

Assuming,

Initially Both switches (S1,S2) are office (ight-15 off)

Switch(S1) Switch(S2) | Light (L)

Jailed > 0 0 1

Assuming,

Tailed > 0 0 1

Assuming,

Switch(S1) Switches (S1,S2) are office (ight-15 off)

Tailed > 0 0 1

Assuming,

Switch(S1) Switches (S1,S2) are office (ight-15 off)

Assuming,

Switch(S1) Switches (S1,S2) are office (ight-15 off)

Tailed > 0 0 1

Assuming,

Switch(S1) Switches (S1,S2) are office (ight-15 off)

Tailed > 0 0 1

Assuming,

Switch(S1) Switches (S1,S2) are office (ight-15 off)

Tailed > 0 0 1

Assuming,

Tailed > 0 0 1

$$S_1 \overline{S_2} + S_2 \overline{S_1} = L$$

(01) $L = S_1 \oplus S_2$

Logical Crowst

In our homes, hor a hoo way switch we can either use "hoz" (0) 'xor" 108°C. so possibly 'yes."

(Mehod 2)		×	
(2) Simply assume Gill	\$ \$90 omong	6901,10,11	
	1 G CO.	RI FO	- 70
1 Bartelone D2 0, 00.	0 1	00	
000		000	
0.01		08	194
00	01	00	
010	10		
010	0111	00	
100	1001	901	647
0 1 1	0)	00	643
01)		90	
10)	D	00	5-16
101		00	
110	0)	00	09,43
11 0	11:20	00	13
11)	01;	00	
6		1	
$R_1 = \overline{D_2} D_1 \overline{D_0} C_1 C_0 + \overline{D_2} \overline{D_1}$	10000	10000	27 1

Ro = D_D, DOCIGO+ D_D, DOCIGO + D_D, DOCIGO

Donna

ABC+ABC+ABC+ABC=BC+BC CT = ABC+ABC+ABC+ABC=AC+AC

 $A^{\dagger} = \overline{ABC} + AB(+ABC+ACB = AB+B)$ $B^{\dagger} = \overline{ABC} + ABC+ABC+\overline{ABC} = \overline{BC} + BC$ $C^{\dagger} = \overline{ABC} + ABC+\overline{ABC} + \overline{ABC} = \overline{C}$

 $A^{\dagger} = \overline{m}(+AB + B(A \oplus C)) + m(AB + B)$ $B^{\dagger} = \overline{m}(BC + BC) + m(BC + BC)$ $C^{\dagger} = \overline{m}(C) + m(C) = C$

At, Bt, Ct are Evaluated Ushs Combinational lossec. Grom Consent values of A,B, C"E"m"

In order to get-our output hish, we need to use Current value of Di & remember earlier 2" values of Di, so two flipflops are needed to remember.