Síťové prvky, přiřazení k vrstvám OSI/ISO

Firewall

- Firewall aby se v hořícím domě oheň dál nešířil
- Síťové zařízení, které slouží k řízení a zabezpečování síťového provozu mezi sítěmi s různou úrovní důvěryhodnosti a zabezpečení
- Zjednodušeně se dá říct, že slouží jako kontrolní bod, který definuje pravidla pro komunikaci mezi sítěmi, které od sebe odděluje
- Pravidla vždy zahrnovala
 - o identifikaci zdroje a cíle dat (zdrojovou a cílovou IP adresu)
 - zdrojový a cílový port
- => poměrně nedostatečné
- Modernější firewally se opírají přinejmenším o:
 - o Informace o stavu spojení
 - Znalost kontrolovaných protokolů
 - Případné prvky IDS (Intrusion Detection System) systém pro odhalení průniků (odhalení podezřelých aktivit)
- Podle umístění lze firewally dělit na:
 - o Síťové:
 - Samostatné hardwarové řešení pro ochranu sítě
 - Personální:
 - Realizován na koncových stanicích (PC)

Paketové filtry

- Pravidla uvádějí, z jaké adresy a jakého portu na jakou adresu a port může být doručen procházející paket
- Kontrola se provádí na 3 (Síťová) a 4 (transportní) vrstvě síťové komunikace OSI

Aplikační filtry (Proxy Firewally)

- Na rozdíl od paketových filtrů zcela oddělily sítě, mezi které byly postaveny
- Veškerá komunikace přes aplikační bránu probíhá formou dvou spojení:
 - Klient (iniciátor spojení) se připojí na aplikační bránu (proxy)
 - Proxy příchozí spojení zpracuje a na základě požadavku klienta otevře nové spojení k serveru
 - Tam je klientem aplikační brána

Stavové paketové filtry

Provádějí kontrolu stejně jako jednoduché paketové filtry, navíc si však ukládají informace o
povolených spojeních, které pak mohou využít při rozhodování, zda procházející pakety patří do
již povoleného spojení a mohou být propuštěny, nebo zda musí znovu projít rozhodovacím
procesem

Stavové paketové filtry s kontrolou známých protokolů (popř. kombinované s IDS)

- Deep Inspection a Application Intelligence
- => Firewally jsou schopny kontrolovat procházející spojení až na úroveň korektnosti procházejících dat známých protokolů i aplikací

Mohou tak například zakázat průchod http spojení, v němž objeív indikátory, že se nejedná o
požadavek na WWW server, ale tunelování jiného protokolu

Router (Síťová vrstva)

- Aktivní síťové zařízení, které procesem zvaným routování přeposílá datagramy směrem k jejich cíli
- Routování probíhá na třetí vrstvě referenčního modelu ISO/OSI
- Je v každé síti to podstatné zařízení, které ji řídí
 - Umí směrovat provoz, tedy rozdělovat provoz na síti mezi více připojených zařízení
 - o jednotlivým zařízením přiděluje jejich IP adresy
 - Řeší spravedlivé rozdělení celého pásma v síti tak, aby se provoz neucpal (kdyby někdo stahoval velký soubor, tak aby ostatní mohli dále pracovat) - QoS
- V domácí síti například router zprostředkovává připojení na internet a řídí domácí síť
 - Většina domácností používá WiFi router, který vše umí i bezdrátově
- Ve firemní síti se používá router buď stejně jako v domácnosti nebo pro propojení dvou stejných počítačových sítí, tedy dvou částí firemní sítě
- Routery jsou jedním z klíčových prvků celosvětové sítě internet, která je vlastně tvořena jednotlivými sítěmi, které jsou spojeny routery
- Základní funkce routerů:
 - o Brána mezi lokální síti a internetem
 - DHCP server
 - NAToovaní
 - Firewall

Switch (Linková vrstva)

- Aktivní prvek v počítačové síti
- Propojuje jednotlivé prvky do hvězdicové topologie
- Obsahuje větší, či menší množství portů, na, než se připojují síťová zařízení nebo části sítě
- Switch přeposílá síťový provoz jenom do těch směrů, do kterých je to potřeba, čímž se odlišuje od jednoduššího hubu

Způsoby přeposílání rámců

Store and forward

• Rámce z jednoho rozhraní přijmou, uloží si ho do vyrovnávací paměti, prozkoumá jeho hlavičky a následně odvysílají do příslušného rozhraní

Cut-through switching

- Optimalizovaný proces
- K analýze hlaviček dochází, jakmile dorazí začátek rámce
- Ani s vysíláním do cílového rozhraní se nečeká až dorazí celý rámec, ale zahajuje se co nejrychleji, aby zpoždění rámce bylo minimální

Fragment free

 Switch začne přeposílat rámec až po přijetí 64 bitů, kdy je jisté, že na daném segmentu nevznikne kolize – v případě že je do přepínače připojen hub

Adaptive switching

Automatické přepínání mezi metodami cut-through switching a store and forward

LAN switching

- Klasický switch (linková vrstva)
- Pokročilejší, které rozhodují o cíli přijatého rámce na základě informací z vyšších síťových vrstev a složitějších pravidel
- Pokud je rozhodnutí založena na IP adrese, označují se takové switche jako layer3 switch (síťová vrstva)
- Jeli rozhodnutí prováděno nejen podle IP adresy ale i podle čísla síťového portu, označují se jako layer4 switch (transportní vrstva)

Bridge (Linková vrstva)

- Spojuje dvě části sítě na druhé (linkové) vrstvě referenčního modelu ISO/OSI
- Je pro protokoly vyšších vrstev transparentní (neviditelný), odděluje provoz různých segmentů sítě a tím zmenšuje i zatížení sítě

Princip činnosti

- Odděluje provoz dvou segmentů sítě tak, že si ve své paměti RAM sám sestaví tabulku MAC (fyzických) adres a portů, za kterými se dané adresy nacházejí
- Leží-li příjemce ve stejném segmentu jako odesílatel, bridge rámce do jiných částí sítě neodešle
- V opačném případě je odešle do příslušného segmentu v nezměněném stavu

Transparent bridging

- Neviditelné pro koncové stanice propojené sítě se jeví jako jedna síť
- Na začátku vůbec neví, jak jsou stanice v síti rozloženy, a musí paket přijatý na jedné síti poslat do všech ostatních připojených sítí, protože ještě neví, kde se cílová stanice nachází

Source route bridging

- V token-ring sítích
- Zde je cílem, aby bridge byla co nejjednodušší
- Každý paket musí kromě adresy odesílatele a příjemce obsahovat také posloupnost adres všech bridgů, kterými musí paket projít
- Vysílací stanice tedy, dříve než pošle první paket, musí zjistit celou cestu k cílové stanici

Bridging vs Routing

- Podobné řízení toku dat, ale pracují pomocí různých metod
- Bridging = linková vrstva
- Routing = síťová vrstva
- Most směruje rámce na základě MAC adresy (není schopen díky tomu rozlišovat sítě)
- Router rozhoduje podle IP adresy uvnitř přenášeného datagramu

Access Point (Linková vrstva)

- Přístupový bod k bezdrátové Wi-Fi síti je zařízení, ke kterému se klienti připojují.
- Klienti spolu nekomunikují přímo, ale prostřednictvím přístupového bodu, takže mohou být jednodušší a nemusejí být ve vzájemném radiovém spojení
- Centralizovaný způsob komunikace též umožňuje použití směrových antén, který zvyšují dosah radiového signálu
- Tento typ uspořádání nazýváme infrastrukturní síť
- Opakem jsou Ad-hoc sítě, kde jsou dva nebo více klienti ve vzájemném přímém rádiovém spojení (bez existence prostředníka)
- Je obvykle realizován malým jednoúčelovým zařízením, ale s potřebnou softwarovou výbavou se jim může stát i jakýkoliv počítač s bezdrátovým Wi-Fi zařízením
- Některá z těchto jednoúčelových zařízení využívají jako základ operační systém Linux

Role přístupových bodů:

- Mají několik rolí, které jsou dány nejen požadavky struktury sítě, ale i schopnostmi zařízení
 - o Bridge:
 - Bezdrátová síť je součástí sítě LAN
 - Bridge odděluje síťový provoz, ale propouští lokální broadcasty
 - Není nutné konfigurovat
 - Router
 - Bezdrátová síť je samostatnou podsítí
 - Router odděluje síťový provoz a nepropouští lokální broadcasty
 - Vyžaduje konfiguraci IP adres zařízení a nastavení směrování
- Pokud je v bezdrátovém zařízení (AP) zabudována bezdrátová část dvakrát, označuje se jako
 point-to-multipoint, protože dokáže např. bezdrátový signál dálkově přijímat a zároveň ho
 distribuovat dalším bezdrátovým klientům v blízkém okolí.
- Takto jsou konstruovány bezdrátové přípojné body poskytovatelům internetového připojení (providerů), kteří však někdy kvůli ceně používají dvě samostatná bezdrátová zařízení
- Specifickým typem jsou **WDS** sítě (Wireless Distribution System), kdy všechny přístupové body vysílají na stejném kanálu, navzájem spolu komunikují a jeví se tak klientům jako jedna síť

Připojení k přístupovému bodu:

- Klienti se připojují, přičemž mohou být vůči nim uplatněna omezení a přístup odepřen
- Komunikace mezi klienty probíhá prostřednictvím přístupového bodu, tj. minimálně dva skoky (nejprve na přístupový bod a z něj pak na příslušnou proti stanici)
- Klient tak udržuje spojení jen s přístupovým bodem a nemusí mít cílovou stanici ani v přímém rádiovém dosah

Hub (Fyzická)

 Aktivní prvek počítačové sítě, který umožňuje její větvení a je základem sítí s hvězdicovou topologií

- Veškerá data, co přijdou na jeden z portů, zkopíruje na všechny ostatní porty, bez ohledu na to, kterému portu data náleží
- => všechny počítače v síti vidí všechna síťová data a u větších sítí to znamená zbytečné přetěžování těch segmentů, kterým ve skutečnosti data nejsou určena
- Hub pracuje na fyzické vrstvě modelu OSI

Technické informace

- Signál, který do něj vstoupí, je obnoven a vyslán všemi ostatními porty
- => zpoždění je proto pouze 1 bit => nižší latence než switch

Použití

- Nahrazovány switchy, ale přesto mohou být užitečný:
 - Některé počítačové clustery (seskupení volně vázaných počítačů) vyžadují, aby všechny počítače v clusteru obdržely stejné packety
 - Pokud je přepínač přístupný nezkušeným nebo nedbalým uživatelům, např. konferenční místnosti, můžou ochromit celou síť tím, že propojí dva porty, čímž vytvoří smyčky

Repeater (Fyzická)

- Elektronický aktivní síťový prvek, který přijímá zkreslený, zašuměný nebo jinak poškozený signál a opravený, zesílený a správně časovaný ho vysílá dále
- => Zvýšení dosahu média bez ztráty kvality a obsahu signálu
- Opakovače patří do první (fyzické) vrstvy referenčního modelu OSI, protože pracují přímo s elektrickým signálem

Bezdrátové komunikace

- Skládá se z přijímače, zesilovačem vysílače, izolátoru a dvou antén
- Vysílač generuje signál na odlišné frekvenci od signálu na vstupu, což je nezbytné k ochraně vstupu před narušením od zesíleného signálu na výstupu

Satelitní komunikace

Transponder přijímá signál a přeposílá jej, často na odlišných frekvencích do cílové lokace

Mobilní komunikace

• Zařízení pro posílení GSM signálu v místech, kde není dostatečně silný (sklepy, garáže, ...)

Optická vlákna

- Repeater je složen z fotobuňky (přijímače), zesilovače a světlo emitující (LED) nebo infra-diody (IRED)
- Optický signál nejprve převede na elektronický a po z restaurování opět na optický, který je vysílán dále do optického vlákna

Radiotechnika

 Opakovače jsou využívány i komerčními radio stanicemi, radioamatéry k oddělení signálu v jejich frekvenčním rozsahu od jednoho přijímače k druhému