次世代IoTカーブミラー

~カーブミラー向け拡張デバイスの開発~

チーム: July

次世代IoTカーブミラー

カーブミラー向け拡張デバイスの開発

背景

- ◆特に無信号交差点において事故件数が多い
 - ▶対策の一例としてカーブミラーが設置
- ◆カーブミラーの特徴
- >メリット
 - 電気的要素がない
 - 外的な力や経年劣化以外では故障しない→ランニングコストが低い
 - 設置が容易

ミラーの設置状況に よって<u>死角</u>が発生

<u>距離感</u>が つかみ辛い 夜間は **視認性**が悪い

踏切

提案内容

目的:カーブミラーの改良による交通事故の削減

方法:カーブミラーに取り付ける拡張デバイスを開発

死角問題:AI化

- AIカメラによる人・車検出 機能
- カメラの画角調整機能
- 見えやすいライトの開発

夜間問題:HDR化

- HDRカメラによる高感度 撮影
- ライトによる自発的な 人・車の存在通知

将来性:IoT化

- GPSによる設置取得
- LTE通信による情報の データベース化
- 自動運転車の支援

実装し、有効性を検証

カーブミラーに最適なデバイス

カーブミラーとして必要な性能

- ①夜間運用可能
- ②長期間の連続運用可能
- ③人・車が検出可能

デバイスに必要な性能

- ①暗所でも撮影できる高感度(HDR)カメラ
- ②省電力性能
- ③ニューラルネットワーク処理能力

代表的なエッジAIデバイスを比較

	SPRESENSE	Raspberry Pi	Jetson Nano
演算能力	低	中	高
消費電力[W]	低	中	高
カメラ	HDR対応	ノーマル	ノーマル

SPRESENSEが

最適!

提案システム

製作物の機能紹介

電源	乾電池 単3×4	設置場所に遮蔽物が多いため
通知方法	ᆂᄺ	低消費電力のためLED疑似
	赤色回転灯	ON/OFFがわかりやすいように カバーが半透明
	黒背景	視認性向上のため
取付具	ステンレス製 バンド	カーブミラーの支柱が円柱で 屋外設置のため
カメラ	HDRカメラ	夜間でも鮮明な撮影を実現
	画角調節 機構	カーブミラーの設置環境が 異なるため

ハードの工夫点

カーブミラーにつけるだけ (既存のカーブミラーを活かす)

低消費電力かつ視認性の向上

ソフトの工夫点

RAM使用量の制限下での精度と検出可能性の両立

- ◆入力画像解像度の最適化
 - ➤ 最適解像度:160×120
 - DNNRTへの事前処理が最小限
 - カメラで取得できる最低解像度

検証結果

1. 死角問題 → 本デバイスにより, 本来死角である部分をカバー

検証結果

2. 夜間問題 → HDRカメラにより, 夜間でも鮮明な画像を取得可能

鮮明な画像が取得できることで夜間の推論が可能

将来性

カーブミラーの位置情報を活かしたカーブミラー同士の 自動運転車との連携

通信

カーブミラー以外への 応用

まとめ

- ◆目的:カーブミラーの改良による交通事故の削減
- ◆方法:SPRESENSEを用いて、カーブミラーに取り付ける 拡張デバイスを開発
- ◆結果:カーブミラーの死角問題, 夜間問題を解決

THANKYOU FOR

YOUR ATTENTION

