CS 550 Final Study Guide

Roch's website

IMPORTANT INFO:

- Non-cumulative
- 1 cheat sheet front and back
- No calculators needed
- Only solve 5 out of the 6 problems provided
- One of the problems will be similar #5 of Assignment #5

Wishlist and Questions:

- Have a question? Put it here!
- Did anybody take notes last Thursday? If so, could you please post them?
- Office Hours:
 - May 8th, Tuesday 1:00pm 1:50pm

Red means not on the final*

Alpha-Beta Pruning

Chapter 1: Introduction

Chapter 2: Search

Chapter 3: Local Search

Chapter 4: Adversarial Search

Chapter 5: Constraint Satisfaction

Chapter 6: Learning

Chapter 7: Logical Agents

Chapter 5-7 Notes:

https://docs.google.com/document/d/1VlcxYd8Ap8L7_zonA448SLdHoqNflsEl-rpqBGzoSLo/edit?usp =sharing

Class Discussion (May 1st)

- Resolution Rule/Theorem
 - Using a set of predicates where all predicates are true (on the bottom side)
 - No AND's, we are looking for Conjunctive Normal Form
 - Allows us to combine a set of prepositional phrases and prove entailment
 - Look for positive and negative examples to find contradictions
 - Continuously finds alternate iptorforms of a sentence until we can prove by contradiction
- "The Wumpus problem from homework 5 is tougher than a question I would ask"
 - Slides contain an example of applying enough rules to solve the wumpus problem
 - Slide 22: "Return to Wumpus World"

- Two entailments to check using all possibilities
- \blacksquare A1 = no pit at [1,2]
- A1 includes the knowledge base,
 - Aka: the possibilities are a subset of the knowledge base and therefore there is entailment
 - KB |= A1
- A2 = no pit at [2,2]
- A2 does not include the knowledge base
 - A contradiction is shown here and therefore no entailment
- Entropy does not have be to from 0 1
 - $\circ \quad Entropy (binary) = B(q) = E[I(P(X))] = -q \log_2 q (1-q) \log_2 (1-q)$
 - Q being the first probability
 - 1-Q being the second probability
 - The numbers of bits that would be required to encode the information
 - It is the expected amount of information
 - o For each of the variables we will find the probability of that happening
 - Probability * Log (1/Probability)
 - Find the sum
 - Information tells us how surprising the result is
- Information Gain
 - o Goal: reduce the amount of information needed to represent the problem
 - o Remainder:
 - Compute the entropy for each subset and figure out how important each subset to the entire picture
 - Gain:
 - Overall entropy minus remainder

Problem Ideas

- 1. Diagram Problems
 - a. Chapter 5:
 - i. Construct a hyper-graph
 - ii. Map out domains of variables in CSV scenario
 - iii. Binarize a set of variables and global constraints into binary/unary constraints and an encapsulated variable and domain
 - b. Chapter 6:
 - c. Chapter 7:
 - i. Wumpus Problem
 - 1. Solve by contradiction
- 2. Pseudocode Problems
 - a. Chapter 5:
 - i. Backtracking Search

- b. Chapter 6:
 - i. Decision Tree Learner
- c. Chapter 7:
- 3. Theory Knowledge Questions
 - a. Chapter 5:
 - i. Node/Arc/Path/K-Consistency
 - 1. Showing consistency after introducing constraint
 - b. Chapter 6:
 - i. Entropy
 - ii. Information Gain
 - iii. Decision Tree Learner
 - iv. Neural Net Learner
 - c. Chapter 7:

Study Guide

Q:

A: