								4	5	2	.3,	/10	12	4						
TU	15 <i>f</i>	OK	MΑ	~ ;0	۸ı	4									G		10 6	LAT	ICA	7 E
												^						•		
	Ab 1	<i>5</i> .'3	٠)	د; ح		صر	+ >'	6		د د		1	r2 S (fo,	:	75,6	٠.,٠		
	ب	4	? ~ \	~ d:		o .`		Æ∏	P	10	ho	ત ~ વ ત્ર~	S (, '	S	ماد م	>	40	٢	۱,۱	•
	 1	` `~ S	to	r_	~ ? ·	D	,	つべ	he	2 h		32 ¹	Je	ste	ی	- اماد				
	_			2 Mc				·			,	7								
			•																	
	5	,i 2		>	(^		WĬ	. (۴,	ح)	C 3								
	2	_	d.	ےر	5	Je		4.	>54	L,	ارنے	C)	٠.'							
				mx	7 } ~ ~	۲ * ۱		6		9	B;	×,	•							
	A	ماا	r2																	
			A	×۷	\ _		/	A	1	×.	~	χı		[[1	AM	1	A	15	la	'B'\
			B	× ′) -	(B	1			V	44	. 1	BM	1	B	<i>)</i> –	(A	
							_													J
						2	= //	XV		((A),		P 2	A'		A	2 6	s')	
								(m-1	9 () \	Br	.//		BS	P	ı	ß	50	3′ [′]	J
		de	,~																	
		Δ 9	> 0	. 1								4		0		1				
												A								
	9	√ امر	,d:		1	4 6		9		3×		Sa	45	•	<u>_</u>)'، او	26	್ ಗಡ	૮ન્	4. '
	S	e	C	S	əl c	>	د و								h	> †1	٠٩	4.	-113 - ×9	
							F	38	B		=	0							., 9	
						N	12M	MX	, ,	·×9										

In particulate, se E= I, qualdo AB1 =0 e se :- 259:-t. B=B1 AB = 0 Et interessate considerare anche forme quadratienc. Doureste avere giar visto che se 2~ N_k(0, I) 212 = 522 = Y = 112112 e-distribuits come us "x2 on k grad. d. 1.bertar ", c'ee - -X2 on parametro k, cioeund games on parametri & e 1 Scriverens
Y~X2(k) oppure イル らるいるとなった) 1s a: deusits- e $f_{\gamma}(\gamma) = \frac{(\frac{1}{2})^{k/2}}{D(\frac{1}{2})} + \frac{1}{2} - \frac{1}{2}$ fue: one garra di Ertero

La futione generatice de l'ancenti en fom (t) = E(e) = Jety (1/2) = 1 e dy [C(4/2)] $\frac{(1/2)^{k_{12}}}{\int_{0}^{k_{12}}} \int_{0}^{\infty} y^{\frac{k_{2}-1}{2}} e^{-(\frac{1}{2}-\epsilon)y} dy$ $\frac{(1/2)^{k/2}}{C(k/2)} \frac{C(k/2)}{(-1-k)^{k/2}} = \frac{1}{(1-2k)^{k/2}}$ can la gude si divostra che Se Y ~ X2(k1) e Y2~ X2(k2)

Sous i-sipensienti,

allors

cotings

expressie

for (t) = E(et/(+71)) = E(et/(et/2))

= (ef/2) = E(et/(+71)) = E(et/(et/2)) €(e^{tτ},) €(€^{tτ}2) i-d.podes = $(1-2+)^{k_1/2}$ $(1-2+)^{k_2/2}$ = (1-26) R.+k? $Y_1 + Y_2 \sim \chi^2(k_1 + k_2)$

C'c- u inverse di questo visultata: TED Se Q,~ x2(k,) e Q2~ X2 (K2) 64 K,> K2 9=9,-92 et judipendente da Qz, allara Q~ y2 (K,- K2) J-13thi' 12 +9 - d: Q, e
1-2t) K./2 = E (e)

E (e+02) E(eta) E(etai) = E(eta) 1 (1-2t) Ke/2 $E(e^{tQ}) = \frac{1}{(1-2t)^{k_1/2}} (1-2t)^{k_2/2}$ = (1-2+)(k; k2)/2 C'-e-Q ~ x2(k,-ke) C.V.D.

Vaniano ora al caso generale X~ Mm(m,E) e supposition che 5-1 esists (quiudi anche la dencitar). 65: «he-Nel c>>= m=1, 82>0 1 CS Pre 567 OH 6 X-<u>/</u> ha seusa ed e- un standard. 2232: -ue L'equiplent di (X-/1)2 DISTANZA DI e T= (x-m) E-(x-m) MAHALANOBIS 12 9-21e e- X2(~). Infatt. se E-1 esiste E-12 simmetrics tale che 5-1-5-125-12 (x-m)'5-'(x-m) = (x-m)'5-'25-12(x-m) (2-12(x-/-)) E -12(x-/-)= 11 E-1/2/1 since $\sum_{z=1/2}^{z} e^{-z} e$

trestonatione affine d: x, g-1-d1 5-12(x-1)~ N(?,?) $E(\Sigma^{-1/2}(x,\mu)) = \Sigma^{-1/2}E(x,\mu)=0$ $V_{2}V_{3}U_{3}U_{4}(x,\mu) = \Sigma^{-1/2}V_{2}U_{3}U_{4}(x)(\Sigma^{-1/2})'$ = \(\xi - ''^2 = \mathbb{I} Quando due forme quadratiche dello stesse vettore nor-ale sous indipendent? Albhiana un visultata nel casa anoschedostico Z=62I
scolore SE XNN/(M, GI) e A eB sono matrice sinnetriche tali che AB = 0 , slots

1) X'AX e BX sono indipendenti:

2) X'AX e X'BX sono indipendenti: Dimo AX e BX sous itd. pendeut. x il visultato precedente dove A e X'AX = X' AATAX 1'inverso 90-0-21:22242 et the diene della sola AX

e sinil mente X'BX ct fuzione della sola BX grindi ne consegue 2). RIPASSO DI ALGEBRA LINEARE Us ustrice quadrata P e- uz matrice di projetione se e solo se et sincetrica e idempotente:

P=P1

P=P 1) se l'e us ustrice di proiceione d: +2-90 + 5 m, 2110+2 + de: sue: autovalor sono usuali: a 1 e m-r sous ususi: 3 0 $\lambda \times' \times = \times' \lambda \times = \times' P^2 \times$ costsute = $(P \times)' P \times = \lambda \times \lambda \times = \lambda^2 \times x$ m > > 110rs >= >2 et possibile solo se 2=0 oppre 2=1 e poi che- r= mª degl. atovalor: hon milli, a soup r sutovalori ugual: a 1 (gl. a/tr. sono 0).

2) grazie a 1), esiste una unatrice T di autovettori ortogonali toli che T'PT= [] = [] - 0] = -> 3) se l'et matrice di proiceione di rango rem, allore tr P= Exi= r (Torniano & prosaciliva-) Consideriano di mono X onosched. C'oc- XN Mn(M, 62 I) e studiano la provezione exime exime di ci soppiano PX~ Wm (Im, P52IP'= 52P= 62P) Dimostriano infine TEO Se XNNn(M, 6ºI) e P e-us natrice d' projezione d' rango r, allors Q = (x-n)'[(x-n) ~ x2(r).

Diffo Considerisho $\frac{2}{2} = T'(x_m) \quad \text{done } T = 2$ 211042 2~ M(?,?) E(=) = T'E(x-1) = 0 VarGu(2) = VarGu(TI(x-M)) = T' 52 I T = 52TT=52 I 1'- particiare le cuparent' d. 2 sano Q=(x-m)' P(x-m) = 1/62 (x-/1)1 T 22 T'(x-/1) = 1 2 2 2 = 1 2 [0 0] 2 C.V.D.