WORLD JOURNAL OF PHARMACY AND PHARMACEUTICAL SCIENCES

SJIF Impact Factor 7.632

130

ISSN 2278 - 4357

Volume 9, Issue 7, 130-172

Research Article

STATISTICAL ANALYSIS AND INFERENCE ON FOURTEEN MOST EFFECTED COUNTRIES ON POLIO DATA: A ECOLOGICAL STUDY

Muhammad Jibran Khan M.phil pharmaceutics from Gomal University Dera Ismail Khan, Muhammad Aman Khan M.phil Pharmaceutical Chemistry from Gomal University Dera Ismail Khan and Irfan Ullah Phd Computer Science Scholar

C/o Retired Professor M. Akbar House Near Govt. Centennial School Boys Lakki Mina Khel Sherbaig Town Lakki Marwat, Khyberpakhtunkhawa, Pakistan.

Article Received on 24 April 2020,

Revised on 14 May 2020, Accepted on 04 June 2020

DOI: 10.20959/wjpps20207-15412

*Corresponding Author Dr. Muhammad Jibran Khan M.phil Pharmaceutics from Gomal University Dera Ismail Khan

Ismail Khan
C/o Retired Professor M.
Akbar House Near Govt.
Centennial School Boys
Lakki Mina khel Sherbaig
Town Lakki Marwat,
Khyberpakhtunkhawa,
Pakistan..

1.a) ABSTRACT

Data obtained from the website and the source was ourworldindata.org. [1] Fourteen world regions and countries were selected for statistical analysis. The fourteen regions and the countries of the world were Afghanistan, Bangladesh, Egypt, India, Iran, Nigeria, Pakistan, china, Africa, Eastern Mediterranean, Europe, South East Asia, Western pacific and World. The source of the website has the data from 1980 to 2016 about the number of reported polio cases, the number of estimated polio cases and the number of polio cases per million population. In part one the number of estimated polio cases were generally higher than the number of reported polio cases. Statistical analysis like descriptive statistics: Minimum value, Maximum value, mean, standard deviation and variance was calculated. Paired sample t test was performed in the reported and estimated polio cases. In the second part Correlation among these regions were calculated and statistical inferences were formed. In the third part Regression equation linear, multiple and quadratic equation

was formed in the three endemic countries Pakistan, Afghanistan and Nigeria.^[1]

1.b) Introduction

The causative agent of polio is a virus. Polio virus are three in number. Namely Wild polio Virus type one, Wild polio virus type two and wild polio virus type three. Circulating vaccine derived polio virus is formed of the attenuated polio virus they exchange genetic material

with the neighboring virus and can infect humans. In September of 2015 wild type two virus was eradicated. The last case of wild type two was detected in India in 1999. Since 2012 wild type three virus was not found anywhere in the world. Polio virus can infect only humans. Paralysis due to polio occur in less than one percent of the population that were infected with the virus. Polio is mainly spread through fecal oral route so polio virus is mainly present in the environment with poor hygiene, [3]

In late 1980 polio effected more than one thousand individuals daily. For this purpose in 1988 Global polio eradication initiative was formed. Global polio eradication initiative has immunized nearly 2.5 billion individuals. Although the number of polio cases has been decreased by 99%. There are three countries that are still endemic with wild polio virus. They are Pakistan, Afghanistan and Nigeria. Polio is still present in them they act as a reservoir of polio. Nigeria is closing towards the eradication of wild type polio virus as it has been three years, upto date 21/8/2019, that Nigeria has not seen a case of wild polio virus. However a certification of wild polio free status has not been given to the Nigeria.

Polio can be transmitted from these countries to the world if sufficient measures are not taken in these countries^[3]

Data was collected from the website ¹. Statistical analysis were performed on the data of the world regions that were mostly effected by the polio. Out of the countries eight countries were chosen Afghanistan, Bangladesh, Egypt, India, Iran, Nigeria, Pakistan, China. Among the world regions 6 regions were chosen for analysis these regions are Africa ,Eastern Mediterranean, Europe, South East Asia, Western pacific and World. These are the regions that were mostly affected. Statistical analysis were performed on the data of the reported number of polio cases , Estimated number of polio cases and the number of polio cases per million population. The data showed the figures from 1980 to the 2016. Afghanistan did not have the data of all the years due to war and uncertain political stability. Similarly its data on polio cases might not be very refined due to the long term wars, security issues and instability.

131

STATISTICS AND RESULTS AND DISCUSSIONS

Part One: Descriptive analysis

Descriptive of estimated polio cases

Statistics were applied to the estimated number of polio cases from 14 different regions from 1980 to 2016. Estimated polio cases were derived by the method of Tebbens et al. [2]

Statistics like Range, minimum values, maximum values, sum, mean, standarf deviation and variance were calculated.

Descriptives Variables Estimated polio cases in=Afghanistan, Bangladesh, Egypt, India, Iran, Nigeria, Pakistan, china, Africa ,Eastern Mediterranean, Europe, South East Asia, Westren Pacific and World.^[7]

Table 1.1: Showing descriptive statistics of estimated polio cases of 14 countries and regions Descriptive Statistics.

	N	Range	Minimum	Maximum	Sum	Mean
Afghanistan	33	13937	0	13937	75881	2299.43
Bangladesh	37	3780	0	3780	31569	853.22
Egypt	37	15071	0	15071	86947	2349.92
India	37	266630	0	266630	2025618	54746.42
Iran	37	1344	0	1344	9110	246.22
Nigeria	37	13110	1	13111	114237	3087.47
Pakistan	37	30315	23	30338	186122	5030.31
China	37	67375	0	67375	262467	7093.69
Africa	37	35876	6	35882	379112	10246.26
Eastern Mediterenean	37	88316	38	88354	486713	13154.41
Europe	37	2630	0	2630	18594	502.54
South East asia	37	279552	0	279552	2124834	57427.94
Westren pacifc	37	79896	0	79896	447576	12096.64
World	37	459752	46	459798	3523084	95218.49
Valid N (listwise)	33					

Table 1.2: Showing descriptive statistics: Standard deviation and variance of estimated polio cases of 14 countries and regions Descriptive Statistics.

	Std. Deviation	Variance
Afghanistan	4279.073	18310467.219
Bangladesh	1059.859	1123300.619
Egypt	3898.578	15198909.648
India	75354.295	5678269757.585
Iran	370.335	137148.341
Nigeria	3187.012	10157042.912
Pakistan	7263.794	52762697.561
China	16180.276	261801317.130
Africa	10593.105	112213871.500
Eastern Mediterenean	20496.637	420112119.199
Europe	773.758	598701.533
South East asia	78548.881	6169926774.567
Westren pacifc	22006.613	484291016.897
World	129629.128	16803710916.769
Valid N (listwise)		

In the estimated polio cases mean and standard deviation are as under

In the country wise descending list of mean number of estimated polio cases and the standard deviation show a similar pattern.

Country wise

India> China> Pakistan> Nigeria> Egypt> Afghanistan> Bangladesh> Iran.

Region wise estimated polio cases mean and standard deviation are as under

Region wise there is slight difference in the in the descending order of the mean estimated polio cases and the standard deviation.

Mean

World> South east Asia> Eastern Mediterranean > western pacific> Africa> Europe.

Standard deviation of regions

World> South east Asia> western pacific > Eastern Mediterranean > Africa> Europe

Descriptive polio cases per million population

Statistics were applied to the polio cases per million population from 14 different regions from 1980 to 2016.

Statistics like Range, minimum values, maximum values, sum, mean, standard deviation and variance were calculated Descriptives variables of Polio cases per million population in=Afghanistan Bangladesh Egypt India Iran Nigeria Pakistan China Africa Eastern Mediterranean Europe South East Asia Western pacific World.^[7]

Table 1. 2.1: Showing the descriptive statistics of the 14 countries and regions of polio cases per million population Descriptive Statistics.

	N	Range	Minimum	Maximum	Sum
Afghanistan	32	168.122860	.000000	168.122860	894.308702
Bangladesh	36	5.3478413	.0000000	5.3478413	44.0873789
Egypt	36	46.421249	.000000	46.421249	251.761817
India	36	53.413315	.000000	53.413315	370.591906
Iran	36	4.7740259	.0000000	4.7740259	27.6590406
Nigeria	36	19.654399	.005519	19.659918	201.428582
Pakistan	36	53.52519	.18192	53.70712	290.58542
China	36	9.5486097	.0000000	9.5486097	45.7564112
Africa	36	13.318351	.018124	13.336475	133.421946
Eastern Mediterenean	36	45.877020	.105669	45.982689	225.923185
Europe	36	.52956134	.00000000	.52956134	4.23907237
South East asia	36	36.987240	.000000	36.987240	257.695297
Western pacific	36	8.7708712	.0000000	8.7708712	53.8339135
World	36	92.33539572	.14227603	92.47767175	690.34111934
Valid N (listwise)	32				

Table 1.2.2: Showing descriptive statistics of 14 countries and regions Mean, standard deviation and variance of polio cases per million population.

Descriptive Statistics			
•	Mean	Std. Deviation	Variance
Afghanistan	27.94714694	51.019902317	2603.030
Bangladesh	1.224649415	1.4258382012	2.033
Egypt	6.99338381	12.229609815	149.563
India	10.29421960	14.360339811	206.219
Iran	.768306682	1.2135053873	1.473
Nigeria	5.59523839	4.471324353	19.993
Pakistan	8.0718173	12.47313449	155.579
China	1.271011422	2.4119680400	5.818
Africa	3.70616517	3.632137846	13.192
Eastern Mediterenean	6.27564403	10.324109090	106.587
Europe	.1177520102	.16260081633	.026
South East asia	7.15820271	9.878444585	97.584
Western pacific	1.495386487	2.4446982438	5.977
World	19.1761422038	25.85455249163	668.458
Valid N (listwise)			

Mean and standard deviation of the polio countries per million population

In mean and standard deviation the descending order of the countries are same. Afghanistan>India>Pakistan>Egypt>Nigeria>china>Bangladesh>iran.

Mean of the regions of polio per million population

In mean and standard deviation there is a slight difference In the descending order World>South East Asia>Eastren meditrenean>Africa>western pacific>Europe

Standard deviation of the regions of polio per million population

World>Eastern Meditrenean>South East Asia>Africa>western Pacific>Europe.

Descriptive of reported polio cases

Statistics were applied to the reported number of polio cases from 14 different regions from 1980 to 2016. Statistics like Range, minimum values, maximum values, sum, mean, standard deviation and variance were calculated.

Descriptives variables Reported polio cases in =Afghanistan Bangladesh Egypt India Iran Nigeria Pakistan China Africa Eastern Mediterranean Europe South East Asia Western pacific world.^[7]

Table 1.3.1: Showing descriptive statistics of 14 countries and regions of reported polio cases.

Descriptive Statistics						
_	N	Range	Minimum	Maximum	Sum	Mean
Afghanistan	33	1991	0	1991	11256	341.09
Bangladesh	37	540	0	540	4695	126.89
Egypt	37	2153	0	2153	12435	336.08
India	37	38090	0	38090	293713	7938.19
Iran	37	192	0	192	1322	35.73
Nigeria	37	1872	1	1873	20944	566.05
Pakistan	37	4313	21	4334	28105	759.59
China	37	9625	0	9625	48658	1315.08
Africa	37	5121	5	5126	66512	1797.62
Eastern Mediterenean	37	12588	34	12622	72849	1968.89
Europe	37	475	0	475	3556	96.11
South East asia	37	39936	0	39936	309175	8356.08
Western pacific	37	11420	0	11420	75302	2035.19
World	37	65695	42	65737	537164	14517.95
Valid N (listwise)	33					

Table 1. 3.2: Showing the descriptive statistics: Standard deviation and variance of reported polio cases of 14 countries and regions of the world

Descriptive Statistics

	Std. Deviation	Variance
Afghanistan	604.863	365859.648
Bangladesh	150.734	22720.655
Egypt	556.707	309922.688
India	10682.315	114111857.547
Iran	52.574	2763.980
Nigeria	430.600	185416.053
Pakistan	1011.191	1022506.414
China	2456.784	6035789.521
Africa	1500.616	2251848.464
Eastern Mediterenean	2876.868	8276370.877
Europe	135.603	18388.044
South East asia	11118.604	123623351.910
Western pacific	3261.155	10635132.213
World	18368.863	337415138.886
Valid N (listwise)		

In the reported polio cases country wise mean and standard deviation are as under Mean

India>china>Pakistan>Nigeria>Afghanistan>Egypt>Bangladesh>Iran

Standard deviation

India>china>Pakistan>Afghanistan>Egypt>Nigeria>Bangladesh>Iran

In the reported polio cases region wise mean and standard deviation are as under Mean and standard deviation

In the region wise descending order of the mean and standard deviation are the same World> South East Asia> Western Pacific>Eastern Mediterranean>Africa> Europe

1.4) T-Test

Paired at CRITERIA=CI (.9500)

Table 1.4.1: Showing the paired sample t test of the 14 countries and regions in the estimated and reported polio cases.

Paired Samples Test ^[7]								
		Paired Differences	T	df	sig			
Pair 1	Estimated polio cases Afghanistan – Number of reported paralytic polio cases Afghanistan	3261.27745	3.062	32	.004			
Pair 2	Estimated polio cases Africa – Number of reported polio cases Africa	11504.26994	5.608	36	.000			
Pair 3	Estimated polio cases Bangladesh – Number of reported paralytic polio cases Bangladesh	1030.442	4.844	36	.000			
Pair 4	Estimated polio cases china – Reported paralytic polio cases china	10431.23669	2.519	36	.016			
Pair 5	Estimated polio cases of Eastern Mediterranean – Reported polio of Eastern Mediterranean	17061.270062	3.861	36	.000			
Pair 6	Estimated polio cases of Egypt – Number of reported polio cases of Egypt	3128.07031	3.666	36	.001			
Pair 7	Estimated polio cases of Europe – Reported polio cases of Europe	627.142	3.735	36	.001			
Pair 8	Estimated polio cases of India – Reported polio cases of India	68372.037975	4.402	36	.000			
Pair 9	Estimated polio cases of Iran – Reported polio cases of Iran	316.447	4.029	36	.000			
Pair 10	Estimated polio cases of Nigeria – Reported polio cases of Nigeria	3466.095030	5.413	36	.000			
Pair 11	Estimated polio cases of Pakistan – Reported polio cases of Pakistan	6356.036805	4.154	36	.000			
Pair 12	Estimated polio cases of south east Asia Reported polio cases of south east Asia	71555.29182	4.426	36	.000			
Pair 13	Estimated polio cases of western pacific Reported polio cases of western pacific	16368.37031	3.235	36	.003			
Pair 14	Estimated polio cases of world – Reported polio cases of world	117812.818779	4.410	36	.000			

In the paired sample t test fourteen country regions were selected: the estimated and the reported polio cases were compared in the t test. In all the paired sample t test P significant 0.05> then all the values of P. So it can be inferred that there is a significant difference between the estimated and reported polio cases. So the real number of polio cases that were estimated and the reported polio cases vary greatly and less number of polio cases were reported in every country.

Estimated polio cases was calculated by the Tebbens et al².

Part two Corelation statistics

2) Correlation

Corelation among estimated polio cases in different regions

Correlation Statistics were applied to the estimated number of polio cases from 14 different regions from 1980 to 2016.

Descriptives Variables Estimated polio cases in=Afghanistan, Bangladesh, Egypt, India, Iran, Nigeria, Pakistan, china, Africa ,Eastern Mediterranean, Europe, South East asia, Westren pacifc and World.^[7]

Table 2.1.: A showing the correlation in the estimated polio cases in 14 world countries and regions Correlations

		Afghanistan	Bangladesh	Egypt	India	Iran	Nigeria	Pakistan
	Pearson Correlation	1	.171	.635**	.756**	.655**	.266	.590**
Afghanistan	Sig. (2-tailed)		.341	.000	.000	.000	.135	.000
	N	33	33	33	33	33	33	33
	Pearson Correlation	.171	1	.325*	.415*	.298	.717**	.347*
Bangladesh	Sig. (2-tailed)	.341		.050	.011	.073	.000	.035
	N	33	37	37	37	37	37	37
	Pearson Correlation	.635**	.325*	1	.816**	.785**	.334*	.879**
Egypt	Sig. (2-tailed)	.000	.050		.000	.000	.044	.000
	N	33	37	37	37	37	37	37
	Pearson Correlation	.756**	.415*	.816**	1	.743**	.408*	.781**
India	Sig. (2-tailed)	.000	.011	.000		.000	.012	.000
	N	33	37	37	37	37	37	37
	Pearson Correlation	.655**	.298	.785**	.743**	1	.266	.820**
Iran	Sig. (2-tailed)	.000	.073	.000	.000		.111	.000
	N	33	37	37	37	37	37	37
	Pearson Correlation	.266	.717**	.334*	.408*	.266	1	.377*
Nigeria	Sig. (2-tailed)	.135	.000	.044	.012	.111		.021
	N	33	37	37	37	37	37	37
	Pearson Correlation	.590**	.347*	.879**	.781**	.820**	.377*	1
Pakistan	Sig. (2-tailed)	.000	.035	.000	.000	.000	.021	
	N	33	37	37	37	37	37	37
	Pearson Correlation	.591**	.140	.925**	.756**	.795**	.132	.895**
China	Sig. (2-tailed)	.000	.408	.000	.000	.000	.435	.000
	N	33	37	37	37	37	37	37
	Pearson Correlation	.739**	.518**	.821**	.863**	.743**	.661**	.812**
Africa	Sig. (2-tailed)	.000	.001	.000	.000	.000	.000	.000
	N	33	37	37	37	37	37	37
Eastern	Pearson Correlation	.719**	.253	.949**	.807**	.763**	.324	.900**
Mediterranean	Sig. (2-tailed)	.000	.131	.000	.000	.000	.050	.000
iviediterranean	N	33	37	37	37	37	37	37
Europe	Pearson Correlation	.529**	.233	.807**	.584**	.879**	.268	.800**

	Sig. (2-tailed)	.002	.166	.000	.000	.000	.109	.000
	N	33	37	37	37	37	37	37
	Pearson Correlation	.745**	.426**	.819**	1.000**	.742**	.415*	.784**
South East Asia	Sig. (2-tailed)	.000	.009	.000	.000	.000	.011	.000
	N	33	37	37	37	37	37	37
	Pearson Correlation	.711**	.193	.955**	.850**	.794**	.250	.902**
Western pacific	Sig. (2-tailed)	.000	.253	.000	.000	.000	.136	.000
	N	33	37	37	37	37	37	37
	Pearson Correlation	.769**	.376*	.907**	.974**	.789**	.406*	.865**
World	Sig. (2-tailed)	.000	.022	.000	.000	.000	.013	.000
	N	33	37	37	37	37	37	37

Table 2.1.B: showing the correlation in the estimated polio cases in 14 world countries and regions.

Correlations								
		china	Africa	Eastern Mediterranean	Europe	South East Asia	Western pacific	World
A.C.1	Pearson Correlation	.591	.739	.719**	.529**	.745**	.711	.769**
Afghanistan	Sig. (2-tailed)	.000	.000	.000	.002	.000	.000	.000
	N	33	33	33	33	33	33	33
	Pearson Correlation	.140	.518	.253*	.233*	.426	.193**	.376*
Bangladesh	Sig. (2-tailed)	.408	.001	.131	.166	.009	.253	.022
	N	37	37	37	37	37	37	37
Earnt	Pearson Correlation	.925**	.821*	.949	.807**	.819**	.955*	.907**
Egypt	Sig. (2-tailed)	.000	.000	.000	.000	.000	.000	.000
	N	37	37	37	37	37	37	37
	Pearson Correlation	.756**	.863*	.807**	.584	1.000**	.850*	.974**
India	Sig. (2-tailed)	.000	.000	.000	.000	.000	.000	.000
	N	37	37	37	37	37	.000	37
Tuor	Pearson Correlation	.795**	.743	.763**	.879**	.742	.794	.789**
Iran	Sig. (2-tailed)	.000	.000	.000	.000	.000	.000	.000
	N	37	37	37	37	37	33 .193** .253 37 .955* .000 37 .850* .000 37 .794 .000 37 .250 .136 37 .902* .000 37	37
NT: ~ a wi a	Pearson Correlation	.132	.661**	.324*	.268*	.415	.250	.406*
Nigeria	Sig. (2-tailed)	.435	.000	.050	.109	.011	.136	.013
	N	37	37	37	37	37	37	37
D 1 ' 4	Pearson Correlation	.895**	.812*	.900**	.800**	.784**	.902*	.865
Pakistan	Sig. (2-tailed)	.000	.000	.000	.000	.000	.000	.000
	N	37	37	37	37	37	37	37
China	Pearson Correlation	1**	.728	.920**	.782**	.758**	.964	.859**
	Sig. (2-tailed)		.000	.000	.000	.000	.000	.000

	N.T	27	27	27	27	27	27	27
	N	37	37	37	37	37	37	37
A fui a a	Pearson Correlation	.728**	1**	.871**	.702**	.864**	.839**	.914**
Africa	Sig. (2-tailed)	.000		.000	.000	.000	.000	.000
	N	37	37	37	37	37	37	37
Eastern	Pearson Correlation	.920**	.871	1**	.812**	.808**	.977	.919**
Mediterenean	Sig. (2-tailed)	.000	.000		.000	.000	.000	.000
	N	37	37	37	37	37	37	37
Europa	Pearson Correlation	.782**	.702	.812**	1**	.585**	.779	.701**
Europe	Sig. (2-tailed)	.000	.000	.000		.000	.000	.000
	N	37	37	37	37	37	37	37
Cauth East asia	Pearson Correlation	.758**	.864**	.808**	.585**	1**	.850*	.974**
South East asia	Sig. (2-tailed)	.000	.000	.000	.000		.000	.000
	N	37	37	37	37	37	37	37
Wastron posifo	Pearson Correlation	.964**	.839	.977**	.779**	.850**	1	.941**
Westren pacifc	Sig. (2-tailed)	.000	.000	.000	.000	.000		.000
	N	37	37	37	37	37	37	37
	Pearson Correlation	.859**	.914*	.919**	.701**	.974**	.941*	1**
World	Sig. (2-tailed)	.000	.000	.000	.000	.000	.000	
	N	37	37	37	37	37	37	37

^{*.} Correlation is significant at the 0.05 level (2-tailed).

**. Correlation is significant at the 0.01 level (2-tailed).

The correlation among different countries and regions of the estimated number of polio cases is as under (Estimated number of polio cases is omitted with each sentence as this will too much elobrate the article)

At P≤0.05

Correlation in Afghanistan and Pakistan is 0.590. Afghanistan, Iran is 0.655. Afghanistan, south east asia is 0.745.

Afghanistan and Pakistan the estimated number of polio cases is great and so is the case with Afghanistan and Iran, as they are the neighboring countries and the conditions among the countries are much more same for the virus replication. However the real estimated correlation would be much more among those countries because the real data obtained from the Afghanistan is under doubt because of the long war fought between Afghanistan and soviet union and the Taliban and the united states. So the real vaccination campaign and the

Correlation among Estimated polio cases in different countries and regions of the world

data would have given us much more correlation. A positive correlation between these countries and especially the porous border between these countries show that the virus has travelled along the borders of the countries. In Pakistan at the border of Afghanistan the area is tribal region, where government has little control and the people of tribal area has family relation with Afghanistan. They frequently visited each other so the virus had got the chance of travelling in the border of the nearby countries.^[8]

Egypt at P≤0.05

Egypt has perfect positive correlation with India as 0.816. Egypt has almost a perfect positive correlation with Iran as 0.785. Egypt has also a perfect positive correlation with Pakistan. Although Egypt does not touch the border with any of the countries the estimated polio cases in the Egypt has a perfect positive correlation with these countries. It shows that the virus and the vaccination campaign have similar trends in these countries.

Iran at P≤0.05

Iran, Afghanistan has positive correlation of 0.655. Iran, Egypt correlation 0.785. Iran India correlation 0.743. Iran has the most perfect positive correlation with Pakistan 0.820.

Among all the countries Iran has the perfect positive correlation with Pakistan, exceeding 0.8 limit which shows a very high level of relationship between these countries. Due to the adjoining border of the two countries and high correlation between the two countries it can be concluded that the virus has travelled between these two countries.^[8]

Nigeria

Nigeria only shows good correlation with Bangladesh as 0.717 at $P \le 0.005$. Nigeria correlation with Afghanistan is not significant as 0.266. Nigeria does not show a perfect positive correlation with other countries.

Pakistan at P≤0.05

Pakistan, Afghanistan correlation 0.590. Pakistan has very low correlation with Bangladesh 0.347.

Pakistan and Egypt has a perfect positive correlation of 0.879. Pakistan and India has a correlation of 0.781. Pakistan, Iran 0.820. Pakistan, south east asia 0.784.

Pakistan has a very low correlation with Nigeria as 0.377 at P≤0.01.

China at P≤0.05

China, Afghanistan correlation is 0.591. China, Egypt correlation is 0.925. China, India correlation is 0.756. China, Pakistan correlation 0.895. China, Eastern Mediterranean correlation 0.920.

Among all the countries China has perfect positive correlation with Pakistan. As the two countries have the most friendly relationship and the people can easily travel among the two countries^[8], so the virus must have travelled between the two countries and infected the human population. Although China has huge population and so does India has but the most perfect correlation is with Pakistan. This is because China has some restriction along the India border so the virus did not get the same chance to travel among China and India as with China and Pakistan.

2.1) Correlations among reported polio cases in different regions

Correlation Statistics were applied to the reported number of polio cases from 14 different regions from 1980 to 2016.

Descriptives Variables Reported polio cases in =Afghanistan Bangladesh Egypt India Iran Nigeria Pakistan China Africa Eastern Mediterranean Europe Southeast Asia Western pacific world.^[7]

Table 2.1.2. A): Showing the correlation in the reported polio cases in 14 world countries and regions.

Correlations				,			1	1
		Afghanistan	Bangladesh	Egypt	India	Iran	Nigeria	Pakistan
	Pearson	1	.145	.629**	.748**	.647**	.091	.576**
Afghanistan	Correlation	1		.027	./40	.047	.071	
Anghamstan	Sig. (2-tailed)		.422	.000	.000	.000	.614	.000
	N	33	33	33	33	33	33	33
D 1 1 1-	Pearson Correlation	.145	1	.305	.387*	.285	.531**	.306
Bangladesh	Sig. (2-tailed)	.422		.066	.018	.087	.001	.066
	N	33	37	37	37	37	37	37
Fgynt	Pearson Correlation	.629**	.305	1	.815**	.783**	.173	.877**
Egypt	Sig. (2-tailed)	.000	.066		.000	.000	.307	.000
	N	33	37	37	37	37	37	37
T., J	Pearson Correlation	.748**	.387*	.815**	1	.740**	.217	.769**
India	Sig. (2-tailed)	.000	.018	.000		.000	.196	.000
	N	33	37	37	37	37	37	37
Iran Correla Sig. (2 N	Pearson Correlation	.647**	.285	.783**	.740**	1	.082	.819**
	Sig. (2-tailed)	.000	.087	.000	.000		.630	.000
	N	33	37	37	37	37	37	37
NT' '	Pearson Correlation	.091	.531**	.173	.217	.082	1	.173
Nigeria	Sig. (2-tailed)	.614	.001	.307	.196	.630		.307
	N	33	37	37	37	.082 1 .630 37 37	37	
D 1 ' .	Pearson Correlation	.576**	.306	.877**	.769**	.819**	.173	1
Pakistan	Sig. (2-tailed)	.000	.066	.000	.000	.000	.307	
	N	33	37	37	37	37	37	37
CI.	Pearson Correlation	.494**	.319	.914**	.744**	.723**	.164	.859**
China	Sig. (2-tailed)	.003	.055	.000	.000	.000	.331	.000
	N	33	37	37	37	37	37	37
	Pearson Correlation	.632**	.610**	.765**	.824**	.637**	.583**	.719**
Africa	Sig. (2-tailed)	.000	.000	.000	.000	.000	.000	.000
	N	33	37	37	37	37	37	37
Eastern	Pearson Correlation	.711**	.221	.948**	.800**	.758**	.151	.895**
Mediterranean	Sig. (2-tailed)	.000	.189	.000	.000	.000	.373	.000
	N	33	37	37	37	37	37	37
	Pearson Correlation	.391*	.146	.631**	.418*	.686**	.035	.614**
Europe	Sig. (2-tailed)	.025	.389	.000	.010	.000	.835	.000
	N	33	37	37	37	37	37	37

	Pearson Correlation	.737**	.400*	.818**	1.000**	.739**	.225	.774**
South East asia	Sig. (2-tailed)	.000	.014	.000	.000	.000	.181	.000
	N	33	37	37	37	37	37	37
	Pearson Correlation	.637**	.319	.953**	.843**	.746**	.214	.879**
Western pacific	Sig. (2-tailed)	.000	.054	.000	.000	.000	.203	.000
	N	33	37	37	37	37	37	37
World	Pearson Correlation	.746**	.385*	.908**	.973**	.774**	.248	.851**
	Sig. (2-tailed)	.000	.019	.000	.000	.000	.140	.000
	N	33	37	37	37	37	37	37

Table 2.1.2.B): Showing the correlation in the reported polio cases in 14 world countries and regions.

		Chine	Africa	Eastern	Furana	South	Western	World
		Cillia	Allica	Mediterranean	Europe	South East Asia	pacific	World
A C 1	Pearson Correlation	.494	.632	.711**	.391**	.737**	.637	.746**
Afghanistan	Sig. (2-tailed)	.003	.000	.000	.025	.000	.000	.000
	N	33	33	33	33	33	33	33
Dan aladaah	Pearson Correlation	.319	.610	.221	.146*	.400	.319**	.385
Bangladesh	Sig. (2-tailed)	.055	.000	.189	.389	.014	.054	.019
1	N	37	37	37	37	37	37	37
Egypt	Pearson Correlation	.914**	.765	.948	.631**	.818**	.953	.908**
Egypt	Sig. (2-tailed)	.000	.000	.000	.000	.000	.000	.000
	N	37	37	37	37	37	37	37
T 11	Pearson Correlation	.744**	.824*	.800**	.418	1.000**	.843	.973**
India	Sig. (2-tailed)	.000	.000	.000	.010	.000	.000	.000
	N	37	37	37	37	37	37	37
Iron	Pearson Correlation	.723**	.637	.758**	.686**	.739	.746	.774**
Iran	Sig. (2-tailed)	.000	.000	.000	.000	.000	.000	.000
	N	37	37	37	37	37	37	37
Nicorio	Pearson Correlation	.164	.583**	.151	.035	.225	.214	.248
Nigeria	Sig. (2-tailed)	.331	.000	.373	.835	.181	.203	.140
	N	37	37	37	37	37	37	37
Pakistan	Pearson Correlation	.859**	.719	.895**	.614**	.774**	.879	.851
	Sig. (2-tailed)	.000	.000	.000	.000	.000	.000	.000
	N	37	37	37	37	37	37	37
China	Pearson Correlation	1**	.733	.864**	.553**	.750**	.965	.849**

	Sig. (2-tailed)		.000	.000	.000	.000	.000	.000
	N	37	37	37	37	37	37	37
Africa	Pearson Correlation	.733**	1**	.785**	.444**	.829**	.824**	.879**
Affica	Sig. (2-tailed)	.000		.000	.006	.000	.000	.000
	N	37	37	37	37	37	37	37
Eastern	Pearson Correlation	.864**	.785	1**	.613**	.801**	.940	.907**
Mediterranean	Sig. (2-tailed)	.000	.000		.000	.000	.000	.000
	N	37	37	37	37	37	37	37
F	Pearson Correlation	.553*	.444	.613**	1*	.418**	.562	.509**
Europe	Sig. (2-tailed)	.000	.006	.000		.010	.000	.001
	N	37	37	37	37	37	37	37
South East	Pearson Correlation	.750**	.829*	.801**	.418**	1**	.846	.975**
Asia	Sig. (2-tailed)	.000	.000	.000	.010		.000	.000
	N	37	37	37	37	37	37	37
Western	Pearson Correlation	.965**	.824	.940**	.562**	.846**	1	.936**
F	Sig. (2-tailed)	.000	.000	.000	.000	.000		.000
	N	37	37	37	37	37	37	37
World	Pearson Correlation	.849**	.879*	.907**	.509**	.975**	.936	1**
World	Sig. (2-tailed)	.000	.000	.000	.001	.000	.000	
	N	37	37	37	37	37	37	37

^{**.} Correlation is significant at the 0.01 level (2-tailed).

Correlations among reported polio cases in different countries

Reported number of polio cases and the correlation between them is as under (correlation among different reported polio cases of the world is omitted with each sentence as this will elaborate the article).

In reported number of polio cases among different countries.

Afghanistan at P≤0.05

Afghanistan and Egypt correlation is 0.626. Afghanistan and Pakistan correlation is 0.576.

Egypt at P≤0.05

Egypt and India correlation is 0.815. Egypt and Iran correlation is 0.783. Egypt and Pakistan 0.877.

^{*.} Correlation is significant at the 0.05 level (2-tailed).

Iran at P≤0.05

Iran and Afghanistan correlation is 0.647, Iran and Egypt correlation is 0.783. Iran and India is 0.740. Iran and Pakistan is 0.819.

Nigeria

Nigeria has not significant correlation with any other country.

Pakistan

Pakistan and Afghanistan correlation is 0.576. Pakistan and Egypt is 0.877. Pakistan and India correlation is 0.769. Pakistan and Iran correlation is 0.819.

China

China has a perfect positive correlation with Pakistan as 0.859 at P≤0.05

South East Asia and Pakistan has nearly perfect positive correlation as 0.744 at $P \le 0.05$.

South East Asia and Afghanistan has correlation of 0.737 at $P \le 0.05$.

South East Asia and India has the most perfect correlation as 1.00 at at $P \le 0.05$.

South East Asia and Iran has a perfect correlation of 0.739 at $P \le 0.05$.

India has a correlation of 0.744 at $P \le 0.05$.

Iran has a correlation of 0.723 at $P \le 0.05$.

Africa, Western pacific correlation is 0.824 at $P \le 0.05$.

Africa and South East Asia has a correlation of 0.829 at $P \le 0.05$.

Western Pacific and china has a perfect correlation of 0.965 at $P \le 0.05$.

Western Pacific and Eastern Mediterranean has a correlation of 0.940 at P≤0.05.

Western pacific and Europe has a correlation of 0.5256 at $P \le 0.05$.

Correlations among reported polio cases per million population in different regions

Correlation Statistics were applied to the polio cases per million population from 14 different regions from 1980 to 2016.

Descriptives variables of Polio cases per million population in=Afghanistan Bangladesh Egypt India Iran Nigeria Pakistan China Africa Eastern Mediterranean Europe Southeast Asia Western pacific World.^[7]

Table 2.3.1.A): Correlations among reported polio cases per million population in different regions and countries

Correlations

Pearson	.254	
Correlation 1 .212 .372 .744 .023		.547**
Afghanistan Correlation 244 000 000 000	.234	.547
Sig. (2-tailed) .244 .000 .000 .000	.160	.001
N 32 32 32 32 32	32	32
Pearson	.607**	.316
Bangladesh Sig. (2-tailed) .244 .035 .009 .055	.000	.060
N 32 36 36 36 36	36	36
Pearson	.314	.907**
Egypt Sig. (2-tailed) .000 .035 .000 .000	.062	.000
N 32 36 36 36 36	36	36
Pearson .744** .430** .823** 1 .803**	.370*	.805**
India Sig. (2-tailed) .000 .009 .000 .000	.026	.000
N 32 36 36 36 36	36	36
Pearson .623** .323 .840** .803** 1	.186	.865**
Iran Sig. (2-tailed) .000 .055 .000 .000	.278	.000
N 32 36 36 36 36	36	36
Pearson	1	.290
Nigeria Sig. (2-tailed) .160 .000 .062 .026 .278		.086
N 32 36 36 36 36	36	36
Pearson	.290	1
Pakistan Sig. (2-tailed) .001 .060 .000 .000 .000	.086	
N 32 36 36 36 36	36	36
Pearson .472** .371* .925** .776** .804**	.296	.902**
China Sig. (2-tailed) .006 .026 .000 .000 .000	.080	.000
N 32 36 36 36 36	36	36
Pearson .675** .583** .838** .874** .715**	.645**	.790**
Africa Sig. (2-tailed) .000 .000 .000 .000	.000	.000
N 32 36 36 36 36	36	36
Pearson .657** .254 .959** .805** .797**	.305	.911**
Mediterranean Sig. (2-tailed) .000 .134 .000 .000 .000	.071	.000
N 32 36 36 36 36	36	36
Pearson .384* .191 .662** .466** .699**	.161	.643**
Sig. (2-tailed) .030 .265 .000 .004 .000	.348	.000

	N	32	36	36	36	36	36	36
South East Asia	Pearson Correlation	.734**	.441**	.826**	1.000**	.801**	.376*	.809**
	Sig. (2-tailed)	.000	.007	.000	.000	.000	.024	.000
	N	32	36	36	36	36	36	36
TT /	Pearson Correlation	.614**	.375*	.959**	.859**	.812**	.374*	.914**
Western pacific	Sig. (2-tailed)	.000	.024	.000	.000	.000	.024	.000
	N	32	36	36	36	36	36	36
	Pearson Correlation	.720**	.392*	.943**	.937**	.830**	.401*	.903**
	Sig. (2-tailed)	.000	.018	.000	.000	.000	.015	.000
	N	32	36	36	36	36	36	36

Table 2.3.1.B): Correlations among reported polio cases per million population in different regions and countries.

		China	Africa	Eastern Mediterranean	Europe	South East Asia	Western pacific
Afghanistan	Pearson Correlation	.472	.675	.657**	.384**	.734**	.614
Aignamstan	Sig. (2-tailed)	.006	.000	.000	.030	.000	.000
	N	32	32	32	32	32	32
D 1 - d1	Pearson Correlation	.371	.583	.254*	.191**	.441	.375**
Bangladesh	Sig. (2-tailed)	.026	.000	.134	.265	.007	.024
	N	36	36	36	36	36	36
E4	Pearson Correlation	.925**	.838*	.959	.662**	.826**	.959
Egypt	Sig. (2-tailed)	.000	.000	.000	.000	.000	.000
	N	36	36	36	36	36	36
To dia	Pearson Correlation	.776**	.874**	.805**	.466	1.000**	.859*
India	Sig. (2-tailed)	.000	.000	.000	.004	.000	.000
	N	36	36	36	36	36	36
Iran	Pearson Correlation	.804**	.715	.797**	.699**	.801	.812
11 a11	Sig. (2-tailed)	.000	.000	.000	.000	.000	.000
	N	36	36	36	36	36	36
Nicovio	Pearson Correlation	.296	.645**	.305	.161*	.376	.374
Nigeria	Sig. (2-tailed)	.080	.000	.071	.348	.024	.024
	N	36	36	36	36	36	36
D 11.	Pearson Correlation	.902**	.790	.911**	.643**	.809**	.914
Pakistan	Sig. (2-tailed)	.000	.000	.000	.000	.000	.000
	N	36	36	36	36	36	36

China	Pearson Correlation	1**	.802*	.883**	.596**	.781**	.967
Cillia	Sig. (2-tailed)		.000	.000	.000	.000	.000
	N	36	36	36	36	36	36
Africa	Pearson Correlation	.802**	1**	.856**	.514**	.878**	.892**
Affica	Sig. (2-tailed)	.000		.000	.001	.000	.000
	N	36	36	36	36	36	36
Eastern	Pearson Correlation	.883**	.856	1**	.644**	.806**	.948
Mediterranean	Sig. (2-tailed)	.000	.000		.000	.000	.000
	N	36	36	36	36	36	36
	Pearson Correlation	.596*	.514	.644**	1**	.467**	.602
Europe	Sig. (2-tailed)	.000	.001	.000		.004	.000
	N	36	36	36	36	36	36
Courth Foot Asia	Pearson Correlation	.781**	.878**	.806**	.467**	1**	.862*
South East Asia	Sig. (2-tailed)	.000	.000	.000	.004		.000
	N	36	36	36	36	36	36
Wastern posific	Pearson Correlation	.967**	.892*	.948**	.602**	.862**	1*
Western pacific	Sig. (2-tailed)	.000	.000	.000	.000	.000	
	N	36	36	36	36	36	36
*** 11	Pearson Correlation	.888**	.935*	.957**	.592**	.939**	.964*
World	Sig. (2-tailed)	.000	.000	.000	.000	.000	.000
	N	36	36	36	36	36	36

Table 2.3.1.C) Correlations among reported polio cases per million population in different countries and world.

Correlations		
		world
	Pearson Correlation	.720
Afghanistan	Sig. (2-tailed)	.000
	N	32
	Pearson Correlation	.392
Bangladesh	Sig. (2-tailed)	.018
	N	36
	Pearson Correlation	.943**
Egypt	Sig. (2-tailed)	.000
	N	36
	Pearson Correlation	.937**
India	Sig. (2-tailed)	.000
	N	36
	Pearson Correlation	.830**
Iran	Sig. (2-tailed)	.000
	N	36

	Pearson Correlation	.401
Nigeria	Sig. (2-tailed)	.015
_	N	36
	Pearson Correlation	.903**
Pakistan	Sig. (2-tailed)	.000
	N	36
	Pearson Correlation	.888**
China	Sig. (2-tailed)	.000
	N	36
	Pearson Correlation	.935**
Africa	Sig. (2-tailed)	.000
	N	36
	Pearson Correlation	.957**
Eastern Mediterenean	Sig. (2-tailed)	.000
	N	36
	Pearson Correlation	.592*
Europe	Sig. (2-tailed)	.000
	N	36
	Pearson Correlation	.939**
South East Asia	Sig. (2-tailed)	.000
	N	36
	Pearson Correlation	.964**
Western pacific	Sig. (2-tailed)	.000
	N	36
	Pearson Correlation	1**
World	Sig. (2-tailed)	
	N	36
**. Correlation is signi	ficant at the 0.01 level (2-taile	d).
*. Correlation is signif	icant at the 0.05 level (2-tailed).

Correlation among reported polio cases per million population in different regions.

Correlation among different polio cases per million population is as under^[7] (Polio cases per million population is omitted with each sentence as this will elaborate the article too much)

Afghanistan at P≤0.05

Afghanistan and Egypt the correlation is 0.592. Afghanistan and India has a correlation of 0.744. Afghanistan and Iran has a correlation of 0.623. Afghanistan and Pakistan has a correlation of 0.547.

Iran at P≤0.05

Iran and Afghanistan has a correlation of 0.623. Iran and Egypt has a correlation of 0.840.

Iran and India has correlation of 0.803. Iran and Pakistan has a correlation of 0.865. Iran and China has a correlation of 0.804. Iran and Europe has a correlation of 0.699.

Nigeria at P≤0.05

Nigeria has a good correlation only with Bangladesh as 0.607.

Pakistan at P≤0.05

Pakistan and Afghanistan has a correlation of 0.547. Pakistan and Egypt as 0.907. Pakistan and India as 0.805. Pakistan and Iran has a correlation of 0.865. Pakistan, South East Asia correlation is 0.809.

China at P≤0.05

China and Pakistan has a correlation of 0.902. China and Iran has correlation of 0.804. China and India has a correlation of 0.776. China and Egypt as 0.925.

Eastern Mediterranean and China 0.883 at P≤0.05.

Eastern Mediterranean and Europe correlation is 0.644 at P≤0.05.

Eastern Mediterranean and South East Asia as 0.806 at P≤0.05.

3) Part three Regression statistics

Regression

Regression lines were made only in the polio endemic countries all other regions were exempted as other regions have removed polio virus from their environment.

3.1) Linear and quadratic reported cases

The regression equation linear and quadratic were obtained. Multiple linear regression was also obtained. The number of polio cases from 1980 to 2016 were taken into account and regression was obtained among these years.

As the wild polio cases reservoir is present in Afghanistan and Pakistan^[3] and Pakistan and Afghanistan share a huge boundary with each other, the movement of people across both the border is enormous.^[8] So regression equation in the linear, quadratic and multiple linear regression was plotted against one another. Afghanistan and Pakistan polio cases were calculated by taking either Afghanistan or Pakistan as dependent variable and another independent variable. Regression between the estimated and reported polio cases in the same country was also formed.

151

By knowing one variable we can roughly predict the cases in another region of the world.

3.1.1) Estimation of reported polio cases in Afghanistan by knowing the reported polio cases in Pakistan using linear regression equation.

3.1.1.A) Linear model

Model Summary							
R	R R Square Adjusted R Square Std. Error of the Estimate						
.576	.332	.310	502.448				

The independent variable is number of polio cases in Pakistan

Dependent variable is the number of polio cases in Afghanistan,

ANOVA							
	Sum of Squares	Df	Mean Square	F	Sig.		
Regression	3881442.906	1	3881442.906	15.375	.000		
Residual	7826065.821	31	252453.736				
Total	11707508.727	32					

The independent variable is number of polio cases in Pakistan.

Coefficients					
	Unstandardize	d Coefficients	Standardized Coefficients	t	Sig.
	В	Std. Error	Beta		
Pakistan polio cases	.331	.084	.576	3.921	.000
(Constant)	96.365	107.450		.897	.377

Linear regression Equation

Dependent = Afghanistan polio cases

Independent = Pakistan polio cases

The regression equation for the linear regression is

y = mx + c

y = independent variable

x = dependant variable

m = slope of the line

c = intercept

so the equation becomes

y = mx + c

The ANOVA table gives us the value of the p significant value as 0.000

By the rule we will accept the equation for the regression only if the value of p which is 0.05> the p significant value in ANOVA table.

So P(0.05)>P(0.000)

So the regression equation can be fit

$$F(1,31) = 15.375, P = 0.000^{[6]}$$

Another value is the adjusted R square, Adjusted R square is the Percentage of the variance in the outcome variable explained by the predictor variable.

So adjusted R square .310×100=31 or 31% of the variance in cases in Afghanistan can easily be predicted by the polio cases in Afghanistan.

The equation becomes

$$y = (0.333)(x) + 965.36...$$
 equation A^[4]

If we know the cases in Pakistan we can roughly estimate the polio cases in Afghanistan.

By this equation as the wild polio reservoir is only present in Afghanistan and Pakistan so an equation is necessary to predict the cases in it. However due to extended war history of Afghanistan with soviet union and then after nine eleven clashes between Taliban and US army, the real polio data obtained from the Afghanistan is still under question and the error in this data can lead us to a wrong prediction.

3.1.1.B): Estimation of reported polio cases in Afghanistan by knowing the reported polio cases in Pakistan using quadratic regression equation.

Quadratic model

Model Summary			
R	R Square	Adjusted R Square	Std. Error of the Estimate
.652	.425	.386	473.806

The independent variable is Pakistan polio cases

The dependent variable is Afghanistan polio cases.

ANOVA					
	Sum of Squares	Df	Mean Square	F	Sig.
Regression	4972747.772	2	2486373.886	11.076	.000
Residual	6734760.956	30	224492.032		
Total	11707508.727	32			
The independent	variable is Pakist	an polio cases.	<u>.</u>	<u>.</u>	
Coefficients					
	Unstandardized Coefficients		Standardized Coefficients	t	Sig.
	В	Std. Error	Beta		
Pakistan polio cases	.871	.257	1.514	3.384	.002
Pakistan ** 2 polio cases	.000	.000	986	-2.205	.035
(Constant)	-64.163	124.770		514	.611

Quadratic Equation

Quadratic Regression

Due to non linear relationship showed by the polio data in Afghanistan and Pakistan a quadratic equation was determined between these two countries.

The quadratic regression equation is determined by the equation

 $y = ax^2 + bx + c$

y = dependent variable

x = independent variable

 $a = coefficient of x^2$

b = coefficient of x

c = intercept

In the ANOVA table P value 0.05 > P(0.000)

So we accept it for the regression equation. [6]

F(2, 30) = 11.076, P = 0.000

(2, 30) these are the degree of freedom

The adjusted R square value is 0.386

Percent of adjusted R square = $0.386 \times 100 = 38.6$

Upto 38.6 percent of the variance in cases can easily be predicted by the cases in Pakistan.

The quadratic equation is better than linear equation for the estimation of polio cases as the Adjusted R square is 0.38 as compared to the linear model where Adjusted R square is 0.31.

In this situation Afghanistan is the dependent variable Pakistan is the independent variable Putting the values in equation we get

$$y = ax^2 + bx + c$$

 $y = (-0.000147)(x)^2 + (0.871)(x) - 64.163...$ equation B^[4]

y = polio cases in Afghanistan

x = polio cases in Pakistan

For linear and quadratic regression equation estimation of the data between 2000 and 2016 years were used in SPSS however no equation was possible in that case.

In linear model the value of p0.058>0.05 in ANOVA table so the model was not significant and hence the model was not good for estimation.

For the quadratic equation as the value of p 0.076>0.05 so the model was not good for estimation and no equation was possible between the two variables.

3.1.1.C): Estimating of Afghanistan reported polio cases from Pakistan reported polio cases and Pakistan estimated polio cases from 2000 to 2016 using multiple linear regression analysis

Model S	Model Summary									
		Adjusted R Std. Error of		Change Statistics						
Model	R	R Square	Square	the Estimate	R Square Change	F Change	df1			
1	.817 ^a	.667	.620	18.313	.667	14.043	2			

Model Summary					
Model	Change Statistics				
Model	df2	Sig. F Change			
1	14 ^a	.000			

a. Predictors: (Constant), Pakistan number of reported paralytic polio cases from 2000 to 2, Pakistan estimated polio cases from 2000 to 2016.

ANOVA ^a								
N	Model (Sum of Squares	df	Mean Square	F	Sig.		
	Regression	9419.726	2	4709.863	14.043	.000 ^b		
1	Residual	4695.333	14	335.381				
	Total	14115.059	16					

155

- a) a. Dependent Variable: Afghanistan number of reported paralytic cases from 2000 to 2016
- b) b. Predictors: (Constant), Pakistan number of reported paralytic polio cases from 2000 to2, Pakistan estimated polio cases from 2000 to2016

Coefficients ^a							
Model		Unstandardized Coefficients		Standardized Coefficients	t	Sig.	
		В	Std. Error	Beta			
	(Constant)	14.684	7.718		1.903	.078	
1	Pakistan estimated polio cases from 2000 to 2016	.485	.112	1.770	4.345	.001	
	Pakistan number of reported paralytic polio cases from 2000 to 2	441	.154	-1.170	-2.873	.012	

Coefficients^a

Model			Confidence al for B	(Correlations	
		Lower Bound	Upper Bound	Zero- order	Partial	Part
	(Constant)	-1.870	31.238			
1	Pakistan estimated polio cases from 2000 to 2016	.246	.725	.686	.758	.670
1	Pakistan number of reported paralytic polio cases from 2000 to 2	770	112	.468	609	443

Coefficients^a

Model		Collinearity Statistics		
		Tolerance	VIF	
	(Constant)			
1	Pakistan estimated polio cases from 2000 to 2016	.143	6.982	
	Pakistan number of reported paralytic polio cases from 2000 to 2	.143	6.982	
a Dene	endent Variable: Afghanistan number of reported	I paralytic cases from	m 2000 to 2016	

Multiple linear regression

Estimation of Afghanistan reported polio cases from Pakistan reported polio cases and Pakistan estimated polio cases.

It is significant as in the ANOVA table the value of p 0.05> 0.000 so the model is fit for regression^[6]

F(2,14)=14.043,p=0.000

Adjusted R square is 0.620

y=m1x1+m2x2+c

y=(0.485)x1+(-0.441)x2+14.684...equation $C^{[5]}$

y=0.485x1-0.441x2+14.684

y= Afghanistan reported polio cases

x1= Pakistan estimated polio cases

x2= Pakistan Reported polio cases

c = 14.684

m1=(0.485)

m2 = (-0.441)

So by knowing the above variable in a specific year we can calculate the number of reported polio cases in Afghanistan in that year. So the variables from Pakistan can give us prediction of the reported polio cases in Afghanistan.

3.2) Estimation of reported polio cases in Pakistan by using the reported polio cases in Afghanistan Curve Fit.

3.2.A) Estimation of reported polio cases in Pakistan by using the reported polio cases in Afghanistan using Linear regression equation Linear model.

Model Summary							
R R Square Adjusted R Square Std. Error of the Estima							
.576	.332	.310	873.649				
The independent variable is Afghanistan							

ANOVA						
	Sum of Squares	Df	Mean Square	F	Sig.	
Regression	11735071.294	1	11735071.294	15.375	.000	
Residual	23661159.675	31	763263.215			
Total	35396230.970	32				
	ndependent variable		tan polio cases			

Coefficients

	Unstandardized Coefficients		Standardized Coefficients	t	Sig.
	В	Std. Error	Beta		_
Afghanistan polio cases	1.001	.255	.576	3.921	.000
(Constant)	397.538	175.254		2.268	.030

Linear equation

Pakistan polio cases as dependent variable while Afghanistan polio cases as independent variable

y = mx + c

y = Polio cases in Pakistan

x = Polio cases in Afghanistan

As p value is 0.05 > 0.000 so we can apply regression^[6]

F(1, 31) = 15.373, P = 0.000

y = mx + c

y = (1.001)(x) + 397.538...equation $D^{[4]}$

For the data between 2000 to 2016 for liner model analysis were done but no regression line was made between the two variables

As the value of p 0.058>0.05 so the model was not significant, and The model was not a good estimation of dependent variable so no regression equation was possible between the two variables.

3.2.B) Estimation of reported polio cases in Pakistan by using reported the polio cases in Afghanistan using Quadratic regression equation Quadratic.

Model Summary						
R R Square Adjusted R Square Std. Error of the Estimate						
.804	.647	.623	645.714			

The independent variable is Afghanistan polio cases

ANOVA

	Sum of Squares	df	Mean Square	F	Sig.
Regression	22887826.986	2	11443913.493	27.447	.000
Residual	12508403.983	30	416946.799		
Total	35396230.970	32			

The independent variable is Afghanistan polio cases.

	Coefficients							
	Unstandardized Coefficients		Standardized Coefficients	t	Sig.			
	В	Std. Error	Beta					
Afghanistan polio cases	4.694	.739	2.700	6.356	.000			
Afghanistan ** 2 polio cases	002	.000	-2.197	-5.172	.000			
(Constant)	106.557	141.222		.755	.456			

Quadratic Regression equation

As the value of P 0.005> P 0.000

F(2, 30) = 27.477, P = 0.000

So model is fit for regression

Adjusted R square is 0.623×100= 62.3%

Or 62.3 percent of variance in the dependent variable can be explained by the independent variable it is a good model as compared to the linear model where adjusted R square value is $0.310^{[6]}$

$$y=ax^2+bx+c$$

 $y=(-0.002)(x)^2+4.694(x)+106.557...$ equation $E^{[4]}$

For the data chosen between the years 2000 and 2016 no regression was possible because the value of p 0.159 > 0.05 so the model was not good for quadratic estimation.

3.2.C): Estimating of Pakistan reported polio cases from Afghanistan reported polio cases and Afghanistan estimated polio cases from 2000 to 2016 using multiple linear regression analysis Multiple linear regression.

Regression

	Model Summary							
			Adjusted R	Std. Error of	Change Statistics			
Model	R	R Square	Square	the Estimate	R Square Change	F Change	df1	
1	.817 ^a	.667	.620	18.313	.667	14.043	2	
			Mod	el Summary				
	Model			Change S	Statistics			
Model		df2	df2		Sig. F Change			
	1 14 ^a				.000			

a. Predictors: (Constant), Pakistan number of reported paralytic polio cases from 2000 to 2, Pakistan estimated polio cases from 2000 to 2016

			ANOVA ^a			
	Model	Sum of Squares	df	Mean Square	F	Sig.
	Regression	9419.726	2	4709.863	14.043	.000 ^b
1	Residual	4695.333	14	335.381		
	Total	14115.059	16			

- a. Dependent Variable: Afghanistan number of reported paralytic cases from 2000 to 2016
- b) Predictors: (Constant), Pakistan number of reported paralytic polio cases from 2000 to 2, Pakistan estimated polio cases from 2000 to 2016

Coefficients^a

Model			Unstandardized Coefficients		t	Sig.
		В	Std. Error	Beta		
	(Constant)	14.684	7.718		1.903	.078
1	Pakistan estimated polio cases from 2000 to 2016	.485	.112	1.770	4.345	.001
1	Pakistan number of reported paralytic polio cases from 2000 to 2	441	.154	-1.170	-2.873	.012

Coefficients^a

Model		95.0% Confidence Interval for B		Correlations		
		Lower Bound	Upper Bound	Zero-order	Partial	Part
	(Constant)	-1.870	31.238			
1	Pakistanestimatedpolioca sesfrom2000to2016	.246	.725	.686	.758	.670
1	Pakistannumberofreporte dparalyticpolocasesfrom 2000to2	770	112	.468	609	443

Regression equation analysis

As the value of p 0.05 > 0.000

So the model is suitable for analysis of regression^[6]

F(2,14) = 14.043,p=0.000

The adjusted R square is 0.620

Equation

Y = m1x1 + m2x2 + c

Estimating of Pakistan reported polio cases from Afghanistan reported polio cases and Afghanistan estimated polio cases

Y= Pakistan reported polio cases

m1 = 0.485

x1= Pakistan estimated polio cases

m2 = -0.441

x2= Pakistan number of reported polio cases

C = 14.684

Y = 0.485x1 + (-0.441)x2 + 14.684... equation $F^{[5]}$

3.3) Estimation of reported paralytic cases per million population of Pakistan, By knowing the polio cases per million of Afghanistan.

Curve Fit

3.3.A) Estimation of reported paralytic cases per million population of Pakistan, By knowing the reported polio cases per million of Afghanistan using linear regression.

Linear model

Model Summary						
R	R Square	Adjusted R Square	Std. Error of the Estimate			
.547	.300	.276 11.173				
The independent variable is Afghanistan polio cases per million population.						

ANOVA								
	Sum of Squares	df	Mean Square	${f F}$	Sig.			
Regression	1602.093	1	1602.093	12.833	.001			
Residual	3745.308	30	124.844					
Total	5347.401	31						

The independent variable is Afghanistan polio cases per million population.

Coefficients							
			Standardized Coefficients	t			
	В	Std. Error	Beta				
Afghanistan polio cases per million population	.141	.039	.547	3.582			
(Constant)	4.151	2.260		1.836			
	Coefficients						

	Sig
Afghanistan polio cases per million population	.001
(Constant)	.076

Linear Regression

Cases in Pakistan per million population = dependent variable

Cases in Afghanistan per million population = Independent variable

Adjusted R square 0.276 or 27.6%

F(1,30) = 12.833, P = 0.001

As the value of P 0.05> P value calculated 0.000

So we apply the linear model^[6]

y=mx+c

y= Polio cases in Pakistan per million population

x=Polio cases in Afghanistan per million population

m = slopey=(0.141)(x)+4.151....equation G^[4]

3.3.B) Estimation of reported paralytic cases per million population of Pakistan, By knowing the reported polio cases per million of Afghanistan using quadratic regression Quadratic model.

Model Summary						
R	R Square	Adjusted R Square	Std. Error of the Estimate			
.814	.662	.639	7.889			
The independent variable is Afghanistan polio cases per million population.						

ANOVA							
Sum of Squares df Mean Square F Sig.							
Regression	3542.429	2	1771.215	28.458	.000		
Residual	1804.972	29	62.240				
Total	5347.401	31					

The independent variable is Afghanistan polio cases per million population.

Coefficients							
	Unstandardized Coefficients		Standardized Coefficients	t			
	В	Std. Error	Beta				
Afghanistan polio cases per million population	.711	.106	2.761	6.720			
Afghanistan polio cases per million population ** 2	004	.001	-2.295	-5.583			
(Constant)	.787	1.706		.461			

('	α	eft	ïr	iρ	ní	c
\mathbf{c}	v		ıv	IC	11(A)

	Sig.
Afghanistan polio cases per million population	.000
Afghanistan polio cases per million population ** 2	.000
(Constant)	.648

Quadratic regression

For quadratic regression equation adjusted R square is 0.639 so percent of it is 63.9%.

Which shows a better fit regression equation then the linear regression where adjusted r square value is 0.276

$$F(2, 29) = 28.458, P=0.000$$

As P value 0.05>0.000 so we accept it for regression^[6]

Quadratic regression equation

$$y = ax^2 + bx + c$$

y= Polio cases in Pakistan per million population.

x = Polio cases in Afghanistan per million population

 $v = (-0.004)X^2 + 0.711X + 0.787...$ equation H^[4]

Estimation of reported Afghanistan polio cases per million population using Pakistan reported polio cases per million population

3.4.A) Estimation of reported Afghanistan polio cases per million population using reported Pakistan polio cases per million population using liner regression Linear Model.

Model Summary						
R R Square Adjusted R Square Std. Error of the Estima						
.547	.300	.276	43.404			
The independent variable is Pakistan polio cases per million population.						

ANOVA								
	Sum of Squares	df	Mean Square	\mathbf{F}	Sig.			
Regression	24176.085	1	24176.085	12.833	.001			
Residual	56517.858	30	1883.929					
Total	80693.943	31						

The independent variable is Pakistan polio cases per million population.

Coefficients						
	Unstandardized Coefficients		Standardized Coefficients	t		
	В	Std. Error	Beta			
Pakistan polio cases per million population	2.126	.594	.547	3.582		
(Constant)	10.748	9.051		1.188		

Coefficients

	Sig.
Pakistan polio cases per million population	001
(Constant)	244

Linear regression equation

Afghanistan polio cases per million population = dependent

Pakistan polio cases per million population = independent

Percent of Adjusted R square for linear regression is 0.276×100=27.6%

ANOVA p value is less than 0.05 so the model is acceptable for regression.

P:0.05>0.001 so the model is acceptable⁶

y=mx+c

y= Afghanistan polio cases per million population

x= Pakistan polio cases per million population

y=(2.126)x+10.748... equation $I^{[4]}$

3.4.B) Estimation of reported Afghanistan polio cases per million population using reported Pakistan polio cases per million population using quadratic regression Quadratic Model

Model Summary									
R R Square Adjusted R Square Std. Error of the Estimate									
.697	.486		.451	37.3	315				
The inde	The independent variable is Pakistan polio cases per million population.								
ANOVA									
	Sum of Squares	df	Mean Square	F	Sig.				
Regression	39224.767	2	19612.383	13.715	.000				
Residual	41469.177	29	1429.972						
Total	80693.943	31							
<u> </u>									

The independent variable is Pakistan polio cases per million population.

Coefficients						
	Unstan	dardized	Standardized			
	Coeff	ficients	Coefficients	t		
	В	Std. Error	Beta			
Pakistan polio cases per million population	7.698	1.794	1.982	4.292		
Pakistan polio cases per million population ** 2	122	.038	-1.498	-3.244		
(Constant)	-5.992	9.424		636		
C	Coefficients					
	S	Sig.				
Pakistan polio cases per million population).	.000				
Pakistan polio cases per million population).	003				
(Constant)				530		

Quadratic Regression

For quadratic regression equation

As the p value in ANOVA table is 0.000 which is 0.005>0.000 so the model is acceptable for regression

F(2, 29) = 13.715, p = 0.000

Percent Adjusted R square is 0.451×100=45.1%.

As the Adjusted R square value 0.451 is greater so it is a good model then linear model where adjusted r square value is $0.276^{[6]}$

$$y = ax^2 + bx + c$$

 $y = (-0.122)x^2 + 7.69(x) - 5.992...$ equation $J^{[4]}$

4. Linear regression for the endemic countries between the estimated and reported polio cases

4.1) Regression

In this section linear regression equation was made between the Estimated polio cases and reported polio cases. Three countries that are endemic with polio virus: Pakistan, Afghanistan and Nigeria, Regression equation was made between the reported polio cases and the estimated polio cases. Polio cases from 2001 to 2016 were chosen for this purpose and the regression equation was made between the two countries in these 16 years as this data is the most refined data and the difference between the estimated and the reported polio cases is less. Moreover polio samples obtained in this era are more clear and documented.

4.1.1) Estimation of estimated polio cases in Nigeria by using the reported polio cases in Nigeria.

				Mode	el Summary	b			
		R	Adjusted D	Ctd E	Innon of the	Cl	nange St	atisti	cs
Model	R	Square	Adjusted R Square	Std. Error of the Estimate		R Square Change	F Change		ange
1	1.000^{a}	1.000	1.000	.00001	2757130138	1.000	1576259	8695	796720.000
				Mode	el Summary	b			
Mod	al		Cha	ange St	atistics		D	uhin	Watson
Mou	eı	df1		df2	Sig.	Sig. F Change		Durbin-Watso	
1		1 ^a		14		.000		2.643	
a. Predic	ctors: (Constant)), Nigeria Rep	orted p	olio cases				
b. Depe	ndent V	/ariable:	Nigeria Estin	nated po	olio cases				
				A	NOVA				
	Model		Sum of Squ	uares	Df	Mean Squar	e I	7	Sig.
	Reg	ression	2565274.	144	1	2565274.144	1 .		b
1	Res	sidual	.000		14	.000			
	T	`otal	2565274.	144	15				
a. Depei	ndent V	ariable:	Nigeria Estin	nated po	olio cases		•		

b. Predictors: (Constant), Nigeria Reported polio cases

	Coefficients ^a								
Model		Unstand Coeffi	lardized cients	Standardized Coefficients	t	Sig.			
		В	Std. Error	Beta					
	(Constant)	2.396E-006	.000		.544	.595			
	Nigeria Reported polio cases	1.110	.000	1.000	125549188.352	.000			
	a. Dependent Variable: Nigeria Estimated polio cases								

Linear Regression Equation

Nigeria estimated polio cases =y

Y= dependent variable

Nigeria reported polio cases = x

X= Independent variable

Adjusted R square 1.00

The 1 value shows perfect positive correlation

Percentage of adjusted R square 1.00×100=100

The ANOVA table shows no significant value this is because the difference in the estimated and the reported value is small. The mean square error is zero, so the software eliminates the p value significant and the F value. It shows a perfect correlation so the line is best fit for the linear regression.^[6]

y = mx + c

y=(1.110)(x)+0.000002... equation $K^{[4]}$

as the c value is very small so we can write the equation as

y=(1.110)(x)

4.1.2) Estimation of estimated polio cases in Pakistan by knowing the reported polio cases in Pakistan

[DataSet1]

Model Summary ^b							
Model	D	D Canana	Adjusted R Square	Std. Error of	Change St	atistics	
Model R	K	K Square	Aujusteu K Square	the Estimate	R Square Change	F Change	
1	1.000 ^a	1.000	1.000	.00000420505	1.000	630503947831	
1 1.00	1.000	1.000^{a} 1.000	1.000	8502	1.000	8680.000	

Model Summary ^b						
Model		Durbin-Watson				
	df1	df2	Sig. F Change	Durbin-watson		
1	1 ^a	14	.000	2.137		
D. 1: 4 (C 4 - 4) D.1: 4 - D 4 - 1 - 1:						

a. Predictors: (Constant), Pakistan Reported polio cases

b. Dependent Variable: Pakistan estimated polio cases

	ANOVA ^a								
	Model	Sum of Square	s Df	Mean Square	F	Sig.			
	Regression	111488.963	1	111488.963	6305039478318681.000	$.000^{b}$			
1	Residual	.000	14	.000					
	Total	111488.963	15						

a. Dependent Variable: Pakistan estimated polio cases

b. Predictors: (Constant), Pakistan Reported polio cases

	Coefficients ^a							
Model		Unstand Coeffi	lardized cients			Sig.		
		В	Std. Error	Beta				
	(Constant)	-3.157E-006	.000		-1.781	.097		
1	Pakistan Reported polio cases	1.110	.000	1.000	79404278.715	.000		

Coefficients ^a								
Model		95.0% Confider	nce Interval for B	Cor	S			
		Lower Bound	Upper Bound	Zero-order	Partial	Part		
	(Constant)	.000	.000					
1	Pakistan Reported polio cases	1.110	1.110	1.000	1.000	1.000		
a. Dependent Variable: Pakistan estimated polio cases								

Linear regression equation

Pakistan estimated polio cases =y

Y=dependent variable

Pakistan reported polio cases = x

X= independent variable

The ANOVA table shows that the p 0.05>0.000

So the line is fit for regression^[6]

F(1, 14)= 6305039478318, P=0.000

The F value is very large so the line is best fit for linear regression.

Percent of Adjusted R square value is 1.00×100=100.

Adjusted R square value is 1

It is also a perfect positive correlation.

Y=mx+c

y = (1.110)(x)-0.000003... equation $L^{[4]}$

for the data chosen between 2000 and 2016 the adjusted R square values for linear model was 0.847 and adjusted R square for quadratic equation were 0.844 so the best data was from 2001 to 2016.

4.1.3) Estimation of Afghanistan estimated polio cases by knowing the reported polio cases of Afghanistan.

			M	odel Summary ^b				
R Adjusted R Std. Error of the Change St								
Model	R	R Square	Adjusted R Square	Estimate	R Square Change	F Change	df1	
1	.993 ^a	.987	.986	2.487829563559886	.987	1058.256	1	
Mod	dal			odel Summary ^b Statistics	Du	rbin-Watso	n	
IVIO	uei	df2	2	Sig. F Change	Du	i dili- vv atsu	11	
1		14	a	.000		1.151		
a. Predic	ctors: (C	onstant), A	Afghanistan R	Reported polio cases				
b. Deper	ndent Va	ariable: Af	ghanistan Est	imated polio cases				

	ANOVA ^a							
	Model Sum of Squares df Mean Square F Sig.							
	Regression	6549.857	1	6549.857	1058.256	.000 ^b		
1	Residual	86.650	14	6.189				
	Total	6636.507	15					

a. Dependent Variable: Afghanistan Estimated polio cases

b. Predictors: (Constant), Afghanistan Reported polio cases

Model		Unstandardized Coefficients		Standardized Coefficients	t	Sig.
		В	Std. Error	Beta	i	
	(Constant)	1.203	1.031		1.167	.263
1 Afghanistan Reported polio cases		1.086	.033	.993	32.531	.000

Linear regression equation

Afghanistan estimated polio cases =y

Afghanistan reported polio cases =x

Y= dependent variable

X= Independent variable

Percent Adjusted R square 0.986×100=98.6

R square value is 0.987

It is also a perfect positive correlation

As the ANOVA value is p: 0.05> 0.000

So it is fit for regression^[6]

F(1, 14) = 1058.25, P=0.000

World Journal of Pharmacy and Pharmaceutical Sciences

As the F value in this model is large, so it is best fit for linear regression.

Y=mx+c

The liner regression equation for the model is as under

y=(1.086)(x)+1.203... equation $M^{[4]}$

The best fit and refined data is from 2001 to 2016 for the regression equation. Data was chosen from 2000 to 2016 which resulted in adjusted R square as 0.903 for linear model and 0.976 for quadratic model. So this data is the most refined for the analysis.

5. CONCLUSION

In the estimated polio cases India and china were most affected as they have higher population.

In Endemic countries in estimated polio cases, first Pakistan was most affected then is the case with Nigeria and lastly Afghanistan was most affected. Bangladesh and Iran have the least amount of estimated polio cases.

Region wise South East Asia and Eastern Mediterranean has the most estimated polio cases followed by the western Pacific, Africa and Europe.

Per million population polio cases

Per million population Afghanistan is most affected by the polio cases, the reason might be the inadequate health infrastructure there in Afghanistan, followed by India and Pakistan, India is greatly affected by the per million population density of polio the reason are the great population density of India and vaccine failure.

Vaccine failure

Vaccine failure cases occurred in India in 2009.In northern states of India, Wild polio virus transmissions were eliminated but OPV effectiveness in those areas were very low despite the effort that eighty five percent of the population has received more than seven doses of OPV and less than two percent of the population have received less than three doses of OPV. [9,10]

Pakistan has also great polio cases per million population placing it in the third position in the world. The least effected countries are the Bangladesh and Iran.

Region wise Eastern Mediterranean and south East Asia are the most effected regions while western Pacific and Europe are least affected.

In the reported Polio cases

Reported polio cases show a general trend from higher population countries and regions towards the lower population density regions like India and China are most effected followed by the Pakistan, Nigeria and Afghanistan. Similarly in the regions of the world South East Asia, western pacific and eastern Mediterranean are the most effected regions.

Correlation

Correlation is generally higher in the Neighboring countries sharing the borders like Iran Pakistan has a perfect positive correlation in the polio cases. Similarly China Pakistan has a higher correlation. Similarly India Pakistan has a positive perfect correlation in the estimated polio cases. [8] It shows that polio virus has transmitted from their borders to infect healthy indivuals.

Regression

Estimating Of Afghanistan Reported Polio Cases neither linear nor quadratic equation is so accurate because of the low adjusted R square value so equation c using multiple linear regression is the most suitable for calculating the cases.

$$y=(0.485)x1+(-0.441)x2+14.684...$$
equation C

Estimation of reported polio cases in Pakistan both the quadratic equation and multiple linear regression equation are good equations. Equations E and Equation F can be used for the calculation of the reported polio cases in Pakistan. The linear equation D is inadequate for the calculation so only equation E and equation F should be used for this purpose.

$$y=(-0.002)(x)^2+4.694(x)+106.557...$$
 equation E

$$Y = 0.485x1 + (-0.441)x2 + 14.684...$$
 equation F

Estimation of reported paralytic cases per million population of Pakistan linear regression equation is not a good equation. Equation G is not a good equation for estimation. However equation H is a good equation the curve equation is a good equation for estimation so equation H should be used for the estimation.

$$y=(-0.004)X^2+0.711X+0.787....H$$

Estimation of reported Afghanistan polio cases per million population Linear regression model shows lesser accuracy as compared to the quadratic equation so equation J is suitable for estimation of the model.

$$y=(-0.122)x^2+7.69(x)-5.992...$$
 equation J

Estimation of estimated polio cases in Nigeria Equation K is the most suitable and perfect so there is no need to go for non linear equation. Linear equation shows best fit so it is the best fit line

$$y=(1.110)(x)+0.000002...$$
 equation K

Estimation of estimated polio cases in Pakistan Linear model best fits the regression line so only linear model is chosen for this purpose and equation L is the best equation for estimation of the estimated polio cases in Pakistan.

$$y = (1.110)(x)-0.000003...$$
 equation L

Estimation of Afghanistan estimated polio cases Linear model is the best fit line so no need to go for the quadratic equation and equation M should be used for the estimation of the cases. y=(1.086)(x)+1.203... equation M

6. REFERENCES

- 1. Ochmann, S. and Roser, M. Polio. [online] Our World in Data. Available at: https://ourworldindata.org/polio, 2017; 4.
- Tebbens RJ, Pallansch MA, Cochi SL, Wassilak SG, Linkins J, Sutter RW, Aylward RB, Thompson KM. Economic analysis of the global polio eradication initiative. Vaccine, 2010; 16, 29(2): 334-43.
- 3. GPEI-Polio Today [Internet]. Polioeradication.org. 2019; 4. Available from: http://polioeradication.org/polio-today/.
- 4. Curvilinear Regression [Internet]. Faculty.cas.usf.edu, 2019; 5. Available from: http://faculty.cas.usf.edu/mbrannick/regression/curvilinear.html.
- 5. Multiple Regression [Internet]. Statsoft.com., 2019. Available from: http://www.statsoft.com/Textbook/Multiple-Regression.
- 6. J. Bernstein D. YouTube [Internet]. Youtube.com, 2019. Available from: https://www.youtube.com/watch?v=vnQIW5ts3eM
- 7. Kirkwood BR, Sterne JA. Essential medical statistics. John Wiley & Sons, 2010; 16.

- 8. Countries Compared by Geography > Land boundaries > Border countries. International Statistics at Nation Master.com [Internet]. Nationmaster.com., 2019. Available from: https://www.nationmaster.com/country-info/stats/Geography/Land-boundaries/Border-countries.
- 9. Kidd SE. Progress toward poliomyelitis eradication-India, Morbidity and Mortality Weekly Report., 2009; 58(26): 719-23.
- 10. Chumakov K, Ehrenfeld E, Plotkin S. New generation of inactivated poliovirus vaccines for universal immunization after eradication of poliomyelitis. Clinical infectious diseases., 2008; 15,47(12): 1587-92.