LIMITES DES FONCTIONS - Chapitre 1/2

Tout le cours en vidéo : https://youtu.be/YPwJyYDsmxM

Partie 1: Limite d'une fonction à l'infini

1) Limite infinie en ∞

Définition:

On dit que la fonction f admet pour **limite** $+\infty$ **en** $+\infty$, si f(x) est aussi grand que l'on veut pourvu que x soit suffisamment grand.

Remarque : On a une définition analogue en $-\infty$.

Exemple:

La fonction définie par $f(x) = x^2$ a pour limite $+\infty$ lorsque x tend vers $+\infty$.

On a par exemple : $f(100) = 100^2 = 10000$ $f(1000) = 1000^2 = 1000000$

Les valeurs de la fonction deviennent aussi grandes que l'on veut dès que x est suffisamment grand.

Si on prend un intervalle a; $+\infty$ [quelconque, toutes les valeurs de la fonction appartiennent à cet intervalle dès que x est suffisamment grand.

<u>Définitions</u>: - On dit que la fonction f admet pour limite $+\infty$ en $+\infty$ si tout intervalle a; a réel, contient toutes les valeurs de a0 dès que a0 est suffisamment grand et on note : $\lim_{x \to +\infty} f(x) = +\infty$

- On dit que la fonction f admet pour limite $-\infty$ en $+\infty$ si tout intervalle $]-\infty$; b[, b réel, contient toutes les valeurs de f(x) dès que x est suffisamment grand et on

note : $\lim_{x \to +\infty} f(x) = -\infty$

Remarques:

- Une fonction qui tend vers $+\infty$ lorsque x tend vers $+\infty$ n'est pas nécessairement croissante. Par exemple :

- Il existe des fonctions qui ne possèdent pas de limite infinie. C'est le cas des fonctions sinusoïdales.

2) <u>Limite finie en ∞</u>

Définition:

On dit que la fonction f admet pour **limite** L **en** $+\infty$, si f(x) est aussi proche de L que l'on veut, pourvu que x soit suffisamment grand et on note : $\lim_{x \to +\infty} f(x) = L$.

Remarque : On a une définition analogue en $-\infty$.

Exemple:

La fonction définie par

$$f(x) = 2 + \frac{1}{x}$$
 a pour limite 2

lorsque x tend vers $+\infty$.

$$f(100) = 2 + \frac{1}{100} = 2,01$$
$$f(10000) = 2 + \frac{1}{10000}$$
$$= 2,0001$$

Les valeurs de la fonction se resserrent autour de 2 dès que x est suffisamment grand. La courbe de la fonction "se rapproche" de la droite d'équation y = 2 sans jamais la toucher.

Si on prend un intervalle ouvert quelconque contenant 2, toutes les valeurs de la fonction appartiennent à cet intervalle dès que x est suffisamment grand.

Définition:

On dit que la fonction f admet pour limite L en $+\infty$ si tout intervalle ouvert contenant L contient toutes les valeurs de f(x) dès que x est suffisamment grand et on note : $\lim_{x \to \infty} f(x) = L$.

Remarque : On a des définitions analogues en $-\infty$.

3) Limites des fonctions de référence

Propriétés: $-\lim_{x \to +\infty} x^2 = +\infty, \lim_{x \to -\infty} x^2 = +\infty$ $-\lim_{x \to +\infty} x^3 = +\infty, \lim_{x \to -\infty} x^3 = -\infty$ $-\lim_{x \to +\infty} x^n = +\infty, \lim_{x \to -\infty} x^n = +\infty \text{ (pour } n \text{ pair)}$ $-\lim_{x \to +\infty} x^n = +\infty, \lim_{x \to -\infty} x^n = -\infty \text{ (pour } n \text{ impair)}$ $-\lim_{x \to +\infty} \sqrt{x} = +\infty$ $-\lim_{x \to +\infty} \frac{1}{x} = 0, \lim_{x \to -\infty} \frac{1}{x} = 0$ $-\lim_{x \to +\infty} e^x = +\infty, \lim_{x \to -\infty} e^x = 0$

Partie 2 : Limite d'une fonction en un réel A

1) Définition

Définition:

On dit que la fonction f admet pour **limite** $+\infty$ **en** A, si f(x) est aussi grand que l'on veut pourvu que x soit suffisamment proche de A.

Exemple:

La fonction définie par $f(x) = \frac{1}{3-x} + 1$ a pour limite $+\infty$ lorsque x tend vers 3.

On a par exemple:

$$f(2,99) = \frac{1}{3 - 2,99} + 1 = 101$$
$$f(2,9999) = \frac{1}{3 - 2,9999} + 1 = 10001$$

Les valeurs de la fonction deviennent aussi grandes que l'on veut dès que x est suffisamment proche de 3.

La courbe de la fonction "se rapproche" de la droite d'équation x=3 sans jamais la toucher.

Si on prend un intervalle a; $+\infty$ [quelconque, toutes les valeurs de la fonction appartiennent à cet intervalle dès que x est suffisamment proche de a.

<u>Définitions</u>: - On dit que la fonction f admet pour limite $+\infty$ en A si tout intervalle a; $+\infty$ [, a réel, contient toutes les valeurs de f(x) dès que x est suffisamment proche de A et on note : $\lim_{x\to A} f(x) = +\infty$.

- On dit que la fonction f admet pour limite $-\infty$ en A si tout intervalle $]-\infty$; b[, b réel, contient toutes les valeurs de f(x) dès que x est suffisamment proche de A et on note : $\lim_{x \to a} f(x) = -\infty$.

2) Limite à gauche, limite à droite :

Exemple:

Considérons la fonction inverse définie sur \mathbb{R}^* par

$$f(x) = \frac{1}{x}.$$

La fonction f admet des limites différentes en 0 selon que :

x > 0 ou x < 0.

• Si x > 0: Lorsque x tend vers 0, f(x) tend vers $+\infty$ et on note :

$$\lim_{\substack{x \to 0 \\ x > 0}} f(x) = +\infty \text{ ou } \lim_{\substack{x \to 0^+}} f(x) = +\infty.$$

On parle de limite à droite de 0

• Si x < 0: Lorsque x tend vers 0, f(x) tend vers $-\infty$ et on note :

$$\lim_{\substack{x \to 0 \\ x < 0}} f(x) = -\infty \text{ ou } \lim_{\substack{x \to 0^-}} f(x) = -\infty.$$

On parle de limite à gauche de 0.

Méthode: Déterminer graphiquement des limites d'une fonction

Vidéo https://youtu.be/9nEJCL3s2eU

On donne ci-dessous la représentation graphique de la fonction f.

- a) Lire graphiquement les limites en $-\infty$, en $+\infty$, en -4 et en 5.
- b) Compléter alors le tableau de variations de f.

х	-∞	-4		2	5	+	œ
f(x)							
		<u> </u>	25				
			23				

-10

Yvan Monka – Académie de Strasbourg – <u>www.maths-et-tiques.fr</u>

Correction

a)
$$\bullet \lim_{x \to -\infty} f(x) = 5$$
 $\lim_{x \to +\infty} f(x) = 5$

La courbe de f admet une asymptote horizontale d'équation y=5 en $-\infty$ et $+\infty$.

$$\bullet \lim_{x \to -4} f(x) = +\infty$$

La courbe de f admet une asymptote verticale d'équation x=-4.

•
$$\lim_{x \to 5^-} f(x) = +\infty$$
 et $\lim_{x \to 5^+} f(x) = -\infty$

La courbe de f admet une asymptote verticale d'équation x = 5.

Partie 3 : Opérations sur les limites

1) Utiliser les propriétés des opérations sur les limites

 α peut désigner $+\infty$, $-\infty$ ou un nombre réel.

SOMME

$\lim_{x \to \alpha} f(x) =$	L	L	L	+∞	-∞	+∞
$\lim_{x \to \alpha} g(x) =$	L'	+∞	-8	+∞	-∞	-8
$\lim_{x \to \alpha} f(x) + g(x) =$	L + L'	+8	-8	+∞	-∞	F.I.*

^{*} Forme indéterminée : On ne peut pas prévoir la limite éventuelle.

_				
n	P۱	٦г	ווו	
\mathbf{r}	ĸι	"	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	

∞ (désigne -	⊦∞ ou	$-\infty$
------------	-----------	-------	-----------

$\lim_{x \to \alpha} f(x) =$	L	L	∞	0
$\lim_{x \to \alpha} g(x) =$	L'	∞	∞	∞
$\lim_{x \to \alpha} f(x) \times g(x) =$	$L \times L'$	8	8	F.I.

On applique la règle des signes pour déterminer si le produit est $+\infty$ ou $-\infty$.

QUOTIENT

∞ dési	gne +∞	$ou - \infty$
--------	--------	---------------

		0				
$\lim_{x \to \alpha} f(x) =$	L	$L \neq 0$	L	8	8	0
$\lim_{x \to \alpha} g(x) =$	$L' \neq 0$	0	8	L	8	0
$ \lim_{x \to \alpha} \frac{f(x)}{g(x)} = $	$\frac{L}{L'}$	8	0	8	F.I.	F.I.

On applique la règle des signes pour déterminer si le quotient est $+\infty$ ou $-\infty$.

Méthode: Calculer la limite d'une fonction à l'aide des formules d'opération

Vidéo https://youtu.be/at6pFx-Umfs

Déterminer les limites suivantes : a) $\lim_{x \to -\infty} (x - 5)(3 + x^2)$ b) $\lim_{x \to 3^-} \frac{1 - 2x}{x - 3}$

Correction

a)
$$\lim_{x \to -\infty} (x - 5)(3 + x^2) = ?$$

$$\begin{cases}
\lim_{x \to -\infty} x - 5 = -\infty \\
\lim_{x \to -\infty} x^2 = +\infty \operatorname{donc} \lim_{x \to -\infty} 3 + x^2 = +\infty
\end{cases}$$

Comme limite d'un produit : $\lim_{x \to -\infty} (x - 5)(3 + x^2) = -\infty$

b)
$$\lim_{x \to 3^{-}} \frac{1-2x}{x-3} = ?$$

$$\begin{cases} \lim_{x \to 3^{-}} 1 - 2x = 1 - 2 \times 3 = -5\\ \lim_{x \to 3^{-}} x - 3 = 0^{-} \end{cases}$$

Une limite de la forme « $\frac{5}{0}$ » est égale à « ∞ ».

Donc, d'après la règle des signes, une limite de la forme « $\frac{-5}{0^-}$ » est égale à « +∞ ».

D'où, comme limite d'un quotient : $\lim_{x\to 3^-} \frac{1-2x}{x-3} = +\infty$.

2) Cas des formes indéterminée

Comme pour les suites, on rappelle que :

Les quatre formes indéterminées sont, par abus d'écriture :

$$\infty - \infty$$

$$0 \times \infty$$

$$\frac{0}{0}$$

Méthode: Lever une forme indéterminée à l'aide de factorisations (1)

Vidéo https://youtu.be/4NQbGdXThrk

Calculer: $\lim_{x \to +\infty} -3x^3 + 2x^2 - 6x + 1$

Correction

$$\lim_{x \to +\infty} -3x^3 + 2x^2 - 6x + 1 = ?$$

$$\begin{cases}
\lim_{x \to +\infty} -3x^3 = -\infty \\
\lim_{x \to +\infty} 2x^2 = +\infty.
\end{cases}$$

On reconnait une forme indéterminée du type " $\infty - \infty$ ".

• Levons l'indétermination en factorisant par le monôme de plus haut degré :

$$-3x^3 + 2x^2 - 6x + 1 = x^3 \left(-3 + \frac{2}{x} - \frac{6}{x^2} + \frac{1}{x^3} \right)$$

•
$$\lim_{x \to +\infty} \frac{2}{x} = \lim_{x \to +\infty} \frac{6}{x^2} = \lim_{x \to +\infty} \frac{1}{x^3} = 0.$$

Donc, par limite d'une somme :

$$\lim_{x \to +\infty} -3 + \frac{2}{x} - \frac{6}{x^2} + \frac{1}{x^3} = -3$$

$$\begin{cases} \lim_{x \to +\infty} -3 + \frac{2}{x} - \frac{6}{x^2} + \frac{1}{x^3} = -3\\ \lim_{x \to +\infty} x^3 = +\infty \end{cases}$$

Donc, par limite d'un produit :

$$\lim_{x \to +\infty} x^3 \left(-3 + \frac{2}{x} - \frac{6}{x^2} + \frac{1}{x^3} \right) = -\infty$$
Soit:
$$\lim_{x \to +\infty} -3x^3 + 2x^2 - 6x + 1 = -\infty.$$

Méthode: Lever une forme indéterminée à l'aide de factorisations (2)

Vidéo https://youtu.be/8tAVa4itblc

Vidéo https://youtu.be/pmWPfsQaRWI

Calculer: a)
$$\lim_{x \to +\infty} \frac{2x^2 - 5x + 1}{6x^2 - 5}$$
 b) $\lim_{x \to -\infty} \frac{3x^2 + 2}{4x - 1}$

Correction

- a) En appliquant la méthode précédente pour le numérateur et le dénominateur cela conduirait à une forme indéterminée du type " $\frac{\infty}{\infty}$ ".
- Levons l'indétermination en factorisant par les monômes de plus haut degré :

$$\frac{2x^2 - 5x + 1}{6x^2 - 5} = \frac{x^2}{x^2} \times \frac{2 - \frac{5}{x} + \frac{1}{x^2}}{6 - \frac{5}{x^2}} = \frac{2 - \frac{5}{x} + \frac{1}{x^2}}{6 - \frac{5}{x^2}}$$

• $\lim_{x \to +\infty} \frac{5}{x} = \lim_{x \to +\infty} \frac{1}{x^2} = \lim_{x \to +\infty} \frac{5}{x^2} = 0.$

Donc, comme limite de sommes :

$$\lim_{x \to +\infty} 2 - \frac{5}{x} + \frac{1}{x^2} = 2 \quad \text{et} \quad \lim_{x \to +\infty} 6 - \frac{5}{x^2} = 6$$

• Donc, comme limite d'un quotient :

$$\lim_{x \to +\infty} \frac{2 - \frac{5}{x} + \frac{1}{x^2}}{6 - \frac{5}{x^2}} = \frac{2}{6} = \frac{1}{3}$$

Soit :
$$\lim_{x \to +\infty} \frac{2x^2 - 5x + 1}{6x^2 - 5} = \frac{1}{3}$$
.

- b) Il s'agit d'une forme indéterminée du type " $\frac{\infty}{\infty}$ ".
- Levons l'indétermination en factorisant par les monômes de plus haut degré :

$$\frac{3x^2 + 2}{4x - 1} = \frac{x^2}{x} \times \frac{3 + \frac{2}{x^2}}{4 - \frac{1}{x}} = x \times \frac{3 + \frac{2}{x^2}}{4 - \frac{1}{x}}$$

 $\bullet \lim_{x \to -\infty} \frac{1}{x} = \lim_{x \to -\infty} \frac{2}{x^2} = 0$

Donc, comme limite de sommes :

$$\lim_{x \to -\infty} 3 + \frac{2}{x^2} = 3 \quad \text{et} \quad \lim_{x \to -\infty} 4 - \frac{1}{x} = 4$$

• Donc, comme limite d'un quotient :

$$\lim_{x \to -\infty} \frac{3 + \frac{2}{x^2}}{4 - \frac{1}{x}} = \frac{3}{4}$$

ullet De plus, $\lim_{x \to -\infty} x = -\infty$, donc, comme limite d'un produit :

$$\lim_{x \to -\infty} x \times \frac{3 + \frac{2}{x^2}}{4 - \frac{1}{x}} = -\infty$$

Soit :
$$\lim_{x \to -\infty} \frac{3x^2 + 2}{4x - 1} = -\infty.$$

Méthode: Lever une forme indéterminée à l'aide de l'expression conjuguée

Vidéo https://youtu.be/n3XapvUfXJQ

Vidéo https://youtu.be/y7Sbgkb9RoU

Calculer: a)
$$\lim_{x \to +\infty} \sqrt{x+1} - \sqrt{x}$$
 b) $\lim_{x \to 5} \frac{\sqrt{x-1}-2}{x-5}$

b)
$$\lim_{x \to 5} \frac{\sqrt{x-1}-2}{x-5}$$

Correction

a) •
$$\lim_{x \to +\infty} \sqrt{x+1} = +\infty$$
 et $\lim_{x \to +\infty} \sqrt{x} = +\infty$ II s'agit d'une forme indéterminée du type " $\infty - \infty$ ".

• Levons l'indétermination à l'aide de l'expression conjuguée :

$$\sqrt{x+1} - \sqrt{x} = \frac{(\sqrt{x+1} - \sqrt{x})(\sqrt{x+1} + \sqrt{x})}{\sqrt{x+1} + \sqrt{x}}$$

$$= \frac{(\sqrt{x+1})^2 - (\sqrt{x})^2}{\sqrt{x+1} + \sqrt{x}}$$

$$= \frac{x+1-x}{\sqrt{x+1} + \sqrt{x}}$$

$$= \frac{1}{\sqrt{x+1} + \sqrt{x}}$$

• Comme limite d'une somme : $\lim_{x \to +\infty} \sqrt{x+1} + \sqrt{x} = +\infty$. Et donc, comme limite d'un quotient : $\lim_{x \to +\infty} \frac{1}{\sqrt{x+1} + \sqrt{x}} = 0$.

Soit $\lim_{x \to +\infty} \sqrt{x+1} - \sqrt{x} = 0$.

b) •
$$\begin{cases} \lim_{x \to 5} \sqrt{x - 1} - 2 = \sqrt{5 - 1} - 2 = 0 \\ \lim_{x \to 5} x - 5 = 5 - 5 = 0 \end{cases}$$

Il s'agit d'une forme indéterminée du type " $\frac{0}{n}$ ".

Levons l'indétermination à l'aide de l'expression conjuguée :

• Levons l'indétermination à l'aide de l'expr

$$\frac{\sqrt{x-1}-2}{x-5} = \frac{(\sqrt{x-1}-2)(\sqrt{x-1}+2)}{(x-5)(\sqrt{x-1}+2)}$$

$$= \frac{x-1-4}{(x-5)(\sqrt{x-1}+2)}$$

$$= \frac{x-5}{(x-5)(\sqrt{x-1}+2)}$$

$$= \frac{1}{\sqrt{x-1}+2}$$

$$\bullet \lim_{x \to 5} \sqrt{x - 1} + 2 = \sqrt{5 - 1} + 2 = 4$$

Donc, comme limite d'un quotient, on a : $\lim_{x\to 5} \frac{1}{\sqrt{x-1}+2} = \frac{1}{4}$.

Soit :
$$\lim_{x \to 5} \frac{\sqrt{x-1}-2}{x-5} = \frac{1}{4}$$
.

Méthode: Déterminer une asymptote

- Vidéo https://youtu.be/0LDGK-QkL80
- Vidéo https://youtu.be/pXDhrx-nMto

Soit f la fonction définie sur $\mathbb{R} \setminus \{1\}$ par $f(x) = \frac{-2}{1-x}$.

Démontrer que la courbe représentative de la fonction f admet des asymptotes dont on précisera la nature et les équations.

Correction

• $\lim_{x \to +\infty} 1 - x = -\infty$ donc comme limite d'un quotient, on a : $\lim_{x \to +\infty} \frac{-2}{1-x} = 0$.

On prouve de même que : $\lim_{x \to -\infty} \frac{-2}{1-x} = 0$.

On en déduit que la droite d'équation y=0 est asymptote horizontale à la courbe représentative de f en $+\infty$ et en $-\infty$.

• $\lim_{x\to 1^-} 1 - x = 0^+$ donc comme limite d'un quotient, on a : $\lim_{x\to 1^-} \frac{-2}{1-x} = -\infty$

Et $\lim_{x\to 1^+} 1 - x = 0^-$ donc comme limite d'un quotient, on a : $\lim_{x\to 1^+} \frac{-2}{1-x} = +\infty$

On en déduit que la droite d'équation x=1 est asymptote verticale à la courbe représentative de f.

Hors du cadre de la classe, aucune reproduction, même partielle, autres que celles prévues à l'article L 122-5 du code de la propriété intellectuelle, ne peut être faite de ce site sans l'autorisation expresse de l'auteur.

www.maths-et-tiques.fr/index.php/mentions-legales

Yvan Monka – Académie de Strasbourg – www.maths-et-tiques.fr