5.5 Sample Size for Continuous

MBC 638

Data Analysis and Decision Making

2 of 30

Sample Size Story

Know any three of these and you can calculate the fourth.

Sample Size n

Sample size = number of elements or observations in a sample data set

3 of 30

Sample Size Story

Know any three of these and you can calculate the fourth.

Level of confidence you desire; risk of drawing the wrong conclusion (z)

Sample Size n

4 of 30

Sample Size Story

Know any three of these and you can calculate the fourth.

Level of confidence you desire; risk of drawing the wrong conclusion (z)

Sample Size

How much of a difference you want to detect; the amount of error you're willing to accept, or margin of error (E)

Sample Size Story

Know any three of these and you can calculate the fourth.

Level of confidence you desire; risk of drawing the wrong conclusion (z)

Sample Size

How much of a difference you want to detect; the amount of error you're willing to accept, or margin of error (*E*)

Sample Size Story

Know any three of these and you can calculate the fourth.

Level of confidence you desire; risk of drawing the wrong conclusion (z)

Sample Size

How much of a difference you want to detect; the amount of error you're willing to accept, or margin of error (*E*)

Variability in the population (σ)

10 of 30

The only way to have both high confidence and a tight interval is to increase sample size.

11 of 30

Sample Size Formula for Continuous Data

12 of 30

Sample Size Formula for Continuous Data

$$n = \left(\frac{z * \hat{\sigma}}{E}\right)^2$$

Sample Size Formula for Continuous Data

$$n = \left(\frac{z * \hat{\sigma}}{E}\right)^2$$

14 of 30

Sample Size Formula for Continuous Data

$$n = \left(\frac{z * \hat{\sigma}}{E}\right)^2$$

15 of 30

Sample Size Formula for Continuous Data

$$n = \left(\frac{z * \hat{\sigma}}{E}\right)^2$$

16 of 30

Sample Size Formula for Continuous Data

$$n = \left(\frac{z * \hat{\sigma}}{E}\right)^2$$

Use this formula to see how sample size is affected by an increase or decrease in variability, confidence, or margin of error.

Example: Time to Complete Job

18 of 30

Example: Time to Complete Job

 Suppose you have collected a simple random sample of data and found the standard deviation to be three minutes.

19 of 30

Example: Time to Complete Job

- Suppose you have collected a simple random sample of data and found the standard deviation to be three minutes.
- How many samples are needed to detect a change in job completion time after a process improvement project is implemented?

20 of 30

Example: Time to Complete Job

- Suppose you have collected a simple random sample of data and found the standard deviation to be three minutes.
- How many samples are needed to detect a change in job completion time after a process improvement project is implemented?
 - You are okay with a margin of error of two minutes.

Example: Time to Complete Job

- Suppose you have collected a simple random sample of data and found the standard deviation to be three minutes.
- How many samples are needed to detect a change in job completion time after a process improvement project is implemented?
 - You are okay with a margin of error of two minutes.
 - Assume you want 95% confidence.

22 of 30

Example: Time to Complete Job (cont.)

$$n = \left(\frac{z * \hat{\sigma}}{E}\right)^2$$

23 of 30

Example: Time to Complete Job (cont.)

$$n = \left(\frac{z * \hat{\sigma}}{E}\right)^2$$

• z* at 95% confidence = 1.96

Example: Time to Complete Job (cont.)

$$n = \left(\frac{z * \hat{\sigma}}{E}\right)^2$$

- z* at 95% confidence = 1.96
- $\hat{\sigma} = 3$

25 of 30

Example: Time to Complete Job (cont.)

$$n = \left(\frac{z * \hat{\sigma}}{E}\right)^2$$

- z* at 95% confidence = 1.96
- $\hat{\sigma} = 3$
 - o Estimated population standard deviation

26 of 30

Example: Time to Complete Job (cont.)

$$n = \left(\frac{z * \hat{\sigma}}{E}\right)^2$$

- z* at 95% confidence = 1.96
- $\hat{\sigma} = 3$
 - Estimated population standard deviation
 - Equivalent to sample standard deviation, s

Example: Time to Complete Job (cont.)

$$n = \left(\frac{z * \hat{\sigma}}{E}\right)^2$$

- z* at 95% confidence = 1.96
- $\hat{\sigma} = 3$
 - Estimated population standard deviation
 - \circ Equivalent to sample standard deviation, s
- E = 2

28 of 30

Example: Time to Complete Job (cont.)

$$n = \left(\frac{1.96(3)}{2}\right)^2$$

- z* at 95% confidence = 1.96
- $\hat{\sigma} = 3$
 - Estimated population standard deviation
 - Equivalent to sample standard deviation, s
- E=2

Example: Time to Complete Job (cont.)

$$n = \left(\frac{1.96(3)}{2}\right)^2$$
$$= 8.6 \approx 9$$

- z* at 95% confidence = 1.96
- $\hat{\sigma} = 3$
 - Estimated population standard deviation
 - \circ Equivalent to sample standard deviation, s
- E = 2

30 of 30

Example: Time to Complete Job (cont.)

$$n = \left(\frac{1.96(3)}{2}\right)^2$$
$$= 8.6 \approx 9$$

- z* at 95% confidence = 1.96
- $\hat{\sigma} = 3$
 - Estimated population standard deviation
 - Equivalent to sample standard deviation, s
- E = 2

Nine samples are needed to detect a change in the population mean.