

## SATHYABAMA

(DEEMED TO BE UNIVERSITY)

Accredited with 'A' Grade by NAAC



# Lecture session 1\_ UNIT-3 SCSA1201-FUNDAMENTALS OF DIGITAL SYSTEMS

Unit-3-COMBINATIONAL LOGIC
Topic 1: ADDER

By
V.GEETHA
ASSISTANT PROFESSOR/EEE
SATHYABAMA INSTITUTE OF SCIENCE AND TECHNOLOGY
CHENNAI-119

## **UNIT 3 COMBINATIONAL LOGIC**

#### Introduction to Combinational circuits

#### TOPIC1:

- -Half Adder, Full Adder Half Subtractor, Full Subtractor
- -Parallel binary Adder,-Parallel binary Subtractor

#### TOPIC 2

- -Carry look ahead Adder
- -BCD Adder

#### TOPIC 3

- Decoders
- -Encoders
- -Priority Encoder

#### -TOPIC 4

- Multiplexers-

MUX as universal combinational modules

-Demultiplexers

#### TOPIC 5

- -Code convertors
- Magnitude Comparator.

## INTRODUCTION TO COMBINATIONAL CIRCUITS

#### **Definition**:

when logic gates are converted together to produce a specified output for a certain specified combinations of input variables, with no storage involved, the resulting circuit is called "COMBINATIONAL CIRCUIT".



## **Design Procedure**

- 1. Problem definition
- 2. Determine required number of inputs and outputs from the specifications.
- 3. Assigning letters and symbols to input and output variable
- 4. The derivation of truth table indicating the relationship between the input and output variables
- 5. Obtain the simplified Boolean expressions for each output.
  - 6. Obtain the logical diagram.

#### **EXAMPLE:**

Design a combinational logic circuit with three input variables that will produce a logic 1 output when more than one input variables are logic 1.

No of inputs and no of outputs inputs = 3 output = 1

| Α | В | С | Υ |
|---|---|---|---|
| 0 | 0 | 0 |   |
| 0 | 0 | 1 |   |
| 0 | 1 | 1 | 1 |
| 1 | 0 | 0 |   |
| 1 | 0 | 1 | 1 |
| 1 | 1 | 0 | 1 |
| 1 | 1 | 1 | 1 |

K-MAP TO FIND THE RELATION BETWEEN INPUT AND OUTPUT



Y=AB+BC+AC



**COMBINATIONAL CIRCUIT** 

## **CLASSIFICATION OF COMBINATIONAL CIRCUITS**



### What is an Adder?

An adder is a kind of calculator that is used to add two binary numbers. When I say, calculator, I don't mean one with buttons, this one is a circuit that can be integrated with many other circuits for a wide range of applications.

There are two kinds of adders;

Half adder

Full adder

## **HALF ADDER**

$$0+0 = 0$$
  
 $0+1 = 1$   
 $1+0 = 1$   
 $1+1 = 10$ 



Half Adder

These are the least possible single-bit combinations. But the result for 1+1 is 10, the sum result must be re-written as a 2-bit output. Thus, the equations can be written as

$$0+0 = 00$$
  
 $0+1 = 01$   
 $1+0 = 01$   
 $1+1 = 10$ 

| Α | В | SUM | CARRY |  |
|---|---|-----|-------|--|
| 0 | 0 | 0   | 0     |  |
| 0 | 1 | 1   | 0     |  |
| 1 | 0 | 1   | 0     |  |
| 1 | 1 | 0   | Ĭ     |  |



| ×A | 0        | 1        |
|----|----------|----------|
| 0  | 0        | $\Theta$ |
| 1  | $\Theta$ | 0        |

|          | -     |       |    |
|----------|-------|-------|----|
| A        |       | 1 /   |    |
|          | - 15  | T (A) | 15 |
| 4 : 30 : | O BES | 4 6 6 |    |

|   |   |     | Lett All's |  |
|---|---|-----|------------|--|
| A | В | SUM | CARRY      |  |
| 0 | 0 | 0   | 0          |  |
| 0 | 1 | 1   | 0          |  |
| 1 | 0 | 1   | 0          |  |
| 1 | 1 | 0   | 1          |  |



## Half Adder



### **FULL ADDER**

The difference between a half-adder and a full-adder is that the full-adder has three inputs and two outputs, whereas half adder has only two inputs and two outputs. The first two inputs are A and B and the third input is an input carry as C-IN. When a full-adder logic is designed, you string eight of them together to create a byte-wide adder and cascade the carry bit from one adder to the next.



|   | INPUTS | -0.  | OUTP  | UT |
|---|--------|------|-------|----|
| A | В      | C-IN | C-OUT | S  |
| 0 | 0      | 0    | 0     | 0  |
| 0 | 0      | 1    | 0     | 1  |
| 0 | 1      | 0    | 0     | 1  |
| 0 | 1      | 1    | 1     | 0  |
| 1 | 0      | 0    | 0     | 1  |
| 1 | 0      | 1    | 1     | 0  |
| 1 | 1      | 0    | 1     | 0  |
| 1 | 1      | 1    | 1     | 1  |

From the above table, we can draw K-map for sum (s) and final carry ( $C_{out}$ ).





#### Hence, from K-maps,

$$S = A\overline{BC} + \overline{A} \ \overline{BC} + ABC + \overline{ABC}$$

$$= C \ (AB + \overline{A} \ \overline{B}) + \overline{C} \ (\overline{AB} + A \ \overline{B})$$

$$= C \ (\overline{\overline{AB}} + A \ \overline{\overline{B}}) + \overline{C} \ (\overline{AB} + A \ \overline{B})$$

$$= C \ (\overline{\overline{AB}} + A \ \overline{\overline{B}}) + \overline{C} \ (\overline{A} \oplus B) = A \oplus B \oplus C.$$



$$C_{out} = \overline{ABC} + \overline{ABC} + \overline{ABC} + \overline{ABC}$$
  
=  $(\overline{AB} + \overline{AB})C + \overline{AB}(\overline{C} + C)$   
=  $(A \oplus B).C + \overline{AB}.$ 





Thank you