

State what is meant by a virtual image.

The Sun's rays heat up the surface of the road. The heated road then heats the surrounding air so that the layer of air just above the road is at a higher temperature than the air above it. Warm air has a lower refractive index than cool air.

(1)

(Total for question = 1 mark)

Mark Scheme

Q1.

Question Number	Acceptable Answers	Additional guidance	Mark
	Light rays pass through the image Or		,
	Light rays converge to a point (1) where the image is formed		1

Question Number	Acceptable Answers	Additional Guidance	Mark
(i)	 measure angle of incidence at edge (53°) (1) use of n₁ sinθ₁ = n₂sinθ₂ (1) value of angle in glass = 32° (1) 	$\pm 1^{\circ}$ tolerance Allow ecf for candidate's value Example of calculation: $1 \times \sin 53^{\circ} = 1.5 \times \sin \theta_2$ $\theta_2 = 32^{\circ}$	3
(ii)	show refraction towards normal entering glass and how refraction away from normal exiting glass (1)		1

Q3.

Question Number	Acceptable Answers		Additional guidance	Mark
	 Use of \(\frac{1}{u} + \frac{1}{v} = \frac{1}{f}\) Use of \(P = \frac{1}{f}\) \(P = 46 \text{ D / Dioptre / dioptre}\) 	(1) (1) (1)	Accept MP2 if you see $\frac{1}{25}$ or $\frac{1}{2.4}$ for $\frac{1}{f}$ Example of Calculation $\frac{1}{0.25} + \frac{1}{0.024} = 46 \text{ D}$	3

Q4.

Question Number	Acceptable Answers	Additional Guidance	Mark
	• use of $1/v + 1/u = 1/f$ (1)	Example of calculation $1/v = 1/7.0 - 1/5.0$	
	• use of magnification = v/u (1)	v = 17.5 cm M = 17.5 / 5.0 = 3.5	
	magnification = 3.5 (1)		3

Question Number	Acceptable Answers		Additional guidance	_
(i)	drawn	(1) (1) (1)		3
(ii)		(1) (1)	Example of Calculation $m = \frac{v}{u} = \frac{3.7}{7.5} = 0.5$	2
(iii)	Real and image on different side of converging lens to object Or rays pass through the image	(1)		1

Q6.

Answer	Additional Guidance	Mark
• Use of $\frac{1}{f} = \frac{1}{u} + \frac{1}{v}$ and $P = \frac{1}{f}$	MP4 dependent on MP3	4
• Use of $P = P_1 + P_2$	Example of calculation	
• (-) 0.6 D	Power of eye $P = \frac{1}{1.5 \text{ (m)}} + \frac{1}{0.024 \text{(m)}} = 42.3 \text{ D}$	
• Diverging	P of spectacles = $41.7 (D) - 42.3 (D) = -0.6 D$ diverging	
•	Use of $\frac{1}{f} = \frac{1}{u} + \frac{1}{v}$ and $P = \frac{1}{f}$ Use of $P = P_1 + P_2$ (-) 0.6 D	Use of $\frac{1}{f} = \frac{1}{u} + \frac{1}{v}$ and $P = \frac{1}{f}$ MP4 dependent on MP3 Example of calculation Power of eye $P = \frac{1}{1.5 \text{ (m)}} + \frac{1}{0.024 \text{ (m)}} = 42.3 \text{ D}$ Diverging P of spectacles = 41.7 (D) - 42.3 (D) = -0.6 D

Question	Answer	Additional Guidance	Mark
Number	An explanation that makes reference to the following points: Only a real image will be produced on a screen (1) The object cannot be closer than f for a real image (1) Because light diverges after passing through the lens (1)	Guidance	3
	 If object closer than f rays still diverge after passing though lens So a virtual image is formed which cannot be seen on a screen. 		

Q8.

Question Number	Acceptable answers		Additional guidance	Mark
	• Use of $\frac{1}{f} = \frac{1}{u} + \frac{1}{v}$ with $u = 100$ and $v = (-)300$	(1)	(MP3 dependent on MP2)	
	 f = 150 (mm) converging lens with focal length 150 mm 	(1) (1)	$\frac{\text{Example of calculation}}{\frac{1}{f} = \frac{1}{100 \text{ mm}} - \frac{1}{300 \text{ mm}}}$	
			$\frac{1}{f} = \frac{3 - 1}{300 \text{ mm}}$ $f = 150 \text{ mm}$	
			MP3 accept if annotated in question Accept convex for converging	
				3

Question Number	Acceptable Answer		Additional Guidance	Mark
	 use of 1/v + 1/u = 1/f and P = 1/f to determine power required 	(1)	Example of calculation 1/f = 1/0.02 cm + 1/0.275 cm f = 0.0186 cm P = 1/f = 53.6 D For person, $P = 1/0.0193$ = 51.81	
	 use of P = 1/f to determine power of person's lens 	(1)	Spectacle power = 53.63 - 51.81 = 1.82 D Choose +2.0 D	
	 use of P = P₁ + P₂ to determine additional power required 	(1)		
	• P = 1.82 (D)	(1)		(4)

Q10.

Question Number	Acceptable Answers	Additional guidance	Mark
	• Use of $m = \frac{v}{u}$ (to calculate m) (1) • Use of $m = \frac{\text{image height}}{\text{object height}}$ to calculate distance between dots on screen (1) • Uses tan/sin or small angle approximation to calculate the angle (1)	Example of calculation $m = \frac{0.75 \text{ m}}{0.09 \text{ m}} = 8.3$ Image height = 8.3 x 0.005 m = 0.042 (m) $\tan(\frac{\theta}{2}) = \frac{0.042/2 \text{ m}}{4.5 \text{ m}}$ $\theta = 0.5^{\circ} = \frac{0.5\pi}{180} \text{ rads} = 0.0092 \text{radians}$	
	Answer consistent with their calculation (1)	0.009 radians > 0.0003 radians so student can distinguish between the dots	
	• Comparison with 0.0003 radians or 0.017° and conclusion consistent with their value for θ (1)		5

Question Number	Acceptable Answers	Additional guidance	Mark
	• Use of $m = \frac{image\ height}{object\ height}$ • Use of $m = \frac{v}{u}$	(1) $\frac{\text{Example of Calculation}}{m = \frac{3.5 \times 10^{-3} \text{ m}}{2.0 \times 10^{-4} \text{ m}}} = 17.5$	
	• Use of $\frac{1}{f} = \frac{1}{u} + \frac{1}{v}$	$v = 17.5 \times 5.0 \times 10^{-2} \text{m} = 0.875$ (1) (m)	
	• Use of $P = \frac{1}{f}$	(1) $\frac{1}{f} = \frac{1}{5.0 \times 10^{-2} \mathrm{m}} + \frac{1}{0.875 \mathrm{m}}$	
	• 21 D	(1) $ f = 0.047 \text{ m} $ $P = \frac{1}{0.047 \text{ m}} = 21.1 \text{ D} $	5

Q12.

Question Number	Acceptable Answers		Additional Guidance	Mark
(i)	A ray diagram including: ray from top of object through centre of lens to retina	(1)		
	ray parallel to axis on one side of lens and through focal point on other side	(1)		
	distance to near point = 6.0 cm	(1)	Correct calculation scores MP3 only	(3)
Question Number	Acceptable Answer	А	dditional Guidance	Mark
(ii)	• use of $M = v/u$ (1)		mple of calculation 2 cm / 6 cm = 0.33	
	• $M = 0.33 (2/3)$ (1) sf) ecf u from (i)			(2)
				(2)

Question Number	Answer	Additional Guidance	
	 two rays correctly drawn (1) image drawn in correct (1) position ±half square use of m = v/u or (1) m = image height object height m = 0.6 (1) 	Example of calculation $m = \frac{4.8 \text{ cm}}{8.0 \text{ cm}} = 0.6$	4

Q14.

Question Number	Acceptable Answers	Additional guidance	Mark
	An image formed from the apparent divergence of light rays from a single point Or an image that cannot be projected on to a screen		1