Centrality Measures for Simple Graphs

CME4422

- · Degree Centrality
- · Closeness Centrality
- · Eccentricity Centrality
- · Betweenness Centrality
- · Eigenvector Centrality
- · Other Centrality Measures

Outline

Degree Centrality

- Deg(A)=1
- Deg(B)=4
- Deg(C)=Deg(D)=2
- Deg(E)=3

According to degree centrality, degree=centrality score.

Normalization

- The degree centrality for each node is usually normalized by the following three methods:
 - Divide degree by max. Possible degree=# of nodes-1.
 - · Divide by the highest degree.
 - · Divide by sum of all degrees.

Divide degree by max. Possible degree=# of nodes-1

- ·Max. Possible degree: 5-1=4
- Deg(A)=1/4=0.25
- Deg(B)=4/4=1
- Deg(C)=Deg(D)=2/4=0.5
- Deg(E)=3/4=0.75

Divide by the highest degree.

- •In our example the highest degree (4) is the maximum possible degree.
- · The result is the same.

Divide by sum of all degrees.

- Sum of all degrees is 1+2+2+3+4=12.
- Deg(A)=1/12
- Deg(B)=4/12
- Deg(C)=Deg(D)=2/12
- Deg(E)=3/12

Closeness Centrality

- Calculate the shortest path from a given node to every other node,
- · Add them,
- Normalize by N-1 where N is the total # of nodes,
- · Take the inverse of that value.

Example

	Α	В	С	D	E	Σ	Σ/4	1/(∑/4)
Α	-	1	2	2	2	7	1.75	0.57
В	1	-	1	1	1	4	1	1
С	2	1	-	2	1	6	1.5	0.67
D	2	1	2	-	1	6	1.5	0.67
E	2	1	1	1	-	5	1.25	0.8

Eccentricity Centrality

• Eccentricity is the maximum of the shortest paths from a given node to every other node.

Example

		Α	В	С	D	E	max	1/max
Δ	/	ı	1	2	2	2	2	0.5
В		1	ı	1	1	1	1	1
C		2	1	-	2	1	2	0.5
C		2	1	2	-	1	2	0.5
E		2	1	1	1	-	2	0.5

Betweenness Centrality

- For a given node, we are interested in the # of shortest paths that go through it.
- We are no longer interested in the path length!

Example (1)

Let's consider node B. List all the shortest paths that go through it(except B):

Example (2)

- A-C: ABC (1/1) C-D: CBD, CED (1/2)
- · A-D: ABD (1/1) C-E: CE (0)
- · A-E: ABCE, ABDE (2/2) D-E: DE (0)

Example (3)

- ·For node A: B-C:BC; B-D:BD; B-E:BCE,BDE
- ·C-D:CBD,CED; C-E:CE; D-E:DE
- $\cdot C_{bw}(A)=0$

Example (4)

- ·For node C: A-B:AB; A-D:ABD;
- · A-E: ABCE, ABDE; B-D:BD; B-E:BCE, BDE
- · D-E:DE
- $\cdot C_{bw}(C) = (1/2) + (1/2) = 1$

Example (5)

- · For node D: A-B: AB; A-C: ABC;
- · A-E: ABCE, ABDE; B-C:BC; B-E:BCE, BDE
- $\cdot C_{bw}(D) = (1/2) + (1/2) = 1$

Example (6)

- ·For node E: A-B:AB; A-C:ABC;
- A-D: ABD; B-C: BC; C-D: CBD, CED;
- $\cdot C_{\text{bw}}(E) = (1/2) = 0.5$

Eigenvector Centrality

- · Form the adjacency matrix
- · Find the maximum Eigenvalue
- · Find the corresponding Eigenvector

Example

	Α	В	С	D	E
Α	0	1	0	0	0
В	1	0	1	1	1
С	0	1	0	0	1
D	0	1	0	0	1
E	0	1	1	1	0

Max. Eigenvalue is 2.69. The corresponding Eigenvector is:

Other Centrality Measures

- · Katz Centrality
- · Pagerank Centrality