

Ultralow Offset Voltage Operational Amplifier

Data Sheet OP07

FEATURES

Low Vos: 75 μV maximum

Low Vos drift: 1.3 μV/°C maximum

Ultrastable vs. time: 1.5 μV per month maximum

Low noise: 0.6 µV p-p maximum

Wide input voltage range: ±14 V typical Wide supply voltage range: ±3 V to ±18 V

125°C temperature-tested dice

APPLICATIONS

Wireless base station control circuits Optical network control circuits Instrumentation Sensors and controls

Thermocouples

Resistor thermal detectors (RTDs)

Strain bridges

Shunt current measurements

Precision filters

GENERAL DESCRIPTION

The OP07 has very low input offset voltage (75 μV maximum for OP07E) that is obtained by trimming at the wafer stage. These low offset voltages generally eliminate any need for external nulling. The OP07 also features low input bias current (± 4 nA for the OP07E) and high open-loop gain (200 V/mV for the OP07E). The low offset and high open-loop gain make the OP07 particularly useful for high gain instrumentation applications.

PIN CONFIGURATION

The wide input voltage range of ± 13 V minimum combined with a high CMRR of 106 dB (OP07E) and high input impedance provide high accuracy in the noninverting circuit configuration. Excellent linearity and gain accuracy can be maintained even at high closed-loop gains. Stability of offsets and gain with time or variations in temperature is excellent. The accuracy and stability of the OP07, even at high gain, combined with the freedom from external nulling have made the OP07 an industry standard for instrumentation applications.

The OP07 is available in two standard performance grades. The OP07E is specified for operation over the 0° C to 70° C range, and the OP07C is specified over the -40° C to $+85^{\circ}$ C temperature range.

The OP07 is available in epoxy 8-lead PDIP and 8-lead narrow SOIC packages. For CERDIP and TO-99 packages and standard microcircuit drawing (SMD) versions, see the OP77.

Figure 2. Simplified Schematic

OP07* Product Page Quick Links

Last Content Update: 11/01/2016

Comparable Parts <a> □

View a parametric search of comparable parts

Evaluation Kits <a> □

• EVAL-OPAMP-1 Evaluation Board

Documentation <a>□

Application Notes

- AN-573: OP07 Is Still Evolving
- AN-649: Using the Analog Devices Active Filter Design Tool

Data Sheet

 OP07: Ultralow Offset Voltage Operational Amplifier Data Sheet

Product Highlight

· Amplifier pricing where you want it,

Software and Systems Requirements —

• JAN to Generic Cross Reference

Tools and Simulations

- · Analog Filter Wizard
- · Analog Photodiode Wizard

Design Resources -

- OP07 Material Declaration
- PCN-PDN Information
- Quality And Reliability
- · Symbols and Footprints

Discussions <a>□

View all OP07 EngineerZone Discussions

Sample and Buy -

Visit the product page to see pricing options

Technical Support -

Submit a technical question or find your regional support number

^{*} This page was dynamically generated by Analog Devices, Inc. and inserted into this data sheet. Note: Dynamic changes to the content on this page does not constitute a change to the revision number of the product data sheet. This content may be frequently modified.

TABLE OF CONTENTS

Features	Absolute Maximum Ratings6
Applications1	Thermal Resistance6
General Description1	ESD Caution6
Pin Configuration1	Typical Performance Characteristics7
Revision History	Typical Applications11
Specifications	Applications Information
OP07E Electrical Characteristics	Outline Dimensions
OP07C Electrical Characteristics	Ordering Guide14
REVISION HISTORY	
10/11—Rev. F. to Rev G	8/03—Rev. B to Rev. C
Changes to Features Section	Changes to OP07E Electrical Specifications2
8/10—Rev. E. to Rev F	Changes to OP07C Electrical Specifications
	Edits to Ordering Guide5
Changes to Ordering Guide	Edits to Figure 69
7/09—Rev. D. to Rev E	Updated Outline Dimensions11
Changes to Figure 29 Caption11	3/03—Rev. A to Rev. B
Changes to Ordering Guide	Updated Package Titles
	Updated Outline Dimensions
7/06—Rev. C. to Rev D	opuated Outline Dimensions
Changes to Features	2/02—Rev. 0 to Rev. A
Changes to General Description	Edits to Features1
Changes to Specifications Section	Edits to Ordering Guide1
Changes to Table 46	Edits to Pin Connection Drawings1
Changes to Figure 6 and Figure 87	Edits to Absolute Maximum Ratings2
Changes to Figure 13 and Figure 14 8	Deleted Electrical Characteristics2-3
Changes to Figure 209	Deleted OP07D Column from Electrical Characteristics 4–5
Changes to Figure 21 to Figure 25	Edits to TPCs
Changes to Figure 26 and Figure 3011	Edits to High-Speed, Low Vos Composite Amplifier
Replaced Figure 28	
Changes to Applications Information Section	
Updated Outline Dimensions	

SPECIFICATIONS

OP07E ELECTRICAL CHARACTERISTICS

 V_{S} = ±15 V, unless otherwise noted.

Table 1.

Parameter	Symbol	Conditions	Min	Тур	Max	Unit
INPUT CHARACTERISTICS						
T _A = 25°C						
Input Offset Voltage ¹	Vos			30	75	μV
Long-Term Vos Stability ²	V _{os} /Time			0.3	1.5	μV/Month
Input Offset Current	los			0.5	3.8	nA
Input Bias Current	I _B			±1.2	±4.0	nA
Input Noise Voltage	e _n p-p	0.1 Hz to 10 Hz ³		0.35	0.6	μV p-p
Input Noise Voltage Density	e _n	$f_0 = 10 \text{ Hz}$		10.3	18.0	nV/√Hz
		$f_0 = 100 \text{ Hz}^3$		10.0	13.0	nV/√Hz
		$f_0 = 1 \text{ kHz}$		9.6	11.0	nV/√Hz
Input Noise Current	I _n p-p			14	30	рА р-р
Input Noise Current Density	I _n	f _o = 10 Hz		0.32	0.80	pA/√Hz
·		$f_0 = 100 \text{ Hz}^3$	1	0.14	0.23	pA/√Hz
		$f_0 = 1 \text{ kHz}$		0.12	0.17	pA/√Hz
Input Resistance, Differential Mode ⁴	R _{IN}		15	50		MΩ
Input Resistance, Common Mode	RINCM			160		GΩ
Input Voltage Range	IVR		±13	±14		V
Common-Mode Rejection Ratio	CMRR	$V_{CM} = \pm 13 \text{ V}$	106	123		dB
Power Supply Rejection Ratio	PSRR	$V_S = \pm 3 \text{ V to } \pm 18 \text{ V}$		5	20	μV/V
Large Signal Voltage Gain	Avo	$R_L \ge 2 \text{ k}\Omega$, $V_O = \pm 10 \text{ V}$	200	500		V/mV
		$R_L \ge 500 \ \Omega, V_O = \pm 0.5 \ V, V_S = \pm 3 \ V^4$	150	400		V/mV
$0^{\circ}C \leq T_A \leq 70^{\circ}C$						
Input Offset Voltage ¹	Vos			45	130	μV
Voltage Drift Without External Trim⁴	TCVos			0.3	1.3	μV/°C
Voltage Drift with External Trim ³	TCV _{OSN}	$R_P = 20 \text{ k}\Omega$		0.3	1.3	μV/°C
Input Offset Current	los			0.9	5.3	nA
Input Offset Current Drift	TClos			8	35	pA/°C
Input Bias Current	I _B			±1.5	±5.5	nA
Input Bias Current Drift	TCI _B			13	35	pA/°C
Input Voltage Range	IVR		±13	±13.5		V
Common-Mode Rejection Ratio	CMRR	$V_{CM} = \pm 13 \text{ V}$	103	123		dB
Power Supply Rejection Ratio	PSRR	$V_S = \pm 3 \text{ V to } \pm 18 \text{ V}$		7	32	μV/V
Large Signal Voltage Gain	Avo	$R_L \ge 2 \text{ k}\Omega, V_O = \pm 10 \text{ V}$	180	450		V/mV
OUTPUT CHARACTERISTICS						
T _A = 25°C						
Output Voltage Swing	Vo	$R_L \ge 10 \text{ k}\Omega$	±12.5	±13.0		V
·		$R_L \ge 2 \ k\Omega$	±12.0	±12.8		V
		$R_L \ge 1 \ k\Omega$	±10.5	±12.0		V
0°C ≤ T _A ≤ 70°C			1			
Output Voltage Swing	Vo	$R_L \ge 2 k\Omega$	±12	±12.6		V

OP07 Data Sheet

Parameter	Symbol	Conditions	Min	Тур	Max	Unit
DYNAMIC PERFORMANCE						
$T_A = 25$ °C						
Slew Rate	SR	$R_L \ge 2 k\Omega^3$	0.1	0.3		V/μs
Closed-Loop Bandwidth	BW	A _{VOL} = 1 ⁵	0.4	0.6		MHz
Open-Loop Output Resistance	Ro	$V_0 = 0$, $I_0 = 0$		60		Ω
Power Consumption	P_d	$V_S = \pm 15 \text{ V}$, No load		75	120	mW
		$V_S = \pm 3 V$, No load		4	6	mW
Offset Adjustment Range		$R_P = 20 \text{ k}\Omega$		±4		mV

OP07C ELECTRICAL CHARACTERISTICS

 $V_S = \pm 15 \text{ V}$, unless otherwise noted.

Table 2.

Parameter	Symbol	Conditions	Min	Тур	Max	Unit
INPUT CHARACTERISTICS						
T _A = 25°C						
Input Offset Voltage ¹	Vos			60	150	μV
Long-Term Vos Stability ²	V _{os} /Time			0.4	2.0	μV/Month
Input Offset Current	los			8.0	6.0	nA
Input Bias Current	I _B			±1.8	±7.0	nA
Input Noise Voltage	e _n p-p	0.1 Hz to 10 Hz ³		0.38	0.65	μV p-p
Input Noise Voltage Density	e _n	f ₀ = 10 Hz		10.5	20.0	nV/√Hz
		$f_0 = 100 \text{ Hz}^3$		10.2	13.5	nV/√Hz
		$f_0 = 1 \text{ kHz}$		9.8	11.5	nV/√Hz
Input Noise Current	I _n p-p			15	35	рА р-р
Input Noise Current Density	In	f ₀ = 10 Hz		0.35	0.90	pA/√Hz
		$f_0 = 100 \text{ Hz}^3$		0.15	0.27	pA/√Hz
		$f_0 = 1 \text{ kHz}$		0.13	0.18	pA/√Hz
Input Resistance, Differential Mode ⁴	R _{IN}		8	33		ΜΩ
Input Resistance, Common Mode	R _{INCM}			120		GΩ
Input Voltage Range	IVR		±13	±14		V
Common-Mode Rejection Ratio	CMRR	$V_{CM} = \pm 13 \text{ V}$	100	120		dB
Power Supply Rejection Ratio	PSRR	$V_S = \pm 3 \text{ V to } \pm 18 \text{ V}$		7	32	μV/V
Large Signal Voltage Gain	Avo	$R_L \ge 2 \text{ k}\Omega$, $V_O = \pm 10 \text{ V}$	120	400		V/mV
		$R_L \ge 500 \ \Omega, V_O = \pm 0.5 \ V, V_S = \pm 3 \ V^4$	100	400		V/mV
-40° C \leq T _A \leq $+85^{\circ}$ C						
Input Offset Voltage ¹	Vos			85	250	μV
Voltage Drift Without External Trim⁴	TCVos			0.5	1.8	μV/°C
Voltage Drift with External Trim ³	TCV _{OSN}	$R_P = 20 \text{ k}\Omega$		0.4	1.6	μV/°C
Input Offset Current	los			1.6	8.0	nA
Input Offset Current Drift	TCIos			12	50	pA/°C
Input Bias Current	I _B			±2.2	±9.0	nA
Input Bias Current Drift	TCI _B			18	50	pA/°C
Input Voltage Range	IVR		±13	±13.5		V
Common-Mode Rejection Ratio	CMRR	$V_{CM} = \pm 13 \text{ V}$	97	120		dB
Power Supply Rejection Ratio	PSRR	$V_S = \pm 3 \text{ V to } \pm 18 \text{ V}$		10	51	μV/V
Large Signal Voltage Gain	A _{vo}	$R_L \ge 2 k\Omega, V_O = \pm 10 V$	100	400		V/mV

¹ Input offset voltage measurements are performed by automated test equipment approximately 0.5 seconds after application of power. ² Long-term input offset voltage stability refers to the averaged trend time of V_{OS} vs. the time over extended periods after the first 30 days of operation. Excluding the initial hour of operation, changes in V_{0s} during the first 30 operating days are typically 2.5 μV. Refer to the Typical Performance Characteristics section. Parameter is sample tested.

⁴ Guaranteed by design.

⁵ Guaranteed but not tested.

Parameter	Symbol	Conditions	Min	Тур	Max	Unit
OUTPUT CHARACTERISTICS						
T _A = 25°C						
Output Voltage Swing	Vo	$R_L \ge 10 \text{ k}\Omega$	±12.0	±13.0		V
		$R_L \ge 2 k\Omega$	±11.5	±12.8		V
		$R_L \ge 1 \text{ k}\Omega$		±12.0		V
-40°C ≤ T _A ≤ +85°C						
Output Voltage Swing	Vo	$R_L \ge 2 k\Omega$	±12	±12.6		V
DYNAMIC PERFORMANCE						
T _A = 25°C						
Slew Rate	SR	$R_L \ge 2 k\Omega^3$	0.1	0.3		V/µs
Closed-Loop Bandwidth	BW	A _{VOL} = 1 ⁵	0.4	0.6		MHz
Open-Loop Output Resistance	Ro	$V_{\rm O} = 0$, $I_{\rm O} = 0$		60		Ω
Power Consumption	P _d	$V_S = \pm 15 \text{ V, No load}$		80	150	mW
		$V_S = \pm 3 \text{ V}$, No load		4	8	mW
Offset Adjustment Range		$R_P = 20 \text{ k}\Omega$		±4		mV

¹ Input offset voltage measurements are performed by automated test equipment approximately 0.5 seconds after application of power. ² Long-term input offset voltage stability refers to the averaged trend time of V₀₅ vs. the time over extended periods after the first 30 days of operation. Excluding the initial hour of operation, changes in V₀₅ during the first 30 operating days are typically 2.5 µV. Refer to the Typical Performance Characteristics section. Parameter is sample tested.

3 Sample tested.
4 Guaranteed by design.
5 Guaranteed but not tested.

ABSOLUTE MAXIMUM RATINGS

Table 3.

Parameter	Ratings
Supply Voltage (V _s)	±22 V
Input Voltage ¹	±22 V
Differential Input Voltage	±30 V
Output Short-Circuit Duration	Indefinite
Storage Temperature Range	
S and P Packages	−65°C to +125°C
Operating Temperature Range	
OP07E	0°C to 70°C
OP07C	−40°C to +85°C
Junction Temperature	150°C
Lead Temperature, Soldering (60 sec)	300°C

 $^{^1\}text{For}$ supply voltages less than ± 22 V, the absolute maximum input voltage is equal to the supply voltage.

Stresses above those listed under Absolute Maximum Ratings may cause permanent damage to the device. This is a stress rating only; functional operation of the device at these or any other conditions above those indicated in the operational section of this specification is not implied. Exposure to absolute maximum rating conditions for extended periods may affect device reliability.

THERMAL RESISTANCE

 θ_{JA} is specified for the worst-case conditions, that is, a device soldered in a circuit board for surface-mount packages.

Table 4. Thermal Resistance

Package Type	θја	Ө зс	Unit
8-Lead PDIP (P-Suffix)	103	43	°C/W
8-Lead SOIC_N (S-Suffix)	158	43	°C/W

ESD CAUTION

ESD (electrostatic discharge) sensitive device. Electrostatic charges as high as 4000 V readily accumulate on the human body and test equipment and can discharge without detection. Although this product features proprietary ESD protection circuitry, permanent damage may occur on devices subjected to high energy electrostatic discharges. Therefore, proper ESD precautions are recommended to avoid performance degradation or loss of functionality.

OP07 Data Sheet

TYPICAL PERFORMANCE CHARACTERISTICS

Figure 3. Open-Loop Gain vs. Temperature

Figure 4. Offset Voltage Change due to Thermal Shock

V_S = ±15V MAXIMUM ERROR REFERRED TO INPUT (mV) 0.6 0.4 OP07C

MATCHED OR UNMATCHED SOURCE RESISTANCE (Ω) Figure 6. Maximum Error vs. Source Resistance

100

OP07E

10k

100k

Figure 7. Maximum Error vs. Source Resistance

Figure 8. Input Bias Current vs. Differential Input Voltage

Figure 9. Input Bias Current vs. Temperature

Figure 10. Input Offset Current vs. Temperature

Figure 11. Low Frequency Noise

Figure 12. Total Input Noise Voltage vs. Frequency

Figure 13. Input Wideband Noise vs. Bandwidth, 0.1 Hz to Frequency Indicated

Figure 14. CMRR vs. Frequency

Figure 15. PSRR vs. Frequency

Figure 16. Open-Loop Gain vs. Power Supply Voltage

Figure 17. Open-Loop Frequency Response

Figure 18. Closed-Loop Frequency Response for Various Gain Configurations

Figure 19. Maximum Output Swing vs. Frequency

Figure 20. Maximum Output Voltage vs. Load Resistance

Figure 21. Power Consumption vs. Power Supply

Figure 22. Output Short-Circuit Current vs. Time

Figure 23. Untrimmed Offset Voltage vs. Temperature

Figure 24. Trimmed Offset Voltage vs. Temperature

Figure 25. Offset Voltage Drift vs. Time

TYPICAL APPLICATIONS

Figure 26. Typical Offset Voltage Test Circuit

Figure 27. Typical Low Frequency Noise Circuit

Figure 28. Optional Offset Nulling Circuit

Figure 29. Absolute Value Circuit

Figure 30. High Speed, Low Vos Composite Amplifier

Figure 31. Adjustment-Free Precision Summing Amplifier

Figure 32. High Stability Thermocouple Amplifier

Figure 33. Precision Absolute-Value Circuit

APPLICATIONS INFORMATION

The OP07 provides stable operation with load capacitance of up to 500 pF and ± 10 V swings; larger capacitances should be decoupled with a 50 Ω decoupling resistor.

Stray thermoelectric voltages generated by dissimilar metals at the contacts to the input terminals can degrade drift performance. Therefore, best operation is obtained when both input contacts are maintained at the same temperature, preferably close to the package temperature.

OUTLINE DIMENSIONS

COMPLIANT TO JEDEC STANDARDS MS-012-AA

CONTROLLING DIMENSIONS ARE IN MILLIMETERS; INCH DIMENSIONS (IN PARENTHESES) ARE ROUNDED-OFF MILLIMETER EQUIVALENTS FOR REFERENCE ONLY AND ARE NOT APPROPRIATE FOR USE IN DESIGN.

Figure 34. 8-Lead Standard Small Outline Package [SOIC_N] Narrow Body S-Suffix (R-8)

Dimensions shown in millimeters and (inches)

COMPLIANT TO JEDEC STANDARDS MS-001

CONTROLLING DIMENSIONS ARE IN INCHES; MILLIMETER DIMENSIONS (IN PARENTHESES) ARE ROUNDED-OFF INCH EQUIVALENTS FOR REFERENCE ONLY AND ARE NOT APPROPRIATE FOR USE IN DESIGN. CORNER LEADS MAY BE CONFIGURED AS WHOLE OR HALF LEADS.

Figure 35. 8-Lead Plastic Dual-in-Line Package [PDIP]
P-Suffix
(N-8)
Dimensions shown in inches and (millimeters)

9090

ORDERING GUIDE

Model ¹	Temperature Range	Package Description	Package Option
OP07EPZ	0°C to 70°C	8-Lead PDIP	N-8 (P-Suffix)
OP07CPZ	−40°C to +85°C	8-Lead PDIP	N-8 (P-Suffix)
OP07CSZ	−40°C to +85°C	8-Lead SOIC_N	R-8 (S-Suffix)
OP07CSZ-REEL	−40°C to +85°C	8-Lead SOIC_N	R-8 (S-Suffix)
OP07CSZ-REEL7	-40°C to +85°C	8-Lead SOIC_N	R-8 (S-Suffix)

¹ Z = RoHS Compliant Part.

NOTES

NOTES

