SDML HW2 Task2 Report

B04902016 曾奕青 B04902103 蔡昀達 B04902105 戴培倫

November 20, 2018

1 Preprocess

day D-2			day D-1					day D			
1	2	3	4	5	6	7	8	9	10	11	12

Table 1: user A food sequence

 ${f Method\ 1}$ 將每個 user 的資料當成一個很長的 sequence。

 $set\ sequence\ length=8,\, stride=1$

sequence for training would be:

[1, 2, 3, 4, 5, 6, 7, 8]

[2, 3, 4, 5, 6, 7, 8, 9]

[3, 4, 5, 6, 7, 8, 9, 10]

[4, 5, 6, 7, 8, 9, 10, 11]

[5, 6, 7, 8, 9, 10, 11, 12]

Method 2 使 sequence 為前面的 sequence + 今日的一個食物。

set sequence length = 8

sequence for training would be:

```
[3, 4, 5, 6, 7, 8, 9, 10]
[3, 4, 5, 6, 7, 8, 9, 11]
[3, 4, 5, 6, 7, 8, 9, 12]
```

2 Spotlight

Make use of spotlight implicit recommender model https://github.com/maciejkula/spotlight

Model Basic LSTM

For a sequence [1,2,3,4,5,6], optimizes the loss of [1] predicts [2], [1,2] predicts [3], [1,2,3] predicts [4]...

Loss function: adaptive hinge loss Negative samples: random sequence

Experiments

• Single model

public : 0.17561private : 0.17492

• Ensemble models using different sequence length

public : 0.20014private : 0.19710

• Use method 2 preprocessing (Single model)

public : 0.20665private : 0.20667

• Change negative sampling method using food less eaten

-> Failed

3 LSTM

Figure 1: Model Structure

Uses method 2 data preprecessing.

Training Procedure

- 1. Split training / testing data.
- 2. Train on training data.
- 3. Find best epoch E (by MAP of testing data)
- 4. Train E epochs on all dataset
- 5. Train one epoch on testing data to fine tune

Experiments

- Sum all timesteps after LSTM
 - Validation score during training: 0.248
 - After training E epochs on all dataset
 - * public : 0.28026

* private : 0.27887

- After fine-tuning:

* public : 0.29071 * private : 0.28954

• Maximum of all timesteps after LSTM

seqlen	20	40	60	80	100	120
public	0.26710	0.28375	0.28551	0.28839	0.29056	0.28885
private	0.26202	0.28141	0.28453	0.28678	0.29017	0.28955

• Add global user features

From the results of heuristic models [section 4], it's clear to notice that food count is an important role for prediction. Therefore I used a simple VAE to encode 5533 dimension food count to a 64 dimension vector, and concatenate it with LSTM output, hoping it can capture long term features. However, it seemed to do no help to this model.

- public : 0.28959

- private: 0.28913

4 Heuristic Models

• Eaten food count

- public : 0.28731

- private : 0.28751

• Eaten food & popular food

- public : 0.27402

- private: 0.27435

• Recently eaten food (30 days)

 $-\ public\ : 0.31428$

- private: 0.31454

- Food count with weight decay through time $(1/((days\ ago)^{1.08}))$
 - sequence length: 30 days

* public : 0.33702

* private : 0.33389

- choose best sequence length for each user (by validating on last 5 days)

Figure 2: sequence length

Reaches 0.349 on validation set, however it seems to overfit.

* public : 0.32917

* private: 0.32869

• Filter out similar foods

Considering that users might not eat too much similar food in the same day, I made use of the food category ("_cat" and "_subcat" postfixes).

However, whatever cosine similarity threshold and similar_food_count tolerence leads to terrible validation score.

5 Seq2seq

• public : 0.30803

• private: 0.30650

Use Bahdanau attention

6 best model

Results of models in this section are shown in Table 2

	private	public
model 1	0.34602	0.35096
model 1 + RNN	0.34490	0.35047
model 2	0.28620	0.28058
model 1 + model 2	0.34954	0.35268
model 1 + model 2	0.34927	0.35316

Table 2: kaggle score

6.1 model 1

對所有吃過的食物計算分數,對每個日期給予不同權重,越久以前吃的權重越低。因爲這樣肯定 只能 fit 某一天的結果,所以在決定參數時肯定是不能拿 validation 太高的參數在爲初始參數, 決定初始參數以後再根據 testing data 做微調。

6.2 model 2

因爲 model 1 基本上就是 overfit 在 testing data 的 RNN,所以跟 RNN model 做 ensemble 基本上沒有用,在 Table 2也可以看到和 RNN 做 ensemble 結果甚至還會變差。因此,我把 model 1 跟 mDAE[1] 做 ensemble,ensemble 方法爲只取兩 model 的前 20 名,依據名次給 予各個食物不同分數,最後分數總合越高的食物排在越前面。不過在 Table 2可以看到 mDAE 的 performance 和 model 1 其實有一段差距,所以必須給兩個 model 不同的權重,最後可達到 0.35 的 kaggle score。

References

Dawen Liang, Rahul G. Krishnan, Matthew D. Hoffman, and Tony Jebara. 2018.
 Variational Autoencoders for Collaborative Filtering. In WWW. ACM, 689–698.