Fogalomtár a Formális nyelvek és automaták tárgyhoz

(A törzsanyaghoz tartozó definíciókat és tételeket * jelöli.)

Definíciók

Univerzális ábécé: Szimbólumok egy megszámlálhatóan végtelen halmazát univerzális ábécének nevezzük.

- * Ábécé: Ábécének nevezzük az univerzális ábécé egy tetszőleges véges részhalmazát.
- * **Betű:** Az ábécé elemeit betűknek hívjuk.
- * Szó: Az X ábécé elemeinek egy tetszőleges véges sorozatát az X ábécé feletti szónak nevezzük. Ha X nem lényeges vagy egyértelmű, akkor szóról beszélünk.
- * Nyelv: X^* valamely részhalmazát (azaz 2^{X^*} valamely elemét) az X ábécé feletti nyelvnek nevezzük.
- * Nyelvosztály (nyelvcsalád): Nyelvek valamely összességét nyelvosztálynak, nyelvcsaládnak hív-juk.
- * **Két szó konkatenációja:** Az $u = t_1 \cdots t_k$ és $v = t'_1 \cdots t'_\ell$ szavak konkatenációja alatt az $uv := t_1 \cdots t_k t'_1 \cdots t'_\ell$ szót értjük. (A két szó egymás utáni leírásával kapott szó.)
- * Szó hatványa: Legyen u egy szó, nemnegatív egész hatványai $u^0 := \varepsilon, \ u^1 := u, \ u^n := u^{n-1}u.$ (rekurzív definíció)
- * Szó megfordítása: Legyen $u = t_1 \cdots t_k$ egy szó, ekkor u megfordítása $u^{-1} := t_k \cdots t_1$.
 - **Homomorfizmus:** A $h: X^* \longmapsto Y^*$ konkatenációtartó leképezéseket homomorfizmusnak nevezzük. h konkatenációtartó leképezés, ha tetszőleges $u, v \in X^*$ szó esetén h(uv) = h(u)h(v).
 - Homomorfizmus nyelvekre való kiterjesztése: $h(L) := \bigcup_{u \in L} \{h(u)\}.$
- * **Két nyelv metszete, uniója, különbsége, szimmetrikus differenciája:** A nyelv is egy halmaz (szavak halmaza), ezeket mint halmazokon vett műveleteket értelmezzük.
- * Nyelv komplementere: Egy X ábécé feletti nyelv komplementerén a halmazelméleti értelemben vett komplementert értjük X^* -ra nézve.
- * **Két nyelv konkatenációja:** Legyenek L_1, L_2 nyelvek. Ekkor az L_1 és L_2 nyelvek konkatenációján az $L_1L_2 := \{uv \mid u \in L_1 \land v \in L_2\}$ nyelvet értjük.
- * Nyelv hatványa: Legyen L egy nyelv, nemnegatív egész hatványai $L^0 := \{\varepsilon\}, L^1 := L, L^n := L^{n-1}L$. (rekurzív definíció)
- * Nyelv lezártja (iteráltja): Legyen L egy nyelv. $L^* := \bigcup_{i=0}^{\infty} L^i$ az L nyelv lezártja.
 - Nyelv pozitív lezártja (iteráltja): Legyen L egy nyelv. $L^+ := \bigcup_{i=1}^{\infty} L^i$ az L nyelv pozitív lezártja.
- * Nyelv megfordítása: Legyen L egy nyelv. $L^{-1} := \{u^{-1} \mid u \in L\}$ az L nyelv megfordítása.

- * **Részszó:** v részszava u-nak, ha léteznek olyan w_1, w_2 szavak, melyre $u = w_1 v w_2$.
 - Szó egy prefixe: v az u szó prefixe, ha van olyan w szó, hogy u=vw. v valódi prefix, ha $v\neq \varepsilon, u$.
 - Szó prefixhalmaza: Legyen u egy szó. $Pre(u) := \{v \mid v \text{ prefixe } u\text{-nak}\}$ az u szó prefixhalmaza.
 - Szó legfeljebb i hosszúságú prefixhalmaza: $Pre(u, i) := Pre(u) \cap X(u)^{\leq i}$.
- * Szó i hosszúságú prefixe: $\operatorname{pre}(u,i) := \begin{cases} u & \ell(u) \leq i \\ v & v \in \operatorname{Pre}(u) \wedge \ell(v) = i \end{cases}$.
 - Szó egy suffixe: v az u szó suffixe, ha van olyan w szó, hogy u=wv. v valódi suffix, ha $v\neq \varepsilon, u$.
 - Szó suffixhalmaza: Legyen u egy szó. Suf $(u) := \{v \mid v \text{ suffixe } u\text{-nak}\}$ az u szó suffixhalmaza.
 - Szó legfeljebb i hosszúságú suffixhalmaza: $\operatorname{Suf}(u,i) := \operatorname{Suf}(u) \cap X(u)^{\leq i}$.
- * Szó i hosszúságú suffixe: $\operatorname{suf}(u,i) := \begin{cases} u & \ell(u) \leq i \\ v & v \in \operatorname{Suf}(u) \wedge \ell(v) = i \end{cases}$.
 - Nyelv prefixhalmaza: Legyen L egy nyelv. $Pre(L) := \bigcup_{u \in L} Pre(u)$ az L nyelv prefixhalmaza.
 - Nyelv suffixhalmaza: Legyen Legy nyelv. $\mathrm{Suf}(L) := \bigcup_{u \in L} \mathrm{Suf}(u)$ az Lnyelv suffixhalmaza.
- * Reguláris nyelvek: (rekurzív definíció)
 - az elemi nyelvek, azaz \emptyset , $\{\varepsilon\}$, $\{a\}$ $(a \in U)$
 - azon nyelvek, melyek az elemi nyelvekből az unió, konkatenáció és lezárás műveletek véges számú alkalmazásával állnak elő
- * Reguláris kifejezések: (rekurzív definíció)
 - az elemi reguláris kifejezések, azaz \emptyset , ε , a ($a \in U$)
 - ha R_1 és R_2 reguláris kifejezések akkor $(R_1 \cup R_2), (R_1 R_2), R_1^*$ is reguláris kifejezések
 - a reguláris kifejezések halmaza a legszűkebb halmaz, melyre a fenti két pont teljesül
- * X ábécé feletti reguláris kifejezések: (rekurzív definíció)
 - az elemi reguláris kifejezések, azaz \emptyset , ε , a ($a \in X$)
 - ha R_1 és R_2 X ábécé feletti reguláris kifejezések akkor $(R_1 \cup R_2), (R_1R_2), R_1^*$ is X ábécé feletti reguláris kifejezések
 - \bullet ax Xábécé feletti reguláris kifejezések halmaza a legszűkebb halmaz, melyre a fenti két pont teljesül
- * X ábécé feletti általánosított reguláris kifejezések: (rekurzív definíció)
 - az elemi reguláris kifejezések, azaz \emptyset , ε , a $(a \in X)$
 - ha R_1 és R_2 X ábécé feletti általánosított reguláris kifejezések akkor $(R_1 \cup R_2)$, (R_1R_2) , R_1^* , $(R_1 \cap R_2)$, \overline{R}_1 is X ábécé feletti általánosított reguláris kifejezések
 - \bullet az X ábécé feletti általánosított reguláris kifejezések halmaza a legszűkebb halmaz, melyre a fenti két pont teljesül
- * Reguláris kifejezések szemantikája: (rekurzív definíció)
 - \bullet az \emptyset , ε , a reguláris kifejezések rendre az \emptyset , $\{\varepsilon\}$, $\{a\}$ nyelveket reprezentálják
 - ha R_1 az L_1 illetve R_2 az L_2 nyelvet reprezentálja, akkor $(R_1 \cup R_2), (R_1R_2), R_1^*$ rendre az $L_1 \cup L_2, L_1L_2, L_1^*$ nyelveket reprezentálja.

- * X ábécé feletti általánosított reguláris kifejezések szemantikája: (rekurzív definíció)
 - \bullet az $\emptyset,\,\varepsilon,\,a$ elemi reguláris kifejezések rendre az $\emptyset,\,\{\varepsilon\},\,\{a\}$ nyelveket reprezentálják
 - ha R_1 az L_1 illetve R_2 az L_2 nyelvet reprezentálja, akkor $(R_1 \cup R_2), (R_1 R_2), R_1^*, (R_1 \cap R_2), \overline{R}_1$ rendre az $L_1 \cup L_2, L_1 L_2, L_1^*, L_1 \cap L_2, \overline{L}_1$ nyelveket reprezentálja.
- * Rekurzívan felsorolható nyelv: Az L nyelv rekurzívan felsorolható \iff ha létezik A algoritmus, mely az elemeit felsorolja. Felsoroló algoritmus: Az A algoritmus outputjára szavakat állít elő, s így a nyelv összes szavát (és csak azokat) felsorolja.
- * Parciálisan rekurzív nyelv: Az L nyelv parciálisan rekurzív \iff létezik olyan A parciálisan eldöntő algoritmus, melynek inputjára tetszőleges szót helyezve eldönti, benne van-e a nyelvben $(u \in L \text{ szó esetén } igen \text{ válasszal áll le, míg } u \notin L \text{ esetén nem terminál, vagy ha terminál, akkor } nem választ ad).$
- * Rekurzív nyelv: Az L nyelv rekurzív \iff létezik olyan A eldöntő algoritmus, melynek inputjára egy tetszőleges u szót helyezve eldönti, benne van-e az L nyelvben (mindig terminál, igen a válasz, ha u eleme az L nyelvnek, és nem a válasz ellenkező esetben).
- * Generatív nyelvtan (grammatika): A $G = \langle T, N, \mathcal{P}, S \rangle$ négyest nyelvtannak nevezzük, ahol T a terminális, N a nyelvtani (nemterminális) jelek egymástól diszjunkt ábécéje, \mathcal{P} (produkciós) szabályoknak egy véges halmaza, ahol minden $P \in \mathcal{P}$ szabály $p \to q$ alakú, $p, q \in (T \cup N)^*$ és p tartalmaz legalább egy nyelvtani jelet, továbbá $S \in N$, melyet kezdőszimbólumnak nevezünk.
- * Mondatforma: $(T \cup N)^*$ elemeit mondatformáknak nevezzük.
- * Közvetlen levezetés (nyelvtanban): Az α mondatformából közvetlenül levezethető a β mondatforma, ha léteznek γ_1, γ_2 mondatformák és $p \to q \in \mathcal{P}$, hogy $\alpha = \gamma_1 p \gamma_2$ és $\beta = \gamma_1 q \gamma_2$. Jelölése: $\alpha \to \beta$.
- * Közvetett levezetés (nyelvtanban): Az α mondatformából közvetetten levezethető a β mondatforma, ha létezik $k \in \mathbb{N}$ és $\gamma_0, \gamma_1, \ldots, \gamma_k$ mondatformák, hogy $\alpha = \gamma_0, \beta = \gamma_k$ és minden $i \in [0, k-1]$ esetén $\gamma_i \underset{G}{\rightarrow} \gamma_{i+1}$. Jelölése: $\alpha \underset{G}{\stackrel{*}{\rightarrow}} \beta$. Ha fontos, hogy éppen k lépésben: $\alpha \underset{G}{\stackrel{k}{\rightarrow}} \beta$. Ekkor k a levezetés hossza.
- * Nyelvtan által generált nyelv: A $G = \langle T, N, \mathcal{P}, S \rangle$ nyelvtan által generált nyelv $L(G) := \{u \in T^* \mid S \xrightarrow{*} u\}.$
 - **Ekvivalens nyelvtanok:** A G_1 és G_2 nyelvtanok ekvivalensek $(G_1 \sim G_2)$, ha $L(G_1) = L(G_2)$.
 - Kváziekvivalens nyelvtanok: A G_1 és G_2 nyelvtanok kváziekvivalensek $(G_1 \underset{\text{kv}}{\sim} G_2)$, ha $L(G_1) \setminus \{\varepsilon\} = L(G_2) \setminus \{\varepsilon\}$.
- * Nyelvtanok típusai: Egy G nyelvtan i. típusú $(i \in \{0,1,2,3\})$, ha a szabályai a táblázatban megadott alakúak (Alaptípus szabályai oszlop).
- * Nyelvtanok megszorított típusai: Egy G nyelvtan megszorított i. típusú $(i \in \{1, 2, 3\})$, ha a szabályai a táblázatban megadott alakúak (Megszorított típus szabályai oszlop).
- * Környezetfüggetlen nyelvtan: 2. típusú nyelvtan.
- * Környezetfüggő nyelvtan: Megszorított 1. típusú nyelvtan.

* Normálformák: Egy G nyelvtan i-es normálformájú (i = 1, 2, 3), ha a szabályai a táblázatban megadott alakúak $(Normálforma\ szabályai\ oszlop)$. Az táblázatban megadott 1. típusú normálforma elnevezése Kuroda normálforma, a 2. típusúé Chomsky normálforma.

Típus	Alaptípus szabályai	Megszorított típus szabályai	Normálforma szabályai
0.	nincs további megkötés	$p \to q$, ahol $q \in (T \cup N)^+$;	$AB \to A \ (A, B \in N);$
		$S \to \varepsilon$, ez esetben S nem	$BA \to A \ (A, B \in N);$
		szerepel szabály jobboldalán	+Kuroda NF szabálysémái
1.	$p \to q$, ahol $\ell(p) \le \ell(q)$;	$\gamma_1 A \gamma_2 o \gamma_1 q \gamma_2,$	(Kuroda)
	$S \to \varepsilon$, ez esetben S nem	ahol $\gamma_1, \gamma_2 \in (T \cup N)^*$,	$A \to a \ (A \in N, a \in T);$
	szerepel szabály jobboldalán	$A \in N, q \in (T \cup N)^+;$	$A \to BC \ (A, B, C \in N);$
		$S \to \varepsilon$, ez esetben S nem	$AB \to AC \ (A, B, C \in N);$
		szerepel szabály jobboldalán	$BA \to CA \ (A, B, C \in N);$
			$S \to \varepsilon$, ez esetben S nem
			szerepel szabály jobboldalán
2.	$A \rightarrow q$, ahol	$A \rightarrow q$, ahol	(Chomsky)
	$A \in N, q \in (T \cup N)^*$	$A \in N, q \in (T \cup N)^+;$	$A \to a \ (A \in N, a \in T);$
		$S \to \varepsilon$, ez esetben S nem	$A \to BC \ (A, B, C \in N);$
		szerepel szabály jobboldalán	$S \to \varepsilon$, ez esetben S nem
			szerepel szabály jobboldalán
3.	$A \to uB \text{ vagy } A \to u,$	$A \to aB$ vagy $A \to a$	$A \to \varepsilon \text{ vagy } A \to aB,$
	ahol $A, B \in N$, és $u \in T^*$	ahol $A, B \in N, a \in T;$	ahol $A, B \in N$ és $a \in T$
		$S \to \varepsilon$, ez esetben S nem	
		szerepel szabály jobboldalán	

 $\overline{\text{(A táblázatban konvencionálisan } S \text{ a kezdőszimbólum)}}$

Greibach normálforma Legyen $G = \langle T, N, \mathcal{P}, S \rangle$ egy nyelvtan. A G nyelvtan Greibach-féle normálformájú, ha szabályai a következő alakúak: $S \to \varepsilon$, ahol S kezdőszimbólum és ha van ilyen szabály, akkor S nem fordul elő szabály jobboldalán; $A \to aQ$, ahol $A \in N, a \in T$, és $Q \in N^*$.

Zsákutca: Olyan nyelvtani jel, melyből az adott 2. típusú nyelvtanban nem vezethető le terminális szó.

Nem elérhető nyelvtani jel: Olyan nyelvtani jel, mely az adott 2. típusú nyelvtanban semmilyen, a kezdőszimbólumból történő levezetésben nem szerepel.

Zsákutcamentes nyelvtan: 2. típusú nyelvtan, melynek semmelyik nyelvtani jele se zsákutca.

Összefüggő nyelvtan: 2. típusú nyelvtan, mely nem tartalmaz nem elérhető nyelvtani jelet.

Redukált nyelvtan: Zsákutcamentes és összefüggő 2. típusú nyelvtan.

- * Láncszabály: Egy $G = \langle T, N, \mathcal{P}, S \rangle$ nyelvtanban $p \to q \in \mathcal{P}$ láncszabály, ha $p, q \in N$.
- * Láncszabálymentes nyelvtan: Egy nyelvtan láncszabálymentes, ha nincs láncszabálya.
- * **Epszilonszabály:** Egy $G = \langle T, N, \mathcal{P}, S \rangle$ nyelvtanban $p \to q \in \mathcal{P}$ epszilonszabály, ha $q = \varepsilon$.
- * Korlátozott epszilonszabály (KeS): Egy $G = \langle T, N, \mathcal{P}, S \rangle$ nyelvtanra teljesül a korlátozott epszilonszabály, ha nincsenek epszilonszabályai az $S \to \varepsilon$ szabály esetleges kivételével, de

- ebben az esetben minden $p \to q \in \mathcal{P}$ szabályra $q \in (T \cup N \setminus \{S\})^*$ (azaz semelyik szabály jobboldala sem tartalmazza a kezdőszimbólumot).
- * Epszilonmentes nyelvtan: Egy nyelvtan epszilonmentes, ha teljesül rá a korlátozott epszilonszabály.
 - **Nyelvtani transzformáció:** A Φ nyelvtani transzformáció olyan eljárás, mely egy G nyelvtanból, egy másik, $\Phi(G)$ nyelvtant készít.
 - Ekvivalens nyelvtani transzformáció: Egy Φ nyelvtani transzformáció ekvivalens nyelvtani transzformáció, ha minden G nyelvtanra $G \sim \Phi(G)$.
 - Kváziekvivalens nyelvtani transzformáció: Egy Φ nyelvtani transzformáció kváziekvivalens nyelvtani transzformáció, ha minden G nyelvtan
ra $G \sim \Phi(G)$.
 - **Típusmegőrző nyelvtani transzformáció:** Legyen \mathcal{G}_{π} a π típusú nyelvtanok osztálya. Egy Φ nyelvtani transzformáció megőrzi a π típust, amennyiben minden $G \in \mathcal{G}_{\pi}$ esetén $\Phi(G) \in \mathcal{G}_{\pi}$.
- * **Nyelvek típusai:** Egy *L* nyelv (megszorított) *i*. típusú, ha létezik olyan (megszorított) *i*. típusú nyelvtan, mely *L*-et generálja. (*l. megszorítási tétel*).
- * Reguláris nyelv: 3. típusú nyelv. (l. Kleene tétel)
- * Környezetfüggetlen nyelv: 2. típusú nyelv.
- * Környezetfüggő nyelv: 1. típusú nyelv.
 - Nyelvi operátorra zárt nyelvcsalád: Legyen Ψ n-változós nyelvi operátor, azaz ha L_1, \ldots, L_n nyelvek, akkor $\Psi(L_1, \ldots, L_n)$ is legyen nyelv. Az \mathcal{L} nyelvcsalád zárt a Ψ nyelvi operátorra, ha $L_1, \ldots, L_n \in \mathcal{L}$ esetén $\Psi(L_1, \ldots, L_n) \in \mathcal{L}$.
 - BNF: Egy Backus-Naur forma (BNF), a következő építőkövekből áll: ⟨szöveg⟩,::=,{,},|, egyéb karakterek. ⟨szöveg⟩ a fogalmak, az egyéb karakterek a terminálisok. Egy BNF szabály baloldalán pontosan 1 fogalom áll, jobboldalán fogalmak, terminálisok, {,},| jelek sorozata áll, úgy hogy a sorozat helyesen zárójelezett a {,} zárójelekkel. A két oldalt a ::= szimbólum választja el egymástól.
 - Zárójelek és alternatívák jelentése: Az $F ::= \gamma_1 \{\alpha_1 | \cdots | \alpha_n\} \gamma_2$ formula az $F ::= \gamma_1 \alpha_1 \gamma_2, \ldots, F ::= \gamma_1 \alpha_n \gamma_2$ formulákat reprezentálja.
 - Szemantikája: Adott BNF szabályok egy halmaza (zárójelek és alternatívák nélkül). Az α mondatformából (terminálisok és fogalmak sorozata) közvetlenül levezethető a β mondatforma, ha léteznek γ_1, γ_2, ξ mondatformák és $F ::= \xi$ BNF szabály, hogy $\alpha = \gamma_1 F \gamma_2$ és $\beta = \gamma_1 \xi \gamma_2$. A közvetett levezetést az eddigiekhez hasonlóan definiáljuk. Egy adott fogalom azon terminális sorozatok halmazát reprezentálja, mely belőle, mint 1 hosszúságú mondatformából közvetetten levezethető.
 - **EBNF:** A BNF-hez képest két további jelölést használunk. @ γ , ahol γ egy fogalom, terminális, vagy csoport a 0, 1, 2, stb. hosszuságú, csak γ -ból álló sorozatokat reprezentálja. γ_k^n , ahol $0 \le k \le n$ természetes egész számok és γ egy fogalom, terminális, vagy csoport a $k, k+1, \ldots, n$ hosszúságú γ sorozatokat reprezentálja. Szemantika: mint a BNF-nél.
 - Szintaxisgráf: Szintaxisgráf alatt olyan irányított gráfot értünk, mely a következő tulajdonságokkal rendelkezik. Egyetlen forrása és egyetlen nyelője van. Az élek címkézetlenek, a szögpontok

lehetnek címkézettek és címkézetlenek. A címkéknek két fajtája van, az egyik téglalap, a másik ellipszis alakú. Ezen felül a gráfnak van egy neve. A téglalap alakú címkéket és a gráfnevét fogalmaknak, az ellipszis alakú címkéket terminálisoknak nevezzük.

Szemantikája: Adott szintaxisgráfok egy halmaza. Az α mondatformából (terminálisok és fogalmak sorozata) közvetlenül levezethető a β mondatforma, ha léteznek γ_1, γ_2, ξ mondatformák és F fogalom, hogy $\alpha = \gamma_1 F \gamma_2$, $\beta = \gamma_1 \xi \gamma_2$, továbbá létezik olyan szintaxisgráf, melynek címkéje F és a gráfban létezik irányított út 1 a forrásból a nyelőbe, mely mentén a címkézett szögpontok címkéi az irányított út 1 által meghatározott sorrendben éppen ξ -t adják. A közvetett levezetést az eddigiekhez hasonlóan definiáljuk,. Egy adott fogalom azon terminális sorozatok halmazát reprezentálja, mely belőle, mint 1 hosszúságú mondatformából közvetetten levezethető.

* n-verem: n-verem alatt a következő (2n+5)-öst értjük:

$$\mathcal{V} = \langle Q, T, \Sigma_1, \dots, \Sigma_n, \delta, q_0, \sigma_1, \dots, \sigma_n, F \rangle$$
, ahol

Q az állapotok halmaza (ez legyen véges halmaz),

T egy ábécé, a bemenő ábécé,

 Σ_i az *i*-edik verem ábécéje,

 δ az állapotátmeneti függvény,

 $q_0 \in Q$ kezdőállapot,

 σ_i az i. verem kezdőszimbóluma, ahol $\sigma_i \in \Sigma_i$,

 $F \subseteq Q$ a végállapotok halmaza.

Az állapotátmeneti függvény $\delta: Q \times (T \cup \{\varepsilon\}) \times \Sigma_1 \times \cdots \times \Sigma_n \rightarrow 2^{Q \times \Sigma_1^* \times \cdots \times \Sigma_n^*}$ alakú függvény, melyre megköveteljük, hogy értékkészlete véges halmazokból álljon.

- * Veremautomata: 1-verem.
- * Konfiguráció: Konfigurációnak nevezzük azoknak az adatoknak az összességét, melyektől a gép elkövetkezendő működése függ.

A konfigurációk a következő alakú (n+2)-esek: $[q, v, \alpha_1, \dots, \alpha_n]$, ahol:

- q az aktuális állapot,
- $\bullet~v$ az input szó még elolvasatlan része,
- α_i az *i*-edik verem tartalma.
- * Közvetlen konfigurációátmenet: Közvetlen konfigurációátmenetről beszélünk, ha \mathcal{V} egy lépésben vált át egyik konfigurációból a másikba, azaz $[q, u, \alpha_1, \ldots, \alpha_n] \xrightarrow{}_{\mathcal{V}} [q', v, \beta_1, \ldots, \beta_n]$ akkor és csak akkor, ha van olyan $t \in T \cup \{\varepsilon\}$, hogy u = tv, továbbá minden $i \in [1, n]$ esetén van olyan $\sigma_i \in \Sigma_i$ és $\gamma_i, \tau_i \in \Sigma_i^*$, amelyekre $\alpha_i = \sigma_i \gamma_i, \beta_i = \tau_i \gamma_i$, valamint $(q', \tau_1, \ldots, \tau_n) \in \delta(q, t, \sigma_1, \ldots, \sigma_n)$. Ha itt $t = \varepsilon$, akkor ε -mozgásról beszélünk.
- * Közvetett konfigurációátmenet: A közvetett konfigurációátmenet a közvetlen átmenet reflexív, tranzitív lezártja. Jelölése: $\stackrel{*}{\smile}$.
- * **Kezdőkonfiguráció:** Az u szóhoz tartozó kezdőkonfiguráció: $[q_0, u, \sigma_1, \ldots, \sigma_n]$.
- * Termináló konfiguráció: Egy K konfiguráció termináló konfiguráció, ha nincs rákövetkezője, azaz #K' konfiguráció, hogy $K \underset{v}{\longrightarrow} K'$.
- * Végállapottal elfogadó konfiguráció: Végállapottal elfogadó egy $[q, \varepsilon, \beta_1, \dots, \beta_n]$ konfiguráció,

 $^{^{-1}}$ Itt az út egy ponton többször is áthaladhat. Ez valójában a gráfelméleti $s\acute{e}ta$ fogalomnak felel meg.

- ha $q \in F$.
- * Üres veremmel elfogadó konfiguráció: Üres veremmel elfogadó egy $[q, \varepsilon, \beta_1, \dots, \beta_n]$ konfiguráció, ha $\beta_1 = \varepsilon$.
- * Szó végállapottal elfogadása: A V n-verem végállapottal elfogadja az u szót, ha létezik átmenet az u szóhoz tartozó kezdőkonfigurációból végállapottal elfogadó konfigurációba.
- * Szó üres veremmel elfogadása: A V n-verem üres veremmel elfogadja az u szót, ha létezik átmenet az u szóhoz tartozó kezdőkonfigurációból üres veremmel elfogadó konfigurációba.
- * Végállapottal elfogadott nyelv: A \mathcal{V} által végállapottal elfogadott nyelv: $L^{F}(\mathcal{V}) = \{u \in T^{*} \mid [q_{0}, u, \sigma_{1}, \dots, \sigma_{n}] \xrightarrow{*} [q, \varepsilon, \beta_{1}, \beta_{2}, \dots, \beta_{n}] \text{ valamely } q \in F\text{-re}\}.$
- * Üres veremmel elfogadott nyelv: A \mathcal{V} által üres veremmel elfogadott nyelv: $L^{\varepsilon}(\mathcal{V}) = \{u \in T^* \mid [q_0, u, \sigma_1, \dots, \sigma_n] \xrightarrow{*} [q, \varepsilon, \varepsilon, \beta_2, \dots, \beta_n] \}.$
- * **Determinisztikus** *n*-**verem:** Egy adott \mathcal{V} *n*-verem determinisztikus, ha minden konfigurációnak legfeljebb 1 rákövetkezője van.

Ekvivalens definíció:

Egy adott \mathcal{V} n-verem determinisztikus, ha a következő két feltétel teljesül:

- Minden $(q, t, \sigma_1, \dots, \sigma_n) \in D_\delta$ esetén $\mid \delta(q, t, \sigma_1, \dots, \sigma_n) \mid \leq 1$,
- $\delta(q, \varepsilon, \sigma_1, \dots, \sigma_n) \neq \emptyset$ esetén minden $t \in T$ -re $|\delta(q, t, \sigma_1, \dots, \sigma_n)| = 0$.
- * Determinisztikus veremautomata: determinisztikus 1-verem.
- * Véges, ε -átmenetes nemdeterminisztikus automata (ε NDA): 0-verem
- * Véges, nemdeterminisztikus automata (NDA): 0-verem, melyre $D_{\delta} \subseteq \{(q,t) \mid q \in Q, t \in T\}.$
 - Véges, parciális determinisztikus automata (PDA): Determinisztikus 0-verem, melyre $D_{\delta} \subseteq \{(q,t) \mid q \in Q, t \in T\}.$
- * Véges determinisztikus automata (VDA): Determinisztikus 0-verem, melyre $D_{\delta} = \{(q,t) \mid q \in Q, t \in T\}.$
- * Állapotátmeneti függvény általánosítása: Legyen $\mathcal{A} = \langle Q, T, \delta, q_0, F \rangle$ egy véges determinisztikus automata. Rekurzívan definiáljuk $\delta(q, u)$ értékét $(q \in Q, u \in T^*)$. $\delta(q, \varepsilon) := q$, $\delta(q, t)$ már definált $(t \in T)$. $\delta(q, ut) := \delta(\delta(q, u), t)$ $(u \in T^*, t \in T)$.
- * VDA által felismert nyelv általánosított állapotátmeneti függvénnyel megadva: Legyen $\mathcal{A} = \langle Q, T, \delta, q_0, F \rangle$ egy véges determinisztikus automata. Az \mathcal{A} által felismert (elfogadott) nyelv a következő: $L(\mathcal{A}) := \{u \in T^* \mid \delta(q_0, u) \in F\}.$
 - Automata megadása táblázattal: A sorok megfelelnek Q elemeinek, az oszlopok T (általánosabb automata esetén $X = T \cup \{\varepsilon\}$ vagy $X = \mathcal{R}(T)$) elemeinek. A $q \in Q$ sornak és $t \in T$ (vagy általánosabban $t \in X$) oszlopnak megfelelő cella tartalma $\delta(q,t)$. A kezdőállapotot a \rightarrow , a végállapotokat \leftarrow szimbólummal megjelöljük.

- * Automata megadása átmenetdiagrammal: Irányított gráf, ahol a szögpontok és az élek is címkézettek. A szögpontok megfelelnek Q elemeinek (a kezdőállapotot a \rightarrow szimbólummal megjelöljük, F elemeit bekarikázzuk), míg az élek T (általánosabb automata esetén $X = T \cup \{\varepsilon\}$ vagy $X = \mathcal{R}(T)$) elemeinek. $q \in Q$ -ból vezet $t \in T$ (vagy általánosabban $t \in X$) címkéjű irányított él $q' \in Q$ -ba, akkor és csak akkor, ha $q' = (\in)\delta(q,t)$.
 - Általánosított szekvenciális automata: $\mathcal{A} = \langle Q, T, \delta, q_0, F \rangle$ általánosított szekvenciális automata, ha Q egy véges halmaz, az állapotok halmaza, T egy véges halmaz, az inputszavak ábécéje, $q_0 \in Q$ a kezdőállapot, $F \subseteq Q$ a végállapotok halmaza, továbbá az állapotátmeneti függvény $\delta: Q \times \mathcal{R}(T) \to 2^Q$ alakú függvény, melyre megköveteljük, hogy véges tartójú legyen, azaz minden $q \in Q$ -hoz csak véges sok $R \in \mathcal{R}(T)$ esetén teljesül, hogy $\delta(q, R) \neq \emptyset$.
 - Általánosított szekvenciális automata által elfogadott szó: Az $\mathcal{A} = \langle Q, T, \delta, q_0, F \rangle$ általánosított szekvenciális automata elfogadja az $u \in T^*$ szót $\Leftrightarrow \exists n \in \mathbb{N}, \ u_1, \ldots, u_n \in T^*, R_1, \ldots R_n \in \mathcal{R}(T)$ és $q_1, \ldots, q_n \in Q$, melyre $u = u_1 \cdots u_n$, továbbá minden $1 \leq i \leq n$ esetén $u_i \in L(R_i), \ q_i \in \delta(q_{i-1}, R_i)$ és $q_n \in F$.
 - Átmenetdiagrammos megadás esetén: A elfogadja az $u \in T^*$ szót, ha van irányított út 1 q_0 -ból valamely F-beli állapotba, mely út 1 mentén az élek címkéje az adott sorrendben R_1, \ldots, R_n és $u \in L(R_1R_2 \cdots R_n)$.
 - Általánosított szekvenciális automata által felismert nyelv: $L(A) = \{u \in T^* \mid A \text{ elfogadja } u\text{-t}\}.$
- * Minimális automata: Valamely $L \in \mathcal{L}_3$ -hoz adott minimális állapotszámú véges, determinisztikus automatát L minimális automatájának nevezzük.
- * Összefüggő automata: Egy $\mathcal{A} = \langle Q, T, \delta, q_0, F \rangle$ véges, determinisztikus automata összefüggő, ha minden $q \in Q$ esetén létezik $u \in T^*$ szó, hogy $\delta(q_0, u) = a$.
- * Automata állapotra vonatkozó maradéknyelve: Legyen $\mathcal{A} = \langle Q, T, \delta, q_0, F \rangle$ egy véges determinisztikus automata. Az \mathcal{A} automata $q \in Q$ -ra vonatkozó maradéknyelve $L(\mathcal{A}, q) := \{v \in T^* \mid \delta(q, v) \in F\}.$
- * Automata ekvivalens állapotai: Legyen $\mathcal{A} = \langle Q, T, \delta, q_0, F \rangle$ egy véges determinisztikus automata. $q \sim q' \iff L(\mathcal{A}, q) = L(\mathcal{A}, q') \iff \forall u \in T^* : (\delta(q, u) \in F \iff \delta(q', u) \in F)$.
 - Automaták ekvivalens állapotai: Legyenek $\mathcal{A} = \langle Q, T, \delta, q_0, F \rangle$ és $\mathcal{A}' = \langle Q', T, \delta, q'_0, F' \rangle$ véges determinisztikus automaták. $q \sim q' \Leftrightarrow L(\mathcal{A}, q) = L(\mathcal{A}', q') \ (q \in \mathcal{A}, q' \in \mathcal{A}').$
 - Automaták ekvivalenciája: Legyenek $\mathcal{A} = \langle Q, T, \delta, q_0, F \rangle$ és $\mathcal{A}' = \langle Q', T, \delta, q'_0, F' \rangle$ véges determinisztikus automaták. $\mathcal{A} \sim \mathcal{A}' \Leftrightarrow q_0 \sim q'_0$.
- * Automata faktorautomatája: Legyen $\mathcal{A} = \langle Q, T, \delta, q_0, F \rangle$ egy véges determinisztikus automata. \mathcal{A} faktorautomatája $\mathcal{A}/_{\sim} := \langle \{C_q\}_{q \in Q}, T, \delta', C_{q_0}, \mathcal{F} \rangle$, ahol
 - \bullet C_q az q-valekvivalens állapotok osztálya, melynek reprezentánsa q,
 - $\mathfrak{F} = \{C_q \mid q \in F\},\$
 - $\delta'(C_q,t) = C_{\delta(q,t)}$, azaz δ' -t egy tetszőleges reprezentánssal definiáljuk.
- * Redukált automata: Egy adott \mathcal{A} véges, determinisztikus automata redukált automata, ha minden $q, q' \in A$ esetén $q \sim q' \Leftrightarrow q = q'$, azaz nincsenek különböző ekvivalens állapotai.

- * Automata *i*-ekvivalens állapotai: Legyen $\mathcal{A} = \langle Q, T, \delta, q_0, F \rangle$ egy véges determinisztikus automata. Azt mondjuk, hogy $q \stackrel{i}{\sim} q'$ (q *i*-ekvivalens q'-vel), ha minden $u \in T^{\leq i}$ esetén $(\delta(q, u) \in F \Leftrightarrow \delta(q', u) \in F)$ $(i \geq 0)$.
 - Automaták izomorfiája: Legyenek $\mathcal{A}_i = \langle Q_i, T, \delta_i, q_0^{(i)}, F_i \rangle$ (i = 1, 2) véges, determinisztikus automaták. Ekkor \mathcal{A}_1 és \mathcal{A}_2 izomorfak, ha létezik $\varphi: Q_1 \to Q_2$ kölcsönösen egyértelmű ráképezés, melyre a következők teljesülnek:
 - $\varphi(q_0^{(1)}) = q_0^{(2)},$
 - $\bullet \ \varphi(F_1) = F_2,$
 - δ -t megőrzi, azaz minden $q_1 \in Q_1$ és minden $t \in T$ esetén $\varphi(\delta_1(q_1, t)) = \delta_2(\varphi(q_1), t)$.
 - **Direkt szorzat automata:** Legyenek $A_i = \langle Q_i, T, \delta_i, q_0^{(i)}, F_i \rangle$, véges, determinisztikus automaták, i = 1, 2. Az $A_1 \times A_2 = \langle Q_1 \times Q_2, T, \delta_1 \times \delta_2, (q_0^{(1)}, q_0^{(2)}), F_{\times} \rangle$ automatát direkt szorzat automatának hívjuk. $A_1 \times A_2$ működése komponensenként párhuzamosan történik, amit a $\delta_1 \times \delta_2$ jelöléssel fejezünk ki. Formálisan: $(\delta_1 \times \delta_2)((q_1, q_2), t) = (\delta_1(q_1, t), \delta_2(q_2, t))$. A végállapotok halmaza feladatonként változhat.

Például legyen \odot a \cap , \setminus , \triangle műveletek közül az egyik. Feladat: konstruálni egy \mathcal{A}_{\odot} automatát, melyre fennáll, hogy $L(\mathcal{A}_{\odot}) = L(\mathcal{A}_{1}) \odot L(\mathcal{A}_{2})$. Ekkor

- $\bullet \ F_{\cap} := F_1 \times F_2,$
- $F_{\setminus} := F_1 \times (Q_2 \setminus F_2),$
- $F_{\triangle} := (F_1 \times (Q_2 \setminus F_2)) \cup ((Q_1 \setminus F_1) \times F_2).$
- Knuth-Morris-Pratt (KMP) automata: Legyen $m \in T^*$ egy szó. Az $m = m_1 m_2 \cdots m_{\ell(m)}$ mintához tartozó \mathcal{A}^m Knuth-Morris-Pratt automata (vagy röviden KMP automata) a következő. $\mathcal{A}^m = \langle \{q_i\}_{0 \leq i \leq \ell(m)}, T, \delta^m, q_0, \{q_{\ell(m)}\} \rangle$, ahol

$$\delta^m(q_i,x) = q_j \iff j = \begin{cases} \ell(m) & i = \ell(m) \\ \max\{\ell(w) \mid w \in \operatorname{Pre}(m) \cap \operatorname{Suf}(m_1 \cdots m_i x)\} & i < \ell(m) \end{cases}.$$

- * Nyelv szóra vonatkozó maradéknyelve: Egy L nyelv $p \in T(L)$ *-ra vonatkozó maradéknyelve $L_p := \{v \in T(L)^* \mid pv \in L\}.$
 - Összes levezetések gráfja: Legyen $G = \langle T, N, \mathcal{P} = \{p_1 \to q_1, \dots, p_n \to q_n\}, S \rangle$ tetszőleges nyelvtan. G összes levezetéseinek gráfja olyan végtelen, irányított gráf, melynek ponjtai $(T \cup N)^*$ elemeinek felelnek meg. α -ból β -ba van i, j címkéjű $(i \geq 1, j \geq 1)$ él, ha $\alpha \xrightarrow{G} \beta$ és $\alpha = \gamma_1 p_j \gamma_2, \beta = \gamma_1 q_j \gamma_2, i = \ell(\gamma_1) + 1.$
- * Szintaxisfa: Legyen $G = \langle T, N, \mathcal{P}, S \rangle$ tetszőleges 2-es típusú nyelvtan. A t nemüres fát G feletti szintaxisfának nevezzük, ha megfelel a következő tulajdonságoknak:
 - pontjai $T \cup N \cup \{\varepsilon\}$ elemeivel vannak címkézve.
 - \bullet belső pontjai N elemeivel vannak címkézve.
 - ha egy belső pont címkéje X, a közvetlen leszármazottjainak címkéi pedig balról jobbra olvasva $X_1,\,X_2,\ldots,X_k$, akkor $X\to X_1X_2\ldots X_k\in\mathcal{P}$.
 - \bullet az ε -nal címkézett pontoknak nincs testvére.
 - **Legbal levezetés:** A legbal levezetés olyan levezetés, hogy ha a levezetés folyamán a mondatforma i. betűjén helyettesítés történik, akkor a korábbi pozíciókat $(1, \ldots, i-1)$ a levezetés már a további lépésekben nem érinti, azok változatlanul maradnak.

 $^{^{1}}$ Itt az út egy ponton többször is áthaladhat. Ez valójában a gráfelméleti $s\acute{e}ta$ fogalomnak felel meg.

Legjobb levezetés: A legjobb levezetés olyan levezetés, hogy ha a levezetés folyamán a mondatforma hátulról i. betűjén helyettesítés történik, akkor a későbbi pozíciókat (hátulról $1, \ldots, i-1$.) a levezetés már a további lépésekben nem érinti, azok változatlanul maradnak.

Legbal mondatforma: Valamely L(G)-beli szó legbal levezetése során előforduló mondatforma.

Legjobb mondatforma: Valamely L(G)-beli szó legjobb levezetése során előforduló mondatforma.

Egyértelmű nyelvtan: $G \in \mathcal{G}_2$ egyértelmű nyelvtan, ha minden $u \in L(G)$ -nek pontosan egy szintaxisfája létezik.

Egyértelmű nyelv: Létezik 2. típusú egyértelmű nyelvtan, ami generálja.

Lényegesen nem egyértelmű nyelv: Nem létezik 2. típusú egyértelmű nyelvtan, ami generálja.

- * Szintaktikus elemzések alapfeladata: Legyen adva egy $G = \langle T, N, \mathcal{P}, S \rangle \in \mathcal{G}_2$ második típusú nyelvtan és egy $u \in T^*$ szó. Az elemzési algoritmusok feladata azt eldönteni, hogy u szó eleme-e L(G)-nek és ha igen, akkor felépíteni u egy G feletti szintaxisfáját.
- * Felülről lefelé elemzés: A szintaxisfát a gyökértől, azaz a kezdőszimbólumtól próbálja felépíteni.
- * Alulról felfelé elemzés: A szintaxisfát a levelektől, azaz az elemzendő szótól próbálja felépíteni.
 - $\mathbf{LL}(k)$ nyelvtan: A G 2-es típusú nyelvtan LL(k) nyelvtan, ha tetszőleges

 $S \xrightarrow[G,\text{lb}]{*} vA\alpha_1 \xrightarrow[G,\text{lb}]{*} v\gamma_1\alpha_1 \xrightarrow[G]{*} vw_1 \text{ és } S \xrightarrow[G,\text{lb}]{*} vA\alpha_2 \xrightarrow[G,\text{lb}]{*} v\gamma_2\alpha_2 \xrightarrow[G]{*} vw_2 \text{ levezetések esetén abból,}$ hogy $\text{pre}(w_1,k) = \text{pre}(w_2,k)$ következik, hogy $\gamma_1 = \gamma_2$.

Nyél: Alulról felfelé elemzés esetén az olyan visszahelyettesíthető részre, mely egy legjobb mondatforma valamely legjobb levezetésének utolsó lépésében áll elő, a nyél elnevezést használjuk.

LR(k) nyelvtan: A G 2-es típusú nyelvtan LR(k) nyelvtan, ha tetszőleges

 $S \xrightarrow[G, \text{lj}]{*} \alpha_1 A v_1 \xrightarrow[G, \text{lj}]{} \alpha_1 \gamma_1 v_1 \xrightarrow[G]{} w_1 v_1 \text{ \'es } S \xrightarrow[G, \text{lj}]{*} \alpha_2 B v_2 \xrightarrow[G, \text{lj}]{} \alpha_2 \gamma_2 v_2 \xrightarrow[G]{} w_2 v_2 \text{ legjobb levezet\'esek eset\'en abb\'ol, hogy } \alpha_1 \gamma_1 \operatorname{pre}(v_1, k) \text{ \'es } \alpha_2 \gamma_2 \operatorname{pre}(v_2, k) \text{ valamelyike kezdőszelete a másiknak, következik, hogy } \alpha_1 = \alpha_2, A = B \text{ \'es } \gamma_1 = \gamma_2.$

Tételek

- * **Tétel:** Nem minden nyelv írható le nyelvtannal.
- * (Church-tézis) Minden valamilyen konstruktív módon megadható nyelv leírható nyelvtannal.
- * **Tétel:** (Megszorítási tétel) $\mathcal{L}_{\text{megsz}i} = \mathcal{L}_i$ (i = 1, 2, 3).
- * Tétel: (Normálforma tétel) $\mathcal{L}_{nfi} = \mathcal{L}_i$ (i = 0, 1, 2, 3). i = 1 esetén Kuroda normálforma tétel, i = 2 esetén Chomsky normálforma tétel a neve.
- * **Tétel:** (Greibach NF tétel) Minden $G \in \mathcal{G}_2$ nyelvtanhoz létezik G' Greibach normálformájú nyelvtan, melvre $G' \sim G$.
- * **Tétel:** (Zártsági tétel) Az \mathcal{L}_i (i=0,1,2,3) nyelvosztályok zártak az unió, konkatenáció és a lezárás műveletekre.
- * **Tétel:** $\mathcal{L}_0 \subseteq \mathcal{L}_{RekFel}$, $\mathcal{L}_0 \subseteq \mathcal{L}_{ParcRek}$, $\mathcal{L}_1 \subseteq \mathcal{L}_{Rek}$,
- * Tétel: $\mathcal{L}_{\text{VDA}} = \mathcal{L}_{\text{PDA}} = \mathcal{L}_{\text{NDA}} = \mathcal{L}_{\varepsilon \text{NDA}} (= \mathcal{L}_{0 \text{V}}) = \mathcal{L}_{3}$
 - **Tétel:** Legyen \mathcal{A} egy véges, determinisztikus automata, ekkor $\mathcal{A}/_{\sim}$ redukált és $L(\mathcal{A}/_{\sim}) = L(\mathcal{A})$.
 - **Tétel:** (Izomorfia tétel) Legyenek \mathcal{A}_1 és \mathcal{A}_2 összefüggő, redukált és egymással ekvivalens automaták. Ekkor $\mathcal{A}_1 \cong \mathcal{A}_2$.
- * **Tétel:** (Kleene tétel) $\mathcal{L}_{REG} = \mathcal{L}_3$.
- * **Tétel:** Az \mathcal{L}_3 nyelvosztály zárt a komplementer, a metszet, a különbség és a szimmetrikus differencia műveletekre.
- * **Tétel:** (Chomsky nyelvhierarchia) $\mathcal{L}_0 \supset \mathcal{L}_1 \supset \mathcal{L}_2 \supset \mathcal{L}_3$.
 - **Tétel:** (Myhill-Nerode tétel) $L \in \mathcal{L}_3$ akkor és csak akkor, ha $\left|\{L_p\}_{p \in T^*}\right| < \infty$, ahol T = T(L) az L nyelv ábécéje.
- * **Tétel:** (Kis Bar-Hillel lemma) Minden $L \in \mathcal{L}_3$ nyelvhez van olyan $n = n(L) \in \mathbb{N}$ nyelvfüggő konstans, hogy minden $u \in L$, $\ell(u) \geq n$ szó esetén van u-nak olyan u = xyz felbontása $(x, y, z \in T(L)^*)$, melyre
 - $\ell(xy) \leq n$,
 - $\bullet \ \ell(y) > 0,$
 - minden $i \ge 0$ egész esetén $xy^iz \in L$.
- * **Tétel:** (Nagy Bar-Hillel-lemma) Minden $L \in \mathcal{L}_2$ nyelvhez vannak olyan $p = p(L), q = q(L) \in \mathbb{N}$ nyelvfüggő konstansok , hogy minden $u \in L$, $\ell(u) \geq p$ szó esetén van u-nak olyan u = xyzvw felbontása $(x, y, z, v, w \in T(L)^*)$, melyre
 - $\ell(yzv) \le q$,
 - $\ell(yv) > 0$,
 - minden $i \ge 0$ egész esetén $xy^izv^iw \in L$.
- * **Tétel:** A determinisztikus veremautomaták által elfogadott nyelvek osztálya valódi részhalmaza a veremautomaták által elfogadott nyelvek osztályának.
- * **Tétel:** A végállapottal és az üres veremmel elfogadó veremautomaták által elfogadható nyelvek nyelvosztálya megegyezik.

- Tétel: $\mathcal{L}_{1V} = \mathcal{L}_2$.
- **Tétel:** $\mathcal{L}_{nV} = \mathcal{L}_0$, $(n \ge 2)$.
- **Lemma:** Tetszőleges $G \in \mathcal{G}_2$ nyelvtan, $Z \in T \cup N \cup \{\varepsilon\}$ és $\alpha \in (T \cup N)^*$ esetén $Z \stackrel{*}{\underset{G}{\longrightarrow}} \alpha$ akkor és csak akkor, ha létezik t G feletti szintaxisfa, melyre $\mathrm{gy}(t)=Z$ és front $(t)=\alpha.$

Tétel: (Lináris nyelvi egyenletek megoldóképlete) Ha R_1 és R_2 reguláris kifejezések és $\varepsilon \notin L(R_1)$, akkor az $R_1X \cup R_2 = X$ egyenlet egyértelmű megoldása $X = R_1^*R_2$.

Tétel: (Lineáris nyelvi egyenletrendszerek megoldhatósága) Legyen $\mathbf{M}\mathbf{x} \cup \mathbf{v} = \mathbf{x}$ nyelvi egyen-

el: (Lineáris nyelvi egyenletrendszerek megoldhatósága) Legyen
$$\mathbf{M}\mathbf{x} \cup \mathbf{v} = \mathbf{x}$$
 nyelvi egyenletrendszer, ahol az $\mathbf{M} = \begin{bmatrix} L_{11} & \cdots & L_{1n} \\ \vdots & \ddots & \vdots \\ L_{n1} & \cdots & L_{nn} \end{bmatrix}$ nyelvmátrix és a $\mathbf{v} = \begin{bmatrix} L_1 \\ \vdots \\ L_n \end{bmatrix}$ nyelvvektor adottak és $\mathbf{x} = \begin{bmatrix} X_1 \\ \vdots \\ X_n \end{bmatrix}$ ismeretlen nyelvekből álló vektor. Ha $\mathcal{L} = \bigcup_{j=1}^n \bigcup_{k=1}^n \{L_{jk}\} \cup \bigcup_{j=1}^n \{L_{jk}\} \cup \bigcup_{j=1$

tor adottak és
$$\mathbf{x}=\begin{bmatrix}X_1\\\vdots\\X_n\end{bmatrix}$$
 ismeretlen nyelvekből álló vektor. Ha $\mathcal{L}=\bigcup\limits_{j=1}^n\bigcup\limits_{k=1}^n\{L_{jk}\}$ \cup

 $\bigcup_{j=1}^n \{L_j\} \subseteq \mathcal{L}_i \ (i \in \{0,1,2,3\}) \text{ \'es } \varepsilon \not\in L_{jk} \ (1 \leq j \leq n, 1 \leq k \leq n), \text{ akkor az egyenletrend-}$ szernek egyértelműen létezik megoldása, melynek elemei \mathcal{L} elemeiből reguláris műveletekkel megkaphatók.

Tétel: $\mathcal{L}_{LL(k)} \subset \mathcal{L}_{LR(k)} = \mathcal{L}_{1DV}$.

Algoritmusok

Álterminálisok bevezetése (Φ_{Alt})

Input: $G = \langle T, N, \mathcal{P}, S \rangle$ nyelvtan.

Output:~G'nyelvtan, melynek csak $A\to a~(A\in N, a\in T)$ sémájú szabályai tartalmaznak terminálist és $G'\sim G.$

Minden $t \in T$ terminálisra t valamennyi előfordulását \mathcal{P} -beli szabályokban egy új (nem N-beli), terminálisonként egyedi Q_t nyelvtani jelre cseréljük.

Minden $t \in T$ terminálisra hozzáadjuk a szabályrendszerhez a $Q_t \to t$ szabályt.

0. típusú ε -mentesítés (Φ_{0epsz})

Input: $G = \langle T, N, \mathcal{P}, S \rangle$ nyelvtan.

Output: G' epszilonmentes nyelvtan, melyre $G' \sim G$.

Minden $Z \in T \cup N$ és $p \to \varepsilon \in \mathcal{P}$ $(p \in (T \cup N)^*N(T \cup N)^*)$ esetén hozzáadjuk a szabályrendszerhez a $Zp \to Z$ és $pZ \to Z$ szabályokat, majd az epszilonszabályokat elhagyjuk.

2. típusú ε -mentesítés (Φ_{2epsz})

Input: $G = \langle T, N, \mathcal{P}, S \rangle$ 2. típusú nyelvtan.

Output:~G'megszorított 2. típusú nyelvtan, melyre $G\sim G'.$

Az első lépésben meghatározzuk a $H:=\{A\in N\ \big|\ A\stackrel{*}{\underset{G}{\longrightarrow}}\varepsilon\}$ halmazt. Ehhez rekurzívan definiáljuk a $H_i\ (i\geq 1)$ halmazokat:

 $H_1 := \{ A \in N \mid A \to \varepsilon \in \mathcal{P} \},$

 $H_{i+1} := H_i \cup \{ A \in N \mid \exists A \to Q \in \mathcal{P} : Q \in H_i^* \}.$

 $H_1 \subseteq H_2 \subseteq \cdots \subseteq H_i \subseteq \ldots$, és mivel a H_i halmaz elemszáma felülről korlátos ezért stabilizálódik a sorozat, azaz egy i_0 indextől kezdődően biztosan azonosak lesznek ezek a halmazok, ez a H_{i_0} lesz a H halmaz.

A második lépésben a H halmaz ismeretében átalakítjuk a nyelvtant a kellő alakúra.

 $S \notin H$ esetén:

 $G' := \langle T, N, \bar{P}, S \rangle$, ahol $A \to \bar{q} \in \bar{P}$ akkor és csak akkor, ha $\bar{q} \neq \varepsilon \land \exists A \to q \in P$, hogy \bar{q} -t q-ból néhány (esetleg nulla) H-beli jel elhagyásával kapjuk.

 $S \in H$ esetén:

 $\bar{\mathcal{P}}$ -hez vegyük hozzá még az $S' \to S \mid \varepsilon$ szabályokat és S' legyen az új kezdőszimbólum.

 $Megjegyz\acute{e}s: \Phi_{2epsz}$ megőrzi a 2. és 3. típust.

Láncmentesítés ($\Phi_{\text{Lánc}}$)

Input: $G = \langle T, N, \mathcal{P}, S \rangle$ 1. típusú nyelvtan.

Output: G' 1-es típusú láncszabálymentes nyelvtan, melyre $G' \sim G$.

Az első lépésben meghatározzuk minden $A \in N$ esetén a $H(A) := \{B \in N \mid A \stackrel{*}{\underset{G}{\longrightarrow}} B\}$ halmazt.

Ehhez rekurzívan definiáljuk a $H_i(A)$ $(i \ge 0)$ halmazokat:

$$H_0(A) := \{A\},\$$

 $H_{i+1}(A) := H_i(A) \cup \{B \mid \exists C \in H_i(A) \land C \underset{G}{\rightarrow} B\}.$

 $H_0(A) \subseteq H_1(A) \subseteq \cdots \subseteq H_i(A) \subseteq \ldots$, és mivel a $H_i(A)$ halmaz elemszáma felülről korlátos ezért stabilizálódik a sorozat, azaz egy i_0 indextől kezdődően biztosan azonosak lesznek ezek a halmazok, ez a $H_{i_0}(A)$ lesz a H(A) halmaz.

A második lépésben a H(A) halmazok $(A \in N)$ ismeretében átalakítjuk a nyelvtant a kellő alakúra: $G' = \langle T, N, \mathcal{P}', S \rangle$ lesz az új nyelvtan, ahol

$$\mathcal{P}' = \{ u_1 A_1 u_2 A_2 \cdots u_n A_n u_{n+1} \to \beta \mid u_1, \dots, u_{n+1} \in T^* \land A_1, \dots, A_n \in N \land \beta \in (T \cup N)^* \land \exists B_1 \in H(A_1), \dots, B_n \in H(A_n) : u_1 B_1 u_2 B_2 \cdots u_n B_n u_{n+1} \to \beta \in \mathcal{P} \}.$$

Megjegyzések: 1. $\Phi_{\text{Lánc}}$ megőrzi az 1., 2., és 3. típust. 2. $\Phi_{\text{Lánc}}$ alkalmazható nem feltétlen ε-mentes 3. típusú nyelvtanokra is. Ilyenkor is $G' \sim G$ és $\Phi_{\text{Lánc}}$ megőrzi a 3. típust.

Hosszredukció (Φ_{Hossz})

Input: $G = \langle T, N, \mathcal{P}, S \rangle$ 1-es típusú nyelvtan.

Output: G' 1-es típusú nyelvtan olyan szabályokkal, melyeknek baloldala és jobboldala legfeljebb 2 hosszúságú, továbbá $G' \sim G$.

Legyen $X_1X_2...X_m \to Y_1Y_2...Y_n$ $(m \ge 2, n \ge m)$ hosszúságot nem csökkentő szabály. $(X_1, X_2, ...X_m, Y_1, Y_2...Y_n \in N)$

A szabály szimulációja a Z_1, Z_2, \dots, Z_{n-2} új nyelvtani jelek bevezetésével:

$$X_1X_2 \rightarrow Y_1Z_1,$$
 $Z_1X_3 \rightarrow Y_2Z_2,$
 \vdots
 $Z_{m-3}X_{m-1} \rightarrow Y_{m-2}Z_{m-2},$
Továbbá ha $n=m,$ akkor
 $Z_{m-2}X_m \rightarrow Y_{m-1}Y_m,$
egyébként $(n>m$ esetén):
 $Z_{m-2}X_m \rightarrow Y_{m-1}Z_{m-1},$
 $Z_{m-1} \rightarrow Y_mZ_m,$
 \vdots
 $Z_{n-3} \rightarrow Y_{n-2}Z_{n-2},$
 $Z_{n-2} \rightarrow Y_{n-1}Y_n.$
 $m=1$ esetén:
 $X_1 \rightarrow Y_1Z_1,$
 $Z_1 \rightarrow Y_2Z_2,$

Megjegyzések: 1. A fenti algoritmust 3. típusú G nyelvtan esetén is definiáljuk. Ekkor m=1 és $Y_1,\ldots,Y_{n-1}\in T,\ Y_n\in N\cup\{\varepsilon\}$. Ebben az esetben az algoritmus outputja egy olyan G' nyelvtan, melynek $p'\to q'$ szabályaira $q'\in TN\cup T\cup N\cup\{\varepsilon\}$. 2. Φ_{Hossz} megőrzi az 1., 2., és az 1. megjegyzéssel definiált algoritmus esetén a 3. típust továbbá a láncmentességet és az epszilonmentességet.

1-es típusú nyelvtanok normálformára hozása (Φ_{1NF})

Kuroda normálforma

 $Z_{n-3} \to Y_{n-2}Z_{n-2},$ $Z_{n-2} \to Y_{n-1}Y_n.$

Input: G 1-es típusú nyelvtan.

Output: G' Kuroda normálformájú nyelvtan, melyre $G' \sim G$.

Lépései:

1. Álterminálisok bevezetése

- 2. Láncmentesítés
- 3. Hosszredukció
- 4. Az $AB \rightarrow CD \ (A \neq C, B \neq D)$ sémájú szabályok eliminálása

(Az $AB \to CD \ (A \ne C, B \ne D)$ sémájú szabályokat az $AB \to AW, \ AW \to CW, \ CW \to CD$ szabályokkal helyettesítjük, ahol W új, egyedi nyelvtani jel.)

Zsákutcamentesítés ($\Phi_{Zsák}$)

Input: G 2. típusú nyelvtan.

Output: G' zsákutcamentes 2. típusú nyelvtan, melyre $G' \sim G$.

Az első lépésben meghatározzuk a $J:=\{A\in N\mid \exists u\in T^*,\, A\overset{*}{\underset{G}{\longrightarrow}}u\}$ halmazt. Ehhez rekurzívan definiáljuk a $J_i\ (i\geq 1)$ halmazokat:

$$J_1 := \{ A \in N \mid \exists u \in T^*, A \to u \in \mathcal{P} \},$$

$$J_{i+1} := J_i \cup \{A \in N \mid \exists A \to Q \in \mathcal{P} : Q \in (J_i \cup T)^*\}.$$

 $J_1 \subseteq J_2 \subseteq \cdots \subseteq J_i \subseteq \ldots$, és mivel a J_i halmaz elemszáma felülről korlátos ezért stabilizálódik a sorozat, azaz egy i_0 indextől kezdődően biztosan azonosak lesznek ezek a halmazok, ez a J_{i_0} lesz a J halmaz.

Ezek után a G nyelvtant úgy alakítjuk át, hogy elhagyunk minden olyan szabályt, mely tartalmaz $(N \setminus J)$ -beli nyelvtani jelt.

Összefüggővé alakítás $(\Phi_{\ddot{\mathbf{O}}\mathbf{f}})$

Input: G 2. típusú nyelvtan.

Output: G' összefüggő 2. típusú nyelvtan, melyre $G' \sim G$.

Az első lépésben meghatározzuk a $K := \{A \in N \mid \exists \alpha \in (T \cup N)^* A (T \cup N)^*, S \xrightarrow{*}_{G} \alpha \}$ halmazt. Ehhez rekurzívan definiáljuk a K_i $(i \ge 0)$ halmazokat:

 $K_0 := \{S\}; K_1 := K_0 \cup \{A \in N \mid \exists \alpha \in (T \cup N)^* A (T \cup N)^*, S \to \alpha \in \mathcal{P}\},$

$$K_{i+1} := K_i \cup \{A \in N \mid \exists B \in K_i, \alpha \in (T \cup N)^* A (T \cup N)^*, B \to \alpha \in \mathcal{P}\}.$$

 $K_1 \subseteq K_2 \subseteq \cdots \subseteq K_i \subseteq \ldots$, és mivel a K_i halmaz elemszáma felülről korlátos ezért stabilizálódik a sorozat, azaz egy i_0 indextől kezdődően biztosan azonosak lesznek ezek a halmazok, ez a K_{i_0} lesz a K halmaz.

Ezek után a G nyelvtant úgy alakítjuk át, hogy elhagyunk minden olyan szabályt, melynek baloldala $(N \setminus K)$ -beli.

2-es típusú nyelvtanok redukciója (Φ_{Red})

Input: G 2-es típusú nyelvtan.

Output:~G'redukált (zsákutcamentes és összefüggő) 2-es típusú nyelvtan, melyre $G'\sim G.$ $L\acute{e}p\acute{e}sei:$

- 1. Zsákutcamentesítés
- 2. Összefüggővé tétel.

2-es típusú nyelvtanok normálformára hozása (Φ_{2NF})

Chomsky normálforma

Input: G 2-es típusú nyelvtan.

Output: G' Chomsky normálformájú nyelvtan, melyre $G' \sim G$.

Lépései:

- 1. Álterminálisok bevezetése
- 2. ε -mentesítés
- 3. Láncmentesítés
- 4. Hosszredukció

3-as típusú nyelvtanok normálformára hozása (Φ_{3NF})

Input: G 3-as típusú nyelvtan.

Output:~G'3-as típusú normálformájú nyelvtan, melyre $G'\sim G.$

Lépései:

- 1. Láncmentesítés
- 2. Hosszredukció
- $3.~{\rm Az}~A \rightarrow a$ sémájú szabályok eliminálása

(Minden $A \to a$ sémájú szabályt az $A \to aF$ szabállyal helyettesítünk, ahol F új, egyedi nyelvtani jel, és hozzáadjuk még a szabályrendszerhez az $F \to \varepsilon$ szabályt.)

Polinomiális algoritmus a szóprobléma eldöntésére 2. típus esetén

Cocke-Younger-Kasami (CYK) algoritmus

 $Input: G = \langle T, N, \mathcal{P}, S \rangle$ Chomsky normálformájú nyelvtan és egy $u = t_1 \cdots t_n \in T^*$ szó.

Output: IGEN, ha $u \in L(G)$. NEM, ha $u \notin L(G)$.

Ha $u = \varepsilon$, akkor $u \in L(G) \iff S \to \varepsilon \in \mathcal{P}$.

Legyen A_i a $P_i \in \mathcal{P}$ szabály bal-, q_i pedig a jobboldala. $(A_i \in \mathcal{N}, \, q_i \in T \cup \mathcal{N}^2.)$

A CYK algoritmus rekurzíven definiál $H_{i,j}, 1 \leq i \leq j \leq n$ halmazokat (j-i) szerint növekvő sorrendben.

$$\begin{split} H_{i,i} &:= \{A_k \,|\, q_k = t_i\}, \\ H_{i,j} &:= \{A_k \,|\, q_k \in \bigcup_{r=i}^{j-1} H_{i,r} H_{r+1,j}\} \quad (i < j). \\ \text{Ha } S \in H_{1,n}, \text{ akkor } u \in L(G), \text{ k\"ul\"o\"nben } u \not\in L(G). \end{split}$$

Lineáris algoritmus a szóprobléma eldöntésére 3. típus esetén

Input: $G = \langle T, N, \mathcal{P}, S \rangle$ 3. típusú normálformájú nyelvtan és egy $u = t_1 \cdots t_n \in T^*$ szó.

Output: IGEN, ha $u \in L(G)$. NEM ha $u \notin L(G)$.

Az algoritmus rekurzívan kiszámol egy a nyelvtani jelek halmazának részhalmazaiból álló sorozatot.

$$H_0 = \{S\},\,$$

$$H_{i+1} = \{ A \in N \mid \exists B \in H_i \land B \to t_{i+1} A \in \mathcal{P} \}.$$

Legyen továbbá $F = \{A \in N \mid A \to \varepsilon \in \mathcal{P}\}.$

 $u \in L(G) \Leftrightarrow H_n \cap F \neq \emptyset.$

Minimális automata előállítása

Input: $A = \langle Q, T, \delta, q_0, F \rangle$ véges, determinisztikus automata.

Output: L(A) minimális automatája.

Lépései:

1. Összefüggővé alakítás

Meghatározzuk a q_0 -ból elérhető állapotok H halmazát.

$$H_0 := \{q_0\},\$$

$$H_{i+1} := H_i \cup \{q \mid \exists q' \in H_i \land \exists t \in T : \delta(q', t) = q\},$$

 $H_0 \subseteq H_1 \subseteq \cdots \subseteq H_i \subseteq \ldots$, és mivel a H_i halmaz elemszáma felülről korlátos ezért stabilizálódik a sorozat, azaz egy i_0 indextől kezdődően biztosan azonosak lesznek ezek a halmazok, ez a H_{i_0} lesz a H halmaz. Az összefüggő automata:

$$\mathcal{A}_{\text{össz}} = \langle H, T, \delta \big|_{H \times T}, q_0, F \cap H \rangle.$$

Rekurzívan meghatározzuk az $\mathcal{A}_{\text{össz}}$ automata $\stackrel{0}{\sim}, \stackrel{1}{\sim}, \dots$ ekvivalenciáit:

•
$$q \stackrel{0}{\sim} q'$$
, ha $(q \in F \Leftrightarrow q' \in F)$,

$$\bullet \ q \overset{i+1}{\sim} q' \ \Leftrightarrow \ q \overset{i}{\sim} q' \wedge (\forall t \in T : \delta(q,t) \overset{i}{\sim} \delta(q',t)).$$

$$\overset{0}{\sim} \prec \overset{1}{\sim} \prec \overset{2}{\sim} \prec \overset{1}{\sim} \prec \overset{1}{\sim} \prec \overset{1}{\sim} , \ (\varrho_1 \prec \varrho_2, \text{ ha minden } q, q' \in Q \text{ eset\'en } q\varrho_2 q' \Rightarrow q\varrho_1 q'.)$$

így az $\stackrel{i}{\sim}$ az állapotok halmazának egyre finomodó felosztását adja, mely véges sok lépésben stabilizálódik. $i_0 := \min\{i \mid \stackrel{i}{\sim} = \stackrel{i+1}{\sim} \}$.

 $\mathcal{A}_{\mathrm{\ddot{o}ssz}}/_{\underline{i_0}}$ a minimális automata.

NDA-hoz vele ekvivalens VDA készítése

Input: $A = \langle Q, T, \delta, q_0, F \rangle$ véges, nemdeterminisztikus automata.

Output: $A' = \langle Q', T, \delta', q'_0, F' \rangle$ véges, determinisztikus automata, melyre L(A') = L(A).

$$Q' := 2^Q$$

$$\delta'(\{q_1, \dots, q_s\}, t) := \bigcup_{i=1}^s \delta(q_i, t) \qquad (q_1, \dots, q_s \in Q, t \in T).$$

$$q_0' := \{q_0\}$$

$$F' := \{ A \in 2^Q \mid A \cap F \neq \emptyset \}.$$

A q_0' -t tartalmazó $\mathcal{A}_{\ddot{\text{o}}\text{ssz}}'$ komponens meghatározása:

Amikor az állapotokra sorra határozzuk meg az állapotátmeneteket készítünk egy sort δ' érték-készletéről.

Minden lépésben a sor elején levő, még nem vizsgált állapotra meghatározzuk az átmeneteket. Az eljárás akkor ér véget, ha a sor kiürül. Kezdetben a sor egyedül q'_0 -t tartalmazza.

3-as normálformájú nyelvtan készítése VDA-hoz

Input: $A = \langle Q, T, \delta, q_0, F \rangle$ véges, determinisztikus automata.

Output: $G = \langle T, N, \mathcal{P}, S \rangle$ 3-as típusú normálformájú nyelvtan, melyre $L(G) = L(\mathcal{A})$.

$$N := Q$$
,

$$S := q_0,$$

$$q_1 \to tq_2 \in \mathcal{P} \Leftrightarrow \delta(q_1.t) = q_2 \qquad (q_1, q_2 \in Q, t \in T),$$

$$q \to \varepsilon \in \mathcal{P} \Leftrightarrow q \in F \qquad (q \in Q).$$

VDA készítése 3-as normálformájú nyelvtanhoz

Input: $G = \langle T, N, \mathcal{P}, S \rangle$ 3-as normálformájú nyelvtan.

Output: $A = \langle Q, T, \delta, q_0, F \rangle$ véges, determinisztikus automata, melyre L(A) = L(G). Lépései:

1. NDA készítése 3NF nyelvtanhoz.

$$Q := N$$
,

$$q_0 := S$$
,

$$B \in \delta(A, t) \Leftrightarrow A \to tB \in \mathcal{P}$$
 $(A, B \in N, t \in T),$

$$A \in F \Leftrightarrow A \to \varepsilon \in \mathcal{P}$$
 $(A \in N)$.

2. NDA-hoz vele ekvivalens VDA készítése.

ε NDA-hoz vele ekvivalens NDA készítése

Input: $A = \langle Q, T, \delta, q_0, F \rangle \in NDA$.

Output: $A' = \langle Q', T, \delta', q'_0, F' \rangle$ NDA, melyre L(A') = L(A).

$$Q' := Q, \ q'_0 := q_0.$$

Egy $q \in Q$ állapot ε -lezártja azon állapotokból áll, ahova q-ból ε -átmenetekkel eljuthatunk. Halmazsorozattal történő rekurzív megadása:

$$H_0(q) := \{q\}.$$

$$H_{i+1}(q) := H_i \cup \bigcup_{q' \in H_i(q)} \delta(q', \varepsilon).$$

 $H_0(q) \subseteq H_1(q) \subseteq \cdots \subseteq Q$. A $H_i(q)$ halmazsorozat legfeljebb |Q| lépésben stabizálódik, legyen i_0 a legkisebb index, melyre $H_{i_0}(q) = H_{i_0+1}(q)$. Ekkor $H(q) := H_{i_0}(q)$.

$$q' \in \delta'(q,t) \, \Leftrightarrow \, \exists \, q'' \in H(q), q' \in \delta(q'',t).$$

$$q \in F' \Leftrightarrow H(q) \cap F \neq \emptyset.$$

Reguláris kifejezés által leírt nyelvet felismerő VDA készítése

(Automataszintézis)

Input: R reguláris kifejezés.

Output: $A = \langle Q, T, \delta, q_0, F \rangle$ véges, determinisztikus automata, melyre L(A) = L(R).

Lépései:

0. Általánosított szekvenciális automata készítése reguláris kifejezéshez.

Adott R reguláris kifejezéshez kiindulunk egy $\mathcal{A} = \langle \{q_S, q_V\}, T, \delta, q_S, \{q_V\} \rangle$ általánosított szekvenciális automatából, ahol $\delta(q_S, R) = \{q_V\}$ az egyetlen átmenet. Erre nyílván $L(\mathcal{A}) = L(R)$.

$$\longrightarrow \overbrace{q_S} \longrightarrow \overbrace{q_V}$$

1. Általánosított szekvenciális automata lebontása εNDA -vá

Az alábbi lebontási lépések nem változtatják az elfogadott nyelvet.

$$\xrightarrow{q_1} \xrightarrow{(R_1 \cup R_2)} \xrightarrow{q_2} \xrightarrow{} \Rightarrow \xrightarrow{q_1} \xrightarrow{q_2} \xrightarrow{q_2} \xrightarrow{}$$

$$(R_1R_2) \longrightarrow (q_2) \longleftrightarrow \Rightarrow (q_1) \longrightarrow (q_{\acute{\text{u}}}) \longrightarrow (q_2) \longleftrightarrow (q_2)$$

Addig bontjuk a reguláris kifejezéseket amíg ε NDA-t nem kapunk. (Az \emptyset -zal címkézett éleket elhagyjuk.)

- $2.~\varepsilon {\rm NDA\text{-}hoz}$ vele ekvivalens NDA készítése
- 3. NDA-hoz vele ekvivalens VDA készítése

VDA által elfogadott nyelv leírása reguláris kifejezéssel

(Automataanalízis)

Input: $A = \langle Q, T, \delta, q_0, F \rangle$ VDA.

Output: R reguláris kifejezés, melyre L(R) = L(A).

Lépései:

- 1. Nyelvi egyenletrendszer felírása az állapotok maradéknyelveire.
- Ha $q \notin F$, akkor a q maradéknyelvére vonatkozó egyenlet: $L(\mathcal{A},q) = \bigcup_{t \in T} tL(\mathcal{A},\delta(q,t))$.
- Ha $q \in F$, akkor a q maradéknyelvére vonatkozó egyenlet: $L(\mathcal{A}, q) = \varepsilon \cup \bigcup_{t \in T} tL(\mathcal{A}, \delta(q, t))$.
 - 2. Az egyenletrendszer Gauss-eliminációval történő megoldása $L(A, q_0)$ -ra.

Legyen $Q = \{q_0, q_1, \dots, q_{n-1}\}$. n egyenletünk van n ismeretlennel. A q_{n-1} állapot maradéknyelvére vonatkozó egyenletből kifejezzük $L(\mathcal{A}, q_{n-1})$ -t a többi maradéknyelv függvényében a lineáris nyelvi egyenlet megoldóképlete segítségével. Ezt behelyettesítjük a többi n-1 egyenletbe, így marad n-1 egyenlet n-1 ismeretlennel. Folytatjuk, amíg egy egyenletünk marad, melynek egyetlen ismeretlene $L(\mathcal{A}, q_0)$. Az egyenletet a lineáris nyelvi egyenlet megoldóképlete alapján megoldjuk. Megjegyzés: Az összes többi maradéknyelvet visszahelyettesítéssel kaphatjuk meg.

VDA előállítása maradéknyelvekből

Input: L nyelv.

Output: Ha $L \in \mathcal{L}_3$, akkor \mathcal{A} VDA, melyre $L(\mathcal{A}) = L$. Ha $L \notin \mathcal{L}_3$, akkor NINCS.

Határozzuk meg L szavakra vonatkozó maradéknyelveit, és ha véges sok különböző van, akkor legyenek $p_1, \ldots, p_n \in T(L)^*$ olyan szavak, melyre L_{p_1}, \ldots, L_{p_n} kiadja a maradéknyelvek rendszerét. Az L_{p_it} $1 \leq i \leq n, t \in T(L)$ maradnyelvekről meghatározzuk, mely p_j -re egyezik meg az L_{p_j} maradéknyelvel. Tehát a VDA:

$$\mathcal{A} = \langle \{L_p\}_{p \in T^*}, T, \delta, L_{\varepsilon}, \{L_p \mid \varepsilon \in L_p\} \rangle$$
, ahol $\delta(L_p, t) = L_{pt}$.

Jelölések

```
A \subseteq B; C \subset D
                             A részhalmaza B-nek; C valódi részhalmaza D-nek
         2^{H}
                             H hatványhalmaza
                             az f függvény értelmezési tartománya
         D_f
         X^*
                             az összes X feletti szó halmaza
         X^+
                             X^* \setminus \{\varepsilon\}, az összes X feletti pozitív hosszúságú szó halmaza
         X^i
                             az összes X feletti i hosszúságú szó halmaza
        X^{\leq i}
                             az összes X feletti legfeljebb i hosszúságú szó halmaza
        X^{\geq i}
                             az összes X feletti legalább i hosszúságú szó halmaza
   X(u); T(u)
                             a legszűkebb ábécé, mely fölött u szó
   X(L); T(L)
                             a legszűkebb ábécé, mely felett L nyelv
        \ell(u)
                             az u szó hossza
                             az u szóban szereplő t betűk száma
        \ell_t(u)
                             az u szóban szereplő H-beli betűk száma
       \ell_H(u)
         L^*
                             L lezártja
         L^{+}
                             L pozitív lezártja
    u^{-1}; L^{-1}
                             u illetve L megfordítása
 Pre(u); Suf(u)
                             u prefix- illetve suffixhalmaza
 Pre(L); Suf(L)
                             L prefix- illetve suffixhalmaza
Pre(u, i); Suf(u, i)
                             az u szó legfeljebb i hosszúságú prefix- illetve suffixhalmaza
pre(u, i); suf(u, i)
                             az u szó i hosszúságú prefixe illetve suffixe
       u \subseteq v
                             u részszava v-nek
       \Re(X)
                             X ábécé feletti reguláris kifejezések halmaza
                             az összes reguláris kifejezés halmaza
      \mathcal{R}_{\mathrm{Alt}}(X)
                             X ábécé feletti általánosított reguláris kifejezések halmaza
       L(R)
                             az R reguláris kifejezés által reprezentált nyelv
      \alpha \xrightarrow{G} \beta
\alpha \xrightarrow{k} \beta
\alpha \xrightarrow{*} \beta
\alpha \xrightarrow{*} \beta
                             \alpha-ból közvetlenül levezethető \beta
                             \alpha-ból k lépésben levezethető \beta
                             \alpha-ból közvetetten levezethető \beta
       L(G)
                             a G nyelvtan által generált nyelv
         G_i
                             i. típusú nyelvtanok osztálya (i \in \{0, 1, 2, 3\})
                             megszorított i. típusú nyelvtanok osztálya (i \in \{0, 1, 2, 3\})
      g_{\text{megs}zi}
                             G_1 és G_2 nyelvtan ekvivalensek
     G_1 \sim G_2
     G_1 \underset{\mathrm{kv}}{\sim} G_2
                             {\cal G}_1és {\cal G}_2nyelvtan kváziekvivalensek
         \mathcal{L}_i
                             i. típusú nyelvek nyelvosztálya (i \in \{0, 1, 2, 3\})
      \mathcal{L}_{\text{megsz}i}
                             megszorított i. típusú nyelvek nyelvosztálya (i \in \{0,1,2,3\}) (l. megszorítási tétel)
        \mathcal{L}_{\mathrm{nf}i}
                             i\text{-es}normálformájú nyelv<br/>tanok által generált nyelvek nyelvosztálya (i\in\{0,1,2,3\})
                             (l. normálforma tétel)
      \mathcal{L}_{RekFel}
                             a rekurzíve felsorolható nyelvek nyelvosztálya
      \mathcal{L}_{ParcRek}
                             a parciálisan rekurzív nyelvek nyelvosztálya
       \mathcal{L}_{\mathrm{Rek}}
                             a rekurzív nyelvek nyelvosztálya
        \mathcal{L}_{nV}
                             az n-vermek által elfogadott nyelvek nyelvosztálya
                             az \varepsilonNDA-k által elfogadott nyelvek nyelvosztálya
       \mathcal{L}_{\varepsilon NDA}
```

$\mathcal{L}_{ ext{NDA}}$	az NDA-k által elfogadott nyelvek nyelvosztálya	
$\mathcal{L}_{ ext{PDA}}$	a PDA-k által elfogadott nyelvek nyelvosztálya	
$\mathcal{L}_{ ext{VDA}}$	a VDA-k által elfogadott nyelvek nyelvosztálya	
$\mathcal{L}_{ ext{REG}}$	a reguláris nyelvek nyelvosztálya	
$\Phi_{ ext{ m Alt}}$	Az álterminálisok bevezetésének nyelvtani transzformációja	
$\Phi_{0\mathrm{epsz}}$	A 0. típusú ε -mentesítés nyelvtani transzformációja	
$\Phi_{ m 2epsz}$	A 2. típusú ε -mentesítés nyelvtani transzformációja	
$\Phi_{L\acute{a}nc}$	A láncmentesítés nyelvtani transzformációja	
$\Phi_{\rm Hossz}$	A hosszredukció nyelvtani transzformációja	
$\Phi_{\rm 1NF}$	Az 1. típusú (Kuroda) normálformára hozás nyelvtani transzformációja	
$\Phi_{\rm Zs\acute{a}k}$	A zsákutcamentesítés nyelvtani transzformációja	
$\Phi_{ m \ddot{O}ssz}$	Az összefüggővé tétel nyelvtani transzformációja	
$\Phi_{ m Red}$	A 2. típusú nyelvtanok redukciójának nyelvtani transzformációja	
$\Phi_{\rm 2NF}$	A 2. típusú (Chomsky) normálformára hozás nyelvtani transzformációja	
$\Phi_{ m 3NF}$	A 3-as normálformára hozás nyelvtani transzformációja	
front(t)	a t szintaxisfa leveleinek balról jobbra való összeolvasása	
gy(t)	a t szintaxisfa gyökere	
$\alpha \xrightarrow[G, lb]{\beta} \beta$	$\alpha\text{-ból}$ legbal levezetéssel közvetlenül levezethető β	
$\alpha \xrightarrow{k} \beta$	$\alpha\text{-ból}$ legbal levezetéssel k lépésben levezethető β	
$\alpha \xrightarrow{k} \beta$ $\alpha \xrightarrow{*}_{G,\text{lb}} \beta$ $\alpha \xrightarrow{*}_{G,\text{lb}} \beta$	$\alpha\text{-ból}$ legbal levezetéssel közvetetten levezethető β	
$\alpha \xrightarrow[G,lj]{\beta} \beta$	$\alpha\text{-ból}$ legjobb levezetéssel közvetlenül levezethető β	
$\alpha \xrightarrow{k} \beta$	$\alpha\text{-ból}$ legjobb levezetéssel k lépésben levezethető β	
$\alpha \xrightarrow[G,lj]{*} \beta$	$\alpha\text{-ból}$ legjobb levezetéssel közvetlenül közvetetten levezethető β	
$\mathcal{L}_{\mathrm{LL}(k)}$	$\mathrm{LL}(k)$ nyelv tanok által generált nyelvek nyelvosztálya	
$\mathcal{L}_{\mathrm{LR}(k)}$	$\mathrm{LR}(k)$ nyelv tanok által generált nyelvek nyelvosztálya	
$\mathcal{L}_{ ext{1DV}}$	Determinisztikus 1-vermek által elfogadott nyelvek nyelvosztálya	

Konvencionális szimbólumhasználatok

X,Y,\dots	ábécék
$t, x, y, z, a, b, c, \dots$	betűk
u, v, w, \dots	szavak
arepsilon	üres szó
L, L_1, \dots	nyelvek
\mathcal{L},\dots	nyelvosztályok
R, R_1, \dots	reguláris kifejezések
G,G_1,\ldots	nyelvtanok
$9, \dots$	nyelvtanosztályok
T	terminális ábécé
N	nyelvtani jelek (nemterminálisok) ábécéje
a,b,c,\dots	terminálisok
A, B, C, \dots	nemterminálisok
S	kezdőszimbólum (csak akkor, ha nincs más k.sz. külön megadva)
$\alpha, \beta, \gamma, \xi, \varrho, \sigma, \tau, \dots$	mondatformák
$\mathcal{A},\mathcal{A}_1,\dots$	véges determinisztikus vagy nemdeterminisztikus automaták
Q, A	automata állapothalmaza
$q, q_1, \ldots a, a_1, \ldots$	automata állapotai
F	automata végállapotainak halmaza
δ	automata állapotátmenet függvénye
$\mathcal{V},\mathcal{V}_1,\dots$	veremautomaták
Σ, Σ_1, \dots	veremábécék
σ, σ_1, \dots	veremábécé elemei
ϱ	reláció
Φ	nyelvtani transzformáció