

資訊工程系 許哲豪 助理教授

7.4 影像分割

- > 影像分割技術
- > 影像分割標註
- > 語義分割範例
- > 實例分割範例

影像分割(像素級分類)類型

原始影像

實例(Instance)分割

語義 (Semantic)分割

全景(Panoptic)分割

VOC語義分割資料格式

原始影像 (*.jpg)

語義分割後影像 (*.png)

黑色為背景

白色為邊界 (非必要)

PNG標註檔 採索引式 (Index)格式 類似GIF格式

Aeroplane	Diningtable	Bottle	Person	Chair	Train
Bicycle	Cat	Bus	Pottedplant	Cow	Tvmonitor
Bird	Horse	Car	Sheep		
Boat	Motorbike	Dog	Sofa	VOC	20+1類別

COCO語義分割資料格式

影像分類/物件偵測/語義分割標註資料格式 COCO 資料格式 annotation("info": info, "id": int, "images": [image], "image_id": int, "annotations": [annotation], "category_id": int, "licenses": [license], "segmentation": RLE or [polygon], "area": float. "iscrowd": 0 or 1, "bbox": [x,y,width,height], "year": int, "version": str. "description": str, categories[{ "id": int. "contributor": str. "name": str. "date_created": datetime, "supercategory": str, "id": int. Segmentation : [polygon] "width": int, "seamentation": "height": int. [[510.66,423.01,...,510.45,423.01]], "file name": str, 'area": 702.1057499999998. "license": int, "iscrowd": 0. "flickr_url": str, "coco url": str, "date_captured": datetime, Segmentation: [RLE] "segmentation": {"counts": [20736,2,453,5,452,9,447,13,444,...,5,34552], license{ "size": [457,640] "id": int, "name": str. "area": 3074 "url": str, "iscrowd": 1. OmniXRI Oct. 2020 整理繪製

```
Segmentation:[polygon] 封閉多邊形
```

```
"segmentation": X1, Y1, X2,Y2, ..., Xn, Yn [[510.66,423.01,...,510.45,423.01]], "area": 702.1057499999998, "iscrowd": 0,
```

Segmentation: [RLE] 二進制影像壓縮

```
"segmentation": {"counts":
[20736,2,453,5,452,9,447,13,444,...,5,34552],
"size": [457,640]
黑像素個數, 白像素個數, 黑, 白, ...
},
"area": 3074
```

"area": 3074,

"iscrowd": 1,

常見影像分割方式

貝茲曲線 (Bezier)

不受影像 尺寸影響

封閉多邊形 (Polygon)

不精準但 標註速度快

超像素 (Superpixel)

OpenCV

- LSC
- SEEDS
- SLIC

無自動合併

(Brush)

自由筆刷

很不精準

其它影像分割方式

- > 特定封閉區域
 - ▶ 橢圓形、旋轉矩形、多角形...
- > 特徵區域提取
 - ▶ 色彩、亮度、紋理...
 - ▶型態學分割、合併...
- > 像素聚類
 - Seeds Growing, K-Mean, Mean-shift, Watershed, Grabcut...
- > 其它客製軟體生成遮罩

影像分割標註工具

PixelAnnotationTool

https://github.com/abreheret/PixelAnnotationTool基於OpenCV分水嶺方式實現語義分割,分割結果以圖檔輸出。

superpixels-segmentation

https://github.com/Labelbox/superpixels-segmentation基於超像素SLIC方式實現影像分割,分割結果以圖檔輸出。

semantic-segmentation-editor

https://github.com/Hitachi-Automotive-And-Industry-Lab/semantic-segmentation-editor

基於WEB的標註工具,主要用於自駕車領域,支援2D(jpg, png)、3D(pcd)影像檔,具多邊形繪圖工具、魔術棒等工具,亦可對多邊形進行切割等工作。

常見語義分割技術

- 1. Fully convolutional networks
- 2. Convolutional models with graphical models
- Encoder-decoder based models
- 4. Multi-scale and pyramid network based models
- 5. R-CNN based models (for instance segmentation)
- 6. Dilated convolutional models and DeepLab family
- 7. Recurrent neural network based models
- 8. Attention-based models
- Generative models and adversarial training
- 10. Convolutional models with active contour models
- 11. Other models

參考資料:<u>https://arxiv.org/abs/2001.05566</u>

深度學習影像分割技術演進

橙色:語義分割 綠色:實例分割 黃色:全景分割

常見語義分割模型 FCN

Fully Convolutional Networks Based Model

常見語義分割模型 U-Net

Encoder-Decoder Based Models

常見語義分割模型 DeepLabV3+

常見實例分割技術

- 1. Classification of mask proposals
- 2. Detection followed by segmentation
- 3. Labelling pixels followed by clustering
- 4. Dense sliding window methods

實例分割技術演進

資料來源:https://arxiv.org/abs/2007.00047

常見實例分割模型 Mask R-CNN

Region Convolution Neural Network Based Model

Faster R-CNN

Mask R-CNN

常見實例分割模型 Yolact & Edge

You Only
Look At
CoefficienTs

YOLACT Edge

評量指標 DICE Coefficient

 $IoU(x) = \frac{x}{2-x}$

真陽: True Positive 真陰: True Negative 偽陽: False Positive 偽陰: False Negative

OpenVINO影像分割預訓練模型

Intel's Pre-trained

- Semantic Segmentation Models 語義分割
- ➤ Instance Segmentation Models 實例分割

Public Pre-trained

- Semantic Segmentation Models
- Instance Segmentation Models
- 3D Semantic Segmentation Models

> Demos

- Image Segmentation Python*
- Instance Segmentation Python*

Intel's Pretrained語義分割模型

Model Name	Size	GFlops	MPara.	Mean IOU	Classes
road-segmentation-adas- 0001	896x512	4.770	0.184	84.40%	4
semantic-segmentation- adas-0001	2048x1024	58.572	6.686	69.07%	20
unet-camvid-onnx-0001	368x480	260.1	31.03	71.95%	12
icnet-camvid-ava-0001	720x960	75.8180	26.7043	75.42%	12
icnet-camvid-ava-sparse- 30-0001	720x960	75.8180	26.7043	75.87%	12
icnet-camvid-ava-sparse- 60-0001	720x960	75.8180	26.7043	75.79%	12

適用範例程式:

Image Segmentation C++ DemoImage \ Segmentation Python* Demo

資料來源: https://docs.openvino.ai/latest/omz_models_group_intel.html#semantic-segmentation-models

Public Pretrained語義分割模型

Model Name	Size	GFlops	MPara.	Mean IOU	Classes
deeplabv3	513x513	11.469	23.819	68.41%	21 (VOC)
drn-d-38	1024x2048	1768.32	25.9939	71.31%	30 (Cityscapes)
hrnet-v2-c1- segmentation	320x320	81.993	66.4768	33.02%	(ADE20K)
fastseg-large	1024x2048	140.961	3.2	72.67%	19 (Cityscapes)
fastseg-small	1024x2048	69.220	1.1	67.15%	19 (Cityscapes)
pspnet-pytorch	512x512	357.171	46.5827	70.1%	21 (VOC)
ocrnet-hrnet-w48- paddle	1024x2048	324.66	70.47	82.15%	19 (Cityscapes)

適用範例程式:

Image Segmentation C++ DemoImage \ Segmentation Python* Demo

資料來源: https://docs.openvino.ai/latest/omz_models_group_public.html#segmentation-models

Demos語義分割範例

Image Segmentation Python* Demo

Liunx (含Ubuntu, DevCloud)下範例路徑
/opt/intel/openvino_2021/deployment_tools/open_model_zoo/
demos/segmentation_demo/python/segmentation_demo.py

延遲(Latency)包括

- 解碼(Decode)
- 預處理(Preprocessing)
- 推論(Inference)
- 後處理(Postprocessing)
- 渲染(Rendering)

每秒影格數(FPS) Frame per Second

資料來源: https://docs.openvino.ai/latest/omz_demos_segmentation_demo_python.html

語義分割範例可支援模型

- architecture_type =
 segmentation
 - Deeplabv3
 - drn-d-38
 - fastseg-large
 - fastseg-small
 - hrnet-v2-c1-segmentation
 - icnet-camvid-ava-0001
 - icnet-camvid-ava-sparse-30-0001
 - icnet-camvid-ava-sparse-60-0001

- ocrnet-hrnet-w48-paddle
- pspnet-pytorch
- road-segmentation-adas-0001
- semantic-segmentation-adas-0001
- unet-camvid-onnx-0001
- > architecture_type =
 salient_object_detection
 - f3net

資料來源: https://docs.openvino.ai/latest/omz_demos_segmentation_demo_python.html

範例7-4-1 語義分割(Intel's)

輸入影像

標註影像

輸出影像

模型名稱:

semantic-segmentation-adas-0001

分類名稱:

road, sidewalk, building, wall, fence, pole, traffic light, traffic sign, vegetation, terrain, sky, person, rider, car, truck, bus, train, motorcycle, bicycle, egovehicle

主要用途:

使用Intel預訓練語義分割模型進行影像分割並著色。

資料來源:https://docs.openvino.ai/latest/omz_models_model_semantic_segmentation_adas_0001.html#doxid-omz-models-model-semantic-segmentation-adas-0001

範例7-4-2 語義分割(Public)

輸出影像

模型名稱:

deeplabv3

分類名稱:(VOC dataset)

background, person, bird, cat, cow, dog, horse, sheep, aeroplane, bicycle, boat, bus, car, motorbike, train, bottle, chair, dining table, potted plant, sofa, tv/monitor

主要用涂:

使用Public預訓練語義分割模型,以OpenVINO轉換優化後進行影像分割並著色。

資料來源:https://docs.openvino.ai/latest/omz_models_model_deeplabv3.html#doxid-omz-models-model-deeplabv3

Intel's Pretrained實例分割模型

- instance-segmentation-security-xxxx (左圖)
 - \rightarrow xxxx = 0002 / 0091 / 0228 / 1039 / 1040
 - > COCO Dataset 80 分類

- > instance-segmentation-person-xxxx (右圖)
 - ➤ XXXX = 0007 (限OpenVINO 2022.1後使用)
 - > COCO Dataset 80 分類

資料來源: https://docs.openvino.ai/latest/omz_models_group_intel.html#instance-segmentation-models

Intel's Pretrained實例分割模型

Model Name	Size	GFlops	MPara.	Mask AP	Classes
instance-segmentation- security-0002	1024x768	423.0842	48.3732	36.44%	21 (VOC)
instance-segmentation- security-0091	1344x800	828.6324	101.236	38.14%	21 (VOC)
instance-segmentation- security-0228	608x608	147.2352	49.8328	33.9%	21 (VOC)
instance-segmentation- security-1039	480x480	13.9672	10.5674	28.6%	21 (VOC)
instance-segmentation- security-1040	608x608	29.334	13.5673	31.2%	21 (VOC)
instance-segmentation- person-0007	320x544	4.8492	7.2996	30.9%	1 (VOC)

適用範例程式:

(限OpenVINO 2022.1後使用)

Instance Segmentation Python* Demo Background Subtraction Python

資料來源: https://docs.openvino.ai/latest/omz_models_group_intel.html#semantic-segmentation-models

Public Pretrained實例分割模型

Model Name	Size	GFlops	MPara.	Mask AP	Classes
mask_rcnn_inception_re snet_v2_atrous_coco	1365x800	675.314	92.368	35.36%	21 (VOC)
mask_rcnn_resnet50_atr ous_coco	1365x800	294.738	50.222	27.46%	21 (VOC)
yolact-resnet50-fpn- pytorch	550x550	118.575	36.829	30.69%	21 (VOC)

註:前兩項因模型太大,只支援CPU及iGPU,不支援MYRIAD(NCS2)

適用範例程式:

Instance Segmentation Python* Demo

資料來源: https://docs.openvino.ai/latest/omz_models_group_public.html#instance-segmentation-models

Demos實例分割範例

- ➤ Liunx (含Ubuntu, DevCloud)下範例路徑
 /opt/intel/openvino_2021/deployment_tools/open_
 model_zoo/demos/instance_segmentation_demo/p
 ython/
 - instance_segmentation_demo.py
 - ➤ background_subtraction_demo.py(限OpenVINO 2022.1後使用)

資料來源:https://docs.openvino.ai/latest/omz_demos.html

範例7-4-3實例分割(Intel's)

輸入影像

輸出影像

模型名稱:

instance-segmentation-security-0228

分類名稱:

COCO Dataset 80 Classes

主要用途:

使用Intel's預訓練實例分割模型,以OpenVINO轉換優化後進行影像分割並著色,相同物件(實例)會著不同顏色,可支援標籤顯示。

資料來源:https://docs.openvino.ai/latest/omz_models_model_instance_segmentation_security_0228.html

範例7-4-4 影像去背 U² (Notebook)

輸出影像

輸出影像

OpenVINO Tutorials Notebooks

205-vision-background-removal

輸出影像

模型名稱:

U^2-Net

分類名稱:

無

主要用途:

使用預訓練影像分割模型,配合OpenVINO進行影像分割找出前景及背景,可選擇性替換其它背景。

參考資料: https://docs.openvino.ai/latest/notebooks/205-vision-background-removal-with-output.html

參考文獻

➤ 許哲豪,【AI HUB專欄】如何建立精準標註的電腦視覺資料集

https://omnixri.blogspot.com/2020/10/ai-hub_16.html

➤ 許哲豪,【OpenVINO™教學】土炮影像實例分割型智慧監控系統

https://omnixri.blogspot.com/2019/09/openvino.html

Shervin Minaee etc., Image Segmentation Using Deep Learning: A Survey

https://arxiv.org/abs/2001.05566

Abdul Mueed Hafiz etc., A Survey on Instance Segmentation: State of the art

https://arxiv.org/abs/2007.00047