CYCLIC AMINE DERIFIVE

Patent number:

JP1079151

Publication date:

1989-03-24

Inventor:

SUGIMOTO HACHIRO; others: 01

Applicant:

EISAI CO LTD

Classification: - international:

C07D211/32; C07D207/09; C07D211/18; C07D211/94;

C07D295/10; C07D401/06; C07D401/12; C07D405/06;

C07D405/12

- european:

Application number: JP19880153852 19880622

Priority number(s):

Abstract of JP1079151

NEW MATERIAL: The compound of formula I [J is phenylpyridyl, pyrazyl, indanyl, indanonyl, univalent group derived from cyclic amide or alkyl; B is group of formula II-IV (n is 0-10; R<2> is H or methyl; R<3> is H, alkyl, acylphenyl, etc.; R<4> is H, alkyl or phenyl), etc.; T is N or C; Q is T or N O; K is H, phenyl, arylalkyl, alkyl, pyridylmethyl, etc.; q is 1-3] and its salt.

EXAMPLE:1-Benzyl-4-((5,6-dimethoxy-1-indanon)-2-yl) methylpiperidine.

USE:lt has strong and highly selective anti-acetylcholine esterase activity and is useful as a preventive

and remedy for senile dementia.

PREPARATION:A compound of formula I wherein B is group of formula IV can be produced e.g., by reacting an acid halide of formula V (Hal is halogen) with a cyclic amine derivative of formula VI in the presence of a salt-removing agent.

Data supplied from the esp@cenet database - Patent Abstracts of Japan

THIS PAGE BLANK (USPTO)

⑩日本国特許庁(JP)

⑪特許出願公開

四公開特許公報(A)

昭64-79151

@Int Cl.4

識別記号

庁内整理番号

43公開 昭和64年(1989)3月24日

C 07 D 211/32 207/09 211/18

6761-4C 7242-4C 6761-4C ×

請求項の数 22 (全57頁) 審査請求 未請求

環状アミン誘導体 39発明の名称

> ②特 昭63-153852 願

砂出 昭63(1988)6月22日 臼

②昭62(1987)6月22日③日本(JP)③特願 昭62-155058 優先権主張

茨城県牛久市柏田町3073-13 _ ⑫発 Êß 明 者 杉 本 八 茨城県牛久市栄町2-35-16 裕 勿発

者 眀 土 屋

茨城県つくば市春日 4 - 19-13 エーザイ紫山寮 日 暮 邦 造 ②発 明 者

茨城県つくば市春日4-19-13 エーザイ紫山寮 73発 明 者 苅 部 則. 夫

茨城県つくば市天久保2-23-5 メゾン学園103 洋 ⑦発 明 者 飯 村

茨城県つくば市春日4-19-13 エーザイ紫山寮 淳 ⑦発 明 者 佐 々 木

茨城県竜ケ崎市松葉3-2-4 73発 明 者 西 嘉 暗 ш

東京都文京区小石川4丁目6番10号 エーザイ株式会社 ①出 頣

②代 理 人 弁理士 古谷

最終頁に続く

細

発明の名称

環状アミン誘導体

- 特許請求の範囲
- 次の一般式

〔式中、

Jは(a)置換若しくは無置換の次に示す基:① フェニル基、②ピリジル基、③ピラジル基、④ キノリル基、⑤シクロヘキシル基、⑥キノキサ リル基又は⑦フリル基、

(b)フェニル基が置換されていてもよい次の群 から選択された一価又は二価の基; ①インダニ ル、②インダノニル、③インデニル、④インデ ノニル、⑤インダンジオニル、⑥テトラロニル、 ⑦ベンズスベロニル、®インダノリル、⑨式

(c) 環状アミド化合物から誘導される一価の基、

(d)低級アルキル基、又は

(e)式 R'-CH=CH-(式中、R'は水素原子又は低 級アルコキシカルポニル基を意味する) で示される基を意味する。

で示される基、式 -N-(CH),- (式中、R³は水素

原子、低級アルキル基、アシル基、低級アルキ ルスルホニル基、置換されてもよいフェニル基 又はベンジル基を意味する) で示される基、式

ル基又はフェニル基を意味する)で示される基、

|| で示される基、式-O-C-NH-(CH),-で示される基、 | R²

で示される基、式-(CH₂)₂-CO-NH-(CH)₅-で示さ

un | れる基、式-CH-(CH) n-で示される基【以上の式 | R²

中、 nは 0 又は 1 ~10 の整数を意味する。R*は 式 - (CH) "- で示されるアルキレン基が置換基を | R*

持たないか、又は1つ又は1つ以上のメチル基を有しているような形で水素原子又はメチル基を意味する。)、式 = (CH-CH=CH)。- (式中、 bは1~3の整数を意味する)で示される基、式=CH-(CH₂)。-(式中、 cは0又は1~9の整数を意味する)で示される基、式=(CH-CH)。=(式中、 dは0又は1~5の整数を意味する)で示され

味する。

qは1~3の整数を意味する。

式中、 …… は単結合若しくは二重結合を意味する。〕

で表される環状アミン誘導体及びその薬理学的に許容できる塩。

- 2 Jが置換若しくは無置換の①フェニル基、② ビリジル基、③ビラジル基、④キノリル基、⑤ シクロヘキシル基、⑥キノキサリル基又は⑦フ リル基から選択された一つの基である請求項1 記載の環状アミン誘導体又はその薬理学的に許 容できる塩。
- 3 Jが環状アミド化合物から誘導される一価の基である請求項1記載の環状アミン誘導体又はその本理学的に許容できる塩。

4 一般式

〔式中、

で示される基、式 -CH=CH-C-NH-(CH₂)₂-で示される基、式 -NH- で示される基、式 -O-で示される基、式 -O-で示される基、式 -S-で示される基、ジアルキルアミノアルキルカルボニル基又は低級アルコキシカルボニル基を意味する。

Tは窒素原子又は炭素原子を意味する。

Qは窒素原子、炭素原子又は式 N→Q で示される基を意味する。

Kは水素原子、置換若しくは無置換のフェニル基、フェニル基が置換されてもよいアリールアルキル基、フェニル基が置換されてもよいシンナミル基、低級アルキル基、ピリジルメチル基、シクロアルキル基、アダマンタンメチル基、フリルメチル基、シクロアルキル基、低級アルコキシカルポニル基又はアシル基を意

」はフェニル基が置換されていてもよい次の 群から選択された一価又は二価の基;①インダ ニル、②インダノニル、③インデニル、④イン デノニル、⑤インダンジオニル、⑥テトラロニ ル、⑦ベンズスベロニル、⑧インダノリル、⑨

| で示される基、式 -N-(CH)_n- (式中、R³は水果 | | R²

原子、低級アルキル基、アシル基、低級アルキルスルホニル基、置換されてもよいフェニル基 又はペンジル基を意味する)で示される基、式

ル基又はフェニル基を意味する) で示される基、

式-CH=CH-(CH),-で示される基、式-O-C-O-(CH),-| R² R²

|| で示される基、式-0-C-NH-(CH) - で示される基、 | 122

| 式-NH-C-(CH),-で示される甚、式-CH2-CO-NH-(CH),-| | R²

で示される基、式-(CH2)2-CO-NH-(CH)n-で示さ | | R2

nн

れる基、式-CH-(CH) n-で示される基(以上の式 R²

中、 nは 0 又は 1 ~10 の整数を意味する。R² は 式 - (CH) _n-で示されるアルキレン基が置換基を | | 0²

持たないか、又は1つ又は1つ以上のメチル基を有しているような形で水素原子又はメチル基を意味する。)、式 = $(CH-CH=CH)_{b-}$ (式中、bは $1\sim3$ の整数を意味する)で示される基、式= $CH-(CH_2)_{c-}$ (式中、cは0又は $1\sim9$ の整数を

メチル基、フリルメチル基、シクロアルキル基、 低級アルコキシカルポニル基又はアシル基を意 味する。

qは1~3の整数を意味する。

式中、 …… は単結合若しくは二重結合を意味する。〕

で表される環状アミン誘導体及びその薬理学的に許容できる塩。

5 Bが式 - (CH) n- 〔式中、 nは 0 又は 1 ~10の ing

整数を意味する。R³は式 -(CH)。-で示されるア

ルキレン基が置換基を持たないか、又は1つ又は1つ以上のメチル基を有しているような形で水素原子又はメチル基を意味する。〕で示される基、式=(CH-CH=CH) b- (式中、bは1~3の整数を意味する)で示される基、式=CH-(CH2) c- (式中、cは0又は1~9の整数を意味する)で示される基又は式=(CH-CH) a= (式中、 dは0又は1~5の整数を意味する)で示される基で

意味する) で示され、式=(CH-CH) d= (式中、dは 0 又は 1 ~ 5 の整数を意味する) で示され

で示される甚、式 -CH=CH-C-NH-(CH₂)₂-で示される甚、式 -NH- で示される甚、式 -O-で示される甚、式 -O-で示される甚、ジアルキルアミノアルキルカルボニル基又は低級アルコキシカルボニル基を意味する。

Tは窒素原子又は炭素原子を意味する。

Qは窒素原子、炭素原子又は式 N→0 で示される基を意味する。

Kは水素原子、置換若しくは無置換のフェニル基、フェニル基が置換されてもよいアリールアルキル基、フェニル基が置換されてもよいシンナミル基、低級アルキル基、ピリジルメチル基、シクロアルキルアルキル基、アダマンタン

ある請求項4記載の環状アミン誘導体又はその 薬理学的に許容できる塩。

6 一般式

〔式中、

J'はフェニル基が置換されていてもよい次の 群から選択された一価又は二価の基;①インダ ニル、②インダノニル、③インデニル、④イン デノニル、⑤インダンジオニル、⑥テトラロニ ル、⑦ベンズスベロニル、⑧インダノリル、⑨

整数を意味する。R²は式 -(CH)_n-で示されるア | | R²

ルキレン基が置換基を特たないか、又は1つ又 は1つ以上のメチル基を有しているような形で 水素原子又はメチル基を Rick する。〕で示される基、式=(CH-CH=CH) b- (式中、bは1~3の整数を意味する)で示される基、式=CH-(CH₂) c- (式中、cは0又は1~9の整数を意味する)で示される基又は式=(CH-CH) d= (式中、dは0又は1~5の整数を意味する)で示される基、

Kは水素原子、置換若しくは無置換のフェニル基、フェニル基が置換されてもよいアリールアルキル基、フェニル基が置換されてもよいシンナミル基、低級アルキル基、ピリジルメチル基、シクロアルキルアルキル基、アダマンタンメチル基、フリルメチル基、シクロアルキル基、低級アルコキシカルボニル基又はアシル基を意味する。〕

で表される環状アミン誘導体又はその薬理学的に許容できる塩。

- 7 Kが置換若しくは無置換のアリールアルキル 基又はフェニル基である請求項6記載の環状ア ミン誘導体又はその薬理学的に許容できる塩。
- 8 J'がインダノニルから誘導される一価又は二
- 13 化合物が1ーベンジルー4ー((5,6-メチレンジオキシー1ーインダノン)ー2ーイル)メチルピペリジンである請求項1記載の環状アミン誘導体又はその薬理学的に許容できる塩。
- 14 化合物が1-(m-ニトロベンジル)-4-((5.6-ジメトキシー1-インダノン)-2-イル)メチルピペリジンである請求項1記載の 環状アミン誘導体又はその薬理学的に許容できる塩。
- 15 化合物が1ーシクロへキシルメチルー4ー ((5,6ージメトキシー1ーインダノン)ー2ー イル)メチルピペリジンである請求項1記載の 環状アミン誘導体又はその薬理学的に許容できる塩。
- 16 化合物が1-(m-フルオロベンジル)-4 -((5.6-ジメトキシー1-インダノン)-2 -イル)メチルピペリジンである請求項1記載 の退状アミン誘導体又はその薬理学的に許容できる塩。
- 17 化合物が1ーペンジルー4ー (15.6ージメト

価の基、インデニー又はインダンジオニルから 選択された一つの基である請求項 6 又は 7 記載 の環状アミン誘導体又はその薬理学的に許容で きる塩。

- 9 化合物が1ーペンジルー4ー((5,6ージメトキシー1ーインダノン)ー2ーイル)メチルピペリジンである請求項1記載の環状アミン誘導体又はその薬理学的に許容できる塩。
- 10 化合物が1ーベンジルー4ー((5,6ージメトキシー1ーインダノン)ー2ーイリデニル)メチルピペリジンである請求項1記載の環状アミン誘導体又はその薬理学的に許容できる塩。
- 11 化合物が1ーベンジルー4ー((5ーメトキーシー1ーインダノン)ー2ーイル)メチルピペリジンである請求項1記載の環状アミン誘導体で又はその変理学的に許容できる塩。
- 12 化合物が1ーベンジルー4ー ((5,6ージメトキシー1ーインダノン) ー2ーイル) メチルピペリジンである請求項1記載の環状アミン誘導体又はその薬理学的に許容できる塩。

キシー1ーインダノン) -2ーイル) プロピル ピペリジンである請求項1記載の環状アミン誘 導体又はその薬理学的に許容できる塩。

- 18 化合物が1ーベンジルー4ー((5ーイソプロポキシー6ーメトキシー1ーインダノン)ー2ーイル)メチルピペリジンである請求項1記載の環状アミン誘導体又はその薬理学的に許容できる塩。
- 19 化合物が1ーベンジルー4ー((5.6ージメトキシー1ーオキソインダノン)ー2ーイル)プロペニルピペリジンである請求項1記載の環状アミン誘導体又はその変理学的に許容できる塩。

〔式中、

20 次の一般式

Jは(a)置換若しくは無置換の次に示す基;①フェニル基、②ピリジル基、③ピラジル基、④キノリル基、⑤キノキサ

リル基又は①フリル基:

(D)フェニル基が置換されていてもよい次の群から選択された一価又は二価の基; ①インダニル、②インダノニル、③インデニル、④インデノニル、⑤インダンジオニル、⑥テトラロニル、⑦ベンズスベロニル、⑥インダノリル、⑨式

(c) 環状アミド化合物から誘導される一価の基、 (d) 低級アルキル基、又は

(c)式 R'-CH=CH- (式中、R'は水素原子又は低級アルコキシカルポニル基を意味する) で示される基を意味する。

で示される基、式 -N-(CH)_n- (式中、R³は水素 R²

原子、低級アルキル基、アシル基、低級アルキ

持たないか、又は1つ又は1つ以上のメチル基を有しているような形で水素原子又はメチル基を意味する。)、式 = (CH-CH=CH) ₀ - (式中、 bは1~3の整数を意味する)で示される基、式 = CH-(CH₂) ₀ - (式中、 cは0又は1~9の整数を意味する)で示される基、式=(CH-CH) ₀ = (式中、 dは0又は1~5の整数を意味する)で示され

で示される基、式 -CH=CH-C-NH-(CH₂)₂-で示される基、式 -NH- で示される基、式 -0-で示される基、式 -0-で示される基、式 -S-で示される基、ジアルキルアミノアルキルカルポニル基又は低級アルコキシカルボニル基を意味する。

Tは窒素原子又は炭素原子を意味する。

Qは窒素原子、炭素原子又は式 N→Q で示される基を意味する。

ル基又はフェニル基を意味する)で示される基、

|| で示される基、式-0-C-NH-(CH) - で示される基、

で示される基、式-(CH2)2-CO-NH-(CH)n-で示さ | | R²

中、 nは 0 又は 1 ~10 の整数を意味する。R² は 式 - (CH) a- で示されるアルキレン基が置換基を R²

Kは水素原子、置換若しくは無置換のフェニル基、フェニル基が置換されてもよいアリールアルキル基、フェニル基が置換されてもよいシンナミル基、低級アルキル基、ピリジルメチル基、シクロアルキルアルキル基、アダマンタンメチル基、フリルメチル基、シクロアルキル基、低級アルコキシカルポニル基又はアシル基を意味する。

qは1~3の整数を意味する。

式中、 …… は単結合若しくは二重結合を意味する。〕

で表される環状アミン誘導体及びその薬理学的 に許容できる塩を有効成分とするアセチルコリ ンエステラーゼ阻害剤。

21 次の一般式

〔式中、

Jは(a) 置換若しくは無置換の次に示す基;①

特別昭64-79151(6)

フェニル基、②ピリジルを一③ピラジル基、④ キノリル基、⑤シクロヘキシル基、⑥キノキサ リル基又は⑦フリル基、

b)フェニル基が置換されていてもよい次の群から選択された一価又は二価の基;①インダニル、②インダノニル、③インデニル、④インデノニル、⑤インダンジオニル、⑥テトラロニル、⑦ベンズスベロニル、⑧インダノリル、⑨式

(c) 環状アミド化合物から誘導される一価の基、 (d) 低級アルキル基、又は

(e)式 R'-CH=CH-(式中、R'は水素原子又は低級アルコキシカルポニル基を意味する)で示される基を意味する。

で示される基、式 -N-(CH)_n-(式中、R³は水素 R²

式 - (CH) n-で示されるアルキレン基が置換基を | | 12

持たないか、又は1つ又は1つ以上のメチル基を有しているような形で水素原子又はメチル基を意味する。)、式 = (CH-CH=CH)。- (式中、 bは1~3の整数を意味する)で示される基、式=CH-(CH₂)。-(式中、 cは0又は1~9の整数を意味する)で示される基、式=(CH-CH)。=(式中、 dは0又は1~5の整数を意味する)で示され

D B る基、式 -C-CH=CH-CH2-で示される基、式 O OH CH3 || | -G-CH2-CH-CH2-で示される基、式-CH-C-NH-CH2-

で示される基、式 -CH=CH-C-NH-(CH2)2-で示される基、式 -NH- で示される基、式 -0-で示される基、式 -0-で示される基、式 -5-で示される基、ジアルキルアミノアルキルカルボニル基又は低級アルコキシカルボニル基を意味する。

Tは窒素原子又は炭素原子を意味する。

原子、低級アルキル基 シル基、低級アルキルスルホニル基、置換されてもよいフェニル基 又はペンジル基を意味する)で示される基、式

ル基又はフェニル基を意味する)で示される基、

|| で示される基、式-O-C-NH-(CH)。- で示される基、

で示される基、式-(CH2)2-CO-NH-(CH)m-で示さ | | R²

れる基、式-CH-(CH) a-で示される基(以上の式 R²

中、 nは 0 又は 1~10 の整数を意味する。R²は

Qは窒素原子、炭素原子又は式 N→O で示される基を意味する。

Kは水素原子、置換若しくは無置換のフェニル基、フェニル基が置換されてもよいアリールアルキル基、フェニル基が置換されてもよいシンナミル基、低級アルキル基、ピリジルメチル基、シクロアルキルアルキル基、アダマンタンメチル基、フリルメチル基、シクロアルキル基、低級アルコキシカルポニル基又はアシル基を意味する。

qは1~3の整数を意味する。

式中、 …… は単結合若しくは二重結合を意味する。〕

で表される環状アミン誘導体及びその薬理学的 に許容できる塩を有効成分とする各種老人性痴 呆症治療・予防剤。

- 22 各種老人性痴呆症がアルツハイマー型老年痴呆である請求項21記載の治療・予防剤。
- 3. 発明の詳細な説明

(産業上の利用分野)

本発明は、医薬として優か作用を有する新 規環状アミン誘導体に関する。

[発明に至る背景及び従来技術]

老年人口が急激に増大する中で、アルッハイマー型老年痴呆などの老年痴呆の治療法を確立することが渇望されている。

しかしながら、現在のところ、老年痴呆を薬物で治療する試みは種々なされているが、これらの疾患に根本的に有効とされる薬剤は今のところ存在しない。

これらの疾患の治療薬の開発は種々の方向から研究されているが、有力な方向としてアルツーハイマー型老年痴呆は、脳のコリン作動性機能低下を伴うことから、アセチルコリン的駆物の方向の方のでは、アセチルコリンエステラーゼ阻害剤のように、抗コリンステラーでは、アクリジンなどがあるが、これの薬剤は効果が十分でない、好ましくない即作

る種々の疾患の治療・予防に有効である。

代表的なものとしては、アルツハイマー型老 年痴呆に代表される各種痴呆があるが、そのほ かハンチントン舞路病、ピック病、晩発性運動 異常症などを挙げることができる。

従って、本発明の目的は、医薬としてとりわけ中枢神経系の疾患の治療・予防に有効な新規 環状アミン誘導体を提供すること、この新規環 状アミン誘導体の製造方法を提供すること、及 びそれを有効成分とする医薬を提供することで ある。

[発明の構成及び効果]

本発明の目的化合物は、次の一般式 (I) で 表される環状アミン誘導体及びその薬理学的に 許容できる塩である。

〔式中、

Jは(a)置換若しくは無置換の次に示す基;①

用があるなどの欠点を 接薬はないのが現状である。

そこで本発明者らは、作用持続時間が長く、 安全性が高い薬剤を開発すべく、長年にわたっ て種々の化合物について鋭意研究を重ねてきた。

その結果、後で述べる一般式 (I) で示される環状アミン誘導体が、所期の目的を違することが可能であることを見出した。

具体的には下記の構造式(I)で表される本発明化合物は、強力かつ選択性の高い抗アセチルコリンエステラーゼ活性を有し、脳内のアセチルコリンを増量すること、記憶障害モデルで有効であること、及び従来この分野で汎用されているフィグミンと比較し、作用持続時間が長く、安全性が高いという大きな特徴を有しており、本発明の価値は極めて高い。

本発明化合物は、アセチルコリンエステラー ゼ阻害作用に基づいて見出されたもので、従っ て中枢性コリン機能、即ち神経伝達物質として のアセチルコリンの生体内の欠乏が原因とされ

フェニル基、②ピリジル基、③ピラジル基、④キノリル基、⑤シクロヘキシル基、⑥キノキサリル基又は⑦フリル基、

(b)フェニル基が置換されていてもよい次の群から選択された一価又は二価の基; ①インダニル、②インダノニル、③インデニル、④インデノニル、⑤インダンジオニル、⑥テトラロニル、⑦ベンズスベロニル、⑧インダノリル、⑨式

(c) 環状アミド化合物から誘導される一価の基、

d)低級アルキル基、又は

(e)式 R'-CH=CH-(式中、R'は水素原子又は低級アルコキシカルボニル基を意味する)で示される基を意味する。

で示される基、式 -N-(CH) a- (式中、R³は水素

_特開昭64-79151 (8)

原子、低級アルキル基、 ルスルホニル基、置換されてもよいフェニル基 又はペンジル基を意味する)で示される基、式

ル基又はフェニル基を意味する) で示される基、

|| |で示される基、式-O-C-NH-(CH)。-で示される基、 | | R²

れる基、式-CH-(CH) n-で示される基(以上の式 | R2

↑は窒素原子又は炭素原子を意味する。

Qは窒素原子、炭素原子又は式 N→O で 示される基を意味する。

Kは水素原子、置換若しくは無置換のフェニル基、フェニル基が置換されてもよいアリールアルキル基、フェニル基が置換されてもよいシンナミル基、低級アルキル基、ピリジルメチル基、シクロアルキルアルキル基、シクロアルキル基、低級アルコキシカルポニル基又はアシル基を意味する。

qは1~3の整数を意味する。

式中、 …… は単結合若しくは二重結合を意味する。〕

本発明化合物(I)における上記の定義において、J. K, R³, R⁴ にみられる低級アルキル基とは、炭素数1~6の直鎖もしくは分枝状のアルキル基、例えばメチル基、エチル基、プロピル基、イソプロピル基、ブチル基、イソブチル基:
sec ーブチル基、tertーブチル基、ペンチル基

中、 nは 0 又は 1 の整数を意味する。R²は 式 - (CH)_n-で示されるアルキレン基が置換基を R²

持たないか、又は1つ又は1つ以上のメチル基を有しているような形で水衆原子又はメチル基を意味する。)、式 = (CH-CH=CH) $_{\mathfrak{b}}$ - (式中、 \mathfrak{b} は1~3の整数を意味する)で示される基、式=CH-(CH $_{\mathfrak{f}}$) $_{\mathfrak{c}}$ -(式中、 \mathfrak{c} は0又は1~9の整数を意味する)で示される基、式=(CH-CH) $_{\mathfrak{d}}$ = (式中、 \mathfrak{d} は0又は1~5の整数を意味する)で示され

で示される基、式 -CH=CH-C-NH-(CH₂)₂-で示される基、式 -NH- で示される基、式 -O-で示される基、式 -S-で示される基、ジアルキルアミノアルキルカルボニル基又は低級アルコキシカルボニル基を意味する。

(アミル基)、イソペンチル基、ネオペンチル 基、tertーペンチル基、1ーメチルブチル基、 2-メチルブチル基、1.2 -ジメチルプロピル 基、ヘキシル基、イソヘキシル基、1-メチル ペンチル基、2ーメチルペンチル基、3ーメチ ルペンチル基、1,1 ージメチルブチル基、1,2 ージメチルブチル基、2.2 ージメチルブチル基、 1.3 ージメチルブチル基、2.3 ージメチルブチ ル基、3.3 ージメチルブチル基、1ーエチルブ チル基、2-エチルプチル基、1,1,2 ートリメ チルプロピル基、1,2,2 ートリメチルプロピル 基、1-エチルー1-メチルプロピル基、1-エチルー2ーメチルプロピル基などを意味する。 これらのうち好ましい基としては、メチル基、 エチル基、プロピル基、イソプロピル基などを 挙げることができ、最も好ましいものはメチル 基である。

Jにおける「置換もしくは無置換の次に示す 基:①フェニル基、②ピリジル基、③ピラジル 基、④キノリル基、⑤シクロヘキシル基、⑥キ

ノキサリル基又は①フリ という定義にお いて、置換基としては、メチル基、エチル基、 n-プロピル基、イソプロピル基、n-ブチル 基、イソブチル基、tert-ブチル基などの炭素 数1~6の低級アルキル基;メトキシ基、エト キシ基など上記の低級アルキル基に対応する低 极アルコキシ基;ニトロ基;塩素、臭素、フッ 素などのハロゲン;カルポキシル基;メトキシ カルポニル基、エトキシカルポニル基、イソブ ロポキシカルポニル基、n-プロポキシカルポ ニル基、n-ブチロキシカルポニル基など、上 記の低級アルコキシ基に対応する低級アルコキ シカルポニル基;アミノ基;モノ低級アルキル アミノ基; ジ低級アルキルアミノ基;カルバモ イル基;アセチルアミノ基、プロピオニルアミ ノ基、ブチリルアミノ基、イソブチリルアミノ 基、パレリルアミノ基、ピパロイルアミノ基な ど、炭素数1~6の脂肪族飽和モノカルポン酸 から誘導されるアシルアミノ甚;シクロヘキシ ルオキシカルポニル基などのシクロアルキルオ

キシカルボニル基;メデルカルボニル基、アミノカルボニル基はどの低級アルキルアミノカルボニル基はどの低級アルキルカルボニルオキシ基、エチルカルボニルオキシ基はと前記に定義した低級アルキル基に対応する低級アルキル基はどに代表されるハロゲン化低級アルキル基はといれるハロゲン化低級アルキル基はとができる。上記ので表ができる。上記の定義の説明において、「低級アルキル基」、「低級アルキル基」、「低級アルコキシ基」とは、前記の定義から派

「低級アルコキシ基」とは、前記の定義から派生する基をすべて含むものとする。置換基は同一又は異なる1~3個で置換されていてもよい。

更にフェニル基の場合は、次の如き場合も置 換されたフェニル基に含まれるものとする。即

Q 0 || || (式中、G は式-C- で示される基、式-O-C- で

示される甚、式-0- で示される基、式-CH2-NH-C-で示される基、式-CH2-O- で示される基、式-CH2-SO2- で示される基、式-CH-で示される基

又は式-CH₂-S-で示される基を意味する。 Bは 炭素原子又は窒素原子を意味する。

これらのうち、フェニル基に好ましい置換基としては、低級アルキル基、低級アルコキシ基、ニトロ基、ハロゲン化低級アルキル基、低級アルコキシカルボニル基、ホルミル基、水酸基、低級アルコキシ低級アルキル基、ハロゲン、ベンゾイル基、ベンジルスルホニル基などを挙げることができ、置換基は同一又は相異なって2つ以上でもよい。

ピリジル基に好ましい基としては、低級アル キル基、アミノ基、ハロゲン原子などを挙げる ことができる。 ピラジル基に好ましい基としては、低級アルコキシカルボニル基、カルボキシル基、アシルアミノ基、カルバモイル基、シクロアルキルオキシカルボニル基などを挙げることができる。

また、Jとしてのビリジル基は、2ーピリジル基、3ーピリジル基又は4ーピリジル基が望ましく、ピラジル基は2ーピラジル基が望ましく、キノリル基は2ーキノリル基又は3ーキノキサリル基又は3ーキノキサリル基は2ーキノフリル基は2ーフリル基が望ましい。

Jの定義において、(b)グループに記載されている①~⑤について、その代表例を示せば以下のとおりである。

価の基の例である。すなわち Jb)の②のインダ ノニルから誘導される代表的な二価の基である。

Jの定義において、環状アミド化合物から誘 導される一価の基とは、例えばキナゾロン、テ トラハイドロイソキノリンーオン、テトラハイ ドロペンゾジアゼピンーオン、ヘキサハイドロ ペンツアゾシンーオンなどを挙げることができ るが、構造式中に環状アミドが存在すればよく、 これらのみに限定されない。単環もしくは縮合 ヘテロ環から誘導される環状アミドがありうる が、縮合ヘテロ環としては、フェニル環との縮 合ヘテロ環が好ましい。この場合、フェニル環 は炭素数1~6の低級アルキル基、好ましくは メチル基、炭素数1~6の低級アルコキシ基、 好ましくはメトキシ基あるいはハロゲン原子に よって置換されていてもよい。

好ましい例を挙げれば次の通りである。

$$\begin{array}{c}
0\\
N\\
\end{array}$$
(a)
$$\begin{array}{c}
0\\
N\\
\end{array}$$
(b)

上記一連の式において、 tは O 又は 1 ~ 4の 整数を意味し、Sは同一又は相異なる前記した J (a)の定義における置換基のうち1つ又は水素 原子を意味するが、好ましくは水素原子 (無置 換)、低級アルキル基又は低級アルコキシ基を あげることができる。更に、フェニル環の隣り あう炭素間でメチレンジオキシ基、エチレンジ オキシ基などのアルキレンジオキシ基で置換さ れていてもよい。

これらのうち最も好ましい場合は、無置換若 しくはメトキシ基が1~3個置換されている場 合である。

なお、上記のインダノリデニルは Jb)の定義 におけるフェニル基が置換されていてもよい二

上記の式中で、式(i),(1) における Yは水素原子又は低級アルキル基を意味し、式(k) における Vは水素原子又は低級アルコキシ基、式(n).(n) におけるW1,W2 は水素原子、低級アルキル基、低級アルコキシ基、W3は水素原子又は低級アルキル基を意味する。

なお、式(j),(l) において、右側の環は 7 員 環であり、式(k) において右側の環は 8 員環で ある。

Jの上記の定義のうち最も好ましいものは、フェニル環が置換されてもよいインダノンから 誘導される一価の基、環状アミド化合物から誘 導される一価の基である。

は、R2が水素原子である場合は式-(CH2)a-で表

げることができるが、特に好ましい環は式

$$(T=C 、 Q=N)$$
 で表されるピペリジン

の場合である。

Kの定義における「置換又は無置換のフェニル基」、「置換もしくは無置換のアリールアルキル基」において、置換基は前記の Jの定義において(a)の①~⑦において定義されたものと同一のものである。

アリールアルキル基とは、フェニル環が上記 の置換基で置換されるか、無置換のペンジル基、 フェネチル基などを意味する。

ピリジルメチル基とは具体的には、2-ピリジルメチル基、3-ピリジルメチル基、4-ピリジルメチル基などを挙げることができる。

Kについては、フェニル基が置換されてもよいアリールアルキル基、置換若しくは無置換のフェニル基、フェニル基が置換されてもよいシンナミル基が最も好ましい。

好ましいアリールアルキル基は、具体的には

され、更にアルキレ いずれかの炭素原子に1つ又はそれ以上のメチル基が結合していて もよいことを意味する。この場合、好ましくは nは1~3である。

また、 Bの一連の基において、基内にアミド 基を有する場合も好ましい基の一つである。

更に好ましい基としては、式= $(CH-CH=CH)_{b-1}$ (式中、bは $1\sim3$ の整数を意味する)で示される基、式= $(CH-(CH_2)_{c-1}$ (式中、cは0又は $1\sim9$ の整数を意味する)で示される基、式= $(CH-CH)_{a=1}$ (式中、dは0又は $1\sim5$ の整数を意味する)で示される基、式 -0-で示される基又は式 -S-で示される基をあげることができる。

例えばペンジル基、フェネチル基などをいい、 これらはフェニル基が炭素数 1 ~ 6 の低級アル コキシ基、炭素数 1 ~ 6 の低級アルキル基、水 酸基などで置換されていてもよい。

一一は単結合もしくは二重結合を意味する。 二重結合である場合の例をあげれば、上記で述べたフェニル環が置換されてもよいインダノンから誘導される二価の基の場合、すなわちインダノリデニル基である場合をあげることができる。

本発明において、薬理学的に許容できる塩とは、例えば塩酸塩、硫酸塩、臭化水素酸塩、燐酸塩などの無機酸塩、螺酸塩、酢酸塩、トリフルオロ酢酸塩、マレイン酸塩、酒石酸塩、メタンスルホン酸塩、ベンゼンスルホン酸塩、トルェンスルホン酸塩などの有機酸塩を挙げることができる。

また置換基の選択によっては、例えばナトリウム塩、カリウム塩などのアルカリ金属塩、カルシウム塩、マグネシウム塩のようなアルカリ

土類金属塩、トリメチャーミン塩、トリエチルアミン塩、ピリジン塩、ピコリン塩、ジシクロヘキシルアミン塩、N,N'ージベンジルエチレンジアミン塩などの有機アミン塩、アンモニウム塩などを形成する場合もある。

なお、本発明化合物は、置換基の種類によっては不斉炭素を有し、光学異性体が存在しうるが、これらは本発明の範囲に属することはいうまでもない。

具体的な例を一つ述べれば、Jがインダノン 骨格を有する場合、不斉炭素を有するので幾何 異性体、光学異性体、ジアステレオマーなどが 存在しうるが、何れも本発明の範囲に含まれる。

これらの定義を総合して特に好ましい化合物 群をあげれば次のとおりである。

$$J^{1} = B = \left(\begin{array}{c} CH_{2} \end{array} \right)^{q} - K \qquad (A)$$

〔式中、J'はフェニル基が置換されていてもよい次の群から選択された一価又は二価の基; ①

好ましい場合はメトキシ基が2置換となっている場合である。

(A) 式に含まれる化合物の中で更に好ましい 化合物群としては、次の一般式で表される化合 物(B) をあげることができる。

$$J_1 = B_1 = \underbrace{\begin{pmatrix} (CH^2)^2 \\ 0 \end{pmatrix}}_{0} - K \qquad (B)$$

「式中、」はフェニル基が置換されていてもよい次の群から選択された一価又は二価の基:①
インダニル、②インダノニル、③インデニル、
④インデノニル、⑤インダンジオニル、⑥テト
ラロニル、⑦ベンズスペロニル、⑧インダノリ

る。

整数を意味する。R²は式 - (CH) n - で示されるア

- 特開昭 64-79151 (12)

る。

B. T. Q. q. K は前記と同様の意味を有する。〕で表される環状アミン又は薬理学的に許容できる塩。

ルキレン基が置換基を持たないか、又は1つ又は1つ以上のメチル基を有しているような形で水素原子又はメチル基を意味する。)で示される基、式=(CH-CH=CH)。-(式中、bは1~3の整数を意味する)で示される基、式=CH-(CH2)。-(式中、cは0又は1~9の整数を意味する)で示される基又は式=(CH-CH)。=(式中、 dは ①又は1~5の整数を意味する)で示される基を意味する。

T. Q. q. K は前記と同様の意味を有する。)

(B) 式に含まれる化合物の中で更に好ましい 化合物群としては、次の一般式で表される化合 物(C) をあげることができる。

$$J_1 \longrightarrow B_1 \longrightarrow A - K \qquad (C)$$

(式中、J', B', K は前記と同様の意味を有する。)

合である。

$$1_5 - 8_1 - 1_0$$
 (0)

(式中、J²はフェニル基が置換されてもよいインダノニル、インダンジオニル、インダノリデニル基から選択された基を意味する。

K'は置換若しくは無置換のフェニル基、置換 されてもよいアリールアルキル基、置換されて もよいシンナミル基を意味する。

B'は前記と同様の意味を有する。)

本発明化合物の製造方法は種々考えられるが、 代表的な方法について述べれば以下の通りであ る。

製造方法A

ジオキサン、テトラハイドロフラン、ジメチル ホルムアミド (DMF) などの有機溶媒中、氷 冷、室温もしくは加熱により反応させ、容易に 目的物質の一つである化合物 (IV) を得ること ができる。

製 造 方 法! B

Jがキナゾロシ、テトラハイドロイソキノリンーオン、テトラハイドロベンゾジアゼピンーオン、ヘキサハイドロベンツアゾシンーオンから選択された環状アミド化合物から誘導される一価の基である場合は次のような方法でも製造することができる。

$$HaI - (CH)_{n} - T = 0 - K$$
 (VI)

(式中、n, R², R⁴ に) この意味を有する) で示される基を意味する場合]

$$\begin{array}{c}
R^4 \\
HN-(CH)_n-T \\
\vdots \\
R^2
\end{array}$$
(CH₂)_q -K (III)

$$\begin{array}{c|c}
0 & & & \\
I & & & \\
J - C - N - (CH) & - T & 0 - K \\
& & & \\
R^4 & R^2 & (CH_2) &
\end{array}$$

(式中、J, R⁴, R², n, T, Q, q, K は前記の意味を有し、 Hal はハロゲン原子を意味する。)

即ち、一般式(Ⅱ)で表される酸ハロゲン化物と、一般式(Ⅲ)で表される環状アミン誘導体を、例えば炭酸ナトリウム、炭酸カリウム、水酸化ナトリウム、水酸化カリウム、水素化ナトリウム、トリエチルアミンなどの脱塩剤の存在下に、クロロホルム、ペンゼン、トルエン、

$$R^{s}$$

$$(CH_{2})_{p}$$

$$CH_{3}$$

$$CH_{3}$$

$$CH_{3}$$

$$CH_{3}$$

$$CH_{3}$$

$$CH_{3}$$

$$CH_{3}$$

$$CH_{3}$$

$$CH_{2}$$

$$CH_{2}$$

〔式中、R⁵・R⁶ は水素原子、低級アルキル基、低級アルコキシ基、ハロゲン原子であり、 pは1 ~ 3 の整数であり、 Zは式−CH₂− で示される

基、又は式 -N- (式中、R⁷は水素原子又は低級 アルキル基を示す) で示される基を意味する。 Hal, R², n, T, Q, q, Kは前記の意味を有する。〕

即ち、一般式 (V) で表される置換-1.2.3.4 ーテトラハイドロー5H-1ーペンツアゼピンー2ーオンを、例えばジメチルホルムアミド溶媒中で、一般式 (VI) で表される化合物と、例

えばナトリウムハイドライドの存在下に縮合して、目的物質の一つである (Ⅵ) を得ることができる。

製造方法_C

かつ Bが -(CH)_a-で示される基である場合は次 l R²

の製造方法によっても製造できる。

$$+ \qquad \qquad + \qquad \qquad \qquad + \qquad \qquad \qquad + \qquad \qquad \qquad + \qquad \qquad \qquad \qquad + \qquad \qquad \qquad + \qquad \qquad \qquad \qquad + \qquad \qquad \qquad + \qquad \qquad \qquad \qquad + \qquad \qquad \qquad + \qquad \qquad \qquad \qquad + \qquad \qquad \qquad + \qquad \qquad \qquad \qquad \qquad + \qquad$$

即ち、一般式 (XI) で表される置換2.3 ージヒドロオキシピロロ(3.4-b) ベンゼンと、一般式 (VI) で表される化合物とを、例えば水素化ナトリウム存在下に、例えばジメチルホルムアミドなどの溶媒中、加熱下に反応せしめて、目的物質の一つである化合物 (XII) を得ることができる。

製造方法E

ー般式 (I) において、Jが N COOCH CH。

$$\begin{array}{c|c}
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\$$

即ち、2 - ハイドロキシメチルニコチン酸ラクトン(畑)と、一般式(IX)で表される化合物とを、常法により反応せしめて、目的物質の一つである一般式(X)で表される化合物を得ることができる。反応温度は 200 で前後が好ましい。

製造方法D

であり、 Bが式 -(CH)。-で表される基である場 ! R²

合(R^{\bullet} , R^{\bullet} は前記の R^{\bullet} , R^{\bullet} の定義と同様の意味を有する。n, R° は前記と同様の意味を有する。) は次の製造方法によっても製造できる。

$$\mathbb{R}^{\bullet} \longrightarrow \mathbb{R}^{\bullet}$$

であり、 8が式 -CONH-(CH) - で表される基で | | R²

ある場合は次の製造方法でも製造することがで きる。

$$H_2 N - (CH)_n - T Q - K$$

$$\begin{pmatrix} CH_2 \end{pmatrix}_n$$

CONH-(CH)
n
 — T Q — K

COOCH

CH 3 CH 3 (XW)

即ち、2,3 ーピラジルカルボン酸無水物 (XII)を、例えばイソプロピルアルコール中に加え還

流する。アルコールを留 たのち、一般式 (X) で表される化合物と、例えばテトラヒドロフランなどの溶媒中反応させることにより、目的物質の一つである化合物 (XII) を得ることができる。

製造方法F

一般式 (I) において、 Jが置換されてもよ
0 ||
いフェニル基であり、 Bが式-C-(CH2) s-で示さ
0 ||
れる基、又は式-C-CH2-CH2-で示される基で

ある場合は、次の方法によっても製造することができる。下記の式中、R' は前記の J(a)の定義における置換基を意味する。

中で、フェニル基が置換されてもよい①インダニル、②インダノニル、⑤インダンジオニル、⑥テトラロニル、⑦ペンズスペロニル又は⑨式

= (CH-CH=CH) b-(式中、 bは 1 ~ 3 の整数を意味する) で示される甚、式=CH-(CH2) c-(式中、 c は 0 又は 1 ~ 9 の整数を意味する) で示される 基、又は式=(CH-CH) c= (式中、 dは 0 又は 1 ~ 5 の整数を意味する) で示される基である場合は、例えば次の二つの方法によって製造できる。

製造方法1

$$OHC - B_1 - T \qquad O - K \qquad (XX)$$

即ち、例えばテトラヒドロフランなどの溶液中で、ジイソプロピルアミン、 n ープチルリチウム/ヘキサン溶液を加え、約-80 ℃の温度にて、一般式 (XV) で表されるアセトフェノンと、一般式 (XM) で表される化合物と縮合し、化合物 (XM) を得る。これを、例えばトルエンないの容は中で脱水した後、常法により接触還元すると、目的物質の一つである化合物 (XM) が得られる。製造方法 G

本発明において、 Jが(b)で定義されるものの

$$I_1 - CH^3 - B_1 - 1$$
 (XX II)

(式中、J'は Jが上記の定義である場合を示し、B'は上記の Bの定義において最左端の炭素原子に結合している基を除いた残基を意味する。) 即ち、一般式(XX)で表されるホスホナートに一般式(XX)で表されるアルデヒド化合物を 反応せしめて(wittig反応)、目的物質の一である一般式(XXI)で表される化合物を得、次いでこれを接触還元して目的物質の一つである

化合物 (XXII)を得る。 ができる。

Wittig反応を行う際の触媒としては、例えばナトリウムメチラート(MeONa)、ナトリウムエチラート(EtONa)、t-BuOK、NaH などを挙げることができる。この際溶媒としては、例えばテトラヒドロフラン(THF)、ジメチルホルムアミド(DMF)、エーテル、ニトロメタン、ジメチルスルホキシド(DMSO)などを挙げることができる。また、反応温度は室温から100で程度が好ましい結果を与える。

接触還元を行う際は、例えばパラジウム炭素、 ラニーニッケル、ロジウム炭素などを触媒とし て用いることが好ましい結果を与える。

なお、Jが式 で示される

基である場合を具体的に示せば、以下のとおり である。

なお、更に Jが式 Riz で示され

る基(式中、 R^{1} , R^{12} は Sの定義のうち、同一又は相異なる水素原子、低級アルキル基、低級アルコキシ基、ハロゲンである場合をいう) であり、Bが式- $\{CH_2\}_n$ -で示される基(式中、nは $1\sim6$ で示される基を意味する)であり、式

(S):

(S):

(S):

(S):

(S):

(S):

(S):

(CH2)

(式中、R¹³, R¹⁴ は、R¹¹, R¹² と同様の定義とする) で示される基である場合を具体的に示せば次の通りである。

$$B_{1,5}$$
 $b - (0C^{5}H^{2})^{5}$
(XIX),

$$R_{13}$$
(CH³) $^{\mu-1}$
(CH³) $^{\mu-1}$
(XII)

$$\begin{array}{c} & & & & \\ & & & & \\ & & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & &$$

+ (XX II)

$$OHC - B_{1} - I \qquad OHC - B_{2} - I \qquad (XX)$$

$$I_{i} = CH - B_{i} - 1$$
 $G - K$
(XXI)

$$J_1 - CH^3 - B_1 - L$$

$$CH^3 - R$$

$$CXII)$$

即ち、一般式 (XXII)で表される置換若しくは 無置換のインダノンなどの化合物と一般式 (XX)

物を得ることができる。

Jが式 で示される基で

あり、 8が式-(CH2)。-で示される基であり、式

る場合を具体的に示せば以下のとおりである。

本反応は、例えばテトラヒドロフランなどの 溶媒中でジイソプロピルアミンと n ー ブチルへ キサン溶液によりリチウムジイソプロピルアミ ドを生成させ、好ましくは約-80 ℃の温度でこれに上記の一般式(双面)で表される化合物を加 える。次いで一般式(双)で表されるアルデヒ ド体を加えて常法により反応せしめ、 宝温まで 昇温させることによって脱水させ、エノン体で ある一般式(双)で表される化合物を得る。

本反応の別方法として、両者 ((双面)と(双)) をテトラヒドロフランなどの溶媒に溶解し、約 0 でにて、例えばナトリウムメチラートなどの 塩基を加えて、室温にて反応させることによる 方法によっても製造することができる。

上記の製造方法によって得られたエノン体 (XII)を前記に示したと同様の方法により還元 することにより、一般式 (XXII)で表される化合

製造方法 1 に記載したと同様に、一具体例を 示せば次の通りである。

製 造 方 法 H

Jがフェニル基の部分が置換されてもよいインダノリル基である場合は、以下の方法によって製造することができる。

$$\begin{array}{c} OH \\ (CH_2) \end{array} = \begin{array}{c} O - K \\ (XX N) \end{array}$$

存在下脱水させて、目的物質の一つである化合物(XXV)を得ることができる。

製 造 方 法 J

Jがフェニル基の部分が置換されていてもよいインデノニル基を示す場合は、以下の方法によっても製造することができる。

$$\begin{array}{c} \left(CH^{3} \right)^{4} - \left(XX AD \right) \end{array}$$

即ち、化合物 (を 0 七~室温にて、例 えば水素化ホウ素ナトリウムなどで還元することにより、目的物質の一つである化合物 (XXIV)を得ることができる。この場合の溶媒は、例えばメタノールなどが好ましい。

製造方法「

Jがフェニル基の部分が置換されていてもよいインデニル基を示す場合は、以下の方法によっても製造することができる。

$$\begin{array}{c} & & & \\ & &$$

即ち、化合物(XXIV)を常法により塩酸などの

即ち、一般式(XII)で表されるインダノン化合物を、例えば四塩化炭素などの溶媒中、 Nーブロムコハク酸イミド (NBS) と過酸化ベンソイルとともに加熱遠流してブロム化し、次にこのブロム体 (XII)を、例えばテトラヒドロフランなどの溶媒中、 1.8ージアザビシクロ〔5.4.0〕 ウンデクー 7 ーエン (DBU) とともに加熱遠流することによりβー脱離を行い、インロカン化合物(XIII)を得る。なお、上記のブロム体は、他のハロゲンでも反応は可能である。

なお、製造方法G~Jにおいて、出発物質と して用いるインダノン類は市販品を用いるか又 は以下の方法により製造される。

一方、アルデヒド体は例えば以下の方法によ り製造することができる。

$$0 = \sqrt{1 - K} \qquad (i)$$

ェーテル又はテトラヒドロフラン中で生成させる。この中にケトン体又はアルデヒド体を加えてメトキシビニル体とした後、酸処理によってアルデヒドを合成することができる。

特定の場合の具体例を以下に示す。

一方、ホルミルメチレントリフェニルホスホ ランを用いる場合は、原料となるケトン体又は アルデヒド体のエーテル、テトラヒドロフラン 又はペンゼン溶液中にウィテッヒ試薬を加え、 室温から加熱還流することによって合成するこ NC-CH。— N-K (ii) 遠 元 DIBAL (ジイソブチルアルミニウム ハライド)

又は

即ち上記の如く、式(i)又は式(ii)で示される化合物を出発物質とし、これを上記の方法によりアルデヒド体とし、これを下記に示すウィテッヒ反応などを繰り返したり、組み合わせたりすることにより増炭反応を行い、目的とする出発物質を得ることができる。

ウィテッヒ試薬としては、例えば1炭素増長のときはメトキシメチレントリフェニルホスホランを用い、2炭素増長のときはホルミルメチレントリフェニルホスホランを用いる。

メトキシメチレントリフェニルホスホランは、 メトキシメチレントリフェニルホスホニウムク ロライドとローブチルリチウムとから、例えば

とができる。

このようにして合成した不飽和アルデヒド体は、必要により接触量元して飽和アルデヒド体とすることができる。この際の触媒としては、パラジウム炭素、ラネーニッケル、ロジウム炭素などが好ましい。

具 体 例 2

以上のようにして得られる一般式(I)の化合物及びその酸付加塩は各種老人性痴呆症、特にアルツハイマー型老年痴呆の治療に有用である。

一般式(1)で示される品書物及びその酸付 加塩の有用性を示すために、薬理試験結果を以 下に説明する。

実験例1

In vitroアセチルコリンエステラーゼ阻害作用

アセチルコリンエステラーゼ源として、マウ ス脳ホモジネートを用いて、Blimanらの方法り に準拠してエステラーゼ活性を測定した。マウ ス脳ホモジネートに、基質としてアセチルチオ コリン、被検体及びDTNBを添加し、インキ ュペーション後、産生したチオコリンがDTN Bと反応し、生じる黄色産物を412mm における 吸光度変化として測定し、アセチルコリンエス テラーゼ活性を求めた。

検体のアセチルコリンエステラーゼ阻害活性 は50%阻害濃度(ICso)で表した。

結果を表しに示す。

1) Ellman, G.L., Courtney, K.D., Andres, V. and Featherstone, R. M. (1961) Biochem, Pharmacol., 7. 88 ~95

1 (統 き)

化合物	AChE阻害活性 ICso(山山	化合物	AChE阻害活性 ICso(山町)
188	0, 081	215	0.0042
189	0. 012	216	0.017
190	0. 02	217	0.14
191	0. 085	221	0. 033
192	0. 013	222	0.011
193	0. 2	223	0.0054
194	0. 069	224	0. 003
195	0. 0071	225	0. 48
196	0. 0013	226	0.0049
197	0. 38	227	0.01
198	0. 0054	228	0. 002
199	0. 023	229	0.04
203	0. 009	230	0. 16
204	0. 035	231	0.004
205	0. 014	232	0.1
206	0. 41	233	0.046
207	0. 049	234	0.0018
208	0. 062	235	0. 22
209	0. 43	238	0. 072
210	0, 06	239	0.18
212	0. 5	240	0. 0089
213	0. 05	241	0, 22
214	0.0084	249	0. 62

特開昭 64-79151 (20) 1 :1

化合物	AChE阻害活性 IC。(少以)	化合物	AChE阻害活性 ICso (μ¥)
1	0. 23	32	0.8
4	0. 0053	35	0. 00082
5	0. 10	36	0.0015
6	0.017	39	0. 15
8	0.013	41	0. 025
9	0. 051	43	0, 030
10	0. 009	55	0. 36
11	0.068	58	0. 019
12	0.040	62	0. 80
13	0. 026	64	1, 0
14	0. 038	66	0. 017
15	0. 094	72	0, 0075
17	0. 052	75	0.0016
18	0. 68	77	0. 10
19	0.064	80	0, 28
20	0. 54	82	0. 020
21	50	99	0.018
23	0. 072	100	0. 035
24	1. 1	- 105	0. 085
26	24	111	0. 11
27	0. 41	130	0. 19
30	0. 001	134	2.8
31	0.094	186	0. 004

実験例2

Ex vivo アセチルコリンエステラーゼ阻害作用 ラットに被検体を経口投与し、その1時間後 に大脳半球を採取し、ホモジナイズ後、アセチ ルコリンエステラーゼ活性を測定した。なお、 生理食塩水投与群を対照とした。

結果を表2に示す。

麦 2

化合物Na	用 量 (mg/kg)	AChB阻害作用 (%)
Saline		0
	1	5 •
4	3	17 **
	10	36 **
	30	47 **
	10	5
15	30	14 **
	100	18 **

スコポラミンの受動回避学習障害に対する作用*1

Wistar系雄性ラットを用い、装置としては step through型の明暗箱を使用した。試行の1時間前に検体を経口投与し、30分前にスコポラミン0.5mg/kg(ip)を処置した。訓練試行では明室に動物を入れ、暗室に入った直後にギロチンドアを閉め電気ショックを床のグリットから与えた。6時間後に保持試行として再び動物を明室に入れ、暗室に入るまでの時間を測定し評価した。

効果は生食投与群とスコポラミン投与群の反応時間の差を 100%とし検体により何%拮抗したか(Reverse%)で表した。

#1 Z. Bokolanecky & Jarvik: Int. J. Neuropharmacol 6. 217 ~222 (1967)

結果を表3に示す。

ち、特に、Jがフェニル環が置換されているのというにいるのでもから誘導される場であるテラランとは機造を著しく異にすること、強力を対して、主作用ではなる。 作用時にというのでは、大変を対しての移行性もよいなどの特徴を有している。 を有している。

従って、本発明の目的は、種々の痴呆症、脳血管障害後遺症に有効な新規な化合物、及びその化合物を有効成分とする新規な医薬を提供するにある。

なお、本発明化合物の代表的化合物(前記表3の化合物版4.13.15.19.79)について、ラットにおける毒性試験を行ったところ、いずれも約100mg/kg以上で重篤な毒性を示さなかった。

本発明化合物は、各種老人性痴呆症;特にア

化合物Na	用 量 (mg/kg)	Reverse%
4	0.125	55
	0.25	36
13	0.25	39
	0.5	27
15	1.0	51
	2.0	30
19	0.5	37
	1.0	39
79	0.5	22
	1.0	38

老

上記の薬理実験例から強力なアセチルコリン エステラーゼ阻害作用を有していることが明ら かとされた。

本発明化合物 (I) のうち、 Jがフェニル環 が置換されていてもよいインダノンから誘導さ れる基である場合の化合物が最も好ましい。即

ルツハイマー型老年痴呆、脳卒中(脳出血、脳梗塞)、脳動脈硬化症、頭部外傷などに伴う脳血管障害;脳炎後遺症、脳性麻痺などに伴う注意力低下、言語障害、意欲低下、情緒障害、記銘障害、幻覚一妄想状態、行動異常などの治療、予防、緩解、改善などに有効である。

更に、本発明化合物は強力かつ選択性の高い 抗コリンエステラーゼ作用を有するので、これ らの作用に基づく医薬としても有用である。

即ち、アルツハイマー型老年痴呆のほか、例 えばハンチントン舞路病、ピック病、晩発性異 常症などにも有用である。

本発明化合物をこれらの医薬として使用する 場合は、経口投与若しくは非経口投与により投 与されるが、通常は静脈内、皮下、筋肉内など 注射剤、坐薬若しくは舌下錠など非経口投与に より投与される。投与量は、症状の程度;患者 の年令、性別、体重、感受性差;投与方法;投 与の時期、間隔、医薬製剤の性質、調剤、種類 ;有効成分の種類などによって異なり、特に限 定されないが、通常成人 1 日あたり約0.1~300 mg、好ましくは約 1~100mg であり、これを通常 1 日 1~4 回にわけて投与する。

本発明化合物を製剤化するためには、製剤の 技術分野における通常の方法で注射剤、坐薬、 舌下錠、錠剤、カブセル剤などの剤型とする。

注射剤を調製する場合には、主薬に必要によりpH調整剤、緩衝剤、懸濁化剤、溶解補助剤、 安定化剤、等張化剤、保存剤などを添加し、常 法により静脈、皮下、筋肉内注射剤とする。そ の際必要により常法により凍結乾燥物とすることも可能である。

軽濁剤としての例を挙げれば、例えばメチルセルロース、ポリソルペート 8 0 、ヒドロキシエチルセルロース、アラピアゴム、トラガント末、カルボキシメチルセルロースナトリウム、ポリオキシエチレンソルピタンモノラウレートなどを挙げることができる。

溶解補助剤としては、例えばポリオキシエチ レン硬化ヒマシ油、ポリソルベート80、ニコ

1ーベンジルー4ー [2ー ((1ーインダノン)ー2ーイリデニル]] エチルピペリジン0.37gをメタノール10m1に溶解し、5%ロジウムー炭素0.1gを加えた。室温常圧にて24時間水素添加した後、触媒を認別し、濾液を減圧機能した。この残渣をシリカゲルカラム(塩化メチレン:メタノール=200:1)にて精製し、溶性を減圧機能した後、残渣を塩化メチル溶液を加え、たらに減圧機能して洗透し、20%塩酸ー酢酸エチル溶液をメタールー1PE から再結晶化し、次の物性を有する標題化合物0.33g(収率30%)を得た。

・融点(セ);224 ~225

・元素分析値;C23H27NO・HC1 として

C H N

理論値 (%) 74.68 7.63 3.79 実測値 (%) 74.66 7.65 3.77 うまでもない。

チン酸アミド、ポリオキシエチレンソルピタン モノラウレート、マグロゴール、ヒマシ油脂肪 酸エチルエステルなどを挙げることができる。

また安定化剤としては、例えば亜硫酸ナトリウム、メタ亜硫酸ナトリウム、エーテル等が、保存剤としては、例えばパラオキシ安息香酸メチル、パラオキシ安息香酸エチル、ソルビン酸、フェノール、クレゾール、クロロクレゾールなどを挙げることができる。

〔寒 施 例〕

以下に実施例に従って本発明をさらに具体的に説明するが、本発明の技術的範囲がこれらの 実施例の範囲に限定されるものでないことはい うまでもない。

なお、下記の実施例において、NMR の値はすべてフリー体での測定値を示す。

実 施 例 1

<u>1ーペングルー4ー〔2ー〔(1ーインダノン)</u> -2ーイル〕〕エチルピペリジン・塩酸塩

実 施 例 2

<u>1 - ベンジルー 4 - [2 - [(1 - インダノン</u>) - 2 - イリデニル]] エチルピペリジン・塩酸 塩

化メチレン:メタノール : 1) にて精製した。溶出液を減圧濃縮した後、残渣を塩化メチレンに溶解し、10%塩酸一酢酸エチル溶液を加え、減圧濃縮して標題化合物0.78g(収率27%)を得た。なお、ジエチル1ーインダノンー2ーイルホスホナートを1.37g回収した。

·分子式;C23H25NO·HC1

· 'H - NMR (CDC1₃) & ; 1. 10~2. 13 (7H, m) , 2. 26 (2H, t) , 2. 88 (2H, bd) , 3. 48 (2H, s) , 6. 72 ~7. 07 (2H, m) , 7. 30 (5H, s) , 7. 10~8. 00 (5H, m)

実 施 例 3

リジン・塩酸塩

(a) <u>1ーペンジルー4ーピペリジンカルポアル</u> デヒドの合成

し、減圧濃縮して得られた残渣をシリカゲルカ ラムにて精製し、標題化合物2.77g (収率54%) を油状物質とした得た。

- ·分子式;C12H17NO
- (2H, dt) 3 45 (2H, s) 7. 20 (5H, s) 9. 51 (1H, d)
- (b) 1-ペンジルー4- [(5,6-ジメトキシー 1-インダノン) -2-イリデニル] メチル ピペリジン・塩酸塩の合成

この反応はアルゴン努囲気下行った。

無水THF 10ml中にジイソプロピルアミン2.05.mlを加え、さらに0 でにて1.6M nープチルリチウムヘキサン溶液9.12mlを加えた。0 でにて10 分撹拌した後、-78 でまで冷却し、5.6 ージメトキシー1ーインダノン2.55 gの無水THF 30ml 溶液とヘキサメチルホスホルアミド2.31mlを加えた。-78 でにて15 分撹拌した後、(a)で得た1ーベンジルー4ーピペリジンカルボアルデヒド2.70 gの無水THF 30ml 溶液を加えた。室温まで

メトキシメチレントリフェニルホスホニウムクロライド26.0gを無水エーテル 200mlに懸濁させ、1.6% nーブチルリチウムヘキサン溶液を室温にて滴下した。室温にて30分間撹拌した後、0 ℃に冷却し、1 ーベンジルー 4 ーピペリドン 14.35gの無水エーテル30ml溶液を加えた。室温にて3時間撹拌した後不溶物を認別した。これをエーテルに溶解した。これをエーテルに溶解し、1N塩酸にて抽出した。さらに水酸化ナトリウム水溶液にてpH 12 とした後、塩化メチレンに減圧 強縮し、得られた残渣をシリカゲルカラムにて 精製し、油状物質5.50g(収率33%)を得た。

これをメタノール40mlに溶解し、1N塩酸40ml を加えた。3時間加熱遺流した後、減圧濃縮し、 残渣を水に溶解後水酸化ナトリウム水溶液にて pH 12 とし、塩化メチレンにて抽出した。飽和 食塩水にて洗浄後、硫酸マグネシウムにて乾燥

・融点(で);237~238 (分解)

・元素分析値;C24H27NO。・HC1として

C H N

理論値(%) 69.64 6.82 3.38

実測値 (%) 69.51 6.78 3.30

実施例4

1 - ベンジルー 4 - [(5,6 - ジメトキシー 1

・塩酸塩

1ーベンジルー4ー〔(5.6ージチトキシー1ーインダノン)ー2ーイリデニル〕メチルピベリジン0.40gをTHF 16mlに溶解し、10%パラジウムー炭素0.04gを加えた。室温常圧にて6時間水素添加した後、触媒を濾別し、滤液を減圧濃縮した。この残渣をシリカゲルカラム(塩化メチレン:メタノール=50:1)にて精製し、溶出液を減圧濃縮した後、残渣を塩化メチレンに溶解し、10%塩酸ー酢酸エチル溶液を加え、さらに減圧濃縮して結晶を得た。これをエタノールーIPB から再結晶化し、次の物性を有する標題化合物0.36g(収率82%)を得た。

・融点(で);211~212 (分解)

・元素分析値;C24H2sNOs・HC1として

寒 施 例 6

 2 - (4' - (1' - ベンジルピペリジン) エチル)

 -2.3 - ジヒドロー5.6 - ジメトキシオキシピ

 ロロ (3.4 - b) ベンゼン・塩酸塩

2.3 ージヒドロー5.6 ージメトキシオキシピロロ〔3.4 ー b〕ベンゼン 0.5 gを触媒量のヨウ化カリウムとともにDMF に溶解する。これを冷却下、撹拌しながら水素化ナトリウム (60%)を0.21 g加える。その後、2.3 ージヒドロー5.6 ージメトキシオキシピロロ〔3.4 ー b〕ベンゼン1 gを加え、80 ℃で4時間撹拌する。終了後、H₂0 を加え、クロロホルム抽出し、クロロホルム層を水洗、乾燥(MgSO₄)、溶媒を留去してシリカゲル精製すると目的物の油状物を得る。これを常法により塩酸塩にすることによりクリーム色の結晶を約0.2 g 得た。

·分子式;C24H30N2O3·2HC1

264-79151 **(24)**

C H N

理論值(%) 69.30 7.27 3.37 実測値(%) 69.33 7.15 3.22

実 施 例 5

2- [4'- (1'-ベンジルピベリジン) ェチル] -2.3 -ジヒドロ-1-オキシピロロ [3,4-b] ピリジン・二塩酸塩

2ーヒドロキシメチルニコチン酸ラクトン12.6g、4ー(2ーアミノエチル)ペンジルピペラジン40gをシールドチューブ中で200 ℃、7時間撹拌する。その後、シリカゲルカラムで精製し、常法により塩酸塩にすることにより目的物の二塩酸塩6.37gを得た。

・融点 (℃):143.5 ~145

・元素分析値:CaiHasNaO・2HCL として

C H N

理論値(%) 61.77 6.66 10.29 実測値(%) 61.49 6.68 9.98

· 'H-NMR (CDCla) &;

1. $12 \sim 3$. 4 (9 H, m). 2. $72 \sim 3$. 00 (2 H, m).

3.48(2H, s), 3.62(2H, t), 3.95(6H, s),

4.26(2H,s), 6.90(1H,s), 7.28(6H,s)

実 施 例 7

4 - [N- (o-Tミノベンジル) エチル] - 1 -ベンジルピベリジン

窒素気流下2ーニトロペンズアルデヒド30g、1ーベンジルー4ーアミノエチルピペリジン21.4g、メタノール100m!を室温で3時間撹拌する。反応液を氷冷し、水素化ホウ素ナトリウム16gのMoOH 30ml 溶液を滴加する。さらに室温にて1時間反応させた後、水にあけ、メチルクロライドで抽出し、10%塩酸150ml で3回抽出し、メチレンクロライドで洗浄する。この水層を炭酸ナトリウムでpH10にし、メチレンクロライドで抽出し、無水硫酸マグネシウムで乾燥後、溶

これをメタノール100ml に溶解し、10%パラジウムー炭素 (含水) 3 gを用い 4 kg/cm² 圧力で水素添加を行い、標題化合物25.6 gを得る。・分子式; C_{2.1}H_{2.9}N₃

· 'H - NMR (CDC1₃) δ ; 1. 0 ~ 2. 1 (9H, m) ~ 2. 64 (2H, t) ~ 2. 90 (2H, m) ~ 3. 47 (2H, s) ~ 6. 65 (2H, m) ~ 7. 02 (2H, m) . 7. 30 (5H, s)

実 施 例 8

 $3 - [2 - (1 - \langle x \rangle) \nu - 4 - \ell \langle y \rangle \nu)$ $\pm \beta \nu - 2 - (1H, 3H) - \pm \gamma \gamma \nu + \gamma \nu$

4- [N- (o-アミノベンジル) エチル] -1-ベンジルピペリジン25.6g、1.1'-カルボニルジイミダゾール15g、メタノール100ml を12時間加熱遺流を行う。反応後、水をあけ、

ナトリウムハイドライド0.35 g をジメチルホルムアミド (DMF) 0.5ml に懸濁させ、水冷下撹拌、これに1.2.3.4 ーテトラハイドロー4ーメチルー5Hー1.4 ーベンツジアゼピンー2ーオン 0.52 g をDMF 3mlに溶かして滴下し、室温で30分間撹拌する。ここへ Nーベンジルー4ー(2ークロロエチル) ピペリジン塩酸塩0.81 g をDMF 3mlに溶かして滴すし、60~70 でで7時間撹拌する。氷水にあけ、塩化メチレンで抽出する。飽和食塩水で洗い、硫酸マグネシウムで乾燥する。減圧下溶媒を留去し、シリカゲルクロマトグラフィーで精製後、常法で塩酸塩とする。淡黄色非晶質0.17 g を得る(収率13.5%)。

- ·分子式;CattaiNaO·2HC1
- 'H NMR (CDCl₃) & ; 1. 25 ~ 2. 02 (9 H, m) , 2. 52 (3 H, s) , 2. 79 ~ 2. 95 (2 H, bd) , 3. 10 (2 H, s) , 3. 48 (2 H, s) , 3. 54 (2 H, s) , 3. 91 (2 H, bt) , 7. 14 ~ 7. 45 (9 H, m)

実施例10

1 - [4' - (1' -ペンジルピペリジン) エチル]

メチレンクロライド 出し、無水硫酸マグネ シウムで乾燥し、熔煤を滅圧留去する。

この残渣をシリカゲルカラムクロマトグラフィーにより精製 (5 % MeOH - CH₂Cl₂) し、酢酸エチルより、2回再結晶を行い標題化合物3.0gを得る。

- ·分子式; C22H27N3O
- 'H NMR (CDC1₃) δ ; 1.0 ~2.1 (9H.m) , 2.7 ~3.0 (2H.m) , 3.2 ~3.6 (4H.m) , 4.4 (2H.s) , 6.5 ~7.4 (8H.m) , 7.75 (1H.s)

実 施 例 9

1 - [4' - (1' -ベンジルピペリジン) エチル -1, 2, 3, 4 -テトラハイドロー 4 - メチル-5 H- [1, 4] -ベンゾジアゼピン-2-オン・二 塩酸塩

<u>-1,2,3,4 -テトラハイドロー5H-1ーベンツ</u> アゼピン-2-オン・塩酸塩

ナトリウムハイドライド0.27gをジメチルホルムアミド (DMF) 0.5ml に懸濁させ、氷冷下撹拌する。これに1.2,3.4 ーテトラハイドロー5Hー1ーベンツアゼピンー2ーオン0.60gをDMF4mlに溶かして滴下する。60℃で15分間加熱後、氷冷し、Nーペンジルー4ー(2ークロロエチル)ピペリジン塩酸塩1.02gを加え、その後、60℃で3時間30分撹拌する。放冷後、氷水にあけ、塩化メチレンで抽出する。水洗後、硫酸マグネシウムで乾燥させ、減圧下溶煤を留去する。シリカゲルクロマト精製後、常法で塩酸塩とし、標題化合物1.40gを得る(収率94.8%)。

- ·分子式;C24H3aN20·HCl
- \cdot 'H NMR (CDC1₂) 8; 1, 20 ~1, 92 (11H, m) , 2, 20

~2. 24(4H, bs) , 2. 50 ~2. 88(4H, m) , 3. 44
(2H, s) , 7. 12 ~7. 24(9H, m)

実 施 例 11

 N - [4-(1'-ペンジルピペリジル) エチル]
 -5.6.11.12 -テトラヒドロジペンゾ [b,f] ア ゾミン-6-オン・塩酸塩

5,6,11,12ーテトラヒドロベンゾ (b,f) アゾミンー6ーオン2,24gと60%水素化ナトリウムをジメチルフォルムアミド20mlに入れ、60℃で1時間加熱撹拌後、1ーベンジルー4ークロロエチルピペリジン 0.7gを加え、さらに3.5 時間反応する。

反応液を水20m1にあけ、酢酸エチルで抽出し、 飽和食塩水で洗浄し、硫酸マグネシウムで乾燥 し、減圧留去する。

ージベンソ (b, e) (1.4) ージアゼピンー11ー オン0.58gをDMF 5mlに溶かして滴下する。40~50 ℃で20分間撹拌し、次いで水冷して、4ー (アミノエチル) ー1ーベンジルピペリジン 0.71gを加え、45~55℃で6時間撹拌する。氷水にあけて塩化メチレンで抽出する。飽和食塩水で有機層を洗い、硫酸マグネシウムで乾燥させた後、減圧下溶媒を留去する。残渣をシリカゲルカラムで精製し、常法により塩酸塩として標題化合物0.78gを淡黄色非晶質として得る(収率65.4%)

·分子式;CaaHaiNaO·HCl

· 'H — NMR (CDC1₃) δ ; 1.20 ~ 1.91 (11H, m) ,
2.60 ~ 3.00 (2H, bs) , 3.22 (3H, s) , 3.41
(2H, s) , 6.87 ~ 7.08 (3H, m) , 7.08 (9H, m) ,
7.64 (1H, dd)

実 施 例 13

3 - [[4' - (l' - ベンジルピベリジン) プロ ピオイル] アミノ] - 2 - ピラジンカルポン酸 イソプロピルエステル・塩酸塩 残渣をシリカゲル アラムクロマトグラフィー により (5 % MeOH in CH₂Cl₂) 精製分離し、標 顕化合物 0.6 gを得る。

·分子式;C1sH32N2O·HC1

• 'H - NMR (CDC1₃) δ ; 1.1 ~2.2(9H, α) , 3.7 ~4.1(4H, α) , 4.15~4.5(2H, α) , 4.46 (2H, s) , 6.8 ~7.4(13H, α)

実 施 例 12

酸塩

10- [4'- (1'-ベンジルピベリジン) エチル]
-10.11 -ジハイドロー 5 -メチル-5H-ジベ ンソ [b, e] [1, 4] ジアゼピン-11-オン・塩

ナトリウムハイドライド0..25 g をジメチルホ ルムアミド (DMF) に懸濁させて氷冷下撹拌する。 ここへ、10.11 ージハイドロー5-メチルー5H

・元素分析値;C₂ゥH₃ṇN₄O₃・HCl・¹/₂H₂Oとして

理論値 (%) 60.58 7.07 12.29 実測値 (%) 60.54 7.00 12.29 実 施 例 1 4

N - [4'- (1'-(p-ハイドロキシベンジル) ピペリジン) エチル] - 2 - キノキサリンカル ポン酸アミド・塩酸塩

2ーキノキサリンカルボン酸クロライド2gを1ー(pーメトキシベンジル)ー 4ーピペリジンエチルアミン2.52gをトリエチルアミン2g存在下、室温でTHF中で反応させた。これを常法により後処理してカラム精製することによりNー [4'ー(1'ー(pーメトキシベンジル)ピペリジン)エチル]ー2ーキノキサリンカルボン酸アミド2.5gを得た。

これを1g塩化メチレンに溶解しBBraにより 脱メチル化反応を行い、カラム精製することに より生成物0.3gを得た。これを塩酸塩とする ことによりクリーム色の結晶を0.2g得た。

·分子式;CaoHasNaOa·HCl

- ·分子式; C23H26N4O2·HC]
- 'H NMR (CDC1₃) δ ; 1. 16 ~ 2. 20 (9H, m) , 2. 76 ~ 3. 04 (2H, m) , 3. 49 (2H, s) , 3. 48 ~ 3. 68 (2H, t) , 7, 13 ~ 7. 40 (5H, m) , 7. 70 ~ 8. 25 (4H, m) , 9. 64 (1H, s)

4-(N-ベンゾイルピベリジル) 酢酸47gと 塩化チオニル8mlとベンゼン20ml中2時間加熱 遠流後、減圧留去する。

これをTHF 20mlに溶解し、水冷撹拌下アニリン1.86g、トリエチルアミン10g、THF 30ml内に滴加する。室温で約11時間反応した後、水にあけメチレンクロライドで抽出する。飽和食塩水で洗浄し、無水硫酸マグネシウムで乾燥し、減圧留去する。残渣をシリカゲルカラムクロマ

· 'H - NMR (CDC1₃) 8 : ~1. 92 (9H, m) , 2. 84 ~3. 18 (2H, m) , 3. 24 ~3. 64 (2H, m) , 3. 52 (2H, s) , 6. 60 (2H, d) , 7. 05 (2H, d) , 7. 17 (2H, s) , 7. 64 ~8. 14 (4H, m) , 9. 53 (1H, m)

実 施 例 15

N- [4'-(1'-ベンジルピペリジル) エチル] - 2 -キノキサリンカルポン酸アミド

1ーペンジルー4ーアミノエチルピペリジン4.6 g、ピリジン50ml、4ージメチルアミノピリジンを室温、撹拌下、2ーキノキサロイルクロライド40g加える。3時間反応後、水にあけメチレンクロライドで抽出し、飽和食塩水で洗浄後、無水硫酸マグネシウムで乾燥し、溶媒を減圧留去する。

この残盗をシリカゲルカラムクロマトグラフィーで精製($5.96 MeOH-CH_2Cl_2$)し、酢酸エチルより再結晶し、標題化合物3.0.8を得る。

トグラフィーで精製 (5 96 MeOH in CH₂Cl₂) し 4 - (N - ペンゾイルピペリジル) 酢酸アニリド 0.9 gを得る。

この4-(N-ベンゾイルピペリジル) 酢酸アニリド 0.9gをTHF 10mlに溶解し、氷冷撹拌下、THF 30ml中リチウムアルミニウムハイドライド 0.38gを滴下し、さらに1時間加熱量流する。 反応後、水を加え、沈殿遠去後、酢酸エチルで抽出し、飽和食塩水で洗浄し、無水硫酸マグネシウムで乾燥し、溶媒を減圧留去し、1-ベンジル-4-(N'-フェニルアミノエチル) ピペリジン0.7gを得る。

- ·分子式;C20H26N2
- 'H NMR (COCl₃) 8; 1.0 ~2.2(9H, m) , 2.85 (2H, m) , 3.10(2H, t) , 3.44(2H, s) , 3.7 (1H, bs) , 6.4 ~6.8(3H, m) , 7.0 ~7.4 (7H, m)

実 施 例 17

N- [4'-(1'-ペンジルピペリジル) エチル] アセトアニリド

1-ペンジルー4-(パーフェニルアミノエチル) ピペリジン0.7 g、トリエチルアミン2.0g、THF 20mlを氷冷下撹拌下、アセチルクロライド0.4 gを流下する。

室温で3時間反応後、水20mlを加え、メチレンクロライドで抽出し、飽和食塩水で洗浄後、無水硫酸マグネシウムで乾燥し、溶媒を減圧留去する。残渣をカラムクロマトグラフィーで精製(5%MeOH in CH₂Cl₂)し、標題化合物を得る。

- ·分子式;C23H2eN2O
- * 'H NMR (CDC1₃) δ; 1.0 ~2.1 (12H, m) , 2.6 ~3.0 (2H, m) , 3.39 (2H, s) , 3.67 (2H, t) , 6.9 ~7.5 (10H, m)

実 施 例 18

N-(3',5'-ジメトキシフェニル) -N- (4'-

6.1 ~6.4(4H, m) , 6.9 ~7.8(10H, m)

実 施 例 19

N- [4'-(1'-ベンジルピペリジン) エチル]

-N -フェニルニコチン酸アミド・二塩酸塩

N- (4' (1' - ベンジルピペリジン) ェチル) アニリン0.70g、4- (N.N' - ジメチルアミノ) ピリジン触媒量をピリジン30mlに溶かし、氷冷下撹拌する。ここに、イソニコチン酸クロライド塩酸塩0.85gを加え、3時間30分撹拌する。減圧下溶媒を留去し、シリカゲルカラムで精製する。常法により二塩酸塩とし、淡黄色非晶質として0.75gを得る(収率73.0%)

- ·分子式;C26H29N3O·2HC1
- · 'H NMR (CDCl₃) δ ; 1. 13 ~ 2. 01 (9H, m) 、 2. 81 (2H, bd) 、 3. 44 (2H, s) 、 3. 88 (2H, bt) 、 6. 84 ~ 7. 26 (12H, m) 、 8. 31 (2H, d)

(1'ーペンジルピヘッジル) エチル] - 4 - フ

ロロけい皮酸アミド・塩酸塩

$$F \longrightarrow CH = CHCNCH_2CH_2 \longrightarrow N-CH_2 \longrightarrow HCI$$

$$CH_3O \longrightarrow OCH_3$$

1 ーペンジルー4 ー [N' ー(3',5' ージメトキシフェニル) アミノエチル] ピペリジン 1.0g、トリエチルアミン2.0g、THF 20mlを氷冷挺沖下、pーフロロけい皮酸クロライド0.51g加える。室温で2時間反応後水にあけ、酢酸エチルで抽出し、飽和食塩水で洗浄し、無水硫酸マグネシウムで乾燥し、溶媒を減圧留去する。

この残渣をシリカゲルカラムクロマトグラフィーにより精製(5.96 MeOH in CH_2Cl_2)する。常法により塩酸塩として標題化合物0.9.8を得る。

- ·分子式;CaiHasNaOaF·HCl
- 'H NMR (CDC1₃) δ ; 1.1 -2.1(9H, m) , 2.7 -3.0(2H, bd) , 3.51(2H, s) , 3.83(8H, m)

実 施 例 20

4- (1-ベンジルピペリジン) プロパンアニ リド・塩酸塩

アニリン 0.5g、トリエチルアミン1gをTHF中に溶解する。この中に撹拌下、 4 ー (1 ーベンジルピペリジン) プロピオン酸クロライドを1g滴下し、室温で5時間反応させる。その後、熔媒を留去し、塩化メチレンを加え、水洗、MgSO。で乾燥する。これを再び溶媒を留去してシリカゲルカラム精製することにより目的物の油状物を得た。さらにこのものを常法に従い、塩酸塩にすることにより白い結晶0.14gを得た。

- ・融点 (で) ;197.5 ~198
- ・元素分析値;C21H2eN2C・HC1として

実測値 (%) 70.50 7.58

C H N 理論値 (%) 70.28 7.58 7.81

7.83

実 施 例 21

N- (3'-(1'-ベンジルピロリジン) メチル) ベンツアミド・塩酸塩

ベンジルクロライド 0.74g、3-(2'-アミノメチル) ーベンジルピロリジン 1gをトリエチルアミン1.5g存在下THF中、室温で撹拌し反応させた。これを常法により後処理しカラム精製することにより、目的物を0.32g得た。これを一般的方法により塩酸塩にした。

- ·分子式;C19H22N2O·HCl
- · 'H NMR (CDCl₃) ゟ;

1. 48 ~ 3. 08 (7H, m) , 3. 44 (2H, d) , 3. 62 (2 H, d) , 7. 04 ~ 7. 88 (10H, m)

実 施 例 22

4 - [4' - (N - ベンジル) ピペリジル] - 3 -ハイドロキシー p - メトキシブチロフェノン

4.1(1H) 、6.83(2H, d)、7.17(5H, s)、7.82(2H, d)

実 施 例 23

<u>4 - {4'-N -ベンジル) ピペリジル] - p -</u> メトキシブチロフェノン・塩酸塩

ディーン・スターク装置を用い、4ー(4'ー(Nーペンジル)ピペリジル】-3ーハイドロキシpーメトキシブチロフェノン0.54g、pートルエンスルホン酸0.1g、トルエン30m1で加熱 遠流を5時間行う。反応後、炭酸カリウム水溶液にあけ、メチレンクロライドで抽出し、無水硫酸マグネシウムで乾燥し、減圧留去する。残 値をカラムクロマトグラフィーで精製 (3 %MeOHーCH₂Cl₂)し、1ーペンジルー4ー〔4ー(pーメトキシフェニル)-4ーオキソブチル】ピペリジン0.45gを得る。これをMeOH20m1に溶解

窒素気流下、THF 7ml中にジイソプロピルアミン2mlを加え、0 でにて、1.6M nープチルリチウムへキサン溶液7.6ml を加え、10分間撹拌後、一78でまで冷却して pーメトキシアセトフェノン1.65gのTHF 10ml溶液を加え20分間撹拌する。さらに1ーペンジルー4ーピペリジンカルボアルデヒド2.4gのTHF 10ml溶液を加え、10分間撹拌する。1%塩化アンモニウム水溶液を加え、メチレンクロライドで抽出し、飽和食塩水で洗浄し、無水硫酸マグネシウムで乾燥後、減圧留去する。残渣をシリカゲルカラムクロマトグラフィーにより精製(5%MeOHーCH2Cl2)により精製し、標題化合物2.0gを得る。

- ·分子式;C23H29NOs
- 'H—NMR (CDC1₃) δ ; 1.0 ~2.2(9H, m) , 2.6 ~3.4(5H, m) , 3.43(2H, s) , 3.81(3H, s) ,

し、10 96 パラジウムー炭素 (含水) 40 mg を加える。室温常圧で1.5 時間水素添加する。不溶物を濾去し、減圧留去する。常法により塩酸塩とし、MeOH-1PE より結晶化し、標題化合物0.2 g を得る。

- ·分子式;C22H29NO2·HC1
- · 'H NMR (CDCl₃) 8; 1.4 ~2.3(11H, m) 、2.4 ~2.7(2H, m) 、2.95(2H, t) 、3.55(2H, s) 、 3.87(3H, s) 、6.93(2H, d) 、7.1 ~7.5(5H, m) 、7.94(2H, d)

実 施 例 2 4

N- [4'-(1'-ベンジルピペリジン) ェチル] - 3-フランカルポン酸アミド・塩酸塩

4- (2-アミノエチル) -1-ベンジルピペリジン1.64g、炭酸カリウム2.67gをクロロホルム40ml、水40mlの混液に加え、氷冷下1時

間撹拌する。有機層を分離し、飽和食塩水で洗い、硫酸マグネシウムで乾燥させる。減圧下溶 媒を留去し、シリカゲルカラムで精製、常法で 塩酸塩とし、淡黄色非晶質として標題化合物 1.60gを得る(収率61.1%)

- ·分子式;C19H24N2O2·HC1
- 'H NMR (CDCl₃) δ; 1.47 ~ 2.10 (9H, ω) 、 2.81 (2H, bd) 、 3.25 ~ 3.47 (4H, ω) 、 5.80 (1H, bs) 、 6.51 (1H, dd) 、 7.15 ~ 7.19 (6H, ω) 、 7.82 (1H, dd)

実 施 例 25

N- [4'-(1'-ベンジルピベリジン) エチル] ベンツアミド

N-(1-ラダマンタンメチル) - 4- (2-アミノエチル) ピペリジン1.47g、炭酸カリウム0.73gをクロロホルム15mlと水15mlの混液に

する。ここに N- [4'- (1'-ベンジルピペリジン) エチル] ベンツアミド1.45gをTHF 5mlに溶かしたものを滴下する。室温で1時間撹拌した後、再び氷冷し、ヨウ化メチル0.36mlを加え、一夜室温で撹拌する。氷水にあけ、塩析下クロロホルム抽出し、飽和食塩水で洗い、硫酸マグネシウムで乾燥させる。減圧下溶媒を留去し、シリカゲルクロマトで精製する。0.60gの 黄色油状物が得られる(収率47.0%)。

また、メチル化されていない原料0.22gを回収した(回収率15.2%)。得られた油状物を常法で塩酸塩として標題化合物0.52gを黄色非晶質として得る(収率37.6%)。

- ·分子式;C28H38N2O·HC1
- · 'H NMR (CDCl₃) & ; 0.92~3.60(63H, m) , 7.29(5H, s)

実 施 例 27

N- [4'-(1'-シクロヘキシルメチルピペリジル) エチル] N -メチルペンズアミド・塩酸塩

加え、氷冷下激し、複字する。ここにベンゾイルクロライド0.90gを滴下し、室温で一夜撹拌する。有機層を分離し、水と飽和食塩水で洗い、硫酸マグネシウムで乾燥させ、溶媒を減圧下留去する。シリカゲルカラムで精製し、ベンゼンーローへキサンから再結晶し、淡黄色板状晶として標題化合物1.47gを得る(収率72.6%)。

- ·分子式;CzsHseN2O
- · 'H NMR (CDCl₃) δ; 1.29~2.28(27H, m) 、 2.72(2H, bs) 、3.43(2H, q) 、6.01(1H, bs) 、 7.31~7.43(3H, m) 、7.67(1H, dd)

実 施 例 26

N-メチル-N- [4'- (1'-ペンジルピペリジン) エチル] ペンツアミド・塩酸塩

ナトリウムハイドライド0.18gをテトラハイ ドロフラン (THF) 2mlに懸濁させ、氷冷下撹拌

NーメチルーNー (4'ーピペリジルエチル) ベンズアミド0.6 g、シクロヘキシルブロマイド1.2 g、炭酸水素ナトリウム2.0 g、メチルエチルケトン30mlを7時間加熱還流する。反応後、水に加え、酢酸エチルで抽出し、飽和食塩水で洗浄し、無水硫酸マグネシウムで乾燥し、溶煤を減圧留去する。この残渣をシリカゲルカラムクロマトグラフィーにより精製(5 %MeOHーCH₂Cl₂)し、標題化合物0.3 gを得る。

- ·分子式;C22H34N2O·HC1
- · 'H NMR (CDCl₃) δ; 0.8 ~1.1(20H, m), 1.1 ~1.6(4H, m), 1.8 ~2.6(5H, m), 7.4 (5H, s)

実 施 例 28

 $\frac{1 - \overset{\checkmark}{\sim} \overset{\checkmark}{\vee} \overset{}{\vee} \overset{$

ン

5.6ージメトキシー1ーインダノン0.85gと
1ーペンゾイルー4ーピペリジンーカルポアル
デヒド1.38gを無水THF 20ml に溶解し、0
でにて28%ナトリウムメチラート1.02gを加え
た。室温にて2時間撹拌した後、酢酸エチルに
て希釈し、飽和食塩水にて洗浄した。硫酸マグ
ネシウムにて乾燥後、減圧濃縮し、得られた残
渣をシリカゲルカラムにて精製し、1ーペンゾ
イルー4ー〔(5.6ージメトキシー1ーインダノ
ン) -2ーイリデニル〕メチルピペリジン1.23g(収率71%)を得た。

この化合物1.23gをTHF 20ml に溶解し、10%パラジウムー炭素 0.3gを加えた。室温常圧にて1日水素添加した後、触媒を濾別し、濾液を減圧濃縮した。これを塩化メチレンーへキサンから再結晶化し、次の物性を有する標題化

燥後、減圧濃縮し、得られた残渣を常法により 塩酸塩とし、メタノールーエーテルから再結晶 化し、次の物性を有する標題化合物6.30 g (収 率85%) を得た。

・融点 (で) ; 249 ~250 (分解)

・元素分析値;CirH2。NO。・HC1として

 C
 H
 N

 理論値(%)
 62.67
 7.42
 4.30

 実測値(%)
 62.75
 7.31
 4.52

実施例30

1- (3-フルオロペンジル) - 4- [(5,6-ジメトキシー1-インダノン) - 2-イル] メ. チルピペリジン・塩酸塩

4 - ((5.6 - ジメトキシー 1 - インダノン) - 2 - イル) メチルピペリジン0.25gをTHF 6 m! に溶解し、トリエチルアミン0.29mlと3 -フルオロベンジルブロミド0.13mlを加えた。2 合物1.10g (収率89.../を得た。

・融点(で);151~152

・元素分析館;C24H27ND。として

C H N

理論値 (%) 73.26 6.92 3.56

実測館(%) 73.30 6.85 3.32

実 施 例 29

2ーイル]メチルピペリジン・塩酸塩

1ーベンゾイルー4ー〔(5.6ージメトキシー1ーインダノン)ー2ーイル〕メチルピペリジン9.00gをジオキサン90m1に溶解し、6N塩酸90m1を加えた。10時間加熱還流した後、減圧濃縮し、水で希釈した後、酢酸エチルにて抽出した。水層を50%水酸化ナトリウム水溶液にてpH12とした後、塩化メチレンにて抽出し、さらに飽和食塩水にて洗浄した。硫酸マグネシウムにて乾

時間加熱還流した後、滅圧濃縮し、酢酸エチルにて希釈し、10%炭酸ナトリウム水溶液、飽和食塩水にて洗浄した。硫酸マグネシウムにて乾燥後、滅圧濃縮し、得られた残渣をシリカゲルカラムにて精製した。さらに常法により塩酸塩とし、塩化メチレンーIPEから再結晶化し、次の物性を有する標題化合物0.27g(収率72%)を得た。

・融点(で);230~232 (分解)

・元素分析値;C24H29NO3・HC1として

C H N

理論館(%) 66.43 6.74 3.23

実測値 (%) 66.18 6.79 3.11

寒 施 例 3 1

 $\frac{1 - \langle v \rangle \mathcal{U} - 4 - [(5, 6 - \mathcal{Y} \times 1 + v - 1 - 4)]}{4 - \langle v \rangle \mathcal{U} - 2 - 4 \rangle} \times \mathcal{U} \times$

2 塩酸塩

5.6ージメトキシー1ーインダノン1.00g、パラホルムアルデヒド0.31g、1ーベンジルピペラジン0.90mlをエタノール30ml、水2mlに懸濁し、濃塩酸を加えてpH3とした。3時間加急にで後、放冷し、白色固体を濾別した。これを塩化メチレンにで懸濁させ、10%炭酸では水にて洗浄した。のがはなりム水溶液と飽和食塩水にて洗浄した。のでは、水の物性を有する標題化合物0.55g(収率23%)を得た。

・融点 (で) ;227 ~228 (分解)

·元素分析値;C23H29N2O3・2HC1として

C H N

理論値 (%) 60.79 6.88 6.16

実測値 (%) 60.31 6.95 6.06

実 施 例 32

4- [(5.6-ジメトキシー1-インダノン) -2-イル] メチル-1-エトキシカルポニルピ

ーイル] メチルー1ーエトキシカルポニルピ

ペリジン

4- 〔(5.6-ジメトキシー1-インダノン)
-2-イル〕メチルー1-エトキシカルボニルピペリジン2.00gを四塩化炭素30㎡に溶解し、
N-ブロムコハク酸イミド0.98gと過酸化ペンソイル0.02gを加えた。5時間加熱還流した後、四塩化炭素で希釈し、飽和重曹水、飽和食塩水にて洗浄した。硫酸マグネシウムにて乾燥後、減圧濃縮した。

この残渣をTHF 20ml に溶解し、1.8 ージアザピシクロ [5.4.0] ウンデクー 7 ーエン1.66mlを加えた。30分間加熱還流した後、減圧 濃縮し、酢酸エチルにて希釈し、飽和食塩水にて洗浄した。硫酸マグネシウムにて乾燥後、減圧濃縮し、得られた残渣をシリカゲルカラムにて精製し、標題化合物1.12g(収率56%)を油

ベリジン

1ーベンジルー4ー [(5.6ージメトキシー1ーインダノン)ー2ーイル]メチルピペリジン0.50gをベンゼン8mlに溶解し、クロルギ酸エチル0.15mlを加えた。3時間加熱遺流した後、酢酸エチルにて希釈し、飽和重曹水、飽和食塩水にて洗浄した。硫酸マグネシウムにて乾燥後、減圧濃縮し、得られた残渣を酢酸エチルーへキサンから再結晶化し、次の物性を有する標題化合物0.45g(収率94%)を得た。

・融点(で):132~133

・元素分析値;C20H27NOs として

C H N

理論値(%) 66.46 7.53 3.88

実測値 (%) 66.79 7.53 4.00

実 施 例 33

 $4 - \{(5, 6 - 9) | 1 + 9 - 1 - 4) = 0$

状物質として得た。

- ·分子式;C20H25NOs
- · 'H-NMR (CDCl3) &;

1.23(3H, t), 1.41~2.90(11H, m), 3.84(3H, s), 3.88(3H, s), 4.10(2H, q), 6.60(1H, s), 6.97(1H, s), 7.03(1H, s)

実 施 例 34

1 - ベンジル- 4 - [(1,3-インダンジオン) - 2 - イリデニル] メチルピベリジン

無水THF 3ml中にジイソプロピルアミン 0.17mlを加え、さらに 0 でにて 1.6M nーブチルリチウムへキサン溶液0.75mlを加えた。 0 でにて10分間撹拌した後、-78でまで冷却し、1.3 ーインダンジオン0.18gの無水THF 8ml溶液とヘキサメチルホスホルアミド0.21mlを加えた。-78でにて15分間撹拌した後、1ーベンジルー4ーピペリジンカルボアルデヒド0.35gの

無水THF 3ml 溶液を加た。室温まで徐々に 昇温し、さらに室温にて一晩撹拌した後、塩化 メチレンで希釈し、飽和食塩水にて洗浄した。 硫酸マグネシウムにて乾燥後、減圧濃縮し、得 られた残渣を塩化メチレンーIPEから再結晶 化し、次の物性を有する標題化合物0.12g(収

・融点(で);173~174 (分解)

·元素分析値;C22H21NO2 として

C H N

理論値 (%) 79.73 6.39 4.23

実測値 (%) 79.43 6.20 4.31

実 施 例 35

率29%) を得た。

<u>1 - ペンジルー 4 - 〔(5,6-ジメトキシインデン) - 2 - イル〕メチルピペリジン・塩酸塩</u>

1-ペンジルー4- ((5.6-ジメトキシー1 -インダノール) -2-イル] メチルピペリジ

にて10分間撹拌した後、一78 でまで冷却し、5.6 ージメトキシー1ーインダノン0.39 gの無水 THF 5ml 溶液とヘキサメチルホスホルアミド 0.35mlを加えた。一78 でにて15分間撹拌した後、3ー(1ーペンジルー4ーピペリジン)プロピオンアルデヒド0.50 gの無水THF 5ml 溶液を加えた。室温まで徐々に昇温し、さらに室温にて3時間撹拌した後、酢酸エチルで希釈し、飽和食塩水にて洗浄した。硫酸マグネシウムにて乾燥後、減圧濃縮し、得られた残渣をシリカゲルカラムにて精製し、常法により塩酸塩とし、標題化合物0.55 g(収率61%)を油状物質として得た。

- ·分子式;CaeHaiNOa·HCl
- · 'H-NMR (CDC13) &;

1. 10 ~ 3. 00 (13 H. m), 3. 45 (2 H. s), 3. 50 (2 H. s), 3. 90 (3 H. s), 3. 95 (3 H. s), 6. 58 ~ 7. 20 (3 H. m), 7. 27 (5 H. s)

実 施 例 37

 $1 - \angle 2 2 2 2 - 4 - (3 - (5, 6 - 2) 2 + 2)$

第昭64-79151 (33)

ン0.248を塩化メチレン 5mlに溶解し、10%塩酸一酢酸エチル溶液を加え、滅圧濃縮した。得られた残渣を塩化メチレンーIPEから再結晶化し、次の物性を有する標題化合物0.24g(収率95%)を得た。

・融点(で);216~217 (分解)

・元素分析値;C24H29NO2・HC1 として

C H N

理論值(%) 72.07 7.56 3.50

実測値(%) 71.82 7.63 3.33

実 施 例 36

ロピルピペリジン・塩酸塩

無水THF 5ml 中にジイソプロピルアミン
0.31mlを加え、さらに 0 ℃にて 1.6% n ープチルリチウムへキサン溶液1.39mlを加えた。 0 ℃

<u>-1-インダノン)-2-イル}}プロピルピ</u>ペリジン・塩酸塩

1ーペンジルー4ー(3ー((5,6ージメトキシー1ーインダノン)ー2ーイリデニル]] プロピルピペリジン0.40gをTHF 15ml に溶解し、10%パラジウムー炭素 0.1gを加えた。室温常圧にて2時間水素添加した後、触媒を憩別し、滤液を減圧濃縮した。得られた残渣をシリカゲルカラムにて精製し、常法により塩酸塩とし、標題化合物0.37g(収率84%)を油状物質として得た。

- ·分子式;CasHaaNOa·HCl
- · 'H-NUR (CDCl₃) 8;

1.00~3.30(18H.m), 3.38.3.43(total 2H, each s), 3.85(3H, s), 3.90(3H.s), 6.77.6.83(total 1H, each s), 7.05.7.10(total 1H, each s), 7.18.7.20(total 5H, each s)

実施例 $1\sim3$ 7と同様にして合成した化合物を表 $4\sim9$ に示す。

表 4

		
実施例	祷 造 式	物 理 化 学 恒 数 (融点、元素分析値、NUR など)
		融点(で);247~248 (分解)
38	CH ₃ O N-CH ₂ · HCI	元素分析値(C₂₃H₃¸NO₃・HCI として)
	CH*0	C H N 理論値(%) 68.73 7.02 3.48 実測値(%) 68.70 6.99 3.35
39		動点(で):196~197
	CH2 - N-CH2 - HC1	元素分析館(C22H25NO・HC1 として)
		C H N 理論値(X) 74.24 7.36 3.94 実測値(X) 74.25 7.56 3.80
40	CH ₂ O CH ₂ -CH ₂ -CH ₂ · HCI	触点 (で) ;203~204 (分解)
		元梁分析値(C23H27NO2・HC1 として)
		C H N 理論値(%) 71.58 7.31 3.63 実例値(%) 71.58 7.25 3.65
41	CH ₃ O CH ₃ - HC1	"H-NNR (CDC1,) 8; 1. 10~3.40 (14H. m), 3.48 (2H. s), 3.81 (3H. s), 3.85 (3H. s), 3.85 (3H. s), 6.25 (1H, bs), 6.42 (1H, bs), 7.25 (5H. s)
		分子式;C24H29NO3・HC1
42	CH ₃ O O CH ₃ - CH ₃ - CH ₃ - HC1	"H-NNR (CDC1,) ∂; 1.05~3.40 (14H,m). 3.45(2H,s). 3.80 (3H,s). 3.85 (3H,s). 6.75 (2H,ABq), 7.22 (5H,s)
	CH 3 D	分子式; C2.4H2.9NO3. · HC1

4		
T		

実施例	福 造 式	物 理 化 学 恒 数 (融点、元素分析値、MMR など)
		融点(で);201~202 (分解)
43	CH ₃ O CH ₃ CH ₃ - N-CH ₃ - HCI	元条分析館(CasHatNDacHC1 として)
	CH*0	理論館(X) 69.83 7.50 3.26 実調館(X) 69.13 7.42 3.31 父出。0(X) 69.25 7.53 3.23
44	CH=0 N-CH=	'H-NNR (CDC1,) &; 1.10~3.40(11H,m), 3.50(2H,s), 3.85(3H,s), 3.93(3H,s), 4.25(1H,bs), 6.81(1H,s), 7.07 (1H,s), 7.22(5H,s)
	CH*0	分子式;CaaHanNO。
		融点 (で) : 225~226 (分解)
	CH=0 . HC1	元素分析値(CasHasNOs・HC1 として)
45	45 CH ₃ O CH ₂ O · HC1	で H N 型論値(X) 69.08 6.55 3.50 実測値(X) 68.78 6.43 3.50
	_	触点(で);169~170 (分解)
		元素分析値(C₂₂H₂₃NO・HC1 として)
46	M-CH ₃ - HC1	で H N 理論値(X) 74.67 6.84 3.96 実測値(X) 74.42 6.61 3.76
	C	数点 (で) :120~122
		元素分析値(C23H25NO3・HC1 として)
47	CH ₃ O N-CH ₃ - HCI	型論館(%) 71.96 6.83 3.65 実測館(%) 71.84 6.85 3.46

表 4 (統 .き)

実施例	· 構造式	物 理 化 学 恒 数 (融点、元素分析値、NMR など)
48	CH ₃ O O O O O O O O O O O O O O O O O O O	「H-NWR (CDC1 ₃) <i>お</i> ; 1.40-2.40 (7H, の), 2.90 (2H, bd), 3.48 (2H, s). 3.51 (2H, bd), 3.82 (3H, s), 3.86 (3H, s), 6.30 (1H, bd), 6.43 (1H, bd), 6.50 (1H, bt), 7.23 (5H, s) 分子式; C24H24NO3・HC1
49	CH=0 0 - IIC1	'H-NMR (CDC1 ₃) る; 1.40-2.50(7H.m), 2.86(2H.bd), 3.50(4H.s), 3.90(3H,s), 3.94(3H,s), 6.59(1H,dt), 6.78 (2H.ABq), 7.22(5H,s) 分子式: C ₂₊ H ₂₇ NO ₂ ・HC1
50	CH3O CH3-CH2 - HO3CCH=CHCO3H	'H-NMR (CDC1 ₃) ð; 1.14-2.04(14H.m). 3.49(2H.s), 3.81(6H.s). 4.77(3H.dd), 6.65(1H.d), 6.82(1H.d), 7.23 (5H.s) 分子式; C ₃ +H ₃ 1NO ₃ ・C ₄ H ₄ O ₄
51	CH ₃ O CH ₃ CH ₃ - HC1	'H-NMR(CDC1 ₃) &; 1.10~2.32(9H,m). 2.90(2H,bd). 3.52(4H,s). 3.89(3H,s). 3.93(3H,s). 6.71(1H,tt). 6.84 (1H,s). 7.20(1H,s). 7.24(5H,s)
52	O 	融点 (で) : 149~150 元素分析値(C₂₂H₂₁N□・HC1 として) で H N 理論値(%) 73.83 7.88 3.91 実測値(%) 71.29 8.00 3.80 パッH₂O(%) 71.31 8.00 3.78

23	삥맶	64
4		

実施例	. 棒 造 式	物 理 化 学 恒 数 (融点、元素分析値、NMR など)
53	OH CHCH₃CH₃CH₃ — N-CH₃ — HCI	'H-NMR (CDC1,) 8; 1.80~2.03(13H, m), 2.80(3H, bd), 3.43(2H, s), 4.60(1H, t), 7.28(5H, s), 7.30(5H, s)
		分子式:CzzHzsNO·HCI
54	O N-CH = CHCH = - N-CH = - HC1	'H-NMR (CDC1 ₃) δ; 1.10~2.13 (7H. m), 2.26 (2H. t), 2.88 (2H. bd), 3.48 (2H. s), 6.72~7.07 (2H. m), 7.30 (5H. s), 7.10~8.00 (5H. m)
		分子式;C22H25NO·HCl
		融点 (℃) ;176~178 元条分析値(C₂,H₂,N₂O・2HC1として)
55	N CCH₃CH₃CH₂ - N-CH₃ - 2HC1	で H N 現論値(%) 63.80 7.14 7.09 実測値(%) 63.13 7.43 6.88 %, aH20(%) 62.94 7.19 6.99
56	. N CCH 3 CHCH 3 - V - CH 3 - V	TH-NUR (CDC1.) 5; 1.05—2.15(9H.m), 2.85(2H.bd), 3.02(2H.d), 3.25(1H.bs), 3.47(2H.s), 4.10 ~4.45(1H.m), 7.21(5H.s), 7.62(2H.dd), 8.70(2H.dd)
		分子式;CasHaeNaOa
57	N CCH=CHCHa - N-CHa - 2HC1	1H-NWR (CDC1.) &; 1.10~2.10(7H,m), 2.25(2H,bd), 2.85(2H,bd), 3.45(2H,bs), 6.59 ~7.10(2H,m), 7.20(5H,s), 7.56(2H,dd), 8.67(2H,dd)
		分子式:C21H24N2O·2HC1

表 4 (続き)

実施例	横 造 式	物 理 化 学 恒 数 (融点、元素分析値、NMR など)
58	N	融点 (で) ; 240~240.7 元素分析値(C₂oH₂sN₂O・2HC1として) 田
59	N → NHCCH2 → N-C → HCI	'H-NMR(CDC1 ₃) る; 1.80~2.24(9H.m), 2.96(2H.d), 3.64(1H.m), 4.60(1H.m), 7.20~7.58(6H.m), 8.34(2H.d) 分子式; C: H: N:03・HC1
60	O ₂ N - NHCCH ₂ - N-CH ₂ - HC1	'H-NMR (CDC1 ₃) δ; 1, 12~2, 20 (7H, ω), 2, 34 (2H, d), 2, 74~3, 01 (2H, ω), 3, 50 (2H, s), 7, 29 (2H, s), 7, 71 (2H, d), 8, 20 (2H, d)

		at 100 th MA Act Min
実施例	機 造 式	物理化学恒数
20001		(融点、元素分析値、NMR など)
		融点(で);135~140 (分解)
	→ → → → → → → → → →	元素分析値(CaaHasNaO・2HC1として)
61	N-CH ₂ CH ₂ -CH ₂ -CH ₂ -2HC1	理論值(%) 62.86 6.47 10.00 実測值(%) 59.22 6.63 9.14 %H ₂ 0 (%) 59.06 6.76 9.39
		融点(で):80~82(分解)
	↑	元素分析値(C₂₂H₂¬N₂O・2HC1として) C H N
62	N-CH ₂ CH ₂ -\N-CH ₂ -\Q\ . 2HCI	理論位(%) 62.56 6.92 9.95 実測値(%) 60.14 7.313 9.21 1・H ₂ O(%) 60.00 7.09 9.54
63	N-CH3-CH3-CH3-CH3-CH3-CH3-CH3-CH3-CH3-CH3	「H-NMR(CDCl ₃) ð; 1.1~2.2(9H,m), 2.7~3.1(2H,m), 3.50(2H,s), 4.03(2H,t), 6.50(1H,m), 6.9~7.9(9H,m), 8.47(1H,d) 分子式:C ₂ H ₂ N ₂ O・HCl
64	N-CH2CH2-N-CH3	'H-NMR (CDCI,) 8; 1,1 ~2.2 (9H, m), 2.7~3.1 (4H, m), 3,4~3.7 (6H, m), 7.0 ~7.6 (8H, m), 8.06 (1H, m).
		分子式;CapHzeNgO・HC1
	N-CHaCHa-CHa-CHa-CHa-CHa-CHa-CHa-CHa-CHa-	$\begin{array}{llllllllllllllllllllllllllllllllllll$
65		
	CH,	分子式; CaaHaaNaOa·HCl

表 5 (統 き)

実施例	梅 造 式	物 理 化 学 恒 数 (融点、元素分析値、NAR など)
66	N-CH ₂ CH ₂ -\bigch N-CH ₂ -\bigch HC1	'H-NNR (CDC1.) 8; 1.10~2.20(9H.m), 2.93(2H.bd), 3.40 ~3.65 (6H.m), 4.43(2H.s), 7.00~7.50(4H.m), 7.31 (5H.s)
	l l	分子式;CaaHaaNaO·HCl
67	N-CH ₂ CH ₂ -N-CH ₂ -2HC1	"H-NMR (CDC1.) 8: 1.10~2.20(9H, m), 2.22~2.97(8H, m), 3.45(2H, s). 3.55(2H, s). 6.90~7.20(4H, m). 7.20(5H, s)
1	Ĭ	分子式; CasHaoNa·2HCl
68	N-CH ₂ CH ₂ -N-CH ₃ -CH ₃ · HC1	'H-NMR (CDC1.) 8; 1. 10~2. 16 (13H.m), 2. 16 ~2. 50 (2H.m), 2. 87 (2H. bd), 3. 03 ~3. 43 (4H.m), 3. 48 (2H. s), 7. 27 (5H. s)
1		分子式;CiaHaaNaO·HCl
69	N-CH ₃ CH ₃ -\\ 0 CH ₃ \\ 0 CH ₃	'H-NNR (CDC1.) が: 1 10~2.10(9H.m). 1.46(3H.d). 2.87(2H.bd). 3 35~3.72(3H.m). 3.46(2H.s). 4.40(2H.dd). 7.00~7.38(4H.m). 7.28(5H.s) 分子式: CzaHzoNzO・HC1
70	CH ₂ CH ₂ —\ N-CH ₂ —\ HC1	'H-NMR(CDCl ₃) &: 1.20~2.84(21H.m). 3.44(2H.s). 7.14 ~7.25 (9H.m)
		分子式; CasHaaNaO·HCl

•	

実施例	標 造 式	物 理 化 学 恒 数 (融点、元素分析値、NAR など)
71	CH°CH° - W-CH° - HCI	"H-NHR(CDC1 ₃) が: 1.44~1.80(15H.m), 2.96(2H,bs), 2.56(2H,s), 7.08~7.40(9H,m) 分子式; C22H20N3O・HC1
72	CH2CH2	「H-NMR (CDC1 ₃) る: 1. 24~2. 50 (5H, m), 2. 18 (2H, bs), 2. 54 ~2. 88 (4H, m). 3. 44 (2H, s). 3. 76 (3H, s). 6. 64~6. 76 (2H, m). 6. 99 (1H, d), 7. 20 (5H, s)
73	CH ₂ CH ₂	'H-NMR (CDC1 ₃) ま; 1.25~2.20(15H.m), 2.58(2H.bt), 2.86(2H.bs), 3.48(2H.s), 3.75(3H.s), 6.56~6.68(2H.m), 7.00(1H.d), 7.21(5H.s)
74	CH2CH2 N-CH2 - HC1 CH2CH2	'H-NMR (COCl ₃) ð: 1.38~2.02(12H.m), 2.96(2H.d), 5.60(2H,s), 4.94(4H.m), 7.08~7.36(9H.m) 分子式; C ₂₃ H ₂₈ N ₃ O・HC1
75	CH ₂ CH ₂ N-CH ₂ N-CH ₂ OCH ₃ HCI	「H-NMR (CDC1s) ð: 1.32~2.36(15H,m), 2.84~3.02(2H.m), 3.59 (2H,s), 4.09(3H,s), 6.72~6,88(2H,m), 7.20~ 7.44(7H,m)

表 5 (統 き)

実施例	機 造 式	物 理 化 学 恒 数 (験点、元素分析値、NMR など)
76	CH3O CH3CH3-CH3-CH3-CH3-CH3-CH3-CH3-CH3-CH3-C	「H-NMR (CDC1 ₃) み: 1.10~2.10(11H.m), 2.60 ~3.00(4H.m), 3.45 (2H.s), 3.45~3.80(1H.m), 3.86(6H.s), 6.22 (1H.bs), 6.57(1H.s), 7.20(5H.s), 7.46(1H.s) 分子式: CasHazNaOa・HC1
77	CH30	'H-NMR (CDCl ₃) <i>6</i> : 1.08~2.10(11H, m), 2.50~2.95(4H, m), 3.01 (3H, S), 3.45(2H, s), 3.45~3.60(1H, m), 3.85 (6H, s), 6.52(1H, s), 7.10(1H, s), 7.20(5H, s) 分子式; C _{2e} H _{2e} N ₂ O ₃ - HC1
78	CH3O CH3-CH3-N-CH3-N-CH3-N-CH3	"H-MM (CDC1 ₃) を : 1,02~2,12(9H, m), 2,50~3,05(4H, m), 3,43(2H, s), 3,43~3,85(1H, m), 3,88(6H, s), 6,58(1H, s), 6,50~6,82(1H, m), 7,20(5H, s), 7,46(1H, s) 分子式: C ₂₄ H ₂₆ N ₂ O ₃ - HC1
79	CH ₂ CH ₂ N-CH ₂ 2HC1	'H-NMR(CDCl ₃) ま; 1.17(3H, t), 1.10~2.15(9H, m), 2.68(2H, q), 2.89(2H, bd), 3.14(2H, s), 3.51(2H, s), 3.55 (2H, s), 3.87(2H, bt), 7.07~7.35(9H, m)

実施例	梅 造 式	物 理 化 学 恒 数 (触点、元素分析値、NUR など)
80	CH ₂ CH ₃	*H-NMR(CDC1。) ま: (フリー体) 1,01~2,40(9H,m), 2,70~3,30(4H,m), 3,46(3H,s), 3,54(2H,s), 3,90~4,20(2H,m), 6,90~8,20(9H,m) 分子式: C24H28N3O2・HC1
81	N-CH ₂ CH ₂ -N-CH ₂ -N	"H-NNR (CDC1) 0; 1, 12~2, 12(9H, m), 2, 76~3, 00(2H, m), 3, 50(2H, s), 3, 66(2H, t), 4, 36(2H, s), 7, 08~7, 92(9H, m)
82	COOC 3 H 3	"H-NNR (CDC1 3) \$\tilde{\sigma}; 1,08\sigma 2,16(9H,m), 1,42(3H,t), 2,76\sigma 3,00(2H,m), 3,32\sigma 3,62(2H,m), 3,50(2H,m), 4,53(q,2H), 7,12\sigma 7,40(5H,m), 7,48\sigma 7,72(1H,m), 8,58(1H,d), 8,73(1H,d)
83	COOCH3CH3CH3CH3 - HC1	1H-NMR (CDC1 ₃) 8; 0.95(3H, t), 1.04~2,10(13H, m), 3.68 ~4.00 (2H, m), 4.28~4.60(2H, m), 4.48(2H, s), 5.46 (3H, t), 7.74(5H, s), 7.48~7.72(1H, m), 8.57 (1H, d), 8.71(1H, d)

表 6 (統 を)

実施例	福 造 式	物理 化 学 恒 数 (融点、元素分析値、NUR など)
84	CH3 CONCH3CH3-CH3-CH3-HC1	'H-NMR (COC1.) Ø; 1.00-2.06 (9H, m), 2.70-2.92 (2H, m), 3.00- 3.13 (2H, m), 3.34-3.60 (4H, m), 7.26 (5H, s), 8.52 (1H, d), 8.62 (1H, d), 8.91 (1H, d)
85	COOEt CH3 COOEt HC1	'H-NMR (CDC1 ₂) & ; 0,92~2,06(9H,m), 1,40(3H,t), 2,64~2,91(2H,m), 3,12(3H,s), 3,36~3,72(4H,m), 4,46(2H,q), 7,28(5H,s), 8,73(2H,d)
86	CONHCHaCHa - N-CHa - HC1	'H-NMR (CDC1 ₃) &; 1. 10~2. 16 (9H, m), 2. 72~3. 02 (2H, m), 3. 10~ 3. 62 (2H, m), 3. 51 (2H, s), 4. 04 (3H, s), 7. 2~ 7. 48 (5H, m), 7. 48~7. 80 (1H, m), 8. 60 (1H, d), 8. 69 (1H, d)
87	N CONHCH2CH2 N-CH2 - HC1	1.04~2.28 (9H, m). 2.36 (3H, s). 3.44 (2H, s). 3.50~3.76 (2H, m). 7.12~7.25 (5H, m). 9.03 (2H, s)
88	N CONHCH3CH3- N-CH3- HC1	'H-NMR(CDC1.) &; 0.96~2.16(9H, m). 2.56~3.00(2H, m). 3.00~ 3.40(2H, t). 3.44(2H, s). 7.20(5H, s). 8.02(2H. s)

実施例	構 造 式	物 理 化 学 恒 数 (触点、元素分析値、NMR など)
89	CONHCH3CH3-CH3-CH3-CH3-CH3-CH3-CH3-CH3-CH3-	H-NHR (CDC1 ₃)
90	CONHCH ₃ CH ₃ -Ch	'H-NHR (CDC1' ₂) & ; 1. 08~2. 16 (9H, m). 2. 76~3. 06 (2H, m). 3. 24~ 3. 68 (2H, m). 3. 54 (2H, s). 7. 18~7. 46 (6H, m). 8. 00~8. 18 (1H, m). 8. 28~8. 54 (1H, m)
91	CH, CONCH,CH,- N-CH,- HCI	'H-NMR (CDC1 3) 8; 0,98~2,16 (9H, m), 2,60~3,00 (2H, m), 3,14 (3H, s), 3,32~3,72 (4H, m), 7,04~7,32 (5H, m), 7,60 ~7,82 (1H, m), 7,84~8,15 (2H, m), 9,05 (1H, s)
92	O CH ₃	1H-NMR (CDC1 ₂) &; 1,00~2.05(9H,m). 2.56~3.00(2H,m). 3.08, 3.12(total 3H, each s), 3.30 ~3.70(4H,m), 7,18,7.21(total 5H, each s), 7.33~8.22(6H,m)
93	O N-CH ₂ -CH	「H-NMR(CDC1 ₉) <i>多</i> ; 1.11~2.09(9H.m). 2.87(2H.bd). 3.20~3.62 (4H.m). 7.22(5H.s). 7.41~7.64(3H.m). 8.00 (1H.dd). 8.20(2H.s) 分子式; C ₂₊ H ₂₊ N ₂ O・2HC1

表 6 (続き)

実施例	禄 造 式	物理 化 学 恒 数 (酸点、元素分析値、NMR など)
94	CNHCH a CH a - C	触点 (セ) ; 197.5 ~198.5 元素分析値(C ₂ eH ₂ 1N ₂ O・2HC1として) C H N 理論値(X) 64.57 6.55 9.41 実例値(X) 64.26 6.58 9.35
95	O CHICH 2 CH 2 - N-CH 3 - OCH 3 HC1	融点(て);174~176.5 元柔分析値(C ₂₄ H ₂₆ N ₄ O ₂ ・HC1として) 理論値(%) 65.37 6.63 12.71 実測値(%) 64.96 6.63 12.60 ½ ₂ H ₂ O(%) 64.97 6.66 12.63

実施例	棉 遊 式	物 理 化 学 恒 数 (融点、元素分析値、NMR など)
96	CONHEF . HC1	'H-NNR (CDC1 3) δ; 0,96~2.24(9H, m), 1,25(3H, t), 2,60~3,08(2H, m), 3,44(2H, s), 3,12~3,15(4H, m), 7,20(5H, s), 8,44(2H, s)
97	CNCH ₂ CH ₂ -CN ₃ -CH ₃	'H-NMR(CDC1 ₃) <i>る</i> : 1.00〜2.08(9H, m), 2.70(2H, bd), 3.04(3H, bd), 3.40(2H, bd), 7.17(5H, s), 7.40〜7,61(2H, m), 7.66〜7.82(2H, m), 7.99〜8.11(2H, m), 7.83(1H, d) 分子式: C ₂₅ H ₂₅ N ₃ O・2HCI
98	0	'H-NMR(CDCI,) る; 1.1 ~2.1(9H.m). 2.7~3.0(2H.m). 3.50(2H.s). 3.90(2H.t). 6.9 ~7.6(12H.m). 8.03(2H.d) 分子式; C ₂₇ H ₂₉ N ₃ O ₃ ·HCl
99	F C-N-CH ₂ CH ₃ -CN-CH ₃ -C	'H-NMR(CDCl ₃) る: 1.1 ~2.1(9H.m). 2.7~3.0(2H.m). 3.48(2H.s). 3.8 ~4.0(2H.m). 6.6~7.4(14H.m) 分子式:C ₂₇ H ₂₉ N ₂ OF・HC1
100	C-N-CH ₂ CH ₃ -\ N-CH ₃ -\ HCI	「H-NMR (CDC1 ₂) る; 1.1~2.2(9H,m).2.7~3.0(2H,m).3.48(2H,s). 3.89(2H,m).6.8~7.4(15H,m)

表 ? (続き)

実施例	褐 造 式	物 理 化 学 恒 数 (融点、元素分析値、NMR など)
101	CH3CH3NCH3CH3-CH3-CH3-CH3	H-NMR (CDCl ₃)
102	CH ₃ O	'H-NNR (CDC1 ₃) <i>8</i> ; 1.10~2.06 (9H, m), 2.82 (2H, bd), 3.43 (2H, s), 3.58 (3H, s), 3.88 (2H, bt), 6.50 (2H, d), 6.69 (2H, d), 6.98 (5H, bs), 7.19 (5H, s)
103	CH3CH3CH3-CH3-CH3-CH3-CH3-CH3-CH3-CH3-CH	'H-NMR (CDC1 ₂) ð; 1.78 (3H, s). 1.0 ~2.1 (9H, m). 2.6~3.0 (2H, m). 3.43 (2H, s). 3.75 (2H, m). 3.73 (3H, s). 6.64 (4H, dd). 7.26 (5H, s) 分子式; C22H26N2O2・HC1
104	CH,CNCH,CH,CH,CH,CH,CH,CH,CH,CH,CH,CH,CH,CH,C	'H-NMR (CDC1 ₃) &; 1.1 ~2.1 (9H.m). 1.84 (3H.s). 2.7~3.0 (2H.m). 3.44 (2H.s), 3.5 ~3.8 (2H.m), 3.80 (3H.s). 6.5 ~6.9 (3H.m), 7.22 (6H.s) 分子式; C ₂₃ H ₂₀ N ₂ O ₂
105	N C-N-CH ₂ CH ₂ -N-CH ₃ -O + HC1	'H-NNR (CDC1 ₂) & ; 1, 16~2.16(9H, m), 2, 68~2.98(2H, m), 3.49(2H, s), 3.84~4.09(2H, t), 6.91~7.40(10H, m), 8.22~8.44(2H, m), 8.62(1H, s)

実施例	. 構造式	物 理 化 学 恒 数 (酸点、元素分析値、NMR など)
106	H C-N-CH ₂ CH ₂ - HC1	'H-NMR(CDC1:) ð; 1.98~2.26(20H.m). 2.85(2H.bd). 3.48(2H.s), 3.62(2H.bt), 6.96~7.40(9H.m) 分子式;C27H28N2O・HC1
107	CH3-S-NCH3CH3-N-CN3-N-CN	"H-NMR(CDC1」) お; 0.90~2.10(9H, m), 2.65~2.98(2H, m), 2.83(3H, s), 3.47(2H, s), 3.52~3.92(2H, m), 7.26(5H, s) 7.26~7.43(5H, m) 分子式: C2,H2eN2O2S・HC1
108	CH3CH3CH3CH3	「H-NMR (CDC1 ₃) ð; 1.02 (3H. t), 1.10~2.00 (9H. m), 1.98 (2H. q), 2.80 (2H, bd), 3.43 (2H. s), 3.55 ~3.80 (2H. m), 6.97~7.40 (5H. m), 7.20 (5H. s)
109	CH ₃ NCH ₂ CNCH ₂ CH ₂ N-CH ₂ - 2HC1	「H-NHR (CDC1。) ð; 1.0~2.1(9H.m). 2.18(6H.s), 2.6~3.0(4H.m), 3.38(2H.s). 3.4~3.8(2H.m), 6.9~7.5(10H.m) 分子式; C2.4H23N2O・2HC1
110	CH3CH2CH2CH3CH3-CH2-CH2-CH2-CH2-CH2-CH2-CH2-CH3-CH3-CH3-CH3-CH3-CH3-CH3-CH3-CH3-CH3	'H-NMR(CDC1 ₃) ð: 1.17(3H, t), 1.1 ~2.1(9H.m), 2.6~2.9(2H, m), 3.40(2H, s), 3.4 ~3.8(2H, m), 4.08(2H, t), 7.19(10H, s) 分子式: C ₂₃ H ₂₀ N ₂ O ₂ ・HC1

表 7 (税 き)

実施例	横 造 式	物 理 化 学 恒 数 (融点、元素分析館、NMR など)
111	CH3CNCH3CH3 — N-CH3 —	"H-NNR(COC1.) る: 1.24~1.81(9H,m). 2.0(3H,s), 2.82~2.95(2H,d). 3.54(2H,s), 3.80(2H,m). 7.18(2H,dd). 7.36(5H,s). 8.70(2H,dd)
112	CH3CNCH3CH3	'H-NNR(CDC1 ₃) 6 ; 1.83(3H.s), 1.0 ~2.2(9H.m), 2.6~3.0(2H.m), 3.43(2H.s), 3.66(3H.t), 6.8 ~7.4(9H.m)
113	CH ₂ = CHCNCH ₂ CH ₃ - N-CH ₃ - HC1	'H-NMR(CDC1 ₃) &; 1.16~2.06(9H,m), 2.83(2H,bd), 3.47(2H,s), 3.78(2H,bt), 5.42(1H,dd), 5.90(1H,dd), 6.20 (1H,dd), 6.99 ~7.40(10H,m) 分子式: C ₂₃ H ₂₆ N ₂ O·HC1
114	CH₃CH₃CH₃ — N-CH₂ — HCI	'H-NMR(CDC1 ₂) <i>ð</i> ; 1 14~2 03(12H,m), 2 83(2H,bd), 3 44(2H,s), 3 64(2H,bt); 7 00(2H,s), 7 08(2H,s), 7 22 (5H,s) 分子式: C ₂₂ H ₂₁ FN ₂ O·HC1
115	CH3CNCH3CH3-N-CN-N-CH3-N-CN-N-CN	'H-NNR(CDCl ₂)

	4

実施例	福 造 式	物理 化 学 恒 政 (融点、元素分析値、NMR など)
116	N CNCH3CH3 - N-CH3 - 2HC1	'H-NHR(CDCl ₃) &; 1.0 ~2.1(9H, m), 2.6~3.0(2H, m), 3.43(2H, s), 3.85(2H, m), 6.4 ~6.7(3H, m), 6.9~7.3(8H, m), 8.34(2H, d)
	OCH,	分子式;CarHaiNaOa・2HCl
117	N CHCH2CH2 N-CH2 · 2HC1	1H-NNR (CDC1.) 8; 1.0 ~2.1(9H.m). 2.6~3.0(2H.m). 3.41(2H.s). 3.84(2H.m). 6.6 ~7.2(5H.m). 7.22(5H.s). 8.37(2H.d)
	↓	分子式; CaeHaeNaOF·2HC1
118	N CH ₃ CH ₃ CH ₃ N-CH ₃ - 2HC1	'H-NNR (CDC1 ₃)
119	CH3CH3CH3CH3-CH3-CH3-CH3-CH3-CH3-CH3-CH3	**H-NMR (CDC13) か: 1.77(3H, s), 1.0 ~2.1(9H, m), 2.32(3H, s), 2.6 ~2.9(2H, m), 3.40(2H, s), 3.63(2H, m), 6.7~ 7.3(9H, m) 分子式; C22H33N3O3・HCI
120	CH ₃ CNCH ₃ CH ₂ N-CH ₂ HC1	'H-NNR(CDCl ₃) が; 1.85(3H.s). 1.1 ~2.2(9H.m). 2.6~3.0(2H.m). 3.42(2H.s). 3.60(2H.m). 3.75(6H.s). 6.20(2H.d). d). 6.35(1H.m). 7.18(5H.s) 分子式; C ₂₄ H ₂₂ N ₂ O ₃ ・HCl

表 7 (続き)

実施例	裸 造 式	物 理 化 学 恒 数 (融点、元素分析値、NMR など)
121	N CNCH ₂ CH ₂ - N-CH ₂ - 2HC1	'H-NNR (CDC1 ₃) よ: 1 1 ~2.1 (9H.m), 2.6~3.0 (2H.m), 3.50 (2H.s), 3.83 (2H.m), 6.58 (4H.dd), 7.04 (2H.d), 7.19 (5H.s), 8.28 (2H.d)
122	N CHOCH a CH a - CH a - CH a - 2HC1	'H-NNR(CDC1 ₂) が: 1.07~2.35(9H,m), 2.99(2H,bd), 3.62(2H,s), 3.81(2H,bt), 6.31~6.56(3H,m), 6.84~7.11 (3H,m), 7.25(5H,s), 8.31(2H,bs)
123	N ChcHaCHa N-CHa 2HC1	'H-NMR (CDC1 ₃) ð; 1.1 ~2.19H, m). 2.6~3.0 (2H, m). 3,44 (2H, s). 3.68 (3H, m). 3.85 (2H, m). 6.78 (4H, dd). 7.02 (2H, d). 7.23 (5H, s). 8.37 (2H, d) 分子式; C ₂₇ H ₃₁ N ₃ O ₂ ·2HCl
124	NCH _a CH _a N-CH _a 2HC1	'H-NMR (CDC1 ₃) ð; 7.20(114.m). 8.05(1H.m). 1,2~1.83(9H.m). 2.55~2.81(2H.d). 3.4(2H.s). 3.90(2H.m). 6.20~6.52(2H.m) 分子式;C ₂₃ H ₂₃ N ₃ ·2HC1

		· · · · · · · · · · · · · · · · · · ·
実施例	梯 造 式	物 理 化 学 恒 数 (触点、元素分析値、NMR など)
125	CH ₃ -CH ₂ -CH ₂ -CH ₂ -CH-CH-CH -CH ₃ -CH ₃ -CH-CH ₃ -CH-CH-CH-CH	'H-NNR (CDC1,) 8; 0.80~2.12(12H, m). 2.52 ~3.64(8H, m). 7.06~ 7.52(10H, m)
126	H ₃ N - C-N-CH ₂ CH ₃ - N-CH ₂ - 2HC1 CH ₃	「H-NMR (CDCI」) お; 1,08~2,10(9H,m), 2,80~2,92(2H,d), 3,00(3H,s), 3,34~3,50(4H,m), 3,90(2H,s), 6,60(2H,d), 7,21~7,28(7H,m) 分子式; C22H23N3O・2HC1
127	CH ₃ CH ₃ CH ₃ · HC1	H-NMR (CDC1 ₃)
128	O NO. HCI	'H-NMR(CDC13) ま; 1.0~2.2(9H,m), 2.7~3.0(2H,m), 3.29(2H,m), 3.50(2H,s), 3.81(2H,s), 5.8(1H,s), 7.25(5H, s), 7.3~7.7(3H,m), 8.03(1H,d) 分子式; C ₂₂ H ₂₇ N ₃ O ₃ ·HC1
129	(H) - C-N-CH₂CH₂ - N-CH₂ - HCI	'H-NMR (CDC1 ₃) ð; (フリー体) 1,10~2,06(17H,m),2,10~2,32(3H,m),2,96 (3H,s),3,20~3,52(4H,m),4,08~4,16(2H,d), 7,36~7,76(5H,m) 分子式;C ₂₃ H ₂₄ N ₂ O・HC1
130	CH ₂ C-N-CH ₂ CH ₂ N-CH ₂ N	'H-NUR (CDC13)

実施例	禄 造 式	物 理 化 学 恒 数 (融点、元素分析館、MMR など)
131	O - N - CH 2 CH 2 - ← N - CH 2 CH - ← CH - ← HC1	1H-NMR (CDC1,) 5; 1.02~2.06 (9H, m), 2.71~3.57 (9H, m), 6.16~ 6.54 (2H, m), 7.10~7.55 (10H, m)
	ĊH ₃	分子式;C24H2cN2O・HC1
132	O - OCNHCH3 - N-CH3 - NC1	'H-NMR (CDC1 ₃) & ; 1.1 ~2.1 (7H.m), 2.8~3.05(2H.m), 3.05~3.15 (2H.m), 3.49(2H,s), 5.1 (1H.), 7.0 ~7.5 (10H.m)
<u> </u>		分子式;C20H24N2O2・HC1
133	O N - CH2 CH2 - N - CH2 CH2 - HC1	'H-NMR (CDC1 ₃) & ; 1.00~3.08(20H.m), 7.22(5H.bs), 7.37(5H,s)
	ĊH₃	分子式: CasHacNaO・HCI
134	O HC1	'H-NMR (CDC1 ₃)· 8 ; 1.30~2.24(9H, m). 2.86(2H, bd). 3.32 ~3.60 (4H, m). 6.08~6.28(2H, m). 7.20~8.02(6H, m)
	HH	分子式: C19H24N2O2・HC1
135	0 — 0COCH₂ — N-CH₂ — · HC1	'H-NMR (CDC1 ₃) &; 1.1 ~2.2 (9H.m), 2.8~3.1(2H.m), 3.50(4H.s), 7.30(10H,s)
	·	分子式;C20H23NO3·HCl
136	CH3O	1 H-MMR (CDC1.) 3; (7 y -) 1, 20~2, 16 (9H, m), 2, 64~3, 0 (2H, bd), 3, 46 (2H, s), 3, 36~3, 60 (2H, m), 3, 80 (6H, s), 5, 60 (1H, bs), 6, 50 ~6, 60 (2H, d), 7, 16~7, 40 (6H, m)
	OCH,	分子式:C23H30N2O3・HC1

表 8 (統 き)

		~
実施例	横 造 式	物 理 化 学 恒 数 (融点、元素分析値、NAR など)
137	HO	'H-NMR (CDC1 ₃) き; (フリー(本) 1,12〜2.16 (9H, m), 2,76〜3.0 (2H, bd), 3,48 (2H, s), 3,32〜3,60 (2H, m), 3,92 (3H, s), 6,32〜7,40 (8H, m), 8,26 (1H, bs), 14,0 (1H, s)
	OCH.	分子式;C22H2eN2O3・HCl
138	OCNHCH 2 CH 2 - CH 2 - HC1	'H-NMR (COC1 3) δ; 1.1 ~2.2 (9H, m). 2.7~3.0 (2H, m). 3.1~3.4 (2H, m). 3.46 (2H, s), 4.90 (1H). 6.9 ~7.4 (10H, m)
<u> </u>		分子式;C2,H2eN2O2・HC1
139	CH 2 CNHCH 2 CH 2 - N-CH 3 - HC1	'H-NMR(CDC1 ₃) ð; 1.1 ~2.2(9H,m), 2.7~3.0(4H,m), 3.1~3.6 (2H,m), 3.55(2H,s), 5.5(1H), 7.30(1OH,s) 分子式; C ₂₃ H ₂₈ N ₂ O・HC1
140	CH = CHCNHCH ₂ CH ₂ - N-CH ₃ - HC1	'H-NMR(CDCl ₃) <i>る</i> ; 1.1 ~2.2(9H,m). 2.7~3.0(2H,m). 3.2~3.4 (2H,m), 3.40(2H,s). 5.9(1H). 6.39(1H,d), 7.1 ~7.8(11H,m) 分子式: C ₂₂ H ₂₈ N ₂ O·HC1
141	OCH ₃ CNHCH ₂ CH ₂ - N-CH ₃ - HC1	'H-NMR (CDC1 ₃) ま: (フリー体) 1, 1 ~2 2(9H, m), 2,6~3,0(2H, bd), 3,44(2H, s), 3,36~3,6(2H, m), 3,90(3H, s), 6,9~8,30 (10H, m) 分子式; C ₂ 2H ₂ 8N ₂ O ₂ ·HC1

表 8 (統 き)

		· · · · · · · · · · · · · · · · · · ·
実施例	. 構 造 式	物 理 化 学 恒 数 (融点、元素分析値、NMR など)
142	CH3CH3CH4CH3CH3- N-CH3 HC1	'H-NHR (CDC1,) &: 1,1 ~2.2(9H,m), 2.3~2.7(4H,m), 2.7~3.0 (2H,m), 3.0 ~3.5(4H,m), 6.1(1H), 7.0 ~7.7 (10H,m)
L		分子式:CaallaoNaO・HCl
143	CH3CH2CH2CH2	'H-NMR (CDC1 ₃) & : 1. 17 (3H, t), 1. 2 ~ 2. 1 (9H, m), 2. 17 (2H, q), 2. 7 ~ 3. 0 (2H, m), 3. 1 ~ 3. 4 (2H, m), 3. 45 (2H, s), 5. 3 (1H), 7. 21 (5H, s)
1 1		分子式;C:+H2:N2O·HC1
144	CHCNHCH2CH3-N-CH2- · HC1	'H-NAR (CDC1,) &: 1.1 ~2.0 (12H, m), 2.6 ~3.0 (2H, m), 3.0~3.3 (2H, m), 3.41 (2H, s), 3.3 ~3.4 (1H, m), 7.23 (10H, s)
	•	分子式;CzzHzoNzO・HC1
145	0 	'H-NNR (CDC1 ₁) & ; 0.90~2.10 (9H.m), 2.78 (2H, bd), 3.00 ~3.70 (2H.m), 3.43 (2H.s), 4.40~4.85 (2H.m), 7.27 (10H,s), 7.38 (5H.s)
1	CH ₂ -(_)	分子式;C2eH32N2O·HC1
146	COCH, CH, -CH, -C	'H-NMR (CDC1 ₃) σ : 1. 0 — 2. 1 (9H, m). 2. 7—3. 0 (2H, m). 3. 48 (2H, s). 4. 36 (2H, t). 7. 0 — 7. 7 (8H, m). 7. 8—8. 2 (2H, m)
		分子式;C ₂₁ H ₂₅ NO ₂

•	
•	

実施例	構造、式	物 理 化 学 恒 数 (融点、元素分析値、MMR など)
147	0 C-N-CH ₃ CH ₃	'H-NMR(CDC1,) &; 0,86~1.90(9H,m). 2.56~3.05(4H,m). 3.38(2H,d). 4.56(1H,s). 4.68(1H,s). 7.00~7.56(12H,m). 8.10(2H,m)
	02N	分子式:CaeHaiNaOa·HCl
148	$CH_2 = CHCNHCH_2CH_2 - N-CH_2 - HC1$	H-NMR (CDC1 ₃)
<u> </u>		分子式:C17H24N2O・HC1
149	C-N-CH ₂ CH ₃ -C-O	¹H-NMR(CDC1₃) &; 1.00~4.08(16H, m), 7.38(10H, s)
		分子式:C22H2eN2O2
150	O C-N-CH ₂ CH ₂ -\land N-CH ₂ -\land NO ₂ · HC1	'H-NMR(CDC1 ₃) δ; 0,90~2.10(9H, m), 2.55~3.50(7H, m), 3.52(2H, s), 7.38(5H, s), 7.80(4H, ABq)
		分子式:CzzHzzNzOs・HCI
151	CH ₃ CH ₃ CH ₃ CH ₃	'H-NMR(CDC1 ₃) & ; 0.96~2.08(3H, m), 2.60~3.10(6H, m), 3.48(2H, d), 7.16~7.92(14H, m)

実施例	棉 造 式	物 理 化 学 恒 数 (融点、元素分析値、NMR など)
152	CNHCH3CH2 - N-CH2 - N-CH2 - HC1	'H-NNR (CDCl ₂) δ; 0.80~2.04 (9H, m), 2.48~2.88 (2H, m), 3.12~ 3.52 (4H, m), 7.03~7.72 (14H, m)
153	CH. CH. CH. CH. CH. CH.	'H-NWR (CDCl ₃)
154	O CH2-CH2-CH2-CH2-CH3	'H-NMR(CDC1 ₂)
155	CNCH ₂ CH ₃ — N-CH ₃ — CH ₃	'H-NNR(CDC1 ₃)
156	CNCH ₂ CH ₂ - N-CH ₂ - NC1 CH ₃ CH ₃	融点(で);216~217 (分解) 元素分析値(C ₂₂ H ₂₇ N ₂ G ₃ ・HC1 として) 理論値(%) 63.23 6.75 10.05 実測値(%) 62.95 6.69 9.88

		(1 1-2
実施例	福 造 式	物理化学恒数
大相切		(融点、元素分析値、NMR など)
157	O CNCH ₂ CH ₃ -CN ₂ -CC CH ₃ · HCI CH ₃ · HCI	1H-NUR (CDCl ₃) & : 0,82 (9H, s), 1,02~2.28 (9H, m), 2.60~3.60 (9H, m), 7,28 (5H, s)
	Ln;	分子式;CzoHazNzO·HCl
158	O CNHCH₃CH₃ - N-CH₂-C = CH₃ CH₃ CH₃	'H-NMR (CDC1 3) 8; 0.85 (9H, s). 1.12~2.28 (9H, m). 2.76 (2H, bd), 3.42 (2H, q). 7.38 (3H, m), 7.67 (2H, dd)
		分子式;CisHaoNaO·HC1
159	CH3 HC1	'H-NMR(CDCl ₃) る; 1.0 ~2.2(9H, m), 1.6~2.1(5H, m), 2.2~2.6 (4H, m), 6.8 ~7.7(9H, m)
		'H-NMR (CDCl ₂) 8;
160	CH ₂ -CH ₃ -	1,00~2.05(9H,m), 2.08.2.12(total 3H, each s), 2.82(2H, bd), 3.03 ~3.43(2H,m), 3.44(2H, s), 4.47.4.56(total 3H, each s), 7.35(10H, s)
		分子式;C23H30N2O・HCI
161	CH ₂ CH ₂ CH ₂ -CH	'H-NMR (CDC1 ₃) &: 1.00~2.08 (9H.m), 2.78 (2H.bd), 2.88 (3H.s), 3.10~3.45 (2H.m), 3.43 (2H.s), 3.57 (2H.s), 7.22 (10H.s)
		分子式;C2aH3aNaO·HCl

実施例	棉 造 式	物 理 化 学 恒 改 (融点、元素分析値、NMR など)
162	CH3CNCH3CH3- N-CH3- HC1	1H-NMR (CDC1 ₃) 8; 1.00~2.00(9H, m), 2.03(3H, s), 2.80(2H, bd), 2.88,2.91(total 3H, each s), 3.05 ~3.40(2H, m), 3.43(3H, s), 7.20(5H, s)
	CH ₃	分子式;C ₁ ¬H ₂ sN ₂ O·HCl
163	CH = CHCNCH ₂ CH ₂ - N-CH ₂ - HC1	'H-NMR (CDC1 ₃) δ; 1.1 ~2.2 (9H, m). 2.6~3.2 (5H, m). 3.2~3.6 (4H, m). 6.8 ~7.1 (1H, m). 7.3 (5H, s). 7.5 ~ 7.8 (3H, m). 8.24 (2H, d)
	CH ₂	分子式;CzeHzeNsOs·HCl
164	CNCH ₂ CH ₂ -CN-CH ₂ HC1	'H-NMR(CDC1 ₃) る: 1.00~2.08(10H, m). 2.72 ~3.08(5H, m). 3.33 (2H, bd). 6.16(1H, bs). 7.07(7H, bs)
165	CH ₃ CH ₃ CH ₃ -CH	'H-NMR(CDCI ₃)
		LU_NND (CDC1) & .
166	CNCH ₂ CH ₂ -CN ₃ -CH ₃ -CH ₃ -2HC1	1,00~2,02(9H,m), 2,64~3,00(5H,m), 3,41(4H,m), 7,15(1H,m), 7,27(5H,s), 7,50(1H,d), 8,41 (2H,m)
		分子式;CaiHanNaO·2HCl

実施例	梅 造 式	物 理 化 学 恒 数 (融点、元素分析値、NMR など)
167	CNCH ₂ CH ₂ - N-CH ₂ - 2HC1	'H-NMR (CDC1 ₃) δ; 1.04~1.04(11H, m). 2.64~3.00(5H, m). 3.58 (2H, s). 7.01(1H, m). 7.27(5H, s). 7.58(2H, m). 8.44(1H, d)
		分子式: CaiHaaNaO・2HCl
168	CH3CNHCH3CH3 - N-CH3 - HC1	'H-NMR (CDC1 ₃)
1	02N	分子式;CaaHarNaOa·HCl
169	O II CNCH a CH	'H-NMR (CDC1 ₃) &; 1.0 ~2.1 (9H, m). 2.6~3.2 (5H, m). 3.2~3.7 (4H, m). 7.25 (5H, s). 7.3 ~8.1 (7H, m)
		分子式;C2sH3oN2D·HCl
170	CH ₃ COO CH ₃	「H-NMR (CDC1。) <i>る</i> ; 1.00~2.10 (9H.m), 2.25 (3H.s), 2.81 (2H.bd), 2.97 (3H.bs), 3.10~3.45 (2H.m), 3.43 (2H.s), 7.23 (4H.ABq), 7.27 (5H.s) 分子式; C ₂₄ H ₂₉ N ₂ O ₃ ・HC1
	n	
171	CNCH3CH3-CN-CH3-ON · 2HCI	1H-NMR (CDC1.) 8; 1.06~1.92(9H.m), 2.70~2.99(5H.m), 3,44(2H. s), 7.22(2H.d), 7.38(5H.s), 8.50(2H.d)
		分子式;Ca,HanNaO·2HC1

表 8 (統 き)

実施例	構 造 式	物理 化 学 恒 数 (融点、元素分析値、NUR など)
172	CH 3 CH 3 - N-CH 3 - HCI	'H-NMR(CDC1 ₂) ま; 0.90~1.05(9H.m), 2.70(3H.s), 3.00(2H.d), 3.22(2H.s), 3.37(1H.s), 3.46(1H.s), 7.18~ 7.60(9H.m), 7.78(3H.m)
173	O N CHHCH 2 CH 3 - N - CH 3 - H	'H-NMR(CDC13) &; 0.7~2.2(20H, m), 2.8~3.2(4H,), 3.55(2H, m), 6.95(1H, s), 8.02(2H, d), 8.34(2H, d) 分子式; C ₂ ,H ₃ ,N ₃ O ₃
174	CH3 CH3 CH3 CH3 CH3 CH3 CH3 CH3	'H-NMR(CDCl ₃) よ; 1.1 ~2.1(12H.m). 2.7 ~3.1(5H.m). 3.2~3.6 (4H.m). 4.22(2H.q). 6.7(1H.m). 7.2~7.4(6H. m) 分子式; C _{3.1} H ₃₀ N ₃ O ₃ ・HCl
. 175	CH ₂ SO ₂ - CNCH ₂ CH ₂ - N-CH ₃ H · HC1	'H-NNR (CDC1.) 8; 0.56~3.36(23H.m), 3.40 ~3.68(2H.m), 4.28 (2H.s), 7.18(5H.s), 8.34(2H.d), 8.58(2H.d)
176	N-CH ₂ CH ₂ -\land N-CH ₂ -\land HC1	'H-NMR (CDC1 ₃) 8: 1.16~2.12(9H,m), 2.89(2H,bd), 3.47(2H,s), 4.35(2H,bt), 7.08 ~7.74(11H,m), 8.08(1H,bd), 8.23(1H,dd)

実施例	掃 造 式	物 理 化 学 恒 数 (融点、元素分析値、NBR など)
177	CH2 - N-CH2 - HC1	H-NWR (CDC1.) 8; 1,08~1.94(9H,m), 2.68~3,02(7H,m), 3.40(2H,d), 7.27(5H,s), 7.41(2H,d), 7.78(2H,d), 10.0 (1H,s)
	CHO	分子式;C23H2aN2O2・HCl
178	CH ₂ CH ₂ CH ₂ CH ₂ - N-CH ₂ · HC1	1H-NUR (CDC1 ₃) & ; 1.10—1.98 (15H. m), 2.77 —2.98 (6H. m), 3.12— 3.46 (4H. m), 7.26 (9H. m)
1	CH ₃ CH	分子式; CasHaaNaO·HCl
179	CNCH2CH2-N-CN-N-CH2-N-CN-N-CH2-N-CN-N-CH2-N-CN-N-CH2-N-CN-N-CH2-N-CN-N-CH2-N-CN-N-CH2-N-CN-N-CN	*H-NMR(CDC1a) &; 1.00~2.00(9H.m), 2.60~3.00(7H,m), 3.45(2H,m), 6.95(2H.d), 7.26(5H.s), 7.90(2H.d)
180	CNCH ₂ CH ₂ - N-CH ₂ - HC1	"H-NMR(CDC1 ₃) る: 1.00~2.10(3H,m), 2.87(2H,bd), 2.99(3H,s), 3.10~3.50(2H,m), 3.48(3H,s), 6.35~7,35(5H,m), 7.83(5H,s)
181	CNCH ₂ CH ₂ -\N-CH ₂ -\N-CH ₂ -\N-CH ₃	'H-NMR (CDCl ₃) &: 1.10~1.88(12H,m), 2.80(2H,d), 2.98(3H,s), 3.23~3.44(4H,m), 4.02(2H,m), 6.84(2H,d), 7.26(7H,m) 分子式; C ₂₄ H ₂₂ N ₂ O ₂ - HCl

実施例	棒 造 式	物 理 化 学 恒 数 (融点、元素分析値、NMR など)
182	N	'H-NNR (CDC13) &; 1.00~2.08 (9H, m), 2.83 (2H, bd), 2.98 (3H, s), 3.12~3.50 (2H, m), 3.47 (2H, s), 5.08 (2H, s), 7.15 (4H, ABq), 7.38 (5H, s), 7.96 (2H, ABq)
183	N → CNCH, CH, - N - N - HCL	'H-NMR(CDC13) <i>ま</i> ; 1.04〜1.98(7H, m), 2.20〜3.80(7H, m), 6.60〜 7.34(7H, m), 8.67(2H, d)
184	CH3OC - CNCH3CH3- N-CH3- HC1	"H-NMR (CDC1 ₃) る; 0.90~2.20(11H, m), 2.60 ~3.30(2H, m), 2.85, 3.03(total 3H, each bs), 3.48, 3.55(total 2H, each bs), 3.88(3H, s), 7.19, 7.21(total 5H, each s), 7.67(4H, ABq)
185	CH3CH2OCH2 - CNCH2CH2 - N-CH2 - HC1	'H-NMR (CDC1 ₂) る; 0.90~2.06(9H, s), 2.70~3.02(10H, m), 3.20~ 3.62(4H, m), 4.50(2H, s), 7.21~7.30(9H, d) 分子式; C25H24N2O2・HC1

実施例	網 造 式	物 理 化 学 恒 数 (融点、元素分析値、NMR など)
186	CH ₂ CH ₂ — N-CH ₂ — HC1	'H-NNR(CDC13) &; 0.90~2.10(9H,m), 2.81(2H,bd), 3.45(2H,s), 4.11(2H,t), 6.98~7.82(8H,m), 7.21(5H,s)
187	CH3 CH-0 - CNCH3CH3 - N-CH3 - HC1	分子式; C₂,H₂eN₂O₂・HC1 'H-NMR (CDC1₂) が; 1. 29 (3H, s), 1, 40 (3H, s), 1, 40 ~ 2, 20 (9H, m), 2. 83 (2H, bd), 3, 00 (3H, s), 3, 20 ~ 3, 50 (2H, m), 3. 48 (2H, s), 4. 56 (1H, quirtet), 7, 08 (4H, ABq), 7. 28 (5H, s) 分子式: C₂,H₂,N₂O₂・HC1

表 9

実施例	横 造 式	物 理 化 学 恒 数 (融点、元素分析値、NMR など)
188	СН,0 СН, -СН, -СН, -СН, -СН, -СН, -СН, -СН,	'H-NMR (CDC1 ₃) δ; 1.00~3.40(14H.m). 3.47(2H.s). 3.78(3H.s). 6.90~7.50(3H.m), 7.23(5H.s)
		分子式;C23H27NO3・HC1
189	CH2 - CH2 - CH2 · HC1	'H-NMR (CDC1.) &; 1.05~2.12(9H.m), 2.50~3.40(5H.m), 3.48 (2H.s), 3.88(3H.s), 6.98(1H.q), 7.15~7.32 (2H.m), 7.23(5H.s)
	CH₃O	分子式;C23H27NO2·HC1
	CH ₂ O CH ₂ - HC1	融点(で);199~200 (分解)
190		元素分析値(CasHaseNOa・HCI として)
		C H N 理論館(%) 69.30 7.27 3.37 実測値(%) 69.24 7.40 3.38
	CH=O O	融点(で);198~199
191	CH ³ O CH ³	元素分析値(C24H2eNO2・HC1 として)
		C H N 理論質(%) 69.30 7.27 3.37 実測値(%) 69.15 7.42 3.47
	CH-0 CH-CH-CH-CH-CH-CH-CH-CH-CH-CH-CH-CH-CH-C	触点(で);200~201
192		元素分析値(CasHaiNO4・HC1 として)
		C H N T T T T T T T T T T T T T T T T T T

-

実施例	樽 造 式	物 理 化 学 恒 数 (融点、元素分析値、NMR など)
193	F N-CH ₂ HC1	*H-NNR (CDC1.) & ; 1. 05~2. 15 (9H. m), 2. 55~3. 43 (5H. m), 3. 48 (2H, s), 7. 23 (5H. s), 7. 23~7. 43 (3H. m)
		分子式;C22H24NOF·HC1
194	СН,СН, НС1	触点(で):175~177 元素分析値(Cz=Hz-NO・HC1 として) 理論値(%) 74.68 7.63 3.79 実測値(%) 72.77 7.64 3.62 以Hz0 (%) 72.90 7.71 3.70
195	CH ₃ -CH ₃ -CN ₃ -CH ₃ · HC1	触点 (で) : 211~213 (分解) 元素分析値(C₂₃H₂₃N0・HC1 として) 理論値(%) 74.68 7.63 3.79 実測値(%) 72.68 7.49 3.70 //H₂0 (%) 72.90 7.71 3.70
196	CH = 0 CH = -CH = -CH = -CH	融点(で);153~154 元集分析値(CaaHanNOaとして)
. 197	CH ₉ 0 CH ₉ -CH ₉ -CH ₉	融点(で);170~171 (分解) 元衆分析値(C23H27NO2として) C H N 理論値(%) 75.59 7.45 3.83 実測値(%) 75.61 7.47 3.55

表 9 (統 き)

実施例	構 造 式	物 理 化 学 恒 数 (触点、元素分析値、NMR など)
 		敵点 (で) :175~176
	CH ₂ CH ₂ O CH ₂ - N-CH ₂ - HC1	元来分析値(CaeHaaNOa・HCI として)
198		理論値(%) 70.33 7.72 3.15 実別値(%) 70.20 7.46 3.35
		融点 (で) ;236~237 (分解)
100	CH ₂ - CH ₂ - HC1	元素分析値(C23H35ND3・HC1 として)
199		理論値(%) 69.08 6.55 3.50 実測値(%) 68.97 6.82 3.29
F		融点(で);195~196
200	CH ₂ -CH ₂ -CH ₂ HCI	元李分析道(C23H27NO・HC1 として)
		で H N 理論値(名) 74.68 7.63 3.79 実現値(名) 72.72 7.17 3.78
	CH ₂ — H-CH ₂ — HC1	'H-NNR (CDC1 ₂) & ; 1.10~2.10 (13H, m), 2.60 ~3.08 (5H, m), 3.41 (2H, s), 7.00~7.85 (4H, m), 7.19 (5H, s)
201		(2n, 57, 1, 00 1, 00 (4n, w), 1, 15 (5n, 5)
		分子式:C24H29NO・HC1
	CH ₂ -CH ₂ -CH ₂ - HC1	'H-NMR (CDC1 ₃) 8:
202		'H-NNR (CDC1 ₃) δ : 1.17 (3H, d), 1.12 \sim 2.10 (9H, m), 2.50 \sim 2.93 (2H, m), 3.41 (2H, s), 3.51 (1H, q), 7.20 (5H, s), 7.30 \sim 7.92 (5H, m)
		分子式;C₂₂H₂₁NO·HC1

$\overline{}$,
実施例	構造式	物 理 化 学 恒 数 (数点、元素分析値、NMR など)
		融点 (で) ; 126~127
203	CH ₃ O . HC1	元素分析値(CasHaaNOa・HCI として)
	CH ₃ CH ₃	で H N 理論値(X) 70.33 7.72 3.15 実測値(X) 70.41 7.48 2.85
204	CH ₃ O CH ₂ CH ₂ CH ₂ CH ₂ CH ₂ V-CH ₃ · HCI	H-NMR (CDC1,) δ; 1.00~3.40(20H, m), 3.50(2H, s), 3.90(3H, s), 3.97(3H, s), 6.88(1H, s), 7.18(1H, s), 7.31 (5H, s)
	CH30	分子式;C₂¬H₃sNO₃・HCI
205	CH30 CH3CH3CH3CH3CH2CH3 - N-CH2 - HC1	'H-NMR(CDC1 ₃) & ; 1.05-3.36(22H, m), 3.45(2H, s), 3.85(3H, s), 3.90(3H, s), 6.78(1H, s), 7.08(1H, s), 7.21 (5H, s)
	CH3U	分子式;C2eH37NOs·HC1
206	CH = 0 - CH =	'H-NWR (CDC1 ₃) Ø: 1.10~2.50 (7H, m), 2.70~3.02 (2H, m), 3.48 (2H, s), 3.56 (2H, s), 3.79 (3H, s), 5.69 (1H, dt), 7.02~7.50 (3H, m), 7.21 (5H, m)
		分子式:C₂sH₂sNO₂·HCl
207	СН - СИ-СНа - СИ · НС1	'H-NMR (CDC1) Ø; 1.50~3.57 (17H, m), 3.48, 3.50 (total 2H, each s), 3.83, 3.85 (total 3H, each s), 6.57 ~7.39 (4H, m), 7.22 (5H, m)
	CH³O	分子式;C₂₃H₂₅MO₂・HCl

表 9 (統 き)

		物理化学恒数
実施例	横造式	(融点、元素分析値、NMR など)
208	CH³O CH³O CH³O CH³O CH°O CH°O CH°O CH°O CH°O CH°O CH°O CH°	'H-NMR(CDCI ₂)
209	CH = CH = CH = - HC1	'H-NMR(CDCl ₃) &; 1.50~2.55(7H.m). 2.78~3.03(2H.m). 3.48 (2H.s). 3.56(2H.d). 3.85(3H.s). 4.00(3H.s). 6.62(1H.dt). 7.07(1H.d). 7.21(1H.d). 7.22 (5H.s) 分子式: C ₂ H ₂ NO ₂ ·HCl
210	CH = 0 0 CH = CH = -CH =	「H-NMR (CDCl ₃) で; 1.50~2.50(7H,m), 2.78~3.03(2H,m), 3.48 (2H,s), 3.53(2H,d), 3.82(3H,s), 3.90(3H,s), 4.03(3H,s), 6.58(1H,dt), 6.61(1H,s), 7.25 (5H,s) 分子式; C ₂₈ H ₂₈ NO ₄ ・HC1
211	F CH - CH - CH - CH - HC1	'H-NMR(CDC1 ₂) &; 1.52-2.55(7H,m). 2.78~3.02(2H,m). 3.50 (2H,s). 3.59(2H,s). 6.72(1H,dt). 7.05~7.55 (3H,m). 7.22(5H,s) 分子式; C ₂₂ H ₂₂ NOF·HC1
212	CH. O - CH CH HCI	**H-NMR(COC1。) ð; 1.50~2.55(7H.㎡)、2.38(3H.s)、2.78~3.02 (2H.㎡)、3.48(2H.s)、3.57(2H.s)、6.66(1H.dt)、 7.38~7.60(3H.㎡)、7.21(5H.s)

•	-			•
	4			
- 4			•	
•			,	
	•	_		

実施例	福 选 式	物 理 化 学 恒 数 (触点、元素分析値、NAR など)
213	CH. CHCH HC1	'H-NWR(CDC1)
	Un ₃	融点 (t) :174~175
214	CH ₃ 0	元果分析値(C₂₃H₃₅ND₅として)
5,		C H N 理論値(X) 69.08 6.55 3.50 実測値(X) 69.12 6.41 3.43
	CH30 CH3CH - CH3 - CH3	触点 (で) :175~176
215		元素分析値(CaoHauNDaとして)
215		C H N 理論値(%) 79.44 6.89 3.09 実測値(%) 79.04 6.87 2.77
		融点 (で) ;180~181
216	CH ₃ CH ₃ O CH ₃ CH - N-CH ₃ - HC1	元素分析館(CasHaiNDa・HCI として)
210		C H N 理論値(%) 70.65 7.30 3.17 実測値(%) 70.34 7.05 3.07
217	0 Сн - Сн, -Сн, -Сн, -Сн, -Ст	融点 (で) ;228~230 (分解)
		元素分析値(CasHasNDs・HC1 として) C H N
		理論館(%) 69 43 6 08 3 52 実別値(%) 67 89 5 97 3 45 2420 (%) 67 89 6 19 3 44

表 9 (続き)

		<u> </u>
実施例	機 造 式	物 理 化 学 恒 数 (触点、元衆分析値、NMR など)
218	CH - CH 2 - HC1	'H-NNR(CDC1,) が; 2,48~3.02(13H,m), 3,48(2H,s), 6.73(1H,dt), 7.10~8.10(4H,m), 7.22(5H,s)
		融点 (t) ; 211~213 (分解)
	0, _CH -\ N-CH2 -\	元素分析値(Ca, Ha, NO・HC1 として)
219	· HCI	理論値(X) 75.47 7.39 3.67 実測値(X) 75.22 7.41 3.57
220	CH- CH- CH- CH HC1	'H-NNR(CDC1 ₂) ð; 1.20~2.60(7H.m). 1.96(3H.d). 2.70~2.97 (2H.m). 3.46(3H.s). 6.07(1H.dd). 7.21(5H.s). 7.21~7.61(5H.m) 分子式:C ₂₂ H ₂₅ NO·HC1
		放点 (で) ; 170~171
221	CH ₃ D CH - CH ₃ - CH	元素分析値(CaeHa, NDaとして) - で
222	CH ₃ O CHCH ₂ CH ₂ CH ₂ CH ₂ - N-CH ₂ - HCI	'H-NMR(CDCl ₃) &; 1.10~2.40(13H.m), 2.70 ~3.00(2H.m), 3.45 (2H.s), 3.48(2H.s), 3.86(3H.s), 3.91(3H.s), 6.68(1H,tt), 6.80(1H.s), 7.20(6H.s)
		分子式; Ca+HaaNOa・HCl

7 64-79151 (5 4

実施例	構 造 式	物 理 化 学 恒 数 (融点、元素分析値、NMR など)
223	CH30 CH3CH3CH3CH3 - N-CH2 - HCI	'H-NMR (CDC1 ₃) δ : 1.10~2.40 (15H, m), 2.68 ~3.00 (2H, m), 3.46 (2H, s), 3.50 (2H, s), 3.88 (3H, s), 3.93 (3H, s), 6.68 (1H, tt), 6.83 (1H, s), 7.19 (1H, s), 7.21 (5H, s)
		分子式;CaeHasNOa・HCI
	n	融点 (で) :130~135
224	CH30 CH-CH-CH-CH-CH-CH3 - HC1	元素分析値(CaeHasNOs・HC1 として)
224		で H N 理論値(%) 70.98 6.87 3.18 実測値(%) 70.81 6.72 3.10
225	CH ₃ O CH ₂ -N CH ₂ - CH ₂ - HC1	'H-NMR (CDC1 ₃)
	Ch ₃ U	分子式; C24H29NO9·HC1
226	CH ₂ O CH ₂ -CH	融点(で);186~188 (分解) "H-NMR(CDC1 ₃) が; 1.65~2.10(7H,m), 2.65~2.75(2H,m), 3.25~ 3.83(5H,m), 3.92(3H,s), 3.98(3H,s), 4.60 (2H,s), 6.88(1H,s), 7.19(1H,s), 7.26~7.60 (5H,m) 分子式; C ₂₄ H ₂₉ NO ₄
227	CH=0 CH3 -CH3 - HC1	融点(て);220~221 元素分析値(CasHa,NOa・HC1 として) C H N N 円 理論値(%) 69.83 7.50 3.26 実別値(%) 70.03 7.51 3.26

		T
実施例	構造式:	物 理 化 学 恒 数 (融点、元素分析値、NUR など)
	CH30 CH3 CH3 - HC1	触点(で);212~213
228		元素分析値(C₂sH₃,NO₃・HC1 として)
		C H N 理論値(30) 69.83 7.50 3.26 実測値(30) 69.62 7.38 3.15
		触点 (で) ; 229~230 (分解)
229	CH3O CH3 - CH3 - CH3 · HCI	元素分析値(C2sH3,NO3・HC1 として)
		で H N 理論値(%) 69.83 7.50 3.26 実測値(%) 69.91 7.48 3.28
230	CH ₃ 0 CH ₂ - CH ₂ - NO ₂ · HC1	TH-NMR (CDC1.) 8; 1.00~3.50(14H, m), 3.73(2H, s), 3.86(3H, s), 3.93(3H, s), 6.82(1H, s), 7.12(1H, s), 7.22~ 7.80(4H, m)
		分子式:C24H28N2Os·HCl
]	0 80.	融点(で);210~211
231	CH ₂ O CH ₂ - N-CH ₂ - NC ₁	元素分析値(C24H28N2Os・HC1 として)
		理論值(%) 62.54 6.34 6.08 実測値(%) 62.48 6.34 5.96
232	CH30 CH3 CH3 - CH3 - CH3 · HCI	触点(で):234~236 (分解)
		元素分析値(C24H28N2O5・HC1 として)
		型論値(%) 62.54 6.34 6.08 実測値(%) 62.56 6.25 5.83

実施例	禄 造 式	物 理 化 学 恒 改 (融点、元素分析値、NMR など)
233	CH30 CH2 - N-CH2 OH . HC1	'H-NMR(CDCl ₃) よ; 1.10~3.43(14H,m), 3.52(2H,s), 3.84(3H,s), 3.91(3H,s), 6.35~7.08(7H,m) 分子式; C ₂₄ H ₂₃ NO ₄ ・HCl
234	CH ₃ O CH ₃ - CH ₃ - CH ₃ - OH · HC1	融点(で);146~148 元素分析値(C24H29NO4・HC1 として) C H N 理論値(%) 66.51 7.29 3.53 実測値(%) 66.73 7.00 3.24
235	CH ₃ O — CH ₃ — N-CH ₂ — OCH ₃ . HCI	融点 (で);193~194 元素分析値(C₂₅H₂₁NO₄・HC1 として) C H N 理論値(%) 67.33 7.23 3.14 実測値(%) 67.43 7.22 3.13
236	CH ₃ O CH ₃ - CH ₃ - CH ₃ - OCH ₃ · HCI	融点(t);226~228 (分解) 元素分析値(CasHaiNO4・HC1 として) C. H. N 理論値(%) 67.33 7.23 3.14 実測値(%) 67.21 7.29 2.97
237	CH³O CH³ - CH³ - CH³ - CH³ - CH3 -	*H-NMR(CDC1。) ð; 0.78~3.40(14H,m), 3.46(2H,s), 3.85(3H,s), 3.91(3H,s), 5.01(2H,s), 6.78(1H,s), 6.80~ 7.43(9H,m), 7.09(1H,s)

表 9. (統 き)

実施例	視 造 式	物 理 化 学 恒 数 (融点、元素分析値、NMR など)
	_	融点 (で) ; 224~226 (分解)
	CH ₃ C	元素分析値(CasHaeNaOa・2HC1として)
238	CH ₃ O - CH ₃ - CH ₂ - CH ₂ - CH ₁ O	では、
	Lngu	美の電 (37) 38.72 0.30 3.30 H ₂ 0 (30) 58.60 6.84 5.94
	n	融点(で):253~256 (分解)
239	CH ₃ C, N-CH ₃ CH ₃ - HCI	元素分析値(CasHo, NOo・HCl として)
203	CH ³ 0	C H N 理論信(K) 69 83 7 50 3 26
		理論値(%) 69.83 7.50 3.26 更調値(%) 69.60 7.49 3.27
240	CH ₃ O CH ₃ CH ₂ H HC1	融点(で):225~226 (分解)
		元衆分析値(CaaHasNOs・HC! として)
		で H N 理論値(X) 68.31 8.60 3.32
		理論值(%) 68.31 8.60 3.32 更測值(%) 68.17 8.49 3.51
		融点 (で) : 226~227 (分解)
241	CH =	元桒分析館(C2=H3;NOs・HC1 として)
241	CH30	C H N 理論(数) 72 17 6 92 3 01
	Cn ₃ U	理論值(%) 72.17 6.92 3.01 実調值(%) 71.71 7.07 2.85
		融点 (で) ;243~245 (分解)
242	CH ₂ O · HCI	元素分析館(CasHaiNOa・HCI として)
242	CH-0	で B N T T F N N N N N N N N N N N N N N N N
	Cn ₃ U	理論値(%) 72.17 6.92 3.01 実測値(%) 71.75 6.92 2.01

実施例	横 造 式	物 理 化 学 恒 数 、 (敵点、元素分析値、NYR など)
243	CH30 CH2 - N-CH2 - OCH3 · HC1	敗点 (で) ;191~192 元素分析値(CzeHaaNOs・HC1 として)
	CH30	理論値(%) 65.60 7.20 2.94 実測値(%) 65.34 7.27 2.79
	O OCH ₂	融点(セ):219~221
244	CH ₃ O CH ₃ - CH ₃ - OCH ₃ · HCl	元素分析値(C2+H35NO0・HC1 として) C H N
		理論值(%) 64.09 7.17 2.77 実測值(%) 63.27 7.19 2.51 以H20 (%) 62.96 7.24 2.72
245	CH30 CH3 - NH - HC1	'H-NHR (020) & ; 1.10~3.12(14H.m), 3.84(3H.s), 6.70(1H.s), 6.84(1H.s)
		分子式;C1eH21MO3・HC1
	NO₂ H →	融点(で):182~183
246	CH ₃ O CH ₂ CH ₂ CH ₃	元素分析値(CapitanNaOa として)
		理論値(%) 64.39 5.94 12.51 実測値(%) 64.42 5.78 12.52
247	CH ₃ O ₂ S S	融点 (で) ;240~241 (分解)
		元素分析値(C2eH3aNG2S2・HC1 として)
	CH30 CH3 - N-CH3 - HC1	C H N 理論値(K) 63.46 6.96 2.85 実測値(K) 63.18 6.78 2.80

表 9 (統 き)

実施例	構 造 式	物 理 化 学 恒 数 (融点、元素分析値、NMR など)
248	CH30 H - CH3 - 2HC1	融点(で):180~185 (分解) 元素分析値(C2aH2aN2O3・2HC1として) C H N 理論値(第) 60.73 6.45 6.25 実測値(第) 60.92 6.67 6.18
249	CH ₃ 0 CH -CH ₂ -CH - HC1	融点(で);230~232 (分解) 元素分析値(C25H35N06・HC1 として)

出願人代理人 古 谷

					_			
	第1頁の続き							
	@Int_Cl.4			話	別記号	J	宁内整理番号	
	_	97 D	211 295 401 401 405 405 31 31 31	/94 /10 /06 /12 6/06 6/12 /445 6/495 6/495 6/50 6/55		2 0 9 2 2 3 5 2 2 3 5 2 2 4 1 2 2 1 1 2 2 1 1 A A M		6761-4C 6761-4C 6761-4C 6761-4C 6761-4C 6761-4C 6761-4C 6761-4C 6761-4C 6761-4C 6761-4C 6761-4C 6761-4C
	⑫発	明	者	小	倉	博	雄	茨城県土浦市永国1115-6
	⑦発	明	者	荒	木		伸	茨城県つくば市竹園2-11-6 柏マンション401号
	⑫発	明	者	小	笹	貴	史	茨城県つくば市吾妻 4 -14-5 ヴィラ・エスポワール 206号
	⑫発	明	者	窪	H	篤	彦	茨城県つくば市並木4-15-1 ニユーライフ並木406
,	@発	明	者	小	笹	美智		茨城県つくば市吾妻 4 -14-5 ヴィラ・エスポワール
	976	,	- 144	-	_	- •		· 20 6号
	勿鍫	田田	老	Ш	津	清	實	神奈川県鎌倉市今泉台7-23-7

THIS PAGE BLANK (USPTO)

This Page is Inserted by IFW Indexing and Scanning Operations and is not part of the Official Record

BEST AVAILABLE IMAGES

Defective images within this document are accurate representations of the original documents submitted by the applicant.

Defects in the images include but are not limited to the items checked:

□ BLACK BORDERS
☐ IMAGE CUT OFF AT TOP, BOTTOM OR SIDES
FADED TEXT OR DRAWING
BLURRED OR ILLEGIBLE TEXT OR DRAWING
☐ SKEWED/SLANTED IMAGES
☐ COLOR OR BLACK AND WHITE PHOTOGRAPHS
☐ GRAY SCALE DOCUMENTS
LINES OR MARKS ON ORIGINAL DOCUMENT
\square REFERENCE(S) OR EXHIBIT(S) SUBMITTED ARE POOR QUALITY
□ other:

IMAGES ARE BEST AVAILABLE COPY.

As rescanning these documents will not correct the image problems checked, please do not report these problems to the IFW Image Problem Mailbox.

THIS PAGE BLANK (USPTO)