

Lista de Exercícios de Álgebra Linear I

03/11/2023

- 1. Se $P,Q:E\to E$ são projeções e PQ=QP, mostre que PQ é uma projeção cujo núcleo é $\operatorname{Kern}(P)+\operatorname{Kern}(Q)$ e cuja imagem é $\operatorname{Im}(P)\cap\operatorname{Im}(Q)$.
- 2. Exprima um vetor arbitrário $v=(x,y,z)\in\mathbb{R}^3$ como soma de um vetor do plano F_1 , cuja equação é x+y-z=0, com um vetor da reta F_2 , gerada pelo vetor (1,2,1). Conclua que $\mathbb{R}^3=F_1\oplus F_2$. Determine a matriz, relativa à base canônica) da projeção $P:\mathbb{R}^3\to\mathbb{R}^3$, que tem imagem F_1 e núcleo F_2 .
- 3. É dado que uma transformação linear $P:E\to E$. Assinale veradeiro (V) ou falso (F):
 - () Se $E = \text{Kern}(P) \oplus \text{Im}(P)$ então P é uma projeção.
 - () Se E = Kern(P) + Im(P) então P é uma projeção.
 - () Se P é uma projeção então I-P é uma projeção.
 - () Se P é uma projeção então Im(P) = Kern(I P) e Kern(P) = Im(I P).
- 4. Se $\operatorname{Kern}(P) = \operatorname{Im}(I-P)$, mostre que a transformação linear $P: E \to E$ é uma projeção.
- 5. Mostre que a transformação linear $P: \mathbb{R}^2 \to \mathbb{R}^2$, dada por P(x,y) = (-2x 4y, 3x/2 + 3y) é a projeção sobre uma reta. Determine o núcleo e a imagem de P.
- 6. Seja $A: E \to E$ uma transformação linear em um espaço vetorial de dimensão finita. Mostre que $E = \text{Kern}(A) \oplus \text{Im}(A)$ se, e somente se, $\text{Kern}(A) = \text{Kern}(A^2)$.
- 7. Sejam $P,Q:E\to E$ projeções. Mostre que as seguintes afirações são equivalentes:
 - a) P + Q é uma projeção.
 - b) PQ + QP = 0.
 - c) PQ = QP = 0.
- 8. Prove que o produto de duas involuções é uma involução se, e somente se, elas comutam.
- 9. Seja $P: E \to E$ uma projeção. Prove que os vetores $v \in (1-t)v + tPv$, para todo $v \in E$ e todo $t \in \mathbb{R}$, têm a mesma imagem por P.