1. Определите истинность заданных утверждений. Считайте, что $a \neq b$ – урэлементы.

- (a) $a \in \{\{a\}, b\}$
- (h) $\emptyset \in \emptyset$

(o) $a \in 2^{\{a\}}$

- (b) $a \in \{a, \{b\}\}$
- (i) $\emptyset \subseteq \emptyset$

(p) $2^{\{a,\emptyset\}} \subset 2^{\{a,b,\emptyset\}}$

- (c) $\{a\} \in \{a, \{a\}\}$
- (j) $\emptyset \subset \emptyset$

(q) $\{a, b\} \subseteq 2^{\{a, b\}}$

- (d) $\{a\} \subset \{a, b\}$
- (k) $\emptyset \in \{\emptyset\}$

(r) $\{a, a\} \in 2^{\{a, a\}}$

- (e) $\{a\} \subseteq \{\{a\}, \{b\}\}$
- (1) $\emptyset \subseteq \{\{\emptyset\}\}$
- (s) $\{\{a\},\varnothing\}\subseteq 2^{\{a,a\}}$

- (f) $\{\{a\}\}\subset\{\{a\},\{a,b\}\}$
- $(m)\{\emptyset,\emptyset\}\subset\{\emptyset\}$
- (t) $\{a, \{a\}\} \subset 2^{\{a, 2^{\{a\}}\}}$

- (g) $\{\{a\}, b\} \subseteq \{a, \{a, b\}, \{b\}\}$
- $(n) \{\{\emptyset\}\} \subset \{\{\emptyset\}, \{\emptyset\}\}\}$
- (u) $\{\{a, \{\emptyset\}\}\}\}\subseteq 2^{\{a,2^{\emptyset}\}}$

2. Дано множество-универсум $\mathfrak{U} = \{1, 2, ..., 10\}$ и его подмножества: $A = \{x \mid x$ – чётное $\}$, $B = \{x \mid x$ – простое $^2\}$, $C = \{2, 4, 7, 9\}$. Нарисуйте диаграмму Венна для заданных множеств, отметьте на ней все элементы и найдите:

- (a) $B \triangle (A \cap C)$
- (c) $\overline{A \cup C} \cup (C \triangle B)$
- (e) $(2^A \cap 2^C) \setminus 2^B$

- (b) $\overline{B} \setminus (A \triangle C)$
- (d) $|\{A \cup B \cup 2^{\varnothing} \cup 2^{\mathfrak{U}}\}|$
- (f) $2^{B\cap C}\setminus\{2^{|2^{\{\emptyset\}}|}, |\overline{B\cap C}|\}$

3. Даны следующие множества³:

 $* A = \{1, 2, 4\}$

 $*\ C=2^{\emptyset}\setminus\{\emptyset\}$

 $*~E=2^{A\setminus D}\cap 2^{\{|B\setminus D|\}}$

- $*B = \{\Box, A\} \cup \emptyset$
- $* D = \{ A, |2^{\{\emptyset,C\}}| \}$
- $*F = 2\{\{\emptyset,\emptyset\}\setminus\{\{\emptyset\}\},\{\emptyset\}\triangle C,\{\emptyset,C\},2^{\emptyset}\}\}$

Найти:

(a) $A \triangle D$

(c) $B \times E$

(e) $D^{|C|}$

(b) $E \triangle 2^C$

(d) $E \times 2^B$

(f) F^3

4. Найдите все множества A, B и C, которые удовлетворяют следующим условиям:

$$A = \{1, |B|, |C|\}$$

$$B = \{2, |A|, |C|\}$$

$$C = \{1, 2, |A|, |B|\}$$

5. Изобразите на графиках \mathbb{R}^2 следующие множества точек:

(a) $\{1, 2, 3\} \times [1; 3]$

(d) $\{\langle x, y \rangle \in [1, 5] \times [1, 4] \mid (y > x) \lor (x \ge 4) \}$

(b) $[1;4) \times (2;4] \setminus \{(2,3)\}$

- (e) $\{\langle x, y \rangle \in (1; 5]^2 \mid 4(x-2)^2 + 9(y-3)^2 \le 36\}$
- (c) $([1;6] \times (1;5]) \setminus ([4;5] \times (2;4))$
- (f) $\{\langle x, y \rangle \in \mathbb{N}^2 \mid \exists z \in \mathbb{N} : x^3 + y^3 = z^3 \}$

6. Подробно докажите (или опровергните) следующие утверждения:

- (a) Если $A \subseteq B$ и $B \subseteq C$, то $A \subseteq C$.
- (b) $|\mathcal{P}(A)| = 2^{|A|}$.
- (c) Множество рациональных⁴ чисел ℚ счётно.
- (d) $\mathcal{P}(\mathbb{N})$ несчётное множество.

¹ Здесь под универсумом имеется в виду множество доступных урэлементов. Считайте, что $\overline{A} = \mathfrak{U} \setminus A$.

² Считайте, что 1 не является простым числом.

^{3 □ –} самый обыкновенный квадрат, 🔏 – самый обыкновенный кот.

⁴ Рациональное число можно представить в виде дроби m/n, где $m \in \mathbb{Z}-$ целое, а $n \in \mathbb{N}-$ натуральное.