```
In [1]: include("/home/nicole/Jupyter/SSBRnoJ/src/SSBR.jl")
        using SSBR
In [2]:
        function getPos(ped,IDs)
            posAi = Array(Int64, size(IDs, 1))
            for (i,id) = enumerate(IDs[:,1])
                 posAi[i] = ped.idMap[id].seqID
            end
            return posAi
        end
Out[2]: getPos (generic function with 1 method)
In [3]: | ; cd Data/0.5a0/G/8
        /home/nicole/Jupyter/JG3/Data/0.5a0/G/8
In [4]:
        ;ls
        G0.Genotype.ID
        G0.ID
        G0.noGenotype.ID
        G1.Genotype.ID
        G1.ID
        G1.noGenotype.ID
        G2.Genotype.ID
        G2.ID
        G2.noGenotype.ID
        G3.Genotype.ID
        G3.ID
        G3.noGenotype.ID
        G4.Genotype.ID
        G4.ID
        G4.noGenotype.ID
        G5.Genotype.ID
        G5.ID
        G5.noGenotype.ID
        GenNF.txt
        PedAll.txt
        Phe.txt
        PheAll.txt
        all.ID
        genotype.ID
        noGenotype.ID
        sim.bv
        sim.phenotype
In [5]: ;awk '{print $1}' PedAll.txt | sort -b > all.ID
In [6]: |;awk '{print $1}' GenNF.txt | sort -b > genotype.ID
In [7]: |;join -v1 all.ID genotype.ID > noGenotype.ID
```

```
In [8]: ;awk '{print $1,$2}' Phe.txt > sim.phenotype
         ;awk '{print $1,$3}' PheAll.txt > sim.bv
         ; awk 'NR >=1 && NR <=8000 {print $1}' PedAll.txt | sort -b > G0.ID
In [10]:
         ; awk 'NR >=8001 && NR <=16000 {print $1}' PedAll.txt | sort -b > G1.ID
         ; awk 'NR >=16001 && NR <=24000 {print $1}' PedAll.txt | sort -b > G2.ID
In [13]:
         ; awk 'NR >=24001 && NR <=32000 {print $1}' PedAll.txt | sort -b > G3.ID
In [14]:
         ; awk 'NR >=32001 && NR <=40000 {print $1}' PedAll.txt | sort -b > G4.ID
In [15]:
         ; awk 'NR >=40001 && NR <=48000 {print $1}' PedAll.txt | sort -b > G5.ID
         ;join G0.ID genotype.ID > G0.Genotype.ID
In [16]:
In [17]:
         ; join G1.ID genotype.ID > G1.Genotype.ID
In [18]:
         ; join G2.ID genotype.ID > G2.Genotype.ID
         ; join G3.ID genotype.ID > G3.Genotype.ID
In [19]:
In [20]:
         ; join G4.ID genotype.ID > G4.Genotype.ID
In [21]:
         ;join G5.ID genotype.ID > G5.Genotype.ID
         ;join -v1 G0.ID genotype.ID > G0.noGenotype.ID
In [22]:
In [23]:
         ;join -v1 G1.ID genotype.ID > G1.noGenotype.ID
         ;join -v1 G2.ID genotype.ID > G2.noGenotype.ID
In [24]:
In [25]:
         ;join -v1 G3.ID genotype.ID > G3.noGenotype.ID
In [26]:
         ;join -v1 G4.ID genotype.ID > G4.noGenotype.ID
         ;join -v1 G5.ID genotype.ID > G5.noGenotype.ID
```

```
In [28]:
         ;wc G0.Genotype.ID;wc G1.Genotype.ID;wc G2.Genotype.ID;wc G3.Genotype.ID;wc (
               200 1200 GO.Genotype.ID
          200 200 1200 G1.Genotype.ID
          200 200 1200 G2.Genotype.ID
          200 200 1200 G3.Genotype.ID
          200 200 1200 G4.Genotype.ID
          8000 8000 48000 G5.Genotype.ID
In [29]: ;wc G0.noGenotype.ID;wc G1.noGenotype.ID;wc G2.noGenotype.ID;wc G3.noGenotype
                7800 46800 G0.noGenotype.ID
          7800
                7800 46800 Gl.noGenotype.ID
          7800
                7800 46800 G2.noGenotype.ID
          7800 7800 46800 G3.noGenotype.ID
          7800 7800 46800 G4.noGenotype.ID
         0 0 0 G5.noGenotype.ID
In [30]: ped, A Mats, numSSBayes = calc_Ai("PedAll.txt", "genotype.ID", calculateInbreeding
         y Vecs = make_yVecs("sim.phenotype",ped,numSSBayes)
         Z_Mats = make_ZMats(ped,y_Vecs,numSSBayes)
         nothing
         vRes
                = 0.741
In [31]:
                = 0.741
         vG
         aHat3=SSBR.PBLUP(y Vecs, Z Mats, A Mats, numSSBayes, vRes, vG);
In [32]: | using DataFrames
In [33]: df = readtable("sim.bv", eltypes =[UTF8String, Float64], separator = ' ',head
         a = Array(Float64, numSSBayes.num ped)
         for (i,ID) in enumerate(df[:,1])
             j = ped.idMap[ID].seqID
             a[j] = df[i,2]
         end
In [34]: IDs = readtable("all.ID", eltypes =[UTF8String], separator = ' ',header=false
         posAi = getPos(ped,IDs)
         cor1 = cor(a[posAi],aHat3[posAi])[1,1]
         reg1 = linreg(aHat3[posAi], a[posAi])[2,1]
         @printf("SSBRJC from Gibbs - all.ID : correlation = %6.3f\n", cor1 ) # with (
         @printf("SSBRJC from Gibbs - all.ID : regression of TBV on GEBV = %6.3f\n",
         JCAll = cor1
         SSBRJC from Gibbs - all.ID : correlation = 0.891
         SSBRJC from Gibbs - all.ID : regression of TBV on GEBV = 0.973
Out[34]: 0.8914960415855372
In [35]: | TBV = a[posAi]
         mean(TBV)
Out[35]: 4.199781354166666
```

```
In [36]: EBV = aHat3[posAi]
         mean(EBV)
Out[36]: 1.4360281566913307
In [37]: IDs = readtable("genotype.ID", eltypes =[UTF8String], separator = ' ',header:
         posAi = getPos(ped,IDs)
         cor2 = cor(a[posAi],aHat3[posAi])[1,1]
         reg2 = linreg(aHat3[posAi], a[posAi])[2,1]
         @printf("SSBRJC from Gibbs - genotype.ID : correlation = %6.3f\n", cor2 ) # |
         @printf("SSBRJC from Gibbs - genotype.ID : regression of TBV on GEBV = %6.3:
         JCAll = cor2
         SSBRJC from Gibbs - genotype.ID : correlation = 0.576
         SSBRJC from Gibbs - genotype.ID : regression of TBV on GEBV = 0.966
Out[37]: 0.576377365594253
In [38]: TBV = a[posAi]
         mean(TBV)
Out[38]: 5.430348888888889
In [39]: EBV = aHat3[posAi]
         mean(EBV)
Out[39]: 2.7267177930100637
In [40]: IDs = readtable("noGenotype.ID", eltypes =[UTF8String], separator = ' ',heade
         posAi = getPos(ped,IDs)
         cor3 = cor(a[posAi],aHat3[posAi])[1,1]
         reg3 = linreg(aHat3[posAi], a[posAi])[2,1]
         @printf("SSBRJC from Gibbs - noGenotype.ID : correlation = %6.3f\n", cor3 );
         @printf("SSBRJC from Gibbs - noGenotype.ID : regression of TBV on GEBV = %6
         JCAll = cor3
         SSBRJC from Gibbs - noGenotype.ID : correlation = 0.879
         SSBRJC from Gibbs - noGenotype.ID : regression of TBV on GEBV = 0.983
Out[40]: 0.8785033812906399
In [41]: TBV = a[posAi]
         mean(TBV)
Out[41]: 3.9158042307692305
In [42]: EBV = aHat3[posAi]
         mean(EBV)
Out[42]: 1.1381767021562386
```

```
In [43]: IDs = readtable("G0.ID", eltypes =[UTF8String], separator = ' ',header=false
         posAi = getPos(ped,IDs)
         cor4 = cor(a[posAi],aHat3[posAi])[1,1]
         reg4 = linreg(aHat3[posAi], a[posAi])[2,1]
         @printf("SSBRJC from Gibbs - G0.ID : correlation = %6.3f\n", cor4 ) # with ei
         @printf("SSBRJC from Gibbs - G0.ID : regression of TBV on GEBV = %6.3f\n", re
         JCAll = cor4
         SSBRJC from Gibbs - G0.ID : correlation = 0.713
         SSBRJC from Gibbs - G0.ID: regression of TBV on GEBV = 0.896
Out[43]: 0.7128554854110432
In [44]: TBV = a[posAi]
         mean(TBV)
Out[44]: 2.8020739999999997
In [45]: EBV = aHat3[posAi]
         mean(EBV)
Out[45]: 0.001224704164246558
In [46]: IDs = readtable("G1.ID", eltypes =[UTF8String], separator = ' ',header=false
         posAi = getPos(ped,IDs)
         cor4 = cor(a[posAi],aHat3[posAi])[1,1]
         reg4 = linreg(aHat3[posAi], a[posAi])[2,1]
         @printf("SSBRJC from Gibbs - G1.ID : correlation = %6.3f\n", cor4 ) # with ep
         @printf("SSBRJC from Gibbs - G1.ID : regression of TBV on GEBV = %6.3f\n", re
         JCAll = cor4
         SSBRJC from Gibbs - G1.ID : correlation = 0.775
         SSBRJC from Gibbs - G1.ID: regression of TBV on GEBV = 0.991
Out[46]: 0.7751880181125452
In [47]: TBV = a[posAi]
         mean(TBV)
Out[47]: 3.3759308749999994
In [48]: EBV = aHat3[posAi]
         mean(EBV)
Out[48]: 0.6186589939226499
```

```
In [49]: IDs = readtable("G2.ID", eltypes =[UTF8String], separator = ' ',header=false
         posAi = getPos(ped,IDs)
         cor5 = cor(a[posAi],aHat3[posAi])[1,1]
         reg5 = linreg(aHat3[posAi], a[posAi])[2,1]
         @printf("SSBRJC from Gibbs - G2.ID : correlation = %6.3f\n", cor5 ) # with ei
         @printf("SSBRJC from Gibbs - G2.ID : regression of TBV on GEBV = %6.3f\n", re
         JCAll = cor5
         SSBRJC from Gibbs - G2.ID : correlation = 0.777
         SSBRJC from Gibbs - G2.ID: regression of TBV on GEBV = 1.020
Out[49]: 0.7772520361459136
In [50]: TBV = a[posAi]
         mean(TBV)
Out[50]: 3.9699628750000002
In [51]: EBV = aHat3[posAi]
         mean(EBV)
Out[51]: 1.197176085931089
In [52]: IDs = readtable("G3.ID", eltypes =[UTF8String], separator = ' ',header=false
         posAi = getPos(ped,IDs)
         cor6 = cor(a[posAi],aHat3[posAi])[1,1]
         reg6 = linreg(aHat3[posAi], a[posAi])[2,1]
         @printf("SSBRJC from Gibbs - G3.ID : correlation = %6.3f\n", cor6 ) # with ep
         @printf("SSBRJC from Gibbs - G3.ID : regression of TBV on GEBV = %6.3f\n", re
         JCAll = cor6
         SSBRJC from Gibbs - G3.ID : correlation = 0.752
         SSBRJC from Gibbs - G3.ID : regression of TBV on GEBV = 0.984
Out[52]: 0.7517374448596913
In [53]: TBV = a[posAi]
         mean(TBV)
Out[53]: 4.535933375
In [54]: EBV = aHat3[posAi]
         mean(EBV)
Out[54]: 1.7535262900476227
```

```
In [55]: IDs = readtable("G4.ID", eltypes =[UTF8String], separator = ' ', header=false
         posAi = getPos(ped,IDs)
         cor7 = cor(a[posAi],aHat3[posAi])[1,1]
         reg7 = linreg(aHat3[posAi], a[posAi])[2,1]
         @printf("SSBRJC from Gibbs - G4.ID : correlation = %6.3f\n", cor7 ) # with ei
         @printf("SSBRJC from Gibbs - G4.ID : regression of TBV on GEBV = %6.3f\n", re
         JCAll = cor7
         SSBRJC from Gibbs - G4.ID : correlation = 0.716
         SSBRJC from Gibbs - G4.ID: regression of TBV on GEBV = 0.939
Out[55]: 0.71588797788469
In [56]: TBV = a[posAi]
         mean(TBV)
Out[56]: 5.0319438750000005
In [57]: EBV = aHat3[posAi]
         mean(EBV)
Out[57]: 2.2627452562171344
In [58]: IDs = readtable("G5.ID", eltypes =[UTF8String], separator = ' ',header=false
         posAi = getPos(ped,IDs)
         cor8 = cor(a[posAi],aHat3[posAi])[1,1]
         reg8 = linreg(aHat3[posAi], a[posAi])[2,1]
         @printf("SSBRJC from Gibbs - G5.ID : correlation = %6.3f\n", cor8 ) # with ep
         @printf("SSBRJC from Gibbs - G5.ID : regression of TBV on GEBV = %6.3f\n", re
         JCAll = cor8
         SSBRJC from Gibbs - G5.ID : correlation = 0.427
         SSBRJC from Gibbs - G5.ID : regression of TBV on GEBV = 0.957
Out[58]: 0.426668546745776
In [59]: TBV = a[posAi]
         mean(TBV)
Out[59]: 5.482843125
In [60]: EBV = aHat3[posAi]
         mean(EBV)
Out[60]: 2.782837609865241
```

```
In [61]: IDs = readtable("G0.Genotype.ID", eltypes =[UTF8String], separator = ' ',heac
         posAi = getPos(ped,IDs)
         cor9 = cor(a[posAi],aHat3[posAi])[1,1]
         reg9 = linreg(aHat3[posAi], a[posAi])[2,1]
         @printf("SSBRJC from Gibbs - G0.Genotype.ID : correlation = %6.3f\n", cor9 )
         @printf("SSBRJC from Gibbs - G0.Genotype.ID : regression of TBV on GEBV = %6
         JCAll = cor9
         SSBRJC from Gibbs - G0.Genotype.ID : correlation = 0.903
         SSBRJC from Gibbs - G0.Genotype.ID: regression of TBV on GEBV = 1.080
Out[61]: 0.9027152328148518
In [62]: TBV = a[posAi]
         mean(TBV)
Out[62]: 3.963215000000001
In [63]: EBV = aHat3[posAi]
         mean(EBV)
Out[63]: 1.252143460227135
In [64]: IDs = readtable("G1.Genotype.ID", eltypes =[UTF8String], separator = ' ',head
         posAi = getPos(ped,IDs)
         cor9 = cor(a[posAi],aHat3[posAi])[1,1]
         reg9 = linreg(aHat3[posAi], a[posAi])[2,1]
         @printf("SSBRJC from Gibbs - G1.Genotype.ID : correlation = %6.3f\n", cor9 )
         @printf("SSBRJC from Gibbs - G1.Genotype.ID : regression of TBV on GEBV = %6
         JCAll = cor9
         SSBRJC from Gibbs - G1.Genotype.ID : correlation = 0.918
         SSBRJC from Gibbs - G1.Genotype.ID : regression of TBV on GEBV = 1.028
Out[64]: 0.9184102942737643
In [65]: TBV = a[posAi]
         mean(TBV)
Out[65]: 4.539180000000001
In [66]: EBV = aHat3[posAi]
         mean(EBV)
Out[66]: 1.7627529293967004
```

```
In [67]: IDs = readtable("G2.Genotype.ID", eltypes =[UTF8String], separator = ' ',heac
         posAi = getPos(ped,IDs)
         cor10 = cor(a[posAi],aHat3[posAi])[1,1]
         reg10 = linreg(aHat3[posAi], a[posAi])[2,1]
         @printf("SSBRJC from Gibbs - G2.Genotype.ID : correlation = %6.3f\n", cor10
         @printf("SSBRJC from Gibbs - G2.Genotype.ID : regression of TBV on GEBV = %6
         JCAll = cor10
         SSBRJC from Gibbs - G2.Genotype.ID : correlation = 0.868
         SSBRJC from Gibbs - G2.Genotype.ID : regression of TBV on GEBV = 0.997
Out[67]: 0.8684382041486678
In [68]: TBV = a[posAi]
         mean(TBV)
Out[68]: 5.082269999999999
In [69]: EBV = aHat3[posAi]
         mean(EBV)
Out[69]: 2.2933978002202684
In [70]: IDs = readtable("G3.Genotype.ID", eltypes =[UTF8String], separator = ' ',head
         posAi = getPos(ped,IDs)
         cor11 = cor(a[posAi],aHat3[posAi])[1,1]
         reg11 = linreg(aHat3[posAi], a[posAi])[2,1]
         @printf("SSBRJC from Gibbs - G3.Genotype.ID : correlation = %6.3f\n", cor11
         @printf("SSBRJC from Gibbs - G3.Genotype.ID : regression of TBV on GEBV = %6
         JCAll = corl1
         SSBRJC from Gibbs - G3.Genotype.ID : correlation = 0.864
         SSBRJC from Gibbs - G3.Genotype.ID : regression of TBV on GEBV = 0.990
Out[70]: 0.8639118791509449
In [71]: TBV = a[posAi]
         mean(TBV)
Out[71]: 5.5289
In [72]: EBV = aHat3[posAi]
         mean(EBV)
Out[72]: 2.7750779074757967
```

```
In [73]: IDs = readtable("G4.Genotype.ID", eltypes =[UTF8String], separator = ' ',head
         posAi = getPos(ped,IDs)
         cor12 = cor(a[posAi],aHat3[posAi])[1,1]
         reg12 = linreg(aHat3[posAi], a[posAi])[2,1]
         @printf("SSBRJC from Gibbs - G4.Genotype.ID : correlation = %6.3f\n", cor12
         @printf("SSBRJC from Gibbs - G4.Genotype.ID : regression of TBV on GEBV = %6
         JCAll = cor12
         SSBRJC from Gibbs - G4.Genotype.ID : correlation = 0.545
         SSBRJC from Gibbs - G4.Genotype.ID : regression of TBV on GEBV = 1.015
Out[73]: 0.5451725942105462
In [74]: TBV = a[posAi]
         mean(TBV)
Out[74]: 5.93841000000001
In [75]: EBV = aHat3[posAi]
         mean(EBV)
Out[75]: 3.3054241935232884
In [76]: IDs = readtable("G5.Genotype.ID", eltypes =[UTF8String], separator = ' ',head
         posAi = getPos(ped,IDs)
         cor13 = cor(a[posAi],aHat3[posAi])[1,1]
         reg13 = linreg(aHat3[posAi], a[posAi])[2,1]
         @printf("SSBRJC from Gibbs - G5.Genotype.ID : correlation = %6.3f\n", cor13
         @printf("SSBRJC from Gibbs - G5.Genotype.ID : regression of TBV on GEBV = %6
         JCAll = cor13
         SSBRJC from Gibbs - G5.Genotype.ID : correlation = 0.427
         SSBRJC from Gibbs - G5.Genotype.ID: regression of TBV on GEBV = 0.957
Out[76]: 0.426668546745776
In [77]: writedlm("Correlation.G5.G.PBLUP.txt",cor13)
In [78]: | writedlm("Regression.G5.G.PBLUP.txt",reg13)
In [79]: TBV = a[posAi]
         mean(TBV)
Out[79]: 5.482843125
In [80]: EBV = aHat3[posAi]
         mean(EBV)
Out[80]: 2.782837609865241
```

```
In [81]: IDs = readtable("G0.noGenotype.ID", eltypes =[UTF8String], separator = ' ',he
         posAi = getPos(ped,IDs)
         cor14 = cor(a[posAi],aHat3[posAi])[1,1]
         reg14 = linreg(aHat3[posAi], a[posAi])[2,1]
         @printf("SSBRJC from Gibbs - G0.noGenotype.ID : correlation = %6.3f\n", corl
         @printf("SSBRJC from Gibbs - G0.noGenotype.ID : regression of TBV on GEBV = '
         JCAll = cor14
         SSBRJC from Gibbs - G0.noGenotype.ID : correlation = 0.692
         SSBRJC from Gibbs - G0.noGenotype.ID : regression of TBV on GEBV = 0.890
Out[81]: 0.6922583111263111
In [82]: TBV = a[posAi]
         mean(TBV)
Out[82]: 2.7723011538461537
In [83]: EBV = aHat3[posAi]
         mean(EBV)
Out[83]: -0.03085013573480187
In [84]: IDs = readtable("G1.noGenotype.ID", eltypes =[UTF8String], separator = ' ',he
         posAi = getPos(ped,IDs)
         cor14 = cor(a[posAi],aHat3[posAi])[1,1]
         reg14 = linreg(aHat3[posAi], a[posAi])[2,1]
         @printf("SSBRJC from Gibbs - G1.noGenotype.ID : correlation = %6.3f\n", corl
         @printf("SSBRJC from Gibbs - G1.noGenotype.ID : regression of TBV on GEBV = '
         JCAll = cor14
         SSBRJC from Gibbs - G1.noGenotype.ID : correlation = 0.757
         SSBRJC from Gibbs - G1.noGenotype.ID: regression of TBV on GEBV = 0.988
Out[84]: 0.7572728267223393
In [85]: TBV = a[posAi]
         mean(TBV)
Out[85]: 3.3461039743589738
In [86]: EBV = aHat3[posAi]
         mean(EBV)
Out[86]: 0.5893232519874178
```

```
In [87]: IDs = readtable("G2.noGenotype.ID", eltypes =[UTF8String], separator = ' ',he
         posAi = getPos(ped,IDs)
         cor15 = cor(a[posAi],aHat3[posAi])[1,1]
         reg15 = linreg(aHat3[posAi], a[posAi])[2,1]
         @printf("SSBRJC from Gibbs - G2.noGenotype.ID : correlation = %6.3f\n", cor1!
         @printf("SSBRJC from Gibbs - G2.noGenotype.ID : regression of TBV on GEBV = '
         JCAll = cor15
         SSBRJC from Gibbs - G2.noGenotype.ID : correlation = 0.763
         SSBRJC from Gibbs - G2.noGenotype.ID : regression of TBV on GEBV = 1.021
Out[87]: 0.7627115921532942
In [88]: TBV = a[posAi]
         mean(TBV)
Out[88]: 3.941442179487179
In [89]: EBV = aHat3[posAi]
         mean(EBV)
Out[89]: 1.169067836846751
In [90]: IDs = readtable("G3.noGenotype.ID", eltypes =[UTF8String], separator = ' ',he
         posAi = getPos(ped,IDs)
         cor16 = cor(a[posAi],aHat3[posAi])[1,1]
         reg16 = linreg(aHat3[posAi], a[posAi])[2,1]
         @printf("SSBRJC from Gibbs - G3.noGenotype.ID : correlation = %6.3f\n", cor1
         @printf("SSBRJC from Gibbs - G3.noGenotype.ID : regression of TBV on GEBV = '
         JCAll = cor16
         SSBRJC from Gibbs - G3.noGenotype.ID : correlation = 0.737
         SSBRJC from Gibbs - G3.noGenotype.ID: regression of TBV on GEBV = 0.984
Out[90]: 0.736586652624187
In [91]: TBV = a[posAi]
         mean(TBV)
Out[91]: 4.510472692307693
In [92]: EBV = aHat3[posAi]
         mean(EBV)
Out[92]: 1.7273326588315154
```

```
In [93]: IDs = readtable("G4.noGenotype.ID", eltypes =[UTF8String], separator = ' ',he
         posAi = getPos(ped,IDs)
         cor17 = cor(a[posAi],aHat3[posAi])[1,1]
         reg17 = linreg(aHat3[posAi], a[posAi])[2,1]
         @printf("SSBRJC from Gibbs - G4.noGenotype.ID : correlation = %6.3f\n", cor1
         @printf("SSBRJC from Gibbs - G4.noGenotype.ID : regression of TBV on GEBV = '
         JCAll = cor17
         SSBRJC from Gibbs - G4.noGenotype.ID : correlation = 0.704
         SSBRJC from Gibbs - G4.noGenotype.ID : regression of TBV on GEBV = 0.945
Out[93]: 0.7039342667128198
In [94]: TBV = a[posAi]
         mean(TBV)
Out[94]: 5.008701153846155
In [95]: EBV = aHat3[posAi]
         mean(EBV)
Out[95]: 2.2360098988503094
In [96]: numSSBayes
Out[96]: SSBR.NumSSBayes(54922,45922,9000,40000,39000,1000,0)
```