Tanım: (Ω, U, P) olasılık uzayında, $A, B \in U$ olayları için

$$P(A \cap B) = P(A).P(B)$$

oluyorsa, A ile B olaylarına bağımsız olaylar denir.

Ayrık olaylar: $A \cap B = \emptyset$

Bağımsız olaylar: $P(A \cap B) = P(A).P(B)$ \emptyset ve Ω olayları her olaydan bağımsızdır.

Teorem: (Ω, U, P) olasılık uzayında $P(A) \neq 0$ ve $P(B) \neq 0$ olsun.

$$A$$
 ile B ayrık $\Rightarrow A$ ile B bağımsız değil

dir.

İspat: Varsayalım ki A ile B bağımsız olsun. O zaman $P(A \cap B) = P(A).P(B)$ olmalıdır. A ile B ayrık olduğundan $P(A \cap B) = P(\emptyset) = 0$ dır. Ancak $P(A).P(B) \neq 0$ dır. Çelişki. Bu çelişki varsayımdandır. Varsayım doğru değildir, yani Aile B bağımsız değildir.

Sonuç: A ile B bağımsız $\Rightarrow A$ ile B ayrık değil

İspat: (aşikâr)

$$\underline{\ddot{\mathrm{O}}\mathrm{rnek}}\ \Omega = \{a,b,c,d\}\ ,\ (\Omega,U=2^{\Omega},P(A)=\frac{n(A)}{n(\Omega)})\ ,\ A=\{\mathrm{a}\ ,\mathrm{b}\}\ ,\ B=\{\mathrm{b}\ ,\mathrm{d}\}\ \mathrm{olsun}.\ \mathrm{A}\ \mathrm{ile}\ \mathrm{B}$$

bağımsız mıdır?

$$P(A \cap B) \stackrel{?}{=} P(A).P(B)$$

 $\frac{1}{4} = \frac{2}{4} \cdot \frac{2}{4}$

olduğundan A ile B bağımsızdır.

 $C=\{c\}$ olmak üzere, A ile C bağımsız mıdır? A ile C ayrık olduklarından bağımsız değillerdir.

$$\Omega = \{a, b, c, d\}$$
, $(\Omega, U = 2^{\Omega}, P^*)$, $P^*(a) = P^*(b) = P^*(c) = \frac{1}{5}$, $P^*(d) = \frac{2}{5}$ gibi

bir olasılık uzayında $P^*(A \cap B) \neq P^*(A).P^*(B)$ olduğundan A ile B bu uzayda bağımsız değildir.

Teorem: Bir (Ω, U, P) olasılık uzayında A ile B bağımsız ise

- a) \overline{A} ile B bağımsız
- b) A ile \overline{B} bağımsız
- c) \overline{A} ile \overline{B} bağımsız

dır.

İspat: a) (Ω, U, P) de A ile B bağımsız, yani

$$P(A \cap B) = P(A).P(B)$$

olsun. O zaman,

$$P(\overline{A} \cap B) = P(B) - P(A \cap B)$$

$$= P(B) - P(A) \cdot P(B)$$

$$= (1 - P(A)) \cdot P(B)$$

$$= P(\overline{A}) \cdot P(B)$$

olup, \overline{A} ile B bağımsızdır.

(b) ve (c) şıkları (a) şıkkının bir sonucudur.

Tanım: (Ω, U, P) bir olasılık uzayı ve $A_1, A_2, ..., A_n \in U$ olsun.

* $P(A_i \cap A_j) = P(A_i).P(A_j)$ $(1 \le i < j \le n)$ olduğunda $A_1, A_2, ..., A_n$ olaylarına ikili bağımsız

* P($A_i \cap A_j \cap A_k$) = P(A_i).P(A_j).P(A_k) ($1 \le i < j < k \le n$) olduğunda $A_1, A_2, ..., A_n$ olaylarına üçlü bağımsız

...

* $P(A_1 \cap A_2 \cap ...A_n) = P(A_1).P(A_2)...P(A_n)$ olduğunda $A_1, A_2, ..., A_n$ olaylarına n-li bağımsız denir.

 $A_1,A_2,...,A_n$ olayları ikili, üçlü, ... , n-li bağımsız olduklarında bu olaylara tam bağımsız denir.

Olaylar için k-li bağımsızlık m-li bağımsızlığı gerektirmez. Bunu aşağıdaki ilk iki örnek üzerinde görelim.

$$\underline{\ddot{\mathrm{O}}}\underline{\mathrm{rnek}} \quad (\Omega = \{\omega_1, \omega_2, \omega_3, \omega_4\}, \ (\Omega, U = 2^{\Omega}, P(A) = \frac{n(A)}{n(\Omega)}) \text{ olasılık uzayı için,}$$

$$A_1 = \{\omega_1, \omega_4\}, A_2 = \{\omega_2, \omega_4\}, A_3 = \{\omega_3, \omega_4\}$$

olsun. k = 2 için,

$$P(A_1 \cap A_2) = P(A_1)P(A_2)$$

$$P(A_1 \cap A_3) = P(A_1)P(A_3)$$

$$P(A_2 \cap A_3) = P(A_2)P(A_3)$$

dır, yani A_1, A_2, A_3 olayları 2-li bağımsızdır. k = 3 için

$$P(A_1 \cap A_2 \cap A_3) \neq P(A_1)P(A_2)P(A_3)$$

dır, yani A_1, A_2, A_3 olayları 3-lü bağımsız değildir.

Örnek
$$\Omega = \{\omega_1, \omega_2, \omega_3, \omega_4, \omega_5, \omega_6\}, p_1 = 2/16, p_2 = 5/16, p_3 = 1/16, p_4 = 6/16, p_5 = 1/16,$$

$$p_6=1/16,\ U=2^\Omega$$
 , $P(A)=\sum_{\omega:\in A}p_i$ olmak üzere,

$$A_1 = \{\omega_1, \omega_4\}, A_2 = \{\omega_1, \omega_2, \omega_5\}, A_3 = \{\omega_1, \omega_2, \omega_3\}$$

olsun. k = 2 için,

$$P(A_1 \cap A_2) \neq P(A_1)P(A_2) \quad \left(\frac{2}{16} \neq \frac{8}{16} \times \frac{8}{16}\right)$$

olduğundan $A_1, A_2, A_3, 2-li$ bağımsız değildir. k=3 için,

$$P(A_1 \cap A_2 \cap A_3) = P(A_1)P(A_2)P(A_3) \quad \left(\frac{2}{16} = \frac{8}{16} \times \frac{8}{16} \times \frac{8}{16}\right)$$

olduğundan, A_1, A_2, A_3 olayları 3-lü bağımsızdır.

$$\underline{\ddot{\mathrm{O}}\mathrm{rnek}} \quad \Omega = \{\omega_1, \omega_2, ..., \omega_8\}, \quad p_i = 1/8, i = 1, 2, ..., 8 \quad U = 2^{\Omega} \quad , \quad P(A) = \sum_{\omega: \in A} p_i \quad \mathrm{olmak} \quad \ddot{\mathrm{u}}\mathrm{zere},$$

$$A_1 = \{\omega_1, \omega_2, \omega_3, \omega_5\}, A_2 = \{\omega_1, \omega_2, \omega_4, \omega_6\}, A_3 = \{\omega_1, \omega_3, \omega_4, \omega_7\}$$

olsun. k = 2 için,

$$P(A_1 \cap A_2) = P(A_1)P(A_2) \quad \left(\frac{2}{8} = \frac{4}{8} \times \frac{4}{8}\right)$$

$$P(A_1 \cap A_3) = P(A_1)P(A_3) \quad \left(\frac{2}{8} = \frac{4}{8} \times \frac{4}{8}\right)$$

$$P(A_2 \cap A_3) = P(A_2)P(A_3) \quad \left(\frac{2}{8} = \frac{4}{8} \times \frac{4}{8}\right)$$

dır, yani A_1, A_2, A_3 2-li bağımsızdır. k = 3 için,

$$P(A_1 \cap A_2 \cap A_3) = P(A_1)P(A_2)P(A_3)$$

dır, yani A_1, A_2, A_3 3–lü bağımsızdır.

Bu örnekteki A_1, A_2, A_3 olayları tam bağımsızdır.

Problem (Ω, U, P) bir olasılık uzayı, $A_1, A_2, A_3, A_4, A_5 \in U$ olayları tam bağımsız ve her birinin olasılığı 1/3 olsun.

a) A_1, A_2, A_3, A_4, A_5 olaylarından hiç birinin gerçekleşmemesi olasılığı nedir?

Deney sonucunda A_1, A_2, A_3, A_4, A_5 olaylarından hiç birinin gerçekleşmemesi olaylarından hiç birinin gerçekleşm

$$P(\bar{A}_{1} \cap \bar{A}_{2} \cap \bar{A}_{3} \cap \bar{A}_{4} \cap \bar{A}_{5}) = P(\bar{A}_{1})P(\bar{A}_{2})P(\bar{A}_{3})P(\bar{A}_{4})P(\bar{A}_{5}) = (\frac{2}{3})^{5} = \frac{32}{243}$$

dır.

b) A_1, A_2, A_3, A_4, A_5 olaylarından en az birinin gerçekleşmesi olasılığı nedir?

Deney sonucunda A_1, A_2, A_3, A_4, A_5 olaylarından en az birinin gerçekleşmesi olaylarından $A_1 \cup A_2 \cup A_3 \cup A_4 \cup A_5$ olmak üzere bu olayın olasılığı,

$$P(A_{1} \cup A_{2} \cup A_{3} \cup A_{4} \cup A_{5}) = 1 - P(\overline{A_{1} \cup A_{2} \cup A_{3} \cup A_{4} \cup A_{5}}) = 1 - P(\overline{A_{1}} \cap \overline{A_{2}} \cap \overline{A_{3}} \cap \overline{A_{4}} \cap \overline{A_{5}})$$

$$= 1 - P(\overline{A_{1}})P(\overline{A_{2}})P(\overline{A_{3}})P(\overline{A_{4}})P(\overline{A_{5}}) = 1 - (\frac{2}{3})^{5} = 1 - \frac{32}{243} = \frac{211}{243}$$

dır.

$$\begin{split} P(A_1 \cup A_2 \cup A_3 \cup A_4 \cup A_5) &= \sum_{i=1}^5 P(A_i) - \sum_{1 \leq i < j \leq 5} P(A_i \cap A_j) + \sum_{1 \leq i < j < k \leq 5} P(A_i \cap A_j \cap A_k) \\ &- \sum_{1 \leq i < j < k < l \leq 5} P(A_i \cap A_j \cap A_k \cap A_l) + P(A_1 \cap A_2 \cap A_3 \cap A_4 \cap A_5) \\ &= \sum_{i=1}^5 P(A_i) - \sum_{1 \leq i < j \leq 5} P(A_i) P(A_j) + \sum_{1 \leq i < j < k \leq 5} P(A_i) P(A_j) P(A_j) \end{split}$$

$$-\sum_{1 \le i < j < k < l \le 5} P(A_i) P(A_j) P(A_j) P(A_i) P(A_l) P(A_l) P(A_2) P(A_3) P(A_4) P(A_5)$$

$$= 5 \times \frac{1}{3} - 10 \times (\frac{1}{3})^2 + 10 \times (\frac{1}{3})^3 - 5 \times (\frac{1}{3})^4 + (\frac{1}{3})^5$$

$$= \frac{211}{243}$$

c) A_1, A_2, A_3 olaylarından yalnız birinin gerçekleşmesi olasılığı nedir?

Deney sonucunda A_1, A_2, A_3 olaylarından yalnız birinin gerçekleşmesi olayı,

$$A_1 \cap \overline{A}_2 \cap \overline{A}_3 \cup \overline{A}_1 \cap A_2 \cap \overline{A}_3 \cup \overline{A}_1 \cap \overline{A}_2 \cap \overline{A}_3$$

olmak üzere bu olayın olasılığı,

$$P \quad A_{1} \cap \overline{A_{2}} \cap \overline{A_{3}} \cup \overline{A_{1}} \cap A_{2} \cap \overline{A_{3}} \cup \overline{A_{1}} \cap \overline{A_{2}} \cap A_{3} = P \quad A_{1} \cap \overline{A_{2}} \cap \overline{A_{3}} + P \quad A_{1} \cap \overline{A_{2}} \cap \overline{A_{3}} + P \quad A_{1} \cap \overline{A_{2}} \cap \overline{A_{3}} = \frac{1}{3} \times \frac{2}{3} \times \frac{2}{3} + \frac{2}{3} \times \frac{2}{3} \times \frac{2}{3} \times \frac{2}{3} + \frac{2}{3} \times \frac{2}{3}$$

dır.

d) A_1, A_2, A_3 olaylarından yalnız ikisinin gerçekleşmesi olasılığı nedir?

Deney sonucunda A_1, A_2, A_3 olaylarından yalnız ikisinin gerçekleşmesi olayı,

$$A_1 \cap A_2 \cap \overline{A}_3 \cup A_1 \cap \overline{A}_2 \cap A_3 \cup \overline{A}_1 \cap A_2 \cap A_3$$

olmak üzere,

$$P \quad A_{1} \cap A_{2} \cap \overline{A_{3}} \cup A_{1} \cap \overline{A_{2}} \cap A_{3} \cup \overline{A_{1}} \cap A_{2} \cap A_{3} = P \quad A_{1} \cap A_{2} \cap \overline{A_{3}} + P \quad A_{1} \cap \overline{A_{2}} \cap A_{3} + P \quad \overline{A_{1}} \cap A_{2} \cap A_{3}$$

$$= \frac{1}{3} \times \frac{1}{3} \times \frac{2}{3} + \frac{1}{3} \times \frac{2}{3} \times \frac{1}{3} + \frac{2}{3} \times \frac{1}{3} \times \frac{1}{3} = \frac{2}{9}$$

dır.

e) A_1,A_2,A_3,A_4,A_5 olaylarından yalnız ikisinin gerçekleşmesi olasılığı nedir?

$$p = {5 \choose 2} (\frac{1}{3})^2 (\frac{2}{3})^3 = \frac{5.4}{1.2} \times \frac{1}{9} \times \frac{8}{27} = \frac{80}{243}$$

f) A_1, A_2, A_3, A_4, A_5 olaylarından en az ikisinin gerçekleşmesi olasılığı nedir?

$$p = {5 \choose 2} (\frac{1}{3})^2 (\frac{2}{3})^3 + {5 \choose 3} (\frac{1}{3})^3 (\frac{2}{3})^2 + {5 \choose 4} (\frac{1}{3})^4 (\frac{2}{3})^1 + (\frac{1}{3})^5 = \frac{80}{243} + \frac{40}{243} + \frac{10}{243} + \frac{1}{243} = \frac{131}{243}$$
$$p = 1 - {5 \choose 0} (\frac{1}{3})^0 (\frac{2}{3})^5 - {5 \choose 1} (\frac{1}{3})^1 (\frac{2}{3})^4 = 1 - \frac{32}{243} - \frac{80}{243} = \frac{131}{243}$$