$$P_{out} = 0.5 \left[1 - \Phi \left(\sqrt{\frac{E_{9}}{2N_{0}}} \right) \right]$$
 (2.33)

Таким образом, вероятность ошибки $P_{O\!I\!I\!I}$ тем меньше, чем больше энергия $E_{_{2}}$ разностного сигнала.

$$E_{3} = \int_{0}^{T} [S_{1}(t) - S_{2}(t)]^{2} dt = \int_{0}^{T} S_{1}^{2}(t) dt + \int_{0}^{T} S_{2}^{2}(t) dt - 2 \int_{0}^{T} S_{1}(t) S_{2}(t) dt =$$

$$= E_{1} + E_{2} - 2 \int_{0}^{T} S_{1}(t) S_{2}(t) dt.$$

Энергия $E_{_9}$ тем больше, чем больше суммарная энергия двух сигналов $S_1(t)$ и $S_2(t)$ $E_1 + E_2$ и чем меньше корреляция между ними $\int\limits_0^T S_1(t) S_2(t) dt$.

Если $E_1 = E_2 = E$, $r_s = \frac{1}{E} \int_0^T S_1(t) S_2(t) dt$ - коэффициент взаимной корреляции между $S_1(t)$ и $S_2(t)$, то $E_2 = 2E - 2r_s E = 2E(1-r_s)$ и

$$P_{out} = 0.5 \left[1 - \Phi \left(\sqrt{\frac{E(1 - r_s)}{N_o}} \right) \right]$$
 (2.34)

Если $r_s=-1$, тогда $S_1(t)=-S_2(t)$ - противоположные сигналы, $P_{O\!I\!I\!I}$ минимальна; если $r_s=1$, тогда $S_1(t)=S_2(t)$, $P_{O\!I\!I\!I}=0.5$ - сигналы не различимы; если $r_s=0$, тогда сигналы ортогональны.

Формулы (2.33), (2.34) дают выражения для потенциальной помехоустойчивости. При заданной интенсивности помехи и энергии сигналов она зависит от типа модуляции.

2.2.6. <u>Потенциальная помехоустойчивость ДАМ, ДФМ, ДЧМ, ДОФМ</u> <u>сигналов.</u>

1. Двоичная амплитудная модуляция (ДАМ):

«1» передается сигналом $S_{l}(t) = A\cos(\omega t)$, «0» передается сигналом $S_{2}(t) = 0$, $0 \le t \le T$.

 E_2 =0; E_1 =E, тогда по формуле (2.33) получим выражение для потенциальной помехоустойчивости: