ETR0306 009

High Speed LDO Regulators Low ESR Cap.Compatible, Output ON/OFFControl

■GENERAL DESCRIPTION

The XC6209 series are highly precise, low noise, positive voltage LDO regulators manufactured using CMOS processes. The series achieves high ripple rejection and low dropout and consists of a voltage reference, an error amplifier, a current limiter and a phase compensation circuit plus a driver transistor.

Output voltage is selectable in 0.05V increments within a range of 0.9V ~ 6.0V.

The series is also compatible with low ESR ceramic capacitors which give added output stability. This stability can be maintained even during load fluctuations due to the excellent transient response of the series. The current limiter's foldback circuit also operates as a short protect for the output current limiter and the output pin.

The CE function enables the output to be turned off, resulting in greatly reduced power consumption.

APPLICATIONS

- Smart phones / Mobile phones
- Portable game consoles
- Digital still cameras / Camcorders
- Digital audio equipments
- Reference voltage sources
- Multi-function power supplies

■FEATURES

Maximum Output Current : 150mA

(300mA=XC6209 E to H types)

Dropout Voltage : 60mV @ 30mA

: 200mV @ 100mA

Maximum Operating Voltage : $2.0V \sim 10V$

Output Voltage Range : 0.9V ~ 6.0V(0.05V increments)

Highly Accurate : $\pm 2\%$ (VOUT>1.5V)

±30mV (VouT≤1.5V)

Low Power Consumption : $25 \mu A (TYP.)$

Standby Current : Less than $0.1 \mu A (TYP.)$

High Ripple Rejection: 70dB (10kHz)Operating Ambient Temperature: $-40^{\circ}C^{\sim} +85^{\circ}C$ Low ESR Capacitor: Ceramic capacitor

Compatible

Packages : SOT-25

USP-6B SOT-89-5

Environmentally Friendly : EU RoHS Compliant, Pb Free

■TYPICAL APPLICATION CIRCUIT

■TYPICAL PERFORMANCE CHARACTERISTICS

■PIN CONFIGURATION

*The dissipation pad for the USP-6B package should be solder-plated in recommended mount pattern and metal masking so as to enhance mounting strength and heat release. If the pad needs to be connected to other pins, it should be connected to the Vss pin.

■PIN ASSIGNMENT

	PIN NUMBER		PIN NAME	FUNCTIONS
SOT-25	SOT-89-5	USP-6B		
1	4	1	Vin	Input
2	2	5	Vss	Ground
3	3	6	CE	ON/OFF Control
4	1	2,4	NC	No Connection
5	5	3	Vout	Output

■FUNCTIONS

TYPE	CE	OPERATIONAL STATE
Type A. D. E. E.	Н	ON
Type A, B, E, F	L	OFF
Type C. D. C. H	Н	OFF
Type C, D, G, H	L	ON

H=High Level L=Low Level

■PRODUCT CLASSIFICATION

Ordering Information

XC6209123456-7

DESIGNATOR	ITEM	SYMBOL	DESCRIPTION
		Α	150mA, Active High, Pull-down resistor built-in (*2)
			(Semi-custom)
		В	150mA, Active High, No pull-down resistor
			(Standard) 150mA, Active Low, Pull-up resistor built-in (*2)
		С	(Semi-custom)
		-	150mA, Active Low, No pull-up resistor
1	Type of Regulator	D	(Semi-custom)
	CE Pin Logic	Е	300mA (*1), Active High, Pull-down resistor built-in (*2)
			(Semi-custom)
		F	300mA (*1), Active High, No pull-down resistor
			(Standard)
		G	300mA (*1), Active Low, Pull-up resistor built-in (*2) (Semi-custom)
		Н	300mA (*1), Active Low, No pull-up resistor
			(Semi-custom)
		09~60	Output Voltage Range: 0.9V~6.0V
23	Output Voltage	09~60	e.g. : 3.0V⇒②=3, ③=0
		30~60	For 1% product, output voltage range is 3.0V~6.0V.
		2	0.1V increments, Accuracy: ±2% (*3)
			e.g.: 2.80V⇒②=2, ③=8, ④=2
		1	0.1V increments, Accuracy: ±1%
4	Output Voltage		e.g.: 3.00V⇒②=3, ③=0, ④=1
	Accuracy		0.05V increments, Accuracy: ±2% (*3) e.g.: 2.85V⇒②=2, ③=8, ④=A
			0.05V increments, Accuracy: ±1%
			e.g.: 3.05V⇒②=3, ③=0, ④=B
		MR	SOT-25 (3,000/Reel)
		MR-G	SOT-25 (3,000/Reel)
(5)6)-(7) (*4)	Packages		SOT-89-5 (1,000/Reel)
	(Order Unit)	PR-G	SOT-89-5 (1,000/Reel)
		DR	USP-6B (3,000/Reel)
		DR-G	USP-6B (3,000/Reel)

 $^{^{(\}mbox{\tiny 1})}$ The maximum output current of type E ${\sim}$ H depends on setting output voltage.

^(*2) With the pull-up resistor or pull-down resistor built-in types, the supply current during operation will increase by V_{IN} / 2MΩ (TYP.). (*3) The output voltage accuracy is ±30mV at V_{OUT} \leq 1.5V.

^(*4) The "-G" suffix denotes Halogen and Antimony free as well as being fully EU RoHS compliant.

■BLOCK DIAGRAM

XC6209 Type A, E

XC6209 Type B, D, F, H

XC6209 Type C, G

^{*} Diodes inside the circuits are ESD protection diodes and parasitic diodes.

■ ABSOLUTE MAXIMUM RATINGS

Ta=25°C

PARAME ⁻	PARAMETER SYMI		RATINGS	UNITS	
Input Volt	age	VIN	12.0	V	
Output Cu	rrent	Іоит	500 ^(*1)	mA	
Output Vol	tage	Vout	Vss - 0.3 ~ Vin + 0.3	V	
CE Input Vo	oltage	VCE	Vss - 0.3 ~ Vin + 0.3	V	
	SOT-25		250		
	301-25		600(PCB mounted)(*2)		
Power Dissipation	COT 90 F	SOT-89-5	Pd	500	mW
Power Dissipation	301-69-5	Fu	1300(PCB mounted)(*2)	IIIVV	
	USP-6B		120		
	USP-0B		1000(PCB mounted)(*2)		
Operating Ambient	Temperature	Topr	-40 ~ +85	°C	
Storage Temp	Storage Temperature		-55 ~ +125	°C	

All voltages are described based on the $\ensuremath{V_{\text{SS}}}.$

 $[\]stackrel{\text{(*1)}}{\text{I}_{\text{OUT}}} \stackrel{\text{S}}{=} \text{Pd/(V}_{\text{IN}}\text{-V}_{\text{OUT}})$ $\stackrel{\text{(*2)}}{\text{This is a reference data taken by using the test board. Please refer to page 25 to 27 for details.}$

■ELECTRICAL CHARACTERISTICS

XC6209 (Type A, B) Ta=25°C

AC6209 (Type A, B)							1a=25°C
PARAMETER	SYMBOL	CONDITIONS	MIN.	TYP.	MAX.	UNITS	CIRCUIT
Output Voltage (2%)(*5)	(*3)	(*3) L =20mA		V (*2)	V _{OUT(T)} (*2)×1.02	V	1
Output Voltage (1%)(*6)	V _{OUT(E)} (*3)	I _{OUT} =30mA	V _{OUT(T)} (*2)×0.99	Vout(I)***0.99 Vout(I)**2)		V	1
Maximum Output Current	I _{OUTMAX}	-	150	-	-	mA	1
Load Regulation	ΔV_{OUT}	1mA≦I _{OUT} ≦100mA	-	15	50	mV	1
Dranaut Valtage (*4)	Vdif1	I _{OUT} =30mA		E-1		mV	1)
Dropout Voltage (*4)	Vdif2	І _{ОUТ} =100mA		E-2		mV	
Supply Current (Type A)		Vce=V _{IN} =V _{OUT(T)} +1.0V	-	28	55		
Supply Current (Type B)	I _{DD}	When V _{OUT} ≤0.95V, V _{IN} =V _{CE} =2.0V	-	25	50	μΑ	2
Stand-by Current	I _{STB}	V _{IN} =V _{OUT(T)} +1.0V,V _{CE} =V _{SS} When V _{OUT} ≦0.95V, V _{IN} =2.0V	-	0.01	0.10	μΑ	2
Line Regulation	ΔV _{OUT} / (ΔV _{IN} ·V _{OUT})	$V_{OUT(T)}$ +1.0 $V \le V_{IN} \le 10V$ When $V_{OUT} \le 0.95,2.0V = V_{IN} \le 10V$ I_{OUT} =30mA When $V_{OUT} \le 1.75V$, I_{OUT} =10mA	-	0.01	0.20	%/V	1
Input Voltage	V _{IN}		2	-	10	V	-
Output Voltage Temperature Characteristics	ΔV _{OUT} / (ΔTopr·V _{OUT})	I _{OUT} =30mA -40°C≦Topr≦85°C	-	100	-	ppm/°C	1)
Power Supply Rejection Ratio	PSRR	V _{IN} =[V _{OUT(T)} +1.0]V+1.0Vp-p _{AC} When V _{OUT} ≤1.5V, V _{IN} =2.5V+1.0Vp-p _{AC} I _{OUT} =50mA, f=10kHz	-	70	-	dB	4
Current Limit	llim	$V_{IN}=V_{OUT(T)}+1.0V$, $V_{CE}=V_{SS}$ When $V_{OUT}\leq 1.75$, $V_{IN}=V_{OUT(T)}+2.0V$	-	300	-	mA	1
Short Current	Ishort	V _{IN} =V _{OUT(T)} +1.0V, V _{CE} =V _{SS} When V _{OUT} ≦1.75, V _{IN} =V _{OUT(T)} +2.0V	-	50	-	mA	1
CE "H" Level Voltage	V_{CEH}	-	1.6	1	V _{IN}	V	1
CE "L" Level Voltage	Vcel	-	-	-	0.25	V	1
CE "H" Level Current (Type A)		VIN=VCE=VOUT(T)+1.0V,	0.8	-	5.0		
CE "H" Level Current (Type B)	Ісен	When V _{OUT} ≦0.95V, V _{IN} =V _{CE} =2.0V	-0.1		0.1	μΑ	2
CE "L" Level Current	ICEL	V _{IN} =V _{OUT(T)} +1.0V,V _{CE} =V _{SS} When V _{OUT} ≦0.95V, V _{IN} =2.0V	-0.1	-	0.1	μΑ	2

^{*1:} Unless otherwise stated, $V_{IN}=V_{OUT(T)}+1.0V$. If V_{OUT} is less than 0.95V, $V_{IN}=2.0V$.

(I.e. the output voltage when " $V_{\text{OUT}(T)}$ +1.0V" is provided at the V_{IN} pin while maintaining a certain I_{OUT} value).

 V_{OUT1} is the voltage equal to 98% of the output voltage whenever an amply stabilized $V_{\text{OUT(T)}}$ +1.0V is input for every I_{OUT} . V_{IN1} is the input voltage when V_{OUT1} appears while input voltage is gradually decreased.

^{*2:} V_{OUT(T)} is Nominal output voltage

^{*3:} $V_{\text{OUT(E)}}$ is Effective output voltage

^{*4:} $Vdif={V_{IN1}-V_{OUT1}}$

^{*5:} If $V_{OUT(T)}$ is less than 1.45V, $V_{OUT(T)}$ -30mV (MIN.), $V_{OUT(T)}$ + 30mV (MAX.)

^{*6:} Only for the $V_{\text{OUT}(T)}$ is more than 3.0V products.

■ELECTRICAL CHARACTERISTICS

XC6209 (Type C, D) Ta=25°C

ACOZOS (Type C, D)							u-20 0
PARAMETER	SYMBOL	CONDITIONS	MIN.	TYP.	MAX.	UNITS	CIRCUIT
Output Voltage (*5)(2%)	(*3)	1 204	V _{OUT(T)} (*2)×0.98	(*2)	V _{ОUТ(П} ^(*2) ×1.02	V	
Output Voltage (*6)(1%)	V _{OUT(E)} (*3)	I _{OUT} =30mA	V _{OUT(T)} (*2)×0.99	$V_{OUT(T)}^{(*2)}$	V _{OUT(T)} (*2)×1.01	V	1
Maximum Output Current	Іоитмах	-	150	-	-	mA	1
Load Regulation	ΔV_{OUT}	1mA≦I _{ΟUT} ≦100mA	-	15	50	mV	1
Dropout Voltage (*4)	Vdif1	I _{OUT} =30mA	-		E-1	m\/	1)
Dropout Voltage V	Vdif2	I _{OUT} =100mA	-		E-2	mV	U)
Supply Current (Type C)		V _{IN=} V _{OUT(T)} +1.0V	-	28	55		(
Supply Current (Type D)	· I _{DD}	When V _{OUT} ≦0.95V, V _{IN} =2.0V V _{CE} =V _{SS}	-	25	50	μΑ	2
Stand-by Current	I _{STB}	$V_{IN}=V_{OUT(T)}+1.0V$, $V_{CE}=V_{IN}$ When $V_{OUT}\leq 0.95V$, $V_{IN}=V_{CE}=2.0V$	-	0.01	0.10	μΑ	2
Line Regulation	ΔV _{OUT} / (ΔV _{IN} • V _{OUT})	$\label{eq:Vout} \begin{split} &V_{\text{OUT}(T)}\text{+}1.0\text{V} \leqq \text{V}_{\text{IN}} \leqq 10\text{ V} \\ &V_{\text{OUT}} \leqq 0.95\text{V is } 2.0\text{V} \leqq \text{V}_{\text{IN}} \leqq 10\text{V} \\ &I_{\text{OUT}}\text{=}30\text{mA} \\ &\text{When } V_{\text{OUT}} \leqq 1.75\text{V}, \ I_{\text{OUT}}\text{=}10\text{mA} \end{split}$	-	0.01	0.20	%/V	1
Input Voltage	V _{IN}	-	2	-	10	V	-
Output Voltage Temperature Characteristics	ΔV _{OUT} / (ΔTopr·V _{OUT})	I _{OUT} =30mA -40°C≦Topr≦85°C	-	±100	-	ppm/°C	1)
Power Supply Rejection Ratio	PSRR	$V_{IN}=[V_{OUT(T)}+1.0]V+1.0Vp-p_{AC}$ When $V_{OUT} \le 1.5V$, $V_{IN}=2.5V+1.0Vp-p_{AC}$ $I_{OUT}=50mA$, $f=10kHz$	-	70	-	dB	4
Current Limit	llim	V _{IN} =V _{OUT(T)} +1.0V, V _{CE} =V _{SS} When V _{OUT} ≤1.75V, V _{IN} =V _{OUT(T)} +2.0V	-	300	-	mA	1
Short Current	I _{SHORT}	$V_{IN}=V_{OUT(T)}+1.0V$, $V_{CE}=V_{SS}$ When $V_{OUT}\leq 1.75V$, $V_{IN}=V_{OUT(T)}+2.0V$	-	50	-	mA	1
CE "H" Level Voltage	Vceh	-	1.6	-	Vin	V	1
CE "L" Level Voltage	V _{CEL}	-	=	-	0.25	V	1
CE "H" Level Current	Ісен	V _{CE} =V _{IN} =V _{OUT(T)} +1.0V When V _{OUT} ≤0.95V, V _{CE} =V _{IN} =2.0V	-0.1	-	0.1	μΑ	2
CE "L" Level Current (Type C)		VIN=V _{OUT(T)} +1.0V, V _{CE} =V _{SS}	-5.0	-	-0.8	^	<u> </u>
CE "L" Level Current (Type D)	ICEL	When V _{OUT} ≦0.95V, V _{IN} =2.0V	-0.1	-	0.1	μΑ	2

^{*1:} Unless otherwise stated, V_{IN} = $V_{OUT(T)}$ +1.0V. If V_{OUT} is less than 0.95V, V_{IN} = 2.0V.

^{*2:} V_{OUT(T)} is Nominal output voltage

^{*3:} $V_{OUT(E)}$ is Effective output voltage

⁽I.e. the output voltage when " $V_{\text{OUT}(T)}$ +1.0V" is provided at the V_{IN} pin while maintaining a certain I_{OUT} value).

^{*4:} $Vdif={V_{IN1}-V_{OUT1}}$

 V_{OUT1} is the voltage equal to 98% of the output voltage whenever an amply stabilized $V_{\text{OUT(T)}}$ +1.0V is input for every I_{OUT} . V_{IN1} is the input voltage when V_{OUT1} appears while input voltage is gradually decreased.

^{*5:} If $V_{OUT(T)}$ is less than 1.45V, $V_{OUT(T)}$ -30mV (MIN.), $V_{OUT(T)}$ + 30mV (MAX.)

^{*6:} Only for the $V_{\text{OUT}(T)}$ is more than 3.0V products.

XC6209 (Type E,F) Ta=25°C

7100200 (1)p0 2,1 /						'	a-25 0
PARAMETER	SYMBOL	CONDITIONS	MIN.	TYP.	MAX.	UNITS	CIRCUIT
Output Voltage (2%)(*5)	Voute) ^(*3) Iout=30mA		V _{OUT(T)} (*2)x0.98	V _{OUT(I)} (*2)	V _{OUT(T)} (*2)x1.02	V	1
Output Voltage (1%)(*6)	V OUT(E) (3)	I _{OUT} =30mA	V _{OUT(T)} (*2)x0.99	VOUI(I)(-)	V _{ОUТ(П} ^(*2) х1.01	\ \ \	T)
Maximum Output Current	Гоитмах	V _{IN} =E-3 ^(*7)	E-4	-	-	mA	1
Load Regulation	ΔVоυт	1mA <u>≤</u> I _{OUT} <u><</u> 100mA	-	15	50	mV	1
Load Regulation 2	ΔV_{OUT2}	1mA <u>≤</u> I _{OUT} <u><</u> 300mA	-	-	100	mV	1
Dropout Voltage (*4)	Vdif1	I _{OUT} =30mA		E-1		mV	1)
Dropout voltage (4)	Vdif2	І _{ОUТ} =100mA		E-2		mV	
Supply Current (Type E)	I _{DD}	V _{CE} =V _{IN} =V _{OUT(T)} +1.0V	-	28	55	μA	2
Supply Current (Type F)	100	When V _{OUT} ≦0.95V, V _{CE} =V _{IN} =2.0V		25	50	μπ	
Stand-by Current	Іѕтв	$V_{IN}=V_{OUT(T)}+1.0V$, $V_{CE}=V_{SS}$ When $V_{OUT}\leq 0.95V$, $V_{CE}=V_{IN}=2.0V$	-	0.01	0.10	μΑ	2
Line Regulation	ΔV _{OUT} / (ΔV _{IN} ·V _{OUT})	$\begin{split} &V_{OUT(T)}{+}1.0V \leqq V_{IN} \leqq 10 \ V \\ &When \ V_{OUT} \leqq 0.95V, \ 2.0V \leqq V_{IN} \leqq 10V \\ &I_{OUT}{=}30\text{mA} \\ &V_{OUT} \leqq 1.75V, \ I_{OUT}{=}10\text{mA} \end{split}$	-	0.01	0.20	%/V	1
Input Voltage	V _{IN}	-	2	-	10	V	-
Output Voltage Temperature Characteristics	∆V _{О∪Т} / (∆Торг∙V _{О∪Т})	I _{OUT} =30mA -40°C <u>≤</u> Topr <u>≤</u> 85°C	-	100	-	ppm/°C	1
Power Supply Rejection Ratio	PSRR	V _{IN} ={V _{OUT(T)} +1.0}V+1.0Vp-p _{AC} , When V _{OUT} ≤1.5V, V _{IN} =2.5V+1.0Vp-p _{AC} , I _{OUT} =50mA, f=10kHz	-	70	-	dB	4
Current Limit	llim	$ \begin{aligned} V_{IN} = & V_{OUT(T)} + 1.0V, \ V_{CE} = & V_{IN}, \\ When \ & V_{OUT} \leq 1.75V, \ & V_{IN} = & V_{OUT(T)} + 2.0V \end{aligned} $	-	380	-	mA	1
Short Current	I _{SHORT}	$V_{\text{IN}} = V_{\text{OUT}(T)} + 1.0 \text{V}, \ V_{\text{CE}} = V_{\text{IN}},$ When $V_{\text{OUT}} < 1.75 \text{V}, \ V_{\text{IN}} = V_{\text{OUT}(T)} + 2.0 \text{V}$	-	50	-	mA	1
CE "H" Level Voltage	V_{CEH}	-	1.6	ı	V _{IN}	V	1
CE "L" Level Voltage	V_{CEL}	-	-	-	0.25	V	2
CE "H" Level Current (Type E)	loru	V _{IN} =V _{CE} =V _{OUT(T)} +1.0V	0.8	-	5.0	μA	2
CE "H" Level Current (Type F)	ICEM	Vivi to to to to the total time Vout ≤ 0.95V, Vin=VcE=2.0V		-	0.1	μΛ	•
CE "L" Level Current	ICEL	V _{IN} =V _{OUT(T)} +1.0V, V _{CE} =V _{SS} When V _{OUT} ≦0.95V, V _{IN} =2.0V	-0.1	-	0.1	μΑ	2

^{*1:} Unless otherwise stated, $V_{IN}=V_{OUT(T)}+1.0V$. If V_{OUT} is less than 0.95V, $V_{IN}=2.0V$.

(I.e. the output voltage when " $V_{\text{OUT}(T)}$ +1.0V" is provided at the V_{IN} pin while maintaining a certain I_{OUT} value).

 V_{OUT1} is the voltage equal to 98% of the output voltage whenever an amply stabilized $V_{\text{OUT(T)}}$ +1.0V is input for every I_{OUT} .

 V_{IN1} is the input voltage when V_{OUT1} appears while input voltage is gradually decreased.

^{*2:} $V_{\text{OUT}(T)}$ is Nominal output voltage

^{*3:} $V_{\text{OUT}(E)}$ is Effective output voltage

^{*4:} $Vdif=\{V_{IN1}-V_{OUT1}\}$

^{*5:} If $V_{OUT(T)}$ is less than 1.45V, $V_{OUT(T)}$ -30mV (MIN.), $V_{OUT(T)}$ + 30mV (MAX.)

^{*6:} Only for the $V_{\text{OUT}(T)}$ is more than 3.0V products.

^{*7:} Please refer to the "Dropout Voltage" table.

XC6209 (Type G, H) Ta=25°C

ACOZOS (Type C, TI)							
PARAMETER	SYMBOL	CONDITIONS	MIN.	TYP.	MAX.	UNITS	CIRCUIT
Output Voltage (*5)(2%)	V _{OUT(E)} (*3)	I _{OUT} =30mA	V _{OUT(T)} (*2)×0.98	V _{OUT(T)} (*2)	V _{OUT(T)} (*2)×1.02	V	1)
Output Voltage (*6)(1%)	V OUT(E) (3)	100T=3011IA	V _{OUT(T)} (*2)×0.99	VOUT(T) ⁽⁻⁾	V _{OUT(T)} (*2)×1.01	V	U
Maximum Output Current	loutmax	V _{IN} =E-3 (*7)	E-4	-	-	mA	1
Load Regulation	ΔV_{OUT}	1mA≦I _{OUT} ≦100mA	-	15	50	mV	1
Load Regulation 2	ΔV_{OUT2}	1mA≦I _{OUT} ≦300mA	-	-	100	mV	1
D ===== (*4)	Vdif1	I _{ОUT} =30mA	-		E-1	>/	(1)
Dropout Voltage (*4)	Vdif2	I _{ОUТ} =100mA	-		E-2	mV	1
Supply Current (Type G)		V _{IN=} V _{OUT(T)} +1.0V	-	28	55	^	2
Supply Current (Type H)	I _{DD}	When $V_{OUT} \leq 0.95V$, $V_{IN}=2.0V$, $V_{CE}=V_{SS}$	-	25	50	μΑ	2
Stand-by Current	Іѕтв	$V_{IN}=V_{OUT(T)}+1.0V$, $V_{CE}=V_{IN}$ When $V_{OUT}\leq 0.95V$, $V_{CE}=V_{IN}=2.0V$	-	0.01	0.10	μΑ	2
Line Regulation	ΔV _{OUT} / (ΔV _{IN} • V _{OUT})	$\begin{split} &V_{\text{OUT(T)}}\text{+}1.0\text{V} \leqq \text{V}_{\text{IN}} \leqq 10\text{V} \\ &\text{When } V_{\text{OUT}} \leqq 0.95\text{V}, 2.0\text{V} \leqq \text{V}_{\text{IN}} \leqq 10\text{V} \\ &I_{\text{OUT}}\text{=}30\text{mA} \\ &\text{When } V_{\text{OUT}} \leqq 1.75\text{V}, I_{\text{OUT}}\text{=}10\text{mA} \end{split}$	-	0.01	0.20	%/V	1
Input Voltage	V _{IN}	-	2	-	10	V	-
Output Voltage Temperature Characteristics	ΔV _{OUT} / (ΔTopr · V _{OUT})	I _{OUT} =30mA -40°C≦Topr≦85°C	-	±100	-	ppm/°C	1
Power Supply Rejection Ratio	PSRR	V_{IN} =[$V_{OUT(T)}$ +1.0] V +1.0 V p-pac When V_{OUT} \leq 1.5 V , V_{IN} =2.5 V +1.0 V p-pac I_{OUT} =50 m A, f=10 k Hz	-	70	-	dB	4
Current Limit	llim	$V_{\text{IN}} = V_{\text{OUT}(T)} + 1.0 \text{V}, V_{\text{CE}} = V_{\text{SS}}$ When $V_{\text{OUT}} \le 1.75 \text{V}, V_{\text{IN}} = V_{\text{OUT}(T)} + 2.0 \text{V}$	-	380	-	mA	1
Short Current	Ishort	V _{IN} =V _{OUT(T)} +1.0V, V _{OUT} =V _{SS} When V _{OUT} ≦1.75V, V _{IN} =V _{OUT(T)} +2.0V	-	50	-	mA	1
CE "H" Level Voltage	V _{CEH}	-	1.6	-	V _{IN}	V	1
CE "L" Level Voltage	Vcel	-	-	-	0.25	V	1
CE "H" Level Current	Ісен	V _{CE} =V _{IN} =V _{OUT(T)} +1.0V When V _{OUT} ≦0.95V, V _{CE} =V _{IN} =2.0V	-0.1	-	0.1	μΑ	2
CE"L" Level Current (Type G)	Icel	$V_{IN}=V_{OUT(T)}+1.0V$, $V_{CE}=V_{SS}$	-5.0	-	-0.8	μΑ	2
CE"L" Level Current (Type H)	ICEL	When $V_{OUT} \leq 0.95V$, V_{IN} =2.0V	-0.1	-	0.1	μΑ	J)

^{*1:} Unless otherwise stated, V_{IN} = $V_{OUT(T)}$ +1.0V. If V_{OUT} is less than 0.95V, V_{IN} = 2.0V.

(I.e. the output voltage when " $V_{OUT(T)}$ +1.0V" is provided at the V_{IN} pin while maintaining a certain I_{OUT} value).

 V_{OUT1} is the voltage equal to 98% of the output voltage whenever an amply stabilized $V_{\text{OUT(T)}}$ +1.0V is input for every I_{OUT} . V_{IN1} is the input voltage when V_{OUT1} appears while input voltage is gradually decreased.

^{*2:} V_{OUT(T)} is Nominal output voltage

^{*3:} V_{OUT(E)} is Effective output voltage

^{*4:} Vdif={V_{IN1}-V_{OUT1}}

^{*5:} If $V_{\text{OUT(T)}}$ is less than 1.45V, $V_{\text{OUT(T)}}$ -30mV (MIN.), $V_{\text{OUT(T)}}$ + 30mV (MAX.)

^{*6:} Only for the $V_{\text{OUT}(T)}$ is more than 3.0V products.

^{*7:} Please refer to the "Dropout Voltage" table.

Dropout Voltage

Voltage Accuracy 2% products

Ta=25°C

SYMBOL	E	-0	E	-1	E	-2
PARAMETER	OUTPUT V	OLTAGE (V)	DROPOUT VC	LTAGE 1 (mV)	DROPOUT VC	LTAGE 2 (mV)
NOMINAL		%)		(I _{OUT} =30mA)		00mA)
OUTPUT VOLTAGE	Vo	•		lif1	·	lif2
V _{OUT(T)}	MIN.	MAX.	TYP.	MAX.	TYP.	MAX.
0.90 *	0.870	0.930				
0.95 *	0.920	0.980	1100	1110	1150	1200
1.00 *	0.970	1.030	1000	1010	1050	1100
1.05 *	1.020	1.080	1000	1010	1030	1100
1.10 *	1.070	1.130	900	910	950	1000
1.15 *	1.120	1.180	-			
1.20 * 1.25 *	1.170 1.220	1.230 1.280	800	810	850	900
1.30 *	1.270	1.330				
1.35 *	1.320	1.380	700	710	750	800
1.40 *	1.370	1.430		0.10	050	700
1.45 *	1.420	1.480	600	610	650	700
1.50 *	1.470	1.530	500	E10	550	600
1.55 *	1.519	1.581	500	510	550	600
1.60 *	1.568	1.632	400	410	500	550
1.65 *	1.617	1.683	700	710	300	330
1.70 *	1.666	1.734	300	310	400	450
1.75 *	1.715	1.785	-		-	
1.80 * 1.85 *	1.764 1.813	1.836 1.887	200	210	300	400
1.90 *	1.862	1.938				
1.95 *	1.911	1.989	120	150	280	380
2.00	1.960	2.040				
2.05	2.009	2.091	_			350
2.10	2.058	2.142				
2.15	2.107	2.193				330
2.20	2.156	2.244	80	120	240	330
2.25	2.205	2.295		120	240	
2.30	2.254	2.346				
2.35	2.303	2.397				310
2.40 2.45	2.352 2.401	2.448 2.499				
2.50	2.450	2.550				
2.55	2.499	2.601	-			
2.60	2.548	2.652				
2.65	2.597	2.703				290
2.70	2.646	2.754	70	100	220	
2.75	2695	2.805		100	220	
2.80	2.744	2.856				
2.85	2.793	2.907				
2.90	2.842	2.958				270
2.95 3.00	2.891 2.940	3.009 3.060				-
3.05	2.940	3.111				
3.10	3.038	3.162				
3.15	3.087	3.213				
3.20	3.136	3.264				
3.25	3.185	3.315	60	90	200	
3.30	3.234	3.366	00	90	200	250
3.35	3.283	3.417				250
3.40	3.332	3.468				
3.45	3.381	3.519				
3.50	3.430	3.570				
3.55	3.479	3.621	2.0\/-\/ of drop	out voltage is need	<u> </u>	<u> </u>

^{*} The input voltage 2.0V (MIN.) is needed to operate the IC. 2.0V-V_{OUT(T)} of dropout voltage is needed at minimum.

● Dropout Voltage (Continued)

Voltage Accuracy 2% products

Ta=25°C

CVMDOL		0	Г	1	Г	2
SYMBOL		-0	E			-2
PARAMETER		OLTAGE (V)		DLTAGE 1 (mV)		DLTAGE 2 (mV)
NOMINAL OUTPUT	(2%)		(lout=	30mA)	(I _{OUT} =1	00mA)
VOLTAGE	Vo	DUT	Vo	lif1	Vd	lif2
V _{OUT(T)}	MIN.	MAX.	TYP.	MAX.	TYP.	MAX.
3.60	3.528	3.672				
3.65	3.577	3.723	1			
3.70	3.626	3.774				
3.75	3.675	3.825	7	00	200	250
3.80	3.724	3.876	1	90	200	250
3.85	3.773	3.927	1			
3.90	3.822	3.978	7			
3.95	3.871	4.029	1			
4.00	3.920	4.080	1			
4.05	3.969	4.131	1			
4.10	4.018	4.182	1			
4.15	4.067	4.233	1			
4.20	4.116	4.284	7			
4.25	4.165	4.335	60			
4.30	4.214	4.386	60			
4.35	4.263	4.437	7			
4.40	4.312	4.488	7			
4.45	4.361	4.539	1	90	180	220
4.50	4.410	4.590	1	80	100	230
4.55	4.459	4.641	7			
4.60	4.508	4.692	7			
4.65	4.557	4.743				
4.70	4.606	4.794				
4.75	4.655	4.845				
4.80	4.704	4.896				
4.85	4.753	4.947				
4.90	4.802	4.998				
4.95	4.851	5.049				
5.00	4.900	5.100				
5.05	4.949	5.151				
5.10	4.998	5.202				
5.15	5.047	5.253				
5.20	5.096	5.304				
5.25	5.145	5.355				
5.30	5.194	5.406				
5.35	5.243	5.457				
5.40	5.292	5.508				
5.45	5.341	5.559				
5.50	5.390	5.610	50	70	160	210
5.55	5.439	5.661	4			
5.60	5.488	5.712				
5.65	5.537	5.763	4			
5.70	5.586	5.814	4			
5.75	5.635	5.865	4			
5.80	5.684	5.916	4			
5.85	5.733	5.967	4			
5.90	5.782	6.018	4			
5.95	5.831	6.069	4			
6.00	5.880	6.120		1	1	1

Output Voltage

Voltage Accuracy 1% products

SYMBOL	E	i-0		
	OUTPUT VOLTAGE (V)			
NOMINAL		%)		
NOMINAL OUTPUT VOLTAGE		OUT		
V _{OUT(T)}	MIN.	MAX.		
3.00	2.970	3.030		
3.05	3.020	3.081		
3.10	3.069	3.131		
3.15	3.119	3.182		
3.20	3.168	3.232		
3.25	3.218	3.283		
3.30	3.267	3.333		
3.35	3.317	3.384		
3.40	3.366	3.434		
3.45	3.416	3.485		
3.50	3.465	3.535		
3.55	3.515	3.586		
3.60	3.564	3.636		
3.65	3.614	3.687		
3.70	3.663	3.737		
3.75	3.713	3.788		
3.80	3.762	3.838		
3.85	3.812	3.889		
3.90	3.861	3.939		
3.95	3.911	3.990		
4.00	3.960	4.040		
4.05	4.010	4.091		
4.10	4.059	4.141		
4.15	4.109	4.192		
4.20	4.158	4.242		
4.25	4.208	4.293		
4.30	4.257	4.343		
4.35	4.307	4.394		
4.40	4.356	4.444		
4.45	4.405	4.494		
4.50	4.455	4.545		

SYMBOL	E	<u>-</u> 0	
	OUTPUT VOLTAGE (V		
NOMINAL	(1%)		
OUTPUT VOLTAGE		ОИТ	
V _{OUT(T)}	MIN.	MAX.	
4.55	4.505	4.596	
4.60	4.554	4.646	
4.65	4.604	4.697	
4.70	4.653	4.747	
4.75	4.703	4.798	
4.80	4.752	4.848	
4.85	4.802	4.899	
4.90	4.851	4.949	
4.95	4.901	5.000	
5.00	4.950	5.050	
5.05	4.000	5.101	
5.10	4.049	5.151	
5.15	4.099	5.202	
5.20	4.148	5.252	
5.25	5.198	5.303	
5.30	5.247	5.353	
5.35	5.297	5.404	
5.40	5.346	5.454	
5.45	5.396	5.505	
5.50	5.445	5.555	
5.55	5.495	5.606	
5.60	5.544	5.656	
5.65	5.594	5.707	
5.70	5.643	5.757	
5.75	5.963	5.808	
5.80	5.742	5.858	
5.85	5.792	5.909	
5.90	5.841	5.959	
5.95	5.891	6.010	
6.00	5.940	6.060	

Conditions

SYMBOL	E-3	E-4	
CONDITIONS, SPEC-	INPUT VOLTAGE (V)	MAXIMUM OUTPUT CURRENT (mA)	
NOMINAL OUTPUT VOLTAGE (V)	V_{IN}	MIN.	
0.90 ~ 0.95	2.5	260	
1.00 ~ 1.05	2.5	260	
1.10 ~ 1.15	2.6	270	
1.20 ~ 1.25	2.7	290	
1.30 ~ 1.35	2.8		
1.40 ~ 1.45	2.9	300	
1.50 ~ 1.95	3.0	300	
2.00 ~ 6.00	V _{OUT(T)} + 1.0		

^{*} $V_{\text{OUT}(T)}$ is Nominal output voltage value.

■OPERATIONAL EXPLANATION

Output voltage control with the XC6209 series:

The voltage divided by resistors R1 & R2 is compared with the internal reference voltage by the error amplifier.

The P-channel MOSFET, which is connected to the Vout pin, is then driven by the subsequent output signal. The output voltage at the Vout pin is controlled & stabilized by a system of negative feedback.

The current limit circuit and short protect circuit operate in relation to the level of output current. Further, the IC's internal circuitry can be shutdown via the CE pin's signal.

<Low ESR Capacitors>

With the XC6209 series, a stable output voltage is achievable even if used with low ESR capacitors as a phase compensation circuit is built-in. In order to ensure the effectiveness of the phase compensation, we suggest that an output capacitor (CL) is connected as close as possible to the output pin (Vout) and the Vss pin. Please use an output capacitor with a capacitance value of at least 1 μ F. Also, please connect an input capacitor (CIN) of 1 μ F between the VIN pin and the Vss pin in order to ensure a stable power input.

Stable phase compensation may not be ensured if the capacitor runs out capacitance when depending on bias and temperature. In case the capacitor depends on the bias and temperature, please make sure the capacitor can ensure the actual capacitance.

<Current Limiter. Short-Circuit Protection>

The XC6209 series includes a combination of a fixed current limiter circuit & a foldback circuit, which aid the operations of the current limiter and circuit protection. When the load current reaches the current limit level, the fixed current limiter circuit operates and output voltage drops. As a result of this drop in output voltage, the foldback circuit operates, output voltage drops further and output current decreases. When the output pin is shorted, a current of about 50mA flows.

<CE Pin>

The IC's internal circuitry can be shutdown via the signal from the CE pin with the XC6209 series. In shutdown mode, output at the VouT pin will be pulled down to the Vss level via R1 & R2. The operational logic of the IC's CE pin is selectable (please refer to the selection guide). Note that as the standard XC6209B type is 'Active High /No Pull Down', operations will become unstable with the CE pin open. Although the CE pin is equal to an inverter input with CMOS hysteresis, with either the pull-up or pull-down options, the CE pin input current will increase when the IC's in operation.

We suggest that you use this IC with either a VIN voltage or a VSS voltage input at the CE pin. If this IC is used with the correct specifications for the CE pin, the IC will operate normally. However, supply current may increase as a result of through current in the IC's internal circuitry

■NOTES ON USE

- For temporary, transitional voltage drop or voltage rising phenomenon, the IC is liable to malfunction should the ratings be exceeded.
- 2. Where wiring impedance is high, operations may become unstable due to noise and/or phase lag depending on output current. Please strengthen V_{IN} and V_{SS} wiring in particular.
- 3. Please wire the input capacitor (C_{IN}) and the output capacitor (C_L) as close to the IC as possible.
- 4. The IC is controlled with constant current start-up. Start-up sequence control is requested to draw a load current after even nominal output voltage rising up the output voltage.
- Torex places an importance on improving our products and their reliability.
 We request that users incorporate fail-safe designs and post-aging protection treatment when using Torex products in their systems.

TEST CIRCUITS

Circuit ①

Circuit 2

Circuit ③

* Each Test Circuit, V_{CE} (CE pin Voltage)

Active

XC6209, Type A, B, E, F: $V_{CE}=V_{IN}$ XC6209, Type C, D, G, H: $V_{CE}=V_{SS}$

Stand-by

XC6209, Type A, B, E, F: V_{CE} = V_{SS} XC6209, Type C, D, G, H: V_{CE} = V_{IN}

■TYPICAL PERFORMANCE CHARACTERISTICS

(1) Output Voltage vs. Output Current

(1) Output Voltage vs. Output Current (Continued)

(2) Output Voltage vs. Input Voltage

(3) Dropout Voltage vs. Output Current

(4) Supply Current vs. Input Voltage

(5) Output Voltage vs. Ambient Temperature

(6) Supply Current vs. Ambient Temperature

(7) P-ch Driver Transistor Characteristics

(8) Input Transient Response

(9) Load Transient Response

(9) Load Transient Response (Continued)

(10) Ripple Rejection Rate

■PACKAGING INFORMATION

●SOT-25 (unit:mm)

●SOT-89-5 (unit:mm)

●USP-6B (unit:mm)

■ PACKAGING INFORMATION (Continued)

●USP-6B Reference Pattern Layout (unit:mm)

●USP-6B Reference Metal Mask Design (unit:mm)

●SOT-25 Power Dissipation

Power dissipation data for the SOT-25 is shown in this page.

The value of power dissipation varies with the mount board conditions.

Please use this data as the reference data taken in the following condition.

1. Measurement Condition

Condition: Mount on a board

Ambient: Natural convection

Soldering: Lead (Pb) free

Board: Dimensions 40×40mm (1600mm² in one side)

Copper (Cu) traces occupy 50% of the board area

In top and back faces

Package heat-sink is tied to the copper traces

(Board of SOT-26 is used)

Material: Glass Epoxy (FR-4)

Thickness: 1.6mm

Through-hole: 4 x 0.8 Diameter

Evaluation Board (unit: mm)

2. Power Dissipation vs. Ambient Temperature

Board Mount (Tjmax=125°C)

Ambient Temperature (°C)	Power Dissipation Pd (mW)	Thermal Resistance (°C/W)
25	600	166.67
85	240	100.07

XC6209 Series

●SOT-89-5 Power Dissipation

Power dissipation data for the SOT-89-5 is shown in this page.

The value of power dissipation varies with the mount board conditions.

Please use this data as the reference data taken in the following condition.

1. Measurement Condition

Condition: Mount on a board
Ambient: Natural convection
Soldering: Lead (Pb) free

Board: Dimensions 40 x 40 mm (1600 mm² in one side)

Copper (Cu) traces occupy 50% of the board area

In top and back faces

Package heat-sink is tied to the copper traces

Material: Glass Epoxy (FR-4)

Thickness: 1.6 mm

Through-hole: 5 x 0.8 Diameter

Evaluation Board (unit: mm)

2. Power Dissipation vs. Ambient Temperature

Board Mount (Tjmax=125°C)

Ambient Temperature (°C)	Power Dissipation Pd (mW)	Thermal Resistance (°C/W)
25	1300	76.92
85	520	70.92

●USP-6B Power Dissipation

Power dissipation data for the USP-6B is shown in this page.

The value of power dissipation varies with the mount board conditions.

Please use this data as the reference data taken in the following condition.

1. Measurement Condition

Condition: Mount on a board

Ambient: Natural convection

Soldering: Lead (Pb) free

Board: Dimensions 40×40mm (1600mm² in one side)

Copper (Cu) traces occupy 50% of the board area

In top and back faces

Package heat-sink is tied to the copper traces

Material: Glass Epoxy (FR-4)

Thickness: 1.6mm

Through-hole: 4 x 0.8 Diameter

Evaluation Board (unit: mm)

2. Power Dissipation vs. Ambient Temperature

Board Mount (Tjmax=125°C)

Ambient Temperature (°C)	Power Dissipation Pd (mW)	Thermal Resistance (°C/W)
25	1000	100.00
85	400	100.00

■MARKING RULE

●SOT-25 & SOT-89-5

$\textcircled{1} \ \text{represents product series}$

MARK	PRODUCT SERIES	
9	XC6209xxxxxx	

SOT-25 (TOP VIEW) 5 2 4 9 9 9 1 2 3 SOT-89-5 (TOP VIEW)

2 represents type of regulator

	MARK					
Vout 0.1V IN	ICREMENTS	Vout 0.05V II	NCREMENTS	PRODUCT SERIES		
VOLTAGE=	VOLTAGE=	VOLTAGE=	VOLTAGE=			
0.1~3.0V	3.1~6.0V	0.15~3.05V	3.15~6.05V			
V	Α	E	L	XC6209Axxxxx		
Х	В	F	M	XC6209Bxxxxx		
Υ	С	Н	N	XC6209Cxxxxx		
Z	D	K	Р	XC6209Dxxxxx		
<u>V</u>	<u>A</u>	<u>E</u>	<u>L</u>	XC6209Exxxxx		
X	<u>B</u>	<u>F</u>	<u>M</u>	XC6209Fxxxxx		
<u>Y</u>	<u>C</u>	<u>H</u>	<u>N</u>	XC6209Gxxxxx		
<u>Z</u>	<u>D</u>	<u>K</u>	<u>P</u>	XC6209Hxxxxx		

3 represents integer of the output voltage

MARK	OUT	PUT V	OLTAGE	E (V)	MARK	OUT	PUT V	OLTAGE	E (V)
0	-	3.1	-	3.15	F	1.6	4.6	1.65	4.65
1	1	3.2	-	3.25	Н	1.7	4.7	1.75	4.75
2	ı	3.3	-	3.35	K	1.8	4.8	1.85	4.85
3	ı	3.4	-	3.45	L	1.9	4.9	1.95	4.95
4	ı	3.5	-	3.55	M	2.0	5.0	2.05	5.05
5	-	3.6	-	3.65	N	2.1	5.1	2.15	5.15
6	-	3.7	-	.3.75	Р	2.2	5.2	2.25	5.25
7	-	3.8	-	3.85	R	2.3	5.3	2.35	5.35
8	0.9	3.9	0.95	3.95	S	2.4	5.4	2.45	5.45
9	1.0	4.0	1.05	4.05	Т	2.5	5.5	2.55	5.55
Α	1.1	4.1	1.15	4.15	U	2.6	5.6	2.65	5.65
В	1.2	4.2	1.25	4.25	V	2.7	5.7	2.75	5.75
С	1.3	4.3	1.35	4.35	X	2.8	5.8	2.85	5.85
D	1.4	4.4	1.45	4.45	Y	2.9	5.9	2.95	5.95
E	1.5	4.5	1.55	4.55	Z	3.0	6.0	3.05	-

④ represents production lot number 0 to 9, A to Z reversed character of 0 to 9 and A to Z repeated (G, I, J, O, Q, W excluded)

■MARKING RULE (Continued)

●USP-6B

①, ② represents product series

6	MARK		PRODUCT SERIES
5	1	2	PRODUCT SERIES
4	0	9	XC6209AxxxDx

USP-6B (TOP VIEW)

③ represents type of regulator

MARK	TYPE	PRODUCT SERIES
А	CE pin, Active High pull-down resistor built in	XC6209AxxxDx
В	CE pin, Active High no pull-down resistor built in	XC6209BxxxDx
С	CE pin, Active Low pull-up resistor built in	XC6209CxxxDx
D	CE pin, Active Low no pull-up resistor built in	XC6209DxxxDx

4 represents integer of output voltage

MARK	VOLTAGE (V)	PRODUCT SERIES
3	3.X	XC6209x3xxDx
5	5.X	XC6209x5xxDx

5 represents decimal number of output voltage

MARK	VOLTAGE (V)	PRODUCT SERIES	MARK	VOLTAGE (V)	PRODUCT SERIES
0	X.0	XC6209xx0xDx	Α	X.05	XC6209xx0ADx
1	X.1	XC6209xx1xDx	В	X.15	XC6209xx1ADx
2	X.2	XC6209xx2xDx	С	X.25	XC6209xx2ADx
3	X.3	XC6209xx3xDx	D	X.35	XC6209xx3ADx
4	X.4	XC6209xx4xDx	Е	X.45	XC6209xx4ADx
5	X.5	XC6209xx5xDx	F	X.55	XC6209xx5ADx
6	X.6	XC6209xx6xDx	Н	X.65	XC6209xx6ADx
7	X.7	XC6209xx7xDx	K	X.75	XC6209xx7ADx
8	X.8	XC6209xx8xDx	L	X.85	XC6209xx8ADx
9	X.9	XC6209xx9xDx	М	X.95	XC6209xx9ADx

® Represents production lot number 0 to 9, A to Z repeated (G, I, J, O, Q, W excluded)

Note: No character inversion used.

- The products and product specifications contained herein are subject to change without notice to improve performance characteristics. Consult us, or our representatives before use, to confirm that the information in this datasheet is up to date.
- 2. We assume no responsibility for any infringement of patents, patent rights, or other rights arising from the use of any information and circuitry in this datasheet.
- 3. Please ensure suitable shipping controls (including fail-safe designs and aging protection) are in force for equipment employing products listed in this datasheet.
- 4. The products in this datasheet are not developed, designed, or approved for use with such equipment whose failure of malfunction can be reasonably expected to directly endanger the life of, or cause significant injury to, the user.
 - (e.g. Atomic energy; aerospace; transport; combustion and associated safety equipment thereof.)
- Please use the products listed in this datasheet within the specified ranges.
 Should you wish to use the products under conditions exceeding the specifications, please consult us or our representatives.
- 6. We assume no responsibility for damage or loss due to abnormal use.
- 7. All rights reserved. No part of this datasheet may be copied or reproduced without the prior permission of TOREX SEMICONDUCTOR LTD.

TOREX SEMICONDUCTOR LTD.