Lecture 8: Hypothesis Testing for a Proportion STAT 310, Spring 2023

Hypothesis Test for a Proportion

Key components:

Null hypothesis:

$$H_0: p = p_0$$

Alternative hypothesis (use one of these):

 $H_A: p > p_0$ (one-sided, upper-tail)

 $H_A: p < p_0$ (one-sided, lower-tail)

 $H_A: p \neq p_0$ (two-sided)

Test statistic:

$$z = \frac{\text{observed value} - \text{null value}}{\text{SE}} = \frac{\hat{p} - p_0}{\sqrt{\frac{p_0(1-p_0)}{n}}}$$

A rule to either reject or not reject H₀

Hypothesis Testing Concept

The approach to hypothesis testing is as follows:

- 1. Assume that H_0 is true. H_0 usually represents a skeptical position, or a perspective of no difference or change in the parameter of interest.
- 2. Reject H_0 only if the data provide strong evidence in support of the alternative claim in H_A .

Hypothesis Testing Concept

The hypothesis testing framework can be found in the US court system, where innocence is assumed until proven guilty.¹

 H_0 : The defendant is innocent.

 H_A : The defendant is guilty.

The jurors consider whether the evidence is convincing enough to convict the defendant (reject H_0).

https://commons.wikimedia.org/wiki/File:Trial_of_Edward_Ellis_(courtroom_sketch).jpg

p-value

A p-value is the probability of obtaining a test statistic as extreme, or more extreme (in the direction of the alternative), than the observed value of the test statistic, assuming that H_0 is true.

p-value

Decision rule using the *p*-value:

- ▶ If *p*-value $< \alpha$, then reject H_0 .
- ▶ If p-value > α , then do not reject H_0 .

 α is called the **signficance level**. The most common value for $\alpha=0.05$, but other values are also sometimes used such as $\alpha=0.01$.

p-value

- When the *p*-value $< \alpha$ (we reject H_0) the result is said to be **statistically significant**.
- In other words, a result is statistically significant when it is unlikely to of occurred by random chance, assuming that the null hypothesis is true.
- ▶ The smaller the p-value, the stronger the data favor H_A over H_0 .

Computing *p*-values

One-sided test (upper-tail):

 $H_0: p = p_0$ $H_A: p > p_0$

Test statistic:

$$z = \frac{\hat{p} - p_0}{\sqrt{\frac{p_0(1-p_0)}{n}}}$$

p-value = 1 - pnorm(z)

Reject H_0 if p-value $< \alpha$

Computing *p*-values

One-sided test (lower-tail):

 $H_0: p = p_0$ $H_A: p < p_0$

Test statistic:

$$z = \frac{\hat{p} - p_0}{\sqrt{\frac{p_0(1-p_0)}{n}}}$$

p-value = pnorm(z)

Reject H_0 if p-value $< \alpha$

Computing *p*-values

Two-sided test:

 $H_0: p = p_0$

 $H_A: p \neq p_0$

Test statistic:

$$z = \frac{\hat{p} - p_0}{\sqrt{\frac{p_0(1-p_0)}{n}}}$$

p-value = 2*pnorm(-abs(z))

Reject H_0 if p-value $< \alpha$

Conditions

A hypothesis test for a proportion is valid if the following conditions are satisfied:

- The data were collected using simple random sampling
- ▶ $np_0 \ge 10$ and $n(1-p_0) \ge 10$

These conditions ensure that the Central Limit Theorem holds. So, assuming that H_0 is true, the sampling distribution for \hat{p} is approximately normal with mean p_0 and standard error $\sqrt{p_0(1-p_0)/n}$.

Example

A simple random sample of 1,028 US adults in March 2013 found that 56% support nuclear arms reduction. Does this provide convincing evidence that a majority of Americans support nuclear arms reduction?

(a) Write the null and alternative hypothesis for a one-sided test.

 $H_0: p = 0.5$ $H_A: p > 0.5$

- (b) Check the conditions for the hypothesis test.
 - ▶ Data come from a random sample.

►
$$np_0 = 1028(0.5) = 514 \ge 10$$

 $n(1 - p_0) = 1028(1 - 0.5) = 514 \ge 10$

Yes, the condition are satisfied.

(c) Calculate the test statistic.

$$z = \frac{\hat{p} - p_0}{\sqrt{\frac{p_0(1 - p_0)}{n}}} = \frac{0.56 - 0.5}{\sqrt{\frac{0.5(1 - 0.5)}{1028}}} = \frac{0.06}{\sqrt{\frac{0.25}{1028}}} = 3.85$$

R command: 0.06 / sqrt(0.25 / 1028)

scientific notation in R:
$$5.9e-05 = 5.9 \times 10^{-5} = 0.000059$$

A simple random sample of 1,028 US adults in March 2013 found that 56% support nuclear arms reduction. Does this provide convincing evidence that a majority of Americans support nuclear arms reduction?

(d) Calculate the *p*-value and make a decision using $\alpha = 0.05$ significance level.

(e) What is the conclusion of the test in the context of the data? The data provide strong evidence that a majority of Americans support nuclear arms reduction.

Decision Errors

Decision

		Do not reject H_0	Reject <i>H</i> ₀
Truth	H ₀ true	/	type I error
	H_A true	type 2 error	/

The significance level of the test, α , is the probability of a type I error (probability of rejecting H_0 when H_0 is true).

Decision Errors

In a US court, the defendant is either innocent (H_0) or guilty (H_A) . What does a type I error represent in this context? What does a type II error represent?

 H_0 : The defendant is innocent.

 H_A : The defendant is guilty.

Type 1 error: The defendant is actually innocent, but the jury decides guilty.

Type 2 error: The defendant is actually guilty, but the jury decides innocent.