Computer Graphics: Assignment 04

Lina Gundelwein, Letitia Parcalabescu, Anushalakshmi Manila ${\bf November~28,~2016}$

5.1 Euler Angles and even more Transformations

$$R = R_{2}(\phi) \cdot R_{4}(\phi) R_{x}(\Psi) = \begin{pmatrix} 0.7500 & -0.6495 & -0.1260 \\ 0.4330 & 0.6350 & -0.6495 \\ 0.5000 & 0.4330 & 0.7500 \end{pmatrix}$$

$$= \begin{pmatrix} 0.660 \cdot 0.6495 & 0.6250 & -0.6495 \\ 0.5000 & 0.4330 & 0.7500 \end{pmatrix}$$

$$= \begin{pmatrix} 0.660 \cdot 0.6495 & 0.6250 & -0.6495 \\ 0.5000 & 0.4330 & 0.7500 \end{pmatrix}$$

$$= \begin{pmatrix} 0.660 \cdot 0.6495 & 0.7500 & 0.6350 & -0.6495 \\ 0.650 \cdot 0.4330 & 0.7500 & 0.4330 & 0.7500 \end{pmatrix}$$

$$= \begin{pmatrix} 0.660 \cdot 0.6495 & 0.7500 & 0.6250 & -0.6495 \\ 0.650 \cdot 0.7500 & 0.7500 & 0.6350 & -0.6495 \\ 0.7500 & 0.7500 & 0.7500 & 0.7500 \end{pmatrix}$$

$$= \begin{pmatrix} 0.6250 & 0.6250 & -0.6495 & -0.6495 \\ 0.7500 & 0.7500 & 0.7500 & 0.7500 \end{pmatrix}$$

$$= \begin{pmatrix} 0.6250 & 0.6250 & -0.6495 & -0.6495 \\ 0.7500 & 0.7500 & 0.7500 & 0.7500 \end{pmatrix}$$

$$= \begin{pmatrix} 0.6250 & 0.6250 & -0.6495 & -0.6495 \\ 0.7500 & 0.7500 & 0.7500 & 0.7500 \end{pmatrix}$$

$$= \begin{pmatrix} 0.6250 & 0.7500 & 0.7500 & 0.7500 \\ 0.7500 & 0.7500 & 0.7500 \\ 0.7500 & 0.7500 & 0.7500$$

5.1-1

- pushMatrix
 - Translate V_i by $-V_1$, such that V_1 is at coordinate center.
 - Rotate V_i by 45°
- popMatrix()
- Translate V_i by $+V_1$ (old)

5.1-2

The sun is in the coordinate center, rotates around itself (y axis) with arbitrary angle ϕ_{sun} , earth rotates around the original y axis (not the rotating one) around coordinate center with angle $\frac{360}{365}^{\circ}$, then there has to be a rotation about the new, by 23.5° rotated, y-axis by ϕ_{earth} , the moon rotates around the translated and rotating y-axis (but in x-z-layer, not the rotated axes).

- Set sun, earth and moon to coordinate center.
- PushMatrix()
 - Rotate sun about angle ϕ_{sun} around y-axis
- popMatrix()

• PushMatrix()

- Rotate earth about $\frac{360}{365}^{\circ}$ around y-axis
- Translate earth and moon about $dist_{earth-sun}$
- PushMatrix()
 - \ast Rotate earthabout 23.5° around z-axis
 - * Rotate earth about ϕ_{earth} around y-axis
- PopMatrix()
- PushMatrix()
 - * Rotate moon about $\frac{360}{12}^{\circ}$ around y-axis
 - * Translate moon about $dist_{moon-earth}$
- PopMatrix()
- popMatrix()