Project | Deep Learning: Image Classification with CNN

Collaborators:

Ginosca Alejandro Natanael Santiago

Project Overview

- Building a Convolutional Neural Network (CNN)
- Classify images

- Animals-10 Dataset
- ~ 28K images
- Different sizes
- 10 classes:

Dataset preparation

Dataset preparation

- Data exploration
 - o Smallest dimensions (60, 57),
 - o Largest dimensions (6720, 4480)
 - Approximate average dimension (326, 326)
- Preprocessing
 - Resizing (128 x 128) and normalizing
 - o Training set: 80% (20,947)
 - Validation Set: 20% (5,232)

Images after pre-processing

CNN

• Architecture:

- Convolutional and MaxPooling layers were stacked to extract features from the input images.
- Fully connected dense layers were used for classification.
- A final softmax layer outputs predictions for the 10 classes.

• Key Design Choices:

- Simplicity in design for computational efficiency.
- Moderate depth to avoid overfitting.

Learning rate	Batch Size	Epochs	Callbacks
0.001	32	30	EarlyStopping ReduceLROnPlateau

CNN

Metric	Custom Model
Validation Loss	1.0980
Validation Accuracy	72.32%
Validation Precision	78.12%
Validation Recall	67.62%

CNN

Transfer Learning

MobileNetV2 pretrained on ImageNet.

```
# Add custom classification layers
x = base_model.output
x = GlobalAveragePooling2D()(x)  # Global Average Pooling layer
x = Dense(256, activation='relu')(x)  # Fully connected layer
x = Dropout(0.5)(x)  # Dropout for regularization
x = Dense(128, activation='relu')(x)  # Fully connected layer
x = Dropout(0.3)(x)  # Dropout for regularization
output = Dense(10, activation='softmax')(x)  # Output layer for 10 classes
```

Transfer Learning

Validation Loss	0.2086
Validation Accuracy	93.71%
Validation Precision	95.29%
Validation Recall	92.78%

Transfer Learning

Comparison

Metric	Custom Model	Transfer Learning Model
Validation Loss	1.0980	0.2086
Validation Accuracy	72.32%	93.71%
Validation Precision	78.12%	95.29%
Validation Recall	67.62%	92.78%

Comparison (CNN vs Transfer Learning)

Insights and Learnings

- Impact of Transfer Learning:
 - Leveraging pretrained models significantly improved performance compared to building a model from scratch.
- Importance of Preprocessing:
 - Data augmentation and normalization played a crucial role in achieving generalization.
- Challenges with Specific Classes:
 - Categories like "dog" and "butterfly" require more refined feature extraction due to visual similarities.
- Role of Callbacks:
 - EarlyStopping and ReduceLROnPlateau contributed to efficient training and prevented overfitting.

Next Steps

- 1. Fine-Tuning:
 - Unfreeze additional layers in MobileNetV2 for task-specific learning.
- 2. Dataset Enhancements:
 - Collect more diverse examples for underperforming classes.
- 3. Exploring Alternate Architectures:
 - Experiment with other lightweight architectures like EfficientNet or ResNet.
- 4. Deploying the Model:
 - Integrate the model into an application for real-time image classification.

THANK YOU!

