Block 6 (Donnerstag 22.2.2024)

VIDEO: video06a_grundlagen_r

8 Datenanalyse und Zufallszahlen

Statistische Datenanalyse: für deterministische Simulation (Molekulardynamik, DGLs) und für stochastische Simulationen.

Für letzteres weiterhin: Anwendung von Zufallszahlen bei Computersimulationen:

- Systeme mit zufälligen Wechselwirkungen ("Spingläser")
- Simulationen bei endlichen Temperaturen mit Monte-Carlo Verfahren
- Randomisierte Algorithmen (aus deterministischen Algorithmen entstanden)

Zufallszahlen im Computer möglich (z.B. Schwankungen der Spannungen an einem Transistor durch thermisches Rauschen). Vorteil: Zufällig. Nachteil: Statistische Eigenschaften unbekannt und nicht kontrollierbar.

Daher: Pseudozufallszahlen = nicht zufällig, aber *möglichst* gleiche statische Eigenschaften (Verteilung, Korrelationen).

8.1 Grundlagen Wahrscheinlichkeitstheorie

 Ω : Menge der Ausgänge eines Zufallsexperiments.

Bsp: $\Omega = \{\text{Kopf, Zahl}\}$ für Münzwurf.

Definition: Eine Wahrscheinlichkeitsfunktion P ist eine Funktion P: $2^{\Omega} \longrightarrow [0,1]$ mit

$$P(\Omega) = 1 \tag{7}$$

und für jede Sequenz A_1, A_2, A_3, \ldots disjunkter <u>Ereignisse</u> $(A_i \cap A_j = \emptyset$ für $i \neq j)$:

$$P(A_1 \cup A_2 \cup A_3 \cup \ldots) = P(A_1) + P(A_2) + P(A_3) + \ldots$$
 (8)

Eigenschaften (ohne Beweis), für $A, B \subset \Omega, A^c := \Omega \setminus A$:

$$P(A^c) = 1 - P(A). (9)$$

$$P(A \cup B) = P(A) + P(B) - P(A \cap B) \tag{10}$$

Für unabhängige Zufallsexperimente gilt:

$$P(A^{(1)}, A^{(2)}, \dots, A^{(k)}) = P(A^{(1)})P(A^{(2)})\dots P(A^{(k)})$$
(11)

Definition: Die bedingte Wahrscheinlichkeit A gegeben C ist

$$P(A|C) = \frac{P(A \cap C)}{P(C)}.$$
 (12)

Was ist P(Würfel | 6|Würfel > 3)?

Bayesche Regel

 $\overline{\text{Da nach (12)}} P(A|C)P(C) = P(A \cap C) = P(C \cap A) = P(C|A)P(A) \Rightarrow$

$$P(C|A) = \frac{P(A|C)P(C)}{P(A)}.$$
(13)

VIDEO: video06b_ZVen_r

8.2 Zufallsvariablen

Zufallsvariable (ZV) X (unscharf): Zufallsexperiment mit $\Omega = \mathbb{R}$

Verteilungsfunktion (VF) einer ZV X ist eine Funktion F_X : **Definition:** $\mathbb{R} \longrightarrow [0,1]$ definiert über

$$F_X(x) = P(X \le x) \tag{14}$$

Bsp: Münze:

$$F(x) = \begin{cases} 0 & x < 0 \\ 0.5 & 0 \le x < 1 \\ 1 & x \ge 1 \end{cases}$$
 (15)

x-Position eines Gasteilchens im Container $[0, L_x]$

$$F(x) = \begin{cases} 0 & x < 0 \\ x/L_x & 0 \le x < L_x \\ 1 & x \ge L_x \end{cases}$$
 (16)

Figure 10: Verteilungsfunktionen für Münze und Gasteilchen.

Nach Zufallsexperiment gemäß X mit Ergebnis x, dann y = g(x) berechnen: Transformation der ZV zu Y = g(X), allgemein:

$$Y = \tilde{g}\left(X^{(1)}, X^{(2)}, \dots, X^{(k)}\right). \tag{17}$$

Verteilungsfunktion manchmal unhandlich \rightarrow Wahrscheinlichkeits-/ Dichtefunktion:

VIDEO: video06c_ZV_diskret_r

8.2.1 Diskrete Zufallsvariablen

Definition: Die Wahrscheinlichkeitsfunktion (engl. probability mass function, pmf) $p_X : \mathbb{R} \to [0, 1]$ ist gegeben durch

$$p_X(x) = P(X = x). (18)$$

Verteilung für n fachen Münzwurf (0/1):

Definition: Die binomial Verteilung mit Parametern $n \in \mathbb{N}$ und p (0 < $p \le 1$) beschreibt eine ZV X mit WF

$$p_X(x) = \begin{cases} \binom{n}{x} p^x (1-p)^{n-x} & (0 \le x \le n, x \in \mathbb{N}) \\ 0 & \text{sonst} \end{cases}$$
 (19)

Notation $X \sim B(n, p)$.

Charakterisierung von ZVen:

 $\{\tilde{x}_i\}$ Menge der Werte für die $p_X(\tilde{x}) > 0$.

Definition:

• Erwartungswert

$$\mu \equiv E[X] = \sum_{i} \tilde{x}_{i} P(X = \tilde{x}_{i}) = \sum_{i} \tilde{x}_{i} p_{X}(\tilde{x}_{i})$$
 (20)

• Varianz

$$\sigma^2 \equiv \text{Var}[X] = E[(X - E[X])^2] = \sum_i (\tilde{x}_i - E[X])^2 p_X(\tilde{x}_i)$$
 (21)

• Standardabweichung

$$\sigma \equiv \sqrt{\operatorname{Var}[X]} \tag{22}$$

Eigenschaften:

$$E[\alpha_1 X^{(1)} + \alpha_2 X^{(2)}] = \alpha_1 E[X^{(1)}] + \alpha_2 E[X^{(2)}]$$
 (23)

$$\sigma^2 = \operatorname{Var}[X] = \operatorname{E}[X^2] - \operatorname{E}[X]^2 \tag{24}$$

$$\Leftrightarrow \quad \mathbf{E}[X^2] = \sigma^2 + \mu^2 \tag{25}$$

$$Var[\alpha_1 X^{(1)} + \alpha_2 X^{(2)}] = \alpha_1^2 Var[X^{(1)}] + \alpha_2^2 Var[X^{(2)}]$$
 (26)

 $E[X^n]$: <u>n-tes Moment</u>

Es gilt für die Binomialverteilung:

$$E[X] = np (27)$$

$$Var[X] = np(1-p) \tag{28}$$

VIDEO: video06d_ZV_kont_r

8.2.2 Kontinuierliche Zufallsvariablen

Definition: Für eine ZV X mit kontinuierlicher VF F_X , ist die Wahrscheinlichkeitsdichte (engl. probability density function, pdf) $p_X : \mathbb{R} \to \mathbb{R}$:

$$p_X(x) = \frac{dF_X(x)}{dx} \tag{29}$$

Damit:

$$F_X(x) = \int_{-\infty}^x p_X(\tilde{x}) d\tilde{x}$$
 (30)

Definition:

• Erwartungswert

$$E[X] = \int_{-\infty}^{\infty} dx \, x \, p_X(x) \tag{31}$$

• Varianz

$$Var[X] = E[(X - E[X])^{2}] = \int_{-\infty}^{\infty} dx (x - E[X])^{2} p_{X}(x)$$
 (32)

• Median $x_{\text{med}} = \text{Med}[X]$

$$F_X(x_{\text{med}}) = 0.5 \tag{33}$$

Definition: Gleichverteilung mit Parametern a < b, beschreibt ZV X mit pdf

$$p_X(x) = \begin{cases} 0 & x < a \\ \frac{1}{b-a} & a \le x < b \\ 0 & x \ge b \end{cases}$$
 (34)

Schreibweise: $X \sim U(a, b)$.

Mittels $g(X_{01}) = (b-a) * X_{01} + a$ erhält man $g(X_{01}) \sim U(a,b)$ falls $X_{01} \sim U(0,1)$.

___ [Selbsttest] _____

Berechnen sie E[X] und Var[X].

Am wichtigesten:

Definition: Die Gaußverteilung oder Normalverteilung mit Parametern μ und $\sigma > 0$, beschreibt die ZV X mit pdf

$$p_X(x) = \frac{1}{\sqrt{2\pi\sigma^2}} \exp\left(-\frac{(x-\mu)^2}{2\sigma^2}\right)$$
 (35)

Schreibweise: $X \sim N(\mu, \sigma^2)$.

Eigenschaften: $E[X] = \mu$, $Var[X] = \sigma^2$.

Mittels $g(X) = \sigma X_0 + \mu$ erhält man $g(X_0) \sim N(\mu, \sigma^2)$ falls $X_0 \sim N(0, 1)$.

Zentraler Grenzwertsatz:

Für unabhängige ZVen $X^{(1)}, X^{(2)}, \ldots, X^{(n)}$ mit jeweils $E[X^{(i)}] = \mu$ und $Var[X^{(i)}] = \sigma^2$ gilt:

$$X = \sum_{i=1}^{n} X^{(i)} \tag{36}$$

ist für große $n \ X \sim N(n\mu, n\sigma^2)$. Dichten weiterer wichtiger Verteilungen:

Definition:

• Exponential verteilung (für $x \ge 0$)

$$p_X(x) = \frac{1}{\mu} \exp\left(-x/\mu\right) \tag{37}$$

____ [Selbsttest] _____

Berechnen Sie die Verteilungsfunktion für die Exponentialverteilung

Definition:

• Potenz-Gesetz Verteilung oder Pareto Verteilung

$$p_X(x) = \begin{cases} 0 & x < 1\\ \frac{\gamma}{\kappa} (x/\kappa)^{-\gamma - 1} & x \ge 1 \end{cases}$$
 (38)

Für $\gamma>1$ existiert Erwartungswert ${\rm E}[X]=\gamma\kappa/(\gamma-1),$ für $\gamma>2$ ${\rm Var}[X]=\frac{\kappa^2\gamma}{(\gamma-1)^2(\gamma-2)}$

$$F_X(x) = 1 - (x/\kappa)^{-\gamma} \quad (x \ge 1)$$
 (39)

• Fisher-Tippett Verteilung

$$p_X(x) = \lambda e^{-\lambda x} e^{-e^{-\lambda x}} \tag{40}$$

(auch <u>Gumbel Verteilung</u> für $\lambda=1$) $\mathrm{E}[X]=\nu/\lambda,\ \nu\equiv0.57721\ldots,$ Maximum bei x=0, Verschiebung durch $x\to(x-\mu)$

 $_{--}$ [Selbsttest] $_{-}$

Können Sie die Verteilungsfunktion ablesen?