## Overview

- 1. Compressible
- 2. Energy equation

## Streamlines patterns of flow over a cylinder



Reynolds number for external flow 
$$Re = \frac{\rho U_{\infty} D}{\mu}$$

**Example 4: External flow over Cylinder** 



# **Dimension and Properties**

## Dimension

| Name | Value      |
|------|------------|
| L    | 100D       |
| D    | 1 <i>m</i> |

## Air properties

| Name         | Value                  |
|--------------|------------------------|
| ρ            | 1.161                  |
| $\mu$        | $18.57 \times 10^{-6}$ |
| $U_{\infty}$ | From Re                |

## Assumptions and governing equations

Assumptions: Laminar, incompressible, unsteady, ignore gravity

#### Mass conservation

$$\nabla \cdot \vec{V} = 0$$

#### Momentum conservation

$$\rho \frac{\delta \vec{V}}{\delta t} + \rho \nabla \cdot (\vec{V} \times \vec{V}) = -\nabla P + \nabla \cdot (\mu \nabla \vec{V})$$

# Symbols $|\overrightarrow{V}: Velocity vector (\frac{m}{s})|$ |P: Pressure (Pa)| $|\rho: Density (\frac{kg}{m^3})|$ $|\mu: Dynamic viscosity (\frac{kg}{m.s})|$ |t: Time (s)|

# **Boundary conditions**

Abbreviations

BC: Boundary conditions

## B.Cs of Velocity

|       | Inlet                        | Outlet                     | Top and bottom  | Cylinder     |
|-------|------------------------------|----------------------------|-----------------|--------------|
| Туре  | Uniform                      | Hydrodynamically developed | Symmetry        | No slip      |
| Value | $\vec{V}.\hat{n}=U_{\infty}$ | $ abla ec{V}. \hat{n} = 0$ | $\vec{V}.n_y=0$ | $\vec{V}$ =0 |

### B.Cs of Pressure

|       | Inlet                | Outlet     | Top and bottom      | Cylinder             |
|-------|----------------------|------------|---------------------|----------------------|
| Туре  | Developed            | Atmosphere | Symmetry            | Zero gradient        |
| Value | $\nabla P.\hat{n}=0$ | P = 0      | $\nabla P. n_y = 0$ | $\nabla P.\hat{n}=0$ |

## Assumptions and governing equations

Assumptions: Laminar, compressible, unsteady

#### Mass conservation

$$\frac{d\rho}{dt} + \nabla \cdot \left(\rho \vec{V}\right) = 0$$

#### Momentum conservation

$$\begin{split} &\frac{D(\rho\vec{V})}{Dt} = \nabla \cdot \vec{\sigma} \\ &\vec{\sigma} = -p\vec{I} + \vec{\tau} = -p\vec{I} + \mu \left[ \left( \nabla \cdot \vec{V} \right) + \left( \nabla \cdot \vec{V} \right)^T \right] - \frac{2\mu}{3} \left( \nabla \cdot \vec{V} \right) \vec{I} \end{split}$$

#### Energy conservation

$$\frac{D(\rho e)}{Dt} + \nabla \cdot (\rho \vec{V} \vec{V} + p \vec{I}) = \nabla \cdot (k \nabla T)$$
$$e = \frac{1}{2} |\vec{V}|^2 + u$$

### Symbols

 $| \vec{V} : \text{Velocity vector } (\frac{m}{s})$ 

 $\vec{\sigma}$ : Stress Tensor ()

*P*: Pressure (*Pa*)

e: Total Energy ()

*u*: Internal Energy ()

*T*: Temperature (*K*)

 $\rho$ : Density  $(\frac{kg}{m^3})$ 

 $\mu$ : Dynamic viscosity  $(\frac{kg}{m.s})$ 

*k*: Thermal conductivity ()

t: Time (s)

# **Boundary conditions**

# B.Cs of Velocity

Abbreviations

BC: **Boundary conditions** 

|       | Inlet                        | Outlet                     | Top and bottom  | Cylinder     |
|-------|------------------------------|----------------------------|-----------------|--------------|
| Туре  | Uniform                      | Hydrodynamically developed | Symmetry        | No slip      |
| Value | $\vec{V}.\hat{n}=U_{\infty}$ | $ abla ec{V}. \hat{n} = 0$ | $\vec{V}.n_y=0$ | $\vec{V}$ =0 |

## B.Cs of Pressure

|       | Inlet                | Outlet     | Top and bottom   | Cylinder             |
|-------|----------------------|------------|------------------|----------------------|
| Туре  | Developed            | Atmosphere | Symmetry         | Zero gradient        |
| Value | $\nabla P.\hat{n}=0$ | P = 0      | $\nabla P.n_y=0$ | $\nabla P.\hat{n}=0$ |

## B.Cs of Energy

|       | Inlet     | Outlet                  | Top and bottom      | Cylinder  |
|-------|-----------|-------------------------|---------------------|-----------|
| Туре  | Developed | Atmosphere              | Symmetry            | Uniform   |
| Value | T = 300 K | $\nabla T. \hat{n} = 0$ | $\nabla P. n_y = 0$ | T = 310 K |