Exercise-2

Let Q_{ij} denote the intensity value at pixel (x_i,y_j) . Our motive is to approximate the intensity at any intermediate location \mathbf{X} using bi-cubic interpolation, where the image intensity is expressed in the form $v(x,y) = \sum_{i=0}^3 \sum_{j=0}^3 a_{ij} x^i y^j$, with (x,y) being the spatial coordinates. We have to determine the coefficients of interpolation given by a_{ij} . For a location \mathbf{X} , the positions of the 16 nearest neighbours can be visually represented as follows:

In terms of the intensity values at the 16 nearest neighbours, the visual representation becomes:

$$egin{array}{ccccccccc} Q_{00} & Q_{01} & Q_{02} & Q_{03} \\ Q_{10} & Q_{11} & Q_{12} & Q_{13} \\ & & \mathbf{X} & \\ Q_{20} & Q_{21} & Q_{22} & Q_{23} \\ Q_{30} & Q_{31} & Q_{32} & Q_{33} \end{array}$$

The v(x, y) values, calculated at these 16 nearest neighbours give 16 linearly independent equations (in the variables a_{ij}), which can be expressed in the form of a matrix multiplication as follows:

Г1		2	3			m2	3	2	2	22	23	3	3	32	337	Г. П	ı	[0]	
11	y_0	y_0^2	y_{0}^{3}	x_0	x_0y_0	$x_0y_0^2$	$x_0y_0^3$	x_0^2	$x_{0}^{2}y_{0}$	$x_0^2 y_0^2$	$x_{0}^{2}y_{0}^{3}$	x_{0}^{3}	$x_{0}^{3}y_{0}$	$x_0^3 y_0^2$	$x_0^3 y_0^3$	a_{00}		Q_{00}	
1	y_1	y_1^2	y_1^3	x_0	x_0y_1	$x_0y_1^2$	$x_0y_1^3$	x_0^2	$x_0^2 y_1$	$x_0^2 y_1^2$	$x_0^2 y_1^3$	x_0^3	$x_0^3 y_1$	$x_0^3 y_1^2$	$x_0^3y_1^3$	a_{01}		$ Q_{01} $	
1	y_2	y_{2}^{2}	y_{2}^{3}	x_0	x_0y_2	$x_0y_2^2$	$x_0y_2^3$	x_{0}^{2}	$x_0^2 y_2$	$x_0^2 y_2^2$	$x_0^2 y_2^3$	x_{0}^{3}	$x_0^3 y_2$	$x_0^3 y_2^2$	$x_0^{\bar{3}}y_2^{\bar{3}}$	a_{02}		Q_{02}	
1	y_3	y_{3}^{2}	y_{3}^{3}	x_0	x_0y_3	$x_0y_3^2$	$x_0y_3^3$	x_{0}^{2}	$x_0^2 y_3$	$x_0^2 y_3^2$	$x_0^2 y_3^3$	x_0^3	$x_0^3 y_3$	$x_0^{\bar{3}}y_3^{\bar{2}}$	$x_0^{\bar{3}}y_3^{\bar{3}}$	a_{03}		Q_{03}	
1	y_0	y_{0}^{2}	y_{0}^{3}	x_1	x_1y_0	$x_1 y_0^2$	$x_1 y_0^3$	x_{1}^{2}	$x_1^2 y_0$	$x_1^2 y_0^2$	$x_1^2 y_0^3$	x_{1}^{3}	$x_1^3 y_0$	$x_1^3 y_0^2$	$x_1^3 y_0^3$	a_{10}		Q_{10}	
1	y_1	y_{1}^{2}	y_{1}^{3}	x_1	x_0y_1	$x_1y_1^2$	$x_1 y_1^3$	x_{1}^{2}	$x_1^2 y_1$	$x_1^2 y_1^2$	$x_1^2 y_1^3$	x_{1}^{3}	$x_1^3 y_1$	$x_1^3 y_1^2$	$x_1^3y_1^3$	a_{11}		Q_{11}	
1	y_2	y_{2}^{2}	y_{2}^{3}	x_1	x_1y_2	$x_1y_2^2$	$x_1y_2^3$	x_{1}^{2}	$x_1^2 y_2$	$x_1^2 y_2^2$	$x_1^2 y_2^3$	x_{1}^{3}	$x_1^3 y_2$	$x_1^3 y_2^2$	$x_1^3y_2^3$	a_{12}		Q_{12}	
1	y_3	y_{3}^{2}	y_{3}^{3}	x_1	x_1y_3	$x_1y_3^2$	$x_1y_3^3$	x_{1}^{2}	$x_1^2 y_3$	$x_1^2 y_3^2$	$x_1^2 y_3^{\bar{3}}$	$x_1^{\bar{3}}$	$x_1^3 y_3$	$x_1^3y_3^2$	$x_1^{\bar{3}}y_3^{\bar{3}}$	a_{13}	=	Q_{13}	
1	y_0	y_{0}^{2}	y_{0}^{3}	x_2	x_2y_0	$x_2y_0^2$	$x_2y_0^3$	x_{2}^{2}	$x_2^2 y_0$	$x_2^2 y_0^2$	$x_2^2 y_0^3$	x_{2}^{3}	$x_2^3 y_0$	$x_2^3 y_0^2$	$x_2^3y_0^3$	$ a_{20} $	_	Q_{20}	
1	y_1	y_{1}^{2}	y_{1}^{3}	x_2	x_2y_1	$x_2y_1^2$	$x_2y_1^3$	x_{2}^{2}	$x_{2}^{2}y_{1}$	$x_2^2 y_1^2$	$x_2^2 y_1^3$	$x_2^{\overline{3}}$	$x_{2}^{3}y_{1}$	$x_2^3 y_1^2$	$x_{2}^{3}y_{1}^{3}$	a_{21}		Q_{21}	
1	y_2	y_{2}^{2}	y_{2}^{3}	x_2	x_2y_2	$x_2y_2^2$	$x_2y_2^3$	x_{2}^{2}	$x_{2}^{2}y_{2}$	$x_2^2 y_2^2$	$x_{2}^{2}y_{2}^{3}$	$x_2^3 \\ x_2^3$	$x_{2}^{3}y_{2}$	$x_{2}^{\bar{3}}y_{2}^{\bar{2}}$	$x_2^3y_2^3$	a_{22}		Q_{22}	
1	y_3	y_{3}^{2}	y_3^3	x_2	x_2y_3	$x_2y_3^2$	$x_2y_3^3$	x_{2}^{2}	$x_{2}^{2}y_{3}$	$x_2^2 y_3^2$	$x_2^2y_3^3$	x_{2}^{3}	$x_{2}^{3}y_{3}$	$x_{2}^{3}y_{3}^{2}$	$x_{2}^{3}y_{3}^{3}$	a_{23}		Q_{23}	
1	y_0	y_{0}^{2}	y_0^3	x_3	$x_{3}y_{0}$	$x_3y_0^2$	$x_3y_0^3$	x_{3}^{2}	$x_{3}^{2}y_{0}$	$x_3^2 y_0^2$	$x_{3}^{\bar{2}}y_{0}^{\bar{3}}$	x_{3}^{3}	$x_{3}^{3}y_{0}$	$x_{3}^{\bar{3}}y_{0}^{\bar{2}}$	$x_{3}^{\bar{3}}y_{0}^{\bar{3}}$	a_{30}		Q_{30}	
1	y_1	y_{1}^{2}	y_{1}^{3}	x_3	x_3y_1	$x_3y_1^2$	$x_3y_1^3$	x_{3}^{2}	$x_{3}^{2}y_{1}$	$x_3^2y_1^2$	$x_{3}^{2}y_{1}^{3}$	x_3^3	$x_{3}^{3}y_{1}$	$x_3^3y_1^2$	$x_{3}^{3}y_{1}^{3}$	a_{31}		Q_{31}	
1	y_2	y_{2}^{2}	y_{2}^{3}	x_3	x_3y_2	$x_3y_2^2$	$x_3y_2^3$	x_{3}^{2}	$x_{3}^{2}y_{2}$	$x_3^2y_2^2$	$x_3^2y_2^3$	x_3^3	$x_{3}^{3}y_{2}$	$x_3^3y_2^2$	$x_3^3y_2^3$	a_{32}		Q_{32}	
$\lfloor 1$	y_3	y_{3}^{2}	y_{3}^{3}	x_3	x_3y_3	$x_3y_3^2$	$x_3y_3^3$	x_{3}^{2}	$x_3^2 y_3$	$x_3^2y_3^2$	$x_3^2y_3^3$	x_{3}^{3}	$x_3^3y_3$	$x_3^3y_3^2$	$x_3^3y_3^3$	$\lfloor a_{33} \rfloor$		$\lfloor Q_{33} \rfloor$	

This humongous matrix multiplication can be written in the form $\mathbf{X}\mathbf{a} = \mathbf{Q}$, where \mathbf{X} is the 16×16 matrix having known entries, \mathbf{a} is the vector of unknown coefficients of interpolation and \mathbf{Q} is the vector of known intensity values at these 16 nearest neighbors. The vector \mathbf{a} can then easily be expressed as a matrix product in terms of the inverse of \mathbf{X} , using the equation $\mathbf{a} = \mathbf{X}^{\mathbf{1}}\mathbf{Q}$.

There are a total of 16 unknowns (i.e. the variables a_{ij}) in the expression for the bi-cubic interpolation function v(x,y). This requires us to have at least 16 linearly independent equations to arrive at unique determinate values for all these variables. In order to have linearly independent equations, we need to use the intensity values of at least 16 nearest neighbors.