- 1.1 1) Un polynôme peut être évalué en n'importe quelle valeur; par conséquent, son ensemble de définition est toujours l'ensemble des nombres réels \mathbb{R} .
 - 2) La fonction $f(x) = \frac{2x-3}{x+7}$ n'est pas définie si son dénominateur s'annule, puisqu'il est impossible de diviser par 0. En d'autres termes, la fonction f n'est pas définie si x+7=0, c'est-à-dire si x=-7. C'est pourquoi, on conclut que $D_f = \mathbb{R} \{-7\}$.
 - 3) La fonction $f(x) = \frac{1}{x^2 + 8x + 15}$ n'est pas définie si son dénominateur s'annule, c'est-à-dire si $x^2 + 8x + 15 = (x+5)(x+3) = 0$, à savoir si x = -5 ou si x = -3. On obtient ainsi $D_f = \mathbb{R} \{-5; -3\}$.
 - 4) La fonction $f(x) = \frac{3x+8}{2x^2+3}$ n'est pas définie si son dénominateur s'annule, en d'autres termes si $2x^2+3=0$. Mais cette équation n'admet aucune solution, car $\Delta=0^2-4\cdot 2\cdot 3=-24<0$, ou encore parce que l'égalité $2x^2=-3$ est impossible, puisqu'un carré ne saurait être négatif. C'est pourquoi, on déduit que $D_f=\mathbb{R}-\varnothing=\mathbb{R}$.
 - 5) La fonction $f(x) = \frac{3x+8}{2x^2+3x}$ n'est pas définie si son dénominateur s'annule, c'est-à-dire si $2x^2+3x=x(2x+3)=0$, donc si x=0 ou si $x=-\frac{3}{2}$. On obtient ainsi $D_f = \mathbb{R} \{-\frac{3}{2}; 0\}$.
 - 6) La fonction $f(x) = \frac{3}{|x^2 5x| + 1}$ n'est pas définie si son dénominateur s'annule. Mais ce n'est jamais le cas, car $|x^2 5x| \ge 0$ pour tout $x \in \mathbb{R}$, de sorte que $|x^2 5x| + 1 \ge 1 > 0$ pour tout $x \in \mathbb{R}$. C'est pourquoi on conclut que $D_f = \mathbb{R}$.
 - 7) La fonction $f(x) = \frac{5x-1}{|x|+x}$ n'est pas définie si son dénominateur s'annule, c'est-à-dire si |x|+x=0. Or $|x|+x=\begin{cases} x+x=2x & \text{si } x\geqslant 0\\ -x+x=0 & \text{si } x<0 \end{cases}$. Par conséquent, le dénominateur |x|+x est non nul seulement si x>0, de sorte que $D_f=]0\;;+\infty[$
 - 8) La fonction $f(x) = \sqrt{x^2 9}$ n'est définie que si l'argument de la racine carrée est positif ou nul, en d'autres termes si $x^2 9 = (x+3)(x-3) \ge 0$.

	-:	3 ;	3
x+3	_	+	+
x-3		_	+
$x^2 - 9$	+	_	+

Grâce à ce tableau de signes, on conclut que $D_f =]-\infty;-3] \cup [3;+\infty[$.

9) La fonction $f(x) = \sqrt{x^2 + 9}$ n'est définie que si l'argument de la racine carrée est positif ou nul, c'est-à-dire si $x^2 + 9 \ge 0$. Or c'est toujours le cas, quel que soit $x \in \mathbb{R}$, étant donné que $x^2 \ge 0$ implique $x^2 + 9 \ge 9 > 0$. On aboutit donc à $D_f = \mathbb{R}$.

10) La fonction $f(x) = \sqrt{7x - x^2 - 12}$ n'est définie que si $7x - x^2 - 12 \ge 0$, à savoir seulement si $x^2 - 7x + 12 = (x - 3)(x - 4) \le 0$.

		3	1
x-3	_	+	+
x-4	_	_	+
$x^2 - 7x + 12$	+	_	+

Ce tableau de signes conduit à la conclusion $D_f = [3; 4]$.

- 11) Pour que la fonction $f(x) = \sqrt{x+1}\sqrt{x-3}$ soit définie, il faut que l'argument de chaque racine carrée soit positif ou nul : on doit avoir d'une part $x+1 \ge 0$, c'est-à-dire $x \ge -1$, et d'autre part $x-3 \ge 0$, à savoir $x \ge 3$. Ces deux conditions sont simultanément remplies lorsque $x \ge 3$, d'où suit $D_f = [3; +\infty[$.
- 12) La fonction $f(x) = \sqrt{(x+1)(x-3)}$ est définie si l'argument de la racine carrée est positif ou nul, donc si $(x+1)(x-3) \ge 0$.

	_	1 :	3
x+1	_	+	+
x-3	_	_	+
(x+1)(x-3)	+	_	+

Ce tableau de signes donne $D_f =]-\infty;-1] \cup [3;+\infty[$.

- 13) La fonction $f(x) = \sqrt{|x+1|} \sqrt{|x-3|}$ n'est définie que si l'argument de chaque racine carrée est positif ou nul. Or $|x+1| \ge 0$ et $|x-3| \ge 0$ pour tout $x \in \mathbb{R}$, d'où l'on tire que $D_f = \mathbb{R}$.
- 14) La fonction $f(x) = \sqrt{\frac{x+1}{x-3}}$ est définie si le dénominateur x-3 ne s'annule pas, c'est-à-dire si $x \neq 3$, et si l'argument de la racine carrée est positif ou nul, en d'autres termes si $\frac{x+1}{x-3} \geqslant 0$.

	_	1 :	3
x+1		+	+
x-3	_	_	+
$\frac{x+1}{x-3}$	+	_	+

Au vu de ce tableau de signes, on conclut que $D_f =]-\infty;-1] \cup]3;+\infty[$.

15) Pour que la fonction $f(x) = \sqrt{\left|\frac{x+1}{x-3}\right|}$ soit définie, il faut d'une part que le dénominateur ne s'annule pas et d'autre part que l'argument de la racine carrée soit positif ou nul. La première condition entraı̂ne $x \neq 3$, tandis que la seconde est vérifiée pour tout $x \in \mathbb{R} - \{3\}$. On obtient dès lors $D_f = \mathbb{R} - \{3\}$.

16) La fonction $f(x) = \sqrt{\frac{x}{x+1} - \frac{x}{x-1}}$ est définie si les dénominateurs ne s'annulent pas, c'est-à-dire si $x \neq -1$ et si $x \neq 1$, et si l'argument de la racine carrée est positif ou nul. Or ce dernier vaut $\frac{x}{x+1} - \frac{x}{x-1} = \frac{x(x-1)-x(x+1)}{(x+1)(x-1)} = \frac{x\left((x-1)-(x+1)\right)}{(x+1)(x-1)} = \frac{-2x}{(x+1)(x-1)}$.

	_	1 () :	1
-2x	+	+	_	_
x+1	_	+	+	+
x-1	_	_	_	+
$\frac{-2x}{(x+1)(x-1)}$	+	_	+	_

Grâce à ce tableau de signes, on obtient finalement $\mathbf{D}_f =]-\infty\;; -1[\;\cup\;[0\;;1[$.