部分線形モデル

Semiparametric 推定への応用

川田恵介

Table of contents

Semiparametric 推走への応用	2
準備: 収束	3
数值例	3
数值例	4
$X=4$ についての比較 \dots	4
収束速度	5
Well Specified Model	5
\sqrt{N} CAN estimator	5
イメージ	5
例	6
例	6
まとめ	7
準備: 大表本理論に基づく推論	7
Well-specified model	7
OLS 推定	7
$N=10 \dots \dots \dots \dots \dots \dots \dots \dots \dots $	8
$N=200\ldots$	8
N = 5000	9
分解	9
信頼区間	9
不適切な区間	10
漸近正規性の活用	10
漸近正規性	10
漸近正規性	11
95% 信頼区間	12

サンプルサイズの影響	12
Misspecified model	13
中間まとめ	13
95% 信頼区間	13
典型的教師付き学習の応用	14
典型的教師付き学習の応用	14
Tree	14
Partialling Out	15
Partialling Out with Tree	15
まとめ	15
Partialling Out 推定量の特 徴	16
Partialling Out	16
ばらつきの源泉は?	16
ポイント	16
Oracle 推定值	16
分解	17
Estimation Error	17
例題:母分散の推定	17
書き換え	18
書き換え	18
$\label{eq:Reducible} \mbox{Reducible} \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \$	18
例	19
不適切な例: 小規模サンプル	19
$\label{eq:Reducible} \mbox{Reducible} \times \mbox{Irreducible} \ . \ . \ . \ . \ . \ . \ . \ . \ . \ $	20
例	20
不適切な例: 交差推定なし	21
PartiallingOut	21
分解	21
数值例	22
まとめ	22
Reference	22

Semiparametric 推定への応用

- Partial out 推定が持つ統計的性質を理解するために以下を"復習"
 - 何を目標とするのか? (Well-Specified Model について成り立つ漸近性質)
 - 何について議論しているのか? (収束)

- Partialling out 推定の持つ、教師付き学習の収束の遅さを補う性質を紹介
 - SeminalPaper の一つは、Chernozhukov et al. (2018)

準備: 収束

- 大標本性質: 事例数が大きくなると近似的に成り立つ性質
 - "収束の速度"をざっくり理解
 - 詳しく知りたい人は、大学院レベルの計量分析のテキストなどを参照
- 基本アイディア: "いいレースになる" 単純な数式で記述

数值例

- E[Y|X]
 - $-X \in [-10, 10]$ の整数
- Well-specified model: $Y \sim factor(X)$
- Prune Tree: 剪定をした決定木
- ともに一致推定量だが、
 - Well-specified model の方が、収束速度は同等以上

数值例

X=4 についての比較

収束速度

- 収束速度の上限をシンプルに記述する
 - シンプルな"式"とのスピード勝負
- 発展: ランダウ記法 $\mathcal{O}(n^{\alpha})$ and $o(n^{\alpha})$

Well Specified Model

- $\beta=g(X=4)$ が母集団における値 $\beta^P=E_P[Y|X=4]$ に収束するかどうか
 - OLS で推定すると $\beta = E[Y_i|X_i=4] := \sum_i Y_i/N|X_i=4$
- 一致性を満たすので、 $\lim_{N \to \infty} (\beta \beta^P) \to 0$
- ・ 総和 $N \times \beta := \sum_i Y_i$ は発散する

\sqrt{N} CAN estimator

- $\lim_{N\to\infty} N^{\alpha} \times (\beta \beta^P) = ?$
- 両極端な性質

$$-\,\lim\nolimits_{N\to\infty}N^{\alpha=0}\times(\beta-\beta^P)\to0$$

$$-\,\lim\nolimits_{N\to\infty}N^{\alpha=1}\times(\beta-\beta^P)\to\infty$$

- 収束も発散もしない、"ちょうどいい" α があるのでは?
 - Yes !!!
 - $-\alpha = 1/2 !!!$

イメージ

- $N^{\alpha}(\beta \beta^P) = \frac{\beta \beta^P}{1/N^{\alpha}}$
 - 分子分母ともに 0 に向かって収束する
 - $-\alpha = 1/2$ について、分子の収束スピードは分母と同等
- 多くの教師付き学習 (Nonparametric 推定) で得られる予測値 g(X) は、 $E_P[Y|X]$ に収束するが、
 - $-\alpha = 1/2$ に収束速度で負ける!!!

例

例

まとめ

- OLS は、1/N^{1/2} と同等の収束速度
 - ただし、Misspecified であれば、BLP に収束
- 代表的な教師付き学習の推定値は、 $1/N^{1/2}$ に収束速度で負ける
 - "収束が遅い"
- Partialling Out: $1/N^{1/4}$ には勝つ教師付き学習を前提

準備: 大表本理論に基づく推論

- サンラムサンプリング (IID) の仮定が持つ、母集団への含意は?
 - 母集団への詳細な仮定なしで何が言える?

Well-specified model

- "入門教科書"的な問題設定
- $g(D, X) = \beta_0 + \beta_D D + \beta_1 X_1 + ... + \beta_L X_L$
- $E_P[Y|D,X]=g(D,X)$ を達成する β^P が存在

OLS 推定

- $Y \sim X$ を Empirical Risk を最小にするように推定
 - 推定値のばらつき (Sampling Uncertainly) の源泉は?
 - -Y,Xのデータ上の分布の (研究者間での) 違い

100 名研究者が独立して研究 (事例数 = 10)

N = 200

N = 5000

分解

• β_{∞} : サンプルサイズ無限大の元での推定値, β : 推定値

真
$$P$$
 $-\beta = \underbrace{\beta P - \beta_{\infty}}_{=0 \ Consistency}$
$$+ \underbrace{\beta_{\infty} - E_P[\beta]}_{=0 \ : \ Bias}$$

$$\underbrace{E_P[\beta] - \beta}_{\neq 0}$$

信頼区間

- •「推定値 = 真の値」を前提に議論を始めると、"100%" 間違う
 - 独立した研究者間での合意も不可能
- ハードルを下げる
 - 大多数 (典型的には 95%) の研究者について、真の値を含む区間 (信頼区間) を計算する

- 注意: 信頼区間自体は、独立した研究間で異なる
 - 合意可能なのは、「多くの研究者について、信頼区間は真の値を含む」のみ

不適切な区間

漸近正規性の活用

- 信頼区間を計算するには、推定値の分布 (研究者間の散らばり具合) への仮定が必要
 - 本当の分布は、母分布に依存
- 母分布に直接仮定を置くアプローチ: 教科書的な最尤法、ベイズ
- 近似性質を仮定するアプローチ: サンプリング方法への仮定 (ランダムサンプリング)"のみ" に基づいて 導出される、漸近性質 (サンプルサイズがある程度大きければ、近似的になりたつ性質) を活用

漸近正規性

• 中心極限定理 + 不偏性から導ける漸近正規性を活用

$$\lim_{N \to \infty} \sqrt{N} \times (\beta - \beta^P) \sim \mathcal{N}$$

• サンプルサイズが大きければ、正規分布で近似できる

- 真の値よりも、"早め"に収束する
- \sqrt{N} CAN estimator

漸近正規性

• 注意: 真の値からの"距離"だけわかる

95% 信頼区間

サンプルサイズの影響

Misspecified model

- $g(D,X)=\beta_0+\beta_DD+\beta_1X_1+..+\beta_LX_L$ $-\beta$ を推定
- β をどう選んでも、 $E_P[Y|D,X] \neq g(D,X)$ (Approximation Error)
 - OLS で推定すると $\mathbf{BLP}\ \beta^{BLP}$ についての CAN estimator
 - BLP について信頼区間を提供

中間まとめ

$$\begin{split} \beta^{BLP} - \beta &= \underbrace{\beta_{BLP}(X) - \beta_{\infty}(X)}_{=0} \\ + \underbrace{\beta_{\infty}(X) - E[\beta]}_{=0} \\ &\underbrace{E[\beta] - \beta}_{\text{otherwise}} \end{split}$$

95% 信頼区間

典型的教師付き学習の応用

- $\beta^P = E_P[E_P[Y|D=1,X] E_P[Y|D=0,X]]$ を推定できるか?
- 一致性を持つ予測モデル g(D,X) を推定

–
$$\beta = \sum_i \bigl[g(D+1,X_i) - g(D,X_i) \bigr]$$

典型的教師付き学習の応用

$$\beta^P - \beta = \underbrace{\beta^P - \beta_\infty}_{\simeq 0}$$

$$+\underbrace{\underbrace{\beta_{\infty}-E_{P}[\beta]}_{\neq 0}+\underbrace{E_{P}[\beta]-\beta}_{?}}_{?}$$

- 一般に、母集団の明確な特徴について、CAN estimator にならない
 - 何を推定している?

Tree

Partialling Out

目指すは

$$\beta^{P} - \beta = \underbrace{\beta^{P} - \beta_{\infty}}_{\simeq 0}$$

$$+ \underbrace{\beta_{\infty} - E_{P}[\beta]}_{\simeq 0}$$

$$\underbrace{E_{P}[\beta] - \beta}_{\sim \mathcal{N}}$$

Partialling Out with Tree

まとめ

- CAN estimator であれば、近似的な信頼区間を用いて、母集団の性質について議論できる
- OLS は、BLP についての信頼区間を形成できるが、一般に周辺化された平均差についてではない
 - 特定の変数間の関係性を捉えるのには向いていない
- 教師付き学習の Naive な応用は、"何を推定しているのかわからない"

Partialling Out 推定量の特徴

- Partialling Out 推定量はどのような大表本性質を持つのか?
 - -緩やかな条件 (機械学習の推定値が $1/n^{1/4}$ よりも早い速度で、条件つき平均値に収束) の下で
 - 単回帰と同じ性質 (\sqrt{N} CAN)!!!!

Partialling Out

- 議論を見やすくするために、データを 2 分割 (Auxiliary/Estimation データ) し、交差推定しない
- 1. Auxiliary データを用いて、 $g_Y(X) \sim E_P[Y|X], g_D(X) \sim E_P[D|X]$ を推定
- 2. Estimation データを用いて、 $Y g_V(X) \sim D g_D(X)$ を OLS 推定し、 β を推定

ばらつきの源泉は?

- 1. Estimation データにおける Y, D の分布
- 2. Auxiliary データから推定される予測関数 $g_Y(X), g_D(X)$

ポイント

- 一般に、 $g_Y(X), g_D(X)$ の収束が遅いので、 β の収束速度は $1/n^{1/2}$ に負けるが、、、
- $g_{Y}(X), g_{D}(X)$ が $1/n^{1/4}$ よりも早ければ、2番目の源泉は漸近的に無視できる!!!
 - $-g_{V}(X),g_{D}(X)$ が"推定されている"という事実を漸近的に無視できる!!!

Oracle 推定値

- 理解の助けとして、仮想的な推定値 (Oracle Estimator β^{Oracle}) を導入
- $Y E_P[Y|X] \sim D E_P[D|X]$ を OLS した結果得られる係数値
 - $-E_{P}$ は非確率変数なので、既知のルールで変換した変数同士を回帰しているだけ
 - ばらつきの厳選は、Estimation データにおける Y,D の分布のみ
 - $-\sqrt{N}$ CAN estimator

分解

$$\beta^{P} - \beta = \underbrace{\beta^{P} - \beta^{Oralce}}_{\sim \mathcal{N}}$$

$$+\underbrace{\beta^{Orable} - \beta}_{\rightarrow \ 0 \ !!!!}$$

Estimation Error

例題: 母分散の推定

- 性質を理解しやすくするために、よりシンプルな状況を考える
- Estimand (母分散): $E_P[(Y-E_P[Y])^2]$
- Estimator $E[(Y-g)^2]$
 - g は Auxiliary データから推定

書き換え

$$E[(Y-g)^2] = E[(\underbrace{Y-E_P[Y]}_{IrreducibleError} + \underbrace{E_P[Y]-g}_{ReducibleError})^2]$$

書き換え

$$E[(Y-g)^2] = \underbrace{E[(Y-E_P[Y])^2]}_{Oracle}$$

$$+2\underbrace{\times E[(E_P[Y]-g)\times (Y-E_P[Y])]}_{Reducible\times Irreducible}$$

$$+\underbrace{E[(E_P[Y]-g)\times(E_P[Y]-g)]}_{Reducible\times Reducible}$$

Reducible × Reducible

$$E[(E_P[Y] - g) \times (E_P[Y] - g)]$$

$$= \underbrace{(E_P[Y] - g) \times (E_P[Y] - g)}_{Reducible \times Reducible}$$

- Auxiliary データが研究者によって異なるので、ばらつきをもつ
 - g がバイアスを持つのであれば、掛け算もバイアスを持つ
- ただし掛け算なので、g の推定精度が十分に高ければ (乖離が"1" より小さければ)、掛け算の方が乖離は小さくなる
 - Reducible 単体よりも、収束速度は早くなる

例

Type → Reducibe*Reducible → Reducible

不適切な例: 小規模サンプル

Type → Reducibe*Reducible → Reducible

$\mathsf{Reducible} \times \mathsf{Irreducible}$

$$2\times E[\underbrace{(E_P[Y]-g)\times (Y-E_P[Y])}_{\text{\texttt{\texttt{m}}\texttt{\texttt{\texttt{H}}}\texttt{\texttt{\texttt{H}}}\texttt{\texttt{\texttt{B}}}}]$$

$$=2 imes(E_P[Y]-g) imes\underbrace{[E[Y]-E_P[Y]]}_{1/\sqrt{N}}$$
रपूर्

- 注意: g の推定を別のデータで行っているので、書き換えができる
 - バイアスの除去
 - 収束の改善

例

不適切な例: 交差推定なし

${\sf PartiallingOut}$

• ほぼ同じ議論が適用できる

$$\beta = \frac{E[(D-E[D|X])(Y-E[Y|X])]}{E[(D-E[D|X])^2]}$$

$$=\frac{E[(D-E_{P}[D|X]+E_{P}[D|X]-E[D|X])(Y-E_{P}[Y|X]+E_{P}[Y|X]-E[Y|X])]}{E[(D-E[D|X])^{2}]}$$

分解

- Oracle 推定料 + Reducible×Reducible + Reducible× Irreducible
- 大きな違いは、Reducible × Reducible

$$= E[(E_P[Y|X] - g_V(X)) \times (E_P[D|X] - g_D(X))]$$

- Yを予測する"AI" と Dを予測する"AI" の間違いの掛け算
 - 十分に精度が高ければ、"AI"同士の"ダブルチェック"により、間違いを減らせる

- 精度が悪いと、間違いが増加

数值例

まとめ

- Partialling out 推定は、 g_Y, g_D が $n^{-1/4}$ よりも早く収束すれば、漸近正規性
 - サンプルサイズがある程度大きくなれば、バイアスを無視できる (Debiased)
- AI 同士の"掛け算" (Double) にすることで、収束速度を上げている
 - 交差推定も活用
- より一般化可能 (後述)

Reference

Chernozhukov, Victor, Denis Chetverikov, Mert Demirer, Esther Duflo, Christian Hansen, Whitney Newey, and James Robins. 2018. "Double/Debiased Machine Learning for Treatment and Structural Parameters." *The Econometrics Journal* 21 (1): C1–68.