Databases Crash Course

Ignacio X. Domínguez

DiamondHacks 2021

NC STATE CSC

To Follow Along

Make sure you have these running locally:

- MySQL Community Server
- MySQL Workbench

What is a Database?

- Structured data
 e.g. File system
- We use standard software to help us manage our data using common APIs

\mathbf{Z}	Α	В	С	D	Е
1	College Enrollment 2016 - 2017				
2	Student ID	Last Name	Initial 👵	Age .	Program -
3	ST348-245	White	R.	21	Drafting
4	ST348-246	Wilson	P.	19	Science
5	ST348-247	Thompson	A.	18	Arts
6	ST348-248	Holt	R.	23	Science
7	ST348-249	Armstrong	J.	37	Drafting
8	ST348-250	Graham	S.	20	Arts
9	ST348-251	McFadden	H.	26	Business
10	ST348-252	Jones	S.	22	Nursing
11	ST348-253	Russell	W.	20	Nursing
12	ST348-254	Smith	L.	19	Business

Database Engines (DBMS)

Database Management Systems

Relational engines (RDBMS)

- MySQL / MariaDB
- Microsoft SQL Server
- Oracle
- PostgreSQL
- SQLite
- •
- Others

Non-relational engines (NoSQL)

- Key-value stores (e.g., Redis, Berkeley DB, MemcacheD)
- Document (e.g., MongoDB, CouchDB, DocumentDB)
- Graph (e.g., Neo4j, Titan)
- . . .
- Others

Some Terminology

Some More Terminology

- A single database server can hold multiple databases (or schemas)
- Each database can have multiple tables
- Each table can have multiple records

Example of Relational Data

Domain: A Store

SQL: Structured Query Language

SQL is the language your code uses to manipulate a database

• CRUD:

```
    Create INSERT INTO customer (...) VALUES (...);
    Retrieve SELECT * FROM customer;
    Update UPDATE customer SET ... WHERE ...;
    Delete DELETE FROM customer WHERE ...;
```

Tables (Entities)

- Table name
- Attributes (columns)
 - Names
 - Types
 - Length (precision)
 - Default value
 - Other constraints

Stores multiple records (rows)

cus_id	cus_first_name	cus_last_name	cus_email
1	Jane	Doe	jane@email.com
2	John	(null)	john@email.com

Primary Keys

Uniquely identifies a record
 Not null + unique

Natural key
 e.g., room number in a building

Artificial key
 e.g., auto-incremented number

number	max_occupancy
100	4
101	4
200	2
201	2

Relations: Foreign Keys

Referential Integrity

External private key as column

Can be NULL

customer

id	first	last
1	Alice	Doe
2	Bob	Doe
3	Jane	Doe
4	John	Doe

purchase

Id	cust_id	date	total		
1	1	2021-03-27	35.99		
2	1	2021-03-27	1.23		
3	3	2021-03-27	1.00		
4	2	2021-03-27	3.99		
5	2	2021-03-27	2.75		
6	1	2021-03-27	0.49		

ALTER TABLE purchase ADD CONSTRAINT fk_purchase_customer FOREIGN KEY (cust_id) REFERENCES customer (id);

Creating Our Schema

id	cust_id	date	total
1	1	2021-03-27	35.99
2	1	2021-03-27	1.23
3	3	2021-03-27	1.00
4	2	2021-03-27	3.99
5	2	2021-03-27	2.75
6	1	2021-03-27	0.49

Creating Our Schema

id	cust_id	date	total
1	1	2021-03-27	35.99
2	1	2021-03-27	1.23
3	3	2021-03-27	1.00
4	2	2021-03-27	3.99
5	2	2021-03-27	2.75
6	1	2021-03-27	0.49

Purchase Product

Purchase Id Product Id Quantity

Using Your DB in Your Code

Case Study: Python

- 1. Import MySQL Connector for Python
 - https://github.com/mysql/mysql-connector-python
- 2. Establish the connection to the DB
 - · Host, port, and schema
 - · Username and password
- 3. Get a "cursor"
- 4. Execute a query
- 5. Read response from the cursor
 - In this case, retrieve the first row
 - · Each row is an array of all columns
- 6. Close the connection

```
import mysql.connector
     # Connect to server
     cnx = mysql.connector.connect(
         host="127.0.0.1", port=3306, database='db workshop',
         user="root", password="super s3cret")
     # Get a cursor
     cur = cnx.cursor()
     # Execute a query
     cur.execute("SELECT * FROM customer")
13
     # Fetch one result
14
     row = cur.fetchone()
     print("Customer's first name is: {0}".format(row[1]))
17
     # Close connection
     cnx.close()
```

Let's Hop on Over to MySQL Workbench

Feel free to follow along