ME EN 6200

Horevole 3 Ryan Malhy

Vagel

$$C(s) = \frac{5}{5+5} = \frac{5}{5+5}$$

ME EN 6200 Homework 3 Ryan Dalby

Problem 1

(c) Use Matlab's 'step' function to obtain plots of the time responses to compare your results with the equations you obtained for part (a). Submit your Matlab code for this problem (m-file or Simulink model), along with Matlab plots and label the axes!

Comparison:

Both transfer functions for a and b exhibit the expected unit step response. This is evidenced by the same time to rise to .9 and same time to settle to .98 for both a and b. Plotting the time solutions on top of the step response the plots are the exact same.

Code:

```
%% 1c
t_vals = 0:0.001:1.5;
% a
Ga = tf(5,[1,5]);
figure;
step(Ga,1.5);
title('Step response for 5/(s+5)');
hold on;
c = 1-exp(-5*t_vals);
plot(t_vals, c, 'r--');
legend('MATLAB Calculated Response', 'Hand Calculated Response');
% b
```

```
Gb = tf(20,[1,20]);
figure;
step(Gb,1.5);
title('Step response for 20/(s+20)');
hold on;
c = 1-exp(-20*t_vals);
plot(t_vals, c, 'r--');
legend('MATLAB Calculated Response', 'Hand Calculated Response');
```

ME FIN 6200 Horank3 Fyan Palhy

2b) $\frac{X(s)}{5(s)} = \frac{1}{s^2 + (s + 5)} = \frac{1}{s^2 + 25un s + un}$ $\frac{2}{5(s)} = \frac{1}{s^2 + 25un s + un}$ $\frac{2}{5(s)} = 1$ $\frac{2}{5(s)} =$

Problem 2

(c) Use Matlab's 'step' function to generate a plot to compare with your analytical solutions in Part (a)

and (b). Note any differences and explain. Include your Matlab code (m-file and/or Simulink model).


```
%% 2c
t_vals = 0:0.1:10;

H = tf(1,[1,1,5]);
figure;
step(H,10);
title('Step response for 1/(s^2+s+5)');
hold on;
x = 1/5 - (1/5).*exp(-.5.*t_vals).*cos(sqrt(19).*t_vals/2) -
(1/(5.*sqrt(19))).*exp(-.5.*t_vals).*sin(sqrt(19).*t_vals/2);
plot(t_vals, x, 'r--');
legend('MATLAB Calculated Response', 'Hand Calculated Response');
```

The numerical MATLAB solution and my closed form solution for x(t) (given a step response) match up exactly as evidenced by the plots and the matching %OS, peak time, and settling time.

(d) Explain how damp the system is, i.e., overdamp, underdamped, etc., and justify your answer.

The system is underdamped. This is shown by the oscillatory behavior and approximately 50% overshoot. The system takes 8 seconds to settle from the oscillatory behavior that is initially shown by the system as soon as the step input begins. This long settling time where the response oscillates about a settling value also indicates that the system is underdamped.

Fyor Pulhy ME EN 6200 Hornok 3 Tu1 = 14.145 (5°+0.8425+2.829) (5+5) 5= -0.8425 ± 1(0.842)3-4(2.824) Poles: 5=-5 S= -0.842 ± 3.2577 : -. 4027 5 I 1. 628 ; Im 41 These poles are much cloude to the Imas axes which imply they are closer to the bounds of the open 6HP when we no long how a calling you system that they have a much began impact. From text back if a 3rd and pole is five times father to the Lett of the donner poles then it can be neglected Pg. 1888 Thus -. 4217 88 - 5 (mon then 8 trus defined) 14,145 Thus we approximate Test as: Test = 52+0.8425+2.829 Wen Tell = Fwn 2 Wn = 1.682 K=5 23 (1.682)=0.842 }= 0.25 %05 = (0.25 T) 100 = 44,43 1/. ts= 4 = (25/11.68) = 19.5/sec tr = 1.8 = 1.67 = 1.07 sec tp = TT = TT = 1.93 sec

Pyr 4

Pye5 ME EN 6200 Hommule 3 Ryan Pylhy 4. 1 ti= 0.180 t= 0.075 sec to $\approx 42 = 0.1$ $\tau \approx 0.025$ second $q \approx 40$ Softly value: ME=2 E=2(-15) = K (E) = (80)) Setthyralu = 11 Peak rah = 13.5 tp=1sec %US: 2.5/1 -100 = 22.73% $\xi \approx \frac{-\ln(0.7273)}{\sqrt{\Pi^2 + \ln^2(0.7273)}} \approx 0.43$ 6p = 47 1-10:40)2 Wn = 3.47 6151= K 52+27 Unstun? K=11 M=14ntshp $G(n) = \frac{11(3.41)^2}{5^2 + 2(0.41)(2.41)+ (3.41)^2} = \frac{132.71}{6^2 + 2(994) + 13.06}$ c) settling value = 1.0 Penkrah: 1.4 to=4 see 1/001= 0.4/1.0 10- 40% tp = 100 - 10 - 10 2 2 2 - 14 2 -8= -2n(0.4) = 0.28 Wn = 0.81

GIII = E ST+2744 S+ Wuz [c=1.0 M=1 untrip $G(s) = \frac{(0.80)^2}{(0.80)^2 + (0.80)^2} = \frac{0.67}{s^2 + 0.46s + 0.67}$