3. Sequences

- sequences and limits
- monotone sequences and subsequences
- inequalities and operations involving limits
- limit superior and limit inferior
- Bolzano-Weierstrass theorem
- Cauchy sequences

Sequences and limits

Definition 3.1 A **sequence** (of real numbers) is a function $x \colon \mathbb{N} \to \mathbb{R}$. To denote a sequence we write $(x_n)_{n=1}^{\infty}$, where x_n is the nth element in the sequence.

• sequence need not start at n=1, e.g., the sequence $x: \{n \in \mathbf{Z} \mid n \geq m\} \to \mathbf{R}$ is denoted $(x_n)_{n=m}^{\infty}$

Definition 3.2 A sequence $(x_n)_{n=1}^{\infty}$ is **bounded** if there exists some $B \ge 0$ such that $|x_n| \le B$ for all $n \in \mathbb{N}$.

examples:

- the sequence $\left(\frac{1}{n}\right)_{n=1}^{\infty}$ is bounded since $\frac{1}{n} \leq 1$ for all n
- the sequence $(n)_{n=1}^{\infty}$ is not bounded since for all $B \geq 0$ there exists some $n \geq B$ according to the Archimedian property

Definition 3.3 A sequence $(x_n)_{n=1}^{\infty}$ is said to **converge** to $x \in \mathbf{R}$ if for all $\epsilon > 0$, there exists an $M \in \mathbf{N}$ such that for all $n \geq M$, we have $|x_n - x| < \epsilon$. The number x is called a **limit** of the sequence. If the limit x is unique, we write

$$x = \lim_{n \to \infty} x_n.$$

A sequence that converges is said to be **convergent**, and otherwise is **divergent**.

Remark 3.4 A sequence $(x_n)_{n=1}^{\infty}$ is divergent if for all $x \in \mathbf{R}$, there exists some $\epsilon > 0$, such that for all $M \in \mathbf{N}$, there exists an $n \geq M$, so that $|x_n - x| \geq \epsilon$.

Theorem 3.5 Let $x, y \in \mathbf{R}$. If for all $\epsilon > 0$, $|x - y| < \epsilon$, then x = y.

proof: assume $x \neq y \implies |x-y| > 0$; take $\epsilon = \frac{1}{2}|x-y| \implies |x-y| < \frac{1}{2}|x-y| \implies |x-y| < 0$, which is a contradiction

Theorem 3.6 If $(x_n)_{n=1}^{\infty}$ converges to x and y, then x=y, i.e., a convergent sequence has a unique limit.

proof: let $\epsilon > 0$

- $(x_n)_{n=1}^{\infty}$ converges to $x \implies \exists M_1 \in \mathbb{N}$, $\forall n \geq M_1$, $|x_n x| < \epsilon/2$
- $(x_n)_{n=1}^{\infty}$ converges to $y \implies \exists M_2 \in \mathbb{N}, \ \forall n \geq M_2, \ |x_n-y| < \epsilon/2$
- let $M=M_1+M_2$, then $M\geq M_1$ and $M\geq M_2$, then we have

$$|x_M - x| < \epsilon/2$$
 and $|x_M - y| < \epsilon/2$,

hence,

$$|x - y| = |(x - x_M) + (x_M - y)|$$

 $\leq |x - x_M| + |y - x_M| < \epsilon/2 + \epsilon/2 = \epsilon$

ullet according to theorem 3.5, we have x=y

Remark 3.7 Sometimes we write ' $x_n \to x$ as $n \to \infty$ ' to mean $x = \lim_{n \to \infty} x_n$. We may also avoid the 'as $n \to \infty$ ' part if the limiting process is clear from the context.

Example 3.8 Given the sequence $(x_n)_{n=1}^{\infty}$ with $x_n = c \in \mathbf{R}$ for all $n \in \mathbf{N}$, we have $\lim_{n \to \infty} x_n = c$.

proof: let $\epsilon > 0$, M = 1, then for all $n \geq M$, we have

$$|x_n - c| = |c - c| = 0 < \epsilon$$

Example 3.9 The sequence $\left(\frac{1}{n}\right)_{n=1}^{\infty}$ converges to x=0, *i.e.*, $\lim_{n\to\infty}\frac{1}{n}=0$.

proof: let $\epsilon > 0$, choose an $M \in \mathbb{N}$ such that $M > 1/\epsilon$ (such an M exists according to the Archimedian property), then for all $n \geq M$, we have $\left|\frac{1}{n} - 0\right| = \left|\frac{1}{n}\right| \leq \frac{1}{M} < \epsilon$

Example 3.10 The sequence $\left(\frac{1}{n^2+2n+100}\right)_{n=1}^{\infty}$ converges to x=0.

proof: let $\epsilon>0$ choose $M\in {\bf N}$ such that $M\geq \epsilon^{-1}/2$, then for all $n\geq M$, we have

$$\left| \frac{1}{n^2 + 2n + 100} - 0 \right| = \frac{1}{n^2 + 2n + 100} \le \frac{1}{2n} \le \frac{1}{2M} < \epsilon$$

Example 3.11 The sequence $(x_n)_{n=1}^{\infty}$ where $x_n = (-1)^n$ is divergent.

proof: let $x \in \mathbf{R}$, $M \in \mathbf{N}$, then

$$|x_{M} - x_{M+1}| = \left| (-1)^{M} - (-1)^{M+1} \right| = 2$$

$$\implies 2 = |(x_{M} - x) + (x - x_{M+1})| \le |x_{M} - x| + |x_{M+1} - x|$$

$$\implies |x_{M} - x| \ge 1 \quad \text{or} \quad |x_{M+1} - x| \ge 1,$$

i.e., let $\epsilon=1$, n=M, we have either $|x_n-x|\geq \epsilon$ or $|x_{n+1}-x|\geq \epsilon$

Theorem 3.12 If $(x_n)_{n=1}^{\infty}$ is convergent, then $(x_n)_{n=1}^{\infty}$ is bounded.

proof:

- suppose $(x_n)_{n=1}^{\infty}$ converges to x, let $\epsilon = 1$, then there exists some $M \in \mathbb{N}$ such that for all $n \geq M$, $|x_n x| < 1 \implies x_n < |x| + 1$
- let $B=\max\{|x_1|,|x_2|,\ldots,|x_M|,|x|+1\}$, since $x_n\leq |x_n|$ for all $n\in {\bf N}$, $n\leq M$, and $x_n<|x|+1$ for all $n\geq M$, we have $B\geq |x_n|$ for all $n\in {\bf N}$

Monotone sequences

Definition 3.13

- A sequence $(x_n)_{n=1}^{\infty}$ is monotone increasing if $x_n \leq x_{n+1}$ for all $n \in \mathbb{N}$.
- A sequence $(x_n)_{n=1}^{\infty}$ is **monotone decreasing** if $x_n \geq x_{n+1}$ for all $n \in \mathbb{N}$.
- If $(x_n)_{n=1}^{\infty}$ is either monotone increasing or monotone decreasing, we say the sequence $(x_n)_{n=1}^{\infty}$ is **monotone** (or monotonic).

examples:

- the sequence $\left(\frac{1}{n}\right)_{n=1}^{\infty}$ is monotone decreasing
- the sequence $\left(-\frac{1}{n}\right)_{n=1}^{\infty}$ is monotone increasing
- the sequence $((-1)^n)_{n=1}^{\infty}$ is not monotone

Theorem 3.14 A monotone sequence $(x_n)_{n=1}^{\infty}$ converges if and only if it is bounded.

• If the sequence $(x_n)_{n=1}^{\infty}$ is monotone increasing and bounded, then

$$\lim_{n \to \infty} x_n = \sup\{x_n \mid n \in \mathbf{N}\}.$$

• If the sequence $(x_n)_{n=1}^{\infty}$ is monotone decreasing and bounded, then

$$\lim_{n \to \infty} x_n = \inf\{x_n \mid n \in \mathbf{N}\}.$$

proof: we prove for monotone increasing sequences

- suppose $(x_n)_{n=1}^{\infty}$ is convergent, according to theorem 3.12, it is bounded
- suppose $(x_n)_{n=1}^{\infty}$ is monotone increasing and bounded
 - $-(x_n)_{n=1}^{\infty}$ is monotone increasing $\implies x_n \leq x_{n+1}$ for all $n \in \mathbb{N}$

- $-(x_n)_{n=1}^{\infty}$ is bounded \Longrightarrow the set $\{x_n \mid n \in \mathbb{N}\}$ has supremum $x = \sup\{x_n \mid n \in \mathbb{N}\}$
- let $\epsilon > 0$, according to theorem 2.17, there exists some $M \in \mathbb{N}$ such that $x \epsilon < x_M \le x$, then for all $n \ge M$, we have

$$x - \epsilon < x_M \le x_n \le x < x + \epsilon \implies |x_n - x| < \epsilon$$

Example

recall the following lemma from example 1.8:

Lemma 3.15 Bernoulli's inequality. If $x \ge -1$ then $(x+1)^n \ge 1 + nx$ for all $n \in \mathbb{N}$.

Theorem 3.16 If $c \in (0,1)$ then the sequence $(c^n)_{n=1}^{\infty}$ converges and $\lim_{n\to\infty}c^n=0$. If c>1, the sequence $(c^n)_{n=1}^{\infty}$ does not converge.

proof:

- if c > 1, we show that the sequence $(c^n)_{n=1}^{\infty}$ is unbounded (and hence does not converge):
 - let $B \geq 0$, then there exists some $n \in \mathbb{N}$, $n > \frac{B}{c-1}$ such that

$$c^{n} = ((c-1)+1)^{n} \ge 1 + n(c-1) > n(c-1) > B$$

(the first inequality is because of lemma 3.15)

- if $c \in (0,1)$, we first show that $(c^n)_{n=1}^{\infty}$ is monotone decreasing and bounded (and hence, convergent), *i.e.*, show that $c^{n+1} \le c^n \le c$ for all $n \in \mathbb{N}$ by induction:
 - suppose $n=1 \implies c^2 \le c \le c$, the first inequality holds since 0 < c < 1
 - suppose n > 1, and $c^{n+1} \le c^n \le c$, then we have

$$c^{n+2} \le c^{n+1} \le c^n \le c$$

let $\lim_{n\to\infty} c^n = L$, we now show that L = 0:

- let $\epsilon > 0$, then there exists some $M \in \mathbf{N}$ such that for all $n \geq M$ such that

$$|c^n - L| < \frac{1}{2}(1 - c)\epsilon$$

- hence, we have

$$(1-c)|L| = |L-cL|$$

$$= |(L-c^{M+1}) + (c^{M+1} - cL)|$$

$$\leq |L-c^{M+1}| + c|c^M - L|$$

$$< |L-c^{M+1}| + |c^M - L|$$

$$< \frac{1}{2}(1-c)\epsilon + \frac{1}{2}(1-c)\epsilon$$

$$= (1-c)\epsilon,$$

i.e., $|L|<\epsilon$ for all $\epsilon>0$ (according to theorem 2.14) $\Longrightarrow |L|\leq 0$ $\Longrightarrow L=0$

Subsequences

Definition 3.17 Let $(x_n)_{n=1}^{\infty}$ be a sequence and $(n_i)_{i=1}^{\infty}$ be a strictly increasing sequence of natural numbers. The sequence $(x_{n_i})_{i=1}^{\infty}$ is called a **subsequence** of $(x_n)_{n=1}^{\infty}$.

example: consider the sequence $(x_n)_{n=1}^{\infty} = (n)_{n=1}^{\infty}$, i.e., $1, 2, 3, 4, \ldots$

- the following are subsequences of $(x_n)_{n=1}^{\infty}$:
 - $-1,3,5,7,9,11,\ldots$, described with $(x_{n_i})_{i=1}^{\infty}=(x_{2i-1})_{i=1}^{\infty}$
 - $-2, 4, 6, 8, 10, 12, \ldots$, described with $(x_{n_i})_{i=1}^{\infty} = (x_{2i})_{i=1}^{\infty}$
 - $-2,3,5,7,11,13,\ldots$, described with $(x_{n_i})_{i=1}^{\infty}$ where n_i are primes
- the following are not subsequences of $(x_n)_{n=1}^{\infty}$:
 - $-1,1,1,1,1,1,\ldots$
 - $-1,1,3,3,5,5,\dots$

Theorem 3.18 If $\lim_{n\to\infty} x_n = x$, then all subsequences of $(x_n)_{n=1}^{\infty}$ converge to x.

proof:

- let $(x_{n_i})_{i=1}^{\infty}$ be a subsequence of $(x_n)_{n=1}^{\infty}$
- let $\epsilon > 0$, then there exists some $M_0 \in \mathbb{N}$ such that $|x_n x| < \epsilon$ for all $n \ge M_0$
- let $M=M_0$, then for all $i\geq M$, since $n_i\geq i\geq M=M_0$, we have

$$|x_{n_i} - x| < \epsilon$$

Remark 3.19 Theorem 3.18 implies that the sequence $((-1)^n)_{n=1}^{\infty}$ is divergent.

Inequalities involving limits

Theorem 3.20 The sequence $(x_n)_{n=1}^{\infty}$ converges with $\lim_{n\to\infty} x_n = x$ if and only if $(|x_n - x|)_{n=1}^{\infty}$ converges with $\lim_{n\to\infty} |x_n - x| = 0$.

proof: let $\epsilon > 0$

• suppose $\lim_{n\to\infty} x_n = x$, then $\exists M_0 \in \mathbb{N}$ such that $\forall n \geq M_0$, $|x_n - x| < \epsilon$; let $M = M_0$, then $\forall n \geq M = M_0$, we have

$$|x_n - x - 0| = |x_n - x| < \epsilon$$

• suppose $\lim_{n\to\infty} |x_n-x|=0$, then $\exists M\in \mathbb{N}, \ \forall n\geq M$, we have $|x_n-x-0|<\epsilon, \ i.e., \ |x_n-x|<\epsilon$

Theorem 3.21 Squeeze theorem. Let $(a_n)_{n=1}^{\infty}$, $(b_n)_{n=1}^{\infty}$, and $(x_n)_{n=1}^{\infty}$ be sequences such that

$$a_n \le x_n \le b_n$$

for all $n \in \mathbb{N}$. Suppose that $(a_n)_{n=1}^{\infty}$ and $(b_n)_{n=1}^{\infty}$ converge and

$$\lim_{n \to \infty} a_n = x = \lim_{n \to \infty} b_n.$$

Then $(x_n)_{n=1}^{\infty}$ converges and $\lim_{n\to\infty} x_n = x$.

proof: let $\epsilon > 0$

- $a_n \to x \implies \exists M_1 \in \mathbf{N} \text{ such that } \forall n \geq M_1, |a_n x| < \epsilon$
- $b_n \to x \implies \exists M_2 \in \mathbf{N} \text{ such that } \forall n \geq M_2, |b_n x| < \epsilon$
- $\bullet \ a_n \le x_n \le b_n \implies a_n x \le x_n x \le b_n x$
- take $M = \max\{M_1, M_2\}$, then $\forall n \geq M$, we have

$$-\epsilon < a_n - x \le x_n - x \le b_n - x < \epsilon \implies |x_n - x| < \epsilon$$

Example 3.22 The sequence $\left(\frac{n^2}{n^2+n+1}\right)_{n=1}^{\infty}$ converges with

$$\lim_{n \to \infty} \frac{n^2}{n^2 + n + 1} = 1.$$

proof:

• let $\epsilon > 0$, we have

$$0 \le \left| \frac{n^2}{n^2 + n + 1} - 1 \right| = \left| \frac{n+1}{n^2 + n + 1} \right| \le \frac{n+1}{n^2 + n} = \frac{1}{n}$$

$$\bullet \ 0 \to 0 \ \text{and} \ \frac{1}{n} \to 0 \ \Longrightarrow \ \left| \frac{n^2}{n^2 + n + 1} - 1 \right| \to 0 \ \Longrightarrow \ \frac{n^2}{n^2 + n + 1} \to 1$$

Theorem 3.23 Let $(x_n)_{n=1}^{\infty}$ and $(y_n)_{n=1}^{\infty}$ be sequences.

• If $(x_n)_{n=1}^{\infty}$ and $(y_n)_{n=1}^{\infty}$ converge and $x_n \leq y_n$ for all $n \in \mathbb{N}$, then we have

$$\lim_{n \to \infty} x_n \le \lim_{n \to \infty} y_n.$$

• If $(x_n)_{n=1}^{\infty}$ converges and $a \leq x_n \leq b$ for all $n \in \mathbb{N}$, then

$$a \leq \lim_{n \to \infty} x_n \leq b.$$

proof: we show the first statement; the second statement can then be proved by considering $(y_n)_{n=1}^{\infty}$ and $(z_n)_{n=1}^{\infty}$ where $y_n = a \le x_n \le b = z_n$

- let $\lim_{n\to\infty} x_n = x$ and $\lim_{n\to\infty} y_n = y$, suppose x > y
- $x > y \implies x y > 0$, let $\epsilon = \frac{x y}{2} > 0$
- $x_n \to x \implies \exists M_1 \in \mathbf{N} \text{ s.t. } \forall n \ge M_1, \ |x_n x| < \frac{x y}{2}$
- $y_n \to y \implies \exists M_2 \in \mathbf{N} \text{ s.t. } \forall n \geq M_2, \ |y_n y| < \frac{x y}{2}$

• let $M=\max\{M_1,M_2\}$, we have $x_M-x>-\frac{x-y}{2}$ and $y_M-y<\frac{x-y}{2}$, hence,

$$x_M > x - \frac{x - y}{2} = \frac{x + y}{2} = y + \frac{x - y}{2} > y_M,$$

which contradicts to $x_n \leq y_n$ for all $n \in \mathbb{N}$

Operations involving limits

Theorem 3.24 Suppose $\lim_{n\to\infty} x_n = x$ and $\lim_{n\to\infty} y_n = y$.

- The sequence $(x_n + y_n)_{n=1}^{\infty}$ is convergent and $\lim_{n\to\infty} (x_n + y_n) = x + y$.
- For all $c \in \mathbf{R}$, the sequence $(cx_n)_{n=1}^{\infty}$ converges and $\lim_{n\to\infty} cx_n = cx$.
- The sequence $(x_n y_n)_{n=1}^{\infty}$ is convergent and $\lim_{n\to\infty} x_n y_n = xy$.
- If $y_n \neq 0$ for all $n \in \mathbb{N}$ and $y \neq 0$, then the sequence $\left(\frac{x_n}{y_n}\right)_{n=1}^{\infty}$ is convergent and $\lim_{n \to \infty} \frac{x_n}{y_n} = \frac{x}{y}$.

proof:

- ullet to show $x_n \to x$, $y_n \to y \implies x_n + y_n \to x + y$, let $\epsilon > 0$
 - $-x_n \to x \implies \exists M_1 \in \mathbf{N} \text{ such that } \forall n \geq M_1, |x_n x| < \epsilon/2$
 - $-y_n \to y \implies \exists M_2 \in \mathbf{N} \text{ such that } \forall n \geq M_2, |y_n y| < \epsilon/2$

- let $M = \max\{M_1, M_2\}$, then for all $n \ge M$, we have

$$|(x_n + y_n) - (x + y)| \le |x_n - x| + |y_n - y| < \epsilon/2 + \epsilon/2 = \epsilon$$

- to show $x_n \to x \implies cx_n \to cx$, let $\epsilon > 0$
 - $-x_n \to x \implies \exists M \in \mathbf{N} \text{ such that } \forall n \geq M, |x_n x| < \frac{1}{|c|+1} \epsilon$
 - then for all $n \geq M$, we have $|cx_n cx| = |c||x_n x| < \frac{|c|}{|c|+1}\epsilon < \epsilon$
- ullet we show that $x_n \to x$, $y_n \to y \implies x_n y_n \to xy$:
 - $-x_n \to x \implies |x_n x| \to 0$
 - $y_n \to y \implies |y_n y| \to 0$, and $(y_n)_{n=1}^{\infty}$ is bounded, *i.e.*, $\exists B \ge 0$, $|y_n| \le B$

- hence, we have

$$0 \le |x_n y_n - xy| = |x_n y_n + xy_n - xy_n - xy|$$

$$= |(x_n - x)y_n + (y_n - y)x|$$

$$\le |x_n - x||y_n| + |y_n - y||x|$$

$$\le |x_n - x|B + |y_n - y||x|$$

- according to the previous statements, we have

$$|x_n - x| \to 0 \implies |x_n - x|B \to 0$$

and

$$|y_n-y|\to 0 \implies |y_n-y||x|\to 0,$$
 then $|x_n-x|B+|y_n-y||x|\to 0$

- hence, according to theorem 3.21, $|x_ny_n-xy|\to 0$

- to prove $x_n \to x$, $y_n \to y$ $(y_n \neq 0 \text{ for all } n \in \mathbb{N}, y \neq 0) \implies \frac{x_n}{y_n} \to \frac{x}{y}$, we first show that there exists some b > 0 such that $|y_n| \geq b$:
 - let $\epsilon = \frac{|y|}{2}$, then $y_n \to y \implies \exists M \in \mathbf{N} \text{ s.t. } \forall n \geq M$, $|y_n y| < \frac{|y|}{2}$
 - then for all $n \geq M$, we have

$$\frac{|y|}{2} > |y_n - y| \ge ||y_n| - |y|| \implies |y_n| > \frac{|y|}{2}$$

(the second inequality is from the reverse triangle inequality)

- take $b = \min\{|y_1|, \dots, |y_M|, |y|/2\}$, we have $|y_n| \ge b$ for all $n \in \mathbb{N}$

we then show that $\left(\frac{1}{y_n}\right)_{n=1}^{\infty}$ converges with $\lim_{n\to\infty}\frac{1}{y_n}=\frac{1}{y}$: note that

$$0 \le \left| \frac{1}{y_n} - \frac{1}{y} \right| = \left| \frac{y_n - y}{y_n y} \right| = \frac{|y_n - y|}{|y_n||y|} \le \frac{|y_n - y|}{b|y|},$$

and $y_n \to y \implies \frac{|y_n - y|}{b|y|} \to 0$, hence, $\left|\frac{1}{y_n} - \frac{1}{y}\right| \to 0$, i.e., $\frac{1}{y_n} \to \frac{1}{y}$ put together, $x_n \to x$ and $\frac{1}{y_n} \to \frac{1}{y} \implies \frac{x_n}{y_n} \to \frac{x}{y}$

Theorem 3.25 If $(x_n)_{n=1}^{\infty}$ is a convergent sequence with $\lim_{n\to\infty} x_n = x$, and $x_n \geq 0$ for all $n \in \mathbb{N}$, then the sequence $(\sqrt{x_n})_{n=1}^{\infty}$ is convergent and $\lim_{n\to\infty} \sqrt{x_n} = \sqrt{x}$.

proof:

- suppose x=0, let $\epsilon>0$, we have $x_n\to 0 \implies \exists M\in \mathbb{N}$ s.t. $\forall n\geq M$, $|x_n-0|=|x_n|<\epsilon^2 \implies \forall n\geq M$, $|\sqrt{x_n}-\sqrt{x}|=|\sqrt{x_n}|<\sqrt{\epsilon^2}<\epsilon$
- suppose x > 0, we have

$$0 \le |\sqrt{x_n} - \sqrt{x}| = \left| \frac{(\sqrt{x_n} - \sqrt{x})(\sqrt{x_n} + \sqrt{x})}{\sqrt{x_n} + \sqrt{x}} \right|$$
$$= \frac{|x_n - x|}{\sqrt{x_n} + \sqrt{x}} \le \frac{|x_n - x|}{\sqrt{x}},$$

hence,
$$x_n \to x \implies |x_n - x| \to 0 \implies \frac{|x_n - x|}{\sqrt{x}} \to 0$$

 $\implies |\sqrt{x_n} - \sqrt{x}| \to 0$

Remark 3.26 Suppose the sequence $(x_n)_{n=1}^{\infty}$ is convergent and $\lim_{n\to\infty} x_n = x$. One can prove that

$$\lim_{n \to \infty} x_n^k = x^k$$

by induction. Moreover, if $x_n \geq 0$ for all $n \in \mathbb{N}$, one can also prove that

$$\lim_{n \to \infty} \sqrt[k]{x_n} = \sqrt[k]{x}.$$

Theorem 3.27 If $(x_n)_{n=1}^{\infty}$ is convergent and $\lim_{n\to\infty} x_n = x$, then $(|x_n|)_{n=1}^{\infty}$ is convergent and $\lim_{n\to\infty} |x_n| = |x|$.

proof: let $\epsilon > 0$; $x_n \to x \implies \exists M \in \mathbb{N}$ such that $\forall n \geq M$, $|x_n - x| < \epsilon$; hence, by reverse triangle inequality, for all $n \geq M$, we have

$$||x_n| - |x|| \le |x_n - x| < \epsilon$$

Some special sequences

Theorem 3.28 If p > 0 then $\lim_{n \to \infty} n^{-p} = 0$.

proof: let $\epsilon > 0$, choose $M \in \mathbb{N}$ such that $M > (1/\epsilon)^{1/p}$, then for all $n \geq M$, $|n^{-p} - 0| = 1/n^p \leq 1/M^p < \epsilon$

Theorem 3.29 If p > 0 then $\lim_{n \to \infty} p^{1/n} = 1$.

proof:

- if p = 1, $\lim_{n \to \infty} p^{1/n} = \lim_{n \to \infty} 1^{1/n} = 1$
- suppose p > 1

$$-p > 1 \implies p^{1/n} > 1^{1/n} = 1 \implies p^{1/n} - 1 > 0$$

- according to the Bernoulli's inequality (example 1.8), we have

$$\left(1 + (p^{1/n} - 1)\right)^n \ge 1 + n(p^{1/n} - 1) \implies \frac{p - 1}{n} \ge p^{1/n} - 1 > 0$$

$$-\frac{p-1}{n} \to 0 \implies p^{1/n} - 1 \to 0 \implies p^{1/n} \to 1$$

• if 0 1, hence, we have

$$\lim_{n \to \infty} p^{1/n} = \lim_{n \to \infty} \frac{1}{(1/p)^{1/n}} = 1/1 = 1$$

Theorem 3.30 The sequence $(n^{1/n})_{n=1}^{\infty}$ satisfies $\lim_{n\to\infty} n^{1/n} = 1$.

proof:

- ullet one can simply show that $n^{1/n} \geq 1$ by induction $\implies n^{1/n} 1 > 0$
- according to the binomial theorem, for all $x, y \in \mathbf{R}$ and $n \in \mathbf{N}$, we have $(x+y)^n = \sum_{k=0}^n \binom{n}{k} x^{n-k} y^k$, where $\binom{n}{k} = \frac{n!}{k!(n-k)!}$
- let x = 1, $y = n^{1/n} 1$, for all n > 1, we have

$$n = (1 + n^{1/n} - 1)^n = \sum_{k=0}^n \binom{n}{k} (n^{1/n} - 1)^k \ge \binom{n}{2} (n^{1/n} - 1)^2$$

$$\implies n \ge \frac{n!}{2!(n-2)!} (n^{1/n} - 1)^2 = \frac{1}{2} n(n-1) (n^{1/n} - 1)^2$$

$$\implies \sqrt{\frac{2}{n-1}} \ge n^{1/n} - 1 > 0$$

$$\implies n^{1/n} - 1 \to 0 \implies n^{1/n} \to 1$$

Limit superior and limit inferior

Definition 3.31 Let $(x_n)_{n=1}^{\infty}$ be a bounded sequence. Define, if the limits exist, the **limit superior** and **limit inferior** respectively, as

$$\limsup_{n \to \infty} x_n = \lim_{n \to \infty} (\sup\{x_k \mid k \ge n\})$$

and

$$\liminf_{n \to \infty} x_n = \lim_{n \to \infty} (\inf\{x_k \mid k \ge n\}).$$

Theorem 3.32 Let $(x_n)_{n=1}^{\infty}$ be a bounded sequence; let

$$a_n = \sup\{x_k \mid k \ge n\}$$
 and $b_n = \inf\{x_k \mid k \ge n\}$.

Then:

- The sequence $(a_n)_{n=1}^{\infty}$ is monotone decreasing and bounded.
- The sequence $(b_n)_{n=1}^{\infty}$ is monotone increasing and bounded.
- We have $\liminf_{n\to\infty} x_n \leq \limsup_{n\to\infty} x_n$.

proof:

we first prove the following lemma:

Lemma 3.33 Let $A, B \subseteq \mathbf{R}$, $A, B \neq \emptyset$, and A, B are bounded. If $A \subseteq B$ then we have $\inf B \leq \inf A \leq \sup A \leq \sup B$.

 $-A \subseteq B \implies \sup B$ is an upper bound of $A \implies \sup A \le \sup B$

- similarly, $\inf B$ is an lower bound of $A \implies \inf B \leq \inf A$
- $-A, B \neq \emptyset \implies \inf A \leq \sup A \implies \inf B \leq \inf A \leq \sup A \leq \sup B$
- we now show the first two statements in the theorem
 - $-(x_n)_{n=1}^{\infty}$ is bounded \implies there exists some $B \ge 0$ such that $-B \le x_n \le B$
 - we have $\forall n \in \mathbb{N}$, $\{x_k \mid k \geq n+1\} \subseteq \{x_k \mid k \geq n\} \subseteq \{x_n \mid n \in \mathbb{N}\}$, according to lemma 3.33, this implies that

$$-B \le b_n \le b_{n+1} \le a_{n+1} \le a_n \le B,$$

i.e., $(a_n)_{n=1}^{\infty}$ is bounded monotone decreasing and $(b_n)_{n=1}^{\infty}$ is bounded monotone increasing (\Longrightarrow $(a_n)_{n=1}^{\infty}$ and $(b_n)_{n=1}^{\infty}$ converge)

• according to the previous inequalities, we have $b_n \leq a_n$ for all $n \in \mathbb{N}$ $\implies \lim_{n \to \infty} b_n \leq \lim_{n \to \infty} a_n$ (theorem 3.23), *i.e.*, $\lim \inf_{n \to \infty} x_n \leq \lim \sup_{n \to \infty} x_n$

Example 3.34 We have the following:

$$\limsup_{n \to \infty} (-1)^n = 1 \quad \text{and} \quad \liminf_{n \to \infty} (-1)^n = -1.$$

proof: we have $\forall n \in \mathbb{N}$, the set $\{(-1)^k \mid k \geq n\} = \{-1, 1\} \implies \sup\{(-1)^k \mid k \geq n\} = 1 \text{ and } \inf\{(-1)^k \mid k \geq n\} = -1 \implies \limsup_{n \to \infty} (-1)^n = 1 \text{ and } \liminf_{n \to \infty} (-1)^n = -1$

Example 3.35 We have $\limsup_{n\to\infty}\frac{1}{n}=\liminf_{n\to\infty}\frac{1}{n}=0.$

proof: $\forall n \in \mathbb{N}$, $\sup\{1/k \mid k \ge n\} = 1/k$ and $\inf\{1/k \mid k \ge n\} = 0$, hence,

$$\limsup_{n\to\infty}\frac{1}{n}=\lim_{n\to\infty}\frac{1}{k}=0\quad\text{and}\quad \liminf_{n\to\infty}\frac{1}{n}=\lim_{n\to\infty}0=0$$

Bolzano-Weierstrass theorem

Theorem 3.36 Let $(x_n)_{n=1}^{\infty}$ be a bounded sequence. Then, there exists subsequences $(x_{n_i})_{i=1}^{\infty}$ and $(x_{m_i})_{i=1}^{\infty}$ such that

$$\lim_{i\to\infty} x_{n_i} = \limsup_{n\to\infty} x_n \quad \text{and} \quad \lim_{i\to\infty} x_{m_i} = \liminf_{n\to\infty} x_n.$$

proof: let $a_n = \sup\{x_k \mid k \ge n\}$

- $a_1 = \sup\{x_k \mid k \ge 1\} \implies \exists n_1 \ge 1 \text{ such that } a_1 1 < x_{n_1} \le a_1$
- $a_{n_1+1} = \sup\{x_k \mid k \ge n_1+1\} \implies \exists n_2 > n_1 \text{ such that } a_{n_1+1} \frac{1}{2} < x_{n_2} \le a_{n_1+1}$
- $a_{n_2+1} = \sup\{x_k \mid k \ge n_2+1\} \implies \exists n_3 > n_1 \text{ such that } a_{n_2+1} \frac{1}{3} < x_{n_3} \le a_{n_2+1}$

ullet repeatedly, we can find a sequence of integers $n_1 < n_2 < \cdots$ such that

$$a_{n_{i-1}+1} - \frac{1}{i} < x_{n_i} \le a_{n_{i-1}+1}$$

(defining $n_0 = 0$)

- $(a_{n_{i-1}+1})_{i=1}^{\infty}$ is a subsequence of $(a_n)_{n=1}^{\infty}$, and $\lim_{n\to\infty} a_n = \limsup_{n\to\infty} x_n \implies \lim_{n\to\infty} a_{n_{i-1}+1} = \limsup_{n\to\infty} x_n \implies \lim_{n\to\infty} x_n$ $\implies \lim_{n\to\infty} x_{n_i} = \lim\sup_{n\to\infty} x_n$
- similarly, we can find a subsequence of $(x_n)_{n=1}^{\infty}$ that converges to $\liminf_{n\to\infty}x_n$

Theorem 3.37 Bolzano-Weierstrass. Every bounded sequence consisting of real numbers has a convergent subsequence.

Theorem 3.38 Let $(x_n)_{n=1}^{\infty}$ be a bounded sequence. Then, $(x_n)_{n=1}^{\infty}$ converges if and only if $\liminf_{n\to\infty}x_n=\limsup_{n\to\infty}x_n$.

proof:

- suppose $\lim_{n\to\infty} x_n = x$, then the subsequences that converge to $\limsup_{n\to\infty} x_n$ and $\liminf_{n\to\infty} x_n$ must converge to x (theorem 3.18)
- suppose $\limsup_{n\to\infty} x_n = \liminf_{n\to\infty} x_n = x$, for all $n \in \mathbb{N}$, according to the squeeze theorem,

$$\inf\{x_k \mid k \ge n\} \le x_n \le \sup\{x_k \mid k \ge n\} \implies \lim_{n \to \infty} x_n = x$$

Sequences

Cauchy sequences

Definition 3.39 A sequence $(x_n)_{n=1}^{\infty}$ is **Cauchy** if for all $\epsilon > 0$, there exists an $M \in \mathbb{N}$ such that for all $n, k \geq M$, we have $|x_n - x_k| < \epsilon$.

Remark 3.40 A sequence $(x_n)_{n=1}^{\infty}$ is not Cauchy if there exists some $\epsilon > 0$, such that for all $M \in \mathbb{N}$, there exists some $n, k \geq M$, so that we have $|x_n - x_k| \geq \epsilon$.

Example 3.41 The sequence $\left(\frac{1}{n}\right)_{n=1}^{\infty}$ is Cauchy.

proof: let $\epsilon > 0$, choose $M \in \mathbb{N}$ such that $M > 2/\epsilon$, then for all $n, k \geq M$, we have

$$\left| \frac{1}{n} - \frac{1}{k} \right| \le \frac{1}{n} + \frac{1}{k} \le \frac{2}{M} < \epsilon$$

Example 3.42 The sequence $((-1)^n)_{n=1}^{\infty}$ is not Cauchy.

proof: let $\epsilon = 1$, $M \in \mathbb{N}$, n = M, k = M + 1, then

$$\left| \left(-1 \right)^n - \left(-1 \right)^k \right| = 2 \ge \epsilon$$

Theorem 3.43 If the sequence $(x_n)_{n=1}^{\infty}$ is Cauchy, then it is bounded.

proof:

- let $\epsilon=1$, $(x_n)_{n=1}^\infty$ is Cauchy $\Longrightarrow \exists M\in \mathbf{N}$ such that $\forall n,k\geq M$, $|x_n-x_k|<1$
- \bullet let $k=M \implies \forall n \geq M$, $|x_n-x_M|<1 \implies \forall n \geq M$, we have $|x_n|<|x_M|+1$
- take $B = \max\{|x_1|, |x_2|, \dots, |x_M|, |x_M|+1\}$, then $|x_n| \leq B$ for all $n \in \mathbb{N}$

Theorem 3.44 If the sequence $(x_n)_{n=1}^{\infty}$ is Cauchy and a subsequence $(x_{n_i})_{i=1}^{\infty}$ converges, then $(x_n)_{n=1}^{\infty}$ converges.

proof: let $\epsilon > 0$

- $(x_n)_{n=1}^{\infty}$ is Cauchy $\Longrightarrow \exists M_1 \in \mathbf{N}$ such that $\forall n, k \geq M_1$, $|x_n x_k| < \epsilon/2$
- let $\lim_{i\to\infty} x_{n_i} = x \implies \exists M_2 \in \mathbf{N}$ such that $\forall i \geq M_2$, $|x_{n_i} x| < \epsilon/2$
- let $M = \max\{M_1, M_2\}$, then $\forall k \geq M$, $n_k \geq k \geq M_1$, $n_k \geq k \geq M_2$, hence,

$$|x_k - x| \le |x_k - x_{n_k}| + |x_{n_k} - x| < \epsilon/2 + \epsilon/2 = \epsilon$$

Theorem 3.45 Completeness of the real numbers. A sequence of real numbers $(x_n)_{n=1}^{\infty}$ is Cauchy if and only if the sequence $(x_n)_{n=1}^{\infty}$ is convergent.

proof:

- suppose $(x_n)_{n=1}^{\infty}$ is Cauchy $\Longrightarrow (x_n)_{n=1}^{\infty}$ is bounded (theorem 3.43) \Longrightarrow by theorem 3.37 there exists convergent subsequence of $(x_n)_{n=1}^{\infty}$ $\Longrightarrow (x_n)_{n=1}^{\infty}$ is convergent (theorem 3.44)
- suppose $\lim_{n\to\infty} x_n = x$, let $\epsilon > 0$, then $\exists M \in \mathbb{N}$, $\forall n \geq M$, we have $|x_n x| < \epsilon/2$; let $k \geq M$, then

$$|x_n - x_k| \le |x_n - x| + |x - x_k| < \epsilon/2 + \epsilon/2 = \epsilon$$

Remark 3.46 We say a set is **Cauchy-complete**, or just **complete**, if all Cauchy sequence of elements in the set converges to some point in the set. Theorem 3.45 indicates that \mathbf{R} is complete.

Remark 3.47 The set \mathbf{Q} is *not* complete. Since \mathbf{Q} does not have the least upper bound property, then, e.g., $\sup\{x_n \mid n \in \mathbf{N}\}$, $\sup\{x_k \mid k \geq n\}$, etc., might not exist in \mathbf{Q} .