

Final Review

CS-585

Natural Language Processing

Derrick Higgins

Exam info

- Exam location and time
 - Final exam: Tuesday, December 7, 7:30-9:30 PM
 - Regular classroom: IT Tower 1F6-1
- Final details
 - Timed: 120 minutes
 - 300 points total
 - Multiple-choice
 - Open-book, open-notes
 - Written or printed materials OK, but no electronics
 - Bring pencils with erasers

Content overview

- -Review
- -Syntax and Parsing
- —Evaluation
- -Sequence Modeling
- Modeling Frameworks
- -Other NLP Tasks

CONCEPTS AND DEFINITIONS

Syntax

- Phrasal categories:
 NP, VP, PP, S
- Parts of speech
- Subcategorization
- Complements and adjuncts
- Tests for constituency
- Agreement
- Heads and dependents

- Grammar types:
 - Regular
 - context-free
 - transformational
- Chomsky Normal Form
- Compositionality
- Structural Ambiguity
- Treebank

Modeling

- Exploding/vanishing gradients
- Maximum entropy
- Label bias
- Local vs. global normalization
- Expectationmaximization
- Locality

- Dynamic programming
- Viterbi algorithm
- Forward algorithm
- Backward algorithm
- Inside algorithm
- Noisy channel model
- Alignment

MODEL TYPES

RNNs and CNNs

Which is BERT?

Convolutional network (CNN)

 Applies convolution function to a local receptive field -- a

sliding seque

– "Fe

Typica are int layers

> difficule to moder long distance dependencies

Long short-term memory (LSTM)

A type of recurrent network

Passes information forward

rough

step

ate

ugh the

avoid

gradients

context,

but associated issues with optimization

Generative vs. Discriminative Models

Generative models

- Estimate the joint distribution P(Y,X)
- Can use in a supervised way using labeled data OR in an unsupervised way using EM, etc.
- Based on a "generative story" about how observed Xs are derived from latent Ys

Discriminative models

- Estimate the conditional distribution P(Y|X)
- Can ONLY be trained using supervised methods
- NO generative story

LDA

- Latent Dirichlet Allocation is an unsupervised model for text clustering
- It is based on a model assuming that there are k
 latent topics for our documents
 - For a given document, a distribution z over topics is chosen
 - Each word in the document is chosen independently according to that distribution
- Overall, the model expresses the joint likelihood P(T,D) of documents D and their latent topics T

EVALUATION METRICS

Explanations and relationships to tasks

Metrics

- Accuracy
- Precision
- Recall
- F-measure
- Cohen's kappa
- BLEU
- Labeled/unlabeled P/R/F
- Attachment score
- Correct root
- Perplexity

Tasks

- Text categorization
- Language modeling
- Sequence modeling
- Parsing
- Machine translation

CYK PARSING

Cocke-Younger-Kasami (CYK)

```
Assume "Chomsky Normal Form" grammar
for n := 0 to N_w-1 do:
  \underline{\text{chart}}[0, n] := \{X \mid X \rightarrow \text{word}_n \}
for m := 1 to N_w-1 do:
   for n := 0 to N_w - m - 1 do:
      chart[m, n] := {}
      for k := n+1 to n+m do
         for every rule A \rightarrow B C do
             if B \in chart[k-n-1, n] and C \in chart[n+m-k, k] then
                 chart[m, n] := chart[m, n] U {A}
```

if $S \in \underline{\text{chart}}[N_w-1, 0]$ then accept else reject

CYK Example (in CNF)

S \rightarrow NP VP S \rightarrow V NP S \rightarrow S PP VP \rightarrow V NP VP \rightarrow V PP VP \rightarrow VP PP PP \rightarrow P NP NP \rightarrow Det NP NP \rightarrow NP PP

 \rightarrow love NP \rightarrow wins NP NP ightarrow end ightarrow wins V V \rightarrow love \rightarrow in P Det \rightarrow the

"Love wins in the end"

 $Love_0$ wins₁ in₂ the₃ end₄

n (constituent start index)

	0	1	2	3	4
0	V,NP	V,NP	P	Det	V,NP
1					
2					
3					
4					

$$N_w = 5$$
 $m = 0$

Love₀ wins₁ in₂ the₃ end₄

n (constituent start index)

	0	1	2	3	4
0	V,NP	V,NP	P	Det	V,NP
1	S,VP				
2					
3					
4					

$$N_w = 5$$
 $m = 1$
 $n = 0$
 $k = n+1$

 $S \longrightarrow V NP$ $VP \longrightarrow V NP$

Love₀ wins₁ in₂ the₃ end₄

n (constituent start index)

	0	1	2	3	4
0	V,NP	V,NP	P	Det	V,NP
1	S,VP	{}			
2					
3					
4					

$$N_w = 5$$
 $m = 1$
 $n = 1$
 $k = n+1$

Love₀ wins₁ in₂ the₃ end₄

n (constituent start index)

	0	1	2	3	4
0	V,NP	V,NP	P	Det	V,NP
1	S,VP	{}	{}		
2					
3					
4					

$$N_w = 5$$
 $m = 1$
 $n = 2$
 $k = n+1$

Love₀ wins₁ in₂ the₃ end₄

n (constituent start index)

	0	1	2	3	4
0	V,NP	V,NP	P	Det	V,NP
1	S,VP	{}	{}	NP	
2					
3					
4					

$$N_w = 5$$
 $m = 1$
 $n = 3$
 $k = n+1$

 $ext{NP} \longrightarrow ext{Det NP}$

Love₀ wins₁ in₂ the₃ end₄

n (constituent start index)

	0	1	2	3	4
0	V,NP	V,NP	P	Det	V,NP
1	S,VP	{}	{}	NP	
2	{}				
3					
4					

$$N_w = 5$$
 $m = 2$
 $n = 0$
 $k = n+1$

Love₀ wins₁ in₂ the₃ end₄

n (constituent start index)

	0	1	2	3	4
0	V,NP	V,NP	P	Det	V,NP
1	S,VP	{}	{}	NP	
2	{}				
3					
4					

$$N_w = 5$$
 $m = 2$
 $n = 0$
 $k = n+2$

Love₀ wins₁ in₂ the₃ end₄

n (constituent start index)

	0	1	2	3	4
0	V,NP	V,NP	P	Det	V,NP
1	S,VP	{}	{}	NP	
2	{}	{}			
3					
4					

$$N_w = 5$$
 $m = 2$
 $n = 1$
 $k = n+1$

Love₀ wins₁ in₂ the₃ end₄

n (constituent start index)

	0	1	2	3	4
0	V,NP	V,NP	P	Det	V,NP
1	S,VP	{}	{}	NP	
2	{}	{}			
3					
4					

$$N_w = 5$$

$$m = 2$$

$$n = 1$$

$$k = n+2$$

Love₀ wins₁ in₂ the₃ end₄

n (constituent start index)

	0	1	2	3	4
0	V,NP	V,NP	P	Det	V,NP
1	S,VP	{}	{}	NP	
2	{}	{}	PP		
3					
4					

$$N_w = 5$$
 $m = 2$
 $n = 2$
 $k = n+1$

 $PP \longrightarrow P NP$

Love₀ wins₁ in₂ the₃ end₄

n (constituent start index)

	0	1	2	3	4
0	V,NP	V,NP	P	Det	V,NP
1	S,VP	{}	{}	NP	
2	{}	{}	PP		
3					
4					

$$m = 2$$

$$n = 2$$

$$k = n+2$$

Love₀ wins₁ in₂ the₃ end₄

n (constituent start index)

	0	1	2	3	4
0	V,NP	V,NP	P	Det	V,NP
1	S,VP	{}	{}	NP	
2	{}	{}	PP		
3	{}				
4					

$$N_w = 5$$
 $m = 3$
 $n = 0$
 $k = n+1$

Love₀ wins₁ in₂ the₃ end₄

n (constituent start index)

	0	1	2	3	4
0	V,NP	V,NP	P	Det	V,NP
1	S,VP	{}	{}	NP	
2	{}	{}	PP		
3	{}				
4					

$$N_w = 5$$
 $m = 3$
 $n = 0$
 $k = n+2$

Love₀ wins₁ in₂ the₃ end₄

n (constituent start index)

	0	1	2	3	4
0	V,NP	V,NP	P	Det	V,NP
1	S,VP	{}	{}	NP	
2	{}	{}	PP		
3	{}				
4					

$$N_w = 5$$

$$m = 3$$

$$n = 0$$

$$k = n+3$$

Love₀ wins₁ in₂ the₃ end₄

n (constituent start index)

	0	1	2	3	4
0	V,NP	V,NP	P	Det	V,NP
1	S,VP	{}	{}	NP	
2	{}	{}	PP		
3	{}	NP, VP			
4					

$$N_w = 5$$

$$m = 3$$

$$n = 1$$

$$k = n+1$$

$$NP \longrightarrow NP PP$$
 $VP \longrightarrow V PP$

Love₀ wins₁ in₂ the₃ end₄

n (constituent start index)

	0	1	2	3	4
0	V,NP	V,NP	P	Det	V,NP
1	S,VP	{}	{}	NP	
2	{}	{}	PP		
3	{}	NP, VP			
4					

$$N_w = 5$$
 $m = 3$
 $n = 1$
 $k = n+2$

Love₀ wins₁ in₂ the₃ end₄

n (constituent start index)

	0	1	2	3	4
0	V,NP	V,NP	P	Det	V,NP
1	S,VP	{}	{}	NP	
2	{}	{}	PP		
3	{}	NP, VP			
4					

$$N_{w} = 5$$

$$m = 3$$

$$n = 1$$

$$k = n+3$$

 in_2 the₃ end_4 Love₀ wins₁

n (constituent start index)

	0	1	2	3	4
0	V,NP	V,NP	P	Det	V,NP
1	S,VP	{}	{}	NP	
2	{}	{}	PP		
3	{}	NP, VP			
4	S,VP				

$N_{\overline{W}}$, =	5
m	=	4
n	=	0
k	=	n+1

S V NP

m (constituent length -1)

Transforming Lives.Inventing the Future.www.iit.edu

Love₀ wins₁ in₂ the₃ end₄

n (constituent start index)

	0	1	2	3	4
0	V,NP	V,NP	P	Det	V,NP
1	S,VP	{}	{}	NP	
2	{}	{}	PP		
3	{}	NP, VP			
4	S,VP				

$$\begin{aligned}
 N_w &= 5 \\
 m &= 4 \\
 n &= 0 \\
 k &= n+2
 \end{aligned}$$

$$S \longrightarrow S PP$$
 $VP \longrightarrow VP PP$

 $Love_0$ wins₁ in₂ the₃ end₄

n (constituent start index)

	0	1	2	3	4
0	V,NP	V,NP	P	Det	V,NP
1	S,VP	{}	{}	NP	
2	{}	{}	PP		
3	{}	NP, VP			
4	S,VP				

$$N_{w} = 5$$

$$m = 4$$

$$n = 0$$

$$k = n+3$$

Love₀ wins₁ in₂ the₃ end₄

n (constituent start index)

	0	1	2	3	4
0	V,NP	V,NP	P	Det	V,NP
1	S,VP	{}	{}	NP	
2	{}	{}	PP		
3	{}	NP, VP			
4	S,VP				

$$N_w = 5$$
 $m = 4$
 $n = 0$
 $k = n+4$

Love₀ wins₁ in₂ the₃ end₄ n (constituent start index)

(1-qtbue) the state of the stat

Ambiguous?

Second exercise

Love wins wins

DEPENDENCY STRUCTURES

- A spanning tree for a sentence
 - Has a single root
 - Contains directed edges such that
 - every word can be reached from the root by following some sequence of edges
 - no word is the dependent of multiple elements (each word appears only once as the destination of an edge)
 - Contains no cycles
- If it is projective
 - Any element between a head and its direct dependent (in linear order) must be a (direct or indirect) dependent of one or the other ILLINOIS INSTIT

Spanning tree?

Yes

Projective?

Yes

Spanning tree?

No

<ROOT>

closing

be always

Spanning tree?

No

Spanning tree?

Yes

Projective?

No

Transforming Lives.Inventing the Future.www.iit.edu