TP n°7: Évaluation

- **Exercice 1.** 1. Écrire un programme qui prend en entrée $n \in \mathbb{N}$ et qui renvoie n!. Écrire une version itérative et une version récursive.
 - 2. Écrire un programme qui prend en entrée $x \in \mathbb{R}$, $n \in \mathbb{N}$ et qui renvoie $f_n(x) = \sum_{k=0}^n \frac{x^k}{k!}$.
 - 3. Représenter sur un même graphe f_5 , f_{10} et exp entre -10 et 10. Mettre une légende (qui indiquera à quoi correspondent chaque courbe, par exemple $y = \exp(x)$), représenter exp en rouge, f_5 en vert et f_{10} en bleu, et représenter exp avec un trait plus épais que f_5 et f_{10} .

Exercice 2. 1. Faire la liste des 50 premiers nombres premiers.

2. Un nombre premier de Sophie Germain est un nombre premier p tel que 2p + 1 est premier. Faire la liste des 50 premiers nombres premiers de Sophie Germain.

Exercice 3. Soit la suite de Fibonacci, définie par :

$$\begin{cases} u_0 &= 0 \\ u_1 &= 1 \\ u_n &= u_{n-1} + u_{n-2}, \quad \forall n \ge 2. \end{cases}$$

- 1. Écrire un programme Fibo_modulaire(m,n) qui prend en entrée deux entiers positifs m,n et qui renvoie la liste des $F_i\%m$, pour $i \in [0,n]$.
- 2. Écrire un programme triplet(L) qui prend en entrée une liste L de nombres $L = [l_0, \ldots, l_n]$ et qui renvoie la liste des triplets de la forme (l_i, l_{i+1}, l_{i+2}) , tels que $i \in [0, n-2]$ et $l_{i+1} < l_i < l_{i+2}$.
- 3. Écrire un programme alea(n), qui prend en entrée un entier n et qui renvoie une liste de n éléments aléatoires entre 1 et 10^5 (on pourra utiliser la commande random.randint).
- 4. Si on prend un triplet de réels « au hasard » x_0, x_1, x_2 , l'inégalité $x_1 < x_0 < x_2$ doit se produire une fois sur 6. Combien de triplets obtenez vous avec la commande $triplets(alea(10^5))$?
- 5. Combien de triplets obtenez-vous avec la commande triplets(fibo_modulaire(1000, 10⁵))?

Exercice 4. Écrire un programme qui prend en entrée un entier m et une liste M d'entiers de [0, m-1] et qui renvoie la liste $N = [n_0, \ldots, n_{m-1}]$ telle que pour tout $i \in [0, m-1]$, $n_i = |\{j \in [0, m-1]\}|$ $M[j] = i\}|$.

- **Exercice 5.** 1. Écrire un programme qui prend en entrée deux listes triées L_1 et L_2 et qui renvoie la liste triée contenant la réunion des deux listes.
 - 2. En déduire un programme qui prend une liste en entrée et qui la trie à l'aide d'un tri fusion.

Exercice 6. (méthode des rectangles)

Soient $a, b \in \mathbb{R}$ et $f : [a, b] \to \mathbb{R}$ une fonction de classe C^1 . Pour $n \in \mathbb{N}^*$, on pose $S_n(f) = \frac{1}{n} \sum_{i=0}^{n-1} f(a+i(b-a)/n)$. On rappelle que $S_n(f) \to \int_a^b f$ (et que $S_n(f) - \int_a^b f = O(\frac{1}{n})$). On suppose que l'on a défini une fonction f sur Python (à l'aide de la fonction def f(x): ... return ...).

- 1. Écrire un programme qui prend en entrée $a, b \in \mathbb{R}$ et $n \in \mathbb{N}^*$ et qui renvoie $S_n(f)$.
- 2. Calculer $S_n(f)$ pour différentes valeurs de n, pour $f = \exp$, a = 0, b = 1. Comparer avec le résultat que l'on obtient avec la fonction quad(f,a,b) (après avoir importé "quad" de scipy.integrate).
- 3. Écrire un programme prenant en entrée a, b, n et qui renvoie une figure représentant le graphe de f sur [a, b] ainsi que les rectangles correspondant à $S_n(f)$. Les rectangles devront être tous d'une même couleur et en pointillés.