Schema Decomposition

R&G Chapter 19

In Last Lecture

- 1st NF, 2nd NF, 3rd NF, and BCNF
- If a relation is not in a desired normal form, we need to decompose the relation.
- Decompositions should be used only when needed, as it can cause potential problems.

Problems with Decompositions

- There are three potential problems to consider:
 - May be impossible to reconstruct the original relation! (Lossiness)
 - 2) Dependency checking may require joins.
 - 3) Some queries become more expensive.

Tradeoff: Must consider these issues vs. redundancy.

Features of a Good Decomposition

- A good decomposition is
 - Lossless
 - Dependency preserving

Task #1

 How to decompose the original relation so that it is lossless (i.e., the join of the decomposed relations is the same as the original relation)?

Solution to Lossless Decomposition

 The decomposition of R into X and Y is lossless with respect to F if and only if the F+ contains:

$$X \cap Y \rightarrow X$$
, or $X \cap Y \rightarrow Y$

In other words, the join attributes should be the key of X or Y.

- If W \rightarrow Z holds over R and W \cap Z is empty, then
 - decomposition of R into R-Z and WZ
 - R-Z and WZ are guaranteed to be loss-less (since R-Z and WZ joins at W)

Lossy Decomposition (example)

A	В	С	
1	2	3	
4	5	6	
7	2	8	

A	В
1	2
4	5
7	2

В	C
2	3
5	6
2	8

$$A \rightarrow B$$
; $C \rightarrow B$

 $X=\{A, B\}, Y=\{B, C\}, X \cap Y=\{B\}, B \rightarrow \{A, B\} \text{ and } B \rightarrow \{B, C\}$

Lossy decomposition!

A	В	
1	2	Join
4	5	John
7	2	

В	C
2	3
5	6
2	8

8 3

Lossless Decomposition (example)

A	В	C
1	2	3
4	5	6
7	2	8

A	C
1	3
4	6
7	8

В	C
2	3
5	6
2	8

$$A \rightarrow B$$
; $C \rightarrow B$

$$X=\{A, C\}, Y=\{B, C\}, X \cap Y=\{C\}, C->\{B, C\}$$

Lossless decomposition!

A	C
1	3
4	6
7	8

Join

В	C
2	3
5	6
2	8

=

A	В	C
1	2	3
4	5	6
7	2	8

Lossless Decomposition Exercise 1

- Relational table R(A,B,C,D,E)
- FDs F={AB->C, C->E, B->D, E->A}
- R is decomposed into R1(B, C, D) and R2(A, C, E)
- Is (R1, R2) a lossless decomposition?
- Way of thinking:
 - Find common attribute: $R1 \cap R2 = (C)$;
 - Check whether C->(B, C, D) or C-> (A, C, E) in F+
 - C+ = (CEA). So it is a lossless decomposition.

Lossless Decomposition Exercise 2

- Table R(A,B,C,D,E)
- FDs F=(A->BC, CD->E, B->D, E->A)
- R is decomposed into R1(A, B, C) and R2(A, D, E)
- Is (R1, R2) a lossless decomposition?

Problem #2 of Decomposition

A	В	C
1	2	3
4	5	6
7	2	8

A	С
1	3
4	6
7	8

$$A \rightarrow B$$
; $C \rightarrow B$

$$X=\{A, C\}, Y=\{B, C\}, X \cap Y=\{C\}, C->\{B, C\}$$

Lossless decomposition!

A	C
1	3
4	6
7	8

Join

В	C
2	3
5	6
2	8

But, now we can't check $A \rightarrow B$ without doing a join! (Problem #2 of decomposition!)

BCNF Versus 3NF Decomposition

	BCNF	3NF
Redundancy	NONE	May still have some
Lossless-join decomposition	Guaranteed	Guaranteed
dependency- preserving decomposition	Not guaranteed	Guaranteed

Decomposition into BCNF

Consider relation R with FDs F.

- Step 1:
 - Ensure that each FD in F only contain a single attribute on right-hand side (RHS)
 - This is always doable, for example, if you have AB->CD, spit it into AB->C and AB->D;
- Step 2:
 - If X → Y (in F) violates BCNF (i.e., X is not the key of R), decompose R into R - Y and XY (guaranteed to be lossles).

Repeat Step 1 & 2, until all FDs do not violate BCNF.

It will give a lossless decomposition that consists of BCNF relations (i.e., data redundency free).

Decomposition into BCNF

Consider the relation R={CSJDPQV}:

- Its primary key is C;
- It has the following FDs: JP \rightarrow C, SD \rightarrow P, J \rightarrow S.
- Question:
- (1) Does R satisfy BCNF?
- (2) If not, decompose R into BCNF tables.

Decomposition into BCNF

Consider the relation R={CSJDPQV}:

- Its primary key is C;
- It has the following FDs: JP \rightarrow C, SD \rightarrow P, J \rightarrow S.
- Question:
- (1) Does R satisfy BCNF?
- (2) If not, decompose R into BCNF tables.
 - To deal with SD → P, decompose into SDP, CSJDQV.
 - To deal with J → S, decompose CSJDQV into JS and CJDQV
 - So we end up with: SDP, JS, and CJDQV
 (note: JP is a candidate key of R, so JP->C does not violated BCNF)