Neural networks

- Until now we have seen symbolic reasoning approaches based on symbols and syntactic rules for their manipulation.
- Connectionists believe that the symbolic manipulation is a very poor mechanism.
- The connectionist approach is based on simulation of the mechanisms in the human brain
- Models resembling neurological structures have therefore been developed.

The dilemma of IA

Up to some years ago, computers were excellent in computing, but failed when trying to play typically human activities:

- Sensor perception
- Sensor-motion coordination
- Image recognition
- Adaptability

With the advent of deep neural networks the situation has drastically changed but still.....

Child beats Computer 3 to 0

Although a computer can beat the world chess champion, it is not able to compete with a 3 year old child in

- Build a Lego car
- Recognize the face or the voice of a person

Problem

- These complex actions depend on many factors, which cannot be precisely predicted by a program.
- These factors have to be acquired with the experience, in a learning phase.

Examples

The success of gripping an object is determined by several factors:

- the object position
- our posture
- the size and shape of the object
- the expected weight
- any interposed obstacles

Speech recognition

It requires a learning phase necessary to:

- adapt to the person who speaks
- filter out external noise
- separate any other items

Image recognition

How does the brain work?

- When we recognize a face or grasp an object we do not solve equations.
- The brain works in an associative fashion

Each sensory state evokes a brain state (electro-chemical activity) that is stored according to need.

Hitting a tennis ball

- The trajectory depends on several factors:
 - stepping force, initial angle, effect, wind speed;
- Forecasting trajectory requires:
 - the precise measurement of the variables;
 - the simultaneous solution of complex equations, to be recomputed at each data acquisition.

How does a player do that?

Learning phase

- In a learning phase the player tries actions and records the good ones:
 - If the ball is passed in this visual field area, take a step back;

Operational phase

• Once trained, the brain performs actions *without thinking*, on the basis of learned associations.

The associative calculation

- A set of complex equations are solved by means of a look-up table.
- It is built on the basis of experience and is refined during training.

The neural computing

It is extremely difficult to treat these problems with a computer. There is need to study new methods of computation, inspired by the neuronal networks.

Neurophysiologists \rightarrow study the brain

Engineers → implement the code

Historical hints

- 1943 McCulloch and Pitts: defined the first binary threshold neuron model
- 1949 Hebb: from studies on the brain, he showed that learning is not a neuron property, but it is due to a modification of synapses.
- 1962 Rosenblatt: he proposes a neuron model that can learn by examples: the **perceptron**.
- 1969 Minsky and Papert showed the limitations of the perceptron: diminished enthusiasm on neural networks.

Historical hints

- 1982 Hopfield proposed a network model to create associative memories.
- 1982 Kohonen proposed a type of selforganizing network (receptive maps).
- 1985 Rumelhart, Hinton and Williams: formalize supervised learning (Back-Propagation).
- 2006 Yoshua Bengio deep networks

Some properties of the brain

• Speed of neurons: few ms

• Number of neurons: $10^{11} \div 10^{12}$

• Connections: $10^3 \div 10^4$ per neuron

• Operations: activation / inhibition

• **Distributed control:** lacks of a CPU

• Fault tolerance: graceful degradation

Neural model

To model a neuron we have to define:

- the number of input channels: N
- the type of input signals: x_i
- the connection weights: $\mathbf{w_i}$
- the activation function: **F**
- the output function:

General neuron model

The neuron threshold Binary

$$a = \sum_{i} w_{i} x_{i}$$
$$y = HS (a - \theta)$$

$$y = HS (a - \theta)$$

Neuronal functioning:

the pulses received from the dendrites increase the electric potential in the neuron up to a certain threshold

Heaviside function

$$y(t) = \begin{cases} 0 & \text{se } \sum_{i} w_{i} x_{i} < \theta \\ 1 & \text{otherwise} \end{cases}$$

Other output functions

Neural networks

To build a neural network we have to define:

- The neuron model
- The network architecture
- The neuron activation mode
- The learning paradigm
- The learning law

Network Architectures

Fully connected

Multi-layer

Connections Representation

weight on neuron j on the connection coming from neuron i

Fully connected networks

They represent states that evolve over time
The weights of the network can be specified through a **connection matrix**

Layered networks

The weights of a network composed by **n** layers can be specified through **n-1 connection matrices**:

Fully connected network

- Binary neurons with threshold
- Parallel activation

State transition

$$x_i(t+1) = HS [\Sigma_i w_i x_i(t)]$$

$$x_{i}(t+1) = \begin{cases} 1 \text{ if } \Sigma_{i}w_{i}x_{i}(t) \geq 0 \\ 0 \text{ otherwise} \end{cases}$$

Evolution equation

In matrix form:

$$X(t+1) = HS[WX(t)]$$

- X (t) is the state of the network at time t
- W is the weight matrix

Example

symmetric matrix

$$\mathbf{W} = \begin{bmatrix} 0 & 1 & -1 \\ 1 & 0 & -1 \\ -1 & -1 & 0 \end{bmatrix}$$

no self connections: 0 on the diagonal

State Transition

Initial state:

$$\mathbf{X}(\mathbf{t}) = \begin{bmatrix} 0 \\ 1 \\ 0 \end{bmatrix}$$

next state:

$$X(t+1) = HS[WX(t)] =$$

$$= HS \begin{bmatrix} 0 & 1 & -1 \\ 1 & 0 & -1 \\ -1 & -1 & 0 \end{bmatrix} \begin{bmatrix} 0 \\ 1 \\ 0 \end{bmatrix} = \begin{bmatrix} 1 \\ 1 \\ 0 \end{bmatrix}$$

Transition Diagram

The network follows a trajectory up to stable states

Example

antisymmetric matrix

$$\mathbf{W} = \begin{bmatrix} 0 & -1 & 1 \\ 1 & 0 & -1 \\ -1 & 1 & 0 \end{bmatrix}$$

Transition Diagram

Definitions

Transformation

Function T: $S \rightarrow S$, which transforms a state X(t) in the following X(t + 1).

Trajectory

Sequence of states traversed by the network, starting from an initial state X₀:

$$X (0) = X_0$$

 $X (t + 1) = T [X (t)]$

Definitions

Limit cycle of order k

Closed trajectory in phase space traversing X_i every k steps.

Stable state

State that generates a constant trajectory:

$$X (t + 1) = X (t) = X_s$$

Definitions

Reachable state

A state X_F is said to be reachable from X_i if there exists a trajectory from X_i to X_F .

Global stability

A network is said globally stable if for every initial state X, the trajectory from X reaches a stable state.

Stability Properties

(Hopfield '82)

A fully connected neural network is globally stable if:

- the matrix of weights is <u>symmetric</u>
- the activation is <u>asynchronous</u>

Activation mode

Synchronous (parallel)

The neurons change their state all together, synchronized by a clock.

Asynchronous (sequential)

The neurons change state one at a time. We must define a selection criterion.

Only fully-connected networks have both types of activation

Hopfield model

$$y = \operatorname{sgn}\left(\sum_{i=1}^{n} w_i x_i - \theta\right)$$

The Energy Function

• Each state is characterized by an energy:

$$\mathbf{E}(\mathbf{X}) = -\frac{1}{2}\mathbf{X}^{\mathsf{T}}\mathbf{W}\mathbf{X}$$

• If the matrix of weights is <u>symmetric</u> and the activation is <u>asynchronous</u> then

E (X) is non-increasing monotonic in the state evolution

$$E[X(t+1)] \leq E[X(t)]$$

The network evolves towards a stable state

Basin of attraction:

set of states such that all trajectories that start from them end in the same stable state.

Network with 3 stable states

Associative memories

Memories whose contents can be retrieved on the basis of partial or distorted information on the content itself.

Storing pictures

Image: $n \times m$ pixel

Neurons: $N = n \times m$

Connections: $C = N^2$

States: $S = 2^N$

Image: 8×8 pixel

Neurons: N = 64

Connections: C = 4096

States: $S \cong 2 \cdot 10^{19}$

Rule of storage

M1:
$$(++-)$$
 X_1
 X_2

$$\mathbf{W}_{1} = \begin{bmatrix} 0 & 1 & -1 \\ 1 & 0 & -1 \\ -1 & -1 & 0 \end{bmatrix}$$

M2:
$$(--+)$$
 X_1
 X_1
 X_3

$$\mathbf{X}_{2}$$

$$\mathbf{W}_{2} = \begin{bmatrix} 0 & 1 & -1 \\ 1 & 0 & -1 \\ -1 & -1 & 0 \end{bmatrix}$$

M3:
$$(-++)$$
 X_1
 X_2
 X_1
 X_3

$$\mathbf{W}_{3} = \begin{bmatrix} 0 & -1 & -1 \\ -1 & 0 & 1 \\ -1 & 1 & 0 \end{bmatrix}$$

Overall network

$$W = \sum_{k=1}^{m} W_k = \begin{bmatrix} 0 & 1 & -3 \\ 1 & 0 & -1 \\ -3 & -1 & 0 \end{bmatrix}$$

Add matrices for the individual states to made stable

DOES IT WORK???

Transition Diagram

(Synchronous activation)

$$M = \{(++-), (--+), (-++)\}$$

Transition Diagram

(Asynchronous Activation)

$$M = \{(++-), (--+), (-++)\}$$

Remarks

When we overlap too many memories:

- Not always all memories are stable
 The creation of a local minimum can have the effect of removing another one.
- Spurious memories can appear
 The surface energy can have complex shapes.

Learning

Network capacity to change behavior in a desired direction by changing synaptic connections (weights).

The learning paradigms can be divided into three basic classes:

- supervised
- competitive
- reinforcement

1- Supervised learning

It is the most widely used.

The network learns to recognize a set of desired input configurations.

The network operates in two distinct phases:

- Learning phase
 it stores the desired information via examples
- Evolution phase
 it retrieves the stored information

Training phase

2- Competitive learning

- Neurons compete for specializing in the recognition of a particular stimulus. Similar stimuli end up in the same class.
- In the end, each neuron is activated by a given stimulus (isomorphism between stimuli and output neurons).

3- Reinforcement learning

• Reinforcement learning simulates the learning mechanism in animals based on reward and punishment: used for control systems applications

Supervised learning

Supervised learning

The network learns to associate a set of given pairs (X_k, Y_{dk}) .

The network operates in two distinct phases:

- Learning phase
 - They store the desired information
- Evolution phase

retrieving the stored information

Training phase

The Perceptron (Rosenblatt '58)

Binary input

$$net = \sum_{i} w_{i}x_{i}$$
$$y = HS (net - \theta)$$

Binary output

The Perceptron (Rosenblatt '58)

Binary input

 $net = \sum_{i} w_{i}x_{i} - \theta$ y = HS (net)

Binary output

Classification

• A perceptron can be trained to recognize whether an input pattern X belongs or not to a class C:

The Rosenblatt experiment

Perceptron networks

Letter Recognizer

Training

 θ Built in weights.

By changing weights

we learn θ

$$\mathbf{w}_{i}(t+1) = \mathbf{w}_{i}(t) + \eta \delta \mathbf{x}_{i}$$

 η = Learning coefficient (learning rate)

Learning algorithm

1. Given a training set of m examples:

$$TS = \{(X_k, y_{dk}), k = 1..m\}$$

- 2. Initialize weights with random values w_i;
- 3. Give as input a pair (X_k, y_{dk}) ;
- **4.** Compute the answer y_k of the network;
- 5. Update weights with the *delta rule*: $(\Delta w = \eta \delta x)$
- **6.** Repeat from step 3 until all answers are correct:

$$y_k = y_{dk} \ \forall k \in [1..M]$$

Two inputs Perceptron

The patterns belonging to the class will be those such that:

$$w_1 x_1 + w_2 x_2 - \theta > 0$$

Linear separation of the input space

$$x_2 > -(w_1/w_2) x_1 + \theta / w_2$$

Learning an AND

Perceptron limitations

To learn a classification, the problem must be linearly separable:

- the patterns belonging to the class C must be contained in a semiplane of the input space;
- with n inputs, the input space becomes n-dimensional and classes are separated by a hyperplane.

The problem of XOR

It is not linearly separable!

Possible solutions

• Use neurons with appropriate output functions.

• Combine neurons answer, in multilayer architectures.

Appropriate output functions

- $f (net) = net^2$, $w_1 = 1$, $w_2 = -1$ $y = (x_1 - x_2)^2$
- $f (net) = |net|, w_1 = 1, w_2 = -1$ $y = |x_1 - x_2|$
- $f (net) = 1 e^{-|net|}, w_1 = 1, w_2 = -1$ $y = 1 - e^{-|x_1-x_2|}$

Multilayer networks

- Each neuron of a layer is connected with all neurons of the nearby layer.
- There are no connections between neurons of the same layer.

Three-layer networks

• They are able to separate convex regions number of edges ≤ number hidden neurons

Three-layer networks

 They are able to separate convex regions number of edges ≤ number hidden neurons

Three-layer networks

 They are able to separate convex regions number of edges ≤ number hidden neurons

Four-layer networks

• They are able to separate regions of every shape

Four-layer networks

• The addition of other layers does not improve the classification ability.

Four-layer networks

• The addition of other layers does not improve the classification ability.

Importance of the non-linearity

• If the output functions were linear, a network with N layers would always be reduced to 2 layers:

Implications

To perform complex classifications, neurons must be non-linear and be organized on multiple layers.

Problems

- How do you train a multilayer network?
- What is the desired output of the hidden neurons?

Back Propagation

(Rumelhart-Hinton-Williams, '85)

- Layered networks
- Real-valued inputs $\in [0,1]$
- Neurons with nonlinear sigmoid output function (it must be differentiable):

83

Letter Recognizer

Back Propagation: definitions

Training Set

$$TS = \{(X_k, y_{dk}), K = 1, M\}$$

t_i desired output

error on example k

$$E_k = \sum_{j=1}^n (t_{kj} - y_{kj})^2$$

Global error

$$E = \sum_{k=1}^{M} E_k$$

Back Propagation: aims

Learning

train the network on a set of desired associations (X_k, t_k) : Training Set (TS)

Convergence

reduce the global error \mathbf{E} to variation of weights, so that $\mathbf{E} < \boldsymbol{\epsilon}$

Generalization

ensure that the network behaves well on unseen examples.

Convergence

To reduce the error on variation of weights, we adopt a gradient descent method:

Updating weights

Therefore, the weights are changed according to the following law:

$$\Delta w_{ji} = -\eta \frac{\partial E}{\partial w_{ji}}$$
 Gradient rule

 η = Learning coefficient (learning rate)

Updating weights

$$\Delta w_{ji} = \eta \delta_j x_i$$

For the output layer

$$\delta_j = (t_j - y_j) f'(net_j)$$

For the hidden layer

$$\delta_i = f'(net_i) \sum_{j=1}^n \delta_j w_{ji}$$

Back Propagation: Algorithm

```
randomly initialize the weights;
2.
       do {
            initializes the global error \mathbf{E} = \mathbf{0};
3.
4.
            for each (X_k, t_k) \in TS \{
5.
                   compute y_k and error E_k;
                   compute \delta_i on the output layer;
6.
7.
                   compute \delta_i on the hidden layer;
                   update weights of the network: \Delta w = \eta \delta x;
8.
9.
                   updates the global error: \mathbf{E} = \mathbf{E} + \mathbf{E}_{\mathbf{k}};
       \} while (E > \varepsilon);
10.
```

Back Propagation: Remarks

• The error has a quadratic form in the space of weights:

$$\Delta w_{ji} = \eta \delta_j x_i$$

- η too small \Rightarrow slow learning
- η too big \Rightarrow fluctuations

Possible solutions

- Vary η in function of error, in order to accelerate the convergence in the beginning and reduce the oscillations in the end.
- Smooth oscillations with a low pass filter on weights:

$$\Delta w_{ji}(t) = \eta \delta_j x_i + \alpha \Delta w_{ji}(t-1)$$

α and said momentum

Back Propagation: Remarks

• The quadratic form is distorted by the non-linear output function.

Risk of stopping in a local minimum

Restart with new weights or change some weights randomly

Back Propagation: Remarks

• If examples are inconsistent, the learning convergence is not guaranteed:

In real cases, inconsistency can be introduced by noise on the input data.

Generalization

- Generalization is the network's ability to recognize stimuli that are slightly different from those with which she was trained.
- To assess the network's ability to generalize the examples of TS, it defines another set of examples, said Validation Set (VS).
- Learning on the TS ($E_{TS} < \varepsilon$),
- Evaluating the error on the VS (E_{VS}) .

Generalization

- The number of parameters to be adjusted depends on the number of hidden neurons in the network.
- A few hidden neurons may not be sufficient to reduce the global error.
- Too many hidden neurons could overfit the network on the TS specific examples.
- The network would respond well on TS, but the error would be high on other examples (overtraining).

Kohonen NETWORKS

Competitive Learning & Self Organizing Maps

Kohonen networks

In 1983, Teuvo Kohonen managed to build a neural model that replicates the process of formation of the sensory maps in the cerebral cortex:

- layered network
- unsupervised learning based on the competition between neurons

Architecture

Linear neurons

$$x_{1}$$

$$x_{2}$$

$$\vdots$$

$$w_{j1}$$

$$y_{j} = \sum_{i=1}^{n} w_{ji} x_{i}$$

$$x_{n}$$

$$y_j = \sum_{i=1}^n w_{ji} x_i = W_j \bullet X = |W_j| \bullet |X| \cos \theta$$

Distribution of fixed weights

The fixed weights depend on the distance of the neurons:

- neighboring neurons⇒ positive weights
- distant neurons \Rightarrow negative weights

Competitive learning

- Neurons compete to respond to a stimulus.
- The neuron with greatest output wins the competition and specializes to recognize the stimulus.
- Thanks to the excitatory connections, the neurons close to the winner are sensitive to similar inputs.

Isomorphism between the input space and output space

Implementation

- For efficiency reasons, output neurons are not connected together.
- The winner neuron is chosen with an overall strategy comparing the outputs of all neurons.
- We can use two techniques:
 - 1. Choose the neuron with maximum output;
 - 2. Choose the neuron whose weight vector is the most similar to the stimulus.

Winning neuron (Method 1)

The winning neuron on input X is the one with the highest output:

$$y_j = \sum_{i=1}^n w_{ji} x_i = W_j \bullet X = |W_j| |X| \cos \theta$$

Definition of distance

Euclidean distance:

$$DIS(X,Y) = \sqrt{\sum_{i=1}^{n} (x_i - y_i)^2}$$

Manhattan

Distance:

$$DIS(X,Y) = \sum_{i=1}^{n} |x_i - y_i|$$

Hamming distance:

(For binary vectors only)

$$DIS(X,Y) = \sum_{i=1}^{n} (x_i! = y_i)$$

Learning law

$$\Delta \mathbf{W}(\mathbf{T}) = \alpha (\mathbf{X} - \mathbf{W})$$

Neighborhood update

To simulate the radial connections, neurons close to the winner have an updated weight:

Interaction radius

The neighborhood is the set of neurons within a given distance R from the winning neuron:

R = radius of interaction

Defining the map

- To allow the formation of the map, it is necessary to define a topology on the output layer.
- Each neuron has to have a position identified by a vector of coordinates.
- The output map is usually defined as a to one or two dimensional space.

Neighborhood types

proximity 4

proximity 8

Weight change

The weights of the neurons are varied according to their distance from the winner neuron:

Weight change

Given j_0 the index of the winner neuron, we have:

$$\forall j \in \text{neighborhood}(j_0, r)$$

$$d = DIS(j, j_0)$$

$$\Delta w_j = \alpha \Phi(d) (X - W_j)$$

Quantities \mathbf{r} is $\boldsymbol{\alpha}$ decrease over time.

Learning algorithm

```
Randomly initialize the weights;
      Initialize the parameters: \alpha = A; r = R;
      do {
2.
          for each (X_k \in TS) {
5.
                Compute all the outputs y_i;
                Chose the winner neuron j<sub>0</sub>;
6.
                update the weights of the neighborhood;
7.
8.
          reduce \alpha and r;
10. \} while (\alpha > \alpha_{min});
```

Example

Input = vector of coordinates on a two-dim space

Map = grid with proximity 4

Initial State

$$N = M$$

- Input (stimulus)
- Weight (neurons)

Final state

N = M

- input
- weight

Example

N > M

- input
- weight

Example

N < M

- input
- weight

Applications

Clustering

• Group a huge set of data in a limited number of classes, based on the similarity of the data.

Compression

• convert an image with millions of colors in a compressed image to 256 levels (not fixed).

Classification

- Classify a set of sentences in a set of separate classes for related topics.
- Used by some search engines to rank the preferences of connected users.

Reinforcement learning

Reinforcement learning

Rewards and punishments

An **agent** operates in the environment and adapts the actions on the basis of the produced consequences.

Boxes Model (Michie / Chamber '68)

- Learning based on punishment.
- It partitions the state space into N disjoint regions (box).
- Whenever the system enters a state (box) a control action is selected.
- The controller has to learn to perform the actions which delay the punishment as much as possible.

Model boxes

Neural Model: ASE-ACE

(Barto-Sutton-Anderson, '83)

ASE: Associative Search Element

ACE: Adaptive Critic Element

in the system state $\mathbf{x_i}$

$$x_i = 1$$

$$x_j = 0 \quad \forall j \neq i$$

$$y(t) = \operatorname{sgn}\left[\sum_{i=1}^{n} w_{i} x_{i} + n(t)\right]$$

n (t) is a Gaussian variable with zero mean and variance σ^2

$$y(t) = \operatorname{sgn}\left[\sum_{i=1}^{n} w_{i} x_{i} + n(t)\right]$$

ASE can only generate two actions: $\begin{cases} \mathbf{a}^{\top} & (Y = 1) \\ \mathbf{a}^{\top} & (Y = 0) \end{cases}$

$$\begin{cases} \mathbf{a}^+ & (Y=1) \\ \mathbf{a}^- & (Y=0) \end{cases}$$

When the system is in the state $\mathbf{x_i}$ ($\mathbf{x_i} = 1$) we have that: if $w_i = 0$, actions a^+ and a^- have the same probability if $w_i > 0$, the a^+ choice is more likely to be performed if $w_i < 0$, the a choice is more likely to be performed

The weights of ASE are updated with the following law:

$$\Delta w_i(t) = \alpha r(t) e_i(t)$$

- α It is a positive constant (learning rate)
- r (t) is the reinforcement signal

$$\mathbf{r}(\mathbf{t}) = \begin{cases} -1 & \text{in case of failure} \\ 0 & \text{otherwise} \end{cases}$$

e_i(t) is a signal (eligibility) introducing a short-term memory on synapses:

$$e_{i}(t+1) = \delta e_{i}(t) + (1 - \delta) y(t) x_{i}(t)$$

$$\Delta w_i(t) = \alpha r(t) e_i(t)$$

$$e_i(t+1) = \delta e_i(t) + (1 - \delta) y(t) x_i(t)$$

A failure (r < 0) reduces the probability of chosing recent actions that have caused it:

$$a^+ \Rightarrow e_i(t) > 0 \Rightarrow \Delta w_i < 0$$

$$a^- \Rightarrow e_i(t) < 0 \Rightarrow \Delta w_i > 0$$

$$\Delta w_i(t) = \alpha r(t) e_i(t)$$

$$e_i(t+1) = \delta e_i(t) + (1 - \delta) y(t) x_i(t)$$

A success (r > 0) increases the probability of selecting the recent actions that have caused it:

$$a^+ \Rightarrow e_i(t) > 0 \Rightarrow \Delta w_i > 0$$

$$a^- \Rightarrow e_i(t) < 0 \Rightarrow \Delta w_i < 0$$

ACE role

- As the number of failures is reduced, the system tends to learn more slowly.
- The adaptive critic element (ACE) generates a more informative secondary reinforcement.
- Observing the system status and failures, the ACE learns to **predict** dangerous conditions.
- It generates an award $(\mathbf{r}^* > \mathbf{0})$ if the system moves away from a dangerous state, punishment $(\mathbf{r}^* < \mathbf{0})$ otherwise.

Learning - conclusions

Network capacity to change behavior in a desired direction by changing synaptic connections (weights).

The learning paradigms can be divided into three basic classes:

- supervised
- competitive
- reinforcement