

EMBEDDED SYSTEM DESIGN PROJECT WORK

"INDUSTRIAL AUTOMATION" Group - 09

Members:

Aanshi Patwari (AU1841004) Dipika Pawar (AU1841052) Miracle Rindani (AU1841017) Bhumiti Gohel (AU1841051)

Guided By: Prof. Anurag Lakhlani

Motivation

In the era of the increasing use of technology and automation in every sector, the industries still do labour work for the production and the manufacturing process which is very tedious and repetitive. So, in order to reduce the amount of labour work we came with the idea of automation in the industrial sector especially in the field of food processing units. Also, the food industry needs to take care of certain levels of hygiene while manufacturing and packing the food items as they can directly affect the health of the common public; so if the packing process is automated then there will be fewer issues of unhygienic or improper packaging.

Description

The labourers will be given ids through which they can check in to the industry and turn on the lighting system. By this id the labourer can switch on the machine which will, in turn, start working. As we will be focusing on the food processing and in that we will be preparing the bottle filling industrial model.

There will be a motor for the roller. On the detection of the bottle moving on the roller by the IR sensor, the roller will stop for a fixed time and the bottle will get filled up and then the roller will start rolling again. The process will then continue until the end of the day is reached.

Final Outcome

At the end of the day, we get the bottles filled up and packed up at the end of the roller and also there will be a display of the count of the number of bottles which have been filled up completely. Also, we will be displaying if there comes out to be a fault or an interrupt during the ongoing process.

The number of bottles filled and packed in the day will be sent to the owner of the industry as a message on his/her cellphone via the GSM module.

Block Diagram

Components required

The components mainly required are:

- Arduino Mega 1
- LED 15
- RFID module (RC522 433Hz) 2
- Jumper wires 2 sets of each type
- Push-Buttons 3
- Dc motor 2
- Relay module 1
- A4988 Motor driver 1
- Solenoid valve 2
- IR sensor 1
- LCD (2 X 16) 1
- Ultrasonic sensor(HC SR04) 1
- Buzzer 2
- Water pump 1
- Power Bank 1
- Potentiometer 2
- GSM module 1

FlowChart of Program

Selection Criteria For Components

1. Arduino Mega

- a. We can use the Arduino MEGA for instead of Arduino UNO, as it does not have enough pins for a large project to be implemented on.
- b. It can help in decreasing the use of the number of wires used for the connection.
- c. Also, the MEGA consists of Tx and Rx pins which can be used for serial communication.

2. RFID module (RC522 433Hz)

- a. The use is for security purposes.
- b. The tag can be used for the identification of the person.
- c. If a person has the RFID tag then the user is considered as identified or else not.

3. Push Buttons

a. The use of switches is for manually turning on/off the system after the user gets login to the system through the RFID tag.

4. DC motor

- a. A DC motor is used for the roller purpose.
- b. The roller can be moved using the DC motor.

5. Relay module

a. It is used for moving the conveyor belt on which the water bottles will be moving.

6. A4988 Motor driver

a. The motor is used for driving the entire roller module.

7. Solenoid valve

a. The fetching of water is done with the help of solenoid valves along with the water pump.

8. IR sensor

- a. It is used for detecting the bottle coming on the roller.
- b. The roller gets stopped when a bottle is detected by the IR sensor.

9. LCD (2 X 16)

a. The LCD displays the number of bottles currently filled and cumulatively at the end of the day.

10.Ultrasonic sensor(HC - SR04)

- a. The sensor is used for detecting the water level filled inside the bottle.
- b. After that, the bottle gets fixed upto a certain extent the roller gets to start to move on.

11. Buzzer

- a. It is used when there is an entry to a user without the RFID tag
- b. It is also used when a bottle gets filled up to a fixed level so that the user can know that the bottle is filled up.

12. Water pump

a. It is used for fetching the water from the main container.

13.GSM module

- a. It is used for sending a message to the owner of the industry at the end of the day about the number of bottles filled.
- b. Also used for sending a message if any interrupt comes into the system.

Circuit Diagram

Roller Block:

RFID Module:

Water Pump Module:

GSM Module:

Datasheets:

1. Arduino Mega:

Microcontroller ATmega2560

Operating Voltage 5V
Input Voltage (recommended) 7-12V
Input Voltage (limits) 6-20V

Digital I/O Pins 54 (of which 14 provide PWM output)

Analog Input Pins 16
DC Current per I/O Pin 40 mA
DC Current for 3.3V Pin 50 mA

Flash Memory 256 KB of which 8 KB used by bootloader

 SRAM
 8 KB

 EEPROM
 4 KB

 Clock Speed
 16 MHz

the board

10

2.LCD:

1. Features

- 1. 5x8 dots with cursor
- 2. 16characters *2lines display
- 3. 4-bit or 8-bit MPU interfaces
- 4. Built-in controller (ST7066 or equivalent)
 5. Display Mode & Backlight Variations
 6. ROHS Compliant

	□TN	200						
LCD type	□FSTN	ØFSTI	Negati	ve				
	□STN Yellow (v Green □STN Gray □				□STN Blue	Negative	
View direction	☑6 O'clock	O'clock □12 O'clock						
Rear Polarizer	□Reflective	ive □Transflective ☑Transmissive				ive		
Backlight Type	☑LED	DEL	da	□Internal Power		☑3.3V Input		
Backlight Type		□CCF	L				□5.0V Input	
Backlight Color	☑White	□ Blue		□ An	nber		□Yellow-Gre	een
Temperature Range	☑Normal		□Wide	9			□Super Wid	le
DC to DC circuit	□Build-in				☑Not	Build-in		
Touch screen	□With							
Font type	☑English-Japa	nese	□Englis	h-Eur	open	□Englis	h-Russian	□other

2. MECHANICAL SPECIFICATIONS

Module size	80.0mm(L)*36.0mm(W)* Max13.5(H)mm	
Viewing area	64.5mm(L)*16.4mm(W)	
Character size	3.00mm(L)*5.23mm(W)	
Character pitch	3.51mm(L)*5.75mm(W)	
Weight	Approx.	

3. Push buttons:

4. DC motor:

DIMENSIONS Unit mm(inch)

●CURRENT, SPEED-TORQUE CURVE

DMN29 2.8 1.4 7000 2.1 2.0 1.0 20 30 40 OZ-In 2.1 2 6000 3.1 6 3.0 400 3.1 6 3.0 400 3.1 6 3.0 400 3.1 6 3.0 400 3.1 6 3.0 400 3.1 6 3.0 6 3000 3.

●CONNECTION

•STANDARD SPECIFICATIONS

Model	Rated					No load		Stall torque		147.1.1.		
	Output W	Voltage	Tor	que	Current S	Speed Current	Current Speed A r/min	Speed	mN-m oz-in	an in	Weight	eight
		V	mN-m	oz-in	Α	r/min		min-m	OZ-III	g	lb	
DMN29BA	3.0	12	7.8	1.11	0.42	3700	0.07	5000	30	4.17	90	0.20
DMN29BB	3.0	24	7.8	1.11	0.21	3700	0.05	5000	30	4.17	90	0.20

5.A4988 Motor driver:

A4988

DMOS Microstepping Driver with Translator And Overcurrent Protection

ELECTRICAL CHARACTERISTICS¹ at T_A = 25°C, V_{BR} = 35 V (unless otherwise noted)

Characteristics	Symbol	Test Conditions	Min.	Typ. ²	Max.	Units
Output Drivers		do .				
Load Supply Voltage Range	V _{BB}	Operating	8	-	35	V
Logic Supply Voltage Range	V _{DD}	Operating	3.0	-	5.5	V
0. to 1.00 Positions		Source Driver, I _{OUT} = -1.5 A	_	320	430	mΩ
Output On Resistance	R _{DSON}	Sink Driver, I _{OUT} = 1.5 A	-	320	430	mΩ
Pady Diada Fanyard Voltage	111/2	Source Diode, I _F = -1.5 A	_	-	1.2	V
Body Diode Forward Voltage	V _F	Sink Diode, I _F = 1.5 A	1 NTA	-	1.2	V
Motor Supply Current	140	f _{PWM} < 50 kHz	1 -	-	4	mA
Motor Supply Current	I _{BB}	Operating, outputs disabled	-	_	2	mA
Logic Supply Current		f _{PWM} < 50 kHz	-	-	8	mA
Logic Supply Current	IDD	Outputs off	-	-	5	mA
Control Logic		•				
Logic Input Voltage	V _{IN(1)}		V _{DD} ×0.7	-	-	V
Logic input voltage	V _{IN(0)}		1 -	-	V _{DD} ×0.3	٧
Logic Input Current	I _{IN(1)}	$V_{IN} = V_{DD} \times 0.7$	-20	<1.0	20	μА
Logic Input Current	I _{IN(0)}	$V_{IN} = V_{DD} \times 0.3$	-20	<1.0	20	μA
	R _{MS1}	MS1 pin	1 -	100	-	kΩ
Microstep Select	R _{MS2}	MS2 pin	-	50	-	kΩ
	R _{MS3}	MS3 pin	-	100	-	kΩ
Logic Input Hysteresis	V _{HYS(IN)}	As a % of V _{DD}	5	11	19	%
Blank Time	t _{BLANK}		0.7	1	1.3	μs
Fixed Off-Time		OSC = VDD or GND	20	30	40	μs
Fixed Oil-Time	toff	$R_{OSC} = 25 \text{ k}\Omega$	23	30	37	μs
Reference Input Voltage Range	V _{REF}		0	-	4	V
Reference Input Current	I _{REF}		-3	0	3	μА
		V _{REF} = 2 V, %I _{TripMAX} = 38.27%	-	-	±15	%
Current Trip-Level Error ³	err	V _{REF} = 2 V, %I _{TripMAX} = 70.71%	-	-	±5	%
	100	V _{REF} = 2 V, %I _{TripMAX} = 100.00%	_	-	±5	%
Crossover Dead Time	t _{DT}		100	475	800	ns
Protection		<u></u>				
Overcurrent Protection Threshold ⁴	OCPST		2.1	-	-	Α
Thermal Shutdown Temperature	T _{TSD}		1 1 - 1	165	-	°C
Thermal Shutdown Hysteresis	T _{TSDHYS}		1 -	15	-	°C
VDD Undervoltage Lockout	V _{DDUVLO}	V _{DD} rising	2.7	2.8	2.9	V
VDD Undervoltage Hysteresis	V _{DDUVLOHYS}		-	90	-	mV

¹For input and output current specifications, negative current is defined as coming out of (sourcing) the specified device pin.

²Typical data are for initial design estimations only, and assume optimum manufacturing and application conditions. Performance may vary for individual units, within the specified maximum and minimum limits.

 $^{^{3}}V_{ERR} = [(V_{REF}/8) - V_{SENSE}] / (V_{REF}/8).$

6.Relay Module:

Specifications

- On-board EL817 photoelectric coupler with photoelectric isolating antiinterference ability strong
- On-board 5V, 10A / 250VAC, 10A / 30VDC relays
- Relay long life can absorb 100000 times in a row
- Module can be directly and MCU I/O link, with the output signal indicator
- Module with diode current protection, short response time
- PCB Size: 45.8mm x 32.4mm

Pin Configuration

1. VCC: 5V DC

2. COM: 5V DC

3. IN1: high/low output

4. IN2: high/low output

5. GND: ground

7.IR Sensor:

- 5VDC operating voltage.
- I/O pins are 5V and 3.3V compliant.
- Range: Up to 20cm.
- Adjustable Sensing range.
- Built-in Ambient Light Sensor.
- · 20mA supply current.
- Mounting hole.

3. Specifications

• Size: 50 x 20 x 10 mm (L x B x H)

Hole size: φ2.5mm

8.RFID Module:

Table 1. Quick reference data

Symbol	Parameter	Conditions		Min	Тур	Max	Unit
V _{DDA}	analog supply voltage	$V_{DD(PVDD)} \le V_{DDA} = V_{DDD} = V_{DD(TVDD)}$	[1][2]	2.5	3.3	3.6	V
V_{DDD}	digital supply voltage	V _{SSA} = V _{SSD} = V _{SS(PVSS)} = V _{SS(TVSS)} = 0 V		2.5	3.3	3.6	V
V _{DD(TVDD)}	TVDD supply voltage			2.5	3.3	3.6	V
V _{DD(PVDD)}	PVDD supply voltage		[3]	1.6	1.8	3.6	V
V _{DD(SVDD)}	SVDD supply voltage	V _{SSA} = V _{SSD} = V _{SS(PVSS)} = V _{SS(TVSS)} = 0 V		1.6	-	3.6	٧

Table 1. Quick reference data ...continued

Symbol	Parameter	Conditions		Min	Тур	Max	Unit
I _{pd}	power-down current	V _{DDA} = V _{DDD} = V _{DD(TVDD)} = V _{DD(PVDD)} = 3 V					
		hard power-down; pin NRSTPD set LOW	[4]	-	-	5	μА
		soft power-down; RF level detector on	[4]	-	-	10	μА
I _{DDD}	digital supply current	pin DVDD; V _{DDD} = 3 V		-	6.5	9	mA
I _{DDA}	analog supply current	pin AVDD; V _{DDA} = 3 V, CommandReg register's RcvOff bit = 0		-	7	7 10	mA
		pin AVDD; receiver switched off; V _{DDA} = 3 V, CommandReg register's RcvOff bit = 1		-	3	5	mA
I _{DD(PVDD)}	PVDD supply current	pin PVDD	[5]	-	-	40	mA
I _{DD(TVDD)}	TVDD supply current	pin TVDD; continuous wave	[6][7][8]	-	60	100	mA
T _{amb}	ambient temperature	HVQFN32		-25	-	+85	°C

9. Solenoid Valve:

	Specifications
Function	Flow direction overseat $1 \rightarrow 2$
Maximum Viscosity	Max. 21cST (3 °E)
Body Material (Std)	Stainless Steel 1.4305 EN 10088 (AISI 303)
Orifice Material	Stainless Steel 1.4305 EN 10088 (AISI 303)
Flange Tube ¹	Stainless Steel (AISI 303)
Plunger and Top Stop	Stainless Steel 1.4105 EN 10088 (AISI 430F) or equivalent
Springs	Stainless Steel AISI 302
Seal Material (Std)	Foodgrade FKM
Connection Type (5td)	G parallel thread (ISO 228-1)
Shading Ring	Copper
Elec	ctrical Characteristics
Standard Coil Voltage DC (=)	24 V
Standard Coil Voltage AC 50 Hz (-)	24 V, 110 V, 200 V, 230 V
Standard Coil Voltage AC 60 Hz (~)	24 V, 120 V, 220 V, 240 V
Voltage Telegrape	AC +10% to -15%
Voltage Tolerance	DC +10% to -5%
Duty Cycle	100% ED
Protection Class	IP65 (EN 60529) with plug and gasket correctly fitted *
Electrical Connection	to industrial form B
Coil Insulation	Class F 155 °C
Power Rating (Standard)	AC 10 VA (holding) AC 16 VA (inrush) DC 7W

¹ With special nut, different from Standard.

Features and Benefits

- Direct Acting
- Robust construction for industrial applications
- Stainless steel AISI 430F operators with low residual magnetism
- Coils tested 100% in compliance to RoHS directive and to relevant international standards
- High quality seal materials
- Response time 5 to 25 ms

Pipe	Cv	Kv	OPD	(bar)	Orifice	Seal	Valve
Size		(m³/h)			(mm)	Material	Code
1/8"	0.09	0.08	0 - 22	0 - 18	1.5	FKM	B298D <u>V</u> C
1/a*	0.13	0.11	0 - 18	0-8	2.0	FKM	8298D <u>V</u> E
1/8"	0.19	0.16	0 - 13	0 - 2.5	2.5	FKM	B298DVG
1/8"	0.25	0.21	0-8	0 - 1	3.0	FKM	B298D <u>V</u> H
1/8"	0.09	0.08	0 - 24	0 - 24	1.5	KALREZ [®]	B298D <u>K</u> C
1/8"	0.13	0.11	0 - 18	0 - 15	2.0	KALREZ [®]	8298D <u>K</u> E
164	0.10	0.16	0 15	0 - 3	25	VALUE 78	paggner

10.Buzzer:

Buzzer Pin Configuration

Pin Number	Pin Name	Description
1	Positive	Identified by (+) symbol or longer terminal lead. Can be powered by 6V DC
2	Negative	Identified by short terminal lead. Typically connected to the ground of the circuit

Buzzer Features and Specifications

• Rated Voltage: 6V DC

• Operating Voltage: 4-8V DC

• Rated current: <30mA

• Sound Type: Continuous Beep

• Resonant Frequency: ~2300 Hz

• Small and neat sealed package

· Breadboard and Perf board friendly

11.Ultrasonic Sensor:

Wire connecting direct as following:

- 5V Supply
- Trigger Pulse Input
- Echo Pulse Output
- 0V Ground

Electric Parameter

Working Voltage	DC 5 V
Working Current	15mA
Working Frequency	40Hz
Max Range	4m
Min Range	2cm
MeasuringAngle	15 degree
Trigger Input Signal	10uS TTL pulse
Echo Output Signal	Input TTL lever signal and the range in proportion
Dimension	45*20*15mm

12.LED light:

Pararmeter	Symbol	Red	Green	Blue	Unit
Forward current	IF	20	20	20	mA
Peak forward current(Duty Cycle=10,10KHz)	IPF	30	30	30	mA
Reverse current (V _R =5V)	IR	10	10	10	μA
Operating temp	TOPR	-25~ 85	-25∼ 85	-25~ 85	$^{\circ}$
Storage temp	Тѕтс	-30~85	-30~85	-30~85	$^{\circ}$
Peak Emission Wavelength	λРн	625	520	467.5	nm

^{*} Soldering Bath: not more than 5 seconds @260 $^{\circ}$ C. The bottom ends of the plastic reflector should be at least 2mm above the solder surface

Soldering Iron: not more than 3 seconds @300 ℃ under 30W

LED Chip Typical Electircal & Optical Characteristics: (Ta=25 ℃)

ITEMS	Color	Symbol	Condition	Min.	Тур.	Max.	Unit
	Red		- 2	1.8	2.0	2.2	92
Forward Voltage	Green	VF	I _F =20mA	3.0	3.2	3.4	V
	Blue			3.0	3.2	3.4	
	Red					800	
Luminous Intensity	Green	Ιν	I _F =20mA			4000	mcd
	Blue					900	
	Red		I _F =20mA	620	623	625	nm
Wavelenength	Green	Δλ		515	517.5	520	
	Blue			465	466	467.5	
Light Degradation after 1000 hours	Red	-4.68% ~ -8.27%					
	Green			-11	.37% ~ -15.	30%	
	Blue			-8.2	23% ~ -16.8	1%	

13.Potentiometer:

Electric Specifications

	Through-Hole	SMD	
Range of resistance values Lin (A) Log (B) Antilog (C)	100Ω 5ΜΩ 1 ΚΩ 2,2 ΜΩ	100Ω - 1ΜΩ 1ΚΩ - 1ΜΩ	
Tolerance Special tolerances available on request	$\begin{array}{lll} 100\Omega \dots 1M\Omega & \pm 20\% \\ > 1M\Omega \dots 5M\Omega & \pm 30\% \\ & \text{Out of range:} \\ & \text{Rn>} 5M\Omega : \ \pm 50\% \ -30\% \end{array}$	< 1MΩ ± 25%	
Variation laws	Lin (A), Log (B), Antilog (C) Other tapers available on request		
Residual resistance	Lin (A), Log (B), Antilog (C) \leq 5*10 **Rn Minimum value 2 Ω		
CRV - Contact Resistance Variation (dynamic)	≤3%Rn		
CRV - Contact Resistance Variation (static)	≤5%Rn		
Maximum power dissipation at 40° C. Lin (A) No Lin (B, C)	0,10W 0,06W		
Maximum voltage at 40°C Lin (A) No Lin (B, C)	100 VDC 60VDC		
Operating temperature	-25°C +70°C		
Temperature coefficient	100 Ω - 10K Ω → +200/ -300 ppm. >10K Ω - 5M Ω → +200/ -500 ppm	100Ω - 100KΩ \rightarrow +200/ -500 ppm: >100KΩ - 1MΩ \rightarrow +200/ -1000 ppm.	

14. Water Pump:

APP Pumps		APP 11 / 1200	APP 11 / 1500	APP 13 / 1200	APP 13 / 1500
Code number		180B3212	180B3211	180B3214	180B3213
Geometric displacement	cm³/rpm	166	137	197	166
	in³/rpm	10.1	8.4	12.0	10.1
Rated flow at max. speed 1)	m³/h	11.0	11.1	13.1	13.5
	gpm	48.4	49	57.7	59.3
Outlet min. pressure 2)	bar	30	30	30	30
	psi	435	435	435	435
Outlet max. pressure, cont. 3)	bar	80	70	80	70
	psi	1160	1015	1160	1015
Inlet min. pressure	bar	2	2	2	2
	psi	29	29	29	29
Inlet max. pressure, cont.	bar	5	5	5	5
	psi	72.5	72.5	72.5	72.5
Inlet max. pressure, peak	bar	10	10	10	10
	psi	145	145	145	145
Max. speed cont.	rpm	1200	1500	1200	1500
Min. speed cont.	rpm	700	700	700	700
Power requirement at max. speed and 60 bar outlet pressure	kW	23	24	27	29
	hp	30.8	32.2	36.2	38.9
Torque at 60 bar outlet pressure	Nm	179	148	212	179
	lbf-ft	132	109	157	132
Weight	Kg	75	75	75	75
	lb	165	165	165	165
Integrated flushing valve		YES	YES	YES	YES

15. GSM Module:

Feature	Implementation		
Power supply	Single supply voltage 3.4V – 4.5V		
Power saving	Typical power consumption in SLEEP mode is 1.5mA (BS-PA-MFRMS=5)		
Frequency Bands	 SIM900A Dual-band: EGSM900, DCS1800. The SIM900A can search the 2 frequency bands automatically. The frequency bands also can be set by AT command. Compliant to GSM Phase 2/2+ 		
GSM class	Small MS		
Transmitting power	Class 4 (2W) at EGSM 900Class 1 (1W) at DCS 1800		
GPRS connectivity	 GPRS multi-slot class 10 (default) GPRS multi-slot class 8 (option) GPRS mobile station class B 		

Project Modules and Respective codes:

RFID Module for secure access and to turn on the lights in the factory and start the alarms if a person tries to gain unauthorised access

Sensors/Actuators/Displays used:

- RFID tag
- LCD display
- Buzzer
- LED

Code:

#include <LiquidCrystal_I2C.h>
#include <SPI.h>
#include <MFRC522.h>

LiquidCrystal_I2C lcd(0x27, 16, 2);

```
MFRC522 mfrc522(10, 9);
int led1 = 7;
int led2 = 6;
int led3 = 8;
int led4 = 4;
int led5 = 3;
int buzzerPin = 5;
String tagUID = "29 B9 ED 23";
void setup() {
pinMode(buzzer, OUTPUT);
 pinMode(led1, OUTPUT);
 pinMode(led2, OUTPUT);
 pinMode(led3, OUTPUT);
 pinMode(led4, OUTPUT);
 pinMode(led5, OUTPUT);
lcd.begin();
lcd.backlight();
 SPI.begin();
mfrc522.PCD_Init();
lcd.clear();
}
void loop() {
lcd.setCursor(0, 0);
lcd.print(" RFID secured bottle-filler.");
lcd.setCursor(0, 1);
lcd.print(" Show Your Tag ");
if (!mfrc522.PICC_IsNewCardPresent()) {
 return;
if (!mfrc522.PICC_ReadCardSerial()) {
 return;
 }
 String tag = "";
 for (byte i = 0; i < mfrc522.uid.size; i++) {
```

```
tag.concat(String(mfrc522.uid.uidByte[i] < 0x10? "0": ""));
 tag.concat(String(mfrc522.uid.uidByte[i], HEX));
 tag.toUpperCase();
if (tag.substring(1) == tagUID) {
 lcd.clear();
 lcd.setCursor(0, 0);
 lcd.print("Access Granted");
 lcd.setCursor(0, 1);
 digitalWrite(led1, HIGH);
 digitalWrite(led2, HIGH);
 digitalWrite(led3, HIGH);
 digitalWrite(led4, HIGH);
 digitalWrite(led5, HIGH);
 lcd.clear();
 }
 else {
 lcd.clear();
 lcd.setCursor(0, 0);
 lcd.print("Wrong Tag Shown");
 lcd.setCursor(0, 1);
 lcd.print("Access Denied");
 digitalWrite(buzzer, HIGH);
 delay(3000);
 digitalWrite(buzzer, LOW);
 lcd.clear();
 }
}
```

Roller block module to move the bottles forward and IR sensor to display their count on LCD Sensors/Actuators/Displays used:

- DC motor
- Motor Driver
- LCD Display
- IR Sensor

Sub - Module 1: Use of IR sensor to detect the presence of bottle and display the count of bottles on LCD display

Code:

#include <LiquidCrystal.h>

LiquidCrystal lcd(12, 11, 5, 4, 3, 2);

int count; const int pin_ir_in = 9;

```
int prev_state =1;
int curr_state = 1;
int counter = 0;
void setup() {
lcd.begin(16, 2);
pinMode(pin_ir_in, INPUT);
 Serial.begin(9600);
lcd.print("Bottles filled:");
}
void loop() {
lcd.setCursor(0, 1);
int curr_state = digitalRead(pin_ir_in);
 if (curr_state != prev_state) {
 if(curr_state == 0) {
   counter++;
   Serial.println("Obstacle Detected...!");
   Serial.println(counter);
  lcd.print(counter);
  }
  prev_state = curr_state;
 delay(100);
```

Sub-Module 2: Use of dc motor and motor driver to move the bottles over the roller

Code:

```
const int motorPin1 = 9;
const int motorPin2 = 10;

void setup(){
  pinMode(motorPin1, OUTPUT);
  pinMode(motorPin2, OUTPUT);
}

void loop(){
  analogWrite(motorPin1, 180);
  analogWrite(motorPin2, 0);
  delay(5000);

analogWrite(motorPin1, 0);
  analogWrite(motorPin2, 180);
  delay(5000);

analogWrite(motorPin1, 0);
  analogWrite(motorPin1, 0);
  analogWrite(motorPin1, 0);
  analogWrite(motorPin1, 0);
}
```

Main-Module:

Code:

```
#include <LiquidCrystal.h>
LiquidCrystal lcd(12, 11, 5, 4, 3, 2);
int count;
int relay=7;
int ir = 3;
const int motorPin1 = 9;
const int motorPin2 = 10;
int prev = 1;
int curr = 1;
int counter = 0;
boolean solenoid_on = false;
void setup() {
lcd.begin(16, 2);
Serial.begin(9600);
pinMode(ir, INPUT);
pinMode(relay,OUTPUT);
pinMode(motorPin1, OUTPUT);
pinMode(motorPin2, OUTPUT);
```

```
pinMode(4,OUTPUT);
 pinMode(2,OUTPUT);
 lcd.print("Bottles filled : ");
 }
 void loop() {
 lcd.setCursor(0, 1);
 int curr = digitalRead(ir);
 if (curr != prev) {
   if (curr == 0) {
    counter++;
     Serial.println("Obstacle Detected...!");
     Serial.println(counter);
    lcd.print(counter);
   prev_state = curr_state;
 delay(100);
 if (solenoid_on) {
  delay(6000);
   analogWrite(motorPin1, 0);
   analogWrite(motorPin2, 0);
  solenoid_on = false;
 digitalWrite(relay,LOW);
  analogWrite(motorPin1, 180);
 analogWrite(motorPin2, 0)
}
```

GSM Module to send the total number of soft-drink bottles filled via message to the owner at the end of the day

Sensors/Actuators/Displays used:

GSM Module

Code:

//This code is in continuation with previous code, we have assumed that the total number of bottles filled in a day is 150.

#include <SoftwareSerial.h>

int count = 150;

SoftwareSerial mySerial(9, 10);

```
void setup() {
 mySerial.begin(9600);
 Serial.begin(9600);
 delay(100);
void loop() {
 if (Serial.available()>0) {
  switch(Serial.read) {
    case 's': SendMessage();
            break:
    case 'r': ReceiveMessage();
            break;
 }
 if (mySerial.available()>0) {
  Serial.write(mySerial.read());
 }
}
void SendMessage() {
 mySerial.println("AT+CMGF=1");
 delay(1000);
 mySerial.println("AT+CMGS=\"+919979481706\"\r");
 delay(1000);
 mySerial.println("Total number of bottles filled today: " + count);
 delay(100);
 mySerial.println((char)26);
 delay(1000);
}
void ReceiveMessage() {
 mySerial.println("AT+CNMI=2,2,0,0,0");
 delay(1000);
}
```

Water Pump Module to fill the soft-drink bottles upto a certain level, and check the water level in the tank using ultrasonic sensor:

Sensors/Actuators/Displays used:

- Ultrasonic sensor
- Buzzer
- Water Pump
- Relay Module

Sub-Module 1: Water pump module, operated using push button

Code:

```
int WATERPUMP = 13;
int button = 8;

void setup() {
  pinMode(13,OUTPUT);
  pinMode(8,INPUT);
  Serial.begin(9600);
  while (! Serial);
  Serial.println("Speed 0 to 255");
}
```

```
void loop() {
  if (Serial.available()) {
    int speed = Serial.parseInt();
    if (speed >= 0 && speed <= 255) {
       analogWrite(WATERPUMP, speed);
    }
  }
  val = digitalRead(8);
  if(val == LOW) {
    digitalWrite(13,LOW);
  }
  else {
    digitalWrite(13,HIGH);
  }
  delay(400);
}</pre>
```

Sub-Module 2: Ultrasonic sensor (buzzer will ring when distance increase than threshold level)

Code:

```
int trig_pin = 6;
int echo_pin = 7;
int buz = 8;
int time;
int dist;
```

```
void setup() {
pinMode(echo_pin,INPUT);
pinMode(trig_pin,OUTPUT);
pinMode(buz,OUTPUT);
 Serial.begin(9600);
void loop() {
 digitalWrite(trig_pin,HIGH);
 delayMicroseconds(10);
 digitalWrite(trig_pin,LOW);
 time = pulseIn(echo_pin,HIGH);
 dist = (time * 0.034) / 2;
 Serial.print("Distance:");
 Serial.println(dist);
 if(dist >= 150){
  tone(buz,1000);
  delay(1000);
  noTone(buz);
  delay(000);
  tone(buz,1000);
  delay(1000);
  noTone(buz);
}
```

Main-Module:


```
Code:
#include <NewPing.h>
#include <EEPROM.h>
#define TRIGGER_PIN 6
#define ECHO_PIN 7
#define MAX DISTANCE 500
#define RELAYPIN 8
#define EXTRELAYPIN 13
#define BUZZER 9
#define buttonPin 10
NewPing sonar(TRIGGER_PIN, ECHO_PIN, MAX_DISTANCE);
byte readval;
int addr = 0;
int addr2 = 1;
int flag;
int buttonState = 0;
int percentage;
int SpmpSensorPin = A0;
int SpmpsensorValue = 0;
```

```
float val;
      float TankHeight, MaxWaterLevel, EmptySpace, SonarReading,
ActualReading, Temp;
     void setup() {
       Serial.begin(9600);
       Serial.println(flag);
       pinMode(RELAYPIN,OUTPUT);
       pinMode(EXTRELAYPIN,OUTPUT);
       digitalWrite(RELAYPIN,LOW);
       digitalWrite(EXTRELAYPIN,HIGH);
       pinMode(BUZZER,OUTPUT);
       digitalWrite(BUZZER,LOW);
       for (int i=0; i<=5; i++) {
       buttonState = digitalRead(buttonPin);
       if (buttonState == HIGH) {
        TankHeight =sonar.ping_cm();
        EEPROM.write(addr, TankHeight);
        delay(1000);
       }
       TankHeight= EEPROM.read(addr);
       MaxWaterLevel=0.85*TankHeight;
       EmptySpace=TankHeight-MaxWaterLevel;
      }
      void loop() {
      delay(50);
      SonarReading=sonar.ping_cm();
      SpmpsensorValue=analogRead(SpmpSensorPin);
      Serial.println(SpmpsensorValue);
      Temp= SonarReading-EmptySpace;
      ActualReading= MaxWaterLevel-Temp;
      percentage=(ActualReading/MaxWaterLevel*100);
      if(SpmpsensorValue>=100) {
       if(percentage<=20) {</pre>
```

```
digitalWrite(RELAYPIN,HIGH);
 digitalWrite(EXTRELAYPIN,LOW);
  flag=1;
  EEPROM.write(addr2, flag);
 flag= EEPROM.read(addr2);
 else if(percentage>20 && percentage<=100) {
  flag= EEPROM.read(addr2);
 if(percentage>20 && percentage<=100 && flag ==1) {
  digitalWrite(RELAYPIN,HIGH);
  digitalWrite(EXTRELAYPIN,LOW);
  }
  else if(percentage>20 && percentage<=100 && flag ==0) {
  digitalWrite(RELAYPIN,LOW);
  digitalWrite(EXTRELAYPIN,HIGH);
 }
 }
else if(percentage>100) {
 delay(500);
 digitalWrite(RELAYPIN,LOW);
 digitalWrite(EXTRELAYPIN,HIGH);
 flag=0;
 EEPROM.write(addr2, flag);
 flag= EEPROM.read(addr2);
}
}
else if(SpmpsensorValue<=100) {
flag= EEPROM.read(addr2);
if(flag==1) {
 digitalWrite(BUZZER,HIGH);
 digitalWrite(RELAYPIN, LOW);
 digitalWrite(EXTRELAYPIN, HIGH);
  delay(100);
 digitalWrite(BUZZER,LOW);
 delay(100);
```

<u>Temperature and Humidity Sensor to keep the</u> <u>factory temperature ambient</u>

Sensors/Actuators/Displays used:

- Humidity sensor
- Buzzer
- LCD Display

Code:

```
#include <dht.h>
#include <LiquidCrystal.h>
dht.DHT;

#define DHT11 PIN 7

void setup() {
    serial.begin(9600);
```

```
lcd.begin(16, 2);
 lcd.print("hello, world!");
 pinMode(buz,OUTPUT);
}
void loop() {
  float h=dht.readHumidity();
  float t= dht.readTemperature();
 int buz=8;
 int chk.DHT.Read11(DHT11_PIN);
 lcd.setCursor(0, 0);
 lcd.print("Temperature =");
 lcd.print(t);
 lcd.setCursor(0,1);
 lcd.print("Humidity =");
 lcd.print(h);
  delay(1000);
  if (t>25) {
     tone(buz,1000);
     delay(1000);
  }
  else {
   noTone(buz);
  }
}
```

Note:

The code for main-modules of **water pump** and **roller block** were searched for before the lockdown, and hence we have included them here. However, the code is not tested in the lab.

Contribution by group members:

Member Name	Contribution	
1. Aanshi Patwari	 Roller + Counter Block Module Putting report 3 together 	
2. Dipika Pawar	Water Pump Module	
3. Miracle Rindani	RFID Module	
4. Bhumiti Gohel	GSM Module Temperature and Moisture sensor Module	

References

RFID Module:

https://electronicshobbyists.com/rfid-basics-and-rfid-module-interfacing-with-arduino/

• Roller Module:

https://circuitdigest.com/microcontroller-projects/automatic-bottle-filling-system-using-arduino

• GSM Module:

http://www.circuitstoday.com/interface-gsm-module-with-arduino

- Water pump Module:
 - http://www.circuitstoday.com/water-level-indicator-arduino-ultra sonic-sensor
 - https://www.youtube.com/watch?v=08dcoXZEtqs
- Moisture and Temperature Module:

https://howtomechatronics.com/tutorials/arduino/dht11-dht22-sensors-temperature-and-humidity-tutorial-using-arduino/

• IR Sensor based counter:

https://www.gadgetronicx.com/visitor-counter-project-using-arduino/

- Circuits designed on:
 - https://www.circuito.io/app
 - https://www.tinkercad.com/dashboard?type=circuits&collection=d esigns