Série 4

Solutions des exercices

Exercice 1.

Le joueur 1 possède une stratégie dominante si et seulement si

 $\exists \ a \in [0,1] \ teq \ g(a,y) \ge g(x,y) \ \forall \ x \in [0,1], \forall \ y \in [0,1] \Rightarrow$ la fonction $g_v(x)$ admet un maximum $sur \ [0,1]$,

On étudie la fonction $g_y(x)$ donc on calcule $\frac{dg_y}{dx} = 2x - y = 0$ si $x = \frac{y}{2}$

x = 1 est un maximum car $g(1,y) \ge g(x,y)$, donc la stratégie x = 1 est une stratégie dominante.

Pour le joueur 2 cela revient à chercher une stratégie b du joueur 2 tel que $g(x,b) \le g(x,y)$ donc cela revient à étudier la fonction $g_x(y)$,

$$\frac{dg_x}{dy} = -x \le 0 \ donc \ d\'{e}croissante \ c'est \ \grave{a} \ dire \ le \ minimum \ est \ atteint \ en \ 1$$

 $\Rightarrow g(x, 1) \le g(x, y)$ donc la stratégie y=1 est dominante pour le joueur 2 donc le profil (1,1) est une issue du jeu d'après le théorème vu en cours c'est aussi un équilibre en stratégies prudentes.

Exercice 2. (résolu en cours),

Exercice 3. comme le joueur 1 dispose seulement de deux stratégies donc on essayera de calculer la stratégie prudente du joueur 1 c'est-à-dire :

$$\max_{\sigma_1 \in \Sigma_1} \min_{\mathbf{b} \in B} f(\sigma_1, \mathbf{b}) = \max_{\mathbf{p} \in [0,1]} \min(1 - p, 2p, 2 - p) = \max_{\mathbf{p} \in [0,1]} \min(1 - p, 2p)$$

$$= \max_{\mathbf{p} \in [0,1]} \begin{cases} 2p \sin \mathbf{p} \in \left[0, \frac{1}{3}\right] \\ 1 - p \sin \mathbf{p} \in \left[\frac{1}{3}, 1\right] \end{cases} = \frac{2}{3} \text{ atteint en}$$

$$p = \frac{1}{3} \operatorname{donc} \left(\frac{1}{3}, \frac{2}{3}\right) \operatorname{est la straégie prudente du joueur 1}.$$

On vérifie le support de la stratégie prudente σ_2 du joueur 2 grâce au fait que le gain dans le support est invariant face à la stratégie σ_1 , c'est-à-dire $f(\sigma_1,b_1)=f(\sigma_1,b_2)=f(\sigma_1,b_3)$

Si on suppose que les trois stratégies du joueur 2 sont dans le support de la stratégie prudente on obtient parés calcul : $f(\sigma_1, b_1) = \frac{2}{3}$; $f(\sigma_1, b_2) = \frac{2}{3}$;

 $f(\sigma_1, b_3) = \frac{5}{3}$ donc la straétgie b_3 est hors support alors $\sigma_2 = (q, 1 - q, 0)$ par invariance au support du joueur 1 on détermine q $f(a_1, \sigma_2) = f(a_2, \sigma_2)$ $\Rightarrow 2(1 - q) = q \Rightarrow q = 2/3$ donc la stratégie prudente du joueur 2 est $\sigma_2 = (\frac{2}{3}, \frac{1}{3}, 0)$

Exercice 4. Ce jeu admet un point selle si et seulement si :

$$\max_{x \in X} \min_{y \in Y} f(x, y) = \min_{y \in Y} \max_{x \in X} f(x, y)$$

Car l'ensemble des stratégies $[0,1] \times [0,1]$ est un ensemble compact (borné et fermé) donc on peut appliquer le théorème vu en cours.

On calcule
$$\max_{x \in X} \min_{y \in Y} f(x, y) = \max_{x \in X} \min_{y \in Y} (1 - (x - y)^2)$$

On calcule alors la dérivé partiel par rapport $\frac{df_x}{dy} = 2(x - y)$ d'où la tableau de variation :

$$\min_{y \in Y} (1 - (x - y)^2) = \begin{cases} 1 - (x - 1)^2 & \text{si } x \in [0, \frac{1}{2}] \\ 1 - x^2 & \text{si } x \in [\frac{1}{2}, 1] \end{cases}$$

$$\max_{x \in X} \min_{y \in Y} f(x,y) = \max_{x \in X} \min_{y \in Y} (1 - (x - y)^2) = \frac{3}{4}$$
 on calcule de même $\min_{y \in Y} \max_{x \in X} (1 - (x - y)^2)$ On doit étudier alors la fonction $f_y(x)$
$$\frac{df_y}{dx} = -2(x - y)$$

$$\max_{x \in X} (1 - (x - y)^2 = 1 \Rightarrow \min_{y \in Y} \max_{x \in X} (1 - (x - y)^2) = 1$$

Donc le jeu n'admet pas de valeur ni de points selles.

Exercice 5.(à remettre le 28/05 par email)

Exercice 6. 1) on suppose la stratégie 3 du joueur 2 est dominée par une stratégie mixte combinaison des stratégies pures 1 et 2 alors cela entraine :

$$\exists p \in]0,1[teq \sigma = py_1 + (1-p)y_2 etf(x,\sigma) \le f(x,y_3) \quad \forall x \in \{x_1,x_2\} \}$$

$$\Rightarrow \begin{cases} p+3(1-p) \le 0 \\ 2p+(1-p) \le 4 \end{cases} \begin{cases} -2p+3 \le 0 \text{ (\'equation impossible)} \\ p+1 \le 4 \end{cases}$$

2) De même cela implique alors

$$\begin{cases} -2p+3 \le a \\ p+1 \le b \end{cases} \Rightarrow \begin{cases} p \ge \frac{3-a}{2} \\ p \le b-1 \end{cases} \Rightarrow \begin{cases} \frac{3-a}{2} \le 1 \\ b-1 \ge 0 \\ b-1 \ge \frac{3-a}{2} \end{cases} \Rightarrow b \ge 1 \text{ et } a \ge 1 \text{ et } b \ge \frac{5-a}{2} \end{cases}$$