Graph algorithmic approach

Sebastian Schenker

Feasibility and optimality

Simple instance

```
4 (time slots)
2 (types)
0 1 0 0 (demand)
0 0 1 1 (demand)
3 (costs)
0 4 (costs)
5 0 (costs)
```

Feasible schedule:

- demand of each type is fulfilled
- at each time slot at most one type is produced

Optimal schedule:

 Lowest cost (inventory + changeover) among all feasible schedules

Feasible schedules

• 6 feasible schedules:

- a) [-1011]
- b) [0-111]
- c) [01-11]
- d) [10-11]
- e) [011-1]
- f) [101-1]

Variables

• consider $x^i_j \in \{0,1\}$ with $x^i_j = 1 \ \Leftrightarrow \ \, \text{type } i \ \, \text{is produced at time slot } j$

Graph instance

- 0 1 0 0 (demand type 0) 0 0 1 1 (demand type 1)
- ullet Number of vertices: $|\mathsf{items}| + (|\mathsf{time_slots}| + 1) \cdot |\mathsf{types}| + 1$

Graph instance

```
0 1 0 0 (demand type 0)
0 0 1 1 (demand type 1)
```


• Unit capacity on each edge

Feasible flow corresponds to schedule

• corresponding schedule: [1 0 -1 1]

Consider directed cycles in residual graph

Simple directed cycle yielding different schedule

• schedule: $[10-11] \Rightarrow [01-11]$

Another simple directed cycle yielding another different schedule

• schedule: $[10-11] \Rightarrow [101-1]$