Homework 2 Solutions

Weichao Zhou

November 8, 2017

1 Expressing Properties in LTL

(a)

$$\Phi = \mathbf{G} \neg (\neg p \wedge \mathbf{X}p) \tag{1}$$

(b)

$$\Phi = \mathbf{G}(\mathbf{F}(p \wedge \mathbf{X} \neg p) \wedge \mathbf{F}(\neg p \wedge \mathbf{X}p))$$
 (2)

(c)

$$\Phi = \mathbf{G} \neg ((\neg r \wedge \mathbf{X}y) \vee (\neg y \wedge \mathbf{X}g) \vee (\neg g \wedge \mathbf{X}r))$$
 (3)

$$= \mathbf{G}(\neg(\neg r \wedge \mathbf{X}y) \wedge (\neg(\neg y \wedge \mathbf{X}g)) \wedge \neg(\neg g \wedge \mathbf{X}r)) \tag{4}$$

(d)

$$\Phi = \mathbf{G} \neg (q \wedge \neg r \mathbf{U} p) \tag{5}$$

2 LTL, CTL, CTL*

- (a) **AFAG** $p = \neg \mathbf{EGEF} \neg p$ means that there is no path satisfying $\mathbf{GEF} \neg p$. But the infinitely cycling path through the red state on the left obviously satisfies $\mathbf{GEF} \neg p$.
- (b) ($\mathbf{E}(\mathbf{GF}p)$ is stronger than $\mathbf{EG}(\mathbf{EF}p)$. In the state machine in Fig.1(a) which initiates from top left state, $\mathbf{E}(\mathbf{GF}p)$ doesn't satisfy since no path visit the red state satisfying p infinitely often. But $\mathbf{EG}(\mathbf{EF}p)$ satisfies since there is always branch transitioning from blue state to the red state satisfying p.

 $\mathbf{E}(\mathbf{GF}p)$ is weaker than $\mathbf{EG}(\mathbf{AF}p)$. In Fig.1(a) which initiates from top left state, $\mathbf{EG}(\mathbf{AF}p)$ doesn't satisfy since there is no such path satisfies that, every single state in the path satisfies $\mathbf{GF}p$, which means that every path initiated from this state must satisfy $\mathbf{F}p$. However, there does exist path that visit p infinitely often. Thus $\mathbf{E}(\mathbf{GF}p)$ is satisfied.

Figure 1: (a) For $((\mathbf{E}(\mathbf{GF}p), \mathbf{EG}(\mathbf{EF}p)); (b)$ For $((\mathbf{E}(\mathbf{GF}p), \mathbf{EG}(\mathbf{AF}p))$

q p p p

Figure 2: No state ensures $(\mathbf{AF}p)$ nor $(\mathbf{AF}q)$

(c) i. $(\mathbf{EF}p) \vee (\mathbf{EF}q)$ and $(\mathbf{EF}(p \vee q))$ are equavalent. ii. $(\mathbf{AF}p) \vee (\mathbf{AF}q)$ and $(\mathbf{AF}(p \vee q))$ are not equivalent. In Fig.2, no path satisfies $(\mathbf{AF}p)$ nor $(\mathbf{AF}q)$ since every p state can lead to an all q path branch and every q state can lead to an all p path branch. But the state machine satisfies $(\mathbf{AF}(p \vee q))$ for sure.

Simulation and SA 3

(a) $|S| \cdot |S'|$

(b)

$$x_{s,s'} \Rightarrow (\exists j \in \{1, 2, \dots, k\}, x_{t,t'_j} = 1)$$
 (6)

$$= \neg x_{s,s'} \lor (\exists j \in \{1, 2, \dots, k\}, x_{t,t'_j} = 1)$$
 (7)

$$= \neg x_{s,s'} \lor (\bigvee_{R(s',t')} x_{t,t'}) \tag{8}$$

If k = 0, then the CNF should be:

$$\exists t \ R(s,t), x_{t,t'} = 0 \ \forall t' \ R(s',t') \to x_{s,s'} == 0 \tag{9}$$

$$= R(s,t) \wedge \left(\bigwedge_{R(s',t')} \neg x_{t,t'} \right) \rightarrow \neg x_{s,s'}$$
 (10)

$$= \neg (R(s,t) \land (\bigwedge_{R(s',t')} \neg x_{t,t'})) \lor \neg x_{s,s'}$$
(11)

$$= \neg R(s,t) \lor (\bigvee_{R(s',t')} x_{t,t'}) \lor \neg x_{s,s'}$$

$$\tag{12}$$

(c)

$$\exists s'_0 \in S'_0, x_{s_0, s'_0} = 1 \tag{13}$$

$$\exists s'_{0} \in S'_{0}, x_{s_{0}, s'_{0}} = 1$$

$$= \bigvee_{k \in \{0, \dots, |S'_{0}| - 1\}} x_{s_{0}, s'_{k}}$$

$$(13)$$

(d) (b)(c) can be turned to Horn-SAT which can be solved in linear time. For (b), since there are |S||R||S'| clauses which each has O(|R'|) complexity, all (b) have complexity of O(|R'||S||R||S'|). For (c), there are |S|clauses which complexities amount to O(|S||S'|). Thus the overall CNF has complexity O(|R'||S||R||S'|).

4 Symmetry Reductionh

Assume that σ is a permutation on the states of the structure, there can be multiple permutations which are all automorphisms of the structure. $\sigma_0 = (s_0, s_1)(s_2, s_3)(s_1, s_0)(s_3, s_2)$

5 SPINing Elevators

Add one monitor and two global variables:

```
byte mov;

active\ proctype\ monitor()\{

if\ :: elv?open, \_-> mov = false;

:: elv?close, \_-> mov = true;

od

\}
```

- ltl p{[]!(mov == true&&doors_open == true)}
 "spin : _spin_nvr.tmp.10, Error : assertionviolated"
 "spin: text of failed assertion: assert(!((!((doors_open == 0)))))"
 The system doesn't satisfy this property. In the elevator process, elevator
 - The system doesn't satisfy this property. In the elevator process, elevator has to receive move signal before receiving close signal.
- $ltl\ p\{[](((iam[0] == 1 || iam[1] == 1)\&\&floor! = 1) -> (<> (floor == 1\&\&(iam[0] == 1 || iam[1] == 1))))\}$ The system doesn't satisfy this property.
- $ltl\ p\{[((<>(floor == 0))\&\&(<>(floor == 1))\&\&(<>(floor == 2))\&\&(<>(floor == 3)))\}$ The system doesn't satisfy this property.