Path planning involves finding an optimal path between two locations in a known, partially known, or unknown environment. Search performance might be described by completeness, optimality, time complexity, or space complexity.

Consider the following simplified map from *Artificial Intelligence: A Modern Approach* (Third Edition) by Russell and Norvig.

Problem 0. Suppose we are in Arad and wish to find the length of a shortest path to Bucharest. What do we do?

Dijkstra's algorithm [Dijkstra (1956/1959)]

Dijkstra's algorithm is a single-source shortest-path algorithm.

- STEP 1 Mark all nodes as *unvisited*.
- STEP 2 Set the distance for the start node to 0 and the temporary distance for all other nodes to ∞ . Set the start node as *current*.
- STEP 3 For the current node, consider each unvisited neighbour *v* and calculate the temporary distance through *current*. Compare the temporary distance to the current distance for *v* and assign the smaller of the two as the new temporary distance for *v*.
- STEP 4 When all the neighbours of *current* have been updated, mark *current* as *visited*.
- STEP 5 If the destination node has been marked *visited* or if the smallest temporary distance amongst unvisited nodes is ∞ then STOP.
- STEP 6 Otherwise, select the unvisited node with smallest temporary distance, set it as *current*, and go to STEP 3.

Task 1. Implement Dijkstra's algorithm in the language of your choice and output the result for **Problem 0**.

Task 2. Modify Dijkstra's algorithm to also output an actual shortest path from Arad to Bucharest.

A* search [Hart, Nilsson, and Raphael (1968)]

A* is a generalization of Dijkstra's algorithm. It is similar to Dijkstra's algorithm in that accumulated distances are used but adds an important component to the decision-making process.

To decide which path to extend, A* search chooses the path that minimises f(n) = g(n) + h(n)

where n is the next node on the path, g(n) is the cost of the path from the start node to n, and h(n) is a *heuristic function* that estimates the cost of the cheapest path from n to the goal. A heuristic function provides additional knowledge of the problem to the search algorithm. A well-chosen heuristic function for the task at hand is vital to success.

A heuristic function h is *admissible* if h never overestimates the actual cost to get to the goal. If w(x, y) represents the weight of edge xy, then a heuristic function h is *consistent* if $h(a) \le w(a, b) + h(b)$ for every edge ab.

Task 3. Give a nontrivial heuristic function that is always admissible for **Problem 0**.

If the heuristic function is admissible, then A* search is guaranteed to return a least-cost path from the start node to the goal. If the heuristic function is also consistent, then A* search will return the length of an optimal path without processing any node more than once.

Bucharest Craiova	0	Neamt	234
Craiova			
	160	Oradea	380
Drobeta	242	Pitesti	100
Eforie	161	Rimnicu Vilcea	193
Fagaras	176	Sibiu	253
Giurgiu	77	Timisoara	329
Hirsova	151	Urziceni	80
Iasi	226	Vaslui	199
Lugoj	244	Zerind	374

A* search is nearly identical to Dijkstra's algorithm except that A* search minimises the function f in STEP 3.

Task 4. Implement the A* search algorithm in the language of your choice and output the result for **Problem 0**.

Task 5. Modify A* search to also output an actual shortest path from Arad to Bucharest.

```
Floyd-Warshall algorithm [Roy (1959), Floyd (1962), Warshall (1962)]
```

The Floyd-Warshall algorithm is an all-pairs shortest-paths algorithm.

STEP 1. Create an $n \times n$ matrix W with the weight of edge ij as entry w_{ij}

STEP 2. Set the value of $D^{(0)}$ to W.

STEP 3. The algorithm creates $D^{(k)}$ for each k.

```
for k from 1 to n
for i from 1 to n
for j from 1 to n
Set the value of d^{(k)}_{ij} to \min(d^{(k-1)}_{ij}, d^{(k-1)}_{ik} + d^{(k-1)}_{kj})
```

STEP 4. Return $D^{(n)}$

- **Task 6.** Implement the Floyd-Warshall algorithm in the language of your choice and apply it to the graph from **Problem 0**.
- **Task 7.** Output the solution for **Problem 0**.
- **Task 8.** (**Bonus**) Modify the Floyd-Warshall algorithm to also output an actual shortest path from Arad to Bucharest.
- **Task 9.** If your goal is to solve problems like **Problem 0**, which of these three algorithms is most appropriate? Which is least appropriate? Explain.