

ggplot2: Going further in the tidyverse

Michael Friendly Psych 6135

https://friendly.github.io/6135/

A larger view: Data science

- Data science treats statistics & data visualization as parts of a larger process
 - Data import: text files, data bases, web scraping, ...
 - Data cleaning → "tidy data"
 - Model building & visualization
 - Reproducible report writing

2

The tidyverse of R packages

The tidyverse expands

Topics

- Data import / export
- Data wrangling: getting your data into shape
 - dplyr & tidyr
 - pipes: %>%
 - grouping & summarizing
 - Example: NASA data on solar radiation
- Visualizing models: broom
 - Example: gapminder data
- Bootstrapping
- ggplot2 extensions
- tables in R

Ready for some heavy lifting?

Data Import / Export

- The readr package is the modern, tidy way to import and export data
 - Tabular data:
 - comma delimited (read.csv)
 - any other delimiters (";" = read.csv2; <tab> = read_tsv)
 - Data types:
 - specify column types or let functions guess
- Other data formats

package	Data types
haven	SAS, SPSS, Stata
readxl	Excel files (.xls and xlsx)
DBI	Databases (SQL,)
rvest	HTML (web scraping)

Data Import: RStudio

Data transformation tools

Some common data types can be messy when imported. Tidy tools are there to help

dates/times	lubridate	read dates/times in various formats; extract components	lubridate
factors	forcats	Change order of levels, drop levels, combine levels	forcats
strings	stringr	detect matches, subset, replace	stringr

20170131

2001: 03

2.01

lubridate: Dates & times

PARSE DATE-TIMES (Convert strings or numbers to date-times)

- 1. Identify the order of the year (y), month (m), day (d), hour (h), minute (m) and second (s) elements in your data.
- 2. Use the function below whose name replicates the order. Each accepts a wide variety of input formats.

2017-11-28T14:02:00 ymd_hms(), ymd_hm(), ymd_h(). ymd_hms("2017-11-28T14:02:00")

ydm_hms(), ydm_hm(), ydm_h(). 2017-22-12 10:00:00 vdm hms("2017-22-12 10:00:00"

mdy_hms(), mdy_hm(), mdy_h(). mdy_hms("11/28/2017 1:02:03") 11/28/2017 1:02:03

1 Jan 2017 23:59:59 dmy_hms(), dmy_hm(), dmy_h(). dmy_hms("1 Jan 2017 23:59:59")

vmd(), vdm(), vmd(20170131)

mdy(), myd(). mdy("July 4th, 2000") July 4th, 2000

4th of July '99 dmy(), dym(). dmy("4th of July '99")

yq() Q for quarter. yq("2001: Q3")

hms::hms() Also lubridate::hms(), hm() and ms(), which return periods.* hms::hms(sec = 0, min=1.

GET AND SET COMPONENTS

Use an accessor function to get a component. Assign into an accessor function to change a

d ## "2017-11-28" day(d) ## 28 day(d) <- 1

2018-01-31 11:59:59 date(x) Date component. date(dt) 2018-01-31 11:59:59

2018-01-31 11:59:59

2018-01-31 11:59:59

2018-01-31 11:59:59

2018-01-31 11:59:59

×

year(x) Year. year(dt) isovear(x) The ISO 8601 year. epivear(x) Epidemiological year

month(x, label, abbr) Month. month(dt)

dav(x) Day of month, day(dt) wday(x,label,abbr) Day of week

qday(x) Day of quarter. hour(x) Hour. hour(dt)

2018-01-31 11:59:59 minute(x) Minutes. minute(dt)

second(x) Seconds. second(dt)

week(x) Week of the year. week(dt) isoweek() ISO 8601 week epiweek() Epidemiological week.

Learn more at: http://lubridate.tidyverse.org

Factors

stringr: Manipulating strings

Detect Matches

str_detect(string, pattern) Detect the presence of a pattern match in a string.

str_which(string, pattern) Find the indexes of strings that contain a pattern match. str_which(fruit, "a")

str_count(string, pattern) Count the number of matches in a string. str count(fruit, "a")

str_locate(string, pattern) Locate the positions of pattern matches in a string. Also str_locate_all. str_locate(fruit, "a")

Subset Strings

str_sub(string, start = 1L, end = -1L) Extract substrings from a character vector str_sub(fruit, 1, 3); str_sub(fruit, -2)

str_subset(string, pattern) Return only the
strings that contain a pattern match.
str_subset(fruit, "b") str_extract(string, pattern) Return the first pattern match found in each string, as a vector.

Also str_extract_all to return every pattern match. str_extract(fruit, "[aeiou]") str_match(string, pattern) Return the first pattern match found in each string, as a matrix with a column for each () group in pattern Alex etc.

pattern. Also str_match_all. str_match(sentences, "(a|the) ([^]+)")

Join and Split

str_c(..., sep = "", collapse = NULL) Join
multiple strings into a single string.
str_c(letters, LETTERS)

str c(.... sep = "". collapse = "") Collapse

str_dup(string, times) Repeat strings times times. str_dup(fruit, times = 2)

str_split_fixed(string, pattern, n) Split a vector of strings into a matrix of substrings (splitting at occurrences of a pattern match). Also str_split to return a list of substrings. str_split_fixed(fruit, "", n=2)

 $str_glue(..., sep = "", envir = parent.frame())$ Create a string from strings and {expressions} to evaluate. $str_glue("Pi is \{pi\}")$

Mutate Strings

str to upper(string, locale = "en")1 Convert

forcats: Working with factors

R represents categorical variables as factors, useful for analysis (e.g., ANOVA) In graphics, we often want to recode levels or reorder them

Learn more at: http://forcats.tidyverse.org

Inspect Factors

strings to upper case. str_to_upper(sentences) Learn more at: http://stringr.tidyverse.org

Tidy tools: overview

Tidy operations

Reshape long to wide synonym: tidyr::pivot_longer()

Reshape long to wide synonym: tidyr::pivot_longer()

Separate parts of a value into several variables

Join related variables into one

14

Data wrangling with dplyr & tidyr

What is Tidy Data?

A dataset is said to be tidy if:

- · observations are in rows
- variables are in columns
- each value is in its own cell.

A "messy" dataset: Survey of income by religion from Pew Research

- Values of income are in separate columns, not one variable
- Column headers are values, not variable names
- · Cell values are frequencies--- implicit, not explicit

religion	<\$10k	\$10-20k	\$20-30k	\$30-40k	\$40-50k	\$50-75k
Agnostic	27	34	60	81	76	137
Atheist	12	27	37	52	35	70
Buddhist	27	21	30	34	33	58
Catholic	418	617	732	670	638	1116

This organization is easy in Excel But, this makes data analysis and graphing hard

Tidying: reshaping wide to long

We can tidy the data by reshaping from wide to long format using tidyr::gather()

Using pipes: %>%

- R is a functional language
 - This means that f(x) returns a value, as in y <- f(x)
 - That value can be passed to another function: g(f(x))
 - And so on: h(g(f(x)))

```
> x <- c(0.109, 0.359, 0.63, 0.996, 0.515, 0.142)
> exp(diff(log(x)))
[1] 3.29 1.75 1.58 0.52 0.28
```

This gets messy and hard to read, unless you break it down step by step

```
> # Compute the logarithm of `x`, calculate lagged differences, > # return the exponential function of the result > \log(x) [1] -2.216 -1.024 -0.462 -0.004 -0.664 -1.952 > \inf(\log(x)) # calculate lagged diffs [1] 1.19 0.56 0.46 -0.66 -1.29 > \exp(\inf(\log(x))) # convert back to original scale [1] 3.29 1.75 1.58 0.52 0.28
```

Using pipes: %>%

• Pipes (%>%) change the syntax to make this easier

```
> # use pipes
> x %>% log() %>% diff() %>% exp()
[1] 3.29 1.75 1.58 0.52 0.28
```

- Basic rules
 - x %>% f() passes object on left hand side as first argument (or . argument) of function on right hand side
 - x %>% f() is the same as f(x)
 - x %>% f(y) is the same as f(x, y)
 - y %>% f(x, ., z) is the same as f(x, y, z)
 - x %<>% f() does the same, but assigns the result to x
 - Shortcut for x <- x %>% f()

17

18

Using pipes: %>% ggplot()

For the Pew data, mutate income into an ordered factor and make a ggplot

```
pew1 %>%

gather("income", "frequency", 2:6) %>% # reshape

mutate(income = ordered(income, levels=unique(income))) %>% # make ordered

ggplot(aes(x=income, fill=religion)) + # plot

geom_bar(aes(weight=frequency)) # as freq bars
```

mutate() calculates or transforms column variables ordered(income) levels are now ordered appropriately.

The result is piped to ggplot()

Tidying: separate() and unite()

It sometimes happens that several variables are crammed into one column, or parts of one variable are split across multiple columns

```
tidyr::separate(storms, date, c("y", "m", "d"))

Separate one column into several.

tidyr::unite(data, col, ..., sep)

Unite several columns into one.
```

For example, for the pew data, we might want separate income into low & high

```
pew long %>%
                                               religion income frequency low high
  mutate(inc = gsub("[\\$k]", "", income)) %>%
                                               1 Agnostic <$10k
                                                                         27 0 10
                                               2 Atheist <$10k
  mutate(inc = gsub("<", "0-", inc)) %>%
                                               3 Buddhist <$10k
                                                                         27
  separate(inc, c("low", "high"), "-") %>%
                                               4 Catholic <$10k
                                                                             0
  head()
                                               5 Agnostic $10-20k
                                                                         34 10 20
                                               6 Atheist $10-20k
```

dplyr: Subset observations (rows)

dplyr implements a variety of verbs to select a subset of observations from a dataset

dplyr::filter(iris, Sepal.Length > 7)

Extract rows that meet logical criteria.

dplyr::distinct(iris)

Remove duplicate rows.

dplyr::sample_frac(iris, 0.5, replace = TRUE)

Randomly select fraction of rows.

dplyr::sample_n(iris, 10, replace = TRUE)

Randomly select n rows.

dplyr::slice(iris, 10:15)

Select rows by position.

dplyr::top_n(storms, 2, date)

Select and order top n entries (by group if grouped data).

In a pipe expression, omit the dataset name

iris %>% filter(Sepal.Length >7)
iris %>% filter(Species=="setosa")

iris %>% sample_n(10)
iris %>% slice(1:50) # setosa

Select columns by name or helper function.

Many helper functions in dplyr allow selection by a function of variable names:

dplyr::select(iris, Sepal.Width, Petal.Length, Species)

dplyr: Subset variables (columns)

select(iris, contains("."))

Select columns whose name contains a character string.

select(iris, ends_with("Length"))

Select columns whose name ends with a character string.

select(iris, everything())

Select every column. select(iris, matches(".t."))

Select columns whose name matches a regular expression.

select(iris, num_range("x", 1:5))

Select columns named x1, x2, x3, x4, x5.

select(iris, one_of(c("Species", "Genus")))

Select columns whose names are in a group of names.

select(iris, starts_with("Sepal"))

Select columns whose name starts with a character string. select(iris, Sepal, Length; Petal, Width)

select(iris, Sepal.Length:Petal.width)

Select all columns between Sepal.Length and Petal.Width (inclusive).

select(iris, -Species)

Select all columns except Species

dplyr: group_by() and summarise()

- Fundamental operations in data munging are:
 - grouping a dataset by one or more variables
 - calculating one or more summary measures
 - ungrouping: expand to an ungrouped copy, if needed

Example: NASA data on solar radiation

Surface meteorology and Solar Energy A renewable energy resource web site (release 6.0)

A renewable energy resource web site (release 6.0)

sponsored by NASA's Applied Science Program in the Science Mission Directors developed by POWER: Prediction of Worldwide Energy Resource Project

over 200 satellite-derived meteorology and solar energy p

- monthly averaged from 22 years of data
- data tables for a particular location

How does solar radiation vary with latitude, over months of the year?

How to make this plot?

Q:

what are the basic plot elements?

Months

l;

NASA data: solar radiation

This is easy to do for the total Annual solar radiation, a column in the data

```
> str(nasa)
'data.frame': 64800 obs. of 15 variables
$ Lat: int -90-90-90-90-90-90-90-90-90
$ Lon: int -180 -179 -178 -177 -176 -175 -174 -173 -172 -171
$ Apr: num 0 0 0 0 0 0 0 0 0 0 .
$ May: num 0 0 0 0 0 0 0 0 0
$ Jun: num 000000000...
$ Jul: num 0000000000.
$ Aug: num 000000000.
$ Dec: num 11 11 11 11 11
```

```
nasa %>%
filter(abs(Lat) < 60) %>%
mutate(Latf = cut(Lat, pretty(Lat, n=10))) %>%
ggplot(aes(x=Latf, y=Ann)) +
geom_violin(fill="pink", alpha=0.3) +
labs(x="Latitude", y="Solar radiation G(0) (kWh/m²)")
```

25

Faceting & tidy data

This is complicated to do for the separate months, because the data structure is **untidy**--- months were in separate variables (wide format)

```
'data.frame': 64800 obs. of 15 variables:
$ Lat: int -90 -90 -90 -90 -90 -90 -90 -90 -90
$ Lon: int -180 -179 -178 -177 -176 -175 -174 -173 -172 -171 ...
$ Apr: num 000000000.
$ May: num 000000000.
$ Jun: num 0000000000...
$ Jul: num 0000000000...
$ Aug: num 0000000000.
$ Dec: num 11 11 11 11 11 .
```


20

28

tidying the data

To plot solar radiation against latitude by month (separate panels), we need to:

- remove the Ann column
- reshape the data to long format, so solar is all in one column

```
library(tidyr)
library(dplyr)
library(ggplot2)

nasa_long <- nasa %>%
select(-Ann) %>%
gather(month, solar, Jan:Dec, factor_key=TRUE) %>%
filter( abs(Lat) < 60 ) %>%
mutate( Lat_f = cut(Lat, pretty(Lat, 12)))
```

%>% "pipes" data to the next stage

select() extracts or drops columns gather() collapses columns into key-value pairs filter() subsets observations mutate() creates new variables

tidying the data

```
> str(nasa_long)
'data.frame': 514080 obs. of 5 variables:
For ease of plotting, I
$ Lon: int -180-179-178-177-176-175-174-173-172-171...
$ month: Factor w/ 12 levels "Jan", "Feb", "Mar", ..: 1 1 1 1 1 1 1 1 1 1 ...
                                                                     created a factor version
$ solar: num 5.19 5.19 5.25 5.25 5.17 5.17 5.15 5.15 5.15 5.15 ...
                                                                     of Lat with 12 levels
$ Lat_f: Factor w/ 12 levels "(-60,-50]","(-50,-40]",..: 1 1 1 1 1 1 1 1 1 1 1
> head(nasa_long)
                                                           The data are now in a form
Lat Lon month solar Lat f
                                                           where I can plot solar against Lat
1-59-180 Jan 5.19 (-60,-50]
2 -59 -179 Jan 5.19 (-60,-50]
                                                           or Lat f and facet by month
3 -59 -178 Jan 5.25 (-60,-50]
4 -59 -177 Jan 5.25 (-60,-50]
5 -59 -176 Jan 5.17 (-60,-50]
6 -59 -175 Jan 5.17 (-60,-50]
```

plotting the tidy data

Using geom_violin() shows the shapes of the distributions for levels of Lat_f

facet_wrap(~month) does the right thing

I had to adjust the x-axis labels for Lat_f to avoid overplotting

plotting the tidy data: smoothing

ggplot(nasa_long, aes(x=Lat, y=solar)) +
geom_smooth(color="blue") +
facet_wrap(~ month) +
theme_bw()

Here we treat Lat as quantitative. geom_smooth() uses method = "gam" here because of large n

The variation in the smoothed trends over the year suggest quite lawful behavior

Can we express this as a statistical model?

build a model

What we saw in the plot suggests a generalized additive model, with a smooth, s(Lat)

```
library(mgcv)
nasa.gam <- gam(solar ~ Lon + month + s(Lat), data=nasa_long)
summary(nasa.gam)
```

The violin plots suggest that variance is not constant. I'm ignoring this here by using the default gaussian model.

Model terms:

- · Lon wasn't included before
- month is a factor, for the plots
- s(Lat) fits a smoothed term in latitude, averaged over other factors

There are other model choices, but it is useful to visualize what we have done so far

visualize the model

Effect plots show the fitted relationship between the response and model terms, averaged over other predictors.

The mgcv package has its own versions of these.

plot(nasa.gam, cex.lab=1.25) termplot(nasa.gam, terms="month", se=TRUE, lwd.term=3, lwd.se=2, cex.lab=1.25) termplot(nasa.gam, terms="Lon", se=TRUE, lwd.term=3, lwd.se=2, cex.lab=1.25)

why the dip at the equator?

effect of longitude is very small, but maybe interpretable

month should be modeled as a time variable

Visualizing models

- R modeling functions [lm(), glm(), ...] return model objects, but these are "messy"
 - extracting coefficients takes several steps: data.frame(coef(mymod))
 - some info (R², F, p.value) is computed in print() method, not stored
 - can't easily combine models
- Some have associated plotting functions
 - plot(model): diagnostic plots
 - car package: many model plot methods
 - effects package: plot effects for model terms
- But what if you want to:
 - make a table of model summary statistics
 - fit a collection of models, compare, summarize or visualize them?

22

broom

broom: visualizing models

- The broom package turns model objects into tidy data frames
 - glance(models) extracts model-level summary statistics (R², df, AIC, BIC)
 - tidy(models) extracts coefficients, SE, p-values
 - augment(models) extracts observation-level info (residuals, ...)

Image from: https://opr.princeton.edu/workshops/Downloads/2016Jan BroomRobinson.pdf

3.4

Example: gapminder data

How to model this?

How to extract & plot model statistics?

How to fit & display multiple models for subsets?

Example: gapminder data

Predict life expectancy from year, population, GDP and continent:

gapmod <- Im(lifeExp ~ year + pop + log(gdpPercap) + continent, data=gapminder) summary(gapmod)

```
lm(formula = lifeExp ~ year + pop + log(gdpPercap) + continent, data = gapminder)
Residuals:
   Min
           1Q Median
                           3Q
                                                             observation level
-24.928 -3.285 0.314 3.699 15.221
Coefficients:
                 Estimate Std. Error t value Pr(>|t|)
                 -4.58e+02 1.67e+01 -27.43 < 2e-16 ***
(Intercept)
                                                              component level
                 2.38e-01 8.61e-03 27.58 < 2e-16 ***
                                                              (coefficients)
                 5.40e-09
                           1.38e-09
log(gdpPercap)
                 5.10e+00
continentAmericas
                 8.74e+00
continentAsia
                  6.64e+00
continentEurope
                 1.23e+01
                            5.10e-01
                                      24.11 < 2e-16 ***
                                      9.88 < 2e-16 ***
continentOceania 1.26e+01
                            1.27e+00
Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
Residual standard error: 5.79 on 1696 degrees of freedom
                                                                model level
Multiple R-squared: 0.8, Adjusted R-squared: 0.799
F-statistic: 969 on 7 and 1696 DF, p-value: <2e-16
```

glance() gives the model level summary statistics

```
> glance(gapmod)
 r.squared adj.r.squared sigma statistic p.value df logLik AIC BIC deviance df.residual
     0.8 0.7992 5.789 969 0 8 -5406 10830 10879 56835 1696
```

tidy() gives the model component (term) statistics

```
estimate std.error statistic
       (Intercept) -4.585e+02 1.671e+01
                                        -27.433 1.982e-137
             year 2.376e-01 8.613e-03
                                          27.584 1.122e-138
               pop 5.403e-09 1.381e-09
                                           3.912 9.496e-05
    log(gdpPercap) 5.103e+00 1.601e-01
                                          31.876 4.096e-175
5 continentAmericas 8.739e+00 4.635e-01
                                          18.856 3.758e-72
     continentAsia 6.635e+00 4.091e-01
                                          16.219 4.167e-55
   continentEurope 1.230e+01 5.102e-01
                                          24.113 1.044e-110
  continentOceania 1.256e+01 1.270e+00
                                           9.884 1.943e-22
```

augment() gives the observation level statistics

```
> augment(gapmod) %>% slice(1:5)
# A tibble: 5 x 12
 lifeExp year
                   pop log.gdpPercap. continent .fitted .se.fit .resid
   <dbl> <int>
                               <dbl> <fct>
                                                <dbl> <dbl> <dbl>
                                                                     <dbl> <dbl>
    28.8 1952 8425333
                                6.66 Asia
                                                 46.0
                                                        0.408 -17.1 0.00496
                                                                             5.78
                                6.71 Asia
    30.3 1957 9240934
                                                 47.4 0.390 -17.1 0.00454
    32 0 1962 10267083
                                6.75 Asia
                                                 48.8 0.376 -16.8 0.00423
    34.0 1967 11537966
                                6.73 Asia
                                                 49.9 0.372 -15.9 0.00413
    36.1 1972 13079460
                                6.61 Asia
                                                 50.5
                                                       0.382 -14.4 0.00435
# ... with 2 more variables: .cooksd <dbl>, .std.resid <dbl>
```

tidyr:: "nest – map – unnest" trick

- In many cases, we want to perform analysis for each subset of a dataset defined by one or more variables
- dplyr::group_by(), summarise(), ungroup() is one way
- tidyr::nest(), purr::map(), tidyr::unnest() is more general

See: https://cran.r-project.org/web/packages/broom/vignettes/broom and dplyr.html

42

n_iris <- iris %>% group_by(Species) %>% nest() # group by Species, then nest n iris <- iris %>% nest(-Species) # nest all other cols

tidyr: fitting multiple models

There may be different effects by continent (GDP x continent interaction)

- What if want to fit (and visualize) a separate model for each continent?
- → nest by continent, then {fit, tidy, glance, augment}

```
models <- gapminder %>%
  filter(continent != "Oceania") %>%
                                           # only two countries
  nest(data = -continent) %>%
    fit = map(data, ~ lm(lifeExp ~ year + pop + log(gdpPercap), data = .x)),
    tidied = map(fit, tidy),
    glanced = map(fit, glance),
    augmented = map(fit, augment)
```

What's in this object?

```
names(models)
                            "fit"
[1] "continent" "data"
                                                     "glanced"
                                         "tidied'
                                                                 "augmented"
```

```
# view model summaries
                                                                      Model summary
models %>%
                                                                      statistics
  select(continent, glanced) %>%
  unnest(glanced)
# A tibble: 4 x 13
 continent r.squared adj.r.squared sigma statistic
                                                 p.value
                                                          df logLik
 <fct>
                           <dbl> <dbl>
                                          <dbl>
                                                   <dbl> <dbl> <dbl> <dbl> <dbl>
1 Asia
                           0.694 6.56
                                           299. 5.27e-101
                                                           3 -1305. 2620.
              0.797
                           0.795 2.46
2 Europe
                                           466. 7.42e-123
                                                            3 -833. 1675.
3 Africa
              0.500
                           0.498 6.48
                                           207. 5.90e- 93
                                                            3 -2050. 4110.
4 Americas
              9.729
                           0.718 4.97
                                           254. 1.39e- 81
                                                            3 -904 1819
# ... with 4 more variables: BIC <dbl>, deviance <dbl>, df.residual <int>,
# model coefficients & tests
                                                                         Coefficients
models %>%
  select(continent, tidied) %>%
  unnest(tidied)
# A tibble: 16 x 6
  continent term
                          estimate std.error statistic p.value
  <fct>
                            <dbl>
                                     <dbl>
                                              <dbl>
                                             -15.5 1.34e-42
1 Asia
            (Intercept)
                          -6.20e+2
                                   4.00e+1
2 Asia
                          3.23e-1
                                   2.06e-2
                                                    2.41e-43
3 Asia
                          5.13e-9
                                   1.66e-9
                                              3.09 2.15e- 3
4 Asia
            log(gdpPercap)
                         5.04e+0
                                   2.76e-1
                                             18.3
                                                   2.25e-54
5 Europe
           (Intercept)
                         -1.72e+2 1.72e+1
                                            -10.0 4.51e-21
```

```
# observation-level statistics
models %>%
  select(continent, augmented) %>%
  unnest(augmented)
```

```
# A tibble: 1,680 x 10
  continent lifeExp year
                               pop `log(gdpPercap)` .fitted
                                                              .hat .sigma .cooksd
  <fct>
              <dhl> <int>
                             cints
                                              <dh1>
                                                     <dbl>
                                                             <dbl> <dbl> <dbl>
 1 Asia
               28.8 1952 8425333
                                              6.66
                                                      43.7 0.0101
                                                                    6.53 0.0133
 2 Asia
               30.3 1957 9240934
                                              6.71
                                                      45.6 0.00822
                                                                    6.53 0.0113
               32.0 1962 10267083
 3 Asia
                                                      47.4 0.00685
                                                                     6.53 0.00957
                                              6.75
 4 Asia
               34.0 1967 11537966
                                                      48.9 0.00616
                                              6.73
                                                                     6.53 0.00805
5 Asia
               36.1 1972 13079460
                                              6.61
                                                      49.9 0.00645
                                                                    6.54 0.00727
 6 Asia
               38.4 1977 14880372
                                              6.67
                                                      51.9 0.00640
                                                                     6.54 0.00678
 7 Asia
               39.9 1982 12881816
                                              6.89
                                                      54.6 0.00607
                                                                     6.53 0.00771
               40.8 1987 13867957
8 Asia
                                              6.75
                                                      55.5 0.00795
                                                                    6.53 0.0101
               41.7 1992 16317921
9 Asia
                                              6.48
                                                      55.8 0.0114
                                                                    6.53 0.0134
               41.8 1997 22227415
10 Asia
                                              6.45
                                                      57.3 0.0138
                                                                     6.53 0.0198
# ... with 1,670 more rows, and 1 more variable: .std.resid <dbl>
                              predictors
                                                                  diagnostics
```

Visualizing multiple models

One visual summary might be a plot of R² values, ordered by continent

```
models %>%

select(continent, glanced) %>% unnest(glanced) %>%
ggplot(aes(r.squared, reorder(continent, r.squared))) +
geom_point(size=4) +
geom_segment(aes(xend = 0, yend = ..y..)) +
ylab("Continent")
```


Visualizing coefficients

Coefficient plots are often useful, but these are on different scales.

```
models %>% select(continent, tidied) %>% unnest(tidied) # get model stats filter(term != "(Intercept)") %>% # ignore the intercept mutate(term=factor(term, levels=c("log(gdpPercap)", "year", "pop"))) %>% # reorder terms sensibly ggplot(aes(x=term, y=statistic, color=continent, group=continent)) + geom_point(size=5, alpha=0.5) + geom_line(size=1.5) + geom_line(size=1.5) + geom_hine(yintercept=c(-2, 0, 2), color = c("red", "black", "red")) + # hlines for non-significance ylab("t statistic") + theme_linegend.position=c(0.9, 0.8))
```

Here, I plot the *t*-statistics, $t=b_{ij}/se(b_{ij})$ for all terms in all models.

Any values outside $\sim \pm 2$ are significant, p < 0.5!

Visualizing model fits

models %>% select(continent, augmented) %>% unnest(augmented) %>% ggplot(aes(x=`log(gdpPercap)`, y=.fitted, color=continent, fill=continent)) + geom_point(size = 0.8, alpha=0.5) + geom_smooth(method = "lm", alpha=0.5) + ylab("Fitted Life Expectancy")

The slope for the Americas is noticeably larger than for other continents

ggplot extensions

There are a large number of ggplot extensions. See: http://www.ggplot2-exts.org/

48

ggplot extensions: GGally

GGally contains a large number of functions that extend ggplot2 to multivariate data

ggpairs() produces generalized scatterplot matrices, with lots of options

library(GGally) library(dplyr) library(ggplot2) library(gapminder) gapminder %>%

select(-country, -year) %>%

ggpairs(aes(color=continent))

ggplot extensions: gganimate

gganimate is a wrapper for the animation package with ggplot2.

It adds a frame= aesthetic, and animates the image as the frame variable changes


```
p5 <- ggplot(gapminder, aes(gdpPercap, lifeExp, size = pop, frame = year)) + geom_point() + geom_smooth(aes(group = year), method = "Im", show.legend = FALSE) + facet_wrap(~continent, scales = "free") + scale_x_log10()
gganimate(p5)
```

ggpubr

The ggpubr package provides some easy-to-use functions for creating and customizing publication ready plots.

```
ggviolin(df, x = "dose", y = "len", fill = "dose",
    palette = c("#00AFBB", "#E7B800", "#FC4E07"),
    add = "boxplot", add.params = list(fill = "white")) +
stat_compare_means(comparisons = my_comparisons, label = "p.signif") +
stat_compare_means(label.y = 50)
```

see the examples at http://www.sthda.com/english/rpkgs/ggpubr/

ggseg: plotting brain atlases

3

Tables in R

- Not a ggplot topic, but it is useful to know that you can also produce beautiful tables in R
- There are many packages for this: See the CRAN Task View on Reproducible Research, https://cran.r-project.org/web/views/ReproducibleResearch.html
 - xtable: Exports tables to LaTeX or HTML, with lots of control
 - stargazer: Well-formatted model summary tables, side-by-side
 - apaStyle: Generate APA Tables for MS Word

Tables in R: xtable

Just a few examples, stolen from xtable: vignette("xtableGallery.pdf")

fm1 <- aov(tlimth ~ sex + ethnicty + grade + disadvg, data = tli)
xtable(fm1)</pre>

	Df	Sum Sq	Mean Sq	F value	Pr(>F)
sex	1	75.37	75.37	0.38	0.5417
ethnicty	3	2572.15	857.38	4.27	0.0072
grade	1	36.31	36.31	0.18	0.6717
disadvg	1	59.30	59.30	0.30	0.5882
Residuals	93	18682.87	200.89		

fm3 <- glm(disadvg ~ ethnicty*grade, data = tli, family = binomial)
xtable(fm3)</pre>

	Estimate	Std. Error	z value	Pr(> z)
(Intercept)	3.1888	1.5966	2.00	0.0458
ethnictyHISPANIC	-0.2848	2.4808	-0.11	0.9086
ethnictyOTHER	212.1701	22122.7093	0.01	0.9923
ethnictyWHITE	-8.8150	3.3355	-2.64	0.0082
grade	-0.5308	0.2892	-1.84	0.0665
ethnictyHISPANIC:grade	0.2448	0.4357	0.56	0.5742
ethnictyOTHER:grade	-32.6014	3393.4687	-0.01	0.9923
ethnictyWHITE:grade	1.0171	0.5185	1.96	0.0498

Too many decimals are used here, but you can control all that