

EHRNoteQA: An LLM Benchmark for Real-World Clinical Practice Using Discharge Summaries

Presenter: Heeyoung Kwak
NAVER Cloud / Digital Healthcare LAB / Healthcare AI

Background

- Discharge Summaries
 - Written by healthcare professionals at the time of patient discharge
 - Essential clinical notes in Electronic Health Records (EHRs) summarizing a patient's entire hospital stay, from admission to discharge
 - Crucial for clinical decisions, especially during patient readmissions and handoffs
 - Challenge: Length and complexity hinder efficient retrieval of important patient information, particularly across multiple summaries
- LLMs in Healthcare
 - Large Language Models (LLMs) can analyze complex EHRs effectively
 - Potential as QA agents to support healthcare professionals
 - Necessity: a benchmark to assess LLM performance in handling discharge summaries

Motivation

- Limitations of Existing Clinical QA Benchmarks
 - Focus on general medical questions rather than patient-specific records
 - Existing QA datasets built on discharge summaries are often
 - Limited to single-note queries (e.g., dosage within a visit)
 - Have narrow topical focus (e.g., NER annotations like drugs or relations)
- We need an LLM benchmark that reflects real-world clinical scenarios
 - Patient-specific questions spanning multiple discharge summaries
 - Diverse clinical topics relevant to healthcare professionals

Overview - EHRNoteQA

- A novel benchmark for evaluating LLMs in real-world clinical settings
- Built on MIMIC-IV discharge summaries, featuring 962 QA pairs
- Patient-Centric:
 - Each QA pair is linked to a unique patient
 - Covers the entire sequence of their discharge summaries

1st discharge summary

Patient ID : 14125568 Admission ID : 28712170 Chartdate : 2142-01-04

...

Admitted for observation and titration of antihypertensive medication.Pt's BP eventually controlled with nifedipine 60 CR.

. . .

Medications on Admission:

Ibuprofen, percocet

Discharge Medications:

1.Oxycodone-Acetaminophen ___ mg Tablet Sig: Tablets PO

Ibuprofen 600 mg Tablet Sig: One (1)
 Tablet PO Q6H (every 6 hours) as needed.
 Nifedipine 60 mg Tablet Sustained

3. Nifedipine 60 mg Tablet Sustained Release Sig: One (1) Tablet Sustained Release PO DAILY (Daily).

...

2nd discharge summary

Patient ID: 14125568 Admission ID: 22283117 Chartdate: 2142-01-10

...

Preeclampsia labs were again negative. Pt was seen by medicine and started on HCTZ and lisinopril.

Medications on Admission:

Meds: Ibuprofen, nifedipine 60 CR qhs, nifedipine 10mg

•••

Discharge Medications:

 Lisinopril 5 mg Tablet Sig: One (1) Tablet PO once a day.

Disp:*30 Tablet(s)* Refills:*2*

2. Hydrochlorothiazide 25 mg Tablet Sig: One (1) Tablet PO oncea day.

...

Question: What change were made to the patient's antihypertensive treatment between her first and second hospital visits?

- A: The patient was first given nifedipine, but this was replaced with buprofen.
- B: Medication changed from nifedipine to lisinopril and hydrochlorothiazide.
- C: The patient was given percocet and this was increased at the second visit.
- D: The patient's initial nifedipine medication was replaced with oxycodone.
- E: There were no changes in the patient's antihypertensive medication.

Answer: B

Overview - EHRNoteQA

Real-world relevance

- Includes multi-note queries (e.g., treatment changes)
- Spans 10 diverse topics (e.g., treatment, vitals, history)

Robust evaluation

 Supports open-ended and multiplechoice formats

1st discharge summary

Patient ID : 14125568 Admission ID : 28712170 Chartdate : 2142-01-04

...

Admitted for observation and titration of antihypertensive medication.Pt's BP eventually controlled with nifedipine 60 CR.

...

Medications on Admission:

Ibuprofen, percocet

Discharge Medications:

1.Oxycodone-Acetaminophen ___ mg Tablet Sig: Tablets PO

Ibuprofen 600 mg Tablet Sig: One (1)
 Tablet PO Q6H (every 6 hours) as needed.

3. Nifedipine 60 mg Tablet Sustained Release Sig: One (1) Tablet Sustained Release PO DAILY (Daily).

...

2nd discharge summary

Patient ID: 14125568 Admission ID: 22283117 Chartdate: 2142-01-10

...

Preeclampsia labs were again negative. Pt was seen by medicine and started on HCTZ and lisinopril.

...

Medications on Admission:

Meds: Ibuprofen, nifedipine 60 CR qhs, nifedipine 10mg

...

Discharge Medications:

 Lisinopril 5 mg Tablet Sig: One (1) Tablet PO once a day.

Disp:*30 Tablet(s)* Refills:*2*

2. Hydrochlorothiazide 25 mg Tablet Sig: One (1) Tablet PO oncea day.

...

Question: What change were made to the patient's antihypertensive treatment between her first and second hospital visits?

A: The patient was first given nifedipine, but this was replaced with buprofen.

B: Medication changed from nifedipine to lisinopril and hydrochlorothiazide.

C: The patient was given percocet and this was increased at the second visit.

D: The patient's initial nifedipine medication was replaced with oxycodone.

E: There were no changes in the patient's antihypertensive medication.

Answer: B

Dataset Construction – Step 1) Patient Sampling

- Patient Categorization
 - To match LLM context-length limitations:
 - **Level 1**: patients with accumulated summaries ≤ 3k tokens
 - Suitable for models handling up to 4k tokens
 - **Level 2**: patients with accumulated summaries between 3k and 7k tokens
 - Suitable for models handling up to 8k tokens
 - 1k token buffer for prompts and outputs
- Two groups cover ~70% of patients in the MIMIC-IV DB
- Sample 1,000 patients from Level 1 and 2

Dataset Construction - Step 2) Initial Data Generation

Question: What were the patient's major health issues as per the record and what was the major surgical procedure she had performed to manage these?

Correct Answer Choice: The patient's main health issues were severe aortic stenosis and atrial fibrillation, managed through an aortic valve replacement.

Incorrect Answer Choices:

- The patient was dealing with hypotension and hypertension and underwent a knee replacement surgery.
- A serious gastrointestinal bleeding was the patient's major health issue and was controlled through a midline infraumbilical laparotomy.
- The patient suffered from anxiety and depression, with a possible history of bladder cancer and was treated with a tumor excision surgery.
- Hypothyroidism and amnesia were the patient's major health concerns, and these were managed with medication.
- For each sampled patient, input the full sequence of their discharge summaries into GPT-4
- Prompt GPT-4 to generate one clinically meaningful question that a clinician may ask about the patient's discharge summary, along with its answer
- Each answer generated in two formats: multiple choice and open-ended

Dataset Construction - Step 3) Clinician Data Removal

- To ensure clinical relevance, each GPT-generated question and answer pair was reviewed by three clinicians based on the discharge summaries
- Questions that are not clinically important or unlikely to be asked by clinicians are removed

Question: What were the patient's major health issues as per the record and what was the major surgical procedure she had performed to manage these?

Correct Answer Choice: The patient's main health issues were severe aortic stenosis and atrial fibrillation, managed through an aortic valve replacement.

Incorrect Answer Choices:

- The patient was dealing with hypotension and hypertension and underwent a knee replacement surgery.
- A serious gastrointestinal bleeding was the patient's major health issue and was controlled through a midline infraumbilical laparotomy.
- The patient suffered from anxiety and depression, with a possible history of bladder cancer and was treated with a tumor excision surgery.
- Hypothyroidism and amnesia were the patient's major health concerns, and these were managed with medication.

Dataset Construction – Step 4) Clinician Data Modification

Question: What were the major health issues documented during the patient's initial admission, and what was the primary surgical procedure performed to address them?

Correct Answer Choice: The patient's main health issues were severe aortic stenosis, managed through an aortic valve replacement.

Incorrect Answer Choices:

- The patient underwent continuous positive airway pressure (CPAP) therapy for sleep apnea.
- A serious gastrointestinal bleeding was the patient's major health issue and was controlled through a midline infraumbilical laparotomy.
- The patient suffered from anxiety and depression, with a possible history of bladder cancer and was treated with a tumor excision surgery.
- The patient experienced atrial fibrillation and hypotension, both of which were addressed through aortic valve replacement.

Question: What were the patient's major health issues as per the record and what was the major surgical procedure she had performed to manage these?

Correct Answer Choice: The patient's main health issues were severe aortic stenosis and atrial fibrillation, managed through an aortic valve replacement.

Incorrect Answer Choices:

- The patient was dealing with hypotension and hypertension and underwent a knee replacement surgery.
- A serious gastrointestinal bleeding was the patient's major health issue and was controlled through a midline infraumbilical laparotomy.
- The patient suffered from anxiety and depression, with a possible history of bladder cancer and was treated with a tumor excision surgery.
- Hypothyroidism and amnesia were the patient's major health concerns, and these were managed with medication.

- Questions that are ambiguous, overly detailed, or asks for unnecessary information were modified
- Answers were refined for accuracy and completeness
- The incorrect answer choices (multi-choice format) were modified to serve as plausible distractors

Data Statistics & Analysis

Category		MIMIC-IV		Sai	npled	EHRNoteQA	
Level	# D.S.	# Patients	Avg. Length	# Patients	Avg. Length	Patients	Avg. Length
1	1	38,926	1,819	275	1,787	264	1,812
•	2	437	2,147	275	2,146	265	2,085
2	1	44,645	3,514	150	3,501	145	3,497
	2	14,176	4,470	150	4,581	144	4,520
	3	1,161	4,956	150	5,030	144	5,102
To	tal	99,345	-	1,000	-	962	-

Category	Example					
Treatment	What was the treatment provided for the patient's left breast cellulitis?	64%				
Assessment	Was the Mitral valve repair carried out successfully?	19%				
Problem	What was the main problem of the patient?	19%				
Etiology	Why did the patient's creatinine level rise significantly upon admission?	20%				
Sign/Symptom	What was the presenting symptom of the patient's myocardial infarction?	12%				
Vitals	What was the range of the patient's blood pressure during second stay?	3%				
Test Results	What were the abnormalities observed in the patient's CT scans?	14%				
History	Has the patient experienced any surgical interventions prior to the acute appendicitis?	12%				
Instruction	How was the patient instructed on weight-bearing after his knee replacement?	3%				
Plan	What is the future course of action planned for patient's left subclavian stenosis?	5%				

Experimental Settings

- Models
 - Evaluation conducted on 27 instruction-tuned LLMs, including 3 GPT models
 - Model sizes range from 7B to over 70B parameters, with various foundation models (e.g., LLaMA2, LLaMA3, Mistral, MPT and Gemma)
 - Privacy-preserving inference
 - Azure's HIPAA-compliant platform for the GPT series models
 - Local inference for the open-source LLMs
 - Use GPT-4 as an evaluator
 - GPT-4 showed high agreement with clinician evaluation

Experimental Results

Size	Model	Multi-	Choice	Open-	Ended	Foundation
Size	Model	Level 1	Level 2	Level 1	Level 2	roundation
	GPT4	97.16	95.15	91.30	89.61	
	GPT4-Turbo	95.27	94.23	91.30	86.61	
	GPT3.5-Turbo	88.28	84.99	82.23	75.52	
	Llama3-70b-Instruct	94.33	91.92	89.04	86.84	Llama3-70b
	Llama2-70b-chat	84.88	_	78.83	_	Llama2-70b
70B	qCammel-70	85.63	_	78.26	_	Llama2-70b
	Camel-Platypus2-70b	89.79	_	78.83	_	Llama2-70b
	Platypus2-70b-Instruct	90.36	_	80.53	_	Llama2-70b
8x7B	Mixtral-8x7b-Instruct	87.52	86.61	88.28	81.52	Mistral-7b
30B	MPT-30b-Instruct	79.96	75.52	67.11	62.59	MPT-30b-8k
	Llama2-13b-chat	73.65	_	70.32	_	Llama2-13b
	Vicuna-13b	82.04	_	70.51	_	Llama2-13b
	WizardLM-13b	80.91	_	74.67	_	Llama2-13b
13B	qCammel-13	71.46	_	66.16	_	Llama2-13b
13B	ÔpenOrca-Platypus2-13b	86.01	_	79.21	_	Llama2-13b
	Camel-Platypus2-13b	78.07	_	67.86	_	Llama2-13b
	Synthia-13b	79.21	_	74.48	_	Llama2-13b
	Asclepius-13b ¹	_	_	75.24	_	Llama2-13b
	Gemma-7b-it	77.50	67.21	63.71	54.27	Gemma-7b
	MPT-7b-8k-instruct	59.55	51.27	56.71	53.81	MPT-7b-8k
	Mistral-7b-Instruct	82.04	64.90	72.97	53.81	Mistral-7b
	Dolphin-2.0-mistral-7b	76.18	_	69.75	_	Mistral-7b
7B	Mistral-7b-OpenOrca	87.15	_	79.58	_	Mistral-7b
	SynthIA-7b	78.45	_	74.67	_	Mistral-7b
	Llama2-7b-chat	65.78	_	58.98	_	Llama2-7b
	Vicuna-7b	78.26	_	59.74	_	Llama2-7b
	Asclepius-7b ¹	_	_	66.92	_	Llama2-7b

- Performance can be affected by different factors (e.g., model size, foundation model type, instruction-tuned data, discharge summary length)
- Models struggle to perform well when handling longer/multiple discharge summaries

Reliability of EHRNoteQA as a Proxy for Clinician Evaluations

• Key question:

"Do the model scores from EHRNoteQA align with the scores given by clinicians in the targeted scenario?"

- Three clinicians evaluated LLM responses on a different set of questions
 - DiSCQ: a collection of questions asked by medical experts based on the MIMIC-III discharge summaries
 - created by medical experts not involved in EHRNoteQA
- Then, these clinician-evaluated scores were compared to the LLM scores obtained from EHRNoteQA and other benchmark datasets

Reliability of EHRNoteQA as a Proxy for Clinician Evaluations

		Clinician A		Clinician B		Clinician C	
		$\mathbf{Spearman}(\rho)$	$Kendall(\tau)$	$\mathbf{Spearman}(\rho)$	$Kendall(\tau)$	$\mathbf{Spearman}(\rho)$	$Kendall(\tau)$
		Intr	a-Clinician co	orrelation			
	Clinician A	-	-	0.854	0.712	0.947	0.834
	Clinician B	0.854	0.712	-	-	0.867	0.724
	Clinician C	0.947	0.834	0.867	0.724	-	-
		Be	nchmark Con	nparison			
EHRNoteQA	Open-Ended	0.770	0.609	0.805	0.617	0.801	0.657
EHKNOIEQA	Multi-Choice	<u>0.766</u>	0.661	0.732	<u>0.574</u>	0.812	0.661
Discharge	emrQA	0.696	0.522	0.653	0.518	0.661	0.475
Summary QA	Yue et al.	0.509	0.344	0.502	0.315	0.542	0.344
	MedQA	0.590	0.453	0.497	0.354	0.683	0.535
Clinical	MedMCQA	0.672	0.512	0.505	0.378	0.737	0.594
Benchmark	PubMedQA	0.122	0.100	0.071	0.059	0.167	0.088
	MMLU*	0.684	0.543	0.646	0.503	<u>0.804</u>	0.637
	ARC	0.534	0.425	0.522	0.373	0.583	0.460
	HellaSwag	0.284	0.206	0.247	0.177	0.373	0.265
General	MMLU	0.579	0.437	0.567	0.408	0.651	0.507
Benchmark	TruthfulQA	0.652	0.484	0.650	0.538	0.741	0.590
Бенсинагк	Winogrande	0.439	0.307	0.383	0.278	0.480	0.336
	GSM8K	0.202	0.159	0.256	0.165	0.222	0.147
	AVG	0.575	0.429	0.596	0.425	0.619	0.476
		Evalua	tion Method (Comparison			
	GPT-4 Eval	0.770	0.609	0.805	0.617	0.801	0.657
	BLEU	0.155	0.112	0.037	0.059	0.014	-0.006
EHRNoteQA	ROUGE-L	0.500	0.324	0.398	0.283	0.356	0.241
Open-Ended	Exact Match	0.422	0.288	0.336	0.236	0.266	0.194
-	SentenceBERT	0.710	0.524	0.726	0.555	0.652	0.453
	ClinicalBERT	0.536	0.382	0.552	0.389	0.394	0.288
EHDN-4-CA	GPT-4 Eval	0.766	0.661	0.732	0.574	0.812	0.661
EHRNoteQA	Probability(index)	0.622	0.472	0.596	0.444	0.676	0.519
Multi-Choice	Probability(value)	0.514	0.437	0.523	0.456	0.549	0.437

• The experiment results show a high correlation between the clinician-evaluated LLM scores and the EHRNoteQA-evaluated LLM scores (0.6~0.8), outperforming other benchmark datasets

Reliability of EHRNoteQA as a Proxy for Clinician Evaluations

		$\frac{ \text{Clinician A} }{ \text{Spearman}(\rho) \text{Kendall}(\tau) }$		Clinician B		Clinician C	
				$\mathbf{Spearman}(\rho)$	$Kendall(\tau)$	$\mathbf{Spearman}(\rho)$	Kendall (τ)
		Intr	a-Clinician co	orrelation			
	Clinician A	-	-	0.854	0.712	0.947	0.834
	Clinician B	0.854	0.712	-	-	0.867	0.724
	Clinician C	0.947	0.834	0.867	0.724	-	-
		Be	nchmark Con	nparison			
EHRNoteQA	Open-Ended	0.770	0.609	0.805	0.617	0.801	0.657
EHKNOLEQA	Multi-Choice	<u>0.766</u>	0.661	0.732	0.574	0.812	0.661
Discharge	emrQA	0.696	0.522	0.653	0.518	0.661	0.475
Summary QA	Yue et al.	0.509	0.344	0.502	0.315	0.542	0.344
	MedQA	0.590	0.453	0.497	0.354	0.683	0.535
Clinical	MedMCQA	0.672	0.512	0.505	0.378	0.737	0.594
Benchmark	PubMedQA	0.122	0.100	0.071	0.059	0.167	0.088
	MMLU*	0.684	0.543	0.646	0.503	<u>0.804</u>	0.637
	ARC	0.534	0.425	0.522	0.373	0.583	0.460
	HellaSwag	0.284	0.206	0.247	0.177	0.373	0.265
General	MMLU	0.579	0.437	0.567	0.408	0.651	0.507
Benchmark	TruthfulQA	0.652	0.484	0.650	0.538	0.741	0.590
Dencima K	Winogrande	0.439	0.307	0.383	0.278	0.480	0.336
	GSM8K	0.202	0.159	0.256	0.165	0.222	0.147
	AVG	0.575	0.429	0.596	0.425	0.619	0.476
		Evalua	tion Method	Comparison			
	GPT-4 Eval	0.770	0.609	0.805	0.617	0.801	0.657
	BLEU	0.155	0.112	0.037	0.059	0.014	-0.006
EHRNoteQA	ROUGE-L	0.500	0.324	0.398	0.283	0.356	0.241
Open-Ended	Exact Match	0.422	0.288	0.336	0.236	0.266	0.194
	SentenceBERT	0.710	0.524	0.726	0.555	0.652	0.453
	ClinicalBERT	0.536	0.382	0.552	0.389	0.394	0.288
EHRNoteQA	GPT-4 Eval	0.766	0.661	0.732	0.574	0.812	0.661
Multi-Choice	Probability(index)	0.622	0.472	0.596	0.444	0.676	0.519
Mulu-Choice	Probability(value)	0.514	0.437	0.523	0.456	0.549	0.437

 Among different evaluation methods for EHRNoteQA, GPT-4 based evaluations show the highest correlation with clinician-evaluated LLM scores compared to other methods

Conclusion

- We present EHRNoteQA, a novel benchmark to evaluate LLMs in real-world clinical scenarios for answering clinicians' questions regarding discharge summaries.
- EHRNoteQA is built upon MIMIC-IV EHRs, and consists of about 1k different patient-specific QA pairs.
- EHRNoteQA questions often require information across multiple discharge summaries, and the question span a diverse set of clinical topics.
- Our experiment results validate EHRNoteQA as a reliable proxy for actual expert evaluation.