3-9 Connectivity

Hengfeng Wei

hfwei@nju.edu.cn

November 26, 2018

如果两个割点相连, 那么联通块怎么划分! 联通快呢) menger定理吧 哲无 好像没有...... Menger定理的证明看不懂 menger定理的证明 不。。不记得了 还好理解, 只是都不怎么容易理解 menger定理的证明没太理解 老师辛苦了!

Menger's Theorem (Theorem 5.16; Theorem 5.21)

点割集, 边割集

如果两个割点相连,那么联通块怎么划分 联通快呢)

menger定理吧

暂无

好像没有.....

Menger定理的证明看不懂

menger定理的证明

不。。不记得了

还好理解, 只是都不怎么容易理解

menger定理的证明没太理解 老师辛苦了!

点割集, 边割集

Menger's Theorem (Theorem 5.16; Theorem 5.21)

A connected graph G with $m \geq 2$ is nonseparable

 \iff

any two adjacent edges of G lie on a common cycle of G.

A connected graph G with $m \geq 2$ is nonseparable

 \iff

any two adjacent edges of G lie on a common cycle of G.

Proof.

 $``\Longrightarrow"$

A connected graph G with $m \geq 2$ is nonseparable

any two adjacent edges of G lie on a common cycle of G.

Proof.

 $``\Longrightarrow"$

G is nonseparable

 $\implies u, w$ lie on a common cycle

A connected graph G with $m \geq 2$ is nonseparable

any two adjacent edges of G lie on a common cycle of G.

Proof.

 $``\Longrightarrow"$

G is nonseparable

 $\implies u, w$ lie on a common cycle

 $\implies \exists \text{ path } u \sim w$

 $\implies \exists \text{ cycle } u - v - w \sim u$

A connected graph G with $m \geq 2$ is nonseparable

any two adjacent edges of G lie on a common cycle of G.

Proof.

 $``\Longrightarrow"$

G is nonseparable

 $\implies u, w$ lie on a common cycle

 $\implies \exists \text{ path } u \sim w$

 $\implies \exists \text{ cycle } u - v - w \sim u$

A connected graph G with $m \geq 2$ is nonseparable

any two adjacent edges of G lie on a common cycle of G.

Proof.

 $``\Longrightarrow"$

G is nonseparable

 $\implies u, w$ lie on a common cycle

 $\implies \exists \text{ path } u \sim w \text{ that does not contain } v$

 $\implies \exists \text{ cycle } u - v - w \sim u$

A connected graph G with $m \geq 2$ is nonseparable

$$\leftarrow$$

any two adjacent edges of G lie on a common cycle of G.

Proof.

By Contradiction.

A connected graph G with $m \geq 2$ is nonseparable

$$\iff$$

any two adjacent edges of G lie on a common cycle of G.

Proof.

By Contradiction.

Suppose v is a cut-vertex of G

$$\implies G - v \text{ contains } \geq 2 \text{ comps } G_1, G_2, \cdots$$

$$\implies \exists u \in G_1, w \in G_2 : v - u \land v - w$$

$$\implies v - u, v - w$$
 lie on a common cycle

 $\implies \exists \text{ path } u \sim w \text{ that does not contain } v$

$$\forall G_i \; \exists v_i \in G_i \; v - v_i$$

$$\forall G_i \ \exists v_i \in G_i \ v - v_i$$

$$\forall G_i \ \exists v_i \in G_i \ v - v_i$$

$$\forall v \in S \ \forall G_i \ \exists v_i \in G_i \ v - v_i$$

A connected graph G with $m \geq 2$ is nonseparable

any two adjacent edges of G lie on a common cycle of G.

A connected graph G with $m \geq 2$ is nonseparable

any two adjacent edges of G lie on a common cycle of G.

2-Connectivity (Extended Problem)

A connected graph G with $m \geq 2$ is nonseparable

any two edges of G lie on a common cycle of G.

Expansion Lemma (Problem 5.34; Theorem 5.18)

Let G be a k-connected graph and let S be any set of k vertices.

If a graph H is obtained from G by adding a new vertex w and joining w to the vertices of S, then H is also k-connected.

We need to prove that

 $\forall v \in V(G)$: there exist k internally disjoint v - w paths

We need to prove that

 $\forall v \in V(G)$: there exist k internally disjoint v - w paths

This holds because

 $\forall v \in V(G)$: there exist internally disjoint $v - s_i \ (\forall s_i \in S)$ paths

We need to prove that

 $\forall v \in V(G)$: there exist k internally disjoint v - w paths

This holds because

 $\forall v \in V(G)$: there exist internally disjoint $v - s_i \ (\forall s_i \in S)$ paths

Corollary (5.19; Proved using Theorem 5.18)

If G is a k-connected graph and u, v_1, v_2, \dots, v_k are k+1 distinct vertices of G, then there exist internally disjoint $u-v_i$ paths $(1 \le i \le k)$ in G.

To prove
$$\kappa(H) \geq k$$

Let U be a vertex-cut of H. We prove that $|U| \ge k$.

Let U be a vertex-cut of H. We prove that $|U| \ge k$.

Case I: U is a vertex-cut of G — Case II: U is not a vertex-cut of G

Let U be a vertex-cut of H. We prove that $|U| \ge k$.

Case I: U is a vertex-cut of G

Case II: U is not a vertex-cut of G

$$|U| \ge k$$

Let U be a vertex-cut of H. We prove that $|U| \ge k$.

Case I: U is a vertex-cut of G

Case II: U is not a vertex-cut of G

$$|U| \ge k$$

$$w \in U$$

To prove
$$\kappa(H) \geq k$$

Let U be a vertex-cut of H. We prove that $|U| \ge k$.

Case I: U is a vertex-cut of G

$$|U| \ge k$$

Case II: U is not a vertex-cut of G

$$w \in U$$

U-w is a vertex-cut of G

To prove
$$\kappa(H) \geq k$$

Let U be a vertex-cut of H. We prove that $|U| \ge k$.

Case I: U is a vertex-cut of G

$$|U| \ge k$$

Case II: U is not a vertex-cut of G

$$w \in U$$

$$U - w \text{ is a vertex-cut of } G$$

$$|U| \ge k + 1$$

A connected graph G with $m \geq 2$ is nonseparable

 \iff

any two edges of G lie on a common cycle of G.

A connected graph G with $m \geq 2$ is nonseparable

any two edges of G lie on a common cycle of G.

Consider two edges uv and xy.

A connected graph G with $m \geq 2$ is nonseparable

any two edges of G lie on a common cycle of G.

Consider two edges uv and xy.

A connected graph G with $m \geq 2$ is nonseparable

any two edges of G lie on a common cycle of G.

Consider two edges uv and xy.

 $\begin{array}{c} \operatorname{Add}\ w,z\\ \operatorname{Add}\ wu,wv;zx,zy\\ w\ \operatorname{and}\ z\ \mathrm{lie}\ \mathrm{on}\ \mathrm{a}\ \mathrm{common}\ \mathrm{cycle} \end{array}$

Effects of Removing an Edge on Connectivity (Problem 5.22 (a))

(a) If G is k-connected and $e = uv \in E(G)$, then G - e is (k-1)-connected.

Effects of Removing an Edge on Connectivity (Problem 5.22 (a))

(a) If G is k-connected and $e = uv \in E(G)$, then G - e is (k-1)-connected.

To prove
$$\kappa(G) \ge k \implies \kappa(G - e) \ge k - 1$$

Effects of Removing an Edge on Connectivity (Problem 5.22 (a))

(a) If G is k-connected and $e = uv \in E(G)$, then G - e is (k-1)-connected.

To prove
$$\kappa(G) \ge k \implies \kappa(G - e) \ge k - 1$$

Choose any $U \subseteq V(G)$ with |U| < k - 1.

We prove that G - e - U is connected.

We prove that G - e - U is connected.

We prove that G - e - U is connected.

G is k-connected $\implies G - U$ is connected

We prove that G - e - U is connected.

G is k-connected $\implies G - U$ is connected

Suppose, by contradiction, that G - e - U is not connected.

We prove that G - e - U is connected.

G is k-connected $\implies G - U$ is connected

Suppose, by contradiction, that G - e - U is not connected.

e = uv is a bridge of G - U

We prove that G - e - U is connected.

G is k-connected $\implies G - U$ is connected

Suppose, by contradiction, that G - e - U is not connected.

e = uv is a bridge of G - U

We prove that G - e - U is connected.

G is k-connected $\implies G - U$ is connected

Suppose, by contradiction, that G - e - U is not connected.

$$e = uv$$
 is a bridge of $G - U$

But
$$|U \cup \{u\}| < k$$

We prove that G - e - U is connected.

G is k-connected $\implies G - U$ is connected

Suppose, by contradiction, that G - e - U is not connected.

e = uv is a bridge of G - U

But
$$|U \cup \{u\}| < k$$

We prove that G - e - U is connected.

G is k-connected $\implies G - U$ is connected

Suppose, by contradiction, that G - e - U is not connected.

e = uv is a bridge of G - U

But
$$|U \cup \{u\}| < k$$

Case $I: |X| \ge 2 \lor |Y| \ge 2$

Case I :
$$|X| \ge 2 \lor |Y| \ge 2$$

But
$$|U \cup \{u\}| < k$$

Case II :
$$|X| = |Y| = 1$$

Case I :
$$|X| \ge 2 \lor |Y| \ge 2$$

But
$$|U \cup \{u\}| < k$$

Case II :
$$|X| = |Y| = 1$$

$$|U| = n - 2 < k - 1$$

Case
$$I: |X| \ge 2 \lor |Y| \ge 2$$

$$U \cup \{u\}$$
 is a vertex-cut of G

But
$$\left| U \cup \{u\} \, \right| < k$$

Case
$$I: |X| \ge 2 \lor |Y| \ge 2$$

But
$$|U \cup \{u\}| < k$$

Case II :
$$|X| = |Y| = 1$$

$$|U| = n - 2 < k - 1$$

$$\kappa(G) \ge k > n - 1$$

Case
$$I: |X| \ge 2 \lor |Y| \ge 2$$

But
$$|U \cup \{u\}| < k$$

Case II :
$$|X| = |Y| = 1$$

$$|U| = n - 2 < k - 1$$

$$\kappa(G) \ge k > n - 1$$

But
$$0 \le \kappa(G) \le n - 1$$

(b) If G is k-edge-connected and $e = uv \in E(G)$, then G - e is (k-1)-edge-connected.

$$\lambda(G) \ge k \implies \lambda(G - e) \ge k - 1$$

(b) If G is k-edge-connected and $e=uv\in E(G),$ then G-e is (k-1)-edge-connected.

$$\lambda(G) \ge k \implies \lambda(G - e) \ge k - 1$$

Choose any $X \subseteq E(G)$ with |X| < k - 1.

We prove that G - e - X is connected.

(b) If G is k-edge-connected and $e=uv\in E(G),$ then G-e is (k-1)-edge-connected.

$$\lambda(G) \ge k \implies \lambda(G - e) \ge k - 1$$

Choose any $X \subseteq E(G)$ with |X| < k - 1.

We prove that G - e - X is connected.

$$G - e - X = G - (e + E)$$
 is connected

(b) If G is k-edge-connected and $e=uv\in E(G)$, then G-e is (k-1)-edge-connected.

$$\lambda(G) \ge k \implies \lambda(G - e) \ge k - 1$$

Choose any $X \subseteq E(G)$ with |X| < k - 1.

We prove that G - e - X is connected.

$$G - e - X = G - (e + E)$$
 is connected $(:: \lambda(G) \ge k)$

$$\kappa(G - e) \le \kappa(G)$$

$$\kappa(G - e) \le \kappa(G)$$

Effects of Removing a Vertex on Connectivity (Extended Problem)

Is
$$\kappa(G - \mathbf{v}) \le \kappa(G)$$
?

Is
$$\lambda(G - \mathbf{v}) \le \lambda(G)$$
?

$$\kappa(G - e) \le \kappa(G)$$

Effects of Removing a Vertex on Connectivity (Extended Problem)

Is
$$\kappa(G - \mathbf{v}) \le \kappa(G)$$
?

Is
$$\lambda(G - \mathbf{v}) \le \lambda(G)$$
?

$$\kappa(G - e) \le \kappa(G)$$

Effects of Removing a Vertex on Connectivity (Extended Problem)

Is
$$\kappa(G - \mathbf{v}) \le \kappa(G)$$
?

Is
$$\lambda(G - \mathbf{v}) \le \lambda(G)$$
?

Effects of Removing a Vertex on Connectivity (After-class Exercise)

Is
$$\kappa(G) \ge k \implies \kappa(G - v) \ge k - 1$$
?

Is
$$\lambda(G) > k \implies \lambda(G - v) > k - 1$$
?

If G is graph of order n such that $\delta(G) \geq (n-1)/2$, then $\lambda(G) = \delta(G)$.

If G is graph of order n such that $\delta(G) \geq (n-1)/2$, then $\lambda(G) = \delta(G)$.

$$\lambda(G) \leq \delta(G)$$

If G is graph of order n such that $\delta(G) \geq (n-1)/2$, then $\lambda(G) = \delta(G)$.

$$\lambda(G) \le \delta(G)$$

$$\lambda(G) = |X|$$

If G is graph of order n such that $\delta(G) \geq (n-1)/2$, then $\lambda(G) = \delta(G)$.

$$\lambda(G) \leq \delta(G)$$

$$\lambda(G) = |X|$$

$$1 \le |S| = k \le n/2, \quad |V - S| = n - k$$

If G is graph of order n such that $\delta(G) \geq (n-1)/2$, then $\lambda(G) = \delta(G)$.

$$\lambda(G) \le \delta(G)$$

We prove that $\lambda(G) \geq \delta(G)$.

$$1 \le |S| = k \le \frac{n}{2}, \quad |V - S| = n - k$$
$$\lambda \ge k \left(\delta - (k - 1)\right)$$

 $\lambda(G) = |X|$

If G is graph of order n such that $\delta(G) \geq (n-1)/2$, then $\lambda(G) = \delta(G)$.

$$\lambda(G) \le \delta(G)$$

$$\lambda(G) = |X|$$

$$1 \le |S| = k \le n/2, \quad |V - S| = n - k$$

$$\lambda \ge k \left(\delta - (k - 1)\right) \ge \delta$$

Decision	Author(s)	Year	Complexity	Comments
Edge Connectivity				
$\lambda = 2 \text{ or } \lambda = 3$	Tarjan [26]	1972	O(m+n)	uses Depth First Search
λ	Even and Tarjan [6]	1975	$O(mn \times min\{m^{1/2}, n^{2/3}\})$	n calls to max-flow
λ (digraphs)	Schnorr [25]	1979	$O(\lambda mn)$	n calls to max-flow
λ	Esfahanian & Hakimi [3]	1984	$O(\lambda mn)$	$\leq n/2$ calls to max-flow
λ (digraphs)	Esfahanian & Hakimi [3]	1984	$O(\lambda mn)$	$\leq n/2$ calls to max-flow
λ	Matula [23]	1987	O(mn)	uses dominating sets
$\lambda = k$	Matula [23]	1987	O(kn²)	
λ (digraphs)	Mansour & Schieber [22]	1989	O(mn)	
$\lambda = k$	Gabow [9]	1991	$O(m+k^2n\log(n/k))$	uses matroids
Vertex Connectivity				
κ = 2	Tarjan [26]	1972	O(m+n)	uses Depth First Search
$\kappa = 3$	Hopcroft & Tarjan [18]	1973	O(m+n)	uses triconnected
				components
κ	Even & Trajan [6]	1975	$O((\kappa(n-\delta-1)mn^{2/3})$	max-flow based
$\kappa = k$	Even [4]	1975	O(kn³)	max-flow based
κ	Galil [12]	1980	$O(\min{\kappa, n^{2/3}}mn)$	max-flow based
$\kappa = k$	Galil [12]	1980	$O(\min\{k, n^{1/2}\}kmn)$	max-flow based
κ	Esfahanian & Hakimi [3]	1984	$O((n-\delta-1+\delta(\delta-1)/2)mn^{2/3})$	max-flow based
κ = 4	Kanevsky &	1991	O(n2)	
	Ramachandran [20]			
κ	Henzinger & Rao [17]	1996	O(κmnlogn)	randomised algorithm

Table 1: A chronology of connectivity algorithms

Let u and v be nonadjacent vertices in a graph G.

The minimum number of vertices in a u-v separating set equals the maximum number of internally disjoint u-v paths in G.

Let u and v be nonadjacent vertices in a graph G.

The minimum number of vertices in a u-v separating set equals the maximum number of internally disjoint u-v paths in G.

How do Case 1, Case 2, and Case 3 cover all possibilities?

Let u and v be nonadjacent vertices in a graph G.

The minimum number of vertices in a u-v separating set equals the maximum number of internally disjoint u-v paths in G.

How do Case 1, Case 2, and Case 3 cover all possibilities?

Are Case 1 and Case 2 mutually exclusive?

Let u and v be nonadjacent vertices in a graph G.

The minimum number of vertices in a u-v separating set equals the maximum number of internally disjoint u-v paths in G.

How do Case 1, Case 2, and Case 3 cover all possibilities?

Are Case 1 and Case 2 mutually exclusive?

What is the key to use the induction hypothesis in Case 2?

Let u and v be nonadjacent vertices in a graph G.

The minimum number of vertices in a u-v separating set equals the maximum number of internally disjoint u-v paths in G.

How do Case 1, Case 2, and Case 3 cover all possibilities?

Are Case 1 and Case 2 mutually exclusive?

What is the key to use the induction hypothesis in Case 2?

Are Case 1 and Case 3 mutually exclusive?

Let u and v be nonadjacent vertices in a graph G.

The minimum number of vertices in a u-v separating set equals the maximum number of internally disjoint u-v paths in G.

How do Case 1, Case 2, and Case 3 cover all possibilities?

Are Case 1 and Case 2 mutually exclusive?

What is the key to use the induction hypothesis in Case 2?

Are Case 1 and Case 3 mutually exclusive?

What will fail if we do not exclude Case 1 from Case 3?

Theorem (Menger's Theorem (Theorem 5.16))

Let u and v be nonadjacent vertices in a graph G.

The minimum number of vertices in a u-v separating set equals the maximum number of internally disjoint u-v paths in G.

How do Case 1, Case 2, and Case 3 cover all possibilities?

Are Case 1 and Case 2 mutually exclusive?

What is the key to use the induction hypothesis in Case 2?

Are Case 1 and Case 3 mutually exclusive?

What will fail if we do not exclude Case 1 from Case 3?

Can you restate these three cases in terms of N(u) and N(v)?

Theorem (Menger's Theorem (Theorem 5.16))

Let u and v be nonadjacent vertices in a graph G.

The minimum number of vertices in a u-v separating set equals the maximum number of internally disjoint u-v paths in G.

How do Case 1, Case 2, and Case 3 cover all possibilities?

Are Case 1 and Case 2 mutually exclusive?

What is the key to use the induction hypothesis in Case 2?

Are Case 1 and Case 3 mutually exclusive?

What will fail if we do not exclude Case 1 from Case 3?

Can you restate these three cases in terms of N(u) and N(v)?

Can you rearrange these three cases to make them (hopefully) easier to understand?

- Case I: There exists a minimum u v separating set W in G containing a vertex x that is adjacent to both u and v.
- CASE II: There exists a minimum u-v separating set W in G containing a vertex in W that is not adjacent to u and a vertex in W that is not adjacent to v.
- Case III: For each minimum u v separating set W in G, either every vertex of W is adjacent to u and not adjacent to v or every vertex of W is adjacent to v and not adjacent to u.

Case I: There exists a minimum u - v separating set W in G containing a vertex x that is adjacent to both u and v.

$$\exists W: \exists x \in W: x-u \land x-v$$

- CASE II: There exists a minimum u-v separating set W in G containing a vertex in W that is not adjacent to u and a vertex in W that is not adjacent to v.
- Case III: For each minimum u v separating set W in G, either every vertex of W is adjacent to u and not adjacent to v or every vertex of W is adjacent to v and not adjacent to u.

Case I: There exists a minimum u - v separating set W in G containing a vertex x that is adjacent to both u and v.

$$\exists W: \exists x \in W: x - u \land x - v$$

CASE II: There exists a minimum u-v separating set W in G containing a vertex in W that is not adjacent to u and a vertex in W that is not adjacent to v.

$$\exists W: \exists x \in W: x \not - u$$
$$\land \exists y \in W: y \not - v$$

CASE III: For each minimum u - v separating set W in G, either every vertex of W is adjacent to u and not adjacent to v or every vertex of W is adjacent to v and not adjacent to u.

Case I: There exists a minimum u - v separating set W in G containing a vertex x that is adjacent to both u and v.

$$\exists W: \exists x \in W: x - u \land x - v$$

CASE II: There exists a minimum u-v separating set W in G containing a vertex in W that is not adjacent to u and a vertex in W that is not adjacent to v.

$$\exists W : \exists x \in W : x \not - u$$
$$\land \exists y \in W : y \not - v$$

CASE III: For each minimum u - v separating set W in G, either every vertex of W is adjacent to u and not adjacent to v or every vertex of W is adjacent to v and not adjacent to u.

$$\forall W: \forall x \in W: x-u \land x \not - v$$

$$\lor \forall x \in W: x-v \land x \not - u$$

$$I: \exists W: \exists x \in W: x - u \land x - v$$

$$II: \exists W: \exists x \in W: x \not - u$$
$$\land \exists y \in W: y \not - v$$

$$\begin{split} \text{III} : \forall W : \forall x \in W : x - u \land x \not - v \\ & \lor \forall x \in W : x - v \land x \not - u \end{split}$$

$$I: \exists W: \exists x \in W: x - u \land x - v$$

$$II: \exists W: \exists x \in W: x \not - u$$
$$\land \exists y \in W: y \not - v$$

$$\mathbf{II'}: \forall W: \forall x \in W: x - u$$
$$\lor \forall y \in W: y - v$$

$$\begin{aligned} \text{III}: \forall W: \forall x \in W: x - u \land x \not - v \\ & \lor \forall x \in W: x - v \land x \not - u \end{aligned}$$

$$\mathbf{I}: \exists W: \exists x \in W: x-u \land x-v \qquad \mathbf{I'}: \forall W: \forall x \in W: x \not - u \lor x \not - v$$

$$II: \exists W: \exists x \in W: x \not - u$$
$$\land \exists y \in W: y \not - v$$

$$\mathbf{II'}: \forall W: \forall x \in W: x - u$$
$$\vee \forall y \in W: y - v$$

$$\begin{aligned} \text{III}: \forall W: \forall x \in W: x - u \land x \not - v \\ & \lor \forall x \in W: x - v \land x \not - u \end{aligned}$$

$$\mathbf{I}: \exists W: \exists x \in W: x-u \land x-v \qquad \mathbf{I'}: \forall W: \forall x \in W: x \not - u \lor x \not - v$$

$$II: \exists W: \exists x \in W: x \not - u$$
$$\land \exists y \in W: y \not - v$$

$$\mathbf{II'}: \forall W: \forall x \in W: x - u$$
$$\lor \forall y \in W: y - v$$

$$\begin{aligned} \text{III} : \forall W : \forall x \in W : x - u \land x \not - v \\ \lor \forall x \in W : x - v \land x \not - u \end{aligned}$$

$$III \equiv II' \wedge I'$$

$$\mathbf{I}: \exists W: \exists x \in W: x - u \land x - v$$
 $\mathbf{I}': \forall$

 $\mathbf{I'}: \forall W: \forall x \in W: x \not - u \lor x \not - v$

$$II: \exists W: \exists x \in W: x \not - u$$
$$\land \exists y \in W: y \not - v$$

$$\mathbf{II'}: \forall W: \forall x \in W: x-u$$
$$\vee \forall y \in W: y-v$$

III:
$$\forall W : \forall x \in W : x - u \land x \not - v$$

 $\lor \forall x \in W : x - v \land x \not - u$

$$III \equiv II' \wedge I'$$

II II'

I III Π

$$II: \exists W: \exists x \in W: x \not - u$$
$$\land \exists y \in W: y \not - v$$

 Π'

$$\mathbf{I}:\exists W:\exists x\in W:x-u\wedge x-v$$

$$III: \forall W: \forall x \in W: x - u \land x \not - v$$
$$\lor \forall x \in W: x - v \land x \not - u$$

$$II: \exists W: \exists x \in W: x \not - u$$
$$\land \exists y \in W: y \not - v$$

$$\exists W : W \nsubseteq N(u)$$
$$\land W \nsubseteq N(v)$$

 Π' Π'

$$\mathbf{I}: \exists W: \exists x \in W: x - u \land x - v$$

III:
$$\forall W : \forall x \in W : x - u \land x \not - v$$

 $\forall \forall x \in W : x - v \land x \not - u$

$$\begin{aligned} \text{II} : \exists W : \exists x \in W : x \not - u \\ & \land \exists y \in W : y \not - v \end{aligned} \qquad \exists W : W \nsubseteq N(u) \\ & \land W \nsubseteq N(v) \end{aligned}$$

 Π'

$$I: \exists W: \exists x \in W: x - u \land x - v \qquad \exists W: \exists x \in W: x \in N(u) \cap N(v)$$

III:
$$\forall W : \forall x \in W : x - u \land x \not - v$$

 $\forall \forall x \in W : x - v \land x \not - u$

II II

$$\begin{aligned} \text{II} : \exists W : \exists x \in W : x \not - u \\ & \land \exists y \in W : y \not - v \end{aligned} \qquad \exists W : W \not\subseteq N(u) \\ & \land W \not\subseteq N(v) \end{aligned}$$

' II'

$$\mathbf{I}: \exists W: \exists x \in W: x - u \land x - v \qquad \exists W: \exists x \in W: x \in N(u) \cap N(v)$$

III:
$$\forall W : \forall x \in W : x - u \land x \not - v \qquad \forall W : W \subseteq N(u) \land W \cap N(v) = \emptyset$$

 $\lor \forall x \in W : x - v \land x \not - u \qquad \lor W \subseteq N(v) \land W \cap N(u) = \emptyset$

$$II: \exists W: W \nsubseteq N(u) \\ \land W \nsubseteq N(v)$$

II'

$$\mathbf{I}: \exists W: \exists x \in W: x \in N(u) \cap N(v)$$

III:
$$\forall W: W \subseteq N(u) \land W \cap N(v) = \emptyset$$

 $\lor W \subseteq N(v) \land W \cap N(u) = \emptyset$

$$II: \exists W: W \nsubseteq N(u)$$
$$\land W \nsubseteq N(v)$$

Q: What is the key to use the induction hypothesis in Case II?

II'

$$\mathbf{I}: \exists W: \exists x \in W: x \in N(u) \cap N(v)$$

III:
$$\forall W: W \subseteq N(u) \land W \cap N(v) = \emptyset$$

 $\lor W \subseteq N(v) \land W \cap N(u) = \emptyset$

$$II: \exists W: W \nsubseteq N(u)$$
$$\land W \nsubseteq N(v)$$

Q: What is the key to use the induction hypothesis in Case II?

II'

$$\mathbf{I}: \exists W: \exists x \in W: x \in N(u) \cap N(v)$$

III:
$$\forall W: W \subseteq N(u) \land W \cap N(v) = \emptyset$$

 $\lor W \subseteq N(v) \land W \cap N(u) = \emptyset$

Q: What will fail if we do not exclude Case I from Case III?

Theorem (Menger's Theorem for Edge-Connectivity (Theorem 5.21))

For distinct vertices u and v in a graph G,

the minimum number of edges of G that separate u and v equals the maximum number of pairwise edge-disjoint u-v paths in G.

Office 302

Mailbox: H016

hfwei@nju.edu.cn