P.06.13.02)

- Given a sequence a_1, a_2, \ldots, a_n and a value Q. Counting the number M of pairs of indices (i, j) such that 1 <= i < j <= n vào $a_i + a_j = Q$.
- Data
 - Line 1: Two positive integers *n* and *Q* (1 <= *n*, *Q* <= 1000000)
 - Line 2: A sequence $a_1, a_2, ..., a_n$ where $(1 \le a_i \le 1000000)$
- Result
 - Write out M

stdin	stdout
5 8 4 6 5 3 2	2
46532	

PAIRS OF NUMBERS WITH A GIVEN SUM - PSEUDOCODE

Algorithm

- Sort the sequence a_1, a_2, \ldots, a_n in non-decreasing order
- Iterate the sequence from left to right, for each index i, do binary search for $Q a_i$ in $a_{i+1}, a_{i+2}, \ldots, a_n$.

```
Run() {
  read a[1..n] and Q from the stdin;
 sort(a[1..n]) in a non-decreasing order;
 cnt = 0;
 for i = 1 to n-1 do {
   idx = bSearch(a[1..n], i+1, n, Q - a[i]);
   if idx > 0 then
     cnt = cnt + 1;
 write(cnt);
```

HUST hust.edu.vn f fb.com/dhbkhn

THANK YOU!