Category Theory

Rohan Jain

August 25, 2025

Table of Contents

1.	What is Category Theory?	1
	1.1. Motivating example	
	1.2. Categories	
	1.3. 09/02/2025	
	1.4. 09/04/2025	
	1.5. 09/11/2025	
2.	Limits	6
	2.1. 09/16/2025	6
	2.2. 09/18/2025	7
	2.3. 09/23/2025	

1. What is Category Theory?

Category theory is a language for talking about structuralist mathematics.

- materialism: an object is understood in terms of what it consists of
- structuralism: an object is understood in terms of its relationships to other objects

1.1. Motivating example

Let
$$D^2 = \{(x,y) \in \mathbb{R}^2 \mid x^2 + y^2 \le 1\}$$
. Then let $S^1 = \{(x,y) \in \mathbb{R}^2 \mid x^2 + y^2 = 1\} \subseteq D^2$.

Theorem 1.1 (Brouwer's fixed point theorem): If $f: D^2 \to D^2$ is continuous, then f has a fixed point. That is, there is some $x \in D^2$ such that f(x) = x.

The proof uses a trick and facts about homology. Effectively, there is a machine that takes a topological space (subsets of \mathbb{R}^2) and spits out a vector space (over \mathbb{R}).

- 1) For every topological space X, there is a vector space H(X) (omitting actual definition).
- 2) For every continuous function $f: X \to Y$, there is an "induced" linear map given by $H(f): H(X) \to H(Y)$.
- 3) If $X \to Y \to Z$ are continuous maps, $H(f): H(X) \to H(Y), H(g): H(Y) \to H(Z)$ and $H(g \circ f): H(X) \to H(Z)$, then $H(g \circ f) = H(g) \circ H(f)$.
- 4) For any X, $H(\mathrm{id}_X)=\mathrm{id}_{H(X)}:H(X)\to H(X).$

Computations:

- 5) $H(D^2) \cong 0$.
- 6) $H(S^1) \cong \mathbb{R}$.

PROOF: Assume $f:D^2\to D^2$ is continuous and f(x)=x for all $x\in D^2$. Define a new function $r:D^2\to S^1$ such that r(x)= intersection of the ray from f(x) to x with $S^1\subseteq D^2$.

Key fact: If $x \in S^1$, then r(x) = x. Check that r is also continuous.

The diagram above commutes. Now we can apply homology to it.

We can check that

$$\begin{split} H(r) \circ H(\iota) &= H(r \circ \iota) \\ &= H(\mathrm{id}_{S^1}) \\ &= \mathrm{id}_{H(S^1)} \,. \end{split}$$

Therefore, the new diagram also commutes. So, if $w \in H(S^1)$, then

$$w=\mathrm{id}_{H(S^1)}(w)=H(r)(H(\iota)(w))=0.$$

This is a contradiction as $H(S^1) \neq 0$.

1.2. Categories

Definition 1.2 (Category): A category \mathcal{C} consists of:

- a collection of objects, $\mathrm{Ob}(\mathcal{C})$. For any $A \in \mathrm{Ob}(\mathcal{C})$, we usually write $A \in \mathcal{C}$.
- for any pair of objects $A,B\in\mathcal{C}$, there is a collection of morphisms $\mathrm{Hom}_{\mathcal{C}}(A,B)$, or $\mathrm{Hom}(A,B)$, or $\mathcal{C}(A,B)$. Instead of $f\in\mathcal{C}(A,B)$, we write $f:A\to B$ or $A\to B$.
- for any objects $A, B, C \in \mathcal{C}$ and morphisms $f: A \to B$ and $g: B \to C$, there is a specified composition $g \circ f: A \to C$.
- for any object $A \in \mathcal{C}$, there is a given $\mathrm{id}_A : A \to A$
- compositions are associative: $(g\circ f)\circ h=g\circ (f\circ h)$
- for any $A \stackrel{f}{\rightarrow} B$, $f \circ id_A = f = id_B \circ f$

Example 1.3:

• Set, the category of sets (& functions).

Definition 1.4 (Monoid): A monoid (M, *) consists of:

- a set M
- a binary operation $*: M \times M \to M$
- an identity element $e \in M$ such that $\forall x \in M, e * x = x * e = x$.

Definition 1.5 (Monoid Homomorphism): A monoid homomorphism $f: M \to N$ is a function satisfying

- f(xy) = f(x)f(y).
- f(e) = e.

Definition 1.6 (Functor): A functor $F: \mathcal{C} \to \mathcal{D}$ is a function satisfying

- $F(A) \in \mathcal{D}$ for all $A \in \mathcal{C}$.
- $F(f): F(A) \to F(B)$ for all $f: A \to B$ in \mathcal{C} .
- $F(g \circ f) = F(g) \circ F(f)$ for all $f: A \to B$ and $g: B \to C$ in \mathcal{C} .
- $F(\mathrm{id}_A) = \mathrm{id}_{F(A)}$ for all $A \in \mathcal{C}$.

1.3. 09/02/2025

Two "sorts" of categories:

- "concrete" categories: sets with some sort of familiar structure (groups, rings, modules, etc.)
- "abstract" categories: 1, 2, 3, etc. More formal symbols than not.

Definition 1.7 (Endomorphism): An endomorphism $f: A \to A$ is a morphism from an object to itself.

New categories from old:

- 1) Product category.
 - input: two categories $\mathcal C$ and $\mathcal D$
 - output: $\mathcal{C} \times \mathcal{D}$
 - objects: (A, B) where $A \in Ob(\mathcal{C})$ and $B \in Ob(\mathcal{D})$
 - morphisms: (f,g) where $f:A\to A'$ in $\mathcal C$ and $g:B\to B'$ in $\mathcal D$
 - composition: $(f,g) \circ (f',g') = (f \circ f', g \circ g')$
 - identity: (id_A, id_B)

Projection functors on $\mathcal{C} \times \mathcal{D}$:

- $\pi_1: \mathcal{C} \times \mathcal{D} \to C, \pi_2: \mathcal{C} \times \mathcal{D} \to \mathcal{D}.$
- on objects: $\pi_1((A, B)) = A$
- on morphisms: $\pi_1((f,g)) = f: A \to A'$.
- 2) Slice categories, coslice categories
 - input: a category \mathcal{C} and an object $X \in \mathrm{Ob}(\mathcal{C})$
 - output: \mathcal{C}/X or X/\mathcal{C}

description of coslice:

- objects: pair (A, f), where $A \in \mathrm{Ob}(\mathcal{C})$ and $f : A \to X$ in \mathcal{C}
- morphisms: from $(A, f) \to (B, g)$: morphism $k : A \to B$ of $\mathcal C$ such that $k \circ f = g$.

• composition: $(A, f) \xrightarrow{k} (B, g) \xrightarrow{l} (C, h)$ is $(A, f) \xrightarrow{l \circ k} (C, h)$. We can check that $(l \circ k) \circ f = h$. The TLDR for this is that you can copy and paste commutative diagrams and get another commutative diagram.

Example 1.8 (Coslice): Let $\mathcal{C} = \operatorname{Set}$, $X = 1 = \{*\}$. So coslice $X/\mathcal{C} = 1/\operatorname{Set} = ?$.

- objects: pairs (A, f) of a set A and a function $f: 1 \to A$.
- morphisms: functions k such that $k \circ f = g$.

Elements of sets categorically. A is a set. How do we express $a \in A$ in terms of the category Set?

elements of
$$A \longleftrightarrow$$
 functions $f: 1 \to A$
$$a \in A \longleftrightarrow f: 1 \to A, f(*) = a$$

$$f(x) \in A \longleftrightarrow f: 1 \to A.$$

- 3) Opposite category.
 - input: a category $\mathcal C$
 - output: $\mathcal{C}^{\mathrm{op}}$
 - objects of \mathcal{C}^{op} : A^* for $A \in \mathcal{C}$.
 - morphisms of $\mathcal{C}^{op}(A^*, B^*)$: f^* for $f: A \to B$ in \mathcal{C} .
 - composition: $(f^* \circ g^*) = (g \circ f)^*$

1.4. 09/04/2025

Examples of functors between concrete categories:

- 1) Forgetful functors. E.g. $U: \operatorname{Mon} \to \operatorname{Set}.\ U(M) = M.$ And if $f: M \to N$ is a monoid homomorphism. Then $U(f): UM \to UN$, so we just take U(f) = f. Then we just have to check that $U(g \circ f) = U(g) \circ U(f)$ but this is obvious. There are other similar examples like $\operatorname{Vect}_k \to \operatorname{Set}$ or $\operatorname{Top} \to \operatorname{Set}$. Basically it's just "forgetting" some sort of structure from the original category.
- 2) Free functors. E.g. $F : Set \to Mon$ which is the free monoid functor.

Let A be a set, $\mathrm{List}(A)=\{\mathrm{strings}\ a_1,...,a_n\mid n\geq 0, a_i\in A\}.$ So if $A=\{\mathrm{a,b,c}\},$ then we have that

$$List(A) = {<>, a, b, c, aa, ab, ac...}.$$

Define concatenation as · where

$$(a_1a_2...a_n)\cdot (b_1b_2...b_m)=(a_1a_2...a_nb_1b_2...b_m).$$

We claim that List(A) is a monoid with unit <>. Call that monoid $FA \in Mon$.

On morphisms: given $f:A\to B$, get monoid homomorphism $F(f)=FA\to FB$, we define

$$F(f)(a_1a_2...a_n) = f(a_1)f(a_2)...f(a_n).$$

We can also check that $F(f \circ g) = F(f) \circ F(g)$ and $F(\mathrm{id}_A) = \mathrm{id}_{FA}$.

Definition 1.9 (Contravariant Functor): A contravariant functor from \mathcal{C} to \mathcal{D} is a functor $F:\mathcal{C}^{\mathrm{op}}\to\mathcal{D}$.

Universal Mapping Property

Idea: universal property of X is a description of morphisms into/out of X.

1.5. 09/11/2025

Natural Transformations

Let $\mathcal C$ and $\mathcal D$ be categories, $F,G:\mathcal C\to\mathcal D$. A natural transformation $\alpha:F\to G$ consists of components $\alpha_A:F(A)\to G(A)$ for each $A\in\mathcal C$, such that for any $f:A\to B$ in $\mathcal C$, we have that $G(f)\circ\alpha_A=\alpha_B\circ F(f)$. This latter condition is called the naturality condition.

Definition 1.10: The category of graphs is $[J^{op}, Set]$. The objects of graphs are all the functors $F: J^{op} \to Set$, which consists of:

- a set F(0) "vertices"
- a set F(1) "edges"
- a function $F(\sigma): F(1) \to F(0)$ "source"
- a function $F(\tau): F(1) \to F(0)$ "target"

Definition 1.11: A category \mathcal{C} is small if $\mathrm{Ob}(\mathcal{C})$ and every $\mathcal{C}(A,B)$ is a set.

Examples of small categories: 2, J.

Large or non-small categories: Set, Mon, Top.

Definition 1.12: Cat is the category of small categories. The objects of Cat are small categories, and the morphisms are functors.

2. Limits

2.1. 09/16/2025

We start by talking about the construction of objects. For sets A, B, we can form:

- Disjoint union A + B, which is a coproduct (colimit).
- Cartesian product $A \times B$, which is a product (limit).
- Set of functions B^A , which is exponential (adjunctions).

Products of sets.

Definition 2.1: Let A, B be sets. Their Cartesian product $A \times B$ is the set of pairs (a, b) where $a \in A$ and $b \in B$.

We write $\pi_1:A\times B\to A$ and $\pi_2:A\times B\to B$ for the projection maps.

What is UMP of $A \times B$? For a set S, giving a function $f: S \to A \times B$ is the same thing as giving for each $s \in S$, an element $f(s) \in A \times B$, which is the same thing as giving each $s \in S$ an element $a(s) \in A$ and an element $b(s) \in B$. Explicitly, $a = \pi_1 \circ f$ and $b = \pi_2 \circ f$.

UMP of $A \times B$

For any set S and $f_1: S \to A$ and $f_2: S \to B$, there is a unique $u: S \to A \times B$ such that $f_1 = \pi_1 \circ u$ and $f_2 = \pi_2 \circ u$.

Definition 2.2: $\mathcal C$ a category, $A,B\in\mathcal C$. A diagram $A \underset{p_1}{\leftarrow} P \underset{p_2}{\rightarrow} B$ is a product diagram if: for any object X and $f_1:X\to A$ and $f_2:X\to B$, there is a unique $u:X\to P$ such that $f_1=p_1\circ u$ and $f_2=p_2\circ u$.

Terminology:

- p_1, p_2 are "projections" and P is the "product" of A and B.
- $u: X \to P$ is the map induced by f_1, f_2 . Write $u = \langle f_1, f_2 \rangle$ or $u = (f_1, f_2)$.
- *P* is "the product" of *A* and *B*, but:
 - ▶ being "a product" is a property of the whole diagram and not just a property of *P*,
 - "the" product may not be unique,
 - it also may not exist.

Definition 2.3: Given \mathcal{C} , and $A, B \in \mathcal{C}$, define the double slice category $\mathcal{C}/(A, B)$ by:

- objects: $(X\in\mathcal{C},\,f_1;X\to A,\,f_2:X\to B)$. That is, $A\xleftarrow{f_1}X\xrightarrow{f_2}B$.
- morphisms: from (X, f_1, f_2) to (X', f_1', f_2') is a morphism $f: X \to X'$ such that $f \circ f_1 = f_1'$ and $f \circ f_2 = f_2'$.

Fact: a diagram in \mathcal{C} $A \leftarrow P \xrightarrow{p_1} B$ is a product diagram iff in $\mathcal{C}/(A,B)$, it is a terminal object: for every object of $\mathcal{C}/(A,B) \ni \left(A \leftarrow P \xrightarrow{p_2} B\right)$, there is a unique morphism of $\mathcal{C}/(A,B)$ from it to $\left(A \leftarrow P \xrightarrow{p_1} B\right)$.

Proposition 2.4: \mathcal{D} category. If $X,Y\in\mathcal{D}$ are both terminal objects, then there is a unique isomorphism $X\to Y$.

PROOF: Get (unique) morphism $f: X \to Y$ since Y is terminal. Get (unique) morphism $g: Y \to X$ since X is terminal. We have that $g \circ f: X \to X$ and want to show that it is the identity. But since X is terminal, there is only one map from $X \to X$, so therefore $g \circ f = \mathrm{id}_X$. Likewise with $f \circ g$ and id_Y . Therefore, f is an isomorphism with g as its inverse.

"Product diagrams are unique up to unique isomorphism."

2.2. 09/18/2025

Theorem 2.5: \mathcal{C} has finite products if and only if \mathcal{C} has binary products and a terminal object.

Proof sketch:

⇒: binary products, terminal object are finite products

 \Longleftarrow : Given a finite family $\left(A_{i}\right)_{i\in I}$, need to build a product.

if $I = \emptyset$: terminal object.

if |I| = 1: then A is the product of (A).

if |I| = 2: binary product.

7

Equalizers

Definition 2.6: Given $A \stackrel{f}{\underset{g}{\Longrightarrow}} B$, form $E = \{a \in A \mid f(a) = g(a)\} \subseteq A$ and the inclusion map $e : E \to A$ defined as e(a) = a.

In $E \stackrel{e}{\rightarrow} A \stackrel{f}{\underset{g}{\Longrightarrow}} B$, we have $f \circ e = g \circ e$. If FINISH LATER

Definition 2.7: \mathcal{C} a category, $\left(A \overset{f}{\underset{g}{\Longrightarrow}} B\right) = P$ "parallel pair" in \mathcal{C} . A fork on P is (E,e) where $E \overset{e}{\underset{g}{\Longrightarrow}} A \overset{f}{\underset{g}{\Longrightarrow}} B$ such that $f \circ e = g \circ e$.

A fork $E \stackrel{e}{\to} P$ is an equalizer (diagram) if for any $X \stackrel{f}{\to} A$ such that $f \circ h = g \circ h$, there is a unique u such that $e \circ u = h$.

2.3. 09/23/2025

Definition 2.8: A commutative square is called a pullback if for every $T,q_1:T\to X,$ $q_2:T\to Y$ such that $f\circ q_1=g\circ q_2$, there is a unique $u:T\to P$ such that $p_1\circ u=q_1$ and $p_2\circ u=q_2$.

Fact: In Set, a square is a pullback iff for every $x \in X$ and $y \in Y$ with f(x) = g(y), there is a unique $a \in P$ such that $p_1(a) = x$ and $p_2(a) = y$.

PROOF: Elements correspond to map from 1=:T. Also, given $q_1:T\to X$ and $q_2:T\to Y,$ define $u:T\to P$ by u(t)= the unique $a\in P$ such that $p_1(a)=q_1(t)$ and $p_2(a)=q_2(t).$

Definition 2.9: Given $f: X \to Z$ and $z \in Z$, the fiber of f (or X) over z is

$$X_z \coloneqq \mathrm{fib}_f(z) \coloneqq \{x \in X \mid f(x) = z\} \subseteq X.$$

Lemma 2.10 (Two pullbacks lemma): In any category \mathcal{C} , given a diagram

$$X' \xrightarrow{g'f'} Z'$$

$$\downarrow^p \qquad \qquad \downarrow^r$$

$$X \xrightarrow{gf} Z$$

then

- if the first and second squares are pullbacks, then so is the third square.
- if the second and third squares are pullbacks, then so is the first square.