数据结构

# 图的单源最短路径算法

#### 数据结构

#### Outline

- □图的最短路径问题
- □ Dijkstra算法的基本原则
- □ Dijkstra算法的贪心求解过程
- □ Dijkstra算法与Prim算法的比较

#### 图的最短路径问题

#### •问题的提出

- 假如要在计算机上建立一个交通咨询系统,可用图或网的结构来表示实际的交通网络,用顶点表示城市,边表示城市之间的交通联系。 这个交通咨询系统可以回答旅客提出的各种问题。如:
  - 一位旅客想从A城到B城,希望选择中转次数最少的路线。
  - 一位司机想选择一条从A城到B城所需距离最短的路径?

#### • 最短路径问题?

✓ 如果从图中某一顶点(称为<mark>源点</mark>)到达另一顶点(称为<mark>终点</mark>)的路径可能不止一条,如何找到一条路径使得沿此路径上各边上的权值总和达到最小。



#### 图的最短路径问题

#### 问题解法:

- 边上权值非负情形的单源最短路径问题
  - Dijkstra算法
- 所有顶点之间的最短路径
  - Floyd算法



## Dijkstra算法的单源最短路径求解策略

- Dijkstra提出一种按路径长度递增次序,逐步 产生从源点到其它各顶点的单源最短路径。
- 为什么按照这个次序求解?



| 源点           | 中间顶点                                          | 终点         | 最短路径长度 |
|--------------|-----------------------------------------------|------------|--------|
| V0 0         |                                               | $v_1$      | 10     |
| V0 0         |                                               | <i>V</i> 3 | 30     |
| V0 0         | $v_3$                                         | $v_2$      | 50     |
| <b>V</b> 0 ↔ | <i>v</i> <sub>3</sub> , <i>v</i> <sub>2</sub> | <i>V</i> 4 | 60     |

### Dijkstra算法的基本原则

从源点v<sub>0</sub>到其它任何顶点v的最短路径仅经过比v距离更近的顶点作为中间顶点。



## Dijkstra算法的基本原则

从源点v<sub>0</sub>到其它任何顶点v的最短路径仅经过比v距离更近的顶点作为中间顶点。

假设已求得最短路径的顶点集合 $S=\{v_{\rho 1},v_{\rho 2},\cdots,v_{\rho k}\}$ ,则下一条最短路径(设终点为x):

- ✓或者为弧〈 $\nu_0$ , x〉;
- ✓或者为一条只经过*S*中的某些顶点而最后到达终点*x*的路径。

### Dijkstra算法的基本原则

假设已求得最短路径的顶点集合 $S=\{v_{\rho 1},v_{\rho 2},\cdots,v_{\rho k}\}$ ,则下一条最短路

径(设终点为x):

✓ 或者为弧〈v₀, x〉;

✓ 或者为一条只经过S中的某些顶点而最后到达终点x的路径。

证明:假设此路径上存在一个不在集合S中出现的顶点,则说明存在终点不在S而路径长度比此更短的路径,这是不可能的!

因为我们是按<u>长度递增的次序</u>来产生各条最短路径的,<u>而且各边的权</u> 值非负, 故长度比此路径短的所有路径均已产生,它们的终点必在集合*S*中。

## Dijkstra算法的贪心求解步骤

- •设置一个集合S,用于存放已求出的最短路径的顶点,则尚未确定最短路径的顶点属于集合V-S。
- •初始状态时,集合S中只有源点;
- 循环执行贪心选择逐步扩充集合*S,* 直到集合 *V−S* 中的顶点全部加入到集合*S*中。
  - ▶ 每一步在 V-S 中选择当前离源点距离最短的顶点插入到集合S中



实现的关键问题:每一步做贪心选择时,如何有效地计算集合 V-S中的各顶点对应的最短距离值?

#### 集合V-S中顶点最短距离值的计算

- ·引入一个辅助数组dist[]。它的每一个分量dist[i]表示当前确定的从源点以到V-S中顶点以的最短路径的长度(当前最短距离)。
- ·注意:算法执行过程中数组dist的元素值是一个增量的变化过程。
- ・初始状态:
  - 若从源点以到顶点以有边,则dist[i]为该边上的权值;否则为+∞。
- · 当从集合V-S中选择一个当前距离最小的顶点 v<sub>j</sub>加入集合S后,需要及时调整V-S中剩余的各个顶点的当前最短距离值。

#### 顶点最短距离dist值的调整方法

- · 当从集合V-S中选择一个当前距离最小的顶点 yj加入集合S后,需要调整V-S中剩余顶点的当前最短距离值。
- ・对于V-S中的顶点 ν<sub>i</sub>,其最短距离值的调整方法是: dist[i]=Min{dist[i], dist[j]+cost(j, i) }



#### Dijkstra算法求单源最短路径示例



#### Dijkstra算法的具体实现

- 图的存储结构?
  - 邻接矩阵方式
- 如何标识图中各顶点在算法执行过程中是否已被加入到集合S中?
  - 设置一个一维数组S[],并规定:
    - S[i]=0 顶点v;未加入集合S
    - S[i]=1 顶点v<sub>i</sub>已加入集合S
- 如何记录Dijkstra算法所求出的从源点到各顶点的最短路径?
  - 引入一个数组path[],其中,path[i]中保存了从源点到终点v<sub>i</sub>的最短 路径上该顶点的前驱顶点的序号。

```
//求出从编号v的顶点到其余各点的最短路径,path[]中存放路径,dist[]中存放路径长度
template<class T>
void MGraph<T>::Dijkstra(int v, int path[], int dist[]) {
  bool *s=new bool[vexnum];
  for(i=0;i<vexnum;i++){</pre>
                                             //距离初始化
      s[i]=false; dist[i]=GetEdgeValue(v,i);
      if(dist[i]<INFINITY || i==v) path[i]=v;</pre>
      else path[i]= -1; //表示顶点i前驱顶点不是v
  dist[v]=0; s[v]=true;
  for(i=1; i<vexnum; i++){</pre>
     min=INFINITY:
                        //设置最短路径初值为足够大的数
     for( j=0;j<vexnum;j++)</pre>
        if(!s[j] && dist[j]<min){
            k=j; min=dist[j];
               //将离v最近的顶点加入s集
     s[k]=true;
     for(int w=0; w<vexnum; w++)
        if(!s[w] && dist[w]>dist[k]+GetEdgeValue(k,w))
            dist[w]=dist[k]+GetEdgeValue(k,w); path[w]=k;
  delete[]s;
```

算法的时间复杂度 为 $O(n^2)$ 

### Dijkstra算法与Prim算法的比较

- Dijkstra算法与求最小生成树的Prim算法思想非常相似?
  - ✓ 在图(f)中从树根(源点)到其余每个顶点均存在一条有向路径,且无回路存在。故称这棵有向生成树为 $G_9$ 的最短路径树,简称SPT树。
  - ✓ 这样,对一个带权有向图求单源最短路径问题实际上 可看成是对一个带权有向图构造SPT树的问题。



## 思考题 ③

- 1. Dijkstra算法只能适用于图中仅包含非负权值边的情形? 为什么?
- 2. Dijkstra算法的贪心选择准则是什么?你如何理解?

## Thank you for your attention!