Statistics 630 – Final Exam Partial Solutions

These solutions are relatively complete but (except for the multiple choice questions) they may not include all the steps or details I would expect. As always, please rework your solutions to the best of your ability.

- 1. (d). $\frac{1}{n}\sum_{i=1}^{n}X_{i}^{2}$ estimates θ^{2} . $[\overline{X}]$ estimates $\mathsf{E}(X_{i})$, which might not even depend on θ .]
- 2. (b). Increasing (just) α makes it easier to reject H_0 . So rejection of H_0 is more likely, no matter what the parameter value is.
- 3. (d). The normal approximation does not apply: think about how likely are small integer values such as 0, 1, 2.
- 4. (c). The MLE for $\sigma = 1/\lambda$ is \overline{V} , so this is what to use in the standard error estimate.
- 5. (e)
- 6. (a). $L(\beta) = \beta^n \prod_{i=1}^n T_i^{-2} \exp\left(-\beta \sum_{i=1}^n T_i^{-1}\right)$, so $\sum_{i=1}^n T_i^{-1}$ is sufficient by the factorization theorem.
- 7. (c).
- 8. (e). By iterated expectation $\mathsf{E}(X) = \mathsf{E}(\mathsf{E}(X|Y)) = \mathsf{E}(Y+Y^2) = \mathsf{E}\left(\frac{1}{n}\sum_{i=1}^n (Y_i+Y_i^2)\right)$.
- 9. (a) $\mathsf{E}\!\left(\frac{2W_i^2}{\beta^2}\right) = 3$ so $\mathsf{E}(\widehat{\beta}^2) = \frac{\beta^2}{3} \mathsf{E}\!\left(\frac{1}{n} \sum_{i=1}^n \frac{2W_i^2}{\beta^2}\right) = \beta^2$. Since $0 < \mathsf{Var}(\widehat{\beta}) = \mathsf{E}(\widehat{\beta}^2) \mathsf{E}(\widehat{\beta})^2$, it must be that $\mathsf{E}(\widehat{\beta}) < \beta$. Thus, $\widehat{\beta}^2$ is unbiased but $\widehat{\beta}$ is biased.
 - (b) The score function is $S(\beta) = \frac{2}{\beta^3} \sum_{i=1}^n W_i^2 \frac{3n}{\beta}$. Note that $\frac{2}{\beta^2} \sum_{i=1}^n W_i^2 \sim \text{chi-square}(3n)$, with mean 3n. Either compute

$$I_n(\beta) = \operatorname{Var}(S(\beta)) = \frac{1}{\beta^2} \operatorname{Var} \left(\frac{2}{\beta^2} \sum_{i=1}^n W_i^2 \right) = \frac{6n}{\beta^2}$$

or

$$I_n(\beta) = -\mathsf{E}\Big(\frac{dS(\beta)}{d\beta}\Big) = \mathsf{E}\Big(\frac{6}{\beta^4}\sum_{i=1}^n W_i^2 - \frac{3n}{\beta^2}\Big) = \frac{6n}{\beta^2}.$$

(c) For some function $h(\cdot)$, the log-likelihood is $\ell(\beta) = h(W_1, \dots, W_n) - 3n \log \beta - \frac{3n\widehat{\beta}^2}{2\beta^2}$. H_0 is rejected for $G^2 > \chi^2_{1-\alpha}(1)$, where

$$G^2 = 2(\ell(\widehat{\beta}) - \ell(\beta_0)) = 3n(\widehat{\beta}^2/\beta_0^2 - \log(\widehat{\beta}^2/\beta_0^2) - 1).$$

[Or use the gamma distribution of $\hat{\beta}^2/\beta_0^2$ under H_0 to get c_α such that $\mathsf{P}(G^2>c_\alpha)=\alpha$.]

10. First, $Y = \sum_{i=1}^{n} X_i \sim \operatorname{Poisson}(n\lambda)$ and we can just work with the distribution for Y. So, letting y be the observed value of Y and ignoring what does not depend on λ , the posterior pdf is

$$f(\lambda|y) \propto (n\lambda)^y e^{-n\lambda} e^{-\lambda},$$

which (as a function of λ) is proportional to the gamma(y+1,n+1) pdf. The posterior mean is therefore $\frac{y+1}{n+1}$.

11. Use gamma integrals to compute

$$\begin{split} \mathsf{E}(S+T) &= \frac{1}{2} \int_0^\infty \int_0^\infty (s^2 + 2st + t^2) e^{-s-t} \, ds dt \\ &= \frac{1}{2} \int_0^\infty s^2 e^{-s} \, ds \int_0^\infty e^{-t} \, dt + \int_0^\infty s e^{-s} \, ds \int_0^\infty t e^{-t} \, dt + \frac{1}{2} \int_0^\infty e^{-s} \, ds \int_0^\infty t^2 e^{-t} \, dt \\ &= \frac{(2!)(0!) + 2(1!)(1!) + (0!)(2!)}{2} = 3. \end{split}$$