CS23336-Introduction to Python Programming

Started on Monday, 21 October 2024, 10:03 PM

State Finished

Completed on Monday, 21 October 2024, 10:28 PM

Time taken 24 mins 52 secs **Marks** 10 00/10 00

Grade 100.00 out of 100.00

Question 1

Correct Mark 1.00 out of 1.00 Flag question

Ouestion text

You are given an integer tuple nums containing distinct numbers. Your task is to perform a sequence of operations on this tuple until it becomes empty. The operations are defined as follows:

- 1. If the first element of the tuple has the smallest value in the entire tuple, remove it.
- 2. Otherwise, move the first element to the end of the tuple.

You need to return an integer denoting the number of operations required to make the tuple empty.

Constraints

- The input tuple nums contains distinct integers.
- The operations must be performed using tuples and sets to maintain immutability and efficiency.
- Your function should accept the tuple nums as input and return the total number of operations as an integer.

Example:

```
Input: nums = (3, 4, -1)
Output: 5
```

Explanation:

Operation 1: [3, 4, -1] -> First element is not the smallest, move to the end -> [4, -1, 3] Operation 2: [4, -1, 3] -> First element is not the smallest, move to the end -> [-1, 3, 4]

Operation 3: $[-1, 3, 4] \rightarrow$ First element is the smallest, remove it \rightarrow [3, 4]

Operation 4: $[3, 4] \rightarrow$ First element is the smallest, remove it \rightarrow [4]

Operation 5: [4] -> First element is the smallest, remove it -> []

Total operations: 5

For example:

Test Result

```
print(count operations((3, 4, -1))) 5
```

Answer:(penalty regime: 0 %)

```
Reset answer
    1 - def count_operations(nums: tuple) -> int:
            # Your implementation here
    3
            op=<mark>0</mark>
    4
            nums=list(nums)
    5 🐙
            while nums:
    6 🛖
                if nums[0]==min(nums):
    7
                    nums.pop(0)
    8 🛖
               else:
    9
                    nums.append(nums.pop(0))
   10
                op+=1
   11
            return op
```

Feedback

Test	Expected	l Go
<pre>print(count_operations((3, 4, -1)))</pre>	5	5
<pre>print(count_operations((1, 2, 3, 4, 5)))</pre>	5	5
<pre>print(count_operations((5, 4, 3, 2, 1)))</pre>	15	15
<pre>print(count_operations((42,)))</pre>	1	1
<pre>print(count_operations((-2, 3, -5, 4, 1)))</pre>	11	11

Passed all tests!

Correct

Marks for this submission: 1.00/1.00.

Question 2

Correct

Question text

The **DNA sequence** is composed of a series of nucleotides abbreviated as 'A', 'C', 'G', and 'T'.

• For example, "ACGAATTCCG" is a **DNA sequence**.

When studying **DNA**, it is useful to identify repeated sequences within the DNA.

Given a string s that represents a **DNA sequence**, return all the **10-letter-long** sequences (substrings) that occur more than once in a DNA molecule. You may return the answer in **any order**.

Example 1:

```
Input: s = "AAAAACCCCCAAAAACCCCCCAAAAAGGGTTT"
Output: ["AAAAACCCCC", "CCCCCAAAAA"]
Example 2:
```

Input: s = "AAAAAAAAAAA"
Output: ["AAAAAAAAA"]

For example:

Input Result

AAAAACCCCCAAAAAGGGTTT AAAAACCCCC CCCCAAAAA

```
1 s=input()
2 n=set()
    p=set()
4 - for i in range(len(s)-9):
 5
        c=s[i:i+10]
6 -
        if c in n:
 7
             p.add(c)
 8 🛖
        else:
 9
             n.add(c)
10 s=list(p)
11 + \text{for i in range(len(s)-1,-1,-1):}
12
        print(s[i])
```

Feedback

Input Expected Got

AAAAACCCCCAAAAACCCCCCAAAAAGGGTTT AAAAACCCCC AAAAACCCCCC

ΑΑΑΑΑΑΑΑΑ ΑΑΑΑΑΑΑΑ ΑΑΑΑΑΑΑΑΑ

Passed all tests!

Correct

Marks for this submission: 1.00/1.00.

Question 3

Correct Mark 1.00 out of 1.00 Flag question

Question text

There is a malfunctioning keyboard where some letter keys do not work. All other keys on the keyboard work properly.

Given a string text of words separated by a single space (no leading or trailing spaces) and a string brokenLetters of all distinct letter keys that are broken, return the number of words in text you can fully type using this keyboard.

Example 1:

Input: text = "hello world", brokenLetters = "ad"

Output:

1

Explanation: We cannot type "world" because the 'd' key is broken.

For example:

Input Result

hello world
ad 1

Input Result

Faculty Upskilling in Python Programming $_{2}$

Answer:(penalty regime: 0 %)

```
1 * def function(a:str,b:str)->int:
        a=a.lower()
3
        b=b.lower()
 4
        w=a.split()
 5
        b1=set(b)
 6
        count=0
 7 🕌
        for i in w:
8 🛖
            if not set(i)&b1:
 9
                count+=1
10
        return count
11
   a=input()
12
    b=input()
13
    print(function(a,b))
```

Feedback

Input	Expe	cted Got
hello world ad	1	1
Welcome to REC e	1	1
Faculty Upskilling in Python Programmi ak	ng ₂	2

Passed all tests!

Correct

Marks for this submission: 1.00/1.00.

Question 4

Correct Mark 1.00 out of 1.00 Flag question

Question text

Coders here is a simple task for you, Given string str. Your task is to check whether it is a binary string or not by using python set.

Examples:

Input: str = "01010101010"

Output: Yes

Input: str = "REC101"

Output: No

For example:

Input Result

01010101010 Yes

010101 10101 No

Answer:(penalty regime: 0 %)

Feedback

Input Expected Got 01010101010 Yes Yes

REC123 No No

010101 10101 No No

Passed all tests!

Correct

Marks for this submission: 1.00/1.00.

Question 5

Correct Mark 1.00 out of 1.00 Flag question

Question text

Write a program to eliminate the common elements in the given 2 arrays and print only the non-repeating elements and the total number of such non-repeating elements.

Input Format:

The first line contains space-separated values, denoting the size of the two arrays in integer format respectively.

The next two lines contain the space-separated integer arrays to be compared.

Sample Input:

5 4

12865

26810

Sample Output:

1 5 10

3

Sample Input:

5 5

12345

12345

Sample Output:

For example:

Input Result 5 4 1 2 8 6 5 3 2 6 8 10 5 5 1 2 3 4 5 NO SUCH ELEMENTS 1 2 3 4 5

Answer:(penalty regime: 0 %)

```
1  s1,s2=map(int,input().split())
2  a1=list(map(int,input().split()))
3  a2=list(map(int,input().split()))
4  c=set(a1+a2)
5  ce=set(a1)&set(a2)
6  n=sorted(c-ce)
7  if n:
8   print(*n)
9  print(len(n))
10  v else:
11  print("NO SUCH ELEMENTS")
```

Feedback

Input	Expected	Got
5 4 1 2 8 6 5 2 6 8 10	1 5 10 3	1 5 10 3
3 3 10 10 10 10 11 12	11 12 2	11 12 2
5 5 1 2 3 4 5	NO SUCH ELEMENTS	NO SUCH ELEMENTS

Input Expected Got 1 2 3 4 5

Passed all tests!

Correct

Marks for this submission: 1.00/1.00.

Question 6

Correct Mark 1.00 out of 1.00 Flag question

Question text

Given a tuple and a positive integer k, the task is to find the count of distinct pairs in the tuple whose sum is equal to K.

Examples:

```
Input: t = (5, 6, 5, 7, 7, 8), K = 13
Output: 2
Explanation:
Pairs with sum K(=13) are \{(5, 8), (6, 7), (6, 7)\}.
Therefore, distinct pairs with sum K(=13) are \{(5, 8), (6, 7)\}.
Therefore, the required output is 2.
```

For example:

Input Result

```
1,2,1,2,5<sub>1</sub>
1,2
0
```

```
1 \neq def fun(t,k):
 2
        s=set()
 3
         p=set()
4 -
         for n in t:
 5
             c=k-n
 6 🛖
             if c in s:
 7
                 p.add(tuple(sorted((n,c))))
 8
             s.add(n)
 9
        return len(p)
10
   t=tuple(map(int,input().split(',')))
11
    k=int(input())
    print(fun(t,k))
```


Input Expected Got

Passed all tests!

Correct

Marks for this submission: 1.00/1.00.

Question 7

Correct

Mark 1.00 out of 1.00

Flag question

Question text

Program to print all the distinct elements in an array. Distinct elements are nothing but the unique (non-duplicate) elements present in the given array.

Input Format:

First line take an Integer input from stdin which is array length n.

Second line take n Integers which is inputs of array.

Output Format:

Print the Distinct Elements in Array in single line which is space Separated

Example Input:

5

12234

Output:

For example:

123

Input Result

```
5
1
2
2 1 2 3 4
3
4
```

Answer:(penalty regime: 0 %)

Feedback

Input Expected Got 5 1 2 1 2 3 4 1 2 3 4 3 4 6 1 1 2 2 3 3 1 2 3 1 2 3 5 11 22 11 22 11 22 11 22 11 10 1 2 3 4 5 1 2 3 1 2 3 4 5 1 2 3 4 5

Passed all tests!

Correct

4 5

Marks for this submission: 1.00/1.00.

Question 8

Correct Mark 1.00 out of 1.00 Flag question

Question text

Check if a set is a subset of another set.

Example:

Sample Input1:

mango apple

```
mango orange
mango
output1:
yes
set3 is subset of set1 and set2
input2:
mango orange
banana orange
grapes
output2:
no
```

For example:

Test Input Result

```
mango apple yes set3 is subset of set1 and set2
mango orange
mango orange
banana orange No grapes
```

```
1 s1=set(input().srip().split())
2 s2=set(input().srip().split())
3 s3=set(input().srip().split())
4 v if s3.issubset(s1) and s3.issubset(s2):
    print('yes')
    print('set3 is subset of set1 and set2')
7 v else:
    print("No")
```

Feedback

Test	Input		Exp	ected				Got			
1	mango apple mango orange mango	yes set3 is	subset	of set]	. and	yes set2 se	subset	of	set1	and	set2
2	mango orange banana orange grapes	. No				No					

Passed all tests!

Correct

Marks for this submission: 1.00/1.00.

Question 9

Correct Mark 1.00 out of 1.00 Flag question

Question text

Given an array of strings words, return the words that can be typed using letters of the alphabet on only one row of American keyboard like the image below.

In the American keyboard:

- the first row consists of the characters "qwertyuiop",
- the second row consists of the characters "asdfghjkl", and
- the third row consists of the characters "zxcvbnm".

Example 1:

```
Input: words = ["Hello","Alaska","Dad","Peace"]
Output: ["Alaska","Dad"]

Example 2:
Input: words = ["omk"]
Output: []
```

Example 3:

```
Input: words = ["adsdf","sfd"]
Output: ["adsdf","sfd"]
```

For example:

Input Result

```
4
Hello Alaska
Dad Dad
Peace

2
adsfd afd
afd
```

Answer:(penalty regime: 0 %)

```
1 - def function(word,rows):
        l=word.lower()
 3 🛖
        for row in rows:
 4 -
            if all(char in row for char in l):
 5
                 return True
 6
        return False
 7 
   def find(words):
 8
        rows=["qwertyuiop","asdfghjkl","zxcvbnm"]
 9
        res=[]
10 🖵
        for word in words:
11 -
           if function(word,rows):
12
                res.append(word)
13
        return res
14
   n=int(input())
15
   a=[input() for _ in range(n)]
16 b=find(a)
17 - if b:
18 🛖
        for word in b:
19
            print(word)
20 - else:
21
        print("No words")
```

Feedback

Input Expected Got

```
4
Hello Alaska Alaska
Alaska Dad Dad
Dad
Peace
```

Input Expected Got

```
1 omk No words No words
2 adsfd adsfd afd afd
```

Passed all tests!

Correct

Marks for this submission: 1.00/1.00.

Question 10

Correct Mark 1.00 out of 1.00 Flag question

Question text

Given an array of integers nums containing n + 1 integers where each integer is in the range [1, n] inclusive. There is only **one repeated number** in nums, return *this repeated number*. Solve the problem using set.

Example 1:

```
Input: nums = [1,3,4,2,2]
Output: 2
Example 2:
Input: nums = [3,1,3,4,2]
Output: 3
```

For example:

Input Result

1 3 4 4 2 4

Feedback

	Inj	out		Expected	ted Got		
1 3	4 4	2		4	4		
1 2	2 3	4 5	6 7	2	2		

Passed all tests!

Correct

Marks for this submission: 1.00/1.00.

Finish review