Krzywe depozycji energii cząstek w medycynie wysokich energii

Symulacje za pomocą programu Geant4

Autorzy: Maks Flak, Paweł Michałowski, Antoni Zegarski | Mentor: Marcin Patecki

(1) Wizualizacja rozproszenia cząstek w ciele wodnym.

(2) Wykres przedstawiający depozycję energii przez protony w fantomie wodnym dla różnych energii protonów.

Abstrakt

Nasze badania koncentrują się na symulacji działania działka emitującego wysokoenergetyczne cząstki, które skierowane są na fantom wodny. Celem jest dokładne zbadanie, ile energii jest deponowanej przez te cząstki w wodzie na różnych głębokościach. Tego rodzaju badania mają istotne zastosowanie medycynie, szczególnie terapii nowotworów położonych głęboko w ciele projektu pacjenta. ramach analizowaliśmy potencjał zastosowania wiązek elektronów w tego typu terapiach.

Metoda

Przeanalizowaliśmy układ o wymiarach 1x1x1 m, w którym umieszczono fantom wodny o wymiarach 0,5x0,5x0,5 m. W stronę tego fantomu skierowaliśmy emiter cząstek, generujący idealnie skolimowaną wiązkę cząstek (1). Następnie zmierzyliśmy ilość energii zdeponowanej przez cząstki (zarówno pierwotne, jak i wtórne) na różnych głębokościach fantomu, a wyniki przedstawiliśmy na wykresach.

W pierwszej fazie eksperymentu, w kierunku fantomu wystrzeliwane były protony. Wykres przedstawiający zależność depozycji energii od głębokości fantomu został zaprezentowany na wykresie powyżej (2) dla czterech różnych energii początkowych protonów.

W kolejnej fazie zasymulowaliśmy analogiczny scenariusz z wykorzystaniem wiązki elektronów (3).

Ostatecznym celem projektu było zasymulowanie charakterystyk podobnych do krzywych Bragga, wykorzystując skupione wiązki elektronów.

(3) Wykres przedstawiający depozycję energii przez elektrony w fantomie wodnym dla różnych energii elektronów.

Obserwacje i Wnioski

Nasze symulacje wykazały wyraźnie korzystne i powtarzalne kształty krzywych depozycji energii dla protonów, a także ich odpowiedniki w symulacjach z elektronami. W miarę postępu projektu stopniowo zwiększaliśmy realizm symulacji poprzez uwzględnienie różnych efektów, takich jak nieidealna kolimacja wiązki oraz obecność powietrza w układzie. Dodatkowo, wykorzystaliśmy wbudowane w Geant4 narzędzia wizualizacyjne do analizy przestrzennej depozycji energii w układzie. Wyniki potwierdziły istnienie wąskiego zakresu głębokości, w którym depozycja energii jest największa, co ma kluczowe znaczenie dla zastosowań medycznych.

Zgodnie z literaturą, skupione wiązki elektronów powinny generować krzywe depozycji energii zbliżone do krzywych Bragga obserwowanych dla protonów. Jednakże w naszych symulacjach nie zaobserwowaliśmy takiego efektu, gdyż symulowane skupienie elektronów przyniosło wyniki zbliżone do tych uzyskanych bez skupienia. W celu poprawy wyników planujemy wdrożenie bardziej precyzyjnych i szczegółowych metod symulacyjnych.

(4) Wizualizacja rozproszenia cząstek w ciele wodnym. Przy użyciu skupionej wiązki elektronów.

Podsumowanie

W naszych symulacjach zaobserwowaliśmy charakterystyczne dla depozycji energii krzywe Bragga, co potwierdza, korzystne efekty płynące z depozycji energii przez skupione wiązki protonów. Niestety, nie udało nam się uzyskać oczekiwanych wyników w symulacjach związanych z depozycją energii przez skupione wiązki elektronów. Ten aspekt będzie stanowił kolejny etap naszego projektu, który planujemy rozwijać we współpracy z naszym mentorem.

Bibliografia:

(1) Bagli, E., Asai, M., Brandt, D., Dotti, A., Guidi, V. i Wright, D.H., 2014. A model for the interaction of high-energy particles in straight and bent crystals implemented in Geant4. The European Physical Journal C, 74, p.2996. DOI: https://doi.org/10.1140/epjc/s10052-014-2996-y. (2) Kokurewicz, K., Brunetti, E., Curcio, A., Gamba, D., Garolfi, L., Gilardi, A., Senes, E., Sjobak, K.N., Farabolini, W., Corsini, R. i Jaroszynski, D.A., 2021. An experimental study of focused very high energy electron beams for radiotherapy. Communications Physics, 4, p. 236. DOI: https://doi.org/10.1038/s42005-021-00536-0.

