LAB 5-1 PROGRAMMING USING ADC

OBJECTIVE:

- Understand and use the ADC of AVR.
- Understand how to use the ADC for measurement.

REFERENCES:

- Experiment Experiment guide, chapters 11
- AN2538-ADC-of-megaAVR-in-SingleEnded-Mode-00002538A.pdf
- AVR120: Characterization and Calibration of the ADC on an AVR

EXPERIMENT 1: MEASURING SINGLE-ENDED SIGNALS

- a) Connect the ADC_VR1 and ADC_VR2 signals from header J86 to the ADC0 and ADC1 inputs. Connect UART0 to the RS232 module and connect the USB-Serial cable to the computer. Connect ADC_VR1 and ADC_VR2 to the test points on header J56. Make sure not to connect them to the GND pins on the header. Write a program to perform the following tasks:
- b) Select the V_{REF} voltage as the internal V_{CCA} voltage. Initialize UART with self-selected configuration. (Note: configure the Hercules software on the computer in a similar way). Right-click on the Hercules screen to select HEX Enable.
- c) Write a program to sample the signal input to ADC0 and send it to the computer using UART0 with the following transmission frame every 1 second. The 1-second delay can be achieved using either a delay function or a timer.
 - 0x55 ADCH ADCL 0xFF
- d) Change the voltage applied to ADC0, measure it using a VOM, and compare it with the sampled ADC result. Fill in the table in the report.
- e) Connect an LCD to one of the AVR ports. Add to the existing program the functionality to calculate the input voltage and display it on the LCD.
- f) Change the reference voltage to the internal 2.56V reference. Repeat steps c, d, and e, assuming the reference voltage is accurately set to 2.56V.
- g) Measure the voltage on the VREF pin (header J57) using a VOM.

EXPERIMENT 2: MEASURING OFFSET ERROR AND GAIN ERROR

LAB 5-1 PROGRAMMING USING ADC

- a) Calculate the offset error and gain error of the ADC.
- b) Rewrite the program with the requirements mentioned in question e of exercise 1, using the calibrated ADC. Vref = VCCA. Send the calibrated ADC values to the computer and display the measured voltage values on the LCD.

(Note: Please refer to the documentation "AVR120: Characterization and Calibration of the ADC on an AVR" for detailed instructions and guidelines on the calibration process.

EXPERIMENT 3: MEASURING ADC IN BIAS MODE

- a) Calibrate channel VR1 to a voltage level of 2.5V and connect it to ADC0.
- b) Write a program to initialize the ADC in bias mode with two input channels, ADC0 and ADC1, amplification factor of 10, and a reference voltage of 2.56V. Start the ADC in FreeRunning mode.
- c) Write a program to display the voltage value of VR1 on the LCD and send the ADC measurement results to the computer every 1 second, as described in experiment 1.

EXPERIMENT 4:MEASURING OFFSET ERROR AND GAIN ERROR IN BIAS MODE

- a) Connect both ADC1 and ADC0 to the voltage ADC_VR1. Adjust this voltage to 1V and record the measured ADC value. This value represents the offset error.
- b) From the offset error value, calculate the gain error using Table 4.
- c) Rewrite the program from question c in exercise 3, using the calibrated ADC value.

EXPERIMENT 5: MEASURING TEMPERATURE USING MCP9701

- a) Connect the sensor to header J73.
- b) Connect the voltage signal V TEMP on header J18 to ADC0.
- c) Write a program to measure the voltage value of V_TEMP with the calibration parameters as in experiment 1, calculate the temperature value, and display it on the LCD.

EXPERIMENT 1:

- 1. Answering the questions:
 - a. In Single Conversion mode, how do you start a sampling cycle and check when it completes?
 - b. How do you select an ADC channel?
 - c. Does Atmega324 have an internal temperature measurement channel?
 - d. What is the formula to calculate the input voltage from the ADC when $V_{REF}=V_{CCA}$?
 - e. What is the formula to calculate the input voltage from the ADC when V_{REF} =2.56V?
 - f. Record the ADC value compared to the measurement result from the measuring instrument. Calculate the voltage value based on the ADC value with $V_{REF}=V_{CCA}$.

$V_{ADC0}(V)$	0	0.5	1	1.5	2	2.5	3	3.5	4	4.5	5
ADCH-ADCL											
ADCH-ADCL											
(Theoretical)											
Error (LSB)											

Bảng 1

g. Repeat step f with V_{REF} =2.56V. Compare the calculation formula and the error with step e.

V _{ADC0} (V)	0	0.5	1	1.5	2	2.5	3	3.5	4	4.5	5
ADCH-											
ADCL											
ADCH-											
ADCL											
(Theoretical)											
Error (LSB)											

Bảng 2

h. Repeat step g with V_{REF} being the value measured from a VOM.

LAB REPORT

	Огоир.
Class group:	Subject

 V_{REF} =

V _{ADC0} (V)	0	0.5	1	1.5	2	2.5	3	3.5	4	4.5	5
ADCH-ADCL											
ADCH-ADCL											
(Theoretical)											
Error (LSB)											

Bång 3

2. Program source code with comments

EXPERIMENT 2:

- 1. Answering the questions:
 - a. What are the types of errors for an ADC?
 - b. What is offset error?
 - c. What is gain error?
 - d. What are the units of measurement for offset error and gain error?
 - e. Using the results from Table 1, taking two measurement points at V_{in} = 1 V and V_{in} = 4.5V, calculate the offset error and gain error.
- 2. Measurement and Calculation:
 - a. The measured ADC values corresponding to the input channels.

V _{ADC0} (V)	0	0.5	1	1.5	2	2.5	3	3.5	4	4.5	5
ADCH-ADCL											
(calibrated)											
ADCH-ADCL											
(Theoretical)											
Error (LSB)											

Bảng 4

b. Program source code with comments

EXPERIMENT 3:

1. Answering the questions:

- a. In differential mode, what is the voltage range within which the input voltages of the ADC oscillate?
- b. When selecting the signal pair ADC0, ADC1 with a gain of 10, V_{REF} =2.56V, and V_{ADC0} = 2.5V, what is the measurement range for ADC1?
- c. Fill in the measured values and calculate the input voltage based on the theoretical information.

V _{ADC1} - V _{ADC0}	0	50	100	150	200	250	-50	-100	-150	-200	-250
(mV)											
ADCH-ADCL											
Values											

Bảng 5

			_
2	D		
Z.	Program sour	ce code with	comments

EXPERIMENT 4:

- 1. Answering the questions:
 - a. How to measure offset error in differential mode?
 - b. Results obtained after calibration.chinh

$V_{ADC1} - V_{ADC0} \\$	0	50	100	150	200	250	-50	-100	-150	-200	-250
(mV)											
ADCH-ADCL											
Values											

2. Program source code with comments

•••••	• • • • • • • • • • • • • • • • • • • •	• • • • • • • • • • • • • • • • • • • •	•••••

EXPERIMENT 5:

- 1. Answering the questions:
 - a. According to the datasheet, what is the thermal coefficient of the MCP9701 sensor?
 - b. If $V_{REF} = V_{CCA}$ is used, what is the measurement range of the circuit? What is the resolution of the measurement circuit in degrees Celsius?
 - c. If $V_{REF} = 2.56V$ is used, what is the measurement range of the circuit? What is the resolution of the measurement circuit in degrees Celsius?

LAB REPORT

Class group: Group: Subject:

d. If we use the ADC in differential mode, input a voltage of 400 + 19.53*20 (mV) to ADC0, and connect the output of MCP9751 to ADC1, with a gain of 10 and V_{REF}=2.56V, what is the measurement range and resolution of the measurement circuit?

2.	Prog	gram source code with comments