MINISTERE DE L'ENSEIGNEMENT SUPERIEUR ET DE LA RECHERCHE SCIENTIFIQUE SECRETATRIAT GENERAL DIRESTION GENERALE DE L'ENSEIGNEMENT SUPERIEUR

SESSION 2000

DIRESTION GENERALE DE L'ENSEIGNEMENT SUPERIEUR PUBLIC et PRIVE

Service d'Appui au Baccalauréat

Série : C Epreuve de : MATHEMATIQUES
Durée : 4 heures
Code Matière : 009 Coefficient : 5

NB: Les deux exercices et le problème sont obligatoires

Exerice 1 4 points

Dans un plan orienté **P**, on considère le triangle direct ABC isocèle et rectangle en A. (Voir figure). On note par :

С

- I le milieu du segment [BC] ;
- r_B la rotation de centre B et d'angle $\frac{\pi}{2}$;
- r_C la rotation de centre C et d'angle $\frac{\pi}{2}$;
- t la translation de vecteur \overrightarrow{BC} ;
- $g = t \circ r_B$ et $f = r_C \circ g$.
- **1.** Méthode complexe : \not étant muni du repère orthonormé \not = (A ; \overrightarrow{AB} , \overrightarrow{AC}).
 - a. Déterminer z_A , z_B , z_C et z_I affixes respectives des points A, B, C et I. (0,5 pt)
 - b. Donner l'expression complexe de f. (1 pt)
 - c. Préciser la nature et les éléments caractéristiques de f. (0,5 pt)

2. <u>Méthode géométrique</u>:

- a. Caractériser g en décomposant t et r_B en deux symétries orthogonales. (0,75 pt)
- b. Caractériser f en décomposant r_C et g en deux symétries orthogonales. (0,75 pt)
- 3. Soit S la similitude plane indirecte de centre A et qui transforme B en I.
 - a. Déterminer le rapport de S. (0,25 pt)
 - b. Soit (*C*) le cercle de centre A et passant par B. La demi-droite [AI), d'origine A et contenant I, coupe (*C*) au point B'. Montrer qu'il existe une symétrie orthogonale d'axe (△) qui transforme B en B'. Déterminer alors l'axe de S.
 (0,25 pt)

Exercice 2 4 points

Un sac contient dix boules indiscernables au toucher. Cinq boules sont blanches dont une porte le numéro 0, une le numéro 1 et trois le numéro 2. Cinq boules sont noires dont quatre portent le numéro 2 et une le numéro 3.

1. On tire au hasard, simultanément trois boules du sac. Calculer les probabilités des événements suivants :

A: « Toutes les boules sont blanches ». (0,5 pt)

B: « Les boules sont de couleurs différentes ». (0,5 pt)

C: « On obtient la boule numérotée 0 ». (0,5 pt)

D: « Les numéros des boules sont pairs ». (0,5 pt)

- 2. Dans cette partie, on enlève du sac la boule numérotée 0. L'épreuve est maintenant la suivante : du sac contenant les neuf boules restantes, on tire au hasard, successivement et avec remise deux boules. On note par a le numéro apparu sur la première boule, b le numéro apparu sur la deuxième et d = PGCD(a, b) le plus grand commun diviseur de a et b.
 - a. Démontrer que l'ensemble des valeurs prises par \mathbf{d} est D = { 1, 2, 3 }. (0,25 pt)
 - b. Pour tout $k \in D$, on désigne par E_k l'ensemble des couples (\mathbf{a} , \mathbf{b}) tels que $\mathbf{d} = k$, c'est-à-dire : $E_k = \{(\mathbf{a}, \mathbf{b})/PGCD (\mathbf{a}, \mathbf{b}) = k \}$. On note par p_k la probabilité de E_k . Montrer que $p_1 = \frac{31}{81}$, puis déterminer p_2 et p_3 . (0,75 pt)
 - c. Calculer la probabilité de l'événement $E: « l'équation <math>\mathbf{a}x + \mathbf{b}y = 2$, d'inconnues (x, y) de $Z \times Z$ admet des solutions ». (0,5 pt)
 - d. Résoudre dans $\mathbf{Z} \times \mathbf{Z}$ l'équation : 3x + 2y = 2. (0,5 pt)

Problème 12 points

Soit f la fonction définie sur l'intervalle [0 ; $+ \infty$ [par :

$$\begin{cases} f(0) = 0 \\ f(x) = x \ln x + (1 - x) \ln (1 - x) & \text{si } x \in]0, 1[\\ f(x) = \frac{x - 1}{e^x - x - 1} & \text{si } x \in [1; + \infty[.]] \end{cases}$$

On note par (ℓ) la courbe représentative de f dans un repère orthonormé (O ; \vec{i} , \vec{j}), d'unité 5 cm.

Partie A

1. Soit g la fonction définie sur] 0 ; 1 [par : $g(x) = \ln x - \ln (1 - x)$.

a. Résoudre l'équation
$$g(x) = 0$$
. (0,5 pt)

b. En déduire, suivant les valeurs de
$$x$$
, le signe de $g(x)$. (0,5 pt)

c. Montrer que pour tout
$$x \in]0; 1[, f'(x) = g(x).$$
 (0,5 pt)

2. Soit h la fonction définie sur [1 ; $+\infty$ [par : h(x) = (2 - x) e^{x} - 2.

a. Montrer que h est strictement décroissante sur [1 ;
$$+ \infty$$
 [. (0,5 pt)

b. Montrer que l'équation h (x) = 0 admet une solution unique
$$\alpha \in \left[\frac{3}{2}; 2\right]$$
. (0,5 pt)

d. Montrer que pour tout
$$x \in [1; +\infty[, f'(x)]] = \frac{h(x)}{(e^x - x - 1)^2}$$
. (0,5 pt)

3. a. Montrer que f est continue en 0 et en 1. (0,5 pt)

b. Montrer que
$$\lim_{\substack{x \to 0 \ x > 0}} \frac{f(x)}{x} = -\infty$$
, $\lim_{\substack{x \to 1 \ x < 1}} \frac{f(x)}{x-1} = +\infty$, $\lim_{\substack{x \to 1 \ x > 1}} \frac{f(x)}{x-1} = \frac{1}{e-2}$.

Interpréter graphiquement ces résultats. (1,5 pt)

c. Montrer que
$$(c)$$
 admet une asymptote horizontale que l'on précisera. $(0,5 pt)$

- 4. a. Utiliser l'égalité h $(\alpha) = 0$ pour montrer que f $(\alpha) = -1 + \frac{2}{\alpha}$ et dresser le tableau de variation de f sur $[0; +\infty[$. (1 pt)
 - b. Tracer (*C*) sur l'intervalle [0 ; 3] en précisant les demi–tangentes en 0 et en 1. (1 pt)

On donne pour la construction:

X	0,5	1	α = 1,6	2	3
f(x)	- 0,69	0	0,25	0,22	0,12

Partie B

Soit $\alpha \in \left] \ \frac{3}{2} \right.$; 2 [, le réel déterminé dans la question 2.b. de la partie A.

- 1. Pour tout $n \in \angle^*$, on pose $I_n(\alpha) = \int_1^{\alpha} \frac{(t-1)^n}{e^t t 1} dt$.
 - a. Utiliser la monotonie de f sur [1 ; α] pour montrer que : $0 \le I_1$ (α) $\le \frac{(2-\alpha)(\alpha-1)}{\alpha}$.
 - b. Etudier le sens de variation de la fonction $t\mapsto e^t-t-1$ sur $[1;+\infty[$. En déduire que pour tout $t\geq 1,\ e^t-t-1\geq e-2.$ (1 pt)
 - c. Montrer alors que $0 \le I_n (\alpha) \le \frac{(\alpha-1)^{n+1}}{(n+1)(e-2)}$. (0,5 pt)
 - d. Montrer que la suite $(I_n(\alpha))$ est convergente. Préciser sa limite. (1 pt)
- 2. Soient a et b deux réels strictement positifs tels que a + b = 1.
 - a. En remarquant que $f(x) \ge -\ln 2$, pour tout $x \in]0;1[$, montrer que : $a \ln \frac{1}{a} + b \ln \frac{1}{b} \le \ln 2.$ (0,5 pt)
 - b. Pour quelles valeurs de a et b, la dernière inégalité est—elle une égalité ? (0,5 pt)