第5章 树和二义树

主迪

wangd@sdas.org

逻辑结构

集合——数据元素间除"同属于一个集合"外, 无其它关系

线性结构——一个对一个, 如线性表、栈、队列

树形结构——一个对多个, 如树

图形结构——多个对多个,如图

第5章 树和二叉树

- 5.1 树和二叉树的定义
- 5.2 案例引入
- 5.3 树和二叉树的抽象数据类型定
- 5.4 二叉树的性质和存储结构
- 5.5 遍历二叉树和线索二叉树
- 5.6 树和森林
- 5.7 哈夫曼树及其应用
- 5.8 案例分析与实现

教学目标

- 1. 掌握二叉树的基本概念、性质和存储结构
- 2. 熟练掌握二叉树的前、中、后序遍历方法
- 3. 了解线索化二叉树的思想
- 4. 熟练掌握: 哈夫曼树的实现方法、构造哈夫曼编码的方法
- 5. 了解:森林与二叉树的转换,树的遍历方法

5.1 树和二叉树的定义

树的定义

树 (Tree) 是 $n(n \ge 0)$ 个结点的有限集,它或为空树 (n = 0);或为非空树,对于非空树T:

- (1) 有且仅有一个称之为根的结点;
- (2) 除根结点以外的其余结点可分为m (m>0) 个互不相交的有限集 T_1, T_2, \dots, T_m ,其中每一个集合本身又是一棵树,并且称为根的子树(SubTree)。

树是n个结点的有限集

树的其它表示方式

凹入表示

基本术语

根 ——即根结点(没有前驱)

叶子——即终端结点(没有后继)

森林 ——指m棵不相交的树的集合(例如删除A后的子树个数)

有序树 ——结点各子树从左至右有序,不能互换(左为第一) 无序树 ——结点各子树可互换位置。

基本术语

双亲 ——即上层的那个结点(直接前驱) 孩子 ——即下层结点的子树的根(直接后继) 兄弟 ——同一双亲下的同层结点(孩子之间互称兄弟) 堂兄弟 ——即双亲位于同一层的结点(但并非同一双亲) 祖先 ——即从根到该结点所经分支的所有结点 子孙 ——即该结点下层子树中的任一结点

基本术语

结点 ——即树的数据元素

结点的度——结点挂接的子树数

结点的层次——从根到该结点的层数(根结点算第一层)

终端结点 ——即度为0的结点,即叶子

分支结点 ——即度不为0的结点(也称为内部结点)

树的度 ——所有结点度中的最大值

树的深度——指所有结点中最大的层数

(或高度)

层次

1

2

3

4

树结构和线性结构的比较

线性结构

第一个数据元素 无前驱

最后一个数据元素 无后继

其它数据元素

一个前驱,一个后继

一对一

树结构

根节点(只有一个)无双亲

叶子节点(可以有多个)无孩子

其它节点—中间节点

一个双亲,多个孩子

一对多

二叉树的定义

- 二叉树 (Binary Tree) 是 $n(n \ge 0)$ 个结点所构成的集合, 它或为空树 (n = 0); 或为非空树, 对于非空树T:
 - (1) 有且仅有一个称之为根的结点;
- (2) 除根结点以外的其余结点分为两个互不相交的子集 T_1 和 T_2 ,分别称为T的左子树和右子树,且 T_1 和 T_2 本身又都是二叉树。

普通树 (多叉树) 若不转化为二叉树,则运算很难实现

为何要重点研究每结点最多只有两个 "叉" 的树?

- ✓ 二叉树的结构最简单,规律性最强;
- ✓ 可以证明,所有树都能转为唯一对应的二叉树,不 失一般性。

二叉树基本特点:

- •结点的度小于等于2
- •有序树(子树有序,不能颠倒)

二叉树的五种不同形态

练习

具有3个结点的二叉树可能有几种不同形态?普通树呢?

5种/2种

5.2 案例引入

案例5.1:数据压缩问题

/ トゲーノルウィコートナ

将数据文件转换成由0、1组成的二进制串,称之为编码。

(a)等长编码万案		(b) 个等长编码万案1		(c) 个等长编码万案2		
字符	编码	字符	编码		字符	编码
a	00	a	0		a	0
b	01	b	10		b	01
С	10	c	110		c	010
d	11	d	111		d	111

(1.) 了炒以治司子字。

案例5.2: 利用二叉树求解表达式的值

以二叉树表示表达式的递归定义如下:

- (1) 若表达式为数或简单变量,则相应二叉树中仅有一个根结点,其数据域存放该表达式信息;
- (2) 若表达式为"第一操作数运算符第二操作数"的形式,则相应的二叉树中以左子树表示第一操作数,右子树表示第二操作数,根结点的数据域存放运算符(若为一元运算符,则左子树为空),其中,操作数本身又为表达式。

(a + b *(c-d)-e/f)的二叉树

5.3 树和二叉树的抽象数据类型定义

二叉树的抽象数据类型定义

```
ADT BinaryTree{
```

数据对象D: D是具有相同特性的数据元素的集合。

数据关系R: 若D= Φ ,则R= Φ ;

若D \neq Φ,则R= {H};存在二元关系:

- ① root 唯一 //关于根的说明
- ② $D_i \cap D_k = \Phi$ //关于子树不相交的说明
- ③ //关于数据元素的说明
- ④ //关于左子树和右子树的说明

基本操作 P: //至少有20个

}ADT BinaryTree

CreateBiTree(&T,definition)

初始条件; definition给出二叉树T的定义。

操作结果:按definition构造二叉树T。

PreOrderTraverse(T)

初始条件:二叉树T存在。

操作结果: 先序遍历T, 对每个结点访问一次。

InOrderTraverse(T)

初始条件:二叉树T存在。

操作结果: 中序遍历T, 对每个结点访问一次。

PostOrderTraverse(T)

初始条件:二叉树T存在。

操作结果: 后序遍历T, 对每个结点访问一次。

5.4 二叉树的性质和存储结构

性质1: 在二叉树的第i层上至多有2i-1个结点

提问:第i层上至少有_1_个结点?

性质2: 深度为k的二叉树至多有2k-1个结点

提问:深度为k时至少有_k _ 个结点?

性质3:对于任何一棵二叉树,若2度的结点数有 n_2 个,则叶子数 n_0 必定为 n_2 +1(即 n_0 = n_2 +1)

$$B = n - 1$$

$$B = n_2 \times 2 + n_1 \times 1$$

$$n = n_2 \times 2 + n_1 \times 1 + 1 = n_2 + n_1 + n_0$$

特殊形态的二叉树

满二叉树:一棵深度为k且有 2^k -1个结点的二叉树。(特点:每层都"充满"了结点)

只有最后一层叶子不满 ,且全部集中在左边 4 5 6 7 8 9 10 11 12

完全二叉树:深度为k的,有n个结点的二叉树,当且 何当其每一个结点都与深度 为k的满二叉树中编号从1 至n的结点——对应

满二叉树和完全二叉树的区别

满二叉树是叶子一个也不少的树,而完全二叉树虽然前n-1层是满的,但最底层却允许在右边缺少连续若干个结点。满二叉树是完全二叉树的一个特例。

性质4:具有n个结点的完全二叉树的深度必为[log_2n]+1

性质5: 对完全二叉树,若从上至下、从左至右编号,则编号为i 的结点,其左孩子编号必为2i,其右孩子编号必为2i+1;其双亲的编号必为i/2。

练习

一棵完全二叉树有5000个结点,可以计算出其叶结点的个数是(2500。

二叉树的顺序存储

实现:按满二叉树的结点层次编号,依次存放二叉树中的数据元素。

二叉树的顺序存储

g

特点:

结点间关系蕴含在其存储位置中 浪费空间,适于存满二叉树和完全二叉树

二叉树的链式存储

lchild data parent rchild	lchild	data	parent	rchild
---------------------------	--------	------	--------	--------

二叉链表


```
typedef struct BiNode{
    TElemType data;
    struct BiNode *lchild,*rchild;//左右孩子指针
}BiNode,*BiTree;
```

练习

在n个结点的二叉链表中,有_____个空指针域

分析:必有2n个链域。除根结点外,每个结点有且仅有一个双亲,所以只会有n-1个结点的链域存放指针,指向非空子女结点。

空指针数目=2n-(n-1)=n+1

三叉链表


```
typedef struct TriTNode
{ TelemType data;
   struct TriTNode *lchild,*parent,*rchild;
}TriTNode,*TriTree;
```

5.5 遍历二叉树和线索二叉树

遍历定义——指按某条搜索路线遍访每个结点且 不重复(又称周游)。实质是得到 树中所有节点的一个线性排列。

遍历用途——它是树结构插入、删除、修改、查 找和排序运算的前提,是二叉树一 切运算的基础和核心。

先序遍历: ABDEC

中序遍历: DBEAC

后序遍历: DEBCA

口诀:

DLR—先序遍历,即先根再左再右

LDR—中序遍历,即先左再根再右

LRD—后序遍历,即先左再右再根

遍历的算法实现一先序遍历

若二叉树为空,则空操作 否则 访问根结点(D) 前序遍历左子树(L) 前序遍历右子树(R)

先序遍历序列: A B D C

遍历的算法实现——用递归形式格外简单!

回忆:

```
long Factorial ( long n ) {
    if ( n == 0 ) return 1;//基本项
    else return n * Factorial (n-1); //归纳项}
```

则三种遍历算法可写出:

先序遍历算法

```
Status PreOrderTraverse(BiTree T){
if(T==NULL) return OK; //空二叉树
else{
  cout<<T->data; //访问根结点
  PreOrderTraverse(T->lchild); //递归遍历左子树
  PreOrderTraverse(T->rchild); //递归遍历右子树
```


遍历的算法实现一中序遍历

若二叉树为空,则空操作 否则: 中序遍历左子树(L) 访问根结点(D)

中序遍历右子树 (R)

中序遍历序列: B D A C

中序遍历算法

```
Status InOrderTraverse(BiTree T){
if(T==NULL) return OK; //空二叉树
else{
  InOrderTraverse(T->lchild); //递归遍历左子树
 cout<<T->data; //访问根结点
  InOrderTraverse(T->rchild); //递归遍历右子树
```

遍历的算法实现一后序遍历

若二叉树为空,则空操作 否则 后序遍历左子树(L) 后序遍历右子树(R) 访问根结点(D)

后序遍历序列: D B C A

后序遍历算法

```
Status PostOrderTraverse(BiTree T){
if(T==NULL) return OK; //空二叉树
else{
  PostOrderTraverse(T->lchild); //递归遍历左子树
  PostOrderTraverse(T->rchild); //递归遍历右子树
  cout<<T->data; //访问根结点
```

用二叉树表示算术表达式

先序遍历 +**/ABCDE 前缀表示

后序遍历 AB/C*D*E+ 后缀表示

遍历算法的分析

```
Status PreOrderTraverse(BiTree T){
  if(T==NULL) return OK;
  else{
    cout<<T->data;
    PreOrderTraverse(T->lchild);
    PreOrderTraverse(T->rchild);
  }
}
```

```
Status InOrderTraverse(BiTree T){
  if(T==NULL) return OK;
  else{
    InOrderTraverse(T->lchild);
    cout << T-> data;
    InOrderTraverse(T->rchild);
Status PostOrderTraverse(BiTree T){
 if(T==NULL) return OK;
 else{
  PostOrderTraverse(T->lchild);
   PostOrderTraverse(T->rchild);
   cout << T-> data:
```

遍历算法的分析

如果去掉输出语句,从递归的角度看,三种算法是完全相同的,或说这三种算法的访问路径是相同的,只是访问结点的时机不同。

从虚线的出发点到终点的路径 上,每个结点经过3次。

第1次经过时访问=先序遍历 第2次经过时访问=中序遍历 第3次经过时访问=后序遍历

遍历算法的分析

时间效率:0(n) //每个结点只访问一次 空间效率:0(n) //栈占用的最大辅助空间

重要结论

若二叉树中各结点的值均不相同,则: 由二叉树的前序序列和中序序列,或由其后序序列和中序序列均能唯一地确定一棵二叉树, 但由前序序列和后序序列却不一定能唯一地确定一棵二叉树。

练习

已知一棵二叉树的中序序列和后序序列分别是BDCEAFHG 和 DECBHGFA,请画出这棵二叉树。

- ①由后序遍历特征,根结点必在后序序列尾部(A);
- ②由中序遍历特征,根结点必在其中间,而且其左部必全部是左子树子孙(BDCE),其右部必全部是右子树子孙(FHG);
- ③继而,根据后序中的<u>DECB</u>子树可确定B为A的左孩子根据<u>HGF</u>子串可确定F为A的右孩子;以此类推。

中序遍历: BDCEAFHG

后序遍历: DECBHGFA

二叉树的建立(算法5.3)

按先序遍历序列建立二叉树的二叉链表

例:已知先序序列为:

二叉树的建立(算法5.3)

```
void CreateBiTree(BiTree &T) {
cin>>ch;
if (ch=='#') T=NULL; //递归结束, 建空树
else{
   T=new BiTNode; T->data=ch;
    //生成根结点
   CreateBiTree(T->1child); //递归创建左子树
   CreateBiTree(T->rchild): //递归创建右子树
```

二叉树遍历算法的应用

✓计算二叉树深度

- ▶如果是空树,则深度为0;
- ▶ 否则,递归计算左子树的深度记为*m*,递归计算 右子树的深度记为*n*,二叉树的深度则为*m*与*n*的 较大者加1。

二叉树遍历算法的应用

✓计算二叉树结点总数

- ▶ 如果是空树,则结点个数为0;
- ➤ 否则,结点个数为左子树的结点个数+右子树的结点个数再+1。

二叉树遍历算法的应用

✔计算二叉树叶子结点总数

- ▶如果是空树,则叶子结点个数为0;
- ➤ 否则,为左子树的叶子结点个数+右子树的叶子结点个数。
- ▶什么是叶子节点? (判断左孩子和右孩子是否为空)

思考

在n个结点的二叉链表中,有<u>n+1</u>个空指针域

- 二叉链表空间效率这么低,能否利用这些空闲区存放有用的信息 或线索?
- ——可以用它来存放当前结点的 直接前驱和后继等线索,以加快 查找速度。

B

线索化二叉树

普通二叉树只能找到结点的左右孩子信息,而该结点的直接前驱和直接后继只能在遍历过程中获得 结点的直接前驱和直接后继只能在遍历过程中获得 若将遍历后对应的有关前驱和后继预存起来,则 从第一个结点开始就能很快"顺藤摸瓜"而遍历整个 树

可能是根、或最左(右)叶子

例如中序遍历结果: BDCEAFHG,实际上已将二叉树转为线性排列,显然具有唯一前驱和唯一后继!

如何保存这类信息?

两种解决方法

增加两个域: fwd和bwd;

利用空链域(n+1个空链域)

- 1) 若结点有左子树,则lchild指向其左孩子; 否则, lchild指向其直接前驱(即线索);
- 2) 若结点有右子树,则rchild指向其右孩子; 否则,rchild指向其直接后继(即线索)。

为了避免混淆,增加两个标志域

lchild LTag	data	RTag	rchild
-------------	------	------	--------

LTag : 若 LTag=0, 1child域指向左孩子;

若 LTag=1, 1child域指向其前驱。

RTag :若 RTag=0, rchild域指向右孩子;

若 RTag=1, rchild域指向其后继。

先序线索二叉树

LTag=0, lchild域指向左孩子 LTag=1, lchild域指向其前驱 RTag=0, rchild域指向右孩子 RTag=1, rchild域指向其后继

B

中序线索二叉树

后序线索二叉树

线索化二叉树的几个术语

线索: 指向结点前驱和后继的指针

线索链表:加上线索二叉链表

线索二叉树:加上线索的二叉树(图形式样)

线索化:对二叉树以某种次序遍历使其变为线索二叉树的过程

练习

画出以下二叉树对应的中序线索二叉树。

该二叉树中序遍历结果为: H, D, I, B, E, A, F, C, G

对应的中序线索二叉树存储结构如图所示:

注: 此图中序遍历结果为: H, D, I, B, E, A, F, C, G

练习

画出与二叉树对应的中序线索二叉树

因为中序遍历序列是: 55 40 25 60 28 08 33 54 对应线索树应当按此规律连线,即在原二叉树中添加虚线。