## Policy Learning V: Reinforcement Learning II

## 1. Last Times

- a. Passive RL
  - i. Agent follows whatever policy it is given/calculates
    - 1. Agent just follows the policy
  - ii. Policy Estimation:
    - 1. Value Iteration
    - 2. Policy Iteration
    - 3. Direct Utility Estimation
    - 4. Adaptive Dynamic Programming
    - 5. Temporal-Difference Learning
  - iii. Requires more time and memory

## 2. This Time

- a. Active RL
  - i. Agent can ignore it's policy
  - ii. Why?
  - iii. Exploration/Exploitation
    - 1. Agent can have notion of how good the policy is so that it can explore the world
    - 2. Once it has more confidence, it can exploit
    - 3. In passive, the agents have 100% of confidence every time
    - 4. In active, it can have non 100% of confidence and choose to ignore the policy
  - iv. Q Learning  $\rightarrow$  do with neural networks
- b. Neural Networks
  - i. How they work
  - ii. Function approximators
- 3. Passive vs Active RL
  - a. A passive agent has a policy inside of it
    - i. Policy is fixed during an episode agent always obeys policy
    - ii. (Can be) slow
    - iii. (Can be) bad
  - b. An active agent also has a policy inside of it
    - i. Agent can ignore the policy
    - ii. Agent can modify the policy with new information

- 4. An Agent ADP Agent
  - a. ADP learns transition model Pr[s'|s, a] (by counting)
  - b. Want: need to learn Pr[s'|s, a] for every action
    - i. Will eventually get there...need to see more episodes
  - c. Utilities the agent needs to learn are those of the optimal policy
    - i. Can calculate these for the learned model (i.e. the policy it currently has)
  - d. Should the agent follow the optimal action recommended by its current policy?
- 5. Always Following "Optimal" Actions
  - a. Let's pretend we know what the optimal action is (for my current policy)
  - b. Should I follow that policy's recommendation?
    - i. Agent is greedy
    - ii. If policy is already optimal → action is truly optimal
      - 1. If the agent did not play a lot of games, it might not know the actual optimal but might know the current most optimal strategy
    - iii. If policy is not currently optimal → action is not truly optimal
  - c. Agent can learn bad models
    - i. Find what works
    - ii. Repeat what works
      - 1. We will never find better solutions if we are greedy
- 6. Exploration
  - a. We want the agent to explore the world
    - i. DUE / ADP / TD assume we will eventually see every trajectory possible
    - ii. Following "optimal" actions may prevent this from happening
  - b. Takeaway:
    - i. We want the agent to (sometimes) ignore it's policy
    - ii. Explore the world to see new trajectories
      - 1. Improve policy with new knowledge
- 7. Exploration vs Exploitation
  - a. Tradeoff:
    - i. Exploitation: maximizing reward by following policy
      - 1. "exploit" already learned knowledge
    - ii. Exploration: gather new data to improve the model by ignoring policy
      - 1. "explore" the trajectory space
  - b. The longer the model runs:
    - i. The less it should explore, and the more it should exploit
      - 1. Have to balance explore and exploit
      - 2. Brand new agent  $\rightarrow$  explore a lot (see all the new things)
      - 3. As time progresses, it should start to exploit more and explore less since we want the agent to follow optimal paths after building knowledge

- ii. Greedy in the Limit of Infinite Exporation (GLIE):
  - 1. Must try each action in each state an unbounded number of times
  - 2. Eventually stop exploring and become greedy
- c. How to explore?
- 8. How to Explore
  - a. Can choose an action at random
    - i. Decide to choose a random action with prob 1/t (t = time) so that we choose the random action less often as time passes
    - ii. Can take a while to converge
  - b. Weight actions
    - i. Weights for actions the agent hasn't tried often
    - ii. Avoid actions (i.e. low weights) for actions believed to have small utility
    - iii. Build this into the Bellman equation (which weights action utilities)

$$U(s) = R(s) + \gamma \max_{a} \sum_{s'} \Pr[s' | s, a] U(s')$$

c.



$$U^{+}(s) = R(s) + \gamma \max_{a} f\left(\sum_{s'} \Pr[s' | s, a] U^{+}(s'), N(s, a)\right)$$

- 9. The Exploration Function f(u, n)
  - a. Tradeoff between greed and curiosity
    - i. Greed = preference for large values of 'u'  $\rightarrow$  utility
    - ii. Curiosity = preference for low values of 'n' → try actions we haven't tried often
  - b. f should be increasing in 'u' and decreasing in 'n'
  - c. One definition:

$$f(u,n) = \begin{cases} R^+ & if \ n < N_e \\ u & otherwise \end{cases}$$

i

- 1. R+ >= max(u)
- 2. R+ = optimistic estimate of best possible reward in any state
- 3. Ne = threshold for "seen this action-state pair enough times"

- 10. Learning Action-Utility Functions
  - a. Active TD agent?
    - i. Stop fixing policy
    - ii. Passive TD agent learns utilities → need to learn model to choose actions
  - b. Why not learn both utilities and model at the same time?
    - i. Q-function Q(s,a) = "utility" of choosing action 'a' in state 's'
    - ii.  $U(s) = max_a Q(s,a)$
    - iii. Q-function takes the place of learned utilities and transition probs
- 11. Q-Function Q(s,a)
  - a. Also obeys equilibrium constrains (similar to Bellman)

$$Q(s, a) = R(s) + \gamma \sum_{s'} \Pr[s' \mid s, a] \max_{a'} Q(s', a')$$

- b. Given a model Pr[s' | s, a], we can solve this directly
  - i. problem: requires a model (avoid)
- c. TD approach requires no model
  - i. Just nudge the Q values in the right direction

$$U^{\pi}(s) \leftarrow U^{\pi}(s) + \alpha \Big( R(s) + \gamma U^{\pi}(s') - U^{\pi}(s) \Big)$$

$$Q(s, a) \leftarrow Q(s, a) + \alpha \Big( R(s) + \gamma \max_{a'} Q(s', a') - Q(s, a) \Big)$$

- d. Q-Function transitions reinforcement learning into supervised learning (doing supervised learning on the fly)
  - i. Alpha is the learning rate (gradient descent)
  - ii. The big parentheses is the derivative
  - iii. Q(s', a') is the ground truth
  - iv. Q(s, a) is my prediction