NHẬN DIỆN THƯƠNG HIỆU

LOGO DETECTION

Nhóm sinh viên thực hiện:

Nguyễn Ngọc Đàm

na

KSTN Toán Tin K61

KSTN Toán Tin K61

Nguyễn Phong Long

KSTN Toán Tin K61

Ngô Thị Trà

KSTN Toán Tin K61

Phạm Thị Thu Phương

- Toán Tin 01 K61

NỘI DUNG CHÍNH

- TỔNG QUAN
- XÂY DỰNG MÔ HÌNH
- TỐI ƯƯ
- KÉT QUẢ
- XÂY DƯNG ỨNG DUNG

TỔNG QUAN

Tại sao cần nhận diện thương hiệu ?

- Cung cấp thông tin về việc công chúng tương tác với một thương hiệu cụ thể
- Phục vụ phân tích truyền thông xã hội

Tại sao cần nhận diện thương hiệu qua ảnh?

- Mạng xã hội phát triển
- Ước tính 80% bài đăng trong phương tiện xã hội có chứa hình ảnh hoặc video
- → Việc trích xuất thông tin có ý nghĩa từ văn bản và siêu tham số thông thường là không đủ!
- Hệ thống phần cứng đáp ứng đủ yêu cầu

TỔNG QUAN

Fig 1: Phân tích truyền thông xã hội qua nhận diện logo từ ảnh Nguồn: statics.com

TỔNG QUAN

Vấn đề

- Các phương pháp xử lý ảnh thông thường kết hợp với máy học không đủ độ chính xác

 - Đặc trưng Haar-like và giải thuật Cascade → Çần xâyngựng mô hình mạng neural học sâu đảm bảo độ chính xác và thời gian tính toán
- Phương pháp sử dụng mô hình mạng neural học sâu cần nhiều chi phí tính toán, dữ liệu
 - 1-Stage: YOLO, SSD, ...
 - 2-Stages: Faster-RCNN, Mask-RCNN, Pantopic-FPN, ...

- Kiến trúc 2-stages
 - Giai đoạn 1: Đề xuất vùng
 - Giai đoạn 2: Phân loại và hồi quy (Fast-RCNN)

GIAI ĐOẠN 1: ĐỀ XUẤT VÙNG

Fig 2.1: Trích xuất đặc trưng

GIAI ĐOẠN 1: ĐỀ XUẤT VÙNG

Kích thước features map giảm 16 lần so với ảnh gốc

→ Mỗi pixel trên features map mang thông tin của 16x16 pixels trên ảnh gốc

Fig 2.2: Trích xuất đặc trưng

16 x 16

Fig 3: Mô hình đề xuất vùng

GIAI ĐOẠN 1: ĐỀ XUẤT VÙNG

Fig 4: Tập hợp anchors

GIAI ĐOẠN 1: ĐỀ XUẤT VÙNG

Anchors phản hồi với groundtruth là:

- Anchors có chỉ số loU > 0.7
- Anchors có chỉ số loU cao nhất

Anchors không phản hồi với bất kì groundtruth nào là:

 Anchors có chỉ số loU với tất cả groundtruth < 0.3

Thực hiện lấy mẫu 64 anchors có phản hồi và 64 anchors không phản hồi

Fig 5: Tính phản hồi của anchors

GIAI ĐOẠN 1: ĐỀ XUẤT VÙNG

RPN Output Input

Fig 6: Đầu vào, đầu ra của mạng đề xuất vùng

GIAI ĐOẠN 2: PHÂN LOẠI VÀ HỒI QUY

Fig 7: Mô hình giai đoạn 2

GIAI ĐOẠN 2: PHÂN LOẠI VÀ HỒI QUY

Chia sẻ tham số: Cả 2 giai đoạn sử dụng cùng 1 features map

 Sử dụng VGG16 để trích xuất đặc trưng & sử dụng pretrained VGG16 từ ImageNet

Fig 9: Đóng băng 2 khối đầu tiên trong mạng VGG16

- Sử dụng VGG16 để trích xuất đặc trưng & sử dụng pretrained VGG16 từ ImageNet
- Tỉ lệ khung hình của ảnh được giữ nguyên có thể, kích thước tối hiểu 608 pixels, kích thước tối đa 1024 pixels

Fig 10: Thay đổi kích thước ảnh đầu vào

- Sử dụng VGG16 để trích xuất đặc trưng & sử dụng pretrained VGG16 từ ImageNet
- Tỉ lệ khung hình của ảnh được giữ nguyên có thể, kích thước tối hiểu 608 pixels, kích thước tối đa 1024 pixels
- Sử dụng giải thuật NMS và thay thế ROI Pooling bằng ROI Align

- Đề xuất vùng kích thước 25 x 25
- Mục tiêu đưa về kích thước 7 x 7

ROI Pooling

- Ta có [25/7] = 3
- Chỉ sử dụng 21x21

ROI Align

- Resize ảnh từ 25x25 về 14x14
- Thực hiện MaxPooling

Pooled

- Sử dụng VGG16 để trích xuất đặc trưng & sử dụng pretrained VGG16 từ ImageNet
- Tỉ lệ khung hình của ảnh được giữ nguyên có thể, kích thước tối hiểu 608 pixels, kích thước tối đa 1024 pixels
- Sử dụng giải thuật NMS và thay thế ROI Pooling bằng ROI Align
- Bổ xung lớp giảm số chiều dữ liệu sau lớp ROI Align

- Mặc định: 7*7*512*2048 = 51M
- Giảm số chiều: 7*7*256*2048 + 1*1*256*512 = 25.5M

- Sử dụng VGG16 để trích xuất đặc trưng & sử dụng pretrained VGG16 từ ImageNet
- Tỉ lệ khung hình của ảnh được giữ nguyên có thể, kích thước tối hiểu 608 pixels, kích thước tối đa 1024 pixels
- Sử dụng giải thuật NMS và thay thế ROI Pooling bằng ROI Align
- Bổ xung lớp giảm số chiều dữ liệu sau lớp ROI Align
- Giảm số chiều lớp hồi quy

Fig 11: Giảm số chiều lớp hồi quy

- Sử dụng VGG16 để trích xuất đặc trưng & sử dụng pretrained VGG16 từ ImageNet
- Tỉ lệ khung hình của ảnh được giữ nguyên có thể, kích thước tối hiểu 608 pixels, kích thước tối đa 1024 pixels
- Sử dụng giải thuật NMS và thay thế ROI Pooling bằng ROI Align
- Bổ xung lớp giảm số chiều dữ liệu sau lớp ROI Align
- Giảm số chiều lớp hồi quy
- Chỉ sử dụng dropout 25% cho lớp phân loại

Fig 12: Dropout lớp phân loại, giảm Overfitting

- Sử dụng VGG16 để trích xuất đặc trưng & sử dụng pretrained VGG16 từ ImageNet
- Tỉ lệ khung hình của ảnh được giữ nguyên có thể, kích thước tối hiểu 608 pixels, kích thước tối đa 1024 pixels
- Sử dụng giải thuật NMS và thay thế ROI Pooling bằng ROI Align
- Bổ xung lớp giảm số chiều dữ liệu sau lớp ROI Align
- Giảm số chiều lớp hồi quy
- Chỉ sử dụng dropout 25% cho lớp phân loại
- Loại bỏ anchors vượt quá kích thước ảnh

Fig 13: Loại bỏ anchors không cần thiết

KẾT QUẢ

- Độ chính xác tính trên tập 150 ảnh test
- Thời gian tính toán trung bình trên GTX 950M 4Gb của mô hình là 0.83s, khi sử dụng mô hình gốc từ Tensorflow API là 1.67s, nhanh hơn 2.01 lần

	VietinBank	VietcomBank	BIDV
False Positive	3	2	3
False Negative	5	3	4
True Positive	52	47	47
True Negative	95	101	100

	VietinBank	VietcomBank	BIDV
Precision	0.945	0.959	0.940
Recall	0.912	0.94	0.921

Fig 14: Độ chính xác mô hình trên tập test

KẾT QUẢ

Fig 15: Một số kết quả

KẾT QUẢ

Fig 15: Một số kết quả

XÂY DỰNG ỨNG DỤNG

Fig 16: Xây dựng giao diện ứng dụng

XÂY DỰNG ỨNG DỤNG

Fig 16: Xây dựng giao diện ứng dụng

TÀI LIỆU THAM KHẢO

- [1] Faster R-CNN: Towards Real-Time Object Detection with Region Proposal Networks Shaoqing Ren, Kaiming He, Ross Girshick, Jian Sun.
- [2] SSD: Single Shot MultiBox Detector Wei Liu, Dragomir Anguelov, Dumitru Erhan, Christian Szegedy, Scott Reed, Cheng-Yang Fu, Alexander C. Berg
- [3] You Only Look Once: Unified, Real-Time Object Detection- Joseph Redmon, Santosh Divvala, Ross Girshick, Ali Farhadi.
- [4] VGG16, VGG19: Convolution Neural Network- Google Inc., 2015.
- [5] Rapid Object Detection using a Boosted Cascade of Simple Features Paul Viola, Michael Jones, Computer Vision and Pattern Recognition 2001.
- [6] Scale-invariant feature transform (SIFT)- David Lowe, University of British Columbia, 1999
- [7] Lenet-5: Convolution neural network for handwritten digits recognition, Yann Lecun, 1998
- [8] Selective Search for Object Recognition Jasper R. R. Uijlings, Koen E. A. van de Sande, Theo Gevers, Arnold W. M. Smeulders- International Journal of Computer Vision, Volume 104 (2), page 154-171, 2013
- [9] Efficient Graph-Based Image Segmentation P. Felzenszwalb, D. Huttenlocher International Journal of Computer Vision, Vol. 59, No. 2, September 2004
- [10] Rich feature hierarchies for accurate object detection and semantic segmentation Ross Girshick, Jeff Donahue, Trevor Darrell, Jitendra Malik- UC Berkeley- 22 Oct 2014
- [11] Deep Residual Learning for Image Recognition Kaiming He, Xiangyu Zhang, Shaoqing Ren, Jian Sun, Microsoft Research, 2015

TÀI LIỆU THAM KHẢO

- [12] Rethinking the Inception Architecture for Computer Vision Christian Szegedy, Vincent Vanhoucke, Sergey Ioffe, Jonathon Shlens, Google Inc, 2015
- [13] Xception: Deep Learning with Depthwise Separable Convolutions François Chollet, Google Inc, 2017
- [14] Understanding the Effective Receptive Field in Deep Convolutional Neural Networks Wenjie Luo*, Yujia Li*, Raquel Urtasun, Richard Zemel, Department of Computer Science, University of Toronto, 2017
- [15] Mask-RCNN Kaiming He, Georgia Gkioxari, Piotr Dollár, Ross Girshick, Facebook AI Research, 24 2018
- [16] Panoptic-FPN Alexander Kirillov, Ross Girshick, Kaiming He, Piotr Dollar, Facebook Al Research, 2019
- [17] SqueezeNet: AlexNet-level accuracy with 50x fewer parameters and < 0.5Mb model size Forrest N. landola, Song Han, Matthew W. Moskewicz, Khalid Ashraf, William J. Dally, Kurt Keutzer
- [18] Non Maximal Suppression in Cascaded Ranking Models Blaschko, M.B., Kannala, J., Rahtu, Scandinavian Conference on Image Analysis (SCIA). (2013)
- [19] Adam: A Method for Stochastic Optimization Diederik P.Kingma*, Jimmy Lei Ba*, Jan 2017.
- [20] Making large-scale support vector machine learning practical -T. Joachims, . In: Schlkopf, B., Burges, C., Smola, A.
- (eds.) Advances in Kernel Methods Support Vector Learning, pp. 169-184. MIT Press, Cambridge 1998.
- [21] A Survey on Deep Transfer Learning Chuanqi Tan, Fuchun Sun, Tao Kong, Wenchang Zhang, Chao Yang, and Chunfang Liu, Aug 2018

