Introduction to MATLAB

Dr.M. Ranjith Kumar

Assistant Professor (Sr. Gr)

Department of Mathematics

Amrita School of Engineering – Chennai

Out Line

This introduction will gives

- Starting a MATLAB
- Matrices and Arrays
- Graphics
- Symbolic Math Toolbox
- Control Flow and if Statement
- Functions

Basic MATLAB Interface

Basic MATLAB Interface

Simple calculations

Command Window

```
>> a=3; b=5; a+b, c=a*b, d1=a/b, d2=a\b
ans =
     8
c =
    15
d1 =
    0.6000
d2 =
    1.6667
```



```
ans Most recent answer.
```

eps Floating point relative accuracy.

рі п

inf ∞

NaN Not a number.

Some Common Mathematical Function:

abs(x)	Absolute value	sqrt(x)	Square root	
sin(x)	Sine	asin(x)	Inverse sine	
cos(x)	Cosine	acos(x)	Inverse cosine	
tan(x)	Tangent	atan(x)	Inverse tangent	
log(x)	Natural logarithm	exp(x)	Exponential	
log10(x)	Base 10 logarithm	sign(x)	Sign (or) Signum function	

To get help

Create an m-file

Create an m-file

Create an m-file

Save an m-file

Note the file name will be changed ...

Run an m-file

Run an m-file

Matrices and Arrays

Simple Arrays

```
>> V = [1 3, sqrt(5)]

V =

1.0000 3.0000 2.2361

>> A = [1 2 3;4 5 6;7 8 0]

A =

1 2 3

4 5 6

7 8 0
```


+	Addition
-	Subtraction
*	Multiplication
*	Element-by-element multiplication
/	division
1.	Element-by-element division
\	left division
\.	Element-by-element left division
٨	power
۸.	Element-by-element power
•	array transpose
	Unconjugated array transpose

Special Matrices and Vectors

Function	Description	
zeros	All zeros	
ones	All ones	
<u>rand</u>	Uniformly distributed random elements	
<u>randne</u>	Normally distributed random elements	
Eye(n)	Returns the n-by-n identity matrix.	

Basic Operations and Descriptive Statistics

Function	Description		
<u>brush</u>	Interactively mark, delete, modify, and save observations		
	in graphs		
<u>cumprod</u>	Cumulative product		
<u>cumsum</u>	Cumulative sum		
<u>linkdata</u>	Automatically update graphs when variables change		
prod	Product of array elements		
sort	Sort array elements in ascending or descending order		
sortrows	Sort rows in ascending order		
<u>sum</u>	Sum of array elements		
corrcoef	Correlation coefficients		
<u>max</u>	Largest elements in array		
<u>mean</u>	Average or mean value of array		
<u>median</u>	Median value of array		

Function	Description		
COV	Covariance matrix		
<u>min</u>	Smallest elements in array		
mode	Most frequent values in array		
std	Standard deviation		
<u>var</u>	Variance		

```
A = [1 \ 2 \ 3; \ 3 \ 3 \ 6; \ 4 \ 6 \ 8; \ 4 \ 7 \ 7]; \ B = [2,7,8,3];
prod(B)
ans =
  336
mean(A)
                                % mean of each column
ans =
  3.0000 4.5000 6.0000
mean(A,2)
                                % mean of each row
ans =
   6
   6
```


Representing Polynomials

Consider the equation
$$p(x) = x^3 - 2x - 5$$

To enter this polynomial into MATLAB, use

$$p = [1 \ 0 \ -2 \ -5];$$

Function	Description		
conv	Multiply polynomials		
deconv	Divide polynomials		
poly	Polynomial with specified roots		
polyder	Polynomial derivative		
polyfit	Polynomial curve fitting		
polyval	Polynomial evaluation		
polyvalm	Matrix polynomial evaluation		
residue	Partial-fraction expansion (residues)		
roots	Find polynomial roots		

w

Examples

```
To evaluate p at x=5, p(x) = x^3 - 2x - 5
use
>>p = [1 0 -2 -5];
>>polyval(p,5)
ans = 110
X = [2 4 5; -1 0 3; 7 1 5];
Y = polyvalm(p,X)
Y =
 377 179 439
 111 81 136
 490 253 639
```


To find the characteristic polynomial of a matrix

Use

>>p=poly(A)
$$|A - xI| = 0$$
 ans = p=1X5 1 -29 72 -29 1

The characteristic polynomial is $p(x)=x^4-29x^3+72x^2-29x+1$

Roots of Polynomials $p(x) = x^3 - 2x - 5$ To find the roots p: >> r = roots(p)r =2.0946 -1.0473 + 1.1359i -1.0473 - 1.1359i To find a polynomial that have the roots r: >>p2 = poly(r) p2 =1.0000 -0.0000 -2.0000 -5.0000

$$p(x) = x^3 - 2x - 5$$

Derivatives

To obtain the derivative of the polynomial $p = [1 \ 0 \ -2 \ -5];$ >>q = polyder(p)

$$q = 3 \quad 0 \quad -2$$

Polynomial curve fitting

>>p = polyfit(x,y,n) finds the coefficients of a polynomial p(x) of degree n that fits the data, x(i), y(i)

>>x = 0: 0.1: 2.5;
$$y = erf(x)$$
;
>>p = polyfit(x,y,4)

The error function erf of x is

$$\operatorname{erf}(x) = \frac{2}{\sqrt{\pi}} \int_0^x e^{-t^2} dt.$$

1.2840 -0.0096

Linear Algebra Functions

Function	Description	Function 2	Description 3	
<u>norm</u>	Matrix or vector norm	<u>inv</u>	Matrix inverse	
<u>rank</u>	Matrix rank	subspace	Angle between two subspaces	
<u>det</u>	Determinant	<u>linsolve</u>	Solve a system of linear equations	
trace	Sum of diagonal elements	<u>lu</u>	LU factorization	
<u>null</u>	Null space	<u>chol</u>	Cholesky factorization	
<u>orth</u>	Orthogonalization	<u>eig</u>	Eigenvalues and eigenvectors	
<u>rref</u>	Reduced row echelon form	<u>expm</u>	Matrix exponential	
pinv	Pseudoinverse	<u>funm</u>	Evaluate general matrix function	

$$A = \begin{bmatrix} 1 & -2 & 3 \\ 4 & 0 & 6 \\ 2 & -1 & 3 \end{bmatrix}$$

$$A=[1 -2 3;4 0 6; 2 -1,3]$$

[L,U,P] = lu(A)

Linear system of equations

The system

$$\begin{bmatrix} 1 & 0 & 3 \\ 0 & 5 & 6 \\ 7 & 8 & 0 \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \\ x_3 \end{bmatrix} = \begin{bmatrix} 5 \\ -2 \\ 3 \end{bmatrix}$$

can be solved as:

Plot

Suppose we want to graph the function $y = 5x^3$ over the x domain -1 to 1.

```
x = -1:0.1:1;

y = 5*x^3;

plot(x,y)
```


Changing the Appearance

Symbol	Color	Symbol 2	Marker	Symbol 3	Line style
b	blue		point	-	solid line
g	green	0	circle	:	dotted lin
r	red	x	x-mark		dash-dot line
С	cyan	+	plus		dashed line
m	magent	*	star		
	a				
y	yellow	s	square		
k	black	d	diamond		
W	white	٨	triangle		
		>	triangle left		
		<	triangle right		
		P	pentagram		
		h	hexagram		26

To add a title and axis labels write

```
x = -pi:pi/20:pi;
f1 = sin(x);
f2 = cos(x);
plot(x, f1, '-ro', x, f2, '-.b')
xlabel('variable x')
ylabel('functions sin(x) & cos(x)')
title('Example')
legend('sin','cos',2);
                                   sin
                            0.8
                            0.6
                            0.4
```


Three-Dimensional Graphics

1. Line plots

The plot3 function displays a three-dimensional plot of a set of data points. Here is an example of a three-dimensional helix:

```
t = 0:pi/50:10*pi;
plot3(sin(t), cos(t), t)
grid on, axis square
```


Three-Dimensional Graphics

2. Mesh and Surface Plot

MATLAB defines a mesh surface by the z-coordinates of points above a rectangular grid in the xy-plane. The result looks like a fishing net.

Here is an example:

```
[X,Y] = meshgrid(-2:.2:2);
R = sqrt(X + Y.^2);
Z = cos(R);
mesh(X,Y,Z)
```


Three-Dimensional Graphics

The table below shows **SOMe** available MATLAB 3-D and volumetric plot functions.

Line Mesh Area Surface Direction Volumetric Graphs Graphs Graphs Graphs Graphs Graphs and Bar and Graphs Constructive Objects quiver3 plot3 mesh pie3 surf scatter3 contour3 meshc fil13 surfl comet3 coneplot streamslicestreamline contourslicmeshz surfc patch

Symbolic Math Toolbox

Using symbolic math toolbox we can do:

- Differentiation
- Integration
- Linear algebraic operations
- Simplification
- Transforms
- Variable-precision arithmetic
- Equation solving
-
-

Examples

```
>> syms x;
g = x^3 + 6^*x^2 + 11^*x + 6;
factor(g)
ans =
(x + 3)*(x + 2)*(x + 1)
>> diff(g)
ans =
3*x^2 + 12*x + 11
>> int(g)
ans =
x^4/4 + 2^*x^3 + (11^*x^2)/2 + 6^*x
```



```
>> solve('x^2 + 4*x + 1')
ans =
3^{(1/2)} - 2
-3^{(1/2)} - 2
```

>>
$$y = dsolve('D2y-2*Dy-3*y=0','y(0)=0','y(1)=1')$$

y = $1/(exp(-1)-exp(3))*exp(-t)-1/(exp(-1)-exp(3))*exp(3*t)$

Control Flow and if Statement

Control flow is extremely powerful; its lets past computations influence future operations. MATLAB has several flow control constructs:

if, switch and case, for, while continue, break, try-catch, return.

• if, else, and elseif
A simple example is to evaluate

$$f(x) = \begin{cases} x^2 & \text{if } x \le 2\\ x^3 & \text{if } x > 2 \end{cases}$$

at a given points:

Operators

Often we need some relational or logical operators to companion if statement. Operators are shown in the following table:

Relational Operators		Logical Operators	
>	Less than	& &	Logical AND
=>	Less than or equal to		Logical OR
<	Greater than	&	Logical AND for arrays
=<	Greater than or equal to		Logical OR for arrays
==	Equal to	~	Logical NOT
= ~	Not equal to		

for loop allow a group of commands to be repeated a fixed, predetermined number of times. For example:

for
$$i = 1: 4$$

 $x(i) = i^2$
end
for $k = 2:5:20$, $y = k^3 - 7$, end
for $x = [2 \ 0 \ 3]$, $y = x^3 - 5*x$, end

A while loop evaluates a group of statements an indefinite number of times such as

```
c = 0; i=1;
while c==0
i=i+2
s=1/i
if s<=0.1 c=1
end
end
```

Problems

Sample Problems

Problem 1

Write a program that plots the function:

$$y = x^3 + x^2 + 3x + 6$$

for values of x = -50 to 50

Problem 2

Write a program that calculates and displays the volume of a sphere when given the radius. The volume calculation must be performed in a function called Sphere Volume.

×

Problem 3 Matrix-Vector Products

- (a) Create a matrix A=[1 0 -1; 2 1 -1; 3 2 -1].
- (b) Create a vector u=[1 2 3]. Is u a row vector (1x3) or a column vector (3x1)?
- (c) Create a vector v=[1;2;3]. Is v a row vector or a column vector?
- (d) Try computing A*u and A*v. One works and one doesn't. Which one does? Why does this make sense? (Comment out the one that doesn't work so the script file runs without an error.)
- (e) Try computing A.*u. What does this operation do?
- (f) Create a 10x10 matrix B of 1's, and a vector w with 10 entries 1 through 10. Calculate Bw.

M

Problem 4 Dot Product

- (a) Define the vector $x=[-1 \ 0 \ -1]$
- (b) We want to calculate the dot product u · x. Try u*x. Why doesn't this work? (After you try it and see the error, comment out the line of code so the script file runs.)
- (c) Try u.*x. This doesn't give an error, but it also doesn't calculate the dot product. Why?
- (d) The transpose of a vector or matrix flips the matrix over its diagonal. For vectors, this means it makes a row vector into a column vector or vice versa. Compute transpose(u)
- (e) Compute x*transpose(u) and u*transpose(x) and transpose(u)*x? Which of these gives the dot product and which doesn't?
- (f) Use Google and find another way of calculating the transpose in Matlab. Calculate the transpose of A from problem 3.

Problem 5 Matrix-Matrix Products

(a) Define matrices

$$C = \begin{bmatrix} 1 & 2 \\ 3 & 4 \\ 5 & -6 \end{bmatrix}$$
 and
$$D = \begin{bmatrix} 1 & -2 & 3 \\ 4 & 5 & -6 \end{bmatrix}$$

- (b) Calculate C*D and D*C.
- (c) Create a matrix I=eye(3). What matrix is this?
- (d) Calculate AI and A I where A is the matrix defined in problem 3
- (e) Calculate A.*(5*I) What is 5I and what does the ** operation do?

м

Problem 6 Matrix Inverses

(a) Define

$$M = \begin{bmatrix} 1 & 2 & 1 \\ 2 & -1 & 6 \\ 1 & 1 & 2 \end{bmatrix}$$

- (b) Calculate inv(M)
- (c) Calculate M^(-1)
- (d) What's the difference between the two commands?
- (e) Solve the system Mx = v (v is defined in Problem 3) using a matrix inverse.
- (f) Calculate M\v Then Google "matrix inverse matlab" and read the "Tips" section of the Matlab documentation on Matrix inverse. What's the difference between M\x and inv(M)*x
- (e) Find Characteristic Polynomial, Eigen values and Eigen vectors of M.

v.

Problem 7

Solve the following linear problem in MATLAB (enter the matrix using the special matrix functions and partitioning if you like):

$$\begin{pmatrix} 3 & 2 & 0 & 0 & 0 & 1 \\ 2 & 1 & 0 & 0 & 0 & 0 \\ 0 & 0 & 7 & 0 & 0 & 0 \\ 0 & 0 & 0 & 7 & 0 & 0 \\ 0 & 0 & 0 & 0 & 7 & 2 \\ 0 & 0 & 0 & 0 & 1 & 3 \end{pmatrix} \begin{pmatrix} x_1 \\ x_2 \\ x_3 \\ x_4 \\ x_5 \\ x_6 \end{pmatrix} = \begin{pmatrix} -1 \\ 2 \\ 3 \\ -2 \\ -1 \\ 0 \end{pmatrix}$$

How can you check that your computed solution is correct?

Bisection Method Example

Here is a complete program, illustrating while, if, else, and end, which uses interval bisection to find a zero of a polynomial:

```
a = 0; fa = -Inf;
b = 3; fb = Inf;
while b-a > eps*b
   x = (a+b)/2;
   fx = x^3-2*x-5;
   if fx == 0
      break
   elseif sign(fx) == sign(fa)
      a = x; fa = fx;
   else
      b = x; fb = fx;
   end
end
X
```

Functions

You will often need to build your own MATLAB functions as you use MATLAB to solve problems.

. Inline

```
g = inline('t^2')

g(3)

f = inline('sin(alpha*x)')

f(3,pi/2)
```

```
function_handle (@)
```

Functions

This function calculates the mean and standard deviation of a vector:

```
function [mean, stdev] = stat(x)
n = length(x);
mean = sum(x)/n;
stdev = sqrt(sum((x-mean).^2/n));
```

```
[mean stdev] = stat( [12.7 45.4 98.9 26.6 53/1] )
mean =
   47.3200
stdev =
   29.4085
```

ODE function

Defining an ODE function in an M-file

... Solving first-order ODEs

Example

$$y' = -2ty^2$$
, $y(0) = 1$

```
function [T,Y] = eq2()
            format long
3
            tspan = [0 .25 .5 .75 1]; \forall 0 = 1;
            [t1 y1] = ode23(@odeq, tspan, y0);
            [t2 y2] = ode45(@odeq', tspan, y0);
            R = [t1 y1 y2]
6
       -end
8
9
        function dv = odeq(t,v)
10
            % The m-file for the ODE y' = -2ty^2.
11 -
            dv = -2*t*v(1).^2;
12
        end
```


Output

R =

0	1.0000000000000000	1.0000000000000000
0.250000000000000	0.941182215257514	0.941176467656496
0.5000000000000000	0.800022805971222	0.799999996783799
0.7500000000000000	0.640017884104867	0.639999987757363
1.0000000000000000	0.499996585223659	0.500000004711942

Example

$$y'_1 = y_2y_3 y_1(0) = 0$$

 $y'_2 = -y_1y_3 y_2(0) = 1$
 $y'_3 = -0.51y_1y_3 y_3(0) = 1$

