Dokumentacja algorytmu Optymalizacja rojem cząstek (PSO)

Anastasiia Bzova 66617

Opis wybranego algorytmu:

Algorytm optymalizacji rojem cząstek (PSO) to metoda inteligencji obliczeniowej inspirowana zachowaniem zbiorowym takich systemów jak stada ptaków czy ławice ryb. Został zaproponowany przez Jamesa Kennedy'ego i Russella Eberharta w 1995 roku. Jest metodą optymalizacji ciągłych nieliniowych funkcji.

Opierała się na dwóch metodach:

- 1) Sztuczne życie [artificial life] (stada ptaków, ławice ryb, teoria roju)
- 2) Ewolucja obliczeniowa [evolutionary computation] (algorytmy genetyczne, strategie ewolucyjne, programowanie genetyczne)

W PSO grupa "cząstek" (rozwiązań) porusza się w przestrzeni poszukiwań, kierując się zarówno własnym doświadczeniem, jak i doświadczeniem innych cząstek. Każda cząstka posiada **pozycję**, **prędkość** oraz **pamięta najlepszą pozycję**, jaką kiedykolwiek osiągnęła. Ruch odbywa się poprzez aktualizację prędkości i pozycji na podstawie trzech czynników:

- Inercja tendencja do utrzymania dotychczasowego kierunku ruchu;
- Komponenta poznawcza dążenie do własnego najlepszego rozwiązania;
- Komponenta społeczna dążenie do najlepszego rozwiązania znalezionego przez cały rój.

Złożoność obliczeniowa

Mamy takie dane:

n — liczba cząstek (rozwiązań),

d — wymiar przestrzeni,

t — liczba iteracji.

Złożoność PSO:

Złożoność czasowa: 0(n * d * t) — w każdej iteracji każda cząstka aktualizuje swoją pozycję i ocenia funkcję dopasowania.

Złożoność pamięciowa: 0(n * d) — przechowywanie pozycji, prędkości i najlepszych wyników każdej cząstki.

Zastosowanie algorytmu PSO

PSO mają wiele zastosowań w syntezie logicznej, logice, kryptografii. Znajduje szerokie zastosowanie w ogólnie zadaniach optymalizacyjnych:

- Optymalizacja funkcji matematycznych (np. Rastrigina, Rosenbrocka, Ackleya),
- Uczenie maszynowe strojenie hiperparametrów modeli,
- Przetwarzanie sygnałów i obrazów filtrowanie, segmentacja,
- Energetyka optymalne zarządzanie zasobami i rozkład obciążenia,
- Robotyka planowanie trajektorii i koordynacja ruchu,
- Inżynieria optymalizacja projektów i konstrukcji.

więcej o algorytmie Rastrigina

Funkcja Rastrigina to popularna funkcja testowa używana w optymalizacji i uczeniu maszynowym - do oceny wydajności algorytmów optymalizacyjnych. Opracowana przez L.A. Rastrigina. Finkcja ma wiele minimów lokalnych, co czyni ją trudną dla algorytmów poszukujących globalnego minimum.

Wzór:

$$f(x) = A \cdot n + \sum_{i=1}^n \left[x_i^2 - A \cos(2\pi x_i)
ight]$$

- A=10 (standardowo),
- x_i to i-ty wymiar wektora wejściowego,
- n to liczba wymiarów.

Wykres 2D — mapa konturowa pokazująca doliny i wzgórza funkcji.

Wykres 3D — pokazujący kształt funkcji przestrzennie: widać wiele lokalnych minimów.

Co zostało zaimplementowane

Klasa "PSOVisualization", która zarządza animacją i rysowaniem.

Klasa "PSO", zawierająca logikę algorytmu PSO.

Klasa "Particle," reprezentująca pojedynczą cząstkę.

Klasa pomocnicza "MathTools" do funkcji matematycznych (m.in. funkcja Rastrigina, mapowanie wartości).

Skorzystano z klasycznego PSO (model Clerc-Kennedy) który wygląda tak:

$$v_j(t+1) = w \cdot v_j(t) + c_1 \cdot r_1 \cdot (pbest_j - x_j(t)) + c_2 \cdot r_2 \cdot (gbest_j - x_j(t))$$

- $v_i(t)$ prędkość cząstki w wymiarze j w czasie t,
- $x_j(t)$ pozycja cząstki w wymiarze j w czasie t,
- *pbest_i* najlepsza osobista pozycja cząstki w wymiarze *j*,
- gbest_i najlepsza globalna pozycja (znaleziona przez cały rój) w wymiarze j,
- *w* waga bezwładności (*InertiaWeight*),
- *c*₁— współczynnik kognitywny (CognitiveWeight),
- *c*₂— współczynnik społeczny (SocialWeight),
- r_1 , r_2 losowe liczby z przedziału [0,1].

Działanie programu:

Program rysuje cząstki w przestrzeni 2D ograniczonej zakresem funkcji Rastrigina [-5.12, 5.12] (jest to domyślne znaczenia).

Cząstki są wizualizowane jako kółka: czerwone (aktywnie szukające) i zielone (blisko najlepszego rozwiązania).

W miarę postępu iteracji, cząstki zbliżają się do najlepszego znalezionego minimum globalnego.

Użytkownik może sterować prędkością animacji za pomocą suwaka.

Do płynności animacji wykorzystano podwójnego buforowania formularzy i obrazu + Interpolację (Buforowanie podwójne używa buforu pamięci do rozwiązywania problemów z migotaniem skojarzonych z wieloma operacjami malowania.)

Optymalizacja i przyspieszenie algorytmu

- 1. **Ograniczanie prędkości**: aby zapobiec zbyt szybkiemu "uciekaniu" cząstek poza przestrzeń poszukiwań.
- 2. **Topologia lokalna**: ograniczenie interakcji do sąsiedztwa, zmniejszające liczbę obliczeń.
- 3. **Równoległe przetwarzanie**: aktualizacja cząstek może być wykonywana niezależnie, co umożliwia wykorzystanie wielordzeniowych procesorów lub GPU.

Możliwe ulepszenia

- Obsługa więcej niż 2 wymiarów przez projekcję.
- Dodanie różnych funkcji celu (np. Sphere, Rosenbrock).
- Lepsza kontrola nad parametrami algorytmu w rzeczywistym czasie (GUI).
- Zapisywanie wyniku jako naprzyklad plik.

Alternatywne algorytmy:

Ponieważ PSO rozwiązuje zadania globalnej optymalizacji, można go porównać do następujących algorytmów:

<u>Algorytm</u>	Cechy charakterystyczne
Algorytmy	Wykorzystują selekcję, krzyżowanie i mutację. Często są
genetyczne (GA)	wolniejsze.
Differential	Dobry balans eksploracji i eksploatacji. Prosta
Evolution (DE)	implementacja.
Symulowane	Inspiracja procesem hartowania. Skuteczny przy złożonych
wyżarzanie (SA)	krajobrazach funkcji.
Ant Colony	Bardzo dobre dla problemów trasowania i optymalizacji
Optimization (ACO)	dyskretnej.
Gradient Descent /	Skuteczne dla funkcji różniczkowalnych. Szybkie, ale mogą
Adam	utknąć w minimum lokalnym.

~Podsumowanie~

Algorytm PSO jest potężnym i elastycznym narzędziem oraz jest łatwy do zaimplementowania – stosowany do globalnej optymalizacji. Jego siłą jest prostota równoległego przetwarzania oraz skuteczność w szerokim zakresie problemów. Dzięki możliwościom adaptacji do różnych typów zadań, PSO znajduje zastosowanie w wielu dziedzinach nauki i techniki.