2019 Qual - Problem 3

Elaine Kaye Kearney 6/3/2020

2019 Qual - Problem 3

a) Preliminary analysis of pilot data

Table 1: Proportion of Patients who were Moderately or Severely Ill by Week for each Treatment Group

Week	0	1	3	6
Placebo	0.940	0.880	0.780	0.685
Drug	0.945	0.750	0.465	0.245

Table 2: Covariance Matrix of Moderate or Severe Illness by Week for Placebo Group

Week	0	1	3	6
0	0.057	0.008	0.022	0.026
1	0.008	0.106	0.034	0.052
3	0.022	0.034	0.172	0.091
6	0.026	0.052	0.091	0.217

Table 3: Covariance Matrix of Moderate or Severe Illness by Week for Drug Group

Week	0	1	3	6
0	0.052	0.031	0.011	0.014
1	0.031	0.188	0.082	0.057
3	0.011	0.082	0.250	0.097
6	0.014	0.057	0.097	0.186

Figure 1: Proportions of Moderate or Severe Illness by Week for each Treatment Group

b) tlc018.sas

$$\chi_3^2 = 96.7975$$

corresponds to a p-value of < 0.001. Therefore, we have strong evidence to reject the null hypothesis of no effect of the experimental drug compared to placebo.

c)
$$logitE[Y_{ij}|b_{1i}] = \beta_1 + b_{1i} + \beta_2 t_{ij} + \beta_3 t_{ij} x_i$$

Table 4: Parameter Estimates and Standard Error Estimates for model M1

Parameter	Parameter Estimate	Standard Error Estimate	95% Confidence Interval
β_1	4.56	0.342	(3.892, 5.235)
eta_2	-1.30	0.147	(-1.585, -1.008)
eta_3	-1.41	0.169	(-1.745, -1.081)
σ^2	5.15	0.972	(3.241, 7.063)

d)

Randomized study - so at baseline there was no treatment. After baseline, there is a separate slope for drug group, so effectively there is a main effect for treatment. Therefore, justified.

e) INTERPRETATIONS

 β_2 : Consider a patient i in the placebo group. Let $\nu_{i0} = E[Y_{i0}|b_{1i}]$ and $\nu_{i1} = E[Y_{i1}|b_{1i}]$. Based on the model,

$$logit\nu_{i0} = \beta_1 + b_{1i} + \beta_2(0) = \beta_1 + b_{1i}$$
$$logit\nu_{i1} = \beta_1 + b_{[1i]} + \beta_2(1)$$
$$\Rightarrow logit\nu_{i1} - \nu_{i0} = \beta_2$$

Thus, we see that β_2 is the difference in log odds of moderally ill or severely ill for a given patient on placebo between week 1 and baseline, conditional on this subject's specific random intercept, b_i . Therefore, $\hat{\beta}_2 = -1.30$, which implies that the estimated difference in log odds of moderally ill or severely ill for a given patient on placebo between week 1 and baseline, conditional on this subject's specific random intercept, b_i , is -1.30. Therefore, since $\hat{\beta}_2$ is negative, we have evidence that the log odds of moderate or severe onycholysis for a given patient on placebo, conditional on this subject's specific random intercept, b_i , is decreasing between week 1 and baseline, and indeed this was evident in the figure in part a.

 β_3 : Consider patient A on drug and patient B on placebo. Let Y_{A1} be the response for patient A at week 1, and let Y_{B1} be the response for patient B at week 1. Based on our model, we have that

$$\begin{split} logitE[Y_{A1}|b_{1A}] &= \beta_1 + b_{1A} + \beta_2(1) + \beta_3(1 \times 1) \\ logitE[Y_{B1}|b_{1A}] &= \beta_1 + b_{1B} + \beta_2(1) + \beta_3(1 \times 0) \\ \Rightarrow logitE[Y_{A1}|b_{1A}] - logitE[Y_{B1}|b_{1A}] &= (b_{1A} - b_{1B}) + \beta_3 \end{split}$$

Shown above is the contast of the log of the ratio of the two subject-specific odds of moderately ill or severely ill at week 1. Thus, it is a random subject-pair-specific log odds ratio. The expected value of the contrast is β_3 , which is estimated to be -1.41, and this expectation is taken over a random pair of subject: one

being a random draw from the population of subjects on placebo and the other one being a random draw from the population of subjects on drug. The distribution of this contrast is $N(\beta_3, 2\sigma^2) = N(-1.41, 10.3)$. Based on this distribution, we can find the probability that a random subject who is on drug has a higher subject-specific risk of moderately ill or severely ill at week 1 than a random subject who is on drug

$$1 - \Phi(1.41/\sqrt{10.3}) \approx 0.33$$

This implies that the probability that a random subject who is on placebo has a higher subject-specific risk of moderately ill or severely ill at weel 1 than a random subject who is on drug is 1-0.33=0.67, which is greater than half (0.5 would be the case in which drug is equally effective to placebo). The 5% and 95% quantiles of N(-1.41, 10.3) are (-6.69, 3.87), corresponding to odds ratios of 0.001 and 47.942, which is a very large range. Therefore, while we have evidence that drug is slightly more effective than placebo at reducing the subject-specific risk of moderately ill or severely ill at week 1, this pales in comparison to the heteorgeniety among patients.

 σ^2 : The estimate of σ^2 is $\hat{\sigma}^2 = 5.15$. Now, we assumed that $b_{1i} \sim N(0, \sigma^2)$. Therefore,

$$4.56 \pm 1.96\sqrt{5.15}$$

\$\Rightarrow\$ (0.1121, 9.0079)

An interpretation to the magnitude of the estimated variance is as follows: Approximately 95% of subjects have baseline log odds of moderately ill or severely ill between 0.1121 and 9.0079.

f)
$$logitE[Y_{ij}|b_{1i},b_{2i}] = \beta_1 + b_{1i} + \beta_2 t_{ij} + \beta_3 t_{ij} x_i + b_{2i} t_{ij}$$

Let

$$G = \begin{bmatrix} \sigma_{11} & \sigma_{21} \\ \sigma_{21} & \sigma_{22} \end{bmatrix}$$

Table 5: Parameter Estimates and Standard Error Estimates for model M2

Parameter	Parameter Estimate	Standard Error Estimate	95% Confidence Interval
β_1	4.3829	0.424	(3.549, 5.217)
eta_2	-1.1313	0.1981	(-1.521, -0.742)
eta_3	-1.5629	0.2059	(-1.968, -1.158)
σ_{11}	3.9854	1.5077	(1.021, 6.950)
σ_{21}	0.1862	0.551	(-0.897, 1.269)
σ_{22}	0.453	0.4645	(-0.460, 1.366)

g) Seems like a bad idea since b_{1i} and b_{2i} are within a subject so we would expect them to have correlation and covariance?

h)
$$H_0: g_{22} = 0$$
 vs. $H_1: g_{22} \neq 0$

In order to test the null hypothesis $H_0: g_{22} = 0$ against $H_1: g_{22} \neq 0$, which is equivalent to testing $H_0: g_{22} = 0$ against $H_1: g_{22} > 0$, since g_{22} is a variance, I used the -2LogL value from the model M2, and also fit a model like that of M2 without the random slope The -2LogL value from M2 is 1339.1, and the -2LogL value from the model without the random slope is 1342.7. Therefore, the likelihood ratio statistic is

$$1342.7 - 1339.1 = 3.6$$

Under the null hypothesis, this test statistic has a 50:50 mixture distribution of χ^2_2 and χ^2_1 . In order to compute the p-value of this test statistic, we need to find the p-value from the χ^2_2 distribution and the p-value from the χ^2_1 distribution and take the average. The p-value from the χ^2_1 distribution is 0.1653 and the p-value from the χ^2_1 distribution is 0.0578. Therefore, we have the p-value for this test is 0.1112. Therefore, we do not have evidence at the $\alpha=0.05$ level to reject the null hypothesis that $H_0:g_{22}=0$.

$$logitE[Y_{ij}] = \gamma_1 + \gamma_2 t_{ij} + \gamma_3 t_{ij} x_i$$

Table 6: Parameter Estimates and Standard Error Estimates for model M3

Parameter	Parameter Estimate	Standard Error Estimate	95% Confidence Interval
γ_1	2.706	0.1482	(2.416, 2.997)
γ_2	-0.7976	0.0797	(-0.954, -0.641)
γ_3	-0.799	0.0869	(-0.969, 0.629)
$lpha_1$	1.815	0.4072	(1.017, 2.613)
$lpha_2$	1.385	0.4796	(0.445, 2.325)
$lpha_3$	2.2085	0.6258	(0.982, 3.435)
$lpha_4$	1.8225	0.2874	(1.259, 2.386)
$lpha_5$	2.4193	0.4166	(1.603, 3.236)
$lpha_6$	2.4039	0.309	(1.798, 3.010)

I used a Wald test to test the null hypothesis of no effect of the experimental drug compared to the placebo, which is equivalent to testing $H_0: \gamma_3 = 0$. This test produced a test statistic of 84.44, which corresponds to a χ_1^2 distribution, which produces a p-value of < 0.001. Therefore, we have strong evidence at the $\alpha = 0.05$ level to reject the null hypothesis of no effect of the experimental drug compared to the placebo.

j) Test
$$H_0: \alpha_1 = \cdots = \alpha_6$$

$$W_n = 7.31$$
 and $p = 0.2931$