مدارهای منطقی - دکتر مهدیانی

امیرحسین منصوری - ۹۹۲۴۳۰۶۹ - تمرین سری ۴

سوال a - ۱

جدول کارنو را رسم میکنیم و minterm های داده شده را در جدول مشخص میکنیم:

همهی خانههای با مقدار ۱ که مجاور هستند و در یک PI نیستند، Potential Hazard محسوب میشوند. بنابراین این تبدیلها میتواند منجر به Timing Hazard شود:

 $0000 \leftrightarrow 0001$

1000 ↔ 1001

1101 ↔ 1111

 $1110 \leftrightarrow 1010$

سوال ۱ - b)

مدار تابع داده شده به صورت زیر است:

و نمودار زمانی این مدار نیز به صورت زیر است:

در زمان $t_1=4ns$ ، تبدیل $t_1=111 \to 1111$ و در زمان $t_2=16ns$ و در زمان $t_1=111 \to 1111$ رخ داده است. اما هیچکدام از این تغییرات باعث تغییر لحظهای مقدار t نشدهاند. بنابراین عملا این مدار در این دو تبدیل دچار Timing Hazard نمی شود.

سوال c - ۱)

برای از بین بردن Potential Hazardها، کافیست PI های جدیدی به جدول کارنو اضافه کنیم که ۱ های مجاور که در یک PI نیستند را پوشش دهد:

در نتیجه با اضافه کردن b'c' ، b'd' ، b'c' به تابع، مشکل Timing Hazard حل میشود.

سوال ۲

اگر خروجی گیت AND بالا را M بنامیم، با توجه به minterm های تولیدشده توسط decoder، مقدار M برابر است با:

 $M = (WXYZ)^{\prime}.(WXYZ)^{\prime}.(WXYZ)^{\prime}.(WXYZ)^{\prime}$

به طور مشابه اگر خروجی گیت AND پایین را N بنامیم، داریم:

N = (WX'YZ)'.(WX'Y'Z)'.(WXY'Z)'.(WXYZ)'

بنابراین تابع f برابر است با:

f(W,X,Y,Z) = (M+N)' = M'.N'= (WXY'Z' + WXY'Z + WXY'Z + WXYZ).(WXYZ + WXY'Z + WXY'Z + WXYZ)در نهایت با توجه به جدول کارنو این تابع:

تابع f برابر است با:

f(W, X, Y, Z) = WX'Z

سوال ۳

در مدار بالا، هر خروجی حاصل AND شدن یک خروجی decoder بالا و یک خروجی decoder پایین است. در نهایت با استفاده از ۲ decoder و ۱۶ گیت NAND و ۴ گیت Invertor (برای تبدیل ورودیهای Active Low به Active High در ورودی decoder ها)، 4x16 decoder ساخته میشود.