Module 2 Scale Space for Biological Image Segmentation

Scott T. Acton

Virginia Image and Video Analysis (VIVA), Charles L. Brown Department of Electrical and Computer Engineering Department of Biomedical Engineering University of Virginia, Charlottesville, VA 22904

First Approach

- Create a scale space via area morphology (connected filters)
- Cluster vectors in the scale space to extract segments

Objective

- The goal of the work is to investigate <u>segmentation</u> procedures that can be used for biological imagery
- · Ability to specify the minimum-sized segments
- · Provide segments that minimize classification error
- Provide segments that minimize intra-object classification error

Scale-space from Anisotropic Diffusion

• Diffusion/smoothing is inhibited where the local gradient magnitude is large...

- Causality is maintained -- no new features are created with increased scale
- Can be used in multi-scale tasks such as coarse-to-fine searches

Area Morphology

- Area morphology is based on the manipulation of connected components within the image level sets according to their area
- Let I represent an image with level sets B(I, t):
- Within a particular level set B, we have a connected component of 1's at (x, y) represented by C_B(x, y)

$$(x,y) \in \mathbf{B}(\mathbf{I},t) \text{ if } I(x,y) \ge t$$

Area Open and Close Operators

 For a particular level set B, the area open and close operators are defined by

$$a$$

 $(x, y) \in o(\mathbf{B}) \text{ if } |\mathbf{C}_{\mathbf{B}}(x, y)| \ge a$

$$(x, y) \in \bullet(\mathbf{B}) \text{ if } |\mathbf{C}_{\mathbf{B}}^{c}(x, y)| \ge a$$

Area open-close (AOC) is simply the concatenation of area open and close

Area Open-Close Scale Space

 For an image, the AOC is computed by stacking the processed level sets

$$I(x, y) = \sum_{i=0}^{K-1} 1_{(x,y)} \in L(\mathbf{I}, i)$$

- The scale space is created recursively
- The AOC scale space maintains the fidelity, causality, strong causality and Euclidean invariance properties
- Fast algorithms exist to compute the AOC (queue, tree and pyramid-based)

Non-bio Area Open-Close Scale Space Example

8-bit, 292x176 scan of 'The Institute'

Clustering

- Let the 1-D signal I(x, y) represent the scale space evolution of I(x, y)
- **I**(*x*, *y*) is a scale space vector -- we cluster the scale space vectors to segment the image
- The distance between two scale space vectors is defined by

$$d(\mathbf{I}(x_1, y_1), \mathbf{I}(x_2, y_2)) = \left[\sum_{\Omega_S} |I_S(x_1, y_1) - I_S(x_2, y_2)|^p \right]^{1/p}$$

Fuzzy c-Means Clustering

Minimize:
$$J_m(U, \mu) = \sum_{\Omega} \sum_{i=1}^{C} (u_i(x, y))^m \|d_i(x, y)\|^2$$

Sum over Class Membership

Update Memberships:

Update Memberships:

$$u_{i}(x,y) = 1/\left[\sum_{j=1}^{C} \left(\frac{d_{i}(x,y)}{d_{j}(x,y)}\right)^{2/(m-1)}\right]$$

Update Cluster Centers:

$$\mu_i = \frac{\sum\limits_{\Omega} \left(u_i(x,y)\right)^m \mathbf{I}(x,y)}{\sum\limits_{\Omega} \left(u_i(x,y)\right)^m}$$

Clustering Results

Using AOC scale space

Using AOC scale space

Using open scale space

Using open scale space

2 Classes

3 Classes

2 Classes

3 Classes

Second Approach

- Use a partial differential equation (PDE)driven diffusion to encourage intra-region smoothing and
 - Discourage inter-region smoothing
- This diffusion can be used to generate space space

Diffusion

- Diffusion is a mathematical model for several physical processes: the migration of bacteria, heat transfer, etc.
- The same partial differential equations (PDEs) may also be used for signal / image smoothing:

Motivation

- Benefits of the Diffusion Technique
 - Diffusion can be efficiently implemented using locally connected units on a parallel processor
 - Intra-region smoothing vs. inter-region smoothing (edge and feature preservation)
 - Control of feature scale to create a scalespace -- a family of signals that vary from coarse to fine

Diffusion on Digital Imagery

 The diffusion PDE must be discretized for implementation on digital images

The Diffusion Coefficient

- If the diffusion coefficient is constant at all image locations, isotropic diffusion (Gaussian smoothing) is enacted
 - Problem: isotropic diffusion does not preserve edges
- If the diffusion coefficient is allowed to vary with the local image gradient magnitude, we have anisotropic diffusion
 - Benefit: edges can be preserved or even enhanced

Form: typically a non-increasing function of image gradient magnitude... $c_p(\mathbf{x}) = f\left|\nabla I_p(\mathbf{x})\right| - \text{VICHOLING}$ UNIVERSITY
VIRGINIA

ENGREPHICA

Image Enhancement

- We know the scale and shape of the leukocytes (roughly)
- We can exploit that knowledge in removing noise and clutter – using morphological anisotropic diffusion

Input

Background Subtraction

 Subtract background image from each registered frame to reveal foreground objects (leukocytes)

Original Subimage After Background Sub.

After Diffusion w/ Morph diffusion coef.

Anisotropic diffusion with signaldependent noise

- Previous AD assumes additive noise that is independent of signal
- What to do when noise is signaldependent?
- Base diffusion coefficient on Standard Deviation / Mean instead of Gradient magnitude...
- Let $q(x,y) = \sigma/\mu$ the coef. of variation!
- Called SRAD: speckle reducing anisotropic diffusion

Diffusion Coefficient

$$c(q) = \frac{1}{1 + \left[q^2(x, y; t) - q_0^2(t)\right] \left[q_0^2(t)\left(1 + q_0^2(t)\right)\right]}$$
ICOV of fully developed speckle

Instantaneous Coef. Of Variation (ICOV)

aplacian VVIV/

Enhancement via SRAD can improve segmentation results

Image segmentation fails due to weak bottom left edge

SRAD improves contrast, intraregion homogeneity

END

• Onward to graphs!

