Lời giải của GV Tuyensinh247.com

Giao tuyến của hình cầu và hình trụ là đường tròn có bán kính r=3cm.

Khoảng cách từ tâm mặt cầu đến mặt phẳng giao tuyến của hình cầu và hình trụ là:

$$\sqrt{5^2-3^2}=4$$

Thể tích của khối hình trên là:

$$V=3.3.8.\pi+\pi\int\limits_{4}^{5}\left(\sqrt{25-x^{2}}
ight)^{2}\!dx$$

Phương pháp giải Xét từng đáp án.

Lời giải của GV Tuyensinh247.com

 $f(2024) < f(0) = 3 \Rightarrow A$ sai.

$$f(2023) < f(0) = 3 \Rightarrow f(2023) + f(2024) < 3 + 3 = 6 \Rightarrow$$
 B sai. $f(2023) > f(2024) \Rightarrow$ **C** sai.

Do đó, **D** đúng.

Do $f'(x) < 0, \forall x \in (0; +\infty)$ nên hàm số y = f(x) nghịch biến trên $(0; +\infty)$.

Giá trị của lpha bằng 12 , trong đó lpha thoả mãn $M{F_1}^2-M{F_2}^2=lpha.\,x$.

Giá trị của eta bằng ${\color{red}5}$ trong đó eta thoả mãn $MF_1=eta+{3x\over 5}.$

Phương trình của mặt (E) là $rac{x^2}{a}+rac{y^2}{b}+rac{z^2}{c}=1$, giá trị của a bằng $oxed{25}$, giá trị của b bằng ,

giá trị của $oldsymbol{b}$ bằng 16 , giá trị của $oldsymbol{c}$ bằng 16

Phương pháp giải

- Biến đổi $M{F_1}^2-M{F_2}^2$.

Lời giải của GV Tuyensinh247.com

Ta có
$$M{F_1}^2-M{F_2}^2=(x+3)^2+y^2+z^2-\left[(x-3)^2+y^2+z^2\right]=12x$$

$$\Rightarrow MF_1 - MF_2 = rac{MF_1^2 - MF_2^2}{MF_1 + MF_2} = rac{6}{5}x$$

$$\Rightarrow MF_1 = \frac{(MF_1 - MF_2) + (MF_1 + MF_2)}{2} = 5 + \frac{3}{5}x$$

$$\Rightarrow (x+3)^2 + y^2 + z^2 = 25 + 6x + \frac{9}{25}x^2$$

$$\Rightarrow \frac{x^2}{25} + \frac{y^2}{16} + \frac{z^2}{16} = 1.$$

Đáp án của GV Tuyensinh247.com

Tổng số bậc (tính cả bậc S) là $oxed{101}$

Tổng số cây là 10201

Phương pháp giải

Một cung $lpha\left(rad\right)$ trên đường tròn bán kính R có độ dài là lpha.R.

Số cây = [Độ dài đoạn đường]/[Khoảng cách giữa các cây] + 1

Lời giải của GV Tuyensinh247.com

Số bậc thang là $\dfrac{200}{2}+1=101$ bậc thang.

Độ dài của bậc thang ngoài cùng là $lpha.R=lpha.200=400m\Rightarrowlpha=2$ (rad)

Gọi (u_n) là dãy số biểu diễn độ dài mỗi bậc thang, với $u_1=400$

$$d = -2.\alpha = -4 \Rightarrow u_n = 400 - 4.(n-1) = 404 - 4n$$

Khi đó v_n là số cây trên bậc có độ dài u_n

Ta có:
$$v_1=rac{u_1}{2}+1=rac{400}{2}+1=201.$$

$$v_n = rac{404 - 4n}{2} + 1 = 203 - 2n = 201 - 2\left(n - 1
ight)$$

Khi đó (v_n) là dãy số có $u_1=201; d=-2$

 S_n là tổng của n số hạng đầu tiên của dãy số (v_n)

$$\Rightarrow S_n = \frac{n\left[2u_1 + (n-1)\,d\right]}{2}$$

Vì có 101 bậc thang nên n=101.

$$\Rightarrow S_{101} = \frac{101. [2.201 + 100. (-2)]}{2} = 10201.$$

Đáp án của GV Tuyensinh247.com

Dựng $OH \perp SC$.

Do
$$SA \perp (ABCD)$$
 nên $SA \perp BD$

Mặt khác
$$OH$$
 $\perp SC$ nên $SC \perp (DHB)$.

Như vậy \widehat{DHB} là góc giữa hai mặt phẳng (SCD) và (SBC).

Tam giác
$$ABD$$
 đều cạnh a nên $AO = \boxed{rac{a\sqrt{3}}{2}} \Rightarrow AC = \boxed{a\sqrt{3}}$

Dựng
$$AK \bot SC \Rightarrow AK = \boxed{a} \Rightarrow OH = rac{AK}{2} = rac{a}{2}.$$

Tam giác
$$DHB$$
 có đường trung tuyến $HO=egin{array}{c} 1 \ \hline 2 \ \end{array}$ $BD=egin{array}{c} a \ \hline 2 \ \end{array}$

$$\Rightarrow \Delta DHB$$
 vuông tại H hay $\widehat{DHB} = 90^\circ$. Do đó $(SCD) \bot (SBC)$.

Phương pháp giải

Hai mặt phẳng vuông góc

Lời giải của GV Tuyensinh247.com

Dựng $OH \perp SC$.

Do $SA \perp (ABCD)$ nên $SA \perp BD$.

Mà $AC \bot BD$ nên $BD \bot (SAC)$. Suy ra $BD \bot SC$.

Mặt khác $OH \bot SC$ nên $SC \bot (DHB)$.

Như vậy \widehat{DHB} là góc giữa hai mặt phẳng (SCD) và (SBC).

Tam giác
$$ABD$$
 đều cạnh a nên $AO=rac{a\sqrt{3}}{2}\Rightarrow AC=a\sqrt{3}.$

Dựng
$$AK \perp SC \Rightarrow AK = rac{SA \cdot OC}{\sqrt{SA^2 + OC^2}} = a \Rightarrow OH = rac{AK}{2} = rac{a}{2}.$$

Tam giác
$$DHB$$
 có đường trung tuyến $HO=rac{1}{2}BD=rac{a}{2}$

$$\Rightarrow \Delta DHB$$
 vuông tại H hay $\widehat{DHB} = 90^\circ$. Do đó $(SCD) \bot (SBC)$.

Sử dụng công thức nhân xác suất.

Lời giải của GV Tuyensinh247.com

Gọi $m{A}$ là biến cố: "Lần đầu lấy được bi trắng".

B là biến cố: "Lần hai lấy được bi đỏ".

Vì
$$n\left(A\right)=5$$
 nên $P\left(A\right)=rac{5}{13}$.

Nếu $m{A}$ xảy ra tức là lần đầu lấy được bi đỏ thì trong hộp có $m{12}$ viên bi với $m{8}$ bi trắng.

Vậy
$$P\left(B|A\right)=rac{8}{12}=rac{2}{3}.$$

Theo công thức nhân xác suất: $P(AB) = P(A) \cdot P(B|A) = \frac{5}{13} \cdot \frac{2}{3} = \frac{10}{39}$.

Xác định góc giữa hai mặt phẳng (α) , (β)

Lời giải của GV Tuyensinh247.com

Gọi I,J lần lượt là trung điểm của AB,CD.

 $\Delta SAB, \Delta SCD$ cần tại $S \Rightarrow SI \bot AB, SJ \bot CD$

Ta có:
$$\left\{ egin{aligned} CD ot SJ \ CD ot IJ \end{aligned}
ight. \Rightarrow CD ot \left(SJI\right) \Rightarrow \left(SCD\right) ot \left(SJI\right) \end{aligned}$$

Tương tự: $(SAB) \perp (SJI) \Rightarrow ((SAB)\,;(SCD)) = (SI;SJ) = \widehat{ISJ} = 90^0$

Kẻ $SH \bot JI$. Mà $SH \subset (SJI) \Rightarrow SH \bot CD \Rightarrow SH \bot (ABCD)$

Ta có:

$$S_{SAB} + S_{SCD} = \frac{1}{2}SI. AB + \frac{1}{2}SJ. CD = \frac{1}{2}SI. a + \frac{1}{2}SJ. a = \frac{1}{2}(SI + SJ) a = \frac{7a^2}{10}$$

$$\Rightarrow SI + SJ = \frac{7a}{5}(1)$$

Do ΔSJI vuông tại $S\Rightarrow SI^2+SJ^2=JI^2$

$$\Rightarrow (SI + SJ)^2 - 2SI.SJ = a^2$$

$$\Leftrightarrow \left(rac{7a}{5}
ight)^2 - 2SI.\,SJ = a^2$$

$$\Leftrightarrow SI.\,SJ = rac{12a^2}{25}$$

Ta có:
$$SI.\,SJ=SH.\,JI\Leftrightarrow rac{12a^2}{25}=SH.\,a\Leftrightarrow SH=rac{12a}{25}$$

Thể tích khối chóp
$$S.\,ABCD$$
 là $V=rac{1}{3}SH.\,S_{ABCD}=rac{1}{3}.\,rac{12a}{25}a^2=rac{4a^3}{25}$

Lời giải của GV Tuyensinh247.com

Theo bài ra ta có $u_1=rac{1}{2}$, $u_4=32$ và $u_n=2048$.

$$u_4=u_1.\,q^3\Rightarrow 32=rac{1}{2}.\,q^3 \Rightarrow q=4$$

$$u_n=2048\Rightarrow u_1.\ q^{n-1}=2048\Rightarrow 4^{n-1}=4^6\Rightarrow n=7$$

Khi đó tổng của cấp số nhân này là
$$S_7=rac{u_1\left(1-q^7
ight)}{1-q}=rac{rac{1}{2}\left(1-4^7
ight)}{1-4}=rac{5461}{2}.$$

- Đặt
$$g(x)=rac{f(x)-16}{x-2}$$
 .

- Tính
$$\lim_{x o 2}rac{\sqrt{2f(x)-16}-4}{x^2+x-6}$$
 .

Lời giải của GV Tuyensinh247.com

Đặt
$$g(x)=rac{f(x)-16}{x-2}$$
 ta có: $f(x)=(x-2)g(x)+16$.

$$\Rightarrow \lim_{x o 2}f(x)=\lim_{x o 2}[(x-2)g(x)+16]=16.$$

Ta có:

$$\lim_{x o 2}rac{\sqrt{2f(x)-16}-4}{x^2+x-6}=\lim_{x o 2}rac{2f(x)-16-16}{(x^2+x-6)\left(\sqrt{2f(x)-16}+4
ight)}$$

$$=\lim_{x o 2}rac{2f(x)-32}{(x-2)(x+3)(\sqrt{2f(x)-16}+4)}$$

$$=\lim_{x o 2}rac{f(x)-16}{x-2}\cdot\lim_{x o 2}rac{2}{(x+3)(\sqrt{2f(x)-16}+4)}$$

$$=12\cdot\frac{2}{5\cdot(\sqrt{2\cdot16-16}+4)}=\frac{3}{5}$$

Sử dụng công thức tính tổng n số hạng đầu của cấp số cộng để tính T.

Lời giải của GV Tuyensinh247.com

Ta có: T=1. (1000+999)+1. $(998+997)+\ldots+1$. $(2+1)=1999+1995+\ldots+3$. Ta thấy các số hạng của tổng T tạo thành một cấp số cộng với số hạng đầu $u_1=1999$ và công sai d=-4.

Giả sử T có n số hạng thì $u_n=u_1+(n-1)\,d=1999-4\,(n-1)=3\Leftrightarrow n=500.$ Vậy $T=\dfrac{\left(u_1+u_{500}\right).500}{2}=\dfrac{\left(1999+3\right).500}{2}=500500.$

Sử dụng công thức tính góc giữa 2 mặt phẳng.

Diện tích hình chiếu của đa giác --- Xem chi tiết

Lời giải của GV Tuyensinh247.com

Ta có:
$$\cos lpha = rac{S_{ABC}}{S_{SBC}}$$

Bước 1: Đặt: $\operatorname{\mathsf{g}}(x) = f\left(x^2\right) - x^2 \ o \operatorname{\mathsf{g}}'(x) = 0$

Bước 2: Lập bảng biến thiên, kết luận số cực trị

Lời giải của GV Tuyensinh247.com

Đặt: g
$$(x)=f\left(x^2
ight)-x^2$$

$$\Rightarrow g'(x) = 2x. f'(x^2) - 2x$$

$$g'\left(x
ight)=0\Leftrightarrow egin{bmatrix} x=0\ f'\left(x^2
ight)=1 \end{cases}\Leftrightarrow egin{bmatrix} x=0\ x^2=a\left(a>3
ight) \Leftrightarrow egin{bmatrix} x=-\sqrt{a}\ x=\sqrt{a} \end{cases}$$

Với $x>\sqrt{a}$ thì g'(x)>0

Ta có bảng biến thiên:

X	- ∞	$-\sqrt{a}$	01	0		\sqrt{a}		+∞
g'	_	0	+	0	-	0	+	
g	+ 80	\ \ \		f(0)		× /		≠ **
	•	f(a)-a	3			f(a)-	a	

Đồ thị hàm |g(x)| có được từ đồ thị hàm g(x) bằng cách: giữ nguyên phần đồ thì hàm g(x) nằm phía trên trục hoành; lấy đối xứng phần đồ thị g(x) nằm phía dưới trục hoành qua trục hoành và xóa bỏ phần dưới.

Số điểm cực trị của |g(x)| bằng số cực trị của hàm số g(x) cộng với số giao điểm của đồ thị g(x) với trục hoành.

Vậy $|g\left(x\right)|$ có thể có tối đa 7 điểm cực trị.

Đồ thị hàm |g(x)| có được từ đồ thị hàm g(x) bằng cách: giữ nguyên phần đồ thì hàm g(x) nằm phía trên trục hoành; lấy đối xứng phần đồ thị g(x) nằm phía dưới trục hoành qua trục hoành và xóa bỏ phần dưới.

Định nghĩa --- Xem chi tiết

Lời giải của GV Tuyensinh247.com

Bảng xét dấu bên dưới được lập từ các suy luận sau:

X	-∞	-1		а	\boldsymbol{x}_0	b		<i>X</i> ₁	$+\infty$
f"(x)							_	0	+
f'(x)	_	0	+	+	0	-		\	

- * Hàm số $y=f(\mathbf{x})$ nghịch biến trên $(-\infty;-1)$ nên $f'(\mathbf{x})<0, \forall \mathbf{x}\in(-\infty;-1)$ và đồng biến trên (-1;a)nên $f'(\mathbf{x})>0, \forall \mathbf{x}\in(-1;a)$.
- * Hàm số $y=f'(\mathrm{x})$ có $f'(\mathrm{x})>0, orall \mathrm{x}\in(a;\mathrm{x}_0)$ và $f'(\mathrm{x})<0, orall \mathrm{x}\in(\mathrm{x}_0;b)$
- $f'(\mathrm{x}) < 0, \forall \mathrm{x} \in (\mathrm{x}_0; b]$.
- * Hàm số $y=f''(\mathrm{x})$ có $f''(\mathrm{x})<0, orall \mathrm{x}\in(b;\mathrm{x}_1)$ mà $f'(b)<0\Rightarrow f'(\mathrm{x})<0, orall \mathrm{x}\in(b;\mathrm{x}_1)$
- Lại có $f''(x)>0, \forall x\in (x_1;+\infty)$. Vậy trong khoảng $(x_1;+\infty)$, phương trình f'(x)=0có tối đa 1 nghiệm, và nếu có đúng 1 nghiệm thì f'(x)đổi dấu khi qua nghiệm ấy.
- Vậy $f'({
 m x})$ có tối đa 3 nghiệm (bội lẻ) nên hàm số $y=f({
 m x})$ có tối đa 3 điểm cực trị.

- Ta có: $u_{k+1} = \sqrt{2020 + u_k} orall k \geq 1$
- Chứng minh bằng phương pháp quy nạp.

Lời giải của GV Tuyensinh247.com

Ta có:
$$u_{k+1} = \sqrt{2020 + u_k} orall k \geq 1$$

Ta chứng minh bằng phương pháp quy nạp như sau:

+ Với
$$n=1 \Rightarrow u_1 = \sqrt{2020} < u_2 = \sqrt{2020 + \sqrt{2020}}$$

+ Xét với
$$n = k \, (k \geq 1)$$
, giả sử $u_k < u_{k+1}$, ta cần chứng minh $u_{k+1} < u_{k+2}$

Thật vậy, ta có:
$$u_k < u_{k+1} \, (k \geq 1) \Leftrightarrow 2020 + u_k \leq 2020 + u_{k+1}$$

$$\Leftrightarrow \sqrt{2020 + u_k} < \sqrt{2020 + u_{k+1}} \Leftrightarrow u_{k+1} < u_{k+2}$$
(đpcm)

Từ đây ta thấy (u_n) là dãy tăng.

Hình chiếu của $M\left(x;y;z\right)$ đến Ox là $M_{1}\left(x;0;0\right)$

Điểm đối xứng của $M\left(x;y;z\right)$ qua Oy là $M_{2}\left(x;-y;z\right)$

Lời giải của GV Tuyensinh247.com

K là điểm đối xứng của A(1;0;3) qua Oy nên K(1;0;-3)

H là hình chiếu của $A\left(1;0;3\right)$ đến Ox nên $H\left(1;0;0\right)$

Xét từng đáp án.

Tính
$$\lim_{x o +\infty} y$$
 và $\lim_{x o -\infty} y$

Lời giải của GV Tuyensinh247.com

Ta có

$$\left\{egin{aligned} &\lim_{x o +\infty}rac{x^2}{x-1}=\lim_{x o +\infty}rac{1}{rac{1}{x}-rac{1}{x^2}}=+\infty\ &\lim_{x o -\infty}rac{x^2}{x-1}=\lim_{x o +\infty}rac{1}{rac{1}{x}-rac{1}{x^2}}=-\infty\ &rac{1}{x}-rac{1}{x^2}=-\infty \end{aligned}
ight.$$

Vậy đồ thị hàm số $y=rac{x^2}{x-1}$ không có tiệm cận ngang.

Xét hàm số $y = \log_2 \frac{1}{x}$

ÐKXÐ: x>0

Ta có: $\lim_{x \to +\infty} y = \lim_{x \to +\infty} \frac{1}{x} = -\infty$

Vậy đồ thị hàm số $y=\log_2 \frac{1}{x}$ không có đường tiệm cận ngang.

a) Ta giải phương trình

$$d(t) = 12 \Leftrightarrow 3\sin\left[\frac{\pi}{182}(t - 80)\right] + 12 = 12$$

$$\Leftrightarrow \sin\left[\frac{\pi}{182}(t-80)\right] = 0 \Leftrightarrow \frac{\pi}{182}(t-80) = k\pi$$

$$\Leftrightarrow t - 80 = 182k \Leftrightarrow t = 182k + 80(k \in \mathbb{Z})$$

Ta lại có

$$0<182k+80\leq 365\Leftrightarrow -rac{80}{182}< k\leq rac{285}{182}\Leftrightarrow \left[egin{array}{c} k=0 \ k=1. \end{array}
ight]$$

Vậy thành phố A có đúng 12 giờ có ánh sáng mặt trời vào ngày thứ 80 (ứng với k=0) và ngày thứ 262 (ứng với k=1) trong năm.

b) Ta giải phương trình

$$d(t) = 9 \Leftrightarrow 3\sin\Bigl[\frac{\pi}{182}(t - 80)\Bigr] + 12 = 9$$

$$\Leftrightarrow \sin\left[\frac{\pi}{182}(t-80)\right] = -1 \Leftrightarrow \frac{\pi}{182}(t-80) = -\frac{\pi}{2} + k2\pi$$

$$\Leftrightarrow t - 80 = -91 + 364k \Leftrightarrow t = 364k - 11(k \in \mathbb{Z})$$

Ta lại có
$$0 < 364k-11 \leq 365 \Leftrightarrow \dfrac{11}{364} < k \leq \dfrac{376}{364} \Leftrightarrow k=1.$$

Vậy thành phố $oldsymbol{A}$ có đúng 9 giờ có ánh sáng mặt trời vào ngày thứ 353 trong năm.

c) Ta giải phương trình

$$d(t) = 15 \Leftrightarrow 3\sin\left[\frac{\pi}{182}(t - 80)\right] + 12 = 15$$

$$\Leftrightarrow \sin\left[\frac{\pi}{182}(t-80)\right] = 1 \Leftrightarrow \frac{\pi}{182}(t-80) = \frac{\pi}{2} + k2\pi$$

$$\Leftrightarrow t-80=91+364k \Leftrightarrow t=364k+171(k\in\mathbb{Z})$$

Ta lại có

$$0 < 364k + 171 \leq 365 \Leftrightarrow -\frac{171}{364} < k \leq \frac{196}{364} \Leftrightarrow k = 0.$$

Vậy thành phố $m{A}$ có đúng 15 giờ có ánh sáng mặt trời vào ngày thứ 171 trong năm.

Số quyển sách không phải sách Sinh học chiếm: 100% – 18% = 82%.

Vậy xác suất lấy được quyển sách không phải sách Sinh học bằng 82% = 0,82.

Giải bất phương trình logarit cùng cơ số.

Sử dụng dấu của tam thức bậc hai để tìm các giá trị của m.

Lời giải của GV Tuyensinh247.com

Bất phương trình nghiệm đúng với mọi $x\in\mathbb{R}\Leftrightarrow egin{cases} mx^2+4x+m>0 \ 5\left(x^2+1\right)\geq mx^2+4x+m \end{cases}, orall x\in\mathbb{R}$

(dễ thấy m=0 không thỏa mãn hệ)

$$\Leftrightarrow egin{cases} m>0 \ \Delta_{(1)} = 16 - 4m^2 < 0 \ 5-m>0 \ \Delta_{(2)} = 16 - 4(5-m)^2 \leq 0 \end{cases} \Leftrightarrow egin{cases} m>0 \ m<-2 \lor m>2 \ m<5 \ m<5 \ m\leq 3 \lor m\geq 7 \end{cases} \Leftrightarrow 2 < m \leq 3.$$

Do $m\in\mathbb{Z}$ nên m=3.

Vậy có ${f 1}$ giá trị nguyên của ${m m}$ thỏa mãn.

- + Sử dụng công thức $v\left(t\right)=s'\left(t\right)$.
- + Tốc độ tại thời điểm xảy ra tai nạn lớn hơn $70\ km/h$ thì ô tô đã chạy quá tốc độ giới hạn cho phép.
- + Tính thời gian từ lúc đạp phanh đến khi xảy ra va chạm rồi tính vận tốc.

Lời giải của GV Tuyensinh247.com

Vận tốc tức thời của ô tô tại thời điểm t(s) là: $v\left(t
ight)=s'\left(t
ight)=20-5t\left(m/s
ight)$.

Vận tốc tức thời của ô tô ngay khi đạp phanh $(t=0\,(\;s))$ là:

$$v(0) = 20 - 5.0 = 20 (m/s)$$

Đổi $20 \; m/s = 72 \; km/h > 70 \; km/h$.

Tại thời điểm phanh tốc độ của ô tô lớn hơn $70\ km/h$ nên ô tô trên đã chạy quá tốc độ giới hạn cho phép.

Khi xảy ra va chạm, ô tô đã đi được 20,4m kể từ khi đạp phanh, nên ta có:

$$20, 4 = 20t - rac{5}{2}t^2 \Leftrightarrow 5t^2 - 40t + 40, 8 = 0 \Leftrightarrow egin{bmatrix} t = 1, 2 \ t = 6, 8 \end{bmatrix}$$

$$0 \le t \le 4 \text{ nên } t = 1, 2 (s)$$
.

Vận tốc tức thời của ô tô ngay khi xảy ra va chạm (t=1,2s) là:

$$v(1,2) = 20 - 5.1, 2 = 14(m/s).$$

Gọi $\emph{G(a;b;c)}$ thỏa mãn $\overrightarrow{GA}-\overrightarrow{GB}+\overrightarrow{GC}=0$.

$$\Leftrightarrow egin{cases} (a-5)-(a+1)+(a-1)=0\ (b-2)-(b-4)+(b-3)=0\ (c-4)-(c-5)+(c-3)=0 \end{cases}$$

$$\Leftrightarrow \left\{egin{array}{l} a=7 \ b=1 \ c=2 \end{array}
ight.$$

Vậy G(7;1;2).

Gọi M(x;0;z).

$$|\overrightarrow{MA}-\overrightarrow{MB}+\overrightarrow{MC}|=1$$

$$\Leftrightarrow |\overrightarrow{MG} + \overrightarrow{GA} - \overrightarrow{GB} + \overrightarrow{GC}| = 1$$

$$\Leftrightarrow |\overrightarrow{MG}| = 1$$

$$\Leftrightarrow \sqrt{\left(x-7\right)^2+1+\left(z-2\right)^2}=1$$

$$\Leftrightarrow (x-7)^2 + (z-2)^2 = 0$$

$$\Leftrightarrow \left\{ \begin{array}{l} x = 7 \\ z = 2 \end{array} \right.$$

Vậy *M*(7;0;2).

A và B là hai biến cố độc lập thì $P\left(AB
ight)=P\left(A
ight)$. $P\left(B
ight)$.

Lời giải của GV Tuyensinh247.com

Ta có: A và B là hai biến cố độc lập nên $P\left(AB
ight)=P\left(A
ight)$. $P\left(B
ight)\Rightarrow P\left(B
ight)=rac{0,4}{0.5}=0,8$.

$$\Rightarrow P\left(\overline{B}
ight) = 1-0, 8 = 0, 2.$$

b) Giá trị của |b| là 1

Phương pháp giải

a) Quan sát đồ thị tìm chu kì.

b) Hàm số $y=k.\sin(ax+b), y=k.\cos(ax+b)$ tuần hoàn với chu kỳ $T=rac{2\pi}{|a|}$.

Lời giải của GV Tuyensinh247.com

a) Quan sát đồ thị ta thấy chu kì của hàm số là $T=2\pi$

b) Chu kì của hàm số là $T=rac{2\pi}{|b|} \Rightarrow |b|=1$

Số phần tử của không gian mẫu là $n\left(\Omega
ight)=C_{n+6}^3$.

Gọi A là biến cố 3 đỉnh tạo thành một tam giác.

Để 3 điểm là 3 đỉnh của một tam giác thì 3 điểm đó không thắng hàng. Ta xét biến cố $m{A}$ là biến cố 3 đỉnh không tạo thành tam giác.

Trường hợp 1: Lấy 3 điểm thuộc cạnh CD có 1 cách.

Trường hợp 2: Lấy 3 điểm thuộc cạnh DA có C_n^3 cách.

Vậy
$$n\left(\overline{A}
ight)=1+C_n^3$$
. Dó đó $P\left(A
ight)=rac{C_{n+6}^3-1-C_n^3}{C_{n+6}^3}$.

Theo giả thiết ta có:
$$rac{C_{n+6}^3-1-C_n^3}{C_{n+6}^3}=rac{439}{560}.$$

$$\Leftrightarrow 439n^3 - 3495n^2 - 7834n - 11160 = 0 \Leftrightarrow n = 10.$$

Khi giải
$$rac{C_{n+6}^3-1-C_n^3}{C_{n+6}^3}=rac{439}{560}$$
 ta có thể sử dụng phím CALC thử các đáp án vào.

Phân tích mẫu thành nhân tử rồi đưa về dạng $\int \frac{1}{u} du$.

Lời giải của GV Tuyensinh247.com

Đặt
$$\mathrm{log}_9 a = \mathrm{log}_{16} b = \mathrm{log}_{12} rac{5b-a}{2} = t.$$

$$\Leftrightarrow a=9^t; b=16^t; rac{5b-a}{2}=12^t$$

$$\frac{5b-a}{2} = 12^t \Leftrightarrow 5b-a = 12^t.2$$

$$\Leftrightarrow 5.16^t - 9^t - 2.12^t = 0$$

$$\Leftrightarrow 5.(4^t)^2 - 2.4^t.3^t - (3^t)^2 = 0$$

$$\Leftrightarrow 5. \left\lceil \left(\frac{4}{3}\right)^t \right\rceil^2 - 2. \left(\frac{4}{3}\right)^t - 1 = 0$$

$$\Leftrightarrow \left\lceil \left(\frac{4}{3}\right)^t = \frac{1+\sqrt{6}}{5}(TM) \right\rceil$$

$$\Leftrightarrow \left\lceil \left(\frac{4}{3}\right)^t = \frac{1-\sqrt{6}}{5}(Loai) \right\rceil$$

$$\left[\left(rac{4}{3}
ight)^t = rac{1-\sqrt{6}}{5}(Loai)
ight.$$

$$\Leftrightarrow \left(\frac{4}{3}\right)^t = \frac{1+\sqrt{6}}{5} \Rightarrow t = \log_{\frac{4}{3}} \frac{1+\sqrt{6}}{5} < 0$$

$$\frac{a}{b} = \left\lceil \left(\frac{4}{3}\right)^t \right\rceil^2 = \left(\frac{5}{1 + \sqrt{6}}\right)^2$$

 \Rightarrow Khẳng định 1 và 3 sai, khẳng định 2 đúng.

Phương pháp giải Đọc bảng biến thiên.

Lời giải của GV Tuyensinh247.com

Giá trị cực đại: y=3

Hàm số đạt cực tiểu tại x=3. Giá trị cực tiểu: y=-1

Hàm số đồng biến trên khoảng $(3; +\infty)$.

Tổng giá trị cực đại và cực tiểu của hàm số là 2.

Đặt độ dài cạnh AC=a

Ta có $S_{ACC'A'}=AC.\,AA';S_{BDD'B'}=BD.\,BB'$

$$AA' = BB' \Rightarrow rac{S_{ACC'A'}}{S_{BDD'B'}} = rac{AC}{BD} = rac{1}{2} \Rightarrow BD = 2AC = 2a$$

Ta lại có đáy là một hình thoi với diện tích $9 \ cm^2$ nên

$$\frac{1}{2}$$
. AC . $BD = 9 \Leftrightarrow a^2 = 9 \Rightarrow a = 3$ (cm)

$$\Rightarrow AA' = rac{S_{ACC'A'}}{AC} = rac{12}{3} = 4cm$$

Thể tích ABCD. $A^{\prime}B^{\prime}C^{\prime}D^{\prime}$ là $V=AA^{\prime}.9=36cm^3$

Giả sử 4 số đó là a,b,c,d $(a,b,c,d\in\mathbb{N}^*)$.

Do a,b,c lập thành cấp số cộng nên ta có a+c=2b(1).

Do b,c,d lập thành cấp số nhần nền ta có $b.d=c^2(st)$.

Lời giải của GV Tuyensinh247.com

Giả sử 4 số đó là a,b,c,d $(a,b,c,d\in\mathbb{N}^*)$.

Do a,b,c lập thành cấp số cộng nên ta có a+c=2b(1).

Do b,c,d lập thành cấp số nhần nền ta có $b.d=c^2(st)$.

Theo giả thiết ta có
$$\left\{ egin{array}{l} a+d=33 \ b+c=30 \end{array}
ight.$$

Tù (1), (2), (3) ta có
$$\left\{egin{array}{l} a=-d+33 \ b=rac{-d+63}{3} \ c=rac{d+27}{3}. \end{array}
ight.$$

Thay vào (*) ta có
$$\dfrac{-d+63}{3}$$
 . $d=\left(\dfrac{d+27}{3}\right)^2$

$$\Leftrightarrow 4d^2-135d+729=0 \Leftrightarrow egin{bmatrix} d=27 \ d=rac{27}{4}(L) \end{bmatrix}$$

Với d=27, ta có a=6, b=12, c=18.

Vậy số lớn nhất là 27

-2258,224

Ta có :
$$760 = a \cdot 10^{rac{-2236, 224}{100 + 273}} \Rightarrow [a] = 863188841.$$

- Viết phương trình đường thẳng AB.
- $-M \in Oy \Rightarrow M(0;m).$
- Diện tích tam giác MAB là: $S_{MAB}=rac{1}{2}.$ AB. $d\left(M;AB
 ight)$. Từ đó suy ra tọa độ M

Một số bài toán viết phương trình đường thẳng --- Xem chi tiết Khoảng cách từ một điểm đến một đường thẳng --- Xem chi tiết

Lời giải của GV Tuyensinh247.com

Ta có:
$$\overrightarrow{AB}=(3;4)\Rightarrow AB=\sqrt{3^2+4^2}=5.$$

Do $M \in Oy \Rightarrow M(0; m)$.

Đường thẳng \overrightarrow{AB} đi qua A (1;2) và nhận $\overrightarrow{AB}=(3;4)$ là vectơ chỉ phương có phương trình chính tắc là: $\dfrac{x-1}{3}=\dfrac{y-2}{4}\Leftrightarrow 4x-3y+2=0.$

$$\Rightarrow d\left(M;AB
ight) = rac{|4.0 - 3.m + 2|}{\sqrt{3^2 + 4^2}} = rac{|3m - 2|}{5}.$$

Ta có:

$$S_{MAB} = \frac{1}{2}.~AB.~d~(M;AB) = \frac{1}{2}.5.~\frac{|3m-2|}{5} = \frac{|3m-2|}{2} = 1 \Rightarrow |3m-2| = 2$$

$$\Leftrightarrow egin{bmatrix} 3m-2=2 \ 3m-2=-2 \end{pmatrix} \Leftrightarrow egin{bmatrix} m=rac{4}{3} \ m=0 \end{pmatrix} egin{bmatrix} M\left(0;rac{4}{3}
ight) \ M\left(0;0
ight) \end{pmatrix}.$$

Nếu (*P*) // (*Q*) thì

$$\frac{2a}{-(b+2)} = \frac{-b-3}{a} = \frac{3}{-3}$$

$$\Leftrightarrow \left\{egin{array}{l} 2a=b+2\ a=b+3 \end{array}
ight.$$

$$\Leftrightarrow \left\{ \begin{array}{l} a = -1 \\ b = -4 \end{array} \right.$$

Thử lại, với a=-1 và b=-4, ta có:

$$(P): -2x + y + 3z - 2 = 0.$$

$$(Q): 2x - y - 3z + 1 = 0.$$

Do (0;2;0) thuộc (P) nhưng không thuộc (Q), do đó (P)//(Q).

Vậy
$$S = \{(-1, -4)\}.$$

Tính số trang có 1, 2, 3, 4 chữ số.

Lời giải của GV Tuyensinh247.com

Số trang có 1 chữ số: 9 trang.

Số trang có 2 chữ số: 90 trang.

Số trang có 3 chữ số: 900 trang.

Số trang có 4 chữ số: 9000 trang.

Ta có: 2000=9+90+900+1001

Số chữ số để đánh số trang là: 9.1+90.2+900.3+1001.4=6893

Xét từng mệnh đề.

Lời giải của GV Tuyensinh247.com

a) Số các số hạng trong khai triển là n+1

b) Với n=4 thì
$$\left(rac{1}{\sqrt{2}}+3
ight)^4=\sum\limits_{k=0}^4 C_4^k.3^k.\left(2rac{-1}{2}
ight)^{4-k}$$

$$=\sum_{k=0}^4 C_4^k.3^k.2rac{k-4}{2}$$

Số hạng hữu tỉ khi và chỉ khi $\dfrac{k-4}{2} \in \mathbb{Z}$ mà $-4 \leq k-4 \leq 0$

$$\Rightarrow k-4 \in \{0;-2;-4\} \Leftrightarrow k \in \{0;2;4\}$$

Vậy có 3 số hạng hữu tỉ.

c) Số nguyên duy nhất trong khai triển nhị thức là $\mathbf{3}^n$ và đây là một số lẻ.

d) Ta có
$$\left(\frac{1}{\sqrt{2}}+3\right)^n=\left(3+2^{\dfrac{-1}{2}}\right)^n=\sum\limits_{k=0}^n C_n^k.3^k.\left(2^{\dfrac{-1}{2}}\right)^{n-k}$$

$$\text{B\`{a}i ra th\`{i}} \frac{C_n^4.3^4. \left(2^{\frac{-1}{2}}\right)^{n-4}}{C_n^3.3^3. \left(2^{\frac{-1}{2}}\right)^{n-3}} = 3\sqrt{2} \Rightarrow \frac{\frac{3.n!}{(n-4)!.4!}}{\frac{n!}{(n-3)!.3!}}. \left(2^{\frac{-1}{2}}\right)^{-1} = 3\sqrt{2}$$

$$\Rightarrow \frac{3(n-3)}{4}.\sqrt{2} = 3\sqrt{2} \Rightarrow n = 7$$

Đáp án của GV Tuyensinh247.com

$$egin{align} V_{ ext{max}} &= egin{array}{c} rac{a^3\sqrt{3}}{8} \ x &= egin{array}{c} rac{a}{2} \ y &= egin{array}{c} rac{a\sqrt{3}}{2} \ \end{array} \end{array}$$

Phương pháp giải

- Biểu diễn y theo a,x.
- Biểu diễn $V_{S.ABCM}$ theo a,x .

Lời giải của GV Tuyensinh247.com

Từ
$$x^2+y^2=a^2\Rightarrow y=\sqrt{a^2-x^2}$$
.

Diện tích mặt đáy
$$S_{ABCM} = \left(rac{BC + AM}{2}
ight) \cdot AB = \left(rac{a + x}{2}
ight)a.$$

Thể tích khối chóp
$$V_{S\cdot ABCM}=rac{1}{3}S_{ABCM}\cdot SA=rac{1}{3}\cdot\left(rac{a+x}{2}\cdot a
ight)\sqrt{a^2-x^2}$$
 $=rac{a}{6}(a+x)\sqrt{a^2-x^2}.$

Xét hàm
$$f(x)=(a+x)\sqrt{a^2-x^2}$$
 trên $(0;a)$, ta được $\max_{(0;a)}f(x)=f\left(rac{a}{2}
ight)=rac{3\sqrt{3}a^2}{4}$.

Suy ra
$$V_{
m max}=rac{a^3\sqrt{3}}{8}$$
 khi $x=rac{a}{2}.$

$$\Rightarrow y = \frac{a\sqrt{3}}{2}$$
.

Xét
$$y=rac{u\left(x
ight)}{v\left(x
ight)}$$
. Ta có $y'=rac{u'\left(x
ight).v\left(x
ight)-v'\left(x
ight).u\left(x
ight)}{v^{2}\left(x
ight)}$.

Gọi $M\left(x_{0};y_{0}
ight)$ là điểm cực trị. Khi đó $y'\left(x_{0}
ight)=0$.

Suy ra
$$u'\left(x_{0}
ight)$$
 . $v\left(x_{0}
ight)-v'\left(x_{0}
ight)$. $u\left(x_{0}
ight)=0\Rightarrow y_{0}=\dfrac{u\left(x_{0}
ight)}{v\left(x_{0}
ight)}=\dfrac{u'\left(x_{0}
ight)}{v'\left(x_{0}
ight)}$

Lời giải của GV Tuyensinh247.com

Điều kiện: $x \neq -1$.

Ta có:
$$y'=1-rac{q}{\left(x+1
ight)^2}.$$

Hàm số đạt cực đại tại điểm x=-2, giá trị cực đại bằng -2 nên

$$\begin{cases} 1-q=0 \\ -2+p-q=-2 \end{cases} \Leftrightarrow \begin{cases} q=1 \\ p=1 \end{cases}.$$

Thử lại p=q=1 thỏa mãn nên S=1+2=3.

Phương trình $\sin x = m$ có nghiệm khi $-1 \leq m \leq 1$.

Lời giải của GV Tuyensinh247.com

Với m=-1 thì phương trình trở thành 3=0 (vô nghiệm).

Với m
eq -1 thì phương trình tương đương:

$$(m+1)\sin x = m-2 \Leftrightarrow \sin x = rac{m-2}{m+1}.$$

Để phương trình có nghiệm thì:

$$-1 \leq rac{m-2}{m+1} \leq 1 \Leftrightarrow \left\{ egin{array}{c} rac{m-2}{m+1} + 1 \geq 0 \ rac{m-2}{m+1} - 1 \leq 0 \end{array}
ight. \Leftrightarrow \left\{ egin{array}{c} rac{2m-1}{m+1} \geq 0 \ rac{3}{m+1} \leq 0 \end{array}
ight. \Leftrightarrow \left\{ egin{array}{c} m \geq rac{1}{2} \ m < -1 \end{array}
ight. \Leftrightarrow m = 0$$

$$\geq \frac{1}{2}$$
.

Bước 1: Tìm phương trình mặt phẳng (lpha)

Bước 2: Tìm phương trình mặt phẳng (β)

Bước 3: Tìm M là giao của (P), (α) , (β)

Lời giải của GV Tuyensinh247.com

Do d' là hình chiếu của d lên mặt phẳng (P) khi đó d' là giao tuyến của mặt phẳng (P)và mặt phẳng (α) chứa d và vuông góc với mặt phẳng (P).

$$\Rightarrow$$
Một vecto pháp tuyến của $(lpha)$ là $\overrightarrow{n_{(lpha)}} = \left[\overrightarrow{u_d}, \overrightarrow{n_{(P)}}\right] = (-3; 2; -1)$

Phương trình mặt phẳng (lpha)đi qua A (-2;0;2)và có vec tơ pháp tuyến $\overrightarrow{n_{(lpha)}}=(-3;2;-1)$ là 3x-2y+z+4=0.

Do Δ' là hình chiếu của Δ lên (P) khi đó Δ' là giao tuyến của (P) và mặt phẳng (eta) chứa Δ và vuông góc với (P).

$$\Rightarrow$$
Một vec tơ pháp tuyến của (eta) là $\overrightarrow{n_{(eta)}} = \left[\overrightarrow{u_{\Delta}}, \overrightarrow{n_{(P)}}\right] = (0; -2; -2).$

Phương trình mặt phẳng (eta) đi qua B (3;1;4) và có vec tơ pháp tuyến $\overrightarrow{n_{(eta)}}=(0;-2;-2)$ là y+z-5=0.

Tọa độ điểm M là nghiệm của hệ phương trình:
$$\left\{egin{array}{c} x+y-z+2=0 \\ 3x-2y+z+4=0 \\ y+z-5=0 \end{array}
ight. \Leftrightarrow \left\{egin{array}{c} x=-1 \\ y=2 \\ z=3 \end{array}
ight.$$

Vậy
$$M\left(-1;2;3\right)\Rightarrow a+b$$
. $c=-1+2.3=5$.

Đáp án của GV Tuyensinh247.com

$$\int\limits_{a}^{c}\left|f(x)
ight|dx$$

Diện tích của phần tô màu xanh là:

$$\int\limits_{b}^{c}\left[f\left(x
ight) -g(x)
ight] dx$$

Phương pháp giải

Sử dụng định nghĩa.

Lời giải của GV Tuyensinh247.com

Diện tích của phần tô màu vàng là: $\int\limits_a^c |f(x)|\,dx$.

Diện tích của phần tô màu xanh là: $\int\limits_{b}^{c} \left[f\left(x
ight) - g(x)
ight] dx$

Áp dụng công thức nguyên hàm.

Lời giải của GV Tuyensinh247.com

$$I = -rac{2024}{2025}(1-x)rac{2025}{2024}igg|_0^1 = rac{2024}{2025}pprox 0,999506.$$

