*CSE 551 Foundations of Algorithms
Mid Term, Fall 2017
Closed Books, Closed Notes
Time: 1 hour
Answer any three questions
Each question carries 25 pts.

Problem 1: Define the notations Big-O, Big- Ω and Big- Θ . If a function T(n) is of the *order* of another function f(n), we denote it as T(n) = O(f(n)). Prove or disprove the following assertions:

```
(i) If f(n) = O(g(n)) then log_2 f(n) = O(log_2 g(n))
(ii) If f(n) = O(g(n)) then 2^{f(n)} = O(2^{g(n)})
```

- (iii) Let f(n) and g(n) be asymptotically positive functions. Prove of disprove the following conjectures:
- (a) For $\alpha > 1$, $n^{\alpha log \ n}$ is not $O(n^{log \ n})$
- (b) For $\alpha > 1$, $\log n^{\alpha \log n}$ is $O(\log n^{\log n})$

Problem 2: Suppose there is a set A of men and a set B of women. Each set contain n elements. There exist two $n \times n$ arrays P and Q such that P(i,j) is the preference of man i for woman j and Q is the preference of woman i for man j. Give an algorithm which finds a pairing of men and women such that the following condition is not satisfied. There is an element $a_i \in A$ that has a higher preference for an element $b_k \in B$ over the element $b_j \in B$ with which a_i is paired, and $b_k \in B$ has a higher preference for $a_i \in A$ over the element $a_l \in A$ with which b_k is paired.

Prove the correctness of your algorithm (i.e., it ensures that the given condition isn't satisfied).

Problem 2: Compute the best case and worst case complexity of the following algorithm. Show all your work.

Algorithm XYZ(S)

if |S| = 2 then compare the two numbers and return (min,max) else

begin

- 1. Pick an arbitrary element s_k of the sequence S.
- 2. Divide S into parts S_1 , S_2 , S_3 such that the elements of S_1 , S_2 , and S_3 are less than, equal to and greater than s_k respectively.
- 3. return $(XYZ(S_1), S_2, XYZ(S_3))$ end