Санкт-Петербургский национальный исследовательский университет информационных технологий, механики и оптики

Факультет информационных технологий и программирования Кафедра компьютерных технологий

Разработка гибридного алгоритма недоминирующей сортировки

Маркина Маргарита Анатольевна Группа M3438

Научный руководитель: к.т.н. доцент кафедры КТ М. В. Буздалов

Введение

- Точка $A = (a_1, ..., a_M)$ доминирует точку $B = (b_1, ..., b_M)$, когда $\forall \ 1 \leq i \leq M : a_i \leq b_i$ и $\exists j : a_i < b_i$.
- Недоминирующая сортировка множества точек S в M-мерном пространстве это процедура, назначающая всем точкам из S ранг.
- Все точки, которые не доминируются ни одной точкой из S, имеют ранг 0.
- Точка имеет ранг i+1, если максимальный ранг среди доминирующих её точек равен i.

Введение

На рисунке 3 фронта: $\{a,b,c,d\}$ имеет ранг 0, $\{e,f\}$ - ранг 1, $\{g,h,i\}$ - ранг 2.

Актуальность

- Многокритериальные эволюционные алгоритмы.
- Задача минимазациии.

Цель исследования

- Выбрать наиболее подходящие алгоритмы.
- Выявить преимущества каждого алгоритма.
- Научиться по входным данным выбирать стратегию.
- Сделать гибридный алгоритм.

Fast + BOS

- Fast Version of the Generalized Algorithm.
- Best Order Sort.

Fast

- Fast Version of the Generalized Algorithm.
 - Разделяй и властвуй по N и M.
 - На каждом этапе делим на 3 множества по k_i критерию текущее множество точек.
 - Если все k_i в одном из подмножеств равны между собой, переходим к k_{i-1}
 - Запускаемся рекурсивно.

BOS

- Best Order Sort.
 - ullet отсортированных списков, i список отсортирован по i критерию.
 - Далее определяем ранг начиная с наиболее подходящих элементов.
 - Во время определения ранга используем уже обработанные точки.

Асимптотика

- Fast $O(N \log^{M-1} N)$.
- BOS $O(MN \log N + MN^2)$.
 - в лучшем случае за $\Theta(MN \log N)$
 - в худшем случае за $\Theta(MN^2)$

Гибридизация

- По входным данным подбирать стратегию сортировки
- В момент рекурсивного запуска мы можем переключиться на BOS.
- Была построена функция от m, котороя возвращает n, начиная с которого надо переключаться на BOS

Эксперименты

Рассмотриваем влияние входные данных на время работы алгоритмов

- Случайные точки в гиперкубе.
- Точки на F фронтов

Параметры

- N = 100000
- Фронтов $F \in \{1..20\}$.
- Размерность $M \in \{3..30\}$

Практические результаты

Обозначения

- $T_{\sf Fast}$ время за которое алгоритм Fast отсортировал экспериментальное множество точек S.
- T_{BOS} время алгоритма BOS.
- $T_{\text{max}} = max(T_{\text{BOS}}, T_{\text{Fast}})$
- Оценивать будем с помощью графика, где по абсциссе будет мощность множества S для которого проводился эксперимент. По ординате будет $\frac{T_{\rm BOS}-T_{\rm Fast}}{T_{\rm max}}$.

Сравнение скоростей

Функция для левой границы

$$f = M \cdot ln(M+1)$$

Функция для правой границы

$$f = 150 \cdot M \cdot (In^{0.9}(M+1) - 1.5)$$

Результат

Сравнение скоростей

Результат

Выводы

- Для каждого п время работы гибридного алгоритма не более чем в полтора раза хуже самого быстрого алгоритма для этого п
- Для больших n гибридный алгоритм в 1.5–5 раз быстрее, чем самый быстрый алгоритм

Спасибо за внимание!