Inteligencia Artificial

Resolución de Problemas con Agentes de Búsqueda

Dr. Edgar Casasola Murillo edgar.casasola@ucr.ac.cr

Presentación en clase con fines académicos, del material de lectura de (Russell & Norvig) Artificial Intelligence A Moder Aproach, Capítulos 3 y 4. (Fair use according to Copyright Act Section 107.)

Agentes de Resolución de Problemas

- 1. Estados del mundo atómicos (se consideran completos)
- 2. Se cuenta con Problemas y Soluciones bien definidas
- 3. Búsqueda puede ser
 - a. Des-informada
 - b. Informada
- 4. Solución a un problema es una secuencia fija de acciones.

Formulación del objetivo del agente

- Se basa en:
 - a. La situación actual del agente (estado)
 - b. Medida de rendimiento
- 2. El objetivo es un conjunto de estados deseados del mundo.
- 3. El agente debe determinar los estados y acciones que considera dado el objetivo.
- 4. Aplica a ambientes **determinísticos** (cada acción tiene un resultado fijo)

Solución

Solución a cualquier problema siempre será

una secuencia determinada de acciones

Búsqueda (Search)

Proceso que explora una secuencia de acciones que alcanzar el objetivo.

Fase 1: Búsqueda - Recibe problema y retorna solución

Fase 2: Ejecución - Ejecuta la secuencia de pasos

Problemas bien definidos y soluciones

- **Estado inicial**: So
- Acciones: Dado un estado S retorna el conjunto de acciones que pueden ser ejecutadas en ese estado
- **Modelo de transición:** Retorna el nuevo estado en el que queda S luego de aplicar una acción particular
- Prueba de cumplimiento del objetivo: Verifica si estado actual cumple requisitos para ser una solución o pertenencia al conjunto de estados finales conocidos.
- Costo de transición: Transiciones pueden tener costos variados

Espacio de estados

Estados posibles que pueden ser generados desde el estado inicial

Grafo:

Nodos = estados

Aristas = acciones

Ruta:

Camino desde estado inicial hasta objetivo

Problemas Juguete y Vida Real

Problemas de Bloque Corredizo (8 - Puzzle)

- NP Completo No hay algoritmo conocido que mejore al método de búsqueda de ruta óptima que se estudiará posteriormente
- 2. Usados para probar algoritmos de búsqueda.

Ocho Reinas

DOS PLANTEAMIENTOS DIFERENTES

1. **Incremental:** Estado inicial vacio

Estado completo: Ocho reinas desordenadas en posiciones aleatorias

Problema de Knuth (1964)

Encontrar la combinación de funciones de factorial, recorte hacia abajo y raíz cuadrada con la que a partir de 4 se obtiene cualquier otro número entero. Por

ejemplo: 5 a partir de 4

$$\left\lfloor \sqrt{\sqrt{\sqrt{\sqrt{4!)!}}} \right\rfloor = 5$$

Estados: números positivos

Estado inicial: 4

Acciones: Aplicar factorial, raíz cuadrada o recorte hacia abajo Modelo de transición: Dado por la definición de cada función Prueba de cumplimiento de objetivo: Entero positivo que se desea

IMPORTANCIA

- Espacio de estados infinito
 - Similar a: generación de lenguaje, generación de expresiones matemáticas, circuitos, pruebas, programas y problemas de definición recursiva.

Problemas de la vida real

Búsqueda de ruta: Viajar de un punto A a un punto B.

Estados: Ubicación y tiempo.

El modelo de transición está determinado por el medio seleccionado para transportarse de un lugar a otro.

Acción: Tomar un medio de transporte para salir de una ciudad hacia otra.

Costo: El costo varía según el tiempo y dinero invertido para llegar de A hacia B.

Problema del turista o Touring Problem

Visitar cada ciudad al menos una vez llegando a una ciudad destino al menor costo.

Estado debe contener:

Ubicación actual + lista de ciudades visitadas, al final todas las ciudades deben estar en la lista.

Problema del Agente Viajero (variante del Touring): Cada ciudad puede ser visitada solamente una vez

Otros problemas

- 1. Diseño de circuitos digitales
- 2. Navegación de un robot
- 3. Secuencia de Ensamblaje de artefactos

Búsqueda - Search

Árbol de búsqueda:

- nodo raíz = estado inicial
- estados = nodos y acciones = aristas

Estrategia: seleccionar expandir un nodo y dejar otros para después

Frontera (cc. Lista Abierta) se almacena en una cola. Nodos a la espera de ser expandidos.

Repetición de estados => Rutas con ciclos

Memoria de nodos expandidos: Conjunto de explorados (cc. Lista Cerrada)

Propiedad de Separación de Regiones

La Frontera (nodos blancos) separa la región explorada (negro) de la no explorada (gris)

Evaluación de algoritmos de búsqueda

Completitud

Garantía de encontrar solución en caso de existir

Complejidad temporal

Tiempo que toma encontrar la solución

Optimalidad

La **solución** encontrada es **óptima**

Complejidad espacial

Memoria necesaria para llevar a cabo la búsqueda

Dificultad del Problema

Ciencias de la Computación

Grafo con Representación Explícita

|{Vértices}| + |{Áristas}|

Inteligencia Artificial

Grafo con Representación Implícita

Estado inicial + Acciones + Transiciones

Grafo usualmente infinito

¿Cómo expresar la Complejidad?

Factor de ramificación (Branching Factor)

Cantidad Máxima **b** de Sucesores de un nodo

Costo de búsqueda (Search Cost)

En términos de tiempo y/o memoria

Costo total incluye costo de búsqueda + costo de la ruta

Profundidad del Objetivo (Goal Depth)

Distancia más cercana de estado inicial a final

Búsqueda sin información

Ancho Primero: b=2

$$b + b^2 + b^3 + \dots + b^d = O(b^d)$$

Requerimiéntos de las Heurísticas

- 1) Desigualdad triangular
- 2) Monotonicidad
- 3) Sub-estimado

Funciones Heurísticas

Costo estimado del camino más barato desde el nodo hasta la meta

- Best First
- Greedy Best expande al más cercano a la meta
- A* utiliza una función heurística para determinar el nodo frontera que se encuentra más cerca de la solución
- ID A* o iterative deepening A* es un algoritmo profundidad primero con una profundidad tope definida por una función heurística

https://www.git.ucr.ac.cr/ci0129/