Conceitos e Formas de Representação de uma Função

Bacharelado em Ciência da Computação Cálculo Diferencial e Integral I - 2ª fase

Professora: Joelma Kominkiewicz Scolaro

Aula 3 27/09/2021

Função

Definição

Sejam A e B subconjuntos de \mathbb{R} . Uma função $f: A \to B$ é uma lei ou regra que a cada elemento de A faz corresponder um único elemento de B. O conjunto A é chamado domínio de f e é denotado por D(f). B é chamado de contradomínio ou campo de valores de f.

Escrevemos:
$$f: A \to B$$

 $x \to f(x)$
ou
$$A \xrightarrow{f} B$$

 $x \to y = f(x)$.

Exemplos

Sejam $A = \{1, 2, 3, 4\}$ e $B = \{2, 3, 4, 5\}$.

(i) f: A → B dada pelo diagrama abaixo é uma função de A em B.

Função

(ii)
$$g: A \to B$$

 $x \to x + 1$

é uma função de A em B. Podemos representar g em diagrama.

Contra-Exemplos

Sejam $A = \{3, 4, 5\} e B = \{1, 2\}.$

f: A → B dada pelo diagrama a seguir não é uma função de A em B, pois o elemento 4 ∈ A tem dois correspondentes em B.

(ii)
$$g: A \rightarrow B$$

$$x \rightarrow x - 3$$

não é uma função de A em B, pois o elemento $3 \in A$ não tem correspondente em B. Podemos ver isto facilmente representando g em diagrama.

Definição

Seja $f: A \to B$.

- (i) Dado $x \in A$, o elemento $f(x) \in B$ é chamado de valor da função f no ponto x ou de imagem de x por f.
- (ii) O conjunto de todos os valores assumidos pela função é chamado conjunto imagem de f e é denotado por Im (f).

Sejam $A = \{1, 2, 3, 4, 5\}$ e B = Z (conjunto dos inteiros) e $f: A \rightarrow B$ definida pela regra que a cada elemento de A faz corresponder o seu dobro.

Então: – a regra que define $f \in y = 2x$;

- a imagem do elemento 1 é 2, de 2 é 4 etc.;
- o domíno de f, D(f) = A;
- a imagem de f, Im(f) = {2, 4, 6, 8, 10}.

Seja $f: \mathbb{R} \to \mathbb{R}$

$$x \rightarrow x^2$$
.

Então, $D(f) = \mathbb{R}$,

$$Im(f) = [0, +\infty).$$

Quando trabalhamos com subconjuntos de IR, é usual caracterizar a função apenas pela fórmula ou regra que a define. Neste caso, entende-se que o domínio de f é o conjunto de todos os números reais para os quais a função está definida.

Determinar o domínio e a imagem das funções abaixo:

(i)
$$f(x) = 1/x$$
.

Esta função só não é definida para x = 0. Logo, $D(f) = \mathbb{R} - \{0\}$.

$$Im(f) = \mathbf{IR} - \{0\}.$$

(ii)
$$f(x) = \sqrt{x}$$
.

Para
$$x < 0$$
, $f(x)$ não está definida. Então, $D(f) = [0, +\infty)$ e $Im(f) = [0, +\infty)$.

Para
$$x < 0$$
, $f(x)$ nao esta definida. Entao, $D(f) = [0, +\infty)$ e $Im(f) = [0, +\infty)$.
(iii) $f(x) = -\sqrt{x-1}$.

$$f(x)$$
 não está definida para $x < 1$. $D(f) = [1, \infty)$ e $Im(f) = (-\infty, 0]$.

(iv)
$$f(x) = |x|$$
.

$$D(f) = \mathbb{I} \operatorname{Re} \operatorname{Im}(f) = [0, +\infty).$$

Gráficos

Definição Seja f uma função. O gráfico de f é o conjunto de todos os pontos (x, f(x)) de um plano coordenado, onde x pertence ao domíno de f.

O gráfico da função $f(x) = x^2$ consiste em todos os pares $(x, y) \in \mathbb{R}^2$ tais que $y = x^2$. Em outras palavras, é a coleção de todos os pares (x, x^2) do plano xy. A Figura 2.1 nos mostra o gráfico desta função, onde salientamos alguns pontos, de acordo com a tabela.

x	$y = x^2$
-2	4
-1	1
0	0
1	1
2	4

Figura 2.1

Consideremos a função f(x) = x. Os pontos de seu gráfico são os pares $(x, x) \in \mathbb{R}^2$. A Figura 2.2 mostra este gráfico.

Seja $f: \mathbb{R} \to \mathbb{R}$ definida por

$$f(x) = \begin{cases} -2, & \text{se} \quad x \le -2 \\ 2, & \text{se} \quad -2 < x \le 2 \\ 4, & \text{se} \quad x > 2. \end{cases}$$

O gráfico de f pode ser visto na Figura 2.3.

Seja f(x) = |x|. Quando $x \ge 0$, sabemos que f(x) = x. Quando x < 0, f(x) = -x. O gráfico de |x| pode ser visto na Figura 2.4.

Seja $f(x) = \frac{1}{x}$. Então, $D(f) = \mathbb{R} - \{0\}$. A Figura 2.5 mostra o gráfico de f(x) = 1/x.

Neste exemplo vamos ilustrar como os gráficos podem nos dar informações importantes sobre situações práticas.

O gráfico da Figura 2.6 representa a quantidade diária q de peças produzidas numa linha de montagem, em função do número de operários n, que trabalham nessa linha. O que podemos concluir a partir da análise desse gráfico?

Figura 2.6

Na Figura 2.7 representamos o mesmo gráfico onde assinalamos dois pontos importantes para a análise. Podemos observar que entre 0 e n_1 o acréscimo no número de operários acarretará um acréscimo proporcional na produtividade. Entre n_1 e n_2 , o acréscimo da produtividade vai se tornando menos significativo, sendo nulo no ponto n_2 .

A partir de n_2 o acréscimo no número de operários implicará uma diminuição na produtividade.

Figura 2.7

Podemos nos perguntar se, dada a curva c no plano xy, ela sempre representa o gráfico de uma função. A resposta é não. Sabemos que, se f é uma função, um ponto de seu domínio pode ter somente uma imagem. Assim a curva c só representa o gráfico de uma função quando qualquer reta vertical corta a curva no máximo em um ponto.

Na Figura 2.8 a curva c_1 representa o gráfico de uma função, enquanto a curva c_2 não representa.

Operações

Assim como podemos adicionar, subtrair, multiplicar e dividir números, também podemos produzir novas funções através de operações. Essas operações são definidas como segue:

Definição Dadas as funções $f \in g$, sua soma f + g, diferença f - g, produto $f \cdot g$ e quociente f/g, são definidas por:

(i)
$$(f+g)(x) = f(x) + g(x)$$
;

(ii)
$$(f-g)(x) = f(x) - g(x)$$
;

(iii)
$$(f \cdot g)(x) = f(x) \cdot g(x);$$

(iv)
$$(f/g)(x) = \frac{f(x)}{g(x)}$$
.

O domínio das funções f + g, f - g e $f \cdot g$ é a intersecção dos domínios de f e g. O domíno de f/g é a intersecção dos domínios f e g, excluindo-se os pontos x onde g(x) = 0.

Exemplo Sejam $f(x) = \sqrt{5-x} e g(x) = \sqrt{x-3}$. Então,

$$(f+g)(x) = \sqrt{5-x} + \sqrt{x-3};$$

$$(f-g)(x) = \sqrt{5-x} - \sqrt{x-3};$$

$$(f \cdot g)(x) = \sqrt{5-x} \cdot \sqrt{x-3} e$$

$$(f/g)(x) = \frac{\sqrt{5-x}}{\sqrt{x-3}}$$

Como $D(f) = (-\infty, 5]$ e $D(g) = [3, +\infty)$, então o domínio f + g, f - g e $f \cdot g$ é [3, 5]. O domínio de f/g é (3, 5]. O ponto 3 foi excluído porque g(x) = 0 quando x = 3.

domínio de $\frac{f}{g}$ é a interseção dos domínios f e g, excluindo-se os pontos x onde g(x) = 0. **Exemplo 8:** Sejam f(x) = 2x - 1 e $g(x) = \sqrt{x^2 - 5x + 6}$. Determine as

funções $f \pm g$, f.g e $\frac{f}{g}$ e seus domínios.

O domínio das funções $f \pm g$ e f.g é a interseção dos domínios de f e g. O

Solução: Pela definição acima, temos que:

$$(f\pm g)(x)=2x-1\pm\sqrt{x^2-5x+6};$$

$$(f.g)(x)=(2x-1)\sqrt{x^2-5x+6};$$

$$\left(\frac{f}{g}\right)(x)=\frac{2x-1}{\sqrt{x^2-5x+6}}.$$
 Como $Df=\mathbb{R}$ e $Dg=(-\infty,2]\cup[3,+\infty),$ então o domínio de $f\pm g$ e $f.g$ é

Como $Df=\mathbb{R}$ e $Dg=(-\infty,2]\cup[3,+\infty)$, então o domínio de $f\pm g$ e f.g é $(-\infty,2]\cup[3,+\infty)$. O domínio de $\frac{f}{g}$ é $(-\infty,2)\cup(3,+\infty)$.

Operações com Funções

- 01- Seja $f(x) = x^2 + 3$ e g(x) = X 1
 - a) encontre o domínio e a fórmula da funções resultantes. f + g; f.g e o f/g.

- 02- Considere as seguintes funções: $f(x) = \sqrt{4 x}$ e $g(x) = \sqrt{x^2 9}$ Defina o domínio das seguintes funções:
 - a) (f+g)(x)
 - b) (f-g)(x)
 - c) (f.g)(x)
 - d) (f/g)(x)

Definição Dadas duas funções $f \in g$, a função composta de $g \operatorname{com} f$, denotada por $g_0 f$, é definida por $(g_0 f)(x) = g(f(x))$.

O domínio de g_0f é o conjunto de todos os pontos x no domínio de f tais que f(x) está no domínio de g. Simbolicamente,

$$D(g_0f) = \{x \in D(f)/f(x) \in D(g)\}.$$

O diagrama pode ser visualizado na Figura 2.9.

Exemplo 9: Sejam
$$f(x) = x^2 + 3$$
 e $g(x) = \sqrt{x}$. Encontre a função $f_1(x) = f(x) - (f \circ x)(x)$

 $(g \circ f)(x)$ e $f_2(x) = (f \circ g)(x)$. **Solução:** Pela definição de função composta, temos que:

Solução: Pela definição de função composta,
$$f_1(x) = (g \circ f)(x) = g(x^2 + 3) = \sqrt{x^2 + 3};$$
 $f_2(x) = (f \circ g)(x) = f(\sqrt{x}) = x + 3.$ Note que, $g \circ f \neq f \circ g$.

Note que, $g \circ j \neq j \circ g$.

Sejam
$$f(x) = 2x - 3 e g(x) = \sqrt{x}$$
. Encontrar: a) $g_0 f(x) = f(x) f(x) = 2x - 3 e g(x) = \sqrt{x}$.

a)
$$(g_0f)(x) = g(f(x)) = g(2x-3) = \sqrt{2x-3}$$
.

O domínio de $f \in D(f) = (-\infty, +\infty)$ e o domínio de $g \in D(g) = [0, +\infty)$. Assim, o domínio de $g_0 f \in O(g)$ junto de todos os números reais x, tais que $f(x) \in [0, +\infty)$, isto é, todos os números reais tais que $2x - 3 \ge 0$. Logo, $D(g_0 f) = [3/2, +\infty)$

b)
$$(f_0g)(x) = f(g(x)) = f(\sqrt{x}) = 2\sqrt{x} - 3e$$

$$f_{\alpha}g) = \{x \in D(g) = [0, +\infty)/g(x) \in D(f) = (0, +\infty)/g(x)\}$$

$$D(f_0g) = \{x \in D(g) = [0, +\infty)/g(x) \in D(f) = (-\infty, +\infty)\} = [0, +\infty).$$

c)
$$(f_0 f)(x) = f(f(x)) = f(2x - 3)$$

$$f(x) = f(f(x)) = f(2x - 3)$$

$$= 2(2x - 3) - 3$$

 $= 4x - 9$

$$=4x-9,$$

$$D(f_0f)=(-\infty,+\infty).$$

d)
$$(g_0g)(x) = g(g(x)) = g(\sqrt{x}) = \sqrt{\sqrt{x}} = \sqrt[4]{x}$$
.

$$D(g_0 g) = [0, +\infty).$$

$$)$$
 $+\infty$

$$), +\infty).$$

$$+\infty$$
).

- Sejam as funções reais f e g, definidas por $f(x) = x^2 + 4x 5$ e g(x) = 2x 3.
- a) Obtenha as leis que definem fog e gof.
- b) Calcule $(f \circ g)(2)$ e $(g \circ f)(2)$.
- c) Determine os valores do domínio da função f o g

Solução

a) A lei que define f ∘ g é obtida a partir da lei de f, trocando-se x por g(x):

$$(f \circ g)(x) = f(g(x)) = [g(x)]^2 + 4[g(x)] - 5 = (2x - 3)^2 + 4(2x - 3) - 5$$

$$(f \circ g)(x) = 4x^2 - 4x - 8$$

A lei que define $g \circ f$ é obtida a partir da lei de g, trocando-se x por f(x):

A lei que define
$$g \circ f$$
 é obtida a partir da lei de g , trocando-se x por $f(x)$:

$$(g \circ f)(x) = g(f(x)) = 2 \cdot f(x) - 3 = 2(x^2 + 4x - 5) - 3$$

$$(g \circ f)(x) = 2x^2 + 8x - 13$$

b) Calculemos f ∘ g para x = 2: $(f \circ g)(2) = 4 \cdot 2^2 - 4 \cdot 2 - 8 = 0$

Calculemos g o f para
$$x = 2$$
:

$$(g \circ f)(2) = 2 \cdot 2^2 + 8 \cdot 2 - 13 = 11$$

c) O problema em questão resume-se em resolver a equação
$$(f \circ g)(x) = 16$$
 ou seja:
$$4x^2 - 4x - 8 = 16 \implies 4(x^2 - x - 6) = 0 \implies x = 3 \quad \text{ou} \quad x = -2$$

- Sejam as funções reais f e g definidas por $f(x) = x^2 x 2$ e g(x) = 1 2x.
- a) Obtenha as leis que definem f \circ g e g \circ f.
- b) Calcule $(f \circ g)(-2)$ e $(g \circ f)(-2)$.
- c) Determine os valores do domínio da função f o g

Sejam
$$f(x) = \begin{cases} 0, & \text{se } x < 0 \\ x^2, & \text{se } 0 \le x \le 1 \\ 0, & \text{se } x > 1 \end{cases}$$

$$e g(x) = \begin{cases} 1, & \text{se } x < 0 \\ 2x, & \text{se } 0 \le x \le 1 \\ 1, & \text{se } x > 1. \end{cases}$$

Determinar f_0g .

Se
$$x < 0$$
, $(f_0g)(x) = f(g(x)) = f(1) = 1^2 = 1$.

Se
$$0 \le x \le 1$$
, $(f_0 g)(x) = f(g(x)) = f(2x)$.

Para
$$0 \le x \le \frac{1}{2}$$
, temos $0 \le 2x \le 1$. Logo, neste caso, $(f_0g)(x) = (2x^2) = 4x^2$.

Para
$$\frac{1}{2} < x \le 1$$
 temos $2x > 1$. Assim, para este caso, $(f_0g)(x) = 0$. Se $x > 1$, $(f_0g)(x) = f(g(x)) = f(1) = 1$.

Logo
$$(f_0g)(x) = \begin{cases} 1, & \text{se } x < 0 \\ 4x^2, & \text{se } 0 \le x \le 1/2 \\ 0, & \text{se } 1/2 < x \le 1 \\ 1, & \text{se } x > 1 \end{cases}$$

O domínio de
$$f_0g \in D(f_0g) = (-\infty, +\infty)$$
.

O gráfico de f_0g pode ser visto na Figura 2.10.

 Função constante: f: R → {k} definida por f(x) = k. Associa a qualquer número real x um mesmo número real k. Graficamente, é uma reta paralela ao eixo das abscissas. Se k = 2, o gráfico é

 Função Identidade: f : R → R definida por f (x) = x. O gráfico é a reta bissetriz do primeiro e do terceiro quadrante.

3. Função Afim: f: R → R definida por f(x) = ax + b, onde a e b constantes e a ≠ 0 são, respectivamente, o coeficiente angular e o coeficiente linear. O gráfico é uma reta. Se a > 0, a reta é crescente; se a < 0, a reta é decrescente; e se b = 0, a reta passa pela origem do sistema cartesiano. Exemplo: f(x) = -3x + 4.</p>

4. Função Módulo: $f: \mathbb{R} \to [0, +\infty)$ definida por f(x) = |x|.

5. Função Quadrática: f: R → R definida por f(x) = ax² + bx + c, onde a, b e c constantes e a ≠ 0. O gráfico dessa função é uma parábola com eixo de simetria paralelo ao eixo dos y. Se a > 0 a parábola tem concavidade voltada para cima. Se a < 0 a concavidade é voltada para baixo. Exemplo: f(x) = x² - 4x + 4</p>

6. Função polinomial: f: R → R definida por f(x) = a₀x² + a₁x²⁻¹ + · · · + a₁x₁x + a₁, com aᵢ, i = 0, 1, · · · , n, constantes reais, a₀ ≠ 0, n ∈ N e n é o grau do polinômio. As funções constante, identidade, lineares e quadráticas são exemplos de funções polinomiais. Exemplo: f(x) = 5x⁵ - 6x + 7.

7. Função Racional: função definida como o quociente de duas funções polinomiais, isto é, f (x) = p(x) / q(x), onde q (x) ≠ 0. O domínio da função racional é o conjunto dos reais excluindo todos os x tais que q (x) ≠ 0. Exemplo: f (x) = x-1 / x²-1.

