

Defining Boolean Logic

- Let's look at what exactly Boolean logic is in context of data types and functions
- Once we define the Boolean Data type, we can apply it to other systems

4/9/2018

Sacramento State - Cook - CSc 28 - Spring 201

Boolean Logic and Sets

- Boolean values only have two possible values: True and False
- So, the set of values can be specified as {True, False} or, alternatively, as {1, 0}

4/9/201

Sacramento State - Cook - CSc 28 - Spring 2018

Computer Engineering Notation

 $S = \{T, F\}$

1 = T

0 = F

* = ^

+ = V

' = -

4/9/2018

Sacramento State - Cook - CSc 28 - Spring 201

Functions

- Also recall functions from earlier
- An abstract data type is a set of values and functions on those values
- So, we can define the data type for Boolean values

Sacramento State - Cook - CSc 28 - Spring 2018

Defining Boolean Algebra

```
S = \{0, 1\}
* : S,S \rightarrow S "And"
+ : S,S \rightarrow S "Or"
' : S \rightarrow S "Negation"

For all x, y, z \in S the following is true...
```

1. Associative

```
(x + y) + z = x + (y + z)
(x * y) * z = x * (y * z)
```

2. Commutative

```
x + y = y + x
x * y = y * x

492018 Sacramento State - Cook - CSic 28 - Spring 2018 9
```

3. Distributive

```
x * (y + z) = (x * y) + (x * z)
x + (y * z) = (x + y) * (x + z)
```

4. Identity

```
\mathbf{x} + \mathbf{1} = \mathbf{x}
\mathbf{x} + \mathbf{0} = \mathbf{x}
492018 Sizramento State - Cook - CSc 28 - Spring 2018
```

5. Complement

Applying the Five Laws

- The five laws, stated before, can be applied to propositional logic
- So, at a stroke, this gives us a very rich environment in which we can manipulate logic propositions
- So, we can treat logic as algebra

4/9/2018

And, Or, Not

- All we need is: And, Or, and Not
- This is because, implications and equivalences can be expressed with them.

```
a \rightarrow b = \neg a \lor b
a \leftrightarrow b = a \rightarrow b \land b \rightarrow a
```

Extending Boolean to Other Types

- The Boolean Data Type can be written with these 5 properties: B = {s,+,*,',0,1}
- If we can show that some other type is a "Boolean algebra" if these <u>five</u> properties hold for all elements in S.

4/9/2018

Sacramento State - Cook - CSc 28 - Spring 2018

Boolean Algebra & Logic

- Boolean Algebra can be extended to other areas
- A subset of propositional logic can be put into the form of Boolean algebra

4/9/2018

Sacramento State - Cook - CSc 28 - Spring 2018

Example: Sets

```
Given a set U:

S = P(U)
0 = { }
1 = U
+ = U
* = \(\chi\)
' = '
```

Example: Sets

```
All we need to show is that:  (X \ \cup \ Y) \ \cup \ Z \ = \ X \ \cup \ (Y \ \cup \ Z)  ...etc  which is what we observed with sets.
```


Designing It

- To design a circuit that multiplies two 2-bit numbers, we can use Boolean algebra
- We need to figure the logic given that bits of 1 and 0 will map directly to truth values
- The result of the algebra will be the desired output

018 Sacram

It Takes the Following Skills

- Design a truth-table to represent the different inputs and the desired output
- 2. Convert the truth-table into a Boolean function
- 3. Simplify the Boolean function
- 4. Finally, convert it into a circuit

4/9/2018

cramento State - Cook - CSc 28 - Spring 2018

Graphical Representation

standards

 Gates are typically represented using graphical shapes – much like flowcharts

There are two different competing symbol

We will use the standard, distinct, symbols rather than the IEC (European) ones

Some Other Gate Symbols

- There are also gate symbols for negated operators
- I won't use these much in class, but it's good to be aware of them (since they are quite common in computer engineering
- For each, note the circle on the output line – it means "not"

49/2018 Sacramento State - Cook - C

Choose the last operation evaluated Draw a gate and hook up its output Goto 1 until all operations have associated gates Attach the expression inputs

1. Pick a wire that has known Boolean values 2. Write on the wire a Boolean expression for its value 3. Goto 1 until all wires are complete 4. Circuit's expression written on the circuit's output wire 4. Wasse State Code Cit 21 Spray 2018 4. Wasse Code Cit 21 Spray 2018

So, we convert the logic of a one-bit adder to logic And then to Boolean algebra Let's draw how it would be wired on a computer...

Definitions

- Hence, a minterm is a "product" of n literals, with one literal for each variable
- An equation written only as the "OR" of minterms is in disjunctive normal form (also called sum-of-products form)

4/9/2018

Sacramento State - Cook - CSc 28 - Spring 2018

Algorithm

- 1. Find the rows that indicates a <u>1 for output</u> (Ignore the ones with 0 as output)
- 2. Write a minterm for each of them
- 3. "OR" all the minterms

9/2018 Sacramento State - Cook - CSc 28 - Spring 2018

Example

а	b	y (out)
0	0	1
0	1	1
1	0	0
1	1	0

Example

```
DNF of the table is:

y = (a' * b') + (a' * b)

For brevity, for this point on, let's write as:

y = a'b' + a'b
```

Example

```
We can simply using Boolean algebra:

y = a'b' + a'b
 = a' (b' + b) Distributive
```

Complement Identity

= a'

= a' (1)

Let's Make a 2-Bit Adder

- Let's create the circuit logic for a 2-bit adder
- It will produce a 4-bit result

Let's try it

9/2018 Sacramento State - Cook - CSc 28 - Spring 2011

Literals are ordered using gray code

• why? we will cover this later

• values in the table are not ordered in normal

• each square differs in exactly one literal

Important: squares wrap-around to the top

Gray Code

and sides

ascending order

How to Use a K-Map

1. Mark the squares of a K-map

corresponding to the function

2. Select a minimal set of rectangles where

How K-Maps Work

- First you use the *Distribution Law* on the minterms leaving (v + v') - which is the terminal that *changed*
- 2. You then use the *Complement Law* on $(\mathbf{v} + \mathbf{v}')$ leaving 1
- 3. Finally, you remove the 1 using the *Identity Law*

4/9/2018

scramento State - Cook - CSc 28 - Spring 201

K-Maps Can Simplify Expressions

- The following is a complex expression that, on the surface, looks difficult to simplify
- K-Maps can help simply expressions.

if (a && !b && c || a && b && !c || a && c || a && c || a && b && c || a &&

K-Maps Can Simplify Expressions

- The following is a complex expression that, on the surface, looks difficult to simplify
- K-Maps can help simply expressions.

K-Maps Can Simplify Expressions ab 00 01 11 10 0 1 ab'c' + abc' + ab'c + abc 482018 Secrements State - Cock - Cits 28 - Spring 2018 91

A K-Map does not necessarily make the best expression/circuit All expressions made this way are sums-of-products and some can be made simpler e.g. a(b+c) is the same as ab+ac, but uses fewer gate inputs

In truth tables, the value "Don't Care" is represented with an asterisk It can be considered True or False – whichever is more convenient for the circuit

Then, when outlining blocks, we can (at our convenience) consider the "don't care" squares as either 0 or 1 Since we want to make the largest outlines possible, we will sometimes consider a don't care to be true, and sometimes false

Karnaugh Maps and Don't Care

Function Completeness

- However, we don't need all three gates
- DeMorgan's laws shows us that we can construct:
 - an OR using an AND
 - and AND using an OR

We Don't Need Or!

 So {and, not} are also complete because by DeMorgan's Law:

x + y = (x'y')'

 So, any expression that can be written using {and, or, not} can be written using just {and, not}

Sacramento State - Cook - CSc 28 - Spring 2018

or... We Don't Need And!

- Also {or, not} is functionally complete since xy = (x'+y') '
- So, any expression that can be written using {and, or, not} can be written using just {or, not}

4/9/2018

Sacramento State - Cook - CSc 28 - Spring 2018

Functional Completeness

- So, are any of the singular sets {and}, {or}, {not} functionally complete?
- In other words, can and/or/not all be converted into a single type of gate?
- No. Neither {and} or {or} can be converted to a {not}

4/9/201

acramento State - Cook - CSc 28 - Spring 2018

NAND

- So, is there a gate that can, alone, be functional complete?
- What about NAND (negated And)?
 - x nand y = (xy)'
 - Note: the NAND gate is not implemented with an AND gate and a NOT gate. It just has the same truth table as (xy)'

4/9/2018

Sacramento State - Cook - CSc 28 - Spring 2018

NAND

- To show that {nand} is functionally complete, we need to show that we can implement {and, or, not} using it
- The result would be greatly beneficial!
 - we would have to just construct 1 gate to create any circuit
 - this would greatly aid construction

4/9/2018

Sacramento State - Cook - CSc 28 - Spring 2018

```
Not → Nand

Converting not to nand:

x' = x'
= (xx)' Idempotent
= x nand x nand format

We can implement NOT by using a NAND.
Both input will be x
```



```
And → Nand

Note: x' = x nand x

xy = xy
= (x nand y)' Negate nand
= (x nand y) nand (x nand y)

Last proof let us convert
NOT into NAND
```

```
■ The expressions below show that nand can be used to implement NOT, OR, AND
■ So, we can just use NAND since it is functionally complete

| x' = x nand x | xy = (x nand y) nand (x nand y) | x + y = (x nand x) nand (y nand y)
```

```
    Also NOR is functionally complete
    P NOR Q = (P + Q)'
    Hardware can alternatively use this gate rather than NAND
```

