HOJA DE EJERCICIOS 6

Análisis Matemático. CURSO 2020–2021.

Problema 1. a) Dada la función $g(x): \mathbb{R} \to \mathbb{R}$, definida de la siguiente manera:

$$g(x) = \begin{cases} \frac{e^x - 1}{x} & \text{si} \quad x \neq 0 \\ 1 & \text{si} \quad x = 0 \end{cases}$$

demuestra que $g \in \mathcal{C}^1(\mathbb{R})$. Utiliza este resultado para comprobar que la ecuación

$$x^2 (e^x - 1) - y^3 = 0,$$

aunque no cumple la condición del teorema de la función implícita en (x,y)=(0,0), define implícitamente una única función y(x) que es \mathcal{C}^1 para todo $x \in \mathbb{R}$.

b) Demuestra que en la siguiente ecuación:

$$xy + \cos z = 1,$$

no es posible despejar z como función de (x, y) alrededor de $(x_0, y_0) = (0, 0)$ y $z_0 = 0$. Indicación: Considera x, y muy pequeños y de signos opuestos.

c) Demuestra que la ecuación

$$\cos x - y^3 = 0 ,$$

define una única función implícita y(x) para todo $x \in \mathbb{R}$ y dibuja el grafo $\{y = y(x)\}$. Esta y(x) es función \mathcal{C}^{∞} de x en un entorno de $x_0 = 0$ (ahí se cumple la condición del teorema de las funciones implícitas), pero encuentra valores de x, alejados del valor x = 0, en los que y(x) ni siquiera es diferenciable.

Problema 2. Consideramos la función $f: \mathbb{R}^4 \to \mathbb{R}^2$ definida como sigue:

$$f(x_1, x_2, x_3, x_4) = \begin{bmatrix} x_2 \cos x_1 + x_3^2 + 7x_2 x_4 \\ e^{x_1} x_3 + 5e^{x_2} - \sin x_3 - x_1 x_4^2 \end{bmatrix},$$

y los puntos a = (0, 1, 0, 0), a' = (0, 0, 0, 1) y a'' = (0, 1, 1, 0).

- a) Queremos resolver el sistema de dos ecuaciones $f(x_1, x_2, x_3, x_4) = f(a)$ cerca del punto a. Determina qué dos variables, entre las x_1, x_2, x_3, x_4 , se puede asegurar que se despejan como funciones diferenciables de las otras dos.
- b) Misma pregunta para el punto a'.
- c) Misma pregunta para el punto a''.

Problema 3. Si $M, N \subset \mathbb{R}^{n+k}$ son subvariedades n dimensionales arbitrarias, ¿es siempre $M \cup N$ una subvariedad? ¿Y $M \cap N$?

Problema 4. Estudiar si el conjunto

$$M = \{(x, y, z) \in \mathbb{R}^3 : xy = 0, x^2 + y^2 + z^2 = 1, z \neq 0, \pm 1\}$$

es una subvariedad unidimensional de \mathbb{R}^3 . Representar gráficamente M.

Problema 5. Demostrar que $M = \{(x,y) \in \mathbb{R}^2 : x^2 = y^2\}$ no es una subvariedad unidimensional de \mathbb{R}^2 .

Problema 6. Representar gráficamente el conjunto

$$C = \{(\cos t, \sin t, t^2 (2\pi - t)^2) \in \mathbb{R}^3 : 0 \le t \le 2\pi\}$$

y probar que es una subvariedad de dimensión 1 en \mathbb{R}^3 . Hallar los espacios tangente y normal a C en el punto (1,0,0).

<u>Problema</u> 7. Considérense las subvariedades de dimensión 1, C_1 y C_2 en \mathbb{R}^3 determinadas, respectivamente, por

$$\begin{cases} x^2 + y^2 + z^2 = 1 \\ x + y + z = 0 \end{cases}$$
 y
$$\begin{cases} x^2 + y^2 = z^2 \\ x + y + z = 1 \end{cases}$$

- a) Representar gráficamente ambas curvas.
- b) Probar que, efectivamente, son subvariedades de dimensión 1.
- c) Hallar la recta tangente a C_1 en el punto $(1/\sqrt{14}, 2/\sqrt{14}, -3/\sqrt{14})$. Hallar la ecuación del plano normal a C_2 en el punto $((3+\sqrt{5})/2, (3+\sqrt{5})/4, -(5+3\sqrt{5})/4)$.
- d) Calcular parametrizaciones locales de C_1 y de C_2 . Indicación: Utilizar coordenadas esféricas en C_1 y cilíndricas en C_2 .

Problema 8. a) Hallar el hiperplano tangente a la gráfica G de la función

$$f(x, y, z) = e^y \cos z + e^z \cos x + e^x \cos y$$

en el punto de G correspondiente a x = y = z = 0.

b) Estudiar si

$$M = \{(x, y, z) \in \mathbb{R}^3 : f(x, y, z) = 3\}$$

define, localmente en $\mathbf{p} = (0,0,0)$, una superficie regular en \mathbb{R}^3 . Hallar el plano tangente a M en \mathbf{p} . Explicar la relación que guarda éste con el calculado en el apartado anterior.

Problema 9. Sea una parametrización \mathbf{X} de una superficie $S \subset \mathbb{R}^3$ con $\mathbf{X}(0,0) = (x_0,y_0,z_0)$, y denotemos por $(a_{ij})_{i=1,2,3,j=1,2}$ la matriz de $D\mathbf{X}(0,0)$. Demostrar que la recta normal a S en (x_0,y_0,z_0) viene dada por

$$\frac{x - x_0}{\begin{vmatrix} a_{21} & a_{22} \\ a_{31} & a_{32} \end{vmatrix}} = \frac{y - y_0}{\begin{vmatrix} a_{31} & a_{11} \\ a_{32} & a_{12} \end{vmatrix}} = \frac{z - z_0}{\begin{vmatrix} a_{11} & a_{21} \\ a_{12} & a_{22} \end{vmatrix}}.$$

<u>Problema</u> 10. Sean $X \subset \mathbb{R}^n$ una subvariedad de dimensión k e $Y \subseteq X$ un subconjunto no vacío. Demuestra que son equivalentes:

- 1. Y también es una subvariedad de dimensión k de \mathbb{R}^n .
- 2. Y es un abierto relativo de X.

Problema 11. Fijamos dos enteros $0 \le k \le n$ y consideramos una familia $\{X_{\alpha}\}_{{\alpha} \in \mathcal{A}}$ en la que cada X_{α} es una subvariedad k-dimensional de \mathbb{R}^n .

- a) Demuestra que son equivalentes:
 - 1. El conjunto $X = \bigcup_{\alpha \in \mathcal{A}} X_{\alpha}$ es una subvariedad k-dimensional de \mathbb{R}^n .
 - 2. Cada X_{α} es un abierto relativo de X.
- b) Utiliza el resultado de a) para demostrar que la imagen $f(\mathbb{R})$ de la función $f(t) \equiv (\cos t, \sin t)$ es una 1-subvariedad de \mathbb{R}^2 , a pesar de que f no es inyectiva.

Indicación: un arco de circunferencia es la intersección de la circunferencia con un semiplano.

c) Consideramos la aplicación $g:A\to\mathbb{R}^2$ dada por

$$A = (-1,1) \sqcup (2,3) \subset \mathbb{R} \quad , \quad g(t) = \left\{ \begin{array}{ccc} (t,0) & \text{si} & t \in (-1,1) \\ \\ (0,t-2) & \text{si} & t \in (2,3) \end{array} \right.$$

Utiliza el resultado de a) para deducir que la imagen g(A) no es una subvariedad de \mathbb{R}^2 , a pesar de que g es inyectiva y regular.