Digital Image Processing

Feature Extraction

Emad Fatemizadeh

Distance/online Course: Session o6

Date: 02 March 2021, 12th Esfand 1399

Contents

- > Fourier Descriptor
- > Statistical Features
- > Texture
- > PCA

Fourier Descriptor

- > Mathematical Formulation:
- \rightarrow Complex sequence: s[k] = x[k] + jy[k]
- > Its DFT: $a[u] = \sum_{k=0}^{N-1} s[k] e^{-j\frac{2\pi ku}{N}}$
- > Exact IDFT: $s[k] = \frac{1}{N} \sum_{u=0}^{N-1} a[u] e^{j\frac{2\pi ku}{N}}$

Real axis

Fourier Descriptor Example

Fourier Descriptor Properties

- > Is it invariant to:
 - -Rotation?
 - -Scaling?
 - -Translation?
 - -Starting point?

Transformation	Boundary	Fourier Descriptor
Identity	s(k)	a(u)
Rotation	$s_r(k) = s(k)e^{j\theta}$	$a_r(u) = a(u)e^{j\theta}$
Translation	$s_t(k) = s(k) + \Delta_{xy}$	$a_t(u) = a(u) + \Delta_{xy}\delta(u)$
Scaling	$s_s(k) = \alpha s(k)$	$a_s(u) = \alpha a(u)$
Starting point	$s_p(k) = s(k - k_0)$	$a_p(u) = a(u)e^{-j2\pi k_0 u/K}$

-Invariant descriptor: $\frac{|a(u)|}{\sum_{k=0}^{N-1}|a(k)|}$

Statistical Feature from 1-D representation

- > Suppose we have 1-D representation (Signature or Fourier transform), using raw data or data pdf:
- > Data pdf:

$$-\mu_n(z) = \sum_{i=0}^{A-1} (z_i - m)^n p(z_i)$$
$$-m = \sum_{i=0}^{A-1} z_i p(z_i)$$

> Raw data:

$$-\mu_n(r) = \sum_{i=0}^{K-1} (r_i - m)^n g(r_i)$$
$$-m = \sum_{i=0}^{K-1} r_i g(r_i)$$

Region Feature Descriptor (1)

> Major and minor axis, bounding box:

Region Feature Descriptor (2)

- > *P*: The *perimeter* of a region is the length of its boundary.
- > A: The area of a region is number of pixels in the region.
- > Compactness:

$$compactness = \frac{P^2}{A}$$

> Circularity:

$$circularity = \frac{4\pi A}{P^2}$$

Texture

> Examples: smooth (left), Coarse (middle), and regular (right)

Texture – First Order Statistics

> Based on statistic of normalized histogram (pdf):

$$-m = \sum_{i=0}^{L-1} z_i p(z_i)$$

-Variance:
$$\mu_2(z) = \sigma^2(z) = \sum_{i=0}^{L-1} (z_i - m)^2 p(z_i)$$

-Skewness:
$$\mu_3(z) = \frac{\sum_{i=0}^{L-1} (z_i - m)^3 p(z_i)}{\sigma^3(z)}$$
,

-Kurtosis:
$$\mu_4(z) = \frac{\sum_{i=0}^{L-1} (z_i - m)^4 p(z_i)}{\sigma^4(z)}$$
,

-Uniformity:
$$U(z) = \sum_{i=0}^{L-1} p^2(z_i)$$

-Entropy:
$$E(z) = -\sum_{i=0}^{L-1} p(z_i) \log_2(p(z_i))$$

Texture – First Order Statistics

- > First order histogram is NOT unique!
- > Too many images have same normalized histogram

Texture – Second Order Statistics

- > Gray Level Co-occurrence Matrix (GLCM):
- > Let Q be an operator that defines the position of two pixels relative to each other, and consider an image, *f* , with *L* possible intensity levels.
- $GLCM(i,j) = G_{ij}$ is the number of times that pixel pairs with intensities z_i and z_j occur in image f in the position specified by Q

GLCM Matrix

- > Example:
- > *Q*: one pixel immediately to the right:

$$p_{ij} = \frac{G_{ij}}{\sum_{i=0}^{L-1} \sum_{j=0}^{L-1} G_{ij}}$$

> Problems with GLCM!

Image f

Co-occurrence matrix **G**

Descriptor based on GLCM Matrix

- > Some useful descriptor (k: size of GLCM matrix):
- $\rightarrow \text{Contrast: } \sum_{i=1}^{K} \sum_{j=1}^{K} (i-j)^2 p_{ij}$
- \rightarrow Uniformity: $\sum_{i=1}^{K} \sum_{j=1}^{K} p_{ij}^2$
- \rightarrow Homogeneity: $\sum_{i=1}^{K} \sum_{j=1}^{K} \frac{p_{ij}}{1+|i-j|}$
- > Entropy: $-\sum_{i=1}^{K} \sum_{j=1}^{K} p_{ij} log_2 p_{ij}$
- **> ...**

Moment of Image

- > Consider image *f* as 2D joint probability distribution
- > The 2-D moment of order (p+q) of an $M \times N$ digital image, f(x,y), is defined as:

$$m_{pq} = \sum_{x=0}^{M-1} \sum_{y=0}^{N-1} x^p y^q f(x, y)$$

 \rightarrow Central moment of order (p+q), is defined as

$$\mu_{pq} = \sum_{x=0}^{M-1} \sum_{y=0}^{N-1} (x - \bar{x})^p (y - \bar{y})^q f(x, y)$$

> Where:

$$ar{x} = rac{m_{10}}{m_{00}}$$
 , $ar{y} = rac{m_{01}}{m_{00}}$

Moment of Image

> Normalized central moment of order (p + q), is defined as

$$\eta_{pq} = \frac{\mu_{pq}}{\mu_{00}^{\gamma}}, \qquad \gamma = \frac{p+q}{2} + 1$$

For (p + q) = 2, 3, ... A set of seven, 2-D moment invariants can be derived from the second and third normalized central moments (Hu moments).

$$-\phi_1 = \eta_{20} + \eta_{02}$$
$$-\phi_2 = (\eta_{20} - \eta_{02})^2 + 4\eta_{11}^2$$

HU moments - Example

> Consider an image ant its variations:

HU moments - Example

> Consider an image ant its variations:

Moment Invariant	Original Image	Translated	Half Size	Mirrored	Rotated 45°	Rotated 90°
$oldsymbol{\phi}_1$	2.8662	2.8662	2.8664	2.8662	2.8661	2.8662
ϕ_2	7.1265	7.1265	7.1257	7.1265	7.1266	7.1265
ϕ_3	10.4109	10.4109	10.4047	10.4109	10.4115	10.4109
ϕ_4	10.3742	10.3742	10.3719	10.3742	10.3742	10.3742
ϕ_5	21.3674	21.3674	21.3924	21.3674	21.3663	21.3674
ϕ_6	13.9417	13.9417	13.9383	13.9417	13.9417	13.9417
ϕ_7	-20.7809	-20.7809	-20.7724	20.7809	-20.7813	-20.7809

- > Assume we have K observations of n-dimensional feature vector, $\mathbf{x} \in \mathbb{R}^n$:
- > Mean vector:

$$m_{\mathbf{x}} = E\{\mathbf{x}\} \cong \frac{1}{K} \sum_{i=1}^{K} \mathbf{x}_i, \quad m_{\mathbf{x}} \in \mathbb{R}^n$$

> Covariance Matrix:

$$C_x = E\{(x - m_x)(x - m_x)^T\} \cong \frac{1}{K - 1} \sum_{i=1}^K (x_i - m_x)(x_i - m_x)^T, \quad C_x \in \mathbb{R}^{n \times n}$$

- > Covariance Matrix Properties:
 - -Real and symmetric,
 - -Semipositive definite Matrix: *n* orthonormal eigenvectors and *n* non-negative eigenvalues.

$$C_x \mathbf{v} = \lambda \mathbf{v} \Rightarrow \lambda_1 \ge \lambda_2 \ge \cdots \ge \lambda_n \ge 0, \qquad \mathbf{v}_i \perp \mathbf{v}_j, \qquad \|\mathbf{v}_i\| = 1$$

-For uncorrelated features, C_x is diagonal!

> Let A be a matrix whose rows are formed from the eigenvectors of C_x , arranged in descending value of their eigenvalues, so that the first row of A is the eigenvector corresponding to the largest eigenvalue.

$$A^{T} = [\mathbf{v}_{1} | \mathbf{v}_{2} | \dots | \mathbf{v}_{n}] \Rightarrow A^{T} = A^{-1}$$

 \rightarrow Then for transformation, $\boldsymbol{y} = A(\boldsymbol{x} - m_{\boldsymbol{x}})$, we have:

$$m_{\mathbf{y}} = 0, C_{\mathbf{y}} = diag(\lambda_1, \lambda_2, ..., \lambda_n)$$

- > y is white random vector!
- > This transform known as *Hotelling* or *KL* transform

> Reconstruction *x* from *y*:

$$\mathbf{y} = A(\mathbf{x} - m_{\mathbf{x}}) \Rightarrow \mathbf{x} = A^{T}\mathbf{y} + m_{\mathbf{x}} = [\mathbf{v}_{1}|\mathbf{v}_{2}| \dots |\mathbf{v}_{n}]\mathbf{y} + m_{\mathbf{x}}$$

> Approximate reconstruction, using first m-columns of $A^T(A_m^T)$ and first m-element of \boldsymbol{y}

$$A_m^T = [v_1 | v_2 | ... | v_m], y_m = (y_1, y_2, ..., y_m)^T$$

$$\Rightarrow \widetilde{\boldsymbol{x}}_{\boldsymbol{m}} = A_{m}^{T} \boldsymbol{y}_{m} + m_{\boldsymbol{x}}$$

> It can be shown, the reconstruction error (lowest one) is:

$$E\{\|\boldsymbol{x} - \widetilde{\boldsymbol{x}}_{\boldsymbol{m}}\|^2\} = \sum_{i=m+1}^{n} \lambda_i$$

 \rightarrow It is method of feature reduction, y_m

PCA – Example (1)

> Consider 6-channels images ($M \times N$ observation (each one 6-dimensional)

PCA – Example (1)

> Raw data (left) and six principal components, y, (right)

PCA – Example (1)

> Raw data (left) and reconstruction from two principal corresponding to the two largest eigenvalues (right)

PCA – Example (2)

- > Consider two-dimensional points cloud (airplane):
- > Object normalization!

Whole image features

- > There are several feature extraction methods:
 - SIFT
 - SURF
 - ORB
 - BRISK
 - KAZE
 - AKAZE
- > See https://doi.org/10.1109/ICOMET.2018.8346440 for comparison

 π

The End

>AnY QuEsTiOn?

