

Ayudantía 10

26 de junio de 2020

Profesores C. Riveros - J. Salas

Tamara Cucumides y Bernardo Barías

Pregunta 1

- 1. Sea S_1 el conjunto definido recursivamente de la siguiente manera:
 - \bullet $(0,0) \in S_1$
 - Si $(a,b) \in S_1$, entonces $(a+2,b+3) \in S_1$ y $(a+3,b+2) \in S_1$

Demuestre que si $(a, b) \in S_1$ entonces a + b es divisible por 5.

- 2. Sea Σ un alfabeto finito. Definamos Σ^* el conjunto de palabras finitas sobre Σ de manera recursiva como:
 - $\quad \bullet \quad \varepsilon \in \Sigma^*$
 - \bullet $a \in \Sigma^*$ para todo $a \in \Sigma$
 - si $w_1 \in \Sigma^*$ y $w_2 \in \Sigma^*$, entonces $w_1 \cdot w_2 \in \Sigma^*$

Sea $w = a_1 \dots a_n$ una palabra sobre Σ , definimos

$$reverse(w) = a_n \dots a_1$$

Demuestre que para dos palabras $x, y \in \Sigma^*$, se cumple que

$$reverse(x \cdot y) = reverse(y) \cdot reverse(x)$$

Pregunta 2

Demuestre que todo número $n\in\mathbb{N}$ se puede representar de la forma

$$n = \epsilon_k \cdot 3^k + \dots + \epsilon_1 \cdot 3^1 + \epsilon_0,$$

donde $\epsilon_0, ..., \epsilon_k \in \{1, 0, -1\}.$

Pregunta 3

Considere la siguiente sucesión:

$$G_0 = 1$$

 $G_1 = 3$
 $G_2 = 9$
 $G_n = G_{n-1} + 3 \cdot G_{n-2} + 3 \cdot G_{n-3}, n \ge 3$

Demuestre que para todo $n \ge 0$ se cumple que $G_n \le 3^n$.