Dr. Jürg M. Stettbacher

Neugutstrasse 54 CH-8600 Dübendorf

Telefon: +41 43 299 57 23 Email: dsp@stettbacher.ch

Übung

Digitaltechnik

Beantworten Sie die folgenden Aufgaben:

1. Beweisen Sie, dass: $A \oplus B = \overline{A} \cdot B + A \cdot \overline{B}$

2. Wandeln Sie die folgenden Ausdrücke so um, dass nur noch einzelne Variablen zu negieren sind. Vereinfachen Sie gleichzeitig, wo möglich und zeichnen Sie die Gatterschaltung dazu.

(a)
$$\overline{A \cdot C + B}$$

(b)
$$\overline{A + \overline{B} + \overline{A + B}}$$

3. Bilden Sie aus der folgenden Wahrheitstabl
le die disjunkive Normalform für q und vereinfachen Sie diese so weit wie möglich.

x	y	z	q
0	0	0	1
0	0	1	0
0	1	0	1
0	1	1	1
1	0	0	1
1	0	1	0
1	1	0	1
1	1	1	1

4. Stellen Sie die Wahrheitstabellen für die folgenden Booleschen Funktionen auf:

(a)
$$F_1 = \overline{A} \cdot B \cdot \overline{C} + A \cdot \overline{B} \cdot C + \overline{A} \cdot \overline{B} \cdot C$$

(b)
$$F_2 = A + B \cdot \overline{C}$$

5. Bestimmen Sie für die Funktionen f_1 und f_2 je den vereinfachten Booleschen Ausdruck. Verwenden Sie die beiden vorbereiteten Karnaugh Tafeln für das Vereinfachen.

a	b	c	f_1	f_2
0	0	0	1	0
0	0	1	0	1
0	1	0	1	1
0	1	1	0	1
1	0	0	0	0
1	0	1	0	1
1	1	0	1	1
1	1	1	1	1

f_1	b	b	$ \ \overline{b} $	\overline{b}
a				
\overline{a}				
	\bar{c}	c	c	\overline{c}

f_2	b	b	\overline{b}	\overline{b}
a				
\overline{a}				
	\overline{c}	c	c	\overline{c}

1. Beweisen Sie, dass: $A \oplus B = \overline{A} \cdot B + A \cdot \overline{B}$

A	Æ	B	T	A.B	D. 4	5.A+5.A	LAOR
0	1	0	1	0	0	0	0
1	0	0	1	0	1	1	1
0	1	1	0	1	O	1	1
1	U	1	0	0	0	O	0
	J						

2. Wandeln Sie die folgenden Ausdrücke so um, dass nur noch einzelne Variablen zu negieren sind. Vereinfachen Sie gleichzeitig, wo möglich und zeichnen Sie die Gatterschaltung dazu.

(a)
$$\overline{A \cdot C + B}$$

(b)
$$\overline{A + \overline{B} + \overline{A + B}}$$

$$\overrightarrow{A} + \overrightarrow{C} + \overrightarrow{C} = (\overrightarrow{A} + \overrightarrow{C}) \cdot \overrightarrow{C} = (\overrightarrow{A} + \overrightarrow{C}) \cdot \overrightarrow{C}$$

3. Bilden Sie aus der folgenden Wahrheitstablle die disjunkive Normalform für q und vereinfachen Sie diese so weit wie möglich.

x	y	z	q
0	0	0	1
0	0	1	0
0	1	0	1
0	1	1	1
1	0	0	1
1	0	1	0
1	1	0	1
1	1	1	1

4. Stellen Sie die Wahrheitstabellen für die folgenden Booleschen Funktionen auf:

(a)
$$F_1 = \overline{A} \cdot B \cdot \overline{C} + A \cdot \overline{B} \cdot C + \overline{A} \cdot \overline{B} \cdot C$$

(b)
$$F_2 = A + B \cdot \overline{C}$$

5. Bestimmen Sie für die Funktionen f_1 und f_2 je den vereinfachten Booleschen Ausdruck. Verwenden Sie die beiden vorbereiteten Karnaugh Tafeln für das Vereinfachen.

a	b	c	f_1	f_2
0	0	0	1	0
0	0	1	0	1
0	1	0	1	1
0	1	1	0	1
1	0	0	0	0
1	0	1	0	1
1	1	0	1	1
1	1	1	1	1

f_1	b	b	\overline{b}	\overline{b}
a				
\overline{a}				
	\overline{c}	c	c	\overline{c}

f_2	b	b	\overline{b}	\overline{b}
a				
\overline{a}				
	\overline{c}	c	c	\overline{c}