

Exercice 1

- **1.** Développer $(x-1)^2$ Justifier que $99^2 = 9801$ en utilisant le développement précédent.
- **2.** Développer (x-1)(x+1)Justifier que $99 \times 101 = 9999$ en utilisant le développement précédent.

Exercice 2

On considère le programme de calcul ci-dessous :

Programme de calcul:

- Choisir un nombre de départ
- Ajouter 1
- Calculer le carré du résultat obtenu
- Lui soustraire le carré du nombre de départ
- Ecrire le résultat final
- **1. a.** Vérifier que lorsque le nombre de départ est 1, on obtient 3 au résultat final.
 - b. Lorsque le nombre de départ est 2, quel résultat final obtient-on ?
 - **c.** Le nombre de départ étant x, exprimer le résultat final en fonction de x.
- **2.** On considère l'expression $P = (x+1)^2 x^2$
 - **a.** Développer et réduire l'expression P.
 - **b.** Factoriser l'expression *P*.
- 3. Quel nombre de départ doit-on choisir pour obtenir un résultat final égal à 15 ?

Exercice 3

On pose
$$D = (12x + 3)(2x - 7) - (2x - 7)^2$$

- **1.** Développer et réduire D.
- **2.** Factoriser *D*.
- **3.** Calculer *D* pour x = 2 puis pour x = -1
- **4.** Résoudre l'équation (2x-7)(x+1)=0

Exercice 4

On considère les deux figures ci-dessous. L'une est grisée et l'autre est composée de deux figures hachurées.

Montrer que ces deux figures ont même aire.