Banco de Dados: Modelo Lógico

Prof. Márcio Funes

Plano de aula

Relembrando Modelo Conceitual Introdução Modelo Conceitual para Lógico Exercícios

O modelo conceitual

O modelo conceitual

O modelo conceitual, é a representação gráfica de um banco de dados, onde estão representados as entidades, seus atributos e relações.

Contudo, não há uma preocupação em detalhes de implementação, como o SGBD a ser utilizado.

O Modelo conceitual é independente de SGBD. Se preocupa em registrar quais dados serão registrados, incluindo seus relacionamentos.

O que é modelagem de dados?

A modelagem de dados é uma técnica usada para a especificação das regras de negócios e as estruturas de dados de um banco de dados. Ela faz parte do ciclo de desenvolvimento de um sistema de informação e é de vital importância para o bom resultado do projeto. Modelar dados consiste em desenhar o sistema de informações, concentrando-se nas entidades lógicas e nas dependências lógicas entre essas entidades.

Modelagem de dados ou modelagem de banco de dados envolve uma série de aplicações teóricas e práticas, visando construir um modelo de dados consistente, não redundante e perfeitamente aplicável em qualquer SGBD moderno.

A modelagem de dados está dividida em:

Modelo conceitual

A modelagem conceitual basea-se no mais alto nível e deve ser usada para envolver o cliente, pois o foco aqui é discutir os aspectos do negócio do cliente e não da tecnologia. Os exemplos de modelagem de dados vistos pelo modelo conceitual são mais fáceis de compreender, já que não há limitações ou aplicação de tecnologia específica.

O diagrama de dados que deve ser construído aqui é o **Diagrama de Entidade e Relacionamento**, onde deverão ser identificados todas as entidades e os relacionamentos entre elas.

Este diagrama é a chave para a compreensão do modelo conceitual de dados.

Modelo lógico

O modelo lógico já leva em conta algumas limitações e implementa recursos como adequação de padrão e nomenclatura, define as chaves primárias e estrangeiras, normalização, integridade referencial, entre outras.

Para o modelo lógico deve ser criado levando em conta os exemplos de modelagem de dados criados no modelo conceitual.

Modelo lógico

O modelo lógico

O modelo lógico é fiel a organização do banco de dado em tabelas.

Ele deve registrar como os dados serão armazenados.

O modelo lógico

É possível criar um modelo lógico partindo de um modelo conceitual.

Nesse processo:

- As entidades são traduzidas para tabelas
- Os atributos são traduzidos para campos (colunas)
- Os atributos identificadores são traduzidos em chaves primárias
- Os atributos compostos são divididos em campos simples
- Os atributos multivalorados são movidos para uma nova tabela
 - Cria-se um relacionamento 1:N
 - A chave primária da tabela original será importada para a tabela nova
- Os relacionamentos devem ser adequados a tabelas:
 - Relacionamentos 1:1 → Importação de chave
 - Relacionamentos 1:N → Importação de chave
 - Relacionamentos N:N → cria-se uma nova tabela
 - As chaves primárias de ambas as tabelas são importadas para a nova tabela
 - A chave primária da nova tabela é a combinação de suas chaves estrangeiras

Considere a entidade abaixo

Considere a entidade abaixo

Posso escreve esse DER da seguinte forma

LIVRO (ISBN, Título, Autor, Ano, Categoria)

LIVRO

<u>ISBN</u>	Titulo	Autor	Ano	Categoria
9580471444	Vidas Secas	Graciliano Ramos	1938	Romance
958047950X	Agosto	Rubem Fonseca	1990	Romance
0554253216	Micrographia	Robert Hooke	1665	Ciências

Exemplo (Atributo identificador e atributo

composto):

- ► Cliente (cpf, nome, rua, bairro, cidade, estado)
- O atributo identificador cpf, virou a chave primária na relação
- O atributo composto endereco foi mapeado de maneira que os seus componentes se tornaram campos na relação, mas o atributo mais abstrato endereço não foi mapeado.

Exemplo (Atributo multi-valorado):

- 1° opção:
- ► Pessoa (<u>identidade</u>, nome, peso)
- ► Telefone (<u>identidade</u>, <u>numero</u>)

Nessa primeira alternativa, o atributo multi-valorado **telefone** foi **mapeado em uma nova relação**, que recebe a chave primária de pessoa <u>identidade</u> e o numero que é o número de telefone. A chave primária dessa nova relação Telefone, é uma chave composta, formada pela junção de <u>identidade</u> e numero.

Exemplo (Atributo multi-valorado):

2° opção:

► Pessoa (<u>identidade</u>, nome, peso, tel1, tel2, tel3)

Nessa segunda alternativa foram **criados três campos na relação pessoa** para receber os valores correspondentes a três telefones. Essa alternativa é adequada quando se estabelece um número fixo da quantidade de números de atributos. No entanto, quando não se sabe esse número, a 1º opção se torna mais adequada.

Considere as entidade Pessoa e Armário com cardionalidade 1:1

Como seria o descritivo em modelo lógico das duas entidades?

PESSOA (Código, Nome, Telefone)

ARMÁRIO (Código, Tamanho)

Como seria o esquema de tabelas das duas entidades?

PESSOA

<u>Código</u>	Nome	Telefone
1525	Asdrúbal	5432-1098
1637	Doriana	9876-5432
1701	Quincas	8765-4321
2042	Melissa	7654-3210
2111	Horácio	6543-2109

ARMÁRIO

<u>Código</u>	Tamanho
1A	simples
2A	duplo
1B	simples
2B	duplo

PESSOA			
<u>Código</u>	Nome	Telefone	
1525	Asdrúbal	5432-1098	
1637	Doriana	9876-5432	
1701	Quincas	8765-4321	
2042	Melissa	7654-3210	
2111	Horácio	6543-2109	

AIMAMO		
<u>Código</u>	Tamanho	
1A	simples	
2A	duplo	
1B	simples	
2B	duplo	

ARMÁRIO

Como relacionaremos as duas entidades?

Podemos resolver de três formas:

- a) Chave estrangeira (Adição de coluna)
- b) Relacionamento incorporado (Fusão de tabelas)
- c) Relação de relacionamento (Tabela própria)

a) Chave estrangeira (Adição de coluna) - Melhor Opção Chave primária de uma das relações torna-se

chave estrangeira da outra

PESSOA (Código, Nome, Telefone)

ARMÁRIO (Código, Tamanho, Ocupante)

PESSOA

	<u>Código</u>	Nome	Telefone
	1525	Asdrúbal	5432-1098
	1637	Doriana	9876-5432
	1701	Quincas	8765-4321
	2042	Melissa	7654-3210
1	2111	Horácio	6543-2109

ARMÁRIO

<u>Código</u>	Tamanho	Ocupante
1A	simples	1637 —
2A	duplo	(nulo)
1B	simples	(nulo)
2B	duplo	2111 -

b) Relacionamento incorporado (Fusão de tabelas)

Fusão das duas relações em uma única Recomendação: ambas devem ter participação total na relação

Código	Nome	Telefone	Cod_Armario	Tamanho
1525	Asdrúbal	5432-1098	1A	Simples
1637	Doriana	9876-5432	2A	Duplo
1701	Quincas	8765-4321	1B	Simples

c) Relação de relacionamento (Tabela própria)

Relacionamento se transforma em terceira relação

Terceira relação - referência cruzada

mantém chave de ambas as relações envolvidas relacionamento

		_	
		_	Α
o	o		_
•	•	•	_

<u>Código</u>	Nome	Telefone
1525	Asdrúbal	5432-1098
1637	Doriana	9876-5432
1701	Quincas	8765-4321
2042	Melissa	7654-3210
2111	Horácio	6543-2109

OCUPA

<u>CodPessoa</u>	<u>CodArmário</u>
1637	1A
2111	2B

ARMÁRIO

<u>Código</u>	Tamanho	
1A	simples	
2A	duplo	
1B	simples	
2B	duplo	
	_	

Considere as tabelas Autor e Livro cujo relacionamento tem cardinalidade N:N

Livro			
ISBN	Título	Nº Páginas	
1	Harry Potter		
2	As crônicas de Námia		
3	Extraordinário		
4	Sherlock Holmes		
5	Diário de um Banana		
6	Um estudo em Vermelho		
7	Um ano inesquecível		
8	IT		

Autor			
Cod. Aut.	Nome	Idade	
1	J K Rowling		
2	C S Lewis		
3	Arthur Connan		
4	Kinney		
5	Stephen King		
6	R J Palacio		
7	Paula Pimenta		
8	Talita Rebolças		

Considere as tabelas Autor e Livro cujo relacionamento tem cardinalidade N:N

Os dados de relacionamento entre livros e autores são armazenados em um tabela própria

Essa tabela leva é conhecida como tabela associativa.

Livro			
ISBN	Título	Nº Páginas	
1	Harry Potter		
2	As crônicas de Námia		
3	Extraordinário		
4	Sherlock Holmes		
5	Diário de um Banana		
6	Um estudo em Vermelho	0	
7	Um ano inesquecível		
8	IT		

Autoria			
ISNB	Cod. Aut.		
1	1		
2	2		
3	6		
4	3		
5	4		
6	3		
7	7		
7	8		

Autor				
Cod. Aut.	Nome	Idade		
1	J K Rowling			
2	C S Lewis			
3	Arthur Connan			
4	Kinney			
5	Stephen King			
6	R J Palacio			
7	Paula Pimenta			
8	Talita Rebolças			

Mapeamento de entidades Fracas:

- ► Socio (<u>id</u>, nome, idade)
- ▶ Dependente (<u>idSocio</u>, <u>codigo</u>, nome)

No exemplo acima, linha mais grossa que liga Dependente representa que **Dependente é uma entidade fraca**, ou seja, **não existe se Sócio não existir**. O seu mapeamento para o modelo lógico relacional de dados fica assim:

Mapeamento de entidades Fracas:

- ► Socio (<u>id</u>, nome, idade)
- ▶ Dependente (<u>idSocio</u>, <u>codigo</u>, nome)

A chave primária da relação Dependente é composta da chave primária de Socio mais a chave primaria de Dependente, que nesse caso é o codigo. Portanto, a chave primaria de entidades fracas será sempre chave composta.

Relacionamentos binários 1:1

- ► Moto (<u>placa</u>, cor, modelo)
- ► Motor (codigo, tipo, placaMoto)

Em um relacionamento 1:1, escolhe-se uma das relações para receber a chave estrangeira, essa que é a chave primária da relação que ocorre o relacionamento.

Relacionamentos binários 1:1

- ► Moto (<u>placa</u>, cor, modelo)
- ► Motor (codigo, tipo, placaMoto)

Não é regra, mas geralmente, nesses casos, escolhe-se a relação que possui participação total no relacionamento. Nesse exemplo é o motor, pois é (1,1), ou seja irá sempre existir, enquanto moto (0,1) pode ou não existir.

Relacionamentos binários 1:N

- ► Pessoa (cpf, nome, idade)
- ► Moto (<u>placa</u>, modelo, cpfPessoa, data, preco)

Em um relacionamento 1:N, escolhe-se a relação "N" (no caso Moto) e inclui como chave estrangeira a chave primária da outra relação. Inclui também os atributos do relacionamento.

Relacionamentos binários N:N

- ► Funcionario (id, remuneracao, nome)
- ► Projeto (codigo, nome)
- ➤ Trabalha (idFuncionario, codigoProjeto, cargaHoraria)

Em um relacionamento N:N, cria-se uma nova relação e inclui como chave estrangeira, as chaves primarias das relações em que ocorre o relacionamento. A chave primaria dessa nova relação (no caso Trabalha) será uma chave composta. Por fim, carrega também os atributos do relacionamento.

Relacionamento n-ário

- ► Fornecedor (<u>codigo</u>, nome)
- ► Produto (codigo, nome)
- ➤ Salao (<u>endereco</u>, nome)
- ► Fornecimento (<u>codigoFornecedor</u>, <u>codigoProduto</u>, <u>enderecoSalao</u>, data, quantidade)

Auto-relacionamento

► Pessoa (<u>cpf</u>, nome, idade, idConjuge)

Generalização / especialização

- ► Atendente (<u>id</u>, nome, idioma)
- ► Tecnico (id, nome, curso)
- ► Analista (id, nome, tipo)

Conclusão

Enquanto o modelo conceitual preocupa-se em armazenar quais dados serão armazenados,

O modelo lógico preocupa-se em registrar como esses dados são armazenados em um SGBD.

Exercícios

- · Transforme o modelo conceitual em modelo lógico
- A) Faça o descritivo da entidades
- B) Desenhe o modelo lógico