Analisi Matematica 2, Ing. Informatica e Telecomunicazioni Esame del 25 giugno 2021

Durata: 90 minuti

Pagina 1: Domande di teoria - 3 punti - Tempo consigliato: 10 minuti

Tutte le domande in questa pagina ammettono <u>una e una sola</u> risposta corretta.

Domanda 1 (1 punto)

L'insieme $A = \{(x, y) \in \mathbb{R}^2 : |y| - e^x > 0\}$ in \mathbb{R}^2 è

- A chiuso e limitato
- B aperto e limitato
- C chiuso e illimitato
- D V aperto e illimitato

Domanda 2 (1 punto)

Un generico sistema differenziale lineare y'(t) = Ay(t), con A matrice costante 2×2 reale,

- A non può avere soluzioni costanti non nulle
- B ha sempre soluzioni costanti non nulle
- C se det $\hat{A} \neq 0$, ha solamente soluzioni del tipo $\underline{y}(t) = c_1 e^{\lambda_1 t} \underline{v}_1 + c_2 e^{\lambda_2 t} \underline{v}_2$, con $\underline{v}_1, \underline{v}_2$ opportuni vettori di \mathbb{R}^2 , $\lambda_1, \lambda_2 \in \mathbb{R}$ opportuni e $c_1, c_2 \in \mathbb{R}$
- D $\overline{\mathrm{V}}$ se ha soluzioni periodiche, la sua matrice A non è diagonalizzabile su \mathbb{R}

Domanda 3 (1 punto)

Sia $f: \mathbb{R}^2 \to \mathbb{R}$ una funzione che ammette tutte le derivate direzionali in $\underline{x}_0 \in \mathbb{R}^2$. È vero che

- A $\boxed{\mathrm{V}}$ f può non essere differenziabile in \underline{x}_0
- B $\nabla f(\underline{x}_0) \neq \underline{0}$
- C vale la formula del gradiente per f in \underline{x}_0
- D f è continua in \underline{x}_0

Pagina 2: Domande di teoria - 7 punti - Tempo consigliato: 15 minuti

La domanda 4 ammette una e una sola risposta corretta.

Domanda 4 (1 punto)

Sia $\varphi:[a,b]\subset\mathbb{R}\to\mathbb{R}^n$ una curva regolare a tratti e sia $\psi:[c,d]\subset\mathbb{R}\to\mathbb{R}^n$ una sua riparametrizzazione. Allora

- A $|V| \varphi$ e ψ hanno necessariamente la stessa lunghezza
- B è possibile che $\varphi(a) = \varphi(b)$ e $\psi(c) \neq \psi(d)$ contemporaneamente
- C φ e ψ hanno, punto per punto, vettori tangenti aventi uguale norma
- D il sostegno di φ non coincide necessariamente con il sostegno di ψ

Le domande 5 e 6 ammettono una o più risposte corrette; indicare tutte le risposte corrette.

Domanda 5 (3 punti)

di termine generale $|a_n| + |b_n|$ sia convergente. Allora è sicuramente vero che

- A la serie di Fourier converge puntualmente, ma non totalmente, su \mathbb{R}
- B la serie di Fourier converge ad una funzione somma, che è derivabile
- C | V | la serie di Fourier converge ad una funzione somma, che è continua
- D \overline{V} la serie di Fourier converge totalmente su \mathbb{R}
- E la serie di Fourier converge ad una funzione somma, che è derivabile due volte

Domanda 6 (3 punti)

Si consideri l'equazione differenziale y''(t) + a(t)y'(t) + b(t)y(t) = f(t) con $a, b, f : I \subset \mathbb{R} \to \mathbb{R}$, continue su I. Siano $y_1(t)$ e $y_2(t)$ due soluzioni dell'equazione su I. È sempre vero che

- A per ogni $c_1, c_2 \in \mathbb{R}$ si ha che $c_1y_1(t) + c_2y_2(t)$ è soluzione della medesima equazione differenziale
- B $|V|y_1(t)-y_2(t)$ è soluzione dell'equazione omogenea associata
- C l'insieme delle soluzioni dell'equazione differenziale è uno spazio vettoriale
- D | V | per ogni $c_1, c_2 \in \mathbb{R}$ si ha che $c_1y_1(t) + c_2y_2(t)$ è soluzione dell'equazione differenziale $y''(t) + a(t)y'(t) + b(t)y(t) = (c_1 + c_2)f(t)$
- E V l'insieme delle soluzioni dell'equazione è uno spazio vettoriale se e solo se f(t) = 0per ogni $t \in I$

Pagina 3: Esercizio 1 - 6 punti - Tempo consigliato: 20 minuti

Le domande ammettono una o più risposte corrette; indicare tutte le risposte corrette.

(1) (3 punti) Data la serie di potenze

$$\sum_{n=0}^{+\infty} \frac{3 - \log n}{3^n} x^n$$

si indichi con R il suo raggio di convergenza. Allora

$$A \mid V \mid R = 3$$

$$\overline{R} = e$$

C La serie converge in x = 3

D V La serie converge in x = e = 2,718...

 \to \overline{V} La serie è derivabile termine a termine nell'intervallo aperto (-R,R)

(2) (3 punti) Data la serie di potenze

$$\sum_{n=0}^{+\infty} \frac{(x-1)^n}{n^2 - \frac{1}{2}}$$

si ha che

A V il raggio di convergenza è 1

B il raggio di convergenza è 2

C la serie converge in x = -1

D \overline{V} la serie converge in x=2

E[V] la serie converge in x=0

Pagina 4: Esercizio 2 - 8 punti - Tempo consigliato: 25 minuti

Le domande ammettono una o più risposte corrette; indicare tutte le risposte corrette.

Sia f la funzione definita da

$$f(x,y) = \left(\alpha x^2 + \beta y^2\right) e^{-\left(x^2 + y^2\right)}$$

con $\alpha, \beta > 0$ parametri.

- (1) **(3 punti)** È vero che
 - A passando in coordinate polari (r, θ) , f non dipende da θ , per ogni $\alpha, \beta > 0$
 - B | V | passando in coordinate polari (r, θ) , f non dipende da θ , se e solo se $\alpha = \beta$
 - C l'insieme di definizione di $f \in \mathbb{R}^2 \setminus (0,0)$
 - D V (0,0) è punto di minimo locale per f
 - E V per ogni $\alpha, \beta > 0$, f ha massimo su \mathbb{R}^2
- (2) (3 punti) Consideriamo ora il caso $\alpha = \beta = 1$, cioè

$$f(x,y) = (x^2 + y^2) e^{-(x^2+y^2)}$$
.

- È vero che
 - A |V|f ha infiniti punti di massimo in \mathbb{R}^2
 - B \overline{f} cambia segno in \mathbb{R}^2
 - C $[V] \max_{(x,y)\in\mathbb{R}^2} f(x,y) = \frac{1}{e}$ D f è convessa su tutto \mathbb{R}^2
- (3) (2 punti) Consideriamo ora il caso $\alpha = 3$ e $\beta = 4$, cioè

$$f(x,y) = (3x^2 + 4y^2) e^{-(x^2+y^2)}$$
.

- È vero che
 - A Il piano tangente al grafico di f in (1,0,f(1,0)) è $z=x-y+\frac{3}{e}$
 - B V Il piano tangente al grafico di f in (1,0,f(1,0)) è $z=\frac{3}{e}$
 - C V nel punto (1,1) la derivata di f nella direzione del versore $\left(\frac{1}{\sqrt{2}},\frac{1}{\sqrt{2}}\right)$ vale
 - D nel punto (1,1) la derivata di f nella direzione del versore $\left(\frac{1}{\sqrt{2}},\frac{1}{\sqrt{2}}\right)$ vale $\frac{6\sqrt{2}}{e^2}$

Pagina 5: Esercizio 3 - 8 punti.

Le domande ammettono una o più risposte corrette; indicare tutte le risposte corrette.

Si consideri l'equazione differenziale ordinaria

$$y'(t) = \log(1 + t^2)(y(t) - 2)$$

dove log è il logaritmo naturale.

- (1) **(2 punti)** È vero che
 - A l'equazione è autonoma
 - B V l'equazione è lineare
 - \overline{C} non esistono soluzioni il cui grafico passa per il punto (0,2)
 - D V per ogni $(t_0, y_0) \in \mathbb{R}^2$ esiste una e una sola soluzione il cui grafico passa per il punto (t_0, y_0)
- (2) (3 punti) Si consideri ancora l'equazione differenziale della domanda precedente. Detta y(t) una generica soluzione di tale equazione, si può affermare che
 - A $\lambda y(t)$ è ancora soluzione della stessa equazione, per ogni $\lambda \in \mathbb{R}$
 - B |V| se y(t) non è costante, è strettamente monotona
 - $C(\overline{z(t)}) = y(t+c)$ è soluzione per ogni $c \in \mathbb{R}$
 - D | V | esiste almeno una soluzione che cambia segno
 - E V è possibile scrivere esplicitamente y(t) utilizzando i metodi studiati in questo
- (3) (3 punti) Si consideri ora il seguente problema di Cauchy, al variare di $a \in \mathbb{R}$,

$$\begin{cases} y'(t) = \log(1+t^2)(y(t)-2) \\ y(0) = a. \end{cases}$$

Detta y_a una sua soluzione e sapendo che essa è definita per ogni $t \in \mathbb{R}$, si può affermare che

- A | V | se a = 2, l'unica soluzione è la soluzione costante $y_2(t) = 2$ per ogni t
- B se a = 0, $\lim_{t \to +\infty} y_0(t) = 0$
- C $\boxed{\mathbf{V}}$ se a < 2, $\lim_{t \to +\infty} y_a(t) < 2$ D $\boxed{\mathbf{V}}$ se a < 2 < b, $\lim_{t \to +\infty} y_a(t) \neq \lim_{t \to +\infty} y_b(t)$