

2003 HIGHER SCHOOL CERTIFICATE TRIAL EXAMINATION

Mathematics Extension 1

General Instructions

- Reading time 5 minutes
- Working time 2 hours
- Write using black or blue pen
- Board-approved calculators may be used
- A table of standard integrals is provided at the back of this paper
- All necessary working should be shown on every question

Total marks - 84

- Attempt Questions 1-7
- All questions are of equal value
- Start each question in new writing booklet

Question 1 (12 marks)

(a) Evaluate
$$\lim_{x\to 0} \frac{\tan 4x}{\ln x}$$
.

1

(b) Find
$$\frac{d}{dx}(2x^3e^{3x})$$
.

2

(c) Solve
$$\frac{1}{2-x} > 3$$
.

(e)

3

2

$$f(x) = 2\cos^{-1}\left(\frac{x}{3}\right) .$$

$$y = 3x - 5$$
$$2x + y - 7 = 0$$

Find the acute angle between the lines

2

to the nearest degree.

(f) Evaluate
$$\int \frac{\cos x}{1 + 2\sin x} dx$$

2

Question 2 (12 marks)

(e)

(a) Evaluate $\int_{0}^{2} \frac{\sqrt{8x}}{\sqrt{1+2x^2}} dx$, using the substitution $u = 1+2x^2$.

(b) Find the general solution to $\sqrt{3} \tan x - 1 = 0$. Express your answer in terms of π .

(c) Prove that (x-2) is a factor of $2x^4 - 4x^3 + 4x^2 - 15x + 14$

(d) Evaluate $\int_{0}^{\frac{\pi}{4}} \sin^2 2x \ dx$

(e) (i) Explain why BE = BF = DE F

(ii) Let $\angle BFE = \alpha$ and $\angle BDE = \beta$. Prove that $\angle FBD = 90^{\circ}$

Question 3 (12 marks)

- (a) Six people are seated in a straight line.
 - (i) How many seating arrangements are possible?

1

(ii) How many arrangements are possible if Tarzan and Jane occupy the scats at either end?

2

(b) (i) Show that $x^3 + 2x - 17 = 0$ has a root between x=2 and x=3

1

(ii) Using an approximation of x = 2-4, use one application of Newton's method to find a better approximation for this root. Give your answer to two decimal places.

2

(c) Use a table of standard integral to evaluate

$$\int \frac{1}{\sqrt{x^2 + 9}} dx$$

(d)
$$\int_{0}^{\frac{3}{4}} \frac{1}{9 + 16x^2} dx$$
 3

Question 4 (12 marks)

- (ii) W(2,3) divides XY internally in the ratio k:I where X(-1,1) and Y(7,9). 2 Find the ratio k:I.
- (b) The polynomial $P(x) = x^3 3x^2 + kx 2$ has roots α, β, γ .
 - (i) Find the value of $\alpha + \beta + \gamma$.
 - (ii) Find the value of $\alpha\beta\gamma$.
 - (iii) It is known that two roots are the reciprocal of each other.
 Find the value of the third root and hence find the value of k.
- (c) Marvin the Martian has a body temperature of 100 °C. When Marvin sleeps his body temperature obeys Newton's Law of Cooling according the the law $\frac{dT}{dt} = k(T A)$, where T is Marvin's body temperature and A is the temperature

of the surrounding air.

- (i) Show that $T = A + Ce^{w}$, where C and k are constants, satisfies Newton's Law of Cooling.
- (ii) Marvin goes to sleep at 10 pm. His temperature at midnight is 95°C. 3 Marvin's bedroom is air conditioned with the temperature set at 20°C. Assuming Marvin continues to sleep what will be his body temperature at 8am?

Question 5 (12 marks)

- (a) Use the principle of Mathematical Induction to show that $7^n + 13^n$ is divisible by 10 for n odd integers.
- (b) Sand pours onto the ground and forms a cone where the semi-vertical angle is 60° . The height of the cone at time t seconds is h cm and the radius of the base is r cm. Sand is being poured onto the pile at a rate of $12cm^3/s$.

- (i) Show that $r = \sqrt{3}h$
- (ii) Find the rate at which the height is increasing at the instant when the height is 12 cm.

[Volume of a cone = $\frac{1}{3}\pi r^2 h$]

(c) Consider the function

$$f(x) = \tan^{-1} x + \tan^{-1} \left(\frac{1}{x}\right)$$

(i) State any values of x for which f(x) is undefined.

(ii) Show that
$$f(1) = \frac{\pi}{2}$$

(iii) Show that f'(x) = 0

(iv) Sketch the graph of y = f(x)

Question 6 (12 marks)

A particle moves in Simple Harmonic Motion with amplitude a, in the form x = -4x where x is the displacement, in metres, from the origin O and t is the time in seconds.

(i) Prove that
$$v^2 = 4(a^2 - x^2)$$

- (ii) The particle moves so that x = 2, v = 4 find the value of a.
- (iii) Find an expression for v in terms of displacement.
- (iv) By setting $v = \frac{dx}{dt}$ and taking the reciprocal, prove that $x = 2\sqrt{2} \sin 2t$ if when $t = \frac{\pi}{4}$, $x = 2\sqrt{2}$.
- (v) Where would you expect the maximum speed to occur?
- (vi) Hence, or otherwise, find the maximum speed of the particle.

Question 7 (12 marks)

(a) A particle moves according to the equation $x = 2e^{-t}(\cos t + \sin t)$.

It moves in the interval $0 \le t \le 2\pi$.

(i)	Show that $\dot{x} = -4e^{-t} \sin t$ and find the acceleration function \ddot{x} .	2
(ii)	Discuss the displacement as $t \to \infty$.	1
(iii)	Find the times when the particle is at the origin.	2
(iv)	When is the particle moving in the positive direction.	1
(v)	Find the times when the particle will be stationary.	2
(vi)	Find the displacement at the times when the particle is stationary, (give your answers correct to three decimal places).	1
(vii)	Draw a neat, full-page sketch of $x = 2e^{-t}(\cos t + \sin t)$, giving endpoints, stationary points and intercepts	3