	- att	$\begin{array}{cccccccccccccccccccccccccccccccccccc$
(b) (a) $\frac{d}{dx} \left(\frac{1}{1+x^2} \right) = \frac{-2x}{(1+x^2)^2}$ (b) $\frac{d}{dx} \left(\frac{1}{1+x^2} \right) = \frac{-2x}{(1+x^2)^2}$ (c) $\frac{d}{dx} \left(\frac{1}{1+x^2} \right) = \frac{-2x}{(1+x^2)^2}$ (d) $\frac{d}{dx} \left(\frac{1}{1+x^2} \right) = 0 \Rightarrow 3(-2)^3 - (-2) + \alpha = 0$ (d) $\frac{d}{dx} \left(\frac{1}{1+x^2} \right) = 0 \Rightarrow 3(-2)^3 - (-2) + \alpha = 0$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$\begin{cases} a & b & b & b \\ b & b & b & b \end{cases} = \begin{bmatrix} a & b & b & b \\ b & b & b & b \end{cases}$ $\begin{cases} a & b & b & b \\ c & b & b & b \end{cases}$ $\begin{cases} a & b & b & b \\ c & b & b & b \end{cases}$ $\begin{cases} a & b & b & b \\ c & b & b & b \end{cases}$ $\begin{cases} a & b & b & b \\ c & b & b & b \end{cases}$ $\begin{cases} a & b & b & b \\ c & b & b & b \end{cases}$ $\begin{cases} a & b & b & b \\ c & b & b & b \end{cases}$ $\begin{cases} a & b & b & b \\ c & b & b & b \end{cases}$ $\begin{cases} a & b & b & b \\ c & b & b & b \end{cases}$ $\begin{cases} a & b & b & b \\ c & b & b & b \end{cases}$ $\begin{cases} a & b & b & b \\ c & b & b & b \end{cases}$ $\begin{cases} a & b & b & b \\ c & b & b & b \end{cases}$ $\begin{cases} a & b & b & b \\ c & b & b & b \end{cases}$ $\begin{cases} a & b & b & b \\ c & b & b & b \end{cases}$

(c) $\int_{0}^{4} (4nx + 4nx x)^{2} dx$ (c) $\int_{0}^{4} (4n^{2}x + 3 + 3nc^{2}x) dx$ (4) $\int_{0}^{2} (4n^{2}x + 3 + 3nc^{2}x) dx$ (5) $\int_{0}^{2} (4n^{2}x + 3 + 3nc^{2}x) dx$ (5)	3 7	$(d) \qquad P = 3\alpha$	A = 3 at = 60	$\Box = \frac{3}{4} \alpha^{3}$ $\frac{dh}{dt} = \frac{dh}{d\alpha} \cdot \frac{d\omega}{d\tau} \qquad ()$ $= \frac{\sqrt{3}}{3} \omega \cdot \vec{a} \qquad ()$	= 833 x hom P= 34 (1)		
(2) (4) \$ Ang 2n = Log 2 + Lng 4 + Lng, 6 = 1 + 2 + Lng, 6 = 1 + 2 + Lng, 6 = 4 + Lng, 8	W F 3 0		4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4	1 / LT K = 9	(L between tempers)	TK= [FLIC (CATK (vo.	these are alternate equal 1's

$\mathcal{X} = \{x, y, y,$		$(y) f(x) = \alpha m \times \\ (y) = (y) \times \\ (y) = (x) \times \\ (y) = ($	4 50 and be leaved forgat & n= x is # -0 49 gradual of fanged all = 1 on g(x) is to [[] 20 10 10 10 10 10 10 10 10 10 10 10 10 10	[] (u) Required angle = 0.29 x2 = 0.58 c (j)
$24/2$ $\frac{dN}{dt} = 0.5 (N^{-100})$	dN Th = 0.5 A e 0.5 C = 0.5 (N-100) as required How t=0, N=500 500 = 100 + Ae.		3 $\frac{x + 3x = 3y - 2}{y(x-2) = 3x - 2} = f(x) 0$ $\frac{x}{x-3} = f(x) 0$ $\frac{2x-3}{x-3} = f(x) 0$ $\frac{x}{x} = f(x) 0$	

(45) (a) 2 = a con nt N= at = -an an nt N= ain an int = ain 1 - aint	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	2) x = a con nt 2 x = 2 co nt 2 co nt out 2 x = 2 co nt 2 co nt out 2 co nt out	x=2cot x=0 cost=0
(c) Atternative: for (!) (c) Atternative: for (!) (d) = (1) x = 1 (e) (x) = (1) x = 1 (f) = (1) x = 1 ($\frac{q(x)}{q(x)} = \frac{1 - co}{1 + co}$ $\frac{q(x)}{q(x)} = \frac{1}{x}$ $\frac{q(x)}{q(x)} = \frac{1}{x}$ $\frac{q(x)}{x} = \frac{1}{x}$	ca la β = 1 - 1 (1) (+ ta) (-1 - ta) (-1	

0	$(d) A = \frac{x + 4}{x^2 + 8x} dA$	$(3) = \frac{1}{2} \int_{\mathcal{M}} \left(x^{\frac{2}{2}} + \theta x \right) \left(1 \right)$	= + (20 - 20 - 24 9)		72														
	$\frac{2}{2} \frac{2}{2} \frac{2}{2} \frac{4}{2} \frac{4}$	4- x 0 = x = -4	horiz, asymp. x = 0 y x = -8	0 2 84	$\frac{d\eta}{d\eta} = \frac{(x^{2}+\delta x)(-(x+\epsilon)(3x+\beta))}{(x^{2}+\epsilon)^{2}}$	x (x 1.2)	= 0 when x +8x-2x2-16x-32=0	4 (6	, , , , , , , , , , , , , , , , , , ,	in to	2						8-==		· ·

(4)	A on on one (1)	The state of the s	Thing)				*	300 1, 00 = 20p.	ap l an sa	مراه مراه	12	px-3ap + 4p	do = xd = Q	2 = 9x - ag 2		- 600c)-, da	5 (p-9) = a(p-303+4,) = a(p-4)	ad R, x= 30g n=p(20g)- a	- (2009 - apt	(9-6)2	ore 15 = B. 16 no 18.15 is a parallelogian	• ·
2	f'(a) = 3-12a2 and f(a)= 3a-4a (1)	= \beta - 12 a 2 \(\chi - a \)	y = (3-12a2 x + 3a-4a3-3a+12a	$\eta = (3 - 12a^2)x + \beta a$	11	How many 6 volves satisfy 803-120 + 3=0	Lev P(a) = 8a - 12a + 3	= 2402 - 24		[3] P "(a) = 482-34	\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \	(1) = 24 > 0 = 1 mm av	Aria 1/0/>0	P(1)<0	3		(6,8)	\) a.	6-0		A

A 1/2 /2			,		
3		%	3	***************************************	
		1200	2 2		
9		2005-42-2009			,
22 - 329			S S		
2 x 8	7-0	method.	2 .5		
P5 x purp a(p-9)2 x = a(p-9)2 = a(p-9)2	20 4		graft guin		
Argas =		Alemature 1971 - 24 - 24 - 24 - 24 - 24 - 24 - 24 - 2	7		
H On			7, %	5	

0	(b) (1) Let P(n) be the proposition that for integral 1721	(1+15/1+1) - + + + + + + + + + + + + + + + + + +	Tot P(): 141=12=1	RHS = ((2)(3) (= RHS	(1) (5 +10 e		Let k be a value of n for which P(h) is true	$(2+3)^{2} + (2+1)^{2} + (2+1)^{2} + (2+1)^{2}$	(1/0 /	12 // /2 - 1/1 /2 + 1/	- Tr T(RT)	$= \frac{1}{(1+y)^2 + (1+y)^2 + (1+y)^2}$		(1) [344+74+6] (1)	(14 +3/4+31)	(\mathfrak{F})	= (k+1)(k+i+1) 2(k+i)+1		So provided (/h) is true it is extility that	M(k+1) y true.	1 (1) 15 #	(1) of the foll interest now 1	(1) 23+4+++++++++++++++++++++++++++++++++++	(1) 00L1L1 = 101×101×101×10= 121200 (1)	· - + 2 + 4 + + 6 + - ;	(2) = 100 × 101 × 301 - 171 700 = 166 650 0	
entralight annual and a second a	$\frac{2}{\sqrt{2}} = \frac{2}{\sqrt{2}} = 2$	1 x x x x x x x x x x x x x x x x x x x	1 2 2 3 - 2 + C (1)	4 = 0 × × = 2	(三) またころ (三)	+1À	$\lambda' = \frac{1}{2c^2} - 1$	Now at t=0, w=0 + x <0 :, mores left	it since propher is not defined for x	porticle con not ever stop	00 N=- 4-1		= 2t 200	(1)	at =	at -x (2)	2 0/12	t = 1/4-x + tc (1)	0= 2		$\langle \tau \rangle = \sqrt{h - x}$	when x=1, 6= 33					