

Верификация семантики линейной последовательности машинных инструкций

Алексей Вишняков

23 мая 2019

ИСП РАН

Возвратно-ориентированное программирование

- Возвратно-ориентированное программирование (ROP) атака повторного использования кода, позволяющая обходить DEP при наличии нерандомизированных областей памяти
- Гаджет последовательность инструкций в нерандомизированной исполняемой области памяти, которая заканчивается инструкцией передачи управления
- Каждый гаджет выполняет некоторые вычисления (например, складывает значения двух регистров) и передает управление следующему гаджету
- Гаджеты связываются в цепочку, а их адреса размещаются от адреса возврата на стеке
- Таким образом, с помощью цепочки гаджетов можно выполнить некоторые вредоносные действия

Пример ROP цепочки Запись значения memValue по адресу memAddr

Фрейм гаджета

- Введем понятие фрейма гаджета аналогично стековому кадру x86
- Pазмер фрейма
 FrameSize = 16
- Адрес следующего гаджета NextAddr = [ESP + 4]

Определение семантики гаджетов

- Тип гаджета описывается семантически с помощью постусловия, булева предиката, который должен быть всегда истинным после выполнения гаджета*
 - $MoveRegG : OutReg \leftarrow InReg$
 - $LoadConstG : OutReg \leftarrow M[SP + Offset]$
- Набор типов гаджетов задает новую архитектуру набора команд (ISA)
- Функциональность гаджета описывается набором параметризованных типов, которым принадлежит гаджет push eax

pop ebx $MoveRegG: ebx \leftarrow eax$

 $\texttt{pop} \quad \texttt{ecx} \qquad \qquad \textit{LoadConstG} : \texttt{ecx} \leftarrow \textit{M}[\textit{esp} + 0]$

ret

^{*}Schwartz, Edward J., Thanassis Avgerinos, and David Brumley. "Q: Exploit Hardening Made Easy." USENIX Security Symposium. 2011.

Классификация гаджетов

- Классификация гаджета выявляет набор возможных типов и параметров, которым он соответствует
- Классификация производится на основе анализа эффектов выполнения гаджета на различных входных данных
- Составляется список типов и параметров с истинными постусловиями для всех выполнений гаджета с отличными входными данными

Результаты классификации гаджета

- Типы и параметры гаджета
- Список «испорченных» регистров (значения которых не сохраняются после выполнения гаджета)
- Информация о фрейме гаджета
 - Размер фрейма
 - Смещение ячейки с адресом следующего гаджета

Цель работы

- Классификация гаджетов опирается на анализ эффектов выполнения гаджета на нескольких различных случайных входных данных
- Возможна неверная классификация гаджетов
- Целью работы является уточнение метода классификации гаджетов
- Необходимо формально доказать семантику гаджета для произвольных входных данных

Постановка задачи

Необходимо разработать и реализовать метод верификации семантики линейной последовательности машинных инструкций

Метод должен позволять по заданному постусловию верифицировать семантику ROP гаджета:

- Проверить, удовлетворяет ли гаджет определению семантики его типа с заданными значениями параметров
- Проверить список «испорченных» регистров
- Проверить размер фрейма и адрес следующего гаджета

Верификация гаджетов

- Классификация гаджета предоставляет набор постусловий, описывающих возможную семантику гаджета
- Верификация гаджета позволяет формально доказать истинность этих постусловий для произвольных входных данных
- Верификация гаджета реализована на движке динамической символьной интерпретации Triton, в который была добавлена поддержка символьных адресов

Метод верификации семантики гаджета

- Изначально всем регистрам присваиваются свободные символьные переменные
- Символьная память в начале представляет из себя пустой байтовый массив SMT Array
- Символьное состояние содержит отображение регистров в символьные переменные и текущее состояние символьной памяти
- Символьная интерпретация инструкции гаджета порождает SMT формулы над переменными и константами, а также обновляет символьное состояние в соответствии с операционной семантикой инструкции
- Работа с символьной памятью реализована через операции select и store (чтение и запись)
- Общезначимость формулы постусловия проверяется через невыполнимость ее отрицания

Пример верификации гаджета $ArithmeticLoadG: rbx \leftarrow rbx + [rax]$

Шаг	Символьное состояние	Инструкция	Множество формул
	M , $rax = \phi_1$, $rbx = \phi_2$,		
initial	$rcx = \phi_3$, $rsp = \phi_4$,	_	$S_0 = \emptyset$
	$rip = \phi_5$		
1	$rcx = \phi_6$	mov rcx, [rax]	$S_1 = S_0 \cup \{\phi_6 = M[\phi_1]\}$
2	$rbx = \phi_7$	add rbx, rcx	$S_2 = S_1 \cup \{\phi_7 = \phi_2 + \phi_6\}$
final	$rip = \phi_8, \ rsp = \phi_9$	ret	$S_3 = S_2 \cup \{\phi_8 = M[\phi_4],\}$
IIIIai			$\phi_9 = \phi_4 + 8\}$
	Определение семантики		Верификация
	$(final(rbx) = initial(rbx) + initial(M[rax])) \land$		$\neg((\phi_7=\phi_2+M[\phi_1]) \land$
verify	$(final(rip) = initial(M[rsp])) \land$		$(\phi_8 = M[\phi_4]) \wedge$
	(final(rsp) = initial(rsp) + 8)		$(\phi_9 = \phi_4 + 8))$ is UNSAT

Результаты верификации гаджетов

- Удаляются неверно классифицированные гаджеты
- Верифицируются:
 - тип и параметры гаджета,
 - «испорченные» регистры,
 - информация о фрейме гаджета

Сравнение классификации и верификации гаджетов

- Верификатор дает уверенность в типе гаджета
- Разработка верификатора и результаты его работы позволили улучшить и отладить алгоритмы классификатора
 - Добавлены запуски классификации на граничных условиях 0 и -1
- Средняя скорость классификации ≈ 200 гаджетов в секунду, а верификации ≈ 2 гаджета в секунду

Количество гаджетов на каждой стадии: поиска, классификации, верификации на наборе файлов Windows 7 (64-разрядной) из 664 файлов

найдено	классифицировано	НЕ верифицировано
$14 \cdot 10^6$	$9\cdot 10^6$	$65 \cdot 10^3$

Спасибо за внимание