

Challenges of NDE Simulation Tool Development and Validation For Composites

Dr. Cara A.C. Leckey¹, Peter D. Juarez¹,
Jeffrey P. Seebo², Ashley L. Frank³

¹Nondestructive Evaluation Sciences Branch, NASA Langley Research Center

²Analytical Mechanics Associates, NASA LaRC

³William and Mary REU Program

Overview

Nondestructive Evaluation Sciences Branch

- Focus on composites
- Validation related challenges
 - Experimental comparisons
 - Avoiding application of the tool to cases that don't fit prior validations
- Tool development challenges
 - Memory efficiency
 - Computational efficiency (speed)
 - Hardware related challenges
 - Hardware selection and keeping up with continuous progress

Composites for Space

Nondestructive Evaluation Sciences Branch

<https://www.youtube.com/watch?v=IRutJfOsglI>

Nondestructive Evaluation Sciences Branch

Composites for Aeronautics

- Advanced Composite Project (5 Year Project):
 - Reduce timeline for certification of composite structures
 - Partnership: NASA, FAA, DoD, Industry, University
- Rapid Inspection Technical Challenge:
 - Focus areas:
 - Inspection of complex geometry components
 - Rapid large area inspection
 - Damage/defect characterization
 - Validation of detectability
 - Damage types:
 - Microcracking, fiber waviness, delamination, porosity
- Simulation:
 - Enables model based inspection prediction/validation and cost effective method optimization
 - Custom code, 3D ultrasound simulation under development

Boeing 787

GE Genx

Lockheed Martin F-35

Northrop Grumman
Fire Scout

Composite Damage/Defect Types

Nondestructive Evaluation Sciences Branch

X-ray CT data of microcrack damage

X-ray CT data of microcrack damage

Micrograph showing resin rich regions and fiber misalignment

Micrograph showing porosity

Fiber waviness (in-plane),
From Kugler and Moon 2002

doi: 10.1177/0021998302036012575

X-ray CT data of delamination damage

X-ray CT of PRSEUS Joint

From NASA TM-2013-217799 by Patrick Johnston

UT data of delamination damage

Nondestructive Evaluation Sciences Branch

Simulation Tool Validation Challenges

- Direct comparisons between simulation and experiment can be challenging
 - Requires specific experimental design
- Experimental case will always have some differences from the simulated case
- Getting representative samples for experiment can be a challenge
 - Creating representative defects/damage
 - Differences between ‘idealized’ material properties and as-manufactured
- Must perform re-validation against appropriate cases when the simulation tool is used for a new purpose
 - Understanding of the physics is required to know when this is necessary

Example: Ultrasound simulation

Nondestructive Evaluation Sciences Branch

- Elastodynamic finite integration technique ultrasonic simulation code
 - Custom C++ and MPI
 - Similar to finite difference
 - Adaptable, efficient, all details under our control

Simulation Validation Approach 1

Nondestructive Evaluation Sciences Branch

- Laser Doppler vibrometry experiment comparisons
- Group velocity comparisons unidirectional IM7/8552 8-ply sample:
 - Track envelope peak propagation (using Hilbert transform)

Mode 1 group velocity comparisons:

Method	Mode 1, 0° v_g (m/s)	Mode 1, 90° v_g (m/s)	% Difference from EFIT, 0°	% Diff from EFIT, 90°
EFIT	1956 \pm 90	1335 \pm 44	—	—
Dispersion curves	1911	1254	2.33	6.26
Experiment	2254 \pm 84	1464 \pm 69	14.16	9.22

Note: time step of frames and colormapping in the two movies is not the same

Simulation Validation Approach 2

- Compare wave behavior in all directions
- Wavenumber comparison technique:
 - Start with data for all grid points on surface of sample, amplitude at x-position vs. y-position vs. time
 - Take 3D FFT to yield x-wavenumber vs. y-wavenumber vs. frequency (where $k=f/c_{\text{phase}}$)
 - Select frequency slice that corresponds to the excitation frequency

Unidirectional Case

Nondestructive Evaluation Sciences Branch

- A0 mode results (S0 mode is very low amplitude)
- Amplitude variation around k_x - k_y oval is due to excitation source filtering (changes with couplant, transducer, etc and can be included in EFIT as well)
 - Interested in directional wave behavior observed via wavenumber values

Unidirectional laminate: Mode 1 wavenumber comparisons

Method	$0^\circ \ k(1/m)$	$90^\circ \ k(1/m)$	% Difference from EFIT, 0°	% Diff from EFIT, 90°
EFIT	143.3	263.4	—	—
Dispersion curves	139.7	258.1	2.54	2.03
Experiment	129.5	229.1	10.12	13.93

Cross-ply case

Nondestructive Evaluation Sciences Branch

- Demonstrates ability to build up laminates ply-by-ply in EFIT
- However - is orthotropic only!

[0/90/0/90] _s Layup				
Method	0° $k(1/m)$	90° $k(1/m)$	% Difference from EFIT, 0°	% Diff from EFIT, 90°
EFIT	159.8	169.2	—	—
Dispersion curves	161.4	180.7	1.00	6.57
Experiment	152.3	170.5	4.81	0.77

Nondestructive Evaluation Sciences Branch

Orthotropic vs. Non-orthotropic

$$T_{11}^{(t+\Delta t/2)} = T_{11}^{(t-\Delta t/2)} + \frac{\Delta t}{\Delta x} \left[c_{11}^{(n)} (v_1^{(n)} - v_1^{(n-\hat{x}_1)}) + c_{12}^{(n)} (v_2^{(n)} - v_2^{(n-\hat{x}_2)}) + c_{13}^{(n)} (v_3^{(n)} - v_3^{(n-\hat{x}_3)}) \right]$$

$$\begin{aligned} T_{11}^{(t+\Delta t/2)} &= T_{11}^{(t-\Delta t/2)} + \frac{\Delta t}{\Delta x} \left[c_{11}^{(n)} (v_1^{(n)} - v_1^{(n-\hat{x}_1)}) + c_{12}^{(n)} (v_2^{(n)} - v_2^{(n-\hat{x}_2)}) + c_{13}^{(n)} (v_3^{(n)} - v_3^{(n-\hat{x}_3)}) \right] \\ &\quad + \frac{\Delta t}{4\Delta x} \left[c_{14}^{(n)} \left((v_2^{(n)} + v_2^{(n-\hat{x}_2)} + v_2^{(n+\hat{x}_3)} + v_2^{(n-\hat{x}_2+\hat{x}_3)}) \right. \right. \\ &\quad \left. \left. - (v_2^{(n-\hat{x}_2)} + v_2^{(n)} + v_2^{(n-\hat{x}_2-\hat{x}_3)} + v_2^{(n-\hat{x}_3)}) + (v_3^{(n-\hat{x}_3)} + v_3^{(n)} + v_3^{(n+\hat{x}_2-\hat{x}_3)} + v_3^{(n+\hat{x}_2)}) \right. \right. \\ &\quad \left. \left. - (v_3^{(n-\hat{x}_3)} + v_3^{(n)} + v_3^{(n-\hat{x}_2-\hat{x}_3)} + v_3^{(n-\hat{x}_2)}) \right) \right. \\ &\quad \left. + c_{15}^{(n)} \left((v_1^{(n-\hat{x}_1)} + v_1^{(n)} + v_1^{(n-\hat{x}_1+\hat{x}_3)} + v_1^{(n+\hat{x}_3)}) - (v_1^{(n-\hat{x}_1)} + v_1^{(n)} + v_1^{(n-\hat{x}_1-\hat{x}_3)} + v_1^{(n-\hat{x}_3)}) \right. \right. \\ &\quad \left. \left. + (v_3^{(n-\hat{x}_3)} + v_3^{(n)} + v_3^{(n+\hat{x}_1-\hat{x}_3)} + v_3^{(n+\hat{x}_1)}) - (v_3^{(n-\hat{x}_1-\hat{x}_3)} + v_3^{(n-\hat{x}_1)} + v_3^{(n-\hat{x}_3)} + v_3^{(n)}) \right) \right. \\ &\quad \left. + c_{16}^{(n)} \left((v_1^{(n-\hat{x}_1)} + v_1^{(n-\hat{x}_1+\hat{x}_2)} + v_1^{(n)} + v_1^{(n+\hat{x}_2)}) - (v_1^{(n-\hat{x}_1-\hat{x}_2)} + v_1^{(n-\hat{x}_1)} + v_1^{(n)} + v_1^{(n-\hat{x}_2)}) \right. \right. \\ &\quad \left. \left. + (v_2^{(n-\hat{x}_2)} + v_2^{(n)} + v_2^{(n+\hat{x}_1-\hat{x}_2)} + v_2^{(n+\hat{x}_1)}) - (v_2^{(n-\hat{x}_1-\hat{x}_2)} + v_2^{(n-\hat{x}_1)} + v_2^{(n-\hat{x}_2)} + v_2^{(n)}) \right) \right] \end{aligned}$$

Nondestructive Evaluation Sciences Branch

Quasi-isotropic case

Method	k_x , 0° (A mode)	k_y , 90° (A mode)	% Diff EFIT 0°	% Diff EFIT 90°
EFIT	147.5	150.4	--	--
Experiment	140.6	166.1	4.68	10.44

*Ongoing work

Differences from Experiment

Nondestructive Evaluation Sciences Branch

- Overall simulation yields results close to experiment and predicted dispersion curves
- Expected some differences from experiment due to as-fabricated material properties of laminate versus “ideal” properties used in model
 - Thickness variation, fiber warping, variation in fiber density, slightly off-angle ply layers (laid up by hand)

Unidirectional laminate:

Fiber waviness

[0₂/90₂]_s laminate:

Thickness variation

[0₂/90₂]_s laminate:

Variation in fiber density,
resin rich regions

Once we have a working simulation tool – let's use it!

- Develop optimized and new damage quantification methods
- Predict inspectability
- Validate SHM
- Etc.....
- Still have validation challenges ahead
- You developed a promising new inspection methodology, now go back and validate against experiment

Guided Wave Energy Trapping

Nondestructive Evaluation Sciences Branch

- Studied previously by several authors via LDV and simple simulations
 - These prior studies focused on single layer delamination

¹Glushkov, E, Glushkova, N, Golub, M, Moll, J, Fritzen, CP. *Smart Materials and Structures* 21.12 (2012): 125001.

²Sohn, H., Dutta, D., Yang, J. Y., Park, H. J., DeSimio, M., Olson, S., & Swenson, E. (2011). *Composites science and technology*, 71(9), 1250-1256.

Michaels , J; Dawson, A ; Michaels, T ; Ruzzene, M. Proc. SPIE 9064, (2014); doi:10.1117/12.2045172.

³Zhenhua Tian ; Lingyu Yu ; Cara A. C. Leckey; Proc. SPIE 9063, (2014), doi:10.1117/12.2044927.

Energy Trapping

Nondestructive Evaluation Sciences Branch

- Potential for rough sizing of damage via rapid data processing

LDV data:
500 kHz

Mass normalized
cumulative energy

$$E_i(x, y, z, t) = \int_{t_1}^{t_2} \frac{1}{2} v_i^2 dt$$

LDV data:
200 kHz

- Can energy trapping be leveraged for multi-ply delam characterization with only single sided access?

Hidden Delamination Study

Nondestructive Evaluation Sciences Branch

- Specifically: can energy reduction be used to provide information about the presence of hidden delamination damage?
- Simulation based study:
 - 8 ply, IM7/8552 CFRP sample $[(0/90)_2]_s$, 0.92 mm thick
 - 3 simple delamination cases: 1, 2, and 3 delaminations (+ pristine case)
 - 300 kHz, 3 cycle Hann windowed sine wave
 - $\Delta x = 19 \mu\text{m}$, Δt analysis = $0.29 \mu\text{s}$ ($\Delta t / 200$)

Nondestructive Evaluation Sciences Branch

Simulation Study: Cumulative Energy

Energy trends

Nondestructive Evaluation Sciences Branch

- Quantitative comparisons, energy above top delamination

Note: nonzero for pristine because energy still passes into that region (especially with edge scattering, etc)

Nondestructive Evaluation Sciences Branch

Validation

- LDV scans of composites with Teflon inserts
- Matching simulated cases (ranging from single delam to 3)
- Contact transducer for excitation
- Plan is to measure cumulative energy trapping

Inclusion with Teflon Case

Nondestructive Evaluation Sciences Branch

- Unexpected defects/variability due to manufacturing
- Immersion UT 10 MHz, 0.01" resolution

Resin rich
regions?
Wrinkles?

Repeatability

- For amplitude based studies, repeatability can be an issue
- Differences between repeated data scan sets
 - Couplant changes!
- Also, planning to use laser excitation

Transducer face: Scan 1

Transducer face: Scan 2

Transducer face: Scan 3

Code optimization

Nondestructive Evaluation Sciences Branch

- Single vs double precision?
- Porting code often requires some amount of re-writes
- Must check that ported code yields same results as validated code!
- Example shown here:
 - ~10x improvement in efficiency
 - 0.6% cost
- But – scalability also matters

Conclusions

Nondestructive Evaluation Sciences Branch

- Inevitable shift towards more use of modeling and simulation to test hypotheses, optimize methods, predict inspectability, etc
- This is a good thing, as it may enable new approaches and cost-effective investigation of inspection methods
- However, validation is a key step with many challenges
- Whether custom or commercial simulation software is used, it is of key importance to know that validation has been performed and successful

Nondestructive Evaluation Sciences Branch

Thanks to: Eric Burke, NASA LaRC

END