Time-Dependent Data (Week 12)

Fourier Transform

 Mapping time to frequency is Fourier Transform.

$$X(\omega) = \int_{-\infty}^{\infty} x(t)e^{-j\omega t}dt$$

• Mapping frequency to time is Inverse Fourier Transform.

$$x(t) = \frac{1}{2\pi} \int_{-\infty}^{\infty} X(\omega) e^{j\omega t} d\omega$$

Fourier Transform: Sound Editing

Inverse Fourier Transform

Audio classification: Bird Chirping

Moving Average: Removing Randomness/Noise

- This method establishes the underlying trend (smoothing out peaks and troughs) in a set of data.
- A moving average is a series of averages, calculated from historic data.
- Moving averages can be calculated for any number of time periods, for example a three-month moving average, a seven-day moving average, or a four-quarter moving average.
- A moving average of order m (known as, m-MA) can be written as:

$$y_t = \frac{1}{m} \sum_{j=-k}^{k} y_{t+j};$$
 where $m = 2k + 1$

• That is, the estimate of the trend-cycle at time t is obtained by averaging values of the time series within k periods of t.

Moving Average: Residential Electricity Sale

Moving Average: Residential Electricity Sale

Moving Average: Predicting Sales Revenue for Next June & July

- Increasing trend of \$2,000 per month from 3-MA.
- November value is \$170,000.
- Next June: Revenue will increase by \$14,000 (\$2,000 per month for seven months) i.e. \$184,000 (= \$14,000 + \$170,000).
- Previous June sees positive variation of \$32,000.
- Therefore, Next June will see \$184,000
 + \$32,000 = \$216,000 revenue.
- Similarly, for next July, revenue will be \$186,000 - \$25,000 = \$161,000.

Month	Sales (\$000)	Three-month moving total (\$000)	Three-month moving average (\$000)	Seasonal variation (\$000)
January	125			
February	145	456	152	(145 – 152) = -7
March	186	462	154	(186 - 154) = 32
April	131	468	156	(131 – 156) = -25
May	151	474	158	(151 – 158) = -7
June	192	480	160	(192 – 160) = 32
July	137	486	162	(137 – 162) = -25
August	157	492	164	(157 – 164) = -7
September	198	498	166	(198 – 166) = 32
October	143	504	168	(143 – 168) = -25
November	163	510	170	(163 – 170) = -7
December	204			

Exponential Smoothing

- Forecasts produced using exponential smoothing methods are weighted averages of past observations, with the weights decaying exponentially as the observations get older.
- In other words, the more recent the observation the higher the associated weight.
- This framework generates more reliable forecasts than Moving Average.
- The exponential smoothing can be written as:

$$\hat{y}_{t+1} = \alpha y_t + \alpha (1 - \alpha) y_{t-1} + \alpha (1 - \alpha)^2 y_{t-2} + \dots; \quad 0 \le \alpha \le 1$$

Exponential Smoothing

DFT vs MA vs ES: Trend Estimation of Demand: Training

- Fourier transform (FT), moving average (MA), and exponential smoothing (ES) can be used to calculate the sales forecasts of a company.
- DFT bases estimation:
 - The time series data has to be divided into training and testing datasets.
 - Transform time data to the frequency domain using DFT.
 - Eliminate low-rank frequencies.
 - Apply IDFT and get approximate general trend, free from noise and fluctuations.
 - Find to MA.
 - Predict future values.

DFT vs MA vs ES: Trend Estimation of Demand: Training

• DFT

DFT vs MA vs ES: Trend Estimation of Demand: Training

• Find dominating frequencies, perform IDFT, and sessional variation.

Component	Amplitude	Frequency	Phase
fo	63.8	-	-
f_5	67.7	0.04	-1.04
fз	40.5	0.02	-0.73
f_4	40.0	0.03	+2.72
f ₈	33.9	0.06	-1.77
f_1	30.5	0.01	+2.31
<i>f</i> ₁₀	27.2	0.08	-2.47

DFT vs MA vs ES: Trend Estimation of Demand: Testing

