λ=0.1

| F1<0.6 | F2<0.3 | Label |
|--------|--------|-------|
| 1      | 0      | 0     |
| 1      | 0      | 0     |
| 1      | 0      | 0     |
| 1      | 1      | 1     |
| 0      | 0      | 1     |
| 0      | 1      | 1     |



```
\lambda = 0.1 Initialization: Root problem p [1,1,1,1,1,1] Q = \{[1,1,1,1,1,1]\} G p.id=[1,1,1,1,1,1] p.ub=3/6 + \lambda p.lb = 2\lambda
```

| F1<0.6 | F2<0.3 | Label |
|--------|--------|-------|
| 1      | 0      | 0     |
| 1      | 0      | 0     |
| 1      | 0      | 0     |
| 1      | 1      | 1     |
| 0      | 0      | 1     |
| 0      | 1      | 1     |



```
\lambda=0.1
Initialization:
Root problem p [1,1,1,1,1,1]
Q = {[1,1,1,1,1,1]}
G  p.id=[1,1,1,1,1,1] \\ p.ub=3/6 + \lambda \\ p.lb = 2\lambda
```



| F1<0.6 | F2<0.3 | Label |
|--------|--------|-------|
| 1      | 0      | 0     |
| 1      | 0      | 0     |
| 1      | 0      | 0     |
| 1      | 1      | 1     |
| 0      | 0      | 1     |
| 0      | 1      | 1     |



```
\lambda=0.1
Initialization:
Root problem p [1,1,1,1,1,1]
Q = {[1,1,1,1,1,1]}
G p.id=[1,1,1,1,1,1]
p.ub=3/6 + \lambda
p.lb = 2\lambda
```



| F1<0.6 | F2<0.3 | Label |
|--------|--------|-------|
| 1      | 0      | 0     |
| 1      | 0      | 0     |
| 1      | 0      | 0     |
| 1      | 1      | 1     |
| 0      | 0      | 1     |
| 0      | 1      | 1     |



```
\lambda=0.1
Initialization:
Root problem p [1,1,1,1,1,1]
Q = {[1,1,1,1,1,1]}
G p.id=[1,1,1,1,1,1]
p.ub=3/6 + \lambda
p.lb = 2\lambda
```



| F1<0.6 | F2<0.3 | Label |
|--------|--------|-------|
| 1      | 0      | 0     |
| 1      | 0      | 0     |
| 1      | 0      | 0     |
| 1      | 1      | 1     |
| 0      | 0      | 1     |
| 0      | 1      | 1     |



Since the initialized lower bound is already larger than initialized upper bound,

```
\lambda=0.1
Initialization:
Root problem p [1,1,1,1,1,1]
Q = {[1,1,1,1,1,1]}
G p.id=[1,1,1,1,1,1]
p.ub=3/6 + \lambda
p.lb = 2\lambda
```



| F1<0.6 | F2<0.3 | Label |
|--------|--------|-------|
| 1      | 0      | 0     |
| 1      | 0      | 0     |
| 1      | 0      | 0     |
| 1      | 1      | 1     |
| 0      | 0      | 1     |
| 0      | 1      | 1     |



Since the initialized lower bound is already larger than initialized upper bound, we need to set the lower bound equal to the upper bound

```
\lambda=0.1
Initialization:
Root problem p [1,1,1,1,1,1]
Q = {[1,1,1,1,1,1]}
G p.id=[1,1,1,1,1,1]
p.ub=3/6 + \lambda
p.lb = 2\lambda
```



| F1<0.6 | F2<0.3 | Label |
|--------|--------|-------|
| 1      | 0      | 0     |
| 1      | 0      | 0     |
| 1      | 0      | 0     |
| 1      | 1      | 1     |
| 0      | 0      | 1     |
| 0      | 1      | 1     |



```
\lambda=0.1
Initialization:
Root problem p [1,1,1,1,1,1]
Q = {[1,1,1,1,1,1]}
G p.id=[1,1,1,1,1,1]
p.ub=3/6 + \lambda
p.lb = 2\lambda
```



| F1<0.6 | F2<0.3 | Label |
|--------|--------|-------|
| 1      | 0      | 0     |
| 1      | 0      | 0     |
| 1      | 0      | 0     |
| 1      | 1      | 1     |
| 0      | 0      | 1     |
| 0      | 1      | 1     |



```
\lambda=0.1
Initialization:
Root problem p [1,1,1,1,1,1]
Q = {[1,1,1,1,1,1]}
G p.id=[1,1,1,1,1,1]
p.ub=3/6 + \lambda
p.lb = 2\lambda
```



| F1<0.6 | F2<0.3 | Label |
|--------|--------|-------|
| 1      | 0      | 0     |
| 1      | 0      | 0     |
| 1      | 0      | 0     |
| 1      | 1      | 1     |
| 0      | 0      | 1     |
| 0      | 1      | 1     |



Update the bound of p p.ub  $\leftarrow$  1/6+2 $\lambda$ p.lb  $\leftarrow$  3 $\lambda$ 

```
\lambda = 0.1
Initialization:
Root problem p [1,1,1,1,1,1]
Q = \{[1,1,1,1,1,1]\}
G
           p.id=[1,1,1,1,1,1]
           p.ub=3/6 + \lambda
            p.lb = 2\lambda
```

1<sup>st</sup> iteration

Q={}



| F1<0.6 | F2<0.3 | Label |
|--------|--------|-------|
| 1      | 0      | 0     |
| 1      | 0      | 0     |
| 1      | 0      | 0     |
| 1      | 1      | 1     |
| 0      | 0      | 1     |
| 0      | 1      | 1     |





```
\lambda=0.1
Initialization:
Root problem p [1,1,1,1,1,1]
Q = {[1,1,1,1,1,1]}
G p.id=[1,1,1,1,1,1]
p.ub=3/6 + \lambda
p.lb = 2\lambda
```

1<sup>st</sup> iteration

Q={}

s=[1,1,1,1,1,1]

p.id=[1,1,1,1,1,1]

leaf

[1,1,1,1,0,0]

p.ub=1/6+λ

p.lb=2λ



| F1<0.6 | F2<0.3 | Label |
|--------|--------|-------|
| 1      | 0      | 0     |
| 1      | 0      | 0     |
| 1      | 0      | 0     |
| 1      | 1      | 1     |
| 0      | 0      | 1     |
| 0      | 1      | 1     |



Update Queue! Let's enqueue subproblems!









lb\_sum < ub\_sum
and lb\_sum <= p.ub?</pre>

Update Queue! Let's enqueue subproblems!

Conditions are satisfied. Enqueue this pair of subproblems.

 $Q = \{[1,1,1,1,0,0], [0,0,0,0,1,1]\}$ 











Update Queue! Let's enqueue subproblems!

Conditions are satisfied. Enqueue this pair of subproblems.

 $Q = \{[1,1,1,1,0,0], [0,0,0,0,1,1], [0,0,0,1,0,1], [1,1,1,0,1,0]\}$ 

```
\lambda=0.1
Initialization:
Root problem p [1,1,1,1,1,1]
Q = {[1,1,1,1,1,1]}
G p.id=[1,1,1,1,1,1]
p.ub=3/6 + \lambda
p.lb = 2\lambda
```



| F1<0.6 | F2<0.3 | Label |
|--------|--------|-------|
| 1      | 0      | 0     |
| 1      | 0      | 0     |
| 1      | 0      | 0     |
| 1      | 1      | 1     |
| 0      | 0      | 1     |
| 0      | 1      | 1     |



Update Queue! Let's enqueue subproblems!

 $Q = \{[1,1,1,1,0,0], [0,0,0,0,1,1], [0,0,0,1,0,1], [1,1,1,0,1,0]\}$ 

Jump back to check the while loop condition.

```
\begin{array}{l} \lambda {=}0.1 \\ Q = \{[1,1,1,1,0,0],\, [0,0,0,0,1,1],\, [0,0,0,1,0,1],\, \\ [1,1,1,0,1,0]\} \end{array}
```

```
2<sup>nd</sup> iteration

s=[1,1,1,1,0,0]

p.id=[1,1,1,1,0,0]

Q={[0,0,0,0,1,1],

[0,0,0,1,0,1],

[1,1,1,0,1,0]}
```

| F1<0.6 | F2<0.3 | Label |
|--------|--------|-------|
| 1      | 0      | 0     |
| 1      | 0      | 0     |
| 1      | 0      | 0     |
| 1      | 1      | 1     |
| 0      | 0      | 1     |
| 0      | 1      | 1     |



```
\begin{array}{l} \lambda {=}0.1 \\ Q = \{[1,1,1,1,0,0],\, [0,0,0,0,1,1],\, [0,0,0,1,0,1],\, \\ [1,1,1,0,1,0]\} \end{array}
```



| F1<0.6 | F2<0.3 | Label |
|--------|--------|-------|
| 1      | 0      | 0     |
| 1      | 0      | 0     |
| 1      | 0      | 0     |
| 1      | 1      | 1     |
| 0      | 0      | 1     |
| 0      | 1      | 1     |





[1,1,1,0,0,0]

p.ub=λ

p.lb=λ

[0,0,0,1,0,0]

p.ub=λ



| F1<0.6 | F2<0.3 | Label |
|--------|--------|-------|
| 1      | 0      | 0     |
| 1      | 0      | 0     |
| 1      | 0      | 0     |
| 1      | 1      | 1     |
| 0      | 0      | 1     |
| 0      | 1      | 1     |





| F1<0.6 | F2<0.3 | Label |
|--------|--------|-------|
| 1      | 0      | 0     |
| 1      | 0      | 0     |
| 1      | 0      | 0     |
| 1      | 1      | 1     |
| 0      | 0      | 1     |
| 0      | 1      | 1     |







ub\_sum=2λ lb\_sum=2λ

| 1 0<br>1 0<br>1 0<br>1 1<br>0 0<br>0 1 | F1<0.6 | F2< |
|----------------------------------------|--------|-----|
| 1 0<br>1 1<br>0 0                      | 1      | 0   |
| 1 1<br>0 0                             | 1      | 0   |
| 0 0                                    | 1      | 0   |
|                                        | 1      | 1   |
| 0 1                                    | 0      | 0   |
|                                        | 0      | 1   |
|                                        | ·      | -   |
|                                        |        |     |
|                                        |        |     |
|                                        |        |     |
|                                        |        |     |

Label

0

0

0

1

1

1



Update the bound of the parent problem

[1,1,1,0,1,0]

 $p.ub=1/6+\lambda$ 

 $p.lb=2\lambda$ 



p.lb=λ

ub sum= $2\lambda$ lb\_sum=2λ

p.lb=λ

p.lb← 2λ

| F1<0.6 | F2<0.3 | Label |
|--------|--------|-------|
| 1      | 0      | 0     |
| 1      | 0      | 0     |
| 1      | 0      | 0     |
| 1      | 1      | 1     |
| 0      | 0      | 1     |
| 0      | 1      | 1     |





lb\_sum=2λ

| F1<0.6 | F2<0.3 | Label |
|--------|--------|-------|
| 1      | 0      | 0     |
| 1      | 0      | 0     |
| 1      | 0      | 0     |
| 1      | 1      | 1     |
| 0      | 0      | 1     |
| 0      | 1      | 1     |



Since the problem is updated, we need to propagate this information to its parents



 $p.lb=\lambda$ 

ub\_sum=2λ lb\_sum=2λ

p.lb=λ



| F1<0.6 | F2<0.3 | Label |
|--------|--------|-------|
| 1      | 0      | 0     |
| 1      | 0      | 0     |
| 1      | 0      | 0     |
| 1      | 1      | 1     |
| 0      | 0      | 1     |
| 0      | 1      | 1     |



Update Queue! Let's enqueue its parents!

 $Q = \{[1,1,1,1,1,1], [0,0,0,0,1,1], [0,0,0,1,0,1], [1,1,1,0,1,0]\}$ 



[1,1,1,0,0,0]

p.ub=λ

 $p.lb=\lambda$ 

ub\_sum=2λ lb\_sum=2λ

leaf

[0,0,0,1,0,0]

p.ub=λ

p.lb=λ



Update the bound of the parent problem

p.ub← 2λ

p.lb← 2λ

| F1<0.6 | F2<0.3 | Label |
|--------|--------|-------|
| 1      | 0      | 0     |
| 1      | 0      | 0     |
| 1      | 0      | 0     |
| 1      | 1      | 1     |
| 0      | 0      | 1     |
| 0      | 1      | 1     |



Since the upper and lower of p is equal, this problem is solved. We jump back to the while loop.

```
\begin{array}{l} \lambda {=}0.1 \\ Q = \!\! \{[1,\!1,\!1,\!1,\!1,\!1],\, [0,\!0,\!0,\!0,\!1,\!1],\, [0,\!0,\!0,\!1,\!0,\!1],\\ [1,\!1,\!1,\!0,\!1,\!0]\} \end{array}
```

[1,1,1,0,0,0]

p.ub=λ

 $p.lb=\lambda$ 

[0,0,0,1,0,0]

p.ub=λ



| F1<0.6 | F2<0.3 | Label |
|--------|--------|-------|
| 1      | 0      | 0     |
| 1      | 0      | 0     |
| 1      | 0      | 0     |
| 1      | 1      | 1     |
| 0      | 0      | 1     |
| 0      | 1      | 1     |



```
\begin{array}{l} \lambda {=}0.1 \\ Q = \!\! \{[1,\!1,\!1,\!1,\!1,\!1],\, [0,\!0,\!0,\!0,\!1,\!1],\, [0,\!0,\!0,\!1,\!0,\!1],\\ [1,\!1,\!1,\!0,\!1,\!0]\} \end{array}
```

 $p.lb=\lambda$ 



| F1<0.6 | F2<0.3 | Label |
|--------|--------|-------|
| 1      | 0      | 0     |
| 1      | 0      | 0     |
| 1      | 0      | 0     |
| 1      | 1      | 1     |
| 0      | 0      | 1     |
| 0      | 1      | 1     |



```
\begin{array}{l} \lambda {=}0.1 \\ Q = \!\! \{[1,\!1,\!1,\!1,\!1,\!1],\, [0,\!0,\!0,\!0,\!1,\!1],\, [0,\!0,\!0,\!1,\!0,\!1],\\ [1,\!1,\!1,\!0,\!1,\!0]\} \end{array}
```

 $p.lb=\lambda$ 

p.lb=λ



| F1<0.6 | F2<0.3 | Label |
|--------|--------|-------|
| 1      | 0      | 0     |
| 1      | 0      | 0     |
| 1      | 0      | 0     |
| 1      | 1      | 1     |
| 0      | 0      | 1     |
| 0      | 1      | 1     |



Update the bound of p p.ub← 3λ p.lb← 3λ





| F1<0.6 | F2<0.3 | Label |
|--------|--------|-------|
| 1      | 0      | 0     |
| 1      | 0      | 0     |
| 1      | 0      | 0     |
| 1      | 1      | 1     |
| 0      | 0      | 1     |
| 0      | 1      | 1     |



Update the bound of p p.ub← 3λ p.lb← 3λ

```
\begin{array}{l} \lambda {=}0.1 \\ Q = \!\! \{[1,\!1,\!1,\!1,\!1,\!1],\, [0,\!0,\!0,\!0,\!1,\!1],\, [0,\!0,\!0,\!1,\!0,\!1],\\ [1,\!1,\!1,\!0,\!1,\!0]\} \end{array}
```

 $p.lb=\lambda$ 

p.lb=λ



| F1<0.6 | F2<0.3 | Label |
|--------|--------|-------|
| 1      | 0      | 0     |
| 1      | 0      | 0     |
| 1      | 0      | 0     |
| 1      | 1      | 1     |
| 0      | 0      | 1     |
| 0      | 1      | 1     |



Since the lower and upper bounds are equal, jump back to the while condition.



p.lb=λ



| F1<0.6 | F2<0.3 | Label |
|--------|--------|-------|
| 1      | 0      | 0     |
| 1      | 0      | 0     |
| 1      | 0      | 0     |
| 1      | 1      | 1     |
| 0      | 0      | 1     |
| 0      | 1      | 1     |



 $\lambda$ =0.1 Q {[0,0,0,1,0,1], [1,1,1,0,1,0]}

[1,1,1,0,0,0]

p.ub=λ

p.lb=λ

[0,0,0,1,0,0]

p.ub=λ



| F1<0.6 | F2<0.3 | Label |
|--------|--------|-------|
| 1      | 0      | 0     |
| 1      | 0      | 0     |
| 1      | 0      | 0     |
| 1      | 1      | 1     |
| 0      | 0      | 1     |
| 0      | 1      | 1     |



