# STAT40790 – Predictive Analytics 1 Project Brian Buckley 14203480

#### 1. Introduction

The objective of this study was to determine whether the population density of an area is a good indication of the crime rate.

Data were collected on the population density (number of people per unit area) and the crime rate (per 100,000 people) for 6 cities.

Given the question asked, we therefore take the population density as the explanatory variable (x) and the Robbery rate as the output (predicted) variable (y). The regression method of least squares was used in this analysis together with ANOVA analysis.

## 2. Data The data is shown in table 1 below.

| Population density              | Robbery rate         |
|---------------------------------|----------------------|
| (number of people per unit area | (per 100,000 people) |
| 59                              | 209                  |
| 45                              | 180                  |
| 75                              | 195                  |
| 72                              | 186                  |
| 89                              | 200                  |
| 70                              | 204                  |
|                                 |                      |

 $S_{XX} = 1119.33$ ,  $S_{XY} = 304.67$ ,  $SS_E = 522.41$ ,  $\bar{X} = 68.33$ ,  $\bar{Y} = 195.67$ 

Table 1: Population versus crime rate for 6 cities

#### 3. Analysis

Figure 1 is a scatter plot of the data and a linear regression fit with 95% CI to the data using R. The plot visually suggests the fitted positive linear relationship between population density and robbery rate could be tenuous given the spread of the confidence interval and the large residuals.



Figure 1: Scatter plot of population density against robbery rate with a linear model fitter using R

For a linear model to hold for the data we must assume the expected value of the sum of the residuals is zero and the sum of the observed values  $(\hat{Y}_i)$  equals the sum of the fitted values  $(\hat{Y}_i)$ . Both hold for this data set so we conclude a linear model is appropriate in this instance notwithstanding the concerns raised above.

The least squares estimates for intercept and slope are shown in the analysis results below in table 2  $(\hat{\beta}_0 = 177.084, \hat{\beta}_1 = 0.272)$ .

The t-test and formal F-test suggest that crime rate is not related to population density. A search for further evidence resulted in corroborative evidence from the research community (e.g. see reference 1).

We carried out both a t-test hypothesis and ANOVA with F-test hypothesis. The t-test result (0.796) is much less than t-critical (2.7) so we fail to reject the null hypothesis that the slope is zero. The ANOVA  $SS_R$  is smaller than  $SS_E$  so the error term is more significant. Also the F-test for the data (0.644) is much less than F-critical read from the tables (7.709) so again we fail to reject the null hypothesis that the slope is probably zero. We conclude that this is not a good model as the error component is greater than the regression component.

This model estimates the robbery rate is 200 per 100,000 people when the population density is 85 people per unit area.

#### 4. Analysis Results

| Least squares estimators for $\hat{eta}_0$ and $\hat{eta}_1$                    | $\hat{\beta}_0 = $ <b>177.084</b> , $\hat{\beta}_1 = $ <b>0.272</b>         |
|---------------------------------------------------------------------------------|-----------------------------------------------------------------------------|
| Mean Squared Error                                                              | MS <sub>E</sub> = <b>130.603</b>                                            |
| 95% CI for $\hat{oldsymbol{eta}}_0$                                             | (112.82, 241.35)                                                            |
| 95% CI for $\hat{eta}_1$                                                        | (-0.65, 1.19)                                                               |
| $H_0$ : $\hat{\beta}_1 = 0$ vs $H_1$ : $\hat{\beta}_1 \neq 0$ , $\alpha = 0.05$ | $T = 0.796 < t_{crit} = 2.7$ therefore <b>fail to reject H</b> <sub>0</sub> |
| E(Y) when X* = 85                                                               | Robbery rate ~ <b>200</b> per 100,000 people                                |
| 95% CI for E(Y) when X* = 85                                                    | (180.32, 220.08)                                                            |
| 95% PI for Y* when X* = 85                                                      | (163.5, 236.9)                                                              |
| ANOVA Analysis                                                                  | MS <sub>R</sub> = <b>82.87</b> , MS <sub>E</sub> = <b>128.66</b>            |
| Formal F-test                                                                   | $F = 0.644 < F_{1,4}(95\%) = 7.709$ therefore <b>fail to</b> reject $H_0$   |

Table 2: Full analysis results

#### 5. References

[1] Nolan, Establishing the statistical relationship between population size and UCR crime rate: Its impact and implications, Journal of Criminal Justice 32 (2004) 547 - 555

|                 | inear model assumption's                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
|-----------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| (               | $\hat{Y}_{i} = \hat{\beta}_{0} + \hat{\beta}_{i} \times \hat{\gamma}_{i} = \hat{\beta}_{0} + \hat{\beta}_{0} \times \hat{\gamma}_{i} = \hat{\gamma}_{0} \times \hat{\gamma}_{i} = \hat{\gamma}_{0} \times \hat{\gamma}_{i} = \hat{\gamma}_{0} \times \hat{\gamma}_{i} = \hat{\gamma}_{0} $ |
|                 | 209 193 16                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| 45<br>75<br>72  | 195 198 -3<br>186 197 -11                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| 89<br>70<br>410 | 204 196 8                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
|                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
|                 | $\sum_{i=1}^{n} Y_i = \sum_{i=1}^{n} \hat{Y}_i$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
|                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
|                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
|                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
|                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |

(a) Linear model assumptions:  

$$E_i \sim N(\beta, F^2)$$
 i.i.d, and  
 $Y_i \mid X_i \sim N(\beta_0 + \beta_1 X_i, F^2)$   
(b)  $\hat{\beta}_0 = \overline{Y} - \hat{\beta}_1 \overline{X}$ ;  $\hat{\beta}_1 = \frac{S_{\times Y}}{S_{\times X}}$   
 $\hat{\beta}_1 = \frac{304.67}{1119.33} = \boxed{0.272}$   
 $\hat{\beta}_0 = 195.67 - (0.272)(68.33) = \boxed{177.084}$   
(c)  $MS_E = \frac{SS_E}{n-2} = \frac{522.41}{4} = \boxed{130.603}$   
 $95\%$  CT for  $\hat{\beta}_0$   
 $\hat{\beta}_0 \pm t_{1-\frac{X}{2},n-2}$   $MS_E \left(\frac{1}{n} + \frac{X^2}{S_{\times X}}\right)$   
 $\pm t_{0.95,4}$   $\boxed{130.603}\left(\frac{1}{6} + \frac{68.33^2}{1119.33}\right)$   
 $= 177.084 \pm 64.266$   
 $= \left(112,818,241.35\right)$ 

95% CI for B, β, + €,-×, n-2 Sx  $= 0.272 \pm 2.7 \sqrt{\frac{130.603}{1119.33}}$ = 0-272 + 0.92 = (-0.648, 1.192) Hypotheris test for Ho: B, =0 Ho: B,=0 vs Hi: B, 70, x=0.05 NCSS, 9 toit = to.975, 4 = 2.7  $T_{data} = \frac{\hat{\beta}_1 - m}{\int_{-\infty}^{MS_{\epsilon}}} = \frac{0.272 - 0}{\int_{-119.33}^{130.603}} = 0.796$ compare Thata to tent: 0.796 < 2.7 · Fail to reject Ho: B = 0 . therefore there is evidence to suggest slope = 0. and therefore no enderce to suggest crime vate is related to population doubty

| (d) ANOVA                     |         | 1.0   | 1.1.5                 |     |
|-------------------------------|---------|-------|-----------------------|-----|
| source of Veriation           | SS      | df    | M S                   |     |
| Regression                    | 82.87   | 1     | 82.87                 |     |
| Error 5                       | -14-63  | 4     | 128.66                |     |
| Totale 5                      | 97.5    | 5     |                       |     |
| Source of Variation           |         |       | m S                   |     |
| Regression 8                  | 2.87    | 1     | 82.87                 |     |
| E wer 5                       | 14.63   | 4     | 128.66                |     |
| Correction 2297               | 120.50  | 1     |                       |     |
| Totalu 230                    | 0318    | 6     |                       |     |
| Data comos fran!              |         |       |                       |     |
| SSR = \hat{\beta}, Sx4 = (    | 0.272)( | 304.6 | 7) = 82.87            |     |
| SStou = E Yi2 =               | 2303    | 318   |                       |     |
| Correction factor =           | = nyz   | =     |                       |     |
| $SS_{TO} = SS_{TON} -$        | ny      |       | 30318-229720<br>597.5 | ).5 |
| $SS_{\epsilon} = SS_{TO} - S$ | SSR =   | = 59  | 7.5-82.87             |     |
| = 514.63                      |         |       |                       |     |
|                               |         |       |                       |     |
|                               |         |       |                       |     |

Formal F-test:  $F = \frac{MS_R}{MS_E} = \frac{82.87}{128.66} = 0.644$ From table 12b: F, 4 (95%) = 7.709 F<F,4(95%) therefore we accept to that B, is not significant,

(e) Find estimated robbay rate when the population density is 85.

$$\hat{Y}^* = \hat{\beta}_0 + \hat{\beta}_1 \times^*, \text{ here } \times^* = 85$$

$$\hat{Y}^* = 177.084 + (0.272)(85) = 200.2$$
95% CI for  $E(Y^*)$ 

$$\hat{Y}^* = t_{0.975,4} = 0.975$$

$$\hat{Y}^* = 200.2 \pm (2.7) = 0.975$$

$$\hat{Y}^* = 200.2 \pm (2.7) = 0.975$$

$$= (180.32, 220.08)$$
95% CI for  $Y^* = 9^* \pm t_{0.975,4} = 9^* \pm t_{0.975,4}$ 

#### Appendix 2

### R code for Figure 1

```
# STAT40790 Predictive Analytics I
# Project
# Brian Buckley
# 1. Plot the data
x <- c(59,45,75,72,89,70)
                                                                   # population density
y <- c(209,180,195,186,200,204)
                                                                   # robbery rate
plot(x, y, xlim=c(min(x)-5, max(x)+5), ylim=c(min(y)-10, max(y)+10),
  main='Regression fit with 95% CI', xlab='Population density', ylab='Robbery rate')
# 2. Construct a linear predictor model
linearModel < -lm(y \sim x)
abline(linearModel, col="red")
newx < -seq(20,90)
prd<-predict(linearModel,newdata=data.frame(x=newx),interval = c("confidence"),
       level = 0.95,type="response")
lines(newx,prd[,2],col="red",lty=2)
lines(newx,prd[,3],col="red",lty=2)
# 3. Perform ANOVA test
mod1.anova < -aov(y \sim x)
summary(mod1.anova)
#
            Df Sum Sq Mean Sq F value Pr(>F)
# x
            1 82.9 82.93 0.635 0.47
# Residuals 4 522.4 130.60
```