

- Metode pencarian akar persamaan dengan memanfaatkan kemiringan dan selisih tinggi dari dua titik batas range.
- Dua titik a dan b pada fungsi f(x) digunakan untuk mengestimasi posisi c dari akar interpolasi linier.
- Metode ini juga dikenal dengan metode False Position

$$\frac{f(b) - f(a)}{b - a} = \frac{f(b) - 0}{b - x}$$

$$x = b - \frac{f(b)(b - a)}{f(b) - f(a)}$$

$$x = \frac{af(b) - bf(a)}{f(b) - f(a)}$$

$$\frac{f(b) - f(a)}{b - a} = \frac{f(b) - 0}{b - x}$$

$$x = b - \frac{f(b)(b - a)}{f(b) - f(a)}$$

$$x = \frac{af(b) - bf(a)}{f(b) - f(a)}$$

Algoritma

- definisikan fungsi f(x)
- Tentukan batas bawah (a) dan batas atas (b)
- Tentukan toleransi error (e) dan iterasi maksimum (n)
- 4. Hitung Fa = f(a) dan Fb = f(b)
- 5. Untuk iterasi I = 1 s/d n atau error > e

$$\bullet \quad \mathbf{x} = \frac{Fb.a - Fa.b}{Fb - Fa}$$

- Hitung Fx = f(x)
- Hitung error = |Fx|
- Jika Fx.Fa <0 maka b = x dan Fb = Fx jika tidak a = x dan Fa = Fx.
- 6. Akar persamaan adalah x.

Cari salah satu akar dari xe-x+1=0 pada interval x= [-1,0] dengan metode Regula Falsi. Lakukan pencarian sampai 10 iterasi.

$$f(x)=xe^{-x}+1$$
; $e=2,71828$

Iterasi 1:

- $a=-1 \rightarrow f(a)=(-1)e^{-(-1)}+1=-1,71828; f(a)<0$
- $b=0 \rightarrow f(b)=(0)e^{-(0)}+1=1$; f(b)>0

$$x_{1} = \frac{\text{af(b)-bf(a)}}{\text{f(b)-f(a)}} = \frac{(-1)(1) - (0)(-1,71828)}{1 - (-1,71828)} = \frac{-1}{2,71828} = -0,36788$$

$$x_{1} = -0,36788 \rightarrow f(x_{1}) = (-0,36788)e^{-(-0,36788)} + 1 = 0,468536$$

 $f(x_1)>0$, berbeda tanda dengan f(a)<0, maka interval baru untuk iterasi berikutnya adalah [a, x_1] atau [-1;-0,36788]

Iterasi 2:

- $a=-1 \rightarrow f(a)=-1,71828; f(a)<0$
- b=-0,36788 \rightarrow f(b)=0,468536; f(b)>0

$$x_2 = \frac{(-1)(0,468536) - (-0,36788)(-1,71828)}{0,468536 - (-1,71828)} = \frac{-1,10066}{2,71828} = -0,50331$$

$$x_2 = -0,50331 \rightarrow f(x_1) = (-0,50331)e^{-(-0,50331)} + 1 = 0,16742$$

 $f(x_2)>0$, berbeda tanda dengan f(a), maka interval baru untuk iterasi berikutnya adalah [a, x_2] atau [-1;-0,50331]

Dengan cara yang sama (lihat iterasi 1 dan iterasi 2), diperoleh:

Iterasi 3:

- $a=-1 \rightarrow f(a)=-1,71828; f(a)<0$
- b=-0,50331 \rightarrow f(b)=0,16742; f(b)>0

$$x_3 = -0,54741$$

$$f(x_3) = 0,05365$$

 $f(x_3)>0$, berbeda tanda dengan f(a)<0, maka interval baru untuk iterasi berikutnya adalah $[a, x_3]$ atau [-1; -0,54741]

Iterasi 4:

- $a=-1 \rightarrow f(a)=-1,71828; f(a)<0$
- b=-0,54741 \rightarrow f(b)=0,05365; f(b)>0

$$x_4 = -0,56112$$

$$f(x_4) = 0,01658$$

 $f(x_4)>0$, berbeda tanda dengan f(a)<0, maka interval baru untuk iterasi berikutnya adalah $[a, x_4]$ atau [-1; -0,56112]

Iterasi 5:

- $a=-1 \rightarrow f(a)=-1,71828; f(a)<0$
- b=-0,56112 \rightarrow f(b)=0,01658; f(b)>0

$$x_5 = -0,56531$$

$$f(x_5) = 0,00506$$

 $f(x_5)>0$, berbeda tanda dengan f(a)<0, maka interval baru untuk iterasi berikutnya adalah $[a, x_5]$ atau [-1; -0,56531]

Iterasi 6:

- $a=-1 \rightarrow f(a)=-1,71828; f(a)<0$
- b=-0,56531 \rightarrow f(b)=0,00506; f(b)>0

$$x_6 = -0,56659$$

$$f(x_6) = 0,00154$$

 $f(x_6)>0$, berbeda tanda dengan f(a)<0, maka interval baru untuk iterasi berikutnya adalah [a, x_6] atau [-1; -0,56659]

Iterasi 7:

- $a=-1 \rightarrow f(a)=-1,71828; f(a)<0$
- b=-0,56659 \rightarrow f(b)=0,00154; f(b)>0

$$x_7 = -0,56697$$

$$f(x_7) = 0,00047$$

 $f(x_7)>0$, berbeda tanda dengan f(a)<0, maka interval baru untuk iterasi berikutnya adalah $[a, x_7]$ atau [-1; -0,56697]

Iterasi 8:

- $a=-1 \rightarrow f(a)=-1,71828; f(a)<0$
- b=-0,56697 \rightarrow f(b)=0,00047; f(b)>0

$$x_8 = -0.56709$$

$$f(x_8) = 0,00014$$

 $f(x_8)>0$, berbeda tanda dengan f(a)<0, maka interval baru untuk iterasi berikutnya adalah $[a, x_8]$ atau [-1; -0,56709]

Iterasi 9:

- $a=-1 \rightarrow f(a)=-1,71828; f(a)<0$
- b=-0,56709 \rightarrow f(b)=0,00014; f(b)>0

$$x_9 = -0,56713$$

$$f(x_9) = 0,00004$$

 $f(x_9)>0$, berbeda tanda dengan f(a)<0, maka interval baru untuk iterasi berikutnya adalah $[a, x_9]$ atau [-1; -0,56713]

Iterasi 10:

- $a=-1 \rightarrow f(a)=-1,71828; f(a)<0$
- b=-0,56713 \rightarrow f(b)=0,00004; f(b)>0

$$x_{10} = -0,56714$$

$$f(x_6) = 0,00001$$

Iterasi berhenti, karena hanya diminta hingga iterasi ke-10. Hingga iterasi ke-10 ini diperoleh akar terbaik x_{10} =-0,56714 dengan $f(x_{10})$ =0,00001 \cong 0.

Iterasi dapat dilanjutkan lagi untuk memperoleh akar yang lebih baik, dengan menggunakan interval $[a, x_{10}]$ atau [-1; -0,56714]

akar dari f(x)

Ringkasan hasil perhitungan contoh di atas adalah sebagai berikut:

iterasi	а	b	f(a)	f(b)	af(b)	bf(a) af(b)-bf(a)	f(b)-f(a)	X	f(x)
1	-1	0	-1,71828	1	-1	0 -1	2,71828	-0,36788	0,46854
2	-1	-0,36788	-1,71828	0,46854	-0,46854	0,63212 -1,10066	2,18682	-0,50331	0,16742
3	-1	-0,50331	-1,71828	0,16742	-0,16742	0,86484 -1,03226	1,88570	-0,54741	0,05365
4	-1	-0,54741	-1,71828	0,05365	-0,05365	0,94061 -0,99426	1,77193	-0,56112	0,01658
5	-1	-0,56112	-1,71828	0,01658	-0,01658	0,96415 -0,98073	1,73486	-0,56531	0,00506
6	-1	-0,56531	-1,71828	0,00506	-0,00506	0,97136 -0,97642	1,72334	-0,56659	0,00154
7	-1	-0,56659	-1,71828	0,00154	-0,00154	0,97355 -0,97509	1,71982	-0,56697	0,00047
8	-1	-0,56697	-1,71828	0,00047	-0,00047	0,97422 -0,97469	1,71875	-0,56709	0,00014
9	-1	-0,56709	-1,71828	0,00014	-0,00014	0,97442 -0,97457	1,71842	-0,56713	0,00004
10	-1	-0,56713	-1,71828	0,00004	-0,00004	0,97448 -0,97453	1,71832	-0,56714	0,00001

Akar terbaik

METODE TERBUKA

- Metode terbuka merupakan metode pencarian akar persamaan berdasarkan 1 atau lebih akar awal tertentu tanpa harus mengetahui interval dimana akar tsb. berada.
- Jadi jika diketahui akar awal x_i
 maka perbaikan akar berikutnya
 (x_{i+1}) dilakukan menggunakan x_i
 tersebut.
- Berbeda dengan metode tertutup yang sebagian besar dilakukan secara iteratif untuk memperoleh akar yang konvergen, pada metode terbuka dimungkinkan terjadinya pencarian akar yang konvergen atau divergen.
- Pada sesi ini akan dibahas 3 metode terbuka: metode iterasi, Newton-Raphson, dan secant.

METODE ITERASI SEDERHANA

Contoh: Tentukan salah satu akar dari x²-x-6=0 dengan metode iterasi, jika diketahui akar awal nya adalah 2,5.

x²-x-6=0 dapat diubah menjadi :

•
$$x^2=x+6$$
 atau $x=\sqrt{x+6}$

• $x=x^2-6$

Misal dipilih $x=x^2-6$ dan dibentuk fungsi iterasi $x_{i+1}=x_i^2-6$, dimana i=0,1,2,...,n. Selanjutnya, secara iteratif akar persamaan dapat ditaksir sebagai berikut:

Iterasi 1:
$$i=0$$
; $x_0=2,5$

$$x_1=x_0^2-6=(2,5)^2-6=(6,25-6)=0,25$$

Iterasi 2: i=1; $x_1=0,25$

$$x_2 = x_1^2 - 6 = (0,25)^2 - 6 = (0,0625 - 6) = -5,9375$$

Iterasi 3: i=2; $x_2=-5,9375$

$$x_3 = x_2^2 - 6 = (-5,9375)^2 - 6 = 29,25391$$

Iterasi 4:
$$i=3$$
; $x_3=29,25391$

$$x_4 = x_3^2 - 6 = (29,25391)^2 - 6 = 8549,791$$

$$x_5 = x_4^2 - 6 = (8549,791)^2 - 6 = 722138,8$$

Dan seterusnya.

Hingga iterasi ke-5 tampak bahwa akar persamaan yang dicari ternyata divergen (menjauh dari nilai yang seharusnya). Secara analitik, akar sesungguhnya dari x²-x-6=0 adalah x=3 atau x=-2.

Ini berarti penyusunan fungsi $x=g(x)=x^2-6$ kurang tepat.

METODE ITERASI SEDERHANA

Sekarang, akan dicoba menggunakan $x=\sqrt{x+6}$ Dibentuk fungsi iterasi $x_{i+1}=\sqrt{x_i+6}$, dimana i=0,1,2,...,n.

Iterasi 1: i=0;
$$x_0$$
=2,5
 x_1 = $\sqrt{x_0+6}$ = $\sqrt{2,5+6}$ = 2,9155
Iterasi 2: i=1; x_1 =2,9155
 x_2 = $\sqrt{x_1+6}$ = $\sqrt{2,9155+6}$ = 2,9859
Iterasi 3: i=2; x_2 =2,9859
 x_3 = $\sqrt{x_2+6}$ = $\sqrt{2,9859+6}$ = 2,9976
Iterasi 4: i=3; x_3 =2,9976
 x_4 = $\sqrt{x_3+6}$ = $\sqrt{2,9976+6}$ = 2,9996

Iterasi 5: i=4;
$$x_4$$
=2,9996
$$x_5 = \sqrt{x_4 + 6} = \sqrt{2,9996 + 6} = 2,9999$$
 Iterasi 6: i=5; x_5 =2,9999
$$x_6 = \sqrt{x_5 + 6} = \sqrt{2,9999 + 6} = 3$$
 Iterasi 7: i=6; x_6 =3
$$x_7 = \sqrt{x_6 + 6} = \sqrt{3 + 6} = 3$$
 Iterasi 8: i=7; x_7 =3
$$x_8 = \sqrt{x_7 + 6} = \sqrt{3 + 6} = 3$$

Dengan ketelitian hitungan 4 digit desimal, hingga iterasi ke-8 diperoleh akar persamaan x=3 dan tampak sudah stabil dan konvergen ke nilai x=3.

Konvergensi atau divergensi pencarian akar pada metode iterasi sangat tergantung pada fungsi iteratif yang dipilih/disusun untuk penaksiran akar.

SOAL LATIHAN

Tentukan salah satu akar dari fungsi berikut menggunakan metode Regula Falsi:

- 1. -0,6x²+2.4x+5,5=0 pada interval [5; 10]
- 2. $4x^3-6x^2+7x-2,3=0$ pada interval [0; 1]
- 3. $-26+85x-91x^2+44x^3-8x^4+x^5=0$ pada interval [0,5; 1,0]
- 4. x^{3,5}=80 pada interval [2; 5]
- 5. $-2x^6 1.6x^4 + 12x + 1 = 0$ pada interval [0; 1]

Tentukan salah satu akar dari fungsi berikut menggunakan metode iterasi sederhana:

- 1. x^2 -2x-3=0 dengan akar awal x_0 =4
- 2. e^{-x} -x=0 dengan akar awal x_0 =0°
- 3. $-x^2 + 1.8x + 2.5 = 0$ dengan akar awal $x_0 = 5$
- 4. $0.95x^3-5.9x^2+10.9x-6=0$ dengan akar awal $x_0=3.5$
- 5. $2 \sin(\sqrt{x}) x$ dengan akar awal $x_0=0,5$

Catatan: Lakukan komputasi soal-soal di atas masing-masing 5 iterasi dengan ketelitian hitungan 4 digit desimal.

