Computer Architecture: Pipeline

Fall 2024

Homework 9 — Novmember 20

Lecturer: Hu Weiwu Completed by: 2022K8009929010 Zhang Jiawei

9.1

每条指令执行都需要 5 个时钟周期,故总共需要 $(1+2\times 100)\times 5=1005$ 个时钟周期。前三次循环执行的流水线时空图如下:

addi.w	IF	ID	EX	MEM	WB																														
addi.w						IF	ID	EX	MEM	WB																									
bnez											IF	ID	EX	MEM	WB																\Box				
addi.w																IF	ID	EX	MEM	WB											П				
bnez																					IF	ID	EX	MEM	WB										
addi.w																										IF	ID	EX	MEM	WB					
bnez																															IF	ID	EX	MEM	WB

9.2

在此流水线中,分支指令是否跳转需要在 EX 阶段才能确定。同样,每条指令执行都需要 5 个时钟周期,在无前递流水线中,总共需要 $5+5+99\times 6+3=607$ 个时钟周期。

addi.w	IF	ID	EX	MEM	WB																				
addi.w		IF				ID	EX	MEM	WB																
bnez						IF				ID	EX	MEM	WB												
addi.w											IF	ID	EX	MEM	WB										
bnez												IF				ID	EX	MEM	WB						
addi.w																	IF	ID	EX	MEM	WB				
bnez																		IF				ID	EX	MEM	WB

9.3

在有前递流水线中,总共需要 $1 \times (1 + 3 \times 100) + 3 = 304$ 个时钟周期。

addi.w	IF	ID	EX	MEM	WB								
addi.w		IF	ID	EX	MEM	WB							
bnez			IF	ID	EX	MEM	WB						
addi.w					IF	ID	EX	MEM	WB				
bnez						IF	ID	EX	MEM	WB			
addi.w								IF	ID	EX	MEM	WB	
bnez									IF	ID	EX	MEM	WB

9.4

修改后的流水线如下:

图 9.1. 添加精确异常处理的流水线

9.5 若使用双发射流水线,本程序中陪同阻塞较多,总共需要 $4+99\times3+3=304$ 个时钟周期。

addi.w	IF	ID	EX	MEM	WB								
addi.w	IF		ID	EX	MEM	WB							
bnez			IF	ID	EX	MEM	WB						
addi.w					IF	ID	EX	MEM	WB				
bnez					IF		ID	EX	MEM	WB			
addi.w								IF	ID	EX	MEM	WB	
bnez								IF		ID	EX	MEM	WB

9.6

数据相关根据冲突访问读和写的次序可以分为 3 种。第 1 种是写后读(Read After Write, 简称 RAW)相关,即后面指令要用到前面指令所写的数据,也称为真相关。第 2 种是写后写(Write After Write, 简称 WAW)相关,即两条指令写同一个单元,也称为输出相关。第 3 种是读后写(Write After Read, 简称 WAR)相关,即后面的指令覆盖前面指令所读的单元,也称为反相关。

静态流水线处理器通过阻塞和前递技术来解决数据相关问题。阻塞技术是指当发现数据相关时,使后面的指令等待,直到数据可用。前递技术是指将数据从一个功能部件传送到另一个功能部件,以便在后面的指令中使用。前递技术可以减少阻塞的次数,从而提高流水线的效率。

采取寄存器重命名的动态流水线处理器可以解决数据相关问题。找到一个空闲的物理寄存器,使用这个 寄存器来代替原先发生数据相关的逻辑寄存器,从而避免数据相关。

9.7

若能够译码级永远预测跳转,则流水线不必阻塞,总共需要 $1+100 \times 2+4=205$ 个时钟周期。

9.8

使用一位 BHT 表时,由于初值为 0,故第一次预测错误,更新为 1,第二次预测正确,直至第十次不跳转, 预测错误,循环往复。故每进入和退出最内层循环一次,都会有一次预测错误,预测准确率为 $1-\frac{100\times2}{1000}=0.8$ 。

使用两位 BHT 表时,由于初值为 00,故第一次预测错误,更新为 01,第二次预测错误,更新为 10,第三次 预测正确,更新为 11,直至第十次不跳转,预测错误,更新为 10,但是之后进入循环,需要跳转,预测正确,更新 为 11, 循环往复。最内层循环中, 共出现 102 次预测错误, 第二层循环中, 共出现 12 次预测错误, 第一层循环中, 共出现 3 次预测错误, 故预测准确率为 $1-\frac{102+12+3}{1000}=0.883$ 。

9.9

采取直接映射时,总共有 $\frac{32\times 2^{10}}{64}=512$ 个块,故索引位需要 9 位,块内偏移需要 6 位,标记需要 17 位。 采取 2 路组相联映射时,总共需要映射到 256 个组,故组索引需要 8 位,块内偏移需要 6 位,标记需要 18 位。

采取 4 路组相联映射时, 总共需要映射到 128 个组, 故组索引需要 7 位, 块内偏移需要 6 位, 标记需要 19 位。

9.10

假设总共有 100 条指令,则 load/store 指令共有 40 条,再设 cache 命中时指令的平均 CPI 为 x。

若采取第一种方案,共需要 $60x + 40 \times (0.85x + 0.15 \times 100) = 94x + 600$ 个时钟周期;若采取第二种方案, 共需要 $60x + 40 \times (0.95x + 0.05 \times 100) = 98x + 200$ 个时钟周期。

解以下方程:

$$94x + 600 < (98x + 200) \times \frac{10}{9}$$
$$x > 25.37$$

故当 x > 25.37 时,第一种方案更优;当 x < 25.37 时,第二种方案更优。