Proofs of "Robust Operation of Distribution Systems with Uncertain Renewable Generation via Energy Sharing"

Meng Yang

January 29, 2024

Proof of Proposition 1 1

The KKT conditions of the second-stage sharing problem (3)-(4) (in the paper) is

$$2l_i \Delta p_i - \rho_i^- + \rho_i^+ + \mu_j = 0, \forall j \in \mathcal{J}, i \in \mathcal{I}_j$$
(A.1a)

$$-2a\lambda + b_j - a\mu_j - Ja\eta_j = 0, \forall j \in \mathcal{J}$$
(A.1b)

$$\lambda + \mu_i + \eta_i = 0, \forall j \in \mathcal{J} \tag{A.1c}$$

$$\sum_{i \in \mathcal{I}_j} (p_i + \Delta p_i) + w_j - a\lambda + b_j = \sum_{q \in \mathcal{Q}_j} D_q, j \in \mathcal{J}$$
(A.1d)

$$\sum_{j \in \mathcal{I}} (-a\lambda + b_j) = 0 \tag{A.1e}$$

$$0 \le (\Delta p_i + r_i) \quad \perp \quad \rho_i^- \ge 0, \forall j \in \mathcal{J}, i \in \mathcal{I}_j \tag{A.1f}$$

$$0 \le (\Delta p_i + r_i) \quad \perp \quad \rho_i^- \ge 0, \forall j \in \mathcal{J}, i \in \mathcal{I}_j$$

$$0 \le (-\Delta p_i + r_i) \quad \perp \quad \rho_i^+ \ge 0, \forall j \in \mathcal{J}, i \in \mathcal{I}_j$$
(A.1f)
$$(A.1g)$$

The KKT condition of the equivalent problem (8) (in the paper) is

$$2l_{i}\Delta p_{i} - \frac{\sum\limits_{q \in \mathcal{Q}_{j}} D_{q} - w_{j} - \sum\limits_{i \in \mathcal{I}_{j}} p_{i} - \sum\limits_{i \in \mathcal{I}_{j}} \Delta p_{i}}{a(J-1)} - \delta_{i}^{-} + \delta_{i}^{+} + \epsilon = 0, \forall j \in \mathcal{J}, i \in \mathcal{I}_{j}$$
(A.2a)

$$\sum_{i \in \mathcal{I}} (p_i + \Delta p_i) + \sum_{j \in \mathcal{J}} w_j = \sum_{q \in \mathcal{Q}} D_q$$
(A.2b)

$$0 \le (\Delta p_i + r_i) \quad \perp \quad \delta_i^- \ge 0, \forall j \in \mathcal{J}, i \in \mathcal{I}_j$$
(A.2c)

$$0 \le (-\Delta p_i + r_i) \perp \delta_i^+ \ge 0, \forall j \in \mathcal{J}, i \in \mathcal{I}_j$$
 (A.2d)

" \rightarrow ": If $(\Delta p^*, b^*)$ is the NE of the sharing game (3) (in the paper), then it satisfies the KKT conditions (A.1). Sum up (A.1d) for all j and substitute (A.1e) into, then (A.2b) is met. With (A.1b) + Ja(A.1c) we have

$$(J-2)a\lambda^* + b_i^* + (J-1)a\mu_i^* = 0 (A.3)$$

Together with (A.1d), we can get

$$\lambda^* + \mu_j^* + \frac{\sum_{q \in \mathcal{Q}_j} D_q - w_j - \sum_{i \in \mathcal{I}_j} p_i - \sum_{i \in \mathcal{I}_j} \Delta p_i^*}{(J - 1)a} = 0$$
(A.4)

(A.1a) - (A.4) gives

$$2l_i \Delta p_i^* - \frac{\sum_{q \in \mathcal{Q}_j} D_q - w_j - \sum_{i \in \mathcal{I}_j} p_i - \sum_{i \in \mathcal{I}_j} \Delta p_i^*}{(J-1)a} - \rho_i^{*-} + \rho_i^{*-} + \lambda^* = 0$$
(A.5)

Let $\delta_j^- = \rho_j^{*-}, \delta_j^+ = \rho_j^{*+}$ and $\epsilon = -\lambda^*$, then (A.2a) is met. Because of (A.1f) and (A.1g), (A.2c) and (A.2d) are all satisfied. As a result, Δp^* is the optimal solution of problem (8) (in the paper).

With (A.1b) + a(A.1c), we can get

$$\eta_j^* = \frac{-a\lambda^* + b_j^*}{(J-1)a} \tag{A.6}$$

Because of (A.1e), it is easy to obtain $\sum_{j\in\mathcal{J}}\eta_j^*=0$. Sum up (A.1a) for all $i\in\mathcal{I}_j$ gives

$$\mu_j^* = -\frac{1}{I_j} \sum_{i \in \mathcal{I}_j} (2l_i \Delta p_i^* - \rho_i^{*-} + \rho_i^{*+})$$
(A.7)

Sum up (A.1c) for all $j \in \mathcal{J}$ and with $\sum_{j \in \mathcal{J}} \eta_j^* = 0$ and (A.7), we can get that

$$\lambda^* = \frac{1}{J} \sum_{j \in \mathcal{J}} \frac{1}{I_j} \sum_{i \in \mathcal{I}_j} (2l_i \Delta p_i^* - \rho_i^{*-} + \rho_i^{*+})$$
(A.8)

and from (A.1d), obviously

$$b_j^* = \sum_{q \in \mathcal{Q}_j} D_q - \sum_{i \in \mathcal{I}_j} (p_i - \Delta p_i^*) - w_j + a\lambda^*$$
(A.9)

" \leftarrow " If (p^*, b^*) is the optimal solution of problem (8) (in the paper) in the paper and the corresponding b, then it satisfies the KKT conditions (A.1) if we let

$$\Delta p_{i} = \Delta p_{i}^{*}$$

$$\rho_{i}^{-} = \delta_{i}^{*-}$$

$$\rho_{i}^{+} = \delta_{i}^{*+}$$

$$\mu_{j} = -2l_{i}\Delta p_{i}^{*} + \delta_{i}^{*-} - \delta_{i}^{*+}$$

$$\lambda = -\epsilon^{*}$$

$$\eta_{j} = -\lambda - \mu_{j}$$

$$b_{j} = \sum_{q \in \mathcal{Q}_{j}} D_{q} - \sum_{i \in \mathcal{I}_{j}} (p_{i} - \Delta p_{i}^{*}) - w_{j} + a\lambda$$
(A.10)

It is worth noting that, at this time, if we sum up (A.2a) for all $i \in \mathcal{I}_i$, then

$$\frac{1}{I_j} \sum_{i \in \mathcal{I}_i} (2l_i \Delta p_i^* - \rho_i^{*-} + \rho_i^{*+}) - \frac{\sum_{q \in \mathcal{Q}_j} D_q - w_j - \sum_{i \in \mathcal{I}_j} p_i - \sum_{i \in \mathcal{I}_j} \Delta p_i^*}{a(J-1)} + \epsilon^* = 0$$
(A.11)

Sum up (A.11) and together with (A.1b), we can prove that

$$\epsilon^* = -\frac{1}{J} \sum_{j \in \mathcal{J}} \frac{1}{I_j} \sum_{i \in \mathcal{I}_j} (2l_i \Delta p_i^* - \rho_i^{*-} + \rho_i^{*+})$$
(A.12)

This completes the proof.

2 Proof of Proposition 2

If an NE of the sharing game (3) exists, then it is easy to check $\Delta p^* \in Y_{SMK}(p,r,w)$, and thus, $Y_{SMK}(p,r,w) \neq \emptyset$. If $Y_{SMK}(p,r,w) \neq \emptyset$, it means given (p,r,w), there exists an $(\Delta p_i, \forall i; b_j, \forall j)$, such that (3b), (3c) and (4) are satisfied. Obviously, (8b) is met under this Δp . Sum up (3c) for all j and together with (4), we can get that (8c) is satisfied. Thus, Δp is a feasible point for the problem (8). In other words, (8) is feasible and has an optimal solution Δp^* . Let $b_j^* = \hat{b}_j, \forall j$. According to Proposition 1, $(\Delta p^*, b^*)$ is the unique NE of the sharing game (3). This completes the proof.

3 Proof of Proposition 3

Given the first-stage strategy (p, r) and uncertain scenario w, under the sharing scheme, if other prosumers' bids are $b_k, k \neq j$, then by choosing

 $\Delta p_i = \Delta \tilde{p}_i, b_j = \frac{\sum_{k \neq j} b_k}{J - 1}$

with

$$\lambda = \frac{\sum_{k \neq j} b_k}{(J-1)a}$$

We have $y^j_{SMK}(p,r,w,\Delta p)=y^j_{IND}(p,r,w,\Delta \tilde{p})$, which means prosumer j can achieve the same cost as under individual scheme. Because each prosumer aims at minimizing its own cost, so we always have $y^j_{SMK}(p,r,w,\Delta p^*) \leq y^j_{SMK}(p,r,w,\Delta p)=y^j_{IND}(p,r,w,\Delta \tilde{p})$. This completes the proof.

4 Proof of Proposition 5

Suppose that $0 < a_1 < a_2$, and Δp^{1*} is the NE of sharing game (3) under $a = a_1$, Δp^{2*} is the NE of sharing game (3) under $a = a_2$. According to Proposition 1, Δp^{1*} and Δp^{2*} are the optimal solution of problem (8) under $a = a_1$ and $a = a_2$, respectively. Due to optimality, we have

$$f_{SMK}(\Delta p^{2*}) + \frac{\sum_{j \in \mathcal{J}} (\sum_{q \in \mathcal{Q}_{j}} D_{q} - w_{j} - \sum_{i \in \mathcal{I}_{j}} p_{i} - \sum_{i \in \mathcal{I}_{j}} \Delta p_{i}^{2*})^{2}}{2a_{1}(J - 1)}$$

$$\geq f_{SMK}(\Delta p^{1*}) + \frac{\sum_{j \in \mathcal{J}} (\sum_{q \in \mathcal{Q}_{j}} D_{q} - w_{j} - \sum_{i \in \mathcal{I}_{j}} p_{it} - \sum_{i \in \mathcal{I}_{j}} \Delta p_{i}^{1*})^{2}}{2a_{1}(J - 1)}$$
(A.13)

which means

$$2a_{1}(J-1)\left(f_{SMK}(\Delta p^{2*}) - f_{SMK}(\Delta p^{1*})\right)$$

$$\geq \sum_{j\in\mathcal{J}}\left(\sum_{q\in\mathcal{Q}_{j}}D_{q} - w_{j} - \sum_{i\in\mathcal{I}_{j}}p_{i} - \sum_{i\in\mathcal{I}_{j}}\Delta p_{i}^{1*}\right)^{2} - \sum_{j\in\mathcal{J}}\left(\sum_{q\in\mathcal{Q}_{j}}D_{q} - w_{j} - \sum_{i\in\mathcal{I}_{j}}\Delta p_{i}^{2*}\right)^{2}$$
(A.14)

If we have

$$f_{SMK}(\Delta p^{1*}) < f_{SMK}(\Delta p^{2*})$$

then we have

$$2a_{2}(J-1)\left(f_{SMK}(\Delta p^{2*}) - f_{SMK}(\Delta p^{1*})\right)$$

$$> 2a_{1}(J-1)\left(f_{SMK}(\Delta p^{2*}) - f_{SMK}(\Delta p^{1*})\right)$$

$$\geq \sum_{j\in\mathcal{J}}\left(\sum_{q\in\mathcal{Q}_{j}}D_{q} - w_{j} - \sum_{i\in\mathcal{I}_{j}}p_{i} - \sum_{i\in\mathcal{I}_{j}}\Delta p_{i}^{1*}\right)^{2} - \sum_{j\in\mathcal{J}}\left(\sum_{q\in\mathcal{Q}_{j}}D_{q} - w_{j} - \sum_{i\in\mathcal{I}_{j}}\Delta p_{i}^{2*}\right)^{2}$$
(A.15)

which indicates

$$f_{SMK}(\Delta p^{2*}) + \frac{\sum_{j \in \mathcal{J}} (\sum_{q \in \mathcal{Q}_{j}} D_{q} - w_{j} - \sum_{i \in \mathcal{I}_{j}} p_{i} - \sum_{i \in \mathcal{I}_{j}} \Delta p_{i}^{2*})^{2}}{2a_{2}(J - 1)}$$

$$\geq f_{SMK}(\Delta p^{1*}) + \frac{\sum_{j \in \mathcal{J}} (\sum_{q \in \mathcal{Q}_{j}} D_{q} - w_{j} - \sum_{i \in \mathcal{I}_{j}} p_{i} - \sum_{i \in \mathcal{I}_{j}} \Delta p_{i}^{1*})^{2}}{2a_{2}(J - 1)}$$
(A.16)

and is contradict to the assumption that Δp^{2*} is the optimal solution of problem (8) (in the paper) under $a = a_2$. This completes the proof.

5 Proof of Proposition 7

5.1 For the first inequality

If the opposite holds

$$\Pi_{CTR}(\bar{p}, \bar{r}, \Delta \bar{p}(\bar{p}, \bar{r}, \bar{w})) > \Pi_{SMK}(p^*, r^*, \Delta p^*(p^*, r^*, w^*))$$
(A.17)

Under the CTR scheme, fix the first-stage variable to (p^*, r^*) and solve the sub "max-min" problem. Denote the obtained worst case as \bar{w}' and the corresponding second-stage variable as $\Delta \bar{p}'(p^*, r^*, \bar{w}')$.

1) If $\bar{w}' = w^*$, then according to Proposition 4, we have

$$\Pi_{CTR}(p^*, r^*, \Delta \bar{p}'(p^*, r^*, \bar{w}')) \leq \Pi_{SMK}(p^*, r^*, \Delta p^*(p^*, r^*, w^*))$$

As a result, together with (A.17), we get

$$\Pi_{CTR}(\bar{p}, \bar{r}, \Delta \bar{p}(\bar{p}, \bar{r}, \bar{w})) > \Pi_{CTR}(p^*, r^*, \Delta \bar{p}'(p^*, r^*, \bar{w}'))$$

which is contradict to the assumption that \bar{p}, \bar{r} is the optimal solution of robust model under CTR scheme.

2) If $\bar{w}' \neq w^*$, then If

$$\Pi_{CTR}(p^*, r^*, \Delta \bar{p}'(p^*, r^*, \bar{w}')) \leq \Pi_{SMK}(p^*, r^*, \Delta p^*(p^*, r^*, w^*))$$

Similar contradiction as 1) can be found. Otherwise, if

$$\Pi_{CTR}(p^*, r^*, \Delta \bar{p}'(p^*, r^*, \bar{w}')) > \Pi_{SMK}(p^*, r^*, \Delta p^*(p^*, r^*, w^*))$$

then suppose $\Delta \bar{p}^{*'}$ is the optimal solution under scenario \bar{w}' , because of Proposition 4 we have

$$\Pi_{SMK}(p^*, r^*, \Delta \bar{p}^{*'}(p^*, r^*, \bar{w}')) > \Pi_{CTR}(p^*, r^*, \Delta \bar{p}'(p^*, r^*, \bar{w}'))$$

As a result,

$$\Pi_{SMK}(p^*, r^*, \Delta \bar{p}^{*'}(p^*, r^*, \bar{w}')) > \Pi_{SMK}(p^*, r^*, \Delta p^*(p^*, r^*, w^*))$$

which is contradict to the assumption that w^* is the worst case for the robust model under sharing scheme.

5.2 For the second inequality

If the opposite holds

$$\Pi_{SMK}(p^*, r^*, \Delta p^*(p^*, r^*, w^*)) > \Pi_{IND}(\tilde{p}, \tilde{r}, \Delta \tilde{p}(\tilde{p}, \tilde{r}, \tilde{w})) \tag{A.18}$$

Under the SMK scheme, fix the first-stage variable to (\tilde{p}, \tilde{r}) and solve the sub "max-min" problem. Denote the obtained worst case as $w^{*'}$ and the corresponding second-stage variable as $\Delta p^{*'}(\tilde{p}, \tilde{r}, w^{*'})$.

1) If $w^{*'} = \tilde{w}$, then according to Proposition 4, we have

$$\Pi_{SMK}(\tilde{p}, \tilde{r}, \Delta p^{*'}(\tilde{p}, \tilde{r}, w^{*'})) \leq \Pi_{IND}(\tilde{p}, \tilde{r}, \Delta \tilde{p}(\tilde{p}, \tilde{r}, \tilde{w}))$$

As a result, together with (A.18), we get

$$\Pi_{SMK}(p^*, r^*, \Delta p^*(p^*, r^*, w^*)) > \Pi_{SMK}(\tilde{p}, \tilde{r}, \Delta p^{*'}(\tilde{p}, \tilde{r}, w^{*'}))$$

which is contradict to the assumption that p^*, r^* is the optimal solution of robust model under SMK scheme.

2) If $w^{*'} \neq \tilde{w}$, then If

$$\Pi_{SMK}(\tilde{p}, \tilde{r}, \Delta p^{*'}(\tilde{p}, \tilde{r}, w^{*'})) \leq \Pi_{IND}(\tilde{p}, \tilde{r}, \Delta \tilde{p}(\tilde{p}, \tilde{r}, \tilde{w}))$$

Similar contradiction as 1) can be found. Otherwise, if

$$\Pi_{SMK}(\tilde{p}, \tilde{r}, \Delta p^{*'}(\tilde{p}, \tilde{r}, w^{*'})) > \Pi_{IND}(\tilde{p}, \tilde{r}, \Delta \tilde{p}(\tilde{p}, \tilde{r}, \tilde{w}))$$

then suppose $\Delta \tilde{p}^{*'}$ is the optimal solution under scenario $w^{*'}$, because of Proposition 4 we have

$$\Pi_{IND}(\tilde{p}, \tilde{r}, \Delta \tilde{p}^{*'}(\tilde{p}, \tilde{r}, w^{*'})) \ge \Pi_{SMK}(\tilde{p}, \tilde{r}, \Delta p^{*'}(\tilde{p}, \tilde{r}, w^{*'}))$$

As a result.

$$\Pi_{IND}(\tilde{p}, \tilde{r}, \Delta \tilde{p}^{*'}(\tilde{p}, \tilde{r}, w^{*'})) > \Pi_{IND}(\tilde{p}, \tilde{r}, \Delta \tilde{p}(\tilde{p}, \tilde{r}, \tilde{w}))$$

which is contradict to the assumption that \tilde{w} is the worst case for the robust model under individual scheme.

5.3 For the last inference

Suppose $0 < a_1 < a_2$. Under $a = a_1$, the optimal first-stage variable is $(p^*(a_1), r^*(a_1))$, the corresponding worst case is $w^*(a_1)$ and the second-stage variable is $\Delta p^*(p^*(a_1), r^*(a_1), w^*(a_1))$. Under $a = a_2$, the optimal first-stage variable is $(p^*(a_2), r^*(a_2))$, the corresponding worst case is $w^*(a_2)$ and the second-stage variable is $\Delta p^*(p^*(a_2), r^*(a_2), w^*(a_2))$.

If the opposite holds

$$\Pi_{SMK}(p^*(a_2), r^*(a_2), \Delta p^*(p^*(a_2), r^*(a_2), w^*(a_2))) > \Pi_{SMK}(p^*(a_1), r^*(a_1), \Delta p^*(p^*(a_1), r^*(a_1), w^*(a_1)))$$
(A.19)

Under the $a=a_2$, fix the first-stage variable to $(p^*(a_1), r^*(a_1))$ and solve the sub "max-min" problem. Denote the obtained worst case as $w_2^*(a_1)$ and the corresponding second-stage variable as $\Delta p_2^*(p^*(a_1), r^*(a_1), w_2^*(a_1))$

1) If $w_2^*(a_1) = w^*(a_1)$, then according to Proposition 4, we have

$$\Pi_{SMK}(p^*(a_1), r^*(a_1), \Delta p_2^*(p^*(a_1), r^*(a_1), w_2^*(a_1))) \leq \Pi_{SMK}(p^*(a_1), r^*(a_1), \Delta p^*(p^*(a_1), r^*(a_1), w^*(a_1)))$$

As a result, together with (A.19), we get

$$\Pi_{SMK}(p^*(a_2), r^*(a_2), \Delta p^*(p^*(a_2), r^*(a_2), w^*(a_2))) > \Pi_{SMK}(p^*(a_1), r^*(a_1), \Delta p_2^*(p^*(a_1), r^*(a_1), w_2^*(a_1)))$$

which is contradict to the assumption that $p^*(a_2), r^*(a_2)$ is the optimal solution of robust model under $a = a_2$.

2) If $w_2^*(a_1) \neq w^*(a_1)$, then If

$$\Pi_{SMK}(p^*(a_1), r^*(a_1), \Delta p_2^*(p^*(a_1), r^*(a_1), w_2^*(a_1))) \leq \Pi_{SMK}(p^*(a_1), r^*(a_1), \Delta p^*(p^*(a_1), r^*(a_1), w^*(a_1)))$$

Similar contradiction as 1) can be found. Otherwise, if

$$\Pi_{SMK}(p^*(a_1), r^*(a_1), \Delta p_2^*(p^*(a_1), r^*(a_1), w_2^*(a_1))) > \Pi_{SMK}(p^*(a_1), r^*(a_1), \Delta p^*(p^*(a_1), r^*(a_1), w^*(a_1)))$$

then suppose $\Delta p_1^*(p^*(a_1), r^*(a_1), w_2^*(a_1))$ is the optimal solution under scenario $w_2^*(a_1)$, because of Proposition 4 we have

$$\Pi_{SMK}(p^*(a_1), r^*(a_1), \Delta p_1^*(p^*(a_1), r^*(a_1), w_2^*(a_1))) \ge \Pi_{SMK}(p^*(a_1), r^*(a_1), \Delta p_2^*(p^*(a_1), r^*(a_1), w_2^*(a_1)))$$

As a result.

$$\Pi_{SMK}(p^*(a_1), r^*(a_1), \Delta p_1^*(p^*(a_1), r^*(a_1), w_2^*(a_1))) > \Pi_{SMK}(p^*(a_1), r^*(a_1), \Delta p^*(p^*(a_1), r^*(a_1), w^*(a_1)))$$

which is contradict to the assumption that $w^*(a_1)$ is the worst case for the robust model under $a = a_1$.

This completes the proof.