If simpler model is true, is $\hat{\sigma}_F^2$ an unbiased estimate of σ^2 ?

Yes.

To be unbiased means $E[\hat{\sigma}_F^2] = \sigma^2$

Here, $\hat{\sigma}_F^2$ is the estimate of σ^2 under the fill model; this is E[MSE] under the full model. $E[MSE] = E\left(\frac{Y'(1-M)Y}{r(1-M)}\right) = \sigma^2$ by Theorem 1.3.2.

When the simpler model is true, $E[Y'(M-M_0)Y] = \sigma^2 \cdot r(M-M_0) + (xB)'(M-M_0)(xB)$ Such that $XB = X_0 X$ and $(M-M_0)(X_0 X) = 0$ $MXB - M_0 X_0 X = 0$

And $E\left[\frac{Y'(M-M_0)Y}{r(M-M_0)}\right] = \sigma^2$, the same variance as in the full model, where $\hat{\sigma}_F^2 = E[MSE] = \sigma^2$

Y - Y = 0