

课程 > Unit 1: ... > Proble... > 4. Park...

## 4. Parking lot problem

## Problem 4. Parking lot problem

3.0/3.0 points (graded)

Mary and Tom park their cars in an empty parking lot with  $n \geq 2$  consecutive parking spaces (i.e, n spaces in a row, where only one car fits in each space). Mary and Tom pick parking spaces at random; of course, they must each choose a different space. (All pairs of distinct parking spaces are equally likely.) What is the probability that there is at most one empty parking space between them?

Your answer should be a function of n, entered using standard notation (also available through the "STANDARD NOTATION" button just above the "Submit" button.)

(4\*n-6)/(n\*(n-1))



**Answer:** (4\*n-6)/(n\*(n-1))

$$\frac{4 \cdot n - 6}{n \cdot (n-1)}$$

**STANDARD NOTATION** 

## **Solution:**

The sample space is  $\Omega = \{(i,j): i \neq j, 1 \leq i, j \leq n\}$ , where outcome (i,j) indicates that Mary and Tom parked in slots i and j, respectively. We apply the discrete uniform probability law to find the required probability. We are interested in the probability of the event

$$A=\{(i,j)\in\Omega:|i-j|\leq 2\}.$$

We first find the cardinality of  $\Omega$ . There are  $n^2$  pairs (i,j), but since the set  $\Omega$  excludes outcomes of the form (i,i), the cardinality of  $\Omega$  is  $n^2-n=n(n-1)$ .



If  $n \geq 3$ , event A consists of the four lines indicated in the figure above and contains 2(n-1)+2(n-2)=4n-6 elements. If n=2, event  $ilde{A}$  contains exactly 2 elements, namely, (1,2) and (2,1), which agrees with the formula 4(2)-6=2. Therefore,

$$\mathbf{P}(A) = rac{4n-6}{n(n-1)}.$$

提交

You have used 3 of 7 attempts

**1** Answers are displayed within the problem

讨论

显示讨论

**Topic:** Unit 1 / Problem Set / 4. Parking lot problem

Learn About Verified Certificates

© All Rights Reserved