Figure 1(a)

Non-Deterministic Finite State Automata or NFA running on a GP CPU	Deterministic Finite State Automata or DFA running on a GP CPU (needs very	Properties of DFA and NFA techniques used on # of # of conventional microprocessors (for an I
R * N cpu cache+branch cycles	(needs very large memory) memory access cycles	# of States (for N bytes of input) (for an R character [order of] Regular Expression)

CPU walking DFA table in DRAM

Coprocessor closer to table in SRAM

Performance on evaluating Regular Expressions on every byte of input stream

1000s of REs @ 100 Mbps

100s of REs @ 280 Mbps

Gigabytes of Memory

100s of MBs of SRAM

Figure 2

Figure 3(a)

Figure 3(b)

Figure 5

Programmable Automata Registers (Expression Registers) **Conn ctivity Control** Stat Transition (dot, char, ignore case, Stat Transition Evaluation Symbols ranges, count{m,n}, etc) Start Stat Select Control v ctor Control v ctor Acc pt State Select **Node Elements** Z $\frac{N_1}{N_2}$.¥1 C₂₁ C 11 Z ≤ ა ĭ ပ္လ CMM C_{2M} C 1<u>×</u> Small Register Size: e.g. Basic 16-state Automata Registers building block needs 54 Bytes of –2 Bytes of Accept state select -16x16 bit or 32 Bytes of connectivity –2 Bytes for Start state select control 16 Bytes: Evaluation Symbols, –2 Bytes: Node Elements control control **Evaluation Datapath** State Machine Input

 $\frac{N_1}{N_2}$

Z ≤

Fig 7

Simple regular structure enables a high density → dense array of multiple tiles 13u technology Several thousands of automata (organized as multiple rows of tiles) can fit on a singe die on

Figure 8(b)

Larger Stat Machine Realized via Multiple State Machine Building Blocks on a Gen ral Interconnect

Larger State Machine Realized via Multiple State Machine Building Blocks Organized as a Tree

I	1
Q	
5	
Ø	
9)
(a)	`
_	

Non-Deterministic Finite State Automata r NFA running on the Apparatus	Non-Deterministic Finite State Automata or NFA running on a GP CPU	D terministic Finite State Automata or DFA running on a GP CPU	Properties of DFA and NFA techniques used on conventional microprocessors
Z	20	2R (needs very large memory)	Storage: Bound on # of States (for R characters)
N Tight on chip state transition cycle (~1 ns)	R * N cpu cache+branch cycles (~4ns)	N memory access cycles (~100ns)	Evaluation time (for N bytes) [order of]

Perf on REs on every byte

1000s of REs @ 100Mbps

100s of REs @ 280Mbps

1000s of REs @ > 10Gbps

Gigabytes of Memory

100s of MBs of SRAM

No table memory needed

Two orders of magnitude speedup without need for table memory