AI and Services-Led Growth: Evidence from Indian Job Adverts

Alexander Copestake¹, Max Marczinek², Ashley Pople², Katherine Stapleton³ October 17, 2023

The views expressed in this paper are those of the authors and should not be attributed to the FCDO or any of the institutions with which the authors are affiliated.

¹International Monetary Fund

²University of Oxford

 $^{^3\}mathrm{World}$ Bank

Motivation

• Rapid growth in demand for AI skills across countries since 2015

Online job posts listing AI skills (%)

- Rapid growth in demand for AI skills across countries since 2015
- Impact on jobs ambiguous (displacement vs. productivity/new tasks)
 (Brynjolfsson et al. 2017, Acemoglu & Restrepo 2018, Agrawal et al. 2018, Cockburn et al. 2018, Klinger et al. 2018, Goldfarb et al. 2020, Agrawal et al. 2021)
- Limited empirical evidence, focused on high-income countries (adoption)
 (E.g. Acemoglu et al. 2021 in USA, Stapleton 2021 in UK)
- Important potential consequences for development (call center vs. chatbot)
 (Susskind & Susskind 2015, Baldwin 2019, Baldwin & Forslid 2020, Korinek & Stiglitz 2021)
- India a key case: archetype of services-led growth; large + young population
 - ⇒ E.g. IT/BPO employs 4M, 8% of GDP (SESEI 2019)
 - ⇒ 200M ageing into labor market by 2030 (UN 2019)

- Rapid growth in demand for AI skills across countries since 2015
- Impact on jobs ambiguous (displacement vs. productivity/new tasks)
 (Brynjolfsson et al. 2017, Acemoglu & Restrepo 2018, Agrawal et al. 2018, Cockburn et al. 2018, Klinger et al. 2018, Goldfarb et al. 2020, Agrawal et al. 2021)
- Limited empirical evidence, focused on high-income countries (adoption)
 (E.g. Acemoglu et al. 2021 in USA, Stapleton 2021 in UK)
- Important potential consequences for development (call center vs. chatbot)
 (Susskind & Susskind 2015, Baldwin 2019, Baldwin & Forslid 2020, Korinek & Stiglitz 2021)
- India a key case: archetype of services-led growth; large + young population
 - ⇒ E.g. IT/BPO employs 4M, 8% of GDP (SESEI 2019)
 - ⇒ 200M ageing into labor market by 2030 (UN 2019)

- Rapid growth in demand for AI skills across countries since 2015
- Impact on jobs ambiguous (displacement vs. productivity/new tasks)
 (Brynjolfsson et al. 2017, Acemoglu & Restrepo 2018, Agrawal et al. 2018, Cockburn et al. 2018, Klinger et al. 2018, Goldfarb et al. 2020, Agrawal et al. 2021)
- Limited empirical evidence, focused on high-income countries (adoption)
 (E.g. Acemoglu et al. 2021 in USA, Stapleton 2021 in UK)
- Important potential consequences for development (call center vs. chatbot)
 (Susskind & Susskind 2015, Baldwin 2019, Baldwin & Forslid 2020, Korinek & Stiglitz 2021)
- $\bullet\,$ India a key case: archetype of services-led growth; large + young population
 - ⇒ E.g. IT/BPO employs 4M, 8% of GDP (SESEI 2019)
 - ⇒ 200M ageing into labor market by 2030 (UN 2019)

- Rapid growth in demand for AI skills across countries since 2015
- Impact on jobs ambiguous (displacement vs. productivity/new tasks)
 (Brynjolfsson et al. 2017, Acemoglu & Restrepo 2018, Agrawal et al. 2018, Cockburn et al. 2018, Klinger et al. 2018, Goldfarb et al. 2020, Agrawal et al. 2021)
- Limited empirical evidence, focused on high-income countries (adoption)
 (E.g. Acemoglu et al. 2021 in USA, Stapleton 2021 in UK)
- Important potential consequences for development (call center vs. chatbot)
 (Susskind & Susskind 2015, Baldwin 2019, Baldwin & Forslid 2020, Korinek & Stiglitz 2021)
- India a key case: archetype of services-led growth; large + young population
 - ⇒ E.g. IT/BPO employs 4M, 8% of GDP (SESEI 2019)
 - \Rightarrow 200M ageing into labor market by 2030 (UN 2019)

How did AI affect labor demand in India's white-collar service sector?

What we do

- ⇒ Document the demand for AI skills in India's white-collar service sector using online job adverts from India's largest jobs website
- ⇒ Study the impact of establishment-level AI demand on non-AI job adverts, wage offers and tasks in <u>short-term</u> using a PSM event study and in medium term using ex-ante exposure to future AI inventions

What we find

- ⇒ Demand for AI skills highly concentrated across firms, industries, cities
- ⇒ AI hiring within establishments reduces demand for high-skilled managerial and professional occupations, non-routine work & analytical tasks
- ⇒ Overall net effects negative: $\uparrow 1\%$ in the AI vacancy growth rate $\Rightarrow \downarrow 3.6$ pp in establishment total vacancy growth + $\downarrow 2.5$ pp in median wage offers

How did AI affect labor demand in India's white-collar service sector?

What we do:

- ⇒ Document the demand for AI skills in India's white-collar service sector using online job adverts from India's largest jobs website
- ⇒ Study the impact of establishment-level AI demand on non-AI job adverts, wage offers and tasks in <u>short-term</u> using a PSM event study and in <u>medium term</u> using ex-ante exposure to future AI inventions

What we find

- ⇒ Demand for AI skills highly concentrated across firms, industries, cities
- ⇒ AI hiring within establishments reduces demand for high-skilled managerial and professional occupations, non-routine work & analytical tasks
- \Rightarrow Overall net effects negative: $\uparrow 1\%$ in the AI vacancy growth rate $\Rightarrow \downarrow 3.6$ pp in establishment total vacancy growth $+ \downarrow 2.5$ pp in median wage offers

How did AI affect labor demand in India's white-collar service sector?

What we do:

- ⇒ Document the demand for AI skills in India's white-collar service sector using online job adverts from India's largest jobs website
- ⇒ Study the impact of establishment-level AI demand on non-AI job adverts, wage offers and tasks in <u>short-term</u> using a PSM event study and in <u>medium term</u> using ex-ante exposure to future AI inventions

What we find

- ⇒ Demand for AI skills highly concentrated across firms, industries, cities
- ⇒ AI hiring within establishments reduces demand for high-skilled managerial and professional occupations, non-routine work & analytical tasks
- \Rightarrow Overall net effects negative: $\uparrow 1\%$ in the AI vacancy growth rate $\Rightarrow \downarrow 3.6$ pp in establishment total vacancy growth $+ \downarrow 2.5$ pp in median wage offers

How did AI affect labor demand in India's white-collar service sector?

What we do:

- ⇒ Document the demand for AI skills in India's white-collar service sector using online job adverts from India's largest jobs website
- ⇒ Study the impact of establishment-level AI demand on non-AI job adverts, wage offers and tasks in <u>short-term</u> using a PSM event study and in <u>medium term</u> using ex-ante exposure to future AI inventions

What we find:

- ⇒ Demand for AI skills highly concentrated across firms, industries, cities
- ⇒ AI hiring within establishments reduces demand for high-skilled managerial and professional occupations, non-routine work & analytical tasks
- ⇒ Overall net effects negative: $\uparrow 1\%$ in the AI vacancy growth rate ⇒ $\downarrow 3.6$ pp in establishment total vacancy growth + $\downarrow 2.5$ pp in median wage offers

How did AI affect labor demand in India's white-collar service sector?

What we do:

- ⇒ Document the demand for AI skills in India's white-collar service sector using online job adverts from India's largest jobs website
- ⇒ Study the impact of establishment-level AI demand on non-AI job adverts, wage offers and tasks in <u>short-term</u> using a PSM event study and in <u>medium term</u> using ex-ante exposure to future AI inventions

What we find:

- ⇒ Demand for AI skills highly concentrated across firms, industries, cities
- ⇒ AI hiring within establishments reduces demand for high-skilled managerial and professional occupations, non-routine work & analytical tasks
- \Rightarrow Overall net effects negative: $\uparrow 1\%$ in the AI vacancy growth rate $\Rightarrow \downarrow 3.6$ pp in establishment total vacancy growth $+ \downarrow 2.5$ pp in median wage offers

How did AI affect labor demand in India's white-collar service sector?

What we do:

- ⇒ Document the demand for AI skills in India's white-collar service sector using online job adverts from India's largest jobs website
- ⇒ Study the impact of establishment-level AI demand on non-AI job adverts, wage offers and tasks in <u>short-term</u> using a PSM event study and in <u>medium term</u> using ex-ante exposure to future AI inventions

What we find:

- \Rightarrow Demand for AI skills highly concentrated across firms, industries, cities
- ⇒ AI hiring within establishments reduces demand for high-skilled managerial and professional occupations, non-routine work & analytical tasks
- \Rightarrow Overall net effects negative: $\uparrow 1\%$ in the AI vacancy growth rate $\Rightarrow \downarrow 3.6$ pp in establishment total vacancy growth $+ \downarrow 2.5$ pp in median wage offers

How did AI affect labor demand in India's white-collar service sector?

What we do:

- ⇒ Document the demand for AI skills in India's white-collar service sector using online job adverts from India's largest jobs website
- ⇒ Study the impact of establishment-level AI demand on non-AI job adverts, wage offers and tasks in <u>short-term</u> using a PSM event study and in <u>medium term</u> using ex-ante exposure to future AI inventions

What we find:

- ⇒ Demand for AI skills highly concentrated across firms, industries, cities
- ⇒ AI hiring within establishments reduces demand for high-skilled managerial and professional occupations, non-routine work & analytical tasks
- \Rightarrow Overall net effects negative: $\uparrow 1\%$ in the AI vacancy growth rate $\Rightarrow \downarrow 3.6$ pp in establishment total vacancy growth $+ \downarrow 2.5$ pp in median wage offers

Vacancy data from India's largest online job postings platform

- Platform hosts 60% of online job posts in India, we received anonymised 80% sample of posts across 2010-19
- Predominantly urban, full-time, formal white-collar services jobs
- 150k+ firms posted >1 one vacancy; average of 80 posts per firm
- Fields: job title, industry, role category, location, skills required, <u>salary and</u> experience ranges and educational requirements

Measuring demand for machine learning skills

- Classify a post as an AI vacancy if it includes words from <u>list</u> of specific AI terms (Acemoglu et al. 2021)
- Use demand for AI skills in vacancies to proxy for AI usage (Rock 2019, Benzell et al. 2019, Acemoglu et al. 2021, Stapleton 2021)
- Exploit that primary method for sourcing AI capabilities is external hiring (McKinsey Global Institute 2019)

1. AI demand increased rapidly from 2015, particularly in IT, education and professional services

2. AI roles require more education, but offer substantially higher wages than other white-collar services jobs

 \Rightarrow AI posts pay a 13% salary premium, even after controlling for education, experience, and detailed fixed effects (industry-region, industry-year, region-year, firm, occupation).

3. AI roles are highly concentrated in a few key technology clusters, particularly Bangalore

- Focus on AI 'users' not 'producers' (drop educ., IT as in Acemoglu et al. 2021)
- Match AI adopters to similar non-adopters based on propensity scores following Koch et al. (2021)
 - \Rightarrow Run probit regression on <u>lagged establishment characteristics</u> to construct propensity scores
 - ⇒ Conditional on these, treatment is orthogonal to characteristics
- PS-weighted regression of the IHS-transformed number of non-AI job posts Y_{frt} by (firm-city) establishment fr on AI adoption events:

$$Y_{frt} = \alpha_{fr} + \alpha_t + \sum_{k=-3 - 1}^{2} \gamma_k \mathbb{1}(K_{frt} = k) + \gamma_{3+} \mathbb{1}(K_{frt} \ge 3) + \epsilon_{frt}$$

- \bullet Focus on AI 'users' not 'producers' (drop educ., IT as in Acemoglu et al. 2021)
- Match AI adopters to similar non-adopters based on propensity scores following Koch et al. (2021)
 - \Rightarrow Run probit regression on <u>lagged establishment characteristics</u> to construct propensity scores
 - ⇒ Conditional on these, treatment is orthogonal to characteristics
- PS-weighted regression of the IHS-transformed number of non-AI job posts Y_{frt} by (firm-city) establishment fr on AI adoption events:

$$Y_{frt} = \alpha_{fr} + \alpha_t + \sum_{k=-3 \setminus -1}^{2} \gamma_k \mathbb{1}(K_{frt} = k) + \gamma_{3+} \mathbb{1}(K_{frt} \ge 3) + \epsilon_{frt}$$

- \bullet Focus on AI 'users' not 'producers' (drop educ., IT as in Acemoglu et al. 2021)
- Match AI adopters to similar non-adopters based on propensity scores following Koch et al. (2021)
 - \Rightarrow Run probit regression on <u>lagged establishment characteristics</u> to construct propensity scores
 - \Rightarrow Conditional on these, treatment is orthogonal to characteristics
- PS-weighted regression of the IHS-transformed number of non-AI job posts Y_{frt} by (firm-city) establishment fr on AI adoption events:

$$Y_{frt} = \alpha_{fr} + \alpha_t + \sum_{k=-3 \setminus -1}^{2} \gamma_k \mathbb{1}(K_{frt} = k) + \gamma_{3+} \mathbb{1}(K_{frt} \ge 3) + \epsilon_{frt}$$

- \bullet Focus on AI 'users' not 'producers' (drop educ., IT as in Acemoglu et al. 2021)
- Match AI adopters to similar non-adopters based on propensity scores following Koch et al. (2021)
 - \Rightarrow Run probit regression on <u>lagged establishment characteristics</u> to construct propensity scores
 - \Rightarrow Conditional on these, treatment is orthogonal to characteristics
- PS-weighted regression of the IHS-transformed number of non-AI job posts Y_{frt} by (firm-city) establishment fr on AI adoption events:

$$Y_{frt} = \alpha_{fr} + \alpha_t + \sum_{k=-3 \setminus -1}^{2} \gamma_k \mathbb{1}(K_{frt} = k) + \gamma_{3+} \mathbb{1}(K_{frt} \ge 3) + \epsilon_{frt}$$

- \bullet Focus on AI 'users' not 'producers' (drop educ., IT as in Acemoglu et al. 2021)
- Match AI adopters to similar non-adopters based on propensity scores following Koch et al. (2021)
 - \Rightarrow Run probit regression on <u>lagged establishment characteristics</u> to construct propensity scores
 - \Rightarrow Conditional on these, treatment is orthogonal to characteristics
- PS-weighted regression of the IHS-transformed number of non-AI job posts Y_{frt} by (firm-city) establishment fr on AI adoption events:

$$Y_{frt} = \alpha_{fr} + \alpha_t + \sum_{k=-3 \setminus -1}^{2} \gamma_k \mathbb{1}(K_{frt} = k) + \gamma_{3+} \mathbb{1}(K_{frt} \ge 3) + \epsilon_{frt}$$

AI adoption leads to lower non-AI hiring

Non-AI hiring is 0.7% lower for adopters in the second year after adoption, and 1.3% lower three years after adoption.

Growth in non-AI hiring (% relative to k=-1)

Long difference: $AI\ exposure \Rightarrow AI\ adoption \Rightarrow \#posts + wage\ offers$

First stage

$$\Delta Adoption_{fr,t-t_0} = \gamma \cdot Exposure_{fr,t_0} + \alpha_r + \alpha_i + \alpha_{f10} + \epsilon_{fr,t-t_0}$$

 Instrument demand for AI skills (proxy for adoption) with Webb (2020) occupation exposure measure based on overlap between patents and task descriptions, weighted by establishments' ex-ante occupation shares

Second stage

$$\Delta y_{fr,t-t_0} = \beta \cdot \Delta A doption_{fr,t-t_0} + \alpha_r + \alpha_i + \alpha_{f10} + \epsilon_{fr,t-t_0}$$

- Final sample: 2M vacancies from 25k establishments across 2010/12-2017/19
- IHS of *Adoption* and outcomes y; city, industry and firm size decile fixed effects; standard errors clustered at the firm level
- Interpretation: increasing the growth rate of AI demand between 2010-12 and 2017-19 by 1% leads to a β percentage point rise in the growth rate of the outcome variable across the same time period

Long difference: $AI\ exposure \Rightarrow AI\ adoption \Rightarrow \#posts + wage\ offers$

First stage:

$$\Delta Adoption_{fr,t-t_0} = \gamma \cdot Exposure_{fr,t_0} + \alpha_r + \alpha_i + \alpha_{f10} + \epsilon_{fr,t-t_0}$$

 Instrument demand for AI skills (proxy for adoption) with Webb (2020) occupation exposure measure based on overlap between patents and task descriptions, weighted by establishments' ex-ante occupation shares

Second stage

$$\Delta y_{fr,t-t_0} = \beta \cdot \Delta Adoption_{fr,t-t_0} + \alpha_r + \alpha_i + \alpha_{f10} + \epsilon_{fr,t-t_0}$$

- Final sample: 2M vacancies from 25k establishments across 2010/12—2017/19
- IHS of *Adoption* and outcomes y; city, industry and firm size decile fixed effects; standard errors clustered at the firm level
- Interpretation: increasing the growth rate of AI demand between 2010-12 and 2017-19 by 1% leads to a β percentage point rise in the growth rate of the outcome variable across the same time period

$\textbf{Long difference: } \overline{AI\ exposure} \Rightarrow \overline{AI\ adoption} \Rightarrow \#posts + wage\ offers$

First stage:

$$\Delta Adoption_{fr,t-t_0} = \gamma \cdot Exposure_{fr,t_0} + \alpha_r + \alpha_i + \alpha_{f10} + \epsilon_{fr,t-t_0}$$

 Instrument demand for AI skills (proxy for adoption) with Webb (2020) occupation exposure measure based on overlap between patents and task descriptions, weighted by establishments' ex-ante occupation shares

Second stage:

$$\Delta y_{fr,t-t_0} = \beta \cdot \Delta A doption_{fr,t-t_0} + \alpha_r + \alpha_i + \alpha_{f10} + \epsilon_{fr,t-t_0}$$

- \bullet Final sample: 2M vacancies from 25k establishments across 2010/12-2017/19
- IHS of Adoption and outcomes y; city, industry and firm size decile fixed effects; standard errors clustered at the firm level
- Interpretation: increasing the growth rate of AI demand between 2010-12 and 2017-19 by 1% leads to a β percentage point rise in the growth rate of the outcome variable across the same time period

$\textbf{Long difference: } \overline{AI\ exposure} \Rightarrow \overline{AI\ adoption} \Rightarrow \#posts + wage\ offers$

First stage:

$$\Delta Adoption_{fr,t-t_0} = \gamma \cdot Exposure_{fr,t_0} + \alpha_r + \alpha_i + \alpha_{f10} + \epsilon_{fr,t-t_0}$$

 Instrument demand for AI skills (proxy for adoption) with Webb (2020) occupation exposure measure based on overlap between patents and task descriptions, weighted by establishments' ex-ante occupation shares

Second stage:

$$\Delta y_{fr,t-t_0} = \beta \cdot \Delta A doption_{fr,t-t_0} + \alpha_r + \alpha_i + \alpha_{f10} + \epsilon_{fr,t-t_0}$$

- \bullet Final sample: 2M vacancies from 25k establishments across 2010/12-2017/19
- IHS of Adoption and outcomes y; city, industry and firm size decile fixed effects; standard errors clustered at the firm level
- Interpretation: increasing the growth rate of AI demand between 2010-12 and 2017-19 by 1% leads to a β percentage point rise in the growth rate of the outcome variable across the same time period

First stage: AI exposure predicts AI demand

A one s.d. rise in establishment AI exposure is associated with a 1.93% increase (p < 0.01) in growth rate of AI vacancies between 2010-12 and 2017-19.

Second stage: AI lowers growth in non-AI postings...

	Growth in Non-Al Vacancies			Growth in Total Vacancies		
	(1)	(2)	(3)	(4)	(5)	(6)
Growth in Al Vacancies	-3.574***	-5.942***	-3.605***	-3.534***	-5.909***	-3.566***
	(1.168)	(1.624)	(1.139)	(1.166)	(1.624)	(1.137)
Fixed Effects:						
- Region	✓	✓	✓	✓	\checkmark	✓
- Industry	\checkmark		✓	✓		\checkmark
- Firm Decile		✓	✓		\checkmark	✓
First Stage F-Stat	26.06	26.31	27.17	26.06	26.31	27.17
Observations	22,251	22,251	22,251	22,251	22,251	22,251

A 1% increase in the establishment growth rate of AI vacancies results in a 3.6pp decrease (p < 0.01) in the growth rate of non-AI vacancies between 2010-12 and 2017-19, controlling for region, industry and firm size fixed effects.

Second stage: AI lowers growth in non-AI postings and total postings

	Growth in Non-Al Vacancies			Growth in Total Vacancies		
	(1)	(2)	(3)	(4)	(5)	(6)
Growth in Al Vacancies	-3.574***	-5.942***	-3.605***	-3.534***	-5.909***	-3.566***
	(1.168)	(1.624)	(1.139)	(1.166)	(1.624)	(1.137)
Fixed Effects:						
- Region	✓	✓	✓	✓	\checkmark	✓
- Industry	✓		✓	✓		✓
- Firm Decile		✓	✓		\checkmark	✓
First Stage F-Stat	26.06	26.31	27.17	26.06	26.31	27.17
Observations	22,251	22,251	22,251	22,251	22,251	22,251

There is a similarly-sized decrease of 3.57pp in the growth rate of total vacancies \Rightarrow the negative effect on non-AI vacancies far outweighs the rise in AI vacancies.

Wage offers also fall \Rightarrow demand effect not constrained supply

	Growth in Non-Al Median Wage			Growth in Overall Median Wage		
	(1)	(2)	(3)	(4)	(5)	(6)
Growth in Al Vacancies	-2.703***	-3.101***	-2.599***	-2.632***	-3.017***	-2.527***
	(0.799)	(0.895)	(0.758)	(0.770)	(0.862)	(0.730)
Fixed Effects:						
- Region	\checkmark	✓	\checkmark	\checkmark	\checkmark	✓
Industry	\checkmark		✓	✓		\checkmark
Firm Decile		✓	✓		\checkmark	\checkmark
First Stage F-Stat	25.32	25.64	26.39	26.61	26.84	27.71
Observations	22,064	22,064	22,064	22,071	22,071	22,071

A 1% higher growth rate in AI vacancies between 2010-12 and 2017-19 reduces the growth rate of establishment non-AI median wage offers by 2.6 percentage points (p < 0.01).

AI lowers the distribution of wage offers...

Except for the lowest 10 percent of jobs, AI lowers the distribution of wage offers. Includes industry, firm decile, and region fixed effects, and controls for experience and education

...driven primarily by the change in occupational composition

Controlling for changing occupation shares, we find a statistically significant effect on wage offers at the 10 percent level for only the top 1% highest paid roles. Includes industry, firm decile, and region fixed effects, and controls for experience and education

Lower demand hits higher-skilled occupations...

	Growth in Non-Al Vacancies						
	Personal, sales & security	Clerks	Associate Professionals	Professionals	Managers		
Growth in Al Vacancies	2.094***	1.092***	5.121***	-6.222***	-12.19***		
	(0.487)	(0.354)	(1.252)	(1.581)	(2.632)		
Fixed Effects:							
Region	✓	\checkmark	✓	✓	✓		
Industry	✓	\checkmark	✓	✓	✓		
 Firm Decile 	✓	\checkmark	✓	✓	\checkmark		
First Stage F-Stat	27.17	27.17	27.17	27.17	27.17		
Observations	22,251	22,251	22,251	22,251	22,251		

Estimates based on establishments' total posts for particular occupation groups

...with negative impacts largest for corporate managers

	Growth in Non-Al Vacancies						
	Professiona	Managers					
	Engineering Professionals	Health Professionals	Teaching Professionals	Other Professionals	Corporate Managers	General Managers	
Growth in Al Vacancies	-4.951*** (1.198)	0.548* (0.332)	0.284*** (0.107)	-2.687*** (0.926)	-12.18*** (2.592)	-2.403*** (0.827)	
Fixed Effects:							
- Region	✓	✓	✓	✓	✓	✓	
- Industry	✓	✓	✓	✓	✓	✓	
- Firm Decile	✓	✓	✓	✓	✓	✓	
First Stage F-Stat	27.17	27.17	27.17	27.17	27.17	27.17	
Observations	22,251	22,251	22,251	22,251	22,251	22,251	

Estimates based on establishments' total posts for particular occupations

ro Data Descriptives Short Term Medium Term **Mechanisms** Robustness Conclusion

AI lowers demand for non-routine task-intensive occupations

	Growth	in Non-Routi	Growth in Routine Tasks			
	(1)	(2)	(3)	(4)	(5)	(6)
Growth in AI Vacancies	-5.871***	-7.200***	-5.701***	0.298	0.599**	0.349
	(1.179)	(1.432)	(1.126)	(0.216)	(0.283)	(0.219)
Fixed Effects:						
- Region	✓	✓	✓	✓	✓	✓
- Industry	✓		✓	✓		✓
– Firm Decile		✓	✓		✓	✓
First Stage F-Stat	26.06	26.31	27.17	26.06	26.31	27.17
Observations	22,251	22,251	22,251	22,251	22,251	22,251

Estimates using occupation task intensity measures of Acemoglu & Autor (2011)

ro Data Descriptives Short Term Medium Term **Mechanisms** Robustness Conclusio

AI reduces demand for intellectual tasks...

Extract the verbs in job descriptions and assign these to classes by meaning based on Roget's Thesaurus, following Michaels, Rauch and Redding (2018). Then assess the impact of AI on the change in verb usage by verb class

Data Descriptives Short Term Medium Term **Mechanisms** Robustness Conclusio

...especially analytical tasks involving description and prediction

Similar impact within top 1% highest-paid roles, in line with occupation results.

Data Descriptives Short Term Medium Term **Mechanisms** Robustness Conclusion

...especially analytical tasks involving description and prediction

Similar impact within top 1% highest-paid roles, in line with occupation results.

atro Data Descriptives Short Term Medium Term Mechanisms **Robustness** Conclusion

Baseline results are robust to:

1. Alternative exposure measure (Felten et al. 2018)	✓
2. Alternative baseline period (2013-15)	✓
3. Weighting by baseline establishment size	✓
4. Shift-share robustness checks $(Goldsmith-Pinkham et al., 2020)$	\checkmark
5. Standard errors corrected for correlation following $(Ad\tilde{a}o \text{ et al.}, 20)$	<u>19)</u> ✓
6. Alternatives to IHS transformation (Chen & Roth, 2022)	✓

tro Data Descriptives Short Term Medium Term Mechanisms Robustness **Conclusion**

Conclusion

- AI jobs pay a <u>substantial wage premium</u>, but are <u>highly concentrated in</u> certain industries, cities and firms
- AI adoption has a <u>net negative impact</u> on labor demand within incumbent Indian white-collar services firms in AI-consuming industries
- This displacement effect is driven by lower demand for <u>high-skill</u>, <u>managerial</u>, non-routine, analytical labor
 - ⇒ Stark contrast to literatures on computerization and industrial robotics
- Key open question: to what extent does AI adoption create new tasks and firms, and how do the overall 'creative' vs. 'destructive' effects compare?

AI and Services-Led Growth: Evidence from Indian Job Adverts

Alexander Copestake¹, Max Marczinek², Ashley Pople², Katherine Stapleton³ October 17, 2023

The views expressed in this paper are those of the authors and should not be attributed to the FCDO or any of the institutions with which the authors are affiliated.

¹International Monetary Fund

²University of Oxford

 $^{^3\}mathrm{World}$ Bank

Classifying AI posts

Posts are categorised as AI-related if any of the following terms appear in either the 'job description' or 'skills required' fields:

Machine Learning, Computer Vision, Machine Vision, Deep Learning, Virtual Agents, Image Recognition, Natural Language Processing, Speech Recognition, Pattern Recognition, Object Recognition, Neural Networks, AI ChatBot, Supervised Learning, Text Mining, Support Vector Machines, Unsupervised Learning, Image Processing, Mahout, Recommender Systems, Support Vector Machines (SVM), Random Forests, Latent Semantic Analysis, Sentiment Analysis / Opinion Mining, Latent Dirichlet Allocation, Predictive Models, Kernel Methods, Keras, Gradient boosting, OpenCV, Xgboost, Libsum, Word2Vec, Chatbot, Machine Translation and Sentiment Classification

(Acemoglu et al. 2021)

2018

Professionals

Clerks

2020

Occupation group shares, for all postings (left) and only AI postings (right)

AI vacancies in firms that never hired before (Back)

Share of AI posts in establishments that never hired before (blue line) and in establishments that did not hire in the baseline, 2010-2012 (green line).

Probit regression for propensity scores

	AI adoption
Lag of Firmsize Decile	-0.0125
	(0.0478)
Lag of Hiring	0.292***
	(0.0139)
Lag of Median Salary	0.111***
	(0.0210)
Lag of 90th Percentile of Salary	0.384***
	(0.0260)
Lag of 90th Percentile of Experience	-0.527***
	(0.0343)
Lag of Firm Age	0.0353***
	(0.00432)
Lag of Salary Dispersion	-0.000000584***
	(0.000000120)
Lag of squared Firmsize Decile	-0.00267
	(0.00347)
Lag of Salary Dispersion x Lag of Firm Age	7.96e-08***
	(1.71e-08)
Lag of Experience Dispersion	0.323***
	(0.0274)
Constant	-8.743***
	(0.310)
N	207,379

Standard errors in parentheses

^{*} p < 0.1, ** p < 0.05, *** p < 0.01

AI adoption leads to reduced non-AI hiring also at the level of regions and industries (Back)

Posting at region-year level (left) and industry-year level (right) with two-way fixed effects.

d1s1: Intellect in General
Discuss, Consider, Reason, Notice, Digest

d1s2: Precursory Conditions
Investigate, Scrutinize, Research, Explore, Examine

d1s3: Materials for Reasoning Ensure, Testify, Attest, Authenticate, Document

d1s4: Reasoning Processes
Establish, Confirm, Guess, Demonstrate, Disprove

d1s5: Results of Reasoning

Detect, Adjudicate, Conform, Consider, Persuade

d1s6: Extension of Thought
Predict, Forecast, Anticipate, Memorize, Recall

d1s7: Creative Thought
Visualize, Guess, Improvise, Create, Devise

d2s1: Nature of Ideas Communicated Interpret, Clarify, Explain, Annotate, Translate

d2s2: Modes of Communication Edit, Notify, Inform, Manifest, Encode

d2s3: Means of Communicating Ideas Narrate, Delineate, Depict, Describe, Portray

• Construct instrument from baseline occupation shares at the establishment level and their respective exposure to AI according to Webb (2020):

$$Exposure_{fr,t_0} = \sum_{o} PostShare_{fro}^{t_0} \cdot ExposureMeasure_{o}$$

- This is a Bartik approach: occupation shares measure exposure to a common shock. Instrument validity is based on exogeneity of shares
 - ⇒ AI shock occurred around 2015, with important technological innovations occurring only shortly beforehand – hence occupation shares in baseline plausibly exogenous with respect to the future shock.
- We can assess this following Goldsmith-Pinkham et al. (2020), who propose several validity checks by analogy with GMM and DiD:
 - \Rightarrow investigating correlates of shares
 - \Rightarrow examing pre-trends
 - ⇒ comparing different estimators and running over-identification tests

Goldsmith-Pinkham et al. (2020) tests

- Correlates of shares: Investigate extent to which baseline shares correlate with baseline establishment controls that could themselves affect hiring/wage offer trends. We regress the instrument on baseline controls (education, experience, and salary) and no significant relationship.
- Examining pre-trends: Ask whether baseline (2010-12) exposure predicts year-on-year growth in future outcome variables from 2013-19. Find baseline exposure does not predict growth in these variables.
- Alternative estimators and over-identification tests: Compare a range of estimators (various IV estimators, an ML estimator and a Fuller-like estimator) and run over-identification tests. Similarity of different estimators and over-identification tests are reassuring for the validity of our approach.

Alternative estimators

Test 1: Correlates

	(1)	(2)
VARIABLES	Instrument	Instrument
Share of Highschool Education	-0.166	-0.166
	(0.204)	(0.204)
Share of Undergraduate Education	-0.232	-0.232
	(0.204)	(0.204)
Share of Postgraduate Education	-0.221	-0.221
	(0.204)	(0.204)
Mean Salary	4.86e-09	4.86e-09
	(4.34e-09)	(4.34e-09)
Mean Experience	-0.00217	-0.00217
	(0.00355)	(0.00355)
Constant	0.635***	0.635***
	(0.204)	(0.204)
Observations	22,201	22,201
5 1		

Robust standard errors in parentheses *** p<0.01, ** p<0.05, * p<0.1

 \Rightarrow Baseline controls (education, experience, salary) do not correlate significantly with the overall instrument.

Test 2: Pre-trends

Dependent variables: year-on year growth for 2013-2019.

	G:	Growth in Non-AI Vacancies				Growth in Non-AI Median Wage			
	(1)	(2)	(3)	(4)	(5)	(6)	(7)	(8)	
Instrument	0.000223	0.00617	0.00477	0.00622	0.0106	0.0272	0.0283	0.0275	
	(0.0112)	(0.00599)	(0.0107)	(0.00602)	(0.0271)	(0.0175)	(0.0270)	(0.0177)	
Fixed Effects:									
- Region		✓	✓	✓		✓	✓	✓	
- Industry		✓		✓		✓		✓	
– Firm Decile			✓	✓			✓	✓	
Observations	296,730	296,730	296,730	296,730	296,730	296,730	296,730	296,730	

Test 3: Alternative estimators and over-identification tests

	Interpretation
Alternative estimators	
HFUL vs LIML	similarity reassuring
MBTSLS vs overid. TSLS	similarity reassuring
Bartik vs LIML	similarity reassuring
HFUL vs. MBTSLS	similarity reassuring
Over-identification tests	
H0 of validity of	do not reject H0
over-identifying restrictions	\Rightarrow reassuring
Misspecification tests	
Bartik sensitive	no
to controls	\Rightarrow reassuring

Shift-share robust standard errors

	Growth in Non-AI Vacancies			Growth in Total Vacancies		
	(1)	(2)	(3)	(4)	(5)	(6)
Growth in AI Vacancies	-3.574**	-5.942*	-3.605**	-3.534**	-5.909*	-3.566**
	(1.666)	(3.436)	(1.479)	(1.663)	(3.437)	(1.475)
Fixed Effects:						
- Region	\checkmark	✓	\checkmark	✓	✓	✓
- Industry	\checkmark		\checkmark	✓		✓
– Firm Decile		✓	✓		✓	✓
First Stage F-Stat	26.06	26.31	27.17	26.06	26.31	27.17
Observations	22,251	22,251	22,251	22,251	22,251	22,251

IHS Robustness Checks

Our results do not hinge on the IHS transformation. Following Chen & Roth (2022), we confirm that our results hold under various alternative specifications:

- Independent variable ⇒ AI adoption dummy (to avoid scale sensitivity)
- \bullet Dependent variable \Rightarrow dummy for exceeding a threshold (e.g., the median)
- Both \Rightarrow changes in $\log(1+x)$

Baseline results driven by 'incumbents', not 'startups' $Employment\ results\ for\ startups$

	Growth	in Non-AI	Vacancies	Growth in Total Vacancies		
	(1)	(2)	(3)	(4)	(5)	(6)
Growth in AI Vacancies	-8.088	-17.32	-8.887	-8.053	-17.32	-8.853
	(7.710)	(13.90)	(7.827)	(7.741)	(13.96)	(7.858)
Fixed Effects:						
- Region	\checkmark	✓	\checkmark	\checkmark	\checkmark	\checkmark
- Industry	\checkmark		\checkmark	\checkmark		\checkmark
– Firm Decile		✓	\checkmark		\checkmark	✓
First Stage F-Stat	2.637	2.469	2.801	2.637	2.469	2.801
Observations	21,085	21,085	21,085	21,085	21,085	21,085

Baseline results driven by 'incumbents', not 'startups' $Employment\ results\ for\ incumbents$

	Growth in	n Non-AI V	acancies	Growth in Total Vacancies		
	(1)	(2)	(3)	(4)	(5)	(6)
Growth in AI Vacancies	-3.043***	-2.530**	-2.998*	-3.035***	-2.520**	-2.983*
	(1.146)	(1.027)	(1.808)	(1.150)	(1.030)	(1.811)
Fixed Effects:						
- Region	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark
– Firm Decile	\checkmark	\checkmark		\checkmark	\checkmark	
- Industry		\checkmark			\checkmark	
- Firm			✓			\checkmark
First Stage F-Stat	24.51	24.33	7.454	24.51	24.33	7.454
Observations	17,348	17,348	14,729	17,348	17,348	14,729

Baseline results driven by 'incumbents', not 'startups' $Wage\ results\ for\ startups$

	Growth	in Non-AI N	Median Wage	Growth in Overall Median Wag		
	(1)	(2)	(3)	(4)	(5)	(6)
Growth in AI Vacancies	-9.946*	-11.88*	-9.754*	-12.26	-14.77	-11.93
	(5.697)	(6.913)	(5.478)	(8.323)	(10.31)	(7.880)
Fixed Effects:						
- Region	✓	\checkmark	✓	✓	\checkmark	✓
– Industry	✓		✓	✓		✓
– Firm Decile		✓	✓		✓	✓
First Stage F-Stat	4.131	4.12	4.326	2.668	2.558	2.837
Observations	20,934	20,934	20,934	20,959	20,959	20,959

Baseline results driven by 'incumbents', not 'startups' $Wage\ results\ for\ incumbents$

	Growth in	Non-AI Med	lian Wage	Growth in Overall Median Wage			
	(1)	(2)	(3)	(4)	(5)	(6)	
Growth in AI Vacancies	-1.781***	-1.813***	-4.630**	-1.824***	-1.858***	-4.645**	
	(0.622)	(0.619)	(1.926)	(0.640)	(0.638)	(1.931)	
Fixed Effects:							
- Region	✓	✓	\checkmark	✓	✓	✓	
– Firm Decile	✓	✓		✓	✓		
- Industry		✓			✓		
- Firm			\checkmark			✓	
First Stage F-Stat	25.64	25.58	7.519	24.48	24.35	7.529	
Observations	17,259	17,259	14,648	17,266	17,266	14,652	