

vec	in basis	ind	ord	min polynomial
(0,0)	0			x
(0,1)	1	α^8	1	x+2
(1,0)	α	α^1	8	$x^2 + x + 2$
(1,1)	$\alpha + 1$	α^7	8	$x^2 + 2x + 2$
(0,2)	2	α^4	2	x+1
(2,0)	2α	α^5	8	$x^2 + x + 1$
(1,2)	a+2	α^6	4	$x^2 + 1$
(2,1)	$2\alpha + 1$	α^2	4	$x^2 + 1$
(2,2)	$2\alpha + 2$	α^3	8	$x^2 + x + 2$

1.
$$x^9 - x = x^9 + 2x = x^{3^2} + 2x = x(x+2)(x^2+1)(x^2+x+2)(x^2+2x+2)(x^3+x+1)$$

- 2. F_{p^n} розширення полінома $g(x)=x^{p^n}-x$. Будь-який нормований незвідний поліном степеня n ділить g. Отже $[F_{p^n}:F_p]$ і більше розширень немає. Отже кожен незвідний поліном, що ділить g має бути степеня n або 1. Так як кожен лінійний поліном над F_p ділить g і g має корені, ми маємо p різних поліномів що ділять g. Якщо перемножити усі незвідні нормовані поліноми що ділять g ми отримаємо g і сума їх степенів буде дорівнювати p^n . Позначимо кількість незвідних нормованих поліномів степеня n як m і отримаємо $mn+p=p^n$. Отже $m=\frac{p^n-p}{n}$. Існує $m=\frac{3^7-3}{7}=312$ незвідних нормованих поліномів степіня 7.
- 3. Переберемо можливі значення у $F_4(\{0,1,\beta,\beta+1\})$:

$$0: \ 0^2 + 0 \cdot \beta + 1 = 1 \neq 0$$

1:
$$1^2 + 1 \cdot \beta + 1 = \beta \neq 0$$

$$\beta: \beta^2 + \beta^2 + 1 = 1 \neq 0$$

$$\beta + 1: \beta^2 + 2\beta + 1 + \beta^2 + \beta + 1 = \beta \neq 0$$

Отже поліном $x^2 + \beta x + 1$ мав би корені, якби $\beta = 0$, але воно таким не ϵ , адже це корінь $x^2 + x + 1$ над F_2 . Поліном $x^2 + \beta x + 1$ незвідний над F_4 .