Simulador de Microprocesadores

Un fabricante de microprocesadores le solicita a Ud. que haga una simulador en java de uno de sus modelos de microprocesador, el cual consta de:

- 4096 bytes de memoria de programa y 1024 bytes de memoria de datos.
- Dos acumuladores de 1 byte cada uno identificados como A y B.
- Un program counter (PC) que indica la dirección en la memoria de programa de la próxima instrucción a ejecutar, se incrementa cada vez que el microprocesador ejecuta una instrucción.

El microprocesador ejecuta instrucciones de uno, dos o tres bytes, el primero siempre es el código de instrucción, en el caso de instrucciones de dos bytes el segundo es un dato y en el caso de instrucciones de tres bytes el segundo y tercer byte denotan la parte alta y la parte baja respectivamente de una dirección de memoria.

Instrucciones de 1 byte:

Cód	Mnemotécnico	Bytes	Descripción
00	NOP	1	No operación , el programa sigue en la próxima instrucción.
01	ADD	1	Suma los valores de los dos acumuladores
02	SUB	1	Resta el valor del acumulador A al valor del acumulador B
03	MUL	1	Multiplica los valores de los dos acumuladores
04	DIV	1	Divide los valores de los dos acumuladores
05	SWAP	1	Intercambia los valores de los acumuladores
07	LODV val	2	Carga en el acumulador A el valor val
80	LOD addr	3	Carga el acumulador A con el contenido de la memoria de datos en la posicion <i>addr</i>
09	STR addr	3	Guarda el valor del acumulador A en la posicion <i>addr</i> de la memoria de datos
13	HALT	1	Detiene la ejecución del programa

La memoria de programa y la de datos son espacios separados , la de programa tiene un rango de direcciones validas desde el 0 al 4095 , y la de datos del 0 al 1023.

Las operaciones aritméticas ADD, SUB, MUL y DIV siempre tienen como resultado un valor de 2 bytes, el menos significativo queda en el acumulador A y el más significativo en el B.

Si se produce un error durante la ejecución de un programa , ya sea porque se indicó una dirección de memoria fuera de rango, o se produjo un error por división por 0, el programa se detiene y el PC queda con la dirección de la instrucción que causo el error.

Para simplificar la construcción de programas, la segunda versión del procesador agregó algunas instrucciones de más alto nivel:

Cód	Mnemotecnico	Bytes	Descripción
14	WHNZ	1	Ejecuta un conjunto de instrucciones mientras el valor del
			acumulador A sea distinto de cero.
15	IFNZ	1	Ejecuta un conjunto de instrucciones si el valor del
			acumulador A sea distinto de cero.
16	END	1	Indica el fin de un conjunto de instrucciones asociado a un
			comando WHNZ o IFNZ.

En primera instancia, no se permite el uso de la instrucción HALT dentro de un WHNZ o IFNZ.