Cálculo Avanzado

Primer cuatrimestre de 2020

Espacios métricos 1b

Topología en espacios métricos

Definición

Sea $A \subset E$. Decimos que <u>x</u> es un <u>punto interior</u> de A si existe algún r > 0 tal que $B(x, r) \subset A$.

Definición

Sea $A \subset E$. El <u>interior de A</u> es el conjunto de todos los puntos interiores de A, y lo notamos A° .

Definición

Un conjunto $G \subset E$ se dice <u>abierto si</u> cada punto de G es un punto interior de G (análogamente, si $G = G^{\circ}$).

Observación

Un conjunto $G \subset E$ es abierto si y sólo si para todo $x \in G$ existe algún r > 0 tal que $B(x, r) \subset G$.

170 s B(711) & abienta XFE, acB(nin) q Ng. 3 No 20/ (B(ano) CB(xin) $R_0 = R - d(a_1 x)$ Ly VER QUE FUNCIONA J & B(G, NO) =>>> J & B(X,N) XEIR, NO B(NIN) = (N-N/ N+N) $V \in \mathbb{R}$: $\mathbb{Q}^{\circ} = \phi$, $(\mathbb{R} - \mathbb{Q})^{\circ} = \phi$. X G ([0,1], MYO, (B(XIN)) ES: A= { NEC[01] / x(1/2) > 0} as abiento 2/9 Lo siguiente es parte la Proposición 5.8.2 del apunte.

Proposición Se tienen las siguientes propiedades: (ii) $A_1 \subset A_2$, entonces $A_1^{\circ} \subset A_2^{\circ}$. (iv) A° es un conjunto abierto. (v) Si G es abierto, y $G \subset A$, entonces $G \subset A^{\circ}$. Contenido ADEN (V): 6 CA abuto. Sen XGG, 6 ab => 3 9>0/ B(XIN) CG.CA on 7 no / B(x,n) (A =) x EA° 6 C A 3

Lo siguiente es parte la Proposición 5.8.2 del apunte.

Proposición

Se tienen las siguientes propiedades:

- (i) $A^{\circ} \subset A$.
- (ii) $A_1 \subset A_2$, entonces $A_1^{\circ} \subset A_2^{\circ}$.
- (iv) A° es un conjunto abierto.
- (v) Si G es abierto, y $G \subset A$, entonces $G \subset A^{\circ}$.

Teorema 5.2.10

La unión de cualquier familia o colección de conjuntos abiertos es abierta.

La intersección de finitos conjuntos abiertos es abierta.

EjercicioDecidir si son ciertas las siguientes afirmaciones:

$$(A \cup B)^{\circ} = A^{\circ} \cup B^{\circ} \qquad (A \cap B)^{\circ} = A^{\circ} \cap B^{\circ}$$

Ejercicio

Decidir si son ciertas las siguientes afirmaciones:

$$(A \cup B)^{\circ} = A^{\circ} \cup B^{\circ} \qquad (A \cap B)^{\circ} = A^{\circ} \cap B^{\circ}$$

Definición

Un conjunto $V \subset E$ se llama un entorno de x si existe un conjunto abierto G tal que $x \in G \subset V$.

Ejercicio

Decidir si son ciertas las siguientes afirmaciones:

$$(A \cup B)^{\circ} = A^{\circ} \cup B^{\circ} \qquad (A \cap B)^{\circ} = A^{\circ} \cap B^{\circ}$$

Definición

Un conjunto $V \subset E$ se llama un entorno de x si existe un conjunto abierto G tal que $x \in G \subset V$.

Observación

El conjunto V es un entorno de x si y sólo si $x \in V^o$.

Un conjunto G es abierto si y sólo si es un entorno de cada $x \in G$.

Decimos que x es un punto de adherencia del conjunto $A \subset E$ si para todo r > 0 existe $a \in A$, tal que $a \in B(x, r)$.

Decimos que x es un punto de adherencia del conjunto $A \subset E$ si para todo r > 0 existe $a \in A$, tal que $a \in B(x, r)$.

Es equivalente decir que para todo r > o, $A \cap B(x, r) \neq \emptyset$.

Decimos que x es un punto de adherencia del conjunto $A \subset E$ si para todo r > 0 existe $a \in A$, tal que $a \in B(x, r)$.

Es equivalente decir que para todo r > o, $A \cap B(x, r) \neq \emptyset$.

Definición

La clausura de $A \subset E$ es el conjunto \bar{A} formado por todos los puntos (de E) de adherencia del conjunto A.

Decimos que x es un punto de adherencia del conjunto $A \subset E$ si para todo r > 0 existe $a \in A$, tal que $a \in B(x, r)$.

Es equivalente decir que para todo r > o, $A \cap B(x, r) \neq \emptyset$.

Definición

La clausura de $A \subset E$ es el conjunto \bar{A} formado por todos los puntos (de E) de adherencia del conjunto A.

Proposición 5.2.19

Sean A, $B \subset E$.

- (i) $A \subset \bar{A}$.
- (ii) Si $A_1 \subset A_2$ entonces $\bar{A}_1 \subset \bar{A}_2$
- (iii) $\bar{\bar{A}} = \bar{A}$.
- (iv) $\overline{A \cup B} = \overline{A} \cup \overline{B}$

Proposición 5.2.19 Sean $A, B \subset E$.

- (i) $A \subset \bar{A}$.
- (ii) Si $A_1 \subset A_2$ entonces $\bar{A}_1 \subset \bar{A}_2$
- (iii) $\bar{\bar{A}} = \bar{A}$.
- (iv) $\overline{A \cup B} = \overline{A} \cup \overline{B}$

Proposición 5.2.19 Sean $A, B \subset E$.

- (i) $A \subset \bar{A}$.
- (ii) Si $A_1 \subset A_2$ entonces $\bar{A}_1 \subset \bar{A}_2$
- (iii) $\bar{\bar{A}} = \bar{A}$.
- (iv) $\overline{A \cup B} = \overline{A} \cup \overline{B}$

Ejercicio

Decidir si es cierta la siguiente afirmación:

$$\overline{A \cap B} = \overline{A} \cap \overline{B}$$

Teorema 5.2.21 Sea $A \subset E$. Entonces,

$$(\bar{A})^c = (A^c)^\circ.$$

Teorema 5.2.21 Sea $A \subset E$. Entonces,

$$(\bar{A})^c = (A^c)^\circ.$$

Definición

Un conjunto se llama cerrado si $F = \overline{F}$.

Teorema 5.2.21

Sea $A \subset E$. Entonces,

$$(\bar{A})^c = (A^c)^\circ.$$

Definición

Un conjunto se llama cerrado si $F = \overline{F}$.

Recordemos que para verificar la igualdad es suficiente probar que

$$\bar{F}\subset F.$$

Teorema 5.2.21

Sea $A \subset E$. Entonces,

$$(\bar{A})^c = (A^c)^\circ.$$

Definición

Un conjunto se llama cerrado si $F = \overline{F}$.

Recordemos que para verificar la igualdad es suficiente probar que

$$\bar{F} \subset F$$
.

Corolario

A es cerrado si y sólo si A^c es abierto.

Ejemplo

Consideremos el espacio métrico \mathbb{Z} con la distancia dada por el módulo de la diferencia. Entonces, todo subconjunto de \mathbb{Z} es abierto y cerrado.

Observación

La clausura de A es el menor cerrado que contiene a A:

- (i) \overline{A} es cerrado;
- (ii) $A \subset \bar{A}$;
- (iii) Si F es un cerrado y $A \subset F$, entonces $\bar{A} \subset \bar{F}$

Observación

La clausura de A es el menor cerrado que contiene a A:

- (i) \overline{A} es cerrado;
- (ii) $A \subset \bar{A}$;
- (iii) Si F es un cerrado y $A \subset F$, entonces $\bar{A} \subset \bar{F} \subset F$.

Observación

La clausura de A es el menor cerrado que contiene a A:

- (i) \overline{A} es cerrado;
- (ii) $A \subset \bar{A}$;
- (iii) Si F es un cerrado y $A \subset F$, entonces $\bar{A} \subset \bar{F} \subset F$.

Teorema 5.2.24

La intersección de cualquier familia o colección de conjuntos cerrados es cerrada.

La unión de finitos conjuntos cerrados es cerrada.