aresty_data_analysis

March 8, 2020

Intertemporal Choice: A Laboratory Investigation of Choice Behavior under Additive and Compound Wealth Growth

Barry Sopher, Department of Economics, Rutgers University

With research assistance from Himesh Buch, James Hadley and Aaron Scheiner

[0]: main_data <- read.csv(file="/content/stacked-data-ergodicity.csv",header = TRUE) summary(main_data)

```
first_name
                    last_name
                                          login_id
                                                                 start_time
Joseph :
           42
                Patel
                         :
                            63
                                 ac1887
                                                 21
                                                       2/26/2020 12:13:294
Nicholas:
                                                 21
           42
                 Shah
                            63
                                 acm298
                                                       2/25/2020 10:16:168
Ryan
           42
                            42
                                                 21
                 Parekh
                                 ah1123
                                                       2/26/2020 10:13:147
Aditya :
           21
                 Ackerley:
                            21
                                 aka99
                                                 21
                                                       2/24/2020 10:13:126
Akil
           21
                 Ahmed
                            21
                                 al1104
                                                 21
                                                       2/24/2020 12:10:126
                                              :
Alan
           21
                 Ahmmed :
                            21
                                                 21
                                                       2/25/2020 12:13:105
                                 aman.s.gupta:
(Other) :1365
                 (Other) :1323
                                  (Other)
                                              :1428
                                                       (Other)
                                                                       :588
           end_time
                           duration
                                           treatment
                                                             session
                                : 3.00
2/24/2020 10:26:
                   63
                        Min.
                                         Min.
                                                 :1.000
                                                          Min.
                                                                  :1.000
2/26/2020 12:27:
                        1st Qu.: 8.00
                   63
                                         1st Qu.:1.000
                                                          1st Qu.:2.000
2/24/2020 10:23:
                   42
                        Median :12.50
                                         Median :1.000
                                                          Median :4.000
2/24/2020 12:18:
                   42
                               :12.99
                                         Mean
                                                :1.473
                                                                 :3.676
                        Mean
                                                          Mean
                        3rd Qu.:16.00
2/25/2020 10:25:
                   42
                                         3rd Qu.:2.000
                                                          3rd Qu.:5.000
2/25/2020 12:21:
                   42
                        Max.
                               :34.00
                                         Max.
                                                :2.000
                                                          Max.
                                                                 :6.000
(Other)
                :1260
   subject
                   question
Min.
     : 1.0
               Min.
                       : 1.00
1st Qu.:19.0
               1st Qu.: 6.00
Median:37.5
               Median :11.00
Mean
       :37.5
               Mean
                       :10.98
3rd Qu.:56.0
               3rd Qu.:16.00
```

Max. :74.0 Max. :21.00

```
A 50% chance of Option A and a 50% chance of Option B.
Option A: $2.00 every 3 days. A 3 percent rate of interest on accumulated earnings every time
Option A: $0.29 every 1 days. Accumulations end in 70 days.
Option A: $0.67 every 1 days. Accumulations end in 30 days.
Option B: $7.00 every 9 days. Accumulations end in 30 days.
Option B: $3.00 every 7 days. Accumulations end in 50 days.
(Other)
                                       Хb
    choice
                      Хa
                                                        Η
                                                                        D
                        :0.290
                                        :0.430
                                                                         :2
Min.
       :0.000
                Min.
                                 Min.
                                                 Min.
                                                        :1.000
                                                                  Min.
1st Qu.:0.000
                1st Qu.:1.330
                                 1st Qu.:2.000
                                                 1st Qu.:3.000
                                                                  1st Qu.:2
Median :1.000
                Median :2.000
                                 Median :3.000
                                                 Median :5.000
                                                                  Median:2
Mean
       :0.546
                Mean
                        :2.248
                                 Mean
                                        :3.349
                                                 Mean
                                                         :4.946
                                                                  Mean
                                                                          :2
3rd Qu.:1.000
                3rd Qu.:2.800
                                 3rd Qu.:4.200
                                                 3rd Qu.:7.000
                                                                  3rd Qu.:2
Max.
       :1.000
                Max.
                        :6.000
                                 Max.
                                        :9.000
                                                 Max.
                                                         :9.000
                                                                  Max.
                                                                         :2
      Т
                    cumXa
                                     cumXb
                                                 idealChoice
Min.
       :30.00
                Min.
                       :16.48
                                 Min.
                                       : 9.60
                                                 A:709
1st Qu.:30.00
                1st Qu.:19.52
                                 1st Qu.:18.00
                                                 B:845
Median :50.00
                Median :20.00
                                 Median :21.00
Mean
      :49.55
                Mean
                       :20.58
                                 Mean
                                       :19.82
3rd Qu.:70.00
                3rd Qu.:21.34
                                 3rd Qu.:21.97
Max.
       :70.00
                Max.
                       :27.82
                                 Max.
                                        :26.27
```

Looking at the above code snippet and its result, we will only focus on our response variable (choice) and all independent variables (Xa, Xb, H, D, T) in this course of action. These results might be useful in future

```
[0]: # Regression

# ========

lmod <- lm(choice ~ Xa+Xb+H+D+T , data=main_data) # linear model_

→regression

summary(lmod)
```

Call:

lm(formula = choice ~ Xa + Xb + H + D + T, data = main_data)

Residuals:

Min 1Q Median 3Q Max -1.00700 -0.31518 0.04834 0.33846 0.87492

Coefficients: (1 not defined because of singularities) Estimate Std. Error t value Pr(>|t|) (Intercept) 0.128372 0.075703 1.696 0.0901.

```
Хa
            -0.182942
                        0.116654 -1.568
                                            0.1170
Хb
             0.091822
                         0.073814
                                    1.244
                                            0.2137
Η
             0.128112
                         0.012905
                                    9.927
                                            <2e-16 ***
D
                                                 NA
                   NA
                               NA
                                       NA
Τ
            -0.002266
                                            0.1094
                         0.001415
                                  -1.602
```

Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

Residual standard error: 0.4186 on 1549 degrees of freedom Multiple R-squared: 0.2533, Adjusted R-squared: 0.2514 F-statistic: 131.4 on 4 and 1549 DF, p-value: < 2.2e-16

Results above show that, among all of our independent variables, Horizon (H) has the least P-Value, making it the most important variable which affects the response variable the most. We can even ignore the other variables

[0]: anova(lmod)

		Df	Sum Sq	Mean Sq	F value	Pr(>F)
		<int></int>	<dbl $>$	<dbl $>$	<dbl $>$	<dbl $>$
	Xa	1	48.816593	48.8165934	278.637384	1.187734e-57
A anova: 5×5	Xb	1	2.291036	2.2910356	13.076868	3.085475 e-04
	${ m H}$	1	40.521987	40.5219869	231.293084	8.655774e-49
	${ m T}$	1	0.449608	0.4496080	2.566292	1.093673e-01
	Residuals	1549	271.381040	0.1751976	NA	NA

[0]: coef(lmod)

(Intercept) 0.128372093392043 Xa -0.182941841781605 Xb 0.0918220441099204 H 0.128112081222266 D <NA> T -0.00226645355776882

The above result help us come up with the multiple linear regression model

		2.5~%	97.5~%
	(Intercept)	-0.020118423	0.2768626099
	Xa	-0.411757689	0.0458740057
A matrix: 6×2 of type dbl	Xb	-0.052963646	0.2366077338
	Н	0.102798400	0.1534257627
	D	NA	NA
	${ m T}$	-0.005041571	0.0005086641

		0.5 %	99.5 %
	(Intercept)	-0.066865600	0.323609787
	Xa	-0.483792559	0.117908875
A matrix: 6×2 of type dbl	Xb	-0.098544485	0.282188573
	\mathbf{H}	0.094829250	0.161394912
	D	NA	NA
	${ m T}$	-0.005915222	0.001382315

We have computed the 95% and 99% confidence interval for our model. One can confirm the results by comparing the P-Values. This result can be very useful for the hypothesis testing, as it will help to determine whether to ignore the null hypothesis or not

[0]: plot(lmod)

These are the graphs generated by the regression analysis. Each graph helps us understand different things about residuals and distribution of the data. Here is what each graph represents:

- 1. **Residual(errors)** vs **Fitted:** linearity of the modal and shows if residuals have non-linear patterns
- 2. Normal Q-Q plot (Normal Quantile-Quantile plot): shows if residuals are normally distributed
- 3. **Scale-Location:** shows if residuals are spread equally along the ranges of predictors
- 4. **Residuals vs Leverage:** helps us to find influential cases (robust regression can also help)

```
[0]: lmod_g <- glm(choice ~ Xa+Xb+H+D+T , data=main_data) # generalized_⊔

→ linear model

summary(lmod_g)
```

Call:

glm(formula = choice ~ Xa + Xb + H + D + T, data = main_data)

Deviance Residuals:

Min 10 Median 3Q Max -1.00700 -0.31518 0.04834 0.33846 0.87492

Coefficients: (1 not defined because of singularities)

Estimate Std. Error t value Pr(>|t|) (Intercept) 0.128372 0.075703 1.696 0.0901 . -0.182942 0.116654 -1.568 0.1170 Хa Xb 0.091822 0.073814 1.244 0.2137 0.128112 0.012905 9.927 <2e-16 *** NANANANA-0.002266 0.001415 -1.602 0.1094

Η

D

Signif. codes: 0 '*** 0.001 '** 0.01 '* 0.05 '.' 0.1 ' 1

(Dispersion parameter for gaussian family taken to be 0.1751976)

Null deviance: 363.46 on 1553 degrees of freedom Residual deviance: 271.38 on 1549 degrees of freedom

AIC: 1710.2

Number of Fisher Scoring iterations: 2

Here is a generalized linear modal. The modal lmod was a simple linear modal, where this modal helps us understand the exponentiality of the distribution

[0]: anova(lmod_g)

		Df	Deviance	Resid. Df	Resid. Dev
		<int></int>	<dbl $>$	<int $>$	<dbl $>$
A anova: 6×4	NULL	NA	NA	1553	363.4603
	Xa	1	48.816593	1552	314.6437
	Xb	1	2.291036	1551	312.3526
	Н	1	40.521987	1550	271.8306
	D	0	0.000000	1550	271.8306
	${ m T}$	1	0.449608	1549	271.3810

Waiting for profiling to be done...

		2.5~%	97.5 %
	(Intercept)	-0.020002396	0.2767465833
	Xa	-0.411578898	0.0456952149
A matrix: 6×2 of type dbl	Xb	-0.052850514	0.2364946020
	Н	0.102818179	0.1534059832
	D	NA	NA
	${ m T}$	-0.005039403	0.0005064957

Waiting for profiling to be done ...

	$\mid 0.5 \%$	99.5 %
(Intercept)	-0.066625040	0.32336923
Xa	-0.483421869	0.11753818
Xb	-0.098309926	0.28195401
Н	0.094870259	0.16135390
D	NA	NA
${ m T}$	-0.005910727	0.00137782
	Xa Xb H D	Xa -0.483421869 Xb -0.098309926 H 0.094870259 D NA

In the above snippets, we looked at generalized linear modal and its anova along with the confidence intervals

[0]: lmod_gnb <- glm.nb(choice ~ Xa+Xb+H+D+T , data=main_data) # negative binomial_
$$\rightarrow$$
 model

[0]: summary(lmod_gnb)

Call:

```
glm.nb(formula = choice ~ Xa + Xb + H + D + T, data = main_data,
    init.theta = 20592.51732, link = log)
```

Deviance Residuals:

```
Min 1Q Median 3Q Max -1.52843 -0.82247 0.05077 0.46607 1.20075
```

Coefficients: (1 not defined because of singularities)

Estimate Std. Error z value Pr(>|z|)

```
(Intercept) -1.450862  0.281308  -5.158  2.5e-07 ***
           -0.514161
Xa
                       0.526948 - 0.976
                                            0.329
Хb
            0.285997
                                            0.400
                       0.339990
                                  0.841
             0.240630
                       0.041925
                                  5.740 9.5e-09 ***
Η
D
                  NA
                             NA
                                      NA
                                               NA
Τ
           -0.005057
                       0.005276 -0.958
                                            0.338
```

Signif. codes: 0 '***, 0.001 '**, 0.01 '*, 0.05 '., 0.1 ', 1

(Dispersion parameter for Negative Binomial(20592.52) family taken to be 1)

Null deviance: 1026.87 on 1553 degrees of freedom

Residual deviance: 855.72 on 1549 degrees of freedom

AIC: 2543.7

Number of Fisher Scoring iterations: 1

Theta: 20593 Std. Err.: 68329

Warning while fitting theta: iteration limit reached

2 x log-likelihood: -2531.744

[0]: anova(lmod_gnb)

Warning message in anova.negbin(lmod_gnb):
"tests made without re-estimating 'theta'"

		Df	Deviance	Resid. Df	Resid. Dev	$\Pr(>\text{Chi})$
		<int></int>	<dbl $>$	<int $>$	<dbl $>$	<dbl></dbl>
A anova: 6×5	NULL	NA	NA	1553	1026.8667	NA
	Xa	1	82.2917733	1552	944.5749	1.174098e-19
	Xb	1	4.8276907	1551	939.7472	2.800612e-02
	Н	1	83.1065249	1550	856.6407	7.774863e-20
	D	0	0.0000000	1550	856.6407	NA
	${ m T}$	1	0.9220767	1549	855.7186	3.369303 e - 01

Waiting for profiling to be done...

		2.5~%	97.5~%
	(Intercept)	-2.0067405	-0.903729261
	Xa	-1.6512186	0.437843122
A matrix: 6×2 of type dbl	Xb	-0.3220629	1.026101982
	Н	0.1589407	0.323315416
	D	NA	NA
	${ m T}$	-0.0154445	0.005246005

Waiting for profiling to be done...

```
0.5~\%
                                                       99.5\%
                             (Intercept)
                                         -2.18335716 -0.733467723
                                         -2.05922968
                                                       0.708823322
                                    Xa
A matrix: 6 \times 2 of type dbl
                                    Xb
                                         -0.49258754
                                                       1.294168864
                                     Η
                                         0.13346256
                                                       0.349516468
                                     D
                                         NA
                                                       NA
                                      T
                                         -0.01872919 \quad 0.008469432
```

In the above snippets, we also looked at negative binomial distribution model and its anova along with the confidence intervals

Now we are considering different types of regression modals

Here's the outure generated by R for k in the above snippet:

	Index N	Predictors	R-Square	Adj. R-Square	Mallow's Cp
3	1 1	Н	0.251406437	0.2509240962	3.012463
2	2 1	Xb	0.137924879	0.1373694180	238.438312
1	3 1	Xa	0.134310675	0.1337528854	245.936244
5	4 1	T	0.000129974	-0.0005142721	524.303987
4	5 1	D	0.000000000	0.000000000	522.573628
7	6 2	Xa H	0.251644988	0.2506799914	4.517572
10	7 2	Xb H	0.251573823	0.2506087346	4.665209
14	8 2	н т	0.251406636	0.2504413317	5.012051
13	9 2	H D	0.251406437	0.2509240962	3.012463
9	10 2	Xa T	0.205578190	0.2045537901	100.086537
12	11 2	Xb T	0.205295974	0.2042712108	100.672014
6	12 2	Xa Xb	0.140614075	0.1395059054	234.859375
11	13 2	Xb D	0.137924879	0.1373694180	238.438312
8	14 2	Xa D	0.134310675	0.1337528854	245.936244
15	15 2	D T	0.000129974	-0.0005142721	524.303987
20	16 3	Xa H T	0.252594638	0.2511480467	4.547454
23	17 3	Xb H T	0.252155056	0.2507076139	5.459399
16	18 3	Xa Xb H	0.252103531	0.2506559893	5.566292
19	19 3	Xa H D	0.251644988	0.2506799914	4.517572
22	20 3	Xb H D	0.251573823	0.2506087346	4.665209
25	21 3	H D T	0.251406636	0.2504413317	5.012051
18	22 3	Xa Xb T	0.205838121	0.2043010331	101.547291
21	23 3	Xa D T	0.205578190	0.2045537901	100.086537

```
24 3
                   Xb D T 0.205295974 0.2042712108
                                                     100.672014
     24
          25 3
     17
                  Xa Xb D 0.140614075 0.1395059054
                                                     234.859375
     27
          26 4 Xa Xb H T 0.253340552 0.2514124450
                                                       5.000000
     29
          27 4 Xa H D T 0.252594638 0.2511480467
                                                       4.547454
          28 4 Xb H D T 0.252155056 0.2507076139
     30
                                                       5.459399
                 Xa Xb H D 0.252103531 0.2506559893
     26
          29 4
                                                       5.566292
                 Xa Xb D T 0.205838121 0.2043010331 101.547291
          30 4
     28
          31 5 Xa Xb H D T 0.253340552 0.2514124450
                                                       5.000000
[24]: k <- ols_step_best_subset(lmod, print_plot = TRUE) # best_subset_
      \rightarrowregregression
     plot(k)
     [[1]]
     NULL
     [[2]]
     NULL
```


page 2 of 2

Here is the output generated by R for k in the above snippet:

Best Subsets Regression

Model Index	Predictors
1	H
2	Xa H
3	Ха Н Т
4	Xa Xb H T
5	Xa Xb H D T

Subsets Regression Summary

Model	R-Square	Adj. R-Square	Pred R-Square 	C(p)	AIC	SBIC	
1	0.2514	0.2509	0.2496	3.0125	1708.2523	NA	
2	0.2516	0.2507	0.2487	4.5176	1709.7570	NA	
3	0.2526	0.2511	0.2488	4.5475	1709.7837	NA	
4	0.2533	0.2514	0.2486	5.0000	1710.2321	NA	
5	0.2533	0.2514	0.2486	5.0000	1712.2321	NA	

Model	SBC	MSEP	FPE	HSP	APC	
1	1724.2980	272.4346	0.1755	1e-04	0.7505	
2	1731.1513	272.5235	0.1757	1e-04	0.7513	
3	1736.5267	272.3534	0.1757	1e-04	0.7513	
4	1742.3236	272.2574	0.1758	1e-04	0.7515	
5	1749.6722	272.2574	0.1758	1e-04	0.7515	

AIC: Akaike Information Criteria

SBIC: Sawa's Bayesian Information Criteria

SBC: Schwarz Bayesian Criteria

MSEP: Estimated error of prediction, assuming multivariate normality

FPE: Final Prediction Error

HSP: Hocking's Sp

APC: Amemiya Prediction Criteria

[26]: # forward stepwise regression

k <- ols_step_forward_p(lmod,details=TRUE)</pre>

Forward Selection Method

Candidate Terms:

- 1. Xa
- 2. Xb
- 3. H
- 4. D
- 5. T

We are selecting variables based on p value...

Note: model has aliased coefficients

sums of squares computed by model comparison

Forward Selection: Step 1

- H

	Model Sur	nmary 	
R	0.501	RMSE	0.419
R-Squared	0.251	Coef. Var	76.684
Adj. R-Squared	0.251	MSE	0.175
Pred R-Squared	0.250	MAE	0.358

RMSE: Root Mean Square Error

MSE: Mean Square Error MAE: Mean Absolute Error

ANOVA

	Sum of Squares	DF	Mean Square	F	Sig.
Regression	91.376	1	91.376	521.221	0.0000
Residual	272.084	1552	0.175		
Total	363.460	1553			

Parameter Estimates

model upper	Beta	Std. Error	Std. Beta	t 	Sig	lower	
(Intercept) 0.060	0.009	0.026		0.368	0.713	-0.041	
H 0.118	0.108	0.005	0.501	22.830	0.000	0.099	

Note: model has aliased coefficients sums of squares computed by model comparison

No more variables to be added.

Variables Entered:

+ H

Final Model Output

	Model Summ	ary 	
R	0.501	RMSE	0.419
R-Squared	0.251	Coef. Var	76.684
Adj. R-Squared	0.251	MSE	0.175
Pred R-Squared	0.250	MAE	0.358

RMSE: Root Mean Square Error

MSE: Mean Square Error MAE: Mean Absolute Error

ANOVA

	Sum of Squares	DF	Mean Square	F	Sig.
Regression	91.376	1	91.376	521.221	0.0000
Residual	272.084	1552	0.175		
Total	363.460	1553			

Parameter Estimates

model upper	Beta	Std. Error	Std. Beta	t	Sig	lower
(Intercept)	0.009	0.026		0.368	0.713	-0.041
H 0.118	0.108	0.005	0.501	22.830	0.000	0.099

Selection Summary

Step	Variable Entered R-Square R		Adj. R-Square			
1	Н	0.2514	0.2509	3.0125	1708.2523	0.4187

[27]: plot(k)

geom_path: Each group consists of only one observation. Do you need to adjust the group aesthetic?

geom_path: Each group consists of only one observation. Do you need to adjust the group aesthetic?

geom_path: Each group consists of only one observation. Do you need to adjust the group aesthetic?

geom_path: Each group consists of only one observation. Do you need to adjust the group aesthetic?

geom_path: Each group consists of only one observation. Do you need to adjust the group aesthetic?

[[1]]

NULL

[[2]]

NULL

page 2 of 2

Explanation: Build regression model from a set of candidate predictor variables by entering predictors based on p values, in a stepwise manner until there is no variable left to enter any more. The model should include all the candidate predictor variables. If details is set to TRUE, each step is displayed.

Backward Elimination Method

Candidate Terms:

1 . Xa

2 . Xb

3 . H

4 . D

5 . T

We are eliminating variables based on p value...

Note: model has aliased coefficients sums of squares computed by model comparison

No more variables satisfy the condition of p value = 0.3

Variables Removed:

Final Model Output

Model :	Summary
---------	---------

R	0.503	RMSE	0.419
R-Squared	0.253	Coef. Var	76.659
Adj. R-Squared	0.251	MSE	0.175
Pred R-Squared	0.249	MAE	0.357

RMSE: Root Mean Square Error

MSE: Mean Square Error MAE: Mean Absolute Error

ANOVA

	Sum of Squares	DF	Mean Square	F	Sig.
Regression Residual	92.079 271.381	4 1549	23.020 0.175	131.393	0.0000
Total	363.460	1553			

Parameter Estimates

m	odel	Beta	Std. Error	Std. Beta	t	Sig	lower
upper							
	. – – – – –						
(Interd	ept)	0.128	0.076		1.696	0.090	-0.020
0.046	Ха	-0.183	0.117	-0.499	-1.568	0.117	-0.412
0.237	Xb	0.092	0.074	0.378	1.244	0.214	-0.053
	Н	0.128	0.013	0.592	9.927	0.000	0.103
0.153	D	NA	0.001	0.000	-1.602	0.109	NA
NA	T	-0.002	NA	-6.278	NA	NA	-0.005
0.001							

Explanation: Build regression model from a set of candidate predictor variables by removing predictors based on p values, in a stepwise manner until there is no variable left to remove any more. The model should include all the candidate predictor variables. If details is set to TRUE, each step is displayed

Stepwise Selection Method

Candidate Terms:

- 1. Xa
- 2. Xb
- 3. H
- 4. D
- 5. T

We are selecting variables based on p value...

Note: model has aliased coefficients sums of squares computed by model comparison

^{[1] &}quot;No variables have been removed from the model."

Stepwise Selection: Step 1

- H added

Model Summary R 0.501 RMSE 0.419 R-Squared 0.251 Coef. Var 76.684 Adj. R-Squared 0.251 MSE 0.175 Pred R-Squared 0.250 MAE 0.358

RMSE: Root Mean Square Error

MSE: Mean Square Error MAE: Mean Absolute Error

ANOVA

	Sum of Squares	DF	Mean Square	F	Sig.
Regression Residual Total	91.376 272.084 363.460	1 1552 1553	91.376 0.175	521.221	0.0000

Parameter Estimates

								_
	_							
	model	Beta	Std. Error	Std. Beta	t	Sig	lower	
upper						0		
								_
	-							
(Inter	rcept)	0.009	0.026		0.368	0.713	-0.041	
0.060								
	Н	0.108	0.005	0.501	22.830	0.000	0.099	
0.118								
								_

Note: model has aliased coefficients sums of squares computed by model comparison

No more variables to be added/removed.

Final Model Output

Model Summary

R	0.501	RMSE	0.419
R-Squared	0.251	Coef. Var	76.684
Adj. R-Squared	0.251	MSE	0.175
Pred R-Squared	0.250	MAE	0.358

RMSE: Root Mean Square Error

MSE: Mean Square Error MAE: Mean Absolute Error

ANOVA

	Sum of Squares	DF	Mean Square	F	Sig.
Regression Residual	91.376 272.084	1 1 1552	91.376 0.175	521.221	0.0000
Total	363.460	1553			

Parameter Estimates

mod	lel	Beta	Std. Error	Std. Beta	t 	Sig	lower
(Intercep 0.060	ot)	0.009	0.026		0.368	0.713	-0.041
0.118	Н	0.108	0.005	0.501	22.830	0.000	0.099

Stepwise Selection Summary

Step	Variable	Added/ Removed	R-Square	Adj. R-Square	C(p)	AIC	RMSE
1	Н	addition	0.251	0.251	3.0120	1708.2523	0.4187

[31]: plot(k)

geom_path: Each group consists of only one observation. Do you need to adjust the group aesthetic?

geom_path: Each group consists of only one observation. Do you need to adjust the group aesthetic?

geom_path: Each group consists of only one observation. Do you need to adjust the group aesthetic?

geom_path: Each group consists of only one observation. Do you need to adjust the group aesthetic?

geom_path: Each group consists of only one observation. Do you need to adjust the group aesthetic?

[[1]]

 ${\tt NULL}$

[[2]]

NULL

Explanation: Build regression model from a set of candidate predictor variables by entering and removing predictors based on p values, in a stepwise manner until there is no variable left to enter or remove any more. The model should include all the candidate predictor variables. If details is set to TRUE, each step is displayed.

		Selection	Summary		
Variable	AIC	Sum Sq	RSS	R-Sq	Adj. R-Sq

H 1708.252 91.376 272.084 0.25141 0.25092

[33]: plot(k)

geom_path: Each group consists of only one observation. Do you need to adjust the group aesthetic?

Stepwise AIC Forward Selection

[35]: k <- ols_step_both_aic(lmod) # both sides k

Stepwise Summary

Variable	Method	AIC	RSS	Sum Sq	R-Sq	Adj. R-Sq
Н	addition	1708.252	272.084	91.376	0.25141	0.25092

[37]: plot(k)

geom_path: Each group consists of only one observation. Do you need to adjust the group aesthetic?

Stepwise AIC Both Direction Selection

