Домашнее задание 4 (на 30.10).

СОМВ 1. Пусть $f(z) = \sum a_n z^n$ — производящая функция для числовой последовательности $\{a_n\}$. Выразите через f(z) производяющую функцию для последовательности $e_n = ((n+1) \mod 2) \cdot a_n$.

СОМВ 2. Пусть h(z) = 1 + 3z, $g(z) = 1 - z - 6z^2$. Найдите коэффициенты f_n производящей функции f(z), связанной с g(z) и h(z) равенством f(z)g(z) = h(z).

СОМВ 3. Известно, что экспоненциальные производящие функции F(z) и G(z) для числовых последовательностей $\{a_n\}$ и $\{b_n\}$ соответственно связаны соотношением G(z) = F(z)/(1-z). Выразите b_n через a_n .

СОМВ 4. Пусть $a_{n+1} = 2a_n - 10$. Используя обыкновенные производящие функции, найдите общий вид a_n .

 $\overline{\text{COMB 5.}}$ Доказать формулу: $\frac{1}{(1-\alpha z)^k} = \sum \binom{n}{k} (\alpha z)^n$.

COMB 6. Определите производящую функцию для чисел Фибоначчи. Получите с ее помощью числа Фибоначчи в явном виде.

[COMB 7.] Выразить через 1-z обыкновенные производящие функции последовательностей

- (a) $1 \cdot 2, 2 \cdot 3, \ldots, n \cdot (n+1), \ldots,$
- (6) $1^2, \ldots, n^2, \ldots$

[COMB 8.] Найти явные формулы (при помощи обыкновенных производящих функций) для последовательностей заданных следующими реккурентными формулами:

- (a) $a_{n+1} = a_n + 2^n \ (a_0 = 0),$
- (6) $a_{n+2} = 5a_{n+1} 6a_n \ (a_0 = 2, \ a_1 = 6).$

COMB 9. Найти общий вид решения неоднородного реккурентного соотношения $a_{n+2} = 5a_{n+1} - 4a_n + 3 \cdot 2^n$.