Generalized Low Rank Models

Anqi Fu

Machine Learning Scientist, H2O.ai anqi@h2o.ai

Based on work by Madeleine Udell, Corinne Horn, Reza Zadeh and Stephen Boyd

November 6, 2015

What is a Low Rank Model?

- **Given:** Data table A with m rows and n columns
- Find: Compressed representation as numeric tables X and Y, where # cols in X = # rows in $Y = \text{small user-specified } k \ll \max(m, n)$
- # cols in Y is $d = (\text{total dimension of embedded features in } A) \ge n$

$$\mathbf{m}\left\{\left[\begin{array}{c} \mathbf{n} \\ A \end{array}\right] \approx \mathbf{m}\left\{\left[\begin{array}{c} \mathbf{X} \\ \end{array}\right]\left[\begin{array}{c} \mathbf{n} \\ \mathbf{Y} \end{array}\right]\right\}\mathbf{k}$$

- Row of Y = archetypal feature created from columns of A
- Row of X = row of A in reduced feature space
- Can approximately reconstruct A from product XY

Why use Low Rank Models?

- Reduce storage space, e.g. 10 GB compressed to 100 MB
- Increase prediction speed, e.g. 10x speed-up with no accuracy loss
- Identify and visualize important features
- Impute missing data entries

Example 1: Visualizing Walking Stances

time	forehead (x)	forehead (y)		right toe (y)	right toe (z)
t_1	1.4	2.7		-0.5	-0.1
t_2	2.7	3.5		1.3	0.9
t_3	3.3	9		4.2	1.8
:	:	:	:	:	:

- A contains 151 rows (observations over time) by 124 columns (location of body parts)
- Build a low rank model X, Y with rank k = 10
- ullet Rows of Y are principal stances person takes while walking
- Rows of X decompose each bodily position into combination of principal stances

Example 2: Compressing Zip Codes

repeat violator	ZCTA		violations	penalty	EE's affected
N/A	70525		9	8100	0
R	75189		6	935	5
RW	95621	• • •	4	1155	3
<u>:</u>	:	:	<u>:</u>	:	÷

- Train: U.S. Wage & Hour Division (WHD) compliance actions contains 208,806 rows (cases) and 252 columns (violation info)
- Response: Was firm a repeat and/or willful violator?
- **Predictors:** Zip code tabulation area (ZCTA), number of violations, civil penalties, employees (EE's) affected, etc
- Naive approach replaces ZCTA with indicator variables, which 1) is slow, 2) overfits, 3) cannot transfer knowledge between similar ZCTAs

Example 2: Compressing Zip Codes

ZCTA	associate degree	bachelor's degree		welsh	west indian
01001	1584	1953		34	57
01002	510	3098		332	181
01003	27	49		40	134
:	:	:	:	:	:

- American Community Survey (ACS) data contains 32,989 rows (unique ZCTAs) by 150 columns (population info)
- ullet Build a low rank model X,Y with rank k=10 and regularization to sparsify features
- Rows of Y are demographic archetypes
- \bullet Rows of X map ZCTAs into combination of demographic archetypes

6 / 8

Example 2: Compressing Zip Codes

$$Train = \begin{bmatrix} y & ZCTA & \cdots & & ZCTA & archetypes \\ N/A & 70525 & \cdots \\ \vdots & \vdots & \cdots \\ R & 01002 & \cdots \end{bmatrix} \quad X = \begin{bmatrix} ZCTA & archetypes \\ 01001 & -x_1 - \\ 01002 & -x_2 - \\ \vdots & \vdots \\ 70525 & -x_p - \end{bmatrix}$$

- ullet Replace ZCTA col of training data with low rank model (X) of ACS
- Predict if firm will be a repeat violator using modified training data

repeat violator	archetypes		violations	penalty	EE's affected
N/A	—x _p —		9	8100	0
:	÷	:	:	:	:
R	—x ₂ —		4	225	3

7 / 8

References

- M. Udell, S. Boyd, et al (2014), Generalized Low Rank Models
- Example 1: Visualizing Walking Stance
 - Walking Gait Data
 - Walking Gait Data with Missing Values
- Example 2: Compressing Zip Codes
 - Wage and Hour Division Data
 - American Community Survey Data