

# EE393 Python for Engineers

Dr. Orhan Gökçöl orhan.gokcol@ozyegin.edu.tr

14.12.2020

2020-2021 Fall Semester

online

1

## **ICE BREAKER**

### **Image Processing using Python**

**Pillow** is a **Python** Imaging Library (PIL), which adds support for opening, manipulating, and saving images.





**RGBA** model

(899,504)

Each pixel contains 4 bytes of information for **red**, **green**, **blue** and transparency. Hence, color component has values between 0 and 255



# **Agenda**

- Dealing with data
- Pandas
- Creating datasets
- Working with datasets
- Reading data from external sources: csv, xlsx, json





## Learning objectives for 14.12.2020

- Knows basic principles of data science
- Knows how to deal with data sets using Pandas
- Knows how to import data from external resources to Pandas
- Nakes complex queries on data frame and analyse results

7

### **MIDTERM EXAM**

**DECEMBER 21, 2020; 08:40** 

- Take Home | You'll have 4 hours to complete and submit your exam.
- Exam file will be in .docx/.pages/.odt formats. You'll pick one of them and answer questions on the file.
- Asking questions is not allowed.

### **FINAL EXAM**

**JANUARY 15, 2021; 09:00** 

**Online** 

(Details will be announced later)

## Python Libraries for Data Science



## Pandas:

- adds data structures and tools designed to work with <u>table-like</u> data (similar to Series and Data Frames in R and Sheet structure in Excel)
- provides tools for data manipulation: reshaping, merging, sorting, slicing, aggregation etc.
- allows handling missing data

Link: <a href="http://pandas.pydata.org/">http://pandas.pydata.org/</a>

9

## **DATA**

The volume and variety of available data is overwhelming:

social media graphs

- Facebook Likes
- Tweets
- auto registration
- voting records, etc.

plus, we have business data



## **Example: Customer taxonomy analysis**

Consider customer data.

- Identity: Can we identify them? Who are they?
- History: What's in their past? What have they done or achieved?
- Proclivities: What attracts them? What do they like?
- Possessions: What do they have, whether purchased, acquired, found, or made?
- Activities: Can we catch them in the act? What do they do and how do they do it?
- Beliefs: How do they feel and where do they stand on issues?

### DATA IS EVERYTHING!





**<u>Ref:</u>** https://lawtomated.com/structured-data-vs-unstructured-data-what-are-they-and-why-care/



 Big Data will remain a critical part of many Al projects



- Volume
- Velocity
- Variety



# **CRISP-DM (Cross-Industry Standard Process for Data Mining) Methodology**

- Understanding business conditions.
- Understanding the data (including data collecting and assessing its suitability).
- Data preparation: transformations, cleaning, removing extreme values.
- Modeling data for the purpose of developing the model.
- Evaluating the model and a decision whether it is ready for a production implementation.
- Implementation of the model in a production environment to be used in practice.

S, Of business requirements

Production launch

Data understanding Data understanding Production launch

Evaluation

Evaluation

A group of experts, software developers, consultants, and academics created the CRISP-DM in 1990s

15

# So, why do we use Pandas?

# First and most importantly, for data cleaning purposes:

- Are there any missing data in the set?
- Are data values meaningful?
- Any extreme values?
- Data visualization using tabular output and graphics
- Data manipulation removing values, concentation etc.

### **Statistics**

- Data summarization
- Descriptive statistics
- Correlations

### Graphing

Matplotlib and seaborn integration

## **Pandas**

- Pandas is an open source library built for Python programming language & Numpy, which provides high performance data analysis tools.
- In order to work with pandas in Python, you need to import pandas library in your python environment.
- Benefits of using Panda for Data Analysis
  - It can read or write in many different data formats(integer,float,double,etc.)
  - It can calculate in all ways data is organized, i.e., across rows and down columns.
  - It can easily select subsets of data from bulky data sets and even combine multiple datasets together.
  - It has functionality to find and fill missing data.
  - It supports advanced time-series functionality(Time series forecasting is the use of a model to predict future values based on previously observed values)

17

## **Importing libraries**

Programmers generally use libraries as follows:

```
#Import Python Libraries
import numpy as np
import scipy as sp
import pandas as pd
#import matplotlib as mpl
import matplotlib.pyplot as plt
import seaborn as sns
```

Part of this handout is prepared using tutorial on <a href="https://www.learndatasci.com/tutorials">https://www.learndatasci.com/tutorials</a> and <a href="mailto:sample-data">sample data(IMDB Database)</a> is taken from Kaggle

### The conceptual model

<u>DataFrame object</u>: The pandas DataFrame is a twodimensional table of data with column and row indexes. The columns are made up of pandas Series objects.



Ref: Version 30 April 2017 - [Draft – Mark Graph – mark dot the dot graph at gmail dot com – @Mark\_Graph on twitter]



# Core components of pandas: Series and DataFrames

- The primary two components of pandas are the Series and DataFrame.
- A Series is essentially a column, and a DataFrame is a multi-dimensional table made up of a collection of Series. Both are modelled using numpy arrays.

|   | Series |   |   | Series  | • |   | Data   | rame    |
|---|--------|---|---|---------|---|---|--------|---------|
|   | apples |   |   | oranges |   |   | apples | oranges |
| 0 | 3      |   | 0 | 0       |   | 0 | 3      | 0       |
| 1 | 2      | + | 1 | 3       | = | 1 | 2      | 3       |
| 2 | 0      |   | 2 | 7       |   | 2 | 0      | 7       |
| 3 | 1      |   | 3 | 2       |   | 3 | 1      | 2       |

You can create
"Series" and
"DataFrame"
from the
scratch of read
data from
some data
resources like
csv, json, xlsx,
database ...

**DataFrame** is a 2-dimensional labeled data structure with columns of potentially different types. It is generally the most commonly used pandas object.

21

Sorios

## **Creating data frames from the scratch**

Then, pass it to pandas **DataFrame** as follows

purchases = pd.DataFrame(data)



### Series

```
#working with series
import pandas as pd
s = pd.Series([1,2,3,4,5],index = ['a','b','c','d','e'])
print (s)
#retrieve multiple elements
print (s['a':'e':2])
#retrieve using index
print (s[2])
                           A Series is a single vector of data (like a
     1
                           NumPy array) with an index that labels
b
     2
                           each element in the vector.
     3
C
     4
d
                           DataFrames consist of one or more Series
     5
                          Series are numpy arrays
dtype: int64
     1
                        s1 = Series(range(0,4)) # -> 0, 1, 2, 3
     3
C
                        s2 = Series(range(1,5)) # -> 1, 2, 3, 4
     5
                        s3 = s1 + s2
                                                   \# -> 1, 3, 5, 7
dtype: int64
```

23

### **DataFrame**

### pandas.DataFrame( data, index, columns, dtype, copy)

#### data

data takes various forms like ndarray, series, map, lists, dict, constants and also another DataFrame.

#### index

For the row labels, the Index to be used for the resulting frame is Optional Default np.arange(n) if no index is passed.

#### columns

For column labels, the optional default syntax is - np.arange(n). This is only true if no index is passed.

#### dtype

Data type of each column.

#### сору

This command (or whatever it is) is used for copying of data, if the default is False.

### **DataFrame**

- Each (key, value) item in data corresponds to a column in the resulting DataFrame.
- The **Index** of this DataFrame was given to us on creation as the numbers 0-3, but we could also create our own when we initialize the DataFrame.

purchases = pd.DataFrame(data, index=['June', 'Robert', 'Lily', 'David'])

apples oranges

June 3 0

Robert 2 3

Lily 0 7

David 1 2

25

# Creating dataframe from a numpy array

```
#Create DataFrame from numpy array
tmp1 = np.array([[1, 2, 3], [2, 4, 6],
                      [3, 0, 4], [1, 1, 1]])
print (tmp1)
#create dataframe
# Create the dataframe
df = pd.DataFrame(tmp1)
print (df)
[[1 2 3]
 [2 4 6]
 [3 0 4]
 [1 1 1]]
     1 2
0 1 2 3
1 2 4 6
2 3 0 4
3 1 1 1
```

# **Creating a data frame from a properly-formatted python list**

```
#creating a data frame from a list which contains properly formatted values
# initialize list of lists
data = [['tom', 10,'m'], ['nick', 15,'m'], ['juli', 14,'f']]
# Create the pandas DataFrame
df2 = pd.DataFrame(data, columns = ['Name', 'Age', 'Gender'])
df2
  Name Age Gender
    tom
          10
                 m
1
          15
    nick
                 m
2
    juli
         14
                  f
```

27

## Creating data from list of dicts

```
# creating data from list of dicts
import pandas as pd

# Initialise data to lists.
data = [{'a': 1, 'b': 2, 'c':3}, {'a':10, 'b': 20, 'c': 30}]

# Creates DataFrame.
df = pd.DataFrame(data)

# Print the data
df

a b c

0 1 2 3

1 10 20 30
```

```
# Another df creation example
import pandas as pd
# Intitialise data of lists
data = [{'b': 2, 'c':3}, {'a': 10, 'b': 20, 'c': 30}]
# Creates padas DataFrame by passing lists of dictionaries and row index.
df = pd.DataFrame(data, index =['first', 'second'])
# Print the data - if there is some missing value in df, it becomes NaN
df
        b
          C
                a
  first
        2
          3 NaN
second 20 30 10.0

    Index can explicitly be specified

    Any non-existent value becomes NaN
```

```
#row and column indices at the same time
import pandas as pd
# Intitialise lists data.
data = [{'a': 1, 'b': 2}, {'a': 5, 'b': 10, 'c': 20}]
# With two column indices, values same as dictionary keys
df1 = pd.DataFrame(data, index=['first', 'second'], columns=['a', 'b'])
# With two column indices with one index with other name
df2 = pd.DataFrame(data, index=['first', 'second'], columns=['a', 'b1'];
# print for first data frame
print (df1, "\n")
# Print for second DataFrame.
print (df2)
            b
        a
first
       1
          2
second 5 10
        a b1
first
        1 NaN
second 5 NaN
```

```
#create a Series (i.e. a column data)
s = pd.Series([1,3,5,np.nan,6,8])
s1 = pd.Series(np.linspace(2,5,6))
#create an index column
dates = pd.date_range('20190101', periods=6)
mydata = { "dates": dates, 'First': s, 'Second': s1 }
mydf = pd.DataFrame(mydata)
mydf
       dates First Second
0 2019-01-01
                       2.0
               1.0
1 2019-01-02
               3.0
                       2.6
2 2019-01-03
                       3.2
               5.0
3 2019-01-04
                       3.8
              NaN
4 2019-01-05
                       4.4
               6.0
5 2019-01-06
               8.0
                       5.0
```

# **Tidy data**

In a tidy data set:







Each **variable** is saved in its own **column** 

Each **observation** is saved in its own **row** 

However, unfortunately, this is not what we have in real life. In real data sets, there are "missing data", "extreme" data (i.e. anamoly), "duplicate" data, "incomplete" data (you need to make it complete using other data sources) ... and so on.

Hence, a lot of effort is needed to make data set clean, tidy and business ready. Remember that, business decisions are made based on facts which are derived from DATA –CORRECT DATA!!!

### Adding a new column to a df

```
import pandas as pd
# Define a dictionary containing Students data
data = {'Name': ['Ali', 'Natalie', 'Jon', 'Portman'],
        'Height': [1.87, 1.55, 1.70, 1.62],
        'Qualification': ['Msc', 'MA', 'Msc', 'PhD']}
# Convert the dictionary into DataFrame
df = pd.DataFrame(data)
# Declare a list that is to be converted into a column
address = ['Istanbul', 'USA', 'North', 'StarWars']
# Using 'Address' as the column name
# and equating it to the list
df['Address'] = address
                                                        pandas01.ipynb
# Observe the result
    Name Height Qualification Address
       Ali
                        Msc Istanbul
            1.87
   Natalie
            1.55
                         MA
                                USA
      Jon
            1.70
                        Msc
                               North
3 Portman
            1.62
                        PhD StarWars
```

33

### Adding a new column to a df

```
#add another column to an existing df using column location
# Using DataFrame.insert() to add a column
df.insert(2, "Age", [21, 23, 24, 21], True)
#if you allow duplication, put True; otherwise False
# Observe the result
df
```

|   | Name    | Height | Age | Age | Qualification | Address  |
|---|---------|--------|-----|-----|---------------|----------|
| 0 | Ali     | 1.87   | 21  | 21  | Msc           | Istanbul |
| 1 | Natalie | 1.55   | 23  | 23  | MA            | USA      |
| 2 | Jon     | 1.70   | 24  | 24  | Msc           | North    |
| 3 | Portman | 1.62   | 21  | 21  | PhD           | StarWars |

# Dropping a row and column

```
x=df.drop([0,2])
x

Name Height Age Qualification Address

1 Natalie 1.55 23 MA USA
```

21

x=df.drop('Qualification', axis=1)
x

Name Height Age Address

StarWars

### **Dropping a column**

1.62

3 Portman

| 0 | Ali     | 1.87 | 21 | Istanbul |
|---|---------|------|----|----------|
| 1 | Natalie | 1.55 | 23 | USA      |
| 2 | Jon     | 1.70 | 24 | North    |
| 3 | Portman | 1.62 | 21 | StarWars |

PhD

35

## Adding new rows to a df

**Dropping rows** 

```
import pandas as pd
# Creating the first Dataframe using dictionary
df1 = df = pd.DataFrame({"a":[1, 2, 3, 4],}
                         "b":[5, 6, 7, 8]})
# Creating the Second Dataframe using dictionary
df2 = pd.DataFrame({"a":[1, 2, 3],
                    "b": [5, 6, 7]})
df3=df1.append(df2)
df3
  a b
0 1 5
1 2 6
2 3 7
3 4 8
0 1 5
1 2 6
```

**2** 3 7



Reading data from a json file

```
#reading datafrom a json file
df = pd.read_json('purchases.json')
index_col = ['June', 'Robert', 'Lily', 'David']
df.index = index col
df
      apples oranges
 June
Robert
                  3
          0
                  7
  Lily
David
                              purchases.json
                             "apples":
                                           ["3", "2", "0", "1"],
                             "oranges": ["0", "3", "7", "2"]
```



movies\_df.head() movies\_df.head() Runtime Revenue Director Rating Rank Genre Description Actors Year Votes Metascore (Minutes) (Millions) A group of Chris Pratt, Vin Diesel, **Guardians of** James intergalactic Bradley Cooper, Zoe 2014 121 8.1 757074 Action, Adventure, Sci-Fi 333.13 76.0 the Galaxy criminals are Gunn forced ... Following Noomi Rapace, Logan clues to the Ridley 2 Adventure, Mystery, Sci-Fi Marshall-Green, 2012 7.0 485820 126.46 65.0 **Prometheus** origin of 124 Scott Michael Fa... te... Three girls are James McAvoy, Anya M. Night kidnapped by a Taylor-Joy, Haley Lu 2016 Richar... Split Horror, Thriller 117 7.3 157606 138 12 62.0 man with a Shyamalan diag... Matthew In a city of Christophe McConaughey,Reese humanoid 270.32 59.0 Sina 4 Animation.Comedy.Family 108 60545 animals, a Lourdelet Witherspoon, Seth hustling thea... A secret Will Smith, Jared Leto, government Suicide agency recruits some 5 Action, Adventure, Fantasy David Ayer Margot Robbie, Viola 2016 123 6.2 393727 325.02 40.0 Squad **Try:** head(7), head(12), tail()

## **Getting info about your data**

```
movies_df.info()
<class 'pandas.core.frame.DataFrame'>
Index: 1000 entries, Guardians of the Galaxy to Nine Lives
Data columns (total 11 columns):
Rank
                     1000 non-null int64
Genre
                     1000 non-null object
                   1000 non-null object
Description
Director
                   1000 non-null object
Actors
                    1000 non-null object
                    1000 non-null int64
Runtime (Minutes) 1000 non-null int64
Rating
                    1000 non-null float64
                     1000 non-null int64
Votes
Revenue (Millions) 872 non-null float64
                                               Missing values!!!
Metascore
                     936 non-null float64
dtypes: float64(3), int64(4), object(4)
memory usage: 93.8+ KB
```

**.info()** provides the essential details about your dataset, such as the number of rows and columns, the number of non-null values, what type of data is in each column, and how much memory your DataFrame is using.

Notice in our movies dataset we have some obvious missing values in the Revenue and Metascore columns.

41

## shape

```
movies_df.shape
(1000, 11)
```

- Note that .shape has no parentheses and is a simple tuple of format (rows, columns). So we have 1000 rows and 11 columns in our movies DataFrame.
- You'll be going to .shape a lot when cleaning and transforming data. For example, you might filter some rows based on some criteria and then want to know quickly how many rows were removed.

## **Handling duplicates**

```
temp_df = movies_df.append(movies_df)
temp_df.shape

(2000, 11)

temp_df = temp_df.drop_duplicates()
temp_df.shape

(1000, 11)

Or, (you don't need to make an assignment to a variable)

temp_df.drop_duplicates(inplace=True)
```

43

keep

Another important argument for **drop\_duplicates()** is keep, which has three possible options:

- first: (default) Drop duplicates except for the first occurrence.
- last: Drop duplicates except for the last occurrence.
- False: Drop all duplicates.

Since we didn't define the keep argument in the previous example it was defaulted to first. This means that if two rows are the same pandas will drop the second row and keep the first row. Using last has the opposite effect: the first row is dropped.

keep, on the other hand, will drop all duplicates if chosen as False. If two rows are the same then both will be dropped. Watch what happens to

```
Another important argument for drop_duplicates() is keep, which first: (default) Drop duplicates except for the first occurrence last: Drop duplicates except for the last occurrence.

False: Drop all duplicates.

'''

temp_df = movies_df.append(movies_df) # make a new copy
temp_df.drop_duplicates(inplace=True, keep=False)
temp_df.shape
```

(0, 11)

## Column clean-up

- Many times datasets will have verbose column names with symbols, upper and lowercase words, spaces, and typos. To make selecting data by column name easier we can spend a little time cleaning up their names.
- Here's how to print the column names of our dataset:

```
#make some modifications on column names
movies_df.rename(columns={
        'Runtime (Minutes)': 'Runtime',
        'Revenue (Millions)': 'Revenue_millions'
    }, inplace=True)
movies_df.columns
Index(['Rank', 'Genre', 'Description', 'Director', 'Actors', 'Year', 'Runtime',
       'Rating', 'Votes', 'Revenue_millions', 'Metascore'],
      dtype='object')
#make column names all small letters
movies_df.columns = ['rank', 'genre', 'description', 'director', 'actors', 'year', 'runtime',
                     'rating', 'votes', 'revenue_millions', 'metascore']
movies_df.columns
Index(['rank', 'genre', 'description', 'director', 'actors', 'year', 'runtime',
       'rating', 'votes', 'revenue_millions', 'metascore'],
      dtype='object')
```

# What about some pythoning:

47

# Dealing with missing values: is\_null()

| movies_df.isnull()      |       |       |             |          |        |       |         |        |       |                  |           |
|-------------------------|-------|-------|-------------|----------|--------|-------|---------|--------|-------|------------------|-----------|
|                         | RANK  | GENRE | DESCRIPTION | DIRECTOR | ACTORS | YEAR  | RUNTIME | RATING | VOTES | REVENUE_MILLIONS | METASCORE |
| Title                   |       |       |             |          |        |       |         |        |       |                  |           |
| Guardians of the Galaxy | False | False | False       | False    | False  | False | False   | False  | False | False            | False     |
| Prometheus              | False | False | False       | False    | False  | False | False   | False  | False | False            | False     |
| Split                   | False | False | False       | False    | False  | False | False   | False  | False | False            | False     |
| Sing                    | False | False | False       | False    | False  | False | False   | False  | False | False            | False     |
| Suicide Squad           | False | False | False       | False    | False  | False | False   | False  | False | False            | False     |
|                         |       |       |             |          |        |       |         |        |       |                  |           |
| Secret in Their Eyes    | False | False | False       | False    | False  | False | False   | False  | False | True             | False     |
| Hostel: Part II         | False | False | False       | False    | False  | False | False   | False  | False | False            | False     |
| Step Up 2: The Streets  | False | False | False       | False    | False  | False | False   | False  | False | False            | False     |
| Search Party            | False | False | False       | False    | False  | False | False   | False  | False | True             | False     |
| Nine Lives              | False | False | False       | False    | False  | False | False   | False  | False | False            | False     |
| 000 rows × 11 columns   |       |       |             |          |        |       |         |        |       |                  |           |

To count the number of nulls in each column we use an aggregate function for summing:

We can see now that our data has **128** missing values for revenue\_millions and **64** missing values for metascore.

49

## Removing missing values

- Data Scientists and Analysts regularly face the dilemma of dropping or imputing null values, and is a decision that requires intimate knowledge of your data and its context. Overall, removing null data is only suggested if you have a small amount of missing data.
- Remove nulls is pretty simple:

```
When inplace= True is passed, the data is
movies_df.dropna(inplace=True)
                                        renamed in place (it returns nothing),
movies_df.info()
<class 'pandas.core.frame.DataFrame'>
Index: 838 entries, Guardians of the Galaxy to Nine Lives
Data columns (total 11 columns):
RANK
                     838 non-null int64
GENRE
                     838 non-null object
DESCRIPTION 838 non-null object
DIRECTOR
                     838 non-null object
ACTORS
                   838 non-null object
YEAR
                   838 non-null int64
RUNTIME 838 non-null int64
RATING 838 non-null float64
VOTES 838 non-null int64
REVENUE_MILLIONS 838 non-null float64
METASCORE 838 non-null float64
METASCORE
dtypes: float64(3), int64(4), object(4)
memory usage: 78.6+ KB
```

## **Dropping columns**

Other than just dropping rows, you can also drop columns with null values by setting axis=1:

```
movies df.dropna(axis=1,inplace=True)
movies df.info()
<class 'pandas.core.frame.DataFrame'>
Index: 1000 entries, Guardians of the Galaxy to Nine Lives
Data columns (total 9 columns):
Rank
                     1000 non-null int64
Genre
                     1000 non-null object
Description
                     1000 non-null object
Director
                     1000 non-null object
Actors
                     1000 non-null object
                     1000 non-null int64
Year
Runtime (Minutes)
                     1000 non-null int64
                     1000 non-null float64
Rating
Votes
                     1000 non-null int64
dtypes: float64(1), int64(4), object(4)
memory usage: 78.1+ KB
```

51

Extracting a certain column from a df -Using square brackets is the general way we select columns in a DataFrame.

```
movies_df = pd.read_csv("IMDB-Movie-Data.csv", index_col="Title")
movies df.rename(columns={
        'Runtime (Minutes)': 'Runtime',
        'Revenue (Millions)': 'Revenue_millions'
    }, inplace=True)
movies_df.columns = [col.lower() for col in movies_df]
revenue = movies_df['revenue_millions']
revenue.head()
Title
                           333.13
Guardians of the Galaxy
Prometheus
                           126.46
Split
                           138.12
Sing
                           270.32
Suicide Squad
                           325.02
Name: revenue_millions, dtype: float64
```



# Summary statistics with the df

| _df.describ | e()                                                                            |                                                                                                                                          |                                                                                                                                                                                                                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
|-------------|--------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| rank        | year                                                                           | runtime                                                                                                                                  | rating                                                                                                                                                                                                                                                                                                               | votes                                                                                                                                                                                                                                                                                                                                                                                                          | revenue_millions                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | metascore                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| 000.00000   | 1000.000000                                                                    | 1000.000000                                                                                                                              | 1000.000000                                                                                                                                                                                                                                                                                                          | 1.000000e+03                                                                                                                                                                                                                                                                                                                                                                                                   | 1000.000000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 936.000000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| 500.500000  | 2012.783000                                                                    | 113.172000                                                                                                                               | 6.723200                                                                                                                                                                                                                                                                                                             | 1.698083e+05                                                                                                                                                                                                                                                                                                                                                                                                   | 82.956376                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 58.985043                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| 288.819436  | 3.205962                                                                       | 18.810908                                                                                                                                | 0.945429                                                                                                                                                                                                                                                                                                             | 1.887626e+05                                                                                                                                                                                                                                                                                                                                                                                                   | 96.412043                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 17.194757                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| 1.000000    | 2006.000000                                                                    | 66.000000                                                                                                                                | 1.900000                                                                                                                                                                                                                                                                                                             | 6.100000e+01                                                                                                                                                                                                                                                                                                                                                                                                   | 0.000000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 11.000000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| 250.750000  | 2010.000000                                                                    | 100.000000                                                                                                                               | 6.200000                                                                                                                                                                                                                                                                                                             | 3.630900e+04                                                                                                                                                                                                                                                                                                                                                                                                   | 17.442500                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 47.000000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| 500.500000  | 2014.000000                                                                    | 111.000000                                                                                                                               | 6.800000                                                                                                                                                                                                                                                                                                             | 1.107990e+05                                                                                                                                                                                                                                                                                                                                                                                                   | 60.375000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 59.500000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| 750.250000  | 2016.000000                                                                    | 123.000000                                                                                                                               | 7.400000                                                                                                                                                                                                                                                                                                             | 2.399098e+05                                                                                                                                                                                                                                                                                                                                                                                                   | 99.177500                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 72.000000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| 000.00000   | 2016.000000                                                                    | 191.000000                                                                                                                               | 9.000000                                                                                                                                                                                                                                                                                                             | 1.791916e+06                                                                                                                                                                                                                                                                                                                                                                                                   | 936.630000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 100.000000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
|             | 500.500000<br>288.819436<br>1.000000<br>250.750000<br>500.500000<br>750.250000 | 2012.783000<br>288.819436 3.205962<br>1.000000 2006.000000<br>250.750000 2010.000000<br>500.500000 2014.000000<br>750.250000 2016.000000 | 500.500000       2012.783000       113.172000         288.819436       3.205962       18.810908         1.000000       2006.000000       66.000000         250.750000       2010.000000       100.000000         500.500000       2014.000000       111.000000         750.250000       2016.000000       123.000000 | 500.500000       2012.783000       113.172000       6.723200         288.819436       3.205962       18.810908       0.945429         1.000000       2006.000000       66.000000       1.900000         250.750000       2010.000000       100.000000       6.200000         500.500000       2014.000000       111.000000       6.800000         750.250000       2016.000000       123.000000       7.400000 | 500.500000       2012.783000       113.172000       6.723200       1.698083e+05         288.819436       3.205962       18.810908       0.945429       1.887626e+05         1.000000       2006.000000       66.000000       1.900000       6.100000e+01         250.750000       2010.000000       100.000000       6.200000       3.630900e+04         500.500000       2014.000000       111.000000       6.800000       1.107990e+05         750.250000       2016.000000       123.000000       7.400000       2.399098e+05 | 500.500000       2012.783000       113.172000       6.723200       1.698083e+05       82.956376         288.819436       3.205962       18.810908       0.945429       1.887626e+05       96.412043         1.000000       2006.000000       66.000000       1.900000       6.100000e+01       0.000000         250.750000       2010.000000       100.000000       6.200000       3.630900e+04       17.442500         500.500000       2014.000000       111.000000       6.800000       1.107990e+05       60.375000         750.250000       2016.000000       123.000000       7.400000       2.399098e+05       99.177500 |

Understanding which numbers are continuous also comes in handy when thinking about the type of plot to use to represent your data visually.

.describe() can also be used on a categorical variable to get the count of rows, unique count of categories, top category, and freq of top category:

```
movies_df['genre'].describe()

count 1000
unique 207
top Action,Adventure,Sci-Fi
freq 50
Name: genre, dtype: object
```

This tells us that the **genre** column has 207 unique values, the top value is Action/Adventure/Sci-Fi, which shows up 50 times (freq).

55

.value\_counts() can tell us the frequency of all values in a column:

```
movies_df['genre'].value_counts().head(10)
Action, Adventure, Sci-Fi
                                 50
                                 48
Drama
Comedy, Drama, Romance
                                 35
Comedy
                                 32
Drama, Romance
                                 31
Comedy, Drama
                                 27
Animation, Adventure, Comedy
                                 27
Action, Adventure, Fantasy
                                 27
Comedy, Romance
                                 26
Crime, Drama, Thriller
                                 24
Name: genre, dtype: int64
```

# Relationship between continus variables

By using the correlation method .corr() we can generate the relationship between each continuous variable:

|                  | rank      | year      | runtime   | rating    | votes     | revenue_millions | metascore |
|------------------|-----------|-----------|-----------|-----------|-----------|------------------|-----------|
| rank             | 1.000000  | -0.261605 | -0.221739 | -0.219555 | -0.283876 | -0.252996        | -0.191869 |
| year             | -0.261605 | 1.000000  | -0.164900 | -0.211219 | -0.411904 | -0.117562        | -0.079305 |
| runtime          | -0.221739 | -0.164900 | 1.000000  | 0.392214  | 0.407062  | 0.247834         | 0.211978  |
| rating           | -0.219555 | -0.211219 | 0.392214  | 1.000000  | 0.511537  | 0.189527         | 0.631897  |
| votes            | -0.283876 | -0.411904 | 0.407062  | 0.511537  | 1.000000  | 0.607941         | 0.325684  |
| revenue_millions | -0.252996 | -0.117562 | 0.247834  | 0.189527  | 0.607941  | 1.000000         | 0.133328  |
| metascore        | -0.191869 | -0.079305 | 0.211978  | 0.631897  | 0.325684  | 0.133328         | 1.000000  |

57

# **Subsetting**

```
subset = movies_df[['genre', 'rating']]
subset.head()
                                           genre rating
                   Title
Guardians of the Galaxy
                           Action, Adventure, Sci-Fi
                                                      8.1
           Prometheus
                         Adventure, Mystery, Sci-Fi
                                                      7.0
                   Split
                                    Horror, Thriller
                                                      7.3
                   Sing Animation, Comedy, Family
                                                      7.2
         Suicide Squad Action, Adventure, Fantasy
                                                      6.2
```

```
#extracting a certain row located by name
prom = movies_df.loc["Prometheus"]
prom
rank
genre
                                              Adventure, Mystery, Sci-Fi
description
                    Following clues to the origin of mankind, a te...
                                                          Ridley Scott
director
actors
                    Noomi Rapace, Logan Marshall-Green, Michael Fa...
                                                                   2012
year
runtime
                                                                    124
rating
                                                                 485820
votes
                                                                 126.46
revenue_millions
metascore
Name: Prometheus, dtype: object
#extracting a certain row located by numerical index
prom = movies_df.iloc[1]
prom
rank
genre
                                              Adventure, Mystery, Sci-Fi
                    Following clues to the origin of mankind, a te...
description
                                                          Ridley Scott
director
                    Noomi Rapace, Logan Marshall-Green, Michael Fa...
actors
                                                                   2012
year
runtime
                                                                    124
rating
                                                                 485820
votes
revenue_millions
                                                                 126.46
metascore
                                                                     65
Name: Prometheus, dtype: object
```

| 520                 | rank | genre                      | description                                                | director                | actors                                                  | year | runtime | rating | votes  | revenue_millions | metascor |
|---------------------|------|----------------------------|------------------------------------------------------------|-------------------------|---------------------------------------------------------|------|---------|--------|--------|------------------|----------|
| Title<br>Prometheus | 2    | Adventure, Mystery, Sci-Fi | Following<br>clues to the<br>origin of<br>mankind, a<br>te | Ridley<br>Scott         | Noomi Rapace, Logan<br>Marshall-Green,<br>Michael Fa    | 2012 | 124     | 7.0    | 485820 | 126.46           | 65.      |
| Split               | 3    | Horror,Thriller            | Three girls<br>are<br>kidnapped by<br>a man with a<br>diag | M. Night<br>Shyamalan   | James McAvoy, Anya<br>Taylor-Joy, Haley Lu<br>Richar    | 2016 | 117     | 7.3    | 157606 | 138.12           | 62.0     |
| Sing                | 4    | Animation,Comedy,Family    | In a city of<br>humanoid<br>animals, a<br>hustling<br>thea | Christophe<br>Lourdelet | Matthew<br>McConaughey,Reese<br>Witherspoon, Seth<br>Ma | 2016 | 108     | 7.2    | 60545  | 270.32           | 59.0     |

## Conditional selection

61

|    |                        | Logic in Python (and panda | as)                                 |
|----|------------------------|----------------------------|-------------------------------------|
| <  | Less than              | !=                         | Not equal to                        |
| >  | Greater than           | df.column.isin(values)     | Group membership                    |
| == | Equals                 | pd.isnull( <i>obj</i> )    | Is NaN                              |
| <= | Less than or equals    | pd.notnull( <i>obj</i> )   | Is not NaN                          |
| >= | Greater than or equals | &, ,~,^,df.any(),df.all()  | Logical and, or, not, xor, any, all |

Conditions are given in [ ] and it makes filtering based on the conditions

## How about this selection?

|                          | rank | genre                      | description                                             | director        | actors                                                   | year | runtime | rating | votes  | revenue_millions | metascore |
|--------------------------|------|----------------------------|---------------------------------------------------------|-----------------|----------------------------------------------------------|------|---------|--------|--------|------------------|-----------|
| Title                    |      |                            |                                                         |                 |                                                          |      |         |        |        |                  |           |
| Prometheus               | 2    | Adventure, Mystery, Sci-Fi | Following clues to<br>the origin of<br>mankind, a te    | Ridley<br>Scott | Noomi Rapace,<br>Logan Marshall-<br>Green, Michael<br>Fa | 2012 | 124     | 7.0    | 485820 | 126.46           | 65.0      |
| The Martian              | 103  | Adventure,Drama,Sci-Fi     | An astronaut<br>becomes<br>stranded on Mars<br>after hi | Ridley<br>Scott | Matt Damon,<br>Jessica Chastain,<br>Kristen Wiig, Ka     | 2015 | 144     | 8.0    | 556097 | 228.43           | 80.0      |
| Robin Hood               | 388  | Action,Adventure,Drama     | In 12th century<br>England, Robin<br>and his band of    | Ridley<br>Scott | Russell Crowe,<br>Cate Blanchett,<br>Matthew<br>Macfady  | 2010 | 140     | 6.7    | 221117 | 105.22           | 53.0      |
| American<br>Gangster     | 471  | Biography,Crime,Drama      | In 1970s America,<br>a detective works<br>to bring d    | Ridley<br>Scott | Denzel<br>Washington,<br>Russell Crowe,<br>Chiwetel Eji  | 2007 | 157     | 7.8    | 337835 | 130.13           | 76.0      |
| xodus: Gods<br>and Kings | 517  | Action,Adventure,Drama     | The defiant leader<br>Moses rises up<br>against the     | Ridley<br>Scott | Christian Bale,<br>Joel Edgerton,<br>Ben Kingsley, S     | 2014 | 150     | 6.0    | 137299 | 65.01            | 52.0      |
| The<br>Counselor         | 522  | Crime, Drama, Thriller     | A lawyer finds<br>himself in over his<br>head when h    | Ridley<br>Scott | Michael<br>Fassbender,<br>Penélope Cruz,<br>Cameron Dia  | 2013 | 117     | 5.3    | 84927  | 16.97            | 48.0      |
| A Good Year              | 531  | Comedy, Drama, Romance     | A British<br>investment broker<br>inherits his<br>uncle | Ridley<br>Scott | Russell Crowe,<br>Abbie Cornish,<br>Albert Finney, M     | 2006 | 117     | 6.9    | 74674  | 7.46             | 47.0      |
| Body of Lies             | 738  | Action, Drama, Romance     | A CIA agent on<br>the ground in<br>Jordan hunts         | Ridley<br>Scott | Leonardo<br>DiCaprio, Russell<br>Crowe, Mark             | 2008 | 128     | 7.1    | 182305 | 39.38            | 57.0      |

63

## How about this selection?

|                    | rank | genre                      | description                                            | director             | actors                                                  | year | runtime | rating | votes   | revenue_millions | metascore |
|--------------------|------|----------------------------|--------------------------------------------------------|----------------------|---------------------------------------------------------|------|---------|--------|---------|------------------|-----------|
| Title              |      |                            |                                                        |                      |                                                         |      |         |        |         |                  |           |
| Interstellar       | 37   | Adventure,Drama,Sci-<br>Fi | A team of<br>explorers travel<br>through a<br>wormhole | Christopher<br>Nolan | Matthew<br>McConaughey,<br>Anne Hathaway,<br>Jessica Ch | 2014 | 169     | 8.6    | 1047747 | 187.99           | 74.0      |
| The Dark<br>Knight | 55   | Action,Crime,Drama         | When the menace known as the Joker wreaks havo         | Christopher<br>Nolan | Christian Bale,<br>Heath Ledger,<br>Aaron Eckhart,Mi    | 2008 | 152     | 9.0    | 1791916 | 533.32           | 82.0      |
| Inception          | 81   | Action,Adventure,Sci-      | A thief, who<br>steals corporate<br>secrets through    | Christopher<br>Nolan | Leonardo DiCaprio,<br>Joseph Gordon-<br>Levitt, Ellen   | 2010 | 148     | 8.8    | 1583625 | 292.57           | 74.0      |

|                    |      | ions using and/or opes_df['director'] == |                                                      |                      |                                                          | ector | '] == 'F | Ridley | Scott')] | .head()          |           |
|--------------------|------|------------------------------------------|------------------------------------------------------|----------------------|----------------------------------------------------------|-------|----------|--------|----------|------------------|-----------|
| Title              | rank | genre                                    | description                                          | director             | actors                                                   | year  | runtime  | rating | votes    | revenue_millions | metascore |
| Prometheus         | 2    | Adventure,Mystery,Sci-<br>Fi             | Following clues<br>to the origin of<br>mankind, a te | Ridley Scott         | Noomi Rapace,<br>Logan Marshall-<br>Green, Michael<br>Fa | 2012  | 124      | 7.0    | 485820   | 126.46           | 65.0      |
| Interstellar       | 37   | Adventure,Drama,Sci-<br>Fi               | A team of explorers travel through a wormhole        | Christopher<br>Nolan | Matthew<br>McConaughey,<br>Anne Hathaway,<br>Jessica Ch  | 2014  | 169      | 8.6    | 1047747  | 187.99           | 74.0      |
| The Dark<br>Knight | 55   | Action,Crime,Drama                       | When the menace known as the Joker wreaks havo       | Christopher<br>Nolan | Christian Bale,<br>Heath Ledger,<br>Aaron Eckhart,Mi     | 2008  | 152      | 9.0    | 1791916  | 533.32           | 82.0      |
| The<br>Prestige    | 65   | Drama,Mystery,Sci-Fi                     | Two stage magicians engage in competitive one        | Christopher<br>Nolan | Christian Bale,<br>Hugh Jackman,<br>Scarlett Johanss     | 2006  | 130      | 8.5    | 913152   | 53.08            | 66.0      |
| Inception          | 81   | Action,Adventure,Sci-<br>Fi              | A thief, who<br>steals corporate<br>secrets through  | Christopher<br>Nolan | Leonardo DiCaprio,<br>Joseph Gordon-<br>Levitt, Ellen    | 2010  | 148      | 8.8    | 1583625  | 292.57           | 74.0      |

|                    | rank | genre                       | description                                            | director             | actors                                                   | year | runtime | rating | votes   | revenue_million |
|--------------------|------|-----------------------------|--------------------------------------------------------|----------------------|----------------------------------------------------------|------|---------|--------|---------|-----------------|
| Title              | 2    | Adventure,Mystery,Sci-Fi    | Following clues<br>to the origin of<br>mankind, a te   | Ridley Scott         | Noomi Rapace,<br>Logan Marshall-<br>Green, Michael<br>Fa | 2012 | 124     | 7.0    | 485820  | 126.40          |
| Interstellar       | 37   | Adventure,Drama,Sci-<br>Fi  | A team of<br>explorers travel<br>through a<br>wormhole | Christopher<br>Nolan | Matthew<br>McConaughey,<br>Anne Hathaway,<br>Jessica Ch  | 2014 | 169     | 8.6    | 1047747 | 187.9           |
| The Dark<br>Knight | 55   | Action,Crime,Drama          | When the menace known as the Joker wreaks havo         | Christopher<br>Nolan | Christian Bale,<br>Heath Ledger,<br>Aaron Eckhart,Mi     | 2008 | 152     | 9.0    | 1791916 | 533.3           |
| The<br>Prestige    | 65   | Drama,Mystery,Sci-Fi        | Two stage magicians engage in competitive one          | Christopher<br>Nolan | Christian Bale,<br>Hugh Jackman,<br>Scarlett Johanss     | 2006 | 130     | 8.5    | 913152  | 53.0            |
| Inception          | 81   | Action,Adventure,Sci-<br>Fi | A thief, who<br>steals corporate<br>secrets through    | Christopher<br>Nolan | Leonardo DiCaprio,<br>Joseph Gordon-<br>Levitt, Ellen    | 2010 | 148     | 8.8    | 1583625 | 292.5           |

```
#all movies that were released between 2005 and 2010, have a rating above 8.0,
#but made below the 25th percentile in revenue.
movies_df[
    ((movies_df['year'] >= 2005) & (movies_df['year'] <= 2010))
& (movies_df['rating'] > 8.0)
    & (movies_df['revenue_millions'] < movies_df['revenue_millions'].quantile(0.25))
           rank
                             genre
                                        description
                                                             director
                                                                                    actors year runtime rating
                                                                                                                     votes revenue_millions
     Title
                                      Two friends are
                                                                               Aamir Khan,
                     Comedy, Drama
  3 Idiots 431
                                                                           Madhavan, Mona 2009
                                                                                                              8.4 238789
                                        searching for
                                                      Rajkumar Hirani
                                                                                                      170
                                                                                                                                        6.5
                                                                       Singh, Sharman Joshi
                                     their long lost ...
                                        In 1984 East
                                                       Florian Henckel
                                                                       Ulrich Mühe, Martina
                                      Berlin, an agent
The Lives
                       Drama,Thriller
                                                                          Gedeck, Sebastian 2006
            477
                                                                 von
                                                                                                      137
                                                                                                              8.5 278103
                                                                                                                                       11.2
 of Others
                                        of the secret
                                                       Donnersmarck
                                                                                Koch, Ul...
                                       Twins journey
                                                                             Lubna Azabal,
                                        to the Middle
Incendies 714 Drama, Mystery, War
                                                      Denis Villeneuve Mélissa Désormeaux-
                                                                                           2010
                                                                                                       131
                                                                                                              8.2 92863
                                                                                                                                        6.8
                                     East to discover
                                                                            Poulin, Maxim...
                                       An eight-year-
                                                                           Darsheel Safary,
    Taare
                                           old boy is
                                                                         Aamir Khan, Tanay 2007
Chheda, Sac...
  Zameen
            992 Drama, Family, Music
                                                          Aamir Khan
                                                                                                      165
                                                                                                              8.5 102697
                                                                                                                                        1.20
                                      thought to be a
                                             lazy ...
```

| def ratin<br>if x<br>r<br>else: | g_func<br>>= 8.0<br>eturn<br>eturn | "good"       |                  | ries df[ <mark>"ra</mark>                                  | ting"].a        | pplv(rati                                                         | na fu | nction) |        |        |                  |           |                 |
|---------------------------------|------------------------------------|--------------|------------------|------------------------------------------------------------|-----------------|-------------------------------------------------------------------|-------|---------|--------|--------|------------------|-----------|-----------------|
| movies_df                       | . head (                           | 2)           |                  | description                                                |                 |                                                                   |       | runtime | rating | votes  | revenue_millions | metascore | rating_category |
| Guardians<br>of the<br>Galaxy   | s<br>e 1                           | Action,Adve  |                  | A group of<br>intergalactic<br>criminals are<br>forced     | James<br>Gunn   | Chris<br>Pratt, Vin<br>Diesel,<br>Bradley<br>Cooper,<br>Zoe S     | 2014  | 121     | 8.1    | 757074 | 333.13           | 76.0      | good            |
| Prometheus                      | s 2                                | Adventure,My | stery,Sci-<br>Fi | Following<br>clues to the<br>origin of<br>mankind, a<br>te | Ridley<br>Scott | Noomi<br>Rapace,<br>Logan<br>Marshall-<br>Green,<br>Michael<br>Fa | 2012  | 124     | 7.0    | 485820 | 126.46           | 65.0      | bad             |
|                                 |                                    |              |                  |                                                            |                 |                                                                   |       |         |        |        |                  |           |                 |











# Reading from excel –arbitrary sheet and specify the index

|                             | Year  | Genres                  | Language | Country | Content<br>Rating | Duration | Aspect<br>Ratio | Budget     | Gross<br>Earnings | Director                 | <br>Facebook<br>Likes -<br>Actor 1 | Facebook<br>Likes -<br>Actor 2 |
|-----------------------------|-------|-------------------------|----------|---------|-------------------|----------|-----------------|------------|-------------------|--------------------------|------------------------------------|--------------------------------|
| Title                       |       |                         |          |         |                   |          |                 |            |                   |                          |                                    |                                |
| 102<br>Calmatians           | 2000  | Adventure Comedy Family | English  | USA     | G                 | 100.0    | 1.85            | 85000000.0 | 66941559.0        | Kevin<br>Lima            | <br>2000.0                         | 795.0                          |
| 28 Days                     | 2000  | Comedy Drama            | English  | USA     | PG-13             | 103.0    | 1.37            | 43000000.0 | 37035515.0        | Betty<br>Thomas          | <br>12000.0                        | 10000.0                        |
| 3 Strikes                   | 2000  | Comedy                  | English  | USA     | R                 | 82.0     | 1.85            | 6000000.0  | 9821335.0         | DJ Pooh                  | <br>939.0                          | 706.0                          |
| Aberdeen                    | 2000  | Drama                   | English  | UK      | NaN               | 106.0    | 1.85            | 6500000.0  | 64148.0           | Hans<br>Petter<br>Moland | <br>844.0                          | 2.0                            |
| All the<br>Pretty<br>Horses | 2000  | Drama Romance Western   | English  | USA     | PG-13             | 220.0    | 2.35            | 57000000.0 | 15527125.0        | Billy Bob<br>Thornton    | <br>13000.0                        | 861.0                          |
| rows × 24                   | colum | ns                      |          |         |                   |          |                 |            |                   |                          |                                    |                                |

73

# Reading from multiple sheets

```
xlsx = pd.ExcelFile(excel_file)
movies_sheets = [ ]
for sheet in xlsx.sheet_names:
    movies_sheets.append(xlsx.parse(sheet))
    movies = pd.concat(movies_sheets)
```

### **Sorting data** sorted\_by\_gross = movies.sort\_values(['Gross Earnings'], ascending=False) sorted\_by\_gross["Gross Earnings"].head(10) 1027 658672302.0 1281 474544677.0 226 460935665.0 328 434949459.0 737 422783777.0 659 356784000.0 709 329691196.0 359 309125409.0 854 306124059.0 1317 293501675.0 Name: Gross Earnings, dtype: float64



# Question

What are the 25 most rated movies?

77

## SEE YOU NEXT WEEK!!!



DR. ORHAN GÖKÇÖL gokcol@gmail.com orhan.gokcol@ozyegin.edu.tr