

Universidade de Caxias do Sul Área do Conhecimento de Ciências Exatas e Engenharias

Matemática Discreta

Prof. Leonardo Dagnino Chiwiacowsky - PPGEP/UCS e-mail: ldchiwiacowsky@ucs.br

Universidade de Caxias do Sul Área do Conhecimento de Ciências Exatas e Engenharias

Sumário

- 1 Teoria dos Conjuntos
- 2 Álgebra de Conjuntos
- 3 Conjuntos Finitos
- 4 Produto Cartesiano

Definição

É uma coleção de zero ou mais objetos distintos, chamados elementos do conjunto, os quais não possuem qualquer ordem associada. É uma coleção "não-ordenada".

Normalmente, usamos letras maiúsculas para denotar conjuntos: A, B, C, X, Y, ..., e letras minúsculas para denotar elementos de conjuntos: a, b, c, x, y, ...

- 1 Por extensão: listamos todos os elementos do conjunto de forma explícita. Exemplos:
 - a) $A = \{a, e, i, o, u\};$

- 1 Por extensão: listamos todos os elementos do conjunto de forma explícita. Exemplos:
 - a) $A = \{a, e, i, o, u\};$
 - b) $B = \{0, 2, 4, 6, \dots, 148\},\$

- 1 Por extensão: listamos todos os elementos do conjunto de forma explícita. Exemplos:
 - a) $A = \{a, e, i, o, u\};$
 - b) $B = \{0, 2, 4, 6, \dots, 148\}$, suficiente para se perceber a lei de formação;

- 1 Por extensão: listamos todos os elementos do conjunto de forma explícita. Exemplos:
 - a) $A = \{a, e, i, o, u\};$
 - b) $B = \{0, 2, 4, 6, \dots, 148\}$, suficiente para se perceber a lei de formação;
 - c) $C = \{0, 1, 2, 3, 4, 5, \ldots\},\$

- 1 Por extensão: listamos todos os elementos do conjunto de forma explícita. Exemplos:
 - a) $A = \{a, e, i, o, u\};$
 - b) $B = \{0, 2, 4, 6, \dots, 148\}$, suficiente para se perceber a lei de formação;
 - c) $C = \{0, 1, 2, 3, 4, 5, \ldots\}$, quando o número de elementos é infinito.

- Por extensão: listamos todos os elementos do conjunto de forma explícita. Exemplos:
 - a) $A = \{a, e, i, o, u\};$
 - b) $B = \{0, 2, 4, 6, \dots, 148\}$, suficiente para se perceber a lei de formação;
 - c) $C = \{0, 1, 2, 3, 4, 5, \ldots\}$, quando o número de elementos é infinito.
- 2 Por compreensão: designamos as propriedades que caracterizam os elementos do conjunto: $X = \{x/P(x)\}$, onde P(x) representa a propriedade. Exemplo:
 - a) $X = \{x/x \text{ \'e um inteiro par e } x > 0\}$

Relação de Pertinência

Se a é um elemento de um conjunto A, então escrevemos $a \in A$ e dizemos "a pertence ao conjunto A".

Se a não é um elemento de um conjunto A, escrevemos $a \notin A$ e dizemos "a não pertence ao conjunto A".

Exemplos:

a) Seja $A = \{a, e, i, o, u\}$, então $i \in A$ e $b \notin A$;

Relação de Pertinência

Se a é um elemento de um conjunto A, então escrevemos $a \in A$ e dizemos "a pertence ao conjunto A".

Se a não é um elemento de um conjunto A, escrevemos $a \notin A$ e dizemos "a não pertence ao conjunto A".

Exemplos:

- a) Seja $A = \{a, e, i, o, u\}$, então $i \in A$ e $b \notin A$;
- b) Seja $B = \{x/x \text{ \'e brasileiro}\}$, então $Neymar \in B$ e $Messi \notin B$.

Conjuntos Numéricos

Os conjuntos de maior importância para nós serão os conjuntos numéricos. Destes, alguns são especiais:

1 Conjunto dos números naturais $\mathbb{N}=\{0,1,2,3,4,\ldots\}$. Ainda, $\mathbb{N}^*=\{1,2,3,4,\ldots\}$, onde (*) indica a exclusão do número zero de qualquer conjunto.

Conjuntos Numéricos

Os conjuntos de maior importância para nós serão os conjuntos numéricos. Destes, alguns são especiais:

- **1** Conjunto dos números naturais $\mathbb{N} = \{0, 1, 2, 3, 4, \ldots\}$. Ainda, $\mathbb{N}^* = \{1, 2, 3, 4, \ldots\}$, onde (*) indica a exclusão do número zero de qualquer conjunto.
- 2 Conjunto dos números inteiros $\mathbb{Z} = \{\dots, -4, -3, -2, -1, 0, 1, 2, 3, 4, \dots\}$. Convenciona-se usar (+) para exclusão dos negativos e (-) para exclusão dos positivos.

Assim:

Conjuntos Numéricos

③ Conjunto dos Números Racionais (ℚ): número racional é todo aquele que pode ser expresso na forma de fração com numerador inteiro e denominador inteiro diferente de zero. Assim, ℚ = {x/x = p/q, p ∈ ℤ e q ∈ ℤ*}. Números racionais admitem representação decimal, exata ou periódica. Amite-se também para os racionais as notações ℚ*, ℚ₊, ℚ₋, ... Exemplos:

- a) $-\frac{9}{3} = -3 \in \mathbb{Q};$
- b) $\frac{1}{3} = 0,3333 \in \mathbb{Q};$
- c) $\frac{14}{2} = 7 \in \mathbb{Q}$;
- d) $\frac{1}{4} = 0, 25 \in \mathbb{Q};$
- e) $-\frac{15}{8} = -1,875 \in \mathbb{Q}$.

Conjuntos Numéricos

4 Conjunto dos Números Irracionais (\mathbb{I}): é o conjunto dos números que não podem ser escritos na forma p/q com $p \in \mathbb{Z}$ e $q \in \mathbb{Z}^*$. Estes números admitem representação decimal não exata e não periódica. Exemplos:

- a) $\pi = 3, 14159265... \in \mathbb{I}$;
- b) $e = 2,7182818... \in \mathbb{I}$;
- c) $\sqrt{2} = 1,4142135624... \in \mathbb{I}$.

Conjuntos Numéricos

4 Conjunto dos Números Irracionais (\mathbb{I}): é o conjunto dos números que não podem ser escritos na forma p/q com $p \in \mathbb{Z}$ e $q \in \mathbb{Z}^*$. Estes números admitem representação decimal não exata e não periódica. Exemplos:

- a) $\pi = 3, 14159265... \in \mathbb{I}$;
- b) $e = 2,7182818... \in \mathbb{I}$;
- c) $\sqrt{2} = 1,4142135624... \in \mathbb{I}$.
- **5** Conjunto dos números reais (\mathbb{R}): número real é qualquer número racional ou irracional. Admite-se também as notações \mathbb{R}^* , \mathbb{R}_+ , \mathbb{R}_- , ... Exemplos:
 - Exemplos.
 - a) $3 \in \mathbb{R}$;
 - b) $\pi \in \mathbb{R}$;
 - c) $-1, 8 \in \mathbb{R}$;
 - d) $0,3333... \in \mathbb{R}$;
 - e) $\frac{4}{5} \in \mathbb{R}$.

Conjuntos Numéricos

⑥ Conjunto dos Números Complexos (ℂ): são números cuja forma algébrica é a+bi com $a \in \mathbb{R}, b \in \mathbb{R}$ e $i=\sqrt{-1}$. Exemplos:

- a) $3 + \sqrt{-16} = 3 + 4i \in \mathbb{C}$;
- b) $-7 + \sqrt{-25} = -7 + 5i \in \mathbb{C};$
- c) $\sqrt{-9} = 0 + 3i \in \mathbb{C};$
- d) $2 = 2 + 0i \in \mathbb{C}$.

Exercícios

1 Considere os conjuntos \mathbb{N} , \mathbb{Z} , \mathbb{Q} , \mathbb{I} , \mathbb{R} e \mathbb{C} . Verifique qual (ou quais) dos conjuntos citados pertence cada um dos números:

a)
$$\sqrt{4}$$

e)
$$\sqrt{-2}$$

b)
$$\sqrt[3]{-5}$$

c)
$$\frac{1}{6}$$

d)
$$-2$$

② Complete corretamente, com o símbolo ∈ ou ∉, conforme o caso, cada enunciado abaixo:

- a) -15_____Q c) $\sqrt{5}$ _____Q
- b) $\sqrt[5]{-1}$ \mathbb{R} d) π \mathbb{R}

Exercícios

Assinale V ou F:

a)
$$-4 \in \mathbb{N}$$

a)
$$-4 \in \mathbb{N}$$
 e) $\sqrt{7} \notin \mathbb{R}$

b)
$$\frac{2}{3} \notin \mathbb{Z}$$

f)
$$-2, 1313... \in \mathbb{Q}$$

c)
$$0 \in \mathbb{Q}_-$$
 g) $\frac{4}{7} \in \mathbb{Q}_+^*$

$$g) \stackrel{4}{7} \in \mathbb{Q}_+^*$$

d)
$$\frac{1}{2} \notin \mathbb{Q}_+$$

h)
$$-8 \in \mathbb{R}^*$$

4 Dados dois números $a \in b$ tais que $a \in \mathbb{Q}^*$, $b \in \mathbb{R}$ e $b \notin \mathbb{Q}$, associe V ou F a cada afirmação:

- a) $(a+b) \in \mathbb{Q}$ d) $a^2 \in \mathbb{Q}$

- b) $(a \cdot b) \notin \mathbb{Q}$ e) $(a b) \notin \mathbb{Q}$
- c) $b^2 \in \mathbb{Q}$

f) $\frac{a}{b} \in \mathbb{Q}$

Exercícios

6 Descreva cada conjunto a seguir, listando seus elementos:

a)
$$A = \{x \in \mathbb{N}/1 \le x < 6\}$$

a)
$$A = \{x \in \mathbb{N}/1 \le x < 6\}$$
 d) $D = \{x \in \mathbb{N}/x^2 + x - 6 = 0\}$

b)
$$B = \{x \in \mathbb{Z}/ -2 < x \le 4\}$$
 e) $E = \{x \in \mathbb{N}^*/x < 3\}$

e)
$$E = \{x \in \mathbb{N}^* / x < 3\}$$

c)
$$C = \{x \in \mathbb{N}/x \text{ \'e par e } x < 15\}$$
 f) $F = \{x \in \mathbb{Z}^*/-2 < x < 2\}$

$$F = \{x \in \mathbb{Z}^* / -2 < x < 2\}$$

6 Descreva cada conjunto a seguir através de uma propriedade característica:

a)
$$A = \{5, 7, 9, 11, 13, \ldots\}$$
 c) $C = \{1, 2, 3, 4, 6, 12\}$

c)
$$C = \{1, 2, 3, 4, 6, 12\}$$

b)
$$B = \{-3, -2, -1, 0, 1, 2\}$$
 d) $D = \{-3, 3\}$

d)
$$D = \{-3, 3\}$$

Conjuntos Vazio, Unitário e Universo

O **conjunto vazio** é um conjunto que não possui elementos e é denotado por \emptyset ou $\{\}$. Exemplo: $X = \{x \in \mathbb{Z}/x^2 = 3\}$.

O conjunto unitário é um conjunto constituído por um único elemento.

Exemplo: $X = \{x \in \mathbb{N}/3 < x < 5\}.$

O **conjunto universo** é o conjunto formado por todos os elementos com os quais estamos trabalhando em um determinado contexto. É denotado pelo símbolo U. Exemplos:

- a) Se $U = \mathbb{N}$, então x + 5 = 2 não tem solução,
- b) Se $U = \mathbb{Z}$, então a equação x + 5 = 2 tem como solução x = -3.

Subconjuntos

Se <u>todo</u> o elemento de um conjunto A é também um elemento de um conjunto B, dizemos que "A é um subconjunto de B" ou que "A está contido em B", e escrevemos: $A \subseteq B$.

Quando $A \subseteq B$ podemos escrever também $B \supseteq A$ e lemos "B contém A".

Se A não for subconjunto de B, então escrevemos $A \nsubseteq B$, ou ainda $B \not\supseteq A$. Isto significa que existe pelo menos um elemento de A que não pertence a B.

Exemplos:

- a) Sejam $A = \{1, 3, 4, 5, 8, 9\}$, $B = \{1, 2, 3, 5, 7\}$ e $C = \{1, 5\}$, temos $C \subseteq A$ e $C \subseteq B$ mas $B \nsubseteq A$;
- b) $\mathbb{N} \subseteq \mathbb{Z} \subseteq \mathbb{Q} \subseteq \mathbb{R} \subseteq \mathbb{C}$;
- c) $\{2,4,6\} \subseteq \{6,2,4\}.$

Subconjuntos

Propriedades:

- **1** Para todo conjunto A, temos $\emptyset \subseteq A \subseteq U$;
- 2 Para todo conjunto $A, A \subseteq A$;
- 3 Se $A \subseteq B$ e $B \subseteq C$ então $A \subseteq C$.

Observação

- 1 ∈ e ∉ são relações entre elemento e conjunto;
- 2 ⊆ e ⊈ são relações entre conjunto e conjunto.

Subconjuntos

<u>Pertinência × Inclusão</u>: Os elementos de um conjunto podem ser conjuntos. Portanto, atenção aos conceitos de pertinência e inclusão

Exemplo: Seja $S = \{a, b, c, d, \emptyset, \{0\}, \{1, 2\}\}$. Então:

- a) $\{a\} \notin S$, mas $\{a\} \subseteq S$;
- b) $\emptyset \in S e \emptyset \subseteq S$;
- c) $\{0\} \in S \in \{1, 2\} \in S$;
- d) $\{a, b, c, d\} \notin S$, mas $\{a, b, c, d\} \subseteq S$.

Igualdade de Conjuntos

Dois conjuntos A e B são iguais se cada elemento pertencente a A também pertencer a B e vice-versa, isto é, A = B se e somente se $A \subseteq B$ e $B \subseteq A$.

Exemplos:

- a) $\mathbb{N} = \{x \in \mathbb{Z}/x \ge 0\};$
- b) $\{1, 2, 4\} = \{1, 2, 2, 2, 4, 4\};$
- c) $\{0, 1, 2\} = \{x \in \mathbb{N}/0 \le x < 3\}.$

Teoria dos Conjuntos Exercícios

Exercícios da apostila "1. Teoria dos Conjuntos", página 7.

Definição

Uma álgebra é constituída de operações definidas sobre um conjunto. A Álgebra de

Conjuntos é constituída por operações definidas para todos os conjuntos.

Diagramas de Venn

Podemos representar conjuntos e suas operações por meio de figuras geométricas (elipses, retângulos, círculos, ...) chamadas "Diagramas de Venn". Em geral, o conjunto universo U é representado por um retângulo e os demais conjuntos por círculos, elipes, etc.

Exemplos:

a) Um dado conjunto A

b)
$$C = \{1, 2, 3\}$$

Diagramas de Venn

Exemplos:

c)
$$A = \{3, 5, 8\} \in B = \{4, 5, 6, 8, 9\}$$

d)
$$A \subseteq B$$

Diagramas de Venn

Exemplos:

e) $C \subseteq U$

f) $A \subseteq B \in C \subseteq B$

Diagramas de Venn - Exercícios

Exercícios da apostila "4. Álgebra de Conjuntos", página 24.

Operação União

Sejam A e B conjuntos. A união dos conjuntos A e B, denotada por $A \cup B$, é o conjunto de todos os elementos que pertencem a A ou a B:

$$A \cup B = \{x/x \in A \lor x \in B\}$$

Operação União

Exemplos:

- **1** Dados os conjuntos $A = \{1, 2, 3, 4\}, B = \{2, 4, 6, 8\}$ e $C = \{3, 4, 5, 6\}$, determine: a) $A \cup B$ b) $A \cup C$ c) $B \cup C$ d) $B \cup B$ e) $(A \cup B) \cup C$ f) $A \cup (B \cup C)$
- 2 Suponha os conjuntos $A = \{x \in \mathbb{N}/3 < x \le 5\}$ e $B = \{x \in \mathbb{N}/x^2 2 = x\}$, determine $A \cup B$.
- 3 Considere os conjuntos \mathbb{R} , \mathbb{Q} e \mathbb{I} . Determine: a) $\mathbb{R} \cup \mathbb{Q}$ b) $\mathbb{R} \cup \mathbb{I}$ c) $\mathbb{Q} \cup \mathbb{I}$
- 4 Para qualquer conjunto universo U e qualquer $A \subseteq U$, determine: a) $\emptyset \cup \emptyset$ b) $U \cup \emptyset$ c) $U \cup A$ d) $U \cup U$

Álgebra de Conjuntos Operação União

Propriedades da Operação de União:

- **1** Elemento Neutro: $A \cup \emptyset = \emptyset \cup A = A$
- 2 Idempotência: $A \cup A = A$
- **3** Comutatividade: $A \cup B = B \cup A$
- 4 Associatividade: $(A \cup B) \cup C = A \cup (B \cup C)$

Operação Intersecção

Sejam A e B conjuntos. A intersecção dos conjuntos A e B, denotada por $A \cap B$, é o conjunto de elementos que pertencem a A e a B, simultaneamente:

$$A \cap B = \{x/x \in A \land x \in B\}$$

Operação Intersecção

Exemplos:

1 Dados os conjuntos $A = \{0, 1, 2, 3, 4\}, B = \{0, 2, 4, 6, 8\} \in C = \{3, 4, 5, 6\},$ determine:

- a) $A \cap B$ b) $A \cap C$ c) $B \cap C$ d) $B \cap B$

- e) $A \cap (B \cap C)$ f) $(A \cap B) \cup C$ g) $(A \cup C) \cap B$ h) $(A \cap B) \cup (A \cap C)$

2 Suponha os conjuntos $A = \{x \in \mathbb{N}/1 \le x < 3\}$ e $B = \{x \in \mathbb{N}/x^2 = x\}$. determine $A \cap B$.

3 Considere os conjuntos \mathbb{R} , \mathbb{Q} e \mathbb{I} . Determine: a) $\mathbb{R} \cap \mathbb{Q}$ b) $\mathbb{R} \cap \mathbb{I}$ c) $\mathbb{Q} \cap \mathbb{I}$

4 Para qualquer conjunto universo U e qualquer $A \subseteq U$, determine:

- a) $\emptyset \cap \emptyset$ b) $U \cap \emptyset$ c) $U \cap A$ d) $U \cap U$

Operação Intersecção

Propriedades da Operação de Intersecção:

- **1** Elemento Neutro: $A \cap U = U \cap A = A$
- 2 Idempotência: $A \cap A = A$
- 3 Comutatividade: $A \cap B = B \cap A$
- **4** Associatividade: $(A \cap B) \cap C = A \cap (B \cap C)$

Propriedades Envolvendo União e Intersecção:

- **1** Distributividade da \cap sobre a \cup : $A \cap (B \cup C) = (A \cap B) \cup (A \cap C)$
- 2 Distributividade da \cup sobre a \cap : $A \cup (B \cap C) = (A \cup B) \cap (A \cup C)$

Exercícios da apostila "4. Álgebra de Conjuntos", página 26.

Operação Complemento

Suponha o conjunto universo U. O complemento de um conjunto $A \subseteq U$, denotado por $\sim A$ (ou \overline{A} , A^C , A') é o conjunto dos elementos que estão em U mas não pertencem a A:

$$\sim A = \overline{A} = A^C = A' = \{x \in U/x \notin A\} = U \setminus A$$

Operação Complemento

Exemplos:

- **1** Dados os conjuntos $U = \{1, 2, 3, \dots, 8, 9\}$, $A = \{1, 2, 3, 4\}$, $B = \{2, 4, 6, 8\}$ expressions of the property of the pr $C = \{3, 4, 5, 6\}$, determine:

- a) $\sim A = \overline{A}$ b) $\sim B = \overline{B}$ c) $\sim (A \cap C)$ d) $\sim (A \cup B)$ e) $\sim \sim C$
- 2 Suponha o conjunto universo $U = \mathbb{N}$. Seja $A = \{0, 1, 2\}$. Determine $\sim A$.
- 3 Para qualquer conjunto universo U, determine: a) $\sim \emptyset$
 - b) $\sim U$
- $oldsymbol{\Phi}$ Suponha o conjunto $\mathbb R$ como conjunto universo. Determine:

 - a) $\sim \mathbb{O}$ b) $\sim \mathbb{I}$
- **5** Para qualquer conjunto universo U e qualquer $A \subseteq U$, determine:
 - a) $A \cup \sim A$ b) $A \cap \sim A$

Operação Complemento

Propriedades de De Morgan:

- $(A \cap B) = A \cup B \Leftrightarrow A \cap B = (A \cup B)$

Exemplos:

- 6 Com base no exemplo (1) anterior, verifique:
 - a) $\sim (A \cup B) = \sim A \cap \sim B$ b) $\sim (A \cap C) = \sim A \cup \sim C$

Operação Diferença

A diferença entre os conjuntos A e B, denotada por A-B, é o conjunto dos elementos que pertencem a A mas não pertencem a B:

$$A - B = \{x/x \in A \land x \notin B\} = A \setminus B$$

Operação Diferença

Exemplos:

1 Dados os conjuntos $U = \{0, 1, 2, 3, 4, 5\}, A = \{0, 2\}, B = \{1, 3, 5\} \in C = \{2, 3, 4\},$ determine:

a)
$$A - C$$

a)
$$A-C$$
 b) $B-C$ c) $A-B$ d) $C-A$

c)
$$A - B$$

d)
$$C-A$$

e)
$$\sim (B-C)$$

$$(A \cup B) - C$$

g)
$$(\sim B - A) \cup C$$
 h)

e)
$$\sim (B-C)$$
 f) $(A \cup B) - C$ g) $(\sim B-A) \cup C$ h) $\sim (B \cap C) - (A \cup B)$

2 Suponha os conjuntos $A = \{x \in \mathbb{N}/x > 4\}$ e $B = \{x \in \mathbb{N}/x^2 - 3x + 2 = 0\}$. Determine: a) A - B b) B - A

3 Considere os conjuntos numéricos ℝ. O e I. Determine:

a)
$$\mathbb{R} - \mathbb{Q}$$

a)
$$\mathbb{R} - \mathbb{Q}$$
 b) $\mathbb{R} - \mathbb{I}$ c) $\mathbb{Q} - \mathbb{I}$

4 Para qualquer conjunto universo U e qualquer $A \subseteq U$, determine:

b)
$$U - \emptyset$$

c)
$$U-A$$

a)
$$\varnothing - \varnothing$$
 b) $U - \varnothing$ c) $U - A$ d) $U - U$

Operação Diferença Simétrica

A diferença simétrica dos conjuntos A e B, denotada por $A \oplus B$, é o conjunto de todos os elementos que estão em A mas não em B, ou que estão em B mas não em A:

$$A \oplus B = \{x/(x \in A \land x \notin B) \lor (x \notin A \land x \in B)\} = A \ominus B$$

Operação Diferença Simétrica

Exemplos:

- **1** Dados os conjuntos $A = \{1, 2, 3, 4, 5, 6\}$ e $B = \{4, 5, 6, 7, 8, 9\}$, determine $A \oplus B$.
- 2 Para qualquer conjunto universo U e qualquer $A \subseteq U$, determine:

 - a) $A \oplus A$ b) $A \oplus U$ c) $\emptyset \oplus A$
- 3 Com o uso de Diagramas de Venn, mostre que $A \oplus B = (A \cup B) (A \cap B)$

Propriedades:

1 Distributividade da intersecção em relação à diferença simétrica:

$$A\cap (B\oplus C)=(A\cap B)\oplus (A\cap C)$$

 $A \oplus B = \sim A \oplus \sim B$

Exercícios da apostila "4. Álgebra de Conjuntos", página 30.

Definição

Um Conjunto é Finito quando o processo de contagem de seus elementos chega ao fim. Neste caso, dizemos que um conjunto finito é aquele que possui exatamente n elementos distintos, com $n \in \mathbb{N}$.

A notação n(A) ou |A| indicará o número de elementos de um conjunto finito A.

Princípio da Enumeração

Se A e B são dois conjuntos finitos, então $A \cup B$ e $A \cap B$ também são finitos:

$$n(A \cup B) = n(A) + n(B) - n(A \cap B)$$

Para três conjuntos A, B e C, finitos, essa relação será:

$$n(A \cup B \cup C) = n(A) + n(B) + n(C) - n(A \cap B) - n(A \cap C) - n(B \cap C) + n(A \cap B \cap C)$$

Princípio da Enumeração

Exemplo: Considere os seguintes dados sobre 120 estudantes no que diz respeito aos idiomas francês, alemão e russo: 65 estudam francês, 45 estudam alemão, 42 estudam russo, 20 estudam francês e alemão, 25 estudam francês e russo, 15 estudam alemão e russo e 8 estudam os três idiomas.

- a) Determine o número de alunos que estudam pelo menos um dos três idiomas;
- b) Preencha o Diagrama de Venn com o número correto de estudantes.

Conjunto das Partes

Para um conjunto A, o conjunto das partes de A, denotado por $\mathcal{P}(A)$, é o conjunto de todos os subconjuntos de A.

Se A é finito, então $\mathcal{P}(A)$ também é, e o número de elementos de $\mathcal{P}(A)$ é dador por

$$n\mathcal{P}(A) = 2^{n(A)}$$

Exemplo: Suponha $A = \{1, 2, 3\}$, determine $\mathcal{P}(A)$:

Exercícios da apostila "4. Álgebra de Conjuntos", página 34.

Exercícios

1 Determinar o conjunto X tal que:

```
i. \{a, b, c, d\} \cup X = \{a, b, c, d, e\}
```

ii.
$$\{c, d\} \cup X = \{a, c, d, e\}$$

iii.
$$\{b, c, d\} \cap X = \{c\}$$

- 2 Seja $A = \{1, \{2\}, \{1, 2\}\}$, indique V ou F nos itens abaixo:

- a) $1 \in A$ b) $2 \in A$ c) $\emptyset \subseteq A$ d) $\{1, 2\} \subseteq A$
- O José Carlos e Marlene são os pais de Valéria. A família quer viajar nas férias de iulho. José Carlos consegue tirar férias na empresa do dia 2 ao dia 28. Marlene obteve licenca no escritório de 5 a 30. As férias de Valéria na escola vão de 1 a 25. Durante quantos dias a família poderá viajar sem faltar às suas obrigações?

Exercícios

- 4 Em uma classe de 30 alunos, 16 gostam de Matemática e 20 gostam de História. O número de alunos desta classe que gostam de Matemática e História é:
 - a) exatamente 16 b) exatamente 10 c) no máximo 6

- d) no mínimo 6 e) exatamente 18
- 6 Em uma pesquisa de mercado, verificou-se que 15 pessoas utilizam pelo menos um dos produtos A ou B. Sabendo que 10 destas pessoas não usam o produto B e que 2 destas pessoas não usam o produto A, qual é o número de pessoas que utilizam os produtos $A \in B$?

Exercícios

- 6 Considere os conjuntos a seguir, considerando o conjunto universo para este problema como sendo o conjunto de todos os quadriláteros:
 - A = conjunto de todos os paralelogramos;
 - B = conjunto de todos os losangos;
 - C = conjunto de todos os retângulos;
 - D = conjunto de todos os trapézios.

Usando **apenas** os símbolos x, A, B, C, D, \in , \notin , \subseteq , =, \neq , \cup , \cap , \sim , \varnothing , (,), escreva as sentenças a seguir em notação de conjuntos:

- a) O polígono x é um paralelogramo, mas não é um losango;
- b) Existem outros quadriláteros além dos paralelogramos e dos trapézios;
- c) Tanto retângulos quanto losangos são paralelogramos.

- 1 Vamos analisar as conclusões possíveis de cada item:
 - i. $\{a,b,c,d\} \cup X = \{a,b,c,d,e\} \Rightarrow$ com certeza o elemento e pertence a X, enquanto os elementos a,b,c e d podem ou não pertencer ao conjunto X;
 - ii. $\{c,d\} \cup X = \{a,c,d,e\} \Rightarrow$ com certeza os elementos a e e pertencem a X, enquanto os elementos c e d podem ou não pertencer ao conjunto X;
 - iii. $\{b, c, d\} \cap X = \{c\} \Rightarrow$ com certeza o elemento c pertence a X, enquanto os elementos b e d não pertencem ao conjunto X.

Assim, podemos afirmar que o conjunto é definido como $X = \{a, c, e\}$

 $oldsymbol{2}$ a) V b) F c) V d) F

3 Podemos assumir, para cada membro da família, um conjunto formado pelas datas em que o respectivo membro estará de férias. Assim, temos:

JC = $\{02/07, 03/07, \dots, 27/07, 28/07\};$ M = $\{05/07, 06/07, \dots, 29/07, 30/07\};$ V = $\{01/07, 02/07, \dots, 24/07, 25/07\}.$

Precisamos calcular o número de elementos da intersecção dos três conjuntos, isto é $n(JC\cap M\cap V)$. Para tanto, podemos construir o respectivo conjunto e contabilizar o número de elementos. Assim, temos:

$$JC \cap M \cap V = \{05/07, 06/07, \dots, 24/07, 25/07\} \Rightarrow n(JC \cap M \cap V) = 21.$$

4 Caso seja assumido que todos os 30 alunos presentes na turma gostam de pelo menos uma disciplina, teríamos:

$$n(M \cup H) = n(M) + n(H) - n(M \cap H) \Rightarrow 30 = 16 + 20 - n(M \cap H) \Rightarrow$$
$$\Rightarrow n(M \cap H) = 16 + 20 - 30 = 6;$$

ou seja, exatamente 6 alunos gostam tanto de Matemática quanto de História. Porém, se existir na turma um aluno que não gosta nem de Matemática nem de História? Neste caso, teremos $n(M \cup H) = 29$. Destes 29, quantos alunos gostam tanto de Matemática quanto de História?

$$n(M \cup H) = n(M) + n(H) - n(M \cap H) \Rightarrow 29 = 16 + 20 - n(M \cap H) \Rightarrow$$
$$\Rightarrow n(M \cap H) = 16 + 20 - 29 = 7.$$

Agora, se existirem na turma dois alunos que não gostam nem de Matemática nem de História? Neste caso, teremos $n(M \cup H) = 28$. Destes 28, quantos alunos gostam tanto de Matemática quanto de História?

$$n(M \cup H) = n(M) + n(H) - n(M \cap H) \Rightarrow 28 = 16 + 20 - n(M \cap H) \Rightarrow$$
$$\Rightarrow n(M \cap H) = 16 + 20 - 28 = 8.$$

De forma geral, temos que avaliar a condição $n(M \cup H) \leq 30$. Para determinar o número de alunos que gostam tanto de Matemática quanto de História para esta condição, devemos substituir a definição de $n(M \cup H)$ na expressão da condição, obtendo:

$$n(M \cup H) \le 30 \Rightarrow n(M) + n(H) - n(M \cap H) \le 30 \Rightarrow 16 + 20 - n(M \cap H) \le 30 \Rightarrow$$
$$\Rightarrow n(M \cap H) \ge 16 + 20 - 30;$$

teremos então $n(M \cap H) \ge 6$, ou seja, no mínimo 6 (item d).

- 6 Com base nas informações do enunciado, podemos escrever:
 - $n(A \cup B) = 15$ n(A B) = 10 n(B A) = 2 $n(A \cap B) = x$

Representando por um Diagrama de Venn, temos:

Portanto, $n(A \cap B) = n(A \cup B) - n(A) - n(B) = 15 - 10 - 2 \Rightarrow n(A \cap B) = 3$.

- 6 Para cada item, recomenda-se a construção do Diagrama de Venn correspondente para facilitar a interpretação:
 - a) Conforme a situação descrita, podemos representá-la pelo seguinte diagrama:

- 6 Para cada item, recomenda-se a construção do Diagrama de Venn correspondente para facilitar a interpretação:
 - a) Conforme a situação descrita, podemos representá-la pelo seguinte diagrama:

Portanto, temos a sentença: $x \in (A \cap \sim B)$ ou $x \in (A \cap \bar{B})$

b) Conforme a situação descrita, podemos representá-la pelo seguinte diagrama:

b) Conforme a situação descrita, podemos representá-la pelo seguinte diagrama:

Portanto, temos a sentença: $\sim (A \cup D) \neq \emptyset$

c) Conforme a situação descrita, podemos representá-la pelo seguinte diagrama:

c) Conforme a situação descrita, podemos representá-la pelo seguinte diagrama:

Portanto, temos a sentença: $(B \cup C) \subseteq A$

Definição

Sejam dois conjuntos arbitrários $A \in B$. O conjunto de todos os pares ordenados (a, b), onde $a \in A$ e $b \in B$, é chamado de **produto cartesiano dos conjuntos** $A \in B$. Indicamos por $A \times B$ e lemos "A cartesiano B". Assim: $A \times B = \{(a, b)/a \in A \land b \in B\}$.

Denotamos o produto cartesiano de um conjunto A por ele mesmo como $A \times A = A^2$.

Exemplo: Dados os conjuntos $A = \{a\}, B = \{a, b\}$ e $C = \{0, 1, 2\}$, temos:

a) $A \times B =$

- a) $A \times B = \{(a, a), (a, b)\}$
- b) $B \times A =$

- a) $A \times B = \{(a, a), (a, b)\}$
- b) $B \times A = \{(a, a), (b, a)\}$
- c) $B \times C =$

- a) $A \times B = \{(a, a), (a, b)\}$
- b) $B \times A = \{(a, a), (b, a)\}$
- c) $B \times C = \{(a, 0), (a, 1), (a, 2), (b, 0), (b, 1), (b, 2)\}$
- d) $C \times B =$

- a) $A \times B = \{(a, a), (a, b)\}$
- b) $B \times A = \{(a, a), (b, a)\}$
- c) $B \times C = \{(a, 0), (a, 1), (a, 2), (b, 0), (b, 1), (b, 2)\}$
- d) $C \times B = \{(0, a), (0, b), (1, a), (1, b), (2, a), (2, b)\}$
- **e)** $A^2 = A \times A =$

- a) $A \times B = \{(a, a), (a, b)\}$
- b) $B \times A = \{(a, a), (b, a)\}$
- c) $B \times C = \{(a, 0), (a, 1), (a, 2), (b, 0), (b, 1), (b, 2)\}$
- d) $C \times B = \{(0, a), (0, b), (1, a), (1, b), (2, a), (2, b)\}$
- e) $A^2 = A \times A = \{(a, a)\}\$
- f) $B^2 = B \times B =$

- a) $A \times B = \{(a, a), (a, b)\}$
- b) $B \times A = \{(a, a), (b, a)\}$
- c) $B \times C = \{(a, 0), (a, 1), (a, 2), (b, 0), (b, 1), (b, 2)\}$
- d) $C \times B = \{(0, a), (0, b), (1, a), (1, b), (2, a), (2, b)\}$
- e) $A^2 = A \times A = \{(a, a)\}\$
- f) $B^2 = B \times B = \{(a, a), (a, b), (b, a), (b, b)\}$

- a) $A \times B = \{(a, a), (a, b)\}$
- b) $B \times A = \{(a, a), (b, a)\}$
- c) $B \times C = \{(a, 0), (a, 1), (a, 2), (b, 0), (b, 1), (b, 2)\}$
- d) $C \times B = \{(0, a), (0, b), (1, a), (1, b), (2, a), (2, b)\}$
- e) $A^2 = A \times A = \{(a, a)\}\$
- f) $B^2 = B \times B = \{(a, a), (a, b), (b, a), (b, b)\}$
- g) $(A \times B) \times C = \{(a, a), (a, b)\} \times \{0, 1, 2\} = \{((a, a), 0), ((a, a), 1), ((a, a), 2), ((a, b), 0), ((a, b), 1), ((a, b), 2)\}$

- a) $A \times B = \{(a, a), (a, b)\}$
- b) $B \times A = \{(a, a), (b, a)\}$
- c) $B \times C = \{(a, 0), (a, 1), (a, 2), (b, 0), (b, 1), (b, 2)\}$
- d) $C \times B = \{(0, a), (0, b), (1, a), (1, b), (2, a), (2, b)\}$
- e) $A^2 = A \times A = \{(a, a)\}\$
- f) $B^2 = B \times B = \{(a, a), (a, b), (b, a), (b, b)\}$
- g) $(A \times B) \times C = \{(a, a), (a, b)\} \times \{0, 1, 2\} = \{((a, a), 0), ((a, a), 1), ((a, a), 2), ((a, b), 0), ((a, b), 1), ((a, b), 2)\}$
- h) $A \times (B \times C) =$

- a) $A \times B = \{(a, a), (a, b)\}$
- b) $B \times A = \{(a, a), (b, a)\}$
- c) $B \times C = \{(a, 0), (a, 1), (a, 2), (b, 0), (b, 1), (b, 2)\}$
- d) $C \times B = \{(0, a), (0, b), (1, a), (1, b), (2, a), (2, b)\}$
- e) $A^2 = A \times A = \{(a, a)\}\$
- f) $B^2 = B \times B = \{(a, a), (a, b), (b, a), (b, b)\}$
- g) $(A \times B) \times C = \{(a, a), (a, b)\} \times \{0, 1, 2\} = \{((a, a), 0), ((a, a), 1), ((a, a), 2), ((a, b), 0), ((a, b), 1), ((a, b), 2)\}$
- h) $A \times (B \times C) = ???$

Observações:

- $A \times B \neq B \times A$ (não é comutativo)
- $n(A \times B) = n(A) \cdot n(B)$ e $n(A \times B \times C) = n(A) \cdot n(B) \cdot n(C)$
- $(A \times B) \times C \neq A \times (B \times C)$ (não é associativo)

Exercícios: Apostila "4. Álgebra de Conjuntos", página 36.

