- 1. Un cuerpo aislado de masa m y velocidad horizontal v explota en dos fragmentos de masas 2m/3 y m/3.
 - (a) Determine la velocidad del centro de masas.
 - (b) Determine la velocidad del fragmento más ligero si el fragmento más pesado sale con velocidad perpendicular u_1 al movimiento inicial.

Solución: b)
$$u_2 = 3\sqrt{v^2 + 4u_1^2/9}$$
.

2. Una partícula de $m_1 = 5$ kg moviéndose a una velocidad de $v_1 = 2$ m/s, choca contra otra partícula de $m_2 = 8$ kg inicialmente en reposo. Si el choque es elástico, y la primera partícula se ha desviado 50° de la dirección original, calcule la velocidad de cada partícula después del choque, así como el ángulo de dispersión de la segunda partícula.

Solución:
$$v_{1f} = 1.57 \text{ m/s}, v_{2f} = 0.97 \text{ m/s}, \alpha_2 = -50.7^{\circ}$$
.

- 3. Considere el sistema de la figura. Halle la altura que alcanza cada bola después de la colisión si ésta es:
 - (a) Elástica.
 - (b) Inelástica con coeficiente de restitución e.
 - (c) Completamente inelástica.

Solución: a)
$$h_1 = \left(\frac{m_1 - m_2}{m_1 + m_2}\right)^2 h$$
, $h_2 = \left(\frac{2m_1}{m_1 + m_2}\right)^2 h$; b) $h_1 = \left(\frac{m_1 - em_2}{m_1 + m_2}\right)^2 h$, $h_2 = \left(\frac{(1 + e)m_1}{m_1 + m_2}\right)^2 h$; c) $h_3 = \left(\frac{m_1}{m_1 + m_2}\right)^2 h$.

- 4. Considere un pozo de pared esférica en cuyo fondo, a profundidad h, está situada una masa m_2 . Desde uno de los bordes del pozo, se deja caer una masa m_1 que se desliza sin rozamiento y choca frontalmente con m_2 .
 - (a) Determine la velocidad que alcanza m_1 justo antes de la colisión y la que alcanzan ambas justo después de la colisión, si ésta es completamente inelástica.
 - (b) Determine la altura que alcanzan ambas masas después de la colisión, si ésta es completamente inelástica.
 - (c) Si la colisión fuera elástica, ¿qué masa debe tener m_1 en relación con m_2 para que ésta última salga disparada del pozo hasta una altura 2h?

Solución: a)
$$v_{1i} = \sqrt{2gh}$$
, $v_f = \frac{m_1}{m_1 + m_2} \sqrt{2gh}$; b) $h_f = \frac{m_1^2}{(m_1 + m_2)^2} h$; c) $m_1 = m_2 / (\sqrt{2} - 1)$.

5. Se deja caer una pelota sobre una mesa desde una altura h. Suponiendo que el coeficiente de restitución e es el mismo en cada rebote, calcule el tiempo que tardará la pelota en detenerse.

Solución:
$$t = \left(\frac{1+e}{1-e}\right)\sqrt{\frac{2h}{g}}$$
.

- 6. Considere la dispersión de una masa puntual por una esfera dura de radio a.
 - (a) Calcule el parámetro de impacto.
 - (b) Calcule la sección eficaz diferencial de dispersión.
 - (c) Calcule la sección eficaz total de dispersión.

Solución: a)
$$b = a \cos(\theta/2)$$
; b) $\sigma(\theta) = a^2/4$; c) $\sigma_T = \pi a^2$.

7. Sección eficaz diferencial de Rutherford. Considere el potencial de Coulomb

$$U(r) = \frac{k}{r} ,$$

con k < 0. Encuentre,

- (a) La ecuación de la órbita^{*1}. Si el movimiento fuese hiperbólico, encuentre el ángulo asintótico Θ_{∞} *2.
- (b) El parámetro de impacto.
- (c) La sección eficaz diferencial.

Solución: a)
$$\cos \Theta_{\infty} = \left(1 + \frac{2E\ell^2}{\mu k^2}\right)^{-1/2}$$
; b) $b = \frac{k}{2E} \cot (\theta/2)$; c) $\sigma(\theta) = \frac{k^2}{(4E)^2} \frac{1}{\sin^4(\theta/2)}$.

^{*1}Es la misma que se obtuvo para el potencial de Kepler.

 $^{^{*2}}$ No confunda la coordenada angular Θ de la órbita (llamada θ en el tema anterior) con el ángulo de dispersión θ . La notación usada en este boletín es idéntica a la del Marion, y por lo tanto en el libro se hizo la misma redefinición.

8. Considere la dispersión de una partícula por el potencial

$$U(r) = \frac{k}{r^2} \ .$$

Encuentre,

- (a) La ecuación de la órbita en función de la velocidad inicial u_0 de la partícula.
- (b) El parámetro de impacto.
- (c) La sección eficaz diferencial.

Solución: a)
$$\Theta = \frac{b\pi}{2\sqrt{b^2 + (2k/mu_0^2)}}$$
; b) $b(\theta) = \sqrt{\frac{2k}{mu_0^2}} \frac{\pi - \theta}{\sqrt{\theta(2\pi - \theta)}}$; c) $\sigma(\theta) = \frac{2k}{mu_0^2} \frac{\pi^2(\pi - \theta)}{\theta^2(2\pi - \theta)^2 \sin \theta}$.

9. Una partícula choca elásticamente con un blanco en reposo. Demuestre que se verifica que

$$\frac{T_1}{T_0} = \frac{1 + 2x\cos\theta + x^2}{(1+x)^2} \;,$$

donde T_0 y T_1 son las energías cinéticas inicial y final, respectivamente, de la partícula incidente en el sistema LAB, θ es el ángulo de dispersión en el sistema CM y $x = m_1/m_2$.

10. Demuestre que se verifica que el máximo valor del ángulo ψ de dispersión elástica de una partícula respecto a su velocidad en el sistema LAB viene dado por

$$\tan \psi = (x^2 - 1)^{-\frac{1}{2}} .$$

Se sabe que el valor máximo de ψ medido en colisiones de partículas α sobre un blanco de hidrógeno es de $\sim 16^{\circ}$. Estime la masa de la partícula α en relación a la del hidrógeno.

Solución: x = 3.62.

11. Demuestre la relación entre los ángulos de dispersión en los sistemas CM y LAB

$$x\sin\psi = \sin(\theta - \psi)$$
,

donde $x = m_1/m_2$.

Demuestre también, la relación entre las secciones eficaces diferenciales medidas en los sistemas CM y LAB

$$\sigma(\theta) = \sigma(\psi) \frac{1 + x \cos \theta}{(1 + 2x \cos \theta + x^2)^{\frac{3}{2}}}.$$