

Ist das Universum ein Computer?

Jannis Speer

17.12.20

Big Questions Seminar

Inhalt

J. Speer | 17.12.20 2 2 / 22

Historische Einführung: Digitale Physik

- ursprüngliche Idee: Konrad Zuses Buch Rechnender Raum (1969)
- Hypothese: Universum ist digitaler Computer, genauer: zellulärer Automat
- Komatibilität von Computern mit:
 Informationstheorie, statistischer Mechanik, Quantenmechanik
- Begriff geprägt durch Edward Fredkin, alternativ: digitale Philosophie
- → Digitale Physik: Theorien mit Prämise, Universum durch Information beschreibbar ist

J. Speer | 17.12.20

Digitale Physik - verschiedene Perspektiven

- Weizsäckers Quantentheorie der Ur-Alternativen:
 - lediglich 2 Entitäten: Struktur der Zeit, binäre Alternativen
 - abstrakt, nicht-lokal, keine feldtheoretischen Voraussetzungen
- Wheelers It from Bit:
 - · klassisch: Realität existiert und wird gemessen
 - · hier: Messung schafft Realität
- Pancomputationalism:
 - Digitaler Computer vs. Quantencomputer
 - Zufälligkeit und Komplexität des Universums? Effizienz?
- Tegmarks Mathematical-Universe-Hypothese (MUH)
 - Universum ist Mathematik, mathematische Existenz = physikalische Existenz

J. Speer | 17.12.20 4./ 22

Informationstheorie

- ... beschäftigt sich mit Quantifizierung, Speicherung und Übertragung von Information
- Konzept von Information hat verschiedene Bedeutungen verwandt mit: Nachricht, Kommunikation, Daten, Wissen
- hier: Information ist Folge von Symbolen aus einem Alphabet $Z = \{z_1, z_2, ..., z_m\}$
- Informationsgehalt eines Zeichens: $I(z) = -\log_a(p_z)$ mit Wahrscheinlichkeit p_z , Mächtigkeit a
- Entropie eines Zeichens (Shannon): $H = E[I] = \sum_{z \in Z} p_z I(z) = -\sum_{z \in Z} p_z \log_a(p_z)$

01101100 01101111 01110110 01100101

Abbildung: binäre Information

J. Speer | 17.12.20

physikalische Information und Entropie

- Information beschreibt physikalisches System:
 - Information löst Ungewissheit über Zustand eines physikalischen Systems
 - Information ist Messung für Wahrscheinlichkeit eines Zustandes
- fehlende Information = nötige Information, um Zustand zu beschreiben = $I = -k \sum_{i=1}^{n} p_i \ln(p_i)$ mit p_i der Wahrscheinlichkeiten der n Zustände des Systems
 - \rightarrow binäre Entropie der Informationstheorie: $k = \ln(2)^{-1}$
 - \rightarrow Gibbs Entropie: $k = k_b$
- Von Neumann Entropie, QM-Analogon: $S(\rho) = -Tr(\rho \ln \rho)$ mit Dichtematrix ρ

J. Speer | 17.12.20 6 / 22

Algorithmische Informationstheorie

J. Speer | 17.12.20 7/22

Digitale Information, Boolesche Algebra, Klassische Logik

J. Speer | 17.12.20 8 / 22

Vor Turing

J. Speer | 17.12.20 9/22

Turingmaschine

J. Speer | 17.12.20 10 / 22

Turingmaschine 2

J. Speer | 17.12.20 11/22

Implementierung einer Turingmaschine

J. Speer | 17.12.20 12 / 22

Universum als digitaler Computer

J. Speer | 17.12.20 13 / 22

Universum als digitaler Computer 2

J. Speer | 17.12.20 14/22

Effizienz von digitalen Computern

J. Speer | 17.12.20 15 / 22

Quantencomputer

J. Speer | 17.12.20 16 / 22

Quantencomputer 2

J. Speer | 17.12.20 17/22

Universum als Quantencomputer

J. Speer | 17.12.20 18 / 22

Universum als Quantencomputer 2

J. Speer | 17.12.20 19 / 22

Digitaler Computer vs. Quantencomputer

J. Speer | 17.12.20 20 / 22

Das Universum ist kein Computer

J. Speer | 17.12.20 21/22

Ausblick

J. Speer | 17.12.20 22 / 22