Съседни класове. Теорема на Лагранж.

Определение 1. Нека G е група, H е подгрупа на G и $a \in G$. Множеството

$$aH := \{ah \mid h \in H\}$$

се нарича ляв съседен клас на G относно H с представител a, a

$$Ha = \{ha \mid h \in H\}$$

е десният съседен клас на G относно H с представител a.

Твърдение 2. Нека G е група, H е подгрупа на G и $a,b \in G$.

- (i) Определяме $a \sim_{LH} b$, ако $a^{-1}b \in H$. Тогава $\sim_{LH} e$ релация на еквивалентност, чито класове на еквивалентност са левите съседни класове aH на G относно H.
- (ii) Полагаме а $\sim_{RH} b$, ако $ba^{-1} \in H$ Тогава $\sim_{RH} e$ релация на еквивалентност, чишто класове на еквивалентност са десните съседни класове Ha на G относно H.

Доказателство. (i) Ясно е, че $a \sim_{LH} a$, защото $a^{-1}a = e \in H$. Ако $a \sim_{LH} b$, то $a^{-1}b \in H$, откъдето $(a^{-1}b)^{-1} = b^{-1}(a^{-1})^{-1} = b^{-1}a \in H$ и $b \sim_{LH} a$. Ако $a \sim_{LH} b$ и $b \sim_{LH} c$, то $a^{-1}b \in H$ и $b^{-1}c \in H$. Следователно $(a^{-1}b)(b^{-1}c) = a^{-1}(bb^{-1})c = a^{-1}ec = a^{-1}c \in H$ и $a \sim_{LH} c$. Това доказва, че $\sim_{LH} e$ релация на еквивалентност.

Класовете на еквивалентност на \sim_{LH} са

$$C_a = \{b \in G \mid a \sim_{LH} b\} = \{b \in G \mid a^{-1}b \in H\} = \{b \in G \mid b \in aH\} = aH.$$

(ii) Аналогично, $a \sim_{RH} a$, защото $aa^{-1} = e \in H$. Предположението $a \sim_{RH} b$ означава, че $ba^{-1} \in H$ и води до $(ba^{-1})^{-1} = (a^{-1})^{-1}b^{-1} = ab^{-1}$, което е еквивалентно на $b \sim_{RH} a$. Ако $a \sim_{RH} b$ и $b \sim_{RH} c$, то $ba^{-1} \in H$, $cb^{-1} \in H$, откъдето $(cb^{-1})(ba^{-1}) = ca^{-1} \in H$ и $a \sim_{RH} c$. Това доказва, че \sim_{RH} е релация на еквивалентност. Нейните класове на еквивалентност са

$$C_a = \{b \in G \mid a \sim_{RH} b\} = \{b \in G \mid ba^{-1} \in H\} = \{b \in G \mid b \in Ha\} = Ha.$$

Съгласно взаимната еднозначност на съответствието между релациите на еквивалентност и разбиванията на множество, Твърдение 2 дава следното

Следствие 3. Нека G е група, а H е подгрупа на G. Тога ва

(i) $G = \bigcup_{a \in G} aH$ е разбиване в обединение на леви съседни класове, така че от $aH \cap bH \neq \emptyset$ следва aH = bH.

- (ii) $G = \bigcup_{a \in G} Ha$ е разбиване в обединение на десни съседни класове, така че от $Ha \cap Hb \neq \emptyset$ следва Ha = Hb.
 - (ііі) следните условия са еквивалентни:

$$aH = bH \Leftrightarrow a \sim_{LH} b \Leftrightarrow a^{-1}b \in H \Leftrightarrow b = ah$$
 за някое $h \in H$;

(iv)следните условия са еквивалентни:

$$Ha = Hb \Leftrightarrow a \sim_{RH} b \Leftrightarrow ba^{-1} \in H \Leftrightarrow b = ha$$
 за някое $h \in H$.

От свойствата на левите и десните съседни класове получаваме също следното

Следствие 4. Нека G е група, H е подгрупа на G и $a \in G$. Тогава:

- (i) aH = H тогава и само тогава, когато $a \in H$;
- (ii) Ha = H тогава и само тогава, когато $a \in H$;
- (iii) aH е подгрупа на G тогава и само тогава, когато aH = H;
- $(iv)\ Ha\ e\ nodгрупа\ нa\ G\ moгaвa\ u\ само\ moгaвa,\ когamo\ Ha=H.$

Доказателство. (i) По определение, $eH = \{eh = h \mid h \in H\} = H$ за неутралния елемент e на H, така че aH = H = eH е равносилно на $e \sim_{LH} a$ и се свежда до $e^{-1}a = a \in H$.

- (ii) Аналогично, $He = \{he \mid h \in H\} = H$, откъдето Ha = H = He е еквивалентно на $e \sim_{RH} a$ и означава $ae^{-1} = a \in H$.
- (iii) По предположение, H е подгрупа на G. Ако aH е подгрупа на G, то неутралният елемент e на G принадлежи на aH и съществува $h \in H$ с ah = e. Оттук, $a = h^{-1} \in H$ и aH = H съгласно (i).
- (iv) Когато Ha е подгрупа на G, неутралният елемент e на G принадлежи на Ha и съществува $h \in H$ с ha = e. В резултат, $a = h^{-1} \in H$ и Ha = H съгласно (ii).

Твърдение 5. Нека G е група, H е подгрупа на G и $a \in G$. Тогава

- (i) лявата транслация $L_a: H \to aH, L_a(h) = ah, \forall h \in H$ е взаимно еднозначно съответствие между групата H и левия съседен клас aH;
- (ii) дясната транслация $R_a: H \to Ha, R_a(h) = ha, \forall h \in H$ е взаимно еднозначно съответствие между групата H и десния съседен клас Ha.

B частност, ако подгрупата H на G е крайна, то всеки ляв и десен съседен клас на G относно H има същият брой елементи |aH|=|H|=|Ha| както H.

Доказателство. (i) Изображението L_a е инективно, защото от

$$ah_1 = L_a(h_1) = L_a(h_2) = ah_2$$
 sa $h_1, h_2 \in H$

следва $h_1 = h_2$ след ляво умножение с $a^{-1} \in G$. Всеки елемент на aH е от вида $ah = L_a(h)$ за някое $h \in H$, така че L_a е сюрективно, а оттам и биективно изображение на H върху aH.

(ii) Съответствието R_a е инективно, защото дясното умножение с a^{-1} на предположението

$$h_1a = R_a(h_1) = R_a(h_2) = h_2a$$
 sa $h_1, h_2 \in H$

дава $h_1 = h_2$. Всеки елемент на десния съседен клас Ha е от вида $ha = R_a(h)$ за някое $h \in H$, така че R_a е сюрективно, а оттам и биективно съответствие.

Твърдение 6. Нека G е група, а H е подгрупа на G. Тогава съответствието

$$aH \mapsto Ha^{-1}, \quad \forall a \in G$$

между левите и десните съседни класове на G относно H е взаимно еднозначно.

B частност, всяка крайна група G има един и същи брой леви и десни съседни класове относно подгрупа H. Този брой се нарича индекс на H в G и се бележи с [G:H].

Доказателство. Ако $Ha^{-1} = Hb^{-1}$ за $a,b \in G$, то $a^{-1} \sim_{RH} b^{-1}$. По определение, това означава, че $b^{-1}(a^{-1})^{-1} = b^{-1}a \in H$ и е еквивалентно на $b \sim_{LH} a$. Оттук aH = bH и съответствието $aH \mapsto Ha^{-1}$ между левите и десните съседни класове на G относно H е инективно. Споменатото съответствие е сюрективно, а оттам и биективно, защото всеки десен съседен клас Hb е образ на $b^{-1}H$, съгласно $H(b^{-1})^{-1} = Hb$.

$$|G| = |H|[G:H]$$

за реда |G| на G, реда |H| на H и индекса [G:H] на H в G.

Доказателство. Да означим k := [G:H]. Тогава съществуват елементи $a_1, \ldots, a_k \in G$, така че

$$G = a_1 H \cup a_2 H \cup \ldots \cup a_k H$$

е разбиване в обединение на два по два непресичащи се леви съседни класове на G относно H. Левите транслации $L_{a_i}: H \to a_i H$ са взаимно еднозначни изображения на множества, така че $|a_i H| = |H|$ за произволно $1 \le i \le k$ и броят на елементите на G е

$$|G| = |a_1H| + |a_2H| + \ldots + |a_kH| = k|H| = [G:H]|H|.$$

Понеже индексът [G:H] на H в G е естествено число, от Теоремата на Lagrange получаваме следното

Следствие 8. Ако G е крайна група, то редът |H| на всяка подгрупа H на G дели реда |G| на G.

Следствие 9. Ако G е крайна група, то редът $\operatorname{ord}(g)$ на всеки неин елемент $g \in G$ дели реда |G| на G.

Доказателство. Редът $\operatorname{ord}(g)$ на $g \in G$ съвпада с реда $|\langle g \rangle|$ на цикличната подгрупа $\langle g \rangle$, породена от g. Следствие 9 се получава непосредствено от Следствие 8.

Следствие 10. Всяка крайна група G от прост ред p е циклична от ред p.

Доказателство. Редът на произволен елемент $a \in G \setminus \{e\}$, различен от неутралния елемент $e \in G$ е естествен делител на |G| = p, различен от 1. Следователно a е от ред $\operatorname{ord}(a) = p$ и цикличната подрупа $\langle a \rangle$ на G, породена от a е от ред $|\langle a \rangle| = |G|$. Оттук, подмножеството $\langle a \rangle \subseteq G$ съвпада с множеството $\langle a \rangle = G$ и групата G е циклична.

Следствие 11. Ако единствените подгрупи на група G са тривиалната $\{e\}$ и G, то G е крайна циклична група от прост ред p.

Доказателство. Ако $a \in G \setminus \{e\}$, то цикличната група $\langle a \rangle$, породена от a е различна от $\{e\}$ и съвпада с G. Следователно $G = \langle a \rangle$ е циклична група.

Ако цикличната група $G = \langle a \rangle$ е безкрайна, то $a \in G$ е от безкраен ред и за произволно естествено число n > 1 подгрупата $\langle a^n \rangle$ е различна както от $\{e\}$, така и от $G = \langle a \rangle$, защото допускането $a = (a^n)^m$ изисква 1 = nm при $\operatorname{ord}(a) = \infty$ и води до противоречие. Това доказва, че $G = \langle a \rangle$ е крайна циклична група.

Ако редът на $G = \langle a \rangle$ е съставно естествено число mn, то $\langle a^n \rangle$ е подгрупа на $G = \langle a \rangle$ от ред $m \neq 1, mn$. Следователно $\langle a^n \rangle$ е различна от $\{e\}$ и G. Това доказва, че ако единствените подгрупи на G са $\{e\}$ и G, то G е циклична от прост ред p.

Следствие 12. Ако G е крайна група и $K \subset H$ са подгрупи на G, то

$$[G:K] = [G:H][H:K]. (1)$$

Доказателство. От Теоремата на Lagrange за G и H имаме |G| = [G:H]|H|. Същата теорема за H и K дава |H| = [H:K]|K|. Следователно

$$|G| = [G:H][H:K]|K|.$$

Комбинирайки с Теоремата на Lagrange |G|=[G:K]|K| за G и K получаваме (1)