Pathway fingerprint statistics

Gabriel Altschuler

May 17, 2012

This document summarizes the arrays and pathways of the Pathway Finger-print.

1 Pathway sources

1.1 Canonical pathways

Gene sets corresponding to canonical pathways were compiled from Reactome (www.reactome.org), Wikipathways (www.wikipathways.org) and KEGG (www.genome.jp/kegg). For the major signaling pathways, the transcriptionally-regulated genes (downstream targets) were obtained from Netpath (www.netpath.org).

1.2 Functional Interaction Modules

A Functional Interaction (FI) network was constructed by extending curated pathways with non-curated sources of information, including protein-protein interactions, gene co-expression, protein domain interaction, Gene Ontology (GO) annotations and text-mined protein interactions, all of which together cover close to half of the human proteome (Wu et al., 2010). The network was decomposed by applying a Markov Cluster Algorithm (MCL) (Enright et al 2002), yielding 144 closely related functional interaction clusters ranging from 10 to 743 nodes. Each cluster was named according to the member gene with the highest interaction degree. For more information contact Irina Kalatskaya and Lincoln Stein.

1.3 Cross-species conversion

A total of 633 *Homo sapiens* gene sets were assembled. Corresponding gene sets for *M. musculus*, *R. norvegicus*, *D. rerio*, *D. melanogaster* and *C.elegans* were inferred by homology (Homologene, www.ncbi.nlm.nih.gov/homologene).

> library(pathprint)

Table 1: Pathway statistics by species

	nGenes	MeanLength	MedianLength	MinLength	MaxLength
Homo sapiens	10903	73.53	41	6	1138
Mus musculus	8951	65.80	37	5	1074
Rattus norvegicus	8312	62.03	35	3	1002
Drosophila melanogaster	2927	23.84	12	0	560
Danio rerio	6749	51.77	30	1	901
Caenorhabditis elegans	2284	18.88	10	0	470

2 Pathway sets

The human pathway set contains 633 pathways.

```
> pathway.info<-as.data.frame(</pre>
   matrix(nrow = 6, ncol = 5,
   dimnames = list(c(names(genesets)[1:6]),
                    c("nGenes", "MeanLength",
                       "MedianLength", "MinLength", "MaxLength"
> for (i in rownames(pathway.info)){
   pathways<-get(genesets[i])</pre>
   pathway.info[i, "nGenes"] <- length(unique(unlist(pathways)))</pre>
   pathway.info[i, "MeanLength"] <- round(mean(sapply(pathways, length)),2)</pre>
   pathway.info[i, "MedianLength"] <- median(sapply(pathways, length))</pre>
   pathway.info[i, "MinLength"] <- min(sapply(pathways, length))</pre>
   pathway.info[i, "MaxLength"] <- max(sapply(pathways, length))</pre>
> types<-c("Reactome",
           "Wikipathways",
           "Netpath",
           "KEGG",
           "Static Module",
           "All")
> pathway.type<-as.data.frame(</pre>
   matrix(nrow = 6, ncol = 5,
   dimnames = list(types,
                    c("nGenes", "MeanLength",
                      "MedianLength", "MinLength", "MaxLength"
> for (i in types[1:5]){
   pathways<-pathprint.Hs.gs[grep(i, names(pathprint.Hs.gs))]</pre>
   pathway.type[i, "nGenes"] <- length(unique(unlist(pathways)))</pre>
   pathway.type[i, "MeanLength"] <- round(mean(sapply(pathways, length)),2)</pre>
```

```
> par(mfcol = c(2,3))
> for (i in rownames(pathway.info)){
   pathways<-get(genesets[i])</pre>
   \#hist(log(sapply(pathways, length),10), breaks = seq(0,3.2,0.2),
           xlim = c(0, log(1200, 10)))
   hist < -hist(sapply(pathways, length), breaks = c(0, 10^seq(-0.1, log(3000, 10), 0.1)),
         plot = FALSE)
   plot(hist$counts ~ hist$mids, log = "x", type = "h", xaxt = "n",
          xlab = "Pathway size", ylab = "Frequency",
          main = i)
   axis(1, hist$mids, round(signif(hist$mids, 2)))
          Homo sapiens
                               Rattus norvegicus
                                                        Danio rerio
      9
                             2
                             9
      20
                                                   20
                             20
      40
                                                   40
   Frequency
                          Frequency
                             9
      8
                                                   9
                            30
      20
                                                   20
                             20
                             9
         0 1 6 28 230
                               0 1 6 28 230
                                                     0 1 6 28 230
                                  Pathway size
                                                        Pathway size
            Pathway size
          Mus musculus
                             Drosophila melanogaster
                                                   Caenorhabditis elegans
      9
                             9
      20
                                                   22
                             20
      40
                                                   4
   Frequency
                          Frequency
                             40
      30
```

8

20

0 1 6 28 230

Pathway size

Figure 1: Histograms of pathway sizes

0 1 6 28 230

Pathway size

8

20

9

20

9

0 1 6 28 230

Pathway size

Table 2: Pathway statistics by type (human genesets)

	nGenes	MeanLength	MedianLength	MinLength	MaxLength
Reactome	4874	153.60	108.00	11	932
Wikipathways	3918	50.14	33.00	6	260
Netpath	3811	170.08	83.00	8	816
KEGG	5990	75.51	55.00	6	1138
Static Module	6458	44.90	21.00	9	733
All	10903	73.53	41.00	6	1138

```
pathway.type[i, "MedianLength"] <- median(sapply(pathways, length))</pre>
   pathway.type[i, "MinLength"] <- min(sapply(pathways, length))</pre>
  pathway.type[i, "MaxLength"] <- max(sapply(pathways, length))</pre>
> for (i in types[6]){
  pathways<-pathprint.Hs.gs</pre>
  pathway.type[i, "nGenes"] <- length(unique(unlist(pathways)))</pre>
  pathway.type[i, "MeanLength"] <- round(mean(sapply(pathways, length)),2)</pre>
   pathway.type[i, "MedianLength"] <- median(sapply(pathways, length))</pre>
   pathway.type[i, "MinLength"] <- min(sapply(pathways, length))</pre>
   pathway.type[i, "MaxLength"] <- max(sapply(pathways, length))</pre>
> types <- types[1:5]</pre>
> overlap<-matrix(nrow = 5, ncol = 5, dimnames = list(types, types))</pre>
> types.genes<-sapply(types, function(x){
   unique(unlist(pathprint.Hs.gs[grep(x, names(pathprint.Hs.gs))]))
   )
> for (i in types){
  overlap[i,]<-sapply(types.genes, function(x){length(intersect(x, types.genes[[i]]))})</pre>
> overlap.lower<-overlap</pre>
> overlap.lower[upper.tri(overlap.lower)]<-""</pre>
```

Table 3: Overlap in gene membership between pathway types (human genesets)

	Reactome	Wikipathways	Netpath	KEGG	Static Module
Reactome	4874				
Wikipathways	2402	3918			
Netpath	1652	1646	3811		
KEGG	3494	2814	2011	5990	
Static Module	3190	2526	2052	3514	6458