PCT/KR 2004/000747

RO/KR 3 1. 03. 2004

This is to certify that the following application annexed hereto is a true copy from the records of the Korean Intellectual Property Office.

출 원 번 호

10-2003-0022307

Application Number

출 원 년 월 일

2003년 04월 09일

Date of Application

APR 09, 2003

출 원 Applicant(s)

주식회사 엘지화학 LG CHEM, LTD. PRIORITY
DOCUMENT
SUBMITTED OR TRANSMITTED IN
COMPLIANCE WITH RULE 17.1(a) OR (b)

2004

년 03

월 31

일

특

허

인 :

청

COMMISSIONER局間

【서지사항】

【서류명】 특허출원서

【권리구분】 특허

【수신처】 특허청장

【제출일자】 2003.04.09

【발명의 명칭】 절연막 형성용 코팅 조성물

【발명의 영문명칭】 COATING COMPOSITION FOR INSULATING FILM PRODUCTION

【출원인】

【명칭】 주식회사 엘지화학

【출원인코드】 1-2001-013456-3

【대리인】

【명칭】 유미특허법인

【대리인코드】 9-2001-100003-6

【지정된변리사】 원영호

【포괄위임등록번호】 2002-070355-6

【발명자】

【성명의 국문표기】 문명선

【성명의 영문표기】 MOON,MYUNG SUN

【주민등록번호】 711015-2149517

【우편번호】 302-777

【주소】 대전광역시 서구 둔산2동 샘머리아파트 105동 804호

【국적】 KR

【발명자】

【성명의 국문표기】 고민진

【성명의 영문표기】 KO,MIN JIN

【주민등록번호】 640213-1042416

【우편번호】 305-721

【주소】 대전광역시 유성구 신성동 럭키하나아파트 105동 1406호

【국적】 KR

【발명자】

【성명의 국문표기】 남혜영

【성명의 영문표기】 NAM, HYE YEONG

【주민등록번호】 751007-2388219

【우편번호】 361-272

【주소】 충청북도 청주시 흥덕구 복대2동 보성아파트 103동 407호

【국적】 KR

【발명자】

【성명의 국문표기】 강정원

【성명의 영문표기】 KANG, JUNG WON

【주민등록번호】 741102-1010813

【우편번호】 139-230

【주소】 서울특별시 노원구 하계동 극동아파트 2동 306호

【국적】 KR

【발명자】

【성명의 국문표기】 최범규

【성명의 영문표기】 CHOI.BUM GYU

【주민등록번호】 730216-1346113

【우편번호】 305-751

【주소】 대전광역시 유성구 송강동 송강그린아파트 311동 204호

【국적】 KR

【발명자】

【성명의 국문표기】 김병로

【성명의 영문표기】KIM,BYUNG RO【주민등록번호】680928-1018010

【우편번호】 305-762

【주소】 대전광역시 유성구 전민동 엑스포아파트 406동 406호

【국적】 KR

【발명자】

【성명의 국문표기】 강귀권

【성명의 영문표기】 KANG,GWI GWON

【주민등록번호】 750725-1063734

【우편번호】 305-380

【주소】 대전광역시 유성구 문지동 104-1

【국적】 KR

【발명자】

【성명의 국문표기】 김영득

【성명의 영문표기】 KIM,YOUNG DUK

【주민등록번호】 681008-1055318

【우편번호】 305-761

【주소】 대전광역시 유성구 전민동 엑스포아파트 106동 703호

【국적】 KR

【발명자】

【성명의 국문표기】 박상민

【성명의 영문표기】 PARK,SANG MIN

【주민등록번호】 740603-1409011

【우편번호】 301-140

【주소】 대전광역시 중구 유천동 현대아파트 110동 402호

【국적】 KR

【심사청구】 청구

【취지】 특허법 제42조의 규정에 의한 출원, 특허법 제60조의 규정에 의

한 출원심사 를 청구합니다. 대리인

유미특허법인 (인)

【수수료】

【기본출원료】 20 면 29,000 원

【가산출원료】5면5,000원【우선권주장료】0건0원

【심사청구료】 13 항 525,000 원

[합계] 559,000 원

【첨부서류】 1. 요약서·명세서(도면)_1통

【요약서】

[요약]

본 발명은 절연막 형성용 코팅 조성물에 관한 것으로, 특히 유기폴리실록산 중합체, 물, 및 유기용매를 포함하며, 상기 유기폴리실록산 중합체 제조시 발생하는 부산물인 저급 알코올을 코팅 조성물에 포함되는 물 함량에 대하여 최대 30 중량%로 포함하여 저유전성이 우수하면서, 동시에 극성, 유전상수, 선팽창 계수가 낮으며, 열적 안정성, 기계적 강도, 및 탄성률이우수할 뿐만 아니라, 경화시 크랙 발생이 현저히 감소된 절연막 형성용 코팅 조성물, 이 조성물이 도포되어 경화된 반도체 소자의 절연막, 및 이 절연막을 포함하는 반도체 소자에 관한 것이다.

【색인어】

절연막, 유기폴리실록산, 실란화합물, 실란 올리고머, 기공형성 유기물, 유기용매, 저급 알코올물, 가수분해, 축합반응, 반도체 소자, 저유전성

【명세서】

【발명의 명칭】

절연막 형성용 코팅 조성물 {COATING COMPOSITION FOR INSULATING FILM PRODUCTION}
[발명의 상세한 설명]

【발명의 목적】

【발명이 속하는 기술분야 및 그 분야의 종래기술】

- 본 발명은 절연막 형성용 코팅 조성물에 관한 것으로, 더욱 상세하게는 저유전성이 우수하면서, 동시에 극성, 유전상수, 선팽창 계수가 낮으며, 열적 안정성, 기계적 강도, 및 탄성률이 우수할 뿐만 아니라, 경화시 크랙 발생이 현저히 감소된 절연막 형성용 코팅 조성물, 이 조성물이 도포되어 경화된 반도체 소자의 절연막, 및 이 절연막을 포함하는 반도체 소자에 관한 것이다.
- 최근 반도체 소자의 집적도가 증가하면서 배선 밀도가 증가되고 있으며 금속 배선의 간격이 점점 감소하고 있다. 이로 인하여 금속 배선간의 기생 커패시턴스가 증가하여, RC 지연, 금속 상호 간의 간섭(cross-talk) 현상, 소비전력 증가로 인하여 기존의 절연막을 사용하여서는 소자특성을 기대할 수 없다는 문제점이 제기되고 있으며, 이를 위해 배선 공정에 저유전 물질의 도입이 필수적이다.
- 종래의 IC, LSI 등의 반도체 소자의 충간 절연 재료는 유전상수가 4.0인 SiO₂가 대부분이며, 저유전 물질은 플루오린이 도핑된 실리케이트(F-SiO₂)가 일부 소자에 적용되고 있다.
 그러나, F-SiO₂의 경우 플루오린의 함량이 증가함에 따라 열적으로 불안정한 상태가 되어 유전

상수를 3.5 이하로 낮추기 어렵다는 문제점이 있다. 이에 따라, 최근 극성이 낮고 열적으로 안정한 여러 가지 유기 및 무기 고분자들이 제시되고 있다.

- * 저유전 상수를 갖는 유기 고분자는 폴리이미드 수지, 폴리아릴렌 에테르 수지, 아로마틱 하이드로카본 수지 등이 알려져 있다. 이들 유기 고분자들은 대부분 유전상수가 3.2~2.6으로 유리전이온도가 낮아서 SiO₂에 비하여 기계적 강도가 현저히 떨어지고 선팽창 계수가 매우 높다는 문제점이 있다. 이와 같이 낮은 열적 안정성과 탄성률 및 높은 선팽창 계수를 가지는 유기 고분자는 소자 또는 배선판의 신뢰성을 저하시킬 가능성이 있다.
- 상기와 같은 유기 고분자의 열적 안정성 문제를 해결하기 위해, 최근 알콕시 실란계 화합물을 이용한 유기실리케이트 고분자 개발이 진행 중이다. 유기실리케이트 고분자는 알콕시 실란화합물을 유기용매 하에서 가수분해 및 축합반응시켜 일정 분자량의 고분자로 만드는 일반적인 방법으로 제조된다. 알콕시 실란계 화합물인 폴리메틸실세스퀴옥산 또는 폴리수소실세스퀴옥산의 경우 3.0 이하의 비교적 낮은 유전 상수를 갖고, 450 ℃에서 열적으로 안정하다. 그러나, 폴리실세스퀴옥산은 경화공정 중 발생하는 수축 응력으로 1 ㎞ 이상의 두께에서 크랙이발생하기 쉽고, 기계적 강도가 충분하지 않다는 문제점이 있다.
- 따라서, 저유전성을 유지하면서 더욱 높은 기계적 물성을 갖는 절연막 제조를 위한 조성물에 대한 연구가 더욱 요구되는 실정이다.

【발명이 이루고자 하는 기술적 과제】

상기와 같은 종래기술의 문제점을 해결하고자, 본 발명은 저유전성이 우수하면서, 동시에 극성, 유전상수, 선팽창 계수가 낮으며, 열적 안정성, 기계적 강도, 및 탄성률이 우수할 뿐

1020 22307

출력 일자: 2004/4/8

만 아니라, 경화시 크랙 발생이 현저히 감소된 절연막 형성용 코팅 조성물을 제공하는 것을 목적으로 한다.

- ※ 본 발명의 다른 목적은 저유전성 및 기계적 강도를 현저히 향상시킬 수 있는 반도체 소자의 저유전 절연막의 제조방법을 제공하는 것이다.
- 보 발명의 또다른 목적은 저유전성 및 기계적 강도가 현저히 향상된 반도체 소자의 절연 막을 제공하는 것이다.
- <10> 본 발명의 또다른 목적은 저유전성 및 기계적 강도가 우수한 반도체 소자를 제공하는 것이다.

【발명의 구성】

- <11> 상기 목적을 달성하기 위하여, 본 발명은 기계적 강도 및 유전율이 우수한 절연막 형성용 코팅 조성물에 있어서,
- <12> a) 유기폴리실록산 중합체 2 내지 60 중량%;
- <13> b) 물 1 내지 32.67 중량%; 및
- <14> c) 유기용매 7.33 내지 97 중량%
- <15> 를 포함하는 절연막 형성용 코팅 조성물을 제공한다.
- <16> 또한 본 발명은 반도체 소자의 저유전 절연막의 제조방법에 있어서,
- <17> a) i) 유기폴리실록산 중합체 2 내지 60 중량%;
- <18> ii) 물 1 내지 32.67 중량%; 및
- <19> iii) 유기용매 7.33 내지 97 중량%
- <20> 를 포함하는 절연막 형성용 코팅 조성물을 제조하는 단계;

- <21> b) 상기 a)단계의 절연막 형성용 코팅 조성물을 반도체 소자의 기재
- <22> 에 도포하여 절연막을 형성시키는 단계; 및
- <23> c) 상기 b)단계의 도포된 절연막을 건조 및 소성하는 단계
- <24> 를 포함하는 저유전 절연막의 제조방법을 제공한다.
- <25> 또한 본 발명은 상기의 방법으로 제조되는 반도체 소자의 절연막을 제공한다.
- 또한 본 발명은 상기의 방법으로 제조되는 반도체 소자의 절연막을 포함하는 반도체 소자를 제공한다.
- <27> 이하 본 발명을 상세하게 설명한다.
- 본 발명자들은 저유전성을 유지하면서 더욱 높은 기계적 물성을 갖는 절연막 제조를 위한 조성물에 대하여 연구하던 중, 유기폴리실록산 중합체, 물, 및 유기용매를 포함하며, 상기유기폴리실록산 중합체 제조시 발생하는 부산물인 저급 알코올을 코팅 조성물에 포함되는 물함량에 대하여 최대 30 중량%로 조절한 결과, 저유전성이 우수하면서, 동시에 극성, 유전상수, 선팽창 계수가 낮으며, 열적 안정성, 기계적 강도, 및 탄성률이 우수할 뿐만 아니라, 경화시크랙 발생이 현저히 감소함을 확인하고, 이를 토대로 본 발명을 완성하게 되었다.
- 본 발명의 절연막 형성용 코팅 조성물은 유기폴리실록산 중합체 2 내지 60 중량%, 물 1 내지 32.67 중량%, 및 유기용매 7.33 내지 97 중량%를 포함하며, 상기 유기폴리실록산 중합체 제조시 발생하는 부산물인 저급 알코올을 코팅 조성물에 포함되는 물 함량에 대하여 최대 30 중량%로 포함하는 것을 특징으로 한다.

- <30> 본 발명에 사용되는 상기 유기폴리실록산 중합체는 유기용매 존재하에서, 또는 유기용매 없이 벌크로 실란화합물 또는 실란 올리고머에 물 및 촉매를 가하여 가수분해 및 축합반응시켜 제조된다.
- 《31》 상기 유기폴리실록산 중합체 제조시 사용되는 실란화합물 또는 실란 올리고머는 실리콘, 산소, 탄소, 수소로 구성된 실란화합물 또는 실란 올리고머이면 어느 것이나 사용할 수 있다. 특히, 상기 실란화합물 또는 실란 올리고머는 하기 화학식 1, 하기 화학식 2, 및 하기 화학식 3으로 표시되는 화합물로 이루어지는 군으로부터 선택되는 1 종 이상의 실란화합물, 또는 이로 부터 제조되는 다이머 또는 올리고머로부터 선택되는 실란화합물을 사용하는 것이 바람직하다. 상기 실란화합물 또는 실란 올리고머는 단독 또는 2 종 이상을 일정한 비율로 혼합하여 사용할 수 있다.
- <32> [화학식 1]
- $SiR_{p}^{1}R_{4-p}^{2}$
- <34> 상기 화학식 1의 식에서,
- <35> R¹은 수소, 아릴, 비닐, 알릴, 또는 불소로 치환되거나 치환되지 않은 직쇄 또는 분지쇄 상의 탄소수 1 내지 4의 알킬이고,
- <36> R²는 직쇄 또는 분지소상의 탄소수 1 내지 4의 알콕시이고,
- <37> p는 1 내지 2의 정수이다.
- <38> [화학식 2]
- $R_a^3 R_{3a}^4 Si M SiR_b^5 R_{3a}^6$

- <40> 상기 화학식 2의 식에서,
- R³, 및 R⁵는 각각 독립적으로 수소, 불소, 아릴, 비닐, 알릴, 또는 불소로 치환되거나 치환되지 않은 직쇄 또는 분지쇄상의 탄소수 1 내지 4의 알킬이고,
- <42> R⁴, 및 R⁶는 각각 독립적으로 직쇄 또는 분지쇄상의 탄소수 1 내지 4의 알콕시이고,
- <43> M은 탄소수 1 내지 6의 알킬렌 또는 페닐렌이고,
- <44> q, 및 r은 각각 0 내지 2의 정수이다.
- <45> [화학식 3]
- $R_{n}^{7} \sqsubseteq_{SiO}^{3} R_{2m-n}^{8}$
- <47> 상기 화학식 3의 식에서,
- <48> R⁷은 수소, 불소, 아릴, 비닐, 알릴, 또는 불소로 치환되거나 치환되지 않은 직쇄 또는 분지쇄상의 탄소수 1 내지 4의 알킬이고,
- <49> R8은 수소, 하이드록시, 또는 직쇄 또는 분지쇄 상의 탄소수 1 내지 4의 알콕시이고,
- <50> m, 및 n은 각각 3 내지 7의 정수이다.
- <51> 상기 유기폴리실록산 중합체는 유기용매 하에서 반응시켜 제조할 수도 있으며, 유기용매 없이 벌크로 반응시켜 제조할 수도 있으며, 또한 유기용매 하에서의 반응과 벌크 반응을 단계 적으로 실시하여 제조할 수도 있다.
- <52> 상기 유기용매는 실란화합물 또는 실란 올리고머의 가수분해 및 축합반응에 큰 지장을 초래하지 않으면 큰 제한이 없다. 상기 유기용매는 n-펜탄, i-펜탄, n-헥산, i-헥산, 2,2,4-트리메틸펜탄, 시클로 헥산, 또는 메틸시클로 헥산 등의 지방족 탄화 수소계 용매; 벤젠, 톨루

엔, 자일렌, 크실렌, 트리메틸 벤젠, 에틸 벤젠, 또는 메틸 에틸 벤젠 등의 방향족 탄화 수소 계 용매; 아세톤, 메틸에틸케톤, 메틸-n-프로필케톤, 메틸-n-부틸케톤, 메틸-i-부틸케톤, 디에 틸케톤, 시클로헥사논, 메틸시클로혝사논, 또는 아세틸아세톤 등의 케톤계 용매; 테트라하이드 로퓨란, 2-메틸 테트라하이드로 퓨란, 에틸에테르, n-프로필에테르, i-프로필에테르, n-부틸에 테르, 디글라임(digyme), 디옥신, 디메틸디옥신, 에틸렌글리콜 모노메틸에테르, 에틸렌글리콜 모노에틸에테르, 에틸렌글리콜-n-프로필에테르, 에틸렌글리콜 디메틸에테르, 에틸렌글리콜 디 에틸에테르, 프로필렌글리콜 모노메틸에테르, 프로필렌글리콜 모노에틸에테르, 프로필렌글리콜 모노프로필에테르, 프로필렌글리콜 디메틸에테르, 프로필렌글리콜 디에틸에테르, 또는 프로필 렌글리콜 디프로필에테르 등의 에테르계 용매; 디에틸카보네이트, 메틸아세테이트, 에틸아세테 이트, n-프로필아세테이트, i-프로필아세테이트, n-부틸아세테이트, 에틸락테이트, 에틸렌글리 콜 모노메틸에테르아세테이트, 에틸렌글리콜 모노에틸아세테이트, 프로필렌글리콜 모노메틸에 테르아세테이트, 프로필렌글리콜 모노에틸에테르아세테이트, 프로필렌글리콜 모노프로필에테르 아세테이트, 에틸렌글리콜 디아세테이트, 또는 프로필렌글리콜 디아세테이트 등의 에스테르계 용매; 또는 N-메틸피롤리돈, 포름아마이드, N-메틸포름아마이드, N-에틸포름아마이드, N,N-디 메틸포름아마이드, N.N-디에틸포름아마이드, N-메틸아세트아마이드, N-에틸아세트아마이드, N.N-디메틸아세트아마이드, 또는 N.N-디에틸아세트아마이드 등의 아마이드계 용매 등을 사용할 수 있다. 상기 유기용매은 1 종 또는 2 종 이상을 혼합하여 사용할 수 있다.

<53> 상기 유기폴리실록산 중합체의 제조시 사용되는 촉매는 실란화합물 또는 실란 올리고머의 가수분해 및 축합반응을 촉진시키는 작용을 한다.

<54> 상기 촉매는 산 촉매 또는 염기 촉매를 사용할 수 있다. 상기 산 촉매로는 큰 제한이 없으며, 그 예로는 염산, 질산, 황산, 인산, 불산, 포름산, 아세트산, 프로피온산, 부탄산, 펜

탄산, 헥산산, 모노클로로아세트산, 디클로로아세트산, 트리클로로아세트산, 트리플로로아세트산, 옥살산, 말론산, 술폰산, 프탈산, 푸마르산, 구연산, 말레산, 올레산, 메틸말론산, 아디프산, p-아미노벤조산, 또는 p-톤루엔술폰산 등이 있다. 또한, 상기 염기 촉매로는 암모니아, 유기아민 등이 있다. 상기 촉매는 1 종 또는 2 종 이상을 동시에 또는 단계적으로 사용할 수 있다.

- 상기 촉매의 첨가량은 반응 조건에 따라 조절할 수 있으며, 바람직하게는 사용된 총 실 란화합물 또는 실란올리고머 1 몰에 대해 0.000001 내지 2 몰을 사용하는 것이다. 상기 첨가 량이 실란화합물 1 몰 당 0.000001 몰 미만일 경우에는 너무 작은 분자량을 갖는 중합체가 합 성된다는 문제점이 있으며, 2 몰을 초과할 경우에는 낮은 농도에서도 반응 속도가 매우 빨라 부자량 조절이 어렵고, 쉽게 겔이 발생할 수 있다는 문제점이 있다.
- 상기 유기폴리실록산 중합체 제조시 가수분해 및 축합반응의 반응온도는 큰 제한이 없으나, 0 내지 100 ℃의 온도에서 반응시키는 것이 바람직하며, 더욱 바람직하게는 15 내지 80 ℃의 온도에서 반응시키는 것이다. 또한 반응온도는 반응 동안 일정한 온도로 유지해도 좋고, 단속적 또는 연속적으로 온도를 조절하면서 반응시켜도 좋다.
- <57> 상기 유기폴리실록산 중합체는 코팅 조성물에 2 내지 60 중량%로 포함되는 것이 바람직하다.
- 성기와 같이 제조된 본 발명의 유기폴리실록산 중합체의 중량평균분자량은 폴리스틸렌 환산분자량으로 적어도 500인 것이 바람직하며, 더욱 바람직하게는 500 내지 1,000,000인 것이다.

본 발명에 사용되는 상기 b)의 물은 코팅 조성물에 1 내지 32.67 중량%로 포함되는 것이 바람직하다. 그 함량이 1 중량% 미만일 경우에는 그 효과가 미미하다는 문제점이 있으며, 32.67 중량%를 초과할 경우에는 코팅 조성물이 불균일하게 된다는 문제점이 있다.

<60> 상기 절연막 형성용 코팅 조성물의 전체 용매 중 실란화합물의 반응 부산물인 저급 알코올과 물의 함량을 특정한 범위에서 조절하여 저급 알코올의 양을 일정량 이하로 유지하고, 물을 일정량 이상으로 유지한다.

<61> 즉, 상기 저급 알코올의 불순물은 코팅 조성물의 전체 용매에 대하여 최대 10 중량%로 포함되는 것이 바람직하며, 더욱 바람직하게는 최대 5 중량%로 포함되는 것이며, 가장 바람직 하게는 최대 3 중량%로 포함되는 것이다.

생기 물은 코팅 조성물의 전체 용매에 대하여 적어도 1 중량%로 포함되는 것이 바람직하며, 더욱 바람직하게는 적어도 2 중량%로 포함되는 것이다. 상기 물이 1 중량% 미만일 경우에는 그 효과가 미미하다는 문제점이 있다.

또한, 상기 실란화합물의 반응 부산물인 저급 알코올의 불순물은 물 함량에 대하여 최대
30 중량%로 포함되는 것이 바람직하며, 더욱 바람직하게는 최대 20 중량%로 포함되는 것이다.

<64> 본 발명의 절연막 형성용 코팅 조성물 내의 저급 알코올과 물의 함량을 조절하는 방법으로는 하기와 같은 방법이 있다.

성재는 유기폴리실록산 중합체 제조 후 유기용매에 잔존하는 알코올과 물을 감압증류하여 일정량의 알코올과 물을 제거하여 절연막 형성용 코팅 조성물 내의 저급 알코올과 물의 함량을 조절하는 방법이다. 또한, 유기폴리실록산 중합체 제조 중 단계적으로 감압증류할 수도

있으며, 필요에 따라서는 물 또는 유기용매를 단계적으로 첨가하면서 감압증류할 수 있고, 감 압증류 후 일정량의 물 또는 유기용매를 첨가할 수도 있다.

5째는 실란화합물을 가수분해 및 축합반응하여 수득한 유기폴리실록산 중합체를 용매추출하여 반응 부산물인 저급 알코올과 물을 제거하고, 이로부터 얻은 유기폴리실록산 중합체를 유기용매에 녹인 후, 일정량의 물 및 알코올을 첨가하여 절연막 형성용 코팅 조성물 내의 저급알코올과 물의 함량을 조절하는 방법이다.

본 발명에 사용되는 상기 c)의 유기용매는 절연막의 코팅성에 나쁜 영향을 주지 않으면 <67> 큰 제하은 없으며, 상기 유기폴리실록산 중합체 제조시 사용되는 유기용매를 사용할 수도 있으 며, 상기 유기폴리실록산 중합체 제조시 사용된 유기용매 중 특정 유기용매를 제거한 2차 용매 를 사용할 수도 있으며, 상기 유기폴리실록산 중합체 제조시 사용된 유기용매를 모두 제거하고 코팅성이 우수한 유기용매를 사용할 수도 있다. 상기 코팅성이 우수한 유기용매로는 에틸렌 글리콜 모노메틸에테르, 에틸렌글리콜 모노에틸에테르, 에틸렌글리콜-n-프로필에테르, 에틸렌 글리콜 디메틸에테르, 에틸렌글리콜 디에틸에테르, 프로필렌글리콜 모노메틸에테르, 프로필렌 글리콤 모노에틸에테르, 프로필렌글리콜 모노프로필에테르, 프로필렌글리콜 디메틸에테르, 프 로필렌글리콜 디에틸에테르, 또는 프로필렌글리콜 디프로필에테르 등의 에테르계 용매; 디에틸 카보네이트, 메틸아세테이트, 에틸아세테이트, n-프로필아세테이트, i-프로필아세테이트, n-부 틸아세테이트, 에틸락테이트, 에틸렌글리콜 모노메틸에테르아세테이트, 에틸렌글리콜 모노에틸 아세테이트, 프로필렌글리콜 모노메틸에테르아세테이트, 프로필렌글리콜 모노에틸에테르아세 테이트, 프로필렌글리콜 모노프로필에테르아세테이트, 에틸렌글리콜 디아세테이트, 또는 프로 필렌글리콜 디아세테이트 등의 에스테르계 용매 등이 있다.

- 생가와 같은 유기용매는 코팅 조성물에 7.33 내지 97 중량%로 포함되는 것이 바람직하다.
- <69> 상기와 같은 성분을 포함하는 본 발명의 절연막 형성용 코팅 조성물은 기공형성 유기물을 추가로 포함할 수 있다.
- ◇70> 상기 기공형성 유기물은 200 내지 450 ℃에서 열분해가 가능한 물질로, 절연막 내에서 일정한 크기의 기공을 고르게 분포시키기 위하여 유기폴리실록산 중합체 및 유기용매와 상용성 을 갖는 물질을 사용하는 것이 바람직하다.
- 《71》 상기 기공형성 유기물은 선형 유기분자 또는 고분자, 크로스링크형 유기분자 또는 고분자, 하이퍼브렌치드형 유기분자 또는 고분자, 또는 덴드리머형 유기분자 또는 고분자 등을 사용할 수 있다. 또한, 기공형성 유기물은 유기폴리실록산 중합체와의 상용성을 향상시키기 위하여 분자내에 실란화합물을 함유할 수 있으며, 이렇게 실란화합물을 함유한 기공형성 유기물은 상기 유기폴리실록산 중합체 제조시 첨가하여 공중합시킬 수도 있다.
- <72> 상기 기공형성 유기물은 상기 코팅 조성물의 유기폴리실록산 중합체 함량인 2 내지 60 중량% 내에 유기폴리실록산 중합체 100 중량부에 대하여 최대 150 중량부의 중량비로 포함되는 것이 바람직하다.
- 상기와 같은 성분을 포함하는 본 발명의 절연막 형성용 코팅 조성물의 전체 고형분 농도는 2 내지 60 중량%인 것이 바람직하며, 특히 절연막의 막 두께와 보전안정성을 고려하여 5 내지 40 중량%인 것이 더욱 바람직하다. 이때, 조성물의 고형분 농도는 상기 유기용매의 조성과 사용량에 의하여 조절할 수 있다.

- 또한, 본 발명은 상기와 같은 성분을 포함하고, 조성물 내의 저급 알코올과 물의 함량을 조절된 절연막 형성용 코팅 조성물을 기재에 도포한 후, 건조 및 소성하여 제조되는 반도체 소 자의 저유전 절연막을 제공한다.
- <75> 상기 기재는 실리콘 웨이퍼, SiO₂ 웨이퍼, SiN 웨이퍼, 또는 화합물 반도체 등을 사용할수 있다.
- 생기 절연막은 스핀코트법, 침지법, 롤 코트법, 스프레이법 등을 실시하여 형성할 수 있으며, 이들의 방법을 사용하여 일정 두께의 막을 형성하는 것이 가능하다. 특히, 반도체 장치의 다층회로 충간 절연막을 제조할 경우에는 스핀 코트법을 사용하는 것이 좋다.
- 생기 절연막은 코팅 조성물의 점도와 스핀코우터의 회전 속도를 변화시켜 막 두께를 조절할 수 있으며, 통상적으로 반도체 장치의 다층회로구조의 층간 절연막으로 사용하는 경우에는 절연막의 두께가 0.05 내지 2 µm인 것이 적당하다.
- 《78》 상기 절연막은 코팅 조성물을 코팅한 후, 건조공정과 소성(경화)공정을 거쳐 3차원 구조의 저유전 절연막을 형성할 수 있다. 건조공정은 통상적으로 프리베이크(pre-bake) 공정과 소프트베이크(soft-bake) 공정을 포함한다. 상기 프리베이크 공정 중에는 사용한 유기용매를 서서히 증발시키고, 소프트베이크 공정 중에는 관능기의 일정량을 가교시키며, 이후의 경화공정중에는 잔류관능기를 더욱 반응시킨다.
- 《79》 상기 건조는 50 내지 250 ℃의 온도에서, 소성은 적어도 300 ℃의 온도에서 실시하는 것이 좋으며, 특히 소성온도는 300 내지 500 ℃의 온도에서 실시하는 것이 바람직하다. 소성온도가 350 ℃ 미만일 경우에는 절연막의 축중합(유기 폴리실록산 중합체의 축중합)이 완전히 일어나지 않아 절연막의 강도가 저하되고, 잔류관능기의 존재로 인하여 유전특성이 저하될 수 있

다는 문제점이 있다. 또한 소성은도의 상한은 본 발명의 저유전 절연막의 열적 안정성과 이를 이용하여 제조된 반도체 소자에 따라 조절할 수 있다.

₩ 상기 건조공정과 소성공정은 연속적으로 일정한 속도로 승온시키면서 실시할 수도 있고, 또한 단속적으로 실시할 수도 있다. 단속적으로 실시할 경우, 건조공정 및 소성공정을 각각 1 분 내지 5 시간 동안 수행하는 것이 좋다. 이때 가열방법은 핫플레이트, 오븐, 퍼니스 등을 사용할 수 있고, 가열 분위기는 질소, 아르곤, 헬륨 등과 같은 불활성 기체분위기, 산소함유 기체(예를 들면, 공기 등) 등과 같은 산소 분위기, 진공상태, 또는 암모니아 및 수소를 함유하 는 기체분위기 등을 사용할 수 있다. 상기 가열방법은 건조공정과 소성공정이 모두 같은 가열 방법으로 실시할 수도 있으며, 각각 다른 방법으로 실시할 수도 있다.

또한, 본 발명은 상기와 같이 제조되는 절연막 및 이 절연막을 포함하는 반도체 소자를 제공하는 바, 상기와 같이 수득한 절연막은 절연성이 우수하고, 기계적 강도가 모두 우수하기 때문에, LSI, 시스템 LSI, DRAM, SDRAM, RDRAM, D-RDRAM 등의 반도체 소자용 층간 절연막, 반도체 소자 층간 캠핑막(capping layer), 하드 마스크막(hard mask layer), 에치 스톱막(etch stop layer) 등의 용도로 사용하기 좋다. 이 밖에 여러 용도의 보호막 및 절연막으로도 사용가능하며, 예를 들면, 반도체 소자 표면 코팅막 등의 보호막, 다층배선 기판의 층간 절연막, 액정표시 소자용의 보호막, 절연 방지막 등에 사용할 수 있다.

본 발명에 따른 절연막 형성용 코팅 조성물, 이 조성물이 도포되어 경화된 반도체 소자의 절연막, 및 이 절연막을 포함하는 반도체 소자는 저유전성이 우수하면서, 동시에 극성, 유전상수, 선팽창 계수가 낮으며, 열적 안정성, 기계적 강도, 및 탄성률이 우수할 뿐만 아니라, 경화시 크랙 발생이 현저히 감소되는 효과가 있다.

여하, 본 발명의 이해를 돕기 위하여 바람직한 실시예를 제시하나, 하기 실시예는 본 발명을 예시하는 것일 뿐 본 발명의 범위가 하기 실시예에 한정되는 것은 아니다.

<84> [실시예]

≪5> <u>실시예 1</u>

< >86> (절연막 형성용 코팅 조성물 제조)

유기용매인 프로필렌글리콜 모노프로필에테르(PnP) 90 g에 실란화합물로 메틸트리메톡시 실란 17.2 g 및 테트라메톡시 실란 15.2 g을 가한 후, 촉매로 말론산 0.312 g을 녹인 증류수 90 g을 질소하에서 천천히 첨가하였다. 이를 30 분간 실온에서 반응시킨 후, 온도를 서서히 올려 60 ℃에서 밤샘 반응시켰다. 반응완료 후, 감압증류하여 반응 부산물인 메탄올과 반응 후 남은 물 155 g을 제거하였다. 그 후 남은 용액에는 실란조성물이 완전히 경화되었을 때 고형분 농도가 18 내지 20 중량% 가 되도록 프로필렌글리콜 모노프로필에테르를 첨가하였다.

<88> (절연막 제조)

생9> 상기와 같이 제조한 절연막 형성용 코팅 조성물을 실리콘웨이퍼 위에 스핀 코팅하여 박막을 얻고, 100 ℃의 핫 플레이트에 2 분간 건조시킨 후, 질소 분위기하에서 430 ℃까지 승온시킨 후, 1 시간 동안 경화하여 절연막을 제조하였다.

<90> 실시예 2

<91> (절연막 형성용 코팅 조성물 제조)

수92 유기용매인 테트라하이드로퓨란(THF) 60 mL에 실란화합물로 메틸트리메톡시 실란 30.0 g 및 테트라메톡시 실란 13.4 g을 가한 후, 질소하에서 0.01 N 농도의 질산 수용액 37 g을 천천 히 첨가하였다. 이를 30 분간 실온에서 반응시킨 후, 온도를 서서히 올려 가열환류하면서 밤

샘반응시켰다. 반응완료 후, 반응용액을 디에틸에테르 용매로 희석시키고, pH가 중성이 될 때까지 물로 3~10 회 정도 씻어주었다. 얻어진 유기층에 황산 마그네슘을 가하여 남아 있는 물을 완전히 제거하고, 나머지 유기층의 용매를 진공오븐에서 완전히 제거하고, 고체상의 생성물을 수득하였다. 이 생성물을 프로필렌글리콜 모노프로필에테르 용매에 고형분 농도가 20 내지 25 중량%가 되도록 용해시킨 후, 코팅용액의 5 중량%의 물을 첨가하였다.

<93> (절연막 제조)

◇4〉 상기와 같이 제조한 절연막 형성용 코팅 조성물을 실리콘웨이퍼 위에 스핀 코팅하여 박막을 얻고, 100 ℃의 핫 플레이트에 2 분간 건조시킨 후, 질소 분위기하에서 430 ℃까지 승온시킨 후, 1 시간 동안 경화하여 절연막을 제조하였다.

<95> 비교예 1

<96> (절연막 형성용 코팅 조성물 제조)

유기용매인 프로필렌글리콜 모노프로필에테르(PnP) 90 g에 실란화합물로 메틸트리메톡시 실란 17.2 g 및 테트라메톡시 실란 15.2 g을 가한 후, 촉매로 말론산 0.312 g을 녹인 증류수 90 g을 질소하에서 천천히 첨가하였다. 이를 30 분간 실온에서 반응시킨 후, 온도를 서서히 올려 60 ℃에서 밤샘 반응시켰다. 반응완료 후, 감압증류하여 반응 부산물인 메탄올과 반응 후 남은 물 175 g을 제거하였다. 그 후 남은 용액에는 실란조성물이 완전히 경화되었을 때 고형분 농도가 18 내지 20 중량% 가 되도록 프로필렌글리콜 모노프로필에테르를 첨가하였다.

<98> (절연막 제조)

◇9> 상기와 같이 제조한 절연막 형성용 코팅 조성물을 실리콘웨이퍼 위에 스핀 코팅하여 박막을 얻고, 100 ℃의 핫 플레이트에 2 분간 건조시킨 후, 질소 분위기하에서 430 ℃까지 승온시킨 후, 1 시간 동안 경화하여 절연막을 제조하였다.

<100> 비교예 2

<101> (절연막 형성용 코팅 조성물 제조)

지용매인 테트라하이드로퓨란(THF) 60 mL에 실란화합물로 메틸트리메톡시 실란 30.0 g 및 테트라메톡시 실란 13.4 g을 가한 후, 질소하에서 0.01 N 농도의 질산 수용액 37 g을 천천히 첨가하였다. 이를 30 분간 실온에서 반응시킨 후, 온도를 서서히 올려 가열환류하면서 밤샘반응시켰다. 반응완료 후, 반응용액을 디에틸에테르 용매로 회석시키고, pH가 중성이 될 때까지 물로 3~10 회 정도 씻어주었다. 얻어진 유기층에 황산 마그네슘을 가하여 남아 있는 물을 완전히 제거하고, 나머지 유기층의 용매를 진공오븐에서 완전히 제거하고, 고체상의 생성물을 수득하였다. 이 생성물을 프로필렌글리콜 모노프로필에테르 용매에 고형분 농도가 20 내지 25 중량%가 되도록 용해시켰다.

<103> (절연막 제조)

<104> 상기와 같이 제조한 절연막 형성용 코팅 조성물을 실리콘웨이퍼 위에 스핀 코팅하여 박막을 얻고, 100 ℃의 핫 플레이트에 2 분간 건조시킨 후, 질소 분위기하에서 430 ℃까지 승온시킨 후, 1 시간 동안 경화하여 절연막을 제조하였다.

<105> 상기 실시예 1 또는 2, 및 비교예 1 또는 2에서 제조한 절연막 형성용 코팅 조성물 내에 전체 용매에 대하여 남아 있는 저급 알코올 및 물의 양을 하기와 같은 방법으로 측정하고, 그

결과를 하기 표 1에 나타내었다. 이때, 하기 표 1의 값은 용매인 프로필렌글리콜 모노프로필에테르 양이 100 중량%에 대한 중량%로 나타내었다.

<106> 기 저급 알코올 - 프로톤 엔엠알(¹H NMR)을 측정하여 계산하였다.

<107> ㄴ) 물 - 수분 측정기(Karl Fisher titration)로 적정하는 방법으로 측정하였다.

<108>【丑 1】

구분	실시예 1	실시예 2	비교예 1	비교예 2
저급알코올(메탄올) 함량	< 0.5 중량%	< 0.5 중량%	< 0.5 중량%	< 0.5 중량%
물 함량	4.3 중량%	5.5 중량%	0.7 중량%	0.5 중량%

<109> 상기 실시예 1 또는 2, 및 비교예 1 또는 2에서 제조한 절연막의 기계적 강도와 유전율을 하기와 같은 방법으로 측정하고, 그 결과를 하기 표 2에 나타내었다.

<110> ¬) 기계적 강도 - 실리콘 웨이퍼 위에 절연막을 스핀 코팅으로 입혀 경화시킨 후, 나노인 인데터를 이용하여 측정하였다.

<111> し) 유전율 - MIS(metal insulator semiconductor) 방식에 의해 실리콘 웨이퍼 위에 절 연막을 스핀 코팅으로 입혀 경화시킨 후, 절연막 위에 A1을 증착한 다음 1 融에서 측정하였다.

<112> 【班 2】

구분	실시예 1	실시예 2	비교예 I	비교예 2
[기계적 강도 (Gh)	11.0	9.6	10.1	9.0
유전율	2.90	2.85	2.91	2.85

<113> 상기 표 2를 통하여, 본 발명에 따라 제조한 실시예 1 또는 2의 절연막은 비교예 1 또는 비교예 2의 절연막과 비교하여 유전율이 우수하면서, 동시에 기계적 강도가 우수함을 확인할수 있었다.

【발명의 효과】

본 발명에 따르면 저유전성이 우수하면서, 동시에 극성, 유전상수, 선팽창 계수가 낮으며, 열적 안정성, 기계적 강도, 및 탄성률이 우수할 뿐만 아니라, 경화시 크랙 발생이 현저히 감소된 절연막 형성용 코팅 조성물, 이 조성물이 도포되어 경화된 반도체 소자의 절연막, 및이 절연막을 포함하는 반도체 소자를 제조할 수 있다.

【특허청구범위】

【청구항 1】

기계적 강도 및 유전율이 우수한 절연막 형성용 코팅 조성물에 있어서,

- a) 유기폴리실록산 중합체 2 내지 60 중량%;
- b) 물 1 내지 32.67 중량%; 및
- c) 유기용매 7.33 내지 97 중량%

를 포함하는 절연막 형성용 코팅 조성물.

【청구항 2】

제1항에 있어서.

상기 코팅 조성물에 d) 기공형성 유기물이 추가로 포함되는 절연막 형성용 코팅 조성물.

【청구항 3】

제1항에 있어서,

상기 a)의 유기폴리실록산 중합체 제조시 발생하는 부산물인 저급 알코올의 불순물이 최대 10 중량%로 포함되는 절연막 형성용 코팅 조성물.

【청구항 4】

제3항에 있어서.

상기 저급 알코올이 b)의 물 함량에 대하여 최대 30 중량%인 절연막 형성용 코팅조성물.

【청구항 5】

제1항에 있어서,

상기 a)의 유기폴리실록산 중합체가 유기용매 존재하에서, 또는 유기용매 없이 벌크로 실란화합물 또는 실란 올리고머에 물 및 촉매를 가하여 가수분해 및 축합반응시켜 제조되는 절 연막 형성용 코팅 조성물.

【청구항 6】

제5항에 있어서,

상기 실란화합물 또는 실란 올리고머는 실리콘, 산소, 탄소, 수소로 구성된 실란화합물 또는 실란 올리고머인 절연막 형성용 코팅 조성물.

【청구항 7】

제5항에 있어서.

상기 실란화합물 또는 실란 올리고머가 하기 화학식 1, 하기 화학식 2, 및 하기 화학식 3으로 표시되는 화합물로 이루어지는 군으로부터 선택되는 1 종 이상의 실란화합물인 절연막 형성용 코팅 조성물:

[화학식 1]

SiR¹_pR²_{4-p}

상기 화학식 1의 식에서,

R ¹은 수소, 아릴, 비닐, 알릴, 또는 불소로 치환되거나 치환되지 않은 직쇄 또는 분지 쇄상의 탄소수 1 내지 4의 알킬이고,

 R^2 는 직쇄 또는 분지소상의 탄소수 1 내지 4의 알콕시이고,

p는 1 내지 2의 정수이며,

[화학식 2]

 $R_{3}^{4}R_{34}^{4}Si - M - SiR_{7}^{6}R_{37}^{6}$

상기 화학식 2의 식에서,

R³, 및 R⁵는 각각 독립적으로 수소, 불소, 아릴, 비닐, 알릴, 또는 불소로 치환되거나 치환되지 않은 직쇄 또는 분지쇄상의 탄소수 1 내지 4의 알킬이고,

R 4, 및 R6는 각각 독립적으로 직쇄 또는 분지쇄상의 탄소수 1 내지 4의 알콕시이고,

M은 탄소수 1 내지 6의 알킬렌 또는 페닐렌이고,

q, 및 r은 각각 0 내지 2의 정수이며,

[화학식 3]

R_n SiO m R_{2m-n}

상기 화학식 3의 식에서,

R ⁷은 수소, 불소, 아릴, 비닐, 알릴, 또는 불소로 치환되거나 치환되지 않은 직쇄 또는 분지쇄상의 탄소수 1 내지 4의 알킬이고,

R⁸은 수소, 하이드록시, 또는 직쇄 또는 분지쇄 상의 탄소수 1 내지 4의 알콕시이고, m, 및 n은 각각 3 내지 7의 정수이다.

【청구항 8】

제1항에 있어서,

상기 a)의 유기폴리실록산 중합체의 중량평균분자량이 폴리스틸렌 환산분자량으로 적어도 500인 절연막 형성용 코팅 조성물.

【청구항 9】

제2항에 있어서.

상기 d)의 기공형성 유기물이 선형 유기분자 또는 고분자, 크로스링크형 유분자 또는 고분자, 하이퍼브렌치드형 유기분자 또는 고분자, 및 덴드리머형 유기분자 또는 고분자로 이루어지는 군으로부터 1 종 이상 선택되는 절연막 형성용 코팅 조성물.

【청구항 10】

제2항에 있어서.

상기 d)의 기공형성 유기물이 코팅 조성물의 유기폴리실록산 중합체 함량인 2 내지 60 중량% 내에 유기폴리실록산 중합체 100 중량부에 대하여 최대 150 중량부의 중량비로 포함되는 절연막 형성용 코팅 조성물.

【청구항 11】

반도체 소자의 저유전 절연막의 제조방법에 있어서,

- a) i) 유기폴리실록산 중합체 2 내지 60 중량%;
 - ii) 물 1 내지 32.67 중량%; 및
 - iii) 유기용매 7.33 내지 97 중량%

를 포함하는 절연막 형성용 코팅 조성물을 제조하는 단계;

- b) 상기 a)단계의 절연막 형성용 코팅 조성물을 반도체 소자의 기재 에 도포하여 절연막을 형성시키는 단계; 및
- c) 상기 b)단계의 도포된 절연막을 건조 및 소성하는 단계를 포함하는 저유전 절연막의 제조방법.

【청구항 12】

- a) i) 유기폴리실록산 중합체 2 내지 60 중량%;
 - ii) 물 1 내지 32.67 중량%; 및
 - iii) 유기용매 7.33 내지 97 중량% 를 포함하는 절연막 형성용 코팅 조성물을 제조하는 단계;
- b) 상기 a)단계의 절연막 형성용 코팅 조성물을 반도체 소자의 기재 에 도포하여 절연막을 형성시키는 단계; 및
- c) 상기 b)단계의 도포된 절연막을 건조 및 소성하는 단계 를 포함하는 방법으로 제조되는 반도체 소자의 저유전 절연막.

【청구항 13】

제12항 기재의 방법으로 제조되는 반도체 소자의 절연막을 포함하는 반도체 소자.