

Pengujian Awal Fungsionalitas Sistem Minimum

Sistem Mikrokontroler Pokok Bahasan 4

Clock

- Rangkaian Clock adalah pulsa yang mengaktifkan sebuah mikrokontroler biasanya dalam satuan MHz.
- AVR Clock Control Unit mendistribusikan clock ke modul-modul lainnya seperti General I/O Modules, CPU Core dan RAM, serta Flash dan EEPROM. Clock-clock ini tidak harus semuanya dalam keadaan aktif pada waktu yang bersamaan. Untuk mengurangi penggunaan daya, clock untuk modul yang sedang tidak aktif digunakan dapat dihentikan/ditidurkan untuk sementara (Sleep Mode).

AVR Clock Control Unit

Sumber Clock

 Mikrokontroler AVR menyediakan beberapa pilihan sumber clock yakni Digital Clock Eksternal, RC Oscillator Internal, dan Crystal atau Ceramic Resonator

Internal Clock

Secara default pada saat diproduksi oleh pabriknya, mikrokontroler AVR telah diprogram untuk menggunakan sumber clock dari RC Oscillator internal dengan waktu Start-up terpanjang dan nilai penskalaan sistem clock 8 – yang menghasilkan frekuensi sebesar 1 MHz.

External Clock

Dapat menggunakan Digital Clock maupun Crystal sebagai sumber clock

Telkom UniverPerbandingan Internal Clock dan Eksternal Clock

Ilustrasi Perbandingan 16:1

Fuse Bit

- Fuse bit merupakan setting awal penggunaan clock. Setting ini cukup sekali dilakukan diawal.
- Fungsi fuse bit antara lain:
 - Untuk menentukan sumber clock dari mikrokontroler
 - Menentukan kecepatan waktu start up mikrokontroler
 - Setting brownout detector level
 - Setting Bootloader
 - Enable serial programming

Fuse Bit 16MHz pada ATMEGA328P

- Ada beberapa parameter yang harus diisi dalam melakukan setting fuse bit yaitu: Extended Fuse Byte, Fuse High Byte, dan Fuse Low Byte
- Untuk dapat menggunakan eksternal clock 16MHz, silakan input nilai pada aplikasi,
 - Extended Fuse Byte "0x05"
 - Fuse High Byte "0xDE"
 - Fuse Low Byte "0xFF"

Berhasil?

- Jika telah berhasil melakukan fuse bit dengan nilai-nilai tersebut, maka sistem minimum Anda dapat diprogram melalui editor IDE Arduino sebagaimana Arduino Uno/Nano.
- Jika tidak berhasil, semoga tips setelah slide ini membantu.

MEMULAI PROGRAM ATMEGA328P DENGAN USBASP

Aplikasi yang Digunakan

AVRDUDESS

ZADIG

USBasp

Serial Programming (Downloader)

- Perhatikan device manager pada komputer Anda.
 Apakah USBasp Anda sudah terdeteksi?
- Jika muncul seperti gambar disamping, maka USBasp Anda belum terdeteksi oleh komputer Anda

USBasp merupakan salah satu media serial programming atau downloader program yang telah ditulis pada editor

Downloader - USBasp

- Jalankan aplikasi Zadig untuk meng-install driver USBasp
- Pilih driver libusbwin32(v1.2.6.0)
- Kemudian install
- Tunggu sampai driver berhasil diinstal
- Sampai disini kita dapat cek kembali pada device manager USBasp berhasil terdeteksi.

Downloader - USBasp

Terlihat pada gambar disamping bahwa USBasp telah berhasil terdeteksi di komputer.

Mendeteksi ATMega328P

- Pada gambar disamping dapat diperhatikan terdapat 2 kondisi
- Kondisi 1, MCU (microcontroller unit) tidak terdeteksi. Hal ini disebabkan karena USBasp belum terdeteksi komputer.
- Kondisi 2, MCU terdeteksi
 ATMega328. Hal ini disebabkan
 karena USBasp telah berhasil
 terdeteksi komputer.

Fusebit ATMega328P

 Kemudian pada kolom Fuses dan lock bits masukkan nilai-nilai pada <u>slide 6</u> pada kolom L, H, E pada posisi seperti pada gambar disamping.

Praktikum

• Selamat mencoba menyalakan LED kelap kelip tiap satu detik.