VERSUCH NUMMER 354

Gedämpfte und erzwungene Schwingungen

Irgendjemand irgend.jemand@tu-dortmund.de soi

Durchführung: 18.01.2022 Abgabe:

Someone some.one@tu-dortmund.de

Abgabe: 25.01.2022

TU Dortmund – Fakultät Physik

Inhaltsverzeichnis

1	Ziel	setzung	1				
2	The	oretische Grundlagen	1				
	2.1	Gedämpfte Schwingung	1				
	2.2	Erzwungene Schwingung	4				
	2.3	Berechnung der Messunsicherheiten	6				
3	Vers	suchsaufbau und Durchführung	6				
	3.1	Messung des Abklingverhaltens eines LRC-Kreises	6				
	3.2	Messung des Widerstandes im aperiodischen Grenzfall	7				
	3.3	Messung der Phasenverschiebung und Frequenzabhängigkeit der Kondensatorspannung	7				
4	Auswertung						
	4.1	Messung des Abklingverhaltens eines LRC-Kreises	8				
	4.2	Messung des Widerstandes im aperiodischen Grenzfall	10				
	4.3	Messung der Frequenzabhängigkeit und der Phasenverschiebung der Kondensatorspannung	11				
5	Disk	cussion	15				
	5.1	Effektiver Widerstand und Abklingzeit	16				
	5.2	Widerstand in aperiodischen Grenzfall	16				
	5.3	Frequenzabhängigkeit	16				
	5.4	Zusammenfassung					
Lit	eratı	ır	16				

1 Zielsetzung

Ziel des Versuchs ist es mit Hilfe von elektrischen Schaltungen das Verhalten von gedämpften und erzwungenen Schwingungen zu untersuchen. Dabei sollen verschiedene Größen, welche in den Schwingungsgleichungen vorkommen, experimentell bestimmt werden.

2 Theoretische Grundlagen

2.1 Gedämpfte Schwingung

In diesem Versuch wird ein sogenannter elektrischer Schwingkreis betrachtet. Es handelt sich dabei um einen Schaltkreis, der aus zwei Energiespeichern besteht, nämlich einer Kapazität C und einer Induktivität L. Diese werden meistens durch je durch einen Kondensator beziehungsweise eine Spule realisiert.

Abbildung 1: ungedämpfter Schwingkreis [1]

In Abbildung 1 ist ein Schwingkreis aus diesen Bauteilen dargestellt. Wird Energie in einen Schaltkreis dieser Art geleitet, so besteht die Möglichkeit, dass die Energie zwischen den beiden Energiespeichern hin und her pendelt. Dabei wechseln der Strom I(t) und die Spannung U(t) periodisch das Vorzeichen. In Abbildung 1 ist kein energieverbrauchendes Element vorhanden, weshalb die Schwingung unbegrenzt vorliegen würde. Dies wird als **ungedämpfte Schwingung** bezeichnet. In der

Realität gibt es allerdings immer bauteilbedingten Widerstände. Diese lassen sich, wie in in Abbildung 2, über einen Widerstand R darstellen. Das Ergebnis nennt sich dann **gedämpfter Schwingkreis**.

Die Dämpfung ergibt sich, da der ohmsche Widerstand fortlaufend und irreversibel einen Teil der elektrischen Energie in Wärme umwandelt. Dadurch nimmt die Energie und damit die Amplituden des Stromes und der Spannung ab. Um nun analytisch zu beschreiben, wie die Energieabnahme erfolgt, werden anhand des Schaltbildes in Abbildung 2 Differentialgleichungen aufgestellt. So folgt aus dem 2. Kirchhoffschen Gesetz

$$U_{R}(t) + U_{C}(t) + U_{L}(t) = 0$$

Abbildung 2: Gedämpfter Schwingkreis [1]

mit dem ohmschen Gesetz

$$U_{P}(t) = R \cdot I(t),$$

der Spannung auf dem Kondensator

$$U_{\rm C}(t) = \frac{Q(t)}{C}$$

und dem Induktionsgesetz

$$U_{L}(t) = L \frac{dI}{dt}$$

$$L \frac{dI}{dt} + RI + \frac{Q}{C} = 0.$$
 (1)

Dabei beschreibt Q(t) die sich auf dem Kondensator befindende Ladung Q zum Zeitpunkt t. Diese Gleichung wird nun nach der Zeit abgleitet und unter Verwendung von $I = {}^{dQ}/{}_{dt}$ ergibt sich die Differentialgleichung für eine Gedämpfte Schwingung in der Form

$$\frac{\mathrm{d}^2 I}{\mathrm{d}t^2} + \frac{R}{L} \frac{\mathrm{d}I}{\mathrm{d}t} + \frac{1}{LC}I = 0. \tag{2}$$

Diese Differentialgleichung lässt sich mithilfe des Exponentialansatzes

$$A(t) = C \cdot \exp(i\omega t) \tag{3}$$

1 Zielsetzung Seite 1

lösen. Dabei gilt $i = \sqrt{-1}$ und $\omega \in \mathbb{C}$. Einsetzen von Gleichung 3 in Gleichung 2 liefert die **charakteristische Gleichung**

$$\omega^2 - i\frac{R}{I}\omega - \frac{1}{IC} = 0$$

mit der Lösung

$$\omega_{1,2} = i \frac{R}{2L} \pm \sqrt{\frac{1}{LC} - \frac{R^2}{4L^2}}$$

Die Gesamtheit der Lösungen der Differentialgleichung (2) lässt sich somit darstellen als

$$A(t) = C_1 \exp(i\omega_1 t) + C_2 \exp(i\omega_2 t)$$
(4)

Dabei sind C_1 und C_2 beliebige komplexe Zahlen. Durch Nutzung der zweckmäßigen Substitutionen

$$2\pi\mu = \frac{R}{2L} \qquad \text{und} \qquad 2\pi f = \sqrt{\frac{1}{LC} - \frac{R^2}{4L^2}}$$

lässt sich Gleichung 4 schreiben als

$$A(t) = \exp(-2\pi\mu t) \cdot (C_1(i2\pi f t) + C_2(-i2\pi f t)). \tag{5}$$

Weitere Umformungen sind nur mit Hilfe einer Fallunterscheidung möglich, da die Form der Gleichung stark dadurch beeinflusst wird, ob f reel oder imaginär ist.

1. Fall: Sei

$$\frac{1}{LC} > \frac{R^2}{4I^2}$$
 , d.h. f reell

Über den Ansatz

$$C_1 = \frac{1}{2}B_0 \exp(i\eta)$$
 und $C_2 = \frac{1}{2}B_0 \exp(-i\eta)$

ergibt sich, mit reellen Konstanten B_0 und η für A(t) mit Hilfe der Eulerschen Formel

$$\frac{\exp(i\varphi) + \exp(-i\varphi)}{2} = \cos(\varphi),$$

dass der Klammerausdruck in Gleichung 5 eine rein oszillatorische Funktion darstellt. Schließlich liefert diese Umformung

$$I(t) = B_0 \exp(-2\pi\mu t) \cdot \cos(2\pi f t + \eta) \tag{6}$$

Gleichung 6 beschreibt eine **gedämpfte Schwingung** dar, also eine harmonische Schwingung mit der Frequenz *f*, deren Amplitude mit der Zeit exponentiell abnimmt. Die Schwingungsdauer *T* ergibt sich als

$$T = \frac{1}{f} = \frac{2\pi}{\sqrt{\frac{1}{LC} - \frac{R^2}{4L^2}}}.$$
 (7a)

Sie geht gegen den Wert

$$T_0 = \frac{2\pi}{\omega_0} = 2\pi\sqrt{LC} \tag{7b}$$

der ungedämpften Schwingung an, falls $^{R^2}/_{4L^2} \ll ^1/_{LC}$. Die Formel wird auch als Thomsonsche Schwingungsformel bezeichnet. Die Abnahmegeschwindigkeit der Amplitude lässt sich über die Abklingdauer

$$T_{\rm ex} = \frac{1}{2\pi\mu} = \frac{2L}{R} \tag{8}$$

beschreiben. Nach dieser Zeit ist die Amplitude auf den e-ten Teil des ursprünglichen Wertes gefallen. Charakterisiert wird die Abnahmegeschwindigkeit durch die Größe $2\pi\mu = {}^{R}/_{2L}$.

Abbildung 3: Darstellung einer gedämpften Schwingung (Die Einhüllende dieser Kurve wird durch $\pm \exp(-2\pi\mu t)$ beschrieben) [1]

2. Fall: Sei

$$\frac{1}{LC} < \frac{R^2}{4I^2}$$
 , d.h. f imaginär

In Gleichung 5 sind dann alle Exponentialfunktionen reell, die Lösung I(t) enthält also keinen oszillatorischen Anteil mehr. Dieser Fall wird auch die **aperiodische Dämpfung** genannt. In Abbildung 4 sind verschiedene Funktionsverläufe für verschiedene Konstanten von I(t) eingezeichnet.

Abbildung 4: Möglicher Zeitverlauf des Stromes in einem Schwingkreis mit aperiodischer Dämpfung [1]

Die durchgezogenen Linien sind dabei jeweils für verschiedene Integrationskonstanten B_1 und B_2 . Wie zu erkennen ist, kann erst ein Extremalwert erreicht werden, oder die Funktion geht sofort monoton gegen Null. Nach einer hinreichend großen Zeit verläuft I aber immer etwa proportional zu

$$\exp\biggl[-\biggl(\frac{R}{2L}-\sqrt{\frac{R^2}{4L^2}-\frac{1}{LC}}\biggr)t\biggr],$$

es liegt also ein einfaches Relaxationsverhalten wie in V353 [2] beschrieben vor. Von besonderer Bedeutung ist der Spezialfall

$$\frac{1}{LC} = \frac{R^2}{4L^2}$$
 , d.h. $f = 0$,

denn dann wird

$$I(t) = A \exp\left(-\frac{R}{2L}t\right) = A \exp\left(-\frac{t}{\sqrt{LC}}\right).$$

Dieser Fall ist durch die gestrichelte Kurve in Abbildung 4 dargestellt und heißt **aperiodischer Grenzfall**. Der Fall ist hervorzuheben, da *I*(*t*) hier am schnellsten gegen Null geht. Dies findet in der Realität viele Anwendungen, um Schwingungen zu vermeiden.

2.2 Erzwungene Schwingung

In den gedämpften Schwingkreis nach Abbildung 2 wird nun eine Spannungsquelle eingebaut, die eine Sinusförmige Spannung U(t) liefert. Dem Schwingkreis wird dadurch eine äußere periodische Anregung aufgelegt. Die sich dadurch ergebenen Effekte werden hier untersucht. Es wird dabei von einer **erzwungenen Schwingung** gesprochen.

Abbildung 5: Erzeugung einer erzwungenen Schwingung in einem elektrischem Schwingkreis [1]

Mit einer Spannung

$$U(t) = U_0 \exp(i\omega t)$$

nimmt die Differentialgleichung (2) die Gestalt

$$L\frac{\mathrm{d}I}{\mathrm{d}t} + RI + \frac{Q}{C} = U_0 \exp(i\omega t) \tag{9a}$$

oder

$$LC\frac{d^2U_C}{dt^2} + RC\frac{dU_C}{dt} + U_C = U(t) = U_0 \exp(i\omega t).$$
 (9b)

Q(t) beschreibt hierbei die Ladung auf dem Kondensator und $U_C(t) = \frac{Q(t)}{C}$ entsprechend die Spannung am Kondensator. Durch diese Differentialgleichung lassen sich die Abhängigkeiten der Amplitude U der Kondensatorspannung und der Phasenunterschied gegenüber der Erregerspannung U(t) gegenüber der Frequenz bestimmen. Dazu wird der Ansatz

$$U_c(\omega, t) = U(\omega) \exp(i\omega t) \tag{10}$$

verwendet. $U(\omega)$ ist dabei komplex. Wird nun (10) in (9b) eingesetzt, so ergibt sich für $U(\omega)$ die Bestimmungsgleichung

$$-LC\omega^2U(\omega) + i\omega RCU(\omega) + U(\omega) = U_0$$

gelöst liefert der Ausdruck für U_C

$$U_{\rm C} = \frac{U_0}{1 - LC\omega^2 + i\omega RC} = \frac{U_0 \left(1 - LC\omega^2 - i\omega RC \right)}{(1 - LC\omega^2)^2 + \omega^2 R^2 C^2}$$
(11)

Durch (11) ergibt sich der Betrag

$$|U(\omega)| = U_0 \sqrt{\frac{1}{(1 - LC\omega^2)^2 + \omega^2 R^2 C^2}}$$
 (12)

und die Phase

$$\tan(\varphi(\omega)) = \frac{-\omega RC}{1 - LC\omega} \tag{13a}$$

hzw.

$$\varphi(\omega) = \arctan\left(\frac{-\omega RC}{1 - LC\omega}\right) \tag{13b}$$

Aus Gleichung 10 ergibt sich, dass der Betrag der gesuchten Lösungsfunktion $U_{\rm C}$ gleich dem Betrag von U ist, somit ergibt sich mit Gleichung 12

$$U_{\rm C}(\omega) = \frac{U_0}{\sqrt{(1 - LC\omega^2)^2 + \omega^2 R^2 C^2}}.$$
 (14)

Dies ist nun die gesuchte Abhängigkeit der Kondensatorspannung $U_{\rm C}$ von der Frequenz ω . Diese Abhängigkeit wird als Resonanzkurve bezeichnet. Anhand dieser Lösung ist zu erkennen, dass $U_{\rm C}$ für $\omega \to \infty$ gegen 0 und für $\omega \to 0$ gegen die Erregeramplitude U_0 strebt. Es gibt eine bestimmte endliche Frequenz, bei der $U_{\rm C}$ ein Maximum erreicht, welches größer sein kann, alls die Erregeramplitude. Dieses Phänomen wird als **Resonanz** bezeichnet und die Frequenz $\omega_{\rm res}$ bei der sie auftritt als **Resonanzfrequenz**. Nach (14) ergibt sich diese als

$$\omega_{\rm res} = \sqrt{\frac{1}{IC} - \frac{R^2}{2I^2}}.$$
 (15)

Besonders interessant ist der Fall schwacher Dämpfung. Dieser tritt auf, wenn

$$\frac{R^2}{2L^2} \ll \frac{1}{LC} \tag{16}$$

gilt. In diesem Fall nähert sich die Resonanzfrequenz $\omega_{\rm res}$ der Kreisfrequenz ω_0 der ungedämpften Schwingung an, wie am Vergleich von (15) mit (7b) gesehen werden kann. Sind diese Bedingungen erfüllt, so ist $U_{\rm C}$ um den Faktor $^1/\omega_{\rm o}$ RC größer als $U_{\rm C}$:

$$U_{\text{C, max}} = \frac{U_0}{\omega_0 RC} = \frac{U_0}{R} \frac{L}{C}.$$
 (17)

Sollte die Schwingung nahezu ungedämpft ablaufen, gilt also $R \to 0$, so kann $U_{\mathsf{C},\,\mathsf{max}} \to \infty$ gelten. Dies wird auch **Resonanzkatastrophe** genannt. Der Faktor $^1/\omega_{_QRC}$ wird dabei auch als **Resonanzüberhöhung** oder **Güte q** des Schwingkreises bezeichnet. Die Schärfe einer solchen Resonanz kann über die Breite der durch (14) beschriebenen Resonanzkurve angegeben werden. Sie ist durch die beiden Frequenzen ω_+ und ω_- , bei denen U_{C} auf den $^1/\sqrt{2}$ -ten Teil seines Maximalwertes (17) abgesunken ist. Sie ergeben sich also über die Beziehung

$$\frac{U_0}{\sqrt{2}} \frac{1}{\omega_0 RC} = \frac{U_0}{C \sqrt{\omega_{\pm}^2 R^2 + \left(\omega_{\pm}^2 L - \frac{1}{C}\right)^2}}.$$

Unter der Bedingung, dass $\frac{R^2}{L^2} \ll \omega_0^2$ ist, folgt für die Breite

$$\omega_{+} - \omega_{-} \approx \frac{R}{L}. \tag{18}$$

Zwischen Güte (17) und Breite (18) der Resonanzkurve besteht somit die Beziehung

$$q = \frac{\omega_0}{\omega_+ - \omega_-}$$

Im Falle einer starken Dämpfung, also wenn

$$\frac{R^2}{2L^2} \gg \frac{1}{LC}$$

ist, verhält sich der Schwingkreis ganz anders. Es existiert keine Resonanzüberhöhung mehr, sondern $U_{\rm C}$ geht vom Niveau der Erregerfrequenz aus mit wachsender Frequenz monoton gegen 0. Sind die Frequenzen groß genug, so fällt $U_{\rm C}$ proportional zu $^1/\omega^2$. Durch diese Eigenschaft lässt sich der RLC-Kreis auch als Tiefpass nutzen. Gegenüber dem RC-Kreis hat dieser den Vorteil, dass die Ausgangsspannung mit wachsender Frequenz schneller gegen 0 geht. Als nächstes wird die Frequenzabhängigkeit der Phase zwischen Erreger- und Kondensatorspannung in der Schaltung nach Abbildung 5 diskutiert. Aus dem Ansatz (10) ergibt sich für den Zusammenhang zwischen φ und ω Gleichung 13b. Daraus ergibt sich, dass für hinreichend kleine Frequenzen Kondensator- und Erregerspannung nahezu in Phase sind. Bei sehr hohen Frequenzen dagegen, liegt $U_{\rm C}$ etwa um π hinter $U_{\rm O}$ zurück. An der Stelle

$$\omega_0^2 = \frac{1}{LC}$$

ist $\varphi = -\frac{\pi}{2}$. Außerdem folgt aus (13b) für die Frequenzen ω_1 und ω_2 , bei denen φ gerade $\pi/4$ beziehungsweise $3\pi/4$ (also tan(±1)) ist, die Beziehung

$$\omega_{1,2} = \pm \frac{R}{2L} + \sqrt{\frac{R^2}{4L^2} + \frac{1}{LC}}.$$

Dies ergibt dann

$$\omega_1 - \omega_2 = \frac{R}{I}.\tag{19}$$

Der Vergleich von (18) mit (19) liefert, dass im Falle schwacher Dämpfung ω_1 – ω_2 mit ω_+ – ω_- zusammenfällt.

2.3 Berechnung der Messunsicherheiten

Alle Mittelwerte einer N-fach gemessenen Größe x werden über die Formel

$$\overline{x} = \frac{1}{N} \sum_{i=1}^{N} x_i.$$
 (20)

berechnet. Der zugehörige Fehler des Messwertes berechnet sich dann über

$$\Delta \overline{x} = \sqrt{\frac{1}{N(N-1)} \sum_{i=1}^{N} (x_i - \overline{x})^2}.$$
 (21)

Setzt sich eine zu berechnende Größe aus mehreren mit Unsicherheit behafteten Messwerten zusammen, so ist die Unsicherheit dieser Größe über die Gaußsche Fehlerfortpflanzung gegeben

$$\Delta f(x_1, \dots, x_N) = \sqrt{\sum_{i=1}^{N} \left[\left(\frac{\partial f}{\partial x_i} \right)^2 \cdot (\Delta x_i)^2 \right]}.$$
 (22)

Bei der Angabe des Endergebnisses wird schließlich der sich aus den Unsicherheiten ergebene systematische Fehler mit dem sich aus der Mittelwertberechnung ergebenden statistischen Fehler addiert. Alle Berechnungen, Graphen sowie das Bestimmen der Unsicherheiten werden mit Python 3.8.8 und entsprechenden Bibliotheken¹ durchgeführt.

3 Versuchsaufbau und Durchführung

Es werden drei verschiedene Messungen vorgenommen um das Verhalten eines Schwingkreises nachzuvollziehen.

3.1 Messung des Abklingverhaltens eines LRC-Kreises

Zur Bestimmung des Effektivwiderstands $R_{\rm eff}$ wird die Schaltung in Abbildung 6 aufgebaut. Dabei wird an den Kondensator statt eines Nadelimpulses eine Rechteckspannung gegeben. Der Widerstand R ist fest. Durch die am Oszilloskop dargestellte Spannung soll nun der Effektivewiderstand $R_{\rm eff}$ bestimmt. Dazu wird die Frequenz der Rechteckspannung so angepasst das die Amplitude um den Faktor 3 bis 8 abnimmt. Das Oszilloskop wird so eingestellt das der gesamte Abklingvorgang beobachtet werden kann. Durch das Ablesen der Spannung am Oszilloskop werden Wertepaare $(U_c(t_i), t_i)$ aufgenommen.

Abbildung 6: Schaltung zur Bestimmung der Zeitabhängigkeit der Amplitude des Schwingkreises [1]

¹Numpy [3], Uncertainties [4] and Matplotlib [5]

3.2 Messung des Widerstandes im aperiodischen Grenzfall

Zur Messung des Widerstandes im aperiodischen Grenzfall wird der Widerstand in der Schaltung wie in Abbildung 7 dargestellt durch einen variablen Widerstand ersetzt. Um den aperiodischen Grenzfall zu treffen wird die Spannung auf dem Oszilloskop dargestellt. Der aperiodische Grenzfall tritt dann ein wenn die Spannung am schnellsten zu 0 abklingt ohne überzuschwingen. Dies wird durch den veränderbaren Widerstand bestmöglich eingestellt und $R_{\rm ap}$ abgelesen.

Abbildung 7: Schaltung zur Bestimmung des Widerstandes der zum aperiodischen Grenzfall führt [1]

3.3 Messung der Phasenverschiebung und Frequenzabhängigkeit der Kondensatorspannung

Zur Messung der Phasenverschiebung und Frequenzabhängigkeit kann die selbe Schaltung aus Abbildung 8 verwendet werden. Es wird eine Sinusspannung auf den Kondensator gegeben. Die Frequenz dieser wird variiert und dabei die Phasenverschiebung und die Amplitude der Spannung aufgenommen. Zusätzlich muss auch die Amplitude der eingespeisten Sinusspannung gemessen werden, da diese nicht frequenzunabhängig ist. Die Phasenverschiebung kann so auch durch den Vergleich der Graphen am Oszilloskop abgelesen werden. Dazu wird die Gesamtlänge einer Periode und der Unterschied der Nulldurchgänge der beiden Spannungen aufgenommen. Der Quotient liefert die Phasenverschiebung.

Abbildung 8: Schaltung zur Bestimmung der Phasendifferenz und der Frequenzabhängigkeit der Kondensatorspannung [1]

4 Auswertung

In Tabelle 1 sind die Werte angegeben, die maßgeblich das Verhalten des Schwingkreises beeinflussen.

 Tabelle 1: Technische Daten der im Schwingkreis verwendeten Bauteile

Parameter des Schwingkreises							
Bauteil	Wert						
Induktivität <i>L</i>	(3,50±0,01) mH						
Kapazität C	(5,00±0,02) nF						
Widerstand R_1	(30,3±0,1)Ω						
Widerstand R_2	(271,6±0,2)Ω						

4.1 Messung des Abklingverhaltens eines LRC-Kreises

Abbildung 9: Abbild der Schwingung auf dem Oszilloskop

Tabelle 2: Messung des Abklingen des LRC-Kreises

t / μs	U _C / V			
0,30	3,6			
1,2	2,8			
2,2	2,4			
3,2	1,9			
4,1	1,6			
5,0	1,2			
6,0	1,0			
6,9	0,80			
7,8	0,70			
8,8	0,60			
9,8	0,50			

In Abbildung 10 wird der Verlauf der positiven Amplitude der Kondensatorspannung $U_{\rm C}$ gegen die Zeit t aufgetragen, nachdem der Schwingkreis durch einen Berg einer Rechteckspannung angeregt wird. Es werden dabei die in Tabelle 2 notierten Werte verwendet. Diese Wertepaare sind nur die Hochpunkte der tatsächlich vorliegenden Schwingung, welche in Abbildung 9 abgebildet ist. Außerdem wird in Abbildung 10 noch eine Exponentiale Ausgleichsfunktion der Form

$$f(t) = a \cdot \exp(b \cdot t) + c \tag{23}$$

eingezeichnet, welche gleichzeitig die Einhüllende für die Maxima beschreibt.

Abbildung 10: Schwingung

Für die Ausgleichsfunktion ergeben sich folgende Parameter:

$$a = 7,44\pm0,18$$
 , $b = -231\,009,114\pm0,016$ und $c = 0,2\pm0,2$.

Wird nun der Ansatz (23) mit der Gleichung 5 verglichen so ist zu erkennen, dass $2\pi\mu$ = -b gilt. Damit lässt sich der Effektive Dämpfungswiderstand $R_{\rm eff}$ über eine Umformung von (8) zu

$$R_{\rm eff} = (16,17\pm0,05)\,\Omega$$

bestimmen. Direkt durch (8) ergibt sich die Abklingdauer $T_{\rm ex}$. Sie lautet also

$$T_{\rm ex}$$
 = (432,8834±0,0032) µs

Nach dem zweiten Teil von Gleichung 8 ergibt sich der Literaturwert für $T_{\rm ex}$ aus L und R = 10 Ω zu

$$T_{\text{ex, lit}} = (700,0\pm2,9) \,\mu\text{s}$$

4.2 Messung des Widerstandes im aperiodischen Grenzfall

Der Spannungsverlauf eines aperiodischen Grenzfalls stellt sich bei einem Widerstand von

$$R_{\rm ap} \approx 3100 \, \Omega$$

ein. Aus der Theorie lässt sich für den Widerstand die Formel

$$R_{\rm ap, \, lit} = 2\sqrt{\frac{L}{C}}$$

ableiten. Damit ergibt sich hier ein Literaturwert von

$$R_{\rm ap, \, lit} = (1673 \pm 4) \, \Omega$$

4.3 Messung der Frequenzabhängigkeit und der Phasenverschiebung der Kondensatorspannung

Tabelle 3: Messungen der Frequenzabhängigkeit

f / Hz	U _{gen} / V	U _{out} / V	a/μs	<i>b</i> / μs	f / Hz	U _{gen} / V	U _{out} / V	a / μs	<i>b</i> / μs
100	10	10	0,0	3600	34 000	8,5	25	1,8	10
200	10	10	0,0	1800	35 000	8,5	25	1,9	10
400	10	10	0,0	900	35 000	8,5	25	1,9	10
600	10	10	0,0	600	35 000	8,5	25	2,0	10
800	10	10	0,0	440	35 000	8,5	25	2,0	10
1000	10	10	0,0	350	35 000	8,5	25	2,0	10
2000	10	10	0,0	180	36 000	8,5	26	2,1	10
3000	10	10	0,0	120	36 000	8,5	26	2,1	10
4000	10	10	0,0	89	36 000	8,5	26	2,2	10
5000	10	10	0,0	72	36 000	8,5	26	2,2	9,8
6000	10	10	0,0	60	36 000	8,5	26	2,2	9,8
7000	10	10	0,10	51	37 000	8,5	25	2,3	9,8
8000	9,5	10	0,10	45	37 000	8,5	25	2,4	9,8
9000	9,5	10	0,10	40	37 000	8,5	25	2,4	9,6
10 000	9,5	11	0,40	36	37 000	8,5	25	2,4	9,6
11 000	9,5	11	0,40	33	37 000	8,5	25	2,4	9,6
12 000	9,5	11	0,40	30	38 000	8,5	25	2,4	9,6
13 000	9,5	11	0,60	28	38 000	8,5	25	2,5	9,6
14 000	9,5	12	0,70	26	38 000	8,5	24	2,5	9,4
15 000	9,5	12	0,70	25	38 000	8,5	24	2,5	9,4
16 000	9,5	12	0,70	23	38 000	8,5	24	2,6	9,4
17 000	9,5	13	0,80	21	39 000	8,5	24	2,7	9,2
18 000	9,5	13	0,80	20	39 000	8,5	23	2,8	9,2
19 000	9,5	13	0,80	19	39 000	8,5	23	2,8	9,1
20 000	9,5	13	0,80	19	40 000	8,5	22	2,9	9,0
21 000	9,5	14	0,80	17	41 000	8,5	20	3,0	8,7
22 000	9,5	14	0,90	16	42 000	8,5	19	3,1	8,5
23 000	9,5	15	0,90	16	43 000	8,5	18	3,1	8,3
24 000	9,5	16	0,90	15	44 000	8,5	16	3,2	8,1
25 000	9,5	16	0,90	14	45 000	8,5	15	3,2	8,0
26 000	9,5	17	1,0	14	50 000	9,0	10	3,2	7,2
27 000	9,0	18	1,0	13	55 000	9,0	7,2	2,9	6,5
28 000	9,0	18	1,1	13	60 000	9,5	5,6	2,8	6,0
29 000	9,0	19	1,1	12	65 000	9,5	4,4	2,8	5,5
30 000	9,0	21	1,2	12	70 000	9,5	3,7	2,4	5,2
31 000	9,0	22	1,4	12	75 000	9,5	3,0	2,3	4,8
32 000	9,0	23	1,5	11	80 000	9,5	2,6	2,1	4,5
33 000	8,5	24	1,7	11	85 000	9,5	2,2	2,0	4,2
33 000	8,5	25	1,7	11	90 000	9,5	2,0	1,9	3,9
33 000	8,5	25	1,8	11	95 000	9,5	1,7	1,8	3,7
34 000	8,5	25	1,8	11	100 000	9,5	1 , 5	1,7	3,6
34 000	8,5	25	1,8	11	150 000	9,5	0,25	1,2	2,4
34 000	8,5	25	1,8	11	200 000	9,5	0,13	0,90	1,8
34 000	8,5	25	1,8	11		<u> </u>		-	·
	•		<u> </u>						

Das Verhältnis der Spannungen v_c/v_o , deren Werte in Tabelle 3 eingetragen sind, wird in Abbildung 11 doppellogarithmisch gegen die Frequenz f aufgetragen.

Abbildung 11: Resonanzkurve der erzwungenen Schwingungen in doppellogarithmischer Skala

Das Maximum der Resonanzkurve liegt ungefähr bei $f_{\rm res}$ = 36 kHz. Bei dieser Frequenz ist die Kondensatorspannung um ein vielfaches höher als die Erregerspannung U_0 . Für die auch als Güte bezeichnete Resonanzüberhöhung

$$q = \frac{U_{\text{C, max}}}{U_{\text{O}}},$$

ergibt sich aus der Messung der Wert $q_1 \approx 3,1$, bei einer maximalen Kondensatorspannung von $U_{C, \max} = 26 \text{ V}$. Der Literaturwert für die Güte ergibt sich aus

$$q_{1, \text{ lit}} = \frac{1}{R_2} \sqrt{\frac{L}{C}},$$

der Wert

$$q_{1. \, \text{lit}} = 3,080 \pm 0,008$$

Um die Breite der Resonanzkurve zu bestimmen werden die Grenzfrequenzen $f_{\pm} = \frac{u_{\rm C, max}}{\sqrt{2}}$ bestimmt. Aus den zwei sich ergebenden Lösungen $f_{-} = 28$ kHz und $f_{+} = 43$ kHz wird die Differenz $f = f_{-} - f_{+}$ gebildet. Die Grenzfrequenzen werden außerdem in die lineare Darstellung der Resonanzkurve in Abbildung 12 eingezeichnet. Die Differenz beträgt hier f = 15 kHz.

Abbildung 12: Lineare Darstellung des Spannungsverhältnisses in Abhängigkeit der Frequenz mit eingezeichneten Grenzfrequenzen

Die theoretische Resonanzbreite lautet $f_{\text{lit}} = \frac{R_2}{2\pi L} = (12,35\pm0,04)\,\text{kHz}$. Durch die Resonanzbreite lässt sich die Güteziffer erneut bestimmen durch

$$q = \frac{f_{\text{res}}}{f}. (24)$$

Es ergeben sich der Wert aus den Messdaten q_2 = 2.4 und der Literaturwert $q_{2, lit}$ = 2,998±0,008.

In Tabelle 3 sind Messwerte zur Bestimmung der frequenzabhängigen Phasendifferenz aufgetragen. Die Phase zwischen der Sinusspannung des Frequenzgenerators U(t) und der Kondensatorspannung $T_{\rm C}(\omega,t)$ ergibt sich über die Formel

$$\varphi = \frac{a}{b} 2\pi$$
,

wobei a dem Zeitunterschied der Nulldurchgänge von U(t) und $U_{\rm C}$ entspricht und b der Periodendauer T der Erregerschwingung. Die sich ergebenen Phasendifferenzen werden in Abhängigkeit der Frequenzen in Tabelle 4 aufgetragen.

Tabelle 4: Phasendifferenz und Frequenz

		_		
f / Hz	φ/°		f / Hz	φ / °
100	0		34 000	62
200	0	:	35 000	66
400	0	:	35 000	66
600	0	:	35 000	71
800	0	:	35 000	71
1000	0	:	35 000	72
2000	0	:	36 000	76
3000	0	:	36 000	76
4000	0	:	36 000	79
5000	0	:	36 000	81
6000	0	:	36 000	81
7000	0,71	:	37 000	84
8000	0,81	:	37 000	88
9000	0,91	:	37 000	90
10 000	4,1		37 000	90
11 000	4,4		37 000	90
12 000	4,8	:	38 000	90
13 000	7,9		38 000	94
14 000	9,9		38 000	96
15 000	10		38 000	96
16 000	11		38 000	100
17 000	14		39 000	110
18 000	14		39 000	110
19 000	15		39 000	110
20 000	15		40 000	120
21 000	17		41 000	120
22 000	20		42 000	130
23 000	21		43 000	130
24 000	22		44 000	140
25 000	23		45 000	140
26 000	26		50 000	160
27 000	27		55 000	160
28 000	31		60 000	170
29 000	32		65 000	180
30 000	36		70 000	170
31 000	43		75 000	170
32 000	48		80 000	170
33 000	56		85 000	170
33 000	57		90 000	180
33 000	60		95 000	180
34 000	60		00 000	170
34 000	61		50 000	180
34 000	61		00 000	180
34 000	61	-		
		_		

Die Phase φ wird außerdem in Abbildung 13 halblogarithmisch gegen die Frequenz aufgetragen.

Abbildung 13: Messdaten der Phasendifferenz zu verschiedenen Frequenzen

Es ist zu erkennen, dass die Phasendifferenz erst langsam wächst und dann mit zunehmender Frequenz schneller ansteigen. Je näher die Frequenz an der Resonanzfrequenz liegt, umso steiler ist die Kurve. In Abbildung 14 wird der gerade Teil der Phasenkurve linear dargestellt. Es ist grade der Teil der zwischen den Frequenzen f_1 und f_2 liegt, also dem Teil wo für die Phase gilt $\pi/2 \le \varphi \le 3\pi/2$. Die Frequenzen sind $f_1 = 31\,\mathrm{kHz}$ und $f_2 = 43\,\mathrm{kHz}$. Entsprechend lautet die Differenz f = 12 kHz. Nach der Formel (24) ergibt sich die Güte schließlich zu 3,0.

Abbildung 14: Messdaten der Phasendifferenz zu verschiedenen Frequenzen, linearer Anteil

5 Diskussion

Zum besseren Vergleichen werden die prozentualen Abweichungen der experimentell Werte von deren berechneten Werten bestimmt.

5 Diskussion Seite 15

5.1 Effektiver Widerstand und Abklingzeit

Der Effektive Widerstand hat eine Abweichung von $(61,7\pm0,5)$ %. Diese relativ große Abweichung hat verschiedene Gründe. Es werden mehrere Widerstände nicht betrachtet. Sowohl der Kondensator als auch die Spule besitzen einen reellen Widerstand, da diese keine perfekten Kondensatoren und Induktoren sind. Doch auch das Oszilloskop und die Kabel selber besitzen eine nicht vernachlässigbaren Innenwiderstand. Dies wird noch verstärkt da fälschlicherweise nicht einer der festen Widerstände verwendet wird sondern der regelbare Widerstand mit der Einstellung auf $10~\Omega$. Dieser besitzt auch eine Ungenauigkeit. Die Abklingdauer besitzt einen Relativenfehler von $(38,16\pm0,26)$ %. Auch dieser Fehler ist auf die nicht beachteten Widerstände zurückzuführen.

5.2 Widerstand in aperiodischen Grenzfall

Der gemessene Wert weicht um (85,3±0,5) % von dem berechneten Wert ab. Dies liegt vor allem an an der Ungenauigkeit der Einstellung des aperiodischen Grenzfalls. Dieser kann nur durch das Ausprobieren und beobachten der Kurve approximiert werden. Wenn dieser nur leicht unterschritten wird kommt es schon zu großen Abweichungen.

5.3 Frequenzabhängigkeit

Die Resonanzfrequenz konnte mit einer Abweichung von (2,78±0,24)% genau bestimmt werden. Abweichungen treten vor allem dadurch auf das nahe des Resonanzpunktes schlecht abgelesen werden kann. Die Frequenzbreite die sich aus der gemessenen Spannung ergibt weicht um (21,5±0,4)% ab. Dies ist vermutlich auch der nicht beachteten Widerstände geschuldet da diese die Ablesegenauigkeit beeinflussen. Weiterhin können diese Werte nur an den Daten abgelesen werden und besitzen so eine größere Ungenauigkeit. Die so bestimmte Güte weicht um (19,95±0,22)% ab. Dies ist auf den großen Fehler der Frequenzbreite zurückzuführen. Hingegen besitzt die Frequenzbreite die durch die Phasenverschiebung bestimmt wird nur eine Abweichung von (2,84±0,29)% und die so bestimmte Güte sogar nur einen Fehler von (0,001±0,003)%. Dies stellt deutlich klar das die Phasenverschiebung bessere Werte liefert.

5.4 Zusammenfassung

Das Experiment ist gut geeignet um die Funktionsweise einer LRC-Kreises nachzuvollziehen. Auch wenn die Bestimmung des $R_{\rm ap}$ relativ ungenau war, können durch die Phasenbestimmung gute Aussagen über das Verhalten des Schwingkreises getätigt werden. Die Fehler sind auch nicht auf geringe Messdaten zurückzuführen, da ausreichend Werte aufgenommen werden.

Literatur

- [1] Versuch Nr. 354. Gedämpfte und erzwungene Schwingungen. TU Dortmund, Fakultät Physik. 2021.
- [2] Versuch Nr. 353. Das Relaxationsverhalten eines RC-Kreises. TU Dortmund, Fakultät Physik. 2021.
- [3] Travis E. Oliphant. "NumPy: Python for Scientific Computing". Version 1.9.2. In: Computing in Science & Engineering 9.3 (2007), S. 10–20. URL: http://www.numpy.org/.
- [4] Eric O. Lebigot. Uncertainties: a Python package for calculations with uncertainties. Version 2.4.6.1. URL: http://pythonhosted.org/uncertainties/.
- [5] John D. Hunter. "Matplotlib: A 2D Graphics Environment". Version 1.4.3. In: Computing in Science & Engineering 9.3 (2007), S. 90–95. URL: http://matplotlib.org/.

Literatur Seite 16