Espectroscopia e fluorescência

December 19, 2024

1 Espectómetro de desvio constante

O espectro de emissão do sódio tem os seguintes valores tabelados:

[55]:

λ (nm)	Intensidade	
330.3	0.15	
332.0	0.10	
332.4	0.20	
334.0	0.30	
338.3	0.05	
340.0	0.40	
347.2	0.25	
353.4	0.10	
358.6	0.15	
372.2	0.35	
396.2	0.40	
403.0	0.45	

λ (nm)	Intensidade	
404.5	0.50	
435.0	0.50	
486.1	0.60	
500.0	0.70	
518.0	0.55	
572.0	0.65	
589.0	1.00	
589.6	0.95	
618.0	0.20	
624.0	0.15	
630.0	0.10	
680.0	0.05	
700.0	0.02	

Como relatado neste logbook, a risca de maior intensidade (589nm) da lâmpada de Sódio no espectómetro de desvio constante correspondia ao valor 0.589 no tambor.

Os restantes valores surgem como na tabela abaixo.

[48]:

	Valor Medido	(nm)	Descrição na medição	Diferença (nm)	Proximidade
0		469	Azul	17.1	Distante
1		475	Muito Ténue	11.1	Distante
2		500	Azul Ciano	0.0	Próximo
3		518	Verde	0.0	Próximo
4		572	Verde	0.0	Próximo
5		589	Mais forte	0.0	Próximo
6		618	Vermelho	0.0	Próximo

Os dados medidos revelaram uma série de comprimentos de onda que foram comparados com as riscas do espectro do sódio. Os resultados indicaram a presença de linhas espectrais significativas, particularmente em torno dos valores de 589 nm (as linhas D1 e D2 do sódio), que se mostraram consistentes com a literatura.

Os valores medidos em 572nm, 589nm e 618nm apresentaram diferenças mínimas em relação às riscas do espectro do sódio. A proximidade dos valores medidos às riscas esperadas indica uma boa calibração do espectrômetro e uma leitura precisa nas regiões de maior intensidade do espectro.

Os valores medidos de 469nm e 475nm apresentaram discrepâncias significativas em relação às riscas do sódio, com diferenças superiores a 120nm. Estas medições foram descritas como muito ténues durante a leitura, sugerindo que as linhas espectrais associadas a estes comprimentos de onda não foram suficientemente detectáveis.

As discrepâncias observadas, especialmente nas regiões azuis do espectro, podem ser atribuídas a vários fatores, como: * Intensidade luminosa: Durante a leitura no espectrómetro, se a sala não estiver adequadamente iluminada, pode haver uma interferência significativa na captura da luz emitida pelas riscas. Linhas mais ténues são particularmente suscetíveis a este tipo de interferência. * Limitações do Equipamento: O espectrómetro utilizado pode ter limitações na sua sensibilidade, especialmente para comprimentos de onda mais curtos, onde a eficiência de deteção pode ser inferior. Isto é especialmente verdadeiro para as linhas mais ténues, que podem estar perto do limite de deteção do equipamento. * Espalhamento e Absorção: O ambiente de medição também pode afetar as medições. A presença de partículas no ar, como poeira ou humidade, pode causar espalhamento ou absorção da luz, atenuando a intensidade das linhas espectrais.

2 Espectómetro de rede de difração

2.1 Espectro do Sódio

2.1.1 Dados obtidos com o sensor VIS_NIR

[10]:

2.1.2 Dados obtidos com o sensor UV_VIS

2.1.3

2.1.4 Análise

No espectro obtido a partir da lâmpada de sódio, observou-se a presença clara do pico em 589nm, correspondente às linhas D1 e D2 do sódio, confirmando a identificação da substância. No entanto, foram também detectados picos em 767nm, 770nm e 820nm, que não se alinham com as linhas de emissão conhecidas do sódio.

As discrepâncias observadas podem ser atribuídas a várias causas. Primeiramente, a lâmpada de sódio emite não apenas nas linhas características, mas também apresenta um espectro de fundo devido a processos de excitação e desexcitação de átomos e moléculas, resultando em picos adicionais em comprimentos de onda fora das linhas esperadas.

Além disso, o espectrómetro de rede de difração pode introduzir incertezas, como a resolução espectral limitada e a sobreposição de picos, que podem afetar a precisão na determinação da posição dos picos. Outras fontes de ruído e a presença de elementos contaminantes ou interferentes no ambiente de medição podem contribuir para a aparição de sinais em regiões não esperadas.

2.2 Resolução espectral

Para determinar a resolução espectral calculamos a largura a meia altura da risca mais intensa do espectro do sódio.

VIS NIR

[12]:

UV_VIS

[14]:

3 Medição da transmitância e densidade ótica

Nesta experiência, devemos salientar a utilização de diferentes tempos de integração e distâncias para os diferentes espectómetros. O espectómetro da gama do VIS_NIR revelou ser bem mais sensível, pelo que saturava mais facilmente, então requeria tempos de integração menores e distâncias maiores à fonte luminosa que o espectómetro da gama do UV_VIS. Esta discrepancia é dificil justificar sem considerar problemas no equipamento (como já foi referido acima). A mesma fonte luminosa deveria medir a mesma intensidade em comprimentos de onda acessíveis a ambos os espectómetros, mas isso não se verificou. Deverá ser verificado este ponto com uma fonte luminosa de intensidade conhecida para realizar a calibração dos equipamentos.

A apresentação dos dados serão sempre separadas por este motivo.

De notar que o comportamento foi o esperado havendo atenuação do sinal com os filtros.

3.1 Espectro da lâmpada de halogénio

3.1.1 Dados obtidos com o sensor VIS_NIR

[15]:

3.1.2 Dados obtidos com o sensor UV_VIS

[16]:

3.2 Filtro Laranja

[25]:

[27]:

3.3 Filtro Verde

[31]:

[32]:

3.4 Filtro Amarelo

[35]:

[36]:

3.5 Filtro Rosa

[39]:

[40]:

Análise do filtro Rosa Nesta medição detetamos uma discrepância entre os valores obtidos com os dois espectómetros. No espectómetro da gama do VIS_NIR não houve praticamente queda na intensidade da radiação em todos os seus comprimentos de onda, comparativamente com os dados obtidos com o espectómetro da gama UV_VIS que teve quedas significativas na zona do verde que deveria ser visto no gráfico do VIS_NIR.

Isto pode ter acontecido por alguns motivos: * Erro humano. Pode ter ocorrido um lapso na forma como os dados foram obtidos ou má colocação do filtro em frente ao espectómetro. * Cor do filtro. Este filtro é rosa mas é "holográfico", ou seja, muda de cor conforme o ângulo de incidência da luz. A discrepância de valores pode ser devido à introdução de um ângulo no filtro em relação à fonte luminosa que fez com que os comprimentos de onda filtrados deixem de ser comparaveis com os dois espectómetros.

4 Fluorescência

[41]:

A análise dos dados e apresentação dos resultados foi efetuada recorrendo à linha de tendência gerada a partir da média de todas as 10 medições.

[42]:

[43]:

4.0.1 Valores obtidos

[49]:

```
 \begin{array}{l} \tau = (0.007074515978328181 \pm 0.0001274425899154122) \text{ s} \\ \tau = 0.007074515978328181 \text{ s} \pm 1.801431932669532 \% \\ \\ \text{Função de decaimento:} \\ \text{I(t)} = 0.04719594591124391 \text{ e}^{-141.79281415184948 t}) \\ \text{Em que:} \\ \text{I0} = (0.04719594591124391 \pm 0.0017458502945488692) \text{ s} = 0.04719594591124391 \text{ s} \pm 3.6991530963953827 \% \\ \text{1/tau} = (141.79281415184948 \pm 2.4521170200302986) \text{ s} = 141.79281415184948 \text{ s} \pm 1.7293662127364682 \% \\ \end{array}
```

5 Conclusão

Neste trabalho, foram estudados diferentes tipos de espectros, incluindo os espectros de bandas (sódio). Verificou-se que diferentes espectrômetros medem comprimentos de onda distintos, em função da resolução e da gama de funcionamento. Além disso, foram analisados os espectros de transmitância da luz da lâmpada de halogénio ao atravessar diversos filtros.

Destacou-se que a incerteza nos limites da gama de funcionamento pode afetar significativamente os resultados, sendo recomendável evitar medições nessas zonas. Por fim, confirmou-se o comportamento exponencial da radiação fluorescente emitida, determinando-se o tempo característico de decaimento de iões de crómio como $= (7.1 \pm 0.1) \times 10^{3}$ s, com uma incerteza relativa de 2% e uma incerteza absoluta de 2,5%.

[]: