1. Select a problem or business issue to apply your market segmentation to. This may be a particular brand, a category of products or services, or a particular industry that you create the market segmentation for. Be sure to state your business problem.

I performed an entertainment market segmentation utilizing Simmons' National Consumer Survey. My primary variables are all psychographic questions addressing the population that are early technology adaptors who spend their money and time on the latest video games.

BUSINESS PROBLEM: I was recruited by XBOX to see where they should target an advertising campaign for the forethcoming release of their newest XBOX gaming system.

2. Select your target population that you are going to segment. Many times this just turns out to be the U.S. adult population 18 years of age or older (the entire NCS data set). Other times it might be something different such as adults aged 18-24 years or women 18-49 or people with digital tablets or frequent movie goers or tequila drinkers – the list is pretty endless. If you are feeling adventurous, you might take on a trend analysis in addition to your market segmentation – I am providing you with all four quarters of 2012 NCS data. Be sure to tell me what your target population is and why you picked it.

The target population will be the entire NCS data set (25000) because there are so many different genres and modes of enjoying video games being introduced. Additionally, purchasers of video games and cutting edge technology are often parents/guardians of the end users, so there is no upper bound to the age range.

3. Clean and prepare the variables you are going to use in your segmentation system. HOW ADD THE DRIVER (OTHER 2 VARS TO THE EQUATION) - This includes both driver variables in the statistical procedures as well profile variables. Please produce a frequency listing of all the variables you are using for the analysis so that I can see that the data are clean.

top_graphics_agree_alot	Frequency	Percent		Cumulative Percent
0	25065	98.05	25065	98.05
1	499	1.95	25564	100.00

top_graphics_agree_alittle	Frequency	Percent		Cumulative Percent
0	24940	97.56	24940	97.56
1	624	2.44	25564	100.00

top_graphics_neither	Frequency		Cumulative Frequency	
0	23860	93.33	23860	93.33
1	1704	6.67	25564	100.00

			Cumulative	Cumulative
top_graphics_disagree_alittle	Frequency	Percent	Frequency	Percent
0	24840	97.17	24840	97.17
1	724	2.83	25564	100.00

top_graphics_disagree_alot	Frequency	Percent		Cumulative Percent
0	22802	89.20	22802	89.20
1	2762	10.80	25564	100.00

topgraphics	Eroguonov	Doroont	Cumulative Frequency	Cumulative Percent		
topyrapines			rrequency	I GICGIII		
1	2762	43.75	2762	43.75		
2	724	11.47	3486	55.22		
3	1704	26.99	5190	82.21		
4	624	9.88	5814	92.10		
5	499	7.90	6313	100.00		
	Frequency Missing = 19251					

Cumulative Cumulative spendmoney Frequency Percent Frequency Percent 3426 54.13 3426 54.13 1 2 737 11.64 4163 65.78 3 868 13.71 5031 79.49 89.95 4 662 10.46 5693 5 636 10.05 6329 100.00 Frequency Missing = 19235

			Cumulative	Cumulative	
spendtime	Frequency	Percent	Frequency	Percent	
1	3571	56.34	3571	56.34	
2	861	13.58	4432	69.93	
3	814	12.84	5246	82.77	
4	522	8.24	5768	91.01	
5	570	8.99	6338	100.00	
Frequency Missing = 19226					

				Cumulative
mainent	Frequency	Percent	Frequency	Percent
1	3410	53.43	3410	53.43
2	826	12.94	4236	66.37
3	811	12.71	5047	79.08
4	734	11.50	5781	90.58
5	601	9.42	6382	100.00
	Freque	ncy Missi	ng = 19182	

			Cumulative	Cumulative
first	Frequency	Percent	Frequency	Percent
1	10617	43.86	10617	43.86
2	4876	20.15	15493	64.01
3	5846	24.15	21339	88.16
4	2015	8.33	23354	96.49
5	850	3.51	24204	100.00
	Fren	Hency Mi	ssing = 1360	

Frequency	Missing = 1360
	C

				Cumulative			
pay	Frequency	Percent	Frequency	Percent			
1	12102	50.17	12102	50.17			
2	4323	17.92	16425	68.09			
3	4966	20.59	21391	88.68			
4	1838	7.62	23229	96.30			
5	892	3.70	24121	100.00			
	Frequency Missing = 1443						

			Cumulative	Cumulative
keepup	Frequency	Percent	Frequency	Percent
1	2877	11.98	2877	11.98
2	2791	11.62	5668	23.60
3	7669	31.92	13337	55.52
4	7094	29.53	20431	85.05
5	3591	14.95	24022	100.00

Frequency Missing = 1542

			Cumulative	Cumulative		
love	Frequency	Percent	Frequency	Percent		
1	5175	29.31	5175	29.31		
2	4450	25.21	9625	54.52		
3	8030	45.48	17655	100.00		
Frequency Missing = 7909						

			Cumulative	Cumulative		
buyfriendsoc	Frequency	Percent	Frequency	Percent		
1	3501	32.22	3501	32.22		
2	2066	19.01	5567	51.23		
3	2798	25.75	8365	76.98		
4	1955	17.99	10320	94.97		
5	547	5.03	10867	100.00		
Frequency Missing = 14697						

maincharuses	Frequency	Percent	Cumulative Frequency	Cumulative Percent			
1	7142	30.44	7142	30.44			
2	4377	18.66	11519	49.10			
3	9238	39.38	20757	88.47			
4	1938	8.26	22695	96.74			
5	766	3.26	23461	100.00			
Frequency Missing = 2103							

			Cumulative	Cumulative			
adskids	Frequency	Percent	Frequency	Percent			
1	3916	16.84	3916	16.84			
2	2719	11.69	6635	28.54			
3	10635	45.74	17270	74.28			
4	4371	18.80	21641	93.08			
5	1610	6.92	23251	100.00			
Frequency Missing = 2313							

			Cumulative	
Males	Frequency	Percent	Frequency	Percent
0	14454	56.54	14454	56.54
1	11110	43.46	25564	100.00

			Cumulative	Cumulative
Marital	Frequency	Percent	Frequency	Percent
0	7645	29.91	7645	29.91
1	17919	70.09	25564	100.00

			Cumulative	Cumulative
Nintendo	Frequency	Percent	Frequency	Percent
0	21385	83.65	21385	83.65
1	4179	16.35	25564	100.00

			Cumulative	Cumulative
Xbox	Frequency	Percent	Frequency	Percent
0	23148	90.55	23148	90.55
1	2416	9.45	25564	100.00

			Cumulative	Cumulative
Playstation	Frequency	Percent	Frequency	Percent
0	22502	88.02	22502	88.02
1	3062	11.98	25564	100.00

CNN	Frequency	Percent	Cumulative Frequency	Cumulative Percent
0	24937	97.55	24937	97.55
1	627	2.45	25564	100.00

			Cumulative	Cumulative
Netflix	Frequency	Percent	Frequency	Percent
0	22408	87.65	22408	87.65
1	3156	12.35	25564	100.00

FACTOR ANALYSIS

- 4. Be sure in your segmentation system to pick at least two sets of questions that measures two different constructs so you have to apply a factor analysis to the set of questions so that you can demonstrate your knowledge of factor analysis. Once that is done, the next step is to do a factor analysis of the set(s) of questions that you selected that measures a latent, unobserved construct.
 - a. List out the questions that you selected to do the factor analysis on:
 - (1) I need games on computer with top of the line graphics.
 - (2) I spend more money on video games than music or movies.
 - (3) I spend more time playing video games than watching television.
 - (4) Video games are my main source of entertainment.
 - (5) I'm the first g my friends to have the latest in electronic equipment.
 - (6) I'll pay about anything for an electronic product that I really want.
 - (7) I try to keep up with developments in technology.
 - (8) I love to buy new gadgets and appliances.
 - b. Tell me what latent unobserved construct(s) you think they measure.

The 1st construct that I believe will be measured is whether or not the person spends their money, time and interest on video games with good graphics.

The 2^{nd} construct will measure whether or not the person is an early adaptor of technology – i.e. buys the latest video game systems, etc.

c. Decide which extraction technique to use and tell me why

I will use Principal Component Analysis (PCA). PCA reduces data complexity by analyzing and retaining key components. PCA is a variable reduction technique that will convert observations of possibly correlated variables using an orthogonal transformation in to principal components, where the first one or two components explain a large proportion of the data's variance.

d. Decide which rotation method you are going to use and why

I am using the Varimax Rotation technique in my cluster analysis because the factors are orthogonal and are more likely to yield well divided. The orthogonal rotation positions each variable to become strongly associated with just one factor, and thus reducing the amount of data needed to be manipulated in the cluster analysis.

e. Run the factor analysis

Eigenvalues of the Correlation Matrix: Total = 8 Average = 1				
	Eigenvalue	Difference	Proportion	Cumulative
1	3.2184859	1.5769707	0.4023	0.4023
2	1.6415152	0.6674768	0.2052	0.6075
3	0.9740384	0.3149412	0.1218	0.7293
4	0.6590972	0.116755	0.0824	0.8116
5	0.5423422	0.1490818	0.0678	0.8794
6	0.3932604	0.045641	0.0492	0.9286
7	0.3476194	0.1239781	0.0435	0.972
8	0.2236413		0.028	1

Final Communality Estimates: Total = 4.860001								
topgraphics	spendmoney	spendtime	mainent	first	pay	keepup	love	
0.41723616	0.69146545	0.79519762	0.79974821	0.66686366	0.60644648	0.28804188	0.59500166	

f. How many factors were extracted?

Factors with eigenvalues greater than one are extracted, and, according the table in part 4e, only two factors were extracted that met this criterion. These two factors also explain the greatest amount of the variance, approximately 61% (.4023+.2052).

I will extract any factor with an eigenvalue greater than 1 (above the Kaiser Criterion cutoff, or KCC). This scree plot show that only 2 factors pass this test and will be extracted. It is a metaphorical mountain, and when the rock of eigenvalues starts rolling downwards, the KCC shows when the variance comes to a rest.

h. What criteria was used to determine number of factors? How does that work?

The KCC, or Kaiser Criterion cutoff (only eigenvalues greater than 1 are extracted) is the criteria used to determine the number of factors. KCC is used because the eigenvalues shown in the scree plot are also the measure of the proportion of variance that each factor explains. Thus, after the first 2 factors, the other factors are not contributing much variance at all, and unimportant.

i. What percent of the variance is explained by the factors?

Eigenvalues of the Correlation Matrix: Total				
= 8 Average = 1			Proportion	
	Eigenvalue	Difference	Variance	Cumulative
1	3.2184859	1.5769707	0.4023	0.4023
2	1.6415152	0.6674768	0.2052	0.6075

These 2 factors explain approximately 61% (.4023+.2052) of the variance.

j. Interpret the rotated factor matrix loadings and label the factor(s)

Rotated Factor Pattern					
	Factor1	Factor2			
topgraphics	0.61596	0.19449			
spendmoney	0.8291	0.0637			
spendtime	0.88826	0.07874			
mainent	0.88761	0.10907			
first	0.17974	0.79659			
pay	0.24894	0.73789			
keepup	-0.02586	0.53607			
love	0.09092	0.76599			

The Rotated factor matrix loadings show a distinct separation of variable in to 2 factors. I would interpret the 2 factors to be: (Factor 1) a video gamer who spends all of their money and time on video games with the best graphics – aka vgamejunkie, and (Factor 2) an early adaptor of technology who loves to buy all gadgets the day that they are released no matter what the cost – aka earlyadopt.

The variable scores highlighted in red loaded highest on the latent variable, factor 1. The variable scores highlighted in blue loaded highest on the latent variable, factor 2.

In more detail, for example, looking at the variable *keepup* that scored a -0.026 for Factor 1 could mean that people who are really in to playing video games are really not interested in keeping up with new developments in technology – the negative score represents the negative relationship between the variable and the factor, and vice versa. Factor 2 scored a 0.77 for the variable *love* representing the fact that this factor generally feel good about loving to buy new gadgets and appliances.

ROTATED FACTOR PATTERN

k. Output the factor scores for the next step

The following is a sample of the factor score for the first 100 respondents out of the 25000 total:

Obs	my_id	vgamejunkie	earlyadopt
1 1	985951		
2 1	985952		
3 1	985954		
4 1	985955		
	985960		
	985961		
	985963		
	985964		
9 1	985966		
10 1	985967		
11 1	985969		
12 1	985970		
13 1	985977		
	985979		
15 1	985980		
16 1	985981		
17 1	985986		
18 1	985987		
19 1	985989		
20 1	985990		
21 1	985992		
22 1	985994		
23 1	985995		
24 1	985997		
25 1	985998		
26 1	986022	-0.76221	-1.20773
27 1	986023		•
28 1	986027		•
29 1	986030		•
30 1	986031		•
31 1	986032	0.33687	0.86412
32 1	986033		•
	986034		•
	986038		•
	986041		•
	986043		•
	986049		•
	986050		•
	986052		
	986053		
	986058		
42 1	986059		•

Obs	my_id	vgamejunkie	earlyadopt
43	1986289		
44	1986290		
45	1986294		
46	1986315		
47	1986316	-0.46694	0.93733
48	1986319	-0.96503	
49	1986320	-0.77970	-0.75234
50	1986321		
51	1986338		
	1986340	0.05962	-0.33905
53	1986342		•
54	1986343		•
55	1986345		•
56	1986346		•
	1986348		
58	1986349		•
	1986355		•
	1986360	0.86131	-1.23506
	1986362	•	
-	1986366	•	
	1986367	1.75100	0.04192
	1986370	•	•
	1986371		
	1986372	-0.60522	
	1986373	2.48483	-2.42842
	1986374	•	•
	1986375	•	•
	1986386	•	•
	1986388	•	•
	1986393	•	•
	1986394	•	•
	1986395	•	•
	1986397 1986398	2.82897	0.46720
		2.82897	-0.46730
	1986402 1986405	•	•
		•	•
	1986407 1986413	•	•
	1986418	•	•
_	1986424	•	•
_	1986425	•	•
	1986432	•	•
	1986434	•	•
	1986446	•	•
	1986447	•	•
	1986448	•	•
00	1700448	•	•

Obs	my_id	vgamejunkie	earlyadopt
89	1986450		
90	1986467		
91	1986468		
92	1986470		
93	1986473		
94	1986474		
95	1986476		
96	1986491		
97	1986492		
98	1986507		
99	1986509		
100	1986510	-0.80930	-0.24322

CLUSTER ANALYSIS

- 5. The next step is the cluster analysis. Here I would like you to use at least one factor from the factor analysis in step 4 plus a few more relevant variables (say 3-4) to utilize in your factor analysis. Here is how I would like you to proceed with the cluster analysis.
 - a. You may wish to standardize the variables (other than the factor scores) to remove any influence due to scaling.

I did not standardize any of the variables that I chose.

b. Pick a bracket of number of clusters (say from 3 to 7) and then run a k means cluster procedure to collect the following diagnostic statistics from the runs: R square, cubic clustering criterion (ccc) and pseudo F statistic (the proc FASTCLUS in SAS is the easiest way to obtain these but you can also get at least the ccc from R).

I ran PROC FASTCLUS to get the following results:

# of CLUSTERS	CCC	Pseudo F Statistics	R squared
2	158.887	17650.64	0.24524
3	139.596	14195.7	0.38777
4	243.255	18332.85	0.48146
5	196.972	15399.09	0.56041
6	204.87	15046.53	0.59874
7	244.892	16450.08	0.62854

c. Plot the diagnostic statistics against the number of clusters and apply the rules we discussed in class about the number of clusters that this graph might suggest to use (note that it may be the case that these diagnostics might not suggest any of the ones you ran. If so, note that).

I began by plotting the Cubic Clustering Criterion (CCC) to find the first local maximum that will indicate an optimal number of clusters to use:

I then plotted the pseudo f scores to find the first local maximum – this also infers the optimal number of clusters is 4:

Both psuedo-f and CCC suggest that I use 4 clusters in my analysis, however, I am going to run a GAP analysis first to see what the more up to date Monte Carlo estimate produces.

d. Now perform a gap analysis on the data. Tell me how you know how many clusters you should select as your solution. Don't point at the SAS output box that says here is the number of clusters – that's too easy. Tell me the logic of how it works and then do it for your data.

I wanted to see how many clusters that the GAP analysis would output using proc HPCLUS. I got the following results:

HPCLUS uses the Monte Carlo estimate

versus the FASCLUS heuristic and is the preferred method by statisticians, thus I am going to proceed using the HPCLUS to cluster my segments in to the 5 optimal segments.

I then assigned each survey participant to a cluster using HPCLUS, and ran HPCLUS to cluster with 5 clusters I got:

the following results: .

	Desc	crip	tive S	tatisti	cs	
	Variable		Mean		Standard Deviation	
	vgamejunkie	•	-0.01	12882	0	.998365
	earlyadopt		0.04	16367	0	.954017
	buyfriendsoc	С	2.40	8878	1	.178786
	maincharuse	es	2.24	7119	1	.000836
	Withir	ı CI	uster	Statis	stic	s
						Standard
	ariable	CI	uster	Me		Deviation
vg	jamejunkie		1	-0.55		0.5242
			2	1.66		0.6223
			3	-0.49		0.5130
			4	-0.51		0.4548
			5	0.90		0.8382
ea	ırlyadopt		1	0.58		0.8474
			2	-0.46		0.8976
			3	-0.15		0.8135
			4	-0.55		0.7586
			5	0.72	28	0.6952
bι	ıyfriendsoc		1	1.81		0.7081
			2	1.71		0.8226
			3	3.58		0.6320
			4	1.28		0.4501
			5	3.42	19	0.7099
m	aincharuses		1	2.91		0.6938
			2	2.07		0.9199
			3	1.93	59	0.8356
			4	1.32		0.5415
			5	3.13	39	0.6755

When I began to compare my HPCLUS results with my cluster numbers from PROC FASTCLUS, I realized that I had used a colon in my HPCLUS statements. ERROR WILL ROBINSON! I removed the colons in the HPCLUS, reran it and got the following results:

	Estimated Number of Clusters							
		Cri	terion		Number of Clusters			
		FIF	RSTPEAK		2			
Cluster Summary								
		Distance from Cluster Centroid to Observation				Standard	Nearest	Distance to Nearest Cluster
Cluster	Frequency	Maximum	Minimum	Average	SSE	Deviation	Cluster	Centroid
1	1181	4.1157	0.5531	1.5913	3390.3	1.6943	2	2.2128
2	1162	4.3406	0.4645	1.6903	3808.0	1.8103	1	2.2128

ABC Statistics								
Number of		rithm of Cluster SSE		Simulation Adjusted Standard	One Standard Error Adjusted			
Clusters	Input	Reference	Gap	Deviation	Gap			
2	8.8816	10.0296	1.1480	0.00589	1.1421			
3	8.7102	9.7576	1.0474	0.00948	1.0379			
4	8.5413	9.4593	0.9180	0.0116	0.9064			
5	8.4229	9.2057	0.7828	0.00791	0.7749			
6	8.3686	9.0996	0.7310	0.00846	0.7226			
7	8.2507	8.9581	0.7073	0.00652	0.7008			

The local max adjusted gap (Gap –

simulation standard deviation) is at 2 clusters, and none of the adjusted gaps are further away than 1 standard deviation from the previous gap number.

I realize now that I can not continue with only 2 clusters. My client, XBOX, would not be happy with me knowing that they spent all of their money and I have lumped an entire population in to 2 major groups that could almost have been guessed correctly with logical conclusions minus the data. Two clusters does not tell you the client enough information about their population.

Since I will not use 2 clusters, I will run the cluster analysis with k means PROC FASTCLUS with 4 clusters.

e. Run the cluster analysis with your choice of procedures.

I used PROC FASTCLUS to assign each person to a cluster based on their survey answers.

Cluster	N Obs	Variable	N	Mean	Std Dev	Minimum	Maximum
1	3430	vgamejunkie	541	-0.4451032	0.6337588	-1.2470494	2.6567832
		earlyadopt	541	-0.2491501	0.8997069	-2.1049792	3.2549463
		buyfriendsoc	1753	4.0228180	0.6271480	2.0000000	5.0000000
		maincharuses	3317	3.8794091	0.7383522	2.0000000	5.0000000
2	7998	vgamejunkie	1049	-0.2352975	0.7934205	-1.2470494	2.7893678
		earlyadopt	1049	0.7948204	0.7239764	-2.0556091	3.2549463
		buyfriendsoc	2692	1.6530461	0.5897505	1.0000000	3.0000000
		maincharuses	7899	2.9725282	0.4187669	1.0000000	5.0000000
3	5438	vgamejunkie	934	1.0528576	0.9951294	-1.0936786	3.1975241
		earlyadopt	934	0.0796485	0.9119627	-2.4284163	2.8742418
		buyfriendsoc	3385	3.3376662	0.6406833	1.0000000	5.0000000
		maincharuses	5286	2.0902384	0.6755573	1.0000000	5.0000000
4	7141	vgamejunkie	1206	-0.4110622	0.6594700	-1.1678458	3.1975241
		earlyadopt	1206	-0.6412671	0.7985943	-2.3734722	1.5526678
		buyfriendsoc	3037	1.2453079	0.4951163	1.0000000	3.0000000
		maincharuses	6959	1.1201322	0.3398361	1.0000000	3.0000000

Pseudo F Statistic = 19933.57								
Approximate Expected Over-All R-Squared = 0.48146								
	Cubic CI	usteri	ng Criteri	on =	270.107	7		
WARNING: The two values above are invalid for correlated variables.								
		CI	uster Mea	ans				
vgam	eiunkie	ea	rlvadopt	buv	friendsoc	ma	incharuses	
							3.879409105	
-0.23	5297549	0.79	4820411	1.6	53046062	2	.972528168	
1.05	2857628	0.07	79648481	3.3	37666174	2	2.090238365	
-0.41	1062244	-0.64	1267087	1.2	45307870	1	1.120132203	
	Clu	ster S	Standard I	Devia	tions			
vgam	ejunkie	ea	rlyadopt	buy	friendsoc	ma	aincharuses	
	-	0.899	97069489		-		.7383521823	
0.7934	1204849	0.72	39763794	0.58	397505038	0.4187669277		
0.995	1294387	0.91	19626768	0.64	406832666	0	.6755573472	
0.6594	4700037	0.79	85942815	0.49	951163466	0	.3398360946	
	Distanc	e Bet	ween Clu	ster (Centroids			
luster		1		2		3	4	
			2.75175	3070	2.454090	486	3.934855301	
	2.7517	53070			2.405658	926	2.385552719	
	2.45409	90486	2.40565	8926			2.825216786	
	3.9348	55301	2.385552	2719	2.825216	786		
	vgam -0.44 -0.23 1.05 -0.41 vgam 0.633 0.7934 0.995	vgamejunkie -0.445103197 -0.235297549 1.052857628 -0.411062244 Clu vgamejunkie 0.6337588037 0.7934204849 0.9951294387 0.6594700037 Distance luster 2.75175 2.45408	Cubic Clusteri G: The two values ab CI vgamejunkie ea -0.445103197 -0.24 -0.235297549 0.79 1.052857628 0.07 -0.411062244 -0.64 Cluster S vgamejunkie ea 0.6337588037 0.899 0.7934204849 0.723 0.9951294387 0.91 0.6594700037 0.798 Distance Bete	Cluster Mea vgamejunkie earlyadopt -0.445103197 -0.249150065 -0.235297549 0.794820411 1.052857628 0.079648481 -0.411062244 -0.641267087 Cluster Standard I vgamejunkie earlyadopt 0.6337588037 0.8997069489 0.7934204849 0.7239763794 0.9951294387 0.9119626768 0.6594700037 0.7985942815 Distance Between Cluster 1 2.751753070 2.454090486 2.405658	Cluster Means vgamejunkie earlyadopt buyl -0.445103197 -0.249150065 4.0 -0.235297549 0.794820411 1.6 1.052857628 0.079648481 3.3 -0.411062244 -0.641267087 1.2 Cluster Standard Devia vgamejunkie earlyadopt buyl 0.6337588037 0.8997069489 0.62 0.7934204849 0.7239763794 0.56 0.9951294387 0.9119626768 0.64 0.6594700037 0.7985942815 0.49 Distance Between Cluster (1) Luster 1 2 2.751753070 2.751753070 2.454090486 2.405658926	Cluster Means Vgamejunkie earlyadopt 0.235297549 0.794820411 1.653046062 1.052857628 0.079648481 3.337666174 -0.411062244 -0.641267087 1.245307870 Cluster Standard Deviations Vgamejunkie earlyadopt buyfriendsoc -0.411062244 -0.641267087 1.245307870 Cluster Standard Deviations Vgamejunkie earlyadopt buyfriendsoc 0.6337588037 0.8997069489 0.6271480343 0.7934204849 0.7239763794 0.5897505038 0.9951294387 0.9119626768 0.6406832666 0.6594700037 0.7985942815 0.4951163466 Distance Between Cluster Centroids luster 1	Cluster Means Vigame Vig	

f. Produce a table of means for the driver variables used in the cluster analysis. You should use the unstandardized variables for means wherever possible. Discuss how well the cluster analysis worked from your evaluation of this table.

	Cluster Means									
Cluster	vgamejunkie	earlyadopt	buyfriendsoc	maincharuses						
1	-0.445103197	-0.249150065	4.022818026	3.879409105						
2	-0.235297549	0.794820411	1.653046062	2.972528168						
3	1.052857628	0.079648481	3.337666174	2.090238365						
4	-0.411062244	-0.641267087	1.245307870	1.120132203						

The unstandardized table of means worked well for the cluster analysis. I get in to more detain in the following table:

Cluster Means	Cluster Means							
	vgamejunk				buyfrien		maincharu	
Cluster	ie		earlyadopt		dsoc		ses	
1	-0.4451032	LOW	-0.249150065	MEDIUM	4.022818	HIGH	3.8794091	HIGH
2	-0.2352975	MEDIUM	0.794820411	HIGH	1.653046	LOW	2.9725282	MEDIUM
3	1.05285763	HIGH	0.079648481	MEDIUM	3.337666	HIGH	2.0902384	MEDIUM
4	-0.4110622	MEDIUM	-0.641267087	LOW	1.245308	LOW	1.1201322	LOW

g. Select at least 3-4 more variables that are relevant to your business problem that are not drivers in the solution (be sure to include at least one demographic and one media variable) and construct a means table for each of these variables by cluster number. Note if you take the mean of a (0,1) variable it provides you with the proportion of individuals whose answered with the response coded 1.

Cluster	N Obs	Variable	N	Mean	Std Dev	Minimum	Maximum
1	3430	Males	3430	0.394461	0.488806	0	1
		adskids	3252	3.534748	1.101308	1	5
		Marital	3430	0.687755	0.463477	0	1
		Nintendo	3430	0.217201	0.412401	0	1
		Playstation	3430	0.160933	0.367523	0	1
		Xbox	3430	0.123324	0.328856	0	1
		CNN	3430	0.033236	0.179279	0	1
		Netflix	3430	0.146356	0.353514	0	1
		ComedyCentral	3430	0.087755	0.28298	0	1

Cluster	N Obs	Variable	N	Mean	Std Dev	Minimum	Maximum
2	7998	Males	7998	0.447862	0.497305	0	1
		adskids	7747	3.020266	0.939275	1	5
		Marital	7998	0.698675	0.458862	0	1
		Nintendo	7998	0.134409	0.341112	0	1
		Playstation	7998	0.098525	0.298041	0	1
		Xbox	7998	0.07827	0.268612	0	1
		CNN	7998	0.022131	0.147117	0	1
		Netflix	7998	0.09815	0.297535	0	1
		ComedyCentral	7998	0.057764	0.233312	0	1

Cluster	N Obs	Variable	N	Mean	Std Dev	Minimum	Maximum
3	5438	Males	5438	0.445936	0.497114	0	1
		adskids	5194	2.875241	0.973474	1	5
		Marital	5438	0.709636	0.453972	0	1
		Nintendo	5438	0.203935	0.402959	0	1
		Playstation	5438	0.178926	0.383326	0	1
		Xbox	5438	0.143435	0.350548	0	1
		CNN	5438	0.02078	0.142659	0	1
		Netflix	5438	0.17249	0.37784	0	1
		ComedyCentral	5438	0.092313	0.289494	0	1

Cluster	N Obs	Variable	N	Mean	Std Dev	Minimum	Maximum
4	7141	Males	7141	0.429772	0.495078	0	1
		adskids	6813	2.383091	1.173957	1	5
		Marital	7141	0.717267	0.45036	0	1
		Nintendo	7141	0.159361	0.366038	0	1
		Playstation	7141	0.092144	0.289249	0	1
		Xbox	7141	0.073239	0.260547	0	1
		CNN	7141	0.026747	0.161354	0	1
		Netflix	7141	0.119591	0.324506	0	1
		ComedyCentral	7141	0.069038	0.253536	0	1

h. Name the different clusters in your solution and provide a half-page summary of the differences and similarities between the segments.

Cluster 1 is very strong in stating that ads help them choose what product to buy for their kids.

	Analysis Variable : adskids									
Cluster	N Obs	N	Mean	Std Dev	Minimum	Maximum				
1	3430	3252	3.5347478	1.1013084	1.0000000	5.0000000				
2	7998	7747	3.0202659	0.9392754	1.0000000	5.0000000				
3	5438	5194	2.8752407	0.9734741	1.0000000	5.0000000				
4	7141	6813	2.3830911	1.1739572	1.0000000	5.0000000				

	Analysis Variable : Marital										
Cluster	N Obs	N	Mean	Std Dev	Minimum	Maximum					
1	3430	3430	0.6877551	0.4634767	0	1.0000000					
2	7998	7998	0.6986747	0.4588624	0	1.0000000					
3	5438	5438	0.7096359	0.4539721	0	1.0000000					
4	7141	7141	0.7172665	0.4503595	0	1.0000000					

Cluster 4 has a higher percentage

of married participants, however this is not a good discriminating variable because the means are too similar.

Analysis Variable: Males	Analy	vsis	Vari:	able	: [Males
--------------------------	-------	------	-------	------	-----	-------

- / -						
Cluster	N Obs	N	Mean	Std Dev	Minimum	Maximum
1	3430	3430	0.394461	0.488806	0	1
2	7998	7998	0.447862	0.497305	0	1
3	5438	5438	0.445936	0.497114	0	1
4	7141	7141	0.429772	0.495078	0	1

Cluster 2 has the highest

concentration of male participants, followed close behind by Cluster 3. Cluster 1 has the highest number of female participants.

		XBOX	Playstation	Nintendo
Cluster	N Obs	Mean	Mean	Mean
1	3430	0.123324	0.1609329	0.217201
2	7998	0.07827	0.0985246	0.134409
3	5438	0.143435	0.1789261	0.203935
4	7141	0.073239	0.092144	0.159361

Holding true to the statistics, Cluster 3 own

more XBOX and Playstation systems, but Cluster 1 surprisingly owns the most Nintendo and is close to owning the most Playstation and XBOX systems.

Analysis Variable : CNN								
Cluster	N Obs	N	Mean	Std Dev	Minimum	Maximum		
1	3430	3430	0.0332362	0.1792788	0	1.0000000		
2	7998	7998	0.0221305	0.1471172	0	1.0000000		
3	5438	5438	0.0207797	0.1426592	0	1.0000000		
4	7141	7141	0.0267470	0.1613543	0	1.0000000		

Cluster 1, more women, watches

a LOT more CNN than the others, and luster 3 is last – gamers don't watch as much tv.

Analysis Variable : Netflix								
Cluster	N Obs	N	Mean	Std Dev	Minimum	Maximum		
1	3430	3430	0.1463557	0.3535140	0	1.0000000		
2	7998	7998	0.0981495	0.2975353	0	1.0000000		
3	5438	5438	0.1724899	0.3778404	0	1.0000000		
4	7141	7141	0.1195911	0.3245055	0	1.0000000		

Cluster 3 has the largest market

share of NETFLIX viewers, and Cluster 1 is in 2nd.

Analysis Variable : ComedyCentral								
Cluster	N Obs	N	Mean	Std Dev	Minimum	Maximum		
1	3430	3430	0.0877551	0.2829797	0	1.0000000		
2	7998	7998	0.0577644	0.2333121	0	1.0000000		
3	5438	5438	0.0923134	0.2894944	0	1.0000000		
4	7141	7141	0.0690379	0.2535364	0	1.0000000		

Comedy Central viewing holds

the same pattern as NETFLIX, only there is not as much of a separation. The difference would be that this is a cable program versus an internet based service where in NETFLIX commercials and advertising opportunities are more difficult to manipulate towards the viewers to ensure that they see your ad. This is important, because now I can tell Comedy Central that I can find them almost twice as many viewers in Cluster 3 than Cluster 2.

	Cool	Average		Married	
	Parents	Person	Gamers	No Kids	
Top Rated Segments	AdsKids		XBOX	Married	
	Nintendo		Playstation		
	CNN		NETFLIX		
			Comedy Central		
	Xbox		Nintendo	CNN	
	Playstation	AdsKids	AdsKids		
		Main			
		Character			
	NETFLIX	Uses	SOCIAL MEDIA	NETFLIX	
	Comedy				
Middle Rated Segments	Central				

Cluster Means								
	vgamejunk				buyfrien		maincharu	
Cluster	ie		earlyadopt		dsoc		ses	
1	-0.4451032	LOW	-0.249150065	MEDIUM	4.022818	HIGH	3.8794091	HIGH
2	-0.2352975	MEDIUM	0.794820411	HIGH	1.653046	LOW	2.9725282	MEDIUM
3	1.05285763	HIGH	0.079648481	MEDIUM	3.337666	HIGH	2.0902384	MEDIUM
4	-0.4110622	MEDIUM	-0.641267087	LOW	1.245308	LOW	1.1201322	LOW

CLUSTER NAMES:

Cluster 1: Cool Parent - Hip, Up to date, watching movies for ideas of what new products to use, using social media to stay current, watching Comedy Central and NETFLIX, buying video game systems, keep current on world affairs with CNN and watch ads for their kids is a good source of information. Highest concentration of female survey participants. Cluster 1 doesn't seem interested in spending money on the latest video games unless it is marketed in a way that they won't feel as if it is a new technology purchase, but more as a "my friend says its great". They are likely to use a product if they see a star in a movie use that product.

Cluster 2: Techies – Want the latest tech products when they are released and will pay anything almost anything to get it. Watch ads for their kids sometimes, but don't use social media for purchase ideas, don't spend a lot of money on video game systems, however they are slightly impressionable when a main character uses a product - they want to use that product.

Cluster 3: Gamers – They like to spend their time playing video games on the computer with great graphics or on their choice of one of the gaming systems they own. They relax by watching NETFLIX and Comedy Central and get ideas of purchases from their friends on social media. Majority are women.

Cluster 4: Childless – Lowest scoring for having kids by quite a lot. They watch CNN and NETFLIX more than some of the other clusters. Interesting that Cluster 4, with the lowest mean for watching ads for

their children, did not have more video game systems since they would have extra capital income, which leads me to believe that this is the business professional, career-oriented cluster, frugal, or just do not care about video game systems.

i. Write a one paragraph executive summary of the segmentation system.

EXECUTIVE SUMMARY:

I was recruited by XBOX to see where they should target an advertising campaign for the forthcoming release of their newest XBOX gaming system. I recommend that XBOX focus their advertisements on Cluster 1, Cool Parent. Cool Parents are influenced by advertisements for their children, what their friends think on social media and what the main character uses on a movie. XBOX should produce a cross-marketing advertising plan of action for their new game system – have an actor using the system in an upcoming movie, and having that upcoming movie as one of the new games that will be released soon after the movie release. I recommend that XBOX' social media team start up an advertisement of the new system that will entice the public to share the ad across platforms – increasing the opportunity that it reaches the eyes and ears of the highly suggestable Clusters 1 and 3 (Gamers).

XBOX can reach Cool Parents and Gamers audiences alike through a targeted advertising campaign aimed at Comedy Central audiences which are almost twice as large as they are with the Techies (Cluster 2).

FUTIRE ANALYSIS: This study puts to rest the myth that all gamers are male, as a majority are women. I would recommend that XBOX focus advertising on the female clientele, however that will be a topic for future analysis, as the question still begs as to whether or not the women merely the primary purchasers or the actual end-users of the gaming systems.