$Computer\ Architecture\ I$

論理回路(2)

順序回路

タイミングチャート

- タイミングチャート
 - 信号の状態変化を示した図をタイミングチャートという。
 - ▶ 一般に, 横軸に時間を, 縦軸に論理値または電圧値をとる.

【例】 AND回路のタイミングチャート

$$D_0$$
 D_1

伝播遅延時間により、出力タイミングは少し遅れる.

- ▶ 問題1
 - ▶ 下左図のOR回路に、下右図のタイミングチャートに示されるような信号D₀と信号D₁が入力されるものとする。信号Qの状態変化を記入せよ。

組み合わせ回路と順序回路

- 論理回路は、組み合わせ回路と順序回路の2つに分類することができる。
 - ▶ 組み合わせ回路
 - ▶ 時刻 t の出力が, 時刻 t の入力だけに依存するような論理回路.
 - 順序回路
 - ▶ 時刻 t の出力が, 時刻 t の入力だけでなく, 過去の入力にも依存するような論理回路.

順序回路

- ▶ 順序回路
 - ▶ 時刻 t の出力が, 時刻 t の入力だけでなく, 過去の入力にも依存するような論理回路.
 - 基本的な順序回路は、組み合わせ回路とメモリで構成される。

メモリに記憶されている 過去の入力に依存した信号

メモリ

メモリ

- 順序回路には、メモリが必要になる。
- 最も簡単なメモリは、1ビットメモリである。
- 1ビットメモリは、後述するフリップフロップで実現できる。

SRフリップフロップ

▶ SRフリップフロップ

▶ 2個のNOR素子で構成される.(次ページにて動作説明)

S (Set)	R (Reset)	Q	Q
0	0	不変(保持)	不変(保持)
0	1	0	1
1	0	1	0
1	1	不定	不定

SRフリップフロップの動作

【リセット】

【不変1】(リセット状態の保持)

【セット】

【不変 2】(セット状態の保持)

SRフリップフロップの動作

入力

值 I₁

0

0

入力

值 I₂

0

0

出力 値 O

0

【リセット】

【不変1】(リセット状態の保持)

【セット】

【不変 2】(セット状態の保持)

SRフリップフロップのタイミングチャート

タイミングチャート

【例】 セット状態保持 → リセット → リセット状態保持

▶ 問題2

▶ 下左図のSRフリップフロップに、下右図のタイミングチャートに示されるような信号Rと信号Sが入力されるものとする。信号QとQの状態変化を記入せよ。

Dラッチ

▶ Dラッチ

クロック信号Cがアサートされる(1にされる)と、入力Dの値を、出力Qの値として出力する。

クロック信号Cがネゲートされる(0にされる)と、その時点における出力

Qの値を保持する.

▶ 問題3

▶ 下左図のDラッチに、下右図のタイミングチャートに示されるような信号 Dと信号Cが入力されるものとする。信号R、信号S、信号Qの状態変化 を記入せよ。

Dフリップフロップ

▶ Dフリップフロップ

2個のDラッチを用いて、クロックの立ち下がりをトリガ(引き金となる動作)として、入力Dの値を、出力Qの値として出力する。

クロックCの立下り時の信号Dを 出力Qとして出力する.

▶ 問題4

▶ 下左図のDフリップフロップに、下右図のタイミングチャートに示されるような信号Dと信号Cが入力されるものとする。2段目のDラッチにおける信号D、信号C、信号Qの状態変化を記入せよ。

ラッチとレジスタ

- ラッチとレジスタ
 - 複数個のフリップフロップを並列に配置したものを、ラッチあるいはレジスタという。ここで、各フリップフロップは、同一クロックに同期して動作する。
 - ラッチやレジスタは、制御情報(信号)やデータの一時格納機構として、 コンピュータ装置の各所で使用される。

シフタ

シフタ

- フリップフロップの出力を別のフリップフロップの入力として、直列に連結したフリップフロップ群をシフタという。ここで、各フリップフロップは、同一クロックに同期して動作する。
- 直列·並列の相互変換や固定小数点数乗除算などに応用される。

▶ 問題5

下左図のシフタに、下右図のタイミングチャートに示されるような信号Dと信号Cが入力されるものとする。2段目のDフリップフロップにおける信号Qの状態変化を記入せよ。

