Използване на линейното оптимиране за намиране на критичен път

Въпреки че описаният метод за намиране на критичен път е лесен за програмиране, методите на линейното оптимиране също могат да бъдат използвани за определяне на дължината на критичния път. Нека x_j е времето за настъпване на събитието, което съответства на върха j. За всяка операция (i,j) знаем, че преди да настъпи събитието j, трябва да е било настъпило събитието i и операцията (i,j) да е завършила. Това означава, че за всяка дъга в мрежовия график $x_j \geq x_i + c_{ij}$. Целта е да минимизираме времето за завършване на проекта.

Да приложим този подход за определяне на дължината на критичния път за мрежовия график от фиг. 1. Тъй като A е върхът от първо ниво, а M- върхът от последно ниво, използваме целевата функция $z=x_M-x_A$. Съответната линейна задача е

$$\min z = x_M - x_A$$

при ограничения

$x_B \ge x_A + 5$,	$x_C \ge x_A + 2$,	$x_D \ge x_A + 8$,
$x_E \ge x_B + 3$,	$x_E \ge x_C + 4$,	$x_F \ge x_D + 7$,
$x_G \ge x_D + 5$,	$x_H \ge x_E + 6$,	$x_H \ge x_F + 6$,
$x_H \ge x_G + 2$,	$x_I \ge x_G + 3$,	$x_K \ge x_G + 5$,
$x_K \ge x_H + 6$,	$x_J \ge x_E + 8$,	$x_J \geq x_H + 9$,
$x_L \ge x_I + 7$,	$x_M \ge x_J + 4$,	$x_M \ge x_K + 8$,
$x_M \ge x_L + 3$,	$\mathbf{x} \geq 0$.	

Едно оптимално решение на тази линейна задача, получено със Solver, е $x_A=0$, $x_B=5$, $x_C=4$, $x_D=8$, $x_E=8$, $x_F=15$, $x_G=13$, $x_H=21$, $x_I=16$, $x_J=30$, $x_K=27$, $x_L=23$, $x_M=35$.

Тази линейна задача има много алтернативни решения. Най-общо казано, стойността на x_i в кое да е оптимално решение може да приема стойност между $t_{\rm hp}(i)$ и $t_{\rm hk}(i)$. Всички оптимални решение на тази линейна задача обаче ще дават, че дължината на критичния път е 35 дни.

Критичният път за този мрежов график се състои от път от началния връх до крайния връх, в който всяка дъга съответства на ограничение с двойствена цена 1 при Sensitivity Report на Solver: $A \to D \to F \to H \to K \to M$. Пак от тази справка се вижда, че горните граници на интервалите на устойчивост за десните страни на тези ограничения са $+\infty$. Това означава, че ако увеличим продължителността на съответната операция с Δ дни, с толкова ще се увеличи и продължителността на целия график (текущият базис остава оптимален).