Práctico 6

Pseudo-inversa, mínimos cuadrados, número de condición

Problemas del libro de Strang: secciones II.2 y II.3

- 1. Probar que $\mathcal{N}(A^{\top}A) = \mathcal{N}(A)$.
- 2. ¿Por qué A y A^+ tienen el mismo rango? Si A es cuadrada, ¿tienen A y A^+ los mismos vectores propios? ¿Cuáles son los valores propios de A^+ ?
- 3. A partir de A y A^+ mostrar que A^+A es correcto y que $(A^+A)^2 = A^+A$, es decir, que es una proyección. Sugerencia: si $A = \sum \sigma_i u_i v_i^{\mathsf{T}}$, entonces se tiene

$$A^+ = \sum \frac{v_i u_i^\top}{\sigma_i}, \quad A^+ A = \sum v_i v_i^\top, \quad AA^+ = \sum u_i u_i^\top$$

- 4. ¿Qué matrices cumplen que $A^+ = A$? ¿Por qué son cuadradas? Analizar A^+A .
- 5. Supongamos que A tiene columnas independientes (rango r = n, núcleo trivial).
 - <u>a</u>) Describir la matriz Σ de tamaño $m \times n$ en $A = U\Sigma V^{\top}$. ¿Cuántos elementos distintos de cero tiene Σ ?
 - b) Mostrar que $\Sigma^{\mathsf{T}}\Sigma$ es invertible encontrando su inversa.
 - <u>c</u>) Escribir la matriz $n \times m$ dada por $(\Sigma^{\top} \Sigma)^{-1} \Sigma^{\top}$ e identificarla con Σ^{+} .
 - <u>d</u>) Sustituir $A = U\Sigma V^{\top}$ en $(A^{\top}A)^{-1}A^{\top}$ e identificar esa matriz como A^{+} . Mostrar que $A^{\top}A\hat{x} = A^{\top}b$ lleva a $A^{+} = (A^{\top}A)^{-1}A^{\top}$, pero sólo si A tiene rango n.
- 6. Recordar que el <u>número de condición</u> de una matriz A se define por $||A|| ||A^{-1}||$. Mostrar por qué ese número se eleva al cuadrado si se trabaja con $A^{T}A$ en lugar de A.
- 7. Escribir una matriz 2×2 con número de condición > 1000. ¿Cuál es A^{-1} ? ¿Por qué A^{-1} también tiene número de condición > 1000?
- 8. La razón por la que aparecen tanto ||A|| como $||A^{-1}||$ es porque trabajamos con <u>error relativo</u>. Si Ax = b y $A(x + \Delta x) = b + \Delta b$ entonces $A\Delta x = \Delta b$. Mostrar que

$$\frac{\|\Delta x\|}{\|x\|} \le \|A\| \|A^{-1}\| \frac{\|\Delta b\|}{\|b\|}.$$

- 9. ¿Por qué el cociente $\lambda_{\text{max}}/\lambda_{\text{min}}$ es igual al número de condición cuando A es definida positiva?
- 10. **Importante:** ¿Cuál es el número de condición de una matriz ortogonal *Q*?