Esercitazione N.5: Transistor JFET.

Gruppo AC Belliardo Federico, Franchi Giulia, Mazzoncini Francesco

November 10, 2016

1 Scopo e strumentazione

Studiare le caratteristiche e realizzare un amplificatore con il JFET a canale N 2N3819.

2 Studio funzionamento del JFET

Montaggio e ossevazioni qualitative. E' stato montato il circuito in fig. 1, con $R_1=0.994\pm0.008\,k\Omega$, $V_1=15.11\pm0.08\,V$ e $V_2=-15.01\pm0.08\,V^{-1}$. Le due sorgenti di tensione DC sono state ottenute dalle due boccole del generatore in dotazione. Le resistenze massime e minime del potenziometro (indicato con R_2) sono: $R_{max}=1.95\pm0.01\,k\Omega$ e $R_{min}=0.3\pm0.3\,\Omega$

Variando la resistenza del potenziometro (partitore di tensione) cambia la tensione di gate (V_{GS}) , dunque il JFET entra in conduzione solamente quando si supera la tensione $V_{GS} > V_P$ (tensione di pinch-off), quando ciò succede si accende il led. Qualitativamente stimiamo: $V_P \sim 3 V$.

Misura della corrente I_D in funzione di V_{GS} . Si sono prese misure della tensione V_{GS} e di V_{R1} (caduta di potenziale ai capi di R_1) utilizzando il multimetro digitale ², da V_{R1} si è ricavata $I_D = \frac{V_{R1}}{R_1}$. Nella tabella 1 e in fig. 4 sono riporati i dati presi.

Gli errori delle misure di tensione nei grafici e nella tabella sono calcolati come specificato nel manuale del multimetro.

$V_{R1}(V)$	$\sigma V_{R1}(V)$	$V_{GS}(V)$	$\sigma V_{GS}(V)$	$I_D(mA)$	$\sigma I_D(mA)$
0.013	0.001	-3.27	0.02	0.013	0.001
0.078	0.001	-3.13	0.02	0.079	0.001
0.264	0.002	-2.94	0.02	0.266	0.003
0.462	0.003	-2.81	0.02	0.465	0.005
1.02	0.01	-2.51	0.02	1.03	0.01
1.69	0.01	-2.23	0.01	1.70	0.02
2.94	0.02	-1.81	0.01	2.96	0.03
4.34	0.02	-1.37	0.01	4.37	0.04
6.22	0.03	-0.872	0.004	6.26	0.06
8.01	0.04	-0.413	0.002	8.06	0.08
9.36	0.05	-0.037	0.001	9.42	0.09

Table 1: Dati di corrente I_D e di tensione V_{GS} , V_{R1}

La retta di carico è: $V_1 - R_1 I_D - V_\gamma - V_{DS} = 0$, dove $V_\gamma \sim 1.8\,V$ è la caduta di tensione sul led rosso (caratteristica del led). Questa retta di carico è valida quando il led è acceso cioè quando vi è una corrente I_D : sono in zona ohmica o di saturazione, mentre $V_{DS} = V_1$ è la retta di carico quando sono in zona di interdizione.

[Aggiungere retta di carico] La fig. 2 riporta un'immagine delle curve caratteristiche del JFET nel caso in cui la tensione di pinch-off sia $V_P = -3.0 \, V$, sul quale è riportata la retta di carico. Si vede che per i valori delle tensioni V_{DS} esplorati (calcolati dalla retta di carico e riportati nella tabella 1 siamo sempre in zona di saturazione.

E' stato eseguito un fit di una funzione parabolica $(I_D = K_P(V_{GS} - V_P)^2)$, considerando solamente i dati attorno alla tensione di *pinch-off*, cioè in una regione in cui ci aspettiamo valga il comportamento ideale.

 $^{^1\}mathrm{Misure}$ eseguite con il multimetro digitale

 $^{^2}$ Abbiamo evitato l'uso dell'oscilloscopio perchè le nostre misure non fossero affette dall'errore sistematico del 3%

Figure 1: Schema di amplificatore con JFET in corrente continua.

Figure 2: Curve caratteristiche del JFET dal datasheet.

Figure 3: Corrente di drain misurata in funzione della tensione V_{GS} .

Per il fit numerico si è utilizzata la funzione curvefit della libreria pylab con l'opzione absolute sigma = "true", poichè abbiamo considerando gli errori come statistici. Riportiamo il grafico in figura 4 e di seguito parametri fittati con la relativa matrice di covarianza: $K_P = 1.30 \pm 0.05 \, \frac{mA}{V^2}$, $V_P = -3.39 \pm 0.02 \, V$, $\Sigma_{ij} = \begin{pmatrix} 3.46 \cdot 10^{-3} & 8.40 \cdot 10^{-4} \\ 8.40 \cdot 10^{-4} & 2.69 \cdot 10^{-4} \end{pmatrix}$. Con un $\chi^2/ndof = 3/4$.

Il punto del grafico per cui $V_{GS} \sim 0 V$ corrisponde alla corrente $I_{DSS} = 9.5 \pm 0.2 \, mA^3$, mentre $V_P \sim -3.3 \, V$ (tensione a $I_D \sim 0 \, mA$), entrambe stimate dal grafico.

Alternativamente si possono utilizzare le informazioni del fit: $I_{DSS} = K_P V_P^2 = 15.0 \pm 0.3 \, mA$. I due valori non sono compatibili, perchè il fit esguito non può essere estrapolato fino a tensioni prossime allo zero.

Il valore di V_P è molto variabile per costruzione, ma il valore misurato è compatibile con quello tipico indicato nel datasheet: $V_{P,datasheet} = -3 \, V$. Per I_{DSS} sono riportati possibili valori tra $2 \, mA$ e $20 \, mA$, entrambi i valori ottenuti sono compatibili.

3 Montaggio amplificatore

Stima della tensione V_P e della corrente I_{DSS} . Si è montato il circuito in fig. 5, con i componenti: $R_1=0.994\pm0.008\,k\Omega,\,R_2=1.95\pm0.02\,k\Omega,\,R_3=4.66\pm0.04\,M\Omega$ e $C_1=99\pm4\,nF$ e $V_1=15.01\pm0.08\,V$. Si è regolato il potenziometro in modo che la corrente di quiescenza fosse la metà di I_{DSS} , il valore misurato di $V_{R1}=4.49\pm0.03\,V$, dal quale si ottiene: $I_D=4.52\pm0.04\,mA$. La resistenza a cui si osserva ciò è: $R_{part}=230\pm2\Omega$ (è lasciata costante e sarà usata successivamente). Si è misurata la tensione $V_{GS}=0.972\pm0.005$. Dalla formula $^4V_{GS}=V_P\left(1-\sqrt{\frac{I_D}{I_{DSS}}}\right)$ (valida in zona di saturazione), ricaviamo il valore atteso per V_{GS} cioè: $V_{GS}=-1.05\pm0.01\,V$.

Da questi dati si può anche dare una stima della tranconduttanza: $g_m = \frac{i_D}{v_{GS}} = \frac{2I_{DSS}}{|V_P|} \sqrt{\frac{I_D}{I_{DSS}}} = 3.87 \pm 0.05 \, mS.$

4 Misure a frequenza fissa

Tutte le misure di questa sezione sono prese usando una frequenza fissa di $f_0 = 1.00 \pm 0.01 \, kHz$. L'ingresso del circuito in entrambi i casi è al gate.

Circuito common source. Si sono prese le misure si tensione in uscita dal drain. I dati sono riportati nella tabella 2.

Trascuarando la corrente che scorre nel gate abbiamo le due equazioni per piccoli segnali: $i_D = g_m v_{gs} = \frac{v_S}{R_{part}}$ e $i_D = g_m v_{gs} = -\frac{v_D}{R_1}$, da queste si ottiene: $A_V = -\frac{v_D}{v_G} = -\frac{R_1 g_m}{1 + R_{part} g_m} = -2.01 \pm 0.02$. Come si vede dalla

 $^{^3}$ L'errore su I_{DSS} è la semidispersione dell'intervallo massimo in cui è ragionevole si trovi $V_{GS} \sim 0 V$.

 $^{^4}$ In questa formula e nelle seguenti il valori di I_{DSS} è quello stimato dal grafico, mentre V_P è quello ottenuto dal fit

Figure 4: Fit parabolico intorno alla tensione di pinch off.

Figure 5: Schema di JFET in corrente continua.

$V_{IN}(V)$	$\sigma V_{IN}(V)$	$V_{OUT}(V)$	$\sigma V_{OUT}(V)$	A_V	σA_V
0.109	0.001	0.208	0.001	1.91	0.02
0.220	0.002	0.424	0.001	1.93	0.02
0.428	0.002	0.816	0.001	1.907	0.009
0.768	0.004	1.510	0.002	1.97	0.01
0.936	0.002	1.840	0.002	1.966	0.005
1.300	0.004	2.540	0.002	1.954	0.006

Table 2: Guadagno JFET in common source.

tabella per gli intervalli di tensione per cui si sono prese le misure l'amplificazione rimane circa costante e il suo valore medio è: $A_V=1.938\pm0.005$.

Si è iniziato ad avere clipping superiore per $V_{clipping,sup} = 10.2 \pm 0.1 V$. Abbiamo impostato l'oscilloscopio in DC e si è osservato che il *clipping* taglia il segnale a 15 V che è la massima tensione erogabile (tensione di alimentazione). [spiegare perchè non c'è clipping inferiore] Si osserva inversione del segnale, come si vede dalla formula del guadagno in cui compare un segno meno.

Circuito source follower. Nella tabella ?? sono riportati i dati prendendo come uscita il source, si sono ripetute le stesse misure e analisi.

[inserire la tabella]

Dalle stese equazioni della sezione precedente otteniamo la relazione: $A_V = \frac{R_{part}g_m}{1+R_{part}g_m}$, dalla quale si può stimare teoricamente il guadagno atteso come: $A_V = \pm$. La media delle misure da $A_V = \pm$. I due valori sono in accordo entro l'errore sperimentale. In questo caso non si ha inversione.

Si osserva clipping inferiore alla tensione: $V_{clipping,inf} = \pm$. [Spiegare perchè non si ha clipping superiore] [vedere se mettere l'immagine del modello a piccoli segnali, soprattuto quale mettere...]

Nella formula per determinare il guadagno vediamo g_m sia a numeratore che a denominatore, duquue non possiamo propagare l'errore considerandoli come indipendenti (sovrastimeremmo troppo l'errore sull'amplificazione). La propagazione statistica eseguita con le derivate parziali (di $A_V(g_m, R_1, R_{part})$) sommate in quadratura li considera come errori non indipendenti, quindi si è eseguito il calcolo in questo modo.

5 Misura impedenza di ingresso

Trascurando le impedenze tra i terminali del JFET possiamo stimare $R_{int} = \frac{1}{j\omega C} + R_3 \sim R_3 = 4.66 \pm 0.04 M\Omega$. Per eseguire la misura si sono misurate le uscite con e senza resistenza R_S posta in serie al generatore di funzioni. La resistenza in ingresso attesa si ottiene dalla formula del partitore di tensione, $\frac{R_S}{R_I N} = \frac{V_1}{V_2} - 1$ (dove V_1 è la tensione misurata senza resistenza R_S). Si sono ripetute le misure per le frequenze $f_1 = 1kHz$ e $f_2 = 10kHz$.

In tabella sono anche riportate le resistenze attese calcolate teoricamente alle due frequenze:

•	V_1	V_2	R_{IN}	$R_{IN,att}$
1kHz	•	•	•	•
10kHz	•	•	•	•

Si nota che L'impedenza misurata sperimentalmente è minore di quella calcolata teoricamente a causa delle impendenze delle capacità tra i terminali del JFET, che sono poste in parallelo alla resistenzea R_3 .

6 Aumento del guadagno

In questa sezione si è mantenta costante la frequenza di lavoro $(f_0 = 1.00 \pm 0.01 \, kHz)$ e variando il potenziometro si sono effettuate diverse misure di tensione in uscita. [abbiamo dovuto verificare che l'ingresso fosse costante?]. Il valore massimo del guadagno è risultato essere quello per cui la resistenza R_S era minore (teoricamente nulla) $(R_{S,min} = 0.3 \pm 0.3\Omega)$. Il valore teorico del guadagno con questa resistenza è: $A_V = \pm$, che non è compatibile con il valore misurato.