16. PCA

18. Descriptive statistics

Box-and-Whisker plot:

Probability plot: $x_i(j-0.5)/n/CDF(x_i)$

19. Sample mean and variance

sample **mean**: $E(\bar{X}) = \mu$

sample variance: $V(\bar{X}) = \sigma^2/n$

sample std/standard error (SE): σ/\sqrt{n}

central limit theorem: the limiting form of the distribution of large n is the standard normal distribution: Z = $(X-\mu)/(\sigma/\sqrt{n})$

Two populations: the sampling distribution of $\bar{X}_1 - \bar{X}_2$ with mean $\mu_{\bar{X}_1-\bar{X}_2}=\mu_1-\mu_2$ and variance $\sigma^2_{\bar{X}_1-\bar{X}_2}=\sigma^2_1/n_1+\sigma^2_2/n_2$ Sampling distribution of a **difference** in sample means: Z= $((\bar{X}_1 - \bar{X}_2) - (\mu_1 - \mu_2)) / \sqrt{\sigma_1^2 / n_1 + \sigma_2^2 / n_2}$

20. point estimator

Unbiased point estimator: $E(\hat{\Theta}) = \Theta$

Bias: $E(\hat{\Theta}) - \Theta$

Mean Squared Error: $MSE(\hat{\Theta}) = E(\hat{\Theta} - \Theta)^2 = V(\hat{\Theta}) + (\hat{\Theta})^2 = V(\hat{\Theta})^2 = V(\hat{\Theta})$

Methods of moment: kth moment of random variable is $E(X^k)$.

First moment: $\mu = \int x f(x) dx$; second moment: $\mu^2 + \sigma^2 =$ $\int x^2 f(x) dx \to E(X^2) = Var(X) + E(X)^2.$

Moment estimators: $X_1, ..., X_n$ with m unknown parameters. They are found by equating first m population moments to first m sample moments.

To estimate exponential distribution, 1st moment, $E(X) = \bar{x} =$ $1/\lambda$; higher moment, $E(X^p) = p!/\lambda^p$

Maximum likelihood: $L(\theta) = f(x_1, \theta)...f(x_2, \theta)...f(x_n, \theta).$ Maximum likelihood estimator (MLE) of θ is the value of θ that maximize $L(\theta)$. Use logarithm: $I(\theta) = lnL(\theta)$

Exponential MLE: $dlnL(\lambda)/d\lambda = n/\lambda - \sum x_i = 0 \rightarrow \lambda =$ $n/\sum x_i = 1/\bar{X}$

Bernoulli MLE: $\hat{p} = \sum x_i/n$

Normal MLE for μ : $dlnL(\mu)/d\mu = \sum (x_i - \mu)/\sigma^2 = 0 \rightarrow$

MLE for poisson distribution: $dln f(x_1,..,x_n|\lambda)/d\lambda =$

 $-n + \sum x_i/\hat{\lambda} = 0 \to \lambda = \sum x_i/n$ Sample variance: $s^2 = \sum (x_i - \bar{x})^2/(n-1)$. If mean μ is known, use n. $s^2 = \sum (x_i - \mu)^2/n$

21. Confidence intervals:

two-sided: $Prob(L < \mu < R) = 1 - \alpha \rightarrow P(\bar{X} - Z_{\alpha/2}\sigma/\sqrt{n} < R)$ $\mu < \bar{X} + Z_{\alpha/2}\sigma/\sqrt{n}) = 1 - \alpha;$ one-sided: $Prob(\mu > R) = \alpha \rightarrow P(\bar{X} - \mu/\sigma\sqrt{n} < Z_{\alpha}) \rightarrow \mu > 0$ $\bar{X} - Z_{\alpha} \sigma / \sqrt{n}$

If sample is small and population variance is not **known**, use sample variance $s^2 = \sum (x_i - \bar{x})^2/n - 1$ and use t-distribution instead of normal distribution.

t-distribution: $f(t) = (1 + \frac{t^2}{n-1})^{-n/2}$, n is dof.

Then the t confidence interval on μ is $\bar{x} - t_{\alpha/2, n-1} s / \sqrt{n} < \mu < 1$ $\bar{x} + t_{\alpha/2,n-1} s / \sqrt{n}$

 $\frac{(n-1)s^2}{\chi^2_{\alpha/2,n-1}} < \sigma^2 <$ 24. Regression analysis Confidence interval on the variance:

 $(n-1)s^2$

Large sample confidence interval for a population proportion:

16. PCA PCA diagonalize
$$p \times p$$
 corr coefficient matrix $r_{ij} = \sigma_{ij}/\sigma_i\sigma_j$. $\hat{p} - z_{\alpha/2}\sqrt{\frac{\hat{p}(1-\hat{p})}{n}} \le p \le \hat{p} + z_{\alpha/2}\sqrt{\frac{\hat{p}(1-\hat{p})}{n}}$

22. Hypothesis Test

	decide H_0	decide H_1
	Correct action	Type I error
probability	$1-\alpha$	α
true H_1	Type II error	Correct action
probability	β	$power = 1 - \beta$

 $\alpha = P(\text{type I error}) = P(\text{reject } H_0 \text{ when } H_0 \text{ is true})$

If H_1 is **two-sided** hypothesis, P-value is $2(1 - \Phi(|Z|))$, where $Z=((X)-\mu_0)/(s/\sqrt{n})$. If α is given, bounds are $\mu_0 \mp z_{\alpha/2} * s$ to reject null hypothesis.

For one-sided $\mu_1 > \mu_0$, it's $1 - \Phi(Z)$; for $\mu_1 < \mu_0$, it's $\Phi(Z)$. If sample size n is small, use t-distribution with n-1 DOF for two-sided P-value: $2(1 - CDF_{Tdist}(|T|))$ where $T = \bar{X}$ $\mu_0/s\sqrt{n}$. Use $\mu_0 \mp t_{\alpha/2,n-1}T$ to reject null hypothesis.

Type II error and choice of sample size, $n = z_{\alpha/2} + z_{\beta}^2 \sigma^2 / \delta^2$, where $\delta = \mu - \mu_0$

m independent null hypothesis, at least one is false at significant threshold α_1 : Family-Wise Error Rate=1 - $(1 - \alpha_1)^m$; to get FWER ; α , $\alpha_1 = \alpha/m$

Hypothesis test for a **difference** in means:

$$H_0: \mu_1 - \mu_2 = \Delta_0 = 0$$
, test statistic: $Z_0 = \frac{\bar{X}_1 - \bar{X}_2 - \Delta_0}{\sqrt{\sigma_1^2/n_1 + \sigma_2^2/n_2}}$

Alternative Hypotheses	P-Value	Rejection Criterion For for Fixed-Level Tests
H_1 : $\mu_1 - \mu_2 \neq \Delta_0$	Probability above $ z_0 $ and probability below $- z_0 $, $P = 2[1 - \Phi(z_0)]$	$z_0 > z_{\alpha/2}$ or $z_0 < -z_{\alpha/2}$
H_1 : $\mu_1 - \mu_2 > \Delta_0$	Probability above z_0 , $P = 1 - \Phi(z_0)$	$z_0 > z_\alpha$
H_1 : $\mu_1 - \mu_2 < \Delta_0$	Probability below z_0 , $P = \Phi(z_0)$	$z_0 < -z_\alpha$

If $\sigma_1^2 \neq \sigma_2^2$, t-distribution with **DOF** $v = n_1 + n_2 - 2$

23. Goodness of fit test Pearson chi² goodness of fit test: $\chi_0^2 = \sum_{i=1}^k (O_i - E_i)^2 / E_i$, where O_i is observed number and E_i is expected number. P-value=P(H_0 is correct)= 1 - $CDF_{chi-squared}(\chi_0^2, k-1).$

How to test hypothesis if samples are drawn from same population: P(group1; color = green) = P(group1)P(color = green)green).

 $E_{green}(group1) = n_{tot}(group1/n_{tot})(green/n_{tot}).$ And $\chi^2 =$ $\sum_{groups\&colors}^{n_{tot}} (O_{color}(group) - E_{color}(group))^2 / E_{color}(group),$ where DOF is (colors-1)(groups-1)

Goodness of fit with a PDF defined by m parameters

- As before: k classes (e.g. M&M colors)
- Use parameter estimators to find the best parameters for the fit
 - Method of moments
 - MLE: method of maximum likelihood
- Use chi-squared distribution with k-1-m degrees of freedom
- As before: if $E_i < 3$, group it until $E_{group} > = 3$ make k equal to the new number of bins

$$X_0^2 = \sum_{i=1}^k \frac{(O_i - E_i)^2}{E_i}$$
 (9-47)

Confidence interval for population variance: $\chi_{n-1}^2 =$ $(n-1)S^2/\sigma^2$.

Interval form: $\frac{(n-1)S^2}{\chi^2_{\alpha/2,n-1}} < \sigma^2 < \frac{(n-1)S^2}{\chi^2_{1-\alpha/2,n-1}}$

 $Y = \beta_0 + \beta_1 X + \epsilon, \ \beta_1 = Cov(X, Y) / Var(X); \beta_0 = E(Y) -$

Use least squares to estimate: $\beta_1 = \frac{\sum y_i x_i - (\sum y_i)(\sum x_i)/n}{\sum x_i^2 - (\sum x_i)^2/n}$

analysis of variance $\sum (y_i - \bar{y})^2 = \sum (\hat{y}_i - \bar{y})^2 + \sum (y_i - \hat{y}_i)^2 \rightarrow$ $SS_T = SS_R + SS_E$

coefficient of determination: $R^2 = SS_R/SS_T = 1 - SS_E/SS_T$

Estimate σ_e^2 : $SS_E = \sum e_i^2 = (n-2)\sigma_e^2$

Slope property: $E(\hat{\beta}_1) = \beta_1; V(\hat{\beta}_1) = \sigma^2/S_{xx} = \hat{\sigma}_e^2/n\sigma_x^2$ Intercept property: $E(\hat{\beta}_0) = \beta_0; V(\hat{\beta}_0) = \sigma^2[1/n + \bar{x}^2/S_{xx}] =$

 $\sigma_e^2 [1 + \mu_x^2 / \sigma_x^2] / n$

Hypothesis test: H0: $\beta_1 = 0$; H1: $\beta_1 \neq 0$

Use Z-test for large n: $Z = \hat{\beta}_1/(\hat{\sigma}_e/\sigma_x\sqrt{n})$. Reject H0 if |Z| > $Z_{\alpha/2}$

Use t-test for smaller n: $Z = \hat{\beta_1}/(\hat{\sigma_e}/\sigma_x\sqrt{n})$. Reject H0 if $|Z| > t_{\alpha/2, n-2}$

25. Multiple linear regression

$$\mathbf{y} = \mathbf{X}\beta + \epsilon$$
, where least square is $L = \sum e_i^2 = (y - X\beta)'(y - X\beta)$. $dL/d\beta = 0 \rightarrow \hat{\beta} = (X'X)^{-1}X'y$

Property:
$$E(\hat{\beta}) = \beta$$
, Covariance Matrix: $C = (X'X)^{-1}$; $V(\hat{\beta}_j) = \sigma_e^2 C_{jj}$; $cov(\hat{\beta}_i, \hat{\beta}_j) = \sigma_e^2 C_{ij}$

Estimate
$$\sigma_e^2$$
, $\hat{\sigma}_e^2 = SS_E/n - p$, where $p = k + 1$

$$R^2 = 1 - SS_E/SS_T$$
; adjusted R-square: $R_{adj}^2 = 1 - SS_E/(n-p)$

$$\frac{SS_E/(n-p)}{SS_T/(n-1)}$$

26. Clustering algorithm

Hierarchical: agglomerative (eg, UPGMA), divisive

Non-hierarchical: PCA, K-means

- p x p symmetric matrix R of corr. coefficients $r_{ij} = rac{\sigma_{ij}}{\sigma_i \sigma_j}$
- $R=n^{-1}Z'^*Z$ is a "square" of the matrix Z of standardized r.v.: $z_{\alpha k}=\frac{x_{\alpha k}-\mu_k}{\sigma_k}$ \Rightarrow all eigenvalues of R are non-negative
- Diagonal elements=1 → tr(R)=p
- Can be diagonalized:

R=V*D*V' where D is the diagonal matrix

- d(1,1) –largest eig. value, d(p,p) the smallest one
- The meaning of V(i,k) contribution of the data type i to the k-th eigenvector
- tr(D)=p, the largest eigenvalue d(1,1) absorbs a fraction =d(1,1)/p of all correlations can be ~100%
- Scores: Y=Z*V: n x p matrix. Meaning of $Y(\alpha,k)$ participation of the sample # α in the k-th eigenvector

Distances: Euclidean: $\sqrt{\sum_i (x_i - y_i)^2}$; city block (Manhattan):

$$\sum_{i} |x_i - y_i|$$
; Canberra: $\sum_{i} (\frac{x_i - y_i}{x_i + y_i})$; correlation coefficient: $1 - \sum_{i} |x_i - y_i|$

$$\rho(x,y) = 1 - \frac{Cov(x,y)}{\sqrt{Var(x).Var(y)}}$$