KRIGING

BLAKE ROSENTHAL

1. Spatial statistics

Kriging is a method utilized in the field of geostatistics to model spatial data. Originally developed from the South African mining industry in the 1950's [2], kriging provided a way to predict ore-grade distributions based on a limited empirical sample. Though the name comes from mining engineer D. G. Krige, methods for optimal spatial linear prediction from Wold (1938), Kolmogorov (1941b), and Wiener (1949) all include the crucial covariance component of spatial interpolation, realizing that points closer to the prediction point should be given greater weights than further points. This is the cornerstone of the kriging method and is explored in detail in section 3.

Given a spatially continuous random process Y(x) over some two-dimensional region B, a data sample S_i : i = 1, ..., n is obtained from Y at locations x_i : i = 1, ..., n. From a practical perspective, Y can be thought of as an underlying but unknown distribution of a variable of interest over B, be it ore-density, mineral concentrations, elevation, etc. S is therefore a set of vectors containing an independent spatial component and a dependent variable or variables. Since S is only a small and incomplete realization of the field Y, the standard geostatistical approach is to impose an underlying structure to the field consisting of a mean function $\mu(\mathbf{s})$ and a random error process with zero mean $e(\mathbf{s})$. Together these specify that

$$Y(\mathbf{s}) = \mu(\mathbf{s}) + e(\mathbf{s}),$$

where $\mu(\mathbf{s}) = E[Y(\mathbf{s})].$

The goal is to make some predictions regarding the underlying random process Y. Kriging at its simplest is a matter of predicting a value of $Y(x_i)$ at an arbitrary point within the region B. Simple kriging assumes Y to have a constant mean which is estimated from the sample mean of S. Ordinary kriging uses the estimated covariance structure of Y to replace the sample mean with the generalized least

¹A note on notation: here, x will be used to specify a generic point in Y, while s will be used to indicate the vector of spatial coordinates or other dependent variables that make up the sample S.

squares estimate of μ . Finally, universal kriging uses a trend surface model for the mean.

2. Estimation of the mean function

Simple, ordinary, and universal kriging all differ in their approach to estimating the mean function. Simple kriging, which assumes a constant mean, is typically dismissed by most statisticians since it usually fails to accurately describe any naturally occurring random process. Here we go over universal kriging since it is the best linear unbiased prediction model for geostatistical random fields [3].

The purpose of the mean function is to help provide an estimate for the residuals $e(\mathbf{s})$, given by \hat{e} . This estimate is then used to calculate the semivariogram, described in the following section, which is then used in the universal-kriging equations. The mean function is given by $\mu(\mathbf{s}) = E[Y(\mathbf{s})]$ and is modeled as the linear equation

$$\mu(\mathbf{s}; \beta) = \mathbf{X}(\mathbf{s})^T \beta$$

where $\mathbf{X}(\mathbf{s})$ is a vector of covariates observed at \mathbf{s} and β is an unrestricted parameter vector. These variables could be simply latitude and longitude coordinates, but may also include such information as elevation, slope, windspeed, etc. If using only latitude and longitude, for example, a first order trend surface model is given by

$$\mu(\mathbf{s};\beta) = \beta_0 + \beta_1 s_1 + \beta_2 s_2$$

where $\mathbf{s} = (s_1, s_2)$ are latitude and longitude. This definition, however, is not invariant to the choice of origin or orientation of the coordinate system [3] and higher-order polynomials such as the quadratic loosen the restriction of independent latitude/longitude effects. ²

$$\mu(\mathbf{s};\beta) = \beta_0 + \beta_1 s_1 + \beta_2 s_2 + \beta_{11} s_1^2 + \beta_{12} s_1 s_2 + \beta_{22} s_2^2.$$

At this point the provisional linear mean function is then fitted to the available data. There are many ways to do this, but the ordinary least squares method is typically used. This method yields an estimator $\hat{\beta}_{OLS}$ given by

$$\hat{\beta}_{OLS} = (\mathbf{X}^T \mathbf{X})^{-1} \mathbf{X}^T \mathbf{Y}$$

²check with Albert

where
$$\mathbf{X} = [X(\mathbf{s}_1), X(\mathbf{s}_2), \dots, X(\mathbf{s}_n)]^T$$
 and $\mathbf{Y} = [Y(\mathbf{s}_1), Y(\mathbf{s}_2), \dots, Y(\mathbf{s}_n)]^T$.

It is possible to stop the analysis here, but once we have the second-order dependency structure of the semivariogram from the following section we can reestimate the mean function using estimated generalized least squares. A method given by Zimmerman and Stein ([3], p. 40) involves estimating a covariance matrix to include in the mean estimation. The updated mean function can be then used to recalculate the residuals $\hat{e}(\mathbf{s})$ for the semivariogram.

3. COVARIANCE AND THE VARIOGRAM

Part of the effectiveness of the kriging method comes from the recognition that the data from a spatial sample are correlated based on proximity. Points closer together are expected to be more highly correlated than points with greater spatial separation. The variogram, or semivariogram, plots this correlation as a function of distance, and the empirical semivariogram is the observed covariance structure of the data [3]. Given this, the semivariogram is defined by $\gamma(x_i - x_j) = \frac{1}{2} \text{var}\{e(x_i) - e(x_j)\}$, for all $x_i, x_j \in B$. Intuitively, the semivariogram provides a way to visualize the correlative effects of distance on the sampled data. For example, given a set of locations in the Cartesian plane, points with no separation distance could be expected to have zero variation in their dependent variables, while the variance between very distant points can be expected to be much higher [Fig. 1].

The distance between any two points x_i and x_j can be can be used to define a new set $H = \{x_i - x_j : x_i, x_j \in B\}$ for the continuous distribution of distances, or lags, in B. Elements of H can be grouped into bins H_1, H_2, \ldots, H_k . A representative lag for the entire bin \mathbf{h}_u can be used to define the unbiased estimator of $\gamma(\mathbf{h}_u)$ by

$$\hat{\gamma}(\mathbf{h}_u) = \frac{1}{2n(H_u)} \sum_{x_i - x_j \in H_u} [\hat{e}(x_i) - \hat{e}(x_j)]^2 \quad (u = 1, \dots, k)$$

where $n(H_u)$ is the number of lags within the bin H_u and $\hat{e}(x_i)$ is the residual at point x_i after estimating the mean. This assumes that covariance between data points is a function of spatial distance only, and not location or other factors. This estimation also requires a subjective choice in binning – since any exact distance, or lag, between two points is unlikely to occur frequently within a sample, it is necessary to group distances into representative intervals, or bins. A common way to do this is to make this binning choice up front, perhaps grouping the data into thirty or so bins then choosing \mathbf{h}_u to be the average of all the lags that fall into a given bin. Therefore, unless the data is taken on a rectangular or polar grid, the accuracy of the semivariogram will always be dependent on the binning choices.

 $[\]overline{{}^{3}\text{Equivalently}}$, and perhaps easier to work with, $\hat{\beta}_{OLS} = \operatorname{argmin} \sum_{i=1}^{n} [Y(\mathbf{s}_i) - \mathbf{X}(\mathbf{s}_i)^T \beta]^2$.

Distance

FIGURE 1. An exponential semivariogram

What's the right number of bins? There's a trade-off – more bins means that \mathbf{h}_u is a better estimation of its representative bin H_u , yet there are fewer lags to any particular bin and a smaller sample size and therefore a greater sampling variation. This is an interesting optimization problem on its own, but the data itself may impose binning restrictions depending on the sample size and other factors. This means that there is therefore no uniquely optimized semivariogram.

Fitting a parametric model to the empirical variogram gives a convenient equation to work with for several reasons – first, the empirical semivariogram will often have a high variance, and a smoothed version will have a lower variance that is easier to work with. Second, the empirical semivariogram usually fails to be conditionally nonpositive definite. This is a necessary condition when choosing predictors at later stages since the prediction error variance must be nonnegative at every point in the field. Third, predicting locations at lags not represented by the chosen bins requires a continuous function, something only a smoothed variogram can accomplish. This smoothed version must satisfy the following necessary and sufficient conditions to be a valid semivariogram:

- (1) Vanishing at 0: $\gamma(\mathbf{0}) = 0$
- (2) Evenness: $\gamma(-\mathbf{h}) = \gamma(\mathbf{h})$ for all \mathbf{h}
- (3) Conditional negative definiteness: $\sum_{i=1}^{n} \sum_{j=1}^{n} a_i a_j \gamma(x_i x_j) \leq 0$ for all n, all s_1, \ldots, s_n and all a_1, \ldots, a_n such that $\sum_{i=1}^{n} a_i = 0$

4. Spatial Prediction: Kriging

Given a prediction point \mathbf{s}_0 ⁴, the goal of kriging is to find a predictor $\hat{Y}(\mathbf{s}_0)$ for $Y(\mathbf{s}_0)$ that minimizes the prediction error variance $\text{var}[\hat{Y}(\mathbf{s}_0) - Y(\mathbf{s}_0)]$ of all possible predictors that are both (1), linear, and (2) unbiased:

- (1) $\hat{Y}(\mathbf{s}_0) = \lambda^T \mathbf{Y}$, where λ is a vector of fixed constants and $\sum \lambda_i = 1$.
- (2) $E[\hat{Y}(\mathbf{s}_0)] = E[Y(\mathbf{s}_0)]$, or equivalently, $\lambda \mathbf{X} = \mathbf{X}(\mathbf{s}_0)$.

Here λ can be thought of as a vector of weights applied to the sample data. Since the value of Y at \mathbf{s}_0 depends solely on the empirical data, optimizing this linear predictor with respect to the given restraints gives a unique solution. If λ is a solution to this problem, then $\lambda^T \mathbf{Y}$ is a best linear unbiased predictor (BLUP) for $Y(\mathbf{s}_0)$. Here "best" means having the smallest mean squared error within the class of linear unbiased predictors. There are several ways of solving this. Cressie [2] gives a proof using differential calculus and Lagrange multipliers, while Zimmerman and Stein [3] give a geometric proof. Both give the following solution:

$$\hat{Y}(\mathbf{s}_0) = [\gamma + \mathbf{X}(\mathbf{X}^T \Gamma^{-1} \mathbf{X})^{-1} (\mathbf{x}_0 - \mathbf{X}^T \Gamma^{-1} \gamma)]^T \Gamma^{-1} \mathbf{Y}$$

where $\gamma = [\gamma(\mathbf{s}_1 - \mathbf{s}_0), \dots, \gamma(\mathbf{s}_n - \mathbf{s}_0)]^T$, Γ is the $n \times n$ symmetric matrix with ijth element $\gamma(\mathbf{s}_i - \mathbf{s}_j)$ and $\mathbf{x}_0 = \mathbf{X}(\mathbf{s}_0)$.

Minimizing the prediction error variance then gives us the kriging variance which can be expressed as

$$\sigma^2(\mathbf{s}_0) = \gamma^T \Gamma^{-1} \gamma - (\mathbf{X}^T \Gamma^{-1} \gamma - \mathbf{x}_0)^T (\mathbf{X}^T \Gamma^{-1} \mathbf{X})^{-1} (\mathbf{X}^T \Gamma^{-1} \gamma - \mathbf{x}_0).$$

⁴Usually this is an unknown point in B, but can also be a known point.

REFERENCES

- [1] Roger S. Bivand, Edzer J. Pebesma, and Virgilio Gómez-Rubio. *Applied Spatial Data Analysis with R.* Springer, New York, NY, 2008.
- [2] Noel A.C. Cressie. Statistics for Spatial Data. John Wiley and Sons, Inc, New York, NY, 1993.
- [3] Alan E. Gelfand, Peter J. Diggle, Montserrat Fuentes, and Peter Guttorp. Handbook of Spatial Statistics. Chapman and Hall, Boca Raton, FL, 2010.
- [4] Michael Stein. Interpolation of Spatial Data. Springer, New York, NY, 1999.