

Мета: сформувати уявлення у учнів про особливості функціонування генів і геномів, типи генів; розвивати логічнє мислення, вміння робити висновки, працювати з підручником та додатковою літературою, узагальнювати і систематизувати знання; продовжити формування наукового світогляду; виховувати зацікавленість учнів біологією.

Базові поняття: ген, оперон, прокаріоти, еукаріоти, екзони, нітрони, триплет, кодон, локус, геном, генотип.

Тип уроку: засвоєння нових знань.

ХІД УРОКУ

І.Організація класу

II. Мотивація навчальної діяльності

III. Вивчення нового матеріалу

ПРИГАДАЄМО

Хто такі прокаріоти? (*Прокаріотичні* (від грец. про – до, каріон – ядро) клітини – це клітини доядерних організмів, які не мають чітко сформованого ядра та більшості органел)

Хто такі еукаріоти? (*Еукаріотичні* (від грец. еи – повністю й каріон – ядро) клітини – це клітини ядерних організмів, які мають ядро і розвинуту систему органел)

Які органели є клітинах прокаріотів? (Слизова капсула, клітинна стінка, плазматична мембрана, цитоплазма, пілі, джгутик, кільцева ДНК(нуклеоїд), рибосоми)

Чи ϵ у прокаріотів мітохондрії та хлоропласти? (μi)

Яка функція ядра? (передача, збереження та перетворення спадкової інформації)

Яка структура у прокаріот виконує функцію ядра? (нуклеоїд – кільцева молекула ДНК)

ДНК - одна із двох нуклеїнових кислот, що забезпечує зберігання, передачу і реалізацію генетичної програми розвитку й функціонування живих організмів

ДНК являє собою послідовність структурних одиниць - нуклеотидів

Ген - це маленький абзац інформації, коротка ділянка ДНК, що містить певний набір інструкцій

Австрійський монах Грегор Мендель у 1860-х роках вперше показав, що ознаки передаються у спадок

Термін «ген» вперше використав у 1909 році данський ботанік Вільгельм Йохансен

У 1915 році американський генетик Томас Морган прийшов до висновку, що генетичний матеріал є лінійним

Остаточно доведено, що ДНК - носій генетичної інформації

У 1953 році Джеймс Вотсон і Френсіс Крік разом з Морісом Уілкінсом, використовуючи дані Розалінд Франклін, показали, що ДНК має вигляд подвійної спіралі

СПАДКОВА ІНФОРМАЦІЯ

- ОДНА З НАЙВАЖЛИВІШИХ ВЛАСТИВОСТЕЙ ЖИВОГО ЦЕ ЗДАТНІСТЬ ЖИВИХ СИСТЕМ ДО САМОВІДТВОРЕННЯ В РЯДІ ПОКОЛІНЬ; БЕЗ ЦЬОГО ЖИТТЯ НЕ МОГЛО Б БУТИ ТАКИМ, ЯКИМ ВОНО Є.
- ЧОМУ ДІТИ СХОЖІ НА БАТЬКІВ, А З НАСІННЯ СОНЯШНИКА ВИРОСТАЄ СОНЯШНИК, А НЕ ПШЕНИЦЯ?
- ТОМУ ЩО ОРГАНІЗМ НАЩАДКІВ БУДУЄТЬСЯ ЗА ІНФОРМАЦІЄЮ, ЯКУ ВІН ОТРИМУЄ ВІД СВОЇХ БАТЬКІВ. САМЕ ВОНА ВИЗНАЧАЄ РОЗМІР І ФОРМУ ОРГАНІЗМУ, БУДОВУ Й ФУНКЦІЇ ЙОГО КЛІТИН ТА ОРГАНІВ.
- ЦЯ ІНФОРМАЦІЯ ТАКОЖ ВИЗНАЧАЄ, НАПРИКЛАД, ЯК ПШЕНИЦЯ БУДЕ ЗАХИЩАТИСЯ ВІД ПАРАЗИТИЧНИХ ГРИБКІВ ТА ЯК КІШКА БУДЕ ХАПАТИ МИШУ ПІД ЧАС ПОЛЮВАННЯ.
- ЦЮ ІНФОРМАЦІЮ НАЗИВАЮТЬ СПАДКОВОЮ, АБО ГЕНЕТИЧНОЮ.
- СПАДКОВА ІНФОРМАЦІЯ МІСТИТЬСЯ В МОЛЕКУЛАХ ДНК, ЯКІ Є В КОЖНІЙ КЛІТИНІ ОРГАНІЗМУ.
- У КЛІТИНАХ ЕУКАРІОТІВ <mark>ДНК ВХОДИТЬ ДО СКЛАДУ ХРОМОСОМ</mark>, ЯКІ МІСТЯТЬСЯ В ЯДРАХ КЛІТИН. А 3 КЛІТИН УТВОРЮЮТЬСЯ ВСІ ТКАНИНИ Й ОРГАНИ.

РІВНІ ОРГАНІЗАЦІЇ СПАДКОВОЇ ІНФОРМАЦІЇ (ЯДРО – ХРОМОСОМА – ГЕН – ДНК).

СПАДКОВА ІНФОРМАЦІЯ ЗАПИСАНА НА ДНК У ВИГЛЯДІ ГЕНІВ, ГЕНИ – В ХРОМОСОМАХ, ХРОМОСОМИ ОРГАНІЗОВАНІ У ЯДРІ, А ЯДРО ЗАВДЯКИ ЦІЙ ГЕНЕТИЧНІЙ ІНФОРМАЦІЇ ОРГАНІЗОВУЄ ЖИТТЄДІЯЛЬНІСТЬ КЛІТИНИ

ТЕРМІНОЛОГІЧНИЙ СЛОВНИЧОК

- СУКУПНІСТЬ МОЛЕКУЛ ДНК, ЩО МІСТЯТЬСЯ В ОДНІЙ КЛІТИНІ, НАЗИВАЄТЬСЯ ГЕНОМОМ.
- ГЕН (ВІД ГРЕЦ. ГЕНОС РІД, ПОХОДЖЕННЯ) ЦЕ ДІЛЯНКА ДНК, У СТРУКТУРІ ЯКОЇ ЗАКОДОВАНА ІНФОРМАЦІЯ ПРО ПЕВНУ ОЗНАКУ ОРГАНІЗМУ.
- СУКУПНІСТЬ ГЕНІВ ПЕВНОГО ОРГАНІЗМУ НАЗИВАЄТЬСЯ ГЕНОТИПОМ. ГЕНИ ПРОКАРІОТІВ ТА ЕУКАРІОТІВ, ЯКІ КОДУЮТЬ СТРУКТУРУ ІНШИХ МОЛЕКУЛ, НАЗИВАЮТЬ СТРУКТУРНИМИ.
- ГЕНИ, ЯКІ КОДУЮТЬ ОСОБЛИВІ БІЛКИ, ЩО РЕГУЛЮЮТЬ АКТИВНІСТЬ БІОХІМІЧНИХ ПРОЦЕСІВ (АКТИВУЮТЬ АБО ПРИГНІЧУЮТЬ) У КЛІТИНІ, НАЗИВАЮТЬ РЕГУЛЯТОРНИМИ.
- ГЕНИ ЕУКАРІОТІВ МАЮТЬ МОЗАЇЧНУ БУДОВУ: Є ДІЛЯНКИ ГЕНІВ, ЯКІ КОДУЮТЬ СПАДКОВУ ІНФОРМАЦІЮ, І ДІЛЯНКИ, ЯКІ ЇЇ НЕ КОДУЮТЬ.
- ДІЛЯНКИ ГЕНА, ЯКІ КОДУЮТЬ СПАДКОВУ ІНФОРМАЦІЮ, НАЗИВАЮТЬ **ЕКЗОНАМИ**, А ТІ, ЩО НЕ КОДУЮТЬ, **ІНТРОНАМИ**.
- ПЕВНИЙ ГЕН МОЖЕ ПЕРЕБУВАТИ В РІЗНИХ ВАРІАНТАХ. ТАКІ РІЗНІ ВАРІАНТИ ОДНОГО ГЕНА НАЗИВАЮТЬ АЛЕЛЯМИ, А САМІ ГЕНИ АЛЕЛЬНИМИ.

ГЕНИ

- УСЯ СПАДКОВА ІНФОРМАЦІЯ ОРГАНІЗМУ ПОДІЛЕНА НА ОКРЕМІ НЕВЕЛИЧКІ БЛОКИ, ЯКІ НАЗИВАЮТЬ ГЕНАМИ.
- КОЖНИЙ ГЕН Є ДІЛЯНКОЮ МОЛЕКУЛИ ДНК. ВІН ВІДПОВІДАЄ ЗА УТВОРЕННЯ ОДНІЄЇ АБО КІЛЬКОХ ОЗНАК ОРГАНІЗМУ. АЛЕ БІЛЬШІСТЬ ОЗНАК УТВОРЮЮТЬСЯ В РЕЗУЛЬТАТІ ВЗАЄМОДІЇ КІЛЬКОХ ГЕНІВ.
- В ЯКИХ СТРУКТУРАХ РОЗТАШОВАНІ ГЕНИ? У ПРОКАРІОТІВ ВОНИ ЗОСЕРЕДЖЕНІ У ВЕЛИКІЙ КІЛЬЦЕВІЙ МОЛЕКУЛІ ДНК (ЦЕ НУКЛЕОЇД АБО БАКТЕРІАЛЬНА ХРОМОСОМА). КРІМ ТОГО, ВОНИ Є В НЕВЕЛИКИХ КІЛЬЦЕВИХ МОЛЕКУЛАХ ДНК ПЛАЗМІДАХ.
- В ЕУКАРІОТІВ ГЕНИ МІСТЯТЬСЯ В ХРОМОСОМАХ ЯДРА, МІТОХОНДРІЯХ І ПЛАСТИДАХ. ВІДПОВІДНО ДО МІСЦЯ РОЗТАШУВАННЯ ГЕНИ ЕУКАРІОТІВ ПОДІЛЯЮТЬ НА ЯДЕРНІ, МІТОХОНДРІАЛЬНІ ТА ГЕНИ ПЛАСТИД.

премРНК

Трансляція

Генетична інформація в клітинах міститься не тільки в хромосомах ядра, а й у позахромосомних молекулах ДНК і РНК

Клітина прокаріотів

Φ ункції гена

- √зберігання спадкової інформації;
- √ керування біосинтезом білків та інших сполук у клітині;
- √реплікації ДНК (подвоєння генів під час поділу);
- √репарації (відновлення) пошкоджених ДНК і РНК;
- √ забезпечення спадкової мінливості клітин і організмів;
- √ контроль за індивідуальним розвитком клітин і організмів;
- √явище рекомбінації

ВЛАСТИВОСТІ ГЕНІВ

- СПЕЦИФІЧНІСТЬ ГЕН МІСТИТЬ СПАДКОВУ ІНФОРМАЦІЮ ЛИШЕ ПРО ПЕВНИЙ ПРОДУКТ АБО РЕГУЛЮЄ СИНТЕЗ ЛИШЕ ОДНОГО КОНКРЕТНОГО БІЛКА;
- *СТАБІЛЬНІСТЬ* ГЕНИ ЗДАТНІ ЗБЕРІГАТИ ВЛАСТИВИЙ ЇМ ПОРЯДОК РОЗТАШУВАННЯ НУКЛЕОТИДІВ;
- *ЛАБІЛЬНІСТЬ* ГЕНИ ЗДАТНІ ДО ЗМІН І МОЖУТЬ МУТУВАТИ;
- *ВЗАЄМОДІЯ ГЕНІВ* ГЕНИ ЗДАТНІ ВПЛИВАТИ ОДИН НА ОДНОГО ЗА УЧАСТІ БІЛКІВ, ЩО Є ПРОДУКТАМИ РЕАЛІЗАЦІЇ ЗАКОДОВАНОЇ У НИХ СПАДКОВОЇ ІНФОРМАЦІЇ;
- **МНОЖИННА ДІЯ ГЕНІВ** ОДИН ГЕН МОЖЕ ВПЛИВАТИ НА РОЗВИТОК ДЕКІЛЬКОХ ОЗНАК;
- *ПОЛІМЕРНА ДІЯ ГЕНІВ* ДЕКІЛЬКА ГЕНІВ МОЖУТЬ ВПЛИВАТИ НА ФОРМУВАННЯ ОДНІЄЇ ОЗНАКИ.

РІЗНОМАНІТНІСТЬ ГЕНІВ

- НАКОПИЧЕНІ ЗНАННЯ ПРО ГЕНИ ЗУМОВЛЮЮТЬ ІСНУВАННЯ ДЕКІЛЬКОХ ВАРІАНТІВ КЛАСИФІКАЦІЇ.
- ЗА РОЗТАШУВАННЯМ У КЛІТИНАХ ВИОКРЕМЛЮЮТЬ ЯДЕРНІ ГЕНИ Й ЦИТОПЛАЗМАТИЧНІ ГЕНИ (РОЗТАШОВАНІ В МІТОХОНДРІЯХ І ХЛОРОПЛАСТАХ).
- ЗА ФУНКЦІОНАЛЬНИМ ЗНАЧЕННЯМ ГЕНИ ПОДІЛЯЮТЬ НА СТРУКТУРНІ Й РЕГУЛЯТОРНІ. РОЗМІРИ РЕГУЛЯТОРНИХ ГЕНІВ, ЯК ПРАВИЛО, НЕЗНАЧНІ КІЛЬКА ДЕСЯТКІВ ПАР НУКЛЕОТИДІВ, СТРУКТУРНИХ СОТНІ Й ТИСЯЧІ НУКЛЕОТИДІВ.
- ЗА ХАРАКТЕРОМ КОДУЮЧОЇ ІНФОРМАЦІЇ ВИОКРЕМЛЮЮТЬ БІЛОК-КОДУВАЛЬНІ ГЕНИ І РНК-КОДУВАЛЬНІ ГЕНИ.
- ЗА АКТИВНІСТЮ РОЗРІЗНЯЮТЬ КОНСТИТУТИВНІ Й НЕКОНСТИТУТИВНІ ГЕНИ.
- КОНСТИТУТИВНІ ГЕНИ ЦЕ ГЕНИ, ЩО ПОСТІЙНО Є АКТИВНИМИ, ТОМУ ЩО БІЛКИ, ЯКІ НИМИ КОДУЮТЬСЯ, НЕОБХІДНІ ДЛЯ ПОСТІЙНОЇ КЛІТИННОЇ ДІЯЛЬНОСТІ.

• НЕКОНСТИТУТИВНІ (АДАПТИВНІ) ГЕНИ – ЦЕ ГЕНИ, ЩО СТАЮТЬ АКТИВНИМИ ЯКЩО БІЛОК, ЯКИЙ ВОНИ

кодують, потрібний клітині.

Кількість генів у прокаріотів та еукаріотів значно коливається

ДНК кишкової палички складається з 4,6 млн пар нуклеотидів

Гаплоїдний хромосомний набір курки - близько 1 млрд пар нуклеотидів

Геном людини (містить приблизно 3,2 млрд пар нуклеотидів

Гаплоїдний хромосомний набір дрозофіли - 170 млн пар нуклеотидів

БУДОВА ЯДРА, СТРУКТУРА ХРОМАТИНУ Ядерна оболонка Нитка ДНК **Хроматин** Ядро Ядерце Ядерні пори Ядро Ендоплазматична **Утворення** сітка спіральних структур Хромосома

• МІКРОФОТОГРАФІЯ ТА СХЕМА БУДОВИ ОДНІЄЇ З ХРОМОСОМ ЛЮДИНИ. ЧИСЛА ВІДПОВІДАЮТЬ МІЛЬЙОНАМ ПАР НУКЛЕОТИДІВ.

249

• СВІТЛІ СМУЖКИ ВІДПОВІДАЮТЬ ДІЛЯНКАМ ХРОМОСОМИ, ЩО МІСТЯТЬ БАГАТО ГЕНІВ, ТЕМНІ СМУЖКИ – ДІЛЯНКАМ, ЩО МАЙЖЕ НЕ МІСТЯТЬ ГЕНІВ.

123

ТИП ГЕНІВ

- ЗА ФУНКЦІЯМИ ГЕНИ ЖИВИХ ОРГАНІЗМІВ МОЖНА ПОДІЛИТИ НА ДВІ ВЕЛИКІ ГРУПИ: СТРУКТУРНІ Й РЕГУЛЯТОРНІ.
- СТРУКТУРНІ ГЕНИ МІСТЯТЬ ІНФОРМАЦІЮ ПРО БУДОВУ МОЛЕКУЛ БІЛКІВ ТА РНК КЛІТИНИ, ЯКІ ВХОДЯТЬ ДО СКЛАДУ ОРГАНЕЛ АБО ЦИТОПЛАЗМИ КЛІТИН.
- РЕГУЛЯТОРНІ ГЕНИ ТЕЖ МІСТЯТЬ ІНФОРМАЦІЮ ПРО СТРУКТУРУ МОЛЕКУЛ БІЛКІВ АБО РНК. АЛЕ ЇХНЄ ЗАВДАННЯ РЕГУЛЮВАТИ РОБОТУ СТРУКТУРНИХ ГЕНІВ. МОЖУТЬ ЇЇ ПРИСКОРИТИ ЧИ ВПОВІЛЬНИТИ. АБО Й ЗОВСІМ ПРИПИНИТИ СИНТЕЗ ПРОДУКТУ ГЕНА, ЯКИЙ КЛІТИНІ НА ДАНИЙ ЧАС НЕ ПОТРІБЕН.

ГЕНОМ

- УСІ ГЕНИ ОРГАНІЗМУ ВХОДЯТЬ ДО СКЛАДУ <mark>ГЕНОМУ</mark>. КРІМ ГЕНІВ ДО СКЛАДУ ГЕНОМУ ОРГАНІЗМУ ВХОДЯТЬ ДІЛЯНКИ МОЛЕКУЛИ ДНК, ЯКІ НЕ УТВОРЮЮТЬ ПРОДУКТІВ. САМЕ ГЕНОМ РЕГУЛЮЄ ВСІ ПРОЦЕСИ В КЛІТИНІ.
- ЦЕ УТВОРЕННЯ ПОТРІБНИХ РЕЧОВИН, ВЗАЄМОДІЯ КЛІТИН МІЖ СОБОЮ, РЕАКЦІЯ НА ЗОВНІШНІ ПОДРАЗНИКИ ТА ІНШІ ПРОЦЕСИ.
- PO3MIP ГЕНОМІВ ЖИВИХ ОРГАНІЗМІВ ВИЗНАЧАЄТЬСЯ ДВОМА РІЗНИМИ СПОСОБАМИ. У ПЕРШОМУ ВИПАДКУ РАХУЮТЬ КІЛЬКІСТЬ ГЕНІВ, А У ДРУГОМУ КІЛЬКІСТЬ ПАР НУКЛЕОТИДІВ У ЛАНЦЮГАХ ДНК.

КОМПОНЕНТИ ГЕНОМУ ЛЮДИНИ

РОЗМІР ГЕНОМУ ДЕЯКИХ ВИДІВ ЖИВИХ ОРГАНІЗМІВ

Організм	Приблизна кількість генів	Приблизна кількість пар нуклеотидів 4,6 млн	
Кишкова паличка	4 200		
Тополя	73 000	480 млн	
Пекарські дріжджі	6 200	12,1 млн	
Шовкопряд	14 000	432 млн	
Миша	иша 20 200 2,7 млрд		
Людина	20 000	3,2 млрд	

ПОРІВНЯННЯ ГЕНОМІВ ДЕЯКИХ ОРГАНІЗМІВ

Кількість	3	*	*
Хромосоми (гаплоїдний набір)	1	4	23
Пари нуклеотидів у ДНК	4,6·10 ⁶ 4 288	1,3·10 ⁸	3,2·10 ⁹ 20 000
Гени			
Некодувальна ДНК	12 %	81 %	97 %

ГЕНЕТИЧНИЙ КОД

- БУДОВА МОЛЕКУЛИ БІЛКІВ ВИЗНАЧАЄТЬСЯ ПОСЛІДОВНІСТЮ НУКЛЕОТИДІВ У ДНК. ТОМУ ВЧЕНІ ГОВОРЯТЬ, ЩО БУДОВА БІЛКА ЗАКОДОВАНА В ДНК. КОЖНА АМІНОКИСЛОТА КОДУЄТЬСЯ З ДОПОМОГОЮ ТРЬОХ НУКЛЕОТИДІВ. ТАКА ТРІЙКА (ТРИПЛЕТ) НУКЛЕОТИДІВ, ЯКА ВІДПОВІДАЄ ПЕВНІЙ АМІНОКИСЛОТІ, НАЗИВАЄТЬСЯ КОДОНОМ.
- СИСТЕМА ЗАПИСУ СПАДКОВОЇ ІНФОРМАЦІЇ В МОЛЕКУЛАХ НУКЛЕЇНОВИХ КИСЛОТ, ВІДПОВІДНО ДО ЯКОЇ ПЕВНА ПОСЛІДОВНІСТЬ НУКЛЕОТИДІВ У МОЛЕКУЛІ ДНК ТА РНК ВИЗНАЧАЄ ПОСЛІДОВНІСТЬ АМІНОКИСЛОТ У МОЛЕКУЛІ БІЛКА, НАЗИВАЄТЬСЯ ГЕНЕТИЧНИМ КОДОМ.

ДНК Ген Амінокислота

ВІДПОВІДНІСТЬ МІЖ ТРИПЛЕТАМИ

НУКЛЕОТИДІВ ТА АМІНОКИСЛОТАМИ

ОСНОВНІ ПОЛОЖЕННЯ СУЧАСНОЇ ТЕОРІЇ ГЕНА

- СУЧАСНА ТЕОРІЯ ГЕНА ҐРУНТУЄТЬСЯ НА ЗАСАДАХ НОВОГО НАПРЯМУ, ЯКИЙ ДЖ. УОТСОН (1928) НАЗВАВ МОЛЕКУЛЯРНОЮ БІОЛОГІЄЮ ГЕНА. НАУКОВІ ЗНАННЯ, ЩО СФОРМУВАЛИСЯ ПІСЛЯ БАГАТОРІЧНИХ ДОСЛІДЖЕНЬ ОСНОВ СПАДКОВОСТІ, УЗАГАЛЬНЕНО У ВИГЛЯДІ ТЕОРІЇ ГЕНА. ОСНОВНІ ПОЛОЖЕННЯ ЦІЄЇ ТЕОРІЇ ТАКІ.
- 1. ГЕН ЗАЙМАЄ ПЕВНУ ДІЛЯНКУ (ЛОКУС) У ХРОМОСОМІ. ХРОМОСОМИ Є МАТЕРІАЛЬНИМИ НОСІЯМИ СПАДКОВОСТІ.
- 2. ГЕН ЧАСТИНА МОЛЕКУЛИ ДНК, ЯКА МАЄ ПЕВНУ ПОСЛІДОВНІСТЬ НУКЛЕОТИДІВ І Є ФУНКЦІОНАЛЬНОЮ ОДИНИЦЕЮ СПАДКОВОЇ ІНФОРМАЦІЇ. КІЛЬКІСТЬ НУКЛЕОТИДІВ, ЯКІ ВХОДЯТЬ ДО СКЛАДУ РІЗНИХ ГЕНІВ, Є РІЗНОЮ.
- 3. ВСЕРЕДИНІ ГЕНА МОЖУТЬ ВІДБУВАТИСЯ РЕКОМБІНАЦІЇ (ПЕРЕРОЗПОДІЛ ГЕНЕТИЧНОГО МАТЕРІАЛУ) І МУТАЦІЇ (ЗМІНИ ГЕНЕТИЧНОГО МАТЕРІАЛУ).
- 4. ІСНУЮТЬ СТРУКТУРНІ Й РЕГУЛЯТОРНІ ГЕНИ. СТРУКТУРНІ ГЕНИ КОДУЮТЬ СИНТЕЗ БІЛКІВ. РЕГУЛЯТОРНІ ГЕНИ КОНТРОЛЮЮТЬ І СПРЯМОВУЮТЬ ДІЯЛЬНІСТЬ СТРУКТУРНИХ ГЕНІВ.
- 5. ГЕН НЕ БЕРЕ БЕЗПОСЕРЕДНЬОЇ УЧАСТІ В СИНТЕЗІ БІЛКА, ВІН Є МАТРИЦЕЮ ДЛЯ УТВОРЕННЯ ПОСЕРЕДНИКІВ РІЗНИХ МОЛЕКУЛ РНК, ЯКІ БЕЗПОСЕРЕДНЬО БЕРУТЬ УЧАСТЬ У СИНТЕЗІ.
- 6. РОЗТАШУВАННЯ ТРИПЛЕТІВ ІЗ НУКЛЕОТИДІВ У СТРУКТУРНИХ ГЕНАХ Є ВІДПОВІДНИМ (КОЛІНЕАРНИМ) ДО АМІНОКИСЛОТ У ПОЛІПЕПТИДНОМУ ЛАНЦЮЗІ, ЯКИЙ КОДУЄТЬСЯ ДАНИМ ГЕНОМ.
- 7. МОЛЕКУЛИ ДНК ЗДАТНІ ДО РЕПАРАЦІЇ (ВИПРАВЛЕННЯ), ТОМУ НЕ ВСІ ПОШКОДЖЕННЯ ГЕНА ПРИЗВОДЯТЬ ДО МУТАЦІЇ.
- 8. ГЕНОТИП СКЛАДАЄТЬСЯ З ОКРЕМИХ ГЕНІВ, АЛЕ ФУНКЦІОНУЄ ЯК ЄДИНЕ ЦІЛЕ. НА ФУНКЦІЮ ГЕНІВ ВПЛИВАЮТЬ ЧИННИКИ ЯК ВНУТРІШНЬОГО, ТАК І ЗОВНІШНЬОГО СЕРЕДОВИЩА.

Плазміди - позахромосомні фактори спадковості

Плазміди зазвичай містять гени, які відповідальні за синтез 1-2 білків, що, наприклад, підвищують стійкість бактерій до несприятливих чинників довкілля, зокрема до антибіотиків

Одна бактеріальна клітина, котра набула такої стійкості, може швидко перемістити гени стійкості до багатьох інших бактерій чи навіть видів

Гени прокаріотів об'єднані у оперони

Оперон (від лат. operon - працюю) функціональна одиниця організації геному прокаріотів

Концепцію оперона запропонували в 1961 р. французькі вчені Франсуа Жакоб і Жак Моно, за що отримали Нобелівську премію (1965 р.)

Будова оперона

Лактозний оперон кишкової палички містить спадкову інформацію про три білки, що беруть участь у поглинанні та розщепленні лактози

УЗАГАЛЬНЕННЯ

- СПАДКОВА ІНФОРМАЦІЯ ЗАПИСАНА НА ДНК У ВИГЛЯДІ ГЕНІВ, ГЕНИ В ХРОМОСОМАХ, ХРОМОСОМИ ОРГАНІЗОВАНІ У ЯДРІ, А ЯДРО ЗАВДЯКИ ЦІЙ ГЕНЕТИЧНІЙ ІНФОРМАЦІЇ ОРГАНІЗОВУЄ ЖИТТЄДІЯЛЬНІСТЬ КЛІТИНИ.
- ГЕН ЦЕ ЦІЛІСНА ОДИНИЦЯ СПАДКОВОГО МАТЕРІАЛУ У ВИГЛЯДІ ДІЛЯНКИ РНК ЧИ ДНК, РОЗТАШОВАНОГО У ЯДРІ (НУКЛЕОЇДІ) ЧИ ЦИТОПЛАЗМІ, ЩО КОДУЄ ПЕРВИННУ СТРУКТУРУ ПОЛІПЕПТИДНОГО ЛАНЦЮГА ЧИ МОЛЕКУЛ РРНК І ТРНК АБО ВЗАЄМОДІЄ З РЕГУЛЯТОРНИМ БІЛКОМ.
- У МОЛЕКУЛАХ ДНК СПАДКОВУ ІНФОРМАЦІЮ ЗБЕРІГАЄ БІЛЬШІСТЬ ЖИВИХ ОРГАНІЗМІВ. АЛЕ Є Й ВИНЯТКИ. ДЕЯКІ ВІРУСИ МОЖУТЬ ЗБЕРІГАТИ СПАДКОВУ ІНФОРМАЦІЮ В МОЛЕКУЛАХ РНК, А ЇХНІ ГЕНИ, ВІДПОВІДНО, Є ДІЛЯНКАМИ РНК.

Допишіть терміни, що є пропущеними в <u>основних положеннях сучасної теорії гена</u> 1. Ген займає певну _____ у хромосомі. Хромосоми є матеріальними носіями 2. Ген — _______, яка має певну послідовність нуклеотидів і є функціональною одиницею спадкової інформації. Кількість нуклеотидів, які входять до складу різних генів, є ________. 3. Всередині гена можуть відбуватися ______ (перерозподіл генетичного матеріалу) і (зміни генетичного матеріалу). 4. Існують структурні й регуляторні гени. Структурні гени ______. Регуляторні гени _ структурних генів. 5. Ген не бере безпосередньої участі в синтезі білка, він ϵ для утворення посередників – різних молекул РНК, які безпосередньо беруть участь у синтезі. 6. Розташування триплетів із нуклеотидів у структурних генах є відповідним (колінеарним) до у складі білка, що кодується даним геном. , тому не всі пошкодження гена призводять до мутації. 7. Молекули ДНК здатні до 8. Генотип складається з впливають чинники як внутрішнього, так і зовнішнього середовища.

домашне завдання:

Опрацювати конспект, законспектувати, параграф 20, у зошит заповнити текст термінами (слайд 28)