# НАЦІОНАЛЬНИЙ ТЕХНІЧНИЙ УНІВЕРСИТЕТ УКРАЇНИ «КИЇВСЬКИЙ ПОЛІТЕХНІЧНИЙ ІНСТИТУТ імені ІГОРЯ СІКОРСЬКОГО»

**Інститут прикладного системного аналізу Кафедра математичних методів системного аналізу** 

|          | Į   | Іо захисту допущено |
|----------|-----|---------------------|
|          |     | завідувач кафедри   |
|          |     | О.Л. Тимощук        |
| <b>«</b> | >>> | 2022 p.             |

# Дипломна робота

на здобуття ступеня бакалавра за освітньо-професійною програмою «Системний аналіз і управління» спеціальності 124 «Системний аналіз» на тему: «Граничні теореми для нерухомих точок випадкових перестановок»

Виконав:

студент IV курсу, групи КА-81 Галганов Олексій Андрійович

Керівник:

доцент, к.ф-м.н. Ільєнко Андрій Борисович

Консультант з економічного розділу: доцент, к.е.н. Рощина Надія Василівна

Консультант з нормоконтролю: доцент, к.т.н. Коваленко Анатолій Єпіфанович

Рецензент:

???

Засвідчую, що у цій дипломній роботі немає запозичень з праць інших авторів без відповідних посилань.

Студент: Галганов Олексій Андрійович

# **3MICT**

| РОЗДІЛ 1 Попередні відомості                            | 3  |  |
|---------------------------------------------------------|----|--|
| 1.1. Позначення                                         | 3  |  |
| 1.2. Відомості з алгебри                                | 5  |  |
| 1.3. Відомості з теорії міри та функціонального аналізу | 5  |  |
| 1.4. Відомості про випадкові процеси                    |    |  |
| РОЗДІЛ 2 Перестановки Юенса                             | 12 |  |
| 2.1. Граничний розподіл нерухомих точок                 | 12 |  |
| 2.2. Статистичні властивості нерухомих точок            |    |  |
| 2.2.1 Найменша та найбільша нерухомі точки              | 17 |  |
| 2.2.2 Сума нерухомих точок                              | 21 |  |
| 2.2.3 Найменші і найбільші спейсинги                    | 25 |  |
| СПИСОК ВИКОРИСТАНОЇ ЛІТЕРАТУРИ                          |    |  |

## РОЗДІЛ 1

#### ПОПЕРЕДНІ ВІДОМОСТІ

#### 1.1. Позначення

 $\mathbb{1}\{\,\cdot\,\}$  — індикаторна функція, що дорівнює 1 у випадку, коли умова в дужках справджується, і 0 у іншому випадку.

 $\operatorname{card} X$  — потужність множини X.

[x] — найменше ціле число, яке більше за або дорівнює дійсному числу x.

 $\lfloor x \rfloor$  — найбільше ціле число, яке менше за або дорівнює дійсному числу x.

 $\mathbb{N}_0$  — множина цілих невід'ємних чисел,  $\mathbb{N}_0 = \mathbb{N} \cup \{0\}$ .

 $\mathbf{S}_n$  — група перестановок (симетрична група) степеня n.

 $C_K^+(X)$  — множина неперервних невід'ємних функцій  $X \to \mathbb{R}$  з компактним носієм.

 $\mathcal{B}(X)$  — борелева  $\sigma$ -алгебра на множині X.

 $M_p(E)$  — множина усіх точкових мір, визначених на просторі E.

 $\langle a,b \rangle$  — інтервал, позначає одне з [a,b], (a,b), [a,b) чи (a,b].

 $\delta_x$  — міра Дірака, зосереджена в точці x.

Leb — міра Лебега.

 $\mathcal{L}\left\{f\right\}$  — перетворення Лапласа функції f.

 $\psi_N$  — функціонал Лапласа точкового випадкового процесу N.

 $\limsup_{n\to\infty}a_n$  — верхня границя послідовності  $a_n$ .

 $a_n o a$  — числова послідовність  $a_n$  збігається до a.

 $\mu_n \xrightarrow{v} \mu$  — послідовність мір  $\mu_n$  грубо збігається до міри  $\mu$ .

 $\xi_n \stackrel{vd}{\longrightarrow} \xi$  — послідовність точкових випадкових процесів  $\xi_n$  грубо збігається за розподілом до точкового випадкового процесу  $\xi$ .

 $X_n \xrightarrow{Sd} X$  — послідовність випадкових процесів  $\xi_n$  збігається за розподілом у топології Скорохода до випадкового процесу X.

 $X_n \stackrel{d}{\longrightarrow} X$  — послідовність випадкових величин  $X_n$  збігається за розподілом до випадкової величини X.

 $X\stackrel{d}{=} Y$  — випадкові величини X та Y рівні за розподілом.

 $X_{(k)}$  — k-та порядкова статистика, тобто k-та за номером випадкова величина серед відсортованих у порядку зростання неперервних випадкових величин  $X_1,...,X_n$ .

 $X_{(k)}^{[n]}$  — k-та порядкова статистика для n випадкових величин.

 $\mathbb{E} X$  — математичне сподівання випадкової величини X.

 $X \sim P$  — випадкова величина X має розподіл P.

Pois (a) — дискретний розподіл Пуассона з параметром  $a>0, \mathbb{P}(X=n)=\frac{a^n}{n!}e^{-a}$  для  $n\in\mathbb{N}_0.$ 

 $\mathrm{U}\left(a,b\right)$  — абсолютно неперервний рівномірний розподіл на інтервалі  $\langle a,b\rangle$  зі щільністю  $f(x)=\frac{1}{b-a}\cdot\mathbb{1}$   $\{x\in\langle a,b\rangle\}.$ 

 $\operatorname{Exp}(\lambda)$  — абсолютно неперервний експоненційний розподіл з параметром  $\lambda>0$  зі щільністю  $f(x)=\lambda e^{-\lambda x}\cdot \mathbb{1}\ \{x\geq 0\}.$ 

ESF  $(n,\theta)$  — розподіл Юенса на  $\mathbf{S}_n$  з параметрами  $n\in\mathbb{N},$   $\theta>0.$ 

 $I_{
u}(z)$  — модифікована функція Бесселя першого роду,  $u\in\mathbb{R}.$ 

## 1.2. Відомості з алгебри

**Означення 1.2.1** ([1], ст. 114). Перестановкою  $\pi$  на множині  $A = \{1, \dots, n\}$  називають довільне бієктивне відображення  $\sigma : A \to A$ .

**Означення 1.2.2** ([1], ст. 118). *Циклом довжини k* називають перестановку  $\pi$ , що змінює (зсуває за циклом) елементи  $i_1, i_2, \ldots, i_k \in A$ , залишаючи інші на місці, тобто  $\pi(i_j) = i_{j+1}$  для  $j = 1, \ldots, k-1, \pi(i_k) = i_1, \pi(i_j) = i_j$  для  $j = k+1, \ldots, n$ .

Означення 1.2.3 ([1], ст. 116). Групою перестановок (симетричною групою) степеня n називають групу, утворену множиною перестановок множини  $\{1, \ldots, n\}$  за операцією композиції. Група  $S_n$  містить n! різних перестановок, нейтральним елементом є тотожне відображення ([1], ст. 114).

#### 1.3. Відомості з теорії міри та функціонального аналізу

**Означення 1.3.1** ([2], ст. 19). Для будь-якого простору X непорожня сім'я підмножин  $\mathcal{R}$  називається *кільцем*, якщо вона замкнена відносно скінченних об'єднань, перетинів та різниць. Еквівалентне означення ([3], ст. 4): сім'я  $\mathcal{R}$  непорожня та замкнена відносно скінченних об'єднань та різниць.

**Означення 1.3.2** ([2], ст. 19). Для будь-якого простору X непорожня сім'я підмножин S називається *напівкільцем*, якщо вона замкнена відносно скінченних перетинів та кожна різниця множин з S представляється у вигляді диз'юнктного об'єднання множин з S, тобто для будь-яких  $A, B \in S$  існують множини  $K_i \in S$ ,  $i = 1, \ldots, n$ , що попарно не перетинаються і  $A \setminus B = \bigcup_{i=1}^n K_i$ .

**Означення 1.3.3** ([4], ст. 139). Для будь-якого простору X непорожня сім'я підмножин  $\mathcal{A}$  називається  $\sigma$ -алгеброю, якщо виконуються наступні три умови:

- 1.  $(A \in \mathcal{A}) \Rightarrow (A^C = X \setminus A \in \mathcal{A});$
- 2.  $(A, B \in \mathcal{A}) \Rightarrow (A \cup B \in \mathcal{A});$
- 3.  $(A_1, A_2, A_3, \dots \in \mathcal{A}) \Rightarrow (\bigcup_{n=1}^{\infty} A_n \in \mathcal{A}).$

Пара  $(X,\mathcal{A})$  називається вимірним простором.

**Означення 1.3.4** ([4], ст. 146). Нехай  $(X, \mathcal{A}_X)$  та  $(Y, \mathcal{A}_Y)$  — два вимірних простори. Відображення  $f: X \to Y$  називається *вимірним*, якщо для кожної множини  $A \in \mathcal{A}_Y$  її повний прообраз  $f^{-1}(A) = \{x: f(x) \in A\}$  належить  $\mathcal{A}_X$ .

**Означення 1.3.5** ([4], ст. 147). Нехай X — метричний простір,  $\mathcal{O}$  — сім'я всіх відкритих підмножин X. Мінімальна  $\sigma$ -алгебра  $\mathcal{B}(X)$ , що містить  $\mathcal{O}$ , називається борелевою  $\sigma$ -алгеброю, а множини  $A \in \mathcal{B}(X)$  — борелевими множинами.

**Означення 1.3.6** ([2], ст. 24). Сім'я підмножин S сепарабельного метричного простору X називається *розсікаючою*, якщо виконуються наступні дві умови:

- 1. Кожну відкриту підмножину X можна зобразити як зліченне об'єднання множин з S;
- 2. Кожну обмежену підмножину X можна покрити скінченною кількістю множин з S.

Для простору  $\mathbb{R}^n$  прикладом розсікаючої сім'ї множин є сім'я куль з раціональними радіусами та центрами в точках з раціональними координатами.

**Означення 1.3.7** ([3], ст. 8). Нехай  $\mathcal{A} - \sigma$ -алгебра у просторі X. Функція  $\mu : \mathcal{A} \to \mathbb{R}$  називається *мірою* на вимірному просторі  $(X, \mathcal{A})$ , якщо виконуються наступні дві умови:

- 1. Невід'ємність:  $\forall \ A \in \mathcal{A} : \mu(A) \ge 0;$
- 2.  $\sigma$ -адитивність: для довільних множин  $A_1, A_2, A_3, ... \in \mathcal{A}$ , що попарно не перетинаються,  $\mu\left(\bigcup_{n=1}^{\infty}A_n\right) = \sum_{n=1}^{\infty}\mu(A_n)$ .

**Означення 1.3.8** ([2], ст. 22). Нехай  $(X, \mathcal{A})$  — вимірний простір, для якого  $\{x\} \in \mathcal{A}$  для всіх  $x \in X$ . Точка  $x \in X$  називається *атомом* міри  $\mu$  на  $(X, \mathcal{A})$ , якщо  $\mu\left(\{x\}\right) > 0$ .

**Означення 1.3.9** ([2], ст. 22; [5], ст. 123). *Міра Дірака*, зосереджена в точці  $x \in X$  — це міра  $\delta_x$  на на вимірному просторі  $(X, \mathcal{A})$ , для якої  $\forall A \in \mathcal{A}: \delta_x(A) = \mathbb{1}\{x \in A\} = \begin{cases} 1, & x \in A \\ 0, & x \notin A \end{cases}$ .

**Означення 1.3.10** ([5], ст. 123). *Точкова міра* — це міра  $\mu$  на на вимірному просторі  $(X, \mathcal{A})$ , для якої  $\forall A \in \mathcal{A} : \mu(A) = \sum_{i=1}^{\infty} \delta_{x_i}(A)$ , де  $(x_i, i \geq 1)$  — зліченний набір точок X, не обов'язково різних. У випадку, коли X — метричний простір, точкова міра називається *радоновою*, якщо міра компактних множин з  $\mathcal{A}$  завжди є скінченною.

**Означення 1.3.11** ([5], ст. 124). Точкова міра  $\mu$  називається *простою*, якщо для всіх  $x \in E$   $\mu$  ( $\{x\}$ )  $\leq 1$ .

**Означення 1.3.12** ([5], ст. 140). Нехай  $(\mu_n, n \ge 1)$  — послідовність мір на на вимірному просторі  $(X, \mathcal{A})$ , де X є метричним простором, а  $C_K^+(X)$  — множина неперервних невід'ємних функцій  $X \to \mathbb{R}$  з компактним носієм. Послідовність  $(\mu_n, n \ge 1)$  грубо збігається до міри  $\mu$  на тому ж вимірному просторі, якщо виконується  $\int_X f \mathrm{d}\mu_n \to \int_X f \mathrm{d}\mu$  для всіх  $f \in C_K^+(X)$ . Ця збіжність позначається  $\mu_n \stackrel{v}{\longrightarrow} \mu$ .

Надалі вважатимемо, що якщо мова йде про грубу збіжність послідовності мір, то простір, на якому вони задані,  $\epsilon$  метричним. Наведемо теорему, що характеризує збіжність послідовності точкових мір.

**Теорема 1.3.1** ([5], ст. 144). *Нехай*  $(\mu_n, n \ge 1)$  та  $\mu$  — міри на вимірному просторі  $(X, \mathcal{A})$  і  $\mu_n \stackrel{v}{\longrightarrow} \mu$ . Для кожної компактної множини  $K \subset X$  з  $\mu(\partial K) = 0$  існує номер N = N(K) такий, що при  $n \ge N$  існують нумерації атомів  $\mu_n$  та  $\mu$ ,  $x_i^{(n)}, 1 \le i \le p$  та  $x_i, 1 \le i \le p$  відповідно, такі, що

$$\mu_n(A \cap K) = \sum_{i=1}^p \delta_{x_i^{(n)}}(A), \ \mu(A \cap K) = \sum_{i=1}^p \delta_{x_i}(A)$$

для всіх  $A \in \mathcal{A}$  і  $x_i^{(n)} \to x_i$  для всіх  $1 \le i \le p$ .

**Означення 1.3.13** ([6], ст.121-124). Простором càdlàg-функцій на [0,1] називається простір  $\mathcal{D}_{[0,1]}$  функцій  $f:[0,1]\to\mathbb{R}$ , які неперервні справа і мають границі зліва.

**Означення 1.3.14.** *Метрикою Скорохода* на  $\mathcal{D}_{[0,1]}$  називається метрика, визначена за формулою

$$d(f,g) = \inf_{\lambda \in \Lambda} \max \left( \sup_{x \in [0,1]} \left| \lambda(x) - x \right|, \sup_{x \in [0,1]} \left| f(x) - g(\lambda(x)) \right| \right),$$

де  $\Lambda$  — множина строго зростаючих неперервних відображень [0,1] в себе.

Послідовність функцій  $f_n\in\mathcal{D}_{[0,1]}$  збігається за метрикою Скорохода до  $f\in\mathcal{D}_{[0,1]}$  тоді і тільки тоді, коли існує послідовність функцій  $\lambda_n\in\Lambda$  таких, що рівномірно за  $x\lim_{n\to\infty} f_n\left(\lambda_n(x)\right)=f(x)$  та  $\lim_{n\to\infty} \lambda_n(x)=x$ , тобто виконуються граничні співвідношення

$$\lim_{n \to \infty} \sup_{x \in [0,1]} |f_n(\lambda_n(x)) - f(x)| = 0, \ \lim_{n \to \infty} \sup_{x \in [0,1]} |\lambda_n(x) - x| = 0.$$

## 1.4. Відомості про випадкові процеси

Точкові випадкові процеси  $\epsilon$  основним поняттям, що досліджується в роботі. Наведемо початкові означення з [5]. В межах цього пункту, якщо не сказано інакше, E — підмножина скінченновимірного евклідового простору,  $\mathcal{E} = \mathcal{B}(E)$  — борелева  $\sigma$ -алгебра підмножин E.

Позначимо через  $M_p(E)$  множину усіх точкових мір, визначених на E, а через  $\mathcal{M}_p(E)$  — найменшу  $\sigma$ -алгебру підмножин  $M_p(E)$ , що містить усі множини виду  $\{\mu \in M_p(E) : \mu(F) \in B\}$  для всіх  $F \in \mathcal{E}$  і  $B \in \mathcal{B}([0,+\infty])$ . Також зафіксуємо деякий ймовірнісний простір — трійку  $(\Omega,\mathcal{A},\mathbb{P})$ , де  $\Omega$  — простір елементарних подій,  $\mathcal{A}$  —  $\sigma$ -алгебра підмножин  $\Omega$ , а  $\mathbb{P}$  — міра на цьому просторі, що додатково задовольняє умову  $\mathbb{P}(\Omega) = 1$ .

**Означення 1.4.1.** *Точковий випадковий процес* N — вимірне відображення з простору  $(\Omega, \mathcal{A})$  в  $(M_n(E), \mathcal{M}_n(E))$ .

Якщо зафіксувати  $\omega \in \Omega$ , то  $N(\omega, \cdot)$  буде точковою мірою. З іншого боку, якщо зафіксувати  $F \in \mathcal{E}$ , то N(F) буде випадковою величиною зі значеннями в  $[0, +\infty]$ . Також, точковий процес N задає ймовірнісну міру  $P_N = \mathbb{P}\left[N \in \cdot\right]$  на  $\mathcal{M}_p(E)$ .

Надалі для спрощення точкові випадкові процеси будемо називати просто *точковими процесами*. Наведемо декілька теорем, що стосуються означення точкового процесу.

**Теорема 1.4.1** ([5], ст. 124).  $N \in$  точковим процесом тоді і тільки тоді, коли для кожного  $F \in \mathcal{E}$  відображення  $\omega \mapsto N(\omega, F)$  з  $(\Omega, \mathcal{A})$  в  $([0, +\infty], \mathcal{B}([0, +\infty]))$  є вимірним.

**Теорема 1.4.2** ([5], ст. 126). *Нехай* N — точковий процес на вимірному просторі  $(E, \mathcal{E})$ , а сім'я передкомпактних множин  $\mathcal{F}$  задовольняє наступні умови:

- 1.  $(A, B \in \mathcal{F}) \Rightarrow (A \cap B \in \mathcal{F});$
- 2.  $\mathcal{E}$   $\epsilon$  мінімальною  $\sigma$ -алгеброю, що містить  $\mathcal{F}$ ;
- 3. Існує послідовність множин  $E_n \in \mathcal{F}$ , для якої  $E_1 \subset E_2 \subset ...$  і  $\bigcup_{n=1}^\infty E_n = E$ . Для  $k \in \mathbb{N}$  визначимо скінченновимірні розподіли

$$P_{I_1,...,I_k}(n_1,...,n_k) = \mathbb{P}(N(I_j) = n_j, 1 \le j \le k)$$

для  $I_i \in \mathcal{F}$  та цілих  $n_i \geq 0$ ,  $1 \leq i \leq k$ .

Тоді система скінченновимірних розподілів  $\{P_{I_1,...,I_k}, k=1,2,...,I_j\in\mathcal{F}\}$  однозначно визначає розподіл  $P_N$ .

**Теорема 1.4.3** ([7], ст. 50). *Нехай* N *та* N' — *прості точкові процеси на*  $(E, \mathcal{E})$  i

$$\mathbb{P}(N(F) = 0) = \mathbb{P}(N'(F) = 0), F \in \mathcal{E}.$$

 $Todi\ N\ ma\ N'$  мають однакові розподіли.

**Означення 1.4.2** ([5], ст. 129). Нехай N — точковий процес на вимірному просторі  $(E, \mathcal{E})$ . Функціоналом Лапласа для N називається відображення  $\psi_N$ , що переводить невід'ємні вимірні функції на  $(E, \mathcal{E})$  у  $[0, +\infty)$  за правилом

$$\psi_N(f) = \mathbb{E}e^{-N(f)} = \int_{\Omega} e^{-N(\omega, f)} d\mathbb{P} = \int_{M_p(E)} \exp\left\{-\int_E f(x) d\mu\right\} dP_N(\mu) \quad (1.1)$$

Наслідком теореми  $1.4.2 \epsilon$  наступне твердження:

**Теорема 1.4.4** ([5], ст. 129). Функціонал Лапласа  $\psi_N$  однозначно визначає точковий процес N.

Як і для випадкових величин, для точкових процесів можна ввести поняття «середнього значення».

**Означення 1.4.3** ([2], ст. 127). *Мірою інтенсивності* або *середньою мірою* точкового процесу N називається міра  $\mu$  на  $\mathcal{E}$ , визначена як

$$\mu(F) = \mathbb{E}N(F) = \int_{\Omega} N(\omega, F) d\mathbb{P} = \int_{M_p(E)} m(F) dP_N.$$

Наведемо приклад точкового процесу.

**Означення 1.4.4** ([7], ст. 11). Нехай P — деяка ймовірнісна міра на  $(E,\mathcal{E})$ , а  $X_1,\ldots,X_m$  — незалежні випадкові величини з відповідним розподілом. Для кожного  $i=1,\ldots,m$  визначено  $\delta_{X_i}$  — точковий процес, для якого  $\mathbb{P}\left(\delta_{X_i}(F)=1\right)=\mathbb{P}\left(X_i\in F\right), \mathbb{P}\left(\delta_{X_i}(F)=0\right)=\mathbb{P}\left(X_i\notin F\right)$  для  $F\in\mathcal{E}$ . Точковий процес  $X=\delta_{X_1}+\delta_{X_2}+\cdots+\delta_{X_m}$  називається біноміальним процесом з розміром вибірки m та розподілом P. Для нього

$$\mathbb{P}(X(F) = k) = C_m^k P(F)^k (1 - P(F))^{m-k}, \ k = 0, \dots, m, \ F \in \mathcal{E}.$$

Перейдемо до означення процесу Пуассона, який є центральним у роботі.

**Означення 1.4.5** ([5], ст. 130). Нехай  $\mu$  — радонова міра на  $\mathcal{E}$ . Точковий процес N називається процесом Пуассона або випадковою мірою Пуассона з мірою інтенсивності  $\mu$ , якщо N задовольняє наступні умови:

1. Для будь-якої  $F \in \mathcal{E}$  та будь-якого невід'ємного цілого числа k

$$\mathbb{P}(N(F) = k) = \begin{cases} \frac{(\mu(F))^k}{k!} e^{-\mu(F)}, & \mu(F) < \infty, \\ 0, & \mu(F) = \infty; \end{cases}$$

У випадку  $\mu(F)=\infty$  покладаємо  $N(F)=\infty$  з ймовірністю 1.

2. Для будь-якого натурального k, якщо  $F_1, \ldots, F_k$  з  $\mathcal E$  попарно не перетинаються, то  $(N(F_i), 1 \le i \le k)$  є незалежними в сукупності випадковими величинами.

Функціонал Лапласа точкового процесу Пуассона визначено формулою

$$\psi_N(f) = \exp\left\{-\int_E (1 - e^{-f(x)}) d\mu\right\}$$
 (1.2)

Як і для невипадкових точкових мір, для точкових процесів також можна ввести поняття грубої збіжності.

**Означення 1.4.6** ([2], ст. 109). Нехай  $(\xi_n, n \ge 1)$  — послідовність точкових процесів на вимірному просторі  $(E,\mathcal{E})$ . Якщо  $\mathbb{E}\varphi(\xi_n)\to\mathbb{E}\varphi(\xi)$  для кожної обмеженої функції  $\varphi:M_p(E)\to\mathbb{R}$ , неперервної на  $M_p(E)$  відносно грубої збіжності мір, то послідовність  $(\xi_n, n \ge 1)$  грубо збігається за розподілом, що позначається  $\xi_n \xrightarrow{vd} \xi.$ 

Наведемо критерій грубої збіжності за розподілом.

**Теорема 1.4.5** ([2], ст. 121). *Нехай*  $(\xi_n, n \ge 1)$  — *послідовність точкових процесів* на вимірному просторі  $(E,\mathcal{E})$ , а точковий процес  $\xi$  — простий. Нехай також  $\mathcal{U}\subset\hat{\mathcal{E}}_{\xi}$  —  $\phi$ іксоване розсікаюче кільце, де  $\hat{\mathcal{E}}_{\xi}$  позначає сім'ю борелевих підмножин E, для яких  $\mathbb{E}\xi(\partial B)=0$ , а  $\mathcal{I}\subset\mathcal{U}$  — напів-кільце. Тоді  $\xi_n\stackrel{vd}{\longrightarrow}\xi$  тоді і тільки тоді, коли

- 1.  $\lim_{n\to\infty} \mathbb{P}\left(\xi_n(U)=0\right) = \mathbb{P}\left(\xi(U)=0\right)$  для  $U\in\mathcal{U};$ 2.  $\limsup \mathbb{P}\left(\xi_n(I)>1\right) \leq \mathbb{P}\left(\xi(I)>1\right)$  для  $I\in\mathcal{I}.$

Для практичних застосувань  $\epsilon$  корисною наступна теорема про неперервне відображення.

**Теорема 1.4.6** ([8], ст. 42). *Нехай*  $(\xi_n, n \ge 1)$  — *послідовність точкових процесів* на вимірному просторі  $(E,\mathcal{E})$ , яка грубо збігається за розподілом до точкового

процесу  $\xi$ , а відображення  $\varphi: M_p(E) \to \mathbb{R}$  таке, що

$$\mathbb{P}\left(\xi\in\left\{\mu\in M_p(E): \varphi \text{ не }\epsilon \text{ неперевною в }\mu
ight\}
ight)=0.$$

Тоді послідовність випадкових величин  $(\varphi(\xi_n), n \ge 1)$  збігається за розподілом до  $\varphi(\xi)$ , тобто  $\varphi(\xi_n) \stackrel{d}{\longrightarrow} \varphi(\xi)$ .

Розглянемо також поняття звичайних випадкових процесів.

**Означення 1.4.7** ([9], ст. 83). Нехай  $(E, \mathcal{E})$  — вимірний простір,  $T \subset \mathbb{R}$  — множина індексів. Відображення  $X: \Omega \to U \subset S^T$  називається випадковим процесом на T зі значеннями в E та траєкторіями в U, якщо відображення  $X_t: \Omega \to S$  вимірні для кожного  $t \in T$ .

**Означення 1.4.8.** Нехай X — випадковий процес на [0,1] зі значеннями в  $\mathbb{R}$ . Якщо траєкторії X(t) з ймовірністю 1 належать простору  $\mathcal{D}_{[0,1]}$ , то X називається  $c\grave{a}dl\grave{a}g$ -процесом.

**Означення 1.4.9** ([9], ст. 512). Нехай  $(X_n, n \ge 1)$  — послідовність càdlàg-процесів. Якщо  $\mathbb{E}\varphi(X_n) \to \mathbb{E}\varphi(X)$ , для кожного обмеженого функціонала  $\varphi: \mathcal{D}_{[0,1]} \to \mathbb{R}$ , неперервного на  $\mathcal{D}_{[0,1]}$  відносно метрики Скорохода, то послідовність  $(X_n, n \ge 1)$  збігається за розподілом у топології Скорохода, що позначається  $X_n \stackrel{Sd}{\longrightarrow} X$ .

Наведемо ще один тип збіжності точкових процесів та його зв'язок з грубою збіжністю за розподілом.

Означення 1.4.10 ([2], ст. 127). Нехай  $(\xi_n, n \ge 1)$  — послідовність точкових процесів на вимірному просторі  $(E, \mathcal{E})$ , де E = [0, 1]. Якщо для  $X_n(t) = \xi_n ([0, t])$  та  $X(t) = \xi ([0, t])$  виконується  $X_n \stackrel{Sd}{\longrightarrow} X$ , то то послідовність  $(\xi_n, n \ge 1)$  збігається за розподілом у топології Скорохода, що позначається  $\xi_n \stackrel{Sd}{\longrightarrow} \xi$ .

**Теорема 1.4.7** ([2], ст. 127). *Нехай*  $(\xi_n, n \ge 1)$  — послідовність точкових процесів на вимірному просторі  $(E, \mathcal{E})$ , де E = [0, 1]. Тоді  $\left(\xi_n \xrightarrow{Sd} \xi\right) \Rightarrow \left(\xi_n \xrightarrow{vd} \xi\right)$ . Якщо ж додатково  $\xi$  — простий і  $\xi$   $(\{0\}) = 0$ , то  $\left(\xi_n \xrightarrow{Sd} \xi\right) \Leftrightarrow \left(\xi_n \xrightarrow{vd} \xi\right)$ .

#### РОЗДІЛ 2

#### ПЕРЕСТАНОВКИ ЮЕНСА

# 2.1. Граничний розподіл нерухомих точок

Розглянемо ймовірнісний розподіл на групі перестановок  $S_n$ , заданий у такий спосіб:

$$\mathbb{P}(\{\pi\}) = \frac{\theta^{\mathsf{c}(\pi)}}{\theta(\theta+1)\dots(\theta+n-1)}, \ \pi \in \mathbf{S}_n,$$
 (2.1)

де  $\theta > 0$  — фіксований параметр, а с $(\pi)$  позначає кількість циклів у  $\pi$ . Цей розподіл також відомий як *міра Юенса*. Тут і далі відповідні випадкові перестановки називатимемо *перестановками Юенса* і, за потреби, для позначення відповідної випадкової перестановки  $\sigma$  на  $S_n$  застосовуватимемо позначення  $\sigma \sim \text{ESF}(n,\theta)$ .

**Зауваження.** Якщо  $\theta=1$ , то формула (2.1) задає рівномірний розподіл, тобто  $\mathbb{P}(\{\pi\})=\frac{1}{n!}$  для всіх  $\pi\in \mathbf{S}_n$ .

Перед тим, як вводити подальші поняття, розглянемо і доведемо наступну лему:

**Лема 2.1.1.** Нехай  $\sigma$  — випадкова перестановка на множині  $\{1,\ldots,n\}$ , що задана розподілом (2.1). (тобто,  $\sigma$  є перестановкою Юенса з  $S_n$ ). Нехай  $\gamma \in [0,1]$ , а  $X_n = \operatorname{card} \{i \in \{1,\ldots,\lceil \gamma n \rceil\} : \sigma(i) = i\}$  — кількість нерухомих точок  $\sigma$  серед перших  $\lceil \gamma n \rceil$  натуральних чисел. Тоді  $X_n$  за розподілом збігається до  $\operatorname{Pois}(\gamma \theta)$ , тобто

$$\lim_{n \to \infty} \mathbb{P}(X_n = k) = \frac{(\gamma \theta)^k}{k!} e^{-\gamma \theta}, \ k \in \mathbb{N}_0.$$
 (2.2)

Доведення. Отримаємо явну формулу для  $\mathbb{P}(X_n=k)$ , починаючи з випадку k=0. Нехай  $F_i$  позначає множину перестановок, для яких i є нерухомою точкою. Тоді

$$\mathbb{P}(X_n = 0) = \mathbb{P}\left(F_1^C \cap F_2^C \cap \dots \cap F_{\lceil \gamma n \rceil}^C\right) = 1 - \mathbb{P}\left(F_1 \cup F_2 \cup \dots \cup F_{\lceil \gamma n \rceil}\right) = 1 - \sum_i \mathbb{P}\left(F_i\right) + \sum_{i < j} \mathbb{P}\left(F_i \cap F_j\right) - \dots + (-1)^{\lceil \gamma n \rceil} \mathbb{P}\left(F_1 \cap F_2 \cap \dots \cap F_{\lceil \gamma n \rceil}\right).$$

У цьому виразі  $\lceil \gamma n \rceil$  однакових доданків виду  $\mathbb{P}(F_i)$ ,  $C^2_{\lceil \gamma n \rceil}$  однакових доданків виду  $\mathbb{P}(F_i \cap F_j)$  і так далі. Це означає, що достатньо знайти вирази для цих ймовірностей лише для конкретних наборів індексів. Якщо 1 є нерухомою точкою перестановки  $\pi$ , то вона має містити «тотожний» цикл (1), тобто  $\pi = (1) \circ \tilde{\pi}$ , де  $\tilde{\pi}$  є перестановкою множини  $\{2,\ldots,n\}$ . Аналогічно, якщо 1 і 2 є нерухомими то-

чками  $\pi$ , то  $\pi=(1)(2)\circ\tilde{\pi}$ , де  $\tilde{\pi}$  вже  $\epsilon$  перестановкою множини  $\{3,\dots,n\}.$  Отже,

$$\begin{split} \mathbb{P}\left(1,2,\dots,i\; \epsilon \; \text{нерухомими точками}\; \sigma\right) &= \sum_{\pi=(1)(2)\dots(i)\circ\tilde{\pi}\in S_n} \mathbb{P}\left(\{\pi\}\right) = \\ &= \sum_{\pi=(1)(2)\dots(i)\circ\tilde{\pi}\in S_n} \frac{\theta^{\mathbf{c}(\pi)}}{\theta(\theta+1)\dots(\theta+n-1)} = \left[\mathbf{c}(\pi)\geq i\right] = \\ &= \frac{\theta^i}{\theta(\theta+1)\dots(\theta+n-1)} \sum_{\pi=(1)(2)\dots(i)\circ\tilde{\pi}\in S_n} \theta^{\mathbf{c}(\pi)-i} = \\ &= \frac{\theta^i}{\theta(\theta+1)\dots(\theta+n-1)} \sum_{\tilde{\pi}\in S} \theta^{\mathbf{c}(\tilde{\pi})}. \end{split}$$

Остання сума є сумою ймовірностей розподілу Юенса (2.1) на  $S_{n-i}$ , але без константи нормування, тому дорівнює  $\theta(\theta+1)\dots(\theta+n-i-1)$ , отже

$$\mathbb{P}\left(1,2,\ldots,i \ \epsilon \$$
нерухомими точками  $\sigma 
ight) = rac{ heta^{\imath}}{( heta+n-i)\ldots( heta+n-1)}.$ 

З цього отримуємо

$$\mathbb{P}(X_n = 0) = \sum_{i=0}^{\lceil \gamma n \rceil} (-1)^i C^i_{\lceil \gamma n \rceil} \frac{\theta^i}{(\theta + n - i) \dots (\theta + n - 1)}.$$

 $\mathbb{P}(X_n = k)$  для k > 0 можна отримати аналогічно: існує  $C^k_{\lceil \gamma n \rceil}$  способів вибрати k натуральних чисел, які будуть нерухомими точками, а для інших  $\lceil \gamma n \rceil - k$  застосувати формулу, аналогічну до  $\mathbb{P}(X_n = 0)$ :

$$\mathbb{P}(X_n = k) = C_{\lceil \gamma n \rceil}^k \sum_{i=0}^{\lceil \gamma n \rceil - k} (-1)^i C_{\lceil \gamma n \rceil - k}^i \frac{\theta^{i+k}}{(\theta + n - i - k) \dots (\theta + n - 1)}.$$

Тепер доведемо  $\lim_{n\to\infty} \mathbb{P}\left(X_n=k\right) = \frac{(\gamma\theta)^k}{k!}e^{-\gamma\theta}$ .

$$\mathbb{P}(X_n = k) = \frac{(\lceil \gamma n \rceil)!}{k!(\lceil \gamma n \rceil - k)!} \sum_{i=0}^{\lceil \gamma n \rceil - k} (-1)^i \frac{(\lceil \gamma n \rceil - k)!}{i!(\lceil \gamma n \rceil - k - i)!} \frac{\theta^{i+k}}{(\theta + n - i - k) \dots (\theta + n - 1)} = \frac{\theta^k}{k!} \sum_{i=0}^{\lceil \gamma n \rceil - k} (-1)^i \frac{\theta^i}{i!} \frac{(\lceil \gamma n \rceil - k - i + 1) \dots (\lceil \gamma n \rceil - 2)(\lceil \gamma n \rceil - 1)\lceil \gamma n \rceil}{(\theta + n - i - k) \dots (\theta + n - 1)}.$$

Нехай N достатньо велике і  $\lceil \gamma n \rceil - k > N$ , тоді  $\mathbb{P}\left(X_n = k\right)$  можна розбити на дві суми —  $S_1$  від 0 до N-1 та  $S_2$  від N до  $\lceil \gamma n \rceil - k$ .

$$\frac{k!}{\theta^k} \cdot |S_2| \leq \sum_{i=N}^{\lceil \gamma n \rceil - k} \frac{\theta^i}{i!} \frac{(\lceil \gamma n \rceil - k - i + 1) \dots (\lceil \gamma n \rceil - 2)(\lceil \gamma n \rceil - 1)\lceil \gamma n \rceil}{(\theta + n - i - k) \dots (\theta + n - 1)} \leq \sum_{i=N}^{\lceil \gamma n \rceil - k} \frac{\theta^i}{i!} \left( \frac{\lceil \gamma n \rceil}{\theta + n - \lceil \gamma n \rceil} \right)^{i+k} \leq \sum_{i=N}^{\lceil \gamma n \rceil - k} \frac{\theta^i}{i!} \left( \frac{\lceil \gamma n \rceil}{n - \lceil \gamma n \rceil} \right)^{i+k}.$$

Оскільки  $\lim_{n\to\infty}\frac{\lceil\gamma n\rceil}{n-\lceil\gamma n\rceil}=\frac{\gamma}{1-\gamma}$  для  $\gamma\in[0,1),\frac{\lceil\gamma n\rceil}{n-\lceil\gamma n\rceil}\leq C=C(\gamma),$  то

$$\frac{k!}{\theta^k} \cdot |S_2| \le C^k \sum_{i=N}^{\lceil \gamma n \rceil - k} \frac{\theta^i}{i!} C^i \le C^k \sum_{i=N}^{\infty} \frac{\theta^i}{i!} C^i \to 0, \ N \to \infty.$$

Якщо  $\gamma = 1$ , то

$$\frac{(\lceil \gamma n \rceil - k - i + 1) \dots (\lceil \gamma n \rceil - 2)(\lceil \gamma n \rceil - 1)\lceil \gamma n \rceil}{(\theta + n - i - k) \dots (\theta + n - 1)} =$$

$$= \frac{(n - k - i + 1) \dots (n - 2)(n - 1)n}{(\theta + n - i - k) \dots (\theta + n - 1)} \le$$

$$\le \frac{(n - k - i + 1) \dots (n - 2)(n - 1)n}{(n - i - k) \dots (n - 1)} = \frac{n}{n - i - k} \to 1, \ n \to \infty,$$

тому цей дріб теж обмежений і  $\lim_{N \to \infty} S_2 = 0$  також справджується. Що стосується  $S_1$ , то для фіксованого N

$$\lim_{n \to \infty} S_1 = \frac{\theta^k}{k!} \sum_{i=0}^{N-1} (-1)^i \frac{\theta^i}{i!} \lim_{n \to \infty} \frac{(\lceil \gamma n \rceil - k - i + 1) \dots (\lceil \gamma n \rceil - 2)(\lceil \gamma n \rceil - 1)\lceil \gamma n \rceil}{(\theta + n - i - k) \dots (\theta + n - 1)} = \frac{\theta^k}{k!} \sum_{i=0}^{N-1} (-1)^i \frac{\theta^i}{i!} \gamma^{i+k} = \frac{(\gamma \theta)^k}{k!} \sum_{i=0}^{N-1} (-1)^i \frac{(\gamma \theta)^i}{i!} \to \frac{(\gamma \theta)^k}{k!} e^{-\gamma \theta}, \ N \to \infty.$$

Користуючись позначеннями з леми 2.1.1, визначимо для  $n\in\mathbb{N}$  точкові процеси  $P_n$  на  $(E,\mathcal{E})=([0,1],\mathcal{B}([0,1]))$  за правилом

$$P_n(F) = \operatorname{card}\left\{i \in \{1, ..., n\} : \sigma(i) = i \operatorname{Ta} \frac{i}{n} \in F\right\}, \ F \in \mathcal{E}. \tag{2.3}$$

Тобто,  $P_n$  є випадковою точковою мірою з атомами у нерухомих точках переста-

новки Юенса  $\sigma$ , нормованих n, тому результат леми можна записати як

$$\lim_{n\to\infty} \mathbb{P}\left(P_n\left([0,\gamma]\right) = k\right) = \mathbb{P}\left(N\left([0,\gamma]\right) = k\right), \ k \in \mathbb{N}_0.$$

Тут N  $\epsilon$  точковим процесом Пуассона з мірою інтенсивності  $\theta$  · Leb on [0,1]. Виявляється, що має місце узагальнення цієї збіжності:

**Теорема 2.1.2.** Послідовність точкових процесів  $P_n$  грубо збігається за розподілом до точкового процесу Пуассона N з мірою інтенсивності  $\Lambda = \theta \cdot \text{Leb}$  на [0,1]  $(P_n \xrightarrow{vd} N, n \to \infty)$ .

Теорема 1.4.5 формулює критерій грубої збіжності точкових процесів, скористаємось позначеннями з неї.

Розглянемо сім'ю множин  $\mathcal{X}$ , що складається зі скінченних диз'юнктних об'єднань інтервалів  $\langle a,b \rangle \subset [0,1]$ . Для точкового процесу Пуассона N з мірою інтенсивності  $\Lambda = \theta$ . Leb на [0,1] (який є простим),  $\mathbb{E}N(\partial B) = \Lambda(\partial B)$ , тому для всіх  $B \subset \mathcal{X}$   $\mathbb{E}N(\partial B) = 0$ , бо  $\partial B$  складається зі скінченного об'єднання окремих точок. Це означає, що  $\hat{\mathcal{E}}_N = \mathcal{X}$ . Також,  $\mathcal{X}$  є кільцем і розсікаючим класом, оскільки всі необхідні умови очевидно виконуються. Отже, для доведення теореми 2.1.2, можна використати теорему 1.4.5 для  $\xi_n = P_n$ ,  $\xi = N$  та  $\hat{\mathcal{E}}_N = \mathcal{U} = \mathcal{I} = \mathcal{X}$ .

Доведення теореми 2.1.2. Нехай  $\langle \gamma_1, \delta_1 \rangle$  , ...,  $\langle \gamma_m, \delta_m \rangle$  , де  $\gamma_1 < \delta_1 < \gamma_2 < \ldots < \gamma_m < \delta_m$ , — набір інтервалів в [0,1], що попарно не перетинаються,  $I_j = \langle \gamma_j, \delta_j \rangle$  і  $I = \bigcup_{j=1}^m I_j \in \mathcal{X}$ . Позначимо  $Y_n = P_n(I)$ , де  $P_n(I)$  визначено формулою (2.3). Нехай  $M_n = \operatorname{card} \left\{ i \in \{1, \ldots, n\} : \frac{i}{n} \in I \right\}$  і тоді, аналогічно лемі 2.1.1,

$$\mathbb{P}(Y_n = k) = C_{M_n}^k \sum_{i=0}^{M_n - k} (-1)^i C_{M_n - k}^i \frac{\theta^{i+k}}{(\theta + n - i - k) \dots (\theta + n - 1)}.$$

Оскільки сагd  $\left\{i\in\{1,...,n\}:\frac{i}{n}\in I_j\right\}=\lceil\delta_j n\rceil-\lfloor\gamma_j n\rfloor$  (  $\lceil\cdot\rceil$  може змінюватися на  $\lfloor\cdot\rfloor$  і навпаки в залежності від n та включення кінцевих точок до інтервалу), а  $\lfloor x\rfloor \leq x \leq \lceil x\rceil$ , то  $\lim_{n\to\infty}\frac{M_n}{n}=\sum_{j=1}^m(\delta_j-\gamma_j)$ , повторенням доведення збіжності у лемі 2.1.1, отримуємо

$$\lim_{n\to\infty}\mathbb{P}\left(Y_n=k\right)=\frac{1}{k!}\left(\theta\sum_{j=1}^m(\delta_j-\gamma_j)\right)^k\exp\left\{-\theta\sum_{j=1}^m(\delta_j-\gamma_j)\right\}, k\in\mathbb{N}_0.$$

Оскільки  $\Lambda(I) = \theta \cdot \mathrm{Leb}(I) = \theta \sum_{j=1}^{m} (\delta_j - \gamma_j)$ , то

$$\lim_{n\to\infty} \mathbb{P}\left(P_n(I)=0\right) = \mathbb{P}\left(N(I)=0\right), I\in\mathcal{X}.$$

Так як  $\mathbb{P}\left(P_n(I)>1\right)=1-\left(\mathbb{P}\left(P_n(I)=0\right)+\mathbb{P}\left(P_n(I)=1\right)\right)$  і  $\mathbb{P}\left(P_n(I)=1\right)\to\mathbb{P}\left(N(I)=1\right)$  для  $I\in\mathcal{X}$ , отримуємо

$$\lim_{n\to\infty} \mathbb{P}\left(P_n(I) > 1\right) = \mathbb{P}\left(N(I) > 1\right), I \in \mathcal{X}.$$

Отже, обидві умови теореми 1.4.5 справджуються, що і доводить  $P_n \stackrel{vd}{\longrightarrow} N$  при  $n \to \infty$ .

Варто також зауважити важливий наслідок теореми 2.1.2.

**Наслідок** (2.1.2). Оскільки граничний процес Пуассона N простий і  $N(\{0\}) = 0$  з ймовірністю I, то в силу теореми (1.4.7) має місце збіжність  $P_n \stackrel{Sd}{\longrightarrow} N$ .

Для наступних досліджень будуть важливі перестановки з принаймні однією нерухомою точкою. З теореми 2.1.2, для  $\gamma=1$  виконується  $\mathbb{P}\left(X_n=0\right) \to e^{-\theta}, n \to \infty$ . Введемо ще один точковий процес  $\widehat{P}_n$ , що визначений для борелевих множин  $F \in \mathcal{B}([0,1])$  як

$$\mathbb{P}\left(\widehat{P}_n(F) = k\right) = \mathbb{P}\left(P_n(F) = k \mid P_n([0,1]) > 0\right) = \begin{cases} \frac{\mathbb{P}(P_n(F) = k)}{1 - \mathbb{P}(P_n([0,1]) = 0)}, & k > 0; \\ \frac{\mathbb{P}\left(P_n(F) = 0, P_n(F^C) > 0\right)}{1 - \mathbb{P}\left(P_n([0,1]) = 0\right)}, & k = 0. \end{cases}$$
(2.4)

В силу теореми 1.4.3 достатньо визначити лише одновимірні розподіли. Повторенням доведення 2.1.2 можна отримати наступний результат:

**Теорема 2.1.3.** Точковий процес  $\widehat{P}_n$  грубо збігається за розподілом до точкового процесу  $\widehat{N}$  на [0,1], для якого

$$\mathbb{P}\left(\widehat{N}(F) = k\right) = \begin{cases} \frac{(\Lambda(F))^k}{k!} \cdot \frac{e^{-\Lambda(F)}}{1 - e^{-\theta}}, & k > 0\\ \frac{\mathbb{P}\left(N(F) = 0, N(F^C) > 0\right)}{1 - e^{-\theta}}, & k = 0. \end{cases}$$
(2.5)

для всіх  $F \in \mathcal{B}([0,1])$  та  $k \in \mathbb{N}$ .

За властивістю 2 у означенні 1.4.5 маємо

$$\mathbb{P}\left(N(F) = 0, N(F^C) > 0\right) = \mathbb{P}\left(N(F) = 0\right) \cdot \mathbb{P}\left(N(F^C) > 0\right) =$$

$$= \mathbb{P}\left(N(F) = 0\right) \cdot \left(1 - \mathbb{P}\left(N(F^C) = 0\right)\right) = e^{-\Lambda(F)} \cdot \left(1 - e^{-\Lambda(F^C)}\right) =$$

$$= e^{-\Lambda(F)} \cdot \left(1 - e^{-\theta}e^{\Lambda(F)}\right) = e^{-\Lambda(F)} - e^{-\theta},$$

тому можна записати

$$\mathbb{P}\left(\widehat{N}(F) = k\right) = \begin{cases} \frac{(\Lambda(F))^k}{k!} \cdot \frac{e^{-\Lambda(F)}}{1 - e^{-\theta}}, & k > 0\\ \frac{e^{-\Lambda(F)} - e^{-\theta}}{1 - e^{-\theta}}, & k = 0. \end{cases}$$
(2.6)

Зокрема, для F = [0, 1]:

$$\mathbb{P}\left(\widehat{N}([0,1]) = k\right) = \begin{cases} \frac{\theta^k}{k!} \cdot \frac{e^{-\theta}}{1 - e^{-\theta}}, & k > 0\\ 0, & k = 0. \end{cases}$$

$$(2.7)$$

# 2.2. Статистичні властивості нерухомих точок

Результати теорем 2.1.2 та 2.1.3 можуть бути застосовані з теоремою про неперервне відображення 1.4.6. Корисною також є теорема 1.3.1, згідно з якою для послідовності точкових мір  $\mu_n$ , що грубо збігається до точкової міри  $\mu$ , для будь-якої компактної множини існує номер, починаючи з якого усі елементи послідовності містять стільки ж атомів з цієї множини, скільки й гранична міра. Це означає, що будь-яка неперервна функція багатьох змінних утворює на просторі точкових мір неперервне відносно грубої топології відображення. У нашому випадку достатньо обмежитись функціями з  $[0,1]^p$ .

# 2.2.1. Найменша та найбільша нерухомі точки

Для точкової міри  $\mu$  можна визначити два відображення  $\min(\mu)$  та  $\max(\mu)$  що ставлять у відповідність цій мірі її найменший та найбільший атоми, за формулами

$$\min(\mu) = \sup \left\{ x \in [0, 1] : \mu([0, x]) = 0 \right\} \tag{2.8}$$

$$\max(\mu) = \inf\{x \in [0,1] : \mu([x,1]) = 0\}, \tag{2.9}$$

де для порожньої множини покладаємо  $\sup \varnothing = 0$  та  $\inf \varnothing = 1$ . Якщо  $\{x_1, \ldots, x_k\}$  — множина атомів  $\mu$ , то  $\min(\mu) = \min\{x_1, \ldots, x_k\}$  і  $\max(\mu) = \max\{x_1, \ldots, x_k\}$ .

Нехай  $\mu_n \stackrel{v}{\longrightarrow} \mu$ . Оскільки min  $\{x_1, \dots, x_k\}$  та max  $\{x_1, \dots, x_k\}$  є неперервними функціями з  $\mathbb{R}^k$  в  $\mathbb{R}$ , з теореми 1.3.1 випливає, що min $(\mu)$  та max $(\mu)$  є неперервними відносно грубої топології.

Незважаючи на результат теореми 2.1.3, простіше отримати розподіл  $\min(N)$  та  $\max(N)$ , оскільки умовний розподіл  $\mathbb{P}\left(N(F)=k\mid N([0,1])=m\right)$  є відомим (твердження 3.8, ст. 23, [7]) — це одновимірний розподіл біноміального процесу з розміром вибірки m та розподілом U (0,1). Це означає, що за умови N([0,1])=m сумісний розподіл положень всіх m атомів збігається з розподілом випадкового вектора з m незалежних випадкових величин з розподілом U (0,1). Також, корисним є такий факт: нехай  $U_1,U_2,\ldots,U_m$  є незалежними випадковими величинами з розподілом U (0,1); тоді розподіли  $U_{(1)}^{[m]}=\min\{U_1,\ldots,U_m\}$  та  $U_{(m)}^{[m]}=\max\{U_1,\ldots,U_m\}$  задаються формулами

$$\mathbb{P}\left(U_{(1)}^{[m]} \le x\right) = \begin{cases} 0, & x < 0, \\ 1 - (1 - x)^m, & 0 \le x < 1, \\ 1, & x \ge 1, \end{cases}$$

$$\mathbb{P}\left(U_{(m)}^{[m]} \le x\right) = \begin{cases} 0, & x < 0, \\ x^m, & 0 \le x < 1, \\ 1, & x \ge 1, \end{cases}$$

оскільки

$$\mathbb{P}\left(U_{(1)}^{[m]} \leq x\right) = 1 - \mathbb{P}\left(U_1 > x\right) = 1 - \mathbb{P}\left(U_1 > x, ..., U_m > x\right) =$$

$$= 1 - \mathbb{P}\left(U_1 > x\right) \cdot ... \cdot \mathbb{P}\left(U_m > x\right) = 1 - \left(1 - \mathbb{P}\left(U_1 \leq x\right)\right) \cdot ... \cdot \left(1 - \mathbb{P}\left(U_m \leq x\right)\right),$$

$$\mathbb{P}\left(U_{(m)}^{[m]} \leq x\right) = \mathbb{P}\left(U_1 \leq x, ..., U_m \leq x\right) = \mathbb{P}\left(U_1 \leq x\right) \cdot ... \cdot \mathbb{P}\left(U_m \leq x\right).$$

Отже, розподіли min(N) та max(N) мають вигляд

$$\mathbb{P}(\min(N) \leq x) = \sum_{m=0}^{\infty} \mathbb{P}(\min(N) \leq x \mid N([0,1]) = m) \, \mathbb{P}(N([0,1]) = m) =$$

$$= \mathbb{1} \{x \geq 1\} \cdot e^{-\theta} + \sum_{m=1}^{\infty} \mathbb{P}(\min(N) \leq x \mid N([0,1]) = m) \cdot \frac{\theta^{m}}{m!} e^{-\theta} =$$

$$= \begin{cases} 0, & x < 0, \\ \sum_{m=1}^{\infty} (1 - (1 - x)^{m}) \frac{\theta^{m}}{m!} e^{-\theta} = 1 - e^{-\theta x}, & 0 \leq x < 1, \\ 1, & x \geq 1; \end{cases}$$

$$\mathbb{P}\left(\max(N) \leq x\right) = \sum_{m=0}^{\infty} \mathbb{P}\left(\max(N) \leq x \mid N([0,1]) = m\right) \mathbb{P}\left(N([0,1]) = m\right) =$$

$$= \mathbb{1}\left\{x \geq 0\right\} \cdot e^{-\theta} + \sum_{m=1}^{\infty} \mathbb{P}\left(\max(N) \leq x \mid N([0,1]) = m\right) \cdot \frac{\theta^{m}}{m!} e^{-\theta} =$$

$$= \begin{cases} 0, & x < 0, \\ e^{-\theta} + \sum_{m=1}^{\infty} x^{m} \frac{\theta^{m}}{m!} e^{-\theta} = e^{\theta(x-1)}, & 0 \leq x < 1, \\ 1, & x \geq 1. \end{cases}$$

Ці розподіли є змішаними, бо  $\mathbb{P}\left(N([0,1])=0\right)=e^{-\theta}$  і тому  $\mathbb{P}\left(\min(N)=1\right)=\mathbb{P}\left(\max(N)=0\right)=e^{-\theta}$ . Відповідні умовні розподіли є абсолютно неперервними:

$$\mathbb{P}(\min(N) \le x \mid \min(N) < 1) = \begin{cases} 0, & x < 0, \\ \frac{1 - e^{-\theta x}}{1 - e^{-\theta}}, & 0 \le x < 1, \\ 1, & x \ge 1, \end{cases}$$
 (2.12)

$$\mathbb{P}\left(\max(N) \le x \mid \max(N) > 0\right) = \begin{cases} 0, & x < 0, \\ \frac{e^{\theta x} - 1}{e^{\theta} - 1}, & 0 \le x < 1, \\ 1, & x \ge 1. \end{cases}$$
 (2.13)

Умови  $\{\min(N) < 1\}$  та  $\{\max(N) > 0\}$  еквівалентні  $\{N([0,1]) > 0\}$ , тому умовні

розподіли (2.12) та (2.13) задають безумовні розподіли  $\min(\widehat{N})$  та  $\max(\widehat{N})$ .

3 формул (2.3) та (2.5) випливає, що  $n \cdot \min(\widehat{P}_n)$  — найменша нерухома точка перестановки Юенса на  $S_n$ , а  $n \cdot \max(\widehat{P}_n)$  — найбільша, за умови, що нерухомі точки взагалі існують.

Також, можна обчислити відповідні математичні сподівання:

$$\begin{split} \mathbb{E} \min(\widehat{N}) &= \int_0^1 \left(1 - \mathbb{P}\left(\min(\widehat{N}) \leq x\right)\right) \mathrm{d}x = \int_0^1 \left(1 - \frac{1 - e^{-\theta x}}{1 - e^{-\theta}}\right) \mathrm{d}x = \\ &= \int_0^1 \left(\frac{e^{-\theta x} - e^{-\theta}}{1 - e^{-\theta}}\right) \mathrm{d}x = \frac{1}{1 - e^{-\theta}} \cdot \left(\frac{1 - e^{-\theta}}{\theta} - e^{-\theta}\right) = \frac{1}{\theta} - \frac{e^{-\theta}}{1 - e^{-\theta}} \end{split}$$

$$\begin{split} \mathbb{E} \max(\widehat{N}) &= \int_0^1 \left(1 - \mathbb{P}\left(\max(\widehat{N}) \leq x\right)\right) \mathrm{d}x = \int_0^1 \left(1 - \frac{e^{\theta x} - 1}{e^{\theta} - 1}\right) \mathrm{d}x = \\ &= \int_0^1 \left(\frac{e^{\theta} - e^{\theta x}}{e^{\theta} - 1}\right) \mathrm{d}x = \frac{1}{e^{\theta} - 1} \cdot \left(e^{\theta} - \frac{e^{\theta} - 1}{\theta}\right) = \frac{e^{\theta}}{e^{\theta} - 1} - \frac{1}{\theta} \end{split}$$

Оскільки  $\lim_{n\to\infty}\mathbb{E}\min(\widehat{P}_n)=\mathbb{E}\min(\widehat{N})$  та  $\lim_{n\to\infty}\mathbb{E}\max(\widehat{P}_n)=\mathbb{E}\max(\widehat{N})$ , то, наприклад, для  $\theta=1$  при великих значеннях n маємо  $\mathbb{E}\min(\widehat{P}_n)\approx \frac{1-2e^{-1}}{1-e^{-1}}\cdot n\approx 0.418\cdot n$ ,  $\mathbb{E}\max(\widehat{P}_n)\approx \frac{1}{e-1}\cdot n\approx 0.582\cdot n$ .

Сформулюємо отриманий результат у вигляді теореми.

**Теорема 2.2.1.** Нехай  $\sigma \sim \mathrm{ESF}\,(n,\theta)$ , а  $m_n = \min\{i \in \{1,\dots,n\} : \sigma(i) = i\}$  та  $M_n = \max\{i \in \{1,\dots,n\} : \sigma(i) = i\}$  — відповідно, найменша на найбільша нерухомі точки  $\sigma$ , де за домовленістю  $\min\varnothing = n$ ,  $\max\varnothing = 1$ . Тоді при  $n \to \infty$  виконуються граничні співвідношення  $\frac{m_n}{n} \stackrel{d}{\longrightarrow} m$ ,  $\frac{M_n}{n} \stackrel{d}{\longrightarrow} M$ , де функції розподілу випадкових величин m та M дорівнюють, відповідно,

$$F_m(x) = \begin{cases} 0, & x < 0, \\ 1 - e^{-\theta x}, & 0 \le x < 1, \\ 1, & x \ge 1 \end{cases}$$
 (2.14)

$$F_M(x) = \begin{cases} 0, & x < 0, \\ e^{\theta(x-1)}, & 0 \le x < 1, \\ 1, & x \ge 1 \end{cases}$$
 (2.15)

Якщо позначити  $\widehat{m}_n$  та  $\widehat{M}_n$  найменшу та найбільшу нерухомі точки за умови, що вони взагалі існують, то виконуються також граничні співвідношення  $\frac{\widehat{m}_n}{n} \stackrel{d}{\longrightarrow} \widehat{m}$  і  $\frac{\widehat{M}_n}{n} \stackrel{d}{\longrightarrow} \widehat{M}$ , де  $\widehat{m}$  та  $\widehat{M}$   $\epsilon$  абсолютно неперервними випадковими величинами з функціями розподілу

$$F_{\widehat{m}}(x) = \begin{cases} 0, & x < 0, \\ \frac{1 - e^{-\theta x}}{1 - e^{-\theta}}, & 0 \le x < 1, \\ 1, & x \ge 1 \end{cases}$$
 (2.16)

$$F_{\widehat{M}}(x) = \begin{cases} 0, & x < 0, \\ \frac{e^{\theta x} - 1}{e^{\theta} - 1}, & 0 \le x < 1, \\ 1, & x \ge 1 \end{cases}$$
 (2.17)

# 2.2.2. Сума нерухомих точок

Граничний розподіл суми нерухомих точок можна отримати, користуючись функціоналом Лапласа точкового процесу Пуассона. Згідно з означенням 1.4.5, для процесу Пуассона з мірою інтенсивності  $\theta$  · Leb на [0,1], цей функціонал задається

$$\psi_N(f) = \exp\left\{-\theta \int_0^1 \left(1 - e^{-f(x)}\right) dx\right\}$$
 (2.18)

для вимірних, невід'ємних, обмежених функцій f на [0,1].

Позначатимемо  $\mathrm{sum}(N)$  суму атомів точкового процесу Пуассона N. Для будьякої точкової міри  $\mu$ ,  $\mathrm{sum}(\mu)=\int_0^1 x\mathrm{d}\mu$ . Перетворення Лапласа невід'ємної випадкової величини X задається  $\mathcal{L}\left\{X\right\}(p)=\mathbb{E}e^{-pX}$ . Якщо порівняти це означення з (2.18), можна побачити, що перетворення Лапласа  $\mathrm{sum}(N)$  дорівнює значенню  $\psi_N(f)$  для f(x)=px. Пряме обчислення дає наступний результат:

$$\mathcal{L}\left\{\operatorname{sum}(N)\right\}(p) = \exp\left\{-\theta\left(1 + \frac{1}{p}(e^{-p} - 1)\right)\right\}. \tag{2.19}$$

Оскільки розподіл sum(N) є сумішшю абсолютно неперервного розподілу та дискретного з атомом в 0, можна знайти перетворення Лапласа лише абсолютно

неперервної частини, що також буде перетворення для  $\mathrm{sum}(\widehat{N}).$ 

$$\begin{split} \mathcal{L}\left\{ \mathrm{sum}(N) \right\}(p) &= \mathbb{E} e^{-p \cdot \mathrm{sum}(N)} = 1 \cdot \mathbb{P}\left( \mathrm{sum}(N) = 0 \right) + \\ + \mathbb{E} e^{-p \cdot \mathrm{sum}(\widehat{N})} \cdot \mathbb{P}\left( \mathrm{sum}(N) > 0 \right) &= e^{-\theta} + \mathcal{L}\left\{ \mathrm{sum}(\widehat{N}) \right\}(p) \cdot (1 - e^{-\theta}) \\ \mathcal{L}\left\{ \mathrm{sum}(\widehat{N}) \right\}(p) &= \frac{1}{1 - e^{-\theta}} \left( \mathcal{L}\left\{ \mathrm{sum}(N) \right\}(p) - e^{-\theta} \right) = \\ &= \frac{e^{-\theta}}{1 - e^{-\theta}} \cdot \left( \exp\left\{ -\frac{\theta}{p}(e^{-p} - 1) \right\} - 1 \right) \end{split}$$

 $\mathrm{sum}(\widehat{N})$  є абсолютно неперервною випадковою величиною,  $\mathcal{L}\left\{\mathrm{sum}(\widehat{N})\right\}(p)$  є перетворенням Лапласа для щільності, тому перетворення Лапласа для функції розподілу  $\mathrm{sum}(\widehat{N})$  задається

$$\mathcal{L}\left\{F_{\operatorname{sum}(\widehat{N})}(x)\right\}(p) = \frac{e^{-\theta}}{1 - e^{-\theta}} \cdot \frac{1}{p} \cdot \left(\exp\left\{-\frac{\theta}{p}(e^{-p} - 1)\right\} - 1\right) \tag{2.20}$$

Знаходження оберненого перетворення для (2.20)  $\epsilon$  доволі складним.

Розглянемо інший підхід до знаходження  $F_{\mathrm{sum}(N)}(x) = \mathbb{P}\left(\mathrm{sum}(N) \leq x\right)$ :

$$\begin{split} \mathbb{P}\left(\text{sum}(N) \leq x\right) &= \sum_{m=0}^{\infty} \mathbb{P}\left(\text{sum}(N) \leq x \mid N([0,1]) = m\right) \mathbb{P}\left(N([0,1]) = m\right) = \\ &= \mathbb{1}\left\{x \geq 0\right\} \cdot e^{-\theta} + \sum_{m=1}^{\infty} \mathbb{P}\left(\text{sum}(N) \leq x \mid N([0,1]) = m\right) \frac{\theta^m}{m!} e^{-\theta} \end{split}$$

Згідно з [10] (ст. 296), умовні розподіли  $\mathbb{P}\left(\operatorname{sum}(N) \leq x \mid N([0,1]) = m\right)$  є розподілами Ірвіна-Голла — розподілами суми m незалежних випадкових величин з розподілом U (0,1). Їх функція розподілу має вигляд

$$F_s^{[m]}(x) = \begin{cases} 0, & x < 0, \\ \frac{1}{m!} \sum_{k=0}^{\lfloor x \rfloor} (-1)^k C_m^k (x - k)^m, & 0 \le x < m, \\ 1, & x \ge m. \end{cases}$$

Для кожного інтервалу  $[n, n+1), n \in \mathbb{N}_0$ ,  $\mathbb{P}(\text{sum}(N) \leq x)$  може бути виражена через  $I_{\nu}(z), \nu \in \mathbb{R}$  — модифіковані функції Бесселя першого роду ([11], ст. 375):

$$I_{\nu}(z) = \left(\frac{1}{2}z\right)^{\nu} \sum_{k=0}^{\infty} \frac{\left(\frac{1}{4}z^{2}\right)^{k}}{k!\Gamma(\nu+k+1)}$$

Отримаємо відповідну формулу. Нехай  $x \in [n, n+1)$ ,

$$\begin{split} e^{\theta} \cdot \mathbb{P}\left(\mathrm{sum}(N) \leq x\right) &= 1 + \sum_{m=1}^{\infty} \mathbb{P}\left(\mathrm{sum}(N) \leq x \mid N([0,1]) = m\right) \frac{\theta^m}{m!} = \\ &= 1 + \sum_{m=1}^{n} 1 \cdot \frac{\theta^m}{m!} + \sum_{m=n+1}^{\infty} \left(\frac{1}{m!} \sum_{k=0}^{n} (-1)^k C_m^k (x - k)^m\right) \frac{\theta^m}{m!} = \\ &= \sum_{m=0}^{n} \frac{\theta^m}{m!} + \sum_{m=n+1}^{\infty} \left(\sum_{k=0}^{n} (-1)^k \frac{1}{k!(m-k)!} (x - k)^m\right) \frac{\theta^m}{m!} = \\ &= \sum_{m=0}^{n} \frac{\theta^m}{m!} + \sum_{k=0}^{n} \frac{(-1)^k}{k!} \left(\sum_{m=n+1}^{\infty} \frac{1}{m!(m-k)!} (x - k)^m \theta^m\right) = [m-k=l] = \\ &= \sum_{m=0}^{n} \frac{\theta^m}{m!} + \sum_{k=0}^{n} \frac{(-1)^k}{k!} \left(\sum_{l=n-k+1}^{\infty} \frac{1}{l!(l+k)!} (x - k)^{l+k} \theta^{l+k}\right) = \\ &= \sum_{m=0}^{n} \frac{\theta^m}{m!} + \sum_{k=0}^{n} \frac{(-1)^k}{k!} (x - k)^k \theta^k \left(\sum_{l=n-k+1}^{\infty} \frac{1}{l!(l+k)!} (x - k)^l \theta^l\right) = \\ &= \left[\frac{1}{l!(l+k)!} (x - k)^l \theta^l = a_{k,l}\right] = \\ &= \sum_{m=0}^{n} \frac{\theta^m}{m!} + \sum_{k=0}^{n} \frac{(-1)^k}{k!} (x - k)^k \theta^k \left(\sum_{l=0}^{\infty} a_{k,l} - \sum_{l=0}^{n-k} a_{k,l}\right) = \\ &= \sum_{k=0}^{n} \frac{(-1)^k}{k!} \left(\theta(x - k)\right)^{\frac{k}{2}} I_k \left(2\sqrt{\theta(x - k)}\right) + \\ &+ \sum_{m=0}^{n} \frac{\theta^m}{m!} - \sum_{k=0}^{n} \sum_{l=0}^{n-k} \frac{(-1)^k}{k!} \frac{1}{l!(l+k)!} (x - k)^l \theta^l \end{split}$$

Позначимо  $R(n)=\sum_{m=0}^n \frac{\theta^m}{m!},$   $L(n)=\sum_{k=0}^n \sum_{l=0}^{n-k} \frac{(-1)^k}{k!} \frac{1}{l!(l+k)!} (x-k)^l \theta^l.$  Покажемо, що R(n)-R(n-1)=L(n)-L(n-1) для всіх  $n\in\mathbb{N}$ :

$$R(n) - R(n-1) = \frac{\theta^n}{n!},$$

$$L(n) - L(n-1) = \sum_{k=0}^n \sum_{l=0}^{n-k} s_{k,l} - \sum_{k=0}^{n-1} \sum_{l=0}^{n-k-1} s_{k,l} = \sum_{i=0}^n s_{i,n-i} =$$

$$= \sum_{i=0}^n \frac{(-1)^i}{i!} \frac{1}{(n-i)!n!} (x-i)^n \theta^n = \frac{\theta^n}{n!} \cdot \frac{1}{n!} \sum_{i=0}^n (-1)^i C_n^i (x-i)^n.$$

Розглянемо функцію  $f(x)=x^n$ . Ліва скінченна різниця першого порядку для f з кроком h=1 — це  $\Delta f(x)=f(x)-f(x-1)$ , другого порядку —  $\Delta^2 f(x)=\Delta f(x)-\Delta f(x-1)=f(x)-2f(x-1)+f(x-2)$ , аналогічно рекурентно визначаються скінченні різниці вищих порядків. Загальною формулою для різниці k-того порядку буде  $\Delta^k f(x)=\sum_{i=0}^k C_k^i f(x-i)=\sum_{i=0}^k C_k^i (x-i)^n$ , тому вираз  $\sum_{i=0}^n (-1)^i C_n^i (x-i)^n$  — це ліва скінченна різниця n-того порядку для  $x^n$ . Оскільки кожна скінченна різниця  $\epsilon$  поліном порядку на 1 менше, ніж попередня, то різниця n-того порядку вже буде константою. Виявляється, що

$$\frac{1}{n!}\Delta^n f(n) = \frac{1}{n!} \sum_{i=0}^n (-1)^i C_n^i (n-i)^n = \frac{1}{n!} \sum_{k=0}^n (-1)^{n-k} C_n^k k^n = \begin{Bmatrix} n \\ n \end{Bmatrix} = 1,$$

де  $\binom{n}{m}$  позначає число Стірлінга другого роду ([11], ст. 824-825). Отже, R(n)-R(n-1)=L(n)-L(n-1) для всіх  $n\in\mathbb{N}$ . Оскільки R(0)=L(0)=1, то R(n)=L(n) для всіх  $n\in\mathbb{N}$ . Таким чином, отримуємо

$$F_{\text{sum}(N)}(x) = e^{-\theta} \sum_{k=0}^{n} \frac{(-1)^k}{k!} \left(\theta(x-k)\right)^{\frac{k}{2}} I_k \left(2\sqrt{\theta(x-k)}\right), \ x \in [n, n+1) \quad (2.21)$$

В свою чергу, функція розподілу  $\mathrm{sum}(\widehat{N})$  може бути виражена через  $F_{\mathrm{sum}(N)}(x)$  наступним чином:

$$\mathbb{P}\left(\operatorname{sum}(\widehat{N}) \le x\right) = \mathbb{P}\left(\operatorname{sum}(N) \le x \mid \operatorname{sum}(N) > 0\right) = \frac{1}{1 - e^{-\theta}} \left(F_{\operatorname{sum}(N)}(x) - e^{-\theta}\right) \tag{2.22}$$

-- CDF plot --

При цьому,  $\mathbb{E}$  sum(N) значно простіше знайти за формулою повного математичного сподівання, оскільки для m>0  $\mathbb{E}\left(\text{sum}(N)\mid N([0,1])=m\right)=\frac{m}{2}$  як математичне сподівання суми m незалежних випадкових величин з розподілом U (0,1):

$$\mathbb{E} \operatorname{sum}(N) = 0 \cdot \mathbb{P} \left( N([0,1]) = 0 \right) + \sum_{m=1}^{\infty} \frac{m}{2} \frac{\theta^m}{m!} e^{-\theta} = \frac{e^{-\theta}}{2} \sum_{m=1}^{\infty} \frac{\theta^m}{(m-1)!} = \frac{\theta}{2}$$

Сформулюємо отриманий результат у вигляді теореми.

**Теорема 2.2.2.** Нехай  $\sigma \sim \mathrm{ESF}\,(n,\theta)$ , а  $S_n = \sum_{i:\sigma(i)=i} i$  — сума нерухомих точок  $\sigma$ . Тоді при  $n \to \infty$  виконується граничне співвідношення  $\frac{S_n}{n} \stackrel{d}{\longrightarrow} S$  де функція

розподілу випадкової величини S дорівню $\epsilon$ 

$$F_S(x) = \begin{cases} 0, & x < 0, \\ e^{-\theta} \sum_{k=0}^{\lfloor x \rfloor} (-1)^k \frac{1}{k!} \left( \theta(x-k) \right)^{\frac{k}{2}} I_k \left( 2\sqrt{\theta(x-k)} \right), & x \ge 0. \end{cases}$$
 (2.23)

#### 2.2.3. Найменші і найбільші спейсинги

Визначимо граничні розподіли найменшого і найбільшого спейсингів — відстаней між нерухомими точками.

**Зауваження.** Щоб застосувати тут теоретичні результати, що стосуються випадкового розбиття інтервалів, зручно вважати  $\min(N)$  і  $1-\max(N)$  спейсингами. Для випадкової перестановки  $\{1,\ldots,n\}$  це означатиме вважати 0 та n+1 «штучними» нерухомими точками.

Нехай  $U_1, U_2, \ldots, U_n$  — незалежні випадкові величин з розподілом U (0,1), що розділяють відрізок [0,1] на n+1 інтервалів з довжинами  $S_1, S_2, \ldots, S_{n+1}$ , або, у відсортованому вигляді,  $S_{(1)}^{[n+1]} < S_{(2)}^{[n+1]} < \cdots < S_{(n+1)}^{[n+1]}$  (нагадаємо,  $S_{(i)}$  позначає i-ту порядкову статистику, а  $S_{(i)}^{[n]}$  — те ж саме, але з вказанням n як кількості цих статистик). Розподіли  $S_{(k)}^{[n+1]}$  отримано у багатьох роботах (наприклад, [12], [13]). Зокрема, для  $x \in [0,1]$ :

$$\mathbb{P}\left(S_{(1)}^{[n+1]} > x\right) = \left((1 - (n+1)x)_{+}\right)^{n} \tag{2.24}$$

$$\mathbb{P}\left(S_{(n+1)}^{[n+1]} > x\right) = \sum_{j=1}^{n+1} (-1)^{j-1} C_{n+1}^{j} \left( (1-jx)_{+} \right)^{n}$$
 (2.25)

де  $x_{+} = \max(x, 0)$ .

Отже, розподіли найменшого s-min(N) та найбільшого s-max(N) спейсингів між атомами N задаються (з домовленістю  $S^1_{(1)}=1$ )

$$\mathbb{P}\left(\text{s-min}(N) > x\right) = \sum_{n=0}^{\infty} \mathbb{P}\left(S_{(1)}^{[n+1]} > x\right) \mathbb{P}\left(N([0,1]) = n\right) \tag{2.26}$$

$$\mathbb{P}\left(\text{s-max}(N) > x\right) = \sum_{n=0}^{\infty} \mathbb{P}\left(S_{(n+1)}^{[n+1]} > x\right) \mathbb{P}\left(N([0,1]) = n\right) \tag{2.27}$$

Хоча явні вирази для (2.26) та (2.27), скоріш за все, доволі складні, цікаво звернути увагу на дві випадкові величини з такими ж розподілами.

Відомо (наприклад, [12]), що для незалежних величин  $X_1, X_2, \dots, X_n$  з розподілом Exp(1) мають місце наступні три рівності:

$$(S_1, S_2, \dots, S_n)^T \stackrel{d}{=} \left(\frac{X_1}{\sum_{i=1}^n X_i}, \frac{X_2}{\sum_{i=1}^n X_i}, \dots, \frac{X_n}{\sum_{i=1}^n X_i}\right)^T$$
 (2.28)

$$(S_{(1)}, S_{(1)}, \dots, S_{(n)})^T \stackrel{d}{=} \left(\frac{X_{(1)}}{\sum_{i=1}^n X_i}, \frac{X_{(2)}}{\sum_{i=1}^n X_i}, \dots, \frac{X_{(n)}}{\sum_{i=1}^n X_i}\right)^T$$
(2.29)

$$X_{(i)} \stackrel{d}{=} \frac{X_n}{n} + \frac{X_{n-1}}{n-1} + \dots + \frac{X_{n-i+1}}{n-i+1}$$
 (2.30)

Виявляється, (2.29) та (2.30) можна узагальнити в наступну неочікувану рівність:

**Лема 2.2.3.** Для порядкових статистик спейсингів  $S_{(1)}^{[n+1]},...,S_{(n+1)}^{[n+1]}$  між незалежними величинами з розподілом U (0,1) та незалежних величин  $X_1,X_2,\ldots,X_n$  з розподілом  $\mathrm{Exp}\,(1)$  має місце

$$S_{(i)}^{[n]} \stackrel{d}{=} \frac{\frac{X_n}{n} + \frac{X_{n-1}}{n-1} + \dots + \frac{X_{n-i+1}}{n-i+1}}{\sum_{i=1}^n X_i}, i = 1, \dots, n$$
 (2.31)

Доведення. Позначимо спейсинги між  $X_1, X_2, \ldots, X_n$  через  $\Delta_1 = X_{(1)}, \ \Delta_i = X_{(i)} - X_{(i-1)}, i = 2, \ldots, n$ . З [14] відомо, що всі  $\Delta_i$  незалежні та мають розподіли  $\operatorname{Exp}(n-i+1)$ . Отже, праву частину  $S_{(i)} \stackrel{d}{=} \frac{X_{(i)}}{\sum_{i=1}^n X_i}$  можна переписати як

$$\frac{X_{(i)}}{\sum_{j=1}^{n} X_{j}} = \frac{X_{(i)}}{\sum_{j=1}^{n} X_{(j)}} = \frac{\Delta_{1} + \dots + \Delta_{i}}{\Delta_{1} + (\Delta_{1} + \Delta_{2}) + \dots + (\Delta_{1} + \dots + \Delta_{n})}$$

Введемо нові незалежні випадкові величини  $Y_i=(n-i+1)\Delta_i$  з розподілом  ${\rm Exp}\,(1).$  В термінах  $Y_i$ , верхню рівність можна переписати як

$$\frac{X_{(i)}}{\sum_{j=1}^{n} X_j} = \frac{\sum_{j=1}^{i} \frac{Y_j}{n-j+1}}{\sum_{j=1}^{n} Y_j}$$

Оскільки  $X_i$  та  $Y_i$  незалежні та мають однакові розподіли, то отримуємо (2.31).

Окремими випадками леми 2.2.3 є  $S_{(1)}^{[n]} \stackrel{d}{=} \frac{X_1}{n \sum_{i=1}^n X_i}$  та  $S_{(n)}^{[n]} \stackrel{d}{=} \frac{\sum_{i=1}^n \frac{X_i}{n-i+1}}{\sum_{i=1}^n X_i} \stackrel{d}{=} \frac{\sum_{i=1}^n \frac{X_i}{i}}{\sum_{i=1}^n X_i}$ . Разом з (2.26) та (2.27) вони приводять до наступних рівностей за розподілом:

$$s-\min(N) \stackrel{d}{=} \frac{X_1}{(\nu+1)\sum_{i=1}^{\nu+1} X_i}, \ s-\max(N) \stackrel{d}{=} \frac{\sum_{i=1}^{\nu+1} \frac{X_i}{i}}{\sum_{i=1}^{\nu+1} X_i}$$
(2.32)

де  $\nu$  має розподіл Роіз  $(\theta)$ , а  $(X_i, i \in \mathbb{N})$  незалежні і мають розподіл Ехр (1).

Відповідні математичні сподівання  $\mathbb{E}$  s-min(N) та  $\mathbb{E}$  s-max(N) можна знайти з (2.32). Нехай  $n\in\mathbb{N}_0$ , тоді

$$\mathbb{E}\left(\frac{X_1}{(n+1)\sum_{i=1}^{n+1}X_i}\right) = \frac{1}{(n+1)^2} \cdot \mathbb{E}\left(\frac{X_1}{\sum_{i=1}^{n+1}X_i} + \dots + \frac{X_{n+1}}{\sum_{i=1}^{n+1}X_i}\right) = \frac{1}{(n+1)^2}$$

$$\mathbb{E}\left(\frac{\sum_{i=1}^{n+1}\frac{X_i}{i}}{\sum_{i=1}^{n+1}X_i}\right) = \sum_{i=1}^{n+1}\frac{1}{i} \cdot \mathbb{E}\left(\frac{X_i}{\sum_{i=1}^{n+1}X_i}\right) = \frac{1}{n+1} \cdot \sum_{i=1}^{n+1}\frac{1}{i}$$

Оскільки  $\mathbb{P}\left( 
u = n 
ight) = rac{ heta^n}{n!} e^{- heta}$ , то

$$\begin{split} \mathbb{E} \operatorname{s-min}(N) &= \frac{e^{-\theta}}{\theta} \sum_{n=1}^{\infty} \frac{\theta^n}{n \cdot n!} = \frac{e^{-\theta}}{\theta} \int_0^{\theta} \frac{e^t - 1}{t} \mathrm{d}t, \\ \mathbb{E} \operatorname{s-max}(N) &= \frac{e^{-\theta}}{\theta} \sum_{n=1}^{\infty} \frac{H_n}{n!} \theta^n = \frac{1}{\theta} \int_0^{\theta} \frac{1 - e^{-t}}{t} \mathrm{d}t. \end{split}$$

де  $H_n = \sum_{k=1}^n \frac{1}{k}$  — n-те гармонічне число. Зокрема, для  $\theta = 1$  (випадок рівномірного розподілу)  $\mathbb{E}$  s-min $(N) \approx 0.48483$  і  $\mathbb{E}$  s-max $(N) \approx 0.7966$ .

Сформулюємо отриманий результат у вигляді теореми.

**Теорема 2.2.4.** Нехай  $\sigma \sim \mathrm{ESF}\,(n,\theta)$ , а  $\delta_n$  та  $\Delta_n$  — відповідно, найменша та найбільша відстані між нерухомими точками  $\sigma$ , де за домовленістю 0 та n+1 вважаються нерухомими точками, тобто за відсутності нерухомих точок найбільша та найменша відстані обидві дорівнюють n. Тоді при  $n \to \infty$  виконуються граничні співвідношення  $\frac{\delta_n}{n} \stackrel{d}{\longrightarrow} \delta$  і  $\frac{\Delta_n}{n} \stackrel{d}{\longrightarrow} \Delta$ , де

$$\delta \stackrel{d}{=} \frac{X_1}{(\nu+1)\sum_{i=1}^{\nu+1} X_i}, \ \Delta \stackrel{d}{=} \frac{\sum_{i=1}^{\nu+1} \frac{X_i}{i}}{\sum_{i=1}^{\nu+1} X_i},$$
(2.33)

для незалежних між собою  $X_1,...,X_n$  з розподілом  $\mathrm{Exp}\,(1)$  та  $\nu\sim\mathrm{Pois}\,(\theta).$ 

# СПИСОК ВИКОРИСТАНОЇ ЛІТЕРАТУРИ

- 1. Спекторський Ігор Якович. <u>Дискретна математика</u>. Київ, НТУУ «КПІ», ННК «ІПСА», 2004.
- 2. Olav Kallenberg. <u>Random Measures, Theory and Applications</u>. Springer International Publishing, 2017.
- 3. Y. M. Berezansky; Z. G. Sheftel; G. F. Us. <u>Functional analysis</u>, volume 1. Birkhäuser Verlag, 1996.
- 4. Богданський Юрій Вікторович. <u>Інтеграл в курсі аналізу</u>. Видавництво «Політехніка», Київ, 2013.
- 5. Sidney I. Resnick. <u>Extreme Values, Regular Variation and Point Processes.</u> Springer New York, 1987.
- 6. Patrick Billingsley. <u>Convergence of probability measures</u>. Wiley Series in Probability and Statistics: Probability and Statistics. John Wiley & Sons Inc., New York, second edition, 1999. A Wiley-Interscience Publication.
- 7. Günter Last and Mathew Penrose. <u>Lectures on the Poisson Process</u>. Institute of Mathematical Statistics Textbooks. Cambridge University Press, 2017.
- 8. Sidney I. Resnick. Crash course II: Weak convergence; implications for heavy-tail analysis. In Heavy-Tail Phenomena, pages 39–69. Springer New York, 2007.
- 9. Olav Kallenberg. <u>Foundations of modern probability</u>. Probability and its Applications (New York). Springer-Verlag, New York, second edition, 2002.
- 10. N. Balakrishnan Norman L. Johnson, Samuel Kotz. <u>Continuous univariate</u> distributions, volume 2. John Wiley & Sons, New York, 1995.
- 11. Irene A. Stegun Milton Abramowitz. <u>Handbook of Mathematical Functions, With</u> Formulas, Graphs, and Mathematical Tables. Dover Publications, Inc., USA, 1972.
- 12. Lars Holst. On the lengths of the pieces of a stick broken at random. <u>Journal of Applied Probability</u>, 17(3):623–634, 1980.
- 13. Iosif Pinelis. Order statistics on the spacings between order statistics for the uniform distribution, 2019.
- 14. Barry C. Arnold, N. Balakrishnan, and H. N. Nagaraja. <u>A First Course in Order Statistics (Classics in Applied Mathematics)</u>. Society for Industrial and Applied Mathematics, USA, 2008.