PURDUE UNIVERSITY

Department of Mathematics

GALOIS THEORY HONORS, MA 45401

Homework 8 (Mar 14 – Apr 4)

- 1 (5+5+5) Let $K \subseteq L$ be a splitting field extension for some $f \in K[t] \setminus K$. Then the following are equivalent:
 - (i) f has a repeated root over L;
 - (ii) $\exists \alpha \in L \text{ s.t. } 0 = f(\alpha) = (\mathcal{D}f)(\alpha);$
 - (iii) $\exists g \in K[t], \deg g \geq 1 \text{ s.t. } g \text{ divides both } f \text{ and } \mathcal{D}f.$
- **2** (5) Let K be a field, char(K) = p > 0 and $f \in K[t^p]$ is an irreducible polynomial over K. Prove that f is inseparable.
- **3** (10) Let K be a field, $\operatorname{char}(K) = p > 0$ and $f \in K[t^p]$ is an irreducible polynomial over K. Prove that there is $g \in K[t]$ and a non-negative n such that $f(t) = g(t^{p^n})$ and g is an irreducible and separable polynomial.
- 4 (10) Prove that $\prod_{\alpha \in \mathbb{F}_q^*} \alpha = -1$.
- **5** (5+5+5+5) a) Let $\alpha \in \mathbb{F}_q$ and $\alpha = \beta \beta^p$ for some $\beta \in \mathbb{F}_q$. Prove that $\text{Tr}(\alpha) = 0$.
 - b) Let $\alpha \in \mathbb{F}_q$ and $\alpha = \gamma^{1-p}$ for some nonzero $\gamma \in \mathbb{F}_q$. Prove that $Norm(\alpha) = 1$.
 - c) Let $\alpha \in \mathbb{F}_p \subseteq \mathbb{F}_{p^n}$. Prove that $\text{Tr}(\alpha) = n\alpha$.
 - d) Let $\alpha \in \mathbb{F}_p \subseteq \mathbb{F}_{p^n}$. Prove that $Norm(\alpha) = \alpha^n$.
- 6 The midterm exam will be on Thursday the 27th!

Solutions

General remark. If there is a typo in any task, then the maximum score will be awarded for that task.

- 1 (5+5+5) Let $K \subseteq L$ be a splitting field extension for some $f \in K[t] \setminus K$. Then the following are equivalent:
 - (i) f has a repeated root over L;
 - (ii) $\exists \alpha \in L \text{ s.t. } 0 = f(\alpha) = (\mathcal{D}f)(\alpha);$
 - (iii) $\exists g \in K[t], \deg g \geq 1 \text{ s.t. } g \text{ divides both } f \text{ and } \mathcal{D}f.$

Solution. (i) \Longrightarrow (ii) If f has a repeated root α , then $f(x) = (x - \alpha)^s g(x)$, where s > 1 and thus $\mathcal{D}f = (x - \alpha)^{s-1}(sg(x) + (x - \alpha)\mathcal{D}g)$ thanks to the Leibnitz rule. Thus $(\mathcal{D}f)(\alpha) = 0$.

- $(ii) \implies (iii)$ If $0 = f(\alpha) = (\mathcal{D}f)(\alpha)$, then μ_{α}^{K} , $\deg(\mu_{\alpha}^{K}) \geq 1$ divides both f and $\mathcal{D}f$.
- (iii) \Longrightarrow (i) Suppose that $\exists g \in K[t]$, $\deg g \geq 1$ s.t. g divides both f and $\mathcal{D}f$. Let α be a root of g. Then $f(t) = (t \alpha)g_*(t)$, $g_* \in L[t]$ and $\mathcal{D}f = g_*(t) + (t \alpha)\mathcal{D}g_*(t)$. We know that $g|\mathcal{D}f$ and hence $(t \alpha)$ divides g_* . It follows that $(t \alpha)^2$ divides f(t) as required.
- **2** (5) Let K be a field, $\operatorname{char}(K) = p > 0$ and $f \in K[t^p]$ is an irreducible polynomial over K. Prove that f is inseparable. **Solution.** We have $\mathcal{D}f = 0$ thus by the previous question f has multiple roots and therefore f is inseparable over K.
- **3** (10) Let K be a field, $\operatorname{char}(K) = p > 0$ and $f \in K[t^p]$ is an irreducible polynomial over K. Prove that there is $g \in K[t]$ and a non-negative n such that $f(t) = g(t^{p^n})$ and g is an irreducible and separable polynomial.

Solution. Let n be the largest non-negative integer having the property that $f(t) = g(t^{p^n})$, i.e. $f \in K[t^{p^n}]$. By our criterion of inseparability (Theorem 1 of Lecture 16) we see that if g is inseparable, then $g = h(t^p)$ and hence $f \in K[t^{p^{n+1}}]$, contradicting our choice of n. Thus g is separable. Finally, if g is reducible, then f is reducible and this is a contradiction.

4 (10) Prove that $\prod_{\alpha \in \mathbb{F}_a^*} \alpha = -1$.

Solution. Any nonzero $\alpha \in \mathbb{F}_q^*$ has the inverse element $\beta = \alpha^{-1}$ that is $\alpha\beta = 1$. We have $\beta = \alpha$ iff $\alpha^2 = 1$ and therefore $\alpha = \pm 1$. Splitting all elements $\alpha \in \mathbb{F}_q^*$ into pairs (α, β) , we obtain

$$\prod_{\alpha \in \mathbb{F}_q^*} \alpha = \prod_{\alpha \in \mathbb{F}_q^*, \, \alpha \neq \pm 1} \alpha \cdot 1 \cdot (-1) = 1 \cdot 1 \cdot (-1) = -1$$

as required.

- **5** (5+5+5+5) a) Let $\alpha \in \mathbb{F}_q$ and $\alpha = \beta \beta^p$ for some $\beta \in \mathbb{F}_q$. Prove that $\text{Tr}(\alpha) = 0$.
 - b) Let $\alpha \in \mathbb{F}_q$ and $\alpha = \gamma^{1-p}$ for some nonzero $\gamma \in \mathbb{F}_q$. Prove that $Norm(\alpha) = 1$.
 - c) Let $\alpha \in \mathbb{F}_p \subseteq \mathbb{F}_{p^n}$. Prove that $\text{Tr}(\alpha) = n\alpha$.
 - d) Let $\alpha \in \mathbb{F}_p \subseteq \mathbb{F}_{p^n}$. Prove that Norm $(\alpha) = \alpha^n$.

Solution. a)-b) This is a direct calculation. c)-d) Use the property of the Frobenius automorphism φ , namely, $\varphi(\alpha) = \alpha$ iff $\alpha \in \mathbb{F}_p$.

6 The midterm exam will be on Thursday the 27th!