

# Licence 1ère année, MATHÉMATIQUES ET CALCUL 2 (MC2)

# Interrogation 3: Intégrales

### Exercice 1.7 pts

- 1. Déterminer la nature de  $I = \int_0^1 \frac{\ln(t)}{(\sqrt{1-t})^3} dt$
- 2. Calculer  $\int_0^{+\infty} e^{-\sqrt{t}} dt$  à l'aide du changement de variable  $u = \sqrt{t}$ .

↑ Pas de changements de variable ou d'IPP sur des bornes impropres!

# Correction.

1.  $f: t \mapsto \frac{\ln(t)}{(\sqrt{1-t})^3}$  est définie, continue et négative sur ]0,1[. On va donc considérer g=-f pour travailler avec une fonction positive et,  $J=\int_0^1 g(t)dt=-I$  étant impropre en 0 et en 1, on divise l'intégrale en deux pour se ramener à l'étude de deux intégrales impropres en une seule de leurs bornes en introduisant  $J_1=\int_0^{\frac{1}{2}}g(t)dt$  et  $J_2=\int_{\frac{1}{2}}^1g(t)dt$ , de sorte que  $J=J_1+J_2$ .

• Étude sur  $[\frac{1}{2}, 1[:$ 

On effectue un changement de variable pour se ramener à l'étude d'une intégrale impropre en 0.

Soit 
$$x \in [\frac{1}{2}, 1[$$
. On note  $F(x) = \int_{\frac{1}{2}}^{x} g(t) dt$ , de sorte que  $\int_{\frac{1}{2}}^{1} g(t) dt = \lim_{x \to 1} F(x)$ .

On effectue le changement de variable u = 1 - t (du = -dt)

$$F(x) = \int_{\frac{1}{2}}^{x} g(t)dt = -\int_{\frac{1}{2}}^{x} \frac{\ln(t)}{(\sqrt{1-t})^3} dt = \int_{\frac{1}{2}}^{1-x} \frac{\ln(1-u)}{(\sqrt{u})^3} du = \int_{1-x}^{\frac{1}{2}} \frac{-\ln(1-u)}{(\sqrt{u})^3} du$$

Ainsi, 
$$J_2 = \int_{\frac{1}{2}}^1 g(t) dt = \lim_{x \to 1} F(x) = \lim_{x \to 1} \int_{1-x}^{\frac{1}{2}} \frac{-\ln(1-u)}{(\sqrt{u})^3} du = \int_0^{\frac{1}{2}} \frac{-\ln(1-u)}{(\sqrt{u})^3} du$$

Posons  $h: u \mapsto \frac{-\ln(1-u)}{(\sqrt{u})^3}$  qui est définie, continue et postive sur  $]0, \frac{1}{2}]$ . Or,  $-\frac{\ln(1-u)}{(\sqrt{u})^3} \underset{u \to 0}{\sim} \frac{u}{u^{\frac{3}{2}}} = \frac{1}{u^{\frac{1}{2}}}$  et  $\int_0^1 \frac{1}{u^{\frac{1}{2}}} du$  est

une intégrale de Riemann convergente ( $\alpha = \frac{1}{2} < 1$ ), donc  $\int_0^{\frac{1}{2}} \frac{1}{u^{\frac{1}{2}}} du$  converge (car  $u \mapsto \frac{1}{u^{\frac{1}{2}}}$  continue sur  $[\frac{1}{2}, 1]$ ) et, par critère d'équivalence des fonctions positives,  $\int_0^{\frac{1}{2}} h(u) du$  converge. D'où,  $J_2$  converge.

• Étude sur  $]0,\frac{1}{2}]$ :

On a  $g(t) = -\frac{\ln(t)}{(\sqrt{1-t})^3} \sim -\ln(t) = \xi(t)$  avec  $\xi$  définie, continue et positive sur  $]0,\frac{1}{2}]$ . De plus,  $\int_0^{\frac{1}{2}} \xi(t)dt$  converge car une primitive de ln est  $t\mapsto t\ln(t)-t$ , qui tend vers 0 quand  $t\to 0$  et vaut -1 pour t=1 (pour s'en convaincre, il suffit de faire une IPP avec  $u(t) = \ln(t)$  et v'(t) = 1). Donc, par critère d'équivalence des fonctions positives,  $J_1$  converge.

- Conclusion : Finalement,  $J = J_1 + J_2$  est une intégrale convergente, donc I = -J aussi.
- 2. On pose  $f: t \mapsto e^{-\sqrt{t}}$ . f est définie, continue et positive sur  $[0, +\infty[$ .  $\int_0^{+\infty} f(t) dt$  est donc impropre en  $+\infty$ .
- Convergence de l'intégrale : Puisque  $t^2e^{-\sqrt{t}}\underset{t\to+\infty}{\longrightarrow}0$ , il existe T>0 tel que, pour tout  $t\geq T$ ,  $t^2e^{-\sqrt{t}}\leq 1$ , d'où  $e^{-\sqrt{t}}\leq 1$ , d'où
- Calcul de l'intégrale : Procédons à un changement de variable, comme indiqué dans l'énoncé.

Soit  $x \in [0, +\infty[$ . On note  $F(x) = \int_0^x f(t) dt$ , de sorte que  $\int_0^{+\infty} f(t) dt = \lim_{x \to +\infty} F(x)$ .

On effectue le changement de variable  $u = \sqrt{t} (dt = 2udu)$ :

$$F(x) = \int_0^x e^{-\sqrt{t}} dt = \int_0^{\sqrt{x}} e^{-u} 2u du$$

On procède ensuite à une IPP avec  $\alpha(u) = 2u$  et  $\beta'(u) = e^{-u}$ :

$$F(x) = [\alpha(u)\beta(u)]_0^{\sqrt{x}} - \int_0^{\sqrt{x}} \alpha'(u)\beta(u)du$$

$$= [-2ue^{-u}]_0^{\sqrt{x}} - 2\int_0^{\sqrt{x}} (-e^{-u})du$$

$$= -2\sqrt{x}e^{-\sqrt{x}} - 2[e^{-u}]_0^{\sqrt{x}}$$

$$= -2\sqrt{x}e^{-\sqrt{x}} - 2e^{-\sqrt{x}} + 2$$

Ainsi, 
$$\int_0^{+\infty} f(t)dt = \lim_{x \to +\infty} F(x) = \lim_{x \to +\infty} (-2\sqrt{x}e^{-\sqrt{x}} - 2e^{-\sqrt{x}} + 2) = 2 \text{ (car } \lim_{u \to +\infty} ue^{-u} = 0, \text{ par croissances comparées)}.$$

**Remarque :** En fait, calculer l'intégrale consiste à revenir à la définition d'une intégrale impropre, donc à déterminer sa nature. Ici, cela montre directement la convergence de l'intégrale impropre, de sorte que déterminer la nature de l'intégrale sans la calculer dans un premier temps est superflu.

# Exercice 2. 3 pts

1. Calculer 
$$\int_0^1 \frac{e^x}{e^{2x} + e^x + 1} dx$$

### Correction.

On pose  $f: x \mapsto \frac{e^x}{e^{2x} + e^x + 1}$ . f est définie, continue sur [0,1] donc admet des primitives sur cet intervalle. On effectue le changement de variable  $t = e^x$  ( $dx = \frac{1}{t}dt$ ):

$$\int_0^1 f(x)dx = \int_0^1 \frac{e^x}{e^{2x} + e^x + 1} dx = \int_1^e \frac{1}{t^2 + t + 1} dt$$

On reconnaît une fraction rationnelle de la forme suivante : inverse d'un polynôme de degré 2 sans racines réelles (i.e. irréductible).

• Mise sous forme canonique du polynôme au dénominateur :

$$t^{2} + t + 1 = t^{2} + 2 \times \frac{1}{2} \times t + (\frac{1}{2})^{2} - (\frac{1}{2})^{2} + 1$$

$$= (t + \frac{1}{2})^{2} + \frac{3}{4}$$

$$= \frac{3}{4}((\frac{2}{\sqrt{3}})^{2}(t + \frac{1}{2})^{2} + 1)$$

$$= \frac{3}{4}((\frac{2t+1}{\sqrt{3}})^{2} + 1)dt$$

Donc

$$\int_{1}^{e} \frac{1}{t^{2} + t + 1} dt = \frac{4}{3} \int_{1}^{e} \frac{1}{(\frac{2t+1}{\sqrt{3}})^{2} + 1}$$

On réalise le changement de variable  $u=\frac{2t+1}{\sqrt{3}}\,(du=\frac{2}{\sqrt{3}}dt)$ . D'où,

$$\begin{split} \int_{1}^{e} \frac{1}{t^{2} + t + 1} dt &= \frac{4}{3} \int_{1}^{e} \frac{1}{(\frac{2t + 1}{\sqrt{3}})^{2} + 1} dt \\ &= \frac{4}{3} \int_{\sqrt{3}}^{\frac{2e + 1}{\sqrt{3}}} \frac{1}{u^{2} + 1} \frac{\sqrt{3}}{2} du \\ &= \frac{2}{\sqrt{3}} \left[ \arctan u \right]_{\sqrt{3}}^{\frac{2e + 1}{\sqrt{3}}} = \frac{2}{\sqrt{3}} \arctan \left( \frac{2e + 1}{\sqrt{3}} \right) - \frac{2}{\sqrt{3}} \arctan \left( \sqrt{3} \right) \end{split}$$