Regulability (Heritability of the Regulome)

Hae Kyung Im, PhD GTEx Jamboree October 17, 2014

Gene Expression Effect on a Trait

Components of Gene Expression Level

PrediXcan: Gene-Based Association Test

PrediXcan: Mechanism-driven Gene-Based Test

- Directly tests the molecular mechanism through which genetic variants affect phenotype
- Genes more attractive than genetic variants
 - A lot is know about their function
 - Follow up experiments can be easily devised
 - Reduced multiple testing burden
- Direction of effects
 - Positive effects: down regulation is therapeutic option
 - Negative effects: more likely to harbor deleterious rare variants
- No reverse causality issues
- Applicable to all GWAS/sequencing studies
- Multiple tissues can be tested

Transcriptome Regulation

Regulability - Heritability of the Regulome

Regulability Definition

Total trait variability explained by the regulome

Regulability by Tissue

Chip Heritability & Regulability

 Chip heritability: proportion of trait variability explained by genotyped variants

$$Y_i = \sum_k c_k X_{ik} + \epsilon_i$$

 Regulability: proportion of trait variability explained by the genetically predicted transcriptome —regulome

$$Y_i = \sum_g \gamma_g T_{ig} + \eta_i$$

Regulability Calculation

Predict

DB

X n x 1M

id	rs1	rs2	rs1	• • •	rs1M
id1 id2 id3 :	0 2 1 :	1 1 0 :	2 1 1 :	:	2 1 1 :
idn	1	2	1	•	1

T n x 20K

id	g1	g2	g3	• • •	g20K
id1 id2 id3	0 2 1	1 1 0	2 1 1		2 1 1
:	:	:	:	:	:
: idn	: 1	: 2	: 1	:	1

- Compute Predicted Transcriptome: **T**
- Compute covariance matrix of T
- Compute REML estimate of variance of summation term in $Y_i = \sum \gamma_g T_{ig} + \eta_i$

Orthogonal Tissue Decomposition

$$Y_i = T_{i,\text{cross}} + T_{i,\text{tissue}} + T_{i,\text{subtissue}}$$

$$Y \sim (1|\mathrm{id}) + (1|\mathrm{id} * \mathrm{tissue}) + (1|\mathrm{id} * \mathrm{tissue} * \mathrm{subtissue})$$

- Develop cross tissue, tissue-specific, and sub-tissue-specific expression traits
 - Perform eQTL analysis
 - Build prediction models
 - Compute regulability of traits

Acknowledgements

Thank you!

Contributors

- Nancy J. Cox
- Eric R. Gamazon
- Dan Nicolae
- Heather Wheeler
- Kaanan P. Shah
- Sahar Mozaffari
- Keston Aquino Michaels

Data sources

- WTCCC
- GAIN Bipolar Disease

Funding

- HKI was funded in part by Uchicago CTSA NCI K12CA139160
- University of Chicago Diabetes
 Research and Training Center: P60
 DK20595, P30 DK020595
- Genotype of Tissue Expression GTEx R01 MH090937 and R01 MH101820
- Pharmacogenomics of Anticancer Agents PAAR UO1GM61393
- Pharmacogenomics Research
 Network (PGRN) Statistical Analysis
 Resource (P-STAR) U19 HL065962
- Conte Center grant P50MH094267

PrediXcan Flow

No transcriptome data is needed

Only genotype and phenotype data needed

Additive Model for Genetic Effect Prediction

Predicted Expression Trait

$$t_i = \sum_{k=1}^M w_k G_{ki}$$

 t_i is predicted effect on gene expression level for individual i G_{ki} number of reference alleles for SNP k and individual i w_k weight for SNP k

Simple Polygenic Model

PredictDB hosts
prediction
models

- $w_k = \text{single variant regression coefficient (Matrix eQTL output)}$
- w_k set to zero if p value > 0.05 for cis SNPs (1Mb TSS)
- w_k set to zero if p value $> 10^{-6}$ for trans SNPs

Expression Data for Prediction Model Building

Predicted Expression Trait

- GTEx Genotype of Tissue Expression
 - Large scale Common Fund project
 - 900 organ donors
 - 45 tissues
 - RNAseq, whole exome seq, whole genome seq.

gEUVADIS

RNAseq 462 individuals from the 1000 Genomes Project

Other array data

Extension to Other Molecular Phenotypes

- microRNA levels
- IncRNA levels
- Methylation status

Genetic Control of Disease Through Gene Regulation

Good Prediction Performance

Genes Associated with Rheumatoid Arthritis

PrediXcan Results for Crohn's Disease and Hypertension

Significant Concordance Between Independent Bipolar Studies

