网格化大气环境监测系统

河南瑞欧光电科技有限公司

一、引言

1. 环境监测现状

近年来,我国社会飞速发展,工业化进程不断推进,由此产生一系列环境问题,雾霾天气频繁发生,空气质量明显下降,给人们的身体健康构成严重威胁,注重环境保护刻不容缓。环境监测是实施环境保护的基础,我国目前环境监测的现状我国已经初步建立了以常规监测、自动监测为基础的环境监测体系,成了国家、省市三级监测网络。环境监测的作用日益显现,能力建设突飞猛进、技术水平显著提高,在大气环境治理、污染减排、污染源普查、土壤调查、宏观战略研究、水专项等重点环保工作中,发挥了重要的技术支撑作用。同时我们也看到当前环境监测工作仍然存在许多困难和问题,监测能力不强,监测水平滞后,信息化水平不高已经成为制约环境保护事业快速发展的重要因素。

2. 国家高度重视环境监测事业

环境监测作为环境治理和环境管理的基础,为各项标准提供评判依据,能够辅助政府的监管,越来越多地受到政府和公众的重视。近年来,国家出台一系列政策,推动环境监测网络的建设、监测远程化、智能化的实现以及生态环境的科学决策和精准监管的加强。"十三五"环保规划的出台以及各项政策的推进,体现了国家对环境监测

的重视。

发布时间 发布部门		文件名称	政策主要内容	
2015年2月	环保部	《关于推进环境监测服务社会化的指导	全面放开服务性监测市场,有序放开公益性、监督性监测领域,促	
		意见》	进环境监测服务社会化良性发展	
2015年4月	国务院	(水污染防治行动计划)("水十条")	提升环境监管能力水平,建设水环境监测网络	
2015年5月	工信部	《钢铁行业规范条件 (2015 年修订)》	要求钢铁企业配套建设污染物治理设施,实施在线自动监控系统, 与地方环保部门联网,定期形成监测报告	
2015年7月	国务院	《生态环境监测网络建设方案》	明确提出坚持全面设点、全国联网、自动预警、依法追责, 形成政 府主导、部门协同、社会参与、公众监督的生态环境监测新格局	
2015年12月	环保部	(环境监测数据弄虚作假行为判定及处 理办法)	保险环境监测数据真实准确。依法查处环境监测数据弄虚作假行为	
2016年1月	发改委	("互联网+"绿色生态三年行动实施方 来)	推动互联网与生态文明建设深度融合。完善污染物监测及信息发布 系统, 形成覆盖主要生态要素的资源环境承载能力动态监测网络, 实现生态环境数据的互联共通和开放共享	
2016年3月	环保部	(生态环境大数据建设总体方案)	通过五年努力,基本建成大数据应用平台、管理平台和大数据环保 云平台架构,实现生态环境综合决策科学化、监管精准化、公共服 务使民化	
2016年5月	国务院	(土壤污染防治行动计划) ("土十条")	切实加强土壤污染防治,逐步改善土壤环境质量	
2016年11月	环保部	《关于加張环境空气自动监测质量管理 的工作方案》	全面加强环境空气自动监测质控能力,以技术手段促进质控水平 提升,完善环境空气质量监测远程在线质控系统	
2016年11月	环保部	("十三五"环境监测质量管理工作方 案)	监测质量管理工作方 完善监测技术和质控体系,摘足环境监测管理需要,提升环境显 测工作的科学化和规范化水平	
2016年11月	国务院	(控制污染物排放许可制实施方案)	明确提出环境保护部门通过对企事业单位发放排污许可证并依证 监管实施排污许可制	
2016年12月	环保部	(排污许可证管理智行规定)	明确纳入排污许可分类的管理名录,并由环保部建设国家排污许可 证管理平台统一管理,完成申请、审核、发放和管理	
2016年12月	国务院	(中华人民共和国环境保护税法)	明确了直接向环境排放应税污染物的企业事业单位和其他生产经 营者应当依照规定做纳环境保护税	

图 1 2015 年以来环境监测领域相关政策文件

纲领性文件出台,环境监测已成环保重要细分领域。 2016 年 11 环保部印发环境监测行业纲领性文件:《"十三五"环境监测质量 管理工作方案》 和《关于加强环境空气自动监测质量管理的工作方 案》, 为大气、水和土壤监测提出了具体阶段性目标。《方案》的出 台,标志着政府部门已经将环境监测提升到与大气、水务、 同等重要的地位, 意味着环境监测已成为环保行业重要细分领域。 未来, 环保部将依据《方案》, 推动出台新的《环境监测条例》, 加 快修订《环境监测管理办法》、《环境监测质量管理办法》等相关政

策性文件,以满足新形势下环境监测质量管理的需要。

河南省环保厅研究制定的《河南省生态环境监测网络建设工作方案实施计划(2017-2020年)》中明确说明,到2020年,"全省空气、地表水环境质量监测点位实现县(区)全覆盖,其中,郑州、开封、洛阳、平顶山、安阳、新乡、濮阳、焦作、鹤壁、三门县等10个省辖市及巩义、滑县、长垣3个直辖县(市)建设重点乡镇空气质量自动监测站,全省土壤环境监测网络基本建立,辐射环境监测点位覆盖地级以上城市和敏感地区。"

3. 网格化环境监的优势

区域重污染频发、大气能见度下降以及多数城市空气质量不达标等现象,已成为我国面临的最严重的环境问题。在这样的背景下,采用网格化监测系统成为各地环保局治理雾霾的新举措。网格化环境监测的优势体现在以下几个方面。

第一,技术先进。国控点一般监测 PM2.5、PM10、S02、N02、03、CO 六项指标,监测全面,但不能对单一的指标进行分析。而微型仪器采用先进激光器、300 纳米精度,独有粒子计数算法和标定工艺,分析小区域内污染源,追溯主要污染物及提出对应治理措施。

第二,监测密度大。网格化监测站成本投入低,设备维修维护便利,适合大范围、高密度布点。通过网格化布点,可以采集到全面、精细的污染数据,经过对海量数据进行深度分析,实时掌握污染趋势

动态,实现污染溯源。这是原有的一个城市仅有几个大气监测标准站所无法媲美的。

第三,后续维护成本低。国控点的成本及后期运营费用较高,很难进行大面积、精密化布点,并且"说不清污染来源"的问题仍然存在。而微型仪器恰好弥补了这样的缺点,在污染发生时,能分析污染物来源、时间及污染物成分,而且维护方式简单,运营费用较国控点低。

二、标准依据

- 【1】《2017年国家生态环境监测方案》(环保部印发);
- 【2】《生态环境监测网络建设方案实施计划(2016-2020年)》(环监测(2016)107号);
- 【3】《河南省生态环境监测网络建设工作方案》(豫政办(2016) 156号);
- 【4】《河南省生态环境监测网络建设工作方案实施计划(2017-2020年)》(河南省环保厅印发);
 - 【5】《城市区域环境噪声测量方法》(GB/T14623-93);
 - 【6】《环境空气质量标准》(GB3095-2012);
 - 【7】《空气和废气监测分析方法》(第四版)。

三、系统概述

网格化大气环境监测系统依托光电传感技术、物联网技术、大数据技术、云计算技术和北斗定位技术等先进行业技术,以实现大范围、

高敏度地实时监测区域内 SO2、NO2、O3、CO、PM2.5、PM10、温度、湿度、噪声、风速、风力、风向等环境数据,并通过无线网络通信和 北斗定位系统把监测结果和其位置信息实时上传到云平台。

云平台将监测到的数据和区域地图相叠加,运用基于 GIS (地理信息系统)的后台数据分析统,对数据进行统计、分析和绘制环境地图,实现全区域各个环境因素的时空动态变化趋势分析,进而判断污染来源,追溯污染物扩散趋势,对污染源起到最大程度的监管作用。

相关管理部门可通过该系统掌握市区内各地点环境质量数据,为环境精确治理和相关决策制定提供参考和依据。同时,将环境数据通过相关平台发布,市民也可通过微信、手机 APP、PC 等移动终端实时实地查询环境质量数据,也可在道路上通过展示板直接显示环境数据,供市民直接查看。

WEB 客户端和移动客户端的环境地图如图 2 所示:

图 2 WEB 客户端和移动客户端的环境地图

四、系统结构

网格化大气环境监测系统主要由城市环境监测站(以下简称环境监测站)和网格化大气环境监测管理平台(以下简称云平台)组成。 系统结构图如图 3 所示:

图 3 系统结构图

- (1)环境监测站是网格化大气环境监测系统的前端监测核心,用于实时监测区域内 S02、N02、03、C0、PM2.5、PM10、温度、湿度、噪声、风速、风力、风向等环境数据,并把监测结果和其位置信息实时上传到云平台;
- (2) 云平台是网格化大气环境监测系统的后端处理中枢,用于接收各个环境监测站的监测信息,并把监测到的信息储存、统计、生成报表和在 GIS 地图上显示,相关数据可以在市政管理部门显示和通过 APP 或微信公众号给市民发布相关信息。

五、系统组成

1. 环境监测站

环境监测站由电源模块、主控模块、GPRS 通信模块、北斗定位模块、数据显示屏以及各种环境监测传感器几部分组成。

环境监测站结构如图 3 所示:

图 3 环境监测站结构图

- (1) 电源模块: 为环境监测站提供电源,并具备过压、过流保护;
- (2) 主控模块:采集各个传感器监测数据,并进行逻辑运算;
- (3) GPRS 通信模块:将监测数据实时上传到云平台;
- (4) 北斗定位模块:实时上传环境监测站位置信息;
- (5) 数据显示屏: 本地直观显示监测数据;
- (6) 各种传感器: 实时监测所在区域环境数据。

2. 云平台

云平台由数据处理服务器、数据存储服务器和移动终端组成。云平台结构示意图如图 4 所示:

图 4 云平台系统结构图

- (1)数据处理服务器采用标准 C/S 架构、多路复用 I0 模型保证能够实时、准确、完整的接收和处理前端数据。
- (2)数据存储服务器采用高速磁盘阵列和传统关系型数据库,能够保存24个月以上的原始数据,便于回溯查询或长期趋势分析。
- (3) 环境数据超标预警、数据排名,并生成折线图、柱状图等多种数据表现形式,并可导出 Excel 等数据报表。
- (4)移动终端包括安卓、IOS 两个系统的 APP 和微信平台,主要用于数据实时查询及信息通知。
 - (5) 平台将地理信息系统(GIS)与数据相融合,在平台终端中

以地图为基础,借助 GIS 强大的图文一体化分析和表现能力,直观地显示环境监测站的分布及监测值,并提供以空间、时间为条件的整体数据统计分析,为监控人员的决策分析、信息查询提供强力支持;

(6) 支持多个子系统接入,平台功能可根据用户需求自由定制, 易于扩展,复用便捷。

如下图 5 所示为城市环境监测系统管理平台预览界面:

图 5 城市环境监测系统管理平台预览界面

六、系统执行技术标准

本系统严格按照国家相关标准执行,各项监测数据技术标准如表 1 所示:

REAL HIGH-TECH. Henan Real Optoelectronic Technology Co.,Ltd

环境数据监测指标							
环境数 据监测 指标	数据项	测量范围	分辨率	误差			
	CO	0~1000ppm	1ppm	≤±2%F.S			
	NO2	$0\sim 20$ ppm	0.1ppm	≤±2%F.S			
	03	$0\sim$ 20ppm	0.1ppm	≤±2%F.S			
	S02	0-100ppm	0.1ppm	≤±2%F.S			
	C02	$0\sim2000$ ppm	1ppm	≤±2%F.S			
	PM2.5	$0\sim999\mathrm{ug/m^3}$	lug/m³	≤±10%			
	PM10	$0\sim999\mathrm{ug/m^3}$	lug/m³	≤±10%			
	噪声	20~130dB	0.1dB	≤±2dB			
	温度	-40∼70°C	0.1℃	≤±1°C			
	湿度	0∼99.9%RH	0.1%RH	≤±5%RH			
	风速	$0\sim30\text{m/s}$	0.1m/s	$\leq \pm 1$ m/s			
	风力	0~12级	1级	≤±0.5级			
	风向	0∼360°	1°	≤ ±3°			

表 1 技术标准

七、功能优势

系统基于对城市环境监测的需求而设计,技术特点和优势主要体现在以下几方面:

(1) 实时监测

监测站系统系统集成了总悬浮颗粒物、PM10、PM2.5、温度、湿度、噪声、风向和风速等多个环境参数,24 小时在线连续监测,全天候提供监测地点的空气质量数据。

(2) 环境地图

基于监测数据和 GIS 技术的环境地图, 支持以时间和空间为条件的数据回放和统计,可以使人员可以直观、全局地掌握环境情况, 为环境治理的整体决策提供支持。

(3) 污染追源

依托环境地图的直观表现和数据回放, 可以直观的追寻到污染产

生的源头,并监视其扩散和消散的轨迹,对于精准治霾,提供数据依据。

(4) 数据位置相统一

监测站通过北斗定位系统实时传送其位置信息,保证了监测数据和位置的相统一。

(5) 一体化工业设计

监测站采用一体化工业设计,安装简单方便,外表美观大方,为市容增光增色。

(6)海量存储、高效分析

基于云计算的数据中心平台汇集了不同区域、不同时段的监测数据,具有海量存储空间,可进行多维度、多时空的数据统计分析,便于管理部分有序开展工作,同时也为建立城市环境控制标准积累数据,以推动对空气的长效治理。