北京市燕山地区 2018 年初中毕业暨一模考试

数学试卷

2018. 5

考

1. 本试卷共 8 页, 共三道大题, 28 道小题, 满分 100 分. 考试时间 120 分钟。

生

2. 在试卷和答题卡上认真填写学校名称、姓名和准考证号。

须

3. 试题答案一律填涂或书写在答题卡上,在试卷上作答无效。

知

4. 在答题卡上,选择题、作图题用 2B 铅笔作答,其他试题用黑色字迹签字笔作答.

5. 考试结束,请将本试卷、答题卡一并交回。

下面各题均有四个选项,其中只有一个是符合题意的.

- 1. 2017 年北京市在经济发展、社会进步、城市建设、民生改善等方面取得新成绩、新面貌。 综合实力稳步提升。全市地区生产总值达到 280000 亿元,将 280000 用科学记数法表示为
 - A. 280×10^3
- B. 28×10^4
- C. 2.8×10^5
- D. 0.28×10^6
- 2. 下面的图形是天气预报中的图标,其中既是轴对称图形又是中心对称图形的是

A. 晴

B. 浮尘

C. 大雨

D. 大雪

3. 实数 a, b 在数轴上对应的点的位置如图所示, 则正确的结论是

- A. a+b < 0
- B. a > |-2|
- C. $b > \pi$
- D. $\frac{a}{b} < 0$

4. 下列四个几何体中, 左视图为圆的是

Α.

C.

5. 如图, AB // CD, DB ⊥ BC, ∠2=50°, 则∠1 的度数是

В.

- A. 40°
- B. 50°
- C. 60°
- D 140°

6. 如图,在 Rt \triangle ABC 中, \angle ACB=90° ,CD 是 AB 边上的中线,AC=8, BC=6 ,则 \angle ACD 的正切值是

B. $\frac{3}{5}$ C. $\frac{5}{3}$ D. $\frac{3}{4}$

7. 每个人都应怀有对水的敬畏之心, 从点滴做起, 节水、爱水,保护我们生活的美好世界。某地近年

来持续干旱,为倡导节约用水,该地采用了"阶梯水 价"计费方法,具体方法:每户每月用水量不超过 4

用水量x	(吨)	3	4	5	6	7
频数		1	2	5	4- <i>x</i>	х

吨的每吨2元;超过4吨而不超过6吨的,超出4吨的部分每吨4元;超过6吨的,超出6吨的 部分每吨 6 元. 该地一家庭记录了去年 12 个月的月用水量如下表,下列关于用水量的统计量不 会发生改变的是

A. 平均数、中位数 B. 众数、中位数

C . 平均数、方差

D . 众数、方差

8. 小带和小路两个人开车从 A 城出发匀速行驶至 B 城.在整个行驶 过程中,小带和小路两人的车离开 A 城的距离 v (千米)与行驶的 时间 t(小时)之间的函数关系如图所示。有下列结论: ①A、B 两城 相距300千米;②小路的车比小带的车晚出发1小时,却早到1小时: ③小路的车出发后 2.5 小时追上小带的车; ④当小带和小路的车相

距 50 千米时, $t = \frac{5}{4}$ 或 $t = \frac{15}{4}$ 。 其中正确的结论有

A. 1234 B. 124 C. 12

D. (2)(3)(4)

- 二、填空题(本题共16分,每小题2分)
- 9. 如果分式 $\frac{x}{x+4}$ 的值是 0, 那么 x 的值是

10. 在平面直角坐标系 xoy 中,点 A(4,3) 为 $\odot O$ 上一点, B 为 $\odot O$ 内一 点,请写出一个符合条件要求的点 B 的坐标___

11. 当 a=3 时 , 代 数 式 $(\frac{a^2}{a-2} - \frac{1}{a-2}) \div \frac{a^2 - 2a + 1}{a-2}$ 的 值

域的概率是

12. 写出经过点 (0, 0), (-2, 0) 的一个二次函数的解析式 (写一个即可)

13. 二十四节气列入联合国教科文组织人类非物质文化遗产代表作名 录。太阳运行的轨道是一个圆形,古人将之称作"黄道",并把黄道分 为 24 份,每 15 度就是一个节气,统称"二十四节气"。这一时间认知体 系被誉为"中国的第五大发明"。如图,指针落在惊蛰、春分、清明区

14. 如图,10 块相同的长方形卡片拼成一个大长方形,设长方形卡片的长和宽分别为 *x* 和 *y*,则依题意,列方程组为 ______

15. 如图,一等腰三角形,底边长是 18 厘米,底边上的高是 18 厘米,现在沿底边依次从下往上画宽度均为 3 厘米的矩形,画出的矩形 是 正 方 形 时 停 止 ,则这个矩形是第个

16. 在数学课上,老师提出如下问题:

尺规作图:确定图中CD所在圆的圆心.

己知: CD.

求作: CD所在圆的圆心 O.

曈曈的作法如下:

如图,

- (1) 在CD上任意取一点 M, 分别连接 CM, DM;
- (2) 分别作弦 CM,DM 的垂直平分线,

两条垂直平分线交于点O.

点 O 就是CD所在圆的圆心.

老师说:"曈曈的作法正确."

请你回答: 曈曈的作图依据是_____

- 三、解答题(本题共 68 分,第 $17\sim24$ 题,每小题 5 分,第 25 题 6 分,第 26 题 7 分,第 27 题 7 分,第 28 题 8 分,) 解答应写出文字说明,演算步骤或证明过程.
- 17. 计算: . 计算: $4\cos 30^{\circ} \sqrt{12} + 2018^{\circ} + |1 \sqrt{3}|$
- 18. 解不等式组: $\begin{cases} \frac{x-3}{2} < 1, \\ 2(x+1) \ge x-1. \end{cases}$
- 19. 文艺复兴时期,意大利艺术大师达. 芬奇研究过用圆弧围成的部分图形的面积问题。已知正方形的边长是 2,就能求出图中阴影部分的面积.

证明: $S_{\mathfrak{B}\mathcal{B}ABCD}=S_1+S_2+S_3$ =2 , S_4 = ______ , S_5 =______

$$S_{\text{HF}} = S_1 + S_6 = S_1 + S_2 + S_3 =$$

20. 如图, 点A,B,C,D在同一条直线上,CE//DF,EC=BD,AC=FD,

求证: AE=FB

- 21. 已知关于 x 的一元二次方程 $x^2 (2k+1)x + k^2 + k = 0$.
- (1) 求证: 方程有两个不相等的实数根;
- (2) 当方程有一个根为 1 时,求 k 的值.

22. 豆豆妈妈用小米运动手环记录每天的运动情况,下面是她6天的数据记录(不完整):

日期	4月1日	4月2日	4月3日	4月4日	4月5日	4月6日
步行数(步)	10672	4927	5543	6648		
步行距离(公里)	6. 8	3. 1	3. 4	4. 3		
卡路里消耗(千卡)	157	79	91	127		
燃烧脂肪(克)	20	10	12	16		

- 距离 5.0 公里 相当于节省了0.40 升汽油
- 消耗 142 千卡
 相当于燃烧了18 克脂肪
- 距离 10.0 公里 相当于节省了0.80 升汽油
- 消耗 234 千卡 相当于燃烧了30 克脂肪
- (1) 4月5日,4月6日,豆豆妈妈没来得及作记录,只有手机图片,请你根据图片数据,帮她补全表格.
- - 4月1日-6日妈妈步行距离与燃烧脂肪情况统计图

(3) 豆豆还帮妈妈分析出步行距离和卡路里消耗数近似成正比例关系,豆豆妈妈想使自己的卡路里消耗数达到 250 千卡,预估她一天步行距离为_____公里.(直接写出结果,精确到个位)

- 23. 如图,在 $\triangle ABC$ 中,D,E 分别是 AB,AC 的中点,BE=2DE,延长 DE 到点 F,使得 EF=BE,连接 CF.
 - (1) 求证: 四边形 BCFE 是菱形;
 - (2) 若∠BCF=120°, CE=4, 求菱形 BCFE 的面积.

24. 如图,在平面直角坐标系中,直线 $l: y=kx+k(k\neq 0)$ 与 x 轴,y 轴分别交于 A,B 两点,且点 B(0,2),点 P 在 y 轴正半轴上运动,过点 P 作平行于 x 轴的直线 y=t .

- (1) 求 k 的值和点 A 的坐标;
- (2) 当 t=4 时,直线 y=t 与直线 l 交于点 M ,反比例函数

 $y = \frac{n}{x}$ (n \neq 0) 的图象经过点 M , 求反比例函数的解析式;

(3)当 t<4 时,若直线 y=t 与直线 l 和(2)反比例函数的图象分别交于点 C,D,当 CD 间距离大于等于 2 时,求 t 的取值范围.

- (1) 求证: AM 是⊙O 的切线
- (2) 当 BE=3, $\cos C=\frac{2}{5}$ 时,求 $\odot O$ 的半径.

26. 已知 y 是 x 的函数,自变量 x 的取值范围是 $x \neq 0$ 的全体实数,下表是 y 与 x 的几组对应值.

X	•••	-3	-2	-1	$-\frac{1}{2}$	$-\frac{1}{3}$	$\frac{1}{3}$	$\frac{1}{2}$	1	2	3	•••
y	•••	$\frac{25}{6}$	$\frac{3}{2}$	$-\frac{1}{2}$	$-\frac{15}{8}$	$-\frac{53}{18}$	<u>55</u> 18	<u>17</u> 8	$\frac{3}{2}$	m	<u>29</u> 6	•••

小华根据学习函数的经验,利用上述表格所反映出的 y 与 x 之间的变化规律,对该函数的图象与性质进行了探究.

下面是小华的探究过程,请补充完整:

(1)从表格中读出,当自变量是-2时,函数值是______

(2) 如图,在平面直角坐标系 xOy 中,描出了以上表中各对对应值为坐标的点. 根据描出的点,画出该函数的图象;

(3)在画出的函数图象上标出 x=2 时所对应的点,并写出 m=______

(4) 结合函数的图象,写出该函数的一条性质:

27. 如图,抛物线 $y = ax^2 + bx + c(a > 0)$ 的顶点为 M,直线 y = m 与抛物线交于点 A, B, 若 $\triangle AMB$ 为等腰直角三角形,我们把抛物线上 A, B 两点之间的部分与线段 AB 围成的图形

(1)由定义知,取AB中点N,连结MN,MN与AB的关系是

称为该抛物线对应的准蝶形,线段AB称为碟宽,顶点M称为碟顶.

(2)抛物线 $y = \frac{1}{2}x^2$ 对应的准蝶形必经过 B(m, m),则 m = 2 , 对应的碟宽 AB 是_____

- (3)抛物线 $y = ax^2 4a \frac{5}{3}(a > 0)$ 对应的碟宽在 x 轴上,且 AB=6.
- ①求抛物线的解析式;
- ②在此抛物线的对称轴上是否有这样的点 P (x_p , y_p),使得 \angle APB

为锐角,若有,请求出 y_p 的取值范围.若没有,请说明理由.

备用图

28. 在 Rt $\triangle ABC$ 中, $\angle ACB$ =90°,CD是 AB 边的中线, $DE \bot BC$ 于 E, 连结 CD,点 P 在射线 CB 上(与 B,C 不重合).

- (1) 如果∠A=30°
 - ①如图 1, ∠*DCB*= _____°
 - ②如图 2,点 P 在线段 CB 上,连结 DP,将线段 DP 绕点 D 逆时针旋转 60° ,得到线段 DF,连结 BF,补全图 2 猜想 CP、BF 之间的数量关系,并证明你的结论;
- (2)如图 3,若点 P 在线段 CB 的延长线上,且 $\angle A=\alpha$ (0° 〈 α 〈90°),连结 DP,将线段 DP 绕点逆时针旋转 2α 得到线段 DF,连结 BF,请直接写出 DE、BF、BP 三者的数量关系(不需证明).

北京市燕山地区 2018 年初中毕业暨一模考试答案

2018. 5

一、选择题(本题共 16 分,每小题 2 分	٠,
------------------------	----

- 1. C. 2. A 3. D. 4. B. 5. A. 6. D. 7. B. 8. C.
- 二、填空题(本题共16分,每小题2分)
- 9. x = 0. 10. <u>内一点都对</u> 11. <u>2</u>. 12. $y = x^2 + 2x$ 13. $\frac{1}{8}$
- 14. $\begin{cases} x + 2y = 75 \\ x = 3y \end{cases}$ 15. $\underline{5}$
- 16. ①线段垂直平分线上的点到线段两端点的距离相等 ②圆的定义(到定点的距离等于定长的点的轨迹是圆)
- 三、解答题(本题共 68 分, 第 17~24 题, 每小题 5 分, 第 25 题 6 分, 第 26 题 7 分, 第 27 题 7 分, 第 28 题 8 分,) 解答应写出文字说明, 演算步骤或证明过程.

17.
$$4\cos 30^{\circ} - \sqrt{12} + 2018^{\circ} + \left|1 - \sqrt{3}\right| = 4 \times \frac{\sqrt{3}}{2} - 2\sqrt{3} + 1 + \sqrt{3} - 1 = \sqrt{3}$$

19. $S_4 = S_2$, $S_5 = S_3$ $S_6 = S_4 + S_5$ $S_{75} = S_1 + S_2 = S_1 + S_2 + S_3 = S_3$

20. 证明: : CE//DF

∴∠ECA=∠FDB.....2′ 在△ ECA 和△ FDB 中

∴ △ ECA≌△ FDB......4′

∴ AE=FB......5′

(2) 当 t=4 时,将 y=4 代入 y=2x+2 得, x=1

$$:M(1,4)$$
代入 $y = \frac{n}{x}$ 得, n=4

$$\therefore y = \frac{4}{x}$$

(3) 当 t=2 时, B(0,2) 即 C(0,2), 而 D(2,2)

如图, CD=2, 当 y=t 向下运动但是不超过 x 轴时,符合要求

- 25. 解: (1) 连结 OM.

AE 是 BC 边上的高线

- ∴AE⊥BC,
- ∴AM⊥OM

$$\because \cos C = \frac{2}{5} = \frac{EC}{AC}$$

$$\therefore AC = \frac{5}{2} EC = \frac{15}{2}$$

∵OM// BC, ∠AOM =∠ABE

$$\therefore \triangle AOM \le \triangle ABE \therefore \frac{OM}{BE} = \frac{AO}{AB}$$

$$\mathbb{Z} \angle ABC = \angle C$$
 $\therefore \angle AOM = \angle C$

在 Rt
$$\triangle$$
 AOM 中 $\cos \angle$ AOM = $\cos C = \frac{2}{5}$
$$\frac{OM}{AO} = \frac{2}{5}$$

$$\therefore AO = \frac{5}{2}OM$$

$$AB = \frac{5}{2}OM + OB = \frac{7}{2}OM$$

$$\overrightarrow{\text{m}}$$
 AB= AC= $\frac{15}{2}$

$$\therefore \frac{7}{2}OM = \frac{15}{2}$$

$$OM = \frac{15}{7}$$

$$∴ ⊙o$$
 的半径是 $\frac{15}{7}$

26. 解: (1)当自变量是-2 时,函数值是 $_{2}$	
	1′
(2) 如图,该函数的图象; (略)	3′
(3)标出 x=2 时所对应的点	·····4′
且 m=	5′
(4)写出该函数的性质(一条即可):	·
	·····7′
27. 解: (1)MN 与 AB 的关系是 $MN \perp AB$, $MN = \frac{1}{2}$ AB	
(2) m= <u>2</u> 对应的碟宽是	4
(3) ①由已知, 抛物线必过(3,0), 代入 y=	$= ax^2 - 4a - \frac{5}{3}(a > 0)$
得,9 $a - 4a - \frac{5}{3} = 0$	
$a=\frac{1}{3}$	
∴ 抛物线的解析式是 $y = \frac{1}{3}x^2 - 3$	
4 -	5′
② 曲①知, $y = \frac{1}{3}x^2 - 3$ 的对称轴上P(0	∠APB 为直角, ,3), P(0,-3) 时,
∴在此抛物线的对称轴上有这样的点 P, 使得	
y_p 的取值范围是 $y_p\langle -3或 y_p\rangle 3$	·····7′
28. 解: (1) ①∠DCB=60° ····································	1′
②补全图形	
CP=BF	3′
△ DCP≌△ DBF ·······	6′
(2) BF-BP=2DE $\cdot \tan \alpha$ ······	8′