Analiza 4 - definicije, trditve in izreki

Oskar Vavtar po predavanjih profesorice Jasne Prezelj2021/22

Kazalo

1	Dif	erenčne enačbe
	1.1	Uvod
	1.2	Linearne diferenčne enačbe in
		sistemi linearnih diferenčnih enačb
	1.3	Stabilnost
2	Nav	vadne diferencialne enačbe
3	Lin	earne diferencialne enačbe
	3.1	LDE 1. reda
	3.2	Bernoullijeva DE
	3.3	Ricattijeva DE
	3.4	LDE višjih redov s konstantnimi koeficienti
4	Eks	istenca, enoličnost, gladkost 10
	4.1	Uvod
	4.2	Gladkost
5	Sist	emi diferencialnih enačb
	5.1	Uvod
	5.2	Sistemi linearnih diferencialnih enačb
6	Kva	alitativna analiza 13
	6.1	Uvod
	6.2	Stabilnost ravnovesnih rešitev
6	6.3	Problem morskih psov med 1. svetovno vojno
	6.4	Limitne rešitve
	6.5	Stabilnost in funkcija Ljapunova 15

1 Diferenčne enačbe

1.1 Uvod

Definicija 1.1 (Diferenca). Denimo, da je y = f(t) dana funkcija.

- 1. način: $\Delta y_t = f(t+h) f(t) = y_{t+h} y_t$
- 2. način: $\Delta y_t = f(t) f(t-h) = y_t y_{t-h}$

Posebej definiramo $\Delta^0 y_t = y_t$. Velja

$$\Delta^{n+1} y_t = \Delta(\Delta^n y_t)_t.$$

Definicija 1.2. *Navadna diferenčna enačba* je enačba, ki vsebuje eno ali več diferenc,

$$F(t, \Delta^0 y_t, \dots, \Delta^n y_t) = 0.$$

Red diferenčne enačbe je red najvišje diference. Če je F linearna v $\Delta^k y_t$, je enačba linearna.

Definicija 1.3. Sistem n diferenčnih enačb 1. reda je dan z

$$y_1(t+1) = f_1(t, y_1(t), \dots, y_n(t))$$

 \vdots
 $y_n(t+1) = f_n(t, y_1(t), \dots, y_n(t))$

Če t eksplicitno ne nastopa, rečemo, da je to *avtonomen sistem*. Če so f_1, \ldots, f_n linearne, lahko sistem zapišemo v matrični obliki:

$$\mathbf{y} = \begin{bmatrix} y_1 \\ \vdots \\ y_n \end{bmatrix}, \quad f_i(t) = b_i(t) + a_{i1}y_1(t) + \ldots + a_{in}y_n(t), \ i = 1, \ldots, n$$

$$\mathbf{y}(t+1) = \begin{bmatrix} a_{11}(t) & \dots & a_{1n}(t) \\ \vdots & \ddots & \vdots \\ a_{n1}(t) & \dots & a_{nn}(t) \end{bmatrix} \begin{bmatrix} y_1(t) \\ \vdots \\ y_n(t) \end{bmatrix} + \begin{bmatrix} b_1(t) \\ \vdots \\ b_n(t) \end{bmatrix} = \mathbf{A}(t)\mathbf{y}(t) + \mathbf{b}(t)$$

Nelinearen sistem lahko vseeno zapišemo v vektorski obliki:

$$\mathbf{f} = \begin{bmatrix} f_1 \\ \vdots \\ f_n \end{bmatrix}, \quad \mathbf{y}(t+1) = \mathbf{f}(t, \mathbf{y}(t))$$

Definicija 1.4. Če je sistem oblike

$$\mathbf{y}_{m+1} = \mathbf{A}\mathbf{y}_m,$$

se imenuje homogen.

1.2 Linearne diferenčne enačbe in sistemi linearnih diferenčnih enačb

Definicija 1.5. Sistem linearnih diferencialnih enačb reda n je dan s predpisom

$$\mathbf{y}(t+1) = \mathbf{A}(t)\mathbf{y}(t) + \mathbf{b}(t),$$

kjer je $\mathbf{A} \in \mathrm{GL}_n(\mathbb{R}), \ \mathbf{b} \in \mathbb{R}^n$.

Definicija 1.6. Začetni pogoj (ali Cauchyjeva naloga) za sistem n linearnih diferenčnih enačb 1. reda je: reši

$$\mathbf{y}(t+1) = \mathbf{A}(t)\mathbf{y}(t) + \mathbf{b}(t)$$

pri začetnem pogoju $\mathbf{y}(t_0) = \mathbf{y}_0 \in \mathbb{R}^n$.

Izrek 1.1. Prostor rešitev homogenega sistema je n-dimenzionalen vektorski prostor. Rešitve so linearno neodvisne v času $t+m \iff$ so linearno neodvisne v času t.

Komentar (Nehomogen sistem). Opazili smo, da če y, z rešita

$$\mathbf{y}(t+1) = \mathbf{A}\mathbf{y}(t) + \mathbf{b}(t),$$

potem $\mathbf{y}(t) - \mathbf{z}(t) = \mathbf{w}(t)$ reši

$$\mathbf{w}(t+1) = \mathbf{A}\mathbf{w}(t).$$

Posledično je vsaka rešitev nehomogenega sistema oblike

$$\mathbf{y} = \mathbf{y}_h + \mathbf{y}_p,$$

kjer je \mathbf{y}_h rešitev homogenega sistema, \mathbf{y}_p pa
 - pravimo ji partikularna -rešitev nehomogenega sistema.

Definicija 1.7. Cauchyjeva naloga za linearne diferenčne enačbe s konstantnimi koeficienti je: reši

$$y_{t+n} + a_{n-1}y_{t+n-1} + \ldots + a_0y_t = g(t)$$

pri pogoju

$$y(0) = \gamma_0, \dots, y(n-1) = \gamma_{n-1}.$$

Enačbo lahko prevedemo na sistem:

$$\begin{bmatrix} y_1(t+1) \\ y_2(t+1) \\ \vdots \\ y_{n-1}(t+1) \\ y_n(t+1) \end{bmatrix} = \begin{bmatrix} 0 & 1 & 0 & \dots & 0 \\ 0 & 0 & 1 & \dots & 0 \\ \vdots & \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & 0 & \dots & 1 \\ -a_0 & -a_1 & -a_2 & \dots & -a_{n-1} \end{bmatrix} \begin{bmatrix} y_1(t) \\ y_2(t) \\ \vdots \\ y_{n-1}(t) \\ y_n(t) \end{bmatrix} + \begin{bmatrix} 0 \\ 0 \\ \vdots \\ 0 \\ -g(t) \end{bmatrix},$$

kjer je $y_k(t) := y(t+k-1)$ (torej velja $y_k(t) = y_{k-1}(t+1)$).

Izrek 1.2. Splošna rešitev homogene enačbe je dana z

$$y_H = \sum_{i=1}^n a_i y_i,$$

kjer so y_i , $i=1,\ldots,n$ linearno neodvisne rešitve enačbe. Prostor rešitev je vektorski prostor dimenzije n.

Metoda 1.1. Za iskanje linearnih neodvisnih rešitev homogene enačbe uporabimo nastavek $y_t = \lambda^t$:

$$\lambda^{t+n} + a_{n-1}\lambda^{t+n-1} + \ldots + a_0\lambda^t = 0$$

Karakteristični polinom:

$$p(\lambda) = \lambda^n + a_{n-1}\lambda^{n-1} + \ldots + a_n.$$

Naj bo λ_0 ničla $p(\lambda), p(\lambda_0) = 0$. Potem je

$$\lambda_0^{t+n} + \ldots + a_0 \lambda_0^t = \lambda_0^t \cdot p(\lambda_0) = 0.$$

Če ima $p(\lambda)$ n enostavnih ničel, $\lambda_0, \ldots, \lambda_{n-1}$, je vsaka rešitev oblike

$$y(t) = \alpha_0 \lambda^t + \ldots + \alpha_{n-1} \lambda_{n-1}^t$$
.

1.3 Stabilnost

Definicija 1.8. Naj bo $\mathbf{y}_{t+1} = \mathbf{f}(t, y_t)$ dan sistem in postavimo $t_0 = 0$. Rešitev \mathbf{y} je stabilna, če za $\forall \varepsilon > 0 \ \exists \delta > 0$: če je \mathbf{z} katerakoli druga rešitev, ki zadošča $|\mathbf{z}_0 - \mathbf{y}_0| < \delta \Rightarrow |\mathbf{z}_t - \mathbf{y}_t| < \varepsilon, t > 0$.

Rešitev je asimptotsko stabilna, če je stabilna in za $\forall \varepsilon > 0 \; \exists \delta > 0 \colon |\mathbf{z}_0 - \mathbf{y}_0| < \delta,$ $|\mathbf{z}_t - \mathbf{y}_t| < \varepsilon, \; t \geq 0 \; \text{in} \; \lim_{t \to \infty} |\mathbf{z}_t - y_t| = 0.$

Za linearne sisteme:

$$\mathbf{y}_{t+1} = \mathbf{A}\mathbf{y}_t + \mathbf{b}_t$$

$$\mathbf{y}_n = \mathbf{y}_{n,P} + \mathbf{A}^n \mathbf{y}_0, \quad y_{0,P} = 0$$

$$\mathbf{z}_n = \mathbf{y}_{n,P} + \mathbf{A}^n \mathbf{z}_0$$

$$|\mathbf{y}_n - \mathbf{z}_n| = |\mathbf{A}^n (\mathbf{y}_0 - \mathbf{z}_0)| \le ||\mathbf{A}||^n ||\mathbf{y}_0 - \mathbf{z}_0||$$

 $\mathbf{y}_{n,P}$ je (asimptotsko) stabilna rešitev nehomogenega sistema \iff **0** je (asimptotsko) stabilna rešitev homogenega sistema. Torej: $\|\mathbf{A}\| < 1$: stabilnost.

2 Navadne diferencialne enačbe

Definicija 2.1. Navadna diferencialna enačba je vsaka enačba oblike

$$f(x, y(x), y'(x), \dots, y^{(n)}(x)) = 0.$$

Red najvišjega odvoda je red enačbe.

Cauchyjeva naloga za NDE n-tega reda je: reši

$$y^{(n)} = f(x, y, \dots, y^{(n-1)})$$
 (1)

pri pogoju

$$(x_0, y(x_0), \dots, y^{(n-1)}(x_0)) := (x_0, y_0, \dots, y_{n-1}) \in D_f.$$

Če f ni eksplicitno odvisna od x, se enačba imenuje avtonomna. Če ke f linearna v $y, \ldots, y^{(n-1)}$, je enačba (1) linearna.

Definicija 2.2. Naj bo $D \subset \mathbb{R}^2$, odprta, $f: D \to \mathbb{R}$ dana funkcija in $(x_0, y_0) \in D$ začetni pogoj. Potem je funkcija y rešitev $y' = f(x, y), \ y(x_0) = y_0$, na okolici x_0 , če $\exists \delta > 0$:

$$y'(x) = f(x, y(x))$$

na $(x_0 - \delta, x_0 + \delta), y(x_0) = y_0.$

3 Linearne diferencialne enačbe

3.1 LDE 1. reda

Enačba 1.

$$y' = f(x)y + g(x)$$

Naj bo x_0 izbrana točka. Potem je vsaka rešitev oblike

$$y = Ce^{\int_{x_0}^x f(t) dt} + y_p.$$

Prostor rešitve homogene enačbe y'=f(x)y je 1-dimenzionalni vektorski prostor.

3.2 Bernoullijeva DE

Enačba 2.

$$y' + p(x)y = q(x)y^{\alpha}.$$

Če $\alpha \in \{0,1\},$ potem je BDE kar LDE. Če ni, se v LDE prevede s substitucijo $z=y^{1-\alpha}.$

3.3 Ricattijeva DE

Enačba 3.

$$y' = a(x)y^2 + b(x)y + c(x), \quad a, b, c \in C([a, b])$$

V splošnem ni rešljiva. Če pa eno rešitev imamo, npr. y_1 , s substitucijo $y=y_1+z$ enačbo prevedemo na BDE za z.

3.4 LDE višjih redov s konstantnimi koeficienti

Definicija 3.1. Nehomogena LDE n-tega reda s konstantnimi koeficienti je enačba oblike

$$L(y) := y^{(n)} + a_1 y^{(n-1)} + \ldots + a_n y = f(x).$$

Če $f(x) \equiv 0$ je enačba homogena.

Trditev 3.1. Prostor rešitev enačbe L(y)=0 je n-dimenzionalen vektorski prostor. Če je y_p rešitev enačbe

$$L(y_p) = f,$$

potem je vsaka druga rešitev te enačbe oblike

$$y = y_h + y_p,$$

 $kjer L(y_h) = 0.$

4 Eksistenca, enoličnost, gladkost

4.1 Uvod

Izrek 4.1 (Lokalni eksistenčni izrek). Naj ob y' = f(x,y) diferencialna enačba, $f \in \mathcal{C}((0,a) \times (0,b))$, f Lipschitzova na 2. spremenljivko pri fiksni prvi spremenljivki x s koeficientom k(x), ki je lokalno integrabilna na (0,a). Potem lahko za $\forall (x_0,y_0) \in (0,a) \times (0,b)$ obstaja natanko ena rešitev enačbe pri začetnem pogoju $y(x_0) = y_0$, ki je definirana na neki okolici x_0 .

Izrek 4.2 (Globalni eksistenčni izrek). Naj bo y' = f(x, y) diferencialna enačba, $f \in \mathcal{C}([0, a] \times \mathbb{R})$, Lipschitzova na 2. spremenljivko pri fiksni 1. spremenljivki s konstanto k(x), ki je integrabilna na [0, a]. Potem obstaja natanko ena rešitev enačba pri pogoju $y(0) = y_0$, ki je definirana na [0, a].

4.2 Gladkost

Izrek 4.3. Cauchyjeva naloga:

$$y' = f(x, y, a), \quad a \in P \subset \mathbb{R}^n,$$

 $y(s) = t$

 $\varphi(x,x_0,y_0)$ je rešitev zgornje Cauchyjeve naloge. Naj bo f gladka v vseh spremenljivkah. Potem je φ gladko odvisna od x,s,t,a.

5 Sistemi diferencialnih enačb

5.1 Uvod

Definicija 5.1. Naj bodo x, y_1, \ldots, y_n realne spremenljivke in $f_i : \mathbb{R}^{n+1} \to \mathbb{R}$, $i = 1, \ldots, n$, realna funkcija. Sistem n diferencialnih enačb 1. reda je

$$y'_1 = f_1(x, y_1, \dots, y_n)$$

$$\vdots$$

$$y'_n = f_n(x, y_1, \dots, y_n).$$

V vektorski obliki:

$$\mathbf{y} = \begin{bmatrix} y_1 \\ \vdots \\ y_n \end{bmatrix}, \quad \mathbf{f} = \begin{bmatrix} f_1 \\ \vdots \\ f_n \end{bmatrix}.$$

Sistem se prepiše v $\mathbf{y}' = \mathbf{f}(x, \mathbf{y})$. Cauchyjeva naloga:

$$\mathbf{y}' = \mathbf{f}(x, \mathbf{y})$$
$$\mathbf{y}(x_0) = \mathbf{y}_0$$

Če x v \mathbf{f} eksplicitno ne nastopa, se sistem imenuje *avtonomen*. Če je \mathbf{f} linearna v \mathbf{y} , je sistem linearen in pišemo

$$\mathbf{y}' = \mathbf{A}(x)\mathbf{y} + \mathbf{b}(x).$$

Če je $\mathbf{b} \equiv 0$, je sistem homogen.

5.2 Sistemi linearnih diferencialnih enačb

Posledica. Sistem

$$\mathbf{y}' = \mathbf{A}(x)\mathbf{y} + \mathbf{b}(x),$$

 \mathbf{A}, \mathbf{b} zvezni na [0, a], izpolnjuje predpostavke G.E.I.

Izrek 5.1. Naj bo

$$\mathbf{y}' = \mathbf{A}(x)\mathbf{y} + \mathbf{b}(x)$$

sistem n diferencialnih enačb 1. reda, \mathbf{A}, \mathbf{b} zvezni na [0, a]. Prostor rešitev homogene enačbe $\mathbf{y} = \mathbf{A}(x)\mathbf{y}$ je vektorski prostor dimenzije n. Vsaka rešitev nehomogenega je oblike

$$\mathbf{y} = \mathbf{y}_H + \mathbf{y}_P,$$

kjer je \mathbf{y}_H rešitev homogenega sistema, \mathbf{y}_P pa partikularna rešitev nehomogenega sistema.

6 Kvalitativna analiza

6.1 Uvod

Definicija 6.1. Naj bo $\mathbf{y}' = \mathbf{f}(x, \mathbf{y})$ dan sistem enačb in $\varphi(x)$ njegova rešitev. Potem pravimo, da je φ stabilna, da za $\forall \varepsilon > 0 \; \exists \delta > 0$, da velja: če je ψ neka druga rešitev in je $\|\psi(0) - \varphi(0)\| < \delta$, potem

$$\|\psi(x) - \varphi(x)\| < \varepsilon, \quad x > 0.$$

Če je φ stabilna in za ψ , ki zadošča zgornjim pogojem, velja še

$$\lim_{x \to \infty} \|\boldsymbol{\psi}(x) - \boldsymbol{\varphi}(x)\| = 0,$$

pravimo, da je φ asimptotsko stabilna.

Izrek 6.1. Naj bo $\mathbf{y}' = \mathbf{A}\mathbf{y}$ dan sistem in je \mathbf{A} matrika z lastnimi vrednostmi λ_i .

- (a) Če $\forall i : \Re (\lambda_i) < 0$ je vsaka rešitev asimptotsko stabilna.
- (b) Če $\exists i : \Re \mathfrak{e}(\lambda_i) > 0$ so vse rešitve nestabilne.
- (c) Če $i < j : \mathfrak{Re}(\lambda_i) = 0$ in je število lastnih vektorjev, ki pripadajo λ_i , enako njeni algebrajski večkratnosti in $i \geq j : \mathfrak{Re}(\lambda_i) < 0$, je vsaka rešitev stabilna. Če $\exists i < j$, tako da algebrajska večkratnost ni enaka številu lastnih vektorjev $(\mathfrak{Re}(\lambda_i) = 0)$, potem je vsaka rešitev nestabilna.

Definicija 6.2. Naj bo $\mathbf{y}' = \mathbf{A}\mathbf{y}$ dan sistem in naj bo $\mathbf{v}_j = \mathbf{u}_j + i\mathbf{w}_j$ posplošeni lastni vektor (lastni ali korenski) za lastno vrednost λ_j . Definiramo:

• Stabilni podprostor:

$$E^s = \mathcal{L}_{in}\{\mathbf{u}_j, \mathbf{w}_j \in \mathbb{R}^n \mid \mathfrak{Re}(\lambda_j) < 0\}$$

• Nestabilni podprostor:

$$E^n = \mathcal{L}_{in}\{\mathbf{u}_j, \mathbf{w}_j \in \mathbb{R}^n \mid \mathfrak{Re}(\lambda_j) > 0\}$$

• Centralni podprostor:

$$E^c = \mathcal{L}_{in}\{\mathbf{u}_j, \mathbf{w}_j \in \mathbb{R}^n \mid \mathfrak{Re}(\lambda_j) = 0\}$$

6.2 Stabilnost ravnovesnih rešitev

Definicija 6.3. Stacionarna točka \mathbf{y}_0 avtonomnega sistema $\mathbf{y}' = \mathbf{f}(\mathbf{y})$, \mathbf{f} gladka, je *hiperbolična*, če ima

$$A = Df(y)$$

trivialen centralni prostor. Če \mathbf{y}_0 ni hiperbolična, je nehiperbolična.

Izrek 6.2 (Harman-Grobman). Naj bo $E \subset \mathbb{R}^n$ odprta množica, ki vsebuje izhodišče in naj bo $\mathbf{f}: E \to \mathbb{R}^n$ razreda \mathcal{C}^2 . Označimo z $\varphi_x(t)$ rešitev, ki zadošča $\varphi_x(0) = x$ (tokovnica skozi x). Naj bo $\mathbf{0}$ hiperbolična stacionarna točka sistema in pišimo

$$A = Df(0).$$

Obstaja $H:U\to V$, difeomorfizem reda \mathcal{C}^1 , U,V odprti okolici izhodišča, H(0)=(0) tak, da velja: $\forall x_0\in U$ obstaja odprt interval I_0 okoli $0,\,I_0\subset\mathbb{R}$ in velja

$$H \circ \varphi_{x_0} = e^{\mathbf{A}t} H(x_0).$$

Opomba. Če je **f** zgolj razreda C^1 , je H homeomorfizem.

Posledica. Ob predpostavkah izreka Hartman-Grobman je x = 0 asimptotsko stabilna rešitev linearizirane enačbe $\mathbf{x}' = \mathbf{A}\mathbf{x}$. Rešitev je nestabilna, če ima \mathbf{A} vsaj eno lastno vrednost λ , $\mathfrak{Re}(\lambda) > 0$ ($\iff E^n \neq \{0\}$).

6.3 Problem morskih psov med 1. svetovno vojno

Lema 1. Naj bosta x(t), y(t) periodični rešitvi sistem Lotka-Volterra s periodo T > 0. Potem je

$$\frac{l}{b} = \frac{1}{T} \int_0^T x(t) dt,$$

$$\frac{k}{a} = \frac{1}{T} \int_0^T y(t) dt.$$

6.4 Limitne rešitve

Izrek 6.3. Naj bo $\mathbf{y}' = \mathbf{f}(\mathbf{y})$ dan sistem, $\mathbf{f} \in \mathcal{C}^1$, $\varphi(t)$ rešitev in $\lim_{t \to \infty} \varphi(t) = \mathbf{y}_0$. Potem je \mathbf{y}_0 stacionarna točka.

6.5 Stabilnost in funkcija Ljapunova

Izrek 6.4. Naj bo $E \subset \mathbb{R}^2$ odprta množica, ki vsebuje izhodišče. Naj bo $\dot{\mathbf{x}} = \mathbf{f}(\mathbf{x})$ dan sistem in naj bo $\mathbf{0}$ njegova stacionarna točka in naj obstaja gladka vunkcija V na E, V(0) = 0, V > 0 sicer.

- (a) $\dot{V} \leq 0$: **0** je stabilna;
- (b) $\dot{V} < 0$ na $E \setminus \{0\}$: **0** je asimptotsko stabilna;
- (c) $\dot{V} > 0$ na $E \setminus \{\mathbf{0}\}$: **0** je nestabilna.

Funkcija V se imenuje Ljupanova.

6.6 Vedenje pri velikih časih

Izrek 6.5 (Poincare-Bendixon). Naj bo $\mathbf{y}' = \mathbf{f}(\mathbf{y})$ dan sistem, $K \subset \mathbb{R}^2$ kompaktna množica brez stacionarnih točk sistemu in naj bo $\varphi_x(t)$, $t \geq 0$, točkovnica, ki je v K za $\forall t \geq 0$:

$$\varphi_x(t) \in K, \quad \forall t \ge 0.$$

Potem obstaja v K periodična rešitev in $\varphi_x(t)$ se navija okoli nje.