Trabalho 2 Disciplina de Reconhecimento de Padrões

Davi de Lima Cruz mat: 474377

6 de agosto de 2025

Introdução

O objetivo deste trabalho é comparar diferentes classificadores de reconhecimento de padrões aplicados a imagens de rostos de pessoas. Serão utilizados classificadores como Quadrático, MaxCorr, DMC e 1-KK, além de aplicar normalizações e PCA (Análise de Componentes Principais). O código utilizado para este trabalho está disponível no repositório do GitHub: https://github.com/username/repo. Um resumo teórico sobre cada classificador e as normalizações utilizadas será apresentado:

- Classificador Quadrático: Presupoem que os predirores seguem uma distribuição gaussiana multivariada, a partir disso calcula a matrix de covariância e a média de cada classe, e para testar ele ver qual das classes tem a distribuição que deu o maior valor de densidade de probabilidade ou menor discriminante.
- A variante 1 do classificador Quadrático é uma versão que adiciona uma pequena constante λ à diagonal da matriz de covariância, sendo equivalente a adicionar um pouco de ruído aos dados.
- A variante 2 do classificador Quadrático pondera as matrizes de covariância de todas as classes e calcula a densidade de probabilidade a partir disso.
- A variante 3 do classificador Quadrático é um meio termo entre o Classificador Quadrático e a variante 2, ele interpola as matrizes de covariância de cada classe com a gerada pela variante 2.

- A variante 4 do classificador Quadrático considera apenas a diagonal da matriz de covariância, ou seja, assume que as variáveis são independentes. A vantagem disso é que compotacionalmente é muito mais barato inverter uma matriz diagonal do que uma matriz completa.
- Classificador MaxCorr: É um classificador baseado na correlação, é calculada a média de cada classe é comparada qual média tem a maior correlação com o vetor de teste.
- Classificador DMC: É um classificador baseado na distância dos centroides, onde a distância é medida em relação à média de cada classe.
- Classificador 1-KK: É um classificador baseado no KNN (K-Nearest Neighbors), onde K=1, ou seja, ele pega o vizinho mais próximo e atribui a classe desse vizinho ao preditor.

Abrir e executar o arquivo face_preprocessing_column.m sem aplicação do PCA. Ou seja, comentar as linhas 56-60. Escolha as dimensões para redução das imagens na linha 37. Note que quanto maior os valores da redução, maior será a dimensão dos vetores de atributos após a vetorização das imagens e, obviamente, maior será o tempo de treinamento/teste dos classificadores.

O script foi executado com o tamanho da imagem sendo 20x20 pixels, pois mais do que isso aumentava bastante o tempo de execução.

Atividade 2

Abrir e executar o arquivo compara_todos.m usando Ptrain = 80; ou seja, 80% dos vetores de atributos serão usados para treinar os classificadores. Faça também Nr = 50 (número de repetições independentes de treino/teste). Executar o código e preencher a tabela de estatísticas de desempenho abaixo. A figura de mérito é a taxa de acerto do classificador, determinando-se suas estatísticas descritivas ao final das 50 rodadas independentes, tais como valor médio, desvio padrão, valores mínimos/máximos e mediana.

Foram implementadas as normalizações ZScore, [0, 1] e [-1, 1] para cada Classificador MaxCorr, DMC e 1-KK. Para o 1-KK e o DMC, o melhor foi sem normalização, para o MaxCorr foi a [0, 1].

Além disso, para comparar melhor os resultados colocamos uma seed referente a cada rodada de execução em todos os algoritmos, ou seja a divisão entre treino e teste foi a mesma para todos os algoritmos, essa separação se repete para as próximas comparações.

Outra modificação feita foi mudar a forma como era calculado o discriminante dos classificadores Quadrático e suas variantes, O termo $\ln(\det(C))$ acabava tendo o determinante zerado, o que fazia com que o discriminante ficasse indefinido, então foram calculados os autovetores e autovalores da matriz de covariância, e substituímos essa parte pela soma dos logaritmos dos autovalores. Como os autovetores já foram calculados, aproveitamos eles para calcular a matrix inversa da matriz de covariância.

Classificador	Média	Mínimo	Máximo	Mediana	Desvio Padrão	Tempo de Execução (s)
Quadrático	16.727	3.030	36.364	15.152	7.198	56.855
Variante 1	80.121	69.697	96.970	78.788	6.188	55.924
Variante 2	44.000	27.273	66.667	42.424	10.194	7.606
Variante 3	36.970	15.152	51.515	36.364	9.081	58.247
Variante 4	15.939	0.000	30.303	15.152	7.518	11.798
MaxCorr	80.364	66.667	93.939	80.303	6.037	0.481
DMC	78.909	66.667	93.939	78.788	6.242	0.256
1-KK	78.848	60.606	96.970	78.788	7.485	2.013

Tabela 1: Tabela de resultados sem a aplicação de PCA

Figura 1: Boxplot dos resultados sem a aplicação de PCA

O que se pode concluir sobre os desempenhos dos classificadores avaliados?

Para os classificadores Quadrático e suas variantes, as matrizes de covariância apresentaram o warning sobre o condicionamento, menos para a variante 1. O que fez com que os resultados fossem muito ruins para esses classificadores. Já os outro métodos tiveram resultados melhores e mais rápidos, tendo o de MaxCorr como o melhor resultado médio com 80% de acerto.

Questão 2

Qual deles teve o melhor desempenho em relação à taxa de acerto? E em relação ao tempo?

O classificador que teve o melhor resultado médio foi o de MaxCorr com 80% de acerto. Quanto ao tempo de execução, o DMC foi o mais rápido, levando apenas 0.25 segundos.

Questão 3

Houve problemas de inversão das matrizes de covariância? Se sim, para quais classificadores? Este problema foi contornado por alguma das variantes avaliadas? Se sim, descreva sucintamente o mecanismo usado para resolvê-lo.

Os classificadores Quadrático e suas variantes não conseguiram inverter suas matrizes por conta do condicionamento, o que fez com que os resultados fossem muito ruins. A variante 1 conseguiu contornar isso com a regularização, lembrando que essa variante 1 funciona por meio da adição de uma diagonal com um valor pequeno (0.01) à matriz de covariância, isso ajuda a dar independência linear entre as linhas da matriz.

Executar o arquivo face preprocessing column.m com aplicação do PCA. Ou seja, descomentar as linhas 56-60. Faça q = 400 ou q = 900 na linha 57, a depender do redimensionamento das imagens escolhido na Atividade 1. Note que para este valor de q, a aplicação de PCA não conduz a uma redução da dimensionalidade dos vetores de atributos, mas sim promove apenas a diagonalização da matriz de covariância dos dados transformados. Em outras palavras, os atributos para o novo conjunto de dados Z são descorrelacionados entre si.

Atividade 4

Executar novamente a Atividade 2, preenchendo a tabela de desempenho abaixo.

Figura 2: Boxplot dos resultados com PCA (sem redução)

Classificador	Média	Mínimo	Márringo	Máximo Mediana	Desvio	Tempo de
Classification	Media	WIIIIIIO	Maxiiio		Padrão	Execução (s)
Quadrático	16.848	6.061	30.303	18.182	5.972	52.371
Variante 1	80.121	69.697	96.970	78.788	6.188	49.189
Variante 2	16.364	6.061	33.333	15.152	7.113	4.869
Variante 3	15.818	3.030	27.273	15.152	5.817	48.728
Variante 4	6.061	0.000	15.152	6.061	3.463	11.664
MaxCorr	80.182	66.667	93.939	78.788	6.159	0.320
DMC	78.909	66.667	93.939	78.788	6.242	0.209
1-KK	78.848	60.606	96.970	78.788	7.485	1.867

Tabela 2: Resultados com PCA (sem redução)

(i) O que se pode concluir sobre os desempenhos dos classificadores avaliados? Houve alguma mudança (melhora ou piora) nos desempenhos dos classificadores avaliados em relação à tabela anterior? (ii) Note que, com a aplicação de PCA aos dados originais, a matriz de covariância dos dados transformados é diagonal. Isso faz com que o classificador quadrático e a Variante 4 sejam teoricamente equivalentes. Estes classificadores tiveram de fato desempenho equivalente nos experimentos relacionados?

- Os classificadores quadráticos que não tiveram regularização todos pioraram muito seus resultados, basicamente as matrizes estavam todoas mal condicionadas, o que fez com que os resultados fossem muito ruins.
- Não, pois note que a PCA foi applicada em todo o conjunto de dados, tanto de teste quanto de treino. Quando os dados de treino são selecionados, a matriz de covariância não é mesma que foi diagonalizada pela PCA. Essa pequena mudança foi suficiente para que o condicionamento das matrizes de covariância fosse piorado.

A variante 1 do classificador Quadrático se beneficiou bastante do PCA, pois conseguiu inverter a matriz de covariância.

Com base na figura gerada durante a execução da atividade anterior, que mostra a variância explicada acumulada em função do número de componentes conside- rado, escolher um valor para q que preserve pelo menos 98% da informação (i.e., variância) dos dados originais. O valor de q adequado pode ser escolhido visualizando o conteúdo do vetor V Eq, como sendo aquela componente cujo valor é maior que 98%. Executar o ar- quivo face preprocessing column.m com aplicação do PCA para o valor de q escolhido. Note que para este valor de q, a aplicação de PCA conduz a uma redução da dimensiona- lidade dos vetores de atributos, além de promover a descorrelação dos atributos dos dados transformados.

Questão 5

Qual foi a dimensão de redução q escolhida, de modo a preservar 98% da informação do conjunto de dados original?

Figura 3: Variância acumulada em função do número de componentes.

Podemos ver que a partir de 39 componentes já temos mais de 98% da variância acumulada, então escolhemos q=39.

Com base no valor escolhido para q
 na Atividade 5 e no conjunto de dados gerados correspondente, preencha a tabela de desempenho abaixo.

Classificador	Média	Mínimo	Máximo	Mediana	Desvio Padrão	Tempo de Execução (s)
Quadrático	54.667	33.333	78.788	54.545	9.562	0.568
Variante 1	79.273	66.667	96.970	78.788	6.576	0.579
Variante 2	95.576	84.848	100.000	96.970	3.735	0.416
Variante 3	95.091	87.879	100.000	95.455	3.511	0.596
Variante 4	76.121	63.636	93.939	75.758	7.363	0.495
MaxCorr	95.152	84.848	100.000	96.970	4.329	0.217
DMC	92.667	81.818	100.000	93.939	4.977	0.168
1-KK	87.212	72.727	96.970	87.879	5.687	1.451

Tabela 3: Resultados com PCA (com redução)

Figura 4: Boxplot dos resultados com PCA (com redução)

O que se pode concluir sobre os desempenhos dos classificadores avaliados com a realização da redução de dimensionalidade via PCA? Houve alguma mudança (melhora ou piora) nos desempenhos dos classificadores avaliados em relação à tabela anterior? Quais classificadores pioraram/melhoraram de desempenho com a redução de dimensionalidade via PCA?

Com a redução de dimensionalidade, os classificadores Quadrático e suas variantes tiveram uma melhora significativa, pois as matrizes de covariância ficaram muito mais bem condicionadas, o que fez com que os resultados fossem muito melhores. O classificador quadrático ainda teve dificuldade de condicionamento e por isso não teve resultados tão bons quanto os outros classificadores.

Os classificadores MaxCorr, DMC e 1-KK tiveram uma melhora significativa nos resultados. Além disso, o tempo de execução dos classificadores Quadrático e suas variantes diminuiu abruptamente, pois o número de atributos foi reduzido. Chegando a concorrer com os outro classificadores baseados em distância euclidiana.

Atividade 7

Repita a Atividade 6, porém aplicando a transformação de BOX-COX ao conjunto de dados original antes de aplicar PCA.

Classificador	Média	Mínimo	Máximo	Mediana	Desvio Padrão	Tempo de Execução (s)
Quadrático	49.758	36.364	72.727	48.485	8.419	0.768
Variante 1	82.848	69.697	96.970	81.818	5.698	0.703
Variante 2	97.515	87.879	100.000	96.970	2.916	0.416
Variante 3	96.848	87.879	100.000	96.970	3.351	0.730
Variante 4	75.212	57.576	93.939	75.758	7.975	0.474
MaxCorr	94.788	81.818	100.000	96.970	4.583	0.263
DMC	91.515	78.788	100.000	90.909	5.808	0.177
1-KK	84.545	69.697	96.970	84.848	5.944	1.365

Tabela 4: Resultados com PCA (com Box-Cox)

Figura 5: Boxplot dos resultados com PCA (com Box-Cox)

Houve alguma mudança (melhora ou piora) nos desempenhos dos classifi- cadores avaliados em relação aos resultados da Atividade 6? Quais classificadores pioraram/melhoraram de desempenho com a aplicação da transformação BOX-COX juntamente com PCA?

A maioria dos classificadores tiveram uma leve piora nos resultados, mas nada muito significativo. Os classificadores MaxCorr e DMC caíram 1 ponto percentual, e o 1-KK caiu 3 pontos percentuais. O quadrático ainda teve dificuldade de condicionamento.

A variante 1 melhorou 3 pontos percentuais. As variantes 2 e 3 melhoraram 2 pontos percentuais, Como essas duas variantes dependem da matriz de covariância ponderada, o box-cox ajudou a melhorar o quão gaussiano são as classes. A variante 4 piorou 1 ponto percentual.

Projetar classificadores baseado em distância para aplicações de controle de acesso. Modelo 1: Imagens vetorizadas + Classificador baseado em distância de Mahala- nobis. Modelo 2: Imagens vetorizadas + PCA + normalização z-escore + Classificador baseado em distância euclidiana. OBS: Adicione 11 imagens próprias ao conjunto de dados para atuar como "intruso"; ou seja, indivíduo ao qual não deve ser dado acesso.

Foram adicionadas 11 imagens de rostos da mesma pessoa, as imagens tiveram um preprocessamento para ficarem em escala de cinza e em formato gif, além de terem sido redimensionadas para 20x20 pixels.

Questão 8

Calcule os seguintes índices de desempenho para os classificadores implementados: acurácia, taxa de falsos negativos (proporção de pessoas às quais acesso foi permitido incorretamente) e taxa de falsos positivos (pessoas às quais acesso não foi permitido incorretamente), sensibilidade e precisão. Os valores devem ser médios com inclusão de medida de dispersão (e.g., desvio padrão) para 50 rodadas.

Para o modelo 1, foi escolhida a variante 1 do classificador Quadrático, pois foi a que teve o melhor resultado e não teria problema com o condicionamento das matrizes. Além disso foi retirado o termo do probabilidade a priori da função discriminante. Para o modelo 2, foi escolhido o classificador DMC, pois foi o que teve o melhor tempo de execução e bons resultados.

Métrica	Média	Desvio Padrão
Acurácia	98.4	2.3
Falso Positivo	1.7	2.5
Falso Negativo	0.0	0.0
Sensibilidade	100.0	0.0
Precisão	84.3	20.4

Tabela 5: Resultados do Modelo 1.

Na definição do limiar de decisão, foi calculada a maior distância entre os indivíduos internos e a menor distância entre os indivíduos intrusos dos

valores de treino, então foi retirada a média dessas duas distâncias e considerado o limiar de decisão. Se a distância do Classificador for maior que o limiar, o indivíduo é considerado intruso.

Métrica	Média	Desvio Padrão
Acurácia	98.6	1.8
Falso Positivo	0.9	1.8
Falso Negativo	10.0	22.6
Sensibilidade	90.0	22.6
Precisão	88.8	20.5

Tabela 6: Resultados do Modelo 2.

Falta fazer a tabela colocar as coisas do git, ajeitar o tamanho dos gráficos.