Chapter 5: Mining Frequent Patterns, Association and Correlations

- Basic concepts and a road map
- Efficient and scalable frequent itemset mining methods
- Mining various kinds of association rules
- From association mining to correlation analysis
- Constraint-based association mining
- Summary

What Is Frequent Pattern Analysis?

- Frequent pattern: a pattern (a set of items, subsequences, substructures, etc.) that occurs frequently in a data set
- First proposed by Agrawal, Imielinski, and Swami [AIS93] in the context of frequent itemsets and association rule mining
- Motivation: Finding inherent regularities in data
 - What products were often purchased together?— Beer and diapers?!
 - What are the subsequent purchases after buying a PC?
 - What kinds of DNA are sensitive to this new drug?
- Applications
 - Basket data analysis, cross-marketing, catalog design, sale campaign analysis, Web log (click stream) analysis, and DNA sequence analysis.

Why Is Freq. Pattern Mining Important?

- Discloses an intrinsic and important property of data sets
- Forms the foundation for many essential data mining tasks
 - Association, correlation, and causality analysis
 - Sequential, structural (e.g., sub-graph) patterns
 - Pattern analysis in spatiotemporal, multimedia, timeseries, and stream data
 - Classification: associative classification
 - Cluster analysis: frequent pattern-based clustering
 - Semantic data compression
 - Broad applications

Basic Concepts: Frequent Patterns and **Association Rules**

Transaction-id	Items bought	
10	A, B, D	
20	A, C, D	
30	A, D, E	
40	B, E, F	
50	B, C, D, E, F	

- Itemset $X = \{x_1, ..., x_k\}$
 - Find all the association rules $X \rightarrow Y$ with minimum support and confidence
 - support, s, probability that a transaction contains $X \cup Y$
 - confidence, c, conditional probability that a transaction having X also contains Y

Let $sup_{min} = 50\%$, $conf_{min} = 50\%$ Freq. Pat.: { A:3, B:3, D:4, E:3, AD:3} **Association rules:**

$$A \to D$$
 (60%, 100%)
 $D \to A$ (60%, 75%)

Closed Patterns and Max-Patterns

- A long pattern contains a combinatorial number of subpatterns, e.g., $\{a_1, ..., a_{100}\}$ contains $\binom{100}{100} + \binom{1}{100} + \binom{1}{100$
- Solution: Mine closed patterns and max-patterns instead
- An itemset X is closed if X is frequent and there exists no super-pattern Y > X, with the same support as X (proposed by Pasquier, et al. @ ICDT'99)
- An itemset X is a max-pattern if X is frequent and there exists no frequent super-pattern Y > X (proposed by Bayardo @ SIGMOD'98)
- Closed pattern is a lossless compression of freq. patterns
 - Reducing the # of patterns and rules

Closed Patterns and Max-Patterns

- Exercise. DB = $\{ < a_1, ..., a_{100} >, < a_1, ..., a_{50} > \}$
 - Min_sup = 1.
- What is the set of all frequent patterns?
 - $2^{100}-1$
- What is the set of closed itemset?
 - <a₁, ..., a₁₀₀>: 1
 - < a₁, ..., a₅₀>: 2
- What is the set of max-pattern?
 - <a>1, ..., a₁₀₀>: 1

Chapter 5: Mining Frequent Patterns, Association and Correlations

- Basic concepts and a road map
- Efficient and scalable frequent itemset mining methods
- Mining various kinds of association rules
- From association mining to correlation analysis
- Constraint-based association mining
- Summary

Scalable Methods for Mining Frequent Patterns

- The downward closure property of frequent patterns
 - Any subset of a frequent itemset must be frequent
 - If {beer, diaper, nuts} is frequent, so is {beer, diaper}
 - i.e., every transaction having {beer, diaper, nuts} also contains {beer, diaper}
- Scalable mining methods: Three major approaches
 - Apriori (Agrawal & Srikant@VLDB'94)
 - Freq. pattern growth (FPgrowth—Han, Pei & Yin @SIGMOD'00)
 - Vertical data format approach (Charm—Zaki & Hsiao @SDM'02)

Apriori: A Candidate Generation-and-Test Approach

- Apriori pruning principle: If there is any itemset which is infrequent, its superset should not be generated/tested!
 (Agrawal & Srikant @VLDB'94, Mannila, et al. @ KDD' 94)
- Method:
 - Initially, scan DB once to get frequent 1-itemset
 - Generate candidate itemsets of length (k+1) from frequent itemsets of length k
 - Test the candidates against DB
 - Terminate when no frequent or candidate set can be generated

The Apriori Algorithm—An Example

 $Sup_{min} = 2$ Database TDB

Tid	Items	
10	A, C, D	
20	В, С, Е	
30	A, B, C, E	
40	B, E	

Itemset	sup
{A}	2
{B}	3
{C}	3
{D}	1
{E}	3

	Itemset	sup
1	{A}	2
	{B}	3
	{C}	3
	{E}	3

L_2	Itemset	sup
_	{A, C}	2
	{B, C}	2
	{B, E}	3
	{C, E}	2

$_2$	Itemset	sup
	{A, B}	1
	{A, C}	2
	{A, E}	1
	{B, C}	2
	{B, E}	3
	{C, E}	2

 2^{nd} scan

Itemset
{A, B}
{A, C}
{A, E}
{B, C}
{B, E}
{C, E}

C_3	Itemset	
	{B, C, E}	

3 rd scan	$L_{\mathbb{R}}$
-	

Itemset	sup
{B, C, E}	2

The Apriori Algorithm

Pseudo-code:

```
C<sub>k</sub>: Candidate itemset of size k
L_k: frequent itemset of size k
L_1 = \{ \text{frequent items} \};
for (k = 1; L_k! = \emptyset; k++) do begin
    C_{k+1} = candidates generated from L_k;
   for each transaction t in database do
           increment the count of all candidates in C_{k+1}
     that are contained in t
   L_{k+1} = candidates in C_{k+1} with min_support
   end
return \bigcup_k L_k;
```

Important Details of Apriori

- How to generate candidates?
 - Step 1: self-joining L_k (what is a join?)
 - Step 2: pruning
- How to count supports of candidates?
- Example of Candidate-generation
 - $L_3=\{abc, abd, acd, ace, bcd\}$
 - Self-joining: L₃*L₃
 - abcd from abc and abd
 - acde from acd and ace
 - Pruning:
 - acde is removed because ade is not in L_3
 - $C_4 = \{abcd\}$

Challenges of Frequent Pattern Mining

- Challenges
 - Multiple scans of a transaction database
 - Huge number of candidates
 - Tedious workload of support counting for candidates
- Improving Apriori: general ideas
 - Reduce the number of transaction database scans
 - Shrink the number of candidates
 - Facilitate support counting of candidates

