

Projektbericht Trashpong

Januar 2023

Architektur

Im Rahmen der Architektur wird eine zentralisierte Architektur verwendet, wobei es sich um eine Client-Server-Architektur handelt (vgl. Abbildung 1). Die Programmteile werden in zwei separate Einheiten unterteilt, um eine klare Trennung zu gewährleisten. Der Server stellt einen bestimmten Service bereit und leitet die Anfragen an die Clients weiter. Die Clients empfangen diese Anfragen.[1]

Der Client ist eine kompilierte Executable, geschrieben in der Open-Source Godot Engine [2]. Dort befindet sich die Gesamte Spiel Logik über die der Benutzer das Spiel spielen kann. Der Server befindet sich in einem Docker Compose bestehend aus einer Posgres Datenbank, einem Load Balancer und beliebig skalierbare

Spieleserver welche die Anfragen der Clients verarbeitet.

Figure 1: Kontext-Sicht der Client-Server-Architektur des Pong Spiels

Architektural Decision

Erklärung, warum diese Architektur gewählt wurde (z. B. Skalierbarkeit, Modularität, Sicherheit).

Systemkomponenten

Anforderungen

Spieler-Registrierung und -Login (FA1)

Beschreibung: Benutzer müssen sich mit ihren Namen anmelden können, um am Spiel teilzunehmen. Die Nutzung sollte niederschwelling sein. Ein Benutzer muss deshalb kein Konto anlegenc

Echtzeit-Multiplayer-Funktionalität (FA2)

Beschreibung: Das Spiel muss in der Lage sein, mehrere Spieler in Echtzeit zu verbinden und ein synchronisiertes Spiel zu ermöglichen. Die Bewegungen der Schläger und der Ball müssen in Echtzeit zwischen den Spielern synchronisiert werden.

Punkteverwaltung (FA3)

Beschreibung: Das System muss die Punkte der Spieler während des Spiels erfassen und verwalten können. Nach jedem Spiel sollte ein Punktestand angezeigt werden, der den Gewinner ermittelt.

Leistung und Skalierbarkeit (NF1)

Beschreibung: Das Spiel sollte auch bei hoher Benutzerzahl flüssig und ohne Verzögerungen laufen. Das System muss skalierbar sein, um eine große Anzahl von gleichzeitigen Spielern zu unterstützen.

Sicherheit (NF2)

Beschreibung: Die Benutzerdaten, einschließlich Anmeldedaten und Spielstatistiken, müssen sicher gespeichert und übertragen werden. Das System sollte gegen häufige Sicherheitsbedrohungen wie SQL-Injektionen und Cross-Site-Scripting geschützt sein.

Datensparsamkeit (NF3)

Beschreibung: Die Datenerhebung und -speicherung wird nur im notwendigen Maß durchgeführt. Ziel ist es, nur die Daten zu erfassen und zu speichern, die für den Betrieb und die Funktionalität des Systems unbedingt erforderlich sind. Dies trägt zum Schutz der Privatsphäre der Nutzer bei und reduziert das Risiko von Datenmissbrauch und -verlust. Deshalb sollen nur der Nutzername und die Punkte gespeichert werden.

Benutzerfreundlichkeit (NF4)

Beschreibung: Die Benutzeroberfläche des Spiels sollte intuitiv und leicht zu bedienen sein. Neue Spieler sollten sich schnell zurechtfinden und das Spiel ohne umfangreiche Anleitungen verstehen können.

Umsetzung

Implementierung

- Umsetzung der Architektur: Beschreibung der Implementierung der einzelnen Komponenten und ihrer Interaktionen.
- Schwierigkeiten und Lösungen: Was waren die technischen Herausforderungen und wie wurden sie bewältigt?

Figure 2: Eventbasierter Ablauf des Spiels über einen Socket-IO Websocket. Es handelt sich um eine Vereinfachte Ansicht. Beide Seiten können die jeweiligen Events an den Server senden.

Mögliche Alternativen

• Architektur- und Technologiealternativen: Überlegungen zu möglichen anderen Architekturen und Technologien sowie deren Vor- und Nachteile.

Reflexion

Rückblick

• Änderungen nach dem Projekt: Was würde man im Nachhinein anders machen, um das System zu verbessern?

Herausforderungen

• Größte Herausforderungen: Rückblick auf die bedeutendsten Schwierigkeiten und wie sie gelöst wurden.

Quellen

- [1] A.S. Tanenbaum and M. van Steen. Distributed Systems: Principles and Paradigms. Pearson Prentice Hall, 2007. ISBN: 9780136135531. URL: https://books.google.de/books?id=UKDjLQAACAAJ.
- [2] Godot Engine. https://godotengine.org/. Zuletzt Aufgerufen 19.09.2024.