Metodi Matematici per l'Informatica - Esercizi 3 (a.a. 21/22, I canale)

Docente: Lorenzo Carlucci (carlucci@di.uniroma1.it)

Nota: Gli esercizi riguardano relazioni di equivalenza e di ordine.

Esercizio 1 Sia $A = \{1, 2, 3, 4, 5\}$. Sia $R \subseteq A \times A$ la relazione seguente:

$$R = \{(1,2), (3,4), (3,5), (4,5), (2,5)\}.$$

- 1. Scrivere la rappresentazione di R come matrice e come grafo diretto.
- 2. Calcolare le composte $R \circ R$, $(R \circ R) \circ R$ con grafo e matrice.
- 3. Calcolare la chiusura transitiva di R.

Esercizio 2 Siano R_1 e R_2 due relazioni di equivalenza su un insieme A. Sia R la relazione su A definita come seque:

aRb se e solo se $(aR_1b$ e $aR_2b)$.

R è una relazione di equivalenza?

Esercizio 3 Siano R e S due relazioni di equivalenza sullo stesso insieme A. Quali dei punti seguenti sono veri e quali falsi?

- 1. $R \cup S$ è una relazione di equivalenza.
- 2. R-S è una relazione di equivalenza.

Esercizio 4 Per definizione una relazione R è di equivalenza sse è riflessiva, simmetrica e transitiva. Consideriamo il seguente argomento: se aRb allora bRa per simmetria; dunque aRa per transitività. Dunque per ogni $a \in A$ vale aRa e R è riflessiva. Dunque una relazione R è di equivalenza sse è simmetrica e transitiva. L'argomento è corretto? Se no, perché?

Esercizio 5 Sia R una relazione riflessiva e che soddisfa la seguente proprietà: per ogni $a, b, c \in A$ se aRb e aRc allora bRc. Dimostrare che R è una relazione di equivalenza.

Esercizio 6 Siano R e S due relazioni d'ordine sullo stesso insieme A. Quali dei punti seguenti sono veri e quali falsi?

- 1. $R \cap S \ \dot{e} \ un \ ordine$.
- 2. $R \cup S$ è un ordine.
- 3. R S è un ordine.

Esercizio 7 Sia S un insieme. Sia $A = \{f : f : S \to \mathbb{R}\}$ (l'insieme delle funzioni con dominio S e codominio \mathbb{R}). Definiamo la relazione $R \subseteq A \times A$ come segue:

$$fRg \ se \ e \ solo \ se \ per \ ogni \ x \in S \ vale \ f(x) \leq g(x) \}.$$

Dimostrare che la relazione R è un ordine parziale. Si tratta anche di un ordine totale?

Esercizio 8 Sia R una relazione transitiva sugli interi \mathbb{Z} tale che per ogni $z, z' \in \mathbb{Z}$, se |z - z'| = 5 allora $(z, z') \in R$. R è una relazione di equivalenza?

Esercizio 9 Sia $R \subseteq \mathbb{Z} \times \mathbb{Z}$ la relazione così definita:

$$(a,b)R(c,d)$$
 se e solo se $a \ge b \& c \le d$.

Di quali proprietà gode R?

Esercizio 10 Sia R una relazione di ordine parziale su un insieme A. Definiamo aR^*b se e solo se aRb e $a \neq b$. Dimostrare i sequenti punti.

- 1. Per ogni $a, b \in A$: se aR^*b allora non vale bRa.
- 2. Per ogni $a, b \in A$ vale al massimo una tra le seguenti: $aR^*b, b = a, bR^*a$.
- 3. Per ogni $a, b, c \in A$: se aR^*b e bRc allora aR^*c .
- 4. Per ogni $a, b, c \in A$: se $aRb \ e \ bR^*c \ allora \ aR^*c$.

Esercizio 11 Per una relazione $R \subseteq A \times A$ denotiamo con $R^{-1} = \{(a', a) : (a, a') \in R\}$ la sua inversa. Dimostrare che se R è un ordine su A allora R^{-1} è un ordine su A.

Esercizio 12 Dato un insieme A denotiamo con D_A la relazione $\{(a,a): a \in A\}$ su A, detta diagonale di A. Dimostrare che una relazione $R \subseteq A \times A$ è antisimmetrica se $R \cap R^{-1} \subseteq D_A$.

Esercizio 13 Sia $S \subseteq \mathbb{R} \times \mathbb{R}$ la relazione sui numeri reali definita come seque:

$$(r,s) \in S$$
 se e solo se $r^2 = s^2$.

Dimostrare che S è una equivalenza. Descrivere le sue classi di equivalenza.

Esercizio 14 Consideriamo l'insieme $F = \{(p,q) : p,q \in \mathbb{Z}, q \neq 0\}$. Definiamo $R \subseteq F \times F$ come segue: (a,b)R(c,d) se e solo se ad = bc. Dimostrare che R è una equivalenza. Descrivere le classi di equivalenza di (1,1), (1,2), (1,3), (1,4).

Esercizio 15 Sia $A = \{1, 3, 9, 27, 30\}$. Sia R la relazione di divisibilità su A: aRb se e solo se a divide b con resto 0. Definire un ordine totale R^* che estende R. Usare la dimostrazione del teorema visto in classe, scegliendo ogni volta una coppia di elementi incomparabili, fino a esaurirli tutti.

Esercizio 16 Sia A l'insieme dei numeri naturali da 1 a 10. Sia $R \subseteq A \times A$ la relazione di divisibilità; ossia aRb se e solo se a divide b con resto 0. Definire un ordine totale R^* che estende R.

1 Esercizi d'esame

Esercizio 17 Sia $A = \{1, 2, 3, 4, 5\}$, siano $R = \{(1, 2), (3, 2), (4, 2), (5, 2)\}$ e $S = \{(2, 1), (2, 4), (4, 5)\}$ due relazioni su A.

- 1. $R \cup S$ è transitiva?
- 2. Calcolare $S \circ S$.
- 3. Calcolare la chiusura transitiva di R.

Esercizio 18 Sia R una relazione d'ordine su un insieme A e sia S una relazione di equivalenza sullo stesso insieme A. Indicare se le seguenti affermazioni sono vere o false.

- 1. $R \cap S$ è transitiva.
- 2. $R \cup S$ è una relazione di equivalenza.
- 3. S R è riflessiva.

Esercizio 19 Consideriamo la seguente relazione \prec definita su coppie di intervalli chiusi della retta reale: $[x,y] \prec [w,z]$ se e solo se $[x,y] \subseteq [w,z]$ oppure y < w. Indicare se le seguenti affermazioni sono vere o false.

- 1. La relazione \prec è riflessiva.
- 2. La relazione \prec è antisimmetrica.
- 3. La relazione \prec è transitiva.

Esercizio 20 Sia $A = \{1, 2, 3, 4, 5\}$, sia $R = \{(1, 2), (2, 3), (1, 3), (3, 4), (3, 5)\}$ e $S = \{(1, 2), (2, 3), (1, 3), (4, 5)\}$ due relazioni su A.

- 1. $R \cap S$ è transitiva?
- 2. Calcolare $R \circ S$ e $S \circ R$.
- 3. Calcolare la chiusura transitiva di S.

Esercizio 21 Consideriamo la seguente relazione \prec definita su coppie di intervalli chiusi della retta reale: $[x,y] \prec [w,z]$ se e solo se [x,y] = [w,z] oppure y < w. Indicare se le seguenti affermazioni sono vere o false.

- 1. La relazione \prec è riflessiva.
- 2. La relazione \prec è antisimmetrica.
- 3. La relazione \prec è transitiva.

Esercizio 22 Sia $A = \{1, 2, 3, 4, 5\}$, sia $R = \{(1, 2), (2, 3), (3, 4), (4, 5)\}$ e $S = \{(1, 3), (3, 5), (1, 5), (2, 4)\}$ due relazioni su A.

- 1. $R \cup S$ è transitiva? falso
- 2. Calcolare $R \circ S$ e $S \circ R$. $\{(1,4)(2,5)\}$ e $\{(1,4)(2,5)\}$
- 3. Calcolare la chiusura transitiva di R. $\{(1,5),(1,4),(1,3),(2,5),(2,4),(3,5)\}$

Esercizio 23 Sia R la relazione $\{(1,2),(1,3),(2,4),(3,4),(4,5)\}.$

- 1. $R \ \dot{e} \ un \ ordine \ parziale \ su \ \{1, 2, 3, 4, 5\}$?
- 2. Calcolare $R \circ R$.
- 3. Calcolare la chiusura transitiva di R.

Esercizio 24 Sia R una relazione binaria su un insieme A tale che per ogni $a \in A$ esiste $b \in A$ tale che $(a,b) \in R$. Indicare se le seguenti affermazioni sono vere o false.

- 1. R è transitiva.
- 2. Se R è simmetrica e transitiva allora R è riflessiva.
- 3. Se R è riflessiva e simmetrica allora R è transitiva.