What is Data Modeling?

- A data model is an abstract view of the data referred to in the product being developed.
- Data Modeling <u>explaining & visualizing how the data be used by the software and defining</u> data objects that will be stored in a database. **Example:**

Types of Data Models

Type 1: Conceptual Data Model

- It gives a front view of the of each data entity and not a technical detail of data.
- It presents all the <u>data entities</u> referred to by the business and <u>their characteristics</u> called <u>attributes</u> and the dependency or the <u>connection between entities</u> called <u>Relationships</u>.
- It makes communication easy and clear as all stakeholders & reducing communication gaps.

Types of Data Models

Type 2: Logical Data Model

• It gives a <u>detailed description of each data entity their attributes & relationship</u> between two entities giving business purpose to each data.

• The relationship is presented more explicitly with details like <u>Primary key, Foreign key & </u>

Parent-child dependent entity type.

Types of Data Models

Type 3: Physical Data Model

• A physical data model is the <u>layout of the actual database</u> with all its components.

• It gives a technical view of the data i.e., the table name, column name, data type, constraints,

indexes, primary key, triggers, stored procedures, etc.

• It is developed by using databases SQL, ORACLE etc

Retail Date Number Text Store Quantity Product Date **Unit Price** Store Quantity Sales Amount **Product Unit Price** Transaction # Sales Amount Transaction #

Retail

Number Text Unit price Date Quantity Store **Product** 3/5/2017 10 100 PHX A 3/6/2017 PHX 20 120 В 3/5/2017 90 PHX C 30 3/6/2017 15 PHX D 80 3/5/2017 PHX E 21 150 3/6/2017 F PHX 9 50 3/5/2017 G PHX 15 70

Retail

Text			Nur		
ate	Store	Product	Quantity	Unit price	
/5/2017	РНХ		10	100	
/6/2017	РНХ	В	20	120	
/5/2017	PHX	С	30	90	
/6/2017	PHX	D	15	80	
/5/2017	PHX	E	21	150	
/6/2017	PHX	F	9	50	
/5/2017	PHX	G	15	70	

Customer_id (PK)	Customer_na me	Phone_numb er	State
Q7A55Q8A	Leonard F.	855-966-566	California
A8DG8B2H	Sherlock H	967-968-563	NewYork
Q8W2C26F	Monica Bing	852-563-988	New York
D2B2GNHY	Rachel	859-563-556	New York
С56Т89ТНЕ	Sheldon Cooper	859-898-456	California
Customers	A		

Product Name Product Description Product_id (PK) **ABHEUMSHR ABC Laptop** ABC Laptop, 8BG, 256GB OLRGIDTBRM ABC Mobile ABC Mobile, 6.1, 4GB, 64 GB DHBVDVADV **ABC Laptop Charger** ABC laptop charger with adaptor LKMTNYKOEF Headphones Wireless headphones ZDVBFSGBGD 56' Smart TV Tony TV

Customers (dim table)

Customer_id

Transaction_id	Product_id (FK)	Customer_id (FK)	Transaction_dat e	Quantit y	Amou nt
123456789	ABHEUMSHR	Q7A55Q8A	24th Mar 2021	1	30000
547896124	OLRGIDTBRM	A8DG8B2H	01st Nov 2021	1	10000
475896125	DHBVDVADV	Q8W2C26F	11th Feb 2021	5	500
859641237	LKMTNYKOEF	D2B2GNHY	31 st Dec 2021	1	1500
178594025	ZDVBFSGBGD	A8DG8B2H	14th Jan 2021	12	1200
685247830	OLRGIDTBRM	C56T89THE	06 th April 2021	10	10000
965214738	DHBVDVADV	D2B2GNHY	25th May 2021	15	15000
605853459	DHBVDVADV	Q7A55Q8A	8th Oct 2021	6	600
259035721	ABHEUMSHR	Q7A55Q8A	19th Jun 2021	2	56000
741256780	OLRGIDTBRM	A8DG8B2H	01 ST Dec 2021	2	10000

Product_id

Transactions (fact table)

II A

Products

(dim table)

Fact tables and Dimension tables

• Fact tables:

- It contains measurements, facts or metrics of the attributes
- Hold no meaning in itself
- · Numeric and quantifiable
- Created or loaded after dimensions are loaded
- Primary Key is a new column identifying the unique row, references dim tables with FK

• Dimension tables:

- Gives context to facts, holds attributes for the facts
- · Created or loaded before facts are loaded
- Primary key is referenced by fact tables

•				•
Cta	rcr	10m3	over	MICHAL
JLai	36		UVEL	view

- Star schema is a mature modeling approach widely adopted by relational data warehouses.
- It requires modelers to classify their model tables as either dimension or fact.
 - **Dimension tables** describe business entities—the *things* you model. Entities can include products, people, places, and concepts including time itself. The most consistent table you'll find in a star schema is a date dimension table. A dimension table contains a key column (or columns) that acts as a unique identifier, and descriptive columns.
 - Fact tables store observations or events, and can be sales orders, stock balances, exchange rates, temperatures, etc. A fact table contains dimension key columns that relate to dimension tables, and numeric measure columns.

Star schema overview

- > Star schema is a mature modeling approach widely adopted by relational data warehouses.
- > It requires modelers to classify their model tables as either dimension or fact.

Data Warehouse - Schemas

- Schema is a logical description of the entire database.
- It includes the name and description of records of all record types including all associated data-items and aggregates.

Star Schema-

Each dimension in a star schema is represented with only onedimension table.

Snowflake Schema

- Some dimension tables in the Snowflake schema are normalized.
- · The normalization splits up the data into additional tables.

Fact Constellation Schema-

A fact constellation has multiple fact tables. It is also known as galaxy schema.

Multidimensional Data

Sales volume as a function of product, month, and region

Hierarchical summarization paths Product Month

Industry Region Year Category Country Quarter City Product Month Week Office Day

Dimensions: Product, Location, Time

A Sample Data Cube

2 3 6

1/

Typical OLAP Operations

- In the multidimensional model, data are organized into multiple dimensions, and each dimension contains multiple levels of abstraction defined by concept hierarchies.
- This organization provides users with the flexibility to view data from different perspectives.
- A number of OLAP data cube operations exist to materialize these different views, allowing interactive querying and analysis of the data at hand.
- Hence, OLAP provides a user-friendly environment for interactive data analysis.

Figure 1.12 shows a data cube for AllElectronics sales.

1. Roll-up

The roll-up (drill-up) operation performs aggregation on a data cube, either by climbing up a concept hierarchy for a dimension or by dimension reduction.

2. Drill-down

Drill-down can be realized by either stepping down a concept hierarchy for a dimension or introducing additional dimensions.

3. Slice and dice

- The slice operation performs a selection on one dimension of the given cube, resulting in a subcube.
- The dice operation defines a subcube by performing a selection on two or more dimensions.

4. Pivot (rotate)

Pivot (also called rotate)
is a visualization operation that rotates the data axes in view to provide an alternative data presentation.

