

AMENDED CLAIMS – SUBMITTED EXCLUSIVELY TO
INCREASE THE CLARITY OF THE CLAIMS

036 What is claimed is:

1. (Currently amended) An Automatic Furnace that increases efficiency and decreases pollution that includes an electronic control unit (ECU) having memory, a multiburner furnace with at least two burners, a flue, a circulation time, a current circulation time, a circulation time delay from said burner to said flue, a flue parameter level, a flue parameter sensor, a reaction time marking a constant combustion rate, an oxidant delivery system controlled by the said ECU, a combustant at a said burner, the oxidant of the said oxidant delivery system controlling the said reaction time and the said flue parameter level in a base state with constant oxidant dosage and otherwise, the said Automatic Furnace having a sequential plurality of said oxidant and said flue parameter doses with values ranging from the smallest value to the largest value, the method comprising:

delivering the largest said oxidant dose to the said burner and
thereby the largest said flue parameter dose to the said flue,
while repeatedly sequencing through the said plurality of
sequential said flue parameter doses beginning with the
smallest dose and proceeding to the said adjacent dose in the
said sequence after a predetermined time interval has elapsed
until the said flue parameter level of the said Automatic
Furnace attains the desired said flue parameter level at which
point a corresponding said oxidant dosage and consequential
said flue parameter level are selected from the said plurality of
said sequential oxidant and said sequential flue parameter
doses.

delivering the said selected oxidant and the said
consequential flue parameter dose so as to maintain the said flue
parameter level in its desired range.

2. (Currently amended) The method of claim 1 wherein CO is the
said flue parameter.

3. (Currently amended) The method of Claim 1 wherein the said
current circulation

time is determined by:

means for storing a predetermined number of said base state
values in said memory; and
means for determining a predetermined sequence of said base
state levels.

4. (Currently amended) The method of claim 1 wherein the said
reaction time is determined by logic flow charts.

5. (Currently amended) The method of Claim 1 wherein
temperature is the said flue parameter.

6. (Currently amended) The method of Claim 1 wherein NO is the
said flue parameter.

7. (Currently amended) The method of Claim 1 wherein
compressed gaseous air is the said oxidant.

8. (Currently amended) The method of Claim 1 wherein
compressed oxygen gas is the said oxidant.

9. (Currently amended) The method of Claim 1 wherein the said
combustant is solid, liquid, or gas.

10. (Currently amended) The method of Claim 1 wherein the said
combustant is a hydrocarbon.

11. (Currently amended) An Automatic Furnace that increases
efficiency and decreases pollution that includes an electronic
control unit (ECU) having memory, a multiburner furnace with at
least two burners, a flue, a circulation time, a current circulation
time, a circulation time delay from burner to flue, a flue parameter
level, a flue parameter sensor, a reaction time marking a maximum
combustion rate, an oxidant delivery system controlled by the said
ECU, a combustant at a said burner, the oxidant of the said oxidant
delivery system controlling the said reaction time and the said flue
parameter level in a base state with constant oxidant dosage and
otherwise, the said Automatic Furnace having a sequential plurality

of said oxidant and said flue parameter doses with values ranging
from the smallest value to the largest value, the method comprising:
delivering the said largest oxidant dose to the said burner and
thereby the largest said flue parameter dose to the said flue,
while repeatedly sequencing through the plurality of said
oxidant doses beginning with the smallest dose and proceeding
to a said adjacent dose in the sequence after a predetermined
time interval has elapsed until the said flue parameter level of
the said Automatic Furnace attains the desired said flue
parameter level at which point a corresponding said oxidant
dosage and consequential said flue parameter level are selected
from the said plurality of said sequential oxidant and said
sequential flue parameter doses.

delivering the said selected oxidant and the said flue
parameter dose so as to maintain the said flue parameter level
in its desired range.

12. (Currently amended) The method of claim 11 wherein CO is
the said flue parameter.

13. (Currently amended) The method of Claim 11 wherein the
said current circulation time is determined by:
means for storing a predetermined number of said base state
values in said memory; and
means for determining a said predetermined sequence of base
state levels.

14. (Currently amended) The method of claim 11 wherein the
said reaction time is determined by logic flow charts.

15. (Currently amended) The method of Claim 11 wherein
temperature is the said flue parameter.

16. (Currently amended) The method of Claim 11 wherein NO is
the said flue parameter.

17. (Currently amended) The method of Claim 11 wherein
compressed gaseous air is the said oxidant.

18. (Currently amended) The method of Claim 11 wherein
compressed oxygen gas is the said oxidant.

19. (Currently amended) The method of Claim 11 wherein the
said combustant is solid, liquid, or gas.

20. (Currently amended) The method of Claim 11 wherein the
said combustant is a hydrocarbon.