with $\lambda \in \mathbb{R}$. We choose $(1, x, x^2, x^3, x^4)$ as a basis of E and $(1, x, x^2, x^3)$ as a basis of F. Then the 4×5 matrix D associated with d is obtained by expressing the derivative dx^i of each basis vector x^i for i = 0, 1, 2, 3, 4 over the basis $(1, x, x^2, x^3)$. We find

$$D = \begin{pmatrix} 0 & 1 & 0 & 0 & 0 \\ 0 & 0 & 2 & 0 & 0 \\ 0 & 0 & 0 & 3 & 0 \\ 0 & 0 & 0 & 0 & 4 \end{pmatrix}.$$

If P denotes the polynomial

$$P = 3x^4 - 5x^3 + x^2 - 7x + 5,$$

we have

$$dP = 12x^3 - 15x^2 + 2x - 7.$$

The polynomial P is represented by the vector (5, -7, 1, -5, 3), the polynomial dP is represented by the vector (-7, 2, -15, 12), and we have

$$\begin{pmatrix} 0 & 1 & 0 & 0 & 0 \\ 0 & 0 & 2 & 0 & 0 \\ 0 & 0 & 0 & 3 & 0 \\ 0 & 0 & 0 & 0 & 4 \end{pmatrix} \begin{pmatrix} 5 \\ -7 \\ 1 \\ -5 \\ 3 \end{pmatrix} = \begin{pmatrix} -7 \\ 2 \\ -15 \\ 12 \end{pmatrix},$$

as expected! The kernel (nullspace) of d consists of the polynomials of degree 0, that is, the constant polynomials. Therefore $\dim(\operatorname{Ker} d) = 1$, and from

$$\dim(E) = \dim(\operatorname{Ker} d) + \dim(\operatorname{Im} d)$$

(see Theorem 6.16), we get $\dim(\operatorname{Im} d) = 4$ (since $\dim(E) = 5$).

For fun, let us figure out the linear map from the vector space $\mathbb{R}[X]_3$ to the vector space $\mathbb{R}[X]_4$ given by integration (finding the primitive, or anti-derivative) of x^i , for i = 0, 1, 2, 3). The 5×4 matrix S representing \int with respect to the same bases as before is

$$S = \begin{pmatrix} 0 & 0 & 0 & 0 \\ 1 & 0 & 0 & 0 \\ 0 & 1/2 & 0 & 0 \\ 0 & 0 & 1/3 & 0 \\ 0 & 0 & 0 & 1/4 \end{pmatrix}.$$

We verify that $DS = I_4$,

$$\begin{pmatrix} 0 & 1 & 0 & 0 & 0 \\ 0 & 0 & 2 & 0 & 0 \\ 0 & 0 & 0 & 3 & 0 \\ 0 & 0 & 0 & 0 & 4 \end{pmatrix} \begin{pmatrix} 0 & 0 & 0 & 0 \\ 1 & 0 & 0 & 0 \\ 0 & 1/2 & 0 & 0 \\ 0 & 0 & 1/3 & 0 \\ 0 & 0 & 0 & 1/4 \end{pmatrix} = \begin{pmatrix} 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \end{pmatrix}.$$