【知识点五】

5.1 (华科 2015) 🤅	粘性流体在一均匀的水平	圆管中做稳定的分层流	动时,流量为 Q ,今将其管径减小一	半,管内
两端压强差增加一	倍,其他条件不变,则其	其流量为:()		
$A.\frac{1}{2}Q$	$B.\frac{1}{4}Q$	C. $\frac{1}{8}Q$	D. $\frac{1}{16}Q$	
5.2 (华科 2014) —	盛有水的大容器,水面离	哥底距离为 <i>H</i> ,容器的原	$rac{1}{8}$ 部侧面有一面积为 A 的小孔,水从小 R	1流出,
则开始时的流量为	(设重力加速度为g): (
A.2 <i>AH</i>	$\mathrm{B.}A\sqrt{2gH}$	$C.\sqrt{2AgH}$	D.2AgH	
5.3 (华科 2013) 3	理想流体在水平管中做稳	急定流动时,水平管截面	积 S 、流体流速 v 和压强 p 的关系是:	()
A.S大处、 v 小、 p 小		B. S 大处、 ν 大、 p 大		
C.S小处、v大、p小		D.S 小处、v小、p小		
5.4 (华科 2012)办	、从一截面为 10cm²的水	平管 4,流入两根并联的	为水平支管 B 和 C ,它们的截面积分别	为 8cm²
和 6cm ² , 如果水在	E管 A 中的流速为 1.00 m/	S_s ,在管 C 中的流速为 0	.50m/s,则水在管 B 中的流速为	_ <i>B、C</i> 两
管中的压强差为	o			
5.5 一根粗细不一样	羊的长水管,其粗细处的	截面积之比为 4:1,已知	口水管粗处水流速度为2 m/s,则水管系	 岸处的水
的流速为	0			
5.6 (武大习题) 水	在截面积不同的水平管中	口作定常流动,出口处的	截面积为管的最细处的三倍,若出口处	
为2 m/s, 已知水管	章外大气压为 100000Pa。	求:		
(1)水管最组	田的压强是多少?			
	田处开一个小孔,水会不	公运山		
(2) 石征取5	叫处力 一十分的 ,水云不	云机山水:		
5.7 (武大习题)在	E一封闭的水箱内,水面	上部的空气压强为0.92	3×10 ⁵ Pa,水箱外部的压强为1.0×1	$10^5 Pa$.
在水箱一侧,距水	面 1m 处有一小孔,求水	以从小孔流出的速率。		
5.8 (武大习题) 一	容器底部有一面积为0.5	0 <i>cm</i> ² 的小孔。若水以 <i>Q</i>	$\theta = 1.5 \times 10^{-4} \ m^3/s$ 的流量注入容器中,	问容器

中水面将保持在多大高度?

【知识点五参考答案】

5.1【正解】C

【解析】由泊肃叶公式
$$Q = \frac{\pi r^4 \Delta p}{8nL}$$
, $\left(\frac{r}{2}\right)^4 (2\Delta p) = \frac{1}{8} r^4 \Delta p$,选 C

5.2【正解】B

【解析】小孔处为稳定流动,取液面和小孔截面为流管,由连续性方程得:
$$S_{\imath k} v_{\imath k} = S_{\imath k} v_{\imath k}$$
 由伯努利方程得: $p_{\imath k} + \frac{1}{2} \rho_{\imath k}^2 + \rho g h = p_{\imath k} + \frac{1}{2} \rho_{\imath k}^2$ 因为 $v_{\imath k} \gg v_{\imath k}$, $p_{\imath k} = p_{\imath k} = p_{0}$,令 $v_{\imath k} \rightarrow 0$ 得 $\rho g h = \frac{1}{2} \rho_{\imath k}^2$ 所以 $v_{\imath k} = \sqrt{2gh} \Rightarrow Q = A\sqrt{2gh}$ 。

5.3【正解】C

【解析】水平管中压强流速关系:
$$p_1 + \frac{1}{2}\rho v_1^2 = p_2 + \frac{1}{2}\rho v_2^2$$
, 再根据 $S_1 v_1 = S_2 v_2$ 可得答案为 C。

5.4【正解】 $\frac{7}{8}$ m/s 257.8Pa

【解析】由连续性方程:
$$S_A v_A = S_B v_B + S_C v_C \Rightarrow v_B = \frac{7}{8} m/s$$

由伯努利方程: $p_C - p_B = \frac{1}{2} \rho v_B^2 - \frac{1}{2} \rho v_C^2 = 257.8 \ Pa$

5.5【正解】8 m/s

【解析】由连续性方程:
$$\frac{v_{\text{\tiny sh}}}{v_{\text{\tiny H}}} = \frac{S_{\text{\tiny H}}}{S_{\text{\tiny sh}}} = 4 \Rightarrow v_{\text{\tiny sh}} = 4v_{\text{\tiny H}} \Rightarrow v_{\text{\tiny sh}} = 8 \; m/s$$

5.6【解析】(1) 由连续性方程: $\frac{v_{\text{H}}}{v_{\text{H}}} = \frac{S_{\text{H}}}{S_{\text{H}}} = 3 \Rightarrow v_{\text{H}} = 3v_{\text{H}} \Rightarrow v_{\text{H}} = 6 \text{ m/s}$

(2) 根据伯努利方程:
$$100000 + \frac{1}{2} \times 1.0 \times 10^3 \times 2^2 = p + \frac{1}{2} \times 1.0 \times 10^3 \times 6^2$$

 $\Rightarrow p = 84000 \ Pa < 100000 \ Pa$,所以不会流出。

5.7【解析】取 A 为水面,B 为小孔处。根据伯努利方程: $p_A + \frac{1}{2}\rho v_A^2 + \rho g h_A = p_B + \frac{1}{2}\rho v_B^2 + \rho g h_B$ 其中, v_A 可以近似为 0, h_B 也可近似为 0,则 $p_A + \rho g h_A = p_B + \frac{1}{2}\rho v_B^2$

解得:
$$v_B = 2.14 \text{ m/s}$$

5.8【解析】取 A 为水面一点,B 为小孔处。当水面不变化时候, $Sv_B = Q$

根据伯努利方程:
$$p_A + \frac{1}{2}\rho v_A^2 + \rho g h_A = p_B + \frac{1}{2}\rho v_B^2 + \rho g h_B$$

其中, v_A 可以近似为 0, h_B 也可近似为 0, $p_A = p_B = p_0$,则 $\rho g h_A = \frac{1}{2}\rho v_B^2$ 解得: $h_A = 0.45m$