

Dynamic Programming

Algorithms: Design and Analysis, Part II

Optimal Binary Search
Trees: Problem Definition

A Multiplicity of Search Trees

Recall: For a given set of keys, there are lots of valid search trees.

the search tree property

Question: What is the "best" search tree for a given set of keys?

A good answer: A balanced search tree, like a red-black tree. (Recall Part I)

 \Rightarrow Worst-case search time $= \Theta(\text{height}) = \Theta(\log n)$

Tim Roughgarden

Exploiting Non-Uniformity

Question: Suppose we have keys x < y < z and we know that:

80% of searches are for x

10% of searches are for y

10% of searches are for z

What is the average search time (i.e., number of nodes looked at) in the trees:

- A) 2 and 3 B) 2 and 1
- C) 1.9 and 1.2 D) 1.9 and 1.3

Problem Definition

Input: Frequencies p_1, p_2, \ldots, p_n for items $1, 2, \ldots, n$. [Assume items in sorted order, $1 < 2 < \ldots < n$]

Goal: Compute a valid search tree that minimizes the weighted (average) search time.

$$C(T) = \sum_{i \text{tems } i} p_i \quad \text{[search time for } i \text{ in } T\text{]}$$
Depth of i in $T + 1$

Example: If T is a red-black tree, then $C(T) = O(\log n)$. (Assuming $\sum_i p_i = 1$.)

Comparison with Huffman Codes

Similarities:

- Output = a binary tree
- Goal is (essentially) to minimize average depth with respect to given probabilities

Differences:

- With Huffman codes, constraint was prefix-freeness [i.e., symbols only at leaves]
- Here, constraint = search tree property [seems harder to deal with]

Dynamic Programming

Algorithms: Design and Analysis, Part II

Optimal BSTs: Optimal Substructure

Problem Definition

Input: Frequencies $p_1, p_2, ..., p_n$ for items 1, 2, ..., n. [Assume items in sorted order, 1 < 2 < ... < n]

Goal: Compute a valid search tree that minimizes the weighted (average) search time.

$$C(T) = \sum_{i \text{tems } i} p_i \quad \text{[search time for } i \text{ in } T]$$
Depth of i in $T + 1$

Greedy Doesn't Work

Intuition: Want the most (respectively, least) frequently accessed items closest (respectively, furthest) from the root.

Ideas for greedy algorithms:

- Bottom-up [populate lowest level with least frequently accessed keys]
- Top-down [put most frequently accessed item at root, recurse]

Tim Roughgarden

Choosing the Root

Issue: With the top-down approach, the choice of root has hard-to-predict repercussions further down the tree. [stymies both greedy and naive divide + conquer approaches]

Idea: What if we knew the root? (i.e., maybe can try all possibilities within a dynamic programming algorithm!)

Optimal Substructure

Question: Suppose an optimal BST for keys $\{1, 2, ..., n\}$ has root r, left subtree T_1 , right subtree T_2 . Pick the strongest statement that you suspect is true.

- A) Neither T_1 nor T_2 need be optimal for the items it contains.
- B) At least one of T_1 , T_2 is optimal for the items it contains.
- C) Each of T_1 , T_2 is optimal for the items it contains.
- D) T_1 is optimal for the keys $\{1,2,\ldots,r-1\}$ and T_2 for the keys $\{r+1,r+2,\ldots,n\}$

Proof of Optimal Substructure

Let T be an optimal BST for keys $\{1,2,\ldots,n\}$ with frequencies p_1,\ldots,p_n . Suppose T has root r. Suppose for contradiction that T_1 is not optimal for $\{1,2,\ldots,r-1\}$ [other case is similar] with $C(T_1^*) < C(T_1)$. Obtain T^* from T by "cutting+pasting" T_1^* in for T_1 .

Note: To complete contradiction + proof, only need to show that $C(T^*) < C(T)$.

Proof of Optimal Substructure (con'd)

A Calculation:

=1+search time for
$$i$$
 in T_1 =1+search time for i in T_2

$$C(T) = \sum_{i=1}^n p_i \text{ [search time for } i \text{ in } T]$$

$$= p_r \cdot 1 + \sum_{i=1}^{r-1} p_i \text{ [search time for } i \text{ in } T]$$

$$+ \sum_{i=r+1}^n p_i \text{ [search time for } i \text{ in } T]$$

$$= \sum_{i=1}^n p_i + \sum_{i=1}^{r-1} p_i \text{ [search time for } i \text{ in } T_1]$$

$$+ \sum_{i=r+1}^n p_i \text{ [search time for } i \text{ in } T_2]$$
a constant (independent of T) = $C(T_1)$ = $C(T_2)$
Similarly: $C(T^*) = \sum_{i=1}^n p_i + C(T_1^*) + C(T_2)$
Upshot: $C(T_1^*) < C(T_1)$ implies $C(T^*) < C(T)$, contradicting optimality of T . QED!

Dynamic Programming

Algorithms: Design and Analysis, Part II

Optimal BSTs: A Dynamic Programming Algorithm

Optimal Substructure

Optimal Substructure Lemma: If T is an optimal BST for the keys $\{1,2,\ldots,n\}$ with root r, then its subtrees T_1 and T_2 are optimal BSTs for the keys $\{1,2,\ldots,r-1\}$ and $\{r+1,\ldots,n\}$, respectively.

Note: Items in a subproblem are either a prefix <u>or</u> a suffix of the original problem.

Relevant Subproblems

Question: Let $\{1, 2, ..., n\}$ = original items. For which subsets $S \subseteq \{1, 2, ..., n\}$ might we need to compute the optimal BST for S?

- A) Prefixes $(S = \{1, 2, ..., i\}$ for every i)
- B) Prefixes and suffixes $(S = \{1, ..., i\} \text{ and } \{i, ..., n\} \text{ for every } i)$
- C) Contiguous intervals $(S = \{i, i+1, \dots, j-1, j\})$ for every $i \leq j$
- D) All subsets S

The Recurrence

Notation: For $1 \le i \le j \le n$, let C_{ij} = weighted search cost of an optimal BST for the items $\{i, i+1, \ldots, j-1, j\}$ [with probabilities $p_i, p_{i+1}, \ldots, p_j$]

Recurrence: For every $1 \le i \le j \le n$:

$$C_{ij} = \min_{r=i,...,j} \left\{ \sum_{k=i}^{j} p_k + C_{i,r-1} + C_{r+1,j} \right\}$$

(Recall formula $C(T) = \sum_{k} p_{k} + C(T_{1}) + C(T_{2})$ from last video) Interpret $C_{xy} = 0$ if x > y

Correctness: Optimal substructure narrows candidates down to (j - i + 1) possibilities, recurrence picks the best by brute force.

The Algorithm

```
Important: Solve smallest subproblems (with fewest number
(i-i+1) of items) first.
Let A = 2-D array. [A[i,j]] represents opt BST value of items \{1,\ldots,j\}
For s = 0 to n - 1 [s represents j - i]
  For i = 1 to n [so i + s plays role of j]
     A[i, i+s] = \min_{r=i,...,i+s} \{ \sum_{k=i}^{i+s} p_k + A[i, r-1] + A[r+1, i+s] \}
Return A[1, n]
Interpret as 0 if 1st index > 2nd index. Available for O(1)-time lookup
             Pictorially:
                                                         A[i, i] = p_i
```


Running Time

- $\Theta(n^2)$ subproblems
- $\Theta(j-i)$ time to compute A[i,j]
- $\Rightarrow \Theta(n^3)$ time overall

Fun fact: [Knuth '71, Yoo '80] Optimized version of this DP algorithm correctly fills up entire table in only $\Theta(n^2)$ time $[\Theta(1)$ on average per subproblem]

[Idea: piggyback on work done in previous subproblems to avoid trying all possible roots]