

Extending Spark SQL Data Sources APIs with Join Push Down

Ioana Delaney, Jia Li Spark Technology Center, IBM

About the speakers

Ioana Delaney

- Spark Technology Center, IBM
- DB2 Optimizer developer working in the areas of query semantics, rewrite, and optimizer.
- Worked on various releases of DB2 LUW and DB2 with BLU Acceleration.
- Apache Spark SQL Contributor

Jia Li

- Spark Technology Center, IBM
- Apache Spark SQL Contributor
- Worked on various releases of IBM BigInsights and IBM Optim Query Workload Tuner

IBM Spark Technology Center

Founded in 2015

Location: 505 Howard St., San Francisco

Web: http://spark.tc

Twitter: @apachespark to

Mission:

 Contribute intellectual and technical capital to the Apache Spark community.

- Make the core technology enterprise and cloud-ready.
- Build data science skills to drive intelligence into business applications
 http://bigdatauniversity.com

Motivation

- Spark applications often directly query external data sources such as relational databases or files
- Spark provides Data Sources APIs for accessing structured data through Spark SQL
- Support optimizations such as Filter push down and Column pruning subset of the functionality that can be pushed down to some data sources
- This work extends Data Sources APIs with join push down
- Join push down is nothing more than Selection and Projection push down
- Significantly improves query performance by reducing the amount of data transfer and exploiting the capabilities of the data sources such as index access

Data Sources APIs

- Mechanism for accessing external data sources
- Built-in libraries (Hive, Parquet, Json, JDBC, etc.) and external, third-party libraries through its *spark-packages*
- Users can read/save data through generic load()/save() functions, or relational SQL tables i.e. DataFrames with persistent metadata and names
- Developers can build new libraries for various data sources i.e. to create a new data source one needs to specify the schema and how to get the data
- Tightly integrated with Spark's Catalyst Optimizer by allowing optimizations to be pushed down to the data source

Use Case 1: Enterprise-wide data pipeline using Spark

- As data gets distributed from different data sources throughout an organization, there is a need to create a pipeline to connect these sources.
- Spark framework extracts the records from the backing store, caches the DataFrame results, and then performs joins with the updates coming from the stream
- e.g. <u>Spark at Bloomberg Summit 2016</u>

#EUdev7

6

Use Case 2: SQL Acceleration with Spark

- e.g. RDBMS MPP cluster nodes are overlaid with local Spark executor processes
- The data frames in Spark are derived from the existing data partitions of the database cluster.
- The co-location of executors with the database engine processes minimizes the latency of accessing the data
- IBM's dashDB and other vendors provide SQL acceleration through co-location or other Spark integrated architectures

#EUdev7

MAPD

Use Case 3: ETL from legacy data sources

 Common pattern in Big Data space is offloading relational databases and files into Hadoop and other data sources

Spark as a Unified Analytics Platform for Data Federation

- Ingests data from disparate data sources and perform fast in-memory analytics on their combined data
- Supports a wide variety of structured and unstructured data sources
- Applies analytics everywhere without the need of data centralization

Challenges: Network speed

- e.g. large tables in DBMS and selective join in Spark
- Spark reads the entire table, applies some predicates at the data source, and executes the join locally
- Instead, push the join execution to the data source
 - Reduce the amount of data transfer
 - ➤ The query runs **40x** faster!

Challenges: Exploit data source capabilities

- e.g. DBMS has indexes
- Join execution in Spark $\sim O(|L|)$
- Join execution in DBMS $\sim O(|S|)$
- Instead, push the join execution to the data source
 - Efficient join execution using index access
 - Reduce the data transfer
 - The query runs 100x faster!

Join push down to the data source

- Alternative execution strategy in Spark
- Nothing more than Selection and Projection push down
- May reduce the amount of data transfer
- Provides Spark with the functions of the underlying data source
- Small API changes with significant performance improvement

Push down based on cost vs. heuristics

- Acceptable performance is the most significant concern about data federation
- Query Optimizer determines the best execution of a SQL query e.g. implementation of relational operators, order of execution, etc.
- In a federated environment, the optimizer must also decide whether the different operations should be done by the federated server, e.g. Spark, or by the data source
 - Needs knowledge of what each data source can do (e.g. file system vs. RDBMS), and how much it costs (e.g. statistics from data source, network speed, etc.)
- Spark's Catalyst Optimizer uses a combination of heuristics and cost model
- Cost model is an evolving feature in Spark
- Until federated cost model is fully implemented, use safe heuristics

Minimize data transfer

Filtering joins (e.g. Star-joins)

Scan JDBCRelation

TPCDS.STORE SALES

Scan JDBCRelation

TPCDS.DATE DIM

Pushed Filters:

[EqualTo(D_MOY, 4),

EqualTo(D_YEAR, 2001)]

Expanding joins

Star-schema joins

- Joins among tables in a star-schema relationship
- Star-schema is the simplest form of a data warehouse schema
- Star-schema model consists of a fact table referencing a number of dimension tables
- Fact and dimension tables are in a primary key foreign key relationship.

- Star joins are filters applied to the fact table
- Catalyst recognizes star-schema joins
- We use this information to detect and push down star joins to the data source

Join re-ordering based on data source

- Maximize the amount of functionality that can be pushed down to the data source
- Extends Catalyst's join enumeration rules to re-order joins based on data source
- Important alternative execution plan for global federated optimization

Managing parallelism: Single vs. multiple partitions join

- Partitions are the basic unit of parallelism in Spark
- JDBC options to specify data partitioning: partitionColumn, lowerbound, upperbound, and numPartitions

• Spark splits the table read across *numPartitions* tasks with a stride specified by

lowerbound and upperbound

17

How to partition when joins are pushed down?

- Push down partitioned, co-located joins to data source
 - A co-located join occurs locally on the database partition on which the data resides.
 - Partitioning in Spark aligns with the data source partitioning
 - Hard to achieve for multi-way joins
 - Cost based decision

How to partition when joins are pushed down?

- 2) Perform partitioning in Spark i.e. choose a join method that favors parallelism
 - Broadcast Hash Join is the preferred method when one of the tables is small
 - If the large table comes from a single partition JDBC connection, the execution is serialized on that single partition
 - In such cases, Shuffle Hash Join and Sort Merge Join may outperform Broadcast Hash Join

1 TB TPC-DS Performance Results

- Proxy of a real data warehouse
- Retail product supplier e.g. retail sales, web, catalog, etc.
- Ad-hoc, reporting, and data mining type of queries
- Mix of two data sources: IBM DB2/JDBC and Parquet

Cluster: 4-node cluster, each node having:

122 TB disks,

Intel(R) Xeon(R) CPU E5-2680 v3 @ 2.50GHz, 128 GB RAM

Number of cores: 48

Apache Hadoop 2.7.3, Apache Spark 2.2 main (August, 2017)

Database info:

Schema: TPCDS

Scale factor: 1TB total space

Mix of Parquet and DB2/JDBC data sources
DB2 DPF info: 4-node cluster, each node having:

10 2 TB disks.

Intel(R) Xeon(R) CPU E5-2680 v3 @ 2.50GHz, 128 GB RAM

Number of cores: 48

TPC-DS Query	spark-2.2 (mins)	spark-2.2-jpd (mins)	Speedup
Q8	32	4	8x
Q13	121	5	25x
Q15	4	2	2x
Q17	77	7	11x
Q19	42	4	11x
Q25	153	7	21x
Q29	81	7	11x
Q42	31	3	10x
Q45	14	3	4x
Q46	61	5	12x
Q48	155	5	31x
Q52	31	5	6x
Q55	31	4	8x
Q68	69	4	17x
Q74	47	23	2x
Q79	63	4	15x
Q85	22	2	11x
Q89	55	4	14x

Data Sources APIs for reading the data

- BaseRelation: The abstraction of a collection of tuples read from the data source. It provides the schema of the data.
- TableScan: Reads all the data in the data source.
- PrunedScan: Eliminates unneeded columns at the data source.
- *PrunedFilteredScan:* Applies predicates at the data source.
- PushDownScan: New API that applies complex operations such as joins at the data source.

PushDownScan APIs

- Trait for a BaseRelation
- Used with data sources that support complex functionality such as joins
- Extends *PrunedFilteredScan* with *DataSourceCapabilities*
- Methods needed to be overriden:
 - def buildScan(columns: Array[String],

filters: Array[Filter],

tables: Seq[BaseRelation]):RDD[Row]

- def getDataSource(): String
- DataSourceCapabilities trait to model data source characteristics e.g. type of joins

Future work: Cost Model for Data Source APIs

- Transform Catalyst into a global optimizer
- Global optimizer generates an optimal execution plan across all data sources
- Determines where an operation should be evaluated based on:
 - 1. The cost to execute the operation.
 - 2. The cost to transfer data between Spark and the data sources
- Key factors that affect global optimization:
 - Remote table statistics (e.g. number of rows, number of distinct values in each column, etc)
 - Data source characteristics (e.g. CPU speed, I/O rate, network speed, etc.)
- Extend Data Source APIs with data source characteristics
- Retrieve/compute data source table statistics
- Integrate data source cost model into Catalyst

Thank You.

<u>Jia Li jiali@us.ibm.com</u>

Visit http://spark.to