Elementi di teoria della Computazione (Prof.ssa De Felice) Anno Acc. 2016-2017

Prova scritta - 5 luglio 2017

Nome e Cognome, email:

Matricola:

Firma:

Spazio riservato alla correzione: non scrivere in questa tabella.

1	2	3	4	5	6	Tot.	-	7
							SI	NO

Leggere le tracce con attenzione!

Giustificare le risposte, risposte non giustificate non saranno valutate.

La domanda n.7 non concorre al raggiungimento della sufficienza, ma solo alla determinazione del voto finale.

È vietato copiare, collaborare o comunicare con altri studenti.

È vietato l'utilizzo di libri, appunti o lucidi.

I risultati della prova scritta e le informazioni per la conclusione dell'esame saranno pubblicati sulla piattaforma e-learning domenica 9 luglio.

1. (15 punti)

È noto che per ogni automa finito non deterministico \mathcal{A} esiste un automa finito deterministico \mathcal{B} equivalente ad \mathcal{A} , cioè tale che $L(\mathcal{A}) = L(\mathcal{B})$. Ripetere i passi della dimostrazione di tale teorema utilizzando l'automa finito non deterministico $\mathcal{A} = (Q, \Sigma, \delta, 1, F)$, dove $Q = \{1, 2, 3\}$, $\Sigma = \{a, b\}$, $F = \{1\}$ e la cui funzione di transizione δ è definita dalla tabella seguente.

	a	b	ϵ
1	Ø	2	3
2	$\{2, 3\}$	3	Ø
3	1	Ø	Ø

Occorre specificare \mathcal{B} e spiegare come si ottiene. Fornire una spiegazione intuitiva dell'uguaglianza $L(\mathcal{A}) = L(\mathcal{B})$.

2. (15 punti)

Sia Σ un alfabeto. Dimostrare o confutare le seguenti affermazioni.

- (i) Per ogni linguaggio regolare $L \subseteq \Sigma^*$, per ogni $y \in \Sigma^*$, il linguaggio $Y = \{wy \mid w \in L\}$ è regolare.
- (ii) Per ogni linguaggio regolare $L \subseteq \Sigma^*$, il linguaggio $X = \{w^2 \mid w \in L\}$ è regolare.

3. (15 punti)

Si fornisca la definizione formale di riducibilità mediante funzione. Si dimostri che se L è un linguaggio Turing riconoscibile ed $L \leq_m \overline{L}$, allora L è decidibile. Si ricorda che \overline{L} denota il complemento di L.

4. (15 punti)

Preso un linguaggio L <u>non</u> Turing-riconoscibile, il suo complemento può essere decidibile o Turing-riconoscibile o nessuno dei due? Si motivi la risposta.

Prova scritta 2

5. (15 punti)

Un sottoinsieme D di vertici di un grafo non orientato G = (V, E) è un insieme dominante per G se ogni vertice in $V \setminus D$ è adiacente a un vertice in D (cioè i due vertici sono connessi mediante un arco in E). Si consideri il seguente problema di decisione:

Dati un grafo non orientato G = (V, E) e un intero positivo k, esiste un insieme dominante D di cardinalità k?

Si definisca il linguaggio DOMINATING-SET associato a tale problema e si dimostri che DOMINATING-SET è in NP.

6. (15 punti)

Si consideri il linguaggio $DOMINATING\text{-}SET \in NP$ del precedente esercizio. Supponiamo che $P \neq NP$ ma che non sia noto se DOMINATING-SET è NP-completo. Per ciascuna delle affermazioni seguenti dire se è certamente vera o è certamente falsa o non si sa. Motivare la risposta.

- (a) Esiste un algoritmo che decide DOMINATING-SET.
- (b) Esiste un algoritmo polinomiale che decide DOMINATING-SET.
- (c) $DOMINATING\text{-}SET \leq_P 3\text{-}SAT$.
- (d) $3-SAT \leq_P DOMINATING-SET$.
- 7. Si dimostri che il linguaggio $L = \{a^n b^j \mid n, j \ge 0 \text{ e } n j = 2\}$ non è regolare.