# CH365 Chemical Engineering Thermodynamics

Lesson 25

3<sup>rd</sup> Law and Entropy from the Microscopic Viewpoint

# What is Entropy?

### **Implications**



$$\eta = \frac{|W|}{|Q_H|} = 1 - \frac{T_C}{T_H}$$
(Eq. 5.8)

### Third Law of Thermodynamics

The absolute entropy is zero for all perfect crystalline substances at absolute zero temperature.

$$S = S(T) = \int_{0}^{T_{f}} \frac{(C_{P})_{S}}{T} dT + \frac{\Delta H_{f}}{T_{f}} + \int_{T_{f}}^{T_{v}} \frac{(C_{P})_{L}}{T} dT + \frac{\Delta H_{V}}{T_{V}} + \int_{T_{V}}^{T} \frac{(C_{P})_{G}}{T} dT$$
(Eq. 5.40)

This equation allows calculation of absolute entropy.



#### Statistical Interpretation

- ideal gas
  - molecules do not interact
  - internal energy resides within the individual molecules



ch. 3, p. 79, (Eq. 3.13a) 
$$dU = C_{V}dT$$

#### Recall:

ch. 3, p. 79, (Eq. 3.14a)

$$dH = C_{\rm p} dT$$

definition of C<sub>P</sub>:

$$C_{P} \equiv \left(\frac{\partial H}{\partial T}\right)_{P}$$



$$\Delta U = C_V \Delta T = 0$$

But if  $\Delta U=0$ , then T does not change.

$$\Delta S = -R \cdot ln \left( \frac{P_{after}}{P_{before}} \right) = R \cdot ln(2)$$

Result of *classical* thermodynamics

more ordered  $\rightarrow$  less random  $\rightarrow$  less disordered



less ordered  $\rightarrow$  more random  $\rightarrow$  more disordered



- immediately after opening
- molecules are not randomly distributed over the total volume
- crowded into half the space

Increasing disorder (or decreasing structure) on the molecular level corresponds to increasing entropy.

Expression for disorder postulated by J.W. Gibbs and L. Boltzmann, 1878.

# Quantitative Expression of Disorder

more ordered = less random = less disordered



All molecules are in one of the two states.

$$\Omega_{\text{initial}} = \frac{N_A!}{(N_A!)(0!)}$$

$$= \frac{18!}{(18!)(0!)}$$

$$= 1$$

less ordered = more random = more disordered



$$\Omega_{\text{final}} = \frac{N_{\text{A}}!}{\left(\frac{N_{\text{A}}}{2}!\right)\left(\frac{N_{\text{A}}}{2}!\right)}$$
$$= \frac{18!}{9! \cdot 9!}$$
$$= 48,620$$





$$\Omega_1 = \frac{18!}{(17!)(1!)} = 18$$

$$\Omega_2 = \frac{18!}{(16!)(2!)} = 153$$

unbounded as N<sub>A</sub> increases

for the 18 particles,  $\Omega_{\text{final}} = 48,620$ 

How about  $N_A = 10^{23}$ ?

;

more ordered 2 less random 2 less disordered



- immediately after opening
- molecules are not randomly distributed over the total volume
- crowded into half the space

less ordered 2 more random 2 more disordered



Increasing disorder (or decreasing structure) on the molecular level corresponds to increasing entropy.



## Questions?

#### Homework