On peut résumer la situation par le tableau suivant :

Dé 1	1	1	2	3	4	5
1	2	2	3	4	5	6
2	3	3	4	5	6	7
3	4	4	5	6	7	8
4	5	5	6	7	8	9
5	6	6	7	8	9	10
5	6	6	7	8	9	10

1. a. Les différentes sommes qu'un élève peut obtenir sont 2;3;4;5;6;7;8;9;10

b.	Dé 1 Dé 2	1	1	2	3	4	5
	1	2	2	3	4	5	6
	2	3	3	4	5	6	7
	3	4	4	5	6	7	8
	4	5	5	6	7	8	9
	5	6	6	7	8	9	10
	5	6	6	7	8	9	10

La probabilité de l'évènement A : « le joueur obtient 8 » est : $\mathbf{P}(\mathbf{A}) = \frac{4}{36}$

2. a. La probabilité de l'évènement « il obtient une patte à sa fourmi dès son premier lancer » correspond à la probabilité de l'évènement B « il obtient 6 à son lancer »

Dé 1	1	1	2	3	4	5
1	2	2	3	4	5	6
2	3	3	4	5	6	7
3	4	4	5	6	7	8
4	5	5	6	7	8	9
5	6	6	7	8	9	10
5	6	6	7	8	9	10

$$\mathbf{P}(\mathbf{B}) = \frac{8}{36} = \frac{2}{9}$$

 $\textbf{b.} \ \, \text{La probabilit\'e de l'\'ev\`enement C \'e il obtient 2 pattes \`a sa fourmi en deux lancers \"e est : } \mathbf{P(C)} = \frac{2}{9} \times \frac{2}{9} = \frac{4}{81}$

3. a. Eden a choisi le nombre qui a la plus grande probabilité d'être obtenu (voir tableau), elle a donc plus de chance de gagner la partie.

b. Néanmoins il s'agit de valeurs théoriques, elle a plus de chance de gagner ce qui ne veut pas dire qu'elle va forcément gagner.

1. Je calcule la longueur totale du parcours :

$$AB + BC + CD + DA = 960 \text{ m} + 1,05 \text{ km} + 780 \text{ m} + 660 \text{ m} = 960 \text{ m} + 1050 \text{ m} + 780 \text{ m} + 660 \text{ m} = 3450 \text{ m}$$

La longueur totale du parcours vaut donc : **3450 m**

- 2. a. La distance parcourue par Léo est : $d=2\times 3$ 450 + $\frac{1}{3}\times 3$ 450 = 8 050 m
 - **b.** Léo parcourt donc 8 050 m = 8,05 km en 48 min soit en $\frac{48}{60}$ h = 0,8 h. Sa vitesse moyenne est donc de $v=\frac{8,05$ km}{0,8 h=10,0625 km/h}
 - c. S'il court à cette vitesse moyenne pendant 15 km : $t = \frac{15 \text{ km}}{10,0624 \text{ km/h}} \simeq 1,49 \text{ h}$ au centième près. Léo mettra moins d'une heure et demie pour parcourir 15 km.
- 3. Tara parcourt 2,01 km (960 m + 1,05 km) à une vitesse moyenne de 10 km/h. $T_{Tara} = \frac{2,01 \text{ km}}{10 \text{ km/h}} = 0,201 \text{ h}$ Kévin parcourt 1,44 km (780 m + 660 m) à une vitesse moyenne de 6 km/h. $T_{K\acute{e}vin} = \frac{1,44 \text{ km}}{6 \text{ km/h}} = 0,24 \text{ h}$ Tara et Kévin parcourt donc 3,45 km en 0,441 h soit une vitesse moyenne $v = \frac{3,45 \text{ km}}{0,441 \text{ h}} = 7,82 \text{ km/h}$
- 4. a. En utilisant cette échelle on en déduit que les longueurs réelles sont multipliées par $\frac{1}{20\ 000}$

On peut ainsi calculer :
$$AB_{plan} = \frac{1}{20~000} \times 960~\mathrm{m} = 0,048~\mathrm{m} = 4,8~\mathrm{cm}$$

On peut également utiliser le tableau de proportionnalité suivant. 1 cm sur le plan représente 20 000 cm en réalité soit 200 m.

		AB	BC	CD	DA	BD
Longueur sur le plan	1	4,8	5,25	3,9	3,3	5,25
Longueur réelle en m	200	960	1 050	780	660	1 050

b. Amina a roulé pendant 25 minutes à 11,5 km/h elle a parcouru une distance égale à :

$$d=\frac{25}{60}~\mathrm{h}\times11,5~\mathrm{km/h}=\frac{115}{24}~textkm\simeq4~792~\mathrm{m}$$

Elle parcourt donc un tour complet $(3\ 450\ m)$ + la longueur AB (960m) elle se trouve à 382 m du point B soit sur le plan à 1,91 cm.

