Homework 7

- **1** Show that vertical lines x = a are geodesics (un-parameterised) on the Lobachevsky plane $^{1)}$.
- * Show that upper arcs of semicircles $(x-a)^2+y^2=R^2, y>0$ are (non-parametersied) geodesics.
- **2** Consider a vertical ray $C: x(t) = 1, y(t) = 1 + t, 0 \le t < \infty$ on the Lobachevsky plane.

Find the parallel transport $\mathbf{X}(t)$ of the vector $\mathbf{X}_0 = \partial_y$ attached at the initial point (1,1) along the ray C at an arbitrary point of the ray.

Find the parallel transport $\mathbf{Y}(t)$ of the vector $\mathbf{Y}_0 = \partial_x + \partial_y$ attached at the same initial point (1,1) along the ray C at an arbitrary point of the ray. (Exam question, 2013.)

- **3** Find a parameterisation of vertical lines in the Lobachevsky plane such that they become parameterised geodesics.
 - 4 Find geodesics on cylinder
 - a) using straightforwardly equations of geodesics
 - b) using the properties of acceleration vector for particle movin along geodesic
 - c) using the fact that geodesic is shortest

In all the cases state clearly, is it parameterised, or un-parameterised geodesic.

5 Great circle is a geodesic.

Every geodesic is a great circle.

What curves are these statements about? Parameterised or un-parameterised? Make these statements precise.

6 Let (M, G) be a Riemannian manifold. Let C be a curve on M starting at the point \mathbf{pt}_1 and ending at the point \mathbf{pt}_2 .

Define an operator $P_C: T_{\mathbf{pt}_1}M \to T_{\mathbf{pt}_2}M$.

Explain why the parallel transport P_C is a linear orthogonal operator.

Let the points \mathbf{pt}_1 and \mathbf{pt}_2 coincide, so that C is a closed curve.

Let **a** be a vector attached at the point \mathbf{pt}_1 , and $\mathbf{b} = P_C(\mathbf{a})$.

Consider operator P_C^2 . Suppose that $P_C(\mathbf{a}) = \mathbf{b}$ and $P_C^2(\mathbf{a}) = -\mathbf{a}$. Show that vectors \mathbf{a} and \mathbf{b} are orthogonal to each other. (Exam question 2016)

7 On the unit sphere $x^2 + y^2 + z^2 = 1$ in \mathbf{E}^3 consider the curve C defined by the equation $\cos \theta - \sin \theta \sin \varphi = 0$ in spherical coordinates.

1

As usual we consider here a realisation of the Lobachevsky plane (hyperbolic plane) as upper half of Euclidean plane $\{(x,y): y > 0\}$ with the metric $G = \frac{dx^2 + dy^2}{y^2}$. The line x = 0 is called *absolute*.

Show that in the process of parallel transport along the curve C an arbitrary tangent vector to the curve remains tangent to the curve. (Exam question 2016)

- **8** On the sphere $x^2 + y^2 + z^2 = R^2$ of radius R in \mathbf{E}^3 consider the following three closed curves.
- a) the triangle $\triangle ABC$ with vertices at the points $A=(0,0,1),\ B=(0,1,0)$ and C=(1,0,0). The edges of triangle are geodesics.
- b) the triangle $\triangle ABC$ with vertices at the points $A=(0,0,1),\ B=(0,\cos\varphi,\sin\varphi)$ and $C=(1,0,0),\ 0<\varphi<\frac{\pi}{2}$ The edges of triangle are geodesics.
 - c) the curve $\theta = \theta_0$ (line of constant latitude).

Consider the result of parallel transport of the vectors tangent to sphere over these closed curves.