# Uvod v odkrivanje enačb in simbolno regresijo

#### Ljupčo Todorovski

Univerza v Ljubljani, Fakulteta za matematiko in fiziko Institut Jožef Stefan, Odsek za tehnologije znanja (E8)

April 2023

### Odkrivanje enačb: tretji Keplerjev zakon

#### Rekonstrukcija Keplerjevega tretjega zakona iz podatkov

$$d^3/p^2 = const$$



# opazovanja in zakonitost



### Pregled predavanja

- 🕕 Motivacija
  - Uvod v odkrivanje enačb in simbolno regresijo
  - Razmerje do drugih nalog
  - Dekompozicija naloge in osnovni pristopi
- Evolucijski pristop
  - Kromosomi za odkrivanje enačb
  - Evolucijski operatorji nad izrazi
  - Uspešnost kromosoma pri odkrivanju enačb
  - Evolucijska optimizacija
  - Težave s preprileganjem
- 3 Odkrivanje enačb s propozicionalizacijo

### Definicija naloge

#### Za podani par

- Podatkovne množice  $S: X_i: D_{X_i} = \mathbb{R}, i = 1, 2, \dots, p; Y: D_Y = \mathbb{R}$
- ullet Prostora  ${\mathcal E}$  matematičnih izrazov E(X) iz spremenljivk X

Najdi enačbo oblike Y = E(X) za katero

$$\min_{E(X)\in\mathcal{E}}\sum_{(x,y)\in S}(y-E(x))^2$$



### Odkrivanje tretjega Keplerjevega zakona

#### Podana podatkovna množica S

| planet ID | $X_1 = p$ | Y = d   |
|-----------|-----------|---------|
| Merkur    | 0.389     | 87.77   |
| Venera    | 0.724     | 224.7   |
| Zemlja    | 1         | 365.25  |
| Mars      | 1.524     | 686.95  |
| Jupiter   | 5.2       | 4332.62 |
| Saturn    | 9.51      | 10759.2 |

#### Najdi enačbo

$$d = \sqrt[3]{7.496 \cdot 10^{-6} \cdot p^2};$$
  $d^3/p^2 = 7.496 \cdot 10^{-6}$ 

4 D > 4 D > 4 D > 4 D > 3 P 9 9 0

### Razmerje z linearno regresijo

#### Simbolna regresija je nelinearna regresija

- Pri linearni regresiji je ciljna enačba oblike  $Y = c_0 + \sum_{i=1}^p c_i \cdot X_i$
- Pri simbolni regresiji pa Y = E(X), E(X) je poljubne oblike

#### Včasih možna ročna transformacija

- Vpeljemo nove spremenljivke log p in log d
- Ciljna enačba med novimi spremenljivkami linearne oblike
- $\log d = \frac{2}{3} \log p + \frac{1}{3} \log 7.496 \cdot 10^{-6}$



#### Razmerje s strojnim učenjem

#### Odkrivanje enačb je posebna vrsta strojnega učenja

- Prostor možnih modelov so enačbe (za razliko od dreves, najbližjih sosedov ali nevronskih mrež)
- Rezultat simbolne regresije naj bi bil bolj razumljiv
- Enačbe so standarden in dobro uveljavljen formalizem v znanosti

#### Tudi tukaj možna pretvorba

- Posebne vrste nevronov v umetnih nevronskih mrežah
- Opravljajo aritmetične operacije namesto običajne obtežene vsote
- Glej npr. model nevronske mreže EQL



### Hevristični pristop Bacon

#### Tri preproste hevristike

- Uvajanje nove spremenljivke
   Če spremenljivka U narašča kadarkoli V pada, uvedi U · V
- ② Uvajanje nove spremenljivke Če spremenljivka U narašča kadarkoli V narašča, uvedi U/V
- Ugotavljanje invariante
   Če ima spremenljivka U nizko varianco, zastavi enačbo U=c

# Bacon: Odkrivanje tretjega Keplerjevega zakona (1)

| planet ID | $X_1 = p$ | Y = d   |
|-----------|-----------|---------|
| Merkur    | 0.389     | 87.77   |
| Venera    | 0.724     | 224.7   |
| Zemlja    | 1         | 365.25  |
| Mars      | 1.524     | 686.95  |
| Jupiter   | 5.2       | 4332.62 |
| Saturn    | 9.51      | 10759.2 |

Kadarkoli narašča p narašča tudi d: uvedi d/p.

# Bacon: Odkrivanje tretjega Keplerjevega zakona (2)

| planet ID | d     | р       | d/p      |
|-----------|-------|---------|----------|
| Merkur    | 0.389 | 87.77   | 4.43E-03 |
| Venera    | 0.724 | 224.7   | 3.22E-03 |
| Zemlja    | 1     | 365.25  | 2.74E-03 |
| Mars      | 1.524 | 686.95  | 2.22E-03 |
| Jupiter   | 5.2   | 4332.62 | 1.20E-03 |
| Saturn    | 9.51  | 10759.2 | 8.84E-04 |

Kadarkoli narašča d, d/p pada: uvedi  $d \cdot d/p = d^2/p$ .

# Bacon: Odkrivanje tretjega Keplerjevega zakona (3)

| planet ID | d     | р       | d/p      | $d^2/p$  |
|-----------|-------|---------|----------|----------|
| Merkur    | 0.389 | 87.77   | 4.43E-03 | 1.72E-03 |
| Venera    | 0.724 | 224.7   | 3.22E-03 | 2.33E-03 |
| Zemlja    | 1     | 365.25  | 2.74E-03 | 2.74E-03 |
| Mars      | 1.524 | 686.95  | 2.22E-03 | 3.38E-03 |
| Jupiter   | 5.2   | 4332.62 | 1.20E-03 | 6.24E-03 |
| Saturn    | 9.51  | 10759.2 | 8.84E-04 | 8.41E-03 |

Kadarkoli narašča d/p,  $d^2/p$  pada: uvedi  $d/p \cdot d^2/p = d^3/p^2$ .

# Bacon: Odkrivanje tretjega Keplerjevega zakona (4)

| planet ID | d     | p       | d/p      | $d^2/p$  | $d^{3}/p^{2}$ |
|-----------|-------|---------|----------|----------|---------------|
| Merkur    | 0.389 | 87.77   | 4.43E-03 | 1.72E-03 | 7.64E-06      |
| Venera    | 0.724 | 224.7   | 3.22E-03 | 2.33E-03 | 7.52E-06      |
| Zemlja    | 1     | 365.25  | 2.74E-03 | 2.74E-03 | 7.50E-06      |
| Mars      | 1.524 | 686.95  | 2.22E-03 | 3.38E-03 | 7.50E-06      |
| Jupiter   | 5.2   | 4332.62 | 1.20E-03 | 6.24E-03 | 7.49E-06      |
| Saturn    | 9.51  | 10759.2 | 8.84E-04 | 8.41E-03 | 7.43E-06      |

Varianca  $d^3/p^2$  je nizka (<  $10^{-14}$ ), vzpostavi enačbo  $d^3/p^2 = 7.51 \cdot 10^{-6}$ .

### Običajna dekompozicija naloge

Dva (prepletena) koraka odkrivanja enačb

#### Iskanje ustrezne strukture enačbe

- $d^3/p^2 = c$  ali  $F = m \cdot g$
- To je problem kombinatorične optimizacije

#### Ocenjevanje vrednosti parametrov

- $c = 7.496 \cdot 10^{-6}$  ali g = 9.81
- To je problem numerične optimizacije

4 D > 4 A > 4 B > 4 B > B 9 9 0

### Splošni pristop ustvari-in-preizkusi, generate-and-test

```
Require: S je učna podatkovna množica, spremenljivke Y, X_i, i = 1 \dots p
Ensure: e je enačba oblike Y = E(X)
  function GenerateAndTest(S)
     CurrentError = \infty
     while (E(X) = Generate(X)) != NULL do
         Error = EstimateParameters(E(X), S)
         if Frror < CurrentFrror then
            e = (Y = E(X))
         end if
     end while
     return e
  end function
```

### *Preizkus* strukture E(X): EstimateParameters

#### Za podano enačbo Y = E(X) in množico S

- ullet Z neznanimi vrednostmi m-tih parametrov  $oldsymbol{c}=(c_1,c_2,\dots c_m)\in\mathbb{R}^m$
- ullet Najdi optimalne vrednosti  $oldsymbol{c}^*$ , tako da velja

$$c^* = \operatorname*{arg\,min}_{c \in \mathbb{R}^m} \|Y - E(X, c)\|$$

• ||Y - E(X, c)|| izračunamo na primerih iz S

Običajni problem numerične optimizacije: velika izbira algoritmov. V okviru tega predmeta (pri meta učenju), smo obravnavali Bayesovo optimizacijo.

### *Ustvarjanje* strukture E(X): Generate

#### Več možnosti

- Stohastični evolucijski pristop (običajna, široko uporabljena možnost)
- 2 Sistematični pristop: naštevanje vseh možnosti
- 3 Sistematični pristop: operator izostritve

V nadaljevanju predavanj pregled teh pristopov.

### Osnovna ideja

#### Kromosomi za predstavitev objektov

- Osnovni kromosomi: Boolovi vektorji
- Za enačbe: drevesna predstavitev matematičnih izrazov

#### Nastanek novih kromosomov

- Evolucijski operatorji križanja in mutacije
- Izbira kromosomov na osnovi funkcije uspeha, fitness
- Paradigma "preživijo najuspešnejši", survival of the fittest
- Funkcija uspeha je pravzaprav ciljna funkcija za optimizacijo

#### Drevesna predstavitev matematičnih izrazov

Primer predstavitve y(x-3) - 5 z dvojiškim drevesom



#### Vloga vozlišč v drevesu

- Notranja vozlišča ustrezajo aritmetičnim operatorjem (ali funkcijam)
- Končna vozlišča ustrezajo spremenljivkam in konstantnim parametrom

### Križanje dveh kromosomov: od staršev . . .

- Starša  $(x \cdot c) + (y (z/c))$  in  $(y \cdot (x c)) c$
- Pri vsakem staršu naključno izberemo notranje vozlišče
- Spodaj sta okvirjena poddrevesa od izbranih vozlišč





### Križanje dveh kromosomov: ...do potomcev





- Zamenjamo izbrani vozlišči (poddrevesi)
- Potomca  $(x \cdot c) + (y (y \cdot (x c)))$  in (z/c) c

4□▶ 4□▶ 4□▶ 4□▶ € 900

### Točkovna mutacija kromosoma

#### Izberemo naključno vozlišče

- Če je notranje, naključno zamenjamo aritmetični operator
- Če je končno, naključno zamenjamo
  - spremenljivko s konstanto, ali
  - spremenljivko z drugo naključno izbrano spremenljivko, ali
  - konstanto z naključno izbrano spremenljivko

#### Primera točkovne mutacije drevesa za izraz (z/c)-c







### Splošna mutacija kromosoma

#### Izberemo naključno notranje vozlišče

In poddrevo zamenjamo z naključno ustvarjenim poddrevesom.

#### Primer splošne mutacije drevesa za izraz (z/c)-c





### Ocenjevanje parametrov enačbe

Za podano enačbo 
$$Y = E(X)$$
, npr.  $d = \sqrt[3]{c \cdot p^2}$ 

Upoštevamo množico podatkov S in poženemo optimizacijo

$$c^* = \underset{c \in \mathbb{R}^m}{\operatorname{arg \, min}} \| Y - E(X, c) \|$$

• Tako dobimo  $c^* = 7.51 \cdot 10^{-6}$  in torej enačbo

$$e = (d = \sqrt[3]{7.51 \cdot 10^{-6} \cdot p^2})$$

4□ > 4□ > 4 = > 4 = > = 90

### Nato izračunamo napako enačbe

| planet ID | Y = d | $X_1 = p$ | e(X)        | $(e(X)-Y)^2$ |
|-----------|-------|-----------|-------------|--------------|
| Merkur    | 0.389 | 87.77     | 0.386803488 | 4.82E-06     |
| Venera    | 0.724 | 224.7     | 0.723871867 | 1.64E-08     |
| Zemlja    | 1     | 365.25    | 1.000736637 | 5.43E-07     |
| Mars      | 1.524 | 686.95    | 1.524788947 | 6.22E-07     |
| Jupiter   | 5.2   | 4332.62   | 5.205071703 | 2.57E-05     |
| Saturn    | 9.51  | 10759.2   | 9.54508141  | 1.23E-03     |
| RMSE      |       |           |             | 1.45E-02     |

Napaka enačbe je torej  $1.45 \cdot 10^{-2}$ , uspešnost je  $1/(1.45 \cdot 10^{-2})$ .

◄□▶◀圖▶◀불▶◀불▶ 불 쒸٩○

### Algoritem

```
function Evolutionary (S, max.gen, pop.size)
   gen = 1
   pop = Init(X, pop.size)
   pop = Eval(pop)
   while gen \leq max.gen do
      for i = 1 \dots pop.size do
          new.pop = new.pop \cup ApplyOperator(pop)
      end for
      pop = Eval(new.pop)
      gen = gen + 1
   end while
   return pop
end function
```

### Pomožne funkcije

- Init: ustvari množico pop.size naključnih kromosomov (dreves)
- Eval: izračuna uspešnost kromosomov v podani učni množici
- ApplyOperator: naslednja prosojnica

### Pomožna funkcija ApplyOperator

- Naključno izbere enega izmed evolucijskih operatorjev
- Za mutacijo iz populacije izbere en kromosom, za križanje dva
- Nad izbranimi kromosomi izvede evolucijski operator

#### Izbira operatorja: parametri algoritma

- Verjetnost križanja
- Verjetnost(i) (različnih vrst) mutacije

#### Izbiranje kromosomov

#### Več možnosti

- Popolnoma naključna izbira enega izmed kromosomov
- Ruleta: verjetnost izbire kromosoma proporcionalna uspešnosti
- Turnirska izbira: izbor para, nato boljšega od dveh
- Elitna izbira: le med p% najboljših kromosomov

### Upoštevanje kompleksnosti (zapletenosti) enačb

#### Mere kompleksnosti enačbe

- Število notranjih in/ali končnih vozlišč drevesa
- Število konstantnih parametrov
- Dolžina enačbe v karakterjih

#### Dve možnosti

Uspešnost izračunamo kot kombinacijo napake in kompleksnosti

$$1/(Error + \alpha \cdot Complexity)$$

 $\alpha$ je stopnja vpliva kompleksnosti: večji kot je, manj je preprileganja

Opazujemo oboje hkrati: več-ciljna optimizacija

- (ロ) (個) (E) (E) (9)

### Popularna implementacija

#### Eurequa (Schmidt in Lipson 2009)

www.creativemachineslab.com/eureqa.html

#### PySR@github (Cranmer 2020)

Nepreverjena Python implementacija, sloni na evolucijskem pristopu.

### Propozicionalizacija

#### Vpeljava novih spremenljivk $X_T$ z naborom transformacij podanih X

- Z množenjem do določene, omejene stopnje:  $X_1^2$ ,  $X_1X_2$ ,  $X_1X_3$ , ...,  $X_1X_p$ ,  $X_2^2$ ,  $X_2X_3$ , ...,  $X_2X_p$ , ...,  $X_p^2$ , ...,  $X_p^5$
- Z apliciranjem funkcij, npr. trigonometričnih ali krožnih
- S kombinacijami enih in drugih transformacij

Rezultat: razširjen nabor spremenljivk  $X_N = X \cup X_T$ 

### Iskanje enačb v razširjenem naboru spremenljivk

#### Metoda Lagrange

- ullet Naštevanje kombinacij (omejenega reda) spremenljivk iz  $X_N$
- Linearna regresija za ocenjevanje parametrov

#### Metoda Sindy

Redka linearna regresija v razširjenem naboru spremenljivk

$$\min_{\boldsymbol{\beta}} \sum_{(\boldsymbol{x}_N, \boldsymbol{y}) \in S} (\boldsymbol{y} - \boldsymbol{\beta}^T \boldsymbol{x}_N)^2 + \lambda \|\boldsymbol{\beta}\|_1$$

- ullet Regularizacijski člen  $\lambda\,\|oldsymbol{eta}\|_1$  poskrbi, da je malo parametrov eta
  eq 0
- ullet  $\lambda$  je moč regularizacije: večji kot je, manj je preprileganja

◄□▶ ◀圖▶ ◀불▶ ◀불▶ 불 ∽

### Viri in implementacije

#### Lagrange (Džeroski in Todorovski 1993, 1995)

- Ni več delujoče implementacije
- Ali pač, kt.ijs.si/ljupco\_todorovski/ed/lg-www.tar.Z

#### Sindy (Brunton in ost. 2016)

Python implementacija pysindy@github

### Predznanje

Druga možnost za naslavljanje preprileganja.

Kako vpeljati predznanje v odkrivanje enačb?

### Definicija prostora možnih enačb in gramatike

$$E \rightarrow E + F \mid E - F \mid F$$

$$F \rightarrow F \cdot T \mid F/T \mid T$$

$$T \rightarrow const \mid V \mid (E)$$

$$V \rightarrow X_1 \mid X_2 \mid \dots \mid X_p$$