

Theory of Machines and Languages

Fatemeh Deldar

1403-1404

Turing Machines

Introduction

- □ If we compare finite automata with pushdown automata, we see that the nature of the temporary storage creates the difference between
 - > If there is no storage, we have a finite automaton
 - > If the storage is a stack, we have the more powerful pushdown automaton

- What would happen if we used two stacks, three stacks, a queue, or some other storage device?!
- What can we say about the most powerful of automata and the limits of computation?!
- > This leads to the fundamental concept of a *Turing machine*

- □ A Turing machine is an automaton whose:
 - > Temporary storage is a tape
 - > This tape is divided into cells, each of which is capable of holding one symbol
 - > Associated with the tape is a read-write head that can travel right or left on the tape and that can read and write a single symbol on each move

 \square A Turing machine M is defined by

$$M = (Q, \Sigma, \Gamma, \delta, q_0, \square, F),$$

where

Q is the set of internal states,

 Σ is the input alphabet,

 $\Sigma \subseteq \Gamma \! - \! \{ \Box \}$

 Γ is a finite set of symbols called the **tape alphabet**,

 δ is the transition function, $\delta: Q \times \mathbb{R}$

 $\delta: Q \times \Gamma \to Q \times \Gamma \times \{L, R\}$

 $\square \in \Gamma$ is a special symbol called the **blank**,

 $q_0 \in Q$ is the initial state,

 $F \subseteq Q$ is the set of final states.

Example

$$\delta\left(q_0,a\right) = \left(q_1,d,R\right)$$

(a) before the move and (b) after the move

Example

> Consider the Turing machine defined by

$$Q = \{q_o, q_1\},$$
 $\delta(q_0, a) = (q_0, b, R),$
 $\Sigma = \{a, b\},$ $\delta(q_0, b) = (q_0, b, R),$
 $\Gamma = \{a, b, \Box\},$ $\delta(q_0, \Box) = (q_1, \Box, L).$
 $F = \{q_1\},$

- Any subsequent a will also be replaced with a b, but b's will not be modified
- When the machine encounters the first blank, it will move left one cell, then halt in final state q_1

■ The transition graph of the previous example

Example

The Turing machine is in an infinite loop

- Standard Turing machine:
 - 1. The Turing machine has a tape that is unbounded in both directions, allowing any number of left and right moves
 - 2. The Turing machine is deterministic in the sense that δ defines at most one move for each configuration
 - 3. There is no special input file
 - We assume that at the initial time the tape has some specified content

Example

or

$$a_1 a_2 \cdots a_{k-1} q a_k a_{k+1} \cdots a_n$$

- Example
 - > Instantaneous descriptions

$$q_0aa \vdash bq_0a \vdash bbq_0\Box \vdash bq_1b$$

or

$$q_0aa \stackrel{*}{\vdash} bq_1b$$

$$a_1 \cdots a_{k-1} q_1 a_k a_{k+1} \cdots a_n \vdash a_1 \cdots a_{k-1} b q_2 a_{k+1} \cdots a_n$$
 $\delta(q_1, a_k) = (q_2, b, R)$

$$\delta(q_1, a_k) = (q_2, b, R)$$

$$a_1 \cdots a_{k-1} q_1 a_k a_{k+1} \cdots a_n \vdash a_1 \cdots q_2 a_{k-1} b a_{k+1} \cdots a_n$$
 $\delta(q_1, a_k) = (q_2, b, L)$

$$\delta\left(q_{1},a_{k}\right)=\left(q_{2},b,L\right)$$

$$x_1q_ix_2 \stackrel{*}{\vdash} y_1q_jay_2 \circ \circ \circ \circ \circ$$

M is said to halt starting from some initial configuration $x_1q_ix_2$ if $\delta(q_i, a)$ is undefined

$$x_1qx_2 \stackrel{*}{\vdash} \infty \cdot \circ \circ$$

 $x_1qx_2 \vdash \infty \cdot \circ \circ \frown$ A loop and never halts

□ The sequence of configurations leading to a halt state will be called a computation

Turing Machines as Language Accepters

□ Let $M = (Q, \Sigma, \Gamma, \delta, q_0, \square, F)$ be a Turing machine. Then the language accepted by M is

$$L(M) = \left\{ w \in \Sigma^+ : q_0 w \stackrel{*}{\vdash} x_1 q_f x_2 \text{ for some } q_f \in F, x_1, x_2 \in \Gamma^* \right\}.$$

- \square When w is not in L(M), one of two things can happen:
 - 1. The machine can halt in a nonfinal state
 - 2. The machine can enter an infinite loop and never halt
- Example $\delta(q_0,0) = (q_0,0,R),$ $\delta(q_0,\square) = (q_1,\square,R).$
 - \triangleright If at any time a 1 is read, the machine will halt in the nonfinal state q_0