

REPORT DOCUMENTATION PAGE

Form Approved
OMB No. 0704-0188

Public reporting burden for this collection of information is estimated to average 1 hour per response, including the time for reviewing instructions, searching existing data sources, gathering and maintaining the data needed, and completing and reviewing this collection of information. Send comments regarding this burden estimate or any other aspect of this collection of information, including suggestions for reducing this burden to Department of Defense, Washington Headquarters Services, Directorate for Information Operations and Reports (0704-0188), 1215 Jefferson Davis Highway, Suite 1204, Arlington, VA 22202-4302. Respondents should be aware that notwithstanding any other provision of law, no person shall be subject to any penalty for failing to comply with a collection of information if it does not display a currently valid OMB control number. **PLEASE DO NOT RETURN YOUR FORM TO THE ABOVE ADDRESS.**

1. REPORT DATE (DD-MM-YYYY) 03-09-2003	2. REPORT TYPE Technical Viewgraph Presentation	3. DATES COVERED (From - To)		
4. TITLE AND SUBTITLE Methyl tin (IV) derivatives of H ₂ TeF ₅ and HN (SO ₂ CF ₃) ₂		5a. CONTRACT NUMBER		
		5b. GRANT NUMBER		
		5c. PROGRAM ELEMENT NUMBER		
6. AUTHOR(S) Ashwani Vij (AFRL/PRSP); William W. Wilson, Vandana Vij (ERC); Jerry A. Boatz (AFRL/PRSP); Robert C. Corley (AFRL/PRS); Fook S. Tham (UC Riverside); M. Gerken (USC)		5d. PROJECT NUMBER DARP		
		5e. TASK NUMBER A205		
		5f. WORK UNIT NUMBER		
7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES)		8. PERFORMING ORGANIZATION REPORT NUMBER AFRL-PR-ED-VG-2003-219		
Air Force Research Laboratory (AFMC) AFRL/PRS 5 Pollux Drive Edwards AFB CA 93524-7048				
9. SPONSORING / MONITORING AGENCY NAME(S) AND ADDRESS(ES)		10. SPONSOR/MONITOR'S ACRONYM(S)		
Air Force Research Laboratory (AFMC) AFRL/PRS 5 Pollux Drive Edwards AFB CA 93524-7048		11. SPONSOR/MONITOR'S NUMBER(S) AFRL-PR-ED-VG-2003-219		
12. DISTRIBUTION / AVAILABILITY STATEMENT Approved for public release; distribution unlimited.				
13. SUPPLEMENTARY NOTES For presentation at the National ACS Meeting (Ionic Liquids Symposium) in New York, NY, taking place 7-11 September 2003. Also being used as a journal article for "Inorganic Chemistry."				
14. ABSTRACT				
15. SUBJECT TERMS				
16. SECURITY CLASSIFICATION OF:		17. LIMITATION OF ABSTRACT	18. NUMBER OF PAGES	19a. NAME OF RESPONSIBLE PERSON Leilani Richardson
a. REPORT Unclassified	b. ABSTRACT Unclassified	c. THIS PAGE Unclassified	A 18	19b. TELEPHONE NUMBER (include area code) (661) 275-5015

20030929 083

Methyl tin(IV) derivatives of HOTeF₅ and HN(SO₂CF₃)₂

Ashwani Vij
Air Force Research Laboratory
PRSP
ashwani.vij@edwards.af.mil
(661) 275-6278

Main Group Chemistry Symposium-226th National ACS Meeting, New York
September 11, 2003

Coworkers & Collaborators

**Dr. William W. Wilson, Ms. Vandana Vij, Dr. Jerry A. Boatz, &
Dr. Robert C. Corley**

Air Force Research Laboratory, PRSP, Bldg 8451, 10 E. Saturn Blvd. Edwards Air Force Base,
CA 93524

Dr. Fook S. Tham

Department of Chemistry, University of California, Riverside CA 92521

Dr. Michael Gerken

Loker Hydrocarbon Research Institute and Department of Chemistry, University of Southern
California, Los Angeles, CA 90089

Synthesis of trimethyltin(IV) derivatives by acid solvolysis of $(CH_3)_4Sn$

- ✓ Tetramethyltin is used in large excess
- ✓ Reaction by-products can be easily removed under vacuum
- ✓ Trialkyltin(IV) derivatives are colorless viscous oils that are highly sensitive to moisture and donor solvents.

Coordination complex formation with donor solvents

Formation of the hydrated trimethylstannyl cation

The hydrated salt can be isolated with $\text{N}(\text{SO}_2\text{CF}_3)_2$ anion but NOT for OTeF_5 anion.

The compound isolated is $[\text{Me}_3\text{Sn}(\text{OH}_2)_2\text{SiF}_6$

The hydrolysis of trimethyltin teflate results in the decomposition of the OTeF_5 group

Hydrated trimethyltin(IV) cation

Hydrogen bonding

Multinuclear NMR Parameters

Table 1. ^1H , ^{13}C NMR Spectroscopic Data^a and calculated^{b,c} C-Sn-C angles for $(\text{CH}_3)_3\text{SnX}$ [X = OTeF₅ and N(SO₂F/CF₃)₂]

Solute	Solvent ^d	$\delta(^1\text{H})$ ppm	$^2J(^{119}\text{Sn}-^1\text{H})$ Hz	$\theta(\text{C-Sn-C})^e$ ($^{\circ}$)	$\delta(^{13}\text{C})$ ppm	$^1J(^{119}\text{Sn}-^{13}\text{C})$ Hz	$\theta(\text{C-Sn-C})^e$ ($^{\circ}$)
$(\text{CH}_3)_3\text{SnOTeF}_5$	neat	0.84	59.2 ^e	111.7	0.84	376.9(360.3)	109.8
	CH ₂ Cl ₂	0.79	58.5(55.9)	111.3	0.90	374.0(357.4)	109.6
	acetone	0.69	68.8(65.8)	118.8	1.55	480.4(459.3)	118.9
	CH ₃ CN	0.66	69.2(66.2)	119.2	1.49	484.6(463.1)	119.3
	DMSO	0.50	69.5(66.6)	119.4	1.05	511.4(490.0)	121.6
$(\text{CH}_3)_3\text{SnN}(\text{SO}_2\text{F})_2$	AN/H ₂ O	0.46	69.6(66.7)	119.5	0.10	508.5(486.0)	121.4
	DMSO/H ₂ O	0.43	70.1(68.5) ^e	120.0	0.84	515.5(492.5)	122.0
	CH ₂ Cl ₂	0.91	63.8(61.6)	114.7	1.6	416.8(400.3)	113.3
$(\text{CH}_3)_3\text{SnN}(\text{SO}_2\text{CF}_3)_2$	neat	0.91	62.3(59.9)	113.6	1.4	404.1(387.7)	112.2
	DMSO	0.83	72.4(70.0)	122.2	-0.2	528.3(509.9)	123.1
	neat	0.84	64.2(61.6)	115.0	2.1	412.6(394.1)	113.0
	CH ₂ Cl ₂	0.81	64.4(61.8)	115.2	0.8	414.8(395.2)	113.0
	CH ₃ CN	0.82	70.2(67.1)	120.1	-1.7	489.5(467.6)	119.7
[(CH ₃) ₃ Sn(H ₂ O) ₂][N(SO ₂ CF ₃) ₂]	DMSO	0.48	69.0(67.4)	119.0	0.7	512.4(499.0)	121.6
	CH ₃ CN	0.61	69.7(66.7)	119.6	0.10	491.8(470.0)	120.0
	DMSO	1.18	69.8(66.7)	119.7	0.92	512.9(497.2)	121.8

^a NMR spectroscopic data were recorded at 300 K.

^b Calc from relation: $\theta = 0.0161 [^2J(^{119}\text{Sn}-^1\text{H})]^2 - 1.32 [^2J(^{119}\text{Sn}-^1\text{H})] + 133.4$.

^c Calc from relation: $[^1J(^{119}\text{Sn}-^{13}\text{C})] = 11.4 \theta - 875$.

^d Acetone = (CD₃)₂CO, DMSO = (CD₃)₂SO.

^e Calculated from center of unresolved ¹¹⁹Sn, ¹¹⁷Sn satellites ($|J_{\text{obs}}| \times 1.023$)

NMR parameters ...continued

Table 2. ^{19}F , ^{119}Sn and ^{125}Te NMR Spectroscopic Data^a of $(\text{CH}_3)_3\text{SnX}$ [X = OTeF₅ and N(SO₂F/CF₃)₂]

Solute	Solvent ^b	$\delta(^{19}\text{F})$, ppm			$^{2}\mathcal{J}(^{19}\text{F}_{\text{ax}}\text{-}^{19}\text{F}_{\text{eq}})$ Hz	$\delta(^{119}\text{Sn})$ ppm	$\delta(^{125}\text{Te})$ ppm	$\delta(^{13}\text{CF}_3)$ ppm	$^{1}\mathcal{J}(^{125}\text{Te}\text{-}^{19}\text{F})$, Hz		
		F_{ax}	F_{eq}	$\text{CF}_3/\text{SO}_2\text{F}$					F_{ax}	F_{eq}	Hz
$(\text{CH}_3)_3\text{SnOTeF}_5$	neat	-32.9	-41.9		182.5	270.8 ^c	569.5		3112	3540	
	CH_2Cl_2	-30.3	-38.5		183.0	272.4	564.6		3188	3550	
	acetone	-29.1	-40.6		180.0	96.0	574.9		3020	3558	
	CH_3CN	-29.2	-40.8		179.0	84.2	575.0		3032	3556	
	DMSO	-16.2	-33.8		170.0	40.0	598.7		2712	3666	
$(\text{CH}_3)_3\text{SnN}(\text{SO}_2\text{F})_2$	neat			55.5		242.5					
	CH_2Cl_2			55.6		248.6					
	DMSO			52.5		32.9					
$(\text{CH}_3)_3\text{SnN}(\text{SO}_2\text{CF}_3)_2$	neat			-78.5		240.2		118.7		320.4	
	CH_2Cl_2			-78.8		251.0		118.1		319.8	
	CH_3CN			-78.9		44.9		119.4		320.7	
	DMSO			-78.6		37.4		120.0		321.7	
$[(\text{CH}_3)_3\text{Sn}(\text{H}_2\text{O})_2][\text{N}(\text{SO}_2\text{CF}_3)_2]$	CH_3CN			-79.0		59.0					
	DMSO			-79.1		42.8					

^a NMR spectroscopic data were recorded at 300 K

^b Acetone = $(\text{CD}_3)_2\text{CO}$, DMSO = $(\text{CD}_3)_2\text{SO}$

^c ^{119}Sn NMR shows a peak at 300.7 ppm in HOTEF₅

Sn-C versus Sn-Cl bond cleavage

$\text{XN}(\text{SO}_2\text{CF}_3)_2$ ($\text{X} = \text{H, Cl}$) shows a preferential Sn-Cl bond cleavage

XOTeF_5 ($\text{X} = \text{H, Cl}$) shows a preferential Sn-C bond cleavage

Structure of $(CH_3)_2Sn(Cl)OTeF_5$

September 11, 2003

Main Group Chemistry Symposium 226th ACS National Meeting, New York

Tetra- or pentacoordinated tin???

The C-Sn-C angle calculated using $2J(^{119}\text{Sn}-^1\text{H})$ and $^1J(^{119}\text{Sn}-^{13}\text{C})$ coupling constants for $(\text{CH}_3)_2\text{SnCl}(\text{OTeF}_5)$ dissolved in CD_2Cl_2 is approximately -118° . The $\delta(^{119}\text{Sn})$ value of ~ 120 ppm indicates that tin is present in a five-coordinate environment. The fifth coordination site is most likely occupied by a bridging chlorine ligand from a second $\text{Me}_2\text{SnCl}(\text{OTeF}_5)$ molecule.

Dimerization via $\text{Sn} \dots \text{Cl}$ contacts

Hydrolysis of the Sn-Cl bond in $(CH_3)_2Sn(Cl)OTeF_5$

Structure of the dimethylloxotin(IV) teflate

Structure of dimethyltinooxteflate

Crystal packing showing tin and tellurium polyhedra

Conclusions

- Trimethyltin(IV) derivatives can easily be prepared by the reaction of acids with excess tetramethyltin
- Trimethyltin(IV) derivatives are highly electrophilic and coordinate with solvents giving trigonal bipyramidal geometry
- In case of water and DMSO, ionic salts are formed with two donor molecules occupying the axial position
- During the solvolysis of trimethyltinchloride in HOTeF_5 , there is a preferential cleavage of the Sn-C bond versus Sn-Cl bond
- Chlorodimethyltin(IV) teflate hydrolyzes to form a Sn-O ladder compound.
- The sublimation of dimethyltin(II) bis(teflate) results in the formation of an oxo-bridged species.