EXAMPLE: Suppose an economy consists of the Coal, Electric (power), and Steel sectors, and the output of each sector is distributed among the various sectors as shown in the Table below, where the entries in a column represent the fractional parts of a sector's total output.

| Distribution of Output from: |          |       |               |  |
|------------------------------|----------|-------|---------------|--|
| Coal                         | Electric | Steel | Purchased by: |  |
| .0                           | .4       | .6    | Coal          |  |
| .6                           | .1       | .2    | Electric      |  |
| .4                           | .5       | .2    | Steel         |  |

The second column of the Table, for instance, says that the total output of the Electric sector is divided as follows: 40% to Coal, 50% to Steel, and the remaining 10% to Electric. (Electric treats this 10% as an expense it incurs in order to operate its business.) Since all output must be taken into account, the decimal fractions in each column must sum to 1.

Denote the prices (i.e., dollar values) of the total annual outputs of the Coal, Electric, and Steel sectors by  $p_C$ ,  $p_E$ , and  $p_S$ , respectively. If possible, find equilibrium prices that make each sector's income match its expenditures.

Solution: We have

$$p_C = .4p_E + .6p_S$$
  
 $p_E = .6p_C + .1p_E + .2p_S$   
 $p_S = .4p_C + .5p_E + .2p_S$ 

hence

$$p_C - .4p_E - .6p_S = 0$$
  
 $-.6p_C + .9p_E - .2p_S = 0$   
 $-.4p_C - .5p_E + .8p_S = 0$ 

Row reduction is next:

$$\begin{bmatrix} 1 & -.4 & -.6 & 0 \\ -.6 & .9 & -.2 & 0 \\ -.4 & -.5 & .8 & 0 \end{bmatrix} \sim \begin{bmatrix} 1 & -.4 & -.6 & 0 \\ 0 & .66 & -.56 & 0 \\ 0 & -.66 & .56 & 0 \end{bmatrix} \sim \begin{bmatrix} 1 & -.4 & -.6 & 0 \\ 0 & .66 & -.56 & 0 \\ 0 & 0 & 0 & 0 \end{bmatrix}$$
$$\sim \begin{bmatrix} 1 & -.4 & -.6 & 0 \\ 0 & 1 & -.85 & 0 \\ 0 & 0 & 0 & 0 \end{bmatrix} \sim \begin{bmatrix} 1 & 0 & -.94 & 0 \\ 0 & 1 & -.85 & 0 \\ 0 & 0 & 0 & 0 \end{bmatrix}$$

The general solution is  $p_C = .94p_S$ ,  $p_E = .85p_S$ , and  $p_S$  is free. The equilibrium price vector for the economy has the form

$$\mathbf{p} = \begin{bmatrix} p_{\rm C} \\ p_{\rm E} \\ p_{\rm S} \end{bmatrix} = \begin{bmatrix} .94 p_{\rm S} \\ .85 p_{\rm S} \\ p_{\rm S} \end{bmatrix} = p_{\rm S} \begin{bmatrix} .94 \\ .85 \\ 1 \end{bmatrix}$$

Any (nonnegative) choice for  $p_S$  results in a choice of equilibrium prices. For instance, if we take  $p_S$  to be 100 (or \$100 million), then  $p_C = 94$  and  $p_E = 85$ . The incomes and expenditures of each sector will be equal if the output of Coal is priced at \$94 million, that of Electric at \$85 million, and that of Steel at \$100 million.

Chemical equations describe the quantities of substances consumed and produced by chemical reactions. For instance, when propane gas burns, the propane  $(C_3H_8)$  combines with oxygen  $(O_2)$  to form carbon dioxide  $(CO_2)$  and water  $(H_2O)$ , according to an equation of the form

$$(x_1)C_3H_8 + (x_2)O_2 \rightarrow (x_3)CO_2 + (x_4)H_2O$$

To "balance" this equation, a chemist must find whole numbers  $x_1, \ldots, x_4$  such that the total numbers of carbon (C), hydrogen (H), and oxygen (O) atoms on the left match the corresponding numbers of atoms on the right (because atoms are neither destroyed nor created in the reaction).

A systematic method for balancing chemical equations is to set up a vector equation that describes the numbers of atoms of each type present in a reaction. Since equation above involves three types of

atoms (carbon, hydrogen, and oxygen), construct a vector in  $\mathbb{R}^3$  for each reactant and product in the equation above that lists the numbers of "atoms per molecule," as follows:

$$C_3H_8$$
:  $\begin{bmatrix} 3 \\ 8 \\ 0 \end{bmatrix}$ ,  $O_2$ :  $\begin{bmatrix} 0 \\ 0 \\ 2 \end{bmatrix}$ ,  $CO_2$ :  $\begin{bmatrix} 1 \\ 0 \\ 2 \end{bmatrix}$ ,  $H_2O$ :  $\begin{bmatrix} 0 \\ 2 \\ 1 \end{bmatrix}$   $\leftarrow$  Carbon  $\leftarrow$  Hydrogen  $\leftarrow$  Oxygen

To balance the equation above, the coefficients  $x_1, \ldots, x_4$  must satisfy

$$x_1 \begin{bmatrix} 3 \\ 8 \\ 0 \end{bmatrix} + x_2 \begin{bmatrix} 0 \\ 0 \\ 2 \end{bmatrix} = x_3 \begin{bmatrix} 1 \\ 0 \\ 2 \end{bmatrix} + x_4 \begin{bmatrix} 0 \\ 2 \\ 1 \end{bmatrix}$$

hence

$$x_{1} \begin{bmatrix} 3 \\ 8 \\ 0 \end{bmatrix} + x_{2} \begin{bmatrix} 0 \\ 0 \\ 2 \end{bmatrix} + x_{3} \begin{bmatrix} -1 \\ 0 \\ -2 \end{bmatrix} + x_{4} \begin{bmatrix} 0 \\ -2 \\ -1 \end{bmatrix} = \begin{bmatrix} 0 \\ 0 \\ 0 \end{bmatrix}$$

Row reduction of the augmented matrix for this equation leads to the general solution

$$x_1 = \frac{1}{4}x_4$$
,  $x_2 = \frac{5}{4}x_4$ ,  $x_3 = \frac{3}{4}x_4$ , with  $x_4$  free

Since the coefficients in a chemical equation must be integers, take  $x_4 = 4$ , in which case  $x_1 = 1$ ,  $x_2 = 5$ , and  $x_3 = 3$ . The balanced equation is

$$C_3H_8 + 5O_2 \rightarrow 3CO_2 + 4H_2O$$

The equation would also be balanced if, for example, each coefficient were doubled. For most purposes, however, chemists prefer to use a balanced equation whose coefficients are the smallest possible whole numbers.

EXAMPLE: The network in the Figure below shows the traffic flow (in vehicles per hour) over several one-way streets in downtown Baltimore during a typical early afternoon. Determine the general flow pattern for the network.



Solution: Write equations that describe the flow, and then find the general solution of the system. Label the street intersections (junctions) and the unknown flows in the branches, as shown in the Figure above. At each intersection, set the flow in equal to the flow out.

| Intersection | Flow in     |   | Flow out    |
|--------------|-------------|---|-------------|
| A            | 300 + 500   | = | $x_1 + x_2$ |
| В            | $x_2 + x_4$ | = | $300 + x_3$ |
| C            | 100 + 400   | = | $x_4 + x_5$ |
| D            | $x_1 + x_5$ | = | 600         |

Also, the total flow into the network (500 + 300 + 100 + 400) equals the total flow out of the network  $(300 + x_3 + 600)$ , which simplifies to  $x_3 = 400$ . Combine this equation with a rearrangement of the first four equations to obtain the following system of equations:

$$x_1 + x_2 = 800$$
  
 $x_2 - x_3 + x_4 = 300$   
 $x_4 + x_5 = 500$   
 $x_1 + x_5 = 600$   
 $x_3 = 400$ 

Row reduction of the associated augmented matrix leads to

$$x_1$$
 +  $x_5 = 600$   
 $x_2$  -  $x_5 = 200$   
 $x_3$  = 400  
 $x_4 + x_5 = 500$ 

The general flow pattern for the network is described by

$$\begin{cases} x_1 = 600 - x_5 \\ x_2 = 200 + x_5 \\ x_3 = 400 \\ x_4 = 500 - x_5 \\ x_5 \text{ is free} \end{cases}$$

A negative flow in a network branch corresponds to flow in the direction oppo-

site to that shown on the model. Since the streets in this problem are one-way, none of the variables here can be negative. This fact leads to certain limitations on the possible values of the variables. For instance,  $x_5 \leq 500$  because  $x_4$  cannot be negative.