Aufgabe 5

(Hausaufgabe, Abgabe freiwillig) Es seien $X_1, ..., X_n$ unabhängig und diskret gleichverteilt auf der Menge $\{1, 2, ..., \theta\}$, wobei $\theta \in \Theta = \mathbb{N}$ unbekannt ist. Finden Sie eine suffiziente Statistik der Dimension 1 und nutzen Sie dies, um einen unverzerrten Schätzer geringer Varianz für θ zu finden.

$$\forall k \in \{1,2,...,\Theta\}: \mathbb{P}_{\Theta}(X_1 = k) = \frac{1}{\Theta} \cdot \mathbb{I}_{\{1,2,...,\Theta\}} (k) = \mathbb{P}_{\Theta,X_M}(k)$$

Lemma (Faktorisierungslemma)

Sei $(X_1,...,X_n)^t$ ein Zufallsvektor und $(F_{\theta,X_1,...,X_n})_{\theta\in\Theta}$ ein reguläres statistisches Modell. Falls für eine Statistik T gilt:

$$p_{\theta,X_1,...,X_n}(x_1,...,x_n) = g_{\theta}(T(x_1,...,x_n))h(x_1,...,x_n)$$
 (diskreter Fall), bzw. $f_{\theta,X_1,...,X_n}(x_1,...,x_n) = g_{\theta}(T(x_1,...,x_n))h(x_1,...,x_n)$ (stetiger Fall),

dann ist T suffizient

$$\begin{array}{ll}
& & & & & \\
& & & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\$$

$$h(x_{1}, x_{1}) = g_{0}(T(x_{1}, ..., x_{n}))$$

$$= h(x_{1}, x_{1}) = g_{0}(T(x_{1}, ..., x_{n}))$$

$$= h(x_{1}, x_{1}) = g_{0}(T(x_{1}, ..., x_{n}))$$

$$= h(x_{1}, ..., x_{n}) = g_{0}(T(x_{1}, ..., x_{n}))$$

$$= h(x_{1}, ..., x_{n})$$

$$=$$

$$h(x_{1}, x_{1}) = g_{\Theta}(T(x_{1}, ..., x_{n})) \cdot h(x_{1}, ..., x_{n})$$

$$= h(x_{1}, x_{1}) \cdot h(x_{1}, ..., x_{n})$$

$$= h(x_{1}, ..., x_{n}) \cdot h(x_{1}, ..., x_{n})$$

$$= h(x_{1}, ..., x_{n}) \cdot h(x_{1}, ..., x_{n})$$

$$= h(x_{1}, ..., x_{n})$$

miro

Theorem (Rao-Blackw

Sei $h(\theta)$ ein erwartungsteuer Schätzer für $h(\theta)$ und T eine suffiziente Statistik. Dann hängt $E[h(\theta)|T]$ nicht von θ ab und dies ist ebenfalls ein erwartungsteuer Schätzer. Außerdem gilt für alle $\theta \in \Theta$

 $Var_{\theta}\left[E[h(\hat{\theta})|T]\right] \leq Var_{\theta}\left[h(\hat{\theta})\right]$

$$\hat{\Theta} = \hat{\Theta}(X_1, ..., X_n)$$

$$\hat{\Theta} = \text{sensitivp true } \underset{E_0}{\text{ting}} X \neq \Theta \in \Theta$$

$$E_0[X_n] = A \cdot P_0(X_n \cdot A) + 2 \cdot P_0(X_n \cdot A) + ... + \Theta \cdot P_0(X_n \cdot A)$$

$$= A \cdot \frac{A}{n} + 2 \cdot \frac{A}{n} + ... + \Theta \cdot$$

Aufgabe 4

(Hausaufgabe, Abgabe freiwillig) Es seien $X_1, ..., X_n$ u.i.v. $\exp(\lambda)$ -verteilt. Zeigen Sie, dass $T = \sum_{i=1}^n X_i$ eine suffiziente Statistik ist. Nutzen Sie dies, um einen unverzerrten Schätzer geringer Varianz für λ zu finden.

$$\begin{cases}
\lambda_{5}, \chi_{n}(x_{n}) = \delta \cdot e^{-\delta x_{n}} \cdot \mathcal{I}_{[0, \infty]}(x_{n}) \\
\lambda_{5}, (\chi_{n}, x_{n}) = \lambda_{5}, \chi_{n}(x_{n}) \cdot \mathcal{I}_{5}, \chi_{n}(x_{n}) \cdot \mathcal{I}_{5}, \chi_{n}(x_{n}) = \lambda_{5}, \chi_{n}(x_{n}) \cdot \mathcal{I}_{5}, \chi_{n}(x_{n}) \cdot \mathcal{I}_{5}, \chi_{n}(x_{n}) = \lambda_{5}, \chi_{n}(x_{n}) \cdot \mathcal{I}_{5}, \chi_{n}(x_{n}) \cdot \mathcal{I}_{5}, \chi_{n}(x_{n}) = \lambda_{5}, \chi_{n}(x_{n}) \cdot \mathcal{I}_{5}, \chi_{n}(x_{n}) \cdot \mathcal{I}_{5}, \chi_{n}(x_{n}) = \lambda_{5}, \chi_{n}(x_{n}) \cdot \mathcal{I}_{5}, \chi_{n}(x_{n}) \cdot \mathcal{I}_{5}, \chi_{n}(x_{n}) \cdot \mathcal{I}_{5}, \chi_{n}(x_{n}) = \lambda_{5}, \chi_{n}(x_{n}) \cdot \mathcal{I}_{5}, \chi_{n}(x_{n}) \cdot \mathcal{I}_{5},$$

miro

Theorem (Rao-Blackwell)

Sei $h(\hat{\theta})$ ein erwartungsteuer Schätzer für $h(\theta)$ und T eine suffiziente Statistik. Dann hängt $E[h(\hat{\theta})|T]$ nicht von θ ab und dies ist ebenfalls ein erwartungsteuer Schätzer. Außerdem gilt für alle $\theta \in \Theta$

$$\operatorname{Var}_{\theta}\left[E[\hat{h(\theta)}|T]\right] \leq \operatorname{Var}_{\theta}\left[\hat{h(\theta)}\right]$$

Weitere Eigenschaften [Bearbeiten | Quelltext bearbeiten]

Sind $X_1 \sim \operatorname{Exp}(\lambda_1), \ldots, X_n \sim \operatorname{Exp}(\lambda_n)$ stochastisch unabhängig, so ist

$$\min(X_1,\ldots,X_n) \sim \operatorname{Exp}(\lambda_1 + \cdots + \lambda_n)$$

$$\left[\left\{ \sum_{n=0}^{\infty} \left(N^{-n} \right) \right\} \right] = \frac{1}{n \cdot 8}$$

$$\left(\frac{\Lambda}{S}\right) := h \cdot \min \left\{X_{1}, X_{n}\right\}$$

$$\Rightarrow \mathbb{E}_{S}\left(\frac{1}{S}\right) = \frac{1}{S} \quad \forall S > 0 \Rightarrow \left(\frac{1}{S}\right) \text{ its execution to$$

$$\mathbb{E}\left[\left(\frac{1}{8}\right) \mid \mathcal{T}(1, X_n) = \frac{1}{2}$$

$$= \mathbb{E}\left[n \cdot \min\{X_{n-1}, X_{n}\} \mid X_{n} + \dots + X_{n}\right] = n \cdot \mathbb{E}\left[\min\{X_{n-1}, X_{n}\} \mid X_{n} + \dots + X_{n}\right]$$

ist auch erwartnysteine Schatze für j
mit Variare
$$\leq Va_{3}(\frac{1}{8}) + 3>0$$

miro