

Error Analysis

Carrying out error analysis

Look at dev examples to evaluate ideas

> 10.00 eccor

Should you try to make your cat classifier do better on dogs?

Error analysis: >> 5-10 min

- 5 Get ~100 mislabeled dev set examples.
- Count up how many are dogs.

Evaluate multiple ideas in parallel

Ideas for cat detection:

- Fix pictures of dogs being recognized as cats
- Fix great cats (lions, panthers, etc..) being misrecognized

Improve performance on blurry images

Image	Dog	Carent Cots	Plary	Instagram	Comments
1	/	•	-		Pitbull
2			/	~	
3		√	V		Rainy day at 200
:	:	· 1/	;	K	
% of total	8 %	(430/2)	6/0/0	120/2	
		~	←		

Error Analysis

Cleaning up Incorrectly labeled data

Incorrectly labeled examples

DL algorithms are quite robust to random errors in the training set.

Systematic errors

Andrew Ng

Error analysis

2	Image	Dog	Great Cat	Blurry	Incorrectly labeled	Comments			
	•••								
	98				\checkmark	Labeler missed cat in background	\leftarrow		
	99		✓						
	100				\bigcirc	Drawing of a cat; Not a real cat.	\leftarrow		
•	% of total	8%	43%	61%	6%	V			
Overall dev set error 2%									
Errors due incorrect labels 0.6./. 6.6./.									
Errors (due to oth	er cause	9S	9.4%	<	1.4%			
				1		2.10/0	1.9./6		

Goal of dev set is to help you select between two classifiers A & B.

Correcting incorrect dev/test set examples

- Apply same process to your dev and test sets to make sure they continue to come from the same distribution
- Consider examining examples your algorithm got ight as well as ones it got wrong
- Train and dev/test data may now come from slightly different distributions.

Error Analysis

Build your first system quickly, then iterate

Speech recognition example

- Noisy background
 - Café noise
 - → Car noise
- AccentFar fro

Young Build your first Stutter system quickly, then iterate

- Set up dev/test set and metric
 - Build initial system quickly
 - Use Bias/Variance analysis & Error analysis to prioritize next steps.

Mismatched training and dev/test data

Training and testing on different distributions

Cat app example

Data from webpages

Andrew Ng

Speech recognition example

Training

Purchased data 🗓 🦞

Smart speaker control

Voice keyboard

500,000 utbernues

Dev/test

Speech activated rearview mirror

Mismatched training and dev/test data

Bias and Variance with mismatched data distributions

Cat classifier example

Assume humans get $\approx 0\%$ error.

Training error

Dev error

10/0

10/0

10/0

Training-dev set: Same distribution as training set, but not used for training

Bias/variance on mismatched training and dev/test sets

More general formulation

Reasures Millor

Mismatched training and dev/test data

Addressing data mismatch

Addressing data mismatch

 Carry out manual error analysis to try to understand difference between training and dev/test sets

 Make training data more similar; or collect more data similar to dev/test sets

Artificial data synthesis

"The quick brown fox jumps
over the lazy dog."

Car noise

Synthesized in-car audio

Artificial data synthesis

Car recognition:

Learning from multiple tasks

Transfer learning

When transfer learning makes sense

Transh from A -> B

Task A and B have the same input x.

You have a lot more data for Task A than Task B.

Low level features from A could be helpful for learning B.

Learning from multiple tasks

Multi-task learning

Simplified autonomous driving example

Neural network architecture

Andrew Ng

When multi-task learning makes sense

 Training on a set of tasks that could benefit from having shared lower–level features.

Usually: Amount of data you have for each task is quite

1,000

G00.

99,000

similar.

A 1,000

 Can train a big enough neural network to do well on all the tasks.

End-to-end deep learning

What is end-to-end deep learning

What is end-to-end learning?

Speech recognition example

Face recognition

[Image courtesy of Baidu]

Andrew Ng

More examples

Machine translation

Estimating child's age:

End-to-end deep learning

Whether to use end-to-end learning

Pros and cons of end-to-end deep learning

Pros:

Let the data speak

X -> Y

- > phonemes cat
- Less hand-designing of components needed

Cons:

- May need large amount of data
- Excludes potentially useful hand-designed components

Applying end-to-end deep learning

Key question: Do you have sufficient data to learn a function of the complexity needed to map x to y?

