

Cambridge International Examinations

Cambridge International Advanced Subsidiary Level

NAME			
CENTRE NUMBER		CANDIDATE NUMBER	
MATHEMATICS			9709/21
Paper 2 Pure Mathem	natics 2 (P2)	Oct	tober/November 2017
			1 hour 15 minutes
Candidates answer on	the Question Paper.		
Additional Materials:	List of Formulae (MF9)		

READ THESE INSTRUCTIONS FIRST

Write your Centre number, candidate number and name in the spaces at the top of this page.

Write in dark blue or black pen.

You may use an HB pencil for any diagrams or graphs.

Do not use staples, paper clips, glue or correction fluid.

DO NOT WRITE IN ANY BARCODES.

Answer all the questions.

Give non-exact numerical answers correct to 3 significant figures, or 1 decimal place in the case of angles in degrees, unless a different level of accuracy is specified in the question.

The use of an electronic calculator is expected, where appropriate.

You are reminded of the need for clear presentation in your answers.

At the end of the examination, fasten all your work securely together.

The number of marks is given in brackets [] at the end of each question or part question.

The total number of marks for this paper is 50.

International Examinations

••••••
•••••
 •••••
••••••
 •••••
 •••••
••••••
 •••••

2

3	It is	given	that the	variable	x is	such tha	t
---	-------	-------	----------	----------	------	----------	---

	$1.3^{2x} < 80$	and	3x - 1 > 3x - 10 .
Find the set of possible and b are correct to 3 signature is a signature of the set of possible and b are correct to 3 signature.			answer in the form $a < x < b$ where the constants a [7]
		•••••	
		•••••	
		•••••	
		•••••	
		•••••	
		•••••	
		•••••	
		•••••	
		•••••	
		•••••	

	Find $\int \frac{4 + \sin^2 \theta}{1 - \sin^2 \theta} d\theta.$	
		••••
		••••
		••••
	6 2	••••
(b)	Given that $\int_0^a \frac{2}{3x+1} dx = \ln 16$, find the value of the positive constant a.	••••
(b)	Given that $\int_0^a \frac{2}{3x+1} dx = \ln 16$, find the value of the positive constant a.	
(b)	Given that $\int_0^a \frac{2}{3x+1} dx = \ln 16$, find the value of the positive constant a.	
(b)		
(b)		

5	The	polyn	omial	p(x)	is	defined	by
---	-----	-------	-------	------	----	---------	----

$$p(x) = ax^3 + bx^2 + 37x + 10$$

where a and b are constants. It is given that (x + 2) is a factor of p(x). It is also given that the remainder is 40 when p(x) is divided by (2x - 1).

(i)	Find the values of a and b .	[5]

•••••
•••••
•••••
•••••
••••••

6 The parametric equations of a curve a
--

$$x = 2e^{2t} + 4e^t$$
, $y = 5te^{2t}$.

(i)	Find $\frac{dy}{dx}$ in terms of t and hence find the coordinates of the stationary point, giving each coordinates to 2 decimal places.	nate [6]
		· • • • • • • •
		· • • • • • • • • • • • • • • • • • • •
		· • • • • • • •
		· • • • • • •
		· • • • • • •
		· • • • • • •
		· • • • • • • •
		· • • • • • • •
		· • • • • • • • • • • • • • • • • • • •
		· • • • • • •
		· • • • • • •
		· • • • • • •
		· • • • • • •
		· • • • • • •
		· • • • • • •
		· • • • • • •
		· • • • • • •
		· • • • • • • •
		· • • • • • • •

										••••
				•••••			•••••			• • • •
	•••••	•••••						• • • • • • • • • • • • • • • • • • • •		
•••••	•••••	•••••	••••••	•••••	•	••••••	•••••	• • • • • • • • • • • • • • • • • • • •	••••••	••••
•••••	•••••			•••••			•••••	•••••		••••
••••••	•••••			•••••						••••
		•••••		•••••				•••••		
•••••	••••••	•••••	••••••	•••••	•	••••••	•••••	• • • • • • • • • • • • • • • • • • • •	••••••	••••
•••••	•••••			•••••						••••
										••••
••••••	•••••	•••••••	•••••••••	•••••	•	••••••••	•••••	•	•••••••	••••
•••••	••••••	•••••	••••••	•••••	•	•••••••	•••••	• • • • • • • • • • • • • • • • • • • •	•••••	••••
••••••	•••••	•••••		•••••						••••
		•••••		•••••			•••••	•••••		••••

7

The diagram shows the curve

$$y = x^2 + 3x + 1 + 5\cos\frac{1}{2}x.$$

The curve crosses the y-axis at the point P and the gradient of the curve at P is m. The point Q on the curve has x-coordinate q and the gradient of the curve at Q is -m.

(i) Find the value of m and hence show that q satisfies the equation

$$x = a\sin\frac{1}{2}x + b,$$

where the values of the constants a and b are to be determined.	[4]

(ii)	Show by calculation that $-4.5 < q < -4.0$.	[2]
		•••••
		•••••
(;;;)	Use an iterative formula based on the equation in part (i) to find the value	of a correct to
(111)	Use an iterative formula based on the equation in part (i) to find the value 3 significant figures. Give the result of each iteration to 5 significant figures.	of q correct to [3]
		•••••
		•••••
		•••••
		•••••
		•••••

BLANK PAGE

Permission to reproduce items where third-party owned material protected by copyright is included has been sought and cleared where possible. Every reasonable effort has been made by the publisher (UCLES) to trace copyright holders, but if any items requiring clearance have unwittingly been included, the publisher will be pleased to make amends at the earliest possible opportunity.

To avoid the issue of disclosure of answer-related information to candidates, all copyright acknowledgements are reproduced online in the Cambridge International Examinations Copyright Acknowledgements Booklet. This is produced for each series of examinations and is freely available to download at www.cie.org.uk after the live examination series.

Cambridge International Examinations is part of the Cambridge Assessment Group. Cambridge Assessment is the brand name of University of Cambridge Local Examinations Syndicate (UCLES), which is itself a department of the University of Cambridge.