ULPGC

ESTRATEGIAS DÉ PROGRAMACIÓN

Algoritmos y Programación Javier Miranda

Escuela de Ingeniería Informática
Universidad de Las Palmas de Gran Canaria

Estrategias

- Fuerza bruta (brute force)
- Vuelta atrás (backtracking)
- Voráz (greedy)

Técnica

- Divide y vencerás
 - Reduce y vencerás

Programación Dinámica

Programación Dinámica

- Es una técnica inventada por el matemático norteamericano Richard Bellman en los años 50 para resolver problemas de optimización.
- ¿ Cuando debemos utilizarla ?

Cuando el problema tiene <u>subproblemas</u> que se <u>solapan</u>, ya que en este caso la estrategia **Divide y Vencerás** genera algoritmos **poco eficientes**.

https://en.wikipedia.org/wiki/Richard_E._Bellman https://en.wikipedia.org/wiki/Dynamic_programming

Programación Dinámica

Richard Bellman (1920-1984)

"I spent the Fall quarter (of 1950) at RAND. My first task was to find a name for multistage decision processes.

"An interesting question is, 'Where did the name, dynamic programming, come from?' The 1950s were not good years for mathematical research. We had a very interesting gentleman in Washington named Wilson. He was Secretary of Defense, and he actually had a pathological fear and hatred of the word, research ... You can imagine how he felt, then, about the term, mathematical ...

What title, what name, could I choose? In the first place I was interested in planning, in decision making, in thinking. But planning is not a good word for various reasons. I decided therefore to use the word, 'programming.' I wanted to get across the idea that this was dynamic, this was multistage, this was time varying—I thought, let's kill two birds with one stone. Let's take a word that has an absolutely precise meaning, namely dynamic, in the classical physical sense…

Ejemplo 1: Fibonacci

$$f(0) = 0$$

 $f(1) = 1$
 $f(n) = f(n-1) + f(n-2)$

Ejemplo 1: Fibonacci

$$f(0) = 0$$

 $f(1) = 1$
 $f(n) = f(n-1) + f(n-2)$

Calculando Fibonacci recursivamente repetimos muchos cálculos. La programación dinámica evita repetirlos!.

$$comb(n,m) = \binom{n}{m} = \binom{n-1}{m-1} + \binom{n-1}{m}, \quad m \le n$$
with $comb(n,0) = comb(n,n) = 1$

https://en.wikipedia.org/wiki/Binomial_coefficient

Programación Dinámica

• ¿ Qué ?

 <u>Técnica</u> que combina soluciones de subproblemas para resolver problemas mayores de forma <u>eficiente</u>

· ¿ Cómo ?

 Guardando las soluciones de los subproblemas y reutilizándolas para evitar repetir cálculos al resolver problemas mayores

Implementación de Programación Dinámica

Memoization

 Se utiliza cuando el problema se resuelve recursivamente (top-down)

Tabulation

 Se utiliza cuando el problema se resuelve comenzando por los sub-problemas (bottom-up)

El objetivo de ambas técnicas es el mismo: almacenar y reutilizar las soluciones de los subproblemas

https://en.wikipedia.org/wiki/Memoization

Ejemplo Fibonacci

$$t_n = f(t_{n-1}, t_{n-2}) = t_{n-1} + t_{n-2}$$
 $n \ge 2$
 $t_0 = 0$ $t_1 = 1$

Ecuación de recurrencia de Fibonacci

```
def Fib(n) {
    if (n < 2)
        return n
    else
        return Fib(n-2) + Fib(n-1)
}

Versión Recursiva</pre>
```

Ejemplo Fibonacci

$$t_n = f(t_{n-1}, t_{n-2}) = t_{n-1} + t_{n-2}$$
 $n \ge 2$
 $t_0 = 0$ $t_1 = 1$

```
def Fib(n) {
    if (n < 2)
        return n
    else
        return Fib(n-2) + Fib(n-1)
}</pre>
```

Versión implementada en Python con MEMOIZATION

Versión Recursiva

```
def Fib(n):
  mem = {} # Diccionario
  def memFib(n):
    key = n
    if key not in mem:
      if n<2:
        r = n
      else:
        r = memFib(n-1)+memFib(n-2)
      mem[key] = r
   return mem[key]
 return memFib(n)
```

Ejemplo Fibonacci

$$t_n = f(t_{n-1}, t_{n-2}) = t_{n-1} + t_{n-2}$$
 $n \ge 2$
 $t_0 = 0$ $t_1 = 1$

```
def Fib(n) {
    if (n < 2)
        return n
    else
        return Fib(n-2) + Fib(n-1) |
}

Versión Recursiva</pre>
```

```
/def Fib(n):
   if n < 2:
      return n
   else:
                           # Lista o array
      table = []
      table.append(0)
      table.append(1)
      for j in range(2,n+1):
         table.append(table[j-2] + table[j-1])
      return table[n]
```

Versión implementada en Python con TABULATION

Como sabes del curso anterior, esta versión se puede optimizar para que sólo utilice 2 variables (en vez de una tabla)

Tabulation: Bottom-Up (iterativo)

¡Cuidado!

 Lo que identifica a una técnica como memoization o como tabulation es el tipo de recorrido (recursivo o top-down, frente a iterativo o bottom-up), no el tipo de memoria utilizada en la programación

```
def Fib(n):
                                                  def Fib(n):
  mem = \{\}
                                                     if n < 2:
              # Diccionario
                                                       return n
  def memFib(n):
                                                     else:
    kev = n
                                                       table = [] # Lista o array
    if key not in mem:
       if n<2:
                                                       table.append(0)
                                                       table.append(1)
          r = n
      else:_______r = memFib(n-1)+memFib(n-2)
# ... llamadas recursivas!
                                                      for j in range(2,n+1):
                                                         table.append(table[j-2] + table[j-1])
       mem[key] = r
                                                       return table[n]
   return mem[key]
  return memFib(n)
```

Memoization: Top-down (recursivo)

Requisitos para Programación Dinámica

1. Subproblemas Solapados

 Las soluciones de los subproblemas se reutilizan varias veces para resolver problemas mayores

2. Subestructura Optima

 La solución optima del problema se puede construir a partir de soluciones óptimas de los subproblemas

Requisitos para Programación Dinámica

Subestructura Optima

- La solución optima del problema se puede construir a partir de soluciones óptimas de los subproblemas
- Ejemplo: Camino más corto

Sin embargo, el camino más largo no cumple la propiedad de subestructura óptima (no se resuelve con programación dinámica)

Requisitos para Programación Dinámica

 Ejemplo: El problema de calcular el camino más largo no cumple la propiedad de subestructura óptima

La distancia más larga desde A hasta D es 6 km a través de la ciudad C, pero este camino no es la combinación de la distancia más larga de A a C (9 km) y de C a D (7 km)

Rendimiento

- En problemas pequeños tabulation es más eficiente que memoization
 - Porque no tiene llamadas recursivas

n =	2	3	4	5	10	20	40	
Recursive	1	3	5	9	109	13529	204668309	
Iterative	1	1	1	1	1	1	1	
Memo	1	3	5	7	17	37	77	

Número de llamadas a la función para calcular Fibonacci

- · Pero en problemas grandes puede ser mejor memoization
 - Porque no necesita calcular TODOS los elementos
 - Porque consume menos memoria

$$comb(n,m) = \binom{n}{m} = \binom{n-1}{m-1} + \binom{n-1}{m}, \quad m \le n$$
with $comb(n,0) = comb(n,n) = 1$

$$comb(n,m) = \binom{n}{m} = \binom{n-1}{m-1} + \binom{n-1}{m}, \quad m \le n$$
with $comb(n,0) = comb(n,n) = 1$

```
1
1
1
1
Ejemplo: Cálculo de comb (5,4)
1
1
3
3
1
1
4
6
4
1
1
5
10
10

Resultado = 5
```

$$comb(n,m) = \binom{n}{m} = \binom{n-1}{m-1} + \binom{n-1}{m}, \quad m \le n$$
with $comb(n,0) = comb(n,n) = 1$

Tabulation calcula todos los elementos del triángulo de Pascal hasta llegar al objetivo

n k	0	1	2	3	4	•••
0	1	0	0	0	0	•••
1	1	1	0	0	0	•••
2	1	2	1	0	0	•••
3	1	3	3	1	0	•••
4	1	4	6	4	1	•••
•	:	:	:	÷	:	٠.

https://en.wikipedia.org/wiki/Binomial coefficient

$$comb(n,m) = \binom{n}{m} = \binom{n-1}{m-1} + \binom{n-1}{m}, \quad m \le n$$
with $comb(n,0) = comb(n,n) = 1$

Memoization sólo calcula los elementos que necesita

Resumen

