CS498JH: Introduction to NLP (Fall 2012)

http://cs.illinois.edu/class/cs498jh

Lecture 12: The CKY parsing algorithm

Julia Hockenmaier

juliahmr@illinois.edu 3324 Siebel Center

Office Hours: Wednesday, 12:15-1:15pm

Naive top-down parsing

 $egin{array}{llll} \mathbf{S} &
ightarrow & \mathbf{NP} & \mathbf{VP} \\ \mathbf{NP} &
ightarrow & \mathbf{NP} & \mathbf{PP} \\ \mathbf{NP} &
ightarrow & \mathbf{Noun} \\ \mathbf{VP} &
ightarrow & \mathbf{VP} & \mathbf{PP} \\ \mathbf{VP} &
ightarrow & \mathbf{Verb} & \mathbf{NP} \\ \end{array}$

The number of trees is exponential! Many subtrees are the same.

Chomsky Normal Form

The right-hand side of a standard CFG can have an **arbitrary number of symbols** (terminals and nonterminals):

A CFG in **Chomsky Normal Form** (CNF) allows only two kinds of right-hand sides:

- Two nonterminals: VP → ADV VP
- One terminal: $VP \rightarrow eat$

Any CFG can be transformed into an equivalent CNF:

$$VP \rightarrow ADVP VP_1$$

 $VP_1 \rightarrow VP_2 NP$
 $VP_2 \rightarrow eat$

A note about ε-productions

Formally, context-free grammars are allowed to have **empty productions** (ϵ = the empty string): $VP \rightarrow V NP \qquad NP \rightarrow DT Noun \qquad NP \rightarrow \epsilon$

These can always be **eliminated** without changing the language generated by the grammar:

```
VP \rightarrow V NP NP \rightarrow DT Noun NP \rightarrow \epsilon becomes VP \rightarrow V NP VP \rightarrow V \epsilon NP \rightarrow DT Noun which in turn becomes VP \rightarrow V NP VP \rightarrow V NP \rightarrow DT Noun
```

We will assume that our grammars don't have ε-productions

CKY chart parsing algorithm

Bottom-up parsing:

start with the words

Dynamic programming:

save the results in a table/chart re-use these results in finding larger constituents

Complexity: $O(n^3|G|)$

n: length of string, |G|: size of grammar)

Presumes a CFG in Chomsky Normal Form:

Rules are all either $A \rightarrow BC$ or $A \rightarrow a$ (with A,B,C nonterminals and a a terminal)

The CKY parsing algorithm

To recover the parse tree, each entry needs pairs of backpointers.

We eat sushi

The CKY parsing algorithm

we	we eat	we eat sushi	we eat sushi with		we eat sushi with tuna
$S \rightarrow NP VP$ $VP \rightarrow V NP$	V eat	VP eat sushi	eat sushi with		VP eat sushi with tuna
$\begin{array}{c} VI \rightarrow VI \\ \hline VP \rightarrow VP PP \\ \hline V \rightarrow eat \end{array}$	Each ce	th	NP sushi with tuna		
$NP \rightarrow NP PP$ $NP \rightarrow we$	single no		PP with tuna		
NP → sushi NP → tuna	Each entrol of pairs		tuna		
$\begin{array}{c} PP \rightarrow P NP \\ P \rightarrow with \end{array}$	We eat s	a			

CS498JH: Introduction to NLP

How do you count the **number of parse trees** for a sentence?

- 1. For each pair of backpointers (e.g.VP \rightarrow V NP): multiply #trees of children trees(VP_{VP} \rightarrow V NP) = trees(V) \times trees(NP)
- 2. For each list of pairs of backpointers (e.g.VP \rightarrow V NP and VP \rightarrow VP PP): sum #trees trees(VP) = trees(VP_{VP \rightarrow V} NP) + trees(VP_{VP \rightarrow VP PP)}

The CKY parsing algorithm

CS498JH: Introduction to NLP

CKY: filling the chart

CKY: filling one cell

chart[2][6]:

W1 W2 W3 W4 W5 W6 W7

chart[2][6]:

W₁ W₂W₃W₄W₅W₆ W₇

chart[2][6]:

W₁ W₂W₃W₄W₅W₆ W₇

chart[2][6]:

W₁ W₂W₃W₄W₅W₆ W₇

chart[2][6]:

W1 W2W3W4W5W6 W7

Cocke Kasami Younger (1)

ckyParse(n):
 initChart(n)
 fillChart(n)


```
fillChart(n):
                                     combineCells(i,k,j):
                                                                              W<sub>1</sub>
                                                                                               Wi
                                                                                                       Wn
  for span = 1...n-1:
                                      for Y in cell[i][k]:
                                                                                                            W<sub>1</sub>
     for i = 1...n-span:
                                        for Z in cell[k+1][j]:
                                           for X in Nonterminals:
          fillCell(i,i+span)
                                                                                               X
                                                if X \rightarrow YZ in Rules:
                                                   addToCell(cell[i][j],X, Y, Z)
fillCell(i,j):
                                                                                               Z
  for k = i..j-1:
    combineCells(i, k, j)
                                                                                                            Wn
```

Exercise: CKY parser

I eat sushi with chopsticks

Grammars are ambiguous

A grammar might generate multiple trees for a sentence:

What's the most likely parse τ for sentence S ?

We need a model of $P(\tau \mid S)$

Computing $P(\tau \mid S)$

Using Bayes' Rule:

$$\arg \max_{\tau} P(\tau|S) = \arg \max_{\tau} \frac{P(\tau, S)}{P(S)}
= \arg \max_{\tau} P(\tau, S)
= \arg \max_{\tau} P(\tau, S)
= \arg \max_{\tau} P(\tau) \text{ if } S = \text{yield}(\tau)$$

The **yield of a tree** is the string of terminal symbols that can be read off the leaf nodes

Computing $P(\tau)$

T is the (infinite) set of all trees in the language:

$$L = \{ s \in \Sigma^* | \exists \tau \in T : \text{yield}(\tau) = s \}$$

We need to define $P(\tau)$ such that:

$$\forall \tau \in T: \quad 0 \le P(\tau) \le 1$$

$$\sum_{\tau \in T} P(\tau) = 1$$

The set T is generated by a context-free grammar

Probabilistic Context-Free Grammars

For every nonterminal X, define a probability distribution $P(X \rightarrow \alpha \mid X)$ over all rules with the same LHS symbol X:

S	\rightarrow NP VP	0.8
S	ightarrow S conj S	0.2
NP	ightarrow Noun	0.2
NP	ightarrow Det Noun	0.4
NP	ightarrow NP PP	0.2
NP	ightarrow NP conj NP	0.2
VP	ightarrow Verb	0.4
VP	ightarrow Verb NP	0.3
VP	ightarrow Verb NP NP	0.1
VP	\rightarrow VP PP	0.2
PP	\rightarrow P NP	1.0

Computing $P(\tau)$ with a PCFG

The probability of a tree τ is the product of the probabilities

of all its rules:

$$= 0.00384$$

S	ightarrow NP VP	0.8
S	ightarrow S conj S	0.2
NP	ightarrow Noun	0.2
NP	ightarrow Det Noun	0.4
NP	ightarrow NP PP	0.2
NP	ightarrow NP conj NP	0.2
VP	ightarrow Verb	0.4
VP	ightarrow Verb NP	0.3
VP	ightarrow Verb NP NP	0.1
VP	ightarrow VP PP	0.2
PP	ightarrow P NP	1.0

The three basic problems for PCFGs

We observe an **output sequence** $w=w_1...w_{N.:}$ w="she promised to back the bill"

Problem I (Likelihood): find $P(w \mid \lambda)$ Given a PCFG with parameters λ , compute **the likelihood of the observed output**, $P(w \mid \lambda)$

Problem II (Decoding): find $\tau^* = \operatorname{argmax} P(\tau, w \mid \lambda)$ Given a PCFG with parameters λ , what is **the most likely tree** τ to generate w?

Problem III (Estimation): find $argmax_{\lambda} P(w \mid \lambda)$ Find the parameters λ which maximize $P(w \mid \lambda)$

PCFG parsing (decoding): Probabilistic CKY

Probabilistic CKY

Like standard CKY, but with probabilities.

Terminals have probability p = 1

Non-terminals: associate $P(X \rightarrow YZ \mid X)$ with every pair of backpointers from X in cell[i][j] to Y in cell[i][k] and Z in cell[k+1][j]

Finding the most likely parse

Local greedy (Viterbi) search is guaranteed to be optimal:

For every non-terminal X in cell[i][j], keep only the highest-scoring pair of backpointers to any pair of children (Y in cell[i] [k] and Z in cell[k+1][j]):

$$P_{VIT}(X) = argmax_{Y,Z} P_{VIT}(Y) \times P_{VIT}(Z) \times P(X \rightarrow YZ \mid X)$$

Probabilistic CKY

Input: POS-tagged sentence

John_N eats_V pie_N with_P cream_N

J	ohn	ea	ats		pie	with	cream		
N	NP 0.2	S 0.8*0.2*0.4					S 0.2*0.0024*0.8		John
		V	VP 0.4		VP 0.3*0.2		max(0	/P .008*0.2, 0.2*0.2)	eats
				Z	NP 0.2			VP 0.2*0.2	pie
			'			Р		PP 1*0.2	with
							N	NP 0.2	cream

S	\longrightarrow NP VP	0.8
S	ightarrow S conj S	0.2
NP	ightarrow Noun	0.2
NP	ightarrow Det Noun	0.4
NP	\longrightarrow NP PP	0.2
NP	ightarrow NP conj NP	0.2
VP	ightarrow Verb	0.4
VP	ightarrow Verb NP	0.3
VP	ightarrow Verb NP NP	0.1
VP	\rightarrow VP PP	0.2
PP	\rightarrow P NP	1.0