

Group 4

Submitted to:
Mohammad Ali
Asiqur Rahman Jowel

MEET OUR TEAM

Fariha Ferdousi 1706143

Sanath Kumar Das 1706149

Nausin Tabassum Kudrot 1706158

Fatin Fardaous
1706160

Sadia Afrose 1706161

Sudipta Saha 1706162

Raisa Mashtura 1706163

FLOOR PLAN

(GROUND FLOOR)

FLOOR PLAN

(FIRST FLOOR)

FLOOR PLAN (SECOND TO FIFTH FLOOR)

FLOOR PLAN

ROOF

LEGENDS

- ESS Emergency Switch Board
- sa Switch Board
- 20W Fluorescent Tube Light Fitting
- ○─ Wall Bracket Light Bulb at Lintel Level
- o a Ceiling Light Fitting
- P 3—Pin 15A Socket at lower wall
- ⇒ ∘ 3−Pin 20A Socket at lower wall
- ⇒ 2—Pin 5A Socket at SB Level
- 🔼 🚥 Main Distribution Board

- Emergency Main Distribution Board
- Sub Distribution Board
- Esse Emergency Sub-Distribution Board
- 😣 🗉 Exhaust Fan
- → 2-Pin TV Socket
- 🔎 Ceiling Fan
- Meter Board
- Generator
- Split AC
- Window AC

IN LAYOUTS

IN LAYOUTS

IN LAYOUTS

CALCULATION OF FITTINGS

Number of Lights,
$$N = \frac{E \times A(m^2)}{n \times F \times UF \times LLF}$$

Assumptions:

Number of lights per illuminaire, n = 1

Flux, F = 1800 Lumen (20W energy saving bulb and fluorescent tube light)

 $Utilization\ factor\ and\ light\ loss\ factor,\ UF=found\ from\ table\ using\ room\ index$

Light loss factor, LLF = 0.9

Reflectance:

Ceiling = 0.3

Walls = 0.5

Floor = 0.2

 $Room\ Index = \frac{Length*Width}{Mounting\ Height*(Length+Height)}$

Number of Fans,
$$N = \frac{A(sqft)}{100}$$

Second Floor:

Room	E	Length	Width	Room	Utilizati	Number	Number	Numbe
	(Lumen/			index	on	of Lights	of lights	r of
	m ²)				factor		rounded	Fans
Master				0.84023768		1.2201954		
Bedroom	100	12'5"	9'11"	7	0.35	09	2	1
						1.0096840		
Bedroom-2	100	10'11"	9'4"	0.76680823	0.31	02	1	1
				0.75881171		0.9827077		
Bedroom-3	100	10'	9'11"	5	0.305	12	1	1
				0.82223984		1.7443061		
Living Space	150	11'10"	9'11"	7	0.34	89	2	1
Dining				0.95107218		1.7418975		
Space	100	18'10"	9'4"	9	0.36	91	2	2
				0.64255135		1.2367252		
Kitchen	160	12'	6'6"	1	0.2	68	2	1
				0.48110588		0.3988637		
Toilet-1	100	7'	5'9"	2	0.15	18	1	0
				0.41582258		0.3143219		
Toilet-2	100	7'3"	4'4.5"	1	0.12	52	1	0
				0.37659173		0.2469156		
Toilet-3	100	5'9"	4'4"	6	0.11	35	1	0
						0.2063686		
Balcony-1	70	10'6"	2'10"	0.3400425	0.1	2	1	0
				0.35343587	0.15	0.157686	1	0
Balcony-2	70	4'10"	4'5.5"	4				
				0.35758659	0.17	0.2477987	1	0
Balcony-3	70	12'	2'11"	2				

First Floor (Owner's Bigger Unit):

Room	E	Length	Width	Room	Utilizati	Number	Number	Numbe
	(Lumen/			index	on	of Lights	of lights	r of
	m ²)				factor		rounded	Fans
Master								2.36388
Bedroom	100	19'2"	12'4"	1.143672	0.39	3.475981	3	9
Toilet-1	100	8'5"	5'10"	0.525082	0.175	1.608918	1	
Balcony-1	70	10'3"	2'10"	0.338289	0.1	1.165828	1	

Ground Floor:

Room	E (Lumen/ m²)	Length	Width	Room index	Utilizati on factor	Number of Lights	Number of lights rounded	Numbe r of Fans
Guard Room	100	6'3"	6'3"	0.47625	0.15	1.493426	1	1
Toilet	100	5'9"	4'4"	0.376592	0.11	1.299009	1	
Generator Room Parking Area	70 70	9′11″ 52′4″	5′9″ 19′9″	0.554679 2.185222	0.19 0.54	1.204739 7.683599	7	1
Common space								
Stairs	80	9'6"	9'1"	0.707669	0.28	0.684097	1	
Lobby	80	9'6"	5′	0.499241	0.17	0.376567	1	
Lift	80	6'2"	5'6"	0.443049	0.13	0.268882	1	1

CONDUIT (GROUND FLOOR)

CONDUIT (FIRST FLOOR)

CONDUIT (SECOND TO FIFTH FLOOR)

CALCULATION FOR CONDUITS

Formula:

$$Ampere\ Rating, I = \frac{P}{V \times pf}\ A$$

Assumptions:

Voltage, V = 220 V

Power factor, pf = 0.7

Light Bulb (LB) = 20 W

Tube Light (TL) = 20 W

Ceiling Light (CL) = 20 W

Ceiling Fan (F) = 100 W

Exhaust Fan (EXF) = 60 W

Switchboard Socket (SS) = 100 W

Emergency Switchboard Socket (ESS) = 100 W

It is seen that, all Internal wires are below 5 A rating so 2x1.5 rm BYM is used in all internal wiring.

LEGENDS FOR CONDUITS

Symbol	Containing Power Cable
C1	2x1.5 rm BYM
C2	4x1.5 rm BYM
C3	6x1.5 rm BYM
C4	8x1.5 rm BYM
C5	2x1.5 rm BYM+1.5 rm BYAECC
C8	2x4 rm BYM + 4 rm BYAECC
C9	2x6 rm BYM + 6 rm BYAECC
C10	4x4 rm BYM + 2x4 rm BYAECC
C11	4x6 rm BYM + 2x6 rm BYAECC
C12	2x 16 rm BYM + 16 rm BYA ECC

CONDUIT

(GROUND FLOOR SINGLE UNIT)

SUB DISTRIBUTION BOARD DIAGRAM (Ground floor single unit)

(GROUND FLOOR PARKING AREA)

SUB DISTRIBUTION BOARD DIAGRAM (Ground floor Parking Area)

(1ST FLOOR (OWNER'S BIGGER UNIT))

(1ST FLOOR (SMALLER UNIT))

 $(2^{ND} TO 5^{TH} FLOOR TYPICAL UNIT)$

CALCULATION FOR SDB

Formula:

SDB load = Total load x 0.7 + Total P socket load x 0.2 + Total Q socket load x 0.2

$$SDB \ current = \frac{SDB \ load}{Voltage \times pf}$$

Assumptions:

P load = 3000 W

Q load = 4000 W

Voltage = 220 V

Power factor, pf = 0.7

SAMPLE CALCULATION FOR SDB

Ground Floor (Single Unit):

Sub-Distribution Board (SDB):

Total load = CKT1 load + CKT2 load + CKT3 load + CKT4 load + CKT5 load

CKT1 load =
$$100 + 20 + 20 + 20 + 140 = 300 \text{ W}$$

$$CKT2 load = 20 + 60 + 20 = 100 W$$

$$CKT3 load = 100 + 20 = 120 W$$

$$CKT4 load = 100 + 20 + 100 = 220 W$$

CKT5 load = 20 W

Total load = 760 W

SDB load =
$$760 \times 0.7 + 4 \times 3000 \times 0.2 + 3 \times 4000 \times 0.2 = 5332 \text{ W}$$

SDB current =
$$\frac{5332}{220 \times 0.7} = 34.62 A$$

So, 40 A SP MCCB is needed from SDB to MDB

SWITCHBOARD CONNECTION DIAGRAM EMERGENCY SWITCHBOARD OF GROUND FLOOR SINGLE UNIT

EMERGENCY SUB DISTRIBUTION BOARD DIAGRAM (Ground floor single unit)

EMERGENCY SWITCHBOARD OF GROUND FLOOR PARKING AREA

EMERGENCY SUB DISTRIBUTION BOARD DIAGRAM (Ground floor Parking Area) EMDB SA SP MCCB Zzi S zm BYM+LS zm EYARCC ESDB CKT1 CKT2 CKT3

EMERGENCY SWITCHBOARD OF 1ST FLOOR (OWNER'S BIGGER UNIT)

EMERGENCY SWITCHBOARD OF 1ST FLOOR (SMALLER UNIT)

SWITCHBOARD CONNECTION DIAGRAM EMERGENCY SWITCHBOARD OF 2ND FLOOR TYPICAL UNIT

SAMPLE CALCULATION FOR EMERGENCY SWITCHBOARDS(ESDB)

Formula:

ESDB load = Total load x 0.7 + Total P socket load x 0.2 + Total Q socket load x 0.2

$$\textit{ESDB current} = \frac{\textit{ESDB load}}{\textit{Voltage} \times \textit{pf}}$$

Assumptions:

P load = 3000 W

Q load = 4000 W

Voltage = 220 V

Power factor, pf = 0.7

SAMPLE CALCULATION FOR EMERGENCY SWITCHBOARDS

Emergency Sub-Distribution Board (ESDB):

Total load = CKT1' load + CKT2' load + CKT3' load + CKT4' load + CKT5' load + CKT6' load

CKT1'
$$load = 220 + 20 = 240 \text{ W}$$

CKT2' load =
$$120 + 100 + 100 + 20 + 20 = 360 \text{ W}$$

CKT3' load =
$$220 + 20 + 100 + 100 + 20 = 460 \text{ W}$$

$$CKT4'$$
 load = $100 + 100 + 20 = 220 W$

CKT5' load =
$$100 + 20 = 120 \text{ W}$$

CKT6' load = 20 W

Total load = 1420 W

ESDB load = $1420 \times 0.7 + 4 \times 3000 \times 0.2 + 1 \times 4000 \times 0.2 = 4194 \text{ W}$

ESDB current =
$$\frac{4194}{220 \times 0.7}$$
 = 27.234 A

So, 30 A SP MCCB is needed from ESDB to EMDB

SWITCHBOARD CONNECTION DIAGRAM EMERGENCY MAIN DISTRIBUTION BOARD

CALCULATION FOR EMERGENCY DISRIBUTION BOARD

Calculations for EMDB:

EMDB Load = Total ESDB Load \times 0.7 + Lift Load \times 0.7

Total ESDB Load = ESDB_Gnd_unit + ESDB_Parking + ESDB_FF_unit1 + ESDB_FF_unit2 + ESDB_SF x 8

= 40574 W

EMDB Current =
$$\frac{EMDB \ Load}{\sqrt{3}*Line \ Voltage*pf}$$

Phase Voltage = 220 V

Line Voltage = $\sqrt{3} * 220 \text{ V} = 381.05 \text{ V}$

Power Factor, pf = 0.7

Lift Load = 5000 W

EMDB Load = $40574 \times 0.7 + 5000 \times 0.7 = 31901.8 \text{ W}$

EMDB current =
$$\frac{31901.8}{\sqrt{3} \times 381.05 \times 0.7}$$
 = 69.05 A

So, 70 A TP MCCB 2x50 rm NYY + 25 rm BYAECC is needed from EMDB to MDB

A 40 KW Generator is used to supply the EMDB Load through an ATS.

SWITCHBOARD CONNECTION DIAGRAM MAIN DISTRIBUTION BOARD

CALCULATION FOR MAIN DISRIBUTION BOARD

Calculations for MDB

```
MDB load = Total SDB load \times 0.7 + (EMDB load + Pump load) \times 0.7
Total SDB load = SDB Gnd unit + SDB Parking + SDB FF unit1 + SDB FF unit2
                  + SDB_SF_unit x 2
                 = 5332 + 280 + 4314 + 4146 + 3546 \times 8
                 = 42440 W
                         MDB Load
MDB current =
                   \sqrt{3} * Line Voltage * pf
Phase Voltage = 220 V
Line Voltage = \sqrt{3} x 220 V = 381.05 V
Power Factor, pf = 0.95 (Due to PFI plant)
Total SDB load = 42440 W
EMDB load = 31901.8 W
Pump load = 5000 \text{ W}
MDB load = 42440 \times 0.7 + (31901.8 + 5000) \times 0.7 = 55539.26 \text{ W}
MDB \ current = \frac{55539.26}{\sqrt{3} \times 381.05 \times 0.95} = 88.58 \ A
So, 100 A TP MCCB 4x70 rm NYY + 35 rm BYAECC is needed from MDB to Main Line
```

CALCULATION FOR PFI PLANT

$$\cos\theta = 0.7, \sin\theta = \sqrt{1 - (\cos\theta)^2} = 0.714$$

$$Q = 3VIsin\theta = Ptan\theta = 56.66 KVAR$$

After pf improvement $\sin \theta = 1$

$$I = \frac{Q}{3 \times V \times \sin\theta} = 85.85 A$$

So, 100A TP MCCB 4x70 rm NYY + 35 rm is needed from PFI to MDB

SAMPLE CALCULATION FOR MINIMUM LOAD DENSITY

Ground Floor (Single Unit):

Load density =
$$\frac{Total\ load}{Apartment\ size\ in\ meter^2} = \frac{5332+1858}{1255\times0.3048^2} = 61.667\ W/m^2$$

LIGHTNING PROTECTION

Index	Index Figure	Description	Index Value
Α	Use of Structure	Houses and similar buildings	2
В	Type of Construction	Reinforced concrete with non-metal roof	2
С	Consequential effects	Ordinary domestic(not containing valuable materials)	2
D	Degree of Isolation	Structure located in an area with a few other structures of similar height	5
E	Type of Terrain	Flat terrain at any level	2
F	Height of Structure	(6(floor)+1)×10'(floor height)3.281(convert to meter)=21.34(6floor+1)×10'floor height3.281convert to meter=21.34	8
G	No. of thunderstorm days per year	Over 21	21
		Total	42

TOTAL INDEX NUMBER IS 42 WHICH IS HIGHER THAN 40. SO LIGHTNING PROTECTION IS ESSENTIAL.

LPS DESIGN PARAMETERS

Lightning Arrester

Rod Height = 2 mRoof Perimeter = 2 x (41.67' + 61.83') = 207 ftHere, 8 lightning arresters have been placed, 25ft distance apart.

Down Conductor:

Total Area = 41.67' x 61.83' = 2576.45 sq. ft. = 239.36 sq. m Number of down conductors – 1 conductor for first 180 sq. M (239.36 - 80) $/100 = 1.59 \approx 2$ extra conductors We have used total 3 down conductors with ground electrodes. Earth termination resistance of ground electrodes – less than 10 ohms

Roof Conductors:

Roof conductors are placed 6" away from the roof railing connecting all the lightning arrestors to the down conductors.

THANK YOU