Calibration Profiles

eX Modelo school

OpenMOLE

June 25, 2019

Context

Reminder You get one of the best parameter set to minimise a given fitness function

Reminder You get one of the best parameter set to minimise a given fitness function

Problem You only get one parameter set!

Reminder You get one of the best parameter set to minimise a given fitness function

Problem You only get one parameter set!

 \rightarrow What is happening in the rest of the input space?

How does a small variation of one of the parameters affect the model output?

Objective Find outputs with a good fitness (but not the best) in different zones of the input space

Method

Control the variations of one parameter x_1 and calibrate over the other parameters

 \rightarrow calibration profile of x_1

Interpretation

We know how x₁ variations influence our model's fitness

ightarrow solutions of an optimisation problem all along x_1 domain

We know how x_1 variations influence our model's fitness

- ightarrow solutions of an optimisation problem all along x_1 domain
 - ▶ Does the parameter impact the model's capacity to produce plausible outcomes?
 - What is the variation interval of the parameter?
 - ▶ Is the parameter useful to the model?

Profile in OpenMOLE

```
val param1 = Val[Double]
val param2 = Val[Double]
val fitness = Val[Double]
ProfileEvolution(
  evaluation = modelTask,
  objective = fitness,
  x = param1.
  nX = 20,
  genome = Seq(
      param1 in (0.0, 99.0),
      param2 in (0.0, 99.0)
  ١,
  termination = 200000,
  parallelism = 500,
  stochastic = Stochastic(seed = seed, replications = 100),
  distribution = Island(10 minutes)
) hook(workDirectory / "path/to/a/directory")
```



```
val param1 = Val[Double]
val param2 = Val[Double]
val fitness = Val[Double]
ProfileEvolution(
  evaluation = modelTask,
  objective = fitness,
  x = param1,
  nX = 20.
  genome = Seq(
      param1 in (0.0, 99.0),
      param2 in (0.0, 99.0)
  termination = 200000.
  parallelism = 500,
  stochastic = Stochastic(seed = seed, replications = 100),
  distribution = Island(10 minutes)
 hook(workDirectory / "path/to/a/directory")
```

evaluation
objective
the fitness functio to minimise

the parameter to profile

the size of the subintervals in x domain

genome
a list of the model input parameters
with their variation ranges

What about our Zombie situation?

▶ How can profiles help us better understand the model?

- ▶ How can profiles help us better understand the model?
- ► What can we profile?

- How can profiles help us better understand the model?
- ► What can we profile?
- ► With what objective function?