UNIVERSITETET I OSLO

Det matematisk-naturvitenskapelige fakultet

Eksamen i kurs: FYS1120 Elektromagnetisme.

Eksamensdag: Fredag 4. desember, 2009.

Tid for eksamen: 14:30 - 17:30 Oppgavesettet er på: 2 sider.

Vedlegg: Ingen.

Tillatte hjelpemidler: Angell (eller Øgrim) og Lian: Fysiske størrelser og enheter

Rottman: Matematisk formelsamling

Et A4-ark med egne notater

Kontrollér at oppgavesettet er komplett før du begynner å besvare spørsmålene.

Oppgave 1

To elektriske ladninger, $Q_1=0.4\,\mu{\rm C}$ og $Q_2=1.6\,\mu{\rm C}$ befinner seg på x-aksen i henholdsvis $x=0.4\,{\rm cm}$ og $x=15.0\,{\rm cm}$.

- a) Skissér de elektriske feltlinjene omkring disse to ladningene.
- b) Vis at feltet er null i et punkt P på x-aksen og finn avstanden til dette punktet fra origo.
- c) En ladning $Q_3 = 2.0 \,\mu\text{C}$ bringes inn til punktet P fra det uendelige. Hvor stort arbeid (målt i J) må da utføres?

Oppgave 2

En rett ledning med lengde L fører en elektrisk strøm I. Den går på tvers av et magnetfelt B.

- a) Forklar hvordan man kan vise at kraften på ledningen er gitt som F = ILB.
- b) En lengre ledning med samme strøm blir bøyd til som i Fig.1.

Figure 1: Midtre del er en halvsirkel.

Den ligger i et plan og magnetfeltet står normalt på planet. Beregn nå kraften på hele ledningen ved å integrere bidragene fra hver del. Har du regnet riktig, blir svaret F=4ILB.

c) Hvordan kunne du ha funnet dette enkle svaret mer direkte?

Oppgave 3

En elektrisk krets som vist i Fig.2 inneholder to spenningskilder som er henholdsvis $\mathcal{E}_1 = 12.0\,\mathrm{V}$ og $\mathcal{E}_2 = 2.0\,\mathrm{V}$ samt tre motstander, alle av samme størrelse $R = 2.0\,\Omega$.

- a) Bruk Kirchhoff's lover til å beregne de tre strømmene I_1 , I_2 og I_3 angitt på figuren.
- b) Beregn effekten (målt i W) som den kraftigste spenningskilden \mathcal{E}_1 produserer.
- c) Sammenlign denne med effekttapet i de tre motstandene og forklar hvorfor disse to effektene ikke er like store.

Figure 2: Strømmenes retninger er antatt.

Oppgave 4

En rett koaxialkabel består av en kompakt, sylindrisk kjerne med radius $a=1.2\,\mathrm{mm}$ og som fører en uniformt fordelt strøm $I=2.7\,\mathrm{A}$. Den er omgitt av en kosentrisk, ledende kappe med indre radius $b=3.5\,\mathrm{mm}$.

- a) Beregn magnetfeltet B i den sentrale lederen i avstand r < a fra sentrum av kabelen.
- b) Gjenta beregningen av magnetfeltet i det åpne mellomrommet a < r < b og vis at du får samme svar som i forrige spørsmål for r = a.
- c) Beregn herav den totale magnetiske feltenergi (målt i J) i dette mellomrommet når kabelen har en lengde på $L=10\,\mathrm{m}$.