经全国中小学教材审定委员会 2004 年初审通过

普通高中课程标准实验教科书

人民教育出版社 课程教材研究所 编著 中学数学教材实验研究组

普通高中课程标准实验教科书

必修

人民教育出版社 课程教材研究所 编著 中 学 数 学 教 材 实 验 研 究 组

本册导引

我们生存的宇宙是立体空间,我们接触到的物体都占有空间的一部分,研究物体的性质是各门自然科学的共同任务,只关注物体的形状、大小与位置关系,形成了一门数学学科——几何学,物体的其他性质,则留给物理学、化学等学科去研究,本模块中的立体几何与平面解析几何是几何学的初步知识,是进一步学习数学的基础,通过学习,同学们的空间想象能力,几何直观能力,推理论证能力,运用图形语言进行交流的能力,以及用代数方法解决几何问题的能力,将得到良好的发展。

空间几何体不在一个平面内,可是我们经常把它画在一个平面内,这就给 认识它带来很大困难, 克服这种困难有各种途径, 例如,用实物模型和计算机 软件观察几何体的结构特征,用平行投影和中心投影画出视图与直观图,用头 脑想象几何体的现实模型等等,这些方法都有助于认识空间图形,培养空间想 象能力与几何直观能力,

本模块,我们还要研究点、线、面之间的逻辑关系,首先总结出空间图形 的几条基本性质(公理),然后以基本性质为基础,探索并进行逻辑推理,进 一步学习空间图形的其他重要性盾。同时进一步培养同学们的推理论证能力,

用坐标把点的位置数量化,进而把图形性质用数量关系表示出来,是数学 发展的一次飞跃,数量是可以运算的,并具有良好的运算律,把数量及其运算 引进几何学,孕育出解析几何.简单地说,用代数方法解决几何问题就是解析 几何,本模块以平面上的直线和圆为载体,孕习解析几何的基本思想与方法, 体会"数形结合"的思想方法及其解决几何问题的有效性和普遍性。

本册书的数学内容及其包含的思想方法,既有一定的理论性,又有很高的 实际应用价值;既有几何直观,又有代数运算;既有简单的实际制作,又有现 代信息技术的应用,无疑,它是培养数学能力的配沃土壤,希望同学们怀着旺 盛的求知欲望和愉悦的心情进入这两个几何领域,以获得宝贵的数学思想、数 学方法和数学能力.

主 编 高存明

本册主编 范登晨

编 者 范登晨 高存明 江守礼

邱万作 张润琦

责任编辑 刘长明

美术编辑 张 蓓 王 喆

绘图 王鑫

封面设计 林荣桓

普通高中课程标准实验教科书

数学2

B版

人民教育出版社 课程教材研究所 中 学 数 学 教 材 实 验 研 究 组

人人本人。从北出版发行

(北京沙滩后街 55 号 邮编: 100009)

関址: http://www.pep.com.cn 人 A ふ A * M A 印刷厂印装 全国新华书店经销

开本: 890 毫米×1 240 毫米 1/16 印张: 8.75 字数: 170 000 2004 年 5 月第 1 版 2004 年 7 月第 1 次印刷

ISBN 7-107-17711-7 G·10800 (课) 定价: 9.55 元

著作权所有·请勿擅用本书制作各类出版物·违者必究 如发现印、装质量问题,影响阅读,请与出版社联系调换。 (联系地址:北京市方庄小区芳城园三区13号楼 邮编:100078) 精品教学网www.itvb.net

全力打造全国最新最全的免费视频教学网站,现有内容已经覆盖学前,小学,初中高中,大学,职业等各学段欢迎各位爱学人士前来学习交流。

QQ309000116

邪		正体几何初步	
	1.1 空间]几何体	
	1.1.1	构成空间几何体的基本元素	3
	1.1.2	楼柱、棱锥和棱台的结构特征	5
	1.1.3	圆柱、圆锥、圆台和球	
	♦ 1.1.4	投影与直观图	
	1. 1. 5	三视图	
	♦ 1.1.6	棱柱、棱锥、棱台和球的表面积	27
	♦ 1.1.7	柱、锥、台和球的体积	
	实习作业	A CONTROL OF THE ACTION OF THE	
	1.2 点、	线、面之间的位置关系	
	1.2.1	平面的基本性质与推论	
	1.2.2	空间中的平行关系	
		空间中的垂直关系 ·····	
	本章小结·		63
	阅读与欣复		
		数学芳香的碑文	
第		平面解析几何初步	
	2.1 平面	直角坐标系中的基本公式	71
	2.1.1		
	2.1.2	平面直角坐标系中的基本公式	
	2.2 直线	的方程	81
	2.2.1	直线方程的概念与直线的斜率	81
	2.2.2	直线方程的几种形式	85
	2.2.3	两条直线的位置关系	
	2.2. 4	点到直线的距离 ·····	
	2.3 圆的	7万程]	02
	◆ 2 3 1	圆的标准方程	02

◆ 2.3.2 圆的一般方程	106
◆ 2.3.3 直线与圆的位置关系	109
◆ 2. 3. 4 圆与圆的位置关系	111
2.4 空间直角坐标系	117
◆ 2.4.1 空间直角坐标系 ····································	117
◆ 2.4.2 空间两点的距离公式	120
本章小结	123
阅读与欣赏	
笛卡儿	128
村录	
8分中英文词汇对照表	129

第一章 立体几何初步

.

我们经常观察周围各种各样的物体。并且不断地学着区分物体形状之间的差异。从儿童时代起,我们就可能通过观察、玩各种玩具,通过父母和老师的启蒙教育。认识了各种各样的物体的形状。它们有些是长方体形的物体,有些是球形的物体等。然后离开具体的实物,开始辨认画在纸上的物体,例如汽车、飞机、床、桌子、房屋的图片等。后来又通过学习几何知识。认识了许多几何图形,如长方形、长方体、圆、球等。同学们有没有想过,为什么画在纸上的各种各样的物体。你一看就能认出它是基种物体呢?

人类从能区分各种各样的物体到把这些物体画在 纸上表达它们,直到现代利用计算机画出复杂物体的 图形,经历了漫长的年代,不过,你只要通过短时间 的学习,就能初步学会人类几千年所积累到的立体几 何知识.

在小学和初中,我们已经学习了一些简单的几何 体. 你还记得图 1-1 中一些几何体的名称吗? 在图 1-2 的照片中,我们看到的各种各样的建筑物,大都是 由图 1-1 中的几何体组成的.

图 1-1

图 1-2

这一章我们先从分析常见立体图形的几何结构开始,建立空间概念,学习描述简 单立体图形的结构,从而学习如何在平面上表示这些立体图形,然后分析这些知识的 逻辑结构,认识有关图形的基本性质,培养空间想象能力和逻辑思维能力。

观察我们生活的空间,一切物体都占据着空间的一部分.如果我们只考虑一个物体占有空间部分的形状和大小,而不考虑其它因素,则这个空间部分叫做一个几何体.例如,一个长方体形包装箱,占有的空间部分就是一个几何体.我们知道这个几何体叫做长方体(图1-3).

同学们可以通过折纸练习,自己制作一些几何体的模型,帮助 学习本节内容.

1.1.1

构成空间几何体的基本元素

让我们以长方体为例,分析构成几何体的基本元素以及它们之 间的关系,

长方体由六个矩形(包括它的内部)围成(图 1-3),围成长方体的各个矩形,叫做长方体的面;相邻两个面的公共边,叫做长方体的棱;棱和棱的公共点,叫做长方体的顶点。长方体有 12 条棱,8个顶点。我们容易想象空间中并没有孤立的点、线、面,它们只是作为几何体的组成元素,存在于我们的脑海中。观察长方体和各种几何体的构成可以发现,一个几何体是由点、线、面构成的。点、线、面是构成几何体的基本元素。

线有直线(段)和曲线(段)之分,面有平面(部分)和曲面(部分) 之分,工程人员为了检查一个物体的表面是不是平的,通常把直尺

放在物体表面的各个方向上,看看直尺的边缘与物体表面有没有缝隙,如果都不出现缝隙,就判断这个物体表面是平的.由此可见,平面是处处平直的面,而曲面就不是处处平直的.

在立体几何中,平面是无限延展的,通常画一个平行四边形表示一个平面(图 1-4),并把它想象成无限延展的.

平面一般用希腊字母 α 、 β 、 γ ····来命名,还可以用表示它的平行四边形的对角顶点的字母来命名,例如图 1-4 中的平面 α 、平面 β 、平面 ABCD 或平面 AC 等。

我们还可以从运动的观点,来理解空间基本图形之间的关系.流星划过夜空,给我们一种"点动成线"的视觉感受.在几何中,可以把线看成点运动的轨迹,如果点运动的方向始终不变,那么它的轨迹就是一条直线或线段;如果点运动的方向时刻在变化,则运动的轨迹是一条曲线或曲线的一段.同样,一条线运动的轨迹可以是一个面,面运动的轨迹(经过的空间部分)可以形成一个几何体(图1-5).

图 1-5

直线平行移动,可以形成平面或曲面.直线绕定点转动,可以 形成锥面(图 1-6).

图 1-6

如图 1-7 中的长方体(水平放置),通常记作 ABCD—A'B'C'D',这个长方体,可看成矩形 ABCD 上各点沿铅垂线向上移动相同距离到矩形A'B'C'D'所形成的几何体.如果长方形 ABCD 作为它的一个底面,则棱 AA'、BB'、CC'、DD'互相平行且等长,我们知道它们或它们的长度都是这个底面上的高.这个高的长度是两平行底面间的距离,也是顶点 A'、B'、C'、D'到底面 ABCD 的距离.

- 1. 想想看,如何检验一个面是平面.
- 2. 举出点运动的轨迹是线、线运动的轨迹是面、面运动的轨迹是体的实例.

1.1.2 棱柱、棱锥和棱台的结构特征

1. 多面体

观察图 1-8 中的几何体,这些几何体都是多面体.

(2)

(3)

(4)

图 1-8

我们来研究所有多面体构成的集合. 现在要问: 多面体的哪些性质可以作为它的特征性质(只有多面体具有, 而多面体集合外的几何体都不具有的性质)? 建议同学们通过自己思考或共同过论,来回答上面的问题。

多面体的每个面都是多边形(围成多面体的多边形都包含它内部的平面部分),而圆柱、圆锥、球等其他几何体就不具有这种性质

由此得出多面体的结构特征:

多面体是由若干个平面多边形所围成的几何体

如图 1-9,围成多面体的各个多边形叫做多面体的面,如平面 ABCD、平面 BCC'B';相邻的两个面的公共边叫做多面体的棱,如棱 AB、棱 AA'; 棱和棱的公共点叫做多面体的顶点,如顶点 A、 连结不在同一个面上的两个顶点的线段叫做多面体的对角线,如对角线 BD'.

把一个多面体的任意一个面延展为平面,如果其余的各面都在 这个平面的同一侧,则这样的多面体就叫做凸多面体.如图 1-8 中的(1)、(2)、(3)都是凸多面体,而(4)不是.

本书中说到多面体,如果没有特别说明,指的都是凸多面体.

多面体至少有 4 个面. 多面体按照围成它的面的个数分别叫做 四面体. 五面体. 六面体......

一个几何体和一个平面相交所得到的平面图形(包含它的内部),叫做这个几何体的截面,在图 1-9 中画出了多面体的一个截面 EAC.

在小学和初中,同学们已经学习过一些特殊的多面体,如棱 柱、棱锥和棱台,对这些几何体,大家都能直观地区分它们,这是 因为它们各自具有自己的结构特征.这一节,我们要通过实验、观 察进一步研究它们的结构特征.

图 1-9

2. 棱柱

当你观察图 1-10 中的一些多面体时,根据小学和初中学过的 几何知识,你可能会判定这些多面体是一些棱柱。为什么你会判定 它们是棱柱呢?

可结合课件

2106 学习棱柱的结

构特征

图 1-10

请你通过自己思考或与同学讨论,回答下面的问题:

棱柱有哪些性质? 其中哪些性质可以作为棱柱集合的特征性质?

如果我们以运动的观点来观察,楼柱可以看成一个多边形(包括图形围成的平面部分)上各点都沿着同一个方向移动相同的距离 所经过的空间部分.如果多边形水平放置,则移动后得到的多边形 也水平放置。

观察这个移动过程,我们可以得到棱柱的主要结构特征:

棱柱有两个面互相平行(这两个面可水平放置),而其余每相邻两个面的交线都互相平行(图 1-10).

显然棱柱集合是多面体集合的一个子集.

棱柱的两个互相平行的面叫做棱柱的底面,其余各面叫做棱柱 的侧面,两侧面的公共边叫做棱柱的侧棱,

如果棱柱的一个底面水平放置,则铅垂线与两底面的交点之间 的线段或距离,叫做棱柱的高。

楼柱按底面是三角形、四边形、五边形……分别叫做三棱柱、四棱柱、五棱柱……

棱柱用表示两底面的对应顶点的字母或者用一条对角线端点的 两个字母来表示。例如。图 1-10(3)中的五棱柱可表示为"棱柱 ABCDE-A'B'C'D'E'"或棱柱 AC'。

楼柱又分为斜棱柱和直棱柱.

侧棱与底面不垂直的棱柱叫做斜棱柱(图 1-10(1)).

侧棱与底面垂直的棱柱叫做直棱柱(图 1-10(2))。

底面是正多边形的直棱柱叫做正棱柱(图 1-10(3)).

下面研究一些特殊的四棱柱.

底面是平行四边形的棱柱叫做平行六面体(图 1-11(1)). 侧棱 与底面垂直的平行六面体叫做直平行六面体(图 1-11(2)). 底面是 矩形的直平行六面体是长方体(图 1-11(3)、(4)). 棱长都相等的 长方体是正方体(图 1-11(4)).

图 1-11

可结合课作 2107 学习。

在另一张纸上,按照图中给出的形状放大,并剪纸,分别制作直四棱柱、斜三棱柱、正六棱柱。

(第1題)

- 2. 任意一个棱柱去掉两个底面,沿任一条侧棱剪开,然后放在平面上展平,它是什么样的平面图形?
- 3. 长方体是不是四棱柱? 直四棱柱是不是长方体?
- 4. 设计一个平面图形, 并把它折成一个正方体.

- 在另一张纸上,按照图中给出的形状放大,并剪纸、按虚线折痕折起并粘合,说出得到的几何体的名称。
- 有一个側面是矩形的棱柱是不是直棱柱?有两个相邻的侧面是 矩形的棱柱呢?

- (第1題)
- 用平行于棱柱的侧棱的一个平面去截棱柱,所得的截面是什么样的图形?
- 4. 用任意一个平面去截一正方体,得到的截面会是什么样的平面图形?
- 正方体的集合记为 A, 长方体的集合记为 B, 直棱柱的集合记为 C, 棱柱的集合 记为 D, 写出这四个集合之间的关系。

可结合课件 2108-2109 学习 棱锥的结构特征。 3. 棱锥和棱台

棱锥

观察图 1-12 中的几何体, 你可能会判定这些多面体是一些棱

锥, 为什么你会判定它们是棱锥呢?

图 1-12

请你通过自己思考或与同学讨论,回答下面的问题; 棱锥有哪些性质?哪些性质可以作为棱锥集合的特征性质? 通过观察,我们可以得到棱锥的主要结构特征;

棱锥有一个面是多边形,而其余各面都是有一个公共顶点的三 角形.

图 1-13

棱锥中有公共顶点的各三角形,叫做棱锥的侧面;各侧面的公 共顶点叫做棱锥的顶点;相邻两侧面的公共边叫做棱锥的侧棱;多 边形叫做棱锥的底面;如果棱锥的底面水平放置,则顶点与过顶点 的铅垂线和底面的交点之间的线段或距离,叫做棱锥的高。

棱锥用表示顶点和底面各顶点的字母或者用表示顶点和底面的 一条对角线端点的字母来表示。例如,图 1-13 中棱锥可表示为棱 锥 S-ABCDE 或者棱锥 S-AC.

棱锥按底面是三角形、四边形、五边形……分别叫做三棱锥、 四棱锥、五棱锥……

如果棱锥的底面是正多边形,并且水平放置,它的顶点又在过 正多边形中心的铅垂线上,则这个棱锥叫做正棱锥(图 1-13).

容易验证正棱锥各侧面都是全等的等腰三角形,这些等腰三角形底边上的高都相等,叫做棱锥的斜高(图 1-13).

図 设计一个平面图形,使它能够折成一个侧面与底面都 县等边三角形的正三棱锥。

解:因为正三棱锥的侧面与底边都是等边三角形,所以它的棱 长都相等(图 1-14).

例 2 已知正四棱锥 V-ABCD(图 1-15), 底面面积为 16,

一条侧棱长为2√11, 计算它的高和斜高。

解: 设VO为正四棱锥V-ABCD的高,作 OM_BC 于点M,则M为BC中点.

连结 OM, OB, 则 VO | OM, VO | OB.

因为 底面正方形 ABCD 面积为 16.

所以 BC=4, BM=CM=2,

$$OB = \sqrt{BM^2 + OM^2} = \sqrt{2^2 + 2^2} = 2\sqrt{2}$$
.

又因为 $VB=2\sqrt{11}$, 在 Rt $\wedge VOB$ 中, 由勾股定理可得

$$VO = \sqrt{VB^2 - OB^2} = \sqrt{(2\sqrt{11})^2 - (2\sqrt{2})^2} = 6$$

在 Rt △VOM(或 Rt △VBM) 中,由勾股定理可得

$$VM = \sqrt{6^2 + 2^2} = 2\sqrt{10}$$
 (a) $VM = \sqrt{(2\sqrt{11})^2 - 2^2} = 2\sqrt{10}$).

即正四棱锥的高为6,斜高为2√10.

棱台

如图 1-16 所示(可结合课件 2107—2108),底面水平放置的梭锥被平行于底面的平面所裁,截面和底面间的部分叫做棱台. 原棱锥的底面和截面分别叫做棱台的下底面、上底面;其它各面叫做棱台的侧面;相邻两侧面的公共边叫做棱台的侧棱;当棱台的底面水平放置时,铅垂线与两底面交点间的线段或距离叫做棱台的高.

由正棱锥截得的棱台叫做正棱台.

正棱台各侧面都是全等的等腰梯形,这些等腰梯形的高叫做棱台的斜高。

棱台可用表示上下底面的字母来命名. 如图 1-17 中的棱台,记作棱台 ABCD-A'B'C'D',或记作棱台 AC'. 下底面为 ABCD、上底面 A'B'C'D'、棱台的高为 OO'.

果 ? 思考与讨论

如何判断一个多面体是棱台?

- 图中所给的平面图形按适当的比例放大,分别制作三 棱锥、四棱锥。
- 2. 底面是正多边形的棱锥是正棱锥吗?
- 3. 延长一个棱台的各条侧棱,它们是否相交于一点?

(第1題)

1. 按图中所给的平面图形,制作正六面体、正八面体和正四棱台.

(第1题)

- 注:各个面是全等的正多边形的多面体叫做正多面体,如正四面体、正六面体、 正八面体、正十二面体、正二十面体(参看课件2102—2104).
- 2. 已知正四棱锥 S—ABCD, O是正方形 ABCD 的中心,以点 S、O以及 A、B、C、D 中任愈一点为顶点的三角形是否是直角三角形?
- 3. 设正三棱台的上、下底面的边长分别为 2 cm 和 5 cm, 侧棱长为 5 cm, 求这个 棱台的高。

1.1.3

圆柱、圆锥、圆台和球

可结合课件 2110, 观察圆柱、 圆锥、圆台和球的 结构特征。

1. 圆柱、圆锥、圆台

观察图 1-18 中的几何体,你可能会判定这些多面体分别是圆柱、圆锥、圆台,为什么你会判定它们分别是圆柱、圆锥、圆台呢?

图 1-18

请你通过自己思考或与同学讨论,回答下面的问题:

圆柱、圆锥、圆台分别具有哪些性质?哪些性质可以分别作为圆柱、圆锥和圆台的结构特征(特征性质)?

通过观察可以看出,圆柱、圆锥和圆台可以分别看做以矩形的一边、直角三角形的一直角边、直角梯形中垂直于底边的腰所在的直线为旋转轴,将矩形、直角三角形、直角梯形分别旋转一周而形成的曲面所围成的几何体(图 1-19).

图 1-19

旋转轴叫做所围成的几何体的轴;在轴上的这条边(或它的长度)叫做这个几何体的高;垂直于轴的边旋转而成的圆面叫做这个几何体的底面;不垂直于轴的边旋转而成的曲面叫做这个几何体的侧面,无论旋转到什么位置,这条边都叫做侧面的母线.如图 1-19 中,直线 O'O、SO 是轴,线段 O'O、SO 是高,A'A、SA 是母线

探索与研究

对圆柱、圆锥、圆台:

- (1) 平行于底面的截面是什么样的图形?
- (2) 过轴的截面(简称轴截面)分别是什么样的图形?
- (3) 结合课件 2109 中的"转化", 研究圆柱、圆台和圆锥之间的关系.

例 用一个平行于圆锥底面的平面截这个圆锥,截得圆台上下底面半径的比是1:4,截去的圆锥的母线长是3 cm,求圆台的母线长

图 1-20

解:设圆台的母线长为 y, 截得的圆锥底面与原圆锥底面半径分别是 x, 4x(图 1-20), 根据相似三角形的性质得

$$\frac{3}{3+y} = \frac{x}{4x}$$

解此方程得

y=9.

所以 圆台的母线长为 9 cm.

- 1. 举出你在日常生活中见到的,具有圆柱、圆锥或圆台形状的物体,
- 任意一个圆柱去掉两个底面,沿任意一条母线割开,然后放在平面上展平,它 是什么样的平面图形?
- 任意一个圆锥和圆台去掉底面,沿任意一条母线割开,然后放在平面上展平,它们各是什么样的平面图形?
- 4. 一个圆柱的母线长为5, 底面半径为2, 求圆柱的轴截面的面积.
- 5. 一个圆锥的母线长 20 cm, 母线与轴的夹角为 30°, 求圆锥的高.

- 1. 剪纸制作底面半径为 3 cm, 高为 6 cm 的圆柱和圆锥.
- 2. 剪纸制作两底面半径分别为 3 cm、6 cm, 高为 4 cm 的圆台.
- 3. 一个圆台的母线长为5,上、下底面直径分别为2、8,求圆台的高.
- 4. 一个圆台的母线长 20 cm, 母线与轴的夹角为 30°, 上底面的半径为 15 cm, 求 圆台的高和下底面的面积。

可结合课件 2111学习球的结构 特征。

图 1-21

图 1-22

2. 球

球是大家非常熟悉的几何体,请你通过自己思考或与同学讨论 同签下面的问题。

球的结构特征是什么?

让我们做一个试验,

一个半圆绕着它的直径所在的直线旋转一周,研究半圆运动的 轨迹是怎样的空间图形.

通过观察可以发现,球面可以看做一个半圆周绕着它的直径所 在的直线旋转一周所形成的曲面,球面围成的几何体,叫做球(图 1-21)

形成球的半圆的圆心叫球心;连结球面上一点和球心的线段叫球的半径;连结球面上两点且通过球心的线段叫球的直径,如图 1-21 中点 O 为球心,OA 为球半径,AB 为球O 的直径.

一个球用表示它的球心的字母来表示,例如球 O.

球面也可以看做空间中到一个定点的距离等于定长的点的集合.

用一个平面 α 去截半径为R 的球O(图 1-22),不妨设平面 α 水 平放置且不过球心,OO' 为平面 α 的铅垂线,并与平面 α 交于点 O',OO'=d,则对于平面 α 与球面交线上的任意一点 P,都有 $O'P=r=\sqrt{R'-d''}$ 是一个定值。这说明截面与球面的交线是在平面 α 内到定点 O' 的距离等于定长 r 的点的集合。所以一个平面截一个 球面所得到的交线是以 O' 为圆心,以

$$r=\sqrt{R^2-d^2}$$
 (R 是球的半径)

为半径的一个圆, 也就是说, 截面是一个圆面(圆及其内部).

如果平面 α 过球心,则OO'=0,r=R. 截面是半径等于球半径的一个圆面.

球面被经过球心的平面截得的圆叫做球的大圆;被不经过球心 的平面截得的圆叫做球的小圆。

当我们把地球看做一个球时,经线就是球面上从北极到南极的半个大圆;赤道是一个大圆,其余的纬线都是小圆(图 1-23).

在球面上,两点之间的最短距离,就是经过两点的大圆在这两点间的一段劣弧的长度.我们把这个弧长叫做两点的球面距离.例如,图1-24 中劣弧PQ的长度就是 P、Q 两点的球面距离.飞机、轮船都尽可能地以大圆弧(劣弧)为航线航行.

对球面几何有兴趣的同学可进一步学习系列 3 中的"球面

图 1-23

上的几何"。

图 1-24

圆柱、圆锥、圆台、球等几何体,都是由一个平面图形 绕着一条直线旋转产生的曲面所围成的几何体,这类几何体 叫做旋转体,这条直线叫做旋转体的轴,操作本章所附课件 2111,可以自己动手生成一些旋转体,

在平面几何中,你学习了直线与圆的位置关系, 那么平面与球的位置关系如何?

图 1-25

例2 我国首都北京靠近北纬 40°, 求北纬 40°纬线的长度 (单位 km, 地球半径约为 6 370 km).

解,如图 1-25,设 A 是北纬 40°圈上的一点,AK 是它的半径,所以 OK_AK . 设 ϵ 是北纬 40°的纬线长,因为 $_AOB=_OAK=40°$,所以

$$c = 2\pi \cdot AK$$

 $=2\pi \cdot OA\cos \angle OAK$

 $=2\pi \cdot OA\cos 40^{\circ}$

pprox 2 imes 3.141 6 imes 6 370 imes 0.766 0

 $\approx 3.066 \times 10^{4} (km)$.

即北纬 40°的纬线长约为 3.066×101 km.

可结合课件 2112设计生成组 合体.

3. 组合体

我们观察周围的物体。除了柱、锥、台、球等基本几何体外,还有大量的几何体是由柱、锥、台、球等基本几何体组合而成的. 这些几何体叫做组合体. 如图 1-26 中所展示的机械图可以看成是由一些基本几何体构成的组合体. 对组合体可以通过把它们分解为一些基本几何体来研究.

探索与研究

利用本章所附课件 2112 "旋转体生成",自己动手生成 一些旋转体。

对课件的总的使用步骤是:先用设定母线的按钮选定 母线,然后确定母线;再用一些旋转的按钮去观察旋转面 或旋转体.

左图是轴和选定的一种母线,右图是用这条母线旋转 生成的旋转体,

旋转体生成

- 海面上,地球球心角1'所对的大圆弧长为1 n mile(海里), 1 n mile 是多少 km (地球的半径为6370 km)?
- 2. 用一个平面截半径为 25 cm 的球, 截面面积是 49π cm², 求球心到截面的距离.
- 3. 在图 1-26 中有哪些基本的几何体?

我国大连与台北可以近似地认为具有相同的经度,从地图上分别查出大连与台北所在的纬度,再求出这两个城市的球面距离大约为多少km.

- 2. 讨论直线与球的位置关系.
- 3. 一条直线被一个半径为5的球截得的线段长为8, 求珠心到直线的距离.
- 4. 能否不通过拉伸把球面切割为平面图形?

1.1.4 投影与直观图

1. 平行投影与直观图

可结合课件 2113学习平行投影 的性质. 观察图 1-27,太阳光线(可看成平行的)把一个矩形的窗框投射到地板上,变成了平行四边形,框边的长度以及框边之间的夹角有所改变,但框边的平行性没有改变.另外我们还看到,平行直线段或同一条直线上的两条线段的比也没有改变.例如,一条线段中点的投影仍是这条线段投影的中点.正是根据观察到的这些不变性质,使我们能够从一个空间图形在平面上的投影来获得原来图形的形象.

图 1-27

在立体几何中,一般都是根据平行投影的性质,用平面图形来 表示空间图形,下面我们来研究平行投影的概念及其性质.

已知图形 F, 直线 l 与平面 α 相交(图 1 - 28). 过 F 上任意一点 M 作直线 MM' 平行于 l, 交平面 α 于点 M', 则点 M' 叫做点 M 在平面 α 内关于直线 l 的平行投影(或象). 如果图形 F 上的所有点 在平面 α 内关于直线 l 的平行投影构成图形 F', 则 F' 叫做图形 F 在 α 内关于直线 l 的平行投影. 平面 α 叫做投射面, l 叫做投射线.

观察图 1-27 中窗户的影子或打开本章课件 2112 观看平行投影

图 1-28

的演示,容易观察到,当图形中的直线或线段不平行于投射线时,平行投影都具有下冰性质,

- 1. 直线或线段的平行投影仍是直线或线段:
- 2. 平行直线的平行投影是平行或重合的直线:
- 3. 平行于投射面的线段、它的投影与这条线段平行且等长、如图 1-29 中A'B' #AB, C'D' #CD:
 - 4. 与投射面平行的平面图形,它的投影与这个图形全等;
- 5. 在同一直线或平行直线上, 两条线段平行投影的比等于这 两条线段的比(图 1-30).

事实上,如果线段 AB 在平面 α 内关于直线 l 的平行投影是 A'B' (图 1-30),点 M 在 AB 上,且 AM:MB=m:n,则点 M 的 平行投影 M' 在 A'B' 上,由 平行线 分线 段 成 比 例 定 理 得 A'M':M'B'=m:n.

当投射线和投射面成适当的角度或改变图形相对于投射面的位置时,一个空间图形在投射面上的平行投影(平面图形)可以形象地表示这个空间图形。

用来表示空间图形的平面图形,叫做空间图形的直观图.

依据平行投影的性质画直观图的方法,国家规定了统一的标准. 一种较为简单的画图标准是斜二测画法. 这种画法的投射线与 人的视线的方向不同,下面举例说明斜二测画法.

斜二测画法的规则是(以一个正方体的模型作为实例):

(1) 在已知图形所在的空间中取水平平面(图 1-31(1)), 作互相垂直的轴 Ox, Oy, 再作 Ox 轴, 使 $/xOz=90^\circ$, 且 $/yOz=90^\circ$.

图 1-31

- (2) 画直观图时(图 1-31(2)), 把 Ox、Oy、Oz 画成对应的轴 O'x'、O'y'、O'z', 使∠x'O'y'=45°(或 135°), ∠x'O'z'=90°. x' O'y'所确定的平面表示水平平面.
 - (3) 已知图形中,平行于 x 轴、y 轴或 z 轴的线段,在直观图

图 1-29

PH 1-30

中分别画成平行于x'轴、y'轴或z'轴的线段. 并使它们和所画坐标轴的位置关系,与已知图形中相应线段和原坐标轴的位置关系相同.

- (4) 已知图形中平行于 x 轴和 z 轴的线段,在直观图中保持长度不变,平行于 y 轴的线段,长度为原来的一半.
- (5) 画图完成后,擦去作为辅助线的坐标轴,就得到了空间图 形的直观图(图 1-31(3))。

下面举例说明,

例 画水平放置的正六边形的直观图.

图 1-32

画法: (图 1-32) (1) 在已知六边形 ABCDEF 中,取对角线 AD 所在直线为x 轴,取对称轴GH 为 y 轴,x 轴和 y 轴相交于点 O: 任取点 O',画对应的 x' 轴、y'轴,使 $\angle x'O'y'=45°$.

- (3) 順次连结 A'、B'、C'、D'、E'、F'、A'并擦去辅助线, 所得到的六边形 A'B'C'D'E'F'就是水平放置的正六边形 ABCDEF 的直观图。

在画出水平放置正六边形的直观图后,依照斜二测画法的画图 规则不难画出六棱柱和六棱锥的直观图,如图 1-33 所示。

图 1-33

4注》

正等测画法的 依据仍是平行投影 的性质,不过,这 时投射线和人的视 线平行,并且投射 线与投射而垂直, 在立体几何中,通常用正等测画法画圆的直观图,圆的直观图 是椭圆。由于画圆的直观图比较复杂,在实际画圆的直观图时, 通常使用不同尺寸的椭圆模版(图 1-34).

图 1-34

图 1-35

会画圆的直观图,就能画出圆柱、圆锥的直观图,如图 1-35 所示。

通过以上的例子,我们介绍了空间图形直观图的画法。为了简便,在不作严格要求时,画图时长度和角度可适当的选取,只要符合平行投影的要求,有一定的立体感就可以了。例如,三角形的投影一般还是三角形,长方形的投影一般为平行四边形。(图1-36)。

图 1-36

2. 中心投影

如图 1-37 所示, 一个点光源把一个图形照射到一个平面上, 这个图形的影子就是它在这个平面上的中心投影.

下页中的两幅照片都是物体在平面上的中心投影.

从图中可以看到,空间图形经过中心投影后,直线变成直线, 但平行线可能变成了相交的直线,如照片中由近到远,物体之间的 距离越来越近,最后相交于一点。中心投影后的图形与原图形相比 虽然改变较多,但直观性强,看起来与人的视觉效果一致,最像原 来的物体,所以在绘画时,经常使用这种方法,但在立体几何中很 少用中心投影原理来画图,

? 思考与讨论

如果一个平面图形所在的平面与投射面平行, 试问,中心投影后得到的图形与原图形有什么关系?

1. 判断题:

- (1) 矩形的平行投影一定是矩形;
- (2) 梯形的平行投影一定是梯形;
- (3) 两条相交直线的投影可能平行;
- (4)如果一个三角形的平行投影仍是三角形,那么它的中位线的平行投影,一定是这个三角形的平行投影的中位线。
- 平行投影,一定走这个二用形的平行投影的中位致。
 2. 已知△ABC在一投射面内的平行投影是△A'B'C',如何画 B
 出△ABC的重心 M 在投射面内的平行投影 M'.
- 3. 用斜二测画法画出下列水平放置的正方形和等边三角形的直观图.

(第3題)

4. 用斜二测画法画出长、宽、高分别为 5 cm, 4 cm, 3 cm 的长方体的直观图.

(第2题)

- 1. 判断题:
 - (1) 平行四边形的平行投影可能是正方形;
 - (2) 正方形的平行投影一定是菱形,
- 2. 用斜二测画法画出下列图中水平放置的正五边形和四边形的盲观图。

(第2顯)

- 3. 用斜二测画法画底面边长为 1.5 cm, 高为 3 cm 的正三棱锥的 首观图。
- 4. 用斜二测画法画底面半径为1 cm, 高为3 cm 的圆柱和圆锥的盲观图。

三视图

在物体的平行投影中,如果投射线与投射面垂直(图 1-38),

则称这样的平行投影为正投影, 容易知道, 正投影除具有平行投影的性质外, 还有如下性质,

- (1) 垂直于投射面的直线或线段的正投影是点。
- (2) 垂直于投射面的平面图形的正投影是直线或直线的一 部分.

为了使空间图形的直观图更准确地反映空间图形的大小和形 状,往往需要把图形向几个不同的平面分别作正投影,然后把这些 投影图放在同一个平面内,并有机地结合起来表示物体的形状和 大小.

诵常, 总是选取三个两两互相垂直的平面作为投射面, 如图 1-39 所示。

- 一个投射面水平放置,叫做水平投射面,投射到这个平面内的 图形叫做俯视图,
 - 一个投射面放置在正前方,这个投影面叫做直立投射面;投射

图 1-38

[9] 1-39

到这个平面内的图形叫做主视图.

和直立、水平两个投射面都垂直的投射面叫做侧立投射面,通 常把这个平面放在直立投影面的右面,投射到这个平面内的图形叫 做左视图。

将空间图形向这三个平面作正投影,然后把这三个投影按一定 的布局放在一个平面内,这样构成的图形叫做空间图形的三视图 (图 1-39 右图).

图 1-40

例如,一个长方体 ABCD-A'B'C'D',它的侧面分别平行于三个投射面(图 1-40),把它向三个投射面投影:

它的主视图是一个矩形,它表示长方体的高度和长度; 它的俯视图也是一个矩形,它表示长方体的长度和宽度;

它的左视图,同样是一个矩形,它表示长方体的宽度和高度.

把这三个投影图放在一个平面内,并按一定的布局排列,如图 1-40 所示,这个图就是长方体的三视图,

从以上对三视图的描述可知,三视图的主视图、俯视图、左视图分别是从物体的正前方、正上方、正左方看到的物体轮廓线的正

投影围成的平面图形,

任意一个物体的长、宽、高,一般指的是物体占有空间的左右、前后、上下的最大距离。一个物体的三视图的排列规则是,俯视图放在主视图的下面,长度与主视图一样,左视图放在主视图的右面,高度与主视图一样,宽度与俯视图的宽度一样。为了便于记忆,通常说。

"长对正、高平齐、宽相等"或说"主左一样高、主俯一样长、俯左一样窗"。

对简单的几何体,如一块砖,向两个互相垂直的平面作正投 影,就能真实地反映它的大小和形状.一般只画出它的主视图和俯 视图(二视图).对于复杂的几何体,三视图可能还不足以反映它的 大小和形状,还需要更多的投射平面,这里就不做介绍了.

图 1-41(1)所示的是一个零件的直观图,画出这个几何体的三视图。

解: 这个几何体的三视图如图 1-41(2)所示,

在视图中,被挡住的轮廓线画成虚线,尺寸线用细实线标出; •表示直径, R表示半径;单位不注明时按 mm 计.

例 2 图 1-42(1)所示的是一个奖杯的三视图,画出它的直观图.

解: 从奖杯的三视图可以看出,奖杯的底座是一个正棱台,它的上底面是边长为60 mm 的正方形,下底面是边长为100 mm 的正方形,高为20 mm,底座的上面是一个底面对角线长为40 mm,高72 mm 的正四棱柱,它的底面的对角线分别与棱台底面的边平行,它的底面的中心在棱台上、下底面中心的连线上,奖杯的最上部,在

PS 1-42

正四棱柱上底面的中心放着一个直径为 28 mm 的球. 根据以上分析,画出奖杯的直观图,如图 1-42(2)所示.

- 1. 已知圆台的上、下底面半径分别为 1.5 cm、3 cm, 高为 2 cm, 画出这个圆台的 二视图。
- 2. 根据图中一个几何体的三视图,制作一个实物模型,

探索与研究

问题; 旋转体放置在怎样的位置时,它的三视图比较简单?这时它的三视图有什么特征? 过程; 观察本章所附课件 2109 "圆柱、圆锥和圆台",研究这三种简单旋转体的三视图 (注意课件中画出的轴截面并不是几何体的轮廓线,但应注意轴截面和所画视图的关系)并 回答以下问题;

- (1) 旋转体的三视图有哪些特征?
- (2) 检验一下球的三视图是否符合你发现的特征?

《实验作业》

打开课件 2112,或直观想象解答下面的问题.

如图 1-43, 直角梯形 ABCD 绕底边 AD 所在直线 EF 旋转, 在旋转前, 非直角的腰的端点 A 可以在 DE 上 选定.

应用课件观察或直观想象,当点 A 选在射线 DE 上的不同位置时形成的几何体,分别画出它的三视图并比较其异同点.

1.1.6

棱 柱、棱 锥、棱 台 和 球 的 表 面 积

1. 直棱柱和正棱锥的表面积

我们来探讨直棱柱和正棱锥侧面积和表面积的计算方法。

图 1-44 分别是直六棱柱和正四棱锥的展开图. 不难发现,直 棱柱的侧面展开图是矩形,而正棱锥的侧面展开图是一些全等的等 腰三角形. 对此,我们在剪纸折叠几何体时也有所体会. 由矩形和 三角形面积的计算公式,不难得到它们的侧面面积的计算公式.

PH 1-44

设棱柱高为h,底面多边形的周长为c,则得到直棱柱侧面面积计算公式:

即直棱柱的侧面积等于它的底面周长和高的乘积。

正棱锥的侧面展开图是一些全等的等腰三角形.底面是正多边形,如果设它的底面边长为a,底面周长为c,斜高为h',容易得到正n棱锥的侧面积的计算公式。

$$S_{iikim} = \frac{1}{2} nah' = \frac{1}{2} ch'$$

即正棱锥的侧面积等于它的底面的周长和斜高乘积的一半.

棱柱、棱锥的表面积或全面积等于侧面积与底面积的和.

2. 正棱台的表面积

图 1-45 是正四棱台的展开图. 棱台的展开图是由棱台的各个 侧面和上下底组成的.

正 n 棱台的侧面展开图是 n 个全等的等腰梯形. 设棱台下底面

边长为a。周长为c、上底面边长为a'。周长为a'、斜高为b'、可 以得出正 n 棱台的侧面积公式:

$$S_{\text{ithin}} = n \cdot \frac{1}{2} (a + a') h' = \frac{1}{2} (na + na') h' = \frac{1}{2} (c + c') h'.$$

$$S_{\text{Eleight}} = \frac{1}{2}n(a+a')h' = \frac{1}{2}(c+c')h'$$

这一结果也可以用求两个正棱锥侧面积之差的方法得出. 楼台的表面积或全面积等于侧面积与底面积的和,

想想看,能否从圆柱和圆锥的展开图,得到计算圆柱和圆锥侧 面积的公式.

3. 球的表面积

柱、锥的表面都可展开成平面,这样我们就可以根据平面图形 的性质, 求它们的表面积, 但球面不能展平成平面, 我们要用其他 方法求它的面积. (具体算法请看系列3中的微积分内容). 这里我 们给出由球的半径 R 计算球表面积的公式,

$$S_{ijk} = 4\pi R^2$$

即球面面积等于它的大圆面积的四倍.

已知正四棱锥底面正方形的边长为 4 cm, 高与斜高的 夹角为30°(图 1-46), 求正四棱锥的侧面积及全面积(单位: cm2, 精确到 0,01).

正棱锥的高、斜高、底面边心距组成直角△POE. 因为 OE=2 cm, ∠OPE=35°,

所以 斜高
$$PE = \frac{OE}{\sin 35^{\circ}} = \frac{2}{0.574} \approx 3.49 \text{ (cm)}.$$

柱、锥、台、球的 表面积计算公式。

图 1-46

图 1-47

因此 $S_{\text{NHM}} = \frac{1}{2} ch' = \frac{1}{2} \times 4 \times 3.49 \times 4 = 27.92 (\text{cm}^2)$, $S_{\text{NHM}} = 27.92 + 16 = 43.92 (\text{cm}^2)$.

例2 如图 1-47, 一个容器的盖子用一个正四棱台和一个球 焊接而成. 球的半径为 R. 正四棱台的上、下底面边长分别为 2.5R 和 3R, 斜高为 0.6R.

- (1) 求这个容器盖子的表面积(用 R 表示,焊接处对面积的影响忽略不计);
- (2) 若 R=2 cm, 为盖子涂色时所用的涂料每 0.4 kg 可以涂 1 m², 计算为 100 个这样的盖子涂色约需涂料多少 kg (精确到 0.1 kg).

解: (1)
$$S_{\text{EPNR}fi} = 4 \times \frac{1}{2} \times (2.5R + 3R) \times 0.6R + (2.5R)^2 + (3R)^2$$

 $= \frac{1}{2} (4 \times 2.5 + 4 \times 3) \times 0.6R^2 + 6.25R^2 + 9R^2$
 $= 21.85R^2$.

 $S_{t\bar{t}} = 4\pi R^2$.

因此,这个盖子的全面积为 $S_{\phi} = (21.85 + 4\pi)R^2$.

(2) 取 R=2, $\pi=3.14$, 求得 $S_{\pm}=137.67$ cm²,

 $(137.67 \times 100) \div 10000 \times 0.4 \approx 0.6 (kg).$

因此, 100 个这样的盖子共需涂料约 0.6 kg

- 1. 已知正六棱柱的高为 h, 底面边长为 a, 求它的全面积.
- 2. 已知一个正三棱锥的侧面都是等边三角形,侧棱长为4,求它的侧面积和全面积.
- 3. 已知正四棱台上底面边长为 4 cm, 侧棱和下底面边长都是 8 cm, 求它的全面积.
- 4. 已知球的大圆周长为 16π cm, 求这个球的表面积.

已知一个正方体的8个顶点都在同一个球面上,计算球的表面积和这个正方体的全面积的比。

- 2. 设计一个正四棱锥形冷水塔塔顶,高 0.85 m,底的边长是 1.5 m, 制造这个塔顶需要多少 m2 铁板(保留两位有效数字)?
- 3. 如图, 正六棱锥被讨棱锥高 PO 的中占 O'平行底的平面所截, 得到正六棱台 OO 和较小的棱锥 PO'.
 - (1) 求大棱锥、小棱锥、棱台的侧面积之比;
- (2) 若大棱锥 PO 的侧棱为 12 cm, 小棱锥底面边长为 4 cm, 求截得棱台的侧面积和全面积.

村、锥、台和球的体积

我们在小学和初中已经知道求长方体体积 V 的公式:

 $V_{k + k t k} = abc = Sh$

其中a,b,c分别是长方体的长、宽和高、S,h分别是长方体的 底面积和高.

由长方体体积的算法,可以推出求其它几何体体积的算法,

我国古代对几何体的体积研究,取得了光辉的成就,并建立了 完整的理论体系, 这个理论的基础是:

祖暅原理: 幂势既同,则积不容异.

这就是说, 夹在两个平行平面间的两个几何体, 被平行于这两 个平面的任意平面所截,如果截得的两个截面的面积总相等,那么 这两个几何体的体积相等(图1-48)。

这个原理是非常浅显易懂的。例如,取一摞纸张堆放在桌面上, 将它们如图 1-49 中的右图那样改变一下形状, 这时高度没有改变, 每页纸的面积也没有改变,因而这摞纸的体积与变形前相等.

可打开课件

2118 学习祖晚原理,

祖瞻是我国古 代南北朝时期(公元 5世纪)的数学家, 他在总结前人研究 的基础上, 总结出 这个原理, 在欧洲直 到17世纪,才有意 大利的卡瓦列里提 出这个事实.

图 1-48

图 1-49

应用祖暅原理可以说明:

等底面积、等高的两个柱体或锥体的体积相等,

图 1-50

1. 棱柱和圆柱的体积

如图 1-50 所示,设有一个楼柱、一个圆柱和一个长方体,它 们的底面积都等于 S. 高都等于 b. 它们的下底面都在同一平面 上, 因为它们的上底面和下底面平行, 并且高都相等, 所以它们 的上底面都在和下底面平行的同一个平面内(图 1-50)。

用与底面平行的任意平面去截它们时, 所得的截面面积都等 干 S, 根据祖暅原理, 它们的体积相等, 由于长方体的体积等于它 的底面积和高的乘积,于是我们得到柱体体积的计算方法:

柱体(棱柱、圆柱)的体积等于它的底面积 S 和高 h 的积. 即

$$V_{\mu\mu} = Sh$$

底面半径是 r, 高是 h 的圆柱体的体积的计算公式是

$$V_{\text{HH}} = \pi r^2 h$$

2 棱锥和圆锥的体积

在小学我们就通过比较容积的方法,验证了圆锥的体积是等底 面积、等高的圆柱体积的三分之一。事实上用同样大小的三个三棱 锥能补成一个三棱柱, 再根据祖暅原理可以说明三棱锥的体积是等 底面积、等高的三棱柱体积的三分之一(图 1-51)。

图 1-51

在此基础上,可以推出锥体体积的计算公式, 如果一个锥体(棱锥、圆锥)的底面积是 S, 高是 h, 那么它的 体积是

$$V_{\#\#} = \frac{1}{3}Sh$$

如果圆锥的底面半径是 r, 高是 h, 则它的体积是

研究

对三棱锥体积 公式的推导成兴趣 的同学可打开本章 所附课件 2119 进行

$$V_{\text{MM}} = \frac{1}{3}\pi r^2 h$$

图 1-52

3. 棱台和圆台的体积

我们知道, 棱台和圆台分别是棱锥、圆锥用平行于底面的平面截去一个锥体得到的。因此, 台体的体积可以用两个锥体体积的差来计算(图 1-52)。计算过程从略, 下面给出台体体积的计算公式:

$$V_{\text{fift}} = \frac{1}{2}h(S + \sqrt{SS'} + S')$$

其中 S'、S 分别是台体上、下底面的面积, h 是台体的高.

如果圆台的上、下底面的半径分别是r'、r, 高是h, 则它的体积是

$$V_{\text{Mfg}} = \frac{1}{3}\pi h(r^2 + rr' + r'^2)$$

4. 球的体积

应用圆柱和圆锥的体积公式,根据祖暅原理可以得到球的体积 公式:

$$S_{\mathfrak{M}} = \frac{4}{3}\pi R^3$$

其中 R 为球的半径.

关于球体积的推导过程,请看系列 2 (选修 2-2) 中的"导数及其应用"一意.

图 1-53

▼ 如图 1-53 所示,在长方体 ABCD-A'B'C'D'中,用 截面截下一个棱锥C-A'DD',求棱锥 C-A'DD'的体积与剩余部分的体积之比。

解:已知长方体可以看成直四棱柱 ADD'A'-BCC'B',设它的底面 ADD'A'面积为S,高为h,则它的体积为

$$V = Sh$$
.

而棱锥 C-A'DD'的底面面积为 $\frac{1}{2}S$, 高是 h,

因此 棱锥 C-A'DD'的体积

$$V_{C-A'DD'} = \frac{1}{3} \times \frac{1}{2} Sh = \frac{1}{6} Sh.$$

余下的体积是

$$Sh - \frac{1}{6}Sh = \frac{5}{6}Sh$$
,

所以棱锥 C-A'DD'的体积与剩余部分的体积之比为 1:5.

⑨2 有一堆相同规格的六角螺帽毛坯(图 1-54), 共重 5.8 kg. 已知螺帽的底面六边形边长是 12 mm, 高是 10 mm, 内孔直径是 10 mm, 问约有毛坯多少个(铁的密度是 7.8 g/cm^3 , $\pi \approx 3.14$).

解:六角螺帽毛坯的体积是一个正六棱柱的体积和一个圆柱的体积的差。

$$\begin{split} V_{\text{E};\text{tight}} \!=\! & 6\!\times\!\frac{1}{2}\!\times\!12\!\times\!(12\!\times\!\sin\,60^\circ)\!\times\!10 \\ = & 3\times\!12^2\!\times\!\!\frac{\sqrt{3}}{2}\!\times\!10\!\approx\!3.74\!\times\!10^3\,(\text{mm}^3)\,, \end{split}$$

 $V_{\text{BBH}} = 3.14 \times (10 \div 2)^2 \times 10 \approx 0.785 \times 10^3 \text{ (mm}^3)$.

手坏的体积 $V = 3.74 \times 10^3 - 0.785 \times 10^3$

$$\approx 2.96 \times 10^3 (\text{mm}^3)$$

= 2.96(cm³).

 $5.8 \times 10^3 \div (7.8 \times 2.96) \approx 2.5 \times 10^2 (个)$.

答: 这堆毛坯约有 250 个.

- 已知长方体形的铜块长、宽、高分别是2、4、8,将它熔化后铸成一个正方体形的铜块(不计损耗),求铸成的铜块的棱长。
- 在正方体 ABCD-A'B'C'D'中,三棱锥 A'-BC'D 的体积是正方体体积的几分 之几?
- 3. 一个球的大圆的面积增为原来的 100 倍, 那么这个球的体积有什么变化?

- 一个正方体和一个圆柱等高,并且侧面积相等,求这个正方体和圆柱的体积 之比。
- 2. 已知正四棱锥的侧面都是等边三角形,它的斜高为√3,求这个正四棱锥的体积.
- 3. 有一个正四棱台形状的油槽,可以装油 190 L,假如它的两底面边长分别等于60 cm和40 cm. 求它的深度为多少 cm.

习题1-1 A

- 1. 棱柱具有哪些性质就为直棱柱? 直棱柱具有哪些性质就为正棱柱?
- 如果平行于一个正棱锥底面的截面面积是底面的1/2,那么截面截一条侧棱所得两条 线段的比是多少?
- 3. 一长方体的长、宽、高分别为12、4、3, 你能用勾股定理求出它的对角线长吗?
- 4. 回答下列问题:
 - (1) 同一直线上的若干点,在同一投射面上的平行投影有什么性质?
 - (2) 平行于投射面的线段的平行投影和中心投影,它的长度与原线段的长度分别有 什么关系?
 - (3) 与投射面垂直的面上的若干图形的正投影有什么性质?
- 5. 画出底面边长为 1.5 cm、高为 5 cm 的正五棱锥的直观图和三视图。
- 6. 画出底面半径长为 1.8 cm、高为 5 cm 的圆锥的直观图和三视图.
- 已知一个长方体的长、宽、高的比为4:2:1,它的体积为1000 cm³,求这个长方体的长、宽、高。
- 8. 正方体的每条棱都增加1 cm, 它的体积扩大为原来的 8 倍, 求它的棱长.
- 已知直三棱柱底面的一边长为2 cm, 另两边长都为3 cm, 侧棱长为4 cm, 求它的体积.
- 10. 已知正六棱柱底面边长为 10 cm, 高为 15 cm, 求这个正六棱柱的体积.
- 11. 火星的直径约是地球的一半,地球的体积是火星体积的几倍?地球的半径约是6370 km,地球和火星的体积约各是多少?

习题1-1 B

- 1. 如果知道两条直线的二视图,如何判断这两条直线是不是相交?
- 一个正三棱柱的三视图如图所示,求这个正三棱柱的表面积.
- 3. 如果圆柱的底面不变,要使它的体积扩大5倍,那么需要把它的高扩大多少倍?如果圆柱高不变,半径扩大多少倍才能使它的体积扩大5倍?

- 4. 求正三棱柱的内切圆柱和外接圆柱的体积比。
 - (注:以正棱柱两个底面的内切圆面为底面的圆柱叫做它的内切圆柱,以正棱柱的两 个底面的外接圆面为底面的圆柱叫做它的外接圆柱。)
- 5. 已知正三棱锥的侧棱两两互相垂直,且都等于 a, 求棱锥的体积.
- 6. 等边三角形的边长为 a, 它绕其一边所在的直线旋转一周, 求所得旋转体的体积.
- 7. 已知圆锥的母线长为 5 cm, 高为 4 cm, 求这个圆锥的体积.
- 8. 木星的表面积约是地球的120倍, 体积约是地球的多少倍?

实习作业

- 在你周围的建筑物中,选一个由简单几何体组成的建筑物(可以忽略它的细节部分),设法测量它的各部分长度的近似值;
 - (1) 画出它的直观图,有可能时附上它的照片;
 - (2) 参照实物的比例画出它的三视图,并标上实际测量得到的度量值.
- 2. 画出一个生活中的实物或模型的三视图和直观图(尺寸不作严格要求).

2. MIII	王伯十四关初以快至的二亿国和直观图(人 14-14)	111 75 167.
	实 习 报 告	年 月 日

1. (1) 直观图(照片或图画)

(2) 三视图:

2. 实物或模型的名称: =视图,

点、直线(线段)和平面是我们最常见的基本图形. 用它们可以 构成各种各样的图形. 本节将深人探讨它们之间的位置关系, 同时 还将进行必要的说理论证, 进一步培养同学们的空间想象能力和逻 辑推理能力.

1.2.1 平面的基本性质与推论

1. 平面的基本性质

在几何学中,我们用点标记位置。在日常生活中,一位同学从 一个位置走到另一个位置,他经过的路径,就用一条线来表示。在 初中几何中,大家通过实验、观察得到了如下的点和直线的基本 性质;

连结两点的线中, 线段最短.

过两点有一条直线,并且只有一条直线,

几何中的点、直线都是抽象的概念,在现实世界中可以说是不存在的. 画出的点,我们不考虑它们的大小,画出的线也不考虑它们的粗细. 基于这种抽象的思考,我们才能总结出上述点与直线的性质. 大家学完初中几何后,已经初步体会到了这些抽象概念的意义和作用.

现在我们通过观察、想象来探讨几何中平面的概念.

在日常生活中,我们对平面的认识是直观的.大家都会判断什

么样的物体表面是"平的",什么样的面是凹凸不平的. 物体"平的"表面使我们认识了平面的形象,现在我们来研究平面的特征性质。

工程人员在检查一个物体表面是不是平的时,把直尺放在物体的表面的各个方向上,如果直尺的边缘与物体的表面都不出现缝隙,就可判断这个物体表面是平的.由此经验,我们可以感悟出平面具有如下基本性质;

公理 I 如果一条直线上的两点在一个平面内,那么这条直线上的所有点都在这个平面内(图 1-55).

汶时我们说, 直线在平面内或平面经过直线

这一性质是平面的主要特征, 弯曲的面就不是处处具有这种 性质.

利用这一性质,可以判断一条直线是否在一个平面内.

从公理1出发,再进一步探讨平面的其它基本性质.

在空间给定不共线的三点 A、B、C(图 1-56),作直线 AB、BC、CA,再在直线 BC、CA、AB 上分别取动点 P、Q、R,作直线 AP、BQ、CR,让 P、Q、R 分别在直线 BC 、CA 、AB 上运动,我们可以看到这些直线 "编织"成一个平面(参看课件 2120).

图 1-56

由以上试验可以得到另一个平面的基本性质:

公理 2 经过不在同一条直线上的三点,有且只有一个平面. 也可以简单地说成,不共线的三点确定一个平面.

例如,照相机需用三条腿的架子才能支撑在地面上,就是根据 这个性质(图 1-57),

过不共线三点 A、B、C 的平面,通常记作平面 ABC(图 1-58).

回顾第 1.1 节的内容,我们已经看到各种棱柱、棱锥的每两个 相交的面之间的交线都是直线段,由此我们总结出以下性盾。

公理 3 如果不重合的两个平面有一个公共点,那么它们有且只有一条过这个点的公共直线(图 1-59).

图 1-57

为了简便,以后说到两个平面,如不特别说明,都是指两个不 重合的平面.

如果两个平面有一条公共直线,则称这两个平面相交,这条公 共直线叫做两个平面的交线,如图 1-59,平面 α 与 β 相交,交线是 α :平面 δ 与 γ 相交,交线是 δ .

在画两个平面相交时,如果其中一个平面被另一个平面遮住, 应把表示平面的平行四边形被遮住的部分画成虚线或不画.

图 1-59

2. 平面基本性质的推论

由平面的基本性质,可以得到下面的推论:

图 1-60

推论 I 经过一条直线和直线外的一点,有且只有一个平面(图 1-60(1)).

事实上,如图 1-60(1)所示,直线 BC 外一点 A 和直线 BC 上的两点 B、C 不共线,根据基本性质 2、A、B、C 三点确定一个平面 ABC.并日,点 A 和直线 BC 都在平面 ABC 内.

推论2 经过两条相交直线,有且只有一个平面(图1-60(2))。 事实上,如图1-60(2)所示,两条相交直线 AB、AC 相交于点

A,三点 A、B、C 确定的一个平面就是直线 AB 和 AC 确定的平面.

推论 3 经过两条平行直线,有且只有一个平面(图 1-60(3)).

事实上,根据平行线的定义,这两条平行线在同一平面内,又如图 1-60(3)所示,这个平面含有一条直线上的点 A 和另一条线上的两点 B、C、由基本性质 2 可知,这个平面是确定的.

已知两条直线相交,过其中任意一条直线上的 一点作另一条直线的平行线,这些平行线是否都共 面? 为什么?

如果空间中的几个点或几条直线都在同一平面内,那么我们就 说它们共而。

我们可以把空间看做点的集合,这就是说,点是空间的基本元素,直线和平面都是空间的子集,直线是它所在平面的子集,于 是,我们可以用集合语言来描述点、直线和平面之间的关系以及图形的性质。例如,

点A在平面 α 内,记作 $A \in \alpha$;点A不在 α 内,记作 $A \notin \alpha$; 直线 l 在平面 α 内,记作 $l \subseteq \alpha$;直线 l 不在平面 α 内,记作 $l \not \subset \alpha$;

平面 α 与平面 β 相交于直线 α ,记作 $\alpha \cap \beta = \alpha$; 直线 l 和 m 相交于点 A,记作 $l \cap m = \langle A \rangle$,简记作 $l \cap m = A$. 基本性质 1 可以用集合语言描述为; 如果点 $A \in \mathbb{P}$ 面 α ,点 $B \in \mathbb{P}$ 而 α ,那么直线 $AB \subseteq \alpha$.

- 1. 判断下列命题的真假:
 - (1) 如果两个平面有两个公共点 A、B, 那么它们就有无数多个公共点, 并且 这些公共点都在直线 AB上;
 - (2) 过一条直线的平面有无数多个;
 - (3) 两个平面的公共点的集合,可能是一条线段;
- (4) 两个相交平面存在不在一条直线上三个公共点.
 - 2. 线段 AB 在平面α内,直线 AB 是否在平面α内? 为什么?
 - 3. 是否存在与一个平面没有公共点的直线?
 - 4. 一扇门,可以想象为平面的一部分,通常用两个合页把它们固定在门框的一边上,当门不镇上时,可以自由转动,如果门镇上,则门就固定在墙面上,这个事实说明平面具有哪条基本性质?

- 5. 怎样检查一张桌子的四条腿的下端是否在同一平面内?
- 6. 为什么说平行四边形和梯形都是平面图形?

- 已知平面 ABD 与平面 CBD 相交于直线 BD,直线 EF 与直线 GH 分别在已知的 两个平面内且相交于点 M, 诚问点 M是否在交线 BD 上?为什么?
- 2. 一个平面能把空间分成几部分?
- 3. 一个角一定是平面图形吗? 为什么?
- 4. 圆是平面图形吗?
- 5. 用集合符号表示下列语句:
 - (1) 点 A 在直线 / 上, 点 B 不在直线 / 上;
 - (2) 直线 / 在平面 a 内, 直线 m 与平面 a 有且只有一个公共点 M:
 - (3) 平面α与平面β相交于过点A的直线1.

1.2.2

空间中的平行关系

1. 平行直线

在初中几何中,我们把在同一平面内不相交的两条直线叫做平 行线,还学过平行公理:

过直线外一点有且只有一条直线和这条直线平行.

在初中几何中,我们还学过平行线的另一条重要性质:

在同一平面内,如果两条直线都和第三条直线平行,那么这两 条直线也互相平行.

这一性质同样可以推广到空间,作为空间中平行直线的基本 性质:

公理 4 平行于同一条直线的两条直线互相平行.

即,如果直线 a//b, c//b,那么 a//c(图 1-61).

上述基本性质通常又叫做空间平行线的传递性.

a/ b/ c/

图 1-61

图 1-62

定理 如果一个角的两边与另一个角的两边分别对应平行,并且方向相同。那么这两个角相等。

已知:如图 1-62 所示, <u>/BAC 和/B'A'C'</u>的边 AB //A'B', AC//A'C', 日射线 AB 与 A'B'同向,射线 AC 与 A'C'同向.

求证: /BAC=/B'A'C'.

证明:对于_BAC 和_B'A'C'在同一平面内的情形,在初中几何中已经证明,下面证明两个角不在同一平面内的情形。

分别在 $\angle BAC$ 的两边和 $\angle B'A'C'$ 的两边上截取线段 AD、AE 和 A'D'、A'E',使 AD=A'D',AE=A'E'.

因为 AD #A'D',

所以 AA'D'D 是平行四边形,

所以 AA' LDD'.

同理可得 AA' ∠EE',

因此 DD'业EE',

所以 DD'E'E 是平行四边形,

因此 DE=D'E'.

于是 △ADE≌△A'D'E',

所以 ∠BAC=∠B'A'C'.

? 思考与讨论

空间中如果一个角的两边与另一个角的两边分别对应平行,并且对应边的方向都相反,那么这两个角的关系如何?如果一组对应边方向相同,另一组对应边方向相反,这两个角的关系又如何?叙述你得到的结论,并说明理由.

如图 1-63 所示,顺次连结不共面的四点 A、B、C、D 所构成 的图形,叫做空间四边形。这四个点中的各个点叫做空间四边形的 顶点;所连结的相邻顶点间的线段叫做空间四边形的边;连结不相 邻的顶点的线段叫做空间四边形的对角线。空间四边形用表示顶点 的四个字母表示。例如,图 1-63(2)中的四边形可以表示为空间四 边形 ABCD,线段 AC、BD 是它的对角线。

PH 1-63

图 已知:如图 1-64,空间四边形 ABCD, E、F、G、H 分别是边 AB、BC、CD、DA 的中点。求证:四边形 EFGH 是平 行四边形。

证明, 在 \ ABD 中,

因为 E、H分别是AB、AD的中点,

所以 EH//BD, $EH=\frac{1}{2}BD$.

同理, FG//BD, 且 $FG=\frac{1}{2}BD$.

所以 EH//FG, EH=FG,

所以 四边形 EFGH 是平行四边形.

图形平移的性质

图 1-65

如果空间图形F中的所有点都沿同一方向移动相同的距离到F'的位置,就说图形F在空间作了一次平移(图 1-65)。在图 1-62 中,可看作 $\angle BAC$ 平移到 $\angle B'A'C'$ 。由角平移的性质可以推出图形的平移具有哪些性质?

图形平移后与原图形是否全等?对应角的大小和对应两点的距离是否保持不变?对你得出的结论,能说出理由吗?

 把一张长方形的纸对折两次,打开以后如图所示,说明为什么这些折痕是互相 平行的?

B C

(第1題)

(第2题)

己知: 如图, AA'、BB'、CC'不共面,且 AA' #BB', BB' #CC'.
 求证: △ABC≌△A'B'C'.

- 1. 判断题: (1) 如果_ABC=_A'B'C', 且 AB/|A'B', 则 AC/|A'C':
 - (2) 如果空间四边形的四条边相等, 则空间四边形是菱形.
- 如图,已知在四面体 ABCD 中,AC=BD,E、F、G、H 分 别为棱 AB、BC、CD、DA 的中点.求证:四边形EFGH是 簧形.

2. 直线与平面平行

可结合课件 2121-2122探索直 线与平面平行的判 定和性质. 我们知道,如果一条直线和一个平面有两个公共点,那么这条 直线就在这个平面内(图 1-66(1)).在空间中,一条直线和一个平 面的位置关系,除了直线在平面内,还有另外两种情况。

直线 a 和平面 α 只有一个公共点 A,叫做直线与平面相交,这个 公共点 A 叫做直线与平面的交点(图 1-66(2)),并记作 $a \cap \alpha = A$.

直线 a 与平面 a 没有公共点,叫做直线与平面平行. 并记作

a //a(图 1-66(3)).

图 1-66

从以上分析可知,如果直线不在平面内,则直线与平面的位置 关系不是平行就是相交.

让我们进行以下的操作与思考,来说明与一个确定的平面α没 有公共点的直线是存在的。

如果一条直线 m 在平面 α 内(m)。一条与 m 重合的动直线 l 沿着一个方向平移(保持与 m 平行),当直线 l 离开平面到任意一个位置时,我们知道、直线 l 不可能与直线 m 相交。同样也使我们感悟到,直线 l 也不会和平面 α 相交。这个直观感知的结论是否正确,下面再作分析。

由以上的操作与说理,我们可以归纳出直线与平面平行的判定 定理.

定理 如果不在一个平面内的一条直线和平面内的一条直线平 行,那么这条直线和这个平面平行,

根据上述定理, 画一条直线与已知平面平行, 通常把表示直线 的线段画在表示平面的平行四边形的外面, 并且使它与平行四边形 的一边平行或与平行四边形内的一条线段平行(图 1-68).

图 1-68

图 1-67

○ 八一八八八 ○ 八八八 □ 第一章 立体几何初步

我们从上面的分析过程中可以看到(图 1-67),由 l/m 可以推断出 l/m; 反过来,由 l/m,且 $\beta \cap a = m$ 也可得到 l/m. 由此可见,直线和平面平行具有如下性质:

定理 如果一条直线和一个平面平行,经过这条直线的平面和 这个平面相交,那么这条直线就和两平面的交线平行.

已知: $l/\!/\alpha$, $l \subset \beta$, $\alpha \cap \beta = m$ (图 1-69).

求证: 1//m.

证明, 因为 1//a.

所以 /和α没有公共点,

又因为 m 在 α 内,

所以 1和m也没有公共点。

因为 l 和m 都在平面 β 内,且没有公共点,

所以 1// m.

在空间中,经常利用这条定理,由"线、面平行"去判断"线、 线平行".

例2 已知:空间四边形 *ABCD*, *E*、 *F* 分别是 *AB*、 *AD* 的中点(图 1-70).

求证: EF//平面 BCD.

证明: 连结 BD. 在△ABD 中,

因为 E、F分别是AB、AD的中点,

所以 EF //BD.

又因为 BD 是平面 ABD 与平面 BCD 的交线,EF \subset 平面 BCD.

所以 EF//平面 BCD.

例3 求证:如果过一个平面内一点的直线平行于与该平面平行的一条直线,则这条直线在这个平面内。

已知: $l/\!/\alpha$, 点 $P \in \alpha$, $P \in m$, $m/\!/l$ (图 1-71).

求证: m ⊂α.

证明:设l与P确定的平面为 β ,且 $\alpha \cap \beta = m'$,则l//m'.

又知 l//m, $m \cap m' = P$,

由平行公理可知, m与m'重合.

所以 $m \subseteq \alpha$.

图 1-69

图 1-70

[%] 1-71

- 1. 一条直线与一个平面的位置关系有哪几种?
- 2. 过平面外一点能作出几条直线和这个平面平行?
- 使一块矩形木板 ABCD 的一边 AB 紧靠桌面,并绕 AB 转动,AB 的对边 CD 在各个位置时,是不是都与桌面所在的平面平行?为什么?
- 4. 如图,长方体ABCD-A'B'C'D'的六个面都是矩形,则
 - (1) 与直线 AB 平行的平面是 ;
- (2) 与直线 AA'平行的平面是_____
 - (3) 与直线 AD 平行的平面是____

(第4题)

练习B

- 1. 判断题:
 - (1) 如果直线 a 平行于直线 b, 则 a 平行于经过 b 的任何平面;
 - (2) 过平面外一点,可以作无数条直线与已知平面平行.
- 2. 判断下列命题是否正确,并说明理由:
 - (1) 如果一条直线不在平面内,则这条直线就与这个平面平行;
 - (2) 过直线外一点,可以作无数个平面与这条直线平行;
 - (3)如果一条直线与平面平行,则它与平面内的任何直线平行.
- 已知:如图 AB//平面α, AC//BD, 且 AC、BD 与α分别相 交于点 C、D. 求证: AC=BD.
- 4. 已知: 如图的长方体 AC', 求证: B'D' // 平面 ABCD.
- 已知:如图,α∩β=l,α⊂α,b⊂β,且α//b.求证:α//l,b//l.

(20) 4 88

(第5题)

(第3題)

3. 平面与平面平行

两个不重合的平面的位置关系除相交外, 还有一种情况:

如果两个平面没有公共点,那么这两个平面叫做平行平面. 平面 α 平行于平面 β ,记作 α // β .

由于平面是无限的,从直观上很难判定是否存在两个没有公共 点的平面.下面我们仍像探究直线与平面平行的问题那样进行操作 与说理,归纳出平面与平面平行的判定定理.

我们知道,两条相交的直线确定惟——个平面,这启发我们尝试用两条相交直线来讨论平面的平行问题,

如图 1-72, 在平面 a 内, 作两条直线 a、b, 并且 $a \cap b = P$, 平移这两条相交的直线 a、b 到直线 a'、b'的位置,设 $a' \cap b' = P'$,由直线与平面平行的判定定理可知

想必同学们已经感悟到,由相交直线 a', b'所确定的平面 β 与 平面 α 不会有公共点. 否则,如图 1-72,如果两平面相交,交线为 c,于是 a', b'都平行于这两个平面的交线 c,这时,过点 P'有两条 直线平行于交线 c,根据平行公理,这是不可能的.

由此,我们可以归纳出两个平面平行的判定定理:

定理 如果一个平面内有两条相交直线平行于另一个平面,那 么这两个平面平行.

利用直线与平面平行的判定定理, 我们可以得到:

推论 如果一个平面内有两条相交直线分别平行于另一个平面 内的两条直线,则这两个平面平行。

可结合课件 2123探索平面与平

而平行的判定与

进店

图 1-72

18 ? 图 思考与讨论

- 1. 以上我们从两条相交直线确定惟一一个平面 出发,讨论了两个平面平行的条件。但我们又知道 两条平行直线 a、b 也能惟一确定一个平面,让我们 平移 a、b 到空间任意确定的位置 a'、b',试问 a'、 b'确定的平面一定与a、b 确定的平面平行吗?
- 如果两个平面平行,那么一个平面内的直线 与另一个平面的位置关系如何?

根据上述定理和推论,在画两个平面平行时,通常把表示这两个平面的平行四边形的相邻两边分别画成平行线(图 1-73)。

图 1-73

18 1 74

观察长方体形的教室,天花板面与地面是平行的,直观上能感觉到,正墙面分别与天花板面、地面相交所得到的两条交线也是平行的,一般来说,两个平面平行有如下性质;

定理 如果两个平行平面同时与第三个平面相交,那么它们的 交线平行。

事实上,由于两条交线分别在两个平行平面内,所以它们不相交,它们又都在同一平面内,由平行线的定义可知它们是平行的(图 1-74).

求证: 平面 DEF // 平面 ABC.

证明: 在△PAB中.

因为 D、E分别是PA、PB的中点,

所以 DE//AB.

又知 DE⊄平面 ABC.

因此 DE//平面 ABC.

同理 EF//平面 ABC.

又因为 DE∩EF=E.

所以 平面 DEF // 平面 ABC.

図 記知: 平面α//平面β///平面γ. 两条直线 l. m分別与
 平面α,β,γ相交于点A,B,C和点D,E,F(图 1-76).

求证: $\frac{AB}{BC} = \frac{DE}{EF}$.

证明: 连结 DC, 设 DC 与平面? 相交于点 G, 则平面 ACD 与 平面 α , β 分别相交于直线 AD, BG, 平面 DCF 与平面 β , γ 分别 相交于直线 GE, CF.

因为 α//β. β//γ.

图 1-75

图 1-76

所以 BG//AD, GE//CF.

于是,得 $\frac{AB}{BC} = \frac{DG}{GC}$, $\frac{DG}{GC} = \frac{DE}{EF}$.

所以 $\frac{AB}{BC} = \frac{DE}{EF}$.

本例通常可叙述为:

两条直线被三个平行平面所截, 截得的对应线段成比例.

- 1. 下面的说法正确吗?
 - (1) 如果两个平面不相交,那么它们就没有公共点:
 - (2) 如果一个平面内的两条直线平行于另一个平面,那么这两个平面平行;
 - (3) 如果一个平面内的任何一条直线都平行于另一平面,那么这两个平面平行;
 - (4)已知两个平行平面中的一个平面内的一条直线,则在另一个平面内有且只有一条直线与已知直线平行;
 - (5) 分别在两个平行平面内的两条直线平行.
- 2. 如果平面 α //平面 β , 平面 β //平面 γ , 是否必有平面 α //平面 γ ? 为什么(平行平面的传递性)?
- 已知:如图,α//β,点P是平面α、β外的一点,直线PAB、 PCD分别与α、β相交于点A、B和C、D.
 - (1) 求证: AC//BD;

(第3題)

(2) 已知 PA=4 cm, AB=5 cm, PC=3 cm, 求 PD 的长.

- 1. 归纳平面与平面的位置关系。
- 2. 判断题:
 - (1) 过平面外一点,有且只有一个平面与这个平面平行;
 - (2) 过平面外一条直线,有且只有一个平面与这个平面平行.
- 3. 求证: 夹在两个平行平面间的两条平行线段相等.

 如图,平面α//平面β//平面γ,两条直线 l、m分别与平面α、β、γ相交于点 A、B、C和点D、E、F. 已知AC=15 cm, DE=5 cm, AB:BC=1:3,求 AB, BC, EF 的长.

(第3題)

(第4題)

1.2.3

空间中的垂直关系

1. 直线与平面垂直

图 1-77 中的灯塔与地平面的位置关系,给我们直线与平面垂直的形象.在第一大节,我们通过对长方体以及周围物体的观察,已经初步了解了空间中的直线与平面垂直的概念.这一节我们将进一步研讨直线与平面垂直的判定与性质.

在平面内,如果两条直线互相垂直,则它们一定相交。在空间中,两条互相垂直相交的直线中,如果固定其中一条,让另一条平移到空间的某一个位置,就可能与固定的直线没有公共点,这时两条直线不会相交,也不会在同一平面内(为什么?),我们同样称它们互相垂直。下面我们给出空间任意两条直线互相垂直的一般定义.

如果两条直线相交于一点或经过平移后相交于一点,并且交角 为直角,则称这两条直线互相垂直.

在初中几何中我们学习过:如果 A、B 是一个平面内两个定点,那么到这两个定点距离相等点的轨迹是连结这两点线段的垂直平分线.

设l 是线段AB 的垂直平分线,垂足为O. 这时,我们说A,B 两点关于直线l 成轴对称(图 1-78(1)).

想想看,如果 A, B 是空间中的两点,试问在空间中线段 AB

图 1-77

可结合课件 2124探索直线与平 面垂直的概念.

图 1-78

的垂直平分线有多少条? AB 的这些垂直平分线构成的集合是怎样 的图形(图 1-78(2))? 固定线段 AB, 让 l 保持与 AB 垂直并绕直线 AB 在空间旋转, l 的轨迹是怎样的图形?

容易发现,线段 AB 所有垂直平分线构成的集合是一个平面. 由此可以归纳出空间直线与平面垂直的定义:

如果一条直线(AB)和一个平面(a)相交于点 O, 并且和这个平面内过交点(O)的任何直线都垂直, 我们就说这条直线和这个平面互相垂直, 这条直线叫做平面的垂线, 这个平面叫做直线的垂面, 交点叫做垂足, 垂线上任意一点到垂足间的线段, 叫做这个点到这个平面的垂线段, 垂线段的长度叫做这个点到平面的距离,

如图 1-79,如果 $t \perp \alpha$, 垂足为 O, 直线 m 是平面 α 内不过点 O 的任意一条直线,那么在 α 内过点 O, 可引直线 $m//\alpha$, 根据空间直线与平面垂直的定义,由 $t \perp \alpha$ 可得 $t \perp m$. 这就是说,如果一条直线垂直于一个平面,那么它就和平面内的任意一条直线垂直.

画直线和平面垂直时,通常要把直线画成和表示平面的平行四 边形的一边垂直,如图 1-79 所示.

直线 l 和平面α互相垂直,记作 l ⊥α.

用直线与平面垂直的定义,直接检验直线是否与平面垂直是困难的. 想想看,判定直线与平面垂直是否有容易操作又比较简单的方法?

我们已经知道,一个平面被它所含的两条相交直线完全确定. 实际上只要检验这条直线与平面内的两条相交直线是否垂直就可以 了,如果都垂直,则这条直线就与平面垂直.当这两条相交直线不 都经过这条直线与平面的交点时,可以把它们平行移动到交点处后 进行研究.

由以上分析,我们归纳出直线与平面垂直的判定定理:

定理 如果一条直线与平面内的两条相交直线垂直,则这条直 线与这个平面垂直.

4?>

我们知道两条 平行直线确定惟一 一个平面, 试例: 如果一条直线垂直于平面内的两条至线, 过度垂直于这个平面吗?

可结合课件 2125探索直线与平面垂直的判定和 性质.

图 ? 图 思考与讨论

如图 1-80 所示, 在空间, 如果直线 m, n 都是线段 AA' 的垂直平分线, 设 m, n 确定的平面为a, 你能否证明;

- (1) 在平面α内,通过线 图1-80段 AA'中点 B 的所有直线都是线段 AA'的垂直平分线;
 - (2) 线段 AA'的任意一条垂直平分线都在α内.

推论 如果在两条平行直线中,有一条垂直于平面,那么另一条直线也垂直于这个平面.

试问,如果两条直线 l, m 都垂直于平面 α ,这两条直线平行吗?

从直观感知,我们会得出结论:直线 / 和 m 平行,要说出平行的理由,并不简单,不看下面的证明,自己先想想看,能否说出理由.

定理 如果两条直线垂直于同一个平面,那么这两条直线平行.

已知: 直线 I \bot 平面 α , 直线 m \bot 平面 α , 垂足分别为 A、B(图 1-82).

求证: 1//m.

证明: 假设直线 m 不与直线 l 平行. 过直线 m 与平面 α 的交点 B, 作直线

由直线与平面垂直的判定定理的推论可知

$$m' \perp a$$

设m和m'确定的平面为 β , α 与 β 的交线为 α . 因为 直线m和m'都垂直于平面 α ,

图 1-81

图 1-82

所以 直线 m 和 m'都垂直于交线 a.

因为 在同一平面内,通过直线上一点并与已知直线垂直的直 线不可能有两条,

所以 直线 m 和 m' 必重合, 即 l//m.

第 ? 最 思考与讨论

- 1. 垂直于同一条直线的两个平面是否平行? 为什么?
- 2. 如何定义两平行平面的距离?
- 切 过一点和已知平面垂直的直线只有一条. 已知: 平面 α 和一点 P(图 1-83).

求证: 过点 P 与α 垂直的直线只有一条.

图 1-83

证明: 不论点 P 在 α 外或内,设 $PA_{\perp}\alpha$,垂足为 A (或 P). 如果过点 P. 除直线 $PA_{\perp}\alpha$ 外,还有一条直线 $PB_{\perp}\alpha$,设 PA、PB 确定的平面为 β ,且 $\alpha \cap \beta = \alpha$ 。于是在平面 β 内过点 P 有两条直线 PA、PB 垂直于交线 α ,这是不可能的。所以过点 P 与 α 垂直的直线只有一条。

何② 有一根旗杆 AB 高8 m(图 1-84),它的顶端 A 挂着两条长10 m的绳子,拉紧绳子,并把它的下端放在地面上的两点 C、D(和旗杆脚不在同一条直线上).如果这两点都和旗杆脚 B 的距离是6 m,那么旗杆就和地面垂直,为什么?

解: 在 \ ABC 和 \ ABD 中,

因为 AB=8 m, BC=BD=6 m, AC=AD=10 m,

所以
$$AB^2 + BC^2 = 8^2 + 6^2$$

 $=10^{2}=AC^{2}$.

 $AB^2 + BD^2 = 6^2 + 8^2 = 10^2 = AD^2$.

• 54 •

所以 /ABC=/ABD=90°,

 $AB \mid BC$, $AB \mid BD$. 10

又知 B. C. D三占不共线,

所以 AB | 平面 BCD, 即旗杆和地面垂直,

证明, 设 AP与 / 确定的平面为 β. 如果 AP 不在 α 内,则可设 α 与 β 相交干 直线 AM,

又已知 $AP \mid l$, 于是在平面 β 内, 过点 A 有两条直线垂直于 l. 这是不可能的, 所以 AP 一定在α内,

图 1-85

- 1. 在空间,过任意一点都能作一条与已知直线垂直的直线吗? 为什么?
- 2. 已知长方体 ABCD-A, B, C, D, 分别写出与下列直线垂直的平面,
 - (1) AA: (2) AB: (3) B:C1.

- 3. 如图,拿一张矩形的纸对折后略微展开,竖立在桌面上,说 明折痕为什么和桌面垂首.
- 4. 分别回答: 如果一条直线垂直于一个平面内的
 - (1) 三角形的两条边:
 - (2) 梯形的两条边;
 - (3) 圆的两条直径。

试问这条直线是否与平面垂直? 并对你的判断说明理由.

- 5. 三角形的两边,可以垂直于同一个平面吗? 并对你的判断说明理由,
- 6. 判断题:
 - (1) 如果一条直线垂直于一个平面,那么这条直线与这个平面内的任何直线 垂直:
 - (2) 垂直于同一个平面的两条直线平行;
 - (3) 如果一条直线与一个平面不垂直,那么这条直线与这个平面内的任何直线 都不垂直.

- 1. 如果 a//α, 且 b | a, 那 Δ b | α 是否正确? 为什么?
- 求证:如果三条直线共点,且两两垂直,那么其中一条直线垂直于另两条直线 确定的平面。
- 3. 如图, 已知△ABC, 直线 AP | AB, AP | AC, 求证 AP | BC.
- 4. 如图,已知:在平面 α 内有 \square ABCD,O是它对角线的交点,点P 在 α 外,且 PA=PC,PB=PD. 求证: $PO\perp\alpha$.

(第4颗)

- 5. 已知:空间四边形 ABCD 中, AB=AC, DB=DC, 求证: BC_AD.
- 6. 已知两个平行平面中,有一个平面与一条已知直线垂直,试问另一平面与已知直线的位置关系怎样?

镜面对称变换

如图 1-86(1)所示,如果平面 α 通过线段 AA'的中点 O,且垂直于直线 AA',那么平面 α 叫做线段 AA'的垂直平分面(或中垂面),并称点 A、A'关于平面 α 成镜面对称,平面 α 叫做 A、A'的对称平面.

图 1-86

如果一个图形 F 的所有点关于平面 α 的对称点构成几何图形 F' (图 1-86(2)),则称 F、 F'关于平面 α 成镜面对称,F 到 F' 的图形变换称作镜面对称变换。

如果一个图形 F 通计键面对称变换后的图形仍是它自身,则这个图形称作镜面对称 图形,

根据以上定义, 请探索研究以下问题:

- (1) 线段的中垂面有哪些性质?
- (2) 你学过的空间图形,有哪些是镜面对称图形?
- (3) 写一篇研究镜面对称的小论文,探索镜面对称的性质和应用。

2. 平面与平面垂直

在第一大节,我们曾直观地看到,当一个平面通过另一个平面 的垂线时,就给我们两个平面互相垂直的形象,并由此判定两平面 是否互相垂直, 这一小节我们将进一步研究平面与平面垂直的判定 与性质.

如图 1-87, 两个平面 α 、 β 相交, 交线为 CD, 在 CD 上任取一 点 B, 过点 B 分别在 α、β 内作 直线 BA 和 BE, 使

于是, 直线 CD L 平面 ABE.

容易看到, 当/ABE 为直角时, 给我们两平面互相垂直的印 象, 由此观察可以给出两平面垂直的一个定义:

如果两个相交平面的交线与第三个平面垂直,又这两个平面与 第三个平面相交所得的两条交线互相垂直,就称这两个平面互相垂直,

平面α、β互相垂直, 记作α | β.

在图 1-87 中, 由于 $\angle ABE$ 为直角, 可知 $BA \perp BE$.

$\nabla BA \mid CD$,

所以 BA | B.

这就是说平面 α 讨平面 β 的垂线BA. 现在要问,如果平面 α 过平面 β的垂线 BA, 那么这两个平面是否满足以上两平面垂直的定义呢?

答案是肯定的, 事实上, 只要在平面 β 内作 $BE \perp CD$,

由于 $BA \perp \beta$, 所以 $BA \perp BE$, $\angle ABE$ 为直角.

依两个平面垂直的定义,就可以推出 $\alpha \mid \beta$

由以上观察和分析,我们可以得到平面与平面垂直的判定定理: 定理 如果一个平面过另一个平面的一条垂线,则两个平面互

相垂直. 建筑工人在砌墙时,常用一端系有铅垂的线来检查所砌的墙是

否和水平面垂直(图 1-88),实际上就是依据这个定理,

图 1-87

可结合课件 2126 探索平面与平 面垂直的性质.

下面我们再来研究两平面垂直的性质,

再观察图 1-87, 设平面 α 与平面 β 垂直, $\alpha \cap \beta = CD$, 如果平面 α 内的直线 $BA \mid CD$, 这时, BA 是否垂直平面 β ?

定理 如果两个平面互相垂直,那么在一个平面内垂直干它们 交线的直线垂直干另一个平面.

已知: (图 1-89)平面 α 上平面 β , $\alpha \cap \beta = CD$, $BA \subset \alpha$, $BA \perp$ CD, A 为垂足.

证明: 在平面 β 内过点B作 $BE \perp CD$.

因为 $\alpha \mid \beta$, 所以 $BA \mid BE$.

又因为 BA⊥CD, CD∩BE=B,

所以 BA B.

因为 AC | AB, 所以 AC | a, AC | BD.

因为 $BD \mid AB$, 直线 AB 是两个互相垂直的平面 α 和 β 的交线,

所以 BD | α, BD | BC,

所以 △CBD 也是直角三角形,

在首角 $\triangle BAC$ 中, $BC = \sqrt{3^2 + 4^2} = 5$.

在直角 $\triangle CBD$ 中, $CD = \sqrt{5^2 + 12^2} = 13$.

所以 CD长为13 cm.

例 已知 $Rt \triangle ABC$ 中, AB=AC=a, AD 是斜边 BC 上的 高,以AD为折痕使/BDC成直角(图 1-91).

图 1-91

求证: (1) 平面 ABD | 平面 BDC, 平面 ACD | 平面 BDC;

(2) /BAC=60°.

证明: (1) 如图 1-91(2),

因为 AD | BD, AD | DC, 所以 AD | 平面 BDC.

· 58 ·

因为 平面 ABD 和平面 ACD 都过 AD,

所以 平面 ABD 上平面 BDC, 平面 ACD | 平面 BDC.

(2) 如图 1-91(1), 在直角三角形 BAC 中,

因为 AB=AC=a,

所以 $BC = \sqrt{2}a$, $BD = DC = \frac{\sqrt{2}}{2}a$.

如图 1-91(2), △BDC 是等腰直角三角形,

所以 $BC = \sqrt{2}BD = \sqrt{2} \times \frac{\sqrt{2}}{2}a = a$.

得 AB=AC=BC.

所以 ∠BAC=60°.

- 如何沿一张长方形纸片 ABCD 的对角线 AC 进行折叠,使折后两部分分别所在 的平面互相垂直。
- 2. 长方体形教室里的相邻墙面之间是否垂直?
- 3. 判断题:
 - (1) 过平面外一点只可作一个平面与已知平面垂直;
 - (2) 过不在平面内的一条直线可以作无数个平面与已知平面垂直;
- 已知: 三条直线 OX、OY、OZ 两两垂直, 求证: 三个平面 XOY、YOZ、ZOX 两两互相垂直.
- 5. 正方体的对角面①是否互相垂直? 为什么?

练习B

- 1. 画互相垂直的两个平面, 两两互相垂直的三个平面.
- 2. 如图,检查工件的相邻的两个面是否垂直时,只要用曲尺的一边紧靠在工件的 一个面上,另一边在工件的另一个面上转动一下,观察尺边是否和这个面密合 就可以了,为什么?如果不转动呢?

① 不在正方体的同一面上的两条棱决定的平面.

 如图,有一个正三棱锥体的零件,P是侧面ACD上一点。在面ACD上过点P 画一条与枝AB垂直的线段,怎样画法?并说明理由。

 $B \stackrel{\frown}{\longrightarrow} D$

(第2題)

习题1-2 A

- 1. 下面的说法正确吗? 为什么?
 - (1) 每一个平面都有确定的面积;
 - (2) 平面 α 与平面 β 相交时, 它们的公共点可能只有有限个;
 - (3) 经过空间任意三点,有一个且只有一个平面;
 - (4) 如果两个平面有三个不共线的公共点,那么这两个平面就重合为同一个平面.
- 2. 填空:
 - (1) 经过 的三个点,有且只有一个平面;
 - (2) 两条 或 的直线确定一个平面;
 - (3) 有一个公共点的两个平面相交于 一条直线.
- 3. 四条线段首尾连结, 所得的图形一定是平面图形吗? 为什么?
- 4. 不共面的四点中,每三个点确定一个平面,一共可以确定几个平面?
- 5. 一条直线和两条平行直线都相交,这三条直线是否共面?
- 6. 判断题:
 - (1) 过直线外一点可以作,且只可以作一条直线与这条直线平行;
 - (2) 过平面外一点可以作无数个平面与这个平面平行,
- 7. 已知: 空间四边形 ABCD 中, E、F、G、H 分别为 AB、BC、CD、DA 的中点. 求证, AC//平面 EFG, BD//平面 EFG.
- 8. 判断题:
 - (1) 平行于同一条直线的两条直线平行;
 - (2) 平行于同一条直线的两个平面平行;
 - (3) 平行于同一平面的两条直线平行;
 - (4) 平行于同一个平面的两个平面平行.
- 已知:直线 AB 平行于平面α,经过 AB 的三个平面和平面α分别相交于直线α、b、c. 求证: a//b//c.

(第7题)

(第9題)

(第10股)

- 已知:如图,在正方体中,AE=A'E',AF=A'F'.求证:EF //E'F',且EF= E'F'.
- 11. 你能否过直线上任意一点,作一个平面与这条直线垂直?
- 12. 你能否过平面内一点作一条直线与这个平面垂直?
- 已知:如图 AB 是圆的直径, PA 垂直圆所在的平面, C 是圆上任一点, 求证: BC | 平面 PAC.

(第13期)

(第14 题)

- 已知平面α与β相交于直线CD, EA⊥α, A是垂足; EB⊥β, B是垂足, 求证 CD | AB.
- 已知直角三角形 ABC, ∠A 为直角, PA ⊥平面 ABC, 求证 PB | AC.
- 已知空间四边形 ABCD, AC=AD, BC=BD, E 是 CD 的中点, 求证:

(2016 16 190)

- (1) 平面 ABE 上平面 BCD;
- (2) 平面 ABE | 平面 ACD.

习题1-2 B

- 1. 过一个点可以有多少个平面? 过两个点呢? 过不共线的三个点呢?
- 已知: a ∩ b=A, a ⊂a, 下面的结论正确吗?
 - (1) $A \in \alpha$;

- (2) b⊂a.
- 3. 如果四点不在同一平面内,试问它们中的三点能不能共线?
- 4. 三条直线两两平行且不共面,每两条确定一个平面,一共可以确定几个平面?如果三条直线相交于一点,它们最多可以确定几个平面?
- 5. 已知: $\alpha/\!/\beta$, 点 P 是平面 α 、 β 外一点, 从点 P 引三条不共面的射线 PA、PB、

- PC. 与平面 α 分别相交千点 A、B、C. 与平面 β 分别相交千 A'、B'、C'、求证: $\triangle ABC = \triangle A'B'C'$.
- 已知: α∩β=α,β∩γ=b,γ∩α=c (且 α、b、c 不重合). 求证: α、b、c 互相平 行或相交于一点.
- 7. 已知: 平面 $\alpha/\!/\beta$, 直线 AB, AC 分别与 α 、 β 交于点 D、B 和点 E、C、 求证: $\frac{AD}{AB} = \frac{AE}{AC}$.
- 当投射线不平行于下列图形所在平面时,分别说出它们的平行投影有哪些性质保持不变:
 - (1) 矩形; (2) 菱形; (3) 等腰梯形; (4) 等边三角形; (5) 正六边形.
- 9. 证明在1.1节中得到平行投影的性质.
- 10. 已知三条线段 OA, OB, OC 所在直线两两相互垂直, $\triangle OAB$ 的面积为 S_1 , $\triangle OBC$ 的面积为 S_2 , $\triangle OAC$ 的面积为 S_3 , 求证

 $\triangle ABC$ 的面积= $\sqrt{S_1^2+S_2^2+S_3^2}$.

本章 川结

I 知识结构

II 思考与交流

- 1. 空间几何体是现实世界中物体的抽象,空间图形直观描述 了空间形体的特征,通常画空间图形的基本要求是什么?用"斜二 测画法"画直观图的一般规则是什么?
- 空间图形可以看做点的集合。用符号语言表述点、线、面的位置关系时,经常用到集合的有关符号。试验例说明文字语言、符号语言、图形语言的不同功能及其相互转化。
- 柱、维、台、球是简单几何体。试用列表方法对它们的定 义及性质进行归纳整理,再作比较研究,把你的发现与同学进行交流。
- 4. 对于一个正棱台,当上底面扩展为下底面的全等形时,它 变为一个直棱柱;当上底面收缩为中心点时,它变为一个正棱锥。 已知 $S_{\text{五岐右} ij} = \frac{1}{2} (c + c') h' 和 V_{\text{五岐 ij}} = \frac{h}{3} (s + \sqrt{ss'} + s')$,在上述变化中

可以看到这两个公式与直棱柱、正棱锥的侧面积和体积的计算公式 有何联系?

5. 几何中的平面是没有厚度且可以无限延展的,常用平行四边形表示,确定一个平面有哪些依据? 试举例说明这些依据的实际应用。

6. 有些平面几何的概念和性质,推广到空间还是正确的,如课本中讲述的空间平行线的传递性及关于两角相等的定理,本章中还有哪些知识可以说是平面几何的有关知识推广到空间?试再用类比的方法把平面几何中一个真命题推广到空间,并说明所得的命题是否也是真命题。

III 巩固与提高/

- 是否存在着主视图、俯视图、左视图完全相同的几何体?举例说明。
 ់
 於照图中所绘出的三规图制作一个模型,可以使用泥土作为质
- 2. 按照图中所给出的三视图制作一个模型,可以使用泥土作为原料,只要求参照图中比例,不限定尺寸.然后参照做好的模型 画出直观图.并说明这个几何体是由哪些简单几何体组合而 成的.

- (1)如果两个平面有三点重合,那么这两个平面一定重合为一个 平面:
- (2) 在空间中,一组对边平行且相等的四边形一定是平行四边形;
- (3) 如果两个平面相交,那么它们的交点不一定在交线上;
- (4) 已知直线 a//b, 且 b//c, 则 a//c;
- (5) 已知直线 a//平面 α, 且 b//平面 α, 则 a//b;
- (6) 已知直线 a///平面 a, 过平面 a 内的一点作b///a,则 b 一定 在 a 内;
- (7)过直线上一点可以作无数条直线与这条直线垂直,并且这些直线都在同一平面内;
- (8) 同一平面的两条垂线一定共面;
- (9) 过一条直线,有且仅有一个平面与已知平面垂直.
- 4. 证明对角线相等的平行六面体是长方体.
- 在正四棱柱中,底面面积是72 cm²,高是5cm,求棱柱的对角 线长。
- 6. 已知棱锥的底面面积是 320 cm2, 把棱锥的高 4 等分, 并过各分

(第2題)

点作底面的平行平面, 求截出的各截面的面积,

- 四枝柱共有多少条体对角线?三枝柱呢? 六枝柱呢? n枝柱共有 多少条体对角线? 总结一下规律并说明理由。研究你总结的规 律对五棱柱是否适用。
- 8. 把正方形 ABCD 沿对角线 AC 折起, 使平面 ACD 上平面 ABC, 点 E、F 分别是 AD、BC 的中点,点 O 为原正方形的中心,求 折起后/EOF 的太小。
- 如果直线 AB 与平面α 相交于点B, 并且与平面α内过点B 的三条不同的直线 BC、BD、BE 所成的角相等, 求证 AB | α.
- A、B、C是球O上的三点, AB=10, AC=6, BC=8, 球O 的半径等于13, 求球心到平面 ABC 的距离。
- P、A、B、C是珠O上的四点,PA、PB、PC两两垂直,且 PA=PB=PC=1, 求珠的体积和表面积.

IV) 自测与评估

- 1. 判断下列命题的对错:
 - (1)如果一个几何体的主视图和俯视图都是矩形,则这个几何体 是长方体:
 - (2) 长方体的主视图和俯视图都是矩形.
- 2. 填空:
 - (1) 到两定点距离相等点的轨迹是 ;
 - (2) 已知正方形 ABCD 的边长为a, AP⊥平面 ABCD, 且 AP= b, 则 PC=;
 - (3) 已知△ABC, ∠BAC=90°, P 为平面 ABC 外任一点,且 PA=PB=PC,则平面 PBC 与平面 ABC 的关系是
- 已知平面 α⊥平面 β, 且 α∩β=l, 在 l 上有两点 A、B, 线段 AC□α, 线段 BD□β, 并且 AC⊥l, BD⊥l, AB=6, AC=8, BD=24, 求 CD 的长.
- 4. 如图,一个正三棱锥的顶点是圆柱上底面的圆心,正三棱锥的底面是圆柱下底面的内接正三角形(这样的正三棱锥叫做圆柱的内接正三棱锥),如果在这个圆柱体中挖去这个正三棱锥得到的几何体如图所示,按图中所给尺寸求所得几何体的表面积和体积。
- 已知球的表面积为1680 cm²,求与球心的距离为9 cm 的截面的面积。

散发着数学芳香的碑文

在古代有几位数学家的墓碑上,人们根据他 们的遗愿,有的刻着图形,有的写着数字,用图 形和数字表达他们一生的追求和业绩,下面举出 几例,以学习他们的敬业精神。

图 1-92 是古希腊数学家阿 基米德的墓碑文. 墓碑上刻着 一个圆柱, 圆柱内有一个内切 球, 这个球的直径恰好与圆柱 的高相等, 相传这个图形表达 了阿基米德最引以自豪的发 现, 图中圆柱的体积是球体积

图 1-92

的 $\frac{3}{2}$, 圆柱的表面积也是球表面积的 $\frac{3}{2}$.

古希腊数学家丢番图的墓碑文,用独特的方式介绍他的生平.

"过路人,这座墓里安葬着兵番图. 他生命的 $\frac{1}{6}$ 是幸福的童年,生命的 $\frac{1}{12}$ 是青少年时期,又过了生命的 $\frac{1}{7}$ 他才结婚.婚后5年有了一个孩子,孩子活到父亲的一半年纪就死去了.孩子死后,兵番图在深深的恶哀中活了4年,也结束了尘世生涯.过路人,你知道丢番图的年纪吗?"

丢番图(246-330)是古希腊最后一位数学 家, 他的碑文写得多么妙!多么奇特!这是用未 知的方式写出了他已知的一生, 谁想知道丢番图 的年纪, 谁就得解一个一元一次方程;

$\frac{x}{6} + \frac{x}{12} + \frac{x}{7} + 5 + \frac{x}{2} + 4 = x$

解得 x=84,即丢番图享年 84 岁。碑文是 一个方程应用题,丢番图写这个碑文的目的是, 提醒前来瞻仰的人们,不要忘记他所献身的 事业。

\equiv

图 1-93, 是德国数学家 鲁道夫(1540-1610)的墓碑 文, 公元 1610 年鲁道夫把 π的近似值算到了小数点后 35 位, 是当年的世界纪录。

鲁道夫的一生献给了圆 周率的研究,德国为尊敬他

图 1-93

的功绩,至今还把π称做"鲁道夫数".

pq

图 1-94 中的对数螺线,是瑞士著名数学家雅 各·贝努利(1654-1705)的墓碑文.

图 1-94

雅各,贝努利在数学的许多分支都有着重要

的贡献,而使他最得意的是对数螺线,在遗嘱 中,要求把一正一反的对数螺线对在他的墓碑 上,并附一句话:"我虽然变了,但确和原来 一样!" 我们从上述的碑文中可以领悟到,这些数学 家生前酷爱数学,到死也不忘数学. "热爱是最 好的老师."

第二章 平面解析几何初步

我圖"神舟"五号載人航天飞船在2003年10月15日发射成功并进入预定的轨道。 航天科学家是如何计算出飞船的轨道(路线)的?如果要回答这个问题,就必须把几何图形转化为用数字或符号表达的语言,并能借助数字來确定空间点的位置。

.

为了表示空间任一点的位置,只用两个数字就 不够了,而是需要三个数字。例如,为了确定一架正 在飞行的飞机的位置,我们不仅需要经度和纬度, 还需要确定它距离地球表面的高度。

用数字或其符号来确定一个点或一个物体位置 的方法叫做坐标方法. 相关的符号和数称做点的 坐标.

在实际生活中,也离不开用数来确定位置,

例如,你去看电影,进电影院后根据电影票上 标出的几排几号,就可找到自己的座位.

用数可以确定火车在铁路上的位置:一个以 "km"为单位的数,就可表示火车离开出发站后行驶的距离。

坐标方法非常重要,它使得现代计算机不仅可以进行 各种数值计算,还能解决几何问题,研究几何体的性质和 它们之间的关系.

这一章,我们主要学习如何用数和代数方程表达图 形,并用代数方法研究图形的性质,还要了解用计算机画 图的一些原理,有计算机的同学还可以学着使用计算机 画图.

平面直角坐标系中的 基本公式

这一大节,我们首先系统地复习一下坐标系的有关概念,然后 导出解析几何中常用的基本公式,这一大节是学习解析几何的 基础.

2.1.1

数轴上的基本公式

4注》

如不特别说明, 我们约定数轴水平 放置,正方向从左 到右, 我们知道, 一条给出了原点、度量单位和正方向的直线叫做数轴, 或说在这条直线上建立了直线坐标系(图 2-1).

N 2-1

在数轴上,点 P 与实数x 的对应法则是,如果点 P 在原点朝正向的一侧,则x 为正数,且等于点 P 到原点的距离;如果点 P 在原点朝负向的一侧,则x 为负数,其绝对值等于点 P 到原点的距离。原点表示数 0 。依据这个法则我们就在实数集和数轴上的点之间建立了——对应关系。即对于数轴上每一个点都有惟一确定的实数与之对应;反之,对于任何一个实数,数轴上也存在一个确定的点与之对应。

如果点 P 与实数 x 对应,则称点 P 的坐标为 x,记作 P(x), 如图 2-1 所示,数轴 x 上的一点 M 的坐标为 3,记作 M(3), N

∢?)

如果数轴上的 单位长取作1 cm. 你能在数轴上标出 数0.001、0.0001和 √2对应的点吗? 你 能说明在数轴上确 实存在这些点吗? 的坐标为-2, 记作 N(-2).

我们再来研究如何用数来表示数轴上的点的位移 (图 2-2).

国 2-2

如果数轴上的任意一点 A 沿着轴的正向或负向移动到另一点 B, 则说点在轴上作了一次位移,点不动则说点作了零位移. 位移是一个既有大小又有方向的量,通常叫做位移向量,本书简称为向量.

从点 A 到点 B 的向量,记作 \overline{AB} ,读做向量 AB. 点 A 叫做向量 \overline{AB} 的起点,点 B 叫做向量 \overline{AB} 的终点,线段 AB 的长叫做向量 \overline{AB} 的长度,记作[\overline{AB}].

数轴上同向目等长的向量叫做相等的向量,

例如图 2-2 中的 $\overrightarrow{AB} = \overrightarrow{BC}$.

我们可用实数表示数轴上的一个向量。例如,图 2-2 中的向量 \overline{AB} , 即从点 A 治x 轴的正向移动 3 个单位到达点 B, 可用正数 3 表示;反之,用一3 表示 B 为起点 A 为终点的向量,3 和一3 分别 叫做向量 \overline{AB} 和 \overline{BA} 的坐标或数量。

一般地,轴上向量AB的坐标是一个实数,实数的绝对值为线 段 AB 的长度,如果起点指向终点的方向与轴同方向,则这个实数 取正数;反之取负数.向量坐标的绝对值等于向量的长度.

起点和终点重合的向量是零向量,它没有确定的方向,它的坐标为 0.

向量AB的坐标,在本书中用 AB 表示.

例如, 在图 2-3 中

AB=4, BA=-4, |AB|=4, |BA|=4, 显然

AB = -BA 或 AB + BA = 0.

容易推断,相等的向量,它们的坐标相等;反之,如果数轴上 两个向量的坐标相等,则这两个向量相等.如果把相等的所有向量 看做一个整体,作为同一个向量,则实数与数轴上的向量之间是一 一对应的.

在数轴上,如果点 A 作一次位移到点 B,接着由点 B 再作一次

位移到点 C, 则位移 \overline{AC} 叫做位移 \overline{AB} 与位移 \overline{BC} 的和. 记作

$$\overrightarrow{AC} = \overrightarrow{AB} + \overrightarrow{BC}$$

由数轴上向量坐标的定义和有理数的运算法则,容易归纳出, 对数轴上任意三点 A、B、C,都具有关系:

$$AC = AB + BC$$

(*)

(G)

可打开课件 2201,改变点A、 B、C的相对位置, 观察并计算,看看 关系等式(*)是否 成立.

如图 2-3 所示,已知
$$AB=4$$
, $BC=-5$,则 $AC=AB+BC=4+(-5)=-1$;

$$AC = AB + BC = 4 + (-5) = -4$$

 $AB = AC + CB = -1 + 5 = 4$;

$$BC = BA + AC = -4 + (-1) = -5.$$

上述关系等式(*)是我们学习解析几何的基础.

下面我们来研究,对于数轴上的任意一个向量,怎样用它的起 占坐标和终点的坐标来计算它的坐标。

设 \overline{AB} 是数轴上的任 \overline{AB} 上的任 \overline{AB} ,例如图 2-4, \overline{AB} 是原点,点 \overline{AB} 的坐标为 x_1 ,点 \overline{AB} 的坐标为 x_2 ,则

$$OB = OA + AB$$
, 或

$$AB = OB - OA$$
.

依轴上点的坐标的定义, $OB=x_2$, $OA=x_1$, 所以

$$AB=x_2-x_1$$

用 d(A, B)表示 A、B 两点的距离,根据这个公式可以得到,数轴上两点 A、B 的距离公式是

$$d(A, B) = |x_2 - x_1|$$

第一個書写讨论

- 1. 如何表示数轴上两点的相对位置?
- 2. 试用(*)式说明有理数加法运算法则的合理性,

1. (1) 在数轴上画出下列各点:

A(-2), B(-0.5), $C(\frac{13}{3})$, D(0);

- (2) 在数轴上画出点 M(2), 找出与点 M 的距离是 3 的两点 A、B, 并写出它们 的坐标.
- 2. (1) 在数轴上, 已知点 A(a)位于点 B(b)的右侧, 那么 a 与 b 哪个大?
 - (2) 不在教轴上画点。确定下列各组点中、哪一个点位于另一点的右侧。

A(-3) $\approx B(-4)$, A(3) $\approx B(4)$, A(-3) $\Rightarrow B(4)$, A(3) $\Rightarrow B(-4)$.

3. 能否说点 A(a) 一定位于点 B(-a) 的右侧?

- 4. 确定下列各组点中,哪一个点一定位于另一点的右侧:

 - (1) $M(x) \neq N(2x)$; (2) $A(c) \neq B(c+2)$:
 - (3) $C(x) \neq D(x-a)$; (4) $E(x) \neq F(x^2)$.
- 5. 已知两点 A、B 的坐标, 求 AB, | AB |
 - (1) A(2), B(5);
- (2) A(-2), B(3):
- (3) A(-2), B(-5); (4) A(3), B(-2).

- 1. 在数轴上, 画出对应代数式 |x| $(x\neq 0)$ 值的所有点.
- 2. 符合下列条件的点 P(x), 位于数轴上何处:
 - (1) |x|=2:
- (2) |x| > 3.
- 3. 已知数轴上的两点 $A(x_1)$ 和 $B(x_2)$, 求线段 AB 中点的坐标. (提示:设点 M 是线段 AB 的中点,研究 AM 与 MB 的关系。)
- 4. 在数轴上求一点的坐标, 使它到点 A(-9)的距离是它到点 B(-3)距离的 2倍.
- 5. 根据下列条件, 在数轴上分别画出点 P(x):
 - (1) d(x, 7) < 3:
- (2) |x-2| > 1:
- (3) |x+3|=3.

2.1.2

平面直角坐标系中的基本公式

我们知道,在平面直角坐标系中,有序实数对构成的集合与坐标平面内的点的集合具有——对应关系。 如图 2-5 所示,有序数对(x,y)与点 P对应,这时(x,y)称作点 P的坐标,并记为 P(x,y),x 叫做点 P的機坐标,y 叫做点 P的线坐标。

1. 两点的距离公式

在直角坐标系中,已知两点的坐标,我们来讨论如何计算这两 点的距离。

可能有的同学会问,既然两点已知,取一把尺子量出它们的距离就可以了,由两点的坐标来计算它们的距离有何意义?

我们知道,计算机在软件的支持下能高速地进行计算.计算再 麻烦,对计算机来说都是非常简单的事.如果我们能根据两点的坐 标找出计算两点距离的一些规则,并根据这些规则向计算机发出一 条条指令,这样我们就能用计算机算出两点的距离.

从点 A(x, y)作 x 轴的垂线段 AA_1 , 垂足为 A_1 . 这时,同学们只要想到勾股定理,会马上写出计算 d(O, A)的公式;

$$d(O, A) = \sqrt{x^2 + y^2}$$
.

如何求任意两点 $A(x_1, y_1)$ 、 $B(x_2, y_2)$ (图 2-7)的距离呢? 从点 A 和点 B 分别向 x 轴、y 轴作垂线 AA_1 、 AA_2 和 BB_1 、 BB_2 ,垂足分别为

 $A_1(x_1, 0), A_2(0, y_1), B_1(x_2, 0), B_2(0, y_2),$

 $A(x_1, y_1)$ $A(x_1, y_2)$ $A(x_2, y_2)$ $A(x_1, y_2)$ $A(x_1, y_2)$ $A(x_1, y_2)$ $A(x_1, y_2)$ $A(x_2, y_2)$ $A(x_1, y_2)$ $A(x_2, y_2)$ $A(x_1, y_2)$ $A(x_1, y_2)$ $A(x_1, y_2)$ $A(x_2, y_2)$ $A(x_1, y_2)$ $A(x_1, y_2)$ $A(x_2, y_2)$ $A(x_1, y_2)$ $A(x_1, y_2)$ $A(x_2, y_2)$ $A(x_1, y_2)$ $A(x_2, y_2)$ $A(x_1, y_2)$ $A(x_1, y_2)$ $A(x_2, y_2)$ $A(x_1, y_2)$ $A(x_2, y_2)$ $A(x_1, y_2)$ $A(x_2, y_2)$ $A(x_1, y_2)$ $A(x_2, y_2)$ $A(x_1, y_2)$

图 2-7

图 2-6

其中直线 BB_1 和 AA_2 相交于点 C. 在直角 $\triangle ACB$ 中, $|AC| = |A_1B_2| = |r_2 - r_3|$

$$|AC| = |A_1B_1| = |x_2-x_1|,$$

 $|BC| = |A_2B_2| = |y_2-y_1|.$

由勾股定理,得

$$|AB|^2 = |AC|^2 + |BC|^2 = |x_2 - x_1|^2 + |y_2 - y_1|^2.$$

由此得到计算 $A(x_1, y_1)$ 、 $B(x_2, y_2)$ 两点的距离公式:

A(x,y)

$$d(A, B) = \sqrt{(x_2-x_1)^2+(y_2-y_1)^2}$$

已知两点的坐标,为了运用两点距离公式正确地计算两点之间 的距离,我们可分步骤计算,

(1) 给两点的坐标赋值:

$$x_1 = ?$$
, $y_1 = ?$, $x_2 = ?$, $y_2 = ?$;

- (2) 计算两个坐标的差,并赋值给另外两个变量,即 $\Delta x = x_2 x_1$, $\Delta y = y_2 y_1$;
- (4) 给出两点的距离 d.

通过以上步骤,对任意两点,只要给出两点的坐标,就可一步 步地求值,最后算出两点的距离。

通过数学1的学习,我们已经知道,如果对一类问题能够一步步地求解,每一步都能算出结果,那么这个计算过程就是解这一类问题的一个算法,求解一类问题的算法是非常重要的,它可以使这一类的所有问题,都能按相同的步骤进行简单机械的计算,对每一步的计算结果,都可以检验它是对是错,这种计算方法能很方便地编出计算机程序,并上机运算.

例 已知
$$A(2, -4)$$
, $B(-2, 3)$, 求 $d(A, B)$.

%:
$$x_1=2$$
, $x_2=-2$, $y_1=-4$, $y_2=3$,
 $\Delta x = x_2 - x_1 = -2 - 2 = -4$,
 $\Delta y = y_2 - y_1 = 3 - (-4) = 7$,
 $d(A, B) = \sqrt{\Delta x^2 + \Delta y^2} = \sqrt{(-4)^2 + 7^2} = \sqrt{65}$.

⑨ 已知点 A(1, 2), B(3, 4), C(5, 0), 求证 △ABC 是等腱三角形.

证明: 因为
$$d(A, B) = \sqrt{(3-1)^2 + (4-2)^2} = \sqrt{8}$$
,
 $d(A, C) = \sqrt{(5-1)^2 + (0-2)^2}$
 $= \sqrt{4^2 + (-2)^2} = \sqrt{20}$,
 $d(B, C) = \sqrt{(5-3)^2 + (0-4)^2}$
 $= \sqrt{2^2 + (-4)^2} = \sqrt{20}$,

所以 |AC| = |BC|.

又A、B、C不共线,所以 △ABC是等腰三角形.

例3 已知 $\square ABCD$,求证: $AC^2 + BD^2 = 2(AB^2 + AD^2)$,

分析:如果在 $\square ABCD$ 所在的平面上建立直角坐标系,写出点 A、B、C、D的坐标。则由距离公式就能证明题中结论是否成立。由于点的坐标与坐标系有关,所以我们建立的坐标系,要尽量使点的坐标容易表示出来。

证明: 取 A 为坐标原点、AB 所在直线为x 轴建立直角坐标系xOy (图 2-8)。依据平行四边形的性质可设点 A、B、C、D 的坐标为

$$A(0, 0), B(a, 0), C(b, c), D(b-a, c).$$

所以
$$AB^2 = a^2$$
, $AD^2 = (b-a)^2 + c^2$, $AC^2 = b^2 + c^2$, $BD^2 = (b-2a)^2 + c^2$.

得
$$AC^2 + BD^2 = 4a^2 + 2b^2 + 2c^2 - 4ab$$

= $2(2a^2 + b^2 + c^2 - 2ab)$,

$$AB^2 + AD^2 = 2a^2 + b^2 + c^2 - 2ab$$

FIFTY
$$AC^2 + BD^2 = 2(AB^2 + AD^2)$$
.

例 3 证明了一个重要的定理: 平行四边形两条对角线的 平方和等于它的四边的平方和, 从中我们看到, 几何问题可以转化为代数问题, 通过一步步地计算来解决. 这种解决问题的方法叫做坐标法. 同学们在整章的学习中, 都将体会到坐标法在研究几何问题中的作用和威力.

2. 中点公式

已知 $A(x_1, y_1)$ 、 $B(x_2, y_2)$, 设点M(x, y)是线段 AB 的中点(图 2-9). 过点 A、B、M 分别向x 轴、y 轴作垂线 AA_1 、 AA_2 , BB_1 、 BB_2 , MM_1 、 MM_2 ,垂足分别为

$$A_1(x_1, 0), A_2(0, y_1), B_1(x_2, 0), B_2(0, y_2),$$

$$M_1(x, 0), M_2(0, y).$$

因为 M 是线段 AB 的中点,所以点 M_1 和点 M_2 分别是 A_1B_1 和 A_2B_2 的中点,

$$M_1M_1=M_1B_1$$
, $A_2M_2=M_2B_2$.

所以
$$x-x_1=x_2-x$$
, $y-y_1=y_2-y$.

 $x = \frac{x_1 + x_2}{2}, \ \ y = \frac{y_1 + y_2}{2}$

这就是线段中点坐标的计算公式, 简称中点公式.

图 2-8

图 2-9

例 引 已知 $\square ABCD$ 的三个顶点 A(-3, 0) ,B(2, -2) ,

解。因为平行四边形的两条对角线的中点相同,所以它们的

C(5, 2), 求顶点 D 的坐标(图 2-10). 坐标也相同,设点 D 的坐标为(x, y),则

图 2-10

 $\frac{y-2}{2} = \frac{0+2}{2} = 1$

$$\begin{cases} \frac{x+2}{2} = \frac{-3+3}{2} = \\ \frac{y-2}{2} = \frac{0+2}{2} = 1 \end{cases}$$

解得

$$\begin{cases} x=0 \\ y=4 \end{cases}$$

所以 点 D 的坐标为(0, 4).

- 1. 求两点的距离:
 - (1) A(6, 2), B(-2, 5);
- (2) C(2, -4), D(7, 2):
- (3) E(5, 0), F(8, 0);
- (4) G(2, 1), H(5, -1).
- 2. 已知 A(3, 8), B(-11, 3), C(-8, -2), 求证△ABC 是等腰三角形. 3. 求线段 AB 中点的坐标:
 - - (1) A(3, 4), B(-3, 2); (2) A(-8, -3), B(5, -3).
- 4. 求下列各点关于坐标原点的对称点:
 - A(2, 3), B(-3, 5), C(-2, -4), D(3, -5).

- 1. 已知 A(a, 0)、B(0, 10)两点的距离等于17,求 a 的值.
- 2. 求下列各点关于直线 v=x 的轴对称点的坐标: A(2, 1), B(-5, -1), C(3, -2), D(-3, 4).
- 3. 已知 $\square ABCD$ 的三个顶点A(-1, -2), B(3, 1), C(0, 2), 求顶点D 的

习题2-1 A

1. 如图,数轴上的每一格等于一个长度单位,求 AB, BC, CD, EA.

(第1期)

2. 已知数轴上A、B两点的坐标x1、x2, 求d(A, B):

- (1) $x_1=8$, $x_2=3$;
- (2) $x_1 = -3$, $x_2 = -5$;
- (3) $x_1 = 15, x_2 = -23$;
- (4) $x_1 = -13$, $x_2 = -7$.
- 3. 已知点 A(-1, 3)、B(-2, 3)、C(0, 1), 求这三点中每两点的距离.
- 已知点 A(4, 12), 在 x 轴上的点 P 与点 A 的距离等于 13, 求点 P 的坐标.
- 5. 已知 A(1,5)、B(5,-2), 在 x 轴上的点 M 与 A、B 的距离相等,求点 M 的坐标.
- 6. 已知点 P(7, y)与点 Q(-1, 5)的距离等于 10, 求点 P的纵坐标 y.
- 7. 求下列两点的距离和对称中心的坐标:
 - (1) A(7, 4), B(3, 2);
- (2) C(6, -4), D(-2, -2);
- (3) E(-3, 1), F(2, 1).
- 已知△ABC 的頂点坐标是A(2.1)、B(-2.3)、C(0.-1),求△ABC 三条中线的长度。

习题2-1 B

- 1. 在 x 轴和 y 轴上各求一点, 使这点到点 A(1, 2)和点 B(5, -2)的距离相等.
- 2. 已知点 A(4,1)、B(-3,2),在 y轴求点 C,使△ABC 的面积等于 12.
- 3. 已知点 M(1, 1) 平分线段 AB, 且 A(x, 3)、B(3, y), 求 x, y.
- 4. 已知点 A(1, -1)、B(3, 3)、C(4, 5), 求证这三点在一条直线上.
- 5. 已知点 A(1, 1)、B(5, 3)、C(0, 3), 求证△ABC 为直角三角形.
- 已知直角△ABC, ∠B为直角, AB=a, BC=b. 建立适当的坐标系,写出顶点 A、B、C的坐标,并求证斜边 AC的中点 M 到三个顶点的距离相等。
- 7. 已知□ABCD, A(0, 0)、B(x1, y1)、D(x2, y2), 求点 C 的坐标.
- 用坐标法证明定理:如果四边形 ABCD 是长方形,则对任一点 M, 等式 AM+CM=BM+DM²

成立.

探索与研究

在数轴上,运用两点距离的概念和计算公式,解下列方程。

1. |x+3|+|x-1|=5;

2. |x+3|+|x-1|=4:

3. |x+3|+|x-1|=3:

4. |x+3|-|x-1|=5;

5. |x+3|-|x-1|=4:

6. |x+3|-|x-1|=3.

计算机上的练习

- 在电子工作表①中,选择单元格区域,设计求两点距离的工作界面,然后计算习题 2-1A和B中的两点的距离。
- 2. 应用"几何画板"研究上面"探索与研究"中的第1题的解:
 - (1) 建立"几何画版"中的坐标系,在其中绘制点 A(-3,0)、B(1,0),(使用"图表"菜单)
 - (2) 隐藏 y 轴, 在 x 轴上取一点 P. (使用"显示"及"作图"菜单)
 - (3) 度量 P 与 A 及 P 与 B 的距离, 计算 | PA | + | PB | 的值, (使用度量菜单)
 - (4) 用操作箭头在数轴上拖动点 P, 观察点 P 在什么位置时 |PA|+|PB|=5.

说出这时点 P 在数轴上的坐标.

① 使用工作表是 OpenOffice 软件的一个组件,它是一种开放源码并可免费下载使用的软件.

直线的方程

2.2. 直线方程的概念与直线的斜率

1. 直线方程的概念

在初中, 我们学习过一次函数

y=kx+b $(k\neq 0)$

的图象,一次函数的图象是一条直线。例如一次函数

$$y = 2x + 1$$
,

当 x=0 时,y=1; x=1 时,y=3. 通过点(0, 1)和点(1, 3)画一条 直线,则这条直线就是这个函数的图象(图 2-11).

一般地,l 是函数 $y=kx+b(k\neq 0)$ 的图象,所表达的意义是: 如果点 P 在l 上,则它的坐标(x,y),満足关系

$$y=kx+b$$
, (*)

反之,如果点P的坐标(x, y)满足关系(*)式,则点P一定在l上.

我们再看在(*)式中, k=0 的特殊情况.

例如方程 y=2(图 2-11),无论 x 取何值, y 始终等于 2.虽然 它已不是一次函数,但方程 y=2(常值函数)的图象是一条通过点 (0,2)且平行于 x 轴的直线,这时称这条直线的方程为

$$\nu = 2$$
.

由于函数 $y=kx+b(k\neq0)$ 或 y=b 都可看成一个二元一次方

程,因此我们也可以说,方程 y=kx+b 的解和不垂直于x 轴的直线 l 上的点存在——对应关系,因此直线 l 是方程 y=kx+b 的 图象

一般地,如果以一个方程的解为坐标的点都是某条直线上的 点;反之,这条直线上点的坐标都是这个方程的解,那么这个方程 叫做这条直线的方程;这条直线叫做这个方程的直线。

由于方程 y=kx+b 的图象是一条直线,因而我们今后就常说 直线 y=kx+b.

2. 直线的斜率

直线 y=kx+b 被其上的任意两个不同的点所惟一确定(图 2-12)。因此,由这条直线上任意两点 $A(x_1, y_1)$, $B(x_2, y_2)$ 的坐标可以计算出 k 的值。

由于 x1、y1 和 x2、y2 是直线方程的两组解, 所以

$$y_1=kx_1+b$$
,

 $y_2=kx_2+b$.

两式相减,得 $y_2-y_1=kx_2-kx_1=k(x_2-x_1)$.

所以

$$k = \frac{y_2 - y_1}{x_2 - x_1}$$
 $(x_1 \neq x_2)$

(*)

由直线上两点的坐标求这条直线的斜率 k 与这两点在直线上的 顺序无关(结合课件 2202), 于是

$$k = \frac{y_1 - y_2}{r_1 - r_2}$$

如果令 $\Delta x = x_2 - x_1$, $\Delta y = y_2 - y_1$, 则 Δx 表示变量 x 的改变量, Δy 表示相应的 y 的改变量. 于是

$$k = \frac{\Delta y}{\Delta x}$$
. $(\Delta x \neq 0)$

通常,我们把直线 y=kx+b 中的系数 k 叫做这条直线的斜率,垂直于 x 轴的直线不存在斜率 (为什么?).

想想看: (1) 在函数方程 y=kx 中,如果 x 表示某物体运动的时间 (t), y 表示在时刻 x 时运动过的距离 (m),那么 k 表示的意义是什么? k=60, 120,…的具体意义是什么?

(2) 如果在函数方程 y=120x 中, x表示某商店销售某个商品的数量, y表示销售所得的总收入(元), 那么斜率 k=120 表示的意义是什么?

图 2-12

斜率.

· 82 ·

除去垂直于x轴的直线外,只要知道直线上两个不同点的坐标。由(x)式就可以算出该条直线的斜索

方程 y=kx+b 的图象是通过点(0,b)且斜率为 k 的直线.

对一次函数所确定的直线,它的斜率等于相应函数值的改变量 与自变量改变量的比值.直观上可使我们感知到斜率 k 的值决定了 这条直线相对于 x 轴的倾斜程度.

x 轴正向与直线向上的方向所成的角叫做这条直线的倾斜角。 我们规定,与x 轴平行或重合的直线的倾斜角为零度角。

由斜率 k 的定义可知:

k=0 时, 直线平行于x 轴或与x 轴重合.

k>0 时,直线的倾斜角为锐角; k 值增大,直线的倾斜角也随着增大.

k<0 时,直线的倾斜角为钝角; k 值增大,直线的倾斜角也随着增大,

垂直于 x 轴的直线的倾斜角等于 90°.

关于直线的斜率与倾斜角之间的关系,我们将在数学 4 中再进行讨论.

由以上的求解过程,我们可以写出求一条直线斜率的计算步骤,以便应用计算机进行计算.

- (1) 给直线上两点的坐标赋值: x1=?, x2=?, y1=?, y2=?;
- (2) 计算 $\Delta x = x_2 x_1$, $\Delta y = y_2 y_1$;
- (3) 如果 Δx=0, 则判定"斜率 k 不存在";
- (4) 如果 $\Delta x \neq 0$, 计算 $k = \frac{\Delta y}{\Delta x}$;
- (5) 输出斜率 k.

$$\mathbf{M}$$
; $x_1 = -2$, $x_2 = -5$, $y_1 = 0$, $y_2 = 3$;
 $\Delta x = -5 - (-2) = -3$, $\Delta y = 3 - 0 = 3$;
 $k = \frac{\Delta y}{\Delta x} = \frac{-3}{3} = -1$,

 $\mathbb{R} p \quad k = -1.$

例2 画出方程 3x+6y-8=0 的图象.

解:已知方程解出 y,得

$$y = -\frac{1}{2}x + \frac{4}{3}$$
.

这是一次函数的表达式,它的图象是一条直线.

当 x=0 时, $y=\frac{4}{2}$; 当 x=2 时, $x=\frac{1}{2}$.

在坐标平面内作点 $A(0, \frac{4}{2})$, $B(2, \frac{1}{2})$.

作直线 AB, 即为所求一次方程的图象(图 2-13)。

图 2-13

- 1. 把满足下列条件的直线的方程写成一次函数的形式。
- (1) 斜率 k=5, 且过点(0, -3);
 - (2) 斜率 k=-3, 且过点(3,-1), (提示: 用待定系数法)
 - 2. 经过下列两点的直线的斜率是否存在?如果存在,求其斜率,
- (1) (1, -1), (-3, 2); (2) (1, -2), (5, -2);
 - (3) (3, 4), (-2, -5);
- (4) $(3, 0), (3, \sqrt{3}).$

- 1. 已知点 A(-1,-1)、B(3,1)、C(0,5),分别求直线 AB、BC、CA 的斜率.
- 2. 求通过下列两点的直线的斜率(如果存在)和倾斜角,其中a、b、c是两两不相 等的实数: 马西亚 (2-14 10 15-1A 15 45 朱
 - (1) (a, c), (b, c):

- (2) (a, b), (a, c):
- (3) (a, a+b), (c, b+c).
- 3. 已知直线的斜率 k 和直线上的一点 P, 把直线方程写成一次函数的形式, 并在 同一坐标系中画出各条直线:
 - (1) k=3, P(0, 4);

- (2) k=1, P(3, 5);
- (3) k=-3, P(0, 4);
- (4) k=-1, P(3, 5).

2.2.2 直线方程的几种形式

1. 直线的点斜式方程和两点式方程

已知直线 l 过点 $P_0(x_0, y_0)$, 且斜率为 k(图 2-14), 我们求直线 l 的方程.

设点 P(x, y) 为直线 l 上不同于 $P_o(x_o, y_o)$ 的任一点,则直线 l 的经率 l 可由 P 和 P_o 两点的坐标表示;

$$k = \frac{y - y_0}{x - x_0}$$

EO

$$y-y_0=k(x-x_0)$$

(1)

方程(1)就是点 P(x,y)在直线 l 上的条件。在 l 上的点的坐标 和满足这个方程,坐标满足方程(1)的点也一定在直线 l 上。

方程(1)是由直线上一点 $P_o(x_0, y_0)$ 和斜率 k 所确定的直线方程,我们把这个方程叫做直线的点斜式方程.

特别地, 当 k=0 时, 直线方程变为

$$y=y_0$$
.

汶时, 直线平行于 x 轴.

如果一条直线通过点(0,b),且斜率为k(图 2-15),则直线的点 斜式方程为

$$y-b=k(x-0)$$
.

整理,得

这个方程叫做直线的斜截式方程. 其中 k 为斜率, b 叫做直线 y=kx+bfe y 轴 l 的截距, 简称直线的截距.

这种形式的方程,当 k 不等于零时,就是我们熟知的一次函数的解析式。

- (1) 直线 l1: 过点(2, 1), k=-1;
- (2) 直线 12: 过点(-2, 1)和点(3, -3).

解: (1) 直线 l_1 过点(2, 1), 斜率 k=-1.

由直线的点斜式方程,得 y-1=-1(x-2).

整理,得与的方程为

图 2-14

图 2-15

函数 y=kx+b 与方程 y=kx+b, 这两种说法的含义 相同吗?

为了统一答案 的形式, 如没有特 别要求,直线方程 都化为 ax+by+c=0 形式

$$x+y-3=0$$

(2) 我们先求出盲线的斜率, 再由点斜式写出盲线方程

直线 l_2 的斜率 $k = \frac{-3-1}{3-(-2)} = -\frac{4}{5}$, 又过点(-2, 1), 由直线的 点斜式方程,得

$$y-1=-\frac{4}{5}[x-(-2)],$$

整理,得し的方程

$$4x+5y+3=0$$
.

例 2 求过点(0,1), 斜率为 $-\frac{1}{2}$ 的直线的方程.

解: 直线过点(0,1),表明直线在 y 轴上的截距为 1,又直线斜 率为 $-\frac{1}{2}$,由直线的斜截式方程,得所求的直线方程为

$$y = -\frac{1}{2}x + 1$$
.

已知两点 $A(x_1, y_1)$ 、 $B(x_2, y_2)$,且 $x_1 \neq x_2$, 求直线 AB 的方程。

经过讨论,我们得到直线 AB 的方程为

$$\frac{y-y_1}{y_2-y_1} = \frac{x-x_1}{x_2-x_1} (x_1 \neq x_2)$$

这种形式的方程叫做直线的两点式方程.

1. 写出满足下列条件的直线方程,

- (1) 过点(3, 2), 斜率为 $\frac{2}{3}$; (2) 过点(-1, 2), 斜率为 $\sqrt{3}$;
- (3) 过点(0,2), 斜率为-1; (4) 过点(-3,1), 平行于 x 轴;
- (5) 过点(2,-1), (-2,3); (6) 过点(-3,1), (1,4).

2.2 直线的方程

- 2. 根据下列直线方程,分别写出各直线经过的一点和直线的斜率 k.
- (1) v-2=x+1; (2) $v+4=\sqrt{3}(x-2)$;
 - (3) y = -4x + 3:

- (4) $y = \frac{2}{5}x 3$.
- 3. 求满足下列条件的直线的方程, 并画图:
 - (1) 过原点, 斜率为-2:
- (2) 过点(0,3),(2,1);
- (3) 过点(2, 3), 平行于y轴; (4) 过点(-2, 1), 平行于x轴;
- (5) 斜率为 5, 在 y 轴上的截距是-2:
- (6) 斜率为-1, 在 y 轴上的截距是 5. (6)

- 1. 在直线方程 v-1=k(x+1)中, k 取過所有实數, 可得无數备直线, 这无數备直 线都过哪一点?
- 2. 已知直线 $\nu-3=k(x-5)$ 过点(-1, -2), 求 k 的值.
- 3. 求下列过两已知点的直线方程:
 - (1) A(-3, 6), B(7, -4); (2) C(3, -5), D(6, 8);
 - (3) E(1, 5), F(6, -3); (4) G(-5, 7), H(-3, -8).
- 4. 已知直线 l 在x 轴上的截距是a, 在v 轴上的截距是b, 且 $a \neq 0$, $b \neq 0$. 求证直线 1的方程可写为

$$\frac{x}{a} + \frac{y}{b} = 1$$
.

(这种形式的直线方程,叫做直线的截距式方程.)

2. 直线方程的一般式

我们在前面学习了直线方程的几种形式,它们都是二元一次方 程,下面我们进一步研究直线与二元一次方程的关系.

我们知道,在坐标平面内,除垂直于 x 轴的直线外,其他直线 都有斜率,它们的方程都可以写成形式:

$$y=kx+b$$
.

垂直于x轴的直线(即y轴和平行于y轴的直线),其上所有点的横坐 标是一个定值(设为 x_1),纵坐标可取遍所有实数,它的方程可写成 コ 第二章 平面解析几何初步

x=x

的形式。 这也是关于 x、 v 的一次方程, 其中 v 的系数是 0.

这样,对于每一条直线都可求出它的方程,而且是二元一次方 程. 这也就是说,

直线的方程都是关于 x、y 的二元一次方程.

反过来要问,是否任何关于 x、y 的二元一次方程都表示一条 直线?

关于x、y的二元一次方程的一般形式是

$$Ax+By+C=0$$
, (*)

其中 A、B 不同时为零. 下面分 $B\neq 0$ 和 B=0 两种情况加以讨论.

(1) 当 B≠0 时, 方程(*)可化为

$$y = -\frac{A}{B}x - \frac{C}{B}$$
.

这就是直线的斜截式方程. 它表示斜率为 $-\frac{A}{B}$, 在y轴上的截 距为 $-\frac{C}{R}$ 的直线.

(2) 当 B=0 时,由于 A、B 不同时为零,必有 $A\neq 0$,于是方程 (*)可化为

$$x = -\frac{C}{A}$$
.

它表示--条与 v 轴平行或重合的直线,

根据以上讨论,我们又得到下面的结论:

关于x、y的二元一次方程都表示一条直线.

我们把方程

叫做直线的一般式方程.

例3 已知直线通过点(-2,5),且斜率为 $-\frac{3}{4}$,求此直线 的一般式方程,

解:由直线方程的点斜式,得

$$y-5=-\frac{3}{4}(x+2)$$
.

整理, 得所求直线方程为

$$3x+4y-14=0$$
.

求直线 l: 2x-3y+6=0 的斜率及在 y 轴上的截距. 解, 已知直线方程可化为

2.2 直线的方程 3 (1)

 $y = \frac{2}{3}x + 2$,

所以直线 l 的斜率 $k=\frac{2}{3}$, 在 y 轴上的截距是 2.

- 1. 已知下列直线方程, 求直线的斜率及其在 v 轴上的截距:
 - (1) 2x-3y-6=0;

(2) 3x-y-7=0;

(3) 2x-5y=0;

- (4) x+y=3.
- 2. 求下列直线与两条坐标轴围成的三角形的面积:
 - (1) 3x-y+1=0;

- (2) 5x-3y+2=0;
- (3) x+y-1=0;
- (4) x+3y-6=0.
- 巴知□ABCD,其中三个顶点坐标为A(0,0)、B(3,0)、C(5,3),求它的对 角线AC、BD 所在直线的方程。

- 1. 在直线方程 Ax+By+C=0 中, A、B、C 满足什么条件时, 直线有如下性质:
 - (1) 过坐标原点;
- (2) 与两条坐标轴都相交;
- (3) 只与 x 轴相交:

(4) 只与 y 轴相交;

(5) 与 x 轴重合:

- (6) 与 v 轴重合。
- 2. 已知点 A(-3, 2)、B(1, -4),求 AB 的垂直平分线的方程.

(提示:利用两点距离公式)

3. 已知点 A(-1, 2)、B(2, 1), C(0, 4), 求△ABC 三条边所在直线的斜率。

2.2.3 两条直线的位置关系

1. 两条直线相交、平行与重合的条件

已知两条直线的方程为

 $l_1: A_1x+B_1y+C_1=0,$

 $l_2: A_2x+B_2y+C_2=0.$

现在我们来研究这两条直线相交、平行、重合的条件. 为此,我们解方程组

$$\begin{cases}
A_1x + B_1y + C_1 = 0 & \text{(1)} \\
A_2x + B_2y + C_2 = 0 & \text{(2)}
\end{cases}$$

①× B_2 -②× B_1 ,得

$$(A_1B_2-A_2B_1)x+B_2C_1-B_1C_2=0$$

当 A₁B₂-A₂B₁≠0 財、得

$$x = \frac{B_1C_2 - C_1B_2}{A_1B_2 - A_2B_1};$$

再由① $\times A_2$ -② $\times A_1$, 当 A_1B_2 - $A_2B_1\neq 0$ 时, 可得

$$y = \frac{A_2C_1 - A_1C_2}{A_1B_2 - A_2B_1}.$$

因此, 当 A_1B_2 $-A_2B_1 \neq 0$ 时, 方程组有惟——组解 x, y. 这时, 两条直线相交, 交点的坐标就是(x, y).

当 $A_1B_2-A_2B_1$ =0,而 $B_1C_2-C_1B_2\neq 0$ (或 $A_2C_1-A_1C_2\neq 0$)时,方程组无解,这说明两条直线没有公共点,即两条直线平行。

如果 A_2 、 B_2 、 C_2 全不为零,则上述两条直线平行的条件可转 化为

$$\frac{A_1}{A_2} = \frac{B_1}{B_2} \neq \frac{C_1}{C_2}$$
.

如果把上式中的不等号改成等号, 刚

$$\frac{A_1}{A_2} = \frac{B_1}{B_2} = \frac{C_1}{C_2} = \lambda$$
.

得

$$A_1 = \lambda A_2$$
, $B_1 = \lambda B_2$, $C_1 = \lambda C_2 (\sharp + \lambda \neq 0)$. (*)

于是,我们考虑在(*)条件下,这时两个方程中未知数的对应 的系数成比例,直线 l_1 的方程变为

$$\lambda(A_2x+B_2y+C_2)=0.$$

由此可知,两个方程的解集相同.可知两个方程表示同一条直线,即直线 4 与 6 重合.

总结以上分析,我们得到:

l1 与 l2 相交的条件是

$$A_1B_2 - A_2B_1 \neq 0$$
 或 $\frac{A_1}{A_0} \neq \frac{B_1}{B_0}$

L 与 L 平行的条件是

$$A_1B_2 - A_2B_1 = 0$$
 且 $B_1C_2 - C_1B_2 \neq 0$
或 $\frac{A_1}{A_2} = \frac{B_1}{B_2} \neq \frac{C_1}{C_2}$

1, 与 l2 重合的条件是

$$A_1 = \lambda A_2$$
, $B_1 = \lambda B_2$, $C_1 = \lambda C_2 (\lambda \neq 0)$

$$\vec{B} \vec{A}_2 = \frac{B_1}{B_2} = \frac{C_1}{C_2}$$

根据上述结论,我们可以写出判断直线 4 和 4 是否相交、平 行、重合的计算步骤如下;

- (1) 给 A₁、B₁、C₁, A₂、B₂、C₂ 赋值;
- (2) 计算 $D_1 = A_1B_2 A_2B_1$, $D_2 = B_1C_2 C_1B_2$;
- (3) 若 D₁≠0, 则 l₁ 和 l₂ 相交:
- (4) 若 D₁=0, D₂≠0, 则 l₁ 和 l₂ 平行;
- (5) 若 D₁=0, D₂=0, 则两条直线重合.

2 思考与讨论

如何用两条直线的斜率 k1、k2 判定两条直线平 行或重合?

证明你的结论.

例 已知直线 l_1 : $Ax+By+C_1=0$, l_2 : $Ax+By+C_2=0$, 求证: 当 $C_1 \neq C_2$ 时, l_1 与 l_2 平行.

证明: 因为 AB-BA=0,

所以 l₁ 与 l₂ 平行或重合.

 $BC_2 - BC_1 = B(C_2 - C_1)$,

当 $B\neq 0$ 时,已知 $C_1\neq C_2$,所以 $BC_2-BC_1\neq 0$,因此两直线平行;

当 B=0 时,由直线方程的定义,知 $A\neq 0$,于是两条直线的方程变为

$$x=-\frac{C_1}{A}, \qquad x=-\frac{C_2}{A},$$

这是两条与x轴垂直的直线,所以它们平行或重合。又由于 $C_1 \neq C_2$,所以它们是平行的直线。

由例 1 所证结论,我们可以把与直线 Ax+By+C=0 平行的直线的方程,表示成

 $Ax+By+D=0(D\neq C)$.

解:设所求的直线方程为

2x + 3y + D = 0.

由于所求直线过点(1, -4),代人方程,得 D=10. 因此,所求直线方程为

2x+3y+10=0.

想一下,怎样根据直线方程的点斜式求出这条直线的方程.

1. 求下列两条直线的交点,并作图:

- (1) 3x-4y+8=0, 5x+3y-15=0;
- (2) x-y=1, 3x-4y-12=0.

2. 判断下列各组中两直线的位置关系:

- (1) l_1 : 3x+4y-5=0, l_2 : 4x-2y-1=0;
- (2) l_1 : 3x+4y=5, l_2 : 6x+8y=7;
- (3) $l_1: 2y-3=0, l_2: 3y+5=0;$
- (4) l_1 : x-3y-4=0, l_2 : 2x-6y=8.

3. 求过点 P 且平行于直线 l 的直线的方程:

- (1) P(2, 3),
- l: 2x+y-5=0;
- (2) P(5, 0),
- l: 2x-3y-7=0.

1. 判断下列各组中两直线的位置关系:

- (1) l_1 : y=3x+4, l_2 : 2x-6y+1=0;
- (2) l_1 : 2x-6y+4=0, l_2 : $y=\frac{x}{2}+\frac{2}{3}$;
- (3) $l_1 \cdot (\sqrt{2}-1)x+y=3$, $l_2 \cdot x+(\sqrt{2}+1)y=2$.
- 2. 对于直线方程 2x+y+a=0, 当 a 取不同的数值时,它们表示的直线有什么关 系?在直角坐标系中,分别作出 a=0,1,2 时方程表示的直线.

2. 两条直线垂直的条件

已知两条直线,

 $l_1: A_1x+B_1y+C_1=0$

 $l_2: A_2x+B_2y+C_2=0.$

由于直线 L 与直线 A(x+B)y=0 平行或重合, 直线 L 与直线 $A_2x+B_2y=0$ 平行或重合,因此我们研究 l_1 和 l_2 垂直的条件时, 可转化为研究直线

$$l_1': A_1x+B_1y=0 \text{ fil } l_2': A_2x+B_2y=0$$

假定 1、12 都不与坐标轴平行或重合.

当 1, 1 1, 时(图 2-16).

通过坐标原点作直线 4'//4 和 4'//4,则 4'和 4'互相垂直, 并且不与坐标轴重合.

在直线 l_1' 、 l_2' 上,分别取两点 $A(x_1, y_1)$ 、 $B(x_2, y_2)$ (不含 原点), 由勾股定理, 得

$$x_1^2 + y_1^2 + x_2^2 + y_2^2 = (x_1 - x_2)^2 + (y_1 - y_2)^2$$
.

化简,得

$$x_1x_2+y_1y_2=0$$
.

因为直线 l_1' 、 l_2' 不是坐标轴,所以 $B_1\neq 0$, $B_2\neq 0$,则

$$y_1 = -\frac{A_1}{B_1}x_1$$
, $y_2 = -\frac{A_2}{B_2}x_2$.

代人上式,得

$$x_1x_2\left(1+\frac{A_1A_2}{B_1B_2}\right)=0.$$

图 2-16

因为 A、 B 都不是原点,所以 $x_1x_2\neq 0$,因此

$$1 + \frac{A_1 A_2}{B_1 B_2} = 0$$
, (*)

即

$$A_1A_2+B_1B_2=0$$
.

(* *)

$$A_1A_2+B_1B_2=0.$$

由于上面推导的每一步都是可逆的,因此,由(**)式可以证

明两条直线 11'和12'垂直. 从而也就证明了 11 与 12 垂直. 假定 1、12 中有一条直线与坐标轴平行或重合.

当 4 1 6 时,可以推出 4、6 中的另一条也与坐标轴平行或重 合, 因此同样有

$A_1A_2 + B_1B_2 = 0$.

反讨来, 由条件 A, A, +B, B, =0 也可以推出 L, | L,

总结以上讨论,我们得到,坐标平而内的任意两条直线 / 和 /。 垂直的条件是

$$A_1A_2+B_1B_2=0$$

设 l_1 的斜率 $k_1 = -\frac{A_1}{B_1}$, l_2 的斜率 $k_2 = -\frac{A_2}{R_1}$,

由上面推导过程中的(*)式,又可以得出两条斜率存在的直线/ 和 6 垂直的条件是

$$k_1k_2 = -1$$

根据上述结论,我们可以写出判断直线 1. 和 1. 是否互相垂直的 计算步骤:

- (1) 给A, B, C, A, B, C, 赋值:
- (2) 计算 M=A₁A₂+B₁B₂;
- (3) 若 M=0, 则 l₁ ⊥l₂; 若 M≠0, 则 l₁ 与 l₂ 不垂直.
- 例3 判断下列各组两条直线是否垂直:
- (1) 2x-4y-7=0 = 2x+y-5=0:
- (2) 2x=7 与 3y-5=0.
- 解, (1) 因为 $A_1=2$, $B_1=-4$, $A_2=2$, $B_2=1$, 得 $A_1A_2+B_1B_2=2\times2+(-4)\times1=0$. 所以这两条直线垂直.
 - (2) 因为 A₁=2, B₁=0, A₂=0, B₂=3, 得 $A_1A_2+B_1B_2=2\times0+0\times3=0$. 所以这两条直线垂直.

2.2 直线的方程 3 73 74

此题也可以直接看出直线 2x=7 平行于 y 轴,直线 3y-5=0平行干 x 轴, 从而可以判断这两条直线垂直,

例 求证: 直线 $Ax+By+C_1=0$ 与直线 $Bx-Ay+C_2=0$ 垂直.

证明: 因为

AB+B(-A)=0.

所以这两条直线垂直,

一般地,我们可以把与直线 Ax+By+C=0 垂直的直线方程表 示为

Bx-Ay+D=0.

例 5 求过点(1, 2)且与直线 2x+y-10=0 垂直的直线 方程.

解:设所求的直线方程为x-2y+C=0, 因为直线过点(1, 2),代入方程,得C=3. 所以,所求直线方程为

x-2y+3=0.

- 1. 判断下列各组中的两条直线是否垂直:
 - (1) y=x, 2x+2y-7=0; (2) x+4y-5=0, 4x-3y-5=0;
 - (3) x=3, y=2; (4) 2x-y=0, x-2y=0.
- 2. 找出下列直线中互相垂直的两条直线:
 - $l_1: 2x+3y-7=0,$ $l_2: 3x+2y-9=0,$
- $l_3: 3x-2y-4=0$.

 $l_i: x = -3,$

- $l_5: 2y+5=0,$ $l_6: 4x-6y+5=0.$
- 3. 已知: 点 A(2, 5), B(6, -1), C(9, 1). 求证: AB_BC.
- 4. 求下列过点 P 且垂直于直线 l 的直线方程:
 - (1) P(2, 3), l: x-y-2=0; (2) P(4, -3), l: x+5y-3=0;
 - (3) P(3, -5), l: x+y=0.

- 1. 已知直线 ax+2y-1=0 与直线 2x-3y-1=0 垂直, 求 a 的值.
- 2. 已知直线 l_1 : (m+2)x-(m-2)y+2=0, 直线 l_2 : 3x+my-1=0, 且 $l_1 \perp l_2$, 求 m的值.
- 3. 判断下列颞中两个方程表示的直线是否垂直。

(1)
$$\frac{x-1}{2} = \frac{y+2}{3} \pm \frac{x+4}{3} = \frac{y-1}{-2}$$
;

(2)
$$\frac{x+1}{3} = \frac{y-1}{4} + \frac{x-3}{4} = \frac{y+5}{3}$$
.

4. 已知 A(-1, 2) 、B(3, -2)、C(1, 5), 求过点 C 且与直线 AB 垂直的直线 方程.

点到直线的距离

设坐标平面上(图 2-17), 有点 P(x1, v1)和直线 l: Ax+By+C=0(A, B不全为零).

我们来寻求点到直线 / 距离的算法.

作直线 m 通过点 $P(x_1, y_1)$, 并且与直线 l 垂直, 设垂足为 $P_0(x_0, y_0)$. 容易求得直线 m 的方程为 $B(x-x_1)-A(y-y_1)=0$.

(*)

由此得
$$B(x_0-x_1)-A(y_0-y_1)=0$$
.

因为点 P_0 又在直线 l 上,可知 $Ax_0+By_0+C=0$,

 $E = -Ax_0 - By_0$

 $\text{MFLI} \quad Ax_1 + By_1 + C = Ax_1 + By_1 - Ax_0 - By_0$ $\mathbb{P} A(x_1-x_0)+B(y_1-y_0)=Ax_1+By_1+C.$

把等式(*)和(**)两边平方后相加,整理可得

 $(A^2+B^2)[(x_1-x_0)^2+(y-y_0)^2]=(Ax_1+By_1+C)^2,$

$$\mathbb{H} (x_1 - x_0)^2 + (y - y_0)^2 = \frac{(Ax_1 + By_1 + C)^2}{A^2 + B^2}.$$

容易看出,等式左边即为点 $P(x_1, y_1)$ 到直线 l 的距离的平方. 由此我们就可以得到点 $P(x_1, y_1)$ 到直线 l 的距离 d 的计算公式:

图 2-17

$$d = \frac{|Ax_1 + By_1 + C|}{\sqrt{A^2 + B^2}}$$

我们可写出求点 $P(x_1, y_1)$ 到直线 Ax+By+C=0 的距离的计算步骤。

- (1) 给占的坐标赋值: r₁=?, v₁=?;
- (2) 给 A、B、C 赋值: A=?, B=?, C=?;
- (3) 计算 $d = \frac{|Ax_1 + By_1 + C|}{\sqrt{A^2 + B^2}}$;
- (4) 给出 d 的值.

$$2x+y-5=0$$
.

因为 $x_1=-1$, $y_1=2$, A=2, B=1, C=-2.

所以由点到直线的距离公式,得

$$d = \frac{|2 \times (-1) + 1 \times 2 - 5|}{\sqrt{2^2 + 1^2}}$$

$$=\frac{5}{\sqrt{5}}=\sqrt{5}$$
.

(1) 求证: 两条平行线 l₁: Ax+By+C₁=0 与
 l₂: Ax+By+C₂=0的距离是

$$d = \frac{|C_1 - C_2|}{\sqrt{A^2 + B^2}}.$$

(2) 求平行线 l_1 : 12x-5y+8=0 与 l_2 : 12x-5y-24=0 的距 **第**(图 2-19).

分析: 两条平行线的距离,就是其中一条直线上任取一点,这 个点到另一条直线的距离。

解: (1) 在 l_1 上任取一点 $P(x_1, y_1)$,则 $Ax_1+By_1=-C_1$,点 P 到 l_2 距离

$$d = \frac{|Ax_1 + By_1 + C_2|}{\sqrt{A^2 + B^2}} = \frac{|C_2 - C_1|}{\sqrt{A^2 + B^2}}.$$

(2) 由(1) 所得公式,直线 l_1 与 l_2 的距离为

$$d = \frac{|-24-8|}{\sqrt{12^2+5^2}} = \frac{32}{13}.$$

图 2-18

图 2-19

即平行线 4 与 12 的距离是32

- 1. 求下列点到直线的距离:
- (1) $O(0, 0), l_1: 3x+4y-5=0$;
- (2) $A(2, -3), l_2: x+y-1=0;$
- (3) $B(1, 0), l_3: \sqrt{3}x+y-\sqrt{3}=0;$
- (4) $C(1, 2), l_4: 3x+y=0;$
- (5) $D(-2, 3), l_5: y-7=0.$
- 2. 求两条平行线 2x+3y-8=0 和 2x+3y+18=0 间的距离.

- 1. 求坐标原点到下列直线的距离:
 - (1) l_1 : 4x-3y-15=0;

(2) l_2 : x-y=0;

- (3) l_3 : Ax+By+C=0.
- 2. 求平行线 3x-2y-5=0 与 6x-4y+3=0 间的距离.
- 3. 在 x 轴上求与直线 3x+4y-5=0 的距离等于 5 的点的坐标.

习题2-2 A

- 已知长方形 ABCD 在 x 轴的上方, 并且 A(0, 0)、B(5, 0)、C(5, 3), 求直线 AC 和 BD 的斜率。
- 2. 根据下列条件分别写出直线的方程:
 - (1) 斜率是√3, 且经过点 A(5, 3);
 - (2) 过点 B(-3, 0), 且垂直于 x 轴;
 - (3) 斜率为 4, 在 y 上的截距为-2;
 - (4) 在 y 轴上的截距为 3, 且平行于 x 轴;
 - (5) 经过 A(-1, 5)、B(2, -1)两点:
 - (6) 在 x、y 轴上的截距分别是-3, -1.
- 3. 已知直线的斜率 k=2, 且通过点 A(3, 5); 又知点 B(a, 7)、C(-3, b) 都在这条直

线上, 求a、b值.

- 4. 已知直线 x=5 和直线 y=3, 求这两条直线与两条坐标轴围成的图形的面积.
- 5. 已知直线 3x-y+5=0 和直线 x=3, 求这两条直线与 x 轴围成的三角形的面积.
- 已知一个三角形的三个顶点坐标是 A(8, 5)、B(4, -2)、C(-6, 3), 求分别经过 其中两边中点所作的三条直线的方程。
- 菱形的两条对角线分别在x轴、y轴上,并且它们的长分别等于8和6,求菱形各 边所在直线的方程。
- 8. 总结直线方程的各种形式,并指出它们之间的联系.
- 9. 写出下列直线的方程,并化为一般式:
 - (1) 过点(1, 3), 斜率 k=0;
 - (2) 过点(-1, -2), (3, 5);
 - (3) $4 = \frac{1}{2}$, $4 = \frac{1}{2}$,
 - (4) 过点(2,3),且垂直于 x 轴;
 - (5) 过点(1,4),平行于 x 轴;
 - (6) 过点(-2, 1), 平行于 v 轴:
 - (7) 过点(3,0),(0,4);
 - (8) 过点(2, 1), (0, 3).
- 10. 求出下列直线的斜率:

(1)
$$\frac{x-3}{1} = \frac{y+2}{-4}$$
;

(5) 3x-2y+5=0:

(2) x+2y-1=0;

(3) $y = \frac{3}{2}$;

- (4) $\frac{x}{3} \frac{y}{5} = 1$;
- (7) 过点 A(-1,0)、B(-5,4)的直线。
- 11. 求下列直线的斜率及其在 y 轴上的截距:
 - (1) x+y-5=0:

(2) x-y+1=0;

(6) 22x-11y-7=0:

(3) x+4y-3=0;

- (4) y-5=0;
- (5) 过点(5, 3)、(12, 3)的直线;
- (6) 过点 A(1, -5)、B(4, 1)的直线.
- 求下列直线在 x 轴和 y 轴上的截距, 并画图:
 - (1) 2x-3y+4=0;

(2) 5x+3y=15;

(3) $y = \frac{1}{2}x$;

- (4) $\frac{x}{4} + \frac{y}{5} = 1$.
- 13. 分别求满足下列条件的直线的方程并化为一般式:
 - (1) 经过点 C(3, 2), 且与直线 4x+v-2=0 平行;
 - (2) 经过点 D(2, -3), 且平行于过两点 E(1, 2)、F(-1, -5)的直线;
 - (3) 经过点 A(2, 1), 且与直线 x+3y-3=0 垂直;

- (4) 经对点 B(3,0), 目与直线 2x+v-5=0 垂直.
- 14. 判断下列每小题中直线的位置关系,如果它们相交,则求出它们的交点,
 - (1) 2x+y-11=0, x+3y-18=0.
 - (2) 2x-3y-4=0, 4x-6y-8=0;
 - (3) 3r-4y-7=0, 12r-16y-7=0,
 - (4) 2r+5y-6=0, 2r-5y-6=0.
- 15. 判断下列每小题中盲线是否平行或垂直。
- (1) x+2y-7=0, 2x+4y-7=0:

 - (2) 2r+3v-4=0, 3r-2v+1=0: (3) x+3y-6=0, x-3y+8=0:
 - (4) 4x-y+3=0, 3x+12y-11=0.
- 16. (1) 已知直线 3x+(1-a)y+5=0 与直线 x-y=0 平行, 求 a 的情;
- (2) P. 知直线(a-4)x+y+1=0 与直线 2x+3y-5=0 垂直, 求 a 的值.
- 17. 已知点 A(-7, 4), 点 B(-5, 6), 求线段 AB 的垂直平分线的方程,
- P.知点A(-3,-1),点B(3,5),求在x轴上見到A、B的距离相等的点的坐标。 19. 求点到直线的距离:
- - (1) A(2, 3), $l_1: 2x-y+4=0$; (2) B(-5, 7), $l_2: 12x+5y-1=0$;
 - (3) $C(-1, 4), l_3: x-2=0;$
- (4) D(1, -2), l_i : 2y+3=0.
- 20. 已知点 A(a, 2) 到直线 3x-4v-2=0 的距离等于 4, 求 a 的值。

习题2-2 B

- 1. 三条直线 4、4、4 的位置如图所示,它们的斜率分别为 k1、 k_2 、 k_3 . 试比较 k_1 、 k_2 、 k_3 的大小.
- 2. 分别求直线 3x-4y-5=0 关于 x 轴、y 轴对称的直线的 方程.
- 3. 如果直线 Ax+By+C=0 通过第一、二、三象限, 试确定 $A \cdot C 和 B \cdot C$ 的正负. 4. 如果直线 l 沿 x 轴负方向平移 3 个单位, 再沿 ν 轴的正方向平

(第1顯)

- 移1个单位后又回到原来的位置, 求直线 1的斜率.
- 5. 已知通过点(-2, 2)的直线与两条坐标轴围成的三角形的面积等于12, 这样的直线 有几条? 求出这些直线的方程。
- 6. 求 l₁: 2x-y+1=0, l₂: x+y+5=0, l₃: x=0, l₄: x=3 四条直线所围成的图形 的面积.
- 7. 函数 v=|x+3|的图象由两条射线组成,求这两条射线所在直线的方程.

2.2 直线的方程]

- 8. 函数 v=|x+1|+|x-1| 的图象由线段组成,求每条线段所在直线的方程.
- 9. 已知 A(1, 1), B(-4, 5), C(x, 13) 三点共线, 求 x 的值.
- 10. (1) 已知△ABC 的三个顶点坐标为A(8, 5), B(4, -2), C(-6, 11), 分别求动 AB、AC所在直线的方程:
 - (2) 已知△ABC 的三个顶点坐标为A(0,5), B(1,-2), C(-6,4), 求 BC 边 上的中线所在直线的方程,
 - (3) 已知点 A(-1, 2), B(2, 1), C(0, 4), 求△ABC 三条高所在直线的方程,
- 11. 菱形的两条对角线分别等于 8、6、较长的对角线位于直线 y=x 轴上,且中点的横 坐标为2, 求菱形各边所在直线的方程,
- 12. 求满足下列条件的直线的方程:
 - (1) 经过两条直线 2x+y-8=0 和 x-2y+1=0 的交点, 且平行于直 线4x-2y-7=0:
 - (2) 经过两条直线 2x-3y+10=0 和 3x+4y-2=0 的交点, 且垂直于直 线3x-2y+4=0.
 - (3) 求到两条直线 x+y-3=0 和 x-7y+5=0 距离相等的点的轨迹。
- 13. 求平行线 3x+4y-10=0 和 6x+8y-7=0 的距离.
- 14. 三条直线 ax+2y+8=0, 4x+3y=10, 2x-y=10 相交于一点, 求 a 的值.
- 15. 求过点 P 且平行于直线 l 的直线的方程:
 - (1) P(5, 2), l: 3x-y+1=0;
- (2) P(-1, 4), $l \cdot 5r 3v + 2 = 0$;
- (3) P(-3, -4), l: x+y=0;
- (4) P(1, 2), l: x+3y=0.
- 16. 求过点 P 且垂直于直线 l 的直线的方程:
 - (1) P(-2, 1), l; 3x+y-3=0; (2) P(2, 0), l; x-3y-4=0;
 - (3) P(-1, 4), $l \cdot x-3=0$.
- 17. 光线从点 M(-2, 3) 射到 x 轴上一点 P(1, 0) 后,被 x 轴反射,求反射光线所在的
 - 直线方程. (提示: 设点 M' 是点 M' 关于 x 轴的对称点,则直线 M' P 是反射光线所在直线。)
- 18. 已知直线 l: x+y-3=0, 求点 A(-1, 1) 关于直线 l 的对称点 A' 的坐标。
- (提示: 先求出过点 A 且垂直于 l 的直线 l, 的方程, 再求出两直线交点, 然后利用 中点公式求出 A'的坐标。)

计算机上的练习

在电子工作表中,选择单元格区域,计算习题 2-2A 中有关点到直线的距离的练习.

圆的方程

圆的标准方程

我们知道,平面内到一定点的距离等于定长的点的轨迹是圆. 定点是圆心,定长是圆的半径.

现在求以 C(a, b) 为圆心, r 为半径的圆的方程(图 2-20). 设 M(x, y) 是圆 C 上的任意一点.

点 M 在圆 C 上的条件是

|CM|=r.

也就是说,如果点 M 在圆 C 上,则 |CM| = r,反之,如果 |CM| = r,则点 M 在圆 C 上.

由两点间的距离公式, 所说条件可转化为方程表示:

$$\sqrt{(x-a)^2+(y-b)^2}=r$$
.

两边平方,得

$$(x-a)^2 + (y-b)^2 = r^2$$
 (1)

显然、圆 C 上任意一点 M 的坐标(x, y)适合方程(1); 如果平面上一点 M 的坐标(x, y)适合方程(1), 可得 (CM |=r, 则点 M 在圆C 上, 所以方程(1)就是以点C(a, b)为圆心,r 为半径的圆的方程, 叫做圆的标准方程。

如果圆心在坐标原点(图 2-21), 这时 a=0, b=0, 圆的标准

P(x,y)

图 2-21

方程就是

$$x^2 + y^2 = r^2$$

容易看出,如果点 $M_1(x_1, y_1)$ 在圆外,则点到圆心的距离大于圆的半径 x_1 即

$$(r_1-a)^2+(y_1-b)^2>r^2$$
:

如果点 $M_{\epsilon}(x_2, y_2)$ 在圆内,则点到圆心的距离小于圆的半径 r,即 $(x_2-a)^2+(y_2-b)^2 < r^2$.

例 】 根据下列条件,求圆的方程:

- (1) 圆心在占 C(-2, 1), 并讨占A(2, -2);
- (2) 圆心在点 C(1, 3), 并与直线 3x-4y-6=0 相切;
- (3) 讨占(0, 1)和占(2, 1), 半径为/5

分析: 圆心和半径是圆的两要素, 只要确定圆心坐标和半径就可以写出圆的方程.

解: (1) 所求圆的半径

$$r = |CA| = \sqrt{(2+2)^2 + (-2-1)^2} = 5.$$

因为圆的圆心为(-2,1),所以所求圆的方程为

$$(x+2)^2+(y-1)^2=25$$
.

(2) 因为直线 3x-4y-6=0 是所求圆的切线, 所以圆心 (1, 3)到这条直线的距离等于半径, 根据点到直线的距离公式, 有

$$r = \frac{|3 \times 1 - 4 \times 3 - 6|}{\sqrt{3^2 + 4^2}} = \frac{15}{5} = 3.$$

所以, 所求圆的方程为

$$(x-1)^2+(y-3)^2=9$$
.

(3) 设圆心坐标为(a, b), 则圆的方程为

$$(x-a)^2+(y-b)^2=5.$$

已知圆过点(0,1),(2,1),代入圆的方程,得

$$\begin{cases} a^2 + (1-b)^2 = 5 \\ (2-a)^2 + (1-b)^2 = 1 \end{cases}$$

解得
$$\begin{cases} a_1 = 1 \\ b_2 = -1 \end{cases}$$
 或
$$\begin{cases} a_2 = 1 \\ b_3 = 3 \end{cases}$$

因此, 所求圆的方程为

$$(x-1)^2+(y+1)^2=5$$
 $\exists x$ $(x-1)^2+(y-3)^2=5$.

例2 求过点 A(6,0)、B(1,5),且圆心在直线 l; 2x-7y+8=0上的圆的方程(图 2-22).

图 2-22

分析:由题意得,圆心在线段 AB 的垂直平分线 m 上,又在直 线 l 上,所以圆心是直线 m 与 l 的交点,将直线 l 和 m 的方程联 立,解方程组,可以求出圆心坐标,再由圆心和圆上一点的坐标可 以求出圆的半径。

解法 1: 直线 AB 的斜率 $k = \frac{5-0}{1-c} = -1$,

所以 AB 的垂直平分线 m 的斜率为 1.

AB 的中点的横坐标和纵坐标分别为

$$x = \frac{6+1}{2} = \frac{7}{2}$$
, $y = \frac{0+5}{2} = \frac{5}{2}$,

因此, 直线 m 的方程为

$$y - \frac{5}{2} = 1(x - \frac{7}{2}),$$

r = v - 1 = 0

又圆心在直线 l 上,所以圆心是直线 m 与直线 l 的交点。解联 立方程组

$$\begin{cases} x - y - 1 = 0 \\ 2x - 7y + 8 = 0 \end{cases}$$

所以圆心坐标为 C(3, 2), 又半径 $r = |CA| = \sqrt{13}$, 剛所求圖 的方程是(图2-22)

$$(x-3)^2+(y-2)^2=13$$
.

解法 2: 设所求圆的方程为

$$(x-a)^2 + (y-b)^2 = r^2$$
.

由颞意得

$$\{(1-a)^2+(5-b)^2=r^2$$

$$\begin{cases} (1-a)^2 + (5-b)^2 = r^2 \\ 2a - 7b + 8 = 0 \end{cases}$$

解得

$$\begin{cases} a=3 \\ b=2 \\ r=\sqrt{13} \end{cases}$$

所以所求圆的方程为

$$(x-3)^2+(y-2)^2=13.$$

例3 赵州桥的跨度是37,02 m, 圆拱高约为7,2 m, 求议座 圆拱桥的拱圆方程,

解:图 2-23 是拱桥的示意图。以 AB 的中点为原点, x 轴通讨

◆注▶

赵州桥, 位干 河北省赵县, 净路 37,02 m, 是世界上 著名的单孔空腹式 石拱桥, 建于 595-605年

AB 建立直角坐标系.

图 2-23

根据已知条件, B、C的坐标分别为(18.51,0), (0.7.2), 设圆心的坐标为(0,6),则圆的方程为

$$x^2 + (y-b)^2 = r^2$$

下面用待定系数法求 b 和 r2 的值。

因为 B、C 全在圆上, 所以它们的坐标都满足这个方程, 于是 得到方程组

$$\begin{cases} 18.51^2 + b^2 = r^2 \\ (7.2-b)^2 = r^2 \end{cases}$$

2≈750 21

因此圆拱桥的拱圆的近似方程为

$$x^2 + (y+20.19)^2 = 750.21.$$

1. 求满足下列条件的圆的标准方程:

- (1) 圓心为坐标原点, 半径为 2; (2) 圓心为点(-2, 1), 半径为√3;
- (3) 關心为点(2, 1), 半径为√5; (4) 關心为点(0, 1), 半径为 2. 2. 判断点 A(1, 1)、 $B(1, \sqrt{3})$ 、 C(1, 2) 与圆 $x^2 + y^2 = 4$ 的位置关系.
- 3. 求出下列方程表示的圆的圆心和半径:
- (1) $x^2+y^2=5$; (2) $(x-3)^2+y^2=4$;
 - (3) $x^2+(y+1)^2=2$:
- (4) $(x+2)^2+(y-1)^2=3$.

- 1. 求满足下列条件的圆的方程:
 - (1) 已知点 A(2, 3), B(4, 9), 圆以线段 AB 为直径;
 - (2) 國心为(0, -3), 过点(3, 1);
 - (3) 圆心为坐标原点,且与直线 4x+2y-1=0 相切;
 - (4) 圆过点(0,1)和(0,3), 半径等于1.
- 2. 求过点 A(-1, 1), B(1, 3) 且圓心在 x 轴上的圆的方程。

2.3.2 圆的一般方程

把圆的标准方程

$$(x-a)^2+(y-b)^2=r^2$$

的左边展开, 整理得

$$x^2 + y^2 - 2ax - 2by + a^2 + b^2 - r^2 = 0$$

在这个方程中,如果令 D=-2a, E=-2b, $F=a^2+b^2-r^2$,则这个方程可以表示成:

$$x^2 + y^2 + Dx + Ey + F = 0$$

其中 D、E、F 为常数.

这是一个二元二次方程. 如果方程(1)同一般的二元二次方程

$$Ax^2 + Bxy + Cy^2 + Dx + Ey + F = 0$$

作比较,就会发现方程①具有两个特点:

- (1) x²和y゚项的系数相等且不为零.(x²和y゚项的系数如果 为不是1的非零常数,只需在方程两边除以这个数,就可得到方程 ①的形式.)
 - (2) 没有 xy 这样的二次项.

因为所有圆的方程都可表示成①的形式,所以方程①的以上两个特点就成为二元二次方程表示圆的必须具备条件. 利用这两个条件,我们可以判定哪些二元二次方程的曲线肯定不是圆。例如,可以断定方程

 $x^2+2y^2-2x-3y+7=0$ 和 $x^2+xy+y^2-3x-4y+5=0$

所表示的曲线都不是圆. 这是因为在第一个方程中, x²、y² 的系 数不相等: 在第二个方程中, 在 xy 项.

那么,具备这两个条件的二元二次方程是否一定表示圆呢? 我们将方程①左边配方,得

$$\left(x+\frac{D}{2}\right)^{2}+\left(y+\frac{E}{2}\right)^{2}=\frac{D^{2}+E^{2}-4F}{4}$$
. 3

- (1) 当 $D^*+E^*-4F>0$ 时,将方程②与圆的标准方程比较,可以看出方程①表示以 $\left(-\frac{D}{2},-\frac{E}{2}\right)$ 为圆心, $\frac{1}{2}\sqrt{D^*+E^*-4F}$ 为半径的圆。
- (2) 当 $D^s + E^s 4F = 0$ 时,方程①只有实数解 $x = -\frac{D}{2}$, $y = -\frac{E}{2}$, 所以方程①表示一个点 $\left(-\frac{D}{2}, -\frac{E}{2}\right)$;
- (3) 当 $D^2+E^2-4F<0$ 时,方程①没有实数解,因而它不表示任何图形。

因此, 只有当
$$D^2 + E^2 - 4F > 0$$
 时, 二元二次方程
 $x^2 + y^2 + Dx + Ey + F = 0$

才表示一个圆, 这时这个方程叫做圆的一般方程,

圆的标准方程明确指出了圆的圆心和半径,而圆的一般方程表 明了方程形式上的特点.

要给出圆的标准方程,需要确定圆心坐标和半径;而要给出圆的一般方程,则需要确定一般方程中的三个系数 D、E、F.

- (1) $x^2+y^2+4x-6y-12=0$;
- (2) $4x^2+4y^2-8x+4y-15=0$.
- 解:(1)对方程左边配方,方程化为

$$(x+2)^2 + (y-3)^2 = 25.$$

所以圆心的坐标为(-2,3), 半径为5.

(2) 方程两边除以 4, 得

$$x^2 + y^2 - 2x + y - \frac{15}{4} = 0.$$

方程左边配方,得

$$(x-1)^2 + (y+\frac{1}{2})^2 = 5.$$

所以圆心的坐标为 $\left(1, -\frac{1}{2}\right)$, 半径为 $\sqrt{5}$.

劉2 求过三点 A(0, 5), B(1, -2), C(-3, -4)的圆的方程.

解:设所求圆的方程为

$$x^2 + y^2 + Dx + Ey + F = 0$$
.

根据题设条件,用待定系数法确定 D、E、F. 因为点 A、B、C 在 圆上,所以它们的坐标是方程的解,把它们的坐标依次代人上面的 方程,整理得到关于 D、E、F 的三元一次方程组:

$$\begin{cases}
5E+F+25=0 \\
D-2E+F+5=0 \\
3D+4E-F-25=0
\end{cases}$$

解这个方程组, 得 E=-2

于是得到所求圆的方程

 $x^2+y^2+6x-2y-15=0$.

注:我们也可以设圆的方程为 $(x-a)^2+(y-b)^2=r^2$. 同样,根据已知条件可以列出三个未知数的方程组,通过解方程组,求出a,b,r.

例3 已知一曲线是与两个定点 O(0,0), A(3,0)距离的比为 $\frac{1}{9}$ 的点的轨迹,求这个曲线的方程,并画出曲线(图 2-24).

解: 在给定的坐标系中,设 M(x,y)是曲线上的任意一点,点 M 在曲线上的条件是

$$\frac{\mid MO \mid}{\mid MA \mid} = \frac{1}{2}$$
.

由两点的距离公式,上式用坐标表示为

$$\frac{\sqrt{x^2+y^2}}{\sqrt{(x-3)^2+y^2}} = \frac{1}{2}.$$

两边平方并化简, 得曲线方程

$$x^2 + y^2 + 2x - 3 = 0$$

将方程配方,得

$$(x+1)^2 + y^2 = 4$$

所以所求曲线是圆心为C(-1, 0), 半径为2的圆(图 2-24).

图 2-24

1. 求出下列圆的圆心坐标和半径:

- (1) $x^2+y^2-6x=0$;
- (3) $x^2+y^2-4x-6y+12=0$;
- (2) $x^2+y^2-4y-5=0$;
 - $(4) 2x^2 + 2y^2 4x + 8y + 5 = 0.$

2. 判断下列方程表示什么图形?

(1) $x^2+y^2=0$;

- (2) $x^2+y^2-2x+4y-6=0$;
- (3) $x^2+y^2-2x-2y-3=0$;
- (4) $x^2+y^2+2ax-b^2=0$.

- 1. 求经过三点(0,0),(3,2),(-4,0)的圆的方程,
- 2. 求与两定点 A(-1, 2), B(3, 2)的距离的比为 $\sqrt{2}$ 的点的轨迹方程.

直线与圆的位置关系

在初中,我们已学过直线和圆的位置关系,现在直线和圆都可 以用方程来表示,下面,我们通过具体的例子来学习如何用代数方 法研究直线和圆的位置关系,

❸ 已知圆的方程是 x²+y²=2. 直线 y=x+b, 当 b 为何值时, 圆与直线有两个公共点; 只有一个公共点; 没有公共点.

解法 1: 所求曲线公共点问题可转化为 6 为何值时, 方程组

$$x^2 + y^2 = 2$$
 (1)

$$y=x+b$$
 (2)

有两组不同实数根;有两组相同实根;无实根的问题. (2)代入(1),整理得

 $2r^2 + 2br + b^2 - 2 = 0$, (

方程(3)的根的判别式

$$\Delta = (2b)^2 - 4 \times 2(b^2 - 2)$$

$$=-4(b+2)(b-2).$$

当-2 < b < 2 时, $\Delta > 0$. 方程组有两组不同实数解,因此直线与圆有两个公共点:

当 b=2 或 b=-2 时, $\Delta=0$,方程组有两组相同的实数解,因此直线与圆只有一个公共点;

以上就是直线与圆相割、相切、相离的三种情况(图2-25).

解法 2: 圆与直线有两个公共点、只有一个公共点、无公共点 的问题。可以转化为 b 取何值时圆心到直线的距离小于半径、等于 半径、大于半径的问题。

圆心 O(0, 0) 到直线 y=x+b 的距离为

$$d=\frac{|b|}{\sqrt{2}}$$
, 圆的半径 $r=\sqrt{2}$.

当d < r,即-2 < b < 2时,圆与直线相割,有两个公共点;

当d=r, |b|=2, 即b=2或b=-2时, 圆与直线相切, 两个公共点重合为一点;

当 d>r, |b|>2, 即 b<-2 或 b>2 时, 圆与直线相离, 圆与直线无交点.

例 ② 已知圆的方程是 $x^2 + y^2 = r^2$,求过圆上一点 $M(x_0, y_0)$ 的切线方程(图 2-26).

解: 如果 $x_0 \neq 0$ 且 $y_0 \neq 0$,可知直线OM的方程为 $y = \frac{y_0}{x_0}x$,

则过点M的圆的切线的斜率为 $-\frac{x_0}{v_0}$,因此所求圆的切线方程为

$$y-y_0=-\frac{x_0}{y_0}(x-x_0).$$

化简,得

$$x_0x+y_0y=x_0^2+y_0^2$$
.

因为点 M(x₀, y₀) 在圆上, 所以

$$x_0^2 + y_0^2 = r^2$$

所以, 过圆 $x^2 + y^2 = r^2$ 上一点 (x_0, y_0) 的圆的切线方程为 $x_0x + y_0y = r^2$.

如果 $x_0=0$, 或 $y_0=0$, 容易验证, 过点 $M(x_0, y_0)$ 的切线方程也可表示为 $x_0x+y_0y=r^2$ 的形式. 因此, 所求的切线方程为 $x_0x+y_0y=r^2$.

图 2-25

0

图 2-26

2.3 圆的方程 3 /

通过上面的例子可以看到, 有关直线与圆之间的位置关系问 题,如何应用坐标法转化为代数方程来求解。

- 1. 已知園 $(x-1)^2+(y+2)^2=6$ 和直线 2x+y-5=0, 求:

 - (1) 圓心到直线的距离 d: (2) 判断圓与直线的位置关系。
- 2. 圆 $x^2 + v^2 = 13$ 与直线 x y 1 = 0 是否相交,如相交,求出交点.
- 3. 判断下列圆与盲线的位置关系。
 - (1) 園 $x^2+y^2-8x+2y-8=0$, 直线 4x-3y+6=0;
 - (2) 图 $x^2+y^2-4x+3=0$, 直线 2x-y+5=0.

- 1. C 为何值时, 直线 x-y-C=0 与圆 $x^2+y^2=4$ 有两个公共点, 一个公共点, 无 公共点?
- 2. 写出过圆 $x^2 + y^2 = 10$ 上一点 $M(2, \sqrt{6})$ 的切线方程。
- 3. 已知直线 v=mx+4 与圆 $x^2+v^2=4$ 相切, 求 m 的值和切线方程,
- 4. 求斜率为 2 且与圆 $x^2 + y^2 2y 4 = 0$ 相切的直线方程.
- 5. 当 a 取不同的非零实数时, 方程 $x^2 + y^2 2ax 2\sqrt{3}ay + 3a^2 = 0$ 的曲线是不同 的圆。
 - (1) 这些圆的圆心是否都在同一条直线上?
- (2) 这些圆是否有公切线?

圆与圆的位置关系

设 \odot O_c 的半径为 r_1 , \odot O_c 的半径为 r_2 , 两圆的圆心距为d. 在初中我们知道:

当 |r₁-r₂| < d < r₁+r₂ 时,两圆相交;

当 $r_1+r_2=d$ 时,两圆外切;当 $|r_1-r_2|=d$ 时,两圆内切;

当 $r_1+r_2 < d$ 时,两圆外离;当 $|r_1-r_2| > d$ 时,两圆内含.

因此,只要由两侧的方程,求出两侧的半径和侧心的坐标,就 可根据上面的结论判断两侧的位置关系.下面我们举例说明.

例 判断下列两个圆的位置关系.

- (1) C_1 : $x^2+y^2-2x-3=0$, C_2 : $x^2+y^2-4x+2y+3=0$;
- (2) C_1 : $x^2+y^2-2y=0$, C_2 : $x^2+y^2-2\sqrt{3}x-6=0$.

解: (1) 已知两圆可分别变形为

$$(x-1)^2+y^2=2^2$$
, $(x-2)^2+(y+1)^2=(\sqrt{2})^2$.

由此可知圆心 C_1 的坐标为(1,0), 半径 r_1 =2; 圆心 C_2 的坐标为(2,-1), 半径 r_2 = $\sqrt{2}$.

设两圆的圆心距为 d,则

$$d=C_1C_2=\sqrt{(2-1)+(-1)^2}=\sqrt{2}$$
.

 $r_1+r_2=2+\sqrt{2}$,

所以 $r_1 - r_2 < d < r_1 + r_2$.

因此两圆相交于两点.

(2) 已知两圆可分别变形为 $x^2 + (y-1)^2 = 1^2$,

$$(x-\sqrt{3})^2+y^2=3^2$$
.

由此可知圆心 C_1 的坐标为(0, 1), 半径 $r_1 = 1$, 圆心 C_2 的坐标为 $(\sqrt{3}, 0)$, 半径 $r_2 = 3$, 则

两圆的圆心距 $d=\sqrt{(\sqrt{3})^2+1^2}=2$,

所以 $d=r_2-r_1$.

因此两圆内切.

下面让我们用坐标方法讨论两圆的位置关系,再次感受坐标方 法在研究几何问题中的作用.

以 O_i 为坐标原点,使 x 轴通过 O_i , O_2 ,建立直角坐标系 xO_2 (图 2-27).

这样,可设 $\odot O_c$ 的圆心的坐标为(d,0). 这时两圆的圆心的 距离签干[d]. 两圆的方程分别为

$$x^2 + y^2 = r_1^2$$
, ①

(2)

 $(x-d)^2+y^2=r_2^2$. 将①,②两式联立、研究此方程组的解。

①-②,整理可得
$$x = \frac{r_1^2 - r_2^2 + d^2}{2d}$$

图 2-27

$$y^{2} = r_{1}^{2} - \frac{(r_{1}^{2} - r_{2}^{2} + d^{2})^{2}}{4d^{2}}$$

$$= \frac{(2dr_{1} + r_{1}^{2} - r_{2}^{2} + d^{2})(2dr_{1} - r_{1}^{2} + r_{2}^{2} - d^{2})}{4d^{2}}$$

$$= \frac{[(r_{1} + d)^{2} - r_{2}^{2}][r_{2}^{2} - (r_{1} - d)^{2}]}{4d^{2}}$$

$$= \frac{(r_{1} + r_{2} + d)(r_{1} - r_{2} + d)(r_{1} + r_{2} - d)(r_{2} - r_{1} + d)}{4d^{2}}$$

$$= \frac{[(r_{1} + r_{2})^{2} - d^{2}][d^{2} - (r_{1} - r_{2})^{2}]}{4d^{2}}.$$

由此可见, 如果

$$|r_1-r_2|<|d|< r_1+r_2$$

则等式右边两个因式都为正数,于是方程组有解,且有两解,这时相应的两圆相空于两点(图 2-28(1))。

图 2-28

如果

$$r_1 + r_2 = |d|$$
 \overrightarrow{av} $|r_1 - r_2| = |d|$.

则等式右边分子的因式中至少有一个为 0,则方程组有唯一解,这时两圆相切(外切或内切(图 2-28(2)(3)),

如果

$$r_1+r_2<|d|$$
 或 $|r_1-r_2|>|d|$,

则方程组无解,这时两圆不相交(相离)(图 2-28(4)(5)).

练习A

- 1. 求两圆 $x^2+y^2-2x-3=0$ 和 $x^2+y^2-4x+2y+3=0$ 的交点的坐标.
- 2. 判断下列两圆的位置关系:
 - (1) $x^2+y^2-4x-6y+9=0 x^2+y^2+12x+12x+6y-19=0;$
 - (2) $x^2+y^2+2x-2y-2=0 \text{ for } x^2+y^2-4x-6y-3=0.$

- 1. 两圆 $x^2+y^2=1$ 和 $(x+4)^2+(y-a)^2=25$ 相切, 试确定常数 a 的值.
- 2. 求过点(2, 5)并与圆 $x^2+y^2=1$ 相外切圆的方程.
- 3. 试判断下列两圆的位置关系,如果有公共点求出公共点的坐标:
 - (1) $x^2+y^2+6x-4=0$ for $x^2+y^2+6x-28=0$:
 - (2) $x^2+y^2-4x+6y=0 \neq x^2+y^2-2x+4y=0$.

习题2-3 A

- 1. 求出下列圆的方程:
 - (1) 関心在点 C(-2, 1), 且经过点 P(4, -1);
 - (2) P.知点 A(-2, 4), B(8, -2), 且 AB 为圆的直径;
 - (3) 圓心在点 C(3, -5), 且圓与直线 x-7y+2=0 相切;
 - (4) 圆过点 A(4, -2)和 B(-2, 2), 圆心在 y 轴上.
- 2. 求经过 A(6,0), B(5,-3), C(3,1)三点的圆的方程.
- 3. 求过点 A(1, 1), B(-3, 5), 且圆心在直线 2x+y+2=0 上的圆的方程.
- 4. 判断直线 4x-3y+6=0 与圆 $(x-4)^2+(y+1)^2=25$ 的位置关系.
- 5. 已知直线 x+5y+C=0 与圆 x²+y²=25 相切,求 C 的值.
- 6. 求讨图 $r^2 + v^2 = 4$ 1 10 1 10 1 10 的图的切线方程。
- 7. 求下列方程表示的圆的圆心坐标和半径,并分别画出它们的图形:
 - (1) $x^2+y^2-2x-5=0$;

(2) $x^2+y^2+2x-4y-4=0$;

(3) $x^2+y^2+4x=0$;

- (4) $x^2+y^2-5y+1=0$.
- 8. 已知 図 C_1 : $x^2+y^2+2x+6y+6=0$, 図 C_2 : $x^2+y^2-4x-8y+7=0$,

求两圆的圆心距.

- 9. 判断直线 2x-y+5=0 与圆 x2+y2-4x+3=0 的位置关系.
- 已知一等腰三角形的頂点 A(3, 20), 一底角頂点 B(3, 5), 求另一底角頂点 C(x, y)的轨迹方程.

习题2-3 B

- 求过点(8,1)且与两坐标轴都相切的圆的方程。(提示:考虑与两轴相切的圆的圆心 坐标有什么特点,与半径有什么关系?)
- 求半径为5, 过点(1, 2)且与x轴相切的圆的方程。
- 3. 已知圆 $x^2+y^2=1$ 与直线 y=kx-2, 问 k 为何值时, 直线与圆相交、相切、相离?
- 4. 已知: 圓的直径端点是 $A(x_1, y_1)$, $B(x_2, y_2)$, 求证: 圓的方程是 $(x-x_1)(x-x_2)+(y-y_1)(y-y_2)=0$.
- 求通过圆(x-3)²+(y-4)²=25 上的一点 A(6, 8)的圆的切线方程. (提示:设圆心为C、则直线CA与所求的切线垂直.)
- 6. 求点 P(0, 4) 到圆 $x^2+y^2-4x-5=0$ 所引的切线长.
- 7. 求与直线 x+3y=10 垂直的圆 $x^2+y^2=4$ 的切线方程.
- 已知点 A(15, 0), 点 P是圆x²+y²=9上的动点, M为线段 PA的中点,当点 P在圆上运动时,求动点 M的轨迹方程.
- 设圆满足条件:① 截 y 轴所得的弦长为 2:② 被 x 轴分成两段圆弧, 其弧长的比为
 在满足条件①、②的所有圆中,求圆心到直线 l: x-2y=0 的距离最小的圆的方程。
- 10. 某一圆拱桥的一孔圆拱的跨度为20 m, 拱高为4 m, 在建造时每隔4 m 需用一个支柱支撑, 求每根支柱的长度(精确到0.01 m).

我们已掌握了圆的方程和如何用代数方法求解圆的一些问题. 下面我们再给出两个问题, 让同学们自己探索研究, 从中进一步体会如何用坐标方法解几何问题 (可结合课件 2203 研究).

- (1) 到两定点O、A距离的比为任意一个常数k(k>0)的动点M的轨迹方程是什么? 从得到的方程你能说明轨迹是什么曲线吗?(有计算机的同学,可以结合课件 2203 讲行可视化报查与讨论)。
 - (2)如果上一间中所得到的轨迹与OA相交于P点,当A取不同的常数时,或M点位置变化时,分别度量_OMP和_AMP的大小,你猜想到什么结论?你能够证明自己的猜想吗?

- 2. 已知 $\triangle ABC$ 的面积为S,外接圈的半径为R, $\angle A$ 、 $\angle B$ 、 $\angle C$ 的对边分别为a、b、
 - c, 用解析几何的方法证明: $R = \frac{abc}{4S}$.
 - 提示: ① 在△ABC 所在的平面内,建立适当的直角坐标系,使得△ABC 三个顶点的 坐标的表示形式最简单,并设出表示它们坐标的字母.
 - ② 用表示△ABC 三个頂点坐标的字母来表示△ABC 的外接圆半径、△ABC 的三动和面积。
 - ③ 根据上面得到的表达式,消去表示△ABC三个頂点的坐标的字母,就可以 得出用△ABC的三边和面积表示△ABC外接圆半径的式子。

空间直角坐标系

2.4.1

空间直角坐标系

在数轴上,一个实数就能确定一点的位置;在坐标平面上,需要一对有序实数才能确定一点的位置,为了确定空间任意点的位置,需要几个实数呢?

本章前言中曾说过,要确定一架飞机在空中的位置,我们不仅 要指出地面上的经度和纬度,还需要指出飞机距离地面的高度,这 说明要确定空间一点的位置,需要三个实数。

为了确定空间点的位置,我们在直角坐标系 xOy 中,通过原点 O,再作一条数轴 z, 使它与z 轴, y 轴都垂直(图 2-29),这样它 们中的任意两条互相垂直;轴的方向通常这样选择;从 z 轴的正方 向看, x 轴的正半轴沿逆时针方向转 90°能与 y 轴的正半轴重合. 这时,我们说在空间建立了一个空间直角坐标系 O—xyz, O 叫做 坐标原点.

有了空间直角坐标系,我们就能够建立空间内的任一点P与三个实数的有序数组(x, y, z)之间的——对应关系,其对应法则如下;

如图 2-29 所示, 过点 P 作一个平面平行于平面 yO_x (这样构造 的平面同样垂直于 x 轴), 这个平面与 x 轴的交点记为 P , 它在 x轴上的坐标为 x (图中为 2), 这个数 x 就叫做点 P 的 x 坐标.

图 2-29

过点 P 作一个平面平行于平面 xO_x (垂直于 y 轴),这个平面与 y 轴的交点记为 P_y ,它在 y 轴上的坐标为 y (图中为 3),这个数 y 就叫做点 P 的 y 坐标。

过点 P 作一个平面平行于坐标平面 xOy(垂直于 z 轴),这个平面与 z 轴的交点记为 P_z ,它在 z 轴上的坐标为 z(图中为 5),这个数 z 就叫做点 P 的 z 坐标.

这样,我们对空间的一个点,定义了三个实数的有序数组作为它的坐标,记做 P(x, y, z) (图中为 P(2, 3, 5)). 其中 x, y, z 也可称为点P 的坐标分量.

反之,任意三个实数的有序数组(x, y, z),就能够确定空间 一个点的位置与2对应、为此、按照刚才作图的相反顺序,在坐标 轴上分别作出点 P, P, P, 使它们在x u, y u, z 轴上的坐标 分别是x, y, z, 再分别通过这些点作平面平行于平面 yOz, xOz, xOy, 这三个平面的变点,就是所求的点 P.

这样,我们就在空间任意一点与三个实数的有序数组(点的坐标)之间,建立起——对应关系,

 $P \longleftrightarrow (x, y, z)$

每两条坐标轴分别确定的平面 yOz、xOz、xOy,叫做坐标平面.

xOy 平面(通过x 轴和y 轴的平面)是坐标形如(x, y, 0)的点构成的点集,其中x, y 为任意的实数;

xOz 平面(通过x 轴和z 轴的平面)是坐标形如(x, 0, z)的点构成的占集,其中x, z为任章的实数;

yOz 平面(通过 y 轴和 z 轴的平面)是坐标形如(0, y, z)的点构成的点集,其中 y, z 为任意的数.

x 轴是坐标形如(x, 0, 0) 的点构成的点集,其中x 为任意 客教:

y轴是坐标形如(0, y, 0)的点构成的点集, 其中 y 为任意 实数;

x 轴是坐标形如(x, 0, 0) 的点构成的点集,其中x 为任意实数.

通过点 P 作平行于坐标平面的平面与坐标轴的交点: P_x 、 P_y 、 P_z , 其过程也就是作点 P 在坐标轴上的投影。即,从点 P 向坐标轴引垂线,它们的垂足分别为 P_x 、 P_y 、 P_z .

所以点 P 的空间坐标为点 P 在坐标轴上的投影在这些坐标轴 上的坐标。

间直角坐标系。

在每个卦限内,点的坐标各分量的符号是不变的。例如在第 I 卦限,三个坐标分量 x,y,z 都为正数;在第 II 卦限,x 为负数, y,z 都为正数……

图 2-30

- 1. 在空间直角坐标系 O-xyz 中, 作出 8 个点: (1, 1, 1), (1, 1, -1), (1, -1, 1), (1, -1, -1), (-1, 1, 1), (-1, 1, -1), (-1, -1, 1), (-1, -1, -1).
- 2. 画一个正方体 ABCD—A₁B₁C₁D₁,使坐标轴的方向沿着一个顶点相邻的三条 模,以模AB、AD、AA₁所在的直线为坐标轴,取正方体的模长作为单位长度, 建立空间直角坐标系。
 - (1) 求这个正方体顶点的坐标;
 - (2) 求棱 CC1 中点的坐标;
 - (3) 求面 AA1B1B 对角线交点的坐标.
- 3. 求点(2, 3, 4)关于各个坐标平面对称点的坐标。

- 1. 写出点(1, 1, 1)分别关于各坐标轴对称的点的坐标。
- 2. 设 z 为任意实数,相应的所有点 P(1, 2, z)的集合是什么图形?
- 3. 已知一长方形 $ABCD-A_1B_1C_1D_1$ 的对称中心在坐标原点 O, 交于同一顶点的三个面分别平行于三个坐标平面,顶点 A(-2,-3,-1). 求其他七个顶点的坐标.

2.4.2 空间两点的距离公式

在平面直角坐标系中,已知两点的坐标,我们会求它们的距离。 你会推出计算空间两点 $A(x_1, y_1, z_1)$ 、 $B(x_2, y_2, z_2)$ 距离的公式吗?

推导空间两点的距离公式与推导平面上两点的距离公式类似. 计算空间两点 $A(x_1, y_1, z_1)$ 、 $B(x_2, y_2, z_2)$ 的距离公式是

$$d(A,B) = \sqrt{(x_2-x_1)^2 + (y_2-y_1)^2 + (z_2-z_1)^2}.$$

特别地,点 A(x, y, z) 到原点的距离公式为

$$d(O, A) = \sqrt{x^2 + y^2 + z^2}$$
.

推导空间两点距离公式的思路是:

过两点分别作三个坐标面的平行平面(图 2-31),则这六个平面围成一个长方体,我们知道,长方体的对角线长的平方等于一个 顶点上三条棱长的平方和,于是,只要写出交一个顶点的三条棱的 棱长用坐标计算的表达式,就能导出两点的距离公式.

你还可以作线段 AB 在三个坐标平面上的正投影,把空间问题 转化为平面问题加以解决。

- 1. 求安标历占 (0, 0, 0) 与以下久占的跖痕。
 - (1, 1, 1), (1, 2, 2), (2, -3, 5), (3, 0, 4), (-3, -2, -3)
- 2 並以下西占间的跖痕。
- (1) A(1, 0, 1), B(1, 1, 1); (2) C(-3, 1, 5), D(0, 2, 3)
- 3. 已知A(1, -2, 1), B(2, 2, 2), 适 P 在 · 軸 F, 目 PA=PB, 适 适 P 的 母 転

- 1. 求以下两点的距离:
 - (1) (4, 5, 6), (-7, 3, 11)
 - (2) (1, 2, 2), (4, 6, 14),
 - (3) $(\frac{1}{2}, \frac{2}{3}, \frac{2}{3}), (-\frac{1}{2}, -\frac{2}{3}, \frac{2}{3});$
 - (4) $\left(\frac{1}{2}, \frac{3}{4}, \frac{4}{5}\right), \left(\frac{5}{6}, \frac{2}{2}, \frac{3}{10}\right)$
- 2. 已知点 A 与坐标原点的距离等于 3, 并且它的坐标分量都相等, 求该点的坐标。
- 3. 已知正方体的每条棱都平行于坐标轴,两个顶点为A(-1,-1,-1),B(3,-1)
 - 3. 3), 且A. B不在同一面上, 求A. B间的距离和正方体的精长

习题2-4 A

- 1. 一个棱长为1的正方体,对称中心在原点且每一个平面平行于坐标平面,写出这个正 方体8个顶点的坐标.
- 2. 你认为在下列各点中、哪些占在第1颗的正方体内?哪些占在正方体外?

$$A(1, 0, 1), B(-1, 0, 1), C(\frac{1}{3}, \frac{1}{3}, \frac{1}{5}),$$

$$D(\frac{1}{5}, \frac{1}{2}, \frac{1}{2}), \qquad E(\frac{2}{5}, -\frac{1}{2}, 0), \qquad F(1, \frac{1}{2}, \frac{1}{3}).$$

写出在第1题中,位于正方体内或位于正方体边界上的点的坐标应满足的条件。

已知一长方体的三条棱 AB、AC、AD 端点的垒标分别为 A(1, 2, 1)、B(1, 5, 1)、C(1, 2, 7), D(3, 2, 1), 求这个长方体的长、宽、高和对角线的长。

习题2-4 B

- 1. 点 P(x, y, z)的坐标满足方程 x2+y2+z2=1, 点 P位于何处?
- 2. 求到两定点 A(2, 3, 0), B(5, 1, 0) 距离相等的点的坐标(x, y, z) 满足的条件.
- 3. 在坐标平面 xOy 上求一点 P, 使点 P 到点 A(3, 2, 5)、B(3, 5, 1)的距离相等。

本章川结

I 知识结构

II思考与交流

 在直线坐标系、平面直角坐标系、空间直角坐标系中,两 点距离公式的表达形式有共同的特征,请对它们的共同特征及其内 在联系进行分析。

- 2. 直线的斜率 k 是反映直线关于 x 轴倾斜程度的特征数量, 而一次函数 y=kx+b 中的 k, 它的符号决定这个函数的增减性。 把两者联系起来, 你对一次函数中 b 的意义有什么进一步的认识?
- 3. 直线的方程有点斜式、斜截式、两点式、一般式等不同的 形式。它们之间有什么联系?是不是任一直线都可以用这几种形式 的方程来表示?
- 4. 圆的方程有标准形式和一般形式、圆的标准方程和一般方程各有什么优点?把圆的一般方程化为标准方程时运用什么数学方法?
- 5. 根据两条直线的方程可以讨论它们的经置关系。这就是用代数方法研究几何问题。 把讨论得到的有关结论整理在一个表格中,再观察和比较这些结论中涉及的两直线方程的有关系数, 把你总结的规律与同学交流。
- 6. 根据直线、圆的方程,可以讨论直线与圆、圆与圆的位置 关系,这是用代数方法研究几何问题。其中主要运用哪些平面几何 和解析几何的知识?
- 7. 利用平面直角坐标系,可以把平面几何的一些问题转化为 代数问题来解决,通过这方面的实践,你对解析几何思想和坐标法 有什么认识和体会? 把你的想法与同学进行交流,再选一道简单的 平面几何问题,用坐标法去研究和解决。

III 巩固与提高

- 1. 判断下列命题的真假:
 - (1) 已知点 A(1,0), B(-5,0), 线段 AB 的垂直平分线的方程是x=-2;
 - (2) 当 k 取不同的数值时,直线 y-3=k(x-2),都通过点(3,2);
 (3) 直线 l 在 x 轴、 y 轴上的截距分别为 a、 b(a≠0), 則 l 的針
 - (3) 直线 l 在x 轴、y 轴上的截距分别为a、 $b(a \neq 0)$,则l 的斜率是 $\frac{b}{a}$;
 - (4) 直线 Ax+By+C=0 与直线 λ(Ax+By+C)=0(λ≠0)表示 同一条直线;
 - (5) 直线 Ax+By+C₁=0 与直线 Bx-Ay+C₂=0 垂直;
 - (6) 直线 2x+3y+k=0(k≠2)与直线 2x+3y+2=0 平行;
 - (7) 方程 $x^2+y^2-4y-5=0$ 的曲线关于 y 轴对称;
 - (8) 方程 $x^2+y^2+\lambda x=0$ 表示圖,則 λ 的取值范围是任意实数.

2. 填空:

- (1) 通过点 P(-1, 1), 且与直线 2x-3y+1=0 平行的直线方程为
- (2) 通过点(3,5), (-1,4)的直线方程为____;
- (3) 直线 ax+3y+1=0 与直线 x+(a-2)y+a=0 垂直,则 a=
- (4) 直线 2x-y+C=0 与圆 x²+y²=9 相切,则 C= ;
- (5) 已知A(1, -2), B(-3, 6), 则以AB为直径的圆的方程是
- (6) 过点 P(2, 3), 且垂直于直线 x-y+1=0 的直线方程 为_____;
- (7) 直线 $x+\sqrt{3}y-3=0$ 与两坐标轴围成的面积为_____;
- (8) 圆 x²+y²+2x-4y+4=0 的圆心坐标为_____.
- 3. A(5, -5, -6). B(10, 8, 5)两点的距离等于
- 4. 在空间直角坐标系 O-xyz 中, x=1 的所有点构成的图形 是
- 已知園的半径为3、園心在直线 x-y=0 上, 并通过点(5,2), 求 諮園的方程
- C知園 O: x²+y²=50 与直线 l: x-2y-5=0 相交于 A、B 两 点,求;
 - (1) A、B 的坐标;
- (2) △ABO的面积;
- (3) 圆心角 AOB 的度数.
- 7. 求下列点到直线的距离:
 - (1) (3, -5), y=3x+5; (2) (-3, -1), y=5x-8;
 - (3) (-3, 2), $y = -\frac{4}{3}x 7$; (4) (0, -5), y = 8.
- 8. 已知两条直线 ax-2y-1=0 和 6x-4y-b=0,试问 a , b 取什 么值时
 - (1) 有一个公共点; (2) 平行; (3) 重合.
- 巳知点 A(0, 1)、B(5, -2)、C(3, 5). 求点 A 到直线 BC 的 距离和△ABC 的面积。
- 如果直线 2x-y+1=0 機圓 x²+y²=r² 的弦长等于 5. 求圆的 半径 r.
- 直线 3x-4y-5=0 与園 C: (x-2)²+(y-1)²=25 相交于 A、 B 两点,求△ABC 的面积。
- 12. 已知空间直角坐标系 Oxyz 中的点 A(1, 1, 1), 平面 α 过点 A

并且与直线 OA 垂直, 动点 P(x, y, z) 是平面 α 内的任一点, 求点 P 的坐标满足的条件.

13. 填空:

- 巴知点 A(-1, 2), B(0, 4), 点 C 在 x 轴上,且 AC= BC, 则点 C 的坐标为_____;
- (2) 过点(-2, -1)和(4, 3), 圆心在 y 轴上的圆的方程 为____;
- (3) 直线 2x-y+C=0 与直线 2x-y+2=0 的距离为 $\sqrt{5}$,则 C= :
- (5) 國心为 C(-1,1), 过直线 x+3y+7=0 和直线 3x-2y-12=0 的交点的圆的方程是_____;
- (6) 与直线 x+3y-10=0 垂直, 并且与圆 x²+y²=4 相切的 直线方程为_____;
- (7) 已知園 C: x²+y²-2x+4y-5=0, AB 是圆的一条直径, 点 A(0, 1), 则点 B 的坐标为;
- (8)点(1,-2)关于直线2x-y+1=0的对称点的坐标为_____;
- (9) 直线 2x-3y+5=0 关于 x 轴对称的方程为_____
- 14. 求证: 四点 A(0, 1), B(2, 1), C(3, 4), D(-1, 2) 共圆.
- 已知一条直线经过点 P(2, 1), 且与圆 x²+y²=10 相交, 截得 的弦长为 2√5, 求該备直线的方程。
- 16. 从原点向直线 3x-2y+7=0 作垂线, 求垂足的坐标.
- 17. 已知直角坐标平面上点 A(-2, 3)和圆 C: (x-3)²+(y-2)²=1. 一条光线从点 A 射出经x 轴反射后与圆 C 相切,求反射后的光线方程。
- 已知点 A(1, 4), B(3, 1), 直线 l: y=ax+2 与线段 AB 相交于点 P, 求 l 的針率的取值范围。

IV 自测与评估

- 1. 填空:
 - (1) 经过点(3, -5), 且平行于直线 y=x+3 的直线方程为 _____;
 - (2) 经过点(2, 1), 且垂直于直线 y = -x + 5 的直线方程

为 .

- 2. 求经过点 A(-2,-1), B(6,-5), 且圆心在直线 x+y-2=0 上的圆的方程.
- 已知一条光线从点 P(6,4)射出,与 x 轴相交于点 (2,0),遇到 x 轴反射时,求入射光线和反射光线的方程。
- 求直线 x-y+2=与 x²+y²=25 的两个交点的坐标与它们之间 的距离。
- 巴知直角坐标平面上点 Q(2, 0)和關 C; x²+y²=1. 动点 M 到 關的切线长与 | MQ| 的比值分别为 1 或 2 时, 分别求出点 M 的轨 諺方程。
- 从園(x-1)²+(y-1)²=1外一点P(2,3)引这个園的初线,求 此初錢的方程。

计算机上的练习

- 1. 用 scilab 语言研究, 当 r 变化时, 圆 $x^2 + y^2 = r^2$ 与直线 x y 5 = 0 位置关系.
- 2. 在计算机上用描点法画圆的方程.

笛 卡 儿 (1596—1650)

笛卡儿是法国伟大的数学家、哲学家和物理 学家、1596年3月31日出生于法国都兰的贵族 家庭,自幼丧母,体弱多病,8岁入拉弗米什么 学读书,教师者悠的特殊情况,允许修每天早 上可以晚起床多休息,但笛卡儿利用这段时间进 行展读,并恭成了事于思考的习惯,修设笛卡儿 特在床上观察业于在松虹,庞代行位置,激励 了灵感,像似产生了华松的概念,

笛卡儿博鹿群本 曹自述, "别人学的、我 都学了,我并不以此为满足,那些认为最奇怪。 都寻常的有关各种学科的书,凡是我能镌刻 的,我都要把它们读完",他有好的思考习惯。 每当读书时,总是把书奉来先弄清作者的主要意 图,读完开头的部分被细细品味,并力求得出下 面的结论。

1612 年他入普瓦果米学攻该法學。四年后获 博士学位,后去已黎当維持。1618 年参军,部队 到按当庸部的域故布勒达时,一次巧遇彼便伦对 数学发生兴趣,并坚定了他终生研究数学的决 成。1619 年 11 月都取到达多堀河上的两方法 强明,他不断现实。数学上的新方法 基邦把代数应用到几何中去。他曾说。"我想去 有它们缺点的方法。"他级力于研究数学中这一 完全们缺点的方法。"他级力于研究数学中这一 完全们缺点的方法。"他级力干研究数学中这一 充分," 1621年他退伍去荷兰、瑞士、惠大利旅行. 1625年返回巴黎, 1628年定居荷兰进行研究和 写作,这时他研究哥白尼幸说, 1634年写成《论 世界》一书, 1637年出版了《折光学》、《气象 学》和《几何学》、

1644年笛卡儿出版了《哲学原理》、1646年 出版了《论心灵的各种感情》等重要著作。同年 条、笛卡儿应瑞典女王克利斯提细的邀请移居 機等标摩为女王讲授哲学课。后因患感情 表、1650年2月11日去世。笛卡儿研究的 有几何。使用的是坐标法。这种方法是在平面的 是重点的坐标(x、y)、用坐标(x、y)表示点的位 置。于是一条曲线被可用两个要数的代数方程、 指为代数方程八几何语言。得出图形的几何性级。 能后舞廳海人仍语言。得出图形的几次付任成。 笛卡儿用这种方法研究了各有两个更数的二次方程、指出根据方程的文质有不同。 指出根据方程的次载可将曲线分类,并得出一般二次方程"分割表示椭圆、双曲线、微物线 垂曲线的结论。

坐标法使代数学和几何学结合起来,开创了 数学发展的一个解新时代,思格斯说:"数学中 的转折点是笛卡儿的变数,有了变数,运动进入 了数学,有了变数,料证法进入了数学,有了变数,概分和积分也较立刻成为必要的了,"这段 话正确地评价了坐标法的历史功绩,

附 录

部分中英文词汇对照表

line

直线 平面 几何体 平面图形 立体图形 相交直线 平行直线 垂线 垂足 多面体 凸多面体 四面体 六面体 棱柱 侧棱 斜棱柱 直棱柱 平行六面体 长方体 正方体 棱锥 棱台 圆柱 圆锥 圆台 球

球心

球面

plane geometric solid plane figure solid figure intersecting lines parallel lines perpendicular line foot of a perpendicular polyhedron convex polyhedron tetrahedron hexahedron prism lateral edge oblique prism right prism parallelepiped rectangular prism cube pyramid frustum of a pyramid cylinder circular cone frustum solid sphere center of a solid sphere sphere

0	平行投影	parallel projection	
	直观图	intuitionistic figure	
0 0 0 0	斜二侧法	oblique axonometry	
0	中心投影	central projection	
	三视图	three views	
0	俯视图	top view	
	主视图	front view	
0	左视图	left view	
0	向量	vector	
	斜率	gradient	
0	倾斜角	angle of inclination	
	点斜式	point slope form	
0	截距	intercept	
	斜截式	gradient intercept form	
	两点式	two-point form	
0	一般式	general form	
DOM:	标准方程	standard equation	
0	一般方程	general equation	
0			
0			1
0			
0			
0			
			13
0			
100000			
0			1
0			
Part 100 CT			
O.			
0.			
65550			
0			
MANAGEMENT	MINISTER STATE OF THE PARTY OF	CONTRACTOR OF THE PROPERTY OF	F1000 1755

后记

根据教育部制订的普通高中各学科课程标准(实验),人民教育出版社课程教材研究所编写的各学科普通高中课程标准实验教科书,得到了诸多教育界前辈和各学科专家学者的热情帮助和大力支持。在各学科教科书终于同课程改革实验区的师生见面时,我们特别感谢担任教科书总顾问的丁石孙、许嘉璐、叶至善、顾明远、吕型伟、王梓坤、梁衡、金冲及、白春礼、陶西平同志,感谢担任教科书编写指导委员会主任委员的柳斌同志和编写指导委员会委员的江蓝生、李吉林、杨焕明、顾泠沅、袁行儒等同志。

本套高中數学实验教科书由丁尔陞教授、李建才教授、陈宏伯编审等组成编写指导委员会,负责指导教科书的编写工作。教科书编写的总指导为丁尔陞教授,主编为高存明编审。参加本套教科书编写的其他成员有:罗声雄、万庆炎、邱万作、郭鸿、韩际清、罗才忠、房艮孙、江守礼、王殿军、黄铎、陈研、高尚华、张爱和、张增喜、张润琦、朱镕道、范登晨、段发善、魏榕彬、徐望根、邵光砚、王人伟、曹惠中、秦静、许玉铭、李冱岸、杨静、刘长明、闫燕南、王旭刚、陈亦飞等。山东省的尹玉柱、秦玉波、王文清、颜长安、杨冠夏、于善胜、田明泉、邵丽云、韩相和,广东省的郭伟才、刘会金、梁钖焜、郑其中、何洌、罗建中等第一线教师审读了书稿,提出了许多宝贵意见。这套教科书是众多专家、学者和教师集体智慧的结晶。在此,特向参与、帮助、支持这套教科书编写的专家、学者和教师深表谢意。

我们还要感谢使用本套教科书的实验区的师生们。希望你们在使用本套教 科书的过程中,能够及时把意见和建议反馈给我们,对此,我们将深表谢意。 让我们携起手来,共同完成教材建设工作。我们的联系方式如下;

电话: 010-64016633 转 6656 或 6231

E-mail: jcfk@pep.com.cn

人民教育出版社 课程教材研究所 中学数学教材实验研究组