INTRODUCTION TO EMBEDDED SYSTEMS

COURSE INTRODUCTION

Getachew Teshome (Room 120-B)

Addis Ababa University, AAIT

School of Electrical and Computer Engineering

September, 2024

EMBEDDED SYSTEM

A computer System

Embedded within another system

to define/ control functionality of the embedding system.

Drum, Spin Motor, heater, hot air blower, Water Dispenser, Soap dispenser, pump, Sewage valve, display, alarm, ...

WHAT IS AN EMBEDDED SYSTEM?

EXAMPLES

- Consumer: Phone, Camera, TV, Game Console
- Office: Printer, Copier, Fax, ...
- Home Appliance: Microwave, Refrigerator, AC
- Automotive: Car Engine, navigator, ...
- Aviation: Fly-by-wire, Entertainment, ...
- Industrial: Robots, Automation Units in Factories
- Military: Missile guidance, Drone

SMART

Every electronic device that is called "Smart" has an Embedded System in it:

- Smart Grids
- Smart Meters
- Smart Phones
- Smart TVs
- Smart Buildings ...

Attaching an Embedded System to an object makes it "Smart"!

Embedded systems in automobiles

Airbags

Navigation

Radio

Anti lock braking system

Adaptive cruise control

Automatic parking

Drive through wire

Telematics

Black Box

CHARACTERISTICS OF ES

- Single-functioned: executes one program repeatedly.
 - A digital camera Vs Laptop Computer
- Tightly constrained: have tight design constraints
 - cost, size, performance, and power
- Reactive and real-time: continually interacts with its environment and executes at-pace with environment
 - Brake control in a car Vs Keyboard input of desktop
- Dependable: Should work under all circumstances
- Dedicated user interface: no mouse, keyboard, screen
- Hybrid systems: analog + digital parts.

CHARACTERISTICS OF ES

- Must be Dependable,
 - Reliability R(t) = probability of system working correctly at t provided that it was working at t=0
 - Maintainability M(d) = probability of system working correctly d time units after error occurred.

- Availability A(t): probability of system working at time t

- Safety: no harm to be caused
- Security: confidential and authentic communication

Even perfectly designed systems can fail!

CHARACTERISTICS OF ES

- Must be efficient WHY?
 - Energy efficient
 - Code-size efficient (especially for systems on a chip)

- Run-time efficient
- Weight efficient
- Cost efficient

Dedicated Function

→ knowledge about behavior at design time can be used to minimize resources and to maximize robustness!

EMBEDDED VS GP

Embedded Systems

- Few applications that are known at designtime
- Not user programmable
- Fixed run-time requirements
- Important criteria
 - Cost
 - Power consumption
 - Predictability

– ...

GP Systems

- Execute broad class of applications
- Programmable by the end user
- Faster is better
- Important criteria
 - Cost
 - Average speed

APPLICATION DOMAINS

į.	general purpose	embedded	real time	safety critical	cost sensitive
	general purpose -				
	PC, server, etc.	-	-	_	-a
•	embedded ———				
	 consumer electronics 	X	Х	-	х
	automotive	X	X	X	X
	avionics	X	Χ	Х	_
	military	X	Χ	X	-

PAST

- Control Oriented Applications
 - Traffic lights control
 - Elevators control
 - Washing machines and dishwashers
- Simple Hardware Implementation
 - Sequential Circuit
 - m-controller

NOW - HARDWARE

- Network of Processors: Automobile, Airplane.
- Heterogeneous processors: run-time efficiency requirements, power efficiency Vector, Power Mgmt

TM

CP1

- Higher Degree of Integration
 - Discrete
 - IC
 - \square μ P, μ C
 - SoC [Processor + memory + I/O-units]+ communication structure]
 - MPSoC, NoC, Co-P

NOW – SOFTWARE

- TV, mobile phone, car: > 10 MLOC
- Code complexity is growing exponentially
- Number of bugs is growing exponentially
- Despite good SW eng'g ~10 bugs / KLOC
- 100 G\$ / yr on bug repair
- Embedded SW is difficult!
- Software dominates the total cost.
- Testing and validation dominates the SW cost

SOFTWARE – ORIENTED

NOW

NOW - MARKET

- Appear in every walk of life.
- 100 times PC market size.
- 25% annual growth.
- Accounts for 25-40% cost of a modern automotive.
 (15-60 ES per car)
- More affordable (GPS, VC)

FUTURE

- Ubiquitous Computing, Pervasive computing, Ambient Intelligence
- Convergence
- Wearables
- Security

YOUR POSITION

EE CE CS IT IS

THE COURSE

- Introduction to Embedded Systems
- Embedded Systems Design
- Hardware Elements of Embedded System
- Embedded Programming
- State Machines
- Testing and Verification
- Selected Topics

LECTURE + LAB

- Lecture
- Assignments
- Paper review
- ✓ Class Activity,
- √ Final Exam`

- Lab Exercises
- Project (Group of 4)
- ✓ Attendance,
- ✓ Circuits & Codes,
- ✓ Report

ASSIGNMENT 1

- Investigate an Embedded System of your choice and write a short summary outlining
 - What it does, why it is an Embedded System
 - What it contains (Hardware and software components)
 - Its function described using Schematic diagrams and Flow chart
- 2-4 pages true content
- Submission: March 7, 2024. before 23:59.

END