

J. Christian Andersen

Kursusuge 9

Plan

- Begrænsede systemer
 - Rate limiter
 - Integrator wind up

Grupperegning

Regulator for begrænset system

Multiple choice opgaver på campusnet

DTU Electrical Engineering

Department of Electrical Engineering

Limited systems - step respons

0.005

0.004

0.003

0.002

0.001

 $G_4(s)$

2

 $G_5(s)$

2

G4 = G5ligner 1. orden:

$$G_5(s) \approx \frac{1}{s+1}$$

 $sek^{-\frac{1}{10}}$

6

0.5

0.4

0.3

0.2

0.1

sek 10

Rate-limited system

Samme system!

$$G1 = G2 = G3 = G4 = G5$$

Rate limiter: 0.3/sek

Modellering viser kun sand dynamik ved små signaler (her step < 0.01), og Dynamik domineres af 1

s+1

Rate-limited system Regulator design

Regulator design

$$N_i = 3, \ \alpha = 0.1, \ \gamma_M = 60^\circ$$

$$\varphi_i = -\arctan\frac{1}{N_i} = -18^o$$

$$\varphi_d = \arcsin \frac{1 - \alpha}{1 + \alpha} = 55^{\circ}$$

$$\angle G(\omega_C) = -180 + \gamma_M - \varphi_i - \varphi_d$$

$$\angle G(\omega_C) = -156^{\circ}$$

$$\omega_c = 22 \, \mathrm{rad/sek}$$

10⁻²

Frequency (rad/s)

 10^{1}

100

Bode Diagram

$$\tau_i = \frac{N_i}{\omega_c} = 0.137$$

$$\tau_d = \frac{1}{\omega_c \sqrt{\alpha}} = 0.144$$

10-1

 $K_P = 18.7 \, \text{dB}$

 $K_P = 8.6$

 10^{2}

 10^{3}

Rate-limited system Regulator validering

Er det så fint? Hvad med rate limiter?

Rate-limited system **Regulator validering**

Hvad kan gøres?

- fjern rate limiter
- redesign

Bruges rate limiter? Ja, for at reducere slid.

Rate-limited Regulator re-design

Regulator design

$$N_i = 3, \ \alpha = 0.1, \ \gamma_M = 60^\circ$$

Re-design med

valgt $\omega_c = 4 \, \mathrm{rad/sek}$

$$\tau_i = \frac{N_i}{\omega_c} = 0.75$$

$$\tau_d = \frac{1}{\omega_c \sqrt{\alpha}} = 0.79$$

$$C_i(s) = \frac{\tau_i s + 1}{\tau_i s}$$

$$C_i(s) = \frac{\tau_i s + 1}{\tau_i s}$$
$$C_d(s) = \frac{\tau_d s + 1}{\alpha \tau_d s + 1}$$

$$K_P = 1.9 \, \mathrm{dB}$$

$$K_P = 1.25$$

DTU Electrical Engineering, Technical

28-03-18

Rate-limited re-designed Regulator validering

Begrænsede systemer Kontrolspørgsmål

- a) Er et rate-limited system ulinært?
- b) Hvordan findes overføringsfunktion for rate-limeted system?
- c) Kan en rate-limited system med et stabilt designet regulator være ustabil?
- d) Hvordan designes en stabil regulator til et rate-limited system?

Begrænsede systemer Kontrolspørgsmål

- a) Er et rate-limited system ulinært?

 Ja
- b) Hvordan findes overføringsfunktion for rate-limeted system? Enten ud fra kendskab til systemet (fx Newtons love), eller ud fra målinger med så lav amplitude at rate-limiter er uden betydning.
- c) Kan en rate-limited system med et stabilt designet regulator være ustabil?

 Ja.
- d) Hvordan designes en stabil regulator til et rate-limited system?

 F.eks. ved at vælge en (tilstrækkelig) lav krydsfrekvens
 så "worst case" input og forstyrrelser ikke gør systemet
 ustabilt.

Integrator wind-up

Begrænset styresignal

$$G_C(s) = K_P \frac{\tau_d s + 1}{\alpha \tau_d s + 1} \frac{\tau_i s + 1}{\tau_i s}$$

Systemet er ikke længere lineært!

$$G_1(s) = \frac{178}{0.003s + 1}$$

$$G_2(s) = \frac{1}{s+1}$$

$$H(s) = \frac{1}{0.0009s + 1}$$

En langsom pol (eventuelt integrator) sammenlignet med øvrige poler gør problemet større

Begrænset styresignal Regulator design

$$N_i = 5$$
 $\alpha = 0.1$ $\varphi_i = -11^o$ $\varphi_M = 55^o$ $\gamma_M = 70^o$

$$\angle G(j\omega_C) = -150^o$$

$$\omega_c = 350 \text{ rad/sek}$$

$$\tau_i = \frac{N_i}{\omega_c} = 0.014$$
 $\tau_d = \frac{1}{\omega_c \sqrt{\alpha}} = 0.0091_0^{2}$

$$C_i(s) = \frac{\tau_i s + 1}{\tau_i s} \quad C_d(s) = \frac{\tau_d s + 1}{\alpha \tau_d s + 1} - 45$$

$$K_P = 0.92$$

 10^{0}

 10^{1}

 10^{2}

 10^{-2}

 10^{-1}

Begrænset styresignal

$$r(s) = \frac{5}{s}$$

Problem:

Integrator wind-up

Begrænset styresignal Lag-led

Høj gain er godt for statisk fejl, I-led eller kun Lag

$$C_{i} = \frac{\tau_{i}s + 1}{\tau_{i}s}$$

$$C_{i} = \frac{\tau_{i}s + 1}{\tau_{i}s + 1/\beta}$$

r(s)

Step:

25 V

 $\beta=10\Rightarrow$ faktor 10 mindre stationær fejl (ift. uden I-led)

 $K_P C_d C_i$

DTU Electrical Engineering, Technical University of Denma

H(s)

8

Begrænset styresignal **Forfilter**

$$C_f(s) = \frac{1}{\tau_f s + 1}$$

 τ_f er valgt, ud fra typisk indsvingningstid, her er valgt:

$$\tau_f = 0.07 \text{ sek}$$

Step: 25 V

Indsvingning bliver langsommere, ved små signaler (hvor indsvingning før var 0.005 sek!)

PI-Lead

Begrænset integrator

$\begin{array}{c|c} \hline \frac{1}{s} & \boxed{ } \end{array}$ Simulink

Separat I-led med begrænser

$$\frac{\tau_i s + 1}{\tau_i s} = \frac{1}{\tau_i s} + 1$$

I-led begrænsning kan ofte være det bedste valg

Integrator reduktion

Ved begrænsning reduceres integration

I-led input reduceres med lige så meget som u er begrænset, med en faktor

 K_PC_d

her: $K_a = 2$

(Alternativt kan input til integrator stoppes ved begrænsning)

DTU Electrical Engineering, Technical University of Denmark

 $au_i s$

fremover

- Plan for resten af kurset (lektion og øvelse)
 - 10 Ustabile systemer (*REGBOT balance*)
 - 11 Forstyrrelser, støj, sensitivitet (*REGBOT balance*)
 - 12 Feed forward, delay (REGBOT balance youtube?)
 - 13 Prøveeksamen, digital regulator (*REGBOT rapport*)