Stellar Classification using Photometric data

Olivia Lam, Aron Braham, Lucy Liu, and Viet Ngo

Table of contents

Summary

In this report, we attempt to build a classification model using logistic regression which uses photo metric measurements from telescopes to classify stars under the Morgan-Keenan system. Our final classifier performed poorly with a low accuracy on testing data set with a tendency to classify stars as one class cooler than its actual class type. Our model can only classify stars into four main classes due to the small sample size. It is recommended that further study using larger sample sizes and methods to improve the classification model.

Introduction

Current and future astronomical surveys will observe hundred of thousands of objects each year. Due to the massive amount of spectroscopic and photometric data produced, an automated stellar classification process has become important in the field of astronomy in the past few years.

In astronomy, understanding the spectral characteristics of celestial objects serves as a fundamental pillar for unraveling the mysteries of the cosmos. Spectral classification, a cornerstone of astronomical research, enables us to discern the chemical composition, temperature, and evolutionary stage of stars, galaxies, and other celestial bodies. In the earliest days it was based on mass and temperature; however, our modern classification system has evolved and we classify stars based on the Morgan–Keenan (MK) system (Morgan, Keenan, and Kellman 1942) which group stars into 7 classes based on their spectral characteristics. Under the MK system, astronomers analyse electromagnetic radiation from stars to determine its class. These electromagnetic spectrum have dark lines to determine which and how abundant elements are present in the star. The seven classes in the MK system - O, B, A, F, G, K, and M - are sequenced from the hottest (O type) to the coolest (K type) which also exhibits a certain characteristic that is very visible - colour. Hence in this report, we will classify stars using

photometric data and in the Discussion section, we will evaluate whether this is a reliable alternative for the traditional method of comparing the best fit of the spectra to that of templates using statistical tests (Duan et al. 2009).

Definitions

Photometry: the measurement of the flux or intensity of an astronomical object's electromagnetic radiation

The photo metric system we're using to classify star types is the Sloan system (Kent 1994) used by the Sloan Digital Sky Survey. The system measures the intensity of electromagnetic radition from stars at 5 bands: - u (345nm) - g (475nm which is a light blue in the visible spectrum) - r (622nm which is orange) - i (763nm which is deep red) - z (905nm)

Methods & Results

Data

This report has made use of the NASA Exoplanet Archive, which is operated by the California Institute of Technology, under contract with the National Aeronautics and Space Administration under the Exoplanet Exploration Program. NASA Exoplanet Archive collects data from various sources, including ground-based observatories and space telescopes such as the Kepler Space Telescope and the Transiting Exoplanet Survey Satellite (TESS). The dataset is we're using is their Planetary Systems dataset which has the columns of names, spectral type and measurements using Sloan photometric system selected.

The Python programming language (Van Rossum and Drake Jr 1995) and the following Python packages were used to perform the analysis: matplotlib (Hunter 2007), scikit-learn (Pedregosa et al. 2011) and Pandas (McKinney et al. 2010).

Imports

First of all, let's import the packages we will use to carry out the analysis and download the dataset. For our analysis we primarily used sklearn and pandas for our classification analysis as well as matplotlib for our visualizations.

Reading the Dataset

We then download the dataset of interest: the Expoplanet Systems dataset from NASA, containing information about measurements of planets and stars. We are interested in the spectral type of stars given a subset of these measurements.

Table 1: Table of our Initial Data

pl_name	st_spectype	sy_umagstr	sy_gmagstr	sy_rmagstr	sy_imagstr	sy_zmagstr
OGLE-	nan	nan	nan	nan	nan	nan
TR-10 b						
BD-08	K3 V	nan	nan	nan	nan	nan
2823 b						
BD-08	K3 V	nan	nan	nan	nan	nan
2823 c						
HR 8799 c	A5 V	nan	nan	nan	nan	nan
HD 104985	nan	nan	nan	nan	nan	nan
b						
4 UMa b	K1 III	nan	nan	nan	nan	nan
$HD\ 104985$	G9 III	nan	nan	nan	nan	nan
b						
kap CrB b	nan	nan	nan	nan	nan	nan
kap CrB b	nan	nan	nan	nan	nan	nan
kap CrB b	nan	nan	nan	nan	nan	nan

Data EDA and Wrangling

This dataset from NASA's Exoplanet Archive include all planets and stars. Therefore we will wrangle the dataset such that it only contain stars with Sloan magnitudes for photometric measurements.

Below in Table ?? our preprocessing included dropping NA values from our spec_type and band star brightness features. We are also only interested in the first letter of the spectral type, which becomes our y value later in the analysis, so we modified that feature as well.

Table 2: Table of our Cleaned Dataset

pl_name	$st_spectype$	sy_umag	sy_gmag	sy_rmag	sy_imag	sy_zmag
TOI-2084 b	M	18.6919	16.0801	14.6494	17.9112	13.2406
TOI-1801 b	M	16.4486	12.6586	11.0055	10.2729	10.7555
K2-133 c	M	17.2832	15.2645	13.6265	12.9151	12.7195

Table 2: Table of our Cleaned Dataset

pl_name	st_spectype	sy_umag	sy_gmag	sy_rmag	sy_imag	sy_zmag
K2-133 e	M	17.2832	15.2645	13.6265	12.9151	12.7195
K2-133 d	M	17.2832	15.2645	13.6265	12.9151	12.7195
TOI-3785 b	M	17.9187	15.4753	14.0744	13.2233	12.4056
TOI-3984 A	\mathbf{M}	19.1895	16.5597	15.1645	13.9346	13.2853
b						
TOI-1853 b	K	15.5075	14.9806	11.9848	11.7529	11.8545
Wolf 327 b	M	16.6342	15.6776	14.839	14.9466	11.0601
$\mathrm{HD}~81688~\mathrm{b}$	K	13.0932	10.9213	9.31906	8.71834	7.85169

Note: In order to run classification models on our dataset, we had to remove the NA values from our magnitudes. We were planning to incorporate SimpleImputer() into our pipeline during data preprocessing, but about 2200 rows contained NA values, so we thought it was best to simply drop them. This explains the drastic decrease in observations.

Variable Descriptions:

st_spectype: Classification of the star based on their spectral characteristics following the Morgan-Keenan system

sy_umag: Brightness of the host star as measured using the Sloan Digital Sky Survey (SDSS) u band, in units of magnitudes

sy_gmag: Brightness of the host star as measured using the Sloan Digital Sky Survey (SDSS) g band, in units of magnitudes

sy_rmag: Brightness of the host star as measured using the Sloan Digital Sky Survey (SDSS) r band, in units of magnitudes

sy_imag: Brightness of the host star as measured using the Sloan Digital Sky Survey (SDSS) i band, in units of magnitudes

sy_zmag: Brightness of the host star as measured using the Sloan Digital Sky Survey (SDSS) z band, in units of magnitudes

From our Figure ?? visualization below we can see that our highest stellar value counts was for the M class, followed respectively by K, G, and F.

Figure 1: Histogram of Star Count Values

Now we will explore the features and boxplots of each band's magnitude for our four types of stellar classifications.

Table 3: Table of sy_umag Features

Unname	d:							
0	sy_um	a g y_umag.1	$sy_umag.2$	sy_umag	gsy_umag.4	sy_umag	gsty_umag	gsty_umag.7
nan	count	mean	std	min	25%	50%	75%	max
st_spect;	y pa n	nan	nan	nan	nan	nan	nan	nan
\mathbf{F}	38.0	15.00664210	5 0633654 01328	6 56735 442	14.7063	14.8961	15.2332	17.9494
G	102.0	15.18444509	8 039125198 73396	8 53 7950321	15.005849999	9999999	15.4862	16.9794
K	112.0	15.60805535	704236 481790	0334996312	15.0413	15.56765	15.8447	17.9905
M	121.0	17.46718264	4 6280294 82452	58989512	15.7198	17.2832	19.1895	21.2975

Figure 2: Box Plot of fig-sy-umag

From boxplot Figure $\ref{eq:model}$, for M-class of stars, the magnitude of the u-band is much higher than the remaining classes at 17.3 at the median.

Table 4: Table of sy_gmag Features

Unname	d:							
0	sy_gm	a s y_gmag.1	$sy_gmag.2$	sy_gma	g s y_gmag	$gsy_gmag.5$	sy_gma	g s y_gmag.7
nan	count	mean	std	min	25%	50%	75%	max
st_spect	y pa n	nan	nan	nan	nan	nan	nan	nan
\mathbf{F}	38.0	13.40213157	8 944731 7581267	61027455184	12.06472	2513.24350000	0000000197	7516.4513
G	102.0	13.37526960	7843316557 26265	1666448249	12.65185	13.3064	14.1084	15.387
K	112.0	13.14145178	5 71742892 0557	730201639	11.3126	13.0851	14.8948	16.0648
${\bf M}$	121.0	14.89958826	4 260280 952581	495971427828	13.021	15.3392	16.452	18.7296

Figure 3: Box Plot of sy_gmag

Again, from boxplot Figure $\ref{eq:model}$, for M-class of stars, the magnitude of the g-band is much higher than the remaining classes at 15.3 at the median.

Table 5: Table of sy_rmag Features

Unnamed	d:							
0	sy_rma	agsy_rmag.1	$sy_rmag.2$	sy_rmag	g. s y_rmag	g. 4 y_rmag.5	sy_rmag	g. s y_rmag.7
nan	count	mean	std	min	25%	50%	75%	max
st_spect	y pe n	nan	nan	nan	nan	nan	nan	nan
F	38.0	12.61889473	6 841281918 109398	30643017129	11.6961	12.58465	13.38352	2515.7952
G	102.0	12.59398372	5 49092 1651528	1966297264	11.9247	12.1874	13.0922	15.3971
K	112.0	11.88302777	6 787013 14723	1937659584	10.5964	12.02489999	9 99 91979336	15.6566
M	121.0	13.42774958	6 2700895 948131	2 83£05 133	11.6746	13.4888	15.2717	16.86

Figure 4: Box Plot of sy_rmag

Again, from boxplot Figure $\ref{eq:model}$, for M-class of stars, the magnitude of the r-band is higher than the remaining classes at 13.4 at the median.

Table 6: Table of sy_imag Features

Unnamed	l:							
0	sy_ima	gsy_imag.1	$sy_imag.2$	sy_imag	.3y_imag	g. 4 y_imag.5	sy_imag	.6 y_imag.7
nan	count	mean	std	min	25%	50%	75%	max
st_spect	y pa n	nan	nan	nan	nan	nan	nan	nan
F	38.0	12.57688157	8 9430367 6156	9 90027832 4	11.621	12.457899999	9 99 9197919	15.4941
G	102.0	12.39631784	3 13172537 4929	098141622	11.6457	11.9485	12.83322	516.6984
K	112.0	11.92732813	3 9286579 91054	8894270234	10.4417	12.0708	13.172	14.5213
M	121.0	12.67205818	1 8118617 8534131	90815055	10.9702	12.9151	14.3142	17.9112

Figure 5: Box Plot of sy_imag

From boxplot Figure $\ref{eq:initial}$, for all classes of stars, the magnitude at the i-band is similar.

Table 7: Table of sy_zmag Features

Unname	d:							
0	sy_zma	assy_zmag.1	$sy_zmag.2$	sy_zmag	g .s y_zmag	$g.sy_zmag$	g. s y_zmag.6	sy_zmag.7
nan	count	mean	std	min	25%	50%	75%	max
st_spect	y pa n	nan	nan	nan	nan	nan	nan	nan
F	38.0	13.08881578	9 4793684 63186	310847484	12.9808	13.17575	13.463275	15.2871
G	102.0	12.97101313	7 0569 1884304	8270074334	12.7326	13.046	13.3566	14.4078
K	112.0	11.85366196	4 285438 85643	00580572679	10.6281	12.3442	13.09457499	9 999999 7
M	121.0	12.17369595	0 4165227 63323	2 417933 119	11.0226	12.7195	13.2565	15.1016

Figure 6: Box Plot of sy_zmag

From boxplot Figure $\ref{eq:condition}$, for all classes of stars, the magnitude at the z-band is similar.

Classification Analysis

	pl_name s	st_spectype	sy_umag sy_g	mag sy_rm	ag sy_imag	sy_zmag
count	373	373	373.000000	373.000000	373.000000	373.000000
unique	219	4	NaN	NaN	NaN	NaN
top	WASP-92	b M	NaN	NaN	NaN	NaN
freq	5	121	NaN	NaN	NaN	NaN
mean	NaN	NaN	16.034040	13.802282	12.653515	12.363340
std	NaN	NaN	1.560836	1.849799	1.735937	1.691341
\min	NaN	NaN	13.093200	9.912880	8.463130	7.750550
25%	NaN	NaN	15.079600	12.463100	11.650100	11.386000
50%	NaN	NaN	15.548300	13.664600	12.539900	12.151500
75%	NaN	NaN	16.479300	15.199500	13.678000	13.425900

	pl_name	$st_spectype$	sy_umag s	y_gmag	sy_rmag	sy_imag	sy_zmag	
max	NaN	NaN	21.29750	00 18.7	729600 16	6.860000	17.911200	15.287100

We can now get an informed description of our cleaned data Table ??

Table 9: Table of Dataset Features

pl_name	st_spectype	sy_umag	sy_gmag	sy_rmag	sy_imag	sy_zmag
373	373	373	373	373	373	373
219	4	nan	nan	nan	nan	nan
WASP-92	M	nan	nan	nan	nan	nan
b						
5	121	nan	nan	nan	nan	nan
nan	nan	16.034	13.8023	12.6535	12.3633	12.3889
nan	nan	1.56084	1.8498	1.73594	1.69134	1.4358
nan	nan	13.0932	9.91288	8.46313	7.75055	7.76319
nan	nan	15.0796	12.4631	11.6501	11.386	11.6084
nan	nan	15.5483	13.6646	12.5399	12.1515	12.8394
nan	nan	16.4793	15.1995	13.678	13.4259	13.2908
nan	nan	21.2975	18.7296	16.86	17.9112	15.2871

We can now set our y to be the value we are predicting which is spec_type and our predictors will be the following features: sy_umag, sy_gmag, sy_rmag, sy_imag, sy_zmag. From this we created a 75% train test split to run our data.

st_spectype

M 0.337165

K 0.295019

G 0.275862

F 0.091954

Name: proportion, dtype: float64

Table 10: Table of the y Value Counts of our Train-Test Split

propor	tion
0.337	7165
0.295	6019
0.275	862
0.091	954

Table 10: Table of the y Value Counts of our Train-Test Split

proportion

As seen from Table ?? we have a pretty spread out class with no major class imbalance.

fit_time 0.002311 score_time 0.000504 test_score 0.674528 train_score 0.721260

dtype: float64

Table 11: Table of the Cross Validation Scores from Logistic Regression

Unname	d· 0 0
Unname	d: 0 0
fit_time	0.0025732
$score_time$	0.000495148
$test_score$	0.674528
$train_score$	0.72126

Confusion Matrix

One way to get a better understanding of the errors is by looking at how well the classifier is identifying each class. Which classes are most frequently confused with each other. Overall accuracy, along with class-specific metrics like precision, recall, and F1-score for multi-class classification problems.

It's easier to demonstrate evaluation metrics using an explicit validation set instead of using cross-validation. So let's create a validation set as seen below in Table ??.

Table 12: Table of the Logistic Regression Confusion Matrix

0	1	2	3
0	6	0	0
0	21	8	0
0	2	11	7
0	0	2	22

For better interpretation, we will visualize the confusion matrix Figure ??.

Figure 7: Visualization of the Confusion Matrix

We can now calculate our accuracy score given by Table ?? using our Random Forest Classifier given below.

Table 13: Table of Accuracy Score From Random Forest Classifier

() 1	2	3
0	6	0	0
0	21	8	0
0	2	11	7
0	0	2	22
_			

From this we can provide cross validation scores given in Table ?? using our Random Forest Classifier.

/Users/lucyliu/miniconda3/envs/dsci-310-group16/lib/python3.12/site-packages/sklearn/base.py warnings.warn(

Accuracy: 0.29464285714285715

fit_time 0.140373 score_time 0.004732 test_score 0.827504 train_score 0.987551

dtype: float64

Table 14: Table of the Cross Validation Scores from Random Forest Classifier

Unnam	ed: 0 0
fit_time	0.0025732
$score_time$	0.000495148
$test_score$	0.674528
train_score	0.72126

Ultimately from our validation scores, we achieve a much higher test score from our scaled data with the RandomForestClassifier model of 0.675 compared to LogisticRegression model of 0.675. However our accuracy score is quite low at 0.

Discussion

Our model yielded pretty average results with final overall accuracy of 0. This model is not good enough for an automated stellar classification process. In addition, our model can only classify stars into four classes due to the limited sample size. However these four classes make up about 99.8% of stellar population (Ledrew 2001) so being unable to classify stars into remaining three classes isn't as big of an issue. Looking at the confusion matrix, we can see that our model tend to classify stars as cooler than they actually are (e.g. nine stars were classified as G but were actually F class). In order to improve this model, a larger sample size would help like using the Sloan Digital Sky Survey dataset instead. Another way to improve the model is to explore other classification methods such as k nearest neighbours. Finally, using another photometric system such as UBV could help since the bands are more seperated resulting in larger difference in magnitudes between star classes. More research into other classification methods could most likely yield higher accuracy.

References

Duan, Fu-Qing, Rong Liu, Ping Guo, Ming-Quan Zhou, and Fu-Chao Wu. 2009. "Automated Spectral Classification Using Template Matching." Research in Astronomy and Astrophysics 9 (3): 341.

- Hunter, John D. 2007. "Matplotlib: A 2D Graphics Environment." Computing in Science & Engineering 9 (03): 90−95.
- Kent, Stephen M. 1994. "Sloan Digital Sky Survey." Astrophysics and Space Science 217: 27–30.
- Ledrew, Glenn. 2001. "The Real Starry Sky." Journal of the Royal Astronomical Society of Canada, Vol. 95, p. 32 95: 32.
- McKinney, Wes et al. 2010. "Data Structures for Statistical Computing in Python." In SciPy, 445:51-56. 1.
- Morgan, WW, Philip C Keenan, and Edith Kellman. 1942. "An Atlas of Stellar Spectra." *University of Chicago*.
- Pedregosa, Fabian, Gaël Varoquaux, Alexandre Gramfort, Vincent Michel, Bertrand Thirion, Olivier Grisel, Mathieu Blondel, et al. 2011. "Scikit-Learn: Machine Learning in Python." The Journal of Machine Learning Research 12: 2825–30.
- Van Rossum, Guido, and Fred L Drake Jr. 1995. "Python Tutorial." Centrum voor Wiskunde en Informatica Amsterdam, The Netherlands.