1 Markov Decision Process (MDP)

D'après Wikipédia: Un processus de décision markovien est un processus de contrôle stochastique discret. À chaque étape, le processus est dans un certain état $\mathbf s$ et l'agent choisit une action $\mathbf a$. La probabilité que le processus arrive à l'état $\mathbf s'$ est déterminée par l'action choisie. Plus précisément, elle est décrite par la fonction de transition d'états $\mathbf T(\mathbf s, \mathbf a, \mathbf s')$. Donc, l'état $\mathbf s'$ dépend de l'état actuel $\mathbf s$ et de l'action $\mathbf a$ sélectionnée par le décideur. Cependant, pour un état $\mathbf s$ et une action $\mathbf a$, le prochain état est indépendant des actions et états précédents. On dit alors que le processus satisfait la propriété de Markov.

Quand le processus passe de l'état ${\bf s}$ à l'état ${\bf s}'$ avec l'action ${\bf a}$, l'agent gagne une récompense ${\bf r}$.

2 Q-Learning

Le Q-Learning, basé sur le processus de décision markovien, est une technique d'apprentissage automatique utilisée en intelligence artificielle, plus particulièrement en apprentissage par renforcement.

2.1 Q-Function

La Q-Function est la base du Q-Learning. Pour un etat s et une action a, elle donne la recompense esperée Q(s,a).

2.2 Policy

La Politique π a l'etat \mathbf{s} est la facon de choisir l'action \mathbf{a} qui maximise la recompense esperée $\mathbf{Q}(\mathbf{s},\mathbf{a})$. C'est a dire, si on est a l'etat \mathbf{s} et qu'on choisi l'action \mathbf{a} selon la politique π , alors, on aura une recompense optimale.

$$\pi(s) = argmax_a(Q(s,a))$$

2.3 Rewards

La recompense esperée R_t a l'instant t pour un etat s_t et une action a_t est la somme des recompenses futures.

$$R_t = Q(s_t, a_t)$$

$$R_t = r_t + r_{t+1} + r_{t+2} + r_{t+3} + \dots + r_n$$

Mais, sachant que le processus est stochastique, alors plus on va dans le future, moins les recompenses sont evidentes, ainsi, on introduit un facteur de discontinuite γ .

$$R_t = r_t + \gamma r_{t+1} + \gamma^2 r_{t+2} + \gamma^3 r_{t+3} + \dots + \gamma^{n-t} r_n$$

Ainsi,

$$R_{t} = r_{t} + \gamma r_{t+1} + \gamma^{2} r_{t+2} + \gamma^{3} r_{t+3} + \dots + \gamma^{n-t} r_{n}$$

$$R_{t} = r_{t} + \gamma (r_{t+1} + \gamma r_{t+2} + \gamma^{2} r_{t+3} + \dots + \gamma^{n-(t+1)} r_{n})$$

$$R_{t} = r_{t} + \gamma R_{t+1}$$
(1)

2.4 Optimal Reward

La recompense à l'instant t et à l'etat s_t , en choidissant l'action a_t suivant la polique π est donc optimale et a la valeur $Q^{\pi}(s_t, a_t)$.

$$Q^{\pi}(s_t, a_t) = r_t + \gamma \max_{a_{t+1}} Q(s_{t+1}, a_{t+1})$$

On peut aussi ecrire:

$$Q(s_t, a_t) = r_t + \gamma \max_{a_{t+1}} Q(s_{t+1}, a_{t+1}), \quad a_t = \pi(s_t)$$

Note,

$$Q^{\pi}(s_{t}, a_{t}) = \max R_{t}$$

$$= \max(r_{t} + \gamma R_{t+1})$$

$$= r_{t} + \gamma \max(R_{t+1})$$

$$Q^{\pi}(s_{t}, a_{t}) = r_{t} + \gamma \max_{a_{t+1}} Q(s_{t+1}, a_{t+1})$$
(2)

2.5 Loss

$$Q(s,a) = \max_{a'} R(s,a')$$

$$Q(s_t,a_t) = r_t + \gamma \max_{a_{t+1}} Q(s_{t+1},a_{t+1})$$

En effet,

$$R_{t} = r_{t} + \gamma r_{t+1} + \gamma^{2} r_{t+2} + \gamma^{3} r_{t+3} + \dots + \gamma^{n-t} r_{n}$$

$$= r_{t} + \gamma (r_{t+1} + \gamma r_{t+2} + \gamma^{2} r_{t+3} + \dots + \gamma^{n-(t+1)} r_{n})$$

$$= r_{t} + \gamma R_{t+1}$$

$$maxR_{t} = max(r_{t} + \gamma R_{t+1})$$

$$= r_{t} + \gamma max(R_{t+1})$$
(3)

$$Q(s_t, a_t) = r_t + \gamma \max_{a_{t+1}} Q(s_{t+1}, a_{t+1})$$

A l'instant \mathbf{t} , le processus etant a l'etat s_t , en choisissant l'action \mathbf{a} , le processus arrive a l'etat s_{t+1} et gagne une recompense R_t .

$$R_t = r_t + r_{t+1}$$

Il utilise le modèle MDP a n-etapes (fini) telle pour un état ${\bf s}$ et un action ${\bf a},$ ${\bf Q(s,a)}$ représente l'optimum des récompenses futurs.

$$loss = \underbrace{(r + \gamma \max_{a'} Q'(s', a')}_{target} - \underbrace{Q(s, a)}_{prediction})^{2}$$