Problem Statement: To display a list of names, in decreasing order of probability of being the author for a given journal paper.

We are using the Microsoft Academic Graph Dataset, which is a **27 GB** collection of all details of journal papers like author names, affiliations, keywords etc.

Model 1:

The first model will use keywords as the parameter for comparsion. We intend to generate a list of keywords used in all papers for each author. i.e. If author ABC has written 3 papers, the list will include keywords from all 3 papers.

Then, we get the keywords of the input paper, and find the most probable matches by comparing this list to all author-keyword lists.

Pogress:

For the first model, we need 2 files from the dataset -

PaperAuthorAffiliations (7GB) – which maps **paper_id** to **author_id PaperKeywords** (5 GB)– which maps a list of **keyword_names** to **paper_id**

The first step was to find a way to process the large files. Importing it to R failed since it stores the data in memory. With 8 GB RAM, that wasn't an option.

JAVA Lucene is an API which indexes folders to make searches faster, but it took a long time (2-3 hours) to extract all distinct author_ids from the file.

Finally, the following logic was implemented in python to successfully process the data-1. The first part was to split the files into small manageable files of 10,000 lines each.

```
bhinav@ADell:/media/abhinav/Stuff/mag_paper$ ls -l MAG/PaperKeywords/splits|
total 5.0G
drwxrwxrwx 1 root root 1.6M May 1 07:13
                          0 Apr 30 19:42
drwxrwxrwx 1 root root
-rwxrwxrwx 1 root root 3.3M May
                                 1 07:09 100000000.PaperKeywords
                                 1 06:57 10000000.PaperKeywords
-rwxrwxrwx 1 root root 3.3M May
                                 1 06:57 1000000.PaperKeywords
rwxrwxrwx 1 root root 3.3M May
 rwxrwxrwx 1
             root root 3.3M May
                                 1 06:57 100000.PaperKeywords
             root root 3.3M May
                                  1 07:09 100100000.PaperKeywords
FWXFWXFWX
            root root 3.3M May
                                 1 07:09 100200000.PaperKeywords
 rwxrwxrwx 1
rwxrwxrwx 1 root root 3.3M May
                                 1 07:09 100300000.PaperKeywords
rwxrwxrwx 1 root root 3.1M May
                                  1 07:09 100400000.PaperKeywords
                                 1 07:09 100500000.PaperKeywords
1 07:09 100600000.PaperKeywords
rwxrwxrwx 1 root root 3.2M May
rwxrwxrwx 1 root root 3.3M May
                                  1 07:09 100700000.PaperKeywords
 rwxrwxrwx 1
             root root 3.2M May
             root root
                       3.2M
                            May
                                  1 07:09 100800000.PaperKeywords
 LMXLMXLMX
 rwxrwxrwx 1 root root 3.1M May
                                  1 07:09 100900000.PaperKeywords
FWXFWXFWX 1
            root root 3.2M May
                                  1 07:09 101000000.PaperKeywords
 rwxrwxrwx 1 root root 3.3M May
                                  1 06:57 10100000.PaperKeywords
rwxrwxrwx 1 root root 3.2M May
                                  1 07:09 101100000.PaperKeywords
rwxrwxrwx 1 root root 3.3M May
                                  1 07:09 101200000.PaperKeywords
 TWXTWXTWX 1
             root root 3.3M May
                                  1 07:09 101300000.PaperKeywords
             root root
                       3.2M May
                                  1 07:09 101400000.PaperKeywords
 LMXLMXLMX
             root root 3.3M May
                                  1 07:09 101500000.PaperKeywords
 CMXCMXCMX
FWXFWXFWX
                       3.3M May
                                  1 07:09 101600000.PaperKeywords
 rwxrwxrwx 1 root root 3.3M May
                                  1 07:09 101700000.PaperKeywords
                                  1 07:09 101800000.PaperKeywords
            root root 3.3M May
 rwxrwxrwx 1
                                  1 07:09 101900000.PaperKeywords
 rwxrwxrwx 1 root root 3.3M May
                                  1 07:09 102000000.PaperKeywords
 CWXCWXCWX 1
             root root 3.3M May
             root root
                       3.3M May
                                  1 06:57 10200000.PaperKeywords
 LMXLMXLMX
 CMXCMXCMX
             root root 3.3M May
                                  1 07:09 102100000.PaperKeywords
             root root
                                  1 07:09 102200000.PaperKeywords
 LMXLMXLMX
                       3.3M May
            root root 3.3M May
                                  1 07:09 102300000.PaperKeywords
 CWXCWXCWX 1
                                  1 07:09 102400000.PaperKeywords
            root root 3.3M May
 rwxrwxrwx 1
                       3.3M May
                                  1 07:09 102500000.PaperKeywords
           1 root root
CMXCMXCMX
                                  1 07:09 102600000.PaperKeywords
             root root 3.3M May
 TWXTWXTWX 1
                                  1 07:09 102700000.PaperKeywords
 CMXCMXCMX
             root root 3.3M May
             root root 3.3M May
                                  1 07:09 102800000.PaperKeywords
                                          102900000.PaperKeywords
 CMXCMXCMX
             root root
                       3.3M
                            May
                                  1 07:09
 rwxrwxrwx 1 root root 3.3M May
                                  1 07:09 103000000.PaperKeywords
 rwxrwxrwx 1 root root 3.3M May
                                 1 06:57 10300000.PaperKeywords
 rwxrwxrwx 1 root root 3.3M May
                                  1 07:09 103100000.PaperKeywords
```

2. Next, we import the files one at a time into MongoDB

So now we have 2 collections for the 2 files. And the data can be queried as shown to get results quickly.

- 3. Finally, we use Pymongo (a python API for mongoDB) to generate a list of keywords for each author. This was done in 3 steps-
 - First, we get a list of **distinct author_id** from the **PaperAuthorAffiliations** collection
 - For each author_id, we get all paper_id.
 - For each paper_id we get a list of keywords and append it to a file with the filename as author_id

So we now have a collection of files for each author, that contains a list of keywords used in their

papers.

mag_paper	< >	60B426F8.Keywords × awesomeScript.py
MAG		confidence level
logic		ion exchange
		iron
results		zinc
keywords		relative standard deviation flow injection analysis
ODFBFADB.Keywords		atomic absorption spectroscopy
ODFC12C3.Keywords		comparative analysis
OBI C12C3. Rey Worlds	9	certified reference material
227B8899.Keywords	10 11	atomic absorption atomic absorption spectroscopy
54BDC3C3.Keywords	12	distribution coefficient
E FARREATZ Kommanda	13	solid phase extraction
54BDC477.Keywords		limit of quantification
■ 59A0DBCF.Keywords	15	load flow
■ 60B426F8.Keywords	16	industrial wastewater
	17 18	pyrolysis surface area
718AFF63.Keywords	19	point of zero charge
767F13B2.Keywords	20	hydrogen peroxide
767F1A90.Keywords	21	activated carbon
	22	photocatalyst
767F1DE0.Keywords	23	relative standard deviation
■ 767F2201.Keywords	24 25	quantitative analysis chemical analysis
— 767F251A.Keywords	26	ion exchange chromatography
767F251A.ReyWords	27	ion exchange
767F2A1E.Keywords		dissolved organic carbon
■ 767F2AE1.Keywords	29	absorption spectroscopy
ED 767535D4 Kennede	30 31	analytical chemistry
767F2ED4.Keywords	32	atomic absorption copper
767F30E0.Keywords	33	freundlich isotherm
■ 767F3176.Keywords	34	pyrolysis
	35	certified reference material
767F3441.Keywords	36 37	kinetics
767F34D3.Keywords	38	water use detection limit
767F3826.Keywords	39	second order
		speciation
767F488A.Keywords	41	chromium
767F5BDF.Keywords	42	solid phase extraction
767F61C2.Keywords	43 44	flow injection analysis flow injection analysis
_	45	solid phase extraction
767F61F8.Kevwords	46	adsorption