Phylogenetics Tutorial 2

Using Phylogenies: Genomic Epidemiology

Finlay Maguire

Faculty of Computer Science

Table of contents

- 1. Overview
- 2. Installation
- 3. Phylogenomics
- 4. HGT

Overview

Aims

- · Perform a core-genome phylogeny (phylogenomics)
- · Use mixture models
- · Perform topology comparison tests
- · Use phylogenetics to investigate an HGT

Requirements

- · Internet connection
- · mafft
- trimal
- aliview
- iqtree
- FigTree
- snp-sites

Installation

miniconda

If you don't have miniconda https://docs.conda.io/en/latest/miniconda.html conda create -n phylo -c bioconda mafft trimal fasttree iqtree roary snp-sites conda activate phylo

Other tools

Unfortunately, not everything is in bioconda:

- AliView
 https://github.com/AliView/AliView/releases
- FigTree
 https://github.com/rambaut/figtree/releases

Phylogenomics

Procedure

- · Get your genomes.
- · Annotate those genomes (e.g. prokka)
- Find the annotations shared between the genomes and align core genome (e.g. roary)
- Extract the variant sites (snp-sites)
- · Infer your phylogeny

Get Data

```
scp transfer@veles.research.cs.dal.ca:/home/transfer/
    core_gene_alignment.aln .
```

password is 'phylogenetics'

Extract SNPs

 $\verb|snp-sites -o listeria_snps.fna core_gene_alignment.aln|\\$

Infer ML phylogeny with mixture model

iqtree -m "MIX{JC,GTR}+G4" -alrt 1000 -bb 1000 -nt AUTO -s listeria_snps.fna -pre listeria_mix

Infer ML phylogeny with GTR

iqtree -m "GTR" -nt AUTO -alrt 1000 -bb 1000 -s listeria_snps.fna -pre listeria_gtr

Tree Topology Tests

```
cat listeria_mix*.treefile listeria_mix*.bionj \
listeria gtr*.treefile listeria gtr*.bionj > trees
igtree -nt AUTO -s listeria snps.fna \
    -m "MIX{JC,GTR}+G4" -z trees -pre tree_comp \
```

-n 0 -zb 1000

Visualise "Best" Tree

Figure 1: Roary Tutorial

HGT

Starting Sequence

hypothe GenBank: OT Identical Protei		Customize view	
Go to: ♥		Analyze this sequence Run BLAST	•
LOCUS DEFINITION	NITION hypothetical protein A5816_002916 [Enterococcus sp. 3G1_DIV0629]. SSSION 0T022244	Identify Conserved Domains	
ACCESSION		Highlight Sequence Features	
VERSION DBLINK	0T022244.1 BioProject: PRJNA313452 BioSample: SANN04634015	Find in this Sequence	
DBSOURCE	accession NGLI01000004.1		
SOURCE ORGANISM	. Enterococcus sp. 361_DIV0629 Enterococcus sp. 361_DIV0629	Related information	•

https://www.ncbi.nlm.nih.gov/protein/OTO22244.1

BLASTP

Get Sequences

ML Phylogeny

- · Align sequences: mafft
- · Mask alignment: trimal
- · Infer phylogeny (and fit model): iqtree
- Visualise phylogeny: FigTree

Questions?