Задача А. Возведение в степень

 Имя входного файла:
 power.in

 Имя выходного файла:
 power.out

 Ограничение по времени:
 2 секунды

 Ограничение по памяти:
 64 мегабайта

Формат входных данных

Во входном файле даны три натуральных числа $A, B, M \ (1 \leqslant A, B \leqslant 10^9, 2 \leqslant M \leqslant 10^9)$, записанные на одной строке через пробел.

Формат выходных данных

В выходной файл выведите одно число, равное $A^B \mod M$ (mod значает взятие остатка при делении).

Примеры

power.in	power.out
2 3 100	8

Задача В. Реверс

 Имя входного файла:
 reverse.in

 Имя выходного файла:
 reverse.out

 Ограничение по времени:
 2 секунды

 Ограничение по памяти:
 64 мегабайта

Переверните массив чисел. Без циклов. Без списков.

Формат входных данных

В первой строке — число N. Далее в N строках указаны N чисел ($1 \le N \le 10000$), по одному числу на строке. Все числа по модулю не превышают 10^5 .

Формат выходных данных

Выведите N чисел — перевернутый массив.

Примеры

reverse.in	reverse.out
4	25998 33582 96841 92846
92846	
96841	
33582	
25998	

Задача С. Ханойские башни

Имя входного файла: hanoi.in
Имя выходного файла: hanoi.out
Ограничение по времени: 6 секунды
Ограничение по памяти: 64 мегабайта

Даны три стержня. На первом стержне находятся несколько дисков сверху вниз по возрастанию размера диска. Два другие пустые. Требуется перенести все диски с первого стержня на второй. Переносить диски разрешается только по одному. Не разрешается класть больший диск на меньший. В программе нельзя пользоваться циклами.

Формат входных данных

Вводится одно число $n \ (1 \le n \le 19)$ — количество дисков на первом стержне.

Формат выходных данных

Выведите по два числа в строке — номера стержней, откуда и куда переносится диск. Решение должно быть оптимальным по количеству действий.

Примеры

hanoi.in	hanoi.out
3	1 2
	1 3
	2 3
	1 2
	3 1
	3 2
	1 2

Задача D. Цифровой корень

 Имя входного файла:
 dig-root.in

 Имя выходного файла:
 dig-root.out

 Ограничение по времени:
 2 секунды

 Ограничение по памяти:
 64 мегабайта

Цифровым корнем числа n называется следующее число: берется сумма цифр числа n, затем сумма цифр у получившегося числа и так далее пока не получится однозначное число.

Ваша задача — отсортировать данный массив по возрастанию цифровых корней его элементов. Если цифровые корни двух чисел равны, то раньше должно идти меньшее число.

Формат входных данных

В первой строке файла через пробел введены элементы массива. Длина массива не превосходит 200, каждое число положительно и не превосходит 10^9 .

Формат выходных данных

Массив, отсортированный в порядке возрастания цифрового корня.

ЛКШ.2014.Август.С'.День 04 Судиславль, «Берендеевы поляны», 1 августа 2014

Примеры

dig-root.in	dig-root.out
15 14 13 12 11 10 9 8 7	10 11 12 13 14 15 7 8 9
80 61 51 41 22 1	1 22 41 51 61 80

Замечание

При решении задачи запрещается пользоваться встроенными функциями sort и sorted, а также теми квадратичными сортировками, которые вы уже написали в предыдущий день. Кроме того, требуется в решении написать вспомогательную функцию digital-root(number), вычисляющую и возвращающую цифровой корень числа. Эту функцию необходимо использовать.