Lecture Module - ODE Review

ME3050 - Dynamic Modeling and Controls

Mechanical Engineering
Tennessee Technological University

Topic 1 - Separation of Variables

Topic 1 - Separation of Variables

- Review
- Analytical vs. Numerical Methods
- Separation of Variables
- Example

What is a Differential Equation? Solution?

A differential equation is an equation which describ	oes a function
and one or more of its	_ of the
with respect to the	·
The solution to a differential equation describes the	
a of the	
or the	·

Problem Statement

Remember our example from the previous lecture?

$$\dot{v} + \frac{c}{m}v = f(t)$$

We are going to find an analytical solution to this problem.

Separation of Variables

This is an analytical method that you learned in calculus.

Assume the external force f(t) is zero. Re-write then separate.

$$\dot{v} + \frac{c}{m}v = 0$$

Solution

The solution v(t) has been found. What does it mean? What do we do next?

$$v(t) =$$

Graph of Solution

What does the solution look like?

$$v(t) = v_0 e^{-\frac{c}{m}t}$$

