シミュレーションと強化学習に基づく 移動障害物回避機能を持つ 自律移動ロボット

背景(1/2)

- 自律移動ロボットの需要増加
 - ▶ 配膳や配達などの労働力不足の解決
 - > 人の移動手段の代替
- 屋内や歩道を走行
- 人が存在する環境で安全な走行が必要

自律移動ロボットにおいて 人の回避は必須の課題

[1]テクノホライゾン株式会社. BellaBot. https://www.elmo.co.jp/product/robot/bellabot/ [2] WHILL株式会社. WHILL Model C2. https://whill.inc/jp/

BellaBot [1] WHILL Model C2 [2]

背景(2/2)

- ルールベース制御が主流
- 人回避における現状の課題
 - > 効率や汎用性に問題あり
 - ✓ ルールベース制御は人の行動の途中変化に対応困難
 - ✓ 静止して人の回避行動を待つのは非効率
- 実環境における実験実施の問題
 - > 衝突の危険性
 - > 多様な状況の再現の困難

仮想環境で学習ベースの 移動障害物回避を検討

目的とアプローチ

目的

▶ 移動障害物回避が可能な自律走行システムの 構築

• アプローチ

- ▶ 移動障害物回避のシミュレーション環境の作成
- ▶ 強化学習を用いた移動障害物回避行動の獲得
- ▶ ルールベース制御モデルと学習モデルの精度比較

使用するセンサ

• 距離センサ

LiDAR^[3]

シミュレーション

Raycast Sensor

• ビジョンセンサ

グレー スケール カメラ^[4]

シミュレーション

グレー スケー川 カメラ

[3] Suteng Innovation Technology Co. Ltd, 3D LiDAR https://www.zmp.co.jp/products/sensor/3d-lidar/rslidar [4]株式会社ロジクール, RGBカメラ https://www.logicool.co.jp/ja/jp/products/webcams.html

シミュレーション環境の作成(1/2)

- 環境
 - ▶ ショッピングモールの3Dモデル
- 移動障害物
 - ▶ 人の3Dモデル

Shopping Mall HQ [5]

StarterAssets thirdPerson [6]

シミュレーション環境の作成(2/2)

- 自律移動ロボットの3Dモデル
 - > 形状は立方体
 - ▶ 進行方向を示す球体
- 距離センサ
 - > 360度計測
 - ▶ 近づく障害物を認識
- ビジョンセンサ
 - ▶ 進行方向の2次元グレースケール画像✓ 色情報を除外
 - ▶ 障害物の形や大きさを認識

自律移動ロボットの3Dモデル

グレースケール画像

移動障害物の設定(1/3)

静止障害物

- 移動速度
 - ▶ 自律移動ロボットの 速度以下のランダム値
 - > 一定の速度
- 初期位置
 - > 図の青色の円
- 挙動
 - ▶ 図の赤色のエリア間を 自由に行き来

移動障害物の設定(2/3)

- 移動障害物の挙動
 - ▶ 距離センサで自律移動 ロボットの接近を認識
 - ▶ 目的地への移動を中断
 - ▶ 静止・目的地への移動・ 回避行動を等確率で決定
- 移動障害物の回避行動
 - ▶ 自律移動ロボットの方向を検知
 - ➤ 逆方向に0~90度でランダムに旋回
 - ▶ しばらく前進し、目的地への 移動を再開

移動障害物の設定(3/3)

- 移動障害物の視線領域
 - ▶ ロボットを見る移動障害物の情報
 - ロボットが観測データとして使用
 - ▶ 視線領域にロボットが侵入
 - ✓ 移動障害物の数と方向の情報を取得

目的地への走行

NavmeshAgent^[7]

- 出発地点から目的地点までの最短経路生成(赤線)
- A*探索アルゴリズム^[8]による 経路探索
- ▶ 移動障害物, 自律移動ロボットに設定

自律移動ロボットの経路生成の様子

[7] Unity Technologies, Unity Documentation NavMesh Agent, https://docs.unity3d.com/2021.3/Documentation/Manual/class-NavMeshAgent.html [8] P. E. Hart N. J. Nilsson and B. Raphael, "A Formal Basis for the Heuristic Determination of Minimum Cost Paths," IEEE Transactions on Systems Science and Cybernetics, pp. 100-107, 1968

強化学習

- 観測データを使用して行動を決定し 行動に応じた報酬を取得
- 方策
 - ▶ 観測データを入力し, 行動を出力する関数
- 経験
 - ▶ 観測データと行動と報酬の組み合わせ

経験に応じて報酬和を最大化するように方策を更新

報酬の設定

- 正の報酬
 - ▶ 目的地に到達
 - > 移動障害物後方の半円領域に接触
 - ✓ 回避行動の学習を促進

, 前方 報酬の領域

- 負の報酬
 - > 移動障害物に接触
 - ▶ 移動障害物前方の長方形領域に接触
 - ✓ 人の前方通過を抑制
 - ▶ 毎ステップ
 - ✓ 最短経路の学習を促進

学習モデルの詳細(1/2)

- 入力(観測データ)
 - ▶ 自律移動ロボットの速度, 向き
 - ▶ グレースケール画像
 - ▶ 距離センサ
 - ▶ 目的地の経由点への向き
 - > 移動障害物の視線情報
- 2種類のモデル
 - > 「移動障害物の視線情報なし」
 - ▶ 「移動障害物の視線情報あり」

グレースケール画像

距離センサ

学習モデルの詳細(2/2)

- 出力(行動)
 - ▶ 自律移動ロボットの速度
 - ✓ 前進・前進の半分・停止
 - ▶ 自律移動ロボットの向き
 - ✓ 変更なし・右旋回・左旋回
 - ▶ 1ステップ(0.02秒)毎に決定

モデルの学習(1/2)

- 自律移動ロボットと目的地の初期位置
 - ▶ 異なる色の組み合わせの位置から ランダムに決定
 - ✓ 組み合わせ間の距離の差をなくす
- モデルの学習
 - > 学習環境
- 精度の検証
 - > 評価環境

学習環境

評価環境

モデルの学習(2/2)

- 学習は300万ステップ
- ・ 1エピソードは最大6000ステップ
 - > 遠回り,長時間の静止の抑制
- エピソード終了条件
 - ▶ 目的地に到達
 - > 移動障害物に衝突

- 1万ステップ当たりの平均累積エピソード報酬
 - ▶ 100万ステップまで増加
 - ▶ 100万~300万ステップで小さな増減

学習モデルの実行例

移動障害物回避の成功例

自律移動ロボットが 静止して回避

静止して回避 静止して回避

自律移動ロボットが 旋回して回避

旋回して回避 旋回して回避20

精度検証(1/2)

• ルールベース制御モデルと学習モデルを用い それぞれ1000回の試行

精度検証(2/2)

モデル	成功回数 (1000回試行)	ロボットが 静止中に衝突	ロボットが 移動中 に衝突
ルールベース	783回	125回 (57.6%)	92回 (42.4%)
視線情報なしの学習モデル	873回	54回 (42.5%)	73回 (58.5%)
視線情報ありの学習モデル	906回	42回 (44.6%)	52回 (55.4%)

- 学習モデルはルールベース制御より高精度
- 視線情報ありのモデルの方が高精度
- 静止中のロボットに移動障害物が衝突する 事例が失敗の4割以上

考察

- 学習モデルはルールベース制御より高精度
 - ▶ 状況に合わせた回避行動を学習
- 視線情報ありのモデルの方が高精度
 - ▶ 視線から外れるための移動を学習
- 静止中のロボットに移動障害物が衝突する 事例が失敗の4割以上
 - ▶ ロボットに気づかせる工夫
 - ▶ 静止中のロボットと衝突しても安全な素材で構成

おわりに

- まとめ
 - ▶ 移動障害物回避のシミュレーション環境を作成
 - ▶ 強化学習を用いた移動障害物回避行動を獲得
 - ▶ 学習モデルを用いた回避行動を検証
- 今後の課題
 - ▶ 歩行者がロボットを認識しない状況の衝突回避
 - 搭乗者を考慮した障害物回避
 - > 実環境での実証実験

予備スライド

先行研究

- ステレオカメラと距離センサによる障害物回避 打井裕基一,芋野美紗子,土屋誠司,渡部広一,"ステレオカメラと距離センサを 用いた障害物検出による知能ロボットの自律移動手法,"第14回情報科学技術 フォーラム,vol.14, no.2, pp.291-292, 2015.
- 本研究との相違点
- ルールベースによる障害物回避
- ▶ 静止障害物の回避

先行研究

- 視線推定技術を使用して歩行者の視線に合わせた 移動速度制御
 - Y. Sato and H. Igarashi, "Safe Driving Support of the Omni Directional Mobile Vehicle Using Gaze Measurement," In Proceedings of the International Workshop on Nonlinear Circuits, Communications, and Signal Processing 2016.
- 本研究との相違点
 - ルールベースによる制御
 - ▶ 障害物の回避を行わない

先行研究

- 歩行者の回避行動を定義し それぞれの行動に有効な経路計画を提案
 - > 浅井悠佑, 廣井慧, 米澤拓郎, 河口信夫, 人の回避行動を 考慮した移動ロボットの経路計画法の検討," マルチメ ディア, 分散, 協調とモバイルシンポジウム 2019.
- 本研究との相違点
 - ルールベースによる制御
 - ▶ 歩行者の行動が単一の環境で 各実験を行っている

BellaBot

- RGBDカメラ・赤外線センサ・LiDARで環境 認識
- AI音声
- 数10種類の表情

本体寸法	565×537×1290mm
ロボット重量	55kg
本体材質	ABS/アルミニウム合金
充電時間	4.5時間
バッテリー持続時間	12-24時間(交換式バッテリー)
安全性	速度:0.5-1.2m/秒 (調整可能) / 登板角度:≤ 5°
積載量	最大40kg、10kg/トレー
位置決め方法	レーザーだけの高精度な位置決めが可能

目的地への走行

- Navmesh
 - 3 D地形上でキャラクタの 歩行可能な領域を設定
- NavmeshAgent
 - Navmesh上で出発地点から 目的地点までの最短経路生成 (赤線)
 - 複数の経由点を直線で生成
 - 経路探索は A*探索アルゴリズム

自律移動ロボットの経路生成の様子

強化学習

- Soft Actor-Critic (SAC)
 - ▶ 最大の報酬和を取得するように 方策と行動価値関数を同時に学習
 - ▶ 過去の経験を含め、大量の経験を学習に使用
 - ▶ 方策にランダム性を追加し、多様な行動を決定
 - ▶ 複雑な環境下の学習に適する

学習アルゴリズム

• ML-AgentsのSoft Actor-Critic(SAC) [9]を使用

Parameter	Value
Number of hidden layer	2
Number of hidden layer nodes	256
Learning rate	0.0004
Learning rate schedule	constant
Replay buffer size	70,000
Batch size	500
Number of learning steps	3,000,000

SACの詳細

表 4.1: yaml ファイルの設定		
trainer_type:	sac	
hyperparameters:		
learning_rate:	0.0004	
learning_rate_schedule:	constant	
batch_size:	500	
buffer_size:	70000	
buffer_init_steps:	3500	
tau:	0.005	
steps_per_update:	12.0	
save_replay_buffer:	False	
init_entcoef:	0.1	
reward_signal_steps_per_update:	12.0	
network_settings:		
normalize:	True	
hidden_units:	256	
num_layers:	2	
vis_encode_type:	simple	
memory:	None	
goal_conditioning_type:	hyper	
deterministic:	False	
reward_signals:		
extrinsic:		
gamma:	0.99	
strength:	1.0	
network_settings:		
normalize:	False	
hidden_units:	128	
num_layers:	2	
vis_encode_type:	simple	
memory:	None	
goal_conditions_type:	hyper	
deterministic:	False	
init_path:	None	
keep_checkpoints:	100	
checkpoint_interval:	100000	
max_steps:	13000000	
time_horizon:	256	
summary_freq:	10000	
threaded:	True	
self_play:	None	
behavioral_cloning:	None	

SACの設定

Batch size

勾配降下の更新1回に使用される 経験(観察, 行動, 報酬)の数

Buffer_size

モデルの更新を行う前に収集する 必要がある経験(観察,行動,報 酬)の最大数

Learning_rate 学習率

Schedule

学習率が時間による変化

Buffer_init_steps

- ファー・ファー 学習開始前に、何ステップ分のランダムな行動を経験バッファに埋めるか

Tau

SACモデル更新中のターゲットの 更新の大きさ

Steps_per_update ポリシーの更

ポリシーの更新に対するエージェ ントのステップの平均的比率

Init_entconf

訓練開始時にエージェントがどの 程度探索するか

表 4.1: yaml ファイルの設定

表 4.1: yaml ファイルの設	正
trainer_type:	sac
hyperparameters:	
learning_rate:	0.0004
learning_rate_schedule:	constant
batch_size:	500
buffer_size:	70000
buffer_init_steps:	3500
tau:	0.005
steps_per_update:	12.0
save_replay_buffer:	False
init_entcoef:	0.1
reward_signal_steps_per_update:	12.0
network_settings:	
normalize:	True
hidden_units:	256
num_layers:	2
vis_encode_type:	simple
memory:	None
goal_conditioning_type:	hyper
deterministic:	False
reward_signals:	
extrinsic:	
gamma:	0.99
strength:	1.0
network_settings:	
normalize:	False
hidden_units:	128
num_layers:	2
vis_encode_type:	simple
memory:	None
goal_conditions_type:	hyper
deterministic:	False
init_path:	None
keep_checkpoints:	100
checkpoint_interval:	100000
max_steps:	13000000
time_horizon:	256
summary_freq:	10000
threaded:	True
self_play:	None
behavioral_cloning:	None

過去のポリシーの経験も ランダムに使ってポリシー更新

移動障害物回避の失敗例

- 衝突する原因
 - 静止障害物で 検知の遅延
 - 回避した先に別の移動障害物が存在
 - 複数の移動障害物が密集

左の移動障害物を回避後、 右の移動障害物に接触の例

複数の移動障害物が密集した例

精度検証(学習環境)

モデル	成功回数	ロボットが 静止中に衝突	ロボットが 移動中に衝突
ルールベース	794回	116回 (56.3%)	90回 (43.7%)
視線情報なしの学習モデル	860回	80回 (57.1%)	60回 (42.9%)
視線情報ありの学習モデル	907回	71回 (76.3%)	22回 (23.7%)

- 1万ステップ当たりの平均累積エピソード報酬
 - ▶ 50万ステップまで増加
 - ▶ 50万~300万ステップまで小さな増減

- 1万ステップ当たりの平均累積エピソード報酬
 - ▶ 60万ステップまで増加
 - ▶ 60万~300万ステップまで小さな増減

移動障害物の視線情報あり(現在と 1ステップ過去) モデル

- 1万ステップ当たりの平均累積エピソード報酬
 - ▶ 50万ステップまで増加
 - ▶ 50万~300万ステップまで小さな増減

移動障害物の視線情報なしのモデル

- 1万ステップ当たりの平均累積エピソード報酬
 - ▶ 50万ステップまで増加
 - ▶ 50万~300万ステップまで小さな増減

移動障害物の視線情報なしのモデル

- 1万ステップ当たりの平均累積エピソード報酬
 - ▶ 50万ステップまで増加
 - ▶ 50万~300万ステップまで小さな増減

移動障害物の視線情報なしのモデル

A* 探索

- スタートから現時点までのコスト
- 現時点からゴールまでの予想コスト
- コスト最小の経路を優先的に探索する方法

Navmeshの設定

視線検知の実装方法

- ▶ 自律移動ロボットに線が接触
 - > 方角と本数の情報を取得
- ✓ 方角は計算軽量化のため 30度ごとの配列
- ✓ 配列の値が本数

強化学習

- 観測データを使用して行動を決定し行動に応じた報酬を取得
- 方策
 - ➤ 観測データを入力し、行動を出力する関数
- 行動価値関数
 - ➤ 観測データと行動を入力し、報酬を出力する関数
- 経験
 - ➤ 観測データと行動と報酬の組み合わせ

経験に応じて報酬和を最大化するように方策を更新