4.3.5

Саморепродукция

Егор Берсенев

1 Цель работы:

Изучение явления саморепродукции и применение его к измерению параметров периодических структур.

2 Оборудование

Лазер, кассета с сетками, мира, короткофокусная линза с микрометрическим винтом, экран, линейка.

3 Теоретическое введение

Выражение для плоской монохроматической волны имеет вид

$$E(\mathbf{r},t) = a_0 e^{-i(\omega t - \mathbf{kr} - \psi_0)},\tag{1}$$

где a_0 - амплитуда, ω - круговая частота, $\mathbf{k}=(u,v,q)$ - волновой вектор , ψ_0 - начальная фаза. Колебания происходят синфазно во всех точках плоскости:

$$\mathbf{kr} = ux + vy + \sqrt{k^2 - u^2 - v^2} \cdot z = const. \tag{2}$$

Для плоской волны (1) комплексную амплитуду можно представить в виде

$$f(x,y,z) = a_0 e^{i\psi_0} e^{ux + vy} e^{\sqrt{k^2 - u^2 - v^2} \cdot z} = f(x,y,0) e^{\sqrt{k^2 - u^2 - v^2} \cdot z}.$$
 (3)

Пусть плоская волна падает нормально на транспарант, расположенный в плоскости z=0. Комплексную амплитуду волны в плоскости $z=0_+$ получаем, умножив комплексную амплитуду на входе в транспарант на функцию пропускания транспаранта t(x,y). Для простоты далее будем рассматривать случай t(x,y)=t(x). Если функция пропускания периодична с пространственным периодом d, то комплексная амплитуда на выходе также будет периодической функцией с периодом d

$$f(x, 0_{+}) = \sum_{n=0}^{+\infty} c_n e^{iu_n x} = \sum_{n=0}^{+\infty} c_n e^{i\frac{2\pi}{d}nx},$$
(4)

где коэффициенты c_n можно найти с помощью формулы

$$c_n = \frac{1}{d} \int_{-d/2}^{d/2} f(x, 0_+) e^{-i\frac{2\pi}{d}nx}$$
(5)

Для нахождения комплексной амплитуды волны в произвольной плоскости z = const нужно домножить комплексные амплитуды плоских волн в суперпозиции (4) на соответствующий фазовый множитель (равенство (2)):

$$f(x,z) = \sum_{-\infty}^{+\infty} c_n e^{iu_n x} e^{\sqrt{k^2 - u_n^2} \cdot z}$$
 (6)

То есть, каждая плоская волна приобретает дополнительный набег фаз φ_n . Для параксиальных волн $(u_n \ll 1)$

$$\varphi_n = \sqrt{k^2 - u_n^2} \cdot z \approx kz - \frac{u_n^2}{2k}z \tag{7}$$

Таким образом, для любых двух плоских волн разность набегов фазы равна

$$\Delta \varphi_{n,m} = (u_m^2 - u_n^2) \frac{z}{2k} = (m^2 - n^2) \frac{\pi \lambda}{d^2} z.$$
 (8)

В плоскости

$$z_N = \frac{2d^2}{\lambda}N\tag{9}$$

разница набегов фаз становится кратной 2π . Поэтому в результате интерференции волн в этой плоскости получается изображение, тождественное исходному периодическому объекту. Это и есть эффект саморепродукции.

4 Эксперимент

Рис. 1: Схема экспериментальной установки

В нашем эксперименте $\lambda = 532 \, \text{нм}$.

4.1 Исследование двумерных решеток

4.1.1 Исследование по пространственному спектру

Таблица 1: Исследование с помощью спектра. L=133cm.

net number	1	2	3	4	5	6
l, cm	0.42	0.63	0.90	1.40	1.85	3.6

По формуле $d=\frac{L\lambda}{l}$ определим период решетки d

4.1.2 Исследование по увеличенному изображению

По формуле $d = \frac{a}{b}p$ определим период решетки d.

Таблица 2: Исследование по изображению. a = 5.5cm, b = 127cm.

net number	1	2	3	4
p, cm	0.43	0.25	0.19	0.13

4.1.3 Исследование репродукции

Таблица 3: Исследование репродукции

per	iodic net 1	per	riodic net 2	periodic net 3		
N	z_N , cm	N	z_N , cm	N	z_N , cm	
-2	73,2	-5	78,9	-4	73,9	
-1	68,2	-4	75,5	-3	70	
0	61,7	-3	72	-2	67,3	
1	55,2	-2	68,9	-1	64,9	
2	2 50		65,1	0	61,7	
			61,7	1	59,3	
			57,3	2	56,5	
		2	53,3	3	51,9	
		3	50,7	4	49,4	
		4	47,4			

По графикам найдем углы наклона прямых и по формуле (9) определим период решеток d.

4.2 Исследование решеток миры

Таблица 4: Исследование решеток миры

Televinge it Treeviegebeilie Pelleren impsi									
по сп	ектру	по изображению							
мира 25	мира 25 мира 20		мира 20						
l = 1.8	l = 1.35	p = 0.1	p = 0.14						

Таблица 5: Репродукция на решетках миры

мир	мира 25									
N	-4	-3	-2	-1	0	1	2	3	4	5
z_N	75	72	69	66	64,1	61	58	55	52	49
мир	мира 20									
N	-3	-2	-1	0	1	2	3	4		
z_N	79,5	74	69	64,1	59	53,9	48,1	43,2		

Для решеток миры проведем расчеты, аналогичные расчетам для сеток.

5 Результаты

Сведем все результаты в одну таблицу.

Рис. 2: Сетка №1

Рис. 3: Сетка №2

Рис. 4: Сетка №3

Рис. 5: мира 25

Рис. 6: мира 20

Таблица 6: Периоды решеток миры в микрометрах

	spectre	amplified image	reproduction
мира 25	39.8 ± 4.8	42.63 ± 5.5	43.57 ± 8.7
мира 20	53.0 ± 6.4	58.1 ± 7.6	58.6 ± 11.7

Таблица 7: Результаты для сеток

spectre								
net number	1	2	3	4	5	6		
$d, \mu m$	169.8 ± 20.4	113.2 ± 13.6	78.6 ± 9.4	50.5 ± 6.1	38.2 ± 4.6	19.7 ± 2.4		
	amplified image							
net number 1 2 3 4								
$d, \mu m$ 187.7 ± 24.4 10		108.3 ± 14.1	84.3 ± 11.0	54.7 ± 7.1				
reproduction								
net number 1 2 3								
$d, \mu m$ 125.7 ± 25.1 97.4 ± 19.5 89.2 ± 17.8								

6 Вывод

В проделанной работе было изучено явление саморепродукции изображения периодической структуры при освещении монохроматическим светом. Также были изучены методы определения параметров периодических структур и получены их значения.