Neural nets for NLP

Neural Networks

WORD VECTORS

How to represent words?

- We understand the meaning from the context
- Train a model to predict words based on context (or vice-versa)

- Words are discrete, but input layer assings a vector to each word.
 So does the output layer
- The words end up in meaningful positions

Word vector arithmetic

- King queen ≈ man woman
- Italy Rome ≈ Poland Warsaw

Type of relationship	Word Pair 1		Word Pair 2		
Common capital city	Athens	Greece	Oslo	Norway	
All capital cities	Astana	Kazakhstan	Harare	Zimbabwe	
Currency	Angola	kwanza	Iran	rial	
City-in-state	Chicago	Illinois	Stockton	California	
Man-Woman	brother	sister	grandson	granddaughter	
Adjective to adverb	apparent	apparently	rapid	rapidly	
Opposite	possibly	impossibly	ethical	unethical	
Comparative	great	greater	tough	tougher	
Superlative	easy	easiest	lucky	luckiest	
Present Participle	think	thinking	read	reading	
Nationality adjective	Switzerland	Swiss	Cambodia	Cambodian	
Past tense	walking	walked	swimming	swam	
Plural nouns	mouse	mice	dollar	dollars	
Plural verbs	work	works	speak	speaks	

ATTENTION MECHANISM

RNNs Learn p(Y)

Decompose

$$p(Y) = \prod p(y_t | y_{t-1}, y_{t-2}, ..., y_1)$$

Model the probabilities using a recurrent relation

$$p(y_t|y_{t-1}, y_{t-2}, ..., y_1) = g(s_t)$$

$$s_t = f(s_{t-1}, y_{t-1})$$

g(), f() are implemented using neural networks, i.e. they are flexibly parameterized, smooth functions.

How to condition an RNN?

RNN gives us p(Y) but we want p(Y|X)

- Idea #1: conditioned through the first hidden state
- Idea #2: condition separately on every step

Idea #1 condition through the 1st hidden state

Idea #1 condition through the 1st hidden state

Idea #2: Attention

1. Choose relevant frames

$$e_f = \text{score}(x_f, s_{t-1})$$

 $\alpha_f = \text{SoftMax}(e)_f$

2. Summarize into context

$$c = \sum_{f} \alpha_f x_f$$

3. Compute next state

$$s_t = f(s_{t-1}, y_{t-1}, c)$$

Attention mechanism in RNNs

- from his travels it might have been from his travels it might have been from his travels it might have been
- This is a network to generate handwriting
- At each step the network looks at a context c
- c is a summarization of a small fragment of the input sequence

Graves, A., 2013. Generating Sequences With Recurrent Neural Networks. arXiv:1308.0850 [cs]

Characters

Outputs

Hidden 2

Window

Hidden 1

Inputs

Attention mechanism in translation

La croissance économique s' est ralentie ces dernières années .

Attention mechanism for captioning

Convex Hulls & TSP

http://papers.nips.cc/paper/5866-pointernetworks.pdf

Reasoning – facts in memory

Story (16: basic induction)	Support	Hop 1	Hop 2	Нор 3
Brian is a frog.	yes	0.00	0.98	0.00
Lily is gray.		0.07	0.00	0.00
Brian is yellow.	yes	0.07	0.00	1.00
Julius is green.		0.06	0.00	0.00
Greg is a frog.	yes	0.76	0.02	0.00
What color is Greg? Answer: yellow Prediction: yellow				

http://papers.nips.cc/paper/5846-end-to-end-memory-networks.pdf

New developments: Attention is All You Need

RNN: compress history into the state vector

UniRNN: attention over history!

BiRNN: attention over whole sequence

A. Vasvani et al. https://arxiv.org/pdf/1706.03762.pdf

SOME OF MY WORK

Location-aware Attention

- We want to separate repetitions of the same sound
- Use the selection from the last step to make the new selection
- This enables the model to learn concepts like "later than last" or "close to last".

Our approach

Seq2seq model

fpro@multi_ast_asr/asr_spa_eng/fprop/asr_spa_eng/dec/fpttepn_rpxdbisa3t/stasid/ast_rslipe 0.8 it will be will be like visiting family No like I was saying wouldn't be the place where where I would like to live 120 0.7 100 0.6 0.5 80 Output token 0.4 60 0.3 40 0.2 20 0.1 0.0 100 150 fprop_multi_ast_asr/asr_spa_eng/fprop/asr_spa_eng/dec/source_encs/transpose:0 400 300 200 100 0 50 100 150 Encoder frame

Multitask Learning, or Exploit All Data

Share weights of the decoder, separate encoders

Multitask Learning, or Exploit All Data

Share weights of the encoder, separate decoders

Seq2seq Speech Translation: Attention

- recognition attention very confident
- translation attention smoothed out across many spectrogram frames for each output character
 - o ambiguous mapping between Spanish speech acoustics and English text

Seq2seq Speech Translation: Attention

- speech recognition attention is mostly monotonic
- translation attention reorders input: same frames attended to for "vive aqui" and "living here"

Weiss, Chorowski et al., Sequence-to-Sequence Models Can Directly Translate Foreign Speech, INTERSPEECH 2017

Seq2seq Speech Translation: Example attention

translation model attends to the beginning of input (i.e. silence) for the last few letters in each word

o already made a decision about word to emit, just acts a language model to spell it out.

End-to-end systems in NLP: How to parse sentences?

For constituency parsing: Treat parsing as a sequence-to-sequence problem:

- Input: sentence "Go."
- Output: linearized parse tree: "(S (VP XX)VP .)S END"

O. Vinyals et al, "Grammar as a Foreign Language", NIPS 2015

Dependency parsing

- Desired output: directed edges between words.
- At each step the attention selects a few words.
- Idea: use the selection weights as pointers.

Chorowski et al. "Read, Tag, and Parse All at Once, or Fully-neural Dependency Parsing", arxiv https://arxiv.org/pdf/1609.03441

7anotoczny et al. "On Multilingual Training of Neural Dependency Parsers" TSD 2017

Dependency parsing

For each word w Two operations:

- 1. Find head *h* (use attention mechanism)
- 2. Use (w, h) to predict dependency type

From characters to word embeddings

Highway layers – very nonlinear transformation of data

Glue best word representations together

Convolutional filters of varying lengths. Can react to pre-, in-, and post-fixes of words

Character embeddings concatenated into a matrix

Y. Kim, Y. Jernite, D. Sontag, and A. M. Rush, "Character-Aware Neural Language Models," arXiv:1508.06615 [cs, stat], Aug. 2015.

From characters to parse trees

Reader reads orthographic representations of words and is sensitive to morphemes. Tagger puts words into context

Parser finds the dependency edges.

Jabberwocky (Lewis Carroll)

Twas brillig and the slithy toves

Did gyre and gimble in the wabe;

All mimsy were the borogoves,

And the mome raths outgrabe.

Żabrołak (Stanisław Barańczak)

```
Brzdęśniało już
                                   ślimonne
                                                    prztowie
                          qub
                               adj:sg:nom:n:pos
           praet:sg:n:perf
                                                  subst:sg:nom:n
   Wyrło
                                                               gulbieży
                                       się
                          warło
                                                   W
                                             prep:acc:nwok
               conj
                     praet:sg:n:imperf
                                       qub
praet:sg:n:perf
                                                             subst:pl:acc:m3
              Zmimszałe
                                   ćwiły
                                                 borogowie
            adj:pl:acc:m3:pos
                              praet:pl:f:imperf
                                               subst:pl:nom:m1
                            grdypały
              rcie
                                                            mrzerzy
   coni
                                           prep:gen:nwok
          subst:pl:nom:n
                          praet:pl:f:imperf
                                                           subst:sg:gen:f
```

<u>Underlined</u> words are neologisms, green are correct!

Multilingual Grammatical Relations

Polish word	Closest russian embedings		
przedwrześniowej	адренергической тренерской таврической		
	непосредственной археологической		
	философской <i>верхнюю</i>		
większych	автомобильных <i>трёхдневные</i> технических		
	практических официальных оригинальных		
policyjnym	главным историческим глазным непосре-		
	дственным <i>косыми</i> летним двухсимвольным		

- Green Russian words have similar grammatical function to Polish words.
- -ской (skoy) and -нной (nnoy) quite distant from polish –owej (ovey).
- 3-letter -ych paired with 2 letter -ых