Project Design Phase-II Technology Stack (Architecture & Stack)

Date	19-november-2023
TeamID	Team-592198
ProjectName	Project-ImageCaptionGeneration
MaximumMarks	4 Marks

Technical Architecture:

Table-1:Components&Technologies:

S.No	Component	Description	Technology
1.	User Interface	Enables user interaction to choose and upload images. Utilizes HTML for structure, CSS for styling, and JavaScript for dynamic functionalities. Server-side functionality is implemented using Flask (Python) for handling user requests.	HTML, CSS, JavaScript/Angular Js /React Js etc.
2.	Application Logic	Manages the core logic and processes of the application, handling user requests, integrating with the machine learning model, and coordinating interactions between components. Implemented using Python and Flask for web application logic.	Python, Flask for web application
5.	Database	N/A (Not explicitly used in the project. If needed, could use a database for storing additional data or user-related information.)	N/A
9.	ExternalAPI-2	N/A (Not explicitly used in the project. If needed, could integrate with external APIs for additional image-related information or services.)	N/A
10.	Machine Learning Model	Utilizes a combination of Convolutional Neural Network (CNN) and Long Short-Term Memory (LSTM) to generate image captions. TensorFlow and Keras are used for model implementation.	Tensorflow, keras, python
11.	Infrastructure(Server/ Cloud)	Hosts and deploys the application. The infrastructure is set up on cloud services such as AWS, Google Cloud, or hosted by providers like Heroku, ensuring the application is accessible online.	Cloud Services (e.g., AWS, Google Cloud), Hosting Providers (e.g., Heroku)

Table-2:ApplicationCharacteristics:

S.N o	Characteristics	Description	Technology
1.	Open-Source Frameworks	Utilizes open-source frameworks for various functionalities. Anaconda Navigator, Jupyter Notebook, Spyder, and Flask are mentioned in the project.	Anaconda Navigator, Jupyter Notebook, Spyder, Flask
2.	Security Implementations	Security measures to ensure data protection and secure user interactions are not explicitly mentioned in the project. However, it's advisable to implement secure coding practices, such as input validation, secure communication (HTTPS), and user authentication if handling sensitive data.	Best practices in secure coding, secure communication (HTTPS), user authentication (if applicable)
3.	Scalable Architecture	The scalability of the architecture is not explicitly used in the project. To make the architecture scalable, you might consider containerization (e.g., Docker), orchestration (e.g., Kubernetes), and optimizing the model for efficient inference. Cloud services like AWS or Google Cloud can also provide scalable infrastructure.	Docker, Kubernetes (if needed), Cloud Services (e.g., AWS, Google Cloud)

4.	Availability	Ensures the availability of the application for users. Hosting the application on reliable cloud services, implementing load balancing, and monitoring for potential downtime are crucial for maintaining availability.	Cloud Services (e.g., AWS, Google Cloud), Load Balancing, Monitoring Tools
5.	Performance	Focuses on optimizing the performance of the application. This includes efficient algorithms, model optimization, and potentially utilizing caching mechanisms. Performance can be monitored and improved iteratively	Loss function: Categorical cross entropy Optimization: Adams optimizer