Learning the distribution of extreme precipitation from atmospheric general circulation model variables

Philipp Hess and Niklas Boers

11.12.2020

Motivation

Challenges of precipitation prediction for large scale NWP models:

- Need to parameterize subgrid-processes
- Underestimation of precipitation extremes

Here:

 Infer precipitation from explicitly resolved atmospheric variables using a deep artificial neural network (DNN)

$$P(t^n, x, y) \approx \mathsf{DNN}(X(t^n, x, y, z))$$

- P Precipitation target: TRMM 3B42 V7 satellite based observations
- X Atmospheric variables: here, vertical velocity from the IFS (ECMWF) 10-member ensemble mean

Architecture and loss function

UNet

Weighted loss function

Averaged loss leads to:

- Good approximation of the target mean.
- Underestimation of extremes in the tails.

Here:

 MSE loss is weighted proportional to the inverse of target frequencies.

$$L(y, \hat{y}) = \frac{\lambda}{N} \sum_{i=1}^{N} w_i (y_i - \hat{y}_i)^2 + \frac{1 - \lambda}{N} \sum_{i=1}^{N} |y_i - \hat{y}_i|$$

O. Ronneberger et al. 2015

Results

Model	RMSE	ME	Correlation
Linear	6.380	1.744	0.378
DNN	5.016	0.687	0.438
IFS	5.367	0.814	0.411

Test set: JJA season, 2015-2018. Resolution: daily, 0.5° grid (96 x 96).

Precipitation frequencies

Future work

- Scaling the method to:
 - Global data
 - 3-hourly temporal resolution
- Test it on longer forecast lead times of several days
- Integration into a physical model