5.2 Simulación Monte Carlo

La simulación de Monte Carlo es una técnica que combina conceptos estadísticos (muestreo aleatorio) a partir de una distribución de probabilidad, la utilización del computador por la rapidez, permite realizar simulación matemática de los problemas tomando observaciones para hacer deducciones con respecto al sistema real.

Wikipedia "El método de Montecarlo es un modelo no determinista o estadístico numérico, usado para aproximar expresiones matemáticas complejas y costosas de evaluar con exactitud. El método se llamó así en referencia al Casino de Montecarlo (Mónaco) por ser "la capital del juego de azar", al ser la ruleta un generador simple de números aleatorios. El nombre y el desarrollo sistemático de los métodos de Montecarlo datan aproximadamente de 1944 y se mejoraron enormemente con el desarrollo de la computadora".

Ejemplo 5.2

para este ejemplo vamos a proceder de acuerdo a los pasos definidos anteriormente:

- 1. Análisis o Definición del Sistema donde exista un problema a solucionar. En este ejemplo vamos a utilizar los datos de la tabla 2.1 del capitulo 2 la misma que en la columna de NO_ATENDIDOS presenta la cantidad de pacientes no atendidos en el HRZ, que representa un costo para el sistema de salud ya que los pacientes son derivados en muchos de los casos a establecimientos privados; el análisis es para determinar por medio de simulación Monte Carlo la cantiad de pacientes que fueron derivados a otros hospitales o clínicas y cual sería el costo que deberiamos optimizar incorporando nuevas opciones de atencón, teniendo que cada paciente derivado cuesta al estado un promedio de 50 dólares.
- 2. Desarrollo formal del modelo(formulación del Modelo) ##### Variables de Entrada Para el modelo vamos a definir las **variables de entrada** en este caso los datos observados en la tabla 2.1:
 - Días de la semana
 - Cantidad de Pacientes
 - Cantidad de Pacientes Atendidos
 - Cantidad de Pacientes No Atendidos

Modelo Matemático

Luego definimos el modelo matemático

- Definimos la **demanda diaria de pacientes**, se obtiene la **distribución de la probabilidad fdp()** donde suponemo s que el comportamiento de los datos observados en los dos meses van a describir apropiadamente el futuro para nuestra simulación.
- Luego establecemos la **distribución acumulada FDA()** de la demanda
- Generamos la de rangos **mínimo y máximo** de cada una de dias de la demanda a menudo llamados **números índice**
- Generamos los numeros aleatorios con cualquiera de los métodos de generación vistos en el capitulo 3
- Con cada uno de los números aleatorios localizamos su posición dentro de los rangos para de esa forma obtener una nueva observación.

Variables de Salida las variables salida vamos a tener los resultados de la simulación, que puede ser una cantidad importante de observaciones con las demandas de nuestro ejemplo: para este caso de estudio será de 52 semanas de un año:

- Tabla con demandas simuladas
- Calcular la media y la desviación típica
- El Costo total de la cantidad de pacientes no atendidos
- Gráficos

1. Recolección de Datos

Los datos para la simulación montecarlo fueron obtenidos con las observaciones de los meses de abril y mayo 8 semanas, estos datos los agrupamos por día: Lunes(1), Martes(2), Miercoles(3), Jueves(4), Viernes(5), Sabado(6), Domingo(7) como se muestra en la tabla:

DIA SEMANA		тот	AL PACIENT	ES AT	ENDIDOS	NO ATENDIDOS
:	:	:		: :	:	::
1UNES	(1)		170		126	44
Martes	(2)		159		121	37
Miércole	s(3)		148		116	30
Jueves	(4)		145		115	29
Viernes	(5)		138	- 1	101	36
Sábado	(6)		115	- 1	82	33
Domingo	(1)		111		82	29

- 1. Implementación vía software la implementación igual que todos los métodos y herramientas para la simulación tratados en los capítulos anteriores utilizando un python notebook con los siguientes pasos:
 - A. Creamos un DataFrame con los datos
 - B. Calculamos la fdp(no atendidos)
 - C. Calculamos la DFP(no atendidos)
 - D. generamos los rangos de la DFP()
 - E. Generamos 52 números aleatorios
 - F. Simulamos 52 demandas con los números aleatorios
 - G. calculamos los costos de cada paciente no atendidos
 - H. Calculamos estadísticos
- 2. Verificación Para este paso correr la simulación con el programa desarrollado y comenzamos a analizar si la información resultante se encuentra dentro de las métricas de desempeño, la observación del comportamiento con alguna distribucíon de frecuencia, la media, la varianza y la desviación estándar así como el comportamiento del generador de números aleatorios.

3. Validación. En este caso ya los datos simulados y verificados confrontamos con los usuarios de los datos (medimos el comportamiento del sistema de interés) para que a su vez puedan determinar si os correcta la simulación y puedan utilizarlo para la toma de decisiones. Como advertimos en la 5

```
In [81]: import pandas as pd
import numpy as np
datos = pd.read_csv('C:/Users/JORGEANIBAL/LIBRO/Data/datos1.csv')
datos.head()
```

Out[81]:

	DIA	DIASEMANA	FECHA	TOTAL_PACIENTES	ATENDIDOS	NO_ATENDIDOS
0	1	Lunes	3/4/2017	147	79	68
1	1	Lunes	10/4/2017	167	116	51
2	1	Lunes	17/4/2017	189	149	40
3	1	Lunes	24/4/2017	166	130	36
4	1	Lunes	1/5/2017	150	121	29

In [82]: ##### Obtenemos los datos para el modelo

Seleccionamos las columnas que vamos a simular en este caso los datos de NO_ATENDIDOS

```
In [83]: demanda = datos.filter(items=["DIA", "DIASEMANA", "NO_ATENDIDOS"])
```

In [84]: # desplegamos los datos de los 5 primeros registros
 demanda.head()

Out[84]:

	DIA	DIASEMANA	NO_ATENDIDOS
0	1	Lunes	68
1	1	Lunes	51
2	1	Lunes	40
3	1	Lunes	36
4	1	Lunes	29

Agrupamos los datos por la columna DIA

```
In [85]: demandas = demanda.groupby("DIASEMANA")
```

Sumamos los datos agrupados por cada DIA

In [86]: demandas.sum()

Out[86]:

DIA NO_ATENDIDOS

DIASEMANA		
Domingo	63	261
Jueves	32	235
Lunes	9	393
Martes	18	335
Miercoles	27	274
Sábado	54	294
Viernes	40	290

Para nuestro modelo utilizamos la media de los datos

```
In [87]: # Obtenemos la media de cada uno de las frecuencias
demandas.mean()
```

Out[87]:

DIA NO_ATENDIDOS

DIASEMANA		
Domingo	7.0	29.000000
Jueves	4.0	29.375000
Lunes	1.0	43.666667
Martes	2.0	37.222222
Miercoles	3.0	30.444444
Sábado	6.0	32.666667
Viernes	5.0	36.250000

Asignamos las medias a demandas

```
In [88]: tot = demandas.mean()
tot
```

Out[88]:

DIA NO_ATENDIDOS

DIASEMANA

Domingo	7.0	29.000000
Jueves	4.0	29.375000
Lunes	1.0	43.666667
Martes	2.0	37.222222
Miercoles	3.0	30.444444
Sábado	6.0	32.666667
Viernes	5.0	36.250000

Calculamos las probabilidades de la Columna NO_ATENDIDOS

```
In [89]: # Ordenamos por Día
         suma = tot['NO_ATENDIDOS'].sum()
         n=len(tot)
         suma
         x1 = tot.assign(Probabilidad=lambda x: x['NO ATENDIDOS'] / suma)
         x2 = x1.sort_values('DIA')
         a=x2['Probabilidad']
Out[89]: DIASEMANA
         Lunes
                      0.182993
         Martes
                      0.155986
         Miercoles
                      0.127583
         Jueves
                      0.123101
         Viernes
                      0.151912
         Sábado
                      0.136895
         Domingo
                      0.121530
         Name: Probabilidad, dtype: float64
```

Calculamos la probailidad acumulada FDP

```
In [90]: a1= np.cumsum(a) #Cálculo la suma acumulativa de las probabilidades
x2['FPA'] =a1
x2
```

Out[90]:

		DIA	NO_ATENDIDOS	Probabilidad	FPA
D	DIASEMANA				
	Lunes	1.0	43.666667	0.182993	0.182993
	Martes	2.0	37.222222	0.155986	0.338979
	Miercoles	3.0	30.444444	0.127583	0.466562
	Jueves	4.0	29.375000	0.123101	0.589663
	Viernes	5.0	36.250000	0.151912	0.741575
	Sábado	6.0	32.666667	0.136895	0.878470
	Domingo	7.0	29.000000	0.121530	1.000000

```
In [91]: x2['Min'] = x2['FPA']
x2['Max'] = x2['FPA']
x2
```

Out[91]:

	DIA	NO_ATENDIDOS	Probabilidad	FPA	Min	Max
DIASEMANA						
Lunes	1.0	43.666667	0.182993	0.182993	0.182993	0.182993
Martes	2.0	37.222222	0.155986	0.338979	0.338979	0.338979
Miercoles	3.0	30.444444	0.127583	0.466562	0.466562	0.466562
Jueves	4.0	29.375000	0.123101	0.589663	0.589663	0.589663
Viernes	5.0	36.250000	0.151912	0.741575	0.741575	0.741575
Sábado	6.0	32.666667	0.136895	0.878470	0.878470	0.878470
Domingo	7.0	29.000000	0.121530	1.000000	1.000000	1.000000

```
In [92]: lis = x2["Min"].values
         lis2 = x2['Max'].values
         lis[0]= 0
         for i in range(1,7):
             lis[i] = lis2[i-1]
             print(i,i-1)
         x2['Min'] = lis
         x2
         1 0
```

2 1

3 2

4 3

5 4

6 5

Out[92]:

	DIA	NO_ATENDIDOS	Probabilidad	FPA	Min	Max
DIASEMANA						
Lunes	1.0	43.666667	0.182993	0.182993	0.000000	0.182993
Martes	2.0	37.222222	0.155986	0.338979	0.182993	0.338979
Miercoles	3.0	30.444444	0.127583	0.466562	0.338979	0.466562
Jueves	4.0	29.375000	0.123101	0.589663	0.466562	0.589663
Viernes	5.0	36.250000	0.151912	0.741575	0.589663	0.741575
Sábado	6.0	32.666667	0.136895	0.878470	0.741575	0.878470
Domingo	7.0	29.000000	0.121530	1.000000	0.878470	1.000000

Generado Dataset de Montecarlo podemos ya simular como es el caso nuestro a 52 semanas

Out[93]:

	ri
0	0.021137
1	0.992121
2	0.164339
3	0.063835
4	0.661529
5	0.400824
6	0.248127
7	0.586098
8	0.107008
9	0.849288
10	0.624741
11	0.476402
12	0.051529
13	0.232983
14	0.081332
15	0.736542
16	0.268061
17	0.883159
18	0.647850
19	0.000471
20	0.508672
21	0.177622
22	0.999577
23	0.524479
24	0.764966

 r	ī	
	ı	

- 0.750150
- 0.087186
- 0.736931
- 0.685749
- 0.532911
- 0.416229
- 0.706958
- 0.198789
- 0.116261
- 0.647896
- 0.141468
- 0.633563
- 0.160312
- 0.442957
- 0.769847
- 0.891846
- 0.842619
- 0.720730
- 0.225738
- 0.463035
- 0.576381
- 0.754969
- 0.785257
- 48 0.331067
- 0.483528
- 0.778536

```
51 0.571038
```

ri

```
In [94]: max = x2 ['Max'].values
         min = x2 ['Min'].values
In [95]: print(min)
         print(max)
         [0.
                     0.18299284 0.3389791 0.4665619 0.589663
                                                                 0.741575
          0.8784704 ]
         [0.18299284 0.3389791 0.4665619 0.589663 0.741575
                                                                 0.8784704
          1.
In [96]: def busqueda(arrmin, arrmax, valor):
            #print(valor)
             for i in range (len(arrmin)):
             # print(arrmin[i],arrmax[i])
                 if valor >= arrmin[i] and valor <= arrmax[i]:</pre>
                     return i
                     print(i)
             return -1
         xpos = dfMCL['ri']
         posi = [0] * n
         print (n)
         for j in range(n):
             val = xpos[j]
             pos = busqueda(min,max,val)
             posi[j] = pos
```

52

```
In [97]: x2 = x2.astype({"DIA" : int})
         x2
Out[97]:
                     DIA NO_ATENDIDOS Probabilidad
                                                     FPA
                                                              Min
                                                                      Max
          DIASEMANA
                                          Lunes
                       1
                              43.666667
              Martes
                       2
                              37.222222
                                          0.155986
                                                 0.338979
                                                          0.182993
                                                                  0.338979
                                          Miercoles
                       3
                              30.44444
              Jueves
                       4
                              29.375000
                                          0.123101  0.589663  0.466562  0.589663
              Viernes
                       5
                              36.250000
                                          0.151912  0.741575  0.589663  0.741575
              Sábado
                       6
                              32.666667
                                          0.136895
                                                 0.878470 0.741575 0.878470
             Domingo
                       7
                              29.000000
                                          0.121530 1.000000 0.878470 1.000000
         x2.dtypes
In [98]:
Out[98]: DIA
                           int32
         NO ATENDIDOS
                         float64
         Probabilidad
                         float64
         FPA
                         float64
         Min
                         float64
                         float64
         Max
         dtype: object
In [99]: x2.axes[0]
```

'Domingo'],

Out[99]: Index(['Lunes', 'Martes', 'Miercoles', 'Jueves', 'Viernes', 'Sábado',

dtype='object', name='DIASEMANA')

In [100]: x2.set_index('DIA')

Out[100]:

	NO_ATENDIDOS	Probabilidad	FPA	Min	Max
DIA					
1	43.666667	0.182993	0.182993	0.000000	0.182993
2	37.222222	0.155986	0.338979	0.182993	0.338979
3	30.444444	0.127583	0.466562	0.338979	0.466562
4	29.375000	0.123101	0.589663	0.466562	0.589663
5	36.250000	0.151912	0.741575	0.589663	0.741575
6	32.666667	0.136895	0.878470	0.741575	0.878470
7	29.000000	0.121530	1.000000	0.878470	1.000000

```
In [101]: import itertools
    import math
    simula = []
    for j in range(n):
        sim = x2.loc[x2["DIA"] == posi[i]+1]
        simu = sim.filter(['NO_ATENDIDOS']).values
        iterator = itertools.chain(*simu)
        for item in iterator:
            a=item
        simula.append(round(a,2))
    simula
```

```
Out[101]: [43.67,
            29.0,
            43.67,
            43.67,
            36.25,
            30.44,
            37.22,
            29.38,
            43.67,
            32.67,
            36.25,
            29.38,
            43.67,
            37.22,
            43.67,
            36.25,
            37.22,
            29.0,
            36.25,
            43.67,
            29.38,
            43.67,
            29.0,
            29.38,
            32.67,
            32.67,
            43.67,
            36.25,
            36.25,
            29.38,
            30.44,
            36.25,
            37.22,
            43.67,
            36.25,
            43.67,
            36.25,
            43.67,
            30.44,
            32.67,
            29.0,
```

- 32.67,
- 36.25,
- 37.22,
- 30.44,
- 29.38,
- 32.67,
- 32.67,
- 37.22,
- 29.38,
- 32.67,
- 29.38,
- 43.67,
- 29.0,
- 43.67,
- 43.67,
- 36.25,
- 30.44,
- 37.22,
- 29.38,
- 43.67,
- 32.67,
- 36.25,
- 29.38,
- 43.67,
- 37.22,
- 43.67,
- 36.25,
- 37.22,
- 29.0,
- 36.25,
- 43.67,
- 29.38,
- 43.67,
- 29.0,
- 29.38,
- 32.67,
- 32.67,
- 43.67,
- 36.25,
- 36.25,
- 29.38,
- 30.44,

- 36.25,
- 37.22,
- 43.67,
- 36.25,
- 43.67,
- 36.25,
- 43.67,
- 30.44,
- 32.67,
- 29.0,
- 32.67,
- 36.25,
- 37.22,
- 30.44,
- 29.38,
- 32.67,
- 32.67,
- 37.22,
- 29.38,
- 32.67,
- 29.38,
- 43.67,
- 29.0,
- 43.67,
- 43.67,
- 36.25,
- 30.44,
- 37.22,
- 29.38,
- 43.67,
- 32.67,
- 36.25,
- 29.38,
- 43.67,
- 37.22,
- 43.67,
- 36.25,
- 37.22,
- 29.0,
- 36.25,
- 43.67,
- 29.38,

- 43.67,
- 29.0,
- 29.38,
- 32.67,
- 32.67,
- 43.67,
- 36.25,
- 36.25,
- 29.38,
- 30.44,
- 36.25,
- 37.22,
- 43.67,
- 36.25,
- 43.67,
- 36.25,
- 43.67,
- 30.44,
- 32.67,
- 29.0,
- 32.67,
- 36.25,
- 37.22,
- 30.44,
- 29.38,
- 32.67,
- 32.67,
- 37.22,
- 29.38,
- 32.67,
- 29.38,
- 43.67,
- 29.0,
- 43.67,
- 43.67,
- 36.25,
- 30.44,
- 37.22,
- 29.38,
- 43.67,
- 32.67,
- 36.25,

- 29.38,
- 43.67,
- 37.22,
- 43.67,
- 36.25,
- 37.22,
- 29.0,
- 36.25,
- 43.67,
- 29.38,
- 43.67,
- 29.0,
- 29.38,
- 32.67,
- 32.67,
- 43.67,
- 36.25,
- 36.25,
- 29.38,
- 30.44,
- 36.25,
- 37.22,
- 43.67,
- 36.25,
- 43.67,
- 36.25,
- 43.67,
- 30.44,
- 32.67,
- 29.0,
- 32.67,
- 36.25,
- 37.22,
- 30.44,
- 29.38,
- 32.67,
- 32.67,
- 37.22,
- 29.38,
- 32.67,
- 29.38,
- 43.67,

- 29.0, 43.67, 43.67,
- 36.25,
- 30.44,
- 37.22,
- 29.38, 43.67,
- 32.67,
- 36.25,
- 29.38,
- 43.67,
- 37.22,
- 43.67,
- 36.25,
- 37.22,
- 29.0,
- 36.25, 43.67,
- 29.38,
- 43.67,
- 29.0,
- 29.38, 32.67,
- 32.67,
- 43.67,
- 36.25,
- 36.25,
- 29.38,
- 30.44,
- 36.25,
- 37.22,
- 43.67,
- 36.25,
- 43.67,
- 36.25,
- 43.67,
- 30.44,
- 32.67,
- 29.0,
- 32.67,
- 36.25,

- 37.22,
- 30.44,
- 29.38,
- 32.67,
- 32.67,
- 37.22,
- 29.38,
- 32.67,
- 29.38,
- 43.67,
- 29.0,
- 43.67,
- 43.67,
- 36.25,
- 30.44,
- 37.22,
- 29.38,
- 43.67,
- 32.67,
- 36.25,
- 29.38,
- 43.67,
- 37.22, 43.67,
- 36.25,
- 37.22,
- 29.0,
- 36.25,
- 43.67,
- 29.38,
- 43.67,
- 29.0,
- 29.38,
- 32.67,
- 32.67,
- 43.67,
- 36.25,
- 36.25,
- 29.38,
- 30.44, 36.25,
- 37.22,

- 43.67,
- 36.25,
- 43.67,
- 36.25,
- 43.67,
- 30.44,
- 32.67,
- 29.0,
- 32.67,
- 36.25,
- 37.22,
- 30.44,
- 29.38,
- 32.67,
- 32.67,
- 37.22,
- 29.38,
- 32.67,
- 29.38,
- 43.67,
- 29.0,
- 43.67,
- 43.67,
- 36.25,
- 30.44,
- 37.22,
- 29.38,
- 43.67,
- 32.67,
- 36.25,
- 29.38,
- 43.67,
- 37.22,
- 43.67,
- 36.25,
- 37.22,
- 29.0,
- 36.25,
- 43.67,
- 29.38, 43.67,
- 29.0,

- 29.38,
- 32.67,
- 32.67,
- 43.67,
- 36.25,
- 36.25,
- 29.38,
- 30.44,
- 36.25,
- 37.22,
- 43.67,
- 36.25,
- 43.67,
- 36.25,
- 43.67,
- 30.44,
- 32.67,
- 29.0,
- 32.67,
- 36.25,
- 37.22,
- 30.44,
- 29.38,
- 32.67,
- 32.67,
- 37.22,
- 29.38, 32.67,
- 29.38, 43.67,
- 29.0,
- 43.67,
- 43.67,
- 36.25,
- 30.44,
- 37.22,
- 29.38,
- 43.67,
- 32.67,
- 36.25,
- 29.38,
- 43.67,

- 37.22,
- 43.67,
- 36.25,
- 37.22,
- 29.0,
- 36.25,
- 43.67,
- 29.38,
- 43.67,
- 29.0,
- 29.38,
- 32.67,
- 32.67,
- 43.67,
- 36.25,
- 36.25,
- 29.38,
- 30.44,
- 36.25,
- 37.22,
- 43.67,
- 36.25,
- 43.67,
- 36.25,
- 43.67,
- 30.44,
- 32.67,
- 29.0,
- 32.67,
- 36.25,
- 37.22,
- 30.44,
- 29.38,
- 32.67,
- 32.67,
- 37.22,
- 29.38,
- 32.67,
- 29.38,
- 43.67,
- 29.0,
- 43.67,

- 43.67,
- 36.25,
- 30.44,
- 37.22,
- 29.38,
- 43.67,
- 32.67,
- 36.25,
- 29.38,
- 43.67,
- 37.22,
- 43.67,
- 36.25,
- 37.22,
- 29.0,
- 36.25,
- 43.67,
- 29.38,
- 43.67,
- 29.0,
- 29.38, 32.67,
- 32.67,
- 43.67,
- 36.25,
- 36.25,
- 29.38,
- 30.44,
- 36.25, 37.22,
- 43.67,
- 36.25,
- 43.67,
- 36.25,
- 43.67,
- 30.44,
- 32.67,
- 29.0,
- 32.67,
- 36.25,
- 37.22,
- 30.44,

- 29.38,
- 32.67,
- 32.67,
- 37.22,
- 29.38,
- 32.67,
- 29.38,
- 43.67,
- 29.0,
- 43.67,
- 43.67,
- 36.25,
- 30.44,
- 37.22,
- 29.38,
- 43.67,
- 32.67,
- 36.25,
- 29.38,
- 43.67,
- 37.22,
- 43.67,
- 36.25,
- 37.22,
- 29.0,
- 36.25,
- 43.67,
- 29.38,
- 43.67,
- 29.0,
- 29.38,
- 32.67,
- 32.67,
- 43.67,
- 36.25,
- 36.25,
- 29.38,
- 30.44,
- 36.25,
- 37.22,
- 43.67,
- 36.25,

- 43.67, 36.25,
- 43.67,
- 30.44,
- 32.67,
- 29.0,
- 32.67,
- 36.25,
- 37.22,
- 30.44,
- 29.38,
- 32.67,
- 32.67,
- 37.22,
- 29.38,
- 32.67,
- 29.38,
- 43.67,
- 29.0,
- 43.67,
- 43.67,
- 36.25,
- 30.44,
- 37.22,
- 29.38,
- 43.67,
- 32.67,
- 36.25,
- 29.38,
- 43.67,
- 37.22,
- 43.67,
- 36.25,
- 37.22,
- 29.0,
- 36.25,
- 43.67,
- 29.38,
- 43.67,
- 29.0,
- 29.38,
- 32.67,

- 32.67,
- 43.67,
- 36.25,
- 36.25,
- 29.38,
- 30.44,
- 36.25,
- 37.22,
- 43.67,
- 36.25,
- 43.67,
- 36.25,
- 43.67,
- 30.44, 32.67,
- 29.0,
- 32.67,
- 36.25,
- 37.22,
- 30.44,
- 29.38,
- 32.67,
- 32.67,
- 37.22,
- 29.38,
- 32.67,
- 29.38,
- 43.67,
- 29.0,
- 43.67,
- 43.67,
- 36.25,
- 30.44,
- 37.22,
- 29.38,
- 43.67,
- 32.67,
- 36.25,
- 29.38,
- 43.67,
- 37.22,
- 43.67,

- 36.25, 37.22, 29.0, 36.25, 29.38,
- 43.67,
- 43.67,
- 29.0,
- 29.38,
- 32.67,
- 32.67,
- 43.67,
- 36.25,
- 36.25,
- 29.38,
- 30.44,
- 36.25,
- 37.22,
- 43.67,
- 36.25,
- 43.67,
- 36.25,
- 43.67,
- 30.44,
- 32.67,
- 29.0,
- 32.67,
- 36.25,
- 37.22,
- 30.44,
- 29.38,
- 32.67,
- 32.67,
- 37.22,
- 29.38,
- 32.67,
- 29.38, 43.67,
- 29.0,
- 43.67,
- 43.67,
- 36.25,

- 30.44,
- 37.22,
- 29.38,
- 43.67,
- 32.67,
- 36.25,
- 29.38,
- 43.67,
- 37.22,
- 43.67,
- 36.25,
- 37.22,
- 29.0,
- 36.25,
- 43.67,
- 29.38,
- 43.67,
- 29.0,
- 29.38,
- 32.67,
- 32.67,
- 43.67,
- 36.25,
- 36.25,
- 29.38,
- 30.44,
- 36.25,
- 37.22,
- 43.67,
- 36.25,
- 43.67,
- 36.25,
- 43.67,
- 30.44,
- 32.67,
- 29.0,
- 32.67,
- 36.25,
- 37.22,
- 30.44,
- 29.38,
- 32.67,

- 32.67,
- 37.22,
- 29.38,
- 32.67,
- 29.38,
- 43.67,
- 29.0,
- 43.67,
- 43.67,
- 36.25,
- 30.44,
- 37.22,
- 29.38,
- 43.67,
- 32.67,
- 36.25, 29.38,
- 43.67,
- 37.22,
- 43.67,
- 36.25,
- 37.22,
- 29.0,
- 36.25,
- 43.67,
- 29.38,
- 43.67,
- 29.0,
- 29.38,
- 32.67,
- 32.67,
- 43.67,
- 36.25,
- 36.25,
- 29.38,
- 30.44,
- 36.25,
- 37.22,
- 43.67,
- 36.25,
- 43.67,
- 36.25,

- 43.67,
- 30.44,
- 32.67,
- 29.0,
- 32.67,
- 36.25,
- 37.22,
- 30.44,
- 29.38,
- 32.67,
- 32.67,
- 37.22,
- 29.38,
- 32.67,
- 29.38,
- 43.67,
- 29.0,
- 43.67,
- 43.67,
- 36.25,
- 30.44,
- 37.22,
- 29.38,
- 43.67,
- 32.67,
- 36.25,
- 29.38,
- 43.67,
- 37.22,
- 43.67,
- 36.25,
- 37.22,
- 29.0,
- 36.25,
- 43.67,
- 29.38,
- 43.67,
- 29.0,
- 29.38,
- 32.67,
- 32.67,
- 43.67,

- 36.25, 36.25,
- 29.38,
- 30.44,
- 36.25,
- 37.22,
- 43.67,
- 36.25,
- 43.67,
- 36.25,
- 43.67,
- 30.44,
- 32.67,
- 29.0,
- 32.67,
- 36.25,
- 37.22,
- 30.44,
- 29.38,
- 32.67,
- 32.67,
- 37.22,
- 27.22,
- 29.38, 32.67,
- 29.38,
- 43.67,
- 29.0,
- 43.67,
- 43.67,
- 36.25,
- 30.44,
- 37.22,
- 29.38,
- 43.67,
- 32.67,
- 36.25,
- 29.38,
- 43.67,
- 37.22,
- 43.67,
- 36.25,
- 37.22,

- 29.0,
- 36.25,
- 43.67,
- 29.38,
- 43.67,
- 29.0,
- 29.38,
- 32.67,
- 32.67,
- 43.67, 36.25,
- 36.25,
- 29.38,
- 30.44,
- 36.25,
- 37.22,
- 43.67,
- 36.25,
- 43.67,
- 36.25,
- 43.67,
- 30.44,
- 32.67,
- 29.0,
- 32.67,
- 36.25,
- 37.22,
- 30.44,
- 29.38,
- 32.67,
- 32.67,
- 37.22,
- 29.38,
- 32.67,
- 29.38,
- 43.67,
- 29.0,
- 43.67,
- 43.67,
- 36.25,
- 30.44,
- 37.22,

- 29.38,
- 43.67,
- 32.67,
- 36.25,
- 29.38,
- 43.67,
- 37.22,
- 43.67,
- 36.25,
- 37.22,
- 29.0,
- 36.25,
- 43.67,
- 29.38,
- 43.67,
- 29.0,
- 29.38,
- 32.67,
- 32.67,
- 43.67,
- 36.25,
- 36.25,
- 29.38,
- 30.44,
- 36.25,
- 37.22,
- 43.67,
- 36.25,
- 43.67,
- 36.25,
- 43.67,
- 30.44,
- 32.67,
- 29.0,
- 32.67,
- 36.25,
- 37.22,
- 30.44,
- 29.38,
- 32.67,
- 32.67,
- 37.22,

- 29.38,
- 32.67,
- 29.38,
- 43.67,
- 29.0,
- 43.67,
- 43.67,
- 36.25,
- 30.44,
- 50.11
- 37.22,
- 29.38,
- 43.67,
- 32.67,
- 36.25,
- 29.38,
- 43.67,
- 37.22,
- 43.67,
- 36.25,
- 37.22,
- 29.0,
- 36.25,
- 43.67,
- 29.38,
- 43.67,
- 29.0,
- 29.38,
- 32.67,
- J= . J ,
- 32.67,
- 43.67,
- 36.25,
- 36.25,
- 29.38,
- 30.44,
- 36.25,
- 37.22,
- 43.67,
- 36.25,
- 43.67,
- 36.25,
- 43.67,
- 30.44,

- 32.67, 29.0,
- 32.67,
- 36.25,
- 37.22,
- 30.44,
- 29.38,
- 32.67,
- 32.67,
- 37.22,
- 29.38,
- 32.67,
- 29.38,
- 43.67,
- 29.0,
- 43.67,
- 43.67,
- 36.25,
- 30.44,
- 37.22,
- 29.38,
- 43.67,
- 32.67,
- 36.25,
- 29.38,
- 43.67,
- 37.22,
- 43.67,
- 36.25, 37.22,
- 29.0,
- 36.25,
- 43.67,
- 29.38,
- 43.67,
- 29.0,
- 29.38,
- 32.67,
- 32.67,
- 43.67,
- 36.25,
- 36.25,

```
29.38,
30.44,
36.25,
37.22,
43.67,
36.25,
43.67,
36.25,
43.67,
30.44,
32.67,
29.0,
32.67,
36.25,
37.22,
30.44,
29.38,
32.67,
32.67,
37.22,
29.38,
32.67,
29.38,
43.67,
29.0,
43.67,
43.67,
36.25,
30.44,
37.22,
29.38,
43.67,
32.67,
36.25,
29.38,
...]
```

```
In [102]: dfMCL["Simulación"] = pd.DataFrame(simula)
    dfMCL["Costo de Atención"] = dfMCL["Simulación"] * 50
```

In [80]: dfMCL

Out[80]:

	ri	Simulación	Costo de Atención
0	0.021137	43.67	2183.5
1	0.992121	29.00	1450.0
2	0.164339	43.67	2183.5
3	0.063835	43.67	2183.5
4	0.661529	36.25	1812.5
5	0.400824	30.44	1522.0
6	0.248127	37.22	1861.0
7	0.586098	29.38	1469.0
8	0.107008	43.67	2183.5
9	0.849288	32.67	1633.5
10	0.624741	36.25	1812.5
11	0.476402	29.38	1469.0
12	0.051529	43.67	2183.5
13	0.232983	37.22	1861.0
14	0.081332	43.67	2183.5
15	0.736542	36.25	1812.5
16	0.268061	37.22	1861.0
17	0.883159	29.00	1450.0
18	0.647850	36.25	1812.5
19	0.000471	43.67	2183.5
20	0.508672	29.38	1469.0
21	0.177622	43.67	2183.5
22	0.999577	29.00	1450.0
23	0.524479	29.38	1469.0
24	0.764966	32.67	1633.5

	ri	Simulación	Costo de Atención
25	0.750150	32.67	1633.5
26	0.087186	43.67	2183.5
27	0.736931	36.25	1812.5
28	0.685749	36.25	1812.5
29	0.532911	29.38	1469.0
30	0.416229	30.44	1522.0
31	0.706958	36.25	1812.5
32	0.198789	37.22	1861.0
33	0.116261	43.67	2183.5
34	0.647896	36.25	1812.5
35	0.141468	43.67	2183.5
36	0.633563	36.25	1812.5
37	0.160312	43.67	2183.5
38	0.442957	30.44	1522.0
39	0.769847	32.67	1633.5
40	0.891846	29.00	1450.0
41	0.842619	32.67	1633.5
42	0.720730	36.25	1812.5
43	0.225738	37.22	1861.0
44	0.463035	30.44	1522.0
45	0.576381	29.38	1469.0
46	0.754969	32.67	1633.5
47	0.785257	32.67	1633.5
48	0.331067	37.22	1861.0
49	0.483528	29.38	1469.0
50	0.778536	32.67	1633.5

	ri	Simulación	Costo de Atención
51	0.571038	29.38	1469.0

In []:	
In []:	