Solutions to Fake Algebra

Allen Wang

AQU

Contents

1	Unsourced 1.1 Solution	3
2	Unsourced 2.1 Solution	4
3	AIME 1986/2 3.1 Solution	5
4	Unsourced 4.1 Solution 1	6 6
5	Unsourced 5.1 Solution	7
6	Unsourced 6.1 Solution	8
7	Unsourced 7.1 Solution	9
8	Unsourced 8.1 Solution 1 8.2 Solution 2	10 10 10
9		11 11
10		12 12
11		13 13
12	Unsourced 12.1 Solution	14 14

13	AIME 1991/15 13.1 Solution	15 15
14	Unsourced 14.1 Solution	16
15	HMMT Feb. Algebra 2014/9 15.1 Solution	17 17
16	Unsourced 16.1 Solution	18
17	rd123/tworigami Mock AIME 2020/13 17.1 Solution	19 19
18	PUMaC Div. A Algebra 2018/6 18.1 Solution	20 20
19	2018 Mock AIME, by TheUltimate123 19.1 Solution	21 21
20	Mildort AIME 3/15 20.1 Solution	22 22
	IMO 2001/6 21.1 Solution	23

§ 1 Unsourced

If a < b < c < a + b, order $\frac{b^2 + c^2 - a^2}{bc}$, $\frac{c^2 + a^2 - b^2}{ca}$, $\frac{a^2 + b^2 - c^2}{ab}$ in ascending order.

§ 1.1 Solution

Consider a triangle with side lengths a < b < c, and let $\angle A, \angle B, \angle C$ denote the angles opposite the sides a, b, c as usual. This is motivated by our somewhat-symmetric expressions, as well as the requirement that c < a + b. Observe that by Law of Cosines:

$$b^{2} + c^{2} - 2bc \cos \angle A = a^{2}$$
$$b^{2} + c^{2} - a^{2} = 2bc \cos \angle A$$
$$2 \cos \angle A = \frac{b^{2} + c^{2} - a^{2}}{bc}.$$

Doing this to the other two expressions, we want to sort $2\cos\angle A, 2\cos\angle B, 2\csc\angle C$ in ascending order. Since cos is decreasing on $[0,\pi]$ —in degrees, this is $[0^\circ,180^\circ]$ —we want to sort $\angle A, \angle B, \angle C$ in descending order. Noting that, in a triangle, the shortest and longest sides are opposite the smallest and largest angles respectively, we have $\angle C > \angle B > \angle A$. Hence $2\cos\angle C < 2\cos\angle B < 2\cos\angle A$, so we conclude that $\frac{a^2+b^2-c^2}{ab}, \frac{c^2+a^2-b^2}{ca}, \frac{b^2+c^2-a^2}{bc}$ is the correct ordering.

§ 2 Unsourced

Prove that the A and B angle bisectors of a triangle are equal in length if and only if BC = CA.

§ 2.1 Solution

§3 AIME 1986/2

Evaluate the product $(\sqrt{5} + \sqrt{6} + \sqrt{7})(-\sqrt{5} + \sqrt{6} + \sqrt{7})(\sqrt{5} - \sqrt{6} + \sqrt{7})(\sqrt{5} + \sqrt{6} - \sqrt{7}).$

§ 3.1 Solution

Consider a triangle with side lengths $2\sqrt{5}$, $2\sqrt{6}$, $2\sqrt{7}$. By Heron's formula, the area of this triangle is:

$$\sqrt{(\sqrt{5}+\sqrt{6}+\sqrt{7})(-\sqrt{5}+\sqrt{6}+\sqrt{7})(\sqrt{5}-\sqrt{6}+\sqrt{7})(\sqrt{5}+\sqrt{6}-\sqrt{7})}.$$

To be continued.

§ 4 Unsourced

Let x and y be real numbers such that $(x-5)^2 + (y-5)^2 = 18$. Determine the maximum value of $\frac{y}{x}$.

§ 4.1 Solution 1

It is possible to solve this purely algebraically. Suppose $\frac{y}{x} = k \implies y = kx$. We wish to maximize k. Substituting y = kx into our equation and treating it as a quadratic in x gives:

$$(x-5)^{2} + (kx-5)^{2} = 18$$
$$x^{2} - 10x + 25 + k^{2}x^{2} - 10kx + 25 = 18$$
$$(k^{2} + 1)x^{2} - 10(k+1)x + 32 = 0.$$

For this to have real roots, the discriminant must be nonnegative, so:

$$(10(k+1))^2 - 4(k^2+1)(32) \ge 0$$
$$100k^2 + 200k + 100 - 128k^2 - 128 \ge 0$$
$$-28k^2 + 200k - 28 \ge 0$$
$$7k^2 - 50k + 7 \le 0$$
$$(7k-1)(k-7) \le 0.$$

Hence the maximum value of k is 7, since for k > 7 we have (7k - 1)(k - 7) > 0.

§ 4.2 Solution 2

§ 5 Unsourced

Let a,b,c be positive reals. Prove that $\sqrt{a^2-ab+b^2}+\sqrt{b^2-bc+c^2} \geq \sqrt{a^2+ac+c^2}$.

$\S 5.1$ Solution

§ 6 Unsourced

Minimze
$$\sqrt{x^2-3x+3}+\sqrt{y^2-3y+3}+\sqrt{x^2-\sqrt{3}xy+y^2}$$
 over the reals.

§ 6.1 Solution

§ 7 Unsourced

Prove that for reals $a, b \geq 1$,

$$\sqrt{a^2 - 1} + \sqrt{b^2 - 1} \le ab.$$

§ 7.1 Solution

Consider a triangle with two sides of length $a, b \ge 1$ such that the altitude from the vertex formed from the sides of length a, b has length 1. Label the triangle and its altitudes as shown: (There should be a diagram here, but things are broken)

We note that $AD = \sqrt{b^2 - 1}$ and $BD = \sqrt{a^2 - 1}$ by the pythagorean theorem. Hence by the $\frac{1}{2}bh$ area formula, we have $2[ABC] = \sqrt{a^2 - 1} + \sqrt{b^2 - 1}$. Now let $\angle ACB = \theta$. By the sine area formula, we have $2[ABC] = ab \sin \theta$. As $\sin \theta \le 1$, it follows that $ab \sin \theta \le ab$, so we have $\sqrt{a^2 - 1} + \sqrt{b^2 - 1} \le ab$ as desired.

§8 Unsourced

What value of x maximizes (21 + x)(1 + x)(x - 1)(21 - x), if x must be positive?

§ 8.1 Solution 1

Note that this is the square of the area of a triangle with sides 20, 22, 2x, by Heron's. From the sine area formula, we get that the area of the triangle is $220 \sin \theta$, where θ is the measure of the angle between the sides of lengths 20 and 22. $\sin \theta$ attains its maximum value when $\theta = 90^{\circ}$, where it is equal to 1. In this case, we get from the Pythagorean Theorem that $2x = \sqrt{20^2 = 22^2} \implies x = \sqrt{221}$.

§ 8.2 Solution 2

Also possible to just use difference of squares and just do algebra.

§ 9 TrinMaC 2020/19

Compute

$$\sum_{n=0}^{\infty} \cos^{-1} \left(\frac{\sqrt{n(n+1)(n+2)(n+3)} + 1}{(n+1)(n+2)} \right).$$

§ 9.1 Solution

§ 10 Unsourced

Let a, b, c, d be real numbers such that $a^2 - b^2 - c^2 + d^2 = ad + bc$ and $a^2 + b^2 - c^2 - d^2 = 0$. Determine the value of $\frac{ab+cd}{ad+bc}$.

§ 10.1 Solution

We note that the first condition rewrites as $a^2+d^2-2ad\cos 60^\circ=b^2+c^2+2bc\cos 120^\circ$, while the second rearranges as $a^2+b^2=c^2+d^2$. So a,b,c,d are the side lengths of a cyclic quadrilateral with angles $60^\circ,120^\circ$ inscribed in a circle. WLOG AB=a,BC=b,CD=c,DA=d. Now the Pythagorean inequality combined with $a^2+b^2=c^2+d^2$ gives us $\angle ABC=\angle ADC=90^\circ$. So $\triangle ABC,\triangle ADC$ are 30-60-90. WLOG setting b=c=1 then gives us $a=d=\sqrt{3}$, after which we can easily get the answer as $\frac{\sqrt{3}}{2}$.

§ 11 AIME II 2006/15

Given that x, y, and z are real numbers that satisfy:

$$x = \sqrt{y^2 - \frac{1}{16}} + \sqrt{z^2 - \frac{1}{16}}$$
$$y = \sqrt{z^2 - \frac{1}{25}} + \sqrt{x^2 - \frac{1}{25}}$$
$$z = \sqrt{x^2 - \frac{1}{36}} + \sqrt{y^2 - \frac{1}{36}}$$

and that $x + y + z = \frac{m}{\sqrt{n}}$, where m and n are positive integers and n is not divisible by the square of any prime, find m + n.

§ 11.1 Solution

The RHS looks suspiciously like the Pythagorean Theorem. After a bit of trial and error based on this observation, we realize that x,y,z are the side lengths of a triangle with altitudes $\frac{1}{4},\frac{1}{5},\frac{1}{6}$ (the altitudes and the sides are ordered in the same way, so the altitude of length $\frac{1}{4}$ is perpendicular to the side of length x). Since the area is the same we have $\frac{x}{4} = \frac{y}{5} = \frac{z}{6}$. Let this quantity equal k, so x = 4k, y = 5k, z = 6k. Then the area is $\frac{k}{2}$. On the other hand, Heron's gives us the area as $\frac{15k^2\sqrt{7}}{4}$. Setting these equal gives us $k = \frac{2}{15\sqrt{7}}$. Since x + y + z = 15k it follows that the desired quantity is $\frac{2}{\sqrt{7}} \Longrightarrow 9vv$.

§ 12 Unsourced

Consider sequence a_n with $a_1 = \sqrt{2} + 1$ and $a_n a_{n-1}^2 + 2a_{n-1} - a_n = 0$ for $n \ge 2$. Find a_{1000} .

§ 12.1 Solution

§ 13 AIME 1991/15

For positive integer n, define S_n to be the minimum value of the sum

$$\sum_{k=1}^{n} \sqrt{(2k-1)^2 + a_k^2},$$

where a_1, a_2, \dots, a_n are positive real numbers whose sum is 17. There is a unique positive integer n for which S_n is also an integer. Find this n.

§ 13.1 Solution

§ 14 Unsourced

If x, y, z are positive numbers such that

$$x^{2} + xy + \frac{1}{3}y^{2} = 25$$
$$\frac{1}{3}y^{2} + z^{2} = 9$$
$$z^{2} + zx + x^{2} = 16,$$

find xy + 2yz + 3zx.

§ 14.1 Solution

We substitute $(a,b,c)=(x,\frac{y}{\sqrt{3}},z).$ The equations rewrite as:

$$a^{2} + ab\sqrt{3} + b^{2} = 25$$
$$b^{2} + c^{2} = 9$$
$$a^{2} + ac + c^{2} = 16$$

We then use the implicit LoC trick to get that $\frac{1}{2}bc + \frac{1}{4}ab + \frac{\sqrt{3}}{4}ca = [ABC]$ where $\triangle ABC$ is a triangle with side lengths 3, 4, 5. In this case, [ABC] is simply 6, so

$$\frac{1}{2}bc + \frac{1}{4}ab + \frac{\sqrt{3}}{4}ca = 6.$$

Substituting into (x, y, z) gives us

$$\frac{1}{4\sqrt{3}}xy + \frac{1}{2\sqrt{3}}yz + \frac{\sqrt{3}}{4}zx = 6.$$

Multiplying by $4\sqrt{3}$ gives the desired quantity equal to $24\sqrt{3}$. Not completely sure this is right pls check!

§ 15 HMMT Feb. Algebra 2014/9

Given a, b, and c are complex numbers satisfying

$$a^{2} + ab + b^{2} = 1 + i$$

 $b^{2} + bc + c^{2} = -2$
 $c^{2} + ca + a^{2} = 1$,

compute $(ab + bc + ca)^2$. (Here, $i = \sqrt{-1}$.)

§ 15.1 Solution

The idea is to use LoC to show a more general statement for reals, which can be phrased as a polynomial identity and thus must hold in complex numbers as well! Will add more later.

§ 16 Unsourced

Find all triples (x, y, z) such that xy + yz + zx = 1 and $5(x + \frac{1}{x}) = 12(y + \frac{1}{y}) = 13(z + \frac{1}{z})$.

§ 16.1 Solution

§ 17 rd123/tworigami Mock AIME 2020/13

If a, b, c, d are positive real numbers such that

$$ab + cd = 90,$$

 $ad + bc = 108,$
 $ac + bd = 120,$
 $a^{2} + b^{2} = c^{2} + d^{2}.$

and $a+b+c+d=\sqrt{n}$ for some integer n, find n.

§ 17.1 Solution

Consider a quadrilateral ABCD with AB = a, BC = b, CD = c, DA = a, and $\angle B = \angle D = 90^{\circ}$. Then from Pythagoras we have $a^2 + b^2 = c^2 + d^2 = AC$. Further since $\angle B + \angle D = 180^{\circ}$ this quadrilateral is cyclic, so inscribe it in a circle. This also means that $\angle C = 180^{\circ} - \angle A$. We know that

$$[ABCD] = [ABC] + [ADC] = \frac{ab + cd}{2}.$$

Since ab + cd = 90 is given, we get [ABCD] = 45. We can also write [ABCD] = [ABD] + [CBD]. Then by the sine area formula and using the fact that $\sin(180^{\circ} - \theta) = \sin \theta$, this is equal to

$$\frac{1}{2}\sin\angle A(ad+bc) = 54\sin\angle A.$$

But [ABCD] = 45 as well, so $\sin \angle A = \frac{5}{6}$. Finally, we note that by Ptolemy's we have:

$$ac + bd = AC \cdot BD \implies AC \cdot BD = 120$$

Now, since the inscribed angle with measure θ of chord \overline{BD} satisfies $\sin \theta = \frac{5}{6}$, it follows from LoS on either $\triangle BDA$ or $\triangle BDC$ that $BD = \frac{5}{6}AC$, since \overline{AC} is a diameter and therefore AC = 2R. This gives us:

$$\frac{5}{6}AC^2 = 120 \implies AC^2 = 144 = a^2 + b^2 = c^2 + d^2.$$

To finish, we consider the identity:

$$(a+b+c+d)^2 = a^2 + b^2 + c^2 + d^2 + 2(ab+ac+ad+bc+bd+cd)$$

Substituting $a^2 + b^2 = c^2 + d^2 = 144$ as well as the values given at the start of the problem, we get $(a+b+c+d)^2 = n = 924$.

§ 18 PUMaC Div. A Algebra 2018/6

Let a,b,c be nonzero reals such that $\frac{1}{abc} + \frac{1}{a} + \frac{1}{c} = \frac{1}{b}$. The maximum possible value of

$$\frac{4}{a^2+1}+\frac{4}{b^2+1}+\frac{7}{c^2+1}$$

is $\frac{m}{n}$ for relatively prime positive integers m and n. Find m+n.

§ 18.1 Solution

§ 19 2018 Mock AIME, by TheUltimate123

Let a,b,c,d be positive real numbers such that

$$195 = a^2 + b^2 = c^2 + d^2 = \frac{13(ac + bd)^2}{13b^2 - 10bc + 13c^2} = \frac{5(ad + bc)^2}{5a^2 - 8ac + 5c^2}$$

Then a+b+c+d can be expressed in the form $m\sqrt{n}$, where m and n are positive integers and n is not divisible by the square of any prime. Find m+n.

§ 19.1 Solution

§ 20 Mildort AIME 3/15

Let Ω denote the value of the sum

$$\sum_{k=1}^{40} \cos^{-1} \left(\frac{k^2 + k + 1}{\sqrt{k^4 + 2k^3 + 3k^2 + 2k + 2}} \right).$$

The value of $\tan{(\Omega)}$ can be expressed as $\frac{m}{n}$, where m and n are relatively prime positive integers. Compute m+n.

§ 20.1 Solution

We note that $\frac{k^2+k+1}{\sqrt{k^4+2k^3+3k^2+2k+2}} = \frac{k^2+k+1}{\sqrt{(k^2+k+1)^2+1}}$. Drawing out a right triangle quickly, it becomes clear that the summation is equivalent to:

$$\sum_{k=1}^{40} \arctan\left(\frac{1}{k^2 + k + 1}\right).$$

We would ideally like to make this sum telescope. Define a function f such that:

$$\arctan\left(\frac{1}{k^2+k+1}\right) = \arctan\left(\frac{1}{f(k)}\right) - \arctan\left(\frac{1}{f(k+1)}\right).$$

Then the summation telescopes to $\arctan\left(\frac{1}{f(1)}\right) - \arctan\left(\frac{1}{f(41)}\right)$ which is hopefully easier to evaluate. Using arctangent addition, we have $\arctan\left(\frac{1}{x}\right) - \arctan\left(\frac{1}{y}\right) = \frac{y-x}{1+xy}$, so we need:

$$\frac{1}{k^2+k+1} = \frac{f(k+1)-f(k)}{f(k)f(k+1)+1}.$$

After looking at this for a while it becomes clear that f(k) = k works (verifiable with substitution). So we just have to evaluate $\arctan(1) - \arctan\left(\frac{1}{41}\right)$. Using the arctangent addition formula again, we get that this is equal to $\arctan\left(\frac{20}{21}\right)$, so $\tan(\Omega) = \frac{20}{21}$ which yields an answer of 41.

§ 21 IMO 2001/6

Let a > b > c > d be positive integers and suppose that

$$ac + bd = (b + d + a - c)(b + d - a + c).$$

Prove that ab + cd is not prime.

§ 21.1 Solution

Look at the problem for a few minutes and cry until you decide to give up and do another unit because Dennis made an IMO P6 required.

