On the efficient computation of the projector over the Birkhoff polytope

Defeng Sun

Department of Applied Mathematics

The International Symposium on Mathematical Programming 2018 Bordeaux, July 1-6, 2018

Based on joint work with Xudong Li (Princeton), and Kim-Chuan Toh (NUS)

.

Optimization over Birkhoff polytope

Consider optimization problem:

$$\min \left\{ f(X) \, | \, X \in \mathfrak{B}_n \right\}$$

Birkhoff polytope:

$$\mathfrak{B}_n := \{ X \in \Re^{n \times n} \mid Xe = e, X^T e = e, X \ge 0 \}$$

 $e \in \mathbb{R}^n$: the vector of all ones

 $f: \Re^{n \times n} \to (-\infty, +\infty]$, possibly nonconvex, nonsmooth

Permutation matrices:

$$\mathfrak{D}_n := \{ X \in \Re^{n \times n} \mid Xe = e, X^T e = e, X_{ij} \in \{0, 1\} \}$$

Convex hull: [Birkhoff, 1946 & J. von Neumann, 1953]

$$\mathfrak{B}_n = \operatorname{conv}(\mathfrak{D}_n)$$

Examples

(i) Graph based Clustering, given affinity matrix K [Zass et al., NIPS, 2006]:

$$\min\left\{\|X - K\|_F^2 \mid X \in \mathfrak{B}_n\right\}$$

[Wang et al., KDD, 2016]: given $k \ge 0$,

$$\min \left\{ \|X - K\|_F^2 + \gamma \|I - X\|_* + r \|X\|_F^2 \mid X \in \mathfrak{B}_n, \, \text{Tr}(X) = k \right\}$$

(ii) Graph Matching, adjacency matrices A, B, [Fiori et al., NIPS, 2013]:

$$\min\left\{\|AX - XB\|_F^2 \mid X \in \mathfrak{B}_n\right\}$$

$$\min \left\{ \sum_{i,j} \| ((AX)_{ij}, (XB)_{ij}) \|_2 \mid X \in \mathfrak{B}_n \right\}$$

Examples

(iii) Relaxation of the seriation problem, 2-SUM minimization, given symmetric, binary matrix A, [Fogel et al., NIPS, 2013], [Lim & Wright, 2014]:

$$\min\left\{\langle Xg,\, L_AXg\rangle\mid X\in\mathfrak{B}_n\right\}$$
 $g=(1,\ldots,n)^T$ and $L_A=\mathrm{diag}(Ae)-A$

Relaxations of the quadratic assignment problems (QAP)...

Difficulties: constrained minimization, n^2 unknown variables in X, large-scale even when $n=10^3\,$

Projection onto \mathfrak{B}_n

Metric projector over \mathfrak{B}_n : given $G \in \Re^{n \times n}$

$$\Pi_{\mathfrak{B}_n}(G) := \arg\min\left\{\frac{1}{2}||X - G||_F^2 \mid X \in \mathfrak{B}_n\right\}$$

Easy computation of $\Pi_{\mathfrak{B}_n}(G)$ " \Longrightarrow " first order methods for

$$\min\{f(X) + \delta_{\mathfrak{B}_n}(X)\}$$

 $\delta_{\mathfrak{B}_n}(\cdot)$: indicator function over \mathfrak{B}_n

PG, APG (FISTA), ADMM, splitting methods ...

Generalized Jacobian $\partial \Pi_{\mathfrak{B}_n}(G)$ " \Longrightarrow " second order methods (sparse) semismooth (generalized) Newton methods

Computation of $\Pi_{\mathfrak{B}_n}(G)$

Primal formulation:

$$\Pi_{\mathfrak{B}_n}(G) = \arg\min\left\{\frac{1}{2}\|X - G\|_F^2 \mid \mathcal{B}X = b, X \in C\right\}$$

$$\mathcal{B}(X) = [Xe; \ X^T e], \ C := \{X \in \Re^{n \times n} \mid X \ge 0\}, \ b = [e; e]$$

Dual problem, convex differentiable function φ :

$$\min \left\{ \varphi(y) := \frac{1}{2} \| \Pi_C(\mathcal{B}^* y + G) \|_F^2 - \langle b, y \rangle - \frac{1}{2} \| G \|_F^2 \mid y \in \text{Range}(\mathcal{B}) \right\}$$

$$\Pi_{\mathfrak{B}_n}(G) = \Pi_C(\mathcal{B}^*\bar{y} + G) \text{ with } \bar{y} \in \arg\min_{y \in \operatorname{Range}(\mathcal{B})} \varphi(y)$$

Simple convex QP, state-of-the-art commercial solvers (e.g., Gurobi, Mosek)

(accelerated) gradient methods, semismooth Newton methods

Newton's method

Figure: Sir Isaac Newton (Niu Dun) (4 January 1643 - 31 March 1727)

Which Newton's method?

Figure: Snail (Niu)

Figure: Charging Bull (Niu)

Figure: Longhorn beetle (Niu)

Figure: Yak (Niu)

Algorithm SSNCG

Recall
$$\nabla \varphi(y) = \mathcal{B}\Pi_C(\mathcal{B}^*y + G) - b, \quad \forall y \in \text{Range}(\mathcal{B})$$

SSNCG for nonsmooth equation:

$$\nabla \varphi(y) = 0, \quad y \in \text{Range}(\mathcal{B})$$

j-th iter. Choose $V_j \in \mathcal{B}\partial \Pi_C(\mathcal{B}^*y_j + G)\mathcal{B}^*$, solve linear system (CG)

$$(\mathcal{V}_j + \varepsilon_j I)d + \nabla \varphi(y^j) = 0, \quad d \in \text{Range}(\mathcal{B})$$

 $\varepsilon_i > 0$: small perturbation converging to zero.

Global convergence: Line search (using $\varphi(y)$)

Local convergence: at least superlinear if

$$\mathcal{B}\ln(\mathcal{T}_C(\Pi_C(\mathcal{B}^*\bar{y}+G)) = \operatorname{Range}(\mathcal{B})$$

SSNCG fast and robust

Numerical comparisons

Relative KKT residual: $\eta = \max\{\eta_P, \eta_C\}$,

$$\eta_P = \frac{\|\mathcal{B}X - b\|}{1 + \|b\|}, \quad \eta_C = \frac{\|X - \Pi_C(\mathcal{B}^*y + G)\|}{1 + \|X\|}$$

Algorithms: our semismooth Newton CG method (SSNCG), accelerated gradient, Gurobi

Test instances G:

- 0 G = randn(n)
- Similarity matrices derived from LIBSVM datasets: gisette, mushrooms, a6a, a7a, rcv1 and a8a normalize (unit l₂-norm), Gaussian kernel

$$G_{ij} = \exp(-\|x_i - x_j\|^2), \quad \forall 1 \le i, j \le n$$

Gurobi: default parameters

SSNCG and APG: terminate $\eta < \mathrm{tol}$ or the time exceeding 3 hours

Numerical results

"a": Accelerated gradient ($tol = 10^{-9}$), "b": Gurobi,

"c": SSNCG (tol = 10^{-15})

"*": Gurobi out of memory (128 G RAM)

		η		time
n		$a \mid b(\eta_P) \mid c$		a b c
10000	3.1-7	6.2-6 (3.4-15)	4.5-16	3:00:00 21:27 58
12000	2.6-4	4.6-6 (3.8-15)	4.6-16	3:00:00 33:31 1:33
24000	1.9-2	*	4.9-16	3:00:04 * 7:15
30000	4.9-2	*	5.9-16	3:00:14 * 12:01
32000	6.3-2	*	4.8-16	3:00:17 * 14:10
6000	9.8-10	3.3-6 (2.5-15)	6.5-16	7:19 6:58 16
8124	9.8-10	9.5-5 (4.8-15)	1.9-16	11:07 11:58 32
11220	9.9-10	4.7-6 (4.0-15)	3.8-16	34:29 31:21 1:03
16100	9.9-10	*	2.9-16	1:28:14 * 2:34
20242	1.3-6	*	1.9-16	3:00:03 * 5:02
22696	2.7-4	*	2.5-16	3:00:03 * 6:15
	10000 12000 24000 30000 6000 8124 11220 16100 20242	10000 3.1-7 12000 2.6-4 24000 1.9-2 30000 4.9-2 32000 6.3-2 6000 9.8-10 8124 9.8-10 11220 9.9-10 16100 9.9-10 20242 1.3-6	n a b(η_P) c 10000 3.1-7 6.2-6 (3.4-15) 12000 2.6-4 4.6-6 (3.8-15) 24000 1.9-2 * 30000 4.9-2 * 32000 6.3-2 * 6000 9.8-10 3.3-6 (2.5-15) 8124 9.8-10 9.5-5 (4.8-15) 11220 9.9-10 4.7-6 (4.0-15) 16100 9.9-10 * 20242 1.3-6 *	$\begin{array}{c c c c c c c c c c c c c c c c c c c $

Performance profile

Superlinear convergence of SSNCG

Performance profile

Computational complexities:

$$t_{\mathrm{Ssncg}} = \mathcal{O}(n^{2.1}), \quad t_{\mathrm{Gurobi}} = \mathcal{O}(n^{2.3}), \quad \frac{t_{\mathrm{Gurobi}}}{t_{\mathrm{Ssncg}}} = 7n^{0.2}$$

SSNCG VS. PPROJ

PPROJ: C codes, extremely fast implementation, algorithm for projection onto general polyhedral sets [Hager & Zhang, SIOPT, 2016]

"a": PPROJ, "b": SSNCG (tol = 10^{-15})

Executed on HPC clusters in NUS

		η	time	
problem	n	a b	a b	
rand5	10000	5.8-12 4.5-16	3:45 39	
rand6	12000	1.6-12 4.7-16	5:31 59	
rand7	16000	5.8-13 5.9-16	19:34 1:20	
rand8	20000	4.3-13 9.5-16	34:01 2:10	
gisette	6000	1.4-14 6.5-16	2:39 11	
mushrooms	8124	6.9-7 2.0-16	16:22:46 <mark>21</mark>	
аба	11220	3.3-14 3.8-16	14:32 39	
a7a	16100	3.7-14 2.9-16	43:53 1:21	
rcv1	20242	1.3-13 1.9-16	2:01:32 2:19	

Generalized Jacobian of $\Pi_D(\cdot)$

 $\partial \Pi_{\mathfrak{B}_n}(G)$: second order algorithms for optimization over \mathfrak{B}_n

Polyhedral $D:=\{x\in\Re^n\mid Ax\geq b,\, Bx=d\}$, B full row rank

For any $x \in \Re^n$, KKT condition for $\Pi_D(x)$

$$\begin{cases} \Pi_D(x) - x + A^T \lambda + B^T \mu = 0, \\ A\Pi_D(x) - b \ge 0, \quad B\Pi_D(x) - d = 0, \\ \lambda \le 0, \quad \lambda^T (A\Pi_D(x) - b) = 0 \end{cases}$$
 (1)

Multipliers $M(x) := \{(\lambda, \mu) \in \Re^m \times \Re^p \mid (x, \lambda, \mu) \text{ satisfies (1)} \}$

Active index $I(x) := \{i \mid A_i \Pi_D(x) = b_i, i = 1, \dots, m\}$

 $\Pi_D(\cdot)$: non-smooth, piecewise-affine, difficult to find elements in $\partial \Pi_D(x)$

Any computable approach?

Generalized Jacobian of $\Pi_D(\cdot)$

 A_K : rows of A, indexed by K

$$\begin{split} \mathcal{D}(x) := \{ \ K \subseteq [1:m] \mid \exists \ (\lambda,\mu) \in M(x) \text{ s.t. supp}(\lambda) \subseteq K \subseteq I(x), \\ [A_K^T \ B^T] \text{ is of full column rank} \} \end{split}$$

$$\mathcal{P}(x) := \left\{ \begin{aligned} P \in \Re^{n \times n} \mid \\ P = I_n - \left[A_K^T \ B^T \right] \left(\left[\begin{array}{c} A_K \\ B \end{array} \right] \left[A_K^T \ B^T \right] \right)^{-1} \left[\begin{array}{c} A_K \\ B \end{array} \right], \ K \in \mathcal{D}(x) \end{aligned} \right\}$$

 $\mathcal{P}(\cdot)$: Upper semicontinuity, [Han & Sun, JOTA, 1997]

Semismooth Newton method: find an element in $\mathcal{P}(x)$

Difficulties:

- **1** K corresponds to λ , λ unavailable
- $oldsymbol{2}$ full column rank of $[A_K^T \ B^T]$

HS-Jacobian of Π_D

Theorem 1

For any given $x \in \Re^n$, denote

$$P_{HS} := I_n - [A_{I(x)}^T \ B^T] \left(\left[\begin{array}{c} A_{I(x)} \\ B \end{array} \right] \left[A_{I(x)}^T \ B^T \right] \right)^{\dagger} \left[\begin{array}{c} A_{I(x)} \\ B \end{array} \right].$$

Then, $P_{HS} \in \mathcal{P}(x)$.

 P_{HS} : referred to as HS-Jacobian (HS: Han & Sun)

Advantages of P_{HS} :

- lacktriangle unrelated to index sets K and multipliers λ
- 2 full column rank assumption removed

HS-Jacobian of $\Pi_{\mathfrak{B}_n}$

Given $G \in \Re^{n \times n}$, denote $\overline{G} := \Pi_{\mathfrak{B}_n}(G)$

Linear operator $\Xi: \Re^{n \times n} \to \Re^{n \times n}$

$$\Xi(H) := \Theta \circ H, \quad H \in \Re^{n \times n}, \quad \Theta_{ij} = \begin{cases} 0, & \text{if } \overline{G}_{ij} = 0, \\ 1, & \text{otherwise.} \end{cases}$$

Proposition 1

The linear operator $P_{HS}: \Re^{n \times n} \to \Re^{n \times n}$ given by

$$P_{HS}(H) := \Xi(H) - \Xi \mathcal{B}^* (\mathcal{B}\Xi \mathcal{B}^*)^{\dagger} \mathcal{B}\Xi(H), \quad \forall H \in \Re^{n \times n},$$

is the HS-Jocobian of $\Pi_{\mathfrak{B}_n}$ at G.

Sparsity of HS-Jacobian of $\Pi_{\mathfrak{B}_n}$

$$n = 20, P_{HS} \in \Re^{n^2 \times n^2}, \text{ sparsity} = 0.0297$$

QP with Birkhoff polytope constraints

Convex QP:

$$(\mathbf{P}) \quad \min \left\{ \frac{1}{2} \langle X, \, \mathcal{Q}X \rangle + \langle G, \, X \rangle \mid X \in \mathfrak{B}_n \right\},\,$$

Self-adjoint linear operator $Q \succeq 0$

$$(\mathbf{D}) \min \left\{ \delta_{\mathfrak{B}_n}^*(Z) + \frac{1}{2} \langle W, \mathcal{Q}W \rangle \mid Z + \mathcal{Q}W + G = 0, \ W \in \text{Range}(\mathcal{Q}) \right\}$$

 $\delta_{\mathfrak{B}_n}^*\colon$ the conjugate of the indicator function $\delta_{\mathfrak{B}_n}$

ALM function for (**D**), given $\sigma > 0$

$$\mathcal{L}_{\sigma}(Z, W; X) = \delta_{\mathfrak{B}_{n}}^{*}(Z) + \frac{1}{2} \langle W, \mathcal{Q}W \rangle - \langle X, Z + \mathcal{Q}W + G \rangle$$
$$+ \frac{\sigma}{2} \|Z + \mathcal{Q}W + G\|^{2}$$

ALM for (**D**)

Algorithm ALM: An augmented Lagrangian method for (D).

Given $\sigma_0 > 0$, iterates $k = 0, 1, \dots$

Step 1. Compute

$$(Z^{k+1}, W^{k+1}) \approx \operatorname{argmin} \left\{ \begin{aligned} \Psi_k(Z, W) &:= \mathcal{L}_{\sigma_k}(Z, W; X^k) \\ \mid (Z, W) \in \Re^{n \times n} \times \operatorname{Range}(\mathcal{Q}) \end{aligned} \right\}.$$

Step 2. Compute

$$X^{k+1} = X^k - \sigma_k(Z^{k+1} + QW^{k+1} + G).$$

Update $\sigma_{k+1} \uparrow \sigma_{\infty} \leq \infty$.

Convex piecewise linear-quadratic minimization:

error bound holds \Longrightarrow ALM converges asymptotically superlinearly

Semismooth Newton method CG for inner problem

For any $W \in \text{Range}(\mathcal{Q})$,

$$\psi(W) := \inf_{Z} \mathcal{L}_{\sigma}(Z, W; \widehat{X}), \quad Z(W) := \widehat{X} - \sigma(QW + G)$$

Subproblem solution $(\overline{Z}, \overline{W})$:

$$\begin{split} \overline{W} &= \arg\min\left\{\psi(W) \ | \ W \in \operatorname{Range}(\mathcal{Q})\right\}, \\ \overline{Z} &= \sigma^{-1} \big(Z(\overline{W}) - \Pi_{\mathfrak{B}_n}(Z(\overline{W}))\big) \end{split}$$

For all $W \in \text{Range}(\mathcal{Q})$,

$$\nabla \psi(W) = \mathcal{Q}W - \mathcal{Q}\Pi_{\mathfrak{B}_n}(Z(W))$$

Semismooth Newton CG solve nonsmooth piecewise affine equation

$$\nabla \psi(W) = 0, \quad W \in \text{Range}(\mathcal{Q}).$$

Semismooth Newton method CG for inner problem

Given \widehat{W} , linear operator $\mathcal{M}: \Re^{n \times n} \to \Re^{n \times n}$

$$\mathcal{M}(\Delta W) := (\mathcal{Q} + \sigma \mathcal{Q}_{HS}^{P} \mathcal{Q}) \Delta W, \quad \forall \Delta W \in \Re^{n \times n}$$

 P_{HS} : the HS-Jacobian of $\Pi_{\mathfrak{B}_n}$ at $Z(\widehat{W})$

j-th iter., solve linear system (CG)

$$\mathcal{M}_j dW + \nabla \psi(W^j) = 0, \quad dW \in \text{Range}(\mathcal{Q})$$

Global convergence: Line search (using $\psi(W)$)

Local convergence:

positive definiteness of $\mathcal M$ on $\mathrm{Range}(\mathcal Q)\Longrightarrow$ at least superlinear

Numerical results

Given $A, B \in \mathcal{S}^n$, QAP:

$$\min\{\langle X, AXB \rangle \mid X \in \{0, 1\}^{n \times n} \cap \mathfrak{B}_n\}$$

Convex relaxation [Anstreicher et al. MP, 2001]:

$$\min\{\langle X, \mathcal{Q}X\rangle \mid X \in \mathfrak{B}_n\}$$

 $\text{Self-adjoint linear operator } \mathcal{Q}(X) := AXB - SX - XT, \quad \mathcal{Q} \succeq 0$

Matrices $S, T \in \mathcal{S}^n$ obtained from [Anstreicher et al. MP, 2001]

Relative KKT residual:

$$\eta = \frac{\|X - \Pi_{\mathfrak{B}_n}(X - QX)\|}{1 + \|X\| + \|QX\|}$$

Matrices A, B from QAPLIB

Numerical results for QAP

"a": Gurobi, "b": ALM

		iter	η	time
problem	n	a b (itersub)	a b	a b
lipa80a	80	11 25 (68)	1.3-6 7.3-8	2:46 01
lipa90a	90	11 20 (54)	2.7-6 8.8-8	5:32 01
sko100a	100	14 26 (95)	8.5-6 8.5-8	2:06 11
tai100a	100	11 18 (52)	1.3-6 9.5-8	10:31 02
tai100b	100	11 27 (98)	1.3-6 9.1-8	10:31 13
tai80b	80	11 27 (98)	1.2-6 8.5-8	2:36 07
tai256c	256	* 2 (4)	* 2.1-16	* 00
tai150b	150	19 27 (94)	4.3-7 9.3-8	2:46:17 13
tho150	150	16 24 (96)	5.6-6 9.9-8	18:52 22

"*": Gurobi out of memory (128 G RAM)

"tai150b": Gurobi reports error, "small positive term" needed

References

[Defeng Sun, Houdou Qi], A quadratically convergent Newton method for computing the nearest correlation matrix, SIMAX, 2006

[Xudong Li, Defeng Sun, Kim-Chuan Toh], On the efficient computation of a generalized Jacobian of the projector over the Birkhoff polytope, arXiv:1702.05934, 2017

Thank you for your attention!