

College Algebra and Trigonometry

Prof. Liang ZHENG

Fall 2024

x	0	$\frac{\pi}{6}$	$\frac{\pi}{4}$	$\frac{\pi}{3}$	$\frac{\pi}{2}$	$\frac{2\pi}{3}$	$\frac{3\pi}{4}$	$\frac{5\pi}{6}$	π	$\frac{7\pi}{6}$	$\frac{5\pi}{4}$	$\frac{4\pi}{3}$	$\frac{3\pi}{2}$	$\frac{5\pi}{3}$	$\frac{7\pi}{4}$	$\frac{11\pi}{12}$	2π
$\sin x$	0	$\frac{1}{2}$	$\frac{\sqrt{2}}{2}$	$\frac{\sqrt{3}}{2}$	1	$\frac{\sqrt{3}}{2}$	$\frac{\sqrt{2}}{2}$	$\frac{1}{2}$	0	$-\frac{1}{2}$	$-\frac{\sqrt{2}}{2}$	$-\frac{\sqrt{3}}{2}$	-1	$-\frac{\sqrt{3}}{2}$	$-\frac{\sqrt{2}}{2}$	$-\frac{1}{2}$	0

x	0	$\frac{\pi}{6}$	$\frac{\pi}{4}$	$\frac{\pi}{3}$	$\frac{\pi}{2}$	$\frac{2\pi}{3}$	$\frac{3\pi}{4}$	$\frac{5\pi}{6}$	π	$\frac{7\pi}{6}$	$\frac{5\pi}{4}$	$\frac{4\pi}{3}$	$\frac{3\pi}{2}$	$\frac{5\pi}{3}$	$\frac{7\pi}{4}$	$\frac{11\pi}{12}$	2π
cosx	1	$\frac{\sqrt{3}}{2}$	$\frac{\sqrt{2}}{2}$	$\frac{1}{2}$	0	$-\frac{1}{2}$	$-\frac{\sqrt{2}}{2}$	$-\frac{\sqrt{3}}{2}$	-1	$-\frac{\sqrt{3}}{2}$	$-\frac{\sqrt{2}}{2}$	$-\frac{1}{2}$	0	$\frac{1}{2}$	$\frac{\sqrt{2}}{2}$	$\frac{\sqrt{3}}{2}$	1

Characteristics of the Graphs of $y = \sin x$ and $y = \cos x$

- The domain is $(-\infty, \infty)$.
- The range is [-1, 1].
- The period is 2π .
- The graph of $y = \sin x$ is symmetric with respect to the origin. $y = \sin x$ is an odd function.
- The graph of $y = \cos x$ is symmetric with respect to the y-axis. $y = \cos x$ is an even function.
- The graphs of $y = \sin x$ and $y = \cos x$ differ by a horizontal shift of $\frac{\pi}{2}$.

② Graph y = Asinx and y = Acosx

Key Points of y = sinx and y = cosx:

Example 1:

Graph the function and identify the key points on one full period.

a)
$$y = 3\sin x$$

a)
$$y = 3\sin x$$
 b) $y = -\frac{1}{2}\cos x$

3 Graph y = AsinBx and y = AcosBx

Recall from Section 2.6 that the graph of y = f(Bx) is the graph of y = f(x) with a horizontal shrink or stretch.

Amplitude and Period of the Sine and Cosine functions:

For $y = A \sin Bx$ and $y = A \sin Bx$ and B > 0, the amplitude and period are

Amplitude =
$$|A|$$
 and Period = $\frac{2\pi}{B}$

Example 2:

Given $f(x) = 4\sin 3x$

- a) Identify the amplitude and period.
- b) Graph the function and identify the key points on one full period.

1 Graph $y = \csc x$ and $y = \sec x$

x	0	$rac{\pi}{4}$	$\frac{\pi}{2}$	$\frac{3\pi}{4}$	π	$\frac{5\pi}{4}$	$\frac{3\pi}{2}$	$\frac{7\pi}{4}$	2π
cscx	undefined	$\sqrt{2}$	1	$\sqrt{2}$	undefined	$-\sqrt{2}$	-1	$-\sqrt{2}$	undefined
secx	1	$\sqrt{2}$	undefined	$\sqrt{2}$	-1	$-\sqrt{2}$	undefined	$\sqrt{2}$	1

Graphs of the Cosecant and Secant Functions							
	$y = \csc x$	$y = \sec x$					
Domain	$\{x \mid x \neq n\pi \text{ for all integers } n\}$	$\left\{x \mid x \neq \frac{(2n+1)\pi}{2} \text{ for all integers } n\right\}$					
Range	$\{y \mid y \le -1 \text{ or } y \ge 1\}$	$\{y \mid y \le -1 \text{ or } y \ge 1\}$					
Amplitude	None $(y = \csc x \text{ increases and decreases without bound})$	None $(y = \sec x \text{ increases and decreases without bound})$					
Period	2π	2π					
Vertical Asymptotes	$x = n\pi$ (multiples of π)	$x = \frac{(2n+1)\pi}{2} \left(\text{odd mulitples of } \frac{\pi}{2} \right)$					
Symmetry	Origin (The cosecant function is an odd function.)	y-axis (The secant function is an even function.)					

Example 1:

Graph $y = 3 \sec x$

Example 2:

Graph
$$y = \csc\left(x - \frac{\pi}{4}\right) + 3$$

② Graph $y = \tan x$ and $y = \cot x$

x	0	$\frac{\pi}{4}$	$\frac{\pi}{2}$	$\frac{3\pi}{4}$	π	$\frac{5\pi}{4}$	$\frac{3\pi}{2}$	$\frac{7\pi}{4}$	2π
tanx	0	1	undefined	-1	0	1	undefined	-1	0
$\cot x$	undefined	1	0	-1	undefined	1	0	-1	undefined

Graphs of the Tangent and Cotangent Functions								
	$y = \tan x$	$y = \cot x$						
Domain	$\left\{x \mid x \neq \frac{(2n+1)\pi}{2} \text{ for all integers } n\right\}$	$\{x \mid x \neq n\pi \text{ for all integers } n\}$						
Range	All real numbers	All real numbers						
Amplitude	None $(y = \tan x \text{ is unbounded.})$	None $(y = \cot x \text{ is unbounded.})$						
Period	π	π						
Vertical Asymptotes	$x = \frac{(2n+1)\pi}{2} \left(\text{odd multiples of } \frac{\pi}{2} \right)$	$x = n\pi$ (multiples of π)						
Symmetry	Origin (The tangent function is an odd function.)	Origin (The cotanget function is an odd function.)						

Example 4:

Graph
$$y = 3tan2x$$

Example 5:

Graph
$$y = \cot\left(x + \frac{\pi}{4}\right) + 2$$

