

ДИФФЕРЕНЦИАЛЬНЫЕ УРАВНЕНИЯ И ПРОЦЕССЫ УПРАВЛЕНИЯ N 4, 2004 Электронный журнал,

Электронный журнал, рег. N П23275 от 07.03.97

 $http://www.neva.ru/journal\\ e-mail:\ diff@osipenko.stu.neva.ru$

Теория многомерных дифференциальных уравнений

О КЛАССИФИКАЦИИ НАКРЫВАЮЩИХ СЛОЕНИЙ

В.Н. Горбузов, В.Ю. Тыщенко

Гродненский государственный университет им. Я.Купалы 230023, Гродно, ул. Ожешко, 22 e-mail: gorbuzov@grsu.unibel.by; vt@grsu.grodno.by

Одним из эффективных аппаратов качественного (топологического) исследования дифференциальных уравнений является теория слоений, родоначальником которой является Анри Пуанкаре [1]. На основании методов этой теории свойства дифференциальных уравнений изучались, например, И.Г. Петровским и Е.М. Ландисом [2], Ю.С. Ильяшенко [3], Н.Н. Ладисом [4], С. Сатасно и Р. Sad [5] и др. В данной работе будем рассматривать классификации одного вида слоений, а именно накрывающих слоений [6].

1. Накрывающие слоения. Пусть A и B линейно связные гладкие многообразия размерностей $\dim A = n$ и $\dim B = m$.

Гладкое слоение L размерности m на многообразии $A \times B$, трансверсальное к $A \times \{b\}$ для всех $b \in B$, назовем накрывающим слоением, если естественная проекция $\mathfrak{p}: A \times B \to B$ определяет для каждого слоя этого слоения накрытие многообразия B.

Например, построенное в [7] слоение (n,B) является накрывающим слоением при $A=\mathbb{C}^n$.

Заметим, что накрывающее слоение устанавливает связность в тривиальном расслоении.

В

дальнейшем будем рассматривать линейно связные гладкие многообразия A_1 , A_2 , B_1 , B_2 , считая, что многообразия A_1 и A_2 гомеоморфны друг другу и имеют одинаковую размерность $\dim A_1 = \dim A_2 = n$, а размерности $\dim B_1 = \dim B_2 = m$.

Через L^j обозначим накрывающее слоение на многообразии $A_j \times B_j$, а через $L^j_{c_j}$ — слой накрывающего слоения L^j , содержащий точку $c_j \in A_j \times B_j$. Естественные проекции на многообразия B_j и A_j соответсвенно обозначим

$$\mathfrak{p}_i:A_i\times B_i\to B_i$$
 и $\mathfrak{q}_i:A_i\times B_i\to A_i,\ j=\overline{1,2}.$

2. Вложимость накрывающих слоений [6]. Будем говорить, что накрывающее слоение L^1 вложимо в накрывающее слоение L^2 , если существует такое вложение

$$h: A_1 \times B_1 \hookrightarrow A_2 \times B_2,$$

ОТР

$$\mathfrak{q}_2 \circ h(A_1 \times B_1) = A_2$$
 и $h(L^1_{c_1}) \hookrightarrow L^2_{h(c_1)}, \ \forall c_1 \in A_1 \times B_1.$

Пусть ν — гомоморфизмы одномерной группы гомологий $H_1(B_1)$ в одномерную группу гомологий $H_1(B_2)$, индуцированные вложениями

$$g_{\nu}: B_1 \hookrightarrow B_2.$$

Группу гомоморфизмов ν обозначим $\operatorname{Hom}(H_1(B_1),H_1(B_2))$. Действия $\Phi_j:A_j\times H_1(B_j)\to A_j$ одномерных групп гомологий $H_1(B_j)$, порождённые накрывающими слоениями L^j , на многообразия A_j определим формулами

$$\Phi_j^{[\alpha_j]}(a_j) = \mathfrak{q}_j \circ r_j \circ s_j(1), \ a_j \in A_j, \ [\alpha_j] \in H_1(B_j),$$

где $r_j(\tau)$ есть поднятие одного из путей $s_j(\tau) \subset B_j, \forall \tau \in [0;1]$, которые соответствуют элементу $[\alpha_j]$ одномерной группы гомологий $H_1(B_j)$, на слой $L^j_{(a_j,s_j(0))}$ слоения L^j в точку $(a_j,s_j(0)), j=\overline{1,2}$.

Теорема 1. Для вложимости накрывающего слоения L^1 в накрывающее слоение L^2 необходимо и достаточно существования таких гомоморфизма $\nu \in \text{Hom}(H_1(B_1), H_1(B_2))$ и гомеоморфизма $f: A_1 \to A_2$, что

$$f \circ \Phi_1^{[\alpha]} = \Phi_2^{\nu([\alpha])} \circ f, \ \forall [\alpha] \in H_1(B_1). \tag{1}$$

Доказательство. Необходимость. Пусть $h: A_1 \times B_1 \hookrightarrow A_2 \times B_2$ задаёт вложимость слоения L^1 в слоение L^2 . Возьмём фиксированную точку a_1^0 на многообразии A_1 и отмеченную точку b_1^0 на многообразии B_1 . Для произвольной точки a_1 многообразия A_1 обозначим через $s(\tau)$, $\forall \tau \in [0;1]$,

такой путь в $A_1 \times \{b_1^0\} \subset A_1 \times B_1$, который соединяет точки (a_1, b_1^0) и (a_1^0, b_1^0) и при этом $s(0) = (a_1, b_1^0)$, $s(1) = (a_1^0, b_1^0)$. Пусть

$$s_3(\tau) = \mathfrak{p}_2 \circ h \circ s(\tau), \ a_2 = \mathfrak{q}_2 \circ h(a_1, b_1^0), \ f(a_1) = \mathfrak{q}_2 \circ r_3(1),$$

где $r_3(\tau)$ — поднятие пути $s_3(\tau)$, $\forall \tau \in [0;1]$, на слой слоения L^2 в точку $(a_2,s_3(0))$. Далее непосредственным образом проверяем выполнение соотношений (1).

Достаточность. Пусть для действий Φ_1 и Φ_2 имеет место соотношения (1). Для пути $s_4:[0;1]\to B_1$ такого, что $s_4(0)=b_1,s_4(1)=b_1^0$, положим

$$G(a_1, b_1) = (g_{\nu} s_6^{-1} \circ f \circ s_5(a_1), g_{\nu}(b_1)), \tag{2}$$

где $s_5(a_1) = \mathfrak{q}_1 \circ r_4(1), \ r_4(\tau)$ — поднятие пути s_4 на слой слоения L^1 в точку $(a_1,b_1), \ g_\nu s_6^{-1}(a_2) = \mathfrak{q}_2 \circ g_\nu r_5^{-1}(1), \ g_\nu r_5^{-1}(\tau)$ есть результат поднятия пути $g_\nu \circ s_4^{-1}$ на слой слоения L^2 в соответствующую точку, s_4^{-1} — путь, обратный пути s_4 . Теперь непосредственно убеждаемся, что отображение (2) определяет вложение $L^1 \hookrightarrow L^2$. Теорема 1 доказана.

Найдём условия вложимости накрывающих слоений. Для этого введём в рассмотрение действия $\Phi_{jk*}\colon \pi_k(A_j)\times H_1(B_j)\to \pi_k(A_j)$ одномерных групп гомологий $H_1(B_j)$, порождённые накрывающими слоениями L^j , на гомотопические группы $\pi_k(A_j)$ и действия $\Phi_{jk**}\colon H_k(A_j)\times H_1(B_j)\to H_k(A_j)$ одномерных групп гомологий $H_1(B_j)$, порождённые накрывающими слоениями L^j , на k-мерные группы гомологий $H_k(A_j)$, $k=\overline{1,n-1}$, $j=\overline{1,2}$. Эти действия определим в виде отображений:

$$\Phi_{jk*}^{[\alpha_j]} : \pi_k(A_j) \to \pi_k(A_j), \quad [\alpha_j] \in H_1(B_j), \tag{3}$$

И

$$\Phi_{jk**}^{[\alpha_j]}: H_k(A_j) \to H_k(A_j), \quad [\alpha_j] \in H_1(B_j), \tag{4}$$

где $\Phi_{jk*}^{[\alpha_j]}(\pi_k(A_j))$ и $\Phi_{jk**}^{[\alpha_j]}(H_k(A_j))$ есть автоморфизмы, индуцированные гомеоморфизмом $\Phi_j^{[\alpha_j]}\colon A_j\to A_j,\ k=\overline{1,n-1},\ j=\overline{1,2}.$

Если каждое из многообразий A_1 и A_2 стягивается в точку (например, когда $A_1 = A_2 = \mathbb{C}^n$), то гомотопические группы $\pi_k(A_1)$ и $\pi_k(A_2)$, а также k-мерные группы гомологий $H_k(A_1)$ и $H_k(A_2)$, являются тривиальными. В случае же, когда многообразия A_1 и A_2 не стягиваются в точку, могут быть полезными следующие два утверждения, которые вытекают из теоремы 1 и указывают на возможные дополнительные топологические препятствия к вложимости накрывающих слоений.

Теорема 2. Действия (3) необходимо сопряжены при вложимости

накрывающего слоения L^1 в накрывающее слоение L^2 , то есть,

$$\lambda \circ \Phi_{1k*}^{[\alpha]} = \Phi_{2k*}^{\nu([\alpha])} \circ \lambda, \ \forall [\alpha] \in H_1(B_1), \ k = \overline{1, n-1},$$

где гомоморфизм ν и изоморфизм λ такие, что

$$\nu \in \text{Hom}(H_1(B_1), H_1(B_2)) \quad u \quad \lambda \colon \pi_k(A_1) \to \pi_k(A_2), \ k = \overline{1, n-1}.$$

Теорема 3. Действия (4) необходимо сопряжены при вложимости накрывающего слоения L^1 в накрывающее слоение L^2 , то есть,

$$\sigma \circ \Phi_{1k**}^{[\alpha]} = \Phi_{2k**}^{\nu([\alpha])} \circ \sigma, \ \forall [\alpha] \in H_1(B_1), \ k = \overline{1, n-1},$$

где гомоморфизм ν и изоморфизм σ такие, что

$$\nu \in \text{Hom}(H_1(B_1), H_1(B_2)) \quad u \quad \sigma \colon H_k(A_1) \to H_k(A_2), \ k = \overline{1, n-1}.$$

Рассмотрим уравнения Риккати

$$\frac{dw}{dz} = a_2(z)w^2 + a_1(z)w + a_0(z) \tag{5}$$

И

$$\frac{dw}{dz} = b_2(z)w^2 + b_1(z)w + b_0(z),\tag{6}$$

где функции a_i голоморфны на комплексной плоскости $\Gamma_1^{m_1}$ — плоскости с m_1 удаленными точками $z_{11}, \ldots z_{m_1 1}$, а функции b_i голоморфны на комплексной плоскости $\Gamma_2^{m_2}$ — плоскости с m_2 удаленными точками $z_{12}, \ldots z_{m_2 2}, i = \overline{0,2}$. Уравнение (5) определяет накрывающее слоение L^3 на многообразии $\overline{\mathbb{C}} \times \Gamma_1^{m_1}$, а уравнение (6) определяет накрывающее слоение L^4 на многообразии $\overline{\mathbb{C}} \times \Gamma_2^{m_2}$, где $\overline{\mathbb{C}}$ — сфера Римана. Будем говорить, что уравнение Риккати (5) вложимо в уравнение Риккати (6), если накрывающее слоение L^3 вложимо в накрывающее слоение L^4 .

Для определения действий одномерных групп гомологий $H_1(\Gamma_1^{m_1})$ и $H_1(\Gamma_2^{m_2})$, порожденных накрывающими слоениями L^3 и L^4 , на сфере Римана $\overline{\mathbb{C}}$ (т. е. преобразований голономии) рассмотрим вспомогательные линейные однородные системы

$$\frac{dv_1}{dz} = a_1(z)v_1 + a_0(z)v_2, \quad \frac{dv_2}{dz} = -a_2(z)v_1 \tag{7}$$

И

$$\frac{dv_1}{dz} = b_1(z)v_1 + b_0(z)v_2, \quad \frac{dv_2}{dz} = -b_2(z)v_1. \tag{8}$$

Из того, что заменой $w = v_1 v_2^{-1}$ систему (7) переводим в уравнение Риккати (5), а систему (8) — в уравнение Риккати (6), получаем:

преобразования голономии уравнения Риккати (5), соответствующие

выколотым точкам $z_{11}, \dots z_{m_1 1}$, имеют вид

$$P_k(w) = \frac{p_{11k}w + p_{12k}}{p_{21k}w + p_{22k}}, \quad k = \overline{1, m_1};$$

преобразования голономии уравнения Риккати (6), соответствующие выколотым точкам $z_{12}, \dots z_{m_22}$, имеют вид

$$Q_k(w) = \frac{q_{11k}w + q_{12k}}{q_{21k}w + q_{22k}}, \quad k = \overline{1, m_2}.$$

Дробно-линейным отображениям $P_k(w)$ поставим в соответствие матрицы $P_k = ||p_{ij}|| \in GL(2,\mathbb{C}), \ k = \overline{1,m_1},$ а дробно-линейным отображениям $Q_k(w)$ — матрицы $Q_k = ||q_{ij}|| \in GL(2,\mathbb{C}), \ k = \overline{1,m_2}.$ Матрицы P_k назовём матрицами голономии уравнения Риккати (5), а матрицы Q_k — матрицами голономии уравнения Риккати (6).

Пусть $[g_{kj}], k = \overline{1, m_j}$, есть положительно ориентированные образующие группы $H_1(\Gamma_j^{m_j}), j = \overline{1,2}$. Тогда группа $\mathrm{Hom}(H_1(\Gamma_1^{m_1}), H_1(\Gamma_2^{m_2}))$ порождена отображениями

$$\{[g_{11}],\ldots,[g_{m_11}]\}\to\Delta_1,$$

где набор Δ_1 состоит из m_1 элементов, каждый элемент этого набора принадлежит множеству $\{[g_{12}],\ldots,[g_{m_22}],[e_2]\}$, где $[e_2]$ — единичный элемент группы $H_1(\Gamma_2^{m_2})$, и каждая из образующих $[g_{12}],\cdots,[g_{m_22}]$, может входить не более одного раза; и автоморфизмом $\operatorname{Aut} H_1(\Gamma_2^{m_2})$:

$$[g_{k2}] \to [g_{k2}]^{-1}, \ k = \overline{1, m_2}.$$

Обозначим через $\widehat{\Delta}_1$ набор натуральных чисел, образованный из набора Δ_1 по следующему правилу: на соответствующее место набора Δ_1 в случае элемента $[g_{k2}]$ ставится индекс k, а в случае элемента $[e_2]$ ставится индекс m_2+1 . При этом будем полагать $Q_{m_2+1}=I$ — единичная матрица.

Теорема 4. Для вложимости уравнения Риккати (5) в уравнение Риккати (6) необходимо, чтобы существовало такое отображение

$$\chi \colon (1,\ldots,m_1) \to \widehat{\Delta}_1,$$

что нормальные жордановы формы матриц P_k и $Q_{\chi(k)}$ имеют одинаковое число блоков Жордана, $k=\overline{1,m_1}.$

Доказательство. Пусть уравнение Риккати (5) вложимо в уравнение Риккати (6). Тогда на основании теоремы 1 получаем:

$$f \circ P_k(w) = Q_{\gamma(k)} \circ f(w), \ \forall w \in \overline{\mathbb{C}}.$$
 (9)

Матрицу P_k представим в виде $P_k = S_k J_k S_k^{-1}$, где J_k есть нормальная жорданова форма матрицы P_k . Непосредственными вычислениями устанавливаем, что

$$P_k(w) = S_k \circ J_k \circ S_k^{-1}(w), \ \forall w \in \overline{\mathbb{C}},$$
(10)

где $S_k(w)$ есть дробно-линейное отображение, поставленное в соответствие по выше приведенному правилу матрице S_k , $J_k(w)$ — матрице J_k , $S_k^{-1}(w)$ есть отображение, обратное $S_k(w)$. С учётом (10) из (9) получаем:

$$h \circ J_k(w) = Q_{\chi(k)} \circ h(w), \ \forall w \in \overline{\mathbb{C}},$$
 (11)

где $h(w) = f \circ S_k(w)$. Гомеоморфизм $h : \overline{\mathbb{C}} \to \overline{\mathbb{C}}$ переводит точку 0 в точку $w_1 \in \overline{\mathbb{C}}$, точку $\infty - \mathbb{B}$ точку $w_2 \in \overline{\mathbb{C}}$. Возьмём такое дробно-линейное отображение $u : \overline{\mathbb{C}} \to \overline{\mathbb{C}}$, что $u : w_1 \to 0$, $u : w_2 \to \infty$. Выполняя замену гомеоморфизмов $v = u \circ h$, из соотношения (11) получаем

$$v \circ J_k(w) = u \circ Q_{\chi(k)} \circ u^{-1} \circ v(w), \ \forall w \in \overline{\mathbb{C}},$$
 (12)

где

$$u \circ Q_{\chi(k)} \circ u^{-1}(w) = \frac{aw + b}{cw + d}, \ ad - bc \neq 0,$$

а гомеоморфизм $v\colon \overline{\mathbb{C}} \to \overline{\mathbb{C}}$ такой, что

$$v(0) = 0, \quad v(\infty) = \infty. \tag{13}$$

Пусть нормальная жорданова форма J_k матрицы P_k состоит из двух блоков Жордана, т.е. $J_k = \begin{pmatrix} \lambda_1 & 0 \\ 0 & \lambda_2 \end{pmatrix}$. Тогда отображение $J_k(w) = \lambda_1 \lambda_2^{-1} w$ и на основании (12) и (13) получаем, что b=c=0, то есть,

$$u \circ Q_{\chi(k)} \circ u^{-1}(w) = ad^{-1}w.$$

Очевидно, что дробно-линейному отображению $w \to ad^{-1}w$ соответствует нормальная жорданова форма матрицы $Q_{\chi(k)}$, состоящая из двух блоков. В силу произвольности выбора k приходим к утверждению теоремы 4.

Теорема 5. Пусть $\{p_{1k}, p_{2k}\}$ есть множество собственных значений матрицы голономии P_k простой структуры уравнения (5), $k = \overline{1, m_1}$, а $\{q_{1k}, q_{2k}\}$ есть множество собственных значений матрицы голономии Q_k простой структуры уравнения (6), $k = \overline{1, m_2}$. Матрицы P_k , $k = \overline{1, m_1}$, и Q_k , $k = \overline{1, m_2}$, соответственно, перестановочны. Тогда уравнение Риккати (5) вложимо в уравнение Риккати (6), если и только если существуют отображение $\chi: (1, \ldots, m_1) \to \widehat{\Delta}_1$ и число $\alpha \in \mathbb{C}$ с $\operatorname{Re} \alpha \neq -1$, что

$$q_{1\chi(k)}/q_{2\chi(k)} = \frac{p_{1k}}{p_{2k}} \left| \frac{p_{1k}}{p_{2k}} \right|^{\alpha}, \ k = \overline{1,m_1}, \quad \text{или} \quad \overline{q_{1\chi(k)}/q_{2\chi(k)}} = \frac{p_{1k}}{p_{2k}} \left| \frac{p_{1k}}{p_{2k}} \right|^{\alpha}, \ k = \overline{1,m_1}.$$

Доказательство теоремы 5 проводится аналогично доказательству теоремы 4 на основании леммы из [7] и того факта [8, с. 194], что перестановочные матрицы простой структуры приводятся к диагональному виду одним преобразованием подобия.

Аналогично теореме 5 доказывается

Теорема 6. Пусть $\{p_{1k}, p_{2k}\}$ есть множество собственных значений матрицы голономии P_k простой структуры уравнения (5), $k = \overline{1, m_1}$, а $\{q_{1k}, q_{2k}\}$ есть множество собственных значений матрицы голономии Q_k простой структуры уравнения (6), $k = \overline{1, m_2}$. Тогда для вложимости уравнения (5) в уравнение (6) необходимо, чтобы существовали такие отображение $\chi: (1, \ldots, m_1) \to \widehat{\Delta}_1$ и числа $\alpha_k \in \mathbb{C}$ с $\operatorname{Re} \alpha_k \neq -1$, что

$$q_{1\chi(k)}/q_{2\chi(k)} = rac{p_{1k}}{p_{2k}} \left| rac{p_{1k}}{p_{2k}}
ight|^{lpha_k}$$
 или $\overline{q_{1\chi(k)}/q_{2\chi(k)}} = rac{p_{1k}}{p_{2k}} \left| rac{p_{1k}}{p_{2k}}
ight|^{lpha_k}, k = \overline{1,m_1}.$

3. Топологическая эквивалентность накрывающих слоений [9]. В этом пункте будем считать многообразия B_1 и B_2 гомеоморфными.

Два накрывающих слоения L^1 и L^2 назовём monoлогически эквивалентными, если существует гомеоморфизм $h\colon A_1\times B_1\to A_2\times B_2,$ такой, что

$$\mathfrak{q}_2 \circ h(A_1 \times B_1) = A_2, \ h(L^1_{c_1}) = L^2_{h(c_1)}, \ \forall c_1 \in A_1 \times B_1.$$

Будем рассматривать изоморфизмы ν одномерных групп гомологий $H_1(B_1)$ и $H_1(B_1)$, индуцированные гомеоморфизмами $g_{\nu} \colon B_1 \to B_2$. Группу таких изоморфизмов обозначим $I(H_1(B_1), H_1(B_2))$. Из теоремы 1 следует

Теорема 7. Для топологической эквивалентности накрывающих слоений L^1 и L^2 необходимо и достаточно существования изомоморфизма $\nu \in I(H_1(B_1), H_1(B_2))$ и гомеоморфизма $f: A_1 \to A_2$ таких, что выполняются соотношения (1).

Аналогично теоремам 2 и 3 доказываем

Теорема 8. Действия (3) необходимо сопряжены при топологической эквивалентности накрывающих слоений L^1 и L^2 , то есть,

$$\lambda \circ \Phi_{1k*}^{[\alpha]} = \Phi_{2k*}^{\nu([\alpha])} \circ \lambda, \ \forall [\alpha] \in H_1(B_1), \ k = \overline{1, n-1},$$

где изомоморфизмы ν и λ такие, что

$$\nu \in I(H_1(B_1), H_1(B_2)) \ u \ \lambda \colon \pi_k(A_1) \to \pi_k(A_2), \ k = \overline{1, n-1}.$$

Теорема 9. Действия (4) необходимо сопряжены при топологической эквивалентности накрывающих слоений L^1 и L^2 , то есть,

$$\sigma \circ \Phi_{1k**}^{[\alpha]} = \Phi_{2k**}^{\nu([\alpha])} \circ \sigma, \ \forall [\alpha] \in H_1(B_1), \ k = \overline{1, n-1},$$

 $\it rde$ изомоморфизмы $\it v$ и $\it \sigma$ такие, что

$$\nu \in I(H_1(B_1), H_1(B_2)) \ u \ \sigma \colon H_k(A_1) \to H_k(A_2), \ k = \overline{1, n-1}.$$

Рассмотрим линейные дифференциальные системы:

$$\frac{dw}{dz} = A(z)w\tag{14}$$

И

$$\frac{dw}{dz} = B(z)w,\tag{15}$$

где $w = \text{colon}(w_1, \dots, w_n)$, матрицы $A(z) = \|a_{ik}(z)\|$ и $B(z) = \|b_{ik}(z)\|$ являются квадратными порядка $n \geqslant 2$ с элементами $a_{ik} \colon \Gamma_1^m \to \mathbb{C}$, голоморфными на комплексной прямой Γ_1^m (с m удалёнными точками z_{11}, \dots, z_{m1}), и $b_{ik} \colon \Gamma_2^m \to \mathbb{C}$, голоморфными на комплексной прямой Γ_2^m (с m удалёнными точками z_{12}, \dots, z_{m2}), $i = \overline{1, n}, \ k = \overline{1, n}$. Система (14) (система (15)) определяет накрывающее слоение L^5 (накрывающее слоение L^6) на многообразии $\mathbb{C}^n \times \Gamma_1^m$ (на многообразии $\mathbb{C}^n \times \Gamma_2^m$).

Будем говорить, что система (14) топологически эквивалентна системе (15), если накрывающее слоение L^5 топологически эквивалентно накрывающему слоению L^6 .

Преобразования

голономии на пространстве \mathbb{C}^n системы (14), соответствующие точкам z_{j1} , имеют вид

$$P_i w, \ \forall w \in \mathbb{C}^n, \ P_i \in GL(n, \mathbb{C}), \ j = \overline{1, m},$$

а системы (15), соответствующие точкам z_{j2} , имеют вид

$$Q_j w, \ \forall w \in \mathbb{C}^n, \ Q_j \in GL(n, \mathbb{C}), \ j = \overline{1, m}.$$

Эти матрицы будем называть матрицами голономии соответственно систем (14) и (15). При этом матрицы P_j и Q_j — простой структуры, а матрицы $\ln P_j$ и $\ln Q_j$ — гиперболичны [10, с. 84].

Теорема 10. Пусть $\{p_{1j}, \ldots, p_{nj}\}$ есть множество собственных значений матрицы голономии P_j простой стуктуры линейной системы $(14), \ a \ \{q_{1j}, \ldots, q_{nj}\}$ есть множество собственных значений матрицы

голономии Q_j простой стуктуры системы (15), матрицы $\ln P_j$ и $\ln Q_j$ – гиперболичны, $j = \overline{1,m}$. Тогда:

1) для топологической эквивалентности линейных систем (14) и (15) необходимо, чтобы существовали такие перестановки

$$\chi: (1, \ldots, m) \to (1, \ldots, m), \ \rho_j: (1, \ldots, n) \to (1, \ldots, n), \ j = \overline{1, m},$$
 u числа α_{ij} $c \operatorname{Re} \alpha_{ij} \neq -1, \ i = \overline{1, n}, \ j = \overline{1, m}, \$ что $q_{\rho_j(i)\chi(j)} = p_{ij} \ |p_{ij}|^{\alpha_{ij}}, \ j = \overline{1, m}, \$ или $\overline{q}_{\rho_j(i)\chi(j)} = p_{ij} \ |p_{ij}|^{\alpha_{ij}}, \ j = \overline{1, m}, \ i = \overline{1, n};$

2) для топологической эквивалентности линейных систем (14) и (15) в случае перестановочности матриц голономии каждой из систем необходимо и достаточно существования таких перестановок

$$\chi\colon (1,\ldots,m)\to (1,\ldots,m),\ \rho\colon (1,\ldots,n)\to (1,\ldots,n),$$

$$u\ \text{vuces}\ \alpha_i\ c\ \mathrm{Re}\ \alpha_i\neq -1,\ i=\overline{1,n},\ \text{vmo}$$

$$q_{\rho(i)\chi(j)}=p_{ij}\,|p_{ij}|^{\alpha_i},\ j=\overline{1,m},\ \text{usu}\ \overline{q}_{\rho(i)\chi(j)}=p_{ij}\,|p_{ij}|^{\alpha_i},\ j=\overline{1,m},\ i=\overline{1,n},$$

При доказательстве этой теоремы будет использована

Лемма. Пусть $\{p_1, \ldots, p_n\}$ — множество собственных значений матрицы $P \in GL(n, \mathbb{C}), \ a \ \{q_1, \ldots, q_n\}$ — множество собственных значений матрицы $Q \in GL(n, \mathbb{C}),$ матрицы $\ln P \ u \ln Q$ — гиперболичны, $n \geqslant 2$. Тогда для существования гомеоморфизма $\xi \colon \mathbb{C}^n \to \mathbb{C}^n$ со свойством

$$\xi(Pw) = Q\xi(w), \ \forall w \in \mathbb{C}^n, \ \xi(w) = \text{colon}\left(\xi_1(w), \dots, \xi_n(w)\right), \tag{16}$$

необходимо и достаточно наличия таких чисел α_{τ} с $\operatorname{Re} \alpha_{\tau} > -1$ и перестановки $\rho: (1, \ldots, n) \to (1, \ldots, n)$, чтобы

$$q_{
ho(au)}=p_{ au}|p_{ au}|^{lpha_{ au}}$$
 unu $\overline{q}_{
ho(au)}=p_{ au}|p_{ au}|^{lpha_{ au}},\ au=\overline{1,n}.$

Доказательство. Матрицы P и Q представим в виде

$$P = R \operatorname{diag}(p_1, \dots, p_n) R^{-1}, \ Q = S \operatorname{diag}(q_1, \dots, q_n) S^{-1},$$

где p_{τ} и q_{τ} , $\tau = \overline{1,n}$, есть собственные значения матриц P и Q соответственно. Тогда для гомеоморфизма

$$\varphi \colon w \to S^{-1}\xi(Rw), \ \forall w \in \mathbb{C}^n,$$

условием топологической сопряжённости (16) будет

$$\varphi(\operatorname{diag}(p_1,\ldots,p_n)w) = \operatorname{diag}(q_1,\ldots,q_n)\varphi(w), \ \forall w \in \mathbb{C}^n.$$

Каждая из матриц P и Q на пространстве \mathbb{C}^n определяет отображение

 $u \colon w \to Pw, \forall w \in \mathbb{C}^n$, и $v \colon w \to Qw, \forall w \in \mathbb{C}^n$, соответственно. Отображение u определяет на пространстве \mathbb{C}^n инвариантное голоморфное слоение комплексной размерности один. Такой же вывод можно сделать и для отображения v. Одномерное голоморфное слоение \mathfrak{U} , инвариантное относительно отображения u, определяется универсальным инвариантом $w_{\zeta}^{-\lambda_n}w_n^{\lambda_{\zeta}},\,\zeta=\overline{1,n-1},\,$ этого отображения, где $\lambda_{\tau},\,\tau=\overline{1,n},\,$ есть собственные значения матрицы $\ln P$. Аналогично, одномерное голоморфное слоение \mathfrak{V} , инвариантное относительно отображения v, определяется универсальным инвариантом $w_{\zeta}^{-\mu_n}w_n^{\mu_{\zeta}}, \zeta = \overline{1,n-1}$, этого отображения, где $\mu_{\tau}, \tau = \overline{1,n}$, есть собственные значения матрицы $\ln Q$. Через \mathbb{C}_{τ} обозначим комплексную координатную прямую $w_{\zeta}=0,\,\zeta=\overline{1,n},\,\zeta\neq au,\,$ а через $\mathring{\mathbb{C}}_{ au}$ — комплексную координатную прямую \mathbb{C}_{τ} с выколотым началом координат, $\tau = \overline{1,n}$. Поскольку матрицы $\ln P$ и $\ln Q$ являются гиперболичными, то $\operatorname{Im}(\lambda_n \lambda_{\scriptscriptstyle C}^{^{-1}}) \neq$ 0 и $\mathrm{Im}\,(\mu_n\mu_\zeta^{^{-1}}) \neq 0, \zeta = \overline{1,n-1},$ а значит, замыкание каждой из гиперповерхностей $w_{\zeta}^{-\lambda_n}w_n^{\lambda_{\zeta}}=C_{\zeta}$ и $w_{\zeta}^{-\mu_n}w_n^{\mu_{\zeta}}=C_{\zeta}$ при $C_{\zeta}\neq 0$ содержит гиперплоскость $w_{\zeta}=0,\,\zeta=\overline{1,n-1}.$ Поэтому у слоения $\mathfrak U$ слои $u_{\tau}=$ $\overset{\circ}{\mathbb{C}}_{ au},\, au=\overline{1,n},\,$ гомеоморфны между собой и негомеоморфны любым другим слоям этого слоения. Аналогично у слоения $\mathfrak V$ слои $v_{\tau}=\check{\mathbb C}_{\tau},\, \tau=\overline{1,n},$ гомеоморфны между собой и негомеоморфны любым другим слоям этого слоения. А гомеоморфизм φ , удовлетворяющий условию топологической сопряжённости, переводит слой u_{τ} слоения \mathfrak{U} в слой $v_{\rho(\tau)}$ слоения $\mathfrak{V}, \ \tau = \overline{1,n},$ при этом начало координат суть неподвижная точка этого гомеоморфизма. Тогда у гомеоморфизма φ проекции $\varphi_{\tau} \colon \mathbb{C}^n \to \mathbb{C}$ такие, что их сужения $\widetilde{\varphi}_{\tau} \colon \mathbb{C}_{\tau} \to \mathbb{C}_{\rho(\tau)}$ являются гомеоморфизмами и $\widetilde{\varphi}_{\tau}(p_{\tau}\widetilde{w}_{\tau}) = q_{\rho(\tau)}\widetilde{\varphi}_{\tau}(\widetilde{w}_{\tau}, \forall \widetilde{w}_{\tau} = 0)$ $(0,\ldots,0,w_{\tau},0,\ldots,0)\in\mathbb{C}_{\tau},\, \tau=\overline{1,n}.$ Отсюда на основании леммы из [7] приходим к выводу, что существуют числа α_{τ} с $\operatorname{Re} \alpha_{\tau} > -1$ такие, что $q_{
ho(au)}=p_{ au}|p_{ au}|^{^{lpha_{ au}}}$ или $\overline{q}_{
ho(au)}=p_{ au}|p_{ au}|^{^{lpha_{ au}}},\, au=\overline{1,n}.$

Для доказательства достаточности возьмём отображение $H: \mathbb{C}^n \to \mathbb{C}^n$, $H(w) = \operatorname{colon}(H_1(w), \dots, H_n(w))$, такое, что

$$H_{\rho(\tau)}(w) = w_{\tau} |w_{\tau}|^{\alpha_{\tau}}, \text{ если } q_{\rho(\tau)} = p_{\tau} |p_{\tau}|^{\alpha_{\tau}}, \ \tau = \overline{1, n},$$

И

$$H_{\rho(\tau)}(w) = \overline{w}_{\tau} |w_{\tau}|^{\overline{\alpha}_{\tau}}, \text{ если } \overline{q}_{\rho(\tau)} = p_{\tau} |p_{\tau}|^{\alpha_{\tau}}, \ \tau = \overline{1, n}.$$

Непосредственно убеждаемся, что отображение H является сопрягающим гомеоморфизмом. Лемма доказана.

Доказательство

теоремы

10.

Первое

утверждение теоремы непосредственно вытекает из леммы и теоремы 7. Для доказательство второго утверждения достаточно воспользоваться свойством приведения перестановочных матриц простой структуры к диагональному виду общим перобразованием подобия.

Рассмотрим теперь линейные дифференциальные системы (14) и (15) в случае, когда квадратные матрицы A(z) и B(z) порядка $n \geqslant 2$ имеют элементы $a_{ik} \colon \mathbb{C} \to \mathbb{C}, \ b_{ik} \colon \mathbb{C} \to \mathbb{C}, \ i = \overline{1,n}, \ k = \overline{1,n}, \ r$ голоморфные и 1-периодические на комплексной прямой \mathbb{C} . Здесь системы (14) и (15) определяют соответственно накрывающие слоения L^7 и L^8 на многообразии $\mathbb{C}^n \times Z$, где Z — цилиндр $S^1 \times \mathbb{R}$. Системы (14) и (15) с периодическими коэффициентами будем называть mononoruvecku эквивалентными, если топологически эквивалентны накрывающие слоения L^7 и L^8 .

Нетрудно видеть, что преобразования голономии на пространстве \mathbb{C}^n системы (14) и (15) с периодическими коэффициентами определяются, соответственно, формулами Pw, $\forall w \in \mathbb{C}^n$, и Qw, $\forall w \in \mathbb{C}^n$. Матрицы P и Q назовём матрицами голономии соответственно систем (14) и (15) с периодическими коэффициентами.

Теорема 11. Пусть $\{p_1, \ldots, p_n\}$ $(\{q_1, \ldots, q_n\})$ — множество собственных значений матрицы голономии P (матрицы голономии Q) простой структуры системы (14) (системы (15)) с периодическими коэффициентами, матрица $\ln P$ (матрица $\ln Q$) гиперболична. Тогда системы (14) и (15) с периодическими коэффициентами топологически эквивалентны, если и только если существуют перестановка ρ : $(1, \ldots, n) \to (1, \ldots, n)$ и числа α_k с $\operatorname{Re} \alpha_k \neq -1$, $k = \overline{1, n}$, такие, что

$$q_{\rho(k)} = p_k |p_k|^{\alpha_k}$$
 unu $\overline{q}_{\rho(k)} = p_k |p_k|^{\alpha_k}$, $k = \overline{1, n}$.

Доказательство данной теоремы проводится на основании леммы аналогично доказательству теоремы 10.

На основании теоремы 7 проведём топологическую классификацию слоений, определяемых линейной системой в полных дифференциалах

$$dw = \sum_{\zeta=1}^{m} A_{\zeta} w \, dz_{\zeta} \equiv A(w) \, dz, \, w \in \mathbb{C}^{n}, \, z \in \mathbb{C}^{m}, \, n \geqslant 3, \, 2 \leqslant m \leqslant n-1, \quad (17)$$

когда она является вполне разрешимой (матрицы A_{ζ} , $\zeta = \overline{1,m}$, перестановочны) и у матрицы A(w) ранг rank A(w) = m почти везде на \mathbb{C}^n . Тогда системой (17) устанавливается отображение W пространства $\mathbb{C}^n \times \mathbb{C}^m$

в пространство \mathbb{C}^n посредством линейного действия

$$W: (w, z) \to \exp\left(\sum_{\zeta=1}^m A_\zeta z_\zeta\right) w, \ \forall w \in \mathbb{C}^n, \ \forall z_\zeta \in \mathbb{C}, \ \zeta = \overline{1, m},$$

которое построено на основании её фундаментальной системы решений $\exp\sum_{\zeta=1}^m A_\zeta z_\zeta$. В соответствии с теоремой 2 из [11] это линейное действие определяет m-мерное слоение на множестве V регулярных точек системы (17) (т. е. тех точек w, в которых $\operatorname{rank} A(w) = m$).

Пусть A_{ζ} , $\zeta=\overline{1,m}$, есть матрицы простой структуры с характеристическими корнями $\lambda_{i\zeta}$, $i=\overline{1,n}$, $\zeta=\overline{1,m}$. Тогда [8, с. 194] существует линейное невырожденное пребразование зависимых переменных, посредством которого систему (17) приводим к виду

$$dw_i = \sum_{\zeta=1}^m \lambda_{i\zeta} w_i \, dz_{\zeta}, \ i = \overline{1, n}.$$
 (18)

Относительно характеристической матрицы $\Lambda = \|\lambda_{i\zeta}\|_{n\times m}$ условимся, что определители её миноров m-го порядка отличны от нуля. При этом в соответствии с теоремой 1 из [12] система (18) имеет базис первых автономных интегралов

$$w_{m+k} \prod_{l=1}^{m} w_l^{\alpha_{lk}} = C_k, \ k = \overline{1, n-m}, \ (\alpha_{lk} \in \mathbb{C}, \ l = \overline{1, m}, \ k = \overline{1, n-m}).$$
 (19)

Из всего множества систем (18) выделим те, у которых гиперболичны наборы $\alpha_k = (\alpha_{1k}, \dots, \alpha_{mk}, 1), k = \overline{1, n-m}$, составленные из показателей степеней в (19). Множество таких систем отнесём к классу H. Заметим, что система (18) класса H является системой общего положения. Для системы (18) (m-1)-мерные комплексные плоскости $w_{i_1} = 0, \dots, w_{i_{n-m+1}} = 0$, где $i_{\tau} \in \{1, \dots, n\}, \tau = \overline{1, n-m+1}$, состоят из её сингулярных точек [13, с. 115]. Множество Π таких плоскостей исчерпывает множество сингулярных точек системы (18), а поэтому у этой системы множество регулярных точек $V = \mathbb{C}^n \setminus \Pi$.

Определяемые соотношениями (19) при $C_k \neq 0, k = \overline{1, n-m}$, слои системы (18) назовём *неособыми*, а остальные слои, определяемые этими соотношениями, — *особыми*. Принадлежность системы (18) классу H предполагает гиперболичность наборов α_k , $k = \overline{1, n-m}$. Поэтому неособые слои системы (18) класса H негомеорфны её особым слоям.

Поставим задачу топологической классификации слоений системы (18) класса H. Для этого наряду с системой (18) класса H рассмотрим систему

$$dw_i = \sum_{\zeta=1}^m \mu_{i\zeta} w_i \, dz_{\zeta}, \ i = \overline{1, n}, \tag{20}$$

того же класса с базисом первых автономных интегралов

$$w_{m+k} \prod_{l=1}^{m} w_l^{\beta_{lk}} = C_k, \ k = \overline{1, n-m}, \ (\beta_{lk} \in \mathbb{C}, \ l = \overline{1, m}, \ k = \overline{1, n-m}).$$

Множества регулярных точек систем (18) и (20) совпадают, а базисы первых автономных интегралов этих систем на их множестве V регулярных точек определяют слоения M^1 и M^2 соответственно. Построим гомеоморфизм $\mathfrak{h}\colon V\to V$, устанавливающий топологическую эквивалентность слоений M^1 и M^2 , который ввиду принадлежности систем (18) и (20) классу H неособые слои слоения M^1 переводит в неособые слои слоения M^2 , а особые — в особые. Будем без умаления общности считать, что при гомеоморфизме \mathfrak{h} многообразия $\{w_{m+k}=0\}\backslash\Pi, k=\overline{1,n-m},$ состоящие из особых слоёв, переходят сами в себя (этого всегда можно добиться перенумерованием зависимых переменных в системах (18) и (20)). Удалением из слоений M^1 и M^2 многообразий $\{w_\zeta=0\}\backslash\Pi, \zeta=\overline{1,m},$ состоящих из особых слоёв, получим слоения-сужения L^9 и L^{10} , которые являются накрывающими на $\mathbb{C}^{n-m}\times\left[\mathbb{C}^m\backslash\bigcup_{\zeta=1}^m\{w_\zeta=0\}\right]$ (накрываемость вытекает из заданий первых интегралов систем (18) и (20), если их разрешить относительно $w_{m+k}, k=\overline{1,n-m}$).

На комплексном многобразии $B=\mathbb{C}^m\backslash\bigcup_{\zeta=1}^m\{w_\zeta=0\}$ группа изоморфизмов $I(H_1(B),H_1(B))$ порождена перестановками отрицательно ориентированных на комплексной прямой $w_i=0,\,i=\overline{1,n},\,i\neq\zeta,$ пространства \mathbb{C}^n образующих $[g_\zeta]$ одномерной группы гомологий $H_1(B)$ и автоморфизмом $\mathrm{Aut}_\zeta H_1(B)\colon [g_\zeta]\to [g_\zeta]^{-1},\,\zeta=\overline{1,m}.$ При этом на L^9 действия

$$[g_{\zeta}]: w_{m+k} \to w_{m+k} \exp(2\pi i \alpha_{\zeta,m+k}), \ k = \overline{1, n-m},$$

на L^{10} действия

$$[g_{\zeta}]: w_{m+k} \to w_{m+k} \exp(2\pi i \beta_{\zeta,m+k}), \ k = \overline{1, n-m},$$

а значит, действия

$$\operatorname{Aut}_{\zeta} H_1(B) \colon w_{m+k} \to w_{m+k} \exp(-2\pi i \beta_{\zeta,m+k}), \ k = \overline{1, n-m}, \ \zeta = \overline{1, m}.$$

Отсюда по лемме и теореме 7 получаем критерий топологической эквивалентности слоений, определяемых системами (18) и (20) класса H.

Теорема 12. Для того чтобы системы (18) и (20) класса H были топологически эквивалентными, необходимо и достаточно, чтобы существовали такие числа α_{m+k} с $\operatorname{Re}\alpha_{m+k} > -1, k = \overline{1, n-m}, u$ перестановка $\chi: (1, \ldots, m) \to (1, \ldots, m)$, что при $k = \overline{1, n-m}$

$$\delta_{\chi(\zeta),m+k}^{\varepsilon_{\chi(\zeta)}} = \gamma_{\zeta,m+k} |\gamma_{\zeta,m+k}|^{\alpha_{m+k}} \quad u \quad \operatorname{Im} \alpha_{\zeta,m+k} \operatorname{Im} \beta_{\chi(\zeta),m+k} \varepsilon_{\chi(\zeta)} > 0, \quad \zeta = \overline{1,m},$$
 unu

$$\begin{split} \overline{\delta}_{\chi(\zeta),m+k}^{\varepsilon_{\chi(\zeta)}} &= \gamma_{\zeta,m+k} |\gamma_{\zeta,m+k}|^{\alpha_{m+k}} \ u \ \operatorname{Im} \alpha_{\zeta,m+k} \operatorname{Im} \beta_{\chi(\zeta),m+k} \varepsilon_{\chi(\zeta)} < 0, \ \zeta = \overline{1,m}, \\ \varepsilon \partial e \ \varepsilon_{\chi(\zeta)}^2 &= 1, \ \gamma_{\zeta,m+k} = \exp(2\pi i \alpha_{\zeta,m+k}), \ \delta_{\zeta,m+k} = \exp(2\pi i \beta_{\zeta,m+k}), \ \zeta = \overline{1,m}. \end{split}$$

Отметим возможность приложения теоремы 12 в случае нелинейной вполне разрешимой системы уравнений в полных дифференциалах

$$dw = \sum_{\zeta=1}^{m} [A_{\zeta}w + f_{\zeta}(w)]dz_{\zeta} \equiv F(w)dz, \qquad (21)$$

где $f_{\zeta}(w) = \text{colon}(f_{1\zeta}(w), \ldots, f_{n\zeta}(w)), \zeta = \overline{1,m}, f_{i\zeta}, i = \overline{1,n}, \zeta = \overline{1,m}, \text{ суть голоморфные в окрестности } U_0$ точки $O(0,\ldots,0)$ из \mathbb{C}^n скалярные функции, представимые степенными рядами, у которых отсутствуют свободный и линейный члены, у матрицы F(w) ранг rank F(w) = m почти везде в окрестности U_0 , а матрицы $A_{\zeta}, \zeta = \overline{1,m}$, таковы, что образованная на их основе система (18) принадлежит классу H. Действительно, система (21) в случае общего положения для матриц $A_{\zeta}, \zeta = \overline{1,m}$, голоморфным невырожденным преобразованием зависимых переменных [14] приводится к линейной системе вида (18) класса H. А это ввиду инвариантности топологической эквивалентности при голоморфизме позволяет на основании теоремы 12 решить задачу топологической эквивалентности слоений, определяемых системой (21) в окрестности U_0 .

4. Накрытие накрывающих слоений [15]. Будем говорить, что накрывающее слоение L^1 накрывающее слоение L^2 , если существует такое накрытие $h\colon A_1\times B_1\to A_2\times B_2$, что

$$q_2 \circ h(A_1 \times B_1) = A_2$$
 и $h(L^1_{c_1}) = L^2_{h(c_1)}, \forall c_1 \in A_1 \times B_1.$

Пусть ν -мономорфизмы одномерных групп гомологий $H_1(B_1)$ и $H_1(B_1)$, индуцированные накрытиями $g_{\nu}\colon B_1 \to B_2$. Группу мономорфизмов ν обозначим $\mathrm{Mon}(H_1(B_1),H_1(B_2))$.

Теорема 13. Для того чтобы накрывающее слоение L^1 накрывало накрывающее слоение L^2 , необходимо и достаточно существования таких мономорфизма $\nu \in \text{Mon}(H_1(B_1), H_1(B_2))$ и гомеоморфизма $f: A_1 \to A_2$, что выполняются соотношения (1).

Доказательство теоремы аналогично доказательству теоремы 1 из [15].

Следствие. Если многообразие B_1 является односвязным, то накрывающее слоение L^1 накрывает накрывающее слоение L^2 , тогда и только тогда, когда многообразие B_1 накрывает многообразие B_2 .

Например, накрывающее слоение на многообразии $\mathbb{C}^n \times \mathbb{C}$, определяемое линейной обыкновенной дифференциальной системой с постоянными коэффициентами, накрывает накрывающее слоение L^7 .

Аналогично теоремам 2 и 3 доказываются

Теорема 14. Действия (3) необходимо сопряжены при накрытии накрывающего слоения L^2 накрывающим слоением L^1 , то есть,

$$\lambda \circ \Phi_{1k*}^{[\alpha]} = \Phi_{2k*}^{\nu([\alpha])} \circ \lambda, \ \forall [\alpha] \in H_1(B_1), \ k = \overline{1, n-1},$$

где мономорфизм ν и изоморфизм λ такие, что

$$\nu \in \text{Mon}(H_1(B_1), H_1(B_2)) \quad u \quad \lambda \colon \pi_k(A_1) \to \pi_k(A_2), \ k = \overline{1, n-1}.$$

Теорема 15. Действия (4) необходимо сопряжены при накрытии накрывающего слоения L^2 накрывающим слоением L^1 , то есть,

$$\sigma \circ \Phi_{1k**}^{[\alpha]} = \Phi_{2k**}^{\nu([\alpha])} \circ \sigma, \ \forall [\alpha] \in H_1(B_1), \ k = \overline{1, n-1},$$

где мономорфизм ν и изоморфизм σ такие, что

$$\nu \in \text{Mon}(H_1(B_1), H_1(B_2)) \quad u \quad \sigma \colon H_k(A_1) \to H_k(A_2), \ k = \overline{1, n-1}.$$

Рассмотрим уравнения Риккати (5) и (6), где функции a_k и b_k являются 1-периодическими и голоморфными на $\mathbb C$. Функции b_k таковы, что

$$b_k(t+i) = b_k(t), \ \forall t \in [0;1], \ i = \sqrt{-1}, \ k = \overline{0,2}.$$

Уравнение Риккати (5) определяет накрывающее слоение L^{11} на многообразии $\overline{\mathbb{C}} \times Z$, а уравнение Риккати (6) — накрывающее слоение L^{12} на многообразии $\overline{\mathbb{C}} \times T^2$, где T^2 — тор, определяемый разверткой

$$K = \{z = x + iy \in \mathbb{C} : x \in [0, 1], y \in [0, 1]\}.$$

Будем говорить, что уравнение (5) накрывает уравнение (6), если накрывающее слоение L^{11} накрывает накрывающее слоение L^{12} .

Группа $H_1(Z)$ изоморфна \mathbb{Z} , а группа $H_1(T^2) - \mathbb{Z}^2$. Обозначим через

 $[\alpha]$ образующую группы $H_1(Z)$, а через $[\beta_1]$ и $[\beta_2]$ — образующие группы $H_1(T^2)$. Пусть P(w) есть преобразование голономии уравнения Риккати (5), соответствующее образующей $[\alpha]$, а $Q_j(w)$ — преобразование голономии уравнения Риккати (6), соответствующее образующей $[\beta_j]$, $j=\overline{1,2}$. Поставим в соответствие дробно-линейным преобразованиям P(w), $Q_1(w)$ и $Q_2(w)$ квадратные матрицы P, Q_1 и Q_2 соответственно по закону из пункта 2. Эти матрицы будем называть матрицами голономии.

Пусть цилиндр Z накрывает тор T^2 так, что полоса $0 \leqslant \operatorname{Re} z \leqslant 1$ накрывает квадрат K. Тогда на основании теоремы 13 аналогично теореме 5 доказывается

Теорема 16. Пусть $\{p_1, p_2\}$, $\{q_{11}, q_{21}\}$, $\{q_{12}, q_{22}\}$ — соответственно собственные значения матриц голономии P, Q_1 , Q_2 простой структуры. Тогда уравнение (5) накрывает уравнение (6) тогда и только тогда, когда при j=1 или j=2 выполняется хотя бы одно из условий:

$$q_{1j}/q_{2j} = \frac{p_1}{p_2} \left| \frac{p_1}{p_2} \right|^{\alpha_j}, \quad \overline{q_{1j}/q_{2j}} = \frac{p_1}{p_2} \left| \frac{p_1}{p_2} \right|^{\alpha_j},$$

 $r\partial e \operatorname{Re} \alpha_i \neq -1.$

5. Слабо накрывающие слоения. Пусть C линейно связное гладкое многообразие размерности $\dim C = n + m$.

Гладкое слоение $\mathfrak L$ размерности $\dim \mathfrak L = m$ на многообразии C назовём слабо накрывающим слоением, если на многообразии $A \times B$ таком, что замыкание $\overline{A \times B} = C$, гладкое слоение L, полученное из слоения $\mathfrak L$ удалением разве лишь некоторого множества слоёв, является накрывающим слоением на $A \times B$.

Будем рассматривать линейно связные гладкие многообразия

$$C_j = \overline{A_j \times B_j}, \ j = 1, \ j = 2,$$

где A_j и B_j — многообразия с ранее указанными свойствами. Через \mathfrak{L}^j обозначим слабо накрывающее слоение на многообразии C_j , а через $\mathfrak{L}^j_{c_j}$ обозначим слой слоения \mathfrak{L}^j , содержащий точку c_j , $j=\overline{1,2}$.

Два слабо накрывающих слоения \mathfrak{L}^1 и \mathfrak{L}^2 назовём *топологически* эквивалентными, если существует гомеоморфизм $\mathfrak{h}: C_1 \to C_2$ такой, что

$$\mathfrak{h}\big(\mathfrak{L}^1_{c_1}\big)=\mathfrak{L}^2_{\mathfrak{h}(c_1)},\ \forall c_1\in C_1.$$

Если сужением слабо накрывающего слоения \mathfrak{L}^j на множество $A_j \times B_j$ является накрывающее слоение L^j , $j=1,\ j=2,$ а слоения-сужения L^1 и L^2 топологически эквивалентны, то слабо накрывающие слоения \mathfrak{L}^1 и \mathfrak{L}^2 назовём

слабо топологически эквивалентными.

Для

гомеоморфизма $\mathfrak{h} \colon \overline{A_1 \times B_1} \to \overline{A_2 \times B_2}$, устанавливающего топологическую эквивалентность слабо накрывающих слоений \mathfrak{L}^1 и \mathfrak{L}^2 , сужение $h \colon A_1 \times B_1 \to A_2 \times B_2$ на многообразие $A_1 \times B_1$ является гомеоморфизмом, устанавливающим топологическую эквивалентность накрывающих слоенийсужений L^1 и L^2 . Поэтому топологически эквивалентные слабо накрывающие слоения являются слабо топологически эквивалентными.

При этом теорему 7 можно рассматривать как критерий слабой топологической эквивалентности слабо накрывающих слоений. Это обосновано тем, что топологическая эквивалентность слоений-сужений L^1 и L^2 слабо накрывающих слоений \mathfrak{L}^1 и \mathfrak{L}^2 устанавливает слабую топологическую эквивалентность слоений \mathfrak{L}^1 и \mathfrak{L}^2 .

Пусть гомеоморфизм $h\colon A_1\times B_1\to A_2\times B_2$ определяет слабую топологическую эквивалентность слабо накрывающих слоений \mathfrak{L}^1 и \mathfrak{L}^2 . Построим продолжение \overline{h} гомеоморфизма h на замыкание $\overline{A_1\times B_1}=C_1$ в виде гомеоморфизма $\overline{h}\colon C_1\to \stackrel{*}{C_2},$ где $\stackrel{*}{C_2}\supset A_2\times B_2$. Возможность всякий раз на основании гомеоморфизма h построить гомеоморфизм \overline{h} позволяет установить следующий критерий топологической эквивалентности слабо накрывающих слоений.

Теорема 17. Для того чтобы слабо накрывающие слоения \mathfrak{L}^1 и \mathfrak{L}^2 были топологически эквивалентными, необходимо и достаточно, чтобы существовал гомеоморфизм $h: A_1 \times B_1 \to A_2 \times B_2$, определяющий слабую топологическую эквивалентность слабо накрывающих слоений \mathfrak{L}^1 и \mathfrak{L}^2 , такой, что его продолжение \overline{h} на замыкание $\overline{A_1 \times B_1} = C_1$ было гомеоморфизмом $\mathfrak{h}: C_1 \to C_2, C_2 = \overline{A_2 \times B_2}$, то есть, $\overline{h} = \mathfrak{h}$.

Слоения \mathfrak{M}^1 и \mathfrak{M}^2 из пункта 3 являются слабо накрывающими слоениями. Системы (18) и (20) класса H будем называть *слабо топологически* эквивалентными, если слабо топологически эквивалентны слоения \mathfrak{M}^1 и \mathfrak{M}^2 . Аналогично доказательству теоремы 12 доказывается

Теорема 18. Для того чтобы системы (18) и (20) класса H были слабо топологически эквивалентными, необходимо и достаточно, чтобы существовали такие числа α_{m+k} с $\operatorname{Re} \alpha_{m+k} > -1$, $k = \overline{1, n-m}$, и перестановка $\chi: (1, \ldots, m) \to (1, \ldots, m)$, что

$$\boldsymbol{\delta}_{\chi(\zeta),m+k}^{^{\varepsilon}\chi(\zeta)} = \gamma_{\zeta,m+k} \big| \gamma_{\zeta,m+k} \big|^{\alpha_{m+k}}, \; \zeta = \overline{1,m},$$

unu

$$\overline{\delta}_{\chi(\zeta),m+k}^{\varepsilon_{\chi(\zeta)}} = \gamma_{\zeta,m+k} \big| \gamma_{\zeta,m+k} \big|^{\alpha_{m+k}}, \ \zeta = \overline{1,m}, \ k = \overline{1,n-m}.$$

Список литературы

- 1. $\Pi y a n \kappa a p e A$. О кривых, определяемых дифференциальными уравнениями. М.; Л.: ОГИЗ, 1947. 392 с.
- 2. Π е m p о в c κ u й M. Γ ., Π а n ∂ u c E. M. О числе предельных циклов уравнения $\frac{dy}{dx} = \frac{P(x,y)}{Q(x,y)}$, где P и Q многочлены второй степени // Матем. сб. 1955. Т. 37, вып. 2. С. 209 250.
- 3. Ильяшенко Ю. С. Топология фазовых портретов аналитических дифференциальных уравнений на комплексной проективной плоскости // Тр. семинара им. И.Г. Петровского. 1978. Вып. 4. С. 83 136.
- 4. Ла∂uc Н. Н. Об интегральных кривых комплексного однородного уравнения // Дифференц. уравнения. 1979. Т. 15, № 2. С. 246 251.
- 5. Camacho C., Sad P. Topological classification and bifurcations of holomorphic flows with resonances in \mathbb{C}^2 // Invent. math. 1982. Vol. 67. P. 447 472.
- 6. $Gorbuzov\ V.N.$, $Tyshchenko\ V.Yu$. On the embeddability of foliations of the Riccati equations // Buletinul AS Moldova. Matematica. 1988. No. 3(28). P. 49 56.
- - 8. $\Gamma a \, \text{н} \, m \, \text{м} \, a \, x \, e \, p \, \Phi$. Р. Теория матриц. М.: Наука, 1988. 592 с.
- 9. Γ о ρ б γ з о ϵ B. H., T ы ψ e н κ о B. W. Об эквивалентности слоений линейных дифференциальных систем // Дифференц. уравнения. 2003. T. 39, \mathbb{N}° 12. \mathbb{C} . 1596 1599.
- 10. $A p n o n b \partial$ B. U., U n b n w e n k o Ho. C. Обыкновенные дифференциальные уравнения // Итоги науки и техники. Современные проблемы математики. Фундаментальные направления. 1985. Т. 1. С. 7 149.
 - 11. Горбузов В. Н. Автономность системы уравнений в полных

- дифференциалах // Дифференц. уравнения. 1998. Т. 39, № 12. С. 149 156.
- 12. Γ орбузов B. H., Tы щенко B. Ю. Частные интегралы систем в полных дифференциалах // Дифференц. уравнения. 1991. Т. 27, № 10. С. 1819 1822.
- 14. $\Pi a \partial u c H. H$. Нормальные формы вполне интегрируемых систем // Дифференц. уравнения. 1976. Т. 12, № 11. С. 1994 1999.
- 15. Γ о ρ б γ з о ϵ B. H., T ы ψ e н κ о B. Θ . Накрытие слоений, определяемых дифференциальными уравнениями // Вестник Гроднен. ГУ. Сер. 2. -2002. № 1(9). С. 14-19.