第2章 同余

2.1同余的基本性质

【定义2.1.1】 给定一个正整数m和两个整数a,b,如果a-b被m整除,或m|a-b,叫做a和b模m同余,记作 $a \equiv b \pmod{m}$;否则叫做模m不同余,记作 $a \not\equiv b \pmod{m}$.

《信息安全数学基础》 第2章

同余

简言之,设模数m为大于1的整数,可以把a(mod m) 看成是欧几里德除法一般表示式中的余数.

如果 $a = mq_1 + r_1$, $b = mq_2 + r_2$, 所谓a和b模m同余, 即是说限制 $0 \le r_1, r_2 \le m$ 时, $r_1 = r_2$.

【定理2.1.1】设m是一个正整数, a, b是两个整数, 则 $a \equiv b \pmod{m}$ 当且仅当存在整数k, 使得a = b + km.

证明: 先证必要性. $a \equiv b \pmod{m}$ 也即 m|a-b, 故存在整数k, 使得a-b=km, 即a=b+km.

充分性.

例如: 27≡6(mod 7), 因为27=6+3×7.

23=2(mod 7), 因为23=2+3×7.

【定理2.1.2】 设m是一个正整数,则模m同余是等价关系,即满足下述性质:

- (1) (自反性) 对整数a有 $a \equiv a \pmod{m}$.
- (2) (对称性) 对整数a和b, 若 $a \equiv b \pmod{m}$, 则 $b \equiv a \pmod{m}$.
- (3) (传递性) 对整数a, b和c, 若 $a \equiv b \pmod{m}$ 且 $b \equiv c \pmod{m}$, 则 $a \equiv c \pmod{m}$.
- 证明: 性质(1)(2)容易证明,下面证明性质(3).
- (3) $a \equiv b \pmod{m}$, 则m|a-b; $b \equiv c \pmod{m}$, 则m|b-c. 故

$$m|(a-b) + (b-c) = a-c.$$

即m|a-c

【定理2.1.3】 设m为正整数, a, b, c, d为整数, 如果 $a \equiv b \pmod{m}$, $c \equiv d \pmod{m}$, 则

- (i) $a + c \equiv b + d \pmod{m}$;
- (ii) $ac \equiv bd \pmod{m}$.

证明: 已知 $a \equiv b \pmod{m}$ 且 $c \equiv d \pmod{m}$,则存在整数 h和k,使等式a = b + hm且c = d + km成立.

故a + c = (b + hm) + (d + km) = b + d + (h + k)m. ac = (b + hm)(d + km) = bd + (hd + kb + hkm)m. 由【定理2.1.1】即得结论. 特别地,设m为正整数,a,b,k为整数.如果 $a \equiv b \pmod{m}$,则

- (i) $a + k \equiv b + k \pmod{m}$;
- (ii) $ak \equiv bk \pmod{m}$.

推论

由【定理2.1.3】可以得到如下结论.

【推论3】 若 $x \equiv y \pmod{m}$, $a_i \equiv b_i \pmod{m}$, (i = 1,2,...,k), 则 $a_0 + a_1 x + a_2 x^2 + \cdots + a_k x^k$ $\equiv b_0 + b_1 y + b_2 y^2 + \cdots + b_k y^k \pmod{m}.$

《信息安全数学基础》 第2章

在进行同余运算时,注意使用下面的规则:

- (1) $a + b \pmod{m} \equiv (a \pmod{m} + b \pmod{m}) \pmod{m}$.
- (2) $ab \pmod{m} \equiv (a \pmod{m} \times b \pmod{m}) \pmod{m}$.
- (3) $na(\text{mod } m) \equiv n(a(\text{mod } m))(\text{mod } m)$.

(4) 设
$$n = n_1 + n_2$$
, 则
$$a^n (\operatorname{mod} m) \equiv (a (\operatorname{mod} m))^n (\operatorname{mod} m)$$

$$\equiv ((a (\operatorname{mod} m))^{n_1} \times (a (\operatorname{mod} m))^{n_2}) (\operatorname{mod} m).$$

《信息安全数学基础》 第2章

【例2.1.2】 2003年5月9日是星期五, 问此后的第 2²⁰⁰³是星期几?

解:
$$2^{2003}+5\equiv (2^3)^{667}\times 2^2+5 \pmod{7}$$

 $\equiv 1^{667}\times 2^2+5 \pmod{7}$
 $\equiv 9 \pmod{7}\equiv 2 \pmod{7}$.

【例2.1.3】 设十进制整数 $n=a_ka_{k-1}\dots a_1a_0$,若3|n, 则 $3|a_k+a_{k-1}+\dots+a_1+a_0$.

证明:
$$n = a_k a_{k-1} \dots a_1 a_0$$

= $a_k \times 10^k + a_{k-1} \times 10^{k-1} + \dots + a_1 \times 10 + a_0$

 $n \pmod{3}$

$$\equiv a_k \times 10^k + a_{k-1} \times 10^{k-1} + \dots + a_1 \times 10 + a_0 \pmod{3}$$
 $\equiv a_k + a_{k-1} + \dots + a_1 + a_0 \pmod{3}$. 故得证.

【例2.1.4】 计算15⁷(mod 55).

解: 15⁷(mod 55)

 $\equiv (15^2)^3 \times 15$

 $\equiv 5^3 \times 15$

 \equiv 15 \times 15 \equiv 5 (mod 55).

【定理2.1.4】 设m为正整数, a, b为整数, $ad \equiv bd \pmod{m}$. 若(d, m) = 1, 则 $a \equiv b \pmod{m}$.

证明: 由 $ad \equiv bd \pmod{m}$ 可得

 $m \mid ad - bd = (a - b)d.$

 $\overline{m}(d,m)=1$, 故 $m \mid (a-b)$, 即 $a \equiv b \pmod{m}$.

【例2.1.5】 95≡25(mod 7), 即19×5≡5×5(mod 7) 且 (5, 7)=1, 故19≡5(mod 7).

【例2.1.6】(反例)115≡25(mod 15),即 23×5≡5×5(mod 15), 但 23 ≢ 5(mod 15),因为(5, 15)=5.

【定理2.1.5】 设m为正整数, a, b为整数, 若 $a \equiv b \pmod{m}$ 且k>0, 则 $ak \equiv bk \pmod{mk}$.

证明: $a \equiv b \pmod{m}$, 则存在整数t, 使a - b = mt. 等式两边乘以k得ak - bk = mkt.

故 $mk \mid ak - bk$, 即 $ak \equiv bk \pmod{mk}$.

【例2.1.7】 因19≡5(mod 7), k=4>0, 所以76≡20(mod 28).

《信息安全数学基础》 第2章

【定理2.1.6】 设m为正整数, a, b为整数, $a \equiv b \pmod{m}$ 且 $d \mid (a, b, m)$, 则 $\frac{a}{d} \equiv \frac{b}{d} \pmod{\frac{m}{d}}$.

证明: 因d (a,b,m), 故存在整数a', b', m', 使得 a = da', b = db', m = dm'.

又 $a \equiv b \pmod{m}$,故存在整数k,使得a = b + mk,即 da' = db' + dm'k.

等式两边消去d得a' = b' + m'k.

等式两端模m'得 $a' \equiv b' \pmod{m'}$.

$$\exists \mathbb{I} \frac{a}{d} \equiv \frac{b}{d} \pmod{\frac{m}{d}}$$

【例2.1.8】 $190 \equiv 50 \pmod{70}$, 取d = 10, 则 $19 \equiv 5 \pmod{7}$.

【定理2.1.7】 设m为正整数, a, b为整数, $a \equiv b \pmod{m}$ 且 $d \mid m$, 则 $a \equiv b \pmod{d}$.

证明: 因 $a \equiv b \pmod{m}$ 故 $m \mid a - b$.

又 $d \mid m \mid a \mid a - b$, 即 $a \equiv b \pmod{d}$.

【例2.1.9】 190≡50(mod 70), 取d=7|70,则 190≡50(mod 7).

【定理2.1.8】 设a,b为整数, $a \equiv b \pmod{m_i}$,(i = 1,2,...,k)的充分必要条件是 $a \equiv b \pmod{m_1,m_2,...,m_k}$. 证明: $a \equiv b \pmod{m_i}$ 当且仅当 $m_i \mid a-b$,则 $[m_1,m_2,...,m_k] \mid a-b$. 即 $a \equiv b \pmod{[m_1,m_2,...,m_k]}$.

【例2.1.10】 己知190≡50(mod 28), 190≡50(mod 35) 以及[28, 35]=140, 则190≡50(mod 140).

《信息安全数学基础》 第2章

【定理2.1.9】 设m为正整数, a, b为整数, $a \equiv b \pmod{m}$, 则(a, m) = (b, m).

证明: 由 $a \equiv b \pmod{m}$, 故存在整数k, 使得 a = mk + b. 故(a, m) = (b, m).

2.2完全剩余系

设m为正整数, 记 $C_a = \{c | c \in \mathbb{Z}, a \equiv c \pmod{m}\}$. C_a 非空, 因为至少 $a \in C_a$.

例如, 设m = 5, a = 1, 则 C_1 ={..., -4, 1, 6, ... }, 也就是和 1模5同余的整数的集合.

剩余类

【定理2.2.1】 设m是一个正整数,则

- (1) 任一整数必包含在某个 C_r 中, $0 \le r \le m-1$;
- (2) $C_a = C_b$ 当且仅当 $a \equiv b \pmod{m}$;
- (3) $C_a \cap C_b = \emptyset$ 当且仅当 $a \not\equiv b \pmod{m}$.

证明: (1) 设a是一个整数, 由带余除法, 有

a = mq + r, $0 \le r < m$

因此 $r \equiv a \pmod{m}$, 于是a属于 C_r .

(2) 必要性. 设 $C_a = C_b$,则 $a \in C_a = C_b$,故 $a \equiv b \pmod{m}$.

充分性. 因 $a \equiv b \pmod{m}$, 对任意 $c \in C_a$, $a \equiv c \pmod{m}$, 故 $b \equiv c \pmod{m}$, 故 $c \in C_b$, 故 $C_a \subseteq C_b$.

同理, $C_b \subseteq C_a$, 从而 $C_a = C_b$.

(3) 必要性. 由(2) 即得.

充分性. 用反证法证明. 若 $a \not\equiv b \pmod{m}$ 时 $C_a \cap C_b \not= \emptyset$, 则可设 $c \in C_a$, $c \in C_b$. 则 $a \equiv c \pmod{m}$, $b \equiv c \pmod{m}$, 可得 $a \equiv b \pmod{m}$. 矛盾.

剩余类

```
【例2.2.1】 设m = 5,则r的取值为0, 1, 2, 3, 4.
C_0 = \{..., -5, 0, 5, 10, 15, ...\};
C_1 = \{..., -4, 1, 6, 11, ...\};
C_2 = \{..., -3, 2, 7, 12, ...\};
C_3 = \{..., -2, 3, 8, 13, ...\};
C_4 = \{..., -1, 4, 9, 14, ...\}.
对于【定理2.2.1】的性质(1), 因为C_0 \cup C_1 \cup C_2 \cup C_3 \cup C_4 = Z, 故任一整数必包含在某个C_r中.
对于性质(2), 例如1 \equiv 6(mod 5), 故C_1 = C_6. 反之亦然.
对于性质(3), 例如1 \neq 2(mod 5), 故C_1 \cap C_2 = \emptyset. 反之亦
然.
```

剩余类

【定义2.2.1】集合 C_a 叫做模m的a的剩余类. 模m的剩余类共有m个,例如 C_0 , C_1 , C_2 , ..., C_{m-1} . 一个剩余类中的任一个数叫做该类的剩余.

若 $r_0, r_1, ..., r_{m-1}$ 是m个整数,且其中任何两个都不在同一个剩余类中,则称 $r_0, r_1, ..., r_{m-1}$ 为模m的一个完全剩余系.

完全剩余系

例如, 0, 1, 2, 3, 4是5个数, 且任何两个都不在模5的某一个剩余类中, 故称{0, 1, 2, 3, 4}为模5的一个完全剩余系. 由定义知, 集合{0, 6, 2, 8, 4}也是模5的一个完全剩余系, {5, 6, 2, 8, 9}也是模5的一个完全剩余系.

【注】每个剩余类中都包含了无穷多个整数,而完全剩余系则恰好由*m*个数组成.

完全剩余系

【例2.2.2】 设m = 10, 则 $C_a = \{a + 10k | k \in Z\}$ 是模m = 10的剩余类. 下面是模10的完全剩余系的举例:

- (1) 0, 1, 2, ..., 9
- (2) 1, 2, 3, ..., 10
- (3) 0, -1, -2, ..., -9
- (4) 0, 3, 6, 9, ..., 27
- (5) 10, 11, 22, 33, 44, ..., 99

【定理2.2.2】设 r_0 , r_1 , ..., r_{m-1} 为整数,这m个整数为模m的一个完全剩余系当且仅当它们模m两两不同余.

该定理给出了判断一个集合是否为模*m*的一个完全剩余系的方法. (1)该集合要有*m*个整数; (2)集合中任意两个整数模*m*两两不同余.

完全剩余系

【例2.2.3】 模m的完全剩余系中,

- (i) 最小非负完全剩余系是: 0, 1, ..., m 1.
- (ii) 最小正完全剩余系是: 1, 2, ..., m.
- (iii) 绝对值最小完全剩余系是:

$$m$$
为偶数: $-\frac{m}{2}$, $-(m-2)/2$, ..., $(m-2)/2$ 或 $-(m-2)/2$, ..., $(m-2)/2$, $m/2$;

$$m$$
为奇数: $-\frac{m-1}{2}$, $-(m-3)/2$, ..., $(m-1)/2$.

完全剩余系-性质

【定理2.2.3】 设a是满足(a,m) = 1的整数,b为任意整数. 若 r_0 , r_1 ,..., r_{m-1} 为模m的一个完全剩余系,则 ar_0 +b, ar_1 +b,..., ar_{m-1} +b也是模m的一个完全剩余系.

证明:由【定理2.2.2】,先证明: (1) $ar_0 + b$, $ar_1 + b$, ..., $ar_{m-1} + b$ 是m个整数,然后证明: (2) 这m个整数模m两两不同余.

- (1) 易知 $ar_0 + b$, $ar_1 + b$, ..., $ar_{m-1} + b$ 是m个整数.
- (2) 用反证法证明. 若 $ar_i + b \equiv ar_j + b \pmod{m}$, 其中 $(0 \le i < j \le m-1)$,则 $ar_i \equiv ar_j \pmod{m}$. 又(a, m) = 1, 故 $r_i \equiv r_j \pmod{m}$. 由题设知, r_0, r_1, \dots, r_{m-1} 为m的一个完全剩余系. 由【定理2.2.2】知, $r_i \not\equiv r_j \pmod{m}$. 矛盾.

故 $ar_0 + b$, $ar_1 + b$, ..., $ar_{m-1} + b$ 是模m的一个完全剩余系.

反证法的思路

反证法的思路可以描述为: 设条件为A, 结论为B. 欲证明 A=>B, 改为通过已知A^~B, 推导出与现有结论相矛盾的结果, 从而判断结论为B.

在【定理2.2.3】中,反证法用来证明: 己知 $r_0, r_1, ..., r_{m-1}$ 为模m的一个完全剩余系, (a, m) = 1, 推出 $ar_i + b \not\equiv ar_j + b \pmod{m}$, 其中 $(0 \le i < j \le m-1)$. 改为通过已知 $r_0, r_1, ..., r_{m-1}$ 为模m的一个完全剩余系, (a, m) = 1, $ar_i + b \equiv ar_j + b \pmod{m}$, 其中 $(0 \le i < j \le m-1)$. 利用已知结论推导出 $r_i \equiv r_j \pmod{m}$. 这与已知 $r_0, r_1, ..., r_{m-1}$ 为模m的一个完全剩余系矛盾. 故 $ar_i + b \not\equiv ar_j + b \pmod{m}$.

完全剩余系-举例

【例2.2.4】 设m = 6, 模m的最小非负完全剩余系为 0, 1, 2, 3, 4, 5.

	$ar_i + b(a = 5, b = 3)$	$ar_i + b(a = 3, b = 2)$
$r_i = 0$	$5 \times 0 + 3 = 3$	$3 \times 0 + 2 = 2$
$r_i = 1$	$5 \times 1 + 3 = 8 \equiv 2 \pmod{6}$	$3 \times 1 + 2 = 5$
$r_i = 2$	$5 \times 2 + 3 = 13 \equiv 1 \pmod{6}$	$3\times 2+2=8\equiv 2 \pmod{6}$
$r_i = 3$	$5\times 3+3=18\equiv 0 \pmod{6}$	$3\times 3+2=11\equiv 5 \pmod{6}$
$r_i = 4$	$5\times 4+3=23\equiv 5 \pmod{6}$	$3\times 4+2=14\equiv 2 \pmod{6}$
$r_i = 5$	$5 \times 5 + 3 = 28 \equiv 4 \pmod{6}$	$3\times 5+2=17\equiv 5\pmod{6}$

由此可见, 当a = 5, b = 3时, 则集合{3,8,13,18,23,28}为模6的一个完全剩余系. 当a = 3, b = 2时, 因为a = 3与6不互素, 不满足定理的条件, 故集合{2,5,8,11,14,17}不为模6的一个完全剩余系.

完全剩余系-性质

【定理2.2.4】 设 m_1 , m_2 是两个互素的正整数,若 x_1 , x_2 分别遍历 m_1 , m_2 的完全剩余系,则 $m_2x_1 + m_1x_2$ 遍历模 m_1m_2 的完全剩余系.

证明: (1) 当 x_1, x_2 分别遍历 m_1, m_2 个整数时, $m_2x_1 + m_1x_2$ 则遍历模 m_1m_2 个整数.

(2) 证明 m_1m_2 个整数 $m_2x_1 + m_1x_2$ 模 m_1m_2 两两不同余.

若存在 x_1, x_2 和 y_1, y_2 满足

 $m_2x_1 + m_1x_2 \equiv m_2y_1 + m_1y_2 \pmod{m_1m_2}$.

则由2.1节同余的【定理2.1.7】知

 $m_2 x_1 + m_1 x_2 \equiv m_2 y_1 + m_1 y_2 \pmod{m_1}$.

而 $(m_1, m_2) = 1$,故由由2.1节同余的【定理2.1.4】知 $x_1 \equiv y_1 \pmod{m_1}$.

同理可证, $x_2 \equiv y_2 \pmod{m_2}$.

结论成立.

完全剩余系-举例

【例2.2.5】设 $m_1 = 3$, $m_2 = 4$, $(m_1, m_2) = 1$, 模3的一个完全剩余系为0,1,2, 模4的一个完全剩余系为0,1, 2, 3, 则

$$4 \times 0 + 3 \times 0 = 0$$
, $4 \times 0 + 3 \times 1 = 3$, $4 \times 0 + 3 \times 2 = 6$,

$$4 \times 0 + 3 \times 3 = 9$$
,

$$4 \times 1 + 3 \times 0 = 4$$
, $4 \times 1 + 3 \times 1 = 7$, $4 \times 1 + 3 \times 2 = 10$,

$$4\times1+3\times3=13\equiv1\pmod{12}$$
,

$$4 \times 2 + 3 \times 0 = 8$$
, $4 \times 2 + 3 \times 1 = 11$, $4 \times 2 + 3 \times 2 = 14 \equiv 2 \pmod{12}$,

$$4\times2+3\times3=17\equiv5\pmod{12}$$
.

0, 3, 6, 9, 4, 7, 10, 13, 8, 11, 14, 17为模12的一个完全剩余系.

完全剩余系-举例

【例2.2.6】 设p,q是两个不同的素数,n = pq,则对任意整数c,存在唯一的一对数x和y,满足qx + py = c(mod n), $0 \le x < p$, $0 \le y < q$.

证明: p, q是两个素数, 故互素.

再由【定理2.2.4】, 当x,y分别遍历模p,q的完全剩余系时, qx + py遍历模n = pq的完全剩余系. 故存在唯一的一对整数x,y,满足 $qx + py = c \pmod{n}$.

2.3简化剩余系

【定义2.3.1】如果一个模m的剩余类中存在一个与m互素的剩余,则该剩余类叫做简化剩余类(或者既约剩余类).

【例2.3.1】设n = 10,则模10的剩余类 $C_1, C_2, ..., C_{10}$ 中, C_1 中任一个整数都与10互素,故 C_1 是模10的简化剩余类.同理, C_3, C_7, C_9 也是模10的简化剩余类.

简化剩余类-性质

【定理2.3.1】设 r_1 , r_2 是同一剩余类中的两个剩余,则 r_1 与m互素的充分必要条件是 r_2 与m互素.

证明: 由题设知 $r_1 = r_2 + km$. 故 $(r_1, m) = (r_2, m)$.

$$\therefore$$
 $(r_1, m) = 1 (r_2, m) = 1.$

简化剩余系

【定义2.3.2】设加为正整数,在模加的所有不同简化剩余类中,从每个类任取一个数组成的整数集合,叫做模加的一个简化剩余系(或称为缩系、既约剩余系).

【例2.3.2】设n = 10,由【例2.3.1】,模10的简化剩余类有 C_1 , C_3 , C_7 , C_9 .从这4个剩余类中各取一个数,比如{1,3,7,9},则该集合为模10的一个简化剩余系.当然,也可以是{11,3,27,39}等等.

【定义2.3.3】 设m为正整数,则1,2,...,m中与m互素的整数的个数,记作 $\varphi(m)$,叫做欧拉(Euler)函数.

由【定义2.3.2】和【定义2.3.3】知, 模m的简化剩余系的元素的个数为 $\varphi(m)$.

【例2.3.3】 设n=10, 由【例2.3.2】, $\{1, 3, 7, 9\}$ 为模10的一个简化剩余系. 完全剩余系1,2,...,10中与10互素的整数为1, 3, 7, 9, 故 φ (10)=4.

【例2.3.4】模6的一个简化剩余系为1,5.

模20的一个简化剩余系为1, 3, 7, 9, 11, 13, 17, 19.

【例2.3.5】 模m的简化剩余系:

- (i) 最小非负简化剩余系: 0, 1, ..., m 1中与m互素的所有整数.
 - (ii) 最小正简化剩余系: 1, 2, ..., m中与m互素的所有整数.
 - (iii) 绝对值最小简化剩余系,

当m为偶数时:

$$-m/2, -(m-2)/2, ..., (m-2)/2$$
 或 $-(m-2)/2, ..., (m-2)/2, ..., (m-2)/2$

中与m互素的所有整数;

*m*为奇数时:

$$-(m-1)/2, -(m-3)/2, ..., (m-1)/2$$

中与m互素的所有整数.

模m的最小非负简化剩余系与最小正简化剩余系相同.

《信息安全数学基础》 第2章

【例2.3.6】 模15的简化剩余系为(φ (15)=8):

- (i) 最小非负简化剩余系: 1, 2, 4, 7, 8, 11, 13, 14.
- (ii) 最小正简化剩余系: 1, 2, 4, 7, 8, 11, 13, 14.
- (iii) 绝对值最小简化剩余系: -7, -4,-2, -1, 1, 2, 4, 7.

【例2.3.7】 素数p的最小非负简化剩余系为 $\{1, 2, \dots, p-1\}, \varphi(p) = p-1.$

最小正简化剩余系也是这个集合.

【定理2.3.2】设m为正整数,整数 r_1 , r_2 ,..., $r_{\varphi(m)}$ 均与m互素,且这 $\varphi(m)$ 个数两两模m不同余,则它们构成模m的一个简化剩余系.

该定理给出了判断一个集合是否为模m的一个简化剩余系的方法. (1) 该集合有 $\varphi(m)$ 个整数; (2) 集合中每个数都与m互素; (3) 集合中任意两个整数模m两两不同余.

- 【定理2.3.3】 设加为正整数, a是满足(a,m) = 1的整数. 那么, 若 r_1 , r_2 ,..., $r_{\varphi(m)}$ 为模m的一个简化剩余系,则 ar_1 , ar_2 ,..., $ar_{\varphi(m)}$ 也模m的一个简化剩余系.
- 证明: (1) 易知 $ar_1, ar_2, ..., ar_{\varphi(m)}$ 表示了 $\varphi(m)$ 个数;
- (2) 由(a,m) = 1及 $(r_i,m) = 1$ 知 $(ar_i,m) = 1$,即 ar_i 是简化剩余类的剩余.
- (3) 用反证法证明集合中任意两个整数模m两两不同余.
- 假设 $ar_i \equiv ar_j \pmod{m}, 1 \leq i, j \leq \varphi(m)$ 且 $i \neq j$. 因(a, m) = 1, 故 $r_i \equiv r_j \pmod{m}$. 又因 r_i 和 r_j 是模m的简化剩余系中的元素,故必有 $r_i \not\equiv r_j \pmod{m}$,矛盾. 故 $ar_i \not\equiv ar_j \pmod{m}$.
- 故 $ar_1, ar_2, ..., ar_{\varphi(m)}$ 也模m的一个简化剩余系.

【例2.3.8】已知1,7,11,13,17,19,23,29是模30的简化剩余系,(7,30)=1,则

7, $7 \times 7 \equiv 19$, $7 \times 11 \equiv 17$, $7 \times 13 \equiv 1$, $7 \times 17 \equiv 29$, $7 \times 19 \equiv 13$, $7 \times 23 \equiv 11$, $7 \times 29 \equiv 23 \pmod{30}$

也是模30的简化剩余系.

【例2.3.9】 设m = 6, 模m的最小非负简化剩余系为 1, 5.

	$ar_i(a=5)$	$ar_i(a=3)$
$r_i = 1$	5×1=5	3×1=3
$r_i = 5$	$5\times 5=25\equiv 1 \pmod{6}$	$3\times 5=15\equiv 3\pmod{6}$

《信息安全数学基础》 第2章

【定理2.3.4】 设加为正整数, a是满足(a,m) = 1的整数. 则存在整数a'($1 \le a' < m$)使得 $aa' \equiv 1 \pmod{m}$.

证明: 由(a,m) = 1知存在整数s,t, 使得sa + tm = (a,m) = 1, 等式两端模m得 $sa \equiv 1 \pmod{m}$, 故求得 $a' \equiv s \pmod{m}$.

【例2.3.10】 设m = 880, a = 17, 求a', 满足 $aa' \equiv 1 \pmod{m}$.

解:由辗转相除法,得

$$880=17\times51+13$$
, $17=13+4$, $13=4\times3+1$

$$1=13-4\times 3$$

$$=13-(17-13)\times 3=13\times 4-17\times 3$$

$$=(880-17\times51)\times4-17\times3$$

$$=880 \times 4 - 17 \times 207$$

等式两端模880得 $a' \equiv -207 \pmod{880} \equiv 673$.

《信息安全数学基础》 第2章

【定理2.3.5】 m_1, m_2 是两个互素的正整数, 若 x_1, x_2 分别遍历模 m_1, m_2 的简化剩余系, 则 $m_2x_1 + m_1x_2$ 遍历模 m_1m_2 的简化剩余系.

证明: (1) 易知, 若 x_1 , x_2 分别遍历模 m_1 , m_2 的简化剩余系, 则 $m_2x_1 + m_1x_2$ 遍历 m_1m_2 个数.

(2) 证明 $m_2x_1 + m_1x_2$ 属于模 m_1m_2 的某个简化剩余类, 即证

 $(m_2x_1 + m_1x_2, m_1m_2) = 1.$

事实上, 由 $(m_1, m_2) = 1$ 及 $(m_1, x_1) = 1$ 和 $(m_2, x_2) = 1$ 知 $(m_2x_1 + m_1x_2, m_1) = (m_2x_1, m_1) = (x_1, m_1) = 1$, $(m_2x_1 + m_1x_2, m_2) = (m_1x_2, m_2) = (x_2, m_2) = 1$, 所以 $(m_2x_1 + m_1x_2, m_1m_2) = 1$.

(3) 证明: 当 $x_1 \not\equiv y_1 \pmod{m_1}$, 或者 $x_2 \not\equiv y_2 \pmod{m_2}$ 时, 由【定理2.2.4】有

 $m_2x_1 + m_1x_2 \not\equiv m_2y_1 + m_1y_2 \pmod{m_1m_2}$.

【例2.3.11】 设 $m_1 = 3$,, $m_2 = 4$, $(m_1, m_2)=1$, 模3的一个简化剩余系为1,2, 模4的一个简化剩余系为1,3,则

$$4\times1+3\times1=7$$
,

$$4\times2+3\times1=11$$
,

$$4\times1+3\times3=13\equiv1\pmod{12}$$
,

$$4\times2+3\times3=17\equiv5\pmod{12}$$
.

由计算结果可知, 7, 11, 13, 17是模12的一个简化剩余系.