

DEMANDE INTERNATIONALE PUBLIÉE EN VERTU DU TRAITE DE COOPERATION EN MATIERE DE BREVETS (PCT)

(51) Classification internationale des brevets ⁵ : C12N 15/29, 15/82, C12Q 1/68, A01N 65/00, C12N 5/10, A01H 5/00		A1	(11) Numéro de publication internationale: WO 94/21793 (43) Date de publication internationale: 29 septembre 1994 (29.09.94)
(21) Numéro de la demande internationale: PCT/FR94/00316 (22) Date de dépôt international: 23 mars 1994 (23.03.94)		(81) Etats désignés: AU, CA, JP, NZ, US, brevet européen (AT, BE, CH, DE, DK, ES, FR, GB, GR, IE, IT, LU, MC, NL, PT, SE).	
(30) Données relatives à la priorité: 93/03299 23 mars 1993 (23.03.93)		FR	Publiée <i>Avec rapport de recherche internationale. Avant l'expiration du délai prévu pour la modification des revendications, sera republiée si de telles modifications sont reçues.</i>
(71) Déposants (<i>pour tous les Etats désignés sauf US</i>): ELF SANOFI [FR/FR]; 32-34, rue Marbeuf, F-75008 Paris (FR). ELF AQUITAINNE [FR/FR]; Tour Elf, 2, place de la Coupole, La Défense 6, F-92400 Courbevoie (FR).			
(72) Inventeurs; et (75) Inventeurs/Déposants (<i>US seulement</i>): MARCO, Yves [FR/FR]; 2, chemin de la Crabotte, F-31320 Castanet-Tolosan (FR). ROBY, Dominique [FR/FR]; 9, avenue du Petit-Prince, F-31400 Toulouse (FR). SCHNEIDER, Michel [CH/FR]; 26, rue Montardy, F-31000 Toulouse (FR). TOPPAN, Alain [FR/FR]; 2, rue de Crabinet, F-31700 Cornebarrieu (FR).			
(74) Mandataires: GILLARD, Marie-Louise etc.; Cabinet Beau de Loménie, 158, rue de l'Université, F-75340 Paris Cédex 07 (FR).			
(54) Title: PLANT PROMOTER, MICROORGANISMS AND PLANT CELLS CONTAINING A UNIT FOR THE EXPRESSION OF A PROTEIN OF INTEREST COMPRISING SAID PROMOTER			
(54) Titre: PROMOTEUR VEGETAL, MICROORGANISMES ET CELLULES VEGETALES CONTENANT UNE UNITE D'EXPRESSION D'UNE PROTEINE D'INTERET COMPRENANT LEDIT PROMOTEUR			
(57) Abstract			
<p>The present invention relates to a plant promoter which comprises the sequence (B) [SEQ ID NO: 4] or a sequence presenting a high homology degree with the sequence (B). Application: protection of plants by genetic engineering and particularly defence of plants in stress conditions.</p>			
(57) Abrégé			
<p>La présente invention a pour objet un promoteur végétal qui comprend la séquence (B) [SEQ ID NO: 4] ou une séquence présentant un degré d'homologie élevé avec la séquence (B). Application: protection des végétaux par génie génétique et notamment défense des plantes en état de stress.</p>			

UNIQUEMENT A TITRE D'INFORMATION

Codes utilisés pour identifier les Etats parties au PCT, sur les pages de couverture des brochures publient des demandes internationales en vertu du PCT.

AT	Autriche	GB	Royaume-Uni	MR	Mauritanie
AU	Australie	GE	Géorgie	MW	Malawi
BB	Barbade	GN	Guinée	NE	Niger
BE	Belgique	GR	Grèce	NL	Pays-Bas
BF	Burkina Faso	HU	Hongrie	NO	Norvège
BG	Bulgarie	IE	Irlande	NZ	Nouvelle-Zélande
BJ	Bénin	IT	Italie	PL	Pologne
BR	Brésil	JP	Japon	PT	Portugal
BY	Bélarus	KE	Kenya	RO	Roumanie
CA	Canada	KG	Kirghizistan	RU	Fédération de Russie
CF	République centrafricaine	KP	République populaire démocratique de Corée	SD	Soudan
CG	Congo	KR	République de Corée	SE	Suède
CH	Suisse	KZ	Kazakhstan	SI	Slovénie
CI	Côte d'Ivoire	LI	Liechtenstein	SK	Slovaquie
CM	Cameroun	LK	Sri Lanka	SN	Sénégal
CN	Chine	LU	Luxembourg	TD	Tchad
CS	Tchécoslovaquie	LV	Lettanie	TG	Togo
CZ	République tchèque	MC	Monaco	TJ	Tadjikistan
DE	Allemagne	MD	République de Moldova	TT	Trinité-et-Tobago
DK	Danemark	MG	Madagascar	UA	Ukraine
ES	Espagne	ML	Mali	US	Etats-Unis d'Amérique
FI	Finlande	MN	Mongolie	UZ	Ouzbékistan
FR	France			VN	Viet Nam
GA	Gabon				

PROMOTEUR VEGETAL, MICROORGANISMES ET CELLULES VEGETALES CONTENANT UNE UNITE D'EXPRESSION D'UNE PROTEINE D'INTERET COMPRENANT LEDIT PROMOTEUR

La présente invention a pour objet un nouveau promoteur végétal et les microorganismes et cellules végétales contenant une unité d'expression d'une protéine d'intérêt comprenant ledit promoteur. L'promoteur selon l'invention est un promoteur constitutif fort permettant une expression de ladite protéine dans les microorganismes et les cellules végétales quelque soit le stade de développement du végétal.

De plus, le promoteur selon l'invention trouve une application particulière dans le domaine de la protection des végétaux par génie génétique et notamment celui de la défense des plantes en état de stress.

Au cours des dernières années, les applications de la transformation des végétaux se sont multipliées. De nombreux gènes d'origine procaryote ou eucaryote (animale ou végétale) codant notamment pour des protéines conférant lors de leur expression un caractère agronomique nouveau, ont été isolés puis transférés aux plantes.

Dans de très nombreux cas, les gènes qui ont été introduits par génie génétique dans les plantes, sont chimériques, associant des éléments de régulation de différentes origines. C'est ainsi que très souvent le gène codant pour une protéine d'intérêt est placé sous le contrôle d'un promoteur constitutif fort permettant une expression de ladite protéine dans toute la plante (ou la majeure partie de celle-ci) durant toute sa vie, quel que soit le stade de développement. Le promoteur du transcrit 35S du virus de la mosaïque du choux-fleur (35S CaMV), le plus utilisé dans les constructions de gènes chimériques, correspond à cette description.

Or pour un certain nombre d'applications, il n'est pas nécessaire que le gène codant pour la protéine d'intérêt, support du caractère agronomique, ait une expression continue ou répartie dans toute la plante. De telles caractéristiques peuvent même dans certains cas amoindrir ou annuler les effets bénéfiques du gène transféré. En effet, l'expression continue à un niveau élevé d'une protéine peut détourner une

partie du métabolisme vers cette expression, et final m ent entraîner une pert de rendement.

Très tôt, la recherche d'une expression génique plus spécifique a été engagée ; elle a conduit par exemple à isoler des promoteurs tissus-
5 ou organes-spécifiques.

Il peut être intéressant d'induire l'expression d'un gène donné uniquement dans une situation précise, ou mieux d'assurer un niveau d'expression de base tout au long de la vie d'un végétal, tout en permettant la surexpression du gène dans une situation donnée.

10 Plusieurs promoteurs inductibles ont déjà été décrits, certains répondant à la fois à l'infection par des microorganismes pathogènes et à des composés chimiques ou des hormones végétales comme l'éthylène (Roby et al., 1990, Plant Cell 2, 999) ou l'auxine.

15 Un promoteur végétal isolé du tabac a été décrit par Takahashi et al., Proc. Natl. Acad. Sci. USA, 1990, 87, 8013-8016.

Ces auteurs, dans une autre publication précisent que ce promoteur ne réagit spécifiquement qu'aux auxines et non aux autres hormones ou aux stress (Takahashi et al., The Plant Journal, 1991, 1(3), 327-332).

20 La présente invention a pour objet un promoteur, qui s'exprime à un niveau soutenu dans les différents organes et tissus d'un végétal et notamment les racines et le méristème d'une plante et qui est très fortement inductible dans les situations de stress, telles que notamment après un choc thermique, une blessure, un choc hormonal, un éliciteur biotique ou abiotique ou une infection bactérienne, fongique ou virale.

25 L'invention concerne également les microorganismes (bactéries) et les cellules végétales ayant intégré une unité d'expression d'une protéine d'intérêt, ladite unité comprenant le promoteur selon l'invention.

Elle a également pour objet les végétaux ou parties de végétaux
30 ainsi que les semences qui comprennent les cellules végétales d l'invention.

Enfin, elle concerne aussi l'utilisation d'un végétal ou d'une partie d'un végétal ci-dessus pour sélectionner des molécules à activité

phytosanitaire susceptibles d'induire des réactions de défense naturelles des végétaux contre les agressions d'organismes phytopathogènes ou phytophages (champignons, bactéries, virus, insectes et nématodes).

Le promoteur selon l'invention comprend la séquence d'ADN (B) 5 [SEQ ID NO : 4] ou une séquence présentant un degré d'homologie élevé avec la séquence (B).

Selon une variante, le promoteur selon l'invention comporte, en amont de la séquence (B), une séquence (C) [SEQ ID NO : 5] ou une séquence présentant un degré d'homologie élevé avec la séquence (C).

10 Enfin, selon une variante préférée de l'invention, le promoteur de l'invention comporte, en amont de la séquence (B), une séquence (D) [SEQ ID NO : 6] ou une séquence présentant un degré d'homologie élevé avec la séquence (D).

15 Un degré d'homologie élevé signifie ici une homologie (rapport entre les nucléotides identiques et le nombre total de nucléotides) d'au moins 70 %, et de préférence d'au moins 80 %, des séquences d'nucléotides, lorsqu'elles sont alignées d'après l'homologie maximal, selon la méthode d'alignement optimal des séquences de Needleman et Wunach, 1970; J. Mol. Biol., 48, 443-453. Cette méthode est notamment 20 utilisée dans le logiciel UWGCG de l'Université du Wisconsin : Devereux et al., 1984. Nucl. Ac. Res., 12, 387-395 - option GAP.

Les éléments nécessaires au fonctionnement de ce promoteur tels que l'expression de ses caractéristiques (facteurs transactivateurs, etc.) sont présents dans d'autres végétaux, dicotylédones ou monocotylédon s. 25 Leur présence permet donc l'utilisation de ce promoteur dans de nombreux végétaux cultivés, tels que notamment les plantes (tabac, pomme de terre, tomate, maïs, tournesol, orge et colza) ou d'autres végétaux, tels que les levures et les champignons.

Toutes séquences d'ADN codant pour des protéines d'intérêt peuvent 30 être placées sous le contrôle du promoteur selon l'invention, en particulier des séquences codant pour des protéines qui permettent d'assurer la protection d'un végétal, par exemple une plante contre les infections virales, bactériennes ou fongiques et contre les autres états

d stress. A titre d'exemples de tels protéines, on peut citer notamment les endochitinases de tomate-tabac, telles que celle décrite dans EP-A-493 581 dont la séquence codante est [SEQ ID NO : 16].

Le promoteur selon l'invention a été obtenu par criblage d'une 5 banque génomique de tabac à l'aide d'une sonde d'ADN ayant la séquence [SEQ ID NO : 1].

Un clone correspondant à la séquence [SEQ ID NO : 1] a été obtenu par screening différentiel de clones d'ADNc issus d'ARNm poly(A)⁺, spécifiquement synthétisés au cours de l'infection de feuilles de tabac 10 *Nicotiana tabacum* par la souche de *Pseudomonas solanacearum* GMI 1000. Cette souche bactérienne est bien connue pour provoquer une réaction d'hypersensibilité sur le tabac de la variété *Bottom spécial*. A cet effet, on peut se référer à l'ouvrage Message et al. 1978, Proc. 4th. Intl. Conf. of plant Pathogenic Bacteria pp. 823-833. Le clone contenant 15 la séquence [SEQ ID NO : 1] sera dénommé ci-après "clone 246".

Le clone 246 a permis ensuite, par criblage d'une banque génomique de tabac d'isoler un clone, dénommé ci-après clone 246 C [SEQ ID NO : 7], qui contient la séquence d'ADN (D) [SEQ ID NO : 6], la séquence d'ADN (C) [SEQ ID NO : 5], la séquence d'ADN (B) [SEQ ID NO : 4] et une séquence 20 renfermant 2 cadres de lectures ouverts séparés par un intron.

Par association du promoteur (séquences B+C+D) avec le gène de la β-glucuronidase on a obtenu, selon le mode opératoire décrit à la section 9 ci-après, le vecteur d'expression pSG 123. Le promoteur constitué des séquences B+C+D est appelé promoteur 246C.

25 Le vecteur d'expression pSG 123 a été utilisé pour tester l'expression transitoire dans des protoplastes de tabac, du gène de la glucuronidase, lesdits protoplastes étant mis en situation de stress soit par infection par *Pseudomonas solanacearum* soit par traitement à l'aide d'un éliciteur ou d'une hormone.

30 A partir du vecteur d'expression pSG 123 on a préparé, selon le mode opératoire décrit à la section 13, un vecteur d'expression stable dans les cellules végétales, le vecteur binaire pSG 246.

Ce vecteur binaire pSG 246 a été transféré dans des cellules d'*Agrobacterium tumefaciens* ou *Agrobacterium rhizogenes*, lesquelles ont été utilisées ensuite pour obtenir des plantes transgéniques de tabac, de colza et de tournesol. Pour la transformation des tissus de 5 monocotylédones (orge et maïs) le vecteur d'expression pSG 123 a été utilisé. On a étudié le comportement de ces plantes ou tissus en état de stress.

Le promoteur selon l'invention, comprenant la séquence (B), (C) et (D) a aussi été associé au gène codant pour la chitinase tomate-tabac. 10 Les gènes chimériques résultants ont été utilisés pour transformer des cellules d'*Agrobacterium*.

La séquence d'ADN [SEQ ID NO : 1] peut aisément être synthétisée selon les techniques bien connues de l'homme de métier (L.J. Mac PRIDE et H.M.CARUTHERS Tetrahydron letters (1983) vol. 24 : 245).

15 L'étude des plantes transgéniques obtenues par transformation de plantes à l'aide de cellules d'*Agrobacterium* obtenues ci-dessus a permis de mettre en évidence l'activité promotrice de base du promoteur selon l'invention ainsi que la surexpression des protéines d'intérêt (β -glucuronidase et chitinase) dans des situations de stress.

20 Les résultats figurant dans la partie illustrative ci-après montrent clairement que le promoteur selon l'invention a une activité promotrice de base qui est fortement augmentée lorsque les plantes transgéniques contenant ce promoteur et un gène codant pour une protéine d'intérêt, sont placées dans des conditions de stress : choc thermique, 25 blessure, infection par des pathogènes (champignons, bactéries), éliciteurs (biotiques et abiotiques).

Par différentes délétions du plasmide pSG 123, effectuées dans la région 5' du promoteur à l'aide d'enzymes de restriction et/ou de la nucléase Exo3 on a mis en évidence les vecteurs pSG 251 et pSG 33 dont 30 les séquences sont respectivement la séquence (B) (pSG 33) [SEQ ID NO : 4] ou la séquence (B) comportant en amont la séquence (C) (pSG 251) [SEQ ID NO : 5].

La visualisation aisée de l'expression de la glucuronidase (Jefferson et al., 1987, Plant Molec. Biol. Reporter, 5, 387) ou de sa surexpression dans le cas d'une induction du promoteur de l'invention, permet d'utiliser des plantes qui expriment ce gène chimérique pour la 5 sélection de molécules inductrices.

Les plantes possèdent des mécanismes de défense aux agressions t notamment aux agressions parasitaires (champignons, bactéries, virus u insectes) ; ces mécanismes dépendant de phénomènes d'induction sont peu connus et se mettent souvent en place trop tardivement pour être 10 efficaces. Leur déclenchement précoce (Roby et al., 1988, Physiol. Molec. Plant. Pathol., 33, 409) notamment par des composés de type éliciteur dans des réactions en cascade permet à la plante de résister aux agressions.

Des fongicides de seconde génération, actifs sur les défenses de la 15 plante, tout en étant inactifs sur le parasite ont déjà été mis sur le marché.

Les plantes exprimant la glucuronidase, sous contrôle du promoteur de l'invention, précocement et spécifiquement induit lors d'une réaction d'hypersensibilité à une infection bactérienne, constituent un outil d 20 choix pour sélectionner des molécules capables d'induire l'expression ou la surexpression de gène de défense.

L'invention sera mieux comprise à l'aide de l'exposé ci-après, divisé en sections, qui comprend des résultats expérimentaux et une discussion de ceux-ci. Certaines de ces sections concernent des 25 expériences effectuées dans le but de réaliser l'invention, d'autres des exemples de réalisation de l'invention, donnés bien sûr à titre purement illustratif.

Une grande partie de l'ensemble des techniques ci-après, bien connues de l'homme du métier, est exposée en détail dans l'ouvrage de 30 Sambrook et al. : "Molecular Cloning : a Laboratory manual" publié en 1989 par les éditions Cold Spring Harbor Press à New-York (2ème édition).

Le matériel biologique (souches, phages, plasmides u plantes) utilisé dans les sections ci-après est disponible dans le commerce et/ u décrit respectivement dans les documents ci-après :

- 5 - vecteur binaire pBIN 19 : BEVAN et al.. 1984, Nucl. Ac. Res., 12, 8711-8721 ; obtenu auprès de Clontech (Palo Alto Californie USA)
- 10 - vecteur 101.3 : JEFFERSON, 1987, Plant. Molec. Biol. Reporter 5, 387 - 405 obtenu auprès de Clontech
- vecteur pBI 221 : "
- vecteur pBI 121 : "
- Souche *Pseudomonas solanacearum* : MESSAGE et al.. 1978, Proc. 4th Intl. Conf.of Plant Pathogenic Bacteria pp 823-833
- 15 GMI 1000 "
- Souche *Pseudomonas solanacearum* : GMI 1178 "
- Souche *Pseudomonas solanacearum* : K 60 "
- 20 - terminateur NOS : terminateur nopaline synthas
- vecteur pTZ 19R : obtenu auprès de Pharmacia
- souche *E. coli* MC1061 : MANIATIS et al.. 1982, Molecular cloning : A laboratory Manual, Cold Spring Harbor, New-York, obtenue auprès Clontech
- 25 - souche *E. coli* HB101 : "
- souche *Agrobacterium tumefaciens* : LBA4404 obtenue auprès de Clontech HOEKEMA et al.. 1983.
- 30 - souche *Agrobacterium rhizogenes* : NATURE, 303, 179-180 ; pRIA4

- plante *Nicotiana tabacum* : Variété Wisconsin Havana
- 38 : SCHNEIDER M., 1990,
Plant Molec. Biol., 14,
935-947 ;
- 5 - champignon *Chalara elegans* : RAWLINGS R.E., 1940, Ann.
Mo. Bot. Gdn., 27, 561-
598 ;
- champignon *Alternaria brassicae* : BAINS et TEWARI, 1987,
Physiol. Mol. Plant.
Pathol. 30 : 259 ;
- 10 - plante *Nicotiana tabacum* : Variété Paraguay 49
obtenue auprès de
l'Institut du tabac,
Bergerac, France.
- 15 - plante *Brassica napus* : variétés de printemps
Brutor et Westar et
lignée d'hiver (lignée de
sélection Rustica Semences)
ACHARYA et al., 1984,
Can. J. Plant. Pathol., 6,
325-328
- 20 - plantes de tournesol : genotype 2603B (lignée de
sélection, Rustica semences)
lignée LH 132
- maïs : variété GERBEL obtenue
auprès de l'Institut
National de la Recherche
Agronomique (INRA).
- 25 - orge : Paris, France
- 30 - Les souches GMI 1000 et K 60 peuvent être obtenues auprès de la
Collection Nationale des Bactéries Phytopathogènes (CNBP) INRA,
Pathologie Végétale, Rue Georges MOREL, 49070 BEAUCOUZE, FRANCE

- La souch GMI 1178 peut être obtenue auprès d l'INRA, Pathologie Végétale, Chemin de Borde-Rouge AUZEVILLE BP 27, 31326 CASTANET TOLOSAN Cédex, FRANCE

Les abréviations suivantes sont utilisées dans les exemples ci-après :

32P-dCTP : déoxycytidine 5'-32P-triphosphate commercialisé par AMERSHAM sous la référence 10205 ;

2 SSC : NaCl 0,3M, citrate trisodique 30 mM ; pH 7,0 (décrit par MANIATIS et al., op. cit.) ;

10 SDS : dodécylsulfate de sodium ;

FPLC : chromatographie liquide rapide de protéines

PVDF : difluorure de polyvinylidène ;

EDTA : acide éthylènediaminetétraacétique

DEPC : diéthylpyrocarbonate.

15 NAD : nicotinamide adénine dinucléotide

La description ci-après sera mieux comprise en se rapportant aux figures 1 à 3.

La figure 1 représente la cartographie du clone d'ADN génomique 246C, établie à l'aide des enzymes de restriction représentés.

20 La figure 2 représente l'alignement selon la méthode d'alignement optimal de Needleman et Wunsch, 1970, J. Mol. Biol., 48, 443-453 mis en œuvre par le logiciel UWGCG de l'Université du Wisconsin (Devereux et al., 1984, Nucl. Ac. Res., 12, 387-395) option GAP, de la partie 3' de 700 pb du promoteur du gène 246C et du promoteur décrit par Takahashi et 25 al., 1989, Proc. Natl. Acad. Sci. USA, 87, 8013).

La figure 3 représente les différents vecteurs d'expression testés comportant, par rapport au plasmide pleine longueur pSG123, une délétion variable de la partie 5' du promoteur.

Section 1 : Infection de tabac *Nicotiana tabacum* par deux souches de la bactérie pathogène *Pseudomonas solanacearum*

Les bactéries de la souche de *Pseudomonas solanacearum* sont cultivées pendant 72 h sur le milieu BG gélosé (Boucher et al. 1985, J. Gen Microbiol 131, 2449) ; une colonie est prélevée pourensemencer 40 ml du même milieu. Après de 16 à 24 h d'incubation à 28°C, la suspension bactérienne est centrifugée pendant 10 min à 6000 g et 4°C ; le surnageant est éliminé en conservant la couche de polysaccharides présente à la surface du culot. Après un lavage à l'eau stérile, les bactéries sont remises en suspension dans 20 ml d'eau. Leur concentration est alors déterminée par densitométrie.

Des jeunes feuilles de plantes de tabac sont détachées de la plante, lavées à l'eau distillée et immergées dans un dessicateur contenant 1,2 l de suspension bactérienne à la concentration de 3×10^6 bactéries/ml. Le vide est réalisé pendant 10 min à l'aide d'une trompe à vide, puis il est lentement cassé. Chaque feuille infiltrée est alors placée dans un bécher contenant du tampon phosphate de sodium 10 mM pH 6,0 et transférée dans une chambre de culture. Les feuilles sont prélevées après différents temps d'incubation et conservées à -70°C.

Deux souches bactériennes ont été utilisées : la souche GMI 1000 provoquant une réaction d'hypersensibilité sur le tabac de la variété Bottom Special et la souche GMI 1178 (Message et al. 1978, Proc. 4th. Intl. Conf. of Plant Pathogenic Bacteria pp. 823-833), mutant issu de la souche précédente et ayant perdu la capacité d'induire la réaction d'hypersensibilité chez le tabac.

Section 2 : Extraction et isolement des ARN totaux de *Nicotiana tabacum* infectés par les souches de *Pseudomonas solanacearum*

10 g de matériel végétal sont broyés en présence d'azote liquide puis repris dans un mélange de 3 ml de phénol, 3 ml de chloroforme-alcool isoamylque (24 : 1, V : V) et 6 ml de tampon de lyse de composition Tris-HCl 200 mM pH 7,0, EDTA 200 mM, SDS 1 %.

Après agitation au vortex, une centrifugation pendant 10 min à 6000 g à 4°C permet de séparer les phases. La phase aqueuse est prélevée

et reextraite à l'aide de 6 ml de mélange d'phénol-chloroform-alcool isoamylique (25 : 24 : 1, V : V), puis à l'aide de 6 ml de phénol. 16 ml d'éthanol absolu et 400 µl d'acétate de sodium 3M pH 5,5 sont ajoutés à la phase aqueuse ; le mélange est précipité pendant 2 h à - 20°C. Le 5 culot obtenu est dissous dans 5 ml d'eau stérile contenant 0,1 % de diethylpyrocarbonate (DEPC) puis les ARN sont précipités pendant 12 h à 4°C après addition de 5 ml de LiCl 4M. Après une centrifugation de 20 min à 6000 g, le culot d'ARN est lavé par de l'éthanol à 75 %, séché et repris dans 800 µl d'eau distillée stérile contenant 0,1 % de DEPC. La 10 solution est précipitée pendant 2 h à - 20°C après addition de 0,1 v/l d'acétate de sodium 3M pH 5,5 et 2,5 vol d'éthanol absolu. Après centrifugation pendant 15 min à 12 000 g, le culot d'ARN est lavé à l'éthanol à 75 % et dissous dans 200 µl d'eau distillée contenant 0,1 % de DEPC.

15 Les ARN totaux sont alors dosés par spectrophotométrie à 260 nm.

Section 3 : Préparation des ARN messagers poly(A)⁺

1 g de gel d'oligo-d(T) cellulose (Collaborative Research Inc.) est remis en suspension dans 2 ml de tampon Tris-HCl 10 mM pH 7,4, EDTA 1 mM, NaCl 0,4 M, SDS 0,1 %. Ce gel est introduit dans une pipette Pasteur dont 20 l'extrémité est bouchée à l'aide de laine de verre. La solution d'ARN est portée à 65°C pendant 4 min puis laissée refroidir lentement à la température ambiante. Une concentration finale de 0,4 M en NaCl est obtenue par addition d'une solution de NaCl 5M.

La solution d'ARN totaux est ensuite déposée sur le gel d'oligo-d(T) cellulose. Celui-ci est ensuite rincé par 12 ml environ de tampon de composition Tris-HCl 10 mM pH 7,4, NaCl 0,4 M, EDTA 1 mM, SDS 0,5 %.

Les ARN poly(A)⁺ sont ensuite élués à l'aide de 7 ml de tampon de composition Tris-HCl 10 mM pH 7,4, SDS 0,1 %, puis précipités pendant 1 nuit à -20°C après addition de 2,5 volumes d'éthanol à 95 % et 0,1 volum 30 d'acétate de sodium 3,3 M pH 5,5. Le culot d'ARN poly(A)⁺, obtenu par centrifugation à 35 000 g pendant 1 h est lavé 3 fois par de l'éthanol à 75 %, séché, repris dans 0,5 ml d'eau distillée stérile et soumis à un nouvelle précipitation dans les conditions décrites ci-dessus. Après

centrifugation, le culot est alors lavé par de l'éthanol à 75 %, séché et dissous dans de l'eau distillée stérile. Les ARN poly(A)⁺ sont alors dosés par spectrophotométrie à 260 nm.

Section 4 : Synthèse de l'ADN double brin à partir d'ARN messagers
5 poly(A)⁺ isolés de feuilles de tabac infecté par la souche GMI 1000 de *Pseudomonas solanacearum* et clonage dans *E. coli*.

Cette synthèse est réalisée selon la méthode de Gubler et Hoffman (1983. Gene, 25, 263), à l'aide du kit D. Scribe de la société Genofit 10 (Genève, Suisse) et en suivant les instructions du fabricant.

Synthèse du premier brin :

2.5 µg d'ARN poly(A)⁺ isolés de feuilles de tabac infectées par la souche GMI 1000 de *Pseudomonas solanacearum* et prélevées 6 h après inoculation, sont mis à incuber à 44°C pendant de 30 à 60 min en présence 15 de : Tris HCl 40 mM, pH 8.3, NaCl 80 mM, MgCl₂ 6 mM, DTT 5 mM, dATP 0.5 mM, dTTP 0.5 mM, dGTP 0.5 mM, dCTP 0.5 mM, 1.5 µg d'oligo d (pT) 12-18 et 10 à 15 unités de transcriptase inverse d'AMV (avian myeloblastosis virus) dans un volume total de 25 µl.

Synthèse du deuxième brin :

20 Le milieu réactionnel issu de la synthèse du premier brin est diluée à 100 µl à l'aide du tampon de composition Tris HCl 40 mM pH 7.5, MgCl₂ 10 mM, NaCl 80 mM ; 2 unités de RNase H sont ajoutées et le mélange est incubé à 37°C pendant 5 min.

Après refroidissement à 12°C, 25 unités de DNA polymérase I, 0.5 25 unités Weiss de ligase de *E. coli* et du NAD en concentration final de 0.1 mM, sont ajoutés.

30 Après une incubation de 60 min à 12°C puis de 60 min à 18°C, la réaction est arrêtée par l'addition de EDTA et de SDS en concentrations finales de 20 mM et 1 %, respectivement, suivie d'un chauffage de 2 min à 60°C.

Purification de l'ADNc :

Celle-ci est réalisée par chromatographie sur une colonne de Sephadex G100, dans le tampon Tris HCl 50 mM pH 7.5, NaCl 300 mM, EDTA .

1mM. L'addition d'alpha 32P dCTP 1 rs de l'étap de synthèse permet de repérer plus facilement les fractions issues de la chromatographie renfermant l'ADN double brin. Celui-ci est précipité par addition d'acétate d'ammonium (concentration finale 0.3 M) et de 2.5 vol d'éthanol absolu.

5 Digestion à l'aide de la nucléase S1 :

Le précipité obtenu est lavé par de l'éthanol à 75 %, séché et repris par de l'eau stérile. L'ADNc est traité ensuite par la nucléase S1 dans un volume total de 300 µl, à 30°C pendant 10 min, en présence d 10 20 U d'enzyme dans le tampon de composition acétate de sodium 30 mM pH 4,4, NaCl 0,25 M, ZnCl₂ 1 mM.

A la fin de la réaction, le mélange est extrait une fois par un mélange de Phénol-chloroforme-alcool isoamylique (50-48-2, V : V) puis trois fois par l'éther éthylique avant d'être soumis à une précipitation 15 par l'éthanol.

Le précipité d'ADN obtenu après centrifugation est ensuite séché et repris dans 20 µl d'eau stérile.

Addition en 3' d'une terminaison Poly dC (dC Tailing)

A la solution d'ADNc sont ajoutés successivement 10 µl de tampon d 20 terminal-transférase de composition potassium cacodylate 70 mM pH 7,2, CoCl₂ 0,5 mM, dithiothréitol 0,5 mM, 2 µl d'α dCTP 0,25 mM, 5 µl d'α 32P dCTP (370 MBq/ml), 12 µl d'H₂O et 1,2 µl de terminal transférase (18 unités).

La réaction de tailing est réalisée par incubation à 37°C pendant 25 30 min, puis arrêtée par l'addition de 30 µl d'EDTA, 0,25M pH 8,0.

Purification après Tailing des ADNc double brin :

Le mélange issu du dC tailing est précipité par l'éthanol puis centrifugé. Le culot d'ADNc est repris dans 10 µl de tampon d 30 composition Tris HCl 10 mM pH 7,5, NaCl 100 mM, EDTA 1 mM, 5 % glycérol, 0,02 % bleu de bromophénol. Cette solution est déposée sur une colonne d Biogel A 0,5 M (1 ml de support). L'élution de la colonne est réalisé par le tampon de composition Tris HCl 10 mM, pH 7,5, NaCl 100 mM, EDTA 1 mM ; des fractions sont recueillies, leur radioactivité mesurée, et la

taille des ADNc qu'elles renferment est analysée en électrophorèse sur gel d'agarose. Les fractions contenant des ADNc de taille supérieure à 500 paires de bases sont réunies et l'ADNc est précipité par l'éthanol.

Hybridation avec pBR 322-dG

5 L'ADNc recueilli après précipitation est remis en solution dans 50 µl de tampon de circularisation de composition Tris-HCl 20 mM pH 7.5, NaCl 100 mM, EDTA 1mM. 4 µl de solution de pBR 322-dG (21 ng, Clont ch) et 46 µl d'eau sont rajoutés.

Après incubation pendant 15 min à 65°C puis 2 h à 57°C,
10 l'hybridation est contrôlée par électrophorèse sur gel d'agarose.

L'ADNc double brin obtenu est inséré au site PstI du plasmide pBR 322. Après ligation, l'ADN obtenu est utilisé pour transformer des cellules compétentes de la souche *E. coli* HB101 Des colonies de bactéries recombinantes sont obtenues après étalement et culture sur boîte de P tri des cellules compétentes transformées.
15

Section 5 : Sélection par screening différentiel de clones d'ADNc issus d'ARNm poly(A)⁺ spécifiquement synthétisés au cours de l'infection bactérienne par la souche de *Pseudomonas solanacearum* GMI 1000.

20 L'ADN des colonies bactériennes recombinantes obtenues par clonage d'ADNc synthétisé à partir d'ARN messagers poly(A)⁺ de feuilles de tabac infectées par la souche GMI 1000 a été transféré sur une membrane de nylon Biodyne (Pall Corporation, EUA) suivant les indications du fabricant. Ces ADN sont hybridés successivement à l'aide de 2 sondes radioactives obtenues par synthèse d'ADNc, en présence d'alpha-32P dCTP, à partir d'ARN messagers purifiés de plantes infectées par les souches GMI 1000 et GMI 1178 respectivement.
25

30 Après lavage et exposition autoradiographique des membranes, les colonies bactériennes qui présentent un signal d'hybridation plus fort avec la sonde synthétisée à partir de feuilles inoculées par la souche GMI 1000 sont sélectionnées. L'ADN plasmidique de ces colonies est préparé, les inserts d'ADNc de ces plasmides sont isolés puis marqués à l'alpha 32-dCTP et sont utilisés comme sonde pour révéler selon la

t chnique d dot-blot puis d Northern blot les quantités équivalentes d'ARNm correspondant purifié à partir d'ARN total, de feuilles de tabac inoculées par la souche GMI 1000 ou GMI 1178.

Les colonies dont l'insert utilisé comme sonde donne un signal plus 5 intense lors de la révélation des ARN totaux purifiés à partir de feuilles de tabac inoculées par la souche GMI 1000 sont conservées.

Section 6 : Caractérisation d'un clone d'ADNc issu d'un ARNm spécifiquement synthétisé au cours de l'infection bactérienne par la souche de *Pseudomonas solanacearum* GMI 1000.

14 clones bactériens ont été isolés à partir de la banque d'ADNc construite à partir d'ARN messagers de feuilles de tabac infectées par la souche de *Pseudomonas solanacearum* GMI 1000.

Parmi ceux-ci, un clone appelé 246, présentant une longueur 15 d'insert de 750 paires de bases, permet de révéler en Northern Blot un transcrit de 800 nucléotides environ. L'accumulation de ce transcrit commence 4 à 9 h après l'inoculation, et atteint un maximum entre 12 et 15 h. Dans les feuilles de tabac infectées par la souche GMI 1178, on observe une légère accumulation du transcrit entre 12 et 15 h.

20 L'étude de la séquence de l'ADNc du clone 246 [SEQ ID NO : 1] met en évidence l'existence d'un premier cadre de lecture ouvert incomplet, codant pour un peptide de 59 acides aminés et d'un second cadre potentiel codant pour un peptide de 88 acides aminés. La séquence de ces deux peptides est représentée par [SEQ ID NO : 2]. Entre ces deux cadres de lecture des séquences consensus d'épissage d'un intron (Brown, 1986, Nucl. Ac. Res., 14, 9549) sont présentes. Il y a donc probablement un clonage d'un ADNc à partir d'un ARN messager immature. La séquence d'ADNc du clone 246 sans l'intron est la séquence A₁ [SEQ ID NO : 3].

25 Section 7 : Criblage d'une banque génomique de tabac à l'aide de l'ADNc caractérisé.

Une banque génomique d'ADN de tabac a été obtenue par digestion partielle à l'aide de l'enzyme MboI d'ADN isolé de germination de *Nicotiana tabacum* variété NK 326, et clonage des fragments de restriction

dans le phage EMBL-3 (Clontech). 500 000 phages recombinants ont été ciblés, après étalement à raison de 10 000 phages par boîte de Petri selon la technique connue de l'homme de l'art et décrite dans Sambrook et al (Molecular Cloning, A laboratory manual, Cold Spring Harbor Laboratory Press, 1989).

L'ADN phagique est transféré sur membrane de nitrocellulose (BA 85 Schleicher et Schüll), dénaturé pendant 2 min dans une solution NaOH 0.5 M, NaCl 1.5 M, puis trempé dans une solution de neutralisation NaCl 1.5 M, Tris HCl 0.5 M pH 7.4 pendant 5 min. Après rinçage rapide dans du 10 2 SSC (NaCl 0.3 M, citrate de sodium 30 mM) les filtres sont séchés 30 min à 37°C et l'ADN est ensuite fixé par traitement à 80°C sous vide pendant 1h30.

Les membranes sont ensuite préhybridées pendant 4 h à 37°C dans un tampon de composition 5 SSC (NaCl 0.75 M, citrate de sodium 75 mM), 50 % 15 formamide, 0.3 % lait écrémé.

L'hybridation est réalisée dans le même tampon, pendant 18 h à 37°C après addition de la sonde marquée à l'alpha 32P-dCTP, constituée d'1'insert de 750 paires de bases du clone d'ADNc 246.

Les membranes sont ensuite lavées 3 fois pendant 20 min à 37°C dans 20 une solution 5 SSC, SDS 0.1 %, puis 2 fois pendant 30 min à 37°C dans une solution 2 SSC, SDS 0.1 % et enfin 30 min à 42°C dans une solution 2 SSC, SDS 0.1 % ; elles sont ensuite autoradiographiées.

Après révélation des autoradiogrammes, chaque plage de lys présentant un signal positif est isolée, les phages sont élués dans du 25 milieu SM (NaCl 100 mM, Tris HCl 50 mM, pH 7.5, Mg SO₄ 5mM, gélatin 0.01 %) puis purifiés par un nouveau criblage réalisé dans les mêmes conditions.

12 clones ont ainsi été isolés et purifiés. L'ADN de chaque clone a été produit et purifié, selon la technique bien connue de l'homme d'art, puis digéré par l'enzyme SalI qui permet d'isoler après électrophorèse sur gel d'agarose l'insert d'ADN génomique.

Le transfert sur membrane de nylon suivi d'une hybridation avec la sonde constituée de l'ADNc du clone 246, montre un signal positif.

confirmant la présence dans cet ADN génomique d'une séquence complémentaire de l'ADNc 246.

Ces clones ont ensuite été cartographiés en utilisant une série d'enzymes de restriction. Un clone a été retenu parmi ceux-ci, qui 5 présente un signal d'hybridation dans la région centrale du fragment inséré dans l'ADN phagique. Ce clone a été nommé 246C.

Section 8 : Séquençage et analyse de la séquence du clone d'ADN génomique 246C

Un fragment de l'insert contenu dans ce phage a été isolé par 10 digestion à l'aide de l'enzyme SstI, puis cloné dans le phage pBluescript[®] 11 KS +/- (Stratagène) donnant le phagémide pKS246. Sa cartographie a été établie, elle est présentée sur la Figure 1. La séquence de cet insert [SEQ ID NO : 7] a ensuite été déterminée par la méthode de Sanger et al (PNAS-USA, 14, 5463, 1977) après création de 15 délétions progressives à l'aide des enzymes Exo III, mung bean et nucléase S1 selon la technique de Henikoff (Gene,-28, 351, 1984).

Cet insert, appelé gènes 246C, de 3046 paires de bases, est constitué d'une région codante de 853 pb débutant par un ATG en position 2146 et terminée par un codon TGA en position 2998 ; cette région est 20 entrecoupée d'un intron commençant en position 2464 et terminant en position 2653. Trois sites potentiels d'initiation de la transcription ont été déterminés par extension d'amorce selon la technique décrite dans Sambrook et al. (opus cité, 1989). Le site le plus probable est en position 2068.

25 La région promotrice du gène 246C en amont de la position 2146 est appelée promoteur 246C. L'étude de la séquence du promoteur 246C montre la présence de plusieurs motifs connus pour être impliqués dans la régulation des gènes.

Deux séquences consensus CAAT correspondant à cet élément 30 régulateur de la transcription des gènes eucaryotes ainsi qu'une séquence complémentaire et inverse ATTG sont présentes aux positions 2051, 2101 et 1967.

Deux séquences consensus TATAA sont présentes aux positions 2089 et 2111 ainsi qu'une séquence complémentaire AATAT à la position 2020. Ces trois motifs sont tous situés entre 10 et 50 paires de bases en aval des motifs CAAT et 30 à 50 paires de bases en amont des sites de transcription potentiels.

Une séquence TGACG a été identifiée à la position 1950 ; cette séquence mise en évidence dans le promoteur 35S du CaMV, semble responsable de l'expression de gènes chimériques dans les racines et dans les feuilles (LAM et al., 1989, Proc Natl Acad Sci USA, 86, 7890).

10 Trois régions présentent une homogénéité importante avec les motifs HSE (Heat Shock Elements) des plantes (GURLEY et KEY, 1991, Biochemistry, 30, 1). Ces régions sont homologues avec la séquence consensus GAANNGAANNTTCNNTTC ou TTCNNNTTCNNGAANNGAA ; elles sont proches des boîtes TATA et CAAT et dupliquées [SEQ ID NO : 17 et NO : 18].

15 Une séquence homologue au motif CCGTCC caractérisé comme étant impliqué dans la réponse à des éliciteurs d'origine fongique (LOIS et al., 1989, EMBO J., 8, 1641) a été localisée à la position 1822.

Le promoteur du gène 246 C présente sur environ 30% de sa longueur une homologie élevée (> à 90 %) sur 700 paires de bases avec le promoteur 20 végétal isolé du tabac ayant la séquence [SEQ ID NO : 8] décrit par TAKAHASHI et al. 1990, Proc. Natl. Acad. Sci. USA vol. 87 pp 8013-8016. Sur la figure 2, on a représenté l'alignement de la séquence d'ADN de ce promoteur [SEQ ID NO : 9, 10 et 11] (ligne du haut) avec la partie correspondante de la séquence d'ADN du promoteur de l'invention [SEQ ID 25 NO : 12 et 13] (ligne du bas).

Section 9 : Construction du vecteur d'expression pSG123 associant 1 promoteur du gène 246C au gène de la β-glucuronidase.

A partir du phagémide pKS 246, la digestion par les enzymes HindIII et BalI permet d'isoler un insert de 2200 paires de bases environ, 30 contenant la partie promotrice du gène 246C, le codon d'initiation de traduction et 11 codons codant pour la partie amino-terminale de la protéine.

Le plasmide pBI 101.3 (Clontech) est digéré par les enzymes HindIII et EcoRI ; le fragment de 2100 paires de bas s environ, contenant le gén de la β -glucuronidase codée par le locus uidA de *E. coli*, suivi du terminateur de la nopaline synthase d'*Agrobacterium tumefaciens*, est 5 ligué dans le plasmide pUC 19, ouvert aux mêmes sites, donnant un plasmide appelé plasmide pBI 201.3.

L'insert HindIII-BamHI portant les séquences promotrices du gén 246C est cloné dans le plasmide pBI201.3 ouvert aux sites HindIII et SmaI.

10 Le vecteur obtenu appelé pSG 123 contient donc le gène de la glucuronidase sous contrôle du promoteur du gène 246C. La séqu nce nucléotidique du gène chimérique complet est la séquenc [SEQ ID NO : 14].

15 Section 10 : Protocole de l'expression transitoire dans des protoplast s de tabac du gène de la glucuronidase sous contrôle du promoteur du gène 246C.

Préparation de protoplastes de tabac

Des feuilles de plantes de tabac (*Nicotiana tabacum*, var Samsun NN), âgées de 4 à 5 semaines sont prélevées, découpées en lanières et 20 incubées dans du milieu T.O (tableau 1, adapté de Chupeau et al., 1974, C.R. Acad Sci (Paris), 278 D, 1565) contenant 1 g/litre de cellulase R 100 Onozuka, 200 mg/l de macerozyme Onozuka (Yakult Honsha, Nishinoniya, Japon) et 500 mg/l de pectolyase Y23 (Sheishin Pharmaceutical Ind. Japon) pendant 15 h à 22°C.

25 Les protoplastes sont séparés des débris cellulaires par tamisage sur un tamis de nylon de maille 85 μm suivi par une centrifugation d 5 min à 50 g sur une solution de saccharose à 19 % (poids/volume). Les protoplastes flottant sur ce milieu sont lavés une fois dans le mili u T.O, comptés et leur nombre ajusté à la densité de 1.5×10^6 30 protoplastes/ml.

Préparation du vecteur pSG 123

La souche *E. coli* contenant le vecteur pSG 123 est cultivée sur milieu Luria (Gibco) contenant 50 mg/l d'ampicilline. L'amplification du

plasmid est réalisée selon le protocole décrit dans Sambrook et al., 1989 (opus cité). Le plasmide pSG 123 est ensuite purifié par centrifugation sur un gradient de chlorure de césum et par deux précipitations successives par l'éthanol. Le culot plasmidique est 5 ensuite remis en solution dans du Tampon Tris-HCl 10 mM pH 8,0.

Transformation par le polyéthylèneglycol

Les suspensions de protoplastes (320 µl par aliquote) sont incubées à 45°C pendant 5 min, puis rapidement refroidies sur la glace. Puis 50 µg de plasmide pSG123, 160 µl d'une solution de polyéthylèneglycol (40 % 10 polyéthylèneglycol, 0,4 M mannitol, 30 mM MgCl₂, 0,1 % Mes pH 5,8) sont alors ajoutés. Au bout de 10 min, les protoplastes sont collectés par centrifugation et remis en suspension par agitation douce dans 500 µl de tampon T0 et incubés à l'obscurité à 28°C.

Mesure de l'expression transitoire

15 Au bout de 24 h d'incubation, les protoplastes sont lysés après addition de 50 µl de tampon d'extraction 10X de la β-glucuronidase par une congélation à - 80°C suivie d'une décongélation à 37°C (Jeffers n., 1987, Plant Molec. Biol. Reporter, 5, 387).

20 Le surnageant obtenu après centrifugation à 10 000 g est utilisé pour mesurer l'activité β-glucuronidase par fluorimétrie (Jefferson, 1987, Plant Molec. Biol. Reporter, 5, 387).

Parallèlement, la quantité de protéines présente dans les extraits est mesurée selon la méthode de Bradford à l'aide du kit Bio Rad(Bio Rad. Lab.).

Tableau 1 : Composition du milieu T0 (pour 1 litre)

NH ₄ NO ₃	825 mg
K NO ₃	950 mg
CaCl ₂ . 2H ₂ O	220 mg
Mg SO ₄ . 7H ₂ O	185 mg
KH ₂ PO ₄	85 mg
H ₃ BO ₃	1 mg
Mn SO ₄ . 4H ₂ O	100 µg
Zn SO ₄ . 7H ₂ O	1 mg
KI	100 µg
AlCl ₃	30 µg
NiCl ₂ . 6H ₂ O	30 µg
CuSO ₄ . 5H ₂ O	30 µg
Fe SO ₄ . 7H ₂ O	27,8 mg
Na ₂ EDTA. 2H ₂ O	37,2 mg
Thiamine	100 µg
Ac. nicotinique	200 µg
Pyridoxine	1 mg
Biotine	10 µg
Panthoténate de Ca	1 mg
Saccharose	20 g
Inositol	100 mg
Mannitol	80 g
Acide 2-[N-Morpholino] ethanesulfonique (MES)	200 mg

pH ajusté à 5,8 avant autoclavage

Section 11 : Expression transitoire du gène de la glucuronidase sous contrôle du promoteur du gène 246C dans des protoplastes de tabac infectés par *Pseudomonas solanacearum*.

Cette expression transitoire, déterminée selon le protocole de la section 10, est mesurée après incubation pendant 24 h des protoplastes préparés selon le protocole ci-dessus dans le milieu T0 (décrit dans la section 10) contenant une suspension de bactéries *Pseudomonas solanacearum* (10 bactéries/protoplaste) obtenues comme décrit en section 1.

L'activité β -glucuronidase est exprimée en pmoles de méthylumbelliférone formée/min/mg de protéine.

Aucune activité n'est décelée dans les protoplastes de plantes n'ayant pas reçu d'ADN du vecteur pSG123. Une activité de 450 pmol/min/mg de protéine est mesurée sur des protoplastes traitées par du vecteur pBI221 (Clontech) contenant le gène de la β -glucuronidase sous contrôle du promoteur constitutif 35S CaMV ; cette activité est réduit à 300 pmol/min/mg de protéine après infection par les souches de *Pseudomonas solanacearum* GMI 1000 et GMI 1178.

Une activité de 600 pmol/min/mg de protéine est mesurée sur des protoplastes traités par du plasmide pSG 123 ; cette activité est peu modifiée après inoculation par la souche GMI 1178, elle augmente jusqu'à une valeur de 1000 pmol/min/mg de protéine après inoculation par la souche GMI 1000.

Le promoteur du gène 246C permet donc une expression basal importante du gène de la glucuronidase, expression plus importante que celle commandée par le promoteur 35S du CaMV, qui sert ici de contrôle. Ce promoteur présente de plus une forte inductibilité puisqu'il l'expression de la β -glucuronidase augmente de 40 % après infection par la souche bactérienne GMI 1000.

Secti n 12 : Expression transitoire du gène d la glucuronidase sous contrôle du promoteur du gène 246 C de protoplastes de tabac traités par un éliciteur (heptasaccharides de chitine) ou une hormone.

5 L'expression est mesurée après incubation des protoplastes pendant 24 h comme décrit ci-dessus dans le milieu T0 contenant un éliciteur à la concentration de 25 µM ou une hormone, le 2-4-D (acide 2-4 dichlorophénoxyacétique) à la concentration 4 µM. Les éliciteurs utilisés (composés glycosidiques issus de la paroi des champignons pathogènes) 10 sont des heptasaccharides de chitine ayant la propriété d'induire des réactions de défense dans les plantes (Roby et al., 1987, BBRC, 143, 885).

Aucune activité n'est détectée dans des protoplastes non traités qui servent de contrôle. Une activité de l'ordre de 400 pmol de méthylumbelliférone formée/min/mg de protéine est mesurée à partir des protoplastes ayant reçu de l'ADN du vecteur pBI 221, cette activité n'est pas affectée par le traitement (éliciteurs ou hormone).

Les protoplastes ayant reçu de l'ADN du vecteur pSG 123 présentent une activité de 450 pmol/min/mg de protéine ; cette activité est accru 20 de 50 % si les protoplastes sont traités par l'hormone 2-4-D et de 70 % si les protoplastes sont traités par l'heptasaccharide de chitine.

Les caractéristiques de ce promoteur mises en évidence lors d l'infection de protoplastes par la souche bactérienne GMI 1000 (niveau d base élevé et inductibilité), peuvent être reproduites en utilisant un 25 inducteur issu de la paroi de champignons phytopathogènes.

Section 13 : Construction d'un vecteur d'expression stable dans les cellules végétales : le vecteur binaire pSG246

A partir du vecteur pSG 123, une coupure par les endonucléases de restriction HindIII et EcoRI, suivie d'une électrophorèse sur gel 30 d'agarose, permet d'isoler le gène chimérique associant le promoteur 246C à la partie codante de la β-glucuronidase et le terminateur NOS. Le gène chimérique est introduit et ligué dans le vecteur binaire pBIN 19 (Clontech) préalablement ouvert aux sites HindIII et EcoRI donnant 1

vecteur pSG246. Ce vecteur binaire possède deux gènes de résistance à la kanamycine, l'un pouvant s'exprimer dans les bactéries, l'autre situé immédiatement en amont du gène recombinant complet (Bevan, 1984, Nucl. Ac. Res., 12, 8711) pouvant être transféré aux cellules végétales. Le 5 gène de résistance à la kanamycine servira de marqueur de sélection au cours des étapes de transformation et d'analyse de la descendance des plantes transformées.

Le vecteur obtenu, appelé pSG246, est cloné dans la souche *E. coli* DH5 α .

10 **Section 14 : Transfert dans *Agrobacterium* du plasmide pSG246 contenant la β -glucuronidase sous contrôle du promoteur du gène 246C du tabac**

a) **Transfert dans *Agrobacterium tumefaciens***

Ce transfert est réalisé par transformation selon la méthode de congélation-décongélation décrite dans Plant Molecular Biology Manual (Gelvin et al eds., Kluwer Academic Publishers, 1988) et résumé ci-après.

Des cellules compétentes d'*Agrobacterium tumefaciens* (souche LBA 4404, Clontech) sont préparées, par refroidissement rapide dans la glac 20 d'une culture en phase exponentielle de croissance. Les bactéries sont alors remises en suspension dans du CaCl₂ 20 mM. Des aliquotes de cette suspension sont distribuées dans des tubes Eppendorf, puis congelées dans l'azote liquide.

1 μ g de plasmide pSG246 est ajouté aux cellules congelées, 25 contenues dans un tube Eppendorf. La suspension est ensuite incubé à 37°C pendant 5 min ; 1 ml de milieu Luria (Gibco) est alors rajouté et 1 tube est incubé à 28°C pendant 4 h. Des parties aliquotes sont étalées sur des boîtes de Petri contenant un milieu minimum gélosé, décrit dans Plant Molecular Biology Manual (op. cité) en présence de 100 mg de rifampicine et 25 mg/l de kanamycine. Dans ces conditions, seules poussent les colonies d'*Agrobacterium tumefaciens* ayant intégré le plasmide pSG246. Celles-ci contiennent le gène chimérique dans un contexte permettant sa replication.

La résistance aux deux antibiotiques des colonies sélectionnées est vérifiée en repiquant celles-ci sur le même milieu de sélection deux fois de suite. La présence du gène chimérique associent le promoteur 246 C à la partie codante de la β -glucuronidase dans *Agrobacterium tumefaciens* 5 est vérifiée par la méthode de Southern Blot sur une préparation d'ADN total (Lyse des cellules, purification de l'ADN par extraction à l'aide du mélange phénol/chloroforme, selon le protocole décrit par Gelvin dans l'ouvrage cité ci-dessus, coupure de l'ADN purifié à l'aide d'enzymes de restriction, électrophorèse sur gel d'agarose, transfert sur membrane et 10 hybridation selon les techniques bien connues de l'homme de l'art).

b) Transfert dans *Agrobacterium rhizogenes*

Ce transfert est réalisé de la même façon que le transfert dans *Agrobacterium tumefaciens* décrit en a), avec la souche *Agrobacterium rhizogenes* A4 décrite par Guerche et al., (1987) Mol. Gen. Genet. 206, 15 382.

Section 15 : Obtention de plantes de tabac transformées par *Agrobacterium tumefaciens* contenant le plasmide pSG246.

Le tabac *Nicotiana tabacum* cultivé in vitro a été infecté par *Agrobacterium tumefaciens* contenant le plasmide pSG246 selon la procédure 20 de Horsch et al., bien connue de l'homme du métier (Horsch R.B. et al., 1985, Science 227, 1229-1231), dont les principales étapes sont exposées ci-après.

Des disques de feuilles de plantes axéniques de tabac *Nicotiana tabacum* (variété Bottom Special) sont incubés dans une culture d'*A. tumefaciens* hébergeant le plasmide pSG246. Les disques égouttés sur papier Whatman sont transférés sur des milieux de culture en boîtes de Pétri afin de multiplier les cellules transformées de façon à obtenir des scions (Murashige et Skoog, 1962, Physiol., Plant., 15, 473), puis produire des bourgeons en présence de céfotaxime (500 μ g/ml) destinée à éliminer 30 *Agrobacterium tumefaciens* et de kanamycine (100 μ g/ml).

Parallèlement, des transformations ont été réalisées avec des souches d'*Agrobacterium tumefaciens* LBA 4404 contenant les vecteurs :

- pBI 101 (Clontech), constitué de la partie codante de la glucuronidase précédant le terminateur de la nopaline synthase dans le vecteur binaire pBIN 19. Cette construction, dénommée ci-après construction pBI 101, est dépourvue de promoteur.

5 - pBI 221 (Clontech), constitué d'un fragment de 800 paires d'bases du promoteur 35S du virus de la mosaïque du chou f1 inseré devant la partie codante de la glucuronidase dans le vecteur pBI 101. Cette construction sera dénommée ci-après construction pBI 221.

10 Les bourgeons résistants à la kanamycine ont été ensuite transférés sur un milieu permettant l'induction des racines en présence de carbenicilline et de kanamycine. Les plantules sont ensuite repiquées en terrines dans un substrat composé de tourbe et de terreau et mises à croître en serre. Toutes les plantes transformées (génération R0) ayant 15 survécu aux étapes de régénération et d'acclimatation en serre se sont révélées morphologiquement normales et fertiles. Elles ont été autofécondées et ont donné des graines (génération R1).

Section 16 : Analyse de l'ADN génomique des plantes de tabac transformées par *Agrobacterium tumefaciens* contenant le plasmide pSG246
20 (génération R0), selon la technique de Southern Blot.

L'ADN génomique de tabac de haut poids moléculaire a été isolé à partir de feuilles matures de plantes transgéniques de la génération R0 selon la méthode d'extraction à l'aide de bromure de cétyltriméthylammonium et de purification par précipitation, décrite dans 25 l'ouvrage "Plant Molecular Biology Manual" déjà cité.

10 µg de cet ADN génomique ont été digérés pendant une nuit à 37°C avec 20 unités des enzymes de restriction HindIII et EcoRI. Les fragments de restriction obtenus ont été séparés par électrophorèse sur gel d'agarose (1%). L'ADN a été transféré selon la méthode de Southern Blot sur un filtre de Nylon (Hybond N+ Amersham), et hybridé avec une sond nucléotidique comprenant une partie de la séquence du gène recombinant, marqué par couplage à la peroxydase (kit ECL, Amersham). Les membranes

s nt ensuite lavées et révélées selon le protocole recommandé par Amersham.

L'analyse des films permet de tirer les conclusions suivantes :

- certaines plantes ne possèdent pas de copies du gène recombinant transféré (absence de signal),
- la plupart des plantes testées contiennent au moins une copie sans rearrangement de la construction : promoteur 246C - séquence codante de la β -glucuronidase-terminateur NOS, dénommée ci-après construction pSG 246
- certains profils suggèrent qu'il existe des rearrangements internes dans cette construction, mais ces événements sont rares.

Section 17 : Etude des caractéristiques d'activation du promoteur 246 C dans les plantes de tabac transgéniques

Cette étude a été réalisée sur des plantes de la génération R1 qui ont été préalablement sélectionnées *in vitro* sur le milieu de Murashige et Skoog gélosé renfermant 500 µg/ml de kanamycine.

10 plantes par descendance de transformant sélectionnées pour leur résistance à la kanamycine sont repiquées sur du terreau puis cultivées pendant 4 à 5 semaines en chambre de culture.

a) Activation par la bactérie phytopathogène *Pseudomonas solanacearum*

Inoculation par infiltration

Des tests d'inoculation sont conduits selon le protocole décrit en section 1 sur quatre feuilles appartenant à 2 plantes différentes. Les mesures d'activité glucuronidase effectuées selon la méthode décrite par Jefferson (*Plant Molecular Biology Reporter*, 5, 387, 1987) en utilisant le 4-méthylumbelliféryl β -D-glucuronide comme substrat.

Les résultats montrent que :

- les plantes renfermant la construction pBI 101 ne présentent pas d'activité glucuronidase détectable,
- les plantes renfermant la construction pBI 121 présentent une activité glucuronidase comprise entre 5000 et 70 000 pmoles de

méthylumbelliférone/min/mg de protéine correspondant à une expression constitutive attendue pour cette construction. Une légère activation de ce promoteur en réponse au stress d'infiltration a été constatée pour certains transformants,

5 • les plantes contenant la construction pSG246 présentent une activité glucuronidase faible dans les plantes non inoculées, comprise entre 2000 et 5000 pmol/mg de protéine. Une forte induction est mesurée en réponse à l'infection bactérienne, telle quelle que soit la souche bactérienne utilisée (GMI 1000 ou K60 (Sequeira et al., Physiol. Plant. Pathol., 10, 43, 1977), souche compatible provoquant des symptômes). Le facteur d'induction (rapport entre l'activité mesurée après inoculation et l'activité mesurée avant inoculation) est de l'ordre de 20 fois et les valeurs d'activité dépassent parfois celles obtenues avec les plantes exprimant la construction pBI 121.

10

15

Infection bactérienne localisée :

Une infection bactérienne localisée est réalisée par dépôt d'un goutte de suspension bactérienne de *Pseudomonas solanacearum* (3 µl renfermant 3×10^5 bactéries obtenues comme décrit en section 1) sur une blessure obtenue par perforation d'une feuille à l'aide d'une aiguille de seringue.

Le promoteur 246C est activé autour de la lésion créée par l'infection et également dans toutes les parties de la plante infectée (feuille inoculée, feuilles supérieures et feuilles inférieures de la plante et racines). Cette activation systémique se produit dès les premières heures après inoculation.

Aucune activation n'a été observée dans des plantes de génération R1 issues de plantes transformées par les constructions pBI 101 et pBI 121.

30 Le même type d'infection localisée, réalisée au niveau de racines de plantes de tabacs cultivées *in vitro* conduit également à une activation forte du promoteur au site d'inoculation mais également dans l'ensemble de la racine et dans la partie aérienne de la plante.

b) Activation par le champignon pathogène *Chalara elegans*

Etude in vitro

10 à 15 ml de milieu Murashige et Skoog liquide sont versés dans une boîte de Petri contenant une culture de 3 semaines de *Chalara elegans* en cours de sporulation (culture sur milieu gélosé Potato dextrose Agar PDA, Difco).

Le grattage de la surface de la culture permet de recueillir les spores. Après comptage, une dilution appropriée permet d'obtenir des suspensions de 10^4 et 10^5 spores par ml.

Des aliquotes de 7 ml sont distribuées dans des boîtes Magenta (sigma). Une plante de tabac transgénique (âgée de 3 semaines environ et cultivée en milieu stérile) transformée par le gène de β -glucuronidase sous contrôle du promoteur 246C est introduite dans chaque boîte, leurs racines trempant dans la suspension de spores. Les plantes sont ensuite prélevées, congelées et l'activité glucuronidase déterminée. Au moment de l'infection l'activité spécifique est de - 20 000 pmoles de méthylumbelliféron par mg de protéine. Comparativement à des témoins non inoculés placés dans les mêmes conditions, cette activité est multipliée par des facteurs de 8 et 8,5 pour les infections à 10^4 et 10^5 spores par ml, respectivement, dès 4 jours après l'inoculation.

Etude en serre

10 plantes par descendance de transformant, sélectionnées pour leur résistance à la kanamycine sont repiquées en godets de dimension 3 x 3 cm. A l'apparition de la 5ème feuille, les plantes sont inoculées en déposant au niveau du collet une suspension de 5×10^5 endoconidies de *Chalara elegans*.

c) Activation par le champignon pathogène *Sclerotinia sclerotiorum*

Etude sur disques foliaires

Des disques foliaires de 20 mm de diamètre provenant de plantes exprimant la construction pSG246 sont placées en survie sur un milieu liquide approprié. Sur chacun de ces disques est placé un cube de gélose de 5mm de côté environ et contenant du mycélium de *Sclerotinia sclerotiorum*. L'activité glucuronidase, mesurée en fonction du temps

révèle que la présence de mycélium induit l'activité glucuronidase après 7 heures de contact. Au bout de 24 heures, l'activité est multipliée par 4 par rapport à celle de disques foliaires non mis en contact avec le mycélium. La même expérience réalisée sur des disques de feuille issus d tabacs témoins (n'exprimant pas la construction pSG246) ne révèle qu'une activité glucuronidase assimilable à un bruit de fond.

d) Activation par des éliciteurs

Deux types d'éliciteurs ont été utilisés l'un de type biotique correspondant à des molécules issus de molécules ou de macromolécules naturelles, l'autre de type abiotique correspondant à des molécules chimiques.

d1. Eliciteurs biotiques d'origine bactérienne ou fongique

Les éliciteurs utilisés sont l'harpin qui est une protéine isolée de *Erwinia amylovora* et une protéine isolée du surnageant de culture de *Pseudomonas solanacearum*. De même des éliciteurs protéiques tels que la cryptogéine isolée de *Pseudomonas cryptogea* et la capsicéine isolée de *Pseudomonas capsici* (Ricci et al. 1989, Eur. J. Biochem. 183 : 555-563) ont été testés.

Dans tous les cas, des concentrations appropriées d'éliciteurs ont été infiltrés à l'aide d'une seringue sous l'épiderme inférieur des feuilles de tabac exprimant la construction pSG246. L'induction d'activité, dans tous les cas est induit par la présence d'éliciteur dans un anneau de 5mm environ immédiatement adjacent à la zone d'infiltration. La stimulation est très apparente 24 heures après l'infiltration mais visible dès 6 heures. L'activité au bout de 24 heures est souvent multipliée par 5 à 6 par comparaison à celles des plantes témoin (plantes exprimant la construction pSG246 mais sans éliciteurs injectés sous l'épiderme).

d2. Eliciteurs abiotiques : acide salicylique, sulfate de cuivre

Des feuilles de tabac exprimant la construction pSG246 et détachées de la plante sont immergées dans des solutions de concentration 1 à 10 µg/ml d'acide salicylique ou de 0,025 à 0,25 mM de sulfate de cuivre.

En présence d'acide salicylique l'activité glucuronidase est multipliée par 5 au bout de 6 heures et par 10 après 24 heures. Dans le cas du sulfate de cuivre, l'activité glucuronidase est multipliée par 17 à 0,025 mM et 11 à 0,25 mM si l'on compare à des feuilles de plantes 5 témoins non traitées.

d3. Induction par des régulateurs de croissance

L'application d'une auxine sous la forme d'acide 2,4-dichlorophénoxyacétique (2,4-D) a été réalisée aux concentrations de 1,5 et 10 µM. L'application réalisée par immersion de pétioles des feuilles 10 détachées de tabac exprimant la construction pSG246 montre que l'induction dans la feuille commence 6 heures après l'application de l'auxine à la concentration de 5 µM, pour être stimulée 18 fois après 12 heures comparée aux feuilles de plantes témoins, non traitées par l'auxine.

15 L'activité glucuronidase est mesurée lors de l'apparition des symptômes de la maladie soit 15 jours environ après l'inoculation.

Les résultats de l'activité mesurée au niveau de la partie aérienne de la plante entière montrent que :

- les plantes renfermant la construction pBI 101 ne présentent pas 20 d'activité glucuronidase détectable.
- les plantes transformées par la construction pBI 121 présentent une activité de 12 000 à 60 000 pmoles de méthylumbelliféron/min/mg de protéine. Cette activité varie peu après inoculation.
- 25 • les plantes transformées à l'aide de la construction pSG246 présentent une activité glucuronidase faible chez les plantes saines. Cette activité augmente considérablement dans les plantes présentant des symptômes, atteignant des vecteurs de 85 000 pmoles de méthylumbelliferone formée/min/mg de protéine.

30 e) Activation par une blessure

Cette activation a été recherchée sur des feuilles de plantes de génération R1 contenant la construction pSG246, âgées de 5 semaines

environ et préalablement sélectionnées pour leur résistance à la kanamycine.

L'excision simple d'une feuille entraîne une activation lente et faible du promoteur, à la fois dans la feuille et dans la plante : 5 cependant, la lacération d'une feuille entraîne une augmentation très forte (5 fois) et extrêmement rapide (30 min) de l'activité glucuronidase de la feuille lacérée.

f) Activation par un choc thermique

Des plantes de tabac, de génération R1, contenant la construction 10 pSG246, âgées de 5 semaines environ et préalablement sélectionnées pour leur résistance à la kanamycine sont transférées pendant 2 ou 4 h dans une enceinte à 40°C afin de provoquer un choc thermique. A la fin du traitement, les plantes sont immédiatement congelées dans l'azote liquide et leur activité β -glucuronidase déterminée sur l'ensemble de la partie 15 aérienne.

Le même protocole est appliqué à des plantes transformées par la construction pBI 121 ; l'activité de ces dernières n'est pas modifiée par le choc thermique.

Par contre, les plantes contenant la construction pSG246 présentent 20 une forte augmentation d'activité glucuronidase après le choc thermique ; le facteur moyen de stimulation, déterminé sur plusieurs plantes, est voisin de 12.

g) Expression au cours du développement et répartition spatiale de l'expression dans la plante

25 L'utilisation du substrat histochimique de révélation de l'activité glucuronidase, le 5-bromo-4-chloro-3-indolyl- β -D-glucuronide de cyclo-hexylammonium (X-gluc) selon la méthode décrite par Jefferson (Plant Molecular Biology Reporter, 5, 387, 1987), permet de visualiser la localisation de l'activité dans les tissus de la plante.

30 Germination des graines :

Au cours de la germination des graines de tabac de génération R1 exprimant la glucuronidase sous contrôle du promoteur 246C, l'expression est non détectable dans les cotylédons, élevée dans toute la racine et

très forte dans les méristèmes racinaires et caulinaires. Dans la plante développée la détection de l'activité glucuronidase a été relevée dans tous les tissus testés, y compris dans la graine sèche.

Section 18 : Obtention de plantes de colza transformées par *Agrobacterium rhizogenes* contenant le plasmide pSG246.

La transformation est réalisée selon le protocole de P. Guerche et al. (P. Guerche et al., 1987, Mol. Gen. Genet., 206, 382). Les différents milieux de culture sont ceux décrits par Pelletier et al. (Pelletier et al., 1983, Mol. Gen. Genet., 191, 244). Leur composition sera explicitée 10 par la suite (tableau 2).

a) Obtention de racines transformées

Des segments de tige sont prélevés sur l'extrémité apicale de plantes de colza (*Brassica napus* : variétés de printemps Brutor et Westar et variété d'hiver) de 1 m de haut environ. Ces segments sont stérilisés 15 en surface, rincés dans de l'eau stérile, découpés en segments de 1,5 cm de long environ et placés dans un tube contenant le milieu A.

L'inoculation de l'extrémité de ce segment est effectuée par dépôt d'une suspension de la souche d'*Agrobacterium rhizogenes* contenant 1 plasmide 246.

20 Des racines transformées apparaissent sur le segment de tige au bout de 1 à 2 semaines, elles sont prélevées et placées sur le milieu B gélosé (15 g/l) et complémenté par 500 µg de céfotaxime/ml.

b) Régénération de plantes transformées

Des fragments de racines sont incubés pendant 15 jours dans 1 25 milieu D contenant 3 mg/l d'acide 2,4-dichlorophenoxyacétique, puis placés sur le milieu RCC d'induction de bourgeons. Des plantes racinées sont ensuite obtenues par passage des bourgeons sur les milieux F et G.

Tableau 2 : Composition des différents milieux utilisés pour l'obtention de plantes de colza transformées

Milieux Composition (mg/l)	A	B	RCC	F	G	D
NH ₄ NO ₃	1 650		1 650	1 650	825	200
KNO ₃	1 900	2 500	1 900	1 900	950	1 250
(NH ₄) ₂ SO ₄		134				67
NaH ₂ PO ₄		150				75
KH ₂ PO ₄	170		170	170	85	35
CaCl ₂ ·2H ₂ O	440	750	440	440	220	525
MgSO ₄ ·7H ₂ O	370	250	370	370	185	250
H ₃ BO ₃	12,4	3	12,4	6,2	6,2	12,4
MnSO ₄ ·4H ₂ O	33,6	10	33,6	22,3	22,3	33,6
ZnSO ₄ ·7H ₂ O	21	2	21	8,6	8,6	21
KI	1,66	0,75	1,66	0,83	0,83	1,66
Na ₂ MoO ₄ ·2H ₂ O	0,5	0,25	0,5	0,25	0,25	0,5
CuSO ₄ ·5H ₂ O	0,05	0,025	0,05	0,25	0,25	0,05
CoCl ₂ ·6H ₂ O	0,05	0,025	0,05	0,25	0,25	0,05
FeSO ₄ ·7H ₂ O	22,4	27,8	27,8	27,8	22,24	27,8
Na ₂ EDTA	29,84	37,3	37,3	37,3	29,84	37,3
Inositol	100	100	100	100	100	100
Acide nicotinique	0,5	1	0,5	1	0,5	1
Pyridoxine HCl	0,5	1	0,5	1	0,5	1
Thiamine		10		10		10
Glycine	2		2		2	
Glucose	10 000	20 000			10 000	
Saccharose	10 000		10 000	10 000		20 000
D-mannitol		70 000	10 000			
N.A.A.		1	1	0,1	0,1	
B.A.		1	0,5	0,5		
2,4D		0,25				1
Adénine Sulfate						30
I.P.A	.					30
GA				0,02		
Tween 80		10				
Agar	8 000		8 000	8 000	8 000	
pH	5,8	5,8	5,8	5,8	5,8	5,8
Gentamycine (sulfate)	10					

FEUILLE DE REMPLACEMENT (REGLE 26)

NAA : acide naphtalène acétique
BA : 6-benzyl-aminopurine
2,4D : acide dichloro-2,4-phénoxyacétique
IPA : N⁶-(2-iso-pentyl) adénine
5 GA₃ : acide gibberellique
EDTA : acide éthylènediaminetraacétique

Section 19 : Caractéristiques de l'expression du gène de glucuronidase sous contrôle du promoteur 246C dans les plantes de colza

a) Activation par une blessure

10 Les feuilles de plantes de colza de génération R1, renfermant la glucuronidase sous contrôle du promoteur 246C ont été excisées u excisées et lacérées.

15 Une activation faible d'activité glucuronidase est observée dans les feuilles excisées ; une activation très forte (6 fois l'activité basale) et extrêmement rapide (30 min environ) est consécutive à la lacération.

b) Infection par les champignons phytopathogènes

Parasite foliaire (*Alternaria brassicae*) :

20 Des plantes de colza de génération R1, possédant la constructi n pSG246 sont cultivées pendant 3 semaines environ en pot sur du terreau. Les plantes sont alors inoculées localement à l'aide d'une suspension de spores (10 ml, contenant 1000 spores obtenues après culture sur le mili u gélosé PDA) du champignon pathogène *Alternaria brassicae*, déposées sur une blessure réalisée à l'aide d'une aiguille. Une nécrose se développe 25 alors autour de cette blessure.

On observe alors une forte stimulation de l'activité glucuronidase (détectée par test à l'aide de X-gluc, Section 17e) dans la feuille inoculée, autour de la zone nécrotique.

Parasite racinaire (*Rhizoctonia solani*)

30 Des graines de colza de génération R1, transformées par la construction pSG246 sont semées sur un substrat constitué d'un mélange de tourbe, vermiculite et sable (10: 10: 5, v : v) contenu dans un pot de 1 litre. Les graines sont recouvertes d'une couche de 1 cm de substrat contenant 10 000 propagules viables de *Rhizoctonia solani* par gramme. Ces

propagules sont obtenus par culture pendant 15 jours d'un souche de *Rhizoctonia* en fiole de Roux sur des grains de riz, suivi d'un broyage à une granulométrie inférieure à 1 mm.

5 Au cours de leur développement, les plantes de colza sont attaquées au niveau racinaire.

On observe une forte stimulation de l'activité glucuronidase (détectée par test à l'aide de X-gluc, Section 17e) dans les racines de plantes infectées, comparativement à l'activité mesurée dans les racines de plantes contrôles (même descendance R1 de plantes transformées mais 10 non infectées). De plus, une forte stimulation de l'activité glucuronidase est induite de façon systémique dans les parties aériennes.

c) Activation par un choc thermique des plantes de colza de génération R1

15 Des plantes de colza, de génération R1, contenant la construction pSG246, âgées de 5 semaines environ sont transférées pendant 2 ou 4 h dans une enceinte à 40°C afin de provoquer un choc thermique. A la fin du traitement, les plantes sont immédiatement congelées dans l'azote liquide et leur activité β -glucuronidase déterminée sur l'ensemble de la partie aérienne.

20 Le même protocole est appliqué à des plantes transformées par la construction pBI 121 ; l'activité de ces dernières plantes n'est pas affectée par le choc thermique.

25 Par contre, les plantes contenant la construction pSG246 présentent une forte augmentation d'activité glucuronidase après le choc thermique ; le facteur moyen de stimulation, déterminé sur plusieurs plantes, est voisin de 12.

d) Expression au cours du développement

Au cours de la germination de graines de colza de génération R1 renfermant la glucuronidase sous contrôle du promoteur 246C, on observe 30 une expression de cette protéine dans les cotylédons ; une expression élevée dans toute la racine et très forte dans les méristèmes racinaires et caulinaires.

Une très forte expression a également été mesurée dans les racines et les cals transformés, au cours des étapes de régénération de plantes transgéniques ainsi que dans les diverses parties de la plante (y compris les graines matures).

5 Section 20 : Obtention de cals de tournesol transformés par *Agrobacterium rhizogenes* contenant le plasmide pSG246.

La transformation est réalisée selon le protocole de Guerche et al (Mol. Gen. Genet., 206, 382, 1987) initialement mis au point pour la transformation du colza. Les différents milieux de culture sont ceux 10 décrits par Pelletier et al. (Mol. Gen. Genet. 191, 244, 1983) leur composition a été explicitée (tableau 2).

Des hypocotyles de tournesol sont obtenus par germination pendant 7 à 10 jours de graines sur de la vermiculite. Ces graines sont placées dans une chambre de culture, les conditions 16 h d'éclairage à 20°C/8 h 15 d'obscurité à 17°C. Les hypocotyles sont stérilisés en surface, rincés dans de l'eau stérile et placés dans un tube contenant du milieu Murashige et Skoog, dont la concentration en macroéléments est réduite de moitié.

L'inoculation de l'extrémité de ce segment est effectuée par dépôt 20 d'une suspension de la souche d'*Agrobacterium rhizogenes* contenant le plasmide pSG246.

Des racines transformées apparaissent au bout de un mois, elles sont prélevées et placées sur le milieu B gélosé (15 g/l) et complémenté par 25 500 µg de cefotaxime/ml pendant 4 semaines avec un repiquage hebdomadaire. Elles sont ensuite cultivées dans le même milieu liquide en agitation (100 tours/min) et repiquées tous les mois. Le passage de ces racines dans le milieu D, permet la formation de cals à partir des racines transformées.

L'activité glucuronidase des racines cultivées dans le milieu B 30 liquide et de cals cultivés sur le milieu D, estimée par fluorimétrie, présente des valeurs très importantes, comprises entre 10^4 et 10^5 pmoles de methylumbelliféron formée/min/mg de protéines.

Section 21 : Expression transitoire du gène de la glucuronidase sous contrôle du promoteur du gène 246C dans des embryons immatures de Tournesol.

Les embryons immatures des plantes mères au champ du génotype 105
5 ont été prélevés et mis en culture pendant 14 jours sur le milieu I
(tableau 3) à 25° C et à l'obscurité. Ces embryons sont ensuite cultivés
pendant 3 jours sur le milieu II à 25° C sous une photopériode de 16
heures par jour/ 8 heures par nuit. Une vingtaine d'embryons sont ensuite
déposés côte-à-côte sur le milieu III.

10 **Préparation du vecteur pSG123 :**

Celle-ci est réalisée selon le protocole décrit en Section 10.
Transformation du matériel végétal :

L'introduction de l'ADN plasmidique (vecteur pSG123) dans les
cellules végétales est réalisé par utilisation du canon à particules
15 construit sur le principe décrit par Zumbrunn (Zumbrunn et al. 1989
Technique 1(3) 204-216). L'ADN plasmidique - est adsorbé sur des
microparticules de tungstène à raison de 4 μ g/mg de tungstène. 2,5mg du
mélange tungstène/ADN sont alors déposés sur un macroprojectile qui est
accéléré par l'explosion d'une cartouche.

20 L'écrasement du macroprojectile sur une plaque d'arrêt percée d'un
trou permet de projeter les microparticules de tungstène et l'ADN dans
les cellules.

Mesure de l'expression transitoire :

L'ADN adsorbé sur les microparticules de tungstène qui ont pénétré
25 dans les cellules végétales est libéré ; le gène chimérique associant le
promoteur du gène 246C à la glucuronidase est alors transcrit puis
traduit. La glucuronidase obtenue est alors visualisée par le test
histochimique décrit par JEFFERSON et al. 1987 Plant Molecular Biology
Reporter 5,387, en utilisant le substrat 5-bromo-4-chloro-3-indolyl- β -D-
30 glucuronide de cyclohexylammonium (X-gluc). Les cellules exprimant le
gène présentent alors une coloration bleue.

Le comptage du nombre de cellules bleues obtenues par boîte de Petri au cours d'une expérience d'expression transitoire permet d

compter le nombre de cellules transformées et d'estimer l'expression de la construction chimérique testée.

L'expression transitoire mesurée en utilisant le substrat X-gluc., 48 heures après le bombardement à l'aide du canon à microparticules 5 montre que le gène de β -glucuronidase s'exprime dans les embryons immatures de Tournesol.

L'intensité est plus forte que celle induite par l'utilisation du plasmide pBI221 (Clontech), dans lequel le gène de glucuronidase est placé sous contrôle du promoteur 35S du virus de la mosaïque du choux-fleur.

Le nombre de cellules transformées exprimant le gène de glucuronidase sous contrôle du promoteur du gène 246C est voisin de 140 par boîte (valeur moyenne de 4 expériences) alors que le nombre de cellules transformées est de 60 par boîte (valeur moyenne de 4 15 expériences) en présence du plasmide pBI221 dans lequel le gène de glucuronidase est placé sous contrôle du promoteur 35 S du virus de la mosaïque du choux-fleur.

Les embryons sont ensuite égouttés sur du papier filtre stérile, puis remis en culture sur le milieu II à l'obscurité pendant 3 jours. Les 20 embryons sont alors brièvement rincés par du milieu Murashige et Skoog liquide (Murashige et Skoog, 1962, Physiol. Plant 15 : 473) contenant 500 mg/l de l'antibiotique céfotaxime. Ils sont ensuite égouttés sur du papier filtre stérile et mis en culture sur du milieu III contenant 250 mg/l de céfotaxime, 250 mg/l de carbenicilline et 50 mg/l d 25 paromomycine. Cette culture s'effectue à 25°C sous une photopériode de 16 h jour / 8 h nuit ; les tissus végétaux sont repiqués tous les 21 jours sur ce même milieu.

Les bourgeons néoformés à partir de ces tissus sont transférés sur le milieu IV, sous les mêmes conditions de température et photopériode. 30 Les plantes enracinées sont ensuite mises à pousser en serre.

**Section 22 : Expression de la β -glucuronidase, sous contrôle du promoteur
246C dans les plantes de Tournesol transformées.**

Les plantes exprimant la construction pSG246 ont une expression d'
5 la glucuronidase au moins égale à celle obtenue avec des plantes
transformées à l'aide de la construction pBI121.

Tableau 3 : Composition des différents milieux utilisés pour l'obtention de plantes de turvesol transformées

Milieux	I	II	III	IV
KNO ₃	2500	2500	1900	1900
NH ₄ NO ₃	-	-	1650	1650
CaCl ₂ . 2H ₂ O	150	150	440	440
MgSO ₄ . 7H ₂ O	250	250	370	370
KH ₂ PO ₄	-	-	170	170
(NH ₄) ₂ SO ₄	134	134	-	-
NaH ₂ PO ₄ . H ₂ O	150	150	-	-
ZnSO ₄ . 7H ₂ O	2	2	8,6	8,6
H ₃ BO ₃	3	3	6,2	6,2
KI	0,75	0,75	0,83	0,83
CuSO ₄ . 5H ₂ O	0,025	0,025	0,025	0,025
Na ₂ MoO ₄ . 2H ₂ O	0,25	0,25	0,25	0,25
CoCl ₂ . 6H ₂ O	0,025	0,025	0,025	0,025
Mn SO ₄ . 4H ₂ O	10	10	22,3	22,3
Na ₂ EDTA	37,3	37,3	37,3	37,3
FeSO ₄ . 7H ₂ O	27,8	27,8	27,8	27,8
Ac. nicotinique	1	- 1	0,5	0,5
Thiamine HCl	10	10	0,1	0,1
Pyridoxine HCl	1	1	0,1	0,5
Myo-inositol	4000	4000	100	100
L-glycine	-	-	-	2
L-alanine	1000	1000	-	-
L-glutamine	800	800	-	-
L-serine	160	160	-	-
L-tryptophane	50	50	-	-
L-cystéine	10	10	-	-
Ca-D-panthoténate	-	-	0,8	-
Ac. folique	-	-	0,1	-
Chl. de choline	-	-	0,1	-
Ac p-Aminobenzoïque	-	-	0,05	-
Riboflavine	-	-	0,05	-
Saccharose	120 000	60 000	30 000	30 000
Ac.Dichloro-2-4-phenoxyacétique	2	-	-	-
6-Benzylaminopurine	-	0,4	-	-
Kinétine	-	-	1	-
Ac.indoleacétique	-	-	-	0,05
Agar	7000	7000	7000	8000
pH	5.7	5.8	5.7	5.7

**S ction 23 : Protocole d l'expression dans les tissus de monocotylédones
du gène de la β -glucuronidase, sous contrôle du promoteur
246C**

Obtention du matériel végétal :

5 Des graines du génotype d'orge GERBEL sont mises à germer en serre sur de la vermiculite. Au bout de 7 jours, les feuilles et les racines ont été prélevées et placées sur une boîte de Petri contenant du milieu Murashige et Skoog gélosé pour les expériences d'expression transitoire.

10 Des embryons immatures de Maïs sont prélevés 10 à 14 jours après pollinisation à partir de pieds mères (lignée LH132) cultivés en serre. Les embryons sont placés côté axe embryonnaire en contact avec le milieu d'induction (composition donnée dans le tableau 4 ci-après) puis sur le milieu d'entretien (tableau 5). 3 semaines plus tard. Les cals obtenus sont repiqués toutes les semaines. Les expériences d'expression 15 transitoire sont réalisées quelques heures après le repiquage.

Préparation du vecteur pSG123 :

Celle-ci est réalisée selon le protocole décrit en Section 10.

Transformation du matériel végétal :

20 L'introduction de l'ADN plasmidique (vecteur pSG123) dans les cellules végétales est réalisé par utilisation du canon à particules construit sur le principe décrit par Zumbrunn (Zumbrunn et al. 1989 Technique 1 (3) 204-216). L'ADN plasmidique est adsorbé sur des microparticules de tungstène à raison de 4 $\mu\text{g}/\text{mg}$ de tungstène. 2,5 mg du mélange tungstène/ADN sont alors déposés sur un macroprojectile qui est 25 accéléré par l'explosion d'une cartouche.

L'écrasement du macroprojectile sur une plaque d'arrêt percée d'un trou permet de projeter les microparticules de tungstène et l'ADN dans les cellules.

Mesure de l'expression transitoire :

30 L'ADN adsorbé sur les microparticules de tungstène qui ont pénétré dans les cellules végétales est libéré ; le gène chimérique associant le promoteur du gène 246C à la glucuronidase est alors transcrit puis traduit. La glucuronidase obtenue est alors visualisée par le test

histochimique décrit par JEFFERSON et al. 1987 Plant Molecular Biology Reporter 5,387. en utilisant le substrat 5-bromo-4-chloro-3-indolyl- β -D-glucuronide de cyclohexylammonium (X-gluc). Les cellules exprimant le gène présentent alors une coloration bleue.

5 Le comptage du nombre de cellules bleues obtenues par boîte de Petri au cours d'une expérience d'expression transitoire permet de compter le nombre de cellules transformées et d'estimer l'expression de la construction chimérique testée.

10 **TABLEAU 4 : Milieu d'induction de cals de Maïs à partir d'embryons immatures (en mg pour 1 litre)**

MgSO ₄ . 7H ₂ O	370
CaCl ₂ , 2H ₂ O	440
KNO ₃	1 900
NH ₄ NO ₃	1 650
KH ₂ PO ₄	170
Na ₂ MoO ₄ , 2H ₂ O	0,25
CuSO ₄ , 5H ₂ O	0,025
MnSO ₄ , H ₂ O	16,75
H ₃ BO ₃	6,2
ZnSO ₄ , 7H ₂ O	8,6
KI	0,83
CoCl ₂ , 6H ₂ O	0,025
FeEDTA	65,1
Saccharose	20 000
Hydrolysat de caséine	100
L-proline	5 800
Glycine	2
Acide nicotinique	0,5
Pyridoxine HCl	0,5
Inositol	100
Thiamine HCl	0,1

Acide abscissique	0,06
Chloramben	4,12
Phytigel	3000
<p>pH = 5,7 Autoclavage 20 min à 120°C</p>	

TABLEAU 5: Milieu d'entretien des cals de Maïs
(en mg pour 1 litre)

MgSO ₄ . 7H ₂ O	370
CaCl ₂ . 2H ₂ O	440
KNO ₃	1 900
NH ₄ NO ₃	1 650
KH ₂ PO ₄	170
Na ₂ MoO ₄ . 2H ₂ O	0,25
CuSO ₄ . 5H ₂ O	0,025
MnSO ₄ . H ₂ O	16,75
H ₃ BO ₃	6,2
ZnSO ₄ . 7H ₂ O	8,6
KI	0,83
CoCl ₂ . 6H ₂ O	0,025
FeEDTA	65,1
Saccharose	20 000
Hydrolysat de caséine	100
L-proline	2 900
Glycine	2
Acide nicotinique	0,5
Pyridoxine HCl	0,5
Inositol	100
Thiamine HCl	0,1
Dicamba (Banvel®)	0,002
Gelrite	3 000
<p>pH = 5,7 Autoclavage 20 min à 120°C</p>	

Section 24 : Expression transitoire du gène de la β -glucuronidase sous contrôle du promoteur du gène 246C dans les tissus d'orge et les cals de Maïs

L'expression transitoire mesurée en utilisant le substrat X-gluc. 5 48 heures après le bombardement à l'aide du canon à microparticules montre que le gène de β -glucuronidase s'exprime dans les feuilles et les racines d'orge et également dans les cals de Maïs.

L'intensité de l'expression est aussi forte que celle induite par l'utilisation du plasmide pBI 221 (Clontech), dans lequel le gène de 10 glucuronidase est placé sous contrôle du promoteur 35S du virus de la mosaïque du choux-fleur.

Le promoteur du gène 246C du tabac est donc capable de diriger l'expression d'un gène dans les monocotylédones.

Section 25 : Construction d'un plasmide plaçant le gène de la chitinase tomate-tabac sous le contrôle du promoteur inductible et expression de celui-ci dans le tabac

a) Préparation de la séquence promotrice

Le plasmide pSG123 décrit précédemment est digéré à l'aide des endonucléases Hind III et Sca I. Après électrophorèse sur gel d'agarose . 20 le fragment Hind III - Sca I de 2088 paires de bases contenant tout l promoteur inductible à l'exception des 57 paires de bases situées immédiatement en amont de l'ATG est purifié.

La ligation de ce fragment purifié, de l'oligonucléotide de synthèse Sca I - Bam HI de 62 paires de bases de séquenc 25 [SEQ ID NO : 15] et d'un vecteur pTZ 19R (Pharmacia) linéarisé grâce aux endonucléases Hind III et Bam HI a donné naissance au plasmide pPH 111.

A partir de ce plasmide pPH 111 par coupure à l'aide des endonucléases Hind III - Bam HI, puis électrophorèse sur gel d'agarose, le fragment Hind III - Bam HI de 2150 paires de bases contenant l 30 promoteur inductible dans son entier est isolé.

b) Préparation du fragment portant un gène hybride codant pour une protéine à activité endochitinase

Le fragment BamHI - EcoRI provenant du plasmide pBR1 décrit dans la demande de brevet EP-493 581. Exemple 1 et contenant un gène chimérique codant pour une protéine à activité endochitinase [SEQ ID NO : 16]. qui comprend la séquence codant pour une endochitinase hybride tomate-tabac 5 (en position 438-1587) et le terminateur NOS, est purifié.

c) Clonage dans le vecteur binaire pBIN 19

On a ligué à l'aide de l'ADN ligase T4 la séquence promotrice (cf. ci-dessus) la séquence codant pour la chitinase et la séquence terminatrice, dans le vecteur binaire pBIN 19 (Bevan, 1984, Nucl. Acids Res.. 12, 8711-8721), ouvert à l'aide des endonucléases Hind III et EcoRI. Ce vecteur porte deux gènes de résistance à la kanamycine, l'un pouvant s'exprimer dans les bactéries, l'autre situé immédiatement en amont du gène recombinant complet pouvant être transféré aux cellules végétales.

15 Le vecteur obtenu, appelé pBR 20, est cloné dans la souche *E. coli* HB 101 (Clontech).

2) Transformation d'*Agrobacterium tumefaciens*

La transformation de la souche d'*Agrobacterium tumefaciens*LBA 4404 (Clontech) est réalisée selon la méthode de congélation-décongélation 20 décrite dans Plant Molecular Biology Manual (Gelvin et al. op. cité) (résumé en section 14) à partir de 1 mg de plasmide pBR20.

3) Transformation du tabac

Du tabac *Nicotiana tabacum* cultivé in vitro a été infecté par *Agrobacterium tumefaciens* contenant le plasmide pBR 20 selon la procédure 25 de Horsch et al.. bien connue de l'homme du métier (Horsch R.B. et al., 1985 Science 227, 1229-1231), dont les principales étapes sont exposées ci-après.

Des disques de feuilles de plantes axéniques de tabac *Nicotiana tabacum* (variété Wisconsin Havana 38) sont incubés dans une culture d'*A. tumefaciens* hébergeant le plasmide pBR 20. Les disques égouttés sur papier Whatman sont mis en culture sur des milieux de culture en boîtes de Pétri afin de multiplier les cellules transformées de façon à obtenir des cals. Ces cals sont ensuite transférés sur du milieu contenant de la

céfotaxime à 500 mg/ml destinée à décontaminer les tissus végétaux (élimination des *Agrobacterium tumefaciens*) et de la kanamycine à 100 mg/ml pour sélectionner le matériel transgénique.

5 Mise en évidence de l'expression de la protéine à activité endochitinase dans les tabacs transgéniques

a) Préparation des extraits bruts de protéines de tabac transformé

Les extraits bruts de protéines ont été préparés à partir de différents tissus de la plante (racine, tige, feuille, etc ...). Les 10 fragments de tissus ont été congelés dans l'azote liquide, réduits en poudre et stockés à -20°C. La poudre a été extraite à 4°C en présence d'un tampon acétate d'ammonium 0,1 M pH 5,2 et soumise à une centrifugation à 10 000 g. La concentration des protéines totales a été déterminée sur les surnageants, appelés ci-après les extraits bruts de 15 protéines en suivant la technique de Bradford (Bradford, M.M., 1976 Anal. Biochem., 72, 248-254).

b) Mise en évidence de la chitinase hybride par immuno-empreint (Western Blot)

On soumet les extraits bruts de protéines à un Western blot, 20 technique bien connue de l'homme de l'art et décrite par H. Towbin et al. (Proc. Ntl. Acad. Sci. USA, 76, 1979, 4350-4354).

L'immunodétection de la protéine d'intérêt se réalise grâce à un immunosérum contenant des anticorps polyclonaux reconnaissant la protéine hybride à activité chitinase (cf. EP-493 581, section 5).

25 Le complexe antigène-anticorps est ensuite révélé à l'aide d'un système streptavidine-biotine conjugué à la phosphatase alcaline avec le kit RPN 23 d'Amersham ("Blotting detection kit"), utilisé selon les indications du fabricant.

30 L'empreinte obtenue montre, pour les feuilles de plantes de tabac transformées par le plasmide pBR 20, la présence d'une protéine de poids moléculaire apparent d'environ 26 ± 6kDa reconnue par les anticorps polyclonaux et absente des feuilles des plantes de tabac témoins. Cette

protéine a le même poids moléculaire apparent que la protéine hybride à activité chitinase décrite dans la demande EP-493 581.

Section 26 : Localisation des séquences minimales du promoteur 246C responsables des caractéristiques décrites

5 A partir du vecteur pSG123, associant le promoteur du gène 246C au gène de la β -glucuronidase, différentes délétions ont été effectuées dans la région 5' de ce promoteur. Celles-ci ont été obtenues soit par utilisation d'enzymes de restriction et/ou de la nucléase Exo3. L'extension précise des délétions a été déterminée par séquençage sel n 10 la méthode de Sanger. La figure 3 présente les différents vecteurs obtenus à l'aide de ces délétions de la partie 5' du promoteur, comptées à partir du site d'initiation de la transcription en position 2068.

a. Etude de la force du promoteur 246C par expression transitoire dans des protoplastes de tabac.

15 Ces vecteurs ont été utilisés en expression transitoire sur des protoplastes de tabac qui ne reçoivent aucun effecteur. L'analyse des résultats montre que l'expression maximale est obtenue avec les vecteurs pSG 251 et pSG 33, atteignant 30 000 pmol de méthylumbelliférone formée/min/mg protéine. Des délétions plus importantes effectuées dans ce 20 promoteur (correspondant aux vecteurs pSG29, pSG23, pSG451, pSG2, pSG24, pSG3, pSG1 ont pour conséquence une réduction de l'expression de la glucuronidase d'autant plus grande que la délétion est importante (tableau ci-dessous)).

Délétions successives de pSG123	Activité GUS (pMoles/min/mg)
Témoin	0
pBI221	- 1000
pSG123	5000
pSG251	29000
pSG33	31000
pSG29	26000
pSG23	22000
pSG451	10000
pSG2	4000
pSG14	1000
pSG3	0
pSG1	0

Les vecteurs pSG 251 et pSG 33 correspondant respectivement aux promoteurs comprenant la séquence (B) [vecteur pSG 33] et la séquence (C) 5 [vecteur pSG 251] respectivement.

b. Etude de la force du promoteur par expression stable de constructions chimériques renfermant des promoteurs déletés, dans des tabacs transgéniques.

Pour chacun des vecteurs décrits par la figure 3 le gène chimérique 10 associant le promoteur (complet ou tronqué) à la partie codante de la glucuronidase et le terminateur NOS a été purifié sur gel d'agarose après coupure par des endonucléases de restriction Hind III et EcoRI. Dans chacun des cas, le gène chimérique a été introduit et ligué dans le vecteur binaire pBIN19 (Clontech) préalablement ouvert aux sites Hind III 15 et EcoRI (Section 13).

Le tabac, *Nicotiana tabacum* cultivé in vitro a été infecté par *Agrobactérium tumefaciens* contenant les différentes constructions décrites ci-dessus. La procédure suivie est celle décrite à la Section 15.

L'activité glucuronidase et la moyenne des mesures effectuées sur 10 à 20 transformants indépendants. En l'absence d'inducteur, l'activité glucuronidase de base des différents génotypes n'est pas sensiblement affectée par les délétions pour les constructions allant de pSG251 à 5 pSG451 : elle est sensiblement identique à celle de génotypes renfermant la construction pSG123 (fig.3). Par contre, pour les constructions pSG2, pSG24, pSG3, pSG1, l'expression est d'autant plus faible que la longueur du promoteur est courte : les expressions pour pSG3 et pSG1 étant nulles.

En présence d'inducteurs bactériens (voir section 17), les plantes 10 contenant les constructions pSG251 et pSG33 ont une expression stimulée par un facteur 3 par rapport à la construction pSG123. Ceci indique qu' la partie déletée correspondant à la séquence D [SEQ. ID No. 6] contient une séquence diminuant l'inductibilité du promoteur 246 C par contre la séquence B [SEQ. ID No. 4] seul, ou en présence de la séquence C [SEQ. ID 15 No. 5] autorise une inductibilité supérieure à celle de la séquence du promoteur 246 C (séquences B+C+D).

L'expression est par contre inchangée pour les génotypes contenant les constructions pSG29 et pSG23 par rapport aux génotypes renfermant les constructions pSG123.

20 Pour les génotypes contenant les constructions pSG451, pSG2, pSG24, pSG3, pSG1, l'inductibilité est systématiquement inférieure à celles des génotypes renfermant la construction pSG123 : elle est d'autant plus faible que le promoteur est court et s'annule pour les plantes renfermant les constructions pSG3 et pSG1.

25 Ces résultats indiquent que la séquence D [SEQ. ID No. 6] complète une information de type "silencer" qui inhibe partiellement l'inductibilité du promoteur complet (séquences B+C+D)

LISTE DE SEQUENCES

(1) INFORMATIONS GENERALES:

(i) DEPOSANTS:

(A) NOM: ELF SANOFI
(B) RUE: 32-34 rue Marbeuf
(C) VILLE: PARIS
(E) PAYS: France
(F) CODE POSTAL: 75008
(G) TELEPHONE: 40.73.40.73

(A) NOM: ELF AQUITAINNE
(B) RUE: Tour Elf-002 Place de la Coupole La Défense 6
(C) VILLE: COURBEVOIE
(E) PAYS: France
(F) CODE POSTAL: 92400
(G) TELEPHONE: 47.44.45.46

(ii) TITRE DE L' INVENTION: PROMOTEUR VEGETAL, MICROORGANISMES ET
CELLULES VEGETALES CONTENANT UNE UNITE D'EXPRESSION D'UNE
PROTEINE D'INTERET COMPRENANT LEIT PROMOTEUR

(iii) NOMBRE DE SEQUENCES: 18

(iv) FORME LISIBLE PAR ORDINATEUR:

(A) TYPE DE SUPPORT: Floppy disk
(B) ORDINATEUR: IBM PC compatible
(C) SYSTEME D' EXPLOITATION: PC-DOS/MS-DOS
(D) LOGICIEL: PatentIn Release #1.0, Version #1.25 (OEB)

(2) INFORMATION POUR LA SEQ ID NO: 1:

(i) CARACTERISTIQUES DE LA SEQUENCE:

(A) LONGUEUR: 631 paires de bases
(B) TYPE: acide nucléique
(C) NOMBRE DE BRINS: simple
(D) CONFIGURATION: linéaire

(ii) TYPE DE MOLECULE: ADNc

(iii) HYPOTHETIQUE: NON

(vii) SOURCE IMMEDIATE:

(B) CLONE: 246

(ix) CARACTERISTIQUE ADDITIONNELLE:

(A) NOM/CLE: CDS

(B) EMPLACEMENT: join(1..177, 368..631)

(ix) CARACTERISTIQUE ADDITIONNELLE:

(A) NOM/CLE: intron

(B) EMPLACEMENT: 178..367

(ix) CARACTERISTIQUE ADDITIONNELLE:

(A) NOM/CLE: misc-signal

(B) EMPLACEMENT: 175..182

(D) AUTRES RENSEIGNEMENTS: /fonction= "séquences consensus d'épissage"

(ix) CARACTERISTIQUE ADDITIONNELLE:

(A) NOM/CLE: misc-signal

(B) EMPLACEMENT: 323..333

(D) AUTRES RENSEIGNEMENTS: /fonction= "séquences consensus d'épissage"

(ix) CARACTERISTIQUE ADDITIONNELLE:

(A) NOM/CLE: misc-signal

(B) EMPLACEMENT: 363..368

(D) AUTRES RENSEIGNEMENTS: /fonction= "séquence consensus d'épissage"

(xi) DESCRIPTION DE LA SEQUENCE: SEQ ID NO: 1:

ATG AAC CCT GTT CAC AAA AAG ATC CCT ATT TTG ATT CAC AAT AGT AAA 48

Met Asn Pro Val His Lys Lys Ile Pro Ile Leu Ile His Asn Ser Lys

1

5

10

15

GCC ATT TGT GAG TCT CTA AAC ATT CTT GAG TAC ATT GAT GAA GTC TGG

96

Ala Ile Cys Glu Ser Leu Asn Ile Leu Glu Tyr Ile Asp Glu Val Trp

20

25

30

CAT GAC AAA TGT CCA TTA CTT CCT TCT GAT CCT TAC GAA AAG TCA CAA

144

His Asp Lys Cys Pro Leu Leu Pro Ser Asp Pro Tyr Glu Lys Ser Gln

35

40

45

GCC AGA TTC TGG GCC GAC TAT ATT GAC AAG AAG GTAATAAACCA TCTCACAAAG	197	
Ala Arg Ph Trp Ala Asp Tyr Ile Asp Lys Lys		
50	55	
ACTTAAACAGT CAATGTAACA TGACCTTTAC TAAGTTCATC TTGTGTAGTT TCACCGAGCT	257	
GTTTAAGGTC GTCGTACATT TGAATATTAG GTGTTTCACA TTTGAATTTT TTTATCCCC	317	
TGTTAGAATT CCTGATTCTG TCAATACTTA TGGACGTTGG TTTAATGCAG ATA TAT	373	
Ile Tyr		
60		
AGC ACA GGA AGA AGA GTG TGG AGC GGT AAA GGT GAA GAT CAA GAA GAA	421	
Ser Thr Gly Arg Arg Val Trp Ser Gly Lys Gly Glu Asp Gln Glu Glu		
65	70	75
GCA AAG AAG GAA TTC ATA GAA ATA CTC AAG ACT TTG GAA GGA GAG CTT	469	
Ala Lys Lys Glu Phe Ile Glu Ile Leu Lys Thr Leu Glu Gly Glu Leu		
80	85	90
GGA AAT AAA ACT TAC TTT GGT GGT GAT AAT CTG GGT TTT GTG GAT GTG	517	
Gly Asn Lys Thr Tyr Phe Gly Gly Asp Asn Leu Gly Phe Val Asp Val		
95	100	105
GCT TTG GTT CCC TTT ACT AGT TGG TTT TAT TCT TAT GAG ACT TGT GCA	565	
Ala Leu Val Pro Phe Thr Ser Trp Phe Tyr Ser Tyr Glu Thr Cys Ala		
110	115	120
125		
AAC TTT AGT ATA GAA GCA GAG TGT CCA AAG CTG GTG GTA TGG GCA AAA	613	
Asn Phe Ser Ile Glu Ala Glu Cys Pro Lys Leu Val Val Trp Ala Lys		
130	135	140
ACA TGT ATG GAG AGC GAG	631	
Thr Cys Met Glu Ser Glu		
145		

(2) INFORMATION POUR LA SEQ ID NO: 2:

(i) CARACTERISTIQUES DE LA SEQUENCE:

- (A) LONGUEUR: 147 acides aminés
- (B) TYPE: acide aminé
- (D) CONFIGURATION: linéaire

(ii) TYPE DE MOLECULE: protéin

(xi) DESCRIPTION DE LA SEQUENCE: SEQ ID NO: 2:

Met Asn Pro Val His Lys Lys Ile Pro Ile Leu Ile His Asn Ser Lys
 1 5 10 15
 Ala Ile Cys Glu Ser Leu Asn Ile Leu Glu Tyr Ile Asp Glu Val Trp
 20 25 30
 His Asp Lys Cys Pro Leu Leu Pro Ser Asp Pro Tyr Glu Lys Ser Gln
 35 40 45
 Ala Arg Phe Trp Ala Asp Tyr Ile Asp Lys Ile Tyr Ser Thr Gly
 50 55 60
 Arg Arg Val Trp Ser Gly Lys Gly Glu Asp Gln Glu Glu Ala Lys Lys
 65 70 75 80
 Glu Phe Ile Glu Ile Leu Lys Thr Leu Glu Gly Glu Leu Gly Asn Lys
 85 90 95
 Thr Tyr Phe Gly Gly Asp Asn Leu Gly Phe Val Asp Val Ala Leu Val
 100 105 110
 Pro Phe Thr Ser Trp Phe Tyr Ser Tyr Glu Thr Cys Ala Asn Phe Ser
 115 120 125
 Ile Glu Ala Glu Cys Pro Lys Leu Val Val Trp Ala Lys Thr Cys Met
 130 135 140
 Glu Ser Glu
 145

(2) INFORMATION POUR LA SEQ ID NO: 3:

(i) CARACTERISTIQUES DE LA SEQUENCE:

- (A) LONGUEUR: 441 paires de bases
- (B) TYPE: acide nucléique
- (C) NOMBRE DE BRINS: simple
- (D) CONFIGURATION: linéaire

(ii) TYPE DE MOLECULE: ADNC

(iii) HYPOTHETIQUE: NON

(vii) SOURCE IMMEDIATE:

- (B) CLONE: 246

(xi) DESCRIPTION DE LA SEQUENCE: SEQ ID NO: 3:

ATGAAACCTG	TTCACAAAAA	GATCCCTATT	TTGATTACACA	ATAGTAAAGC	CATTTGTGAG	60
TCTCTAACCA	TTCTTGAGTA	CATTGATGAA	GTCTGGCATG	ACAAATGTCC	ATTACTTCCT	120
TCTGATCCTT	ACGAAAGGTC	ACAAGCCAGA	TTCTGGGCCG	ACTATATTGA	CAAGAAGATA	180
TATAGCACAG	GAAGAAGAGT	GTGGAGCGGT	AAAGGTGAAG	ATCAAGAAGA	AGCAAAGAAG	240
GAATTCTATAG	AAATACTCAA	GACTTGGAA	GGAGAGCTTG	GAAATAAAAC	TTACTTTGGT	300
GGTGATAATC	TGGGTTTTGT	GGATGTGGCT	TTGGTTCCCT	TTACTAGTTG	GTTTTATTCT	360
TATGAGACTT	GTGCAAACCTT	TAGTATAGAA	GCAGAGTGTGTC	CAAAGCTGGT	GGTATGGGCA	420
AAAACATGTA	TGGAGAGCGA	G				441

(2) INFORMATION POUR LA SEQ ID NO: 4:

(i) CARACTERISTIQUES DE LA SEQUENCE:

- (A) LONGUEUR: 1096 paires de bases
- (B) TYPE: acide nucléique
- (C) NOMBRE DE BRINS: simple
- (D) CONFIGURATION: linéaire

(ii) TYPE DE MOLECULE: ADN (génomique)

(iii) HYPOTHETIQUE: NON

(xi) DESCRIPTION DE LA SEQUENCE: SEQ ID NO: 4:

TCAAATGAAA	TACACATAAG	AAGCACATAA	ATTAAATGC	CGTATTAAAC	TTACAGTATA	60
CTATAGCGGA	AGTTGGCTTG	ATAAAGGAAC	GCTGAGGAGA	GTAGCCGATG	GTGAAACACT	120
AACATCAAGT	GCAAAAGAAA	GAAAAACTGA	AAACAGAAGA	TGAATGTTTG	AAGTGGGTAA	180
AAGATTACTT	AAAAGATAGG	TTTGGTTAAC	AAATGATTGT	GAUTGTTACG	AAGCAGTGTG	240
AACCCTGGG	ACTTTAATA	TTCTTCGGCA	GAAGAACATT	GCTCTTCCA	CGTATGTAGT	300
CTTTGTCTAC	TTGTAGTTTT	TTTAATTAA	AATTAAATAA	GTAAATTAGA	GAAATAATAA	360
GAAGGATATT	TTAGTAATTTC	AACTTTAAC	TTTAGGTTT	CCCACTTATA-	ATATAATATA	420
GATATAGTTT	TTTTAATTAA	AAATAAATA	AGTTAATTAG	AGAAATAATA	AGAAGGATAT	480
TTTAGTAATT	CAACTTTAA	CTTTAGGGT	TTCCACTTAT	AATATAATAT	AGATATAGAT	540
ATAGATATAG	ATATAGATAA	AGATATATAG	ATATAGATAG	ATAATATAGA	TGGATGAGTC	600
ATTGGCGATA	AAGTGAGGAT	TGTTTCATT	TTGTTATTAA	AAACTTACTA	CTCCTTAAAT	660
ATAAAATATG	ATTCCTTTA	AAAAAGAAAT	AGAATAAAA	TAAAGATAAA	ACACTAAAAA	720
TAAATTAAATT	GTCTAGACAA	AATCTACCGT	TCACCTCAAT	TAATACACAT	CCCCGTCCAC	780
ATCATGAAGT	AGCTAGCACA	AGCGTACAGA	TCAGTTGAAA	GAAGAAAAGG	GTCCAGTCCT	840
AAATATCCAA	ATGTTCATGA	AAGGAGGACA	ACTTAGTTT	TTCTACTAGA	AAGAATATTT	900
TGACGAATT	CGTTCACATT	GGCATGCTT	AATTATATTA	AGTAGTCTTT	CITGGAAAAG	960
AAGTATTGCA	AATATCAAAC	CAAATCTCC	CATTACGCAA	GCAATGACAT	CTAAGCAAAT	1020
ATATATCACT	ATAAATAGTA	CTACTAATGT	TCAATGACTT	TTATAAGCAC	TACATATATA	1080
TACTCAAACA	AAAAGA					1096

(2) INFORMATION POUR LA SEQ ID NO: 5:

(i) CARACTERISTIQUES DE LA SEQUENCE:

- (A) LONGUEUR: 236 paires de bases
- (B) TYPE: acide nucléique
- (C) NOMBRE DE BRINS: simple
- (D) CONFIGURATION: linéaire

(ii) TYPE DE MOLECULE: ADN (génomique)

(iii) HYPOTHETIQUE: NON

(xi) DESCRIPTION DE LA SEQUENCE: SEQ ID NO: 5:

CCTTTTTCGA TTCTAATCCA ATCAATTCAA CAGTGTAAGG TGAAGCAGTC AATTAAAGG	60
AAGGCCTTTA AATTCTAAAA TATTGTACTT TTCTGCGCT TCTAAAAGTG AACGACAAAG	120
AAAAAAATAGT TATTCTTGAA CTTAATATTG TACAATAGGA TAAATTAA CTATCTATAA	180
AAAGAGAACAAACCTTAAT CTCTTCAAAA TAATATTATA AGAAGTAACA TAATTG	236

(2) INFORMATION POUR LA SEQ ID NO: 6:

(i) CARACTERISTIQUES DE LA SEQUENCE:

- (A) LONGUEUR: 813 paires de bases
- (B) TYPE: acide nucléique
- (C) NOMBRE DE BRINS: simple
- (D) CONFIGURATION: linéaire

(ii) TYPE DE MOLECULE: ADN (génomique)

(iii) HYPOTHETIQUE: NON

(xi) DESCRIPTION DE LA SEQUENCE: SEQ ID NO: 6:

GAGCTCGGCA AGGCTGACCA AAGTCACAGA AGCGATTGGA ATTGCGAGGA CAGACCATGC	60
ACCTGCGCAC AAAATGTCGT AGGTGCGACA CACCAGAAC AGCACTGGC AGCAGGTTTC	120
AATTGCTCTG TGGCTCGTTT GAAACTCATC CGAGCCACTC ATGACCTCGT CCGAATATTT	180
CAACAAGTCC ATAAACATAA TACGGACATA CTCGGGGTTT CACTTCACGT CAAACAAACAT	240
CAAAATTACA AATCACACCC CGATTCGAAC CTTGAGTTT AAACTTTCAT ATTGCAAAT	300
CTCGTGCCAA AACATATTAA ATGAATCCGG AATGACTTCAT AATTATATAA TGACATAACG	360
GAGTTGTTCA AATTCCAGA ATCAGATTCT GCCTTTGATA TCAAAAGTC AACCCCGTGA	420
TCAAAACTTGG AATTCTTAG CCTTTAAATT GCTAGTTTTC GTTAAATGGT CATAACTTGA	480
GCTATGGACC TCCAAATTAA ATTCGGGCA TACGCTCAAA TCCCAATTAC GAATACGGAG	540
CTACCGGACT GTCAAAATAC TGATCCGGGT CCCTTTGCTA AAAACGTTGA CCAAAGTCCA	600
CTAAGTTGAG TTTTAAACT TTATTTACCA TTTTAATCCA TTTTTACAT GAAAACTTTC	660
CGGAAAATAC GGAGTATGCA CGCAAGTCGA GGAATGATAA ATGGTACGTT TCGAAGTTT	720
AGAAACTCAAA ATTACTTATT AAATTAAAG ATGACATTTT GGGTCATCAC ATTGATGAAA	780
ATTTGACAT TAATATCTGA GAACTTCTT TGA	813

(2) INFORMATION POUR LA SEQ ID NO: 7:

(i) CARACTERISTIQUES DE LA SEQUENCE:

- (A) LONGUEUR: 3046 paires de bases
- (B) TYPE: acide nucléique
- (C) NOMBRE DE BRINS: simple
- (D) CONFIGURATION: linéaire

(ii) TYPE DE MOLECULE: ADNc

(iii) HYPOTHETIQUE: NON

(vii) SOURCE IMMEDIATE:

(B) CLONE: 246C

(xi) DESCRIPTION DE LA SEQUENCE: SEQ ID NO: 7:

GAGCTCGGCA	AGGCTGACCA	AAGTCACAGA	AGCGATTGGA	ATTCGCAGGA	CAGACCATGC	60
ACCTGCGCAC	AAAATGTCGT	AGGTGCGACA	CACCAGAAC	AGCACTGGC	AGCAGGTTTC	120
AATTGCTCTG	TGGCTCGTTT	GAAACTCATC	CGAGCCACTC	ATGACCTCGT	CCGAATATT	180
CAACAAGTCC	ATAAACATAA	TACGGACATA	CTCGGGTTT	CACTTCACGT	CAAACAAACAT	240
CAAATTACA	AATCACACCC	CGATTCGAAC	CTTGAGTTT	AAACTTTCA	ATTGCAAAT	300
CTCGTGCCAA	AACATATTAA	ATGAATCCGG	AATGACTTCA	AATTATAAA	TGACATAACG	360
GAGTTGTTCA	AATTCCAGA	ATCAGATTCT	GCCTTGATA	TCAAAAAGTC	AACCCC GTGA	420
TCAAACTTGG	AATTCTTAG	CCTTAAATT	GCTAGTTTC	GTTAAATGGT	CATAACTTGA	480
GCTATGGACC	TCCAATTAA	ATTCGGGCA	TACGCTCAA	TCCCAATTAC	GAATACGGAG	540
CTACCGGACT	GTCAAAATAC	TGATCCGGGT	CCGTTTGCTA	AAAACGTTGA	CCAAAGTCCA	600
CTAAGTTGAG	TTTTAAAAT	TTATTTACACA	TTTTAATCCA	TTTTTACAT	GAAAACTTTC	660
CGGAAAATAC	GGAGTATGCA	CGCAAGTCGA	GGAAATGATAA	ATGGTACGTT	TCGAAGTTT	720
AGAACTCAAA	ATTACTTATT	AAATTTAAAG	ATGACATT	GGGTACATCAC	ATTGATGAAA	780
ATTTGACAT	TAATATCTGA	GAACTTCTT	TGACCTTTT	CGATTCTAAT	CCAATCAATT	840
CAACAGTGT	AGGTGAAGCA	GTCAATTAA	AGGAAGGCCT	TTAAATTCTA	AAATATTGTA	900
CTTTTCCCTGC	GCTTCTAAAA	GTGAACGACA	AAGAAAAAT	AGTTATTCTT	GAACTTAATA	960
TTGTACAATA	GGATAAAATT	TAACATATCTA	AAAAAGAGA	ACAAAACCTT	AATCTCTTCA	1020
AAATAATATT	ATAAGAAGTA	ACATAATTGT	CAAATGAAAT	ACACATAAGA	AGCACATAAA	1080
TTTAAATGCC	GTATTAAACT	TACAGTATAC	TATAGCGGA	GTTGGCTTGA	TAAAGGAACG	1140
CTGAGGAGAG	TAGCCGATGG	TGAAACACTA	ACATCAAGTG	CAAAAGAAAG	AAAAACTGAA	1200
AACAGAAGAT	GAATGTTGA	AGTGGTAAA	AGATTACTA	AAAGATAGGT	TTGGTTAAC	1260
AATGATTGTG	ACTGTTACGA	AGCAGTGTGA	ACCGTTGGGA	CTTTAATAT	TCTCGGCAG	1320
AAGAACATTG	CTCTTCCAC	GTATGTAGTC	TTTGTCTACT	TGTAGTTT	TTAATTAA	1380
ATTAATAAG	TTAATTAGAG	AAATAATAAG	AAGGATATT	TAGTAATTCA	ACTTTTAACT	1440
TTTAGGTTTC	CCACTTATAA	TATAATATAG	ATATAGTTT	TTTAATT	AATTAAATAA	1500
GTAAATTAGA	GAAATAATAA	GAAGGATATT	TTAGTAATT	AACTTTAAC	TTTAGGGTT	1560
TCCACTTATA	ATATAATATA	GATATAGATA	TAGATATAGA	TATAGATAAA	GATATATAGA	1620
TATAGATAGA	TAATATAGAT	GGATGAGTCA	TTGGCGATAA	AGTGAGGATT	GTTCATTTT	1680
TGTTATTAAA	AACTTACTAC	TCCTTAAATA	AAAAATATGA	TTCCTTTAA	AAAAGAAATA	1740
GAATAAAAT	AAAGATAAAA	CACTAAAAT	AAATTAATTG	TCTAGACAAA	ATCTACCGTT	1800
CACCTCAATT	AATACACATC	CCCGTCCACA	TCATGAAGTA	GCTAGCACAA	GCGTACAGAT	1860
CAGITGAAAG	AAGAAAAGGG	TCCAGTCCTA	AAATATCCAA	TGTTCATGAA	AGGAGGACAA	1920
CTTAGTTTT	TCTACTAGAA	AGAATATT	GACGAATTTC	GTTCACATTG	GCATGCTTT	1980
ATTATATTAA	GTAGTCTTTC	TTGGAAAAGA	AGTATTGCA	ATATCAAACC	AAATCTTCCC	2040
ATTACGCAAG	CAATGACATC	TAAGCAAATA	TATATCACTA	AAATAGTAC	TACTAATGTT	2100
CAATGACTTT	TATAAGCACT	ACATATATAT	ACTCAAACAA	AAAGAATGGA	GAGCAACAAAC	2160
GTGGTTCTGC	TAGATTCTG	GCCAAGCTCT	TTTGGTATGA	GGCTAAGAAT	TGCATTGGCC	2220
TTAAAAGGGAA	TCAAATATGA	AGCAAAGGAG	GAAAACCTAT	CTGATAAAAG	CCCTTTGCTT	2280

CTGGAGATGA ACCCTGTTCA CAAAAAGATC CCTATTGTA TTCACAATAG TAAAGCCATT	2340
TGTGAGTCTC TAAACATTCT TGAGTACATT GATGAAGTCT GGCATGACAA ATGTCCATTA	2400
CTTCCTCTG ATCCTTACGA AAGGTACAA GCCAGATTCT GGGCCGACTA TATTGACAAG	2460
AAGGTAAATAA ACATCTCAC AAGACTTAAC AGTCAATGTA ACATGACCTT TACTAAGITC	2520
ATCTTGTGTA GTTCACCGA GCTGTTAAG GTCGTCGTAC ATTTGAATAT TAGGTGTTTC	2580
ACATTTGAAT TTTTTATCC CTTGTTAGA ATTCTGATT CTGTCAATAC TTATGGACGT	2640
TGGTTTAATG CAGATATATA GCACAGGAAG AAGAGTGTGG AGCGGTAAAG GTGAAGATCA	2700
AGAAGAACCA AAGAAGGAAT TCATAGAAAT ACTCAAGACT TTGGAAGGAG AGCTTGAAA	2760
TAAAACCTAC TTTGGTGGTG ATAATCTGGG TTTTGTGGAT GTGGCTTGG TTCCCTTAC	2820
TAGTTGGTT TATTCTTATG AGACTTGTGC AAACTTAGT ATAGAAGCAG AGTGTCCAAA	2880
GCTGGTGGTA TGGCAAAAAA CATGTATGGA GAGCGAGAGT GTCTCAAAGT CCCTTCCTCA	2940
TCCTCACAAG ATCTATGGTT TTGTCTTGGA ACTCAAGCAC AAGCTTGGTC TTGCTTGAAC	3000
AAGAAACACT TCTTACCTAC TGCAGAAACC AATCATGTCC TTGTC	3046

(2) INFORMATION POUR LA SEQ ID NO: 8:

(i) CARACTERISTIQUES DE LA SEQUENCE:

- (A) LONGUEUR: 809 paires de bases
- (B) TYPE: acide nucléique
- (C) NOMBRE DE BRINS: simple
- (D) CONFIGURATION: linéaire

(ii) TYPE DE MOLECULE: ADN (génomique)

(iii) HYPOTHETIQUE: NON

(xi) DESCRIPTION DE LA SEQUENCE: SEQ ID NO: 8:

ACGTATGTAG TCTTGTCTA CTTGTAGTTT TTTTTAATTAA AAATTAATAA AGTTAATTAG	60
AGAAATAATA AGAAGGATAT TTAGTAATT CAACTTTAA CTTTTAGGT TCCCACCTAT	120
AATATAATAT AGATATAGTT TTTTTAATT TAAATTAAAT AAGTTAATTAA GAGAAATAAT	180
AAGAAGGATA TTTAGTAAT TCAACTTTA ACTTTAGGG TTTCCACTTA TAATATAATA	240
TAGATATAGA TATAGATATA GATATAGATA AAAGATATAT AGATATAGAT AGATAATATA	300
GATGGATGAG TCATTGGCGA TAAAGTGAGG ATGTTTCATT TTGTTTATTA AAAACTTACT	360
ACTCCTTAAA TATAAAATAT GATTCTTTT AAAAAAGAAA TAGAATAAAA ATAAAGATAAA	420
AACACTAAAA ATAAATTAAT TGTCTAGACA AAATCTACCG TTCACCTCAA TTAATACACA	480
TCCCCGTCCA CATCATGAAG TAGCTAGCAC AAGCGTACAG ATCAGTTGAA AGAAGAAAAG	540
GGTCCAGTCC TAAATATCCA AATGTTCATG AAAGGAGGAC AACTTAGTTT TTTCTACTAG	600
AAAGAATATT TTGACGAATT TCGTTCACAT TGGCATGCTT TAATTATTA AGTAGTCTTT	660
CTTGGAAAAG AAGTATTGTC AATATCAAAC CAAATCTTCC CATTACGCAA GCAATGACAT	720
CTAAGCAAAT ATATATCACT ATAAATAGTA CTACTAATGT TCAATGACTT TTATAAGCAC	780
TACATATATA TTCTCAAACA AAAAGAATG	809

(2) INFORMATION POUR LA SEQ ID NO: 9:

(i) CARACTERISTIQUES DE LA SEQUENCE:

- (A) LONGUEUR: 331 pair s de bases
- (B) TYPE: acide nucléique
- (C) NOMBRE DE BRINS: simple
- (D) CONFIGURATION: linéaire

(ii) TYPE DE MOLECULE: ADNc

(iii) HYPOTHETIQUE: NON

(xi) DESCRIPTION DE LA SEQUENCE: SEQ ID NO: 9:

ACGTATGTAG TCTTGTCTA CTTGTAGTTT TTTTAATT AAATTAATA AGTTAATTAG	60
AGAAATAATA AGAAGGATAT TTAGTAATT CAACTTTAA CTITTAGGTT TCCCACTTAT	120
AATATAATAT AGATATAGTT TTTTTAATT TAAATTAAAT AAGTTAATTAG GAGAAATAAT	180
AAGAAGGATA TTITAGTAAT TCAACTTTA ACTTTAGGG TTTCCACTTA TAATATAATA	240
TAGATATAGA TATAGATATA GATATAGATA AAAGATATAT AGATATAGAT AGATAATATA	300
GATGGATGAG TCATTGGCGA TAAAGTGAGG A	331

(2) INFORMATION POUR LA SEQ ID NO: 10:

(i) CARACTERISTIQUES DE LA SEQUENCE:

- (A) LONGUEUR: 314 paires de bases
- (B) TYPE: acide nucléique
- (C) NOMBRE DE BRINS: simple
- (D) CONFIGURATION: linéaire

(ii) TYPE DE MOLECULE: ADN (génomique)

(iii) HYPOTHETIQUE: NON

(xi) DESCRIPTION DE LA SEQUENCE: SEQ ID NO: 10:

TGTTTCATTT TTGTTATTAA AAACCTACTA CTCCCTAAAT ATAAAATATG ATTCCCTTTA	60
AAAAAGAAAT AGAATAAAAAA TAAAGATAAA ACACAAAAAA TAAATTAAATT GTCTAGACAA	120
AATCTACCGT TCACCTCAAT TAATACACAT CCCCGTCCAC ATCATGAAGT AGCTAGCACA	180
AGCGTACAGA TCAGTTGAAA GAAGAAAAGG GTCCAGTCCT AAATATCAA ATGTTCATGA	240
AAGGAGGACA ACTTAGTTT TTCTACTAGA AAGAATATT TGACGAATT TGTCACATT	300
GGCATGCTTT AATT	314

(2) INFORMATION POUR LA SEQ ID NO: 11:

(i) CARACTERISTIQUES DE LA SEQUENCE:

- (A) LONGUEUR: 161 paires de bases
- (B) TYPE: acide nucléique
- (C) NOMBRE DE BRINS: simple
- (D) CONFIGURATION: linéaire

(ii) TYPE DE MOLECULE: ADNc

(iii) HYPOTHETIQUE: NON

(xi) DESCRIPTION DE LA SEQUENCE: SEQ ID NO: 11:

TATTAAGTAG TCTTTCITGG AAAAGAAGTA TTGCAATAT CAAACCAAAT CTTCCCATTA	60
CGCAAGCAAT GACATCTAAG CAAATATATA TCACTATAAA TAGTACTACT AATGTTCAAT	120
GACTTTATA AGCACTACAT ATATATTCTC AAACAAAAAG A	161

(2) INFORMATION POUR LA SEQ ID NO: 12:

(i) CARACTERISTIQUES DE LA SEQUENCE:

- (A) LONGUEUR: 307 paires de bases
- (B) TYPE: acide nucléique
- (C) NOMBRE DE BRINS: simple
- (D) CONFIGURATION: linéaire

(ii) TYPE DE MOLECULE: ADNc

(iii) HYPOTHETIQUE: NON

(xi) DESCRIPTION DE LA SEQUENCE: SEQ ID NO: 12:

CTTTTAATAT TCTTCGGCAG AAGAACATTG CTCTTCCAC GTATGTAGTC TTTGTCTACT	60
TGTAGTTTT TTTAATTAA ATTAAAATAAG TTAATTAGAG AAATAATAAG AAGGATATT	120
TAGTAATTCA ACTTTAACT TTTAGGTTTC CCACTTATAA TATAATATAG ATATAGTTT	180
TTTTAATTAA ATTAAATAAA GTTAATTAGA GAAATAATAA GAAGGATATT TTGTAATT	240
AACTTTAAC TTTAGGGTT TCCACTTATA ATATAATATA GATATAGATA TAGATATAGA	300
TATAGAT	307

(2) INFORMATION POUR LA SEQ ID NO: 13:

(i) CARACTERISTIQUES DE LA SEQUENCE:

- (A) LONGUEUR: 538 paires de bases
- (B) TYPE: acide nucléique
- (C) NOMBRE DE BRINS: simple
- (D) CONFIGURATION: linéaire

(ii) TYPE DE MOLECULE: ADNc

(iii) HYPOTHETIQUE: NON

(xi) DESCRIPTION DE LA SEQUENCE: SEQ ID NO: 13:

AAAGATATAT AGATATAGAT AGATAATATA GATGGATGAG TCATTGGCGA TAAAGTGAGG	60
ATTGTTTCAT TTTTGTATT AAAAACTTAC TACTCCTTAA ATATAAAATA TGATTCCTTT	120
TAAAAAAAGAA ATAGAATAAA AATAAAAGATA AAACACTAAA AATAAAATTAA TTGTCTAGAC	180
AAAATCTACC GTTCACCTCA ATTAATACAC ATCCCCGTCC ACATCATGAA GTAGCTAGCA	240
CAAGCGTACA GATCAGTTGA AAGAAGAAAA GGGTCCAGTC CTAATATCC AAATGTTCAT	300
GAAAGGAGGA CAACTTAGTT TTTTCTACTA GAAAGAATAT TTTGACGAAT TTCGTTCACAA	360
TTGGCATGCT TTAATTATAT TAAGTAGTCT TTCTTGGAAA AGAAGTATTT GCAATATCAA	420
ACCAAAATCTT CCCATTACGC AAGCAATGAC ATCTAAGCAA ATATATATCA CTATAAAATAG	480
TACTACTAAT GTTCAATGAC TTTTATAAGC ACTACATATA TATACTCAA CAAAAAGA	538

(2) INFORMATION POUR LA SEQ ID NO: 14:

(i) CARACTERISTIQUES DE LA SEQUENCE:

- (A) LONGUEUR: 4284 paires de bases
- (B) TYPE: acide nucléique
- (C) NOMBRE DE BRINS: simple
- (D) CONFIGURATION: linéaire

(ii) TYPE DE MOLECULE: ADN (génomique)

(iii) HYPOTHETIQUE: NON

(xi) DESCRIPTION DE LA SEQUENCE: SEQ ID NO: 14:

AAGCTTGGCA AGGCTGACCA AAGTCACAGA AGCGATTGGA ATTTCGAGGA CAGACCATGC	60
ACCTGCGCAC AAAATGTCGT AGGTGCGACA CACCAGAACC AGCACTGGC AGCAGGTTTC	120
AATTGCTCTG TGGCTCGTTT GAAACTCATC CGAGCCACTC ATGACCTCGT CCGAATATTT	180
CAACAAGTCC ATAAACATAA TACGGACATA CTCGGGGTTT CACTTCACGT CAAACAACAT	240
CAAATTACA AATCACACCC CGATTCGAAC CTTGAGTTTT AAACTTTTCA ATTTGCAAAT	300
CTCGTGCCAA AACATATTAA ATGAATCCGG AATGACTTCA AATTATATAA TGACATAACG	360
GAGTTGTTCA AATTCCAGA ATCAGATTCT GCCTTTGATA TCAAAAGTC AACCCCGTGA	420
TCAAAACTTGG AATTCTTTAG CCTTTAAATT GCTAGTTTTC GTAAATGGT CATAACTTGA	480
GCTATGGACC TCCAAATTAA ATTCGGGCA TACGCTAAA TCCCAATTAC GAATACGGAG	540
CTACCGGACT GTCAAAATAC TGATCCGGGT CCGTTTGCTA AAAACGTTGA CCAAAGTCCA	600
CTAAGTTGAG TTTTAAACT TTATTTACA TTTTAATCCA TTTTTACAT GAAAACTTTC	660
CGGAAAATAC GGAGTATGCA CGCAAGTCGA GGAATGATAA ATGGTACGTT TCGAAGTTTT	720
AGAACTCAAA ATTACTTATT AAATTTAAAG ATGACATTTC GGGTCATCAC ATTGATGAAA	780
ATTTTGACAT TAATATCTGA GAACTTTCTT TGACCTTTT CGATTCTAAT CCAATCAATT	840
CAACAGTGTAA AGGTGAAGCA GTCAATTAA AGGAAGGCCT TTAAATTCTA AAATATTGTA	900

CTTTTCCCTGC GCTTCTAAAA GTGAACGACA AAGAAAAAAT AGTATTCTT GAACCTAATA	960
TTGTACAATA GGATAAATT TAACTATCTA TAAAAAGAGA ACAAAACCTT AATCTCTTC	1020
AAATAATATT ATAAGAAGTA ACATAATTGT CAAATGAAAT ACACATAAGA AGCACATAAA	1080
TITAAATGCC GTATTAAAAT TACAGTATAC TATAGCGGAA GTTGGCTTG A TAAAGGAACG	1140
CTGAGGAGAG TAGCCGATGG TGAAACACTA ACATCAAGTG CAAAAGAAAG AAAAAGTGA	1200
AACAGAAGAT GAATGTTGA AGTGGTAAA AGATTACTTA AAAGATAGGT TTGTTAAC	1260
AATGATTGTG ACTGTACGA AGCAGTGTGA ACCGTTGGGA CTTTAATAT TCTTCGGCAG	1320
AAGAACATTG CTCCTTCCAC GTATGTAGTC TTGTTACT TGTTAGTTT TTTAATTAA	1380
ATTAATAAG TTAATTAGAG AAATAATAAG AAGGATATT TAGTAATTCA ACTTTTAACT	1440
TTTAGGTTTC CCACTTATAA TATAATATAG ATATAGTTT TTTAATTAA AATTAAATAA	1500
GTTAATTAGA GAAATAATAA GAAGGATATT TTAGTAATTG AACTTTAAC TTTAGGGTT	1560
TCCACTTATA ATATAATATA GATATAGATA TAGATATAGA TATAGATAAA GATATATAGA	1620
TATAGATAGA TAATATAGAT GGATGAGTCA TTGGCGATAA AGTGGGATT GTTTCATTT	1680
TGTTATTAAA AACTTACTAC TCCTTAAATA TAAAATATGA TTCCTTTAA AAAAGAAATA	1740
GAATAAAAAT AAAGATAAAA CACTAAAAT AAATTAATTG TCTAGACAAA ATCTACCGTT	1800
CACCTCAATT AATACACATC CCCGTCACAC TCATGAAGTA GCTAGCACAA GCGTACAGAT	1860
CAGTTGAAAG AAGAAAAGGG TCCAGTCCTA AATATCCAAA TGTTCATGAA AGGAGGACAA	1920
CITAGTTTT TCTACTAGAA AGAATATTG GACGAATTTC GTTACACATTG GCATGTTTA	1980
ATTATATTAA GTAGTCTTTC TTGGAAAAGA AGTATTGCA ATATCAAACC AAATCTTCCC	2040
ATTACGCAAG CAATGACATC TAAGCAAATA TATATCACTA TAAATAGTAC TACTAATGTT	2100
CAATGACTTT TATAAGCACT ACATATATAT ACTCAAACAA AAAGAATGGA GAGCAACAAAC	2160
GTGGTTCTGC TAGATTCTG GGGGTACGGT CAGTCCCTTA TGTTACGTCC TGTTAGAAACC	2220
CCAACCCGTG AAATCAAAA AACTGACGGC CTGTGGCAT TCAGTCTGGA TCGCGAAAAC	2280
TGTGGAATTG ATCAGCGTTG GTGGGAAAGC CGTTACAAG AAAGCCGGGC AATTGCTGTG	2340
CCAGGCAGTT TAAACGATCA GTTCCCGAT CGAGATATTG GTAATTATGC GGGCAACGTC	2400
TGGTATCAGC CGGAAGTCTT TATACCGAAA GTTGGGCAG GCCAGCGTAT CGTGCTCGT	2460
TTCGATGCGG TCACTCATTA CGGCAAAGTG TGGTCAATA ATCAGGAAGT GATGGAGCAT	2520
CAGGGCGGCT ATACGCCATT TGAAGCCGAT GTCACGCCGT ATGTTATTGC CGGGAAAAGT	2580
GTACGTATCA CCGTTTGTGT GAACAACGAA CTGAACGGC AGACTATCCC GCCGGGAATG	2640
GTGATTACCG ACGAAAACGG CAAGAAAAG CAGTCTTACT TCCATGATT TTTAACTAT	2700
GCCGGAATCC ATCGCAGCGT AATGCTCTAC ACCACGCCGA ACACCTGGGT GGACGATATC	2760
ACCGTGGTGA CGCATGTCGC GCAAGACTGT AACACCGGT CTGTTGACTG GCAGGTGGTG	2820
GCCAATGGTG ATGTCAGCGT TGAACGCGT GATGCGGATC AACAGGTGGT TGCAACTGGA	2880
CAAGGCACTA GCGGCACCTT GCAAGTGGTG AATCCGCACC TCTGGCAACC GGGTGAAGGT	2940
TATCTCTATG AACTGTGCGT CACAGCCAAA AGCCAGACAG AGTGTGATAT CTACCCGTT	3000
CGCGTCGGCA TCCGGTCAGT GGCAGTGAAG GCGGAACAGT TCCTGATTAA CCACAAACCG	3060
TTCTACTTTA CTGGCTTGG TCGTCATGAA GATGCGGACT TACGTGGCAA AGGATTGAT	3120
AACGTGCTGA TGGTGCACGA CCACGCATTA ATGGACTGGA TTGGGGCCAA CCTCTACCGT	3180
ACCTCGCATT ACCCTTACGC TGAAGAGATG CTCGACTGGG CAGATGAACA TGGCATCGT	3240
GTGATTGATG AAACGTCTGC TGTCGGCTTT AACCTCTCTT TAGGCATTGG TTGCGAACG	3300
GGCAACAAAGC CGAAAGAACT GTACAGCGAA GAGGCAGTCACGGCGAAC TCAGCAAGCG	3360
CACTTACAGG CGATTAAAGA GCTGATAGCG CGTGACAAAA ACCACCCAAG CGTGGTGATG	3420
TGGAGTATTG CCAACGAACC GGATACCGT CCGCAAGTGC ACGGGAATAT TTGCGCAACTG	3480
GCGGAAGCAA CGCGTAAACT CGACCCGACG CGTCCGATCA CCTGGCTAA TGTAAATGTC	3540
TGCGACGCTC ACACCGATAC CATCAGCGAT CTCTTGTATG TGCTGTGCCT GAACCGTTAT	3600
TACGGATGGT ATGTCACAG CGGCGATTG GAAACGGCAG AGAAGGTACT GGAAAAGAA	3660

CTTCTGGCCT	GGCAGGAGAA	ACTGCATCAG	CCGATTATCA	TCACCGAATA	CGGC GTGGAT	3720
ACGT TAGCCG	GGCT GCACTC	AATGTACACC	GACATGTGGA	GTGAAGAGTA	TCAGTGTGCA	3780
TGGCTGGATA	TGTATCACCG	CGTCTTGAT	CCGTCAGCG	CCGTCGTGCG	TGAACAGGTA	3840
TGGAATTTCG	CCGATTTGC	GACCTCGCAA	GGCATATTGC	GCGTGGCGG	TAACAAGAAA	3900
GGGATCTTCA	CTCGDCGACC	GCAAACCGAA	GTCGGCGGCT	TTTCTGCTGC	AAAAACGCTG	3960
GACTGGCATG	AACTTCGGTG	AAAAACCGCA	GCAGGGAGGC	AAACAATGAG	AGCTCGAATT	4020
TCCCCGATCG	TTCAAACATT	TGGCAATAAA	TTTCTTAAG	ATTGAATCCT	GTTGCCGGTC	4080
TTGCGATGAT	TATCATATAA	TTTCTGTTGA	ATTACGTTAA	GCATGTAATA	ATTAACATGT	4140
AATGCATGAC	GTTATTTATG	AGATGGGTTT	TTATGATTAG	AGTCCC GCAA	TTATACATTT	4200
AATACGGCAT	AGAAAACAAA	ATATAGCGCG	CAA ACTAGGA	TAAATTATCG	CGCGCGGTGT	4260
CATCTATGTT	ACTAGATCGA	ATTG				4284

(2) INFORMATION POUR LA SEQ ID NO: 15:

(i) CARACTERISTIQUES DE LA SEQUENCE:

- (A) LONGUEUR: 58 paires de bases
- (B) TYPE: acide nucléique
- (C) NOMBRE DE BRINS: simple
- (D) CONFIGURATION: linéaire

(ii) TYPE DE MOLECULE: ADN (génomique)

(iii) HYPOTHETIQUE: NON

(xi) DESCRIPTION DE LA SEQUENCE: SEQ ID NO: 15:

ACTACTAACATG TTCAATGACT TTTATAAGCA CTACATATAT ATACTCAAAC AAAAAGAG

58

(2) INFORMATION POUR LA SEQ ID NO: 16:

(i) CARACTERISTIQUES DE LA SEQUENCE:

- (A) LONGUEUR: 1863 paires de bases
- (B) TYPE: acide nucléique
- (C) NOMBRE DE BRINS: simple
- (D) CONFIGURATION: linéaire

(ii) TYPE DE MOLECULE: ADNc

(iii) HYPOTHETIQUE: NON

(xi) DESCRIPTION DE LA SEQUENCE: SEQ ID NO: 16:

AAGCTTGCAC	GACACACTTG	TCTACTCCAA	AAATATCAAA	GATACAGTCC	TCAGAAGACC	60
AAAGGGCCAA	TTGAGACTTT	TCAACAAAGG	GTAATATCCG	GAAACCTCCT	CGGATTCCAT	120
TGCCAGCTA	TCTGTCACTT	TATTGTGAAG	ATAGTGGAAA	AGGAAGGTGG	CTCCTACAAA	180
TGCCATCATT	GCGATAAAGG	AAAGGCCATC	GTTGAAGATG	CCTCTGCCGA	CAGTGGTCCC	240

AAAGATGGAC CCCCACCCAC GAGGAGCATC GTGGAAAAAG AAGACGTTCC AACACGTCT	300
TCAAAGCAAG TGGATTGATG TGATATCTCC ACTGACGTA GGGATGACGC ACAATCCCAC	360
TATCCTTCGC AAGACCCCTTC CTCTATATAA GGAAGTTCAT TTCATTTGGA GAGAACACGG	420
GGGACTCTAG AGGATCCATG AGGCGAACTT CTAATTGAC TACTTTTCT TTGCTGTTT	480
CTCTGGTTT GCTGAGTGCT GCCTTGGCAC AGAATTGTGG TTCACAGGGC GGAGGCAAAG	540
TTTGTGCGTC GGGACAATGT TGCAGCAAAT TCGGGTGGTG CGGTAACACT AATGACCATT	600
GTGGTTCTGG CAATTGTCAA AGTCAGTGTC CAGGTGGCGG CCCTGGCCT GGTCCTGTTA	660
CTGGTGGGGA CCTCGGAAGC GTCATCTCAA ATTCTATGTT TGATCAAATG CTTAACATC	720
GTAACGAAAA TTCTGTCAA GGAAAGAATA ATTTCTACAG TTACAATGCC TTTATTACTG	780
CTGCTAGGTC TTTCTGGC TTTGGTACAA GTGGTGATAT CAATGCCGT AAAAGGGAAA	840
TTGCTGTTT CTTTCCCCAA ACCTCCCATG AAACACTGG TATGTGTATA ACCATTACA	900
TCGAACCATT AAAATATAAT TTCATTITAT TTTATTAGT AATTGATTAT ATATGTAGGA	960
GGATGGCCTT CCGCACCTGA TGGACCATTC GCATGGGGTT ACTGTTCCCT TAGAGAACGA	1020
GGTAACCCCG GTGACTACTG TTCACCAAGT AGTCAATGGC CTTGTGCACC TGGAAGGAAA	1080
TATTCGGAC GAGGCCAAT CCAAATTCA CAGTAAGCTA CATAAACTCA TATATGGTAA	1140
AATTGATGA ACTTGTAGTG TCTAATTACG TGTATTTGA CATTTCAAAA CAGCAACTAC	1200
AACTATGGGC CATGTGGAAG AGCCATCGGA GTGGACCTTT TAAACAATCC TGATTTAGTA	1260
GCCACAGACC CAGTCATCTC ATTCAAGACT GCTATCTGGT TCTGGATGAC CCCTCAATCA	1320
CCAAAGCCTT CTTGCCACGA TGTCACTATT GGAAGATGGA ACCCATCTGC CGGTGACCGA	1380
TCAGCCAATC GTCTTCTGG ATTGGTGTGTC ATCACAAACA TCATCAATGG GGGCCTGGAA	1440
TGTGGTCGTG GCAATGACAA TAGGGTCCAG GATCGCATTG GGTTTACAG GAGGTATTGC	1500
GGTATTCTTG GTGTAGTCC TGGTGACAAT CTTGATTGCG GAAACCAGAG ATCTTTTGGA	1560
AACGGACTTT TAGTCGATAC TATGTAATGA GCTCGAATTTC CCCCAGATCGT TCAAACATTT	1620
GGCAATAAAG TTTCTTAAGA TTGAATCTG TTGCCGGTCT TGCATGATT ATCATATAAT	1680
TTCTGTTGAA TTACGTTAAG CATGTAATAA TTAACATGTA ATGCATGACG TTATTTATGA	1740
GATGGGTTTT TATGATTAGA GTCCCGCAAT TATACATTAA ATACGCGATA GAAAACAAAA	1800
TATAGCGCGC AAACTAGGAT AAATTATCGC GCGCGGTGTC ATCTATGTTA CTAGATCGAA	1860
TTC	1863

(2) INFORMATION POUR LA SEQ ID NO: 17:

(i) CARACTERISTIQUES DE LA SEQUENCE:

- (A) LONGUEUR: 18 paires de bases
- (B) TYPE: acide nucléique
- (C) NOMBRE DE BRINS: simple
- (D) CONFIGURATION: linéaire

(ii) TYPE DE MOLECULE: ADN (génomique)

(iii) HYPOTHETIQUE: NON

(xi) DESCRIPTION DE LA SEQUENCE: SEQ ID NO: 17:

GAANNGAANN TTCNNNTTC

18

(2) INFORMATION POUR LA SEQ ID NO: 18:

(i) CARACTERISTIQUES DE LA SEQUENCE:

- (A) LONGUEUR: 18 paires de bas s
- (B) TYPE: acide nucléique
- (C) NOMBRE DE BRINS: simple
- (D) CONFIGURATION: linéaire

(ii) TYPE DE MOLECULE: ADN (génomique)

(iii) HYPOTHETIQUE: NON

(xi) DESCRIPTION DE LA SEQUENCE: SEQ ID NO: 18:

TTCNNNTTCNN GAANNGAA

18

REVENDICATIONS

1 Promoteur végétal, caractérisé en ce qu'il comprend la séquence (B) [SEQ ID NO : 4] ci-après :

TCAAAATGAAA	TACACATAAG	AAGCACATAA	ATTTAAATGC	CGTATTAAAC	TTACAGTATA	60
5 CTATAGCGGA	AGTTGGCTTG	ATAAAGGAAC	GCTGAGGAGA	GTAGCCGATG	GTGAAACACT	120
AACATCAAGT	GCAAAAGAAA	GAAAAACTGA	AAACAGAAGA	TGAATGTTG	AAGTGGGTAA	180
AAGATTACTT	AAAAGATAGG	TTTGGITAAC	AAATGATTGT	GACTGTTACG	AAGCAGTGTG	240
AACCGITGGG	ACTTTTAATA	TTCTTCGGCA	GAAGAACATT	GCTCTTCCA	CGTATGTAGT	300
CTTTGTCTAC	TTGTAGTTT	TTTAATTAA	AATTAAATAA	TTTAATTAGA	GAATAATAAA	360
10 GAAGGATATT	TTAGTAATTTC	AACTTTAAC	TTTAGGTTT	CCCACTTATA	ATATAATATA	420
GATATAGTTT	TTTTAATTAA	AAATTAAATA	AGTTAATTAG	AGAAATAATA	AGAAGGATAT	480
TTTAGTAATT	CAACTTTAA	CTTTAGGGT	TTCCACTTAT	AATATAATAT	AGATATAGAT	540
ATAGATATAG	ATATAGATAA	AGATATATAG	ATATAGATAG	ATAATATAGA	TGGATGAGTC	600
ATTGGCGATA	AAVTGAGGAT	TGTTTCATT	TTGTATTAA	AAACTTACTA	CTCCTTAAAT	660
15 ATAAAATATG	ATTCTTTTA	AAAAAGAAAT	AGAATAAAA	TAAAGATAAA	ACACTAAAAA	720
TAAATTAATT	GTCTAGACAA	AATCTACCGT	TCACCTCAAT	TAATAGACAT	CCCCGTCCAC	780
ATCATGAAGT	AGCTAGCACA	AGCGTACAGA	TCAGITGAAA	GAAGAAAAGG	GTCCAGTCCT	840
AAATATCCAA	ATGTTCATGA	AAGGAGGACA	ACTAGTTT	TTCTACTAGA	AAGAATATTT	900
TGACGAATTT	CGTTCACATT	GGCATGCTTT	AATTATATTA	AGTAGTCTTT	TTGGAAAAG	960
20 AAGTATTGTC	AATATCAAAC	CAAATCTTCC	CATTACGCAA	GCAATGACAT	CTAAGCAAAT	1020
ATATATCACT	ATAAAATAGTA	CTACTAATGT	TCAATGACTT	TTATAAGCAC	TACATATATA	1080
TACTCAAACA	AAAAGA					1096

ou une séquence présentant un degré d'homologie élevée avec la séquence (B).

25

2. Promoteur selon la revendication 1, caractérisée en ce qu'il comprend en amont de la séquence (B), la séquence (C) [SEQ ID NO : 5] ci-après :

CCTTTTCGA	TTCTAATCCA	ATCAATTCAA	CAGTGTAGG	TGAAGCAGTC	AATTAAAGG	60
30 AAGGCCTTTA	AATTCTAAAA	TATTGTACTT	TTCTCTGCGCT	TCTAAAAGTG	AACGACAAAG	120
AAAAAAATAGT	TATTCTGAA	CTTAATATTG	TACAATAGGA	TAAATTTAA	CTATCTATAA	180
AAAGAGAACAA	AAACCTTAAT	CTCTTCAAAA	TAATATTATA	AGAAGTAACA	TAATTG	236

ou une séquence présentant un degré d'homologie élevé avec la séquence (C).

3. Promoteur selon l'une des revendications 1 ou 2, caractérisée en ce
5 qu'il comprend en amont de la séquence (B), la séquence (D) [SEQ ID NO :
6] ci-après :

GAGCTCGGCA	AGGCTGACCA	AAGTCACAGA	AGCGATTGGA	ATTCGCAGGA	CAGACCATGC	60
ACCTGCGCAC	AAAATGTCGT	AGGTGCGACA	CACCAGAAC	AGCACTGGGC	AGCAGGTTTC	120
AATTGCTCTG	TGGCTCGTTT	GAAACTCATC	CGAGCCACTC	ATGACCTCGT	CCGAATATTT	180
10 CAACAAGTCC	ATAAACATAA	TACGGACATA	CTCGGGTTT	CACTTCACGT	CAAACAACAT	240
CAAAATTACA	AATCACACCC	CGATTGAAAC	CTTGAGTTT	AAACTTTCA	ATTGCAAAT	300
CTCGTGCCAA	AACATATTAA	ATGAATCCGG	AATGACTTCA	AATTTATAAA	TGACATAACG	360
GAGTTGTTCA	AATTTCCAGA	ATCAGATTCT	GCCTTTGATA	TCAAAAAGTC	AACCCCGTGA	420
TCAAACTTGG	AATTCTTAG	CCTTAAATT	GCTAGTTTC	GTAAATGGT	CATAACTTGA	480
15 GCTATGGACC	TCCAAATTAA	ATTCGGGCA	TACGCTAAA	TCCCAATTAC	GAATACGGAG	540
CTACCGGACT	GTCAAAATAC	TGATCCGGGT	CCGTTTGCTA	AAAACGTTGA	CCAAAGTCCA	600
CTAAGTTGAG	TTTTAAAAT	TTATTCACA	TTTTAATCCA	TTTTTACAT	AAAAACTTTC	660
CGGAAAATAC	GGAGTATGCA	CGCAAGTCGA	GGAATGATAA	ATGGTACGTT	TCGAAGTTT	720
AGAACTCAA	ATTACTTATT	AAATTAAAG	ATGACATTTT	GGGTACATCAC	ATTGATGAAA	780
20 ATTTGACAT	TAATATCTGA	GAACTTCTT	TGA			813

ou une séquence présentant un degré d'homologie avec la séquence (D).

4. Utilisation d'un promoteur selon l'une quelconque des revendications 1 à 3, pour obtenir en situation de stress, la
25 surexpression dans un végétal d'une protéine d'intérêt, cette protéine pouvant être destinée à aider les végétaux à surmonter un état de stress.

5. Cellules végétales ou cellules de microorganismes ayant intégré une unité d'expression d'une protéine comprenant le promoteur végétal selon
30 l'une quelconque des revendications 1 à 3.

6. Végétal ou partie de végétal, caractérisé en ce qu'il comprend des cellules végétales selon la revendication 5.

1 / 4

FIG. 1

Cartographie de l'insert du clone pKS 246

■■■■■ région codante

FIG. 2

2 / 4

: Alignement du promoteur du gène par (Takahashi, Proc. Natl. Acad. Sci. USA, 87, 8013, ligne du haut) et de la partie correspondante du promoteur du gène 246 C (ligne du bas)

1	ACGTATGTAGTC	12
1301	CTTTAATATTCTCGGCAGAAGAACATTGCTTTCCACGTATGTAGTC		1350
13	TTTGTCTACTTGTAGTTTTAAATTAAATAAGTTAATTAGAG		62
1351	TTTGTCTACTTGTAGTTTTAAATTAAATAAGTTAATTAGAG		1400
63	AAATAATAAGAAGGATATTAGTAATTCAACTTTAACCTTTAGGTTTC		112
1401	AAATAATAAGAAGGATATTAGTAATTCAACTTTAACCTTTAGGTTTC		1450
113	CCACTTATAATATAATAGATATAGTTTTAAATTAAATAAAATAA		162
1451	CCACTTATAATATAATAGATATAGTTTTAAATTAAATAAAATAA		1500
163	GTTAATTAGAGAAATAATAAGAAGGATATTAGTAATTCAACTTTAAC		212
1501	GTTAATTAGAGAAATAATAAGAAGGATATTAGTAATTCAACTTTAAC		1550
213	TTTAGGGTTCCACTTATAATATAATAGATATAGATATAGATATAGA		262
1551	TTTAGGGTTCCACTTATAATATAATAGATATAGATATAGATATAGA		1600
263	TATAGATAAAAGATATAGATATAGATAGATAATATAGATGGATGAGTC		312
1601	TATAGAT.AAAGATATAGATATAGATAGATAATATAGATGGATGAGTC		1649
313	ATTGGCGATAAAAGTGAGGA.TGTTTCATTTTGTATTAAAAACTTACTA		361
1650	ATTGGCGATAAAAGTGAGGATTGTTTCATTTTGTATTAAAAACTTACTA		1699
362	CTCCCTAAATATAAAATATGATTCCCTTTAAAAAGAAATAGAATAAAA		411
1700	CTCCCTAAATATAAAATATGATTCCCTTTAAAAAGAAATAGAATAAAA		1749
412	TAAAGATAAAACACTAAAATAATTAAATTGTCTAGACAAAATCTACCGT		461
1750	TAAAGATAAAACACTAAAATAATTAAATTGTCTAGACAAAATCTACCGT		1799

3 / 4

462 TCACCTCAATTAATACACATCCCCGTCCACATCATGAAGTAGCTAGCACA 511
|||||1800 TCACCTCAATTAATACACATCCCCGTCCACATCATGAAGTAGCTAGCACA 1849
.512 AGCGTACAGATCAGTTGAAAGAAGAAAAGGGTCCAGTCCTAAATATCCAA 561
|||||1850 AGCGTACAGATCAGTTGAAAGAAGAAAAGGGTCCAGTCCTAAATATCCAA 1899
.562 ATGTTCATGAAAGGAGGACAACCTAGTTTTCTACTAGAAAGAACATT 611
|||||1900 ATGTTCATGAAAGGAGGACAACCTAGTTTTCTACTAGAAAGAACATT 1949
.612 TGACGAATTTCGTTCACATTGGCATGCTTAATT.TATTAAGTAGTCCTT 660
|||||1950 TGACGAATTTCGTTCACATTGGCATGCTTAATTATATTAAGTAGTCCTT 1999
.661 CTTGGAAAAGAAGTATTGCAATATCAAACCAAATCTTCCCATTACGCAA 710
|||||2000 CTTGGAAAAGAAGTATTGCAATATCAAACCAAATCTTCCCATTACGCAA 2049
.711 GCAATGACATCTAACGCAAATATATATCACTATAAATAGTACTACTAATGT 760
|||||2050 GCAATGACATCTAACGCAAATATATATCACTATAAATAGTACTACTAATGT 2099
.761 TCAATGACTTTATAAGCACTACATATATATTCTCAAACAAAAAGA 806
|||||2100 TCAATGACTTTATAAGCACTACATATATACTCAAACAAAAAGA 2145
.FIG. 2 (suite)

4 / 4

- 2077

GUS

pSG 123

-1264

GUS

pSG 251

-1028

GUS

pSG 33

-800

GUS

pSG 29

- 626

GUS

pSG 23

- 467

GUS

pSG 451

- 236

GUS

pSG 2

- 184

GUS

pSG 24

- 101

GUS

pSG 3

+ 12

GUS

pSG 1

FIG.3

: Différents vecteurs d'expression testés comportant par rapport au plasmide pleine longueur pSG 123 une délétion variable de la partie 5' du promoteur, comptée à partir du site d'initiation de la transcripti n.

INTERNATIONAL SEARCH REPORT

International Application No

PCT/FR 94/00316

A. CLASSIFICATION OF SUBJECT MATTER

IPC 5 C12N15/29 C12N15/82 C12Q1/68 A01N65/00 C12N5/10
A01H5/00

According to International Patent Classification (IPC) or to both national classification and IPC

B. FIELDS SEARCHED

Minimum documentation searched (classification system followed by classification symbols)
IPC 5 C12N C12Q A01N A01H

Documentation searched other than minimum documentation to the extent that such documents are included in the fields searched

Electronic data base consulted during the international search (name of data base and, where practical, search terms used)

C. DOCUMENTS CONSIDERED TO BE RELEVANT

Category *	Citation of document, with indication, where appropriate, of the relevant passages	Relevant to claim No.
A	<p>PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF USA vol. 87, October 1990, WASHINGTON US pages 8013 - 8016 TAKAHASHI, Y., ET AL. 'Location of the cis-acting auxin-responsive region in the promoter of the par gene from tobacco mesophyll protoplasts' see the whole document</p> <p>---</p> <p>-/-</p>	1-8

 Further documents are listed in the continuation of box C. Patent family members are listed in annex.

* Special categories of cited documents :

- *A* document defining the general state of the art which is not considered to be of particular relevance
- *E* earlier document but published on or after the international filing date
- *L* document which may throw doubts on priority claim(s) or which is cited to establish the publication date of another citation or other special reason (as specified)
- *O* document referring to an oral disclosure, use, exhibition or other means
- *P* document published prior to the international filing date but later than the priority date claimed

- *T* later document published after the international filing date or priority date and not in conflict with the application but cited to understand the principle or theory underlying the invention
- *X* document of particular relevance; the claimed invention cannot be considered novel or cannot be considered to involve an inventive step when the document is taken alone
- *Y* document of particular relevance; the claimed invention cannot be considered to involve an inventive step when the document is combined with one or more other such documents, such combination being obvious to a person skilled in the art.
- *&* document member of the same patent family

Date of the actual completion of the international search

14 July 1994

Date of mailing of the international search report

22.07.94

Name and mailing address of the ISA

European Patent Office, P.B. 5818 Patentiaan 2
NL - 2280 HV Rijswijk
Tel. (+ 31-70) 340-2040, Tx. 31 651 epo nl,
Fax: (+ 31-70) 340-3016

Authorized officer

Maddox, A

INTERNATIONAL SEARCH REPORT

International Application No

/FR 94/00316

C.(Continuation) DOCUMENTS CONSIDERED TO BE RELEVANT

Category	Citation of document, with indication, where appropriate, of the relevant passages	Relevant to claim No.
A	<p>MOLECULAR AND GENERAL GENETICS vol. 236, no. 2/3 , January 1993 , BERLIN DE pages 179 - 186 MARTINI, N., ET AL. 'Promoter sequences of a potato pathogenesis-related gene mediate transcriptional activation selectively upon fungal infection' see the whole document ---</p>	1-8
A	<p>BIOTECHNOLOGY vol. 8, no. 9 , September 1990 , NEW YORK US pages 845 - 848 DOERNER, P.W., ET AL. 'Plant defense gene promoter-reporter gene fusions in transgenic plants: tools for identification of novel inducers' see the whole document ---</p>	8
A	<p>PLANT MOLECULAR BIOLOGY. vol. 17 , 1991 , DORDRECHT, THE NETHERLANDS. pages 409 - 413 GODIARD, L., ET AL. 'Differential regulation in tobacco cell suspensions of genes involved in plant-bacteria interactions by pathogen-related signals' see page 413, left column ---</p>	1-8
A	<p>PLANT MOLECULAR BIOLOGY. vol. 15 , 1990 , DORDRECHT, THE NETHERLANDS. pages 145 - 154 MARCO, Y.J., ET AL. 'Transcriptional activation of 2 classes of genes during the hypersensitive reaction of tobacco leaves infiltrated with an incompatible isolate of the phytopathogenic bacterium <i>Pseudomonas solanacearum</i>' see the whole document ---</p>	1-8
A	<p>WO,A,91 15585 (RIJKSLANDBOUWUNIVERSITEIT WAGENINGEN) 17 October 1991 see claims 1-20 -----</p>	4-7

INTERNATIONAL SEARCH REPORT

Information on patent family members

International Application No

PCT/FR 94/00316

Patent document cited in search report	Publication date	Patent family member(s)		Publication date
WO-A-9115585	17-10-91	NL-A-	9000773	01-11-91

RAPPORT DE RECHERCHE INTERNATIONALE

Dernier internationale No

FR 94/00316

A. CLASSEMENT DE L'OBJET DE LA RECHERCHE
 CIB 5 C12N15/29 C12N15/82
 A01H5/00

C12Q1/68

A01N65/00

C12N5/10

Selon la classification internationale des brevets (CIB) ou à la fois selon la classification nationale et la CIB

B. DOMAINES SUR LESQUELS LA RECHERCHE A PORTE

Documentation minimale consultée (système de classification suivi des symboles de classement)

CIB 5 C12N C12Q A01N A01H

Documentation consultée autre que la documentation minimale dans la mesure où ces documents relèvent des domaines sur lesquels a porté la recherche

Base de données électronique consultée au cours de la recherche internationale (nom de la base de données, et si cela est réalisable, termes de recherche utilisés)

C. DOCUMENTS CONSIDERES COMME PERTINENTS

Catégorie	Identification des documents cités, avec, le cas échéant, l'indication des passages pertinents	no. des revendications visées
A	<p>PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF USA vol. 87 , Octobre 1990 , WASHINGTON US pages 8013 - 8016 TAKAHASHI, Y., ET AL. 'Location of the cis-acting auxin-responsive region in the promoter of the par gene from tobacco mesophyll protoplasts' voir le document en entier --- -/-</p>	1-8

Voir la suite du cadre C pour la fin de la liste des documents

Les documents de familles de brevets sont indiqués en annexe

* Catégories spéciales de documents cités:

- *A* document définissant l'état général de la technique, non considéré comme particulièrement pertinent
- *B* document antérieur, mais publié à la date de dépôt international ou après cette date
- *L* document pouvant jeter un doute sur une revendication de priorité ou cité pour déterminer la date de publication d'une autre citation ou pour une raison spéciale (telle qu'indiquée)
- *O* document se référant à une divulgation orale, à un usage, à une exposition ou tous autres moyens
- *P* document publié avant la date de dépôt international, mais postérieurement à la date de priorité revendiquée

- *T* document ultérieur publié après la date de dépôt international ou la date de priorité et n'appartenant pas à l'état de la technique pertinent, mais cité pour comprendre le principe ou la théorie constituant la base de l'invention
- *X* document particulièrement pertinent; l'invention revendiquée ne peut être considérée comme nouvelle ou comme impliquant une activité inventive par rapport au document considéré isolément
- *Y* document particulièrement pertinent; l'invention revendiquée ne peut être considérée comme impliquant une activité inventive lorsque le document est associé à un ou plusieurs autres documents de même nature, cette combinaison étant évidente pour une personne du métier
- *&* document qui fait partie de la même famille de brevets

1 Date à laquelle la recherche internationale a été effectivement achevée

14 Juillet 1994

Date d'expédition du présent rapport de recherche internationale

22.07.94

Nom et adresse postale de l'administration chargée de la recherche internationale
 Office Européen des Brevets, P.B. 5818 Patentiaan 2
 NL - 2280 HV Rijswijk
 Tel. (+ 31-70) 340-2040, Tx. 31 651 epo nl.
 Fax: (+ 31-70) 340-3016

Fonctionnaire autorisé

Maddox, A

RAPPORT DE RECHERCHE INTERNATIONALE

Demande Internationale No

PCT/FR 94/00316

C.(suite) DOCUMENTS CONSIDERES COMME PERTINENTS

Catégorie	Identification des documents cités, avec, le cas échéant, l'indication des passages pertinents	no. des revendications vues
A	<p>MOLECULAR AND GENERAL GENETICS vol. 236, no. 2/3 , Janvier 1993 , BERLIN DE pages 179 - 186 MARTINI, N., ET AL. 'Promoter sequences of a potato pathogenesis-related gene mediate transcriptional activation selectively upon fungal infection' voir le document en entier ---</p>	1-8
A	<p>BIOTECHNOLOGY vol. 8, no. 9 , Septembre 1990 , NEW YORK US pages 845 - 848 DOERNER, P.W., ET AL. 'Plant defense gene promoter-reporter gene fusions in transgenic plants: tools for identification of novel inducers' voir le document en entier ---</p>	8
A	<p>PLANT MOLECULAR BIOLOGY. vol. 17 , 1991 , DORDRECHT, THE NETHERLANDS. pages 409 - 413 GODIARD, L., ET AL. 'Differential regulation in tobacco cell suspensions of genes involved in plant-bacteria interactions by pathogen-related signals' voir page 413, colonne de gauche ---</p>	1-8
A	<p>PLANT MOLECULAR BIOLOGY. vol. 15 , 1990 , DORDRECHT, THE NETHERLANDS. pages 145 - 154 MARCO, Y.J., ET AL. 'Transcriptional activation of 2 classes of genes during the hypersensitive reaction of tobacco leaves infiltrated with an incompatible isolate of the phytopathogenic bacterium <i>Pseudomonas solanacearum</i>' voir le document en entier ---</p>	1-8
A	<p>WO,A,91 15585 (RIJKSLANDBOUWUNIVERSITEIT WAGENINGEN) 17 Octobre 1991 voir revendications 1-20 -----</p>	4-7

RAPPORT DE RECHERCHE INTERNATIONALE

Renseignements relatifs aux membres de familles de brevets

Demande Internationale No

FR 94/00316

Document brevet cité au rapport de recherche	Date de publication	Membre(s) de la famille de brevet(s)	Date de publication
WO-A-9115585	17-10-91	NL-A- 9000773 AU-B- 642252 AU-A- 7684591 EP-A- 0474857 JP-T- 5505110	01-11-91 14-10-93 30-10-91 18-03-92 05-08-93

THIS PAGE BLANK (USPTO)