Poisson regression

Chandan Kumar Pandey

2022-10-17

Poisson Distribution

$$P(X = k) = \lambda^{k} * e^{-\lambda}/k!$$
$$\lambda = e^{\beta 0 + (\beta 1 * X1)}$$

Example for poisson distribution.

- 1. Number of goal scores in match.
- 2. Number of car passing by traffic light.

basically,

- a. count data
- b. Rate

Poisson regression

When to use

- 1. Response is either is count or rate.
- 2. Whole number
- 3. The data may contain a large number of data points for just a few values, thereby making the frequency distribution quite skewed. See for example above histogram.
- 4. The data may reflect the occurrence of a rare event
- 5. It can be assumed that there is a certain rate of occurrence of events λ

Data

We will be work on data where math score and number of award is provide. We will fit simple poisson model with one variable.

library(dplyr)

```
##
## Attaching package: 'dplyr'
```

```
## The following objects are masked from 'package:stats':
##
       filter, lag
##
## The following objects are masked from 'package:base':
##
##
       intersect, setdiff, setequal, union
library(ggplot2)
maths <- read.csv("data/competition_awards_data.csv")</pre>
mod1 <- glm(Awards~Math.Score, data = maths, family = "poisson")</pre>
summary(mod1)
##
## Call:
## glm(formula = Awards ~ Math.Score, family = "poisson", data = maths)
## Deviance Residuals:
        Min
                   1Q
                         Median
                                       3Q
                                                 Max
## -0.89269 -0.41546 -0.33027
                                  0.09621
                                             1.31945
##
## Coefficients:
                Estimate Std. Error z value Pr(>|z|)
                           0.486754 -11.32
## (Intercept) -5.509355
                                              <2e-16 ***
## Math.Score 0.076486
                           0.006069
                                     12.60
                                              <2e-16 ***
## Signif. codes: 0 '*** 0.001 '** 0.01 '* 0.05 '.' 0.1 ' ' 1
##
## (Dispersion parameter for poisson family taken to be 1)
##
##
       Null deviance: 287.672 on 199 degrees of freedom
## Residual deviance: 39.816 on 198 degrees of freedom
## AIC: 219.87
## Number of Fisher Scoring iterations: 5
library(AER)
## Loading required package: car
## Loading required package: carData
## Attaching package: 'car'
## The following object is masked from 'package:dplyr':
##
##
       recode
## Loading required package: lmtest
```

```
## Loading required package: zoo
##
## Attaching package: 'zoo'
## The following objects are masked from 'package:base':
##
       as.Date, as.Date.numeric
## Loading required package: sandwich
## Loading required package: survival
dispersiontest(mod1)
##
##
   Overdispersion test
##
## data: mod1
## z = -8.4316, p-value = 1
## alternative hypothesis: true dispersion is greater than 1
## sample estimates:
## dispersion
## 0.6187864
##plotting the model
predicted_value <- predict.glm(mod1,maths,type = "response",se.fit = T)</pre>
predicted_value <- predicted_value%>%as.data.frame()
df <- cbind(M=maths$Math.Score,predicted_value)</pre>
ggplot(data = df ,aes(x=M,y=fit))+geom_line()+
  geom_ribbon(aes(ymin=fit-se.fit,ymax=fit+se.fit),alpha=0.5)+
  geom_point(data = maths,aes(x=Math.Score,y=Awards))
```


In real life it is very hard to get data which follow this trend, therefore we use negative binomial distribution to model where overdisperssion is higher that 1.10.

Example

Road kill data

```
Road_kill <- read.csv("./data/road_kill.csv",header = T)
## summary()
summary(Road_kill)</pre>
```

```
##
          Х
                           ID
                                         Class
                                                             Order
##
    Min.
                     Min.
                                 1
                                      Length: 21512
                                                          Length:21512
    1st Qu.: 5379
                     1st Qu.: 5379
##
                                      Class : character
                                                          Class : character
    Median :10756
                     Median :10756
                                      Mode :character
                                                          Mode :character
##
           :10756
                            :10756
##
    Mean
                     Mean
##
    3rd Qu.:16134
                     3rd Qu.:16134
##
    Max.
           :21512
                     Max.
                            :21512
##
##
       Family
                           Genus
                                            Scientific_name
                                                                Common_name
##
    Length:21512
                        Length: 21512
                                            Length:21512
                                                                Length:21512
##
    Class : character
                        Class :character
                                            Class :character
                                                                Class : character
##
                                                                Mode :character
    Mode :character
                        Mode :character
                                            Mode :character
##
##
```

```
##
##
  IUCN status
                                         Month
##
                            Year
                                                              Day
## Length:21512
                      Min.
                             :1988 Length:21512
                                                         Min.
                                                               : 1.00
## Class :character
                      1st Qu.:2005
                                    Class : character
                                                        1st Qu.:12.00
## Mode :character Median :2012 Mode :character Median :18.00
                      Mean :2010
                                                         Mean :17.34
                                                         3rd Qu.:23.00
                       3rd Qu.:2014
##
##
                       Max.
                              :2017
                                                         Max.
                                                                :31.00
##
                                                         NA's
                       NA's
                              :190
                                                                :353
library(dplyr)
Road_kill_sum <- Road_kill%>%group_by(Class,Year,Month)%>%
summarise(count=n())%>%as.data.frame()
## 'summarise()' has grouped output by 'Class', 'Year'. You can override using the
## '.groups' argument.
Road_kill_sum<-na.omit(Road_kill_sum)</pre>
class(Road_kill_sum$count)
## [1] "integer"
Road_kill_sum$Month <- as.factor(Road_kill_sum$Month)</pre>
```

If the number of road kill have increase with years

```
mod1 <- glm(count~Year,data = Road_kill_sum,family = "poisson")</pre>
summary(mod1)
##
## Call:
## glm(formula = count ~ Year, family = "poisson", data = Road_kill_sum)
## Deviance Residuals:
     Min
             1Q Median
                               30
                                      Max
## -8.780 -5.423 -2.715 2.565 36.220
##
## Coefficients:
                 Estimate Std. Error z value Pr(>|z|)
## (Intercept) -39.232595
                            3.017337
                                       -13.0
                                               <2e-16 ***
## Year
                 0.021319
                            0.001501
                                        14.2
                                               <2e-16 ***
## Signif. codes: 0 '*** 0.001 '** 0.01 '* 0.05 '.' 0.1 ' ' 1
## (Dispersion parameter for poisson family taken to be 1)
##
      Null deviance: 20962 on 573 degrees of freedom
## Residual deviance: 20757 on 572 degrees of freedom
## AIC: 23532
## Number of Fisher Scoring iterations: 5
```

```
## check for over dispersion
library(AER)
dispersiontest(mod1)
##
   Overdispersion test
##
## data: mod1
## z = 4.5832, p-value = 2.29e-06
## alternative hypothesis: true dispersion is greater than 1
## sample estimates:
## dispersion
     48.60764
##
## it is wrong but lets predict it.
value_pred <- predict(mod1,Road_kill_sum,type = "response",se.fit = T)</pre>
value_pred <- as.data.frame(value_pred)</pre>
value_pred <- cbind(Years = Road_kill_sum$Year,value_pred)</pre>
```

Since the dispersion is very high we will used negative binomial

Negetive binomial distribution

```
library(MASS)
## Attaching package: 'MASS'
## The following object is masked from 'package:dplyr':
##
##
       select
mod_kill_nb <- glm.nb(count ~ Year, data = Road_kill_sum)</pre>
summary(mod_kill_nb)
##
## Call:
## glm.nb(formula = count ~ Year, data = Road_kill_sum, init.theta = 0.9550214435,
##
      link = log)
##
## Deviance Residuals:
      Min
                1Q
                    Median
                                  3Q
                                           Max
## -2.1537 -1.0709 -0.4596 0.3815
                                       4.1040
##
## Coefficients:
               Estimate Std. Error z value Pr(>|z|)
## (Intercept) -35.81447 18.68701 -1.917 0.0553 .
## Year
                0.01962 0.00930 2.109 0.0349 *
```

```
## ---
## Signif. codes: 0 '*** 0.001 '** 0.01 '* 0.05 '.' 0.1 ' 1
## (Dispersion parameter for Negative Binomial(0.955) family taken to be 1)
##
       Null deviance: 657.5 on 573 degrees of freedom
##
## Residual deviance: 652.7 on 572 degrees of freedom
## AIC: 5306.2
##
## Number of Fisher Scoring iterations: 1
##
                 Theta: 0.9550
##
##
             Std. Err.: 0.0523
##
    2 x log-likelihood: -5300.1560
value_nb_predict <- predict(mod_kill_nb,Road_kill_sum,type = "response",se.fit = T)</pre>
value_nb_predict <- as.data.frame(value_nb_predict)</pre>
value_nb_predict <- cbind(y1 = Road_kill_sum$Year,value_nb_predict)</pre>
#let plot wrong poisson model, nb model with data points
plot <- ggplot(data =value_pred,aes(x=Years,y=fit))</pre>
p_wrog <-plot+ geom_line()+</pre>
  geom_ribbon(aes(ymax=fit+se.fit,ymin=fit-se.fit))+
  geom_point(data = Road_kill_sum,aes(x=Year,y=count))
plot1 <- ggplot(data =value_nb_predict,aes(x=y1,y=fit))</pre>
P1 <-plot1+ geom_line()+
  geom_ribbon(aes(ymax=fit+se.fit,ymin=fit-se.fit))+
  geom_point(data = Road_kill_sum,aes(x=Year,y=count))
library(gggrid)
## Loading required package: grid
library(gridExtra)
## Attaching package: 'gridExtra'
## The following object is masked from 'package:dplyr':
##
##
       combine
grid.arrange(p_wrog,P1,nrow=2,ncol=1)
```


summary(mod_kill_nb)

```
##
## glm.nb(formula = count ~ Year, data = Road_kill_sum, init.theta = 0.9550214435,
##
       link = log)
##
## Deviance Residuals:
##
       Min
                                           Max
                 1Q
                      Median
                                   3Q
## -2.1537 -1.0709 -0.4596
                              0.3815
                                        4.1040
##
## Coefficients:
##
                Estimate Std. Error z value Pr(>|z|)
## (Intercept) -35.81447
                           18.68701 -1.917
                                              0.0553 .
                            0.00930
                                    2.109
                                              0.0349 *
## Year
                0.01962
## ---
## Signif. codes: 0 '*** 0.001 '** 0.01 '* 0.05 '.' 0.1 ' 1
##
## (Dispersion parameter for Negative Binomial(0.955) family taken to be 1)
##
       Null deviance: 657.5 on 573 degrees of freedom
## Residual deviance: 652.7 on 572 degrees of freedom
## AIC: 5306.2
##
## Number of Fisher Scoring iterations: 1
```

```
##
##
                 Theta: 0.9550
##
##
             Std. Err.:
                         0.0523
##
##
  2 x log-likelihood: -5300.1560
mod_kill_nb_add <- glm.nb(count ~ Year+Class, data = Road_kill_sum)</pre>
mod_kill_nb_int <- glm.nb(count ~ Year*Class, data = Road_kill_sum)</pre>
anova(mod_kill_nb_int)
## Warning in anova.negbin(mod_kill_nb_int): tests made without re-estimating
## 'theta'
## Analysis of Deviance Table
## Model: Negative Binomial(1.0686), link: log
##
## Response: count
##
## Terms added sequentially (first to last)
##
##
              Df Deviance Resid. Df Resid. Dev Pr(>Chi)
##
## NULL
                                573
                                        730.63
                                        725.28 0.020770 *
                                572
## Year
              1
                    5.346
## Class
              3
                  14.750
                                569
                                        710.53 0.002044 **
                                        645.66 5.326e-14 ***
## Year:Class 3
                   64.878
                                566
## ---
## Signif. codes: 0 '*** 0.001 '** 0.01 '* 0.05 '.' 0.1 ' ' 1
summary(mod_kill_nb_add)
##
## Call:
## glm.nb(formula = count ~ Year + Class, data = Road_kill_sum,
       init.theta = 0.9740275498, link = log)
## Deviance Residuals:
      Min
                10
                     Median
                                   30
                                           Max
## -2.2318 -1.0394 -0.5069
                               0.4029
                                        4.6499
##
## Coefficients:
##
                   Estimate Std. Error z value Pr(>|z|)
## (Intercept)
                -31.284477 18.781122 -1.666 0.09577 .
                                        1.848 0.06459
## Year
                   0.017264
                              0.009342
## ClassAves
                   0.263479
                              0.133404
                                         1.975 0.04826 *
## ClassMammalia
                              0.125865
                                        2.844 0.00445 **
                  0.358005
## ClassReptilia
                  0.009069
                              0.134170
                                         0.068 0.94611
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.05 '.' 0.1 ' ' 1
##
```

```
## (Dispersion parameter for Negative Binomial(0.974) family taken to be 1)
##
##
      Null deviance: 669.80 on 573 degrees of freedom
## Residual deviance: 651.45 on 569 degrees of freedom
## AIC: 5298.8
##
## Number of Fisher Scoring iterations: 1
##
##
##
                 Theta: 0.9740
##
             Std. Err.:
                         0.0536
##
   2 x log-likelihood: -5286.8150
summary(mod_kill_nb_int)
##
## glm.nb(formula = count ~ Year * Class, data = Road_kill_sum,
       init.theta = 1.068570368, link = log)
##
##
## Deviance Residuals:
##
      Min
                 1Q
                      Median
                                   3Q
                                           Max
## -2.5359 -1.0109 -0.4264
                               0.3651
                                        3.4842
##
## Coefficients:
##
                        Estimate Std. Error z value Pr(>|z|)
                                  42.79567
                                              3.656 0.000256 ***
## (Intercept)
                       156.46001
## Year
                        -0.07618
                                    0.02129
                                            -3.579 0.000345 ***
                                   56.99499 -7.225 5.02e-13 ***
## ClassAves
                      -411.77499
                      -219.50759
## ClassMammalia
                                   51.94958 -4.225 2.39e-05 ***
## ClassReptilia
                      -145.72396
                                   57.28661
                                            -2.544 0.010966 *
## Year:ClassAves
                         0.20501
                                    0.02836
                                              7.230 4.83e-13 ***
                         0.10944
## Year:ClassMammalia
                                    0.02585
                                              4.234 2.30e-05 ***
## Year:ClassReptilia
                         0.07254
                                    0.02850
                                              2.545 0.010921 *
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.05 '.' 0.1 ' ' 1
##
## (Dispersion parameter for Negative Binomial(1.0686) family taken to be 1)
##
       Null deviance: 730.63 on 573 degrees of freedom
## Residual deviance: 645.66 on 566 degrees of freedom
## AIC: 5242.8
##
## Number of Fisher Scoring iterations: 1
##
##
##
                        1.0686
                 Theta:
##
                        0.0597
             Std. Err.:
## 2 x log-likelihood: -5224.8260
```

```
AIC(mod_kill_nb,mod_kill_nb_add,mod_kill_nb_int)
##
                    df
                            ATC
## mod_kill_nb
                     3 5306.156
## mod kill nb add 6 5298.815
## mod_kill_nb_int 9 5242.826
library(AICcmodavg)
#define list of models
models <- list(mod_kill_nb,mod_kill_nb_add,mod_kill_nb_int)</pre>
#specify model names
mod.names <- c('mod_kill_nb', 'mod_kill_nb_add', "mod_kill_nb_int")</pre>
#calculate AIC of each model
aictab(cand.set = models, modnames = mod.names)
##
## Model selection based on AICc:
##
##
                         AICc Delta_AICc AICcWt Cum.Wt
                                                               LL
## mod_kill_nb_int 9 5243.15
                                    0.00
                                                       1 - 2612.41
                                               1
                                                       1 -2643.41
                                    55.82
## mod_kill_nb_add 6 5298.96
                                               0
## mod_kill_nb
                    3 5306.20
                                    63.05
                                               0
                                                       1 -2650.08
Year <- unique(Road kill sum$Year)</pre>
Class<-unique(Road kill$Class)</pre>
Year <- c(Year, Year, Year, Year)</pre>
Class <- c(rep(Class[1],20),rep(Class[2],20),rep(Class[3],20),rep(Class[4],20))
newdata <- data.frame(Year,Class)</pre>
interactive_pred_value <- predict(mod_kill_nb_int,newdata, type = "response", se.fit = T)</pre>
interactive_pred_value <- as.data.frame(interactive_pred_value)</pre>
interactive_pred_value <- cbind(interactive_pred_value,newdata)</pre>
plot_int <- ggplot(data = interactive_pred_value,</pre>
                    aes(x=Year,y=fit,col=Class))
plot_int + geom_line()+
 geom_ribbon(aes(ymax=fit+se.fit,ymin=fit-se.fit,fill=Class),alpha=0.1)
```

