Trabalho 2 – Fundamentos de Arquitetura de Computadores

Matrículas/ Nomes dos alunos: 16/0031982 – João Pedro Mota Jardim

16/0016428 – Paulo Victor de Menezes

Lopes

1) Executando o programa:

Ao abrir o seu Mars, você deverá clicar na opção "File" (roxo) e selecionar a opção "Open..."

Após abrir a janela para selecionar o arquivo desejado, selecione "trabalho2.asm" para abrir o exercício

Após aberto, verifique o arquivo que está em primeiro plano e aperte em no ícone da chave de fenda cruzada com uma chave inglesa (vermelho) e vai avançando passo a passo com o ícone que tem um play com o número 1 (verde). Toda vez em que apertar o play com o número 1, verifique na tabela dos registradores o que vai acontecendo a cada passo com os registradores utilizados.

Registers Coproc 1 (Coproc 0	
Name	Number	Value
\$zero	0	0x00000000
\$at	1	0x00000000
\$v0	2	0x00000000
\$v1	3	0x00000000
\$a0	4	0x00000000
\$a1	5	0x00000000
\$a2	6	0x0000000
\$a3	7	0x00000000
\$t0	8	0x00000000
\$t1	9	0x00000000
\$t2	10	0x00000000
\$t3	11	0x00000000
\$t4	12	0x00000000
\$t5	13	0x0000000
\$t6	14	0x00000000
\$t7	15	0x0000000
\$80	16	0x00000000
\$s1	17	0x00000000
ŝs2	18	0x00000000
\$ 3 3	19	0x00000000
\$84	20	0x00000000
\$ 8 5	21	0x00000000
\$36	22	0x00000000
\$s7	23	0x00000000
\$t8	24	0x00000000
\$t9	25	0x00000000
\$k0	26	0x00000000
\$k1	27	0x0000000
\$gp	28	0x10008000
\$sp	29	0x7fffeffc
\$fp	30	0x0000000
\$ra	31	0x0000000
pc		0x00400000
hi		0x0000000
10		0x00000000

Os registradores na tabela azul (\$s0, \$s1 e \$s2) foram utilizados para armazenar os valores de entrada, o registrador na tabela verde (\$s3) para multiplicação, divisão e armazenamento do resultado final, e os registradores na tabela vermelha (\$t0, \$t1 e \$t2) foram utilizados como variáveis auxiliares como comparações ou controladores de branch ou laço.

Caso desejado, o código pode ser facilmente lido pelo próprio programa visto que foi utilizado de comentários para fácil entendimento deste código.

Para resolvermos o problema da exponenciação modular primeiro verificamos de o número utilizado para o módulo é primo. Analisamos se ele é maior do que 1, igual a 2 ou a 3, ou se ele não é múltiplo de nenhum número impar menor do que ele, se ele passar nesses testes, significa q é primo e continuamos o programa.

Em seguida, verificamos o expoente, se ele for negativo é impresso uma mensagem de erro e se ele for 0 o resultado será 1, caso contrário, começamos o cálculo da exponenciação modular.

Se o número for maior do que o módulo, ocorre a divisão modular, e se a potência for maior do que 1, o resto é multiplicado pelo número e a potência é subtraída por 1, esse laço ocorre até que a potencia seja igual a 1

A limitação do nosso projeto é que se o resto da divisão multiplicado pelo número escolhido for maior que 32 bits, o resultado vai dar errado. Optamos por realizar a divisão modular antes da exponenciação pois o risco de um número estourar os 32 bits do registrador durante a potencia é bem maior do que se forem ocorrendo as divisões modulares antes.