

Московский государственный университет имени М. В. Ломоносова Факультет вычислительной математики и кибернетики Кафедра математических методов прогнозирования

Васильев Руслан Леонидович

Калибровка уверенности (нейросетей?)

КУРСОВАЯ РАБОТА

Научный руководитель:

д.ф-м.н., профессор *А. Г. Дьяконов*

Содержание

1	Введение	2
2	Постановка задачи	2
3	Оценка откалиброванности	3
	3.1 Визуализация	3
	3.2 Метрики	4
4	Методы калибровки	6
	4.1 Гистограммный биннинг (Histogram Binning)	6
	4.2 Изотоническая регрессия (Isotonic Regression)	6
	4.3 Линейные отображения логитов	6
	4.4 Сглаживание меток (Label Smoothing)	6
	4.5 А также	6
5	Вычислительные эксперименты	6
6	Почему нейросети не откалиброваны?	7
7	Заключение	7
8	Список литературы	8
0	Пругомочула	0

Аннотация

Аннотация обычно содержит краткое описание постановки задачи и полученных результатов, одним абзацем на 10–15 строк. Цель аннотации — обозначить в общих чертах, о чём работа, чтобы человек, совершенно не знакомый с данной работой, понял, интересна ли ему эта тема, и стоит ли читать дальше. Аннотация собирается в последнюю очередь путем легкой модификации наиболее важных и удачных фраз из введения и заключения.

1 Введение

2 Постановка задачи

Пусть решается задача классификации объектов из множества X с метками (классами) $\mathcal{Y} = \{1, \ldots, n\}$. Предположим, что с помощью обучающей выборки – множества пар объектов и соответствующих им меток $(x_i, y_i)_{i=1}^l$ – мы обучили модель – алгоритм, для каждого $x \in X$ выдающую вектор оценок – yверенностей (confidences) $\mathbf{a}(x) = (a_1(x), \ldots, a_n(x)), \sum_{j=1}^n a_j(x) = 1$. Далее объекту приписывается класс, соответствующий наибольшей уверенности:

$$\hat{y}(x) \coloneqq \underset{j \in \mathcal{Y}}{\operatorname{argmax}} a_j, \quad \hat{p}(x) \coloneqq a_{\hat{y}}.$$
 (1)

Оценку \hat{p} мы бы хотели трактовать как вероятность того, истинная метка y совпадает с предсказанной \hat{y} . Если наша оценка достаточно точна, то модель называют *откалиброванной*. Например, если мы рассматриваем объекты для каждого из которых $\hat{p} \approx 0.8$, то мы ожидаем, что $\approx 80\%$ из них будут классифицированы верно. Формально определение *откалиброванности* (в [1] – perfect calibration) можно записать следующим образом:

$$\mathbb{P}(y = \hat{y} \mid \hat{p} = p) = p \quad \forall p \in [0, 1]. \tag{2}$$

В случае реальных данных и моделей мы не можем проверить (2), поэтому на помощь приходят различные метрики и визулизации, которые будут рассмотрены в разделе <...>.

Существуют и более сильные определения откалиброванности модели, чем (2). Например, согласно [2] классификатор называется откалиброванным (в оригинале – well-calibrated), если

$$\mathbb{P}(y=j\mid a_i=p)=p\quad\forall j\in\mathcal{Y},\quad\forall p\in[0,1]\,,\tag{3}$$

то есть мы ожидаем, что уверенности, выдываемые для каждого класса (а не только предсказанного), являются откалиброванными. Еще более сильно откалиброванность определяется в [3]:

$$\mathbb{P}(y=j\mid \mathbf{a}=\mathbf{p})=p_{j}\quad\forall j\in\mathcal{Y},\quad\forall \mathbf{p}\in\Delta^{n-1},\tag{4}$$

где
$$\Delta^{n-1} = \left\{ \mathbf{p} \in [0,1] : \sum_{j=1}^{n} p_j = 1 \right\}.$$

<...>Может, сюда вставить постановку задачи – сказать, что мы хотим преобразовать выходы модели?..

3 Оценка откалиброванности

3.1 Визуализация

Покажем, как можно оцениивают откалиброванность модели в реальных задачах. Для начала упростим задачу до бинарной классификации – пусть наша модель выдает уверенности в том, что объект принадлежит положительному классу. Примеров подобных классификаторов много среди «класситических» алгоритмов машинного обучения: логистическая регрессия, решающий лес, градиентный бустинг над деревьями, наивный байесовский классификатор, метод опорных векторов и другие – проблемы их калибровки подробно рассматривались, например, в [4, 5].

Рис. 1: Варианты визуализации надежности алгоритма. Для наглядности были сгенерированы синтетические данные, в качестве модели использован SVM: расстояния до разделяющей гиперплоскости отмасштабированы на [0, 1].

Разобъем уверенности на M интервалов I_m – бинов (bins) одинаковой ширины:

$$I_1 = \left[0, \frac{1}{M}\right), \ I_2 = \left[\frac{1}{M}, \frac{2}{M}\right), \ \dots, \ I_{M-1} = \left[\frac{M-2}{M}, \frac{M-1}{M}\right), \ I_M = \left[\frac{M-1}{M}, 1\right].$$

Обозначим B_m множество объектов, уверенность для которых лежит в пределах I_m . В каждом бине мы можем найти среднюю уверенность (confidence) и долю объектов, на самом деле принадлежащих к положительному классу (positive frequency), а затем изобразить полученные значения на графике. В итоге получим *график надежности* [6, 4] (reliability plot/diagram) – рис. 1 (a). Также полученную кривую иногда называют калибровочной кривой (calibration curve). Хорошей откалиброванности соответствует кривая, близкая к диагональной.

Можно отобразить полученные оценки в форме гистограммы – ∂ иаграмме на- ∂ ежности: на рис. 1 (b) красным показывается средняя уверенность, синим – доля объектов положительного класса, попавших в бин. Если красный столбец выше синего, то алгоритм выдает недостаточно уверенные оценки (underconfidence), если синий выше красного – слишком большие (overconfidence). Дополнительно на том же графике мы покажем (зеленым) вес бина (weight) – долю объектов (всех классов), попавших в бин.

Нередко в задаче классификации число классов n > 2 – как в этом случае построить диаграммы надежности? Наиболее популярный подход соответствует пониманию откалиброванности в смысле (2). Для каждого бина B_m оценивается точность (доля правильных ответов, ассuracy) A_m и средняя уверенность в предсказании C_m :

$$A_m = \frac{1}{|B_m|} \sum_{i \in B_m} \mathbb{1}(y_i = \hat{y}_i), \quad C_m = \frac{1}{|B_m|} \sum_{i \in B_m} \hat{p}_i$$
 (5)

Заметим, что A_m и C_m оценивают соответственно левую и правую части (2). Их можно изобразить на диаграмме надежности. Для двух классов такая диаграмма приводится на рис. 1 (c) – бины с границами < 0.5 оказываются пустыми, поскольку в бинарной классификации алгоритм относит объект к классу, уверенность в котором > 0.5.

В [3] также предлагается в строить поклассовые диаграммы надежности (classwise-reliability diagrams): для этого мы каждый класс по отдельности объявляем «положительным», а все остальные собираем в «отрицательный» и строим диаграмму надежности для бинарного случая. Таким образом получится n диаграмм, оценивающих (3). И хотя такой подход более точный, для большого числа классов (например, 1000 в датасете Imagenet [7]) строить их все будет проблематично.

3.2 Метрики

[8]. Одна из наиболее популярных метрик для оценки откалиброванности модели – ECE (Expected Calibration Error [8]). Она приближает

$$\mathbb{E}_{\hat{p}} \left| \mathbb{P} \left(y = \hat{y} \mid \hat{p} \right) - \hat{p} \right|$$

с помощью разделения уверенностей по бинам (l – общее число объектов):

$$ECE = \sum_{m=1}^{M} \frac{|B_{m}|}{l} |A_{m} - C_{m}|$$

$$= \sum_{m=1}^{M} \frac{|B_{m}|}{l} \left| \frac{1}{|B_{m}|} \sum_{i \in B_{m}} \mathbb{1}(y_{i} = \hat{y}_{i}) - \frac{1}{|B_{m}|} \sum_{i \in B_{m}} \hat{p}_{i} \right|$$

$$= \frac{1}{l} \sum_{m=1}^{M} \left| \sum_{i \in B_{m}} \mathbb{1}(y_{i} = \hat{y}_{i}) - \sum_{i \in B_{m}} \hat{p}_{i} \right|.$$
(6)

Сравнивая (6) и диаграммы надежности для многоклассовой задачи, замечаем, что ЕСЕ в точности равна взвешенному среднему длин отрезков между красными и синими столбцами.

Существуют и другие метрики на основе разбиения уверенностей по бинам, хоть и используются значительно реже. Например, можно посчитать длину максимального разрыва между уверенностью и точностью [8]:

$$MCE = \max_{m} |A_m - C_m|, \qquad (7)$$

или же учитывать уверенности не только за предсказанный класс, но и за все остальные [3]:

classwise-ECE =
$$\frac{1}{M} \sum_{j=1}^{n} \sum_{m=1}^{M} \frac{|B_{m}^{j}|}{l} |A_{m}^{j} - C_{m}^{j}|,$$
 (8)

где B_m^j, A_m^j, C_m^j — соответственно m-й бин, точность и увереннось, если мы выделяем j-й класс как «положительный», а все остальные собираем в «отрицательный» (то есть идея в точности соответствует поклассовым диаграммам надежности).

Заметим, что диаграммы надежности можно строить не только на основе равноширинных интервалов, но и с помощью разбиения на равномощные бины. В [9] предлагалось подобным образом считать и метрики. Также, кроме l_1 -нормы (т.е. усреднения модулей), можно использовать l_2 (брать среднеквадратическое) [10].

Помимо биннинговых метрик, для оценки откалиброванности модели можно использовать *скоринговые функции ошибки* (proper scoring rules). Мы будем считать NLL (Negative Log-Likelihood)

$$NLL = -\frac{1}{l} \sum_{i=1}^{l} \log a_{i,y_i},$$
 (9)

где y_i – истинная метка класса i-го объекта, a_{i,y_i} – уверенность алгоритма в ней, l – общее число объектов, n – число классов. Именно на NLL чаще обучаются настраиваются нейросети. А также будем считать срденекввадратическую ошибку (BS – Brier Score):

BS =
$$\frac{1}{l} \sum_{i=1}^{l} \sum_{j=1}^{n} (a_{ij} - \mathbb{1}(y_i = j))^2$$
. (10)

4 Методы калибровки

- 4.1 Гистограммный биннинг (Histogram Binning)
- 4.2 Изотоническая регрессия (Isotonic Regression)
- 4.3 Линейные отображения логитов
- 4.4 Сглаживание меток (Label Smoothing)
- 4.5 А также...

5 Вычислительные эксперименты

Эксперименты были проведены с архитектурами <...>на датасетах CIFAR-10, CIFAR-100, Imagenet. При вычислениях были использованы предобученные модели из открытых репозиториев [11, 12, 13]. На

Puc. 2: CIFAR-10, googlenet

Puc. 3: CIFAR-100, shufflenetv2 x05

6 Почему нейросети не откалиброваны?

7 Заключение

Puc. 4: ImageNet, Efficientnet b8

8 Список литературы

Список литературы

- [1] Chuan Guo et al. "On Calibration of Modern Neural Networks". In: *ICML 2017*. Vol. 70. Proceedings of Machine Learning Research. PMLR, 2017, pp. 1321–1330.
- [2] Bianca Zadrozny and Charles Elkan. "Transforming Classifier Scores into Accurate Multiclass Probability Estimates". In: *Proceedings of the Eighth ACM SIGKDD International Conference on Knowledge Discovery and Data Mining*. KDD '02. Edmonton, Alberta, Canada: Association for Computing Machinery, 2002, pp. 694–699. ISBN: 158113567X. DOI: 10.1145/775047.775151.
- [3] Meelis Kull et al. "Beyond temperature scaling: Obtaining well-calibrated multi-class probabilities with Dirichlet calibration". In: *Advances in Neural Information Processing Systems*. Ed. by H. Wallach et al. Vol. 32. Curran Associates, Inc., 2019.
- [4] Alexandru Niculescu-Mizil and Rich Caruana. "Predicting good probabilities with supervised learning". In: Jan. 2005, pp. 625–632. DOI: 10.1145/1102351.1102430.
- [5] Rich Caruana and Alexandru Niculescu-Mizil. "An Empirical Comparison of Supervised Learning Algorithms". In: *Proceedings of the 23rd International Conference on Ma-*

- *chine Learning*. ICML '06. Pittsburgh, Pennsylvania, USA: Association for Computing Machinery, 2006, pp. 161–168. ISBN: 1595933832. DOI: 10.1145/1143844.1143865.
- [6] "The Comparison and Evaluation of Forecasters". In: *Journal of the Royal Statistical Society. Series D (The Statistician)* 32.1/2 (1983), pp. 12–22. ISSN: 00390526, 14679884.
- [7] Jia Deng et al. "Imagenet: A large-scale hierarchical image database". In: *2009 IEEE* conference on computer vision and pattern recognition. Ieee. 2009, pp. 248–255.
- [8] Mahdi Pakdaman Naeini, Gregory F Cooper, and Milos Hauskrecht. "Obtaining Well Calibrated Probabilities Using Bayesian Binning." In: *AAAI*. 2015, 2901–2907.
- [9] Jeremy Nixon et al. *Measuring Calibration in Deep Learning*. 2020. arXiv: 1904.01685 [cs.LG].
- [10] Ananya Kumar, Percy Liang, and Tengyu Ma. "Verified Uncertainty Calibration". In: *NeurIPS 2019*. 2019, pp. 3787–3798.
- [11] Huy Phan. huyvnphan/PyTorch_CIFAR10. Version v3.0.1. Jan. 2021. DOI: 10.5281/zenodo.4431043. URL: https://doi.org/10.5281/zenodo.4431043.
- [12] chenyaofo. *PyTorch CIFAR models*. 2021. URL: https://github.com/chenyaofo/pytorch-cifar-models.
- [13] Ross Wightman. *PyTorch Image Models*. https://github.com/rwightman/pytorch-image-models. 2019. DOI: 10.5281/zenodo.4414861.

9 Приложения

Таблица 1: Accuracy, % – доля правильных ответов (больше – лучше). Значения метрики приводятся для тестовой выборки до и после калибровки.

Данные	Модель	До калибровки	Hist-binning	Isotonic	T-scaling	V-scaling	V-scaling + bias
cifar10	densenet121	93.960	93.680	93.800	93.960	93.900	93.860
cifar10	densenet161	94.040	93.580	93.860	94.040	93.920	94.040
cifar10	densenet169	94.400	94.160	94.220	94.400	94.280	94.240
cifar10	googlenet	93.040	92.700	92.900	93.040	93.000	93.020
cifar10	inception_v3	93.380	93.280	93.320	93.380	93.420	93.360
cifar10	mobilenet_v2	93.180	92.920	92.960	93.180	93.060	93.040
cifar10	resnet18	92.960	92.840	93.140	92.960	93.020	93.040
cifar10	resnet34	93.420	93.020	93.180	93.420	93.380	93.340
cifar10	resnet50	93.580	93.400	93.520	93.580	93.580	93.560
cifar10	vgg11_bn	92.200	91.800	91.880	92.200	91.980	92.060
cifar10	vgg13_bn	93.980	93.680	93.800	93.980	94.080	93.980
cifar10	vgg16_bn	93.880	93.560	93.600	93.880	93.720	93.760
cifar10	vgg19_bn	93.680	93.460	93.620	93.680	93.580	93.700
cifar100	mobilenetv2_x0_5	71.720	68.520	71.400	71.720	71.220	71.420
cifar100	mobilenetv2_x1_0	74.760	72.440	74.260	74.760	74.820	74.580
cifar100	mobilenetv2_x1_4	76.120	74.040	75.400	76.120	76.020	76.120
cifar100	resnet20	68.680	65.300	67.800	68.680	68.540	68.320
cifar100	resnet32	70.120	67.120	69.420	70.120	69.620	69.560
cifar100	resnet44	71.860	69.060	71.300	71.860	71.520	71.320
cifar100	resnet56	73.140	70.840	72.660	73.140	72.920	72.760
cifar100	shufflenetv2_x0_5	67.660	65.220	67.920	67.660	68.060	68.060
cifar100	shufflenetv2_x1_0	72.840	70.760	72.560	72.840	73.220	72.960
cifar100	shufflenetv2_x1_5	74.440	71.780	74.140	74.440	74.520	74.520
cifar100	shufflenetv2_x2_0	75.660	73.840	75.180	75.660	75.420	75.440
cifar100	vgg11_bn	70.540	68.740	70.380	70.540	70.360	70.340
cifar100	vgg13_bn	74.320	72.200	73.480	74.320	74.180	73.880
cifar100	vgg16_bn	74.000	72.420	73.680	74.000	73.840	73.780
cifar100	vgg19_bn	74.000	72.720	74.080	74.000	73.980	73.860
imagenet	mobilenetv2_120d	77.220	74.000	76.528	77.220	77.188	77.060
imagenet	repvgg_b3	80.320	77.464	79.820	80.320	80.240	80.236
imagenet	tf_efficientnet_b8	85.428	83.756	85.232	85.428	85.420	85.440
imagenet	vgg19_bn	74.140	70.920	73.680	74.140	74.172	73.768

Таблица 2: Brier Score (меньше – лучше). Значения метрики приводятся для тестовой выборки до и после калибровки.

Данные	Модель	До калибровки	Hist-binning	Isotonic	T-scaling	V-scaling	V-scaling + bias
cifar10	densenet121	0.101	0.106	0.098	0.102	0.102	0.102
cifar10	densenet161	0.099	0.105	0.095	0.099	0.098	0.098
cifar10	densenet169	0.093	0.097	0.089	0.093	0.093	0.092
cifar10	googlenet	0.108	0.113	0.108	0.108	0.107	0.107
cifar10	inception_v3	0.105	0.113	0.103	0.106	0.106	0.105
cifar10	mobilenet_v2	0.103	0.113	0.101	0.104	0.105	0.105
cifar10	resnet18	0.110	0.114	0.108	0.109	0.109	0.108
cifar10	resnet34	0.109	0.116	0.104	0.107	0.107	0.106
cifar10	resnet50	0.103	0.107	0.098	0.102	0.102	0.102
cifar10	vgg11_bn	0.118	0.125	0.117	0.117	0.118	0.118
cifar10	vgg13_bn	0.091	0.101	0.091	0.092	0.091	0.091
cifar10	vgg16_bn	0.098	0.105	0.095	0.097	0.097	0.097
cifar10	vgg19_bn	0.102	0.108	0.098	0.101	0.101	0.100
cifar100	mobilenetv2_x0_5	0.415	0.450	0.398	0.393	0.393	0.393
cifar100	mobilenetv2_x1_0	0.372	0.408	0.360	0.354	0.353	0.353
cifar100	mobilenetv2_x1_4	0.354	0.389	0.344	0.339	0.338	0.338
cifar100	resnet20	0.452	0.488	0.441	0.432	0.432	0.434
cifar100	resnet32	0.444	0.475	0.421	0.412	0.412	0.413
cifar100	resnet44	0.424	0.456	0.398	0.391	0.391	0.392
cifar100	resnet56	0.414	0.434	0.384	0.378	0.379	0.380
cifar100	shufflenetv2_x0_5	0.458	0.493	0.439	0.433	0.434	0.436
cifar100	shufflenetv2_x1_0	0.397	0.433	0.384	0.379	0.380	0.380
cifar100	shufflenetv2_x1_5	0.372	0.413	0.365	0.362	0.364	0.365
cifar100	shufflenetv2_x2_0	0.350	0.386	0.345	0.344	0.345	0.345
cifar100	vgg11_bn	0.445	0.458	0.413	0.407	0.409	0.409
cifar100	vgg13_bn	0.401	0.421	0.378	0.372	0.374	0.373
cifar100	vgg16_bn	0.439	0.432	0.376	0.371	0.373	0.372
cifar100	vgg19_bn	0.442	0.426	0.369	0.370	0.369	0.368
imagenet	mobilenetv2_120d	0.327	0.376	0.326	0.319	0.318	0.321
imagenet	repvgg_b3	0.286	0.333	0.289	0.286	0.284	0.287
imagenet	tf_efficientnet_b8	0.225	0.249	0.217	0.218	0.218	0.220
imagenet	vgg19_bn	0.358	0.420	0.365	0.357	0.357	0.360

Таблица 3: ECE, % – Expected Calibration Error, 15 бинов (меньше – лучше). Значения метрики приводятся для тестовой выборки до и после калибровки.

Данные	Модель	До калибровки	Hist-binning	Isotonic	T-scaling	V-scaling	V-scaling + bias
cifar10	densenet121	1.90	1.03	1.89	1.74	1.76	1.64
cifar10	densenet161	2.09	1.54	1.47	1.92	2.09	2.03
cifar10	densenet169	2.43	1.23	1.27	2.07	1.83	1.75
cifar10	googlenet	1.70	1.10	1.37	1.07	0.99	1.09
cifar10	inception_v3	2.09	1.05	1.85	1.49	1.55	1.41
cifar10	mobilenet_v2	2.87	1.98	2.10	2.08	2.25	2.16
cifar10	resnet18	1.91	1.17	1.74	1.27	1.27	1.16
cifar10	resnet34	2.52	1.76	1.51	2.18	1.98	2.20
cifar10	resnet50	2.34	1.66	1.28	1.82	1.85	2.04
cifar10	vgg11_bn	1.71	1.50	1.54	1.62	1.62	1.82
cifar10	vgg13_bn	0.99	1.42	1.53	1.51	1.49	1.45
cifar10	vgg16_bn	1.67	1.56	1.30	1.55	1.63	1.71
cifar10	vgg19_bn	2.26	1.47	1.28	1.90	1.98	1.95
cifar100	mobilenetv2_x0_5	11.43	8.99	4.34	2.52	3.02	3.21
cifar100	mobilenetv2_x1_0	10.97	8.51	5.03	3.33	3.29	3.29
cifar100	mobilenetv2_x1_4	10.25	8.97	5.10	3.64	3.52	3.49
cifar100	resnet20	10.67	9.09	5.18	2.79	3.15	3.27
cifar100	resnet32	13.47	10.72	5.07	1.88	2.22	2.33
cifar100	resnet44	13.89	9.59	4.67	2.22	2.45	2.82
cifar100	resnet56	13.87	9.00	5.02	2.79	2.62	3.26
cifar100	shufflenetv2_x0_5	12.43	10.50	4.39	1.51	1.78	2.41
cifar100	shufflenetv2_x1_0	10.92	8.46	5.34	3.56	4.19	3.83
cifar100	shufflenetv2_x1_5	9.08	8.65	5.44	4.81	4.72	4.69
cifar100	shufflenetv2_x2_0	7.36	8.49	5.09	4.56	4.38	4.46
cifar100	vgg11_bn	15.26	10.43	6.73	4.87	5.11	5.46
cifar100	vgg13_bn	13.60	8.25	7.42	6.20	6.58	6.41
cifar100	vgg16_bn	18.94	7.46	6.08	4.09	4.05	4.13
cifar100	vgg19_bn	19.38	6.68	4.66	4.21	3.57	3.00
imagenet	mobilenetv2_120d	6.63	6.83	2.19	1.89	2.26	3.08
imagenet	repvgg_b3	3.11	6.61	3.46	3.73	3.91	4.63
imagenet	tf_efficientnet_b8	8.85	4.24	2.79	3.44	4.07	4.36
imagenet	vgg19_bn	3.75	8.86	3.88	1.98	1.72	2.20

Таблица 4: МСЕ, % – Maximum Calibration Error, 15 бинов (меньше – лучше). Значения метрики приводятся для тестовой выборки до и после калибровки.

Данные	Модель	До калибровки	Hist-binning	Isotonic	T-scaling	V-scaling	V-scaling + bias
cifar10	densenet121	41.77	38.83	26.81	25.13	75.16	32.69
cifar10	densenet161	33.63	32.88	35.10	48.49	31.01	30.55
cifar10	densenet169	42.49	25.20	23.90	33.11	25.80	24.63
cifar10	googlenet	24.83	26.12	26.23	27.21	24.79	24.46
cifar10	inception_v3	16.93	38.86	80.05	21.97	15.07	24.74
cifar10	mobilenet_v2	28.72	35.87	19.17	28.92	21.72	31.27
cifar10	resnet18	15.72	36.55	29.31	19.87	25.48	43.70
cifar10	resnet34	25.48	59.97	81.20	22.77	20.36	19.10
cifar10	resnet50	24.96	24.32	19.31	19.00	17.85	27.30
cifar10	vgg11_bn	23.35	75.53	11.88	23.28	23.35	14.64
cifar10	vgg13_bn	14.13	31.21	20.61	32.52	24.63	83.67
cifar10	vgg16_bn	23.53	42.56	31.32	18.02	26.22	23.75
cifar10	vgg19_bn	25.99	29.13	17.53	21.84	23.62	23.70
cifar100	mobilenetv2_x0_5	25.38	19.68	13.29	93.50	6.66	8.12
cifar100	mobilenetv2_x1_0	27.73	42.98	10.70	9.78	8.24	11.05
cifar100	mobilenetv2_x1_4	54.46	24.38	12.55	6.54	7.49	8.51
cifar100	resnet20	23.59	18.06	10.76	11.50	7.79	7.92
cifar100	resnet32	38.45	21.16	12.59	7.12	6.58	7.16
cifar100	resnet44	29.50	21.23	14.62	7.78	11.24	10.79
cifar100	resnet56	31.35	27.13	14.06	9.59	7.62	6.52
cifar100	shufflenetv2_x0_5	24.78	20.11	10.22	6.73	6.17	11.24
cifar100	shufflenetv2_x1_0	29.20	21.62	12.35	8.74	9.15	8.76
cifar100	shufflenetv2_x1_5	23.80	36.70	12.08	11.09	12.43	12.97
cifar100	shufflenetv2_x2_0	17.13	22.45	12.76	10.90	10.80	9.91
cifar100	vgg11_bn	40.22	25.83	20.32	11.79	10.80	10.89
cifar100	vgg13_bn	32.80	27.00	20.77	15.01	19.07	16.03
cifar100	vgg16_bn	51.02	37.50	20.15	16.16	12.49	11.77
cifar100	vgg19_bn	50.32	36.75	16.59	28.29	28.09	11.41
imagenet	mobilenetv2_120d	12.35	14.01	5.80	5.98	14.11	10.77
imagenet	repvgg_b3	10.41	25.70	6.68	8.73	8.63	11.89
imagenet	tf_efficientnet_b8	11.45	25.67	11.66	13.05	12.15	13.33
imagenet	vgg19_bn	8.03	19.92	7.82	7.57	7.66	4.27

Таблица 5: Negative Log-Likelihood (меньше – лучше). Значения метрики приводятся для тестовой выборки до и после калибровки.

Данные	Модель	До калибровки	Hist-binning	Isotonic	T-scaling	V-scaling	V-scaling + bias
cifar10	densenet121	0.253	0.453	0.305	0.253	0.254	0.254
cifar10	densenet161	0.253	0.402	0.281	0.253	0.245	0.244
cifar10	densenet169	0.228	0.384	0.243	0.227	0.224	0.224
cifar10	googlenet	0.243	0.302	0.265	0.236	0.233	0.232
cifar10	inception_v3	0.254	0.565	0.311	0.254	0.254	0.253
cifar10	mobilenet_v2	0.241	0.564	0.257	0.239	0.243	0.243
cifar10	resnet18	0.256	0.407	0.334	0.255	0.253	0.253
cifar10	resnet34	0.259	0.484	0.285	0.256	0.253	0.253
cifar10	resnet50	0.242	0.450	0.305	0.240	0.239	0.239
cifar10	vgg11_bn	0.255	0.415	0.330	0.255	0.256	0.254
cifar10	vgg13_bn	0.206	0.430	0.339	0.206	0.205	0.205
cifar10	vgg16_bn	0.227	0.413	0.322	0.227	0.227	0.228
cifar10	vgg19_bn	0.246	0.476	0.310	0.244	0.244	0.244
cifar100	mobilenetv2_x0_5	1.163	3.666	1.505	1.033	1.033	1.034
cifar100	mobilenetv2_x1_0	1.072	3.578	1.531	0.954	0.953	0.947
cifar100	mobilenetv2_x1_4	1.009	3.086	1.524	0.912	0.914	0.910
cifar100	resnet20	1.234	3.622	1.769	1.128	1.126	1.132
cifar100	resnet32	1.328	3.818	1.560	1.117	1.115	1.114
cifar100	resnet44	1.295	3.893	1.527	1.059	1.061	1.058
cifar100	resnet56	1.285	3.291	1.591	1.033	1.038	1.033
cifar100	shufflenetv2_x0_5	1.296	3.551	1.602	1.162	1.165	1.173
cifar100	shufflenetv2_x1_0	1.181	3.386	1.726	1.070	1.074	1.073
cifar100	shufflenetv2_x1_5	1.073	3.371	1.519	1.022	1.026	1.024
cifar100	shufflenetv2_x2_0	0.998	2.976	1.513	0.972	0.980	0.972
cifar100	vgg11_bn	1.518	3.444	1.693	1.248	1.256	1.248
cifar100	vgg13_bn	1.333	3.061	1.825	1.112	1.123	1.116
cifar100	vgg16_bn	1.640	2.998	1.536	1.113	1.120	1.113
cifar100	vgg19_bn	1.798	2.927	1.530	1.138	1.137	1.133
imagenet	mobilenetv2_120d	0.956	3.834	1.824	0.903	0.897	0.921
imagenet	repvgg_b3	0.835	3.476	1.760	0.828	0.814	0.840
imagenet	tf_efficientnet_b8	0.665	2.548	1.447	0.582	0.587	0.653
imagenet	vgg19_bn	1.042	4.376	2.066	1.025	1.016	1.031