Московский авиационный институт

(национальный исследовательский университет)

Институт № 8 «Компьютерные науки и прикладная математика» Кафедра математической кибернетики

ЛАБОРАТОРНАЯ РАБОТА № 2 ПО КУРСУ «МАТЕМАТИЧЕСКОЕ МОДЕЛИРОВАНИЕ»

Выполнил:

Студент группы М8О-405Б-19

Данилова Татьяна Михайловна

Проверил:

Доцент кафедры 802

Майоров Андрей Юрьевич

Москва

2022 г.

Задание:
$$\ddot{x} + \frac{\lambda}{x} + x^5 = 0$$

Найти периодическое решение дифференциального уравнения методом Линштедта в окрестности устойчивого частного решения $x = x_* > 0$, $\Box = 0$ для случая $\Box = -10$. Для этого необходимо:

1. Разложить нелинейную функцию исследуемого уравнения в ряд по возмущениям $\xi = x - x_*$, $\dot{\xi} = \dot{x}$ в окрестности точки покоя $x = x_*$, $\dot{x} = 0$ и удержать члены до третьего порядка включительно. Ввести в уравнения движения малый параметр ε , используя замену переменных $\xi = \varepsilon y$, $\dot{\xi} = \varepsilon y$, и новое время по формуле $\tau = \omega t$, где

$$\omega = \Box_0 + \Box\Box_1 + \Box^2\Box_2 + \cdots$$
 - искомая частота колебаний.

Получить в явном виде периодическое решение $y = y(\tau)$, $\dot{y} = \dot{y}(\tau)$ задачи Коши $y(0) = y_0$, $\dot{y}(0) = 0$ для преобразованного дифференциального уравнения с точностью до членов порядка ε^3 . После этого следует вернуться к старым переменным x, \dot{x} и получить приближенное выражение периодических колебаний в виде x = x(t), $\dot{x} = \dot{x}(t)$.

2. С помощью МАРLE построить две сравнительные фазовые кривые на плоскости переменных x, \dot{x} соответствующие аналитическому (приближенному) решению и строгому решению задачи Коши (полученному на основе численного счета). Рассмотрите два интервала изменения времени t: $t \in [0, 10]$, $t \in [0, 1/\varepsilon]$. Численные значения параметров и начальных условий таковы: $\lambda = -10$, x(0) = 0.001, \dot{x} x(0) = 0.01.

$$\ddot{x} + \frac{\lambda}{x} + x^5 = \mathbf{0}$$

1. Разложим в ряд Тейлора

$$f:=-\frac{10}{x}+x^5$$

$$f:=-\frac{10}{x}+x^5$$

$$x_0:=\sqrt[6]{10}$$

$$x_0:=10^{1/6}$$

$$taylor(f,x=x_0)$$

$$610^{2/3}(x-10^{1/6})+9\sqrt{10}(x-10^{1/6})^2+1110^{1/3}(x-10^{1/6})^3+410^{1/6}(x-10^{1/6})^4$$

$$+2(x-10^{1/6})^5+O((x-10^{1/6})^6)$$
 2. Введем малый параметр (замена переменных: $\xi=\varepsilon y,\,\dot{\xi}=\varepsilon\dot{y}$) и сократим на $\varepsilon\neq0$. Берем члены ряда до третьего порядка

сократим на $\varepsilon \neq 0$. Берем члены ряда до третьего порядка включительно.

Делаем замену времени $\tau = \omega t$.

$$\frac{d}{dt} = \frac{d}{d(\tau/\omega)} = \omega \, \frac{d}{d\tau},$$

$$\frac{d^2}{dt^2} = \frac{d}{dt} \left(\frac{d}{dt} \right) = \omega^2 \frac{d^2}{d\tau^2},$$

обозначим $\frac{dy}{d\tau} = y', \frac{d^2y}{d\tau^2} = y''$, тогда уравнение имеет вид:

$$> \omega^2 \cdot diff(y(\tan), \tan\$2) + 6 \cdot 10^{2/3} y(\tan) + 9 \sqrt{10} \cdot \epsilon \cdot y(\tan)^2 + 11 \cdot 10^{1/3} \cdot \epsilon^2 \cdot y(\tan)^3 = 0$$

$$\omega^2 \left(\frac{d^2}{d\tau^2} y(\tau)\right) + 6 \cdot 10^{2/3} y(\tau) + 9 \sqrt{10} \cdot \epsilon y(\tau)^2 + 11 \cdot 10^{1/3} \cdot \epsilon^2 y(\tau)^3 = 0$$

3. Представим частоту колебания ω в виде ряда по малому параметру:

$$\omega_0 = 1, \omega = 1 + \varepsilon \omega_1 + \varepsilon^2 \omega_2$$
.

Решение представим в виде ряда:

$$y(\tau) = y_0(\tau) + \varepsilon y_1(\tau) + \varepsilon^2 y_2(\tau).$$

Подставим эти разложения в дифференциальное уравнение. С помощью Maple

4. Приравнивая нулю коэффициенты при последовательных степенях ε , получим уравнения для определения функций $y_0(\tau), y_1(\tau), y_2(\tau)$. Затем последовательно решаем три задачи Коши. Обнуляя секулярные члены находим $\omega_0, \omega_1, \omega_2$.

Решаем первую задачу Коши, полагая $\omega_0 = \sqrt{6*10^{\frac{2}{3}}}$, получаем $y_0(\tau)$: $\omega 0 \coloneqq \operatorname{sqrt}(6 \, 10^{2/3})$

 $\omega 0 := \sqrt{6} \ 10^{1/3}$

#решаем задачу Коши для части уравнения без эпсилон

$$dsolve\left\{\left\{6 \cdot 10^{2/3} y \theta(\tau) + \omega \theta^2 \left(\frac{d^2}{d\tau^2} y \theta(\tau)\right), y \theta(0) = a, D(y \theta)(0) = 0\right\}\right\}$$
$$y \theta(\tau) = a \cos(\tau)$$

Подставляем $y_0(\tau)$ во вторую задачу Коши, получаем $y_1(\tau)$:

из выражения где все сгруппировано по эпсилон вытаскиваем множитель пр подставляем туда решение для у0
$$subs\bigg(y0(\tau)=a\cos(\tau), \left(2\,\omega 0\,\omega l\left(\frac{d^2}{d\tau^2}\,y0(\tau)\right)+\omega 0^2\left(\frac{d^2}{d\tau^2}\,yl(\tau)\right)+6\,10^{2/3}\,yl(\tau)\right) + 9\,\sqrt{10}\,y0(\tau)^2\bigg)\bigg)$$

$$2\sqrt{6} \ 10^{1/3} \ \omega l \left(\frac{\partial^2}{\partial \tau^2} \left(a\cos(\tau)\right)\right) + 610^{2/3} \left(\frac{d^2}{d\tau^2} y l(\tau)\right) + 610^{2/3} y l(\tau) + 9\sqrt{10} \ a^2 \cos(\tau)^2$$

> #решаем задачу Коши для части уравнения с эпсилон1
$$dsolve\left[\left\{2\sqrt{6}\ 10^{1/3}\ \omega l\left(\frac{\partial^2}{\partial \tau^2}\left(a\cos(\tau)\right)\right) + 6\,10^{2/3}\left(\frac{\mathrm{d}^2}{\mathrm{d}\tau^2}y l(\tau)\right) + 6\,10^{2/3}y l(\tau)\right.\right.$$

$$\left. + 9\sqrt{10}\ a^2\cos(\tau)^2, y l(0) = 0, D(y l)(0) = 0\right\}\right]$$

$$y l(\tau) = \frac{1}{300}\,2^{5/6}\,5^{5/6}\left(-5^{5/6}\sqrt{3}\,2^{1/3}\ \omega l\ a + 15\ a^2\right)\cos(\tau) + \frac{1}{20}\left(5^{5/6}\,a\left(\cos(\tau)^2 - 2\right)\,2^{2/3}\right.$$

$$\left. + \frac{2}{3}\ \omega l\sqrt{3}\ 5^{2/3}\left(\sin(\tau)\ \tau + \cos(\tau)\right)\right)2^{1/6}\ a$$

>
$$collect(\%, \sin(\tau))$$

 $yI(\tau) = \frac{1}{30} 2^{1/6} a \sin(\tau) \sqrt{3} 5^{2/3} \omega I \tau + \frac{1}{300} 2^{5/6} 5^{5/6} (-5^{5/6} \sqrt{3} 2^{1/3} \omega I a + 15 a^2) \cos(\tau)$
 $+ \frac{1}{20} \left(5^{5/6} a \left(\cos(\tau)^2 - 2 \right) 2^{2/3} + \frac{2}{3} \sqrt{3} 5^{2/3} \cos(\tau) \omega I \right) 2^{1/6} a$

Обнуляем секулярный член, для этого полагаем, что ω_1 =0. Получаем окончательное значение для $y_1(\tau)$:

Подставляем полученные значения $y_0(\tau)$, $y_1(\tau)$ в третью задачу Коши.

Обнуляем секулярный член, $\omega_2 = -\frac{1}{4}\sqrt{2}a^2\sqrt{3}$. Получаем окончательное решение для $y_2(\tau)$:

>
$$ω2 := solve\left(\frac{1}{40} \cdot 10^{2/3} a \left(\frac{2}{3} \sqrt{6} \omega 2 \tau + a^2 \tau\right) = 0, \omega 2\right)$$

$$ω2 := -\frac{1}{4} a^2 \sqrt{6}$$
> #peuaem задачу Коши для части уравнения с эпсилон2,обнуляляя секулярный член $dsolve\left(\left[6 \cdot 10^{2/3} y \cdot 2(\tau) + 6 \cdot 10^{2/3} \left(\frac{d^2}{d\tau^2} y \cdot 2(\tau)\right) + 2 \sqrt{6} \cdot 10^{1/3} \omega 2 \left(\frac{\partial^2}{\partial \tau^2} (a \cos(\tau))\right) + 18 \sqrt{10} a \cos(\tau) \left(\frac{1}{20} \cos(\tau) \cdot 10^{5/6} a^2 + \frac{1}{40} \cdot 10^{5/6} a^2 \cdot (-3 + \cos(2\tau))\right)$

$$+ 11 \cdot 10^{1/3} a^3 \cos(\tau)^3, y \cdot 2(0) = 0, D(y \cdot 2)(0) = 0$$

$$y2(\tau) = \frac{1}{120} 10^{2/3} \cos(\tau) a^3 + \frac{1}{120} 10^{2/3} a^3 \left(5 \cos(\tau)^3 + 6 \cos(\tau)^2 - 12\right)$$

5. Составим решение исходного уравнения:

> #собираем решение
$$y(\tan t) := y0(\tan t) + \exp(t\tan t) + \exp(t$$

Выражение для ω:

> omega :=
$$omega0$$
 + epsilon· $omega1$ + ϵ^2 · $omega2$;

$$\omega := -\frac{1}{4} \epsilon^2 a^2 \sqrt{6} + \sqrt{6} \cdot 10^{1/3}$$

Делаем обратную замену $t=\frac{\tau}{\omega}$:

>
$$subs\Big(\tan = \operatorname{omega} \cdot t, a\cos(\tau) + \varepsilon\Big(\frac{1}{20}\cos(\tau) \cdot 10^{5/6} a(2 \cdot 10^{1/6} + a) + \frac{1}{40} \cdot 10^{5/6} a^2(-3 + \cos(2\tau))\Big) + \varepsilon^2\Big(\frac{1}{120}\cos(\tau) \cdot 10^{2/3} (a^3 + 12 \cdot 10^{1/6} a^2 + 12 \cdot 10^{1/3} a) + \frac{1}{24} a^2\Big(a(\cos(\tau)^3 + \frac{6}{5}\cos(\tau)^2 - \frac{12}{5}\Big) \cdot 10^{2/3} + \frac{12}{5} \cdot 10^{5/6} (\cos(\tau)^2 - 2)\Big)\Big)\Big);$$

$$a\cos\Big(\Big(-\frac{1}{4}\varepsilon^2 a^2\sqrt{6} + \sqrt{6} \cdot 10^{1/3}\Big)t\Big) + \varepsilon\Big(\frac{1}{20}\cos\Big(\Big(-\frac{1}{4}\varepsilon^2 a^2\sqrt{6}\Big) + \sqrt{6} \cdot 10^{1/3}\Big)t\Big) \cdot 10^{5/6} a(2 \cdot 10^{1/6} + a) + \frac{1}{40} \cdot 10^{5/6} a^2\Big(-3 + \cos\Big(2\Big(-\frac{1}{4}\varepsilon^2 a^2\sqrt{6}\Big) + \sqrt{6} \cdot 10^{1/3}\Big)t\Big)\Big)\Big) + \varepsilon^2\Big(\frac{1}{120}\cos\Big(\Big(-\frac{1}{4}\varepsilon^2 a^2\sqrt{6} + \sqrt{6} \cdot 10^{1/3}\Big)t\Big) \cdot 10^{2/3} (a^3 + 12 \cdot 10^{1/6} a^2 + 12 \cdot 10^{1/3} a) + \frac{1}{24}\Big(\Big(\cos\Big(\Big(-\frac{1}{4}\varepsilon^2 a^2\sqrt{6} + \sqrt{6} \cdot 10^{1/3}\Big)t\Big)^3 + \frac{6}{5}\cos\Big(\Big(-\frac{1}{4}\varepsilon^2 a^2\sqrt{6} + \sqrt{6} \cdot 10^{1/3}\Big)t\Big)^2 - \frac{12}{5}\Big)a \cdot 10^{2/3} + \frac{12}{5} \cdot 10^{5/6}\Big(\cos\Big(\Big(-\frac{1}{4}\varepsilon^2 a^2\sqrt{6} + \sqrt{6} \cdot 10^{1/3}\Big)t\Big)^2 - 2\Big)\Big)$$

6. Построим сравнительные графики полученного приближенноаналитического решения и точного численного решения исходного дифференциального уравнения.

Для
$$\lambda = -10, x(0) = 0.001, x^{\cdot}(0) = 0, \varepsilon = 0.01, t \in [0, 10]$$

Метод Линштедта:

Решение численным методом:

Наложение приближенно-аналитического метода на численный:

Для $\lambda = -10$, x(0) = 0.001, $x^{\cdot}(0) = 0$, $\varepsilon = 0.01$, $t \in [0, 1/\varepsilon]$

На более мелком разбиении Maple строит некорректный график.

Вывод: из сравнительных графиков приближенно-аналитического и численного методов решения дифференциального уравнения можно убедиться, что метод Линдштедта является достаточно точным методом.