Answers - The Camel Principle (page ??)

1.
$$\int \frac{1}{1+e^x} dx = \int \frac{1+e^x-e^x}{1+e^x} dx$$

$$\int \frac{1+e^x}{1+e^x} \, dx - \int \frac{e^x}{1+e^x} \, dx$$

$$\int 1 \, dx - \int \frac{e^x}{1 + e^x} \, dx$$

$$= x - \ln|1 + e^x| + c$$

2.
$$\int \frac{1}{1+\sqrt{e^x}} dx = \int \frac{1+\sqrt{e^x}-\sqrt{e^x}}{1+\sqrt{e^x}} dx$$

$$= \int \frac{1+\sqrt{e^x}}{1+\sqrt{e^x}} dx - \int \frac{\sqrt{e^x}}{1+\sqrt{e^x}} dx$$

$$= \int 1 \, dx - \int \frac{\sqrt{e^x}}{1 + \sqrt{e^x}} \, dx$$

$$x - \int \frac{\sqrt{e^x}}{1 + \sqrt{e^x}} \, dx$$

For the remaining integral, use the substitution $u = \sqrt{e^x}$, meaning that $u^2 = e^x$.

$$x = \ln u^2 = 2 \ln u$$

$$dx = \frac{2}{u} du$$

$$x - \int \frac{u}{1+u} \frac{2 \, du}{u} = x - 2 \int \frac{1}{1+u} \, du$$

$$x - 2\ln|1 + u| + c$$

$$x - 2\ln|1 + \sqrt{e^x}| + c$$

3. $\int \sec x \, dx$

In this case we will use the Camel Principle multiplicatively, multiplying by $\frac{\sec x + \tan x}{\sec x + \tan x}$

This gives us the integral: $\int \frac{\sec^2 x + \sec x \tan x}{\sec x + \tan x} dx$

$$\int \frac{\sec^2 x + \sec x \tan x}{\sec x + \tan x} dx$$

This is in the format $\frac{f'(x)}{f(x)}$, which integrates to $\ln |f(x)| + c$

Therefore, our integral is $\ln|\sec x + \tan x| + c$

4. $\int \csc \theta \, d\theta$

To integrate, first multiply by $\frac{\csc\theta - \cot\theta}{\csc\theta + \cot\theta}$ This changes the integral to: $\int \frac{\csc^2\theta - \csc\theta\cot\theta}{\csc\theta - \cot\theta}$

This is in the form $\frac{f'(x)}{f(x)}$, therefore the integral is $\ln|\csc\theta - \tan\theta| + c$