Tarea Interpolación y Cálculo de raíces. Curso de Física Computacional

M. en C. Gustavo Contreras Mayén

1. La densidad del aire ρ varía con la altura de la siguiente manera:

Define $\rho(h)$ como una función cuadrática a partir del método de Lagrange.

2. Usando el método de Newton, encuentra un polinomio que se ajuste a los siguientes puntos:

3. El calor específico del alumino c_p depende de la temperatura T como sigue:

Calcula c_p en T=200°C y T=400°C

4. La velocidad v de un cohete Saturno V en vuelo vertical cercano a la superficie de la Tierra, puede aproximarse por

$$v = u \ln \frac{M_0}{M_0 - \dot{m}t} - gt$$

donde

u=2510m/s= velocidad de escape del cohete $M_0=2.8\times 10^6kg=$ masa del cohete al despegue $\dot{m}=13.3\times 10^3kg/s=$ tasa de consumo de combustible $g=9.81m/s^2$ aceleración debida a la gravedad t= tiempo medido desde el despegue

Calcula el tiempo en el cual el cohete alcanza la velocidad del sonido (335 m/s)

5. La energía libre de Gibbs en un mol de hidrógeno a una temperatura T es:

$$G = -RT ln[(T/T_0)^{5/2}]J$$

donde la constante del gas es $R=8.311441~\mathrm{J/K}~\mathrm{y}~T_0=4.44418~\mathrm{K}$. Calcula la temperatura en la cual $G=-10^5~\mathrm{J}$.

6. La ecuación de equilibrio químico en la producción de metanol a partir de CO y H_2 , es

$$\frac{\xi(3-2\xi)^2}{(1-\xi)^3} = 249.2$$

donde ξ es el grado de equilibrio de la reacción. Determinar ξ .

7. Un cable de acero de longitud s está suspendido como se muestra en la figura:

La tensión de tracción máxima en el cable, que se produce en los soportes, es

$$\sigma_{max} = \sigma_0 \cosh \beta$$

donde:

$$\beta = \frac{\gamma L}{2\sigma_0}$$

 σ_0 = la tensión de tracción en el cable en O.

 $\gamma=$ peso del cable por unidad de volumen.

L =extensión horizontal del cable.

La relación entre la extensión y la longitud del cable, está relacionada con β por:

$$\frac{s}{L} = \frac{1}{\beta} \sinh \beta$$

Calcular σ_{max} si $\gamma = 77 \times 10^3 \ N/m^3$ (para el acero), $L = 1000 \ \mathrm{m} \ \mathrm{y} \ s = 1100 \ \mathrm{m}$