RELATIONAL DATA MODEL Fei Chiang (fchiang@mcmaster.ca)

15

Proposed by Edgar. F. Codd in 1970 as a data model which strongly supports data independence. Made available in commercial DBMSs in 1981 -- it is not easy to implement data independence efficiently and reliably! It is based on (a variant of) the mathematical notion of relation. Relations are represented as tables.

Describing Data: Data Models

10

- □ A <u>data model</u> is a collection of concepts for describing data.
- A <u>schema</u> is a description of a particular collection of data, using a given data model.
- □ The <u>relational model of data</u> is the most widely used model today.
 - Main concept: <u>relation</u>, basically a table with rows and columns.
 - Use tables to represent data and relationships
 - Every relation has a schema, which describes the columns, or attributes.

Acknowledgement: Renee J. Miller

16

Relation Name Students Attribute Names ID Name 2225555 Peter Jones Tuples (Records) The set of permitted values for an attribute is called the attribute domain. E.g., domain(ID) = {2225555, 1234567}.

17

Relational Data Model

9

- □ Relation schema = relation name and attribute list.
 - Optionally: types of attributes. For example:
 - Students(id, name)
 - Students(id: string, name: string)
- Relation = set of tuples conforming to schema
 - Example:
 - { (2225555, Peter Jones), (1234567, Amber Smith), ...}
- □ Database = set of relations.
- □ Database schema = set of all relation schemas in the database.

19

Relations are Unordered

☐ Order of tuples is irrelevant (tuples may be stored in an arbitrary order)

☐ E.g., instructor relation with unordered tuples

	ID	пате	dept_name	salary
2:	2222	Einstein	Physics	95000
13	2121	Wu	Finance	90000
33	2343	El Said	History	60000
43	5565	Katz	Comp. Sci.	75000
98	8345	Kim	Elec. Eng.	80000
70	6766	Crick	Biology	72000
10	0101	Srinivasan	Comp. Sci.	65000
5	8583	Califieri	History	62000
83	3821	Brandt	Comp. Sci.	92000
13	5151	Mozart	Music	40000
33	3456	Gold	Physics	87000
70	6543	Singh	Finance	80000

©Silberschatz, Korth and Sudarshan

Why Relations?

20

- □ Very simple model.
- □ Often matches how we think about data.
- □ Abstract model that underlies SQL, one of the most important database languages today.

20

Database

22

Information about an enterprise is broken up into parts

instructor student advisor

Bad design:

univ (instructor_ID, name, dept_name, salary, student_Id, ..)
esults in

- repetition of information (e.g., two students have the same instructor)
- □ the need for NULL values (e.g., represent an student with no instructor)
- Normalization theory deals with how to design "good" relational schemas

Iberschatz, Korth and Sudarshan

Database Schemas in SQL

3

- SQL is primarily a query language, for getting information from a database.
- □ But SQL also includes a data-definition component for describing database schemas.

23

Example: University Database

25

- □ Conceptual schema:
 - Students(sid: string, name: string, login: string, age: integer, gpa:real)
 - Courses(cid: string, cname:string, credits:integer)
 - Enrolled(sid:string, cid:string, grade:string)
- Physical schema:
 - Relations stored as unordered files.
 - Index on first column of Students.
- □ External Schema (View):
 - Course_info(cid:string,enrollment:integer)

Levels of Abstraction □ Many views, single conceptual View 1 View 2 View 3 (logical) schema and physical schema. Conceptual Schema □ Views describe how users see the data. Physical Schema Conceptual schema defines logical structure Physical schema describes the files and indexes used. Schemas are defined using DDL (data definition language);

24

Integrity Constraints

26

 An integrity constraint is a property that must be satisfied by all meaningful database instances.

► Data is modified/queried using DML (data manipulation language).

- A constraint can be seen as a predicate; a database is legal if it satisfies all integrity constraints.
- Types of constraints
 - Intra-relational constraints: e.g., domain constraints and tuple constraints
 - Inter-relational constraints: most common is referential constraint

25 26

Tuple and Domain Constraints

- ☐ A tuple constraint expresses conditions on the values of each tuple, independently of other tuples.
- □ E.g., Net = Amount-Deductions
- ☐ A domain constraint is a tuple constraint that involves a single
- \square e.g., (GPA \leq 4.0) AND (GPA \geq 0.0)

27

Keys

- ☐ A key is a set of attributes that uniquely identifies tuples in a relation.
- More precisely:
 - A set of attributes K is a *superkey* for a relation r if r cannot contain two distinct tuples t_1 and t_2 such that $t_1[K]=t_2[K]$;
 - K is a (candidate) key for r if K is a minimal superkey (that is, there exists no other superkey K' of r that is contained in K as proper subset, i.e, $K' \subset K$)

Unique Values for Tuples

RegNum	Surname	FirstName	BirthDate	DegreeProg
284328	Smith	Luigi	29/04/59	Computing
296328	Smith	John	29/04/59	Computing
587614	Smith	Lucy	01/05/61	Engineering
934856	Black	Lucy	01/05/61	Fine Art
965536	Black	Lucy	05/03/58	Fine Art

- □ Registration number identifies students, i.e., there is no pair of tuples with the same value for RegNum.
- Personal data could identify students as well, i.e., there is no pair of tuples with the same values for all of Surname, FirstName, BirthDate.