

Kuliah Teori Bahasa dan Automata Program Studi Ilmu Komputer Fasilkom UI

Prepared by:

Suryana Setiawan

CFL atau Bukan?

 $a*b* \rightarrow regular.$

 $A^nB^n = \{a^nb^n : n \ge 0\} \rightarrow CFL \text{ tapi tidak reguler}$

 $A^nB^nC^n = \{a^nb^nc^n : n \ge 0\} \rightarrow \text{bukan CFL}$

Teorema-teorema

- Kelas CFL meliputi juga bahasa-bahasa reguler
 - Buktikan untuk suatu FSM dapat dibentuk PDA-nya
 - Tidak berlaku sebaliknya, karena ada *language* yang reguler tapi tidak CFL
- Banyaknya CFL adalah countably infinite
- Banyaknya bahasa yang dapat dibentuk oleh suatu alfabet, uncountably infinite. Berarti lebih banyak lagi bahasa yang tidak termasuk dalam CFL.
- Setiap bahasa CFL memenuhi teorema pumping

- Menunjukkan suatu CFG untuk bahasa tsb
- Menunjukkan suatu PDA untuk bahasa tsb
- Pertanyaan: jika untuk sembarang bahasa L, apakah bisa dibuktikan ada tidaknya CFG/PDA?

Review Parse Tree

- Suatu parse tree dalam derivasi menurut grammar $G = (V, \Sigma, R, S)$, adalah *rooted, ordered tree* yang mana:
 - Setiap *leaf node* berlabelkan suatu elemen $(\Sigma \cup \{\epsilon\})$,
 - *Root node* berlabel *S*,
 - Setiap node yang lain berlabel elemen-elemen $(V-\Sigma)$, dan
 - Jika m adalah nonleaf node berlabel X, dan anak-anak m berlabel x_1, x_2, \ldots, x_n , maka R berisi rule $X \rightarrow x_1, x_2, \ldots, x_n$.

Teorema Pumping Untuk CFL

$$S \Rightarrow^* uXz \Rightarrow^* uvXyz \Rightarrow^* uvxyz$$

- $[1] \rightarrow \text{rule } 1$
- [2] → rule 2 diterapkan pada rule [1] sehingga menghasilkan *uvxyz* yang merupakan elemen dari L(G)

Teorema Pumping Untuk CFL

Beberapa derivasi lain dari G:

$$S \Rightarrow^* uXz \Rightarrow^* uvXyz \Rightarrow^* uvvXyyz \Rightarrow^* uvvxyyz$$

Derivasi tersebut menghasilkan string: uv^2xy^2z , uv^3xy^3z , ...

Yang seluruhnya juga merupakan anggota dari L(G).

Teorema Pumping Untuk CFL

• Jika L adalah CFL, maka:

```
\bullet \exists k \geq 1 (
          \forall w \in L, dimana |w| \ge k (
                       \exists u, v, x, y, z (
```

```
w = uvxyz,
/vxy/\leq k,
vy \neq \varepsilon, dan,
\forall q \ge 0
(uv^qxy^qz\in L)
                                        X[1]
                                          X[2]
                                         X
                                         w
```


- Adanya dua region v dan y yang dipompa bersamaan (sementara untuk Bhs Reguler hanya y)
- Kita tidak tahu mana yang menjadi v dan y, yang kita ketahui posisinya berdekatan akibat batasan $|vxy| \le k$. (Untuk Bhs Reguler, kita tidak tahu juga mana yang y)
- Salah satu dari *v* dan *y* boleh kosong, tapi tidak keduanya. (Untuk Bhs Reguler, *x* minimal satu simbol)

Contoh 1 (bahasa AⁿBⁿCⁿ)

- $L = \{a^n b^n c^n : n \ge 0\}$
- Diberikan suatu harga k.
- Jika $w = a^k b^k c^k$ (misalnya, jika k = 3, w = aaabbbccc).
- Maka bisa ditunjukkan, tidak ada suatu cara pemecahan w ke dalam u,v,x,y, dan z yang bisa memompa dengan setiap harga q selalu $uv^qxy^qz \in L$.
- Misalnya jika k = 3,
 - w = aaabbbccc, sehingga |vy| berharga 1, 2 atu 3.
 - Jika |vy| = 1, dimana salah satu v atau y adalah ε , maka salah satu sequence simbol memiliki panjang lebih panjang/pendek dari dua yang lain untuk q > 1.
 - Demikian halnya untuk vy yang lain (bisa dicoba!).

Panduan Praktis

- Pilih w yang menangkap inti dari L yang bersifat context free.
 - Yang menyebabkan setiap kemungkinan pemecahan w menjadi u, v, x, y, dan z tidak memenuhi teorema pumping.
 - Se-homogen mungkin sehingga banyaknya kemungkinan pemecahan menjadi lebih sedikit (dari panduan untuk bhs reguler)
- Mencari harga q sehingga w dengan pemecahan yang diberikan (given) tidak dapat dipompa.
- Bisa menerapkan sifat closure dan pembuktian dilakukan pada bahasa hasil operasi closurenya
 - Sifat *closure* akan dibahas kemudian

Contoh 2

- $L = \{a^m : m = n^2, \text{ dengan } n \ge 0\}$
- Diberikan suatu harga *k*.
- Jika $/w/ = k^4$
- Selanjutnya, jelas $vy = a^p$ dengan $1 \le p \le k$ pada semua kemungkinan pemecahan u,v,x,y, dan z dari w.
- Dengan harga q = 2 maka $w' = uv^q xy^q z \notin L$ karena sbb.
 - Sementara $|w| = k^4 = (k^2)^2$, string berikutnya w" (proper ordering) memiliki panjang $(k^2+1)^2 = k^4+2k^2+1$.
 - Karena $uv = a^p$, maka $|w'| = k^4 + p$ dan $p \le k < 2k^2 + 1$, sehingga w' hanyalah string dengan panjang antara |w| dan |w''|, dan $w' \notin L$

Contoh 3

- Untuk memeriksa apakah $L = \{a^n b^m a^n : n, m \ge 0 \text{ dan } n \ge m\}$ context free dengan suatu k, kita gunakan $w = a^k b^k a^k$ dan kita sebut a^k pertama sbg region 1, b^k sbg region 2 dan a^k terakhir sbg region 3.
- Jika salah satu dari v atau y melintasi region, dengan q=2 menghasilkan string di luar L.
- Untuk kemungkinan lainnya ((i, j) = v di region i dan y di region j):
 - (1,1): dengan q = 2, menghasilkan deretan a pertama lebih panjang dari deretan a kedua.
 - (2,2): dengan q = 2, deretan b lebih panjang dari satu deretan a.
 - (3,3): dengan q = 0, argumen sama dengan (1,1)
 - (1,2): dengan q = 2 maka argumen sama dengan (1,1) atau (2,2)
 - (2,3): dengan q = 2, menghasilkan deretan b atau deretan a yang kedua lebih panjang
 - (1,3): tidak mungkin karena $|vxy| \le k$.

Sifat-sifat Closure pada CFL

- CFL Closure dalam operasi union, konkatenasi, Kleene Star, Reverse, dan letter substitution
 - Sifat closure **op** adalah "Jika L_1 **op** L_2 adalah CFL jika L_1 dan L_2 keduanya CFL"

Sifat-sifat Nonclosure pada CFL

- CFL tidak closure dalam operasi irisan, komplemen, dan different
 - Catatan: perbedaan penting dibanding bahasa reguler (semua operasi di atas closure untuk bahasa reguler)
- CFL closure dalam <u>operasi irisan/different dengan</u> <u>bahasa reguler</u>.

Penggunaan Teorema Pumping dalam konjungsi dengan Sifat Closure

- Pembuktian teorema pumping terhadap L_1 dapat dilakukan pembuktian pada L_2 jika
- L_1 **op** $L_3 = L_2$
- Jika diketahui L_3 adalah CFL dan **op** adalah operasi yang bersifat closure dalam CFL
- Jika L_1 op L_3 adalah CFL jika L_1 CFL, tetapi jika terbukti L_2 bukan CFL maka L_1 bukan CFL.

Contoh 4

• Bahasa $L = \{w \in \{a,b,c\}^*: \#_a(w) = \#_a(w) = \#_c(w)\}$ dapat lebih mudah dibuktikan dengan memeriksa $L' = L \cap a^*b^*c^* = A^nB^nC^n$ apakah juga context free. Karena sudah diperiksa sebelumnya bahwa L' bukan context free, maka L juga bukan context free.