

VAPOUR COMPRESSION SYSTEM, VCR

ME441, TFE Laboratory, UG Course + RAC Laboratory, RAC_1 of 2+Vapour Compression Unit_with_Single_Stage+R134a

Thermal and Fluid Engineering Laboratory

- Aim
 - ✓ Understand the design and operation of a Vapour Compression Refrigeration System
- Objective
 - ✓ Verify Energy Balance in a Single Stage VCR System
 - @ various evaporator loads
 - ✓ Plot the variation of
 - Overall COP V/s Evaporator Temperature, t_{evp.sat}
 - Refrigerant flow rate V/s Overall COP
 - Superheat V/s Evaporator Temperature, t_{evp.sat}
 - Refrigeration Load & Power Input V/s Evaporator Temperature, t_{evp,sat}
- Outline of the Presentation
 - ✓ Theory: Simple VCR Cycle and Components
 - ✓ Discussion on P A Hilton experiment set up
 - ✓ Experimental set up components and their working functions
 - ✓ Discussion on the fundamental principle behind the single stage vapor compression
 - ✓ Advantages and disadvantages
 - ✓ The parameters to be measured
 - ✓ Discussion on p-h diagram of R134a refrigerant and possible interpretations

P A Hilton R714/28333 Refrigeration Laboratory Unit

Component Description

- 1 Evaporator with Electric Heater
- 2 Compressor with External Motor
- 3 Water Cooled Condenser with Sight Glass
- 3.1 Isolation Valve

8

9

- 3.2 Filter cum Dryer
- 3.3 Rotameter for Refrigerant Liquid
- 4 Thermostatic Expansion Valve, TEV
- Condenser Cooling Water Valve
- 6 Main Switch: Power Supply to the Unit
 - Evaporator Input Control: EVP Power
 - Watt Meter & Toggle Switch
 - **Enables Measuring Motor and EVP Power**
 - Temperature Indicator & Section Switch:
 - **Enables Measuring Temperatures**
- 10 Tachometer: Indicates Compressor Speed
- 11 Dynamometer: Enables Measuring Torque
- 12 Evaporator Pressure Gauge
- 13 Condenser Pressure Gauge
- 14 Rotameter for Condenser Cooling Water

PROCESS SCHEMATIC

P A Hilton R714/28333 Refrigeration Laboratory Unit

Component Description in Layout

- 1 Evaporator with Electric Heater
- Compressor with External Motor
- 3 Water Cooled Condenser with Sight Glass
- 3.1 Isolation Valve

6

9

- 3.2 Filter cum Dryer
- 3.3 Rotameter for Refrigerant Liquid
- 4 Thermostatic Expansion Valve, TEV
- Condenser Cooling Water Valve
 - Main Switch: Power Supply to the Unit
 - Evaporator Input Control: EVP Power
 - Watt Meter & Toggle Switch
 - **Enables Measuring Motor and EVP Power**
 - Temperature Indicator & Section Switch:
 - **Enables Measuring Temperatures**
- 10 Tachometer: Indicates Compressor Speed
- 11 Dynamometer: Enables Measuring Torque
- 12 Evaporator Pressure Gauge
- 13 Condenser Pressure Gauge
- 14 Rotameter for Condenser Cooling Water

P A Hilton R714/28333 Refrigeration Laboratory Unit

Important Parts: Evaporator, EVP

- A Tubular Evaporator, 1, is Deployed in this Experimental Setup
 - ✓ Heat load to the evaporator is provided by an Electric Heater, within the evaporator,1
 - ✓ Additional heat load to the evaporating refrigerant is due to the heat gain through the insulation around the evaporator

- Heat Load through the Electric Heater can be Varied by Turning Knob 7
 - ✓ This varies the power input to the electric heater and as a result the evaporator load

P A Hilton R714/28333 Refrigeration Laboratory Unit

Important Parts: Open Type Compressor with External Motor

- Power from the Motor is Transmitted to the Compressor Using a Belt Drive
 - ✓ Diameter of the pulley mounted on the motor and the diameter of the pulley mounted on the compressor govern the compressor speed
 - Speed of the motor and the pulley diameter ration (1.98 in the resent case) decides the speed of the compressor
- Compressor Power Measurement can be Enabled by Measuring the Following:
 - ✓ Motor Speed, Torque on the Motor Shaft
- Motor Speed is Measured Using Tachometer
- Torque on the Motor Shaft is Measured Using the Dynamometer
 - ✓ Adjusting the sharp edge of the lever end of the dynamometer with the marked arrow next to it and then reading the tension in the force measuring gauge
 - ✓ Multiplying the force with the length of the arm gives the torque
 - ✓ Using the torque and motor rpm the power delivered by the motor can be calculated
- Electrical Power Input to the Motor can be Read from the Wattmeter

P A Hilton R714/28333 Refrigeration Laboratory Unit

Important Parts: Condenser, CND, Water Cooled

- Water Cooled Condenser, WCC
 - ✓ Desuperheats, condenses and subcools compressed refrigerant exiting the compressor
- Water Cooled Condensers Typically Offer Lower Condensing Temperatures as Compared to Air Cooled Condensers
 - ✓ Cooling water inlet temperature is typically lower than ambient air temperature
 - ✓ Heat transfer coefficient with water is better than that with ambient air
- Water Cooled Condensers Typically are More Compact
 - ✓ Heat transfer coefficient with water is better than that with ambient air
 - ✓ In the present system the area of condenser coil, $A_{he,cnd} = 0.075 \text{ m}^2$
- Water Flow Through the WCC can be Measured Using the Rotameter
 - ✓ Range of the rotameter is from 4 to 50 g/s & Least Count is 2 g/s
 - ✓ Water flow for the experiments are typically set at 30 g/s
 - After setting a value the water flow may vary due to variation in tap water pressure

P A Hilton R714/28333 Refrigeration Laboratory Unit

Important Parts: Thermostatic Expansion Valve, TEV

- TEV Regulates the Refrigerant Flow
 - ✓ from the Condenser Outlet to the Evaporator Inlet
- TEV Regulates the Refrigerant Flow to Maintain Super Heat at the Outlet of the Evaporator or Inter of the Compressor
 - ✓ Designed to keep the superheating of the refrigerant at a constant level
 - ✓ Amount of superheat can be set by setting the adjustment screw provided in the TEV
 - Normally this is factory set and it is not recommended to be tampered with at site
- Bulb Type Temperature Sensor Located at the Outlet of the Evaporator is Connected to the Valve by a Capillary
 - ✓ Increase in superheat above the set value, increases the pressure in the sensor and the valve opens up to regulate the refrigerant flow
- TEV is Expected to Work as an Adiabatic Expansion Device
 - ✓ It should be ideally insulated to avoid the frosting seen in the setup

THEORY

ME 441 Lab Manual

Vapour Compression Refrigeration System, VCRS

- VCRS is the Most Commonly Used Refrigeration System
 - ✓ Refrigeration/cooling effect is achieved due to evaporation of the refrigerant in the evaporator
 - Evaporation takes place at low temperatures and its vapour pressure is low
 - ✓ This low pressure refrigerant is compressed in the compressor
 - Higher pressure refrigerant at the outlet of the compressor is then condensed in the condenser
 - ✓ Condensation at higher pressure takes place as higher temperature
 - Enabling heat transfer to is the surrounding of suitable heat sink
 - ✓ Condensed refrigerant from the outlet of the condenser is throttled through the Expansion Device and let in to the evaporator
- VCRS Works on the Vapour Compression Cycle (VCC) it Consist of Four Steps
 - Isobaric heat extraction in the evaporator
 - Isentropic compression
 - Isobaric heat rejection in condenser
 - Isenthalpic expansion in expansion device
- VCC Introduces Two Irreversibilities as Compared to Carnot Cycle
 - ✓ Irreversibility due to non-isothermal heat rejection & that due to isenthalpic throttling
- Due to These Irreversibilities, the Cooling Effect Reduces and Work Input Increases
 - ✓ COP of the VCRS reduces as compared to Carnot cycle

OBSERBVATION TABLE

ME 441 Lab Manual

Vapour Compression Refrigeration system, VCRS

Sr#	Measurements	Units	1	2	3	4	5	6
1	$p_{\rm c}$	kN/m ²	800	850	950	970	975	1050
2	$p_{\rm e}$	kN/m ²	100	125	175	200	225	250
3	\mathbf{t}_1	°C	7.0	-0.1	2.2	5.2	6.1	9.6
4	t_2	°C	65.0	72.7	63.2	68.8	60.2	70.1
5	t_3	°C	29.6	30.5	32.5	34.2	34.3	36.4
6	t_4	°C	-29.0	-23.7	-15.3	-10.6	-8.2	-5.2
7	t ₅	°C	28.2	27.5	27.6	28	26.8	28.1
8	t_6	°C	30.9	31.1	32.7	33.5	33.0	35.0
9	$m_{\rm w}$	g/sec	30.0	30	32	32	32 0	34

OBSERBVATION TABLE

ME 441 Lab Manual

Sr #	Measurements	Units	1	2	3	4	5	6
10	m_{r}	g/s	1.9	2.2	3.2	3.8	4.2	4.5
11	Qe_{el}	W	126	210	400	505	603	686
12	Qm _{el}	W	343	373	424	451	458	493
13	F	N	10.0	10.5	12.0	12.5	13.0	14.0
14	n_c	rpm	742	743	743	743	743	743
15	$n_{\rm m}$	rpm	1470	1472	1472	1473	1472	1473

p – h CHART

ASHRAE HBF 2017, Ch 30, P 30.17, Fig 8 + Safety Group A1, GWP-AR5 1300, ODP 0

R-134a, HFC, 1,1,1,2-Tetrafluoroethane, CH₂FCF₃

CALCULATION

ME 441 Lab Manual

Vapour Compression Refrigeration system, VCRS

• Refrigeration Load

$$Q_e = m_r (h_1 - h_4)$$

• Shaft Power

$$P_s = T\omega$$

$$\omega = 2\pi N_m/60$$

$$T = F \times 0.165$$
 (arm length for dynamometer)

• Friction Power

$$P_f = 0.165 \times F_f \times \omega$$

$$F_f = 5N$$

• Indicated Power

$$P_i = P_s - P_f$$

• COP Based on Electrical Power or Overall COP

$$COP_{ep} = Q_e/Qm_{el}$$

• COP Based on Shaft Power

$$COP_{ep} = Q_e/P_s$$

CALCULATION

ME 441 Lab Manual

Vapour Compression Refrigeration system, VCRS

• COP Based on Indicated Power

$$COP_{ip} = Q_e/P_i$$

• Volumetric efficiency

$$\eta_{vol} = (m_r \times v_I) / V_{swept}$$

$$V_{swept} = 43.0 \text{ cm}^3/\text{rev} \times \text{rps of compressor}$$

• Heat Balance

$$W_{in} = P_i \times \eta_{vol}$$

$$Q_{cnd} = m_w C_p (t_6 - t_5)$$

$$W_{in} + Q_e = Q_{cnd}$$

(Verify Energy Balance)

REFRIGERANTS

ASHRAE HBF 2013, Ch 29, 30

Refrigerant	Name	ODP (GWP_{100}	\mathbf{p}_r		t _{r.critical}	Issues	
				at 7.2°C	at 54.4°C	critical		
				bar	bar	bar	°C	
R-22	Dichlorofluromethane	0.04	1790	6.3	21.3	50.0	96.1	High GWP
R-134a	Tetrafluoroethane	0	1370	3.8	14.6	40.6	101.1	High GWP
R-290	Propane	0	~20	5.9	19.1	42.5	96.7	Flammable
R-600	Butane	0	~20	1.3	5.5	38.0	152.0	Flammable
R-407C	R-32/125/134a (23/25/52)	0	1700	6.4	24.0	46.3	86.0	High GWP
R-410A	R-32/125 (50/50)	0	2100	10.0	34.0	49.0	71.4	High GWP
R-717	Ammonia	0	< 1	5.6	22.0	113.3	132.3	Toxic
R-744	Carbon Dioxide	0	1	42.1	SH	73.8	31.0	High pr, Low t _{critical}
R-718	Water/Steam			0.010	0.140	220.6	373.3	Very low pressure, low density