

. بولاد بالاعاداد بالاعاداد بالاستان المرابط

(Approved by AICTE New Delhi & Govt. of Maharashtra, Affiliated to University of Munibai) (Religious Jain Minority)

Applications of Market Basket Analysis

- 1. Credit card transactions done by a customer may be analysed. -> Analysis of credit & debit purchase.
- 2. Phone calling patterns.
- 3. Fraudulent Medical insurance claims can be identified.
- 4. Analysis of service / products -> customers who have taken executive credit card are more likely to take personal loan of \$5000
- 5. Special combo offers to the customers on the products sold together.
- 6. placement of items on the shelf
- 7. Inventory management.

An itemset x is frequent if x's

A set of items is seferred to as an intitemset, An itemset that contains K items is a K-itemset. The set { computer, antivirus.slw } is a

2 - itemset. The occurrence frequency of an itemset is the number of transactions that contain the itemset.

This is known as support count.

An itemset k is a frequent itemset if k's support is no less than a minimum support threshold.

Frequent itémsels are used to generale association rules.

(AUB) -> indicates that it contains every item in A and B

ences anceres depresentes 3011: 910: 6111914111211121111211

(Approved by AICTE New Delhi & Govr. of Maharashtra, Affiliated to University of Mumbai) (Religious Jain Minority)

In general, association rule mining can be viewed as a two-step process

- 1 Find all frequent itemsets:
- 2. Generate strong association eules from the frequent itemset.

Association Rule:

Given a set of items $I = \{I_1, I_2, \dots I_m\}$ and a dalabase of transactions $D = \{t_1, t_2, \dots t_n\}$ where $t_1 = \{I_1, I_1, \dots I_n\}$ and $I_2 \in I$, an association sule is an implication of the form $X \to Y$ where $X, Y \subset I$ are sets of items called itemsets and $X \cap Y = \emptyset$

The support(s) for an association rule $X \rightarrow Y$ is the percentage of transactions in the dalabase that contain XUY

confidence or Strength (x) for an association sude X->Y is the ratio of the number of transactions that contain XUY to the number of transactions that

Sartinganati Sirattelille (Benait)

(Approved by AICTE New Delhi & Govr. of Maharashtra. Affiliated 14 University of Mumbai) (Religious Jain Minority)

Subject: Data Warehousing & Mining

Sem: V

Topic:

	As discussed	d earlier, in	frequent mining	
	usually interesting association & correlation between item sets & transactional delabase are found.			
68				
1	Frequent Mining Shows which items appear			
***	together in a transaction or relation.			
	Transaction Items		Let's say	
	1	¿AICID?	minimum support	
4	2		count is 3	
4	3	{ A 1 B , C 1 D }		
1,1	4	{B,D}	· · · · · · · · · · · · · · · · · · ·	
	5	[AIB, GD]	- 12 FD/11	
	\$A? = 3 - Frequent.			
-	EATS = SAIOS = 3' -> Frequent			
	support count of SA3 & SAIC3			
			e call \$A3 -> not	

a closed 9temset.

similarly \{B} = \(\frac{1}{4} \), \{B,D} = 4 hence
\{B} \{B} \{B,D} \{B,D} \(\text{are not closed} \).

If you consider {AIB, CID} = 2

not frequent as does not satify

min threshold onterion.

 $\{A,C,D\} = 3 \rightarrow \text{maximum } / \text{frequent } / \text{closed.}$ $\{A,E,C,D\} = 2$

Maximal Itemset: An itemset is closed if none of its immediate supersets have same support

Closed Itemset: An itemset is closed if hone of its immediate supersets have same support count same as itemset.

(Religious Jain Minority)

Subject: Data Warehousing & Mining

Sem: V

Topic:

	so as per the definition we need to			
	identify the large itemsets. & validat			
	them against minsup & min Con Lo			
80	classify them as strong association			
	Jules.			
	Finding large itemsets is easy but			
	could be expensive. A naive			
	approach would be to count all itemse			
	that appear in any transactions.			
	Given a set of items of size m, there			
	Given a set of items of size m, there are 2 subsets. As we are not			
	interested in empty sets, the potential			
	number of large itemsets is 2 med -1			
	7			

Finding large / frequent Itemset

- 1. Find all the possible association sule.
- 2. Calculate the support & confidence of each whe generated in the above step.
 - 3. The rules that fail the minSup & minConface prunned from the above list.
- . 4. As this is a time consuming approach, we need a better approach.