Annexe 1 : Swisstech Convention Center - Vue en plan

La course maximale des Spiralifts pour cette rangée est de 3,16 mètres.

Annexe 2 (page1): choix d'une motorisation

Rendement standard NIE et hauts rendements IE2 et IE3 Vitesse variable et vitesse fixe Hauteur d'axe 71 à 160 Puissance 0,25 à 15 kW

Leroy-Somer

Mote	eurs Frein			4 Pôles			1500 tr/mn		limentation réseau			
	LS frein F	fb	IP55	Alimentati	Moment de freinage réglé en usine							
				Intensité			400V – 50Hz					
					démarrage/		Moment			rendement		
			Puissance	Couple	Intensité	Moment	de	Vitesse	Intensité	CEI-60034-		
			nominale	maximum	nominale	d'inertie	freinage	nominale	nominale	2-1 2007	puissance	Masse
		Туре				J		Nn				
Тур	e moteur	frein	Pn kW	Cm N.m	ld/ln	Kg.m ²	Mf N.m	tr/min	In A	η %	cosφ	kg
LS	71 M	FFB1	0,25	4,92	4,63	0,00094	4,5	1425	0,8	67	0,65	9,4
LS	71 M	FFB1	0,37	7	4,91	0,00111	4,5	1420	1,06	70	0,7	10,3
LS	71 L	FFB1	0,55	9,49	4,81	0,00136	12	1400	1,62	68	0,7	11,3
LS	80 L	FFB1	0,55	8,63	3,9	0,00154	12	1405	1,7	66,9	0,71	11,5
LS	80 L	FFB1	0,75	10,97	4,25	0,00190	12	1400	2,05	69,3	0,77	13,5
LS	80 L	FFB1	0,9	18,76	5,55	0,00266	12	1425	2,45	73	0,73	13,9
LS	90 SL	FFB2	1,1	15,8	4,5	0,00349	19	1425	2,5	76,1	0,84	18,2
LS	90 L	FFB2	1,5	24	5,25	0,00421	19	1430	3,3	79,2	0,83	20
LS	90 L	FFB2	1,8	30,6	5,6	0,00464	26	1435	3,95	79,9	0,82	21
LS	100 L	FFB2	2,2	39,42	5,7	0,00514	26	1435	4,8	80,2	0,82	24,9
LS	100 L	FFB3	3	62	6,65	0,00654	52	1435	6,35	82,2	0,83	29,1
LS	112 M	FFB3	4	81,44	5,85	0,00704	52	1430	8,95	81,4	0,79	29,6
LS	132 S	FFB3	5,5	115,52	6,95	0,01534	67	1456	11,5	85,4	0,81	44,6
LS	132 M	FFB4	7,5	148,2	5,9	0,03	110	1450	15,6	86,8	0,8	62,5

Mote	eurs Frein		6 Pôles				3000 tr/mn		Alimentation réseau				
LS frein Ffb			IP55 Alimentation incorporée				Moment de freinage réglé en usine						
						Intensité							
						démarrage/		Moment			rendement		
				sance	Couple	Intensité	Moment	de	Vitesse	Intensité	CEI-60034-		
			nom	inale	maximum	nominale	d'inertie	freinage	nominale	nominale	2-1 2007	puissance	Masse
		Туре					J		Nn				
- 71	e moteur	frein	Pn	kW	Cm N.m	ld/ln		Mf N.m		In A	η %	cosφ	kg
LS		FFB1		0,37	3,96	5,2	0,00060	4,5		0,98	50	0,6	
LS	71 L	FFB1		0,55	5,47	5,98	0,00066	4,5	2800	1,32	68,4	0,8	10,3
LS	71 L	FFB1		0,75	10,11	6	0,00079	4,5	2780	1,7	75,7	0,8	
LS	80 L	FFB1		0,75	6,12	5,05	0,00096	4,5	2820	1,75	73	0,85	11,2
LS	80 L	FFB1		1,1	9,62	5,3	0,00116	12	2830	2,5	75	0,84	12,7
LS	90 SL	FFB1		1,5	14,85	6,1	0,00166	12	2880	3,35	77,2	0,84	16,5
LS	90 L	FFB2		2,2	21,17	6,1	0,00294	19	2870	4,65	79,7	0,86	21,8
LS	100 L	FFB2		3	29	6	0,00304	19	2860	6,45	81,5	0,82	25,7
LS	100 L	FFB2		3,7	47,58	8,05	0,00374	26	2905	7,8	82,7	0,83	31
LS	112 M	FFB2		4	46,86	7,9	0,00374	26	2890	8,2	83,1	0,85	31
LS	132 S	FFB3		5,5	56,7	7,35	0,00874	52	2925	11	84,7	0,85	42,4
LS	132 S	FFB3		7,5	85,4	7,7	0,01044	52	2930	15,8	86,5	0,79	46
LS	132 M	FFB4		9	86,44	6,55	0,01688	96	2935	18	86,8	0,83	65,2
LS	160 MP	FFB4		11	109,19	6,65	0,01846	96	2935	22,4	87,6	0,81	76,2

Annexe 2 (page2): choix d'une motorisation

Construction

Désignation

Annexe 3 : caractéristiques des charnières

Une demi-charnière a été modélisée sur un modeleur volumique. Pour simplifier l'étude, on considérera que les deux demi-charnières sont identiques. La figure ci-dessous présente une capture d'écran des informations fournies par ce logiciel.

Le système de coordonnées de sortie pour une demi-charnière n est $(A_n, \vec{x}_n, \vec{y}_n, \vec{z}_n)$ où (A_n, \vec{x}_n) est l'axe de rotation d'une demi-charnière par rapport à l'autre. Le plan $(A_n, \vec{y}_n, \vec{z}_n)$ est un plan de symétrie de la demi-charnière n.

Le centre d'inertie de la demi-charnière n est noté G_n , et la base principale d'inertie est $(\vec{I}_x, \vec{I}_y, \vec{I}_z)$.

On notera la longueur $l_n = \overline{A_n B_n} \cdot \vec{y}_n = 1,82 \, m$ et on considérera que le centre d'inertie se situe au milieu de la demi-charnière soit $\overline{A_n G_n} \cdot \vec{y}_n = \frac{l_n}{2}$.

La matrice d'inertie d'une demi-charnière n sera notée $I(G_n, n) = \begin{bmatrix} A_n & -F_n & -E_n \\ -F_n & B_n & -D_n \\ -E_n & -D_n & C_n \end{bmatrix}_{(\vec{x}_n, \vec{y}_n, \vec{z}_n)}$

où les termes de la matrice d'inertie proviennent du modeleur volumique avec :

- $A_n = I_{xx}$; $B_n = I_{yy}$; $C_n = I_{zz}$;
- $D_n = I_{yz} = I_{zy}$; $E_n = I_{xz} = I_{zx}$; $F_n = I_{xy} = I_{yx}$.

Annexe 4: le Spiralift

Figure a : système Spiralift

Le Spiralift, développé et commercialisé par l'entreprise québécoise GALA SYSTEMES fonctionne par l'enroulement en spirale de deux fines bandes métalliques. Une bande continue orientée verticalement donne la résistance à la colonne ainsi créée. La bande horizontale permet d'assurer la stabilité de l'ensemble.

Le Spiralift a initialement été conçu pour les systèmes de montée/descente d'orchestres. Grâce au stockage par enroulement à sa base, le Spiralift peut actionner des scènes mobiles sans avoir recours à de gros travaux d'excavation (pour creuser des caissons de dégagement).

Le développement vertical de la bande est réalisé par le mécanisme interne au Spiralift présenté figures b et c.

Figure b : vues intérieures du Spiralift

Figure c: empilement des bandes

Le tambour d'assemblage est mis en rotation par le moteur électrique. Les galets, positionnés en hélice sur le tambour, permettent de soulever la bande horizontale. Simultanément, la bande verticale est ramenée à la verticale de la bande horizontale par un poussoir (non visible sur ces figures).

L'ensemble formé par les bandes horizontale et verticale se trouve alors solidarisé à la sortie du Spiralift, et se comporte comme une poutre rigide tubulaire verticale de hauteur variable (voir figure c).