Infraestrutura de Comunicação Lista Teórica 4 2020-3

Nome: Gabriel Nogueira Leite

Matrícula/CPF: 398.068.608-61

1ª Questão - 5 Pontos

Considere um datagrama IPv4 com 20 bytes de cabeçalho e tamanho total igual a 3500 bytes e com ID igual a 21. Esse datagrama deverá passar por um enlace cujo MTU é de 500 bytes.

1. Quantos fragmentos serão gerados? Justifique matematicamente sua resposta.

Resposta: Para determinar a quantidade de fragmentos gerados usaremos a seguinte fórmula:

Quantidade de fragmentos =
$$teto(\frac{tamanho do datagrama - tamanho do cabeçalho}{MTU de saida - tamanho do cabeçalho})$$

Aplicando os valores na fórmula, temos:

Quantidade de fragmentos =
$$teto(\frac{3500-20}{500-20})$$
 = 8 fragmentos

2. Qual a funcionalidade dos campos length, ID, fragflag e offset?

Resposta: Offset: Sua função é especificar a posição do fragmento do datagrama original.

Fragflag: Sua função é sinalizar para o destinatário se o fragmento é o último do datagrama original ou não. Os fragmentos possuem o bit de flag igual a 1, apenas o último fragmento possuirá o bit de flag igual a 0.

Length: Sua função é indicar o tamanho do fragmento em bytes, sendo localizado no campo de dados do datagrama IP.

ID: Sua função é determinar se o datagrama é um fragmento de um datagrama de maior tamanho, além disso é possível determinar qual é o datagrama de maior tamanho ao qual o fragmento pertence.

3. Preencha na tabela abaixo o valor dos campos *length*, *ID*, *fragflag* e *offset* em cada um dos fragmentos gerados. Justifique suas respostas.

Fragmento N°	Length	ID	fragflag	offset
1º fragmento	480 bytes no campo de dados do datagrama IP	21 (identificação do datagrama original)	1 (indicando não ser o último)	0 (dados devem ser inseridos a partir do byte 0)
2º fragmento	480 bytes no campo de dados do datagrama IP	21 (identificação do datagrama original)	1 (indicando não ser o último)	60 (dados devem ser inseridos a partir do byte 480 [60 * 8 = 480])
3º fragmento	480 bytes no campo de dados do datagrama IP	21 (identificação do datagrama original)	1 (indicando não ser o último)	120 (dados devem ser inseridos a partir do byte 960 [120 * 8 = 960])
4° fragmento	480 bytes no campo de dados do datagrama IP	21 (identificação do datagrama original)	1 (indicando não ser o último)	180 (dados devem ser inseridos a partir do byte 1440 [180 * 8 = 1440])

5° fragmento	480 bytes no campo de dados do datagrama IP	21 (identificação do datagrama original)	1 (indicando não ser o último)	240 (dados devem ser inseridos a partir do byte 1920 [240 * 8 = 1920])
6° fragmento	480 bytes no campo de dados do datagrama IP	21 (identificação do datagrama original)	1 (indicando não ser o último)	300 (dados devem ser inseridos a partir do byte 2400 [300 * 8 = 2400])
7º fragmento	480 bytes no campo de dados do datagrama IP	21 (identificação do datagrama original)	1 (indicando não ser o último)	360 (dados devem ser inseridos a partir do byte 2880 [360 * 8 = 2880])
8° fragmento	140 bytes no campo de dados do datagrama IP	21 (identificação do datagrama original)	0 (indicando ser o último)	420 (dados devem ser inseridos a partir do byte 3360 [420 * 8 = 3360])

2ª Questão – 5 Pontos

Um Provedor de Acesso à Internet adquiriu do ICANN (Internet Corporation for Assigned Names and Number) a <u>faixa de endereço 200.23.16.0/20</u>. O provedor divide essa faixa de modo a acomodar exatamente 16 empresas, cada qual podendo endereçar até 254 *hosts* ou interfaces. **Apresente a faixa de endereço que será alocada para cada empresa. Explique como chegou a esse resultado.**

Resposta: Para chegar ao resultado esperado, tomaremos como base a RFC 4632, que determina a notação CIDR contendo a quantidade de hosts. No enunciado é especificado que a faixa de endereço é 200.23.16.0/20, onde /20 determina que a máscara da sub rede é 255.255.240.0, contendo desta forma um quantidade de endereços igual a 4096 (bloco referente a quantidade de endereços IP obtidos pela empresa). Realizando a divisão entre as 16 empresas teremos: $quantidade de endereços IP = (\frac{4096}{16}) = 256$. Desta forma, cada empresa poderá endereçar 254 hosts. As faixas de endereço ficaram da seguinte forma:

Empresa 1 200.23.16.0/24

Empresa 2 200.23.17.0/24

Empresa 3 200.23.18.0/24

Empresa 4 200.23.19.0/24

Empresa 5 200.23.20.0/24

Empresa 6 200.23.21.0/24

Empresa 7 200.23.22.0/24

Empresa 8 200.23.23.0/24

Empresa 9 200.23.24.0/24

Empresa 10 200.23.25.0/24

Empresa 11 200.23.26.0/24

Empresa 12 200.23.27.0/24

Empresa 13 200.23.28.0/24

Empresa 14 200.23.29.0/24

Empresa 15 200.23.30.0/24

Empresa 16 200.23.31.0/24