This Page Is Inserted by IFW Operations and is not a part of the Official Record

BEST AVAILABLE IMAGES

Defective images within this document are accurate representations of the original documents submitted by the applicant.

Defects in the images may include (but are not limited to):

- BLACK BORDERS
- TEXT CUT OFF AT TOP, BOTTOM OR SIDES
- FADED TEXT
- ILLEGIBLE TEXT
- SKEWED/SLANTED IMAGES
- COLORED PHOTOS
- BLACK OR VERY BLACK AND WHITE DARK PHOTOS
- GRAY SCALE DOCUMENTS

IMAGES ARE BEST AVAILABLE COPY.

As rescanning documents will not correct images, please do not report the images to the Image Problem Mailbox.

THIS PAGE BLANK (USPTO)

POWER CONVERSION DEVICE

Patent Number:

JP10174457

Publication date:

1998-06-26

Inventor(s):

YAMASHITA TAKESHI; KITAMINE KOTA

Applicant(s)::

DENSO CORP

Requested Patent:

□ JP10174457

Application Number: JP19960332455 19961212

Priority Number(s):

IPC Classification:

H02M7/537; H02M1/08; H02P7/63

EC Classification:

Equivalents:

Abstract

PROBLEM TO BE SOLVED: To provide a power conversion circuit with improved operation reliability for preventing a phase switch circuit from being short-circuited, regardless of the failure in a power supply part. SOLUTION: A high-side switch 53 and a low-side switch 54 for constituting a phase switch circuit are driven and controlled by driver circuits 61 and 62, respectively, which receive power from power supply parts 63 and 64. To solve the problem that the output impedance of the high-side power supply part 63 and the lowside power supply part 64 increases due to certain causes and hence the output impedance of the driver circuits 61 and 62 increases. Thus the gate electrode potential of the switch 53 or 54 becomes floated and conducts erroneously, and hence a main power supply 1 is short-circuited by the switches 53 and 54, a spare power supply part 300 for feeding a spare power supply voltage to the driver circuit 62 that receives power from the main power supply 1 is provided to feed a spare power supply voltage to the driver circuit 62.

Data supplied from the esp@cenet database - 12

THIS PAGE BLANK (USPTO)

(19)日本国特許庁 (JP)

(12) 公開特許公報(A)

(11)特許出願公開番号

特開平10-174457

(43)公開日 平成10年(1998)6月26日

(51) Int.Cl. ⁶		識別記号	FΙ		
H02M	7/537		H 0 2 M	7/537	С
	1/08			1/08	Α
H 0 2 P	7/63	3 0 2	H 0 2 P	7/63	3 0 2 C

審査請求 未請求 請求項の数5 OL (全 14 頁)

(21)出願番号	特願平8-332455	(71) 出願人 000004260
		株式会社デンソー
(22)出願日	平成8年(1996)12月12日	愛知県刈谷市昭和町1丁目1番地
		(72)発明者 山下 剛
		愛知県刈谷市昭和町1丁目1番地 株式会
		社デンソー内
		(72)発明者 北峯 康多
		愛知県刈谷市昭和町1丁目1番地 株式会
		社デンソー内
		(74)代理人 弁理士 大川 宏

(54) 【発明の名称】 電力変換装置

(57)【要約】 (修正有)

【課題】電源部の不調にもかかわらず相スイッチ回路が 短絡動作するのを防止する動作信頼性に優れた電力変換 回路を提供する。

【解決手段】相スイッチ回路を構成するハイサイドスイッチ53、ローサイドスイッチ54はドライバ回路61、62により駆動制御され、それらは電源部63及びローサイドの電源部64の出力インピーダンスが何らかの原因により高インピーダンス化することによりドライバ回路61又は62の出力インピーダンスが高インピーダンス化し、それによりスイッチ53又は54のゲート電極電位が浮遊電位化して誤導通し、その結果、主電源1がこれらスイッチ53及び54により短絡されるという問題を解決する為に、主電源1から給電されてドライバ回路62に予備の電源電圧を給電する。

【特許請求の範囲】

【請求項1】 互いに直列接続された電圧駆動型のハイサイドスイッチ及びローサイドスイッチによりそれぞれ構成されて主電源の両端間に接続される複数の相スイッチ回路と、入力信号に基づいて各前記ハイサイドスイッチのゲート電極に駆動電圧を出力して前記ハイサイドスイッチを断続するハイサイドのドライバ回路と、入力信号に基づいて各前記ローサイドスイッチのゲート電極に駆動電圧を出力して前記ローサイドスイッチを断続するローサイドのドライバ回路と、前記両ドライバ回路に電源電圧を印加するドライバ電源とを備え、前記両スイッチの接続点は負荷に接続される電力変換装置において、前記ドライバ電源は、

前記ハイサイドのドライバ回路に電源電圧を出力するハイサイドの電源部と、

前記ハイサイドの電源部と独立動作可能に形成されて前 記ローサイドのドライバ回路に電源電圧を出力するロー サイドの電源部と、

前記電源電圧が不足する場合にのみ、前記主電源からの 給電により前記ドライバ回路の作動が可能な予備の電源 電圧を前記電源電圧不足側の前記ドライバ回路に出力す る予備電源部と、

を備えることを特徴とする電力変換装置。

【請求項2】 請求項1記載の電力変換装置において、 前記ハイサイドの電源部及びローサイドの電源部は、共 通の電源から給電されていることを特徴とする電力変換 装置。

【請求項3】 請求項1又は2記載の電力変換装置において、

前記予備電源部は、前記ローサイドのドライバ回路に印加される前記電源電圧の不足時にのみ、前記ローサイドのドライバ回路による前記ローサイドスイッチの駆動が可能な前記予備の電源電圧を前記ローサイドのドライバ回路に出力することを特徴とする電力変換装置。

【請求項4】 請求項1又は2記載の電力変換装置において、

前記予備電源部は、前記ハイサイドのドライバ回路に印加される前記電源電圧の不足時にのみ、前記ハイサイドのドライバ回路による前記ハイサイドスイッチの駆動が可能な前記予備の電源電圧を前記ハイサイドのドライバ回路に出力することを特徴とする電力変換装置。

【請求項5】 請求項1又は2記載の電力変換装置において、

前記予備電源部は、前記ローサイドのドライバ回路に印加される前記電源電圧の不足時にのみ前記ローサイドのドライバ回路による前記ローサイドスイッチの駆動が可能な前記予備の電源電圧を前記ローサイドのドライバ回路に出力し、かつ、前記ハイサイドのドライバ回路に印加される前記電源電圧の不足時にのみ前記ハイサイドのドライバ回路による前記ハイサイドスイッチの駆動が可

能な前記予備の電源電圧を前記ハイサイドのドライバ回路に出力することを特徴とする電力変換装置。

【発明の詳細な説明】

[0001]

【発明の属する技術分野】本発明は、例えば直交変換用 のインバータ装置などの電力変換装置に関する。

[0002]

【従来の技術】

(電気自動車の駆動回路) 従来の電気自動車の空調用圧 縮機用モータ(負荷)駆動回路を図15に示す回路図を 参照して説明する。主バッテリ1は、図示しない電圧変 換系を通じて補機バッテリ3に給電している。X相の相 スイッチ回路4a、Y相の相スイッチ回路4bおよび2 相の相スイッチ回路4cからなるDCーACインバータ 4は空調用圧縮機駆動用の三相交流モータ5に給電して いる。X相の相スイッチ回路4aは、それぞれNチャン ネルMOSFETからなるハイサイドスイッチ53、ロ ーサイドスイッチ54を直列接続して構成されており、 主バッテリ1から給電されている。両スイッチ53、5 4の接続点からなる相スイッチ回路 4 a の出力端は三相 交流モータ5のX相入力端に接続されている。Y相の相 スイッチ回路4 b および2相の相スイッチ回路4 c はX 相の相スイッチ回路4aと同じ回路構成を有し、それぞ れ三相交流モータ5のY相入力端及びZ相入力端に駆動 電圧を印加している。25、26は電流還流用のフライ ホィルダイオードであり、55、56はハイサイドスイ ッチ53のゲート電極の寄生容量であり、58、59は ローサイドスイッチ54のゲート電極の寄生容量であ る。

【0003】61は入力される制御信号電圧V1を少な くとも電流増幅してハイサイドスイッチ53のゲート電 極に印加するハイサイドのドライバ回路であり、62は 入力される制御信号電圧V2を少なくとも電流増幅して ローサイドスイッチ54のゲート電極に印加するローサ イドのドライバ回路である。63はドライバ回路61に 電源電圧を印加するドライバ電源のハイサイドの電源部 であり、64はドライバ回路62に電源電圧を印加する ドライバ電源のローサイドの電源部である。これら両電 源部63、64は、一般に定電圧電源などからなり、ケ ーブル(ハーネス)70を通じて補機バッテリ3から電 力を給電されている。これらドライバ回路61、62及 び電源部63、64と同一構成のドライバ回路及び電源 部が、Y相の相スイッチ回路4bのハイサイドスイッチ 及びローサイドスイッチ、並びに、乙相の相スイッチ回 路4bのハイサイドスイッチ及びローサイドスイッチを 駆動するために配設されているがそれらの図示は省略す る。ドライバ回路61、62は制御信号電圧V1、V2 の指令によりハイレベルのオン電圧又はローレベルのオ フ電圧をハイサイドスイッチ53又はローサイドスイッ チ54に出力して、それらを断続制御するのは周知の通

りである。

【0004】なお、図15では、ハイサイドのドライバ回路61に電源電圧を給電するハイサイドの電源部63と、ローサイドのドライバ回路62に電源電圧を給電するローサイドの電源部64とを別々に構成している。その理由は、ドライバ回路61、62の低位電源端の電位はMOSFET53、54の低位主電極Sに一致させるのが通常であり、その結果、両電源部63、64の低位電源電位が異なるため、これら両電源部63、64の低値電源電位が異なるため、これら両電源部63、64の供通化ができないからである。また、両電源部を共通化すると、この共通電源部に故障が生じた場合に、MOSFET53、54が両方とも導通して主バッテリ1が短絡可能性が生じるので、それを回避するというためでもある。

[0005]

【発明が解決しようとする課題】しかしながら、上述した補機バッテリ3、ケーブル70、ハイサイドの電源部63及びローサイドの電源部64からなるドライバ電源系の構成において、なんらかの故障原因により、ハイサイドのドライバ回路61又はローサイドのドライバ回路62の出力インピーダンスが極めて高くなってしまう場合がある。このように、ドライバ回路61、62の出力インピーダンスが高くなると、これらドライバ回路61、62により駆動されるMOSFETのゲート電極電位が浮遊化してしまうので、これらゲート電極電位が寄生容量55、58を通じてMOSFET53、54の高電位側主電極の電位急上昇の静電的な影響により上昇し、それによりこれらMOSFET53、54が誤導通するという問題がある。

【0006】たとえば、MOSFET54がオフした状態においてドライバ回路62の出力インピーダンスが極めて高くなるトラブルが生じた場合、MOSFET53が導通し、接続点Cの電位が急上昇すると、接続点Cの急速な電位上昇が寄生容量58を通じてMOSFET54が誤導通し、主バッテリ1がMOSFET53、54により短絡されてしまう。

【0007】逆に、MOSFET53がオフした状態においてドライバ回路61の出力インピーダンスが極めて高くなるトラブルが生じた場合、MOSFET54が導通し、接続点Cの電位が急下降すると、この電位下降が寄生容量55を通じてMOSFET53のゲート電極電位を上昇させ、MOSFET53が誤導通し、主バッテリ1がMOSFET53、54により短絡されてしまう。

【0008】更に、ドライバ回路61、62の出力インピーダンスが極めて高くなるトラブルが生じた場合、バッテリ1の電位が急上昇すると、その影響で上述のようにMOSFET53が誤導通して接続点Cの急速な電位上昇を招き、この接続点Cの急速な電位上昇が寄生容量

58を通じてMOSFET54のゲート電極電位を上昇させてMOSFET54を誤導通させ、これにより、主バッテリ1がMOSFET53、54により短絡されてしまう。すなわち、ドライバ回路61又は62の出力インピーダンスが増大する異常が生じると、遮断状態のMOSFET61又は62が誤導通して主バッテリ1の短絡が生じる可能性が生じてしまう。

【0009】本出願人らは上記ドライバ回路61又は6 2の出力インピーダンスの増大原因として以下の場合が あることを見出した。詳しく説明すると、例えば、ケー ブル70の断線乃至端子外れなどにより開放された場 合、補機バッテリ3から電源部63、64を通じてのド ライバ回路61、62への電源電圧の供給がなされず、 かつ、ドライバ回路61側の高位電源線200及び低位 電源線201とドライバ回路62側の高位電源線202 は一般にフローティング状態となる。その結果、ドライ バ回路61の出力インピーダンスは極めて高くなり、M OSFET53のゲート電極電位は浮遊電位となる。ま た、ドライバ回路62側の低位電源線203は主バッテ リ1の低位端に接地されているものの、ドライバ回路6 2の出力端と低位電源線203とを接続するドライバ回 路62の出力段のトランジスタはドライバ回路62への 電源電圧への給電が遮断されたことによりオフし、その 結果、ドライバ回路62の出力インピーダンスは極めて 高くなり、MOSFET54のゲート電極電位も浮遊電 位となる。すなわち、ケーブル70の開放により、ドラ イバ回路61、62の出力インピーダンスが増大し、M OSFET53、54のゲート電極電位が浮遊化してし まう。その結果、上述したように主バッテリ1の電位の 急上昇によりMOSFET53、54が誤導通して主バ ッテリ1が短絡されてしまう可能性が生じる。

【0010】このような問題は、ケーブル70の開放以外にも、例えば電源部63、64の高位出力端と高位電源線200、202との導通不良など、ドライバ回路61、62の出力インピーダンスの増大を招く電源部63、64からドライバ回路61、62への電源電圧供給不良を生じる種々の原因で発生する可能性がある。本発明はこのような問題に鑑みなされたものであり、相スイッチ回路の電圧駆動型スイッチを駆動するドライバ回路への電源電圧供給を担当する電源部の不調にもかかわらず相スイッチ回路が短絡動作するのを防止する動作信頼性に優れた電力変換回路を提供することを、その目的としている。

[0011]

【課題を解決するための手段】請求項1記載の構成によれば、相スイッチ回路を構成するハイサイドスイッチ、ローサイドスイッチはドライバ回路により駆動制御され、それらはハイサイド及びローサイドの電源部から給電される。ハイサイドの電源部及びローサイドの電源部の出力インピーダンスが何らかの原因により高インピー

ダンス化することによりハイサイドのドライバ回路又はローサイドのドライバ回路の出力インピーダンスが高インピーダンス化し、それにより電圧駆動型のハイサイドスイッチ又はローサイドスイッチのゲート電極電位が浮遊電位化して誤導通し、その結果、主電源がこれらハイサイドスイッチ及びローサイドスイッチにより短絡されるという上述の問題を解決する為に、主電源からの給電されて両ドライバ回路の少なくとも一方に予備の電源電圧を給電する予備電源部が設けられる。

【0012】この予備電源部は、上記ハイサイドの電源部又はローサイドの電源部が充分な電源電圧に達しない場合にだけ、これらドライバ回路に予備の電源電圧を給電する。その結果、ハイサイドの電源部又はローサイドの電源部から正規の電源電圧が給電されなくてもドライバ回路には予備の電源電圧が給電されなくてもドライバ回路の出力段のトランジスタが上記電源電圧不足により異常遮断されることがなく、その結果として、電圧駆動型のハイサイドスイッチ又はローサイドスイッチのゲート電極電位が主電源の高位端又は低位端の電位に固定電にの急上昇が生じてもハイサイドスイッチ又はローサイドスイッチが誤導通して主電源が短絡されることがない。

【0013】請求項2記載の電力変換装置によれば、ハイサイドの電源部及びローサイドの電源部は共通の電源から給電される。このようにすれば、主電源の短絡問題を防止し、かつ、ハイサイドの電源部及びローサイドの電源部への給電回路を簡素化することができる。請求項3によれば、予備電源部はローサイドのドライバ回路に印加される前記電源電圧の不足時にのみ、ローサイドのドライバ回路に予備の電源電圧を出力する。このようにすれば、ローサイドの電源部の出力不足を補償してそれによるローサイドスイッチの誤導通を防止することができる。

【0014】請求項4によれば、予備電源部はハイサイドのドライバ回路に印加される前記電源電圧の不足時にのみ、ハイサイドのドライバ回路に予備の電源電圧を出力する。このようにすれば、ハイサイドの電源部の出力不足を補償してそれによるハイサイドスイッチの誤導電話は、ローサイドのドライバ回路に印加される前記電源電圧を出力し、ハイサイドのドライバ回路に印加される前記電源電圧の不足時にのみローサイドのドライバ回路に印加される前記電源電圧の不足時にのみハイサイハイサイドのドライバ回路に予備の電源電圧を出力し、ハイサイドのドライバ回路に印加される前記電源電圧の不足時にのみハイサイバクサイドの電源部及びローサイドの電源部の出力不足を補償してそれによるハイサイドスイッチ及びローサイドスイッチの誤導通を防止することができる。

[0015]

【発明の実施の形態】本発明の好適な実施態様を以下の

実施例を参照して説明する。

[0016]

【実施例1】本発明の電力変換装置を電気自動車の駆動 回路に適用した一実施例を図1~図11を参照して説明 する。なお、以下の各図において、共通の構成要素には できるだけ同一符号を付して理解を容易とするようにし た。

(電気自動車のシステム)この実施例の電気自動車のシステムを図1に示すプロック図により説明する。

【0017】主バッテリ1は、DCーDCコンバータ 2、DCーACインバータ4及び6に給電しており、D CーDCコンバータ2は補機バッテリ3及び車両用各種 補機100に低圧の直流電源電圧を給電し、DCーAC インバータ4は空調用圧縮機駆動用の三相交流モータ5 に給電し、DCーACインバータ6は車両走行用の三相 交流モータ7に給電している。

【0018】 (DC-DCコンバータ2) DC-DCコ ンパータ2を図2に示す回路図により説明する。8、9 はNチャンネルMOSFETからなるハイサイドスイッ チ、10、11はNチャンネルMOSFETからなるロ ーサイドスイッチである。互いに直列に接続されたハイ サイドスイッチ8及びローサイドスイッチ10は第1の 相スイッチ回路を構成し、互いに直列に接続されたハイ サイドスイッチ9及びローサイドスイッチ11は第2の 相スイッチ回路を構成し、これら両相スイッチ回路は主 バッテリ1から給電される直流電力を単相交流電力に変 換するインバータ回路を構成している。ハイサイドスイ ッチ8及びローサイドスイッチ10の接続点である第1 の相スイッチ回路の出力端と、ハイサイドスイッチ9及 びローサイドスイッチ11の接続点である第2の相スイ ッチ回路の出力端とは、降圧用のトランス12の一次コ イルに接続されており、トランス12の二次コイルの電 圧はダイオード13、14により整流された後、リアク トル15及びコンデンサ16からなる平滑回路で平滑さ れて補機バッテリ3を充電している。制御回路17は補 機バッテリ3の電圧を検出し、それが所定値となるよう にMOSFET8~11を断続制御している。

【0019】(DCーACインバータ4) DCーACインバータ4を図3に示す回路図により説明する。19~24はIGBTであって、19、21、23はハイサイドスイッチ、20、22、24はローサイドスイッチである。互いに直列に接続されたハイサイドスイッチ19及びローサイドスイッチ20は第1の相スイッチ回路を構成し、互いに直列に接続されたハイサイドスイッチ21及びローサイドスイッチ22は第2の相スイッチ回路を構成し、互いに直列に接続されたハイサイドスイッチ23及びローサイドスイッチ24は第3の相スイッチ回路を構成し、各相スイッチ回路は主バッテリ1から給電されている。25~30はIGBT19~24と並列接続されたフライホィルダイオードであり、誘導性負荷で

ある三相交流モータ5に還流電流を供給するためのものである。

【0020】ハイサイドスイッチ19及びローサイドスイッチ20の接続点である第1の相スイッチ回路の出力端と、ハイサイドスイッチ21及びローサイドスイッチ22の接続点である第2の相スイッチ回路の出力端と、ハイサイドスイッチ23及びローサイドスイッチ24の接続点である第3の相スイッチ回路の出力端とは、それぞれ、三相交流モータ5の各端子に個別に接続されている。

【0021】31、32は第1、第2の出力電流を検出する電流センサであり、コントローラ33はこれら出力電流、及び、外部のエアコン用コントローラ34から受信した圧縮機駆動指令信号や回転数指令信号に基づいてIGBT19~24を断続制御して三相交流モータ5を指令された回転数で回転させる。

(DC-ACインバータ6) DC-ACインバータ6を 図4に示す回路図により説明する。

【0022】36~41はIGBTであって、36、38、40はハイサイドスイッチ、37、39、41はローサイドスイッチである。互いに直列に接続されたハイサイドスイッチ36及びローサイドスイッチ37は第1の相スイッチ回路を構成し、互いに直列に接続されたハイサイドスイッチ38及びローサイドスイッチ39は第2の相スイッチ回路を構成し、互いに直列に接続されたハイサイドスイッチ40及びローサイドスイッチ41は第3の相スイッチ回路を構成し、各相スイッチ回路は主バッテリ1から給電されている。42~47はIGBT36~41と並列接続されたフライホィルダイオードであり、誘導性負荷である三相交流モータ7に還流電流を供給するためのものである。

【0023】ハイサイドスイッチ36及びローサイドスイッチ37の接続点である第1の相スイッチ回路の出力端と、ハイサイドスイッチ38及びローサイドスイッチ39の接続点である第2の相スイッチ回路の出力端と、ハイサイドスイッチ40及びローサイドスイッチ41の接続点である第3の相スイッチ回路の出力端とは、それぞれ、三相交流モータ7の各端子に個別に接続されている。

【0024】48、49は第1、第2の出力電流を検出する電流センサであり、コントローラ50はこれら出力電流、及び、アクセルセンサ51から受信したモータ制御信号に基づいてIGBT36~41を断続制御して三相交流モータ7を指令された回転数で回転させる。なお、上記コントローラ33、50はその内部にIGBT19~24、36~41をそれぞれ独立に駆動するドライバ回路を有している。

【0025】(ドライバ系統)上記IGBT19~2 4、36~41のような電圧駆動型のハイサイドスイッチ及びローサイドスイッチにより構成される相スイッチ 回路を駆動するドライバ回路及びそれに電源電圧を給電 するドライバ電源の一例を図5の回路図により説明す る。ただし、図5では、説明を簡単とするために、相ス イッチ回路は、それぞれNチャンネルMOSFETから なるハイサイドスイッチ53及びローサイドスイッチ5 4と、それらと個別に並列接続されるフライホィルダイ オードD1、D2とで構成するものとする。なお、フラ イホィルダイオードD1、D2はNチャンネルMOSF ET53、54の寄生ダイオードで構成してもよいこと はもちろんである。ハイサイドスイッチ53は寄生容量 55~57を有し、ローサイドスイッチ54は寄生容量 58~60を有している。ハイサイドスイッチ53のゲ ート電極にはドライバ回路61の出力電圧が印加され、 ローサイドスイッチ54のゲート電極にはドライバ回路 62の出力電圧が印加されている。63はドライバ回路 61に電源電圧を印加するドライバ電源のハイサイドの 電源部であり、64はドライバ回路62に電源電圧を印 加するドライバ電源のローサイドの電源部である。これ ら両電源部63、64は、一般に定電圧電源などからな り、両電源部63、64は、ケーブル(ハーネス)70 を通じて補機バッテリ3から電力を給電されている。

【0026】ドライバ回路61及び62はこれらドライ バ回路61及び62はとともにコントローラ33、50 を構成する図示しない回路からの制御信号によりハイレ ベルのオン電圧又はローレベルのオフ電圧をハイサイド スイッチ53及びローサイドスイッチ54に出力して、 それらを断続制御する。なお、図5では、ハイサイドの ドライバ回路61に電源電圧を給電するハイサイドの電 源部63と、ローサイドのドライバ回路62に電源電圧 を給電するローサイドの電源部64とを別々に構成して いる。その理由は、ドライバ回路61、62の低位電源 端の電位は図5に示すようにMOSFET53、54の 低位主電極(図5では符号Sで示す)に一致させるのが 通常であり、その結果、両電源部63、64の低位電源 電位が異なるため、これら両電源部63、64の共通化 ができないからである。また、両電源部を共通化する と、この共通電源部に出力端の短絡などの故障が生じた 場合に、MOSFET53、54のゲート電極が寄生容 量55、56、58を通じた静電結合の影響によりバッ テリ電圧の上昇の影響により導通する場合が生じる可能 性が生じることも理由の一つに挙げられる。

【0027】更に、本実施例のドライバ電源は、上記したハイサイドのドライバ回路61に電源電圧を印加するハイサイドの電源部63と、ローサイドのドライバ回路62に電源電圧を印加するローサイドの電源部64との他に、予備電源部300を備える点が図15に示す従来のドライバ電源の構成と異なっている。本実施例の特徴をなす予備電源部300は、カソードが抵抗73を通じてバッテリ(主電源)1の高位端に接続され、アノードがバッテリ1の低位端に接続される定電圧ダイオード7

4を有する定電圧回路と、アノードがこの定電圧ダイオード74の出力端すなわちカソードに接続され、カソードがローサイドのドライバ回路62の高位電源端に接続される逆流防止ダイオード72とからなる。

【0028】以下、この回路の動作について説明する。ドライバ回路61及び62は、コントローラ33、50内の図示しない回路からの制御信号によりハイレベルのオン電圧又はローレベルのオフ電圧をハイサイドスイッチ53及びローサイドスイッチ54に出力して、それらを断続制御する。ハイサイドの電源部63及びローサイドの電源部64が補機バッテリ3から問題なく給電されておれば、これら電源部63、64はドライバ回路61、62にそれぞれ好適な電源電圧を給電し、ドライバ回路61、62はそれぞれ入力信号に応じてMOSFET53、54を問題なく断続制御する。

【0029】なお、この正常時において、ローサイドの電源部 64がローサイドのドライバ回路 62に出力する電源電圧は、定電圧ダイオード 74のカソード電圧 Vzからダイオード 72の順方向電圧降下分を引いた値である予備電源部 300の出力電圧より高く(好ましくは僅かに(例えば $1\sim3$ V程度))設定されており、したがって、正常時には予備電源部 300はローサイドのドライバ回路 62に電力を給電していない。このようにすれば、高電圧のバッテリ 1 から低電源電圧のローサイドのドライバ回路 62への大きな給電ロスを回避することができる。

【0030】次に、例えばケーブル70の断線が生じた 場合を考える。この場合には、上述したように、電源部 63、64はドライバ回路61、62に電源電圧を出力 できなくなり、上述したようにドライバ回路61の出力 インピーダンスが高くなって、MOSFET53のゲー ト電極電位はフローティング状態となる。一方、MOS FET54のゲート電極電位も同様にフローティング状 態となろうとする。しかし、ローサイドの電源部64か らローサイドのドライバ回路62の高位電源端へ給電す る電圧が多少低下すると、予備電源部300からローサ イドのドライバ回路62の高位電源端へ予備の電源電圧 Vp=Vz-pn接合順方向ドロップ(約0.7V)が 直ちに供給される。この予備の電源電圧Vp=Vz-約 0. 7 Vはローサイドのドライバ回路 6 2 及びMOSF ET54の充分な作動を保証するレベルに設定されてい るので、ドライバ回路62は正常に作動する。したがっ て、ローサイドのドライバ回路62に入力される制御信 号電圧V1がドライバ回路62にローレベル電圧を出力 する値であれば、ドライバ回路62はMOSFET54 のゲート電極電位をローレベルに固定する。ちなみに、 この予備電源部300を通じてのローサイドのドライバ 回路62への電流経路は、バッテリ1の高位端、抵抗7 3、ダイオード72、ローサイドのドライバ回路62、 バッテリ1の低位端の順となる。

【0031】したがって、本実施例によれば、ケーブル70の断線などが生じてハイサイドスイッチであるMOSFET53のゲート電極電位が浮遊化し、この時、バッテリ1の電位が異常に上昇してMOSFET53が導通しても、MOSFET54のゲート電極はローレベルに電位固定されているので導通することがなく、相スイッチ回路4aによりバッテリ1が短絡されることがない。

【0032】(ドライバ回路62)次に、ドライバ回路62の一例を図6のブロック回路図により説明する。ドライバ回路62は、制御信号電圧V2が入力される前段回路65と、この前段回路65により駆動制御されるハイサイドスイッチ68及びローサイドスイッチ69とからなり、これらスイッチ68、69は電力増幅のための反転乃至非反転の出力段を構成している。もちろん、スイッチ68、69は逆(相補)動作することが好ましい。なお、ドライバ回路62は図6に示すブロック回路以外の種々の回路構成で実現することができ、例えばスイッチ68を抵抗で置換することもでき、MOSFETのようにローサイドスイッチ69の入力インピーダンスが大きい場合には前段回路65を省略してもよい。

【0033】電源部64から正常に電源電圧が印加されている場合のドライバ回路62の動作を説明する。二値信号電圧である制御信号電圧V2がMOSFET54の遮断を指令する電位であれば、前段回路65はローサイドスイッチ69を導通させ、ハイサイドスイッチ68を遮断させてMOSFET54のゲート電極電位をローレベルに固定し、それを遮断させる。逆に、二値信号電圧である制御信号電圧V2がMOSFET54の導通を指令する電位であれば、前段回路65はローサイドスイッチ69を遮断させ、ハイサイドスイッチ68を導通させてMOSFET54のゲート電極電位をハイレベルに固定し、それを導通させる。

【0034】いま、ケーブル70が開放されて、電源部64の出力インピーダンスが極めて高くなった場合について説明する。ただし、以下において、ローサイドスイッチ69はエミッタ接地バイポーラトランジスタ又はソース接地FETであると仮定する。この場合には、制御信号電圧V2がMOSFET54の遮断を指令する電位であったとしても、前段回路65に電源電圧が給電されないために前段回路65はローサイドスイッチ69を電されないために前段回路65はローサイドスイッチ69を高位電源端62aは開放されているためにMOSFET54のゲート電極はスイッチ乃至抵抗からなるハイサイド素子68を通じて放電することもできず、ドライバ回路62の出力インピーダンスは極めて高くなる。これは、図6に示すドライバ回路62を図5のハイサイドのドライバ回路61に用いる場合でも同じである。

【0035】次に、ドライバ回路62の出力段のローサイドスイッチ69をエミッタホロワトランジスタで構成

した場合におけるMOSFET54のゲート電極電位について図7を参照して説明する。図7では、前段回路6の出力端は、コレクタ抵抗651をもつエミッタ接地トランジスタ652のベースに接続され、このコレクタ抵抗651及びエミッタ接地トランジスタ652からなるインバータ回路を通じて、相補エミッタホロワ回路からなるドライバ回路62の出力段に制御電圧を出力しているものとする。

【0036】以下、電源部64の出力インピーダンスが 増大し、電源電圧の供給が遮断された場合のドライバ回 路62の出力インピーダンスについて説明する。ただ し、予備電源部300については考慮しないものとす る。電源電圧の供給が遮断されると、入力される制御信 号電圧V2のレベルにかかわらず、トランジスタ652 を導通させることができず、その結果、MOSFET5 4のゲート電極の電荷は抵抗66、エミッタホロワトラ ンジスタ69、トランジスタ652を通じてバッテリ1 の低位端に放電することができない。また、電源部64 の出力インピーダンスが高いので、MOSFET54の ゲート電極の電荷は抵抗66、エミッタホロワトランジ スタ68、抵抗651を通じて電源部64へも放電する ことができない。結局、図7のドライバ回路62におい ても、電源部64の出力インピーダンスが増大し、MO SFET54のゲート電極電位が浮遊電位となることが わかる。

【0037】図8~図11にローサイドのドライバ回路62の他例を示す。これらの回路構成においても、ローサイドの電源部64の出力インピーダンスが高くなり、その出力電圧が減少すれば、ドライバ回路62の出力インピーダンスが増大してMOSFET54のゲート電極電位が浮遊電位となることがわかる。したがって、本実施例の予備電源部300は、これらのドライバ回路62への予備の電源電圧の給電により相スイッチ回路4aの短絡防止を実現できることが理解される。

【0038】(電源部64)次に、電源部64の一例について図12の回路図を参照して説明する。補機バッテリ3の電流はトランス75の一次コイルを通じてトランジスタ76に通電される。制御回路はトランジスタ76を一定周期で断続するので、トランス75の二次回路には交流電圧が発生する。この交流電圧はダイオード78で半波整流され、コンデンサ71で平滑されてドライバ回路62に出力される。

【0039】誤差増幅器79は電源部64の出力電圧を整流し、その誤差分を増幅してそれによりフォトカプラ80を駆動する。フォトカプラ80の出力は制御回路77にフィードバックされ、制御回路77はフォトカプラ80からのフィードバック信号を基にMOSFET76をPWM制御し、これにより、必要な直流電力がドライバ回路62に給電される。

【0040】図12において、ケーブル70が開放され

た場合における出力電圧及び出力インピーダンスについて以下に説明する。簡単にわかるように、電源部64は電源電圧を出力できず、しかもダイオード78が存在し、かつ、誤差増幅器79の入力インピーダンスが高いので、電源部64の出力インピーダンスは極めて高くなる。これはこの回路を電源部63に用いた場合も同じである。

[0041]

【実施例2】本発明の他の実施例を図13を参照して説明する。この回路は、予備電源部300の代わりに予備電源部400を用い、相スイッチ回路4aのハイサイドスイッチ53をPチャンネルMOSFETを用いた点が図5の回路と異なっている。

【0042】予備電源部400は、予備電源部300において逆流防止ダイオード72の方向を逆とした逆流防止ダイオード85を用い、かつ定電圧ダイオード74と抵抗73との位置を反対とした定電圧回路を定電圧ダイオード86と抵抗87とで構成した以外は同じである。この予備電源部400は、ハイサイドの電源部63がその低位電源線201に所定の低位電源電圧を出力できない時に、それより多少高い低位電源電圧を給電するものであって、予備電源部300と機能は同じであるので、その詳細説明は省略する。

【0043】このようにすれば、ケーブル70の開放によりハイサイドの電源部63の出力電圧が遮断され、かつ、その出力インピーダンスが高くなっても、この予備電源部400がハイサイドのドライバ回路61に給電するので、入力する制御信号電圧V1がMOSFET53の遮断を指令する場合にはドライバ回路61は小さい出力インピーダンスで正常にハイレベル電位を出力することができ、これによりMOSFET53は主バッテリ1の電位急上昇にかかわらず遮断状態に維持されることができ、相スイッチ回路4aがショートすることがない。すなわち、なんらかの原因により電源部63の出力が低下し、その出力インピーダンスが高くなっても、予備電源部400がドライバ回路61に給電するので、ドライバ回路61が誤導通することがない。

[0044]

【実施例3】本発明の他の実施例を図14を参照して説明する。この回路は、図5に示す予備電源部300と図13に示す予備電源部400との両方を設けた回路例であって、このようにすれば、電源部63、64の両方の電源電圧不足に呈してハイサイドスイッチ53及びローサイドスイッチ54の両方の誤導通を阻止することができる。

【0045】なお、上記各実施例では、電圧駆動型のハイサイドスイッチ53及びローサイドスイッチ54として、MOSFETを用いた例を説明したが、その代わりにIGBT等の他の電圧駆動型半導体素子を採用する場合も同じ作用効果を奏することができる。また、予備電

源部200の出力電位の設定は定電圧ダイオードを用いる以外の公知の各種回路を採用することができる。

【図面の簡単な説明】

【図1】 実施例1の電気自動車の駆動回路を示すプロック図である。

【図2】 図1のDC-DCコンバータ2を示す回路図である。

【図3】 図1のDC-ACインバータ4を示す回路図である。

【図4】 図1のDCーACインバータ6を示す回路図である。

【図5】 図3の相スイッチ回路4aを駆動制御するためのドライバ回路及びドライバ電源を示す回路図である。

【図6】 図5のドライバ回路62の一例を示すプロック回路図である。

【図7】 図6のドライバ回路62の具体例を示す回路 図である。

【図8】 図6のドライバ回路62の具体例を示す回路図である。

【図9】 図6のドライバ回路62の具体例を示す回路図である。

【図10】 図6のドライバ回路62の具体例を示す回路図である。

【図11】 図6のドライバ回路62の具体例を示す回路図である。

【図12】 図5のドライバ電源64の一例を示す回路 図である。

【図13】 実施例2のドライバ回路及びドライバ電源を示す回路図である。

【図14】 実施例3のドライバ回路及びドライバ電源を示す回路図である。

【図15】 従来のドライバ回路及びドライバ電源を示す回路図である。

【符号の説明】

1は主バッテリ(主電源)、5は三相交流モータ(負荷)、4a、4b,4cは相スイッチ回路、53は相スイッチ回路4aのハイサイドスイッチ、54は相スイッチ回路4aのローサイドスイッチ、61はハイサイドのドライバ回路、62はローサイドのドライバ回路、63はハイサイドの電源部、64はローサイドの電源部、300、400は予備電源部、3は補機バッテリ(共通の電源)。

【図2】

【図3】

【図10】

【図11】

【図4】

【図5】

[図6]

[図12]

[図13]

[図14]

【図15】

【手続補正書】

【提出日】平成9年10月31日

【手続補正1】

【補正対象書類名】図面

【補正対象項目名】図3

【補正方法】変更

【補正内容】

【図3】

【手続補正2】

【補正対象書類名】図面

【補正対象項目名】図4

【補正方法】変更

【補正内容】

【図4】

