

sk9275245@gmail.com ▼

Courses » Al:Knowledge Representation and Reasoning

Announcements

Course

Ask a Question

Progress

Mentor

Unit 4 - Week 2 : Propositional Logic

Register for **Certification exam**

Course outline

Week - 0

Week 1:

Week 2: **Propositional**

Logic

Introduction

How to access the portal

Assignment 2

The due date for submitting this assignment has passed. Due on 2019-02-13, 23:59 IS

Assignment submitted on 2019-02-13, 23:58 IST

1 point

A rule of inference is sound if it is based on a tautological implication. Which of the following is a sound rule of inference?

$$(\neg Q \land (P \to Q)) \to \neg P$$

$$((P \lor Q) \land \neg P) \rightarrow \neg Q$$

$$\neg P \rightarrow (P \lor Q)$$

$$((P \to Q) \land (S \to T) \land (P \lor S)) \to (Q \lor T)$$

Yes, the answer is correct.

Score: 1

Accepted Answers:

$$(\neg Q \land (P \to Q)) \to \neg P$$

$$((P \to Q) \land (S \to T) \land (P \lor S)) \to (Q \lor T)$$

A knowledge base consists of the following 3 premises:

$$(P \lor Q) \rightarrow R), \neg Q, \neg R$$

Given below is a sequence of steps to derive $\neg P$ from the knowledge base.

- 1. $(P \lor Q) \rightarrow R)$
- 2. ¬*R*
- 3. $\neg (P \lor Q)$
- 4. $\neg P \land \neg Q$
- ¬P

Which of the following sequences is a correct justification for the above derivation?

- Premise, Premise, Modus Ponens (1,2), De Morgan's law (3), Simplification(4)
- Premise, Premise, Modus Tollens (1,2), De Morgan's law (3), Addition(4)
- Premise, Premise, Modus Tollens (1,2), De Morgan's law (3), Simplification (4)
- Premise, Premise, Modus Ponens (1,2), Premise, Addition(4)

Yes, the answer is correct.

Score: 1

Accepted Answers:

Valid Arguments and Proof Systems Rules of Inference Axiomatic Systems Tableau Method Resolution Method Quiz : Assignment 2 Week 2 Feedback Form Week 3: First

Order Logic

Class Slides

DOWNLOAD VIDEOS

1 point

Premise, Premise, Modus Tollens (1,2), De Morgan's law (3), Simplification (4)	
3) Consider the two clauses $(P \lor Q)$ and $(\neg P \lor \neg Q)$. Which of the following is/are the clause(s) generated as a result of resolution?	1 point
 {} ✓ (P ∨ ¬P) ✓ (Q ∨ ¬Q) ¬ Cannot be resolved 	f
Partially Correct. Score: 0.66	¥
Accepted Answers: (P ∨ ¬P) (Q ∨ ¬Q) T	in
4) Which of the following are equivalent?	1 point
i. ¬ <i>P</i> ∀ <i>Q</i>	g
ii. $P \rightarrow Q$	
iii. ¬ <i>P</i> →¬ <i>Q</i>	
iv. $\neg Q \rightarrow \neg P$	
$V. Q \rightarrow P$	
 ✓ (iii) and (v) ✓ (i) and (ii) ✓ (ii) and (iv) ✓ (i) and (iv) ☐ (iii) and (iv) ☐ All are equivalent 	
Yes, the answer is correct. Score: 1	
Accepted Answers: (iii) and (v) (i) and (ii) (ii) and (iv) (i) and (iv)	
5) Is the following a valid proof for <i>S</i> given the premises: P , $P \rightarrow \neg Q$, $R \rightarrow Q$, R ?	1 point
1. <i>P</i>	
2. $P \rightarrow \neg Q$	
3. $\neg Q$ (1, 2, Modus Ponens)	
4. $\neg Q \lor S$ (3, Addition)	
5. <i>R</i>	
6. $R \rightarrow Q$	
7. Q (5, 6, Modus Ponens)	
8. S (4, 7, Disjunctive Syllogism)	
 The proof is valid. The proof is not valid as KB is inconsistent. The proof is valid as one can derive anything from an inconsistent KB. None of the above. 	
No, the answer is incorrect. Score: 0	
Accepted Answers:	

Р	Q	(P op Q)
False	False	True
False	True	True
True	False	False
True	True	True
P → Q ¬ Q → ¬P s, the answer is correct. ore: 1 cepted Answers: ∨ Q → Q → ¬P		
	plete set of logical conne	
{NOT, AND} {NAND} {NOT, AND, OR}		
√ {NOT, AND} √ {NAND} ← {NOT, AND, OR} √ {NOR} ✓ tially Correct.		
<pre> √ {NOT, AND} √ {NAND}</pre>		
{NOT, AND} {NAND} {NOT, AND, OR} {NOR} NOR} rtially Correct. ore: 0.75 cepted Answers: OT, AND} AND} OT, AND, OR} OR}		
{NOT, AND} {NAND} {NOT, AND, OR} {NOR} tially Correct. re: 0.75 epted Answers: T, AND} ND} T, AND, OR} R} crates is a man.		
{NOT, AND} {NAND} {NOT, AND, OR} {NOR} rtially Correct. ore: 0.75 cepted Answers: OT, AND} AND} OT, AND, OR} OR} ocrates is a man. Il men are mortal.	ses, can we derive 'Socrat	es is mortal' in propo
{NOT, AND} {NAND} {NOT, AND, OR} {NOT, AND, OR} {NOR} ially Correct. re: 0.75 epted Answers: T, AND} ND} T, AND, OR} R} crates is a man. men are mortal. In the above two premises	ses, can we derive 'Socrat	es is mortal' in propo
{NOT, AND} {NAND} {NOT, AND, OR} {NOR} tially Correct. ore: 0.75 cepted Answers: OT, AND} ND} OT, AND, OR} OR} crates is a man. I men are mortal.	ses, can we derive 'Socrat	es is mortal' in propo

AI:Knowledge Representation and Reasoning Unit 4 - Week 2 : Propositional Logi	c
9) Given the following set of clauses:	1 point
1. P V ¬Q	
2. ¬P V ¬S V ¬R	
3. S V T V ¬P	
4. ¬Q ∨ R	
5. ¬T ∨ Q	
6. R V ¬S V ¬Q	_
Which of the following pairs can be resolved together?	f
	7
3,5	
□ 4, 6□ 2, 5	_
2,6	ir
_ 1, 6	
□ 4, 5□ 1, 5	g
No, the answer is incorrect. Score: 0	
Accepted Answers:	
1, 2	
3, 5	
4, 5	
1, 5	
10)	1 point
In the course introduction video, there were two arguments	
A1: If the earth were spherical, it would cast curved shadows on the	moon. It casts
curved shadows on the moon. So, it must be spherical.	
A2: If he used good bait (G) and the fish weren't smarter (¬S) than he	e was, then he
didn't go hungry (¬H). But he used good bait (G) and he did go hungr	ry (H), so the fish
must've been smarter (S) than he was.	
A1 is a valid argument but not A2	
A2 is a valid argument but not A1	
Both A1 and A2 are valid arguments	
None of A1 and A2 is a valid argument	
No, the answer is incorrect.	
Score: 0	
Accepted Answers:	
A2 is a valid argument but not A1	
5 . 5	

Previous Page

Fnc

© 2014 NPTEL - Privacy & Terms - Honor Code - FAQs -

A project of

In association with

Funded by

Government of India Ministry of Human Resource Development

Powered by

