CHAPTER

BOOLEAN ALGEBRAS

- 11.1 Suppose $a \wedge b = b$. Then $b \vee a = (a \wedge b) \vee a = a$ Suppose $b \vee a = a$. Then $a \wedge b = (b \vee a) \wedge b = b$
- 11.2 $a \lor (b \land c) \le (a \lor b) \land (a \lor c) \le b \land (a \lor c)$
- 11.3 $a \lor (b \land c) \le a \lor b$ $a \lor (b \land c) \le a \lor c$

Thus, $a \lor (b \land c) \le (a \lor b) \land (a \lor c)$

The second inequality follows from duality.

11.4 If $b \le a$, then $a \land b = b$ which contradicts the condition $a \land b < b$. If $a \le b$, then $a \land b = a$ which contradicts the condition $a \land b < a$. Thus, if $a \land b < a$ and $a \land b < b$, then a and b are incomparable. On the other hand, suppose a and b are incomparable.

Since $a \wedge b \leq a$, if $a \wedge b = a$, then $a \leq b$, which is a contradiction. Since $a \wedge b \leq b$, if $a \wedge b = b$, then $b \leq a$, which is a contradiction.

- 11.5 Since $a \lor (a \land x) = a$, we have $a \land a = a \land (a \lor (a \land x))$. However, according to the absorption law $a \land (a \lor (a \land x)) = a$. Thus, $a \land a = a$.
- 11.6 (a) Transitivity: $a \le b, b \le c \Rightarrow a \land b = a, b \land c = b$ $\Rightarrow a \land c = (a \land b) \land c = a \land (b \land c)$ $= a \land b = a.$

Antisymmetry: $a \le b, b \le a \Rightarrow a \land b = a, a \land b = b \Rightarrow a = b.$

Reflexivity: Let $a \lor a = b$. Then $a \land b = a \land (a \lor a) = a$ so $a \lor a = a \lor (a \land b) = a$ by absorption. Thus $a \land a = a \land (a \lor a) = a$ and hence $a \le a$.

(b) $a \le a \lor b$ since $a \land (a \lor b) = a$ by absorption. Similarly, $b \le a \lor b$. Thus, $a \lor b$ is an upper bound of a and b.

Also, $(a \lor b) \land (a \lor b \lor c) = a \lor b$ by absorption.

If $a \le c$ and $b \le c$, then $c = c \lor (c \land a) = c \lor a$. Similarly, $b \lor c = c$.

Hence, $(a \lor b) \land (a \lor b \lor c) = (a \lor b) \land (a \lor c) = (a \lor b) \land c$.

Thus, $a \lor b = (a \lor b) \land c$ and $a \lor b \le c$.

Similarly, $a \wedge b \leq a$ and $a \wedge b \leq b$ since $a \wedge (a \wedge b) = a \wedge b$ and $b \wedge (b \wedge a) = b \wedge a$.

If $c \le a$ and $c \le b$, then $a \land c = c$ and $b \land c = c$.

Thus, $c \wedge (a \wedge b) = c \wedge b = c$, so $c \leq a \wedge b$.

- 11.7 Clearly, $(a \lor b) \land c \le a \lor (b \land c) \le (a \land c) \lor (b \land c)$. For the reverse inclusion we note that the lattice is modular since if $a \le c$, then $a \lor (b \land c) \ge (a \lor b) \land c$ by assumption. While $a \le a \lor b$, $a \le c$, and $b \land c \le a \lor b$, $b \land c \le c$, so $a \lor (b \land c) \le (a \lor b) \land c$. Thus, since $a \land c \le c$, $(a \land c) \lor (b \land c) = ((a \land c) \lor b) \land c \ge ((a \lor b) \land c) = (a \lor b) \land c$.
- 11.8 We have $x \lor (a \land x) = (x \lor a) \land (x \lor x) = x$

However,
$$x \lor (a \land x) = x \lor (a \land y)$$

$$= (x \lor a) \land (x \lor y)$$

$$= (y \lor a) \land (x \lor y)$$

$$= (a \land x) \lor y$$

$$= (a \land y) \lor y$$

$$= y$$

11.9 If (A, \leq) is distributive, then

$$(a \lor b) \land (b \lor c) \land (c \lor a) = [(a \lor b) \land (b \lor c) \land c] \lor [(a \lor b) \land (b \lor c) \land a]$$

$$= [(a \lor b) \land c] \lor [(b \lor c) \land a]$$

$$= [(a \land c) \lor (b \land c)] \lor [(b \land a) \lor (c \land a)]$$

$$= (a \land b) \lor (b \land c) \lor (c \land a).$$

Conversely, if this condition holds, then

$$a \wedge (b \vee c) = a \wedge ((a \vee b) \wedge (a \vee c) \wedge (b \vee c)),$$

$$(\text{since } (a \vee b) \wedge a = a = (a \vee c) \wedge a)$$

$$= a \wedge [(b \wedge c) \vee (c \wedge a) \vee (a \wedge b)],$$

$$(\text{by the assumed condition})$$

$$= a \wedge [(b \wedge c) \vee a] \wedge [(b \wedge c) \vee (c \wedge a) \vee (a \wedge b)]$$

$$(\text{since } a \wedge [(b \wedge c) \vee a] = a)$$

$$= [a \vee [(c \wedge a) \vee (a \wedge b)]] \vee [(b \wedge c) \wedge a] \vee [(b \wedge c) \wedge [(c \wedge a) \vee (a \wedge b)]]$$

$$(\text{since } a \vee (c \wedge a) \vee (a \wedge b) = a)$$

$$= [a \wedge [(c \wedge a) \vee (a \wedge b)]] \vee [(b \wedge c) \wedge a] \vee [(b \wedge c) \wedge [(c \wedge a) \vee (a \wedge b)]]$$

$$(\text{by the assumed condition})$$

$$= [(c \land a) \lor (a \land b)] \lor [(b \land c) \land a] \lor [(b \land c) \land [(c \land a) \lor (a \land b)]]$$

$$(since a \ge (c \land a) \lor (a \land b))$$

$$= [(c \land a) \lor (a \land b)] \lor [(b \land c) \land a]$$

$$(since [(b \land c) \land [(c \land a) \lor (a \land b)]]$$

$$\le [(c \land a) \lor (a \land b)]$$

$$= (c \land a) \lor (a \land b)$$

$$(since (a \land b \land c) \le (a \land b))$$

11.10 If (A, \leq) is modular, then $a \leq a \vee c$, so $a \vee (b \wedge (a \vee c)) = (a \vee b) \wedge (a \vee c)$.

If the condition holds, let $a \le c$. Then $c = a \lor c$ and

$$a \lor (b \land c) = a \lor [b \land (a \lor c)]$$

$$= (a \lor b) \land (a \lor a \lor c)$$

$$= (a \lor b) \land (a \lor c)$$

$$= (a \lor b) \land c.$$

11.11 Clearly $(c \lor b) \land a \ge b \land a$ and $(c \lor b) \land a \le a$. To show $(c \lor b) \land a \le b$ we observe that

$$(c \lor b) \land a \le (c \lor b) \land (a \lor b) \le b \lor [c \land (a \lor b)]$$

by the modular law. But by assumption, $c \wedge (a \vee b) = b \wedge c$.

Thus, $(c \lor b) \land a \le b \lor (b \land c) = b$. And $(c \lor b) \land a \le a \land b$.

11.12 (a) (2) \Rightarrow (2'): If $x \le a$, then $a \land x = x$.

Therefore,
$$a \land x \in I \Rightarrow x \in I$$

 $(2') \Rightarrow (2)$: For any $a \in I$ and any $x \in A$, $a \land x \le a$. Thus, $a \land x$ is in I.

(b) Let *I* be an ideal. Clearly, (1'') is satisfied. According to condition (2) if $a \lor b$ is in *I*, $a = (a \lor b) \land a$ is also in *I*, and $b = (a \lor b) \land b$ is also in *I*. Thus condition (2'') is satisfied.

Now, suppose I is a set satisfying conditions (1") and (2"). Consider any a in I and $x \le a$. Note that $a \lor x = a$. According to condition (2"), $a \lor x$ in I implies $a \in I$ and $x \in I$. Thus condition (2') is satisfied.

11.13 (i) For any c and d in I(a, b)

$$a \wedge c = b \wedge c$$

$$a \wedge d = b \wedge d$$

$$a \wedge (c \vee d) = (a \wedge c) \vee (a \wedge d)$$

$$= (b \vee c) \vee (b \wedge d)$$

$$= b \wedge (c \vee d)$$

Thus, $c \vee d$ is in I(a, b).

4

(ii) For any c in I(a, b) and any y in A

$$a \lor (c \land y) = (a \land c) \land y$$
$$= (b \land c) \land y$$
$$= b \land (c \land y)$$

Thus, $c \wedge y$ is in I(a, b).

11.14 Let x be a complement of 0. By definition, $0 \lor x = 1$, $0 \land x = 0$. Also $0 \le x$, and $0 \lor x = x$. Thus, x = 1.

11.15
$$a \lor (\overline{a} \land b) = (a \lor \overline{a}) \land (a \lor b) = a \lor b$$

 $a \land (\overline{a} \lor b) = (a \land \overline{a}) \lor (a \land b) = a \land b$

11.16 (A, \oplus) is certainly closed. Commutativity is clear. Furthermore, 0 is the identity since $a \oplus 0 = a$, and a is its own inverse since $a \oplus a = 0$. As to associativity, we note that

$$(a \oplus b) \oplus c = (((a \wedge \overline{b}) \vee (\overline{a} \wedge b)) \wedge \overline{c}) \vee (\overline{((a \wedge \overline{b}) \vee (\overline{a} \wedge b))} \wedge c)$$

$$= (a \wedge \overline{b} \wedge \overline{c}) \vee (\overline{a} \wedge b \wedge \overline{c}) \vee (\overline{(a \wedge \overline{b})} \wedge \overline{(\overline{a} \wedge b)} \wedge c)$$

$$= (a \wedge \overline{b} \wedge \overline{c}) \vee (\overline{a} \wedge b \wedge \overline{c}) \vee ((\overline{a} \vee b) \wedge (a \vee \overline{b}) \wedge c)$$

$$= (a \wedge \overline{b} \wedge \overline{c}) \vee (\overline{a} \wedge b \wedge \overline{c}) \vee (((a \wedge b) \vee (\overline{a} \wedge \overline{b})) \wedge c)$$

$$= (a \wedge \overline{b} \wedge \overline{c}) \vee (\overline{a} \wedge b \wedge \overline{c}) \vee (a \wedge b \wedge c) \vee (\overline{a} \wedge \overline{b} \wedge c)$$

A similar expansion for $a \oplus (b \oplus c)$ yields the same expression.

- 11.17 (a) (i) $a \star a = e$ implies for all $a, a \le a$. (reflexivity)
 - (ii) $a \le b$ and $b \le a$ mean $a \star b = e$ and $b \star a = e$. By Problem 12.13 (e), a = b. (antisymmetry)
 - (iii) $a \le b$ and $b \le c$ mean $a \bigstar b = b \bigstar c = e$.

$$a \star c = a \star (e \star c) = a \star [(b \star c) \star c]$$

= $a \star [(c \star b) \star b] = (c \star b) \star (a \star b)$
= $(c \star b) \star e = e$. Thus, $a \le c$ (transitivity)

Hence, \leq is a partial enduring relation.

- (b) If $b = x \star a$, then $a \star b = a \star (x \star a) = x \star (a \star a) = x \star e = e$ If $a \star b = e$, then $b = e \star b = (a \star b) \star b = (b \star a) \star a = x \star a$ where $x = b \star a$.
- (c) $a \star [(a \star b) \star b] = e \Rightarrow a \leq (a \star b) \star b$. Similarly, $b \leq (b \star a) \star a = (a \star b) \star b$.

Thus, $(a \star b) \star b$ is an upper bound for a and b.

Now suppose $a \le c$, $b \le c$. According to (b), $c = x \bigstar a$ for some x.

Also,
$$b \star c = e$$
.
Hence $[(a \star b) \star b] \star c = [(a \star b) \star b] \star (x \star a)$
 $= x \star [((a \star b) \star b) \star a]$
 $= x \star (b \star a)$
 $= b \star (x \star a) = b \star c = e$.

 \perp

124

+

Hence $(a \star b) \star b \leq c$ i.e., $(a \star b) \star b$ is a least upper bound.

11.18 (i)
$$(a \star b) \star a = \overline{(\overline{a} \vee b)} \vee a = (a \wedge \overline{b}) \vee a = a$$

(ii)
$$(a \star b) \star b = \overline{(\overline{a} \vee b)} \vee b = (a \wedge \overline{b}) \vee b = a \vee b$$

 $(b \star a) \star a = \overline{(\overline{b} \vee a)} \vee a = (b \wedge \overline{a}) \vee a = a \vee b$

(iii)
$$a \star (b \star c) = \overline{a} \vee (\overline{b} \vee c)$$

 $b \star (a \star c) = \overline{b} \vee (\overline{a} \vee c)$

Hence, (A, \bigstar) is an implication algebra.

11.19
$$E(x_1, x_2, x_3) = (x_1 \wedge x_2 \wedge \overline{x}_3) \vee (x_1 \wedge x_2 \wedge x_3) \vee (\overline{x}_1 \wedge \overline{x}_2 \wedge x_3)$$

 $\vee (\overline{x}_1 \wedge \overline{x}_2 \wedge x_3)$
 $E(x_1, x_2, x_3) = (x_1 \vee x_2 \vee x_3) \wedge (x_1 \vee \overline{x}_2 \vee x_3) \wedge (x_1 \vee \overline{x}_2 \vee \overline{x}_3)$
 $\wedge (\overline{x}_1 \vee x_2 \vee x_3)$

11.20
$$E(x_1, x_2, x_3) = (x_1 \wedge x_2 \wedge x_3) \vee (x_1 \wedge x_2 \wedge \overline{x}_3) \vee (x_1 \wedge x_2 \wedge x_3) \vee (x_1 \wedge \overline{x}_2 \wedge \overline{x}_3) \vee (\overline{x}_1 \wedge x_2 \wedge \overline{x}_3)$$

= $(x_1 \vee x_2 \vee x_3) \wedge (x_1 \vee x_2 \vee \overline{x}_3) \wedge (x_1 \vee \overline{x}_2 \vee \overline{x}_3)$

11.21
$$E(x_1, x_2, x_3, x_4) = (x_1 \wedge x_2 \wedge \overline{x}_3 \wedge x_4) \vee (x_1 \wedge x_2 \wedge \overline{x}_3 \wedge \overline{x}_4) \vee (x_1 \wedge \overline{x}_2 \wedge x_3 \wedge x_4) \vee (x_1 \wedge \overline{x}_2 \wedge \overline{x}_3 \wedge \overline{x}_4) \vee (\overline{x}_1 \wedge x_2 \wedge \overline{x}_3 \wedge \overline{x}_4)$$

$$= (x_1 \vee x_2 \vee x_3 \vee x_4) \wedge (x_1 \vee x_2 \vee x_3 \vee \overline{x}_4) \wedge (x_1 \vee x_2 \vee \overline{x}_3 \vee \overline{x}_4) \wedge (x_1 \vee x_2 \vee \overline{x}_3 \vee \overline{x}_4)$$

$$\wedge (x_1 \vee \overline{x}_2 \vee x_3 \vee \overline{x}_4) \wedge (x_1 \vee \overline{x}_2 \vee \overline{x}_3 \vee x_4) \wedge (x_1 \vee \overline{x}_2 \vee \overline{x}_3 \vee \overline{x}_4)$$

$$\wedge (\overline{x}_1 \vee \overline{x}_2 \vee \overline{x}_3 \vee x_4) \wedge (\overline{x}_1 \vee x_2 \vee x_3 \vee x_4) \wedge (\overline{x}_1 \vee x_2 \vee \overline{x}_3 \vee x_4)$$

$$\wedge (\overline{x}_1 \vee \overline{x}_2 \vee \overline{x}_3 \vee x_4) \wedge (\overline{x}_1 \vee x_2 \vee x_3 \vee x_4) \wedge (\overline{x}_1 \vee x_2 \vee \overline{x}_3 \vee x_4)$$

11.22 (a)
$$(\bar{x}_1 \wedge \bar{x}_2 \wedge \bar{x}_3) \vee (\bar{x}_1 \wedge x_2 \wedge \bar{x}_3) \vee (x_1 \wedge \bar{x}_2 \wedge x_3) \vee (x_1 \wedge x_2 \wedge x_3)$$

(b) $(x_1 \vee x_2 \vee \bar{x}_3) \wedge (x_1 \vee \bar{x}_2 \vee \bar{x}_3) \wedge (\bar{x}_1 \vee x_2 \vee x_3) \wedge (\bar{x}_1 \vee \bar{x}_2 \vee x_3)$

- 11.23 (a) $b \land (a \lor c)$
 - (b) $(a \wedge b) \vee (a \wedge c) \vee (b \wedge c)$
 - (c) c
 - (d) $(a \vee \overline{b}) \wedge c$
- 11.24 (a) The basis of induction is obvious. Let $E(x_1, x_2, ..., x_n)$ be an expression of length k + 1. We consider the following cases:

(i) $E(x_1, x_2,..., x_n) = \overline{E_1(x_1, x_2,..., x_n)}$, where $E_1(x_1, x_2,..., x_n)$ is an expression of length k. According to the induction hypothesis:

$$E(x_1, x_2,..., x_n) = \overline{(\overline{x_i} \wedge E_1(x_i = 0)) \vee (x_i \wedge E_1(x_i = 1))}$$

$$= (x_i \vee \overline{E_1(x_i = 0)}) \wedge (\overline{x_i} \vee \overline{E_1(x_i = 1)})$$

$$= (x_i \wedge \overline{E_1(x_i = 1)}) \vee (\overline{x_i} \wedge \overline{E_1(x_i = 0)})$$

$$= (x_i \wedge E(x_i = 1)) \vee (\overline{x_i} \wedge E(x_i = 0))$$

(ii) $E(x_1, x_2, ..., x_n) = E_1(x_1, x_2, ..., x_n) \wedge E_2(x_1, x_2, ..., x_n)$.

According to the induction hypothesis:

$$\begin{split} E(x_1, \, x_2, \dots, \, x_n) &= \left[(\overline{x}_i \, \wedge E_1(x_i = 0)) \vee (x_i \, \wedge E_1(x_i = 1)) \right] \wedge \\ & \left[(\overline{x}_i \, \wedge E_{e2}(x_i = 0)) \vee (x_i \, \wedge E_2(x_i = 1)) \right] \\ &= \left[\overline{x}_i \, \wedge E_1(x_i = 0) \wedge E_2(x_i = 0) \right] \vee \\ & \left[x_i \, \wedge E_1(x_i = 1) \wedge E_2(x_i = 1) \right] \\ &= (\overline{x}_i \, \wedge E(x_i = 0)) \vee (x_i \, \wedge E(x_i = 1)) \end{split}$$

- (iii) $E(x_1, x_2,..., x_n) = E_1(x_1, x_2,..., x_n) \vee E_2(x_1, x_2,..., x_n)$. (Similar to (ii).)
- (b) Repeated applications of the result in (a) yield $c_{\delta_1\delta_2...\delta_n} = E(x_1 = \delta_1, x_2 = \delta_2,..., x_n = \delta_n)$ where $\delta_i = 0$ if $\widetilde{x}_i = \overline{x}_i$ and $\delta_i = 1$ if $\widetilde{x}_i = x_i$.
- (c) $(2 \land x_1 \land \bar{x}_2) \lor (2 \land x_1 \land x_2)$.
- (d) Determine the disjunctive normal form from the 2^n values of $f(\delta_1, \delta_2, ..., \delta_n)$ where $\delta_i = 0$ or 1.
- (e) According to f(0, 0) = 1, f(0, 1) = 0, f(1, 0) = 1, f(1, 1) = 1 from Figure 11.8, we should have

$$f(x_1, x_2) = (\bar{x}_1 \wedge \bar{x}_2) \vee (x_1 \wedge \bar{x}_2) \vee (x_1 \wedge x_2)$$

However, if that is the case

$$f(0, 2) = (\overline{0} \wedge \overline{2}) \vee (0 \wedge \overline{2}) \vee (0 \wedge 2) = 3$$

which is not consistent with the value of f(0, 2) in Figure 11.8.

- (f) Similar to (a).
- (g) Similar to (b).

11.25
$$((a \lor b) \land d) \lor ((a \lor b) \land (c \land d) \land \overline{e}) \lor [((a \lor b) \lor (c \lor d)) \land f] \lor g$$

= $((a \lor b) \land d) \lor ((a \lor b) \land c \land \overline{e}) \lor ((a \lor b \lor c \lor d) \land f) \lor g$

Condition (2) can be simplified as:

(2) He got a B or better in the mid-term examination and a B in the final examination and did not miss any homework assignment.

11.26
$$(a \lor c) \land (a \lor b \lor d) \land (b \lor c \lor e) \land (b \lor e) \land d$$

= $(a \lor c) \land (b \lor e) \land d$
= $(a \land b \land d) \lor (a \land e \land d) \lor (c \land b \land d) \lor (c \land e \land d)$

11.27 Corresponding to the five conditions, we have

$$(1) (a \wedge \overline{b}) \vee (\overline{a} \wedge b)$$

(2)
$$c \vee e$$

(3)
$$\overline{d} \vee b$$

$$(4) (a \wedge c) \vee (\overline{a} \wedge \overline{c})$$

(5)
$$\overline{e} \vee (c \wedge d)$$
.

Simplifying the conjunction of these five expressions, we obtain $a \wedge \overline{b} \wedge c \wedge \overline{d} \wedge \overline{e}$ as the only way of selection.

11.28

 $(a \lor b \lor c \lor d \lor e) \land (b \lor a \lor c \lor g) \land (c \lor a \lor b \lor d \lor f) \land (d \lor a \lor c \lor e \lor f) \land (e \lor a \lor d \lor h) \land (f \lor c \lor d \lor g \lor h) \land (g \lor b \lor f \lor h) \land (h \lor e \lor f \lor g)$

$$= (a \wedge f) \vee (a \wedge g) \vee (a \wedge h) \vee (b \wedge e \wedge f) \vee \dots$$

11.29

11.30 (a)

11.31 (a) The three simplified expressions are

(a)
$$(\overline{a} \wedge (b \vee \overline{c})) \vee (a \wedge \overline{b}) \vee (d \wedge (\overline{a} \vee \overline{c}))$$

(b)
$$(\overline{a} \wedge \overline{b}) \vee (a \wedge c) \vee d$$

(c)
$$(\overline{a} \wedge b) \vee (\overline{b} \wedge c)$$

(c)

__