黄应生

山东大学物理学院

2016年5月31日

目录

- 1 背景
- 2 有效理论的构建
- 3 有效理论与"真实"物理的对比
- 4 常见误解
- 5 结论

背景

- 量子场论中的重整化和有效场论
- 基本思想: 舍弃高能态,并用一组新的局域作用项模拟高能态对低能行为的影响
- 重整化和有效理论的思想也可以运用于量子力学中¹

¹Lepage. How to renormalize the Schrödinger equation. Nucl. Th. ,1997. ◀ □ ▶ ◀ ∰ ▶ ◀ 臺 ▶ ◀ 臺 ▶

- 在非相对论性量子力学中构建一个有效理论
- 有效理论中的可观测量
- 有效理论中的矩阵元和波函数
- 有效理论中微扰论的应用
- 不同"真实"物理的有效理论

为方便比较及计算,我们定"真实"理论为

$$H = \frac{\mathbf{p}^2}{2m} + V(\mathbf{r}) \tag{1}$$

其中 $V(\mathbf{r}) = -\frac{\alpha}{r} + V_s(\mathbf{r})$, $V_s(\mathbf{r})$ 暂定为

$$V_s(r) = -\frac{1.04152e^{-0.9991r}}{r} \tag{2}$$

这里我们取 $\alpha = 1$, m = 1。也即是库伦势加上一个短程势(这里是汤川势)的形式。

有效势的基本形式

两种尝试:

以δ函数势模拟真实短程作用,但其二阶微扰会出现发散项

$$V_{app} = -\frac{\alpha}{r} + c \,\delta^3(\mathbf{r}) \tag{3}$$

■ 以误差函数模拟真实长程作用,以平滑过的 δ 函数势 (δ_a^3) 模拟真实短程作用

$$V_{eff} = -\frac{\alpha}{r} \operatorname{erf}(\frac{r}{\sqrt{2}a}) + c \, a^2 \, \delta_a^3(\mathbf{r})$$

$$+ d_1 \, a^4 \, \nabla^2 \delta_a^3(\mathbf{r}) + d_2 \, a^4 \, \nabla \cdot \delta_a^3(\mathbf{r}) \nabla$$

$$+ \dots$$

$$+ g \, a^{n+2} \, \nabla^n \delta_a^3(\mathbf{r})$$

$$+ \dots$$
(4)

有效势有无穷多种,这里所列出的仅是一种可能的方法。

得到 V_{eff} 的过程

新的哈密顿量(仅将原有的势进行替换,成为有效势):

$$H_{eff} = \frac{\mathbf{p}^2}{2m} + V_{eff}(\mathbf{r}) \tag{5}$$

将库伦势进行傅里叶变换:

$$\frac{1}{r} \xrightarrow{F.T.} \lim_{\varepsilon \to 0} \int_0^\infty \mathrm{d}^3 r \, \frac{e^{iqr\cos\theta - \varepsilon r}}{r} r^2 \sin\theta = \frac{4\pi}{q^2}$$

得到的结果讲行截断(乘上 $e^{-\frac{q^2a^2}{2}}$)后重新傅里叶变换回坐标空间:

$$\frac{4\pi}{q^2} \xrightarrow{\text{cutoff}} \frac{4\pi}{q^2} e^{-\frac{q^2 s^2}{2}}$$

$$\xrightarrow{F.T.} \frac{\text{erf}(\frac{r}{\sqrt{2}s})}{r}$$

得到 V_{eff} 的首项。

对 δ 函数同样进行傅里叶变换,并进行截断,得到

$$\delta_{a}^{3}(\mathbf{r}) \equiv \frac{e^{-\frac{\dot{r}^{2}}{2\sigma^{2}}}}{(2\pi)^{\frac{3}{2}} a^{3}}.$$
 (6)

于是我们得到 V_{eff} 的次阶项,这便是我们所谓的平滑过的 δ 函数。注意到将 V_{s} 泰勒展开后进行傅里叶变换可得到

$$v_s(q^2) = v_s(0) + q^2 v_s'(0) + \dots$$
 (7)

注意到 $v_s(0)$ 是一个常数,其傅里叶逆变换为一个 δ 函数,此后以此类推,变换回坐标空间得到

$$V_{s}(\mathbf{r}) = c\delta(\mathbf{r}) + d\nabla^{2}\delta(\mathbf{r}) + \dots$$
 (8)

将 δ 函数替换为平滑过的 δ_a^3 函数,就得到式(4)中的局域修正项(即是除了误差函数项之外的所有项)。这样我们得到式(4)的完整表达式。

通过相移匹配得到耦合常数

为使有效理论能够模拟"真实"物理中高能部分对低能物理的影响,我们需要利用"真实"的低能数据与有效理论的低能数据进行匹配已得到耦合常数的值。

我们选用仅有 1、2 个局域修正项的有效势进行计算:

$$V_{\text{eff}}^{(a^2)} = -\frac{\alpha}{r} \operatorname{erf}\left(\frac{r}{\sqrt{2}a}\right) + c \, a^2 \, \delta_a^3(\mathbf{r}) + \mathcal{O}(a^2) \tag{9}$$

$$V_{\text{eff}}^{(a^4)} = -\frac{\alpha}{r} \operatorname{erf}\left(\frac{r}{\sqrt{2}a}\right) + c a^2 \delta_a^3(\mathbf{r}) + d_1 a^4 \nabla^2 \delta_a^3(\mathbf{r}) + d_2 a^4 \nabla \cdot \delta_a^3(\mathbf{r}) \nabla + \mathcal{O}(a^4)$$
(10)

并用低能的物理可观测量对耦合常数进行匹配,这里选用低能 S 波相移。取截断 a=1,于是可以求出 $V_{eff}^{(a^2)}$ 中的 $c^{(a^2)}=-44.294$, $V_{eff}^{(a^4)}$ 中的 $c^{(a^4)}=-39.9477$ 以及 $d_1^{(a^4)}=3.26552$ 。

理论的构建 有效理论与"真实"物理的对比 常见误解

束缚能误差对比

图: 库伦势、 δ 函数的一阶微扰、 $V_{eff}^{(a^2)}$ 与 $V_{eff}^{(a^4)}$ 相比于 "真实"势的 S 波束缚能相对误差

有效理论的构建 有效理论与"真实"物理的对比 常见误解 结论 结论

相移误差对比

图: 不同势对应相移的绝对误差

矩阵元

矩阵元不是物理可观测量,其体现了更多"真实"的短程结构,因此需要添加更多的修正项才能使得有效理论中的矩阵元能够和"真实"的矩阵元对应起来。以 $\langle \mathbf{p}^4 \rangle$ 为例:

能级	$\langle {f p}^4 \rangle$	$\langle \mathbf{p^4} \rangle_{eff}$	$\left\langle \mathbf{p^4} \right\rangle_{eff}$ 相对误差	$\left\langle Z\mathbf{p}^4 + \gamma \delta_a^3/a + \dots \right\rangle_{\text{eff}}$	修正后相对误差
15	75.0651	6.39016	0.914872	86.2584	0.149114
2S	5.89805	1.80467	0.694022	5.63427	0.0447230
3S	1.38388	0.459182	0.668193	1.37834	0.00400119
4S	0.533537	0.181115	0.660539	0.533006	0.000995149
5S	0.259685	0.0892336	0.656377	0.259594	0.000349898
6S	0.145438	0.0503636	0.653711	0.145417	0.000142768
105	0.0294762	0.0103588	0.648572	0.0294762	$0. \times 10^{-50}$
15S	0.00846592	0.00299626	0.646080	0.00846592	$0. \times 10^{-50}$
205	0.00503698	0.00278627	0.446837	0.00503698	$0. \times 10^{-50}$

表: $\langle \mathbf{p}^4 \rangle$ 矩阵元在真实势及有效理论(相移)中的对比

我们还对 $\left\langle \frac{1}{r} \right\rangle$ 、 $\left\langle \frac{1}{r^2} \right\rangle$ 、 $\left\langle r \right\rangle$ 、 $\left\langle e^{-r} \right\rangle$ 矩阵元进行了相似地计算。

■ 为使有效理论中的矩阵元能够与"真实"矩阵元相匹配,我们需要对其进行修正:

$$\left\langle \mathbf{p}^{4}\right\rangle _{true}=Z\left\langle \mathbf{p}^{4}\right\rangle _{eff}+\frac{\gamma }{a}\left\langle \delta _{a}^{3}(\mathbf{r})\right\rangle _{eff}+\eta a\left\langle \nabla ^{2}\delta _{a}^{3}(\mathbf{r})\right\rangle _{eff}+\mathcal{O}(a^{3}) \tag{11}$$

上式共有 Z、 γ 、 η 三个无量纲的参数待定,我们需要利用"真实"矩阵元的相应 匹配来得到这些参数的值。

- 选择 10S、15S 与 20S 能级的 $\langle \mathbf{p}^4 \rangle$ "真实"矩阵元进行匹配,我们得到 Z=1.26946、 $\gamma=1243.77$ 与 $\eta=82.2527$ 。
- 这一关系对其它的矩阵元同样适用,应用上式我们可以得到较精确的结果。
- 类似于算符乘积展开

■ 零点波函数

$$\psi_{true}(0) = \overline{\gamma} \int d^3 r \psi_{eff} \delta_a^3(\mathbf{r}) + \overline{\eta} a^2 \int d^3 r \psi_{eff} \nabla^2 \delta_a^3(\mathbf{r}) + \mathcal{O}(a^3)$$
 (12)

■ 完整波函数

$$\psi_{\text{true}}(r < a) = \overline{\gamma}(r) \int d^3 r \psi_{\text{eff}} \delta_a^3(\mathbf{r}) + \overline{\eta}(r) a^2 \int d^3 r \psi_{\text{eff}} \nabla^2 \delta_a^3(\mathbf{r}) + \mathcal{O}(a^3)$$
 (13)

二阶导数

$$\nabla^{2}\psi_{true}(r) = \overline{\gamma}(r) \int d^{3}r\psi_{eff}\delta_{a}^{3}(\mathbf{r}) + \overline{\gamma'}(r) \int d^{3}r\nabla^{2}\left[\psi_{eff}\delta_{a}^{3}(\mathbf{r})\right] + \overline{\eta}(r)a^{2} \int d^{3}r\psi_{eff}\nabla^{2}\delta_{a}^{3}(\mathbf{r})$$
$$+ \overline{\eta'}(r)a^{2} \int d^{3}r\nabla^{2}\left[\psi_{eff}\nabla^{2}\delta_{a}^{3}(\mathbf{r})\right] + \mathcal{O}(a^{3})$$
$$= \overline{\gamma}(r) \int d^{3}r\psi_{eff}\delta_{a}^{3}(\mathbf{r}) + \overline{\eta}(r)a^{2} \int d^{3}r\psi_{eff}\nabla^{2}\delta_{a}^{3}(\mathbf{r}) + \mathcal{O}(a^{3})$$
(14)

图: $\psi_{true}(r)$ $(r \le a)$ 各能级相对于"真实"波函数的相对误差

- 构建出的有效理论随着修正项的添加而渐渐成为真实物理
- 当动量 $q \ll \Lambda = \frac{1}{a}$ 时,动量空间中的有效势将会逐渐接近"真实"势,并最终在 $q \to 0$ 时收敛到"真实"势
- 有效理论只是简单的拟合方法,添加的项数越多,参数越多,结果也就越精确

构建出的有效理论随着修正项的添加而渐渐成为真实物理

$$V(\mathbf{r}) = -\frac{1}{r} - \frac{1.04152e^{-0.9991r}}{r} \tag{15}$$

$$V_{eff}^{(a^2)}(\mathbf{r}) = -\frac{erf\left(\frac{r}{\sqrt{2}}\right)}{r} - 2.81241e^{-\frac{r^2}{2}}$$
 (16)

$$V_{\text{eff}}^{(a^4)}(\mathbf{r}) = -\frac{\text{erf}\left(\frac{r}{\sqrt{2}}\right)}{r} - 2.53643e^{-\frac{r^2}{2}} + 3.26552\left(\frac{e^{-\frac{r^2}{2}r^2}}{2\sqrt{2}\pi^{3/2}} - \frac{3e^{-\frac{r^2}{2}}}{2\sqrt{2}\pi^{3/2}}\right)$$
(17)

$$v(\mathbf{k}) = -\frac{4\pi}{k^2} - \frac{13.0882}{k^2 + 0.998201} \tag{18}$$

$$v_{\text{eff}}^{(a^2)}(\mathbf{k}) = -\frac{4\pi}{k^2} e^{-\frac{k^2}{2}} - 44.2944 e^{-\frac{k^2}{2}}$$
 (19)

$$v_{eff}^{(a^4)}(\mathbf{k}) = -\frac{4\pi}{k^2} e^{-\frac{k^2}{2}} - (3.26552k^2 + 39.9477) e^{-\frac{k^2}{2}}$$
 (20)

图: 有效势与真实势函数动量空间函数的第 一项对比

图: 有效势与真实势动量空间函数的剩余项 对比

图: 真实势与有效势动量空间函数第一项的 差值

有效理论只是简单的拟合方法

- 构建有效理论时大量用到了曲线拟合(参数匹配)的方法
- 添加的项数越多,参数越多,结果也就越精确
- 更加系统化,误差项随着 a 阶数的升高而逐项移除
- 遵循重整化理论的思想,确定修正项的形式以及可以调节的参数(在场论中即是耦 合常数)的数量、位置

- 有效理论对物理可观测量的计算能够达到较高精度,并且精度随能量减小而增加; 当能量达到一定上限后,有效理论即失去作用,误差变得极大。
- 仅有物理可观测量在有效理论中可以与真实物理量符合较好,而其他非物理的量则 不然: 但是我们可以添加额外的修正项来弥补矩阵元等所体现的"真实"物理的短 程结构; 在添加修正项后, 矩阵元等的精度也有了较大的提升。
- 可以利用微扰匹配方法得到有效理论中的耦合常数
- 有效理论的可行性与直实物理的具体形式无关

Thank you!

