Transformation de Laplace - Exercices

 $\mathcal{L}(x)(p) = X(p) = \int_0^{+\infty} x(t)e^{-pt} \,\mathrm{d}t \text{ où } x(t) \text{ est causal et } p \text{ est un nombre complexe}.$

Propriétés et transformées usuelles

Signal causal	Transformée de Laplace	Remarque
x(t) + y(t)	X(p) + Y(p)	
$\lambda x(t)$	$\lambda X(p)$	$\lambda \in \mathbb{R}$
x'(t)	pX(p) - x(0)	
$x(\lambda t)$	$\frac{1}{\lambda}X\left(\frac{p}{\lambda}\right)$	$\lambda > 0$
$x\left(\frac{t}{\lambda}\right)$	$\lambda X(\lambda p)$	$\lambda > 0$
x(t-a)	$e^{-ap}X(p)$	a > 0
$e^{-at}x(t)$	X(p+a)	$a \in \mathbb{C}$
$\delta(t)$	$\Delta(p) = 1$	
1 (ou $H(t)$)	$\frac{1}{p}$	
t	$\frac{1}{p^2}$	
t^n	$\frac{n!}{p^{n+1}}$	$n \in \mathbb{N}$
e^{at}	$\frac{1}{p-a}$	$a \in \mathbb{C}$
$\sin(\omega t)$	$\frac{\omega}{p^2 + \omega^2}$	
$\cos(\omega t)$	$\frac{p}{p^2 + \omega^2}$	

Exercice 1. Calculer les transformées de Laplace des signaux causaux suivants :

(a)
$$2e^{-6t}$$

(i)
$$tH(t-1)$$

(b)
$$5e^{2t}$$

(j)
$$(t-5)H(t-4)$$

(c)
$$2t^4$$

(k)
$$e^{3t}t^3$$

(d)
$$\alpha \cos(\omega t) + \beta \sin(\omega t)$$

(1)
$$e^t \cos(t)$$

(e)
$$t^2 + t - e^{-3t}$$

(m)
$$e^{-4t}\sin(5t)$$

(f)
$$(t^2+1)^2$$

(n)
$$(t^2+t+1)e^{-2t}$$

(g)
$$H(t-1)$$

(o)
$$e^{-2t}(t^2-1)^2$$

(h)
$$(t-1)H(t-1)$$

(p)
$$2e^{-5t}(\cos(2t) + \sin(2t))$$

Exercice 2. Calculer les transformées de Laplace inverse des signaux suivants.

(a)
$$\frac{3}{p+2} - \frac{1}{p^3}$$

(e)
$$\frac{10}{p^2 + 4p - 21}$$

(b)
$$\frac{p+2}{(p+3)\cdot(p+4)}$$

(f)
$$\frac{p}{(p-5)^3}$$

(c)
$$\frac{a}{p^2 - a^2}$$

(g)
$$\frac{p+7}{p^2+49}$$

(d)
$$\frac{3}{(p+6)^2}$$

(h)
$$\frac{e^{-p}}{p^3}$$

2

Exercice 3. Résoudre les équations différentielles suivantes :

(a)
$$s'(t) + 3s(t) = 0$$
; $s(0) = 1$

(b)
$$s'(t) - 2s(t) = t$$
; $s(0) = 0$

(c)
$$s'(t) = s(t) + te^t$$
; $s(0) = -1$

(d)
$$\frac{1}{2}s'(t) + s(t) = \sin(2t) + \cos(2t)$$
; $s(0) = 0$