## Notes on Charles Pinter's 'A Book Of Abstract Algebra'

Unathi Skosana

July 18, 2021

Personal notes taken while studying Charles Pinter's 'A Book Of Abstract Algebra'

## Contents

Operations

The Definitions of Groups 2

## **Operations**

**Question 1.** What is an operation on a set A?

**Definitions 2** (Informal definition). An operation is any rule which assigns to each ordered pair of elements of A a unique element in A.

**Definitions 3** (Formal definition). Let *A* be any set:

An operation \* on A is a rule which assigns to each ordered pairs (a, b) of elements of A exactly one a \* b in A, such that:

- a \* b is defined for *every* ordered pair (a, b) of elements of A. <sup>1</sup>
- a \* b must be *uniquely* defined. <sup>2</sup>
- If  $a, b \in A$ , then  $a * b \in A$ .

**Definitions 4** (Commutativity). An operation \* is said to be *commutative* if it satisfies

$$a * b = b * a \tag{1}$$

for any two elements a and b in A.

**Definitions 5** (Associativity). An operation \* is said to be *associative* if it satisfies

$$(a*b)*c = a*(b*c)$$
 (2)

for any three elements a, b and c in A.

**Definitions 6** (Identity element). The *identity* element e with respect to the operation \* has the property that:

$$e * a = a$$
 and  $a * e = a$  (3)

is true for every element *a* in *A*.

**Definitions** 7 (Inverses). The inverse of any element a, item denoted by  $a^{-1}$  has the property that:

$$a * a^{-1} = e$$
 and  $a^{-1} * a = e$  (4)

<sup>1</sup> In R, division does not qualify as operation since it does not satisfy this condition. i.e. the ordered pair (a, 0) has undefined quotient a/0. <sup>2</sup> If  $\diamond$  is defined on (a, b) to be the number whose square is ab. In  $\mathbb{R}$ ,  $\diamond$  does not qualify as an operation since  $2 \circ 2$  could be either 2, or +2.  $^3$  A is closed under the operation \*

## The Definitions of Groups

Question 8. What is a group?

**Definitions 9** (Informal definition). A group is defined to be a set with an operation (\*) which is associative, has an identity element, and each element in the set has an inverse.

**Definitions 10** (Formal definition). A group is a set *G*, together with an operation \* which satisfies:

- \* is associative.
- There exists an element e in G such that a \* e = a and e \* a = a for every element a in G.
- For every element in a in G, there is an element  $a^{-1}$  in G such that  $a*a^{-1}=e$  and  $a^{-1}*a=e$ .

A group as defined above is usually denoted by the pair symbol (G, \*), which denotes that a group is a set G together with the operation \*.

**Example 13** (Finite groups: Groups of integers modulo n). The group of integers modulo n > 1 consists of the set

$$\{0, 1, 2, \dots, n-1\} \tag{5}$$

together with the operation of addition modulo n; The addition of two numbers a and b modulo n, can be described by imaging a set of equidistant points on an arc of a unit circle. To add a and b, we start at a and hop b points on the arc each at an angle of  $2\pi/n$  from the next, where we end up will be the sum a + b, see Figure 1. This operation is associative (instead of starting at a, we can start at b and hop a times, we'll end up at a + b again). The identity element for this group is 0, and the n - a is the inverse of a (a + n - a = n = 0). Such a group is denoted by the symbol  $\mathbb{Z}_n$ .

Cayley table shows the operation of a finite group, by arranging all possible group operations of all the elements in the group in a square table, and from the Cayley table, many properties of the group can be easily discerned. Consider the Cayley table for the group  $\mathbb{Z}_3$  below:

a quick glance at the table, we can see that  $\mathbb{Z}_3$  is a commutative or Abelian group and 1 and 2 are inverses of one another. Any finite group (G, \*) has a Cayley table of the form

each element in G has one designated row and similarly a column, then the entry in the row of x and the column of y is x \* y.

<sup>4</sup> If there is no chance of ambiguity, the group is usually denoted with just the letter *G*.

*Remark* 11. The set of integers  $\mathbb{Z} = \{..., -2, -1, 0, 1, 2, ...\}$  is a group with the operation of addition, denoted by  $(\mathbb{Z}, +)$ . Similarly, the set of rationals numbers and addition  $(\mathbb{Q}, +)$ , and the set of real numbers  $(\mathbb{R}, +)$ .

Remark 12. Many a times, algebraic structures apparent in the study of natural phenomena (that is to say in physics) are groups, *i.e.* quantum spin, angular momentum

<sup>5</sup> The element -a would seem to quality as inverse of a, a + (-a) = 0. However -a does not belong to the group.



Figure 1: Addition modulo *n* can be 2 visualized by hoping around equidistant points on an arc of a unit circle.