UC Berkeley, Department of Statistics

MA Exam, (Statistics 201B) January 21, 2023

- 1. Consider a clinical trial in which one group of patients receives an experimental cancer treatment and another group receives a standard treatment. The experimental group contains n patients, of which X are still alive five years later. The standard treatment group contains m patients, of which Y are still alive five years later. Let p_e denote the probability of surviving five years or more under the experimental treatment, and let p_s denote the same probability for the standard treatment, and model $X \sim \text{Binomial}(n; p_e)$ and $Y \sim \text{Binomial}(m; p_s)$. We assume that X and Y are independent.
 - (a) Derive the MLEs for p_e and p_s , and for $\psi = p_e p_s$.
 - (b) Calculate the bias and variance for the MLE $\hat{\psi}$.
 - (c) Find the Fisher information for ψ . Does it correspond to the variance of $\hat{\psi}$?
 - (d) Consider testing $H_0: p_e = p_s$ versus $H_1: H_0$ is not true. Determine what test statistic you would use. What is the (asymptotic) sampling distribution of the test statistic? Set up the decision rule.
- 2. Suppose that X_1, \ldots, X_n are i.i.d. Exponential(θ)
 - (a) Find the MLE for $\log \theta$ and its variance.
 - (b) Using a Gamma(α, β) prior, what is the Bayes estimator for θ under squared error loss?
 - (c) In words (you do not need to carry out the mathematics), how would you decide between modeling these data as Exponential(θ) and Gamma(δ, σ)¹?

¹That is a Gamma model for the data distribution, not the prior used in part (b).

[©] Giles Hooker 2022. Please do not post online or share with anyone.

Distributions

Name/Range	Notation	pmf/pdf	Mean	Variance
Normal	$N(\mu, \sigma^2)$	$\frac{1}{\sqrt{2\pi\sigma^2}}e^{(x-\mu)^2/2\sigma^2}$	$E\mu$	$Var(X) = \sigma^2$
$(-\infty,\infty)$				$Var([X - \mu]^2) = 2\sigma^4$
Exponential $(0, \infty)$	$Exp(\theta)$	$\theta e^{-\theta x}$	$1/\theta$	$1/\theta^2$
Uniform (a, b)	U(a,b)	$I(a \le x \le b)$	(a+b)/2	$(b-a)^2/12$
Gamma $(0, \infty)$	$G(\alpha, \beta)$	$\beta^{\alpha} x^{\alpha-1} e^{-\beta x} / \Gamma(\alpha)$	α/β	$lpha/eta^2$
Beta $(0,1)$	$Beta(\alpha, \beta)$	$x^{\alpha-1}(1-x)^{\beta-1}/B(\alpha,\beta)$	$\alpha/(\alpha+\beta)$	$\alpha\beta/[(\alpha+\beta)^2(\alpha+\beta+1)]$
Dirichlet	$D(\alpha)$	$B(\alpha)^{-1} \prod x_k^{\alpha_k - 1}$	α_k/α_0	$(\alpha_k/\alpha_0)(1-\alpha_k/\alpha_0)/(\alpha_0+1)$
Binomial	B(n,p)	$\binom{n}{k}p^x(1-p)^{n-x}$	np	np(1-p)
n tries, $#$ success				
Multinomial	M(n,p)	$\frac{n!}{x_1! \dots x_k!} p_1^{x_1} \dots p_k^{x_k}$	np_j	$np_j(1-p_j)$
$x_k = \text{no in cat } k$				
Poisson	$P(\lambda)$	$\lambda^k e^{-\lambda}/k!$	λ	λ
+ive integers				
Negative binomial	NB(p,r)	$\binom{k+r-1}{r-1}(1-p)^k p^r$	r(1-p)/p	$r(1-p)/p^2$
tries until r success		· · · - /		

Results $X \sim (\mu, \sigma^2)$ means $EX = \mu$, $var(X) = \sigma^2$ without assuming normality.

• Properties of expectation and variance

$$E(aX+b) = a\mu + b \qquad \operatorname{var}(aX+b) = a^2\sigma^2 \qquad \operatorname{cov}(aX+Z,cY+d) = ac\operatorname{cov}(X,Y) + c\operatorname{cov}(Z,Y)$$

- Bonferroni's inequality: P(A or B) < P(A) + P(B).
- Probability limits if $X_i \sim (\mu, \sigma^2)$

$$P(|\bar{X}_n - \mu| > \epsilon) \to 0$$
 $\sqrt{n}(\bar{X}_n - \mu)/\sigma \stackrel{d}{\to} N(0, 1)$

• Delta method, for a sequence Z_n (usually estimators)

$$\sqrt{n}(Z_n - \mu)/\sigma \stackrel{d}{\to} N(0, 1) \Rightarrow \sqrt{n}(g(Z_n) - g(\mu))/(g'(\mu)\sigma) \stackrel{d}{\to} N(0, 1)$$

• M-estimator, if X_1, \ldots, X_n i.i.d. and $\theta = \operatorname{argmax} \sum M(\theta; X_i)$ then

$$\sqrt{n}(\hat{\theta} - \theta) \approx \frac{\frac{1}{\sqrt{n}} \sum dM(\theta; X_i) / d\theta}{\frac{1}{n} \sum d^2 M(\theta; X_i) / d\theta^2} \xrightarrow{d} N\left(0, \operatorname{var}(dM/d\theta) / \left[Ed^2 M/d\theta^2\right]^2\right)$$

When M is likelihood, $var(dM/d\theta) = -Ed^2M/d\theta^2 = I(\theta)$.

- MSE = $bias^2 + variance$: $E(X a)^2 = E(X EX)^2 + (EX a)^2$
- Linear Regression estimates $\hat{\beta}_1 = \sum (X_i \bar{X})(Y_i \bar{Y}) / \sum (X_i \bar{X})^2$, $\hat{\beta}_0 = \bar{Y} \hat{\beta}_1 \bar{X}$.

© Giles Hooker 2022. Please do not post online or share with anyone.

Definitions

If
$$X_i \sim f(x; \theta^*)$$

log likelihood $l_n(\theta; \mathcal{X}) = \sum \log f(X_i; \theta)$

score $s_n(\theta; \mathcal{X}) = dl_n(\theta; \mathcal{X})/d\theta$, note $E_{\theta^*} s_n(\theta^*; \mathcal{X}) = 0$.

information $I(\theta) = E_{\theta^*} \left[\frac{d}{d\theta} \log f(X, \theta^*) \right]^2 = -E_{\theta^*} \frac{d^2}{d\theta^2} \log f(X, \theta^*)$

MLE $\hat{\theta}_n = \operatorname{argmax}_{\theta} l_n(\theta; \mathcal{X}) = \{\theta : s_n(\theta; \mathcal{X}) = 0\}, \sqrt{nI(\theta)}(\hat{\theta}_n - \theta^*) \xrightarrow{d} N(0, 1)$

MoM If $EX^j = \mu_j(\theta)$ then $\hat{\theta}_n$ solves $\mu_j(\hat{\theta}_n) = \frac{1}{n} \sum X_i^j$.

Empirical Distribution $\hat{F}_n(x; \mathcal{X}) = \frac{1}{n} \sum I(X_i < x)$, "draw an observed X_i at random"

LR Test Of $H_0: \theta = \theta_0$ versus $H_1: \theta = \theta_1$ rejects for $l(\theta_1; \mathcal{X})/l(\theta_0; \mathcal{X}) > C$.

Generalized LR Test for $\theta = \theta_0$: $2(\max l_n(\theta; \mathcal{X}) - l_n(\theta_0; \mathcal{X})) \sim \chi_1^2$

Wald test $\sqrt{nI(\theta)}|\hat{\theta} - \theta_0| < z_{1-\alpha/2}$

Bonferroni Correction For K tests, reject test with $p < \alpha/K$

Posterior $\mathcal{X} \sim f(\mathcal{X}|\theta), \ \theta \sim f(\theta), \text{ posterior is } f(\theta|\mathcal{X}) \sim C(\mathcal{X})f(\mathcal{X}|\theta)f(\theta).$

Expected a posteriori $\hat{\theta} = \int \theta f(\theta|\mathcal{X}) d\theta$.

Bayes Factor between model $f_0(\mathcal{X}|\theta_0)$ with prior $f(\theta_0)$ and $f_1(\mathcal{X}|\theta_1)$ with prior $f(\theta_1)$ is $\int f(\mathcal{X}|\theta_0) f(\theta_0) d\theta_0 / \int f(\mathcal{X}|\theta_1) f(\theta_1) d\theta_1$.

Frequentist Risk for estimator $\hat{\theta}(\mathcal{X})$, $R(\theta, \hat{\theta}) = E_{\mathcal{X}} L(\theta, \hat{\theta}(\mathcal{X}))$

Posterior Risk $r(\hat{\theta}|\mathcal{X}) = \int L(\theta, \hat{\theta}(\mathcal{X})) f(\theta|\mathcal{X}) d\theta$

Bayes Estimator $\hat{\theta}(\mathcal{X}) = \operatorname{argmin}_t r(t|\mathcal{X}).$

Bayes Risk $r(f, \hat{\theta}) = \int R(\theta, \hat{\theta}) f(\theta) d\theta$

Kernel (local) Estimate $\hat{\theta}(x) = \operatorname{argmin}_t \sum K(X_i, x) L(t; X_i, Y_i)$ for squared error loss:

$$\hat{f}(x) = \frac{\sum_{i=1}^{n} K(|X_i - x|/h)Y_i}{\sum K(|X_i - x|/h)}$$

Basis Expansion $\hat{g}(x) = \sum_{j=1}^{J} b_j \phi_j(x)$