## Metrics for Volume CT: Characterizing Sources of Variation

Nicholas Petrick, Marios A. Gavrielides, Qin Li, Rongping Zeng, Berkman Sahiner, Kyle J. Myers

Center for Devices and Radiological Health, U.S. Food and Drug Administration





### Purpose

- Discuss various studies and approaches for characterizing sources of variation in CT volumetry
  - Concentrate on how phantom studies can systematically probe, identify and potentially minimize measurement error

 Updated version of RSNA 2012 Refresher Course

#### Outline

- Background
- Part 1
  - Phantom and synthetic lesion designs
- Part 2
  - Performance metrics
- Part 3
  - Lessons from the literature, QIBA, FDA studies
- Summary

#### Background

 Use of imaging biomarkers is limited by estimation uncertainty

## Factors influencing size measurement accuracy

- Patient factors
  - Natural variation in nodules/patients
- CT acquisition parameters
  - Slice thickness, collimation, exposure, etc
- CT Reconstruction parameters
  - Reconstruction type, filter, etc
- Measurement tool effects
  - Size estimation method, thresholds, seed points, readers, etc.
- Nodule characteristics
  - Size, shape, density, location and background, vascular/pleura attachments, etc

#### Questions to address

 Which parameters substantially contribute to measurement error?

How can they be controlled to minimize error?

# Approaches to assess estimation performance

- Analysis of clinical data
  - True size/change in size generally unknown
  - Limited to variance/ agreement analyses



RIDER MSK-2283289298

# Approaches to assess estimation performance

- Analysis of synthetic data
  - In silico data
    - Simulated image sets
    - Truth known
  - Physical phantom data

# Why physical phantoms data for CT

- Fully incorporate scanner/acquisition physics
- Truth generally known
  - Be it lesion size or change in size
- Easy to collect scans across imaging, lesion characteristics
  - No patient exposure
- Analysis
  - Bias and variance analysis
  - May provide bound on estimation performance



FDA-018-6591

# Factors assessable with phantom data

- Patient factors
- CT acquisition parameters
- CT Reconstruction parameters
- Measurement tool effects
- ? Nodule characteristics

### CT phantoms: early history

- Zerhouni et al. developed a phantom for CT density measurement
  - Used as standard for identifying calcified nodules
- Quantitative metric
  - Lesion calcification status



\*Zerhouni et al. Radiology. 1983.

### CT phantoms: early history



Patient scan of lung nodule



Phantom scan (liver simulated with water sack)

\*Zerhouni et al. Radiology. 1983.

# CT lesion size as imaging biomarker

#### RECIST

- Metric
  - 1D, longest in-plane diameter for a lesion
- Response categories are defined based on measurement uncertainty
  - Complete response
  - Partial response
  - Stable disease
  - Progressive disease
- Implied symmetric growth assumptions



FDA-018-6591

# CT lesion size as imaging biomarker

- Lesion volume
  - Metric
    - 3D estimate of lesion size
  - Clinical tools available
    - Generally semi-automated
  - Less common than RECIST in drug trials & clinical practice



FDA-018-6591

# CT lesion size as imaging biomarker

#### Lesion volume

- Measurements can be time consuming
- More difficult estimation task
- Doesn't have widely accepted guidelines for use



FDA-018-6591

#### Part 1

Synthetic lesions and phantom designs

### Examples of lesions

Fixed shape lesions





### Examples of lesions

- Deformable lesions
  - Same volume, variable shape
  - Materials
    - Deformable silicon
    - Water filled gloves



\*Yankelevitz et al. Radiology. 2000.



\*\*Huang et al. SSG18-06. RSNA, 2012.

### Examples of lesions

Mixed density lesions



#### • 8-mm wells

- 1 nodule inserted within each well surrounded by simulating lung parenchyma
- Realistic lung background with fine texture



\*Ko et al. Radiology. 2003;228:864-70.

#### • 8-mm wells

- 1 nodule inserted within each well surrounded by simulating lung parenchyma
- Realistic lung background with fine texture



\*Ko et al. Radiology. 2003;228:864-70.

 5 different types of nodule attachments



\*Das et al. Eur-Radiol. 2007;17:1979-84.

 5 different types of nodule attachments

- Isolated nodules
- Nodules around vessels
- Vessel attached nodules
- Pleural nodules
- Pleural attached nodules



\*Das et al. Eur-Radiol. 2007;17:1979-84.

Anthropomorphic phantoms with vascular structure



\*Kyotokagaku Incorporated, Tokyo, Japan

Anthropomorphic phantoms with vascular structure



\*QIBA vCT Project. 2011.

#### Part 2

Performance metrics

- Size estimates
  - Simple error

$$Error = Sz_m - Sz_{True}$$

Percent error (Petrick et al, SPIE. 2011)

$$PE = 100 x \frac{Sz_m - Sz_{True}}{Sz_{True}}$$

Absolute size error (Ko et al. Radiol. 2003)

$$AE = |Sz_m - Sz_{True}|$$

Absolute percent size error (Das et al. ERadiol. 2007)

$$APE = 100x \frac{|Sz_m - Sz_{True}|}{Sz_{True}}$$

#### Accuracy

Mean error

Bias = mean 
$$|Error| = E(Error)$$

Mean percent error

Percent Bias = mean 
$$|PE| = E|PE|$$

Mean absolute error

Mean 
$$AE = E AE$$

Mean absolute percent size error

Mean 
$$APE = E APE$$

Allows for true bias estimation

Over/under estimates weighted equally

#### Precision

Error

$$Std(Error) = Std(Sz_M - Sz_{True})$$

• PE

$$Std(PE) = Std \left(100 x \frac{Sz_m - Sz_{True}}{Sz_{True}}\right)$$

AE

$$Std(AE) = Std(|Sz_M - Sz_{True}|)$$

APE

$$Std(APE) = Std \left( 100 x \frac{|Sz_m - Sz_{True}|}{Sz_{True}} \right)$$

- Change in size between scans
  - Simple change

Change = 
$$Sz_2 - Sz_1$$

Percent change

$$PC_1 = 100 \times \frac{Sz_1 - Sz_2}{Sz_1}, PC_m = 100 \times \frac{Sz_1 - Sz_2}{\overline{Sz}}$$

Absolute change

$$AC = |Sz_2 - Sz_1|$$

Absolute percent change

$$APC_{1} = 100x \frac{|SZ_{1} - SZ_{2}|}{SZ_{1}}, APC_{m} = 100x \frac{|SZ_{1} - SZ_{2}|}{SZ}$$

- Change in size between scans
  - Doubling time
    - Has clinical meaning but not tractable statistically
    - Zero change → ∞ doubling time
    - These types of metric should be avoided in evaluation

## Scaling data

- When/how should data be scaled to improve comparisons?
  - How to compare 1D with 3D volume sizing?
    - Data normalization

$$PE = \frac{Sz_m - Sz_{True}}{Sz_{True}} \times 100\%$$

Data scaling, normalization

$$PE_{Size}^{1} = \frac{Size_{Est}^{1} - Size_{True}^{1}}{Size_{True}^{1}} \times 100\%, \quad PE_{Size}^{3} = \frac{\sqrt[3]{Size_{Est}^{3}} - \sqrt[3]{Size_{True}^{3}}}{\sqrt[3]{Size_{True}^{3}}} \times 100\%$$

- Statistical normalization
  - Log transformation

## Different scaling choice



#### Part 3

Lessons from the literature, QIBA, FDA studies

### Goo et al. Radiology. 2005

- CT scans of nodules
  - Nodules (130 HU)
    - 3.2, 4.8, 6.4 & 12.7 mm diameter spheres
  - Scanner
    - Siemens Somatom Sensation 16
    - Reconstructed slice thicknesses
      - 0.75, 1.0, 2.0 3.0 and 5.0 mm
    - 3 FOV's
      - 0.20, 0.39, 0.59 mm in-plane resolution
  - Volume measurements
    - Rapidia commercial tool
    - Thresholds: -300, -400, -500, -600
       HU



#### Goo et al. Radiology. 2005





- Measurement error strong function of
  - Slice thickness (p<0.01)
  - Segmentation threshold (p<0.02)</li>
- FOV not found to have a statistically significant impact (p>0.05)

#### Nodules (35 HU)

- 3.0 10 mm diameter spheres
- 5 different attachment types

#### Scanners

- Siemens Somatom Sensation 16
- GE LightSpeed Pro 16
- Philips Briliance 16
- Toshiba Aquilion 16
- ~0.75 & ~1.5 mm slice thicknesses
- Low-dose and standard-dose exposures

#### Volume measurements

- Prototype semi-automated Siemens LungCARE tool
  - Users define seed marker



| Mean(APE) ± SD  |                     | Siemens<br>16 1.5 LD | GE 16<br>1.25 LD | Philips 16<br>1.5 LD | Toshiba<br>16 1.0 LD |
|-----------------|---------------------|----------------------|------------------|----------------------|----------------------|
| Nodule<br>Types | Isolated            | 9.8±8.0              | 18.1±8.1         | 15.8±9.5             | 11.2±7.3             |
|                 | Through vessel      | 5.0±1.9              | 10.2±14.6        | 5.8±3.5              | 4.8±6.7              |
|                 | Attached to Vessel  | 4.5±3.1              | 9.8±10.4         | 2.6±2.6              | 3.3±2.1              |
|                 | Pleural             | 19.0±7.8             | 10.0±6.9         | 15.0±9.4             | 8.2±6.2              |
|                 | Pleural<br>Attached | 9.4±2.7              | 17.4±11.3        | 8.8±3.3              | 6.2±1.7              |

Nodule location/connection influence measurements

| Mean(APE) ± SD  |                     | Siemens<br>16 1.5 LD | GE 16<br>1.25 LD | Philips 16<br>1.5 LD | Toshiba<br>16 1.0 LD |
|-----------------|---------------------|----------------------|------------------|----------------------|----------------------|
| Nodule<br>Types | Isolated            | 9.8±8.0              | 18.1±8.1         | 15.8±9.5             | 11.2±7.3             |
|                 | Through vessel      | 5.0±1.9              | 10.2±14.6        | 5.8±3.5              | 4.8±6.7              |
|                 | Attached to Vessel  | 4.5±3.1              | 9.8±10.4         | 2.6±2.6              | 3.3±2.1              |
|                 | Pleural             | 19.0±7.8             | 10.0±6.9         | 15.0±9.4             | 8.2±6.2              |
|                 | Pleural<br>Attached | 9.4±2.7              | 17.4±11.3        | 8.8±3.3              | 6.2±1.7              |

CT vendor influence measurements

- Factor influencing volume measurements
  - Nodule location/connection type
  - CT vendor (p=0.004)
  - CT parameters
    - Collimation (p=0.021)
    - Slice thickness (p=0.019)
    - Dose (p=0.099, not significant)

# QIBA vCT 1C subproject

#### Objective

- Evaluate if 3D measurements are reproducible across scanners
- Six scanners at six different sites
  - Phillips 16 (2 sites), Philips 64, Siemens, GE 64, Toshiba 64
- Six nodules
  - Spherical (5, 10, 20 mm)
  - Spiculated (5, 10, 20 mm)

### QIBA 1C Results

A-F are the different scanners

- Scanner can have impact
  - Nodule type is important interaction



# QIBA vCT 1A subproject

#### Objective

 To estimate bias/variance of radiologists estimating the size of nodules from CT scans of an anthropomorphic phantom

# Dataset (Thorax Phantom)





Anthropomorphic thorax phantom (Kyotokagaku Incorporated, Tokyo, Japan)

# Nodules



Spherical



Lobulated



Elliptical



Spiculated

# Dataset (Nodules)

10 nodules attached to lung vasculature

| Nodule<br>Shape | Equivalent<br>Diameter | CT Densities    |
|-----------------|------------------------|-----------------|
| Spherical       | 10 mm                  | -10 HU, +100 HU |
| Spherical       | 20 mm                  | -10 HU, +100 HU |
| Elliptical      | 20 mm                  | -10 HU, +100 HU |
| Lobulated       | 10 mm                  | -10 HU, +100 HU |
| Spiculated      | 10 mm                  | -10 HU, +100 HU |

# Dataset (Scanning)

| Acquisition<br>Parameter         | Values                                                                            |
|----------------------------------|-----------------------------------------------------------------------------------|
| Scanner                          | Philips 16-slice Mx8000 IDT scanner                                               |
| Tube Voltage                     | 120 kVp                                                                           |
| Exposure                         | 100 mAs/slice                                                                     |
| Pitch                            | 1.2                                                                               |
| Reconstructed Slice<br>Thickness | 0.8 mm (0.4 mm interval,16x0.75 mm coll) 5.0 mm (2.5 mm interval, 16x1.5 mm coll) |
| Reconstruction Kernel            | Detail                                                                            |
| Repeat Exposures                 | 2 repeat scans of each nodule                                                     |

40 dataset evaluated: 10 nodules X 2 slice thickness X 2 repeat scans

# Reading Protocol

 6 readers measured size of 40 nodules using 3 size measurement techniques in each of two reading sessions

#### Measures:

- Manual uni-dimensional largest in-slice diameter measure (1D)
- Manual bi-dimensional largest in-slice area measure (2D)
- Semi-automated 3D volume software (3D)

#### Analysis

- Bias and variance of size estimates
- Reference standard
  - Longest physical dimension of nodule
  - Largest cross-sectional area of nodule
  - Volume

### Data Normalization

 All size data was scaled to 1D and normalized to facilitate comparison

$$PE_{Size}^{1} = \frac{Size_{Est}^{1} - Size_{True}^{1}}{Size_{True}^{1}} \times 100\%,$$

$$PE_{Size}^{2} = \frac{\sqrt{Size_{Est}^{2}} - \sqrt{Size_{True}^{2}}}{\sqrt{Size_{True}^{2}}} \times 100\%,$$

$$PE_{Size}^{3} = \frac{\sqrt[3]{Size_{Est}^{3}} - \sqrt[3]{Size_{True}^{3}}}{\sqrt[3]{Size_{True}^{3}}} \times 100\%$$

### Performance Metrics

Relative bias

$$Bias_{Rel}^{i} | PE_{Size}^{i} | = E[PE_{Size}^{i}] - 0$$

Relative standard deviation

$$|Std_{Rel}^i|PE_{Size}^i| = std|PE_{Size}^i|$$

### ANOVA & Goodness of Fit

- Used to identify the most important contributing factors and interactions to include in our bias analysis
  - Goodness of fit defined by R<sup>2</sup>

# 1-way ANOVA & Goodness of Fit

#### Factors

- Nodule type\*
- Sizing method\*
- Reader\*
- Nodule density\*
- Slice thickness\*
- Nodule Set (p=0.7)
- Reading Sess (p=0.7)
- Reader, Nodule
   Density, Slice
   Thickness explained
   little variation



# Comparison of mean PE (bias)



# Mean PE (bias) by slice thickness



# Comparison of Variances (Std PE)



### Variance (Std PE), func slice thickness



### Summary

- CT dose doesn't appear to substantially affect bias in size estimation
  - Lower dose does increase variability
- Nodule characteristics & measurement technique play a role but this is task dependent
  - QIBA 1A: Slice thickness played a large effect for volume sizing but less effect for 1D and 2D sizing

### Summary

- Phantom studies can help in understanding interactions among multiple factors including
  - CT acquisition factors
  - CT reconstruction factors
  - Measurement tool factors
  - Nodule/lesion factors
- Phantom results may serve as bound on achievable clinical performance

# Ongoing phantom-based research

- Developing consensus performance metrics and analysis methodologies for size estimation evaluation
  - QIBA Metrology group drafting a set of manuscript to help develop consensus approaches for assessing technical performance for QIBs.
- Ongoing studies investigating
  - Inter-comparison of volume estimation algorithms
  - Nodule growth over time
  - ...