2025 Digital IC Design

Homework 2: LCD Controller

1. Introduction:

The task requires completing the **Image Display Control Circuit (LCD_CTRL circuit)**. The input grayscale image is stored in the **input image ROM module (IROM)** on the Host side. The **LCD_CTRL circuit** must read grayscale image data from the IROM memory module on the Host side and perform the following operations as required:

- I. **Shift** Horizontal and vertical translation
- II. Max Retrieve the maximum value of the image data
- III. Min Retrieve the minimum value of the image data
- IV. Average Compute the average of the image data

After processing, the results must be written to the **output image RAM module** (**IRAM**) on the Host side. Once the entire image processing is complete, the **done signal** should be set **High**, and the system will then verify the correctness of the processed image data. The circuit signal definitions and **LCD_CTRL operation methods** are detailed in the following sections.

2. Specification:

2.1. System Block Diagram

2.2. System I/O Interface

Signal Name	I/O	Width	Description
clk	Input	1	System clock signal. System should be triggered by the positive
			edge of clock.
rst	Input	1	System reset signal. Active high, asynchronous reset.
cmd	Input	4	Command input signal.
			This controller supports a total of eight command inputs . For
			detailed command descriptions, please refer to Table 2. A
			command input is considered valid only when "cmd_valid" is
			high and "busy" is low.
cmd_valid	Input	1	When this signal is high , indicates " cmd " input is valid.
IROM_rd	Output	1	Image ROM memory read enable signal. When high, indicates
			the LCD_CTRL requests data from the Host.
IROM_A	Output	6	Image ROM address bus. The LCD_CTRL uses this bus to
			request grayscale image data from the corresponding address in
			the Host's read-only memory.
IROM_Q	Input	8	Image ROM data bus. Host uses this bus to send grayscale image
			data from the Host's read-only memory to the LCD_CTRL.
IRAM_ceb	Output	1	Image RAM chip enable signal. When high, indicates the Image
			RAM is available for read and write operations.
IRAM_A	Output	6	Image RAM address bus. The LCD_CTRL uses this bus to

			T
			specify the address in the Host's Image RAM where the
			grayscale image data should be read or written.
IRAM_D	Output	8	Image RAM input data bus. The LCD_CTRL uses this bus to
			write image data into the Host's Image RAM.
IRAM_web	Output	1	Image RAM read/write select signal. When High , it indicates that
			LCD_CTRL is reading data from Image RAM; otherwise, it
			indicates writing data to Image RAM.
IRAM_Q	Input	8	Image RAM output data bus. The Host's Image RAM uses this
			bus to output image data to the LCD_CTRL.
busy	Output	1	System busy signal.
			When this signal is high , indicates the controller is currently
			executing the current command and cannot accept new
			command inputs. When this signal is low, the system is ready to
			receive new commands.
done	Output	1	When the controller completes writing to IRAM, it sets done to
			high to indicate completion.

2.3. Function Description

The controller must process user input commands to determine the display coordinates (origin) and data parameters, enabling functions such as shifting and averaging. The original 8*8 grayscale image is stored in the off-chip IROM, the LCD controller can fetch the image from IROM through related buses. Once the image processing operations are completed, the processed image data is written to the off-chip IRAM through related buses and pull **done** signal high to let Host know the task is completed.

2.3.1 Operating Point Definition

The operation point refers to a specific coordinate in the image data. The four neighboring pixels (top, bottom, left, and right) surrounding the operation point are considered operational image data, which the controller uses for processing.

In this task, the coordinate system for the input image is predefined:

- The horizontal direction (X-axis) represents the width.
- The vertical direction (Y-axis) represents the height.
- The coordinate range for both X and Y axes is 0 to +8.
- To ensure that the operational image data does not exceed the image boundaries, the operation point is restricted to the range X = +2 to +6 and Y = +2 to +6.

Based on this coordinate system, the display shift (Shift) function must be designed to adjust the output image accordingly.

	0	1 2	2 3	3 4	4 :	5 (5	7
0 -	00	01	02	03	04	05	06	07
1 -	08	09	0a	0b	0с	0d	0e	Of
2 -	10	11	12	13	14	15	16	17
3 <i>-</i>	18	19	1a	1b	1c	1d	1e	1f
5 -	20	21	22	23	24	25	26	27
6 -	28	29	2a	2b	2c	2d	2e	2f
7 -	30	31	32	33	34	35	36	37
,	38	39	За	3b	3с	3d	3е	3f

^{*} The default Operating Point is (4, 4)

2.3.2 Command Definition

Command	Definition		
0(0000)	Write		
1(0001)	Shift Up		
2(0010)	Shift Down		
3(0011)	Shift Left		
4(0100)	Shift Right		
5(0101)	Max		
6(0110)	Min		
7(0111)	Average		

♦ Write

When executing the Write command, the controller writes image data into IRAM from left to right and top to bottom.

♦ Shift Up

Activate the Shift Up mode. This will decrease the Y-coordinate of the operation point by 1, but the Y-coordinate cannot be lower than 2. When the Y-coordinate is 2, if an additional Shift Up command is received, the operation point will remain unchanged.

♦ Shift Down

Activate the Shift Down mode. This will increase the Y-coordinate of the operation point by 1, but the Y-coordinate cannot exceed 6. When the Y-coordinate is 6, if an additional Shift Down command is received, the operation point will remain unchanged.

♦ Shift Left

Activate the Shift Left mode. This will decrease the X-coordinate of the operation point by 1, but the X-coordinate cannot be lower than 2. When the X-coordinate is 2, if an additional Shift Left command is received, the operation point will remain unchanged.

♦ Shift Right

Activate the Shift Right mode. This will increase the X-coordinate of the operation point by 1, but the X-coordinate cannot exceed 6. When the X-coordinate is 6, if an additional Shift Right command is received, the operation point will remain unchanged.

♦ Max

Perform the calculation of the maximum value for the image pixels at the current operation point coordinates. This means comparing the sixteen corresponding image pixels at the current coordinates and determining the maximum value. Then, replace these sixteen original image pixels with the calculated maximum value.

♦ Min

Perform the calculation of the minimum value for the image pixels at the current operation point coordinates. This means comparing the sixteen corresponding image pixels at the current coordinates and determining the minimum value. Then, replace these sixteen original image pixels with the calculated minimum value.

♦ Average

Perform the calculation of the average value for the image pixels at the current operation point coordinates. This means comparing the sixteen corresponding image pixels at the current coordinates and determining the average value. Then, replace these sixteen original image pixels with the calculated average value.

2.3.3 IROM Mapping Method and Timing Specification

The input raw grayscale image has a fixed size of 8x8 pixels, with each pixel consisting of 8 bits of data. Therefore, the Host-side grayscale image contains a total of 64 pixels. The IROM memory has a data width of 8 bits and 64 addresses. Each address stores 8 bits of data, which corresponds to the grayscale image data of one pixel. The mapping is as shown in the following diagram:

The timing of the IROM memory is as shown in the diagram below. The IROM will, on each falling edge of the clock signal, if the IROM_rd signal is High (as in T1 and T2 time periods in the diagram), immediately send the data from the address specified by the IROM_A signal to the LCD_CTRL end via the IROM_Q bus. If the IROM_rd signal is Low (as in T3 time period in the diagram), the IROM will not perform any action. No read delay is considered for this memory.

2.3.4 IRAM Mapping Method and Timing Specification

The output grayscale image after computation by the LCD_CTRL is 8x8 pixels, with each pixel consisting of 8 bits of data. Therefore, the Host-side output result grayscale image memory (IRAM) has a total of 64 addresses, which are used to store the processing results for each pixel. The mapping is as shown in the following diagram:

The timing for the output result grayscale image memory (IRAM) is as shown in the following diagram. The IRAM will, on each falling edge of the clock signal, if the IRAM_ceb signal is High (as in T4 time), determine the operation based on the IRAM web signal.

- If IRAM_web is High (as the upper diagram), IRAM will output the data corresponding to the IRAM_A address from the IRAM_Q.
- If IRAM_web is Low (as the lower diagram), it will write the data from IRAM_D to the memory location corresponding to the IRAM_A address.

The HOST will trigger the write or read operation on the falling edge of the clock signal at T5 and stop when IRAM ceb be pulled down at T6.

2.3.5 Timing Specification

The timing specification diagrams for other control commands (Shift up, Shift down, Shift left, Shift right, Max, Min, Average) are as shown in the following diagram.

• Throughout the entire processing operation, the **busy** signal remains **high**. Once the output is completed, the **busy** signal is set **low** to allow the system to accept new command inputs.

The timing specification diagram for the **write** command is shown in the following diagram.

• When executing the **write** command, the controller writes the processed image data into **IRAM**.

- When IRAM_ceb is high and IRAM_web is low, it indicates a write operation to IRAM. At this moment, the address signal can be provided to store the image data into IRAM.
- Throughout the entire processing operation, the **busy** signal remains **high**. Once the output is completed, the **busy** signal is set back to **low** to allow the system to accept new command inputs.
- After the write operation is completed, the **done** signal is set to **high** at T7, indicating that the write process is finished. At this point, the test fixture will compare the data written to **IRAM** with the golden pattern for verification.

2.4. File Description

File Name	Description			
LCD_CTRL.v	The module of LCD Controller.			
testfixture.sv	Testbench file. You can only change the test			
	pattern number.			
IROM.sv	Read-only memory for LCD_CTRL.			
IRAM.sv	Random access memory for LCD_CTRL.			
cmdX.dat	Test command X for LCD_CTRL.			
image1.dat	Test image for LCD_CTRL.			
tbX_goal.dat	Golden data X for LCD CTRL.			

3. Scoring:

3.1. Functional Simulation [100%]

While there are five test patterns in this homework, the grading rule for this homework is that twenty points can be obtained by passing one test pattern. After the simulation, the result will be shown in ModelSim terminal as shown in the below figure. Please don't design specifically for the test pattern. Otherwise, you will get 0 point.

4. Submission

4.1. File Submission

You should classify your files into two directories and compress them to .zip format. The naming rule is StudentID.zip. If your file is not named according to the naming rule, you will lose five points.

	RTL
*.V	All of your Verilog RTL code
	Documentary
Report.pdf	The report file of your design (in pdf).

StudentID.zip

StudentID

RTL

*.v (All of your Verilog RTL code)

Documentary

Report.pdf

4.2. Report File

Please follow the spec of report. You are asked to describe how the circuit is designed as detailed as possible. Please focus on the description of the finite-state machine design in your LCD CTRL.

4.3. Notes

a. Please submit your .zip file to folder HW2 in moodle.

Deadline: 2025/04/13 23:55

b. Late submissions will result in a penalty of 5 points per day.

5. Appendix

There are a total of five test samples, all using the image data **Image1**:

00	01	02	03	04	05	06	07
08	09	0a	0b	0с	0d	0e	Of
10	11	12	13	14	15	16	17
18	19	1a	1b	1c	1d	1e	1f
20	21	22	23	24	25	26	27
28	29	2a	2b	2c	2d	2e	2f
30	31	32	33	34	35	36	37
38	39	За	3b	3с	3d	3e	3f

Modify the testfixture.v define section to select the test pattern (tb1 / tb2 / tb3 / tb4 / tb5).