Light and Computer Vision: Shape from Shading

CS 763 (Sharat@iitb.ac.in)

Agenda

- Want: Reconstruct three dimensional structure from a photo
- Why (consider face as an example)
 - Relighting, generate new view, generate expressions
 - Fundamental problem in vision
- How we will approach this
 - We will take a "first principles approach"
 - Some (possibly) new mathematical concepts

Image Understanding: First Principles

- Able to see things
 - because there is light
- Humans able to interpret
 - perception
- Computer vision
 - camera
 - software

Fundamental Assumption

- Image captured by the camera
- In vision, what assumption are we making
 - about photons emerging
 - single unoccluded scene?

Fundamental Assumption in Vision

- What we capture is what is out there
- We need to define what is "out there"

Contents

- Introduction
- Concept of scene and image irradiance
 - Proving (falsifying) a fundamental assumption
- Problem Definition
- Reflectance function
- Shape from shading
- Photometric stereo

Introduction

Big Picture View

From 2D to 3D

- The human eye records 2D images on the retina, but the brain is able to infer the 3D shape of the scene underlying the image
- The brain uses several "cues" for this conversion from 2D to 3D – shading, defocus, texture, motion, shadows, contours and so on
- The 2D to 3D conversion is the direct opposite of computer graphics
- Here we focus on shading

Baby Steps

http://www.famouslogos.org/the-basics-of-three-dimensional-design

Understand reflectance

Next Steps

• Build 3D model

Bigger Steps

Don't Expect This

Haze

De-hazed

... Or This

Contents

- Introduction
- Concept of scene and image irradiance
 - Proving (falsifying) fundamental assumption
- Reflectance function
- Photometric stereo
- Shape from shading

Scene and image: Relation

Before light hits the image plane

After light hits the image plane

Goal: Measured I(x,y) should be "what is out there?"

Radiometric Terms

- Boring but (some are) necessary
- Mathematical notation (terms)
 - Solid angle
 - Radiant intensity of source
 Graphics
 - Surface Irradiance
 - Surface Radiance
 - Image Irradiance
 - Pixel value

Recall Solid Angle

Radiance

- Radiance is **the** quantity of interest
- Compare definition of mass
- The scene radiance is the
 - power of light per unit
 foreshortened area in a given direction
- Why: Radiance remains conserved in space as it propagates along ray

$$L = \frac{d^2 \Phi}{(dA \cos \theta_r) \ d\omega}$$

(watts / m² steradian)

Image Irradiance

- Irradiance is the power per unit area
- Does not depend from where the light is coming from in general, but for us, it is going to come from the scene

$$E = \frac{d\Phi}{dA}$$

- Three solid angles of interest
 - orange and green (equal)
 - subtended by lens

$$d\omega_i = d\omega_s \qquad \frac{dA_i \cos \alpha}{(f/\cos \alpha)^2} = \frac{dA_s \cos \theta}{(z/\cos \alpha)^2}$$

$$d\omega_L = \frac{\pi d^2}{4} \frac{\cos \alpha}{(z/\cos \alpha)^2} \longrightarrow (2)$$

$$\frac{dA_s}{dA_i} = \frac{\cos \alpha}{\cos \theta} \left(\frac{z}{f}\right)^2$$
(1)

- Power received by lens from surface patch equals power received by image patch
 - We use scene **radiance** to determine power sent by patch
 - We use image irradiance to determine power received

From (1), (2), and (3):
$$E = L \frac{\pi}{4} \left(\frac{d}{f}\right)^2 \cos \alpha^4$$

Linear relation?

Off axis cut off

Pixel Value & Irradiance: Relation

Before light hits the image plane

After light hits the image plane

Linear Mapping!

Non-linear Mapping!

Goal: Measured I(x,y) should be "what is out there?"

Pixel Value & Irradiance: Relation

- After light hits the image plane
 - The camera response function

(Grossberg and Nayar)

Need to invert

- Important preprocessing step for many vision and image processing algorithm
- Usual practice to use a color chart with precisely known reflectances
 - Method assumes constant lighting on all patches and works best when the source is far away
 - Unique inverse exists and smooth for all cameras

Contents

- Introduction
- Concept of scene and image irradiance
 - Proving (falsifying) a fundamental assumption
- Problem Definition
- Reflectance function
- Shape from shading
- Photometric stereo

Problem: Shape from shading

 Given an image *l(x,y)* of a surface, determine the depth *Z(x,y)* at each (visible) point on the surface.

Problem: Shape from shading

- With the assumption that scene radiance equals image irradiance, given an image *I(x,y)* of a surface, determine the depth at each point on the surface.
 - What is shading, and why would shading reveal the depth?
 - Depth only for visible points

Recall Example

Depth from Shading: Qualitative

 Depth is shown as a function Z(x,y) (not as distance from the camera)

Depth from Shading: Quantitative

- The depth of an object reveals itself from its surface normal ...
- The surface normal reveals itself from the shading because
- scene radiance is a function of
 - scene illumination
 - material properties
 - local geometry (depth)
 - viewer position
- We have to disentangle these last four things

Contents

- Introduction
- Concept of scene and image irradiance
 - Proving (falsifying) a fundamental assumption
- Problem Definition
- Reflectance function
- Shape from shading
- Photometric stereo

Reflectance Models

Radiometric concepts – boring...but, important!

(1) Solid Angle:
$$d\omega = \frac{dA'}{R^2} = \frac{dA \cos \theta_i}{R^2}$$
 (steradian)

What is the solid angle subtended by a hemisphere?

(2) Radiant Intensity of Source : $J = \frac{d\Phi}{d\omega}$ (watts / steradian)

Light Flux (power) emitted per unit solid angle

(3) Surface Irradiance :
$$E = \frac{d\Phi}{dA}$$
 (watts/m)

Light Flux (power) incident per unit surface area.

Does not depend on where the light is coming from!

(4) Surface Radiance (tricky):

$$L = \frac{d^2 \Phi}{(dA \cos \theta_r) d\omega} \text{ (watts / m}^2 \text{ steradian)}$$

- Flux emitted per unit foreshortened area per unit solid angle.
- L depends on direction θ_{r}
- Surface can radiate into whole hemisphere.
- L depends on reflectance properties of surface.

Reflectance Models

- Reflection is an electromagnetic phenomenon
- So to determine the reflectance model
 - Wave optics and Ray Optics
- Geometric models are easier
 - Sometimes we need wave optics

Scene and image irradiance

Image irradiance: Power of light per unit area incident around a point **p** on the image plane

Scene radiance: Power of light per unit area reflected from a small area around a point **P** on the surface of the 3D object in a direction **d**.

Scene radiance depends on the following factors:

- Light: intensity & direction (w.r.t. normal)
- Material properties
- Surface (surface normal) at point P
- Viewing direction (w.r.t. normal)

The model in which the surface reflects light is called as the **surface reflectance model**.

BRDF

$$E^{surface}(\theta_i, \phi_i)$$
 Irradiance at Surface in direction (θ_i, ϕ_i)

$$L^{surface}(\theta_r, \phi_r)$$
 Radiance of Surface in direction (θ_r, ϕ_r)

BRDF:
$$f(\theta_i, \phi_i; \theta_r, \phi_r) = \frac{L^{surface}(\theta_r, \phi_r)}{E^{surface}(\theta_i, \phi_i)}$$

Problem: Shape from shading

 Given an image *I(x,y)* of a surface with a known reflectance model, determine the depth at each (visible) point on the surface.

Lambertian Model

- It is one particular type of reflectance model, for a diffusely reflecting surface
- Surface appears
 equally bright when
 viewed from all
 directions from which
 the surface is visible

en.wikipedia.org/wiki/Diffuse reflection

Many surfaces are not Lambertian

Diffuse and Specular Reflection

diffuse

specular

diffuse+specular

Recall Wave Optics

Life can get very complicated so ...

Back to Lambertian Model

- Lots of surfaces are Lambertian
 - Or even if not, it is a significant component
- The BRDF is constant
- Very common in vision and graphics

Albedo

- The albedo p is the fraction of the reflected light over the incident light. It is a quantity between 0 and 1.
- It is a property of the material. Different materials have different albedos.
- Example: charcoal has an albedo of 0.04, snow has an albedo of 0.9.

Examples

- Matte paint, paper are Lambertian.
- Human face is (generally) Lambertian, except for some "shiny" spots.
- Mirrors, oil-polished surfaces are not Lambertian.

Lambertian Model

The scene radiance is given by the equation:

$$I = L \rho \cos(\theta)$$
 The term in the circle(s) is the effective surface area as seen from the light source

I = scene radiance = image irradiance at the appropriate image point

L =lighting intensity

l = lighting direction (unit vector), assuming distant point light source

N= unit surface normal at the point under consideration

 ρ = surface reflectivity (albedo) at the point under consideration

- What if $cos(\Theta) < 0$?
 - surface does not face the light source
 - set irradiance to 0.

$$I = \max(0, L\rho\cos(\theta))$$

Lambert's cosine law

 Intensity reflected from a diffusely reflecting surface is proportional to the cosine of the angle between the surface normal and the light direction and independent of the viewing direction

Lambertian BRDF

 The Lambertian model does not mean that equal amounts of light are reflected in all viewing directions.
 The amount of light reflected gets multiplied by a cosine term, but the perceived area also gets multiplied. Hence irradiance is the same.

Depth from Shading: Quantitative

- Scene radiance is a function of
 - a. scene illumination (point source, no interreflections)
 - b. material properties (Lambertian)
 - c. local geometry (depth)
 - d. viewer position (far away from object)
- We will use (d) to suitable parametrize (c)