1. 设 f 是将区间[a,b]映入自身的连续映射。从[a,b]内任一点 x 出发,用 $x_1=x$, $x_{n+1}=f(x_n)$ $(n\in\mathbb{N}_+)$ 生成迭代数列 $\{x_n\}$ 。证明: $\{x_n\}$ 收敛的充分必要条件是 $\lim_{n\to\infty}(x_{n+1}-x_n)=0$ 。

证明: ⇒由 Cauchy 收敛准则容易得出;

$$\Leftarrow \lim_{\substack{n\to\infty}} (x_{_{n+1}}-x_{_n})=0$$
 , 得 $\lim_{\substack{n\to\infty}} \left[f(x_{_n})-x_{_n}\right]=0$,

由于
$$x_{_{n}}\in [a,b]$$
 ,则 $\{x_{_{n}}\}$ 有收敛子列 $\{x_{_{n_{_{k}}}}\}, k=1,2,...,\ n_{_{k}}>n$,设 $\{x_{_{n_{_{k}}}}\}$ 收敛于 $x^{^{*}}$,

$$\text{II} \lim_{k \to \infty} \Bigl[f(x_{\scriptscriptstyle n_k}) - x_{\scriptscriptstyle n_k} \, \Bigr] = 0 \text{ , } \quad f(x^*) = x^* \text{ .}$$

2. (Toeplitz 定理)设 $n,k \in \mathbb{N}_{+}, t_{nk} \geq 0$, 又有 $\sum_{k=1}^{n} t_{nk} = 1, \lim_{n \to \infty} t_{nk} = 0$ 。 若已知 $\lim_{n \to \infty} a_{n} = a$,则 $\sum_{k=1}^{n} t_{nk} a_{k} = a$ 。

证明: 由 $\lim_{n\to\infty}a_n=a$ 可知, $\{a_n\}$ 有界,即 $\exists M>0, \forall n\in\mathbb{N}_+, \mid a_n\mid < M$,

同时, $\forall \varepsilon>0, \exists N_{_1}\in\mathbb{N}_{_+}, \mid a_{_n}-a\mid<rac{\varepsilon}{2} (\mathrm{when}\ n>N_{_1})$,

由 $\lim_{n \to \infty} t_{nk} = 0$ 知, $\exists N_2 \in \mathbb{N}_+, \mid t_{nk} \mid < \frac{\varepsilon}{2N_1 M} (\text{when } n > N_2)$,

取 $N = \max\{N_1, N_2\}$,当 n > N 时,有

$$\left|\sum_{k=1}^n t_{nk} a_k - a\right| = \left|\sum_{k=1}^n t_{nk} a_k - \sum_{k=1}^n t_{nk} a\right| \leq \sum_{k=1}^n t_{nk} \left|a_k - a\right| < M(t_{n1} + t_{n2} + \ldots + t_{nN_1}) + \frac{\varepsilon}{2}(t_{n(N_1+1)} + t \ldots + t_{nn}) < \varepsilon$$

$$\mathbb{P} \sum_{k=1}^n t_{nk} a_k = a \text{ , } \text{ if } \text$$

注记: (1) 令 $t_{nk} = \frac{1}{n}$,可以快速推导出 Cauchy 命题;

(2) 令 $t_{nk} = \frac{b_{k+1} - b_k}{b_{n+1} - b_1}$, 可以快速推导出 Stolz 定理;

(3) 将条件 $\sum_{k=1}^{n} t_{nk} = 1$ 改为 $\lim_{n \to \infty} \sum_{k=1}^{n} t_{nk} = 1$, 结论仍然成立。

相关例题 1: 设 $\lim_{n \to \infty} a_n = a$, 证明: $\lim_{n \to \infty} \frac{p_1 a_n + p_2 a_{n-1} + \ldots + p_n a_1}{p_1 + p_2 + \ldots + p_n} = a$ 。

其中
$$p_{_{\! k}}>0$$
 而且 $\lim_{^{n\rightarrow\infty}}\frac{p_{_{\! n}}}{p_{_{\! 1}}+p_{_{\! 2}}+\ldots+p_{_{\! n}}}=0$ 。

证明: 令
$$t_{nk} = \frac{p_{n-k+1}}{p_1 + p_2 + \ldots + p_n}, k = 1, 2, \ldots, n; n = 1, 2, \ldots$$
, 显然 $t_{nk} > 0$,且 $\sum_{k=1}^n t_{nk} = 1$,

再由 $p_{\scriptscriptstyle k}>0$, $p_{\scriptscriptstyle 1}+p_{\scriptscriptstyle 2}+\ldots+p_{\scriptscriptstyle n}>p_{\scriptscriptstyle 1}+p_{\scriptscriptstyle 2}+\ldots+p_{\scriptscriptstyle n-k+1}$,则

$$0 < t_{_{nk}} = \frac{p_{_{n-k+1}}}{p_{_1} + p_{_2} + \ldots + p_{_n}} < \frac{p_{_{n-k+1}}}{p_{_1} + p_{_2} + \ldots + p_{_{n-k+1}}} \to 0 \text{ (when } n \to \infty)$$

由夹逼定理知 $\lim_{n\to\infty} t_{nk} = 0$,于是由 Toeplitz 定理可得出结论。

相关例题 2: 设 $\lim_{n\to\infty}a_n=a$,证明: $\lim_{n\to\infty}\frac{1}{2^n}\sum_{k=0}^n\mathrm{C}_n^ka_k=a$ 。 (提示: 令 $t_{nk}=\frac{\mathrm{C}_n^k}{2^n}$.)

- 3. 设函数 f在(a, b)内连续, 且 f(a + 0), f(b 0) 为有限值,证明:
 - (1) f在(a, b)内有界;
 - (2) 若存在 $\xi \in (a,b)$ 使得 $f(\xi) \ge \max\{f(a+0), f(b-0)\}$,则 f在(a,b)内能取到最大值;
 - (3) f在(a, b)上一致连续。

证明: (1)(证法一)

设
$$f(a+0) = A, f(b-0) = B$$
,则对任意的 $\varepsilon < 1$, $\exists 0 < \delta < \frac{b-a}{2}$, 使得:

当
$$a < x < a + \delta$$
时,有 $A - 1 < f(x) < A + 1$;

当
$$b-\delta < x < b$$
时,有 $B-1 < f(x) < B+1$;

由于f在 $[a+\delta,b-\delta]$ 上连续,则f在 $[a+\delta,b-\delta]$ 上有界,设界为M,

则当 $x \in (a,b)$ 时,有 $|f(x)| \leq M$ 。证毕。

(证法二)补充定义,令

$$F(x) = \begin{cases} f(a+0), x = a \\ f(x), a < x < b \\ f(b-0), x = b \end{cases}$$

则 F 在闭区间 [a,b] 上连续,则 F 在闭区间 [a,b] 上有界,设界为 M ,

则当
$$x \in (a,b)$$
时,有 $|f(x)| = |F(x)| \le M$ 。证毕。

(2) 由(1)的证法二知, F 在闭区间 [a,b] 上连续,则 $\exists \eta \in [a,b]$,使得 $F(\eta) = \max_{x \in [a,b]} F(x)$ 。

若取
$$M_{_0} = \inf\{M \mid |F(x)| \leq M\}$$
,则 $M_{_0} = \max\{f(a+0), f(b-0), \max_{x \in [a,b]} F(x)\}$;

又存在 $\xi \in (a,b)$ 使得 $f(\xi) \ge \max\{f(a+0), f(b-0)\}$,则:

若
$$\eta = a$$
或 b ,则存在 $\xi_1 \in (a,b)$ 使得 $f(\xi_1) = \max_{x \in (a,b)} F(x) = \max_{x \in (a,b)} f(x)$;

若
$$\eta \in (a,b)$$
 , 则 $f(\eta) = F(\eta) = \max_{x \in (a,b)} F(x) = \max_{x \in (a,b)} f(x)$ 。

- (3) F在闭区间[a,b]上连续,所以F在闭区间[a,b]上一致连续,则f在(a,b)上一致连续。
- 4. 设正数列 $\{a_{_n}\}$ 的前 n 项和数列 $\{S_{_n}\}$ 收敛,求证:数列 $\left\{\frac{a_{_1}+2a_{_2}+\ldots+na_{_n}}{n}\right\}$ 收敛于 0 。

(提示:
$$\frac{a_1 + 2a_2 + \ldots + na_n}{n} = \frac{n+1}{n}S_n - \frac{S_1 + S_2 + \ldots + S_n}{n}$$
)

5. (压缩映照原理)设 f 是将区间[a, b]映入自身的连续映射。且满足 $|f(x) - f(y)| \le q |x - y|$, 其中 x, y 是 [a, b]上任意两点, 0 < q < 1 。证明:存在唯一的 $c \in [a, b]$ 使得 f(c) = c 。

证明: 任取 $x_0 \in [a,b]$, 由条件 "f是将区间[a,b]映入自身的连续映射"知, 我们可递推地定义

$$x_n = f(x_{n-1}), n = 1, 2, \dots$$

由函数所满足的条件, 我们有

$$|x_{n+1} - x_n| = |f(x_n) - f(x_{n-1})| \le q |x_n - x_{n-1}|, \forall n \in \mathbb{N}$$

反复应用上述不等式,可得

$$|x_{n+1} - x_n| \le q^n |x_1 - x_0|, \forall n \in \mathbb{N}$$

Accordingly, 对任意的正整数 n 和 p,有

$$\mid x_{_{n+p}} - x_{_{n}} \mid \leq \mid x_{_{n+p}} - x_{_{n+p-1}} \mid + \mid x_{_{n+p-1}} - x_{_{n+p-2}} \mid + \ldots \mid x_{_{n+1}} - x_{_{n}} \mid \leq \left(q^{^{n+p-1}} + \ldots + q^{^{n}}\right) \mid x_{_{1}} - x_{_{0}} \mid = 0$$

$$\left(q^{^{n+p-1}}+\ldots+q^{^{n}}\right)\mid x_{_{1}}-x_{_{0}}\mid =\frac{1-q^{^{p}}}{1-q}q^{^{n}}\mid x_{_{1}}-x_{_{0}}\mid <\frac{\mid x_{_{1}}-x_{_{0}}\mid}{1-q}q^{^{n}}$$

由此可知 $\{x_n\}$ 是基本列,从而它收敛,记极限为c。显然, $c \in [a,b]$ 。又由于

$$|f(x_n) - f(c)| \le q |x_n - c|$$

所以当 $n \to \infty$ 时, $x_n \to c$,必有 $f(x_n) \to f(c)$ 。 (也可用 Cauchy 判则证连续性)

在 $x_n = f(x_{n-1})$ 两边同时取极限就得到 f(c) = c, 这样 c 的存在性得证。

若存在 $c_1 \in [a,b], f(c_1) = c_1, c_1 \neq c$,则

$$|c - c_1| = |f(c) - f(c_1)| \le q |c - c_1|$$

即得矛盾,从而c的唯一性得证。

6. 设函数 f 定义在 $(a,+\infty)$ 上, f 在每一个有限区间 (a,b) 内有界,并满足 $\lim_{x\to+\infty} [f(x+1)-f(x)] = A$ 。

求证:
$$\lim_{x \to +\infty} \frac{f(x)}{x} = A$$
 。

证明: 先设 A = 0,由 $\lim_{x \to +\infty} [f(x+1) - f(x)] = 0$,

$$\boxed{\mathbb{M}} \ \forall \varepsilon > 0, \ \exists X_{_{\! 0}}, \ \forall x \geq X_{_{\! 0}}, \ \left| f(x+1) - f(x) \right| < \frac{\varepsilon}{2} \ ,$$

其中
$$x=x_{_{\!0}}+n,\ x_{_{\!0}}\in [X_{_{\!0}},X_{_{\!0}}+1],\ n\in \mathbb{N}$$
 ,

由于f在每一个有限区间(a,b)内有界,则f(x)在区间 $[X_0,X_0+1]$ 内有界,

$$\exists M > 0, \ \forall x_0 \in [X_0, X_0 + 1], \ |f(x_0)| \le M$$

于是,由
$$\left|f(x_0+k+1)-f(x_0+k)\right|<rac{arepsilon}{2}, k=0,1,2,\ldots$$
,得到

$$\begin{split} &\left|\frac{f(x)}{x}\right| = \left|\frac{f(x_0 + n)}{x_0 + n}\right| \\ &= \left|\frac{\left[f(x_0 + n) - f(x_0 + n - 1)\right] + \left[f(x_0 + n - 1) - f(x_0 + n - 2)\right] + \ldots + \left[f(x_0 + 1) - f(x_0)\right] + f(x_0)}{x_0 + n}\right| \\ &\leq \frac{\left|f(x_0 + n) - f(x_0 + n - 1)\right| + \left|f(x_0 + n - 1) - f(x_0 + n - 2)\right| + \ldots + \left|f(x_0 + 1) - f(x_0)\right| + \left|f(x_0)\right|}{x_0 + n} \\ &\leq \frac{\varepsilon}{2} \cdot \frac{n}{x_0 + n} + \frac{M}{x_0 + n} \end{split}$$

当
$$n$$
 充分大 $(n>N)$ 时, $\frac{M}{x_0+n}<\frac{\varepsilon}{2}$,于是当 $x>X_0+N+1$ 时, $\left|\frac{f(x)}{x}\right|<\varepsilon$,即 $\lim_{x\to+\infty}\frac{f(x)}{x}=0$ 。

若 $A \neq 0$,作辅助函数F(x) = f(x) - Ax,

$$\lim_{x \to +\infty} [F(x+1) - F(x)] = \lim_{x \to +\infty} [f(x+1) - f(x) - A] = 0$$

且 $\left|F(x)\right| \le \left|f(x)\right| + \left|Ax\right|$,故 F在每一个有限区间 (a,b) 内有界,于是由上述结论 $\lim_{x \to +\infty} \frac{F(x)}{x} = 0$,得到 $\lim_{x \to +\infty} \frac{f(x)}{x} = A$ 。