Exercice: Nature

Étudier la convergence des séries $\sum u_n$ suivantes :

1.
$$u_n = \frac{n+1}{3^n}$$

2.
$$u_n = \frac{n}{n^3 + 1}$$

2.
$$u_n = \frac{n}{n^3 + 1}$$

3. $u_n = \frac{\sqrt{n}}{n^2 + \sqrt{n}}$
4. $u_n = n \sin(1/n)$

4.
$$u_n = n \sin(1/n)$$

$$5. \ u_n = \frac{1}{\sqrt{n}} \ln \left(1 + \frac{1}{\sqrt{n}} \right)$$

6.
$$u_n = \frac{\sqrt{n+1} - \sqrt{n}}{n}$$
7. $u_n = \frac{(-1)^n + n}{n^2 + 1}$

7.
$$u_n = \frac{(-1)^n + r}{n^2 + 1}$$

8.
$$u_n = \ln\left(\frac{n^2 + n + 1}{n^2 + n - 1}\right)$$

Correction

1. on a:

$$\frac{u_{n+1}}{u_n} = \frac{n+1}{3n} \underset{n \to \infty}{\longrightarrow} \frac{1}{3}$$

D'après le critère de d'Alembert, la série est convergente.

2. $\sum \frac{n}{n^3+1}$ est une série à termes positifs. On a :

$$\frac{n}{n^3+1} \mathop{\sim}_{n\to\infty} \frac{1}{n^2}.$$

Comme la série de Riemann $\sum \frac{1}{n^2}$ est convergente, la série $\sum \frac{n}{n^3+1}$ est convergente par règle de com-

3. $\sum \frac{\sqrt{n}}{n^2 + \sqrt{n}}$ est une série à termes positifs. On a :

$$\frac{\sqrt{n}}{n^2+\sqrt{n}} = \frac{\sqrt{n}}{n^2(1+\sqrt{n}/n^2)} \mathop{\sim}_{n\to\infty} \frac{1}{n^{3/2}}.$$

Comme la série de Riemann $\sum \frac{1}{n^{3/2}}$ est convergente, la série $\sum \frac{n}{n^3+1}$ est convergente par règle d'équivalence.

- 4. Comme $n\sin(1/n) \sim_{n\to\infty} 1$, le terme générale de série ne converge pas vers 0, donc la série diverge
- 5. $\sum \frac{1}{\sqrt{n}} \ln \left(1 + \frac{1}{\sqrt{n}} \right)$ est une série à termes positifs. On a :

$$\frac{1}{\sqrt{n}}\ln\left(1+\frac{1}{\sqrt{n}}\right) \underset{n\to\infty}{\sim} \frac{1}{n}.$$

Comme la série de Riemann $\sum \frac{1}{n}$ est divergente, la série $\sum \frac{1}{\sqrt{n}} \ln \left(1 + \frac{1}{\sqrt{n}}\right)$ est divergente par règle d'équivalence.

6. $\sum \frac{\sqrt{n}}{n^2 + \sqrt{n}}$ est une série à termes positifs. On a :

$$\frac{\sqrt{n+1}-\sqrt{n}}{n} = \frac{\sqrt{n}(\sqrt{1+1/n}-1)}{n} \underset{n \to \infty}{\sim} \frac{\sqrt{n}(\frac{1}{2n})}{n} \underset{n \to \infty}{\sim} \frac{1}{2n^{3/2}}$$

Comme la série de Riemann $\sum \frac{1}{n^{3/2}}$ est convergente, la série $\sum \frac{n}{n^3+1}$ est convergente par règle d'équi-

7. $\sum \frac{(-1)^n + n}{n^2 + 1}$ est une série à termes positifs. On a :

$$\frac{(-1)^n + n}{n^2 + 1} \underset{n \to \infty}{\sim} \frac{1}{n}.$$

Comme la série de Riemann $\sum \frac{1}{n}$ est divergente, la série $\sum \frac{(-1)^n + n}{n^2 + 1}$ est divergente par règle d'équiva-

8. $\sum \ln \left(\frac{n^2 + n + 1}{n^2 + n - 1} \right)$ est une série à termes positifs.

— Version courte

$$u_n = \ln\left(1 + \frac{1}{n} + \frac{1}{n^2}\right) - \ln\left(1 + \frac{1}{n} - \frac{1}{n^2}\right) \underset{n \to +\infty}{=} \left(\frac{1}{n} + O\left(\frac{1}{n^2}\right)\right) - \left(\frac{1}{n} + O\left(\frac{1}{n^2}\right)\right) = O\left(\frac{1}{n^2}\right).$$

— Version longue :

$$u_n = \ln\left(1 + \frac{1}{n} + \frac{1}{n^2}\right) - \ln\left(1 + \frac{1}{n} - \frac{1}{n^2}\right)$$

$$u_n = \left(\frac{1}{n} + \frac{1}{n^2}\right) - \frac{\left(\frac{1}{n} + \frac{1}{n^2}\right)^2}{2} - \left(\left(\frac{1}{n} - \frac{1}{n^2}\right) - \frac{\left(\frac{1}{n} - \frac{1}{n^2}\right)^2}{2}\right) + o\left(\frac{1}{n^2}\right)$$

$$u_n = \left(\frac{1}{n} + \frac{1}{n^2}\right) - \frac{\left(\frac{1}{n} + \frac{1}{n^2}\right)^2}{2} - \left(\left(\frac{1}{n} - \frac{1}{n^2}\right) - \frac{\left(\frac{1}{n} - \frac{1}{n^2}\right)^2}{2}\right) + o\left(\frac{1}{n^2}\right)$$

$$u_n = \frac{2}{n^2} + o\left(\frac{1}{n^2}\right) \underset{n \to \infty}{\sim} \frac{2}{n^2}$$

Comme la série de Riemann $\sum \frac{1}{n^2}$ est convergente, la série $\sum \ln \left(\frac{n^2 + n + 1}{n^2 + n - 1} \right)$ converge par règle de comparaison.

Exercice: Nature

Étudier la convergence des séries $\sum u_n$ suivantes :

1.
$$u_n = \frac{1}{n + (-1)^n \sqrt{n}}$$

1.
$$u_n = \frac{1}{n + (-1)^n \sqrt{n}}$$
2.
$$u_n = \left(\frac{n+3}{2n+1}\right)^{\ln n}$$

3.
$$u_n = \frac{1}{\ln(n) \ln(\cosh n)}$$

3.
$$u_n = \frac{1}{\ln(n)\ln(\ln n)}$$

4. $u_n = e - \left(1 + \frac{1}{n}\right)^n$

1. $\sum \frac{1}{n+(-1)^n\sqrt{n}}$ est une série à termes positifs. On a :

$$\frac{1}{n+(-1)^n\sqrt{n}}=\frac{1}{n(1+(-1)^n\sqrt{n}/n)} \mathop{\sim}_{n\to\infty} \frac{1}{n}.$$

Comme la série de Riemann $\sum \frac{1}{n}$ est divergente, la série $\sum \frac{1}{n+(-1)^n\sqrt{n}}$ est divergente par règle de comparaison

2. $\sum \left(\frac{n+3}{2n+1}\right)^{\ln n}$ est une série à termes positifs. On a :

$$\left(\frac{n+3}{2n+1}\right)^{\ln n} = e^{\ln(n)\ln\left(\frac{n+3}{2n+1}\right)} \underset{n \to \infty}{\sim} e^{\ln(n)\ln\left(\frac{1}{2}\right)} \underset{n \to \infty}{\sim} \frac{1}{n^{\ln 2}}$$

Comme la série de Riemann $\sum \frac{1}{n^{\ln 2}}$ est divergente, la série $\sum \left(\frac{n+3}{2n+1}\right)^{\ln n}$ est divergente par règle de comparaison.

3. $\sum \frac{1}{\ln(n)\ln(\cosh n)}$ est une série à termes positifs. On a :

$$\ln(\operatorname{ch}(n)) = \ln\left(\frac{e^n + e^{-n}}{2}\right) \underset{n \to \infty}{\sim} \ln(e^n/2) \underset{n \to \infty}{\sim} n - 2 \underset{n \to \infty}{\sim} n.$$

Étudions la nature de la série $\sum \frac{1}{\ln(n)n}$ à l'aide d'une comparaison série intégrale.

La fonction $x \to x \ln x$ est continue, croissante et strictement positive sur $]1, +\infty[$ (produit de deux fonctions strictement positives et croissantes sur $]1, +\infty[)$. Par suite, la fonction $x \to \frac{1}{x \ln x}$ est continue, décroissante sur $]1, +\infty[$ et de limite 0 en l'infini. Les hypothèses étant vérifiée, la série $\sum \frac{1}{\ln(n)n}$ est de même nature que la suite $\left(\int_2^n \frac{1}{x \ln x} dx\right) = (\ln(\ln(n)) - 2)$. Cette suite diverge donc la série aussi. Enfin par théorème de comparaison, la série $\sum \frac{1}{\ln(n) \ln(\cosh n)}$ diverge.

4. On a:

$$e - \left(1 + \frac{1}{n}\right)^n = e - e^{n\ln(1 + \frac{1}{n})} = e - e^{n(\frac{1}{n} - \frac{1}{2n^2} + O(\frac{1}{n^2}))} = e(1 - e^{-\frac{1}{2n} + O(\frac{1}{n})}) \underset{n \to \infty}{\sim} \frac{e}{2n}$$

Comme la série de Riemann $\sum \frac{1}{n}$ est divergente, la série $\sum e - \left(1 + \frac{1}{n}\right)^n$ est divergente par règle de

Exercice: Nature

Etudier la convergence des séries $\sum u_n$ suivantes :

$$1. \ u_n = \frac{\sin(\frac{1}{n})}{2}$$

2.
$$u_n = \frac{\sin(n) + \cos(n)}{n^2}$$

3.
$$u_n = \frac{|\sin(n)| + |\cos(n)|}{n}$$

4.
$$u_n = \frac{(n!)^2}{2n!}$$

1.
$$u_n = \frac{\sin(\frac{1}{n})}{n}$$

2. $u_n = \frac{\sin(n) + \cos(n)}{n^2}$
3. $u_n = \frac{|\sin(n)| + |\cos(n)|}{n}$
4. $u_n = \frac{(n!)^2}{2n!}$
5. $u_n = (\ln(n+1))^2 - (\ln(n))^2$
6. $u_n = \frac{\ln(n)}{n^2}$

6.
$$u_n = \frac{\ln(n)}{n^2}$$

Correction

1. $\sum \frac{\sin(\frac{1}{n})}{n}$ est une série à termes positifs (SATP). On a :

$$\frac{\sin(\frac{1}{n})}{n} \underset{n \to \infty}{\sim} \frac{\frac{1}{n}}{n} = \frac{1}{n^2}.$$

Comme la série de Riemann $\sum \frac{1}{n^2}$ est convergente, la série $\sum \frac{\sin(\frac{1}{n})}{n}$ est convergente par règle de comparaison

2. Étudions la nature de SATP $\sum \frac{|\sin(n)+\cos(n)|}{n^2}$. On a :

$$\frac{|\sin(n) + \cos(n)|}{n^2} \leqslant \frac{2}{n^2}.$$

Comme la série de Riemann $\sum \frac{1}{n^2}$ est convergente, la série $\sum \frac{|\sin(n) + \cos(n)|}{n^2}$ est convergente par règle de comparaison. La série $\sum \frac{\sin(n) + \cos(n)}{n^2}$ est absolument convergente donc convergente.

3. $\sum \frac{|\sin(n)|+|\cos(n)|}{n}$ est une STAP. On a :

$$\frac{|\sin(n)| + |\cos(n)|}{n} \geqslant \frac{|\sin(n)|^2 + |\cos(n)|^2}{n} = \frac{1}{n}.$$

Comme la série de Riemann $\sum \frac{1}{n}$ est divergente, la série $\sum \frac{|\sin(n)|+|\cos(n)|}{n}$ est divergente par règle de comparaison.

4. $\sum \frac{(n!)^2}{2n!}$ est une SATP. On a :

$$\frac{u_{n+1}}{u_n} = \frac{\frac{((n+1)!)^2}{2(n+1)!}}{\frac{(n!)^2}{2n!}} = \frac{((n+1)!)^2}{(n!)^2} \frac{2n!}{(2(n+1))!} = \frac{(n+1)^2}{(2n+1)(2n+2)} \to_{n\to\infty} \frac{1}{4}.$$

D'après la règle de d'Alembert $(\frac{1}{4} < 1)$, la série $\sum \frac{(n!)^2}{2n!}$ est convergente.

5. On a $u_n = a_{n+1} - a_n$ avec $a_n = (\ln(n))^2$. $\sum (\ln(n+1))^2 - (\ln(n))^2$ est une série télescopique. Sa somme partielle est égale :

$$S_n = (\ln(n+1))^2 - (\ln(1))^2 = (\ln(n+1))^2 \to_{n\to\infty} +\infty.$$

Donc la série diverge.

6. $\sum \frac{\ln(n)}{n^2}$ est une SATP. On a :

$$\frac{\ln(n)}{n^2} = o\left(\frac{1}{n^{3/2}}\right) \text{ car } \lim_{n \to +\infty} \frac{\frac{\ln(n)}{n^2}}{\frac{1}{n^{3/2}}} = \lim_{n \to +\infty} \frac{\ln(n)}{n^{1/2}} = 0$$

Comme la série de Riemann $\sum \frac{1}{n^2}$ est convergente $(\frac{3}{2} > 1)$, la série $\sum \frac{\ln(n)}{n^2}$ est convergente par règle de comparaison.

Exercice: Série harmonique

Pour $n \ge 1$, on note $H_n = \sum_{k=1}^n \frac{1}{k}$.

1. Démontrer que, pour tout $n \ge 1$,

$$\ln(n+1) \leqslant H_n \leqslant 1 + \ln(n).$$

- 2. En déduire un équivalent de H_n .
- 3. On pose pour $n \ge 1$, $v_n = H_n \ln(n)$. Vérifier que $v_n v_{n-1} = \frac{1}{n} + \ln\left(1 \frac{1}{n}\right)$.
- 4. Étudier la monotonie de (v_n) .
- 5. En déduire que la suite $(H_n \ln(n))$ est convergente.

Correction

1. Voir la démonstration sur la comparaison série-intégrale. On a :

$$\int_{1}^{n+1} \frac{1}{x} dx = \ln(n+1) \leqslant H_n \leqslant 1 + \int_{1}^{n} \frac{1}{x} dx = 1 + \ln(n)$$

2. On divise ces inégalités par ln(n):

$$1 + \ln(1 + 1/n) \le H_n / \ln(n) \le 1 + 1 / \ln(n)$$
.

Les deux extrémités tendent vers 1 donc $H_n \sim_{n\to\infty} \ln(n)$.

- 3. $v_n v_{n-1} = H_n H_{n-1} \ln(n) + \ln(n-1) = \frac{1}{n} + \ln\left(1 \frac{1}{n}\right)$.
- 4. On a $\ln(1-x) \leqslant -x$. D'où $x + \ln(1-x) \leqslant 0$. Ainsi (v_n) est décroissante car $v_n v_{n-1} \leqslant 0$.
- 5. D'après l'inégalité de la question 1 on $0 \ge \ln(n+1) \ln(n) \le H_n \ln(n)$. La suite $(v_n) = (H_n \ln(n))$ est minorée et décroissante donc convergente.

Exercice: Calcul d'une somme

Calculer la somme de la série : $\sum \frac{n+1}{3^n}$.

Correction Sans l'outil des séries entières, on bricole :

$$\frac{1}{3}S = \sum_{n=0}^{+\infty} \frac{n+1}{3^{n+1}} = \sum_{n=1}^{+\infty} \frac{n}{3^n} = \sum_{n=1}^{+\infty} \frac{n+1}{3^n} - \sum_{n=1}^{+\infty} \frac{1}{3^n}$$
$$= (S-1) - \frac{1}{3} \frac{1}{1 - \frac{1}{3}} = S - \frac{3}{2}.$$

On en déduit que $S = \frac{9}{4}$.

Exercice: Alternée

Étudier la nature des séries $\sum u_n$ suivantes :

1.
$$u_n = \frac{\sin n^2}{n^2}$$
 2. $u_n = \frac{(-1)^n \ln n}{n}$ 3. $u_n = \frac{\cos(n^2 \pi)}{n \ln n}$

Correction

- 1. On a : $|u_n| \leq \frac{1}{n^2}$, donc la série converge absolument.
- 2. La série est alternée, et la suite $(\ln(n)/n)$ est décroissante à partir d'un certain rang et converge vers 0. Donc par application du critère des séries alternées, la série converge.
- 3. On a $cos(n^2\pi) = (?1)^n$. La suite $(1/\ln(n)n)$ est décroissante et converge vers 0. Donc la série converge par application du critère des séries alternées.

Exercice: Cauchy

On note, pour tout $n \in \mathbb{N}^*$:

$$u_n = \sum_{k=0}^{n} \frac{(-1)^k}{3^k (n-k)!}$$

Montrer que la série $\sum u_n$ converge et calculer sa somme.

Correction Le terme général $\sum_{k=0}^{n} \frac{(-1)^k}{3^k (n-k)!}$ est le produit de Cauchy de la suite $\left(\left(-\frac{1}{3}\right)^n\right)$ et de la suite

Les deux séries $\sum -\left(\frac{1}{3}\right)^n$ et $\sum \frac{1}{n!}$ sont absolument convergente donc la série produit de Cauchy est absolu-

De plus, sa somme est égale au produit des deux sommes, soit :

$$\sum_{n=0}^{+\infty} u_n = \sum_{n=0}^{+\infty} \left(-\frac{1}{3} \right)^n \times \sum_{n=0}^{+\infty} \frac{1}{n!} = \frac{1}{1+\frac{1}{3}} e^1 = \frac{4e}{3}.$$

Exercice: Produit scalaire

Soit (u_n) et (v_n) deux suites. Les séries $\sum u_n^2$ et $\sum v_n^2$ sont convergentes.

Démontrer que la série $\sum u_n v_n$ est convergente.

Application : soit (a_n) une suite positive telle que la série de terme général a_n converge. Étudier la nature de la série de terme général $\frac{\sqrt{a_n}}{n}$. Correction En développement l'inégalité $(|a|-|b|)^2\geqslant 0$, on obtient $|a||b|\leqslant \frac{1}{2}(a^2+b^2)$. Donc :

$$|u_n v_n| \leqslant \frac{1}{2} (u_n^2 + v_n^2).$$

Les séries $\sum u_n^2$ et $\sum v_n^2$ sont convergentes donc la série $\sum \frac{1}{2}(u_n^2 + v_n^2)$ est convergente. Par critère de

comparaison, la série $\sum |u_n v_n|$ est convergente. Donc la série $\sum u_n v_n$ est absolument convergente. C'est une application directe du théorème précédent en prenant $u_n = \sqrt{a_n}$ et $v_n = \frac{1}{n}$.

Exercice: convergence

Soit $\sum u_n$ une série convergente, à termes positifs.

Montrer que la série $\sum u_n^2$ converge.

Correction Puisque la série $\sum u_n$ converge, on a :

$$u_n \xrightarrow[n \to \infty]{} 0.$$

A partir d'un certain rang N, on a $0 \le u_n \le 1, \forall n \ge N$. Multiplions cette inégalité par u_n , on a :

$$0 \leqslant u_n^2 \leqslant u_n, \forall n \geqslant N.$$

Comme la série $\sum u_n$ est convergente, la série $\sum_{n\geqslant N}u_n$ est convergente par critère par comparaison. Donc la série $\sum u_n$ est convergente.

Exercice: Convergence

Soit $\sum u_n$ une série à termes positif convergente.

Démontrer que la suite $(\prod_{k=0}^{n}(1+u_k))$ est convergente. Correction On a $\ln(\prod_{k=0}^{n}(1+u_k)) = \sum_{k=0}^{n}\ln((1+u_k))$. Comme la série $\sum u_n$ converge, on a $u_n \xrightarrow[n \to \infty]{} 0$ d'où $\ln(1+u_n) \sim_{n\to\infty} u_n$. La série à termes positifs $\sum \ln(1+u_n)$ est convergente car $\sum u_n$ est convergente. Comme la fonction ln est continue, la suite $(\prod_{k=0}^n (1+u_k))$ est convergente.