対称式と相反方程式

_____ 対称式

x と y の多項式で,x と y を入れ替えても同じ式になるものを**対称式**という:

$$x^3 + 3xy + y^3$$
, $x + y$, xy , $x^2 + 2xy + y^2$

特に、x+y、xy を基本対称式という.対称式は、必ず基本対称式の和・差・積で表せる.

- (1) $x^3 + y^3$ を基本対称式 x + y, xy で表せ.
- (2) x+y=3, xy=2 のとき, x^3+y^3 の値を求めよ.

√ 解答

(1) x^3, y^3 を作りたいので、まずは $(x+y)^3$ を考えよう.

$$(x+y)^3 = x^3 + 3x^2y + 3xy^2 + y^3 = x^3 + 3xy(x+y) + y^3$$

なので、 $x^3 + y^3 = (x+y)^3 - 3xy(x+y)$ と表せる.

₽問1

$$x = \frac{\sqrt{3}+1}{\sqrt{3}-1}, \quad y = \frac{\sqrt{3}-1}{\sqrt{3}+1}$$
 のとき、次の式の値を求めよ.

- (1) x + y, xy
- (2) $x^2 + y^2$ (3) $x^3 + y^3$
- $(4) x^4 + u^4$

$$x + \frac{1}{x} = \sqrt{7}$$
 のとき, $x^2 + \frac{1}{x^2}$ の値を求めよ.

√ 解答

$$x,\;rac{1}{x}$$
 の対称式と見ればいい. $x^2+rac{1}{x^2}=\left(x+rac{1}{x}
ight)^2-2x\cdotrac{1}{x}=7-2=5$

○ 問 2

 $x + \frac{1}{x} = \sqrt{7}$ のとき、次の式の値を求めよ.

(1) $x^3 + \frac{1}{x^3}$

(2) $x^4 + \frac{1}{x^4}$

1

(3) $x^5 + \frac{1}{x^5}$

相反方程式

例題 3

4次方程式 $x^4 + 3x^3 + 2x^2 + 3x + 1 = 0$ を解け.

// Point

この問題のように、係数が左右対称になっている n 次方程式を**相反方程式**という (1,3,2,3,1). 正 攻法で解いてもいいが、対称式の考え方を使うとうまく解ける.

√ 解答

x=0 は解ではないので、両辺を x^2 で割ると、

$$x^{2} + 3x + 2 + 3 \cdot \frac{1}{x} + \frac{1}{x^{2}} = x^{2} + \frac{1}{x^{2}} + 3\left(x + \frac{1}{x}\right) + 2 = 0$$

これは x と $\frac{1}{x}$ の対称式なので,前の問題のように $X = x + \frac{1}{x}$ で表そう.

$$x^{2} + \frac{1}{x^{2}} + 3\left(x + \frac{1}{x}\right) + 2 = \left(x + \frac{1}{x}\right)^{2} - 2 + 3\left(x + \frac{1}{x}\right) + 2 = X^{2} + 3X = 0$$

これより X=0,-3 であるから、結局、 $x+\frac{1}{x}=0,-3$ 、すなわち $x^2+1=0,-3x$ を解けばいい.

$$x^2 + 1 = 0 \iff x = \pm i$$

$$x^{2} + 1 = -3x \iff x^{2} + 3x + 1 = 0 \iff x = \frac{-3 \pm \sqrt{5}}{2}$$

以上より、求めるxは、

$$x = \pm i, \ \frac{-3 \pm \sqrt{5}}{2}$$

❷問3

4 次方程式 $x^4 + 5x^3 + 2x^2 + 5x + 1 = 0$ を解け.

 $x^4+2x^2+2x^2+1=0$ は相反方程式ではない、 $x^4+0x^3+2x^2+2x^2+1=0$ と考える、

復習問題

 $x = \frac{1}{2 - \sqrt{3}}$, $y = 2 - \sqrt{3}$ のとき, 次の式の値を求めよ.

(1)
$$x^2 + y^2$$

(1)
$$x^2 + y^2$$
 (2) $\frac{y}{x} + \frac{x}{y}$

₽問5

 $\sqrt{3}$ の整数部分を a,少数部分を b とするとき, $\frac{a}{b} + \frac{b}{a}$ の値を求めよ.

₽問6

 $a^2 + 3b = b^2 + 3a = 8$ のとき、次の式の値を求めよ.ただし、 $a \neq b$ とする.

$$(1)$$
 ab

$$(2) \ a+b$$

(3)
$$a^2 + b^2$$

(3)
$$a^2 + b^2$$
 (4) $\frac{a}{b} + \frac{b}{a}$

❷問7

4次方程式 $x^4 - 8x^3 + 17x^2 - 8x + 1 = 0$ を解け.