

The NASA and DNV Challenge on Optimization under Uncertainty

Why Uncertainty Quantification (UQ) is important for both DNV and NASA

NASA and DNV both work with safety-critical systems that must operate reliably under extreme and uncertain conditions.

Both face challenges due to sparse or expensive-to-collect data, making Uncertainty Quantification (UQ) difficult, but even more important.

To address these common chellenges, NASA and DNV have jointly developed a cross-sector UQ challenge

The NASA and DNV Challenge on Optimization under **Uncertainty**

NASA and DNV launched a joint challenge to the community to improve how we design and control complex systems—like spacecrafts or offshore structures—under uncertainty.

The challenge invited participants from across many different scientific and engineering fields.

Challenge Goals

- Understand and manage two types of uncertainty:
 - Aleatory (random variability, e.g., weather)
 - o Epistemic (lack of knowledge, e.g., unknown design parameters)
- Learn from *limited data* to understand system behavior and the associated uncertainties
- Optimize system performance while ensuring safety and reliability.

A Domain-Agnostic Challenge Design

- The problem is intentionally defined in a **domain-agnostic** way to encourage the development of generalizable methods that are not tailored to any specific domain or physical context.
- Participants are only given **inputs and outputs**, with no knowledge of the underlying system.

Input Variables:

Aleatory uncertainty, $X_a = [X_a^1, X_a^2]$:

Two variables given by joint distribution

Epistemic uncertainty, X_e = $[X_e^1, X_e^2, X_e^3]$

Control parameters, $X_c = [X_c^1, X_c^2, X_c^3]$

Total input variables is then given by $X \sim (X_a, X_e, X_c, \omega)$, with an additional aleatory variable ω representing the random seed.

Response, Y(t)

• Input: $X \sim (X_a, X_e, X_c, \omega)$.

• Output: The simulations will generate time series data Y(t) for the outputs, which can be expressed as:

$$Y(X)(t) = \{y_1(t), y_2(t), y_3(t), y_4(t), y_5(t), y_6(t)\}$$

• **Dataset:** The participants received an initial dataset, D, consisting of N samples: $D = \{X^i, Y^i\}_{i=1}^N$

DNV ©

Available Simulation Models:

Local model: Infinite number of simulations

Run a local model (compiled binary executable) to calculate Y(X), where $X = (X_a, X_e, X_c, \omega)$.

Online model: Limited number of simulations (N = 10)

Calculate Y(X), where $X = X_c$.i.e., they can adjust the control parameters X_c .

The aleatory variable X_a is sample from the **true distribution** and X_e set to its **correct values**.

Optimization Under Uncertainty

Objective Function to optimize: $J(X^i) = \sum_t (y_1^i(t) + y_2^i(t) + y_3^i(t))$

Limit state function: $g_j(Y(X)) = S_c^j - y_j$,

where S_c represents maximum allowed value for the component y_i , j ϵ {4,5,6}

Probability of breaking limit state constraint: pof = $\sum_{i} P(g_j(Y(X)) < 0)$

Overview of Challenge Tasks:

Problem 1: Uncertainty Model

Create an uncertainty model for x_a and x_e , given by the pair (f_a, E) , where f_a is a probability density for x_a and E is an arbitrarily shaped set satisfying $x_e \in E$

Problem 2: Design Optimization

- Performance-based design: x_c that maximize objective function as x_e varies in E
- Reliability-based design: x_c that minimize the probability of failure as x_e varies in E
- ϵ -constrained design: x_c that maximizes objective function as x_e varies in E, under the constraint

$$\max_{x_e \in E} \{ \operatorname{pof}(x_e, x_c) \le \epsilon \}$$