# **The Sparks Foundation**

# DataScience And Business Analytics

Done By: Gajal S

# TASK 3

- Perform 'Exploratory Data Analysis' on dataset 'SampleSuperstore'
- As a business manager, try to find out the weak areas where you can work to make more profit.
- What all business problems you can derive by exploring the data?

# Importing libraries based on the requirements

#### In [1]:

```
import pandas as pd
import matplotlib.pyplot as plt
%matplotlib inline
import seaborn as sns
```

# Reading the csv dataset using the command pd.read\_csv()

#### In [2]:

```
data = pd.read_csv("SampleSuperstore.csv")
data.head()
```

#### Out[2]:

|   | Ship<br>Mode      | Segment   | Country          | City               | State      | Postal_Code | Region | Category           | Su<br>Catego |
|---|-------------------|-----------|------------------|--------------------|------------|-------------|--------|--------------------|--------------|
| 0 | Second<br>Class   | Consumer  | United<br>States | Henderson          | Kentucky   | 42420       | South  | Furniture          | Bookcas      |
| 1 | Second<br>Class   | Consumer  | United<br>States | Henderson          | Kentucky   | 42420       | South  | Furniture          | Cha          |
| 2 | Second<br>Class   | Corporate | United<br>States | Los<br>Angeles     | California | 90036       | West   | Office<br>Supplies | Lab€         |
| 3 | Standard<br>Class | Consumer  | United<br>States | Fort<br>Lauderdale | Florida    | 33311       | South  | Furniture          | Tabl         |
| 4 | Standard<br>Class | Consumer  | United<br>States | Fort<br>Lauderdale | Florida    | 33311       | South  | Office<br>Supplies | Stora        |
| 4 |                   |           |                  |                    |            |             |        |                    | <b>&gt;</b>  |

### In [3]:

```
data.tail()
```

### Out[3]:

|      | Ship<br>Mode      | Segment  | Country          | City        | State      | Postal_Code | Region | Category           | (  |
|------|-------------------|----------|------------------|-------------|------------|-------------|--------|--------------------|----|
| 9989 | Second<br>Class   | Consumer | United<br>States | Miami       | Florida    | 33180       | South  | Furniture          | Fι |
| 9990 | Standard<br>Class | Consumer | United<br>States | Costa Mesa  | California | 92627       | West   | Furniture          | Fι |
| 9991 | Standard<br>Class | Consumer | United<br>States | Costa Mesa  | California | 92627       | West   | Technology         |    |
| 9992 | Standard<br>Class | Consumer | United<br>States | Costa Mesa  | California | 92627       | West   | Office<br>Supplies |    |
| 9993 | Second<br>Class   | Consumer | United<br>States | Westminster | California | 92683       | West   | Office<br>Supplies | Α  |
| 4    |                   |          |                  |             |            |             |        |                    | •  |

# **Performing Exploratory Data Analysis**

## In [4]:

data.shape

## Out[4]:

(9994, 13)

# To Generate descriptive statistics

### In [5]:

data.describe()

# Out[5]:

|       | Postal_Code  | Sales        | Quantity    | Discount    | Profit       |
|-------|--------------|--------------|-------------|-------------|--------------|
| count | 9994.000000  | 9994.000000  | 9994.000000 | 9994.000000 | 9994.000000  |
| mean  | 55190.379428 | 229.858001   | 3.789574    | 0.156203    | 28.656896    |
| std   | 32063.693350 | 623.245101   | 2.225110    | 0.206452    | 234.260108   |
| min   | 1040.000000  | 0.444000     | 1.000000    | 0.000000    | -6599.978000 |
| 25%   | 23223.000000 | 17.280000    | 2.000000    | 0.000000    | 1.728750     |
| 50%   | 56430.500000 | 54.490000    | 3.000000    | 0.200000    | 8.666500     |
| 75%   | 90008.000000 | 209.940000   | 5.000000    | 0.200000    | 29.364000    |
| max   | 99301.000000 | 22638.480000 | 14.000000   | 0.800000    | 8399.976000  |

# To Print a concise summary of a DataFrame

#### In [6]:

```
data.info()
<class 'pandas.core.frame.DataFrame'>
RangeIndex: 9994 entries, 0 to 9993
Data columns (total 13 columns):
    Column
                   Non-Null Count Dtype
 #
 0
    Ship Mode
                  9994 non-null
                                   object
 1
    Segment
                  9994 non-null
                                  object
 2
    Country
                   9994 non-null
                                  object
 3
                  9994 non-null
                                  object
    City
 4
    State
                  9994 non-null
                                  object
 5
    Postal_Code 9994 non-null
                                   int64
                                   object
 6
                   9994 non-null
    Region
 7
                  9994 non-null
                                   object
    Category
 8
    Sub-Category 9994 non-null
                                   object
 9
                  9994 non-null
                                   float64
    Sales
 10
    Quantity
                  9994 non-null
                                   int64
 11 Discount
                                   float64
                  9994 non-null
 12
    Profit
                  9994 non-null
                                   float64
dtypes: float64(3), int64(2), object(8)
memory usage: 1015.1+ KB
```

# **Detecting missing values**

#### In [7]:

```
data.isna().sum()
```

#### Out[7]:

```
Ship Mode
                 0
Segment
                 0
Country
                 0
City
                 0
State
                 0
Postal Code
                 0
                 0
Region
Category
Sub-Category
                 0
Sales
                 0
Quantity
                 0
                 0
Discount
Profit
dtype: int64
```

### Count distinct observations over each columns

### In [8]:

data.nunique()

### Out[8]:

Ship Mode 4 Segment 3 Country 1 City 531 State 49 Postal\_Code 631 Region 4 3 Category 17 Sub-Category Sales 5825 Quantity 14 Discount 12 Profit 7287 dtype: int64

# To Compute pairwise correlation of columns

### In [9]:

data.corr()

#### Out[9]:

|             | Postal_Code | Sales     | Quantity | Discount  | Profit    |
|-------------|-------------|-----------|----------|-----------|-----------|
| Postal_Code | 1.000000    | -0.023854 | 0.012761 | 0.058443  | -0.029961 |
| Sales       | -0.023854   | 1.000000  | 0.200795 | -0.028190 | 0.479064  |
| Quantity    | 0.012761    | 0.200795  | 1.000000 | 0.008623  | 0.066253  |
| Discount    | 0.058443    | -0.028190 | 0.008623 | 1.000000  | -0.219487 |
| Profit      | -0.029961   | 0.479064  | 0.066253 | -0.219487 | 1.000000  |

# **Duplicated values in the data**

#### In [10]:

data.duplicated().sum()

Out[10]:

17

# **Dropping the duplicate values**

#### In [11]:

data.drop\_duplicates(inplace = True)

```
In [12]:
```

```
data.shape
```

Out[12]:

(9977, 13)

# **Data Visualization**

# Which Category has the highest supply in United States?

# In [13]:

```
sns.countplot(x = "Country", hue = "Category", data = data, palette = "magma")
```

#### Out[13]:

<AxesSubplot:xlabel='Country', ylabel='count'>



 From the above plot, we can see that Office Supplies have better sales than Furniture and technology in United States

# Which city has the most and the least sales in United States?

#### In [14]:

```
plt.figure(figsize=(15,10))
sns.countplot(x = "State", data = data,palette="crest",order = data["State"].value_counts()
plt.xticks(rotation = 90)
Out[14]:
(array([ 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16,
        17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33,
        34, 35, 36, 37, 38, 39, 40, 41, 42, 43, 44, 45, 46, 47, 48]),
 [Text(0, 0, 'California'),
  Text(1, 0, 'New York'),
 Text(2, 0, 'Texas'),
  Text(3, 0, 'Pennsylvania'),
  Text(4, 0, 'Washington'),
 Text(5, 0, 'Illinois'),
 Text(6, 0, 'Ohio'),
 Text(7, 0, 'Florida'),
 Text(8, 0, 'Michigan'),
 Text(9, 0, 'North Carolina'),
  Text(10, 0, 'Arizona'),
  Text(11, 0, 'Virginia'),
 Text(12, 0, 'Georgia'),
 Text(13, 0, 'Tennessee'),
 Text(14, 0, 'Colorado'),
 Text(15, 0, 'Indiana'),
 Text(16, 0, 'Kentucky'),
  Text(17, 0, 'Massachusetts'),
  Text(18, 0, 'New Jersey'),
 Text(19, 0, 'Oregon'),
 Text(20, 0, 'Wisconsin'),
  Text(21, 0, 'Maryland'),
  Text(22, 0, 'Delaware'),
 Text(23, 0, 'Minnesota'),
 Text(24, 0, 'Connecticut'),
  Text(25, 0, 'Missouri'),
  Text(26, 0, 'Oklahoma'),
 Text(27, 0, 'Alabama'),
  Text(28, 0, 'Arkansas'),
  Text(29, 0, 'Rhode Island'),
  Text(30, 0, 'Utah'),
 Text(31, 0, 'Mississippi'),
  Text(32, 0, 'South Carolina'),
  Text(33, 0, 'Louisiana'),
  Text(34, 0, 'Nevada'),
  Text(35, 0, 'Nebraska'),
  Text(36, 0, 'New Mexico'),
  Text(37, 0, 'Iowa'),
 Text(38, 0, 'New Hampshire'),
  Text(39, 0, 'Kansas'),
  Text(40, 0, 'Idaho'),
  Text(41, 0, 'Montana'),
 Text(42, 0, 'South Dakota'),
  Text(43, 0, 'Vermont'),
  Text(44, 0, 'District of Columbia'),
  Text(45, 0, 'Maine'),
  Text(46, 0, 'North Dakota'),
  Text(47, 0, 'West Virginia'),
  Text(48, 0, 'Wyoming')])
```



## From the above cell, it is clear that:

- Sales are in its peak in California and New York
- · The least buyers are from Wyoming

### In [15]:

```
sns.pairplot(data, hue ='Sub-Category', palette = "magma")
```

### Out[15]:

<seaborn.axisgrid.PairGrid at 0x296cd63b5b0>



### In [16]:

```
corr_data = data.corr()
```

#### In [17]:

```
sns.heatmap(data = corr_data, annot = True, cmap = "Purples")
```

#### Out[17]:

#### <AxesSubplot:>



The above heatmap shows the pairwise correlation of columns

# Which mode of Shipping is the most preferred?

#### In [18]:

```
sns.countplot(x = "Ship Mode", hue = "Region", data = data, palette = "plasma")
```

#### Out[18]:

<AxesSubplot:xlabel='Ship Mode', ylabel='count'>



Most preferred mode of Shipping and highest sales in region:

- The sales in the west are the highest according to the above countplot.
- Standard Class is the most preferred mode of shipping.

# Which Segment is the most preferred by customers?

### In [19]:

```
sns.countplot(x = "Segment", palette = "rainbow", data = data)
```

#### Out[19]:

<AxesSubplot:xlabel='Segment', ylabel='count'>



• The above plot show that the segment "Consumer" is the most preferrable, while Home Office and corporate are comparitvely very less.

# Which Region has the highest sale?

#### In [20]:

```
plt.figure(figsize =(12, 7))
explode = (0.1, 0.0, 0.2, 0.3)

wp = { 'linewidth' : 1, 'edgecolor' : "black" }
regions = ['West', 'East', 'Central', 'South']
colors = ("lightblue", "green", "orange", "red")
region_data = data["Region"].value_counts()

plt.pie(region_data, explode = explode, autopct = "% .2f%%",labels = regions, colors = colo
plt.title("Sales on the region", loc = "left")
plt.legend(regions, title = "Region", bbox_to_anchor =(0.8, 0.5, 0.5, 0.5))
plt.show()
```



What percentage of the discount is the most given?

#### In [21]:

```
plt.figure(figsize = (15,5))
sns.set_style("whitegrid")
sns.histplot(data["Discount"], color ='purple')
```

### Out[21]:

<AxesSubplot:xlabel='Discount', ylabel='Count'>



The above plot shows that 0 to 20% is the highest given discount.

#### In [22]:

```
sales_profit_data = data.groupby("Region")[["Sales","Profit"]].sum()
```

#### In [23]:

```
sales_profit_data.plot.bar()
```

#### Out[23]:

<AxesSubplot:xlabel='Region'>



### In [24]:

```
Category_profit = data.groupby("Category")[["Sales","Profit"]].sum()
```

## In [25]:

Category\_profit.plot.bar()

## Out[25]:

<AxesSubplot:xlabel='Category'>



## In [26]:

Sub\_Category\_profit = data.groupby("Sub-Category")[["Sales","Profit"]].sum()

#### In [27]:

```
Sub_Category_profit.plot.bar()
```

### Out[27]:

<AxesSubplot:xlabel='Sub-Category'>



# In [28]:

```
plt.figure(figsize = (15,5))
sns.countplot(x = "Sub-Category", hue = "Region", data = data)
```

### Out[28]:

<AxesSubplot:xlabel='Sub-Category', ylabel='count'>



# In [29]:

```
data.hist(figsize=(15,15), bins = 40, color = "purple")
```

#### Out[29]:











# **Observations/Buisness Problems**

- Office Supplies are most bought than Furniture and technology
- · Sates California and New York has the highest sales
- · Wyoming has the least sales
- Customer's most bought quantity is 2 and 3
- · Standard Class is the most preferred mode of shipping
- · Consumer is the most preferrable Segment
- · West region has the highest sale
- 0 20% is the most given discount
- Papers and Binders are the most bought in Sub-category(mainly in the west region)
- There is no to very less profit in furnitures
- · All in all, the sales are high in all the region while the profit is comparitively less

# Conclusion

- · South region has the least sales
- · Tables are Bookcases are in loss, no profit
- · Office supplies are the most bought by the customers
- There are more loss than profit, to resolve this we must focus on the city/product/segment/mode of shipping and proceed the sales.
- In this case Office supplies are most bought, west region has the highest sales, counsumer is the most preferred segment, Standard class is the most preferred mode of shipping

Thank you!