(https://accounts.coursera.org/i/zendesk/courserahelp?return_to=https://learner.coursera.help/hc)

Assignment: Assignment 4

Pass the exercise

You received 3 reviews and 0 likes (/learn/approximation-algorithms-part-2/peer/E03rO/assignment-4/submit)

Review 3 classmates

0/3 reviews completed

(/learn/approximation-algorithms-part-2/peer/E03rO/assignment-4/give-feedback)

Instructions (/learn/approximation-algorithms-part-2/peer/E03rO/assignment-4)

My submission (/learn/approximation-algorithms-part-2/peer/E03rO/assignment-4/submit)

Review classmates (/learn/approximation-algorithms-part-2/peer/E03rO/assignment-4/give-feedback)

Discussions (/learn/approximation-algorithms-part-2/peer/E03rO/assignment-4/discussions)

Thank you for completing a peer reviewed assignment! Please take this survey to help us improve your experience. (https://www.surveymonkey.com/r/Z8KFSCC?

c = assignmentId%3DBn5CpL1xEeWI5BKFfRwcCw%402&c = courseId%3DAWy3bpdeEeW2aQ7olstw0Q&c = itemId%3DE03rO&c = submissionId%3DEKURpt0IEeWvQAparton = courseId%3DAWy3bpdeEeW2aQ7olstw0Q&c = itemId%3DE03rO&c = submissionId%3DE03rO&c = courseId%3DAWy3bpdeEeW2aQ7olstw0Q&c = itemId%3DE03rO&c = courseId%3DAWy3bpdeEeW2aQ7olstw0Q&c = courseId%3DAWy3bpdeEeW2aQ7olstw0Q&c = courseId%3DAWy3bpdeEeW2aQ7olstw0QACAAWy3bpdeEeW2AQ7olstw0QACAAWy3bpdeEeW2AQ7olstw0QACAAWy3bpdeEeW2AQ7olstw

An SDP based randomized algorithm for the Correlation Clustering problem

February 27, 2016

Share able Link (https://www.coursera.org/learn/approximation-algorithms-part-2/peer/E03rO/assignment-4/review/EKURpt0lEeWvQApnPuJSmw)

An SDP based randomized algorithm for the Correlation Clustering problem

The objective of this exercise is to design an algorithm for the {\it correlation clustering problem}. Given an undirected graph G=(V,E) without loops, for each edge $e=\{i,j\}\in E$ there are two non-negative numbers w_e^+ , $w_e^-\geq 0$ representing how similar and dissimilar are the nodes i and j, respectively. For $S\subseteq V$, let E(S) be the set of edges with both endpoints in S, that is, $E(S)=\{\{i,j\}\in E; i,j\in S\}$. The goal is to find a partition S of V in order to maximize

$$f(\mathcal{S}) = \sum_{S \in \mathcal{S}: e \in E(S)} w_e^+ + \sum_{e \in E \setminus \cup E(S)} w_e^-$$
 .

In words, the objective is to find a partition that maximizes the total similarity inside each set of the partition plus the dissimilarity between nodes in different sets of the partition.

Consider the following simple algorithm:

Algorithm 1

Let $\mathcal{S}_1 = \{\{i\} : i \in V\}$ the partition that considers each vertex as a single cluster, and $\mathcal{S}_2 = \{V\}$, that is every vertex in the same cluster. Compute the values $f(\mathcal{S}_1)$ and $f(\mathcal{S}_2)$ of this two partitions, and output the best among this two.

Question 1. Compute the values $f(\mathcal{S}_1)$, $f(\mathcal{S}_2)$ in terms of the weights w^- and w^+ .

Question 2. Conclude that previous algorithm is a 1/2-approximation.

Let $B=\{e_\ell:\ell\in\{1,2,\ldots,n\}\}$ be the canonical basis in \mathbb{R}^n , where n=|V|. For every vertex $i\in V$ there is a vector x_i that is equal to e_k if node i is assigned to cluster k. Consider the following program:

$$\max\Bigl\{\sum_{\{i,j\}\in E}\Bigl(w_{\{i,j\}}^+x_i\cdot x_j+w_{\{i,j\}}^-(1-x_i\cdot x_j)\Bigr):x_i\in B ext{ for all } i\in V\Bigr\}.$$

Question 3. Explain why this program is a formulation of the correlation clustering problem.

The formulation is relaxed to obtain the following vector program:

$$\max \sum_{\{i,j\} \in E} \left(w_{\{i,j\}}^+ x_i \cdot x_j + w_{\{i,j\}}^- (1 - x_i \cdot x_j)
ight)$$

subject to $v_i \cdot v_i = 1$ for all $i \in V$,

$$v_i \cdot v_j \ge 0$$
 for all $i, j \in V$,

 $v_i \in \mathbb{R}^n$ for all $i \in V$.

Consider the following algorithm:

Algorithm SDP

Solve the the previous relaxation to obtain vectors $\{v_i: i\in V\}$, with objective value equal to Z. Draw independently two random hyperplanes with normals r_1 and r_2 . This determines four regions,

$$R_1 = \{i \in V : r_1 \cdot v_i \ge 0 \text{ and } r_2 \cdot v_i \ge 0\},$$

$$R_2 = \{i \in V : r_1 \cdot v_i \ge 0 \text{ and } r_2 \cdot v_i < 0\},\$$

$$R_3=\{i\in V: r_1\cdot v_i<0 \text{ and } r_2\cdot v_i\geq 0\},$$

$$R_4 = \{i \in V : r_1 \cdot v_i < 0 \text{ and } r_2 \cdot v_i < 0\},$$

and output the partition $\mathcal{R} = \{R_1, R_2, R_3, R_4\}$.

In the following, the goal is to analyse this algorithm, and to prove that it is a 3/4-approximation.

Question 4. Let $X_{\{i,j\}}$ be the random variable that is equal to 1 if the vectors v_i and v_j lie in the same side of the two random hyperplanes, and zero otherwise. Using an argument similar to the one used for Max-Cut, prove that $\operatorname{Prob}(X_{\{i,j\}}=1)=(1-\frac{1}{\pi}\,\theta_{\{i,j\}})^2$, where $\theta_{\{i,j\}}=\arccos(v_i\cdot v_j)$ is the angle between vectors v_i and v_j .

Question 5. Let $f(\mathcal{R}) = \sum_{\{i,j\} \in E} \left(w_{\{i,j\}}^+ X_{\{i,j\}} + w_{\{i,j\}}^- (1 - X_{\{i,j\}}) \right)$ the value of the partition \mathcal{R} , and denote $g(\theta) = (1 - \frac{1}{\pi} \theta)^2$ the probability function computed before. Prove that the expected value of $f(\mathcal{R})$, denoted by $E(f(\mathcal{R}))$, is

$$\sum_{\{i,j\}\in E} \Big(w_{\{i,j\}}^+g(heta_{\{i,j\}}) + w_{\{i,j\}}^-(1-g(heta_{\{i,j\}}))\Big).$$

The following lemma will be helpful to conclude the analysis (You don't need to prove it.)

Lemma. For
$$\theta \in [0,\pi/2]$$
, $g(\theta) \geq \frac{3}{4}\cos(\theta)$ and $1-g(\theta) \geq \frac{3}{4}(1-\cos(\theta))$.

Question 6. Using the lemma conclude that $E(f(\mathcal{R})) \geq \frac{3}{4} \cdot Z$, and that the algorithm is a 3/4-approximation.

Answers:

1.
$$\begin{split} f(S_1) &= \sum_{S \in S_1: e \in E(S)} w_e^+ + \sum_{S \in S_1: e \in E - \cup E(S)} w_e^- \\ &= 0 + \sum_{S \in S_1: e \in E - \cup E(S)} w_e^- \text{ (since } \sum_{S \in S_1: e \in E(S)} w_e^+ = 0 \text{, no edge has both endpoints in any partition } S \text{ in } S_1 \text{)} \\ &= \sum_{e \in E} w_e^- \text{ (since } \forall S \in S_1, \ E(S) = \phi \Rightarrow E - \cup E(S) = E \text{)} \end{split}$$

$$\begin{split} f(S_2) &= \sum_{S \in S_2: e \in E(S)} w_e^+ + \sum_{S \in S_2: e \in E^- \cup E(S)} w_e^- \\ &= \sum_{S \in S_2: e \in E(S)} w_e^+ + \text{ 0 (since all the edges have their both endpoints in the only partition } S \text{ of } S_2) \\ &= \sum_{e \in E} w_e^+ \end{split}$$

2.
$$max(f(S_1), \ f(S_2)) \geq \frac{f(S_1) + f(S_2)}{2}$$
 (since maximum of 2 values is at least their average)
$$= \frac{1}{2} \left(\sum_{e \in E} w_e^- + \sum_{e \in E} w_e^+ \right) \\ = \frac{1}{2} \sum_{e \in E} \left(w_e^- + w_e^+ \right) \\ \geq \frac{1}{2} \, OPT \ \text{(since OPT can't be greater than sum of all weights)}.$$

Since the **algorithm 1** outputs $max(f(S_1), f(S_2))$, it's a $\frac{1}{2}$ -approximation algorithm. (QED)

3. The objective function for the program given is $\max \sum_{\{i,j\} \in E} (w_{\{i,j\}}^+ x_i.x_j + w_{\{i,j\}}^- (1-x_i.x_j))$.

First let's note that $x_i, x_j \in \{e_1, e_2, \dots, e_n\}$, where $e_k \in R^n, \ \forall k$, e.g., $e_1 = (1, 0, 0, \dots, 0)$, $e_2 = (0, 1, 0, \dots, 0)$ and so on, since given they belong to orthonormal canonical basis of $R^n \Rightarrow x_i \cdot x_j$ can be either of 0 (when they are assigned to different clusters k, l, s.t., k^{th} dimension of $e_k = 1$ and l^{th} dimension of $e_l = 1$, with $k \neq l \Rightarrow x_i \cdot x_j \Rightarrow x_i \cdot x_j = 0$) or 1 (when they are assigned to the same cluster k).

Now, Two vertices i,j are similar $\Leftrightarrow w_{\{i,j\}}^+$ will have high value and $w_{\{i,j\}}^-$ will have low value. The objective being a maximization function, the solver will try to increase the product term $x_i.x_j$ corresponding to $w_{\{i,j\}}^+$ as much as possible. This will assign the highest possible value 1 to $< x_i, x_j > \Leftrightarrow (x_i, x_j)$ will be the same basis vector e_k and will be assigned to the same cluster.

Also, Two vertices i,j are dissimilar $\Leftrightarrow w_{\{i,j\}}^+$ will have low value and $w_{\{i,j\}}^-$ will have high value. The objective being a maximization function, the solver will try to increase the product term $(1-x_i.x_j)$ corresponding to $w_{\{i,j\}}^-$, i.e, it will decrease $x_i.x_j$ as much as possible. This will assign the lowest possible value 0 to $< x_i, x_j > \Leftrightarrow (x_i, x_j)$ will be different basis vectors and will be assigned to different clusters.

The above argument shows that the program is a formulation of *correlation clustering* problem (since it will try to create partitions by maximizing the similarity in between intra-cluster points and dissimilarity in between the inter-cluster points).

- 4. By similar argument from the lecture, the probability that the random hyperplane R_1 separates v_i from v_j is $P(R_1)=rac{ heta_{\{i,j\}}}{\pi}$.
- \Rightarrow The probability that the random hyperplane R_1 can't separate v_i from v_j is $P(R_1^c)=1-rac{ heta_{\{i,j\}}}{\pi}$.

Similarly, the probability that the random hyperplane R_2 can't separate v_i from v_j is $P(R_2^c)=1-rac{ heta_{\{i,j\}}}{\pi}$.

Hence, $Prob(X_{\{i,j\}}=1)$ = Probability that v_i,v_j are on the same side of R_1 or R_2 = .the probability that none of the the random hyperplanes R_1 and

 R_2 can separate v_i from v_j is $P(R_1^c\cap R_2^c)=P(R_1^c).P(R_2^c)=\left(1-rac{ heta_{\{i,j\}}}{\pi}
ight)^2$ (by **indepdence**).

$$\begin{array}{l} 5. \ E[f(R)] = E[\sum_{\{i,j\} \in E} (w_{\{i,j\}}^+ X_{\{i,j\}} + w_{\{i,j\}}^- (1 - X_{\{i,j\}}))] \\ = \sum_{\{i,j\} \in E} w_{\{i,j\}}^+ E[X_{\{i,j\}}] + w_{\{i,j\}}^- (1 - E[X_{\{i,j\}}]) \quad \text{(by linearity of expectation)} \\ = \sum_{\{i,j\} \in E} (w_{\{i,j\}}^+ P(X_{\{i,j\}} = 1) + w_{\{i,j\}}^- (1 - P(X_{\{i,j\}} = 1))) \quad \text{(since } X_{\{i,j\}} \text{ is a binary variable)} \\ = \sum_{\{i,j\} \in E} (w_{\{i,j\}}^+ (1 - \frac{\theta_{i,j}}{\pi})^2 + w_{\{i,j\}}^- (1 - (1 - \frac{\theta_{(i,j)}}{\pi})^2)) \\ = \sum_{\{i,j\} \in E} (w_{\{i,j\}}^+ g(\theta_{\{i,j\}}) + w_{\{i,j\}}^- (1 - g(\theta_{\{i,j\}})) \text{ (where } g(\theta) = (1 - \frac{\theta}{\pi})^2) \\ \geq \sum_{\{i,j\} \in E} (w_{\{i,j\}}^+ \frac{3}{4} \cos(\theta_{\{i,j\}}) + w_{\{i,j\}}^- \frac{3}{4} (1 - \cos(\theta_{\{i,j\}})) \text{ (by the lemma)} \\ = \frac{3}{4} \sum_{\{i,j\} \in E} (w_{\{i,j\}}^+ \cos(\theta_{\{i,j\}}) + w_{\{i,j\}}^- (1 - \cos(\theta_{\{i,j\}})) \\ = \frac{3}{4} \sum_{\{i,j\} \in E} (w_{\{i,j\}}^+ v_i \cdot v_j + w_{\{i,j\}}^- (1 - v_i \cdot v_j)) \quad \text{(since } v_i \cdot v_j = |v_i| . |v_j| \cos(\theta_{\{i,j\}}) \text{ and } |v_i| = |v_j| = 1) \\ = \frac{3}{4} Z \geq \frac{3}{4} \ OPT \text{ (by property of quadratic relaxation and SDP)} \end{array}$$

Hence, $E[f(R)] \geq rac{3}{4} \, OPT$. (QED)

The answer to Question 1 is of the following form:

The partition \mathcal{S}_1 satisfies that $E(\{v\}) = \emptyset$ for all $v \in V$ (the graph has no loops) and then $f(\mathcal{S}_1) = \sum_{e \in E} w_e^-$. On the other hand, partition \mathcal{S}_2 satisfies that all edges are internal, and then $f(\mathcal{S}_2) = \sum_{e \in E} w_e^+$.

- 2 ptsYes
- 0 pts No

The answer to Question 2 is of the following form:

An upper bound on the value of opt is the total sum of all weights, that is, $\operatorname{opt} \leq \sum_{e \in E} (w_e^- + w_e^+)$. Then, $\operatorname{OPT} \leq f(\mathcal{S}_1) + f(\mathcal{S}_2)$, which implies that $\max\{f(\mathcal{S}_1), f(\mathcal{S}_2)\} \geq \frac{1}{2} \cdot \operatorname{opt}$.

- 3 ptsYes
- 0 pts

The answer to Question 3 is of the following form:

The product $x_i \cdot x_j = 1$ if and only if nodes i,j belong to the same cluster. In this case the edge is internal and then it contributes $w_{\{i,j\}}^+ = w_{\{i,j\}}^+ x_i \cdot x_j$ to the objective value. On the other hand, $x_i \cdot x_j = 0$ and the the nodes i,j belong to different sets of the partition. The edge $\{i,j\}$ contributes $w_{\{i,j\}}^- = w_{\{i,j\}}^- (1-x_i \cdot x_j)$ to the objective value.

- 3 ptsYes
- 0 pts

Help Center

The answer to Question 4 is of the following form:

The probability that vectors v_i, v_j belong to different sides of a random hyperplane is equal to $\theta_{\{i,j\}}/\pi$. Therefore, the probability that v_i, v_j belong to the same side of the random hyperplane r_1 is equal to $1 - \theta_{\{i,j\}}/\pi$, and the same holds for the random hyperplane r_2 . Since both are drawn independently, it follows that $\operatorname{Prob}(X_{\{i,j\}}=1)=(1-\frac{1}{\pi}\,\theta_{\{i,j\}})^2$.

- 4 ptsYes
 - 0 pts

No

The answer to Question 5 is of the following form:

$$E(f(\mathcal{R})) = \sum_{\{i,j\} \in E} \left(w_{\{i,j\}}^+ E(X_{\{i,j\}}) + w_{\{i,j\}}^- (1 - E(X_{\{i,j\}})) \right)$$

$$=\sum_{\{i,j\}\in E}\Bigl(w_{\{i,j\}}^+{
m Prob}(X_{\{i,j\}}=1)+w_{\{i,j\}}^-(1-{
m Prob}(X_{\{i,j\}}=1))\Bigr)$$

$$=\sum_{\{i,j\}\in E}\Bigl(w_{\{i,j\}}^+g(heta_{\{i,j\}})+w_{\{i,j\}}^-(1-g(heta_{\{i,j\}}))\Bigr).$$

- 2 ptsYes
- 0 pts

The answer to Question 6 is of the following form:

To conclude we use the following facts: i) $heta_{\{i,j\}} = \arccos(v_i \cdot v_j)$, ii) the lemma, and iii) $Z \ge ext{opt}$. Therefore,

$$E(f(\mathcal{R})) = \sum_{\{i,j\} \in E} \Bigl(w_{\{i,j\}}^+ g(heta_{\{i,j\}}) + w_{\{i,j\}}^- (1 - g(heta_{\{i,j\}})) \Bigr)$$

$$0 \geq rac{3}{4} \sum_{\{i,j\} \in E} \Bigl(w_{\{i,j\}}^+ \cos(heta_{\{i,j\}}) + w_{ar{\{i,j\}}} (1 - \cos(heta_{\{i,j\}})) \Bigr)$$

$$=rac{3}{4}\sum_{\{i,j\}\in E}\Bigl(w_{\{i,j\}}^+v_i\cdot v_j+w_{\{i,j\}}^-(1-v_i\cdot v_j))\Bigr)$$

- $=\frac{3}{4}Z$
- $\geq \frac{3}{4}$ opt.
 - 4 ptsYes
 - 0 pts

☑ Edit submission

Comments

Visible to classmates

share your thoughts...

