Acorn Projects ApS

Leikr Watch

Main Model: LKR1 Serial Model: LKR2,LKR3,LKR4,LKR5,LKR6,LKR7, LKR8,LKR9,LKR10,LKR11,LKR12

August 15, 2013

Report No.: 13070285-FCC IC-R1 (This report supersedes none)

Modifications made to the product: None

This Test Report is Issued Under the Authority of:

Back Huang
Compliance Engineer

Technical Manager

This test report may be reproduced in full only.

Test result presented in this test report is applicable to the representative sample only.

RF Test Report

Report No.: 13070285-FCC IC-R1
Issue Date: August 15, 2013
Page: 2 of 74

www.siemic.com.cn

Laboratory Introduction

SIEMIC, headquartered in the heart of Silicon Valley, with superior facilities in US and Asia, is one of the leading independent testing and certification facilities providing customers with one-stop shop services for Compliance Testing and Global Certifications.

In addition to <u>testing</u> and <u>certification</u>, SIEMIC provides initial design reviews and <u>compliance</u> <u>management</u> through out a project. Our extensive experience with <u>China</u>, <u>Asia Pacific</u>, <u>North America</u>, <u>European</u>, <u>and international</u> compliance requirements, assures the fastest, most cost effective way to attain regulatory compliance for the <u>global markets</u>.

Accreditations for Conformity Assessment

recreations for comorning resessment						
Country/Region	Accreditation Body	Scope				
USA	FCC, A2LA	EMC, RF/Wireless, Telecom				
Canada	IC, A2LA, NIST	EMC, RF/Wireless, Telecom				
Taiwan	BSMI , NCC , NIST	EMC, RF, Telecom, Safety				
Hong Kong	OFTA , NIST	RF/Wireless ,Telecom				
Australia	NATA, NIST	EMC, RF, Telecom, Safety				
Korea	KCC/RRA, NIST	EMI, EMS, RF, Telecom, Safety				
Japan	VCCI, JATE, TELEC, RFT	EMI, RF/Wireless, Telecom				
Mexico	NOM, COFETEL, Caniety	Safety, EMC, RF/Wireless, Telecom				
Europe A2LA, NIST EMC, RF, Telecom, Sa		EMC, RF, Telecom, Safety				

Accreditations for Product Certifications

Country/Region	Accreditation Body	Scope	
USA	FCC TCB, NIST	EMC, RF, Telecom	
Canada	IC FCB , NIST	EMC, RF, Telecom	
Singapore	iDA, NIST	EMC, RF, Telecom	
EU	NB	EMC & R&TTE Directive	
Japan	MIC, (RCB 208)	RF, Telecom	
Hong Kong	OFTA (US002)	RF, Telecom	

Report No.: 13070285-FCC IC-R1 Issue Date: August 15, 2013 Page: 3 of 74 www.siemic.com.cn

This page has been left blank intentionally.

Report No.: Issue Date: Page: 13070285-FCC IC-R1 August 15, 2013 4 of 74 www.siemic.com.cn

CONTENTS

1	EXECUTIVE SUMMARY & EUT INFORMATION	5
2	TECHNICAL DETAILS	6
3	MODIFICATION	7
1	TEST SUMMARY	8
5	MEASUREMENTS, EXAMINATION AND DERIVED RESULTS	9
AN]	NEX A. TEST INSTRUMENT & METHOD	56
AN]	NEX B. EUT AND TEST SETUP PHOTOGRAPHS	61
AN]	NEX C. TEST SETUP AND SUPPORTING EQUIPMENT	70
AN]	NEX D. USER MANUAL / BLOCK DIAGRAM / SCHEMATICS / PART LIST	73
AN]	NEX E. DECLARATION OF SIMILARITY	74

Report No.: 13070285-FCC IC-R1 August 15, 2013 5 of 74 Issue Date:

EXECUTIVE SUMMARY & EUT INFORMATION

The purpose of this test programme was to demonstrate compliance of the Acorn Projects ApS, Leikr Watch and model: LKR1 against the current Stipulated Standards. The Leikr Watch has demonstrated compliance with the FCC Part 15,247: 2012, ANSI C63.4: 2009, RSS-210: Issue 8, RSS-102: Issue 4, RSS-Gen: Issue 3.

EUT Information

EUT

Description

: Leikr Watch

Main Model : LKR1

LKR2,LKR3,LKR4,LKR5,LKR6,LKR7,LKR8,LKR9,LKR10,LKR11, Serial Model

LKR12

WIFI: 3 dBi

Antenna Gain ANT+: 3 dBi

Battery: Input Power

Model: GEB303242

Li-ion Battery: 3.7V 330mAh

Classification

Per Stipulated

FCC Part 15.247: 2012, ANSI C63.4: 2009, RSS-210: Issue 8, RSS-102:

Issue 4, RSS-Gen: Issue 3 **Test Standard**

Report No.: Issue Date: Page: 13070285-FCC IC-R1 August 15, 2013 6 of 74 www.siemic.com.cn

2 TECHNICAL DETAILS

	2 IECHNICKE BETRIES
Purpose	Compliance testing of Leikr Watch with stipulated standard
Applicant / Client	Acorn Projects ApS Smedeland 2, DK-2600 Glostrup, Denmark
Manufacturer	Acorn Projects ApS Smedeland 2, DK-2600 Glostrup, Denmark
Laboratory performing the tests	SIEMIC (Shenzhen-China) Laboratories Zone A, Floor 1, Building 2, Wan Ye Long Technology Park, South Side of Zhoushi Road, Bao'an District, Shenzhen, Guangdong, China Tel: +86-0755-2601 4629 / 2601 4953 Fax: +86-0755-2601 4953-810 Email: China@siemic.com.cn
Test report reference number	13070285-FCC IC-R1
Date EUT received	July 25, 2013
Standard applied	FCC Part 15.247: 2012, ANSI C63.4: 2009,RSS-210: Issue 8, RSS-102: Issue 4, RSS-Gen: Issue 3
Dates of test (from – to)	August 01, 2013 - August 14, 2013
No of Units :	#1
Equipment Category :	Spread Spectrum System/Device
Trade Name :	Leikr
RF Operating Frequency (ies)	WIFI: 802.11b/g/n(20) : 2412-2462 MHz ANT+: 2403-2480 MHz GPS: 1575.42 MHz
Number of Channels	WIFI: 11CH ANT+: 78CH GPS: 1CH
Modulation	WIFI: DSSS/OFDM ANT+: GFSK GPS: BPSK
FCC ID	2AAPI-LKR
IC ID	11342A-LKR

13070285-FCC IC-R1 August 15, 2013 7 of 74 www.siemic.com.cn Report No.: Issue Date: Page:

MODIFICATION

NONE

Report No.: 1307022 Issue Date: August Page: 8 of 74

13070285-FCC IC-R1 August 15, 2013 8 of 74 www.siemic.com.cn

4 TEST SUMMARY

The product was tested in accordance with the following specifications. All testing has been performed according to below product classification:

Test Results Summary

FCC Rules	IC Rules	Description of Test	Result
§15.203	-	Antenna Requirement	Compliance
§15.247 (a)(2)	RSS-210 [A8.2] RSS-Gen [4.6.1]	DTS (6 dB)/20 dB/99% CHANNEL BANDWIDTH	Compliance
§15.247(b)(3)	RSS-210 [A8.4]	Conducted Maximum Output Power	Compliance
§15.247(e)	RSS-210 [A8.2]	Power Spectral Density	Compliance
§15.247(d)	RSS-210 [A8.5]	Band-Edge & Unwanted Emissions into Non-Restricted Frequency Bands	Compliance
§15.207 (a),	RSS-Gen [A7.2.2]	AC Power Line Conducted Emissions	N/A
\$15.205, \$15.209, \$15.247(d)	RSS-210 [A8.5]	Radiated Spurious Emissions & Unwanted Emissions into Restricted Frequency Bands	Compliance
-	RSS-Gen [4.10]	Radiated Spurious Emissions & Restricted Bands(Rx)	Compliance

Report No.: 13070285-FCC IC-R1
Issue Date: August 15, 2013
Page: 9 of 74
www.siemic.com.cn

5 MEASUREMENTS, EXAMINATION AND DERIVED RESULTS

5.1 §15.203 - ANTENNA REQUIREMENT

Applicable Standard

According to § 15.203, an intentional radiator shall be designed to ensure that no antenna other than that furnished by the responsible party shall be used with the device. The use of a permanently attached antenna or of an antenna that uses a unique coupling to the intentional radiator shall be considered sufficient to comply with the provisions of this section. The manufacturer may design the unit so that a broken antenna can be replaced by the user, but the user of a standard antenna jack or electrical connector is prohibited. The structure and application of the EUT were analyzed to determine compliance with section §15.203 of the rules. §15.203 state that the subject device must meet the following criteria:

- a. Antenna must be permanently attached to the unit.
- b. Antenna must use a unique type of connector to attach to the EUT.

Unit must be professionally installed, and installer shall be responsible for verifying that the correct antenna is employed with the unit.

And according to FCC 47 CFR section 15.247 (b), if the transmitting antennas of directional gain greater than 6dBi are used, the power shall be reduced by the amount in dB that the directional gain of the antenna exceeds 6 dBi.

Antenna Connector Construction

The EUT has 2 antennas: . a PIFA antenna for WIFI/ANT+, the gain is 3 dBi; .a PIFA antenna for GPS. which in accordance to section 15.203, please refer to the internal photos.

Result: Compliance.

Report No.: 13070285-FCC IC-R1
Issue Date: August 15, 2013
Page: 10 of 74
www.siemic.com.cn

5.2 §15.247(a) (2)/ RSS-210 [A8.2]/ RSS-Gen [4.6.1] –DTS (6 dB)/20 dB/99% CHANNEL BANDWIDTH

1. <u>Conducted Measurement</u>

EUT was set for low, mid, high channel with modulated mode and highest RF output power.

The spectrum analyzer was connected to the antenna terminal.

2. Environmental Conditions Temperature 26°C Relative Humidity 58%

Atmospheric Pressure 1019mbar

3. Conducted Emissions Measurement Uncertainty

All test measurements carried out are traceable to national standards. The uncertainty of the measurement at a confidence level of approximately 95% (in the case where distributions are normal), with a coverage factor of 2, in the range 30MHz - 40GHz is $\pm 1.5dB$.

4. Test date: August 01, 2013 Tested By: Back Huang

Requirement(s): The minimum 6 dB bandwidth of a DTS transmission shall be at least 500 kHz. Within this document, this bandwidth is referred to as the DTS bandwidth. The procedures provided herein for measuring the maximum peak conducted output power assume the use of the DTS bandwidth.

Procedures:

- 1. Set RBW = 100 kHz.
- 2. Set the video bandwidth (VBW) \geq 3 x RBW.
- 3. Detector = Peak.
- 4. Trace mode = max hold.
- 5. Sweep = auto couple.
- 6. Allow the trace to stabilize.
- 7. Measure the maximum width of the emission that is constrained by the frequencies associated with the two outermost amplitude points (upper and lower) that are attenuated by 6 dB relative to the maximum level measured in the fundamental emission.

Test Result: Pass.

Please refer to the following tables and plots.

6dB bandwidth:

Channel Channel Frequency (MHz)		Data Rate (Mbps)	Measured 6dB Bandwidth (MHz)	FCC Part 15.247 Limit (kHz)		
		802.11b mode				
Low	2412	1	9.149	>500		
Middle	2437	1	9.108	>500		
High	2462	1	9.175	>500		
		802.11g mode				
Low	2412	6	15.185	>500		
Middle	2437	6	15.213	>500		
High	2462	6	15.219	>500		
802.11n20 mode						
Low	2412	MCS0	17.739	>500		
Middle	2437	MCS0	17.776	>500		
High	2462	MCS0	17.781	>500		

Report No.: Issue Date: Page:

13070285-FCC IC-R1 August 15, 2013 11 of 74 www.siemic.com.cn

20 dB&99% bandwidth:

Channel Channel Frequency (MHz)		Data Rate (Mbps)	Measured 20dB Bandwidth (MHz)	Measured 99% Bandwidth (MHz)		
		802.11b mode				
Low	2412	1	16.141	14.0484		
Middle	2437	1	16.131	14.0522		
High	2462	1	16.135	14.0589		
		802.11g mode				
Low	2412	6	17.373	16.5572		
Middle	2437	6	17.285	16.5949		
High	2462	6	17.427	16.6058		
802.11n20 mode						
Low	2412	MCS0	19.480	18.0485		
Middle	2437	MCS0	19.102	18.0572		
High	2462	MCS0	19.458	18.1005		

The 6dB bandwidth:

802.11b Low Channel

13070285-FCC IC-R1 August 15, 2013 12 of 74 Report No.: Issue Date: Page:

802.11b Middle Channel

Occupied Bandwidth 13.9528 MHz Occ BW % Pwr 99.00 % -6.00 dB x dB

Transmit Freq Error 4.157 kHz x dB Bandwidth 9.108 MHz

802.11b High Channel

Occupied Bandwidth 13.9387 MHz Occ BW % Pwr 99.00 % x dB -6.00 dB

Transmit Freq Error -9.662 kHz x dB Bandwidth 9.175 MHz

To: FCC Part 15.247: 2012, ANSI C63.4: 2009,RSS-210: Issue 8, RSS-102: Issue 4, RSS-Gen: Issue 3

13070285-FCC IC-R1 August 15, 2013 13 of 74 Report No.: Issue Date: Page:

802.11g Low Channel

Occupied Bandwidth 16.3007 MHz Occ BW % Pwr 99.00 % -6.00 dB x dB

Transmit Freq Error 2.201 kHz x dB Bandwidth 15.185 MHz

802.11g Middle Channel

Occupied Bandwidth 16.2878 MHz Occ BW % Pwr 99.00 % x dB -6.00 dB

Transmit Freq Error 1.647 kHz x dB Bandwidth 15.213 MHz

To: FCC Part 15.247: 2012, ANSI C63.4: 2009,RSS-210: Issue 8, RSS-102: Issue 4, RSS-Gen: Issue 3

13070285-FCC IC-R1 August 15, 2013 14 of 74 Report No.: Issue Date: Page:

802.11g High Channel

Occupied Bandwidth 16.2883 MHz Occ BW % Pwr 99.00 % -6.00 dB x dB

Transmit Freq Error 5.877 kHz x dB Bandwidth 15.219 MHz

802.11n Low Channel

Transmit Freq Error -1.647 kHz x dB Bandwidth 17.739 MHz

To: FCC Part 15.247: 2012, ANSI C63.4: 2009,RSS-210: Issue 8, RSS-102: Issue 4, RSS-Gen: Issue 3

13070285-FCC IC-R1 August 15, 2013 15 of 74 Report No.: Issue Date: Page:

802.11n Middle Channel

Occupied Bandwidth 17.7036 MHz Occ BW % Pwr 99.00 % -6.00 dB x dB

Transmit Freq Error -6.908 kHz x dB Bandwidth 17.776 MHz

802.11n High Channel

Occupied Bandwidth 17.7092 MHz Occ BW % Pwr 99.00 % x dB -6.00 dB

Transmit Freq Error -3.523 kHz x dB Bandwidth 17.781 MHz

Report No.: 13070285-FCC IC-R1 Issue Date: August 15, 2013 Page: 16 of 74 www.siemic.com.cn

The 20dB bandwidth:

802.11b Low Channel

802.11b Middle Channel

To: FCC Part 15.247: 2012, ANSI C63.4: 2009,RSS-210: Issue 8, RSS-102: Issue 4, RSS-Gen: Issue 3

13070285-FCC IC-R1 August 15, 2013 17 of 74 Report No.: Issue Date: Page:

802.11b High Channel

Occupied Bandwidth 14.0182 MHz

#Res BW 100 kHz

#VBW 300 kHz

Sweep 4 ms (401 pts)

Occ BW % Pwr 99.00 % -20.00 dB x dB

Transmit Freq Error -6.685 kHz x dB Bandwidth 16.135 MHz

802.11g Low Channel

Occupied Bandwidth 16.3095 MHz Occ BW % Pwr 99.00 % x dB -20.00 dB

Transmit Freq Error 5.824 kHz x dB Bandwidth 17.373 MHz

To: FCC Part 15.247: 2012, ANSI C63.4: 2009,RSS-210: Issue 8, RSS-102: Issue 4, RSS-Gen: Issue 3

13070285-FCC IC-R1 August 15, 2013 18 of 74 Report No.: Issue Date: Page:

802.11g Middle Channel

Occupied Bandwidth 16.3171 MHz Occ BW % Pwr 99.00 % -20.00 dB x dB

Transmit Freq Error 6.409 kHz x dB Bandwidth 17.285 MHz

802.11g High Channel

Occupied Bandwidth 16.2982 MHz Occ BW % Pwr 99.00 % x dB -20.00 dB

Transmit Freq Error 10.481 kHz x dB Bandwidth 17.427 MHz

13070285-FCC IC-R1 August 15, 2013 19 of 74 Report No.: Issue Date: Page:

802.11n Low Channel

#Res BW 100 kHz Occupied Bandwidth

x dB Bandwidth

#VBW 300 kHz

Sweep 4 ms (401 pts)

Occ BW % Pwr 99.00 % -20.00 dB x dB

Transmit Freq Error 90.393 Hz

17.7005 MHz

19.480 MHz

802.11n Middle Channel

Occupied Bandwidth 17.6823 MHz Occ BW % Pwr 99.00 % x dB -20.00 dB

Transmit Freq Error -6.373 kHz x dB Bandwidth 19.102 MHz

13070285-FCC IC-R1 August 15, 2013 20 of 74 Report No.: Issue Date: Page:

802.11n High Channel

Occupied Bandwidth 17.7047 MHz

-20.00 dB x dB

Transmit Freq Error -3.314 kHz x dB Bandwidth 19.458 MHz

The 99% bandwidth:

802.11b Low Channel

Transmit Freq Error 41.230 kHz x dB Bandwidth 16.263 MHz

13070285-FCC IC-R1 August 15, 2013 21 of 74 Report No.: Issue Date: Page:

802.11b Middle Channel

Occupied Bandwidth 14.0522 MHz

#Res BW 300 kHz

#VBW 300 kHz Sweep 4 ms (401 pts)

Occ BW % Pwr 99.00 % -20.00 dB x dB

Transmit Freq Error 20.385 kHz x dB Bandwidth 16.266 MHz

802.11b High Channel

Occupied Bandwidth 14.0589 MHz Occ BW % Pwr 99.00 % x dB -20.00 dB

Transmit Freq Error 1.914 kHz x dB Bandwidth 16.272 MHz

13070285-FCC IC-R1 August 15, 2013 22 of 74 Report No.: Issue Date: Page:

802.11g Low Channel

Occupied Bandwidth 16.5572 MHz Occ BW % Pwr 99.00 % -20.00 dB x dB

Transmit Freq Error 43.049 kHz x dB Bandwidth 18.863 MHz

802.11g Middle Channel

Occupied Bandwidth 16.5949 MHz Occ BW % Pwr 99.00 % x dB -20.00 dB

Transmit Freq Error 23.754 kHz x dB Bandwidth 18.880 MHz

13070285-FCC IC-R1 August 15, 2013 23 of 74 Report No.: Issue Date: Page: www.siemic.com.cn

802.11g High Channel

Occupied Bandwidth 16.6058 MHz Occ BW % Pwr 99.00 % -20.00 dB x dB

Transmit Freq Error -1.796 kHz x dB Bandwidth 18.622 MHz

802.11n Low Channel

Occupied Bandwidth 18.0485 MHz Occ BW % Pwr 99.00 % x dB -20.00 dB

Transmit Freq Error 29.608 kHz x dB Bandwidth 21.057 MHz

13070285-FCC IC-R1 August 15, 2013 24 of 74 Report No.: Issue Date: Page: www.siemic.com.cn

802.11n Middle Channel

Occupied Bandwidth 18.0572 MHz Occ BW % Pwr 99.00 % -20.00 dB x dB

Transmit Freq Error 5.444 kHz x dB Bandwidth 20.866 MHz

802.11n High Channel

Occupied Bandwidth 18.1005 MHz Occ BW % Pwr 99.00 % x dB -20.00 dB

Transmit Freq Error 23.236 kHz 21.059 MHz x dB Bandwidth

Report No.: 13070285-FCC IC-R1 Issue Date: August 15, 2013 Page: 25 of 74 www.siemic.com.cn

5.3 §15.247(b) (3)/ RSS-210 [A8.4] - Conducted Maximum Output Power

Conducted Measurement

EUT was set for low, mid, high channel with modulated mode and highest RF output power.

The spectrum analyzer was connected to the antenna terminal.

Conducted Emissions Measurement Uncertainty

All test measurements carried out are traceable to national standards. The uncertainty of the measurement at a confidence level of approximately 95% (in the case where distributions are normal), with a coverage factor of 2, in the range 30MHz - 40GHz is $\pm 1.5dB$.

3. Environmental Conditions Temperature 26°C

Relative Humidity 58% Atmospheric Pressure 1019mbar

4. Test date: August 01, 2013 Tested By: Back Huang

Standard Requirement:

Maximum Peak Conducted Output Power

The following procedures can be used to determine the maximum peak conducted output power of a DTS EUT.

Maximum Conducted Output Power

§15.247(b)(3) permits the maximum (average) conducted output power to be measured as an alternative to the maximum peak conducted output power for demonstrating compliance to the limit. When these procedures are utilized, the power is referenced to the emission bandwidth (EBW) rather than the DTS bandwidth (see Section 2.0 for definitions).

When using a spectrum/signal analyzer to perform these measurements, it must be capable of utilizing a number of measurement points in each sweep that is greater than or equal to twice the span/RBW in order to ensure bin-to-bin spacing of \leq RBW/2 so that narrowband signals are not lost between frequency bins.

The ideal method for measuring the maximum (average) conducted output power is with the EUT is configured to transmit continuously (duty cycle \geq 98%) at its maximum power control level. However, when this condition cannot be realized, video triggering or signal gating can be used to ensure that the measurements are performed only during periods when the EUT is transmitting at its maximum power control level. An option is also provided that can be used when none of the above requirements can be met with the available measurement instrumentation.

Procedures:

Maximum peak conducted output power:

Integrated band power method

This procedure may be used when the maximum available RBW of the measurement instrument is less than the DTS bandwidth.

- 1. Set the RBW = 1 MHz.
- 2. Set the VBW $\geq 3 \times RBW$
- 3. Set the span ≥ 1.5 x DTS bandwidth.
- 4. Detector = peak.
- 5. Sweep time = auto couple.
- 6. Trace mode = max hold.
- 7. Allow trace to fully stabilize.
- 8. Use the instrument's band/channel power measurement function with the band limits set equal to the DTS bandwidth edges (for some instruments, this may require a manual override to select peak detector). If the instrument does not have a band power function. sum the spectrum levels (in linear power units) at intervals equal to the RBW extending across the DTS bandwidth.

Maximum conducted (average) output power:

Method AVGSA-1 (trace averaging with the EUT transmitting at full power throughout each sweep)

This procedure should be used with an RMS power averaging detector; however, a sample detector can be used when an RMS detector is not available. This is the baseline method for measuring the maximum (average) conducted output power.

- 1. Set span to at least 1.5 times the OBW.
- 2. Set RBW = 1-5% of the OBW, not to exceed 1 MHz.
- 3. Set VBW \geq 3 x RBW.

Report No.: 13070285-FCC IC-R1 Issue Date: August 15, 2013 Page: 26 of 74 www.siemic.com.cn

- 4. Number of points in sweep ≥ 2 x span / RBW. (This gives bin-to-bin spacing \le RBW/2, so that narrowband signals are not lost between frequency bins.)
- 5. Sweep time = auto.
- 6. Detector = RMS (i.e., power averaging), if available. Otherwise, use sample detector mode.
- 7. If transmit duty cycle < 98 %, use a sweep trigger with the level set to enable triggering only on full power pulses. The transmitter shall operate at maximum power control level for the entire duration of every sweep. If the EUT transmits continuously (i.e., with no off intervals) or at duty cycle ≥ 98 %, and if each transmission is entirely at the maximum power control level, then the trigger shall be set to "free run".
- 8. Trace average at least 100 traces in power averaging (i.e., RMS) mode.
- 9. Compute power by integrating the spectrum across the OBW of the signal using the instrument's band power measurement function, with band limits set equal to the OBW band edges. If the instrument does not have a band power function, sum the spectrum levels (in power units) at intervals equal to the RBW extending across the entire OBW of the spectrum.

Test Result: Pass.

Please refer to the following tables and plots.

Channel	Fre	nannel quency MHz)	Data Rate (Mbps)	PK Output Power (dBm)	AV Output Power (dBm)	Limit (dBm)
			802.1	11b mode		
Low	2	2412	1	12.34	9.43	30
Middle	2	2437	1	12.12	9.29	30
High	2	2462	1	11.71	8.93	30
			802.1	11g mode		
Low	2	2412	6	13.96	8.65	30
Middle	2	2437	6	13.81	8.57	30
High	2	2462	6	13.46	8.21	30
	802.11n20 mode					
Low	2	2412	MCS0	12.82	7.50	30
Middle	2	2437	MCS0	12.93	7.57	30
High	2	2462	MCS0	12.33	7.34	30

Report No.: 13070285-FCC IC-R1
Issue Date: August 15, 2013
Page: 27 of 74
www.siemic.com.cn

The Peak Power:

802.11b Low Channel

12.34 dBm /9.1490 MHz

-57.28 dBm/Hz

802.11b Middle Channel

13070285-FCC IC-R1 August 15, 2013 28 of 74 Report No.: Issue Date: Page:

802.11b High Channel

11.71 dBm / 9.1750 MHz

-57.92 dBm/Hz

802.11g Low Channel

13.96 dBm / 15.1850 MHz

-57.86 dBm/Hz

Report No.: 13070285-FCC IC-R1 Issue Date: August 15, 2013 Page: 29 of 74 www.siemic.com.cn

802.11g Middle Channel

13.81 dBm / 15.2130 MHz

rower Spectral Delisity

-58.01 dBm/Hz

802.11g High Channel

13.46 dBm / 15.2190 MHz

-58.36 dBm/Hz

13070285-FCC IC-R1 August 15, 2013 30 of 74 Report No.: Issue Date: Page:

802.11n Low Channel

12.82 dBm / 17.7390 MHz

Power Spectral Density

-59.67 dBm/Hz

802.11n Middle Channel

12.93 dBm / 17.7760 MHz

-59.57 dBm/Hz

Report No.: 13070285-FCC IC-R1
Issue Date: August 15, 2013
Page: 31 of 74
www.siemic.com.cn

802.11n High Channel

The Average Power:

802.11b Low Channel

Report No.: 13070285-FCC IC-R1 Issue Date: August 15, 2013 Page: 32 of 74 www.siemic.com.cn

802.11b Middle Channel

802.11b High Channel

Report No.: Issue Date: Page: 13070285-FCC IC-R1 August 15, 2013 33 of 74 www.siemic.com.cn

-63.81 dBm/Hz

802.11g Low Channel

802.11g Middle Channel

8.57 dBm / 17.2850 MHz

Report No.: 13070285-FCC IC-R1
Issue Date: August 15, 2013
Page: 34 of 74
www.siemic.com.cn

802.11g High Channel

802.11n Low Channel

Report No.: Issue Date: Page:

13070285-FCC IC-R1 August 15, 2013 35 of 74

802.11n Middle Channel

7.57 dBm / 19.1020 MHz

Power Spectral Density

-65.24 dBm/Hz

802.11n High Channel

5.4 §15.247(e)/ RSS-210 [A8.2] - Power Spectral Density

1. Conducted Measurement

EUT was set for low, mid, high channel with modulated mode and highest RF output power.

The spectrum analyzer was connected to the antenna terminal.

2. Environmental Conditions Temperature 27°C

Relative Humidity 62% Atmospheric Pressure 1017mbar

3. Conducted Emissions Measurement Uncertainty

All test measurements carried out are traceable to national standards. The uncertainty of the measurement at a confidence level of approximately 95% (in the case where distributions are normal), with a coverage factor of 2, in the range 30MHz - 40GHz is $\pm 1.5dB$.

4. Test date: August 08, 2013

Tested By: Back Huang

Requirement(s):

A conducted power spectral density (PSD) limit of 8 dBm in any 3 kHz band segment within the DTS bandwidth is specified during any time interval of continuous transmission.4 By rule, the same method as used to determine the conducted output power shall be used to determine the power spectral density (i.e., if maximum peak conducted output power was measured then the peak PSD procedure shall be used and if maximum conducted output power was measured then the average PSD procedure shall be used).

If the average PSD is measured with a power averaging (RMS) detector or a sample detector, then the spectrum analyzer must be capable of utilizing a number of measurement points in each sweep that is greater than or equal to twice the span/RBW in order to ensure bin-to-bin spacing of \leq RBW/2 so that narrowband signals are not lost between frequency bins.

Procedures:

This procedure must be used if maximum peak conducted output power was used to demonstrate compliance to the fundamental output power limit, and is optional if the maximum (average) conducted output power was used to demonstrate compliance.

- 1. Set analyzer center frequency to DTS channel center frequency.
- 2. Set the span to 1.5 times the DTS channel bandwidth.
- 3. Set the RBW \geq 3 kHz.
- 4. Set the VBW \geq 3 x RBW.
- 5. Detector = peak.
- 6. Sweep time = auto couple.
- 7. Trace mode = max hold.
- 8. Allow trace to fully stabilize.
- 9. Use the peak marker function to determine the maximum amplitude level.
- 10. If measured value exceeds limit, reduce RBW (no less than 3 kHz) and repeat.

Test Result: Pass.

13070285-FCC IC-R1 August 15, 2013 37 of 74

Please refer to the following tables and plots.

Channel	Frequency (MHz)	Data Rate	PSD (dBm)	Limit (dBm)					
	802.11b mode								
Low	2412	1	-0.388	8					
Middle	2437	1	-0.585	8					
High	2462	1	-0.930	8					
	802.11g mode								
Low	2412	6	-0.430	8					
Middle	2437	6	-0.661	8					
High	2462	6	-0.943	8					
	802.11n20 mode								
Low	2412	MCS0	-1.695	8					
Middle	2437	MCS0	-1.784	8					
High	2462	MCS0	-2.354	8					

Power Spectral Density, 802.11b Low Channel

Report No.: 13070285-FCC IC-R1
Issue Date: August 15, 2013
Page: 38 of 74
www.siemic.com.cn

Power Spectral Density, 802.11b Middle Channel

Power Spectral Density, 802.11b High Channel

13070285-FCC IC-R1 August 15, 2013 39 of 74 www.siemic.com.cn

Power Spectral Density, 802.11g Low Channel

Power Spectral Density, 802.11g Middle Channel

13070285-FCC IC-R1 August 15, 2013 40 of 74 www.siemic.com.cn

Power Spectral Density, 802.11g High Channel

Power Spectral Density, 802.11n Low Channel

13070285-FCC IC-R1 August 15, 2013 41 of 74 www.siemic.com.cn

Power Spectral Density, 802.11n Middle Channel

Power Spectral Density, 802.11n High Channel

Report No.: 13070285-FCC IC-R1 Issue Date: August 15, 2013 Page: 42 of 74 www.siemic.com.cn

5.5 §15.247(d)/ RSS-210 [A8.5] –Band-Edge & Unwanted Emissions into Non-Restricted Frequency Bands

1. In any 100 kHz bandwidth outside the frequency band in which the spread spectrum or digitally modulated intentional radiator is operating, the radio frequency power that is produced by the intentional radiator shall be at least 20 dB below that in the 100 kHz bandwidth within the band that contains the highest level of the desired power, based on either an RF conducted or a radiated measurement, provided the transmitter demonstrates compliance with the peak conducted power limits. If the transmitter complies with the conducted power limits based on the use of RMS averaging over a time interval, as permitted under paragraph (b)(3) of this section, the attenuation required under this paragraph shall be 30 dB instead of 20 dB. Attenuation below the general limits specified in §15.209(a) is not required. In addition, radiated emissions which fall in the restricted bands, as defined in §15.205(a), must also comply with the radiated emission limits specified in §15.209(a) (see §15.205(c))

Environmental Conditions Temperature 26°C
 Relative Humidity 63%
 Atmospheric Pressure 1018mbar

3. Test date: August 14, 2013 Tested By: Back Huang

Requirement(s):

Band-Edge Measurements

An additional consideration when performing conducted measurements of restricted band emissions is that unwanted emissions radiating from the EUT cabinet, control circuits, power leads, or intermediate circuit elements will likely go undetected in a conducted measurement configuration. To address this concern, a radiated test shall be performed to ensure that emissions emanating from the EUT cabinet (rather than the antenna port) also comply with the applicable limits.

For these cabinet radiated spurious emission measurements the EUT transmit antenna may be replaced with a termination matching the nominal impedance of the antenna. Procedures for performing radiated measurements are specified in ANSI C63.10. All detected emissions shall comply with the applicable limits.

Procedures: (Radiated Method Only)

- 1. Check the calibration of the measuring instrument using either an internal calibrator or a known signal from an external generator.
- 2. Position the EUT on the rotated table inside the anechoic chamber without connection to measurement instrument. Turn on the EUT and make it operate in transmitting mode. Then set it to Low Channel and High Channel within its operating range, and make sure the instrument is operated in its linear range. Repeat above procedures until all measured frequencies were complete.
- 3. Set band RBW=1MHz, VBW=3MHz with a convenient frequency span from band edge.
- 4. Find the highest point in edge frequency, and then calculated results.
- 5. Repeat above procedures until all measured frequencies were complete.

Test Result: Pass.

Please refer to the following tables and plots.

Report No.: 13070285-FCC IC-R1 Issue Date: August 15, 2013 Page: 43 of 74 www.siemic.com.cn

802.11b: Band Edge, Left Side (Average)

Date: 14.AUG.2013 10:30:54

802.11b: Band Edge, Left Side (Peak)

Date: 14.AUG.2013 10:28:39

LKR9,LKR10,LKR11,LKR12
To: FCC Part 15.247: 2012, ANSI C63.4: 2009,RSS-210: Issue 8, RSS-102: Issue 4, RSS-Gen: Issue 3

Report No.: 1307 Issue Date: Aug Page: 44 of

13070285-FCC IC-R1 August 15, 2013 44 of 74 www.siemic.com.cn

802.11b: Band Edge, Right Side (Average)

Date: 14.AUG.2013 10:35:44

802.11b: Band Edge, Right Side (Peak)

Date: 14.AUG.2013 10:37:25

Report No.: 13070285-FCC IC-R1 Issue Date: August 15, 2013 Page: 45 of 74 www.siemic.com.cn

802.11g: Band Edge, Left Side (Average)

Date: 14.AUG.2013 10:41:47

802.11g: Band Edge, Left Side (Peak)

Date: 14.AUG.2013 10:41:10

LKR9,LKR10,LKR11,LKR12
To: FCC Part 15.247: 2012, ANSI C63.4: 2009,RSS-210: Issue 8, RSS-102: Issue 4, RSS-Gen: Issue 3

Report No.: 13070285-FCC IC-R1 Issue Date: August 15, 2013 Page: 46 of 74 www.siemic.com.cn

802.11g: Band Edge, Right Side (Average)

Date: 14.AUG.2013 10:44:32

802.11g: Band Edge, Right Side (Peak)

Date: 14.AUG.2013 10:45:41

Report No.: 13070285-FCC IC-R1 Issue Date: August 15, 2013 Page: 47 of 74 www.siemic.com.cn

802.11n: Band Edge, Left Side (Average)

Date: 14.AUG.2013 10:50:52

802.11n: Band Edge, Left Side (Peak)

Date: 14.AUG.2013 10:49:29

13070285-FCC IC-R1 August 15, 2013 48 of 74 www.siemic.com.cn

802.11n: Band Edge, Right Side (Average)

Date: 14.AUG.2013 10:54:41

802.11n: Band Edge, Right Side (Peak)

Date: 14.AUG.2013 10:55:45

5.6 §15.207 (a)/ RSS-Gen [A7.2.2] - AC Power Line Conducted Emissions

Requirement:

	Conducted lim	nit (dBμV)
Frequency of emission (MHz)	Quasi-peak	Average
0.15–0.5	66 to 56*	56 to 46*
0.5–5	56	46
5–30	60	50

^{*}Decreases with the logarithm of the frequency.

Procedures:

- 1. All possible modes of operation were investigated. Only the 6 worst case emissions measured, using the correct CISPR and Average detectors, are reported. All other emissions were relatively insignificant.
- 2. A "-ve" margin indicates a PASS as it refers to the margin present below the limit line at the particular frequency.
- 3. <u>Conducted Emissions Measurement Uncertainty</u>

All test measurements carried out are traceable to national standards. The uncertainty of the measurement at a confidence level of approximately 95% (in the case where distributions are normal), with a coverage factor of 2, in the range 9kHz - 30MHz (Average & Quasi-peak) is $\pm 3.5dB$.

4. Environmental Conditions Temperature 27°C Relative Humidity 68%

Atmospheric Pressure 1018mbar

5. Test date: N/A Tested By: N/A

Report No.: 13070285-FCC IC-R1 Issue Date: August 15, 2013

5.7 §15.209, §15.205 & §15.247(d)/RSS-210 [A8.5] - Radiated Spurious Emissions & Unwanted Emissions into Restricted **Frequency Bands**

- All possible modes of operation were investigated. Only the 6 worst case emissions measured, using the 1. correct CISPR detectors, are reported. All other emissions were relatively insignificant.
- 2. A "-ve" margin indicates a PASS as it refers to the margin present below the limit line at the particular frequency.
- 3. Radiated Emissions Measurement Uncertainty

All test measurements carried out are traceable to national standards. The uncertainty of the measurement at a confidence level of approximately 95% (in the case where distributions are normal), with a coverage factor of 2, in the range 30MHz – 1GHz & 1GHz above (3m & 10m) is +/-6dB.

Environmental Conditions 4. Temperature 26°C Relative Humidity

> 1015mbar Atmospheric Pressure

5. Test date: August 14, 2013 Tested By: Back Huang

Requirement: §15.247(d) specifies that emissions which fall in the restricted bands, as defined in §15.205(a), must comply with the radiated emission limits specified in §15.209(a).

Procedures:

Radiated Spurious Emissions Measurement

An additional consideration when performing conducted measurements of restricted band emissions is that unwanted emissions radiating from the EUT cabinet, control circuits, power leads, or intermediate circuit elements will likely go undetected in a conducted measurement configuration. To address this concern, a radiated test shall be performed to ensure that emissions emanating from the EUT cabinet (rather than the antenna port) also comply with the applicable limits.

For these radiated spurious emission measurements the EUT transmit antenna may be replaced with a termination matching the nominal impedance of the antenna. Established procedures for performing radiated measurements shall be used (see C63.10). All detected emissions must comply with the applicable limits.

Measurement Detectors

§15.35(a) specifies that on frequencies less than and below 1000 MHz, the radiated emissions limits assume the use of a CISPR quasi-peak detector function and related measurement bandwidths. §15.35(b) specifies that on frequencies above 1000 MHz, the radiated emissions limits assume the use of an average detector and a minimum resolution bandwidth of 1 MHz. In addition, §15.35(b) that when average radiated emissions measurements are specified there is also a limit on the peak emissions level which is 20 dB above the applicable maximum permitted average emission limit. These specifications also apply to conducted emissions measurements.

1. CISPR Ouasi-Peak Measurement

The specifications for the measuring instrument using the CISPR quasi-peak detector can be found in Publication 16 of the International Special Committee on Radio Frequency Interference (CISPR) of the International Electrotechnical Commission.

As an alternative to CISPR quasi-peak measurement, compliance can be demonstrated to the applicable emission limits using a peak detector.

2. Peak Power Measurement Procedure

Utilize the peak power measurement procedure specified in Section 8.1.1 with the following modifications: Set analyzer center frequency to the frequency associated with the restricted band emission under examination. Set RBW = 1 MHz.

Note that if the peak measured value complies with the average limit, it is not necessary to perform a separate average measurement. If this option is exercised, it should be so noted in the test report.

Average Power Measurement Procedures

The average restricted band emission levels must be measured with the EUT transmitting continuously (> 98% duty cycle) at its maximum power control level. Optionally, video triggering/signal gating can be used to ensure that measurements are performed only when the EUT is transmitting at its maximum power control level.

The average power measurement procedures described in Section 8.2 shall be used with the following modifications: Set analyzer center frequency to the frequency associated with the restricted band emission. Set span to at least 1 MHz.

Use peak marker function to determine the highest amplitude within the RBW (1 MHz).

Report No.: 13070285-FCC IC-R1
Issue Date: August 15, 2013
Page: 51 of 74
www.siemic.com.cn

Test Result: Pass

Test Mode: Transmitting Mode(Worse Case)

Below 1GHz

Test Data

Vertical & Horizontal Polarity Plot @3m

Frequency (MHz)	Quasi Peak (dBuV/m)	Azimuth	Polarity(H/ V)	Height (cm)	Factors (dB)	Limit (dBuV)	Margin (dB)
880.37	22.28	359.00	Н	212.00	4.52	46.00	-23.72
719.94	19.72	10.00	V	100.00	1.09	46.00	-26.28
902.43	33.74	115.00	Н	302.00	4.81	46.00	-12.26
730.44	20.03	181.00	V	320.00	1.40	46.00	-25.97
851.30	21.88	84.00	Н	320.00	4.15	46.00	-24.12
800.72	21.73	312.00	Н	233.00	3.50	46.00	-24.27

13070285-FCC IC-R1 August 15, 2013 52 of 74 www.siemic.com.cn

Above 1 GHz:

Test Mode: Transmitting

Note: Other modes were verified, only the result of worst case basic rate mode was presented.

Mode: 802.11bLow Channel (2412 MHz)

Frequency	Substituted level	Detector	Direction	Height	Polarity	Ant.	Cable	Pre- Amp.	Cord.	Limit	Margin
(MHz)	(dBµV/m)	(PK/AV)	(degree)	(cm)	(H/V)	Factor	Loss	Gain	Amp.	$(dB\mu V/m)$	(dB)
						(dB/m)	(dB)	(dB)	$(dB\mu V/m)$		
4824	31.95	AV	101	100	V	33.31	3.3	24	44.56	54	-9.44
4824	33.16	AV	178	120	Н	33.31	3.3	24	45.77	54	-8.23
4824	43.32	PK	101	100	V	33.31	3.3	24	55.93	74	-18.07
4824	43.87	PK	178	120	Н	33.31	3.3	24	56.48	74	-17.52
5254	31.73	AV	121	130	V	34.11	3.6	24	45.44	54	-8.56
5254	31.76	AV	274	120	Н	34.11	3.6	24	45.47	54	-8.53
5254	44.35	PK	121	130	V	34.11	3.6	24	58.06	74	-15.94
5254	44.18	PK	274	120	Н	34.11	3.6	24	57.89	74	-16.11

Middle Channel (2437 MHz)

Frequency	Substituted level	Detector	Direction	Height	Polarity	Ant.	Cable	Pre- Amp.	Cord.	Limit	Margin
(MHz)	$(dB\mu V/m)$	(PK/AV)	(degree)	(cm)	(H/V)	Factor	Loss	Gain	Amp.	(dBµV/m)	(dB)
						(dB/m)	(dB)	(dB)	(dBµV/m)		
4874	32.06	AV	175	110	V	33.38	3.3	24	44.74	54	-9.26
4874	33.12	AV	287	100	Н	33.38	3.3	24	45.8	54	-8.2
4874	43.27	PK	175	110	V	33.38	3.3	24	55.95	74	-18.05
4874	43.97	PK	287	100	Н	33.38	3.3	24	56.65	74	-17.35
5346	31.86	AV	110	110	V	34.21	3.7	24	45.77	54	-8.23
5346	31.91	AV	339	110	Н	34.21	3.7	24	45.82	54	-8.18
5346	44.31	PK	110	110	V	34.21	3.7	24	58.22	74	-15.78
5346	44.23	PK	339	110	Н	34.21	3.7	24	58.14	74	-15.86

High Channel (2462 MHz)

Frequency (MHz)	Substituted level (dBµV/m)	Detector (PK/AV)	Direction (degree)	Height (cm)	Polarity (H/V)	Ant.	Cable Loss	Pre- Amp. Gain	Cord.	Limit (dBµV/m)	Margin (dB)
(1/112)	(dDp +/III)	(11/111)	(degree)	(CIII)	(11/1)	(dB/m)	(dB)	(dB)	(dBμV/m)	(αΒμ (/111)	(uD)
4924	32.04	AV	158	120	V	33.62	3.3	24	44.96	54	-9.04
4924	33.07	AV	221	110	Н	33.62	3.3	24	45.99	54	-8.01
4924	43.47	PK	158	120	V	33.62	3.3	24	56.39	74	-17.61
4924	43.94	PK	221	110	Н	33.62	3.3	24	56.86	74	-17.14
5218	31.93	AV	139	110	V	34.11	3.6	24	45.64	54	-8.36
5218	31.81	AV	229	100	Н	34.11	3.6	24	45.52	54	-8.48
5218	44.25	PK	139	110	V	34.11	3.6	24	57.96	74	-16.04
5218	44.07	PK	229	100	Н	34.11	3.6	24	57.78	74	-16.22

Report No.: 13070285-FCC IC-R1 Issue Date: August 15, 2013 Page: 53 of 74 www.siemic.com.cn

5.8 RSS-Gen [4.10]Radiated Spurious Emissions & Restricted Bands(Rx)

1. The receiver shall be operated in the normal receive mode near the mid-point of the band in which the receiver is designed to operate.

2. Radiated emission measurements are to be performed on a test site registered with Industry Canada. As an alternative, the conducted measurement method may be used when the antenna is detachable. In such a case, the receiver spurious signal may be measured at the antenna port.

3. Radiated Emissions Measurement Uncertainty

All test measurements carried out are traceable to national standards. The uncertainty of the measurement at a confidence level of approximately 95% (in the case where distributions are normal), with a coverage factor of 2, in the range 30MHz - 1GHz & 1GHz above (3m & 10m) is $\pm -6dB$.

4. Environmental Conditions Temperature 26°C Relative Humidity 61%

Atmospheric Pressure 1015mbar

5. Test date: August 12, 2013 Tested By: Back Huang

Requirement:

If the receiver is super-regenerative, stabilize it by coupling to it an unmodulated carrier on the receiver frequency (antenna conducted measurement) or by transmitting an unmodulated carrier on the receiver frequency from an antenna in the proximity of the receiver (radiated measurement). Taking care not to overload the receiver, vary the amplitude and frequency of the stabilizing signal to obtain the highest level of the spurious emissions from the receiver.

For either method, the search for spurious emissions shall be from the lowest frequency internally generated or used in the receiver (e.g. local oscillator, intermediate or carrier frequency), or 30 MHz, whichever is higher, to at least 3 times the highest tuneable or local oscillator frequency, whichever is higher, without exceeding 40 GHz.

For emissions below 1000 MHz, measurements shall be performed using a CISPR quasi-peak detector and the related measurement bandwidth. As an alternative to CISPR quasi-peak measurement, compliance with the emission limit can be demonstrated using measuring equipment employing a peak detector function properly adjusted for factors such as pulse desensitization as required, with an equal or greater measurement bandwidth relative to the applicable CISPR quasi-peak bandwidth.

Above 1000 MHz, measurements shall be performed using an average detector with a minimum resolution bandwidth of 1 MHz.

Test Result: Pass

Report No.: 13070285-FCC IC-R1
Issue Date: August 15, 2013
Page: 54 of 74
www.siemic.com.cn

Test Mode: Receiving Mode(Worse Case)

Below 1GHz

Test Data

Vertical & Horizontal Polarity Plot @3m

Frequency (MHz)	Quasi Peak (dBuV/m)	Azimuth	Polarity(H/ V)	Height (cm)	Factors (dB)	Limit (dBuV)	Margin (dB)
770.40	23.59	90.00	Н	127.00	2.60	46.00	-22.41
730.46	26.70	105.00	Н	180.00	1.40	46.00	-19.30
701.17	23.05	301.00	Н	255.00	0.52	46.00	-22.95
650.54	24.36	111.00	Н	278.00	-0.35	46.00	-21.64
810.26	24.38	93.00	Н	158.00	3.62	46.00	-21.62
759.98	22.83	303.00	Н	181.00	2.28	46.00	-23.17

Report No.: 13070285-FCC IC-R1 Issue Date: August 15, 2013 Page: 55 of 74 www.siemic.com.cn

Test Mode: Receiving Mode(Worse Case)

Above 1 GHz

Date: 12.AUG.2013 09:15:52

Report No.: 1307028 Issue Date: August Page: 56 of 74

13070285-FCC IC-R1 August 15, 2013 56 of 74 www.siemic.com.cn

Annex A. TEST INSTRUMENT & METHOD

Annex A.i. TEST INSTRUMENTATION & GENERAL PROCEDURES

Instrument	Model	Serial #	Calibration Date	Calibration Due Date
RF conducted test				
Agilent ESA-E SERIES SPECTRUM ANALYZER	E4407B	CFG038	10/25/2012	10/24/2013
Power Splitter	1#	1#	02/02/2013	02/01/2014
Temperature/Humidity Chamber	1007H	N/A	01/07/2013	01/06/2014
DC Power Supply	E3640A	MY4000401 3	03/22/2013	03/21/2014
Radiated Emissions				
EMI test receiver	ESL6	100262	11/19/2012	11/18/2013
Positioning Controller	UC3000	MF78020828 2	11/19/2012	11/18/2013
OPT 010 AMPLIFIER(0.1- 1300MHz)	8447E	2727A02430	11/19/2012	11/18/2013
Microwave Preamplifier($0.5 \sim$ 18GHz)	PAM-118	443008	11/08/2012	11/07/2013
Bilog Antenna (30MHz~6GHz)	JB6	A110712	01/27/2013	01/26/2014
Double Ridge Horn Antenna (1 ~18GHz)	AH-118	071283	11/20/2012	11/19/2013

Annex A.ii. CONDUCTED EMISSIONS TEST DESCRIPTION

Test Set-up

- 1. The EUT and supporting equipment were set up in accordance with the requirements of the standard on top of a 1.5m x 1m x 0.8m high, non-metallic table, as shown in Annex B.
- 2. The power supply for the EUT was fed through a $50\Omega/50\mu H$ EUT LISN, connected to filtered mains.
- 3. The RF OUT of the EUT LISN was connected to the EMI test receiver via a low-loss coaxial cable.
- 4. All other supporting equipments were powered separately from another main supply.

Note: 1.Support units were connected to second LISN.

2.Both of LISNs (AMN) are 80cm from EUT and at least 80cm from other units and other metal planes support units.

For the actual test configuration, please refer to the related item – Photographs of the Test Configuration 1.

Test Method

- The EUT was switched on and allowed to warm up to its normal operating condition.
- A scan was made on the NEUTRAL line (for AC mains) or Earth line (for DC power) over the required frequency range using an EMI test receiver.
- 3. High peaks, relative to the limit line, were then selected.
- 4. The EMI test receiver was then tuned to the selected frequencies and the necessary measurements made with a receiver bandwidth setting of 10 kHz. For FCC tests, only Quasi-peak measurements were made; while for CISPR/EN tests, both Quasi-peak and Average measurements were made.
- 5. Steps 2 to 4 were then repeated for the LIVE line (for AC mains) or DC line (for DC power).

Description of Conducted Emission Program

This EMC Measurement software run LabView automation software and offers a common user interface for electromagnetic interference (EMI) measurements. This software is a modern and powerful tool for controlling and monitoring EMI test receivers and EMC test systems. It guarantees reliable collection, evaluation, and documentation of measurement results. Basically, this program will run a pre-scan measurement before it proceeds with the final measurement. The pre-scan routine will run the common scan range from 150 kHz to 30 MHz; the program will first start a peak and average scan on selectable measurement time and step size. After the program complete the pre-scan, this program will perform the Quasi Peak and Average measurement, based on the pre-scan peak data reduction result.

Report No.: 13070285-FCC IC-R1
Issue Date: August 15, 2013
Page: 58 of 74

Sample Calculation Example

At 20 MHz $limit = 250 \mu V = 47.96 dB\mu V$

Transducer factor of LISN, pulse limiter & cable loss at 20 MHz = 11.20 dB

Q-P reading obtained directly from EMI Receiver = $40.00 \text{ dB}\mu\text{V}$

(Calibrated for system losses)

Therefore, Q-P margin = 47.96 - 40.00 = 7.96 i.e. **7.96 dB below limit**

Annex A. iii RADIATED EMISSIONS TEST DESCRIPTION

EUT Characterisation

EUT characterisation, over the frequency range from 30 MHz to 10^{th} Harmonic , was done in order to minimise radiated emissions testing time while still maintaining high confidence in the test results.

The EUT was placed in the chamber, at a height of about 0.8m on a turntable. Its radiated emissions frequency profile was observed, using a spectrum analyzer /receiver with the appropriate broadband antenna placed 3m away from the EUT. Radiated emissions from the EUT were maximised by rotating the turntable manually, changing the antenna polarisation and manipulating the EUT cables while observing the frequency profile on the spectrum analyzer / receiver. Frequency points at which maximum emissions occurred, clock frequencies and operating frequencies were then noted for the formal radiated emissions test at the Open Area Test Site (OATS).

Test Set-up

- 1. The EUT and supporting equipment were set up in accordance with the requirements of the standard on top of a 1.5m X 1.0m X 0.8m high, non-metallic table.
- 2. The filtered power supply for the EUT and supporting equipment were tapped from the appropriate power sockets located on the turntable.
- The relevant broadband antenna was set at the required test distance away from the EUT and supporting equipment boundary.

Report No.: 13070285-FCC IC-R1 Issue Date: August 15, 2013 Page: 60 of 74 www.siemic.com.cn

Test Method

The following procedure was performed to determine the maximum emission axis of EUT:

- 1. With the receiving antenna is H polarization, rotate the EUT in turns with three orthogonal axes to determine the axis of maximum emission.
- 2. With the receiving antenna is V polarization, rotate the EUT in turns with three orthogonal axes to determine the axis of maximum emission.
- 3. Compare the results derived from above two steps. So, the axis of maximum emission from EUT was determined and the configuration was used to perform the final measurement.

Final Radiated Emission Measurement

- 1. Setup the configuration according to figure 1. Turn on EUT and make sure that it is in normal function.
- 2. For emission frequencies measured below 1 GHz, a pre-scan is performed in a shielded chamber to determine the accurate frequencies of higher emissions will be checked on a open test site. As the same purpose, for emission frequencies measured above 1 GHz, a pre-scan also be performed with a 1 meter measuring distance before final test.
- 3. For emission frequencies measured below and above 1 GHz, set the spectrum analyzer on a 100 kHz and 1 MHz resolution bandwidth respectively for each frequency measured in step 2.
- 4. The search antenna is to be raised and lowered over a range from 1 to 4 meters in horizontally polarized orientation. Position the highness when the highest value is indicated on spectrum analyzer, then change the orientation of EUT on test table over a range from $0 \circ to 360 \circ with a speed as slow as possible, and keep the azimuth that highest emission is indicated on the spectrum analyzer. Vary the antenna position again and record the highest value as a final reading.$
- 5. Repeat step 4 until all frequencies need to be measured was complete.
- 6. Repeat step 5 with search antenna in vertical polarized orientations.

During the radiated emission test, the Spectrum Analyzer was set with the following configurations:

Frequency Band (MHz)	Function	Resolution bandwidth	Video Bandwidth
30 to 1000	Peak	100 kHz	100 kHz
Above 1000	Peak	1 MHz	1 MHz
Above 1000	Average	1 MHz	10 Hz

Sample Calculation Example

The field strength is calculated by adding the Antenna Factor and Cable Factor, and subtracting the Amplifier Gain (if any) from the measured reading. For the limit is employed average value, therefore the peak value can be transferred to average value by subtracting the duty factor. The basic equation with a sample calculation is as follows:

Peak = Reading + Corrected Factor

where

Corr. Factor = Antenna Factor + Cable Factor - Amplifier Gain (if any) And the average value is

> Average = Peak Value + Duty Factor or Set RBW = 1MHz, VBW = 10Hz.

Note:

If the measured frequencies are fall in the restricted frequency band, the limit employed must be quasi peak value when frequencies are below or equal to 1 GHz. And the measuring instrument is set to quasi peak detector function.

Report No.: 13070285-FCC IC-R1 Issue Date: August 15, 2013 Page: 61 of 74 www.siemic.com.cn

Annex B. EUT AND TEST SETUP PHOTOGRAPHS

Annex B.i. Photograph 1: EUT External Photo

EUT - Front View

EUT - Rear View

Report No.: 13070285-FCC IC-R1 Issue Date: August 15, 2013 Page: 62 of 74 www.siemic.com.cn

EUT - Top View

EUT - Bottom View

SIEMIC, INC.
Title: RFsTest Report for Leikr Watch
Main Model: LKR1
Serial Model: LKR2,LKR3,LKR4,LKR5,LKR6,LKR7,LKR8,
LKR9,LKR10,LKR11,LKR12
To: FCC Part 15,247: 2012, ANSI C63.4: 2009,RSS-210: Issue 8,
RSS-102: Issue 4, RSS-Gen: Issue 3

Report No.: 13070285-FCC IC-R1 Issue Date: August 15, 2013 Page: 63 of 74 www.siemic.com.cn

EUT - Left View

EUT - Right View

Report No.: 13070285-FCC IC-R1 Issue Date: August 15, 2013 Page: 64 of 74 www.siemic.com.cn

Annex B.ii. Photograph 2: EUT Internal Photo

Cover Off - Top View

Cover Off - Rear View

Report No.: Issue Date:

13070285-FCC IC-R1 August 15, 2013 65 of 74

Mainboard With Display - Top view

Mainboard With Display Off - Top view

Report No.: Issue Date:

13070285-FCC IC-R1 August 15, 2013 66 of 74

Mainboard With Shielding Can - Top view

Mainboard Battery Off - Bottom view

Report No.: Issue Date:

13070285-FCC IC-R1 August 15, 2013 67 of 74

Mainboard Without Shielding Can - Top view

Mainboard Battery & Adhesive Off - Bottom view

13070285-FCC IC-R1 August 15, 2013 68 of 74 www.siemic.com.cn

Antenna view - Top view

Antenna view - Bottom view

Report No.: 13070285-FCC IC-R1
Issue Date: August 15, 2013
Page: 69 of 74
www.siemic.com.cn

Annex B.iii. Photograph 3: Test Setup Photo

Radiated Spurious Emissions Test Setup Below 1GHz - Front View

Radiated Spurious Emissions Test Setup Above 1GHz -Front View

Report No.: 13070285-FCC IC-R1 Issue Date: August 15, 2013 Page: 70 of 74 www.siemic.com.cn

Annex C. TEST SETUP AND SUPPORTING EQUIPMENT

EUT TEST CONDITIONS

Annex C. i. SUPPORTING EQUIPMENT DESCRIPTION

The following is a description of supporting equipment and details of cables used with the EUT.

Equipment Description (Including Brand Name)	Model & Serial Number	Cable Description (List Length, Type & Purpose)
lenovo Laptop	E40& 0579A52	N/A

Block Configuration Diagram for Radiated Emissions

Report No.: 13070285-FCC IC-R1
Issue Date: August 15, 2013
Page: 72 of 74

www.siemie.com.en

Annex C.ii. EUT OPERATING CONDITIONS

The following is the description of how the EUT is exercised during testing.

Test	Description Of Operation
Emissions Testing	The EUT was continuously transmitting to stimulate the worst case.

Report No.: Issue Date: 13070285-FCC IC-R1 August 15, 2013 73 of 74 Page:

Annex D. USER MANUAL / BLOCK DIAGRAM / SCHEMATICS / PART LIST

Please see attachment

Report No.: Issue Date: Page: 13070285-FCC IC-R1 August 15, 2013 74 of 74

Annex E. DECLARATION OF SIMILARITY

NONE