Tutorial 6 EE 101 BJT Circuits

Q1. For circuit 1 shown in the figure, suppose R_B = 270K, R_C = 1.5K, V_{BB} = V_{CC} = 6V, and β = 120. Find whether BJT operates in active region or saturation region? Find I_C , I_B , and V_{CE} . If the value of R_C is changed to 3K, find whether BJT is in active or saturation region?

Circuit:1

Q2. For the inverter circuit shown in figure 2, BJT has $\beta=100.$ Find noise margins NM_{L} and $\text{NM}_{\text{H}}.$

- Q3. The DTL circuit shown in the circuit 3 is a NOR gate. Suppose that the voltage across a forward biased diode is 0.7V. If the low voltage is 0.2 V and high voltage is 5 V, find:
 - (a) The mnimum value of β required for proper operation.
 - (b) Noise margin for the case when β is 100.

Q4. For the amplifier below, $h_{fe}=h_{FE}=100$, $R_1=R_2=400$ k Ω , $R_E=R_s=1$ k Ω , $R_L=9$ k Ω , and $V_{CC}=20$ V. Given that $I_{CQ}=3.09$ mA, find (a) A_v , (b) R_{in} , (c) $A_i=i_L/i_b$, (d) R_o . Does this amplifier act as a unity gain amplifier with high input resistance and low output resistance?

Q5. For the circuit given in figure 5 suppose h_{FE} = h_{fe} =100, R_1 = R_2 = 26K, R_C = 980, R_E = 2K and V_{CC} = 10V. Find: g_m , r_e , R_{in} and A_v .

Fig.6

Problem 6. For the emitter follower circuit in figure 6 suppose that hFE=h $_{fe}$ =100, R $_1$ =R $_2$ =26k-ohm, R $_e$ =R $_i$ =2kohm, R $_s$ =1k ohm and V $_{cc}$ =10V. Find (i) V $_e$ /V $_b$, (ii) R $_{in}$ and (iii) R $_o$

Problem7. Assume figure 7b to be the equivalent small signal model of the transistor in figure 7a. Calculate V_c/V_b for the circuit in the figure taking $R_c=R_L=2k$ ohm, $h_{ie}=1.3K$ ohm, $h_{re}=10^{-4}$, $h_{fe}=100$, $h_{oe}=10^{-5}$ mho. Now, repeat the calculation without h_{re} and h_{oe} . How does the answer differ.

(b)