21-242 HW 1

Instructor: Wesley Pegden

Due September 3, 2025

Question 1. Referencing the axioms of a vector space, for each of the following, prove or disprove the statement. These proofs should be complete but need not be long.

- (a) $V = \left\{ \begin{pmatrix} v_1 \\ v_2 \end{pmatrix} \mid v_1, v_2 \in \mathbb{R}, v_1 + v_2 = 1 \right\}$ is an \mathbb{R} -vector space when endowed with the usual operations.
- (b) Define the operation \oplus on $\mathbb{R}^+ \times \mathbb{R}^+$ by $a \oplus b = a \cdot b$ (standard multiplication) and \otimes on $\mathbb{R} \times \mathbb{R}^+$ by $a \otimes b = b^a$ (exponentiation). (Note that both operations indeed always return positive real numbers). Then $V = \mathbb{R}^+$ is an \mathbb{R} -vector space with \oplus as the addition operation on V and \otimes as the scalar multiplication. Note, \mathbb{R}^+ is the set of positive real numbers.
- (c) With the same operations as above, $V = \mathbb{Q}^+$ is a \mathbb{Q} -vector space.
- (d) Let V be the set of polynomials of degree at most 3 with coefficients in \mathbb{Q} . Then V is a \mathbb{Q} vector space when endowed with the standard operations of polynomial addition and scalar multiplication.

Question 2. In class we proved that if V is a vector space than for any $\vec{v} \in V$ we have $0\vec{v} = \vec{0}$. Use this to prove that $(-1) \cdot \vec{v} = -\vec{v}$.

Question 3. Prove for an \mathbb{F} -vector space V that for any $\vec{v} \in V$ and $c \in \mathbb{F}$, if $c\vec{v} = \vec{0}$ then either c = 0 or $\vec{v} = \vec{0}$.

Question 4. (a) Consider \mathbb{R} as a vector space over \mathbb{R} with the usual arithmetic operations. Prove that any two vectors are linearly dependent (which just means: not linearly independent).

- (b) Consider \mathbb{R} as a vector space over \mathbb{Q} with the usual arithmetic operations. (So, the vectors are elements of \mathbb{R} , and \mathbb{Q} is the field). Give an example of two linearly independent vectors; prove they are independent.
- (c) Challenge, not to be graded Prove that for \mathbb{R} as a vector space over \mathbb{Q} , there is no finite list \mathcal{L} of vectors for which $\operatorname{span}(\mathcal{L}) = \mathbb{R}$.

Question 5. Prove that if \mathcal{L} is a list of vectors in the \mathbb{F} -vector space V, and $\vec{w}_1, \ldots, \vec{w}_k \in \operatorname{span}(\mathcal{L})$, then $\operatorname{span}(\vec{w}_1, \ldots, \vec{w}_k) \subseteq \operatorname{span}(\mathcal{L})$.

Question 6. Fix a postive integer k and define a vector space V_k over \mathbb{R} as follows:

Vectors are lists $(a_{-k}, \ldots, a_{-1}, a_0, a_1, \ldots, a_k)$ of real numbers such that $a_j = j \cdot a_{-j}$ for each $j = 1, \ldots, k$.

- 1. Prove that V_k indeed a vector space, with the usual operations of pointwise addition and scalar multiplication.
- 2. Give two different bases for V_k (with proofs they are bases).