哈密尔顿图的充分且/或必要条件 问题求解(三)第3周Open Topic

黄文睿 221180115

南京大学

主要内容

- 1 哈密尔顿图与独立集
- 2 Rahman & Kaykobad

在 Anatoly D.Plotnikov 的一篇论文^[1]中给出了判断一个图是否是哈密尔顿图的一个充要条件。他提出了利用图的独立集的性质来判断哈密尔顿图。

^[1]Anatoly Plotnikov. One criterion of existence of a hamiltonian cycle. Reliable Computing, pages 199–202, 01 1998

Def 1.(k-连通图)

对于 $G = \langle V, E \rangle$, 若 $|V| \ge k+1$ 且对任意 $V' \subseteq V$ 且 $|V'| \le k-1$, G-V' 仍连通,则称 G 是 k-连通图。

1 1-连通图: 即非平凡的连通图。

2 2-连通图:不含割点的连通图。

Theorem 1.

图 G 是哈密尔顿图的必要条件是 G 是 2-连通图。

但这不是充要条件,比如 ⊖ 图。

 Θ 图: 两个度数至少为 3 的点,之间通过至少三条路径相连,每条路径长度至少为 2。若每条路径长度恰为 2,则称为简化 Θ 图。

图: Θ 图和简化 Θ 图

Theorem 2.

一个 2-连通图是非哈密尔顿图的必要条件是有 Θ 图作为它的子图。

黄文容 221180115

Theorem 2. 解释

设 G 是一个 2-连通图且不是哈密尔顿图,则 G 中最长圈 L 的长度小于 v(G),由于 G 连通,故存在 $(u,v) \in E$ 满足 $u \in L$ 且 $v \in L$ 。设 u' 和 u'' 是 L 上与 u 相邻的两点,容易知道 u' 和 u'' 与 v 之间均没有边相邻(否则可以把 v 放进去获得一个更大的圈)。由于 G 双连通,删去 G 后 v 也应该与 L 上其他点连通,故存在 $w \in L$ 是 v 到 L 上某一条路径的第一个在 L 上的点,则如图,已然形成 Θ 图。

Theorem 3.

任何是 2-连通图的非哈密尔顿图都可以收缩成 Θ 图(进一步可以收缩为简化 Θ 图)

证明略,见论文[2]。

 $[\]sp[2]$ Cornelis Hoede and Henk Jan Veldman. On characterization of hamiltonian graphs.

Journal of Combinatorial Theory, Series B, 25(1):47-53, 1978

Def 2.

图 G 的独立集是点集 $X \subseteq V$ 满足 G[X] 是空图。称点集 $S(X) \subseteq V$ 是独立集 X 的一个分割 (seperating X), 当且仅当 $S(X) \cap X = \emptyset$ 且在 G - S(X) 中 X 中任意两点不连通。

图: 独立集与分割

Theorem 4.

图 G 是哈密尔顿图的充要条件是对于 G 任意的独立集 X, 对其任何一个分割 $\mathcal{S}(X)$ 都有 $|X| \leq |\mathcal{S}(X)|$ 。

必要性

必要性(图解)

任取一个 G 的独立集 X,设它的最小分割是 $\hat{\mathcal{S}}(X)$ 。用反证法,设 $|X|>|\hat{\mathcal{S}}(X)|$ 。在哈密尔顿圈中看这些点,由于每个点都在圈上,故 X 均在圈上。为了把圈上相邻的 X 点分开,在每两个 X 点之间必须插入至少一个 $\hat{\mathcal{S}}(X)$ 点,故 $|\hat{\mathcal{S}}(X)|$ 至少需要 $\geq |X|$,与假设矛盾。必要性成立。

充分性

若对 G 的任意独立集 X 及其任何一个分割 $\mathcal{S}(X)$ 都有 $|X| \leq |\mathcal{S}(X)|$,假设 G 不是哈密尔顿图。分以下三种情况:

- 且 若 X 不连通,则在两个连通分支中选择两个 X,而 $\mathcal{S}(X)$ 可以为空,则 $2=|X|\leq |\mathcal{S}(X)|=0$,不满足前提条件。
- 2 若 X 连通但有割点 v,则在 G-v 的两个连通分支中选择两个 X,选择 $\mathcal{S}(X)=\{v\}$,则 $2=|X|\leq |\mathcal{S}(X)|=1$,不满足前提条件。
- ③ 则 X 是 2-连通图且不是哈密尔顿图,则 X 必然可以归约 到 Θ 图(进而可以归约到简化 Θ 图),而在简化 Θ 图中可以如图选择 |X|=3 但 $|\mathcal{S}(X)|=2$,同样可以对应到到原图中,与假设矛盾。

充分性(图)

主要内容

- 1 哈密尔顿图与独立集
- 2 Rahman & Kaykobad

在 M.Sohel Rahman 和 M.Kaykobad 的一篇论文^[3]中,提到了如下结论:

Theorem 5.

若 $G = \langle V, E \rangle$ 是一个 n 阶连通图, P 是图中的最长路, 长度为 k, 端点为 u 和 v。用 $\delta(u,v)$ 表示 u 和 v 之间的距离。则:

- 1 若 $\delta(u,v)=1$,则 P 是一条在哈密尔顿圈中的哈密尔顿路;
- 2 若 $\delta(u,v) \ge 3$, 则 $d_P(u) + d_P(v) \le k \delta(u,v) + 2$ 。 [4]
- ③ 若 $\delta(u,v)=2$,则要么 $d_P(u)+d_P(v)\leq k$,要么 P 是一条在哈密尔顿圈中的哈密尔顿路。

^[3] M Sohel Rahman and Mohammad Kaykobad. On hamiltonian cycles and hamiltonian paths.

Information Processing Letters, 94(1):37-41, 2005

^[4]用 $d_G(u)$ 表示在图 G 中 u 的度数。

Lemma 1.

若 P 被包含在某个圈 C 内,则 P 是一条哈密尔顿路,G 是哈密尔顿图。

Lemma 1. 证明

首先,易知 V[P] = V[C],否则 P 显然可以变得更长。设 $P = \langle u = u_0, u_1, u_2, \cdots, u_k = v \rangle$,则 $C = \langle u = u_0, u_1, u_2, \cdots, u_k, u_0 = u \rangle$,假设 P 不为哈密尔顿路,则 k < n - 1,由于 G 是连通图,存在 $(x,y) \in E$ 满足 $x \in V[P]$ 且 $y \in V[G - P]$,设 $x = u_i$,则有一条长度为 k + 1 的路径 $P' = \langle y, x = u_i, u_{i+1}, \cdots, u_k, u_0, \cdots, u_{i-1} \rangle$,矛盾。故 P 是哈密尔顿路,G 是哈密尔顿图。

Theorem 5. 证明

- 1 当 $\delta(u,v)=1$,则 C=P+(u,v)是一个包含 P 的圈,由 Lemma 1. 得证。
- 2 当 $\delta(u,v) \geq 3$ 时,设与 u 相邻的顶点集为 $N_P(u)$,与 v 相邻的顶点集为 $N_P(v)$,可知 $\forall x \in N_P(u), y \in N_P(v)$,满足 $\delta(x,y) \geq \delta(u,v) 2$ 。容易知道

$$|N_P(u)| + |N_P(v)| + \delta(x, y) \le k,$$

故

$$d_P(u) + d_P(v) \le k - \delta(u, v) + 2.$$

Theorem 5. (2) 图

Theorem 5. 证明(续)

若
$$\delta(u,v)=2$$
,且 $d_P(u)+d_P(v)\geq k+1=|V[P]|$,把 P 写成 $P=\langle v=w_1,w_2,\cdots,w_{|V[P]|-1},w_{|V[P]|}=u\rangle$ 。若有两条交叉的边 (v,w_{i+1}) 和 (w_i,u) ,这样可以构造出一个环 $C=\langle w_1,w_{i+1},w_{i+2},\cdots,w_{|V[P]-1|},w_{|V[P]|},w_i,w_{i-1},\cdots,w_2,w_1\rangle$,于是由引理 1 得证。是否存在这样的 i 呢?设 $S=\{i:(v,w_{i+1})\in E\},T=\{i:(w_i,u)\in E\}$,可知

故

$$|S \cap T| = |S| + |T| - |S \cup T|$$

$$\geq d_P(u) + d_P(v) - (|V[P]| - 1)$$

$$\geq |V[P]| - (|V[P]| - 1)$$
=1

 $|S| = d_P(u), |T| = d_P(v), |S \cup T| < |V[P]| - 1,$

Theorem 6.

若 $G = \langle V, E \rangle$ 是一个 n 阶连通图,且对于所有不相邻的两点 $u, v \in V$,有 $d(u) + d(v) + \delta(u, v) \geq n + 1$,则 G 有哈密尔顿路。

证明略。

References

- 1 Anatoly Plotnikov. One criterion of existence of a hamiltonian cycle.
 - Reliable Computing, pages 199–202, 01 1998
- Cornelis Hoede and Henk Jan Veldman. On characterization of hamiltonian graphs. Journal of Combinatorial Theory, Series B, 25(1):47–53, 1978
- M Sohel Rahman and Mohammad Kaykobad. On hamiltonian cycles and hamiltonian paths.
 Information Processing Letters, 94(1):37–41, 2005

谢谢大家!

黄文容 221180115