Theorem (2.4.40). The union of two countable sets is countable.

Proof. By cases. Let A, and B be countable sets. There are three cases that must be considered. (i) A and B are finite, (ii) exclusively A or B is finite and the other is countably infinite, (iii) A and B are both countably infinite.

- (i) Suppose A and B are finite. There exist natural numbers m, and n such that |A| = m and |B| = n. The maximum cardinality for $A \cup B$ occurs when A and B are disjoint, where the cardinality is m + n. m + n is a natural number less than \aleph_0 . Thus, $A \cup B$ is finite and countable by definition.
- (ii) Without loss of generality suppose A is finite with cardinality n, and B is countably infinite. It must be that a sequence exists $\{a_i\} = \{a_0, a_1, \dots a_n\}$ containing all elements in A. Since a bijection exists between B and \mathbb{N} by the definition for countability, a sequence exists $\{b_i\} = \{b_0, b_1, b_2, \dots\}$ containing all elements in B. Clearly, for the union of A and B a sequence exists $\{c_i\} = \{a_0, a_1, \dots, a_n, b_0, b_1, b_2, \dots\}$. Infinite sequences are countable by definition, so $A \cup B$ is a countably infinite set.
- (iii) Suppose A and B are infinitely countable sets. Since the set cardinalities are \aleph_0 , A and B are bijective with \mathbb{N} . Thus, the elements in A can be ordered by the sequence $\{a_i\} = \{a_0, a_1, a_2, \dots\}$, and the elements in B can be ordered by the sequence $\{b_i\} = \{b_0, b_1, b_2, \dots\}$. The union of A and B can be ordered by the sequence $\{c_i\} = \{a_0, b_0, a_1, b_1, a_2, b_2, \dots\}$. Thus a bijection exists between the union of A and B and the cardinality of the union is \aleph_0 .