Motivation To Eat

Homeostatic vs. Hedonic Drives

Neurobiology of Hunger

- Hunger is a homeostatic function driven by basic physiological needs
- Feeding is regulated by energy and fat storage expenditure
- Key brain regions: Hypothalamus (ARC, LH, vmH, PVN)
 - Function: control appetite and food intake (among other homeostatic needs)
 - Bottom-up regulation of eating

Homeostatic Hunger-Motivated Eating

Hormonal Regulation

Secretions of hunger
 vs. satiety signals
 keep the brain
 informed of the
 body's energy stores

Hunger Signals

 Stomach and intestine release ghrelin to stimulate hunger when stomach is empty and blood glucose is low

Satiety Signals

- Adipose tissue releases
 leptin to suppress
 hunger
- Stomach and intestine release cholecystokinin, peptide Y, and glucagon-like peptide 1
- Pancreas releases insulin

Neurobiology of Reward

- The Limbic System valuates emotionally valenced stimuli to exhibit and reinforce emotional responses in response to reward and punishment
- Key regions: NAc, VTA, amygdala, hippocampus (plus corticolimbic projections to the PFC)
- Receives input from ventromedial and lateral hypothalamus
- Top-down regulation of eating

Hedonic Reward-Motivated Eating

Reward Reinforcement

LH integrates reward-related input upon consumption of food and projects to the **VTA** to trigger dopamine release onto the **NAc**. reinforcing pleasure associated with eating food

Emotional Regulation

NAc forms synapses
 with amygdala and
 hippocampus,
 allowing one to feel
 good and strengthen
 the memory
 associated with
 eating food

Perceptual Salience

- Interoceptive cues
 associated with taste
 and satiation are
 integrated with
 emotional processes
- Insula links sensory
 cues associated with
 taste to the emotional
 and motivational
 response to eating
 food

Palatability and the Gustatory Pathway

- Palatability: experience of pleasure especially in the sense of taste
- Reciprocal connection between insula (primary taste cortex) and motivation/emotion systems
- When we're hungry, ghrelin also sends direct input to the VTA to boost rewarding characteristics of food and can override homeostatic drive to eat

Proposed Research Question(s)

In adults living in California, what factors modulate hunger-motivated and pleasure-motivated eating behaviors?

- ⇒ How might mood motivate hunger and pleasure associated with eating?
- ⇒ When does emotion override the homeostatic drive to eat? What foods may have a higher incentive value?

Proposed Study Procedure

Method: Survey

Target Population: Adults (18+) in California

Goal: Identify correlations between eating habits and individual homeostatic versus hedonic drive. Identify eating patterns and behaviors in the California population.

Survey Content

- Will assess:
 - Sample demographics
 - Mood questionnaire
 - Motivation for eating
 - Environmental factors that influence motivation to eat
 - Individual differences pertaining to motivation for eating & eating behaviors
- Example Questions:
 - On an average day how often do you consume a meal (open ended)?
 - What is your comfort food (open ended)?
 - On a scale of 1(Not Frequent) to 5 (Very Frequent) how often do you consume a meal after exercise?
 - How likely are you to consume [food] after a bad day on a scale of 1 (not likely) to 5 (very likely)?

Data Acquisition

- Survey will be administered through Google Forms
- Survey participants will be recruited through person to person interaction and online social media postings
- Data will be collected from adults in California over the age of 18

Data Analysis

- Data will be cleaned and analyzed using Python through Jupyter Notebook
- Data will be secondarily evaluated using IBM SPSS
- Statistical analysis and linear regressions will be used to draw inferences and promote discussion