

A837

显示驱动模块使用说明书

文档履历

版本号	日期	制/修订人	内容描述
V1.0	2014-10-16		初始版本

目录

A83	Γ		1
显示	驱动	模块使用说明书	1
1.	引言		3
	1.1.	编写目的	3
	1.2.	适用范围	3
	1.3.	相关人员	3
2.	驱动	模块概述	4
3.	驱动	模块的使用	5
	3.1.	驱动模块适用范围	5
		3.1.1.驱动模块配置信息	5
		Menuconfig 配置	5
		Sys_config.fex 显示相关配置	
	3.2.		_
		源码结构介绍	10
		编译方式	11
	3.3.	驱动模块加载	
	3.4.	驱动模块加载资源要求	
	3.5.	驱动模块调试测试	
	3.6.	其他注意事项	
	3.7.	使用示例	
4.	LCD	屏的配置	
	4.1.	LCD 时序图	12
	4.2.		
		schematic	13
		sys_config.fex	14
		lcd0_panel_cfg.c.	16
	4.3.	A83T 与 LVDS Single Link 屏	20
		schematic	20
		sys_config.fex	21
	4.4.	A83T 与 LVDS Dual Link 屏	23
		schematic	23
		sys_config.fex	
	4.5.	A83T 与 DSI Video mode 屏	27
		schematic	27
		sys_config.fex	
	4.6.		
		schematic	
		sys_config.fex	
		lcd0_panel_cfg.c	
	4.7.	电源和背光	33

1. 引言

1. 1. 编写目的

让显示应用开发人员了解显示驱动的接口及使用流程,快速上手,进行开发。

适用范围 1. 2.

适用于 A83T 及以后芯片。

相关人员 1. 3.

2. 驱动模块概述

本模块主要处理显示相关功能,主要功能如下:

- 支持 linux 标准的 framebuffer 接口
- 支持 lcd(hv/lvds/cpu/dsi)输出
- 支持多图层叠加混合处理
- 支持多种显示效果处理(alpha, colorkey, 图像增强,亮度/对比度/饱和度/色度调整)
- 支持智能背光调节
- 支持多种图像数据格式输入(arg,yuv)
- 支持图像缩放处理
- 支持截屏

3. 驱动模块的使用

3.1. 驱动模块适用范围

本驱动适用于2路显示,支持LCD(HV/CPU/LVDS/DSI),支持HDMI。

3.1.1.驱动模块配置信息

Menuconfig 配置

在 linux 目录下,#make ARCH=arm menuconfig, 进入配置界面

```
Arrow keys navigate the menu. <Enter> selects submenus --->. Highlighted letters are
hotkeys. Pressing <Y> includes, <N> excludes, <M> modularizes features.
<Esc><Esc> to exit, <?> for Help, </> for Search. Legend: [*] built-in [ ] excluded
<M>> module < > module capable
[*] Patch physical to virtual translations at runtime
          General setup --->
       [*] Enable loadable module support
       [*] Enable the block layer
          System Type
       [ ] FIQ Mode Serial Debugger
          Bus support --->
          Kernel Features
          Boot options
          CPU Power Management
          Floating point emulation
          Userspace binary formats
          Power management options
       [*] Networking support
          Device Drivers
File systems --
           ernel hacking
           ecurity options
          Cryptographic API
          Library routines
                                < Exit >
                                          < Help >
```

图 1 menuconfig-device drivers

```
Arrow keys navigate the menu. <Enter> selects submenus --->. Highlighted letters are
 hotkeys. Pressing <Y> includes, <N> excludes, <M> modularizes features. Press
 <Esc><Esc> to exit, <?> for Help, </> for Search. Legend: [*] built-in [ ] excluded
 <M>> module < > module capable
          <*> Power supply class support --->
<*> Hardware Monitoring support --->
        <*> Generic Thermal sysfs driver --->
        [ ] Watchdog Timer Support --->
           Sonics Silicon Backplane --->
           Broadcom specific AMBA --->
          Multifunction device drivers --->
        [*] Voltage and Current Regulator Support --->
        [*] Pulse-Width Modulation (PWM) Support --->
        <<del>*> Multimedia support ----</del>>
        Graphics support --->
          Sound card support
        [*] HID Devices --->
        [*] USB support --->
        <*> MMC/SD/SDIO card support --->
        < > Sony MemoryStick card support (EXPERIMENTAL) --->
        [ ] LED Support --->
        < > Switch class support --->
        [ ] Accessibility support --->
        [*] Real Time Clock --->
                       <Select>
                                < Exit >
                                          < Help >
```

图 2 menuconfig-graphics support

Framebuffer 驱动:

```
config - Linux/arm 3.4.39 Kernel Configuratio
 Arrow keys navigate the menu. <Enter> selects submenus --->. Highlighted letters are
 hotkeys. Pressing <Y> includes, <N> excludes, <M> modularizes features. Press
 <Esc><Esc> to exit, <?> for Help, </> for Search. Legend: [*] built-in [ ] excluded
 <M>> module < > module capable
< > Direct Rendering Manager (XFree86 4.1.0 and higher DRI support)
       <*> Ion Memory Manager --->
       < > Lowlevel video output switch controls
       Support for frame buffer devices --->
[ ] Exynos Video driver support --->
       Backlight & LCD device support --->
          Console display driver support --->
        ] Bootup logo
                     <Select>
                             < Exit > < Help >
```

图 3 menuconfig-support for frame buffer devices

Disp/HDMI 驱动:

图 4 menuconfig - disp/hdmi driver support(sunxi)

Sys_config.fex 显示相关配置

在 A83T 中,我们做到了通过只配置屏参数,就可以完成换一个屏,不需要去修改代码(认证了的屏)。

```
; disp init configuration
                                                (0:screen0<screen0, fb0>;
; disp mode
1:screen1\(\screen1\,fb0\)
;screenx_output_type
                       (0:none; 1:1cd; 3:hdmi;)
;screenx_output_mode
                       (used for hdmi output, 0:480i 1:576i 2:480p 3:576p
4:720p50)
                       (5:720p60 6:1080i50 7:1080i60 8:1080p24 9:1080p50
10:1080p60
:fbx format
                        (0:ARGB 1:ABGR 2:RGBA 3:BGRA 5:RGB565 8:RGB888
12:ARGB4444 16:ARGB1555 18:RGBA5551)
; fbx width, fbx height (framebuffer horizontal/vertical pixels, fix to
output resolution while equal 0)
;lcdx backlight
                                           (1cd
                                                   init
                                                           backlight, the
range: [0, 256], default: 197
[disp_init]
```

```
disp_init_enable
                          = 1
                          = 0
disp mode
screen0_output_type
                          = 1
screen0_output_mode
                          = 4
                          = 3
screen1_output_type
screen1 output mode
                          = 4
fb0 format
                          = 0
fb0_width
                          = ()
                          = 0
fb0_height
                          = 0
fb1 format
                          = 0
fb1 width
fb1 height
                          = 0
                          = 50
1cd0 backlight
                          = 50
1cd1_backlight
;1cd0 configuration
                          0:hv(sync+de); 1:8080; 2:ttl; 3:lvds; 4:dsi;
;lcd if:
5:edp
;1cd x:
                        1cd horizontal resolution
                        1cd vertical resolution
;1cd_y:
;lcd_width:
                        width of 1cd in mm
;lcd height:
                        height of 1cd in mm
; 1cd_dclk_freq:
                        in MHZ unit
;lcd_pwm_freq:
                        in HZ unit
                        lcd backlight PWM polarity
;lcd_pwm_pol:
;lcd_pwm_max_limit
                        1cd backlight PWM max limit(<=255)</pre>
;lcd_hbp:
                        hsync back porch
;1cd ht:
                        hsync total cycle
;lcd_vbp:
                        vsync back porch
;1cd vt:
                        vysnc total cycle
;lcd hspw:
                        hsync plus width
; 1cd_vspw:
                        vysnc plus width
                        0:single link;
                                         1:dual link
;lcd_lvds_if:
; lcd_lvds_colordepth:
                        0:8bit; 1:6bit
; lcd_lvds_mode:
                        0:NS mode; 1:JEIDA mode
;1cd frm:
                           O:disable; 1:enable rgb666 dither; 2:enable
rgb656 dither
```

```
1cd gamma correction enable
;1cd gamma en
;lcd bright curve en
                        1cd bright curve correction enable
                        1cd color map function enable
;lcd_cmap_en
;lcdgamma4iep:
                        Smart Backlight parameter, 1cd gamma vale * 10;
                          decrease it while 1cd is not bright enough;
increase while 1cd is too bright
[1cd0 para]
1cd used
                    = 1
                    = "1t070me05000"
lcd_driver_name
                    = 0
lcd_bl_0_percent
lcd_bl_40_percent
                    = 23
lcd_bl_100_percent
                    = 100
                    = 4
1cd if
1cd_x
                    = 1200
1cd y
                    = 1920
1cd width
                    = 94
1cd_height
                    = 150
lcd_dclk_freq
                     = 156
1cd_pwm_used
                     = 1
1cd pwm ch
                     = 0
                     = 50000
1cd_pwm_freq
                     = 1
1cd pwm pol
                    = 255
lcd_pwm_max_limit
1cd hbp
                     = 80
                      1320
lcd_ht
                     = 20
1cd_hspw
                      20
1cd vbp
1cd_vt
                     = 1960
1cd_vspw
                     = 1
lcd_frm
                     = 0
                     = 0
1cd_cmap_en
                     = 2
lcd_dsi_if
1cd dsi lane
                     = 4
                     = 0
1cd dsi format
1cd dsi te
                     = 0
                    = 0
1cd gamma en
lcd_bright_curve_en = 0
                    = 22
1cdgamma4iep
                    = port:PD24<1><0><default><1>
1cd_b1_en
                    = "vcc-dsi-18"
1cd power
1cd power1
                     = "vcc-1cd-0"
```

1cd_power2 = "vcc_dsi" = port:PD25<1><0><default><0>lcd_gpio_0 lcd_gpio_1 = port:PD26<1><0><default><0>lcd_io_regulator1 = "vcc-pd" ;hdmi configuration [hdmi_para] hdmi_used = ();pwm config [pwm0_para] = 0pwm_used = port:PD28<2><0><default><defaul pwm_positive

3.2. 驱动模块信息

源码结构介绍

编译方式

可以编译为单独的模块,也可以编译到内核。

3.3. 驱动模块加载

disp.ko hdmi.ko

3.4. 驱动模块加载资源要求

由于模块依赖需要先加载 disp. ko, 后加载 hdmi. ko。

3.5. 驱动模块调试测试

可以通过 cat 设备节点查看显示信息,也可以通过 dump 寄存器内容,分析运行状态等。

3.6. 其他注意事项

无

3.7. 使用示例

Android 通过调用 hwc 中的标准接口来和显示驱动模块通信。 在次阶段中完成下一帧中后端寄存器的设置。

4. LCD 屏的配置

LCD 时序图 4. 1.

图 5 LCD 时序图

在 Blanking 分区,分为 Front Porch , Sync 和 Back Porch。 当进入Blanking 分区时会触发一个VB中断,这时进入Front Porch,在中断里 面设置 set ready 然后硬件识别到该 ready 后,开始 load reg 经过, start delay 时间后,触发 load finish 中断,发送 Vsync 信号给上层。这时进入 Sync 阶段, 经过 VSPW 时间后, 进入 Back Porch 阶段。

图 6 LCD 时序图

正常的 TFT 一行的显示周期是前消隐+实际点输出+后消隐

HBP、HFP 代表前后消隐所需要的周期

如果前消隐设置小了,后消隐设置大了,LCD控制器的实际输出就会被当做消隐而 不会实际显示出来,看到的效果就是图像左移,反之图像右移

如果前后消隐都设置小了,理论上第二行的图像可能会被当做第一行的图像显示,

照成屏幕歪斜不同步, 但是有些 TFT 中内部的时序电路会自动补上缺少的时钟, 所以也不一定会看到不同步的画面

场的消隐同理

至于为什么要消隐是为了兼容 CRT 显示器的显示原理, CRT 显示器每一个扫描行完成后, 电子枪需要回扫, 这段时间不能显示, 所以这段时间的视频信号需要暂停一下, 就是消隐。

4.2. A83T与CPU Parallel 18bit屏

schematic

CPU 屏采用 I80 总线协议,具有 RD、WR、DS、CS 4 个总线控制信号。RD 是读控制,WR 是写控制,DS 是 Command/Data 选择,CS 是屏的片选。

CPU Parallel 屏有 18/16 个总线数据 IO, CPU Serial 屏有 6/8/9 个总线数据 io。

如图 7 是一个典型 CPU Parallel 18bit 屏的模组规格书的引脚定义。A83T 与该 LCD 屏的引脚连接可参考图 8。

Pin No	Symbol	Function	Notes
1-3	NC	Not Connect	
4	IM3	16/18 bit select pin	
5	NC	Not Connect	
6	RESET	Reset pin.	
7	VSYNC	Vertical synchronization signal input pin	
8	HSYNC	Horizontal synchronization signal input pin	
9	DOTCLK	Dot clock signal input used in the RGB interface circuit	
10	DEN	Enable signal pin used in RGB interface circuit	
11-28	DB17-DB0	→ 总线数据引脚 ata bus	
29	RD	Read enable clock input pin	
30	WR	Write enable clock input pin	
31	DC	—— 总线控制引脚 iy data select pin	
32	CS	Chip select pin	
33	VSS	Gound	
34	VCC	Power supply	
35	LED-	The LED power supply (-)	
36	LED+	The LED power supply (+)	

图 7 CPU Parallel 18bit 屏引脚定义

图 8 A83T与CPU Parallel 18bit 屏连接图

该 LCD 屏的 sys_config. fex 配置如下。该 LCD 屏为 Paralle 18bit,没有TE 引脚,故 1cd_cpu_if=0,1cd_cpu_te=0。

CPU 屏规格书没有行列的时序参数,只需满足 A83T 的 LCD 控制器要求即可。时序参数确定流程如下:

- a、先取 1cd hspw=10;
- b、1cd hbp>hspw, 取 1cd hbp=20;
- c、lcd ht>lcd x×cycle+lcd hbp=240×1+20, 取 lcd ht=300;
- d、同理 1cd vspw=10;1cd vbp=20;1cd vt=500;
- e, lcd dclk freq=lcd ht×1cd vt×fps=300×500×60=9M.
- 该 CPU 屏为 18bit, 为达到 24bit 的显示效果, 1cd frm=1。

lcd_if	= 1		
lcd_cpu_if	=0		
lcd_cpu_te	=0		

lcd_dclk_freq	= 9
lcd_x =	= 240
lcd_y =	= 320
lcd_ht =	= 300
lcd_hbp =	20
lcd_hspw =	- 10
lcd_vt =	= 500
lcd_vbp =	20
lcd_vspw =	- 10
lcd_frm =	1
1cdd2	= port:PD02<2><0> <default><default></default></default>
1cdd3	= port:PD03<2><0> <default><default></default></default>
1cdd4	= port:PD04<2><0> <default><default></default></default>
1cdd5	= port:PD05<2><0> <default><default></default></default>
lcdd6	= port:PD06<2><0> <default><default></default></default>
lcdd7	= port:PD07<2><0> <default><default></default></default>
lcdd10	= port:PD10<2><0> <default><default></default></default>
lcdd11	= port:PD11<2><0> <default><default></default></default>
lcdd12	= port:PD12<2><0> <default><default></default></default>
1cdd13	= port:PD13<2><0> <default><default></default></default>
lcdd14	= port:PD14<2><0> <default><default></default></default>
lcdd15	= port:PD15<2><0> <default><default></default></default>
lcdd16	= port:PD16<2><0> <default><default></default></default>

```
1cdd19
                  = port:PD19<2><0><default><default>
1cdd20
                 = port:PD20<2><0><default><default>
1cdd21
                 = port:PD21<2><0><default><default>
1cdd22
                 = port:PD22<2><0><default><default>
1cdd23
                 = port:PD23<2><0><default><default>
lcdclk
                 = port:PD24<2><0><default><default>
1cdde
                 = port:PD25<2><0><default><default>
                  = port:PD26<2><0><default><default>
lcdhsync
                  = port:PD27<2><0><default><default>
lcdvsync
```

lcd0_panel_cfg.c

如下代码,修改 lcd_panel_init 函数。使用 LCD_CPU_register_irq 注册一个每帧对 CPU 屏写坐标原点的操作,使用 LCD_CPU_WR 对 CPU 屏进行初始化操作。

```
static void LCD_panel_init(_u32 sel)
{
    lcd_panel_kgm28le0_init(sel);
    LCD_CPU_register_irq(sel,lcd_panel_kgm28le0_orgin);
}
static void lcd_panel_kgm28le0_orgin()
{
    LCD_CPU_WR(sel,0x0050, 0);  //
    LCD_CPU_WR(sel,0x0051, 239);  //
    LCD_CPU_WR(sel,0x0052, 0);  //
    LCD_CPU_WR(sel,0x0053, 319);  //
```

```
LCD_CPU_WR(sel,0x0020, 0); // GRAM horizontal Address
   LCD CPU WR(sel, 0x0021, 0); // GRAM Vertical Address
   LCD CPU WR INDEX(sel, 0x0022);
static void lcd panel kgm281e0 init( u32 sel)
   LCD CPU WR(sel,0x0000, 0x0001);
   LCD_CPU_WR(sel,0x0001, 0x0100);
                                     // set SS and SM bit
   LCD CPU WR(sel,0x0002, 0x0400);
                                     // set 1 line inversion
                                      //////vertical scan////////
   LCD_CPU_WR(sel,0x0003, 0x10B0);
   LCD CPU WR(sel, 0x0004, 0x0000);
   LCD CPU WR (sel, 0x0008, 0x0202);
   LCD_CPU_WR(sel,0x0009, 0x0000);
   LCD\_CPU\_WR(sel,0x000A,0x0000); // FMARK function
   LCD CPU WR(sel,0x000C, 0x0000);
                                    // RGB interface setting
   LCD CPU WR(sel,0x000D, 0x0000);
                                    // Frame marker Position
   LCD CPU WR (sel, 0x000F, 0x0000);
                                    // RGB interface polarity
   LCD CPU WR(sel,0x0010, 0x0000);
                                     //
   LCD CPU WR(sel,0x0011, 0x0007);
                                    // DC1[2:0], DC0[2:0], VC[2:0]
   LCD CPU WR(sel,0x0012, 0x0000); // VREG1OUT voltage
   LCD_CPU_WR(sel,0x0013, 0x0000);
                                    // VDV[4:0] for VCOM amplitude
   LCD_delay_ms(50);
                                      //
   LCD CPU WR(sel,0x0010, 0x17B0);
   LCD\_CPU\_WR(sel,0x0011, 0x0001); // DC1[2:0], DC0[2:0], VC[2:0]
```

```
LCD_delay_ms(50);
                                  // Delay 50ms
LCD CPU WR(sel,0x0012, 0x013C);
                                 // VREG10UT voltage
LCD delay ms(50);
                                 // Delay 50ms
LCD CPU WR(sel,0x0013, 0x1300);
                                 // VDV[4:0] for VCOM amplitude
LCD\_CPU\_WR(sel,0x0029, 0x0012); // VCM[4:0] for VCOMH
                                  // Delay 50ms
LCD delay ms(50);
LCD CPU WR(sel,0x0020, 0x0000);
                                 // GRAM horizontal Address
                                  // GRAM Vertical Address
LCD_CPU_WR(sel,0x0021, 0x0000);
LCD CPU WR(sel,0x002B, 0x0020);
LCD CPU WR(sel,0x0030, 0x0000);
LCD CPU WR (sel, 0x0031, 0x0306);
                                  // Gamma Control
LCD\_CPU\_WR(sel,0x0032, 0x0200);
                                  // Gamma Control
LCD_CPU_WR(sel,0x0035, 0x0107);
                                 // Gamma Control
LCD_CPU_WR(sel,0x0036, 0x0404);
                                 // Gamma Control
LCD CPU WR(sel,0x0037, 0x0606);
                                 // Gamma Control
LCD_CPU_WR(sel,0x0038, 0x0105);
                                 // Gamma Control
LCD CPU WR(sel,0x0039, 0x0707);
                                 // Gamma Control
LCD CPU WR(sel,0x003C, 0x0600);
                                 // Gamma Control
LCD CPU WR(sel,0x003D, 0x0807);
                                 // Gamma Control
LCD_CPU_WR(sel,0x0050, 0x0000);
LCD CPU WR(sel,0x0051, 0x00EF);
LCD_CPU_WR(sel,0x0052, 0x0000);
```

```
LCD CPU WR(sel,0x0053, 0x013F);
LCD CPU WR(sel,0x0060, 0x2700); // GS, NL[5:0], SCN[5:0]
LCD CPU WR(sel, 0x0061, 0x0001); // NDL, VLE, REV
LCD_CPU_WR(sel,0x006A, 0x0000); // VL[8:0]
LCD_CPU_WR(sel,0x0080, 0x0000);
LCD_CPU_WR(sel,0x0081, 0x0000);
LCD_CPU_WR(sel,0x0082, 0x0000);
LCD_CPU_WR(sel,0x0083, 0x0000);
LCD_CPU_WR(sel,0x0084, 0x0000);
LCD_CPU_WR(sel,0x0085, 0x0000);
LCD_CPU_WR(sel,0x0090, 0x0013);
LCD_CPU_WR(sel,0x0092, 0x0000);
LCD_CPU_WR(sel,0x0093, 0x0003);
LCD CPU WR(sel,0x0095, 0x0110);
LCD_CPU_WR(sel,0x0097, 0x0000);
LCD CPU WR(sel,0x0098, 0x0000);
                                  //
LCD CPU WR(sel,0x0007, 0x0001); // Display Control 1
LCD_delay_ms(50);
LCD_CPU_WR(sel,0x0007, 0x0021);  // Display Control 1
LCD CPU WR(sel,0x0007, 0x0023); // Display Control 1
LCD_delay_ms(50);
```

```
LCD_CPU_WR(sel,0x0007, 0x0173); //
}
```

4.3. A83T与LVDS Single Link 屏

schematic

LVDS 屏接口分为 Single Link 和 Dual Link 两种接口。LVDS 屏使用 LVDS 差分信号,LVDS Single Link 具有 1 clock pair 和 3/4 data pair。

如图 9 是一个典型 LVDS Single Link 屏的模组规格书的引脚定义。A83T 与该 LCD 屏的引脚连接可参考图 10。

1	VDD	Power Supply, 3.3V typ
2	VDD	Power Supply, 3.3V typ
3	VDD	Power Supply, 3.3V typ
4	NC	NC
5	GND	Ground
6	RXINO-	D0-
7	RXINO+	D0+
8	GND	Ground Data Pair —
9	RXINO1-	D1-
10	RXINO1+	D1+
11	GND	Ground
12	RXINO2-	D2-
13	RXINO2+	D2+
14	GND	Ground
15	RXCLKIN-	CLK- Clock Pair —
16	RXCLKIN+	CLK+
17	GND	Ground
18	NC	NC
19	NC	NC
20	GND	Ground
21	LVBIT	GND (6 or 8bit Change)
22	DITHER	GND (FRC)
23	GND	Ground
24	LED EN (PWM)	PWM
25	LVFMT	GND (MSB/LSB Changge)
26	BIST	NC
27	VLED	LED Power Supply , 3~5V
28	VLED	LED Power Supply , 3~5V
29	VLED	LED Power Supply , 3~5V
30	VLED	LED Power Supply , 3~5V
31	NC	NC

图 9 LVDS Single Link 屏引脚定义

图 10 A83T 与 CPU Single Link 屏连接图

该 LCD 屏有 3 data pair, 为 18bit 色深, 18bit 色深不区分模式。故 1cd_lvds_colordepth=1, 1cd_lvds_mode=0.

该LCD 屏参数如图 11 所示。时序参数配置与 HV parallel RGB 类似。区别于 HV parallel RGB,该LCD 屏参数没有指定 Back Porch 和 Sync Width。根据 A83T 时序要求,配置如下。

1cd_ht>1cd_x×cycle+1cd_hbp 得 1cd_hbp<64。取 1cd_hbp=20;

lcd_hbp>lcd_hspw, 取 lcd_hspw=10。

同理, lcd_vbp=20, lcd_vspw=10。

LCD 10 必须配置为 LVDS, 即第一个尖括号内容为 3。

sys_config. fex 文件中配置如下。

ITEM			SYNBOL	MIN	TYP	MAX	UNIT	
	Frame Rate			-	TBD	60	TBD	Hz
	D	CLK	Frequency	f_{CLK}	TBD	66.77	TBD	MHz
	DENA	DENA Horizontal Vertical	Horizontal total time	t _H	TBD	864	TBD	$t_{\rm CLK}$
LCD			Horizontal Active time	t_{HA}	TBD	800	TBD	$t_{\rm CLK}$
Timing			Horizontal Blank time	$t_{ m HB}$	TBD	64	TBD	$t_{\rm CLK}$
			Vertical total time	$t_{ m V}$	TBD	1288	TBD	t_{H}
			Vertical Active time	$t_{ m VA}$	TBD	1200	TBD	t_{H}
			Vertical Blank time	$t_{ m VB}$	TBD	8	TBD	t_{H}

图 11 LVDS Single Link 屏参数

lcd if = 3 $lcd_lvds_if = 0$ $lcd_lvds_colordepth = 1$ $1cd \ 1vds \ mode = 0$ $lcd_dclk_freq = 67$ lcd_x = 800 lcd_y = 1200 lcd_ht = 864 lcd_hbp = 20 lcd_hspw = 10 lcd_vt = 1288 1cd vbp = 20 1cd_vspw port:PD00<3><0><default><default> 1cdd0 1cdd1 = port:PD01<3><0><default><default> 1cdd2 = port:PD02<3><0><default><default> 1cdd3 = port:PD03<3><0><default><default> 1cdd4 = port:PD04<3><0><default><default>

= port:PD05<3><0><default><default>

= port:PD06<3><0><default><default>

= port:PD07<3><0><default><default>

1cdd5

1cdd6

1cdd7

4.4. A83T与LVDS Dual Link屏

schematic

如图 12 是一个典型 LVDS Single Link 屏的模组规格书的引脚定义。A83T 与该 LCD 屏的引脚连接可参考图 13。

Pin	Symbol	Description
1	GND	Ground
2	GND	Ground
3	AVDD	Power Supply, 3.3V Typ.
4	AVDD	Power Supply, 3.3V Typ.
5	AVDD	Power Supply, 3.3V Typ.
6	DVDD	Digital Power supply (3.3V Typ)
7	DVDD	Digital Power supply (3.3V Typ)
8	CIk EEDID	Two wire serial interface clock
9	DATA EEDID	Two wire serial interface data
10	RXinO0-	- LVDS differential data input, Chan 0-Odd
11	RXinO0+	+ LVDS differential data input, Chan 0-Odd
12	GND	Ground
13	RXinO1	- LVDS differential data input, Chan 1-Odd
14	RXinO1+	+ LVDS differential data input, Chan 1-Odd
15	GND	Ground
16	RXinO2-	LVDS differential data input. Chan 2-Odd
17	RXinO2+	+LVDS Odd Link 2-Odd
18	GND	Ground
19	RXOC-	- LVDS Differential Clock input (Odd)
20	RXOC+	+ LVDS Differential Clock input (Odd)
21	GND	Ground
22	RXinO3-	- LVDS differential data input, Chan 3-Odd
23	RXinO3+	+ LVDS differential data input, Chan 3-Odd
24	GND	Ground
25	RXinE0-	- LVDS differential data input, Chan 0-Even
26	RXinE0+	+ LVDS differential data input, Chan 0-Even
27	GND	Ground
28	RXinE1-	- LVDS differential data input, Chan 1-Even
29	RXinE1+	+ LVDS differential data input, Chan 1-Even
30	GND	Ground
31	RXinE2-	- LVDS differential data input Chan 2-Even
32	RXinE2+	+LVDS Even Link 2-Even
33	GND	Ground
34	RXEC-	- LVDS Differential Clock input (Even)
35	RXEC+	+ LVDS Differential Clock input (Even)
36	GND	Ground
37	RXinE3-	- LVDS differential data input, Chan 3-Even
38	RXinE3+	+ LVDS differential data input, Chan 3-Even
39	GND	Ground
40	NC	No connection

图 12 LVDS Dual Link 屏引脚定义

图 13 A83T 与 LVDS Dual Link 屏连接图

该LCD 屏每个 Link 各有 4 data pair, 为 24bit 色深, 格式如图 14, 为 JEIDA 模式。故 1cd lvds colordepth=0, 1cd lvds mode=1。

该LCD 屏参数如图 15 所示。在该LCD 屏中, clock frequency 和 Horizontal Period 指的单个 link 上的时钟频率和 cycle 个数。

在 A83T 中, lcd_dclk_freq, lcd_ht 是指两个 link 合并后的时钟频率和 cycle 个数。故 lcd_dclk_freq = 76.36x2 = 153, lcd_ht = 1050x2=2100。 sys config. fex 文件中配置如下。

图 14 LVDS Dual Link 屏数据排布格式

Parameter		Symbol	Min.	Тур.	Max.	Unit
Frame	Rate	-	1	60	0.	Hz
Clock fre	equency	1/ T _{Clock}	64	76.36	85	MHz
	Period	T _V	1210	1212	1240	
Vertical	Active	T _{VD}		1200		T _{Line}
Section	Blanking	T _{VB}	10	12	40	
	Period	T _H	1034	1050	1140	
Horizontal	Active	T_{HD}		960		T _{Clock}
Section	Blanking	T _{HB}	74	90	180	(Note 2)

图 15 LVDS Dual Link 屏参数

lcd_hbp	= 20
lcd_hspw	= 10
lcd_vt	= 1212
lcd_vbp	= 10
lcd_vspw	= 5
1cdd0	= port:PD00<3><0> <default><default></default></default>
1cdd1	= port:PD01<3><0> <default><default></default></default>
1cdd2	= port:PD02<3><0> <default><default></default></default>
1cdd3	= port:PD03<3><0> <default><default></default></default>
1cdd4	= port:PD04<3><0> <default><default></default></default>
lcdd5	= port:PD05<3><0> <default><default></default></default>
lcdd6	= port:PD06<3><0> <default><default></default></default>
1cdd7	= port:PD07<3><0> <default><default></default></default>
lcdd8	= port:PD08<3><0> <default><default></default></default>
1cdd9	= port:PD09<3><0> <default><default></default></default>
1cdd10	= port:PD10<3><0> <default><default></default></default>
1cdd11	= port:PD11<3><0> <default><default></default></default>
1cdd12	= port:PD12<3><0> <default><default></default></default>
1cdd13	= port:PD13<3><0> <default><default></default></default>
lcdd14	= port:PD14<3><0> <default><default></default></default>
lcdd15	= port:PD15<3><0> <default><default></default></default>
lcdd16	= port:PD16<3><0> <default><default></default></default>
lcdd17	= port:PD17<3><0> <default><default></default></default>
lcdd18	= port:PD18<3><0> <default><default></default></default>
1cdd19	= port:PD19<3><0> <default><default></default></default>

4.5. A83T与DSI Video mode屏

schematic

MIPI DSI 屏分为 Video mode 和 Command mode 两种。两种模式的使用一样的 PIN 定义,都具有 1 clock pair 和 N data pair, N 为 1, 2, 3, 4。CLK 是 DDR, 在上下沿对 DATA 采样。

如图 16 是一个典型 DSI Video Mode 屏的模组规格书的引脚定义。A83T 与该 LCD 屏的引脚连接可参考图 17。

PIN	CID (DOI	DESCRIPTION	
No.	SYMBOL		Note
1	VDD		
2	VDD	D C 1	1)
3	VDD	Power Supply	1)
4	VDD	1	
5	NC	Keep Open	
6	SCL	I2C-bus Clock	
7	GND	GND(0V)	3)
8	SDA	I2C-bus Data	5)
9	GND	GND(0V)	3)
10	GND	GND(0V)	3)
11	MIPI 3N	MIPI data pair 3 negative signal	
12	NC	Keep Open	
13	MIPI 3P	→ Data pair 3 positive signal	
14	NC	Keep Open	
15	GND	GND(0V)	3)
16	GND	GND(0V)	3)
17	MIPI 0N	MIPI data pair 0 negative signal	
18	NC	Keep Open	
19	MIPI 0P	MIPI data pair 0 positive signal	
20	NC	Keep Open	
21	GND	GND(0V)	3)
22	GND	GND(0V)	3)
23	CLKN	MIPI Clock negative signal	

PIN	SYMBOL	DESCRIPTION	Note
No.			
24	NC	Keep Open	
25	CLKP	★ Clock pair sitive signal	
26	NC	Keep Open	
27	GND	GND(0V)	3)
28	GND	GND(0V)	3)
29	MIPI 1N	MIPI data pair 1 negative signal	
30	NC	Keep Open	
31	MIPI 1P	MIPI data pair 1 positive signal	
32	NC	Keep Open	
33	GND	GND(0V)	3)
34	GND	GND(0V)	3)
35	MIPI 2N	MIPI data pair 2 negative signal	
36	NC	Keep Open	
37	MIPI 2P	MIPI data pair 2 positive signal	
38	LEDEN	LED enable input level	
39	GND	GND(0V)	3)
40	BIST	Keep open or connect to GND	4)
41	LEDPWMI	PWM input to backlight LED driver	
42	VLED		
43	VLED	LED Power Supply	2)
44	VLED	LED Fower Suppry	2)
45	VLED		

图 16 MIPI DSI Video Mode 引脚定义

图 17 A83T 与 MIPI DSI Video Mode 连接图

该 LCD 屏具有 4 pair data, 像素格式为 RGB888, 故 lcd_dsi_lane = 4, lcd dsi format = 0。

该LCD 屏参数如图 18 所示。时序参数配置与LVDS 类似。注意 DSI 屏中,须满足 1cd_hbp>40, 1cd_vbp>10。

DSI 屏无须配置 LCD IO。sys_config.fex 文件配置如下。

ITEM		SYMBOL	Min.	Typ.	Max.	UNIT	NOTE
	Vertical Frequency	fV	58	60	62	Hz	
	Vertical Period	tV	1216	1235	1262	tΗ	
DE	Vertical Valid	tVD	1200			tH	
DE	Horizontal Frequency	fH	70	74	78	kHz	
	Horizontal Period	tΗ	1980	2080	2200	tCLK	
	Horizontal Valid	tHD	1920		tCLK		

图 18 MIPI DSI Video Mode 屏参数

lcd_if = 4

lcd_dsi_if	= 0
lcd_dsi_lane	= 4
lcd_dsi_format	= 0
lcd_dsi_eotp	= 0
lcd_dclk_freq	= 154
lcd_x	= 1920
lcd_y	= 1200
lcd_ht	= 2080
lcd_hbp	= 80
lcd_hspw	= 20
lcd_vt	= 1235
lcd_vbp	= 20
lcd_vspw	= 10

4.6. A83T与DSI Command mode屏

schematic

如图 19 是一个典型 DSI Command Mode 屏的模组规格书的引脚定义。A83T 与该 LCD 屏的引脚连接可参考图 20。

Pin no	Symbol	I/O	Description	Remark
1	TP reserved	-	Reserved	
2	TP reserved	-	Reserved	
3	TP reserved	-	Reserved	
4	TP reserved	-	Reserved	
5	TP reserved	-	Reserved	1
6	TP reserved	-	Reserved	O'
7	TP reserved	-	Reserved	2.
8	TP reserved	-	Reserved	
9	LED+	Р	LED backlight anode	
10	LED-	Р	LED backlight cathode	
11	GND	G	GND	
12	VCI	Р	Operating voltage	
13	GND		GND	
14	TE		TE pin t output pin	
15	VDDI	Р	I/O supply voltage	
16	GND	G	GND	
17	Test PAD	-	No connection. Please leave it open	
18	GND	G	GND	
19	HSSI_D1_P	Ι	MIPI differential data signal	
20	HSSI_D1_N	-1/2	MIPI differential data signal	
21	GND	G	GND	
22	HSSI_CLK_P	\mathcal{I}	MIPI differential clock signal	
23	HSSI_CLK_N		Diff pair ial clock signal	
24	GND	G	GND	
25	HSSI_D0_P	_	MIPI differential data signal	
26	HSSI_D0_N	Ĭ	MIPI differential data signal	
27	GND	G	GND	
28	VDDI	Р	I/O supply voltage	
29	RESX	ı	Reset (Low active)	
30	GND	G	GND	

图 19 MIPI DSI Video Mode 屏引脚定义

图 20 A83T与 MIPI DSI Command Mode 屏连接图

该 LCD 屏,具有 TE 引脚,接口参数配置如下: lcd_if = 4, lcd_dsi_if= 1, lcd_dsi_te=1。

DSI command mode 的 LCD 屏, 一般只有 1cd_x, 1cd_y。其时序参数配置可参考 CPU 屏, 差异于 CPU 屏, 要求 1cd_ht > 1cd_x+80。该 LCD 屏配置如下。

```
      lcd_y
      = 800

      lcd_ht
      = 600

      lcd_hbp
      = 20

      lcd_hspw
      = 10

      lcd_vt
      = 1000

      lcd_vbp
      = 20

      lcd_vspw
      = 10
```

lcd0_panel_cfg.c

如下代码,修改 lcd_panel_init 函数。使用 dsi_dcs_wr_npara 函数对 MIPI DSI 屏进行初始化操作。

```
static void LCD_panel_init(_u32 sel)
{
    lcd_panel_a050vw02_init(sel);
}
static void lcd_panel_a050vw02_init(_u32 sel)
{
    _u8 const Enable_Manufacture_Command = 0xf0;
    _u8 const Display_Option_Control = 0xb1;
    _u8 const Inversion_Driving_Control = 0xbc;

    dsi_dcs_wr_5para(sel,Enable_Manufacture_Command,0x55,0xaa,0x52,0x08,0x00);
    dsi_dcs_wr_2para(sel,Display_Option_Control,0xff,0x00);
    dsi_dcs_wr_3para(sel,Inversion_Driving_Control,0x05,0x05,0x05);
```

```
dsi_dcs_wr_5para(sel,Enable_Manufacture_Command,0x55,0xaa,0x52,0x
08,0x01);

LCD_delay_ms(120);

dsi_dcs_wr_0para(sel,DSI_DCS_EXIT_SLEEP_MODE);

LCD_delay_ms(120);

dsi_dcs_wr_0para(sel,DSI_DCS_SET_DISPLAY_ON);

dsi_dcs_wr_1para(sel,DSI_DCS_SET_TEAR_ON,0x00);

dsi_dcs_wr_1para(sel,DSI_DCS_SET_PIXEL_FORMAT,0x77);

}
```

4.7. 电源和背光

LCD 供电,在 A83T 方案中,有两套背光控制,一是外部 LCD 自带,需要通过向 LCD 发送指令控制背光;而是使用内部 PWM 来控制。

内部 PWM 控制 LCD 背光,常见有三种电路,如图

A 电路中, PWM 占空比越高, 背光越暗, 配置 lcd_pwm_pol=1, 为反极性。 建议 lcd_pwm_freq=50000, 须配置 lcd_bl_en 和 lcd_pwm 两个 PIN。

B 电路中,PWM 占空比越高,背光越亮,配置 lcd_pwm_po1=0,为正极性。lcd_pwm_freq 频率由背光 IC 决定;须配置 lcd_pwm 一个 PIN。

C 电路中, PWM 占空比越高, 背光越亮, 配置 1cd_pwm_pol=0, 为正极性。 1cd_pwm_freq 频率由 LCD 屏决定; 一般须配置 1cd_bl_en 和 1cd_pwm 两个 PIN。

图 21 常用 LCD 背光电路