

Regression Model to Predict Cement Compressive Strength

Compressive strength cement at 7 and 28 day

import library import pandas as pd import numpy as np

 ${\tt cement = pd.read_csv('https://github.com/ybifoundation/Dataset/raw/main/Concrete \%20 Compressive \%20 Strength.csv')}$

view data cement.head()

	Cement (kg in a m^3 mixture)	Blast Furnace Slag (kg in a m^3 mixture)	Fly Ash (kg in a m^3 mixture)	m^3	Superplasticizer (kg in a m^3 mixture)	Coarse Aggregate (kg in a m^3 mixture)	Fine Aggregate (kg in a m^3 mixture)
0	540.0	0.0	0.0	162.0	2.5	1040.0	676.0
1	540.0	0.0	0.0	162.0	2.5	1055.0	676.0
2	332.5	142.5	0.0	228.0	0.0	932.0	594.0
4							+

info of data cement.info()

> <class 'pandas.core.frame.DataFrame'> RangeIndex: 1030 entries, 0 to 1029 Data columns (total 9 columns):

	columns (cocal s columns).		
#	Column	Non-Null Count	Dtype
0	Cement (kg in a m^3 mixture)	1030 non-null	float64
1	Blast Furnace Slag (kg in a m^3 mixture)	1030 non-null	float64
2	Fly Ash (kg in a m^3 mixture)	1030 non-null	float64
3	Water (kg in a m^3 mixture)	1030 non-null	float64
4	Superplasticizer (kg in a m^3 mixture)	1030 non-null	float64
5	Coarse Aggregate (kg in a m^3 mixture)	1030 non-null	float64
6	Fine Aggregate (kg in a m^3 mixture)	1030 non-null	float64
7	Age (day)	1030 non-null	int64
8	Concrete Compressive Strength(MPa, megapascals)	1030 non-null	float64
dtvn	es: float64(8) int64(1)		

dtypes: float64(8), int64(1) memory usage: 72.5 KB

summary statistics cement.describe()

	Cement (kg in a m^3 mixture)	Blast Furnace Slag (kg in a m^3 mixture)	Fly Ash (kg in a m^3 mixture)	Water (kg in a m^3 mixture)	Superplasticizer (kg in a m^3 mixture)	Co Aggre (kg mixt
count	1030.000000	1030.000000	1030.000000	1030.000000	1030.000000	1030.00
mean	281.165631	73.895485	54.187136	181.566359	6.203112	972.91
std	104.507142	86.279104	63.996469	21.355567	5.973492	77.75
min	102.000000	0.000000	0.000000	121.750000	0.000000	801.00
25%	192.375000	0.000000	0.000000	164.900000	0.000000	932.00
50%	272.900000	22.000000	0.000000	185.000000	6.350000	968.00
75%	350.000000	142.950000	118.270000	192.000000	10.160000	1029.40

check for missing value
cement.isna().sum()

```
Cement (kg in a m^3 mixture) 0
Blast Furnace Slag (kg in a m^3 mixture) 0
Fly Ash (kg in a m^3 mixture) 0
Water (kg in a m^3 mixture) 0
Superplasticizer (kg in a m^3 mixture) 0
Coarse Aggregate (kg in a m^3 mixture) 0
Fine Aggregate (kg in a m^3 mixture) 0
Age (day) 0
Concrete Compressive Strength(MPa, megapascals) 0
dtype: int64
```

check for categories
cement.nunique()

Cement (kg in a m^3 mixture)	280	
Blast Furnace Slag (kg in a m^3 mixture)		
Fly Ash (kg in a m^3 mixture)		
Water (kg in a m^3 mixture)		
Superplasticizer (kg in a m^3 mixture)	155	
Coarse Aggregate (kg in a m^3 mixture)	284	
Fine Aggregate (kg in a m^3 mixture)		
Age (day)		
Concrete Compressive Strength(MPa, megapascals)		
dtype: int64		

visualize pairplot
import seaborn as sns
sns.pairplot(cement)

```
<seaborn.axisgrid.PairGrid at 0x7f94aa17f640>
# columns name
cement.columns
     Index(['Cement (kg in a m^3 mixture)',
             'Blast Furnace Slag (kg in a m^3 mixture)',
            'Fly Ash (kg in a m^3 mixture)', 'Water (kg in a m^3 mixture)',
             'Superplasticizer (kg in a m^3 mixture)',
            'Coarse Aggregate (kg in a m^3 mixture)'
            'Fine Aggregate (kg in a m^3 mixture)', 'Age (day)',
            'Concrete Compressive Strength(MPa, megapascals) '],
           dtype='object')
# define y
y=cement['Concrete Compressive Strength(MPa, megapascals) ']
# define X
X=cement[['Cement (kg in a m^3 mixture)',
'Blast Furnace Slag (kg in a m^3 mixture)',
'Fly Ash (kg in a m^3 mixture)', 'Water (kg in a m^3 mixture)',
'Superplasticizer (kg in a m^3 mixture)',
'Coarse Aggregate (kg in a m^3 mixture)',
'Fine Aggregate (kg in a m^3 mixture)', 'Age (day)']]
# split data
from sklearn.model_selection import train_test_split
X_train,X_test,y_train,y_test=train_test_split(X,y,train_size=0.7,random_state=2559)
# verify shape
X_{\text{train.shape}}, X_{\text{test.shape}}, y_{\text{train.shape}}, y_{\text{test.shape}}
     ((721, 8), (309, 8), (721,), (309,))
# select model
from sklearn.linear_model import LinearRegression
model=LinearRegression()
# train model
model.fit(X_train,y_train)
     LinearRegression()
# predict with model
y pred=model.predict(X test)
```

array([36.76078368])

```
# model evaluation
from \ \ sklearn.metrics \ \ import \ \ mean\_absolute\_error, mean\_absolute\_percentage\_error, mean\_squared\_error, mean\_square
# model MAE
mean_absolute_error(y_test,y_pred)
                   7.814891951068712
# model MAPE
mean_absolute_percentage_error(y_test,y_pred)
                   0.28040027489426594
# model MSE
mean_squared_error(y_test,y_pred)
                  102.62674212692517
# future prediction
X.sample()
                                                                                         Blast
                                                                                                                                                                                                                                                                          Coarse
                                                                                                                                                                                                                                                                                                                          Fin
                                                Cement
                                                                                                                      Fly Ash
                                                                                                                                                                 Water
                                                                                                                                                                                            Superplasticizer Aggregate Aggregat
                                                                                 Furnace
                                                                                                                   (kg in a
                                                                                                                                                       (kg in a
                                          (kg in a
                                                                             Slag (kg
                                                                                                                                                                                                           (kg in a m^3
                                                                                                                                                                                                                                                                  (kg in a
                                                                                                                                                                                                                                                                                                           (kg in
                                                          m^3
                                                                                                                                   m^3
                                                                                                                                                                         m^3
                                                                                                                                                                                                                          mixture)
                                                                             in a m^3
                                                                                                                                                                                                                                                                                    m^3
                                                                                                                                                                                                                                                                                                                              m^
# define X_new
X_new=X.sample()
X_new
                                                                                         Blast
                                                                                                                                                                                                                                                                          Coarse
                                                                                                                                                                                                                                                                                                                         Fin
                                                                                                                      Fly Ash
                                                Cement
                                                                                                                                                                  Water
                                                                                 Furnace
                                                                                                                                                                                            Superplasticizer Aggregate
                                                                                                                                                                                                                                                                                                      Aggregat
                                          (kg in a
                                                                                                                   (kg in a
                                                                                                                                                       (kg in a
                                                                                                                                                                                                          (kg in a m^3
                                                                             Slag (kg
                                                                                                                                                                                                                                                                  (kg in a
                                                                                                                                                                                                                                                                                                           (kg in
                                                           m^3
                                                                                                                                    m^3
                                                                                                                                                                         m^3
                                                                                                                                                                                                                         mixture)
                                                                              in a m^3
                                                                                                                                                                                                                                                                                     m^3
# predict for X_new
model.predict(X_new)
```