Precept 1: Candy

$$Q_{J}(P) = 300 - 3P + 4I$$
 \Leftrightarrow $P = (100 + 4I) - Q_{3}$
 $Q_{S}(P) = 3P - 50$ \Leftrightarrow $P = 50 + Q_{3}$

a)
$$Q_{d}(P^{*}) = Q_{s}(P^{*})$$

 $400 - 3P = 3P - 50$
 $P^{*} = 7S \implies Q^{*} = 17S$

$$CS = \left(\frac{400}{3} - 75\right) \cdot 175 \cdot \frac{1}{2} = \frac{175}{3} \cdot \frac{175}{2} = \frac{175^{2}}{6} = \frac{30,625}{6}$$

$$\approx 5,104.16$$

c,6)
$$Q_{D}(P^{*}; I=40) = Q_{S}(P^{*})$$

 $460-3P=3P-50$
 $P^{*}=85; Q^{*}=20S$
 $CS=(\frac{460}{3}-85).20S.\frac{1}{2}$
 $=\frac{205}{3}.\frac{205}{2}=\frac{42.025}{2} \times 7.004.1\overline{0}$

(1) We start backwards:
$$Q^* = 160$$
. $\Rightarrow P^* = 70$. Plugging in denand: $160 = 300 - 3.70 + 4I^*$ $\Rightarrow I^* = \frac{35}{3} = 17.5$

Since everything is linear, this negative shock to denand will reduce CS.

Problem 2: NCC apris

a) $160 - 8P = 70 + 7P \implies P = 6 \implies$ Rent price is \$600. Substituting in either denand or supply \implies Qs = $160 - 8 \cdot 6 = 112$. Qs = $70 + 7 \cdot 6 = 112$. Quantity is 1,112,000 aprs!

At MAUSON \$300 (P=3), we have that $Q_S = 70 + 7 \cdot 3 = 91$, \Rightarrow 910,000 apts, so a decrease of 210,000 apts.

What about population? ASSUMPTION: 3 ppl per apt $\Rightarrow \Delta^-$ 630,000 people.

b) If P=9, which P=9, P=

