Assignment 3

Kieran Mulchrone

November 18, 2020

1 Introduction

This assignment is little bit lighter than the last two. You are to solve the epidemiological SIR model using the 4^{th} order Runge-Kutta method. I put the code I wrote to solve the SIR model using Euler's method on Canvas under the tutorial section (NumericalODE.zip) and you can use this code as guide.

Specific requirements include:

- 1. Your code must be able to deal with a system of equations of any size, not just 3 equations.
- 2. Modify the code to implement the 4^{th} order Runge-Kutta method.
- 3. Use exception handling where necessary and deal with all potential errors.
- 4. Output the result of the computation to a csv file.
- 5. Keep your code tidy and readable. Put in a reasonable amount of comments but no essays.
- 6. Provide code in main which tests your implementation.
- 7. Submit your work in a single .cs file (combine all files into one file).

The following notes may be of help.

2 The SIR Model

The SIR model comprise three compartments containing subsets of the total population:

- 1. The susceptible (S) have not been exposed to infection,
- 2. The infected (I) who are infected and infectious,
- 3. The recovered (R) who were infected and have acquired immunity i.e. cannot be reinfected.

For ease lets use proportions of the population in each set and the evolution equations are:

$$\dot{S} = -\beta IS$$
$$\dot{I} = \beta IS - \gamma I$$
$$\dot{R} = \gamma I$$

At all times S + I + R = 1 and $\dot{S} + \dot{I} + \dot{R} = 0$.

The infectious rate, β , represents the probability of transmitting disease between a susceptible and an infectious individual. The recovery rate, $\gamma = \frac{1}{D}$, is determined by the average time a person stays in the infected compartment, D, and is typically measured in days. Usually $D \approx 14$.

Often people in the media talk in terms of the basic reproduction number (R_0) or the R number. An epidemic occurs if $\dot{I} > 0$

$$\dot{I} = \beta IS - \gamma I > 0$$

$$\frac{\beta S}{\gamma} > 1$$

At the beginning of an epidemic then $S \approx 1$ thus the condition is $R_0 = \frac{\beta}{\gamma} > 1$ for a disease to spread. Because we know γ and R_0 , i.e. for COVID $R_0 \approx 2.4$, we can estimate values for β .

3 The 4^{th} order Runge-Kutta method

Consider the equation $\frac{dy}{dx} = f(x,y)$ along with some initial condition $y(0) = y_0$, and we wish to numerically solve it so that we know the solution y_0, y_1, \dots, y_n at times x_0, x_1, \dots, x_n where the fixed step size $h = x_{i+1} - x_i$. Then the scheme is

$$y_{j+1} = y_j + \frac{1}{6}h(k_1 + 2k_2 + 2k_3 + k_4)$$

$$x_{j+1} = x_j + h$$

where

$$k_{1} = f(x_{j}, y_{j})$$

$$k_{2} = f\left(x_{j} + \frac{h}{2}, y_{j} + h\frac{k_{1}}{2}\right)$$

$$k_{3} = f\left(x_{j} + \frac{h}{2}, y_{j} + h\frac{k_{2}}{2}\right)$$

$$k_{4} = f(x_{j} + h, y_{j} + hk_{3})$$

In order to adapt this scheme to a system of equations let's suppose we have a system of m equations:

$$\dot{y_1} = f_1(x, y_1, y_2, \dots, y_m)$$

 $\dot{y_1} = f_2(x, y_1, y_2, \dots, y_m)$
 \vdots
 $\dot{y_n} = f_m(x, y_1, y_2, \dots, y_m).$

Define the vector of dependent variables $\mathbf{y} = \{y_1, y_2, \dots, y_m\}^T$ and similarly for their first derivatives $\dot{\mathbf{y}} = \{y_1, y_2, \dots, y_m\}^T$. Define a vector of the functions on the right hand side to be $\mathbf{f} = \{f_1(x, \mathbf{y}), f_2(x, \mathbf{y}), \dots, f_m(x, \mathbf{y})\}^T$, then our system of equations is succinctly given as $\dot{\mathbf{y}} = \mathbf{f}$. Notice that if \mathbf{f} is evaluated at a particular value of x and \mathbf{y} the result is a vector of numbers.

Now the scheme can be written as follows (and we need to think about what each part of the scheme represents):

$$\mathbf{y}_{j+1} = \mathbf{y}_j + \frac{1}{6}h(\mathbf{k}_1 + 2\mathbf{k}_2 + 2\mathbf{k}_3 + \mathbf{k}_4)$$

 $x_{j+1} = x_j + h$

where

$$\mathbf{k}_{1} = \mathbf{f}(x_{j}, \mathbf{y}_{j})$$

$$\mathbf{k}_{2} = \mathbf{f}\left(x_{j} + \frac{h}{2}, \mathbf{y}_{j} + h\frac{\mathbf{k}_{1}}{2}\right)$$

$$\mathbf{k}_{3} = \mathbf{f}\left(x_{j} + \frac{h}{2}, \mathbf{y}_{j} + h\frac{\mathbf{k}_{2}}{2}\right)$$

$$\mathbf{k}_{4} = \mathbf{f}(x_{j} + h, \mathbf{y}_{j} + h\mathbf{k}_{3})$$

Each of $\mathbf{k}_1, \mathbf{k}_3, \mathbf{k}_3$ and \mathbf{k}_4 are vectors because they result from an evaluation of \mathbf{f} .