1 Allgemeines

Dreiecksungleichung:	$\begin{vmatrix} x - y \le x \pm y \le x + y \\ \vec{x}^\top \cdot \vec{y} \le \vec{x} \cdot \vec{y} \\ (1+x)^n \ge 1 + nx \end{vmatrix}$
Cauchy-Schwarz-Ungleichung:	$\left \vec{x}^{\top} \cdot \vec{y} \right \leq \left\ \vec{x} \right\ \cdot \left\ \vec{y} \right\ $
Bernoulli-Ungleichung:	$(1+x)^n \ge 1 + nx$
Aritmetrische Summenformel	$\sum_{k=1}^{n} k = \frac{n(n+1)}{2}$
Geometrische Summenformel	$\sum_{k=0}^{n} q^k = \frac{1 - q^{n+1}}{1 - q}$
Binomialkoeffizient	$\binom{n}{k} = \binom{n}{n-k} = \frac{n!}{k! \cdot (n-k)!}$ $\binom{n}{0} = \binom{n}{n} = 1$
	$\binom{n}{0} = \binom{n}{n} = 1$

Wichtige Zahlen:

$$\pi \approx 3,14159$$
 $e \approx 2,71828$ $\sqrt{2} \approx 1,414$ $\sqrt{3} \approx 1,732$

Fakultäten
$$n! = 1 \cdot 2 \cdot 3 \cdot \ldots \cdot n$$
 $0! = 1! = 1$

2 Mengen

Eine Zusammenfassung wohlunterschiedener Elemente zu einer Menge explizite Angabe: $A = \{1; 2; 3\}$ Angabe durch Eigenschaft: $A = \{n \in \mathbb{N} \mid 0 < n < 4\}$

2.1 Für alle Mengen A,B,C gilt:

- 1. $\emptyset \subseteq B$
- 2. $A \setminus (B \cup C) = (A \setminus B) \cap (A \setminus C)$
- 3. $(A \cap B) \cap C = A \cap (B \cap C)$ $(A \cup B) \cup C = A \cup (B \cup C)$
- 4. $A \cap (B \cup C) = (A \cap B) \cup (A \cap C)$ $A \cup (B \cap C) = (A \cup B) \cap (A \cup C)$

$$\mathbb{Q} = \{ \frac{p}{q} \mid p \in \mathbb{Z}; q \in \mathbb{N} \}$$

Jede rationale Zahl $\frac{m}{n} \in \mathbb{Q}$ hat ein Dezimaldarstellung.

0,
$$25\overline{54}$$
 =: $a \to 10000a - 100a = 2554 - 25 \Rightarrow a(9900) = 2529 $\Rightarrow a = \frac{2529}{9900} = \frac{281}{1100}$$

3 Vollständige Induktion

Behauptung:
$$f(n)=g(n)$$
 für $n_0\leq n\in\mathbb{N}$ IA: $n=n_0$: Zeige $f(n_0)=g(n_0)$ =wahr. IV: Behauptung gilt für ein beliebiges $n\in\mathbb{N}$ (Sei $f(n)$ =wahr) IS: $n\to n+1$: Zeige $f(n+1)=f(n)$ = $g(n+1)$

4 Komplexe Zahlen

Eine komplexe Zahl $z=a+b\mathbf{i},\ z\in\mathbb{C}a,b\in\mathbb{R}$ besteht aus einem Realteil $\Re(z) = a$ und einem Imaginärteil $\Im(z) = b$, wobei $\mathbf{i} = \sqrt{-1}$ die immaginären Einheit ist. Es gilt: $i^2 = -1$ $i^4 = 1$

4.1 Kartesische Koordinaten

$$z_1 + z_2 = (a_1 + a_2) + (b_1 + b_2)\mathbf{i}$$

 $z_1 \cdot z_2 = (a_1 \cdot a_2 - b_1 \cdot b_2) + (a_1 \cdot b_2 + a_2 \cdot b_1)\mathbf{i}$

Konjugiertes Element von $z = a + b\mathbf{i}$:

$$\overline{z} = a - b\mathbf{i}$$
 $e^{i\overline{x}} = e^{-ix}$ $\overline{z} = |z|^2 = a^2 + b^2$

Inverses Element:
$$z^{-1} = \frac{\overline{z}}{\overline{z}z} = \frac{\overline{z}}{a^2+b^2} = \frac{a}{a^2+b^2} - \frac{b}{a^2+b^2}\mathbf{i}$$

4.2 Polarkoordinaten

$$\begin{aligned} & \text{Multiplikation:} \ \ z_1 \cdot z_2 = r_1 * r_2 (\cos(\varphi_1 + \varphi_2) + \mathrm{i} \sin(\varphi_1 + \varphi_2)) \\ & \text{Division:} \ \ \frac{z_1}{z_2} = \frac{r_1}{r_2} (\cos(\varphi_1 - \varphi_2) + \mathrm{i} \sin(\varphi_1 - \varphi_2)) \end{aligned}$$

n-te Potenz:
$$z^n = r^n \cdot e^{n\varphi \mathbf{i}} = r^n(\cos(n\varphi) + \mathbf{i}\sin(n\varphi))$$

n-te Wurzel:
$$\sqrt[n]{z} = z_k = \sqrt[n]{r} \left(\cos \left(\frac{\varphi + 2k\pi}{n} \right) + \mathbf{i} \sin \left(\frac{\varphi + 2k\pi}{n} \right) \right)$$

$$\mbox{Logarithmus: } \ln(z) = \ln(r) + \mbox{i}(\varphi + 2k\pi) \mbox{ (Nicht eindeutig!)}$$

Anmerkung: Addition in kartesische Koordinaten umrechnen(leichter)

5 Funktionen

Eine Funktion f ist eine Abbildung, die jedem Element x einer Definitionsmenge D genau ein Element y einer Wertemenge W zuordnet. $f: D \to W, x \mapsto f(x) := y$

Injektiv:
$$f(x_1) = f(x_2) \Rightarrow x_1 = x_2$$

Surjektiv: $\forall y \in W \exists x \in D : f(x) = y$
(Alle Werte aus W werden angenommen.)

Bijektiv: f ist injektiv und surjektiv $\Rightarrow f$ umkehrbar.

5.1 Symmetrie einer Funktion f

Achsensymmetrie(gerade Funktion): f(-x) = f(x)**Punktsymmetrie**(ungerade Funktion): f(-x) = -f(x)

Regeln für gerade Funktion g und ungerade Funktion u: $u_1 \pm u_2 = u_3$ $g_1 \pm g_2 = g_3$ $g_1 \cdot g_2 = g_3$ $u_1 \cdot u_2 = g_3$ $u_1 \cdot g_1 = u_3$

5.2 Extrema, Monotonie und Krümmung von f

$$\begin{array}{l} f'(x_0) \stackrel{!}{=} 0 \quad \begin{cases} f''(x_0) < 0 & \rightarrow \text{ Maximum (lokal)} \\ f''(x_0) > 0 & \rightarrow \text{ Minimum (lokal)} \end{cases} \\ f'(x) \stackrel{\geq}{\geq} / \stackrel{\leq}{\leq} 0 & \rightarrow f \text{ (streng) Monoton steigend/fallend. } x \in [a,b] \\ f''(x) \stackrel{\geq}{\geq} / \stackrel{\leq}{\leq} 0 & \rightarrow f \text{ (strikt) konvex/konkav. } x \in [a,b] \end{cases}$$

5.3 Asymptoten von f

Horizontal:
$$c = \lim_{x \to +\infty} f(x)$$

Horizontal: $c=\lim_{x\to\pm\infty}f(x)$ Vertikal: \exists Nullstelle a des Nenners : $\lim_{x\to a^\pm}f(x)=\pm\infty$

Polynomasymptote P(x): $f(x):=\frac{A(x)}{Q(x)}=P(x)+\frac{B(x)}{Q(x)}$

5.4 Wichtige Sätze für stetige Fkt. $f:[a,b]\to\mathbb{R}, f\mapsto f(x)$

Zwischenwertsatz: $\forall y \in [f(a), f(b)] \exists x \in [a, b] : f(x) = y$ Mittelwertsatz: Falls f diffbar, dann $\exists x_0 : f'(x_0) = \frac{f(b) - f(a)}{b - a}$ Satz von Rolle: Falls f(a) = f(b), dann $\exists x_0 : f'(x_0) = 0$

Regel von L'Hospital: (Falls ∃ ein Grenzwert) $\lim_{x \to a} \frac{f(x)}{g(x)} \to \left[\frac{0}{0}\right] / \left[\frac{\infty}{\infty}\right] = \lim_{x \to a} \frac{f'(x)}{g'(x)}$

5.5 Polynome $P(x) \in \mathbb{R}[x]_n$

$$\begin{array}{l} P(x)=\sum_{i=0}^n a_i x^i=a_n x^n+a_{n-1} x^{n-1}+\ldots+a_1 x+a_0\\ \text{L\"osungen f\"ur } ax^2+bx+c=0\\ \text{Mitternachtsformel:} \qquad | \text{ Satz von Vieta:} \end{array}$$

$$x_{1/2} = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a}$$
 $x_1 + x_2 = -\frac{b}{a}$ $x_1 x_2 = \frac{c}{a}$

5.6 Trigonometrische Funktionen

$$f(t) = A \cdot \cos(\omega t + \varphi_0) = A \cdot \sin(\omega t + \frac{\pi}{2} + \varphi_0)$$
$$\sin(-x) = -\sin(x) \qquad \cos(-x) = \cos(x)$$
$$\sin^2 x + \cos^2 x = 1 \qquad \tan x = \frac{\sin x}{\cos x}$$

$$e^{ix} = \cos(x) + i\sin(x), e^{-ix} = \sin(x) - i\cos(x)$$

Additionstheoreme

$$\cos(x+y) = \cos x \cos y - \sin x \sin y$$

$$\cos\left(x-\frac{\pi}{2}\right) = \sin x \qquad \sin\left(x+\frac{\pi}{2}\right) = \cos x$$

$$\sin(x+y) = \sin x \cos y + \cos x \sin y$$

$$\sin 2x = 2\sin x \cos x$$

$$\cos 2x = \cos^2 x - \sin^2 x = 2\cos^2 x - 1$$

x	0	$\pi/6$	$\pi/4$	$\pi/3$	$\pi/2$	π	$\frac{3}{2}\pi$	2π
sin	0	$\frac{1}{2}$	$\frac{1}{\sqrt{2}}$	$\frac{\sqrt{3}}{2}$	1	0	-1	0
cos	1	$\frac{\sqrt{3}}{2}$	$\frac{1}{\sqrt{2}}$	$\frac{1}{2}$	0	-1	0	1
$_{ m tan}$	0	$\frac{\sqrt{3}}{3}$	1	$\sqrt{3}$	`	0	`	0

6 Matrizen

Eine Matrix ist eine Tabelle aus mathematischen Objekten. Die Matrix $A=(a_{ij})\in\mathbb{K}^{m\times n}$ hat m Zeilen mit Index i und n Spalten mit Index j

6.1 Allgemeine Rechenregeln

Merke: Zeile vor Spalte! (Multiplikation, Indexreihenfolge, etc...)

1)
$$A + 0 = A$$
 2) $1 \cdot A = A$

3)
$$A+B=B+A$$

5) $(A+B)+C=A+(B+C)$
4) $A\cdot B\neq B\cdot A$ (im allg.)
6) $\lambda(A+B)=\lambda A+\lambda B$

Multiplikation von $A \in \mathbb{K}^{m \times r}$ und $B \in \mathbb{K}^{r \times n}$: $AB \in \mathbb{K}^{m \times n}$

6.2 Transponieren

$$\begin{array}{l} \text{Falls } A = (a_{ij}) \in \mathbb{K}^{m \times n} \text{ gilt: } A^\top = (a_{ji}) \in \mathbb{K}^{n \times m} \\ \text{Regeln:} \\ (A+B)^\top = A^\top + B^\top \quad (A \cdot B)^\top = B^\top \cdot A^\top \\ (\lambda A)^\top = \lambda A^\top \quad (A^\top)^\top = A \end{array}$$

 $A \in \mathbb{K}^{n \times n}$ ist symmetrisch, falls $A = A^{\top}$ (\Rightarrow diagbar) $A \in \mathbb{K}^{n \times n}$ ist schiefsymmetrisch, falls $A = -A^{\top}$ $A \in \mathbb{K}^{n \times n}$ ist schlesymmetrisch, raiss A = -A $A \in \mathbb{K}^{n \times n}$ ist orthogonal(Spaltenvektoren=OGB), falls: $AA^{\top} = E_n$ $A^{\top} = A^{-1}$ $\det A = \pm 1$ $A \in \mathbb{C}^{n \times n}$ ist hermitesch, falls $A = \overline{A}^{\top}$ (kmplx. konj. u. transp.)

6.3 Inverse Matrix $A^{-1} \in \mathbb{K}^{n \times n}$

für die inverse Matrix
$$A^{-1}$$
 von $A\in\mathbb{K}^{n\times n}$ gilt: $A^{-1}A=E_n$ $(A^{-1})^{-1}=A$ $(AB)^{-1}=B^{-1}A^{-1}$ $(A^{\top})^{-1}=(A^{-1})^{\top}$

 $A \in \mathbb{R}^{n \times n}$ ist invertierbar, falls: $\det(A) \neq 0 \quad \lor \quad rg(A) = n$

Berechnen von A^{-1} nach Gauß: $AA^{-1} = E_n \quad \Rightarrow \quad (A|E_n) \stackrel{EZF}{\longrightarrow} (E_n|A^{-1})$

6.4 Elementare Zeilen/Spaltenumformungen(EZF/ESF)

 $A \in \mathbb{K}^{m \times n}$ hat m Zeilen $z_i \in \mathbb{K}^n$ und n Spalten $s_i \in \mathbb{K}^m$

- Addition ($\lambda \neq 0$): $\lambda_1 z_1 + \lambda_2 z_2$ / $\lambda_1 s_1 + \lambda_2 s_2$
- Vertauschen von Zeilen/Spalten
- Multiplikation mit $\lambda \neq 0$: $\lambda \cdot z$ / $\lambda \cdot s$

6.5 Rang einer Matrix A

 $A \in \mathbb{K}^{m \times n}$ mit r lin. unabhängige Zeilen und l Nullzeilen":

Rang von
$$A$$
: $rg(A) = m - l = r$

Zeilenrang (A): Bringe A auf ZSF \Rightarrow Zeilenrang(A) = rg(A)

Zeilenraum (A): $Z_A = Zeilen ungleich 0$ Spaltenrang: Bringe Matrix auf Spaltenstufenform

Kern: $\ker(A) = \{x \in \mathbb{R}^n \mid Ax = 0\}$ $\dim(\ker(A)) = n - r$ **Bild:** $A^T \Rightarrow EZF \Rightarrow \text{Zeilen} \ (\neq 0)$ bilden die Basis vom Bild. Die (lin.

unabhängigen) Spalten von A bilden eine Basis vom Bild.

6.6 Lineares Gleichungssystem LGS

Das LGS Ax = b kurz (A|b) mit $A \in \mathbb{K}^{m \times n}$, $x \in \mathbb{K}^n$, $b \in \mathbb{K}^m$ hat m Gleichungen und n Unbekannte.

Lösharkeitskriterium:

Ein LGS (A|b) ist genau dann lösbar, wenn: rg(A) = rg(A|b)Die Lösung des LGS (A|b) hat $\dim \ker A = n - \operatorname{rg}(A)$ frei wählbare

Das homogene LGS: (A|0) hat stets die triviale Lösung 0

Das LGS hat eine Lsg. wenn $\det A \neq 0 \quad \rightarrow \exists A^{-1}$

Summen und Vielfache der Lösungen von (A|0) sind wieder Lösungen.

6.7 Determinante von $A \in \mathbb{K}^{n \times n}$: det(A) = |A|

•
$$\det \begin{pmatrix} A & 0 \\ C & D \end{pmatrix} = \det \begin{pmatrix} A & B \\ 0 & D \end{pmatrix} = \det(A) \cdot \det(D)$$

$$\bullet \begin{vmatrix} \lambda_1 & & * \\ & \ddots & \\ 0 & & \lambda_n \end{vmatrix} = \lambda_1 \cdot \ldots \cdot \lambda_n = \begin{vmatrix} \lambda_1 & & 0 \\ & \ddots & \\ * & & \lambda_n \end{vmatrix}$$

- $\bullet \ \ A = B \cdot C \quad \Rightarrow \quad |A| = |B| \cdot |C|$
- $det(A) = det(A^{\top})$
- Hat A zwei gleiche Zeilen/Spalten $\Rightarrow |A| = 0$

$$ullet$$
 $|A| = \sum\limits_{i=1}^n (-1)^{i+j} \cdot a_{ij} \cdot |A_{ij}|$ Entwcklng. n. i ter Zeile

- $det(\lambda A) = \lambda^n det(A)$
- Ist A invertierbar, so gilt: $det(A^{-1}) = (det(A))^{-1}$
- ullet Vertauschen von Zeilen/Spalten ändert Vorzeichen von |A|
- $\det(AB) = \det(A)\det(B) = \det(B)\det(A) = \det(BA)$

Vereinfachung für Spezialfall $A \in \mathbb{K}^{2 \times 2}$:

$$A = \begin{pmatrix} a & b \\ c & d \end{pmatrix} \in K^{2 \times 2} \Rightarrow \det(A) = |A| = ad - bc$$

7 Vektorräume

Eine nichtleere Menge V mit zwei Verknüpfungen + und \cdot heißt K-Vektorraum über dem Körper K.

Linear Unabhängig: Vektoren heißen linear unabhängig, wenn aus: $\lambda_1 \vec{v}_1 + \lambda_2 \vec{v}_2 + \ldots + \lambda_n \vec{v}_n = \vec{0}$ folgt, dass $\lambda_1 = \lambda_2 = \lambda_n = 0$

7.1 Skalarprodukt $\langle v, w \rangle$

Bilinear: $\langle \lambda v + v', w \rangle = \lambda \cdot \langle v, w \rangle + \langle v', w \rangle$

Symmetrisch: $\langle v, w \rangle = \langle w, v \rangle$

Positiv definit: $\langle v, v \rangle > 0$

Skalarprodukt bezüglich symmetrischer, quadratischer und positiv definite Matrix $A \in \mathbb{R}^{n \times n}$ $\langle v, w \rangle_A = v^T A w$

Matrix A positiv definit falls $\det(a_{11}) > 0 \wedge \det\begin{pmatrix} a_{11} & a_{12} \\ a_{21} & a_{22} \end{pmatrix} >$

 $0 \wedge \ldots \wedge \det(A) > 0$ Orthogonale Projektion $p \in U^n$ von $q \in V^m$ auf $\sum u_i$:

$$p = \sum_{i=1}^{n} \left\langle q, \frac{u_i}{|u_i|} \right\rangle \frac{u_i}{|u_i|} = q - p^{\perp}$$

$$\begin{split} & \text{Winkel} \quad \left\langle \vec{a}, \vec{b} \right\rangle = a \cdot b \cdot \cos \phi \qquad \phi = \arccos \left(\frac{\left\langle x, y \right\rangle}{\|x\| \|y\|} \right) \\ & \text{Polynome} < p(x), q(x) > = \int\limits_{-\pi}^{1} p(x) q(x) \; dx \end{split}$$

7.2 Betrag von Vektoren

$$||\vec{a}|| = \sqrt{\langle \vec{a}, \vec{a} \rangle} = \sqrt{a_1^2 + a_2^2 + \ldots + a_n^2}$$

Orthonormalisierungsvefahren von n Vektoren nach Gram-Schmidt:

1.
$$b_1 = \frac{v_1}{\|v_1\|}$$
 (Vektor mit vielen 0en oder 1en)

$$2.\ b_{k+1} = \frac{b_{k+1}'}{\|b_{k+1}'\|} \ \ \text{mit} \quad b_{k+1}' = v_{k+1} - \sum_{i=1}^k \langle v_{k+1}, b_i \rangle \cdot b_i$$

$$\begin{split} & \text{Experiment: } (t_1,y_1),\dots,(t_n,y_n) \\ & f_1:\mathbb{R} \to \mathbb{R}, f_1(x) = 1 \qquad f_2:\mathbb{R} \to \mathbb{R}, f_2(x) = x \\ & \Rightarrow A = \begin{pmatrix} f_1(t_1) & f_2(t_1) \\ \vdots & \vdots \\ f_1(t_n) & f_2(t_n) \end{pmatrix} \qquad v = \begin{pmatrix} y_1 \\ \vdots \\ y_n \end{pmatrix} \end{split}$$

$$A^{\top}Ax = A^{\top}v \rightarrow \mathsf{LGS}$$
 lösen nach x $f: \mathbb{R} \rightarrow \mathbb{R}, f(x) = x_1f_1(x) + \ldots + x_nf_n(x)$

Orthogonale Projektion in UVR:

1. Normiere Basis von
$$U$$
.
2. $u=\langle b_1,v\rangle\,b_1+\langle b_2,v\rangle\,b_2\ldots\Rightarrow u^\perp=v-u$
Abstand von v zu $U\colon \left\|u^\perp\right\|$

7.4 Vektorprodukt

$$\vec{a} \times \vec{b} = \begin{pmatrix} a_2 b_3 - a_3 b_2 \\ a_3 b_1 - a_1 b_3 \\ a_1 b_2 - a_2 b_1 \end{pmatrix} \qquad \vec{a}, \vec{b} \in \mathbb{R}^3$$

 $\vec{a} imes \vec{b} \perp \vec{a}, \vec{b}$ $(\vec{a} imes \vec{b} = 0 \iff \vec{a}; \vec{b} ext{ linear abhängig.}$ $||\vec{a} \times \vec{b}|| = ||\vec{a}|| \cdot ||\vec{b}|| \cdot \sin\left(\measuredangle(\vec{a}; \vec{b})\right) \stackrel{\frown}{=} \mathsf{Fl}$ äche des Parallelogramms

Graßmann-Identität: $\vec{a} \times (\vec{b} \times \vec{c}) \equiv \vec{b} \cdot (\vec{a} \cdot \vec{c}) - \vec{c} \cdot (\vec{a} \cdot \vec{b})$

 $[a,b,c] := \langle \vec{a} \times \vec{b}, \vec{c} \rangle = \det(a,b,c) \cong \text{Volumen des Spates}.$ $[a,b,c]>0 \ \Rightarrow \ a,b,c$ bilden Rechtssystem $[a, b, c] = 0 \implies a, b, c$ linear abhängig

Orthogonale Zerlegung eine Vektors v längs a:

$$v = v_a + v_{a\perp} \; \text{mit} \; v_a = \frac{\langle v, a \rangle}{\langle a, a \rangle} * a \; \text{und} \; v_{a\perp} = v - v_a$$

7.5 Basis (Jeder VR besitzt eine Basis!)

Eine Teilmenge B heißt Basis, von V wenn gilt:

- $\langle B \rangle = V \ B \text{ erzeugt } V$
- B ist linear unabhängig

7.6 Dimension

 $n:=|B|\in\mathbb{N}_0$ Dimension von V $\dim(V) = n$

Mehr als n Vektoren sind stehts linear abhängig. Für jeden UVR $U \subset V$ gilt: $\dim(U) < \dim(V)$

8 Untervektorräume

Eine Teilmenge U eines $K-{\sf Vektorraums}\ V$ heißt Untervektorraum (U-VR) von V, falls gilt:

- 1. $U \neq \emptyset$ $(0 \in U)$
- 2. $u + v \in U \quad \forall u, v \in U$
- 3. $\lambda u \in U \quad \forall u \in U, \forall \lambda \in K$

Wegen (3.) enthält ein UVR U stets den Nullvektor 0. Daher zeigt man (1.) meist, indem man $0 \in U$ nachweist.

Triviale UVR: $U = \{0\}$ mit $B = \emptyset$ U = V mit $B_U = B_V$

9 Folgen

Eine Folge ist eine Abbildung $a: \mathbb{N}_0 \to \mathbb{R}, \ n \to a(n) =: a_n$ explizite Folge: (a_n) mit $a_n = a(n)$ rekursive Folge: (a_n) mit $a_0 = f_0$, $a_{n+1} = a(a_n)$

9.1 Monotonie

Im Wesentlichen gibt es 3 Methoden zum Nachweis der Monotonie:

- 1. $a_{n+1} a_n \ge (=)0$
- 2. $\frac{a_n}{a_{n+1}} \ge (=)1$ \vee $\frac{a_{n+1}}{a_n} \le (=)1$
- 3. Vollständige Induktion

9.2 Konvergenz

 (a_n) ist Konvergent mit Grenzwert a, falls: $\forall \epsilon > 0 \exists N \in \mathbb{N}_0$: $|a_n - a| < \epsilon \forall n \ge N$

Eine Folge konvergiert gegen eine Zahl $a:(a_n)\stackrel{n\to\infty}{\longrightarrow} a$

Es gilt:

- Der Grenzwert a einer Folge (a_n) ist eindeutig.
- Ist (a_n) Konvergent, so ist (a_n) beschränkt
- Ist (a_n) unbeschränkt, so ist (a_n) divergent.
- Das Monotoniekriterium: Ist (a_n) beschränkt und monoton, so konvergiert (a_n)
- Das Cauchy-Kriterium: Eine Folge (a_n) konvergiert gerade dann,

$$\forall \epsilon>0 \ \exists \ N\in \mathbb{N}_0: |a_n-n_m|<\epsilon \ \forall n,m\geq N$$
 regeln für konvergente Folgen $(a_n)\stackrel{n\to\infty}{\longrightarrow} a$ und $(b_n)\stackrel{n\to\infty}{\longrightarrow} b$:

$$\begin{array}{c} \text{Regeln für konvergente Folgen } (a_n) \stackrel{n \to \infty}{\longrightarrow} a \text{ und } (b_n) \stackrel{n \to \infty}{\longrightarrow} b \text{:} \\ (a_n + b_n) \stackrel{n \to \infty}{\longrightarrow} a + b & (a_n b_n) \stackrel{n \to \infty}{\longrightarrow} ab & (\frac{a_n}{b_n}) \stackrel{n \to \infty}{\longrightarrow} \frac{a}{b} \\ (\lambda a_n) \stackrel{n \to \infty}{\longrightarrow} \lambda a & (\sqrt{a_n}) \stackrel{n \to \infty}{\longrightarrow} \sqrt{a} & (|a_n|) \stackrel{n \to \infty}{\longrightarrow} |a| \end{array}$$

9.3 Wichtige Regeln

$$a_n = q^n \xrightarrow{n \to \infty} \begin{cases} 0 & |q| < 1 \\ 1 & q = 1 \\ \pm \infty & q < -1 \\ + \infty & q > 1 \end{cases}$$

$$a_n = \frac{1}{n^k} \to 0 \quad \forall k \ge 1$$

$$a_n = \left(1 + \frac{c}{n}\right)^n \to e^c \qquad 2^n \ge n^2 \quad \forall n \ge 4$$

10 Reihen

$$\sum_{n=1}^{\infty}\frac{1}{n}=\infty$$

$$\sum_{n=0}^{\infty}q^n=\frac{1}{1-q} \qquad |q|<1$$
 Regiment is the Reihe Geometrische Reihe

10.1 Konvergenzkriterien

 $\sum_{n=0}^{\infty} a_n$ divergiert, falls $a_n \not\to 0$ oder Minorante: $\exists \sum_{n=0}^{\infty} b_n (div) \land a_n \ge b_n \ \forall n \ge n_0$

 $\sum_{n=0}^{\infty} (-1)^n a_n$ konvergiert falls (a_n) monoton fallende Nullfolge oder Majorante: $\exists \sum_{n=0}^{\infty} b_n = b \quad \land \quad a_n \leq b_n \ \forall n \geq n_0$

Absolute Konvergenz($\sum_{n=0}^{\infty}|a_n|=a$ konvergiert), falls:

1. Majorante: $\exists \sum_{n=0}^{\infty} b_n = b \land |a_n| \le b_n \forall n \ge n_0$

2. Quotienten und Wurzelkriterium:

$$\rho := \lim_{n \to \infty} \left| \frac{a_{n+1}}{a_n} \right| \qquad \forall \qquad \rho := \lim_{n \to \infty} \sqrt[n]{|a_n|}$$

$$\begin{aligned} & \text{Falls} \begin{cases} \rho < 1 \Rightarrow & \sum_{n=0}^{\infty} a_n \text{ konvergiert absolut} \\ \rho > 1 \Rightarrow & \sum_{n=0}^{\infty} a_n \text{ divergiert} \\ \rho = 1 \Rightarrow & \sum_{n=0}^{\infty} a_n \text{ keine Aussage m\"oglich} \end{aligned}$$

11 Potenzreihen

$$f(x) = \sum_{n=0}^{\infty} a_n \cdot (x - a)^n$$

Konvergenz:
$$\left| \frac{a_{n+1}(x-a)^{n+1}}{a_n(x-a)^n} \right| = \left| \frac{a_{n+1}}{a_n} \right| |x-a| \overset{n \to \infty}{\to} q \cdot |x-a|$$

$$\text{Falls } \begin{cases} |x-a| < \frac{1}{q} & \text{konvergiert absolut} \\ |x-a| > \frac{1}{q} & \text{divergiert} \\ |x-a| = \frac{1}{q} & \text{keine Aussage m\"{o}glich} \end{cases}$$

Konvergenzradius:
$$R = \frac{1}{q}$$

$$R = \lim_{n \to \infty} \left| \frac{a_n}{a_{n+1}} \right| = \lim_{n \to \infty} \frac{1}{\sqrt[n]{|a_n|}}$$

$$e^{z} = \sum_{n=0}^{\infty} \frac{z^{n}}{n!}$$

$$\sin(z) = \sum_{n=0}^{\infty} (-1)^{n} \frac{z^{2n+1}}{(2n+1)!} = \frac{e^{iz} - e^{-iz}}{2i}$$

$$\cos(z) = \sum_{n=0}^{\infty} (-1)^{n} \frac{z^{2n}}{(2n)!} = \frac{e^{iz} + e^{-iz}}{2}$$

12 Ableitung und Integral

$$f$$
 diffbar, falls f stetig und $\lim_{h\to 0}\frac{f(x_0+h)-f(x_0)}{h}=f'(x)$ exist.

12.1 Ableitungsregeln:

Linearität:
$$(\lambda f + \mu g)'(x) = \lambda f'(x) + \mu g'(x) \quad \forall \lambda, \mu \in \mathbb{R}$$
 Produktregel:
$$(f \cdot g)'(x) = f'(x)g(x) + f(x)g'(x)$$
 Quotientenregel
$$\left(\frac{\mathsf{NAZ}-\mathsf{ZAN}}{2^2}\right): \left(\frac{f}{g}\right)'(x) = \frac{g(x)f'(x)-f(x)g'(x)}{g(x)^2}$$
 Kettenregel:
$$(f(g(x)))' = f'(g(x))g'(x)$$
 Potenzreihe:
$$f:] \underbrace{-R + a, a + R}_{\subseteq \mathcal{P}} = \mathbb{R}, f(x) = \sum_{n=0}^{\infty} a_n(x-a)^n$$

$$\underbrace{\subseteq D}_{n=0} = \frac{f'(x)}{n} = \sum_{n=0}^{\infty} na_n(x-a)^{n-1}$$

12.2 Newton-Verfahren:

$$x_{n+1} = x_n - \frac{f(x_n)}{f'(x_n)}$$
 mit Startwert x_0

12.3 Integrationsmethoden:

- Anstarren + Göttliche Eingebung
- Partielle Integration: $\int uv' = uv \int u'v$
- Substitution: $\int f(\underline{g(x)}) \underbrace{g'(x) dx}_{dt} = \int f(t) dt$
- $\bullet \ \ \mathsf{Brechstange} \colon t = \tan(\tfrac{x}{2}) \quad \ \mathrm{d} x = \tfrac{2}{1 + t^2} \mathrm{d} t$ $\sin(x) \to \frac{2t}{1+t^2}$ $\cos(x) \to \frac{1-t^2}{1+t^2}$

12.4 Integrationsregeln:

$$\int_{a}^{b} f(x) dx = F(b) - F(a)$$
$$\int_{a}^{b} \lambda f(x) + \mu g(x) dx = \lambda \int f(x) dx + \mu \int g(x) dx$$

F(x)	f(x)	f'(x)
$\frac{f'(x)}{f(x)}$	ln f(x)	$\frac{1}{f(x)} \cdot f'(x)$
$\frac{1}{q+1}x^{q+1}$	x^q	qx^{q-1}
$\frac{2\sqrt{x^3}}{3}$	\sqrt{x}	$\frac{1}{2\sqrt{x}}$
$x \ln(x) - x$	ln(x)	$\frac{1}{x}$
e^x	e^x	e ^x
$\frac{a^x}{\ln(a)}$	a^x	$a^x \ln(a)$
$-\cos(x)$	sin(x)	$\cos(x)$
$\sin(x)$	$\cos(x)$	$-\sin(x)$
$-\ln \cos(x) $	tan(x)	$ \frac{1}{\cos^2(x)} $
$\ln \sin(x) $	$\cot(x)$	$\frac{-1}{\sin^2(x)}$
$x \arcsin(x) + \sqrt{1 - x^2}$	$\arcsin(x)$	$\frac{1}{\sqrt{1-x^2}}$
$x \arccos(x) - \sqrt{1 - x^2}$	arccos(x)	$-\frac{1}{\sqrt{1-x^2}}$
$x \arctan(x) - \frac{1}{2} \ln \left 1 + x^2 \right $	$\arctan(x)$	$\frac{1}{1+x^2}$

12.5 Rotationskörper

Volumen: $V = \pi \int_a^b f(x)^2 dx$ Oberfläche: $O = 2\pi \int_a^b f(x) \sqrt{1 + f'(x)^2} dx$

12.6 uneigentliches Integral

$$\begin{split} & \overset{\text{b\"ose}}{\int} f(x) \mathrm{d}x = \lim_{b \to \text{b\"ose}} \int\limits_{\text{ok}}^b f(x) \mathrm{d}x \\ & \text{Majoranten-Kriterium: } |f(x)| \leq g(x) \\ & \overset{\infty}{\int} \frac{1}{x^{\alpha}} \mathrm{d}x \begin{cases} \frac{1}{\alpha - 1}, & \alpha > 1 & 1\\ \infty, & \alpha \leq 1 \end{cases} & \frac{1}{0} \frac{1}{x^{\alpha}} \mathrm{d}x \begin{cases} \frac{1}{\alpha - 1}, & \alpha < 1\\ \infty, & \alpha \geq 1 \end{cases} \\ & \text{Cauchy-Hauptwert: } \int\limits_{-\infty}^{\infty} f(x) \mathrm{d}x = \lim_{b \to \infty} \int\limits_{-b}^{b} f(x) \mathrm{d}x \end{split}$$

12.7 Laplace-Transformation von $f:[0,\infty[\to\mathbb{R},\ s\mapsto f(s)]$

$$\mathcal{L} f(s) = F(s) = \int_{0}^{\infty} e^{-st} f(t) dt = \lim_{b \to \infty} \int_{0}^{b} e^{-st} f(t) dt$$

12.8 Integration rationale Funktioner

Gegeben:
$$\int \frac{A(x)}{Q(x)} \mathrm{d}x \qquad A(x), Q(x) \in \mathbb{R}[x]$$

- 1. Falls, $\deg A(x) \geq \deg Q(x) \Rightarrow \mathsf{Polynomdivision}$: $\frac{A(x)}{Q(x)} = P(x) + \frac{B(x)}{Q(x)} \text{ mit } \deg B(x) < \deg Q(x)$
- 3. Partialbruchzerlegung $\frac{B(x)}{Q(x)} = \frac{\dots}{(x-a_n)} + \dots + \frac{\dots}{\dots}$
- 4. Integriere die Summanden mit folgenden Funktionen

with
$$\lambda = x^2 + px + q$$
, $\beta = 4q - p^2$ and $p^2 < 4q!$
$$\int \frac{1}{(x-a)^m} dx \begin{cases} \ln |x-a|, & m=1\\ -\frac{1}{(m-1)(x-a)^{m-1}} & m \geq 2 \end{cases}$$

$$\int \frac{1}{(\lambda)^m} dx \begin{cases} \frac{2}{\sqrt{\beta}} \arctan \frac{2x+p}{\sqrt{\beta}}, & m=1\\ \frac{2x+p}{(m-1)(\beta)(\lambda)^{m-1}} + \frac{2(2m-3)}{(m-1)(\beta)} \int \frac{dx}{(\lambda)^{m-1}}, & m \geq 2 \end{cases}$$

$$\int \frac{Bx+C}{(\lambda)^m} dx \begin{cases} \frac{B}{2} \ln(\lambda) + (C - \frac{Bp}{2}) \int \frac{dx}{\lambda}, & m=1\\ \frac{Bx+C}{2(m-1)(\lambda)^{m-1}} + (C - \frac{Bp}{2}) \int \frac{dx}{(\lambda)^{m-1}}, & m \geq 2 \end{cases}$$

Auch wichtig: Schrödinger's Katze: