corrigé colle S7 exercices 16, 17 et 19

MPI/MPI* lycée Faidherbe

exercice 16

Soit E un (C)-espace vectoriel de dimension n, $u \in \mathcal{L}(E)$

Montrer que u est diagonalisable ssi tout sous-espace de E admet un supplémentaire stable par u.

Sens direct:

Soit F un sous-espace vectoriel de E.

On note $B_1 = (e_1, \ldots e_p)$ une base de F.

u est diagonalisable, donc admet une base de vecteurs propres de u.

Ainsi, on peut compléter B_1 en $(e_1, \ldots e_n)$, base de E à l'aide de vecteurs propres (parce qu'on connaît son cours de sup...)

Dès lors, $Vect(e_{p+1}, \ldots e_n)$ est supplémentaire de F, et engendré par des vecteurs propres donc stable par u. On a trouvé un supplémentaire de F stable par u.

Réciproquement, supposons que tout sous-espace de E admet un supplémentaire stable par u.

Pour $n \in \mathbb{N}$, on note H_n , bla, bla, vous avez l'idée

- vous en connaissez beaucoup des matrices d'ordre 1 pas diagonalisables? (H_1 est vraie.)
- Soit n, bla, bla. E est un \mathbb{C} -espace vectoriel, donc admet un vecteur propre e_1 . On note S un supplémentaire de $\text{Vect}(e_1)$ stable par u. Montrons que l'endomorphisme induit sur S vérifie l'hypothèse de récurrence.

Soit F un sous-espace de S. Par hypothèse, $S \oplus \text{Vect}(e_1)$ admet un supplémentaire T stable par u. Montrons que $T \cap S$ est alors supplémentaire de F dans S (**FONCTIONNE PAS**). E est un \mathbb{C} -espace vectoriel, donc admet un vecteur propre e_1 .

T et S sont stables par u, donc $T\cap S$ également. On considère \tilde{u} l'endomorphisme induit.

Par hypothèse de récurrence, il existe une base B tq $\mathrm{Mat}_B \tilde{u}$ est diagonale. On a alors $\mathrm{Mat}_{(e1)\sqcup B} u$ diagonale.

Ce qui clôt la récurrence.

exercice 17

Soient $E = C^{\infty}(\mathbb{R}, \mathbb{R})$ et $u: f \mapsto (x \mapsto f(px+q))$, avec $p \in]0,1[$ et q=1-p.

1. Montrer que u est un automorphisme de E.

On considère $f \mapsto \left(x \mapsto f(\frac{x-q}{p})\right)$. On montre aisément qu'il s'agit d'un inverse **à** droite et à gauche de u. (On est en dimension infinie!)

2. Montrer que les valeurs propres de u sont dans]-1,1]

Soit f une valeur propre associée à λ . f est vecteur propre donc non nulle, ie il existe x_0 to $f(x_0) \neq 0$.

L'idée est d'itérer u sur f, puis d'évaluer en x_0 .

On note (x_n) telle que, pour $n \in \mathbb{N}$, $x_{n+1} = px_n + q$. On vérifie aisément (exo) que $x_n \to 1$ (on regarde les intervalles stables, puis la monotonie de (x_n) , etc).

De plus, en itérant u, puis en évaluant en x_0 , on obtient, pour $n \in \mathbb{N}$, $\lambda^n f(x_0) = f(x_n)$. Or, le terme de droite converge (par continuité de f), donc le terme de gauche également. On en déduit que (λ^n) converge, d'où $\lambda \in]-1,1]$.

3. Montrer que si f est valeur propre, il existe k tq $f^{(k)} = 0$.

On note f une valeur propre associée à λ .

Dès lors, pour $x \in \mathbb{R}$, $f(px + q) = \lambda f(x)$.

En dérivant k fois cette égalité, on obtient:

$$f^{(k)} = \frac{\lambda}{p^k} f^{(k)}(px + q)$$

Ainsi, si $f^{(k)} \neq 0$, f(k) est valeur propre associée à $\frac{\lambda}{p^k}$. Or, $\frac{\lambda}{p^n} \to +\infty$ (car u est un automorphisme, donc $E_0(u) = \{0\}$, donc 0 n'est pas valeur propre), donc il existe n tq $f^{(n)}$ soit valeur propre associée à $\lambda_n > 1$, ce qui est absurde d'après la question précédente.

4. Trouver les valeurs et vecteurs propres de u.

D'après la question précédente, tout vecteur propre est polynomial (pour ceux qui tiennent vraiment à le montrer (on me l'a demandé), on primitive k fois 0).

En identifiant polynôme et fonction polynomiale, on se restreint à $\mathbb{R}_n[X]$.

Soit P un vecteur propre de degré k associé à λ . En s'intéressant au coefficient dominant, il en découle que $\lambda = p^k$.

On a n+1 valeurs propres en dimension n+1, les sous-espaces propres sont donc tous de dimension 1.

Sortons maintenant des vecteurs propres de notre chapeau.

Soit $k \in \mathbb{N}$. En composant $(X-1)^k$ à gauche par pX+q, on obtient $(pX-p)^k = p^k(X-1)^k$, ie $(X-1)^k$ est vecteur propre associ à p^k .

On en déduit que $E_{n^p}(u) = \text{Vect}(X-1)^p$.

On a trouvé les sous-espaces propres de degré inférieur à n pour tout n, donc

ceux dans $\mathbb{R}[X]$, donc, d'après la question précédente, dans E.

Pour ceux parmi vous qui se demandent comment j'ai trouvé $(X-1)^k$, sachez que moi aussi.

Globalement, je cherchais un polynôme pas trop compliqué, et je me suis dit que si a était racine, alors px-q également, donc j'ai pris une racine qui en créerait pas beaucoup d'autres.

exercice 19

On se donne une matrice $M=(m_{i,j})\in M_n(\mathbb{R})$, avec, pour tout $j, \sum_{k=1}^n m_{i,j}=1$, et, pour tout $(i,j), 0 \leq m_{i,j} \leq 1$.

1. Montrer que 1 est valeur propre de M, puis montrer que toutes les valeurs propres complexes de M vérifient $|\lambda| \leq 1$

Pour montrer que 1 est valeur propre, il suffit de considérer $X = {}^{T}(1 \ 1 \ \dots \ 1)$.

Soit $X=(x_i)$ un vecteur propre associé à la valeur propre λ . On note i_0 tel que $|x_{i_0}|=\max |x_i|$. (On note que $X\neq 0$ donc $x_{i_0}\neq 0$.)

On considère la i_0 -ième ligne de MX:

$$\lambda x_{i_0} = \sum_{j=1}^n m_{i_0,j} x_j$$

Ainsi, par inégalité triangulaire:

$$|\lambda| |x_{i_0}| \leqslant \sum_{j=1}^n m_{i_0,j} |x_j| \leqslant \sum_{j=1}^n m_{i_0,j} |x_{i_0}| = |x_{i_0}|$$

Dès lors, $\lambda \leq 1$.

2. Montrer que, si λ est valeur propre de module 1, alors $\lambda = 1$.

On reprend les notations de la question précédente.

Ainsi, les inégalités sont alors des égalités.

On a alors, pour tout j, $m_{i_0,j}x_j=m_{i_0,j}x_{i_0}$ (positivement colinéaires d'après l'inégalité triangulaire, de module constant par passage à la borne supérieure). Dès lors, $\lambda x_{i_0} = \sum_{j=1}^n m_{i_0,j}x_{i_0}$, d'où $\lambda = 1$.

3. Montrer que $ker(M - I_n) = ker(M - I_n)^2$

L'inclusion directe est immédiate.

On prend $X \in \ker(M - I_n)^2$.

$$M^k X = (M - I_n + I_n)^k X = \sum_{j=0}^k {k \choose j} (M - I_n)^j X = X + k(M - I_n) X$$

On en déduit $(M-I_n)X=\frac{M^kX-X}{k}$. De plus, on montre aisément (j'ai un peu la flemme) que M^k est stochastique, donc borné, d'où $(M-I_n)\to 0$, donc $X\in\ker(M-I_n)$. D'où l'égalité.