

Art of Problem Solving

2010 ISI B.Math Entrance Exam

ISI B.Math Entrance Exam 2010

1 Prove that in each year , the 13^{th} day of some month occurs on a Friday .

In the accompanying figure , y = f(x) is the graph of a one-to-one continuous function f. At each point P on the graph of $y = 2x^2$, assume that the areas OAP and OBP are equal. Here PA, PB are the horizontal and vertical segments. Determine the function f.

3	Show that , for any positive integer n , the sum of $8n+4$ consecutive positive integers cannot be a perfect square .
4	If $a, b, c \in (0, 1)$ satisfy $a + b + c = 2$, prove that
	$\frac{abc}{(1-a)(1-b)(1-c)} \ge 8$

5	Let $a_1 > a_2 > \dots > a_r$ be positive real numbers .
	Compute $\lim_{n\to\infty} (a_1^n + a_2^n + + a_r^n)^{\frac{1}{n}}$

6 Let each of the vertices of a regular 9-gon (polygon of 9 equal sides and equal angles) be coloured black or white . (a). Show that there are two adjacent verices of same colour. (b). Show there are three vertices of the same colour forming an isosceles triangle.

Art of Problem Solving 2010 ISI B.Math Entrance Exam

7	We are given $a, b, c \in \mathbb{R}$ and a polynomial $f(x) = x^3 + ax^2 + bx + c$ such that all roots (real or complex) of $f(x)$ have same absolute value. Show that $a = 0$ iff $b = 0$.
8	Let f be a real-valued differentiable function on the real line \mathbb{R} such that $\lim_{x\to 0} \frac{f(x)}{x^2}$ exists, and is finite. Prove that $f'(0)=0$.
9	Let $f(x)$ be a polynomial with integer co-efficients. Assume that 3 divides the value $f(n)$ for each integer n . Prove that when $f(x)$ is divided by $x^3 - x$, the remainder is of the form $3r(x)$ where $r(x)$ is a polynomial with integer coefficients.
10	Consider a regular heptagon (polygon of 7 equal sides and angles) $ABCDEFG$ as in the figure below:- (a). Prove $\frac{1}{\sin\frac{\pi}{7}} = \frac{1}{\sin\frac{2\pi}{7}} + \frac{1}{\sin\frac{3\pi}{7}}$ (b). Using (a) or otherwise, show that $\frac{1}{AG} = \frac{1}{AF} + \frac{1}{AE}$

Contributors: mynamearzo