MODELLAZIONE GEOMETRICA CON CATIA

Features, Body, Geometrical set

Giuseppe Di Gironimo, Andrea Tarallo

Dipartimento di Ingegneria Industriale Università degli Studi di Napoli Federico II

- Feature basate su schizzo (estrusione, rivoluzione, ecc.)
- Feature di dettagliatura (raccordo, smusso, sformo, ecc.)
- Feature basate su superfici (taglio, unione, estrazione, ecc.)
- Feature di trasformazione (simmetrie, matrici, ecc.)
- Feature booleane (unione, intersezione, ecc.)

schizzo

estrusione

matrice

raccordo

Insieme di feature ordinato

Quando un insieme di feature è ordinato, le operazioni sono legate da un rapporto **univoco** del tipo padre-figlio. Questo implica che una nuova operazione può **assorbire** quella precedente.

In una relazione padre- figlio, il figlio può assorbire una caratteristica del padre

se l'insieme di feature è ordinato, possiamo risalire alla storia della lavorazione attraverso l'albero della lavorazione

Una struttura ordinata ammette un solo risultato (oggetto di lavoro corrente – *In Work object*)

Insieme di feature ordinato

Quando un insieme di feature è ordinato, le operazioni sono legate da un rapporto **univoco** del tipo padre-figlio. Questo implica che una nuova operazione può *assorbire* quella precedente.

in-work object

L'assorbimento "copre" l'operazione precedente. Ad esempio, dopo l'operazione di raccordo (dettagliatura) non è più possibile operare direttamente sullo spigolo originario, a meno di non cambiare l'oggetto di lavoro corrente

Insieme di feature non ordinato

Quando un insieme di feature fa parte di una struttura non ordinata, le diverse operazioni non sono mai **assorbite.** In questo modo i risultati intermedi possono essere riutilizzati per applicarvi nuove features.

Una struttura <u>non ordinata</u> ammette tanti risultati quante sono le feature che essa contiene

Body

Insieme <u>ordinato</u> di *feature* che *concorre* a formare una parte solida. Una parte solida può contenere un qualunque numero di *body*, ma è possibile operare solo su un body alla volta.

Body solido (solid body)

contiene esclusivamente feature solide. Le features non solide, (es. operazioni su curve e superfici) devono trovarsi in una struttura geometrica separata (Geometrical Set)

Body ibrido (hybrid body)

può contenere <u>anche feature</u> non solide, come volumi e operazioni su curve e superfici

NOTA: il body è una struttura ordinata da relazioni padre-figlio: anche **le feature non solide al suo interno risulteranno ordinate**. Ciò significa che anche esse **saranno soggette ad assorbimento**

Modellazione ibrida

E'una modalità di lavoro che prevede l'utilizzo di solidi ibridi

VANTAGGI

Consente interazioni avanzate fra solidi e superfici (es. creazione di body solidi da modelli di volume all'interno di *geometrical set* ordinati)

SVANTAGGI

In molti scenari industriali, in cui le *feature* non solide sono utilizzate per riferimenti di lavoro, la modellazione ibrida può contribuire a creare confusione nell'albero del modello e quindi problemi nella manutenzione del dato

Modellazione ibrida

In ogni caso, è sempre possibile operare in modo tradizionale e creare un *geometrical set* (ordinato o non) che contenga le feature non solide

Modellazione ibrida

In ogni caso, è sempre possibile operare in modo tradizionale e creare un *geometrical set* (ordinato o non) che contenga le feature non solide

geometrical set non ordinato

geometrical set ordinato

Gruppi geometrici non ordinati

- I gruppi geometrici (*geometrical set*) non ordinati consentono di raccogliere diverse *feature* non solide in un insieme non ordinato
- Non esiste il concetto di assorbimento
- Non esistono oggetti di lavoro corrente ("in work object")
- I gruppi geometrici non ordinati servono esclusivamente ai fini dell'organizzazione logica del modello
- Le feature contenute in un gruppo geometrico non ordinato non appaiono necessariamente secondo la cronologia di creazione

Gruppi geometrici non ordinati

VANTAGGI

- Disattivando i collegamenti per riferimento fra parti e profili, il progettista dispone di uno strumento molto flessibile per definire le forme di un manufatto, senza essere vincolato da un ordine rigoroso nello sviluppo del design
- Non ci sono problemi di assorbimento: la stessa feature può essere utilizzata per più operazioni

SVANTAGGI

• se non si rispettano linee guida e logiche di modellazione condivise, può diventare difficile ricostruire la *design history* del modello. Pertanto interoperabilità e manutenzione del dato possono diventare complicate

Gruppi geometrici ordinati

- I gruppi geometrici ordinati (*Ordered Geometrical Set*, OGS) introducono il concetto di *assorbimento* e di *oggetto di lavoro corrente* (*in-work object*) per le feature non solide
- L'ordine di apparizione delle feature nell'albero logico delle specifiche è congruente con i passi che hanno generato il design

Gruppi geometrici ordinati

VANTAGGI

• Il dato è più facilmente interoperabile poiché è possibile rileggere passo-passo l'insieme delle operazioni (design history) che hanno portato ad un certo risultato (design intent)

SVANTAGGI

 Alcuni risultati intermedi potrebbero non essere disponibili a causa dell'assorbimento da parte di feature di trasformazione o dettagliatura

Designazione del body nell'albero logico

Quando la tipologia di body (ibrido o solido) è coerente con la modalità di modellazione corrente (ibrida o solida) esso è designato con una rotella verde

- Body ibrido in un ambiente di modellazione ibrida
- Body solido in un ambiente di modellazione solida

I successivi body potranno essere additivi o sottrattivi (contrassegnati con + o -)

Designazione del body nell'albero logico

Quando la tipologia di body (ibrido o solido) <u>non</u> è coerente con la modalità di modellazione corrente (ibrida o solida) vi sono 2 casi:

• Body solido visualizzato in un ambiente di modellazione ibrida (rotella grigia)

• Body ibrido visualizzato in un ambiente di modellazione solida (rotella gialla)

Modellazione multi-body

E'possibile inserire diversi body all'interno dello stesso file di parte (*parte multi-body*)

Modellazione multi-body

I diversi body si comportano come solidi indipendenti, dunque il contesto di assorbimento è limitato al singolo body.

I body possono essere operati da **feature booleane** (addizione, sottrazione, intersezione, assemblaggio, relimitazione, ecc.) Non tutti i CAD prevedono la modellazione multibody, e non tutti prevedono operazioni booleane

Differenza tra assemblaggio e unione: l'unione (?) non tiene conto del segno (ovvero di oggetto additivo o sottrattivo)

Modellazione multi-body

La modellazione multi-body in generale è utilizzata per:

- Utilizzo di **primitive complesse** per matrici e operazioni booleane
- Disegno di semplici **parti saldate** (staffe, flange, ecc.)
- Modelli concettuali (per semplicità, al posto degli assiemi)
- Modelli per analisi FEM/CFD (ogni body identifica un dominio)
- Modelli di catalogo (singola parte multi-body a partire da assieme)

Dominio fisico: quando ho un modello geometrico ogni regione spaziale ha uno (scopo) (analisi strutturale, termodinamica, elettromagnetica etc.)?

Domini fisici su cui faccio le varie analisi analisi multi-dominio

Catalogo: cataloghi di oggetti standard integrati anche nel CAD

Any questions?