Exercise 1:

- 1. Let (B^1, B^2) be two independent Brownian motions.
 - a) (2 points) Find for $\rho \in [-1, 1]$ constants a and b such that

$$W^1 := B^1 \text{ and } W^2 := aB^1 + bB^2$$

satisfy $[W^1]_t = [W^2]_t = t$ and $[W^1, W^2]_t = \rho t$. Compute $\operatorname{corr}(W^1_t, W^2_t)$.

b) (2 points) Consider adapted and left-continuous bounded processes x_s , y_s , z_s and v_s . Define

$$X_t := \int_0^t x_s dW_s^1, \quad Y_t := \int_0^t y_s dW_s^2,$$

$$Z_t := \int_0^t z_s dX_s, \quad V_t := \int_0^t v_s dY_s.$$

Find $[Z, V]_t, t > 0$.

a)

$$\rho t = [W^1, W^2]$$
$$= [B^1, aB^1 + bB^2]$$

, since the quadratic covariation is bilinear in it's arguments

$$= a \left[B^1, B^1 \right] + b \underbrace{\left[B^1, B^2 \right]}_{=0, \text{since} B^1 \text{and} B^2 \text{independent}}$$

$$= a \left[B^1 \right]$$
$$= at$$

$$\Rightarrow a = \rho$$

$$\begin{split} t &= \left[W^2 \right] \\ &= \left[W^2, W^2 \right] \\ &= \left[aB^1 + bB^2, aB^1 + bB^2 \right] \\ &= \left[aB^1 + bB^2, aB^1 \right] + \left[aB^1 + bB^2, bB^2 \right] \\ &= \left[aB^1, aB^1 \right] + \underbrace{\left[bB^2, aB^1 \right]}_{=0} + \underbrace{\left[aB^1, bB^2 \right]}_{=0} + \left[bB^2, bB^2 \right] \\ &= a^2 \underbrace{\left[B^1, B^1 \right]}_{\left[B^1 \right] = t} + b^2 \underbrace{\left[B^2, B^2 \right]}_{\left[B^2 \right] = t} \\ \Rightarrow b^2 = 1 - a^2 \end{split}$$

$$\begin{split} \operatorname{corr} \left(W_{t}^{1}, W_{t}^{2} \right) &= \frac{\operatorname{Cov} \left(W_{t}^{1}, W_{t}^{2} \right)}{\sigma_{W_{t}^{1}} \sigma_{W_{t}^{2}}} \\ &= \frac{\operatorname{Cov} \left(B_{t}^{1}, a B_{t}^{1} + b B_{t}^{2} \right)}{\sigma_{W_{t}^{1}} \sigma_{W_{t}^{2}}} \\ &= \frac{a \operatorname{Cov} \left(B_{t}^{1}, B_{t}^{1} \right) + b \operatorname{Cov} \left(B_{t}^{1}, B_{t}^{2} \right)}{\sigma_{B_{t}^{1}} \sigma_{a B_{t}^{1} + b B_{t}^{2}}} \\ &= \frac{a \operatorname{Cov} \left(B_{t}^{1}, B_{t}^{1} \right) + b \operatorname{Cov} \left(B_{t}^{1}, B_{t}^{2} \right)}{a b \sigma_{B_{t}^{1}}^{2} \sigma_{B_{t}^{2}}} \\ &= \frac{a}{a b t \sqrt{t}} = b^{-1} t^{-\frac{3}{2}} \end{split}$$

b)

$$[Z, V]_t = \left[\int_0^t z_s dX_s, \int_0^t v dY_s \right]_t$$
$$= \int_0^t z_s v_s d[X, Y]_s$$
$$= \int_0^t z_s v_s d[X, Y]_s$$

Exercise 2:

2. Kunita Watanabe decomposition, hedging with correlated assets.

a) (2 points) Consider two martingales $N, M \in \mathcal{M}^{2,c}$ and denote by $N_t = N_0 + \int_0^t H_s dM_s + L_t$, $t \leq T$, the Kunita Watanabe decomposition of N wrt M. Show that the integrand H satisfies the relation

$$[M,N]_t = \int_0^t H_s d[M]_s, \quad t \leq T.$$

Suppose that - as in the case of martingales driven by Brownian motion - $d[M,N]_t = \alpha_t^{[M,N]}dt$ and $d[M]_t = \alpha_t^{[M]}dt$ with $\alpha_t^{[M]} > 0$. Conclude that $H_t = \alpha_t^{[M,N]}/\alpha_t^{[M]}$.

b) (2 points) Consider a model with two correlated assets with dynamics $dS_t^i = \sigma_i S_t^i dB_t^i$ for two standard Brownian motions B^1 , B^2 with $[B^1, B^2]_t = \rho t$ for some $\rho \in [-1, 1]$. Compute the Kunita Watanabe decomposition of S^2 wrt S^1 . (This is one possible approach for hedging the non-tradable asset S^2 with the tradable asset S^1 .)

Exercise 3:

3. Quadratic variation of compensated Poisson process . Consider a Poisson process N_t with parameter λ and recall that $M_t = N_t - \lambda_t$ is a square integrable martingale. Use the characterization of quadratic variation to show that $[M_t] = N_t$.

Exercise 4:

4. Generator of the Heston model $\,$ (3 points) Consider a two-dimensional process X,v with

$$dX_t = \mu X_t dt + \sigma_1 \sqrt{v_t} dB_{t,1}$$

$$dv_t = \kappa (\theta - v_t) dt + \sigma_2 \sqrt{v_t} dB_{t,2}$$

for constants $\mu, \sigma_1, \sigma_2, \kappa, \theta > 0$ and two Brownian motions B_1, B_2 with $[B_1, B_2]_t = \rho t$ for some $-1 \le \rho \le 1$. Compute the generator of the process (X, v).