Cryptology Exercise Week 9

Zijun Yu 202203581

Octobor 2023

CPA security of El Gamal

The adversary Adv plays the CPA game, which means that it has the public keys G, α , and α^a . It then chooses a message m and sends to the oracle, and gets back (α^r, x) . Let G, α , α^a , α^r , and $x \cdot m^{-1}$ be the inputs to B, namely G, α , α^a , α^b , and α^c . So r = b. Then notice that x is either $\alpha^{ab} \cdot m$ when we are in the real world, or $\alpha^{ab} \cdot s$, for some random s, when we are in the ideal world. We can rewrite $\alpha^{ab} \cdot s = \alpha^{ab} \cdot m \cdot \alpha^t = \alpha^{abt} \cdot m$. Because s is uniformly random, abt is also uniformly random. This means that the oracle is either responding with $\alpha^{ab} \cdot m$ or $\alpha^c \cdot m$, for a uniformly random c. The adversary Adv can distinguish between these two cases with advantage ϵ , which means that it can guess whether c = ab or c is random with advantage ϵ . Hence we simply let B output the same as Adv does and B has ϵ advantage in playing the DDH game.