Setul de probleme 1

soluțiile se primesc

miercuri 5 noiembrie între orele 14 și 16, la cabinetul C-402

29 octombrie 2014

Problema 1.

- a) Arătați că dacă M este un **mers închis impar** într-un digraf D, atunci M conține un **circuit impar** în D.
- b) Demonstrați că graful suport al unui digraf tare conex care nu are circuite impare este un graf bipartit.

(2+2 = 4 puncte)

Problema 2. S-a propus următorul algoritm (cu timp de lucru polinomial) pentru determinarea numărului de stabilitate $\alpha(G)$ al unui graf G:

GreedyStab(G)

determină un vârf de grad minim v_0 în G;

$$\begin{aligned} \textbf{if} \ V(G) &= \{v_0\} \cup N_G(v_0) \ \ \textbf{then} \quad \textbf{return} \quad 1 \\ & \textbf{else} \quad \textbf{return} \quad 1 + \mathbf{GreedyStab} \big(G - (\{v_0\} \cup N_G(v_0))\big) \end{aligned}$$

- a) Arătați că algoritmul propus poate greși oricât de mult: $\forall n \in \mathbb{N}$ există un graf G astfel încât $\alpha(G) \mathbf{GreedyStab}(G) = n$.
- b) Demonstrați că $\mathbf{GreedyStab}(G) = h.$ $v \in V(G)$ $\frac{1}{1 + d_G(v)}$

și că dacă avem egalitate atunci **GreedyStab** $(G) = \alpha(G)$.

(2+2=4 puncte)

Problema 3. Fie G = (V, E) un digraf, X o multime finită şi $c : E \to 2^X$ o funcție care asociază fiecărui arc $e = vw \in E$ o submulțime a lui X: $c(vw) \subseteq X$. Funcția c poate fi extinsă la drumurile lui G, considerând pentru orice drum P al lui G, $c(P) = \emptyset \cup \bigcup_{e \in E(P)} c(e)$ (în particular, dacă $E(P) = \emptyset$ – adică P este un vârf – avem $c(P) = \emptyset$). Pentru orice $v, w \in V$, notăm $\mathcal{P}_{v,w} = \{P | P \text{ drum în } G \text{ de la } v \text{ la } w\}$. Notăm cu |A| numărul de elemente ale mulțimii A, iar # este un element care nu aparține mulțimii X. Considerăm următoarea problemă:

P: Dat digraful G = (V, E), funcția c și $s \in V$, să se determine pentru fiecare $v \in V$, un drum P_{sv}^* astfel încât $|c(P_{sv}^*)| = \min\{|c(P)| : P \in \mathcal{P}_{s,v}\}.$

Adevărat sau Fals? "Următorul algoritm rezolvă problema P".

(dacă răspunsul este **Adevărat** se va da o demonstrație; dacă răspunsul este **Fals** se va da un contraexemplu) (3 puncte)

Problema 4. Fie G=(V,E) un graf cu |V|=n, |E|=m, reprezentat cu ajutorul listelor de adiacență. O ordonare a vârfurilor lui G este o aplicație injectivă $\pi:V\to\{1,2,\ldots,n\}$ $(\pi(v)=i$ are semnificația că vârful v se află pe locul i în ordonarea π). π este o ordonare lexicografică dacă pentru orice două vârfuri $x,y\in V$ cu $\pi(x)<\pi(y)$, dacă mulțimea

```
D_{\{x,y\}} = \{z \in V | \pi(z) < \pi(x) \text{ si } z \text{ este adiacent cu exact unul dintre } x \text{ si } y\}
```

este nevidă, atunci $z_0\in D_{\{x,y\}}$ cu $\pi(z_0)=\min_{z\in D_{\{x,y\}}}\pi(z)$ satisface $z_0x\in E$ și $z_0y\not\in E.$

a) Arătați că algoritmul de mai jos construiește o ordonare lexicografică:

Lexicographic(G)

b) Argumentați că algoritmul se poate implementa în timpul O(n+m).

(1 + 2 puncte)

Precizări

1. Este încurajată asocierea în echipe formate din 2 studenți care să realizeze în

comun tema.

- 2. Depistarea unor soluții copiate între echipe diferite conduce la anularea punctajelor tuturor acestor echipe.
- 3. Nu e nevoie să se rescrie enunțul problemelor. Nu uitați să treceți numele și grupele din care fac parte membrii echipei la începutul lucrarii.
- 4. Este încurajată redactarea latex a soluțiilor.
- 5. Nu se primesc soluții prin e-mail.