

Luminescence properties of samarium-doped $\text{SiO}_2\text{-Na}_2\text{SO}_4$ composite

Abu Zayed Mohammad Saliquar Rahman^{a,*}, Xingzhong Cao^a, Long Wei^a, Baoyi Wang^a, Haichen Wu^b

^aKey Laboratory of Nuclear Analytical Techniques, Institute of High Energy Physics, Chinese Academy of Sciences
19B Yuquanlu Shijingshan District Beijing 100049, China

^bKey Laboratory for Biomedical Effects of Nanomaterials & Nanosafety, Institute of High Energy Physics, Chinese Academy of Sciences
19B Yuquanlu Shijingshan District Beijing 100049, China

Abstract

The comprehensive structural and luminescence study of Sm-doped $\text{SiO}_2\text{-Na}_2\text{SO}_4$ composite materials are reported. The samples were synthesized by melt-mixing mixture of Na_2SO_4 and SmF_3 into the SiO_2 matrix at 1050°C for 30 min. X-ray diffraction (XRD) pattern shows the characteristic structure of the SiO_2 and addition of 20% $\text{Na}_2\text{SO}_4\text{:Sm}$ has no effect on the basic crystal structure of the SiO_2 . Scanning electron microscopy (SEM) shows the clear difference in morphological structure between the composite and host SiO_2 . From photoexcitation (PE) spectra of the as-synthesized composite, the highest excitation efficiency was observed at 402 nm. The photoluminescence (PL) spectra of as-synthesized composite phosphors obtained under 402 nm excitation consist of five narrow emission bands with peaks at 563, 598, 644, 704 and 784 nm. These are assigned to the ${}^4\text{G}_{5/2} \rightarrow {}^6\text{H}_J$ ($J=5/2, 7/2, 9/2, 11/2$ and $13/2$, respectively) transitions within $4f^5$ electronic configuration of Sm^{3+} . Highest luminescence intensity was observed with $\text{SiO}_2\text{-}10\%\text{Na}_2\text{SO}_4\text{:Sm}$.

Keywords: $\text{SiO}_2\text{-Na}_2\text{SO}_4$, Luminescence, Sm

1. Introduction

The luminescence properties of the lanthanide ion-doped materials have been hot research topic for decades. An attractive feature of luminescent rare earth ions is their line-like emission and this emission is largely independent of the host environment[1]. This characteristic of lanthanide ions make it very attractive for synthesizing various kinds of functional materials for application. Recently, there has been a strong interest in synthesis of lanthanide based organic-inorganic hybrid materials [2, 3], glass-ceramic phosphor[4, 5, 6] and composite materials[7, 8] for a wide variety of application in outdoor devices, fabrication of light emitting diodes, scintillators, and optical devices. SiO_2 is known for its hardness and used primarily for production of various kinds of glass materials. This is also very suitable host for synthesizing composite materials. Luminescence properties of lanthanide ions doped Na_2SO_4 were reported elsewhere[9, 10, 11]. Embedding rare earth doped- Na_2SO_4 phosphor in ceramic materials such as SiO_2 may increase the strength of the phosphor, especially when designed for outdoor application. A composite of $\text{SiO}_2\text{-Na}_2\text{SO}_4$ can be useful for high-temperature thermal storage. Thermophysical properties of this composite are investigated[12]. S. M. Bobade et. al. reported on the electrical properties of the Na_2SO_4 -based composite system[13]. However, very few works were done on the rare earth doped $\text{SiO}_2\text{-Na}_2\text{SO}_4$ phosphor[14]. There was no

work reported on luminescence properties of Sm-doped $\text{SiO}_2\text{-Na}_2\text{SO}_4$ system to the best of our knowledge. In the present study, we synthesized Sm-doped $\text{SiO}_2\text{-Na}_2\text{SO}_4$ composite material and obtained the PL and PE spectra of the Sm^{3+} ions.

2. Experimental

High purity SiO_2 (99%), Na_2SO_4 (99.99%) and SmF_3 (99.99%) were used to synthesize samples. A mixture of Na_2SO_4 and small amount of SmF_3 (0.14 mol%) was ground using an agate mortar. This mixture in appropriate amount (5, 10 and 20 percent mass of the host SiO_2) was again thoroughly mixed with SiO_2 and ground by agate mortar. The mixtures were then heated in pure alumina crucibles at 1050°C for 30 min in air by using an electric furnace. Samples were quenched to room temperature (RT) by placing on a lead brick after heating. Synthesized samples were powdered again for performing measurements. Crystal structures of the samples were examined using XRD system (12kW Rigaku D-Max-rA X-ray diffractometers) at RT with $\text{CuK}\alpha_1$ radiation operating at 40 kV and 100 mA. A SEM measurement was performed using a Hitachi model S-4800 field emission scanning electron microscope. A small amount of powder samples were sprinkled lightly with a spatula on carbon tape and pressed lightly for mounting.

Measurement of PL and PE spectra were performed at RT by using a totally computer-controlled compact system (Horiba Fluorolog spectrofluorometer). PL intensity measurements were done strictly maintaining the same conditions for each sample. All the intensity measurements were repeated 10 times and an average was taken to reduce error.

*Corresponding author

Email addresses: zayed82000@yahoo.com (Abu Zayed Mohammad Saliquar Rahman), caoxzh@ihep.ac.cn (Xingzhong Cao), weil@ihep.ac.cn (Long Wei)

Figure 1: (Color online) XRD spectra of (a) SiO₂ (b)SiO₂-20%Na₂SO₄:Sm and (c) Na₂SO₄.

Figure 2: (Color online) SEM image of (a) SiO₂-20%Na₂SO₄:Sm composite, inset: synthesized composite shows red emission under UV light (b) SiO₂, inset: no emission from host under UV light.

3. Results and discussion

Figure 1 shows the XRD patterns for SiO₂, SiO₂-Na₂SO₄:Sm, Na₂SO₄:Sm and Na₂SO₄. The main diffraction peaks were in good agreement with the data of ICDD card 37-1465 and JCPDS standard pattern number 46-1045 for Na₂SO₄ and SiO₂, respectively. SiO₂ has hexagonal crystal structure with P3₂1 space group. The (h k l)values and d-values were shown in XRD spectra. The values were calculated by using PowderX software[15]. The lattice parameters of the unit cell of SiO₂ were $a = b = 4.9137 \text{ \AA}$ and $c = 5.4047 \text{ \AA}$ with $\alpha = \beta = 90^\circ$ and $\gamma = 120^\circ$. From Fig. 1, it is clear that the phosphor particles were well incorporated between the SiO₂ particles.

The particle size d can be estimated from the Scherrer equation as follows:

$$d = \frac{0.9\lambda}{\beta \cos\theta} \quad (1)$$

where λ is the wavelength of the CuK _{α 1} radiation, β is the full-width at half-maximum (FWHM) at radian and θ is the diffraction angle. Most prominent diffraction peaks at 20.82, 26.62 and 30.12 were taken to measure the particle size. Average particle size of the SiO₂ powder and SiO₂-20%Na₂SO₄:Sm composite powder was estimated to be 56 nm.

Fig. 2 shows the SEM image of the (a) SiO₂-Na₂SO₄:Sm composite and (b) SiO₂. Inset shows the red emission under UV

Figure 3: (Color online) (a) PE (left) and PL spectra (right) of Na₂SO₄:Sm. (b) PE (left) and PL (right) spectra of SiO₂-20%Na₂SO₄:Sm. Excitation and emission spectra (red line) for SiO₂ was given for comparison. Observation wavelength: 644 nm. Excitation wavelength: 375 nm.

Figure 4: (Color online) (a) PL spectra of SiO₂-x%Na₂SO₄:Sm ($x=0,5,10,20$) under excitation at 402 nm. (b) Schematic energy levels of Sm³⁺ (4f¹) in composite materials. Arrows show the excitation and emission transitions.

Figure 5: (Color online) (a) PL spectra of 644 nm band under 402 nm excitation for SiO_2 and $\text{SiO}_2\text{-}x\%\text{Na}_2\text{SO}_4\text{:Sm}$ ($x=5,10,20$). (b) Relative PL intensities of the 644 nm band.

light in Sm doped $\text{SiO}_2\text{-Na}_2\text{SO}_4$ composite material whereas no emission under UV light in host SiO_2 . SEM images were magnified 700 times for both samples. It is clearly seen that morphological structures are different in Sm-doped $\text{SiO}_2\text{-Na}_2\text{SO}_4$ and SiO_2 . Particle size was measured to be 50 nm for both SiO_2 and $\text{SiO}_2\text{-}20\%\text{Na}_2\text{SO}_4\text{:Sm}$, which is in good agreement with that estimated from diffraction peaks (fig. 2).

Figure 3(a) shows the PE (left) and PL (right) spectra of $\text{Na}_2\text{SO}_4\text{:Sm}$ phosphor. The PL spectrum, obtained under 375 nm excitation, consists of four narrow bands at 563, 598, 644 and 704 nm. The excitation spectrum was obtained by monitoring the red luminescence at 644 nm. Figure 3(b) shows the PE (left) and PL (right) spectra of the $\text{SiO}_2\text{-}20\%\text{Na}_2\text{SO}_4\text{:Sm}$ composite and SiO_2 (red line). Measurement condition was same as that of $\text{Na}_2\text{SO}_4\text{:Sm}$ phosphor. No disturbance due to host was observed in the PL spectra, as SiO_2 has no obvious emission at the range 500-750 nm, where main Sm^{3+} emission peaks appear. From PE spectra the highest excitation efficiency was observed at 375 nm for $\text{Na}_2\text{SO}_4\text{:Sm}$ whereas 402 nm for $\text{SiO}_2\text{-}20\%\text{Na}_2\text{SO}_4\text{:Sm}$.

Figure 4(a) shows the PL spectra of the $\text{SiO}_2\text{-}x\%\text{Na}_2\text{SO}_4\text{:Sm}$

($x = 5, 10, 20$) under 402 nm excitation which consist of five narrow bands at 563, 598, 644, 704 and 784 nm. These five bands can be identified with the ${}^4\text{G}_{5/2} \rightarrow {}^6\text{H}_J$ ($J=5/2, 7/2, 9/2, 11/2$ and $13/2$, respectively) transitions within $4f^5$ electronic configuration of Sm^{3+} (Fig. 4(b)). Trivalent samarium ions with $4f^5$ are generally insensitive to the surrounding environment in the crystal, due to outer shell shielding. Nevertheless, emission spectra are still influenced by the Stark effect caused by the crystal field and asymmetry around the Sm^{3+} . Emission bands observed in Sm-doped $\text{SiO}_2\text{-Na}_2\text{SO}_4$ composite are almost same as that of $\text{Na}_2\text{SO}_4\text{:Sm}$. So it is reasonable to assume that Sm^{3+} ions take the position in the composite by replacing Na^+ ions in Na_2SO_4 .

PL spectra of the prominent 644 nm band was measured 10 times for each sample to measure relative intensities (Fig. 5(b)). Average intensity was taken to minimize the intensity error. From the Fig. 5(b) it is shown that with increase in the phosphor amount, the PL intensity of 644 nm band was also increased. When 20% phosphor was used, the PL intensity decreased a little. So the highest PL intensity was obtained from $\text{SiO}_2\text{-}10\%\text{Na}_2\text{SO}_4\text{:Sm}$. PL intensity of this sample was found to be approximately 17% comparing to that of $\text{Na}_2\text{SO}_4\text{:Sm}$. This is reasonable and better PL efficiency because the amount of SmF_3 in $\text{SiO}_2\text{-}10\%\text{Na}_2\text{SO}_4\text{:Sm}$ is only 0.014 mol% whereas 0.14 mol% (10 times amount compare to that of $\text{SiO}_2\text{-}10\%\text{Na}_2\text{SO}_4\text{:Sm}$) in $\text{Na}_2\text{SO}_4\text{:Sm}$ phosphor.

4. Conclusion

We have successfully synthesized samarium doped $\text{SiO}_2\text{-Na}_2\text{SO}_4$ composite. It may strengthen the $\text{Na}_2\text{SO}_4\text{:Sm}$ phosphors embedded in SiO_2 matrix. We believe this composite has good prospect as a phosphor material for variety of application such as light emitting diodes, outdoor application, scintillators.

Acknowledgment

This work was partially supported by the NSFC (Grant Nos. 91026006, 10835006 and 11175191) and Chinese Academy of Sciences Fellowships for Young International Scientists under Grant No. 2012Y1JB0007.

References

- [1] Koen Binnemans. Chem. Rev. 2009; 109: 4283-4374.
- [2] S. B. Mishra, A. K. Mishra, N. Revarprasadu, K. T. Hillie, W. J. vdM. Steyn, E. Coetsee, H. C. Swart. J. Appl. Polym. Sci. 2009; 112: 3347-54.
- [3] Purificacion Escrivano, Beatriz Julian-Lopez, Jose Planelles-Arago, Eloisa Cordoncillo, Bruno Viana, Clement Sanchez. J. Mater. Chem. 2008; 18: 23-40.
- [4] Shunsuke Fujita, Akihiko Sakamoto, Setsuhisa Tanabe. IEEE Journal of Selected Topics in Quantum Electronics 2008; 14: 1387-91.
- [5] I. Sabikoglu, M. Ayvackl, A. Bergeron, A. Ege, N. Can. J. Lumin. 2012; 132: 1597-1602.
- [6] G. Belev, G. Okada, D. Tonchev, C. Koughia, C. Varoy, A. Edgar, T. Wysokinski, D. Chapman, S. Kasap. Phys. Status Solidi C 2011; 8: 2822-25.
- [7] Yanbin Zhang, Zhenfeng Zhu, Yinpo Qiao. Mater. Lett. 2013; 93: 9-11.
- [8] Steven C. Allen, Andrew J. Steckl. Appl. Phys. Lett. 2008; 92: 143309 (1-3).

- [9] A. Sidike, A.Z.M.S. Rahman, J.-Y. He, K. Atobe, N. Yamashita. *J. Lumin.* 2009; 129: 1271-75.
- [10] A. Sidike, A.Z.M.S. Rahman, J.-Y. He, L.-X. Gong, K. Atobe, N. Yamashita. *J. Lumin.* 2011;131: 1840-47.
- [11] A. Z. M. S. Rahman, X. Cao, L. Wei, B. Wang, R. Yu, Z. Chen, G. An, A. Sidike. *Appl. Phys. A* 2012; DOI 10.1007/s00339-012-7266-y.
- [12] W. Notter, Th. Lechner, U. Grob, E. Hahne. *Thermochimica Acta* 1993; 218: 455-63.
- [13] S. M. Bobade, A. R. Kulkarni, P. Gopalan. *Ionics* 2007; 13: 257-62.
- [14] L. I. Anikina, T. S. Dobrolyubskaya, A. V. Karyakin, Viet Le Binh. *J. Appl. Spectros.* 1969; 10: 353-54.
- [15] C. Dong. *J. Appl. Cryst.* 1999; 32: 838-839.