Question 1

- (a) (3 marks) Let G be a graph and $k \ge 1$ an integer. What does it mean to say that (i) G is k-colourable; (ii) G has chromatic number $\chi(G) = k$.
- (b) (4 marks) Give an example of a triangle-free graph G with $\chi(G) = 3$.
- (c) (7 marks) Prove that if G has maximum degree $\Delta(G)$, then $\chi(G) \leq \Delta(G) + 1$.
- (d) (11 marks) Prove that if G is a graph with m edges, then G contains a 3-colourable subgraph with at least $\lceil 2m/3 \rceil$ edges.

Question 2

- (a) (2 marks) Define ex(n, H), where H is a graph and $n \ge 1$ is an integer.
- (b) (5 marks) Define the Turán graph $T_r(n)$. How many edges are there in $T_4(11)$?
- (c) (8 marks) Given a graph H define $\pi(H)$, the Turán density of H, and prove that $\pi(H)$ is well-defined.
- (d) (10 marks) Show that if *G* is a K_3 -free graph of order 2n with $n^2 t$ edges, for some $t \ge 0$, then *G* contains a bipartite subgraph with at least $n^2 2t$ edges.

Question 3

- (a) (3 marks) What does it mean to say that a family of sets is (i) an antichain; (ii) a chain.
- (b) (5 marks) Prove that if $n \ge 1$ is an integer and C is an chain in $\mathcal{P}([n])$, then

$$|C| \leq n+1$$
.

- (c) (7 marks) Give a symmetric chain decomposition of $\mathcal{P}([4])$.
- (d) (3 marks) State Sperner's Theorem.
- (e) (7 marks) Let $X = \{x_1, x_2, x_3, x_4, x_5\} \subseteq [1, \infty)$. Let us call $\alpha \in \mathbb{R}$ an X-sum if there exists $A \subseteq X$ such that $\sum_{a \in A} a = \alpha$. Prove that if $\alpha_1, \ldots, \alpha_{11}$ are 11 distinct X-sums, then there exists i, j such that $|a_i a_j| \ge 1$.

Question 4

(a) (10 marks) Let $s, t \ge 2$ be integers. Define the Ramsey number R(s, t) and prove that it satisfies

$$R(s,t) \leqslant \binom{s+t-2}{s-1}.$$

- (b) (5 marks) Let $R_k(3)$ be the smallest integer n such that any colouring of the edges of K_n with k colours contains a monochromatic K_3 . Using the fact that R(3,3) = 6 or otherwise show that $R_3(3) \le 17$.
- (c) (10 marks) Prove that if $n \ge s$ satisfy

$$\binom{n}{s} < 4^{\binom{s}{2}-1},$$

then $R_4(s) > n$.