课程回顾

■动态规划问题:最长公共子序列LCS、最优二 叉搜索树、0-1背包

第4章 贪心算法

苏州大学 计算机科学与技术学院 汪笑宇

Email: xywang21@suda.edu.cn

引入

贪婪,我找不到一个更好的词来描述它,它就是好!它就是对!它就是对!它就是有效!

——影片《华尔街》 美国演员迈克尔.道格拉斯

本章内容

■贪心算法(教材Chapter 16)

- ▶活动选择问题
- ▶贪心算法原理
- ▶分数背包问题
- ➤Huffman编码
- ≻拟阵
- ▶其他应用

贪心算法求解实例

■最优解:

- ▶调度问题
 - 活动选择问题(教材Chapter 16.1)
 - 任务调度问题(教材Chapter 16.5)
- ▶图算法
 - 最小生成树(教材Chapter 23)
 - 单源点最短路径Dijkstra算法(教材Chapter 24.3)
- ▶其他: Huffman编码(教材Chapter 16.3)

■近似解:

- ▶旅行商问题TSP(教材Chapter 35.2)
- ▶集合覆盖问题(教材Chapter 35.3)
- ▶子集和问题(教材Chapter 35.5)

启发式算法 (Heuristic algorithms)

- ■In mathematical programming, a heuristic algorithm is a procedure that determines near-optimal solutions to an optimization problem. However, this is achieved by trading optimality, completeness, accuracy, or precision for speed. Nevertheless, heuristics is a widely used technique for a variety of reasons:
 - ➤ Problems that do not have an exact solution or for which the formulation is unknown
 - The computation of a problem is computationally intensive
 - Calculation of bounds on the optimal solution in branch and bound solution processes

来源: https://optimization.cbe.cornell.edu/index.php?title=Heuristic_algorithms

贪心算法概述

- ■求最优解的问题可看作是通过一系列步骤,每一步有一个选择的集合,对于较简单的问题,动态规划显得过于复杂,可用较简单有效的算法求解
- ■贪心算法总是在当前步骤上选取最好的方案,即它是一种局部最优的选择,并希望它导致一个全局最优,但有时(或者是大部分)不可能导致全局最优
 - $ightharpoonup 例: <math>\bar{x}v_i$ 到 v_j 的一条最短路径,若贪心地从 v_i 到最近距离点 v_k ,未必包含在 v_i 到 v_j 的最短路径中
- ■但仍有许多问题贪心法将产生全局最优解,如最小 生成树MST、单源最短路径等

- ■一般来说, 贪心算法可解的问题有如下特性:
 - 1. 优化问题,有一个候选对象集合,如零钱、边(Kruskal)、路径(Dijkstra)、顶点(Prim)等
 - 2. 随着算法的进行,累积形成两个集合,一个是已经被选中的对象集合,另一个是被抛弃的对象集合
 - 3. 函数1 (solution function): 检查候选对象集合是否提供了问题的解,不考虑此时的解决方法是否最优
 - 4. 函数2: 检查候选对象是否可加入到当前解的对象集合中(可行的, feasible),不考虑解决方法的最优性
 - 5. 选择函数:指出哪个剩余的候选对象(没有被选择过也 没有被丢弃过)最有可能构成问题的解
 - 6. 目标函数:给出解的值。如零钱个数,路径长度,顶点 个数等

■贪心算法一般形式

```
GREEDY(C) // C是候选对象集合
1 S \leftarrow \emptyset // 在集合S中构造解
2 while C \neq \emptyset and not solution(S) do
3 x \leftarrow \text{select}(C)
4 C \leftarrow C \setminus \{x\}
5 if feasible(S \cup \{x\})
6 S \leftarrow S \cup \{x\}
7 if solution(S)
8 return S
9 else return "No solution"
```

■例:找零问题(作业3第4题)设数组A[1..n]中的元素表示n个零钱面值,需寻找可找开某个金额M的最少零钱数量,及相应找零方案

```
CHANGE_GREEDY(A, M)

1 S \leftarrow \emptyset; s \leftarrow 0 // S为解中包含的零钱集合,s为S中零钱面值之和

2 while s \neq M do

3 x \leftarrow 使得s+x不超过M的最大零钱面值

4 if 找不到这样的面值

5 error "无法找开"

6 else S \leftarrow S \cup 一个x面值的零钱

7 s \leftarrow s + x

8 return S
```

贪心算法得到的是否是最优解? 在正常的货币系统下是最优解,但零钱面值任意指定时不一定最优

■找零问题特性:

- 1. 找最少零钱数,候选对象集为面值在A[1..n]中的零钱
- 2. 选择的零钱集合和未被选的零钱集合
- 3. 判断解函数,检查目前已选零钱集合中的金额是否等于要找的钱数
- 4. 如果集合中零钱面额不超过应找金额,则该集合是可 行的
- 5. 选择函数,从未选零钱集合中找面值最大的零钱
- 6. 目标函数, 计算零钱数目

贪心算法内容

- ■活动选择问题
- ■贪心算法原理
- ■分数背包问题
- ■Huffman编码
- ■拟阵
- ■其他应用

活动选择问题

- ■多个活动竞争资源的调度问题:尽可能多地选择互 不冲突的活动
- ■设有n个活动(activity) $S=\{a_1, a_2, ..., a_n\}$,均要使用某资源(如教室),该资源使用方式为独占式,一次只供一个活动使用
 - \blacktriangleright 每个活动 a_i 发生的时间为 $[s_i, f_i), 0 \le s_i < f_i < \infty$
 - 》两活动 a_i , a_j 兼容(compatible不冲突): $[s_i, f_i)$, $[s_j, f_j)$ 不重叠,满足 $s_i \ge f_j$ 或 $s_j \ge f_i$,即:一活动的开始时间大于等于另一活动的完成时间
 - ▶活动选择问题:选择最多的互不冲突的活动,使<mark>兼容活动</mark> 集合最大,即求解 $A\subseteq S$,A中活动互不冲突且|A|最大

■假定活动已按结束时间单调递增顺序排序

i	1	2	3	4	5	6	7	8	9	10	11
S_i	1	3	0	5	3	5	6	8	8	2	12
f_i	4	5	6	7	8	9	10	11	12	13	14

>问题的解: $A_1 = \{a_3, a_9, a_{11}\}, A_2 = \{a_1, a_4, a_8, a_{11}\}, A_3 = \{a_2, a_4, a_9, a_{11}\}$

▶最优解: A_2 和 A_3

■此问题可用迭代方法直接给出贪心算法,但为比较和动态规划关系,以下先考虑动态规划解法

1. 活动选择问题的最优子结构

- $\gt S_{ij}$: 在 a_i 结束之后开始且在 a_j 开始之前结束的活动集合 $S_{ij} = \{a_k \in S: f_i \leq s_k < f_k \leq s_j\}$
- $ightharpoonup A_{ij}$: S_{ij} 的一个最大相互兼容的活动子集,包含活动 a_k (A_{ij} 是 S_{ij} 问题的最优解)
- ▶问题分解:

 S_{ik} 中最大兼容活动子集 + S_{kj} 中最大兼容活动子集 $A_{ij} = A_{ik} \cup \{a_k\} \cup A_{kj}$ (剪切-粘贴及反证法证明)

2. 递归解

- ightharpoonup c[i,j]: a_{a_i} 结束之后开始且 a_{ij} 开始之前结束的活动集合 a_{ij} 的一个最大相互兼容的活动子集的大小,即 $c[i,j] = |A_{ij}|$
- \blacktriangleright 若 $a_k \in A_{ij}$,则有c[i,j] = c[i,k] + c[k,j] + 1
- ▶总体递归式:

$$c[i,j] = \begin{cases} 0, & S_{ij} = \emptyset, \\ \max_{a_k \in S_{ij}} \{c[i,k] + c[k,j] + 1\}, & S_{ij} \neq \emptyset. \end{cases}$$

动态规划求解算法留作作业(练习16.1-1)

- ▶直观上,我们应该选择这样一个活动,选出它后剩下的资源应能被尽量多的其他任务所用
- ▶每次选择候选集中最早结束的活动
- **定理16.1** 考虑任意非空子问题 S_{ij} ,令 a_m 是 S_{ij} 中结束时间最早的活动,即: $f_m = \min\{f_k: a_k \in S_{ij}\}$,则
 - 1. a_m 在 S_{ij} 的某个最大兼容活动子集中
 - 2. 子问题 S_{im} 的解是空集

- **定理16.1** 考虑任意非空子问题 S_{ij} ,令 a_m 是 S_{ij} 中结束时间最早的活动,即: $f_m = \min\{f_k: a_k \in S_{ij}\}$,则
 - 1. a_m 在 S_{ij} 的某个最大兼容活动子集中
 - 2. 子问题 S_{im} 的解是空集
- 》证明: (第2部分,反证法)假定 S_{im} 的解非空,则存在 $a_k \in S_{im}$,使得 $f_i \leq s_k < f_k \leq s_m$ 。由此得到 $a_k \in S_{ij}$ 的完成时间先于 a_m ,与 a_m 是 S_{ii} 最早完成的活动矛盾

- \triangleright **定理16.1** 考虑任意非空子问题 S_{ii} ,令 a_m 是 S_{ii} 中结束 时间最早的活动,即: $f_m = \min\{f_k: a_k \in S_{ii}\}$,则
 - 1. a_m 在 S_{ii} 的某个最大兼容活动子集中
 - 2. 子问题 S_{im} 的解是空集
- \triangleright 证明: (第1部分)设 A_{ij} 是 S_{ij} 的某个最优解,假设 A_{ij} 中的活动已按完成时间单调递增排序,且 a_k 是 A_{ij} 中最 早结束的活动:
 - 1、若 $a_k=a_m$,则问题已得证,即最优解包含 a_m ;
 - 2、若 $a_k \neq a_m$,构造子集 $A'_{ij} = (A_{ij} \{a_k\}) \cup \{a_m\}$,即将 最优解中的 a_k 替换为 a_m ,则需证明 A_{ii} 也是最优解 因为 $f_m \leq f_k$,因此 A'_{ij} 中的活动也不冲突,且 $|A'_{ij}| = |A_{ij}|$ A_{ij} 也是 S_{ij} 的一个最优解,包含 a_m

- ightharpoonup 动态规划求解时,原问题 S_{ij} 可分解为两个子问题 S_{ik} 和 S_{kj} 求解,且这种分解有 $|S_{ij}|$ 种可能
- ▶定理16.1可简化问题求解过程:
 - 求 S_{ii} 最优解时只用到一个子问题,另一个子问题为空
 - 只需考虑一种选择,即选择 S_{ii} 中最早完成的活动
- ▶定理16.1可以自顶向下的方式解每一个子问题

3. 贪心算法

- \triangleright 当某个 a_m 加入解集合后,我们总是在剩余活动中选择第一个不与 a_m 冲突的活动加入解集,该活动是能够最早完成且与 a_m 兼容的
- ▶这种选择为剩余活动的调度留下了尽可能多的机会,即:留出尽可能多的时间给剩余的尚未调度的活动,以使解集合中包含的活动最多

每次选一个最早完成并与刚加入解集元素兼容的活动

3. 贪心算法

➤例:

i	1	2	3	4	5	6	7	8	9	10	11
S_i	1	3	0	5	3	5	6	8	8	2	12
$ f_i $	4	5	6	7	8	9	10	11	12	13	14

- 1. 选择 a_1 ,则下一活动开始时间须大于等于4,排除 a_2 , a_3
- 2. 选择 a_4 ,则下一活动开始时间须大于等于7,排除 a_5 , a_6 , a_7
- 3. 选择 a_8 ,则下一活动开始时间须大于等于11,排除 a_9 , a_{10}
- 4. 选择 a_{11} ,则下一活动开始时间须大于等于14
- 5. 无可选活动,结束,解集为 $\{a_1, a_4, a_8, a_{11}\}$

4. 递归的贪心算法

 \rightarrow 输入: s[1..n]: 活动开始时间

f[0..n]: 活动结束时间

i,j: 子问题 S_{ij} 的下标

注:定义虚拟活动 a_0

结束时间为ƒ0

活动已按照结束时间

单调递增排序

 \triangleright 输出: S_{ii} 的最优解

```
RECURSIVE_ACTIVITY_SELECTOR(s, f, i, j)
```

- $1 m \leftarrow i + 1$
- 2 while $m \le j$ and s[m] < f[i] do // 将与 a_i 冲突的活动去掉
- $3 \quad m \leftarrow m + 1$
- 4 if $m \leq j$
- 5 **return** $\{a_m\} \cup RECURSIVE_ACTIVITY_SELECTOR(s, f, m, j)$
- 6 else return Ø

RECURSIVE_ACTIVITY_SELECTOR(s, f, 0, n)的运行时间为 $\Theta(n)$

5. 迭代贪心算法

- ➤RECURSIVE_ACTIVITY_SELECTOR几乎就是尾递归: 以一个对自身的递归调用再接一次并集操作结尾
- ▶尾递归过程改为迭代形式通常很直接,某些特定语言的编译器可以自动完成这一工作

```
GREEDY_ACTIVITY_SELECTOR(s, f)

1 n \leftarrow s.length

2 A \leftarrow \{a_1\}

3 k \leftarrow 1

4 \mathbf{for} \ m \leftarrow 2 \ \mathbf{to} \ n \ \mathbf{do}

5 \mathbf{if} \ s[m] \ge f[k]

6 A \leftarrow A \cup \{a_m\}

7 k \leftarrow m

8 \mathbf{return} \ A
```

时间复杂度: $\Theta(n)$ (已排序情况)

排序: $\Theta(n \lg n)$

算法正确性证明? 循环不变式及证明→定 理16.1证明→算法正确

贪心算法内容

- ■活动选择问题
- ■贪心算法原理
- ■分数背包问题
- ■Huffman编码
- ■拟阵
- ■其他应用

贪心算法原理

- ■贪心算法是通过做一系列选择来获得最优解,在每个决策点,都选择在当时看来最佳的选择,这种启发式策略并不保证总能产生最优解
- ■前述贪心算法的步骤
 - 1. 确定问题的最优子结构
 - 2. 给出递归解
 - 3. 证明在递归的每一步,有一个最优的选择是贪心的选择, 因此做出这种选择是安全的
 - 4. 证明除了贪心选择导出的子问题外,其余子问题都是空 集合
 - 5. 根据贪心策略写出递归算法
 - 6. 将递归算法转换为迭代算法

- ■上述步骤是以动态规划为基础的。实际上可改进它,重点关注贪心选择
- ■例:活动选择问题可改进为:
 - \triangleright 首先定义子问题 S_{ii} , i, j均可变
 - ightharpoonup如果我们总是做贪心选择,则子问题变为: $S_{i}=\{a_{k}\in S: f_{i}\leq s_{k}\}$ (只需考虑 S_{ij} 中i或j一端变化情况)
 - ightharpoonup证明一个贪心的选择(即选 S_i 中第一个完成的活动 a_m),和剩余子问题 S_m (与 a_m 兼容)的最优解结合,能产生 S_i 的最优解

- ■贪心算法的一般设计步骤
 - ▶将优化问题分解为做出一种选择及留下一个待解的子问题
 - ▶证明对于原问题总是存在一个最优解会做出贪心选择,从 而保证贪心选择是安全的
 - ▶验证当做出贪心选择之后,它和剩余的一个子问题的最优 解组合在一起,构成了原问题的最优解
- ■没有一般的方法说明贪心算法是否会解决一个特殊 的最优问题,但是有两个要素有助于使用贪心算法:
 - ▶贪心选择性质
 - ▶最优子结构

■贪心选择性质

- ▶贪心选择性质:一个全局最优解能够通过局部最优(贪心) 选择达到
- ▶贪心法总是在<mark>当前步骤上选择最优决策</mark>,然后解由此产生 的子问题
- ▶贪心选择只依赖了目前所做的选择,但不依赖于将来的选择及子问题的解
- ▶自顶向下,每做一次贪心选择,就将子问题变得更小
- ▶贪心算法一般总存在相应的动态规划解,但贪心法的效率 更高,原因:
 - 对输入做预处理
 - 使用合适的数据结构(如优先队列)

■最优子结构

- ightharpoonup和动态规划一样,该性质也是贪心算法的关键要素例:活动选择问题的动态规划解中: S_{ii} 的最优解 A_{ii} :若 $a_k \in A_{ii}$,则 A_{ii} 包含 S_{ik} 和 S_{ki} 的最优解
- ▶对贪心算法更直接

- ■贪心法与动态规划的比较
 - ▶相同点:两种方法都利用了最优子结构特征
 - ▶易错误处:
 - 当贪心算法满足全局最优时,可能我们试图使用动态规划求解,但前者更有效
 - 当事实上只有动态规划才能求解时,错误地使用了贪心算法
- ■为了说明两种技术的细微区别,我们研究一个经典最优化问题的两个变形:
 - ▶0-1背包问题(动态规划章节已讲述;教材p243)
 - >分数背包问题(每个物品可以拿取部分)

■两个背包问题都具有最优子结构!

▶0-1背包问题:

原问题的最优解:重量至多为W的最有价值的物品(取自n件物品)的装包方案,每个物品只能选择取或不取

<u>子问题</u>: 求解背包容量为j,可选物品编号为1, 2, ..., i时的0-1背包问题

子问题的最优解: 从原问题的最优解中去掉某物品j,则包中剩余物品应是除j外、取自原n-1件物品中最有价值、且总重不超过W-wj</sub>的若干物品

原问题的最优解也要求子问题的解最优

■两个背包问题都具有最优子结构!

▶分数背包问题:

原问题的最优解:重量至多为W的最有价值的物品(取自n件物品)的装包方案,每个物品可部分拿取

<u>子问题</u>: 求解背包容量为j,可选物品编号为1, 2, ..., i时的分数背包问题

子问题的最优解: 从背包中去掉包含物品j(可能是物品j的一部分),设其重量为w,则包中剩余物品应是除该部分之外、取自原n-1件物品以及物品j的 w_j -w部分中最有价值、且总重至多为W-w的若干物品

原问题的最优解也要求子问题的解最优

- ■求解0-1背包问题最优解只能使用动态规划
- ■求解分数背包问题最优解可使用贪心算法:
 - ▶将物品按照单位重量价值(v_i/w_i)排序
 - ▶每次取单位重量价值最大物品装包,直至背包装满或所有物品都考虑过为止

该朴素贪心算法若用于0-1背包问题, 所得的解任意差!

例:

	物品1	物品2			
重量 w_i	1	100			
价值v _i	2	199			
单位重量价值 v_i/w_i	2	1.99			
背包容量W	100				

只装入 物品1?

贪心算法内容

- ■活动选择问题
- ■贪心算法原理
- ■分数背包问题
- ■Huffman编码
- ■拟阵
- ■其他应用

贪心算法理论

- ■该理论可用来确定贪心算法生成最优解的情形
- ■用到了一种组合结构: Matroid (拟阵)
 - ▶该结构是Whitney于1935年在研究矩阵中线性无关结构时抽象出来的,由Korte于80年代初将该理论发展为贪心算法理论
- ■该理论覆盖了许多贪心算法的应用实例 (Kruskal、匈牙利算法等),但并未覆盖所有 情况(如活动选择问题、Huffman编码等),仍 在发展中

- ■一个拟阵是满足下列条件的有序对 $M = (S, \mathcal{I})$:
 - ▶S是一个有限集
 - $ightarrow \mathcal{I}$ 是S的子集的一个非空族,这些子集称为S的独立子集,使得若 $B \in \mathcal{I}$ 且 $A \subseteq B$,则 $A \in \mathcal{I}$ 。若 \mathcal{I} 满足此性质,则称之为遗传的,注意空集必然是 \mathcal{I} 的成员,即 $\emptyset \in \mathcal{I}$
 - ightharpoonup若 $A \in \mathcal{I}$ 、 $B \in \mathcal{I}$ 且|A| < |B|,那么存在某个元素 $x \in B A$,使得 $A \cup \{x\} \in \mathcal{I}$,则称M满足交换性质

- ■拟阵 $M = (S, \mathcal{I})$:
 - ▶S有穷非空
 - ▶集合族工满足遗传性,即某子集是独立子集,则该独立子集的子集也是独立子集
 - $\triangleright M$ 满足交换性质,即可扩展

■例: $M = (S, \mathcal{I})$

▶矩阵拟阵: *S*的元素是矩阵的行,若行的子集线性无 关则该子集独立

$$A = \left[\begin{array}{ccccc} 1 & 2 & 3 & 4 & 5 \\ 2 & 4 & 6 & 8 & 10 \\ 1 & 3 & 5 & 7 & 9 \end{array} \right]$$

$$S = \{[1, 2, 3, 4, 5], [2, 4, 6, 8, 10], [1, 3, 5, 7, 9]\}$$

$$\mathcal{I} = \{\emptyset, \{[1, 2, 3, 4, 5]\}, \{[2, 4, 6, 8, 10]\}, \{[1, 3, 5, 7, 9]\}, \{[1, 2, 3, 4, 5], [1, 3, 5, 7, 9]\}, \{[2, 4, 6, 8, 10], [1, 3, 5, 7, 9]\}\}$$

- ■例: $M = (S, \mathcal{I})$
 - \triangleright 无向图G = (V, E)的图拟阵: $M_G = (S_G, \mathcal{I}_G)$
 - S_G 是G的边集,即 $S_G = E$
 - 设A是E的子集, $A \in \mathcal{I}_G$ 当且仅当 A无回路 即: 边集A独立 当且仅当 子图 $G_A = (V, A)$ 形成森林

 M_G 与最小生成树问题MST紧密相关