Tarea 2 Mecánica Cuántica Avanzada

Iván Mauricio Burbano Aldana Universidad de los Andes

5 de mayo de 2018

1. Suponga que
$$B|\psi\rangle=b|\psi\rangle$$
 y $C|\psi\rangle=c|\psi\rangle$. Entonces
$$bc|\psi\rangle=BC|\psi\rangle=-CB|\psi\rangle=-bc|\psi\rangle\,. \tag{1}$$

Luego $bc |\psi\rangle = 0$. Por definición de vector propio $|\psi\rangle \neq 0$. Se tiene entonces que b=0 o c=0.

En el caso donde B es el operador de número bariónico y C el de conjugación de carga se tiene que $|\psi\rangle=C^2\,|\psi\rangle=c^2\,|\psi\rangle$. Entonces $c\in\{-1,1\}$ y se concluye que b=0. Esto significa que en esta teoría cualquier estado con una paridad definida y un número bariónico definido debe tener número bariónico 0.

2.

 $1. \quad a)$

$$\langle p'|\hat{x}|\alpha\rangle = \langle p'|\int dx \,|x\rangle\langle x|\,\hat{x}|\alpha\rangle = \int dxx \,\langle p'|x\rangle \,\langle x|\alpha\rangle$$

$$= \int dxx \frac{1}{\sqrt{2\pi\hbar}} e^{-ip'x/\hbar} \,\langle x|\alpha\rangle$$

$$= \int dxi\hbar \frac{\partial}{\partial p'} \left(\frac{1}{\sqrt{2\pi\hbar}} e^{-ip'x/\hbar}\right) \,\langle x|\alpha\rangle \qquad (2)$$

$$= i\hbar \frac{\partial}{\partial p'} \int dx \frac{1}{\sqrt{2\pi\hbar}} e^{-ip'x/\hbar} \,\langle x|\alpha\rangle$$

$$= i\hbar \frac{\partial}{\partial n'} \int dx \,\langle p'|x\rangle \,\langle x|\alpha\rangle = i\hbar \frac{\partial}{\partial n'} \,\langle p'|\alpha\rangle$$

b)

$$\langle \beta | \hat{x} | \alpha \rangle = \langle \beta | \int dp' | p' \rangle \langle p' | \hat{x} | \alpha \rangle = \int dp' \langle \beta | p' \rangle \langle p' | \hat{x} | \alpha \rangle$$

$$= \int dp' \phi_{\beta}^{*}(p') i\hbar \frac{\partial}{\partial p'} \langle p' | \alpha \rangle = \int dp' \phi_{\beta}^{*}(p') i\hbar \frac{\partial}{\partial p'} \phi_{\alpha}(p')$$
(3)

2. Podemos calcularlo explicitamente utilizando la definición de función de observable de Dirac

$$\exp\left(\frac{i\hat{x}\Xi}{\hbar}\right)|x\rangle = \exp\left(\frac{ix\Xi}{\hbar}\right)|x\rangle. \tag{4}$$

Por lo tanto el operador $\exp\left(\frac{i\hat{x}\Xi}{\hbar}\right)$ corresponde a la simetría de fases en mecánica cuántica. Esta simetría refleja que dos vectores que difieren por una fase representan el mismo estado físico. La forma del operador nos hace notar que \hat{x} es el generador de estas simetrías.

3. Suponemos que por "todos los demas vectores de estado del sistema" se refiere a que $\{|\Psi\rangle, |\Phi\rangle, |\Gamma_n\rangle | n \in I\}$, donde I es el conjunto de indices, es una base de Schauder del espacio de Hilbert \mathcal{H} . Entonces para todos los vectores $|\alpha\rangle, |\beta\rangle \in \mathcal{H}$ existen $a, b, c, d, \alpha_n, \beta_n \in \mathbb{C}$ para cada $n \in I$ tal que

$$|\alpha\rangle = a |\Psi\rangle + b |\Phi\rangle + \sum_{n \in I} \alpha_n |\Gamma_n\rangle$$

$$|\beta\rangle = c |\Psi\rangle + d |\Phi\rangle + \sum_{n \in I} \beta_n |\Gamma_n\rangle.$$
(5)

Claramente podemos asumir que H es acotado extendiendolo por continuidad. El Hamiltoniano es hermítico si y solo si para todos los $|\alpha\rangle$, $|\beta\rangle \in \mathcal{H}$ se tiene

$$agd^* + agc^* \langle \Psi | \Phi \rangle + bg^*c^* + bg^*d^* \langle \Phi | \Psi \rangle$$

$$= ag(d^* + c^* \langle \Psi | \Phi \rangle) + bg^*(c^* + d^* \langle \Phi | \Psi \rangle)$$

$$= ag \langle \beta | \Phi \rangle + bg^* \langle \beta | \Psi \rangle$$

$$= \langle \beta | (ag | \Phi \rangle + bg^* | \Psi \rangle) = \langle \beta | H | \alpha \rangle = \langle |\beta \rangle, H | \alpha \rangle \rangle$$

$$= \langle H | \beta \rangle, |\alpha \rangle \rangle = (c^*g^* \langle \Phi | + d^*g \langle \Psi |) |\alpha \rangle$$

$$= c^*g^* \langle \Phi | \alpha \rangle + d^*g \langle \Psi | \alpha \rangle$$

$$= c^*g^*(b + a \langle \Phi | \Psi \rangle) + d^*g(a + b \langle \Psi | \Phi \rangle)$$

$$= c^*g^*b + c^*g^*a \langle \Phi | \Psi \rangle + d^*ga + d^*gb \langle \Psi | \Phi \rangle,$$
(6)

lo que sucede si y solo si para todo $a,b,c,d\in\mathbb{C}$

$$agc^* \langle \Psi | \Phi \rangle + bg^* d^* \langle \Phi | \Psi \rangle = c^* g^* a \langle \Phi | \Psi \rangle + d^* gb \langle \Psi | \Phi \rangle. \tag{7}$$

Luego se tiene que H es hermítico si y solo si para todo $a,b,c,d\in\mathbb{C}$

$$(ac^* - bd^*)(g \langle \Psi | \Phi \rangle - g^* \langle \Phi | \Psi \rangle) = 0.$$
 (8)

Es fácil ver que esto sucede si y solo si $g\langle\Psi|\Phi\rangle=g^*\langle\Phi|\Psi\rangle=\overline{g\langle\Psi|\Phi\rangle}$. Entonces vemos que una condición necesaria y suficiente para que H sea hermítico es que $g\langle\Psi|\Phi\rangle\in\mathbb{R}$. Es claro para todo $n\in I$ se tiene que $|\Gamma_n\rangle$ es un vector propio de H con valor propio 0. Además, el subespacio span $\{|\Psi\rangle,|\Phi\rangle\}$ es H-invariante. La restricción a este de H tiene una representación matricial en la base $\gamma=\{|\Psi\rangle,|\Phi\rangle\}$ dada por

$$[H]_{\gamma} = \begin{bmatrix} 0 & g^* \\ g & 0 \end{bmatrix} \tag{9}$$

El polinomio característico de esta restricción es

$$\det([H]_{\gamma} - \lambda) = \lambda^2 - |g|^2 = (\lambda - |g|)(\lambda + |g|). \tag{10}$$

Por lo tanto, los valores propios son |g| y -|g|. Los siguientes cálculos

$$\begin{pmatrix}
-|g| & g^* & 0 \\
g & -|g| & 0
\end{pmatrix} \rightarrow \begin{pmatrix}
1 & -g^*/|g| & 0 \\
g & -|g| & 0
\end{pmatrix} \rightarrow \begin{pmatrix}
1 & -g^*/|g| & 0 \\
0 & 0 & 0
\end{pmatrix}
\begin{pmatrix}
|g| & g^* & 0 \\
g & |g| & 0
\end{pmatrix} \rightarrow \begin{pmatrix}
1 & g^*/|g| & 0 \\
0 & 0 & 0
\end{pmatrix}$$
(11)

nos muestran que $g^{*}\left|\Psi\right\rangle +\left|g\right|\left|\Phi\right\rangle$ es un vector propio con valor propio $\left|g\right|$