Les transformateurs

Transformateur triphasé 250 MVA, 735 kV d'Hydro-Quebec

15 MVA, 11000V/2968V, Dy1/Dd0, 50 Hz, 30 tonnes

Transfo mono 600 kV Pour TCCHT

Partie active de transfo mono 40 MVA 16²/₃ Hz, 132kV/12 kV

Transformateur triphasé de réglage 40 MVA 50 Hz 140kV/11,3 kV

Circuit magnétique de transformateur triphasé à 3 colonnes

Circuit magnétique de transformateur à 5 colonnes 450 MVA, 18/161 kV

Transfo mono pour locomotives : 3 MVA, 22,5 kV/2x1637 V, 50 Hz exécution en galettes alternées

Transformateur triphasé

Il serait possible d'utiliser 3 tranfos monophasés identiques

Les flux magnétiques ϕ 1, ϕ 2, ϕ 3 sont distincts et indépendants on dit qu'il s'agit d'un transfo triphasé à flux libres

Il serait possible d'utiliser 3 tranfos monophasés identiques

Primaire en triangle

Théoriquement, les configurations suivantes permettraient un gain sur :

- I 'encombrement
- la masse de fer utilisé

En pratique, on réalise les configurations suivantes:

Circuit magnétique usuel à 3 noyaux

Circuit magnétique usuel à 3 noyaux

Même si les tensions appliquées ne forment pas un système triphasé équilibré, on a obligatoirement :

$$\varphi 1 + \varphi 2 + \varphi 3 = 0$$

Loi des nœuds appliquée au circuit magnétique

On dit qu'il s'agit d'un transformateur à flux forcés

On utilise parfois des circuits magnétiques à 5 noyaux. Les 2 noyaux latéraux supplémentaires non bobinés forment un passage de réluctance faible pour le flux total, ce qui restitue une certaine indépendance aux flux φ1, φ2, φ3

Couplage des transformateurs

Mode de connexion des enroulements triphasés

Soit I 'enroulement basse tension secondaire et ses 3 bornes a, b, c :

La tension entre l'extrémité supérieure et l'extrémité inférieure de la bobine placée sur le noyau 1 (a) est représentée

verticalement

Bobines en étoiles notation y

Bobines en étoiles notation y

Bobines en triangles notation d

Bobines en triangles notation d

Couplage d'un transformateur triphasé

Les enroulements primaires d'un transfo peuvent être reliés :

en étoile, symbole Y

en triangle, symbole D

Les enroulements secondaires d'un transfo peuvent être reliés :

en étoile, symbole y

en triangle, symbole d

en zig-zag, symbole z

L'association d'un mode de connexion du primaire avec un mode de connexion du secondaire caractérise un couplage du transformateur (Yz par exemple).

Pour représenter le schéma d'un transfo triphasé, on établit les conventions suivantes, on note par :

A, B, C les bornes du primaire

a, b, c les bornes du secondaire

Représentation conventionnelle d'un transfo triphasé

Couplage Yy6

Indice horaire

Si OA est la grande aiguille (minutes) d'une montre, oa la petite aiguille (heures) de cette montre, ici la montre affiche 6 heures, d'où Yy6.

Indice horaire

Selon le couplage choisi, le déphasage entre tensions phase-neutre homologues (V_{an} et A_{AN} par ex) est imposé.

En triphasé, les déphasages obtenus sont nécessairement des multiples entiers de 30° (π /6).

Indice horaire

En posant θ l'angle entre V_{an} et V_{AN} , l'indice horaire est donc le nombre entier n tel que $\theta = n.\pi/6$, avec θ positif, V_{an} étant toujours prise en retard sur V_{AN} .

θ varie de 0 à 330°, donc n varie de 0 à 11

V_{AN} = aiguille des minutes placée sur 12

V_{an} = aiguille des heures placée sur n

Indice horaire

Suivant leur déplacement angulaire, on peut classer les transfos triphasés en 4 groupes :

- 1. groupe de déplacement angulaire nul : $\alpha = 0$ (à $2\pi/3$ près), indice horaire: 0 (à 4k près)
- 2. groupe de déplacement angulaire 180° (ou 60°) : indice horaire: 6 (ou 2, ou 10)
- 3. groupe de déplacement angulaire +30° indice horaire: 1 (ou 5, ou 9)
- 4. groupe de déplacement angulaire -30° (ou + 330) indice horaire: 11 (ou 7, ou 3)

Couplage Dy11

Couplage Yz11

Couplage Yd11

Les couplages les plus courants sont :

Yy0 Dy11

Yz11

Yd11

Pourquoi coupler des transformateurs?

> **S**

2xS

Pour que l'on puisse coupler à vide 2 transfos triphasés, il faut que leurs diagrammes vectoriels coïncident ⇒

Même rapport de transformation

Même ordre de succession des phases

Même décalage angulaire

Ils doivent donc appartenir au même groupe

Pour avoir une répartition correcte des puissances entre les 2 transfos en charge, il faut aussi qu'ils aient la même chute de tension donc pratiquement la même tension de court -circuit.

Rapport de transformation

Nous continuons à poser
$$m = \frac{N_2}{N_1}$$

Nous appelons
$$M = \frac{U_2}{U_1}$$
 le rapport de transformation

Rapport de transformation

Couplage Dy

$$M = \frac{U_2}{U_1} = m\sqrt{3}$$

Convention génératrice

Convention génératrice

Convention génératrice

