Title: Smart Traffic Signal Control System Using IoT

Abstract:

In urban areas, traffic congestion at roundabouts and intersections is a major issue, leading to increased commute times, fuel consumption, and air pollution. Traditional traffic signal systems operate on fixed timers, irrespective of real-time traffic conditions. This approach results in inefficiencies such as prolonged wait times for vehicles in high-traffic lanes and unnecessary greenlight durations for low-traffic lanes. This project aims to develop a smart traffic signal control system using IoT and cameras technology to dynamically adjust signal durations based on real-time traffic density. The system integrates cameras, and an ESP32 microcontroller to collect and process traffic data, optimizing signal timings for improved traffic flow and reduced congestion.

1. Introduction

Traffic congestion is a major issue in urban areas, significantly impacting travel efficiency and environmental sustainability. Traditional traffic signal systems operate on pre-defined timers without considering real-time traffic variations. We will enhance traffic management by employing IoT-based solutions that dynamically adjust signal timings based on real-time traffic density estimation using camera-based vehicle detection.

2. Objectives

- To develop an IoT-based smart traffic signal system that dynamically adjusts green light durations based on real-time traffic density.
- To integrate computer vision techniques for accurate vehicle detection and queue estimation.
- To optimize traffic flow, reducing unnecessary wait times and improving urban mobility.
- To implement a scalable system that can be deployed at various intersections.

3. Methodology

3.1 Data Collection

 Traffic cameras capture images, which are processed using OpenCV to count the number of vehicles.

3.2 Traffic Density Estimation

- The extent of vehicle queues is analysed using Cameras data to calculate the traffic density area for each lane.
- Lanes with larger areas are identified as having higher traffic density.
- The presence of larger vehicles is factored into the density calculation since they take longer to clear the lane.

3.3 Decision-Making

• The collected and processed data is sent to the ESP32 microcontroller.

- The microcontroller dynamically adjusts the green light duration based on real-time traffic density.
 - o Lanes with higher traffic density receive longer green light durations.
 - o Lanes with lower traffic density receive shorter green light durations.

4. System Components

Hardware:

- Traffic cameras for image-based vehicle counting
- o ESP32 microcontroller for processing and decision-making

Software:

- o PTV VISSIM for traffic flow modeling and simulation
- OpenCV for image processing and vehicle detection
- Microcontroller programming for traffic light control

5. Expected Outcomes

- A functional prototype demonstrating real-time adaptive traffic signal control.
- Improved traffic flow efficiency by reducing congestion and wait times.
- A scalable solution that can be implemented at multiple intersections for better urban traffic management.

6. Circuit Diagrams

7. Block Diagram

8. Future Innovations

- **Vehicle-to-Infrastructure (V2I) Communication**: Enabling vehicles to communicate with traffic signals for smarter coordination.
- Edge Computing with ESP32: Local processing of camera data using microcontrollers to reduce delay and bandwidth usage.
- Emergency & Priority Vehicle Detection: Automatic recognition and prioritization of ambulances, fire trucks, etc., in traffic signals.

7. Conclusion

This project aims to address urban traffic congestion by implementing an intelligent, real-time traffic signal control system. By leveraging IoT, cameras and computer vision, the system dynamically adjusts traffic light durations based on real-time traffic density, optimizing flow and reducing delays. PTV VISSIM integrates with the system for simulation, and the ESP32 microcontroller controls it, ensuring a practical and scalable solution to modern traffic management challenges.