1.B

$$A(I) = 1864$$
 $A(I) = 100$
 $A(G) = 82$
 $A(F) = 45$
 $A(S) = 28$

$$n(G \cap F) = 0$$

 $n(G \cap F) = 0$
 $n(F \cap S) = 0$
 $n(F) = X$
 $n(S \cap E) = X$
 $n(G \cap E) = 3X$

2) 184-182+3X-1X-28+X-55+3 X Z48 +6X

2) 184-\(\frac{(82-3x)+(3x)+(x)+(45-3x)+(53-3x)+(x)+(28-x)}{2) 184-82+3x-3x-x-41+x}=-26-5x=>xe

I Hensa: 3x < 55 => .x < 18 2) 184-82+3x-X-28+X-55+3K

28.7 $P_{0} = R_{0} - C_{0} = 2P_{0} - 18 \left(18.6 \right)^{3} + 20 + 8.6 \left(\frac{1}{3} \right)^{6} - \left[27.6 \left(\frac{1}{3} \right)^{6} + 12.6 \left(\frac{1}{3} \right)^{6} + 12$

$$P_{0} = -9 \left(\frac{1}{3}\right)^{2} - 4\left(\frac{1}{2}\right)^{2} - 10^{-2} - 23$$

$$P_{1} = -9\left(\frac{1}{3}\right)^{2} - 4\left(\frac{1}{2}\right)^{2} - 10^{-2} - 15$$

$$P_{2} = -9\left(\frac{1}{3}\right)^{2} - 4\left(\frac{1}{2}\right)^{2} - 10^{-2} - 12$$

Answer: so, you product vill novor be profitable atall because of negative revenue function in condition of positive productions

$$+306\text{ m}^2 - 5\text{ m} + 1 = 0 =) \left(M - \frac{1}{3} \right) \left(M - \frac{1}{2} \right) = 0$$

$$\times_{t} = A\left(\frac{1}{3}\right)^{t} + B\left(\frac{1}{2}\right)^{t}$$

So, combine too solution parts:

General solution is

$$\begin{cases}
A + B = 26 \\
2-A + 3B = 60
\end{cases}$$

X1=30

$$30 = \frac{1}{3} \cdot A + \frac{1}{2} \cdot B + 20$$

Complete solution is: $X_{1} = 18\left(\frac{1}{3}\right)^{+} + 8\left(\frac{1}{2}\right)^{+}$

(4.x Pp (++ st) = > StPn-1(+)+ (1->s+). Pr (+)+ o(1+)

So, sparrauging and letting At-20

neyse:

Auswers. Non often togetor and vate reasonably constant Poisson should work well

1//

U.BI $P_2 = P^2 (1-P) = 0.5^2 (1-0.5) = 9.125$ U.BI $L = \frac{0.1}{92-91} = 1$

Tark all the the sky

$$A = \begin{pmatrix} 0.8 & 0.2 & 0.12 \\ 0 & 0 & 0.4 \\ 0.2 & 0.5 & 0.5 \end{pmatrix} \stackrel{H}{i\pi}$$

$$(E-A) = 0.1 1 1 1 0.2 -0.12$$

 $\begin{pmatrix} 1 & 1 & 1 \\ 1 & 1 & 1 \end{pmatrix} - A = 0 1 -0.4$
 $\begin{pmatrix} 1 & 1 & 1 \\ 1 & 1 & 1 \end{pmatrix} - 0.2 -0.5 0.5$

D = 0.2-(1.0,5-(-0.5.(-0.4)))-0(-0.2.0.5-(-12))+(-0.2; (-0.2-(04)-160)) -0.02

$$\hat{B}^{T} = \begin{cases}
0.2 & 0 & 0.2 \\
-0.2 & 1 & -0.5 \\
-0.12 & 0.4 & 0.5
\end{cases}$$

$$\hat{B}_{1,1}^{T} = (-1)^{1+1} \begin{pmatrix} 1 & -0.5 \\ -0.4 & 0.5 \end{pmatrix}$$

$$B_{1;1} = (-1)^{1+4} \begin{pmatrix} 1 & -a.5 \\ -a4 & 0.5 \end{pmatrix}$$

$$B_{1,1} = (-1)^{1/2} \begin{pmatrix} -0.2 & -0.5 \\ -0.12 & 0.5 \end{pmatrix}$$

$$B^{-3} = 0.02 \begin{cases} 0.3 & 0.16 & 0.2 \\ 0.08 & 0.076 & 0.08 \\ 0.2 & 0.14 & 0.2 \end{cases}$$

$$B^{-1} = \begin{pmatrix} 15 & 8 & 10 \\ 4 & 3,8 & 4 \\ 10 & 7 & 10 \end{pmatrix}$$

5 gs you of basis equations
0,2x1 -0.2x2 -0.12x3 = 91
0x1 + 1x2 -0.4x2 = 92
-0.2x1 -0.2x2+0.5x3=93

$$X = (B, Y) = \begin{pmatrix} 13 & 8 & 10 \\ 4 & 318 & 4 \\ 10 & 7 & 10 \end{pmatrix} \begin{pmatrix} 70 \\ 10 \\ 20 \end{pmatrix} = 198$$

970-(464 +0+116)=0 180-(464 +0+116)=0 180-(30.6+0+10)=51.4 470-(56.4+186+333)=-9.4

inter indostig

in fustion	(ausumiva industry	Final Product	Donastic Plass	2	3
1 4 4 112410 3	464	39,6	56.4	20	
2	0	0	188	10	104
3	116	99	235	20	470
Netproduct	0	50.4	-3.4	20	
40 m 624, C	\$80	138	470		15,48

		01 1	*			
6	A.t Dag	1. Lumitity	Forocast	Ervor	ELLOLS	Absoluto estat
	1	23				
-	2	22,5	2 3	-0,5	0.15	-0.5
	3	12	22,35	~0,35	0,1225	-0.3
	4	23	55'3	*0,7	0-49	0-+
_	5	24	-23, 3	0.7	0.49	128 0.7
	6	26,5	74,75	1,75	3.0625	-NA 1.8
	+	25	26,05	-0.7	1.1019	=6-4-1.1
,	3	24	24,7		o.ug	-0.7
	07		(16,8)			

21=0.3

RMSE = 0.9263

MAE = 0, 55/7= 0, 0+8

049	Alpha= 0.5 / Mywidity	Folecast	E1101	E11017	Absolute error
3	23 22, T	23	-0,5	0,25	-0,5
3	22	22,25	0,25	0,0625	-03
4	23	22, 5	0,5	0125	40,3
5	24	23,5	0,5	0,25	015
6	26,5	25,25	1,25	1,5625	1,3
7	25	25,75	-0,75	0,5625	- 0,8
8	24	24,5	-0,5	0,25	-0,5
9		(12)			
		Total		3,18+5	0,25

RMSE= 0,6+48 MAE=925/A= 0,0877

Auswer:

I Alpha= 0.3

FORECAST: 76,8 BMSE = 0,0263 MAE = 0,078 APHA: 0.5

Forecast = 17

RMSE = 0.6748

MAE = 0.035+

17.4.3

The lower the MaE >> the botter => Alpha: 0,5 is optimal MAE Value

21 = 0.3 0,0+9

12 = 0,5 0,036

L3 = 0,4 1,087

24 = 06 1,091

921) V FO = 5 P

3.	2015			
	Neust	I GMV	AUG GHV	Wx(P/Po)
Ī	580	680	1:03	597.4
11	600	540	0.9	486
111	50	90	1.6	
10	40	8	0.20	
Total	1270	1238		
t char	1	×70 1238	= 0474	

Lasperses 2019: 12/5 12/0 = 0.974

Laspegle

Particalr solution:

$$\frac{3^{2}S(+)}{3^{2}} + 8 \frac{3(+)}{3^{+}} + 20S(+)^{2} = 10e^{-3+}$$

$$S_{p}(+) = \alpha_{1} \cdot e^{-3}$$

$$S(t) = 2 \cdot e^{-3t} + c_1 \cdot e^{-4t} \cdot cos(2t) + c_2 \cdot sin(2t)$$

$$t = 0 \Rightarrow s(t) = 2 \cdot e^{-3t} + c_1 \cdot e^{-4t} \cdot cos(2t) + c_2 \cdot sin(2t)$$

$$C_1 = 8$$

$$(A \cap W) = 4$$