Московский Государственный Университет им. М.В. Ломоносова Факультет Вычислительной Математики и Кибернетики Кафедра Суперкомпьютеров и Квантовой Информатики

Практикум на ЭВМ Отчёт № 1 Свёртка изображения с использованием CUDA

Работу выполнил

Сайбель Т. А.

Постановка задачи

Реализовать программу с использованием CUDA, осуществляющую свёртку изображения с 3 фильтрами, и протестировать на 2 типах изображений: 2000x2000 и 300x300.

Описание алгоритма

Рассматривалось 3 фильтра:

$$\begin{bmatrix} 1 & 0 & -1 \\ 0 & 0 & 0 \\ -1 & 0 & 1 \end{bmatrix}$$

Edge detection =

$$\frac{1}{273} \begin{bmatrix}
1 & 4 & 7 & 4 & 1 \\
4 & 16 & 26 & 16 & 4 \\
7 & 26 & 41 & 26 & 7 \\
4 & 16 & 26 & 16 & 4 \\
1 & 4 & 7 & 4 & 1
\end{bmatrix}$$

Gaussian blur =

$$\begin{bmatrix} -1 & -1 & -1 \\ -1 & 9 & -1 \\ -1 & -1 & -1 \end{bmatrix}$$

Sharpen =

Каждый элемент нового изображения вычислялся по следующей формуле:

$$egin{bmatrix} x_{11} & x_{12} & \cdots & x_{1n} \ x_{21} & x_{22} & \cdots & x_{2n} \ dots & dots & \ddots & dots \ x_{m1} & x_{m2} & \cdots & x_{mn} \end{bmatrix} * egin{bmatrix} y_{11} & y_{12} & \cdots & y_{1n} \ y_{21} & y_{22} & \cdots & y_{2n} \ dots & dots & \ddots & dots \ y_{m1} & y_{m2} & \cdots & y_{mn} \end{bmatrix} = \sum_{i=0}^{m-1} \sum_{j=0}^{n-1} x_{(m-i)(n-j)} y_{(1+i)(1+j)} \ \end{array}$$

Пример работы

Оригинал

Edge detection

Gaussian blur

Sharpen

Описание программы

Программы использует make и CImg(для чтения и записи изображения).

В качестве аргументов командной строки программа получает название фильтра (gaussian/edge/sharpen) и название файла с изображением (все изображения хранятся в image/, формат .jpg).

Программа выводит название фильтра и 2 времени выполнения: выполнение CUDA-ядер и выполнения CUDA-ядер + копирование данных, и сохраняет изображение в res/filename + filtername + ".jpg".

Класс Solver: основной класс.

Класс Args: парсит командную строку. Класс Reader: читает изображение Класс Writer: сохраняет изображение Класс Image: хранит изображение (Pixel*) void Solver::solve(int filter, const std::string &inFilename, const std::string &outFilename) - получает фильтр и название файла и сохраняет результат solve<filterName>().

Image Solver::solve<filterName>(Image) - Выделяет необходимую память
на GPU и вызывает Kernel call.

__global__ void applyFilter(Pixel *image, Pixel* filtere, const double * kernel, int kernelCenter, int width, int height) - осуществляет свёртку одного пикселя входного изображения

Результаты

Время работы CUDA-ядер

	Big image(3840x2160)	Small image(300x300)
Gaussian blur	9.36602	0.13296
Edge detection	3.68256	0.065536
Sharpen	3.66874	0.063488

Время работы CUDA-ядер и копирования данных

	Big image(3840x2160)	Small image(300x300)
Gaussian blur	19.2935	0.287904
Edge detection	13.534	0.225984
Sharpen	13.5458	0.221632