Problem (Problem 1): Let I, J, K be ideals of R.

- (a) Show that (IJ)K = I(JK).
- (b) Show that (I + J)K = IK + JK.

Solution:

(a) Let $u \in (IJ)K$. Then, u is of the form

$$u = \sum_{k=1}^{n} u_k z_k,$$

where the $u_k \in IJ$ and the $z_k \in K$. Since each u_k is an element of IJ, we may write

$$u_k = \sum_{i=1}^m x_{k_i} y_{k_i},$$

where the $x_{k_i} \in I$ and the $y_{k_i} \in J$. This yields an expression

$$u = \sum_{k=1}^{n} \left(\sum_{i=1}^{m} x_{k_i} y_{k_i} \right) z_k$$
$$= \sum_{k=1}^{n} \sum_{i=1}^{m} x_{k_i} y_{k_i} z_k.$$

We observe that, for a fixed k, $y_{k_i}z_k \in JK$. So, $x_{k_i}(y_{k_i}z_k) \in I(JK)$ for a fixed k, meaning that $u \in I(JK)$. A similar argument holds in the reverse direction.

(b) Elements of I + J are of the form $x_i + y_i$, where $x_i \in I$ and $y_i \in J$. This means that elements of (I + J)K are of the form

$$u = \sum_{k=1}^{n} \sum_{i=1}^{m} (x_i + y_i) z_k$$

$$= \sum_{k=1}^{n} \left(\sum_{i=1}^{m} x_i \right) z_k + \sum_{k=1}^{n} \left(\sum_{i=1}^{m} y_i \right) z_k$$

$$= \sum_{k=1}^{n} x_k z_k + \sum_{k=1}^{n} y_k z_k.$$

Thus, we find that u is in IK + JK, and vice versa.

Problem (Problem 4): Let $S_1 \subseteq S_2$ be multiplicative subsets of R, and let $\iota_{S_i} \colon R \to S_i^{-1}R$ be the corresponding localization homomorphisms. Use the universal property of localization to show that there exists a unique ring homomorphism $\iota' \colon S_1^{-1}R \to S_2^{-1}R$ such that $\iota' \circ \iota_{S_1} = \iota_{S_2}$. Provide an explicit description of this ring homomorphism. Use this to show that if R is an integral domain and S an arbitrary multiplicative subset of R, then $S^{-1}R$ injects into the fraction field $K = \operatorname{frac}(R)$.

Solution: We observe that $\iota_{S_2} \colon R \to S_2^{-1}R$ maps elements of S_1 to units in $S_2^{-1}R$, as the units in $S_2^{-1}R$ are elements of the form $\frac{s}{s'}$ with $s,s' \in S_2$, so by the universal property, there is a unique ring homomorphism $\iota' \colon S_1^{-1}R \to S_2^{-1}R$ such that $\iota' \circ \iota_{S_1} = \iota_{S_2}$. In particular, this is the map $\left[\frac{r}{1}\right]_{S_1^{-1}R} \mapsto \left[\frac{r}{1}\right]_{S_3^{-1}R}$.

Since any arbitrary multiplicative subset $S \subseteq R$ of an integral domain is contained in $R \setminus \{0\}$, it follows that $S^{-1}R$ injects into $(R \setminus \{0\})^{-1}R =: frac(R)$.

Problem (Problem 5): Let $R = \mathbb{Q} \times \mathbb{Q}$ and $S = \{(1,1)\} \cup (\mathbb{Q}^{\times} \times \{0\})$. The goal of this problem is to identify the localization $S^{-1}R$.

- (a) Describe explicitly when $\frac{(\alpha_1,\alpha_2)}{(s_1,s_2)}$ is equal to $\frac{(b_1,b_2)}{(t_1,t_2)}$ in $S^{-1}R$.
- (b) Use your result from part (a) to show that the localization $S^{-1}\mathbb{R}$ is isomorphic to the localization $T^{-1}\mathbb{Q}$, where $T = \mathbb{Q} \setminus \{0\}$, hence is isomorphic to \mathbb{R} .
- (c) Find the kernel of the localization homomorphism $\iota_S \colon R \to S^{-1}R$.

Solution:

(a) By the definition of the equivalence relation, we must have an element $(r_1, r_2) \in S$ such that

$$(r_1(a_1t_1 - b_1s_1), r_2(a_2t_2 - b_2s_2)) = (0, 0).$$

In particular, since $r_1 \in \mathbb{Q}^{\times}$, and we may always select $r_2 = 0$, it follows that

$$r_1(a_1t_1 - b_1s_1) = 0,$$

so that $a_1t_1 - b_1s_1 = 0$ (as \mathbb{Q} is an integral domain).

(b) We consider the map $\pi_1 : \mathbb{Q} \times \mathbb{Q} \to \mathbb{Q}$, which maps $(a_1, a_2) \mapsto a_1$. Observe then that $S^{-1}R$ satisfies the universal property for localization, as we may write $S = (\mathbb{Q}^{\times} \times \{0\}) \cup (\mathbb{Q}^{\times} \times \{1\})$, which maps to $\mathbb{Q}^{\times} \subseteq \mathbb{Q}$ under this projection map.

In particular, we see that the induced map $\widetilde{\pi_1} : S^{-1}R \to \mathbb{Q}$ is given by

$$\widetilde{\pi_1}\left(\frac{(\alpha_1, \alpha_2)}{(s_1, s_2)}\right) = \alpha_1 s_1^{-1}$$

for $s_1 \in \mathbb{Q}^{\times}$ and $a_1 \in \mathbb{Q}$.

Now, we observe that the map $id \circ \pi_1 = \pi_1$, and that $T^{-1}Q$ satisfies the universal property for localization with respect to id, inducing the homomorphism id that takes

$$\widetilde{id}\left(\frac{a}{s}\right) = as^{-1}$$

for $s\in \mathbb{Q}^{\times}.$ Yet, we also observe that, if we set $\iota_T'=\iota_T\circ\widetilde{\pi_1}\circ\iota_S$, that

$$\begin{split} \widetilde{\mathrm{id}} \circ \iota_T'(\alpha_1, \alpha_2) &= \widetilde{\mathrm{id}} \circ \iota_T \circ \widetilde{\pi_1} \circ \iota_S(\alpha_1, \alpha_2) \\ &= \widetilde{\mathrm{id}} \circ \iota_T \circ \widetilde{\pi_1} \bigg(\frac{(\alpha_1, \alpha_2)}{(1, 1)} \bigg) \\ &= \widetilde{\mathrm{id}} \circ \iota_T(\alpha_1) \\ &= \widetilde{\mathrm{id}} \bigg(\frac{\alpha_1}{1} \bigg) \\ &= \alpha_1 \\ &= \pi_1(\alpha_1, \alpha_2). \end{split}$$

Thus, $T^{-1}\mathbb{Q}$ also satisfies the universal property for localization, implying that $T^{-1}\mathbb{Q}$ and $S^{-1}R$ are isomorphic.

(c) We see that an element (a, b) in $S^{-1}R$ is equivalent to (0, 0) in $S^{-1}R$ if and only if there is $(r_1, r_2) \in (\mathbb{Q}^{\times} \times \{0\}) \cup (\mathbb{Q}^{\times} \times \{1\})$ such that

$$(r_1a, r_2b) = 0.$$

Since we may select $r_2 = 0$ for all $b \in \mathbb{Q}$, it follows that we must have a = 0, so that the kernel of ι_S is $\{0\} \times \mathbb{Q}$.

Problem (Problem 7): Let $S \subseteq R$ be a multiplicative subset, and let $\iota_S \colon R \to S^{-1}R$ be the corresponding localization homomorphism. Consider the map

$$\alpha$$
: $\{P' \mid P' \text{ is a prime ideal of } S^{-1}R\} \rightarrow \{P \mid P \text{ is a prime ideal of } R \text{ such that } S \cap P = \emptyset\}$

$$P' \mapsto \iota_S^{-1}(P').$$

- (a) Verify that α is well-defined.
- (b) Define an inverse map β by $\beta(P) = P \cdot S^{-1}R$. Show that β is well-defined. That is, $\beta(P)$ is a prime ideal of $S^{-1}R$.
- (c) Show that α and β are mutual inverses.

Solution:

- (a) We observe that ι_S takes 1_R to $\frac{1}{1} \equiv 1_{S^{-1}R}$, the latter equality coming from the fact that $\frac{\alpha}{1} \cdot \frac{1}{1} = \frac{\alpha}{1}$, so that if P' is a prime ideal in $S^{-1}R$, then $\iota_S^{-1}(P')$ is a prime ideal in $S^{-1}R$. Additionally, we observe that $\iota_S^{-1}(P')$ does not contain any element of S, as otherwise P' would contain an invertible element in $S^{-1}R$, and thus P' would not be prime.
- (b) Let P be a prime ideal in R such that $P \cap S = \emptyset$. Elements of $P \cdot S^{-1}R$ are of the form $q \cdot \frac{r}{t}$, where $q \in P$, $r \in R$, and $t \in S$. Equivalently, we may write this element as $(qr) \cdot \frac{1}{t}$, where $q \in P$ and $\frac{1}{t} \in S^{-1}R$. We observe that if $\frac{a}{s} \cdot \frac{b}{t} \in P \cdot S^{-1}R$, then $ab \in P$ and $\frac{1}{st} \in S^{-1}R$, so that either $a \in P$ or $b \in P$, as P is prime. Thus, since $P \cdot S^{-1}R$ is an ideal, we have $\frac{a}{s} \in P \cdot S^{-1}R$ or $\frac{b}{t} \in P \cdot S^{-1}R$.
- (c) We will show that if P' is a prime ideal in $S^{-1}R$, then $\iota_S^{-1}(P') \cdot S^{-1}R = P'$. Let $\alpha \cdot \frac{b}{s} \in \iota_S^{-1}(P') \cdot S^{-1}R$, where $\alpha \in \iota_S^{-1}(P')$ and $\frac{b}{s} \in S^{-1}R$. We may write $(\alpha b) \frac{1}{s} \in \iota_S^{-1}(P') \cdot S^{-1}R$, meaning that $\alpha b \in \iota_S^{-1}(P')$, so that $\frac{\alpha b}{1} \in P'$, meaning that $\frac{\alpha b}{s} \in P'$, giving one direction of inclusion. The other direction of inclusion follows from the fact that if $\frac{\alpha}{s} \in P'$, then $\frac{\alpha}{1} \in P'$, meaning $\alpha \in \iota_S^{-1}(P')$, and thus $\frac{\alpha}{s} \in \iota_S^{-1}(P') \cdot S^{-1}R$. This gives that $\beta \circ \alpha$ is identity on the set of prime ideals of $S^{-1}R$.

If P is a prime ideal of $S^{-1}R$ such that $P \cap S = \emptyset$, and if $\alpha \in P$, then $\alpha \cdot \frac{b}{s} \in P \cdot S^{-1}R$ for any $\frac{b}{s} \in S^{-1}R$. In particular, this holds for b = s = 1, meaning that $\frac{\alpha}{1} \in P \cdot S^{-1}R$, so that $\alpha \in \iota_S^{-1}(P \cdot S^{-1}R)$, so one inclusion holds. The other inclusion holds by the fact that if $\alpha \in \iota_S^{-1}(P \cdot S^{-1}R)$, then $\frac{\alpha}{1} \in P \cdot S^{-1}R$, so that $\alpha \cdot \frac{1}{1} \in P \cdot S^{-1}R$, meaning that $\alpha \in P$. Thus, α and β are mutual inverses.