AUTOMATY A GRAMATIKY

2

Pavel Surynek

Univerzita Karlova v Praze

Matematicko-fyzikální fakulta Katedra teoretické informatiky a matematické logiky

Důkaz Myhill-Nerodovy věty

- - máme KA A = (Q, X, δ, q_0, F) , že L(A) = L
 - pro u,v \in X* definujeme u \sim v, jestliže δ *(q₀, u) = δ *(q₀, v)
 - ~ je ekvivalence, tj. má smysl uvažovat o X*/_
 - Q je konečná $\Rightarrow X^*/_{x}$ je konečná
 - $\forall u,v,w \in X^* \text{ když } \delta^*(q_0,u) = \delta^*(q_0,v), \text{ pak } \delta^*(\delta^*(q_0,u),w) = \delta^*(\delta^*(q_0,v),w), \text{ tedy } \sim \text{je pravá}$ kongruence
 - □ L(A) = { w | w∈X* a $\delta^*(q_0, w) \in F$ } = $\bigcup_{f \in F} \{w | \delta^*(q_0, w) = f\}$
- $\Box \leftarrow$
 - máme pravou kongruenci ~
 - položíme $Q = X^*/_{x}$
 - $q_0 = [\lambda]_{\sim}$
 - pro x \in X a w \in X* položíme $\delta([w]_{\sim}, x) = [wx]_{\sim}$
 - pro u,v∈X* by mělo platit, že $\delta([u]_{\sim}, x) = \delta([v]_{\sim}, x)$, pokud u ~ v
 - ux ~ vx je vlastnost pravé kongruence, tedy [ux] = [vx]
 - F = třídy z X*/ tvořící L
 - $w \in L$, právě když $[w]_{\sim} \in F \Leftrightarrow \delta^*([\lambda]_{\sim}, w) = [w]_{\sim}$, což je, právě když $w \in L(A)$

Aplikace Myhill-Nerodovy věty

- Konstrukce konečného automatu
 - □ L = $\{w \mid w \in \{0,1\}^* \land (\exists k \in \mathbb{N}_0) |w|_1 = 3k+1\}$
 - definujeme u ~ v, jestliže $|u|_1$ mod 3 = $|v|_1$ mod 3
 - jedná se o pravou kongruenci
 - třídy [λ]_~, [1]_~, [11]_~
 - L = [1]_~
- Důkaz neregularity jazyka
 - $\square L = \{0^n 1^n \mid n \in \mathbb{N}_0\}$
 - předpokládejme, že L je regulární
 - máme pravou kongruenci ~ konečného indexu, nechť k je index
 - L je sjednocením některých jejích tříd
 - volme slova 0, 00, ..., 0^k, 0^{k+1}
 - existují i,j∈{1, ..., k+1}, i \neq j, že 0ⁱ ~ 0^j
 - přidáme 1ⁱ, z vlastnosti pravé kongruence je 0ⁱ1ⁱ ~ 0^j1ⁱ
 - 0ⁱ1ⁱ ∈L, ale 0^j1ⁱ ∉L, přitom 0ⁱ1ⁱ a 0^j1ⁱ jsou ve stejné ekvivalenční třídě

Pumping (iterační) lemma

Pumping lemma

Nechť L je regulární jazyk, pak existuje n∈N, že libovolné slovo z∈L takové, že|z|≥n, lze napsat ve tvaru z=u.v.w, kde|u.v|≤n, |v|≥1 a u.vⁱ.w∈L pro všechna i∈N₀.

Více logicky

■ Nechť L je regulární jazyk, pak existuje $n \in \mathbb{N}$, že $(\forall z \in L)[|z| \ge n \Rightarrow (\exists u,v,w \in X^*)(z = u.v.w \land |u.v| \le n \land |v| \ge 1 \land (\forall i \in \mathbb{N}_0)u.v^i.w \in L)].$

Automaty a gramatiky Pavel Surynek, 2015

Důkaz pumping lemmatu

- □ Je-li L regulární, pak existuje KA A, že L(A) = L
 - n = počet stavů automatu A
 - výpočet nad slovem z, kde |z|≥n, navštíví některý stav aspoň dvakrát, nechť první takový stav je p
 - při první návštěvě p byl přečten prefix u
 - $\delta^*(q_0, u) = p$
 - při druhé návštěvě p byl přečten prefix uv
 - $\delta^*(q_0, uv) = p$
 - |uv|≤n
 - byl uvažován první opakující se stav
 - |v|≥1
 - návrat do p se uskutečnil čtením aspoň jednoho písmena
 - $\delta^*(q_0, uvw) = f \in F$, pak $\delta^*(q_0, uw) = f a \delta^*(q_0, uv^iw) = f pro i = 2, 3, ...$

5 | Automaty a gramatiky Pavel Surynek, 2015

Použití pumping lemmatu

- Vyloučení, že daný jazyk L je regulární
 - dívejme se na pumping lemma jako na implikaci
 - regulární L ⇒ pro L platí pravá strana lemmatu
 - pro L neplatí pravá strana lemmatu ⇒ L není regulární
 - neplatí pravá pumping lemmatu
 - využijeme logické vyjádření, vytvoříme negaci
 - $\forall n \in \mathbb{N} (\exists z \in L)[|z| \ge n \land (\forall u, v, w \in X^*)((z = u.v.w \land |u.v| \le n \land |v| \ge 1) \Rightarrow$ $(\exists i \in \mathbb{N}_0)u.v^i.w \notin L)$].
- \Box L={0^k1^k | k ∈ N₀}
 - n (od nepřítele, tedy libovolné)
 - pro n vezmeme slovo $z = 0^n1^n$
 - ijistě $|0^n1^n|$ ≥n, pro libovolný rozklad splňující z = u.v.w \wedge |u.v|≤n \wedge |v|≥1 je v = 0^{j} pro $j \in \mathbb{N}$, $j \ge 1$
 - zvolme i = 2 a dostáváme, že u.v².w = 0^{n+j}1ⁿ∉L
- Jedná se nutnou podmínku, nikoli postačující (lemma je implikace).
 - □ L = $\{w \in \{a,b,c\}^* \mid w = a^+b^ic^i \lor w = b^ic^j \}$ není regulární, pravá strana platí

Operace s regulárními jazyky (1)

- Nechť K a L jsou regulární jazyky nad abecedou X
 - \square K = L(A), kde A = (Q_A,X, δ _A,q_{A0},F_A)
 - \square L = L(B), kde B = (Q_B,X, δ _B,q_{B0},F_B)
- Doplněk regulárního jazyka je regulární
 - tedy –K je regulární
 - -K = L(A'), kde A' = $(Q_A, X, \delta_A, q_{AO}, Q_A F_A)$
- Sjednocení regulárních jazyků je regulární jazyk
 - tedy KUL je regulární jazyk
 - KUL = L(C), kde \mathbb{C} = ($\mathbb{Q}_A \times \mathbb{Q}_B$, X, δ_C , [\mathbb{Q}_{A0} , \mathbb{Q}_{B0}], $\mathbb{Q}_A \times \mathbb{Q}_B$ $\mathbb{Q}_A \times \mathbb{Q}_B$
 - konečné sjednocení regulárních jazyků je regulární jazyk
 - tedy $\bigcup_{i=1}^n L_i$ je regulární, pro n $\in \mathbb{N}$ a L_i regulární pro i=1,2,...,n
 - indukcí dle počtu jazyků ve sjednocení

Operace s regulárními jazyky (2)

- Průnik regulárních jazyků je regulární jazyk
 - tedy K∩L je regulární jazyk
 - K∩L = L(D), kde D = $(Q_A \times Q_B, X, \delta_C, [q_{AO}, q_{BO}], F_A \times F_B)$
 - konečný průnik regulárních jazyků je regulární jazyk
 - tedy $\bigcap_{i=1}^n L_i$ je regulární, pro n∈N a L_i regulární pro i=1,2,...,n
 - indukcí dle počtu jazyků v průniku
- Další operace
 - rozdíl regulárních jazyků (chápáno množinově) je regulární
 - tedy K L = K∩(-L) je regulární
 - spočetné sjednocení regulárních jazyků nemusí být regulární
 - pro libovolný jazyk L = $\bigcup_{w \in I} \{w\}$, přičemž množina všech slov je spočetná
 - spočetný průnik regulárních jazyků nemusí být regulární
 - \blacksquare - $\bigcap_{i \in I} (-L_i) = \bigcup_{i \in I} L_i$ pro spočetnou množinu I
- Konečný jazyk je regulární

Konečné automaty a jednoznačnost

- Je regulárním jazykem L konečný automat, který jej přijímá, určen jednoznačně?
 - konečné automaty A a B jsou ekvivalentní, jestliže L(A)=L(B)
- Automatový homomorfismus
 - \square mějme konečné automaty A = $(Q_{\Delta}, X, \delta_{\Delta}, q_{\Delta \Omega}, F_{\Delta})$ a B = $(Q_R, X, \delta_R, q_{RO}, F_R)$
 - zobrazení h: $Q_{\Delta} \rightarrow Q_{R}$ se nazývá automatový homomorfismus, jestliže:
 - $\bullet (i) \quad \frac{h(q_{A0}) = q_{B0}}{h(q_{A0})} = q_{B0}$
 - (ii) $h(\overline{\delta}_A(q,x)) = \delta_B(h(q),x)$ pro $q \in Q$ a $x \in X$
 - (iii) $q \in F_A \Leftrightarrow h(q) \in F_B \text{ pro } q \in Q$
 - homomorfismus, který je prostý a na, nazýváme izomorfismem
 - Když existuje homomorfismus konečných automatů A a B, pak jsou A a B ekvivalentní.

Redukce konečných automatů (1)

Dosažitelné stavy

- □ stav q∈Q v konečném automatu A = (Q,X, δ ,q₀,F) je dosažitelný, jestliže existuje w∈X*, že δ *(q₀,w)=q
- □ nechť Q^d je množina dosažitelných stavů v automatu A, pak pro automat $A^d = (Q^d, X, \delta^d, q_0, F^d)$, kde δ^d je zúžení δ na

 Q^d a $F^d = Q^d \cap F$, platí $L(A^d) = L(A)$

- A a A^d jsou ekvivalentní
- Hledání dosažitelných stavů
 - do hloubky (DFS)
 - do šířky (BFS)

```
\begin{array}{ll} \textbf{DFS (BFS)} \\ Q^d \leftarrow \emptyset & // \operatorname{množina} \\ S \leftarrow [q_0] & // \operatorname{sekvence} \\ & \operatorname{z\'{a}sobn\'{i}k} (\operatorname{fronta}) \\ \textbf{while } S \neq [] \ \textbf{do} \\ & \textbf{let } S = q.S' \ (\textbf{let } S = S'.q) \\ & \textbf{for each } x \in X \ \textbf{do} \\ & \textbf{if } \delta(q,x) \not \in S' \cup Q^d \ \textbf{then} \\ & S' \leftarrow \delta(q,x).S' \\ & Q^d \leftarrow Q^d \cup \{\delta(q,x)\} \\ S \leftarrow S' \end{array}
```

Ekvivalence stavů (1)

- Uvažujme KA A = (Q,X,δ,q_0,F)
 - stavy p,q \in Q jsou **ekvivalentní**, jestliže $\forall w \in X^* \delta^*(p,w) \in F \Leftrightarrow \delta^*(q,w) \in F$
 - označení p~q
 - ekvivalence \approx nad \mathbb{Q} se nazývá **automatová kongruence**, jestliže $\forall p,q \in \mathbb{Q} \Rightarrow p \in F \Leftrightarrow q \in F \land \forall x \in X \delta(p,x) \approx \delta(q,x)$
 - platí, že stavová ekvivalence je automatovou kongruencí
- Konstrukce stavové ekvivalence
 - posloupnost ekvivalencí \sim_0 , \sim_1 , \sim_2 , ...
 - $\sim_i \forall w \in X^* \check{z}e |w| \le i je \delta^*(p,w) \in F \iff \delta^*(q,w) \in F$
 - induktivní konstrukce
 - $p\sim_0 q$ $p\in F \Leftrightarrow q\in F$
 - ověření zkonstruované ~; indukcí podle délky w
 - $p \sim_0 q$ $w = \lambda$ $\delta^*(p, \lambda) \in F \Leftrightarrow \delta^*(q, \lambda) \in F$
 - p~q, jestliže ∀i∈N je p~¡q

Ekvivalence stavů (2)

- □ **Vlastnosti** posloupnosti ekvivalencí \sim_0 , \sim_1 , \sim_2 , ...
 - \Box (i) \sim_{i+1} je zjemněním \sim_i
 - \Box (ii) $\sim_{i+1} = \sim_i$, pak $\forall j > i \sim_j = \sim_i$
 - (iii) když |Q|=n, pak ∃j≤n-1, že ~_i =~_{i+1}
 - $(iv) \sim_{i+1} = \sim_i$, pak $\sim_i = \sim$

Důkaz:

- □ (ii) $p \sim_{i+1} q$, jestliže $p \sim_i q \land \forall x \in X \delta(p,x) \sim_i \delta(q,x)$
 - $p\sim_{i+2}q$, jestliže $p\sim_{i+1}q$ ∧ $\forall x\in X$ $\delta(p,x)\sim_{i+1}\delta(q,x)$
 - $p\sim_{i+2}q$, jestliže $p\sim_i q \land \forall x \in X \delta(p,x) \sim_i \delta(q,x)$, tedy $p\sim_{i+2}q \Leftrightarrow p\sim_{i+1}q$
- (iii) na množině velikosti n lze provést nejvýše n-1 po sobě jdoucích netriviálních zjemnění ekvivalence
 - po triviálním zjemnění, tj. když $\sim_{_{i+1}} = \sim_{_i}$ další netriviální zjemnění podle (ii) nemůže následovat
- □ (iv) $p \sim q$, jestliže $\forall k \in \mathbb{N}$ je $p \sim_k q$
 - $\forall k \in \mathbb{N}$ je $p \sim_k q \Leftrightarrow p \sim_k q$ pro k=0,1,...,i a $p \sim_k q$ pro k=i+1, i+2, ...
 - $\sim_k = \sim_i$ pro k=i+1, i+2, ..., tedy p \sim q \Leftrightarrow p \sim_k q pro k=0,1,...,i; z (i) dostáváme p \sim q \Leftrightarrow p \sim_k q

Redukce konečných automatů (2)

- □ KA A = (Q,X,δ,q_0,F) a ≈ automatová kongruence
 - $\square A/_{\approx} = (Q/_{\approx}, X, \delta_{\approx}, [q_0]_{\approx}, F_{\approx})$ je **podílový automat**, kde
 - $\delta_{\alpha}([q]_{\alpha},x)=[\delta(q,x)]_{\alpha}$ pro $q\in Q$ a $x\in X$
 - $\blacksquare F_{\sim} = \{ [f]_{\sim} | f \in F \}$
 - \square $\delta_{\mathbb{R}}$ je korektně definovaná
- □ Podílový automat A/₂ je ekvivalentní s A
 - □ definujeme homomorfismus h: $Q \rightarrow Q/_{z}$, že h(q)=[q]_z
 - $= h(q_0) = [q_0]_{\approx}$
 - $h(\delta(q,x))=[\delta(q,x)]_x=\delta_x([q]_x,x)=\delta_x(h(q),x)$ pro q∈Q a x∈X
 - $f \in F \Leftrightarrow [f]_{\sim} \in F_{\sim} \Leftrightarrow h(f) \in F_{\sim}$

Redukce konečných automatů (3)

- □ Volíme-li <u>stavovou ekvivalenci</u> ~ jako automatovou kongruenci
 - □ pak v podílovém automatu A/ nejsou žádné dva stavy ekvivalentní.
- Konečný automat je redukovaný, jestliže jsou všechny jeho stavy dosažitelné a žádné dva stavy nejsou ekvivalentní.
- Konečný automat B je reduktem konečného automatu A, jestliže B je redukovaný a L(A)=L(B).
 - Konstrukce reduktu:
 - odstranit nedosažitelné stavy
 - najít stavovou ekvivalenci ~
 - sestrojit podílový automat A/~