Arquitetura e Organização de Sistemas Computadorizados Microprocessador

Osmar de Oliveira Braz Junior Márcia Cargnin Martins Giraldi

Objetivos

- Apresentar os conceitos e tipos de microprocessadores;
- Identificar os tipos de microprocessador e suas funções.

Microprocessador

- O microprocessador, geralmente chamado apenas de processador, é um circuito integrado que realiza as funções de cálculo e tomada de decisão de um computador.
- Todos os computadores e equipamentos eletrônicos baseiam-se nele para executar suas funções, podemos dizer que o processador é o cérebro do computador por realizar todas estas funções.

Microprocessadores e Computadores Pessoais

- O microprocessador de um computador pessoal é quase sempre integrado em um único chip, que é instalado sobre a placa-mãe do computador.
- Este é o caso , tanto para computadores desktop e laptop para computadores portáteis. O chip microprocessador é conectado à placa-mãe através de pinos .

Microprocessador

- Peça fundamental dos computadores
- Responsável direto pela movimentação e manipulação de dados
- Componente mais complexo e mais importante
- Circuito Integrado que realiza as funções de cálculo e tomada de decisão do computador
- Frequência de processamento, L1-Cache, Core

Histórico

- 1971 Intel desenvolve o 4004 (registradores de 4 bits, 46 instruções, clock 740khz, cerca de 2300 transistores, 92 mil instruções por segundo)
- 1972 Intel desenvolve registradores de 8 bits: 8008, 8080(operações de 16 bits, clock2Mhz, 64KB de memória), 8088 (maior capacidade de endereçamento)
- 1976/1978 Intel desenvolve o 8086 (registradores de 16 bits), 8088 (registradores de 16 bits e endereçamento de 1MB)
- 1982 Intel desenvolve o 286 (com 139k transistores)
- 1985 Intel desenvolve o 386 e 486 (de 33Mhz a 100Mhz, execução de múltiplas tarefas pipeline)
- 1991 processador Intel Pentium com 3 milhões de transistores
- 1995 processador Pentium Pro e AMD K5(32 bits, 25Mhz)
- 1997 Pentium II (clock 450Mhz) e AMD K6
- 1999 triplo de transistores, com o Processador Intel Pentium III e AMD k7, Atlhon da AMD (1Ghz)
- 2001 processador de 90nm fabricados com silício
- 2005 processador multicore: Intel Pentium D
- 2006 processador Intel Core 2 DUO, fabricado em 65nm
- 2007 processador Intel Core 2 QUAD: 4 núcleos
- 2008 –era dos 45nm.

80

90

2000

Histórico

Nome	Data	Transistores	Mícrons	Velocidade do clock
8080	1974	6.000	6	2 MHz
8088	1979	29.000	3	5 MHz
80286	1982	134.000	1,5	6 MHz
80386	1985	275.000	1,5	16 MHz
80486	1989	1.200.000	1	25 MHz
Pentium	1993	3.100.000	8,0	60 MHz
Pentium II	1997	7.500.000	0,35	233 MHz
Pentium III	1999	9.500.000	0,25	450 MHz
Pentium 4	2000	42.000.000	0,18	1,5 GHz
Pentium 4 "Prescott"	2004	125.000.000	0,09	3,6 GHz
Pentium D	2005	230.000.000	90nm	2,8 GHz 3,2 GHz
Core2	2006	152.000.000	65nm	1,33 2,33 GHz
Core 2 Duo	2007	820.000.000	45nm	3 GHz
Core i7	2008	731.000.000	45nm	2,66 GHz 3,2 GHz

Custo

Número de Transistores

- CPU Central Process Unit / Unidade de Processamento Central
 - □ também conhecido como processador
 - realiza as instruções de um programa de computador, para executar a aritmética básica, lógica, e a entrada e saída de dados
 - papel parecido ao cérebro no computador
- UC Control Unit / Unidade de Controle
 - responsável por gerar todos os sinais que controlam as operações no exterior do CPU e dar todas as instruções para o correto funcionamento interno do CPU
 - □ colaboração com o decodificador de instruções
 - a responsável pela abstração das diversas máquinas virtualizadas dentro do sistema computacional

CPU

- ALU/ULA Arithmetic Logic Unit / Unidade Lógica e Aritmética
 - é um circuito digital que realiza operações lógicas e aritméticas
 - □ peça fundamental da CPU

Registradores

- Os registradores de uma CPU é a memoria RAM que armazena n bits
- estão no topo da hierarquia de memória, sendo assim, são o meio mais rápido e caro de se armazenar um dado

Microprocessador

Ciclo de execução Ciclo de busca Início Ciclo de Instrução

RD Registrador de dados

RE Registrador de endereços da memória

ACC Registrador acumulador

PC Registrador contador de programa

RI Registrador de instruções

ULA Unidade lógica e aritmética

RST – código de condições gerados pela ULA, interrupções de e/s

Estágios Resumido

1º Estágio: buscar instrução na memória

2º Estágio: decodificar a instrução e

colocar na RI

3º Estágio: execução da ULA

4º Estágio: atualizar os registradores

Fim

Velocidade do Processador

- O aumento de desempenho (velocidade de processamento) de processadores está relacionado com os seguintes aspectos:
 - □ Aumento de clock
 - Largura do barramento
 - Aumento do número interno de bits
 - Aumento do número externo de bits
 - □ Redução do número de ciclos para executar cada instrução
 - Aumento da capacidade e velocidade da memória cache
 - □ Execução de instruções em paralelo (pipeline)

Clock

- Um computador é algo que possui funções, tarefas e coisas a fazer, ele precisa de um sinal de relógio para sincronizar as suas operações, assim como nós mesmos precisamos sincronizar as nossas.
- Esse relógio é chamado de CLOCK, e ele é gerado por um oscilador eletrônico que fornece uma sequência ininterrupta de pulsos com períodos constantes.
- A isso chamamos, de frequência. Portanto, quando falamos que um computador possui tanto de Hertz(Hz), estamos falando da velocidade que ele processa ou sincroniza algo.
- Não define exclusivamente a "velocidade" de um processador
- O aumento da frequência do clock, caracteriza o overclock, que pode causar danos ao dispositivo

Clock

Clock

- Podemos definir dois tipos de *clock*:
 - □ Clock Interno: frequência de operação interna do processador

□ Clock externo (Front side bus – FSB): frequência de operação externa, utilizada para comunicação entre processador e a memória principal

Largura do Barramento

Aumento do número interno de bits

Uma maior quantidade de bits dos registradores e dos barramentos internos permite a movimentação de uma maior quantidade de dados por unidade de tempo, aumentando o desempenho do microprocessador.

Aumento do número externo de bits

Um número maior de bits externos permite a movimentação de uma maior quantidade de dados por unidade de tempo com os periféricos, tais como memória, unidade de entrada e saída, controlador de acesso direto à memória (DMA).

- A execução de uma instrução normalmente é feita em duas etapas: busca (onde a instrução é transferida da memória para a unidade de decodificação) e execução (onde os sinais de controle ativam, em uma sequência lógica, todas as unidades envolvidas na execução).
- A redução do número de ciclos de clock na execução de uma instrução torna o processamento mais rápido.

- A velocidade de acesso à memória principal torna-se um limitador de desempenho dos processadores. Em razão desse problema foi criada a memória cache.
- Em razão desse problema foi criada a memória cache. A memória cache (constituída de memória RAM estática) é usada para acelerar a transferência de dados entre a CPU e a memória principal (constituída de RAM dinâmica, de menor volume, porém mais lenta).
- O aumento da capacidade e da velocidade da memória cache resulta no aumento da velocidade de transferência de dados entre a CPU e a memória principal e, consequentemente, resulta no aumento do desempenho global do sistema.

Execução de instruções em paralelo

- O microprocessador 8085 compartilha um barramento comum entre suas unidades internas e seus periféricos, o que significa dizer que não permite a execução simultânea de duas operações que utilizem o barramento.
 - □ Assim, apenas uma instrução é executa por vez.
- Uma arquitetura que permita que duas ou mais operações sejam executadas simultaneamente torna o processamento mais rápido.
 - **8086/88**

Exercícios

- Quantos ciclos compõe a execução de uma instrução?
- Qual o papel da UC e da ULA durante o ciclo de instruções?
- Qual o papel dos registradores PC e RI durante o ciclo de Busca?
- Qual o papel dos registradores RE, RD e ACC durante o ciclo de Execução?

Conclusão

- Conhecemos um pouco sobre os tipos de microprocessadores de computadores.
- A tecnologia continua a evoluir, portanto o estudo não para aqui.

Referências

- WEBER, Raul Fernando. Fundamentos de arquitetura de computadores. 4. ed. Porto Alegre: Bookman, 2012. E-book. Disponível em: https://integrada.minhabiblioteca.com.br/books/9788540701434
- STALLINGS, William. Arquitetura e organização de computadores. 8.ed.
 São Paulo: Pearson, 2010. E-book. Disponível em: https://plataforma.bvirtual.com.br/Leitor/Publicacao/459/epub/0
- HOGLUND, Greg. Como quebrar códigos: a arte de explorar (e proteger) software. São Paulo: Pearson, 2006. E-book. Disponível em: https://plataforma.bvirtual.com.br/Leitor/Publicacao/179934/epub/0

