Notes on Applied Nonlinear Control

Kevin

2017/10/10

Contents

1	Introduction				
	1.1	х		-	
		1.1.1	XX		
		1.1.2	Multiple Equilibrium Points	4	
		1.1.3	Limit Cycles		
		1.1.4	Bifurcations	,	
		1.1.5	Chaos	,	
2		hase Plane Analysis			
2.1 Concepts of Phase Plane Analysis		pts of Phase Plane Analysis	,		
			Phase Portraits		
		2.1.2	Singular Points	,	
	2.2		ructing Phase Portraits		

1 Introduction

1.1 x

1.1.1 xx

Linear Systems

Linear control theory has been predominantly concerned with the study of linear time-invariant (LTI) control systems, of the form

$$\dot{\mathbf{x}} = \mathbf{A}\mathbf{x} \tag{1}$$

with \mathbf{x} being a vector of states and \mathbf{A} being the system matrix. LTI systems have quite simple properties, such as

- a linear system has a unique equilibrium point if **A** is nonsingular;
- the equilibrium point is stable if all eigenvalues of **A** have negative real parts, regardless of initial conditions;
- the transient response of a linear system is composed of the natural modes of the system, and the general solution can be solved analytically;
- in the presence of an external input $\mathbf{u}(t)$, i.e., with

$$\dot{\mathbf{x}} = \mathbf{A}\mathbf{x}$$

the system response has a number of interesting properties. First, it satisfies the *principle of superposition*. Second, the asymptotic stability of the system (1) implies bounded-input bounded-output stability in the presence of **u**. Third, a sinusoidal input leads to a sinusoidal output of the same frequency.

Remark: superposition

1.1.2 Multiple Equilibrium Points

For the linearized system, stability is seen by noting that for any initial condition, the motion always converges to the equilibrium point x = 0.

1.1.3 Limit Cycles

Limit cycles in nonlinear systems are different from linear oscillations in a number of fundamental aspects. First, the amplitude of the self-sustained excitation is independent of the initial condition, while the oscillation of a marginally stable linear system has its amplitude determined by its initial conditions. Second, marginally stable linear systems are very sensitive to changes in system parameters (with a slight change capable of leading either to stable convergence or to instability), while limit cycles are not easily affected by parameter changes.

- 1.1.4 Bifurcations
- 1.1.5 Chaos

2 Phase Plane Analysis

- 2.1 Concepts of Phase Plane Analysis
- 2.1.1 Phase Portraits
- 2.1.2 Singular Points
- 2.2 Constructing Phase Portraits