CS7.301 (Machine Data and Learning)

Vikrant Dewangan Roll Number - 2018111024 30th April, 2020 Assignment - 5, part B

Parameters Involved

1. Question 1

2. Question 2

3. Question 3

3.1 Question 1

3.2 Question 2

4. Question 4

5. Question 5

Parameters Involved

The following parameters were involved -

• x = 1 - (((2018111024) % 40 + 1) / 100) = 0.75

Thus the agents in moves in the direction of its action with probability **0.75** and opposite to the direction with probability **0.25** (or in the same cell if at border cells)

• Reward = 2018111024 % 100 + 10

= 34

Thus the agent gets a reward of +34 when it reaches the target before call is Off.

• If the agent transitions from any state to a terminal state, it immediately shuts the call. Now agent may or may not start a new call:

<u>Note</u>: call_change_prob[0] is probability of change initial state and call_change_prob[1] of no change.

Numbering of agent's or target's states -

2	5	8
---	---	---

1	4	7
0	3	6

With each state being (agent state, target state, call state) tuple, we get a total $9 \times 9 \times 2 = 162$ states.

1. Question 1

A _?	X	$A_{?}$
×	Т	×
A _?	X	$A_{?}$

A_?: Agent uncertainty

X: Certainty that target or agent not present

T: Uncertainty of presence

Since upon observing o6, we are sure that the target is not present in cells (0,1), (1,0), (2,1) or (1,2). Thus they are certainly confident that the target must be in states (0,0), (2,0), (0,2) or (2,2). Thus initially, the target can be in either of the states with probability **0.25**. Thus we can compute the initial belief state as -

b(
$$\{s_{agent}, s_{target}, call\}$$
) = 0.125 when s_{agent} = (0,0) or (0,2) or (2,0) or (2,2), and s_{target} = (1,1) and call = On or Off otherwise

2. Question 2

?	Х	Х
Α?	?	×
?	X	X

A: Agent

X: Certainty that target not present

?: Uncertainty of presence

Since initially, it is known that the target is in one of the states (0,0), (1,1), (0,1) or (1,0) and that the call is Off, the initial belief state will look like -

b(
$$\{s_{agent}, s_{target}, call\}$$
) = 0.25 when s_{target} = (0,0) or (0,1) or (1,0) or (0,1) and s_{agent} = (0,1) and call = Off otherwise

3. Question 3

3.1 Question 1

The policy file generated in Question 1 via sarsop is used to generate the simulation using simulation length as 100 and simulation number as 1000 -

#Simula	ions Exp Total Reward
100	4.88268
200	5.00939
300	4.95585
400	4.88391
500	4.80111
600	4.71943
700	4.73074
800	4.81126
900	4.82644
1000	4.76012

#Simulations | Exp Total Reward | 95% Confidence Interval 1000 4.76012 (4.58101, 4.93924)

The expected total reward is my expected utility, that is 4.76012.

3.2 Question 2

The policy file generated in Question 1 via sarsop is used to generate the simulation using simulation length as $100\,$ and simulation number as $1000\,$ -

#Simula	 tions Exp Tα	 otal Reward
100	10.4015	
200	10.3102	
300	10.3067	
400	10.2584	
500	10.2487	
600	10.2509	
700	10.2157	
800	10.2241	
900	10.2023	
1000	10.1891	
#Simula	tions Exp To	otal Reward 95% Confidence Interva
1000	10.1891	(10.0563, 10.3219)

The expected total reward is my expected utility, that is 10.18912

4. Question 4

T _?	X	T _?
A _?	×	$A_{?}$

T _?	X	T _?

A₂: Agent position uncertainty

X: Certainty that target or agent not present

T₂: Target position uncertainty

Thus we get our belief state as -

b(
$$\{s_{agent}, s_{target}, call\}$$
) = 0.075 when s_{target} = (0,0) or (0,2) or (2,0) or (2,2), and s_{agent} = (0,1) and call = On or Off when s_{target} = (0,0) or (0,2) or (2,0) or (2,2), and s_{agent} = (2,1) and call = On or Off

Thus, we have total 8 different different scenarios -

Agent	Target	Probability	Observation
0,1	0,0	0.15	o3
0,1	0,2	0.15	o5
0,1	2,0	0.15	06
0,1	2,2	0.15	06
2,1	0,0	0.1	06
2,1	0,2	0.1	06
2,1	2,0	0.1	03
2,1	2,2	0.1	o5

5. Question 5

We have the number of nodes possible =

$$N = \sum^{T-1} |O|^{i}$$

= (|O|^T - 1) / (|O| - 1)
= (6^T - 1) / (5)

For the number of policy tree, we get -

Trees =
$$|A|^N$$

= 5^N

Depending upon the horizon(T) that we choose to stop the POMDP on, we can get a different number of trees. For example,