Bijections

Mapping 5; A -> B

onto: Every element in B has some a EA mapping to it one-to-one: No two elements in A map to the same element in B

fis both onto 3 \Leftrightarrow fis bijective \Leftrightarrow fhas an inverse function one-to-one

Fermat's Little Theorem

For any prime
$$P$$
,
$$\alpha^{P} \equiv \alpha \pmod{p}$$

Or equivalently,

$$a^{\rho-1} \equiv (\mod \rho)$$
 for $a \neq 0$

2 Euler's Totient Function

Euler's totient function is defined as follows:

$$\phi(n) = |\{i : 1 \le i \le n, \gcd(n, i) = 1\}|$$

In other words, $\phi(n)$ is the total number of positive integers less than or equal to n which are relatively prime to it. Here is a property of Euler's totient function that you can use without proof: For m, n such that $\gcd(m, n) = 1$, $\phi(mn) = \phi(m) \cdot \phi(n)$.

(d) Let b be a positive integer whose prime factors are $p_1, p_2, ..., p_k$. We can write $b = p_1^{\alpha_1} \cdot p_2^{\alpha_2} \dots p_k^{\alpha_k}$.

Show that for any a relatively prime to b, the following holds:

$$\forall i \in \{1, 2, \dots, k\}, \ a^{\phi(b)} \equiv 1 \pmod{\frac{p_i}{2}}$$

$$\Rightarrow \begin{pmatrix} \beta_i \end{pmatrix} \phi \begin{pmatrix} \beta_i \end{pmatrix} \phi \begin{pmatrix} \rho_i^{\alpha_1} \end{pmatrix} \cdots \phi \begin{pmatrix} \rho_i^{\alpha_k} \end{pmatrix}$$

$$\Rightarrow \begin{pmatrix} \beta_i \end{pmatrix} \phi \begin{pmatrix} \beta_i \end{pmatrix} \phi \begin{pmatrix} \rho_i^{\alpha_1} \end{pmatrix} \cdots \phi \begin{pmatrix} \rho_i^{\alpha_k} \end{pmatrix} \begin{pmatrix} \rho_i^{\alpha$$

Chinese Remainder Theorem For ω prime $n_1, n_2, n_3, ..., n_K$. $\chi \equiv a_1 \pmod{n_1}$ $\chi = \alpha_2 \pmod{n_2}$ $X \equiv \alpha_3 \pmod{n_3}$ X = ak (mod nk) There exists a unique solution modulo $N = \prod_{i=1}^{K} n_i$ (i.e. in \{ 0, 1, ..., N \}) How do we find this solution? For i = 1 to K. Let $N_i = \frac{N}{n_i}$ (i.e., multiply all $n_i \cdot \cdot \cdot n_k$ except n_i) Let Ii be Ni-1 (mod ni)

(mod N)

Construct $v_i = N_i I_i$

is our solution,

 $X = \alpha_1 V_1 + \alpha_2 V_2 + \dots + \alpha_n V_n$

Satisfying Linear Algebraic Intuition

Vi's can be thought of as a k-dimensional 'coordinate basis"

$$x \equiv 2 \pmod{3}$$

$$X \equiv (mod 5)$$

$$N = 3.2 = 12$$

$$V_1 = 10 \equiv \begin{bmatrix} 0 & (mod 3) \\ 0 & (mod 5) \end{bmatrix}$$

$$V_2 = 6 \equiv \begin{bmatrix} 0 \pmod{3} \\ 1 \pmod{5} \end{bmatrix}$$

$$\chi = 2 \cdot 10 + 1 \cdot 6$$

3 Chinese Remainder Theorem Practice

In this question, you will solve for a natural number x such that,

(a) Suppose you find 3 natural numbers a, b, c that satisfy the following properties:

$$a \equiv 2 \pmod{3}$$
; $a \equiv 0 \pmod{5}$; $a \equiv 0 \pmod{7}$, (2)

$$b \equiv 0 \pmod{3}; b \equiv 3 \pmod{5}; b \equiv 0 \pmod{7}, \tag{3}$$

$$c \equiv 0 \pmod{3}$$
; $c \equiv 0 \pmod{5}$; $c \equiv 4 \pmod{7}$. (4)

Show how you can use the knowledge of a, b and c to compute an x that satisfies (1).

In the following parts, you will compute natural numbers a,b and c that satisfy the above 3 conditions and use them to find an x that indeed satisfies (1).

- (b) Find a natural number a that satisfies (2). In particular, an a such that $a \equiv 2 \pmod{3}$ and is a multiple of 5 and 7. It may help to approach the following problem first:
 - (b.i) Find a^* , the multiplicative inverse of 5×7 modulo 3. What do you see when you compute $(5 \times 7) \times a^*$ modulo 3, 5 and 7? What can you then say about $(5 \times 7) \times (2 \times a^*)$?

$$a^* = (5x7)^{-1} \pmod{3}$$
 $= 2^{-1} \pmod{3}$
 $= 2$
 $5x7x2x2 = 1 \pmod{3}$
 $5x7x2x2 = 2 \pmod{3}$
 $5x7x2x2 = 2 \pmod{3}$

(c) Find a natural number b that satisfies (3). In other words: $b \equiv 3 \pmod{5}$ and is a multiple of 3 and 7.

$$b^* \equiv (3x)^{-1} \pmod{5}$$

$$\equiv (1 \pmod{5}) \pmod{5}$$

$$\equiv (1 \pmod{5}) \pmod{5}$$

$$\equiv (1 \pmod{5}) \pmod{5}$$

$$\equiv (1 \pmod{5}) \pmod{5}$$

$$\equiv (2 \pmod{5}) \pmod{5}$$

$$\equiv (3 \pmod{5}) \pmod{5}$$

(d) Find a natural number c that satisfies (4). That is, c is a multiple of 3 and 5 and $\equiv 4 \pmod{7}$.

$$3 \times 2 \times 1 = 10001$$
) = 100
= 1-1 (mod 1) = 3 \times \times 1\times 1
= 12 \quad (mod 1) = 1
\times \frac{2}{3} \times 2 \times 1 \times 1

(e) Putting together your answers for Part (a), (b), (c) and (d), report an x that indeed satisfies (1).

$$X = athtc$$

$$= [53] = [53] (mod 105)$$

1

Spring 2021

1 Baby Fermat

Assume that $\underline{a \text{ does have a multiplicative inverse mod } \underline{m}$. Let us prove that its multiplicative inverse can be written as $a^k \pmod{m}$ for some $k \ge 0$.

(a) Consider the sequence $a, a^2, a^3, \ldots \pmod{m}$. Prove that this sequence has repetitions. (**Hint:** Consider the Pigeonhole Principle.)

intinite numbers () m residue classes

(b) Assuming that $a^i \equiv a^j \pmod{m}$, where i > j, what can you say about $a^{i-j} \pmod{m}$?

$$(a^{-1})_{i} \cdot (a^{-1}) \cdot (a^{$$

(c) Prove that the multiplicative inverse can be written as $a^k \pmod{m}$. What is k in terms of i and j?

$$a^{i-j} \equiv | \pmod{m}$$

$$(a^{i-j-1}) \cdot a \equiv | \pmod{m}$$

CS 70, Spring 2021, DIS 3B