Macro PS4

Michael B. Nattinger*

February 20, 2021

1 Question 1

The household maximizes their utility subject to their budget constraint. Equivalently, households minimize their costs subject to their utility constraint:

$$\min_{C_{ik}} \int \sum_{i} P_{ik} C_{ik} dk$$
s.t.
$$\left(\int C_k^{\frac{\rho-1}{\rho}} dk \right)^{\frac{\rho}{\rho-1}} = C,$$
where
$$\left(\sum_{i=1}^{N_k} C_{ik}^{\frac{\theta-1}{\theta}} \right)^{\frac{\theta}{\theta-1}} = C_k.$$

We will then write the Lagrangian as follows:

$$\mathcal{L} = \int \sum_{i} P_{ik} C_{ik} dk - P\left(\left(\int C_{k}^{\frac{\rho-1}{\rho}} dk\right)^{\frac{\rho}{\rho-1}} - C\right) + \int P_{k} \left[C_{k} - \left(\sum_{i} C_{ik}^{\frac{\theta-1}{\theta}}\right)^{\frac{\theta}{\theta-1}}\right] dk$$

We solve this maximization problem by taking first order conditions with respect to our choice variables, in this case C_{ik} , C_k :

$$P_{k} = \frac{\rho}{\rho - 1} \left(\int C_{k}^{\frac{\rho - 1}{\rho}} dk \right)^{\frac{1}{\rho - 1}} \frac{\rho - 1}{\rho} C_{k}^{\frac{-1}{\rho}}$$

$$\Rightarrow C_{k} = \left(\frac{P_{k}}{P} \right)^{-\rho} C.$$

$$P_{ik} = P_{k} \frac{\theta}{\theta - 1} \left(\sum_{i=1}^{N_{k}} C_{ik}^{\frac{\theta - 1}{\theta}} \right)^{\frac{1}{\theta - 1}} \frac{\theta - 1}{\theta} C_{ik}^{-\frac{1}{\theta}}$$

$$\Rightarrow C_{ik} = \left(\frac{P_{ik}}{P_{k}} \right)^{-\theta} C_{k}$$

^{*}I worked on this assignment with my study group: Alex von Hafften, Andrew Smith, and Ryan Mather. I have also discussed problem(s) with Emily Case, Sarah Bass, Katherine Kwok, and Danny Edgel.

We can substitute in our expressions into the definitions of C, C_k :

$$\left(\int \left[\left(\frac{P_k}{P} \right)^{-\rho} C \right]^{\frac{\rho-1}{\rho}} dk \right)^{\frac{\rho}{\rho-1}} = C$$

$$\Rightarrow \left(\int \left(\frac{P_k}{P} \right)^{1-\rho} dk \right)^{\frac{\rho}{\rho-1}} = 1$$

$$\Rightarrow \left(\int P_k^{1-\rho} dk \right)^{\frac{1}{1-\rho}} = P,$$

$$\left(\sum_i \left[\left(\frac{P_{ik}}{P_k} \right)^{-\theta} C_k \right]^{\frac{\theta-1}{\theta}} \right)^{\frac{\theta}{\theta-1}} = C_k$$

$$\Rightarrow \left(\sum_i P_{ik}^{1-\theta} \right)^{\frac{1}{1-\theta}} = P_k$$

To summarize, we have the following:

$$P_k = \left(\sum_i P_{ik}^{1-\theta}\right)^{\frac{1}{1-\theta}} \tag{1}$$

$$P = \left(\int \left[\left(\sum_{i} P_{ik}^{1-\theta} \right)^{\frac{1}{1-\theta}} \right]^{1-\rho} dk \right)^{\frac{1}{1-\rho}}$$
 (2)

$$C_{ik} = P_{ik}^{-\theta} \left(\sum_{i} P_{ik}^{1-\theta} \right)^{\frac{\theta-\rho}{1-\theta}} P^{\rho} C \tag{3}$$

2 Question 2

The firms compete a la Bertrand:

$$\max_{P_{ik}} P_{ik} C_{ik} - W L_{ik}$$

$$\text{s.t.} C_{ik} = P_{ik}^{-\theta} \left(\sum_{i} P_{ik}^{1-\theta} \right)^{\frac{\theta-\rho}{1-\theta}} P^{\rho} C$$
and $C_{ik} = A_{ik} L_{ik}$

Substituting, we form the following objective function:

$$\begin{split} & \max_{P_{ik}} P_{ik}^{1-\theta} \left(\sum_{i} P_{ik}^{1-\theta} \right)^{\frac{\theta-\rho}{1-\theta}} P^{\rho}C - WA_{ik}^{-1}P_{ik}^{-\theta} \left(\sum_{i} P_{ik}^{1-\theta} \right)^{\frac{\theta-\rho}{1-\theta}} P^{\rho}C \\ \Rightarrow & \max_{P_{ik}} P_{ik}^{1-\theta} \left(\sum_{i} P_{ik}^{1-\theta} \right)^{\frac{\theta-\rho}{1-\theta}} - WA_{ik}^{-1}P_{ik}^{-\theta} \left(\sum_{i} P_{ik}^{1-\theta} \right)^{\frac{\theta-\rho}{1-\theta}} \end{split}$$

We take first order conditions:

$$(1-\theta)P_{ik}^{-\theta}P_k^{\theta-\rho} + P_{ik}^{1-\theta}\frac{\theta-\rho}{1-\theta}P_k^{2\theta-\rho-1}(1-\theta)P_{ik}^{-\theta} = \frac{W}{A_{ik}}\left[(-\theta)P_{ik}^{-\theta-1}P_k^{\theta-\rho} + P_{ik}^{-\theta}\frac{\theta-\rho}{1-\theta}P_k^{2\theta-\rho-1}(1-\theta)P_{ik}^{-\theta}\right]$$
$$(1-\theta) + P_{ik}^{1-\theta}(\theta-\rho)P_k^{\theta-1} = \frac{W}{A_{ik}}\left[(-\theta)P_{ik}^{-1} + P_{ik}^{-\theta}(\theta-\rho)P_k^{\theta-1}\right]$$

Denote the weighted price ratio $s_{ik} := \left(\frac{P_{ik}}{P_k}\right)^{1-\theta}$:

$$P_{ik}[(1-\theta) + s_{ik}(\theta - \rho)] = \frac{W}{A_{ik}}[(-\theta) + s_{ik}(\theta - \rho)]$$

$$\Rightarrow P_{ik} = \frac{W}{A_{ik}} \left[1 - \frac{1}{(1-\theta) + s_{ik}(\theta - \rho)} \right]$$

This yields a recursive expression for P_{ik} . In other words, we have a set of $i \times k$ nonlinear equations in $i \times k$ unknowns.

We can derive demand elasticities $\frac{P_{ik}\partial C_{ik}}{C_{ik}\partial P_{ik}}$:

$$\begin{split} \frac{P_{ik}\partial C_{ik}}{C_{ik}\partial P_{ik}} &= \frac{P_{ik}}{C_{ik}} \left((-\theta) P_{ik}^{-1-\theta} P_k^{\theta-\rho} + P_{ik}^{-\theta} \frac{\theta-\rho}{1-\theta} P_k^{2\theta-\rho-1} (1-\theta) P_{ik}^{-\theta} \right) P^{\rho}C \\ &= \left(P_{ik}^{1+\theta} P_k^{\rho-\theta} P^{-\rho} C^{-1} \right) \left((-\theta) P_{ik}^{-1-\theta} P_k^{\theta-\rho} + P_{ik}^{-2\theta} (\theta-\rho) P_k^{2\theta-\rho-1} \right) P^{\rho}C \\ &= \left((-\theta) + P_{ik}^{1-\theta} (\theta-\rho) P_k^{\theta-1} \right) \\ &= (\theta-\rho) s_{ik} - \theta. \end{split}$$

3 Question 3

The markup of firm i in industry k, μ_{ik} , with marginal cost M_{ik} is the following:

$$\mu_{ik} = P_{ik}/M_{ik}$$

$$= \frac{W}{A_{ik}} \left[1 - \frac{1}{(1-\theta) + s_{ik}(\theta - \rho)} \right] / \frac{W}{A_{ik}}$$

$$= \left[1 - \frac{1}{(1-\theta) + s_{ik}(\theta - \rho)} \right]$$

Taking the derivative with respect to A_{ik} :

$$\begin{split} \frac{\partial \mu_{ik}}{\partial A_{ik}} &= -\frac{\partial}{\partial A_{ik}} \left(\frac{1}{(1-\theta) + (\theta - \rho) s_{ik}} \right) \\ &= \left(\frac{1}{(1-\theta) + (\theta - \rho) s_{ik}} \right)^2 (\theta - \rho) \frac{\partial s_{ik}}{\partial A_{ik}}. \end{split}$$

Note that:

$$\frac{\partial s_{ik}}{\partial A_{ik}} = (1 - \theta) P_k^{\theta - 1} P_{ik}^{-\theta} \frac{\partial P_{ik}}{\partial A_{ik}}$$

$$\Rightarrow \frac{\partial \mu_{ik}}{\partial A_{ik}} = \left(\frac{1}{(1 - \theta) + (\theta - \rho)s_{ik}}\right)^2 (\theta - \rho)(1 - \theta) P_k^{1 - \theta} P_{ik}^{-\theta} \frac{\partial P_{ik}}{\partial A_{ik}}$$

$$> 0,$$

where we have concluded that this term is positive by noting that the squared fraction, $(\theta - \rho)$, and price terms are positive and the $(1 - \theta)$ and $\frac{\partial P_{ik}}{\partial A_{ik}}$ terms are negative.

4 Question 4

It is relatively straightforward to code the problem numerically as a fixed point problem. Given a tolerance, draws of A_{ik} , tuning parameter $\gamma \in [0,1)$ and starting guess $s_{ik}^{0,1}$, one can proceed using the following algorithm:

1. For all
$$ik$$
, calculate $P^n_{ik} = (W/A_{ik}) \left[1 - \frac{1}{(1-\theta) + s^{n-1,1}_{ik}(\theta-\rho)}\right]$.

- 2. For all k, calculate $P_k^n = \left(\sum_i (P_{ik}^n)^{1-\theta}\right)^{\frac{1}{1-\theta}}$.
- 3. For all ik, calculate $s_{ik}^{n,0} = \left(\frac{P_{ik}^n}{P_k^n}\right)^{1-\theta}$.
- 4. Check for convergence: if $\sum_{k} \sum_{i} |s_{ik}^{n,0} s_{ik}^{n-1,1}|$ is less than the tolerance, stop. Otherwise, set $s_{ik}^{n,1} = (1-\gamma)s_{ik}^{n,0} + \gamma s_{ik}^{n-1,1}$ and return to step (1).

I note a couple of details here. First, note that the higher the tuning parameter γ , the slower s_{ik} will move in-between iterations. This is particularly important when ρ is near 1. For $\gamma=2$, the algorithm converges rapidly with a tuning parameter near 0, but when $\gamma=1.1$ then the algorithm will converge many orders of magnitude slower with a tuning parameter near 0 than with an appropriately chosen tuning parameter, such as $\gamma=0.5$. For this exercise, we were told to use $\rho=1$. This causes numerical issues as we end up dividing by 0 in our algorithm above. To get around this issue, we instead use $\rho=1+\epsilon$, with $\epsilon<<1$. Specifically, I use $\epsilon=10^{-9}$, which converges in under fifteen seconds using a tuning parameter of $\gamma=0.6$. The numerical results change very little as ϵ decreases further towards 0, with no change to any reported digits in moving from $\epsilon=10^{-6}$ to $\epsilon=10^{-9}$.

5 Question 5

With our solution, computed in Question 4, for all P_{ik} , we can calculate P and use the fact that W = PC to solve for $C = WP^{-1}$. Given my set of productivity draws, I calculated that C = 4.6062 (note: here, C is equal to the real wage).

In the first-best outcome, firms charge their marginal cost: $P_{ik} = W/A_{ik}$. Given my set of draws, I calculated that $C_{SPP} = 7.2417$. Unlike the original Dixit-Stiglitz model where the result of the competitive equilibrium is equivalent to the first-best outcome, here there is a significant wedge owing to the market power firms have within their sectors.

6 Question 6

In the limit as $\theta \to \infty$, goods within a sector become infinitely substitutable. Therefore, in the limit, consumers only buy goods from the cheapest (highest productivity) firm in the sector. The intra-sectoral dynamic then drops out, and the only competition is inter-sectoral. In other words, when $\theta \to \infty$, the problem collapses to the one under Bertrand competition with homogeneous goods.

Note that there is a subtle difference between these models, in that the models are equivalent assuming the draws of the highest-productivity firms within each sector of this sectoral model are equal to the productivity draws of the firms in the original Dixit-Stiglitz case. In other words, if each firm in the sectoral model have productivities drawn from a distribution \mathcal{F} , then the distribution of productivities of the highest-productivity firms within each sector, \mathcal{G} , is defined as follows:

$$\mathcal{G} \sim \max\{A_{1k}, \dots, A_{N_k k} : A_{1k}, \dots, A_{N_k k} \sim \mathcal{F}\}$$

Then, the sectoral model with firm productivities drawn from the \mathcal{F} in the limit as $\theta \to \infty$ converges to the original Dixit-Stiglitz model with firm productivities drawn from the \mathcal{G} distribution.