# 實驗二

B1121141 葉彥辰

B1121126 郭亮佑

B1121128 蘇昱嘉

(1) 依圖 2-6 之接線,請繪出電路圖並標上相關參數。



#### 實驗2-1 (軟體模擬)

(2) 請完成輸入信號為方波(±5V@0.1Hz)、P5 調整至 100%,觀察示波器顯示之暫態響應波形,量測輸入電壓、響應穩態值、時間常數之實際值,將結果填於表 2-1,並以軟體模擬與驗證。



### 實驗2-1 (實驗結果)

(2) 請完成輸入信號為方波(±5V@0.1Hz)、P5 調整至 100%,觀察示波器顯示之暫態響應波形,量測輸入電壓、響應穩態值、時間常數之實際值,將結果填於表 2-1,並以軟體模擬與驗證。



#### 實驗2-1 (軟體模擬)

(3) 請完成輸入信號為方波(±5V@0.1Hz)、P5 調整至 50%,將結果填於表 2-1,並以軟體模擬與驗證。



#### 實驗2-1 (軟體模擬)

(3) 請完成輸入信號為方波(±5V@0.1Hz)、P5 調整至 50%,將結果填於表 2-1,並以軟體模擬與驗證。



### 實驗2-1 (實驗驗證)

(3) 請完成輸入信號為方波(±5V@0.1Hz)、P5 調整至 50%,將結果填於表 2-1,並以軟體模擬與驗證。



表2-1

| 項目 | E_a(v) |      | w_t, ss (v) |      | gain |     | w_t    |        | tau     |      |
|----|--------|------|-------------|------|------|-----|--------|--------|---------|------|
|    | 100%   | 50%  | 100%        | 50%  | 100% | 50% | 100%   | 50%    | 100%    | 50%  |
| 實驗 | 5.05   | 5.05 | 5.05        | 5.05 | 1    | 1   | 3.2017 | 3.2017 | 0.46875 | 0.94 |
| 理論 | 5      | 5    | 5           | 5    | 1    | 1   | 3.17   | 3.17   | 0.4     | 0.8  |

#### (1) 請完成輸入信號為步階,調整 P3 完成表 2-2。

| 主 | $\sim$ | $\circ$ |
|---|--------|---------|
| 化 | Z      |         |

| 輸入電壓<br>(V) | 1     | 2      | 3     | 4      | 5          | 6           | 7       | 8       | 9       | 10     |
|-------------|-------|--------|-------|--------|------------|-------------|---------|---------|---------|--------|
| 穩態電壓<br>(V) | 1     | 2      | 3     | 4      | 5          | 6           | 7       | 8       | 9       | 10     |
| 轉速(rpm)     | 30.72 | 58.24  | 81.28 | 110.4  | 134.7      | 163.84      | 183.68  | 212.8   | 213.76  | 213.76 |
| 輸入電壓<br>(V) | -1    | -2     | -3    | -4     | <b>-</b> 5 | -6          | -7      | -8      | -9      | -10    |
| 穩態電壓<br>(V) | -1    | -2     | -3    | -4     | <b>-</b> 5 | -6          | -7      | -8      | -9      | -10    |
| 轉速(rpm)     | -38.4 | -58.88 | -89.6 | -113.6 | -<br>140.8 | -<br>168.64 | -192.32 | -216.96 | -230.08 | -230.4 |

(2) 依表 2-2,利用 matlab 繪出 電壓與馬達轉速關係圖。



(1) 請完成輸入信號為步階(1V、3V、5V、7V、9V), 調整制動器控制拉桿位置, 完成表 2-3。

| 電壓         | 0                             | 1     | 2      | 3      | 4      | 5      | 6      | 7      |
|------------|-------------------------------|-------|--------|--------|--------|--------|--------|--------|
| 1V         | 穩態電壓<br>ω_{t,ss} (V)          | 1     | 1      | 1      | 1      | 1      | 1      | 1      |
| ΤV         | 轉速<br>ω (rpm)                 | 37.12 | 36.48  | 33.92  | 30.72  | 27.52  | 24.96  | 22.72  |
| 3V         | 穩態電壓<br>ω_{t,ss} (V)          | 3     | 3      | 3      | 3      | 3      | 3      | 3      |
| J V        | 轉速<br>ω (rpm)                 | 82.88 | 80.96  | 76.48  | 69.76  | 60.48  | 54.72  | 50.24  |
| 5V         | 穩態電壓<br>ω_{t,ss} (V)          | 5     | 5      | 5      | 5      | 5      | 5      | 5      |
| JV         | 轉速<br>ω (rpm)                 | 136.9 | 135.04 | 125.76 | 112.64 | 101.76 | 89.6   | 82.24  |
| 7V         | 穩態電壓<br>ω_{t <b>,</b> ss} (V) | 7     | 7      | 7      | 7      | 7      | 7      | 7      |
| / V        | 轉速<br>ω (rpm)                 | 187.8 | 184    | 170.88 | 154.88 | 133.76 | 115.84 | 103.68 |
| 9V         | 穩態電壓<br>ω_{t,ss} (V)          | 9     | 9      | 9      | 9      | 9      | 9      | 9      |
| <i>9</i> V | 轉速<br>ω (rpm)                 | 212.8 | 208.32 | 187.84 | 157.12 | 136.32 | 110.08 | 103.68 |

(2) 依表 2-3,利用 matlab 繪出 1.負載-穩態電壓; 2. 負載-馬達轉速關係圖。





#### 問題討論

- 1. 繳交實驗結果(含:測量波形、模擬驗證並繪製各量值間關係圖) 已完成
- 請問機構單元直流馬達轉動軸與輸出轉軸之減速比為多少?為何需要減速?對直流 馬達系統轉移函數有何影響?
- 3. 試述負載增加時,為何直流馬達之轉速會降低?

#### 問題討論

 請問機構單元直流馬達轉動軸與輸出轉軸之減速比為多少?為何需要減速?對直流 馬達系統轉移函數有何影響?

- 1. 機構單元中的直流馬達,其轉動軸與輸出轉軸之間的減速比為 1:32,即輸出軸的轉速為馬達轉軸轉速的1/32。
- 2. 若轉速過高, 硬體無法承受過大的負荷, 因此需要透過減速來降低轉速, 確保系統穩定運作。
- 3. 減速的過程不會改變直流馬達系統的轉移函數,因此對其數學模型沒有影響。

#### 問題討論

3. 試述負載增加時,為何直流馬達之轉速會降低?

當負載增加時,馬達為了提供足夠的力矩來克服額外的負載,所需的電樞電流會增加。然而,隨著電樞電流的增大,電樞電阻上的壓降也會上升,導致施加在馬達上的有效電壓降低,進而使馬達的轉速下降