Congratulations! You passed!

O Choose the maximum number of examples for each cluster

Choose the host random initialization

Grade received 100% Latest Submission Grade 100% To pass 80% or higher

Go to next item

ι.	Which of these best describes unsupervised learning?	1 / 1 point
	A form of machine learning that finds patterns without using a cost function.	
	A form of machine learning that finds patterns in data using only labels (y) but without any inputs (x).	
	A form of machine learning that finds patterns using labeled data (x, y)	
	A form of machine learning that finds patterns using unlabeled data (x).	
	 Correct Unsupervised learning uses unlabeled data. The training examples do not have targets or labels "y". Recall the T-shirt example. The data was height and weight but no target size. 	
2.		1/1 point
	Which of these statements are true about K-means? Check all that apply.	
	If each example x is a vector of 5 numbers, then each cluster centroid μ_k is also going to be a vector of 5 numbers.	
	\bigcirc Correct The dimension of μ_k matches the dimension of the examples.	
	$igspace$ If you are running K-means with $K=3$ clusters, then each $c^{(i)}$ should be 1, 2, or 3.	
	\odot Correct $c^{(i)}$ describes which centroid example(i) is assigned to. If $K=3$, then $c^{(i)}$ would be one of 1,2 or 3 assuming counting starts at 1.	
	$lacksquare$ The number of cluster assignment variables $c^{(i)}$ is equal to the number of training examples.	
	\bigcirc Correct $c^{(i)}$ describes which centroid example (i) is assigned to.	
	$\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ $	
3.		1/1 point
	You run K-means 100 times with different initializations. How should you pick from the 100 resulting solutions?	
	O Average all 100 solutions together.	
	Pick the last one (i.e., the 100th random initialization) because K-means always improves over time	
	Pick randomly that was the point of random initialization.	
	lacktriangledown Pick the one with the lowest cost J	
	 Correct K-means can arrive at different solutions depending on initialization. After running repeated trials, choose the solution with the lowest cost. 	
4.	You run K-means and compute the value of the cost function $J(c^{(1)},\ldots,c^{(m)},\mu_1,\ldots,\mu_K)$ after each iteration. Which of these statements should be true?	1/1 point
	Because K-means tries to maximize cost, the cost is always greater than or equal to the cost in the previous iteration.	
	There is no cost function for the K-means algorithm.	
	The cost can be greater or smaller than the cost in the previous iteration, but it decreases in the long run.	
	The cost will either decrease or stay the same after each iteration	
	✓ Correct The cost never increases. K-means always converges.	
5.	In K-means, the elbow method is a method to	1/1 point
	Choose the number of clusters K	

CHOOSE THE DESCRAINCOM INITIALIZATION

 $\begin{tabular}{ll} \hline \end{tabular} Choose the best number of samples in the dataset \\ \hline \end{tabular}$

⊘ Correct

The elbow method plots a graph between the number of clusters K and the cost function. The 'bend' in the cost curve can suggest a natural value for K. Note that this feature may not exist or be significant in some data sets.