Learning Objective: Time Varying Field

Problem 1. Consider a rectangular loop ABCD on the z = 0 plane as shown in figure below. The loop is made of a conducting material with an internal resistance R_o . Suppose AB = CD = a and AD = BC = b. Determine the current i(t) if,

Recitation Problem Set #10

- (a) $\mathbf{B} = B_o \cos(\omega_o t) \hat{\mathbf{z}}$.
- (b) $\mathbf{B} = B_o \cos(\omega_o t) \hat{\mathbf{x}}$.

Problem 2. Consider a single-winded circular loop with a radius r_o is rotating in a static uniform magnetic flux density of B_o oriented in the direction perpendicular to the axis of rotation. Determine the angular velocity of the loop if the maximum induced voltage is V_o .

Learning Objective: Transformer

Problem 3. Consider the transformer circuit shown in the figure below, the current source supplies $i(t) = \cos(\omega_o t) A$.

- (a) Determine the tern ratio N_1/N_2 for maximum power transfer to the 8Ω resistor.
- (b) Determine the secondary voltage V_2 .