Disciplina: Métodos Numéricos I. Professor: Aquino L. Espíndola

Primeira Avaliação - Segundo Semestre de 2019

1. Utilizando o método que achar mais conveniente, encontre todas as raízes da função abaixo. Use o erro igual a 10^{-6} .

$$x^3 + 12x^2 - 100x - 6 = 0$$

2. Uma viga em balanço sustenta uma carga distribuída, conforme mostrado na figura ao lado. A deflexão y da linha central da viga em função da posição x é dada pela equação:

$$y = \frac{w_0 L}{3\pi^4 EI} \left[48L^3 \cos\left(\frac{\pi}{2L}x\right) - 48L^3 + 3\pi^3 Lx^2 - \pi^3 x^3 \right]$$

onde L=3 m é o comprimento, E=70 GPa é o módulo elástico, $I=52,9\times 10^{-6}$ m^4 é o momento de inércia e $w_0=15$ kN/m. Determine a posição x onde a deflexão da viga é de 9 mm. Utilize o erro de 10^{-4} .

3. Com base nos seguintes dados da tabela abaixo, use o polinômio de Lagrange para encontrar o valor interpolado de y em x=3,5.

\boldsymbol{x}	1	2,5	2	3	4	5
y	1	7	5	8	2	1

- 4. Dada a função $f(x) = \frac{e^{x^2}}{x}$:
 - a) Calcule numericamente a derivada primeira no ponto x=1,2 aplicando as fórmulas de diferenças finitas progressiva, regressiva e central, usando:
 - i) os pontos x = 1, 0, x = 1, 2, x = 1, 4 e x = 1, 6;
 - ii) os pontos x = 1, 1, x = 1, 2, x = 1, 3 e x = 1, 4;
 - b) Utilize a extrapolação de Richardson e recalcule a derivada com diferença finita central do item anterior.
 - c) Calcule o erro entre resultado numérico e analítico para todos o métodos utilizados anteriormente.

1