Grupo ARCOS

uc3m Universidad Carlos III de Madrid

Tema 2 Coma flotante

Estructura de Computadores Grado en Ingeniería Informática

Contenidos

I. Introducción

- Motivación y objetivos
- 2. Sistemas posicionales

2. Representaciones

- Alfanuméricas
 - Caracteres
 - 2. Cadenas de caracteres
- 2. Numéricas
 - Naturales y enteras
 - 2. Coma fija
 - 3. Coma flotante (estándar IEEE 754)

Otras necesidades de representación

¿Cómo representar?

- Números muy grandes: 30.556.926.000₍₁₀
- Números muy pequeños: 0.000000000529177₍₁₀
- Números con decimales: 1,58567

Ejemplo de fallo...

- Explosión del Ariane 5 (primer viaje)
 - Enviado por ESA en junio de 1996
 - Coste del desarrollo:
 10 años y 7000 millones de dólares
 - Explotó 40 segundos después de despegar,
 a 3700 metros de altura.

El software del sistema de referencia inercial realizó la conversión de un valor real en coma flotante de 64 bits a un valor entero de 16 bits. El número a almacenar era mayor de 32767 (el mayor entero con signo de 16 bits) y se produjo un fallo de conversión y una excepción.

Coma fija [racionales]

 Se fija la posición de la coma binaria y se utilizan los pesos asociados a las posiciones decimales

Ejemplo:

$$|00|.|0|0 = 2^4 + 2^0 + 2^{-1} + 2^{-3} = 9,625$$

Representación de fracciones con representación binaria en coma fija

Ejemplo de representación con 6 bits:

- Ejemplo de número: $10,1010_{(2} = 1 \times 2^{1} + 1 \times 2^{-1} + 1 \times 2^{-3} = 2.62510$
- Asumiendo esta coma fija, el rango sería:
 - □ [0 a 3.9375 (casi 4)]

Potencias negativas

i	2-i	
0	1.0	1
1	0.5	1/2
2	0.251/4	
3	0.125	1/8
4	0.0625	1/16
5	0.03125	1/32
6	0.015625	
7	0.0078125	
8	0.00390625	
9	0.001953125	
10	0.0009765625	

Contenidos

I. Introducción

- Motivación y objetivos
- 2. Sistemas posicionales

2. Representaciones

- Alfanuméricas
 - Caracteres
 - 2. Cadenas de caracteres

2. Numéricas

- Naturales y enteras
- 2. Coma fija
- 3. Coma flotante (estándar IEEE 754)

Notación científica decimal

- Cada número lleva asociado una mantisa y un exponente
- Notación científica decimal usada: notación normalizada
 - Solo un dígito distinto de 0 a la izquierda del punto
- Se adapta el número al orden de magnitud del valor a representar, trasladando la coma decimal mediante el exponente

Notación científica en binario

- Forma normalizada: Un I (solo un dígito) a la izq. de la coma
 - Normalizada: 1.0001×2^{-9}
 - No normalizada: 0.0011×2^{-8} , 10.0×2^{-10}

Estándar IEEE 754 [racionales]

- Estándar para coma flotante usado en la mayoría de los ordenadores.
- Características (salvo casos especiales):
 - Exponente: en exceso con sesgo 2 num_bits_exponente I I
 - Mantisa: signo-magnitud, normalizada, con bit implícito
- Diferentes formatos:
 - Precisión simple: 32 bits (signo: I, exponente: 8 y mantisa: 23)
 - **Doble precisión**: 64 bits (signo: I, exponente: I I y mantisa: 52)
 - Cuádruple precisión: 128 bits (signo: 1, exponente: 15 y mantisa: 112)

Normalización y bit implícito

Normalización

Para normalizar la mantisa se ajusta el exponente para que el bit más significativo de la mantisa sea I

- Ejemplo: $00010000000010101 \times 2^3$ (no lo está) $100000000010101000 \times 2^0$ (ahora sí)

Bit implícito

Una vez normalizado, dado que el bit más significativo es 1, **no** se almacena para dejar espacio para un bit más (aumenta la precisión)

Así se puede representar mantisas con un bit más

▶ El valor se calcula con la siguiente expresión (salvo casos especiales):

$$N = (-1)^{S} \times 2^{E-127} \times 1.M$$

donde:

S = 0 indica número positivo, S = I indica número negativo

0 < E < 255 (E=0 y E=255 indican casos especiales)

Existencia de casos especiales:

(-1)s * 0.mantisa * 2-126

Exponente	Mantisa	Valor especial
0 (0000 0000)	0	+/- 0 (según signo)
0 (0000 0000)	No cero	Número NO normalizado
255 (1111 1111)	No cero	NaN (0/0,)
255 (1111 1111)	0	+/-infinito (según signo)
I-254	Cualquiera	Número normalizado (no
		especial)

(-I)s * I.mantisa * 2exponente-127

Ejemplos (incluyen casos especiales)

S	E	M	N
I	00000000	000000000000000000000000000000000000000	-0 (Excepción 0) E=0 y M=0.
I	01111111	000000000000000000000000000000000000000	$-2^{0} \times 1.0_{2} = -1$
0	10000001	111000000000000000000000000000000000000	$+2^2 \times 1.111_2 = +2^2 \times (2^0 + 2^{-1} + 2^{-2} + 2^{-3}) = +7.5$
0	111111111	000000000000000000000000000000000000000	∞ (Excepción ∞) E=255 y M=0
0	111111111	100000000000000000000000000000000000000	NaN (Not a Number) E=255 y M≠0.

Ejercicio

a) Calcular el valor correspondiente al número
 0 10000011 1100000000000000000
 dado en coma flotante según norma 754 de simple precisión

Ejercicio (solución)

- a) Calcular el valor correspondiente al número
 0 10000011 11000000000000000000
 dado en coma flotante según norma 754 de simple precisión
 - a) Bit de signo: $0 \Rightarrow (-1)^0 = +1$
 - Exponente: $10000011_2 = 131_{10} \Rightarrow E 127 = 131 127 = 4$

Por tanto el valor decimal del n° es $+1 \times 2^4 \times 1,75 = +28$

Ejercicio

b) Expresar según norma IEEE 754 de simple precisión el n°-9

Ejercicio (solución)

b) Expresar según norma IEEE 754 de simple precisión el n°-9

$$-9_{10} = -1001_2 = -1001_2 \times 2^0 = -1,001_2 \times 2^3$$
 (mantisa normalizada)

- a) Bit de signo: negativo \implies S=I
- Exponente: 3+127 (exceso) = $130 \implies 10000010$

- Rango de magnitudes representables (sin considerar el signo):
 - Menor normalizado:
 - Mayor normalizado:

- Menor no normalizado:
- Mayor no normalizado:

 $(-1)^s * 0.mantisa * 2^{-126}$

Exponente	Mantisa	Valor especial
0	≠ 0	No normalizado
1-254	cualquiera	normalizado

(-I)^s * I.mantisa * 2^{exponente-127}

- Rango de magnitudes representables (sin considerar el signo):
 - Menor normalizado:

Mayor normalizado:

- Menor no normalizado:
- Mayor no normalizado:

Truco:

$$X = 2 - 2^{-23}$$

- Rango de magnitudes representables (sin considerar el signo):
 - Menor normalizado:

Mayor normalizado:

- Menor no normalizado:
- Mayor no normalizado:

Ejercicio

¿Cuántos números de floats (coma flotante de simple precisión) hay entre el 1 y el 2 (no incluido)?

¿Cuántos números de floats (coma flotante de simple precisión) hay entre el 2 y el 3 (no incluido)?

Ejercicio (solución)

- ¿Cuántos números de floats (coma flotante de simple precisión) hay entre el 1 y el 2 (no incluido)?

 - ▶ Entre I y 2 hay 2²³ números
- ¿Cuántos números de floats (coma flotante de simple precisión) hay entre el 2 y el 3 (no incluido)?

 - ▶ Entre 2 y 3 hay 2²² números

Números representables

Resolución variable:
 Más denso cerca de cero, menos hacia el infinito

Números representables

(b) Números en coma flotante

Ejemplo 1 imprecisión

3.9999998 x 10⁻¹

9.9999994 x 10⁻²

Ejemplo 2 imprecisión

¿Cómo realiza C una división?

```
t2.c
#include <stdio.h>
int main ()
 float a;
 a = 3.0/7.0;
 if (a == 3.0/7.0)
      printf("Igual\n");
 else printf("No Igual\n");
 return (0);
```

Ejemplo 2 imprecisión

¿Cómo realiza C una división?

```
t2.c
#include <stdio.h>
int main ()
 float a;
  a = 3.0/7.0;
  if (a == 3.0/7.0)
      printf("Igual\n");
  else printf("No Igual\n");
  return (0);
```

```
$ gcc -o t2 t2.c
$ ./t2
No Igual
```

Ejemplo 2 imprecisión

¿Cómo realiza C una división?

```
t2.c
         #include <stdio.h>
         int main ()
           float a;
                             double
float
           a = 3.0/7.0;
           if (a == 3.0/7.0)
               printf("Igual\n");
           else printf("No Igual\n");
           return (0);
```

```
$ gcc -o t2 t2.c
$ ./t2
No Igual
```

Ejemplo 3 imprecisión

La propiedad asociativa no siempre se cumple ¿ a + (b + c) = (a + b) + c ?

```
#include <stdio.h>

int main ()
{
    float x, y, z;

    x = 10e30; y = -10e30; z = 1;
    printf("(x+y)+z = %f\n",(x+y)+z);
    printf("x+(y+z) = %f\n",x+(y+z));

    return (0);
}
```

Ejemplo 3 imprecisión

La propiedad asociativa no siempre se cumple a + (b + c) = (a + b) + c?

```
#include <stdio.h>

int main ()
{
    float x, y, z;

    x = 10e30; y = -10e30; z = 1;
    printf("(x+y)+z = %f\n",(x+y)+z);
    printf("x+(y+z) = %f\n",x+(y+z));

    return (0);
}
```

```
$ gcc -o t1 t1.c
$ ./t1
(x+y)+z = 1.000000
x+(y+z) = 0.000000
```

Asociatividad

La coma flotante no es asociativa

$$x = -1.5 \times 10^{38}, y = 1.5 \times 10^{38}, y z = 1.0$$

$$(x + y) + z = (-1.5 \times 10^{38} + 1.5 \times 10^{38}) + 1.0$$

$$= (0.0) + 1.0 = 1.0$$

- Las operaciones coma flotante no son asociativas
 - Los resultados son aproximados
 - $ightharpoonup 1.5 imes 10^{38}$ es mucho más grande que 1.0
 - 1.5×10^{38} + 1.0 en la representación en coma flotante sigue siendo 1.5×10^{38}

Conversión int \rightarrow float \rightarrow int

```
if (i == (int)((float) i)) {
    printf("true");
}
```

- ▶ No siempre es cierto
- Muchos valores enteros grandes no tienen una representación exacta en coma flotante
- ¿Qué ocurre con double?

- ▶ El número 133000405 en binario es:
- Se normaliza

 - S = 0 (positivo)
 - \rightarrow e = 26 \rightarrow E = 26 + 127 = 153
- El número realmente almacenado es
 - \downarrow 1, 11111011010110110011010 \times 2²⁶ =

Conversión float \rightarrow int \rightarrow float

```
if (f == (float)((int) f)) {
    printf("true");
}
```

- No siempre es cierto
- Los números con decimales no tienen representación entera

Redondeo

- El redondeo elimina cifras menos significativas de un número para obtener un valor aproximado.
- ▶ Tipos de redondeo:
 - ▶ Redondeo hacia + ∞
 - ▶ Redondeo "hacia arriba": $2.001 \rightarrow 3$, $-2.001 \rightarrow -2$
 - ▶ Redondeo hacia ∞
 - ▶ Redondea "hacia abajo": $1.999 \rightarrow 1$, $-1.999 \rightarrow -2$
 - ▶ Truncar
 - \blacktriangleright Descarta los últimos bits: 1.299 \rightarrow 1.2
 - Redondeo al más cercano
 - ightharpoonup 2.4 ightharpoonup 2.6 ightharpoonup 3, -1.4 ightharpoonup -1

Redondeo

- El redondeo supone ir perdiendo precisión.
- ▶ El redondeo ocurre:
 - > Al pasar a una representación con menos representables:
 - Ej.: Un valor de doble a simple precisión
 - ▶ Ej.: Un valor en coma flotante a entero
 - Al realizar operaciones aritméticas:
 - Ej.: Después de sumar dos números en coma flotante (al usar dígitos de guarda)

Dígitos de guarda

- Se utilizan dígitos de guarda para mejorar la precisión: internamente se usan dígitos adicionales para operar.
- \blacktriangleright Ejemplo: 2,65 x 10⁰ + 2.34 x 10²

	SIN dígitos de guarda	CON dígitos de guarda
I igualar exponentes	$0.02 \times 10^2 + 2.34 \times 10^2$	0.0265×10^{2} + 2.3400×10^{2}
2 sumar	$2,36 \times 10^{2}$	$2,3665 \times 10^2$
3 redondear	$2,36 \times 10^{2}$	$2,37 \times 10^2$

Operaciones en coma flotante

Sumar

Restar

- 1. Comprobar valores cero.
- 2. Igualar exponentes (desplazar número menor a la derecha).
- 3. Sumar/restar las mantisas.
- 4. Normalizar el resultado.

Multiplicar

Dividir

- 1. Comprobar valores cero.
- 2. Sumar/restar exponentes.
- 3. Multiplicar/dividir mantisas (teniendo en cuenta el signo).
- 4. Normalizar el resultado.
- 5. Redondear el resultado.

Suma y resta: Z=X+Y y Z=X-Y

Multiplicación: Z=X*Y

División: Z=X/Y

Ejercicio

Usando el formato IEEE 754, sumar 7,5 y 1,5 paso a paso

Pasar a binario

- 1) 7,5 + 1,5 =
- 2) $1,111*2^{2} + 1,1*2^{0} =$
- 3) $1,111*2^2 + 0,011*2^2 =$
- 4) $10,010*2^2 =$

5) $1,0010*2^3$

exponentes

Igualar

Sumar

Ajustar exponentes

Representación de los números

Se separa exponentes y mantisas y se añade el bit implícito

$7,5 \rightarrow 0$	10000001	1.	111000000000000000000000000000000000000
1,5 → 0	01111111	1.	100000000000000000000000000000000000000

Sumar mantisas

Normalizar el resultado

Se produce un acarreo, mantisa no normalizada

Normalizar el resultado

Se almacena el resultado eliminando el bit implícito

Ejercicio

Usando el formato IEEE 754, multiplicar 7,5 y 1,5 paso a paso

Representación de los números

Se separan exponentes y mantisas y se añade bit implícito

Se añade el bit implícito para operar

60

Multiplicar: sumar exponentes y multiplicar mantisas

Multiplicar: quitar el sesgo al exponente (hay dos)

- 01111111

Multiplicar: normalizar el resultado

▶ Resultado normalizado...

	7,5 →	0	10000001		.11100000000000000000000000000000000000
X	1,5 →	0	01111111	1	.10000000000000000000000000000000000000
	11,25	0	10000010		.01101000000000000000000000000000000000

Se almacena el resultado eliminando el bit implícito

Evolución de IEEE 754

- ▶ 1985 IEEE 754
- ▶ 2008 IEEE 754-2008 (754+854)
- ▶ 2011 ISO/IEC/IEEE 60559:2011 (754-2008)

Name	Common name	Base	Digits	E min	E max	Notes	Decimal digits	Decimal E max
binary16	Half precision	2	10+1	-14	+15	storage, not basic	3.31	4.51
binary32	Single precision	2	23+1	-126	+127		7.22	38.23
binary64	Double precision	2	52+I	-1022	+1023		15.95	307.95
binary128	Quadruple precision	2	112+1	-16382	+16383		34.02	4931.77
decimal32		10	7	-95	+96	storage, not basic	7	96
decimal64		10	16	-383	+384		16	384
decimal 128		10	34	-6143	+6144		34	6144

http://en.wikipedia.org/wiki/IEEE_floating_point

Grupo ARCOS

uc3m Universidad Carlos III de Madrid

Tema 2 Coma flotante

Estructura de Computadores Grado en Ingeniería Informática

