Step-1

We have to describe all the 3 by 3 matrices that are simultaneously Hermitian, unitary and diagonal.

Step-2

Let A be any 3×3 matrix.

Suppose A is Hermitian, unitary and diagonal.

Since A is diagonal.

So all the elements are zeros except the diagonal elements.

Step-3

Since *A* is Hermitian

$$\Rightarrow A^H = A$$

⇒ The diagonal elements must be real since any eigenvalue is real.

Since A is unitary

So every eigenvalue of *A* has absolute value $|\lambda| = \pm 1$.

Since the absolute value of the eigenvalue is $|\lambda| = \pm 1$

So this is possible for the matrices having diagonal elements ± 1 or -1 and the remaining elements are zeros.

Step-4

The possible matrices with the above property are 8.

They are

$$\begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{bmatrix}, \begin{bmatrix} 0 & 0 & 0 \\ 0 & -1 & 0 \\ 0 & 0 & 1 \end{bmatrix}, \begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & -1 \end{bmatrix}, \begin{bmatrix} 1 & 0 & 0 \\ 0 & -1 & 0 \\ 0 & 0 & -1 \end{bmatrix}$$

$$\begin{bmatrix} -1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{bmatrix}, \begin{bmatrix} -1 & 0 & 0 \\ 0 & -1 & 0 \\ 0 & 0 & 1 \end{bmatrix}, \begin{bmatrix} -1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & -1 \end{bmatrix}, \begin{bmatrix} -1 & 0 & 0 \\ 0 & -1 & 0 \\ 0 & 0 & -1 \end{bmatrix}$$

Step-5

Hence the matrices those are simultaneously Hermitian, unitary and diagonal are

$\begin{bmatrix} 1 \\ 0 \end{bmatrix}$	0	$\begin{bmatrix} 0 \\ 0 \end{bmatrix} \begin{bmatrix} 0 \\ 0 \end{bmatrix}$	0 ($\begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix}$	0	$\begin{bmatrix} 1 \\ 0 \end{bmatrix}$	0 -1	0 0	
0	0	$\begin{bmatrix} 1 \end{bmatrix} \begin{bmatrix} 0 \end{bmatrix}$	0	$\begin{bmatrix} 0 \\ 1 \end{bmatrix}, \begin{bmatrix} 0 & 1 \\ 0 & 0 \end{bmatrix}$	-1		0	-1	
$\left -1 \right $	0	0] [-	1 0	0] [-1	0	0	− 1	0	0
0	1	0 , 0	-1	0 , 0	1	0 ,	0	-1	0
0	0	1][0	0	$\begin{bmatrix} 0 \\ 1 \end{bmatrix}, \begin{bmatrix} 0 \\ 0 \end{bmatrix}$	0	-1	0	0	-1