Tabulating and Graphing Numerical Data

- method
- 1) Range = max min
- 2) Define number of class (NOC)
- 3) Class interval (I) = $\frac{Range}{NOC}$, round up.
 - a. Round up.
 - b. No remain, +1 instead.
- 4) Class boundaries \rightarrow [min, min + I), ...
- 5) Class midpoint $\rightarrow \frac{min+(min+I)}{2}$, ...
- 6) Assign value to the table.
- Table example

Class	Freq.	Percent.	
[32, 45)	4	$\frac{4}{16} = 25\%$	
:	:	:	

Numerical Descriptive Measure (sample, population)

- Sample size (n). Population size (N).
- Central Tendency
- o Mean (\bar{x}, μ)
- o Mode: most common value
- Median \rightarrow Index of median: ((n + 1)/2)

- Quartiles
 - $\circ \text{ Index of } Q_i : \frac{\iota}{4}(n+1)$
 - \circ Interquartile range (IR): $Q_3 Q_1$
- Variance & Standard deviation (S^2, σ^2)
 - o Variance = SD^2

$$\circ S^2 = \frac{\sum (x_i - \bar{x})^2}{n-1}$$
$$\sigma^2 = \frac{\sum (x_i - \mu)^2}{n-1}$$

• Coefficient of Variation (CV) = $\frac{s}{x} \times 100\%$

- $x_{smallest} \ge Q_1 IR$ o If not, considered as outlier.
- Coefficient of correlation (r)
- o Measure the strength of linear relationship.

Discrete Probability Distribution (DPD)

- Random variable (X): possible value of a random event
- Probability distribution (P(X = x))
- \circ A set of probability of a scenario when value of random variable is x
- o Add up to 1.0
- Summary Measures

$$\circ \text{ Mean: } \mu = \sum x_j \cdot P(X = x_j)$$

SD:
$$\sigma^2 = \sum (x_j - \mu)^2 \cdot P(X = x_j) \rightarrow \sum x_j^2 P(X = x_j) - \mu^2$$

- Considering population

Binomial Distribution

- Condition
- O Have only 2 outcomes: yes/no
- o All trials are INDEPENCENT & IDENTICAL

Probability of x success.

$$o P(X = x) = \frac{n!}{x!(n-x)!} p^{x} (1-p)^{n-x}$$

- \circ $n \rightarrow number of trial$
 - $x \rightarrow number\ of\ success$
 - $p \rightarrow propability of success (q = 1 p)$
- $P(X < 5) = P(X = 4) + P(X = 3) + \dots + P(X = 0)$
- Mean: $\mu = np$
 - SD: $\sigma = \sqrt{np(1-p)}$
- Excel: BIONOM.DIST(x, n, p, cumulative) \rightarrow cumulative: TRUE/FALSE

Poisson Distribution

- Describe how likely an event is to occur over a time interval.
- Probability of x success.

$$P(X = x) = \frac{e^{-\lambda} \lambda^x}{x!}$$

- $\lambda \rightarrow average \ NOS \ in \ a \ unit \ time$ if $\lambda = 5 u/hr \rightarrow when 2 hr$, $\lambda = 5 \times 2 = 10 u/hr$
- Mean: $\mu = \lambda$ SD: $\sigma = \sqrt{\lambda}$
- Excel: POISSON.DIST(x, λ , cumulative)

Hypergeometric Distribution

Describe the success of sample when know the success of population.

SD:
$$\sigma = \sqrt{\frac{NA(N-A)}{N^2}} \sqrt{\frac{N-n}{N-1}}$$
 Finite population correction factor

- Excel: HYPGEOM.DIST (x, λ) , cumulative)

Continuous Probability Distribution

- Calculate Z and use the area under the normal distribution (ND).
- o Density func. of ND: $f(x) = \frac{1}{\sqrt{2\pi\sigma^2}} e^{\frac{(x-\mu)^2}{2\sigma^2}} = \frac{1}{\sqrt{2\pi}} e^{-\frac{z^2}{2}}$ o $P(X < x) = P(Z_i < Z) \rightarrow Z = \frac{x-\mu}{\sigma}$
 - Z: Standard normal rando variable
- Make sure the distribution is normal before calculating. (method)
- o Construct chart:
 - Small: Stem-leaf, box & whisker → symetric
 - Large: histogram, polygon → bell-shaped
- o Find summary measure.
 - $mean \approx med \approx mode \mid IR \approx 1.33\sigma \mid Range \approx 6\sigma$
- Observe dataset: 2/3 of data → lie between $\pm 1\sigma$
- $4/5 \to \pm 1.28\sigma, 19/20 \to \pm 2\sigma$
- o Plot (z, x) must be a straight line.
- Excel: NORM.DIST(x, μ , σ , cumulative)
- o Give value count from the right.
- Normal approximation (Binomial Dist.)
- When $n \rightarrow \infty$, $p \rightarrow 0.5$, np & nq > 5• Mean: $\mu = np$ Variance: $\sigma^2 = nqp$ $Z = \frac{x-np}{\sqrt{nqp}}$
- Normal approximation (Poisson Dist.)
 - When $\lambda \rightarrow \infty$
- o Mean: $\mu = \lambda$ Variance: $\sigma^2 = \lambda$ $Z = \frac{x \lambda}{\sqrt{\lambda}}$

*cal using definition $\mu = \int x f(x) dx$ $\sigma^2 = \int (x - \mu)^2 f(x) dx$

- Uniform distribution
 - Each value is equally likely to occur anywhere.
 - Range: between [a, b]
 - graph: horizontal line

Sampling Distribution

- Statistical inference: estimatre charactor of population from info of sample.
- Terminology
 - o Parameter: character of population (μ, σ, p)
 - Sample statistics: character of sample $(\bar{x}, s, \bar{p}/p_s/\hat{p})$
 - o Point estimate: numerical value of (\bar{x}, s, \bar{p})
 - o Sampling error: absolute difference $|\mu x|$
- Large sample gives more accurate estimation.

Sampling distribution of mean: Prop-dist. of \bar{x}

- Take multiple groups of n data from N and find \bar{x} , and plot a distribution of that multiple \bar{x}
 - o Graphs will look like normal distribution.
- When $N \to \infty$, graph look like population distribution (PD).
- When $N \to \infty$ & large n, graph approach the normal distribution. Even when PD is not normal.

Mean:
$$\mu_{\bar{x}} = \mu \to \bar{x}$$
 is unbiased SD: $\sigma_{\bar{x}} = \frac{\sigma}{\sqrt{n}} \to \sigma_{\bar{x}} < \sigma$ always $Z = \frac{\bar{x} - \mu_{\bar{x}}}{\sigma_{\bar{x}}}$

- Size of n to get normal sample mean distribution.
 - o Most dist: n > 30 | Symmetric dist: n > 15 | Normal dist: n can be any value.

Sampling distribution of sample proportions (p_s)

- population proportions (p): A measure of how common a characteristic is in a population. o $p = \frac{x}{N} \to x$ is the number of successes $|p_s| = \frac{x}{n} \to x$ success in sample group.
- Normally focus on x with two outcomes (have/not have) \rightarrow binomial distribution.

Mean: $\mu_{ps} = p$ $\sigma_{ps} = \sqrt{\frac{p(1-p)}{n}} \, \left| \, \, Z = \frac{p_s - \mu_{ps}}{\sigma_{ps}} \right|$

Finite population correction factor (FPC)

Used when *n* is very large: n/N > 0.05 $\sigma_{\bar{x}} = \frac{\sigma}{\sqrt{n}} \cdot \sqrt{\frac{N-n}{N-1}}$ $\sigma_{ps} = \sqrt{\frac{p(1-p)}{n}} \sigma_{ps} \cdot \sqrt{\frac{N-n}{N-1}}$ FPC

- Continuity correction (Binomial & Poisson)
 - Use when convert discrete dist, to continuous dist.
- \circ ±0.5 depends on the situation.

