Package 'ASCAT'

August 29, 2018

Type Package

Title Allele-Specific Copy Number Analysis of Tumours

Version 2.5.2
Date 2018-08-29
Author Peter Van Loo [aut, cre], Gro Nielsen [ctb], Jiqiu Cheng [ctb], Stefan Dentro [ctb], Edith Ross [ctb], Kerstin Haase [ctb]
Maintainer Kerstin Haase <kerstin.haase@crick.ac.uk></kerstin.haase@crick.ac.uk>
Description R package of ASCAT as published in http://www.ncbi.nlm.nih.gov/pubmed/20837533
Depends R (>= 2.13.0), RColorBrewer, grDevices, graphics, stats, utils
License GPL-3
LazyLoad yes
RoxygenNote 6.1.0
R topics documented:
ascat.asmutipei
ascat.GCcorrect
ascat.loadData
ascat.plotAscatProfile
ascat.plotGenotypes
ascat.plotNonRounded
ascat.plotRawData
ascat.plotSegmentedData
ascat.plotSunrise
ascat.predictGermlineGenotypes
ascat.runAscat
Index 11

2 ascat.asmultipcf

ascat.asmultipcf Allele-specific segmentation of multiple samples	
---	--

Description

This segmentation function should only be used if part of the breakpoints are expected to be shared between samples, e.g. due to a common ancestry.

Usage

```
ascat.asmultipcf(ASCATobj, ascat.gg = NULL, penalty = 25,
  wsample = NULL, selectAlg = "exact", refine = TRUE)
```

Arguments

ASCATobj	an ASCAT object
ascat.gg	germline genotypes (NULL if germline data is available)
penalty	penalty of introducing an additional ASPCF breakpoint (expert parameter, don't adapt unless you know what you are doing)
wsample	Vector of length length(ASCATobj\$samples). Can be used to assign different weights to samples, for example to account for differences in sequencing quality. (Default = NULL)
selectAlg	Set to "exact" to run the exact algorithm, or "fast" to run the heuristic algorithm. (Default = "exact")
refine	Logical. Should breakpoints be refined on a per sample base? Otherwise each breakpoint is assumed to be present in each sample. (Default = TRUE)

Details

This function saves the results in in [sample].LogR.PCFed.txt and [sample].BAF.PCFed.txt

Value

output: ascat data structure containing:

- 1. Tumor_LogR data matrix
- 2. Tumor_BAF data matrix
- 3. Tumor_LogR_segmented: matrix of LogR segmented values
- 4. Tumor_BAF_segmented: list of BAF segmented values; each element in the list is a matrix containing the segmented values for one sample (only for probes that are germline homozygous)
- 5. Germline_LogR data matrix
- 6. Germline_BAF data matrix
- 7. SNPpos: position of all SNPs
- 8. ch: a list containing vectors with the indices for each chromosome (e.g. $Tumor_LogR[ch[[13]],]$ will output the $Tumor_LogR$ data of chromosome 13
- 9. chr: a list containing vectors with the indices for each distinct part that can be segmented separately (e.g. chromosome arm, stretch of DNA between gaps in the array design)

ascat.aspcf 3

ascat.aspcf ascat.aspcf

Description

```
run ASPCF segmentation
```

Usage

```
ascat.aspcf(ASCATobj, selectsamples = 1:length(ASCATobj$samples),
ascat.gg = NULL, penalty = 25, out.dir = ".", out.prefix = "")
```

Arguments

ASCATobj	an ASCAT object
selectsamples	a vector containing the sample number(s) to PCF. Default = all
ascat.gg	germline genotypes (NULL if germline data is available)
penalty	penalty of introducing an additional ASPCF breakpoint (expert parameter, don't adapt unless you know what you're doing)
out.dir	directory in which output files will be written
out.prefix	prefix for output file names

Details

This function can be easily parallelised by controlling the selectsamples parameter it saves the results in LogR_PCFed[sample]_[segment].txt and BAF_PCFed[sample]_[segment].txt

Value

output: ascat data structure containing:

- 1. Tumor_LogR data matrix
- 2. Tumor BAF data matrix
- 3. Tumor_LogR_segmented: matrix of LogR segmented values
- 4. Tumor_BAF_segmented: list of BAF segmented values; each element in the list is a matrix containing the segmented values for one sample (only for probes that are germline homozygous)
- 5. Germline_LogR data matrix
- 6. Germline_BAF data matrix
- 7. SNPpos: position of all SNPs
- 8. ch: a list containing vectors with the indices for each chromosome (e.g. Tumor_LogR[ch[[13]],] will output the Tumor_LogR data of chromosome 13
- 9. chr: a list containing vectors with the indices for each distinct part that can be segmented separately (e.g. chromosome arm, stretch of DNA between gaps in the array design)

4 ascat.loadData

ascat.GCcorrect ascat.GCcorrect

Description

Corrects logR of the tumour sample(s) with genomic GC content

Usage

```
ascat.GCcorrect(ASCATobj, GCcontentfile = NULL)
```

Arguments

ASCATobj an ASCAT object

GCcontentfile File containing the GC content around every SNP for increasing window sizes

Details

Note that probes not present in the GCcontentfile will be lost from the results

Value

ASCAT object with corrected tumour logR

ascat.loadData ascat.loadData

Description

Function to read in SNP array data

Usage

```
ascat.loadData(Tumor_LogR_file, Tumor_BAF_file,
  Germline_LogR_file = NULL, Germline_BAF_file = NULL, chrs = c(1:22,
  "X", "Y"), gender = NULL, sexchromosomes = c("X", "Y"))
```

Arguments

```
Tumor_LogR_file
```

file containing logR of tumour sample(s)

Tumor_BAF_file file containing BAF of tumour sample(s)

Germline_LogR_file

file containing logR of germline sample(s), NULL

Germline_BAF_file

file containing BAF of germline sample(s), NULL

chrs a vector containing the names for the chromosomes (e.g. c(1:22,"X"))

gender a vector of gender for each cases ("XX" or "XY"). Default = all female ("XX")

sexchromosomes a vector containing the names for the sex chromosomes

ascat.plotAscatProfile 5

Details

germline data files can be NULL - in that case these are not read in

Value

ascat data structure containing:

- 1. Tumor LogR data matrix
- 2. Tumor BAF data matrix
- $3.\ Tumor_LogR_segmented:\ placeholder,\ NULL$
- 4. Tumor_BAF_segmented: placeholder, NULL
- 5. Germline_LogR data matrix
- 6. Germline_BAF data matrix
- 7. SNPpos: position of all SNPs
- 8. ch: a list containing vectors with the indices for each chromosome (e.g. Tumor_LogR[ch[[13]],] will output the Tumor_LogR data of chromosome 13
- 9. chr: a list containing vectors with the indices for each distinct part that can be segmented separately (e.g. chromosome arm, stretch of DNA between gaps in the array design)
- 10. gender: a vector of gender for each cases ("XX" or "XY"). Default = NULL: all female ("XX")

```
ascat.plotAscatProfile
```

ascat.plotAscatProfile

Description

Function plotting the rounded ASCAT profiles over all chromosomes

Usage

```
ascat.plotAscatProfile(n1all, n2all, heteroprobes, ploidy, rho,
goodnessOfFit, nonaberrant, y_limit = 5, ch, lrr, bafsegmented, chrs)
```

Arguments

n1all copy number major allele n2all copy number minor allele

heteroprobes probes with heterozygous germline

ploidy ploidy of the sample rho purity of the sample goodnessOfFit estimated goodness of fit

nonaberrant boolean flag denoting non-aberrated samples

y_limit Optional parameter determining the size of the y axis in the nonrounded plot and

ASCAT profile. Default=5

ch a list containing c vectors, where c is the number of chromosomes and every

vector contains all probe numbers per chromosome

1rr (unsegmented) log R, in genomic sequence (all probes), with probe IDs

bafsegmented B Allele Frequency, segmented, in genomic sequence (only probes heterozygous

in germline), with probe IDs

chrs a vector containing the names for the chromosomes (e.g. c(1:22,"X"))

6 ascat.plotNonRounded

Value

plot showing the ASCAT profile of the sample

ascat.plotGenotypes

Description

ascat.plotGenotypes

Usage

```
ascat.plotGenotypes(ASCATobj, title, Tumor_BAF_noNA, Hom, ch_noNA)
```

Arguments

ASCATobj an ASCAT object title main title of the plot

Tumor_BAF_noNA B-allele frequencies of the tumour sample with removed NA values

Hom Boolean vector denoting homozygous SNPs

ch_noNA vector of probes per chromosome (NA values excluded)

Value

plot showing classified BAF per sample, with unused SNPs in green, germline homozygous SNPs in blue and all others in red

 $ascat.plotNonRounded \quad \textit{ascat.plotNonRounded}$

Description

Function plotting the unrounded ASCAT copy number over all chromosomes

Usage

```
ascat.plotNonRounded(ploidy, rho, goodnessOfFit, nonaberrant, nAfull,
   nBfull, y_limit = 5, bafsegmented, ch, lrr, chrs)
```

ascat.plotRawData 7

Arguments

ploidy ploidy of the sample
rho purity of the sample
goodnessOfFit estimated goodness of fit

nonaberrant boolean flag denoting non-aberrated samples

nAfull copy number major allele nBfull copy number minor allele

y_limit Optional parameter determining the size of the y axis in the nonrounded plot and

ASCAT profile. Default=5

bafsegmented B Allele Frequency, segmented, in genomic sequence (only probes heterozygous

in germline), with probe IDs

ch a list containing c vectors, where c is the number of chromosomes and every

vector contains all probe numbers per chromosome

lrr (unsegmented) log R, in genomic sequence (all probes), with probe IDs chrs a vector containing the names for the chromosomes (e.g. c(1:22,"X"))

Value

plot showing the nonrounded copy number profile, using base plotting function

Description

Plots SNP array data

Usage

```
ascat.plotRawData(ASCATobj, img.dir = ".", img.prefix = "")
```

Arguments

ASCATobj an ASCAT object (e.g. data structure from ascat.loadData)

img.dir directory in which figures will be written

img.prefix prefix for figure names

Value

Produces png files showing the logR and BAF values for tumour and germline samples

8 ascat.plotSunrise

```
ascat.plotSegmentedData
```

ascat.plotSegmentedData

Description

plots the SNP array data before and after segmentation

Usage

```
ascat.plotSegmentedData(ASCATobj, img.dir = ".", img.prefix = "")
```

Arguments

ASCATobj an ASCAT object (e.g. from ascat.aspcf) img.dir directory in which figures will be written

img.prefix prefix for figure names

Value

png files showing raw and segmented tumour logR and BAF

Description

ascat.plotSunrise

Usage

```
ascat.plotSunrise(d, psi_opt1, rho_opt1, minim = T)
```

Arguments

d distance matrix for a range of ploidy and tumour percentage values

psi_opt1 optimal ploidy

rho_opt1 optimal aberrant cell fraction

minim when set to true, optimal regions in the sunrise plot are depicted in blue; if set

to false, colours are inverted and red corresponds to optimal values (default:

TRUE)

Value

plot visualising range of ploidy and tumour percentage values

```
as cat. predict Germline Genotypes \\ as cat. predict Germline Genotypes
```

Description

predicts the germline genotypes of samples for which no matched germline sample is available

Usage

```
ascat.predictGermlineGenotypes(ASCATobj, platform = "AffySNP6",
  img.dir = ".", img.prefix = "")
```

Arguments

ASCATobj an ASCAT object platform used array platform

img.dir directory in which figures will be written

img.prefix prefix for figure names

Details

Currently possible values for platform:

AffySNP6 (default)

Custom10k

Illumina109k

IlluminaCytoSNP

Illumina610k

Illumina660k

Illumina700k

Illumina1M

Illumina 2.5 M

IlluminaOmni5

Affy10k

Affy100k

 $Affy250k_sty$

Affy250k_nsp

AffyOncoScan

AffyCytoScanHD

HumanCNV370quad

HumanCore12

HumanCoreExome24

Human Omni Express 12

IlluminaOmniExpressExome

Value

predicted germline genotypes

10 ascat.runAscat

Ascat	
-------	--

Description

ASCAT main function, calculating the allele-specific copy numbers

Usage

```
ascat.runAscat(ASCATobj, gamma = 0.55, pdfPlot = F, y_limit = 5,
  circos = NA, rho_manual = NA, psi_manual = NA, img.dir = ".",
  img.prefix = "")
```

Arguments

ASCATobj	an ASCAT object from ascat.aspcf
gamma	technology parameter, compaction of Log R profiles (expected decrease in case of deletion in diploid sample, 100% aberrant cells; 1 in ideal case, 0.55 of Illumina 109K arrays)
pdfPlot	Optional flag if nonrounded plots and ASCAT profile in pdf format are desired. Default=F
y_limit	Optional parameter determining the size of the y axis in the nonrounded plot and ASCAT profile. Default=5
circos	Optional file to output the non-rounded values in Circos track format. Default=NA
rho_manual	optional argument to override ASCAT optimization and supply rho parameter (not recommended)
psi_manual	optional argument to override ASCAT optimization and supply psi parameter (not recommended)
img.dir	directory in which figures will be written
img.prefix	prefix for figure names

Details

Note: for copy number only probes, nA contains the copy number value and nB = 0.

Value

an ASCAT output object, containing:

- 1. nA: copy number of the A allele
- 2. nB: copy number of the B allele
- 3. aberrantcellfraction: the aberrant cell fraction of all arrays
- 4. ploidy: the ploidy of all arrays
- 5. failedarrays: arrays on which ASCAT analysis failed
- 6. nonaberrantarrays: arrays on which ASCAT analysis indicates that they show virtually no aberrations
- 7. segments: an array containing the copy number segments of each sample (not including failed arrays)
- 8. segments_raw: an array containing the copy number segments of each sample without any rounding applied
- 9. distance_matrix: distances for a range of ploidy and tumor percentage values

Index

```
ascat.asmultipcf, 2
ascat.aspcf, 3
ascat.GCcorrect, 4
ascat.loadData, 4
ascat.plotAscatProfile, 5
ascat.plotGenotypes, 6
ascat.plotNonRounded, 6
ascat.plotRawData, 7
ascat.plotSegmentedData, 8
ascat.plotSunrise, 8
ascat.predictGermlineGenotypes, 9
ascat.runAscat, 10
```