CSE 150 Homework 2

Pedro Sousa Meireles

Fall 2018

1 Variable Elimination Algorithm

(a) Computing using variable elimination

Eliminating S:

$$\begin{array}{c|cc}
F & f_3'(F) \\
\hline
0 & 0.01 \\
\hline
1 & 0.9
\end{array}$$

Eliminating R:

$$\begin{array}{c|cc}
L & f_5'(L) \\
\hline
0 & 0.01 \\
\hline
1 & 0.75
\end{array}$$

Eliminating L:

$$f_6(A) = \sum_{l} f_5'(L=l) \cdot f_4(A, L=l)$$

Eliminating L costs 1 addition and 2 products per different A, making 2 additions and 4 products.

$$\begin{array}{c|cc}
A & f_6(A) \\
\hline
0 & 0.01074 \\
\hline
1 & 0.6612
\end{array}$$

Eliminating A:

$$f_7(T, F) = \sum_a f_2(T, F, A = a) \cdot f_6(A = a)$$

Eliminating A costs 1 addition and 2 products per different (T,F), making 4 additions and 8 products.

\mathbf{T}	F	$f_7(T,F)$
0	0	0.010805046
0	1	0.6546954
1	0	0.563631
1	1	0.33597

Eliminating F:

$$f_7(T) = \sum_a f_1(F = f) \cdot f_7(T, F = f) \cdot f_3'(F = f)$$

Eliminating F costs 1 addition and 4 products per different T, making 2 additions and 8 products.

$$\begin{array}{c|c} T & f_7(T) \\ \hline 0 & 0.00599922865 \\ \hline 1 & 0.0086036769 \end{array}$$

Combining T factors:

$$f_8(T) = f_0(T) \cdot f_7(T)$$

Combining T factors costs 0 additions and 1 products per different T, making 0 additions and 2 products.

$$\begin{array}{c|c} T & f_8(T) \\ \hline 0 & 0.00587924408 \\ \hline 1 & 0.000172073538 \\ \end{array}$$

$$P(T=0|S=1,R=1) = \frac{f_8(T=0)}{f_8(T=0) + f_8(T=1)} = 0.97156$$

$$P(T=1|S=1,R=1) = \frac{f_8(T=1)}{f_8(T=0) + f_8(T=1)} = 0.02843$$

(b) Counting calculations used by the variable elimination algorithm

Phase of algorithm	# multiplications	# additions	# divisions
Eliminate S (evidence)	0	0	0
Eliminate R (evidence)	0	0	0
Eliminate L	4	2	0
Eliminate A	8	4	0
Eliminate F	8	2	0
Combine T factors	2	0	0
Normalize distribution over T	0	1	2
Total	22	9	2

(c) Counting calculations used by the enumeration algorithm

$$P(T = 0, S = 1, R = 1) = \sum_{a} \sum_{f} \sum_{l} P(A = a, F = f, L = l, R = 1, S = 1, T = 0)$$

$$= \sum_{a} \sum_{f} \sum_{l} P(T = 0) \cdot P(F = f) \cdot P(S = 1|F = f) \cdot P(A = a|T = 0, F = f) \cdot P(L = l|A = a) \cdot P(R = 1|L = l)$$

$$P(T = 1, S = 1, R = 1) = \sum_{a} \sum_{f} \sum_{l} P(A = a, F = f, L = l, R = 1, S = 1, T = 1)$$

$$= \sum_{a} \sum_{f} \sum_{l} P(T = 0) \cdot P(F = f) \cdot P(S = 1|F = f) \cdot P(A = a|T = 1, F = f) \cdot P(L = l|A = a) \cdot P(R = 1|L = l)$$

The sums have 8 terms, which makes 7 additions each, and each term is a product of 6 probabilities, what accounts 5 multiplications per term, which makes 7 additions and 40 multiplications each.

Phase of algorithm	# multiplications	# additions	# divisions
Compute $P(T = 0, S = 1, R = 1)$	40	7	0
Compute $P(T = 1, S = 1, R = 1)$	40	7	0
Normalize distribution over T	0	1	2
Total	80	15	2

2 To be, or not to be, a polytree: that is the question

3 Node clustering

Y_1	Y_2	Y_3	Y	P(Y X=0)	P(Y X=1)	$P(Z_1 = 1 Y)$	$P(Z_2 = 1 Y)$
0	0	0	1	0.0525	0.14625	0.8	0.2
1	0	0	2	0.2975	0.04875	0.7	0.3
0	1	0	3	0.0225	0.07875	0.6	0.4
0	0	1	4	0.525	0.34125	0.5	0.5
1	1	0	5	0.1275	0.02625	0.4	0.6
1	0	1	6	0.2975	0.11375	0.3	0.7
0	1	1	7	0.0225	0.18375	0.2	0.8
1	1	1	8	0.1275	0.06125	0.1	0.9

4 Maximum likelihood estimation for an n-sided die

(a) Log-likelihood

$$\begin{split} likelihood(p) &= P(x^{(1)},...,x^{(T)}) \\ &= \prod_{t=1}^T P(X=k) \\ &= p_1^{C_1} \cdot p_2^{C_2} \cdot ... \cdot p_n^{C_n} \end{split}$$

Applying log in the equation and separating the log of a productory in a sum of logs:

$$L(p) = C_1 \cdot p_1 + C_2 \cdot p_2 + \dots + C_n \cdot p_n$$
$$= \sum_{k=1}^{n} C_k \cdot p_k$$

(b) KL distance

$$KL(q, p) = \sum_{k} q_k \cdot log\left(\frac{q_k}{p_k}\right)$$

$$= \sum_{k} q_k \cdot (log(q_k) - log(p_k))$$

$$= \sum_{k} q_k \cdot log(q_k) - \sum_{k} \frac{C_k \cdot log(p_k)}{T}$$

$$= \sum_{k} q_k \cdot log(q_k) - \frac{\sum_{k} C_k \cdot log(p_k)}{T}$$

$$= \sum_{k} q_k \cdot log(q_k) - \frac{L(p)}{T}$$

Given a set of tosses, the left term is constant, which means the value of the difference varies only with L(p) variation. So, maximizing L(p) is equivalent to minimizing the KL distance.

(c) Maximum likelihood estimation

In the last item we proved that maximizing L(p) is equivalent to minimizing KL(q, p). Also, in homework problem 1.6b, we proved that $KL(p, q) \ge 0$, with equality only when p = q. So, to maximize L(p), we have to make $p_k = q_k$. Then, $p_k = \frac{C_k}{T}$.