Однофакторный дисперсионный анализ для несвязных выборок

Пусть на количественный нормально распределенный признак X действует некоторый фактор F, имеющий p постоянных уровней F_1, F_2, \ldots, F_p . На каждом уровне осуществлено по q испытаний над разными выборками. Результаты наблюдений - числа x_i , где i - номер испытания, $i = 1, 2, \ldots, q$; j - номер уровня фактора, $j = 1, 2, \ldots, p$, - 320000

записывают в виде таблицы

Номер	Уровень фактора					
испытания i	F_1	F_2		F_p		
1	x_{11}	x_{12}	• • • • • • • • • • • • • • • • • • • •	x_{1p}		
2	x_{21}	x_{22}		x_{2p}		
•••						
q	x_{q1}	x_{q2}		x_{qp}		
Γ рупповое среднее $\overline{x}_{\Gamma p}$	$\overline{x}_{\mathrm{rp.}\ 1}$	$\overline{x}_{\mathrm{rp.}\ 2}$		$\overline{x}_{\mathrm{rp.}\ p}$		

Задача заключается в следующем: при уровне значимости α про- верить основную гипотезу о равенстве групповых средних при условии, что групповые генеральные дисперсии хотя и неизвестны, но одинаковы. Чтобы решить эту задачу, находят:

- а) *общую сумму* квадратов отклонений наблюдаемых значений признака от общего выборочного среднего:
- б) факторную сумму квадратов отклонений групповых средних от общего выборочного среднего (характеризует рассеяние «между группами»):
- в) *остаточную сумму* квадратов отклонений наблюдаемых значений группы от своего группового среднего (характеризует рассеяние «внутри группы»):

$$S_{\text{общ}} = \sum_{j=1}^{p} \sum_{i=1}^{q} (x_{ij} - \overline{x}_{\text{в}})^2$$

$$S_{ ext{факт}} = q \sum_{j=1}^{p} (\overline{x}_{ ext{rp. }j} - \overline{x}_{ ext{\tiny B}})^2$$

$$S_{\text{oct}} = \sum_{j=1}^{p} \sum_{i=1}^{q} (x_{ij} - \overline{x}_{\text{rp. } j})^2.$$

Практически остаточную сумму находят по формуле

$$S_{\text{ост}} = S_{\text{общ}} - S_{\text{факт}}.$$

Общую и факторную суммы удобнее вычислять по таким формулам:

$$S_{\text{обіщ}} = \sum_{j=1}^{p} P_j - \frac{\left(\sum\limits_{j=1}^{p} R_j\right)^2}{pq};$$

$$S_{\text{факт}} = \frac{\sum\limits_{j=1}^{p} R_j^2}{q} - \frac{\left(\sum\limits_{j=1}^{p} R_j\right)^2}{pq},$$

$$S_{
m obm} = \sum_{j=1}^p P_j - rac{\left(\sum_{j=1}^p R_j
ight)^2}{pq};$$
 где $P_j = \sum_{i=1}^q x_{ij}^2$ - сумма квадратов наблюдаемых значений признака на уровне $F_i; R_j = \sum_{i=1}^q x_{ij}$ - сумма наблюдаемых значений признака на уровне F_j .

Если наблюдаемые значения признака сравнительно большие, то для упрощения вычислений вычитают от каждого наблюдаемого значения одно и то же число C, которое приблизительно равняется общему среднему. Если уменьшенные значения обозначить $y_{ij} = x_{ij} - C$,

$$S_{
m oбіц} = \sum_{j=1}^p Q_j - rac{\left(\sum\limits_{j=1}^p T_j
ight)^2}{pq}$$
 $S_{
m факт} = rac{\sum\limits_{j=1}^p T_j^2}{q} - rac{\left(\sum\limits_{j=1}^p T_j
ight)^2}{pq}$

$$S_{
m obm} = \sum_{j=1}^p Q_j - rac{\left(\sum_{j=1}^p T_j
ight)^2}{pq}$$
 где $Q_j = \sum_{i=1}^q y_{ij}^2$ - сумма квадратов уменьшенных значений признака на уровне F_j ; $T_j = \sum_{i=1}^q y_{ij}$ - сумма уменьшенных значений признака на уровне F_j .

Поделив факторную и остаточную суммы на соответствующее число степеней свободы

$$k_{\text{факт}} = p - 1, \qquad k_{\text{ост}} = p(q - 1),$$

находят факторную и остаточную дисперсии:

$$s_{\Phi^{AKT}}^2 = \frac{S_{\Phi^{AKT}}}{p-1}; \qquad s_{\text{oct}}^2 = \frac{S_{\text{oct}}}{p(q-1)}.$$

Факторную и остаточную дисперсии сравнивают по критерию Фишера-Снедекора:

$$F_{\text{набл}} = \frac{s_{\text{факт}}^2}{s_{\text{ост}}^2}.$$

Далее по таблице критических точек распределения Фишера-Снедекора при заданном уровне значимости α и числе степеней свободы находят критическую точку *F*кр(α; *k*1, *k*2).

$$k_1 = k_{\text{факт}}, \qquad k_2 = k_{\text{ост}}$$

Если $F_{\text{набл}} < F_{\text{кр}}$, различие групповых средних считают незначащим. Если $F_{\text{набл}} > F_{\text{кр}}$, то различие считают значащим.

Пример 1. Проведено по семь испытаний на каждом из четырёх уровней фактора над разными выборками. Методом дисперсионного анализа при уровне значимости 0,05 проверить основную гипотезу о равенстве групповых средних. Предполагается, что выборки получены из нормальных совокупностей с одинаковыми дисперсиями. Результаты испытания приведены в таблице.

Номер	Уровень фактора						
испытания i	F_1	F_2	F_3	F_4			
1	24	26	21	25			
<i>Реше<mark>н</mark>ие.</i> Найдём	и общее сре	27 еднее:	22	26			
$x_{\text{B}} = (24 + 26 + 21 + 28 + 29 + 29 + 29 + 29 + 29 + 29 + 29$	+ 25 + 25 + 1	$27 + \frac{28}{29} + 26$	6 + 26 + 28	+ 24 28			
+ 28 + + 29 + 29 + + 29 + 30 +	25 + 28 + 3	11 + 30 + 27	+ 29 + 32 +	32 29			
+ 33 + 35 + 30 + 3	$(3)/(7\frac{32}{34}) = 2$	28. 32	29	30			
1			30	33			
Γ рупповое среднее $\overline{x}_{ m rp}$	28,57143	29,57143	25,42857	28,42857			

Решение. Найдём общее среднее:

$$x_{B}$$
 = $(24 + 26 + 21 + 25 + 25 + 27 + 22 + 26 + 26 + 28 + 24 + 28 + 29 + 29 + 25 + 28 + 31 + 30 + 27 + 29 + 32 + 32 + 29 + 30 + 433 + 35 + 30 + 33)/(7 \cdot 4) = 28.$

Для упрощения расчётов вычтем от каждого наблюдаемого значения x_{ij} общее среднее $x_{ik}=28$, т. е. перейдём к уменьшенным величинам $y_{ij}=x_{ij}-28$.

Составим расчётную таблицу

Используя итоговый столбик таблицы, находим общую и факторную суммы квадратов отклонений, учитывая, что количество уровней фактора p=4, количество испытаний на каждом уровне q=7:

$$S_{ ext{OGIII}} = \sum_{j=1}^{p} Q_j - rac{\left(\sum_{j=1}^{p} T_j
ight)^2}{pq} = 314 - 0 = 314;$$
 $S_{ ext{Факт}} = rac{\sum_{j=1}^{p} T_j^2}{q} - rac{\left(\sum_{j=1}^{p} T_j
ight)^2}{pq} = rac{470}{7} - 0 pprox 67,14$

Hoven		Уровень фактора							
Номер испытания	F	1	F		F		F	4	Итоговый
i	y_{i1}	y_{i1}^2	y_{i2}	y_{i2}^2	y_{i3}	y_{i3}^2	y_{i4}	y_{i4}^2	столбик
1	-4	16	-2	4	-7	49	-3	9	
2	-3	9	-1	1	-6	36	-2	4	
3	-2	4	0	0	-4	16	0	0	
4	1	1	1	1	-3	9	0	0	
5	3	9	2	4	-1	1	1	1	
6	4	16	4	16	1	1	2	4	
7	5	25	7	49	2	4	5	25	
$Q_j = \sum_{i=1}^7 y_{ij}^2$		80		75		116		43	$\sum_{j=1}^{4} Q_j = 314$
$T_j = \sum_{i=1}^7 y_{ij}$	4		11		-18		3		$\sum_{j=1}^{4} T_j = 0$
T_j^2	16		121		324		9		$\int_{j=1}^{4} T_j^2 = 470$

Найдём остаточную сумму квадратов отклонений: $S_{\text{ост}} = S_{\text{общ}} - S_{\text{факт}} = 314 - 67,14 = 246,86.$ Определим количество степеней свободы:

$$k_{\text{факт}} = p - 1 = 4 - 1 = 3,$$
 $k_{\text{ост}} = p(q - 1) = 4 \cdot (7 - 1) = 24.$

Вычислим факторную и остаточную дисперсии:

$$s_{\Phi^{AKT}}^2 = \frac{S_{\Phi^{AKT}}}{p-1} = \frac{67,14}{3} \approx 22,38;$$

$$s_{\text{oct}}^2 = \frac{S_{\text{oct}}}{p(q-1)} = \frac{246,86}{24} \approx 10,29.$$

Сравним факторную и остаточную дисперсии с помощью критерия Фишера-Снедекора. Для этого сначала определим наблюдаемое значение критерия:

$$F_{
m {\scriptscriptstyle Haбл}} = rac{s_{
m {
m dakt}}^2}{s_{
m {
m oct}}^2} = rac{22{,}38}{10{,}29} pprox 2{,}175.$$

Учитывая, что число степеней свободы числителя k_1 = 3, а знаменателя - k_2 = 24, при уровне значимости α = 0,05 находим критическую точку: $F_{\rm kp}(0,05;3;24) = 3,01$.

Поскольку $F_{\text{\tiny Ha6D}}$ < $F_{\text{\tiny Kp}}$, основную гипотезу о равенстве групповых средних не отвергаем. Другими словами, групповые средние различаются незначаще.

Однофакторный дисперсионный анализ для связных выборок

Пусть на количественный нормально распределенный признак X действует фактор F, который имеет p постоянных уровней F_1, F_2, \ldots, F_p . На каждом уровне проведены испытания над одной и той же выборкой, которая состоит из q элементов. Результаты наблюдений - числа x_i , где i - номер испытания, i = 1, 2, . . . , q, j - номер уровня фактора F, j = 1, 2, . . . , p, - записывают в виде таблицы

В этом случае возникают две задачи:

- при уровне значимости α проверить основную гипотезу о равенстве групповых средних при условии, что групповые генеральные дисперсии хотя и неизвестные, но одинаковые;
- на уровне значимости α проверить основную гипотезу о равенстве индивидуальных средних при условии, что индивидуальные генеральные дисперсии хотя и неизвестные, но одинаковые.

Номер	Уровень фактора			Индивидуальные	
испытания i	F_1	F_2		F_p	средние \overline{x}_i
1	x_{11}	x_{12}		x_{1p}	\overline{x}_1
2	x_{21}	x_{22}		x_{2p}	\overline{x}_2
q	x_{q1}	x_{q2}		x_{qp}	\overline{x}_q
Γ рупповое среднее $\overline{x}_{\Gamma p}$	$\overline{x}_{ ext{rp. 1}}$	$\overline{x}_{\mathrm{rp.}\ 2}$		$\overline{x}_{ ext{rp. }p}$	

Чтобы решить эти задачи, находят:

а) *общую сумму* квадратов отклонений наблюдаемых значений признака от общего выборочного среднего:

р q

$$S_{\text{общ}} = \sum_{j=1}^{p} \sum_{i=1}^{q} (x_{ij} - \overline{x}_{\text{B}})^2$$

б) факторную сумму квадратов отклонений групповых средних от общего выборочного среднего (характеризует рассеяние «между группами»):

$$S_{\text{факт}} = q \sum_{j=1}^{p} (\overline{x}_{\text{гр. }j} - \overline{x}_{\text{в}})^2;$$

в) *индивидуальную сумму* квадратов отклонений индивидуальных средних от общего выборочного среднего (характеризует рассеяние «между индивидами»):

$$S_{ ext{инд}} = p \sum_{i=1}^q (\overline{x}_i - \overline{x}_{ ext{в}})^2;$$

 \mathcal{F}) остаточную сумму по формуле $S_{
m oct} = S_{
m ofit} - S_{
m факт} - S_{
m инд}$.

Поделив факторную, индивидуальную и остаточную суммы на соответствующее число степеней свободы $k_{\text{факт}}=p-1, \qquad k_{\text{инд}}=q-1, \qquad k_{\text{ост}}=(p-1)(q-1),$

находят факторную, индивидуальную и остаточную дисперсии:

$$s_{\Phi^{AKT}}^2 = \frac{S_{\Phi^{AKT}}}{p-1}; \qquad s_{\mathbf{u}\mathbf{H}\mathbf{A}}^2 = \frac{S_{\mathbf{u}\mathbf{H}\mathbf{A}}}{q-1}; \qquad s_{\mathbf{oct}}^2 = \frac{S_{\mathbf{oct}}}{(p-1)(q-1)}.$$

$$F_{\text{набл}}^{\Phi \text{акт}} = \frac{s_{\Phi \text{акт}}^2}{s_{\text{ост}}^2}, \qquad F_{\text{набл}}^{\text{инд}} = \frac{s_{\text{инд}}^2}{s_{\text{ост}}^2}.$$

Далее по таблице критических точек распределения Фишера-Снедекора при заданном уровне значимости α и числе степеней свободы ($k_{\text{факт}}$ - числитель, $k_{\text{инд}}$ - числитель, $k_{\text{ост}}$ - знаменатель) находят критические точки

$$F_{\mathrm{кр}}^{\mathrm{факт}}(\alpha; k_{\mathrm{факт}}, k_{\mathrm{ост}})$$
 $F_{\mathrm{кр}}^{\mathrm{инд}}(\alpha; k_{\mathrm{инд}}, k_{\mathrm{ост}}).$

Если $F_{\text{набл}}^{\text{факт}} < F_{\text{кр}}^{\text{факт}}$ различие групповых средних считают незначащим.

Если $F_{
m Hafn}^{
m qakr} > F_{
m kp}^{
m фakr}$ различие групповых средних считают значащим.

Если $F_{\text{набл}}^{\text{инд}} < F_{\text{кр}}^{\text{инд}}$ различие индивидуальных средних считают незначащим.

Если $ilde{F}_{
m hafn}^{
m инд} > F_{
m kp}^{
m инд}$ различие индивидуальных средних считают значащим.

Пример 2. Проведены испытания на каждом из четырёх уровней фактора над одной и той же выборкой из шести элементов. Методом дисперсионного анализа при уровне значимости 0,01 проверить основную гипотезу о равенстве групповых средних и основную гипотезу о равенстве индивидуальных средних. Предполагается, что результирующий признак нормально распределён в исследуемой выборке. Результаты испытания приведены в таблице

$egin{array}{c} \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \$	~	Уровень	Индивидуальные		
	F_1	F_2	F_3	F_4	средние \overline{x}_i
1	5	11	7	13	9
2	3	9	8	12	8
3	5	12	5	14	9
4	6	11	6	17	10
5	4	8	5	11	7
6	7	15	5	17	11
Γ рупповое среднее $\overline{x}_{\Gamma \mathrm{p}}$	5	11	6	14	

Решение. Найдём общее среднее:

 $X_{10} = (5 + 11 + 7 + 13 + 3 + 9 + 8 + 12 + 5 + 12 + 5 + 14 + 6 + 11 + 6 + 17 + 4 + 8 + 5 + 11 + 7 + 15 + 5 + 17)/(6 \cdot 4) = 9.$

Для вычисления общей суммы квадратов отклонений наблюдаемых значений признаков от общего выборочного среднего составим расчётную таблице, в которую вместо значений x_{ij} запишем значения $y_{ij} = (x_{ij} - \overline{x}_{\scriptscriptstyle B})^2$.

Номер		Уровень	(- - \2		
испытания i	F_1	F_2	F_3	F_4	$(\overline{x}_i - \overline{x}_{\scriptscriptstyle m B})^2$
1	16	4	4	16	0
2	36	0	1	9	1
3	16	9	16	25	0
4	9	4	9	64	1
5	25	1	16	4	4
6	4	36	16	64	4
$(\overline{x}_{ ext{rp}} - \overline{x}_{ ext{ iny B}})^2$	16	4	9	25	$S_{\text{общ}} = 404$

По таблице определим:

$$S_{ ext{факт}} = q \sum_{j=1}^{p} (\overline{x}_{ ext{гр. }j} - \overline{x}_{ ext{в}})^2 = 6 \cdot (16 + 4 + 9 + 25) = 324;$$
 $S_{ ext{инд}} = p \sum_{i=1}^{q} (\overline{x}_i - \overline{x}_{ ext{в}})^2 = 4 \cdot (0 + 1 + 0 + 1 + 4 + 4) = 40.$

Найдём число степеней свободы:

$$k_{ ext{факт}} = p - 1 = 4 - 1 = 3,$$
 $k_{ ext{инд}} = q - 1 = 6 - 1 = 5,$ $k_{ ext{ост}} = (p - 1)(q - 1) = 3 \cdot 5 = 15.$

Найдём факторную, индивидуальную и остаточную дисперсии:

$$s_{\Phi^{AKT}}^2 = rac{S_{\Phi^{AKT}}}{p-1} = rac{324}{3} = 108;$$
 $s_{\mu^{H}\Pi}^2 = rac{S_{\mu^{H}\Pi}}{q-1} = rac{40}{5} = 8;$ $s_{\text{oct}}^2 = rac{S_{\text{oct}}}{(p-1)(q-1)} = rac{40}{15} = rac{8}{3}.$

Сравним факторную и индивидуальную дисперсии с остаточной дисперсией по критерию Фишера-Снедекора:

$$F_{
m { iny Haddin}}^{
m факт} = rac{s_{
m факт}^2}{s_{
m oct}^2} = rac{108 \cdot 3}{8} = 40,5;$$
 $F_{
m { iny Haddin}}^{
m { iny Haddin}} = rac{s_{
m { iny uhddin}}^2}{s_{
m oct}^2} = rac{8 \cdot 3}{8} = 3.$

Далее по таблице критических точек распределения Фишера-Снедекора при заданном уровне значимости $\alpha = 0.01$ и числе степеней свободы ($k_{\text{факт}}$ - числитель, $k_{\text{инд}}$ - числитель, $k_{\text{ост}}$ - знаменатель) находим критические

ТОЧКИ:
$$F_{\mathrm{кp}}^{\mathrm{факт}}(0,01;3;15)=5,42;$$
 $F_{\mathrm{кp}}^{\mathrm{инд}}(0,01;5;15)=4,56.$

Поскольку $F_{
m had n}^{
m факт} > F_{
m kp}^{
m факт}$ основную гипотезу о равенстве групповых средних отвергаем. Поскольку $F_{
m had n}^{
m uhg} < F_{
m kp}^{
m uhg}$ основную гипотезу о равенстве индивидуальных средних принимаем

Задача 1. Проведено по семь испытаний на каждом из четырёх уровней фактора над разными выборками. Методом дисперсионного анализа при уровне значимости 0,01 проверить основную гипотезу о равенстве групповых средних. Предполагается, что выборки по- лучены из нормальных совокупностей с одинаковыми дисперсиями. Результаты испытания приведены в таблице.

Номер	Уровень фактора						
испытания i	F_1	F_2	F_3	F_4			
1	12	11	10	13			
2	15	12	13	15			
3	16	13	14	17			
4	19	15	16	19			
5	20	16	18	22			
6	21	18	20	23			
7	23	20	21	24			
Групповое среднее $\overline{x}_{\mathrm{rp}}$	18	15	16	19			

Задача 2. Проведены испытания на каждом из четырёх уровней фактора над одной и той же выборкой из шести элементов. Методом дисперсионного анализа при уровне значимости 0,05 проверить основную гипотезу о равенстве групповых средних и основную гипотезу о равенстве индивидуальных средних. Предполагается, что результирующий признак нормально распределён в исследуемой выборке. Результаты испытания приведены в таблице.

Номер		Уровень	Индивидуальные		
испытания і	F_1	F_2	F_3	F_4	средние \overline{x}_i
1	22	23	22	21	22
2	25	24	22	24	23,75
3	19	20	22	25	21,5
4	14	17	20	24	18,75
5	20	21	21	21	20,75
6	14	15	19	23	17,75
Γ рупповое среднее $\overline{x}_{\Gamma p}$	19	20	21	23	

Домашнее задание:

В.Е. Гмурман. РУКОВОДСТВО К РЕШЕНИЮ ЗАДАЧ ПО ТЕОРИИ ВЕРОЯТНОСТЕЙ И МАТЕМАТИЧЕСКОЙ СТАТИСТИКЕ

Задачи: 669-673, 675-678