Homework 2 due 10/7 in class

- 1. (10pt) Let $x[n] = \delta[n-1] + \delta[n+1]$.
 - (a) Determine $X(e^{j\omega})$. (Simplify the expression as much as possible)
 - (b) Plot $|X(e^{j\omega})|$ and $\angle X(e^{j\omega})$.
- 2. (15pt) Let $X(e^{j\omega})$ be as given in the following figure.

- (a) Let y[n] = x[n-2]. Plot $|Y(e^{j\omega})|$ and $\angle Y(e^{j\omega})$. (Hint: time-shifting property)
- (b) Let $y[n] = x[n]e^{jn\pi}$. Plot $|Y(e^{j\omega})|$ and $\angle Y(e^{j\omega})$. (Hint: frequency-shifting property] Determine y[n] in terms of x[n].
- 3. (15pt) Let h[n] be the impulse response of an eight-point moving average system.
 - (a) Determine $H(e^{j\omega})$. Plot $|H(e^{j\omega})|$ and $\angle H(e^{j\omega})$.
 - (b) Determine the output when the input of the system is $x[n] = e^{j\pi n/5}$ and when $x[n] = \cos(\pi n/5)$.
 - (c) Let $x[n] = h[n]e^{j\pi n/3}$. Determine $X(e^{j\omega})$. (Hint: modulation or windowing theorem)
 - (d) Suppose the input of the system is $x[n] = e^{j\omega_0 n}$ for some ω_0 and the output y[n] = 0. Determine ω_0 .
- 4. (20pt) MATLAB Let x[n] be a sequence that is nonzero for $M_1 \leq n \leq M_2$. Write a Matlab code to compute $X(e^{j\omega})$ for a given ω .

Note: All Matlab assignments should be accompanied by observations, or comments on why the plots are reasonable. Unexplained plots are not given credits.

- (a) Let h[n] = 1/8(u[n] u[n-8]). Compute $H(e^{j\omega_k})$, where $\omega_k = 2\pi k/N$ for $k = 0, 1, \dots, N-1$ and N = 20. Plot $|H(e^{j\omega_k})|$ and $\angle H(e^{j\omega_k})$ as a function of k. Comment on difference between the Matlab plots and what you have in 3(a).
- (b) Let $x[n] = e^{j\pi n/3}$, for $n = 0, 1, \dots, 7$. Compute $X(e^{j\omega_k})$, where $\omega_k = 2\pi k/N$ for $k = 0, 1, \dots, N-1$ and N = 128. Use $|X(e^{j\omega_k})|$ and $\angle X(e^{j\omega_k})$ to plot $|X(e^{j\omega})|$ and $\angle X(e^{j\omega})$. Are the plots consistent with those in 3(c)?