A Book of Abstract Algebra (2nd Edition)

		~==
Chapter 23,	Problem	2 E F

Bookmark

Show all steps: (

ON

Problem

Prove part:

If gcd (a, n) = 1, then $a^{m\phi(n)} \equiv 1 \pmod{n}$ for all values of m.

Step-by-step solution

Step 1 of 2

Consider any two relatively prime numbers a and n, that is,

$$gcd(a, n) = 1$$

Objective is to prove that

$$a^{m\phi(n)} \equiv 1 \pmod{n}$$

for all values of *m*.

Since gcd(a, n) = 1, then by Euler's theorem,

$$a^{\phi(n)} \equiv 1 \pmod{n}$$

Comment

Step 2 of 2

Then raise both the sides of this congruence to the power m, as:

$$(a^{\phi(n)})^m \equiv 1^m \pmod{n}$$
$$a^{m\phi(n)} \equiv 1^m \pmod{n}$$
$$\equiv 1 \pmod{n}.$$

(note that	t this <i>m</i> was a	rbitrary).			
Thus, a"	$n\phi(n) \equiv 1 \pmod{n}$	n) for all val	ues of <i>m</i> .		
	-(,			
Commen	t .				