HLMA101 - Partie B : Algèbre linéaire

Chapitre 6 L'espace \mathbb{R}^n

Simon Modeste

Faculté des Sciences - Université de Montpellier

2019-2020

Définition

L'espace réel à n dimensions est $\mathbb{R}^n = \mathbb{R} \times \cdots \times \mathbb{R}$ (produits cartésien, n fois).

Les éléments de \mathbb{R}^n sont les *n*-uplets de réels : $(x_1,...,x_n)$ où $\forall i \in \{1,...,n\}, x_i \in \mathbb{R}.$

Exemples

 $\begin{tabular}{ll} $\diamond $ \mathbb{R}^2 : couples \\ $\diamond $ \mathbb{R}^3 : triplets \\ $\diamond $ \mathbb{R}^4 : quadruplets \\ \end{tabular}$

Attention : l'ordre des éléments importe!

Éléments de \mathbb{R}^n

Les éléments de \mathbb{R}^n peuvent être interprétés de deux façon différentes :

- $\diamond \mathbb{R}^n$ comme ensemble de points.
- $\diamond \mathbb{R}^n$ comme ensemble de vecteurs.

1. Points et vecteurs

2. Combinaisons linéaires

3. Droites et plans vectoriels

4. Sous-espaces vectoriels

5. Sous-espaces affines

6. Équations de sous-espaces vectoriels et affines

Sommaire

- 1. Points et vecteurs
- 2. Combinaisons linéaires
- 3. Droites et plans vectoriels
- 4. Sous-espaces vectoriels
- 5. Sous-espaces affines
- 6. Équations de sous-espaces vectoriels et affine

Point de vue : \mathbb{R}^n comme ensemble de points $(x_1,...,x_n)$ représente le point dont les <u>coordonnées</u> sont $(x_1,...,x_n)$

Vecteurs (rappels)

♦ À chaque couple de points (A,B) de \mathbb{R}^n de coordonnées $(x_1^A,...,x_n^A)$ et $(x_1^B,...,x_n^B)$, on peut associer un <u>vecteur</u> noté \overrightarrow{AB} de coordonnées

$$(x_1^B - x_1^A, \dots, x_n^B - x_n^A)$$

♦ Deux couples de points (A,B) et (C,D) peuvent représenter un même vecteur : Si les coordonnées de A,B,C et D sont (x₁^A,...,x_n^A), (x₁^B,...,x_n^B), (x₁^C,...,x_n^C) et (x₁^D,...,x_n^D), alors

$$\overrightarrow{AB} = \overrightarrow{CD} \iff \forall i \in \{1, ..., n\}, x_i^D - x_i^C = x_i^B - x_i^A$$

Point de vue : \mathbb{R}^n comme ensemble de vecteurs

- ♦ Étant donné un vecteur $\overrightarrow{u} = (u_1, ..., u_n)$ de \mathbb{R}^n , on peut toujours le représenter avec un couple de points de la forme (O, M) où O est l'origine et M le point de \mathbb{R}^n de coordonnées $(u_1, ..., u_n)$.
- ♦ Inversement, étant donné un point de \mathbb{R}^n , on peut lui associer un vecteur, appelé **vecteur-position** : si M est de coordonnées $(x_1^M, ..., x_n^M)$ alors le vecteur-position associé à M est le vecteur \overrightarrow{OM} .

Remarque

- Les points et les vecteurs sont des objets différents, on ne fait pas les même choses avec!
- \diamond Mais on peut tous les identifier par des *n*-uplets de \mathbb{R}^n .

On peut "combiner" les vecteurs (pas les points).

Définition

Soit $\overrightarrow{u}=(u_1,\ldots,u_n)$ et $\overrightarrow{v}=(v_1,\ldots,v_n)$ deux vecteurs de \mathbb{R}^n , et soient $\lambda\in\mathbb{R}$, $\mu\in\mathbb{R}$.

La **combinaison linéaire** de \overrightarrow{u} et \overrightarrow{v} de coefficients λ et μ est le vecteur :

$$\overrightarrow{w} = \lambda \overrightarrow{u} + \mu \overrightarrow{v}$$

de coordonnées : $\forall i \in \{1, ..., n\}, w_i = \lambda u_i + \mu v_i$.

Remarques

- \Rightarrow Avec $\lambda = \mu = 1$, on a la somme $\overrightarrow{u} + \overrightarrow{v}$
- ♦ Deux vecteurs \overrightarrow{u} et \overrightarrow{v} sont dits **colinéaires** si $\exists \lambda \in \mathbb{R}, \ \overrightarrow{u} = \lambda. \ \overrightarrow{v}$

Sommaire

- 1. Points et vecteurs
- 2 Combinaisons linéaires
- 3. Droites et plans vectoriels
- 4. Sous-espaces vectoriels
- 5 Sous-espaces affines
- 6. Équations de sous-espaces vectoriels et affines

Écriture paramétrique

La droite "engendrée" par les multiples du vecteur $\overrightarrow{u} \neq \overrightarrow{0}$ est :

$$D_{\overrightarrow{u}} = \{ t . \overrightarrow{u} / t \in \mathbb{R} \}$$

ou

$$D_{\overrightarrow{u}} = \{(t.x_1, \dots, t.x_n) / t \in \mathbb{R}\} \text{ si } \overrightarrow{u} = (x_1, \dots, x_n)$$

Sommaire

- 1. Points et vecteurs
- 2. Combinaisons linéaires
- 3 Droites et plans vectoriels
- 4. Sous-espaces vectoriels
- 5. Sous-espaces affines
- 6. Équations de sous-espaces vectoriels et affine

Base canonique

La base canonique de \mathbb{R}^n est la famille de vecteurs :

$$\overrightarrow{e_1} = (1,0,\ldots,0)$$

$$\overrightarrow{e_2} = (0, 1, \dots, 0)$$

:

$$\overrightarrow{e_n} = (0, ..., 0, 1)$$

Théorème

Tout vecteur de \mathbb{R}^n s'écrit comme une combinaison linéaire des vecteurs de la base canonique.

Preuve.

Définition

Une **droite vectorielle** de \mathbb{R}^n est l'ensemble formé par tous les multiples d'un vecteur non-nul

Remarques

- C'est un ensemble de vecteurs, qu'on représente en utilisant les représentants de ces vecteurs ayant pour origine 0.
- Le vecteur nul appartient à toutes les droites vectorielles (elles "passent" toutes par l'origine).

Définition

Un **plan vectoriel** de \mathbb{R}^n est l'ensemble de toutes les combinaisons linéaires de deux vecteurs <u>non-nuls</u> et non-colinéaires.

Écriture paramétrique

Le plan "engendré" par deux vecteurs \overrightarrow{u} et \overrightarrow{v} peut s'écrire :

$$P_{\overrightarrow{u}} = \{s.\overrightarrow{u} + t.\overrightarrow{v}/(s,t) \in \mathbb{R}^2\}$$

Exemple.

Remarques

- ♦ Ce sont bien les droites et les plans au sens usuel.
- Pour les représenter, on utilise les représentants des vecteurs ayant pour origine 0 (tous les plans vectoriels "passent" par 0).
- Il faut 2 vecteurs non-colinéaires pour décrire un plan, sinon, on décrit uniquement une droite.
- ♦ Pour les droites ou les plans, il n'y a pas unicité du/des vecteur(s) qui engendrent la droite/le plan.
- Vocabulaire : on parle de droite engendrée par un vecteur ou de plan engendré par deux vecteurs.

Définition

Soit F une partie non-vide de \mathbb{R}^n . On dit que F est une sous-espace vectoriel de \mathbb{R}^n (s.e.v.) si :

 $\forall \overrightarrow{u} \in F, \, \forall \overrightarrow{v} \in F, \, \forall \big(\lambda, \mu\big) \in \mathbb{R}^2, \, \lambda. \, \overrightarrow{u} + \mu. \, \overrightarrow{v} \in F$

De façon équivalente :

- \diamond Toute combinaison linéaire (d'un nombre arbitraire) de vecteurs de F reste dans F

Définition

Soient $\overrightarrow{u}_1,\ldots,\overrightarrow{u}_k$ k vecteurs de \mathbb{R}^n $(k\in\mathbb{N}^*)$. Le **sous-espace vectoriel engendré par** $\overrightarrow{u}_1,\ldots,\overrightarrow{u}_k$ est l'ensemble des combinaisons linéaires de $\overrightarrow{u}_1,\ldots,\overrightarrow{u}_k$. On le note $\mathrm{Vect}(\overrightarrow{u}_1,\ldots,\overrightarrow{u}_k)$.

Remarque

Il n'y a pas de contraintes sur les vecteurs \overrightarrow{u}_i , ils peuvent être nuls, colinéaires, etc.

Propriété

Un sous-espace engendré par une famille de vecteurs est un sous-espace vectoriel.

Sommaire

- . Points et vecteurs
- 2. Combinaisons linéaires
- 3. Droites et plans vectoriels
- 4 Sous-espaces vectoriels
- 5. Sous-espaces affines
- 6. Équations de sous-espaces vectoriels et affines

Sommaire

- 1. Points et vecteurs
- 2 Combinaisons linéaires
- 3. Droites et plans vectoriels
- 4. Sous-espaces vectoriels
- 5. Sous-espaces affine
- 6. Équations de sous-espaces vectoriels et affine

Exemples

- ♦ Une droite vectorielle est un sous-espace vectoriel de ℝⁿ.
 Preuve.
- ♦ Un plan vectoriel est un sous-espace vectoriel de ℝⁿ.
 Preuve : laissée en exercice.

Théorème (admis)

Tous sous-espace vectoriel de \mathbb{R}^n est de cette forme (un s.e.v. engendré).

Remarque

Un s.e.v. contient toujours le vecteur nul.

But:

Trouver une définition qui permette une généralisation des droites et des plans (et des s.e.v.) à des cas qui ne passent par par l'origine.

Ce seront des ensembles de points, pas de vecteurs.

Principe:

Partant d'un point A et d'un vecteur \overrightarrow{u} de \mathbb{R}^n , on peut translater le point A par le vecteur \overrightarrow{u} : il suffit de déterminer B tel que $\overrightarrow{AB} = \overrightarrow{u}$.

B est appelé translaté de A par \overrightarrow{u} .

Définition

Soit \mathscr{F}_0 un s.e.v. de \mathbb{R}^n et P_0 un point de \mathbb{R}^n . Le **sous-espace affine** dirigé par \mathscr{F}_0 et passant par P_0 est l'ensemble de tous les points obtenus en translatant P_0 par tous les vecteurs de \mathscr{F}_0 .

Définitions

- \diamond Une droite affine de \mathbb{R}^n est un sous-espace affine dirigé par une droite vectorielle.
- \diamond Un plan affine de \mathbb{R}^n est un sous-espace affine dirigé par un plan vectoriel.

Exemples

- ♦ Droite affine de \mathbb{R}^3 passant par $P_0: (-3,0,1)$ et dirigée par la droite (vectorielle) engendrée par $\overrightarrow{u} = (2,-2,5)$.
- ♦ Plan affine de \mathbb{R}^3 passant par P_0 , et dirigé par le plan vectoriel engendré par \overrightarrow{u} et $\overrightarrow{v}=(1,-1,-1)$

Liens équation / écriture paramétrique

Dans \mathbb{R}^2 et \mathbb{R}^3 on sait qu'on peut décrire une droite (affine) ou un plan (affine) par des équations mais on a vu qu'on peut aussi les décrire par une écriture paramétrique. Nous allons étudier les liens entre ces deux écritures.

Explicitation

- \diamond Exemple 1 : droite de \mathbb{R}^2
- \diamond Exemple 2 : plan de \mathbb{R}^3

Conclusion : il y a une correspondance entre les deux écritures pour les droites de \mathbb{R}^2 et les plans de \mathbb{R}^3 . Et pour une droite de \mathbb{R}^3 (exemple 3)?

C'est l'objet du chapitre suivant!

Écriture paramétrique

Si P_0 est le point de coordonnées $(x_1,...,x_n)$ et $\overrightarrow{u} = (y_1,...,y_n)$, alors le translaté de P_0 par \overrightarrow{u} est le point de coordonnées

Sommaire

- 1. Points et vecteurs
- 2. Combinaisons linéaires
- 3. Droites et plans vectoriels
- 4. Sous-espaces vectoriels
- Sous-espaces affines
- 6. Équations de sous-espaces vectoriels et affines

D'autre problèmes menant à des questions similaires...

- (1) Posons $\overrightarrow{u}=(2,3)$ et $\overrightarrow{v}=(5,4)$ vecteurs de \mathbb{R}^2 . Peut-on écrire $\overrightarrow{w}=(-1,2)$ comme combinaison linéaire de \overrightarrow{u} et de \overrightarrow{v} ?
- (2) Les droites Δ_1 et Δ_2 d'équations 2x + 5y + 1 = 0 et 3x + 4y 2 = 0 ont-elles une intersection non-vide?
- (3) Peut-on trouver des équations décrivant le s.e.a. de \mathbb{R}^7 passant par $P_0: (1,2,-1,-2,3,4,0)$ et dirigé par les vecteurs $\overrightarrow{u}_1 = (0,1,2,3,-4,5,0)$, $\overrightarrow{u}_2 = (1,-1,1,-1,1,-1,1)$ et $\overrightarrow{u}_3 = (-1,2,-2,5,0,7,-1)$?
- (4) Quelle est la description paramétrique de l'espace des points (x,y,z,t) de \mathbb{R}^4 solutions de

$$\begin{cases} x + 7y - z + t = 1\\ y + z + t = 3\\ x - 2y + 3z - t = -1 \end{cases}$$