The Calibration of AVHRR/3 visible dual gain using Meteosat-8 as a MODIS calibration Transfer Medium

David Doelling, Lance Avey SSAI

Donald Garber, Louis Nguyen, Patrick Minnis NASA Langley Research Center

2007 CALCON Technical Conference Logan, UT, September 10-13, 2007

Motivation

- Climate Absolute Radiance and Refractivity Observatory (CLARREO) Mission - designed to calibrate other imagers
 - put calibration resources into CLARREO, imagers can focus on mission requirements and can use CLARREO as a calibration reference
 - Employs radiometers requiring a footprint of 100km in order to spectrally resolve the shortwave radiance.
- AVHRR/3 employs a dual gain in the visible
 - No onboard visible calibration
 - GAC has global coverage and is a 3x5 km subset of the HRPT
 - No special operations needed, when matching to a 100km FOV
- To transfer the CLARREO calibration to AVHRR/3 the dual fit must be solved simultaneously
 - Both high and low counts will be present in a 100km FOV

Methodology

- Use MODIS as the calibration reference
- MODIS and AVHRR/3 coincident visible matches occur at 70°N latitude
 - Only during June and July is there enough of a high count dynamic range to effectively calibrate the high counts
- Use Meteosat-8 as a calibration transfer medium
 - Equatorial matches ensures bright targets to resolve high gain
 - Meteosat-8 has all 3 AVHRR/3 visible channels
 - Calibrate Meteosat-8 with MODIS
 - Calibrate AVHRR/3 with Meteosat-8
- Develop statistical package to derive dual gains
 - Verify space count, break point continuity, gain ratio
 - Monitor gains over time for degradation and monthly gain noise

Dual Gain Regression Methods

- Constant space count (SPC) or determine offset (OFF)
 - AVHRR incorporates a space clamp
- Low gain tied to high gain (TIED) or dual gains (DUAL)
 - There is one detector and optics, high gain a multiple of low gain
- Continuous breakpoint (CONT) or gap between high and low counts (GAP)

SPC	SPC	SPC	OFF
TIED	TIED	DUAL	DUAL
CONT	GAP	GAP	GAP
1COF	2GAP	3SPC	4COF
	SPC	OFF	
	DUAL	TIED	
	CONT	GAP	
	2DUAL	3TIED	
	OFF	OFF	
	TIED	DUAL	
	CONT	CONT	
	20FF	3CONT	

Example of Regression methods

- Randomly generate GAC pixel counts in 50 km FOV using prescribed space count, no gap, and tied gains
- Calculate 95% confidence limits for each method

- Estimated gain ratio=7.2, radiance gap = 55.4, space count=-262.7
- prescribed gain ratio=2.8, radiance gap = 0.0, space count=83.3

Gain ratio=2.8, radiance gap = 0.0, space count=83.3 Est Gain Ratio=3.0 Est radiance gap=23.1 Radiance 200 300 adjance 200 100 100 2gap 2dual 200 400 600 Effective counts 600 800 Effective counts Est Gain Ratio=2.8 Est space count=81.1 Space count given 400 No gap allowed Radiance 200 300 200 100 100 2off 1cof 400 200 600 800 200 400 600 800 Effective counts Effective counts

AVHHR/3 Regression Strategy

- Using monthly scatter plots, employ the 2 degree of freedom regressions to isolate the space count, breakpoint radiance gap, or gain ratios
 - Make adjustments if necessary
- Monitor 1COF regressions over time to quantify monthly noise and determine degradation
 - 1COF with one degree of freedom has a small uncertainty at the 95% confidence limit
- Validate AVHRR calibration with nominal (pre-launch) and direct MODIS/AVHRR (polar) comparisons

Cross-Calibration Method

- Match mean radiance or count within a 0.5° region (50km)
 - Scattering angle within 10°, < 10 minutes, no sunglint, normalize to common SZA and solar constant, and 0.2 spatial sigma threshold
- Perform monthly linear regressions to derive gain
- Compute degradation from a time line of monthly gains

Visible standard error (%) as a function of

0.86µm

MET-8/Terra-**MODIS** Feb 07

MODIS 0.86µm saturates

- 5% FOV sdev used
- further uniformity reduction results in loss of dynamic range

MET8 TERRA TERRA DAY CH3(1.64um), Radiance (Wm²sr¹um¹) AVE 223.9 15.14 SDV MAX MIN 54.6 470.2 SLOPE 0.0877 51.3 0.9986 0.5268 BIAS(X-Y) 208.8-1687.75 0.0877 0.0878 SLPyx FOR[51] 0.0876 200 400 600 800 MET8 DAY CH3(1.64um) CNT (10 bit)

MET-8/Terra-MODIS Feb 07

Comparison of Met-8 gains (stderr%) compared with EUMETSAT

Channel	Feb07	EUMETSAT
0.65µm	0.62 (3.1%)	0.59
0.86µm	0.53 (4.1%)	0.45
1.64µm	0.88 (3.5%)	0.88

- 0.65µm Theoretical spectral correction = .9741 MET8/Terra
- \bullet 0.62*.9741=0.60
- Within 2% of EUMTETSAT

Spectral Response Functions

- No attempt is made for normalizing spectral response functions
- MET8 and AVHRR most similar in the 0.65µm channel, however there are ozone absorption differences
- Note very little overlap between MET8 and AVHRR in the 0.86µm channel

MET8/NOAA-17, Feb07, 0.65μm

NOAA-17 counts

NOAA-17 nominal radiance

• Gray (mixed) points are where either high or low counts < 97%

 The gain has degraded 8% from nominal compared to MET8/MODIS after 5 years in orbit

MET8/NOAA-17, Feb07

0.86µm

1.64µm

- 44% degradation with MET8/MODIS
- •27% degradation with EUMETSAT

31% degradation with MET8/MODIS

enter / Atmospheric Sciences

Example of gain ratio adjustment

Nominal gain ratio=7

Gain Ratio=6.0

• 5% standard error reduction changing gain ratio from 7 to 6 NASA Langley Research Center / Atmospheric Sciences

Effect of mixed low/high count FOV Feb07, 0.86µm, no FOV sdev threshold

All FOVs

Mixed FOVs

- Gray (mixed) FOVs are where either high or low counts < 97%
- Only mixed FOVs < 97%
- All regression gains within 2%

Monitor dual gains over time Jan07-Apr07, 0.65µm, MET8/N17

Monitor dual gains over time Jan07-Apr07, MET8/N17

0.86µm

1.64µm

Conclusions

- NOAA-17 AVHRR visible channels have been calibrated against MET-8/MODIS using dual gain regressions based on 50 km FOV.
 - Method can be used with CLARREO and AVHRR
 - Method able to determine both gains simultaneously
- MODIS/MET-8 calibration are very similar to EUMETSAT except the 0.86µm due to MODIS saturation

Future Work

- Complete following timelines from present to Sep 2002
 - NOAA-17/MET-8
 - MET-8/Aqua-MODIS
 - NOAA-17/Aqua-MODIS
- Validate calibration by performing 3-way cross calibration
 - NOAA-17/MET-8 * MET-8/Aqua-MODIS = NOAA-17/Aqua-MODIS
- Possibly perform sequence on GOES-10/11 for the 0.65µm channel

