Limitations of [[Finite State Machines]]

- previous state machines designed for specific application
- application changes require new state machine, new hardware
- · general-purpose machine wanted

Von Neumann Model

- architecture with following components
 - Processing Unit
 - Control Unit
 - Memory
 - Input
 - Output
 - Buses
- CPU connected via bus system to memory and I/O

- · Hardvard Architecture Variation
 - Memory split into Data and Instruction Memory

Arithmetic Logic Unit

- ALUs are [[Combinational Circuits]] performing calculation operations
- basic properties

Takes two n-bit inputs (A, B); today typically 32 bit or 64 bit

Performs an operation based on one or both inputs; the performed operation is selected by the control input alu_sel

Returns an n-bit output; It typically also provides a status output with flags to e.g. indicate overflows or relations of A and B, such as A==B or A<B

Register File

- contatins m n-bit registers
- write one n-bit value per clock cycle
 - register selected via R_W
 - does not write if low
- read two registers per clock cycle
 - provided at outputs A and B
 - registers selected via R_A and R_B
- basically memory with
 - one write port
 - two read ports

• register file with 32 registers

2

Processing Unit

• combines ALU and register file

- instruction register
 - stores instruction to execute and parameters
 - mapped to control signals by instruction encoder

