第3次讨论课 (YAO G. W.)

¶ 内容

- 1. 内积,标准正交基,欧式空间与酉空间;
- 2. 正交变换, 酉变换, 正规变换, Hermite阵。

¶ 教学要求

- 1. 掌握内积、欧氏空间, 酉空间等概念; 熟练运用 Schmidt 正交化方法求标准正交基;
- 2. 掌握正交变换的概念,会用正交变换的等价条件和正交矩阵的某些性质;
- 3. 掌握酉变换,正规变换等概念,对Hermite阵及其正定性有一定了解。

Exercise 1 设 σ 是 \mathbb{R}^n 上的线性变换, $\mathbb{R}^n = W_1 \oplus W_2$,试证

- (1) σ 是 \mathbb{R}^n 到 W_1 (或 W_2)的投影变换 $\iff \sigma^2 = \sigma$;
- (2) 若 σ 是 \mathbb{R}^n 到 W_1 的投影变换,则 $Id \sigma$ 是 \mathbb{R}^n 到 W_2 的投影(Id表示恒同映射);
- (3) 若 σ 是 \mathbb{R}^n 到 W_1 的投影变换,则 $W_1 = \operatorname{Im} \sigma$, $W_2 = \operatorname{Ker} \sigma$ 。

注: 这里称 σ 是 \mathbb{R}^n 到 W_1 上的投影变换,如果对 $\forall \xi = \xi_1 + \xi_2, \xi_1 \in W_1, \xi_2 \in W_2, \forall \sigma \in \mathcal{E}_1$.

Exercise 2 用 Schmidt 正交化方法将欧氏空间的向量组 S 正交化,并扩充为欧氏空间的标准正交基,求出指定向量 α 在标准正交基下的坐标。

- (1) \mathbb{R}^4 , $S = \{(1,2,2,-1)^T, (1,1,-5,3)^T, (3,2,8,-7)^T\}$, $\alpha = (3,1,1,-3)^T$;
- (2) $\mathbb{R}_3[x]$, 内积定义为 $(f(x),g(x)) = \int_{-1}^1 f(t) g(t) dt$, $S = \{1,x,x^2\}$, $\alpha = 1 + x$.

Exercise 3 设 $\alpha_1 = (1,0,2,1)^T$, $\alpha_2 = (2,1,2,3)^T$, $\alpha_3 = (0,1,-2,1)^T$, $W = L(\alpha_1,\alpha_2,\alpha_3)$, 在 \mathbb{R}^4 上定 义内积为:

$$\forall \alpha, \beta \in \mathbb{R}^4, \ (\alpha, \beta) = \alpha^T \beta.$$

试求 W 在 \mathbb{R}^4 的正交补子空间 W^{\perp} 的一个基。

Exercise 4 证明两个酉空间V, V'同构的一个充分必要条件是存在V到V'的一个双射f, 使得 $\forall \alpha, \beta \in V$,都有

$$(\alpha, \beta) = (f(\alpha), f(\beta)).$$

Exercise 5 设 $\alpha, \beta, \gamma, \xi$ 是 \mathbb{R}^4 的4个列向量,若 $W = L(\alpha, \beta, \gamma)$,求实数a, b, c使得 $a\alpha + b\beta + c\gamma$ 恰为 ξ 在W上的正交射影。

注: 先从理论上证明, 再举事例实践.

Exercise 6 设n维欧氏空间 $V = L(\alpha) + V_1$,其中 α 是单位向量, $V_1 = (L(\alpha))^{\perp}$,又设 σ_1 是 V_1 的一个正交变换,定义V上的线性变换 σ , τ :

$$\sigma(a \alpha + \beta) = a \alpha + \sigma_1(\beta), \quad \tau(a \alpha + \beta) = -a \alpha + \sigma_1(\beta),$$

其中 $a \in \mathbb{R}, \beta \in V_1$ 。求证:

- (1) σ , τ 都是V 的正交变换;
- (2) 若 σ_1 是 V_1 中的反射,则 σ 是V中的反射, τ 是V的旋转。

Exercise 7 设 e_1 , e_2 是平面上两个互相垂直的单位向量,以 e_1 为始边,OT 为终边的一个角为 $\frac{\varphi}{2}$ 。又 σ 是以OT 为轴的反射。试证明 σ 在 e_1 , e_2 下的矩阵为

$$A = \begin{pmatrix} \cos \varphi & \sin \varphi \\ \sin \varphi & -\cos \varphi \end{pmatrix}.$$

反过来,若正交变换 σ 在一个标准正交基下的阵为A,则 σ 必是以直线 $y = tg(\xi)x$ 为轴的反射。

Exercise 8 设 σ 是n维酉空间V上的线性变换,求证: σ 是正规变换的充要条件是若 ξ 是 σ 的属于其特征值 λ 的特征向量,则 ξ 是 σ * 的属于其特征值 λ 的特征向量。

Exercise 9 设A, B皆是Hermite矩阵, 证明: (1). 若B正定,则AB的特征值都是实数; (2). 若A, B均正定且AB = BA,则AB也是正定Hermite矩阵。