

Function Approximation/Fitting

- Widrow-Hoff works if functional form is known (model-based)
- What if function form is not know?
 - Use Neural Networks (model-free)

Neural networks

- Type of machine learning method
- Dates back to 1940's
- Nice read of the history 1940s to 2000:
 https://cs.stanford.edu/people/eroberts/courses/soco/projects/neural-networks/History/history1.html
- Foundational work leading to current deep learning

Machine Learning Algorithms Cheat Sheet **Unsupervised Learning: Clustering** Unsupervised Learning: Dimension Reduction START Dimension Topic Prefer Probabilistic Categorical Reduction Modeling Probability Variables Singular Value Need to Have Hierarchical Specify k Reponses Supervised Learning: Regression Supervised Learning: Classification Data Is Predicting Speed or Speed or Explainable Too Large Accuracy Accuracy Numeric Linear Regression **ACCURACY** ACCURACY

- In this class we will use
 Deep Learning/ Neural
 Network for Function
 Approximation
 (sometimes referred to
 as regression, though
 regression is one of the
 methods for function
 approximation)
- Deep Learning is a supervised Machine Learning method
 - Estimating a function that fits to the data

BASIC NN

Nonlinear Neural Network (model- free):

• **Problem**: Fit a predictive model to the data. Suppose we do not know the analytical form of the function, but only know that $y = f(u_1, u_2,)$

• Example $y = f(u_1, u_2)$

Neural Network (NN) architecture

- u[i] are the input nodes (independent variables of the function)
- w[i, h] and x[h] are the weights (equivalent to coefficients in polynomial equations) of the NN
 - w[i, h]: are the weights of the links from node u[i] to node v[h]
 - x[h]: are the weights of the links from node v[h] to \overline{y} (bar) to denote that it is an estimate of y)
- b is a bias node (equivalent to the intercept) term
- v[h]: are the nodes in the hidden layer and mathematically represented by **activation** functions (in below example we use a sigmoid function). **CORE of NN: adds non-linearity**

Neural Network terminologies

- Foundations are in linear algebra-All data are in arrays (vectors, matrices, 3D, ...)
- Most times notations not written in vector form (as on the right side figure)
- Will write in vector or matrix form on these slides to understand the foundations

Suppose $y = f(\vec{u})$; Corresponding NN architecture for feedforward NN

Neural Network terminologies

- NN architecture
 - Sometimes b written in the node, with nothing on arrow

Suppose $y = f(\vec{u})$; Corresponding NN architecture for feedforward NN

Example architectures - taking Q values

Example 1: One network for each action

Example 2: Include action in input layer

s: state vector

$$\mathbf{s} = [s_1, \dots s_N]$$

a: action vector

$$s = [s_1, ... s_N]$$
 $a = [a_1, ... a_M]$

Example of uni-variate state and action

Suppose,

 X_t =proportion of people with active infection

 D_t =how often to test

State space: $S \in \mathbb{R}^1$; $S \in [0,1]$

Action space:A = {test once a week, twice a week, three times a week, daily}

Action space: $A \in \mathbb{R}^1$; $A \in [1,30]$

Example of multi-variate state and action

 $X_t = [proportion with active infection, proportion recovered]$ $D_t = [\text{how often to test in a week, what \%lockdown}]$ State space: $S \in \mathbb{R}^2$; (vector of 2 real random variables) Action space: $A = \{ [once, 25\%], [twice, 25\%], [thrice, 25\%], [thrice, 25\%], [twice, 25\%], [twice, 25\%], [thrice, 25\%], [twice, 25\%], [t$ [once, 50%], [twice, 50%], [thrice, 50%] }

Action space: $a \in \mathbb{R}^2$; (vector of 2 real random variables)

s: state vector

a: action vector

$$s = [S_1, ... S_N]$$
 $a = [A_1, ... A_M]$

vector

variates A

of 2

$$\boldsymbol{a} = [A_1, ... A_M]$$

Neural Network terminologies

NN architecture

- Output layer $(\overline{y} \text{ a vector})\overline{y} = f(\vec{u})$
 - Figure shows univariate output (\bar{y})
- Input layer (\vec{u})
 - Input nodes (u[i])
 - Number of nodes in input layer = $|\vec{u}|$
- Hidden layer/s (figure shows one hidden layer \vec{v})
- Weights (arrows; w[.,.],x[.])
- Bias node (1 or b)
- Activation function/s (v)
 - Non-linear transformation applied to linear combination of w[.,.],
 u[.])

Loss-function

Objective function (minimize loss/error)

NN optimizer

- Algorithm to train the NN: solve for w[.,.], x[.] to minimize loss

Suppose $y = f(\vec{u})$; Corresponding NN architecture for feedforward NN

Guess what?

- Pay attention to the variables; they typically change (get into the habit of deviating from fixed variables)
- Here we are using u for independent variables (in W-H they were x);
- Always define the variables for every problem, do not expect the reader to guess; they always guess wrong

YOU ASKED ME TO GUESS; AND I GUESSED WRONG

Neural Network for Function Fitting

• Objective for function fitting:

$$\min_{b,x,w} E = \min_{b,x,w} \sum_{p=1}^{P} (y_p - \bar{y}_p)^2$$

We can then apply Gradient Descent

$$b \leftarrow b - \mu \frac{\partial(E)}{\partial b}$$

$$\omega[i,h] \leftarrow \omega[i,h] - \frac{\mu \partial(E)}{\partial \omega[i,h]}$$

$$x[h] \leftarrow x[h] - \mu \frac{\partial(E)}{\partial x[h]}$$

$$\bar{y} = ?$$

PROBLEM FORMULATION (mathematical representation of NN)

- We can mathematically represent the neural net with the following equations.
- $\bar{y} = b + \sum_{h=1,2,...H} x[h]v[h]$
- v[h] is a non-linear transformation applied to linear combination of w[., h], u[.]
- $v[h] = f((\sum_{i=1:N} w[i,h]u[i]))$
- v[h] = f(w[.,h]u[.])
- Suppose we use sigmoid activation function, then,

$$v[h] = \frac{1}{1 + e^{-v^*[h]}}; \forall h, \text{ where}$$

 $v^*[h] = \sum_{i=1:N} w[i, h]u[i]$

PROBLEM FORMULATION – with SIGMOID ACTIVATION

- $\bar{y} = b + \sum_{h=1,2,...H} x[h]v[h]$
- $v[h] = \frac{1}{1 + e^{-v^*[h]}}$; $\forall h$, where
- $v^*[h] = \sum_{i=1:N} w[i, h]u[i]$

PROBLEM FORMULATION (SIGMOID ACTIVATION)

- $\bar{y} = b + \sum_{h=1,2,...H} x[h]v[h]$
- $v[h] = \frac{1}{1 + e^{-v^*[h]}}$; $\forall h$, where
- $v^*[h] = \sum_{i=1:N} w[i, h]u[i]$
- Objective is to $\min_{b,x,w} SSE = \sum_{p=1}^{P} (y_p \bar{y}_p)^2$

SOLUTION ALGORITHM: Backprop (back propagation)

Backprop concepts

- Objective is to $\min_{b,x,w} SSE \sim \min_{b,x,w} \frac{SSE}{2}$
 - $SSE = f(b, \omega[., .], x[.])$ (Notice this doesn't have u because they are data samples)
 - $b, \omega[.,.]$, and x[.] are the decision variables from perspective of Backprop.
 - \bar{y}_p = output from trained net for \vec{u}_p ; p are the data samples
 - $y_p = actual data$
 - P = number of samples; N = number of input nodes

Backprop algorithm

- 1. Initialize
 - 1. Initialize $b, \omega(.,.)$, and x(.) to random values
 - 2. Set SSE_{old} to very large value.
 - 3. Set m = 0 (iteration number)
- 2. Compute $v_p^*[h] = \sum_i w[i, h] u_p[i]$ for each p and each h.
- 3. Compute $v_p[h] = \frac{1}{1+e^{-v_p^*[h]}}$ for each p and each h
- 4. Compute $\bar{y}_p = b + \sum_h x[h]v_p[h]$ for each p (data sample)
- 5. Apply SD transformations $(E = \frac{1}{2} \sum_{p=1}^{p} (y_p \bar{y}_p)^2)$

$$b_m \leftarrow b_{m-1} - \mu \frac{\partial(E)}{\partial b}$$

- 6. $\omega_{m}[i,h] \leftarrow \omega_{m-1}[i,h] \mu \frac{\partial(E)}{\partial \omega[i,h]}$ $x_{m}[h] \leftarrow x_{m-1}[h] \mu \frac{\partial(E)}{\partial x[h]}$
- 7. Set m = m + 1
 - 1. Calculate $E_{new} = \sum_{p} (y_p \bar{y}_p)^2$
 - 2. Update μ
 - 3. If $[E_{\text{new}} E_{\text{old}}] < \text{tolerance} \rightarrow STOP$ Otherwise set $E_{\text{old}} = E_{\text{new}}$ got step 2.

Recollect W-H for regressionuses Steepest Descent (SD)

- Initialize
 - Set w[i] to values between 0 and 1;
 - Set E_{old} (the SSE) to a large number
 - Set m = 0; Set μ

- Compute $\bar{y}_p = \sum_{i=0}^{N} \omega[i] x_p[i]$ for each p (data samples)
- Apply SD transformations $(E = \frac{1}{2} \sum_{p=1}^{P} (y_p \bar{y}_p)^2)$ $\omega_{m+1}[i] \leftarrow w_m[i] + \mu \frac{\partial(E)}{\partial w[i]}$ $\frac{\partial(E)}{\partial w[i]} = \sum_{p=1}^{m} (y_p \bar{y}_p) x_p[i]$
- Set m = m + 1.
 - Calculate $E_{\text{new}} = \sum_{p} (y_p \bar{y}_p)^2$
 - Update μ .
 - If $|E_{\text{new}} E_{\text{old}}| < \text{tolerance STOP. Otherwise set } E_{\text{old}} = 0$ E_{new} and go back to step 2.

Backprop algorithm

- Initialize
 - Initialize b, $\omega(.,.)$, and x(.) to random values
 - Set SSE_{old} to very large value.
 - Set m = 0 (iteration number)
- Compute $v_p^*[h] = \sum_i w[i, h] u_p[i]$ for each p and each h.
- 3. Compute $v_p[h] = \frac{1}{1+e^{-v_p^*[h]}}$ for each p and each h

 4. Compute $\bar{y}_p = b + \sum_h x[h] v_p[h]$ for each p.
- 5. Apply SD transformations $(E = \frac{1}{2} \sum_{p=1}^{P} (y_p \bar{y}_p)^2)$

$$b_m \leftarrow b_{m-1} - \mu \frac{\partial(E)}{\partial b}$$

- $\omega_m[i,h] \leftarrow \omega_{m-1}[i,h] \frac{\mu \partial(E)}{\partial \omega[i,h]}$ $x_m[h] \leftarrow x_{m-1}[h] - \mu \frac{\partial(E)}{\partial x[h]}$
- Set m = m + 1
 - Calculate $E_{new} = \sum_{n} (y_n \bar{y}_n)^2$
 - Update μ
 - If $[E_{\text{new}} E_{\text{old}}] < \text{tolerance} \rightarrow STOP$ Otherwise set $E_{\text{old}} = E_{\text{new}}$ got step 2.

- Do multiple iterations of the algorithm to start at different initial points
- Initialize $b, \omega[.,.]$, and x[.] to select from a random range; Try a few different ranges
- Try a few different options for learning rate ($\mu =$ $\frac{A}{B+m}$; $\mu = \frac{1}{m}$; $\mu = 0.001$ (small constant))

Derivation of Backprop derivatives

- Main transformation is the steepest descent $\vec{x} \leftarrow \vec{x} \mu \nabla f(\vec{x})$; but here we are solving for $\omega[.,.]$, and x[.]
- $b_m \leftarrow b_{m-1} \mu \frac{\partial(E)}{\partial b}$
- $\omega_m[i,h] \leftarrow \omega_{m-1}[i,h] \frac{\mu \partial(E)}{\partial \omega[i,h]}$
- $x_m[h] \leftarrow x_{m-1}[h] \mu \frac{\partial(E)}{\partial x[h]}$

$$\frac{\partial E}{\partial x[h]} = ? \frac{\partial E}{\partial b} = ?$$

•
$$\frac{\partial E}{\partial x[h]} = \frac{1}{2} \sum_{p=1}^{P} \frac{\partial}{\partial x[h]} \left(y_p - \bar{y}_p \right)^2$$

$$= \frac{2}{2} \sum_{p=1}^{P} \left(y_p - \bar{y}_p \right) \frac{\partial}{\partial x[h]} \left(y_p - \bar{y}_p \right)$$

$$= \sum_{p} \left(y_p - \bar{y}_p \right) \left(-\frac{\partial \bar{y}_p}{\partial x[h]} \right)$$

$$= \sum_{p} \left(y_p - \bar{y}_p \right) \left(-\frac{\partial (b + \sum_h x[h] v_p[h])}{\partial x[h]} \right)$$

$$\frac{\partial E}{\partial x[h]} = -\sum_{p} (y_{p} - \bar{y}_{p}) v_{p}[h]$$

•
$$\frac{\partial E}{\partial p} = -\sum_{p} (y_p - \bar{y}_p)$$

$$\frac{\partial E}{\omega(i,h)} = ?$$

$$\frac{\partial E}{\omega[i,h]} = \frac{1}{2} \sum_{p} \frac{\partial}{\partial \omega[i,h]} (y_{p} - \bar{y}_{p})^{2}$$

$$= \frac{1}{2} \sum_{p} 2(y_{p} - \bar{y}_{p}) \frac{\partial}{\partial \omega[i,h]} (y_{p} - \bar{y}_{p})$$

$$= \sum_{p} (y_{p} - \bar{y}_{p}) \left(-\frac{\partial}{\partial w[i,h]} \bar{y}_{p} \right)$$

$$= -\sum_{p} (y_{p} - \bar{y}_{p}) \cdot \left(\frac{\partial \bar{y}_{p}}{\partial v_{p}[h]} \frac{\partial v_{p}[h]}{\partial v_{p}^{*}[h]} \frac{\partial v_{p}^{*}[h]}{\partial \omega[i,h]} \right)$$

$$\frac{\partial E}{\partial w[i,h]} = -\sum_{p} ((y_{p} - \bar{y}_{p})x[h]v_{p}[h](1 - v_{p}[h])u_{p}[i])$$

This changes for different activation functions

• Feed forward equations

$$v_p^*[h] = \sum_i \omega[i, h] u_p[i];$$

$$v_p[h] = \frac{1}{1+e^{-v^*[h]}};$$

$$y_p = b + \sum_h v_p[h]x[h]$$

•
$$\frac{\partial v_p^*[h]}{\partial w(i,h)} = u_p[i]$$

•
$$\frac{\partial v_{p}[h]}{\partial v_{p}^{*}[h]} = \frac{\partial \left(1 + e^{-v_{p}^{*}[h]}\right)^{-1}}{\partial v_{p}^{*}[h]}$$

$$= \frac{-1}{\left[1 + e^{-v_{p}^{*}[h]}\right]^{2}} e^{-v_{p}^{*}[h]} (-1)$$

$$= \frac{1 + e^{-v_{p}^{*}[h]} - 1}{\left[1 + e^{-v_{p}^{*}[h]}\right]^{2}} (add + 1, -1 \text{ in numerator})$$

$$= \frac{1 + e^{-v_{p}^{*}[h]}}{\left[1 + e^{-v_{p}^{*}[h]}\right]^{2}} - \frac{1}{\left[1 + e^{-v_{p}^{*}[h]}\right]^{2}}$$

$$= \frac{1}{1 + e^{-v_{p}^{*}[h]}} - \frac{1}{\left[1 + e^{-v_{p}^{*}[h]}\right]^{2}}$$

$$= v_{p}[h](1 - v_{p}[h])$$

Backprop algorithm

- 1. Initialize
 - 1. Initialize $b, \omega(.,.)$, and x(.) to random values
 - 2. Set SSE_{old} to very large value.
 - 3. Set m = 0 (iteration number)
- 2. Compute $v_p^*[h] = \sum_i w[i, h] u_p[i]$ for each p and each h.
- 3. Compute $v_p[h] = \frac{1}{1+e^{-v_p^*[h]}}$ for each p and each h
- 4. Compute $\bar{y}_p = b + \sum_h x[h]v_p[h]$ for each p (data samples)
- 5. Apply SD transformations $(E = \frac{1}{2}\sum_{p=1}^{p} (y_p \bar{y}_p)^2)$

$$b_{m} \leftarrow b_{m-1} - \mu \frac{\partial(E)}{\partial b}; \qquad \frac{\partial E}{\partial b} = -\sum_{p} (y_{p} - \bar{y}_{p})$$

$$6. \qquad \omega_{m}[i,h] \leftarrow \omega_{m-1}[i,h] - \mu \frac{\partial(E)}{\partial \omega[i,h]}; \qquad \frac{\partial E}{\partial w[i,h]} = -\sum_{p} ((y_{p} - \bar{y}_{p})x[h]v_{p}[h](1 - v_{p}[h])u_{p}[i])$$

$$x_{m}[h] \leftarrow x_{m-1}[h] - \mu \frac{\partial(E)}{\partial x[h]}; \qquad \frac{\partial E}{\partial x[h]} = -\sum_{p} (y_{p} - \bar{y}_{p})v_{p}[h]$$

- 7. Set m = m + 1
 - 1. Calculate $E_{new} = \sum_{p} (y_p \bar{y}_p)^2$
 - 2. Update μ
 - 3. If $[E_{\text{new}} E_{\text{old}}] < \text{tolerance} \rightarrow STOP$ Otherwise set $E_{\text{old}} = E_{\text{new}}$ got step 2.

- Do multiple iterations of the algorithm to start at different initial points
- Initialize b, $\omega[.,.]$, and x[.] to select from a random range; Try a few different ranges
- Try a few different options for learning rate ($\mu = small\ constant$; $\mu = \frac{A}{B+m}$; $\mu = \frac{1}{m}$;)

This applies to sigmoid activation; change if using a different activation function

Backprop for below (addition of a bias node in input layer)?

Visualization of NN

- https://cs.stanford.edu/people/karpathy/convnetjs/demo/regression.html
- https://cs.stanford.edu/people/karpathy/convnetjs/
- https://playground.tensorflow.org

Further study

- Activation functions:
 - Sigmoid, Tanh, (for function approximation); vanishing gradient/exploding gradient challenges when layers increase
 - ReLU (overcomes vanishing gradient/exploding gradient problem)
 - Numerous other AF: https://arxiv.org/abs/1811.03378
- Neural network architectures:
 - https://towardsdatascience.com/the-mostly-complete-chart-of-neural-networks-explained-3fb6f2367464
- Optimizers (Backprop is typically the core, but estimations of gradient and types of learning rates may vary)
 - Adam, RMSProp, SGDm AdamW, Adadelta, Adamax, Adafactor, Nadam;
 - https://keras.io/api/optimizers/
 - https://pytorch.org/docs/stable/optim.html
 - Schmidt, et.al., ICML 2021; https://github.com/SirRob1997/Crowded-Valley---Results
- Deep learning: Sarker, I.H. Deep Learning: A Comprehensive Overview on Techniques, Taxonomy, Applications and Research Directions. SN COMPUT. SCI. 2, 420 (2021). https://doi.org/10.1007/s42979-021-00

Output layer

- Multiple nodes in output layer→ when predicting multinomial functions
 - AF may then be used in output layer as well,
 - In RL, for policy gradient, we will use multiple nodes in output layer with softmax AF.
 - Lapan Ch3-Module1 code uses softmax
- Droput in output layer:
 - It is a form of regularization in supervised learning, especially when data is sparse;
 https://arxiv.org/pdf/1207.0580.pdf
 - It is not used that much in reinforcement learning, but there is some research in its use in policy gradient https://doi.org/10.48550/arXiv.2202.11818
 - Lapan Ch3-Module1 code uses dropout

Do you know?

- What we looked at is the simplest neural net architecture
- NN is a **single layer perceptron** developed in 1950's
- Deep learning- generally multi-layer NN are called DL
- We looked at specific DL called feed forward,
- Other types of deep learning (potentially a course in Fall 2025)
 - CNN (convolution neural network)
 - RNN (recurrent neural network)
 - Autoencoders
 - Attention networks
 - Self-attention mechanisms (Transformers)
- Single layer feedforward is very powerful for representation of most non-linear functions of any form Universal approximators
- Other architectures were developed for image and text processing, processing of sequence data
 - Sequence based methods can be used for dynamic decision making (when we get to RL we will discuss deep learning)

Work colleague: I saw deep learning on your resume, I have a question for you..

New graduate:

Let's try to figure it out

Fast growing; hard to keep up with everything

ML Arxiv Papers
 Moore's Law growth rate (2x/2 years)

2009 ML Arxiv Papers If your mathematical foundation is strong, you can figure it out

Relative to

Student asks question

Professor's response: Just restates the question in different words

Twitter post: @JeffDean (google AI chief)

Year

Older version: Synced, 2018, https://syncedreview.com/2018/07/26/google-ai-chief-jeff-deans-ml-systemarchitecture-blueprint/

31

Questions

- Have one hidden layer but increase number of nodes
- Vs.
- Have multiple hidden layers with fewer nodes in each
- The first does piecewise non-linear fits, while the second does non-linear transformations to a higher lever;
 - So for a complex (highly non-linear function), number nodes needed to get same fit will be much higher than adding multiple layers.
 - The first would also be overfitting

Application areas of NN

- As a machine learning tool (static applications)— prediction, classification, function approximation
 - This application will follow typical machine learning rules for model training and accuracy; spilt by test and train data; evaluate predictive power using test scores etc.
 - How neural networks learn (insight into application of NN)
 - https://www.youtube.com/watch?v=TkwXa7Cvfr8
- As function approximation of environment (dynamic system representation)
 - e.g., recurrent neural network (RNN) can be trained to replace large-scale high-computation simulation models
 - Computational burden of training NN is high, but once trained computation burden is minimal
- As function approximation for learning the policy function or value function in control optimization /intelligent systems (dynamic decision making we will see in deep RL)
 - This is the focus of this class
 - We will skip typical steps of ML training and testing here and look at overall model performance with RL

UMassAmherst

The Commonwealth's Flagship Campus