## Diagnostic Classification with shape For Suspected Breast Cancer

Lee, Deok Hee

#### **CONTENTS**

- Danger of Breast Cancer
- How to Preprocessing
- Analysis of Breast Cancer Dataset
- Result

#### **Breast Cancer**

- Breast cancer is the most common disease in women worldwide. (IARC, 2013)
- Excluding thyroid cancer, breast cancer is the most frequently diagnosed cancer in women living in Korea. (NCIC, 2013)
- Approximately 77% of women with breast cancer are over the age of 50 at the time of diagnosis (USDHHS, 2008, Aug).
- If current rates stay the same, a woman born today has about a 1 in 8 chance of developing breast cancer over the course of her lifetime (NCI, 2010, Sep)

#### **Danger of Breast Cancer lurks in women**

#### **Breast Cancer**

- Among breast cancer patients, 37.9% were in the first stage and 35.7% in the second stage, This show that patients with relatively early breast cancer account for more than 70%. (KBCS, 2008)
- The 5-year survival rate of breast cancer patients was 99% in group 0 and 1, 89% in group 2, and 59% and 28% in group 3 and 4 rapidly. (KBCS, 2008)
- In order to deal with the uncertainty of whether or not you have cancer, it is best to push for an early and proper diagnosis. The earlier cancer is diagnosed and treated, the better the chances of it being cured.

Early detection and accurate diagnosis are very important

## Diagnosis Cancer

- Fine-needle Aspiration(FNA) is a diagnostic procedure used to investigate lumps or masses.
- During FNA, a long, thin needle is inserted into the suspicious area. A syringe is used to draw out fluid and cells for analysis.



<Fine Needle Aspiration>



< FNA of Tissue >

A Cancer is seen on the left, normal cells on the right.

## Data Gathering

|    | Α        | В         | С         | D          | E           |
|----|----------|-----------|-----------|------------|-------------|
| 1  | id       | diagnosis | radius_me | texture_me | perimeter_a |
| 2  | 842302   | М         | 17.99     | 10.38      | 122.8       |
| 3  | 842517   | M         | 20.57     | 17.77      | 132.9       |
| 4  | 84300903 | M         | 19.69     | 21.25      | 130         |
| 5  | 84348301 | M         | 11.42     | 20.38      | 77.58       |
| 6  | 84358402 | M         | 20.29     | 14.34      | 135.1       |
| 7  | 843786   | M         | 12.45     | 15.7       | 82.57       |
| 8  | 844359   | M         | 18.25     | 19.98      | 119.6       |
| 9  | 84458202 | M         | 13.71     | 20.83      | 90.2        |
| 10 | 844981   | M         | 13        | 21.82      | 87.5        |
| 11 | 84501001 | M         | 12.46     | 24.04      | 83.97       |
| 12 | 845636   | М         | 16.02     | 23.24      | 102.7       |
| 13 | 84610002 | M         | 15.78     | 17.89      | 103.6       |
| 14 | 846226   | М         | 19.17     | 24.8       | 132.4       |

Kaggle: Breast Cancer Wisconsin Data Set

Number of Records: 569 Number of Attributes: 32 Data set Characteristics: Multivariate Attribute Characteristics: Real Associated Tasks: Classification

None

Missing Values?

## Variables Information — Dependent variable

#### -Diagnosis

M = malignant (cancer)

B = benign (not cancer, just tumor)

#### Benign vs. Malignant Tumors

Benign (not cancer) tumor cells grow only locally and cannot spread by invasion or metastasis



Malignant (cancer) cells invade neighboring tissues, enter blood vessels and metastasize to different sites



## Variables Information — independent vaiables

-Concavity

: severity of concave portions of the contour



- Texture : standard deviation of gray-scale values



#### Variables Information

Number of Records: 569 Number of Attributes: 32 (Attributes: ID, diagnosis, 30 real-valued input features)

- ) ID number
- 2) Diagnosis (M = malignant(cancer), B = benign(just tumor))
- 3) Ten real-valued features are computed for each cell nucleus:
  - A. Radius: mean of distances from center to points on the perimeter
  - B. Texture: standard deviation of gray-scale values
  - C. Perimeter: The outer limits of an area
  - D. Area
  - E. Smoothness: local variation in radius lengths
  - F. Compactness: perimeter^2 / area 1.0
  - G. Concavity: severity of concave portions of the contour
  - H. Concave points: number of concave portions of the contour
  - I. Symmetry
  - J. Fractal dimension: "coastline approximation" 1

## Correlation analysis



The higher the blue color, the higher the positive correlation.

The higher the red color,
the higher the negative correlation

A graph that correlates 30 variables.

#### Variables within classification model

| Characteristic    | Mean                   | Standard error       | Worst (Farthest)       |
|-------------------|------------------------|----------------------|------------------------|
| Radius            | radius_mean            | radius_se            | radius_worst           |
| Texture           | texture_mean           | texture_se           | texture_worst          |
| Perimeter         | perimeter_mean         | perimeter_se         | perimeter_worst        |
| Area              | area_mean              | area_se              | area_worst             |
| Smoothness        | smoothness_mean        | smoothness_se        | smoothness_worst       |
| Compactness       | compactness_mean       | compactness_se       | compactness_worst      |
| Concavity         | concavity_mean         | concavity_se         | concavity_worst        |
| concave points    | concave points_mean    | concave points_se    | concave points_worst   |
| Symmetry          | symmetry_mean          | symmetry_se          | symmetry_worst         |
| fractal_dimension | fractal_dimension_mean | fractal_dimension_se | fractal_dimension_wors |

Delete variable which correlation coefficient is bigger than  $0.7 \rightarrow 11$  variables left!

#### Data Transformation



## Data - Mining Algorithm(python sklearn)



## Algorithm - Decision Tree



## Algorithm – Logistic Regression

#### Coefficients:

|                                   | Estimate | Std. | Error | z value | Pr(> z ) |     |
|-----------------------------------|----------|------|-------|---------|----------|-----|
| (Intercept)                       | -20.444  |      | 3.084 | -6.629  | 3.39e-11 | *** |
| radius_mean                       | 21.165   |      | 4.803 | 4.406   | 1.05e-05 | *** |
| texture_mean                      | 15.675   |      | 2.523 | 6.212   | 5.23e-10 | *** |
| smoothness_mean                   | 14.047   |      | 3.886 | 3.615   | 0.000301 | *** |
| concavity_mean                    | 17.887   |      | 3.724 | 4.803   | 1.56e-06 | *** |
| symmetry mean                     | 5.291    |      | 2.902 | 1.823   | 0.068298 |     |
| <pre>fractal_dimension_mean</pre> | -4.814   | _    | 3.750 | -1.284  | 0.199265 |     |
| radius_se                         | 14.362   | ]    | 6.593 | 2.178   | 0.029386 | *   |
| texture_se                        | -7.503   |      | 3.231 | -2.322  | 0.020208 | *   |
| smoothness_se                     | -4.895   |      | 3.100 | -1.579  | 0.114389 |     |
| compactness_se                    | -7.741   |      | 3.730 | -2.075  | 0.037977 | *   |
| symmetry_se                       | -2.409   |      | 3.251 | -0.741  | 0.458595 |     |
|                                   |          |      |       |         |          |     |

$$\ln(\frac{p}{1-p}) = -20.4 + 21.2 * radius \_ mean + 15.7 * texture \_ mean + \dots - 2.4 * symmetry \_ se$$

p = prob. of malignant(1)

## Algorithm – Neural Network



## Algorithm – KNN



Result train: test = (60:40)

#### **Decision Tree**

|        | Y_pred |     |
|--------|--------|-----|
| Y_true | 0      | 1   |
| 0      | 70     | 13  |
| 1      | 12     | 133 |



Accuracy Score = 0.89

### Logistic Regression

|        | Y_pred |     |
|--------|--------|-----|
| Y_true | 0      | 1   |
| 0      | 66     | 17  |
| 1      | 3      | 142 |



Accuracy Score = 0.91

Result train: test = (60:40)

#### K-Nearest Neighbor (k=8)

|        | Y_pred |     |
|--------|--------|-----|
| Y_true | 0      | 1   |
| 0      | 73     | 10  |
| 1      | 5      | 140 |



Accuracy Score = 0.93

Neural Network (activation='relu', alpha=1e-05, hidden\_layer\_sizes=(5, 2))

|        | Y_pred |     |
|--------|--------|-----|
| Y_true | 0      | 1   |
| 0      | 76     | 7   |
| 1      | 3      | 142 |



Accuracy Score = 0.96

## Model Comparison



# Thank you