

ATGAAGGTCTCCGTGGCTGCCCTCTCCTGCCTCATGCTTGTACTGCCCTGGATCCCAG 60
M K V S V A A L S C L M L V T A L G S Q

GCCCCGGGTCAAAAAGATGCAGAGACAGAGTTCAATGATGTCAAAGCTTCATTGGAAAAT 120
A R V T K D A E T E F M M S K L P L E N

CCAGTACTTCTGGACAGATTCCATGCTACTAGTGCTGACTGCTGCATCTCCACACCCCA 180
P V L L D R F H A T S A D C C I S Y T P

CGAACGCATCCCGTGTTCACTCCTGGAGAGTTACTTTGAAACGAACAGCGAGTGCTCCAAG 240
R S I P C S L L E S Y F E T N S E C S K

CCGGGTGTCACTTCTCACCAAGAAGGGGGCACGTTCTGTGCCAACCCAGTGATAAG 300
P G V I F L T K K G R R F C A N P S D K

CAAGTTCAAGTTGCATGAGAATGCTGAAGCTGGACACACGGATCAAGACCAGGAAGAAT 360
Q V Q V C M R M L K L D T R I K T R K N

TGA 363

*

FIG.1

ATGAAGATCTCCGTGGCTGCAATTCCCTCTTCCCTCATCACCATGCCCTAGGGACC
M K I S V A A I P F F L L I T I A L G T

AAGACTGAATCCTCCTCACGGGACCTTACCAACCCCTCAGAGTGCTGCTCACCTACACT
K T E S S S R G P Y H P S E C C F T Y T

ACCTACAAGATCCCGCGTCAGCGGATTATGGATTACTATGAGACCAACAGCCAGTGCTCC
T Y K I P R Q R I M D Y Y E T N S Q C S

AAGCCCAGAATTGTCTTCATCACCAAAGGGGCCATTCCGTCTGTACCAACCCAGTGAC
K P G I V F I T K R G H S V C T N P S D

AAGTGGGTCAAGGACTATATCAAGGACATGAAGGAGAACTGA
K W V Q D Y I K D M K E N *

FIG.2

1 ATGAAGGGCTTGCAGCTGCCCTCCTGTCCTCGTCTGCACCATGGCCCTCTGCTCCTGT 60
M K G L A A A L L V L V C T M A L C S C

61 GCACAAGTTGGTACCAACAAAGAGCTCTGCTGCCCTCGTCTATACCTCCGGCAGATTCCA 120
A Q V G T N K E L C C L V Y T S W Q I P

121 CAAAAGTTCATAGTTGACTATTCTGAAACCAGCCCCAGTGCCCCAAGCCAGGTGTCACTC 180
Q K F I V D Y S E T S P Q C P K P G V I

181 CTCCCTAACCAAGAGAGGCCGGCAGATCTGTGCTGACCCAATAAGAAGTGGGTCCAGAAA 240
L L T K R G R Q I C A D P N K K W V Q K

241 TACATCAGCGACCTGAAGCTGAATGCCTGA 270
Y I S D L K L N A *

FIG.3

CK β -8	MKVSVAAALSCMLVTALGSQARVTKDAETEFMMSKLPLENPVLLDRFHAT	50
	.. : :	
MIP-1 α	MQVSTAALAVLLCTMALCNQFSASLAAD.....T	29
CK β -8	SADCCISYTPRSIPCSLLESYFETNSECSPGVIFLTGGRRFCANPSDK	100
	... : . ..:: . : : . : .	
MIP-1 α	PTACCFSYTSRQIPQNFIADYFETSSQCSPGVIFLTKRSRQVCADPSEE	79
CK β -8	QVQVCMRMLKLDTRIKTRKN	120
	:: . .	
MIP-1 α	WVQKYVSDLELSA	92

FIG.4

1 MKGLAAALLVLVCTMALC....SCAQVTNKELCCLVYTSWQIPQKFIVD 46
| . . ||| ||:||||| | . : . . . |||:|||:|||:|||.||.|||
1 MQVSTAALAVLLCTMALCNQVLSAPLAADTPTACCFSYTSRQIPQNFIAD 50

17 YSETSPQCPKPGVILLTKRGRQICADPNKKWVQKYISDLKLNA 89
| ||| .||.|||:|||:|||||||:|||...|||:|||:|||.|||
51 YFETSSQCSKPSVIFLT K RGRQVCADPSEEWVQKYVSDLELSA 93

FIG.5

CKβ-1	MKISVAAIPFLLITIALGKTTESSSRGPYHPSECCFTTYKIPRQRIM	50
	.: . .: . : : .. : . ..	
MIP-1α	MQVSTAALA.VLLCTMALCNQF.SASLAADTPTACCFSYTSRQIQPQNFIA	48
CKβ-1	DYYETNSQCSKPGIVFITKRGHSVCTNPSDKWVQDYIKDMKEN	94
	: . : : :: . : 	
MIP-1α	DYFETSSQCSKPGVIFLTKRSRQVCADPSEEWQKYVSDLESA	93

FIG. 6

1 = mock, 2 and 3 = MIP1- γ -HA, 4 = I κ B-HA
5 = mock, 6 = MIP1- γ -HA, 7 = I κ B-HA

FIG. 7

LANE #	SAMPLE
1	LOW MW MARKERS
2	CK β -1 BACULOVIRUS SUPERNATANT
3	HEPARIN COLUMN PURIFIED CK β -1
4	S/M COLUMN PURIFIED CK β -1
5	HW50 PURIFIED CK β -1

FIG. 8

FIG. 9A

PEAK1 PEAK2

LANE# SAMPLE

1	HW50 LOAD
2	LOW MW MARKERS
3	HW50 FRACTION 12
4	13
5	14
6	17
7	18
8	19
9	20
10	21
11	22

FIG. 9B

FIG.10A

FIG.10B

FIG.11

FIG.12

FIG.13A

FIG.13B

FIG. 14

FIG.15

FIG.16A

FIG.16B

FIG.17

FIG.18

FIG.19

FIG. 20A

□ SURFACE PROBABILITY PLOT-EMINI

- ALPHA, REGIONS-GARNIER-ROBSON
- ALPHA, REGIONS-CHOU-FASMAN
- BETA, REGIONS-GARNIER-ROBSON
- BETA, REGIONS-CHOU-FASMAN
- TURN, REGIONS-GARNIER-ROBSON
- TURN, REGIONS-CHOU-FASMAN
- COIL, REGIONS-GARNIER-ROBSON

□ HYDROPHILICITY PLOT-KYTE-DOOLITTLE

□ HYDROPHOBICITY PLOT-HOPP-WOODS

- ALPHA, AMPHIPATHIC REGIONS-EISENBERG
- BETA, AMPHIPATHIC REGIONS-EISENBERG
- FLEXIBLE REGIONS-KARPLUS-SCHULZ

□ ANTIGENIC INDEX-JAMESON-WOLF

□ SURFACE PROBABILITY PLOT-EMINI

FIG. 20B

FIG.21A

FIG. 21B

TREATMENTS	NUMBERS OF CIRCULATING WBC PER MILLILITER OF BLOOD		
	DAY 3	DAY 6	DAY 10
Gr-1 (Saline)	$8.4 \times 10^6 \pm 3.0 \times 10^6$	$10.2 \times 10^6 \pm 3.6 \times 10^6$	$7.0 \times 10^6 \pm 9.9 \times 10^6$
Gr-2, MPIF-1 ALONE	$7.8 \times 10^6 \pm 2.2 \times 10^6$ (100%)	$7.5 \times 10^6 \pm 6.5 \times 10^5$ (100%)	10.6×10^6 (100%)
Gr-3, 5-Fu ALONE	$4.23 \times 10^6 \pm 2.8 \times 10^6$ (54)	$1.8 \times 10^6 \pm 1.4 \times 10^4$ (24)	$8.8 \times 10^6 \pm 4.9 \times 10^5$ (83)
Gr-4, MPIF-1 PLUS 5-Fu	$3.49 \times 10^6 \pm 6.5 \times 10^5$ (45)	$3.98 \times 10^6 \pm 4.3 \times 10^5$ (53)	$9.48 \times 10^6 \pm 9.4 \times 10^5$ (89)

FIG. 22

FIG.23

GROUP	TREATMENTS	NUMBER OF COLONIES PER 2,000 CELLS			
		DAY 6		DAY 9	
		HPP-CFC	LPP-CFC	HPP-CFC	LPP-CFC
1	SALINE	10.5 ± 0.7	60 ± 9.8	15 ± 2	78 ± 3.5
	SALINE	12 ± 0.7	92 ± 11	13 ± 1	80 ± 14
	SALINE	14 ± 1.4	84 ± 1.4	11 ± 2	82 ± 0
2	5-Fu	4.5 ± 3.5	3.5 ± 0.7	7 ± 2	5 ± 0
	5-Fu	12 ± 2	37 ± 16	6 ± 2	2 ± 0
	5-Fu	4 ± 2.8	6 ± 3	DEAD	DEAD
	5-Fu PLUS MPIF-1	0	6.5 ± 3.5	16 ± 1.4	75 ± 1.4
3	" " "	0	105 ± 10	12 ± 2.8	46 ± 12
	" " "	0	120 ± 1.4	16 ± 0	95 ± 2.8

FIG. 24

1 MKVSVAAALSC LMLVTALGSQ ARVTKDAETE FMMISKLPLEN PVLLDRFHAT SADCCISYTP RSIPCSLLES YFETTNSECSK
 10 20 30 40 50 60 70 80
 2) Wild type: RVTKDAE.....
 3) Mutant-1(+1): MRVTKDAE..... RFHAT ..
 4) Mutant-2(-δ 24): DRFHAT ..
 5) Mutant-3(-δ 23): HAT SAD ..
 6) Mutant-5(-δ 27): AT SAD ..
 7) Mutant-6(-δ 24): MRFHAT ..
 8) Mutant-7(-δ 17): EN PVLLD ..
 9) Mutant-8(-δ 22): LDRFHAT ..
 10) Mutant-9(-δ 25): HAAGFHAT ..

FIG. 25

gtcctcgccagccctgcctgcccaccaggaggatgaaggtctccgtggctgcccttcgcctcatgctt
M K V S V A A L S C L M I
 ttactgcccttgatcccaggccccgggtcacaaaagatgcagagacagagttcatgtgtcaaagcttcca
V T A L G S O A R V T K D A E T E F M M S K L P
 ttggaaaatccagtacttctggacatgctctggaggagaagattggcctcagatgacccttctcatgcc
L E N P V L L D M L W R R K I G P Q M T L S H A
 gcaggattccatgctacttagtgactgctgcatctcctacaccccaacgaagcatccgtgttcactcctg
A G F H A T S A D C C I S Y T P R S I P C S L L
 gagagttactttgaaacgaacagcgagtgctccaagccgggtgtcatttcctcaccagaagaaggggcgacgt
E S Y F E T N S E C S K P G V I F L T K K G R R
 ttctgtgccaacccagtgataaggcaagttcaggtttgcatgagaatgctgaagctggacacacggatcaag
F C A N P S D K Q V Q V C M R M L K L D T R I K
 accaggaagaattgaacttgtcaaggtaagggacacaagttgccagccaccaactttctgcctcaactaa
T R K N *
 cttcctgaatttttttaagaagcatttattctgtgttggatttagagcaattcatcttcacc
 tttaaaaaaaaaaaaaaaaaaaa

FIG.26A

1	MKVSVAAALSCLMLVTALGSQARVTKDAETEFMM SKLPLENPVLLDMWRR	50	MPIF-1 variant
1	MKVSVAAALSCLMLVTALGSQARVTKDAETEFMM SKLPLENPVLLDR....	46	MPIF-1
51	KIGPQMTLSHAAGFHATSADCCISYTPRSIPCSLLESYFETNSECSKPGV	100	
47FHATSADCCISYTPRSIPCSLLESYFETNSECSKPGV	83	
101	IFLTGKGRRFCANPSDKQVQVCMRMLKLDTRIKTRKN	137	
84	IFLTGKGRRFCANPSDKQVQVCMRMLKLDTRIKTRKN	120	

FIG.26B

MPIF-1 MUTANTS	CONCENTRATION (ng/ml)
WILD TYPE	100
PREPARATION K0871	10
MUTANT-1	50
MUTANT-6	100
HG00300-B7	10
MUTANT-9	10

FIG.27

FIG. 28A

FIG. 28B

ADDITIONS	CALCIUM MOBILIZATION RESPONSE
MIP-1 α ALONE	+
MPIF-1 ALONE	+
MIP-1 α FOLLOWED BY MPIF-1	-
MPIF-1 FOLLOWED BY MIP-1 α	-
MIP-1 α FOLLOWED BY:	
PREPARATION K0871	-
HG00300-B7	-
MUTANT-6	-
MUTANT-1	-
MUTANT-9	-
PREPARATION K0871	+
K0871 FOLLOWED BY MIP-1 α	-
HG00300-B7	+
HG00300-B7 FOLLOWED BY MIP-1 α	-
MUTANT-6	+
MUTANT-6 FOLLOWED BY MIP-1 α	-
MUTANT-1	+
MUTANT-1 FOLLOWED BY MIP-1 α	-
MUTANT-9	+
MUTANT-9 FOLLOWED BY MIP-1 α	-

FIG.29

PROTEINS	CHEMOTAXIS *
WILD TYPE	50-100 ng/ml (3-4X)
PREPARATION K0871	10-30 ng/ml (6-7X)
MUTANT-1	50-100 ng/ml (3-4X)
MUTANT-6	50-100 ng/ml (5-7X)
HG00300-B7	10-30 ng/ml (4-5X)

FIG.30

ADDITIONS	CONCENTRATION REQUIRED FOR 50% OF MAXIMAL LPP-CFC INHIBITION (ng/ml)
MPIF-1, WILD TYPE	10-20
MUTANT-1	15-25
MUTANT-6	1-10
PREPARATION K0871	0.1-1.0
HG00300-B7	0.1-1.0

FIG.31

FIG.32

FIG.33

FIG.34

FIG.35A

FIG.35B

FIG.36

FIG.37

FIG.38

FIG. 39

FIG. 40

FIG. 41

FIG. 42

FIG.43

FIG.44

	UNTREATED	VEHICLE	M-CIF (1mg/kg)	M-CIF (3mg/kg)	
UNTREATED			1mg/kg		p=0.019
UNTREATED		VEHICLE	1mg/kg		p=0.027
UNTREATED				3mg/kg	p=0.0003
UNTREATED		VEHICLE		3mg/kg	p=0.0003
UNTREATED			1mg/kg	3mg/kg	p=0.007

FIG.45

FIG.46

FIG.47

FIG.48A

FIG.48B

FIG.49

STEM CELL MOBILIZATION IN RESPONSE TO ADMINISTERING MPIF-1 TO NORMAL MICE			
EXPERIMENT	TREATMENTS	WBC/ml BLOOD ($\times 10^6$)	PHENOTYPE OF CELLS
		Gr.1	CD34 $^{+}$ Sca-1 $^{+}$
1.	SALINE MPIF-1	4.7 \pm 0.36 7.1 \pm 0.63	10 39
			0.20 8

FIG.50

FIG.51

5-Fu: I.P. INJECTION, 100 mg/Kg
 MPIF-1: I.P. INJECTION, 1.0 mg/Kg
 G-CSF: I.P. INJECTION, 0.5 mg/Kg

FIG.52

FIG.53

FIG.54

FIG.55

FIG.56

FIG.57

FIG.58

FIG.59

FIG.60

FIG.61

FIG.62

FIG.63

FIG.64

FIG.65

-35

Operator 1

1 AAGCTT AAAAAACTGCAAAAAATAGTTTGACTTG TGAGCGGATAACAAAT

-10

Operator 2

50 TAAGATGTACCCATTG TGAGCGGATAACAAATTTCACACATTAA

S/D

94 AGAGGGAGAAATTACATATG

FIG.66

Hind III

—
Nde

FIG. 67A

Sequence alignment diagram showing DNA strands A, B, and C. Strand A is the top strand with a poly-A tail. Strand B is the middle strand with a poly-B tail. Strand C is the bottom strand with a poly-C tail. An arrow labeled "oriC" points to a specific sequence in strand C. Reference sequences are shown on the right with numbers 780, 910, 1040, and 1170.

—
—
—

FIG. 67B

FIG. 67C

FIG. 67D

AATACTCACTCGCAATTAGCCGAAACGGCAAGCCGACTGAGTGCCATTCGGTTCACAAACCATGCAAATGCTGAATGAGGCCATTCGTTCCCACTGCCATGCGTGCCTGGCAA
 ++++++ 2340
 TTATAGCTGAGCTTAGTTAACGCTTACGGTACGCCATGGCTTACGGTACGCCAAAGCTTACGTTAGCAAGGTACCCGTAGCAAGGTAGGCCAACGGTT
 | ac |
 K Y L T R N Q I Q P I A E R E G D W S A M S G F Q Q T M Q M L N E G I V P T A M L V A N

CGATCAGATGGGGCTGGGGCAATGGGGCAATACGGAGTGGGGTGGGGATACGGTAGTGGGATACGCAATACGGAAAGGAGGCTCACTGTTATACCCGGGTAAACCAACCATC
 ++++++ 2470
 GCTAGCTACCGGACCCGGTTACGGGGTAATGGCTCACGGCAACCCGGCAACCCGGCAACCCGGCAACCCGGCAACCCGGCAACCCGGCAACCCGGCAATGGCTGGTAG
 | ac |
 D Q M A L G A M R A I T E S C L R V G A D I S V V C Y D D T E D S S C Y I P P L T I I

Pvu II
 AAAAGGGATTTGGCCCTGGGGAAACCCAGGCTGGACCCCTGGCAACTCTCAGGGCCAGGGTGGCAAGGCCAATCAGGCTGGCCCTGGCCCTGGCCCTGGCCCA
 ++++++ 2600
 TTGCTCTAAAGGGAGGACCCGGTTGGCTGGGAAAGGAGCTGGAGAGTGGCAACCTGGGACTTCGGGTTAGTCGACAACGGGAGAGTGGACACTTCTTGGGGACCCGGGT
 | ac |
 K Q D F R L L G Q T S V D R L L Q L S Q G Q A V K G N Q L L P V S L V K R K T T L A P

Pvu II
 ATACGGCAAACGGCTCTCCCGCGCGTTGGCCGATTCATTAAGGCTGGCACCGACGGTTCCCGACTGGAAAGCCGGCAGTGCGCCAAACGCAAATTAATGTAAGTAAAGCTGGCAATTTGCGACCAAG
 ++++++ 2730
 TAGGCTTGGCGAGAGGGCCCAACGGCTAAGTAAATACGTCACCTGGCCGTCACCTGGCTGGGTTAGCTGGGTTAAATACATTCGAATCGGCCCTAACAGCTGGTTTC
 | ac |
 N T Q T A S P R A L A D S L M Q L A R Q V S R L E S G Q

FIG. 67E

FIG. 67F

۱۱۳

FIG. 67G