독립형 열회수 환기장치

Unique Heat Recovery Ventilation System

참여학과	건축설비소방과	참여학생	김도경, 박지원, 백윤지, 이서영, 이재형, 정준영
협약반명	기계설비현장관리반	지도교수	강윤진
팀명	청정바람	협약기업	(주)정도설비

작품개요

태양광과 에너지 사용의 효율화를 통해 저렴한 비용으로 쾌적한 실내환경을 조성 해 주는 환기장치이다.

작품 수행의 배경 및 필요성

"초고층 공동주택 거주자들의 전열교환형 환기장치 운전방식 현황 조사 및 문제점 분석"에 따르면, 기계식 환기장치를 사용하지 않고 창문을 열어 환기한다는 이유로 무려 86%의 거주 자가 전기요금 때문이라 응답하였다. 따라서 주택에 사용되는 기계식 환기장치를 보편화하기 위해서는 다음의 조건을 만족해야 한다고 보았다.

- 1. 에너지 저감기술에 의한 운영비용 감소
- 2. 최근 이슈가 되고 있는 미세먼지에 대한 적응성

또한, 최근 신재생 에너지에 대한 관심의 증가도 작품 수행의 배경 중 하나로 볼 수 있다. 오늘 날 세계 각국이 신재생 에너지에 보이는 관심은 높다. 실제로 미국을 비롯해 호주, 이탈리아, 영국, 일본, 스웨덴, 중국 등 44개 국에서는 RPS제도, 즉 신재생 에너지 의무할당제를 시행하고 있다. 기후변화협약 발효와 고유가 상황 지속 등 외부요인에 대응하기 위하여 대한민국 정부는 2012년 부로 RP2013342S제도를 시행하는 등, 정부 주도로 신재생에너지 보급을 확대하고 있으며, 그 공급량 또한 민간참여에 힘입어 지속적으로 증가하고 있는 추세이다.

작품의 개발 방법 및 과정

작품의 개발에 대한 주안점은 다음과 같다.

- 1. 건축물의 설비기준 등에 관한 규칙 제 11조 3항 별표 5의 제 13호에 따라, 환기장치의 소음기준을 40데시벨 미만으로 확보
- 2. 유럽의 관련기준을 충족하는 G3등급의 필터를 사용하여, 10마이크로미터 크기의 먼지 까지 여과할 수 있는 성능 확보
- 3. 수명저하가 적고 신뢰성이 좋은 BLDC 모터 사용으로 유지비용 감소 및 소음저감성능 확보
- 4. 수분이 집중적으로 흡착 되더라도 응축수가 생기는 것을 제어하는 세라믹소재를 사용하여 결로방지와 고효율의 축열성능 확보

작품 구조도

그림 1 | 환기장치(좌), 태양광 집광판(중), 태양광 축전지(우)

기대 효과 및 활용 방안

- 첫째, EC 등 작동효율이 높은 동작방식을 사용함으로써 취침 시에도 쾌적하고 조용한 환경을 조성해 줄 수 있다.
- 둘째, 태양광 에너지와 상용전원을 상호보완적으로 사용함으로써, 기상악화에 따른 제한사 항을 극복하고 운용비용에 대한 부담을 경감시켜 줄 것이다.
- 셋째, 열회수효율이 높은 축열소재를 사용하여 실내와 실외간 온도차가 큰 환경에서 환기를 실시할 때, 실내 온도조절장치의 가동수준을 적정수준으로 유지할 수 있다.
- 넷째, 시공성이 좋아 설치가 간편하며, 필터 등의 소모품도 쉽게 교체할 수 있다.

위의 네 가지 장점을 근거로, 지속적인 비용부담을 낮추고 최근 이슈화되는 미세먼지에도 대응하는 저비용 고효율 환기장치에 대한 거주자들의 요구를 만족시킬 수 있을 것이다.

건축설비소방과

팀소개 및 역할 분담

학과	학번	성명	역할	참여도(%)
건축설비소방과	201334206	김도경	조장, 작품제작	25%
건축설비소방과	201534231	정준영	부조장, 작품제작	25%
건축설비소방과	201334228	이재형	정보수집, 도면제작	25%
건축설비소방과	201534217	백윤지	정보수집, 발표, 총무	25%
건축설비소방과	201534240	박지원	없음	0%
건축설비소방과	201534241	이서영	없음	0%

비용분석

항목	세부항목	소요비용(원)
시작품제작비	태양집광판, 아크릴, 팬 등	2,467,300
작품제작지도비		600,000
지도간담회비		360,000
계		3,427,300

참고문헌

1. 법제처, 건축물의 설비기준 등에 관한 규칙 제 11조 3항 별표 5의 제 13호

http://www.law.go.kr/lsBylInfoPLinkR.do?lsiSeq=172947&lsN-m=%EA%B1%B4%EC%B6%95%EB%AC%BC%EC%9D%98+%EC%84%A4%EB%B9 %84%EA%B8%B0%EC%A4%80+%EB%93%B1%EC%97%90+%EA%B4%80%ED% 95%9C+%EA%B7%9C%EC%B9%99&bylNo=0001&bylBrNo=05&bylCls=BE&bylEfY-d=20150709&bylEfYdYn=Y

2. Rosenberg 社, EC 모터 팬의 전력소모 절감수준

http://rosenberg.co.kr/%ea%b8%b0%ec%88%a0%ec%a7%80%ec%9b%90/%ec%8b%a4%ec%a7%88%ec%a0%81%ec%9d%b8-%ec%a0%88%ea%b0%90-%ec%98%88/

3. AC 및 EC팬의 노이즈 비교

 $http://www.ebmpapst.com.au/media/content/publications_downloads/impeller_propeller_techmag/Propeller20.pdf\\$