Optimal Algorithm for the Contextual Bandit problem

```
Alekh Agarwal<sup>†</sup> Daniel Hsu<sup>‡</sup> Satyen Kale<sup>‡</sup> John Langford<sup>†</sup> Lihong Li<sup>†</sup> Rob Schapire<sup>†</sup>
```

†Microsoft Research, ‡Columbia University, ‡Google Research, *Princeton University 1. Introduction

Learning to interact: example #1

Loop:

- 1. Patient arrives with symptoms, medical history, genome . . .
- 2. Physician prescribes treatment.
- 3. Patient's health responds (e.g., improves, worsens).

Goal: prescribe treatments that yield good health outcomes.

Learning to interact: example #2

Loop:

- 1. User visits website with profile, browsing history . . .
- 2. Website operator chooses content/ads to display.
- 3. User reacts to content/ads (e.g., click, "like").

Goal: choose content/ads that yield desired user behavior.

Contextual bandit setting (i.i.d. version)

For t = 1, 2, ..., T:

- 0. Nature draws (x_t, \mathbf{r}_t) from dist. \mathcal{D} over $\mathcal{X} \times [0, 1]^{\mathcal{A}}$.
- 1. Observe context x_t .
- 2. Choose action $a_t \in \mathcal{A}$.
- 3. Collect reward $r_t(a_t)$.

Task: Design an algorithm for choosing a_t 's that yield high reward.

Contextual bandit setting (i.i.d. version)

For t = 1, 2, ..., T:

- 0. Nature draws (x_t, \mathbf{r}_t) from dist. \mathcal{D} over $\mathcal{X} \times [0, 1]^{\mathcal{A}}$.
- 1. Observe context x_t .
- 2. Choose action $a_t \in \mathcal{A}$.
- 3. Collect reward $r_t(a_t)$.

Task: Design an algorithm for choosing a_t 's that yield high reward.

Contextual setting: use features x_t to choose good actions a_t .

Contextual bandit setting (i.i.d. version)

For t = 1, 2, ..., T:

- 0. Nature draws (x_t, \mathbf{r}_t) from dist. \mathcal{D} over $\mathcal{X} \times [0, 1]^{\mathcal{A}}$.
- 1. Observe context x_t .
- 2. Choose action $a_t \in \mathcal{A}$.
- 3. Collect reward $r_t(a_t)$.

Task: Design an algorithm for choosing a_t 's that yield high reward.

Contextual setting: use features x_t to choose good actions a_t . Bandit setting: $r_t(a)$ for $a \neq a_t$ is not observed.

⇒ Exploration vs. exploitation dilemma

(cf. non-bandit setting: whole reward vector $\mathbf{r}_t \in [0,1]^{\mathcal{A}}$ observed.)

No single action is good in all situations: must exploit context.

No single action is good in all situations: must exploit context.

Policy class Π : set of functions ("policies") $\pi: \mathcal{X} \to \mathcal{A}$ (e.g., advice of experts, linear classifiers, neural networks).

No single action is good in all situations: must exploit context.

Policy class Π : set of functions ("policies") $\pi: \mathcal{X} \to \mathcal{A}$ (*e.g.*, advice of experts, linear classifiers, neural networks).

Regret (i.e., relative performance) to a policy class Π :

$$\max_{\pi \in \Pi} \sum_{t=1}^{T} r_t(\pi(x_t)) - \sum_{t=1}^{T} r_t(a_t)$$
total reward of best policy total reward of learner

 \dots a strong benchmark when Π contains a policy with high reward.

No single action is good in all situations: must exploit context.

Policy class Π : set of functions ("policies") $\pi: \mathcal{X} \to \mathcal{A}$ (e.g., advice of experts, linear classifiers, neural networks).

Regret (i.e., relative performance) to a policy class Π :

$$\max_{\pi \in \Pi} \sum_{t=1}^{T} r_t(\pi(x_t)) - \sum_{t=1}^{T} r_t(a_t)$$
total reward of best policy total reward of learner

 \dots a strong benchmark when Π contains a policy with high reward.

Regret is sublinear (in T) \implies (Avg.) per-round regret \rightarrow 0.

Challenge #1: computation

Feedback that learner observes: reward of chosen action $r_t(a_t)$ \longrightarrow only directly relevant to $\pi \in \Pi$ s.t. $\pi(x_t) = a_t$.

Challenge #1: computation

Feedback that learner observes: reward of chosen action $r_t(a_t)$ \longrightarrow only directly relevant to $\pi \in \Pi$ s.t. $\pi(x_t) = a_t$.

Separate explicit bookkeeping for each policy $\pi \in \Pi$ becomes **computationally intractable** when Π is large (or infinite!).

In many cases, we know how to exploit structure of Π to design efficient algorithms or heuristics!

In many cases, we know how to exploit structure of Π to design efficient algorithms or heuristics!

Given **fully labeled** data $(x_1, \rho_1), \dots, (x_t, \rho_t) \in \mathcal{X} \times [0, 1]^{\mathcal{A}}$, the AMO returns

$$\underset{\pi \in \Pi}{\operatorname{arg\,max}} \sum_{i=1}^{t} \rho_i(\pi(x_i)).$$

In many cases, we know how to exploit structure of Π to design efficient algorithms or heuristics!

Given **fully labeled** data $(x_1, \rho_1), \ldots, (x_t, \rho_t) \in \mathcal{X} \times [0, 1]^{\mathcal{A}}$, the AMO returns

$$\underset{\pi \in \Pi}{\operatorname{arg max}} \sum_{i=1}^{t} \rho_{i}(\pi(x_{i})).$$

AMO is an abstraction for efficient search through Π .

In many cases, we know how to exploit structure of Π to design efficient algorithms or heuristics!

Given **fully labeled** data $(x_1, \rho_1), \dots, (x_t, \rho_t) \in \mathcal{X} \times [0, 1]^{\mathcal{A}}$, the AMO returns

$$\underset{\pi \in \Pi}{\operatorname{arg\,max}} \sum_{i=1}^{t} \rho_i(\pi(x_i)).$$

AMO is an abstraction for efficient search through Π .

In practice: implement using standard heuristics—e.g., convex relaxations, backpropagation—for cost-sensitive multi-class learning.

In many cases, we know how to exploit structure of Π to design efficient algorithms or heuristics!

Given **fully labeled** data $(x_1, \rho_1), \dots, (x_t, \rho_t) \in \mathcal{X} \times [0, 1]^{\mathcal{A}}$, the AMO returns

$$\underset{\pi \in \Pi}{\operatorname{arg\,max}} \sum_{i=1}^{t} \rho_i(\pi(x_i)).$$

AMO is an abstraction for efficient search through Π .

In practice: implement using standard heuristics—e.g., convex relaxations, backpropagation—for cost-sensitive multi-class learning.

But requires **complete reward vectors** ρ_i ; not directly usable for contextual bandits.

Possible approach: AMO + simple random exploration

- 1: In first T_0 rounds, choose $a_t \in A$ u.a.r. to get unbiased estimates \hat{r}_t of r_t for all $t \in [T_0]$.
- 2: Get $\tilde{\pi} := AMO(\{(x_t, \hat{r}_t)\}_{t \in [T_0]}).$
- 3: Use $a_t := \tilde{\pi}(x_t)$ in round $t > \tilde{T}_0$.

Possible approach: AMO + simple random exploration

- 1: In first T_0 rounds, choose $a_t \in \mathcal{A}$ u.a.r. to get unbiased estimates \hat{r}_t of r_t for all $t \in [T_0]$.
- 2: Get $\tilde{\pi} := AMO(\{(x_t, \hat{r}_t)\}_{t \in [T_0]})$.
- 3: Use $a_t := \tilde{\pi}(x_t)$ in round $t > T_0$.

But
$$\mathbb{E}_{(x,r)}[r(\tilde{\pi}(x))] \approx \max_{\pi \in \Pi} \mathbb{E}_{(x,r)}[r(\pi(x))] - \Omega\left(\frac{1}{\sqrt{T_0}}\right)$$

(Dependencies on |A| and $|\Pi|$ hidden.)

Possible approach: AMO + simple random exploration

- 1: In first T_0 rounds, choose $a_t \in \mathcal{A}$ u.a.r. to get unbiased estimates \hat{r}_t of r_t for all $t \in [T_0]$.
- 2: Get $\tilde{\pi} := AMO(\{(x_t, \hat{r}_t)\}_{t \in [T_0]})$.
- 3: Use $a_t := \tilde{\pi}(x_t)$ in round $t > T_0$.

But
$$\mathbb{E}_{(x,r)}[r(\tilde{\pi}(x))] \approx \max_{\pi \in \Pi} \mathbb{E}_{(x,r)}[r(\pi(x))] - \Omega\left(\frac{1}{\sqrt{T_0}}\right)$$
 ... so regret with this approach (with best T_0) could be as large as

$$\Omega\bigg(T_0 + \frac{1}{\sqrt{T_0}}(T - T_0)\bigg)$$

(Dependencies on |A| and $|\Pi|$ hidden.)

Possible approach: AMO + simple random exploration

- 1: In first T_0 rounds, choose $a_t \in \mathcal{A}$ u.a.r. to get unbiased estimates \hat{r}_t of r_t for all $t \in [T_0]$.
- 2: Get $\tilde{\pi} := AMO(\{(x_t, \hat{r}_t)\}_{t \in [T_0]})$.
- 3: Use $a_t := \tilde{\pi}(x_t)$ in round $t > \tilde{T}_0$.

But
$$\mathbb{E}_{(x,\mathbf{r})}[r(\tilde{\pi}(x))] \approx \max_{\pi \in \Pi} \mathbb{E}_{(x,\mathbf{r})}[r(\pi(x))] - \Omega\left(\frac{1}{\sqrt{T_0}}\right)$$
 ... so regret with this approach (with best T_0) could be as large as

$$\Omega\left(T_0 + \frac{1}{\sqrt{T_0}}(T - T_0)\right) \sim T^{2/3} \gg T^{1/2}.$$

(Dependencies on |A| and $|\Pi|$ hidden.)

Let $K := |\mathcal{A}|$ and $N := |\Pi|$.

Our result [AHKLLS'14]: a new, fast and simple algorithm. Optimal regret bound $\tilde{O}(\sqrt{KT \log N})$.

 $\tilde{O}(\sqrt{TK})$ calls to AMO overall.

Let $K := |\mathcal{A}|$ and $N := |\Pi|$.

Our result [AHKLLS'14]: a new, fast and simple algorithm. Optimal regret bound $\tilde{O}(\sqrt{KT\log N})$. $\tilde{O}(\sqrt{TK})$ calls to AMO overall.

Previous work:

[ACBFS'02] Exp4 algorithm (exponential weights). Optimal regret bound $O(\sqrt{KT}\log N)$. Requires explicit enumeration of Π in every round.

```
Let K := |\mathcal{A}| and N := |\Pi|.
```

```
Our result [AHKLLS'14]: a new, fast and simple algorithm. Optimal regret bound \tilde{O}(\sqrt{KT\log N}). \tilde{O}(\sqrt{TK}) calls to AMO overall.
```

Previous work:

```
[ACBFS'02] Exp4 algorithm (exponential weights). Optimal regret bound O(\sqrt{KT\log N}). Requires explicit enumeration of \Pi in every round. 

[LZ'07] \epsilon-greedy variant (uniform exploration). Suboptimal regret bound \tilde{O}(T^{2/3}(K\log N)^{1/3}). One call to AMO overall.
```

```
Let K := |\mathcal{A}| and N := |\Pi|.
```

```
Our result [AHKLLS'14]: a new, fast and simple algorithm. Optimal regret bound \tilde{O}(\sqrt{KT\log N}). \tilde{O}(\sqrt{TK}) calls to AMO overall.
```

Previous work:

```
[ACBFS'02] Exp4 algorithm (exponential weights).

Optimal regret bound O(\sqrt{KT\log N}).

Requires explicit enumeration of \Pi in every round.

[LZ'07] \epsilon-greedy variant (uniform exploration).

Suboptimal regret bound \tilde{O}(T^{2/3}(K\log N)^{1/3}).

One call to AMO overall.

[DHKKLRZ'11] "efficient" algorithm (careful exploration).

Optimal regret bound \tilde{O}(\sqrt{KT\log N}).
```

 $O(T^6K^4)$ calls to AMO overall.

Rest of the talk

Components of the new algorithm: Importance-weighted LOw-Variance Epoch-Timed Oracleized CONtextual BANDITS

- 1. "Classical" tricks: randomization, inverse probability weighting.
- 2. Efficient algorithm for balancing exploration/exploitation.
- 3. Additional tricks: warm-start and epoch structure.

Note: we assume (x_t, \mathbf{r}_t) i.i.d. from \mathcal{D} (whereas Exp4 also works in adversarial setting).

Outline

- 1. Introduction
- 2. Classical tricks
- 3. Construction of good policy distributions
- 4. Additional tricks: warm-start and epoch structure

2. Classical tricks

What would've happened if I had done X?

For t = 1, 2, ..., T:

- 0. Nature draws (x_t, \mathbf{r}_t) from dist. \mathcal{D} over $\mathcal{X} \times [0, 1]^{\mathcal{A}}$.
- 1. Observe context x_t .
- 2. Choose action $a_t \in A$.
- 3. Collect reward $r_t(a_t)$.

What would've happened if I had done X?

For t = 1, 2, ..., T:

- 0. Nature draws (x_t, r_t) from dist. \mathcal{D} over $\mathcal{X} \times [0, 1]^{\mathcal{A}}$.
- 1. Observe context x_t .
- 2. Choose action $a_t \in A$.
- 3. Collect reward $r_t(a_t)$.

Q: How do I learn about $r_t(a)$ for actions a I don't actually take?

What would've happened if I had done X?

For t = 1, 2, ..., T:

- 0. Nature draws (x_t, \mathbf{r}_t) from dist. \mathcal{D} over $\mathcal{X} \times [0, 1]^{\mathcal{A}}$.
- 1. Observe context x_t .
- 2. Choose action $a_t \in A$.
- 3. Collect reward $r_t(a_t)$.

Q: How do I learn about $r_t(a)$ for actions a I don't actually take?

A: Randomize. Draw $a_t \sim {m p}_t$ for some pre-specified prob. dist. ${m p}_t$.

Importance-weighted estimate of reward from round t:

$$\forall a \in \mathcal{A}$$
. $\hat{r}_t(a) := \frac{r_t(a_t) \cdot \mathbb{1}\{a = a_t\}}{p_t(a_t)}$

Importance-weighted estimate of reward from round t:

$$\forall a \in \mathcal{A}$$
. $\hat{r}_t(a) := \frac{r_t(a_t) \cdot \mathbbm{1}\{a = a_t\}}{p_t(a_t)} = \left\{ egin{array}{l} rac{r_t(a_t)}{p_t(a_t)} & \text{if } a = a_t \\ 0 & \text{otherwise} \end{array}
ight.$

Importance-weighted estimate of reward from round t:

$$\forall a \in \mathcal{A}$$
. $\hat{r}_t(a) := \frac{r_t(a_t) \cdot \mathbb{1}\{a = a_t\}}{p_t(a_t)} = \begin{cases} \frac{r_t(a_t)}{p_t(a_t)} & \text{if } a = a_t \\ 0 & \text{otherwise} \end{cases}$

Unbiasedness:

$$\mathbb{E}_{a_t \sim \boldsymbol{p}_t} \left[\hat{r}_t(a) \right] \; = \; \sum_{a' \in \mathcal{A}} p_t(a') \cdot \frac{r_t(a') \cdot \mathbb{1} \left\{ a = a' \right\}}{p_t(a')} \; = \; r_t(a).$$

Importance-weighted estimate of reward from round t:

$$\forall a \in \mathcal{A}$$
. $\hat{r}_t(a) := \frac{r_t(a_t) \cdot \mathbb{1}\{a = a_t\}}{p_t(a_t)} = \begin{cases} \frac{r_t(a_t)}{p_t(a_t)} & \text{if } a = a_t \\ 0 & \text{otherwise} \end{cases}$

Unbiasedness:

$$\mathbb{E}_{a_t \sim \boldsymbol{p}_t} \left[\hat{r}_t(a) \right] = \sum_{a' \in \mathcal{A}} p_t(a') \cdot \frac{r_t(a') \cdot \mathbb{I} \left\{ a = a' \right\}}{p_t(a')} = r_t(a).$$

Range and variance: upper-bounded by $1/p_t(a)$.

Inverse probability weighting

Importance-weighted estimate of reward from round t:

$$\forall a \in \mathcal{A}$$
. $\hat{r}_t(a) := \frac{r_t(a_t) \cdot \mathbb{1}\{a = a_t\}}{p_t(a_t)} = \left\{ egin{array}{l} rac{r_t(a_t)}{p_t(a_t)} & \text{if } a = a_t \\ 0 & \text{otherwise} \end{array}
ight.$

Unbiasedness:

$$\mathbb{E}_{a_t \sim \boldsymbol{p}_t} \left[\hat{r}_t(a) \right] = \sum_{a' \in \mathcal{A}} p_t(a') \cdot \frac{r_t(a') \cdot \mathbb{1} \left\{ a = a' \right\}}{p_t(a')} = r_t(a).$$

Range and variance: upper-bounded by $1/p_t(a)$.

Expected reward of policy: $Rew(\pi) = \mathbb{E}_{(x,r)}[r(\pi(x))]$

Unbiased estimator of total reward: $\widehat{\text{Rew}}_t(\pi) := \sum_{i=1}^t \hat{r}_i(\pi(x_i))$.

Inverse probability weighting

Importance-weighted estimate of reward from round t:

$$\forall a \in \mathcal{A}$$
. $\hat{r}_t(a) := \frac{r_t(a_t) \cdot \mathbb{1}\{a = a_t\}}{p_t(a_t)} = \begin{cases} \frac{r_t(a_t)}{p_t(a_t)} & \text{if } a = a_t \\ 0 & \text{otherwise} \end{cases}$

Unbiasedness:

$$\mathbb{E}_{a_t \sim \boldsymbol{p}_t} \left[\hat{r}_t(a) \right] = \sum_{a' \in \mathcal{A}} p_t(a') \cdot \frac{r_t(a') \cdot \mathbb{1} \left\{ a = a' \right\}}{p_t(a')} = r_t(a).$$

Range and variance: upper-bounded by $1/p_t(a)$.

Expected reward of policy: $Rew(\pi) = \mathbb{E}_{(x,r)}[r(\pi(x))]$

Unbiased estimator of total reward: $\widehat{\text{Rew}}_t(\pi) := \sum_{i=1}^t \hat{r}_i(\pi(x_i))$.

How should we choose the p_t ?

Hedging over policies

Get action distributions via policy distributions.

$$\underbrace{(\textbf{\textit{W}},\textbf{\textit{x}})}_{\text{(policy distribution, context)}} \mapsto \underbrace{\textbf{\textit{p}}}_{\text{action distribution}}$$

Hedging over policies

Get action distributions via policy distributions.

$$\underbrace{(\textbf{\textit{W}},x)}_{\text{(policy distribution, context)}} \mapsto \underbrace{\textbf{\textit{p}}}_{\text{action distribution}}$$

Policy distribution: $W = (W(\pi) : \pi \in \Pi)$ probability dist. over policies π in the policy class Π

Hedging over policies

Get action distributions via policy distributions.

$$\underbrace{(\textbf{\textit{W}},x)}_{\text{(policy distribution, context)}} \mapsto \underbrace{\textbf{\textit{p}}}_{\text{action distribution}}$$

- 1: Pick initial distribution W_1 over policies Π .
- 2: **for round** t = 1, 2, ... **do**
- 3: Nature draws (x_t, \mathbf{r}_t) from dist. \mathcal{D} over $\mathcal{X} \times [0, 1]^{\mathcal{A}}$.
- 4: Observe context x_t .
- 5: Compute distribution \boldsymbol{p}_t over \mathcal{A} (using \boldsymbol{W}_t and x_t).
- 6: Pick action $a_t \sim \boldsymbol{p}_t$.
- 7: Collect reward $r_t(a_t)$.
- 8: Compute new distribution W_{t+1} over policies Π .
- 9: end for

Projections of policy distributions

Given policy distribution \boldsymbol{W} and context x,

$$\forall a \in \mathcal{A}$$
. $W(a|x) := \sum_{\pi \in \Pi} W(\pi) \cdot \mathbb{1}\{\pi(x) = a\}$

(so $\mathbf{W} \mapsto \mathbf{W}(\cdot|x)$ is a linear map).

Projections of policy distributions

Given policy distribution W and context x,

$$\forall a \in \mathcal{A}$$
. $W(a|x) := \sum_{\pi \in \Pi} W(\pi) \cdot \mathbb{1}\{\pi(x) = a\}$

(so $\mathbf{W} \mapsto \mathbf{W}(\cdot|x)$ is a linear map).

We actually use

$$\boldsymbol{p}_t := \boldsymbol{W}_t^{\mu_t}(\,\cdot\,|x_t) := (1 - K\mu_t)\boldsymbol{W}_t(\,\cdot\,|x_t) + \mu_t$$

so every action has probability at least μ_t (to be determined).

Basic algorithm structure

- 1: Pick initial distribution W_1 over policies Π .
- 2: **for round** t = 1, 2, ... **do**
- 3: Nature draws (x_t, \mathbf{r}_t) from dist. \mathcal{D} over $\mathcal{X} \times [0, 1]^{\mathcal{A}}$.
- 4: Observe context x_t .
- 5: Compute action distribution $\boldsymbol{p}_t := \boldsymbol{W}_t^{\mu_t}(\cdot|x_t)$.
- 6: Pick action $a_t \sim \boldsymbol{p}_t$.
- 7: Collect reward $r_t(a_t)$.
- 8: Compute new distribution W_{t+1} over policies Π .
- 9: end for

Q: How do we choose W_t for good exploration/exploitation?

Basic algorithm structure

- 1: Pick initial distribution W_1 over policies Π .
- 2: **for round** t = 1, 2, ... **do**
- 3: Nature draws (x_t, \mathbf{r}_t) from dist. \mathcal{D} over $\mathcal{X} \times [0, 1]^{\mathcal{A}}$.
- 4: Observe context x_t .
- 5: Compute action distribution $\boldsymbol{p}_t := \boldsymbol{W}_t^{\mu_t}(\cdot|x_t)$.
- 6: Pick action $a_t \sim \boldsymbol{p}_t$.
- 7: Collect reward $r_t(a_t)$.
- 8: Compute new distribution W_{t+1} over policies Π .
- 9: end for

Q: How do we choose W_t for good exploration/exploitation?

Caveat: W_t must be efficiently computable + representable!

3. Construction of good policy distributions

Our approach

▶ Define convex feasibility problem (over distributions \mathbf{W} on Π) such that solutions yield optimal regret bounds.

Our approach

- Define convex feasibility problem (over distributions W on Π) such that solutions yield optimal regret bounds.
- lacktriangle Design algorithm that finds a *sparse* solution $oldsymbol{W}$.

Our approach

- Define convex feasibility problem (over distributions \mathbf{W} on Π) such that solutions yield optimal regret bounds.
- Design algorithm that finds a sparse solution W.

Algorithm only accesses Π via calls to AMO $\Longrightarrow \mathsf{nnz}(\boldsymbol{W}) = \#$ calls to AMO

An optimal but inefficient algorithm

Policy_Elimination Let $\Pi_1 = \Pi$.

An optimal but inefficient algorithm

Policy Elimination

Let
$$\Pi_1 = \Pi$$
. For each $t = 1, 2, ...$:

1. Choose distribution W_t over Π_t such that

$$\forall \pi \in \Pi_t : \quad \mathbb{E}\left[\frac{1}{W_t(\pi(x)|x)}\right] \leq K$$

An optimal but inefficient algorithm

Policy_Elimination

Let $\Pi_1 = \Pi$. For each t = 1, 2, ...:

1. Choose distribution W_t over Π_t such that

$$\forall \pi \in \Pi_t : \quad \mathbb{E}_{x} \left[\frac{1}{W_t(\pi(x)|x)} \right] \leq K$$

2. Let $\overline{\text{Rew}}_t(\pi) = \frac{1}{t} \widehat{\text{Rew}}_t(\pi)$, i.e. the average of all the estimators for $\text{Rew}(\pi)$ so far. Let

$$\Pi_{t+1} = \left\{ \pi \in \Pi_t : \overline{\mathsf{Rew}}_t(\pi) \geq \max_{\pi' \in \Pi_t} \overline{\mathsf{Rew}}_t(\pi') - \Theta\left(\frac{1}{\sqrt{t}}\right) \right\}$$

Choose distribution W_t over Π_t such that

$$\forall \pi \in \Pi_t : \underset{x}{\mathbb{E}} \left[\frac{1}{W_t(\pi(x)|x)} \right] \leq K$$

Choose distribution W_t over Π_t such that

$$\forall \pi \in \Pi_t : \underset{x}{\mathbb{E}} \left[\frac{1}{W_t(\pi(x)|x)} \right] \leq K$$

▶ Ensures that $\forall \pi \in \Pi_t$:

$$\operatorname{Var}_{x}[\hat{r}_{t}(\pi(x_{t}))] \leq O(1).$$

Choose distribution W_t over Π_t such that

$$\forall \pi \in \Pi_t : \underset{x}{\mathbb{E}} \left[\frac{1}{W_t(\pi(x)|x)} \right] \leq K$$

▶ Ensures that $\forall \pi \in \Pi_t$:

$$\operatorname{Var}_{x}[\hat{r}_{t}(\pi(x_{t}))] \leq O(1).$$

▶ Hence, averaging over t iterations, we have $\forall \pi \in \Pi_t$:

$$\operatorname{Var}[\overline{\operatorname{Rew}}_t(\pi)] \leq O(\frac{1}{t}).$$

Choose distribution W_t over Π_t such that

$$\forall \pi \in \Pi_t : \underset{\times}{\mathbb{E}} \left[\frac{1}{W_t(\pi(x)|x)} \right] \leq K$$

▶ Ensures that $\forall \pi \in \Pi_t$:

$$\operatorname{Var}[\hat{r}_t(\pi(x_t))] \leq O(1).$$

▶ Hence, averaging over t iterations, we have $\forall \pi \in \Pi_t$:

$$\operatorname{Var}[\overline{\operatorname{Rew}}_t(\pi)] \leq O(\frac{1}{t}).$$

▶ Martingale concentration bounds imply that w.h.p. $\forall \pi \in \Pi_t$:

$$|\overline{\mathsf{Rew}}_t(\pi) - \mathsf{Rew}(\pi)| \le O\left(\frac{1}{\sqrt{t}}\right).$$

$$\Pi_{t+1} = \left\{ \pi \in \Pi_t : \overline{\mathsf{Rew}}_t(\pi) \ge \max_{\pi' \in \Pi_t} \overline{\mathsf{Rew}}_t(\pi') - \Theta\left(\frac{1}{\sqrt{t}}\right) \right\}$$

$$\Pi_{t+1} = \left\{ \pi \in \Pi_t : \overline{\mathsf{Rew}}_t(\pi) \ge \max_{\pi' \in \Pi_t} \overline{\mathsf{Rew}}_t(\pi') - \Theta\left(\frac{1}{\sqrt{t}}\right) \right\}$$

▶ W.h.p. $\forall \pi \in \Pi_t$:

$$|\overline{\mathsf{Rew}}_t(\pi) - \mathsf{Rew}(\pi)| \le O\left(\frac{1}{\sqrt{t}}\right).$$

$$\Pi_{t+1} = \left\{ \pi \in \Pi_t : \overline{\mathsf{Rew}}_t(\pi) \ge \max_{\pi' \in \Pi_t} \overline{\mathsf{Rew}}_t(\pi') - \Theta\left(\frac{1}{\sqrt{t}}\right) \right\}$$

▶ W.h.p. $\forall \pi \in \Pi_t$:

$$|\overline{\mathsf{Rew}}_t(\pi) - \mathsf{Rew}(\pi)| \le O\left(\frac{1}{\sqrt{t}}\right).$$

▶ W.h.p. $\forall \pi \in \Pi_{t+1}$:

$$|\operatorname{\mathsf{Rew}}(\pi^\star) - \operatorname{\mathsf{Rew}}(\pi)| \leq O\left(\frac{1}{\sqrt{t}}\right).$$

$$\Pi_{t+1} = \left\{ \pi \in \Pi_t : \overline{\mathsf{Rew}}_t(\pi) \ge \max_{\pi' \in \Pi_t} \overline{\mathsf{Rew}}_t(\pi') - \Theta\left(\frac{1}{\sqrt{t}}\right) \right\}$$

▶ W.h.p. $\forall \pi \in \Pi_t$:

$$|\overline{\mathsf{Rew}}_t(\pi) - \mathsf{Rew}(\pi)| \le O\left(\frac{1}{\sqrt{t}}\right).$$

▶ W.h.p. $\forall \pi \in \Pi_{t+1}$:

$$|\operatorname{\mathsf{Rew}}(\pi^\star) - \operatorname{\mathsf{Rew}}(\pi)| \le O\left(\frac{1}{\sqrt{t}}\right).$$

▶ Thus, expected regret in time t+1 is $O(\frac{1}{\sqrt{t}})$.

$$\Pi_{t+1} = \left\{ \pi \in \Pi_t : \overline{\mathsf{Rew}}_t(\pi) \ge \max_{\pi' \in \Pi_t} \overline{\mathsf{Rew}}_t(\pi') - \Theta\left(\frac{1}{\sqrt{t}}\right) \right\}$$

▶ W.h.p. $\forall \pi \in \Pi_t$:

$$|\overline{\mathsf{Rew}}_t(\pi) - \mathsf{Rew}(\pi)| \le O\left(\frac{1}{\sqrt{t}}\right).$$

▶ W.h.p. $\forall \pi \in \Pi_{t+1}$:

$$|\operatorname{\mathsf{Rew}}(\pi^\star) - \operatorname{\mathsf{Rew}}(\pi)| \le O\left(\frac{1}{\sqrt{t}}\right).$$

- ▶ Thus, expected regret in time t+1 is $O(\frac{1}{\sqrt{t}})$.
- ▶ Thus, total regret is $\sum_{t=1}^{T} O(\frac{1}{\sqrt{t}}) = O(\sqrt{T})$.

Key step: Choose W s.t. $\forall \pi \in \Pi_t$, we have $\mathbb{E}_x \left[\frac{1}{W(\pi(x)|x)} \right] \leq K$.

Key step: Choose W s.t. $\forall \pi \in \Pi_t$, we have $\mathbb{E}_x \left[\frac{1}{W(\pi(x)|x)} \right] \leq K$.

Why should such a distribution exist?

Key step: Choose W s.t. $\forall \pi \in \Pi_t$, we have $\mathbb{E}_x \left[\frac{1}{W(\pi(x)|x)} \right] \leq K$.

Why should such a distribution exist?

Answer: Minimax magic.

Key step: Choose W s.t. $\forall \pi \in \Pi_t$, we have $\mathbb{E}_x \left[\frac{1}{W(\pi(x)|x)} \right] \leq K$.

Why should such a distribution exist?

Answer: Minimax magic.

$$\min_{W} \max_{\pi} \underset{x}{\mathbb{E}} \left[\frac{1}{W(\pi(x)|x)} \right] = \min_{W} \max_{U} \underset{x,\pi \sim U}{\mathbb{E}} \left[\frac{1}{W(\pi(x)|x)} \right]$$

Key step: Choose W s.t. $\forall \pi \in \Pi_t$, we have $\mathbb{E}_x \left[\frac{1}{W(\pi(x)|x)} \right] \leq K$.

Why should such a distribution exist?

Answer: Minimax magic.

$$\min_{W} \max_{\pi} \mathbb{E} \left[\frac{1}{W(\pi(x)|x)} \right] = \min_{W} \max_{U} \mathbb{E} \left[\frac{1}{W(\pi(x)|x)} \right]$$

$$= \max_{U} \min_{W} \mathbb{E} \left[\frac{1}{W(\pi(x)|x)} \right]$$

24

Key step: Choose W s.t. $\forall \pi \in \Pi_t$, we have $\mathbb{E}_x \left[\frac{1}{W(\pi(x)|x)} \right] \leq K$.

Why should such a distribution exist?

Answer: Minimax magic.

$$\min_{W} \max_{\pi} \mathbb{E} \left[\frac{1}{W(\pi(x)|x)} \right] = \min_{W} \max_{U} \mathbb{E} \left[\frac{1}{W(\pi(x)|x)} \right]$$

$$= \max_{U} \min_{W} \mathbb{E} \left[\frac{1}{W(\pi(x)|x)} \right]$$

$$\leq \max_{U} \mathbb{E} \left[\frac{1}{U(\pi(x)|x)} \right]$$

24

Key step: Choose W s.t. $\forall \pi \in \Pi_t$, we have $\mathbb{E}_x \left[\frac{1}{W(\pi(x)|x)} \right] \leq K$.

Why should such a distribution exist?

Answer: Minimax magic.

$$\begin{aligned} \min_{W} \max_{\pi} \mathbb{E} \left[\frac{1}{W(\pi(x)|x)} \right] &= \min_{W} \max_{U} \mathbb{E} \left[\frac{1}{W(\pi(x)|x)} \right] \\ &= \max_{U} \min_{W} \mathbb{E} \left[\frac{1}{W(\pi(x)|x)} \right] \\ &\leq \max_{U} \mathbb{E} \left[\frac{1}{U(\pi(x)|x)} \right] \\ &= \max_{U} \mathbb{E} \left[\sum_{a \in [K]} \frac{U(a|x)}{U(a|x)} \right] \leq K. \end{aligned}$$

Distribution Selection Step

Choose
$$W$$
 s.t. $\forall \pi \in \Pi_t$, we have $\mathbb{E}_x \left[\frac{1}{W(\pi(x)|x)} \right] \leq K$.

Distribution Selection Step

Choose
$$W$$
 s.t. $\forall \pi \in \Pi_t$, we have $\mathbb{E}_x \left[\frac{1}{W(\pi(x)|x)} \right] \leq K$.

▶ Computing P is a convex optimization problem and takes poly(N) time.

Distribution Selection Step

Choose W s.t. $\forall \pi \in \Pi_t$, we have $\mathbb{E}_x \left[\frac{1}{W(\pi(x)|x)} \right] \leq K$.

- Computing P is a convex optimization problem and takes poly(N) time.
- ► Computing *P* requires knowledge of actual data distribution.

Distribution Selection Step

Choose W s.t. $\forall \pi \in \Pi_t$, we have $\mathbb{E}_x \left[\frac{1}{W(\pi(x)|x)} \right] \leq K$.

- Computing P is a convex optimization problem and takes poly(N) time.
- ► Computing *P* requires knowledge of actual data distribution.

Policy Elimination Step

$$\Pi_{t+1} = \left\{ \pi \in \Pi_t : \overline{\mathsf{Rew}}_t(\pi) \geq \max_{\pi' \in \Pi_t} \overline{\mathsf{Rew}}_t(\pi') - \Theta\left(\frac{1}{\sqrt{t}}\right) \right\}$$

25

Problems with the algorithm

Distribution Selection Step

Choose W s.t. $\forall \pi \in \Pi_t$, we have $\mathbb{E}_x \left[\frac{1}{W(\pi(x)|x)} \right] \leq K$.

- Computing P is a convex optimization problem and takes poly(N) time.
- ► Computing *P* requires knowledge of actual data distribution.

Policy Elimination Step

$$\Pi_{t+1} = \left\{ \pi \in \Pi_t : \overline{\mathsf{Rew}}_t(\pi) \geq \max_{\pi' \in \Pi_t} \overline{\mathsf{Rew}}_t(\pi') - \Theta\left(\frac{1}{\sqrt{t}}\right) \right\}$$

▶ Policy Elimination Step takes $\Omega(N)$ time.

Low Regret and Low Variance constraints on W:

$$\sum_{\pi \in \Pi} W(\pi) \cdot \widehat{\mathsf{Reg}}_t(\pi) \leq \sqrt{Kt \log N}, \tag{LR}$$

$$\widehat{\mathbb{E}}_{x \in H_t} \left[\frac{1}{W^{\mu_t}(\pi(x)|x)} \right] \leq K \left(1 + \frac{\widehat{\mathsf{Reg}}_t(\pi)}{\sqrt{Kt \log N}} \right) \ \, \forall \pi \in \Pi \ \, (\mathsf{LV})$$

$$\widehat{\mathsf{Reg}}_t(\pi) := \mathsf{max}_{\pi' \in \Pi} \, \widehat{\mathsf{Rew}}_t(\pi') - \widehat{\mathsf{Rew}}_t(\pi), \quad \mu_t := \sqrt{\tfrac{\log N}{Kt}}, \quad H_t := (x_1, \dots, x_t)$$

Low Regret and Low Variance constraints on W:

$$\sum_{\pi \in \Pi} W(\pi) \cdot \widehat{\mathsf{Reg}}_t(\pi) \leq \sqrt{\mathsf{K}t \log \mathsf{N}}, \tag{LR}$$

$$\widehat{\mathbb{E}}_{x \in \mathsf{H}_t} \left[\frac{1}{W^{\mu_t}(\pi(x)|x)} \right] \leq \mathsf{K} \left(1 + \frac{\widehat{\mathsf{Reg}}_t(\pi)}{\sqrt{\mathsf{K}t \log \mathsf{N}}} \right) \ \forall \pi \in \Pi \ \ (\mathsf{LV})$$

$$\widehat{\mathsf{Reg}}_t(\pi) := \mathsf{max}_{\pi' \in \Pi} \, \widehat{\mathsf{Rew}}_t(\pi') - \widehat{\mathsf{Rew}}_t(\pi), \quad \mu_t := \sqrt{\tfrac{\log N}{Kt}}, \quad H_t := (x_1, \dots, x_t)$$

Intuition: Allow higher variance for policies π with larger regret, as they should have low weight anyway.

Low Regret and Low Variance constraints on W:

$$\sum_{\pi \in \Pi} W(\pi) \cdot \widehat{\mathsf{Reg}}_t(\pi) \leq Kt \cdot \mu_t, \tag{LR}$$

$$\widehat{\mathbb{E}}_{x \in H_t} \left[\frac{1}{W^{\mu_t}(\pi(x)|x)} \right] \leq K \left(1 + \frac{\widehat{\mathsf{Reg}}_t(\pi)}{Kt \cdot \mu_t} \right) \ \forall \pi \in \Pi \tag{LV}$$

$$\widehat{\mathsf{Reg}}_t(\pi) := \mathsf{max}_{\pi' \in \Pi} \, \widehat{\mathsf{Rew}}_t(\pi') - \widehat{\mathsf{Rew}}_t(\pi), \quad \mu_t := \sqrt{\tfrac{\log N}{Kt}}, \quad H_t := (x_1, \dots, x_t)$$

Intuition: Allow higher variance for policies π with larger regret, as they should have low weight anyway.

Low Regret and Low Variance constraints on W:

$$\sum_{\pi \in \Pi} W(\pi) \cdot \widehat{\mathsf{Reg}}_t(\pi) \leq Kt \cdot \mu_t, \tag{LR}$$

$$\widehat{\mathbb{E}}_{x \in H_t} \left[\frac{1}{W^{\mu_t}(\pi(x)|x)} \right] \leq K \left(1 + \frac{\widehat{\mathsf{Reg}}_t(\pi)}{Kt \cdot \mu_t} \right) \ \forall \pi \in \Pi \tag{LV}$$

$$\begin{split} \widehat{\mathsf{Reg}}_t(\pi) &:= \mathsf{max}_{\pi' \in \Pi} \, \widehat{\mathsf{Rew}}_t(\pi') - \widehat{\mathsf{Rew}}_t(\pi), \quad \mu_t := \sqrt{\frac{\log N}{Kt}}, \quad H_t := (x_1, \dots, x_t) \\ (\mathsf{LV}) & \implies \quad \mathsf{Reg}(\pi) \ \leq \ O\Big(\widehat{\mathsf{Reg}}_t(\pi) + Kt \cdot \mu_t\Big) \quad \forall \pi \in \Pi; \\ (\mathsf{LR}, \mathsf{LV}) & \implies \quad \sum_{\pi \in \Pi} W_t(\pi) \cdot \mathsf{Reg}(\pi) \ \leq \ O\big(Kt \cdot \mu_t\big). \end{split}$$

Low Regret and Low Variance constraints on W:

$$\sum_{\pi \in \Pi} W(\pi) \cdot \widehat{\mathsf{Reg}}_t(\pi) \leq \mathsf{K}t \cdot \mu_t, \tag{LR}$$

$$\widehat{\mathbb{E}}_{x \in H_t} \left[\frac{1}{W^{\mu_t}(\pi(x)|x)} \right] \le K \left(1 + \frac{\widehat{\mathsf{Reg}}_t(\pi)}{Kt \cdot \mu_t} \right) \ \, \forall \pi \in \mathsf{\Pi} \quad \, (\mathsf{LV})$$

$$\widehat{\mathsf{Reg}}_t(\pi) := \mathsf{max}_{\pi' \in \Pi} \, \widehat{\mathsf{Rew}}_t(\pi') - \widehat{\mathsf{Rew}}_t(\pi), \quad \mu_t := \sqrt{\tfrac{\log N}{Kt}}, \quad H_t := (x_1, \dots, x_t)$$

Theorem: If we pick W_t satisfying (LR,LV) in every round t, then regret over all T rounds is $O(\sqrt{KT \log N})$.

Low Regret and Low Variance constraints on W:

$$\sum_{\pi \in \Pi} W(\pi) \cdot \widehat{\mathsf{Reg}}_t(\pi) \leq \mathsf{K}t \cdot \mu_t, \tag{LR}$$

$$\widehat{\mathbb{E}}_{x \in H_t} \left[\frac{1}{W^{\mu_t}(\pi(x)|x)} \right] \le K \left(1 + \frac{\widehat{\mathsf{Reg}}_t(\pi)}{Kt \cdot \mu_t} \right) \ \, \forall \pi \in \mathsf{\Pi} \quad \, (\mathsf{LV})$$

$$\widehat{\mathsf{Reg}}_t(\pi) := \mathsf{max}_{\pi' \in \Pi} \, \widehat{\mathsf{Rew}}_t(\pi') - \widehat{\mathsf{Rew}}_t(\pi), \quad \mu_t := \sqrt{\tfrac{\log N}{Kt}}, \quad H_t := (x_1, \dots, x_t)$$

Theorem: If we pick W_t satisfying (LR,LV) in every round t, then regret over all T rounds is $O\left(\sqrt{KT \log N}\right)$.

Critical question: Is it even feasible to satisfy (LR,LV)?

$$\sum_{\pi \in \Pi} W(\pi) \cdot \widehat{\mathsf{Reg}}_t(\pi) \leq \sqrt{Kt \log N},$$

$$\widehat{\mathbb{E}}_{x \in H_t} \left[\frac{1}{W(\pi(x)|x)} \right] \leq K \left(1 + \frac{\widehat{\mathsf{Reg}}_t(\pi)}{\sqrt{Kt \log N}} \right) \ \forall \pi \in \Pi$$

$$egin{align} \sum_{\pi \in \Pi} b(\pi) W(\pi) - 1 & \leq 0, \ & rac{1}{K} \widehat{\mathbb{E}}_{x \in H_t} \left[rac{1}{W(\pi(x)|x)}
ight] - (1 + b(\pi)) & \leq 0 \quad orall \pi \in \Pi \ \end{aligned}$$

$$b(\pi) := \widehat{\mathsf{Reg}}_t(\pi) / \sqrt{\mathsf{K}t\log \mathsf{N}}$$

$$\min_{\boldsymbol{W} \in \Delta^{N}} \max_{(\boldsymbol{U}_{o}, \boldsymbol{U}) \in \Delta^{N+1}} \frac{\boldsymbol{U}_{o}}{\boldsymbol{V}_{o}} \left(\sum_{\pi \in \Pi} b(\pi) \boldsymbol{W}(\pi) - 1 \right) \\
+ \sum_{\pi \in \Pi} \frac{\boldsymbol{U}(\pi)}{\boldsymbol{K}} \left(\frac{1}{K} \widehat{\mathbb{E}}_{x \in H_{t}} \left[\frac{1}{\boldsymbol{W}(\pi(x)|x)} \right] - (1 + b(\pi)) \right) \leq 0$$

$$b(\pi) := \widehat{\mathsf{Reg}}_t(\pi) / \sqrt{\mathsf{K}t\log \mathsf{N}}$$

$$\max_{(\boldsymbol{U_o},\boldsymbol{U})\in\Delta^{N+1}} \min_{\boldsymbol{W}\in\Delta^N} \frac{\boldsymbol{U_o}}{\boldsymbol{V_o}} \left(\sum_{\pi\in\Pi} b(\pi) \boldsymbol{W}(\pi) - 1 \right)$$

$$+ \sum_{\pi\in\Pi} \frac{\boldsymbol{U}(\pi)}{K} \left(\frac{1}{K} \widehat{\mathbb{E}}_{x\in H_t} \left[\frac{1}{\boldsymbol{W}(\pi(x)|x)} \right] - (1 + b(\pi)) \right) \leq 0$$

$$b(\pi) := \widehat{\mathsf{Reg}}_t(\pi) / \sqrt{\mathsf{K}t\log \mathsf{N}}$$

$$\max_{(U_o, \mathbf{U}) \in \Delta^{N+1}} \min_{\mathbf{W} \in \Delta^N} \frac{U_o}{W_o} \left(\sum_{\pi \in \Pi} b(\pi) W(\pi) - 1 \right) \\
+ \sum_{\pi \in \Pi} \frac{U(\pi)}{K} \left(\frac{1}{K} \widehat{\mathbb{E}}_{x \in H_t} \left[\frac{1}{W(\pi(x)|x)} \right] - (1 + b(\pi)) \right) \leq 0$$

$$b(\pi) := \widehat{\mathsf{Reg}}_t(\pi) / \sqrt{\mathsf{K}t \log \mathsf{N}}$$

Choose $\mathbf{W} := \mathbf{U} + \mathbf{U}_o \mathbf{1}^{\hat{\pi}}$ for $\hat{\pi} := \arg\min_{\pi \in \Pi} b(\pi)$ to verify that value of game ≤ 0 .

Choose $\mathbf{W} := \mathbf{U} + \mathbf{U_o} \mathbf{1}^{\hat{\pi}}$ for $\hat{\pi} := \arg\min_{\pi \in \Pi} b(\pi)$ (so $b(\hat{\pi}) = 0$) to verify that value of game ≤ 0 .

$$\max_{(\boldsymbol{U_o}, \boldsymbol{U}) \in \Delta^{N+1}} \min_{\boldsymbol{W} \in \Delta^N} \frac{\boldsymbol{U_o}}{\boldsymbol{V_o}} \left(\sum_{\pi \in \Pi} b(\pi) \boldsymbol{W}(\pi) - 1 \right) \\ + \sum_{\pi \in \Pi} \frac{\boldsymbol{U}(\pi)}{\boldsymbol{K}} \left(\frac{1}{K} \widehat{\mathbb{E}}_{x \in H_t} \left[\frac{1}{\boldsymbol{W}(\pi(x)|x)} \right] - (1 + b(\pi)) \right)$$

Choose $\mathbf{W} := \mathbf{U} + \mathbf{U_o} \mathbf{1}^{\hat{\pi}}$ for $\hat{\pi} := \arg\min_{\pi \in \Pi} b(\pi)$ (so $b(\hat{\pi}) = 0$) to verify that value of game ≤ 0 .

$$\max_{\substack{(U_o, \mathbf{U}) \in \Delta^{N+1} \\ K}} \frac{U_o}{\sum_{\pi \in \Pi} b(\pi) U(\pi) - 1} + \frac{1}{K} \widehat{\mathbb{E}}_{x \in H_t} \left[\sum_{a \in \mathcal{A}} \frac{U(a|x)}{W(a|x)} \right] - \sum_{\pi \in \Pi} U(\pi) (1 + b(\pi))$$

Choose $\mathbf{W} := \mathbf{U} + \mathbf{U}_o \mathbf{1}^{\hat{\pi}}$ for $\hat{\pi} := \arg\min_{\pi \in \Pi} b(\pi)$ (so $b(\hat{\pi}) = 0$) to verify that value of game ≤ 0 .

$$\begin{aligned} \max_{(\boldsymbol{\mathcal{U}_o}, \boldsymbol{\mathcal{U}}) \in \Delta^{N+1}} & (\boldsymbol{\mathcal{U}_o} - 1) \sum_{\pi \in \Pi} b(\pi) \boldsymbol{\mathcal{U}}(\pi) \\ & + \frac{1}{K} \widehat{\mathbb{E}}_{x \in \mathcal{H}_t} \left[\sum_{a \in \mathcal{A}} \frac{\boldsymbol{\mathcal{U}}(a|x)}{\boldsymbol{\mathcal{W}}(a|x)} \right] - 1 \leq 0 \end{aligned}$$

Feasibility of LR/LV constraints is implied by minimax argument.

Feasibility of LR/LV constraints is implied by minimax argument.

"Monster" solution [DHKKLRZ'11]: Can solve (variant) of feasibility problem using Ellipsoid algorithm (where separation oracle = AMO + Perceptron + another Ellipsoid).

Feasibility of LR/LV constraints is implied by minimax argument.

"Monster" solution [DHKKLRZ'11]: Can solve (variant) of feasibility problem using Ellipsoid algorithm (where separation oracle = AMO + Perceptron + another Ellipsoid).

Existence of sparse(r) solution: given any (dense) solution, probabilistic method shows that there is an $\tilde{O}(\sqrt{Kt})$ -sparse approximation with comparable LR and LV constraint bounds.

Feasibility of LR/LV constraints is implied by minimax argument.

"Monster" solution [DHKKLRZ'11]: Can solve (variant) of feasibility problem using Ellipsoid algorithm (where separation oracle = AMO + Perceptron + another Ellipsoid).

Existence of sparse(r) solution: given any (dense) solution, probabilistic method shows that there is an $\tilde{O}(\sqrt{Kt})$ -sparse approximation with comparable LR and LV constraint bounds.

Efficient construction via "boosting"-type algorithm?

Coordinate descent algorithm

```
input Initial weights W.

    loop

      If (LR) is violated, then replace W by cW.
      if there is a policy \pi \in \Pi causing (LV) to be violated
 3:
      then
        set W(\pi) := W(\pi) + \alpha.
     else
 5:
      Halt and return W.
    end if
 7:
 8: end loop
```

(Technical detail: actually optimize over subdistributions that may sum to < 1.)

(Both 0 < c < 1 and $\alpha > 0$ have closed form expressions.)

Checking violation of (LV) constraint: for all $\pi \in \Pi$,

$$\widehat{\mathbb{E}}_{x}\bigg[\frac{1}{W^{\mu_{t}}(\pi(x)|x)}\bigg] \leq K\bigg(1 + \frac{\max_{\pi'} \widehat{\mathsf{Rew}}_{t}(\pi') - \widehat{\mathsf{Rew}}_{t}(\pi)}{Kt \cdot \mu_{t}}\bigg)$$

Checking violation of (LV) constraint: for all $\pi \in \Pi$,

$$\frac{\widehat{\mathsf{Rew}}_t(\pi)}{t \cdot \mu_t} + \widehat{\mathbb{E}}_x \bigg[\frac{1}{W^{\mu_t}(\pi(x)|x)} \bigg] \leq \mathcal{K} \bigg(1 + \frac{\mathsf{max}_{\pi'} \, \widehat{\mathsf{Rew}}_t(\pi')}{\mathcal{K}t \cdot \mu_t} \bigg)$$

Checking violation of (LV) constraint: for all $\pi \in \Pi$,

$$\widehat{\mathsf{Rew}}_t(\pi) + t \cdot \widehat{\mathbb{E}}_x \bigg[\frac{\mu_t}{W^{\mu_t}(\pi(x)|x)} \bigg] \leq \mathsf{K} t \cdot \mu_t + \mathsf{max}_{\pi'} \widehat{\mathsf{Rew}}_t(\pi')$$

Checking violation of (LV) constraint: for all $\pi \in \Pi$,

$$\widehat{\mathsf{Rew}}_t(\pi) + t \cdot \widehat{\mathbb{E}}_{\mathsf{X}} \bigg[\frac{\mu_t}{W^{\mu_t}(\pi(\mathsf{X})|\mathsf{X})} \bigg] \leq \mathsf{K} t \cdot \mu_t + \mathsf{max}_{\pi'} \widehat{\mathsf{Rew}}_t(\pi')$$

- 1. Obtain $\hat{\pi} := AMO((x_1, \hat{\boldsymbol{r}}_1), \dots, (x_t, \hat{\boldsymbol{r}}_t)).$
- 2. Create fictitious rewards for each i = 1, 2, ..., t:

$$\tilde{r}_i(a) := \frac{\mu}{W^{\mu_t}(a|x_i)} + \hat{r}_i(a) \quad \forall a \in \mathcal{A}.$$

Obtain
$$\tilde{\pi} := AMO((x_1, \tilde{r}_1), \dots, (x_t, \tilde{r}_t)).$$

3. $\operatorname{Rew}_t(\tilde{\pi}) > Kt \cdot \mu_t + \operatorname{Rew}_t(\hat{\pi})$ iff (LV) is violated by $\tilde{\pi}$.

31

Iteration bound for coordinate descent

Using unnormalized relative entropy-based potential function

$$\Phi(W) := t \mu_t \left(\frac{\widehat{\mathbb{E}}_{\mathbf{x} \in H_t} \left[\mathsf{RE} (\mathsf{unif} \, \| \, W^{\mu_t} (\cdot | \mathbf{x})) \right]}{1 - K \mu_t} + \frac{\sum_{\pi \in \Pi} W(\pi) \widehat{\mathsf{Reg}}_t(\pi)}{Kt \cdot \mu_t} \right),$$

can show coordinate descent returns a feasible solution after

$$\tilde{O}\left(\frac{1}{\mu_t}\right) = \tilde{O}\left(\sqrt{\frac{Kt}{\log N}}\right)$$
 steps.

(Every step decreases potential by about $t \cdot \mu_t^2 = \frac{\log N}{K}$.)

32

Low Regret / Low Variance constraints: implies $\tilde{O}(\sqrt{KT \log N})$ regret bound.

Low Regret / Low Variance constraints: implies $\tilde{O}(\sqrt{KT\log N})$ regret bound.

Coordinate descent to solve LR/LV constraints: repeatedly find a violated constraint and adjust $\ensuremath{\mathcal{W}}$ to satisfy it.

Low Regret / Low Variance constraints: implies $\tilde{O}(\sqrt{KT\log N})$ regret bound.

Coordinate descent to solve LR/LV constraints: repeatedly find a violated constraint and adjust W to satisfy it.

Coordinate descent analysis: In round t,

$$\operatorname{nnz}(W_t) = O(\# \text{ calls to arg max oracle}) = \tilde{O}\left(\sqrt{\frac{Kt}{\log N}}\right)$$

(same as guarantee via probabilistic method).

4. Additional tricks: warm-start and epoch structure

Total complexity over all rounds

In round t, coordinate descent for computing \boldsymbol{W}_t requires

$$\tilde{O}\left(\sqrt{\frac{Kt}{\log N}}\right)$$
 AMO calls.

Total complexity over all rounds

In round t, coordinate descent for computing \boldsymbol{W}_t requires

$$\tilde{O}\left(\sqrt{\frac{\kappa t}{\log N}}\right)$$
 AMO calls.

To compute \boldsymbol{W}_t in all rounds t = 1, 2, ..., T, need

$$\tilde{O}\left(\sqrt{\frac{K}{\log N}} T^{1.5}\right)$$
 AMO calls over T rounds.

To compute ${\pmb W}_{t+1}$ using coordinate descent, initialize with ${\pmb W}_t$.

To compute \boldsymbol{W}_{t+1} using coordinate descent, initialize with \boldsymbol{W}_t .

1. Total epoch-to-epoch increase in potential is $\tilde{O}(\sqrt{T/K})$ over all T rounds (w.h.p.—exploiting i.i.d. assumption).

To compute \boldsymbol{W}_{t+1} using coordinate descent, initialize with \boldsymbol{W}_t .

- 1. Total epoch-to-epoch increase in potential is $\tilde{O}(\sqrt{T/K})$ over all T rounds (w.h.p.—exploiting i.i.d. assumption).
- 2. Each coordinate descent step decreases potential by $\Omega\left(\frac{\log N}{K}\right)$.

To compute \boldsymbol{W}_{t+1} using coordinate descent, initialize with \boldsymbol{W}_t .

- 1. Total epoch-to-epoch increase in potential is $\tilde{O}(\sqrt{T/K})$ over all T rounds (w.h.p.—exploiting i.i.d. assumption).
- 2. Each coordinate descent step decreases potential by $\Omega\left(\frac{\log N}{K}\right)$.
- 3. Over all T rounds,

total # calls to AMO
$$\leq \tilde{O}\left(\sqrt{\frac{\kappa T}{\log N}}\right)$$

36

To compute \boldsymbol{W}_{t+1} using coordinate descent, initialize with \boldsymbol{W}_t .

- 1. Total epoch-to-epoch increase in potential is $\tilde{O}(\sqrt{T/K})$ over all T rounds (w.h.p.—exploiting i.i.d. assumption).
- 2. Each coordinate descent step decreases potential by $\Omega\left(\frac{\log N}{K}\right)$.
- 3. Over all T rounds,

total # calls to AMO
$$\leq \tilde{O}\left(\sqrt{\frac{\kappa T}{\log N}}\right)$$

But still need an AMO call to even check if W_t is feasible!

36

Regret analysis: W_t has low instantaneous per-round regret (roughly $K\mu_t$)—this also crucially relies on i.i.d. assumption.

Regret analysis: W_t has low instantaneous per-round regret (roughly $K\mu_t$)—this also crucially relies on i.i.d. assumption.

 \implies same W_t can be used for O(t) more rounds!

Regret analysis: W_t has low instantaneous per-round regret (roughly $K\mu_t$)—this also crucially relies on i.i.d. assumption.

 \implies same W_t can be used for O(t) more rounds!

Epoch trick: split T rounds into epochs, only compute W_t at start of each epoch.

Regret analysis: W_t has low instantaneous per-round regret (roughly $K\mu_t$)—this also crucially relies on i.i.d. assumption.

 \implies same W_t can be used for O(t) more rounds!

Epoch trick: split T rounds into epochs, only compute W_t at start of each epoch.

Doubling: only update on rounds 2^1 , 2^2 , 2^3 , 2^4 , ...

Regret analysis: W_t has low instantaneous per-round regret (roughly $K\mu_t$)—this also crucially relies on i.i.d. assumption.

 \implies same W_t can be used for O(t) more rounds!

Epoch trick: split T rounds into epochs, only compute W_t at start of each epoch.

Doubling: only update on rounds 2^1 , 2^2 , 2^3 , 2^4 , ...

 $\log T$ epochs, so $\tilde{O}(\sqrt{KT/\log N})$ AMO calls overall.