AIR UNIVERSITY

DEPARTMENT OF ELECTRICAL AND COMPUTER ENGINEERING

EXPERIMENT NO 4

Student Name:			Reg.	No:	
Objective:					
AB ASSESSMENT:					
Attributes	Excellent (5)	Good (4)	Average (3)	Satisfactory (2)	Unsatisfactor
Ability to Conduct Experiment					
Ability to assimilate the results					
Effective use of lab equipment and follows					
Total Marks:		Obtai	ned Marks:		
Total Marks:	IENT: Excellent	Good	Average	Satisfactory	Unsatisfactor
Fotal Marks:	IENT:				
Total Marks: _AB REPORT ASSESSM	IENT: Excellent	Good	Average	Satisfactory	Unsatisfactor
Total Marks: _AB REPORT ASSESSM Attributes	IENT: Excellent	Good	Average	Satisfactory	Unsatisfactor
LAB REPORT ASSESSM Attributes Data presentation	IENT: Excellent	Good	Average	Satisfactory	Unsatisfacto
AB REPORT ASSESSM Attributes Data presentation Experimental results	Excellent (5)	Good (4)	Average (3)	Satisfactory (2)	Unsatisfactor (1)

EXPERIMENT 04

Boolean Expression Simplification and Implementation

Objectives:

- > To understand the utilization of Boolean algebra in logic circuits.
- ➤ To write logic equation of a logic circuit from the logic diagram.
- ➤ Simplification of Boolean Expression using K-Map.

Equipment required:

- > TTL IC-7408
- ➤ TTL IC-7432
- ➤ TTL IC-7404
- > TTL IC-7400
- > TTL IC-7402
- ➤ TTL IC-7486
- Digital Electronics Trainer

Task 1:

Simplify the given expression and follow the given steps to verify the circuit.

$$\mathbf{F} = (\mathbf{X'Y'+Z})' + \mathbf{Z} + \mathbf{XY} + \mathbf{WZ}$$

Steps:

- 1. Obtain the truth table for the expression given above.
- 2. Simplify the Expression using Boolean algebra.
- 3. Draw the logic diagram for the simplified expression.
- 4. Implement the circuit on trainer using the required logic gates and verify your circuit by applying all the possible input combinations to the circuit.

Simplified Expression:

-		
10	aic	Diagram:
	210	Diazi aiii.

Truth Table:

	Inp	outs	Output	
W	X	Y	Z	F
0	0	0	0	
0	0	0	1	
0	0	1	0	
0	0	1	1	
0	1	0	0	
0	1	0	1	
0	1	1	0	
0	1	1	1	
1	0	0	0	
1	0	0	1	
1	0	1	0	
1	0	1	1	
1	1	0	0	
1	1	0	1	
1	1	1	0	
1	1	1	1	

Steps:	
1.	Write the Logic expression for the circuit.
2.	Simplify the expression using Boolean algebra.
3.	Obtain the truth table for the simplified expression.
4.	Draw a new logic diagram for the simplified expression.
5.	Implement the circuit on trainer using the required logic gates.
6.	Verify your circuit by applying all the possible input combinations to the circuit.
Logic 1	Expression:
Cimnl:	ed Evangaion.
Simpii	fied Expression:
Logic 1	Diagram for the Simplified Expression:
Logic 1	Diagram for the Simplified Expression:
Logic l	Diagram for the Simplified Expression:
Logic l	Diagram for the Simplified Expression:
Logic 1	Diagram for the Simplified Expression:
Logic 1	Diagram for the Simplified Expression:
Logic 1	Diagram for the Simplified Expression:
Logic 1	Diagram for the Simplified Expression:
Logic 1	Diagram for the Simplified Expression:
Logic 1	Diagram for the Simplified Expression:
Logic 1	Diagram for the Simplified Expression:
Logic 1	Diagram for the Simplified Expression:
Logic 1	Diagram for the Simplified Expression:
Logic 1	Diagram for the Simplified Expression:
Logic 1	Diagram for the Simplified Expression:
Logic 1	Diagram for the Simplified Expression:

Truth Table:			
Simulation Results:			1
Simulation Results:			

Task 3:

Expression:

$$F = A'C + A'B + AB'C + BC$$

Steps:

- 1. Express the above mentioned expression in the form of sum of minterms.
- 2. Draw the K-Map for the function.
- 3. Find its simplified expression from K-map in SOP form.
- 4. Draw the logic diagram for the simplified expression.
- 5. Obtain a truth table for the simplified expression.
- 6. Implement the logic circuit on trainer using the required logic gates.
- 7. Verify your logic circuit by applying all the possible input combinations to the circuit.

Canonical Form:

$$\mathbf{F} = \sum$$

K-MAP:

Simplified Expression:

Truth Table:

	Inputs		Output
A	В	C	F
0	0	0	
0	0	1	
0	1	0	
0	1	1	
1	0	0	
1	0	1	
1	1	0	
1	1	1	

Logic Diagram:

Simulation Results:		
Conclusion:		