Absolute value

Absolute value measures distance.

So |1| = |1 - 0| = 1 says, the distance between "1" and "0" is 1.

If we write |2-1|=1 we can say, the distance between "2" and "1" is 1.

If we write |2 - a| we can say, the distance between "2" and "a".

If we write $|2-a|<\varepsilon$ we can say, the distance between "2" and "a" is less than epsilon (ε) .

Formal Definition

Let $f: A \to \mathbb{R}$, where $A \subseteq \mathbb{R}$ and $a \in A$ an interior point. We say

$$\lim_{x \to a} f(x) = L$$

if $\forall \varepsilon > 0, \exists \delta > 0$ such that, if

$$|x-a| < \delta$$

then

$$|f(x) - f(a)| < \varepsilon.$$

We pick a number and call it ε , any number we want. Based on epsilon we pick a number δ so that for any number x in the interval $a - \delta < x < a + \delta$, $|f(x) - f(a)| < \varepsilon$.

