Redes de Computadores

Prof. Wedson Gomes

REDES DE COMPUTADORES

AUTORES

Ricardo Tombesi Macedo Roberto Franciscatto Guilherme Bernardino da Cunha Cristiano Bertolini

UFSM / 2018 github.com/wedgom -Redes Computadore -Livro

Introdução

- Nível Físico da arquitetura de protocolos de rede de computadores
 - Objetivo: transmissão de bits de um computador (fonte) a outro (destino)
- Meios físicos de transmissão de dados
 - Cabo coaxial, fibra óptica, ar, dentre outros
- Cada tipo de meio físico possui características
 - Custo, facilidade de instalação, largura de banda,imunidade a ruído

Introdução

- Largura de banda
 - Capacidade de transmissão de um determinado meio físico
 - Determina a "velocidade" que os dados são transmitidos
- Medida tipicamente em bits por segundo (bps)
 - Exemplo: se um meio físico possui largura de banda de 10Mbps, então ele suporta a transmissão de até 10 megabits por segundo

Classificação de meios físicos de transmissão de dados

- Guiados
 - □Metálicos
 - Par trançado
 - Cabo coaxial
- Ópticos
 - □ Fibra óptica
- Não-guiados
 - □ Radiodifusão
 - Microondas
 - □Laser

Par trançado

- Meio físico guiado metálico
- Tecnologia antiga e ainda fortemente usada
- Pares de fios de cobre (ou aço revestido de cobre) entrelaçados ao longo do cabo, isolados por um material plástico

□ Reduz interferências (externa e entre os condutores

do cabo)

Par trançado

- Usado inicialmente em telefonia
 - □ Entre central telefônica e residência
- Uso em redes locais (LANs)
 - □Baixo custo e facilidade de instalação (flexibilidadedo cabo)
 - □ Atinge distância (comprimento do cabo) de até 100 metros
 - □ Suporta taxa de transmissão de até 10Gbps

- Conexão ponto a ponto
 - □ Conector RJ-45 (macho e fêmea)
 - □ Conectorização padrão: T568A ou T568B

Conectorização padrão: T568A ou T568B

Pino	Par 568A	Par 568B	Cor 568A	Cor 568B
1	3	2	c branco/verde	c branco/laranja
2	3	2	verde	aranja 😊
3	2	3	c branco/laranja	c branco/verde
4	1	1	azul	azul
5	1	1	branco/azul	co branco/azul
6	2	3	aranja 🖘	verde
7	4	4	combranco/marrom	c branco/marrom
8	4	4	marrom	marrom

Par trançado - STP

- Blindado (STP Shielded Twisted Pair)
 - Blindagem individual para cada par de fios
 - Usado em ambientes com grande interferência eletromagnética (p. ex., de motores e ar condicionado)

Par trançado – UTP

- Não-Blindado (UTP Unshielded Twisted Pair)
 - Mais usado em LANs (menor custo, mais flexível e de fácil instalação)

Par trançado – UTP

	11.50.00	•	
Categoria	Uso típico	Taxa máxima	Distância máxima
CAT 1 e 2	Telefonia	100kbps (CAT 1) e 2Mbps (CAT 2)	5 a 6 Km
CAT 3	Telefonia/LAN (obsoleto)	10Mbps	100m
CAT 4	LANs	20Mbps	100m
CAT 5	LANs	100Mbps	100m
CAT 5e	LANs	1Gbps	100m
CAT 6	LANs	1Gbps	100m
CAT 7	LANs	10Gbps	100m

Instalação de par trançado

Conector RJ45

Cabo par trançado

Alicate crimpador

Par trançado (resumindo...)

- Vantagens
 - ■Baixo custo (conectores e cabos)
 - □Fácil instalação e manutenção
- Desvantagens
 - □Suscetível a interferências
 - □Limite máximo de comprimento do cabo: 100m

Cabo coaxial

- Meio físico guiado metálico
- Núcleo de cobre circundadopor um condutor externo em malha, separados por plástico flexível
- Uso menos frequente em redes locais (LANs)
 - Atualmente, usado em circuito fechado de TV e Internet via cabo

Cabo coaxial

- Vantagens
 - Melhor blindagem que par trançado
 - Atinge maiores distâncias que par trançado
 - Maior largura de banda
 - Menor custo que par trançado blindado (STP)
 - Maior imunidade contra interferências externas que par trançado não-blindado (UTP)

Cabo coaxial

- Desvantagens
 - Cabo com maior custo que par trançado nãoblindado (UTP)
- Conexão mais custosa que par trançado não-blindado (UTP)
- Mais suscetível a quebras e mau contato, devidobaixa flexibilidade do cabo
 - Maior dificuldade de instalação

Meios Ópticos

- Meios físicos guiados
- Informação trafega em forma de raios de luz
- Fibra Óptica
 - □ Filamentos de vidro (diâmetro de fio de cabelo) onde os raios são refletidos

internamente

Fibra Óptica

- Transmissão de dados
 - □Fonte de luz emite pulsos (transmissão)
 - Por exemplo, LED (diodo emissor de luz)
- Sensor óptico detecta pulsos de luz (recepção)

Fibra Óptica

Tipos de Conectores de Fibra Ópticas

Fibra Óptica

- Vantagens
 - Capacidade de transmissão de dados a mais de 100Gbps por grandes distâncias (Km)
 - □ Segurança (mais difícil de ser "grampeado")
 - Menos suscetível a interferências
- Desvantagens
 - Custo ainda elevado
 - Transmissão em única direção (par de fios, caso necessária transmissão em duas direções)

Cenário típico de LAN

Cenário típico de LAN

Conversor Fibra Óptica para 8 Portas RJ45 com Conector SC

CARACTERÍSTICA	LED	LASER SEMICONDUTOR	
Taxa de dados	Baixa	Alta	
Tipo de fibra	Multimodo	Multimodo ou modo único	
Distância	Curta	Longa	
Vida útil	Longa	Curta	
Sensibilidade à temperatura	Insignificante	Substancial	
Custo	Baixo	Dispendioso	

Prof. Wedson Gomes

ARACTERÍSTICA	CABO COAXIAL FINO	CABO COAXIAL GROSSO	CABO PAR TRANÇADO	CABO FIBRA ÓPTICA
Custo	Maior que o UTP	Maior que o coaxial fino	UTP: barato STP: maior que o coaxial fino	Maior que o coaxial fino, mas menor que o coaxial grosso
Comprimento máximo	185 metros	500 metros	100 metros	2 quilômetros em 100 Mbps
Taxas de transmissão	4-100 Mbps	4-100 Mpbs	UTP: 4-100 Mbps STP: 16-500 Mbps	10-100 Mbps 1-10 Gbps
Flexibilidade	Relativamente flexível	Menos que o coaxial fino	UTP: Mais flexível STP: Menos que o UTP	Menos flexível que o <i>thincknet</i>
Facilidade de instalação	Fácil	Fácil a moderada	UTP: Muito fácil STP: Facilidade moderada	Difícil
Susceptibilidade a interferências	Boa resistência	Boa resistência	UTP: muito susceptível STP: Boa resistência	Nenhuma
Utilização	Sítios médios e grandes com necessidades de segurança	Conectando redes thinnet	UTP: sítios com orçamento restrito STP: Redes <i>token ring</i> de qualquer tamanho	Sítios de qualquer tamanho que necessitam de altas velocidades, segurança e integridade dos dados

Conclusão

- Meio físico transmite bits entre fonte e destino
- Par trançado, cabo coaxial e fibra óptica são exemplos de meios físicos guiados
- Atualmente, predominância de par trançado UTP para LANs

Meios de Transmissão não Guiados

Modulação em Amplitude

Modulação em Frequência

Modulação em Fase

Transmissão Via Rádio

O sucesso da grande popularidade desta tecnologia se dá devido a dois fatores, a facilidade técnica envolvida para efetuar transmissões eficazes e pelas ondas geradas possuírem a característica omnidirecionais.

Prof. Wedson Gomes

Transmissão Via Satélite

As antenas transmissoras enviam micro-ondas para os satélites, este processo é denominado Uplink, enquanto que as receptoras recebem as micro-ondas por meio do processo denominado Downlink.

Sobre meios físico de transmissão de dados em rede de computadores, assinale a alternativa incorreta.

- par trançado
- cabo P10
- fibra ótica
- cabo coaxial

- 6. Quais os dois tipos de cabo coaxiais existentes e quais suas respectivas capacidades de transmissão sem o emprego de repetidores?
- 7. Diferencie um cabo de par trançado UTP (*Unshielded Twistead-Pair*) do STP (Shielded Twistead-Pair).

- fios de cobre e satélite
- fios de cobre e fibras ópticas
- satélite e fibras ópticas
- raios laser transmitidos pelo ar e satélite
- raios laser transmitidos pelo ar e redes terrestres sem fios

- 8. Quais os três principais modos de conexões de cabos de fibra óptica e seus respectivos percentuais de perda da luz?
- 9. Defina o conceito de espectro eletromagnético e como ele pode ser usado na comunicação.

Coluna 1

- I. Rede por cabo
- II. Rede sem fios

Coluna 2

- A. Rádio
- B. Fibra óptica
- C. Coaxial
- D. Par trançado

Assinale a alternativa que apresenta a relação correta.

- A I-A; I-B; I-C; I-D
- B I-A; I-C; II-B; II-D
- C I-A; II-B; II-C; II-D
- D I-B; I-C; I-D; II-A