Earthquake Kinematics

strike-slip fault

normal fault

reverse (thrust) fault

Image courtesy of USGS.

Faults

This image has been removed due to copyright restrictions.

Please see:

http://epscx.wustl.edu/seismology/book/chapter4/chap4_sr/4_2_03_s.jpg

Faults

This image has been removed due to copyright restrictions.

Please see:

http://epscx.wustl.edu/seismology/book/chapter4/chap4_sr/4_2_02_s.jpg

n̂: normal vector

d: slip vector

Faults

This image has been removed due to copyright restrictions.

Please see:

http://epscx.wustl.edu/seismology/book/chapter4/chap4_sr/4_4_01_s.jpg

Faults - Seismic Moment

This image has been removed due to copyright restrictions.

Please see:

http://epscx.wustl.edu/seismology/book/chapter4/chap4_sr/4_4_05_s.jpg

Seismic Moment:

$$M_0 = \mu \overline{D} A$$

Focal Mechanisms: geometry of faulting during an earthquake

This image has been removed due to copyright restrictions.

Please see:

http://epscx.wustl.edu/seismology/book/chapter4/chap4_sr/4_2_04_s.jpg

Focal Mechanisms: geometry of faulting during an earthquake

This image has been removed due to copyright restrictions.

Please see:

http://epscx.wustl.edu/seismology/book/chapter4/chap4_sr/4_2_08_s.jpg

Focal Mechanisms: geometry of faulting during an earthquake

This image has been removed due to copyright restrictions.

Please see:

http://epscx.wustl.edu/seismology/book/chapter4/chap4_sr/4_2_14_s.jpg

Earthquake magnitude

general form:

$$M = \log(A/T) + F(h,\Delta) + C$$

Richter (local) magnitude:

$$M_L = \log A + 2.76 \log \Delta - 2.48$$

A: S-wave amplitude (mm)

Δ: distance epicentre-seismograph (km)

This image has been removed due to copyright restrictions.

Please see:

http://epscx.wustl.edu/seismology/book/chapter4/chap4_sr/4_6_01_s.jpg

Earthquake magnitude

body wave magnitude:

$$m_b = \log(A/T) + Q(h,\Delta)$$

A: P-wave amplitude (μm)

T: dominant period of the signal (s)

Q: empirical factor depending on distance (Δ) and depth (h)

Saturation: mb~6.0

surface wave magnitude:

$$M_S = \log(A/T) + 1.66\log\Delta + 2.0$$

A: Surface wave amplitude (μm)

T: dominant period of the signal (s)

Δ: distance earthquake-seismograph (°)

Saturation: Ms~8.3

Earthquake magnitude

moment magnitude:

$$M_{w} = \frac{\log M_{0}}{1.5} - 10.73$$

Mo: scalar seismic moment from modeling of seismograms

no saturation!

MIT OpenCourseWare http://ocw.mit.edu

12.103 Science and Policy of Natural Hazards Spring 2010

For information about citing these materials or our Terms of Use, visit: http://ocw.mit.edu/terms.