MAT 5314

Assignment 3

Soufiane Fadel

September 23, 2019

Exercise 1

Let $b \leq c$ and $\epsilon > 0$ and assume $\mathcal{P}_D((b,c))$, where D is a distribution on \mathbb{R} according to which points are drawn.

- a) Show that the probability that m points are drawn i.i.d. according to D without any of them falling in the interval (b, c) is at most $e^{m\epsilon}$.
- b) What is the VC dimension of the concept class C consisting of concepts that are the union of two closed intervals, e.g. $[a, b] \cup [c, d]$?
- c) Using only theorems we stated in class show that if a concept class has finite VC dimension then it is PAC-learnable
- d) Is the concept class C in (b) PAC learnable? Justify

\$ solution for Q1:

Since the probability of each point falling outside the interval is $1 - \epsilon$:

$$\mathcal{P}_x((b,c)) = 1 - \epsilon < e^{\epsilon}$$

then we have for the whole data set :

$$\mathcal{P}_D((b,c)) = (1-\epsilon)^m \le e^{m\epsilon}$$

♣ solution for Q2:

the VC Dimension for thoses concepts is: 4

MAT 5314 Soufiane Fadel

- ♣ solution for Q3:
- ♣ solution for Q4:

using the claim on the question 1.c) and since the vc dimendion is $4 < \infty$ then the concept class C consisting of concepts that are the union of two closed intervals is PAC learnable.

Exercise 2

Let $X = \mathbb{R}^{\nvDash}$ and consider the set of concepts of the form $C = \{(x,y) \in \mathbb{R}^{\nvDash} | x^2 + y^2 \le r\}$ for some real number r. Show that this class can be (ϵ, δ) -PAC-learned from training data of size $m \ge (\frac{1}{\epsilon})log(\frac{1}{\delta})$.

solution:

Exercise 3

If two concept classes both have VC dimension d what can you say about the VC dimension of their union? Try to make the strongest statement you can. Justify

solution:

we will proof that:

$$VCdim(H \cup H') \le 2d + 1$$

in the Mohri textbook the VC-dimension of a hypothesis set is defined by :

$$m = \max \{ m : \Gamma_H(m) = 2^m \}$$

where $\Gamma_H(m)$ is the growth function which is the maximum number of ways points can be classified using H.

MAT 5314 Soufiane Fadel

So since The number of ways m particular points can be classified using $H \cup H'$ is at most the number of classifications using H plus the number of classifications using H', This gives immediately the following inequality for growth functions for any $m \ge 0$:

$$\Gamma_{H \cup H'}(m) \le \Gamma_H(m) + \Gamma_{H'}(m)$$

therefore by using saurez lemma we have :

$$\Gamma_{H \cup H'}(m) \le \sum_{i=1}^d \binom{m}{i} + \sum_{i=1}^d \binom{m}{i}$$

and since we know that : $\binom{m}{i} = \binom{m}{m-i}$ then :

$$\Gamma_{H \cup H'}(m) \leq \sum_{i=1}^{d} \binom{m}{i} + \sum_{i=1}^{d} \binom{m}{i}$$

$$\leq \sum_{i=1}^{d} \binom{m}{i} + \sum_{i=1}^{d} \binom{m}{m-i}$$

$$\leq \sum_{i=1}^{d} \binom{m}{i} + \sum_{i=m-d}^{m} \binom{m}{i}$$

then w, if m - d0 > d + 1, that is $m \ge 2d + 2$

$$\Gamma_{H \cup H'}(m) \le \sum_{i=0}^{m} {m \choose i} - {m \choose d+1}$$
$$= 2^{m} - {m \choose d+1}$$
$$< 2^{m}$$

and we we have:

$$\max \{m : \Gamma_H(m) = 2^m\} < 2d + 2$$

and finally:

$$VCdim(H \cup H') \le 2d + 1$$

Exercise 4

Let F be a finite-dimensional vector space of real functions on \mathbb{R}^n and $dim(F) = r < \infty$ Consider the concept class $C = \{c_f : f \in F\}$ where c_f is the concept corresponding to the set $\{x : f(x) \ge 0\}$ Show that the VC-dimension of C is at most r.

solution:

Asume $VCdim(C) \ge r+1$ then : $\exists \{x_1 \cdots x_{r+1}\}\$ of r+1 points in \mathbb{R}^n such that C shatters $\{x_1 \cdots x_{r+1}\}$ which inplies that for each $i \in \{1, \cdots m\}$ (m=r+1) there is some $f_i \in \mathcal{F}$ such that:

$$f_i(x_1) < 0, f_i(x_2) < 0, \dots f_i(x_i) \ge 0 \dots f_i(x_m) < 0$$

. now lets consider $(\forall x \in \mathbb{R}^n)$:

$$g_i(x) = \frac{1}{m-1} \sum_{j \neq i} \frac{f_i(x) - f_i(x_j)}{f_i(x_i) - f_i(x_j)}$$

MAT 5314 Soufiane Fadel

then we have $g_i(x_j) = 0 \ \forall j \neq i$ and $g_i(x_i) = 1$. moreover we have $g_i \in \mathcal{F}$, thus for any $i \in [|1, m|]$ there is some $g_i \in \mathcal{F}$ such that: $u(g_i) = e_i$ where

$$u: \mathcal{F} \to \mathbb{R}^m$$

 $f \mapsto (f(x_1), \cdots, f(x_m))$

and

$$e_i = (0, \cdots, \underbrace{1}_i, \cdots 0)$$

Therefore:

$$u$$
 is subjective $\implies dim(F) \ge dim(\mathbb{R}^n)$
 $\implies r \ge m = r + 1$
 $\implies r \ge r + 1$

which is impossible!