Evaluating Multiclass Classification

Lecture 3, Aug 26, 2019

Exercise 1

Compute evaluation measures for a multiclass classification problem, given the following classification results (k = 4 classes in total).

Doc	Actual	Pred.
1	1	1
$\begin{bmatrix} 1 \\ 2 \\ 3 \end{bmatrix}$	1	1
3		1
4 5	2	
	2 2 2 3	$\frac{2}{3}$
6	3	2
7	3	3
7 8 9	3	1
9	3	3
10	4	4
11	4	2
12	4	3

Table 1: Multiclass classification results.

Step 1: Complete the confusion matrix

		Predicted			
		1	2	3	4
Actual class	1	1			
	2				
	3				
	4				

Table 2: Confusion matrix.

Step 2: Create binary confusion matrices

Create and fill out the following confusion matrix for each class i ($i \in [1..k]$).

		Pred.		
		i	$\neg i$	
Lct.	i	TP_i	FN_i	
A	$\neg i$	FP_i	TN_i	

Step 3: Compute measures

It might be helpful to first copy the TP, FN, FP, TN values from the other side of the page, so as to avoid flipping back-and-forth.

Class	TP_i	FN_i	FP_i	TN_i
1				
2				
3				
4				

Compute the final evaluation metrics (the formulas are provided for your convenience)

Measure	Formula	Result	
$Micro-averages (\mu)$			
$Accuracy_{\mu}$	$\frac{\sum_{i=1}^{k} (TP_i + TN_i)}{\sum_{i=1}^{k} (TP_i + TN_i + FP_i + FN_i)}$		
$\mathrm{Precision}_{\mu}$	$\frac{\sum_{i=1}^{k} TP_i}{\sum_{i=1}^{k} (TP_i + FP_i)}$		
Recall_{μ}	$\frac{\sum_{i=1}^{k} TP_i}{\sum_{i=1}^{k} (TP_i + FN_i)}$		
F1-score_{μ}	$\frac{2 \cdot P_{\mu} \cdot R_{\mu}}{P_{\mu} + R_{\mu}}$		
Macro-averages (M)			
$Accuracy_M$	$\frac{\sum_{i=1}^{k} \frac{TP_i + TN_i}{TP_i + TN_i + FP_i + FN_i}}{k}$		
$\operatorname{Precision}_M$	$\frac{\sum_{i=1}^{k} \frac{TP_i}{TP_i + FP_i}}{k}$		
Recall_M	$\frac{\sum_{i=1}^{k} \frac{TP_i}{TP_i + FN_i}}{k}$		
F1-score _{M}	$\frac{2 \cdot P_M \cdot R_M}{P_M + R_M}$		