Hope Artificial Intelligence

Assignment-Regression Algorithm

Problem Statement or Requirement:

A client's requirement is, he wants to predict the insurance charges based on the several parameters. The Client has provided the dataset of the same.

As a data scientist, you must develop a model which will predict the insurance charges.

1.) Identify your problem statement:

Ans:

Problem Statement:

Selecting the Domain Selection -> Machine Learning -> Supervised Learning->Regression

2.) Tell basic info about the dataset (Total number of rows, columns)

Ans:

Basic Info about the dataset:

Total number of rows: 1338
Total number of columns: 6

Basic info about the we need to predict the insurance charges

3.) Mention the pre-processing method if you're doing any (like converting) string to number – nominal data)

Ans:

Yes we need to convert string to number using one hot Encoding Method

- 4.) Develop a good model with r2_score. You can use any machine learning algorithm; you can create many models. Finally, you have to come up with final model.
- 5.) All the research values (r2_score of the models) should be documented. (You can make tabulation or screenshot of the results.)

Multiple Linear Regression

R2 Score Value: 0.7270899256752571

Support Vector Machine

S.No	Hyper	Linear R	Non	Non	Non
	Parameter	value	Linear	Linear	Linear
	(C Value)		RBF R	Poly R	Sigmoid
			Value	Value	R Value

1	C10	-0.012461 582644439 195	-0.118738 993704660 34	-0.108033 770961315 06	-0.1077923 3871909377
2	C100	0.5181800 407397958	-0.042342 969266469 63	0.0481885 156935720 76	0.04889805 767086575
3	C500	0.7138107 410620067	0.2267930 527759766	0.4784875 063175211	0.49664811 52104939

Decision Tree

S.No	Criterian	Max Features	Splitter	R Value
1	squared_error	None	best	0.5512147 657194636
2	friedman_mse	None	best	0.5379092 989055643
3	absolute_error	None	best	0.5527943 851542783
4	squared_error	None	random	0.5140450 245389471
5	friedman_mse	None	random	0.4200566 840707584 7
6	absolute_error	None	random	0.4611776 889956879

6.) Mention your final model, justify why u have chosen the same.

Final Model: Multiple Linear Model is the Final Model because the R Value is **0.7270899256752571**