Big Data Computing

The Apollo Guidance Computer (AGC)

The computer installed on each command and lunar module of all the Apollo program's missions

The Apollo Guidance Computer (AGC)

The computer installed on each command and lunar module of all the Apollo program's missions

A few numbers:

- ~2 MHz CPU clock frequency
- 16-bit architecture
- 3,840 bytes of main memory (RAM)
- 69,120 bytes of non-volatile read-only memory (ROM)

The Apollo Guidance Computer (AGC)

The computer installed on each command and lunar module of all the Apollo program's missions

A few numbers:

- ~2 MHz CPU clock frequency
- 16-bit architecture
- 3,840 bytes of main memory (RAM)
- 69,120 bytes of non-volatile read-only memory (ROM)

All the running software was written in AGC assembly language, now also available on <u>GitHub</u>

Almost 55 Years Have Passed...

... And The World Has Changed

... And The World Has Changed

... And The World Has Changed

AGC vs. Our Smartphone

- Most recent smartphones have
 - >3 GHz CPU clock frequency
 - 4÷16 GB of RAM
 - 64÷1000 GB of internal storage (don't call it ROM!)

AGC vs. Our Smartphone

- Most recent smartphones have
 - >3 GHz CPU clock frequency
 - 4÷16 GB of RAM
 - 64÷1000 GB of internal storage (don't call it ROM!)

~3 orders of magnitude faster (~1,000x)

~6÷7 orders of magnitude larger RAM and internal storage (up to 10,000,000x)

A Side Note on Units

Prefixes for multiples of bits (bit) or bytes (B)

Decimal							
Val	ue	SI					
1000	10 ³	k	kilo				
1000 ²	10 ⁶	M	mega				
1000 ³	10 ⁹	G	giga				
1000 ⁴	10 ¹²	T	tera				
1000 ⁵	10 ¹⁵	Р	peta				
1000 ⁶	10 ¹⁸	Ε	exa				
1000 ⁷	10 ²¹	Z	zetta				
1000 ⁸	10 ²⁴	Υ	yotta				

and Garage							
Binary							
Valu	e	IEC		JEDEC			
1024	2 ¹⁰	Ki	kibi	K	kilo		
1024 ²	2 ²⁰	Mi	mebi	M	mega		
1024 ³	2 ³⁰	Gi	gibi	G	giga		
1024 ⁴	2 ⁴⁰	Ti	tebi	-			
1024 ⁵	2 ⁵⁰	Pi	pebi	_			
1024 ⁶	2 ⁶⁰	Ei	exbi	_			
1024 ⁷	2 ⁷⁰	Zi	zebi	_			
1024 ⁸	2 ⁸⁰	Yi	yobi	_			

Orders of Magnitude

100 = 1

source: https://www.youtube.com/watch?v=Ww4gYNrOkkg

Orders of Magnitude

Numbers Every Computer Scientist Should Know

Colin Scott's updated and interactive version of Jeff Dean's previous one

Numbers Every Computer Scientist Should Know

Colin Scott's updated and interactive version of Jeff Dean's previous one

Numbers Every Computer Scientist Should Know

Colin Scott's updated and interactive version of Jeff Dean's previous one

2020

The Information Technology (IT) Revolution

- Started almost 60 years ago and still rocketing
- Driven by:
 - Science/Engineering
 - Business
 - Society

What Happens on the Internet in 1 Minute?

source: LocaliQ

How Much Data is Generated Each Day?

• Sometimes a buzzword yet describing an actual phenomenon

- Sometimes a buzzword yet describing an actual phenomenon
- 4V's (sometimes, 5, 6 or even 7!)

- Sometimes a buzzword yet describing an actual phenomenon
- 4V's (sometimes, 5, 6 or even 7!)
 - Volume → very large amount of data (orders of TB or PB)

- Sometimes a buzzword yet describing an actual phenomenon
- 4V's (sometimes, 5, 6 or even 7!)
 - Volume → very large amount of data (orders of TB or PB)
 - Variety → different formats of data: structured (relational tables), semistructured (JSON files), and unstructured (text/audio/video)

- Sometimes a buzzword yet describing an actual phenomenon
- 4V's (sometimes, 5, 6 or even 7!)
 - Volume → very large amount of data (orders of TB or PB)
 - Variety → different formats of data: structured (relational tables), semistructured (JSON files), and unstructured (text/audio/video)
 - Velocity -> insane speed at which data is generated (e.g., Twitter stream)

- Sometimes a buzzword yet describing an actual phenomenon
- 4V's (sometimes, 5, 6 or even 7!)
 - Volume → very large amount of data (orders of TB or PB)
 - Variety → different formats of data: structured (relational tables), semistructured (JSON files), and unstructured (text/audio/video)
 - Velocity → insane speed at which data is generated (e.g., Twitter stream)
 - Veracity -> reliability of the data used to drive decision processes

The 4 V's of Big Data

source: IBM

The Value of Big Data

- Extracting knowledge from data is incredibly valuable
 - 5 out of 6 of the biggest companies in the world are "data companies"

The Value of Big Data

- Extracting knowledge from data is incredibly valuable
 - 5 out of 6 of the biggest companies in the world are "data companies"
- To get the most value out of it, data has to be:
 - Stored
 - Managed
 - Analyzed

Big Data Analysis: Landscape

Execution/Storage Infrastructure

Analytics Infrastructure

Execution/Storage Infrastructure

Data Analysis "Tools"

Analytics Infrastructure

Execution/Storage Infrastructure

What Will We Learn?

- To extract knowledge from different types of data
 - High-dimensional
 - Unlabeled/Labeled
 - Graph-based
 - Infinite/never-ending streams

What Will We Learn?

- To use different models of computation
 - MapReduce
 - Streams and online algorithms
 - Single machine in-memory

What Will We Learn?

- To apply big data analysis to actually solve real-world problems
 - Clustering
 - Predictive Analysis
 - Recommender Systems
 - Graph Analysis
 - Stream Processing
 - •

Everything is ok as long as data fits entirely into main memory (few accesses to the disk are still tolerated)

- Google has crawled 50 million web pages (a tiny fraction of the Web!)
- The average size of each web page (HTML only) is ~100 KB
- The total size of the index will be

- Google has crawled 50 million web pages (a tiny fraction of the Web!)
- The average size of each web page (HTML only) is ~100 KB
- The total size of the index will be

 $5 \times 10^7 \times 10^5$ bytes = 5×10^{12} bytes = **5 TB**

- Google has crawled 50 million web pages (a tiny fraction of the Web!)
- The average size of each web page (HTML only) is ~100 KB
- The total size of the index will be

 $5 \times 10^7 \times 10^5$ bytes = 5×10^{12} bytes = **5 TB**

Main Memory

- Google has crawled 50 million web pages (a tiny fraction of the Web!)
- The average size of each web page (HTML only) is ~100 KB
- The total size of the index will be

 $5 \times 10^7 \times 10^5$ bytes = 5×10^{12} bytes = **5 TB**

2 orders of magnitude difference between data transfer rate

 Assuming the disk transfer rate is 100 MB/sec the total time to read the entire index will be:

 5×10^{12} bytes/ 10^8 bytes/sec = 5×10^4 seconds ~14 hours

 Assuming the disk transfer rate is 100 MB/sec the total time to read the entire index will be:

 5×10^{12} bytes/ 10^8 bytes/sec = 5×10^4 seconds ~ 14 hours

 More than half a day to just read the index, without even do any computation on it!

 Assuming the disk transfer rate is 100 MB/sec the total time to read the entire index will be:

5×10^{12} bytes/ 10^8 bytes/sec = 5×10^4 seconds ~ 14 hours

- More than half a day to just read the index, without even do any computation on it!
- Single-node architecture is clearly not enough here
 - Scaling Up vs. Scaling Out

Scaling Up/Vertical Scaling

• Buy a more performing disk (e.g., 250 or 500 MB/sec transfer rate)

Scaling Up/Vertical Scaling

 Buy a more performing disk (e.g., 250 or 500 MB/sec transfer rate)

• PRO

• Easiest solution

Scaling Up/Vertical Scaling

• Buy a more performing disk (e.g., 250 or 500 MB/sec transfer rate)

PRO

Easiest solution

CON

- Improvement is physically-limited (e.g., 2.5x or 5x)
- Expensive

Scaling Out/Horizontal Scaling

• Buy a set of commodity "cheap" disks and let them work in parallel

Scaling Out/Horizontal Scaling

• Buy a set of commodity "cheap" disks and let them work in parallel

• PRO

• Flexibility (improvement is not bound apriori, just add new disks as needed)

Scaling Out/Horizontal Scaling

• Buy a set of commodity "cheap" disks and let them work in parallel

• PRO

• Flexibility (improvement is not bound apriori, just add new disks as needed)

CON

• Extra overhead required to manage parallel work

• Computing architecture based on the scaling out principle

- Computing architecture based on the scaling out principle
- A lot of commodity nodes communicating with each other

- Computing architecture based on the scaling out principle
- A lot of commodity nodes communicating with each other
- Each group of 16÷64 nodes is arranged in a so-called rack

- Computing architecture based on the scaling out principle
- A lot of commodity nodes communicating with each other
- Each group of 16÷64 nodes is arranged in a so-called rack
- A cluster is made of multiple racks

- Computing architecture based on the scaling out principle
- A lot of commodity nodes communicating with each other
- Each group of 16÷64 nodes is arranged in a so-called rack
- A cluster is made of multiple racks
- Network switches enabling node communication
 - I Gbps (inter-rack)
 - 2÷10 Gbps (intra-rack)

• 3 major challenges posed by cluster architecture

- 3 major challenges posed by cluster architecture
 - Ensure reliability upon node failure

- 3 major challenges posed by cluster architecture
 - Ensure reliability upon node failure
 - Minimize network communication bottleneck

- 3 major challenges posed by cluster architecture
 - Ensure reliability upon node failure
 - Minimize network communication bottleneck
 - Ease distributed programming model

• Suppose we have a cluster of N nodes

- Suppose we have a cluster of N nodes
- Each node has a Mean Time To Failure (MTTF) = 3 years ~ 1,000 days

 $p = P(\text{node}_i \text{ fails}) = 1/1,000 = 0.001$

- Suppose we have a cluster of N nodes
- Each node has a Mean Time To Failure (MTTF) = 3 years ~ 1,000 days

$$p = P(node_i fails) = 1/1,000 = 0.001$$

• Associate with each node a random variable $X_{i,t}$

- Suppose we have a cluster of N nodes
- Each node has a Mean Time To Failure (MTTF) = 3 years ~ 1,000 days

$$p = P(\text{node}_i \text{ fails}) = 1/1,000 = 0.001$$

- Associate with each node a random variable $X_{i,t}$
 - $X_{i,t} \sim \text{Bernoulli}(p)$ outputs I (failure) with probability p = 0.001 and 0 (working) with probability (1-p) = 0.999

- Suppose we have a cluster of N nodes
- Each node has a Mean Time To Failure (MTTF) = 3 years ~ 1,000 days

$$p = P(\text{node}_i \text{ fails}) = 1/1,000 = 0.001$$

- Associate with each node a random variable $X_{i,t}$
 - $X_{i,t} \sim \text{Bernoulli}(p)$ outputs I (failure) with probability p = 0.001 and 0 (working) with probability (1-p) = 0.999
 - Assume for semplicity p is the same for all nodes and independent from each other

What is the expected number of failures in a certain day t, given that the probability of <u>one</u> machine failing is p?"

What is the expected number of failures in a certain day t, given that the probability of <u>one</u> machine failing is p?"

Under the (simplified) assumption that $X_{i,t}$ are all i.i.d.

$$T = X_{1,t} + X_{2,t} + \dots + X_{N,t}$$

What is the expected number of failures in a certain day t, given that the probability of <u>one</u> machine failing is p?"

Under the (simplified) assumption that $X_{i,t}$ are all i.i.d.

$$T = X_{1,t} + X_{2,t} + \dots + X_{N,t}$$

$$T \sim Binomial(N, p)$$

What is the expected number of failures in a certain day t, given that the probability of <u>one</u> machine failing is p?"

Under the (simplified) assumption that $X_{i,t}$ are all i.i.d.

$$T = X_{1,t} + X_{2,t} + \dots + X_{N,t}$$

$$T \sim Binomial(N, p)$$

$$E[T] = Np$$

• A single-node failure on a day may be a quite a rare event (0.1% chance)

- A single-node failure on a day may be a quite a rare event (0.1% chance)
- Things are not so infrequent when we deal with several nodes:
 - I (expected) failure per day with N = 1,000 nodes
 - 1,000 (expected) failures per day with N = 1,000,000 nodes

- A single-node failure on a day may be a quite a rare event (0.1% chance)
- Things are not so infrequent when we deal with several nodes:
 - I (expected) failure per day with N = 1,000 nodes
 - 1,000 (expected) failures per day with N = 1,000,000 nodes

QI: How to make data and computation resilient to node failures?

Challenge: Network Bottleneck

• Moving data across nodes both intra- and inter racks may be costly

Challenge: Network Bottleneck

- Moving data across nodes both intra- and inter racks may be costly
- For example, if we have to transfer IOTB of data at I Gbps

 8×10^{13} bits / 1×10^9 bit/sec = 8×10^4 secs ~ 1 day

Challenge: Network Bottleneck

- Moving data across nodes both intra- and inter racks may be costly
- For example, if we have to transfer 10TB of data at 1 Gbps

 8×10^{13} bits / 1×10^9 bit/sec = 8×10^4 secs ~ 1 day

Q2: How to minimize data tranfers so as to reduce network communications?

Challenge: Distributed Programming

• Distributed programming can be really complex

Challenge: Distributed Programming

- Distributed programming can be really complex
- Programmers should focus on the (distributed) task rather than dealing with the complexities of the cluster architecture

Challenge: Distributed Programming

- Distributed programming can be really complex
- Programmers should focus on the (distributed) task rather than dealing with the complexities of the cluster architecture

Q3: How to implement algorithms which take advantage of the distributed infrastructure without worrying about its complexities?

Data is generated at an unprecedented rate → Big Data

- Data is generated at an unprecedented rate → Big Data
- Extracting knowledge from such big data is incredibly valuable

- Data is generated at an unprecedented rate → Big Data
- Extracting knowledge from such big data is incredibly valuable
- Traditional algorithms/techniques often don't scale very well

- Data is generated at an unprecedented rate → Big Data
- Extracting knowledge from such big data is incredibly valuable
- Traditional algorithms/techniques often don't scale very well
- There is the need for new "tools" which allow storing, managing, and analyzing big data painlessly