

This is a digital copy of a book that was preserved for generations on library shelves before it was carefully scanned by Google as part of a project to make the world's books discoverable online.

It has survived long enough for the copyright to expire and the book to enter the public domain. A public domain book is one that was never subject to copyright or whose legal copyright term has expired. Whether a book is in the public domain may vary country to country. Public domain books are our gateways to the past, representing a wealth of history, culture and knowledge that's often difficult to discover.

Marks, notations and other marginalia present in the original volume will appear in this file - a reminder of this book's long journey from the publisher to a library and finally to you.

Usage guidelines

Google is proud to partner with libraries to digitize public domain materials and make them widely accessible. Public domain books belong to the public and we are merely their custodians. Nevertheless, this work is expensive, so in order to keep providing this resource, we have taken steps to prevent abuse by commercial parties, including placing technical restrictions on automated querying.

We also ask that you:

- + *Make non-commercial use of the files* We designed Google Book Search for use by individuals, and we request that you use these files for personal, non-commercial purposes.
- + Refrain from automated querying Do not send automated queries of any sort to Google's system: If you are conducting research on machine translation, optical character recognition or other areas where access to a large amount of text is helpful, please contact us. We encourage the use of public domain materials for these purposes and may be able to help.
- + *Maintain attribution* The Google "watermark" you see on each file is essential for informing people about this project and helping them find additional materials through Google Book Search. Please do not remove it.
- + *Keep it legal* Whatever your use, remember that you are responsible for ensuring that what you are doing is legal. Do not assume that just because we believe a book is in the public domain for users in the United States, that the work is also in the public domain for users in other countries. Whether a book is still in copyright varies from country to country, and we can't offer guidance on whether any specific use of any specific book is allowed. Please do not assume that a book's appearance in Google Book Search means it can be used in any manner anywhere in the world. Copyright infringement liability can be quite severe.

About Google Book Search

Google's mission is to organize the world's information and to make it universally accessible and useful. Google Book Search helps readers discover the world's books while helping authors and publishers reach new audiences. You can search through the full text of this book on the web at http://books.google.com/

University of Michigan Libraries,

ARTES SCIENTIA VELITAS

•

HANDBOOK

OF

HYDRAULICS

FOR THE SOLUTION OF HYDRAULIC PROBLEMS

BY

HORACE WILLIAMS KING

MEMBER AMERICAN SOCIETY CIVIL ENGINEERS, PROFESSOR OF HYDRAULIC ENGINEERING UNIVERSITY OF MICHIGAN

FIRST EDITION
SECOND IMPRESSION

McGRAW-HILL BOOK COMPANY, Inc. 239 WEST 39TH STREET. NEW YORK

LONDON: HILL PUBLISHING CO., LTD. 6 & 8 BOUVERIE ST., E. C. 1918

ENGIN. LIBRARY

160 K52

COPYRIGHT, 1918, BY THE McGraw-Hill Book Company, Inc.

7

1-

PREFACE

In applied Hydraulics rational theory must give place to experimental knowledge. Though every particle of flowing water moves in accordance with definite fixed laws, such laws are intricate and imperfectly understood. In many instances the basic formulas used in hydraulic computations are derived from theoretical considerations, but they must invariably be corrected by experimental coefficients and frequently they become thereby so transformed as to bear but a slight resemblance to the original formulas.

Many thousands of experiments on flowing water have been performed during the last two centuries, the results of which form the basis of our present science of hydraulics. These experiments present many incongruities and as they do not cover the range of conditions required in practice, it is difficult to devise from them accurate working rules and formulas. The hydraulic engineer is therefore confronted with the task of making what appears to be the most reasonable application of the available data to each problem that he encounters.

A great number of empirical formulas have been devised, which provide an indirect method of transferring experimental results to practical problems. In using such formulas, however, the engineer should not lose sight of the fact that results obtained by them will be subject to errors corresponding to the discrepancies in the experiments on which the formulas are based.

The active interest in experimental research during recent years has been productive of such a rapidly increasing number of hydraulic formulas that engineers generally are not in a position to make critical comparisons and select those that possess the greatest merit. The result has been a tendency to cling to the old and accepted formulas. The author believes that unless the newer formulas have apparent advantages over the old, the latter are preferable inasmuch as their peculiarities are known and it is easier to select coefficients for them,

but they should be discarded as soon as more accurate or simpler formulas become available.

In this book the older and commonly accepted formulas are given preference except where a gain in accuracy or simplicity or both will result from the adoption of new formulas or methods. The author departs from standard American practice in advocating the use of the Manning formula in place of the Kutter formula. He has not done this, however, untihe has been able to prove that the two formulas give practically identical results by using the same coefficient. New weif
formulas are also submitted which are shown to be simple and to conform to existing experimental data more consistently than other formulas. Exponential formulas are advocated for pipes but a simplified method of using them is given in detail.

This book is intended primarily to assist in the solution of hydraulic problems. In preparing the manuscript the author has continually kept in mind the twofold purpose, of securing an accuracy consistent with the best experiments and of simplifying calculations. This has necessitated an examination of a vast amount of data and has resulted in the preparation of a great many tables. A knowledge of the fundamental principles of hydraulics is presupposed and derivations have been omitted except where they have appeared necessary in explaining new methods. It is believed that the book will be useful to practising engineers and to students.

In the preparation of tables care has been taken to make then correct to the last figure and all computations and formula have been independently checked. The author will be grateful to those who may call to his attention any errors or omissions.

A work of this kind is, in a large measure, a recompilation of the results of others, and a great many books and publications have necessarily been consulted. Reference to such use has been made at the proper place in the text. In the preparation of this volume the author acknowledges assistance from the following:

Mr. Robert E. Horton reviewed the manuscript and prooand made many valuable criticisms and suggestions relative to the character of material and scope of the book. He gave the author free access to all of the records in his office and many of the data contained herein were obtained from this source. For being able to present the book in its present form the author is, in a large measure, indebted to Mr. Horton's helpful suggestions, and he takes this opportunity to express his grateful appreciation.

Professor Theodore R. Running rendered valuable assistance in mathematical computations, especially in checking the author's weir formula by the method of least squares and in suggesting the method employed in the construction of the Manning formula diagrams.

Mr. Chester O. Wisler assisted in checking formulas and tables and in reading proof, and gave many valuable suggestions which were made use of in preparing this book.

Mr. Harry R. Leach, Mr. Floyd A. Nagler, and Mr. Russell A. Dodge shared with the author the bulk of the labor of computing and checking tables, reading proof, and other details. It has only been through the hearty coöperation, loyalty, and active interest of these men that the completion of this volume at the present time has been made possible.

Messrs. M. J. Orbeck, J. B. Jewell, C. N. Ward, R. B. Sleight, and W. O'B. Henderson rendered valuable assistance in computing and checking.

HORACE W. KING.

Ann Arbor, Michigan, January, 1918.

CONTENTS

CHAPTER I

_													I	PAGE
HYDRAULIC UNITS														
Hydraulic units .										•	•	•	•	1
Conversion tables .		•		•				•		•	•		•	4
	СНАР	TE	R	I	Ι									
HYDROSTATICS														
Weight of water .														11
Atmospheric pressu														11
Hydrostatic pressure														.12
Hydrostatic pressure														
Pressure on curved	surface	28			•	·	Ċ	Ī	i	i				18
Hydrostatic tables														
_			_		_									
	HAP'	ГE	ĸ	11	1									
ORIFICES														
Fundamental consid	eratio	ns	٠.											35
Orifices with full con	itracti	on -												38
Orifices with contrac														39
Effects of velocity of														40
Short tubes														41
Submerged orifices														44
Gates							•							45
Tables for orifices a														48
C	HAP'	TE:	R	IJ	7									
SHARP CRESTED WEIRS														
General consideration	ns													63
Rectangular weirs w								•	•	•	٠	٠	•	
Precautions for accu														
					•									76
														• -
v-moten weirs		. •	•	•	•	٠	٠	٠	٠	•	•	•	•	04

m '11'						Page
Trapezoidal weirs			•	•		88
Weirs with crest not level						90
Determination of mean discharge	fr	oṃ	8	eve	ral	
observations						91
Choice of weirs for maximum accuracy						
Tables for solution of weir formulas .				•		93
CHAPTER V						
WEIRS NOT SHARP CRESTED						
General considerations						199
Formula for determining discharge						
Modifications of nappe form						
Broad crested weirs		•	•	•	•	132
Weirs of triangular section	•	•	•	•	•	134
Weirs of trapezoidal section	•	•	•	•	•	104
Weirs of irregular section Submerged weirs and dams		•	•		•	130
Falls	• •	•	•		•	141
Tables of weir coefficients		•	•	•	•	143
CHAPTER VI						
FLOW OF WATER THROUGH PIPES						
Fundamental principles						149
Loss of head at entrance to pipes						151
Loss of head due to friction						
Common formulas for friction loss in p	ipe	з.				154
Formulas advocated						
Discussion of pipe formulas						160
Solution of pipe formulas						
Other losses in pipes						164
Critical velocity						
Tables to assist in solution of pipe prol						
CHAPTER VII						
Every on Wilman vy Oppry Carrents						
FLOW OF WATER IN OPEN CHANNELS						100
General considerations			•		•	188
Formulas for flow of water in open cha	mne	:18	•		•	188
Discussion of open channel formulas		٠	•	٠.	•	196

				•
٩	١	ı		٦
4	í	į	١	J

CONTENTS

· .	PAGE
Comparison of Kutter, Manning and Bazin formulas	
Solution of Kutter and Bazin formulas	200
Solution of Manning formula	201
Tables to assist in solution of open channel formulas.	204
CHAPTER VIII	
leasurement of Flowing Water .	
General considerations	231
Distribution of velocities	232
Instruments for measuring velocity	235
Discharge measurements by current meter	
Discharge measurements by Pitot tubes	243
Discharge measurements by floats	
Discharge measurements by traveling screen	
Discharge measurements by color method	
Discharge measurements by Venturi meter	
Discharge measurements by chemical gaging	
Continuous stream discharge records	257
CHAPTER IX	
PECIAL PROBLEMS	
	278
Divided flow in pipes	
Short canals with free discharge	
The mass diagram for storage problems	
Determination of reservoir capacity	302
Use of logarithms	307
CHAPTER X	
ENERAL REFERENCE TABLES	
Logarithmic and other tables	310
APPENDIX A	
omparison of weir formulas with experiments	383
APPENDIX B	
Comparison of Kutter, Manning, Bazin formulas wit Scobey's experiments	
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	



# TABLES

		_
i.	a	Page 4
	Conversion of units of length	4
	Conversion of units of power	5
	Inches in decimals of a foot	5 5
	Factors for conversion of units	6 6
		10
	Weights of materials used in hydraulic construction .	10
	Density and weight of water at different temperatures	11
ъ.	Atmospheric pressures and corresponding heights of	10
	water and mercury columns	12
у.	Hydrostatic pressure in pounds per square foot for	0.1
	different heads	21
IJ.	Hydrostatic pressure in pounds per square inch for	90
	different heads	22
ц.	Heads corresponding to different hydrostatic pressure	
	in pounds per square inch	27
	Hydrostatic pressures against dams	29
	Distances to centers of pressures against dams	30
H.,	Theoretical horsepower of one cubic foot per second of	
	water for heads up to 100 feet	31
IJ.	Theoretical kilowatts of one cubic foot per second of	
	water for heads up to 100 feet	33
	Theoretical velocities for heads up to 5 feet	48
	Theoretical velocities for heads up to 50 feet	49
	Theoretical velocities for heads up to 500 feet	50
19.	Heads corresponding to velocities up to 10 feet per	
	second	51
W.	Heads corresponding to velocities up to 50 feet per	
_	second	53
П.	Coefficients of discharge for circular orifices with full	
_	contraction	54
22.	Coefficients of discharge for square orifices with full	
L	contraction	55
Z3.	Coefficients of discharge for rectangular orifices with	
	full contraction	56
ı	seiii	

# TABLES

No.	Page
24.	Coefficients of discharge for various shaped orifices
	with full contraction
25.	Coefficients of discharge for rectangular orifices with
	partially suppressed contraction 58
26.	Coefficients of discharge for sharp-edged submerged
	orifices
27.	Coefficients of discharge for submerged orifices with
	rounded corners 59
28.	Coefficients of discharge for various models of gates . 60
29.	Coefficients of discharge for submerged gates 61
<b>30</b> .	Coefficients of discharge for submerged tubes 62
31.	Coefficients for V-notch weir formulas 86
<b>32</b> .	1.47 powers of numbers
33.	Discharge over weirs without velocity of approach 98
	Velocity of approach correction for weirs 103
	Discharge over weirs with velocity of approach 104
36.	Partial solution of submerged weir formula 109
	Discharge over right-angled V-notch weirs 110
38.	Discharge over Cippoletti weirs
39.	Discharge over weirs by the Francis formula 117
	Three halves powers of numbers
41.	Percentage of error from use of various weirs 127
<b>42</b> .	Coefficients for broad crested weirs 143
43.	Coefficients for broad crested weirs with rounded
	upstream corner 144
	Coefficients for broad crested weirs with inclined crest 144
<b>45.</b>	Coefficients for weirs of triangular section with
	vertical upstream face and sloping downstream
•	face
46.	Coefficients for weirs of triangular section with vertical
	upstream face and sloping downstream face 145
47.	Coefficients for weirs of triangular section with both
	faces inclined
48.	Coefficients for weirs of trapezoidal section with both
	faces inclined
49.	Coefficients for weirs of trapezoidal section with both
	faces inclined
<b>5</b> 0.	Coefficients for weirs of trapezoidal section with
	upstream face inclined and downstream face
	vertical

ΓAI	BLES	\$
-----	------	----

<u> </u>	
TABLES	xv
I.	Page
Coefficients for weirs of irregular section	147
Coefficients for models of old Croton dam	147
Coefficients for models of existing dams	
Loss of head at entrance to pipes	
. Coefficients for loss of head at entrance to pipes	171
. Coefficients for Chezy formula	171
. Coefficients for friction in pipes	172
. Coefficients for friction in pipes	
Loss of head due to friction in pipes	174
). Solution of pipe formula, diameter in feet	
. Solution of pipe formula, diameter in inches	
Loss of head due to sudden enlargement in pipes	181
3. Coefficients for determining loss of head du	
sudden enlargement in pipes	
. Coefficients for determining loss of head due to gra	adual
enlargement in pipes	
Loss of head due to sudden contractions in pipes	182
. Coefficients for determining loss of head due to su	
contractions in pipes	
. Loss of head due to valves or obstructions in pip	es . 184
. Coefficients for determining loss of head due to vi	
or obstructions in pipes	
Loss of head due to bends in pipes	
. Coefficients for determining loss of head due to b	ends
in pipes	186
. Lower critical velocities	187
. Higher critical velocities	187
. Higher critical velocities	ing's
formulas	191
	193
. Comparison of coefficients in Kutter's, Mann	
and Bazin's formulas	204
. Chezy coefficient from Kutter's formula	207
. Chezy coefficient from Bazin's formula	210
Coefficients for Manning's formula	
Hydraulic elements for pipes flowing part full .	
Hydraulic elements for trapezoidal canal section	s 212
Solution of Manning's formula	215
Determination of slopes by Manning's formula	
Square roots of decimal numbers	224

# TABLES

No.	1	Ρ
84.	Two-thirds powers of numbers	1
85.	Three-eighths powers of numbers	1
86.	Rating table for Price meters	4
87.	Specimen stream discharge table	1
88.	Specimen backwater computations	1
	Specimen tabulation for mass diagram	4
	Evaporations from water surfaces	4
	Logarithms of numbers	3
	Cologarithms of numbers	3
93.	Natural sines and cosines of angles	3
94.	Natural tangents and cotangents of angles	4
	Natural secants and cosecants of angles	3
96.	Squares, cubes, square roots, cube roots, reciprocals.	3
97.	Square roots of numbers from 1000 to 10,000	8
98.	Circumferences of circles by hundredths	3
99.	Areas of circles by hundredths	3
100.	Circumferences of circles by eighths	3
101.		4
	Comparison of weir formulas with Bazin's experi-	
	ments	3
103.	Comparative discrepancies of weir formulas	3
104.	Comparison of weir formulas with Fteley and Stearns'	
	experiments	3
	Comparative discrepancies of weir formulas	3
106.	Comparison of weir formulas with Francis' and Fteley	_
	and Stearns' experiments	3
	Comparative discrepancies of weir formulas	3
108.	Comparison of submerged weir formulas with Bazin	_
	experiments	3
109.	Comparison of submerged weir formulas with Francis'.	c
	experiments of 1883	3
110.	Comparison of submerged weir formulas with Fteley	
	and Stearns' experiments	4
111.	Comparison of submerged weir formulas with Francis'	
	experiments of 1848	
112.	Comparison of Kutter's, Manning's, and Bazin's	,
	formulas with Scobey's experiments	4

# HANDBOOK OF HYDRAULICS

#### CHAPTER I

#### HYDRAULIC UNITS

Basic Units.—In the United States and England the three primary units used as a basis for hydraulic measurements are: the foot, the pound, and the second. If not otherwise stated in this volume, these units will be understood. In countries using the metric system the corresponding units are the meter, the kilogram and the second. Tables 1, 2 and 5, pages 4 and 6, will assist in converting one system of units to the other.

Dimensions, such as diameters of pipes and orifices are frequently expressed in inches, or feet and inches, but these should always be changed to feet and decimals of a foot before substituting in hydraulic formulas. Table 4, page 5, may be used for converting inches to decimals of a foot.

Units of Volume and Flow.—The following units have been used in the United States to express respectively, volumes of water and volumes per time of flowing water:

## Volumes:

- (a) Cubic feet
- (b) Gallons
- · (c) Acre-feet
  - (d) Cubic feet per second-day
- (e) Inches per area.

# Volumes per time:

- (a) Cubic feet per second
- (b) Cubic feet per minute
- (c) Gallons per minute
- (d) Gallons per 24 hours
- (e) Miner's inches
- (f) Square inches of water
- (g) Inches per area per time.

The cubic foot is the most convenient unit of volume for expressing small quantities of water, such as capacities of tanks or small reservoirs. Water, in cities, is commonly sold on the basis of the number of cubic feet consumed.

The United States gallon, which contains 231 cubic inches or 0.13368 cubic feet, is the standard of liquid measure. It is commonly used to express volumes in connection with municipal water supply. Reservoir capacities are frequently stated in millions of gallons.

An acre-foot of water is the volume required to cover an area of 1 acre to the depth of 1 foot and is therefore equal to 43,560 cubic feet. This unit has been quite generally adopted in the irrigated sections of the United States and its use is becoming prevalent throughout the country. One cubic foot per second flowing for 24 hours equals 1.9835 acre-feet, or 2 acre-feet within an error of less than 1 per cent. Since hydraulic data are never accurate enough to justify the use of a closer value it is customary to consider that 1 second-foot flowing for 24 hours equals 2 acre-feet. In the author's opinion the acre-foot is the most convenient unit for expressing large volumes of water for the following reasons:

- (a) It is convenient for irrigation purposes since it includes the standard unit of land area.
- (b) It is convenient to reduce the capacities of reservoirs to this unit, where areas are expressed in acres.
- (c) It is convenient for storage calculations since it may readily be transferred to or from units of flow.
- (d) It enables large volumes to be expressed without the use of extremely large numbers.

The cubic foot per second-day or second-foot-day is a volume of water equal to a flow of 1 cubic foot per second for 24 hours or 86,400 cubic feet, or, approximately 2 acre-feet. This unit is sometimes used in storage computations.

Inches per area or simply inches depth is a unit generally used in connection with drainage areas. Precipitation and evaporation records are given in inches, the area to which the depth applies being frequently understood. A depth of 1 inch over an area of 1 acre is called an acre-inch. An acre-inch is equal to  $\frac{1}{2}$  acre-foot or 3630 cubic feet.

A number of units expressing volume per time are used in hydraulic work. The most common practice in the United States and Great Britain is to express the volume of flowing water in cubic feet per second. The abbreviated term second-feet has been adopted by the U. S. Geological Survey and the U. S. Reclamation Service and is used quite generally by American engineers. In England, India and Australia the term cuseca

is more commonly used. The author has adopted the term second-feet in this volume as it is more in accord with American usage. This unit is gradually supplanting other units, hitherto used in special classes of work, which are defined below.

The unit, cubic feet per minute is used by millwrights and turbine manufacturers.

The capacities of pumps are generally expressed in *United States gallons per minute*.

The capacities of water-works plants or the consumption of water by municipalities is usually stated in gallons or millions of gallons per 24 hours.

The miner's inch was formerly used in hydraulic mining and irrigation in Western United States. It is defined as the quantity of water which will flow through an orifice 1 inch square under a stated head which varies from 4 inches to  $6\frac{1}{2}$  inches in different localities. The use of this unit has lead to much confusion and its value in terms of cubic feet per second (see Table 5) has been fixed by statute in most of the Western States.

Square inches of water is a unit which was formerly much used by millwrights and waterwheel builders. It commonly means the theoretical discharge through an orifice of a given cross-section, without contraction, under some particular head. Early millwrights in many cases failed to distinguish between the area of the orifice and the area of the jet and much confusion has resulted.

In comparing the run-off from a drainage area with the precipitation, it is often convenient to express the run-off in terms of inches per month or inches per year. In this connection it may be helpful to remember that 1 acre-inch per hour equals approximately 1 second-foot.

The use of cubic feet per second may properly displace the units cubic feet per minute, U. S. gallons per minute, U. S. gallons per 24 hours, miner's inches, and square inches of water in practically all instances where these units have hitherto been used. There is no reason why the supply of water to a town should be expressed in gallons per 24 hours, when the water sold to consumers is generally measured and charged for in terms of cubic feet. Likewise, the capacities of pumps and the discharge of turbines may be as readily expressed in cubic feet per second as in terms of the units now commonly used. Table 5, page 6, gives the conversion factors, with their logarithms, for converting one system of units to another.

## HANDBOOK OF HYDRAULICS

Table 1.—Conversion of Units of Length Meters to Feet

Meters	0	1	2	3	4	5	6	7	8	9
		3.28							26.25	29.5
10	32.81	36.09	39.37	42.65	45.93	49.21	52.49	55.77	59.06	62.3
20	65.62	68.90	72.18	75.46	78.74	82.02	85.30	88.58	91.86	95.1
30	98.42	101.71	104.99	108.27	111.55					
40	131.23	134.51								
50	164.04	167.32	170.60	173.88	177.16	180.45	183.73	187.01	190.29	193.5
60	196.85	200.13	203.41	206.69	209.97	213.25	216.53	219.82	223.10	226.3
70		232.94								
80		265.75								
90					308.40					

#### Feet to Meters

Feet	0	1	2	3	4	5	6	7	8	9
		0.305	0.610	0.914	1.219	1.524	1.829	2.134	2.438	2.74
10	3.048	3.353	3.658	3.962	4.267	4.572	4.877	5.182	5.486	5.79
20	6.096	6.401	6.706	7.010	7.315	7.620	7.925	8.230	8.534	8.83
30	9.144	9.449	9.754	10.058	10.363	10.668	10.973	11.278	11.582	
40	12.192	12.497							14.630	
50	15.240	15.545	15.850	16.154	16.459	16.764	17.069	17.374	17.678	17.98
60									20.726	
70									23.774	
80	24.384	24.689	24.994	25.298	25.603	25.908	26.213	26.518	26.822	27.12
90	27.432	27.737	28.042	28.346	28.651	28.956	29.261	29.566	29 870	30 17

## TABLE 2.—CONVERSION OF UNITS OF WEIGHT Kilograms to Pounds Avoirdupois

Kilograms	0	1	2	3	4	5	6	7	8	9
		2.20	4.41	6.61	8.82	11.02	13.23	15.43	17.64	19.84
10	22.05	24.25	26.46	28.66	30,86	33.07	35.27	37.48	39.68	41.89
20	44.09	46.30	48.50	50.71	52.91	55.12	57.32	59.52	61.73	63.93
30	66.14	68.34	70.55	72.75	74.96	77.16	79.37	81.57	83.78	85.98
40	88.18	90.39	92.59	94.80	97.00	99.21	101.41	103.62	105.82	108.0
50	110.23	112.44	114.64	116.85	119.05	121.25	123.46	125.66	127.87	130.0
60	132.28	134.48	136.69	138.89	141.10	143.30	145.51	147.71	149.91	152.1
70	154.32	156.53	158.73	160.94	163.14	165.35	167.55	169.76	171.96	174.1
80	176.37	178.57	180.78	182.98	185.19	187.39	189.60	191.80	194.01	196.2
90	198.42	200.62	202.83	205.03	207.23	209.44	211.64	213.85	216.05	218.2

# Pounds Avoirdupois to Kilograms

Pounds	0	1	2	3	4	5	6	7	8 .	9
		0.4536	0.9072	1.361	1.814	2.268	2.722	3.175	3.629	4.08
10	4.536	4.990	5.443	5.897	6.350	6.804	7.257	7.711	8.165	8.61
20	9.072	9.525	9.979	10.433	10.886	11.340	11.793	12,247	12.701	13.15
30	13.608	14.061	14.515						17.237	
40	18.144	18.597	19.051	19.504	19.958	20.412	20.865	21.319	21.772	22.22
50	22.680	23.133	23.587	24.040	24.494	24.948	25.401	25.855	26.308	26.76
60	27.216	27.669	28.123						30.844	
70	31.752	32.205	32.659	33.112	33.566	34.019	34.473	34.927	35.380	35.83
80	36.287	36.741	37.195						39.916	
90	40.823	41.277	41.731	42.184	42.638	43.091	43.545	43.999	44.452	44.90

TABLE 3.—CONVERSION OF UNITS OF POWER Kilowatts to Horsepower

Kilowatts	0	1	2	3	4 .	5	6	7	8	9
10 20 30 40 50	26.810 40.214 53.619 67.024	14.745 28.150 41.555 54.960 68.365	16.086 29.491 42.895 56.300 69.705	17.426 30.831 44.236 57.641 71.046	18.767 32.172 45.576 58.981 72.386	33.512 46.917	21.448 34.853 48.257 61.662 75.067	22.788 36.193 49.598 63.003 76.408	24.129 37.534 50.938 64.343 77.748	25.469 38.874 52.279 65.684 79.089
70 80 90	93.834 107.24	95.175 108.58	96.515 109.92	97.856 111.26	99.196 112.60	100.54 113.94 127.35	101.88 115.28	103.22 116.62	104.56 117.96	105.90 119.30

## Horsepower to Kilowatts

Horsepower	0	1	2	3	4	5	6	7	8	9
10	7 400						4.476		5.968 13.428	6.714
20	14.920	15.666	16.412	17.158	17.904	18.650	19.396	20.142	20.888	21.634
30 40									28.348 35.808	
50	37.300	28 046	38 702	30 538	40 284	41 030	41 776	49 599	43 268	44 014
60	44.760	45.506	46.252	46.998	47.744	48.490	49.236	49.982	50.728	51.474
80	52.220 59.680	60.426	61.172	61.918	62.664	63.410	64.156	64.902	65.648	66.394
90	67.140	67.886	68.632	69.378	70.124	70.870	71.616	72.362	73.108	73.854

Table 4.—Inches and Fractions Expressed in Decimals of a Foot .

Inches			F	ractions	of inches	ı		
писпев	0	348	34	38	34	58	34	7,8
0	.0000	.0104	.0208	.0313	.0417	.0521	.0625	. 0729
1	.0833	.0937	.1042	.1146	.1250	.1354	.1458	.1562
2	.1667	.1771	.1875	.1979	.2083	.2188	.2292	.2396
3	. 2500	.2604	.2708	.2813	.2917	.3021	.3125	.3229
4	. 3333	.3437	.3542	.3646	.3750	.3854	.3958	.4062
5	.4167	.4271	.4375	.4479	.4583	.4688	.4792	.4896
6	. 5000	.5104	.5208	.5313	.5417	.5521	. 5625	. 5729
7	. 5833	. 5937	.6042	.6146	.6250	6354	.6458	.6562
8	. 6667	.6771	.6875	.6979	.7083	.7188	.7292	.7396
9	.7500	.7604	.7708	.7813	.7917	.8021	.8125	.8229
10	. 8333	.8437	. 8542	.8646	.8750	.8854	.8958	.9062
11	.9167	.9271	.9375	.9479	.9583	.9688	.9792	.9896
12	1.0000						••••	

Factors for conversion of units. To reduce A to B, multiply A by F. To reduce B to A, multiply B by GLABLE 5

ractors for conversion of units.	inus. Ja reduce A to B, multiply A by F.	to 6, mui	cipiy A by		10 reduce B to A, multiply B by G	
Unit A	Factor F	mdtrago.I N to Tairatostado evitisoq lla	Logarithm O to Characteriation Sulf negative	Factor G	, Unit B	
Langth: Miles Miles Miles Miles Miles Miles	63,360.* 5,280.* 1,609.35 3,280.83	4.80182 3.72263 3.20665 0.20665 3.51598	5.19818 4.27737 4.79335 1.79335	.000015783 .00018939 .00062137 .62137	Inches Feet Meters Meters Feet	
Meters. Yards. Feet. Meters. Inches.	3.2808 36.• 12.• 39.370 2.5400	0.51598 1.55630 1.07918 1.59517 0.40483	1.48402 2.44370 2.92082 2.40483 1.59517	.30480 .027778 .083333 .025400	Peet Inches Inches Inches Centimeters	
SUBFACE: Square miles Square miles Square miles Agree Acree	27,878,400.* 640.* 259.000 43,560.* 4,046.9	7.44527 2.80618 2.41330 4.63909 3.60712	8.55473 3.19382 3.58670 5.36091 4.39288	.000000035870 .0015625 * .0038610 .000022957	Square feet Acres Hectares Square feet Square feet	
Hoctares Hectares Square feet Square feet Square meters	2.47104 10,000.* 144. * 6.4516 10.764	0.39288 4.00000 2.15836 0.80967 1.03197	1.60712 4.00000 3.84164 1.19033 2.96803	. 40469 . 0001 • . 0069444 . 15500 . 092902	Acree Square meters Square meters Square contimeters Square feet	
Volume: Cubis feet. Cubis inches Cubis meters Cubis meters Cubis feet.	1,728.* 16.387 36.3145 1.3079 7.4805	3.23754 1.21450 1.54795 0.11659 0.87393	4.76246 2.78550 2.45205 1.88341 1.12607	.00057870 .061024 .028317 .76456	Cubic inches Cubic centimeters Cubic feet Cubic yands	
* Exact values.						

TABLE 5 (Continued)

1,0046   1,0046   1,0046   1,0046   1,0046   1,0046   1,0046   1,0046   1,0046   1,0046   1,0046   1,0046   1,0046   1,0046   1,0046   1,0046   1,0046   1,0046   1,0046   1,0046   1,0046   1,0046   1,0046   1,0046   1,0046   1,0046   1,0046   1,0046   1,0046   1,0046   1,0046   1,0046   1,0046   1,0046   1,0046   1,0046   1,0046   1,0046   1,0046   1,0046   1,0046   1,0046   1,0046   1,0046   1,0046   1,0046   1,0046   1,0046   1,0046   1,0046   1,0046   1,0046   1,0046   1,0046   1,0046   1,0046   1,0046   1,0046   1,0046   1,0046   1,0046   1,0046   1,0046   1,0046   1,0046   1,0046   1,0046   1,0046   1,0046   1,0046   1,0046   1,0046   1,0046   1,0046   1,0046   1,0046   1,0046   1,0046   1,0046   1,0046   1,0046   1,0046   1,0046   1,0046   1,0046   1,0046   1,0046   1,0046   1,0046   1,0046   1,0046   1,0046   1,0046   1,0046   1,0046   1,0046   1,0046   1,0046   1,0046   1,0046   1,0046   1,0046   1,0046   1,0046   1,0046   1,0046   1,0046   1,0046   1,0046   1,0046   1,0046   1,0046   1,0046   1,0046   1,0046   1,0046   1,0046   1,0046   1,0046   1,0046   1,0046   1,0046   1,0046   1,0046   1,0046   1,0046   1,0046   1,0046   1,0046   1,0046   1,0046   1,0046   1,0046   1,0046   1,0046   1,0046   1,0046   1,0046   1,0046   1,0046   1,0046   1,0046   1,0046   1,0046   1,0046   1,0046   1,0046   1,0046   1,0046   1,0046   1,0046   1,0046   1,0046   1,0046   1,0046   1,0046   1,0046   1,0046   1,0046   1,0046   1,0046   1,0046   1,0046   1,0046   1,0046   1,0046   1,0046   1,0046   1,0046   1,0046   1,0046   1,0046   1,0046   1,0046   1,0046   1,0046   1,0046   1,0046   1,0046   1,0046   1,0046   1,0046   1,0046   1,0046   1,0046   1,0046   1,0046   1,0046   1,0046   1,0046   1,0046   1,0046   1,0046   1,0046   1,0046   1,0046   1,0046   1,0046   1,0046   1,0046   1,0046   1,0046   1,0046   1,0046   1,0046   1,0046   1,0046   1,0046   1,0046   1,0046   1,0046   1,0046   1,0046   1,0046   1,0046   1,0046   1,0046   1,0046   1,0046   1,0046   1,0046   1,0046   1,0046   1,0046   1,0046   1,0046   1,0046   1	. Unit A	Factor F	Logarithm of P characteristics evitisoq lla	Logarithm of G enistication ovitage ovitage ovitage	Factor G	Unit B
1.2003   0.07930   1.92070   23311   1.2045   0.07930   1.92070   23311   1.2045   0.05741   1.34250   2.2006   1.2445   0.09498   1.90502   2.2006   1.2445   0.09498   1.74360   5.5541   1.74360   5.5541   1.74360   5.5641   1.74360   5.5641   1.74360   5.5641   1.74360   5.5641   1.74360   5.3641   1.76360   5.3641   1.76360   5.3641   1.76360   5.3641   1.76360   1.76360   1.76360   1.76360   1.76360   1.76360   1.76360   1.76360   1.76360   1.76360   1.76360   1.76360   1.76360   1.76360   1.76360   1.76360   1.76360   1.76360   1.76360   1.76360   1.76360   1.76360   1.76360   1.76360   1.76360   1.76360   1.76360   1.76360   1.76360   1.76360   1.76360   1.76360   1.76360   1.76360   1.76360   1.76360   1.76360   1.76360   1.76360   1.76360   1.76360   1.76360   1.76360   1.76360   1.76360   1.76260   1.76260   1.76260   1.76667   1.76260   1.76667   1.76667   1.76667   1.76667   1.76667   1.76667   1.76667   1.76667   1.76667   1.76667   1.76667   1.76667   1.76667   1.76667   1.76667   1.76667   1.76667   1.76667   1.76667   1.76667   1.76667   1.76667   1.76667   1.76667   1.76667   1.76667   1.76667   1.76667   1.76667   1.76667   1.76667   1.76667   1.76667   1.76667   1.76667   1.76667   1.76667   1.76667   1.76667   1.76667   1.76667   1.76667   1.76667   1.76667   1.76667   1.76667   1.76667   1.76667   1.76667   1.76667   1.76667   1.76667   1.76667   1.76667   1.76667   1.76667   1.76667   1.76667   1.76667   1.76667   1.76667   1.76667   1.76667   1.76667   1.76667   1.76667   1.76667   1.76667   1.76667   1.76667   1.76667   1.76667   1.76667   1.76667   1.76667   1.76667   1.76667   1.76667   1.76667   1.76667   1.76667   1.76667   1.76667   1.76667   1.76667   1.76667   1.76667   1.76667   1.76667   1.76667   1.76667   1.76667   1.76667   1.76667   1.76667   1.76667   1.76667   1.76667   1.76667   1.76667   1.76667   1.76667   1.76667   1.76667   1.76667   1.76667   1.76667   1.76667   1.76667   1.76667   1.76667   1.76667   1.76667   1.76667   1.76667   1.76667   1.76667   1.76667   1.766	VOLUME (continued): Cubic feet. Cubic feet. Cubic feet. U. S. gallons Lifeers	6.2321 28.317 231.24 277.274 61.0234	0.79463 1.45205 2.36361 2.44291 1.78550	1.20537 2.54795 3.63639 3.55709 2.21450	. 18046 . 035314 . 0043290 . 0036065 . 016387	Imperial gallons Litters Cubic inches Cubic inches Cubic inches
43,560. • 4,63909 5,36091 000022957 1,1613.3 3,2072 4,7928 00061983 1,233.5 3,0914 4,90886 000611971 1,233.5 3,0914 4,90886 000611971 1,233.6 3,0914 4,90886 00007548 1,3610.8 13,681. 5,12807 6,48698 1,5132 3,2585 aquare mile. 27,878,400. • 6,48698 1,5132 3,2585 aquare mile. 27,878,400. • 6,280618 3,1932 00000043044 1,1 square mile. 2,323,200 6,400. • 6,36699 7,63391 00000043044 1,1 square mile. 2,323,200 6,000004304 1,27815 2,22186 016667 6,0000004304 1,27815 2,27300 01875 e	U. S. gallons. Imperial gallons. Imperial gallons. U. S. bushels. Fluid ounces.	3.7854 1.2003 4.5437 1.2445 1.8047	0.57812 0.07930 0.65741 0.09498 0.25640	1.42188 1.92070 1.34259 1.90502 1.74360	.26417 .83311 .22009 .80356 .55411	Liters U. S. gallons Liters Cubic feet Cubic inches
allons 3.0689 6.48698 1.51302 3.2585 square mile 27,878,400. 2.36618 1.51302 3.19382 0.000000038870 square mile 2,323,200. 6.38609 7.63391 0.00000043044 1.1 square mile 53.333 1.72700 2.27300 0.1875* 66,400. 4.93651 5.06349 0.00011574 448.83 2.65308 3.44792 0.0022890 0.000011574 448.83 2.65308 3.44792 0.00022890	Acre-feet Acre-feet Acre-feet Acre-feet Acre-inches Millions U. S. gallons	43,560. • 1,613.3 1,233.5 3,630. • 133,681.	4.63909 3.20772 3.09114 3.55991 5.12607	5.36091 4.79228 4.90886 4.44009 6.87393	.000022957 .00061983 .00081071 .00027548 .000074805	Cubio feet Cubic yards Cubic meters Cubic feet Cubic feet
60. • 1.77815 2.22186 016667 86,400. • 4.93651 5.06349 000011574 448.83 2.65369 3.34792 0.0022890 648.317 5.81045 6.18656 00000115472		3.0689 27,878,400. 640. 2,323,200.	6.48698 7.44527 2.80618 6.36609 1.72700	1.51302 8.55473 3.19382 7.63391 2.27300	. 32585 . 000000035870 . 0015625 . 0000043044 . 01875	Acre-feet Cubio feet Acre-feet Cubio feet Acre-feet
1.98354 0.29743 1.70257 50417	: : : : : : :	60. * 86,400. * 448.83 646,317.	1.77815 4.93651 2.65208 5.81045 0.29743	2.22185 5.06349 3.34792 6.18955 1.70257	.016667 .000011574 .0022280 .0000015472 .50417	Cubic feet per minute Cubic feet per 24 hours U. S. gallong per 24 hours Acre-feet per 24 hours

TABLE 5 (Continued)

Factors for conversion of units. To reduce A to B. multiply B by G.

-		8 9 1	ics 6			
Unit A	Factor F	mdjirago.I A lo itaireteirist ovitisog lla	mdtirago.I O to itaireteriado vitagen lla	Factor G	Unit B	
FLOWING WATER (continued):	723.98	2 85972	3.14028	.0013813	Agre-feet per 365 days	
Second-feet	50.	1.69897	2.30103	.02*	Miner's inches, Idaho	
Second-feet	20.	1.69897	2.30103	.05*	Miner's inches, Kansas	
Second-feet	.•.	1.69897	2.30103	.02*	Miner's inches, New Mexico	
Second-feet:	50.	1.69897	2.30103	.02*		
Second-feet		1.69897	2.30103	.05*		
Second-feet.	• .04	1.60206	2.39794	.029	Miner's inches, Arizona	
Second-feetSecond-feet	*.07	1.60206	2.39794	.025*	Miner's inches, Montana	
Second-fect	40.	1.60206	2.39794	.025*	Miner's inches, Oregon	
Second-feet.	38.4	1.58433	2.41567	.026042	Miner's inches, Colorado	
Inches depth per hour	645.33	2.80978	3.19022	.0015496	Second-feet per square mile	
Inches depth per day	26.889	1.42957	2.57043	.037190	Second-feet per square mile	
Second-feet per square mile	1.0413	0.01758	1.98242	.96032	Inches depth per 28 days	
Second-feet per square mile	1.0785	0.03283	1.96717	.92720	Inches depth per 29 days	
ond-feet per square mile	1.1157	0.04755	1.95245	. 89030	Inches depth per 30 days	
Second-feet per square mile	13.574	1.13272	2.86728	.073668	Inches depth per 365 days	
Second-feet per square mile	13.612	1.13391	1.86609	.073467	Inches derth per 366 days	
Acre-inches per hour	1.0083+	0.00360	1.99640	.99173+		
Cubic-feet per minute	7.4805	0.87393	1.12607	.13368	per	
Cubic-feet per minute	10,772.	4.03229	5.96771	000002834	U. S. gallons per 24 hours	
U. S. gallons per minute	1,440.	9.10930	#. 04 10 4	*********	per	

Unit A	Factor F	Logarithm of P. P. Cognities of P. Cognities o	mdiirago O to siiseirstaarado sviisegative	Factor G	Unit B.
VELOCITIES AND GRADES: Miles per hour Meters per second Meters per second Fall in feet per mile Slope in seconds of are	1,4667	0.16633	1.83367	.68182	Feet per second
	3,2808	0.51598	1.48403	.30480	Feet per second
	2,2369	0.34965	1.65035	.44704	Miles per hour
	5,280	3.72263	4.27737	.00018939	Slope per foot
	206,265	5.31443	6.68557	.0000048481	Slope per foot
Atmospheres (mean) Atmospheres (mean) Atmospheres (mean) Atmospheres (mean) Atmospheres (mean) Atmospheres (mean)	14.697	1.16723	2.83277	.068041	Pounds per square inch
	29.921	1.47598	2.52402	.033421	Inches of mercury
	760.	2.88081	3.11919	.0013158	Millimeters of mercury
	33.907	1.53030	2.46970	.029492	Feet of waster
	1.0333	0.01422	1.98578	.96778	Kilograms per square centimeter
Inches of mercury. Pounds per square inch. Pounds per square inch. Feet of water. Pounds per square inch.	1.135	0.05500	1.94500	. \$8106	Feet of water
	2.0359	0.30875	1.69125	. 49119	Inches of mercury
	51.711	1.71359	2.28641	. 019338	Millimeters of mercury
	62.416	1.79530	2.20470	. 016022	Pounds per square foot
	2.3071	0.36307	1.63693	. 43344	Feet of water
Wetcht: Pounds Pounds Grams Kilograms Ling tons (2240 pounds) Long tons	7,000.* 15,432 2,2046 1,12* 1,0160	3.84510 1.18843 0.34333 0.04922 0.00691	4.15490 2.81157 1.65667 1.95078 1.99309	.00014286 .064799 .45359 .89286	Grains Grains Pounds Short tons Metric tons (1000 kilograms)
Power: Klowette Klowette Klowette Klowette Horsepower	550.* 1.3405 8,760* 8,760* 11,743	2.74036 0.12726 3.94250 3.94250 4.06977	3.25964 1.87274 6.05750 6.05750 5.93023	.0018182 .746 .00011416 .00011416	Poot-pounds per second Horsepower Kilowatt-hours per year Horsepower-hours per year Kilowatt-hours per year

* Exact values.

Table 6.—Average Weight, in Pounds per Cubic Foot, of Various Materials Used in Hydraulic Construction

Substance	Weight	Substance	Weight
CLAY, EABTH AND MUD: Clay. Earth, dry and loose. Earth, dry and shaken. Earth, dry and moderately rammed. Earth, slightly moist, loose Earth, more moist, loose. Earth, more moist, shaken. Earth, more moist, shaken. Earth, more moist, shaken. Earth, as soft flowing mud. Earth, as soft mud well pressed into a box. Mud, dry, close. Mud, wet, moderately pressed. Mud, wet, fluid.  MASONRY AND ITS MATERIALS: Brick, best pressed. Brick, common hard. Brick, soft, inferior. Brickwork, pressed brick, fine joints. Brickwork, medium quality Brickwork, oarse, inferior soft bricks. Cement, pressed. Cement, pressed. Cement, set. Conorete, 1: 3: 6. Gravel, loose. Gravel, rammed. Masonry of granite or stone of like weight: Well-scabbled rubble, 20 per cent. mortar. Roughly scabbled rubble, 25 to 35 per cent. mortar. Well-scabbled dry rubble. Masonry of sandstone or stone of like weight weight sabout seveneights of the above. Mortar, hardened.	122-162 72-80 82-92 90-100 70-76 66-68 75-90 90-100 104-112 110-120 80-110 125 100 72-105 115 125 100 72-105 115 168-187 140 125 100 72-105 115 168-187 140 125 100 72-105 115 100 72-105 115 100 72-105 115 100 72-105 115 100 72-105 115 100 72-105 115 100 72-105 115 100 72-105 115 100 72-105 115 100 72-105 115 100 72-105 115 90-115	MASONRY AND ITS MATERIALS—(continued): Sand, pure quartz, dry, loose. Sand, pure quartz, dry, slightly shaken. Sand, pure quartz, dry, rammed. Sand, natural, dry, loose. Sand, natural, dry, shaken. Sand, wet, voids full of water. Stone, to the stone, loose. Stone, broken, loose. Stone, broken, loose. Stone, broken, rammed.  METAL AND ALLOYS: Brass (copper and zinc). Bronse (copper and zinc). Bronse (copper and tin). Copper, rolled. Iron and steel, cast. Average. Iron and steel, wrought. Average. Tin, cast. Steel. Tin. Zinc. Mercury (32°F.)  Woods (dry)* White oak. White pine. Southern long-leaf pine. Douglas fir. Short-leaf yellow pine. Norway pine. Spruce and eastern fir. Hemlock. Cypress. Cedar. Chestnut. California spruce.	

^{*} The weights of green or unseasoned timbers are 20 to 40 per cent. greater.

#### CHAPTER II

#### HYDROSTATICS

#### Weight of Water

The maximum density of water occurs at a temperature of 39.3°F. From this point the density decreases with either an increase or decrease in temperature. In the following pages the weight of water is assumed to be 62.4 pounds per cubic foot, which figure is close enough for ordinary engineering computations. Table 7 gives relative densities and weights in pounds per cubic foot of distilled water for different temperatures in degrees Fahrenheit between the freezing and boiling points.

TABLE 7

Tem- pera- ture	Rela- tive density	Weight	Tem- pera- ture		Weight	Tem- pera- ture	Rela- tive density	Weight
32	0.99987	62.416	60	0.99907	62.366	140	0.98338	61.386
35	0.99996	62.421	70	0.99802	62.300	150	0.98043	61.203
39.3	1.00000	62.424	√ 80	0.99669	62.217	160	0.97729	61.006
40	0.99999	62.423	90	0.99510	62.118	170	0.97397	60.799
43	0.99997	62.422	100	0.99318	61.998	180	0.97056	60.586
45	0.99992	62.419	110	0.99105	61.865	190	0.96701	60.368
50	0.99975	62.408	120	0.98870	61.719	200	0.96333	60.13
55	0.99946	62.390	130	0.98608	61.555	212	0.95865	59.843

### Atmospheric Pressure

Atmospheric pressure on the earth's surface varies with meteorological conditions, and decreases as the altitude increases. At sea level the mean atmospheric pressure averages about 2116 pounds per square foot or 14.7 pounds per square inch, the latter being commonly designated as one atmosphere. This is equivalent to the weight of a column of water 33.92 feet high or a column of mercury 29.92 inches or 760 millimeters high. If, therefore, all of the air is exhausted from a pipe the

lower end of which is immersed in water, at sea level, the water will rise in the pipe to a height of nearly 34 feet.

This principal is made use of in designing siphons, suction pipes for pumps and draft tubes for turbines. In practice a perfect vacuum is difficult to obtain and the height to which a water column may, with safety, be depended upon to rise is about 75 per cent. of the theoretical amount.

Table 8 gives mean atmospheric pressures in pounds per square inch, with corresponding heights of water columns in feet and heights of mercury columns in inches, for different elevations above sea level in feet.

TABLE 3	8
---------	---

Elevation	Atmos- pheric pressure	Height of water column	Height of mercury column	Elevation	Atmospheric pheric pressure	Height of water column	Height of mercury column	Elevation	Atmosportation pressure	Height of water column	Height of mercury column
0	14.70	33.9	29.9	3,000	13.16	30.4	26.8	6,000	11.80	27.2	24.0
250	14.57	33.6	29.6	3,250	13.04	30.1	26.6	6,250	11.70	27.0	23.8
500	14.44	33.3	29.3	3,500	12.92	29.8	26.3	6,500	11.60	26.7	23.6
750	14.31	33.0	29.1	3,750	12.81	29.6	26.0	6,750	11.50	26.5	23.4
1,000	14.18	32.7	28.8	4,000	12.69	29.3	25.8	7,000	11.40	26.3	23.2
1,250	14.05	32.4	28.6	4,250	12.58	29.0	25.6	7,250	11.31	26.1	23.0
1,500	13.92	32.1	28.3	4,500	12.46	28.8	25.4	7,500	11.21	25.9	22.8
1,750	13.79	31.8	28.1	4,750	12.35	28.5	25.1	7,750	11.12	25.7	22.6
2,000	13.66	31.5	27.8	5,000	12.23	28.2	24.9	8,000	11.03	25.5	22.5
2,250	13.53	31.2	27.5	5,250	12.12	28.0	24.7	8,250	10.94	25.3	22.3
2,500	13.41	30.9	27.3	5,500	12.01	27.7	24.5	8,500	10.85	25.1	22.1
2,750	13.28	30.6	27.0	5,750	11.91	27.5	24.3	8,750	10.76	24.9	21.9

## Hydrostatic Pressure

The pressure of a fluid at any point, according to *Pascal's law*, is normal to the surface on which it acts and of equal intensity in all directions. Water, being a perfect fluid, conforms rigidly to this law.

The intensity of pressure on any submerged surface is directly proportional to the weight of the fluid and the depth of submergence. A similar pressure is exerted against the sides, and bottom of a vessel or reservoir containing water. The pressure at any point in a body of water with a free surface is equal to the im of the pressure of the water above it and the atmospheric

pressure. In practice the atmospheric pressure may frequently be neglected as it may act equally on both sides of the surface being considered. This is not necessarily the case, however, and the effect of atmospheric pressure should always be given careful consideration.

Pressure on Plane Surfaces.—Let Figs. 1, 2 and 3, represent submerged, horizontal, vertical and inclined planes respectively. *LM*, in each figure, represents the horizontal projection of a plane surface of any shape on a vertical plane at right angles



to the given plane, L'M' being the true size of the given surface. G is the center of gravity and R the point of application of the resultant pressure. y and x are the vertical distances from G and R respectively to the water surface, y' and x' being corresponding distances along the inclined plane, measured at right angles to the intersection of this plane with the water surface. The inclined plane makes an angle  $\theta$  with the vertical. Let A represent the area of the surface, k the radius of gyration about its horizontal axis through the center of gravity, P the total pressure and w the weight of a cubic unit of water. Then, for each plane

$$P = wAy \tag{1}$$

and for the inclined plane

$$P = wAy'\cos\theta. \tag{2}$$

For a horizontal plane the point of application of the resultant pressure passes through G, the center of gravity of the surface. For a vertical plane

$$x = y + \frac{k^2}{y}$$

and for an inclined plane

$$x' = y' + \frac{k^2}{y'} \tag{4}$$

or

$$x = y + \frac{k^2 \cos^2 \theta}{y} \tag{5}$$

Fig. 4 shows the more common shapes encountered in hydraulic problems, with the vertical distance x from the base to the center of gravity, G, and the squares of the radii of gyration,  $k^2$ , about the horizontal axes, through the centers of gravity.



# Hydrostatic Pressures against Dams

In designing dams all hydrostatic pressures should be carefully analyzed. This includes:

- (a) Static pressure on upstream and downstream faces of dam.
  - (b) Upward pressure against base of dam.
- (c) For overflow dams, pressure resulting from the formation of a vacuum beneath the overfalling sheet.

Pressure against Faces of Dams.—Let Figs. 5 and 6 represent cross-sections of dams, D being the vertical height H the depth of water passing over the dams, both in feet.

The pressure against the face of the dam at a depth y is 62.4y pounds per square foot or 0.4333y pounds per square inch. Table 9, page 21, gives pressures in pounds per square foot, and Table 10, page 22, pressures in pounds per square inch for different heads. Table 11, page 27, gives heads in feet corresponding to different pressures in pounds per square inch.



The total horizontal pressure is the same, for a given height of dam and depth of water, regardless of the curvature or inclination of the face of the dam. Let  $P_R$  be the total or resultant pressure against the face of the dam, and  $P_V$  and  $P_B$ , respectively, the vertical and horizontal components of this pressure. Then for each case indicated in Figs. 5 and 6,

$$P_H = 31.2 (2DH + D^2) (6)$$

and calling d the distance above the base of the dam at which  $P_H$  acts

$$d = \frac{D}{3} \left( 1 + \frac{H}{D + 2H} \right) \tag{7}$$

Tables 12 and 13, pages 29 and 30, give values of  $P_H$  and d for heights of dam from 1 to 50 feet and depths of overflow from 0 to 9 feet. These tables may also be used for obtaining  $P_H$  and d for other submerged surfaces.

If the water surface is at the same elevation as the top of the dam, H = 0 and

$$P_H = 31.2D^2 \text{ and } d = \frac{1}{3}D$$

For dams with vertical faces the pressure has no vertical component and

$$P_R = P_H$$

For dams with inclined plane faces, if l is the length from crest to base of dam,

$$P_{R} = 31.2l(D + 2H) (8)$$

and calling d' the distance above the base of the dam, measured along its face, at which  $P_R$  acts

$$d' = \frac{d}{\sin \theta} = \frac{l}{3} \left( 1 + \frac{H}{D + 2H} \right) \tag{9}$$

and when H=0

$$P_R = 31.2lD$$
 and  $d' = \frac{l}{3}$ 

For dams with curved or irregularly sloping upstream faces, illustrated in Fig. 6,  $P_R$  is the resultant of all of the normal components acting on the face of the dam. In such cases  $P_V$  is equal to the area *amnc* multiplied by 62.4, and it acts vertically downward through the center of gravity of this area.  $P_H$  and d are the same as for a dam with a vertical upstream face. The intensity and point of application of  $P_R$  may be readily obtained by completing the parallelogram of forces.

Upward Pressure under Dams.—When a solid masonry dam is built on a rock foundation, there is a tendency for water to pass from the pond above the dam, through seams in the rock to the base of the dam. There results an upward hydrostatic pressure and inside of the point where the resultant of the other forces acting on the dam cuts its base, it will have an overturning effect. There is no way to determine to just what extent such a pressure exists but it is evidently greater for the more seamy rocks. It is therefore advisable, in preparing the foundation for such a dam, to remove all loose material and get down to the best rock practicable. A common practice is to construct a cut-off wall of concrete or masonry, extending several feet into firm rock, near the heel of the dam.

Fig. 5 represents a common type of reinforced-concrete dam. It consists of a floor, deck, and buttresses, and usually a cut-off wall at the heel. Such a dam may or may not be subjected to overflow. When it is required to withstand overflow, provision must be made to prevent erosion at the toe. When this type of dam is built on firm rock, the floor may be omitted. With the floor it is well adapted to almost any kind of an earth foundation. The problems of seepage and upward pressure on the base of a dam of this kind are important.

Experiments were performed by Colman¹ to determine conditions affecting upward pressure under dams with permeable foundations. In a measure water passing through earth follows

I. B. T. COLMAN: The Action of Water under Dams. Trans. Amer. Civ. Eng., vol. 80, pp. 421-483.

the laws of the flow of water through pipes. If water passes under a dam there is a greater static pressure near the heel of the dam than near its toe as there is a loss of head due to friction between these two points.

Referring to Fig. 5, if F represents the depth of water back of the dam in feet, l' the breadth of the base of the dam in feet, and  $P_u$  the total upward pressure in pounds per foot of length of dam, the following formulas, as shown from Colman's experiments, appear safe for determining upward pressure under dams on earth foundations:

With no cut-off at the heel of the dam or with ordinary sheet piling

$$P_{u} = \frac{62.4}{2} F l' = 31.2 F l' \tag{10}$$

With an impervious cut-off at the heel of the dam

$$P_{\mathbf{u}} = \frac{62.4}{3} F l' = 20.8 F l' \tag{11}$$

The point of application of the resultant,  $P_u$ , in each case is  $\frac{1}{8}l'$  from the heel of the dam.

With an impervious cut-off at both the heel and toe of the dam the upward pressure is slightly greater than with a cut-off at the heel only and the point of application of  $P_u$  is  $\frac{5}{11}l'$  from the heel of the dam.

One important point brought out by Colman's investigation is that a cut-off to be effective in reducing upward pressure must be water-tight. Sheet piling as ordinarily driven is never water-tight and for this reason a good concrete cut-off of moderate depth will probably be more effective in preventing upward pressure than any amount of sheet piling.

Vscuum under Overfalling Sheet.—In case the water falling over a dam is contained between retaining walls at the ends of the dam in such a manner as to prevent the entrance of air along its downstream face, a vacuum will tend to form under the overfalling sheet of water. The effect of this action is to unbalance the atmospheric pressure on the two sides of the dam, or in other words, to increase the head on the upstream side. The amount of unbalanced pressure will be the pressure required to deflect the overfalling sheet of water from the path it would follow if air were freely admitted into a path conforming to the crest of the dam. In the extreme case the pressure against the upstream face of the dam will be increased by an amount equal to 34 feet of water. This difficulty may be over-

come by providing for the entrance of air, or by so designing the downstream face of the dam that there will be no space between it and the overfalling water.

### Pressure on Curved Surfaces

Uniform Pressure on Cylindrical Surfaces.—Fig. 7 represents a cross-section of a pipe or cylinder subjected to a uniform internal hydrostatic pressure and Fig. 8 represents a similar cross-section subjected to a uniform external pressure. The pressure at each point on the circumference is normal to the surface as indicated by the arrows. The resultants of these



normal pressures, on opposite sides of any diameter, are equal and in opposite directions, and cause a stress in a direction tangent to the circumference. If S be the stress in pounds per linear inch, h the static head of water in feet and d the diameter of the pipe in inches,

$$S = \frac{1.3}{6} hd \tag{12}$$

S is tension for internal pressure and compression for external pressure.

Formula 12 may be used for computing the tension in pressure pipes where h (the head to the center of the pipe) is large as compared to d. Also for cylindrical tanks having a vertical axis, and for thin circular arch dams. This formula applies to a segment of a cylinder provided the edges are rigidly supported.

Uniform Pressure on Spherical Surfaces.—If S be the stress ounds per linear inch on the surface of a sphere subjected

(14)

to uniform hydrostatic pressure, h the static head in feet and d the diameter of the sphere in inches,

$$S = \frac{1.3}{12} hd \tag{13}$$

S will be tension when the hydrostatic pressure is applied to the inner surface and compression when applied to the outer surface. The formula applies to segmental surfaces as well as complete spheres.

Non-uniform Pressure on Cylindrical Surfaces.—Let Fig. 9 represent a cross-section of a tank filled with water. The bottom of the tank is the segment of a cylinder. A horizontal section is rectangular. The tank is rigidly supported at the sides A and B. It is desired to find the tension S at any point P of the cylindrical surface.

Let W equal the weight of water per linear inch (parallel to axis of cylinder) on segment QP plus the weight of material in the segment. The radius to P makes an angle  $\theta$  with the vertical. The tension per linear inch is given by the formula



Non-uniform Pressure on Spherical Surfaces.—Fig. 9 may also represent a cross-section of a cylindrical water tank, with axis vertical, having a spherical bottom. In this case it may be necessary to determine the tension either along or at right angles to a meridional circumference of the sphere.

If S be the tension in pounds per linear inch along a meridional circumference (SS in figure),  $\theta$  the angle of the cone subtended by the spherical segment PP, W' the total weight of water

above the segment plus the weight of the segment and r the radius of the sphere in inches.

$$S = \frac{W'}{2\pi r \sin^2 \theta} \tag{15}$$

If S' be the tension in pounds per linear inch across a meridional circumference (at right angles to SS), h the head of water in feet on P, and r the radius of the sphere in inches,

$$S' = \frac{1.3}{12} hr {16}$$

Non-uniform Pressure on Conical Surfaces.—Fig. 10 represents a cross-section of a cylindrical tank with a conical bottom filled with water. At any point P there will be tension along the element of the cone and also at right angles to it.

If S be the tension in pounds per linear inch in the direction of an element of the cone (SS in figure),  $\theta$  the angle which any element makes with the axis of the cone, W' the total weight of water above the segment of the cone whose base is the circle, intercepted by the horizontal plane through PP plus the weight of the segment, and r' the radius of the circle cut from the cone by this plane,

$$S = \frac{W'}{2\pi r'\cos\theta} \tag{17}$$

If S' be the tension in pounds per linear inch across an element of the cone, h the head of water in feet on P,  $\theta$  the angle which any element makes with the axis of the cone and a the distance from the apex of the cone to P,

$$S' = \frac{1.3}{3} ha \tan \theta \tag{18}$$

From the above equation it is evident that S' will be a maximum when ha is maximum. It will be zero at D and if DB is less than BC the maximum value of S' will be at B.

In determining W or W' and other quantities in the foregoing equations it will be found more convenient to make a drawing from which the necessary dimensions may be approximately scaled. The results obtained in this manner will be sufficiently accurate for ordinary purposes.

In case the conditions of the problem are reversed and the pressures are applied to the opposite or convex sides of the surfaces the stresses will be equal in amount but will be compression instead of tension.

Table 9.—Hydrostatic Pressure in Pounds per Square Foot for Different Heads

0	00		i							
		62	125	187	250		374	437	499	562
10	624	686	749	811	874	936	998		1,123	1,186
20	1,248	1,310		1,435	1,498	1,560	1,622	1,685	1,747	1,810
. 30	1,872	1,934	1,997	2,059	2,122	2,184	2,246	2,309	2,371	2,434
40	2,496	2,558	2,621	2,683	2,746	2,808	2,870	2,933	2,995	3,058
50	3,120	3,182	3,245	3,307	3,370	3,432	3,494	3,557	3,619	3,682
60	3,744	3,806	3,869	3,931	3,994	4,056	4,118	4,181	4,243	4,306
70	4,368	4,430	4,493	4,555	4,618	4,680	4,742	4,805		4,930
80 90	4,992 5,616	5,054 5,678	5,117 5,741	5,179 5,803	5,242 5,866	5,304 5,928	5,366 5,990	5,429 6,053	5,491 6,115	5,554 6,178
. *	'	-		· ·					'	
100	6,240	6,302	6,365	6,427	6,490	6,552	6,614	6,677	6,739	6,802
110	6,864	6,926	6,989	7,051	7,114	7,176	7,238	7,301	7,363	7,426
120	7,488	7,550	7,613	7,675	7,738	7,800	7,862	7,925	7,987	8,050
130	8,112	8,174	8,237	8,299	8,362	8,424	8,486	8,549	8,611 9,235	8,674 9,298
140	8,736	8,798	8,861	8,923	8,986	9,048	9,110	9,173	9,200	8,280
150	9,360	9,422	9,485	9,547	9,610	9,672	9,734	9,797	9,859	9,922
160	9,984	10,046	10,109	10,171	10,234	10,296	10,358	10,421	10,483	10,546
170	10,608	10,670	10,733	10,795	10,858	10,920	10,982	11,045	11,107	11,170
180	11,232	11,294	11,357	11,419	11,482	11,544	11,606	11,669	11,731	11,794
190	11,856	11,918	11,981	12,043	12,106	12,168	12,230	12,293	12,355	12,418
200	12.480	12.542	12,605	12,667	12,730	12.792	12.854	12.917	12.979	13.042
210	13 104	13,166	13,229	13.291	13.354	13.416	13,478	13.541	13.603	13,666
220	13.728	13.790	13.853	13.915	13.978	14.040	14.102	14,165	14,227	14,290
230	14.352	14.414	13,853 14,477	14,539	14,602	14,664	14,726	14,789	14,851	14,914
240	14,976	15,038	15,101	15,163	15,226	15,288	15,350	15,413	15,475	15,538
250	15 800	15 662	15,725	15 787	15.850	15.912	15 974	16.037	16,099	16.162
260	16 224	16 286	16,349	18.411	16.474	16.536	16.598	16,661	16,723	16,786
270	16.848	16.910	16,973	17.035	17.098	17.160	17.222	17.285	17,347	17,410
280	17,472	17.534	16,973 17,597	17.659	17.722	17.784	17.846	17,909	17,971	18,034
290	18,096	18,158	18,221	18,283	18,346	18,408	18,470	18,533	18,595	18,658
300	18,720	18.782	18,845	18.907	18.970	19.032	19.094	19.157	19,219	19,282
1 310 l	19:344	19.406	19.469	19.531	19.594	19.656	19.718	19.781	19,843	19,900
320	19.968	20.030	20.093	20.155	20.218	20,280	20,342	20,405	20,467	20,530
1 330 1	20.592	20.654	20.717	20.779	20.842	20.904	20.966	21.029	21,091	21,154
340	21,216	21,278	21,341	21,403	21,466	21,528	21,590	21,653	21,715	21,778
350	21.840	21.902	21.965	22,027	22.090	22,152	22,214	22.277	22,339	22,402
360	22,464	22,526	21,965 22,589	22,651	22,714	22,776	22,838	22,901	22,963	23,026
<b>37</b> 0	23.088	23,150	23,213	23,275	23,338	23,400	23,462	23,525	23,587	23,650
380	23.712	23.774	23.837	23.899	23.962	24.024	24.086	24.149	24,211	24,274
390	24,336	24,398	24,461	24,523	24,586	24,648	24,710	24,773	24,835	24,898
400	24 960	25.022	25.085	25.147	25.210	25,272	25,334	25.397	25,459	25,522
410	25.584	25,646	25,085 25,709	25.771	25.834	25.896	25,958	26,021	26,083	26,146
420 1	26 208	26.270	26.3331	26.3951	26.458	26.520	26.5821	26.6451	26.7071	26,7701
430	26,832	26.894	26.957	27.019	27.082	27,144	27,206	27,269	27,331	27,394
440	27,456	27,518	26,957 27,581	27,643	27,706	<b>27,76</b> 8	27,830	27,893	27,955	28,018
450	28 080	28 142	28 205	28 267	28 330	28.392	28,454	28,517	28,579	28.642
460	28 704	28 788	28,205 28,829	28 891	28 954	29.016	29.078	29,141	29,203	29,266
470 1	יצעי מני	וועטג שכי	7U 45X	70 5 I N	74 h / X	29 n411	29 /1121	ZW. / DO!	ZH.02()	28.08U I
480	29 952	30,014	30,077 30,701	30,139	30.202	30.264	30.326	30,389	30.451	30,514
490	30.578	30.638	30.701	30.763	30,826	30,888	30,950	31,013	31,075	31,138
	33,0.0	55,000	55,.54	-3,. 50	- 2,550	- /,				لــــــــــــــــــــــــــــــــــــــ

Table 10.—Hydrostatic Pressures in Pounds per Square Inch for Different Heads

				. 02.7		o ber				
Head in feet	0	1	2	3	4	5	6	7	8	9
0	0.00	0.04	0.09	0.13	0.17	0.22	0.26	0.30	0.35	0.39
1	0.43	0.48	0.52	0.56	0.61	0.65	0.69	0.74	0.78	0.82
2	0.87	0.91	0.95	1.00	1.04	1.08	1.13	1.17	1.21	1.26
3	1.30	1.34	1.39	1.43	1.47	1.52	1.56	1.60	1.65	1.69
4	1.73	1.78	1.82	1.86	1.91	1.95	1.99	2.04	2.08	2.12
5 6 7 8	2.17 2.60 3.03 3.47 3.90	2.21 2.64 3.08 3.51 3.94	2.25 2.69 3.12 3.55 3.99	2.30 2.73 3.16 3.60 4.03	2.34 2.77 3.21 3.64 4.07	2.38 2.82 3.25 3.68 4.12	2.43 2.86 3.29 3.73 4.16	2.47 2.90 3.34 3.77 4.20	2.51 2.95 3.38 3.81 4.25	2.56 2.99 3.42 3.86 4.29
10 11 12 13	4.33 4.77 5.20 5.63 6.07	4.38 4.81 5.24 5.68 6.11	4.42 4.85 5.29 5.72 6.15	4.46 4.90 5.33 5.76 6.20	4.51 4.94 5.37 5.81 6.24	4.55 4.98 5.42 5.85 6.28	4.59 5.03 5.46 5.89 6.33	4.64 5.07 5.50 5.94 6.37	4.68 5.11 5.55 5.98 6.41	4.72 5.16 5.59 6.02 6.46
15	6.50	6.54	6.59	6.63	6.67	6.72	6.76	6.80	6.85	6.89
16	6.93	6.98	7.02	7.06	7.11	7.15	7.19	7.24	7.28	7.32
17	7.37	7.41	7.45	7.50	7.54	7.58	7.63	7.67	7.71	7.76
18	7.80	7.84	7.89	7.93	7.97	8.02	8.06	8.10	8.15	8.19
19	8.23	8.28	8.32	8.36	8.41	8.45	8.49	8.54	8.58	8.62
20 21 22 23 24	8.67 9.10 9.53 9.97 10.40	8.71 9.14 9.58 10.01 10.44	8.75 9.19 9.62 10.05 10.49	8.80 9.23 9.66 10.10 10.53	8.84 9.27 9.71 10.14 10.57	8.88 9.32 9.75 10.18 10.62	8.93 9.36 9.79 10.23 10.66	8.97 9.40 9.84 10.27	9.01 9.45 9.88 10.31 10.75	9.06 9.49 9.92 10.36 10.79
25	10.83	10.88	10.92	10.96	11.01	11.05	11.09	11.14	11.18	11.22
26	11.27	11.31	11.35	11.40	11.44	11.48	11.53	11.57	11.61	11.66
27	11.70	11.74	11.79	11.83	11.87	11.92	11.96	12.00	12.05	12.09
28	12.13	12.18	12.22	12.26	12.31	12.35	12.39	12.44	12.48	12.52
29	12.57	12.61	12.65	12.70	12.74	12.78	12.83	12.87	12.91	12.96
30	13.00	13.04	13.09	13.13	13.17	13.22	13.26	13.30	13.35	13.39
31	13.43	13.48	13.52	13.56	13.61	13.65	13.69	13.74	13.78	13.82
32	13.87	13.91	13.95	14.00	14.04	14.08	14.13	14.17	14.21	14.26
33	14.30	14.34	14.39	14.43	14.47	14.52	14.56	14.60	14.65	14.69
34	14.73	14.78	14.82	14.86	14.91	14.95	14.99	15.04	15.08	15.12
35	15.17	15.21	15.25	15.30	15.34	15.38	15.43	15.47	15.51	15.56
36	15.60	15.64	15.69	15.73	15.77	15.82	15.86	15.90	15.95	15.99
37	16.03	16.08	16.12	16.16	16.21	16.25	16.29	16.34	16.38	16.42
38	16.47	16.51	16.55	16.60	16.64	16.68	16.73	16.77	16.81	16.86
39	16.90	16.94	16.99	17.03	17.07	17.12	17.16	17.20	17.25	17.29
40	17.33	17.38	17.42	17.46	17.51	17.55	17.59	17.64	17.68	17.72
41	17.77	17.81	17.85	17.90	17.94	17.98	18.03	18.07	18.11	18.16
42	18.20	18.24	18.29	18.33	18.37	18.42	18.46	18.50	18.55	18.59
43	18.63	18.68	18.72	18.76	18.81	18.85	18.89	18.94	18.98	19.02
44	19.07	19.11	19.15	19.20	19.24	19.28	19.33	19.37	19.41	19.46
45	19.50	19.54	19.59	19.63	19.67	19.72	19.76	19.80	19.85	19.89
46	19.93	19.98	20.02	20.06	20.11	20.15	20.19	20.24	20.28	20.32
47	20.37	20.41	20.45	20.50	20.54	20.58	20.63	20.67	20.71	20.76
48	20.80	20.84	20.89	20.93	20.97	21.02	21.06	21.10	21.15	21.19
49	21.23	21.28	21.32	21.36	21.41	21.45	21.49	21.54	21.58	21.62

TABLE 10 (Continued)

# Hydrostatic Pressures in Pounds per Square Inch for Different Heads

H	ead in feet	0	1	2	3	4	5	6	7	8 -	9
	50	21.67	21.71	21.75	21.80	21.84	21.88	21.93	21.97	22.01	22.06
	51	22.10	22.14	22.19	22.23	<b>22</b> .27	22.32	22.36	22.40	22.45	22.49
	52	22.53	22.58	22.62	22.66	22.71	22.75	22.79	22.84	22.88	22.92
	53	22.97	23.01	23.05	23.10	23.14	23.18	23.23	23.27	23.81	23.36
	54	23.40	23.44	23.49	23.53	23.57	23.62	23.66	23.70	23.75	23.79
						04.01		~ ~			
	55	23.83	23.88	23.92	23.96	24.01	24.05	24.09	24.14	24.18	24.22
	56	24.27	24.31	24.35	24.40	24.44	24.48	24.53	24.57	24.61	24.66
	57	24.70	24.74	24.79	24.83	24.87	24.92	24.96	25.00	25.05	25.09
	58	25.13	25.18	25.22	25.26	25.31	25.35	25.39	25.44	25.48	25.52
•	59	25.57	25.61	25.65	25.70	25.74	25.78	25.83	25.87	25.91	25.96
	60	26.00	26.04	26.09	26.13	26.17	26.22	26.26	26.30	26.35	26.39
	61	26.43	26.48	26.52	26.56	26.61	26.65	26.69	26.74	26.78	26.82
	62	26.87	26.91	26.95	27.00	27.04	27.08	27.13	27.17	27.21	27.26
	63	27.30	27.34	27.39	27.43	27.47	27.52	27.56	27.60	27.65	27.69
	64	27.73	27.78	27.82	27.86	27.91	27.95	27.99	28.04	28.08	28.12
l	65	28.17	28.21	28.25	28.30	28.34	28.38	28.43	28.47	28.51	28.56
	66	28.60	28.64	28.69	28.73	28.77	28.82	28.86	28.90	28.95	28.99
	67	29.03	29.08	29.12	29.16	29.21	29.25	29.29	29.34	29.38	29.42
	68	29.47	29.51	29.55	29.60	29.64		29.73	29.77	29.81	29.86
	69	29.90	29.94	29.99	30.03	30.07	29.68 30.12	30.16	30.20	30.25	30.29
1	70	00.00	80.00	20.40							
	70	30.33	30.38	30.42	30.46	30.51	30.55	30.59	30.64	30.68	30.72
	71	30.77	30.81	30.85	30.90	30.94	30.98	31.03	31.07	31.11	31.16
	72 73	31.20	31.24	31.29 31.72	31.33	31.37	31.42	31.46	31.50	31.55	31.59
	73	31.63	31.68	31.72	31.76	31.81	31.85	31.89	31.94	31.98	32.02
	74	32.07	32.11	32.15	33.20	32.24	32.28	32.33	32.37	32.41	32.46
1	75	32.50	32.54	32.59	32.63	32.67	32.72	32.76	32.80	32.85	32.89
1	76	32.93	32.98	33.02	33.06	33.11	33.15	33.19	33.24	33.28	33.32
l	77	33.37	33.41	33.45	33.50	33.54	33.58	33.63	33.67	33.71	33.76
1	78	33.80	33.84	33.89	33.93	33.97	34.02	34.06	34.10	34.15	34.19
1	79	34.23	34.28	34.32	34.36	34.41	34.45	34.49	34.54	34.58	34.62
ļ								- 1			
1	80	34.67	34.71	34.75	34.80	34.84	34.88	34.93	34.97	35.01	35.06
1	81 82	35.10	35.14	35.19	35.23	35.27	35.32 35.75	35.36	35.40	35.45	35.49
	82	35.53	35.58	35.62	35.66	35.71	35.75	35.79	35.84	35.88	35.92
l	83	35.97	36.01	36.05	36.10	36.14	36.18	36.23	36.27	36.31	36.36
1	84	36.40	36.44	36.49	36.53	36.57	36.62	36.66	36.70	36.75	36.79
	85	36.83	36.88	36.92	36.96	37.01	37.05	37.09	37.14	37.18	37.22
l	86	37.27	37.31	37.35	37.40	37.44	37.48	37.53	37.57	37.61	37.66
1	87	37.27 37.70	37.31 37.74	37.79	37.83	37.44 37.87	37.92	37.96	38.00	38.05	38.09
	88	38.13	38.18	38.22	38.26	38.31	38.35	38.39	38.44	38.48	38.52
1	89	38.57	38.61	38.65	38.70	38.74	38.78	38.83	38.87	38.91	38.96
1	00	39.00	39.04	39.09	39.13	39.17	20 00	39.26	39.30	39.35	39.39
1	90		39.48	39.09	30.10	39.61	39.22 39.65	39.20	39.74	39.78	39.82
1	91	39.43			39.56		40.00			40.21	40.26
1	92	39.87	39.91	39.95	40.00	40.04	40.08	40.13	40.17		
1	93 94	40.30 40.73	40.34 40.78	30.39 40.82	40.43 40.86	40.47 40.91	40.52 40.95	40.56 40.99	40.60 41.04	40.65 41.08	40.69 41.12
1	-	1									
	95	41.17	41.21	41.25	41.30 41.73	41.34 41.77	41.38	41.43	41.47	41.51	41.56 41.99
1	96	41.60	41.64	41.69			41.82	41.86	41.90	41.95	
	97	42.03	42.08	42.12	42.16	42.21	42.25	42.29	42.34	42.38	42.42
	98	42.47	42.51	42.55	42.60	42.64	42.68	42.73	42.77	42.81	42.86
1	99	42.90	42.94	42.99	43.03	43.07	43.12	43.16	43.2∪	43.25	43.29

## Table 10 (Continued)

# Hydrostatic Pressures in Pounds per Square Inch for Different Heads

	-	RITE OF								
Head in feet	0	1.	2	3	4	5	6	7	8	9
100	43.33	43.38	43.42	43.46	43.51	43.55	43.59	43.64	43.68	43.72
101	43.77	43.81	43.85	43.90	43.94	43.98	44.03	44.07	44.11	44.16
102	44.20	44.24	44.29	44.33	44.37	44.42	44.46	44.50	44.55	44.59
103	44.63	44.68	44.72	44.76	44.81	44.85	44.89	44.94	44.98	45.02
104	45.07	45.11	45.15	45.20	45.24	45.28	45.33	45.37	45.41	45.46
101	20.07	40.11	40.10	10.20	20.52	20.20	20.00	20.01	30.71	30.30
105	45.50	45.54	45.59	45.63	45.67	45.72	45.76	45.80	45.85	45.89
106	45.93	45.98	46.02	46.06	46.11	46.15	46.19	46.24	46.28	46.32
107	46.37	46.41	46.45	46.50	46.54	46.58	46.63	46.67	46.71	46.76
108	46.80	46.84	46.89	46.93	46.97	47.02	47.06	47.10		47.19
109	47.23	47.28	47.32	47.36	47.41	47.45	47.49	47.54	47.58	47.62
109	27.20	21.40	21.02	21.00	21.21	21.20	21.20	21.02	¥1.00	41.02
110	47.67	47.71	47.75	47.80	47.84	47.88	47.93	47.97	48.01	48.06
iii	48.10	48.14	48.19	48.23	48.27	48.32	48.36	48.40	48.45	48.49
112	48.53	48.58	48.62	48.66	48.71	48.75	48.79	48.84	48.88	48.92
113	48.97	49.01	49.05	49.10	49.14	49.18	49.23	49.27	49.31	49.36
114	49.40	49.44	49.49	49.53	49.57	49.62	49.66	49.70	49.75	49.79
11.5	29.20	10.11	20.20	20.00	Z8.01	20.02	29.00	20.10	20.10	20.10
115	49.83	49.88	49.92	49.96	50.01	50.05	50.09	50.14	50.18	50.22
116	50.27	50.31	50.35	50.40	50.44	50.48	50.53	50.14	50.18	50.66
117	50.70	50.74	50.35	50.83	50.87	50.92	50.96	51.00	51.05	51.09
118	51.13	51.18	51.22	R1 98	51.31	51.35	51.39	51.44	51.48	51.52
119	51.57	51.61	51.65	51.26 51.70	51.74	51.78	51.83	51.87	51.91	51.96
119	91.07	01.01	01.00	01.70	01.74	91.10	01.00	01.01	01.91	01.90
120	52.00	52.04	52.09	52.13	52.17	52.22	52.26	59 20	52.35	52.39
121	52.43	52.48	52.52	52.56	52.61	52.65	52.69	52.30 52.74	52.78	52.82
122	52.87	52.91	52.95	53.00	53.04	53.08	53.13	53.17	53.21	53.26
123	53.30	53.34	53.39	53.43	53.47	53.52	53.56	53.60	53.65	53.69
124	53.73	53.78	53.82	53.86	53.91	53.95	53.99	54.04	54.08	54.12
124	33.73	99.10	00.02	03.00	09.91	99.90	00.89	02.02	04.00	04.12
125	54.17	54.21	54.25	54.30	54.34	54.38	54.43	54.47	54.51	54.56
126	54.60	54.64	54.69	54.73	54.77	54.82	54.86	54.90	54.95	54.99
127	55.03	55.08	55.12	55.16	55.21	55.25	55.29	55.34	55.38	55.42
128	55.47	55.51	55.55	55.60	55.64	55.68	66.73	55.74	55.81	55.86
129	55.90	55.94	55.99	56.03	56.07	56.12	56.16	56.20	56.25	56.29
	30.30	00.01	00.00		00.01	00.12	00.10	00.20	00.20	00.25
130	56.33	56.38	56.42	56.46	56.51	56.55	56.59	56.64	56.68	56.72
131	56.77	56.81	56.85	56.90	56.94	56.98	57.03	57.07	57.11	57.16
132	57.20	57.24	57.29	57.33	57 37	57.42	57.46	57.50	57.55	57.59
133	57.63	57.68	57.72	57.76	57.81	57.85	57.89	57.94	57.98	58.02
134	58.07	58.11	58.15	58.20	58.24	58.28	58.33	58.37	58.41	58.46
-0-	00.0.	00.11	00.10	00.20	00.22	00.20	٠٠.٠٠		00.41	00.10
135	58.50	58.54	58.59	58.63	58.67	58.72	58.76	58.80	58.85	58.89
136	58.93	58.98	59.02	59.06	59.11	59.15	59.19	59.24	59.28	59.32
137	59.37	59.41	59.45	59.50	59.54	59.58	59.63	59.67	59.71	59.76
138	59.80	59.84	59.89	59.93	59.97	60.02	60.06	60.10	60.15	60.19
139	60.23	60.28	60.32	60.36	60.41	60.45	60.49	60.54	60.58	60.62
		,,,,,		30.00		30.20	30.20	30.01	30.50	J
140	60.67	60.71	60.75	60.80	60.84	60.88	60.93	60.97	61.01	61.06
141	61.10	61.14	61.19	61.23	61.27	61.32	61.36	61.40	61.45	61.49
142	61.53	16.58	61.62	61.66	61.71	61.75	61.79	61.84	61.88	61.92
143	61.97	62.01	62.05	62.10	62.14	62.18	62.23	62.27	62.31	62.36
144	62.40	62.44	62.49	62.53	62.57	62.62	62.66	62.70	62.75	62,79
-			1							-3
145	62.83	62.88	62.92	62.96	63.01	63.05	63.09	63.14	63.18	63.22
146	63.27	63.31	63.35	63.40	63.44	63.48	63.53	63.57	63.61	63.66
147	63.70	63.74	63.79	63.83	63.87	63.92	63.96	64.00	64.05	64.09
148	64.13	64.18	64.22	64.26	64.31	64.35	64.39	64.44	64.48	64.52
149	64.57		64.65	64.70	64.74					
•	•		- [	-						

### **HYDROSTATICS**

## Table 10 (Continued)

# HTDROSTATIC PRESSURES IN POUNDS PER SQUARE INCH FOI DIFFERENT HEADS

		ignt or				s ber				
Head in feet	0	1	2	8	4	5	6	7	8	9
150 151 152 153 154	65.00 65.43 65.87 66.30 66.73	65.04 65.48 65.91 66.34 66.78	65.09 65.52 65.95 66.39 66.82	65.13 65.56 66.00 66.43 66.86	65.61 66.04 66.47	65.22 65.65 66.08 66.52 66.95	65.26 65.69 86.13 66.56 66.99	65.30 65.74 66.17 66.60 67.04	65.35 65.78 66.21 66.65 67.08	65.39 65.82 66.26 66.69 67.12
155 156 157 158 159	67.17 67.60 68.03 68.47 68.90	67.21 67.64 68.08 68.51 68.94	67.25 67.69 68.12 68.55 68.99	68.16 68.60	67.34 67.77 68.21 68.64 69.07	67.38 67.82 68.25 68.68 69.12	67.43 67.86 68.29 68.73 69.16	67.47 67.90 68.34 68.77 69.20	67.51 67.95 68.38 68.81 69.25	67.56 67.99 68.42 68.86 69.29
160	69.33	69.38	69.42	69.46		69.55	69.59	69.64	69.68	69.72
161	69.77	69.81	69.85	69.90		69.98	70.03	70.07	70.11	70.16
162	70.20	70.24	70.29	70.33		70.42	70.46	70.50	70.55	70.59
163	70.63	70.68	70.72	70.76		70.85	70.89	70.94	70.98	71.02
164	71.07	71.11	71.15	71.20		71.28	71.33	71.37	71.41	71.46
165	71.50	71.54	71.59	71.63	71.67	71.72	71.76	71.80	71.85	71.89
166	71.93	71.98	72.02	72.06	72.11	72.15	72.19	72.24	72.28	72.32
167	72.37	72.41	72.45	72.50	72.54	72.58	72.63	72.67	72.71	72.76
168	72.80	72.84	72.89	72.93	72.97	73.02	73.06	73.10	73.15	73.19
169	73.23	73.28	73.32	73.36	73.41	73.45	73.49	73.54	73.58	73.62
170	73.67	73.71	73.75	73.80	73.84	73.88	73.93	73.97	74.01	74.06
171	74.10	74.14	74.19	74.23	74.27	74.32	74.36	74.40	74.45	74.49
172	74.53	74.58	74.62	74.66	74.71	74.75	74.79	74.84	74.88	74.92
173	74.97	75.01	75.05	75.10	75.14	75.18	75.23	75.27	75.31	75.36
174	75.40	75.44	75.49	75.53	75.57	75.62	75.66	75.70	75.75	75.79
175	75.83	75.88	75.92	75.96	76.01	76.05	76.09	76.14	76.18	76.22
176	76.27	76.31	76.35	76.40	76.44	76.48	76.53	76.57	76.61	76.66
177	76.70	76.74	76.79	76.83	76.87	76.92	76.96	77.00	77.05	77.09
178	77.13	77.18	77.22	77.26	77.31	77.35	77.39	77.44	77.48	77.52
179	77.57	77.61	77.65	77.70	77.74	77.78	77.83	77.87	77.91	77.96
180	78.00	78.04	78.09	78.13	78.17	78.22	78.26	78.30	78.35	78.39
181	78.43	78.48	78.52	78.56	78.61	78.65	78.69	78.74	78.78	78.82
182	78.87	78.91	78.95	79.00	79.04	79.08	79.13	79.17	79.21	79.26
183	79.30	79.34	79.39	79.43	79.47	79.52	79.56	79.60	79.65	79.69
184	79.73	79.78	79.82	79.86	79.91	79.95	79.99	80.04	80.08	80.12
185	80.17	80.21	80.25	80.30	80.34	80.38	80.43	80.47	80.51	80.56
186	80.60	80.64	80.69	80.73	80.77	80.82	80.86	80.90	80.95	80.99
187	81.03	81.08	81.12	81.16	81.21	81.25	81.29	81.34	81.38	81.42
188	81.47	81.51	81.55	81.60	81.64	81.68	81.73	81.77	81.81	81.86
189	81.90	81.94	81.99	82.03	82.07	82.12	82.16	82.20	82.25	82.29
190	82.33	82.38	82.42	82.46	82.51	82.55	82.59	82.64	82.68	82.72
191	82.77	82.81	82.85	82.90	82.94	82.98	83.03	83.07	83.11	83.16
192	83.20	83.24	83.29	83.33	83.37	83.42	83.46	83.50	83.55	83.56
193	83.63	83.68	83.72	83.76	83.81	83.85	83.89	83.94	83.98	84.02
194	84.07	84.11	84.15	84.20	84.24	84.28	84.33	84.37	84.41	84.46
195	84.50	84.54	84.59	84.63	84.67	84.72	84.76	84.80	84.85	84.86
196	84.93	84.98	85.02	85.06	85.11	85.15	85.19	85.24	85.28	85.33
197	85.37	85.41	85.45	85.50	85.54	85.58	85.63	85.67	85.71	85.76
198	85.80	85.84	85.89	85.93	85.97	86.02	86.06	86.10	86.15	86.16
199	86.23	86.28	86.32	86.36	86.41	86.45	86.49	86.54	86.58	86.62

## TABLE 10 (Concluded)

# HYDROSTATIC PRESSURES IN POUNDS PER SQUARE INCH FOR DIFFERENT HEADS

Head in feet	0	1	2	3	4	5	6	7	8	9
200	86.67	86.71	86.75	86.80	86.84	86.88	86.93	86.97	87.01	87.06
201	87.10	87.14	87.19	87.23	87.27	87.32	87.36	87.40	87.45	87.49
202	87.53	87.58	87.62	87.66	87.71	87.75	87.79	87.84	87.88	87.92
203	87.97	88.01	88.05	88.10	88.14	88.18	88.23	88.27	88.31	88.36
204	88.40	88.44	88.49	88.53	88.57	88.62	88.66	88.70	88.75	88.79
205	88.83	88.88	88.92	88.96	89.01	89.05	89.09	89.14	89.18	89.22
206	89.27	89.31	89.35	89.40	89.44	89.48	89.53	89.57	89.61	89.66
207	89.70	89.74	89.79	89.83	89.87	89.92	89.96	90.00		90.09
208 209	90.13 90.57	90.18 90.61	90.22 90.65	90.26 90.70	90.31 90.74	90.35 90.78	90.39 90.83	90.44 90.87	90.48 90.91	90.52 90.96
210	91.00	91.04	91.09	91.13	91.17	91.22	91.26	91.30	91.35	91.39
211	91.43	91.48	91.52	91.56	91.61	91.65	91.69	91.74	91.78	91.82
212	91,87	91.91	91.95	92.00	92.04	92.08	92.13	92.17	92.21	92.26
213	92.30	92.34	92.39	92.43	92.47	92.52	92.56	92.60	92.65	92.69
214	92.73	92.78	92.82	92.86	92.91	92.95	92.99	93.04	93.08	93.12
215	93.17	93.21	93.25	93.30	93.34	93.38	93.43	93.47	93.51	93.56
216	93.60	93.64	93.69	93.73	93.77	93.82	93.86	93.90	93.95	93.99
217	94.03	94.08	94.12	94.16	94.21	94.25	94.29	94.34	94.38	94.42
218	94.47	94.51	94.55	94.60	94.64	94.68	94.73	94.77	94.81	94.86
219	94.90	94.94	94.99	95.03	95.07	95.12	95.16	95.20	95.25	95.29
220	95.33	95.38	95.42	95.46	95.51	95.55	95.59	95.64	95.68	95.72
221	95.77	95.81	95.85	95.90	95.94	95.98	96.03	96.07	96.11	96.16
222	96.20	96.24	96.29	96.33	96.37	96.42	96.46	96.50	96.55	96.59
223	96.63	96.68	96.72	96.76	96.81	96.85	96.89	96.94	96.98	97.02
224	97.07	97.11	97.15	97.20	97.24	97.28	97.33	97.37	97.41	97.46
225	97.50	97.54	97.59	97.63	97.67	97.72	97.76	97.80	97.85	97.89
226	97.93	97.98	98.02	98.06	98.11	98.15	98.19	98.24	98.28	98.32
227	98.37	98.41	98.45	98.50	98.54	98.58	98.63	98.67	98.71	98.76
228	98.80	98.84	98.89	98.93	98.97	99.02	99.06	99.10	99.15	99.19
229	99.23	99.28	99.32	99.36	99.41	99.45	99.49	99.54	99.58	99.62
230	99.67	99.71	99.75	99.80	99.84	99.88	99.93	99.97	100.01	100.06
			100.19							
232	100.53	100.58	100.62	100.66	100.71	100.75	100.79	100.84	100.88	100.92
233	100.97	101.01	101.05 101.49	101.10	101.14	101.18	101.23	101.27	101.31	101.36
234	101.40	101.44	101.49	101.53	101.57	101.62	101.66	101.70	101.75	101.79
235	101.83	101.88	101.92	101.96	102.01	102.05	102.09	102.14	102.18	102.22
236	102.27	102.31	102.35	102.40	102,44	102.48	102.53	102.57	102.61	102.66
237	102.70	102.74	102.79	102.83	102.87	102.92	102.96	103.00	103.05	103.00
238	103.13	103.18	103.22	103.26	103.31	103.35	103.39	103.44	103.48	103.52
239	103.57	103.61	103.65	103.70	103.74	103.78	103.83	103.87	103.91	103.96
240	104.00	104.04	104.09	104.13	104.17	104.22	104.26	104.30	104.35	104.39
241	104.43	104.48	104.52	104.56	104.61	104.65	104.69	104.74	104.78	104.82
242	104.87	104.91	104.95	105.00	105.04	105.08	105.13	105.17	105.21	105.26
243	105.30	105.34	104.95 105.39	105.43	105.47	105.52	105.56	105.60	105.65	105.69
244	105.73	105.78	105.82	105.86	105.91	105.95	105.99	106.04	106.08	106.12
245	106.17	106.21	106.25	106.30	106.34	106.38	106.43	106.47	106.51	106.56
1 246	106.60	10A A4	108 80	108 73	108 77	10A 92	THE RE	108 QO	10A 05	108 00
24/	107.03	107.08	107.12	107.16	107.21	107.25	107.29	107.34	107.38	107.42
248	107.47	107.51	107.551	107.60	107.64	107.68	107.73	107.77	107.81	107.861
249	107.90	107.94	107.99	108.03	108.07	108.12	108.16	108.20	108.25	108.29

Table 11.—Heads in Feet Corresponding to Different Hydrostatic Pressures in Pounds per Square Inch

						-				
Pressure in pounds per square inch	0	1	2	3	4	5	6	7	8	9
0 1 2 3 4	0.00 2.31 4.62 6.92 9.23	0.23 2.54 4.85 7.15 9.46	0.46 2.77 5.08 7.38 9.69	0.69 3.00 5.31 7.62 9.92	0.92 3.23 5.54 7.85 10.15	1.15 3.46 5.77 8.08 10.38	1.38 3.69 6.00 8.31 10.62	1.62 3.92 6.23 8.54 10.85	1.85 4.15 6.46 8.77 11.08	4.38 6.69 9.00
5 6 7 8 9	11.54 13.85 16.15 18.46 20.77	11.77 14.08 16.38 18.69 21.00	12.00 14.31 16.62 18.92 21.23	12.23 14.54 16.85 19.15 21.46	12.46 14.77 17.08 19.38 21.69	12.69 15.00 17.31 19.62 21.92	12.92 15.23 17.54 19.85 22.15	13.15 15.46 17.77 20.08 22.38	13.38 15.69 18.00 20.31 22.62	13.62 15.92 18.23 20.54 22.85
10 11 12 13 14	23.08 25.38 27.69 30.00 32.31	23.31 25.62 27.92 30.23 32.54	23.54 25.85 28.15 30.46 32.77	23.77 26.08 28.38 30.69 33.00	24.00 26.31 28.62 30.92 33.23	24.23 26.54 28.85 31.15 33.46	24.46 26.77 29.08 31.38 33.69	24.69 27.00 29.31 31.62 33.92	24.92 27.23 29.54 31.85 34.15	25.15 27.46 29.77 32.08 34.38
15 16 17 18 19	34.62 36.92 39.23 41.54 43.85	34.85 37.15 39.46 41.77 44.08	35.08 37.38 39.69 42.00 44.31	35.31 37.62 39.92 42.23 44.54	35.54 37.85 40.15 42.46 44.77	35.77 38.08 40.38 42.69 45.00	36.00 38.31 40.62 42.92 45.23	36.23 38.54 40.85 43.15 45.46	36.46 38.77 41.08 43.38 45.69	36.69 39.00 41.31 43.62 45.92
20 21 22 23 24	46.15 48.46 50.77 53.08 55.38	46.38 48.69 51.00 53.31 55.62	46.62 48.92 51.23 53.54 55.85	46.85 49.15 51.46 53.77 56.08	47.08 49.38 51.69 54.00 56.31	47.31 49.62 51.92 54.23 56.54	47.54 49.85 52.15 54.46 56.77	47.77 50.08 52.38 54.69 57.00	48.00 50.31 52.62 54.92 57.23	48.23 50.54 52.85 55.15 57.46
25 26 27 28 29	57.69 60.00 62.31 64.62 66.92	57.92 60.23 62.54 64.85 67.15	58.15 60.46 62.77 65.08 67.38	58.38 60.69 63.00 65.31 67.62	58.62 60.92 63.23 65.54 67.85	58.85 61.15 63.46 65.77 68.08	59.08 61.38 63.69 66.00 68.31	59.31 61.62 63.92 66.23 68.54	59.54 61.85 64.15 66.46 68.77	59.77 62.08 64.38 66.69 69.00
30 31 32 33 34 35	69.23 71.54 73.85 76.15 78.46	69.46 71.77 74.08 76.38 78.69 81.00	69.69 72.00 74.31 76.62 78.92 81.23	69.92 72.23 74.54 76.85 79.15 81.46	70.15 72.46 74.77 77.08 79.38	70.38 72.69 75.00 77.31 79.62 81.92	70.62 72.92 75.23 77.54 79.85	70.85 73.15 75.46 77.77 80.08 82.38	71.08 73.38 75.69 78.00 80.31 82.62	71.31 73.62 75.92 78.23 80.54
36 37 38 39	80.77 83.08 85.38 87.69 90.00 92.31	83.31 85.62 87.92 90.23	83.54 85.85 88.15 90.46 92.77	83.77 86.08 88.38 90.69 93.00	81.69 84.00 86.31 88.62 90.92 93.23	84.23 86.54 88.85 91.15 93.46	82.15 84.46 86.77 89.08 91.38 93.69	84.69 87.00 89.31 91.62 93.92	84.92 87.23 89.54 91.85	82.85 85.15 87.46 89.77 92.08 94.38
41 42 43 44 45	94.62 96.92 99.23 101.54	94.85 97.15 99.46 101.77	95.08 97.38 99.69 102.00 104.31	95.31 97.62 99.92 102.23	95.54 97.85 100.15 102.46	95.77 98.08 100.38 102.69	96.00 98.31 100.62 102.92	96.23 98.54 100.85 103.15	96.46 98.77 101.08 103.38	96.69 99.00 101.31
46 47 48 49	106.15 108.46 110.77	106.38 108.69 111.00	106.62 108.92 111.23 113.54	106.85 109.15 111.46	107.08 109.38 111.69	107.31 109.62 111.92	107.54 109.85 112.15	107.77 110.08 112.38	108.00 110.31 112.62	108.23 110.54 112.85

### Table 11 (Concluded)

## HEADS IN FEET CORRESPONDING TO DIFFERENT HYDROSTATIC PRESSURES IN POUNDS PER SQUARE INCH

Pressure in pounds per square inch	0	1	2	3	4	5	6	7	8	9
50 51 52 53 54	117.69 120.00 122.31	115.62 117.92 120.23 122.54 124.85	118.15 120.46 122.77	118.38 120.69 123.00	118.62 120.92 123.23	118.85 121.15 123.46	119.08 121.38 123.69	119.31 121.62 123.92	119.54 121.85 124.15	119.77 122.08 124.38
55 56 57 58 59	129.23 131.54 133.85	127.15 129.46 131.77 134.08 136.38	129.69 132.00 134.31	129.92 132.23 134.54	130.15 132.46 134.77	130.38 132.69 135.00	130.62 132.92 135.23	130.85 133.15 135.46	131.08 133.38 135.69	131.31 133.62 135.92
60 81 62 63 64	140.77 143.08 145.38	145.62	141.23 143.54 145.85	141.46 143.77 146.08	141.69 144.00 146.31	141.92 144.23 146.54	142.15 144.46 146.77	142.38 144.69 147.00	142.62 144.92 147.23	140.54 142.85 145.15 147,46 149.77
65 66 67 68 69	152.31 154.62 156.92	152.54 154.85	152.77 155.08 157.38	153.00 155.31 157.62	153.23 155.54 157.85	153.46 155.77 158.08	153.69 156.00 158.31	153.92 156.23 158.54	154.15 156.46 158.77	152.08 154.38 156.69 159.00 161.31
70 71 72 73 74	163.85 166.15 168.46	164.08 166.38 168.69	164.31 166.62 168.92	164.54 166.85 169.15	164.77 167.08 169.38	165.00 167.31 169.62	165.23 167.54 169.85	165.46 167.77 170.08	165.69 168.00 170.31	163.62 165.92 168.23 170.54 172.85
75 76 77 78 79	175.38 177.69 180.00	175.62 177.92	175.85 178.15 180.46	176.08 178.38 180.69	176.31 178.62 180.92	176.54 178.85 181.15	176.77 179.08 181.38	177.00 179.31 181.62	177.23 179.54 181.85	182.08
80 81 82 83 84	186.92 189.23 191.54	187.15 189.46 191.77	187.38 189.69 192.00	187.62 189.92 192.23	187.85 190.15 192.46	188.08 190.38 192.69	188.31 190.62 192.92	188.54 190.85 193.15	188.77 191.08 193.38	186.69 189.00 191.31 193.62 195.92
85 86 87 88 89	198.46 200.77 203.08	201.00 203.31	198.92 201.23 203.54	199.15 201.46 203.77	199.38 201.69 204.00	199.62 201.92 204.23	199.85 202.15 204.46	200.08 202.38 204.69	200.31 202.62 204.92	198.23 200.54 202.85 205.15 207.46
90 91 92 93 94	210.00 212.31 214.62	210.23 212.54 214.85	210.46 212.77 215.08	210.69 213.00 215.31	210.92 213.23 215.54	211.15 213.46 215.77	211.38 213.69 216.00	211.62 213.92 216.23	211.85 214.15 216.46	209.77 212.08 214.38 216.69 219.00
95 96 97 98 99	221.54 223.85 226.15	221.77 224.08 226.38	222.00 224.31 226.62	222.23 224.54 226.85	222.46 224.77 227.08	222.69 225.00 227.31	222.92 225.23 227.54	223.15 225.46 227.77	223.38 225.69 228.00	221.31 223.62 225.92 228.23 230.54

### TABLE 12.—TOTAL HORIZONTAL HYDROSTATIC PRESSURES IN POUNDS PER LINEAL FOOT FOR DAMS WITH OVERFLOW

D = Height of dam in feet H = Depth of overflow in feet P = Pressure in pounds per lineal foot  $P = 31.2 (2DH + D^2).$ 

D in feet					H i	n feet	,			
D In leet	0	1	2	3	4	5	6	7	8	9
1 2 3 4 5	31 125 281 499 780	94 250 468 749 1,092	156 374 655 998 1,404	218 499 842 1,248 1,716	624 1,030 1,498	343 749 1,217 1,747 2,340	406 874 1,404 1,997 2,652	468 998 1,591 2,246 2,964	530 1,123 1,778 2,496 3,276	593 1,248 1,966 2,746 3,588
6 7 8 9	1,123 1,529 1,997 2,527 3,120	1,498 1,966 2,496 3,089 3,744	1,872 2,402 2,995 3,650 4,368	2,246 2,839 3,494 4,212 4,992	2,621 3,276 3,994 4,774 5,616	2,995 3,713 4,493 5,335 6,240	3,370 4,150 4,992 5,897 6,864	3,744 4,586 5,491 6,458 7,488	4,118 5,023 5,990 7,020 8,112	4,493 5,460 6,490 7,582 8,736
11 12 13 14 15	3,775 4,493 5,273 6,115 7,020	4.462 5,242 6,084 6,989 7,956	5,148 5,990 6,895 7,862 8,892	5,834 6,739 7,706 8,736 9,828	6,521 7,488 8,518 9,610 10,764	10,483	7,894 8,986 10,140 11,357 12,636	12,230	9,266 10,483 11,762 13,104 14,508	9,953 11,232 12,574 13,978 15,444
16 17 18 19 20	10,109 11,263	8,986 10,078 11,232 12,449 13,728	11,138 12,355 13,634	12,199 13,478 14,820	13,260 14,602 16,006	14,321 15,725 17,191	16,848 18,377	16,442 17,971 19,562	15,974 17,503 19,094 20,748 22,464	16,973 18,564 20,218 21,934 23,712
21 22 23 24 25	15,101 16,505 17,971	15,070 16,474 17,940 19,469 21,060	17,846 19,375 20,966	19,219 20,810 22,464	20,592 22,246 23,962	21,965 23,681 25,459	23,338 25,116 26,957	26,551 28,454	24,242 26,083 27,986 29,952 31,980	25,553 27,456 29,422 31,450 33,540
26 27 28 29 30	22,745 24,461 26,239	22,714 24,430 26,208 28,049 29,952	26,114 27,955 29,858	27,799 29,702 31,668	29,484 31,450 33,478	31,169 33,197 35,287	32.854 34,944 37,097	34,538 36 691 38,906	34,070 36,223 38,438 40,716 43,056	35,693 37,908 40,186 42,526 44,928
31 32 33 34 35	29,983 31,949 33,977 36,067	31,918 33,946	33,852 35,942 38,095 40,310	35,786 37,939 40,154 42,432	37,721 39,936 42,214 44,554	39,655 41,933 44,273 46,675	41,590 43,930 46,332 48,797	43,524 45,926 48,391 50,918	45,458 47,923 50,450 53,040 55,692	47,393 49,920 52,510 55,162 57,876
36 37 38 39 40	47,455 49,920	45,022 47,424 49,889 52,416	47,330 49,795 52,322 54,912	49,639 52,166 54,756 57,408	51,948 54,538 57,190 59,904	54,257 56,909 59,623 62,400	59,280 62,057 64,896	58,874 61,651 64,490 67,392	58,406 61,183 64,022 66,924 69,888	60,653 63,492 66,394 69,358 72,384
41 42 43 44 45	52,447 55,037 57,689 60,403 63,180	57,658 60,372 63,149	60,278 63,055 65,894	62,899 65,738 68,640	65,520 68,422 71,386	68,141 71,105 74,131	70,762 73,788 76,877	73,382 76,471 79,622	72,914 76,003 79,154 82,368 85,644	75,473 78,624 81,838 85,114 88,452
46 47 48 49 50	74,911	71,854 74,880 77,969	74,786 77,875 81,026	77,719 80,870 84,084	80,652 83,866 87,142	83,585 86,861 90,199	86,518 89,856 93,257	89,450 92,851 96,315	88,982 92,383 95,846 99,372 102,960	

TABLE 13.—VERTICAL DISTANCES ABOVE BASE TO CENTERS OF HORIZONTAL PRESSURE FOR DAMS WITH OVERFLOW

 $\begin{array}{l} D = \text{height of dam in feet.} \\ H = \text{depth of overflow in feet.} \\ d = \text{distance above base in feet to center of pressure.} \\ d = \frac{D}{3} \left( 1 + \frac{H}{D+2 \; H} \right). \end{array}$ 



D in					H in	feet				
feet	0	1	2	3	4	5	6	7	8	9
1 2 3 4 5	.33 .67 1.00 1.33 1.67	.44 .83 1.20 1.56 1.90	.47 .89 1.29 1.67 2.04	.48 .92 1.33 1.73 2.12	.48 .93 1.36 1.78 2.18	1.38 1.81 2.22	.48 .95 1.40 1.83 2.25	.49 .96 1.41 1.85 2.28	.49 .96 1.42 1.87 2.30	.49 .97 1.43 1.88 2.32
6 7 8 9 10	2.00 2.33 2.67 3.00 3.33	2.25 2.59 2.93 3.27 3.61	2.40 2.76 3.11 3.46 3.81	2.50 2.87 3.24 3.60 3.96	2.57 2.96 3.33 3.71 4.07	2.62 3.02 3.41 3.79 4.17	2.67 3.07 3.47 3.86 4.24	2.70 3.11 3.52 3.91 4.31	2.73 3.14 3.56 3.96 4.36 4.75	2.75 3.17 3.59 4.00 4.40
11 12 13 14 15	3.67 4.00 4.33 4.67 5.00	3.95 4.29 4.62 4.96 5.29	4.16 4.50 4.84 5.19 5.53	4.31 4.67 5.02 5.37 5.71	4.44 4.80 5.16 5.52 5.87	4.54 4.91 5.28 5.64 6.00	4.62 5.00 5.37 5.74 6.11	4.69 5.08 5.46 5.83 6.21	5.14 5.53 5.91 6.29	4.80 5.20 5.59 5.98 6.36
16 17 18 19 20	5.33 5.67 6.00 6.33 6.67	5.63 5.96 6.30 6.63 6.97	5.87 6.21 6.55 6.88 7.22	6.06 6.41 6.75 7.09 7.44	6.22 6.57 6.92 7.27 7.62	6.36 6.71 7.07 7.43 7.78	6.48 6.85 7.20 7.56 7.92	6.58 6.95 7.31 7.68 8.05	6.67 7.04 7.41 7.78 8.15	6.75 7.12 7.50 7.87 8.25
21 22 23 24 25	7.00 7.33 7.67 8.00 8.33	7.30 7.64 7.97 8.31 8.64	7.56 7.90 8.23 8.57 8.91	7.78 8.12 8.46 8.80 9.14	7.97 8.31 8.66 9.00 9.34	8.13 8.48 8.83 9.18 9.52	8.27 8.63 8.98 9.33 9.68	8.40 8.76 9.12 9.47 9.83	8.51 8.88 9.24 9.60 9.96	8.62 8.98 9.35 9.71 10.08
26 27 28 29 30	8.67 9.00 9.33 9.67 10.00	8.98 9.31 9.64 9.98 10.31		10.16 10.50 10.83	10.37 10.71 11.05	10.56 10.91 11.25	11.43	10.89 11.24 11.59	11.38 11.74	10.44 10.80 11.16 11.52 11.88
31 32 33 34 35	10.33 10.67 11.00 11.33 11.67		11.26 11.59 11.93 12.26	11.85 12.18 12.52	12.07 12.41 12.75	11.94 12.28 12.62 12.96	11.78 12.12 12.47 12.81 13.16	12.29 12.64 12.99 13.33	12.80 13.15 13.50	13.29 13.65
36 37 38 39 40	12.00 12.33 12.67 13.00 13.33	12.98	13.27 13.60 13.94	13.53 13.87 14.20	13.43 13.77 14.11 14.44	13.99 14.33 14.67	13.84 14.19 14.53 14.87	14.03 14.37 14.72 15.06	14.54 14.89 15.24	14.00 14.35 14.70 15.05 15.40
41 42 43 44 45	13.67 14.00 14.33 14.67 15.00		14.61 14.94 15.28 15.61	15.21 15.55 15.88	15.12 15.46 15.79 16.13	15.35 15.69 16.02 16.36	15.21 15.56 15.90 16.24 16.58	15.75 16.09 16.44 16.78	16.28 16.62 16.97	16.80 17.14
46 47 48 49 50	15.33 15.67 16.00 16.33 16.67	16.32 16.65	16.28 16.62 16.95	16.55 16.89 17.22	17.14 17.48	17.04 17.38 17.72		17.81 18.15	18.34	17.49 17.84 18.18 18.53 18.87

Table 15

Independent Kilowayes of 1 Cred Foot for Second of
Water for Heads from 0 to 100 Febr

	-									
Head im feet	•	1	3	3	4	7	f	•	4	3
1 2 3 4 5	.655 .166 .254 .339	563 562 847	1700 1845 1875 1881	145 145 144 144	37.11 37.11 37.11 37.11 41	から	155 250 255 260 260 260 260	128 128 128 128	1000円	247 247 237 427 427
6 7 8 9	.398 .392 .677 .762 .546	.516 -611 -696 -771 -555	5 9 5 9 - 5 4 - 5 4 - 5 5 - 5 -	- EMB - (1.5 - 1.5 - 1.5	542 626 736 880	100 100 100 100 100 100 100 100 100 100	559 1-1 2-1 2-1	100 100 100 100 100 100 100 100 100 100	57 B 660 545 829 814	
11 12 13 14 15	.931 1.016 1.166 1.155 1.257	. \$180 174 174 174	744 014 370	4	965 14 F 1 11 F 1 12 F 1		MAZE MAGE			MC MC MC Sef-
16 \\7 18 19 20	1.354 1.435 1.523 1.605 1.603	##7 522	45% 141 121			#FT 1 #60 1 #60 1 735 1	#16 1 #80 1 15# 1 15# 1	418 496 667	100 THE TOTAL TH	ANI FLY FAX FAX FAX FAX FAX FAX FAX FAX FAX FAX
21 22 23 24 25	1.777 1 1.862 1 1.947 1 2.031 2 2.115 2	(46)	754 674 144 145	901 1 971 1 161 2	807 1 966 1 960 1 967 2 136 2	1001 1014 1014 1014 1014 1014 1014 1014		MW :	5457 (887 1446 1446 1446	<b>基础</b> 的证据
26 27 28 29 30	2.201 2 2.265 1 2.370 1 2.454 1 2.536 1	46.5	47: -	2004 2 2011 2 2011 2 450 2 2013 2		148 I 256 I 471 I 561 I	350 3 386 3 430 3 506 3 500 3	344 I 437 I 514 I 516 I	285 2 285 2 284 2 284 2 287 2 287 2	MF1 444 511 611
31 32 33 34 35	2.624 1 2.705 1 2.793 2 2.875 1 2.952 2			549 I 734 I 818 I 906 I 966 I	STATE OF STA	466 I 777 I 857 I 927 I 966 I	75F 2 544 2 95K 2 155 3		# : 1 : 1 : 1 : 1 : 1 : 1 : 1 : 1 : 1 : 1	7% 7% 984 984 088
36 37 38 39 40	3.047 3 3.132 3 3.216 3 3.301 3 3.385 3	. 255 8 354 8 364 8	144 8 233 8 814 8 412 8	261 8	250 8 250 8 250 8 417 8	250 1 250 1 426 1	395 State of the Control of the Cont	106 3 191 3 276 3 445 5	115 F 195 F 254 F 865 F 455 F	100 100 100 100 100 100 100 100 100 100
41 42 43 44 45	3.470 3 3.555 3 3.639 3 3.724 3 3.809 3	.477 3 .563 3 .645 3 .722 3	457 8 572 8 556 8 741 8 626 8	456. 2 56. 2 74. 2 564. 3	.564 8. 589 8. 471 8. 154 8. 543 3	511 5 561 3 561 3 766 3 501 3	391 E 775 E	129 3 114 3 109 8 781 1 366 8	535 E 622 E 791 E 576 E	FAF FIFT FIFT FIFT FIFT SST
46 47 48 49 50	3.803 3 3.975 3 4.063 4 4.147 4 4.232 4	902 2 966 8 071 4 157, 4 247 4	\$10 3 \$60 4 .080 4 104 4 246 4	9:9 8 903 4 955 4 178 4 207 4	927 2 190 6 110 6	234 8 120 4 115 4 116 4 274 4	944 3 629 4 118 4 198 4 261 4	.027 4 .122 4	961 2 046 4 130 4 215 4 370 4	184

## TABLE 14 (Concluded)

# THEORETICAL HORSEPOWER OF 1 CUBIC FOOT PER SECOND OF WATER, FOR HEADS FROM 0 TO 100 FEET

Head in feet	0	1	2	3	4	5	6	7	8	9
51	5.786	5.798	5.809		5.832	5.843	5.854	5.866		5.888
52	5.900	5.911	5.922	5.934	5.945	5.956	5.968	5.979	5.990	6.002
53	6.013	6.024	6.036	6.047	6.058	6.070	6.081	6.093	6.104	6.115
54	6.127	6,138	6.149	6.161	6.172	6.183	6.195	6.206	6.217	6.229
55	6.240	6.251	6.263	6.274		6.297	6.308		6.331	6.342
56	6.353	6.365	6.376	6.387	6.399	6.410	6.422	6.433	6.444	6.456
57	6.467	6.478	6.490	6.501	6.512	6.524	6.535	6.546	6.558	6.569
58	6.580	6.592	6.603	6.614	6.626	6.637	6.648	6.660	6.671	6.682
59	6.694	6.705	6.717	6.728	6.739	6.751	6.762	6.773	6.785	6.796
60	6.807	6.819	6.830	6.841	6.853	6.864	6.875	6.887	6.898	6.909
61	6.921	6.932	6.943	6.955	6.966	6.977	6.989	7.000	7.011	7.023
62	7.034	7.046	7.057	7.068	7.080	7.091	7.102	7.114	7.125	7.136
63	7.148	7.159	7.170	7.182	7.193	7.204	7.216	7.227	7.238	7.250
64	7.261	7.272	7.284	7.295	7.306	7.318	7.329	7.341	7.352	7.363
65	7.375	7.386	7.397	7.409	7.420	7.431	7.443	7.454	7.465	7.477
66	7.488	7.499	7.511	7.522	7.533	7.545	7,556	7.567	7.579	7.590
67	7.601	7.613	7.624	7.635	7.647	7.658	7.670	7.681	7.692	7.704
68	7.715	7.726	7.738	7.749	7.760	7.772	7.783	7.794	7.806	7.817
69	7.828	7.840		7.862	7.874	7.885	7.896			7.930
70	7.942	7.953	7.851 7.965	7.976	7.987	7.999	8.010	7.908 8.021	7.919 8.033	8.044
1 1		- 1		- 1			- 1			
71	8.055	8.067	8.078	8.089	8.101	8.112	8.123	8.135	8.146	8.157
72	8.169	8.180	8.191	8.203	8.214	8.225	8.237	8.248	8.259	8.271
73	8.282	8.294	8.305	8.316	8.328	8.339	8.350	8.362	8.373	8.384
74	8.396	8.407	8.418	8.430	8.441	8.452	8.464	8.475	8.486	8.498
75	8.509	8.520	8.532	8.543	8.554	8.566	8.577	8.589	8.600	8.611
76	8.623	8.634	8.645	8.657	8.668	8.679	8.691	8.702	8.713	8.725
77	8.736	8.747	8.759	8.770	8.781	8.793	8.804	8.815	8.827	8.838
78	8.849	8.861	8.872	8.883	8.895	8.906	8.918	8.929	8.940	8.952
79	8.963	8.974	8.986	8.997	9.008	9.020	9.031	9.042	9.054	9.065
80	9.076	9.088	9.099	9.110	9.122	9.133	9.144	9.156	9.167	9.178
81	9.190	9.201	9.213	9.224	9.235	9.247	9.258	9.269	9.281	9.292
82	9.303	9.315	9.326	9.337	9.349	9.360	9.371	9.383	9.394	9.405
83	9.417	9.428	9.439	9.451	9.462	9.473	9.485	9.496	9.507	9.519
84	9.530	9.542	9.553	9.564	9.576	9.587	9.598	9.610	9.621	9.632
85	9.644	9.655	9.666	9.678	9.689	9.700	9.712	9.723	9.734	9.746
86	9.757	9.768	9.780	9.791	9.802	9.814	9.825	9.837	9.848	9.859
87	9.871	9.882	9.893	9.905	9.916	9.927	9.939	9.950	9.961	9.973
88	9.984	9.995	10.007	10.018	10.029	10.041	10.052	10.063	10.075	10.086 l
89	10.097	10.109	10.120	10.131	10.143	10.154	10.166	10.177	10.188	10.200 l
90	10.211	10.222	10.234	10.245	10.256	10.268	10.279	10.290	10.302	10.313
91,	10.324	10.336	10.347	10.358	10.370	10.381	10.392	10.404	10.415	10.426
92	10.438	10.449	10.461	10.472	10.483	10.495	10.506	10.517	10.529	10.540
93	10.551	10.563	10.574	10.585	10.597	10.608	10.619	10.631	10.642	10.653
	10.665	10.676	10.687	10.699	10.710	10.721	10.733	10.744	10.755	10.767
95	10.778	10.790	10.801	10.812	10.824	10.835	10.846	0.858	10.869	10.880
96	10.892	10.903	10.914	10.926	10.937	10.948	10.960	0.971	10.982	10:994
97	11.005	11.016	11.028	11.039	11.050	11.062	11.073	1.085	11.096	11.107
98	11.119	11.130	11.141	11.153	11.164	11.175	11.187	11.198	11.219	11.221
99	11.232	11.243	11.255	11.266	11.277	11.289	11.300	11.311	11.323	11.334
100	11.345	11.357	11.368	11.379	11.391	11.402	11.414	1.425	11.436	11.448
								220	200	

TABLE 15
THEORETICAL KILOWATTS OF 1 CUBIC FOOT PER SECOND OF
WATER FOR HEADS FROM 0 TO 100 FEET

Head in feet	0	1	2	3	4	5	6	7	8	9
1 2 3 4 5	.085 .169 .254 .339 .423	.093 .178 .262 .347 .432	.102 .186 .271 .355 .440	.110 .195 .279 .364 .449	. 203	.127 .212 .296 .381 .466	.305 .389	.144 .229 .313 .398 .482	.152 .237 .322 .406 .491	.161 .245 .330 .415
6 7 8 9 10	.508 .592 .677 .762 .846	.516 .601 .686 .770 .855	.525 .609 .694 .779 .863	.533 .618 .702 .787 .872	.542 .626 .711 .796 .880	.550 .635 .719 .804 .889	.559 .643 .728 .813 .897	.567 .652 .736 .821 .906	.576 .660 .745 .829 .914	.584 .669 .753 .838 .923
11 12 13 14 15	1.100 1.185	1.109 1.193	1.117 1.202	1.126 1.210	1.049 1.134 1.219	1.143 1.227	1.066 1.151 1.236	1.160 1.244	.999 1.083 1.168 1.253 1.337	1.176 1.261
16 17 18 19 20	1.439 1.523 1.608	1:447 1.532 1.617	1.456 1.540 1.625	1.464 1.549 1.633	1.473 1.557 1.642	1.481 1.566 1.650	1.490 1.574 1.659	1.498 1.583 1.667	1.422 1.507 1.591 1.676 1.760	1.515 1.600 1.684
21 22 23 24 25	1.777 1.862 1.947 2.031 2.116	1.870	1.879	1.887	1.896	1.904	1.913	1.921	1.845 1.930 2.014 2.099 2.184	1.938
26 27 28 29 30	2.201 2.285 2.370 2.454 2.539	2.209 2.294 2.378 2.463 2.548	2.217 2.302 2.387 2.471 2.556	2,226 2,311 2,395 2,480 2,565	2.234 2.319 2.404 2.488 2.573	2.243 2.328 2.412 2.497 2.581	2.251 2.336 2.421 2.505 2.590	2.260 2.344 2.429 2.514 2.598	2.268 2.353 2.438 2.522 2.607	2.277 2.361 2.446 2.531 2.615
33	2.624 2.708 2.793 2.878 2.962	2.801	2.810	2.818	2.827	2.835	2.844	2.852	2.861	2.8691
1 68 1	3.047 3.132 3.216 3.301 3.385	3.225	3.233	3.242	3.250	3.259	3.267	3.275	3.284	3.2921
1 44	3.470 3.555 3.639 3.724 3.809	3.732	3.7411	3.749	3.758	3.766	3.775	3.783	3.7921	3.800 I
48 48 49	3.893 3.978 4.063 4.147 4.232	3.986 3 4.071 4 4.156 4	3.995 1.080 1.164	1.003 1.088 1.173	4.012 4.096 4.181	4.020 4.105 4.190	4.029 4.113 4.198	1.037 1.122 1.206	4.046 4.130 4.215	1.054 1.139 1.223

## Table 15 (Concluded)

## THEORETICAL KILOWATTS OF 1 CUBIC FOOT PER SECOND 'OF WATER FOR HEADS FROM 0 TO 100 FEET

Head in feet	0	1	2	3	4	5	6	7	8	9
51 52 53 54	4.316 4.401 4.486 4.570	4.325 4.410 4.494 4.579	4.333 4.418 4.503 4.587	4.342 4.427 4.511 4.596	4.350 4.435 4.520 4.604	4.359 4.443 4.528 4.613	4.367 4.452 4.537 4.621	4.376 4.460 4.545 4.630	4.384 4.469 4.553 4.638	4.393 4.477 4.562 4.647
55 56 57	4.655	4.664 4.748 4.833	4.672	4.680	4.689	4.697	4.706	4.714	4.723	4.731
58 59 60	4.909	4.917 5.002 5.087	4.926 5.011	4.934 5.019	4.943 5.027	4.951 5.036	4.960 5.044	4.968 5.053	4.977 5.061	4.985 5.070
61 62 63 64 65	15.332	5.171 5.256 5.341 5.425 5.510	5.349	[5.358]	15.366	5.374	[5.383]	5.391	l5.400	5.408
66 67 68 69 70	5.755	5.595 5.679 5.764 5.848 5.933	5.772 5.857	5.781 5.865	5.789 5.874	5.798 5.882	5.806 5.891	5.815 $5.899$	5.823 5.908	$5.831 \\ 5.916$
71 72 73 74 75	6.094 6.179 6.263	6.018 6.102 6.187 6.272 6.356	6.111 6.195 6.280	6.119 6.204 6.289	$6.128 \\ 6.212 \\ 6.297$	6 136 6.221 6.305	6.145 6.229 6.314	6.153 6.238 6.322	6.162 6.246 6.331	6.170 6.255 6.339
76 77 78 79 80	6.517 6.602 6.686	6.441 6.526 6.610 6.695 6.779	6.534 6.619 6.703	6.542 6.627 6.712	6.551 6.636 6.720	6.559 6.644 6.729	6.568 6.652 6.737	6.576 6.661 6.746	6.585 6.669 6.754	6.593 6.678 6.763
81 82 83 84 85	6.940 7.025 7.110	6.864 6.949 7.033 7.118 7.203	6.957 7.042 7.126	6.966 7.050 7.135	6.974 7.059 7.143	6.983 7.067 7.152	6.991 7.076 7.160	6.999 7.084 7.169	7.008 7.093 7.177	7.016 7.101 7.186
86 87 88 89 90	7.448 7.533	7.287 7.372 7.457 7.541 7.626	7.465 7.550	7.473 7.558	7.482 7.567	7.490 7.575	7.499 7.583	7.507 7.592	7.516 7.600	7.524 7.609
91 92 93 94 95	7.871	7.710 7.795 7.880 7.964 8.049	7.888	7.897 7.981	7.905 7.990	7.914	7.922 8.007	$7.930 \\ 8.015$	7.939 8.024	7.947 8.032
96 97 98 99 100	18.379	8.134 8.218 8.303 8.388 8.472	8.390	8.404	8.413	8.421	8.430	8.438	8.447	8.400

#### CHAPTER III

#### ORIFICES

The following nomenclature will be used in discussing orifices:

L =Breadth of rectangular orifice in feet

M = Height of rectangular orifice in feet

d =Diameter of circular orifice in feet

a =Area of orifice in square feet

Q =Discharge in cubic feet per second

v = Mean velocity in feet per second

 $v_t$  = Theoretical mean velocity in feet per second

h = Head on center of orifice

g =Acceleration due to gravity = 32.16 approximately

 $C_v = \text{Coefficient of velocity}$ 

 $C_c$  = Coefficient of contraction

 $C = \text{Coefficient of discharge} = C_{\nu}C_{c}$ 

#### Fundamental Considerations

Theoretical Velocity.—The theoretical velocity of water flowing through an orifice is, by Torricelli's theorem, the velocity acquired by a body falling freely in vacuo through a distance equal to the difference in elevation between the surface of the water and the elevation of the center of the orifice. It was the discovery of this great fundamental principle which lead to our modern development of the science of hydraulics. The Torricelli theorem may be expressed by the formula

$$v_t = \sqrt{2gh} \tag{1}$$

or

$$h = \frac{v_i^2}{2g} \tag{2}$$

Tables 16, 17, and 18, pages 48, 49, and 50, give values of  $v_t$  for heads ranging from 0 to 500 feet. Tables 19 and 20, pages 51 and 53 give theoretical heads for velocities ranging from 0 to 50 feet per second.

Contraction.—The area of cross-section of a jet is less than the area of the orifice from which it discharges. When a jet leaves an orifice it contracts to a smaller area, later expanding and becoming more or less irregular. The section of minimum

Frg. 11.

Orifice.

area is called the *vena contracta*. Let AD, Fig. 11, represent a section of a side of a vessel containing water which passes through an orifice BC. The vena contracta is at E, a little over one diameter from the inner edge of the wall.

The amount of contraction depends upon the form of the opening. Sharp corners at the inner edge of the orifice cause a maximum contraction and rounded corners conforming to the shape of a contracting jet cause the minimum contraction. There are various intermediate conditions.

The ratio of the area of the vena contracta to the area of the orifice is called the *coefficient of contraction*,  $C_o$ . Its mean value is approximately 0.62 for a sharp-edged orifice, and approaches unity for an orifice with rounded corners.

The discharge from an orifice is equal to the product of the area of a section of the jet at the vena contracta and the mean velocity, or

$$Q = C_{c}av \tag{3}$$

The mean velocity of a jet is always slightly less than the theoretical velocity. The ratio of the mean velocity to the theoretical velocity is called the *coefficient of velocity*,  $C_{\nu}$ . The numerical value of  $C_{\nu}$  ranges between 0.96 and 0.99 with 0.98 a fair average value.

Equation (3) may be written

$$Q = C_c C_v a v_t (4)$$

or

$$Q = Cav_t \tag{5}$$

(6)

or  $Q = Ca \sqrt{2ah}$ 

in which a is the area of the orifice and C the coefficient of discharge.

The coefficients of velocity and contraction are difficult to determine experimentally and are of theoretical rather than ratical value. The coefficient of discharge may be determined by measuring the quantity of water flowing from an orifice of known dimensions in a given time and determining the ratio between this discharge and the theoretical discharge. It is therefore the coefficient of discharge in which engineers are particularly interested. This coefficient has been found to vary with the head and the size of the orifice.

The sharp-edged orifice provides an accurate means of measuring small quantities of water. Orifices with rounded edges are frequently used in design and it is desirable to have coefficients of discharge for such orifices.

Rectangular Orifices.—In general the above discussion applies to an orifice of any shape. There is, however, a fundamental error in assuming that the head on the center of any



Fig. 12.—Rectangular orifice.

orifice, not horizontal, is the mean head. Referring to Fig. 12 the theoretical formula for discharge over a rectangular orifice may be derived as follows:

Let  $h_1$  be the head on the upper edge of the orifice and  $h_2$  the head on the lower edge. The discharge through any elementary strip of area Ldy at a distance y below the water surface is given by the equation

$$dQ = Ldy \sqrt{2gy}$$

which integrated between the limits  $h_2$  and  $h_1$  gives

$$Q = \frac{2}{3} L \sqrt{2g} (h_2^{3/2} - h_1^{3/2})$$
 (7)

When  $h_1$  is zero this equation reduces to

$$Q = \frac{2}{3} \sqrt{2g} L h_2^{3/2} \tag{8}$$

which is the theoretical formula of discharge for a rectangular weir.

Equation (7) gives the theoretical discharge for a rectangular orifice. A similar though more complicated expression would give the theoretical discharge through circular orifices. The formula

$$Q = LM\sqrt{2gh} (9)$$

in which h is the head on the center of the orifice, may be used without appreciable error unless  $h_1$  is small as compared to M. For  $h_1 = M$  equation (9) gives results about 1 per cent. too great and for  $h_1 = 2M$  results are 0.3 per cent. too great.

Equation (9) is the base formula usually employed. Even for the lower heads the correction necessary may be made in applying the discharge coefficient. The actual working formula for discharge from a rectangular orifice, the same as for a circular orifice, or orifice of any other shape is, therefore,

$$Q = Ca\sqrt{2gh} \tag{10}$$

in which a is the area of the opening, C the coefficient of discharge and h the head on the center of the orifice.

#### Orifices with Full Contraction

Many experiments to determine the coefficients of discharge for sharp-edged orifices have been performed. Tables of coefficients of discharge for square and circular orifices, which have been quite generally accepted by modern hydraulicians were published by Hamilton Smith, Jr., in 1886. These tables which were prepared with great care, are based upon experiments by Poncelet and Lebros, T. G. Ellis, Hamilton Smith, Jr., Julius Weisbach, W. C. Unwin, J. B. Francis, R. Steckel, Darcy and Bazin. Tables 21 and 22, pages 54 and 55, are reproductions of Smith's tables of coefficients of discharge through circular orifices and square orifices respectively.

Later experiments by Judd and King,² and Bilton³ do not altogether confirm the results in Smith's tables. After a careful study of the earlier experiments in connection with his own and those by Judd and King, Bilton concludes:

- 1. The assumption that a coefficient of discharge common to all orifices from ½ inch to 12 inches in diameter is reached at a head of 100 feet is erroneous.
- That in order to obtain complete and perfect contraction a certain minimum diameter and head are required. These

¹ Hamilton Smith, Jr.: Hydraulies, pp. 58-59.

² HORACE JUDD and ROY S. KING: Some Experiments on the Frictionless Orifice. From paper read before the American Association for the Advancement of Science, July, 1906. Engineering News, Sept. 27, 1906.

³ H. J. I. BILTON: Coefficients of Discharge through Circular Orifices. From paper read before the Victorian Institute of Engineers, April, 1908. *cineering News*, July 9, 1908.

appear to be approximately  $2\frac{1}{2}$  inches and 17 inches respectively.

- 3. That orifices of  $2\frac{1}{2}$  inches diameter and over, under heads of 17 inches and over, have a common coefficient of discharge, lying between 0.59 and 0.60 but which is probably about 0.598 (subject to the head being not less than 2 or 3 diameters).
- 4. That in the case of orifices smaller than 2½ inches in diameter, contraction is never perfect and complete under any head, but is suppressed more and more as the diameter decreases, each size of orifice having its own constant or "normal" coefficient of discharge and its own critical head.
- 5. That as the diameter decreases, the normal coefficient increases, as also the critical head.
- 6. That in an infinitely small orifice, contraction is entirely suppressed and unity becomes the coefficient of discharge for all heads (subject to the effects of capillarity, cohesion, viscosity, temperature, etc.).
- 7. That the discharge of a circular orifice under any given head is the same, whether the jet be horizontal, vertical, or at any intermediate angle.

It is probable that with proper modification the above comments will apply to square or rectangular orifices. The approximate coefficient, 0.60 for orifices above  $2\frac{1}{2}$  inches in diameter and for heads greater than 17 inches, can be easily remembered.

A table of coefficients of discharge for rectangular orifices has been prepared by Fanning¹ from experiments by Michelotti, Bossut, Rennie, Castel, Lespinasse and Ellis. Fanning's results to three decimal places are given in Table 23, page 56. The coefficients given are for orifices 1 foot wide, and from 0.125 to 4 feet high under heads of from 0.3 to 50 feet.

Table 24, page 57, prepared by Bovey² from experiments on orifices of different shapes, having the same area as a circle ½ inch in diameter, gives the effect of shape of opening on the coefficient of discharge. It does not necessarily follow that a similar relation will hold for orifices of larger areas.

### Orifices with Contractions Suppressed

Orifices with contractions either wholly or partially suppressed are not commonly used for measuring water because

J. T. FANNING: Water Supply Engineering, pp. 205-206.

² HENRY T. BOVEY: Hydraulics, p. 40.

of the uncertainty which exists in selecting a proper coefficient of discharge. Such orifices, however, are often used in design and values of these coefficients are important. Unfortunately, available experimental data do not cover as wide a range of conditions as is desirable.

Table 25, page 58, has been prepared from results obtained by Smith¹ from experiments by Lebros. Though the orifices experimented upon were small, they should form a guide for selecting coefficients for larger orifices. It is probable that coefficients of discharge for orifices with contractions suppressed will decrease slightly as the size of the opening increases the same as for sharp-edged orifices. In Table 25 suppressed contraction means that the side of the channel coincides with the edge of the orifice and partly suppressed contraction means that the distance between the side of the channel and edge of the orifice is 0.066 foot.

### Effects of Velocity of Approach

In the discussion thus far it has been assumed that water has been discharged from a reservoir which is large in comparison with the area of the orifice. When the area of the cross-section of the channel conducting water to the orifice is small compared to the area of the orifice, so that there is an appreciable velocity of approach, the discharge through the orifice will be increased.

There are but few experiments available on the effects of velocity of approach on the discharge through orifices. It has been customary to consider that the measured head should be increased by the velocity head due to the mean velocity in the channel of approach. This assumption would probably be approximately true if the velocity of approach were uniform. The velocity, however, is not uniform in all parts of the section and the kinetic energy of the water in the channel is greater² than it would be for uniform velocity. This conclusion is borne out by experiments on velocity of approach for weirs. The formula for discharge through any orifice with velocity of approach correction may be written.

$$Q = aC \sqrt{2g \left(h + \beta \frac{V^2}{2g}\right)}$$
 (11)

¹ Hamilton Smith, Jr.: Hydraulics, pp. 65-67.

² See discussion by ROBERT E. HORTON, Water Supply and Irrigation Paper No. 200, U. S. Geological Survey, pp. 17-20.

in which  $\beta$  is an empirical coefficient and V is the mean velocity of approach. Calling A the area of the channel of approach, since

$$\dot{V} = \frac{Q}{A}$$

The equation may be written

$$Q = Ca \sqrt{2gh} \left( h + \frac{\beta}{2g} \cdot \frac{Q^2}{A^2} \right)^{\frac{1}{2}}$$
 (12)

Reducing by a method analogous to that given on page 70 for weirs, the general formula for discharge from an orifice with velocity of approach becomes

$$Q = Ca \sqrt{2gh} \left( 1 + \frac{C^2\beta}{2} \cdot \frac{a^2}{A^2} \right) \tag{13}$$

Experiments with orifices for determining  $\beta$  are not available but from experiments on sharp-crested weirs it appears to have a value of about 6.4, and assuming this value for sharp-edged orifices, the formula is

$$Q = Ca \sqrt{2gh} \left( 1 + 3.2 C^2 \frac{a^2}{A^2} \right)$$
 (14)

#### Short Tubes

Borda's mouthpiece is a short cylindrical tube projecting inwardly as shown in Fig. 13. The inward edge of the tube must be relatively thin and sharp to insure perfect contraction and its length must be such, about  $\frac{1}{2}d$ , that the jet will not touch the sides of the tube. The following are average coefficients.

$$C = 0.51, \quad C_{\bullet} = 0.98 \quad C_{\bullet} = 0.52$$



Fig. 13.—Borda's mouthpiece.



Fig. 14.—Standard short tube.

Standard Short Tubes.—A cylindrical tube, having a length of from 2 to 3 diameters with the inner end set flush with a flat wall so as to form a sharp-cornered entrance is commonly called a standard short tube. In such tubes, Fig. 14, the issuing jet touches the sides of the tube after leaving the

inner face and the tube flows full. The coefficient of contraction is considered unity. The coefficient of discharge varies from 0.78 to 0.83. The mean value generally used is







Fig. 15.—Short tube projecting inward.

Fig. 16.—Convergent tube with sharp corner at entrance.

Short tubes projecting inward as shown in Fig. 15 have coefficients of discharge varying from 0.72 to 0.80. The average value commonly employed is

C = 0.75





Fig. 17.—Convergent tube with Fig. 18.—Converging bellrounded corner at entrance.

mouthed orifice.

Convergent short tubes are frustrums of cones as shown in Figs. 16 and 17. Fig. 16 has the larger base set flush with a flat wall so as to form a sharp-cornered entrance. Fig. 17 has the entrance to the tube slightly rounded. The sides of the tube make an angle  $\theta$  with the axis of the cone.

Experiments for these tubes give conflicting results. Fair average values are given by Unwin¹ as follows:

Angle $\theta$	0°	5¾°	1114°	221/2°	45°
C, for Fig. 16	0.83	0.94	0.92	0.85	
C, for Fig. 17	0.97	0.95	0.92	0.88	0.75

Converging Bell-mouthed Orifice.—If the surface of the opening is rounded to conform to the shape of the contracted jet, Fig. 18,  $C_c$  approaches unity. The following are coefficients by Weisbach² for d = 0.033 foot. Other experiments indicate that these results hold approximately for larger orifices.

h in feet	0.9066	1.640	11.480	55.770	337.930
C	0.959	0.967	0.975	0.994	0.994





Fig. 19.—Diverging tube with sharp corner at entrance.

Fig. 20.—Diverging tube with rounded corner at entrance.

Diverging Conical Tubes.—Figs. 19 and 20. The coefficient of discharge varies with the angle of divergence and length of tube. Experiments by Venturi showed discharge to be a maximum with l=9d, and angle of divergence equal to 5°. If divergence is not too great the tube will flow full. The coefficient of discharge is variable but when so designed that the tube flows full the following results may be obtained:

For Fig. 19, 
$$C = 1.4$$
  
For Fig. 20,  $C = 2.0$ 

Nozzles.—A very complete set of experiments on the flow of water through nozzles was performed by Freeman³ at Lowell, Mass., in 1888.

Two types of nozzles are in common use. Each are converging cones, one smooth throughout, Fig. 21, and the other with

¹ W. C. Unwin: Treatise on Hydraulics, p. 89.

² Julius Weisbach; Ingenieur und Machinen-Mechanik, p. 969 (ed. 1875).

³ JOHN R. FREEMAN: Experiments Relating to Hydraulics of Fire Streams, Trans. Amer. Soc. Civ. Eng., vol. 21, pp. 303-482.

a narrow ring at the outlet, Fig. 23. The opening in the ring nozzle is similar to a sharp-cornered orifice, which causes a contraction of the jet. The smooth nozzle may terminate in a cylinder, with the conical part curved as shown in Fig. 22. The ring nozzle was found by Freeman's experiments to have no particular advantage over smooth nozzles.

The following are mean values of coefficients of discharge of smooth nozzles as determined by Freeman:

Diameter in inches...  $\frac{34}{100}$   $\frac{76}{100}$   $\frac{1}{100}$   $\frac{1}$ 



Fig. 21. Fig. 22. Different shaped nozzles.

The following are mean values of coefficients of discharge for ring nozzles as determined from Freeman's experiments. The ratio of the diameter of opening to diameter just back of ring is given.

Ratio 0.50 0.60 0.70 0.80 0.85 0.90 0.95 1.00 0.630 0.650 0.680 0.710 0.730 0.770 0.870 0.975

### Submerged Orifices

The discharge through submerged orifices is given by the formula

$$Q = Ca\sqrt{2gh} \tag{15}$$

where h is the difference in elevations of water surfaces above and below the orifice, C the coefficient of discharge and a the area of the opening. There are but few experiments available for determining C for submerged orifices. What data there are indicate that discharge coefficients are not greatly affected by submergence.

Table 26, page 59, gives coefficients of discharge for submerged sharp-edged orifices of various dimensions compiled from the best available data. Table 27, page 59, gives coefficients of discharge for an orifice 1 foot square with rounded edges, from experiments by Ellis.¹

¹ Trans. Amer. Soc. Civ. Eng., vol. 5, p. 19

#### Gates

Gates Discharging Freely into Air.—The results of experiments on models of gates shown in the Figs. 24 and 25 are given by Unwin.¹ Table 28, page 60, giving coefficients of discharge for various depths of water above the top of the openings, was computed from Unwin's results. The head on



Fig. 24.—Gates discharging freely into air.

the center of orifice in this table may be obtained by adding half of the depth of opening to the depth of water above the top of orifice.

Determination of the coefficient of discharge of a sluice gate of the Argo dam at Ann Arbor, Mich., was made by Ward² in 1916. The gate is approximately 4 feet wide and 5 feet high. The opening is between concrete piers with beveled



Fig. 25.—Gates with prolonged bottoms and sides.

noses. The gate closes on a base 1 foot above the concrete floor. The bottom of the gate formed the upper edge of the opening. Below the gate is a concrete basin 2.5 feet deep and 20 feet long. The water in the river below the dam when the test was made was lower than the gate sill. The mean head on the center of the opening was about 8 feet. For this head the mean of several observations gave a coefficient of discharge of 0.545.

¹ W. C. Unwin: Hydraulics. Encyclopædia Britannica, 11th edition, vol. 14, p. 41.

² C. N. WARD: An unpublished thesis for the University of Michigan.

Submerged Gates.—Submerged gates are frequently encountered in engineering practice. They may be used for either intakes or sluices. Such gates are subject to a variety of entrance conditions which affect the contraction and consequently the coefficient of discharge. The most common case is where the bottom of the opening is nearly flush with the floor of the structure and the sides of the opening are flush with the piers in which the gate guides are placed. The contraction at the sides and bottom of the opening will then be greatly reduced. If the gate rests on a sill somewhat higher than the floor of the structure or if the gate guides project beyond the sides the amount of contraction will be increased. There is usually complete contraction at the top of the opening. The effect of contraction on such openings, however, appears to decrease as the size of the opening increases.

Only a few experiments on submerged gates are available and these are of a very general character. The problem is also complicated by the fact that a standing wave usually forms below the gate and there is a question as to the proper distance below the gate for measuring the water-surface elevation. The engineer is usually more interested in the elevation that occurs below the turbulence caused by the standing wave.

The experiments bearing on this subject have been discussed by Parker.¹ He analyzes experiments by Bornemann,² Chatterton² and Benton.⁴ Chatterton gives the following formula for C for values of h below 5 feet.

$$C = 0.615 + 0.007 \times 2^{5-h} \tag{16}$$

Benton gives the following formula for heads below 5 feet and widths of gate opening (W) up to 10 feet:

$$C = 0.7201 + 0.0074 W \tag{17}$$

Formulas (16) and (17) are based upon independent sets of observations. It will be observed that in formula (16) C varies only with h and in formula (17) it varies only with W. Results by the two formulas agree quite closely for heads of 1 foot or less but differ by from 10 to 25 per cent. for the higher heads. This divergence may be accounted for by the condi-

¹ PHILIP À MORLEY PARKER: Control of Water, pp. 164-168.

² Civilingenieur, vol. 26, p. 297.

³ Hydraulic Experiments in the Kistna Delta.

⁴ Punjab Irrigation Branch Paper, No. 8.

tions under which the experiments were performed. The conditions which will affect the discharge through submerged gates are explained below and these should be given careful consideration in each case before selecting a coefficient of discharge.

- (a) The type of construction as affecting contraction. The greater the contraction the less the discharge.
- (b) The condition of channels leading to and from the gate as affecting velocity of approach and velocity of retreat.
- (c) The height of standing wave and point chosen for measuring elevation of water surface below the gate with reference to same. The discharge coefficient will be less when the head below the gate is measured in the trough of the standing wave than when measured farther downstream below all turbulence. The height of standing wave below the gate will increase as the depth of water decreases.

Table 29, page 61, gives values of the coefficient of discharge, C, computed from Chatterton's and Benton's formulas (formulas (16) and (17)).

Submerged Tubes.—Stewart¹ experimented on submerged tubes 4 feet square, with lengths varying from 0.31 to 14 feet, and heads from 0.05 to 0.30 feet. The entrance conditions included sharp edges and various degrees of suppressed contraction. Rogers and Smith have extended the experiments by Stewart to include sharp-edged tubes 6, 8, and 10 inches square, with varying lengths under heads up to 2.2 feet. Rogers and Smith² decided from their investigation that the coefficient of discharge C, varied as L/D, L being the length of tube and D the length of one side of the cross-section of the tube, and was independent of the head.

The author has prepared Table 30, page 62, from the results of these experiments assuming that the coefficient of discharge for any submerged tube varies as  $\frac{L}{p}$ , L and p being respectively the length of tube and perimeter of cross-section of the tube. For a square tube, p=4D. It is evident that this assumption may be erroneous but it appears reasonable and as safe as any in view of the fact that there are no experimental data for circular or rectangular tubes.

¹ C. B. Stewart: Investigation of Flow through Large Submerged Orifices and Tubes. *Bulletin* of the University of Wisconsin, No. 216.

² T. C. ROGERS and T. L. SMITH: Experiments with Submerged Orifices and Tubes. *Engineering News*, Nov. 2, 1916.

Table 16.—Theoretical Velocities in Feet per Second, for Heads from 0 to 5 Feet. From the Formula

 $v_t = \sqrt{2gh}$ 

Head in feet	0	1 -	2	3	4	5	6	7	8	9
.0 .1 .2 .3	0.00 2.54 3.59 4.39 5.07	0.80 2.66 3.68 4.47 5.14	1.13 2.78 3.76 4.54 5.20	1.39 2.89 3.85 4.61 5.26	1.60 3.00 3.93 4.68 5.32	1.79 3.11 4.01 4.74 5.38	1.96 3.21 4.09 4.81 5.44	2.12 3.31 4.17 4.88 5.50	2.27 3.40 4.24 4.94 5.56	2.41 3.50 4.32 5.01 5.61
.5 .6 .7 .8 .9	5.67 6.21 6.71 7.17 7.61	5.73 6.26 6.76 7.22 7.65	7.26	5.84 6.37 6.85 7.31 7.73	5.89 6.42 6.90 7.35 7.78	5.95 6.47 6.95 7.39 7.82	6.00 6.52 6.99 7.44 7.86	6.06 6.56 7.04 7.48 7.90	6.11 6.61 7.08 7.52 7.94	6.16 6.66 7.13 7.57 7.98
1.0 1.1 1.2 1.3 1.4	8.02 8.41 8.79 9.14 9.49	8.06 8.45 8.82 9.18 9.52	8.10 8.49 8.86 9.21 9.56	8.14 8.53 8.89 9.25 9.59	8.18 8.56 8.93 9.28 9.62	8.22 8.60 8.97 9.32 9.66	8.26 8.64 9.00 9.35 9.69	8.30 8.68 9.04 9.39 9.72	8.33 8.71 9.07 9.42 9.76	8.37 8.75 9.11 9.45 9.79
1.5 1.6 1.7 1.8 1.9	10.46 10.76	10.49 10.79	9.89 10.21 10.52 10.82 11.11	10.24 10.55 10.85	10.27 10.58 10.88	10.30 10.61 10.91	10.64 10.94	10.37 10.67 10.97	10.40 10.70 11.00	10.43 10.73 11 03
2.0 2.1 2.2 2.3 2.4	11.62 11.90 12.16	11.65 11.92 12.19	11.40 11.68 11.95 12.22 12.48	11.70 11.98 12.24	11.73 12.00 12.27	$11.76 \\ 12.03 \\ 12.29$	$11.79 \\ 12.06 \\ 12.32$	11.81 12.08 12.35	11.84 $12.11$ $12.37$	11.87 12.14 12.40
2.5 2.6 2.7 2.8 2.9	12.93 13.18 13.42	12.96 13.20 13.45	12.73 12.98 13.23 13.47 13.70	13.01 13.25 13.49	13.03 13.28 13.52	13.06 13.30 13.54	13.08 13.32 13.56	13.10 13.35 13.59	13.13 13.87 13.61	13.15 13.40 13.63
3.0 3.1 3.2 3.3 3.4	14.12 14.35 14.57	14.14 14.37 14.59	13.94 14.17 14.39 14.61 14.83	14.19 14.41 14.63	14.21 14.44 14.66	14.23 14.46 14.68	14.26 14.48 14.70	14.28 14.50 14.72	14.30 14.53 14.74	14.32 14.55 14.77
3.5 3.6 3.7 3.8 3.9	15.22 15.43 15.63	15.24 15.45 15.65	15.05 15.26 15.47 15.68 15.88	15.28 15.49 15.70	15.30 15.51 15.72	15.32 15.53 15.74	15.34 15.55 15.76	15.36 15.57 15.78	15.39 15.59 15.80	15.41 15.61 15.82
4.0 4.1 4.2 4.3 4.4	16.24 16.44 16.63	16.26 16.46 16.65	16.08 16.28 16.48 16.67 16.86	16.30 16.50 16.69	16.32 16.51 16.71	16.34 16.53 16.73	16.36 16.55 16.75	16.38 16.57 16.77	16.40 16.59 16.79	16.42 16.61 16.80
4.5 4.6 4.7 4.8 4.9	17.20 17.39 17.57	17.22 17.41 17.59	17.05 17.24 17.42 17.61 17.79	17.26 17.44 17.63	17.28 17.46 17.64	17.29 17.48 17.66	17.31 17.50 17.68	17.33 17.52 17.70	17.35 17.53 17.72	17.18 17.37 17.55 17.73 17.92

TABLE 17.—THEORETICAL VELOCITIES IN FEET PER SECOND, FOR HEADS FROM 0 TO 50 FEET. FROM THE FORMULA

 $v_t = \sqrt{2gh}$ 

Head in feet	0		2	3	4	5	6	7	8	9
0 1 2 3 4	13.89	8.41 11.62 14.12	8.79 11.90 14.35	9.14 12.16 14.57	9.49 12.42 14.79	9.82 12.68 15.00	6.21 10.14 12.93 15.22 17.20	13.18 15.43	10.76 13.42 15.63	13.66 15.84
5 6 7 8 9	19.64 21.22 22.68	19.81 21.37 22.83	19.97 21.52 22.97	20.13 21.67 23.11	20.29 21.81 23.24	20.45 21.96 23.38	18.98 20.60 22.11 23.52 24.85	20.76 22.26 23.65	20.91 22.40 23.79	21.06 22.54 23.93
10 11 12 13 14	26.60 27.78 28.92	26.72 27.90 29.03	26.84 28.01 29.14	26.96 28.13 29.25	27.08 28.24 29.36	27.20 28.36 29.47	26.11 27.31 28.47 29.58 30.64	27.43 28.58 29.68	29.79	27.66 28.80 29.90
15 16 17 18 19	32.08 33.07 34.03	32.18 33.16 34.12	$32.28 \\ 33.26 \\ 34.21$	32.38 33.35 34.31	32.48 33.45 34.40	32.57 33.55 34.50	31.67 32.67 33.65 34.59 35.51	32.77 33.74 34.68	32.87 33.84 34.77	32.97 33.93 34.87
20 21 22 23 24	36.75 37.62 38.46	36.84 37.70 38.54	36.93 37.79 38.63	37.01 37.88 38.71	37.10 37.96 38.80	37.19 38.04 38.88	36.40 37.28 38.12 38.96 39.78	37.36 38.21 39.04	37.45 38.29 39.13	37.53 38.38 39.21
25 26 27 28 29	40.89 41.67 42.44	40.97 41.75 42.51	41.05 41.83 42.59	41.13 41.90 42.66	41.21 41.98 42.74	41.29 42.06 42.82	40.58 41.36 42.13 42.89 43.63	41.44 42.21 42.97	41.52 42.29 43.04	41.60 42.36 43.11
30 31 32 33 34	43.93 44.65 45.37 46.07	44.00 44.72 45.44 46.14	44.07 44.79 45.51 46.21	44.15 44.87 45.58 46.28	44.22 44.94 45.65 46.35	44.29 45.01 45.72 46.42	44.36 45.08 45.79 46.49 47.18	44.44 45.15 45.86 46.56	44.51 45.23 45.93 46.63	44.58 45.30 46.00 46.69
35 36 37 38 39	47.45 48.12 48.78 49.44	47.52 48.19 48.85 49.50	47.58 48.25 48.92 49.57	47.65 48.32 48.98 49.63	47.72 48.39 49.05 49.70	47.78 48.45 49.11 49.76	47.85 48.52 49.18 49.83 50.47	47.92 48.59 49.24 49.89	47.99 48.65 49.31 49.96	48.05 48.72 49.37 50.02
40 41 42 43 44	50.72 51.35 51.97 52.59	50.79 51.41 52.04 52.65	50.85 51 47 52 10 52.71	50.91 51.54 52.16 52.77	50.98 51.60 52.22 52.83	51.04 51.67 52.28 52.90	51.10 51.73 52.35 52.96 53.56	51.16 51.79 52.41 53.02	51.22 51.85 52.47 53.08	51.29 51.91 52.53 53.14
45 46 47 48 49	53.80 54.39 54.98 55.56	53.86 54.45 55.04 55.62	53.92 54.51 55.10 55.68	53.98 54.57 55.16 55.74	54.04 54.63 55.22 55.80	54.10 54.69 55.27 55.85	54.16 54.75 55.33 55.91 56.49	54.22 54.81 55.39 55.97	54.28 54.87 55.45 56.03	54.34 54.92 55.51 56.08

Table 18.—Theoretical Velocities in Feet per Second, for Heads from 0 to 500 Feet. From the Formula

 $v_t = \sqrt{2gh}$ 

Head in feet	0.0	1.0	2.0	3.0	4.0	5.0	6.0	7.0	8.0	9.0
00	0	8.02	11.34	13.89	16.04			21.22	22.68	24.06
10	25.36	26.60	27.78	28.92	30.01	31.06	32.08	33.07	34.03	34.96
20	35.87	36.75	37.62	38.46	39.29 46.76	40.10		41.67	42.44	43.19
30	43.93	44.65	45.37	46.07	46 76	47.45	48.12	48.78	49.44	50.08
40	50.72	51.35	51.97	52.59	53.20	53.80	54.39	54.98	55.56	
50	56.71	57.27	57.83	58.39	58.93	59.48	60.02	60.55	61.08	61.60
60	62.12	62.64	63.15	63.66	64.16	64.66		65.65	66.13	66.62
70	87 10	67.58	68.05	68.52	68.99			70.38	70.83	71.28
	67.10 71.73						74.37		75.23	75.66
. 80 90	76.08	72.18 76.51	72.62 76.93	73.06 77.34	73.50 77.76	73.94 78.17	78.58	74.80 78.99	79.39	79.80
100	00.00	00.00	01 00	01 20	01 70	00 10	00 57	00.04	83.35	83.73
100	80.20	80.60	81.00	81.39	81.79	82.18		82.96		
110	84.11	84.50	84.88	85.25	85.63	86.00		86.75		87.49
120	87.85	88.22	88.58		89.31		90.02	90.38		91.09
130	91.44	91.79	92.14	92.49	92.84	93.18	93.53	93.87	94.21	94.55
140	94.89	95.23	95.57	95.91	96.24	96.57	96.91	97.24	97.57	97.90
150	98.22	98.55	98.88	99.20	99.53	99.85	100.17	100.49	100.81	101.18
160	101.45	101.77	102.08	102.39	102.71	103.02	103.33	103.64	103.95	104.26
170	104.57	104.87	105.18	105.49	105.79	106.10	106.40	106.70	107.00	107.30
180	107.60	107.90	108.20	108.49	108.79	109.08	109.37	109.67	109.96	110 .26
190	110.55	110.84	111.13	111.42	111.71	112.00	112.28	112 57	112.85	113.14
200	113.42	113 70	113.99	114 27	114 55	114 83	115 11	115 39	115.67	115.94
210	116.22	118 50	116 77	117 05	117 29	117 60	117 97	118 14	118 49	118 60
220	119 00	110.00	110 /0	110 74	120 02	120 20	120 57	120 02	191 10	121 24
	118.96 121.63	119.23	119.49	119.40	140.00	120.30	120.07	100 47	102 70	102 0
230	121.03	121.69	122.10	122.42	122.08	122.94	123.21	123.4/	145.73	120.9
240	124.25	124.50	124.76	125.02	125.28	125.53	125.79	125.04	126.30	126.58
250	126.81	127.06	127.31	127.57	127.82	128.07	128.32	128.57	128.82	129.07
260	129.32									
270	131.78	132.03	132.27	132.51	132.76	133.00	133.24	133.48	133.72	133.96
280	134.20	134.44	134.68	134.92	135.16	135.39	135.63	135.87	136.10	136.34
290	134.20 136.58	136.81	137.05	137.28	137.51	137.75	137.98	138.22	138.45	138.68
300	138 91	130 14	130 37	130 80	130 83	140 06	140 20	140 52	140 75	140 0
310	138.91 141.21	141 43	141 BR	141 80	149 19	149 34	149 57	149 70	143 02	143 9
320	143.47	142 60	143 01	144 14	144 36	144 58	144 80	145 03	145 95	145 4
330	145.69	145 01	146 12	146 25	148 57	146 70	147 01	147 92	147 45	147 6
340	147.88	148.10	148.32	148.53	148.75	148.96	149.18	149.40	149.61	149.8
350	150.04					1				
360	150.04	150.20	150 50	150.00	100.90	152 00	152.02	101.00	150 05	101.90
	152.17	102.38	102.09	102.80	103.01	100.22	100.43	100.04	100.00	104.00
370	154.27									
380		156.54								
390	158.38	158.59	158.79	158.99	159.19	159.39	159.60	159.80	160.00	160.20
400	160.40	160.60	160.80	161.00	161.20	161.40	161.60	161.80	162.00	162.19
410	162.39	162.59	162.79	162.99	163.18	163.38	163.58	163.77	163.97	164.1
420	164.36	164.56	164.75	164.95	165.14	165.34	165.53	165.73	165.92	166.1
430	166.31									
440	168.23	168.42	168.61	168.80	168.99	169.18	169.37	169.56	169.75	169.9
450	170.13	170.32	170.51	170.70	170.88	171.07	171.26	171.45	171.64	171.8
460	172.01									
470	173.87	174 05	174 94	174 49	174 61	174 70	174 00	175 14	175 25	175 5
480										
	175.71	175.89	110.08	1/0.20	1/0.44	1/0.02	110.90	110.88	1//.1/	1//.3
490										

TABLE 19.—THEORETICAL HEADS IN FEET CORRESPOND-ING TO VELOCITIES FROM 0 TO 10 FEET PER SECOND. FROM THE FORMULA  $h_t = \frac{v^2}{2g}$ 

Velocity in feet per second	0	1	2	3	4	5	6	7	8	9
0.0 .1 .2 .3	0.0000 .0002 .0006 .0014 .0025	.0002	0.0000 .0002 .0008 .0016 .0027	0.0000 .0003 .0008 .0017 .0029	0.0000 .0003 .0009 .0018 .0030	0.0000 .0003 .0010 .0019 .0031	0.0001 .0004 .0011 .0020 .0033	0.0001 .0004 .0011 .0021 .0034	.0012 .0022	.0006 .0013 .0024
.5 .6 .7 .8	.0039 .0056 .0076 .0099	.0040 .0058 .0078 .0102 .0129	.0042 .0060 .0081 .0105 .0132	.0044 .0062 .0083 .0107	.0045 .0064 .0085 .0110 .0137	.0047 .0066 .0087 .0112 .0140	.0049 .0068 .0090 .0115 .0143	.0051 .0070 .0092 .0118 .0146	.0052 .0072 .0095 .0120 .0149	
1.0 1.1 1.2 1.3	.0155 .0188 .0224 .0263 .0305	.0159 .0192 .0228 .0267 .0309	.0162 .0195 .0231 .0271 .0313	.0165 .0199 .0235 .0275 .0318	.0168 .0202 .0239 .0279 .0322	.0171 .0206 .0243 .0283 .0327	.0175 .0209 .0247 .0288 .0331	.0178 .0213 .0251 .0292 .0336	.0181 .0216 .0255 .0296 .0341	.0185 .0220 .0259 .0300 .0345
1.5 1.6 1.7 1.8 1.9	.0350 .0398 .0449 .0504 .0561	.0354 .0403 .0455 .0509 .0567	.0359 .0408 .0460 .0515	.0364 .0413 .0465 .0521	.0369 .0418 .0471 .0526 .0585	.0374 .0423 .0476 .0532 .0591	.0378 .0428 .0482 .0538 .0597	.0383 .0434 .0487 .0544 .0603	.0388 .0439 .0493 .0549 .0609	.0393 .0444 .0498 .0555 .0616
2.0 2.1 2.2 2.3 2.4	.0622 .0686 .0752 .0822 .0895	.0628 .0692 .0759 .0830 .0903	.0634 .0699 .0766 .0837	.0641 .0705 .0773 .0844 .0918	.0647 .0712 .0780 .0851 .0926	.0653 .0719 .0787 .0859	.0660 .0725 .0794 .0866 .0941	.0666 .0732 .0801 .0873	.0673 .0739 .0808 .0881 .0956	.0679 .0746 .0815 .0888 .0964
2.5 2.6 2.7 2.8 2.9	.0972 .1051 .1133 .1219 .1308	.0979 .1059 .1142 .1228 .1317	.0987 .1067 .1150 .1236 .1326	.0995 .1075 .1159 .1245 .1335	.1003 .1084 .1167 .1254 .1344	.1011 .1092 .1176 .1263 .1353	.1019 .1100 .1184 .1272 .1362	.1027 .1108 .1193 .1281 .1371	.1035 .1117 .1201 .1290 .1381	.1043 .1125 .1210 .1299 .1390
3.0 3.1 3.2 3.3 3.4	.1399 .1494 .1592 .1693 .1797	.1409 .1504 .1602 .1703 .1808	.1418 .1513 .1612 .1714 .1818	.1427 .1523 .1622 .1724 .1829	.1437 .1533 .1632 .1734 .1840	.1446 .1543 .1642 .1745 .1850	.1456 .1552 .1652 .1755 .1861	.1465 .1562 .1662 .1766 .1872	.1475 .1572 .1673 .1776 .1883	.1484 .1582 .1683 .1787
3.5 3.6 3.7 3.8 3.9	.1904 .2015 .2128 .2245 .2365	.1915 .2026 .2140 .2257 .2377	.1926 .2037 .2151 .2269 .2389	.1937 .2049 .2163 .2280 .2401	.1948 .2060 .2175 .2292 .2413	.1959 .2071 .2186 .2304 .2426	.1970 .2083 .2198 .2316 .2438	.1981 .2094 .2210 .2328 .2450	.1992 .2105 .2221 .2340 .2463	.2004 .2117 .2233 .2352 .2475
4.0 4.1 4.2 4.3 4.4	.2487 .2613 .2742 .2875 .3010	.2500 .2626 .2755 .2888 .3023	.2512 .2639 .2769 .2901 .3037	.2525 .2652 .2782 .2915 .3051	.2537 .2665 .2795 .2928 .3065	.2550 .2677 .2808 .2942 .3079	.2563 .2690 .2821 .2955 .3092	.2575 .2703 .2835 .2969 .3106	.2588 .2716 .2848 .2982 .3120	.2601 .2729 .2861 .2996 .3134
4.5 4.6 4.7 4.8 4.9	.3148 .3290 .3434 .3582 .3733	.3162 .3304 .3449 .3597 .3748	.3176 .3318 .3463 .3612 .3763	.3190 .3333 .3478 .3627 .3779	.3204 .3347 .3493 .3642 .3794	.3218 .3362 .3508 .3657 .3809	.3233 .3376 .3522 .3672 .3825	.3247 .3390 .3537 .3687 .3840	.3261 .3405 .3552 .3702 .3856	.3275 .3420 .3567 .3717 .3871

## Table 19 (Concluded)

Theoretical Heads in Feet Corresponding to Velocities from 0 to 10 Feet per Second. From the Formula  $h_t=\frac{v^2}{2g}$ 

Velocity in feet per second	0	1	2	3	4	5	6	7	8	9
5. 5.1 5.2 5.3 5.4	0.3887 .4044 .4204 .4367 .4534	0.3902 .4060 .4220 .4384 .4550	0.3918 .4076 .4236 .4400 .4567	.4092	.4108 .4269 .4433	.03965 .4124 .4285 .4450 .4618	.4140 .4302 .4467	.4156 .4318 .4483	.4334 .4500	0.4028 .4188 .4351 .4517 .4686
5.5 5.6 5.7 5.8 5.9	.4703 .4876 .5051 .5230 .5412	.4720 .4893 .5069 .5248 .5430	.4911 .5087 .5266 .5449	.5467	.4946 .5122 .5302 .5486	.4789 .4963 .5140 .5321 .5504	.4981 .5158 .5339 .5523	.4998 .5176 .5357 .5541	.5194 .5375 .5560	.4858 .5034 .5212 .5394 .5578
6.0 6.1 6.2 6.3 6.4	.5597 .5785 .5976 .6171 .6368	.5616 .5804 .5996 .6190 .6388	.5634 .5823 .6015 .6210 .6408	.6428	.5672 .5861 .6054 .6249 .6448	.5691 .5880 .6073 .6269 .6468	.6488	.5728 .5919 .6112 .6309 .6508	.5938 .6132 .6328 .6528	.5766 .5957 .6151 .6348 .6549
6.5 6.6 6.7 6.8 6.9	.6569 .6772 .6979 .7189 .7402	.6589 .6793 .7000 .7210 .7424	.6609 .6813 .7021 .7231 .7445	.6834 .7042 .7253 .7467	.6650 .6855 .7063 .7274 .7488	.6670 .6875 .7084 .7295 .7510	.6691 .6896 .7105 .7316 .7531	.6711 .6917 .7126 .7338 .7553	.6731 .6938 .7147 .7359 .7575	.6752 .6958 .7168 .7381 .7596
7.0 7.1 7.2 7.3 7.4	.7618 .7837 .8060 .8285 .8514	.8308 .8537	.7662 .7882 .8105 .8331 .8560	.7904 .8127 .8353 .8583	.7705 .7926 .8150 .8376 .8606	.7727 .7948 .8172 .8399 .8629	.7749 .7970 .8195 .8422 .8652	.7771 .7993 .8217 .8445 .8676	.7793 .8015 .8240 .8468 .8699	.7815 .8037 .8262 .8491 .8722
7.5 7.6 7.7 7.8 7.9	.8745 .8980 .9218 .9459 .9703	.8769 .9004 .9242 .9483 .9728	.8792 .9027 .9266 .9508 .9752	.9051 .9290 .9532 .9777	.8839 .9075 .9314 .9556 .9802	.8862 .9099 .9338 .9581 .9826	.8886 .9122 .9362 .9605 .9851	.8909 .9146 .9386 .9629 .9876	.8933 .9170 .9411 .9654 .9901	.8956 .9194 .9435 .9678 .9925
8.0 8.1 8.2 8.3 8.4	1.0454 1.0711 1.0970	1.0226 1.0479 1.0736 1.0996	1.0251 1.0505 1.0762 1.1022	1.0276 1.0531 1.0788 1.1049	1.0302 1.0556 1.0814 1.1075	1.0327 1.0582 1.0840 1.1101	1.0352 1.0608 1.0866 1.1127	1.0378 1.0633 1.0892 1.1154	1.0150 1.0403 1.0659 1.0918 1.1180	1.0429 1.0685 1.0944 1.1206
8.5 8.6 8.7 8.8 8.9	1.1499 1.1768 1.2040 1.2315	1.1526 1.1795 1.2067 1.2343	1.1552 1.1822 1.2095 1.2370	1.1579 1.1849 1.2122 1.2398	1.1606 1.1876 1.2150 1.2426	1.1633 1.1903 1.2177 1.2454	1.1660 1.1931 1.2205 1.2482	1.1687 1.1958 1.2232 1.2509	1.1445 1.1714 1.1985 1.2260 1.2537	1.1741 1.2012 1.2287 1.2565
9.0 9.1 9.2 9.3 9.4	1.2875 1.3159 1.3447 1.3738	1.2903 1.3188 1.3476 1.3767	1.2931 1.3216 1.3505 1.3796	1.2960 1.3245 1.3534 1.3825	1.2988 1.3274 1.3563 1.3855	1.3017 1.3303 1.3592 1.3884	1.3045 1.3331 1.3621 1.3913	1.3074 1.3360 1.3650 1.3943	1.2818 1.3102 1.3389 1.3679 1.3972	1.3131 1.3418 1.3708 1.4002
9.5 9.6 9.7 9.8 9.9	1.4328 1.4628 1.4932	1.4358 1.4659 1.4962	1.4388 1.4689 1.4993	1.4418 1.4719 1.5023	1.4448 1.4749 1.5054	1.4478 1.4780 1.5084	1.4508 1.4810 1.5115	1.4538 1.4840 1.5146	1.4269 1.4568 1.4871 1.5176 1.5485	1.4598 1.4901 1.5207

Table 20.—Theoretical Heads in Feet Corresponding to Velocities From 0 to 50 Feet per Second.

From the Formula  $h_t = \frac{v^2}{2g}$ 

							-y			
Velocity in feet per second	0	1	_2	3	4	5	6	7	8	9
0 1	0.000	0.000 .019	0.001 .022	0.001 .026	0.002 .030	0.004 .035	0.006		0.010 .050	0.013 .056
3	.062	.069	.075	.082	.090	.097	.105	.113	.122	.131
3 4	.140 .249	.149 .261	.159 .274	.169 .288	.180	.190 .315	.202 .329	.213	.224 .358	.236
5	.389	.404	.420	.437	. 453	.470	.488	.505	.523	.541
6 7	.560	.579	.598	.617	.637	.657	.677	.698	.719	.740
8	.762 .995	.784 1.020	.806 1.045	.828 1.071	.851 1.097	.874 1.123	.898 1.150	1.177	.946 1.204	.970 1.231
ğ	1.259	1.287	1.316	1.345	1.374	1.403	1.433	1.463	1.494	1.524
10	1.555	1.586	1.618	1.650	1.682	1.714	1.747	1.780	1.813	1.847
11 12	1.881 2.239	1.916 2.276	1.950 2.314	1.985 2.352	2.021 2.391	2.056 2.429	2.092 2.468	2.128 2.508	2.165 2.547	2.202 2.587
13	2.627	2.668	2.709	2.750	2.792	2.834	2.876	2.918	2.961	3.004
14	3.047	3.091	3.135	3.179	3.224	3.269	3.314	3.360	3.406	3.452
15	3.498	3.545	3.592	3.639	3.687	3.735	3.784	3.832	3.881	3.931
16 17	3.980 4.493	4.030 4.546	4.080 4.600	4.131 4.653	4.182 4.707	4.233 4.761	4.284 4.816	4.336	4.388 4.926	4.440 4.982
18	5.037	5.093	5.150	5.207	5.264	5.321	5.379	5.437	5.495	5.554
19	5.613	5.672	5.732	5.791	5.851	5.912	5.973	6.034	6.095	6.157
20	6.219	6.281	6.344	6.407	6.470	6.534	6.598	6.662	6.726	6.791
21 22	6.856 7.525	6.922 7.593	6.988 7.662	7.054 7.731	7.120 7.801	7.187 7.871	7.254 7.941	7.321 8.011	7.389 8.082	7.457 8.153
23	8.225	8.296	8.368	8.440	8.513	8.586	8.659	8.733	8.807	8.881
24	8.955	9.030	9.105	9.181	9.256	9.332	9.409	9.485	9.562	9.639
25	9.717	9.795	9.873			10.110				
26 27	10.510	10.591	10.672	10.754	10.836	10.918	11.000	11.083 11.929	11.167	12 109
28								12.806		
29	13.075	13.166	13.256	13.347	13.438	13.530	1 <b>3.62</b> 2	13.714	13.807	13.900
30	13.993	14.086	14.180	14.274	14.368	14.463	14.558	14.653	14.749	
	14.941 15.920									15.821 16.828
	16.931									
	17.973		1		- 1		- 1		,	
	19.046									
	20.149 21.284									
	22.450									
	23.647	- 1		- 1		- 1		1		
	24.876									
	26.135 27.425	20.2031 27.556	27 687	20.019 27 810	20.047 27.950	28 082	28 215	28.347	28 480	28.613
	28.747									
44	30.100	30.237	30.374	30.511	30.649	30.788	30.927	31.065	31.204	31.343
45	31.483	31.623	31.764	31.904	32.045	32.187	32.328	32.470	32.613	32.755
46 47	32.898 34.344	32.041 34.400	34 637	33.329	34 931	35.617	35.762	35 375	34.U02	35 672
	35.821	35.970	36.120	36.270	36.420	36.571	36.722	36.873	37.025	37.177
	37.329									

Table 21.—Smith's Coefficients of Discharge for Vertical Circular Orifices with Full Contraction

Head in feet to center of orifice		Diameters in feet											
Head to ce of or	.02	.03	.04	. 05	. 07	. 10	.12	.15	. 20	.40	.60	.80	1.00
.3?				. 637		.621							
.4			. 637	. 631	.624	.618	.612	. 606				İ	1
.5		643	633	627	.621	.615	.610	605	. 600	.596	592		
.6	.655					.613						.590	
.7		.637				.611						. 591	
.8	. 648	. 634	.626			.610						. 592	
.9	. 646	.632	.624	.618	.613	. 609	.605	. 603	. 601	. 598	. 595	. 593	. 591
1.0						.608							
1.2						.606				. 598		. 594	
1.4						. 605				. 599		.594	
1.6 1.8						. 605 . 604				:599	. 597 . 597		.594
1.8	.034	.022	.013	.011	. 007	.004	.002	. 001	. 599	. 599	. 397	. 595	. 999
2.0	632	621	. 614	. 610	607	. 604	. 601	.600	. 599	.599	.597	.596	. 595
2.5						.603							
3.0						.603							
3.5						.602						. 597	
4.0	.623	. 614	. 609	. 605	. 603	. 602	. 600	. 599	. 599	. 598	. 597	. 597	. <b>596</b>
					•								
5.0						. 601							
6.0						.600							
7.0						.600							.596
8.0						.600						.596	
9.0	.613	. 607	.604	.602	.600	. 599	.599	. 598	. 597	. 597	. 596	. 596	. 595
10.0	811	808	803	801	500	. 598	508	507	507	507	506	506	595
20.0	.601					. 596						. 595	
50.0?	. 596					. 594							
100.0?		. 593				. 592					. 592		

Table 22.—Smith's Coefficients of Discharge for Vertical Square Orifices with Full Contraction

Head in feet to center of orifice		Length of side of square in feet											
Head to c	. 02	.03	.04	.05	.07	.10	. 12	.15	.20	.40	.60	.80	1.00
.3?				1	. 632		i	1					
.4			. 643	. 637	. 628	. 621	.616	.611					
.5											. 597		
.6 .7											. 598 . 599		
.8											.600		
.9											.601		
.9	.000	.001	.028	.023	.019	.014	.010	.000	.000	.003	.001	.000	. 566
1.0	648	636	628	622	618	613	.610	. 608	. 605	603	.601	.600	.599
1.2											.602		
1.4											.602		
1.6											.603		
1.8											. 603		
					, i								
2.0	. 637	. 626	.619	. <b>6</b> 15	612	.608	.606	. 606	. 605	. 605	. 604	. 602	. 602
2.5											. 604		
3.0											. 604		
3.5											.604		
4.0	. 628	. 619	.614	.610	.608	.606	.606	. 605	. 605	. 605	. 603	. 603	. 602
5.0											. 603		
6.0											. 603		
7.0											. 603		
8.0											. 603		
9.0	.618	.612	. 609	.607	. 606	.604	. 604	.604	. 603	. 603	.602	. 602	. 001
	امرم ا	011	000	000	005	004	904	200	200	802	800	സ	801
10.0			.604								.602	.602	
20.0 50.0?											.599		
100.07											. 598		
100.01	. 099	. 586	. 080	.000	. 050	. 550	. 050	. 550	.000	. 050	. 000	.000	.003
							<u> </u>						

Table 23.—Fanning's Coefficients of Discharge for Vertical Rectangular Orifices, 1 Foot Wide, with Full Contraction. Head is Measured to Center of Orifice

. Head in	Height of orifice in feet								
feet	0.125	0.25	0.5	0.75	1.0	1.5	2.0	4.0	
.3	0.626					ľ			
.4	.625	.619					ŀ		
.5	.624	.618	.615				1		
.6	.623	.618	.614					ľ	
.7	. 623	.617	.613	.610					
.8	.622	_617	.612	.609			l		
.9	.622	.616	.612	.609	.605		1		
1.0	.622	.616	.611	.608	.605	.608			
. 1.25	.621	.615	.611	.608	.605	.607			
1.5	.620	.615	.610	.607	.604	.607	.609		
1.75	.619	.614	.610	.607	.604	.607	.609		
2.	.619	.614	.609	.606	.604	.606	.609		
2.25	.618	.613	.609	.606	.604	.606	.608		
2.5	.617	.613	.609	.606	.604	.606	.608	.610	
2.75	.617	.612	.608	.605	.603	.606	.608	.610	
3.	.616	.612	.608	.605	.603	.605	.607	.609	
3.5	.615	.611	.607	.604	.603	.605	.607	.608	
4.	.614	.610	.607	.604	.603	.604	.606	.608	
4.5	.613	.610	.606	.603	.602	.604	.606	.607	
5.	.612	.609	. 605	.603	.602	.604	.605	.606	
6.	.610	.608	.604	.602	.601	. 603	.604	.605	
7.	.609	.607	.604	.602	.601	.602	.603	.605	
8.	.608	.606	.603	.601	.601	:602	.603	.604	
9.	.607	.605	.602	.601	.601	.601	.602	.603	
10.	.606	.604	.602	.601	.601	.601	.602	.603	
15.	.607	.603	.601	.601	.601	.601	.602	.603	
20.	.607	.604	.602	.601	.601	.601	.602	.603	
25.	.608	.604	.602	.602	.601	.601	.603	. 604	
<b>3</b> 0.	.609	.604	. 603	.602	.601	.602	.603	.605	
35.	.610	.605	.603	.602	.601	.602	.604	.606	
<b>4</b> 0.	.611	.606	.604	.603	.602	. 603	.605	.607	
50.	.614	. 607	. 605	.604	.602	.603	.606	.609	

TABLE 24.—COEFFICIENTS OF DISCHARGE BY BOVEY, FOR VARIOUS SHAPED SHARP-EDGED ORIFICES WITH COMPLETE CONTRACTION. THIS TABLE INDICATES THE EFFECT OF THE SHAPE OF ORIFICES ON THE COEFFICIENT OF DISCHARGE. THE AREA OF ORIFICE IN EACH CASE WAS 0.196 SQUARE INCHES

center		Form of orifice										
	ılar	Squ	ıare	ratio	angular, of sides i: 1	ratio	angular, of sides 0: 1	gular				
Head in feet to of orifice	Circular	Sides vertical	Diago- nal vertical	Long sides vertical	Long sides horizontal	Long sides vertical	Long sides horizontal	Triangular				
1	.620	.627	.628	.642	. 643	.663	.664	. 636				
2	.613	620	.628	.634	.636	.650	.651	. 628				
4	.608	.616	.618	.628	.629	.641	.642	.623				
6	.607	.614	.616	.626	.627	.637	.637	.620				
8	.606	.613	.614	.623	.625	.634	.635	.619				
10	.605	.612	.613	.622	.624	.632	.633	.618				
12	.604	.611	.612	.622	.623	.631	.631	.618				
14	.604	.610	.612	. 621	.622	.630	.630	.618				
16	603	.610	.611	.620	.622	.630	.630	.617				
18	.603	.610	.611	.620	.621	.630	.629	.616				
20	. 603	.609	.611	.620	. 621	. 629	.628	.616				

Table 25.—Coefficients of Discharge for Rectangular Orifices with Partially Suppressed Contractions

	Dimensions of	He	ad in fo	et
Description of contraction	orifice in feet	1	3	5
	Hor. Vert.			
Complete contraction		. 598	.604	.603
	.328	.616	.615	.611
	.164	.631		.620
	.098	.632	.628	.623
	.033	. 652	. 634	.620
Suppressed at bottom only	.656 by .656	.620	.624	.625
	.328	.649	.647	.643
	.164	.671	.668	.666
	098	. 680	.677	.677
	.033	.710	.705	.696
Suppressed on both sides only	.656 by .656	.632	.628	.628
	.328	.637	. 630	.630
	.164	.641	.634	.635
	.098	.653	.643	.639
	.033	.682	. 667	.655
Suppressed at bottom and partly on	.656 by .656	. 633	. 636	.637
one side.	.328	.658	. 656	.654
	. 164	.676	.673	.672
*	.098	.682	.683	.681
	.033	.708	.705	.695
Suppressed at bottom and partly on	.656 by .656	.678	.664	.663
two sides.		.680	.675	.672
		.687	.680	.673
		.693	.688	.683
		.708	.705	.698
Suppressed on bottom and two sides	.656 by .656	. 690	.677	.672
Complete suppression			.950	•

Table. 26.—Miscellaneous Coefficients of Discharge for Various Sharp-edged Submerged Orifices. The Two Orifices Experimented on by Ellis were Horizontal. All Other Orifices were Vertical

Dimensions of	Author- ity	Head in feet							
orifice in feet		0.3	0.3 0.5		2.0	4.0	6.0	10.0	18.0
Circle, d = .05	H. Smith	Ī	. 599	. 597	. 595	. 595			
Circle, $d = .10$									
Square, .05 by .05	H. Smith	<b> </b>	. 609	.607	. 605	.604			
Square, .10 by .10	H. Smith	.607	. 605	. 604	. 603	.604	ĺ	i	
•	}								
Rectangle, $l = 3.0$ , $d = .05$ .	H. Smith		.621			.620	. 620	.618	
Circle, d = 1.0	Ellis				.608	.602	.603	. 600	.601
Square, 1.0 by 1.0	Ellis				.601	. 601	. 603	. 605	. 606
Square, 4.0 by 4.0	Stewart	.614							

Table 27.—Coefficients of Discharge for Submerged Vertical Square Orifice with Rounded Corners. From Experiments by Ellis

Dimensions of orifice	Head in feet								
in feet	3	4	5	6	8	10	12	14	18
Square, 1.0 by 1.0	.952	.948	. 946	. 945	.944	.943	.943	.944	. 944

Table 28.—Coefficients of Discharge for Models A, B, C, D, E and F, Figs. 24 and 25, Page 45

Figure	Depth of gure opening Values of C for various depths of water above top of orifice								top			
	in feet	0.07	0.1	0.3	0.5	0.7	1.0	2.0	3.0	5.0	7.0	10.0
A	1.31	ļ		. 597	.604	.610	.616	.618	.610	.608	. 594	. 592
	0.66			. 632	. 638	. 640	. 641	. 640	:638	. 637	. 636	. 634
	0.16	<b> </b>		.691	.688	.684	.683	.678	.674	.672	. 670	. 668
	0.10	ļ		.711	. 700	. 695	. 692	. <b>688</b>	. 682	. 677	. 675	. 672
В	1.31			. 643	. 650	. 654	. 656	.649	. 636	. 6 <del>2</del> 0	.615	. 61
	0, 66			. 664	. 670	.674	.675	. 676	.674	.673	.671	. 669
	0.16			.662	.681	.688	. 693	. 695	. 694	.692	.691	. 689
ļ	0.10			. 693	. 700	. 705	. 708	. 710	. 705	. 699	. 695	. 693
c	1.31			. 648	. 654	.658	. 660	. 652	.638	. 622	.616	. 61:
	0.66			. 667	.673	. 676	.678	.679	.677	. 674	. 672	. 670
	0.16									. 693		
	0.10			. 695	.702	. 707	. 710	.712	. 706	. <b>69</b> 9	. <b>69</b> 5	. 693
D	0.656	. 487	.495	. 539	. 562	. 577	. 588	. 601	. 601	.601	. 601	. 601
	0.164									.619		
Е	0.656	.487	. 495	. 530	. 554	. 573	. 580	. 595	. 599	.602	.602	.60
	0.164									.627		
F	0.656	. 530	. 535	. 569	.584	. 595	. 600	. 608	.610	.610	.609	. 608
-	0.164									. 650		

Table 29.—Coefficients of Discharge, C, for Submerged Gates from Chatterton's and Benton's Formulas Formulas (16) and (17), page 46

	1	· · · · · ·		,, pae			-
Head in	Authority		Widi	th of op	ening ir	1 feet	
feet		. 2	4	6	8	10	12
.02	Chatterton	.83	.83	.83	.83	.83	.83
	Benton	.73	.75	.76	.78	.79	.81
.05	Chatterton	.83	.83	.83	.83	.83	.83
	Benton	.73	.75	.76	.78	.79	.81
.10	Chatterton	.82	.82	.82	.82	.82	.82
	Benton	.73	75	.76	.78	.79	.81
15	Chatterton	.82	.82	.82	.82	.82	.82
	Benton	.73	.75	.76	.78	.79	.81
.2	Chatterton	.81	.81	.81	.81	.81	.81
	Benton	.73	.75	.76	.78	.79	.81
.3	Chatterton	.80	.80	.80	.80	.80	.80
	Benton	.73	.75	.76	.78	.79	.81
.4	Chatterton	.78	.78	.78	.78	.78	.78
	Benton	.73	.75	.76	.78	.79	.81
.5	Chatterton	.77	.77	.77	.77	•77	.77
	Benton	.73	.75	.76	.78	.79	.81
.75	Chatterton	.75	.75	.75	.75	.75	.75
	Benton	.73	.75	.76	.78	.79	.81
1.0	Chatterton	.73	.73	.73	.73	.73	.73
	Benton	.73	.75	.76	.78	.79	.81
1.5	Chatterton	.69	.69	.69	.69	.69	.69
	Benton	.73	.75	.76	.78	.79	.81
2.0	Chatterton	.67	.67	.67	.67	.67	.67
	Benton	.73	.75	.76	.78	.79	.81
2.5	Chatterton	.65	.65	.65	.65	.65	.65
	Benton	.73	.75	.76	.78	.79	.81
3.0	Chatterton	.64	.64	.64	.64	.64	.64
	Benton	.73	.75	.76	.78	.79	.81
3.5	Chatterton	. 64	.64	.64	.64	.64	.64
	Benton	. 73	.75	.76	.78	.79	.81
4.0	Chatterton	.63	.63	.63	.63	.63	.63
	Benton	.73	.75	.76	.78	.79	.81
4.5	Chatterton	.63	.63	.63	.63	.63	.63
	Benton	.73	.75	.76	.78	.79	.81
5.0	Chatterton	.62	.62	.62	.62	.62	.62
	Benton	.73	.75	.76	.78	.79	.81

Table 30.—Coefficients of Discharge, C, for Submerged Tubes. Compiled from Experiments by Stewart, and Rogers and Smith. L= Length of Tube. p= Perimeter of Crosssection of Tubes

		Cond	lition of edges	at entrance	
$\frac{L}{p}$	All corners square	Contractions suppressed on bottom only	Contractions suppressed on bottom and one side	suppressed on bottom	Contractions suppressed or bottom, two sides and top
.02	.61	.63	. 68	.77	.95
.04	. 62	. 64	.68	.77	.94
.06	.63	. 65	. 69	.76	.94
.08	. 65	. 66	. <b>69</b> °	.74	.93
.10	.66	.67	. 69	.73	.93
.12	.67	.68	.70	.72	.93
. 14	.69	.69	.71	.72	.92
.16	.71	.70	.72	.72	.92
.18	.72	.71	.73	.72	.92
. 20	.74	.73	.74	.73	.92
.22	.75	.74	.75	.75	.91
.24	.77	.75	.76	.78	.91
.26	.78	.76	.77	.81	.91
.28	.78	.76	.78	.82	.91
. 30	.79	. 77	. 79	.83	.91
. 35	.79	.78	.80	.84	.90
.40	.80	.79	.80	.84	.90
. 60	.80	.80	.81	. 84	.90
.80	.80	.80	.81	.85	.90
1.00	.80	.81	.82	.85	.90

### CHAPTER IV

### SHARP-CRESTED WEIRS

Any obstruction, of regular section, so placed across the channel of a stream that water flows over it, is called a weir. In orifice becomes a weir when its sides intersect the surface of the water, the overfalling water then coming into contact only with the two sides and bottom of the opening. The bottom of this opening is termed the crest of the weir. The overfalling the heat of water is commonly called the nappe.

A weir may be designed with sharp corners so that the vater in discharging touches only the inner edges of the sides r crest. In such cases there is a contraction of the nappe imilar to the contraction of a jet issuing from an orifice. There s also a contraction or depression of the water surface beginning it a distance upstream from the weir equal to about twice the lepth of water passing over the weir.

When the weir is so designed that the nappe touches only the ipstream edge of the crest it is called a sharp-crested or thinedged weir. Similarly, if the nappe touches only the upstream edge of the sides the weir is said to have end contractions. When there is no contraction at the sides of the nappe the weir is said to have suppressed contractions, and the weir is called a suppressed weir. The most common example of a suppressed weir is where the channel is of rectangular cross-section and the length of the weir equals the width of the channel.

The velocity of approach is usually understood to be the mean velocity of the water in the channel, just above the weir. The velocity of retreat is the mean velocity of the water in the channel as it leaves the weir.

Sharp-crested weirs are used only for the purpose of measuring water. With weirs not sharp-crested the measurement of water is usually though not necessarily a secondary consideration. Overflow dams and spillways for reservoirs are examples of weirs not sharp-crested.

Thin-edged weirs as usually constructed have a rectangular,

trapezoidal, or triangular shape. Rectangular and trapezoidal weirs ordinarily have level crests. Triangular weirs should be so set that their sides make equal angles with the vertical.

When the elevation of the water surface below a weir is less than the elevation of its crest it is called a weir with free overfall. When the crest of the weir is below the elevation of the lower water surface the weir is said to be submerged or drowned.



Fig. 26.—Weir with free overfall.

Fig. 27.—Submerged weir.

Referring to Figs. 26 and 27, the following nomenclature will be used:

For all weirs:

H = Measured head or difference in elevation between the crest of weir and the water surface above the weir.

A =Area of section of channel of approach.

W =Width of the channel of approach.

P = Height of weir above the bottom of the channel of approach.

Q =Discharge over weir in second-feet.

 $V = \text{Mean velocity of approach} = \frac{Q}{A}$ 

g = Acceleration due to gravity.

 $h = \text{Velocity head} = \frac{V^2}{2g}$ 

G = Depth of water above the weir = P + H.

d = Area of section of channel of approach divided by the length of the weir.

 $C, C_1, C_2, \alpha, \beta$ , etc. = Empirical coefficients.

For suppressed weirs:

L = Measured length of weir.

 $d = \frac{A}{L} = G =$ Depth of water above the weir.

For weirs with end contractions:

L' = Measured length of weir.

L =Length of weir corrected for end contractions.

N = Number of end contractions.

 $d = \frac{A}{L}$  for any channel of approach and  $\frac{WG}{L}$  for a rectangular channel of approach.

For submerged weirs:

D = Depth of submergence.

Z = H - D = The difference in elevation of water surface above and below weir.

 $d_1$  = Area of section of channel below the weir divided by the length of weir.

# Rectangular Weirs with Free Overfall

Fundamental Considerations.—The theoretical discharge over a rectangular weir with free overfall (page 37) is given by the formula  $Q_t = \frac{3}{3} \sqrt{2g} LH^{\frac{3}{2}}$ (1)

An empirical factor corresponding to the coefficient of discharge for an orifice is usually applied to the theoretical formula. This coefficient may be considered as the product of the coefficients of velocity and contraction. Including this coefficient and combining it with  $\sqrt{2g}$ , which is assumed to be a constant, the formula may be written

$$Q = CLH^{\frac{3}{2}} \tag{2}$$

If the above equation represented accurately the law of the flow of water over weirs, the value of C could be readily determined experimentally. It is known, however, that C is not exactly a constant. The problem is also complicated by the fact that the discharge is affected by the velocity of approach, the effect of which is to increase the discharge.

Modern Weir Formulas.—Many formulas have been suggested for determining the discharge over rectangular, sharp-crested weirs with free overfall. For the most part such formulas have been based upon the experiments of Francis, Fteley and Stearns, and Bazin.

¹ J. B. Francis: Lowell Hydraulic Experiments. Also *Trans.* Amer. Soc. Civ. Eng., vol. 13, p. 303.

¹ Trans. Amer. Soc. Civ. Eng., vol. 12.

³ Annales des Ponts et Chaussees, October, 1888. Translation by Marichal and Trautwine: Proc. Eng. Club, Phila., January, 1890. Also Annales des Ponts et Chaussees for 1894, 1er Trimestre.

The following are the more commonly used weir formulas, written to include the velocity of approach correction:

1. The Francis formula for sharp-crested weirs, with and without end contractions

$$Q = 3.33L \left[ (H + h)^{34} - h^{34} \right]$$
 (3)

When there are end contractions L is to be corrected by the formula

 $L = L' - 0.1NH \tag{4}$ 

2. The Fteley and Stearns formula for sharp-crested weirs with and without end contractions

$$Q = 3.31L (H + \alpha h)^{\frac{3}{2}} + 0.007 L$$
 (5)

When there are end contractions L is to be corrected by the formula

 $L = L' - 0.1NH \tag{4}$ 

 $\alpha = 1.50$  for suppressed weirs and 2.05 for weirs with end contractions.

3. The Bazin formula for suppressed weirs

$$Q = \left(0.405 + \frac{0.00984}{H}\right) \left(1 + 0.55 \frac{H^2}{d^2}\right) LH \sqrt{2gH}$$
 (6)

4. Lyman's diagram¹ gives discharges for suppressed weirs, which includes velocity of approach correction. The reader is referred to the original publication for this diagram.

The author also submits his formula for sharp-crested weirs, either with or without end contractions

$$Q = 3.34LH^{1.47} \left( 1 + 0.56 \frac{H^2}{d^2} \right) \tag{7}$$

When there are end contractions L is to be corrected by the formula  $L = L' - 0.1NH \tag{4}$ 

Each of the above formulas will be discussed in turn.

The Francis Formula.—Up to the present time the Francis formula has been more generally used than any other weir formula. Francis based his formula upon his experiments at Lowell, Mass., in 1852. The following is the approximate range of conditions under which the experiments were performed:

Head	0.6 to 1.6 feet
Length of weir	8.0 and $10.0$ feet
Height of weir	2.0 and 5.0 feet
Width of channel	10.0 and 14.0 feet
Velocity of approach	0.2 to 1.0

¹ Plate XXI, Trans. Am. Soc. Civ. Eng., vol. 77.

J. B. Francis; Lowell Hydraulic Experiments, pp. 103-135.

With these experiments as a basis Francis investigated the general formula

$$Q = C_1 L H^n \tag{8}$$

He obtained 1.47 for a value of n but used 1.5, finally adopting as the formula which represented the mean of his observations, not including the velocity of approach correction

$$Q = 3.33 LH^{1.5} (9)$$

The experimental values of C ranged from 3.31 to 3.36, so that the mean value selected deviated by nearly 1 per cent. from the results of his own experiments. The general Francis formula, as written to include velocity of approach correction, is given on page 66, formula (3).

The later experiments of Fteley and Stearns, and Bazin show that the Francis formula may give results in error by 5 or 10 per cent. The formula is especially unreliable for low weirs having a high velocity of approach and for low heads under all conditions.

One reason for the extensive use of the Francis formula is doubtless because of its supposed simplicity. In reality, however, with the Francis method of correcting for velocity of approach it is as complicated as any of the other weirs formulas. Without the velocity of approach correction, the Francis formula can be easily remembered and may be used for rough computations. Where accuracy is essential the formula should be discarded, unless the conditions of measurement correspond approximately to those of the Francis experiments.

The Francis correction for end contractions

$$L = L' - 0.1NH \tag{4}$$

still appears to be as satisfactory as any that has yet been suggested. Additional experimental data regarding this matter, however, are badly needed. Many engineers prefer the use of weirs with suppressed contraction because of the uncertainty which exists regarding the proper correction for end contractions.

Table 39, page 117, gives discharges in cubic feet per second per foot of length over sharp crested weirs, without velocity of approach correction, by the Francis formula, for heads from 0 to 7 feet.

The Fteley and Stearns Formula.—Fteley and Stearns, 1877-79, experimented with two sharp-crested suppressed weirs, 5 and 19 feet long and 3.17 and 6.55 feet, high respectively. Heads on the former were observed up to approximately 0.8 feet, and on the latter to 1.6 feet. The respective velocities of approach reached maximums of about 0.6 and 0.8 feet per second. They also experimented on a weir with end contractions 3.56 feet high with lengths of from 2.3 to 4.0 feet. Heads on this weir were read up to nearly 1.0 feet, the maximum velocity of approach being 0.54 feet per second.

The Fteley and Stearns formula (formula (5), page 66) was derived from the results of the above experiments combined with those of Francis. The term 0.007L in the formula was added to make it agree with their low-head experiments. The later experiments of Bazin (see Appendix A) show discharges approximately 3 per cent. greater for the low heads than were obtained by Fteley and Stearns. Additional experiments are needed to clear up the apparent inconsistencies in the results of these two investigators.

The Bazin Formula.—By far the most complete weir experiments that have yet been performed were those of Bazin² in 1883. Bazin experimented on suppressed weirs in a concrete channel, with vertical sides, 2 meters wide. The head was measured 16.4 feet upstream from the weir by means of a hook gage. These experiments were especially valuable in that weirs of several heights were used and the effect of velocity of approach on discharge could be studied. The results of 381 experiments in all are given. The lowest head observed by Bazin was about 0.3 feet. Below this head there was a tendency for the nappe to adhere to the downstream face of the weir. The following is a summary of Bazin's experiments:

Length of weir in feet	Height of weir	Maximum head in feet		
6.56	3.72	1.017		
3.28	3.72	. 1.340		
1.64	3.30	1.780		
6.56	2.47	1.433		
6.56	1.64	1.407		
6.56	1.16	1.338		
6.56	0.79	1.338		
	6.56 3.28 1.64 6.56 6.56 6.56	In feet         In feet           6.56         3.72           3.28         3.72           1.64         3.30           6.56         2.47           6.56         1.64           6.56         1.16		

¹ Trans. Amer. Soc. Civ. Eng., vol. 12, pp. 1-118.

² Annales des Ponts et Chaussees, October, 1888.

From these experiments Bazin derived his formula for suppressed weirs. He began his study with the fundamental expression

$$Q = C_1 L H \sqrt{2gH} \tag{10}$$

which corrected for velocity of approach becomes

$$Q = C_1 L \sqrt{2g} \left( H + \alpha \frac{V^2}{2g} \right)^{\frac{3}{2}}$$
 (11)

Also

$$V = \frac{Q}{A} = \frac{Q}{dL} \tag{12}$$

Substituting for Q in equation (12) its approximate value in equation (10)

$$V = \frac{C_1 LH \sqrt{2gH}}{dL} = \frac{C_1 \sqrt{2g}H^{3/2}}{d}$$

Substituting this value of V in equation (11) there results the expression

$$Q = C_1 LH \sqrt{2gH} \left(1 + \alpha C_1^2 \frac{H^2}{d^2}\right)^{\frac{3}{2}}$$

Expanding by the binomial theorem and neglecting all terms except the first two since they will always be very small quantities

$$Q = C_1 LH \sqrt{2gH} \left( 1 + \frac{3}{2} \alpha C_1^3 \frac{H^2}{d^2} \right)$$
 (13)

Or considering the expression  $3\alpha C_1^2$  as a coefficient the value of which is to be determined, equation (13) may be written.

$$Q = C_1 L H \sqrt{2gH} \left( 1 + C_2 \frac{H^2}{d^2} \right) \tag{14}$$

If the above formula, with constant values of the two coefficients, expressed accurately the law of flow over weirs the determination of the value of these coefficients would be a simple matter. Bazin found, however, that constant values of each coefficient could not be so chosen as to make results determined by the formula agree with his experimental discharges. After a careful analysis of his experiments and those of Fteley and Stearns he chose the following values, reduced from metric to English units:

$$C_1 = 0.405 + \frac{0.00984}{H} \tag{15}$$

$$C_2 = 0.55 \tag{16}$$

making the completed equation (equation (6), page 66), as already given.

Another method of correcting for velocity of approach is as follows. The fundamental weir formula without velocity of approach may be written

$$Q = \frac{2}{3} CLH \sqrt{2gH}$$
 (17)

This formula may be taken to consist of two parts, CLH and  $\frac{2}{3}\sqrt{2gH}$ . CLH may be considered the area of the opening corrected for crest and surface contraction and  $\frac{2}{3}\sqrt{2gH}$  the theoretical mean velocity. It appears more reasonable to the author that H should be corrected for velocity of approach only insofar as it is the head producing the velocity. H in the first part of the equation enters into it solely as a factor in the area of the opening, which is not changed by velocity of approach. Under this assumption, equation (17), when corrected for velocity of approach, may be written

$$Q = C_1 L \sqrt{2g} H \left( H + \beta \frac{V^2}{2g} \right)^{\frac{1}{2}}$$
 (18)

and since

$$V = Q/dL \tag{12}$$

this value of V may be substituted in equation (18), and solving for Q there results

$$Q = \frac{C_1 L \sqrt{2g} H^{\frac{3}{2}}}{\sqrt{1 - C_1^2 \beta \frac{H^2}{d^2}}}$$
 (19)

Expanding the denominator of this expression by the binomial theorem and neglecting all terms of the fourth power and above, which will always be very small quantities,

$$Q = C_1 L \sqrt{2g} H^{3/2} \left( 1 + \frac{C_1^2 \beta}{2} \cdot \frac{H^2}{d^2} \right)$$
 (20)

or the equivalent expression

$$Q = C_1 L \sqrt{2g} H^{\frac{3}{2}} \left( 1 + C_2 \frac{H^2}{d^2} \right)$$
 (21)

which is the form of the formula for discharge over a weir based upon the theoretical formula and the above assumption for velocity of approach. It will be observed that equations (14) and (21), though based upon different assumptions, are of the same general form. The only difference is in the factors that enter into the value of  $C_2$  which in either case is empirical and must be determined by experiment. By equating the values of  $C_2$  in the two equations it will be seen that  $\beta = 3\alpha$ .

Lyman's Diagram.—The results of a very thorough investigation, of all of the accepted weir experiments available at the time, was published by Lyman¹ in 1913. In this connection a diagram was prepared which gives discharges over sharpcrested suppressed weirs. This diagram conforms very closely to the experiments of Francis, Fteley and Stearns, and Bazin, as well as additional experiments by himself. The diagram is convenient for use but is limited to heads below 1.6 feet.

The Author's Formula.—The author has investigated the flow of water over sharp-crested weirs, using as a basis the work and experiments of Francis, Fteley and Stearns, and Bazin, to determine the extent to which existing weir formulas are consistent with these experiments. In connection with his investigation the author derived the formula which is discussed below. Comparative results by these various formulas are shown in Appendix A.

Starting with the expression

$$Q = C_1 \sqrt{2g} L H^{3/2} \left( 1 + C_2 \frac{H^2}{d^2} \right) \qquad (14 \text{ or } 21)$$

It has already been stated that constant values of  $C_1$  and  $C_2$  cannot be so chosen as to make this formula fit the results of existing experimental data. Some modification in form is therefore necessary. Bazin's method of accomplishing this is given on page 69.

After many trials and a careful comparison with the experimental results of Bazin, Fteley and Stearns, and Francis, the following values of  $C_1$  and  $C_2$  in the above equation were finally adopted:

$$C_1 = \frac{0.4165}{H^{0.03}}$$

$$C_2 = 0.56$$

¹ Richard R. Lyman: Measurement of the Flow of Streams by Approved Forms of Weirs, with New Formulas and Diagrams. *Trans. Amer. Soc. Civ. Eng.*, vol. 77, pp. 1189-1337.

The above value of  $C_1$  indicates that the coefficient of contraction for sharp crested weirs varies with  $H^{-0.03}$ . It will be observed that the author's value of  $C_2$  is very nearly the same as that chosen by Bazin.

Using the nomenclature given on page 64 and substituting the above values of  $C_1$  and  $C_2$  in formula (14 or 21), with g=32.16, the author's general formula for discharge over sharp crested weirs, both with and without end contractions, becomes:

$$Q = 3.34LH^{1.47} \left( 1 + 0.56 \, \frac{H^2}{d^2} \right) \tag{7}$$

For weirs with end contractions, and especially if the cnannel of approach is irregular, the formula may be more convenient in the form

$$Q = 3.34LH^{1.47} \left[ 1 + 0.56 \left( \frac{LH}{A} \right)^2 \right]$$
 (7a)

When there are end contractions L is to be corrected by the formula  $L = L' - 0.1NH \tag{4}$ 

The following is a summary of conclusions resulting from the author's study of sharp-crested weirs, all of which are believed

to be substantiated by the results shown in Appendix A.

- 1. The author's formula (formula (7) or (7a)) agrees more closely with the Bazin experiments on suppressed weirs than any of the commonly used weir formulas which have been discussed above (see Appendix A, Tables 102 and 103 and Fig. 89).
- 2. The author's formula gives results about 2 per cent. greater than those obtained by the Fteley and Stearns experiments. There is a very apparent inconsistency between these experiments and those of Bazin, especially for the lower heads, and it is impossible to obtain a formula which will agree with both sets of experiments. The author has designed his formula to conform to the results obtained by Bazin (see Appendix A, Tables 104, 105, 106 and 107 and Figs. 90 and 91).
- 3. The author's formula gives results agreeing with the Francis experiments on weirs with end contractions within a maximum discrepancy of about 2 per cent. In general this discrepancy is but slightly greater than that of the Francis formula applied to the same experiments (see Appendix A, Tables 106 and 107, and Fig. 91).
  - 4. As a general formula applied to all of the experiments the

author's formula shows a much closer agreement than either the Bazin, Fteley and Stearns or Francis formulas.

5. A formula which does not require a separate correction for velocity of approach, if not too complicated, may be more readily used than a formula requiring such a correction. The author's formula like the Bazin formula does not require a separate correction for velocity of approach and it possesses advantages over the Bazin formula from the standpoints of accuracy, simplicity and range of application.

A set of experiments on a weir, exactly duplicating the dimensions of Bazin's standard weir (2 meters wide and 3.72 feet high) with heads ranging from 0.4 to 4.0 feet have recently (May, 1917) been completed by Nagler. Heads were measured by means of hook gages and discharges were determined by chemical gaging (page 249). Great care was taken in conducting these experiments and there is every indication of a high degree of accuracy in the results. A brief summary of conclusions based upon the results of Nagler's experiments is as follows.

- 1. Nagler's results agree with the results of Bazin's experiments (between heads of 0.4 and 1.4 feet, the range of heads common to each set of experiments) within a maximum discrepancy of 1 per cent. and an average discrepancy of 0.4 per cent.
- 2. Nagler's experiments show practically the same discrepancy with the Fteley and Stearns experiments as exists between the Bazin experiments and Fteley and Stearns experiments.
- 3. The author's formula agrees with the Bazin experiments much closer than with Nagler's experiments. The agreement with Nagler's experiments appears close enough to justify the conclusion that the author's formula is reliable, within a probable error of 1 per cent., for heads from the lowest up to 4 feet.

The term 3.34LH^{1.47} in the author's formula (formula (7) or (7a) page 72) gives discharges without velocity of approach correction. The expression within the parentheses is the factor correcting for velocity of approach. When the area of the channel of approach is large in comparison with the area of the weir opening, or for rough computations, the velocity of approach correction may be neglected, the formula becoming

$$Q = 3.34LH^{1.47} (22)$$

¹ F. A. Nagler: Verification of the Bazin Weir Formula by Hydro-Chemical Gagings. *Proc.* Amer. Soc. Civ. Eng., Jan., 1918.

Table 33, page 98, gives values of 3.34  $H^{1.47}$  for heads from 0 to 2 feet with an interval of 0.001 feet, and for heads from 2 to 7 feet with an interval of 0.01 feet. Table 34, page 103, gives values of  $1 + .56 \frac{H^2}{d^2}$  for intervals of  $\frac{H}{d}$  (or  $\frac{LH}{A}$ ) differing by 0.001. To determine the discharge, with velocity of approach correction, per linear foot of weir, H and  $\frac{H}{d}$  (or  $\frac{LH}{A}$ ) being known, multiply the discharge given in Table 33 by the corrective factor given in Table 34. The total discharge for a weir of any length, will be this product multiplied by the length of weir, corrected for end contractions if necessary by the formula

$$L = L' - 0.1NH \tag{4}$$

Table 32, page 93, gives values of  $H^{1.47}$  with intervals of 0.001 from 0 to 2 feet and with intervals of 0.01 from 2 to 7 feet.

Table 35, page 104, gives discharges by the author's formula over sharp-crested suppressed weirs per foot of length for different heights of weir under heads of from 0.2 to 1.64 feet.

## Precautions for Accurate Use of Sharp-crested Weirs

In order to obtain the most accurate results from weir formulas, they should be limited in their use as far as practicable to the conditions of the experiments on which they are based. The following are some of the precautions to be observed and conditions to be fulfilled.

- 1. The head should be measured far enough upstream from the weir to be above the effect of surface contraction. Francis and Fteley and Stearns measured heads 6 feet, and Bazin 16.4 feet upstream from the weir. Experiments seem to indicate that no effect of surface contraction can be detected at a distance of 2.5H back of the weir and from this point up to a distance of 16.4 feet, H appears to be constant excepting insofar as it is affected by the surface slope necessary to produce velocity in the channel of approach. As the author's weir formula is based in a large measure on Bazin's experiments, it appears that H should preferably be measured at a distance of approximately 16 feet upstream from the weir when using this formula.
  - 2. For the best results H should be measured by means of hook gage in a well or stilling-box connected by a pipe to the

- channel. This pipe should enter the channel flush with the surface in order that the elevation of the water surface in the well may not be effected by the velocity of the water. Where long weirs are used, simultaneous readings are sometimes made in separate stilling-boxes connected to each side of the channel and perhaps one or more points on the bottom in order to obtain a more accurate mean value of H. The head should preferably be determined from the mean of at least 20 observations taken at equal intervals of about 20 or 30 seconds in order to eliminate the effects of waves in the channel of approach which cause a fluctuation of the elevation of the water surface in the well.
- 3. The crest of the weir should be so constructed as to insure perfect contraction. This requires that the upstream edge shall be sharp and smooth and that the crest shall be thin enough to prevent any tendency of the water to adhere to its top surface. Special care is necessary when H is less than 0.3 feet to prevent the nappe from adhering to the top or downstream faces of the weir. When H is less than 0.2 feet, it becomes difficult to prevent such adherence and the formula for sharp-crested weirs becomes unreliable. For high heads the thickness of the weir crest is not of so great importance as long as the upstream edge is sharp. The nappe, when thoroughly aerated, will spring clear of the edge if the width of crest is not more than 14H. The thin weir is preferable for accurate work, however, under all conditions. A metal crest free from rust, with a sharp right-angled corner on the upstream edge, a crest width of 1/4 inch and beveled to the thickness of the metal on the lower face, should give satisfactory results. The upstream face of the weir should be vertical and the crest should be level.
- 4. The nappe should be perfectly aerated. This usually requires the construction of air passages leading to the space beneath the nappe of suppressed weirs. For weirs with end contractions, the length of the weir being less than the width of the channel, no special provision for aeration is necessary. Francis states that in order to assure perfect aeration of the nappe, the elevation of the water surface on the downstream side of the weir should be at least  $\frac{1}{2}H$  below the crest of the weir.
- 5. To obtain the best results from weir formulas their use should be limited as far as practicable to the range of experimental data on which they are based. In general the author's

formula may be used with more assurance for weirs from 1 to 4 feet high and where the heads are from 0.2 to 1.5 feet, though Nagler's experiments (page 73) indicate that the formula is equally accurate up to heads of 4 feet for a weir 3.72 feet high. On account of the wide range of the experiments on which the author's formula is based it seems reasonable to believe that it will probably give satisfactory results for higher weirs and greater heads than have yet been used in any experiments.

## Submerged Weirs

When the elevation of water surface in the channel below a weir is above the crest, the weir is said to be submerged or drowned. The problems involved in determining discharges over submerged weirs are complicated and have not been completely investigated. The nomenclature used in the following discussion is given on pages 64 and 65 (see Fig. 27).

A theoretical formula for discharge over submerged weirs may be obtained by dividing the overflow into two parts, the portion above the level of the lower water surface being considered as a weir and the remainder being treated as a submerged orifice. The theoretical combined discharge is then

$$Q = \sqrt{2a}L \left[ \frac{2}{3}(H-D)^{\frac{3}{2}} + D(\dot{H}-D)^{\frac{1}{2}} \right]$$
 (23)

or since H - D = Z

$$Q = \frac{2}{3}\sqrt{2g}LZ^{\frac{3}{2}} + \sqrt{2g}L\sqrt{Z}D$$
 (24)

or

$$Q = L\sqrt{Z} (C_1 Z + C_2 D) \tag{25}$$

 $C_1$  and  $C_2$  being empirical coefficients whose values are to be determined. This basic formula was used by Francis, and Fteley and Stearns in obtaining their submerged-weir formulas.

Experiments on submerged weirs have been performed by Francis, Fteley and Stearns, and Bazin, which form the basis of several submerged-weir formulas.

The Francis¹ experiments of 1848 were performed on a weir 6.5 feet high. The quantity of water, which was kept practically constant, was measured on a weir with free overfall. The measured head on the weir varied from 0.85 to 0.97 feet and the depth of submergence ranged from 0.02 to 0.49 feet.

In 1883 Francis² experimented with a weir 5.8 feet high, the discharge being measured by a weir with free overfall. In

¹ J. B. Francis: Lowell Hydraulic Experiments, p. 102. "rans. Amer. Soc. Civ. Eng., vol. 13, p. 303.

these experiments the head varied from approximately 1.1 to 2.3 feet and the depth of submergence from 0.2 to 1.1 feet.

The Fteley and Stearns' experiments, 1882, were performed on a weir 3.17 feet high, the head ranging from 0.40 to 0.81 feet and the depth of submergence from 0.1 to 0.8 feet. The discharges were determined from a weir with free overfall.

In each of the above sets of experiments the cross-section of the channel below the weir had a greater area than the cross-section of the channel above the weir.

Bazin² experimented on submerged weirs 0.24 meters, 0.35 meters, 0.50 meters, and 0.75 meters high by comparing the discharges over these weirs with discharges over his standard weir 3.72 feet high. These weirs were constructed in a rectangular channel 2 meters wide, the length of the weirs being the same as the width of the channel. The following table gives the approximate range of these experiments expressed in English units:

P	Mini	mum	Maximum		
in feet	# in feet	D in feet	H in feet	D in feet	
0.79	0.34	0.13	1.49	1.31	
1.14	0.19	0.09	1.47	1.30	
1.64	0.21	0.06	1.43	1.18	
2.47	0.33	0.10	1.36	0.98	

Between the limits expressed in this table the experiments covered intermediate values of H and D. In all 326 experiments are recorded. Heads were measured 5 meters upstream and 11 meters downstream from the weir.

Francis Submerged-weir Formula.—Starting with the fundamental formula (formula (25)), from his experiments in 1883 Francis derived the following formula for discharge over submerged weirs:

$$Q = 3.33 L\sqrt{Z} (H + 0.381D). \tag{26}$$

Fteley and Stearns Submerged-weir Formula.—From their own experiments in connection with the Francis experiments of 1848. Fteley and Stearns adopted the formula

$$Q = CL\sqrt{Z}\left(H + \frac{D}{2}\right) \tag{27}$$

¹ Trans. Amer. Soc. Civ. Eng., vol. 12, p. 104.

² Annales des Ponts et Chaussees for 1894, 1er Trimestre, p. 249.

and prepared the following table of values of C, corresponding to different values of D/H, to accompany the formula:

Coefficient C, Fteley and Stearns's Submerged-weir Formula

.00	.01	.02	.03	.04	. 05	.06	.07	.08	.09
Ī	3.330	3.331	3.335	3.343	3.360	3.368	3.371	3.372	3.370
3.365	3.359	3.352	3.343	3.335	3.327	3.318	3.310	3.302	3.294
3.286	3.278	3.271	3.264	3.256	3.249	3.241	3.234	3.227	3.220
3.214	3.207	3.201	3.194	3.188	3.182	3.176	3.170	3.165	3.159
3.155	3.150	3.145	3.140	3.135	3.131	3.127	3.123	3.119	3.116
3.113	3.110	3.107	3.104	3.102	3.100	3.098	3.096	3.095	3.093
3.092	3.091	3.090	3.090	3.089	3.089	3.089	3.090	3.090	3.091
3.092	3.093	3.095	3.097	3.099	3.102	3.105	3.109	3.113	3.117
3.122	3.127	3.131	3.137	3.143	3.150	3.156	3.164	3.172	3.181
3.190	3.200	3.209	3.221	3.233	3.247	3.262	3.280	3.300	3.325
	3,365 3,286 3,214 3,155 3,113 3,092 3,092 3,122	3.330 3.365 3.359 3.286 3.278 3.214 3.207 3.155 3.150 3.113 3.110 3.092 3.091 3.092 3.093 3.122 3.127	3.365 3.359 3.352 3.286 3.278 3.271 3.214 3.207 3.201 3.155 3.150 3.145 3.113 3.110 3.107 3.092 3.091 3.092 3.093 3.095 3.122 3.127 3.131	3.365 3.369 3.352 3.343 3.286 3.278 3.271 3.264 4.214 3.207 3.201 3.194 3.155 3.150 3.145 3.140 3.113 3.110 3.107 3.104 3.092 3.091 3.090 3.090 3.090 3.092 3.093 3.095 3.093 3.095 3.093 3.122 3.127 3.131 3.137	3 .330 3 .331 3 .335 3 .343 3 .365 3 .369 3 .352 3 .343 3 .355 3 .286 3 .278 3 .271 3 .264 3 .256 8 .214 3 .207 3 .201 3 .194 3 .188 3 .155 3 .150 3 .145 3 .140 3 .135 3 .113 3 .110 3 .107 3 .104 3 .102 3 .092 3 .091 3 .090 3 .090 3 .099 3 .092 3 .091 3 .095 3 .097 3 .099 3 .122 3 .127 3 .131 3 .137 3 .143	3 .330 3 .331 3 .335 3 .343 3 .360 3 .365 3 .359 3 .352 3 .343 3 .335 3 .327 3 .286 3 .278 3 .271 3 .264 3 .256 3 .249 4 .214 3 .207 3 .201 3 .194 3 .188 3 .182 3 .155 3 .150 3 .145 3 .140 3 .135 3 .131 3 .113 3 .110 3 .107 3 .104 3 .102 3 .100 3 .092 3 .091 3 .090 3 .090 3 .089 3 .089 3 .092 3 .093 3 .090 3 .093 3 .090 3 .090 3 .122 3 .122 3 .127 3 .131 3 .137 3 .143 3 .150	3.330 3.331 3.335 3.343 3.360 3.368 3.365 3.359 3.352 3.343 3.355 3.327 3.318 3.286 3.278 3.271 3.264 3.256 3.249 3.241 2.214 3.207 3.201 3.194 3.188 3.182 3.176 3.155 3.150 3.145 3.140 3.135 3.131 3.127 3.113 3.110 3.107 3.104 3.102 3.100 3.098 3.092 3.091 3.090 3.090 3.089 3.089 3.089 3.089 3.092 3.091 3.090 3.090 3.089 3.089 3.089 3.082 3.092 3.093 3.095 3.097 3.099 3.102 3.105 3.122 3.127 3.131 3.137 3.143 3.150 3.156	3.330 3.331 3.335 3.343 3.360 3.368 3.371 3.365 3.359 3.352 3.343 3.355 3.327 3.318 3.310 3.286 3.278 3.271 3.264 3.256 3.249 3.241 3.234 2.214 3.207 3.201 3.194 3.188 3.182 3.176 3.170 3.155 3.150 3.145 3.140 3.135 3.131 3.127 3.123 3.113 3.110 3.107 3.104 3.102 3.100 3.098 3.096 3.092 3.091 3.090 3.090 3.090 3.089 3.089 3.089 3.090 3.092 3.091 3.092 3.091 3.092 3.093 3.095 3.097 3.099 3.102 3.105 3.105 3.104 3.122 3.127 3.131 3.137 3.143 3.150 3.156 3.164	3.330 3.331 3.335 3.343 3.360 3.368 3.371 3.372 3.365 3.369 3.352 3.343 3.355 3.279 3.318 3.310 3.302 3.286 3.278 3.271 3.264 3.256 3.249 3.241 3.224 3.227 3.201 3.194 3.188 3.182 3.176 3.170 3.165 3.155 3.150 3.145 3.140 3.135 3.131 3.127 3.123 3.119 3.092 3.091 3.090 3.090 3.089 3.089 3.090 3.090 3.090 3.092 3.091 3.090 3.090 3.089 3.089 3.090 3.090 3.092 3.093 3.095 3.097 3.098 3.091 3.092 3.093 3.095 3.097 3.098 3.095 3.092 3.093 3.095 3.095 3.092 3.093 3.095 3.097 3.098 3.096 3.097 3.098 3.098 3.090 3.090 3.090 3.090 3.090 3.090 3.090 3.090 3.090 3.090 3.090 3.090 3.090 3.090 3.090 3.090 3.090 3.090 3.090 3.090 3.090 3.090 3.090 3.090 3.090 3.090 3.090 3.090 3.090 3.090 3.090 3.090 3.090 3.090 3.090 3.090 3.090 3.090 3.090 3.090 3.090 3.090 3.090 3.090 3.090 3.090 3.090 3.090 3.090 3.090 3.090 3.090 3.090 3.090 3.090 3.090 3.090 3.090 3.090 3.090 3.090 3.090 3.090 3.090 3.090 3.090 3.090 3.090 3.090 3.090 3.090 3.090 3.090 3.090 3.090 3.090 3.090 3.090 3.090 3.090 3.090 3.090 3.090 3.090 3.090 3.090 3.090 3.090 3.090 3.090 3.090 3.090 3.090 3.090 3.090 3.090 3.090 3.090 3.090 3.090 3.090 3.090 3.090 3.090 3.090 3.090 3.090 3.090 3.090 3.090 3.090 3.090 3.090 3.090 3.090 3.090 3.090 3.090 3.090 3.090 3.090 3.090 3.090 3.090 3.090 3.090 3.090 3.090 3.090 3.090 3.090 3.090 3.090 3.090 3.090 3.090 3.090 3.090 3.090 3.090 3.090 3.090 3.090 3.090 3.090 3.090 3.090 3.090 3.090 3.090 3.090 3.090 3.090 3.090 3.090 3.090 3.090 3.090 3.090 3.090 3.090 3.090 3.090 3.090 3.090 3.090 3.090 3.090 3.090 3.090 3.090 3.090 3.090 3.090 3.090 3.090 3.090 3.090 3.090 3.090 3.090 3.090 3.090 3.090 3.090 3.090 3.090 3.090 3.090 3.090 3.090 3.090 3.090 3.090 3.090 3.090 3.090 3.090 3.090 3.090 3.090 3.090 3.090 3.090 3.090 3.090 3.090 3.090 3.090 3.090 3.090 3.090 3.090 3.090 3.090 3.090 3.090 3.090 3.090 3.090 3.090 3.090 3.090 3.090 3.090 3.090 3.090 3.090 3.090 3.090 3.090 3.090 3.090 3.090 3.090 3.090 3.090 3.090 3.090 3.090 3.090 3.090 3.090 3.090 3.090 3.090 3.090 3.090 3.090 3.090 3.090 3.090 3.090 3.090 3.090 3.090 3

Herschel Submerged-weir Formula.—Basing his investigation on the experiments of Francis in 1848 and 1883, and the Fteley and Stearns experiments, Herschel adopted the formula

$$Q = 3.33 L(NH)^{36} (28)$$

and prepared the following table of values of N corresponding to different values of D/H to accompany the formula. The velocity of approach correction is the same as the Francis correction for weirs with free overfall.

COEFFICIENT N, HERSCHEL'S SUBMERGED-WEIR FORMULA

$\frac{D}{H}$	.00	.01	.02	.03	.04	.05	.06	.07	.08	.09
0.0	1.000	1.004	1.006	1.006	1.007	1.007	1.007	1.006	1.006	1.005
.1	1.005	1.003	1.002	1.000	.998	.996	.994	.992	.989	.987
.2	.985	.982	.980	.977	.975	.972	.970	.967	.964	.961
.3	.959	.956	.953	.950	.947	.944	.941	.938	.935	.932
.4	.929	.926	.922	.919	.915	.912	.908	.904	.900	.896
.5	.892	. 888	.884	.880	.875	.871	.866	.861	.856	.851
.6	.846	.841	.836	.830	.824	.818	.813	. 806	. 800	.794
.7	.787	.780	.773	.766	.758	.750	.742	.732	.723	.714
.8	.703	. 692	.681	.669	.656	.644	. 631	.618	.604	. 590
.9	.574	. 557	. 539	. 520	.498	.471	.441	.402	.352	. 275
	L	<u> </u>		1		L				

¹ Trans. Amer. Soc. Civ. Eng., vol. 14, p. 189.

Bazin Submerged-weir Formula.—The method adopted by Bazin in deducing a formula from his experiments was to obtain corrective factors to be applied to his formula for weirs with free overfall. Calling the ratio of the discharge of the submerged weir to the discharge of the weir with free overfall  $\frac{m}{m_1}$  and using the nomenclature given on pages 64 and 65 he deduced the following formulas:

$$\frac{m}{m_1} = 1.06 + \frac{1}{4} \frac{D}{P} - \left[ 0.008 + \frac{1}{3} \frac{D}{P} + \frac{1}{3} \frac{D^2}{P^2} \right] \frac{P}{H}$$
 (29)

$$\frac{m}{m_1} = \left(1.08 + 0.18 \, \frac{D}{P}\right) \sqrt[3]{\frac{Z}{H}} \tag{30}$$

In general, formula (29) should be used for values of  $\frac{m}{m_1}$  greater than 0.9 and formula (30) should be used for values less than 0.9. Bazin plotted the results of his experiments using  $\frac{m}{m_1}$  and  $\frac{P}{H}$  for coördinates arranged to give curves for similar values of  $\frac{D}{P}$ . Equation (29) and (30) are plotted on a diagram and the resulting curves come remarkably close to the mean of the experimental values. The exact limits of application of formulas (29) and (30) may be seen from this diagram.

In a later publication² Bazin derived the following approximate general formula, applicable to all submerged weirs:

$$\frac{m}{m_1} = \left( (1.05 + 0.21 \frac{D}{P}) \sqrt[3]{\frac{Z}{H}} \right) \tag{31}$$

and combining this formula with formula (6), page 66, there results the complete formula for discharge over submerged weirs

$$Q = \left(1.05 + 0.21 \frac{D}{P}\right) \sqrt[3]{\frac{Z}{H}} \left(0.405 + \frac{0.00984}{H}\right) \left(1 + 0.55 \frac{H^2}{d^2}\right) LH \sqrt{2gH}$$
(32)

The Author's Submerged-weir Formula.—Starting with the fundamental formula (page 76).

$$Q = L\sqrt{Z} (C_1 Z + C_2 D) \tag{25}$$

¹ Plate 8, Annales des Ponts et Chaussees for 1894, 1er Trimestre.

² Annales des Ponts et Chaussees for 1898, 1er Trimestre, p. 235.

in a manner similar to that employed for weirs with free overfall the correction for velocity of approach may be made to the head causing movement of the water, that is to the Z outside of the parenthesis, the Z within the parenthesis and D being considered purely as factors entering into the area of the opening. The formula corrected for velocity of approach, using the nomenclature given on pages 64 and 65 then becomes:

$$Q = L \left( Z + \beta \frac{V^2}{2g} \right)^{\frac{1}{2}} (C_1 Z + C_2 D)$$
 (33)

or since  $V = \frac{Q}{DL}$ 

$$Q = L \left( Z + \frac{\beta}{2g} \cdot \frac{Q^2}{D^2 L^2} \right)^{\frac{1}{2}} \cdot (C_1 Z + C_2 D)$$
 (34)

In a manner identical with that already explained for weirs with free overfall (page 70), by mathematical transformation, formula (34) may be reduced to the form

$$Q = L\sqrt{Z} (C_1Z + C_2D) \left[ 1 + C \frac{(C_1Z + C_2D)^2}{d^2} \right]$$
 (35)

Equation (35) may be considered the theoretical form of formula for discharge over a submerged weir with velocity of approach correction. If this formula correctly expressed the law of flow over submerged weirs, values of the coefficients which it contains could be chosen to fit the available experimental data within the range of probable experimental error. This the author has been unable to do, but by using this formula as a base and modifying it as it appeared necessary he derived an empirical formula which gives results fairly concordant with all of the experiments investigated.

Francis does not give the distance below the weir at which the heads of submergence, for his experiments of 1848, were measured, but states that they were measured a "short distance" below the weir. In his experiments of 1883 he chose a distance of 18 feet below the weir for measuring heads. Fteley and Stearns measured heads of submergence 6 feet below the weir and Bazin made his measurements 36 feet below the weir.

There is always a tendency for a standing wave to form below a submerged weir. The result of this is to cause a depression of the water surface just below the place where the overfalling sheet joins the water of the lower channel. Below this depression there is a piling up of water and turbulence continues for some distance farther downstream.

It thus appears that considerable uncertainty must result when the head of submergence is measured where such turbulence exists. The author believes that in order that a formula of the form of equation (35) may be applicable, the head of submergence should be measured in the trough of the standing wave, that is where the lowest water surface occurs just below the overfalling sheet. The difference between the head of water passing over the weir and the depth of submergence measured in the trough of the standing wave is the true head causing discharge over the weir. There is not, in general, any effect of submergence until the trough of the wave reaches an elevation higher than the crest of the weir.

It is not ordinarily practicable, however, to measure the head of submergence in the trough of the standing wave because of the difficulty of determining the proper point of measurement and the tendency of the standing wave to shift its position with changing values of H and D. Moreover, in practical problems it is more frequently the elevation of the water surface in the channel below the weir after the normal conditions of flow have been established that is of greatest importance. A submergedweir formula conforming to these conditions of measurement is therefore desirable.

As the author's formula is empirical no derivation can be given, but a brief discussion of the line of reasoning and steps taken in obtaining it is here given.

Starting with equation (35), page 80, and using the nomenclature given on pages 64 and 65,

$$Q = L\sqrt{Z} (C_1 Z + C_2 D) \left[ 1 + C \frac{(C_1 Z + C_2 D)^2}{d^2} \right]$$
 (35)

The equation, for trial, was modified and put in the form

$$Q = LZ^{0.47} (C_1 Z + C_2 D) \left( 1 + C \frac{H^2}{d^2} \right)$$
 (36)

and then assuming that the form might be similar to that for weirs with free overfall it was written

$$Q = 3.34LZ^{0.47} (Z + C_3D) \left(1 + 0.56 \frac{H^2}{d^2}\right)$$
 (37)

This equation resembles in form equation (35) and makes no allowance for the standing-wave conditions at the lower side of the weir. When the head of submergence is measured in the channel below all turbulence caused by the overfalling sheet, this head will be greater than when it is measured in the trough of the standing wave. A factor may therefore be added to Z to make it equal the value of Z in the trough of the standing wave. After repeated trials, from Bazin's experiments, the writer found that the quantity by which Z should be increased appeared to vary directly as  $\sqrt{ZHD}$  and inversely as  $\sqrt{d_1}$ , and modifying equation (37) accordingly

$$Q = 3.34L \left( Z + C_4 \sqrt{\frac{ZHD}{d_1}} \right)^{0.47} (Z + C_5D) \left( 1 + 0.56 \frac{H^2}{d^2} \right)$$
(38)

which may be written

$$Q = 3.34 LZ^{1.47} \left( 1 + C_4 \sqrt{\frac{H\overline{D}}{d_1 Z}} \right)^{0.47} \left( 1 + C_3 \frac{D}{Z} \right) \left( 1 + 0.56 \frac{H^2}{d^2} \right)$$
(39)

The factor within the first parenthesis, in the above equation, will not ordinarily exceed unity by more than 20 per cent. and it may therefore be put in a nearly equivalent form by writing the exponent 0.5 instead of 0.47, expanding by the binomial theorem and neglecting all terms except the first two. The equation may then be written

$$Q = 3.34LZ^{1.47} \left( 1 + C_{5} \sqrt{\frac{HD}{d_{1}Z}} \right) \left( 1 + C_{5} \frac{D}{Z} \right) \left( 1 + 0.56 \frac{H^{2}}{d^{3}} \right)$$
(40)

Values of the above coefficients were derived from the experimental data, and with these values substituted the author's formula for flow over submerged weirs, using the nomenclature given on pages 64 and 65, becomes,

$$Q = 3.34LZ^{1.47} \left(1 + \frac{1}{5} \sqrt{\frac{HD}{d_1 Z}}\right) \left(1 + 1.2 \frac{D}{Z}\right) \left(1 + 0.56 \frac{H^2}{d^2}\right)$$
(41)

If there are end contractions, the Francis method of correction (page 67) may be used. Formula (41) applies to all submerged rectangular sharp-crested weirs fo all channel conditions. It gives results agreeing within approximately 3 per cent. with the experiments of Francis, Fteley and Stearns, and Bazin, and it seems reasonable to believe that equally good results may be expected if due care is taken in making measure-

ments, and the depth of submergence (D) is measured below all turbulence caused by the overfalling water.

When D is measured in the trough of the standing wave, it is believed that the discharge may be represented approximately by the formula

$$Q = 3.34LZ^{1.47} \left(1 + 1.2 \frac{D}{Z}\right) \left(1 + 0.56 \frac{H^2}{d^2}\right)$$
 (42)

This formula, however, lacks experimental verification.

A submerged-weir formula to be generally applicable should take into consideration the dimensions of the channels both above and below the weir.

The formulas of Francis, Fteley and Stearns, and Herschel which do not consider the effect of the size of the channel give results varying in places by more than 25 per cent. from the results of the Bazin experiments. These formulas are complicated by the requirement of a separate velocity of approach correction, which renders their solution very difficult. The apparent simple form of the formulas as given without the velocity of approach correction is deceiving.

Additional experimental data with various heights of weirs and dimensions of channels, with values of H and D varying through as wide a range as possible, are needed to assist in a more comprehensive study of the subject of flow over submerged weirs. Such experiments should give the head of submergence in the trough of the standing wave as well as at a point in the channel where the normal condition of flow has been established. It is important also that the slope or grade of the lower channel should be given, in order that the head of submergence taken at one point may be transferred to a point farther up or down the channel if desired.

In Appendix A various tables (Tables 108 to 111 inclusive) with discussions of same are given for the purpose of showing the extent to which the submerged-weir formulas given in the preceding pages agree with the available experimental data. These tables cover practically the entire range of the experiments by Francis, Fteley and Stearns, and Bazin. The accuracy and general applicability of the author's formula can best be determined by an examination of these tabulated results, and the author makes no claim for his formula which cannot be substantiated by them.

The solution of the formula may be simplified by the use of tables. Table 33, page 98, gives values of

$$3.34 Z^{1.47}$$

Table 34, page 103, gives values of

$$1 + 0.56 \frac{H^2}{d^2}$$

and Table 36, page 109, gives values of

$$\left(1 + \frac{1}{5}\sqrt{\frac{HD}{d_1Z}}\right)\left(1 + 1.2\frac{D}{Z}\right)$$

corresponding to different values of  $\frac{H}{d_1}$  and  $\frac{D}{Z}$ . The discharge is the product of these three quantities and the length of the weir. By careful interpolation values may be taken from Table 36 that will be accurate within 1 per cent. of error, which is close enough for ordinary purposes when the probable limits in accuracy of the formula are considered.

In the form given, formula (41) is directly applicable to problems in which the discharge over the weir is to be determined. In certain problems it is desired to know the amount that the elevation of water surface in a channel will be raised by the construction of a submerged weir of a given height. In this case Q is given, D is the depth of water in the channel minus the height of weir and  $d_1$  may be readily obtained. Z is unknown, as are also H and d which depend upon Z for their values. The formula can best be solved by assuming successive values for Z until a value is found which satisfies the equation. By using the tables above referred to the successive solutions will be much simplified.

A similar method is necessary in solving problems where it is desired to determine the height of submerged weir necessary to raise the elevation of water surface in a channel a given amount. In this case Q and Z are given, and d and  $d_1$  may be readily obtained. H and D = H - Z are the only unknown quantities and the equation may be solved by assuming successive values of H. With H determined, the height of weir is equal to the depth of water in the channel above the weir minus H.

### V-Notch Weirs

V-notch weirs may be used to advantage in measuring discharges which do not exceed from 15 to 20 cubic feet per second.

Using the nomenclature indicated in Fig. 28, the theoretical discharge is given by the formula



Fig. 28.—V-notch weir.

If z represents the slope which the side of the weir makes with the vertical then

$$L = 2 zH \text{ and}$$
  
 $Q = \frac{8}{15} \sqrt{2g} zH^{5/2}$  (44)

For a right-angled notch z becomes unity and combining a coefficient of discharge with the constant part (assuming g to be a constant) of the above equation, the formula for discharge over a right-angled V-notch weir with sharp edges may be written

$$Q = CH^{54} \tag{45}$$

A more general form of this expression is

$$Q = C'H^n (46)$$

The author has made a thorough investigation of the above formula based upon the results of experiments at the University of Michigan, 2 supplemented by experiments by Thompson 3 and Barr.4 From the University of Michigan experiments the author deduced the following formula, as representing the mean of the experimental results:

$$Q = 2.52 \ H^{2.47} \tag{47}$$

As the three sets of experiments are not entirely consistent with each other, Table 31, page 86, giving a summary of the results of all of the experiments investigated is reproduced.

- 1 University of Michigan Technic, October, 1916, pp. 190-195.
- 2 University of Michigan Technic, October, 1916, p. 191.
- ² Prof. James Thompson: Papers in Physics and Engineering, p. 46, Cambridge.
- 4 James Barr: Experiments upon the Flow of Water over Triangular Notches. Engineering, April 8 and 15, 1910.

It will be noted in each set of experiments that the value of C gradually decreases as the head increases. This indicates that an exponent of H less than 2.5 should give a more nearly constant coefficient. From column 7 it will be seen that an exponent of 2.47 for the University of Michigan experiments gives a nearly constant value of C', approximately 2.52, as already given in formula (47).

Table 31.—Values of Coefficients Computed from Experiments on Right-angled V-notched Weirs, for Formulas  $Q=CH^{2.5}$  and  $Q=C'H^{2.47}$ 

H in feet		pson's ments		rr's iments	University of Michigan experiments		
	<b>c</b> .	C'	c	C'	c	C'	
.15	2.570	2.428	2.588	2.445	2.672	2.524	
.20	2.562	2.441	2.566	2.446	2.646	2.521	
.25	2.555	2.451	2.551	2.447	2.626	2.519	
.30	2.550	2.460	2.539	2.449	2.610	2.518	
. 35	2.545	2.466	2.530	2.451	2.597	2.517	
.40	2.540	2.471	2.522	2.454	2.587	2.517	
.45	2.537	2.477	2.517	2.458	2.579	2.518	
.50	2.534	2.482	2.512	2.460	2.572	2.519	
. 55	2.532	2.487	2.508	2.463	2.565	2.519	
.60	2.530	2.491	2.504	2.465	2.560	2.520	
. 65			2.500	2.468	2.554	2.521	
.70			2.497	2.470	2.549	2.522	
.75			2.494	2.473	2.544	2.522	
.80			2.492	2.475	2.540	2.523	
.85			2.490	2.478	2.534	2.523	
.90					2.530	2.523	
1.0					2.523	2.523	
1.1					2.515	2.522	
1.2					2.509	2.523	
1.3					2.503	2.523	
1.4					2.498	2.523	
1.5					2.493	2.523	
1.6		l			2.488	2.523	
1.7		1			2.484	2.524	
1.8					2.480	2.524	

An exponent of 2.478 for Barr's experiments will give a nearly constant coefficient equal to approximately 2.48.

The exponent of *H* that would best fit Thompson's experiments is nearly 2.49. There is however but little information available regarding the manner in which these experiments were performed and as they cover such a narrow range of discharge they are not entitled to the weight of the other experiments.

A very careful investigation was carried on by Barr to determine the effect of roughness of the upstream surface of the notch plate. Barr's original experiments were performed with notches cut in smooth brass plates. To determine the effect that roughness of the upstream face had upon discharge the surface was varnished, and dusted with emery before the varnish dried. The weir with the rough face gave discharges approximately 2 per cent. greater than the weir with the smooth face. The effect of this roughness is apparently to reduce the vertical component of the velocity of the water approaching the weir from below crest level and so also to reduce crest contraction.

The weir for the University of Michigan experiments was cut from a steel plate  $\frac{1}{2}$  inch thick, the upstream edge being a sharp right angle, and the lower edge beveled to make the crest of the weir  $\frac{1}{2}$  inch thick.

It will be observed from columns 5 and 7 of Table 31 that the values of C' are about 2 per cent. greater for the University of Michigan experiments than for Barr's experiments. This may be accounted for by the effect of roughness of the upstream surface of the weir plate as observed by Barr. The plate used in the University of Michigan experiments was of ordinary commercial steel plate and undoubtedly very much rougher than the smooth brass plate used in the Barr experiments. Assuming that this explanation accounts for the 2 per cent. discrepancy the two sets of experiments give results varying by less than 1 per cent. throughout.

Table 37, page 110, gives discharges over right-angled V-notch weirs by the formula  $Q=2.52H^{2.47}$ , for heads from 0 to 1.5 feet, with intervals of 0.001 feet.

There are no data for determining the effect of velocity of approach on V-notch weirs. Ordinarily this correction is insignificant as the cross-sectional area of the channel above the weir is much greater than the area of the weir opening. By assuming that the conditions for rectangular weirs (pages

69 to 71) hold for triangular weirs, the formula with velocity of approach correction may be written approximately

$$Q = 2.52H^{2.47} \left( 1 + 0.23 \frac{H^4}{A^2} \right) \tag{48}$$

in which A is the area of the channel of approach.

There are but few experimental data for discharge over V-notch weirs not right-angled. Assuming, however, the same coefficient of discharge as for right-angled notches, the general formula for all V-notch weirs becomes

$$Q = 2.52zH^{2.47} (49)$$

In most cases a right-angled notch can be used as readily as any other. It should always be used when practicable, as the formula of discharge for such weirs is based upon more accurate experimental knowledge than for notches of other angles. The right-angled notch, moreover, has the advantage of being simpler to construct.

### Trapezoidal Weirs

The discharge over a trapezoidal weir is commonly considered as the combined discharge of a rectangular weir of length L', Fig. 29, and a V-notch weir with side slopes  $\frac{b}{H} = z$ . Under



Fig. 29,—Trapezoidal weir.

this assumption, combining formulas (22) and (47), pages 73 and 85, the formula for discharge over sharp-crested trapezoidal weirs with end contractions, not including velocity of approach correction, becomes

$$Q = 3.34L'H^{1.47} + 2.52zH^{2.47}$$

or

$$Q = 3.34H^{1.47} (L' + 0.75zH)$$
 (50)

Formula (50) will unquestionably give too great a discharge, since the contractions at the sides will be greater for a long weir than for the V-notch weir. The author submits the following

formula for trapezoidal weirs, with end contractions and velocity of approach correction, which must be considered as a rough approximation since it is entirely lacking in experimental verification:

$$Q = 3.34H^{1.47} \left( L' + 0.75zH - 0.2H \right) \left[ 1 + 0.56 \left( \frac{HL}{A} \right)^2 \right]$$
 (51)

If z = 0 this equation reduces to the ordinary weir formula, with the Francis correction for end contractions. Formula (51) should not be used where L' is less than 2H.

Cippoletti Weirs.—From a study of the Francis experiments, Cippoletti, an Italian engineer, concluded that a value of z of 0.25 would approximately offset the effect of end contractions of a rectangular weir and give a formula of the form

$$Q = CLH^{3/2} \tag{2}$$

Cippoletti finally chose a value of 3.3% for C, having concluded that the value 3.33 obtained by Francis was too small. The reasons for this choice are not clear. It is, however, this value of C which has been quite generally adopted for Cippoletti weirs, and the formula which has been extensively used is

$$Q = 3.3\frac{2}{3}LH^{\frac{3}{2}} \tag{52}$$

in which L is the measured length of crest of weir.

Experiments by Flinn and Dyer¹ and others indicate that the value of C increased as H decreases, suggesting the need of either a greater slope for the sides of the weir or an exponent of H less than 1.5. Table 38, page 113, gives values of Q for Cippoletti weirs by formula (52).

Formula (52) should not be used when a high degree of accuracy is required. No method of correcting for velocity of approach is suggested. It was intended by Cippoletti that the Francis velocity-of-approach correction should be used.

The author believes that his formula for rectangular weirs, written in the form

$$Q = 3.34LH^{1.47} \left[ 1 + 0.56 \left( \frac{HL}{A} \right)^2 \right]$$
 (7a)

will apply more readily and accurately to Cippoletti weirs than formula (52). The sloping sides are introduced solely to offset

¹ A. D. FLINN and C. W. D. DYER: The Cippoletti Trapezoidal Weir. Trans. Amer. Soc. Civ. Eng., vol. 32.

the effects of end contractions and the conditions become similar to those for a weir with end contractions suppressed.

Assuming formula (51), and the Francis correction for end contractions (formula (4)), in order that the slope of the sides of the Cippoletti weir may just offset the effect of end contractions, the following relation must exist:

$$0.75zH = 0.2H$$

or

$$z = 0.267$$

which is very close to 0.25, the value used by Cippoletti:

#### Weirs with Crest Not Level

When the crest of a weir is not level, Fig. 30, if the inclination is slight, the discharge will be given quite accurately by the formula for rectangular weirs, using the mean head  $H_m$ . A more precise formula may be obtained from the expression



Fig. 30.—Weir with crest not level.

$$Q = 3.34 \left( (1 + 0.56 \frac{H_m^2}{d^2}) \int_0^L H^{1.47} dl \right)$$

in which

$$H = H_1 + \frac{H_2 - H_1}{I_1} l$$

The resulting formula for discharge over a weir with crest inclined and vertical sides is

$$Q = \frac{1.352 L(H_2^{2.47} - H_1^{2.47})}{H_2 - H_1} \left( 1 + 0.56 \frac{H_m^2}{d^2} \right)$$
 (53)

If there are end contractions, L' being the measured length and L the corrected length of weir

$$L = L' - 0.1 (H_1 + H_2) (54)$$

#### Determination of Mean Discharge from Several Observations

In measuring the discharge over a weir greater accuracy may usually be obtained by making several measurements of head at short intervals of time apart. These measurements will not give quite constant values of H, even though uniform conditions of flow exist, owing to surge in the channel and unavoidable errors in measurement. Even under favorable conditions when great care is taken, heads measured in a stilling-box, by means of a hook gage, may show considerable variation.

Consider n observations to be made in a total time T at intervals of  $t_1$ ,  $t_2$ ,  $t_3$ , . . . .  $t_n$ . The measured heads corresponding to these intervals are  $H_1$ ,  $H_2$ ,  $H_3$ , . . .  $H_n$ ;  $H_m$  being the mean head.

Assuming formula (7), page 72, for rectangular weirs, the mean discharge in cubic feet per second for any number of observations is

$$Q = \frac{3.34 L}{2T} \left[ t_1 H_1^{1.47} + (t_1 + t_2) H_2^{1.47} + (t_2 + t_3) H_3^{1.47} + \dots + t_{n-1} H_n^{1.47} \right] \left( 1 + 0.56 \frac{H_m^2}{d^2} \right)$$
 (55)

If the time intervals are equal

$$Q = \frac{3.34 L}{n-1} \left( \frac{1}{2} H_1^{1.47} + H_2^{1.47} + H_3^{1.47} + \frac{1}{3} + \frac{1}{2} H_n^{1.47} \right) \left( 1 + 0.56 \frac{H_m^2}{d^2} \right)$$
(56)

When the fluctuations in head do not have a range of more than 0.02 feet the error from using the formula

$$Q = 3.34LH_m^{1.47} \left(1 + 0.56 \frac{H_m^2}{d^2}\right)$$

is insignificant.

When a weir is used for obtaining continuous-discharge records of a stream with fluctuating stage, to obtain the mean daily flow from several different gage readings, the discharge should be computed for each reading, and the mean of these discharges, weighted to correspond to the proper time interval, should be taken. Formula (55) may be used for this purpose if preferred, or formula (56) providing that the same time interval is employed throughout. If there is much fluctuation in stage, an appreciable error will be introduced in using the mean head

for computing the discharge, the actual discharge being greater than that determined from the mean head where the head varies continuously in the same direction between observations. This is because the discharge varies faster than the head.

#### Choice of Weir for Maximum Accuracy

In selecting a weir for the accurate measurement of water, care should be taken to choose the weir best adapted to the particular conditions. Usually the quantity of water, or the limiting quantities if the flow fluctuates, may be determined approximately before beginning the measurement. The best weir for the purpose may then be selected, giving careful consideration to the following important points:

- 1. Owing to the tendency of the nappe to adhere to the downstream face, weirs should not be used where the measured head is less than 0.2 feet.
- 2. In all cases the length of a rectangular weir should be at least three times the head.
- 3. The head on the weir should preferably not be greater than 1.5 feet.
- 4. The percentage of error in discharge resulting from a given error in measuring head decreases as the head increases. Greater accuracy may therefore be secured by selecting a weir of such dimensions as to have the discharge occur under the maximum head practicable, subject to the requirements of paragraphs 1, 2 and 3 above.

Table 41, page 127, giving the percentage of error in discharge, for different discharges and dimensions of weirs, resulting from various errors in measuring head, has been prepared to assist in the selection of the best weir for a given purpose. Of the weirs listed those given in bold type are recommended. The table is intended merely as a guide, however, and the engineer must use his judgment in selecting a weir which will best conform to the requirements of the four paragraphs given above.

One point brought out quite clearly by Table 41 is that right-angled V-notch weirs are preferable to weirs of any other type for measuring discharges below 1 cubic foot per second, and they are at least as accurate as any other weir for discharges up to 10 cubic feet per second. They are therefore particularly adapted to the measurement of fluctuating discharges where the maximum discharge does not greatly exceed 10 cubic feet per second.

Table 32.—1.47 Powers of Numbers

Number	.000	.001	.002	.003	.004	.005	.006	.007	.008	.009
.00	0000	.0000	0001	.0002	.0003	.0004	0005	.0007	.0008	0010
.01	.0000 .0011	.0013	.0001 .0015	.0017	.0019	.0021	.0095 .0023	.0025	.0027	.0010
.02	.0032	.0034	.0037	.0039	.0013	.0021	.0047	.0049	.0052	0000
.02 .03	.0058	.0061	.0063	.0066	.0069	.0072	.0075	.0079	.0082	.0055 .0085
.04	.0088	.0091	.0095	.0098	.0101	.0105	.0108	.0112	.0115	.0119
.01	.0000	.0001	.0090	.0090	.0101	.0103	.0100	.0112	.0110	.0119
.05 .06	.0122	.0126	.0130	.0133	.0137	.0141	.0145	.0148	.0152	.0156
.06	.0160	.0164	.0168	.0172	.0176	.0180	.0184	.0188	.0192	.0196
.07	.0201	.0164 .0205	.0168 .0209	.0213	.0218	.0222	.0226	.0231	.0235	.0240
.08	.0344	.0249	. 0253	. 0258	.0262	.0267	.0271	.0276	.0281	.0286
.08	.0290	.0295	.0300	.0305	.0309	.0314	.0319	.0324	.0329	.0334
10	0220	0244	0240	0254	0250	0204	0240	0274	0270	0005
.10	.0339	.0344	.0349	.0354	.0359	.0364	.0369	.0374 .0427	.0379 .0432	.0385 .0438
.11 .12 .13	.0390	.0448	.0400 .0454	.0406 .0459	.0411 .0465	.0416 .0470	.0421 .0476	0427	.0432	.0493
.12	.0498	.0504	.0510	.0515	.0521	.0527	.0533	.0482 .0538	.0487	.0550
.13							.0000			
.14	.0556	.0562	.0567	.0573	.0579	.0585	.0591	. 0597	.0603	.0609
.15 .16 .17 .18 .19	.0615 .0576 .0739 .0804	.0621	.0627	.0633	.0639	.0645	.0652	.0658	.0664	.0670
.16	.0876	.0682	.0689	.0695	.0701	.0707	0714	.0720	.0726	.0733
.17	.0739	.0746	.0689 .0752 .0817	.0758 .0824	.0765 .0830	.0771	.0778	.0784	.0791	.0797
.18	.0804	.0811	.0817	.0824	.0830	.0837	.0844	.0850	.0857	.0864
. 19	.0371	.0877	.0884	.0891	.0898	.0904	.0911	.0918	.0925	.0932
•	0000	2040	0050	0050	0000	0070	0000	0007	0004	1001
.20 .21	.0939	.0946	.0953 • .1023	.0959	.0966	.0973	.0980	.0987	.0994	. 1001
.21	.1009	.1016 .1087	1023	. 1030	.1037	.1044 .1116 .1190	.1051	.1058	. 1066	. 1073
.22	1150	.1087	.1094	.1102 .1175	.1109 .1182	.1110	.1124	.1131	.1138	.1145
.22 .23 .24	.1009 .1030 .1153 .1227	.1160 .1235	.1108	.1175	.1182	.1190	.1197	.1205	. 1212	.1220
. 22	.1221	. 1200	.1242	.1250	.1257	.1265	.1273	.1280	.1288	. 1295
.25 .26	.1303 .1380	.1311	.1319 .1396	. 1326	. 1334	. 1342	.1349	. 1357	. 1365	. 1373
.26	.1380	.1388	. 1396	.1404	.1412	. 1420	.1428	.1436	. 1443	. 1451
.27	. 1459	. 1467	. 1475	.1483	. 1491	. 1499	.1507	. 1515	. 1523	. 1531
.28	. 1539	. 1547	. 1556	.1483 .1564	. 1572	. 1580	. 1588	. 1596	. 1604	.1613
. 29	.1539 .1621	. 1547 . 1629	,1637	.1645	.1654	.1662	.1670	. 1679	.1687	. 1695
.30	1704	1719	1790	1790	.1737	. 1746	.1754	. 1762	.1771	. 1779
.31	.1704	.1712 .1796	.1720 .1805 .1890	.1729 .1813	.1822	.1830	.1839	.1847	.1856	. 1865
.32	.1788 .1873	.1882	1000	.1899	.1908	.1916	.1925	.1934	.1942	. 1951
.32	1080	.1969	.1977	.1986	.1995	.2004	.2013	.2021	.2030	.2039
.33 .34	.1960 .2048	.2057	.2066	2075	.2083	.2092	.2101	.2110	.2119	.2128
			1		- 1					
. 35	.2137	.2146	.2155	.2164	.2173	.2182	.2191	.2200	.2209	.2218
.36	.2227	.2236 .2328	.2245	.2255	.2264 .2356	.2273	.2282	. 2291	.2300	.2310
.36 .37 .38 .39	. 2319	.2328	.2337	.2346	.2356	. 2365	.2374	. 2384	. 2393	.2402
.38	.2411	.2421	.2430	.2440	.2449	.2458	.2468	.2477	.2487	.2496
.39	. 2505	.2515	.2524	.2534	.2543	. 2553	.2562	. 2572	.2581	.2591
.40	2600	2610	2620	2620	.2639	.2648	.2658	.2668	.2677	. 2687
.41	.2600 .2696	.2610 .2706	.2620 .2716	. 2629 . 2726	.2735	.2745	.2755	.2764	.2774	.2784
.42	.2794	2804	.2813	.2823	.2833	.2843	.2853	.2862	.2872	.2882
.43	.2892	.2804 .2902	.2912	.2922	.2932	.2942	.2951	.2961	.2971	.2981
.44	.2991	.3001	.3011	.3021	.3031	.3041	.3051	.3062	.3072	.3082
		1		- 1	1					
45	.3092	.3102	.3112	.3122	.3132	.3142	.3153	.3163	.3173	.3183
46	.3193	.3201	.3214	.3224	.3234 .3337	.3245	.3255 .3358	.3265 .3368	.3275	.3286
.47	.3296	.3306	.3317	.3327	.3337	.3348	.3358	.3368	.3379	.3389
.48 .49	.3400	.3410	.3420	.3431	.3441	.3452	.3462	.3473	.3483	.3494
.49	.3504	.3515	.3525	.3536	. 3546	.3556	. 3567	.3578	. 3589	. 3599
							. !		- 1	

#### Table 32 (Continued)

#### 1.47 Powers of Numbers

Number	.000	.001	.002	.003	.004	.005	.003	.007	.008	.009
.50	.3610	.3620	.3631	.3642	.3652	.3663	.3674	.3684	.3695	.3706
.51	.3716	.3727	.3738	.3749	.3759	.3770	.3781	.3792	.3803	.3813
.52	.3824	.3835	.3846	.3857	.3868	.3878	.3889	.3900	.3911	.3922
53	.3933	.3944	.3955	.3965	.3976	.3987	.3998	.4009	.4020	.4031
.54	.4042	.4053	.4064	.4075	.4086	.4097	.4108	.4119	.4131	.4142
.55	.4153	.4164	.4175	.4186	.4197	.4208	.4219	.4231	.4242	.4253
.56	.4264	.4275	.4287	.4298	.4309	.4320	.4331	.4343	.4354	.4365
.57	.4377	.4388	.4399	.4411	.4422	.4433	.4444	.4456	.4467	.4479
.58	.4490	.4501	.4513	.4524	.4536	.4547	.4558	.4570	.4581	.4593
.59	.4604	.4616	.4627	.4639	.4650	.4662	.4673	.4685	.4696	.4708
.59	.4004	.4010	. 2021	.4059	.4000	.4002	.4010	.4000	. 2080	.1100
.60	.4719	.4731	.4743	.4754	.4766	.4777	.4789	.4801	.4812	.4824
.61	.4835	.4847	.4859	.4871	.4832	.4894	.4906	.4917	.4929	.4941
.62	.4952	.4964	.4976	.4988	.5000	.5011	.5023	.5035	.5047	.5059
.63	.5070	.5082	.5094	.5106	.5118	.5130	.5141	.5153	.5165	.5177
.64	.5189	.5201	.5213	.5225	.5237	.5249	.5261	.5273	.5285	.529
.02	.0108		.0210	.0220		.0220	.0201		.0230	
.65	.5309	.5321	.5333	.5345	.5357	.5369	.5381	.5393	.5405	.5417
.66	.5429	.5441	.5453	.5465	.5478	.5490	.5502	. 5514	.5526	. 5538
.67	.5551	. 5563	.5575	.5587	.5599	.5612	.5624	.5636	.5648	.5660
.68	.5673	.5685	.5697	.5710	.5722	.5734	.5747	.5759	.5771	.5783
.69	,5796	.5808	.5820	.5833	.5845	.5858	.5870	.5882	.5895	.5907
70	.5920	.5932	.5944	.5957	.5969	.5932	.5994	.6007	.6019	.6032
.70	.6044	0002		.6082	.6094		.6120	.6132	.6145	.615
.70 .71 .72		.6057	.6069			.6107	.6246			
.72	.6170	.6183	.6195	.6208	.6220	.6233		.6259	.6271	.6284
.73 .74	.6296	.6309	.6322	.6334	.6347	.6360	.6373	.6385	.6398	.6411
.74	.6424	.6436	.6449	.6462	.6475	.6488	.6500	.6513	.6526	.6539
.75	.6552	.6564	.6577	.6590	.6603	.6616	.6629	.6642	. 6655	.6667
.75 .76	.6680	.6693	.6706	.6719	.6732	.6745	.6758	.6771	.6784	.6797
.77	.6810	6823	.6836	.6849	.6862	.6875	.6888	.6901	.6914	.692
78	.6940	.6953	.6967	.6980	.6993	.7006	.7019	.7032	.7045	.705
.78 .79	.7072	.7085	.7098	.7111	.7124	.7138	.7151	.7164	.7177	.719
	<b>****</b>	7017		7040	7070	7070	7000	7000	7010	700
.80	.7204	.7217	.7230	.7243	.7256	.7270	.7283	.7296	.7310	732
.81	.7336	.7350	.7363	.7376	.7389	.7403	.7416	.7430	.7443	.745
.82	.7470	.7483	.7497	.7510	.7523	.7537	.7550	.7564	.7577	.759
.83	.7604	.7618	.7631	.7645	.7658	.7672	.7685	.7699	.7712	.772
.84	.7739	.7753	.7766	.7780	.7793	.7807	.7821	.7834	.7848	.786
.85	.7875	.7889	.7902	.7916	.7929	.7943	.7957	.7970	.7984	.799
.86	.8012	.8025	.8039	.8053	.8066	.8080	.8094	.8107	.8121	.813
.87	.8149	.8163	.8176	.8190	.8204	.8218	.8232	.8245	.8259	.826
.88	.8287	.8301	.8314	.8328	.8342	.8356	.8370	.8384	.8398	.841
.89	.8426	.8440	.8453	.8467	.8481	.8495	.8509	.8523	.8537	.855
							0040		1	000
.90	.8565	.8579	.8593	.8607	.8621	.8635	.8649	.8663	.8677	.869
.91	.8706	.8720	.8734	.8748	.8762	.8776	.8790	.8804	.8818	.883
.92	.8846	.8861	.8875	.8889	.8903	.8917	.8931	.8946	.8960	.897
.93	.8988 .9131	.9002 .9145	.9017 .9159	.9031 .9174	.9045 .9188	.9059 .9202	.9073 .9216	.9088 .9231	.9102 .9245	.911
. 94	.8191	.A149	. 9109	.8114	. 9100	. 8202	.9210	. 8431	.8240	. 825
.95	.9274	.9288	.9302	.9317	.9331	.9346	.9360	.9374	.9389	.940
.96	.9418	.9432	.9446	.9461	.9475	.9490	.9504	.9519	.9533	.954
. 97	.9562	.9577	.9591	.9606	.9620	.9635	.9649	.9664	.9678	.969
.98	.9707	.9722	.9737	.9751	.9766	.9780	.9795	.9810	.9824	.983
.99	.9853				.9912	.9927	.9941			.998

Table 32 (Continued)

#### 1.47 Powers of Numbers

_	Number	.000	.001	.002	.003	.004	.005	.006	.007	.008	.009
_	1.00	1.0000	1.0015	1.0029	1.0044	1.0059	1.0074	1.0088	1.0103	1.0118	1.0133
	1.01	1 0147	1 0162	1.0177	1 0192	1 0207	1 0221	1 0236	1 0251	1 0266	1 0281
	1.02	1 0005	1 0210	1.0325	1 0240	1 0255	1 0270	1 0205	1 0200	1 0414	1 0420
		1.0290	1.0310	1.0525	1.0340	1.0500	1.0370	1.0360	1.0599	1.0214	1.0128
	1.03			1.0474							
	1.04	1.0594	1.0609	1.0624	1.0639	1.0654	1.0669	1.0684	1.0699	1.0714	1.0729
	1.05	1.0744	1.0759	1.0774	1.0789	1.0804	1.0819	1.0834	1.0849	1.0864	1.0879
	1.06	1 0804	1 0000	1.0925	1 0040	1 0055	1 0070	1 0005	1 1000	1 1015	1 1031
	1.07	1.0002	1 1001	1 1070	1.001	1.0500	1.0070	1.0800	1.1000	1 1107	1 1102
		1.1040	1.1001	1.1076	1.1091	1.1107	1.1122	1.1107	I.110Z	1.1107	1.1100
	1.08	1.1198	1.1213	1.1228	1.1244	1.1259	1.1274	1.1290	1.1305	1.1320	1.1335
	1.09	1.1351	1.1366	1.1381	1.1397	1.1412	1.1427	1.1442	1.1458	1.1473	1:1489
	1.10	1 1504	1 1510	1.1535	1 1550	1 1566	1 1591	1 1508	1 1612	1 1827	1 1643
	j.ji	1 1050	1 1070	1.1689	1 1704	1 1700	1 1795	1 1751	1 1700	1 1700	1 1707
		1.1000	1.1070	1.1000	1.1704	1.1720	1.1700	1.1/01	1.1700	1 1007	1 1050
	1.12	1.1813	1.1828	1.1844	1.1859	1.1875	1.1890	1.1906	1.1921	1.1937	1.1903
	1.13	1.1968	1.1984	1.1999	1.2015	1.2030	1.2045	1.2061	1.2076	1.2092	1.2108
	1.14	1.2124	1.2140	1.2155	1.2171	1.2187	1.2202	1.2218	1.2234	1.2249	1.2265
	1.15	1 9991	1 9907	1.2312	1 0200	1 0244	1 0250	1 0275	1 9901	1 9407	1 9499
	1.15	1 0420	1.4481	1.4014	1.2020	1.4099	1.2009	1.2010	1.4081	1 0505	1 9500
		1.2400	1.2404	1.2470	1.2480	1.2501	1.2517	1.2533	1.2049	1.2000	1.2000
	1.17	1.2596	1.2612	1.2628	1.2643	1.2659	1.2675	1.2691	1.2707	1.2723	1.2739
	1.18	1.2755	1.2771	1.2786	1.2802	1.2818	1.2834	1.2850	1.2866	1.2882	1.2898
	1.19	1.2914	1.2930	1.2946	1.2962	1.2978	1.2994	1.3010	1.3026	1.3042	1.3058
	1.20	1 2074	4 2000	1 2104	4 0100	1 0120		1 0170	1 2100	1 2000	1 9910
		1.3074	1.3090	1.3106	1.3122	1.3138	1.3154	1.3170	1.3180	1.3202	1.0210
	1.21	1.3234	1.3250	1.3266	1.3282	1.3299	1.3315	1.3331	1.3347	1.3363	1.3379
	1.22	1.3395	1.3411	1.3427	1.3444	1.3460	1.3476	1.3492	1.3508	1.3525	1.3541
	1.23	1 3557	1 3573	1.3589	1 3606	1 3822	1 3639	1 3854	1 3670	1 3687	1.3703
	1.24	1.3719	1.3736	1.3752	1.3768	1.3784	1 3801	1.3817	1.3833	1.3850	1.3866
	1.25	1.3882 1.4046	1.3809	1.3915	1.3931	1.3947	1.3964	1.3980	1.3997	1.4013	1.4029
	1.26	1.4046	1.4062	1.4079	1.4095	1.4111	1.4128	1.4144	1.4161	1.4177	1.4193
	1.27	1.4210	1.4226	1,4242	1 4259	1 4276	1 4292	1.4309	1.4325	1.4342	1.4358
	1.28	1 4275	1 4201	1.4408	1 4494	1 4441	1 4457	1 4474	1 4400	1 4507	1 4594
	1.29	1.4540	1 4557	1 4570	1.2223	1.4441	1 4400	1.4217	1 4050	1 4479	1 4600
	1.28	1.4540	1,4307	1.4573	1.4090	1.4000	1.4023	1.4040	1.4000	1.4073	1.4090
	1.30	1.4706	1.4723	1.4739 1.4906	1.4758	1.4773	1 4789	1 4806	1.4823	1.4839	1.4856
	1.31	1 4973	1 4990	1 4008	1 4023	1 4040	1 4058	1 4073	1 4000	1 5008	1 5023
	1.32	1.5040	1 5057	1 5079	1 2000	1 2107	1 2104	1 8140	1 5157	1 5174	1 5101
		1.5040	1.0007	1.5073	1.0090	1.5107	1.0124	1.0140	1.010/	1.01/4	1.0191
	1.33	1.5208	1.5224	1.5241	1.5258	1.5275	1.5292	1.5308	1.5325	1.5342	1.5359
	1.34	1.5376	1.5393	1.5241 1.5410	1.5427	1.5444	1.5461	1.5477	1.5494	1.5511	1.5528
	1.35	1 5545	1 5562	1 5579	1 5508	1 5613	1 5630	1 5647	1 5884	1 5681	1 5698
	1.36	1 5715	1 6790	1.5579 1.5749	1 5784	1 5700	1 5000	1 5017	1 5024	1 5051	1 5989
		1.0110	1.0102	1.0110	1.0700	1.0103	1.0000	1.001/	1.0004	1.0001	1.0000
	1.37	1.5885	1.5902	1.5919	1.5936	1.0803	1.5970	1.5987	1.0004	1.6021	1.0038
	1.38			1.6090							
	1.39	1.6227	1.6244	1.6261	1.6278	1.6296	1.6313	1.6330	1.6347	1.6364	1.6382
	1.40	1 6300	1 8418	1.6433	1 8450	1 8489	1 8485	1 6502	1 8510	1 6537	1 6554
	1.41	1 8571	1 4500	1 8804	1 8820	1 8840	1 6650	1 8875	1 4600	1 6710	1 8797
		1.00/1	1.0000	1.6606 1.6779	1.0023	1.0040	1.0008	1.00(0	1.0002	1.0110	1 0000
	1.42	1.0/44	1.6762	1.6779	1.6796	1.6813	1.6831	1.6848	1.6866	1.0883	1.0900
	1.43	1.6918	1.6935	1.6953	1.6970	1.6987	1.7005	1.7022	1.7040	1.7057	1.7075
			1.7109	1.7127	1.7144	1.7162	1.7179	1.7197	1.7214	1.7232	1.7249
	1.44	1.1002		1							
	1.44	1.7267	1.7284	1.7302	1.7319	1.7337	1.7354	1.7372	1.7389	1.7407	1.7425
	1.44	1.7267	1.7284	1.7302 1.7477	1.7319 1.7495	1.7337 1.7512	1.7354 1.7530	1.7372 1.7548	1.7389 1.7565	1.7407 1.7583	1.7425 1.7600
	1.44 1.45 1.46	1.7267	1.7284	1.7302 1.7477 1.7653	1.7319 1.7495	1.7337 1.7512	1.7354 1.7530	1.7372 1.7548 1.7724	1.7389 1.7565	1.7407 1.7583 1.7759	1.7425 1.7600 1.7777
	1.44 1.45 1.46 1.47	1.7267 1.7442 1.7618	1.7284 1.7460 1.7636	1.7477 1.7653	1.7495 1.7671	1.7512 1.7689	1.7530 1.7706	1.7548 1.7724	1.7565 1.7741	1.7583 1.7759	1.7600
	1.44 1.45 1.46	1.7267 1.7442 1.7618 1.7795	1.7284 1.7460 1.7636 1.7812	1.7302 1.7477 1.7653 1.7830 1.8007	1.7495 1.7671 1.7848	1.7512 1.7689 1.7865	1.7530 1.7706 1.7883	1.7548 1.7724 1.7901	1.7565 1.7741 1.7918	1.7583 1.7759 1.7936	1.7600 1.7777 1.7954

#### Table 32 (Continued)

## 1.47 Powers of Numbers Number | 000 | 001 | 002 | 003 | 004 | 005 | 006 | 007 | 008 | 000

Nun	aber	.000	'	.001	1.0	)02	١.	003	ŀ	004	ŀ	005	٠.	006		007	١.	008	. (	009
1.	50	1.814	9 1	.8167	1.5	185	1.	8202	1.	8220	11.	8238	1.	8255	1	8273	1.	8201	1.5	5300
l i.				.8345																
1 i.	59	1 850	a i	.8524	11 6	1542	ī	8560	lî.	8578	lî.	8505	i.	8813	lî.	8831	i.	QRAQ.	1 3	RAA7
l i.	52	1 9AS	s i	.8703	1 6	721	i.	2730	i.	8757	١î٠	8775	ï	2702	i.	2211	١;٠	6630	1	2047
i.	00 E4	1 000	2 1	.8883	1.0	2001	١.	0010	١.	0007	١;٠	OUEE	١:٠	01 BU	١.	00011	1:.	0048	1::3	1000
1.0	3 <del>4</del>	1.000	91	.0000	1.0	1000	١.	Oara	١.	0901	١.	0900	۱.	9819	1.	OAAT	١.	AUUA	1.1	9021
1.4	55	1 004	5 1	. 9063	1 0	<b>1</b> 0021	1	0100	1	0118	1	0136	,	0154	١,	0172	١,	0100		2000
1 1.	58	1 022	8 1	.9244	1 6	2001	ı.	0281	i.	0200	i.	0217	١.	0225	ļ:·	0252	١.	0271	1 .	2560
1 13	50	1 040	011	.9426	1.0	444	li.	0469		0490	ı:	9011	١:٠	0000 0617	۱:۰	ひとうだ	1.	DE E 2	1.7	1571
l i:	20	1.050	0 1	0440	1.8	200	١.	0011	٠.	0440	١:٠	0401	١.	80 I I	١:٠	ひひひひ	1:.	0704	1	7784
	98	1.901	S 1	.9608	11.5	1020	١.	0007	١.	0004	ŀ٠	MO01	i.	AGOA AGOA	1.	9000 A111	١.	W100	1.3	1/04
1.4	99	1.977	2 1	.9790	11.8	BUB	۱.	982 <i>1</i>	1.	9840	١.	980 <del>1</del>	μ.	9882	1.	BACC	μ.	AATR	1.1	9937
1.0	an l	1 005	E 1	.9974	1 0	1002	,	0010	•	กกจะ	,	0047	,	nner		1000		0100		1190
i:	21	0 013	213	0157	2.0	172	<u>۾</u> .	0104	٤.	0020	٤.	0021	4.	0000	6.	0002	6.	0004	2.0	120
	01	0.020	2 6	.0101	2.0	1110	٤٠	0122	٤.	0212	4.	0231	2.	0424	<b>4</b> .	0450	۲.	0471	2.5	1400
1.9	02	2.032	0 2	.0157 .0341 .0526	2.0	150U	z.	0010	z.	0500	Z.	0410	z.	0434	2.	0402	z.	04/1	Z.,	UTOU
1.0	03	2.000	0 4	.0020	Z. C	1040	۲.	0200	z.	0702	z.	0000	z.	0018	2.	0001	z.	0000	2.0	00/4
1.0	04	2.008	3 Z	.0711	Z.C	1130	z.	U/48	z.	0101	z.	0780	3.	U8U4	Z.(	0823	z.	0841	2.0	1800
1 .	er 1	9 005	ماه	.0897	0 0	1016	,	0024	0	0089	9	0079		0000	١,	1000		1000		1040
1.0	00	4.007	5 0	1004	Z.	M10	Z.	1101	٤.	1140	ď٠	1120	Z.	1177	4.	1106	2.	1028	Z.	1020
1.9	00	2.100	0 4	1004	Z. :	102	z.	1121	z.	1140	١.	1100	z.	11//	ž.	1180	z.	1214	Z.	1233
1.0	07	2.120	2 2	.1084 .1270 .1458	2.1	289	۱Ž.	1308	z.	1327	z.	1345	Z.	1304	Ž.	1383	z.	1401	Z.	1420
1.0	68	2.143	9 2	. 1458	Z. I	4/0	2.	1495	z.	1514	z.	1533	2.	1552	2.	1570	2.	1589	2.1	1608
1.0	69	2.162	7 2	. 1646	2.1	1664	2.	1683	2.	1702	2.	1721	2.	1740	2.	1759	2.	1777	2.1	1796
١.,	- ·		ماء	1004	١		_	4080	_	4004	_	***					_			
1.5	70	2.181	O Z	.1834	Z. 1	853	z.	18/2	z.	1881	ž.	1910	z.	1929	z.,	1947	z.	1966	Z.	1985
1.3	71	2.200	4 2	.2023 .2213	2.2	04Z	2.	2061	z.	2080	Ž.	2099	2.	2118	2.	2137	2.	2156	2.3	2175
1.7	72	2.219	4 2	.2213	2.2	232	2.	2251	2.	2270	2.	2289	2.	2308	2.3	2327	2.:	2346	2.2	2365
1.7	73	2.238	4 2	.2403	2.2	422	2.	2441	2.	2460	2.	2479	2.	2498	2.5	2517	2.:	2536	2.2	2555
1.7	74	2.257	4 2	.2593	2.2	612	2.	2631	2.	2650	2.	2669	2.	2689	2.:	2708	2.	2727	2.2	2746
1			_l_				_		_		L		١.						L.	·
1.7	75	2.276	5 2	.2784 .2976	2.2	803	2.	2822	2.	2841	2.	2860	2.	2880	2.5	2899	2.	2918	2.2	2937
1.3	76	2.295	6 2	.2976	2.2	995	2.	3014	2.	3033	2.	3052	2.	3072	2.3	3091	2.	3110	2.3	1129
1.7	77	2.314	8 2	.3168	2.3	187	2.	3206	2.	3225	2.	3244	2.	3264	2.3	3283	2.	3302	2.3	3322
1.3	78	2.334	1 2	.3168 .3360	2.3	380	2.	3399	2.	3418	2.	3437	2.	3457	2.5	3476	2.	3495	2.8	3515
1.3	79	2.353	4 2	.3553	2.3	573	2.	3592	2.	3611	2.	3630	2.	3650	2.3	3669	2.	3689	2.3	3708
1			ı		l															
1.8	80	2.372	7 2	.3747	2.3	766	2.	3786	2.	3805	2.	3824	2.	3844	2.3	3863	2.	3883	2.3	3902
1.8	81	2.392	2 2	.3941	2.3	960	2.	3980	2.	3999	2.	4019	2.	4039	2.4	1058	2.	4077	2.4	1097
1.8	82	2.411	6 2	.4136	2.4	155	2.	4175	2.	4194	2.	4214	2.	4233	2.4	1253	2.	4272	2.4	1292
1.8	83	2.431	1 2	.4331	2.4	350	2.	4370	2.	4389	2.	4409	2.	4428	2.4	1448	2.	4467	2.4	1487
1.8				.4526																
			-		l								Ì				l			
1.8				.4722																
1.8	86	2.489	9 2	.4919	2.4	939	2.	4958	2.	4978	2.	4998	2.	5017	2.	5037	2.	5057	2.4	5076
i.i	87	2.509	6 2	.5116	2.5	136	2.	5155	2.	5175	2.	5195	2.	5215	2.	5234	2	5254	2.	5274
1.	88	2.529	4 2	.5314	2.5	333	2.	5353	2.	5373	2.	5393	2.	5413	2.	5432	2.	5452	2.	5472
l i.i				.5512																
1			- 1		`								i							
1.5	90	2.569	0 2	.5710	2.5	730	2.	5750	2.	5770	2.	5790	2.	5810	2.	5830	2.	5849	2.4	5869
[ i.i	91	2.588	9 2	.5909 .6109	2.5	929	2.	5949	2.	5969	2.	5989	2.	6009	2.	6029	2.	6049	2.0	8069
1.5	92	2.608	9 2	.6109	2.6	1129	2.	6149	2.	6169	2.	6189	2.	6209	2.	6229	2.	6249	2.0	6269
1.	93	2.628	9 2	.6309	2.6	3329	2.	6349	2.	6369	2.	6389	2.	6409	2.	6429	2.	6449	2.0	8469
1 i.	94	2.648	9 2	.6309 .6509	2.6	3529	2.	6550	2.	6570	2.	6590	2.	6610	2.	6630	2.	6650	2.	8670
1					1												l			
1.	95	2.669	0 2	.6710	2.6	3730	2.	6751	2.	6771	2.	6791	2.	6811	2.	6831	2.	6851	2.0	6871
1 i.	96	2.680	2 2	.6912	2.6	1932	2	6952	2	6972	2	6993	2	7013	2	7033	2	7053	2	7073
	97	2 700	14 2	7114	2	7134	2	7154	2	7174	2	7105	2	7215	2	7235	2.	7255	2	727A
	98	2 720	ล์จ	.7114	2	7336	2	7357	2	7377	2	7307	2	7419	2	7439	2	7459	2	7479
	99	2 74	10 2	.7519	2	7530	2	7560	2	7580	2	7600	2.	7621	2	7841	2	7881	2	7882
		~*	0		12.		٣.	.000	٣.	.000	۳.	. 000	۳.	. 021	۳.	. 021	۳.			
-			_																	

Table 32 (Concluded)

#### 1.47 Powers of Numbers

Number	.00	.01	.02	.03	.04	.05	.06	.07	.08	.09
2.0 2.1 2.2 2.3 2.4	2.770 2.976 3.187 3.402 3.622	2.791 2.997 3.208 3.424 3.644	2.811 3.018 3.230 3.446 3.666	2.832 3.039 3.251 3.468 3.688	2.852 3.060 3.272 3.490 3.711	2.873 3.081 3.294 3.511 3.733	2.893 3.102 3.315 3.533 3.756	2.914 3.123 3.337 3.555 3.778	2.935 3.144 3.359 3.578 3.801	2.955 3.166 3.380 3.600 3.823
2.5 2.6 2.7 2.8 2.9	3.846 4.074 4.306 4.543 4.783	3.868 4.097 4.330 4.567 4.808	3.891 4.120 4.353 4.591 4.832	3.914 4.143 4.377 4.615 4.856	3.937 4.166 4.400 4.639 4.881	3.959 4.190 4.424 4.663 4.905	3.982 4.213 4.448 4.687 4.930	4.005 4.236 4.471 4.711 4.954	4.495 4.735	4.519 4.759
3.0 3.1 3.2 3.3 3.4	5.028 5.276 5.528 5.784 6.043	5.052 5.301 5.553 5.810 6.070	5.077 5.326 5.579 5.835 6.096	5.102 5.351 5.604 5.861 6.122	5.127 5.376 5.629 5.887 6.148	5.151 5.402 5.655 5.913 6.174	5.176 5.427 5.681 5.939 6.201	5.201 5.452 5.707 5.965 6.227	5.226 5.477 5.732 5.991 6.254	5.251 5.503 5.758 6.017 6.280
3.5 3.6 3.7 3.8 3.9	6.306 6.573 6.843 7.117 7.394	6.333 6.600 6.870 7.144 7.422	6.360 6.627 6.898 7.172 7.450	6.386 6.654 6.925 7.200 7.478	6.413 6.681 6.952 7.227 7.506	6.439 6.709 6.980 7.255 7.534	6.466 6.735 7.007 7.283 7.562	6.493 6.762 7.034 7.310 7.590	6.519 6.789 7.062 7.338 7.618	6.816 7.089 7.366
4.0 4.1 4.2 4.3 4.4	7.674 7.958 8.245 8.535 8.828	7.702 7.986 8.274 8.564 8.858	7.731 8.015 8.303 8.593 8.887	7.759 8.044 8.331 8.623 8.917	7.787 8.072 8.360 8.652 8.947	7.816 8.101 8.389 8.681 8.976	7.844 8.130 8.418 8.711 9.006	7.872 8.158 8.448 8.740 9.036	8.769	7.929 8.216 8.506 8.799 9.095
4.5 4.6 4.7 4.8 4.9	9.125 9.424 9.727 10.033 10.342	9.155 9.455 9.758 10.064 10.373	9.485 9.788	9.214 9.515 9.819 10.125 10.435	9.244 9.545 9.849 10.156 10.466	9.274 9.575 9.880 10.187 10.497	10.218	9.334 9.636 9.941 10.249 10.560	9.666 9.972 10.280	9.697 10.002 10.311
5.0 5.1 5.2 5.3 5.4	11.286	11.318	11.349	11.381	10.779 11.095 11.413 11.735 12.060	11.445	11.478	11.510	11.542	11.897
5.5 5.6 5.7 5.8 5.9	12.916	12.950 13.284	12.983 13.318	13.016 13.352	12.387 12.717 13.050 13.385 13.724	13.083 13.419	13.117 13.453	13.150 13.487	13.184 13.520	13.217
6.0 0.1 6.2 6.3 6.4	14.270 14.616	14.305 14.650	14.339 14.685	14.374 14.720 15.068	14.064 14.408 14.754 15.103 15.455	14.443 14.789 15.138	14.477 14.824 15.173	14.512 14.859 15.208	14.546 14.894 15.243	14.581 14.929 15.279
6.5 6.6 6.7 <del>6</del> .8 6.9	16.023 16.381 16.741	16.058 16.417 16.778	16.094 16.453 16.814	16.130 16.489 16.850	15.809 16.166 16.525 16.886 17.250	16.201 16.561 16.923	16.237 16.597 16.959	16.273 16.633 16.995	16.309 16.669 17.032	16.705 17.068

Table 33.—Discharge in Cubic Feet per Second per Foot of Length, Over Sharp-crested Weirs, Without Velocity of Approach Correction, by the Formula  $Q=3.34\ H^{1.47}$ 

Head in feet	.000	.001	.002	.003	.004	.005	.006	.007	.008	.009
.00	.0000	.0001	.0004	.0007	.0010	.0014	.0018	.0023	.0028	.0033
.01	.0038	.0044	.0050	.0056	.0063			.0084	.0091	.0098
.02	.0106	.0114	.0122	.0131	.0139			.0164	.0174	.0183
.03	.0193	.0202	.0212	.0222	.0232	.0242		.0262	.0273	.0283
.04	.0294		.0316	.0327	.0338			.0373	.0385	.0397
.05	.0409	.0421	.0433	.0445	.0457	.0470	.0483	.0495	.0508	.0521
.06	.0534		.0561	.0574	.0587	.0601		.0628	.0642	.0656
.07	.0670	.0684	.0698	.0713	.0727	.0741		.0771	.0786	.0800
.08	.0815		.0345	.0861	.0876	.0891		.0922	.0938	.0954
.09	.0969		.1001	.1017	.1033	.1050		.1082	.1099	.1115
1	1				l	ł				
.10	.1132	.1148	.1165	.1182	.1199	.1216		.1250	. 1267	.1285
.11	.1302	.1319	.1337	.1355	.1372	.1390		.1426	. 1444	. 1462
.12	.1480	.1498	.1516	.1534	.1553	.1571	.1590	.1608	. 1627	.1646
.13	.1664	.1683	.1702	.1721	.1740	.1759		.1798	.1817	.1836
.14	.1856	.1875	.1895	. 1915	.1934	.1954	.1974	.1994	.2014	.2034
.15	.2054	.2074	.2094	.2115	.2135	.2155	.2176	.2196	.2217	.2238
.16	.2258	.2279	.2300	.2321	.2342	.2363	.2384	.2405	.2426	.2448
.17	.2469	.2490	.2512	.2533	.2555	.2576	.2598	2620	.2642	.2664
.18	.2685	.2707	.2729	.2751	.2773	.2796	.2818	.2840	.2863	.2885
.19	.2907	.2930	.2953	.2975	.2998	.3021	.3043	.3066	.3089	.3112
.20	.3135	.3158	.3181	.3205	.3228	.3251	.3274	.3298	.3321	.3345
.21	.3368	.3392		.3439	.3463	.3487		.3535	.3559	.3583
.22	.3607	.3631	.3416 .3655	.3679	.3703	.3728	.3511 .3752	.3777	.3801	.3326
23	.3850									
.24	.4099	.3875	.3900	.3924	.3949 .4200	.3974	.3999	.4024	.4049	.4074
ı		.4124	.4149	.4174		.4225	.4250	.4276	.4301	.4327
.25	.4352	.4378	.4404	.4429	.4455	.4481	.4507	.4533	.4559	.4585
.26	.4611	.4637	.4663	.4689	.4715	.4741	.4768	.4794	.4821	.4847
.27	.4874	.4900	.4927	.4953	.4980	. 5007	.5034	.5060	.5087	.5114
.28	.5141	.5168	.5195	.5222	.5250	.5277	.5304	.5331	.5359	.5386
.29	.5413	.5441	.5468	.5496	.5524	.5551	.5579	.5607	.5634	.5662
.30	.5690	.5718	.5746	.5774	. 5802	.5830	.5858	.5886	.5915	.5943
.31	.5971	.6000	.6028	.6056	.6084	.6113	.6142	.6170	.6199	.6228
.32	.6256	.6285	.6314	.6343	.6372	.6401	.6430	. 6459	.6488	.6517
.32 .33	.6546	. 6575	.6601	.6633	.6663	.6692	.6721	.6751	.6780	.6810
.34	.6840	.6869	.6899	.6928	.6958	.6988	.7018	.7047	.7077	.7107
.35	.7137	.7167	.7197	.7227	.7257	.7287	.7318	.7348	.7378	.7409
.36	.7439	.7469	.7500	.7530	.7561	7591	.7622	.7652	.7683	.7714
37	.7745						.7930		.7992	
.38	.8054	.7775 .8085	.7806 .8117	.7837	.7868 .8179	.7899 .8210	.8242	.7961 .8273	.8305	.8023 .8336
.39		.8399		.8148		0510	.8558			
ľ	.8368		.8431	.8463	.8494	.8526		.8590	.8621	.8653
.40	.8685	.8717	.8749	.8781	.8813	.8845	.8877	.8909	.8942	.8974
.41	.9006	.9038	.9071	.9103	.9136	.9168	.9201	.9233	.9266	.9298
.42	.9331	.9364	.9396	.9429	.9462	.9495	.9528	.9561	. 9593	.9626
.43	.9659	.9692 1.0025	.9725	.9759	.9792	.9825	.9858	.9891	.9925	.9958
.44	.9991	1.0025	1.0058	1.0092	1.0125	1.0159	1.0192	1.0226	.0259 1	.0293
.45	1.0327	1.0361	1.0394	1.0428	1.0462	1.0496	1.0530	1.0564	.0598 1	.0632
.46	1.0666	1.0700	1.0734	1.0768	1.0803	1.0837	1.0871	L 0905 1	.0940 1	.0974
.47	1 1000	1.1043	1.1077	11112	1 1147	1 1191	1 1216	1 1250 1	1285 1	1320 (
.48	1.1355	1.1389	1.1424	1.1459	1.1494	1.1529	1.1564	1.1599	. 1634 1	. 1669
.49	1.1704	1.1739	1.1774	1.1809	1.1845	1.1880	1.1915	1.1950	.1986 1	.2021
L										

Table 40 (Concluded)

#### THREE-HALVES POWERS OF NUMBERS

24.78 34.78 38.86	88.78 88.78 88.88	58.78 58.78 58.88 38.88	37.78 37.78 38.29 38.80	57.78 87.78	81.78 88.78 91.88	81.78 80.78 \$1.88 \$1.88	80.78 88.78 88.88	\$0.78 \$8.78 \$0.88 \$8.84	89.38 89.78 89.78	1.11 2.11 8.11
36.98 35.94 35.94 36.43	35.39 35.39 35.38 36.38	28.46 48.38 48.38 58.38	08.46 08.38 82.38 82.38	35.25	35.20 35.20 35.69 36.18	36.15 36.15 36.14 36.14		30.38 30.38 30.38 36.38	35.99 35.99 35.99 35.99	8.01 8.01 8.01 9.01
89.58 89.49 89.46	32.96 33.44 33.93	32.91 38.88 38.88	38.28 38.88 38.88 38.88	28.28 08.88 87.88	77.28 32.88 87.88	27.28 02.88 88.88 71.48	\$1.55 \$1.55 \$0.55	23.28 01.88 93.88	88.28 88.08 88.84 84.02	10.2 10.3 10.4
88.18 88.18 80.28 83.28	31.06 31.53 32.00 34.25	10.18 84.18 84.18 84.18	30.96 84.18 19.18 85.28	86.18 88.18	48.08 48.18 18.18 82.28	28.08 92.18 77.18 42.28	80.30 30.77 42.18 27.18	87.08 02.18 78.18 31.28	88.08 81.18 83.18 81.08	8.6 6.6 0.01 1.01
52.62 07.62 01.08 69.08	29.19 30.12 30.12 30.13	29.14 20.07 30.07 44.05	20.02 30.02 30.49	29.05 18.92 88.92	29.62 74.62 89.62 04.08	29.82 29.82 88.92 38.05	18.82 78.92 48.92	28.82 29.33 30.26	28.82 29.28 29.74 30.21	2.6 9.6 9.6
86.92 11.72 11.72 28.82 77.82	16.92 38.72 18.72 28.27 57.82	28.87 1 27.72 27.73 28.82 83.82	72.72 27.72 81.82 81.82	82.72 88.72 81.82	27.18 27.63 27.63 28.09 28.54	27.14 27.59 27.59 28.04 28.50	27.09 27.54 28.00 28.45	26.60 27.04 27.50 27.95 14.85	27.00 27.45 27.45 28.36	0.6 1.6 2.6 2.6
25.18 25.62 26.06 26.06 80.82	25.13 26.02 26.46 26.46	25.09 25.32 36.37 26.32 24.32	25.04 25.48 26.37 26.37 26.37	25.00 25.44 25.33 26.33 26.33	24.96 25.40 26.28 26.28 26.28	24.91 25.35 26.24 26.24 26.24	24.87 25.31 26.19 26.19 26.19	24.83 25.26 25.71 26.15	24.78 25.22 25.66 26.10 26.55	3.8 3.8 7.8 8.8 8.8
23.01 23.87 24.30 24.30	22.97 23.40 24.83 24.69	22.93 23.78 24.22 24.65	22.88 23.31 24.17 24.17 24.61	22.84 23.27 23.70 24.13 24.56	22.80 23.65 24.09 24.65	22.75 23.18 23.61 24.04 24.48	17.22 18.23.14 28.67 24.00	22.67 23.10 23.62 23.96 24.39	22.63 23.05 23.91 24.35 24.35	0.8 1.8 2.8 5.8 5.8
16.05 21.32 21.32 21.32 83.53	20.87 21.28 21.70 22.12 22.54	20.83 21.24 21.66 22.08 22.50	20.79 21.20 21.62 22.04 22.46	20.75 21.16 21.58 21.58 21.58	20.70 21.12 21.63 21.95 22.37	20.66 21.08 21.49 21.91 22.33	20.02 21.03 21.45 22.29	20.58 20.99 21.41 21.83 22.25	20.54 20.95 21.37 21.78 22.20	8.7 7.7 8.7 9.7
88.81 82.61 80.02 00.02	18.84 19.24 19.64 20.05 20.46	18.80 19.20 19.60 20.01 20.02	85.97 19.91 19.97 19.97 85.02	27.81 21.91 20.81 20.83 56.93	80.81 19.08 19.89 19.89 20.29	18.64 19.85 19.85 20.25	00.81 00.01 09.01 08.01 12.02	8.81 18.96 19.36 19.76 71.02	18.52 18.92 19.32 19.72 27.91	0.7 1.7 2.7 8.7 4.7
26.91 05.71 60.71 80.81 84.81	88.01 17.26 18.05 18.08 18.08	98.91 22.71 28.71 18.01 18.40	08.81 83.71 83.71 79.71 88.81	97.91 31.71 43.71 43.71 28.81	27.81 11.71 03.71 68.71 82.81	16.69 17.07 17.04 18.71 18.24	66.61 17.03 17.42 18.71 02.81	16.81 86.71 77.71 81.81	16.91 16.96 17.34 17.71 18.12	6.9 7.9 8.9 8.9
60.	80.	70.	80.	80.	₩.	80.	20.	10.	00.	.oN

## Гаваж 41.—Ревсеитлов от Еввов ии Discharges, гов Direserry Discharges Оуев Вестанцила Weire от Different Lengths алр Right-Augled V можен William Pressert

#### V-иотси WEIRS, RESULTING FROM VARIOUS ERRORS IN MEASUR-ING HEAD

	T	T	1	$\overline{}$	7	ī	1	1		1	1
1.0 3.0 1.0 5.0	83. S	2.0 9.0 8.1 1.9	28.0	1.0 8.0 1.1 8.8	1.32	1.0 8.0 8.0 0.8	34.5	1.0 2.0 4.0 8.1	£6.8	0.001 0.005 0.010 0.050	
1.0 7.0 3.1 8.7	3T.1	8.0 1.7 4.8 17.0	37.0	2.0 1.1 1.2 1.2	17.0	1.0 8.0 1.1 8.3	28.1	1.0 4.0 7.0 3.8	11.5	0.001 0.005 0.005 0.005 0.005	1
2.0 9.9 1.9	<b>28.</b> 1	3.0 7.2 3.3 8.72	72.0	8.0 1.7 4.8 17.0	77.0	2.0 9.0 8.1 1.9	28.0	1.0 8.0 1.1 8.8	2E . I	0.001 0.005 0.010 0.050	1
8.0 1.2 8.2 8.2	00.1	8.0 8.4 7.8 7.34	<b>41.0</b>	3.0 T.2 3.3 8.72	T2.0	0.8 1.6 8.0 14.7	19.0	2.0 9.0 8.1 1.9	28.0	100.0 300.0 010.0 080.0	
9.6 8.6 8.6 18.0	<b>69</b> .0	0.1 1.8 4.01 3.68	60.0	0.1 0.3 1.01 6.83	31.0	8.0 7.2 3.3 8.72	T2.0	8.0 7.1 4.8 0.71	₽₽·0	0.001 0.005 0.010 0.050	
8.0 8.4 8.88	<b>23</b> .0	2.61 13.2 26.6	<b>80.0</b>	3.1 1.8 4.31 3.68	60.0	7.8 7.8 9.9	71.0	3.0 T.2 3.3 8.72	72.0	0.001 0.005 0.010 0.050	İ
9.0 3.4 1.6	72.0	-	20.0		<b>80</b> .0	1	9 <b>0</b> .0			0.00 0.00 0.00 0.010	01.0
2.1 1.8 2.21	0£.0	0.21 0.88 0.44.0	10.0	0.8 0.14 0.38	20.0	4.0 2.13 8.54	<b>₽0</b> .0	8.2 13.2 8.61		100.0 800.0 010.0	f
Per cent. error in Q	Head	Ter taes. Torre orrei	Head	Per cent. torre in Q	Head	Per cent. error p ni	Head	Per cent. torre or no	Head	1993	-brooses 1991 Q
ght- gled otoh ier	u-V ang	nia gnol .		rie gnol		eir Iong		rie gaol		TOTIE ni başd	9g1afoaiQ

#### TABLE 33 (Continued)

#### DISCHARGE IN CUBIC FEET PER SECOND PER FOOT OF LENGTH, OVER SHARP-CRESTED WEIRS, WITHOUT VELOCITY OF APPROACH CORRECTION, BY THE FORMULA

 $Q = 3.34 \ H^{1.47}$ 

Head in feet	.000	.001	.002	.003	.004	.005	.006	.007	.008	.009
.50 .51 .52 .53	1.2413 1.2772 1.3135	1.2449 1.2808 1.3171	1.3208	1.2520 1.2881 1.3244	1.2556 1.2917 1.3281	1.2592 1.2953 1.3318	1.2628 1.2990 1.3354	1.2664 1.3026 1.3391	1.2700 1.3062 1.3427	
.54 .55 .56 .57 .58	1.3870 1.4242 1.4618 1.4996	1.3907 1.4280 1.4656 1.5034	1.3944 1.4317 1.4693 1.5072	1.3981 1.4355 1.4731 1.5111	1.4019 1.4392 1.4769 1.5149	1.4056 1.4430 1.4807 1.5187	1.4093 1.4467 1.4844 1.5225	1.4130 1.4505 1.4882 1.5263	1.4168 1.4543 1.4920 1.5301	1.4205 1.4580 1.4958 1.5340
.59 .60 .61 .62 .63	1.5763 1.6150 1.6541	1.5801 1.6189 1.6580	1.5455 1.5840 1.6228 1.6619 1.7014	1.5879 1.6267 1.6659	1.5917 1.6306 1.6698	1.5956 1.6345 1.6737	1.5995 1.6384 1.6777	1.6034 1.6423 1.6816	1.6072 1.6463 1.6856	1.6111 1.6502 1.6895
.64 .65 .66 .67 .68	1.7731 1.8133 1.8539	1.7771 1.8174 1.8579	1.7411 1.7811 1.8214 1.8620 1.9029	1.7851 1.8255 1.8661	1.7891 1.8295 1.8701	1.7932 1.8336 1.8742	1.7972 1.8376 1.8783	1.8012 1.8417 1.8824	1.8052 1.8457 1.8865	1.8093 1.8498 1.8906
.69 .70 .71 .72 .73	1.9358 1.9771 2.0188 2.0607	1.9399 1.9813 2.0230 2.0650	1.9440	1.9482 1.9896 2.0314 2.0734	1.9523 1.9937 2.0356 2.0776	1.9564 1.9979 2.0397 2.0818	1.9606 2.0021 2.0439 2.0860	1.9647 2.0063 2.0481 2.0903	1.9688 2.0104 2.0523 2.0945	1.9730 2.0146 2.0565 2.0987
.74 .75 .76	2.1454 2.1882 2.2312 2.2745	2.1497 2.1925 2.2355 2.2788	2.1540 2.1968 2.2399 2.2832	2.1582 2.2011 2.2442 2.2875	2.1625 2.2054 2.2485 2.2919	2.1668 2.2097 2.2528 2.2962	2.1711 2.2140 2.2572 2.3006	2.1753 2.2183 2.2615 2.3050	2.1796 2.2226 2.2658 2.3093	2.1839 2.2269 2.2702 2.3137
.78 .79 .80 .81 .82	2.3619 2.4060 2.4503	2.3663 2.4104 2.4547	2.3268 2.3707 2.4148 2.4592 2.5038	2.3751 2.4192 2.4636	2.3795 2.4237 2.4681	2.3839 2.4281 2.4726	2.3883 2.4325 2.4770	2.3927 2.4370 2.4815	2.3971 2.4414 2.4860	2.4015 2.4458 2.4904
.83 .84 .85 .86	2.5398 2.5849 2.6302	2.5443 2.5894 2.6348	2.5488 2.5939 2.6393 2.6850 2.7309	2.5533 2.5985 2.6439	2.5578 2.6030 2.6484	2.5623 2.6075 2.6530	2.5668 2.6121 2.6575	2.5713 2.6166 2.6621	2.5758 2.6211 2.6666	2.5803 2.6257 2.6712
.87 .88 .89 .90	2.7678 2.8142 2.8608	2.7724 2.8188 2.8654	2.7309 2.7771 2.8235 2.8701 2.9170	2.7817 2.8281 2.8748	2.7863 2.8328 2.8795	2.7910 2.8374 2.8842	2.7956 2.8421 2.8888	2.8002 2.8468 2.8935	2.8049 2.8514 2.8982	2.8095 2.8561 2.9029
.92 .93 .94	2,9547 3,0020 3,0496 3,0974	2.9594 3.6968 3.0544 3.1022	2.9642 3.0115 3.0591 3.1070	2.9689 3.0163 3.0639 3.1118	2.9736 3.0210 3.0687 3.1166	2.9783 3.0258 3.0735 3.1214	2.9831 3.0306 3.0783 3.1262	2.9878 3.0353 3.0830 3.1310	2.9926 3.0401 3.0878 3.1358	2.9973 3.0448 3.0926 3.1406
.96 .97 .98 .99	3.1455 3.1937 3.2423	3.1503 3.1986 3.2471	3.1551 3.2034 3.2520 3.3008	3.1599 3.2083 3.2569	3.1648 3.2131 3.2617	3.1696 3.2180 3.2666	3.1744 3.2228 3.2715	3.1792 3.2277 3.2764	3.1841 3.2325 3.2813	3.1889 3.2374 3.2861

#### TABLE 33 (Continued)

#### DISCHARGE IN CUBIC FEET PER SECOND PER FOOT OF LENGTH, OVER SHARP-CRESTED WEIRS, WITHOUT VELOCITY OF APPROACH CORRECTION, BY THE FORMULA

 $Q = 3.34 H^{1.47}$ 

Head in feet	.000	.001	.002	.003	.004	.005	.006	.007	.008	.009
1.00 1.01 1.02 1.03 1.04	3.3892 3.4387 3.4883	3.3449 3.3941 3.4436 3.4933 3.5432	3.3991 3.4486 3.4983	3.4040 3.4535 3.5033	3.4090 3.4585 3.5083	3.4139 3.4635 3.5132	3.4188 3.4684 3.5182	3.4238 3.4734 3.5232	3.4287 3.4784 3.5282	3.4337 3.4834 3.5332
1.05 1.06 1.07 1.08 1.09	3.5884 3.6387 3.6893 3.7401	3.5934 3.6437	3.5984 3.6488 3.6994 3.7503	3.6034 3.6538 3.7045 3.7554	3.6085 3.6589 3.7096 3.7605	3.6135 3.6640 3.7146 3.7656	3.6185 3.6690 3.7197 3.7707	3.6236 3.6741 3.7248 3.7758	3.6286 3.6791 3.7299 3.7809	3.6336 3.6842 3.7350 3.7860
1.10 1.11 1.12 1.13 1.14	3.8423 3.8938 3.9455 3.9974	3 8475	3.8526 3.9041 3.9558 4.0078	3.8577 3.9093 3.9610 4.0130	3.8629 3.9144 3.9662 4.0182	3.8680 3.9196 3.9714 4.0234	3.8732 3.9248 3.9766 4.0286	3.8783 3.9299 3.9818 4.0338	3.8835 3.9351 3.9870 4.0390	3.8886 3.9403 3.9922 4.0442
1.15 1.16 1.17 1.18 1.19	4.1018 4.1543 4.2071 4.2600	4.1070 4.1596 4.2124 4.2653 4.3185	4.1123 4.1649 4.2176 4.2706	4.1175 4.1701 4.2229 4.2760	4.1228 4.1754 4.2282 4.2813	4.1280 4.1807 4.2335 4.2866	4.1333 4.1859 4.2388 4.2919	4.1385 4.1912 4.2441 4.2972	4.1438 4.1965 4.2494 4.3025	4.1490 4.2018 4.2547 4.3079
1.20 1.21 1.22 1.23 1.24	4.3666 4.4202 4.4740 4.5280	4.3719	4.3773 4.4309 4.4848 4.5388	4.3826 4.4363 4.4902 4.5443	4.3880 4.4417 4.4956 4.5497	4.3934 4.4471 4.5010 4.5551	4.3987 4.4524 4.5064 4.5605	4.4041 4.4578 4.5118 4.5659	4.4094 4.4632 4.5172 4.5714	4.4148 4.4686 4.5226 4.5768
1.25 1.26 1.27 1.28 1.29	4.6366 4.6913 4.7461 4.8011	4.6421 4.6967 4.7516 4.8067 4.8619	4.6476 4.7022 4.7571 4.8122	4.6530 4.7077 4.7626 4.8177	4.6585 4.7132 4.7681 4.8232	4.6639 4.7187 4.7736 4.8287	4.6694 4.7241 4.7791 4.8343	4.6749 4.7296 4.7846 4.8398	4.6803 4.7351 4.7901 4.8453	4.6858 4.7406 4.7956 4.8509
1.30 1.31 1.32 1.33 1.34	4.9675 5.0233 5.0793	4.9174 4.9730 5.0289 5.0850 5.1412	4.9786 5.0345 5.0906	4.9842 5.0401 5.0962	4.9898 5.0457 5.1018	4.9954 5.0513 5.1074	5.0009 5.0569 5.1131	5.0065 5.0625 5.1187	5.0121 5.0681 5.1243	5.0177 5.0737 5.1300
1.35 1.36 1.37 1.38 1.39	5.2487 5.3055 5.3625	5.1977 5.2543 5.3112 5.3682 5.4255	5.2600 5.3169 5.3739	5.2657 5.3226 5.3797	5.2714 5.3283 5.3854	5.2770 5.3340 5.3911	5.2827 5.3397 5.3968	5.2884 5.3454 5.4026	5.2941 5.3511 5.4083	5.2998 5.3568 5.4140
1.40 1.41 1.42 1.43 1.44	5.5348 5.5926 5.6505	5.4829 5.5405 5.5983 5.6564 5.7146	5.5463 5.6041 5.6622	5.5521 5.6099 5.6680	5.5578 5.6157 5.6738	5.5636 5.6215 5.6796	5.5694 5.6273 5.6854	5,5752 5,6331 5,6912	5.5810 5.6389 5.6971	5.5868 5.6447 5.7029
1.45 1.46 1.47 1.48 1.49	5.7671 5.8257 5.8844 5.9434	5.7729 5.8315 5.8903 5.9493	5.7788 5.8374 5.8962 5.9552	5.7846 5.8433 5.9021 5.9611	5.7905 5.8491 5.9080 5.9670	5.7963 5.8550 5.9139 5.9729	5.8022 5.8609 5.9198 5.9788	5.8081 5.8668 5.9257 5.9847	5.8139 5.8727 5.9316 5.9906	5.8198

#### Table 33 (Continued)

## DISCHARGE IN CUBIC FEET PER SECOND PER FOOT OF LENGTH, OVER SHARP-CRESTED WEIRS, WITHOUT VELOCITY OF APPROACH CORRECTION, BY THE FORMULA

 $Q = 3.34 \ H^{1.47}$ 

Head in feet	.000	.001	.002	.003	.004	.005	.006	.007	.008	.009
1.50 1.51 1.52 1.53	6.1213	6.1272 6.1869	6.1332 6.1929	6.1392 6.1989	6.0856 6.1451 6.2049 6.2648	6.1511	6.1571 6.2169	6.1630 6.2229	6.1690 6.2288	6.1750 6.2348
1.54 1.55 1.56 1.57	6.3611 6.4215 6.4821	6.3672 6.4276 6.4882	6.3732 6.4336 6.4943	6.3792 6.4397 6.5004	6.3250 6.3853 6.4458 6.5064	6.3913 6.4518 6.5125	6.3973 6.4579 6.5186	6.4034 6.4639 6.5247	6.4094 6.4700 6.5307	6.4155 6.4761 6.5368
1.58 1.59 1.60 1.61	6.6039 6.6650 6.7264	6.6100 6.6712 6.7325	6.6161 6.6773 6.7386	6.6222 6.6834 6.7448	6.5673 6.6283 6.6895 6.7509	6.6344 6.6957 6.7571	6.6406 6.7018 6.7632	6.6467 6.7079 6.7694	6.6528 6.7141 6.7755	6.6589 6.7202 6.7817
1.62 1.63 1.64 1.65 1.66	6.7879 6.8495 6.9114 6.9734	6.8557 6.9176 6.9797	6.8619 6.9238 6.9859	6.8681 6.9300 6.9921	6.8743 6.9362 6.9983	6.8804 6.9424 7.0045	6.8866 6.9486 7.0108	6.8928 6.9548 7.0170	6.8990 6.9610 7.0232	6.9052 6.9672 7.0294
1.66 1.67 1.68 1.69	7.0357 7.0981 7.1606 7.2234 7.2863	7.1043 7.1669 7.2297	7.1106 7.1732 7.2359	7.1168 7.1794 7.2422	7.1231 7.1857 7.2485	7.1293 7.1920 7.2548	7.1356 7.1982 7.2611	7.1418 7.2045 7.2674	7.1481 7.2108 7.2737	7.1544 7.2171 7.2800
1.70 1.71 1.72 1.73 1.74	7.2863 7.3494 7.4126 7.4761 7.5397	7.3557 7.4190 7.4824	7.3610 7.4253 7.4888	7.3673 7.4317 7.4951	7.3737 7.4380 7.5015	7.3800 7.4443 7.5079	7.3863 7.4507 7.5142	7.3926 7.4570 7.5206	7.3990 7.4634 7.5270	7.4053 7.4697 7.5333
1.75 1.76 1.77 1.78 1.79	7.6035 7.6674 7.7316 7.7959 7.8603	7.6738 7.7380 7.8023	7.6802 7.7444 7.8087	7.6867 7.7508 7.8152	7.6931 7.7573 7.8216	7.6995 7.7637 7.8281	7.7059 7.7701 7.8345	7.7123 7.7765 7.8410	7.7187 7. <b>7</b> 830 7.8474	7.7251 7.7894 7.8539
1.80 1.81 1.82 1.83 1.84	7.9250 7.9898 8.0547 8.1199 8.1852	7.9963 8.0612 8.1264	8.0027 8.0678 8.1329	8.0092 8.0743 8.1395	8.0157 8.0808 8.1460	8.0222 8.0873 8.1525	8.0287 8.0938 8.1590	8.0352 8.1003 8.1656	8.0417 8.1068 8.1721	8.0482 8.1134 8.1786
1.85 1.86 1.87 1.88	8.2507 8.3163 8.3821 8.4481 8.5142	8.3887 8.4547	8.3953 8.4613	8.4019 8.4679	8.4085 8.4745	8.4151 8.4811	8.4217 8.4877	8.4283 8.4944	8.4349 8.5010	8.4415 8.5076
1.90 1.91 1.92 1.93	8.5805 8.6470 8.7136 8.7804	8.5872 8.6537 8.7203 8.7871	8.5938 8.6603 8.7270 8.7938	8.6004 8.6670 8.7336 8.8005	8.6071 8.6736 8.7403 8.8072	8.6137 8.6803 8.7470 8.8139	8.6204 8.6870 8.7537 8.8206	8.6270 8.6936 8.7604 8.8273	8.6337 8.7003 8.7670 8.8340	8.6403 8.7070 8.7737 8.8407
1.94 1.95 1.96 1.97 1.98	8.8474 8.9145 8.9818 9.0492 9.1168	8.9212 8.9885 9.0560	8.9279 8.9953 9.0627	8.9347 9.0020 9.0695	8.9414 9.0087 9.0762	8.9481 9.0155 9.0830	8.9549 9.0222 9.0898	8.9616 9.0290 9.0965	8.9683 9.0357 9.1033	8.9 <b>750</b> 9.0425 9.1101
	9.1108									

#### SHYRP-CRESTED WEIRS

#### TABLE 40 (Continued)

#### THREE-HALVES POWERS OF NUMBERS

16.53	16.50	97.91	16.42	88.91	16.34				61.91	
81.81		80.81	10.81		96.31		68.61		18.31	
87.61			99.61					15.10	70.81 15.44	
80.81 04.81		96.41	14.92						02.11	
1 00 2.	1	1	1		1	1				
99.41					84.41				14.33	6.3
62.41									13.97	
78.81 89.81		98.81				87.81	89.81	92.81 13.64	13.25 13.61	
23.81									12.90	
		1		1	1	1	1	1	1	
98.21			12.41	78.21 27.21	48.21 69.21				12.20	8.8 4.8
12.21			90.21	12:03					88.11	
28.11	62-11		27.11	69.11	69.11			33.11	11.52	1.6
84.11	34.II	24.11	85.11	38.11	18.11	82.11	11.25	12.11	81.11	0.8
61.11	11.11	80.11	60.11	10.11	86.01	96 01	16.01	88.01	28.0I	- 6.₽
18.01		80.11	17.01	89.01	80.01			99.01	10.52	8.4
84.01	64.01							10.22		7.4
91.01	21.01	60.01			966.6		9.930	868.6	998.6	9.4
148.6	208.6	077.6	884.6	907.6	₹49.6	249.6	9.610	873.9	912.6	g. jr
9.514	281.6	154.8	81¥.8	788.6	9.356	9.324	262.6	192.6	052.8	₽·₽
861.6	491.6	9.135	₱01.6	£40.6	110.6	9.010	646.8	8.848	719.8	€.4
988.8	338.8	₽28.8	8,793	297.8	167.8	007.8	699.8	8.638	700.8	2.4 ~
773.8	142.8	112.8	181.8	151.8 154.8	021.8 \$.424	665.8	696.8 8.363	050.8 255.8	000.8 205.8	0.4
626 8	110 8	116 8	191 9	031.9	061 8	000 8	ס טפט	060 8	w o	"
079.7	016.7	018.7	088.7	038.7	128.7	167.7	194.7	287.7	207.7	9.8
278.7	549.7	519.7	186.7	1.554	7.525	96₽.7	99₽.7	754.7	804.7	8.8
880.7 878.7	948.7	150.7	7.002	292.7	6.945	916.8 1.204	888.8	928.8 941.7	058.8 711.7	8.8 7.8
208.5	₹2.5	8.745	717.5	689.9	999.9	8.632	109.8	9.576	816.8	3.5
6.520	\$12.8 8.492	81.8 484.8	981.8 6.136	281.8 804.8	POI.8	235.8 835.8	6.325	220.8	86.3 692.9	€.€ ₽.€
896.6	016.8	5.913	088.8	628.6	5.832	208.6	811.6	127.3	5.724 300 3	3.8
869.3	178.8	119.6	5.617	169.8	₹99.9	866.6	877.8	181.6	861.6	1.8
5.432	304. č	678.3	5.353	728.3	5.300	₽72.8	842.3	5.222	8.196	0.8
021.6	5.144	811.6	5.093	790.8	1 <u>4</u> 0.6	610.6	066.₽	₽96.₽	826.₽	6.2
4.913	888.4	208.4	758.4 500.8	118.4	887.₽	197.4	987.4		389.₽	8.2
099.₽	4.635	4.610	4.585	4.560	4.536	116.4	984.4	194.4	4.437	7.2
4.412	4.387	4.363	856.4	418.4	4.290	4.265	142.4		4.192	5.6
SAT A	PPL P	4.120	960.₺	270.₽	840.4	4.024	000.₽	776.8	836.8	2.5
3.929	3.906	288.8	858.8	3.835	118.6	884.8	3.765	147.8	817.6	₽.2
3.695	279.8	8.649	3.626	3.602	3.580	3.557	3.534	3.511	3.488	2.3
394.8	844.8	3.420	865.8		3.352	3.330	808.8		3.263	2.2
3.022	3.000	879.2 791.8	739.2 471.8	2:935 3:153	₽16.2 181.8	268.2 3.109	178.2 780.8		828.2 3.043	2.0
				200 0	, 10 0	500 6	.40 6			
708.2	87.2	2,765	2.744	2.723	207.2	189.2	099.2		2.619	6.1
2.598	875.2 875.2	2355	2.535 2.537		2.496	2.476	2.455		2.415	8.I
791.2	871.2	2.158			2,100	2.081 2.276	2.062 2.256		2.024   2.216	8. I 7. I
2.005	986.1	796.I				268.1			1.837	ŝ·i
I		1				1				
60.	80.	20.	90.	<b>30.</b>	₩.	£0·	20.	10.	00.	·oN
	80	20	80	20						- 14

TABLE 40 (Continued)

#### . THREE-HALVES POWERS OF VUMBERS

F. 8353	1.8334	9128°I	86Z8 · I	6228'1	1928.1	1.8243	1.8224	1.8206	8818.1	69 I
4018.I	1618.1	5518,1	3.115.1	9608'I	8708.I	0908.I	11.8041	1.8023	3008.1	87°I
1981 . I	8967 . I	0687.1	Z\$67. I	PIGY.I	9884 T	1.4877	6984 T	1487.I	1.7823	74. I
COQ/ T	0611.1	80/7.T	OG77. I	Z£1.1 I	PIZZ'I	9897.I	7797.1	8687.I	1497.1	9¥.Į
5297 . I	909Z T	1.7587	1.7569	1.7551	1.7533	1.7515	3647.I	8747.I	09#7.I	1.48
	2004									
2347.1	1.7424	3047.I	1.7388	0787.1	1.7352	₽887.I	9157.1	1,7298	1.7280	₹¥.1 .
2927 · I	1,7064 1,7244	1.7226	1,7208	1,7190	1.7172	1.7154	1.7136	8117.1	0014.1	1.43
2807 . I	1.7064	9107.I	1.7029	1107.1	I.6993	9269°T	1.6957	1.6939	1.6921	1.42
1.69U3	C550.1	8989 I	0688.I	ZE89.I	189.I	9649°I	8778.1	1979.1	1.6743	19.1
3278. I	2029 T	6899 T	1.6672	1.6654	1.6636	8199.I	0099.1	1.6583	1.6565	1.40
						1				
71.6547	1.6530	1.6512	1.6494	94 <del>7</del> 9'I	1.6459	1,6441	1.6423	9049.I	1.6388	68. r
07E8.I	1.6353	1.6335	1169.1	0069.1	1.6282	1.6264	1.6247	1.6229	11.6211	88.1
T. OISE	10/10:1	8618.1	1410.1	EZ19.1	2019 I	1 9888 B	1209 I	E909 I	2E09 L	18.1
8109.I	0009.1	1.5983	3965.1	81-63.1	0.583.1	1.5913	7683.1	8787.1	1.5860	1.36
£183.1	3283. I	1.5808	1.5790	£773.1	1.5755	8873.1	1.5720	1.6703	8888. r	1.35
	l	000			TOOR	20001-	0200-	0700	7100	****
8883.I	1.5651	1.5633	9199'I	0699	1823	1,6564	9799	0000	6133	1.34
1612.I	77 <b>7</b> 6.1	1 2460	CPPY 1	767Y	8079	0083	6469 1	1 6366	0010	£6.1
1.5321	1.5304	1, 5286	1 2260	1 65000	35.63 I	4169 1	0000	1 5162	1 5166	1.32
8113.1	1513.1	7114.1	1 2007	1 6080	6904	Y PUN I	860% I	TION !	1001	18.1
9761.I	696¥.1	3767 I	1 499K	8007	1081	1 487A	ו שפנע	1 4830	6687 I	1.30
0002	0012.7	1,,2.1	50/5'T	1015'T	02/B:T	60/#.1	050£.1	4009	ZC0# ' T	1.29
TOOM I	8184.1 8874.1	1009.1	FOCF . 1	1007.1	0001	666P.1	0164.1	BERF. I	2044.1	1.28
COPP. I	OTT. I	1699.1	PLPP.I	/ACT 1	US&P.II	COCP. I	OPCP. II	RZST'I	2124 1	72. į
JAAA I	8724.1	7075 I	OF5F.I	0775 I	1129.1	PULP. I	1114.I	UOIF.I	6#1#.1	1.26
1219.1	0114.1	580# · I	970F-1	1.4059	6101.1	9201 I	600¥ · i	266£ · i	3875	1.26
	1									
898E . I	8098.1 3775.1 1.3942	1.3925	806£.I	1.3892	1.3875	8385.1	1,3841	1.3825	808E.1	1.24
1675.1	1.3775	8948.I	1,3741	1.3725	8075.1	1698.1	249E.1	1.3658	I,3641	1.23
3625 I	809£.i	1698.1	1.3575	1.3558	1.3542	1.3525	1 3209	1.3492	374E, I	1.22
ACTC . I	244C.1	97.14° I	MHX. I	1 2383	MYEE I	00000	EPEK I	7255 T	OLEE L	12.1
1 329 <del>1</del>	7728. I	1.3261	1.3244	1.3228	11.3211	1.3195	8418.1	1,3162	34E.1	1.20
	1									
1.3129	1.3112	960E, I	1,3080	£808,1	470E I	0505 1	3014	8006 I	1806	81.1 1.19
1.2965	8462,I	1 2033	1 2016	1,2000	1 5883	7886	1386	7107	0007	71.1
2082 J	842.1 842.1 842.1	0979	1 9753	7676	0007	7046	0202.1	0780	2027'T	91.1
6£92 J	1,2623	7000	1096 1	7776	8996	6776 L	8036	0176 I	7076 1	81.15
77 <b>4</b> 2.1	1942.1	SPPG L	0676 1	6176 I	7080 I	19991	1 9988	1 9540	1 0550	At t
0102.1	1.2300	5077°T	902Z · T	2022.1	0622.1	0ZZZ . I	#02Z*1	8812.1	2712.1	• ¥I.I
										i is
TI DIET	1.1980	FORT T	SPUL I	2581.1	7161.1	1061.1	1.1885	1.1869	1.1853	ži i
1,001,1	1.1821.1 0801.1 0419.1	9081.1	6871.1	₽\\[.1	8671.1	2971 . i	9271.1	ŏĭži·i	269I · I	11.1
1.1017	1.1663	2191.1	1.1631	1.1616	1. 1600	1.1584	1.1568	i 1223	1.1537	91.1
					1					
IZQI 'I	1.1505	06\$I'I	1.1474	89FI . I	1.1443	1.1427	1141.1	1.1396	1,1380	1.09
FUGT . I	GROT'T	CCC1.1	1.151.1	2091 T	0821 1	1/21 1	QQZI II	6824	777 L	80.I
										70:1
cent . I	1.1037	2201 T	3001.1	118801	9260 T	0960 T	7760 L	6260 I	E100 I	90.I
8680 . I	2880.1	7980.1	1.0852	9880.1	1.0821	1.0805	0640.I	3770. I	1.0759	1.05
					1	1				****
1.0744	8270.I	E170.1	8690 T	£880.1	7980.1	1.0652	7580.1	1280.1	A0A0.[	₽0.1
1690.1	3730.1	1.0560	21.0545	1.0530	1.0514	0610 1	1 0484	RAMO	PALO I	£0.1
8 <b>£10.</b> I	1.0423	8010.I	1.0393	7750.1	1,0362	7450 1	1 0335	4150 1	1 0301	10.1 20.1
1.0286	1720.1	1.0256	1,0241	1,0226	1,0211	9610 1	1810.1	2510 I	1 0150	1.00
3510.1	1.0120	2010.I	0600.1	2700.1	0900 I	1,0045	1,0030	2100 t	1 0000	1 00
										.oN
		700.	800.	300.	₩00°	£00.	200.	100.	000.	

TABLE 40 (Continued)

#### Тиве-ильчея Ромена от Момвена

866	0466	<b>9962</b>	01-66	9888	0166	\$686°	0886.	3986.	0886.	66.	
. 983	1286.	9086	1646.	9446	1946.	9¥46.	1879.	9179.	2079.	86.	
896	2798.	7888.	21-96	7299.	£196.	8696	8836.	8996.	£538.	79.	
£86.	₽Z96.	6026	1616.	0816	2976	0016	9432	1216.	90 <del>1</del> 6.	96.	
626	7759.	2959.	7456.	£££6.	8169.	£0£6	6826	\$726.	6926	26.	
₩86°	0526	9128	1026	9816.	2719.	7819.	£\$16.	8216	PI16.	76	
		8100	9906			2106.	8668	8888	6968	£6.	
606.	3806	0708.		1106	9006				0900	26.	
968.	0768	8925	1168.	9688	2888.	8888.	8883	9888.	1488.	16.	
188.	9678.	1878,	7978.	2878.	8278.	M278.	6048	<b>2698</b> .	1888.		
998.	2688.	8638.	₽298.	6098.	2628.	1888.	7938.	2338.	8838.	06.	
238.	0138.	2678	1818.	4978	8453	6218	6218.	0118.	9688.	68.	
888.	8368.	₽928°	0468.	8326	1158.	7628.	5828.	6928	8228.	88.	
1884	7228.	8113	6618.	3818.	1718.	7618.	£118.	9218.	3118.	78.	
018.	7808.	8073	6908	\$108°	1508.	7108.	£008.	6864	2797.	88.	
964	7467.	₽£67.	0267.	9064	2687.	8787.	1984	0887.	7887.	88.	
287.	6084	9622.	1822	8944	₽92Z.	074.	9277.	2177.	6694	₩.	
1897	1787.	8687.	PP94.	0897.	OTO/	600%	69C/	6161.	2997	88.	
19Z.	₽537.	1237.	2094	2493	0814	9977.	7453	6674	6271	7Ω°	
2197.	8627	7385	1787.	8984	1344	1567.	7187.	EOET.	0627	18.	
727.	5927.	0927	9224	5227.	6027.	9617.	2817.	6912	9917.	98.	
1464	£962	0964	9864	8664	0064	9014	6814	0912	3314		
3 <b>7</b> 17.	6ZIZ'	GIIT.	2017.	8807.	6707.	2907.	8107.	3807.	2207.	64.	
3007	9669	2869.	8969	2269.	2769	6269	2169	2069	6889.	87.	
789.	2989.	6189	8889.	£289.	6089	9649	8878.	0778.	7579.	-,,,	
₩79.	0878.	7179.	₱0 <b>29</b>	1699	8799.	6888.	2239.	6839	9299	92.	
199.	6629	9829	8730.	0959	7130.	1653.	1229.	8039	2619.	§2.	
,199	0028	9939	6438	OBSB	2739	6838	1039	POUND	2075		
2819.	6919	9979.	£119.	06430	7110.	1019	2629	6489	9989	17.	
. 6353	0469.	7259.	1189.	1059.	8829.	8729.	8929	0229	7829.	£7.	
MS29.	2129.	6619	8818.	8719.	0919.	8419.	3513.	6122	6019.	27.	
<b>4609</b> .	1809.	1708.	6909	9709	£603.	0209.	8000.	2669.	5883	12:	
28910	7888.	<b>2</b> ₩2.	2893.	6163.	7068.	1689	2883.	6983.	7883.	07.	
₩8 <b>9</b> .	2683.	6189	9083.	₹64g°	2878.	6949	7878.	##18°	2873.	69.	
8178.	7078.	1699.	2893.	6999.	7583.	219G.	2683.	0293.	7098.	89.	
9899	5883	0788.	8666.	9199	6666.	1268.	6099	9619	1816.	79.	
2713.	0919	7448.	£₽43.	5423	1116.	6629	9866.	₽489	2983	<u>88</u> .	
2320	8888.	8388.	£153.	1068.	6823	7728.	5265	5253	0243.	89.	
. 222	9128	₹0Z9°	2619.	0813.	8913.	9919.	PP19.	2613.	0ZT9.	19.	
801 <b>3</b> .	9609	1808.	2002	0903.	8103.	5036	5024	5012	0003.	89.	
3881. 2013	7794.	296¥.	£967·	1963	626¥.	7164.	906¥.	1681.	2881.	29.	
	4407	1202.	6301	1707	0001		9001	1001	0007	19.	
0784.	8884	7484.	4835	4823	1184.	6674.	8874.	9774.	1927	1 10	
<b>792</b> ₹.	1979.	627 <b>≱</b> .	8174.	9074.	1691	2891.	1794.	699¥.	8191.	09.	
4636	₽29₽.	£19 <del>1</del> .	1097	0697	87 <b>3</b> £.	9997	366£.	11241	4935	69.	
) <u>4</u> 52(	609₽.	7614.	<b>88₽₽.</b>	447¢.	6911	1344.	0111.	6211.	7144	83.	
• 4406	₩394	€864.	278₽.	4360	6¥£¥.	7554.	4326	4315	₹303	73.	
.4292	1824.	692₽.	4258	7424.	4236	₽22¥.	4213	4202	1614.	99.	
871¥.	8914.	7814.	9414.	3514.	4123	4112	1014.	0601	640₹	88.	
390₽.	780£.	9 <b>101</b>	4035	4023	210P.	100≱.	0668	6268	8968	14g ·	
7865.	9168	3838	3924	8168.	3902	1685.	0888.	6988.	8888.	88.	
7186.	7585.	3286.	3185.	1086.	3793	2878.	E778.	1928.	0275.	23.	
8878.	8278.	7175.	3707	3698.	3885.	₹298.	1998.	8838.	23-26.	13.	
1898.	1298.	0198.	3288	9835.	8788.	7938.	7885.	3546	955E.	93.	
	1.000	Orac	3800	3880	0478	TANG	12336	18736	0636	1 03	_
600	800.	200	900.	500.	₹00°	800.	200	100.	000	No.	

тавые 40.—Тивее-нагиез Роменя от Моменя

600 .	800.	200	900.	800.	₹00°	500.	200.	100.	000.	.oN
6000°	2000	9000.	8000.	₹000°.	£000.	2000.	1000.	0000.	0000.	00.
9200.	1200°.	2200	0200	8100.	7100.	6100.	£100.	2100.	0100.	l to.
8¥00°	7400.	PF00.	2400.	0100.	7800.	<b>3500</b> .	.0033	0600.	8200.	20.
<u> </u>	7400·	1400	8900.	3900	5900.	0900	7500.	5500.	2800.	έŏ.
. 010	2010.	2010.	6600	9600	2600	6800	9800.	6800.	0800.	₩.
HIO.	0140.	8610.	2810.	6210.	0125	2210.	6110.	3110.	2110.	80.
810	7710.	£210.	0710.	9910.	2910.	8610.	₽\$10.	1310.	7110	. 50.
zzzo.	8120.	MISO.	0120.	3020	1020.	2610	5610.	6810.	6810.	20.
. 020	1920	7820.	2820.	8120.	5120.	6820	3520.	1820.	9220	80.
. 0312	2060.	2050	7620.	£620·	8820	18Z0 ·	6220	9220	0720.	60.
0960.	3350.	0350.	31EO.	0460,	3850.	1550.	9250.	1250.	8150.	01.
1140.	2010.	0010.	3650.	0380	0382	0880.	6750.	0370	3980.	111.
£910 .	8310.	2610.	7110.	2110	9870	1840.	9210.	1210.	9110.	1 21.
8120.	8130.	7080.	2050.	9670	1670	3810.	0810.	₽ <b>₹</b> ₽0°	6910	Ei.
9290°	6920.	1990.	8680.	2660.	9790	1170.	3830.	6230.	₽290.	₽ī.
	1	1	المحترا	7.00	1	1	3020	1		<b>"</b>
1680.	8280.	2280.	9190.	0190	1090 ·	8650.	6880.	7880.	1880.	• 81.
7370 ·	8880.	2880.	9290	0290°	9870	8290.	2880.	2040	0190	91.
7870.	1870.	6080.	8870.	2840°	6840	0270,	8170. 8770.	0770.	1070.	71. 81.
2280. 8880.	1880.	1780.	8880.	1980.	₹980 :	8180.	1180.	3680.	8280.	61.
^~~	1				l					
<b>9922</b>	6760.	21-60.	.0932	8260.	1260	6160.	8060	1060.	₱680°	02.
1025	8101.	HOI.	1001.	7660	0660	£860.	9460	6960	2930.	12.
960T .	680I.	1801.	PYOI.	7801	0901	1053	9101	1039	1032	- 22
8911.	1911.	1124	84II.	6211	2011	3211.	8111.	OIII.	1103	82.
1243	1232	8221	1220	6121.	1205	8611.	1611.	8811.	9411.	₹.
9161	1	lene:	19081	1986	1980	2461	AACT	1989	1980	36
3061	1181.	5051.	2621	1384	1326	SYSI.	1265	1258	1250	82.
98EI .	7881.	0851.	2751.		1434	9461.	11411	1131	1326	72.
PYPI.	3011.	8521	1530	1622	1214	1426	8611	06¥I	1403 1482	
1551. 3531.	3131.	8£31.	1191.	2091	1691	986I.	8761	0761.	2991	82.
	1707	ATOT.							BOOT .	
8171.	6071.	1071.	5691.	189I.	9291	8881.	0991.	1652	819I.	08.
1803	1793	2871.	9771.	8971	0941	1371.	E471	1734	1726	18.
7881.	<b>6781</b>	0781.	1881.	1823	1181	9£8I.	7281	9181	0181	28.
479I.	1965	9961	8141.	1838	1930	1922	1913	1001	9681	86.
2902	2053	2044	2032	2026	8102	2009	2000	1661	£861.	36
	1	1	1	1	1		1	1	1	Į.
1312.	2112.	££12.	P212.	2115.	8012.	7802.	9802.	2080	1702.	38.
2242	2232.	ESSS.	₽12Z.	2205	2196	7812.	8712.	2169	0912.	98.
EEEZ.	1324	2312	8082.	9622.	7822.	8722.	6922	0922.	1325.	78.
82 <u>1</u> 2.	7112.	8012.	8652.	9882.	2380	0752.	1982	2352	2342	85.
0292.	1152.	1092.	2672	2483	8732.	1912.	£6£2.	2445.	9842.	68.
3136	1000	2036	2836	8436	9886	9226	ONAC	9830	9830	U
8182. 2172.	804Z	7682.	2587 2683	8782.	2568	2654 12654	2649	2639	2625	04. 14.
0182.	0082.	2693	1872.	ITTS.	1922	1372.	1472.	2872.	2272.	84.
806Z.	6682	6882	6782.	6982	2829	6182	0182	2830	0282	£4.
3009	2999	9862	6262	6962	2929	2949	2939	2929	2919	₹¥.
	l	1	1	1	l	l	1			
0116.	3100	680£.	6408	6908.	6908.	6708	6808	9208	9108.	ζ¥.
3212	3202	1918.	1818.	1718.	1918.	0315.	0118.	0818.	0218.	97.
3312	3305	3294	1828.	<b>₽728</b> .	8263	8328.	3243	3232	3222	l L₽°
021E.	8018.	3399	33388	8788. 8816.	7858. 2748.	7358. 2846.	3346	8666. IME.	3325	81. 61.
							IGPE.			

TABLE 39 (Concluded)

 Овеснавае и Совіс Реет рев Second рев Foot ор Length орго орев Sharp-Crested Weirs, without Velocity of Approach Correction, by the Francis Formula  $Q=3.33 H^{95}$ 

182.18 183.28 183.789 780.88 186.334	51.160 52.406 53.663 54.930 56.206	840.88 83.28 83.887 84.803 84.803	116.03 52.156 53.411 54.676 54.656	50,787 52,031 54,549 54,549 56,822	50.664 51.906 54.422 54.422 55.694	50,540 51,782 53,034 54,295 54,295	49.186 50.416 54.168 54.168 54.168 54.168	50.293 51.532 54.042 54.042 518.33	50.169 51.408 52.657 53.916 55.184	0.8 1.8 2.8 5.8 4.8 8.9
110. <u>44</u> 781.34 48.34 103.74	870.34 870.34 472.34 084.74	44.959 44.959 46.154 47.359	738.64 948.940 96.034 862.74	43.539 44.722 45.914 711.74	224.84 44.803 46.894 46.996	\$84.84 \$84.84 \$78.84 878.84	48.187 66.786 66.786 67.986 67.986	070.84 742.44 884.84 886.84	42.952 44.129 45.317 46.514	5.6 5.7 5.8 5.8
38.240 878.98 818.04 078.14	38.128 39.259 40.401 41.554	38.015 39.145 40.287 41.439	27.903 29.032 41.04 41.323	38.918 819.85 830.04 702.14	878.78 808.88 849.98 849.14	38.682 38.682 39.829 40.977	148.68 48.579 817.98 10.94 10.94	248.78 38.466 100.88 40.746	062.78 838.88 784.88	2.3 5.3 5.0 5.0 4.9
32.746 33.822 34.910 36.009	32,639 33,714 34,801 36,898	32,552 33,606 160,45 160,45 35,735	864.88 884.88 883.48 878.88	915.25 195.55 874.45 883.35	32.213 33.283 34.365 35.458	32.106 33.175 34.256 35.348	90.98 84.000 84.147 852.88	31.894 32.961 34.039 35.129	887.18 82.853 83.919 810.85	8.4 7.4 8.4 8.4
26.540 28.560 29.589 30.630	26.440 26.458 29.486 30.525	26.341 27.342 28.356 29.382 30.420	26.241 26.242 26.254 30.316	26.142 26.141 28.152 29.176 312.08	840.82 140.72 130.82 870.82 801.08	26.944 26.949 27.949 30.004	25.845 26.846 27.848 29.900 29.900	25.746 26.746 27.746 29.796 29.796	25.647 26.645 27.645 28.663 29.693	3.9 4.0 4.0 4.3
117.12 22.604 23.670	819.12 22.556 24.473	21,525 23,462 23,412 24,376	28, 22 28, 368 28, 317 24, 279	988.12 872.22 122.82 281.42	81.22 821.22 821.23 880.42	21.154 22.085 23.031 23.989	130,12 21,992 28,93 26,52 26,53 26,93	20,969 21,898 22,840 23,796	20.877 21.805 22.746 23.700	4.8 3.8 7.8 8.6
712.71 880.81 879.81 278.91	061,71 000,81 488,81 187,91	17.044 219.71 397.81 19.691	828.71 828.71 8.708 109.61	278.81 887.71 718.81 118.91	787.81 17.650 18.528 19.421	107.81 17.563 18.440 18.331	15.769 16.616 16.616 19.341 19.241 141.02	065.81 095.71 18.881 131.91	344.81 805.71 871.81 280.91	8.2 6.2 0.8 1.8 2.8 5.8
13.084 13.680 14.692 15.519	13,005 13,800 14,610 15,435	12,927 13,720 823,41 235,31	12.848 12.640 14.447 15.269	12,770 13,560 14,365 15,186	12,692 13,480 14,284 15,103	12,614 13,401 14,203 15,021		12,459 13,242 14,041 14,856	18.381 13.961 13.961 14.774	8.2 8.2 8.2 7.2
10.792 11.540	11.464	10.645 11.389	173.01 11.314	11.239	10.425 11.164	252.01 11.089	972.01 310.11	10.206 10.940	998.01	2.0 2.1 2.1 2.2

#### TABLE 39 (Continued)

# Discharge in Cubic Fret рек Second рек Foot of Length over Share-Crested Weirs, without Velocity of Approach Correction, вт тие Francis Formatal Q = 3.33H⁹⁴

1148.9	01-88.6 01-88.6	9.3270	9.8199	9.3129	6906.6	8862.6	8162.6	8182.6	7772.8	86.I 1.99
9.2005	3521.9 3591.9 3537.9	338I.9	9641.6	9.1725	9991.6	9.1585	9.1515	9.1445	87EJ . 6	26 I 96 I 96 I
1166.8	7419.8 1489.8 7880.9	2779.8	2070.8	<b>EEBQ.8</b>	8.9563	1616.8	1214.8	8.8322	8.9288	26.1 26.1 46.1
8.7832 8.8523	<b>£877.8</b> <b>£618.8</b>	1697.8 3858.8	8297.8 8158.8	8.75 <b>56</b> 9 <b>.5246</b>	7817.8 7718.8	81147.8 8018.8	<b>6167.8</b> 9808.8	1827.8 0797.8	2127.8 1067.8	09.1 19.1
8.5770 8.5770 8.6458	8.63.8 8.63.8 1073.8 7853.8 787.8	8.683 8.683 8.6818	1881.8 1883.8 1838.8	8.4813 8.5496 1818.8	8247.8 8243.8 8113.8	7781.8 6388.8 8.6044	8.6991 8.6991 8.6975	0141.8 8.823.8 70 <b>8</b> 3.8	2711.8 1313.8 8883.8	28.1 38.1 78.1 88.1 68.1
8.1695 8.2369 8.3046	2060.0 7231.8 2082.8 8762.8 8368.8	8. 2234 8. 2234 8. 2910	8.1493 7812.8 2482.8	8.2099 8.2099 8.2775	8.1358 8.2032 8.2707	8.1291 8.1964 8.2640	8.1223 8.1897 8.2572	8.1156 8.1829 8.2504	9801.8 2871.8 7842.8	18.1 18.1 28.1 18.3 1.84
2896.7 2896.7 1960.8	0297.7 8283.7 8198.7 8196.7 \$1820.8	7128.7 2888.7 8140.7	0218.7 5188.7 5840.7 0310.8	1808.7 8178.7 8119.7 8800.8	8108.7 2888.7 8489.7 8100.8	1967.7 1829.7 1829.7	8887.7 8188.7 8189.7 8889.7	2818.7 2818.7 8119.7 8189.7	2877.7 8118.7 1809.7 9479.7	84.1 87.1 87.1 87.1
1308.7 7073.7 8368.7 7073.7	2524.7 3864.7 1486.7 8699.7 8699.7	0291.7 6788.7 7.6833.7 2688.7	2884.7 7810.7 7818.7 7888.7	9874.7 8448.7 2018.7 0878.7	1,474,7 9783,7 9603,7 1,603,7	9884.7 8188.7 0798.7 8288.7	8428.7 8428.7 4088.7 5088.7	8284.7 2818.7 7888.7 7848.7	8044.7 7118.7 8778.7 1840.7	07.1 17.1 27.1 87.1 47.1
1081.7 7442.7 3095.7 3478.7	1 .	2731.7 8152.7 7.2965 7.3615	7.1607 7.2901 7.2901 7.3550	21.7 8812.7 7.2836 7.3485	8711.7 4212.7 1772.7 7.3420	7.1414 7.2069 7.2706 7.3355	9481.7 1481.7 1482.7 1482.7	7.1285 7.1930 7.2576 8225.7	1221.7 7.381.7 1.25.7 7.3160	89.1 79.7 89.1 89.1
8628.8 6.9836 4786.8 4786.7	1067.8 8.838.8 1719.8 10189.8 0340.7	1718.8 8019.8 8019.8 8860.7	8018.8 1109.8 2889.7 2280.7	8380.7 8180.0 8180.7	1828.8 9168.8 936.6 910.7	7128.8 8388.8 049.0 7	1218.8 9878.8 8219.8 3800.7	1608.8 8278.8 888.8 1000.7	7868.8 2998.9 6626.9 7868.9	10.1 10.1 20.1 20.1 20.1
2112.8 2708.8 1078.8 1887.8	86.5383 6.6099 8.6638 8.6638 8.7288	0253.8 8.68.8 8738.8 8027.8	8323.8 6.883.8 8.6812 6.7142	2613.8 1283.8 6148.8	8.818.8 8.858.8 8.86.8 8.701.8	0703.8 8683.8 8268.8 8368.8	8003.8 8883.8 0888.8 0888.8	8619.9 8619.9 7289.9	6.4883 6.5508 6.6135 6.6764	88.1 73.1 88.1 88.1
2452.8 6282.8 7735.8 6.4196	0822.0 0822.0 7882.0 3138.0 8138.0	8.282.8 8.282.8 8.46.8 4704.8	7312.8 6.2772.8 1985.8 2104.8	6.2096 6.3330 6.33349	\$62.8 6.262.8 8825.8 7885.8	8892.9 8832.9 8286.9	2191.8 7282.8 6.3144 6.376.8	0381.8 6.346.8 2808.8 1078.8	6.1789 6.3020 6.3020	. 03.1 13.1 83.1 83.1 13.1
600.	800.	700.	800.	<b>300</b> .	¥00°	800.	200.	100.	000.	ni basH teet

#### Table 39 (Continued)

Dівсильная ім Совіс Геет рев Зесомо рев Гоот оу Гемотт оу оубрання Сиветер Weirs, without Velocity of . Approach Correction, by the Francis Formula  $Q=3.33 H^{36}$ 

		1	-	<del></del>	1				1	
			1560.8							67 · I
1020.8	<b>6440.</b> 8	2850.8	\$250.8	1980.8	0020.8	6810.0	8700.8	4100.8	4966 9	
8080 2	AESO A	7440 8	\$179.8 \$100.8	K OAKR	6020 2	0.00.0	1740 3	00000.0	CALED A	74.1
			\$088.8 8010 2							84.I 84.I
				l			ŧ			37.1
5.8083	5.8023	\$2967.8	5.7902	5.7842	5.7782	5.7722	5.7662	5.7602	8.7542	₩.I
5.7482	5.7423	5.7363	5.7303	5.7243	5.7183	5.7123	£207.8	5.7004	5.6944	£4.1
1889.8	8288.3	2979.8	6.6110 6.6110	9199.8	8888.3	6558.8	7948.8	7048.8	81.63.8	1.43
8829.3	6229.3	6919 9	0118.8	090919	1668.8	256A A	8788.8	5188.8	1978.8	11.1
1698.8	3593.8	8788.8	5.5516	7848.8	8053.2	geer a	0888.8	1888.8	SAIA.A	04.1
5.5102	5,5043	1867.0	8.4925	998¥.č	7081.3	8474.8	6897.3	5.4630	2732.3	1.39
			986£.8							8£.1
			6,3749							78.1
			1918.3							
8272.8	8692.8	01-98.8	5.2582	4.2523	5.2465	\70 <del>1</del> \2.8	5.2349	1622.8	EE22.8	1.32
8712.8	7112.0	6902.9	1002.3	2.1943	5.1885	7281.8	6941.8	2171.8	5.1654	₽£.1
5.1596	8661.8	0871.8	5.1423	2921.2	1307	6,1249	2611.3	5.1134	7701.8	1.33
6,1019	1960.8	1060.8	9780.3	6870.8	1870.8	₽780.8	5.0616	6990.8	2050.8	1.32
			5.0272							18.1
4.9872	4186.4	1.976.1	0046.4	£196.4	9886.1	4.9629	2719.1	4.9415	8358.1	1.30
TOCK'S	EEZA E	PIRTE	1819.4	FINA.F	LING'S	UOUS. P	CURG. P	1500.2	U8/8.#	6Z.I
55/8.P	0/08.	US08.1	€998.4	9008.1	UCPS.P	£628.1	1,558.4	0828.4	1228 F	82.1
7918.4	1118.	F608.F	8664 F	1167.4	4.7885	6287.4	2777.	9122.4	0997.1	72.1
£094.4	7.7547.8	1677.1	4.7435	8787.4	2227. A	9927.P	0127.4	#91Z.#	860Z T	9ž. į
			1789.1							32.1
20E0 . E	1750.5	7.00.	6160.A	4020.F	0020.2	OLTO'T	7400.2	0000.2	1869.3	1.24
			6273.4							1.23
4.007 A	0100.1	10026.1	\$029.P	8210.F	7600.F	0000.1	4. 1895	1917 1	ACAN A	22.I
SISP.P	6012.4	1014.1	4.4652	INCT &	2505 F	1644.2	2011.7	1162.2	2262.2	12.1
			£017 F							02.1
		1	1							•••
			4.3555							6I.I
			0106.1							71.1 81.1
SOUL.P	9736	TORT	7261.4 764.4	1 1013	DAFC A	3056 A	ITTIT'S	1001.F	2.100 A	91.1
			6881 F							31.15
		1		1						
			₹.0853							1.14
			6180.4							£1.1
			8846.8							21.1
0400.0 911.0 €	3 0388	6010.6	8733 8.6326	3 0000	0200.0	1010 8	0700 6	P.009 F	3 2042	01.1 11.1
	ı									
3.8365	E168.8	1928.8	3.8209	3.8156	3.8104	3.8052	0008.8	7497.8	3.7895	60.I
			7897.8							80.1
			7917.8							70.1
			3.6651							80.1
		1	8513.8							30.1
3.5777	8.5726	3793.8	3.5624	8766.8	3.5522	1746.8	3.5420	8989.8	8168.8	1.04
3.5267	3.5216	3.5165	3.5114	3.5063	3.5013	3.4962	1161.6	3.4860	3.4810	1.03
6974.8	8074.8	8684.8	709₽.8	3.4557	3.4506	3344.5	3044.6	\$4354.E	1061.6	20.1
3 4264	8.4203	3.4153	3014.8	3.4052	3.4002	1368.8	1088.8	1385.5	3,3801	10.1
1976 6	0078.8	OAAE. 8	0098.8	AAAE. E	3.3500	3,3450	3.3400	OARE, E	OOEE, E	00.1
		<u> </u>								800-
600.	800.	200	800.	300.	₩O.	£00.	200.	100.	000.	ni bash feet
			L							Ti beaH

#### TABLE 39 (Continued)

# Discharge in Cubic Feet per Second per Foot of Length over Share-Crested Weire, without Velocity of Approach Correction, by the Francis Formula $Q=3.33H^{36}$

8870.8 8721.2 1071.8 7822.8 7822.8 8672.8	7670.8 ASS1.8 A171.8 7052.8 S072.8	8880.8 8.117.8 8.117.8 8.212.8 8.212.8	9880.8 7211.8 8181.8 8012.8 8082.8	1620.8 701.8 7031.8 703.8 703.8	21-20.8 91-31.8 91-31.8 91-32-38 91-38-38	3,0494 0890.8 081.8 081.8 081.8	8.0931 8.1920 1.1920 1.191	7950.5 880.5 1751.5 2881.5 3852.5	3.0348 3.0834 3.1322 3.2306	96 46 96
2.888.2 2.9887 2.9837 7189.2 3.0300	2,8812 2,9289 2,9769 3,0252	2, 8764 2, 9241 1, 9241 3, 0203	5778.2 1019.2 5789.5 5789.5	2.8528 2.9146 2.9625 3.0107	2288.2 8609.2 7789.2 8300.8	2.8674 2.9650 2.9629 3.0010	7288.2 8009.2 1849.2 2999.2	2.8479 2.8985 2.9433 4.9914	2.8432 2.8907 3.985 3.986	68. 06. 16. 26.
2.6511 2.6876 2197.243	2, 6466 3, 6466 3, 6466	9149.5 6165.5 6167.6 8167.6	2.6373 2.6836 2.5836 3.777.6	2.6327 2.6790 3.27.2 427.2	0828.2 6743.2 6027.2 7787.2	1,623.2 7633.2 2317.2 0637.2	8818.2 0888.2 8117.2 5887.2	2,6142 2,6604 2,7669 2,7536	2.6096 8888.2 2.7022 2.7490	88. 88. 88.
1824.2 1836.2 1836.2 1836.2 1836.2 1836.2	2.4186 2.4636 2.5545 2.5545	2.4141 2.4591 2.5044 2.5500	2.4096 2.4546 2.4546 2.5454	2.4061 2.4501 2.4501 2.5408	2.4006 2.4456 2.4908 2.5363	2,3962 2,4411 2,4862 2,5317	2.3917 2.4366 2.43617 1723.2	2788.2 2.4321 2.4772 2.5226	8288.2 8724.2 7274.2	08. 18. 28. 58.
2,2019 3,2,2456 2,2896 2,3388 2,3783	2.2412 2.2851 2.3293	2.2369 2.2807 2.3249	2.2325 2.2763 2.3205	2.2281 2.2719 2.3161	2.2237 2.2675 2.3116	2.2632 2.2632 2.3072	2.2150 2.2588 2.3028	2.2107 2.2544 2.2984	2.2063 2.2500	87 . 87 . 87 . 87 .
0889 . I   1 20.0302   1 7270 . 2   1 7270 . 2   1 7270 . 2   1 7270 . 3	2.0260 2.0684 2.111.2	2.0217 2.0642 2.1069	2.0175 2.0 <b>599</b> 2.1026	2.0133 2.0557 2.0983	2.0091 2.0514 2.0941	8100.2 2710.2 8680.2	2.0006 2.0429 2.0855	1.9964 2.0387 2180.2	2269.1 2.0344 0770.2	07. 17. 27. 87.
1228.1 1228.1 3409.1 1349.1	1818.1 1.8580 1.9003	1.8140 1.8549 1.8962	1.8099 1.8509 0.8920	8308.1 7848.1 9788.1	8108.1 8218.1 8883.1	7797.1 3858.1 3678.1	9867.1 988.1 9878.1	8088.1 \$088.1 \$178.1	1.7855 1.8262 1.8673	69 · 69 · 89 ·
0174'1 2189'1 2199'1 2199'1	8718.1 8738.1 9788.1	8539.1 8539.1 9569.1	0018.1 891-1 0688.1	1.6060 1.6454 1.6850	1200.1 1100.1 0180.1	2868.1 8788.1 1778.1	<b>6868.1</b> 8668.1 1678.1	1.6296 1.6296 1.6691	1.5865 1.6257 1.6652	09 . 10 . 20 . 50 . 50 .
8198.1 ( 829.1 ( 829.1 ( 829.1 (	1.4255 1.4633 1.5014	7124.1 3634.1 1.4976	0814.1 7334.1 8684.1	2414.1 1.4519 1.4900	1.4105 1.4481 1.4882	7904.1 4444.1 5284.1	1.4030 1.4403 1.4785	2998.1 8364.1 7474.1	2398.1 0884.1 074.1	69 · 49 · 89 · 89 ·
1.2093 1.2451 1.2812 1.3177 1.3546	8142.1 8772.1 8418.1 848.1	2329 1.3104 2746.1 2745.1	8482.1 1.2703 1.306.1 3646.1	7052.1 7862.1 1808.1 8858.1	1,22,1 1,263,1 1,29 <del>94</del> 1,3361	1.2235 1.2595 1.2958 1.3324	1.2200 1.2659 1.2921 1.3287	1.2164 1.2623 1.2885 1.3865	8212.1 7842.1 7849.1 4128.1	08 . 18 . 88 . 88 .
600.	800.	400	900;	800.	₹00°	£00.	200.	100.	000.	ni basH tset

Тавід 39.—Dівсиляда ім Совіс Гевт рек Зесомо рея Foot ог Length over Sharp-Carston, ву тив Галмогт Velocity of Approach Correction, ву тив Галмогів Гормога  $Q=3.33 H^{95}$ 

#### TABLE 38 (Conduded)

## Discharge Over Cippoletti Weirr in Cubic Fert fer Second second by The Formula Q=3.3% LH%

0.	8	0.7	0.9			0.	<u> </u>	1	3.	<u>-</u>	· 8	0	2	ç	1	0.1	ni basH test
₹₽.	21 20 20	42, 73 44, 60 45, 16 43, 73 43, 73	88.7 8.23 09.8	8 98 8 98 8 99	35 31	₽2 6₽ 73	52 52 52	30 11 83	.81 19:	80 83	16. 15. 15.	78 74 29	12. 12.	99 97 97	6	742.8 6.309 175.8 164.8 764.8	13.1 23.1 1.53 1.53 1.54 1.53
86 86 00	52 53 54 54	48.38 46.36 46.80	98.9 97.9 21.0	7 84 7 87 8 11 8 08	33	48 48 78 00	26 26 26 26 26	90 28 89	19 20 20 20 20	28 12 99 07	16. 16.	20 32 32 15	13. 13.	84 93 03 12	6 6	083.8 823.8 883.8 037.8	99°I 1°26 1°26 1°26 1°26 1°26
20 20 20 72	26 25 25 25	48.94 49.64 49.64 49.85 49.85	72.1 1.65 1.65 24.2	98 7 80 7 14 7 68	32 34 34 34	12 77 82	27 28 28 28 28	83 02 12	20. 20. 21.	99 32 32 18	71	98 10 14	13 14 14	32 41 51 61	10 10 10	878.8 249.8 300.7 170.7	19.1 29.1 69.1 49.1 39.1
£1.	.66	50,40 51,32 51,32 51,32 52,24	IRC. G	PICC.	O.C.	on.	87.	IN W	12.	u I	.81	13.6	•	mk.	(11)	1997. 7.1	99.I 79.I 89.I 07.I
82 87	19 19	52, 70 53, 62 54, 09 54, 59	5.36 8.36 8.36	7 08 7 08 7 46	38 38	16 19 38	30°	86 81	23. 22.	35 12 38	.81 .91	42 35 18	12 12 12	28 48 38	11	199.7 199.7 727.7	17.1 27.1 1.73 1.74 37.1
96 75	. εδ	16.83 95.93 96.44 56.97	76.7 86.8	98 4 98 4	6€ 38	88 38	31	66 84	53 73	91 66 78	.02 19.	13 88	16. 16. 16.	60 66 68	11	266.7 8.063	77.1 87.1 87.1 97.1 1.80
89 22	99 99	57, 39 58, 34 58, 38 58, 82 58, 80	09.9 10.0	9 29 9 29 9 10	75 17	34	33 33	08 00 12	52 52	83 10	20. 20. 21.	18 29 23	16. 16.	19 20 40	15 15	992.8 \$.334	18.1 28.1 68.1 48.1 58.1
78.	. 89 . 69	87 . 68 82 . 08 82 . 18 82 . 18 27 . 18	70.2	38 2 90 2	43	17	34	83 83	59. 59.	89 25	. 12 . 13	38		16	13.	<b>609.8</b>	98.1 78.1 88.1 98.1
84	14	07.28	87.8 4.16 83.4	46 6 13 6 18 6	97 97 77	88 11 39	30°	67 80 84	27. 27. 26.	25 25 38	22. 22. 22.	18 90 16	.71 .81 .81	₽9 ₽9 ₹3	13. 13.	288.8 20.6 720.6 736.8 891.6	19.1 1.92 1.94 1.94 1.95
19	75 75	99 '99 91 '99 91 '99 99 '99	85.8 82.8 17.8	30 2 30 2 24 2	45 97 97	24 52 80	48 48 48	32 14 83	. 82 . 83 . 83	27 45 83	23. 23.	29 94 96	.81 18.	20 96	14. 14.		1.96 1.98 1.99 1.99 2.00

TABLE 38 (Continued)

## DISCHARGE OVER CIPPOLETTI WEIRS IN CUBIC FEET PER SECOND BY THE FORMULA, Q=3.3% LH%

81.6	1	US .	6.5	TT	. 18	<b>z</b> 6 '	OS	<b>₩</b> /	7.7	90	·ΩT	QЪ	· CT	18	· Z.T	87	· в	281	٠,	1.50
AA'S	2₩	œς.	7.Đ	51.	30.	20	US	RE'	₹7.	1.2	. S.L	112	· CT	CZ.	. 21	RI	· в	123	. 9	67°I
67 · 8	3⊅ 3₽	υυ. 643	77 75	78 00	.96	18.	30	98	77 77	00 RT	81	90	. GI	00 121	12.	90	. 6	290		74.1
18.7	.₽	78.	T\$	79	32.	04	58	94	23	85	17.	82	٦ŧ.	88	.11	16	.8	686		9 <del>1</del> ∙i
60.7 7.03	Ð	12	ΙĐ	22	32	38	62	19	23	63	21	69	ħΙ	94	.11	28	.8	848	٠,	97°T
90.8	) †	27.	0₹ 0¥	16	34	60	67	22	23	27	<b>:</b> 4[	80	7Ţ.	79 TC	.11	23	.8	818	.6	84.1 1.44
10.0	77.	00'	20	OT	· F.C	OT.	07	a,	77	I RA	· , T	8.7	**T	Re	• 7 7	* C	۰.	469	. 6	1.42
60.5	- 1											1		22	. 11	97	.8	289	.6	14.1
79:1	7	<b>10</b>	38	97	33	88	43	31	22	23	91	76	13.	12	ΪΪ	98	.8	229 219		98.1 04.1
91.8 90.8	7	0 <u>ς</u> .	38	92	32.	62.	22	£8	21	28	ię.	19	13.	26	·6t	6T	.8	897	٠.	88.1
81.8	Þ	64	34	39	32	66	92	69	ΣĮ	20	16	20	13	08	.0I	ΟĪ	.8	668	Ğ	76. i
												1				1	-	078		98.1
87.1 82.5	7	99 . 46 .	98 98	88	. 15 15	II.	97 97	68 61	20	29	19. 19.	20	13.	99 77	10.	83	.7	222	. G	1.34 1.35
ĭē:i	7	Ťį	36	86	30	28	25	99	žŎ	67	Ϊĝ	16	ĭš	33	ğį	92	:7	19T	. 6	£E.1
88.0 88.0	か	₽£.	35	62	30.	£2.	97	42 18	20	35	9 [ 19	92 20	12.	21 10	10.	99	. 7	90I		18.1°
	- 1			1				1						•		81		066	- 1	1.30
97.69 97.69 87.69	38	<u>83</u> .	34	60	. 65	99	₹5	εž.	ĕi	08	ŧΪ	ε̈́ε	īs	28	·ĕ	0₽	٠2	933	*	1.29
80.8	38	EI.	34	97	62	88.	₹7	109	6T	63	<b>*</b> 1	16I	.si	22	٠6	23	:4	818		12.1 82.1
8.09	38	8£.	33	29	.82	18	23	90	61	82	γi	06	11.	28	.8	71	٠ź	297	·ŧ	1.26
₽9.7	35	<b>∌</b> 6'	35	23	.82	23	23	\$8	81	21	ŀΙ	92	11	17	.6	90		202		1.25
61.7	2	₽¢.	7.2	AR.	1.7.	₽Z.	27	AQ	18	GB.	13	20	. 11	30	'Ŕ	126	٠.	679	. 4	1.24
8.29 8.74	30	97.	31	22	. 22 27	88	22	4E 91	81	19	13. 13.	16	٠ţţ	20 20	.6	08 68	.y	269 289	· 7	1 . 22 1 . 23
88.8	31	<u>Σ</u> .	31	68	. <u>9</u> Š	Õ₹	ŠŠ	<b>26</b>	Žĺ	77	13.	οž	ΊĬ	96	.8	27	. <u> </u>	181		1.21
0 <b>₹</b> ∶9	31	86	30	99	98	13	22	04	21	82	ĔĪ	90	ΙΙ	92	.8	79		927	`₽	1.20
96 1	3	12.	30	88	98	86	12	97	41	26	13	87	10	24	.8	29 24	.8	048 918	7	81.1 91.1
79 T	3	<b>28</b> .	őč	99	. ŽŠ	30	īž	₩.	Žī	84	ĭъ	99	٠ŏi	29	.8	38	. 9	1192	`₽	21.1
39.8	33	₩.	53	₽2	.62	60.	12	28	91	29	.21	13	.or	ΙĐ	.8	31		903		91.1
87 : 3 87 : 3 83 : 32	35	90	58	16	54	94	20	19	91	97	15	38	ĬŎ.	30	.8	12 12	. 9	860 125		1.14 31.1
32·3	32	18. na	28	26	24	22.	20	18	ĭë	13	is.	11	io.	60	. <u>8</u>	120	. 9	₹₹0	.₽	61.1
26 I	131	E6.	721	₹6°	23	96	61	96	91	146	.11	86 88	`6	86 48	·Z	66 16	٠.6	066		11.1
	- 1						- 1			1.			•					286		
40 T	3	81.	22	86	23	91	61 61	72	9 I 9 T	8¥	ΠŢ	17 86	6	22 99	. 2	83	.δ.	188		90.1 01.1
62.0	re l	ĞŦ,	02	10	22	80	QT	TT	CT	50°	· TT	GĐ.	· в	20	٠.	129	٠ĝ	644	.ε	80.1
18.6	25	80 :	98	38	22	69	81	16	PI BT	20 81	11	32		97 32	:4	69 19		974 749		70.1
86.8	- 1		1											36 54	_	£₽		229		1.05
19.8	22	68.	₹2.	7. P	12	GR.	21	87	ΉI	IL.	or.	83		ÞΪ	٠.	36	٠ē	129		40.1
91.8	32	₽9`	78	15	.12	09	41	80	Ιď	99	.01	08	.8	₩.	· Ł	82	. G	619		1.03
27.75 37.75	2	86. 86.	23	18	.02   20	60	21	28 29	13	25	10.	29 79		₽6 83		13		897 217		10.1 20.1
					_	<u> </u>	_	_		-		1				!		-		
0.8	3	0.	4	0	. 8	0	.6	0	₱	0	3.	9	.s	0	.s	ç	. I	0	1.1	1991
					1	1991	uı	Ti9	M 10	o u	ı Bu	эт							_	ni basH
	_	_							··		-	-		_						

TABLE 38 (Continued)

## Discharge Over Cippoletti Weirs in Cubic Fert per Second by the Formula $Q=3.3\%~LH^{95}$

0.	Length of weir in feet  1.0   1.5   2.0   2.2   3.0   4.0   5.0   6.0   7.0   0.1   0.1											ni basH tset								
86.0 39.0 38.0	10 10 10	32 60 84	6	36 73 79 24 24 24 24	8	18 09 88 88	9	46 34 02 00 80	g g	88. 97. 99. 10.	3	. 15 . 25 . 34 . 43	333	25 28 60 78 37	2 2	98 98 96 90	Z I	328 338 338 338 328	. Į	13. 23. 83. 43. 33.
gg. j	15 11 11 11	88 88 88	01 01 01 6		8	85 44 83 84 85 85	7	36 30 80 80 80	9	23 46 58 58	† † †	23 72 81 81	33	85 80 80 80 80 80 80 80 80 80 80 80 80 80	พพพพ	23 17 17 18 18 18	222	202 449 487 411	I	99 . 83 . 83 . 93 .
64 : 47 : 91 :	61 61 81	70 87 70	. Žį	29 10 10 10 26 26	10: 10: 10:		8 8	90 83 83 90	. <u>§</u>	50 12 02 02 03 03	9	11 21 11 11	P P	21 28 37 45 53	Š	99 69 63 44 41	2 2	797 983 984 984 984	Ţ	19. <b>59</b> . <del>19</del> . 39.
77 01 .	12 12 14	28	13.	80 83	. I I I I .	23	6	38	: <u>7</u>	85 12 12 13 14 15 15	9	85 28 25 21 91 21	Þ	76 98 82 69 19	3. 3.	96 68 24 24 24	2	888 978 978 978	. I . I	99 · 89 · 29 ·
91 98 12	91 91	00 02 07	12. 14.		12.	82 20 28	10. 10. 10.	129	.8	99 30 11 10	9	47 25 36 14 03	9	28 50 11 80	* †	21 00 08 08	3.	281 871 001 290 710	2.2.	17. 27. 87. 47.
16	81	22 83	91	18 85 82 38	13. 14.	28 09 48	ŢŢ.	97 86 10	6	85 80 96 88 69	9	70 16 69 69	. č	28 29 49 48	· ቅ · ቅ	19 99 87 17 78	3.	\$08 \$98 \$18 \$18 \$28 \$28	2.2	87. 87. 87. 08.
00.0 75.0	50 50	82 87	.71	22 22 20 83 83	12. 12. 12.	96 23 20	12. 12.	37 81 00	10. 10.	94 99 90	: 2	28 38 38 38 13	. 9 . 9	58 18 00 00 16	. G	96 68 78 94 89	. 8 3	265 269 276 200 200 200	2	18. 28. 58. 48.
88.1 23.23 19.5	55 55 51	97	61 61	96 89 68	16. 16.	13 06 99	13. 13.		10. 11.	0.		61 20 96 83 14	. 9	92 99 99 97 48	. č	31 10 10 10 31	Ŧ Ŧ	282 728 728 728 728	2 2 2	98. 48. 88. 78.
47. £	23	80 14 84 82 82	. 12 . 13	83 12 41	.81 .81	28 01	12. 15. 14.	7.2	11.	32 00 01 01 01 01	·Ř	62 29 29 87 18	7.7	33 04 04 82	. 9 . 9	88 63 88 88	* <del>*</del>	836 116 117 117 117	2.8 3.6	16. 26. 56. 56.
67.3	2	18. 88.	. 22	90 30	61 61 61	83 83	16. 16. 15.	90	12. 13. 13.	99 99 98 98	6	58 19 04 05 85	.8	63 43 43	.9	28 28 28 28	Þ	918 993 913 291	. 8 . 8	86. 86.

Table 38.—Discharge Over Cippoletty Weirs in Cubic Treet per Second by the Formula Q = 3.3% LH%

	1	1								1
80.8 80.8 90.8 92.9 23.9	80.8 80.8	05.8 13.8 27.8 6.93	5.25 5.42 5.60 5.77 5.95	4.20 4.34 4.48 4.62 4.76	3.15 3.25 3.46 3.46 5.57	2.62 2.71 2.89 2.89 2.89 2.89	2.10 2.17 2.24 2.31 2.31	88.1 88.1 88.1 87.1	1.050 1.085	84. 84.
70.7 85.7 98.7 81.8	91.8 14.8 38.8 88.8	5.30 5.50 5.70 5.70 6.10	4,42 4,58 4,91 8,08	\$3.8 \$3.8 \$3.80 \$.80 \$.07	2.65 2.75 2.85 2.95 3.05	2.21 2.29 2.46 2.46 2.46	77. I 88. I 1. 90 1. 97 2. 03	24.1 74.1	488. 819. 849. 889.	14. 24. 84. 34.
28.8 60.8 18.8 6.31 18.8	5.09 5.30 5.52 5.74 5.74 5.96	4.36 4.73 4.73 11.3	3.64 3.79 3.94 4.10 4.26	2.91 3.03 3.15 3.41 3.41	2.18 2.27 2.37 2.46 2.56	1.82 1.89 1.97 2.05 2.13	24.1 23.1 1.58 1.64 1.70	1.09 1.14 81.1 82.1 82.1	827.	88. 88. 98. 04.
4.65 4.88 5.11 5.34 5.34 5.58	70.4 74.4 76.4 76.4 88.4	81.49 81.49 81.49	2.91 3.05 3.19 3.49 3.49	2.32 2.44 2.55 2.67 2.79	1.74 1.83 1.91 2.00 2.09	24.1 1.59 1.59 1.67 1.74	1.16 22.1 82.1 82.1 1.39	78. 16. 96. 00.1 30.1	183. 609. 889. 789.	18. 28. 88. 88. 48.
3.57 87.8 3.99 12.4 12.4	21.8 18.8 84.8 86.8 78.8	2.68 2.99 3.15 3.32	2.23 2.36 2.49 2.63 2.77	1.79 1.89 2.00 2.10 12.2	1.34 1.42 1.50 1.66 1.66	11.1 81.1 82.1 82.1 88.1	98. 96. 1.00.1 50.1	79. 17. 87. 88.	844. 874. 894. 833.	82. 82. 82. 92.
2.59 2.97 2.97 3.17 3.37	2.27 2.43 2.60 2.77 2.95	1.94 2.23 2.38 2.38 2.53	28.1 1.74 1.98 1.98 01.2	05.1 1.39 1.49 83.1 83.1	92.1 11.1 11.1 11.1 1.26	18. 78. 69. 80.1	86. 67. 84.	94. 23. 83. 83.	178. 178. 178. 124.	12. 22. 82. 42. 32.
1 72 1 89 2 06 2 23 1 41 1 89 2 23 23 23 23 23 24 1 4 2 2 2 3 2 2 3 2 2 3 2 3 2 3 2 3 2 3 2	1.51 1.65 1.80 1.95 11.2	1.29 1.42 1.54 1.67 1.81	80.1 81.1 82.1 1.39 1.51	88. 94. 1.03 1.1 02.1	58. 77. 18.	\$6. 93. 97. 37.	84. 74. 13. 03.	28. 38. 39. 34.	812. 852. 732. 972.	81. 81. 81. 02.
98. 1.12 1.26 1.41 1.41	88. 89. 01.1 52.1 75.1	44. 48. 56. 71.1	19. 07. 88. 88.	64. 68. 17. 87.	78. 74. 53. 63.	18. 38. 98. 84.	82. 82. 28. 38.	12. 24. 26.	821. 01. 831. 871.	11. 21. 81. 41. 31.
04. 03. 18. 87. 88.	38. 44. 83. 40.	08. 78. 84. 83.	82. 18. 88. 84. 85.	02. 32. 08. 88.	81. 61. 52. 72.	21. 31. 91. 52. 52.	01. 21. 31. 81.	70. 60. 11. 81.	050. 280. 870. 190. 701.	80. 80. 01.
80. 80. 11. 22. 30.	20. 70. 21. 81.	20. 80. 11. 81.	20. 30. 60. 81.	10. 40. 11. 11.	10. 80. 80. 11.	10. 20. 40. 70.	10. 20. 40. 80.	10. 10. 80. \$0.	810. 720. 810.	10. 20. 50. 50. 50.
0.8	0.7	0.8	993 ni 0.3	of weir	918th	3.5	0.2	3.1	1:.0	ni baeH teet

	168.4								818.4 019.4	08.1 18.1		
4.539 4.539 4.539	4,442 4,530 4,709 4,800	128.4 4.510	€163.4 109.4	4.592 4.592 4.582	883.4 873.4	\$4.48 \$4.5 \$98 \$98	774.4 656.4 655.4	4.469 4.669 9.469	094.4 843.4 789.4	22.1 22.1 22.1 22.1 62.1		
642.4 4.1104	4.019 4.102 4.270 4.270 8.356	4.093 4.177 4.262	4.085 4.169 4.253	4.077 4.160 4.245	4.069 4.152 4.236	4.060 4.143 4.288	4.052 4.135 4.219	4.044 127 112.4	4.035 4.118 4.202	02.1 12.1 22.1 23.1 52.1 42.1		
3.785 3.785 3.785 3.865	128.8 898.8 777.8 788.8 789.8	694.8 694.8 848.8	194.8 194.8 148.8	878.8 837.8 8838	3.825 3.845 3.845	688.8 787.8 718.8	238.8 908.8 908.8	3.644 3.722 3.801	9:03.8 417.8 5:793	81.1 81.1 71.1 81.1 81.1		
728.8 104.8 874.8	2,247 3,319 3,393 834,5	218.8 388.8 134.8	308.8 878.8 834.8	862.8 178.8 8.446	2.290 3.364 864.8	3.283 3.356 164.8	872.8 848.8 824.8	892.8 8.341 8.416	3.261 3.334 804.8	01.1 11.1 21.1 21.1 81.1		
600.	800.	200	900.	300°.	<b>₽00</b> ·	£00.	200.	100.	000.	H basH test ni		
arte	Table 37 (Conduded) DISCHARGE IN CUBIC FEET PER SECOND OVER RIGHT-ANGLED V-NOTCH WEIRS BY THE FORMULA, Q = 2.52 H ^{2.77}											
		SC	חדומ	DKY.	XH &	К 01	BOO	UNV.	Н	112		

16.7 160.8	120	8 600 · 8	848.7 866.7	188.7 188.7	279.7	988.7 989.7	746.7	218.7 389.7	226.7	83 . I 83 . I
887.7	577	7 222 7 7 243 7 7 597 7	1.630.7	819.7	727.7	7.594 7.715	282.7 7.503	078.7 198.7	828.7	99 I . 99 I . 1 20
72 <u>4</u> . 7	917	Z 107·Z	268.7	088.7	898.7	958.7	345.7	888.7	128.7	₽g∵I
770.7 591.7	380.	7 69 1 . 7 7 69 1 . 7 7 882 . 7	7.043 7.158	160.7 841.7	7.020 7.135	800.7	769.8 211.7	389.8 001.7	479.8 880.7	1 50 I 13 I 23 I 53 I
6 <del>18</del> .8	828	9 228 .8	9.815	₹08.8	867.9	287.8	044.8	867.8	847.8	84.1 1.49
616.6	POG.	9 988 9 9 964 9 9 909 9 9 912 9	6.483	274.8	194.8	097.9	66.439	824.8	217.9	84.1 84.1 74.1
261.8 6.299	181 882.	9 171 8	9 1 60 6 9 2 5 6 6	6,149 6,256	6.139 6.245	6.128 6.234	6.118 6.224	701.8 812.8	760.8 202.8	1.43 1.44
186.3	176	8 188.8 8 186.8 8 80.8	9.820	076.8	626.3	616.3	606.8	868.3	888.8	04. I 14. I 14. I
₹29°9	199	6 555 5 6 557 5	5.644	5.634	\$29.8	₽19.3	₽09.3	\$6G.8	186.8	88.1 88.1 88.1
P74.6	197	3 357 5 3 334 5 3 453 5	9.445	6.435	624.8	614.6	907.9	968.3	5.386	38.1 38.1 58.1
581.3	173	9 092 9 9 19 <del>1</del> 9	1 PGI . G	6.145	5.135	5.126	5.116	5.107	760.8	1.32 1.33 1.34
₱66°1	186	\$ 288 1 \$ 288 1	996.	996.	4.947	886.4	826.4	616.₽	016.4	1.30 1.31
608 1 814 1 829 1	607 608	₱ 064 1 ₱ 004 1 ₱ 019 1	169.4 187.4	289. p	84.4 878.4 876.4	₱99 ₱	974.4 999.4	984.4 949.4	848.4 4.637 4.727	1.28 1.28 1.29
6223	530	4344 123.1	4.513 4	£09'	267.4	981.1	772. A	69₹.₽	094.4	1.25 1.26
642 1	072.	1 292 1 1 342 4	4.253	4.245	4.236	822.4	612.4	112.4	\$02.₽	1.22 1.23 1.24
OII 1	102	₹ 660 · 1 ₹ 110 · 1	\$ 280. P	770. A	690.₽	090.₽	4.052	₽₽O'₽	₹.032	12.1
388.8	777	8 648 8 8 648 8 8 626 8	3.841	883.8	3.825	718.8	9.838	3.722 108.6	\$17.E	71.1 81.1 91.1
828.8 807.8	129. 869.	E 613 8	809.8 888.8	763.8 379.8	9.5 1667 199.8	283.8 83.6	230.8	793.8 793.8	933.E	81.1 81.1
199 :	897 ·	8.461 3 8.536 3	8.458 3.529	3.446	864.8 3.513	3.431	864.8	3.416	80∳.£ 3.483	1.13 1.14

#### SHARP-CRESTED WEIRS

#### TABLE 37 (Continued)

### DISCHARGE IN CUBIC FEET PER SECOND OVER RIGHT-ANGLED V-NOTCH WEIRS BY THE FORMULA, $Q=2.52~H^{3.47}$

600 .	800·	400.	900.	300.	₹00°	£00.	200.	100.	000.	H bash test ni
017 177 208	787 . 887 . 997 .		187 . 287 . 887 .	827. 637.	827. 837. 887.	527. 537. 587.	027. 047. 087.	717. 847.	417. 847. 477.	08. 18. 28.
₽88. 988.	168. 688.	728. 088.	128 738	128. 538.	818. 038.	618. 7 <u>4</u> 8.	118. 518.	808 048	808. 788.	89. 89.
006. ₽86.	968. 086. 366.	868 726 26	068 . 826 . 836 .	988. 920. 386.	888. 719. 139.	880 816 846	978. 019. 149.	£78. 806. 1≱6.	078. 609. 769.	39. 99.
1.004 1.040	100.1	266	₽66°	066	988	. 983	910:1 626:	976.	279. 1.008	89. 69.
1.116 1.154	440.1 211.1 131.1 061.1	801.1	1.143	101.1	760.1 351.1	161.1	1.127	1.085 1.123	1.120 1.120	07. 27. 87.
272.1 1.317 1.360 1.403	172.1 818.1 838.1 898.1	1.267 1.309 1.35.1 1.395	1.263 1.305 1.347 1.390	1.259 1.300 1.343 1.386	282.1 1.296 1.339 1.382.1	1.251 1.292 1.394 1.377	1.246 1.288 1.330 575,1	1.242 1.284 326.1 1.369	862.1 872.1 126.1 136.1	87. 87. 87.
1.586 1.586	884.1 463.1 183.1 183.1	088.I	273.1 273.1	126.1 786.1 1.614	292.1 292.1 019.1	115.1 1.558 1.505	1.567 1.563 1.600	209 I 879 I	169.1 1.591	08. 18. 28. 58. 58.
288.1 388.1	828. I 828. I 878. I 878. I 859. I	127.1 277.1 228.1 278.1	717.1 887.1 718.1 718.1	217.1 187.1 518.1 \$48.1	707.1 937.1 708.1 708.1	1.702 1.751 1.802 1.853	769. I 847. I 767. I 848. I	269.1 1.741 267.1 243	786 . I 867 . I 787 . I	68 48 98 98
2.046 2.101 2.157	1.986 2.040 2.095 2.152 2.209	2.035 2.090 2.146	2.029 2.084 2.140	2.024 2.079 351.2	810.2 870.2 81.29	890.2 890.2 831.2	200.2 200.2 811.2	200.2 730.2 211.2	1.996 1.996 1.107	06. 16. 26. 86.
2,272 2,332 2,391 2,452 2,613	2.385 2.385 2.446	011.2	2.314 2.373 434	808.2 786.2 824.2	2.302 2.361 2.422	2.296 2.355 2.416	2.290 2.349 2.410	2.284 2.343 2.403	872.2 785.2 785.2	66° 86° 26°
2.576 2.540 2.70 <del>4</del> 2.770 2.836	2.570 2.698 2.698 2.830	2.564 2.691 2.691 2.691 5.853	129.5	418.2	809.2	209.2	2,695	2.689	12.583	00.1 10.1 20.1 50.1 \$0.1
2.903 279.2 1 <u>4</u> 0.8	2.897 3.034 3.034 3.175	068.2 836.2 720.8 780.8	2.883 2.951 3.020 3.090	878.2 2.9 <del>44</del> 810.8 883.8	078.2 2.937 3.006 8.076	2,863 2,999 3,069	2.924 2.924 2.992 3.062	2.917 2.917 3.985 3.055	848.2 010.2 876.2 840.8	80.1 80.1 70.1 80.1 80.1

TABLE S7.—DISCHARGE IN CUBIC FEET PER SECOND OVER RIGHT-ANGLED V-NOTCH WEIRS BY THE FORMULA,  $Q=2.52~H^{2.67}$ 

									<del></del>	
117.	804	202	202	669	969	269	069	889	689.	69
289	629	929	E29		899					83.
1999·		879	979		079	289	1 529	632		73.
929	623	129	819	919	619			909		23.
669	269	769			989					33.
£73.	129	899	999	299	099			223		₩.
843			019	853	635		530	823	523.	83.
£23.	029	819	919	213	119		908	100		23.
667	967	767						087		13.
37.		127	897	997		297	697	1297	997	93.
£27	097	877	955	555	ł			1		ı
154.	824.	924	484	224.	420	814.		435	111. 884.	84.
60₽.	207		804							27.
888.	988	188	285.	088.						97.
885.	998	198	298.	098.	878.	948.	₹48°	278	138.	ζħ.
	1	1	1	1			1	1	1	
6 <u>1</u> /8.	746.	978	545.	146.	688.	758.	358.	334	266.	₱₱°
215.	828	326	1324	808.	128.	818.		318.	SIE.	24.
			908		808	108.	662	762.	962.	67.
772.	262	162	682	782.	382.	182	282	082	672.	04. 14.
		<b>₽72.</b>	\$72.	072.	692.	792.	392.	192.	292.	1
192.	662.	732.	992.	₽92.	£32.	132.	8¥2.	812.	9₽Z.	68.
345.	243	242	01/2	239	752.	982.	234	232	152.	88.
229	822.	722.	225	1224	222.	122.	912.	812.	812.	78.
312.	213	SIS.	112.	602.	802.	802.	205.	1204	202	98.
102.	661.	861.	761.	361.	₹61.	E61.	191.	061.	981.	38.
781.	881.	381.	£81.	281.	181.	641.	871.	221.	941	<b>∌</b> €.
721	871.	271.	171.	691	891.	791.	991.	#9I.	691.	.33
281.	191.	621.	881.	731.	991.	361.	₹9I.	281.	131.	28.
120	671		741.	341.	PPI.	143	241.		041.	Ĭξ.
<b>9£1</b> .	861.	881.	381.	₽E1.	EEI.	281.	iei.	081.	621.	08,
LLZI.	1267	1256	iste	352I .	1226	aisi .	3021.	3611.	3811.	62.
<b>9411.</b>	8911.	3311.	SPII.	3511.	ZII.	3111.	3011.	<b>9601</b> .	801.	82.
9401.	780I.	7301.	8401.	9801.	1029	0201.	1101.	soot.	£660.	48.
<del>18</del> 60 .	3790.	9960	7360.	8160.	6860.	0860.	2280.	£160.	<b>₽</b> 060.	. 26
9680.	7880.	6780.	0780.	2880.	₽ <b>380</b> .	3180.	7880.	6280°.	1280.	32.
£180.	3080.	2640	6870.	1870.	<b>E770.</b>	3970.	8670.	0940.	2 <u>4</u> 70.	₽2.
9840°	TSTO.	0270.	2170.	3070.	<b>2690</b> .	0690	8880.	9490	8990.	£2.
1990.	<b>₽</b> 990°.	4190	0490.	£680.	9290.	6190.	2190.	8080.	6690	22.
2690.	8880.	6730.	2730.	8880.	6990.	£630.	7140.	0400.	₹20°	12.
8 <b>2</b> 30 .	2230.	3130.	<b>6030</b> .	£030.	7610.	1940.	88₽0.	64 <del>10</del> .	£710.	02.
891-0	2940	9970.	0610.	9¥¥0.	<b>6</b> ε¥0.	₽£₽0.	8210.	22 <del>1</del> 0.	2170	61.
1110.	90¥0.	1040.	9660.	0680.	3850.	0880.	3750.	0750.	3980.	81
0980.	<b>6660.</b>	0350,	<b>6₽£0.</b>	0340	3850.	1660.	9280.	1250.	7150.	41.
2150.	8080.	E0E0.	6620.	₱6Z0°	0620.	3820.	1820.	7720.	£720.	91.
8820.	₽9Z0.	0920.	992O.	2320.	8420.	₽₽ZO.	0420.	<b>8520</b> .	EE20.	81.
6220.	3220.	1220.	8120	₽I20·	0120.	7020.	EOZO.	0020.	9610	∌I.
£610.	6810.	810.	6810.	6410.	9410·	£710.	0710.	9910.	£910.	έį.
0910.	7510.	£910.	1610.	8110.	3¥10.		0110.	7510.	£10.	ZI.
1810.	6210.	9210.	6210.	1210.	8110.	9110.	ELIO.	IIIO.	8010.	īī.
010.	EOIO.	1010.	6600	<b>9600</b> .	₽600°	2600.	0600.	8800.	3800.	οį.
600	800.	700.	900.	900	₩00.	500.	200	100.	000	teet ni
300	500	200	000	200	,,,,	000	000		000	H basH

+ I)  $\binom{HQ}{t_0}\sqrt{\frac{1}{6}+1}$  voisesaff aft to sallay—.05 alah T  $\frac{1}{2}$  and  $\frac{1}{2}$  for sallay the sallay of the sallay of the sallay of the sallay of the sallay of the sallay of the sallay of the sallay of the sallay of the sallay of the sallay of the sallay of the sallay of the sallay of the sallay of the sallay of the sallay of the sallay of the sallay of the sallay of the sallay of the sallay of the sallay of the sallay of the sallay of the sallay of the sallay of the sallay of the sallay of the sallay of the sallay of the sallay of the sallay of the sallay of the sallay of the sallay of the sallay of the sallay of the sallay of the sallay of the sallay of the sallay of the sallay of the sallay of the sallay of the sallay of the sallay of the sallay of the sallay of the sallay of the sallay of the sallay of the sallay of the sallay of the sallay of the sallay of the sallay of the sallay of the sallay of the sallay of the sallay of the sallay of the sallay of the sallay of the sallay of the sallay of the sallay of the sallay of the sallay of the sallay of the sallay of the sallay of the sallay of the sallay of the sallay of the sallay of the sallay of the sallay of the sallay of the sallay of the sallay of the sallay of the sallay of the sallay of the sallay of the sallay of the sallay of the sallay of the sallay of the sallay of the sallay of the sallay of the sallay of the sallay of the sallay of the sallay of the sallay of the sallay of the sallay of the sallay of the sallay of the sallay of the sallay of the sallay of the sallay of the sallay of the sallay of the sallay of the sallay of the sallay of the sallay of the sallay of the sallay of the sallay of the sallay of the sallay of the sallay of the sallay of the sallay of the sallay of the sallay of the sallay of the sallay of the sallay of the sallay of the sallay of the sallay of the sallay of the sallay of the sallay of the sallay of the sallay of the sallay of the sallay of the sallay of the sallay of the sallay of the sallay of the sallay

22, 31 17, 31 194, 18, 18, 22, 31, 194, 21, 21, 21, 21, 21, 21, 21, 21, 21, 21	79 1 94 1 94 1 94 1 94 1 94 1 94 1 94 1	8.6   98.8   98.8   98.8   90.8   07.7   97.9   98.8   99.8   98.8   99.8   99.8   99.8   99.8   99.8   99.8   99.8   99.8   99.8   99.8   99.8   99.8   99.8   99.8   99.8   99.8   99.8   99.8   99.8   99.8   99.8   99.8   99.8   99.8   99.8   99.8   99.8   99.8   99.8   99.8   99.8   99.8   99.8   99.8   99.8   99.8   99.8   99.8   99.8   99.8   99.8   99.8   99.8   99.8   99.8   99.8   99.8   99.8   99.8   99.8   99.8   99.8   99.8   99.8   99.8   99.8   99.8   99.8   99.8   99.8   99.8   99.8   99.8   99.8   99.8   99.8   99.8   99.8   99.8   99.8   99.8   99.8   99.8   99.8   99.8   99.8   99.8   99.8   99.8   99.8   99.8   99.8   99.8   99.8   99.8   99.8   99.8   99.8   99.8   99.8   99.8   99.8   99.8   99.8   99.8   99.8   99.8   99.8   99.8   99.8   99.8   99.8   99.8   99.8   99.8   99.8   99.8   99.8   99.8   99.8   99.8   99.8   99.8   99.8   99.8   99.8   99.8   99.8   99.8   99.8   99.8   99.8   99.8   99.8   99.8   99.8   99.8   99.8   99.8   99.8   99.8   99.8   99.8   99.8   99.8   99.8   99.8   99.8   99.8   99.8   99.8   99.8   99.8   99.8   99.8   99.8   99.8   99.8   99.8   99.8   99.8   99.8   99.8   99.8   99.8   99.8   99.8   99.8   99.8   99.8   99.8   99.8   99.8   99.8   99.8   99.8   99.8   99.8   99.8   99.8   99.8   99.8   99.8   99.8   99.8   99.8   99.8   99.8   99.8   99.8   99.8   99.8   99.8   99.8   99.8   99.8   99.8   99.8   99.8   99.8   99.8   99.8   99.8   99.8   99.8   99.8   99.8   99.8   99.8   99.8   99.8   99.8   99.8   99.8   99.8   99.8   99.8   99.8   99.8   99.8   99.8   99.8   99.8   99.8   99.8   99.8   99.8   99.8   99.8   99.8   99.8   99.8   99.8   99.8   99.8   99.8   99.8   99.8   99.8   99.8   99.8   99.8   99.8   99.8   99.8   99.8   99.8   99.8   99.8   99.8   99.8   99.8   99.8   99.8   99.8   99.8   99.8   99.8   99.8   99.8   99.8   99.8   99.8   99.8   99.8   99.8   99.8   99.8   99.8   99.8   99.8   99.8   99.8   99.8   99.8   99.8   99.8   99.8   99.8   99.8   99.8   99.8   99.8   99.8   99.8   99.8   99.8   99.8   99.8   99.8   99.8   99.8   99.	4.8 4.5 4.5 4.5 4.5 4.5 4.5 4.5 4.5 4.5 4.5
88 91 82 91 82 91 87 91 89 81 82 81 82 81 82 81 82 81 82 81 82 81 82 81 82 81 82 81 82 81 82 81 82 81 82 81 82 81 82 81 82 81 82 81 82 81 82 81 82 81 82 81 82 81 82 81 82 81 82 81 82 81 82 81 82 81 82 81 82 81 82 81 82 81 82 81 82 81 82 81 82 81 82 81 82 81 82 81 82 81 82 81 82 81 82 81 82 81 82 81 82 81 82 81 82 81 82 81 82 81 82 81 82 81 82 81 82 81 82 81 82 81 82 81 82 81 82 81 82 81 82 81 82 81 82 81 82 81 82 81 82 81 82 81 82 81 82 81 82 81 82 81 82 81 82 81 82 81 82 81 82 81 82 81 82 81 82 81 82 81 82 81 82 81 82 81 82 81 82 81 82 81 82 81 82 81 82 81 82 81 82 81 82 81 82 81 82 81 82 81 82 81 82 81 82 81 82 81 82 81 82 81 82 81 82 81 82 81 82 81 82 81 82 81 82 81 82 81 82 81 82 81 82 81 82 81 82 81 82 81 82 81 82 81 82 81 82 81 82 81 82 81 82 81 82 81 82 81 82 81 82 81 82 81 82 81 82 81 82 81 82 81 82 81 82 81 82 81 82 81 82 81 82 81 82 81 82 81 82 81 82 81 82 81 82 81 82 81 82 81 82 81 82 81 82 81 82 81 82 81 82 81 82 81 82 81 82 81 82 81 82 81 82 81 82 81 82 81 82 81 82 81 82 81 82 81 82 81 82 81 82 81 82 81 82 81 82 81 82 81 82 81 82 81 82 81 82 81 82 81 82 81 82 81 82 81 82 81 82 81 82 81 82 81 82 81 82 81 82 81 82 81 82 81 82 81 82 81 82 81 82 81 82 81 82 81 82 81 82 81 82 81 82 81 82 81 82 81 82 81 82 81 82 81 82 81 82 81 82 81 82 81 82 81 82 81 82 81 82 81 82 81 82 81 82 81 82 81 82 81 82 81 82 81 82 81 82 81 82 81 82 81 82 81 82 81 82 81 82 81 82 81 82 81 82 81 82 81 82 81 82 81 82 81 82 81 82 81 82 81 82 81 82 81 82 81 82 81 82 81 82 81 82 81 82 81 82 81 82 81 82 81 82 81 82 81 82 81 82 81 82 81 82 81 82 81 82 81 82 81 82 81 82 81 82 81 82 81 82 81 82 81 82 81 82 81 82 81 82 81 82 81 82 81 82 81 82 81 82 81 82 81 82 81 82 81 82 81 82 81 82 81 82 81 82 81 82 81 82 81 82 81 82 81 82 81 82 81 82 81 82 81 82 81 82 81 82 81 82 81 82 81 82 81 82 81 82 81 82 81 82 81 82 81 82 81 82 81 82 81 82 81 82 81 82 81 82 81 82 81 82 81 82 81 82 81 82 81 82 81 82 81 82 81 82 81 82 81 82 81 82 81 82 81 82 81 82 81 82 81 82 81 82 81 82 81 82 81 82 81 82 81 82 81 82 81 82 81 82 81 82 81 82 81 82 81 82 81 82 81 82 81	88 11 21 01 8 \$0.21 \$2.01 7 \$0.21 \$2.01 7 \$0.21 \$2.01 7 \$0.21 \$0.01 9 \$0.21 \$0.01 9 \$0.21 \$0.01 9 \$0.21 \$0.01 \$0 \$0.21 \$0 \$	7.7   68.7   68.7   68.7   68.7   68.7   68.7   68.7   68.7   68.7   68.7   68.7   68.7   68.7   68.7   68.7   68.7   68.7   68.7   68.7   68.7   68.7   68.7   68.7   68.7   68.7   68.7   68.7   68.7   68.7   68.7   68.7   68.7   68.7   68.7   68.7   68.7   68.7   68.7   68.7   68.7   68.7   68.7   68.7   68.7   68.7   68.7   68.7   68.7   68.7   68.7   68.7   68.7   68.7   68.7   68.7   68.7   68.7   68.7   68.7   68.7   68.7   68.7   68.7   68.7   68.7   68.7   68.7   68.7   68.7   68.7   68.7   68.7   68.7   68.7   68.7   68.7   68.7   68.7   68.7   68.7   68.7   68.7   68.7   68.7   68.7   68.7   68.7   68.7   68.7   68.7   68.7   68.7   68.7   68.7   68.7   68.7   68.7   68.7   68.7   68.7   68.7   68.7   68.7   68.7   68.7   68.7   68.7   68.7   68.7   68.7   68.7   68.7   68.7   68.7   68.7   68.7   68.7   68.7   68.7   68.7   68.7   68.7   68.7   68.7   68.7   68.7   68.7   68.7   68.7   68.7   68.7   68.7   68.7   68.7   68.7   68.7   68.7   68.7   68.7   68.7   68.7   68.7   68.7   68.7   68.7   68.7   68.7   68.7   68.7   68.7   68.7   68.7   68.7   68.7   68.7   68.7   68.7   68.7   68.7   68.7   68.7   68.7   68.7   68.7   68.7   68.7   68.7   68.7   68.7   68.7   68.7   68.7   68.7   68.7   68.7   68.7   68.7   68.7   68.7   68.7   68.7   68.7   68.7   68.7   68.7   68.7   68.7   68.7   68.7   68.7   68.7   68.7   68.7   68.7   68.7   68.7   68.7   68.7   68.7   68.7   68.7   68.7   68.7   68.7   68.7   68.7   68.7   68.7   68.7   68.7   68.7   68.7   68.7   68.7   68.7   68.7   68.7   68.7   68.7   68.7   68.7   68.7   68.7   68.7   68.7   68.7   68.7   68.7   68.7   68.7   68.7   68.7   68.7   68.7   68.7   68.7   68.7   68.7   68.7   68.7   68.7   68.7   68.7   68.7   68.7   68.7   68.7   68.7   68.7   68.7   68.7   68.7   68.7   68.7   68.7   68.7   68.7   68.7   68.7   68.7   68.7   68.7   68.7   68.7   68.7   68.7   68.7   68.7   68.7   68.7   68.7   68.7   68.7   68.7   68.7   68.7   68.7   68.7   68.7   68.7   68.7   68.7   68.7   68.7   68.7   68.7   68.7   68.7   68.7   68.7   68.7   68.	2.5 2.5 2.5 3.5 3.5 3.5 3.5 3.5 3.5 3.5
79, 11, 26, 11, 12, 11, 18, 01, 13, 12, 11, 179, 01, 18, 11, 12, 11, 179, 01, 18, 11, 12, 11, 179, 01, 179, 179, 179, 179, 179, 179, 179, 17	78.01 29.8 8 82.01 40.9 7 78.01 29.8 7 70.01 40.9 7 70.01 1.0 82.9 7 70.01 10.9 10.9 10.9 10.9 10.9 10.9 10.9	8'.2   \( \frac{1}{2}\) \( \frac{1}{2}\) \( \frac{1}{2}\) \( \frac{1}{2}\) \( \frac{1}{2}\) \( \frac{1}{2}\) \( \frac{1}{2}\) \( \frac{1}{2}\) \( \frac{1}{2}\) \( \frac{1}{2}\) \( \frac{1}{2}\) \( \frac{1}{2}\) \( \frac{1}{2}\) \( \frac{1}{2}\) \( \frac{1}{2}\) \( \frac{1}{2}\) \( \frac{1}{2}\) \( \frac{1}{2}\) \( \frac{1}{2}\) \( \frac{1}{2}\) \( \frac{1}{2}\) \( \frac{1}{2}\) \( \frac{1}{2}\) \( \frac{1}{2}\) \( \frac{1}{2}\) \( \frac{1}{2}\) \( \frac{1}{2}\) \( \frac{1}{2}\) \( \frac{1}{2}\) \( \frac{1}{2}\) \( \frac{1}{2}\) \( \frac{1}{2}\) \( \frac{1}{2}\) \( \frac{1}{2}\) \( \frac{1}{2}\) \( \frac{1}{2}\) \( \frac{1}{2}\) \( \frac{1}{2}\) \( \frac{1}{2}\) \( \frac{1}{2}\) \( \frac{1}{2}\) \( \frac{1}{2}\) \( \frac{1}{2}\) \( \frac{1}{2}\) \( \frac{1}{2}\) \( \frac{1}{2}\) \( \frac{1}{2}\) \( \frac{1}{2}\) \( \frac{1}{2}\) \( \frac{1}{2}\) \( \frac{1}{2}\) \( \frac{1}{2}\) \( \frac{1}{2}\) \( \frac{1}{2}\) \( \frac{1}{2}\) \( \frac{1}{2}\) \( \frac{1}{2}\) \( \frac{1}{2}\) \( \frac{1}{2}\) \( \frac{1}{2}\) \( \frac{1}{2}\) \( \frac{1}{2}\) \( \frac{1}{2}\) \( \frac{1}{2}\) \( \frac{1}{2}\) \( \frac{1}{2}\) \( \frac{1}{2}\) \( \frac{1}{2}\) \( \frac{1}{2}\) \( \frac{1}{2}\) \( \frac{1}{2}\) \( \frac{1}{2}\) \( \frac{1}{2}\) \( \frac{1}{2}\) \( \frac{1}{2}\) \( \frac{1}{2}\) \( \frac{1}{2}\) \( \frac{1}{2}\) \( \frac{1}{2}\) \( \frac{1}{2}\) \( \frac{1}{2}\) \( \frac{1}{2}\) \( \frac{1}{2}\) \( \frac{1}{2}\) \( \frac{1}{2}\) \( \frac{1}{2}\) \( \frac{1}{2}\) \( \frac{1}{2}\) \( \frac{1}{2}\) \( \frac{1}{2}\) \( \frac{1}{2}\) \( \frac{1}{2}\) \( \frac{1}{2}\) \( \frac{1}{2}\) \( \frac{1}{2}\) \( \frac{1}{2}\) \( \frac{1}{2}\) \( \frac{1}{2}\) \( \frac{1}{2}\) \( \frac{1}{2}\) \( \frac{1}{2}\) \( \frac{1}{2}\) \( \frac{1}{2}\) \( \frac{1}{2}\) \( \frac{1}{2}\) \( \frac{1}{2}\) \( \frac{1}{2}\) \( \frac{1}{2}\) \( \frac{1}{2}\) \( \frac{1}{2}\) \( \frac{1}{2}\) \( \frac{1}{2}\) \( \frac{1}{2}\) \( \frac{1}{2}\) \( \frac{1}{2}\) \( \frac{1}{2}\) \( \frac{1}\) \( \frac{1}\) \( \frac{1}{2}\) \( \frac{1}{2}\) \( \f	1.6
21.01 88.9 53.9 62.9 21.01 82.01 87.01 80.01 8.01 82.01 80.01 80.0 8.01 80.01 80.01 80.0 8.02 10 80.01 80.01 80.0 8.03 10 80.01 80.01 80.0 8.04 10 80.01 80.01 80.01	20.01 89.8 ± 5.00.01 89.8 ± 6.00.01 89.8 ± 6.00.01 89.8 ± 6.00.01 89.8 ± 6.00.01 89.8 ± 6.00.01 89.8 ± 6.00.01 89.8 ± 6.00.01 89.8 ± 6.00.01 89.8 ± 6.00.01 89.8 ± 6.00.01 89.8 ± 6.00.01 89.8 ± 6.00.01 89.8 ± 6.00.01 89.8 ± 6.00.01 89.8 ± 6.00.01 89.8 ± 6.00.01 89.8 ± 6.00.01 89.8 ± 6.00.01 89.8 ± 6.00.01 89.8 ± 6.00.01 89.8 ± 6.00.01 89.8 ± 6.00.01 89.8 ± 6.00.01 89.8 ± 6.00.01 89.8 ± 6.00.01 89.8 ± 6.00.01 89.8 ± 6.00.01 89.8 ± 6.00.01 89.8 ± 6.00.01 89.8 ± 6.00.01 89.8 ± 6.00.01 89.8 ± 6.00.01 89.8 ± 6.00.01 89.8 ± 6.00.01 89.8 ± 6.00.01 89.8 ± 6.00.01 89.8 ± 6.00.01 89.8 ± 6.00.01 89.8 ± 6.00.01 89.8 ± 6.00.01 89.8 ± 6.00.01 89.8 ± 6.00.01 89.8 ± 6.00.01 89.8 ± 6.00.01 89.8 ± 6.00.01 89.8 ± 6.00.01 89.8 ± 6.00.01 89.8 ± 6.00.01 89.8 ± 6.00.01 89.8 ± 6.00.01 89.8 ± 6.00.01 89.8 ± 6.00.01 89.8 ± 6.00.01 89.8 ± 6.00.01 89.8 ± 6.00.01 89.8 ± 6.00.01 89.8 ± 6.00.01 89.8 ± 6.00.01 89.8 ± 6.00.01 89.8 ± 6.00.01 89.8 ± 6.00.01 89.8 ± 6.00.01 89.8 ± 6.00.01 89.8 ± 6.00.01 89.8 ± 6.00.01 89.8 ± 6.00.01 89.8 ± 6.00.01 89.8 ± 6.00.01 89.8 ± 6.00.01 89.8 ± 6.00.01 89.8 ± 6.00.01 89.8 ± 6.00.01 89.8 ± 6.00.01 89.8 ± 6.00.01 89.8 ± 6.00.01 89.8 ± 6.00.01 89.8 ± 6.00.01 89.8 ± 6.00.01 89.8 ± 6.00.01 89.8 ± 6.00.01 89.8 ± 6.00.01 89.8 ± 6.00.01 89.8 ± 6.00.01 89.8 ± 6.00.01 89.8 ± 6.00.01 89.8 ± 6.00.01 89.8 ± 6.00.01 89.8 ± 6.00.01 89.8 ± 6.00.01 89.8 ± 6.00.01 89.8 ± 6.00.01 89.8 ± 6.00.01 89.8 ± 6.00.01 89.8 ± 6.00.01 89.8 ± 6.00.01 89.8 ± 6.00.01 89.8 ± 6.00.01 89.8 ± 6.00.01 89.8 ± 6.00.01 89.8 ± 6.00.01 89.8 ± 6.00.01 89.8 ± 6.00.01 89.8 ± 6.00.01 89.8 ± 6.00.01 89.8 ± 6.00.01 89.8 ± 6.00.01 89.8 ± 6.00.01 89.8 ± 6.00.01 89.8 ± 6.00.01 89.8 ± 6.00.01 89.8 ± 6.00.01 89.8 ± 6.00.01 89.8 ± 6.00.01 89.8 ± 6.00.01 89.8 ± 6.00.01 89.8 ± 6.00.01 89.8 ± 6.00.01 89.8 ± 6.00.01 89.8 ± 6.00.01 89.8 ± 6.00.01 89.8 ± 6.00.01 89.8 ± 6.00.01 89.8 ± 6.00.01 89.8 ± 6.00.01 89.8 ± 6.00.01 89.8 ± 6.00.01 89.8 ± 6.00.01 89.8 ± 6.00.01 89.8 ± 6.00.01 89.8 ± 6.00.01 89.8 ± 6.00.01 89.8 ± 6.00.01 89.8 ± 6.00.01 89.8 ± 6.00.01 89.8 ± 6.00.01	8.6         97.1         47.1         27.1         07.1         70.1         00.1         6           9.2         9.2         9.2         9.2         9.2         9.2         9.2         9.2         9.2         9.2         9.2         9.2         9.2         9.2         9.2         9.2         9.2         9.2         9.2         9.2         9.2         9.2         9.2         9.2         9.2         9.2         9.2         9.2         9.2         9.2         9.2         9.2         9.2         9.2         9.2         9.2         9.2         9.2         9.2         9.2         9.2         9.2         9.2         9.2         9.2         9.2         9.2         9.2         9.2         9.2         9.2         9.2         9.2         9.2         9.2         9.2         9.2         9.2         9.2         9.2         9.2         9.2         9.2         9.2         9.2         9.2         9.2         9.2         9.2         9.2         9.2         9.2         9.2         9.2         9.2         9.2         9.2         9.2         9.2         9.2         9.2         9.2         9.2         9.2         9.2         9.2         9.2         9.2 </td <td>3.1</td>	3.1
H   H   H   H   H   H   H   H   H   H	1.0   0.0   7   0   0   0   0   0   0   0   0	\$\begin{array}{ c c c c c c c c c c c c c c c c c c c	2 Z

#### Table 35 (Conduded)

Discharge in Cubic Feet per Second per Foot of Length of Sharp-Crested Weirs with End Contractions Suppressed, by the Formula  $Q=3.34~H^{1.47}~(1~+~.56~\frac{H^2}{4^2})$ 

See page 64 for notation

i

	•					
968 9 180 968 9 180	7   1881 - 7 1 - 7   532 - 7	874. 7 887. 843. 7 818.	8 3 3 8 3 8 3 8 3 8 3 8 3 8 3 8 3 8 3 8	400 6 616 8	19.1 19.1 29.1 59.1 1.63	9416I 946I 946I 946I 946I
869 9 17	7.0 116.0 8.0 676.8	792.7 708.	749.7 679.7 747.7 290.8 748.7 241.8 718.7 822.8 718.8	768.8	1.55 1.56 1.58 1.58 1.58	9 161 9 16 181 9 16 181 9 16 181 9 181
096 B 075	R KORIA	997 9 786 1	7 863.7 768.7 26.5 26.5 26.5 26.5 26.5 26.5 26.5 26.5	950.8	1.50 1.51 1.52 1.53 1.53	<b>3€81</b>
120 3 030	3.8/271.8	1907 91619 9	868.8 071.7 678.9 6.97.7 621.7 604.7 621.7 604.7 604.7	1989.7	84.1 74.1 74.1 84.1	962I 512I
707 . 8 804 707 . 8 804 897 . 8 074	8.852 5.8 6.916 5.8 5.980 5.8	881 .8 888 . 881 .8 888 . 102 .8 404 .	87.78 9.84 9.94 9.94 9.94 9.95 9.95 9.95 9.95 9.95 9.95 9.95 9.95 9.95 9.95 9.95 9.95 9.95 9.95 9.95 9.95 9.95 9.95 9.95 9.95 9.95 9.95 9.95 9.95 9.95 9.95 9.95 9.95 9.95 9.95 9.95 9.95 9.95 9.95 9.95 9.95 9.95 9.95 9.95 9.95 9.95 9.95 9.95 9.95 9.95 9.95 9.95 9.95 9.95 9.95 9.95 9.95 9.95 9.95 9.95 9.95 9.95 9.95 9.95 9.95 9.95 9.95 9.95 9.95 9.95 9.95 9.95 9.95 9.95 9.95 9.95 9.95 9.95 9.95 9.95 9.95 9.95 9.95 9.95 9.95 9.95 9.95 9.95 9.95 9.95 9.95 9.95 9.95 9.95 9.95 9.95 9.95 9.95 9.95 9.95 9.95 9.95 9.95 9.95 9.95 9.95 9.95 9.95 9.95 9.95 9.95 9.95 9.95 9.95 9.95 9.95 9.95 9.95 9.95 9.95 9.95 9.95 9.95 9.95 9.95 9.95 9.95 9.95 9.95 9.95 9.95 9.95 9.95 9.95 9.95 9.95 9.95 9.95 9.95 9.95 9.95 9.95 9.95 9.95 9.95 9.95 9.95 9.95 9.95 9.95 9.95 9.95 9.95 9.95 9.95 9.95 9.95 9.95 9.95 9.95 9.95 9.95 9.95 9.95 9.95 9.95 9.95 9.95 9.95 9.95 9.95 9.95 9.95 9.95 9.95 9.95 9.95 9.95 9.95 9.95 9.95 9.95 9.95 9.95 9.95 9.95 9.95 9.95 9.95 9.95 9.95 9.95 9.95 9.95 9.95 9.95 9.95 9.95 9.95 9.95 9.95 9.95 9.95 9.95 9.95 9.95 9.95 9.95 9.95 9.95 9.95 9.95 9.95 9.95 9.95 9.95 9.95 9.95 9.95 9.95 9.95 9.95 9.95 9.95 9.95 9.95 9.95 9.95 9.95 9.95 9.95 9.95 9.95 9.95 9.95 9.95 9.95 9.95 9.95 9.95 9.95 9.95 9.95 9.95 9.95 9.95 9.95 9.95 9.95 9.95 9.95 9.95 9.95 9.95 9.95 9.95 9.95 9.95 9.95 9.95 9.95 9.95 9.95 9.95 9.95 9.95 9.95 9.95 9.95 9.95 9.95 9.95 9.95 9.95 9.95 9.95 9.95 9.95 9.95 9.95 9.95 9.95 9.95 9.95 9.95 9.95 9.95 9.95 9.95 9.95 9.95 9.95 9.95 9.95 9.95 9.95 9.95 9.95 9.95 9.95 9.95 9.95 9.95 9.95 9.95 9.95 9.95 9.95 9.95 9.95 9.95 9.95 9.95 9.95 9.95 9.95 9.95 9.95 9.95 9.95 9.95 9.95 9.95 9.95 9.95 9.95 9.95 9.95 9.95 9.95 9.95 9.95 9.95 9.95 9.95 9.95 9.95 9.95 9.95 9.95 9.95	888.7 888.7	1.40 1.41 1.42 1.43 1.44	7121 9121 9121 916191 916191
897 2 66 807 2 66 807 2 66	P. 8 888.8 P. 8 888.8 B. 8 188.8	987.5 £196. 688.6 £88. 688.6 £68	261.8 468.8 6.466.298 6.466.298 6.76.8 6.398 6.700 6.700 6.700 6.700 6.700 6.700 6.700 6.700 6.700 6.700 6.700 6.700 6.700 6.700	028.8 006.8 186.8	38.1 38.1 38.1 38.1 1.39	91691 91691 91691 91691 91691
87 5.175 97 5.115 37 5.057	1 . 6 982 . 6 1 . 8 885 . 6 5 . 348 5 . 2	804 . 6 616 . 804 . 6 616 . 864 . 6 807 .	1167.3 810.8 1288.3 260.8 158.3 751.8 158.3 751.8 158.3 751.8 158.3 751.8 158.3 751.8	503.8 5.503	28.1	16146 16164 16176 16176 16176 16176
428 4 770 101 4 827 109 4 884	4.981 4.8 4.981 4.8 5.042 4.8	240 5 084 741 5 306 . 112 5 278	2 944 5 719 5 648 5 719 6 75 6 75 8 6 75 8 6 75 8 75 8 75 8 75	860.8 411.8	1.26 72.1	9491 9491 9491 9491 91
209 † 899 919 † 119 94 † 480	4.625 4.684 4.684 4.643 4.6	277. 4 419. 458. 4 979.	2 2 3 2 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3	018.8 987.8 98.8	1.20 1.21 1.22 1.23 1.23 1.24	9141 2641 9641 5141 9641
. 9	1eet 3. 4.	t of weir in	Heigh .1 67.0	3.0	basH test ni	baeH sedoni ni

#### TABLE 35 (Continued)

Discharge in Cubic Fer set Second раз Тоот от Length Gup. Contractions Support Salary With End Contractions Support To  $\frac{1}{3}$  36. + 1)  10  1.  10  1.  10  3.34  11  1.  10  1.  12  3.  12  3.  12  3.  12  3.  12  3.  12  3.  12  3.  12  3.  12  3.  12  3.  12  3.  12  3.  12  3.  12  3.  12  3.  12  3.  12  3.  12  3.  12  3.  12  3.  12  3.  12  3.  12  3.  12  3.  12  3.  12  3.  12  3.  12  3.  12  3.  12  3.  12  3.  12  3.  12  3.  12  3.  12  3.  12  3.  12  3.  12  3.  12  3.  12  3.  12  3.  12  3.  12  3.  12  3.  12  3.  12  3.  12  3.  12  3.  12  3.  12  3.  12  3.  12  3.  12  3.  12  3.  12  3.  12  3.  12  3.  12  3.  12  3.  12  3.  12  3.  12  3.  12  3.  12  3.  12  3.  12  3.  12  3.  12  3.  12  3.  12  3.  12  3.  12  3.  12  3.  12  3.  12  3.  12  3.  12  3.  12  3.  12  3.  12  3.  12  3.  12  3.  12  3.  12  3.  12  3.  12  3.  12  3.  12  3.  12  3.  12  3.  12  3.  12  3.  12  3.  12  3.  12  3.  12  3.  12  3.  12  3.  12  3.  12  3.  12  3.  12  3.  12  3.  12  3.  12  3.  12  3.  12  3.  12  3.  12  3.  12  3.  12  3.  12  3.  12  3.  12  3.  12  3.  12  3.  12  3.  12  3.  12  3.  12  3.  12  3.  12  3.  12  3.  12  3.  12  3.  12  3.  12  3.  12  3.  12  3.  12  3.  12  3.  12  3.  12  3.  12  3.  12  3.  12  3.  12  3.  12  3.  12  3.  12  3.  12  3.  12  3.  12  3.  12  3.  12  3.  12  3.  12  3.  12  3.  12  3.  12  3.  12  3.  12  3.  12  3.  12  3.  12  3.  12  3.  12  3.  12  3.  12  3.  12  3.  12  3.  12  3.  12  3.  12  3.  12  3.  12  3.  12  3.  12  3.

477.5	272. p 826. p 188. p	4.335 4.393	825. 1 825. 1 888. 1	762.4 099.4 162.4	628.1 4.892	210.8 280.8 231.8	5.291 5.364 784.3	81.1 71.1 81.1 81.1	1414
\$90 \$ 000 \$ 276 E	191.4 190.4 190.4 191.4	4.053 4.109 4.165	4.172 4.230 4.289	4.288 4.349 4.411	789.4 4.5627	4.670 4.738 4.806	086.≱ 200.8 870.8	1.10 11.11 21.11 11.13 11.14	* 14181 * 1481 * 1481 * 1481
3. 737 887 . E	879.8 827.8 187.8 88.8 888.8	877.8 288.8 788.8	588.8 014.8 899.8	886.8 840.4 801.4	4. 178 4. 241 4. 305	758.4 604.4 604.4	617.4 649.4 4.719	90 T	121 % 121 121 % 6 121 % 6
3 530	8.415 8.466 8.15.8 8.570 8.50 8.50 8.50	3.510 3.563 3.616	609.6 839.6 ₽17.6	3.697 3.754 3.812	98.8 980.8 166.8	\$10.4 870.4 841.4	4.338 4.306 4.374	10.1 20.1	1216
3, 303 8, 303 8, 328	782.8 818.8 826.8 408.8 408.8	238,8 878,8 \$04,8	3.439 3.493 3.493	8.524 3.534 3.582	717.8 717.8 747.8	3.828 3.838 5.838 5.838 5.838 5.838 5.838 5.838 5.838 5.838 5.838 5.838 5.838 5.838 5.838 5.838 5.838 5.838 5.838 5.838 5.838 5.838 5.838 5.838 5.838 5.838 5.838 5.838 5.838 5.838 5.838 5.838 5.838 5.838 5.838 5.838 5.838 5.838 5.838 5.838 5.838 5.838 5.838 5.838 5.838 5.838 5.838 5.838 5.838 5.838 5.838 5.838 5.838 5.838 5.838 5.838 5.838 5.838 5.838 5.838 5.838 5.838 5.838 5.838 5.838 5.838 5.838 5.838 5.838 5.838 5.838 5.838 5.838 5.838 5.838 5.838 5.838 5.838 5.838 5.838 5.838 5.838 5.838 5.838 5.838 5.838 5.838 5.838 5.838 5.838 5.838 5.838 5.838 5.838 5.838 5.838 5.838 5.838 5.838 5.838 5.838 5.838 5.838 5.838 5.838 5.838 5.838 5.838 5.838 5.838 5.838 5.838 5.838 5.838 5.838 5.838 5.838 5.838 5.838 5.838 5.838 5.838 5.838 5.838 5.838 5.838 5.838 5.838 5.838 5.838 5.838 5.838 5.838 5.838 5.838 5.838 5.838 5.838 5.838 5.838 5.838 5.838 5.838 5.838 5.838 5.838 5.838 5.838 5.838 5.838 5.838 5.838 5.838 5.838 5.838 5.838 5.838 5.838 5.838 5.838 5.838 5.838 5.838 5.838 5.838 5.838 5.838 5.838 5.838 5.838 5.838 5.838 5.838 5.838 5.838 5.838 5.838 5.838 5.838 5.838 5.838 5.838 5.838 5.838 5.838 5.838 5.838 5.838 5.838 5.838 5.838 5.838 5.838 5.838 5.838 5.838 5.838 5.838 5.838 5.838 5.838 5.838 5.838 5.838 5.838 5.838 5.838 5.838 5.838 5.838 5.838 5.838 5.838 5.838 5.838 5.838 5.838 5.838 5.838 5.838 5.838 5.838 5.838 5.838 5.838 5.838 5.838 5.838 5.838 5.838 5.838 5.838 5.838 5.838 5.838 5.838 5.838 5.838 5.838 5.838 5.838 5.838 5.838 5.838 5.838 5.838 5.838 5.838 5.838 5.838 5.838 5.838 5.838 5.838 5.838 5.838 5.838 5.838 5.838 5.838 5.838 5.838 5.838 5.838 5.838 5.838 5.838 5.838 5.838 5.838 5.838 5.838 5.838 5.838 5.838 5.838 5.838 5.838 5.838 5.838 5.838 5.838 5.838 5.838 5.838 5.838 5.838 5.838 5.838 5.838 5.838 5.838 5.838 5.838 5.838 5.838 5.838 5.838 5.838 5.838 5.838 5.838 5.838 5.838 5.838 5.838 5.838 5.838 5.838 5.838 5.838 5.838 5.838 5.838 5.838 5.838 5.838 5.838 5.838 5.838 5.838 5.838 5.838 5.838 5.838 5.838 5.838 5.838 5.838 5.838 5.838 5.838 5.838 5.838 5.838 5.838 5.838 5.838 5.838 5.838 5.838	170.4 170.4	086. 086.	*}6711 \$411 *}611 *\$111
3.154 3.179 3.204	191.8 881.8 112.8 762.8 762.8	8.22.8 8.249 872.8	3.304 188.8 888.8	388.8 414.8 244.8	888.8 888.8 3.597	9.570 107.8 3.732	\$78.8 709.8 8.940	026 996 996 996	%11 %11 %11 %11 %11 %11
1260.8 1780.8	780.8 280.8 780.8 111.8 111.8	3.096	171.E	812.E	3.392	713.8 843.8	817.8	826. 936. 940. 840.	93611 9311 93611 9311 9311
2.936 2.936 2.936	2.918 2.939 2.963 2.988 2.988 3.013	179.2 896.2 120.8	3.040 3.066 3.092	811.8 041.8 781.8	874.8 874.8 806.8	785.8 785.8 784.8	3.586 3.586 3.617	006. 306. 016. 319. 026.	**************************************
2.793 718.2 148.2	2.794 2.818 2.842 2.866 2.866 2.890	848.2 278.2 78.5	2.938 2.938 2.963	086.2 800.8 860.8	3.108 3.136 3.164	3.220 8.249 872.8	868.8 8.429 8.460	878. 088. 888. 068. 868.	%01 94,101 9601 9601 9601
.8	4.	1 <del>00</del> 1	meir in 2.	, lo 3d; 3.1	Heig 1	37.0	3.0	basH tset ni	baeH sədəni ni
noitaton	101 a	98ge 64	gee I						

	_		_		_		-		-	_	_		_			
9¥4°	2	022	7	662	.2	<b>79</b> 8	8	126	7	220.	3.	191	. 8	9 <b>66</b> .8	078.	9×101
EST.	8	TAT.	8	TLL'	. 2	758	7	106	7	17.0	8	72I	ξ.	605.8	888.	l 8Z∩i
669.	z	EZL.	Z	120	٠z	218	z	875	Z	166	ž	103	٠Š	3.275		2501
979.	2	RRO'	7.	97.1	. 2	1.81	· 7.	REQ	Z	ROR	7	310°	. 6	557 C	000	Koi
EGO.	ž	979	ž	207	٠ž	207	ž	628	ž	256	ž	050	٠ŏ	3.214	988.	103Ke
	٦		٦	-	_	-	٦	000	۳	070	۰	270	۰	710 6	UZO	7801
089.	8	2 <b>29</b> .	8	849	. 2	429	. S	262	8	716°	8	210	3.	3. 18 <del>1</del>	348.	. <b>%</b> 01
71W).	Z	XZA.	z	PGO.	7.	217	z	<i>7.1.1.</i>	z	1.88.	7.	ROR	. S	3.154	028.	• 10 K
₩.	2	<b>605</b> .	8	630	٤.	489	. С	972	2	628	.2	196	s.	3.094 3.124	358.	n or
199.	2	283.	2	209	٤.	<b>799</b>	. S	027	8	258.	Z	835	z	\$60.8	088	93616
868.	2	833.	2	283	. 2	489	S	269	8	808	s	₹06	8	3.064	328.	*1516 *16
oto:	7	coo ·	-	200	٠,,	070	٠,							=00·0	000	91/ 0
462.	9	210.	6	000	. 6	610	. 6	ONA.	.6	844	3	978	. 2	3.975 3.00.8 3.034	028.	° 14 16
60F	9	613	٥.	853	٤.	083	. ≝	PPU	٥.	194	<u>.</u>	878	8	300 8	<b>618.</b>	766
UZP.	9	ORA	6	613	٥.	299	<u>.</u>	GIA	8	725	2	028	2	379.2	018.	97,16
/.VV	7.1	WWF	~	nxv	7.	(IDV	7.	THU	7.	XKU	z	12.667	· 7.	UBK Z	ONE I	256
224.	8	644.	2	294	.2	913	8	699	3	279.	z	292	8	916.5	008.	9%6 9%6
20¥.	zl	124	7.	211	٠7.	€83	7	<del>110</del>	7	040	7	181	7	188.2	987	9}66
uge.	ž	OAC '	ž	ATT	٠,	205±	ž	RIC	ž	RTO.	ž	ñi.	Š	2.858 2.887	1001	120 120
166.	7	616	7	oge	٠,	LLT	ĕ	COL	9	CAC	. 5	700	. 5	828.2	087 887 067 867	\$16 \$16
000. 736	2	376	Š	200	٠,	075	٠,	200	6	503 K03	٤.	688	. 6	008.2	384	7,0
966 966	9	980	9	000	٥.	067	٠,	OLV	6	250.	۵,	AAA	٥.	177.2	084	946 946
616	٩	UEE	6	3 80	6	906	6	977	6	673	ъ	868	6	144 6	377.	790
16Z.	z	708	8	2ZE	٠z.	878	z	123	7.	919	z	TOO	7.	2.714 2.743	044	%6 %6
ROZ.	ž	987	ž	309	٠ž	348	ž	1.62	ž	OSF.	ž	5/Q	ž	517.Z	687.	91,68
ĽŧZ.	ž	202	ž	787	٠ž	978	·ž	278	ž	COF.	ž	STO	ž	080.2	092	916
gzz.	ž	112	ž	002	٠ž	803	·ž	SFE	ž	RCB.	ž	TZO	ž	2. 686 2. 686	337·	97.6
EOS.	z	81Z	ž	252	٠ž	623	٠ž	324	ž	ÞΙÞ.	ž	167	ď	629 · 8	037.	<b>16</b>
ZQ I .	2	26T	z	QTZ	٠,	ocz	z	008	z	886.	7	201	z	109.2	1 1	91418
uai.	ž	ēžī.	ž	CAT	٠ž	222	٠ž	972	ž	EGE.	ž	255	·ž	2.545 2.573	735 740 740	18.00
œi.	ž	eei'	ž	ny f	٠ž	OIZ	٠ž	Sez	ž	166.	ž	att.	· ~	C#0.2	eei.	978 97418
777.	ž	TOT	٠,	OST	٠,	701	٠,	877	. 7	710	ÿ	nec	٠,	010.4	082	118
	7	ant.	ÿ	071	٤.	<b>201</b>	٠,	000	٠,	107	. 5	500	٠,	816.2	327.	91/18
100	9	100	٥	901	6	100	6	506	G	480	e	198	6	UOV 6	964	
₽ <b>Ł</b> 0°	8	280	8	₹0T	٤.	143	·s	781	S	£9Z.	2	888	·z	2.463	024.	\$68 \$68
690.	z	990	z	280	٠z.	611	٠z.	128	· 7.	822.	7.	212	7.	GEP. 2	GIT.	97.8
ίξŎ.	2	110	ž	090	٠ž	960	٠ż	132	Š	112.	ž	987	·z	801.2	012	348
υίο.	ž	EZO	ž	820	٠ž	720	٠ž	211	ž	681	ž	192	ž	188.2 804.2	607.	\$18 \$18 \$18
386.	Ĭ	200	ž	210	٠ž	120	٠ž	680	ž	391.	ž	232	Š	\$28.2	007	348
						1		ŀ							1	
396.	I	086	Ī	966	Ţ	620	2	ă80.	2	OPI.	Ē	210	2	726.2	269.	. 748
.76°	I	696	1	146	7	200	2	610	2	911.	2	481	2	008.2	069	718
936	I	826	1	825	Ţ	386	Ţ	020	8	860	8	160	8	E72.2	389.	1,68
:06 °	I	416	. 1	186	٦,	<b>898</b>	1	866	τ	890	8	132	٤.	742.2		948
188.	I	968	Ţ	910	ı.	176	. I	226	Ţ	310.	8	011	8	022.2	879.	97.8
.00	,	010	• т	000	٠т	RTR	٠,	COR	. т	170	٠,	con	٠,	₽6I . 2	029	91/18
. O.	÷	140	٠;	100	٠.‡	160	٠;	ORS	÷	188	ç	7000	. 5	891.2	399.	9
528.	÷	1720	٠;	400	٠.	408	٠.	000	٠ŧ	400	٠.	OBO	. 5	2.142	388	93612
. 60		657	٠.	978	٠.	170	٠.	800	٠.	740	ļ	950	۵.	2.116	099	7914
87.	i	26/	٠ŧ	308	٠ţ	555 548	٠ŧ	105	٠ŧ	126	ť	1.86	ď	2.090	058. 338.	974
-04	•	302	•	308		1000	•	100	•	200	_	200	•	000 6	020	7814
.0	.9 .1					1 :	7.	g.	T .	۱ ۰	r	92	٠.	3.0		
•		<u> </u>	_		3	<u> </u>		1 -	•	<u> </u>	٠.	1 24	_	1 3 5	toot ai	səqəui ui
			-								_				basH	DasaH
				Height of weir in feet										1 E II	FVOR	

moitston tol 40 egaq seg

There in Continued) 35 (Continued) Obscharge in Cubic Feet per Second res Foot of Length Supportance of Sharp Mark Foot of  $\frac{RH}{r_0}$  36. + 1)  $^{10.1}$  H As = 3.34 H M and The Formal Point = 3.34 H M and The Formal Point = 3.34 H M and = 3.34 H M and = 3.34 H M and = 3.34 H M and = 3.34 H M and = 3.34 H M and = 3.34 H M and = 3.34 H M and = 3.34 H M and = 3.34 H M and = 3.34 H M and = 3.34 H M and = 3.34 H M and = 3.34 H M and = 3.34 H M and = 3.34 H M and = 3.34 H M and = 3.34 H M and = 3.34 H M and = 3.34 H M and = 3.34 H M and = 3.34 H M and = 3.34 H M and = 3.34 H M and = 3.34 H M and = 3.34 H M and = 3.34 H M and = 3.34 H M and = 3.34 H M and = 3.34 H M and = 3.34 H M and = 3.34 H M and = 3.34 H M and = 3.34 H M and = 3.34 H M and = 3.34 H M and = 3.34 H M and = 3.34 H M and = 3.34 H M and = 3.34 H M and = 3.34 H M and = 3.34 H M and = 3.34 H M and = 3.34 H M and = 3.34 H M and = 3.34 H M and = 3.34 H M and = 3.34 H M and = 3.34 H M and = 3.34 H M and = 3.34 H M and = 3.34 H M and = 3.34 H M and = 3.34 H M and = 3.34 H M and = 3.34 H M and = 3.34 H M and = 3.34 H M and = 3.34 H M and = 3.34 H M and = 3.34 H M and = 3.34 H M and = 3.34 H M and = 3.34 H M and = 3.34 H M and = 3.34 H M and = 3.34 H M and = 3.34 H M and = 3.34 H M and = 3.34 H M and = 3.34 H M and = 3.34 H M and = 3.34 H M and = 3.34 H M and = 3.34 H M and = 3.34 H M and = 3.34 H M and = 3.34 H M and = 3.34 H M and = 3.34 H M and = 3.34 H M and = 3.34 H M and = 3.34 H M and = 3.34 H M and = 3.34 M M and = 3.34 H M and = 3.34 H M and = 3.34 M M and = 3.34 H M and = 3.34 M M and = 3.34 M M and = 3.34 M M and = 3.34 M M and = 3.34 M M and = 3.34 M M and = 3.34 M M and = 3.34 M M and = 3.34 M M and = 3.34 M M and = 3.34 M M and = 3.34 M M and = 3.34 M M and = 3.34 M M and = 3.34 M M and = 3.34 M M and = 3.34 M M and = 3.34 M M an

OF SHARP-CRESTED. WEIRS WITH END CONTRACTIONS SUP-DISCHARGE IN CURIC FEET PER SECOND PER FOOT OF LENGTH TABLE 35 (Continued)

See page 64 for notation  $(\frac{sH}{sb}$  33. + 1) ^{11.1}H 48.8 = 9 Alumao aht ya qassanq

The solution of the Formattian Cubic Feet per Second per Foot on Length of Sharp-Created Weirs with End Contractions of Length  $66.+1)^{13.1}$  at the Formatian Country  $Q=3.34~\rm H^{1.3}$  , the strength of the Fourier Foother Q=1.00

See page 64 for notation

		1991	ni risy	v lo ta	BioH			head	heaH
	7	3.	2.	3.1	1.	37.0	3.0	1991 ni	sədəni ni
314	PIE.	118.	315.	918.	818.	128.	828.	002.	%2
326	928	926	728.	828.	330	.333	146.	205.	9 7/2
331	.  788.	866.	988.	046.	£4€.	946.	₽9E.	012.	842
340	848	035.	135.	352	355.	866.	798.	215.	5% 5%
361		298	898.	₹9€	198.	175.	088.	022.	598
373	878.	178.	375.	978.	088.	₽88.	898.	225.	9 1⁄1 τ Z
382	. 988.	886.	788	68E.	868.	795.	904	982.	282
368	868	866.	007	104.	90₹	014.	420	235	21318
01Þ			814.	PIP.	617	423	₽£₽·	240	94.7
453	. EZF.	424	927	12¥.	26.	78¥.	844.	245	St 87.6
9€₽	.  864.	984.	861.	044.	GPP.	064.	294.	032.	8
6 <b>†</b> †			164.	423	8G£.	₽9₽.	774.	255	9 X 8
79₽	. 462	294.	₽9₽.	99₺.	274.	874.	167	092.	94£
94¥		974.	847.	084,	984.	Z67.	903.	392.	334.8
88¥		68₽.	161.	₽6₽.	003.	902.	123.	072.	3.7.8 3.4.8
EU4	603	603	1303	203	1,12	102	252	370	
212 201		20g.	813.	123.	\$19°	123.	155.	872. 082.	9%E 3%E
228		623	283.	363.	246.	066.	793.	382.	3778
242		£43.	946.	643.	766.	595.	283.	062.	\$78
999		733.	093.	563	173.	083.	863.	362.	9¥€E
	1	1	1	1	ł	103	1.0	300	
023	. 173.	273.	478.	873.	988.	363.	₽19. 0£9.	300	346
186 184		985. 000.	68g.	26g.	109.	619.	089. 848.	308. 018.	• ¼ te %e
219 268		₽19·	819.	229	169.	149.	299	315.	
979	829	629	289	989.	979	768.	629	320	31 <b>4</b> 16
050	.							l l	
119	249.	£19.	449.	159.	299.	879.	969.	325.	918
999	.   739.	869.	299.	999.	778.	689	E17.	088. 1	9.74.6 31.34.e
049	. 179.	£73.	229	289.	£69°	307.	7 <u>4</u> 7.	388.	₽
685		889.	269.	469	602	127.	272	046.	9∕1₹ 9 }⁄1₹
002	104	807	202.	217.	₽ZZ.	887.	₹9Z·	345	84 Þ
" " "	912	814	664	864	074	₽ <b>67</b> .	287.	038.	~78V
912	187	817.	227. 867.	827.	757.	177	664	355.	17
245 730	1774	674	557.	094	1773	887.	718.	098.	9 78 4
194			697	977.	064	308.	688.	398.	8/ E
922 192	877	087.	387.	267.	908.	228	638.	078.	9 }∕4 ₹
	ł		1	1	1				
162		962	108.	808	828.	988.	178.	378.	317
208		118.	718.	128.	048.	958.	800	388.	967 267
823		728.	833.	738.	738.	478.	806.	88E.	9 I/T TP
839		843 858	398.	678.	168.	606	976	368.	9 T 7 T
000	. 298								<b>9</b> /-
178	. 878.	378.	288.	068.	806	726.	₹96°	001	91/817
488	.  688.	268.	868.	206	926	976	886	30₽.	%1.¥
1806		806	619.	\$26°	£\$6.	₹96	500. t	őið.	9.Jý1#
986 616		176°	838°	116. 836.	196	289. 100.1	220.1	614.	2×2
							1.048		/12

Table 34.—Values of  $\frac{H}{d}$  0.56  $\frac{H^2}{d^2}$  Corresponding to Table 34.—Values of  $\frac{LH}{d}$  or  $\frac{LH}{d}$ . Velocity of Appearant Values of Sharp-creeted Weirs. See page 64 for notation

1123	21.1 21.1 21.1	221 . I 721 . I 721 . I	221.1 721.1 281.1	121.1 1.126 1.132	151.1	1.120 1.125 181.1	1.114 1.120 1.125 1.130 1.136	1.119 1.124 1.130	1.124 1.124 1.129	34. 34. 84. 84.
960.180 801.180 801.180 801.170 811.12	01.1 01.1	701.1 201.1	201.1 801.1	960.1 101.1 901.1	960. I 101. I 301. I	1.100 1.100 1.105	1.090 1.100 1.104 1.109	660. I 1.099 1.104	1.099 1.099	04. 14. 24. 84.
270.1 270.1 270.1 270.1 270.1 270.1 270.1 270.1 270.1 270.1 270.1 270.1 270.1 270.1 270.1 270.1 270.1 270.1 270.1 270.1 270.1 270.1 270.1 270.1 270.1 270.1 270.1 270.1 270.1 270.1 270.1 270.1 270.1 270.1 270.1 270.1 270.1 270.1 270.1 270.1 270.1 270.1 270.1 270.1 270.1 270.1 270.1 270.1 270.1 270.1 270.1 270.1 270.1 270.1 270.1 270.1 270.1 270.1 270.1 270.1 270.1 270.1 270.1 270.1 270.1 270.1 270.1 270.1 270.1 270.1 270.1 270.1 270.1 270.1 270.1 270.1 270.1 270.1 270.1 270.1 270.1 270.1 270.1 270.1 270.1 270.1 270.1 270.1 270.1 270.1 270.1 270.1 270.1 270.1 270.1 270.1 270.1 270.1 270.1 270.1 270.1 270.1 270.1 270.1 270.1 270.1 270.1 270.1 270.1 270.1 270.1 270.1 270.1 270.1 270.1 270.1 270.1 270.1 270.1 270.1 270.1 270.1 270.1 270.1 270.1 270.1 270.1 270.1 270.1 270.1 270.1 270.1 270.1 270.1 270.1 270.1 270.1 270.1 270.1 270.1 270.1 270.1 270.1 270.1 270.1 270.1 270.1 270.1 270.1 270.1 270.1 270.1 270.1 270.1 270.1 270.1 270.1 270.1 270.1 270.1 270.1 270.1 270.1 270.1 270.1 270.1 270.1 270.1 270.1 270.1 270.1 270.1 270.1 270.1 270.1 270.1 270.1 270.1 270.1 270.1 270.1 270.1 270.1 270.1 270.1 270.1 270.1 270.1 270.1 270.1 270.1 270.1 270.1 270.1 270.1 270.1 270.1 270.1 270.1 270.1 270.1 270.1 270.1 270.1 270.1 270.1 270.1 270.1 270.1 270.1 270.1 270.1 270.1 270.1 270.1 270.1 270.1 270.1 270.1 270.1 270.1 270.1 270.1 270.1 270.1 270.1 270.1 270.1 270.1 270.1 270.1 270.1 270.1 270.1 270.1 270.1 270.1 270.1 270.1 270.1 270.1 270.1 270.1 270.1 270.1 270.1 270.1 270.1 270.1 270.1 270.1 270.1 270.1 270.1 270.1 270.1 270.1 270.1 270.1 270.1 270.1 270.1 270.1 270.1 270.1 270.1 270.1 270.1 270.1 270.1 270.1 270.1 270.1 270.1 270.1 270.1 270.1 270.1 270.1 270.1 270.1 270.1 270.1 270.1 270.1 270.1 270.1 270.1 270.1 270.1 270.1 270.1 270.1 270.1 270.1 270.1 270.1 270.1 270.1 270.1 270.1 270.1 270.1 270.1 270.1 270.1 270.1 270.1 270.1 270.1 270.1 270.1 270.1 270.1 270.1 270.1 270.1 270.1 270.1 270.1 270.1 270.1 270.1 270.1 270.1 270.1 270.1 270.1 270.1 270.1 270.1 270.1 270.1 270.1 270.1 270.1 270.1 270.1 270.1 270.1 270.1	70. I 80. I 80. I	870.1 080.1 1.080	640 T 640 T 840 T	640.1 640.1	\$20.1 \$70.1 \$80.1	≱40.1 870.1 280.1	990.1 870.1 770.1 280.1 980.1	870.1 770.1 180.1	180°I 240°I 180°I	36. 36. 76. 86. 86.
190 I 0	30. I 30. I 30. I	920.1 090.1 1064	930.1 930.1 1.063	880. I 880. I 880. I	880.1 880.1 890.1	880.1 880.1 880.1	1.051 3.051 1.058 1.058 2.051	₽90.1 830.1 190.1	050.1 100.1 730.1 100.1	08. 18. 28. 88.
140.1 8 140.1 8	1.04 1.04 1.04	040.1 840.1 840.1	040.1 1.043 1.046	1.039 1.042 1.045	1.039 1.045 1.045	240.1 240.1 340.1	860.1 860.1 140.1 840.1	880.1 140.1 140.1	850.1 140.1 440.1	82. 72. 82. 82.
20.1 4 720.1 7 920.1 9 920.1 9	20.1 20.1 20.1 20.1 50.1	20.1 020.1 020.1 160.1	1.0024 820.1 820.1 180.1	420.1 820.1 820.1 150.1	820.1 820.1 820.1 150.1	1.023 1.025 1.028 1.030	820.1 320.1	820.1 820.1 720.1 720.1	220.1 320.1 720.1 720.1	02. 12. 22. 52.
410.1 610.1 810.1 810.1 810.1 820.1 820.1	10.1 10.1 10.1 10.1	1.014 1.016 1.018 1.020	\$10.1 810.1 710.1 910.1	810.1 810.1 710.1 810.1	\$10.1 \$10.1 710.1 910.1	810.1 810.1 710.1 910.1	810.1 810.1 710.1 910.1	810.1 810.1 810.1 810.1	810.1 1.014 810.1 810.1	81. 81. 71. 81.
700 I 70 800 I 80 110 I I	00.1 00.1 00.1	800.1 800.1 800.1 110.1	800.1 800.1 600.1 010.1	900.1 700.1 800.1	900. I 700. I 600. I 010. I	800.1 700.1 800.1	800.1 700.1 800.1	800.1 800.1 800.1	800.1 800.1 800.1	01. 11. 21. 51.
200. I S	1.00 1.00 1.00	200.1 500.1 500.1 \$00.1	200.1 200.1 200.1 200.1	200.1 200.1 800.1 \$00.1	200. I 200. I 800. I \$00. I	200.1 200.1 200.1 500.1	200.1 200.1 200.1 500.1	100.1 200.1 500.1 \$00.1	100.1 200.1 800.1 \$00.1	80. 70. 80.
000 I 0	00. I 00. I 00. I	000 I 000 I 100 I	000. I 000. I 100. I	000.1 000.1 100.1	000.1 000.1 100.1	000.1 000.1 100.1	000.I	000. I 000. I 100. I	000.1 000.1 100.1	00. 10. 20. 80.
<b>600</b> . 8	900.	400	<b>900</b> .	300·	<b>₽00</b> °	εοο·	200·	100.	000.	$\frac{p}{H}$

#### TABLE 33 (Concluded)

Discharge in Cubic Feet per Second per Foot of Length Over Share-Crested Weirs, Without Velocity of Approach Correction, by the Formula  $Q=3.34~\mathrm{H}^{1.47}$ 

162.16 667.88 700.78	53.277 54.471 56.886 56.886 58.105	26.764 56.854 56.764	54.232 55.433 56.642	24.112 24.313 26.313	261 .83 261 .83 26.400	53.873 55.072 56.279	53.754 54.952 56.158	188.143 188.143 188.031	63.515 64.711 55.916	8.8 7.8 8.8
602.23 180.13 188.64 007.84	48.685 48.685 44.645 50.913 160.52	829.84 829.84 829.84	48.354 49.612 50.679 51.855	48.239 49.396 50.582 51.737	48.123 49.280 50.445 51.619	80.81 49.164 828.03 51.501	47.893 49. 48 50.211 51.383	877.74 84.932 90.03 982.13	878,814 878,814 879,978 81,148	0.8 1.8 2.8 8.8
43.029 44.145 43.271	41.812 42.918 45.158 45.158 46.291	43.821 43.921 45.045	43.899 43.809 44.932	43.698 43.698 44.819	43.54 43.586 44.707	48.24 43.474 44.594	42.253 43.363 44.482	42.143 43.251 44.369	42.032 43.140 44.257	8.3 7.3 8.3 8.3
823.88 783.78 783.88 783.88	26.422 184.78 38.649 826.98 817.04	715.85 475.75 244.85 913.95	212.88 882.78 88.88 114.98	701.88 281.78 822.88 808.98	100.88 87.086 121.88 39.195	768.38 086.38 \$10.88 780.68	267.88 188.88 709.78 086.88	788.88 987.88 908.78 278.88	283.38 86.63 96.78 99.78	5.0 5.1 5.3 5.4
778.18 778.28 704.88 864.48	872.18 882.28 808.88 86.88 878.88	971.18 981.28 302.88 162.48	880.28 880.28 001.88 721.48	946.08 289.18 869.28 34.08	878.08 188.18 88.38 139.88	817.08 087.18 997.28 818.88	979.08 979.18 299.28 317.88	873.08 873.18 063.28 213.88	774.08 774.18 984.28 013.88	6.4 7.4 8.4 8.4
181.82 011.72 901.82 886.92	986.38 94.38 18.88 982.98 872.08	26.294 27.248 26.215 26.191	26.199 27.152 811.82 29.093	26.104 27.056 28.051 28.995	900.82 080.82 926.72 788.82	25.915 26.865 26.827 28.799	25.820 26.769 26.730 207.82	25.726 26.674 26.634 406.82	26.632 26.579 27.537 28.507	7'7 2'7 1'7 0'7
108.12 207.22 800.82 200.12	22.675 22.675 24.609 24.609	21.685 22.584 23.484 24.416	21.394 22.494 23.393 24.324	103.12 204.22 205.52 162.43	814.12 22.313 012.52 013.52	21.329 22.223 23.129 24.046	21,240 22,133 23,938 23,954	21.15 22.044 22.947 23.862	21,063 21,954 22,856 23,770	6.8 7.8 8.8 8.8
863.71 878.81 262.91 760.02	20.01 18.294 19.146 19.146 20.010 788.02	278.71 012.81 09.91 529.91	982.71 321.81 376.81 788.91	802.71 140.81 188.81 037.91	21.71 17.957 18.804 19.663	040.71 817.81 817.81 773.91	786.81 987.71 987.81 98.491	378.81 207.71 204.81 404.81	267.81 228.71 484.81 818.91	0.8 1.8 2.8
12.895 14.305 15.893 15.895	13.458 14.227 14.227 15.014 818.31 818.31	778.81 941.41 386.41 467.31	008.81 140.41 888.41 888.81	13.224 13.993 14.776 15.573	841.81 819.81 84.81 864.81	240.81 888.81 868.81 86.41	12.996 13.761 14.540 15.333	12.920 13.684 14.461 5.253	P#8.21 708.81 888.41 871.81	4.2 2.2 6.2 7.2 8.2 6.2
820 . SI 820 . SI	208.9 208.01 812.11 812.11 819.11	164.01 841.11 878.11	108.01 \$70.11 108.11	200.11 827.11	10.220 10.930 11.655	061.01 888.01 288.11	080.01 787.01 80.11	010.01 817.01 884.11	10.644 595.11	2.0 1.2 2.2 8.3
60.	80.	40.	90.	ō0.	₩.	£0·	20	10.	00.	baeH teet ni

#### TABLE 33 (Continued)

DISCHARGE IN CUBIC FEET PER SECOND PER FOOT OF LENGTH, OVER SHARP-CRESTED WEIRS, WITHOUT VELOCITY OF APPROACH CORRECTION, BY THE FORMULA

13.1 H 46.8 = 9

0379.8 3210.9 1011.9 8771.9	5886.8 7550.6 5501.6 0171.6	8.9616 9.0290 9.0965 8.1643	8.9549 9.0822 9.1575	1810.8 3310.6 0830.6 7031.6	4800.6 2870.6 2841.6	748.8 0200.6 3690.6 1781.6	6726.8 8869.8 7280.6 7280.6	2126.8 8886.8 0880.6 0881.6	8186.8 8186.8 2940.9 8011.9 8481.9	86.1 86.1 86.1 86.1
5010.8 0707.8 7877.8 7018.8	788.8 8007.8 0787.8 0488.8	0728.8 8.6936 9.604.8 6728.8	0788.8 0788.8 7887.8 3028.8	7818.8 8088.8 0747.8 9818.8	1708.8 8.678.8 8.647.8 8.68.8	1008.8 0788.8 8.8008.8	8593.8 6083.8 0727.8 8597.8	2788.8 7888.8 5027.8 1787.8	2083.8 0740.8 0817.8 1087.8 1087.8	06.1 16.1 29.1 59.1
7608.8 3278.8 3144.8 3708.8	8.808.8 8.8689 9.869 9.869 0103.8	8. 2966 8. 3623 8. 4944 8. 4944	8.2900 8.355.8 7124.8 7784.8	8.2838 8.3492 11184.8	8.3428 8.3428 8.4428 8.444.8	8. 2708 8. 3360 9. 4619	2638 3.3294 3.3953 3.4613	2732.8 2.3229 7888.8 7454.8	2002.8 6 5018.8 1288.8 11844.8 11844.8	28.1 38.1 78.1 88.1
2840.8 2840.8	7110.8 8901.8	\$079.7 \$350.8 \$001.8	8686.7 7820.8 8660.8	8.0223 8.0223	9080.7 8080.8 8080.8	2600.8 2600.8	9789.7 7200.8 8780.8	\$186.7 \$969.7 \$190.8	2581.8 2686.7 2689.8 2689.8 2681.8 2681.8	08.1 18.1 28.1
1793.7 1327.7 1327.7 1987.7	7068.7 817.7 7817.7 0587.7	2848.7 2848.7 2817.7 2877.7	8118.7 8118.7 8107.7 1077.7	8173.7 4858.7 8998.7 7587.7 1828.7	2888.7 0828.7 1888.7 8787.7 8128.7	8888.7 7288.7 7888.7 8087.7 818.7	\$266.7 \$2080.7 \$2080.7 \$447.7 \$1808.7	1946.7 8679.7 8673.7 867.7 867.7	7688.7 2609.7 4789.7 77989.7	87.1 87.1
1848.7 1848.7 8804.7	7872.7 7888.7 9998.7 4684.7	#102.1 #088.7 8888.7 078#.7	1102.7 128.7 1286.7 7034.7	8418.7 8718.7 0088.7 8444.7	68#5.7 6118.7 7878.7 7878.7	2208.7 2808.7 8788.7	9862.7 9892.7 0186.7 8824.7	0614.7 7828.7 7838.7	P622.1	69°I
1020.7 8160.7	2820.7 8880.7	0710.7 8870.7	8010.7 1870.7	8990.7 8990.7 881.7	8869.8 8080.7 1821.7	1299.8 1400.7 111.7	6286.8 1810.7	7979.8 9140.7 5401.7	\$6\$8.8 \$116.8 \$260.7 \$80.7 \$1860.7	59.1 59.1 59.1 69.1 73.1 89.1
9838.8 2027.8 7187.8 4648.8	8233.8 1117.8 3377.8 2758.8	7848.8 9707.8 9987.8 9188.8	8107.8 8107.8 2637.8 9428.8	7818.0	6.6283 6.6895 6.7509 6.8125	\$223.8 \$83.8 \$447.8 \$608.8	1818.8 8778.8 8887.8 2008.8	0019 9 2149 9 2264 9 2460 9	6.6039 6.6650 6.7264 6.7879	88.1 88.1 09.1 18.1 28.1
6.2949 1335.8 13314.8 1374.8 1368.8	6.3491 6.3491 6.4709 7053.8	6.3430 6.3430 6.4639 6.4639 6.463	8872.8 6.3370 8785.8 8784.8 818.8	8072.8 0165.8 8185.8 8184.8 8185.8	6.3250 6.3250 6.3853 6.4458 6.5064	8882.8 9818.8 2978.8 7984.8 7984.8	8252.8 6.3129 8.3732 8.4943 6.4943	8342.8 6.3069 2788.8 8724.8 884.8	8042.8 6.3009 1185.8 1124.8 11284.8	1.58 1.58 1.58 1.58 1.58
0.1750	0691.9	0.1630	1731.8	800. 8160.8 1181.8 6012.8	1641.8	2651.8	5551.8	5721.8	6.1213	hash in feet 02.1 13.1 13.1 23.1

#### TABLE 33 (Continued)

## DISCHARGE IN CUBIC FERT PER SECOND PER FOOT OF LENGTH, OVER SHARP-CRESTED WEIRS, WITHOUT VELOCITY OF APPROACH CORRECTION, BY THE FORMULA

71.1H 45.8 = Q

·										<del></del>
9966.8 9759.8	6678.8 9186.9 9066.9 9078.9	5.9847 5.9847	8.9198 5.9788	5.9729 5.9139	0296°9	1196.8 1196.8	2888.8 2888.8	5.8903 5.9493	5.8 <del>814</del> 5.9 <del>834</del>	84.1 84.1 84.1
8618.3	1667.8 6:18.8 7679.3	1808.3	2208.8	£964.8	3067.3	84.8	8877.8	6277.8	1787.8	24.1 24.1
8983.8 7 <u>11</u> 9.8 6207.8	0183.8 68 <b>5</b> 9.8 1769.8	2878.8 1888.8 1888.8	1699.8 8729.8 1689.8	8.6836 8.6215 8.6796	87 <b>33</b> .8 7319.8 8679.8	1223.8 8.6099 0899.8	5.5463 5.6622 5.6622	2.5405 5.5983 5.5564	84 <b>53.8</b> 8483.8 8088.8	14.1 14.1 14.1
\$125.8	5.4083 5.4656 5.5233	6651.8	23-62-6	1811 C	5.4427	6987.3	5.4312	9987.9	7614.8	1.38 1.39 1.40
8938.3	5.2373 1.2941 1.135.3	1882.3 15454	7282.8	0772.8 0466.8	\$.2714 5.3283	7 <b>382.</b> 3 8.3226	5.2600	5.2543 5.3112	78 <u>4</u> 2.3 3305.3	88.1 88.1 78.1
7510.8 7570.8 751.8	1210.3 1210.3 1890.3 1891.3	6280.8 6.0628 7811.8	6990.8 6990.8 1111.8	4.9954 5.0513 4.1074	8686.4 5.0457 8101.8	4.9842 5.0401 5.0962	876.4 8460.8 8.0906	4.9730 5.0289 5.0850	8786.4 8830.8 8.0793	08.1 18.1 28.1 58.1 58.1
4,7956 4,7956 4,8509 4,8509	4,7351 4,7901 4,8453 4,9007	4.7846 4.7846 4.8398 4.8952	1427.4 1677.4 8488.4 8488.4	7817.4 8277.4 7828.4 1488.4	2817.4 1887.4 2823.4 3878.4	7707.4 6.8177.4 7718.4 0678.4	2020.4 1737.4 218.4 2788.4	4.8667 4.8667 4.8667	1974.4 1108.4 1108.4	82.1 82.1 82.1
4.5226 4.5768 4.6312	2713.4 4.5714 7259.4 76893	4.5118 4.5659 4.6203	4.5064 4.5605 4.5605	4.5010 4.5551 4.5094	9264.4 7643.4 0408.4	4.4902 4.5443 4.5985	4.5931 4.5388 4.5931	1674.4 1683.4 1783.4	4.5828 4.5822 4.5822	1.23 1.23 1.24 1.25
4.3612	4.3259 4.4694 4.4632	4.3505	7868.#	4.3934 4.3934	4.3880 4.3880	4.3828 4.3826	8526.4 8775.4	4.3719 4.3719	4.3666	91.1 08.1 13.1
4.2018	4.1438 4.1965 4.2494 4.302.4	4.1912	4.1859	4.1807	4.1754 4.2282	4.1701 4.2229	4.1649 4.12176	4. 1596 4. 2124	4.1543 4.2071	81.1 81.1 71.1 81.1
3.9922 3.9922 4.0442	1389.8 10789.8	8186.8 8186.8	81-92-8 81-97-8 84-0-18-8 84-0-18-8	9619.8 1179.8 1620.1	3.9144 3.9662 4.0182	8.9610 8.9610 4.0130	1106.8 8886.8 8700.1	3.9898 3.9868 4.0026	8668.8 8846.8 4766.8	11.1 11.1 11.12 11.13 11.14
8489.8 8.7580 8.758.8 8.888.8	8,77.8 1268.8	8877.8 8377.8 828.8	7077.8 7077.8 8128.8	9.746 9.765 7818.8	8097.8 3097.8 3118.8	3,704.8 3,764.8 3,808.8	3.6994 3.7503 3.8013	2964.8 2047.8 2047.8	8689.8 1047.8 1167.8	80.1 80.1 80.1
8.5833 8.6336 8.883 8	3.6286	3.6236	3818.8	3.6135	3.6085	£603.E	1863.E	3.5934	1886.8	30.1
5186.6 5254.8 5255.6 5533.6 5583.6	7824.8 4784.8 2823.8	8524.8 4674.8 2628.8	8811.6 1881.8 1818.8	8:4139 3:463 3:133	3.4090 3.4099 3.5083	3.4040 3.4535 3.5033	3.3991 884.8 8864.8	3.3 <b>94</b> 1 8.4436 8.4436	2086. E 7864. E 5884. E	10.1 10.1 20.1 1.03
600.	800.	200	900.	ç00°.	₩00.	£00.	200.	100.	000.	heaH jeal ni

#### TABLE 33 (Continued)

Очев Знагрет рек Зесоир рек Foot ор Length, Оуев Знагре-скезтер Weirs, Without Velocity ог Аррколсн Совкестіон, ву тне Говмила

71.1H 48.8 = 9

<del></del>				1					· · ·	
1365.6	3.3305	8.3253	3.3204	3.3155	3.3106	7306.8	8006,6	3.2959	3.2910	66
1882.8	3.2813	₽972.E	3.2715	3.2666	7192.8	3.2569	3.2520	1742.8	3.2423	86.
3.2374	3.2325	3 2277	3.2228	3 2180	3 2131	3,2083	3 2034	3 1086	3 1032	79.
			3921.8 3.1744							86.
3.0926	8780.8	3.0830	8870.8	3.0735	7880.E	8890.8	1650.8	3.0544	3000.8	761
8440.8	3.0401	3.0353	3.0306	3,0258	0120 8	£810.8	3110.8	2000 E	3.0020	£6.
8766.2	9600 6	8780 6	8359.2 1589.2	5820 6	A870 0	0890 6	0110.0	PO20 6	4130 G	16. 26.
6208.4	2080.5	GGWG. 2	8888. S	7500.2	OWIG R	6146.X	IN S. E	\$000 Z	8008.2	08.
		t .								
1998.2	2.8514	8978 6	12.8421	7758 6	8358 6	1868 6	3 8035	8818 6	0118 6	88. 88.
2,000	0001.2	6008 6	2.7956 2.7956	1221.4	1021.2	4184 6	8061.2	6021.2	1121.2	28.
1111.2	0211.2	8101.2	£607.2	1880.2	1560.2	0450.2	0080.2	PU60.2	80/9 Z	98.
21/0.2	0000.Z	1200 Z	2.6575	0860 . S	1819.2	8259.8	2.6393	8160.2	2029.2	38.
			1219.2							38.
73.00 S	1168 8	CAIG.A	2.5668	5200.4	8166.2 0 6090	3903 G	OSPC.2	CPPC.2	8866.2	88·
\$0000.a	6066.2 9 878 9	6026.2	8128.5	CAIC.2	SZIG.2	58UG.2	SEUG. Z	1661 Z	RIGE C	28.
1081 C	0084.X	GISP. Z	0774.S	97.77 Z	1891.Z	9894.2	7695 Z	7154.2	£09₹ Z	18.
8244.5	4414 2001	0751.S	2.4325	1824.2	7521.2	2614.2	2.4148	2.4104	2.4060	08.
			2.3883							64.
3105.4	1000.2	1050.2	2.3443	8888.2	2056.S	2188.2	2028 . S.	₽228. S	1818.8	82.
1616.Z	2602 Z	OCOE. S	3006.2	2962.2	818Z.Z	6782.2	2582.2	8872.2	2.2745	<u> </u>
2072.2	8682.2	2.2615	2.2572	8222.2	2.2485	2.2442	2.2399	2.2325	2152.2	97.
2.2269	2.2226	2.2183	2.2140	7602.2	2.2054	1102.2	2,1968	2.1925	2881.2	δ7.
6001.2	08/112	90/T'Z	1171.2	8901 °Z	CZQ1 .Z	2801 °Z	OFGI.S	78#I . Z	₽C₽1 . Z	₹Z.
2191.2	8021.Z	7.721.2	2.1284	2321.8	8611.2	7011.2	Pili.s	2701.2	2. 1030	έž·
1860.2	\$160.2	2.0903	0980.2	8180.2	8.0776	£20.8	2690.2	2.0650	7090.2	27.
2,0565	2.0523	1840.2	2.0439	7650.2	3.0356	2.0314	2720.2	0230.S	8810.2	17.
2.0146	2.0104	2.0063	1200.2	6466°T	1.9937	9686°I	3386.1	1.9813	1779.1	07.
1.9730	8896°I	7496.I	9096°I	1'8264	1.9523	2816.I	1.8440	1.9399	1.9358	69.
1.9316	9226 T	₽828 I	1.9193	2619.1	1119.1	0708.I	1.9029	8868.1	7468.I	89.
9068.1	3888.1	1.8824	£878.1	1.8742	1078.1	1388.1	0238.1	1.8579	1.8539	79.
8618.1	7318.1	7148.1	97£8.1	1.8336	1.8295	1.8255	1.8214	4718.I	££18.1	99.
		l	2797.1							<b>39</b>
1694.1	1.7651	1194.1	1.757.1	1.7531	1647.1	1.7451	1144.1	1.787.1	1.7331	₩9°
2627.1	ZGZZ:I	SIST. I	2717.1	EE17.1	1.7093	1.7053	\$107.1	1.6974	1.6935	£9.
3689.1	9989°I	8188.1	7778.I	1.6737	8699.1	1.6659	6199.1	0829.1	1.6541	29.
1.6502	1.6463	1.6423	1.6384	1 6345	1.6306	7929 I	8220 I	1.6180	1 6150	19.
			3663.1							
1.5724	1.5685	71.5647	809G.I	1.5570	1.5531	1.5493	1.5455	1.5416	1.5378	63.
1.5340	1.5301	1.5263	1.5225	1816.1	1.5149	1118.1	1.5072	1.5034	9661 I	83.
1.4958	1.4920	6881	1.4844	7081 I	0974 I	1574 I	7462.1	ሰውሚች ፣ I	2197 I	88. 78.
0075	2747	7027	7999. I	OCOP.I	4.4001	1 ASER	FFEC.1	1086.1	0186.1	88.
1.3833	1.3796	687E.1	1.3722	1.3685	849E.I	1198.1	A768 I	1 3238	1 3501	£3.
1.3464	7248. I	1055	1.3354	8166 1	1187.1	1002.1	806E	0002.1	7117 T	23.
1.3099	0012.1	\$007 · I	8282.I	7802 T	0662.1	UZCZ.1	#6#2.1	SPFZ.1	6172.1	13.
1752.1	1952.1	9052 I	0722.1	1.2234	6812.1	1.2163	1.2128	1.2092	7502. I	93.
	-700		-200	. 500						
ann.		****	000-	eoo.	¥00.	£00.	200.	100.	000.	teet ni
600.	800.	400.	800.	800.	₩00.	600	600	100	, ww	hasH
	L			L						

CABLE 41.—PERCENTAGE OF ERROR IN DISCHARGE, FOR DIFFERENT DISCHARGES OVER RECTANGULAR WEIRS OF DIFFERENT LENGTHS AND RIGHT-ANGLED V-NOTCH WEIRS, RESULTING FROM VARIOUS ERRORS IN MEASURING HEAD

Discharge	Error		eir long		eir long		eir long		eir . long	an V-n	ght- gled otch ier
in second- feet Q	head in feet	Head	Per cent. error in Q	Head	Per cent. error in Q	Head	Per cent. error in Q	Head	Per cent. error in Q	Head	Per cent. error in Q
0.05	0.001 0.005 0.010		2.6 13.2 26.6	0.04	4.0 21.2 43.6	0.02	8.0 41.0 85.0	0.01	12.0 68.0 144.0	0.20	1.2 6.1 12.2
0.10	0.001 0.005 0.010	0.09	1.6 8.1 16.4	0.06	2.6 13.2 26.6	0.03	5.0 25.0 51.5	0.02	8.0 41.0 85.0	0.27	0.9 4.6 9.1
0.50	0.001 0.005 0.010 0.050	0.27	0.5 2.7 5.5 27.3	0.17	0.9 4.3 8.7 45.7	0.09	1.6 8.1 16.4 89.5	0.06	2.6 13.2 26.6	0.52	0.5 2.4 4.8 23.8
1.00	0.001 0.005 0.010 0.050	0. <b>4</b> 4	0.3 1.7 3.4 17.0	0.27	0.5 2.7 5.5 27.3	0.15	1.0 5.0 10.1 53.6	0.09	1.6 8.1 16.4 89.5	0.69	0.4 1.8 3.6 18.0
2.50	0.001 0.005 0.010 0.050	0.82	0.2 0.9 1.8 9.1	0.51	0.8 1.5 8.0 14.7	0.27	0.5 2.7 5.5 27.3	0.17	0.9 4.3 8.7 45.7	1.00	0.8 1.9 2.5 12.4
5.00	0.001 0.005 0.010 0.050	1.32	0.1 0.6 1.1 5.6	0.82	0.2 0.9 1.8 9.1	0.44	0.8 1.7 8.4 17.0	0.27	0.5 2.7 5.5 27.3	1.32	0.2 0.9 1.9 9.3
10.00	0.001 0.005 0.010 0.050	2.11	0.1 0.4 0.7 3.5	1.32	0.1 0.6 1.1 5.6	0.71	0.2 1.1 2.1 10.6	0.44	0.8 1.7 8.4 17.0	1.75	0.1 0.7 1.5 7.8
25.00	0.001 0.005 0.010 0.050	3.93	0.1 0.2 0.4 1.8	2.45	0.1 0.3 0.6 3.0	1.32	0.1 0.6 1.1 5.6	0.82	0.2 0.9 1.8 9.1	2.53	0.1 0.5 1.0 5.0

#### CHAPTER V

#### WEIRS NOT SHARP-CRESTED

Weirs are frequently constructed in channels for the purpose of obtaining continuous records of discharge. In such cases it may be very difficult to maintain a thin-edged weir, due to damage from floating drift and ice and a more substantial weir with a thicker crest may be advisable. It is also often convenient to be able to use an existing weir or overflow dam for measuring discharge. Weirs, of various dimensions and shapes are used in hydraulic structures and in designing such structures it is important to be able to compute approximately the discharges over these weirs.

The amount of water which will pass over a weir, not sharp-crested, depends to a large extent upon the shape of its crest, and it is necessary to resort to experiment to determine the discharge over any particular shape. Inasmuch as the number of shapes of weirs is unlimited, it is not to be expected that experimental data are or ever will be available for them all. There are available, however, the results of several series of experiments on weirs of different cross-sections which furnish much valuable information for determining discharges over weirs of the same or similar shapes.

#### Formula for Determining Discharge

The following discussion is based upon the method given by Horton¹ for determining the discharge over weirs of irregular section. The base formula

$$Q = CLH^{\frac{3}{2}} \tag{1}$$

is assumed for all weirs, values of C being determined from experiments for the different types, and arranged in tables to correspond to different values of H.

¹ ROBERT E. HORTON: Water Supply and Irrigation Paper No. 200, U.S. Geological Survey, pp. 59-134.

Horton made a velocity of approach correction by adding  $\frac{V^2}{2g}$  to the measured head before computing his value of C from the experimental results. This same method of correcting for velocity of approach should therefore be employed in using the values of C given in the following tables. Formula (1) with velocity of approach correction becomes

$$Q = CL \left( H + \frac{V^2}{2g} \right)^{\frac{3}{2}} \tag{2}$$

Following the same line of reasoning given on page 69 for sharp-crested weirs, and using the nomenclature given on page 64, formula (2) may be written in the approximately equivalent form

$$Q = CLH^{3/2} \left(1 + 0.024 \ C^2 \frac{H^2}{d^2}\right) \tag{3}$$

or if preferred

$$Q = CLH^{3/2} \left[ 1 + 0.024 \ C^2 \left( \frac{LH}{A} \right)^2 \right]$$
 (3a)

Table 40, page 122, giving three-halves powers of numbers, will assist in the solution of the above formulas.

The available experiments are not extensive enough to provide for the determination of the effect of velocity of approach on weirs not sharp-crested. The tables of coefficients in this chapter probably apply more accurately where the velocity of approach is not high. From a consideration of conditions for sharp-crested weirs it appears that discharges, for high velocities of approach, will be somewhat greater than is given by formula (2).

Since experimental conditions will seldom be duplicated in practice it is probable that errors may result from the general use of the coefficients given in this chapter. Extreme accuracy, however, is not always necessary in design, where uncertainty as to the exact quantity of water to be provided for may exist. The available data will usually be sufficient, for comparing weir sections to determine the section which will best fulfil certain requirements; e.g., the shape of crest that will give the maximum or the minimum discharge under a given head.

When a weir, other than a sharp-crested weir, is to be constructed for measuring water, an exact duplicate of some model for which experimental coefficients have been obtained should be used if possible. When overflow dams are used for gaging

streams, coefficients may be selected from the table for the weir section most closely resembling the section in question. For dams having irregular crests, or if experimental coefficients are not available for a model resembling the dam, is may be advisable to make a few discharge measurements of the stream and determine the values of coefficients corresponding to different heads through as wide a range of discharges appossible. Judgment and experience and an intimate knowledge of weir hydraulics are essential in selecting weir coefficients, similar to that required in selecting coefficients for pipe and open-channel formulas.

#### Modifications of the Nappe Form

The problem of establishing a fixed relation between head and discharge, for weirs not sharp-crested, is complicated by the fact that the nappe may assume a variety of forms in passing over the weir. For each modification of nappe form there is a corresponding change in the relation between head and discharge. The effect of this condition is more noticeable for low heads. The following is a discussion by Horton¹ on the effects of modification of nappe form.

The elaborate investigations of Bazin relative to the physicof weir discharge set forth clearly the importance of takin, into consideration the particular form assumed by the nappe. This is especially true in weirs of irregular section in which there is usually more opportunity for change of form than for a thin-edged weir. In general the nappe may:

- 1. Discharge freely, touching only the upstream crest edge.
- 2. Adhere to top of crest.
- 3. Adhere to downstream face of crest.
- 4. Adhere to both top and downstream face.
- 5. Remain detached, but become wetted underneath.
- 6. Adhere to top, but remain detached from face and become wetted underneath.
- 7. In any of the cases where the nappe is "wetted underneath" this condition may be replaced by a depressed nappe, having air imprisoned underneath at less than atmospheric pressure.

¹ ROBERT E. HORTON: Water Supply and Irrigation Paper No. 200, U.S. Geological Survey, pp. 60-61.

The nappe may undergo several of these modifications in succession as the head is varied. The successive forms that appear with an increasing stage may differ from those pertaining to similar stages with a decreasing head. The head at which the changes of nappe form occur vary with the rate of change of head, whether increasing or decreasing, and with other conditions.

The law of coefficients may be greatly modified or even reversed when a change of form takes place in the nappe. The coefficient curve for any form of weir having a stable nappe is a continuous, smooth line. When the nappe becomes depressed, detached, or wetted underneath during the progress of an experiment, the resulting coefficient curve may consist of a series of discontinuous or even disconnected arcs terminating abruptly in "points d'arrêt," where the form of nappe changes. The modifications of nappe form are usually confined to comparatively low heads, the nappe sometimes undergoing several successive changes as the head increases from zero until a stable condition is reached, beyond which further increase of head produces no change. The condition of the nappe when depressed or wetted underneath can usually be restored to that of free discharge by providing adequate aeration.

Among weirs of irregular section there is a large class for which, from the nature of their section, the nappe can assume only one form unless drowned. Such weirs, it is suggested, may, if properly calibrated, equal or exceed the usefulness of the thin-edged weir for purposes of stream gaging, because of their greater stability of section and because the thin-edged weir is not free from modification of nappe form for low heads.

As an example, Bazin gives the following coefficients applying to a thin-edged weir 2.46 feet high, with a head of 0.656 foot, under various conditions:

Condition of nappe	Bazin coefficient m	$C = m\sqrt{2g}$
Free discharge, full aeration	0.433	3.47
Nappe depressed, partial vacuum underneath		3.69
Nappe wetted underneath, downstream water		
level, 0.42 foot below crest	0.497	3.99
Nappe adhering to downstream face of weir, res-	0.574	4.5
sault at a distance	0.554	4.45

These coefficients include velocity of approach effect, which tends to magnify their differences somewhat. There is, however, a range of 25 per cent. variation in discharge between the extremes.

The departure in the weir coefficient from that applying to a thin-edged weir, for most forms of weirs of irregular section, results from some permanent modification of the nappe form. Weirs with sloping upstream faces reduce the crest contraction, broad-crested weirs cause adherence of the nappe to the crest, aprons cause permanent adherence of the nappe to the downstream face.

#### **Broad-Crested Weirs**

A weir that is approximately rectangular in cross-section is called a broad-crested weir, and unless otherwise noted will be assumed to have vertical faces, a plane level crest and sharp right-angled corners. Fig. 31 represents a broad-crested



Frg. 31.—Broad-crested weir.

weir, having a height P and a breadth B. The head, H, should be measured at least 3H upstream from the weir. A short distance above the upper edge of the weir the water surface curves downward until a depth e is reached which depth remains nearly constant to a point near the lower edge of the weir.

Unwin¹ has shown that the theoretical formula for discharge over a broad-crested weir takes the form

$$Q = CLH^{\frac{3}{2}} \tag{1}$$

and if the upstream corner of the weir is rounded sufficiently to overcome the effects of crest contraction while the crest of the weir is inclined slightly downward the theoretical value of C is 3.087. This value is seldom obtained in practice. For

¹ W. C. Unwin: A Treatise on Hydraulics, p. 102.

broad-crested weirs, as for other weirs not sharp-crested, formula (1), page 128, is assumed and values of C corresponding to different values of E and E must be determined experimentally.

Experiments on broad-crested weirs have been performed by Blackwell, Bazin, the U. S. Deep Waterways Board, and the U. S. Geological Survey. These experiments cover a wide range of conditions as to head, breadth, and height of weir. Considerable discrepancy exists in the results of the different experimenters especially for heads below 0.5 feet. For heads from 0.5 to about 1.5 feet the coefficient becomes more uniform and for heads from 1.5 feet to the point where the nappe becomes detached from the crest of the weir the coefficient as given by the different experiments is nearly constant and equals approximately 2.63. When the head reaches from one to two times the breadth of the weir, the nappe becomes detached and the discharge is approximately equal to that for a sharp-crested weir. The degree of roughness of the crest, within reasonable limits, appears to have but little effect upon the discharge.

In order to put the results of the various experiments in a form convenient for use, Table 42, page 143, has been prepared by graphically interpolating the results of all experiments, giving more weight to those of the U. S. Geological Survey. This table should give values of C within the limits of accuracy of the original experiments. Velocity of approach correction should be made by formula (2) or (3), page 129. Table 40, page 122, gives three-halves powers of numbers.

Modifications of Broad-crested Weirs.—The effect of rounding the upstream corner of a broad-crested weir (Fig. 32), is to lower the weir by decreasing the crest contraction. In other words, rounding the upstream corner increases the discharge for a given head. Table 43, page 144, gives a résumé of experiments on this type of weir. From a comparison of these experiments with those for a broad-crested weir with sharp upstream corner it appears that the effect of rounding the upstream corner on a radius of 4 inches is to increase the coefficient, C, approximately 9 per cent. Experimental data for determining the effect of rounding the corner on a radius greater or less than 4 inches are not available.

Blackwell experimented with three weirs 3.0 feet broad having a slightly inclined crest, Fig. 33. The effect of inclining the crest is not quite clear from the experiments but appears to slightly increase the coefficient of discharge. The results of these experiments are rather inconsistent, especially for low heads. Table 44, page 144, has been obtained from Blackwell's experiments.

The condition obtained by sloping the top of a broad-crested weir is similar to that of a triangular weir with the upstream face vertical. The coefficients given in Tables 45 and 46, pages 144 and 145, will therefore be valuable for selecting coefficients for broad-crested weirs with sloping crests.



Fig. 32.—Broad-crested weir with upstream corner rounded.

Fig. 33.—Broad-crested weir with sloping crest.

#### Weirs of Triangular Section

Fig. 34 represents the cross-section of a weir having the upper face vertical, and the lower face inclined downward; the two faces meeting in a sharp angle which forms the crest of the weir.

Bazin has experimented with weirs of this type, 2.46 feet high, giving various slopes to the downstream face. The



Fig. 34.—Triangular weir.

coefficients resulting from those experiments are given in Table 45, page 144.

It will be observed that the coefficient for a given slope in each case shown by the experiments is nearly constant for heads above 0.7 feet. It seems fair to assume, therefore, that these values could be extended to higher heads with reasonable assurance. The average values of the coefficients given in

Table 45, for heads above 0.7 feet were plotted logarithmically and found to fall very accurately on a straight line. This line was then extended to include slopes of 20 horizontal to 1 vertical from which the values given in Table 46, page 145, were taken. Table 46 may be used for computing discharges over weirs of the types shown in Fig. 33 or 34, for heads above 0.7 feet. These coefficients are to be used for broad-crested weirs with inclined tops only when the breadth is of sufficient width to prevent the nappe from springing clear; otherwise, the discharge will be approximately the same as for a thin-edged weir.



Fig. 35.—Triangular weir.

Bazin also experimented with weirs of triangular cross-sections, 1.64 feet high, having both faces inclined, Fig. 35. Coefficients to be used with the base formula, which cover the range of these experiments, are given in Table 47, page 145.

The velocity of approach correction for weirs of triangular section should be made in accordance with formula (2) or (3).

#### Weirs of Trapezoidal Section

Fig. 36 represents a weir of trapezoidal section with both upstream and downstream faces inclined. Experiments on



Fig. 36.—Trapezoidal weir.

this type of weir were made by Bazin and the United States Deep Waterways Board. Bazin's experiments were all on weirs 2.64 feet high, the breadth of crest varying from 0.66 to 1.32 feet. Two experiments on weirs of this type, each 4.9 feet high, were performed by the United States Deep Waterways Board.

Coefficients covering the range of Bazin's experiments are given in Table 48, page 146. Table 49, page 146, gives coefficients resulting from the experiments by the United States Deep Waterways Board.

For weirs of trapezoidal cross-section with sloping upstream and vertical downstream face, Fig. 37, there are five series of



Fig. 37.—Trapezoidal weir.

experiments by the United States Deep Waterways Board. All of the models for these experiments were approximately 4.9 feet high and the breadth of crest AB was either 0.33 or 0.66 feet. The length of all weirs was 6.58 feet.

Table 50, page 147, gives coefficients derived from these experiments. Discharges over trapezoidal weirs should be corrected for velocity of approach by formula (2) or (3).

#### Weirs of Irregular Section

Figs. 38 to 42 inclusive represent models of weirs experimented upon by the U. S. Deep Waterways Board, under



the direction of G. W. Rafter, at the hydraulic laboratory of Cornell University. From four to seven experiments were run on each model, the range of head varying approximately from 1 to 5.5 feet. Values of C tabulated from these experiments are given in Table 51, page 147.

Experiments on models of the old Croton dam (Figs. 43 to 47 inclusive) were made at Cornell University in 1899, for the



city of New York, under the direction of J. R. Freeman. The models were given different degrees of roughness to determine the effect of roughness of crest on discharge. Table 52, page 147, gives the tabulated results of these experiments.

Fig. 47.

Experiments for the U.S. Geological Survey, under the direction of Robert E. Horton, were performed in 1903 at the hydraulic laboratory of Cornell University to determine the coefficients of discharge of weirs modeled after various types of dams. Figs. 48 to 55 inclusive show forms of crests of



models experimented upon. The weirs were all 11.25 feet high and either 8 or 15 feet long. The purpose of the experiments was to enable the Geological Survey to more accurately determine discharges over weirs at gaging stations. Coefficients obtained from these experiments are given in Table 53, page 148.

Fig. 56 is a cross-section of the old dam at Austin, Texas. Five series of gagings of flow over this dam were made with a current meter by Taylor¹ in 1900. The range of head was from 0.42 to 1.44 feet.

Fig. 57 is a cross-section of the Blackstone River dam at Albion, Mass. Five current meter measurements of the water passing over this dam were made by Dwight Porter. The head in each case was about 1 foot and the resulting values of C vary from 3.41 to 3.94.

The last two lines in Table 53, page 148, give mean values of C as determined for measurement of flow over the above dams.

#### Submerged Weirs and Dams

There are three types of problems in connection with submerged weirs (not sharp-crested) or dams.

- (a) To determine the discharge, the head and depth of submergence being given.
- (b) To determine the height of dam necessary to raise the elevation of water surface a given amount.
- (c) To determine the amount that a dam of a given height will raise the elevation of the water surface.



Fig. 58.—Submerged dam.

In general, the methods of solution will be the same as that already discussed (page 84) for sharp-crested submerged weirs. Fig. 58 represents such a weir or dam, H being the depth of water passing over the dam and D the depth of submergence, measured below all turbulence caused by the standing wave. The notation will be the same as that given on pages 64 and 65.

As already stated, page 83, a submerged-weir formula to be generally applicable must consider the channel dimensions above and below the weir. A weir coefficient must also be

¹ T. U. TAYLOR: The Austin Dam. Water Supply and Irrigation Paper No. 40.

selected for each shape of crest. For some weirs the problem is still farther complicated by the fact that not only the coefficient of discharge but the height of the standing wave may be affected by the form of the crest of the weir. Weirs with broad flat crests, either level or gently sloping, may have a standing wave form before the water is free from the weir. The effect of this condition is similar to reducing the depth of water in the channel below the weir. This will cause a higher standing wave than would form in the natural channel and result in a greater discharge for a given difference in elevation of water surfaces above and below the weir.

Bazin has experimented with a number of models of submerged weirs having heights of either 1.15 or 2.46 feet. Nelles¹ has prepared an abstract of Bazin's experiments on broadcrested weirs and weirs of triangular and trapezoidal cross-sections. Owing to the difficulties referred to above as well as the necessarily limited range of the experiments it is impossible to develop any working formula from these data. Each type of weir is a problem in itself and each requires an extensive investigation, covering a wide range of conditions. When it is considered that weir sections may be constructed in an indefinite number of shapes it may be seen that a most extensive set of experiments will be necessary before an understanding of this subject may be expected.

The author's formula for flow over sharp-crested submerged weirs (formula (41), page 82) using the nomenclature given on pages 64 and 65, is

$$Q = 3.34 LZ^{1.47} \left(1 + \frac{1}{5} \sqrt{\frac{H\overline{D}}{d_1 Z}}\right) \left(1 + 1.2 \frac{D}{Z}\right) \left(1 + 0.56 \frac{H^2}{d^2}\right) (4)$$

From a study of Bazin's experiments it appears that all of the symbols in the above formula, and probably another which corrects for shape of crest, influence the discharge over submerged dams and weirs. In the light of present knowledge of the subject, however, it appears impossible to outline any definite method of procedure.

The author submits the following approximate rules for determining discharges over submerged dams and weirs not sharp-crested:

1. When D is not greater than 0.2H, use the ordinary weir formula,  $Q = CLH^{3/2}$ , choosing the proper value of C from

¹ G. T. Nelles: Flow over Submerged Dams. Trans. Amer. Soc. Civ. Eng., vol. 44, pp. 362-383.

Tables 42 to 53 inclusive, and correction for velocity of approach if necessary by formula (2) or (3), page 129. Values of  $H^{32}$  are given in Table 40, page 122.

- . 2. For narrow weirs having a crest with a sharp upstream corner or for weirs of triangular section with the downstream face not flatter than 2 horizontal to 1 vertical, use formula (4).
- 3. For weirs with rounded crests not over 5 feet broad, increase results from formula (4) by 10 per cent.
- 4. For weirs with very broad crests or gently sloping downstream faces, increase results from formula (4) by from 10 to 30 per cent. or even more. The necessity of this correction is due largely to the fact that a standing wave may form on the crest of the weir.

In applying the above rules it should be remembered that D is the depth of submergence measured below all turbulence caused by the overfalling water. These rules provide for an approximate solution of all submerged-weir problems.

If it is required, from formula (4), to determine the height of dam of a given length, necessary to raise the water surface in a channel a given height, the discharge Q being known, Z is given and the areas of the channels above and below the weir, and therefore d and  $d_1$  may be determined. Q may be corrected if necessary by the above rules. D = H - Z and the only unknown quantity in the equation is H which may be determined from formula (4) by successive approximations.

A similar method may be employed to determine the amount which the water surface in a stream will be raised by a submerged weir of a given height. (See discussion page 84.)

#### Falls

A canal or chute may terminate abruptly in such a manner

as to allow the water to fall freely over its end without any reduction of its section. A longitudinal section of a fall is shown in A, Fig. 59. The canal may be of any cross-section, the more common forms being rectangular or trapezoidal, as shown in B and C, Fig. 59.

There are no experimental data for determining the discharge cor-



responding to a given head, H, but an approximate solution

may be obtained by considering the fall a weir whose height equals zero. In this case d in formula (7) (page 72) becomes equal to H and the formula for a fall at the end of a channel of rectangular cross-section may be written

$$Q = 5.21LH^{1.47} (5)$$

By assuming that the effects of contraction on the portion of the channel above the sloping sides will be similar to that on the rest of the channel, the formula for falls of trapezoidal crosssection, becomes approximately

$$Q = 5.21H^{1.47} (L + 0.8zH)$$
 (6)

 $z = \frac{b}{H}$  being the slopes of the sides of the channel. In formulas (5) and (6) H should be measured at least 3H, and usually not more than 16 feet, above the crest of the fall.

The solution of the above formulas will be simplified by the use of Table 32, page 93.

Notch Falls or Drops.—In constructing canal systems it is frequently required to drop the water of a canal to a lower elevation and at the same time maintain a certain specified



Fig. 60.—Notch fall or drop.

depth above the drop. This may be done by building a bulkhead across the canal, which contains a notch flush with the bottom of the canal. Fig. 60 represents such a structure, A being a cross-section and B a longitudinal section. The bulkhead across the canal section abcd contains the notch efgh. L is the width of opening at the bottom of the notch and H is the depth of water in the canal above the structure. A and a represent respectively the cross-sectional areas of the channel and notch. The following formulas are based upon a study of the best available data but they lack direct experimental verification.

A and a represent respectively the cross-sectional areas below water level of the channel and the notch.

For rectangular notches, with upstream edges of sides rounded to suppress contractions

$$Q = 3.62LH^{1.47} \left( 1 + 0.44 \frac{a^2}{A^2} \right) \tag{7}$$

For rectangular notches with end contractions

$$Q = 3.62H^{1.47} (L - 0.2H) \left( 1 + 0.44 \frac{a^2}{A^2} \right)$$
 (8)

For trapezoidal notches with end contractions suppressed z being the slope of sides of notch, horizontal to vertical

$$Q = 3.62H^{1.47} (L + 0.8zH) \left(1 + 0.44 \frac{a^2}{A^2}\right)$$
 (9)

For trapezoidal notches with end contractions

$$Q = 3.62H^{1.47} (L + 0.8zH - 0.2H) \left(1 + 0.44 \frac{a^2}{A^2}\right) (10)$$

Table 42.—Values of C in the Formula,  $Q = CLH^{3/2}$  for Broad-crested Weirs

Measured head	<b> </b>		E	Bread	th of	crest	of we	ir in	feet		
in feet.	0.50	0.75	1.00	1.50	2.00	2.50	3.00	4.00	5.00	10.00	15.0
H ·	10.00		1.00	1.00			1000	1			
0.2	2.80	2.75	2.69	2.62	2.54	2.48	2.44	2.38	2.34	2.49	2.6
0.4	2.92	2.80	2.72	2.64	2.61	2.60	2.58	2.54	2.50	2.56	2.7
0.6	3.08	2.89	2.75	2.64	2.61	2.60	2.68	2.69	2.70	2.70	2.7
0.8	3.30	3.04	2.85	2.68	2.60	2.60	2.67	2.68	2.68	2.69	2.6
1.0	3.32	3.14	2.98	2.75	2.66	2.64	2.65	2.67	2.68	2.68	2.6
1.2	3.32	3.20	3.08	2.86	2.70	2.65	2.64	2.67	2.66	2.69	2.6
1.4	3.32	3.26	3.20	2.92	2.77	2.68	2.64	2.65	2.65	2.67	2.6
1.6	3.32	3.29	3.28	3.07	2.89	2.75	2.68	2.66	2.65	2.64	2.6
1.8	3.32	3.32	3.31	3.07	2.88	2.74	2.68	2.66	2.65	2.64	2.0
2.0	3.32	3.31	3.30	3.03	2.85	2.76	2.72	2.68	2.65	2.64	2.6
2.5	3.32	3.32	3.31	3.28	3.07	2.89	2.81	2.72	2.67	2.64	2.6
3.0	3.32	3.32	3.32	3.32	3.20	3.05	2.92	2.73	2.66	2.64	2.6
3.5	3.32	3.32	3.32	3.32	3.32	3.19	2.97	2.76	2.68	2.64	2.6
4.0	3.32	3.32	3.32	3.32	3.32	3.32	3.07	2.79	2.70	2.64	2.6
4.5	3.32	3.32	3.32	3.32	3.32	3.32	3.32	2.88	2.74	2.64	2.6
5.0	3.32	3.32	3.32	3.32	3.32	3.32	3.32	3.07	2.79	2.64	2.6
5.5	3.32	3.32	3.32	3.32	3.32	3.32	3.32	3.32	2.88	2.64	2.6

Table 43.—Values of C in the Formula,  $Q=CLH^{3/2}$  for Models of Broad-crested Weirs with Rounded Upstream

#### CORNER

	feet	of et, B	et, P				Hee	sd in	feet	, H			
Name of experimenter	Radius of	Breadth weir in fe	Hèight of weir in fe	0.4	0.6	0.8	1.0	1.5	2.0	2.5	3.0	4.0	5.0
	0.33			2.93 2.70									
Waterways U. S. Deep Waterways	0.33	ļ		1	l	i		i	l	ł	3.17 2.82		

### Table 44.—Values of C in the Formula, $Q = CLH^{32}$ for Broad-Crested Weirs with Crests Inclined Slightly Downward

Slope of	Length	Head in feet, H										
crest	of weir in feet	0.1	0.2	0.3	0.4	0.5	0.6	0.7				
12 to 1	3.0	2.58	2.87	2.57	2.60	2.84	2.81	2.70				
18 to 1	3.0	2.91	2.92	2.53	2.60	2.80	.2.74	2.62				
18 to 1	10.0	2.52	2.68	2.73	2.80	2.90	2.80	2.68				

Table 45.—Values of C in the Formula  $Q=CLH^{32}$  for Weirs of Triangular Cross-section with Vertical Upstream Face and Sloping Downstream Face

	Head in feet, H													
	0.2	0.3	0.4	0.5	0.6	0.7	0.8	0.9	1.0	1.2	1.5			
2.46	3.88	3.85	3.85	3.85	3.85	3.85	3.85	3.85	3.85	3.85	3.85			
2.46	3.48	3.48	3.49	3.49	3.50	3.50	3.50	3.50	3.50	3.51	3.51			
1.64	3.56	3.47	3.47	3.51	3.54	3.57	3.58	3.58	3.58	3.59	3.57			
1.64		2.90	3.11	3.22	3.26	3.33	3.37	3.40	3.40	3.41	3.41			
2.46		3.08	3.06	3.05	3.05	3.07	3.09	3.12	3.13	3.13	3.13			
2.46		1		I	l		1	I	1					
	2.46 2.46 1.64 1.64 2.46	2.46 3.88 2.46 3.48 1.64 3.56 1.64	of weir in feet, P 0.2 0.3 2 46 3.88 3.85 2.46 3.48 3.48 1.64 3.56 3.47 1.64 2.90 2.46 3.08	of weir in feet, P 0.2 0.3 0.4  2.46 3.88 3.85 3.85 2.46 3.48 3.48 3.49 3.66 3.47 3.47 3.47 3.47 3.47 3.47 3.48 3.68 3.08 3.08 3.08	of weir in feet, P	of weir in feet, P   0.2   0.3   0.4   0.5   0.6     2.46   3.88   3.85   3.85   3.85   3.85   2.46   3.48   3.48   3.49   3.49   3.50   1.64   3.56   3.47   3.47   3.51   3.54   3.64     2.90   3.11   3.22   3.26   2.46     3.08   3.06   3.05   3.05   3.05   3.05   3.05   3.05   3.05   3.05   3.05   3.05   3.05   3.05   3.05   3.05   3.05   3.05   3.05   3.05   3.05   3.05   3.05   3.05   3.05   3.05   3.05   3.05   3.05   3.05   3.05   3.05   3.05   3.05   3.05   3.05   3.05   3.05   3.05   3.05   3.05   3.05   3.05   3.05   3.05   3.05   3.05   3.05   3.05   3.05   3.05   3.05   3.05   3.05   3.05   3.05   3.05   3.05   3.05   3.05   3.05   3.05   3.05   3.05   3.05   3.05   3.05   3.05   3.05   3.05   3.05   3.05   3.05   3.05   3.05   3.05   3.05   3.05   3.05   3.05   3.05   3.05   3.05   3.05   3.05   3.05   3.05   3.05   3.05   3.05   3.05   3.05   3.05   3.05   3.05   3.05   3.05   3.05   3.05   3.05   3.05   3.05   3.05   3.05   3.05   3.05   3.05   3.05   3.05   3.05   3.05   3.05   3.05   3.05   3.05   3.05   3.05   3.05   3.05   3.05   3.05   3.05   3.05   3.05   3.05   3.05   3.05   3.05   3.05   3.05   3.05   3.05   3.05   3.05   3.05   3.05   3.05   3.05   3.05   3.05   3.05   3.05   3.05   3.05   3.05   3.05   3.05   3.05   3.05   3.05   3.05   3.05   3.05   3.05   3.05   3.05   3.05   3.05   3.05   3.05   3.05   3.05   3.05   3.05   3.05   3.05   3.05   3.05   3.05   3.05   3.05   3.05   3.05   3.05   3.05   3.05   3.05   3.05   3.05   3.05   3.05   3.05   3.05   3.05   3.05   3.05   3.05   3.05   3.05   3.05   3.05   3.05   3.05   3.05   3.05   3.05   3.05   3.05   3.05   3.05   3.05   3.05   3.05   3.05   3.05   3.05   3.05   3.05   3.05   3.05   3.05   3.05   3.05   3.05   3.05   3.05   3.05   3.05   3.05   3.05   3.05   3.05   3.05   3.05   3.05   3.05   3.05   3.05   3.05   3.05   3.05   3.05   3.05   3.05   3.05   3.05   3.05   3.05   3.05   3.05   3.05   3.05   3.05   3.05   3.05   3.05   3.05   3.05   3.05   3.05   3.05   3.05   3.05   3.05   3.05   3.05   3.05   3.05   3.05	of weir in feet, P 0.2 0.3 0.4 0.5 0.6 0.7  2.46 3.88 3.85 3.85 3.85 3.85 3.85 3.85 2.46 3.48 3.48 3.49 3.49 3.50 3.50 1.64 2.90 3.11 3.22 3.26 3.38 2.46 3.08 3.06 3.05 3.05 3.05 3.07	of weir in feet, P	of weir in feet, P 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9  2.46 3.88 3.85 3.85 3.85 3.85 3.85 3.85 3.85	of weir in feet, P 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0 2.46 3.88 3.85 3.85 3.85 3.85 3.85 3.85 3.85	of weir in feet, P   0.2   0.3   0.4   0.5   0.6   0.7   0.8   0.9   1.0   1.2     2.46   3.88   3.85   3.85   3.85   3.85   3.85   3.85   3.85   3.85   3.85   3.85   3.85   3.85   3.85   3.85   3.85   3.85   3.85   3.85   3.85   3.85   3.85   3.85   3.85   3.85   3.85   3.85   3.85   3.85   3.85   3.85   3.85   3.85   3.85   3.85   3.85   3.85   3.85   3.85   3.85   3.85   3.85   3.85   3.85   3.85   3.85   3.85   3.85   3.85   3.85   3.85   3.85   3.85   3.85   3.85   3.85   3.85   3.85   3.85   3.85   3.85   3.85   3.85   3.85   3.85   3.85   3.85   3.85   3.85   3.85   3.85   3.85   3.85   3.85   3.85   3.85   3.85   3.85   3.85   3.85   3.85   3.85   3.85   3.85   3.85   3.85   3.85   3.85   3.85   3.85   3.85   3.85   3.85   3.85   3.85   3.85   3.85   3.85   3.85   3.85   3.85   3.85   3.85   3.85   3.85   3.85   3.85   3.85   3.85   3.85   3.85   3.85   3.85   3.85   3.85   3.85   3.85   3.85   3.85   3.85   3.85   3.85   3.85   3.85   3.85   3.85   3.85   3.85   3.85   3.85   3.85   3.85   3.85   3.85   3.85   3.85   3.85   3.85   3.85   3.85   3.85   3.85   3.85   3.85   3.85   3.85   3.85   3.85   3.85   3.85   3.85   3.85   3.85   3.85   3.85   3.85   3.85   3.85   3.85   3.85   3.85   3.85   3.85   3.85   3.85   3.85   3.85   3.85   3.85   3.85   3.85   3.85   3.85   3.85   3.85   3.85   3.85   3.85   3.85   3.85   3.85   3.85   3.85   3.85   3.85   3.85   3.85   3.85   3.85   3.85   3.85   3.85   3.85   3.85   3.85   3.85   3.85   3.85   3.85   3.85   3.85   3.85   3.85   3.85   3.85   3.85   3.85   3.85   3.85   3.85   3.85   3.85   3.85   3.85   3.85   3.85   3.85   3.85   3.85   3.85   3.85   3.85   3.85   3.85   3.85   3.85   3.85   3.85   3.85   3.85   3.85   3.85   3.85   3.85   3.85   3.85   3.85   3.85   3.85   3.85   3.85   3.85   3.85   3.85   3.85   3.85   3.85   3.85   3.85   3.85   3.85   3.85   3.85   3.85   3.85   3.85   3.85   3.85   3.85   3.85   3.85   3.85   3.85   3.85   3.85   3.85   3.85   3.85   3.85   3.85   3.85   3.85   3.85   3.85   3.85   3.85   3.85   3.85   3.85   3.8			

Table 46.—Values of C in the Formula  $Q=CLH^{32}$ , being the Mean and Extension of Experimental Results, on Weirs of Triangular Cross-section with Vertical Upstream Face and Sloping Downstream Face. This Table Should be Used only for Heads Above 0.7 Foot

Slope of downstream face	Value of C	Slope of downstream face	Value of C	Slope of downstream face	Value of C
Hor. Vert.		Hor. Vert.		Hor. Vert.	
1 to 1	3.85	6 to 1	3.07	12 to 1	2.86
2 to 1	3.54	7 to 1	3.02	14 to 1	2.80
3 to 1	3.35	8 to 1	2.98	16 to 1	2.76
4 to 1	3.21	9 to 1	2.94	18 to 1	2.72
5 to 1	3.13	10 to 1	2.92	20 to 1	2.69

Table 47.—Values of C in the Formula  $Q=CLH^{3/2}$  for Weirs of Triangular Cross-section with Both Faces Inclined. For Heads Above 1.5 Feet Use the Value of C Given for a Head of 1.5 Feet

Slope of	Slope of down-		Hea	d in feet, H	
stream face	stream face	0.2 0.3	0.4 0.5 0.6	0.7 0.8 0.9	1.0 1.2 1.5
Hor. Vert.	Hor. Vert.				
1 to 1 1 to 1	1 to 1 2 to 1		1 1 1	$1 \begin{vmatrix} 4 & 11 \end{vmatrix} 4 & 11 \begin{vmatrix} 4 & 10 \end{vmatrix} 4 & 10 \end{vmatrix}$ $9 \begin{vmatrix} 3 & 82 \end{vmatrix} 3 & 84 \end{vmatrix} 3 & 85$	1 . 1
1 to 1 2 to 1	3 to 1 2 to 1			6 3.45 3.46 3.47 1 3.83 3.86 3.87	
1 to 1 1 to 2				8 3.82 3.83 3.84 2 3.73 3.73 3.74	
1 to 3 Vertical	2 to 1	3.65 3.64	3.64 3.67 3.6	8 3.69 3.69 3.69 4 3.57 3.58 3.58	3.69 3.68 3.66
	l		l		l

# Table 48.—Values of C in the Formula $Q = CLH^{3/2}$ for Weirs of Trapezoidal Cross-section with Both Faces Inclined. This Table Indicates That Values of C Increase Slightly for Heads Above 1.5 Feet

Slope of up-	Slope of	Width of crest					Head	l in f	eet,	H			
stream face	stream face	in feet		0.3	0.4	0.5	0.6	0.7	0.8	0.9	1.0	1.2	1.5
Hor. Vert.	Hor.												
1 to 2	1 to 1	0.66	2.70	2.82	2.89	3.02	3.13	3.24	3.34	3.44	3.52	3.66	3.82
1 to 2	2 to 1	0.66	2.71	2.79	2.83	2.92	3.03	3.14	3.27	3.32	3.38	3.50	3.61
1 to 2	3 to 1	0.66	2.70	2.76	2.80	2.91	3.00	3.07	3.14	3.21	3.27	3.37	3.45
1 to 2	4 to 1	0.66	2.71	2.74	2.84	2.88	2.98	3.06	3.12	3.17	3.21	3.28	3.35
1 to 2	5 to 1	0.66	2.71	2.80	2.86	2.88	2.93	3.02	3.08	3.12	3.17	3.23	3.26
1 to 2.	2 to 1	1.32		2.71	2.77	2.80	2.80	2.84	2.88	2.93	2.98	3.08	3.22
1 to 2	4 to 1	1.32		2.76	2.80	2.82	2.82	2.85	2.88	2.91	2.94	3.01	3.10
1 to 2	6 to 1	1.32		. <b>.</b>	2.79	2.80	2.82	2.85	2.87	2.90	2.93	2.98	3.08
2 to 1	2 to 1	0.67	2.82	2.94	3.04	3.13	3.20	3.26	3.32	3.38	3.43	3.51	3.61
1 to 1	2 to 1	0.67	2.73	2.86	2.92	3.02	3.12	3.21	3.29	3.36	3.42	3.53	3.65
1 to 3	2 to 1	0.67	2.50	2.62	2.75	2.87	2.99	3.09	3.18	3.27	3.34	3.46	3.55
Vertical	2 to 1	0.67	2.55										

Table 49.2—Values of C in the Formula  $Q=CLH^{32}$  for Weirs of Trapezoidal Cross-section with Both Faces Inclined

Slope of	Slope of	Width				н	ead i	n fee	et, H	,		
upstream face	stream face	of crest in feet	1.6	1.8	2.0	2.5	3.0	3.5	4.0	4.5	5.0	5.5
Hor. Vert.	Hor. Vert.											
2 to 1	2 to 1	1	1		1	1	1	ı	1	1		3.70
2 to 1	5 to 1	0.33	3.58	3.56	3.53	3.48	3.44	3.43	3.48	3.54	3.57	3. <b>5</b> 8

¹ See also Table 49.

² See also Table 48

# Table 50.—Values of C in the Formula $Q=CLH^{32}$ for Weirs of Trapezoidal Cross-section with the Upstream Face Inclined and the Downstream Face Vertical

Slope of upstream	Width of		Head in feet, H																		
upstream face	crest in feet	1	١.	0	1	. 5	5	2	0	2	. 5	3	.0	3	. 5	4	.0	4	. 5	5.	.0
Hor. Vert.		T	_		Ī.					-				Ī							
2 to 1	0.33	3	3.	85	3	. 8	32	3	. 79	3	. 77	3	. 75	3	. 73	3.	70	3	. 67	3.	64
2 to 1	0.66	3	3.	41	3	. 5	7	3.	65	3	. 70	3	.72	3	.72	3.	73	3	. 73	3.	.78
3 to 1	0.66	١.		٠.	١.			3.	57	3	. 57	3	. 57	3	. 57	3.	57	3	. 57	3.	57
4 to 1	0.66	١.			١.			3.	48	3	. 48	3	. 48	3	48	3.	48	3	. 48	3.	48
5 to 1	0.66	1.			l.			3.	39	3	. 39	13	. 39	3	. 39	3.	39	3	39	3	39

### Table 51.—Values of C in the Formula $Q=CLH^{3/2}$ for Weirs of Irregular Cross-section

No. of				He	ad in í	eet, H				
figure	1.0	1.5	2.0	2.5	3.0	3.5	4.0	4.5	5.0	5.5
38	3.13	3.22	3.22	3.22	3.22	3.22	3.22	3.22	3.22	3.22
39	1	3.41	3.35	3.30	3.33	3.37	3.38	3.38	3.38	3.38
40	3.47	3.46	3.41	3.35	3.32	3.33	3.37	3.41	3.46	
41	1			3.44	3.39	3.38	3.38	3.39	3.41	
42	3.28	3.29	3.32	3.39	3.46	3.51	3.59	3.62	3.65	

Table 52.—Values of C in the Formula  $Q=CLH^{\frac{3}{2}}$  from Experiments at Cornell University on Models of Old Croton Dam

No.		Head in feet, H											
fig- ure	Description of model	0.2	0.4	0.6	0.8	1.0	1.5	2.0	2.5	3.0			
43 43 43	Made of smooth pine Made of unplaned plank Rough slope—smooth crest	1	2.89	2.94	12.99	3.03	3.11	3.14	3.21 3.15 3.21				
43 43 44 44	Rough slope—Wire cloth on crest	3.16	3.10	3.10	3.14	3.15	3.15	3.15	3.15	1			
44	planed plank	3.57	3.58	3.58	3.59	3.59	3.60	3.61		2 40			
45 46 47 47	End a open End a with sloping approach	3.53	3.59	3.47	3.44 3.43	3.50 3.41	3.69 3.36	3.33	3.48 3.32	3.49			

# Table 53.—Values of C in the Formula $Q = CLH^{32}$ from Experiments at Cornell University on Models Resembling Existing Dams (Except that the Last Two Experiments Were Made On Actual Dams)

No.	Length	Head in feet, H																			
of figure	model in feet	0.	5	1.	0	1.	5	2.	0	2.	5	3.	0	3.	5	4.	0	4	. 5	5	0
48	7.94	<b> </b>		3.	30	3.	.32	3.	36	3.	40	3.	43	3.	48	3.	53	3	. 62	3	. 70
48	15.97	3.	32	3.	44	3.	46	3.	42	3.	41	3.	46	3.	50						
49	7.98	1		3.	38	3.	46	3.	51	3.	55	3.	58	3.	62	3.	68	3	74	3	. 8
49	15.97	3.	22	3.	48	3.	61	3.	67	3.	70	3.	72								
50	15.97	3.	15	3.	45	3.	64	3.	75	3.	82	3.	87	3.	88					l	
51	15.97	3.	18	3.	32	3.	43	3.	<b>52</b>	3.	59	3.	64					ŀ			
52	15.97	3.	18	3.	30	3.	37	3.	42	3.	46	3.	49	3.	<b>52</b>	3.	54	ļ			
53	15.97	3.	28	3.	50	3.	54	3.	52	3.	36	3.	31	3.	30						
54	15.97	3.	53	3.	54	3.	55	3.	50	3.	35	3:	27	3.	25	3.	25			ŀ	
<b>55</b> .	15.93	3.	13	3.	14	3.	10	3.	41	3.	20	3.	26	3.	31	3.	37				
56		3.	09	3.	11	3.	33					1									
57		l.,		3.	80			l		l											

#### CHAPTER VI

#### FLOW OF WATER THROUGH PIPES

Fundamental Principles.—Fig. 61 represents a pipe line fed by a reservoir in which the water surface is maintained at a constant elevation. The discharge from the outlet P will be



Fig. 61.

constant after a condition of equilibrium has been established. It is evident that the same quantity of water is then passing any section of the pipe. If  $v_1$  and  $v_2$  be mean velocities at any two sections M and N, and  $A_1$  and  $A_2$  the respective areas of sections, this relation is expressed by the equations

$$Q = A_1 v_1 = A_2 v_2 \tag{1}$$

also

$$v_1 = \frac{Q}{A_1} \text{ and } v_2 = \frac{Q}{A_2}$$
 (2)

Bernoulli's theorem is the basis of all formulas for determining the flow of water through pipes. It assumes the ideal conditions of stream line motion and no friction losses. Referring to Fig. 61, Bernoulli's theorem may be expressed by the following equation which relation holds for any sections of the pipe.

$$H_T = h_1 + \frac{v_1^2}{2g} + Z_1 = h_2 + \frac{v_2^2}{2g} + Z_2$$
 (3)

In the application of Bernoulli's theorem to practical problems, allowance must be made for friction losses. The inner surface of a pipe always resists the movement of water, which resistance increases with the roughness of the material of which the pipe is constructed. Obstructions in pipes such as valves, bends, and contractions or enlargements cause an additional resistance to flow. This resistance has the effect of reducing the effective head and such losses of head are commonly spoken of as friction losses.

Bernoulli's theorem may be corrected to include friction losses. Considering M and N any two sections of a pipe, Fig. 61, if  $H_a$  represents the losses due to all causes between these sections, the equation may be written

$$h_1 + \frac{{v_1}^2}{2a} + Z_1 = h_2 + \frac{{v_2}^2}{2a} + Z_2 + H_a$$
 (4)

If H represents the difference in elevation between the water surface in the reservoir and the outlet end of the pipe, and v the velocity with which the water leaves the pipe Bernoulli's equation for all losses in the pipe reduces to

$$H = H_{\bullet} + \frac{v^2}{2g}. \tag{5}$$

In other words, the total head is equal to the sum of the lost heads and the velocity head at the point of discharge.

It is now necessary to analyze separately the various factors entering into the term  $H_a$ . The following notation will be used:

 $H_0$  = Loss of head at entrance to pipe.

 $H_1$  = Total loss of head due to friction between water and pipe.

 $H_2$  = Loss of head due to enlargements of pipe.

 $H_1$  = Loss of head due to contractions of pipe.

 $H_4$  = Loss of head due to valves.

 $H_{\delta}$  = Loss of head due to bends in pipe.

The complete equation for head lost in a pipe may be written

$$H_a = H_0 + H_1 + H_2 + H_3 + H_4 + H_5 \tag{6}$$

and the equation for total head is

$$H = \frac{v^2}{2g} + H_0 + H_1 + H_2 + H_3 + H_4 + H_5 \qquad (7)$$

In the above equation v is the velocity at which the water leaves the pipe, or if the pipe is of uniform diameter throughout it is also the entrance velocity. In long pipes, that is pipes having a length of 500 diameters or more,  $H_1$  is by far 'he most important consideration. Frequently with very long

pipes the other losses are so small a percentage of the total loss in head that they may be neglected. In the case of short pipes, however, all losses should be carefully analyzed.

In certain problems it may be found more convenient to express formula (7) in the form

$$H = \frac{v^2}{2g} + K_0 \frac{v^2}{2g} + H_1 + K_2 \frac{v^2}{2g} + K_3 \frac{v^2}{2g} + K_4 \frac{v^3}{2g} + K_5 \frac{v^2}{2g}$$
 (8)

In this formula v is the velocity in the part of the pipe being considered, and in the case of loss of head due to enlargement or contraction, v will be the velocity in the smaller pipe. For a system of pipes of different diameters the velocity in one pipe may be expressed in terms of velocity in any other pipe by means of the simple relation that the velocities in the two pipes vary inversely as the squares of their respective diameters. The use of formula (8) will frequently be simplified by expressing all losses of head in terms of one value of v.

#### Loss of Head at Entrance to Pipes

The upper end of a pipe for a distance of 2 or 3 diameters below the entrance is similar to a short tube and the head lost in this portion of a pipe is comparable to the loss in a short tube (page 41). If h is the head producing the discharge, v the mean velocity at the entrance to the pipe and C the coefficient of discharge,

 $v = C\sqrt{2gh},$   $h = \frac{1}{C^2} \cdot \frac{v^2}{2g}$ 

and

since h is the sum of the velocity head and the head lost at entrance,

 $H_0 = \frac{1}{C^2} \cdot \frac{v^2}{2g} - \frac{v^2}{2g} = \left(\frac{1}{C^2} - 1\right) \frac{v^2}{2g} \tag{9}$ 

or, if  $K_0 = \frac{1}{C^2} - 1$  (10)

 $H_0 = K_0 \frac{v^2}{2g} \tag{11}$ 

since C is equal to approximately 0.82 for a sharp-cornered entrance,  $K_0$  under these conditions will be approximately 0.50. This value will be reduced by rounding the entrance

corners and it approaches zero for a bell-mouth entrance. The maximum value of  $K_0$  occurs for an inward projecting entrance (page 42). The following may be taken as mean values of C with corresponding values of  $K_0$ :

For inward projecting entrance, C = 0.75,  $K_0 = 0.78$ . For sharp-cornered entrance C = 0.82,  $K_0 = 0.50$ . For slightly rounded entrance C = 0.90,  $K_0 = 0.23$ . For bell-mouth entrance C = 0.98,  $K_0 = 0.04$ .

For convenience of reference the above values of  $K_0$  are repeated in Table 55, page 171. Table 54, page 170, gives values of lost head at entrance to pipes corresponding to velocities of from 2 to 30 feet per second

#### Loss of Head Due to Friction

By far the most important consideration in connection with the flow of water in pipes is the determination of the proper allowance for friction between the moving water and the inner surface of the pipe. In the case of long pipes, this loss may so far exceed the combined effect of all other losses as to make the consideration of the latter unnecessary. All losses should be investigated, however, and especially those due to poor alignment either horizontally or vertically (see loss of head due to bends, page 168).

An investigation of the loss of head due to friction in pipes must necessarily be based upon experimental rather than theoretical considerations. A large number of experiments on different kinds of pipe have been performed during the past century, the results of which are now available in a more or less satisfactory form. It is unfortunate that these experiments present many apparent inconsistencies.

The fact that the existing experimental data, which have been taken with great care and usually under favorable conditions, give conflicting results emphasizes the fact that the engineer in practice is apt to get results equally conflicting and difficult to explain.

The one thing that the engineer should be warned against is the danger of accepting blindly a formula which gives average results, without first assuring himself that his conditions are average conditions. Before selecting a formula for a given roblem the engineer should have some knowledge of the dis-

crepancies in the experimental data on which the formula is based in order that he may understand the possible error attached to his result. It should also be remembered that designing a pipe too small to discharge a given quantity of water may lead to serious inconvenience if not financial loss, while a pipe of slightly larger diameter which provides the required capacity may not add materially to the cost. The engineer should therefore know the worst condition as well as the average and best conditions to be expected in solving all pipe problems.

It has been quite generally accepted that the loss of head due to friction in a straight pipe of uniform diameter, free from obstructions, varies with the roughness of the inner surface of the pipe, directly as the length of the pipe, and as some power of the diameter and velocity of water.

The formula which, until the last few years, has been used almost exclusively is the Chezy formula, usually written for pipes, in the form

$$H_1 = f \frac{l}{d} \frac{v^2}{2g} \tag{12}$$

 $H_1$  being the friction head, l the length of pipe and d the diameter of pipe, all expressed in feet; v is the velocity of water in feet per second, and f is an empirical coefficient which varies with the roughness of the pipe and also with v and d.

The ideal formula would evidently express  $H_1$  as a function of l, d and v with a coefficient depending for its value solely on the degree of roughness of the pipe. This coefficient should then be constant for all pipes constructed of the same material. Many attempts to devise such a formula have been made, but with indifferent success. Most of the more recent investigations have been based upon the so-called exponential formula written in the form

$$H_1 = K \frac{l}{d^n} v^m \tag{13}$$

K being the coefficient which varies with the roughness of the pipe and m and n being constant exponents.

It may readily be seen by logarithmically plotting experimental results for different pipes that m is not a constant, but apparently increases with the degree of roughness of the pipe, being as low as 1.74 for very smooth pipes and as high as 2.08 in cases of extreme roughness. A value of 1.25 for n appears

to fit quite satisfactorily all experimental results and this value has been quite generally accepted.

#### Common Formulas for Friction Loss in Pipes

Before proceeding with the discussion of this subject the more commonly used formulas for loss of head due to friction in pipes are here introduced. The following nomenclature will be used:

l =Length of pipe in feet.

 $H_1 =$ Loss of head due to friction in length l in feet.

 $H_f =$ Loss of head due to friction in 1000 feet of pipe.

d =Diameter of pipe in feet.

v =Mean velocity of water in feet per second.

 $r = \text{Mean hydraulic radius} = \frac{d}{4}$ 

s = Mean slope of hydraulic gradient in distance considered =  $\frac{H_1}{I}$ .

 $f, K_1, K, K'$ , and c = Empirical coefficients.

m, and n = Empirical exponents.

The Chezy formula

$$H_1 = f \frac{l}{d} \frac{v^2}{2a} \tag{12}$$

which has been extensively used for cast-iron pipes, is being replaced by other formulas: f varies with both v and d. Fanning's values of f for straight smooth pipes, which have been commonly used, are given in Table 56, page 171. As originally published Fanning's coefficients are one-fourth of the values given in Table 56 since he uses r in place of d in the above formula. In this form Fanning's formula, with the accompanying table of coefficients, is intended to apply to smooth open channels as well as pipes. Several formulas for determining f, which is expressed as a function of v or d, have been used in the past. Among these may be mentioned the formulas of D'Aubisson, Weisbach and Darcy. Later investigations have shown, however, that since f varies with both v and d the Chezy formula can best be used in connection with a table.

The Williams and Hazen formula, expressed in the nomenclature given above, is

$$H_1 = K \frac{lv^{1.87}}{d^{1.25}} \tag{14}$$

K ranges from 0.00028 to 0.00048 with an average value of 0.00038 for ordinary clean pipes. For rough tuberculated pipes K may become as high as 0.00070.

Tutton's formulas proposed in 1899 for the discharge of pipes constructed of different materials are as follows:

For new cast-iron pipes, and pipes of similar degree of roughness

$$v = cr^{0.66} s^{0.51}$$
  $c = 126 \text{ to } 158$  (15a)

For cast-iron pipes slightly tuberculated or with mud deposits 
$$v = cr^{0.66} s^{0.51}$$
  $c = 87 \text{ to } 132$  (15b)

For cast-iron pipes heavily tuberculated

$$v = cr^{0.66} s^{0.51}$$
  $c = 30 \text{ to } 85$  (15c)

For new asphalt-coated pipes

$$v = cr^{0.62} s^{0.55} \qquad c = 175 \tag{15d}$$

For old asphalt-coated pipes

$$v = cr^{0.66} s^{0.51}$$
  $c = 80 \text{ to } 140$  (15e)

For wood stave pipes

$$v = cr^{0.66} s^{0.51} c = 129 (15f)$$

For new tar- or asphalt-coated lap-riveted pipes

$$v = cr^{0.66} s^{0.51}$$
  $c = 125 \text{ to } 135$  (15g)

For old tar- or asphalt-coated lap-riveted pipes

$$v = cr^{0.66} \ s^{0.51}$$
  $c = 110 \text{ to } 114$  (15h)

Unwin's Formula.—After a careful study of the available experimental data on the flow of water in iron pipes, Unwin's adopted the base formula

$$H_1 = K' \frac{l}{d^n} \frac{v^m}{2a}$$
 (16)

and prepared the following table of values of K', m and n to be substituted in the formula.

Kind of pipe	K'	m	n
Wrought-iron.	.0226	1.75	1.210
Asphalted-iron		1.85	1.127
Riveted wrought-iron	.0260	1.87	1.390
New cast-iron		1.95	1.168
Cleaned cast-iron	.0243	2.00	1.168
Incrusted cast-iron	.0440	2.00	1.160

¹ C. H. TUTTON; The Flow of Water in Pipes. Journal Association of Engineering Societies, 1899, vol. 23, p. 151.

W. C. Unwin; A Treatise on Hydraulics, p. 217.

Moritz and Scobey Formulas for Wood Stave Pipes.— Moritz in 1911 published¹ the results of an investigation of wood stave pipe based upon a study of experiments by himself and other experiments available at that time. This investigation included experiments on pipes of diameters varying from 4 to 55¾ inches. Moritz derived formulas for loss of head, velocity, and discharge which are given below.

Scobey in 1916 published the results of a very thorough investigation on wood stave pipe. Scobey offered a new set of formulas "based upon all experiments on round stave pipe known to him from description in engineering literature," and supplemented by an extensive set of experiments in which he was aided by Ernest C. Fortier. Scobey's formula which is given below represents within an error of  $\frac{2}{3}$  of 1 per cent. the mean of all the experiments, the maximum divergence for individual experiments being about 30 per cent. plus and minus.

The Moritz formulas for wood stave pipes are

$$H_f = 0.38 \frac{v^{1.8}}{d^{1.26}} \tag{17a}$$

$$v = 1.72d^{0.7} H_f^{0.555} (17b)$$

$$Q = 1.35d^{2.7} H_f^{0.555} (17c)$$

The Scobey formulas for wood stave pipes are

$$H_f = 0.419 \frac{v^{1.8}}{d^{1.17}} \tag{18a}$$

$$v = 1.62d^{0.65} H_f^{0.555} \tag{18b}$$

$$Q = 1.272d^{2.65} H_f^{0.555} (18c)$$

Barnes' Formulas.—In 1916 Barnes published the results of a very comprehensive investigation of the available experiments on friction in pipes and open channels. As a result of this investigation new formulas were developed for a number of different kinds of pipe. In each case the formula for new clean pipe is given together with a percentage to be added to Q to allow for deterioration. These formulas are as follows:

¹ E. A. MORITZ: Flow of Water in Wood Stave Pipes. Trans. Amer. Soc. Civ. Eng., vol. 74, p. 411.

² FRED C. Scober: The Flow of Water in Wood Stave Pipe. Bulletin No. 376, U. S. Department of Agriculture.

³ A. A. Barnes; Hydraulic Flow Reviewed, Spon and Chamberlain Publishers.

For new asphalted cast-iron pipes. For purposes of design 45 per cent. to be added to Q to allow for deterioration.

$$v = 174.1 \ r^{0.769} \ s^{0.529} \ \text{or} \ H_1 = 0.000436 \ \frac{lv^{1.891}}{d^{1.464}} \ \ (19a)$$

For new uncoated cast-iron pipes. Add 55 per cent. to Q to allow for deterioration.

$$v = 136.6 \ r^{0.600} \ s^{0.512}$$
 or  $H_1 = 0.000343 \ \frac{lv^{1.953}}{d^{1.172}}$  (19b)

For new asphalted screw-jointed riveted wrought-iron pipes. Add 33 per cent. to Q to allow for deterioration.

$$v = 190.2 \ r^{0.608} \ s^{0.557} \text{ or } H_1 = 0.000368 \ \frac{lv^{1.795}}{d^{1.092}}$$
 (19c)

For new asphalted single-riveted wrought-iron and steel pipes. Add 33 per cent. to Q to allow for deterioration.

$$v = 171.4 \ r^{0.723} \ s^{0.527} \ \text{or} \quad H_1 = 0.000386 \ \frac{lv^{1.898}}{d^{1.372}} \quad (19d)$$

For new asphalted double-riveted wrought-iron and steel pipes. Add 33 per cent. to Q to allow for deterioration.

$$v = 129.9 \ r^{0.440} \ s^{0.520} \ \text{or} \quad H_1 = 0.000279 \ \frac{lv^{1.923}}{d^{0.846}} \quad (19e)$$

For clean lead pipes. Add 5 per cent. to Q to allow for deterioration.

$$v = 232.8r^{0.679} \ s^{0.591} \ \text{or} \ H_1 = 0.000486 \ \frac{lv^{1.692}}{d^{1.149}}$$
 (19f)

For clean glass pipes. Add 5 per cent. to Q to allow for deterioration.

$$v = 143.0 \ r^{0.582} \ s^{0.556} \ {
m or} \quad H_1 = 0.000539 \ \frac{lv^{1.799}}{d^{1.011}} \quad (19g)$$

For new smooth wood stave pipes. Add 8 per cent. to Q to allow for deterioration.

$$v = 223.3r^{0.660} s^{0.586} \text{ or } H_1 = 0.000467 \frac{lv^{1.707}}{d^{1.126}}$$
 (19h)

For new unplaned wood stave pipes. Add 8 per cent. to Q to allow for deterioration.

$$v = 182.5 r^{0.666} s^{0.569} \text{ or } H_1 = 0.000540 \frac{l v^{1.757}}{d^{1.171}}$$
 (19i)

For neat cement pipes. Add 6 per cent. to Q to allow for deterioration.

$$v = 136.3r^{0.635} \ 8^{0.484} \text{ or } H_1 = 0.000240 \ \frac{lv^{2.066}}{d^{1.312}}$$
 (19j)

#### Formulas Advocated

The author has adopted the method, suggested by F. C. Lea, of selecting formulas in pairs of the form

$$H_1 = K \frac{l}{d^{1.25}} \cdot v^m \tag{20}$$

which cover the upper and lower ranges of experimental data for each kind of pipe. The general formula to express the loss of head due to friction in pipes has been taken as

$$H_1 = K_1 \frac{l}{d^{1.25}} \cdot \frac{v^2}{2a} \tag{21}$$

Since the exponent of v has been shown to vary for different kinds of pipe, it seems simpler to assume for it a constant value of 2 and to prepare a table of values of  $K_1$  varying with the roughness of the pipe and velocity of water but not varying with d.

From equations (20) and (21) the following relation between  $K_1$  and v may be obtained:

$$K_1 = \frac{2gK}{v^{2-m}} \tag{22}$$

The following equations are recommended by the author as expressing approximately the upper and lower limits of experimental values for the classes of pipes named. The first five equations which are given by Lea, have been verified by a careful examination of practically all of the available experimental data pertaining to the subject. The last two formulas have been computed by the author and are based upon what are apparently the most reliable available data.²

- ¹ F. C. LEA: Hydraulies, p. 138.
- ² C. D. Marx and C. B. Wing: Experiments on Flow of Water in 8-Foot Steel and Wood Pipe Line at Ogden, Utah. *Trans.* Amer. Soc. Civ. Eng., vols. 40 and 44.
- T. A. NOBLE: Flow of Water in Wood Pipes. Trans. Amer. Soc. Civ. Eng., vol. 49.
- E. A. MORITZ: Experiments on the Flow of Water in Wood Stave Pipes. Trans. Amer. Soc. Civ. Eng., vol. 74.
- H. D. NEWELL: Studies of the Coefficient of Friction in Reinforced-Concrete Pipe. Engineering News, May 1, 1913.
- FRED C. Scobey: The Flow of Water in Wood Stave Pipe. Bulletin No. 376, U. S. Department of Agriculture.

For clean cast-iron pipes:

$$H_1 = .00029 \frac{l_{v}^{1.98}}{d^{1.38}} \text{ to } .00042 \frac{l_{v}^{1.97}}{d^{1.28}}; \text{ mean } H_1 = .00036 \frac{l_{v}^{1.98}}{d^{1.28}}$$
 (23a)

For old cast-iron pipes:

$$H_1 = .00047 \frac{lv^{1.94}}{d^{1.25}} \text{ to } .00069 \frac{lv^{2.94}}{d^{1.25}}; \text{ mean } H_1 = .00060 \frac{lv^2}{d^{1.25}}$$
 (23b)

For clean riveted pipes:

$$H_1 = .00040 \frac{lv^{1.93}}{d^{1.93}} \text{ to } .00054 \frac{lv^{2.08}}{d^{1.95}}; \text{ mean } H_1 = .00050 \frac{lv^2}{d^{1.95}}$$
 (23c)

For galvanised pipes:

$$H_1 = .00035 \frac{lv^{1.80}}{d^{1.25}} \text{ to } .00045 \frac{lv^{1.96}}{d^{1.25}}; \text{ mean } H_1 = .00040 \frac{lv^{1.85}}{d^{1.25}}$$
 (23d)

For smooth asphalted pipes:  

$$H_1 = .00030 \frac{v^{1.76}}{d^{1.26}}$$
 to .00038  $\frac{lv^{1.81}}{d^{1.26}}$ ; mean  $H_1 = .00034 \frac{lv^{1.78}}{d^{1.35}}$  (23s)

For clean wooden pipes:

$$H_1 = .00037 \frac{l_{\overline{v}^{1.74}}}{d^{1.26}} \text{ to } .00053 \frac{l_{\overline{v}^{1.81}}}{d^{1.26}}; \text{ mean } H_1 = .00045 \frac{l_{\overline{v}^{1.77}}}{d^{1.26}}$$
 (23f)

For concrete pipes

$$H_1 = .00040 \frac{lv^{1.76}}{d^{1.28}} \text{ to } .00068 \frac{lv^{2.90}}{d^{1.28}}; \text{ mean } H_1 = .00050 \frac{lv^{1.86}}{d^{1.28}}$$
 (23q)

Practically all of the experimental results for the kinds of pipe listed lie between the first two values of  $H_1$  as given in the above formulas. The last values of  $H_1$  represent the approximate means of the experiments. Table 57, page 172, gives values of  $K_1$  to be used in the formula

$$H_1 = K_1 \frac{l}{d^{1.25}} \cdot \frac{v^2}{2q} \tag{21}$$

which were computed from formula (22), the values of K and mbeing taken from formulas 23a to 23g inclusive. Tables 60 and 61, pages 175 and 178, giving values of  $\frac{1}{d^{1.25}}$ , with d expressed in feet or inches will assist in solving formula (21).

It will be observed that Table 57 leaves considerable discretion in choosing the value of  $K_1$ . There will always be an element of uncertainty in this choice and care in making the selection to correspond to the conditions is essential if any degree of accuracy is to be expected. In general, to use the lower values of  $K_1$  the pipe should be of good quality, each section should be carefully laid to grade and placed in true alignment, and the pipe should be well maintained and kept clean. If jointed pipes are used, a smooth surface should be obtained at the joints. With only ordinary care in these regards the higher values will be safer,

The values of  $K_1$  given in Table 57 do not include all kinds nor conditions of pipe. The list of pipes given, however, is about as extensive as the available experimental data warrant. When it is remembered that, other things being equal, the value of  $K_1$  depends only upon the degree of roughness of the pipe it should not be difficult to decide to which class the pipe in question belongs or which class it more closely resembles.

The amount of allowance necessary for deterioration may be difficult to decide. The carrying capacity of wooden and concrete pipes changes little with age. There is a tendency for deposits to form on the inner surface of iron and steel pipes which results both in increasing the roughness of the surface and in decreasing the effective diameter of the pipe. Such deposits usually take the form of hemispheres not exceeding 1 to  $1\frac{1}{2}$  inches in diameter. The effect of deposits is more noticeable on pipes of small diameter, which in extreme cases may be entirely blocked.

The deterioration of iron and steel pipes is greatly retarded by a good coating of bitumen or pitch. The effectiveness of the coating depends upon the quality of the material used and the care taken to place it in smooth even layers. Only the uncoated portions of such pipes will be incrusted to any great extent, though a very minute hole may form the nucleus of a deposit.

The method suggested by Barnes (pages 156 to 158) of adding a certain percentage to Q to allow for deterioration has advantages. In some ways it would appear more consistent to apply a correction to the diameter of the pipe, since the effect of corrosion is to reduce the effective diameter. It is doubtful, however, whether the more common method of considering the deterioration in selecting the coefficient is not equally satisfactory.

### Discussion of Pipe Formulas

The modern tendency is undoubtedly to express friction loss in pipes by the general formula

$$H_1 = K \frac{l}{d^n} v^m \tag{20}$$

In this form the formula has the advantage of simplicity and at the same time it appears to conform to the laws of flow as indicated by the available experiments as well as any formula that has yet been suggested. In the latter regard it unquestionably possesses advantages over the Chezy formula.

The general plan of procedure has been to select the experiments for pipes of a certain class and by means of logarithmic plotting to determine the values of K, m and n which best represent the mean of the experiments used. Such formulas manifestly give results which at the best correspond only to the means of experimental values. In studying any particular set of experiments it will usually be found that several values of the above constants may be selected which appear to fit the experiments equally well. This fact accounts for the large number of pipe formulas of this type which have been promulgated during the past few years. Every investigator has found that many of the experimental results when plotted fall far from the mean position which may be expressed by any formula.

Probably the most successful attempt to classify and correlate the available pipe experiments and to deduce from them mean working formulas is that of Barnes (page 156). This investigation has evidently been conducted with great care and thoroughness and the resulting formulas show a remarkably close agreement with the greater portion of the experiments. It does not appear quite clear however why the flow through pipes quite similar in character should apparently follow widely varying laws as indicated by the divergence in exponents selected. As an example it may be noted that Barnes chooses an exponent for d of 1.372 for single-riveted pipes and decides that the addition of another row of rivets changes the value of this exponent to 0.846.

The wide divergence in experimental results cannot be explained on the grounds of experimental error. Experiments which have been performed with great care and under favorable conditions frequently fall far from the mean values determined from other experiments. It therefore appears that there is danger in definitely accepting any formula or group of formulas designed to give mean values. In using the formulas expressing the approximate upper and lower ranges of experimental values, or the general formula (formula (21)) with values of  $K_1$  determined from these formulas, the engineer can readily see the limiting results which have been obtained and use his discretion in selecting what appears to be the most reasonable or safest value, basing his decision on the particular conditions involved in the problem.

Though a list of mean values of  $K_1$  is included in Table 57 the author is opposed to using them indiscriminately. The engineer should, by a careful study of conditions and a knowledge of the kind of pipe to be used and class of workmanship to be insisted upon, be able to estimate a coefficient for each individual case.

#### Solution of Pipe Formulas

Formula (21) (page 158) is sufficient for the solution of any pipe problem involving only the loss of head due to friction. For convenience this formula is here repeated, the nomenclature being that given on page 154.

$$\dot{H}_1 = K_1 \frac{l}{d^{1.25}} \cdot \frac{v^2}{2a} \tag{21}$$

The length of pipe, or length corresponding to a given loss of head, is always given. There are three general types of problems:

1. To determine the friction head; the diameter of pipe and velocity or discharge being given.

Solution.—H₁ may be obtained directly from formula (21), with the assistance of the tables.  $K_1$  is given in Table 57, page 172. Values of  $\frac{1}{d^{1.25}}$  may be taken from the second column of Table 60, page 175, or Table 61, page 178. Values of  $\frac{v^2}{2g}$  are given in Tables 19 and 20, pages 51 and 53. If preferred, the head lost in 1000 feet of pipe 1 foot in diameter may be taken from Table 59, page 174, and Tables 60 and 61 may be used to reduce this loss of head to any other diameter. For any other length of pipe multiply the above result by the length in feet divided by 1000.

2. To determine the discharge or velocity; the diameter and friction head being given.

Solution.—Formula (21) may be used by first assuming a velocity and choosing a value of  $K_1$ , corresponding to the assumed velocity, from Table 57,  $\frac{1}{d^{1.25}}$  being taken from Table 60 or 61 as before. After solving for v a new value of  $K_1$  may be selected from Table 57, and v may be determined again in the same manner. If the second value of v differs greatly from the first value, the equation may be solved a third time, though we solutions are usually sufficient.

Equation (21) may be transposed to the form

$$v = \sqrt{\frac{2g}{K_1} \cdot \frac{H_1}{l}} \cdot d^{0.625}$$

or putting  $\sqrt{\frac{2g}{K_1}} = c_1$  and  $\frac{H_1}{l} = s$  the formula becomes

$$v = c_1 s^{1/2} d^{0.625} (21a)$$

This form of the equation may in some cases be more convenient than formula (21). Table 58, page 173, gives  $c_1$  for different values of v and the third columns of Tables 60 and 61 give  $d^{0.625}$  with d expressed in either feet or inches. The same general method must be followed in solving problems by formula (21a) as by formula (21).  $c_1$  must be first assumed, then v may be computed, and a new value of  $c_1$  chosen to correspond to this value of v when the formula may again be solved for a closer value of v. In the same manner a third value of v may be computed if necessary.

If the discharge of the pipe is required it may be obtained from the relation,

$$Q = Av$$

A being the area of the pipe in square feet. Values of A corresponding to diameters of pipes expressed in feet and inches respectively are given in the fourth columns of Tables 60 and 61, pages 175 and 178.

3. To determine the diameter; the friction head and discharge being given.

Solution.—Formula (21) may be applied directly but the solution will be somewhat complicated. Formula (21) may be transposed to the form

$$d = 0.496 \left(\frac{K_1 Q^2 l}{H_1}\right)^{\frac{1}{25}.25}$$
 (21b)

The solution of formula (21b) is given in the first and fifth columns of Tables 60 and 61, pages 175 and 178. Intermediate values of d not given in these tables may be interpolated to the nearest 0.01 foot or  $\frac{1}{2}$  inch.

Formula (21b) must be solved by successive approximations. A value of v is first assumed and  $K_1$  is taken from Table 57, page 172. Then d may be determined with the aid of table 60 or 61 by computing  $\frac{K_1Q^3l}{H_1}$  and selecting from column 1

the value of d corresponding to the value of  $\frac{K_1Q^2l}{H_1}$  given in column 5. The corresponding cross-sectional area of the pipe is given in column 4. From the relation  $v = \frac{Q}{A}$  the approximate velocity may be determined and a new value of  $K_1$  may be selected from Table 57. A new value of d may now be computed in the same manner as before.

The above process should be repeated until the computed value of d does not differ sufficiently from the assumed d to affect appreciably the value of  $K_1$ . Usually two solutions are sufficient.

#### Other Losses in Pipes

In the complete solution of a pipe problem it may be necessary to consider the velocity head and losses of head other than  $H_1$ , the loss due to friction. As already set forth (pages, 150 and 151) the total head is represented by the equation

$$H = \frac{v^2}{2g} + H_0 + H_1 + H_2 + H_3 + H_4 + H_5 \tag{7}$$

which may also be written

$$H = \frac{v^2}{2g} + K_0 \frac{v^2}{2g} + K_1 \frac{l}{d^{1.25}} \cdot \frac{v^2}{2g} + K_2 \frac{v^2}{2g} + K_3 \frac{v^2}{2g} + K_4 \frac{v^2}{2g} + K_5 \frac{v^2}{2g}$$
(8)

In the above formulas  $\frac{v^2}{2g}$ ,  $H_0$ ,  $H_1$ ,  $H_2$ , etc., and  $K_0$ ,  $K_1$ ,  $K_2$ ,  $K_3$ , etc., vary with the velocity. Problems in which the velocity and diameter and length of pipe are given to determine the total head, H, may be solved directly from formulas (7) and (8). Other problems, in which v is unknown, must be solved by a method of approximations. Since the loss from friction,  $H_1$ , in nearly all cases greatly exceeds all other losses, it is usual to make a first solution of the problem by neglecting all losses except  $H_1$ , and thus obtain an approximate value of v to be used in formulas (7) or (8). Successive solutions should be made until the computed value of v does not differ sufficiently from the v used in the solution to appreciably affect the head losses or the values of the coefficients used.

The method of obtaining  $K_0$  and  $K_1$  have already been explained, together with the use of tables of values of these coefficients. The determination of values of  $K_2$ ,  $K_3$ ,  $K_4$  and  $K_5$  will now be taken up in order.

Loss of Head Due to Sudden and Gradual Enlargements.— Borda has investigated this matter theoretically and found that the loss in pipes due to *sudden enlargement* may be represented by the formula

$$H_2 = \frac{(v_1 - v_2)^2}{2g} \tag{25}$$

in which  $H_2$  is the lost head and  $v_1$  and  $v_2$  the velocities in the smaller and larger pipes respectively.

This loss has also been investigated experimentally by Baer, ¹ Brightmore, ² Archer³ and others. These experiments are fairly concordant and show that Borda's theoretical formula gives values of  $H_2$  too small for the lower velocities and smaller differences in diameter of the two pipes and too large for the opposite conditions. Many combinations of pipes were used, in the experiments, between the approximate limits of 1.5 inches and 6 inches in diameter. The maximum velocity in the smaller pipe in any of the experiments was about 30 feet per second.

As a result of his experiments, Archer deduced the formula

$$H_2 = 1.098 \frac{(v_1 - v_2)^{1.919}}{2q} = 0.01705(v_1 - v_2)^{1.919}$$
 (26)

This formula appears to be as satisfactory as any yet suggested. It does not hold in the limit when the area of the larger pipe becomes infinite, and the total velocity head is evidently lost. In such cases the formula gives values of  $H_2$  slightly greater than  $\frac{v^2}{2g}$  for velocities below 3 feet per second, from which point it gradually decreases with the velocity, to about 80 per cent. of  $\frac{v^2}{2g}$  for a velocity of 40 feet per second.

Table 62, page 181, gives values of  $H_2$  for velocities up to 40 feet per second with the ratio of the diameter of the larger pipe to the diameter of the smaller pipe varying from 1.2 to infinity. This table was computed by formula (26) for ratios

¹ Dingler's Journal, March 23, 1907.

^{*} Proc. Inst. of Civ. Eng., vol. 169, p. 323.

² W. H. Archer; Loss of Head Due to Enlargements in Pipes. *Trans.* Amer. Soc. Civ. Eng., vol. 76, pp. 999-1026.

of 3 or less, and for ratios from 4 to infinity, the values given were interpolated graphically between values from formula (26) for ratio 3 and the total velocity head for ratio infinity. Table 63, page 181, gives a corresponding table of  $K_2$  for use in the formula

$$H_2 = K_2 \frac{v^2}{2q} \tag{27}$$

Losses due to gradual enlargement have been investigated by Parker¹ from a study of experiments by Andres, Gibson and others. The formula suggested by Andres for a conical enlargement may be written:

$$H_2 = f \frac{v_1^2 - v_2^2}{2g} \tag{28}$$

in which  $v_1$  and  $v_2$  are velocities in smaller and larger pipes respectively and f is an empirical coefficient depending for its value upon the angle  $\theta$  between the sides of the pipe ( $\theta$  = double the angle between the axis of the pipe and its side).

Andres gives values of f for smaller values of  $\theta$  and Gibson for values up to 90°. Their results are not entirely consistent, but the author has used them to plot a mean curve giving the results of Andres more weight for the smaller angles. The following are results obtained in this manner:

$$\theta$$
 15° 20° 25° 30° 35° 40° 45° 50° 60° 75° 90°  $f$  .16 .31 .40 .49 .55 .60 .64 .67 .72 .72 .67

Using the above values of f, Table 64, page 182, which gives  $K_2$  in the formula

$$H_2 = K_2 \frac{v^2}{2q} \tag{27}$$

has been prepared. v is the velocity in the smaller pipe. It will not be practicable to give a table of values of  $H_2$ , for gradual enlargement, as  $H_2$  in this case varies with three functions—the angle of the cone, the ratio of diameter of two pipes, and the velocity.

Loss of Head Due to Contractions.-Merriman's suggests the

¹ PHILIP A. MORLEY PARKER: The Control of Water, pp. 796-800.

² Mansfield Merriman: Treatise on Hydraulics, p. 183.

following formula for determining the loss of head due to sudden contraction:

$$H_{z} = \left(\frac{1}{c} - 1\right) \frac{v^{2}}{2g} \tag{29}$$

in which v is the velocity in the smaller pipe and

$$c = 0.582 + \frac{0.0418}{1.1 - r} \tag{30}$$

· r being the ratio of diameters of the two pipes.

Brightmore¹ experimented on pipes 6 inches in diameter contracted to 4 inches and 3 inches, the mean of his results being represented approximately by the formula

$$H_3 = \frac{0.7(v_1 - v_2)^2}{2g} \tag{31}$$

Parker suggests that formula (29) be used for higher velocities when the head lost is 1 foot or more while formula (31) is more reliable for smaller losses of head.

Following the above suggestion the author computed  $H_3$  by both formulas for various velocities and diameter ratios. The results were then plotted and curves drawn through the points by gradually changing from results obtained by formula (31) for lower velocities to formula (29) for higher velocities. Values of  $H_3$  taken from these curves are given in Table 65, page 182. Corresponding values of  $K_3$  for determining loss of head due to sudden contraction in the formula

$$H_3 = K_3 \frac{v^2}{2g} \tag{32}$$

are given in Table 66, page 183, v being the velocity in the smaller pipe.

Loss of Head Due to Obstructions.—The most common obstructions in pipes are valves when partially open, though the following analysis should apply approximately to any obstructions. The basic formula chosen is

$$H_4 = K_4 \frac{v^2}{2a} \tag{33}$$

in which  $H_4$  is the loss of head due to the obstruction,  $K_4$  is an empirical coefficient, and v is the mean velocity of water in the pipe. Experiments indicate that  $K_4$  varies with the amount of obstruction but it does not appear to vary appreciably with the velocity.

¹ Proc. Inst. Civ. Eng., vol. 169, p. 323.

PHILIP A. MORLEY PARKER: The Control of Water, pp. 796-800.

Parker¹ has correlated experiments by Smith, Kuichling and Weisbach, the results of which are fairly concordant. The author has plotted all of these experiments graphically and drawn a mean curve through them. Values of  $K_4$  taken from this curve, for different ratios of area of pipe to area at obstruction, are given in Table 68, page 184. Table 67, page 184, gives corresponding values of lost head,  $H_4$ , for different velocities.

Loss of Head Due to Bends.—The loss of head due to bends in pipes is considered as the excess loss over what would occur in a straight pipe of the same material and equal length. It is probable that the roughness of the pipe has some effect upon this loss of head but present data are not sufficient to show to what extent this is the case. It is usual to consider the loss due to bends for all kinds of pipes, to be a function of the velocity and radius of the bend.

Most investigators have considered that the loss of head varies with the radius of the bend expressed in pipe diameters. In what appears, however, to be a very satisfactory analysis of the experiments bearing on this subject, Fuller² shows that a closer agreement with available experimental data may be obtained by considering the lost head for pipes of all diameters to be a function of the radius of the center line of the pipe without regard to its diameter. Fuller gives the formula

$$H_5 = cv^{2.25} (34)$$

in which  $H_b$  is the lost head in feet for bends of 90°, v is the velocity in feet per second, and c is a coefficient varying with the radius of the center line of the pipe. Fuller gives a curve of values of c for different radii up to 60 feet, from which the following table was prepared.

Ra- dius in feet	с	Ra- dius in feet	с	Ra- dius in feet	υ	Ra- dius in feet	c	Ra- dius in feet	с
0.00 0.25 0.50 1.00	.01350 .00600 .00400 .00275	2 3 4 5	.00243 .00239 .00236 .00233	6 7 8 10	.00230 .00242 .00271 .00335	15 20 25 30	.00478 .00597 .00656 .00695	40 50 60	. 00750 . 00803 . 00860

¹ PHILIP A. MORLEY PARKER: The Control of Water, p. 787.

² W. E. Fuller: Loss of Head in Bends. Journal of New England Water Works Association, December, 1913.

Table 69, page 185, giving loss of head in 90° bends for different radii and velocities, was computed from formula (34) using values of c contained in the above table. Table 70, page 186, gives corresponding values of  $K_b$  to use in the formula

$$H_5 = K_5 \frac{v^2}{2a} \tag{35}$$

For bends less than 90° Fuller gives the following approximate rules:

For loss of head due to 45° bends use three-fourths that due to 90° bends of the same radius.

For loss of head due to 22.5° bends use one-half that due to 90° bends of the same radius.

For loss of head due to a Y branch, use three-fourths that due to a tee (zero radius).

It appears from Tables 69 and 70 that a minimum loss of head occurs for radii of from 4 to 7 feet. In designing a pipe line, however, it may be found that the total loss of head in the pipe line between two given points will be less by using a



Fig. 62.

curve of greater radius due to shortening the length of the pipe. This may be seen from Fig. 62. Assuming that the radius of the bend CD is from 4 to 7 feet, the radius giving the minimum excess loss of head, the bend AB having a greater radius than CD, the total loss of head in the pipe AB may be less than the total loss of head in the pipe ACDB because of its shorter length.

#### Critical Velocity

Under the conditions discussed in the preceding pages the flow of water in pipes has been considered turbulent, and the loss of head due to friction was found to vary as  $v^n$ , n ranging from about 1.7 to 2.1. This law, however, does not apply to very small pipes nor very low velocities. In such cases there is a velocity, called the *critical velocity*, below which stream-line flow exists and the loss of head due to friction varies directly as v.

There appear to be two points of critical velocity; the lower critical velocity being the velocity below which stream-line flow always exists and the higher critical velocity being the velocity above which turbulent flow always exists. Between the two critical velocities the flow may be either stream-line or turbulent.

Our knowledge on this subject is based largely upon experiments by Reynolds, the results of which are summarized in the equations given below. If  $v_c$  is the lower critical velocity,  $v_d$  the higher critical velocity, T the temperature of the water in degrees Centigrade, and d the diameter of the pipe in feet

$$v_c = \frac{0.0388}{d(1 + 0.0336T + 0.000221T^2)}$$
 (36)

and

$$v_d = \frac{0.2458}{d(1 + 0.0336T + 0.000221T^2)} \tag{37}$$

Table 71, page 187, gives the lower critical velocities for different temperatures and diameters of pipes computed from formula (36) and Table 72, page 187, gives the corresponding higher critical velocities computed from formula (37). The values contained in these tables must be considered as only rough approximations as they are based upon a limited range of experiments, and Barnes and Coker² have produced streamline motion at velocities 50 per cent. greater than are given by formula (37).

If v' be the velocity (below the critical velocity) in feet per second, d, the diameter of the pipe in inches, h the friction head in feet, l the length of pipe in feet, and T the temperature of water in degrees Centigrade, the velocity in a pipe, where stream-line flow exists, is given by the following formula by Reynolds:

$$v' = \frac{361d_{*}^{2}h}{l}(1 + 0.0337T + 0.000221T^{2})$$
 (38)

It will be noted from Tables 71 and 72 that critical velocities occur below the velocities in which the engineer is usually interested.

TABLE 54.—LOSS OF HEAD, Ho, AT ENTRANCE TO PIPES

Condition at						Velo	ocit	y in	feet	per a	econ	ıd			
entrance	2	3	4	5	6	7	8	10	12	14	16	18	20	25	30
Inward-projecting Sharp-cornered Slightly rounded Bell-mouth	.03	.07	. 12	.19	.28	.38	.50	.78	1.12 .51	1.52	1.99	2.52 1.16	3.11 1.43		10.91 7.00 3.22 .50

¹ Phil. Trans. Royal Society, 1882 and 1895.

² H. T. Barnes and E. G. Corer: The Flow of Water through Pipes. *Proc.* Royal Society of London, 1905.

Table 55.—Values of  $K_0$  for Determining Loss of Head at Entrance to Pipes from the Formula  $H_0=K_0\frac{v^2}{2a}$ 

Condition at entrance	$K_0$
Inward-projecting pipe	.78
Sharp-cornered	. 50
Slightly rounded	.23
Bell-mouth	.04

Table 56.—Values of f in the Chezy Formula  $H_1=f^{l}_{\overline{d}}\cdot \frac{v^2}{2g}$  as Determined by Fanning, for Straight Smooth Pipes

3 DETERMIN	7				- OIII				
Diameter of pipe in		М	ean ve	locity	(v) in	feet pe	er seco	nd	
inches	0.5	1.0	2.0	3.0	4.0	5.0	10.0	15.0	20.0
0.5	.0418	. 0381	.0340	. 0317	. 0300	. 0287	.0250	.0237	.023
0.75	.0405	.0366	.0329	.0308	.0292	.0280	. 0247	.0235	.022
1.	.0398	. 0353	.0317	.0300	.0285	.0274	.0245	. 0234	.022
1.5	.0384	.0343	.0310	.0292	.0278	.0268	.0241	.0231	.022
2.	.0364	.0330	.0301	. 0284	.0272	.0263	. 0237	.0228	.022
3.			. 0288						
4.			. 0279						
5.			.0271						
6.			.0264						
8.	.0296	.0275	. 0253	.0242	.0234	.0227	.0212	.0207	.020
10.			.0242						
12.			.0233						
14.			.0225						
16.			.0218						
18.	.0236	.0224	.0211	.0204	.0199	.0196	.0188	.0183	.018
20.	.0229	.0216	.0204	.0198	.0194	.0191	.0184	.0180	.017
<b>24</b> .	.0212	.0202	.0193	.0187	.0184	.0182	.0176	.0173	. 017
30.	.0194	.0186	.0179	.0175	.0173	.0171	.0166	.0163	.016
36.			.0166						
42.	.0164	.0160	.0156	.0154	.0153	.0152	.0148	.0146	.014
48.			.0147						
<b>54</b> .			.0140						
60.			.0133						
<b>72</b> .			.0122						
84.	.0117	.0115	.0113	.0112	.0112	.0111	.0109	.0109	.010

Table 57.—Values of  $K_1$  for Determining the Loss of Head (in Feet) Due to Friction in Pipes From the Formula  $H_1=K_1rac{l}{d^{1.16}}\cdotrac{v^2}{2g}$  . In This Formula l = Length of Pipe in Feet and d

Diameter of Pipe in Feet. Values of  $rac{1}{d^{1.16}}$  for Different Diameters of Pipe are

	9	Mean	022 023 024 024	022 022 422 022 022 022 022 022 022 022	020
	Coherete pipe	οT	44444	<u> </u>	4444 4444
	ŭ	From	.020 .020 .020 .018	.017 .016 .015 .014	.012 .012 .010 .010
-	oden	Mean	.025 .025 .025 .023	.020 .019 .018 .017	013 013 013
	Clean wooden pipe	οT	.036 .038 .028 .028	.025 .023 .023 .020	.019 .018 .018
	Cle	morfi	.028 .020 .020 .018	.016 .015 .014 .013	010
	Smooth sephalted pipe	пвэМ	.025 .022 .019 .017	.015 .015 .015 .013	.010 .010 .010
	Smooth halted	οT	.028 .025 .022 .020	.018 .016 .016 .016	410. 0.13 0.13 0.12
61	des	From	.023 .019 .016 .015	.013 .012 .012 .010	8888
AND	sed	Mesn	.028 .026 .024 .023	.021 .020 .020 .020	.018 .018 .018
99	Galvanised pipe	οT	.029 .028 .028 .028	.027 .027 .026 .026	.028 .025 .025
TABLES	Pg.	morA	.026 .023 .018	.016 .016 .015 .014	
TAE		пвеМ	.032 .032 .032 .032 .032		.032 .032 .032 .032
GIVEN IN	an riv pipe	oT		32.52.52 52.52.52 52.52.52 53.52.52 53.52 53.52 53.52 53.52 53.52 53.52 53.52 53.52 53.52 53.52 53.52 53.52 53.52 53.52 53.52 53.52 53.52 53.52 53.52 53.52 53.52 53.52 53.52 53.52 53.52 53.52 53.52 53.52 53.52 53.52 53.52 53.52 53.52 53.52 53.52 53.52 53.52 53.52 53.52 53.52 53.52 53.52 53.52 53.52 53.52 53.52 53.52 53.52 53.52 53.52 53.52 53.52 53.52 53.52 53.52 53.52 53.52 53.52 53.52 53.52 53.52 53.52 53.52 53.52 53.52 53.52 53.52 53.52 53.52 53.52 53.52 53.52 53.52 53.52 53.52 53.52 53.52 53.52 53.52 53.52 53.52 53.52 53.52 53.52 53.52 53.52 53.52 53.52 53.52 53.52 53.52 53.52 53.52 53.52 53.52 53.52 53.52 53.52 53.52 53.52 53.52 53.52 53.52 53.52 53.52 53.52 53.52 53.52 53.52 53.52 53.52 53.52 53.52 53.52 53.52 53.52 53.52 53.52 53.52 53.52 53.52 53.52 53.52 53.52 53.52 53.52 53.52 53.52 53.52 53.52 53.52 53.52 53.52 53.52 53.52 53.52 53.52 53.52 53.52 53.52 53.52 53.52 53.52 53.52 53.52 53.52 53.52 53.52 53.52 53.52 53.52 53.52 53.52 53.52 53.52 53.52 53.52 53.52 53.52 53.52 53.52 53.52 53.52 53.52 53.52 53.52 53.52 53.52 53.52 53.52 53.52 53.52 53.52 53.52 53.52 53.52 53.52 53.52 53.52 53.52 53.52 53.52 53.52 53.52 53.52 53.52 53.52 53.52 53.52 53.52 53.52 53.52 53.52 53.52 53.52 53.52 53.52 53.52 53.52 53.52 53.52 53.52 53.52 53.52 53.52 53.52 53.52 53.52 53.52 53.52 53.52 53.52 53.52 53.52 53.52 53.52 53.52 53.52 53.52 53.52 53.52 53.52 53.52 53.52 53.52 53.52 53.52 53.52 53.52 53.52 53.52 53.52 53.52 53.52 53.52 53.52 53.52 53.52 53.52 53.52 53.52 53.52 53.52 53.52 53.52 53.52 53.52 53.52 53.52 53.52 53.52 53.52 53.52 53.52 53.52 53.52 53.52 53.52 53.52 53.52 53.52 53.52 53.52 53.52 53.52 53.52 53.52 53.52 53.52 53.52 53.52 53.52 53.52 53.52 53.52 53.52 53.52 53.52 53.52 53.52 53.52 53.52 53.52 53.52 53.52 53.52 53.52 53.52 53.52 53.52 53.52 53.52 53.52 53.52 53.52 53.52 53.52 53.52 53.52 53.52 53.52 53.52 53.52 53.52 53.52 53.52 53.52 53.52 53.52 53.52 53.52 53.52 53.52 53.52 53.52 53.52 53.52 53.52 53.52 53.52 53.52 53.52 53.52 53.52 53.52 53.52 53.52 53.52 53.52 53.52 53.52 53.52 53.52 53.52 53.52	.045 .045 .046
GIVE	Cle	morA	.027 .025 .025 .024	.023 .022 .022 .022	
	cast- pipe	Меал	.038 .038 .038 .038	88.0 88.0 88.0 88.0 88.0 88.0 88.0	888
	Old ca	• <b>.</b>		9.9.9.9.9. 8.8.8.9.0.0	.050 .051 .051
	0.11	From	.033 .029 .029 .028	.028 .027 .027 .026	8222
	ast- pe	паэМ	\$25.00 48.00 48.00 48.00	.019 .019 .018 .018	.016 .016 .015 .015
	Clean cast- iron pipe	οT	.028 .026 .026 .026	.026 .026 .025 .025	025 025 024 024
	Ď.Ħ	From	.022 .019 .017 .015	.012 .013 .012 .012	5558
		V GLOCATES	0 6/6/4 70		6.055.0 6.055.0

Table 58.—Values of  $c_1$  in the Formula  $v=c_1s^{15}d^{0.015}$ . In This Formula  $s=\frac{H_1}{l}$  and  $d=\mathrm{Diam}$ -SQUARE ROOTS OF ETER OF PIPE IN FEET. VALUES OF 40.035 ARE GIVEN IN TABLES 60 AND 61.
DECIMAL NUMBERS ARE GIVEN IN TABLE 83

	e.	Mean	<b>24448</b>	52525	55 55 50 50 50 50 50
	noret pipe		2000000	000000	000000
	Concrete pipe	οT	888888	888888	888888
	ပိ		<b>00040</b>	94490	5012
		morA	32228	28285	24.5 7.8 7.9 7.0 7.0 7.0
	-				
	n wooden pipe	пвэМ	44288	788884	23288
	<b>≱</b> .0	οT	F-10.44.00.00	F. 6-1-14	∞0.61∞-
	d g		3.2.3.3.3.	525325	82885
	Clean	mori	6-100W	-0-40	6.1.1.0
1	0		<u>48888</u>	<b>45856</b>	888233 8
	h pipe	мевы	. 024 63 63 63 63	128865 131	25232
3	Smooth halted r		0 8 8 9 4	F-01004	00770
1	Smoot asphalted	oT	8427488	38888	88224
AD LE	Sqd		80000	010000	∞-∞∞ <del>-</del>
9	8	mor4	888223	22426	22222
	끃	Мевп	\$2222 <b>4</b>	22422	88288
- 1	iğ e		10 10 00 11 Cu	F-0-14-80	
Na ATO	Galvanised pipe	οT	64.7.48 8.88	\$\$.\$\$.\$\$.\$\$.	22222
: I			<b>0</b> € 4 8 €	0-040	-0000-
5		mor4	553. 50.	23.88.25	31232
a l	Clean riveted pipe	Мезп	22222	<b>33333</b>	34444 34444
9	ž e		410000	63613	0000000
5	n riv pipe	οT	48444	446.88 88 88 9.88	38. 37. 37.
9	se l		00000	<u></u>	80404
TA OMBERS	Ö	mora	52.2.25	22.22.24.24	556.55
		паэМ	33333	33333	33333
CECIMAN	cast- pipe		0 H 10 N 0	20 F 13 4 H	8F940
3	80	oT	33,738	88888	88883
Į į	Oldiron		00000	8000000	80041
1	<u> </u>	morA	24444 24444 7444 7444 7444 7444 7444 74	<b>\$</b> \$4444	25.55
	cast- pipe	Mesn	51 53 55 56	58 60 60 60 60 60 60 60 60 60 60 60 60 60	84886
	piq	0.7	604F0	-04.60	<u>⊶</u> ω4.∞∞
	8 4	οT	84444	22222	55555
	Clean iron 1		∞ ∞ ⇔ ⇔ +	∞ H – ₩ 63	400
	1	потЧ	48235	82226	52222
		Velocity	0 1 2 1 1 1 1 1 1	5. 10. 15.	20. 25. 30. 50.
	Þ				

TABLE 59.—LOSS OF HEAD DUE TO FRICTION IN 1000 FEET OF STRAIGHT PIPE FOR A DIAMETER OF I FOOT. To Determine the Friction-Head lost per 1000 Feet of Pipe of any Other Diameter, Multi-PLY THE VALUES IN THIS TABLE BY  $\frac{1}{21.95}$ . VALUES OF  $\frac{1}{21.95}$  ARE GIVEN IN TABLES 60 AND 61

Volcaite	Clear	Clean cast- iron pipe	Old c	cast- pipe	Clean	Clean riveted pipe	Galve	Galvanised pipe	Smooth asphalted pi	ooth ed pipe	Clean wo	Clean wooden pipe	Con	Concrete pipe
3	From	To	From	To	From	To	From	To	From	To	From	T ₀	From	F G
5	8.8		' '	.17		13	.10		88	.11	.11			1
	1.03		<u>-</u>	25.85	`~i «	2.2	1.22	, i «	1.01	1.34	1.24	<u>ښ</u> «		
	5.50 5.33 5.33	#5 48	6.98 10.78	11.68 18.45	8.83 88.83 88.83	15.40 15.40	4.6	6.81 10.58	8. c.	52	4.13 6.10	9.52	6.73	10.94
	4.6	14.3	25.	26.8 36.6	12.8	22.5 31.0	8.8 11.6	15.1 20.5	9.3	9.8 12.9	8.4	13.		
	21.23	8312 8313 830 830 830 830 830 830 830 830 830 83	26.8 33.7	48.1 61.2 75.9	27.5 27.8 -	\$2.5 52.5 0.20	14.7 18.3	26.6 33.4 1	14.4	20.3 20.3	13.8	282	12.8.3	85.8 8.4.4
	22.8	47.3	~~	92.2	41.0	26.2	26.3	49.5	20.4	28.3	4%	40.7	26.7	8.8
	34.10	65.7 76.1 87.1	80.08	129.5 150.6 173.4	56.7 65.5 74.9	112.0 130.8 151.0	4 5.5.5 8.5.5	79.6 9.4 9.4	31.33	39.6 45.2 51.1	28.85 2.05 2.07	55.0 63.0 4.0	40.85 18.7.8	115.5 134.0
				198.	85.	173. 196.	25.55	103.	6.4	57.		88	51.	175.
	28.83		143. 159.	252. 322. 312.	106. 118. 130.	221. 247. 275.		130. 145. 160.	<b>3.4</b> 8	71. 86.	8.5.7. 88.5.7.		20. 20. 20.	222. 247. 274.
			175.		143. 156.	304. 335.	<b>2</b> .2.	176. 193.	2.8	94. 102.		131.	88.	302. 331.
. <del></del>				415. 452.	185.	367. 401.		230. 230. 200.		128	83.	155. 167.	97. 105.	362. 394.

Table 60.—To Assist in Solving Pipe Problems. Diameter in Feet with Corresponding Values of  $\frac{1}{d^{1.2b}}$ ,  $d^{9.625}$ , Areas of Circles, and Values of  $\frac{K_1Q^2l}{H_1}$  Corresponding to d in the Formula,

$$d = 0.496 \left(\frac{K_1 Q^2 l}{H_1}\right)^{\frac{1}{5.25}}$$

Diameter in feet	1 d1.25 (feet)	do. 625 (feet)	Area in square feet	$rac{K_1Q^2l}{H_1}$	Diameter in feet	1 d1.25 (ft.)	d0.625 (feet)	Area in square feet	$\frac{K_1Q^2l}{H_1}$
0.05 0.06 0.07 0.08 0.09 0.10	42.295 33.675 27.773 23.504 20.286 17.783	.1538 .1723 .1898 .2063 .2220 .2371	.0020 .0028 .0038 .0050 .0064 .0079	.000035	1.55 1.60 1.65	. 578 . 556 . 535		1.767 1.887 2.011 2.138 2.270	333.5 396.2 468.0 550.1 643.5
0.12 0.14 0.16 0.18 0.20	14.159 11.677 9.882 8.529 7.477	.2657 .2926 .3181 .3423 .3657	.0113 .0154 .0201 .0255 .0314	.00058 .00131 .00263 .00489 .00850	1.80 1.85 1.90	.480 .464 .448	1.419 1.444 1.469 1.493 1.517	2.405 2.545 2.688 2.835 2.986	749.2 868.6 1,003. 1,154. 1,322.
0.25 0.30 0.35 0.40 0.45	5.657 4.504 3.715 3.144 2.713	.4205 .4712 .5188 .5640 .6071	.0491 .0707 .0962 .1257 .1590	.0274 .0714 .1600 .3230 .6000	2.10 2.15 2.20	.408 .396 .384 .373	1.541 1.565 1.590 1.614 1.637	3.142 3.301 3.464 3.631 3.801	1,510. 1,719. 1,951. 2,208. 2,491.
0.50 0.55 0.60 0.65 0.70	2.378 2.111 1.894 1.713 1.562	.6485 .6883 .7266 .7640 .8001	.1963 .2376 .2827 .3318 .3848	1.043 1.720 2.716 4.135 6.101	2.25 2.30 2.35 2.40 2.45	.353 .344 .335 .326	1.660 1.683 1.706 1.728 1.751	3.976 4.155 4.337 4.524 4.714	2,803. 3,146. 3,522. 3,933. 4,383.
0.75 0.80 0.85 0.90 0.95	1.433 1.322 1.225 1.141 1.066	.8353 .8697 .9035 .9362 .9686	.4418 .5027 .5675 .6362 .7088	8.764 12.300 16.910 22.830 30.320	2.65 2.70	.310 .303 .296 .289	1.773 1.795 1.817 1.839 1.861	4.909 5.107 5.309 5.515 5.726	4,874. 5,408. 5,988. 6,618. 7,300.
1.00 1.05 1.10 1.15 1.20	. 888 . 840 . 796	1.031 1.061 1.091 1.121	.785 .866 .950 1.039 1.131	39.69 51.28 65.46 82.67 103.40	2.80 2.85 2.90 2.95	.276 .270 .264 .258	1.883 1.904 1.925 1.946 1.967	5.940 6.158 6.379 6.605 6.835	8,038. 8,836. 9,696. 10,620. 11,620.
1.25 1.30 1.35 1.40 1.45	.720 .687 .657	1.150 1.178 1.206 1.234 1.261	1.227 1.327 1.431 1.539 1.651	128.1 157.4 191.8 232.2 279.2	3.15	.248 .243 .238	1.987 2.008 2.028 2.049 2.069	7.069 7.306 7.548 7.793 8.042	12,690. 13,840. 15,080. 16,400. 17,810.

# Table 60 (Continued)

To Assist in Solving Pipe Problems. Diameter in Feet with Corresponding Values of  $\frac{1}{d^{1.25}}$ ,  $d^{0.425}$ ,

Areas of Circles, and Values of  $\frac{\widetilde{K}_1Q^2l}{H_1}$ Corresponding to d in the Formula,

Diameter in feet	$\frac{1}{d^{1.25}}$ (feet)	d ^{0.625} (feet)	Area in square feet	$\frac{K_1Q^2l}{H_1}$	Diameter in feet	$\frac{1}{d^{1\cdot 2\delta}}$ (feet)	d ^{0,625} (feet)	Area in square feet	$\frac{K_1Q^2l}{H_1}$
3.25 3.30 3.35 3.40 3.45	.2291 .2248 .2206 .2166 .2127	2.089 2.109 2.129 2.149 2.169	8.296 8.553 8.814 9.079 9.348	19,320 20,930 22,650 24,490 26,440	5.05 5.10 5.15	.1337 .1321 .1305 .1289 .1274	2.752 2.769 2.786	19.63 20.03 20.43 20.83 21.24	185,500 195,400 205,800 216,600 227,900
3.50 3.55 3.60 3.65 3.70	.2089 .2052 .2017 .1982 .1949	2.246		28,510 30,720 33,060 35,540 38,170	5.35 5.40	. 1244 . 1229 . 1215	2.853	21.65 22.06 22.48 22.90 23.33	264,500 277,800
3.75 3.80 3.85 3.90 3.95	.1917 .1885 .1854 .1825 .1796	2.284 2.303 2.322 2.341 2.360	11.34 11.64	40,960 43,910 47,030 50,320 53,800	5.55 5.60 5.65	.1187 .1174 .1161 .1148 .1135	2.919 2.935 2.951	23.76 24.19 24.63 25.07 25.52	
4.00 4.05 4.10 4.15 4.20	.1768 .1741 .1714 .1688 .1663	2.378 2.397 2.415 2.434 2.452	12.88 13.20 13.53	57,480 61,350 65,430 69,730 74,250	5.85 5.90	.1111	3.017 3.033	25.97 26.42 26.88 27.34 27.81	404,300
4.25 4.30 4.35 4.40 4.45	.1639 .1615 .1592 .1569 .1547	2.470 2.488 2.507 2.525 2.543	14.52 14.86 15.21	79,020 84,020 89,280 94,790 100,590	6.10	.1054 .1043 .1032	3.065 3.081 3.096 3.112 3.128	28.27 28.75 29.22 29.71 30.19	483,000 504,500 526,800 549,900 573,800
4.50 4.55 4.60 4.65 4.70	.1526 .1505 .1484 .1464 .1445	2.560 2.578 2.596 2.614 2.631	16.26 16.62 16.98	106,660 113,040 119,720 126,700 134,030	6.35	.1002 .0992 .0982		30.68 31.17 31.67 32.17 32.67	598,500 624,000 650,400 677,800 706,100
4.75 4.80 4.85 4.90 4.95	.1426 .1408 .1390 .1372 .1354		18.10	141,670 149,680 158,050 166,800 175,940	6.60	.0954 .0945 .0936	3.222 3.238 3.253 3.268 3.283	33.18 33.70 34.21 34.73 35.26	735,300 765,500 796,600 828,800 862,000

### TABLE 60 (Concluded)

To Assist in Solving Pipe Problems. Diameter in Feet with Corresponding Values of  $\frac{1}{d^{1.95}}$ ,  $d^{0.625}$ ,

Areas of Circles, and Values of  $\frac{K_1Q^2l}{H_1}$ Corresponding to d in the Formula,

$$d = 0.496 \left( \frac{K_1 Q^2 l}{H_1} \right)^{\frac{1}{5.25}}$$

Diameter in feet	$\frac{1}{d^{1.2i}}$ (feet)	d0.525 (feet)	Area in square feet	$\frac{K_1Q^{2}}{H_1}$	Diameter in feet	$\frac{1}{d^{1.25}}$ (feet)	d0.625 (feet)	Area in square feet	K ₁ Q2l H ₁
6.75 6.80 6.85 6.90 6.95	.0910 .0902 .0894	3.299 3.314 3.329 3.344 3.360	37.39	896,300 931,800 968,400 1,006,000 1,044,900	8.55 8.60 8.65	.0689 .0684 .0679 .0674 .0669	3.824 3.838 3.852	56.75 57.41 58.09 58.77 59.45	3,007,000 3,101,000 3,197,000 3,296,000 3,397,000
7.00 7.05 7.10 7.15 7.20	.0871 .0863 .0855	3.375 3.390 3.404 3.419 3.434	38.48 39.04 39.59 40.15 40.72	1,085,000 1,126,000 1,169,000 1,213,000 1,258,000	8.80 8.85	.0664 .0660 .0655 .0650 .0646	3.894 3.907 3.920	60.13 60.82 61.51 62.21 62.91	3,501,000 3,607,000 3,716,000 3,828,000 3,942,000
7.25 7.30 7.35 7.40 7.45	.0833 .0826 .0819	3.449 3.464 3.479 3.493 3.508	41.28 41.85 42.43 43.01 43.59	1,305,000 1,353,000 1,402,000 1,453,000 1,505,000	9.00 9.05 9.10 9.15 9.20	.0641 .0637 .0633 .0628 .0624	3.976 3.989	63.62 64.33 65.04 65.76 66.48	4,059,000 4,179,000 4,302,000 4,427,000 4,556,000
7.50 7.55 7.60 7.65 7.70	.0799 .0792 .0785	3.523 3.538 3.552 3.567 3.582	44.18 44.77 45.36 45.96 46.57	1,559,000 1,614,000 1,671,000 1,729,000 1,789,000		.0620 .0616 .0612 .0608 .0604	4.030 4.044 4.057	67.20 67.93 68.66 69.40 70.14	4,687,000 4,821,000 4,959,000 5,100,000 5,244,000
7.80	.0767 .0761 .0755	3.596 3.610 3.625 3.640 3.654	47.78 48.40	1,851,000 1,915,000 1,980,000 2,047,000 2,116,000	9.55 9.60 9.65	.0600 .0596 .0592 .0588 .0584	4.098 4.111 4.125	70.88 71.63 72.38 73.14 73.90	5,391,000 5,542,000 5,696,000 5,854,000 6,015,000
8.05 8.10 8.15 8.20	.0738 .0732 .0726 .0721	3.696 3.710 3.724	50.90 51.53 52.17 52.81	2,187,000 2,260,000 2,335,000 2,411,000 2,490,000	9.80 9.85 9.90 9.95	.0580 .0577 .0573 .0569 .0565	4.164 4.177 4.190 4.204	74.66 75.43 76.20 76.98 77.76	6,179,000 6,348,000 6,520,000 6,695,000 6,874,000
8.25 8.30 8.35 8.40 8.45	.0704	3.739 3.754 3.768 3.782 3.796	53.46 54.11 54.76 55.42 56.08	2,571,000 2,654,000 2,739,000 2,826,000 2,915,000	10.00	. 0562	4.217	78.54	7,058,000

Table 61.—To Assist in Solving Pipe Problems. Diameter in Inches with Corresponding Values of  $\frac{1}{d^{1.25}}$ ,  $d^{0.625}$ , Areas of Circles, and Values of  $\frac{K_1Q^2l}{H_1}$ .

Corresponding to d in the Formula,

 $d = 0.496 \left( \frac{K_1 Q^2 l}{H_1} \right)^{\frac{1}{5.25}}$ 

Diameter in inches	1 d1.25 (feet)	d ^{0.625} (feet)	Area in square feet	K ₁ Q ² l H ₁	Diameter in inches	1 d1.25 (ft.)	d ^{0,828} (feet)	Area in equare feet	K ₁ Q2l H ₁
1/4 3/8 1/2 3/4 1	126.35 76.11 .53.12 32.00 22.39	.0890 .1146 .1372 .1768 .2113	.0008 .0014 .0031	.000002	151/2 16 161/2 17 171/2	.698 .672 .647	1.174 1.197 1.220 1.243 1.266	1.396 1.485	152.1 179.7 211.2 247.0 287.7
11/4 11/3 13/4 2 21/4	16.87 13.45 11.10 9.390 7.105	.2434 .2727 .3001 .3263 .3751	.0123 .0167 .0218	.000276 .00072 .00162 .00326 .01050	18 1814 19 1914 20	.582 .563 .545	1.288 1.311 1.333 1.355 1.376	1.767 1.867 1.969 2.074 2.182	333.5 385.1 443.0 507.7 579.8
3 3½ 4 4½ 5	5.657 4.665 3.948 3.408 2.987	.4205 .4630 .5033 .5417 .5786	.0668 .0873 .1104	.0274 .0616 .1241 .2303 .4005	2014 21 2114 22 2214	.497 .482	1.398 1.419 1.440 1.461 1.482	2:405	660.2 749.2 847.8 956.5 1,076.3
5½ 6 6¾ 7 7½	2.652 2.378 2.152 1.962 1.799	.6141 .6485 .6817 .7139 .7455	.2304 .2673	.6605 1.0430 1.588 2.343 3.365	23 23½ 24 24½ 25	.432 .420 .410	1.502 1.522 1.542 1.562 1.582	2.885 3.012 3.142 3.274 3.409	1,208. 1,352. 1,510. 1,683. 1,872.
8 8½ 9 9½ 10	1.660 1.539 1.433 1.339 1.256	.7761 .8061 .8354 .8642 .8923	.3491 .3941 .4418 .4922 .5454	4.723 6.493 8.764 11.64 15.24	25½ 26 26½ 27 27½	.380 .371 .363	1.602 1.621 1.641 1.660 1.679	3.547 3.687 3.830 3.976 4.125	2,076. 2,299. 2,541. 2,803. 3,086.
101/2 11 111/2 12 121/2		.9198 .9470 .9736 1.000 1.026		19.69 25.13 31.74 39.69 49.16	28 28½ 29 29¼ 30	.339 .332 .325	1.698 1.717 1.736 1.755 1.773	4.276 4.430 4.587 4.746 4.909	3,392. 3,723. 4,079. 4,462. 4,874.
13 13½ 14 14½ 15	.863 .825 .789	1.051 1.076 1.101 1.126 1.150	.9218 .9940 1.069 1.147 1.227	60.42 73.66 89.16 107.35 128.07	301/2 31 311/2 32 321/2	.305 .299 .293	1.792 1.810 1.828 1.846 1.864	5.074 5.241 5.412 5.585 5.761	5,316. 5,789. 6,296. 6,838. 7,419.

179

# FLOW OF WATER THROUGH PIPES

TABLE 61 (Continued)

To Assist in Solving Pipe Problems. Diameter in Inches with Corresponding Values of  $\frac{1}{d^{1.26}}$ ,  $d^{0.625}$ ,

Areas of Circles, and Values of  $\frac{K_1Q^2l}{H_1}$ Corresponding to d in the For-

MULA,  $d = 0.496 \left(\frac{K_1 Q^2 l}{H_1}\right)^{\frac{1}{5.25}}$ 

Diameter in inches	$\frac{1}{d^{1.25}}$ (feet)	Area in square feet	$\frac{K_1Q^2l}{H_1}$	Diameter in inches		70.625 feet)	Area in square feet	$\frac{K_1Q^2l}{H_1}$
33 33½ 34 34½ 35	. 2824 1 . 882 . 2771 1 . 900 . 2720 1 . 918 . 2671 1 . 936 . 2623 1 . 953	6.121 6.305 6.492	8,038 8,698 9,402 10,151 10,950	501/2 51 511/2 52 521/2	. 1659 2 . 1639 2 . 1619 2 . 1600 2 . 1581 2	.470 .485 .500	13.91 14.19 14.47 14.75 15.03	75,030 79,020 83,170 87,490 92,010
3514 36 3614 37 3714	.2577 1.970 .2533 1.987 .2489 2.004 .2448 2.021 .2407 2.038	7.069 7.266 7.467	11,790 12,690 13,650 14,660 15,730	53 53½ 54 54 54½ 55	.1562 2 .1544 2 .1526 2 .1508 2 .1491 2	. 545 . 560 . 575	15.32 15.61 15.90 16.20 16.50	96,700 101,580 106,660 111,960 117,450
38 38½ 39 39½ 40	.2367 2.055 .2329 2.072 .2292 2.089 .2255 2.106 .2220 2.122	8.085 8.296 8.510	16,860 18,060 19,320 20,660 22,070	55½ 56 56¾ 57 57¾	.1474 2 .1458 2 .1442 2 .1426 2 .1410 2	.619 .634 .648	16.80 17.10 17.41 17.72 18.03	123,200 129,100 135,300 141,700 148,300
4014 41 4114 42 42	.2186 2.139 .2153 2.155 .2121 2.172 .2089 2.188 .2058 2.205	9.168 9.394 9.621	23,550 25,120 26,770 28,510 30,340	58 581/2 59 591/2 60	.1395 2 .1380 2 .1366 2 .1351 2 .1337 2	. 692 . 706 . 720	18.35 18.67 18.99 19.31 19.63	155,200 162,400 169,800 177,500 185,500
43 43½ 44 44½ 45	.2028 2.221 .1999 2.237 .1970 2.253 .1943 2.269 .1916 2.285	10.32 10.56 10.80	32,260 34,280 36,400 38,620 40,960	601/2 61 611/2 62 621/2	.1323 2 .1310 2 .1297 2 .1284 2 .1271 2	. 763 . 777 . 791	19.96 20.29 20.63 20.97 21.31	193,700 202,300 211,100 220,300 229,800
451/2 46 461/2 47 471/2	. 1890 2.301 . 1864 2.316 . 1839 2.332 . 1815 2.347 . 1791 2.363	11.54 11.79 12.05 12.31	43,400 45,970 48,650 51,460 54,410	63 63½ 64 64 64½ 65	. 1259 2 . 1246 2 . 1234 2 . 1222 2 . 1210 2	. 832 . 847 . 861	21.65 21.99 22.34 22.69 23.04	239,600 249,800 260,300 271,100 282,300
48 4814 49 4914 50	.1768 2.378 .1745 2.394 .1723 2.409 .1701 2.425 .1680 2.440	12.83 13.10 13.36	57,480 60,690 64,050 67,550 71,210	6534 66 6634 67 6734	.1198 2 .1187 2 .1176 2 .1165 2 .1154 2	. 903 . 917 . 930	23.40 23.76 24.12 24.48 24.85	293,900 305,900 318,300 331,000 344,200

# Table 61 (Concluded)

To Assist in Solving Pipe Problems. Diameter in Inches with Corresponding Values of  $\frac{1}{d^{1.25}}$ ,  $d^{0.625}$ ,

Areas of Circles, and Values of  $\frac{\vec{K_1}Q^{2}}{H_1}$ Corresponding to d in the For-

MULA,  $d = 0.496 \left(\frac{K_1 Q^2 l}{H_1}\right)^{\frac{1}{5.25}}$ 

Diameter in inches	$\frac{1}{d^{1.25}}$ (feet)	d0.625 (feet)	Area in square feet	$\frac{K_1Q^2l}{H_1}$	Diameter in inches	$\frac{1}{d^{1.25}}$ (feet)	d0.625 (feet)	Area in square feet	$\frac{K_1Q^{2l}}{H_1}$
68 6834 69 6934 70	.1133 .1123 .1113	2.957 2.971 2.984 2.998 3.011	25.22 25.59 25.97 26.35 26.73	357,800 371,800 386,300 401,200 416,600	85½ 86 86½ 87 87½	.0853 .0847 .0841	3.413 3.425 3.438 3.450 3.462	39.87 40.34 40.81 41.28 41.76	1,191,000 1,228,000 1,266,000 1,305,000 1,344,000
70½ 71 71½ 71½ 72 72½	.1084 .1074 .1065	3.025 3.038 3.052 3.065 3.078	27.10 27.49 27.88 28.27 28.67	432,500 448,800 465,600 483,000 500,900	88 881/2 89 891/2 90	.0823 .0817 .0811	3.474 3.486 3.499 3.511 3.523	42.24 42.72 43.20 43.69 44.18	1,385,000 1,427,000 1,470,000 1,514,000 1,559,000
73 73½ 74 74½ 75	. 1038 . 1029 . 1020	3.090 3.104 3.117 3.131 3.144	29.07 29.47 29.87 30.27 30.68	519,300 538,200 557,700 577,900 598,500	901/2 91 911/2 92 921/2	.0795 .0789 .0784	3.535 3.547 3.560 3.572 3.584	44.67 45.17 45.66 46.16 46.67	1,605,000 1,652,000 1,700,000 1,749,000 1,799,000
75½ 76 76½ 77 77½	.0995 .0987 .0979	3.157 3.170 3.183 3.196 3.209	31.92 32.34	619,700 641,500 664,000 687,100 710,900	93 93½ 94 94½ 95	.0768 .0763 .0758	3.596 3.608 3.619 3.632 3.644	47.17 47.68 48.19 48.71 49.22	1,851,000 1,904,000 1,958,000 2,013,000 2,070,000
78 78½ 79 79½ 80	.0956 .0948 .0941 .0934	3.222 3.235 3.248 3.261 3.273	33.61 34.04 34.47 34.91	735,300 760,400 786,100 812,600 839,800	97 97½	.0743 .0738 .0734	3.656 3.668 3.680 3.692 3.704	50.27 50.79 51.32	2,128,000 2,187,000 2,247,000 2,309,000 2,372,000
80½ 81 81½ 82 82½	.0919 .0912 .0905 .0898	3.285 3.298 3.311 3.324 3.337	35.78 36.23 36.67 37.12	867,600 896,300 925,700 956,000 987,000	98 98½ 99 99½ 100	.0719 .0715	3.715 3.727 3.739 3.751 3.763	52.92 53.46 54.00	2,503,000 2,571,000 2,640,000
83 83 84 84 84 85	. 0884 . 0878 . 0871	3.350 3.363 3.375 3.385 3.400	38.03 38.48 38.94	1,018,900 1,051,500 1,084,900 1,119,400 1,154,600					

Table 62.—Loss of Head  $(H_2)$  Due to Sudden Enlargement in Pipes.  $\frac{d_2}{d_1}=$  Ratio of Diameter of Larger Pipe to Diameter of Smaller Pipe. v= Velocity in Smaller Pipe

$d_2$	10				Vel	ocit	y, v, i	n feet	per	весоп	đ		
$\overline{d}_1$	2	3	4	5	6	7	8	10	12	15	20	30	40
1.2	.01	.01	.02	.04	.06	.07	.10	.14	.21	.32	.55	1.20	2.08
1.4	.02	.04	.06	.10	. 14	.18	.23	.36	.51	.78	1.36	2.96	5.14
1.6	.02	.05	.09	.14	. 20	. 28	.36	. 55	.78	1.19	2.07	4.50	7.82
1.8	.03	.07	.12	. 18	. 26	. 35	.45	.70	.99	1.52	2.64	5.74	9.97
2.0	.04	.08	.14	.22	.31	.41	.53	.81	1.16	1.77	3.08	6.71	11.68
2.5	.05	.10	.17	.27	.38	. 51	.66	1.01	1.44	2.20	3.83	8.34	14.48
3.0	.05	.11	. 19	.30	.42	. 57	.74	1.13	1.60	2.46	4.27	9.29	16.14
4.0	.06	.12	.22	.33	.47	.63	.82	1.26	1.79	2.75	4.78	10.44	18.18
5.0	.06	.13	.23	.35	. 50	. 67	.87	1.34	1.90	2.93	5.12	11.19	19.52
10.0	.06	.14	.24	.37	. 54	. 73	.95	1.47	2.11	3.27	5.75	12.69	22.31
00	.06	.14	.25	.39	. 56	.76	1.00	1.55	2.24	3.50	6.22	13.99	24.88

Table 63.—Values of  $K_2$  for Determining Loss of Head Due to Sudden Enlargement in Pipes from the Formula  $H_2 = K_2 \frac{v^2}{2g}$ .  $\frac{d^2}{d_1} = \text{Ratio of Larger Pipe to}$ Smaller Pipe. v = Velocity in Smaller Pipe

$\frac{d_2}{d_1}$				v	elocit	ty, v,	in fee	et per	seco	nd			
$d_1$	2	3	4	5	6	7.	8	10	12.	15	20	30	40
1.2	.11	.10	. 10	.10	.10	.10	.10	.09	.09	.09	.09	.09	.08
1.4	.26	26	.25	.24	.24	. 24	.24	.23	.23	.22	.22	.21	. 20
1.6	.40	. 39	.38	.37	.37	. 36	.36	. 35	.35	.34	.33	.32	.32
1.8	.51	.49	.48	.47	.47	.46	.46	.45	.44	.43	.42	.41	. 40
2.0	.60	.58	.56	. 55	.55	. 54	.53	. 52	. 52	.51	.50	.48	.47
2.5	.74	.72	.70	. 69	.68	.67	.68	. 65	.64	.63	.62	. 60	. 58
3.0	. 83	.80	.78	.77	.76	.75	.74	.73	.72	.70	.69	.67	.65
4.0	.92	. 89	.87	.85	.84	.83	.82	.81	.80	.79	.77	.75	.73
5.0	.96	93	.91	.90	.89	.88	.87	.86	. 85	.84	. 82	.80	.78
10.0	.99	.98	.97	.96	.96	.96	95	. 95	.94	.94	.92	.91	.90
, <b>co</b>	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1,00	1.00	1.00	1.00	1.00	1.00
									١ :			!	

Table 64.—Values of  $K_2$  for Determining Loss of Head Due to Gradual Enlargements in Pipes from the Formula  $H_2 = K_2 \frac{v^2}{2g}$ .  $\frac{d_2}{d_1} = \text{Ratio of Diameter of}$  Larger Pipe to Diameter of Smaller Pipe.

Angle of Cone is Twice the Angle between the Axis of the Cone

AND ITS Side

$d_2$							Angle	e of c	one					
$\frac{d_2}{d_1}$	2°	40	60	80	10°	15°	<b>2</b> 0°	25°	30°	35°	40°	45°	50°	60'
1.1	.01	.01	. 01	. 02	.03	. 05	.10	. 13	.16	.18	. 19	. 20	.21	. 23
1.2	.02	.02	. 02	.03	.04	.09	.16	.21	. 25	. 29	.31	. 33	. 35	.37
1.4	.02	.03	. 03	.04	.06	. 12	.23	. 30	. 36	.41	.44	.47	. 50	. 5
1.6	.03	.03	.04	.05	.07	.14	. 26	. 35	.42	.47	. 51	. 54	. 57	. 61
1.8	.03	.04	. 04	. 05	.07	. 15	.28	.37	.44	. 50	. 54	. 58	.61	. 64
2.0	.03	.04	.04	.05	.07	. 16	. 29	.38	.46	. 52	. 56	. 60	. 63	. 68
2.5	.03	.04	. 04	. 05	.08	. 16	.30	.39	.48	. 54	. 58	. 62	. 65	. 70
3.0	.03	.04	.04	.05	.08	. 16	.31	.40	.48	. 55	. 59	. 63	. 66	.71
œ	.03	.04	.05	.06	.08	.16	.31	.40	. 49	. 56	.60	. 64	. 67	. 72

Table 65.—Loss of Head  $(H_3)$  Due to Sudden Contractions in Pipes.  $\frac{d_2}{d_1}=$  Ratio of Diameter of Larger Pipe to Diameter of Smaller Pipe. v= Velocity in Smaller Pipe

.00 .01 .02	.01	.01 .03	.02	.03	.04	10	12	15	20	30	40
.01	.02	- 1		.03	04				1	1	
		.03			.02	.06	.09	. 15	.29	.75	1.49
.02	- 04		.04	.06	.07	.12	. 18	. 28	. 54	1.38	2.74
	.04	.07	. 10	. 13	.17	. 27	.40	. 65	1.14	2.68	4.98
.04	.06	. 10	. 14	. 20	. 26	.40	. 67	. 89	1.56	3.44	5.97
. 05	.08	.13	. 19	.25	. 33	. 51	.73	1.12	1.92	4.05	6.72
. 05	.09	. 14	.21	.28	. 36	. 55	. 79	1.19	2.06	4.28	7.09
.06	. 10	. 15	.22	. 30	.38	. 59	. 84	1.28	2.20	4.56	7.41
.06	. 10	. 16	.23	.31	.40	.62	. 88	1.34	2.30	4.76	7.71
.06	.11	. 17	. 24	.32	.42	. 65	.92	1.40	2.41	4.98	8.11
.06	.12	.18	.25	.34	.44	.69	.97	1.48	2.53	5.24	8.48
.07	.12	. 18	. 26	- 4	. 46		- 1	1	1		
.07	.12	. 19	.27		- 1	- 1					
.07	. 12	. 19	.27	.36	.47	1	- 1	- 1			
	.05 .06 .06 .06 .06	.05 .09 .06 .10 .06 .10 .06 .11 .06 .12 .07 .12 .07 .12	.05 .09 .14 .06 .10 .15 .06 .10 .16 .06 .11 .17 .06 .12 .18 .07 .12 .18 .07 .12 .19	.05 .09 .14 .21 .06 .10 .15 .22 .06 .10 .16 .23 .06 .11 .17 .24 .06 .12 .18 .25 .07 .12 .18 .26 .07 .12 .19 .27	.05 .09 .14 .21 .28 .06 .10 .15 .22 .30 .06 .10 .16 .23 .31 .06 .11 .17 .24 .32 .06 .12 .18 .25 .34 .07 .12 .18 .26 .35 .07 .12 .19 .27 .36	.05 .09 .14 .21 .28 .36 .06 .10 .15 .22 .30 .38 .06 .10 .16 .23 .31 .40 .06 .11 .17 .24 .32 .42 .06 .12 .18 .25 .34 .44 .07 .12 .18 .26 .35 .46 .07 .12 .19 .27 .36 .47	.05 .09 .14 .21 .28 .36 .55 .06 .10 .15 .22 .30 .38 .59 .06 .10 .16 .23 .31 .40 .62 .06 .11 .17 .24 .32 .42 .65 .06 .12 .18 .25 .34 .44 .69 .07 .12 .18 .26 .35 .46 .70 .07 .12 .19 .27 .36 .47 .72	.05 .09 .14 .21 .28 .36 .55 .79 .06 .10 .15 .22 .30 .38 .59 .84 .06 .10 .16 .23 .31 .40 .62 .88 .06 .11 .17 .24 .32 .42 .65 .92 .06 .12 .18 .25 .34 .44 .60 .97 .07 .12 .18 .26 .35 .46 .70 1.00 .07 .12 .19 .27 .36 .47 .72 1.02	.05 .09 .14 .21 .28 .36 .55 .79 1.19 .06 .10 .15 .22 .30 .38 .59 .84 1.28 .06 .10 .16 .23 .31 .40 .62 .88 1.34 .06 .11 .17 .24 .32 .42 .65 .92 1.40 .06 .12 .18 .25 .34 .44 .69 .97 1.48 .07 .12 .18 .26 .35 .46 .70 1.00 1.52 .07 .12 .19 .27 .36 .47 .72 1.02 1.56	.05 .09 .14 .21 .28 .36 .55 .79 1.19 2.06 .06 .10 .15 .22 .30 .38 .59 .84 1.28 2.20 .06 .10 .16 .23 .31 .40 .62 .88 1.34 2.30 .06 .11 .17 .24 .32 .42 .65 .92 1.40 2.41 .06 .12 .18 .25 .34 .44 .69 .97 1.48 2.53 .07 .12 .18 .26 .35 .46 .70 1.00 1.52 2.60 .07 .12 .19 .27 .36 .47 .72 1.02 1.56 2.68	.05 .09 .14 .21 .28 .36 .55 .79 1.19 2.06 4.28 .06 .10 .15 .22 .30 .38 .59 .84 1.28 2.20 4.56 .06 .10 .16 .23 .31 .40 .62 .88 1.34 2.30 4.76 .06 .11 .17 .24 .32 .42 .65 .92 1.40 2.41 4.98 .06 .12 .18 .25 .34 .44 .69 .97 1.48 2.53 5.24 .07 .12 .18 .26 .35 .46 .70 1.00 1.52 2.60 5.36 .07 .12 .19 .27 .36 .47 .72 1.02 1.56 2.68 5.56

Table 66.—Values of  $K_2$  for Determining Loss of Head Due to Sudden Contraction in Pipes from the Formula  $H_3 = K_3 \frac{v^2}{2g} \cdot \frac{d_2}{d_1} = \text{Ratio of Diameter of}$ 

LARGER PIPE TO DIAMETER OF SMALLER PIPE.

v = Velocity in Smaller Pipe

$\frac{dz}{d_1}$				V	elocit	y, v, i	n fee	t per	secon	d			
dı	2	3	4	5	6	7	8	10	12	15	20	30	40
1.1	.03	.04	.04	.04	.04	.04	.04	.04	.04	.04	. 05	. 05	. 06
1.2	.07	.07	. 07	.07	.07	.07	.07	.08	.08	.08	.09	. 10	. 11
1.4	.17	. 17	.17	.17	. 17	.17	.17	. 18	.18	.18	.18	. 19	. 20
1.6	.26	. 26	. 26	. 26	. 26	.26	. 26	. 26	. 26	. 25	. 25	. 25	. 24
1.8	.34	.34	.34	.34	.34	.34	. 33	. 33	. 32	. 32	.31	. 29	. 27
2.0	.38	.38	. 37	.37	.37	.37	. 36	.36	. 35	. 34	.33	.31	. 29
2.2	.40	.40	.40	.39	. 39	. 39	.39	.38	.37	. 37	. 35	. 33	. 30
2.5	.42	.42	.42	.41	.41	.41	.40	.40	.39	.38	.37	. 34	.31
3.0	.44	.44	. 44	.43	.43	.43	.42	.42	.41	.40	. 39	. 36	. 33
4.0	.47	.46	.46	.46	.45	.45	.45	.44	.43	.42	.41	.37	.34
5.0	.48	.48	.47	.47	.47	.46	.46	.45	. 45	.44	.42	. 38	. 35
10.0	.49	.48	.48	.48	.48	.47	.47	.46	.46	.45	.43	.40	. 36
œ	.49	.49	.48	.48	.48	.47	.47	.47	.46	. 45	.44	.41	.38

Table 67.—Loss of Head  $(H_4)$  Due to Valves or Obstructions in Pipes.  $\frac{A}{A_4}$  = Ratio of Area of Pipe to Area

OF OPENING IN OBSTRUCTION. v = VELOCITY OF WATER IN THE PIPE

- <b>A</b>		-	•		Velo	city, 1	, in fe	eet pe	r seco	ond			
$\frac{A}{A_0}$	1	2	3	4	5	6	7	8	10	12	15	20	30
1.05	.00	.01	.01	.03	.04	.06	.08	.10	.15	.23	.36	.61	1.37
1.1	.00	.01	.03	.05	.07	.11	.15	.19	.30	.43	.67	1.20	2.70
1.2	.01	.03	.06	.10	.16	.24	.32	.42	.65	.94	1.47	2,61	5.88
1.4	.01	.06	. 13	.24	.37	.54	.73	.95	1.49	2.14	3.35	5.95	13.35
1.6	.02	.10	.22	.38	.60	.86	1.17	1.53	2.39	3.44	5.38	9.56	21.52
1.8	.03	. 13	.30	.54	.84	1.22	1.66	2.16	3.38	4.87	7.64	13.21	30.42
2.0	.04	. 17	.38	.67	1.05	1.51	2.06	2.69	4.20	6.05	9.46	16.82	37.84
2.2	.05	.20	.46	.81	1.27	1.83	2.49	3.26	5.09	7.33	11.45	20.35	45.78
2.5	.06	.25	.56	1.00	1.56	2.24	3.05	3.98	6.23	8.97	14.01	24.91	56.05
3.0	.08	.31	.71	1.26	1.97	2.83	3.85	5.03	7.87	11.33	17.70	31.47	70.80
4.0	.10	.42	.94	1.68	2.62	3.78	5.14	6.71	10.49	15.10	23.60	41.95	94.40
5.0	.12	.50	1.12	1.99	3.11	4.48	6.10	7.97	12.46	17.94	28.02	49.82	112.10
6.0	.15	.58	1.31	2.33	3.64	5.25	7.14	9.33	14.58	20.99	32.7 <del>9</del>	58. <b>3</b> 0	131.18
7.0	.16	5	1.46	2.59	4.05	5.83	7.93	10.36	16.19	23.31	36.41	64.74	145.67
8.0	.18	1	1.59	2.82	4.41	6.35	8.64	11.28	17.63	25.39	39.66	70.51	158.65
9.0	.19	7	1.74	3.10	4.84	6.97	9.49	12.39	19.37	27.89	43.57	77.47	174.31
10.0	.21	.84	1.89	3.36	5.26	75.7	10.30	13.45	21.02	30.27	47.30	84.09	189.20

Table 68.—Values of  $K_4$  for Determining Loss of Head due to Obstructions in Pipes from the Formula

$$H_4 = K_4 \frac{v^2}{2g}$$
.  $\frac{A_1}{A_0}$  = the Ratio of Area of Pipe

TO AREA OF OPENING IN OBSTRUCTION

$\frac{A_1}{A_0}$	K4	$\frac{A_1}{A_0}$	K4	$\frac{A_1}{A_0}$	K4
1.05 1.1 1.2 1.4 1.6 1.8	.10 .19 .42 .96 1.54 2.17	2.0 2.2 2.5 3.0 4.0 5.0	2.70 3.27 4.00 5.06 6.75 8.01	6.0 7.0 8.0 9.0 10.0	9.4 10.4 11.3 12.5 13.5

Table 69.—Loss of Head,  $H_6$ , in Feet, due to 90° Bends in Pipes. R = the Radius in Feet of the Center Line of Pipe. V = Velocity of Water in the Pipe

R						Velo	city,	v, in	feet p	er sec	ond		
feet	2	3	4	5	6	7	8	10	12	15	20	30	40
.0	.06	. 16	.31	. 50	.76	1.08	1.45	2.40	3.62	5.98	11.42	28.44	54.3
. 25	.03	.07	. 14	. 22	. 34			1.08	1.61	2.66	5.08	12.64	24.1
. 50	.02	.05	.09	. 15	. 23	.32	.43	.71	1.07	1.77	3.38	8.43	16.0
1.	.01	.03	.06	. 10	.16	.22	.30	.49	.74	1.22	2.33	5.79	11.0
2.	.01	.03	.06	.09	. 14	. 19	.26	.43	.65	1.08	2.06	5.12	9.7
3.	.01	.03	.05	.09	. 14	.19	.26	.43	.64	1.06	2.02	5.03	9.6
4.	.01	.03	.05	.09	. 13	.19	.25	.42	.63	1.05	2.00	4.97	9.5
5.	.01	.03	. 05	.09	. 13	.19	.25	.41	.63	1.03	1.97	4.91	9.3
6.	.01	.03	.05	.09	. 13	.18	.25	.41	.62	1.02	1.95	4.85	9.2
7.	.01	.03	. 06	.09	. 14	.19	.26	.43	.65	1.07	2.05	5.10	9.7
8.	.01	. 03	. 06	. 10	. 15	.22	.29	.48	.73	1.20	2.29	5.71	10.9
10.	.02	.04	.08	. 13	. 19	.27	.36	.60	.90	1.48	2.83	7.06	13.4
15.	.02	.06	. 11	. 18	.27	.38	. 52	.85	1.28	2.12	4.04	10.07	19.2
20.	.03	.07	.14	.22	. 34	.48	.64	1.06	1.60	2.64	5.05	12.57	24.0
25.	.03	.08	,15	. 25	. 37	.52	.71	1.17	1.76	2.91	5.55	13.82	26.4
30.	.03	.08	.16	.26	. 39	. 55	.75	1.24	1.86	3.08	5.88	14.64	27.9
40.	.04	.09	. 17	.28	.42	60	.81	1.33	2.01	3.32	1.34	15.80	30.1
50.	11 1			. 30		. 64	1000	100000000000000000000000000000000000000	2.15	4 1 20 61	T 5 1 125 7 1	16.91	
60.	.04	. 10	. 20	. 32	.49	. 69	1000		2.31	T (20)	1900 21900	18.11	

Table 70.—Values of K₅ for Determining the Loss of Head due to 90° Bends in Pipes from the Formula

 $H_5 = K_5 \frac{v^2}{2g}$  v = THE VELOCITY OF WATER IN THEPIPE R = THE RADIUS OF THE CENTER

# PIPE, R = THE RADIUS OF THE CENTER LINE OF THE PIPE

R				•	Veloci	ty, v,	in fe	et pe	r sec	ond			
, a	2	3	4	5	6	7	. 8	10	12	15	20	30	40
.0	1.03	1.14	1.23	1.30	1.36	1.42	1.46	1.54	1.62	1.71	1.84	2.03	2.18
.25	.46	. 51	. 55	. 58	.60	. 63	.65	. 69	.72	.76	.82	.90	.97
. 50	.31	. 34	. 36	.38	.40	.42	.43	.46	. 49	. 51	. 54	.60	. 65
1.	. 21	.23	.25	. 26	.28	.29	.30	. 31	.33	.35	.37	.41	.44
2.	. 19	.21	.22	.23	.24	.25	.26	.28	.29	.31	.33	. 36	. 39
3.	.18	. 20	. 22	.23	.24	.25	.26	.27	.29	.30	. 33	. 36	. 39
4.	.18	. 20	.21	. 23	.23	.25	.26	. 27	.28	.30	.32	. 35	.38
5.	.18	. 20	.21	. 22	.23	. 24	.25	. 27	.28	.29	.32	. 35	.38
6.	.18	. 19	.21	. 22	.23	.24	.25	. 26	.28	.29	.31	. 35	. 37
7.	. 19	.21	.22	.23	.24	.25	.26	.28	.29	.31	. 33	. 36	. 39
8.	.21	. 23	. 25	. 26	.27	. 28	. 29	. 31	.32	.34	. 37	.41	. 44
10.	. 26	. 29	. 31	. 32	. 34	. 35	. 36	. 38	.40	.42	.46	. 50	: 54
15.	. 37	.41	.43	.46	.48	. 50	. 52	. 55	. 57	.61	. 65	.72	.77
20.	. 45	.51	. 54	. 57	.60	. 62	. 64	.68	.72	.75	. 81	.90	. 97
25.	. 50	. 56	. 59	. 63	. 65	. 69	.71	.75	.79	.83	. 89	. 99	1.06
30.	. 53	. 58	. 63	.67	.70	.73	.75	.79	. 83	. 88	. 95	1.05	1.12
40.	. 57	. 64	. 68	.72	.76	.79	.81	. 86	.90	.95	1.02	1.13	1.21
50.	. 6i	. 68	. 73	.77	. 81	.84	. 87	. 92	.96	1.02	1.08	1.21	1.30
60.	. 66	73	. 78	. 83	. 87	90	. 93	. 98	1.03	1.09	1.17	1.30	1.36

Table 71.—Lower Critical Velocities Computed from Formula (36) (Page 170)

	Tempe	rature	1		Ľ	)i <b>a</b> me	ter of	pipe	in in	ches		
-	Cent.	Fahr.	1/2	34	1	11/2	2	3	4	6	9	12
	0	32	.93	. 62	.47	.31	. 23	. 16	. 12	.08	. 05	. 039
	10	50	.69	.46	. 34	. 23	. 17	. 12	.09	.06	.04	. 029
ŀ	20	68	. 53	. 35	. 26	.18	.13	. 09	. 07	.04	. 03	.022
	30	86	.42	.28	.21	.14	.11	.07	.05	.04	.02	.018
	40	104	.35	. 23	. 17	.11	.09	.06	.04	. 03	. 02	.014
•	50	122	.29	. 19	. 14	.10	.07	. 05	.04	.02	.02	.012
	60	140	.24	. 16	. 12	.08	.06	.04	.03	.02	.01	.010
	70	158	.21	. 14	. 10	,07	.05	:03	.03	.02	.01	.009
	80	176	.18	. 12	.09	.06	. 05	.03	.02	.02	.01	.008
	90	194	.16	.11	. 08	. 05	.04	. 03	. 02	.01	. 01	. 007
	100	212	.14	. 10	. 07	. 05	.04	.02	. 02	. 01	.01	.006

Table 72.—Higher Critical Velocities Computed from Formula (37) (Page 170)

Tempe	rature			Di	amete	er of p	ipe i	n incl	nes		
Cent.	Fahr.	1/2	34	1	11/2	2	3	4	6	9	12
0	32	5.89	3.93	2.95	1.97	1.47	.98	.74	.49	. 33	. 24
10	50	4.34	2.90	2.17	1.45	1.09	.72	. 54	.36	. 24	. 18
20	68	3.35	2.23	1.68	1.12	.84	. 56	.42	.28	. 19	. 14
30	86	2.67	1.78	1.34	.89	.67	.45	. 33	.22	. 15	. 11
40	104	2.19	1.46	1.09	.73	. 55	. 36	.27	. 16	. 12	. 09
50	122	1.83	1.22	.91	.61	.46	. 30	. 23	. 15	. 10	. 07
60	140	1.55	1.03	.77	. 52	. 39	. 26	. 19	. 13	. 09	. 06
70	158	1.33	. 89	.66	.44	.33	. 22	. 17	.11	. 07	. 05
80	176	1.16	.77	. 58	.39	.29	. 19	. 14	. 10	.06	.04
90	194 -	1.01	. 68	. 51	.34	.25	. 17	. 13	.08	. 06	.04
100	212	.90	.60	.45	.30	.22	.15	.11	.07	. 05	. 03

#### CHAPTER VII

#### . FLOW OF WATER IN OPEN CHANNELS

The flow of water in open channels presents a problem even more complicated than the flow of water in pipes. This is due to a number of causes among which may be mentioned the great variety in shape and size of open conduits, variation in materials of which or through which the channels are constructed and difficulties of tabulating experimental data covering so wide a range of conditions. Theory offers little assistance in this connection and working formulas must be based largely upon the results of experimental investigation. Unfortunately the condition is still farther complicated by discrepancies and apparent inconsistencies in the available experimental data.



Fig. 63.—Longitudinal section of open channel.

Fig. 63 represents a longitudinal section of an open channel of any cross-section. In general the water surface will be approximately parallel to the bottom of the channel. The water surface at B is a distance H below the elevation of the water surface at A. Motion of the water is produced by gravity acting through the vertical distance H. If there were no resisting forces, the velocity of the water would be continually accelerated the same as with falling bodies. In this case the resisting force is the friction between the moving water and the wetted surface of the channel. H may be considered as a measure of this resistance.

Formulas for Flow of Water in Open Channels.—Referring to Fig. 63, the following nomenclature will be used:

a =Area of cross-section of channel in square feet.

p = Wetted perimeter or length of wetted border of crosssection of channel in feet.

 $r = \frac{a}{p}$  = Mean hydraulic radius in feet.

l = Length of reach of channel considered in feet.

H =Difference in elevation of water surfaces in distance l.

 $s = \frac{H}{I}$ , commonly called the slope of water surface.

v =Mean velocity of water in feet per second.

Q = av = Total discharge of channel in second-feet.

d = Diameter of circular conduits in feet.

n = Coefficients of roughness in Kutter's and Manning's formulas.

m =Coefficient of roughness in Bazin's formula.

f = Coefficient of roughness in Biel's formula.

t = Temperature coefficient in Biel's formula.

c =Coefficient in Chezy formula.

 $K = \frac{1.486}{n} = \text{Coefficient in Manning's formula.}$ 

The Chezy Formula.—The earliest formula for determining the flow of water in open channels (also used for pipes, see page 154) was suggested by Chezy in 1775. The Chezy formula for open channels is usually written

$$v = c\sqrt{rs} \tag{1}$$

This formula is based upon the assumption that the resistance to flow, H, varies directly as the square of the velocity, v, and area of wetted surface, pl, and inversely as the cross-sectional area of the channel, a.

From the limited data available at the time, Chezy believed c to be constant for all channels constructed of the same class of material and to vary only with the degree of roughness of the channel. Later investigators have concluded that c is a function of r, or r and s as well as a coefficient whose value depends upon the degree of roughness of the channel, and have developed formulas in accordance with this idea.

In the following pages are given a number of open channel formulas. The list includes the older formulas that have received common acceptance, and some of the more recent formulas, which have been based upon later compilations of experimental data.

The Kutter Formula.—The following formula for determining c in the Chezy formula  $(v = c\sqrt{r_8})$ , published by Ganguillet and Kutter in 1869, is commonly called the Kutter formula:

$$c = \frac{41.65 + \frac{0.00281}{s} + \frac{1.811}{n}}{1 + \frac{n}{\sqrt{r}} \left(41.65 + \frac{0.00281}{s}\right)}$$
(2)

Manning's formula, published² in 1890, gives the following value of c in the Chezy formula:

$$c = \frac{1.486}{n} r \% \tag{3}$$

The complete Manning's formula being

$$v = \frac{1.486}{n} r \% s \% = Kr \% s \% \tag{4}$$

The expression  $\frac{1.486}{n}$  in Manning's formula was designed to make the values of n correspond to the values of Kutter's n.

Values of n, in Kutter's formula, for different types of channels as given by the authors of the formula are as follows:

n = 0.009 for well-planed timber.

n = 0.010 for neat cement.

n = 0.011 for cement mortar with one-third sand.

n = 0.012 for unplaned timber.

n = 0.013 for ashlar and well-laid brickwork.

n = 0.015 for rough brickwork.

n = 0.017 for rubble masonry.

n = 0.020 for canals in firm gravel.

n = 0.025 for canals and rivers in good condition.

n = 0.030 for canals and rivers with stones and weeds.

n = 0.035 for canals and rivers in bad order.

The above values do not cover the range of present practice,

and in many cases they are not in accordance with the results of later experiments. A more complete list of values of n has

¹ GANGUILLET and KUTTER: Flow of Water in Rivers and Other Channels. Translation by Herring and Trautwine, John Wiley and Sons, Publishers.

² ROBERT MANNING: Flow of Water in Open Channels and Pipes. Trans. Civ. Eng. of Ireland, 1890, vol. 20.

ΓABLE 73.—HORTON'S VALUES OF n. TO BE USED WITE KUTTER'S AND MANNING'S FORMULAS.

Surface	Best	Good	Fair	Bad
Uncoated cast-iron pipe	0.012	0.013	0.014	0.015
Coated cast-iron pipe	0.011 0.012	0.012* 0.013	0.013° 0.014	0.015
Smooth brass and glass pipe Smooth lockbar and welded "OD" pipe	0.013 0.009	0.014 0.010	0.015 0.011	0.017 0.013
Smooth lockbar and welded "OD" pipe Riveted and spiral steel pipe	0.013	0.011	0.013° 0.017°	
Vitrified sewer pipe	$\left\{ egin{array}{l} 0.010 \\ 0.011 \end{array} \right\}$	0.013*	0.015	0.017
Common clay drainage tile	0.011 0.011	0.012* 0.012	0.014° 0.013°	0.017 0.015
Brick in cement mortar; brick sewers	0.012 0.010	0.013 0.011	0.015*	0.017
Cement mortar surfaces	0.011	0.012	0.013*	0.015
Concrete pipe	0.012 0.010	0.013 0.011	0.015* 0.012	0.016 0.013
Planed	0.010	0.012	0.013	0.014
Unplaned	0.011 0.012	0.013*	0.014 0.016	0.015
With battens	0.012 0.017	0.014*	0.016*	0.018
Dry-rubble surface	0.025	0.030	0.033	0.035
Dressed-ashlar surface Semicircular metal flumes, smooth	0.013 0.011	0.014 0.012	0.015 0.013	0.017
Semicircular metal flumes, corrugated Canals and Ditches:	0.0225	0.025	0.0275	0.030
Earth, straight and uniform	0.017	0.020	0.0225*	0.025
Rock cuts, smooth and uniform Rock cuts, jagged and irregular	0.025 0.035	0.030	0.033* 0.045	0.035
Winding sluggish canals Dredged earth channels	0.0225 0.025	0.025* 0.0275*	0.0275	0.030
Canals with rough stony beds, weeds on earth banks	0.025	0.030	0.035*	0.040
Earth bottom, rubble sides	0.028	0.030*	0.033*	0.035
Natural Stream Channels: (1) Clean, straight bank, full stage, no	1	İ	l	
rifts or deep pools	0.025	0.0275	0.030	0.033
stones	0.030	0.033	0.035	0.040
clean(4) Same as (3), lower stages, more	0.033	0.035	0.040	0.045
ineffective slope and sections (5) Same as (3), some weeds and	0.040	0.045	0.050	0.055
stones	0.035	0.040	0.045	0.050
(6) Same as (4), stony sections (7) Sluggish river reaches, rather	0.045	0.050	0.055	0.060
weedy or with very deep pools (8) Very weedy reaches	0.050 0.075	0.060 0.100	0.070 0.125	0.080
(-) . Lay woody acommon this in the terms	l			

^{*} Values commonly used in designing.

been prepared by Horton¹ from an examination of the best available experiments. These values were designed only for use in Kutter's formula but they will apply equally to Manning's formula (see discussion, pages 196 to 200). Horton's list of coefficients has the advantage of giving values which correspond to practically the entire range of experiments for each class of channel. The author does not recommend either Kutter's or Manning's formula for pipes but they are sometimes used for this purpose, especially for large pipes, and values of n for different classes of pipes may be valuable for reference. Horton's complete list is therefore given. The coefficients for common clay drainage tile have been added by the author. Horton's values of n with this addition are given in Table 73.

The Bazin Formula.—The following formula was proposed by Bazin in 1897. Like the Kutter formula it determines a value of c in the Chezy formula  $(v = c\sqrt{r_8})$ .

$$c = \frac{157.6}{1 + \frac{m}{\sqrt{r}}} \tag{5}$$

The following values of m are given by Bazin:

m = 0.109 for smooth cement or planed wood.

m = 0.290 for planks, ashlar, and brick.

m = 0.833 for rubble masonry.

m = 1.540 for earth channels of very regular surface.

m = 2.360 for ordinary earth channels.

m = 3.170 for exceptionally rough channels encumbered with weeds and boulders.

The above list does not include all of the different types of channels that are being constructed at the present time. The values of m given are, moreover, averages and offer no clue to the range in variation to be expected for a given class of channels. Table 74 shows the range in values of m as determined from measurements of a large number of channels. It corresponds approximately to Horton's table of values of n. The range of results agrees quite closely with the values of m as determined from the 269 experiments tabulated by Scobey (see Appendix B).

¹ ROBERT E. HORTON: Some Better Kutter's Formula Coefficients. **gineering News, Feb. 24 and May 4, 1916.

	Best	Good	Fair	Bad
Vitrified sewer pipe	.10	.40	.60	.90
Common clay drain tile		.30	.50	.90
Glazed brickwork	.10	.25	.40	.60
Brick in cement mortar	.25	.40	.60	.90
Neat cement surfaces	.00	,10	.25	.40
Cement-mortar surfaces	.10	.20	.40	.60
Concrete pipe	. 25	.40	. 60	.75
Plank flumes, planed	.00	.25	.40	. 50
Plank flumes, unplaned	. 10	.40	. 50	.60
Plank flumes, with battins	.25	.60	.75	1.00
Concrete-lined channels	. 25	.50	.75	1.00

.90

.40

.10

.90

1.60

1.90

2.50

1.90

3.15

1.90

1.25

2.50

. 50

.25

1.90

1.25

2.50

3.15

2.50

4.40

1.90

2.90

.65

.40

2.20

1.60

3.15

3.70

3.15

6.30

2.50

3.15

.90

.60

2.50

1.90

3.80

4.20

3.80

8.80

TABLE 74.—VALUES OF m FOR BAZIN'S FORMULA

Biel's formula, proposed in 1907 for flow in pipes and open channels, expressed in English units, may be written

$$v^{2} = \frac{1811rs}{0.0663 + \frac{f}{\sqrt{r}} + \frac{8.2t}{(100f + 2)v\sqrt{r}}}$$
(6)

in which f and t are respectively coefficients of roughness of the channel and viscosity of the water. It is claimed by the author of the formula that it applies to the flow of other liquids and to the flow of gases in pipes.

The values of the coefficient of roughness are:

f = 0.018 for smooth boards and wrought-iron pipes.

f = 0.036 for new cast-iron and smooth cement pipes.

f = 0.054 for rough boards and smooth brickwork.

f = 0.072 for smooth masonry or brick channels.

Rubble masonry.....

Dry rubble.....

Smooth metal flumes.....

Corrugated metal flumes.....

Earth canals in good condition.....

Earth canals with weeds, rocks, etc......

Canals excavated in rock......

Natural streams in good condition.....

Natural streams with weeds, rocks, etc.....

Ashlar masonry.....

f = 0.290 for rough masonry.

f = 0.500 for canals in earth and regular streams.

¹ Zeitschrift Verein deutsches Ingenieure, Mittheilungen über Forscharbeiten. Heft 44.

f = 0.750 for canals and rivers with stones and weeds. f = 1.060 for canals and rivers in bad condition.

The coefficient t varies with the temperature of the water as follows:

32°F., t = 0.0179 40°F., t = 0.0157 50°F., t = 0.0135 60°F., t = 0.0115 70°F., t = 0.0097

A large number of so-called exponential or logarithmic formulas for flow in open channels have been advocated during the past few years. Of these the following are given:

The Williams and Hazen Formula.

$$v = c_1 r^{0.67} s^{0.54} (7)$$

 $c_1 = 205$  to 185 for very smooth channels.

 $c_1 = 165$  to 155 for ordinary unplaned plank.

 $c_1 = 155$  to 125 for ordinary sewer crock.

 $c_1 = 155$  to 120 for ordinary brick sewers.

 $c_1 = 105$  to 75 for ordinary earth channels.

 $c_1 = 75$  to 45 for rough natural channels.

Lea's formulas for open channels give a varying coefficient and varying exponents for the different classes of channels, as follows:

For smooth channels lined with cement or planed boards

$$s = (0.000065 \text{ to } 0.00011) \frac{v^{1.75}}{r^{1.25}}$$
 (8a)

For smooth channels lined with well-pointed brick, or concrete

$$s = (0.000065 \text{ to } 0.00011) \frac{v^{1.88}}{r^{1.15}}$$
 (8b)

For channels lined with ashlar masonry or small pebbles

$$s = 0.00015 \frac{v^{1.96}}{r^{1.4}} \tag{8c}$$

For channels lined with rubble masonry, large pebbles, rock, and exceptionally smooth earth channels free from deposits

$$s = 0.00023 \frac{v^{1.96}}{r^{1.3 \text{ to } 1.8}} \tag{8d}$$

¹ F. C. LEA: Hydraulics, pp. 200-201.

For earth channels in ordinary condition

$$s = (0.00033 \text{ to } 0.00050) \frac{v^{2.1}}{r^{1.3 \text{ to } 1.5}}$$
 (8e)

For earth channels of exceptional resistance

$$s = (0.00050 \text{ to } 0.00085) \frac{y^{2.1}}{r^{1.3 \text{ to } 1.5}}$$
 (8f)

Barnes' formulas for open channels, published in 1916, were adopted after a comprehensive investigation of available experimental data. The formulas for newly constructed channels are given. To allow for deterioration, in designing a conduit for a required capacity, a given percentage should be added to Q and the slope and channel conditions should be determined for this excess capacity. The following are Barnes' formulas for open channels.

For clean planed wood troughs or flumes. Add 8 per cent. to Q for purposes of design to allow for deterioration.

$$v = 223.3r^{0.660}s^{0.586} \text{ or } s = 0.0000981 \frac{v^{1.707}}{r^{1.126}}$$
 (9a)

For clean unplaned wood troughs or flumes. Add 8 per cent. to Q to allow for deterioration.

$$v = 182.5r^{0.666}s^{0.569} \text{ or } s = 0.0001066 \frac{v^{1.757}}{r^{1.171}}$$
 (9b)

For clean neat cement channels. Add 6 per cent. to Q to allow for deterioration.

$$v = 136.3r^{0.635}s^{0.484} \text{ or } s = 0.0000389 \frac{v^{2.066}}{r^{1.312}}$$
 (9c)

For clean hard brick well-pointed conduits. Add 5 per cent. to Q to allow for deterioration.

$$v = 92.1r^{0.002}s^{0.466} \text{ or } s = 0.0000609 \frac{v^{2.146}}{r^{1.293}}$$
 (9d)

For clean smooth-faced concrete conduits. Add 5 per cent. to Q to allow for deterioration.

$$v = 95.1r^{0.567}s^{0.471} \text{ or } s = 0.0000631 \frac{v^{2.123}}{r^{1.204}}$$
 (9e)

For dressed masonry channels in cement with no projecting surfaces. Add 8 per cent. to Q to allow for deterioration.

$$v = 109.7 r^{0.713} s^{0.483} \text{ or } s = 0.0000597 \frac{v^{2.070}}{r^{1.476}}$$
 (9f)

¹ A. A. BARNES: Hydraulic Flow Reviewed, Spon and Chamberlain, Publishers. For rock-faced masonry channels in cement. Add 8 per cent. to Q to allow for deterioration.

$$v = 80.5r^{0.653}s^{0.482} \text{ or } s = 0.0001112 \frac{v^{2.075}}{r^{1.355}}$$
 (9g)

For hammer dressed dry masonry water courses. Add 10 per cent. to Q to allow for deterioration.

$$v = 70.0r^{0.82^{\circ}}s^{0.508} \text{ or } s = 0.0002041 \frac{v^{2.000}}{r^{1.640}}$$
 (9h)

For earth canals in average working condition and rivers free from vegetation. No addition to Q.

$$v = 58.4r^{0.694}s^{0.496} \text{ or } s = 0.0002746 \frac{v^{2.016}}{r^{1.399}}$$
 (9i)

#### Discussion of Open-Channel Formulas

In the light of our present knowledge it would be difficult to say that any one of the foregoing formulas or sets of formulas possesses marked advantages from the standpoint of accuracy. Probably any of the formulas in experienced hands will give reasonably satisfactory results and yet no one of them will prove to be infallible under all conditions. In applying these formulas to practical problems the inexperienced man may find his results even more disappointing.

In any of the formulas listed, excepting the Barnes formulas, it is necessary to select a coefficient, representing the degree of roughness of the channel. Values of this coefficient corresponding to the range of fluctuation of experimental results accompany each of the formulas. From these values the coefficient best suited to the particular conditions must be selected. If the Barnes formulas are used the problem becomes one of selecting the formula corresponding to the proper type of channel. Since these formulas represent average conditions they do not indicate the limits of variation in results that may be expected from their use. In the author's opinion this feature is objectionable as pointed out in connection with pipe formulas (see discussion, pages 160 to 162).

As already stated it does not appear that any one formula has the advantage from considerations of relative accuracy. The adoption of a particular formula therefore becomes a matter of convenience or expediency. Unless some advantage is to be gained there appears to be no reason for discontinuing the use of an old and tried formula for the adoption of a more recent one.

The exponential formulas have the advantage of requiring a smaller table of coefficients than the older formulas but this fact does not simplify their solution. Odd exponents without corresponding tables of powers of numbers are awkward to handle.

It is important that the engineer who deals frequently with hydraulic problems should familiarize himsef with some particular formula and that he should think in terms of that formula in order that a certain value of coefficient will have a definite meaning to him. In this connection it must be admitted that the engineer will find it more convenient to have for his special formula the formula which has common acceptance in his locality. To the average American engineer "Kutter's n" has a very specific meaning.

The three formulas which have received general acceptance are the Kutter formula, the Bazin formula, and the Manning formula. Of the three formulas the Kutter formula has been used most extensively, and almost exclusively in the United States. In France the Bazin formula has to a large extent replaced the Kutter formula. In Australia and India the Manning formula has been extensively used. The further discussion of this subject will be limited to these three formulas.

### Comparisons of Kutter, Manning, and Bazin Formulas

The following discussion will be based upon the hypothesis that each of the three formulas (formulas (2), (4), and (5), pages 190 and 192) will give equally good results in the hands of experienced men and that no one of them has any advantage from the standpoint of accuracy. It then becomes a question of deciding on the most suitable formula from considerations of simplicity and the advantages to be gained from using the formula that has been generally accepted.

The Bazin and Kutter formulas are each expressions for determining c in the Chezy formula  $(v = c\sqrt{rs})$ , page 189. In the Bazin formula c, not being a function of s, has one less variable than in the Kutter formula, in which it is a function of both r and s, and a table of values of c derived from the Bazin formula (Table 77, page 210) is more condensed and convenient for use than the corresponding table (Table 76, page 207) for Kutter's formula. In this regard the Bazin

formula has an advantage from the standpoint of simplicity. The objection to adopting the Bazin formula by engineers accustomed to the Kutter formula is that it will entail the necessity of becoming familiar with a new set of coefficients.

The coefficient K of the Manning formula varies only with n and thus possesses an advantage over either of the other formulas. The evident objection that the exponent of 2/3 for r adds a complication may be overcome by the use of tables. It will be shown later (pages 200 to 203) that, with the assistance of Tables 79 to 85 inclusive, the solution of problems by the Manning formula may be made simpler than is possible with either the Kutter or Bazin formulas.

The Kutter formula has been used almost exclusively in the United States and American engineers have been accustomed to think of open channels in terms of "Kutter's n." They have for this reason been reluctant to adopt a new formula involving the necessity of familiarizing themselves with a new set of coefficients. It remains to be shown, therefore, that the same n used in Kutter's and Manning's formulas gives practically identical results within the limits of our experimental knowledge and throughout the range of ordinary application. This will be shown to be the case and the author believes that the general adoption of the Manning formula, as a substitute for the Kutter formula, will be a step in advance.

Table 75, page 204, has been prepared to show the values of the coefficient of roughness in the three formulas which will give equivalent results. Values of c, in the Chezy formula  $(v=c\sqrt{r_8})$ , between the extreme limits that will be encountered in practice, are selected for different hydraulic radii, and corresponding values of Kutter's n for various slopes, and Manning's n and Bazin's m are given.

This table is particularly instructive in showing the effect of slope on the value of c when determined from Kutter's formula and the conditions under which Manning's and Kutter's formulas give approximately the same results.

From an examination of Table 75 it will be seen that for channels having a hydraulic radius less than unity, Kutter's n when used in Manning's formula gives higher velocities than Kutter's formula, except for the smoother channels. For hydraulic radii from 1 to 10 feet the agreement between Kutter's and Manning's formulas is very close for all kinds of channels except for the flattest slopes. For hydraulic radii above 10

feet Manning's formula will in general give higher velocities than Kutter's formula, with the same value of n.

It will be observed that the close agreement between Manning's and Kutter's formulas occurs under the conditions which usually obtain in practice. Ordinary channels, excepting sewers and drain pipes, have hydraulic radii between 1 and 10 feet and slopes are not frequently less than 0.0001. Common values of Kutter's n used for designing vitrified pipe or concrete sewers or drains are from 0.013 to 0.015 and for these values Manning's and Kutter's formulas agree very closely, even for the smaller hydraulic radii. It should also be remembered that Kutter's formula is purely empirical and that the experiments on which it is based lie primarily within the range of hydraulic radii and channel conditions in which the agreement with Manning's formula is closest. There is, moreover, a question as to whether the slope has the effect on the value of

c that Kutter assigned to it. The term  $\frac{0.00281}{c}$  in the Kutter

formula was introduced primarily to make the formula fit the experiments of Humphreys and Abbott¹ on the flow in the Mississippi River. The velocity measurements for these experiments were made by the double-float method and it is now believed that these measurements gave too high velocities. There is no doubt but that great uncertainty exists regarding the accuracy of the slope measurements which were made by means of an engineer's level. The smallest slope measured was 0.0000034, less than 0.02 foot per mile, and the difficulties of determining the elevations of water surface and the probable error of level work under such conditions, throws considerable doubt upon the accuracy of the work as a whole. Bazin, as a result of his investigation, decided that the slope did not effect the value of c in the Chezy formula and designed his formula accordingly.

Channels are usually constructed on slopes greater than 0.0001 and so in reality the correction for slope in Kutter's formula is not important, and especially so, in view of the uncertainty which exists in the proper selection of n. It is probably due to this fact that Kutter's formula has given such generally satisfactory results. In other words, the Kutter formula would doubtless give equal satisfaction if the terms

Report on the Hydraulics of the Mississippi River, 1861.

involving s were omitted altogether, and the formula could be simplified without detracting from its accuracy. It certainly has not been demonstrated that the slope in any way effects the value of c in the Chezy formula and it appears more consistent, to use a formula of the simpler form in which terms of no particular significance, that are based upon the results of uncertain experimental data, do not exist.

In order to determine the comparative values of the coefficients in Kutter's, Manning's and Bazin's formulas under actual working conditions, the author has had the computations in the experiments listed by Scobey¹ for 269 channels, extended to include Manning's n and Bazin's m. The results of this work are given in Table 112, Appendix B. It will be seen that the agreement between Manning's n and Kutter's n is most remarkable, and the author submits this table as the best evidence that the two formulas give results agreeing well within the limits of uncertainty which must exist in selecting the proper value of n, for all working conditions.

It will be noted that Bazin's formula cannot give a value of c greater than 157.6 unless m becomes negative. Scobey's experiments show a negative m in a few instances.

Solution of Kutter and Bazin Formulas.—The solution of each formula will be simplified by the use of tables. Table 76, page 207, gives values of c by the Kutter formula corresponding to different values of s, r and n. Table 77, page 210, gives values of c by the Bazin formula corresponding to different values of r and m. With the value of c determined by either of these tables the Chezy formula

$$v = c \sqrt{rs} \tag{1}$$

may be readily solved. Table 83, page 224, containing the square roots of decimal numbers will assist in the operation. r for trapezoidal sections and circular segments may be obtained from Tables 79 and 80 respectively, pages 211 and 212. There are three general types of problems, the methods of solving which are given below. n is given in each case.

1. The cross-sectional dimensions and slope of channel are given; to obtain v or Q.

Solution.—Compute r from the relation r = a/p or obtain

¹ FRED C. Scobey: The Flow of Water in Irrigation Channels. Bulletin No. 194, U. S. Department of Agriculture.

it from Table 79 or 80. Take c from Table 75 or 76. Solve for v and if Q is desired Q = av.

2. The velocity and dimensions of cross-section of channel are given; to obtain s.

Solution.—Compute 7 or take it from Table 79 or 80. Take c from Table 75 or 76 (If Kutter's formula is used approximate value of s must be assumed). If preferred the Chezy formula may be written

$$s = \frac{v^2}{c^2 r} \tag{1a}$$

from which s may be obtained. If Kutter's formula is used, a second solution may be required if the assumed s does not agree approximately with the computed s.

3. The discharge and slope are given; to obtain dimensions of cross-section of channel.

Solution.—The proportional dimensions must be given; as for example the channel is to be of semicircular section flowing three-fourths full, or trapezoidal section with side slopes of 2 to 1 and bottom width three times the depth of water.

Considering the latter case, let D represent the depth of water. Then from Table 80 it is seen that r=0.673D. From Table 76 select a value of c corresponding to an assumed value of r.

Also for this example  $v = Q/a = \frac{Q}{5D^2}$  By substituting the Chezy

formula may now be written in terms of known quantities and D and the resulting equation may be solved for D.

A similar process may be followed for channels of segmental circular section, using Table 79 in place of Table 80.

Solution of Manning Formula.—The solution of this formula will be simplified by the use of tables. The application of Tables 81, 82 and 85, pages 215, 222 and 227, is explained below. Tables 83 and 84, pages 224 and 225, will assist in evaluating  $s\frac{1}{2}$  and  $r\frac{2}{3}$ . The coefficient n may be applied directly or Table 78, page 210, may be used if desired. For convenience of reference the Manning formula is here repeated.

$$v = \frac{1.486}{n} r^{3/3} s^{1/2} \tag{4}$$

The method of solving the three general types of open-channel problems is indicated below. n is given in each case.

1. The cross-sectional dimensions and slope of channel are given; to obtain v or Q.

Solution.—Compute r or obtain it from Tables 79 or 80, pages 211 and 212. From Table 81, page 215, find the value of nv corresponding to this r and the given s.* Divide the tabulated value of nv by n to obtain v. If Q is desired Q = av.

2. The velocity and dimensions of cross-section of channel are given; to obtain s.

Solution.—For solving problems of this type the Manning formula may be conveniently expressed in the form

$$s = \frac{(nv)^2}{2.2082r\%} \tag{4a}$$

Values of  $\frac{1}{2.2082r\%}$  are given in Table 82. To determine s multiply the tabulated value by  $(nv)^2$ . Approximate values of s may be obtained by interpolation from Table 81.

3. The discharge and slope are given; to obtain dimensions of cross-section of channel. Two general cases will be described.

Solution for Canals of Trapezoidal Section.—Referring to the



Fig. 64.—Canal section.

section shown in Fig. 64. Let b be the bottom width of canal and D the depth of water. Also let e/D = z and b/D = y. These two ratios must be given to complete the problem. Also

 $r=c_xD$ , in which  $c_x$  is the factor, taken from Table 80. The equation for D may now be expressed

$$D = \left(\frac{0.673Qn}{c_x^{34}8^{1/2}(y+z)}\right)^{36} \tag{4b}$$

Table 85, page 227, gives % powers of numbers. After D has been determined, b may be obtained from the relation

$$b = yD$$

For example, it is required to find the bottom width of a canal, where Q = 300 second-feet, s = 0.0002, the side slopes of the canal are to be 2 to 1 and the depth of water in the canal is to be one-third of the bottom width. n is taken as 0.0225.

From the above data y = 3 and z = 2. From Table 80

 $c_s = 0.670$  and from Table 84  $c_s^{\frac{3}{2}} = 0.765$ . From Table 83,  $s^{\frac{1}{2}} = 0.01414$  whence

$$D = \left(\frac{0.673 \times 300 \times 0.0225}{0.765 \times 0.01414(3 + 2)}\right)^{\frac{1}{10}} = 84.0^{\frac{3}{10}}$$

and from Table 85, D = 5.27. b = 3D = 15.81.

Solution for Conduits of Circular Section.—Let A, P and R be respectively the area, hydraulic radius, and wetted perimeter for any circular conduit of diameter d flowing full and a, p, and r the corresponding elements when flowing with a depth D, Fig. 65. Let  $a = c_a A$ ,  $p = c_p P$ ,  $r = c_r R = c_r d/4 = c_d d$ . These coefficients are all functions of D/d.



Fig. 65.—Circular conduit.

The formula for d may be written

$$d = \left(\frac{2.159Qn}{c_a c_r^{3/5} s^{1/2}}\right)^{3/6} = \left(\frac{KQn}{s^{1/2}}\right)^{3/6} \tag{4c}$$

Table 79, page 211, contains values of K and also values of  $c_a$ ,  $c_p$ ,  $c_r$ , and  $c_d$ . Table 85, page 227, gives  $\frac{3}{2}$  powers of numbers.

For example, a circular conduit is to flow  $\frac{3}{4}$  full when carrying 20 second-feet of water. s = 0.0015 and n = 0.015, d is required.

From Tables 79 and 83 K = 2.37 and  $S^{1/2} = 0.03873$ , whence

$$d = \left(\frac{2.37 \times 20 \times 0.015}{0.03873}\right)^{\frac{3}{6}} = 18.36^{\frac{3}{6}}$$

and from Table 85 d = 2.98 feet.

Manning's formula gives Q a maximum when D = 0.938d and K = 2.007. The minimum diameter of a circular conduit for a given discharge is therefore,

$$d = \left(\frac{2Qn}{s^{\frac{1}{2}}}\right)^{\frac{3}{2}} \tag{4d}$$

Formula (4d) should be used when the flow is unobstructed and the diameter for a given maximum discharge is required. If water is backed up so that the conduit flows full, formula (4c) with K=2.159 will probably apply more accurately.

Diagrams for Solution of Manning Formula.—The Manning formula is readily adaptable to graphical solution. Diagram 1, page 230, is intended for sewers and small canals and Diagram 2, opposite page 230, gives a general solution of the formula for channels having hydraulic radii from 0 to 30 feet.

TABLE 75.—COMPARISON OF COEFFICIENTS OF ROUGHNESS IN KUTTER'S, MANNING'S AND BAZIN'S FORMULAS

Hy- draulic	$_{ m Che}^{c,}$		n, ]	Kutter	's form	ula			n, Man-	m, . Bazin's
radius	zy								ning's	for-
r, feet	for- mula	.000025	.00005	.0001	. 0002	.0004	.001	.01	for- mula	m·ila
0.1	10 15	.040 .028 .022	.042 .032 .025	.044 .034 .027	.045 .035 .028	.047 .037 .029	. 038	. 050 . 039 . 032	. 067	4.67 3.01 2.18
	20 30 40 50 75	.016 .013 .011	.018 .015 .012	.020 .016 .014 .010	.022 .017 .015	.022 .018 .015	.023 .019 .016	.023 .019 .016	.034 .025 .020	1.34 .930 .681 .348
	100	::::-	• • • •		.009	.009			.010	.182
0.2	15 20 30 40 50 75 100 125	.037 .029 .021 .017 .014 .010	.040 .032 .023 .018 .015 .011	.041 .034 .024 .020 .017 .012 .010	.042 .036 .026 .021 .018 .013 .010	.042 .037 .027 .022 .018 .013 .011	.038 .028 .022 .019 .014	.039 .028 .023 .019 .014	.076 .057 .038 .028 .023 .015 .011	4.25 3.08 1.90 1.31 .963 .492 .258
0.4	20 30 40 50 75 100 125 150	.038 .027 .021 .017 .012 .010	.040 .029 .022 .019 .013 .011 .009	.042 .030 .024 .020 .015 .0115	.045 .032 .025 .021 .015 .012 .010	.045 .032 .026 .022 .016 .012 .010	.033 .026 .022 .016 .013	.034 .027 .023 .016 .013	.064 .043 .032 .026 .017 .013 .010	4.35 2.69 1.86 1.36 .696 .364 .165 .032
0.6	30 40 50 75 100 125 150	.031 .024 .020 .014 .011 .009	.033 .026 .021 .015 .012 .010	.035 .027 .023 .016 .013 .010	.036 .028 .024 .017 .013 .011	.036 .029 .024 .017 .013 .011	.024 .017 .013 .011	.030 .025 .017 .014 .011	.046 .034 .027 .018 .014 .011	3.29 2.28 1.67 .853 .446 .202 .039
0.8	30 40 50 75 100 125 150	.035 .027 .022 .015 .012 .010	.036 .028 .023 .017 .013 .010	.038 .030 .024 .017 .013 .011	.039 .031 .025 .017 .013 .011	.040 .031 .026 .018 .014 .012	.031 .026 .018 .014 .012	.032 .026 .018 .014 .012	.048 .036 .029 .019 .014 .0115	3.80 2.63 1.93 .985 .515 .233 .045

### Table 75 (Continued)

### Comparison of Coefficients of Roughness in Kutter's, Manning's and Bazin's Formulas

Hy- draulic			n, :	Kutter	's forn	nula			n, Man-	m, Bazin's
radius r, feet	for- mula	.000025	. 00005	. 0001	. 0002	. 0004	s = .001	s = .01	ning's for- mula	for- mula
1.0	30 40 50 75 100 125 150	.037 .029 .024 .016 .013 .010	.039 .030 .025 .017 .014 .011	.041 .031 .026 .018 .014 .012	.042 .033 .027 .019 .014 .012	.042 .033 .027 .019 .015 .012	.034 .028 .019 .015 .012	.015 .012	.037	4.25 2.94 2.15 1.10 .576 .261 .050
1.5	30 40 50 75 100 125 150	.043 .034 .027 .019 .014 .012	.044 .035 .029 .020 .015 .012	.045 .036 .029 .020 .015 .012	.046 .037 .030 .020 .016 .013	.047 .037 .030 .021 .016 .013	.037 .030 .021 .016 .013	.048 .037 .031 .022 .016 .013	.040 .032 .021	5.20 3.60 2.63 1.35 .705 .319 .061
2.0	40 50 75 100 125 150 175	.037 .030 .021 .016 .013 .011	.038 .031 .022 .016 .013 .011	.039 .032 .022 .016 .013 .011	.040 .032 .022 .017 .013 .011	.040 .032 .022 .017 .013 .011	.033 .022 .017 .013 .011	.040 .033 .022 .017 .013 .011	.033 .022 .017 .013	4.16 3.04 1.56 .814 .369 .071 114
3.0	40 50 75 100 125 150 175	.043 .035 .024 .018 .014 .012 .010	.043 .035 .024 .018 .014 .012	.044 .036 .024 .018 .014 .012	.044 .036 .024 .018 .014 .012	.044 .036 .024 .018 .014 .012	.036 .024 .018 .014 .012	.024	.036 .024 .018 .014 .012	5.09 3.73 1.91 .998 .452 .087 173
4.0	50 75 100 125 150 175 200	.039 .026 .019 .015 .013 .011	.039 .026 .019 .015 .013 .011	.039 .025 .019 .015 .012 .011	.039 .025 .019 .015 .012 .011	.039 .025 .019 .015 .012 .011	.019 .015 .012 .011	.025 .019 .015	.025 .019 .015 .012	4.80 2.20 1.15 .522 .100 200 424

### Table 75 (Concluded)

### Comparison of Coefficients of Roughness in Kutter's, Manning's and Bazin's Formulas

Hy- draulie	c, Che-		n, K	utter's	Form	ula				m, Basin's
radius r, feet	for- mula	. 000025	. 00005	. 0001	. 0002	.0004	. 001	.01	ning's for- mula	for- mula
6.0	50 75 100 125 150 175 200	.045 .030 .022 .017 .014 .012	.045 .029 .021 .017 .014 .012	.044 .029 .021 .016 .013 .011	.043 .028 .020 .016 .013 .011	.042 .027 .020 .016 .013 .011	.020 .016 .013 .011	.041 .027 .020 .016 .013 .011	.027 .020 .016 .013 .011	5.27 2.70 1.41 .639 .122 245 519
8.0	50 75 100 125 150 175 200	.048 .033 .024 .019 .015 .013	.048 .031 .023 .018 .014 .012	.047 .030 .022 .017 .014 .012	.046 .029 .021 .017 .014 .011	.045 .028 .021 .016 .013 .011	.028 .020 .016 .013 .011	.044 .028 .020 .016 .013 .011	.028 .021 .017 .014 .012	6.09 3.11 1.63 .738 .141 283 600
10.0	75 100 125 150 175 200 225	.039 .027 .019 .016 .013 .011	.034 .024 .018 .015 .013 .011	.032 .023 .018 .014 .012 .010	.031 .022 .017 .014 .012 .010	.030 .022 .017 .014 .012 .010	.021 .017 .014 .012 .010	.030 .021 .016 .014 .011 .010	.022 .017 .015 .012	3.48 1.82 .825 .158 316 670 949
20.0	75 100 125 150 175 200 225	.045 .033 .024 .019 .016 .013	.041 .029 .021 .017 .014 .012	.037 .026 .020 .016 .013 .011	.036 .025 .019 .015 .012 .011	.034 .024 .018 .015 .012 .010	.023 .018 .014 .012	.033 .023 .018 .014 .012 .010	.024 .020 .016 .014 .012	4.92 2.58 1.17 .224 447 948 -1.34
30.0	75 100 125 150 175 200 225	.050 .037 .027 .022 .017 .014 .012	.047 .031 .023 .018 .015 .012	.041 .028 .021 .016 .013 .011	.039 .026 .019 .015 .013 .011	.036 .025 .019 .015 .012 .011	.018 .015 .012 .010	.034 .024 .018 .015 .012 .010	.026 .021 .018 .015 .013	6.03 3.16 1.43 .274 548 -1.16 -1.64

Table 76.—Values of c from Kutter's Formula for Use in the Chezy Formula  $v=c\sqrt{r_8}$ 

r	.000	.010	.011	.012	.013	.014	.015	.017	.020	.0225	.025	.030	.035	.04
	Slo	pe 8	<b>-</b> .0	0005	= 1	in 2	0,00	0 =	0.26	4 feet	per	mile		
.1 .2 .3 .4 .6	78 100 114 124 139	67 87 99 109 122	59 77 88 97 109	52 68 79 88 98	47 62 71 79 90	43 56 65 72 82	39 51 59 66 76	33 44 50 57 65	26 35 41 46 53	22 30 36 40 46	20 26 31 35 41	16 21 25 28 33	13 18 21 24 28	11 18 20 24
.8 1.0 1.5 2.	150 158 173 184	133 140 154 164	119 126 139 148		98 104 116 124	90 96 107 115	83 89 99 10°	71 77 87 94	59 64 72 79	52 56 64 70	46 49 57 62	37 40 47 51	31 34 40 44	21 21 34 35
3. •3.28 4. 6.	198 201 207 220	178 181 187 199	161 164 170 182	148 151 156 168	136 139 145 156	127 129 135 146	118 121 126 137	104 106 111 122	88 91 95 105	79 81 85 94	71 72 77 85	59 60 64 72	50 52 56 63	46
10. 20. 50. 100.	234 250 266 275	212 228 245 254	195 211 228 237	181 196 213 222	169 184 201 210	158 174 190 200	149 165 181 190	134 149 165 175	116 131 148 158	105 120 136 146	96 110 127 137	82 96 112 123	72 85 101 112	64 77 93 104
8	Slope	s =	.000	1 =	1 in	10,0	00 =	0.5	28 fe	et pe	r mi	le		
.1 .2 .3 .4	90 112 125 136	78 98 109 119	68 86 97 106	60 76 87 95	54 69 78 86	49 63 72 79	44 57 65 72	37 48 56 62	30 39 45 50	25 33 39 43	22 29 34 38	17 23 27 31	14 19 22 25	12 16 16 22
.6 .8 1.0 1.5	149 158 166 178	131 140 147 159	132		96 103 109 120	88 95 101 111	81 88 93 103	70 76 81 89	57 63 67 75	50 55 59 66	44 48 52 59	35 39 42 48	30 33 35 41	28 28 31 38
2. 3. 4. 6.	187 198 206 215	168 178 186 195	169	149 155	137 143	127 134	125	96 104 111 119	81 89 94 102	71 79 84 92	64 71 76 84	53 59 64 71	45 51 55 61	39 45 49 54
10. 20. 50. 100.	226 237 249 255	205 216 227 234	200 211	197	173 185	163 175	154 166	139 151	111 122 134 140	123		78 89 100 108	69 79 91 98	62 71 83 91

^{*} Values of c are the same for all slopes when r = 3.28 feet.

### TABLE 76 (Continued)

# Values of c from Kutter's Formula for Use in the Chezy Formula $v=c\sqrt{rs}$

	r	.009	.010	.011	.012	.013	.014	.015	.017	.020	.0225	.025	.030	. 035	.040
		Slop	e 8 =	.00	002 =	= 1 i	n 50	00 =	1.0	56 fe	et pe	r mi	le		
	.1 .2 .3 .4	99 121 133 143	85 105 116 125	74 93 103 112	65 83 92 100	59 74 83 91	53 67 76 83	48 61 69 76	41 52 59 65	32 42 48 53	27 36 42 46	24 31 36 40	18 25 29 32	15 21 24 27	12 17 20 23
	.6 .8 1.0 1.5	155 164 170 181	1 <b>45</b> 151	131 136	123	100 107 113 122	92 99 104 113	85 91 96 105	73 79 83 91	60 65 69 77	52 57 60 67	46 50 54 60	37 41 44 49	31 34 37 42	26 29 32 36
	2. 3. 4. 6.	188 200 205 213	179 185	163 168	149 155	143	119 128 133 140		97 105 111 117	82 89 94 100	72 79 84 90	64 72 76 . 82	54 59 63 69	45 51 55 60	40 45 48 53
	10. 20. 50. 100.	222 231 240 245	210 220	194 203	180 189	168 177	148 158 167 172	140 149 158 163	125 134 143 148	108 117 126 131	98 106 116 121	89 98 108 113	76 85 94 99	67 76 85 90	60 68 78 83
		Slop	e 8 :	= .0	004	= 1	in 2	500 =	= 2.	112 f	eet p	er m	ile		
	.2	104 126 138 148		78 97 107 115	69 87 96 104	62 78 87 94	56 71 79 86	50 65 73 79	43 54 62 68	34 44 50 55	29 37 43 47	25 32 37 42	19 25 30 33	16 21 24 27	13 18 21 23
	1.0	157 166 172 183	148 154	133 138	121 125	115	95 101 106 114	87 93 98 106	75 81 85 93	62 67 70 78	54 58 62 68	47 51 55 61	38 42 45 50	31 35 37 42	27 30 32 37
		190 199 204 211	179 184	162 168	154	138 142	120 128 133 139	124	98 105 110 116	83 89 94 99	73 79 84 89	65 71 76 81	54 59 63 69	45 51 55 60	40 45 48 53
	20. 50.	227 235	207 215	190 198	176 184	164 173	146 154 162 167	146 154	131 139	107 115 123 127	96 104 112 116	88 96 104 108	75 83 91 96	66 73 82 87	59 66 75 80

### FLOW OF WATER IN OPEN CHANNELS

TABLE 76 (Concluded)

Values of c from Kutter's Formula for Use in the Chezy Formula  $v=c\sqrt{rs}$ 

7 7	.009	.010	.011	.012	.013	.014	.015	.017	.020	.0225	.025	.030	.035	.04
	Slo	ре	, = .	001	- 1	in 10	000	<b>=</b> 5.	28 fe	et pe	r mil	e		
.1 .2 .3 .4	110 129 141 150	94 113 124 131	83 99 109 117	73 89 98 105	65 81 89 96	59 73 81 88	54 66 74 80	45 57 63 69	36 45 51 56	30 39 44 48	27 34 39 43	21 27 30 34	17 22 25 28	1: 1: 2: 2:
.6 .8 1.0 1.5	161 169 175 184	142 150 155 165	139	115 122 127 136	104 111 116 124	96 102 107 115	88 94 99 108	76 82 86 93	63 68 71 78	55 59 62 69	48 52 56 62	39 42 45 50	32 35 38 43	23.33.33.
2. 3. 4. 6.	191 199 204 211	171 179 184 190	155 163 168 174	154	130 138 142 149	121 128 133 1 <b>3</b> 9	112 119 124 130	98 105 110 116	83 89 93 99	73 79 83 89	66 71 75 81	54 59 63 68	46 51 54 59	44
10. 20. 50. 100.	218 225 232 236	197 205 212 216	181 188 196 200	167 175 182 186	155 163 170 174	145 153 160 164	136 144 151 155	122 129 137 141	105 113 120 124	95 102 110 114	87 94 101 105	74 81 89 94	65 72 79 85	5 6 7
	S	lope	s =	.01	- 1	in 10	0 =	52.8	3 feet	per	mile	·!		
.1 .2 .3 .4	110 130 143 151	95 114 125 133	83 100 111 119	74 90 100 107	66 81 90 98	60 74 83 89	54 67 76 82	46 57 64 70	36 46 52 57	31 39 45 49	27 34 39 44	21 27 31 35	17 22 25 29	1 2 2
.6 .8 1.0 1.5	162 170 175 185	143 151 156 165	129 135 141 149	116 123 128 136	106 112 117 125	98 103 108 116	90 95 99 107	77 82 87 94	64 68 72 79	55 60 63 69	49 53 56 62	39 43 45 51	33 35 38 43	2 3 3 3
2. 3. 4. 6.	191 199 204 210	171 179 184 190	155 162 167 173	142 149 154 160	130 138 142 148	121 128 132 138	112 119 123 129	99 105 109 115	83 .89 93 99	74 79 83 88	66 71 76 81	55 59 63 68	46 51 55 59	4 4 5
10. 20. 50.	217 225 231 235	196 204 210 214	180 187 194 197	166 173 181 184	154 161 168 172	145 152 158 162	136 143 150 153	121 128 135 139	105 112 119 122	94 101 108 112	86 93 100 104	74 80 87 91	65 71 78 82	5 6 7

NOTE.—For slopes greater than .01 c remains practically constant.

Table 77.—Values of c from Bazin's Formula for Use in the Chezy Formula  $v = c\sqrt{rs}$ 

Hydraulic radius, r in feet	m = .109	m = .290	m = .833	m = 1.54	m = 2.35	m = 3.17
.1	117	82	43	27	19	14
.2	127	96	55	35	25	19
.3	131	103	63	41	30	23
.4	135	108	68	46	32	26
.5	137	112	72	50	37	29
.6	139	116	76	53	39	31
.8	141	119	82	58	43	35
1.0	142	122	86	62	47	38
1.25	144	125	90	66	51	41
. 1.5	145	128	94	70	54	44
1.75	146	130	97	73	57	46
2.0	147	132	99	76	59	49
2.5	148	134	103	80	64	53
3.	149	136	107	84	67	56
4.	150	138	111	89	72	61
5.	151	140	115	94	77	65
6.	151	142	118	98	80	69
8.	152	144	122	102	86	74
10.	153	145	125	106	90	79
12.	153	145	127	109	94	82
15.	153	146	130	113	98	87
20.	154	148	133	117	103	92
30.	154	150	137	123	110	100
40.	155	151	139	127	115	105
<b>50</b> .	155	152	141	129	119	108

Table 78.—Values of K in Manning's Formula Corresponding to Different Values of n.  $K = \frac{1.486}{n}$ 

n	K	n	K	n	K	n	K	n	K
.009	165	.015	99	.021	71	.030	50	.050	30
.010	149	.016	93	.022	68	.0325	46	.060	25
.011	135	.017	87	.023	65	.035	43	.070	21
.012	124	.018	83	.024	62	. 0375	40	.080	19
.013	114	.019	78	.025	59	.040	37	.090	17
.014	106	.020	74	.0275	54	.045	33	.100	15

Table 79.—Ratios for Determining Hydraulic Elements of Circular Conduits Flowing Part Full. See Page 203 for Nomenclature

(	CONDU	TS FL	OWING	PAR	T FULL.	SEE	PAGE 2	03 FOR	NOME	NCLAT	TURE
$\frac{D}{d}$	$\frac{a}{A}$	$\frac{p}{P}$	$\frac{r}{R}$	$\frac{r}{d}$	2.159 CaCr34	$\frac{D}{d}$	$\frac{a}{A}$	$\frac{p}{P}$	$\frac{r}{R}$	$\frac{r}{d}$	2.159 CaCr38
.01 .02 .03 .04	Ca .0017 .0048 .0087 .0134 .0187	C _p .0638 .0904 .1108 .1282 .1436	C _r .027 .053 .080 .105 .130	Ca .007 .013 .020 .026	3210. 1340. 725. 450.	.51 .52 .53 .54	C ₄ .5127 .5255 .5382 .5509 .5635	.5128 .5191 .5255	C _r 1.012 1.025 1.037 1.048 1.060	Ca . 253 . 256 . 259 . 262 . 265	K 4.18 4.04 3.91 3.80 3.69
.06 .07 .08 .09	.0308	. 1575 . 1705 . 1826 . 1940 . 2048	.156 .181 .205 .230 .254	.051	305. 220. 166. 129. 103	.56 .57 .58 .59	.5762 .5888 .6014 .6140 .6265	. 5447 . 5511 . 5576	1.070 1.081 1.091 1.101 1.111	. 270 . 273 . 275	3.58 3.48 3.39 3.30 3.21
.11 .12 .13 .14	.0599 .0680 .0764 .0851 .0941	.2152 .2252 .2348 .2442 .2531	. 278 . 302 . 325 . 348 . 372	.070 .075 .081 .087	84.6 70.6 59.7 51.2 44.4	.61 .62 .63 .64 .65	. 6389 . 6513 . 6636 . 6759 . 6881	. 5837 . 5903	1.120 1.129 1.137 1.145 1.153	. 280 . 282 . 284 . 286 . 288	3.14 3.06 2.99 2.92 2.86
.16 .17 .18 .19	.1033 .1127 .1224 .1323 .1424	. 2619 . 2706 . 2790 . 2871 . 2952	.394 .417 .439 .461 .482	.099 .104 .110 .115 .121	38.8 34.3 30.5 27.4 24.7	.66 .67 .68 .69	.7002 .7122 .7241 .7360 .7477	.6105 .6173 .6241	1.160 1.167 1.173 1.179 1.185	. 290 . 292 . 293 . 295 . 296	2.79 2.73 2.68 2.63 2.58
.21 .22 .23 .24 .25	.1527 .1631 .1737 .1845 .1955	.3031 .3108 .3184 .3259 .3333		.126 .131 .136 .142 .147	22.3 20.3 18.6 17.1 15.8	.71 .72 .73 .74 .75	.7593 .7708 .7822 .7934 .8045	. 6450 . 6521 . 6593	1.190 1.195 1.199 1.203 1.207	. 298 . 299 . 300 . 301 . 302	2.53 2.49 2.45 2.41 2.37
.26 .27 .28 .29 .30	.2066 .2178 .2292 .2407 .2523	.3407 .3479 .3550 .3620 .3690	.607 .626 .646 .665 .684	. 152 . 157 . 161 . 166 . 171	14.6 13.5 12.6 11.8 11.0	.76 .77 .78 .79 .80	.8155 .8263 .8369 .8473 .8576	. 6816 . 6892	1.210 1.212 1.214 1.216 1.217	.303	2.33 2.30 2.27 2.24 2.21
.31 .32 .33 .34	. 2998	. 3759 . 3827 . 3895 . 3963 . 4031	.702 .721 .739 .757 .774	.180 .185 .189	10.35 9.74 9.18 8.67 8.21	.81 .82 .83 .84	.8677 .8776 .8873 .8967 .9059	.7210 7294	1.217 1.217 1.216 1.215 1.213	.304 .304 .304 .304 .303	2.18 2.16 2.14 2.11 2.09
.36 .37 .38 .39	.3364 .3487 .3611	.4097 .4163 .4229 .4295 .4359	.791 .808 .825 .841 .857	.198 .202 .206 .210 .214	7.78 7.40 7.04 6.71 6.41	.86 .87 .88 .89	.9149 .9236 .9320 .9401 .9480	.7652 .7748 .7848	1.210 1.207 1.203 1.198 1.192	.303 .302 .301 .299 .298	2.08 2.06 2.05 2.04 2.03
.41 .42 .43 .44	.4112	.4424 .4489 .4553 .4617 .4681	.873 .888 .903 .918 .932		6.13 5.86 5.62 5.39 5.18	.91 .92 .93 .94 .95	.9555 .9625 .9692 .9754 .9813	.8174 .8295 .8425	1.185 1.177 1.168 1.158 1.146	. 296 . 294 . 292 . 289 . 286	2.02 2.01 2.01 2.01 2.01
.46 .47 .48 .49	.4618 .4745 .4873	.4745 .4809 .4872 .4936 .5000	.946 .960 .974 .987	.240 .243 .247	4.99 4.80 4.63 4.47 4.32	.96 .97 .98 .99 1.00	.9866 .9913 .9952 .9983 1.0000	.8892 .9096 .9362	1.132 1.115 1.094 1.066 1.000	.267	2.02 2.03 2.04 2.07 2.16

Table 80.—For Determining Hydraulic Radius, r, for Trapezoidal Channels of Various Side Slopes depth of water D

Let  $x = \frac{\text{depth of water}}{\text{bottom width of channel}} = \frac{D}{b}$  and  $c_x = \frac{1}{b}$  tabulated value. Then  $c_x = \frac{1}{b}$ 

	Si	de slop	oes of	channe	l, ratio	o of ho	rizont	al to v	ertical	
x	Vertical	1/4-1	1,5−1	<b>¾</b> -1	1-1	11/4-1	2-1	21/2-1	3–1	4-1
.00 .01 .02 .03 .04	1.000 .980 .962 .943 .926	1.000 .982 .965 .949 .933	1.000 .983 .967 .951 .936	1.000 .983 .967 .951 .936	1.000 .982 .965 .949 .934	1.000 .980 .961 .943 .926	1.000 .976 .955 .935 .916	1.000 .973 .948 .926 .905	1.000 .969 .941 .916 .894	1.000 .961 .927 .898 .872
.05 .06 .07 .08 .09	.909 .893 .877 .862 .847	.918 .903 .889 .876 .863	.922 .908 .895 .882 .870	.922 .909 .896 .883 .871	.920 .906 .893 .881	.911 .896 .882 .869	.899 .883 .868 .854 .841	. 886 . 869 . 853 . 839 . 825	.874 .856 .839 .823 .809	.850 .830 .812 .795 .781
.10 .11 .12 .13 .14	.833 .820 .806 .794 .781	.850 .838 .826 .814 .803	.858 .847 .836 .825 .815	.860 .849 .838 .828 .819	.858 .847 .836 .826 .817	.845 .834 .824 .814 .804	.829 .818 .807 .797 .787	.812 .801 .790 .779 .770	.797 .784 .773 .763 .753	.767 .755 .744 .734 .724
.15 .16 .17 .18 .19	.769 .758 .746 .735 .725	.793 .782 .772 .762 .752	.805 .795 .786 .777 .768	.809 .800 .791 .782 .774	.807 .799 .790 .782 .774	.795 .786 .778 .770 .763	.778 .769 .761 .753 .746	.761 .752 .744 .736 .729	.744 .736 .728 .720 .713	.715 .707 .700 .693 .686
.20 .21 .22 .23 .24	.714 .704 .694 .685 .676	.743 .734 .726 .717 .709	.760 .752 .744 .736 .729	.767 .759 .751 .744 .737	.766 .759 .752 .745	.755 .748 .741 .735 .729	.739 .732 .726 .720 .714	.722 .716 .709 .704 .698	.706 .700 .694 .688 .683	. 679 . 674 . 668 . 663 . 658
.25 .26 .27 .28 .29	.667 .658 .649 .641 .633	.701 .693 .686 .678 .671	.722 .715 .708 .701 .695	.730 .724 .717 .711 .706	.732 .726 .720 .714 .709	.723 .717 .712 .707 .702	.708 .703 .698 .693	. 693 . 688 . 683 . 678 . 673	. 678 . 673 . 668 . 664 . 660	. 653 . 649 . 645 . 641 . 637
.30 .31 .32 .33 .34	.625 .617 .610 .602 .595	.664 .657 .651 .644 .638	.688 .682 .676 .670	.700 .694 .689 .684 .678	.703 .698 .693 .688 .683	.697 .692 .687 .683 .678	. 683 . 679 . 675 . 671 . 667	. 669 . 665 . 661 . 657 . 654	. 656 . 652 . 648 . 645 . 641	.633 .630 .627 .624 .621
.35 .36 .37 .38 .39	. 588 . 581 . 575 . 568 . 562	.632 .626 .620 .614 .608	. 659 . 654 . 648 . 643 . 638	. 673 . 668 . 664 . 659 . 654	. 678 . 674 . 669 . 665 . 661	. 674 . 670 . 666 . 662 . 658	. 663 . 659 . 655 . 652 . 649	. 650 . 647 . 643 . 640 . 637	. 638 . 635 . 632 . 629 . 626	.618 .615 .612 .610 .607
.40	. 556 . 549	.603 .598	. 633 . 629	. 650 . 646	. 657 . 653	. 655 . 652	. 645 . 642	. 634 . 631	.623 .621	. 605 . 603

213

### Table 80 (Continued)

# FOR DETERMINING HYDRAULIC RADIUS, 7, FOR TRAPEZOIDAL CHANNELS OF VARIOUS SIDE SLOPES

Let  $x = \frac{\text{depth of water}}{\text{bottom width of channel}} = \frac{D}{b}$  and  $c_x = \text{tabulated}$  value. Then  $r = c_x D$ 

_	Si	de slor	es of	channe	l, rati	of ho	rizont	aı to v	ertical	
x	Vertical	14-1	12-1	34-1	1-1	134-1	2-1	21/2-1	3-1	4-1
.42 .43 .44	. 543 . 538 . 532	. 592 . 587 . 582	. 624 . 619 . 615	.641 .637 .633	. 649 . 645 . 641	.648 .645 .642	. 639 . 636 . 633	. 629 . 626 . 623	.618 .616 .613	. 600 . 598 . 596
. 45 . 46 . 47 . 48 . 49	. 526 . 521 . 515 . 510 . 505	.577 .572 .568 .563 .558	.611 .606 .602 .598	.629 .626 .622 .618 .615	. 638 . 635 . 631 . 628	. 639 . 636 . 633 . 630 . 627	.631 .628 .625 .623	.621 .618 .616 .614 .611	. 611 . 609 . 607 . 605 . 603	.594 .593 .593 .584
.50 .51 .52 .53 .54	.500 .495 .490 .485 .481	.554 .550 .545 .541 .537	.590 .587 .583 .579 .576	.611 .608 .604 .601	.621 .618 .615 .612 .610	.624 .622 .619 .617	.618 .616 .613 .611	. 609 . 607 . 605 . 603 . 601	. 601 . 599 . 597 . 595 . 594	. 58 . 58 . 58 . 58
.55 .56 .57 .58 .59	.476 .472 .467 .463 .459	.533 .529 .525 .521 .518	. 572 . 568 . 565 . 562 . 558	.595 .592 .589 .586	.607 .604 .601 .598	.612 .610 .607 .605	.607 .605 .603 .601	. 600 . 598 . 596 . 594 . 593	. 592 . 590 . 589 . 587 . 586	.57 .57 .57 .57
.60 .61 .62 .63 .64	· .455 .450 .446 .442 .439	.514 .510 .507 .504 .500	.555 .552 .549 .546 .543	.580 .577 .575 .572 .569	.593 .591 .588 .586 .584	.601 .599 .597 .595	. 597 . 596 . 594 . 592 . 590	.591 .589 .588 .586 .585	. 584 . 583 . 581 . 580 . 579	. 57 . 57 . 56 . 56
.65 .66 .67 .68 .69	.435 .431 .427 .424 .420	.497 .494 .490 .487 .484	. 540 . 537 . 534 . 532 . 529	.567 .564 .562 .559	.581 .579 .577 .575	.591 .589 .587 .585	. 589 . 587 . 586 . 584 . 583	. 583 . 582 . 580 . 579 . 578	.577 .576 .575 .574 .573	. 56 . 56 . 56 . 56
.70 .71 .72 .73 .74	.417 .413 .410 .407 .403	.481 .478 .475 .472 .469	.526 .524 .521 .518 .516	.555 .552 .550 .548 .546	. 571 . 569 . 567 . 565 . 563	.582 .580 .578 .577	. 581 . 580 . 578 . 577 . 576	.577 .575 .574 .573 .572	.571 .570 .569 .568 .567	. 56 . 56 . 55 . 55
.75 .76 .77 .78 .79	.400 .397 .394 .391 .388	.467 .464 .461 .458 .456	.514 .511 .509 .507 .504	.544 .542 .539 .537 .535	. 561 . 559 . 557 . 555 . 554	.573 .572 .570 .569 .567	.574 .573 .572 .570 .569	. 570 . 569 . 568 . 567 . 566	. 566 . 565 . 564 . 563 . 562	. 55 . 55 . 55 . 55
.80 .81 .82 .83	.385 .382 .379 .376	.453 .450 .448 .445	.502 .500 .498 .495	.533 .531 .530 .528	. 552 . 550 . 548 . 547	. 566 . 565 . 564 . 562	. 568 . 567 . 566 . 565	. 565 . 564 . 563 . 562	. 561 . 560 . 559 . 558	. 55 . 55 . 55

Table 80 (Concluded)

For Determining Hydraulic Radius, r, for Trapezoidal Channels of Various Side Slopes

Let  $x = \frac{\text{depth of water}}{\text{bottom width of channel}} = \frac{D}{b}$  and  $c_x = \text{tabulated}$  value. Then  $r = c_x D$ 

	Si	de slor	oes of o	hannë	l, ratio	o of ho	rizont	al to v	ertical	
x	Vertical	14-1	1/2-1	34-1	1-1	11/2-1	2-1	21/2-1	3-1	4-1
. 84	.373	.443	. 493	. 526	. 545	. 561	. 563	. 561	. 558	. 550
.85 .86 .87 .88 .89	.370 .368 .365 .362 .360	.441 .438 .436 .434 .431	.491 .489 .487 .485 .483	.524 .522 .520 .519 .517	.544 .542 .540 .539 .537	.560 .558 .557 .556 .555	.562 .561 .560 .559 .558	.560 .559 .558 .558 .557	.557 .556 .555 .554 .554	.549 .549 .548 .547 .547
.90 .91 .92 .93	.357 .355 .352 .350 .347	.429 .427 .425 .423 .420	.481 .479 .478 .476 .474	.515 .514 .512 .511 .509	.536 .534 .533 .532 .530	.554 .552 .551 .550 .549	.557 .556 .555 .554 .553	.556 .555 .554 .553 .553	.553 .552 .551 .551 .550	.546 .546 .545 .544 .544
.95 .96 .97 .98	.345 .342 .340 .338 .336	.418 .416 .414 .412 .410	.472 .470 .469 .467	.507 .506 .504 .503 .501	.529 .528 .526 .525 .524	.548 .547 .546 .545 .544	.553 .552 .551 .550 .549	. 552 . 551 . 550 . 550 . 549	.549 .549 .548 .547 .547	.543 .543 .542 .542 .541
1.00 1.01 1.02 1.03 1.04	.333 .331 .329 .327 .325	.408 .406 .404 .403 .401	.464 .462 .460 .459 .457	.500 .499 .497 .496 .494	.522 .521 .520 .519 .518	.543 .542 .541 .540 .539	.548 .547 .547 .546 .545	.548 .547 .547 .546 .545	.546 .545 545 .544 .544	.541 .540 .540 .539 .539
1.05 1.06 1.07 1.08 1.09	.323 .321 .318 .316 .314	.399 .397 .395 .394 .392	.456 .454 .452 .451 .449	.493 .492 .490 .489 .488	.516 .515 .514 .513 .512	.538 .537 .536 .535 .534	.544 .543 .543 .542 .541	.545 .544 .543 .543 .542	.543 .543 .542 .541 .541	.538 .538 .537 .537 .537
1.10 1.11 1.12 1.13 1.14	.312 .311 .309 .307 .305	.390 .388 .387 .385 .384	.448 .446 .445 .444 .442	.487 .485 .484 .483 .482	.511 .510 .509 .508 .507	.534 .533 .532 .531 .530	.541 .540 .539 .539 .538	.542 .541 .540 .540 .539	.540 .540 .539 .539 .538	.536 .536 .535 .535
1.15 1.16 1.17 1.18 1.19	.303 .301 .299 .298 .296	.382 .380 .379 .377 .376	.441 .440 .438 .437 .436	.481 .479 .478 .477 .476	.506 .505 .504 .503 .502	.529 .529 .528 .527 .526	.537 .537 .536 .535 .535	.539 .538 .538 .537 .537	.538 .537 .537 .536 .536	.534 .534 .533 .533 .533
1.20 1.21 1.22 1.23 1.24	.294 .292 .291 .289 .287	.374 .373 .371 .370 .368	.434 .433 .432 .431 .429	.475 .474 .473 .472 .471	.501 .500 .499 .498 .497	.526 .525 .524 .523 .523	.534 .533 .533 .532 .532	.536 .536 .535 .535 .534	.536 .535 .535 .534 .534	.532 .532 .532 .531 .531
1.25	.286	.367	.428	.470	.496	. 522	. 531	. 534	. 533	.531

Table 81.—Values of nv Corresponding to Different Values of r and s in Manning's Formula,  $v=\frac{1.486}{n}$   $r^{3/5}s^{1/2}$  To determine v, divide the tabulated valves by n

Γ				<del></del>		<del></del>	<del></del>			
, <del>-</del>			7	= hy	draulic	radiw	s in fee	et .		
slope	0.1	0.2	0.3	0.4	0.5	0.6	0.7	0.8	0.9	1.0
.00005	.0023	.0036	.0047		.0066				.0098	.0105
10	.0032	.0051		.0081	.0094	.0106	.0117	.0128		
15	.0039	.0062	.0082	.0099	.0115	.0130	.0144	.0157	.0170	
20	.0045	.0072	.0094	.0114	.0132	.0150	.0166	.0181		
25	.0051	.0080	.0105	.0128	.0148	.0167	.0185	.0203	.0219	.0235
.00030	.0056	.0088	.0115	.0140	.0162	.0183	.0203	.0222	.0240	.0257
35	.0060	.0095	.0125	.0151	.0175	.0198	.0219	.0240	. 0259	.0278
40	.0064	.0102	.0133	.0161	.0187	.0211	.0234	.0256	.0277	.0297
45	.0068	.0108	.0141	.0171	.0199	.0224	.0249	.0272	.0294	.0316
50	.0072	.0114	.0149	.0180	.0209	.0236	.0262	.0286	.0310	.0332
.00055	.0075	.0119	.0156	.0189	.0220	.0248	.0275	.0300	.0325	.0349
60	.0078	.0125	.0163	.0198	.0229	.0259	.0287	.0314	.0339	
65	.0082	.0130	.0170	.0206	.0229 .0239	.0270	.0299	.0327	.0353	.0379
70	.0085	.0135	.0176	.0213	.0248	.0280	.0310		.0367	.0393
75			.0182		.0256				.0379	
.00080	.0091	.0144	.0188	.0228	.0265	.0290	.0331	.0362	.0392	.0420
85	.0093	0148	0194	.0235	.0273	.0308	0342	.0374	.0404	.0433
90			.0200		.0281			.0384	.0416	.0446
95	.0099	.0157	.0205	.0249	.0289	.0326	.0361	.0395	.0427	.0458
100					.0296				.0439	.0470
.0011	0106	0160	0221	0268	.0311	0351	.0389	.0425	.0459	.0493
12					.0324			.0444	.0480	
13	.0115	.0183	.0240	.0291	.0338	.0381	.0422	.0462	.0500	
14			.0249		.0350			.0479	.0518	.0556
15	.0124		.0258	.0312	.0363	.0410	.0454	.0496	.0537	.0576
.0016	.0128	.0203	.0266	.0323	.0375	.0423	0469	.0512	. 0554	. 0594
17		.0210	.0275	.0333	.0387	.0436	0483	.0528	.0571	.0613
18	.0136	.0216	.0283	.0342	.0397	.0449	0497	.0543	.0587	.0630
19	.0140	.0222	.0290	.0352	.0397 .0409	.0461	.0511	.0558	.0604	.0648
20	.0143	.0227	.0298	.0361	.0419	.0473	.0524	.0573	.0620	
.0025	.0160	.0254	.0333	0403	.0468	0590	.0586	.0641	.0693	.0743
30		.0278	.0365	.0442	.0513	.0579	.0642	.0702	.0759	.0814
35	.0189	.0301	.0394	.0477	.0513 .0554	.0625	.0693	.0758	.0820	
40	.0202	.0321	.0421	.0510	.0592	.0669	.0741	.0810	.0876	.0940
45			.0447	.0541	.0628	.0709	.0786	. 0859	.0929	.0997
.0050	.0226	.0359	.0471	.0570	.0662	.0748	0828	.0906	.0980	. 1051
55	.0237	.0377	0404	0598	.0694	0784	0869		. 1027	.1102
60	.0248				.0725			.0992	.1073	.1151
65	.0258				.0755			.1033	.1117	1198
65 70					.0783			.1071	.1159	
.0075	.0277	0440	.0577	0600	.0811	001A	. 1015	. 1109	. 1200	. 1287
80	.0286	0455	0504	0722	.0837	0048	1010	1145	.1239	. 1329
85	.0295	0460	0814	0744	.0863	0075	1080	.1181	.1277	. 1370
90		0482	0632	0765	.0888	1003	1111	1215	.1314	
95	.0312	.0495	.0649	.0786	.0888 .0912	.1030	. 1142	.1248	.1350	.1448
.0100	.0320	.0508	. 0666	. 0807	. 0936	. 1057	.1172	. 1281	. 1385	.1486

#### Table 81 (Continued)

VALUES OF nv Corresponding to Different Values of r and s in Manning's Formula,  $v = \frac{1.486}{n} r^{25} s^{1/2}$ To determine v, divide the tabulated values by n

r = hydraulic radius in feetslope 1.2 1.3 1.8 1.9 2.0 1.1 1.4 1.5 1.6 1.7 .0156 .0161 .0167 .00005 .0236 .0220 .0228 10 15 .0194 .0206 .0217 .0228 .0239 .0249 .0259 .0269 .0279 .0289 .0334 .0224 .0237 .0250 .0263 .0275 .0288 .0299 .0311 .0322 20 25 .0250 | .0265 | .0280 | .0294 | .0308 | .0321 | .0335 | .0348 | .0360 .0373 .00030 .0409 .0274 | .0291 | .0307 | .0322 .0337 .0352 .0367 .0381 .0395 .0296 .0314 .0331 .0348 .0364 .0380 .0396 .0411 .0427 .0317 .0336 .0354 .0372 .0389 .0407 .0423 .0440 .0456 .0365 .0376 .0395 .0413 .0431 .0449 .0467 .0484 .0354 .0375 .0396 .0416 .0435 .0454 .0473 .0492 .0510 35 .0441 .0472 40 .0500 45 50 .00055 .0371 | .0394 | .0415 | .0436 | .0457 | .0477 | .0496 .0516 .0535 .0388 .0411 .0434 .0456 .0477 .0498 .0519 .0405 .0428 .0451 .0474 .0497 .0518 .0540 .0419 .0444 .0468 .0492 .0515 .0538 .0560 .0434 .0460 .0485 .0509 .0533 .0556 .0580 60 .0539 .0558 .057865 .0601 .0561 .0581 70 .0582 .0603 .0624 .0602 .0624 .0646.00080  $\begin{array}{c} .0448 \\ .0475 \\ .0462 \\ .0489 \\ .0516 \\ .0542 \\ .0568 \\ .0593 \\ .0617 \end{array}$ .0667 .0622 .0645 .0641 .0665 .0688 85 .0475 .0503 .0531 .0558 .0584 .0610 .0635 .0488 .0517 .0546 .0573 .0600 .0627 .0653 90 .0660 .0708 95 .0727 .0678 .0703 .0501 .0531 .0560 .0588 .0616 .0643 .0669 100 .0695 .0721 .0525 .0557 .0587 .0617 .0646 .0674 .0702 .0729 .0756 .0549 .0581 .0613 .0644 .0675 .0704 .0733 .0762 .0790 .0571 .0605 .0638 .0671 .0702 .0733 .0763 .0793 .0825 .0782 .0011 12 .0762 .0790 .0817 13 .0851 .0853 .0883 .0593 .0628 .0662 .0696 .0729 .0761 .0792 .0823 14 .0613 | .0650 | .0686 | .0720 | .0754 | .0787 | .0820 .0852 .0883 15 .0914 .0016 .0633|.0671|.0708|.0744| .0779 .0813 .0847 .0880 .0912 17 .0653 .0692 .0730 .0767 .0803 .0838 .0873 .0907 .0940 .0973 .0672 .0712 .0751 .0789 .0826 .0862 .0898 .0933 .0967 .0690 .0732 .0772 .0811 .0849 .0886 .0923 .0959 .0994 .0708 .0751 .0792 .0832 .0871 .0909 .0947 .0984 .1020 18 . 1001 . 1028 19 20 . 1055 .0792 .0839 .0885 .0930 .0974 .1016 .1058 .1099 .1140 .0867 .0919 .0970 .1019 .1067 .1113 .1159 .1204 .1249 .0937 .0993 .1047 .1100 .1152 .1203 .1252 .1301 .1349 .1001 .1061 .1119 .1176 .1231 .1286 .1339 .1391 .1442 .1062 .1126 .1188 .1248 .1306 .1364 .1420 .1475 .1529 .0025 . 1292 30 . 1396 35 40 45 .1120 .1187 .1252 .1315 .1377 .1438 .1497 .1555 .1612 .1668 .1174 .1245 .1313 .1379 .1444 .1508 .1570 .1631 .1691 .1749 .1227 .1300 .1371 .1441 .1509 .1575 .1640 .1703 .1766 .1827 .1277 .1353 .1427 .1499 .1570 .1639 .1771 .1773 .1838 .1902 .0050 55 60 65 70 .1325 .1404 .1481 .1556 .1629 .1701 .1771 .1840 .1908 .1974 . 1974 .0075 | .1371 | .1453 | .1533 | .1611 | .1687 | .1761 | .1833 | .1904 | .1974 | .2043 | .1416 | .1501 | .1583 | .1664 | .1742 | .1818 | .1893 | .1967 | .2039 | .2110 80 . 1460 . 1547 . 1632 . 1715 . 1795 . 1874 . 1952 . 2027 . 2102 . 2175 . 1502 . 1592 . 1679 . 1764 . 1847 . 1929 . 2008 . 2086 . 2163 . 2238 . 1544 . 1636 . 1726 . 1813 . 1898 . 1981 . 2063 . 2143 . 2222 . 2299 85 90 95 .0100 . 1584 | . 1678 | . 1770 | . 1860 | . 1947 | . 2033 | . 2117 | . 2199 | . 2280 | . 2359

ı.

### TABLE 81 (Continued)

VALUES OF nv Corresponding to DIFFERENT VALUES OF r and s in Manning's Formula,  $v = \frac{1.486}{n} r^{3/2} s^{1/2}$ To determine v, divide the tabulated values by n

8 =			r	= hy	iraulic	radius	in fee	t		
slope	2.1	2.2	2.3	2.4	2.5	2.6	2.7	2.8	2.9	3.0
. 00005	0172	.0178	.0183	.0188	.0194	.0199	.0204	.0209	.0214	.0219
10	.0244	.0251	.0259	.0266	.0274	.0281	.0288	. 0295	.0302	.0309
l īš	0299	กรกร	0317	. 0326	. 0335	. 0344	. 0353	.0362	.0370	.0379
20	.0345	.0356	.0366	.0377	.0387 .0433	.0397	.0407	.0417	.0427	.0437
25	.0385	.0397	.0409	.0421	.0433	.0444	.0456	.0467	.0478	.0489
.00030	0400	0495	0440	0440	.0474	.0487	0400	A511	. 0523	. 0535
35	0456	0470	0484	0402	.0512	0526	0520	0552	0565	0578
40	0490	0503	0518	0532	.0548	0582	0576	0590	.0604	.0618
45	0517	0533	0540	0565	.0581	0596	.0611	.0626	.0641	.0656
. 5ŏ	.0545	.0562	.0579	.0596	.0612	.0628	.0644	.0660	.0676	.0691
l					1		i I			
.00055	.0572	.0590	.0607	.0625	.0642	.0659	.0676	.0692	.0709	.0725
60	.0596	.0616	.0034	.0653	.0671	.0088	.0700	0759	0771	0788
65 70	.0021	.0041	.0000	.0079	.0698 .0724	0742	0789	0781	0000	0818
75	0887	.0000	0700	0720	.0750	0770	0780	0080	0828	0847
1 75	.0007	.0000	.0709	.0730	.0750					
.00080	.0689	.0711	.0732	.0753	.0774	.0795	.0815	.0835	.0855	.0874
85	.0711	.0733	.0755	.0777	.0798	.0819	.0840	.0861	.0881	.0901
90	1.0731	. 0754	1.0777	1.0799	. 0821	. 0843	.0864	.0886	.0907	.0927
95	.0751	.0775	.0798	.0821	.0844	.0866	.0888	.0910	.0931	.0953
100	.0771	.0795	.0819	.0842	.0866	.0889	.0911	.0934	.0956	.0978
.0011	0808	0834	0850	0884	0008	0932	.0956	.0979	.1002	.1025
12	0844	0871	.0897	.0923	.0948	0973	.0928	. 1023	.1047	. 1071
13	.0879	.0906	.0934	.0960	.0908 .0948 .0987	.1013	.1039	.1064	.1090	.1115
14	.0912	.0941	.0969	.0997	.1024	. 1051	. 1078	.1105	.1131	. 1157
15	.0944	.0974	. 1003	. 1032	. 1060	.1088	.1116	.1143	. 1170	.1197
.0016	0075	1006	1036	1066	. 1095	1124	1153	1181	. 1209	. 1236
1 .0010	1005	1038	1088	1000	.1129	1159	.1188	1218	.1246	.1274
l îš	1034	1088	1 1000	11130	1.1161	1.1192	. 1222	. 1252	. 12821	. 1311
19	.1062	.1096	.1129	. 1161	.1193	.1225	. 1256	.1287	.1317	. 1347
20	.1090	.1124	.1158	.1191	.1193 .1224	. 1257	.1289	. 1320	. 1352	.1382
.0025	1010	1057	1205	1990	. 1369	1405	1441	1478	1511	1546
30	1335	1377	1418	1450	1400	1530	1578	1617	1655	. 1693
35	1449	1487	1532	1576	. 1499 . 1619	1662	.1705	.1747	.1788	. 1829
40	1541	1590	1638	1685	.1731	.1777	. 1822	.1867	. 1911	. 1955
45	. 1635	.1686	.1737	. 1787	. 1836	.1885	.1933	.1980	. 2027	.2074
0070	•		1	į .	l 1	100=	9027	9007	.2137	9184
.0050	1/23	. 1777	1831	1072	1936	.1987	2127	21007	.2241	2200
55	1807	.1804	1920	1970	.2030	2004	2220	2287	2341	2304
60 65	1085	.2027	2000	2148	.2120 .2207	2265	2323	2380	2436	2492
70	2030	2103	2166	2220	.2290	2351	.2411	.2470	.2528	.2586
l ''		ł	ŀ	1	i l			1		
.0075	.2110	.2177	. 2242	. 2307	.2371	. 2433			.2617	
80	.2180	. 2248	.2316	. 2383	.2448	.2513	.2577	.2640	. 2703	. 2765
85	. 2247	.2317	. 2397	. 2456	. 2524	.2591 .2666	. 2657	.2722	.2703 .2786 .2867	. 2850
90	. 2312	. 2385	.2456	. 2527	.2597	.2666	.2734	. 2801	2007	2012
95	1	Į.	l		2668	1				
.0100	2437	2514	2589	.2664	. 2737	. 2810	.2881	. 2952	. 3022	. 3091
0100				1 5.5.1		1				

## Table 81 (Continued)

Values of nv Corresponding to Different Values of r and s in Manning's Formula,  $v=\frac{1.486}{n} r^{3/6} s^{1/2}$ 

To determine v, divide the tabulated values by n

s =			r	- hy	iraulic	radius	in fee	et		
slope	3.1	3.2	3.3	3.4	3.5	3.6	3.7	3.8	3.9	4.0
.00005	.0223	.0228	.0233	.0238	.0242	.0247	.0251	.0256	.0260	.0265
10	.0316	.0323	.0329	.0336	.0343	.0349	.0356	.0362	.0368	
15	.0387	.0395	.0403	.0412	.0420	.0428	.0435	.0443	.0451	.0459
20	.0447	.0456	.0466	.0475	.0484	.0494	.0503		.0521	.0530
25	.0500	.0510	.0521	.0531	.0542	.0552	.0562	.0572	.0582	.0592,
.00030	.0547	.0559	.0571	.0582	.0593	.0605	.0616	.0627	.0638	
35	.0591	.0604	.0616	.0629	.0641	.0653	.0665	.0677	.0689	.0701
40	.0632	.0645		.0672	.0685	.0698	.0711	.0724	.0736	.0749
45	.0670	.0685	.0699	.0713	.0727	.0741	.0754	.0768	.0781	
50	.0706	.0722	.0737	.0751	.0766	.0781	.0795	.0809	.0823	.0837
.00055	.0741	.0757	.0773	.0788	.0803	.0819	.0834	.0849		
60	.0774	.0791	.0807	.0823	.0839	.0855	.0871	.0886	.0902	.0917
65		.0823	.0840	.0857	.0873	.0890	.0906	.0923	.0939	.0955
70		.0854	.0872		.0906		.0941	.0957	.0974	
75	.0865	.0884	.0902	.0920	.0938	.0956	.0974	.0991	. 1008	. 1026
.00080	.0894	.0913	.0932	.0950	.0969	.0987	.1005	.1024	.1041	. 1059
85		.0941	.0960	.0980	.0999	. 1018	.1005 .1036	. 1055	. 1073	.1092
90	.0948	.0968	.0988	. 1008	. 1028	.1047	. 1066	1088	1105	. 1123
95	.0974	.0995	. 1015	. 1036	. 1056	. 1076	. 1096	.1115	. 1135	.1154
100	.0999	.1021	. 1042	.1063	.1083	.1104	.1124	.1144	.1164	.1184
.0011	.1048	. 1070	.1093	.1114	.1136	.1158	. 1179	. 1200	. 1221	. 1242
12	.1094	. 1118	. 1141	.1164	.1137	.1209	. 1231	. 1254	. 1275	. 1297
13	.1139	.1164	.1188	.1212	.1235	.1259	.1282	. 1305	.1328	. 1350
14	.1182	.1207	.1232	.1257	.1282	.1306	.1330	. 1354	. 1378	. 1401
15	.1224	.1164 .1207 .1250	.1276	.1301	.1327	.1352	. 1377	.1401	.1426	.1450
.0016	.1264	. 1291	.1318	. 1344	. 1370	. 1396	.1422	.1447	. 1473	. 1498
17	.1303	.1331	1358	1385	1412	. 1439	. 1466	.1492	. 1518	
18	.1340	. 1331 . 1369	.1397	. 1385 . 1426	. 1453	. 1481	. 1508	.1535	.1562	.1589
19	. 1377	. 1407	. 1436	. 1465	. 1493	. 1522	. 1550	.1577	. 1605	. 1633
20	.1413	.1443	.1473	.1503	.1532	.1561	. 1590	.1618	.1647	.1675
.0025	.1580	.1614	.1647	.1680	. 1713	. 1745	.1777	.1809	. 1841	
30	.1730	.1768	.1804	.1840	.1876	.1912	.1947	.1982	.2017	.2051
35	.1869	.1909	.1949	.1988		.2065		.2141	.2178	. 2215
40	. 1998	.2041	.2083	.2125	.2167	.2208	.2248	.2289	. 2329	.2368
45	.2119	.2165	.2210	.2254	. 2298	. 2342	.2385	.2427	.2470	
. <b>0</b> 050	. 2234	.2282	. 2329		. 2422	.2468	. 2514	.2559	. 2603	.2648
55	.2343	. 2393	.2443	.2492	.2541	. 2589	.2636	.2684	.2731	.2777
60	.2447	.2500	. 2552	. 2603	.2654	.2704	.2754	. 2803	. 2852	.2901
65	.2548	. 2602	.2656	.2709	.2762	.2814	.2866	.2917	. 2968	. 3019
70	.2643	.2700	.2756	.2811	.2866	. 2920	.2974	.3028	. 3080	.3133
.0075	.2736	. 2795	. 2852	.2910	. 2967	.3023		.3134	.3189	.3242
80	.2826	:2886	.2946	. 3005	.3064	.3122	.3180	. 3237	. 3293	
85	.2913	.2975	. 3037	.3098	.3158		. 3277	. 3336	. 3395	
90	.2997	.3061			.3250		. 3372	. 3433	. 3493	. 3552
95	.3079	.3145	.3210	.3275	. 3339	. 3402	. 3465	. 3527	.3589	. 3650
.0100	.3159	. 3227	. 3294	. 3360	. 3426	. 3491	. 3555	. 3619	. 3682	.3745

TABLE 81 (Continued)

Values of nv Corresponding to Different Values of r and s in Manning's Formula,  $v=\frac{1.486}{n}$   $r^{25}s^{12}$ 

To determine v, divide the tabulated values by n

. =			r	= hy	draulic	radiu	s in fee	et		
slope	4.2	4.4	4.6	4.8	5.0	5.2	5.4	5.6	5.8	6.0
.00005	.0274	.0282	0291	0299	0307	.0315	.0323	.0331	.0339	.0347
10	.0387								.0480	
15	.0474	.0489		0518	0532	0546	0580		.0588	.0601
20	.0547	0564	.0581	0500	0615	0621	0847	0863	0872	.0694
25	0610	0421	.0650	0000	0013	0705	0799	0741	0750	.0776
			· .			-				
.00030	.0670	.0691	.0712	.0732	.0753	.0773	.0792	.0812	.0831	.0850
35	.0724	.0747	.0769	.0791	.0813	.0834	.0856	.0877	.0897	.0918
40	.0774	.0798	.0822	.0816	.0369	.0892	.0915	.0937	.0959	.0981
45	.0821	.0846	.0872	.0397	.0922	.0946	.0970	.0994	.1018	. 1041
50	.0865	.0892	.0919	.0946	.0972	.0997	.1023	.1048	.1073	.1097
.00055	.0907	.0936	.0964	.0992	. 1019	.1046	. 1073	.1099	.1125	.1152
60	.0948	.0977	.1007	1036	.1064	.1092	.1120	.1148	.1175	.1202
65	.0986	1017	1048	. 1078	. 1108	. 1137	. 1166	.1195	. 1223	. 1251
70	1024	1056	1087	1119	.1150	.1180	.1210	.1240	1269	.1298
75	1059	.1093	.1087 .1125	.1158	.1190	.1222	.1253	.1284	.1314	. 1344
.00080	1094	1129	1163	1196	1229	.1262	. 1294	. 1325	.1357	1388
85	1128	1163	1108	1233	1267	1300	1334	1366	1300	1431
90	1181	1107	.1198 .1233 .1267	1260	1304	1338	1372	1406	1430	1472
95	1102	1230	1267	1303	1330	1375	1410	1444	1470	1519
100	.1223	.1262	.1300	.1337	.1374	.1410	.1446	.1482	.1517	.1553
.0011	1992	1222	. 1363	1409	1441	1470	1517	. 1554	. 1591	.1627
12	1240	1202	.1424	1465	1505	1545	1594	1623	.1662	1700
13	1205	1420	1482	1595	1567	1808	1840	1600	1730	1760
14	1447	1402	1520	1500	1808	1880	1711	1752	1705	1026
15	.1498	.1545	.1538	.1638	.1683	.1727	1771	.1815	.1858	.1900
.0016	1		.1644	1						
17	1505	1845	.1695	1742	1702	1830	1888	1032	.1978	. 2003
18	1841	1803	1744	1704	1844	1802	1041	.1988	.2035	
19	1600	1720	.1744 .1792	1042	1004	1044	1004	2042	2091	2139
20	.1730	.1784	.1838	.1891	.1943	.1995	.2046	.2096	.2145	
.0025						- 1	- 1			. 2454
	.1934	1995	.2055 $.2251$	.2114	.21/3	2440	2201	9567	.2399	0404
30 35	.2119	.2180	.2251	.2310	.2350	2440	2000	2007	.2628	.2688
<b>30</b>	.2289	.2361	.2432	.2002	.2011	2009	.2400	2012	.2838	2100
40	.2447	.2524	.2600	.2674	.2/48	.4841	.2893	2904		.3103
45	. 2595	.2677	.2757	ļ	1		.3068		.3218	. 3292
.0050	.2735	.2821	.2906	.2990	.3072	. 8154	.3234	.3314	.3392	.3470
55	.2869	.2959	.3048	.3136	.3222	.3308	.3392	.3475	.3558	. 3639 [
60	. 2996	.3091	.3184	.3275	. 3366	.3455	.3543	.3630	.3716	3801
65	.3119	.3217	3314	.3409	3503	.3596	.3688	3778	.3868	.3956
70	.3237	.3338	.3314 .3439	3538	.3635	.3732	.3827	.3921	.4014	.4105
.0075	. 3350	3456	.3560	3662	3763	3863	3981	. <b>405</b> 8		j
80	.3460	3560	.3676	3789	.3886	3080	4001	. 2000		- 1
85		3670	.3790	.3898		. 5505	. 1001			- 1
90	.3670	.3785	.3899		. 2000					- 1
95	.3770	.3889		. 1012						
.0100	. 3868	. 3990								

TABLE 81 (Continued)

Values of nv Corresponding to Different Values of r and s in Manning's Formula,  $v = \frac{1.486}{n} r^{76} s^{1/2}$ 

To determine v, divide the tabulated values by n

8 ==			r	= hy	draulic	radiu	s in fee	et		
alope	6.2	6.4	6.6	6.8	7.0	7.2	7.4	7.6	7.8	8.0
.00005		.0362		.0377		.0392				
10	.0502	.0512	.0523	.0533		.0554	.0564	.0574	.0584	
15 20	.0614	.0627	.0640			.0679 .0784	.0691 .0798	0612	.0716 .0826	00728
25	.0793	.0810				.0876			.0924	.0940
.00030		.0887		.0924	.0942	.0960	.0977		. 1012	
35 <b>40</b>	.0938	.0958	.0978	.0998	.1017	.1037	.1056	. 1075	.1093	.1112
45	.1003	.1025	.1046	. 1067 . 1132	1154	.1108 .1175	1107	.1219	.1169	. 1261
50	.1121		.1169	.1193	. 1216	. 1239	.1262	.1284	. 1307	.1329
.00055		. 1201	.1226		.1275	. 1299	. 1323	.1347	. 1371	
60 65	.1229		.1281	.1307	.1332	.1357	.1382	.1407	.1432	.1456
70	.1327		.1333	1411	1430	.1413 .1466	1493	.1520	.1546	. 1573
75	.1374		.1432	.1461	.1489	. 1517	.1545	.1573	. 1601	. 1628
.00080	. 1419			. 1509	. 1538	. 1567	. 1596	. 1625	.1653	
85 90	. 1462	.1493	.1524	.1555	.1585	.1615	.1645	.1675	.1704	.1733
95	.1505	. 1537 . 1579		.1644	. 1631 . 1676	.1662 .1708	.1693 .1739	.1723 .1771	. 1753 . 1801	.1783
100	.1586			.1687	.1720	.1752	.1785	.1817	.1848	.1880
.0011	. 1663			. 1769	. 1804	.1838	.1872	. 1905		. 1971
12 13	1737	.1774	.1811	.1848	.1884	.1919	. 1955	. 1990	.2025	. 2059
14	. 1808 . 1877	. 1847 . 1917	.1885	. 1923 . 1996	. 1961 . 2035	.1998 .2073	.2035	.2071	.2107 .2187	.2143
15	. 1942			2066		.2146	.2186	2225	.2264	2302
.0016	.2006		.2091	.2134		.2216	. 2257	. 2298		.2378
17 18	.2068			.2199	.2242		.2327		.2410	.2451
19	.2128		.2218 .2279	.2263 .2325	.2307	.2351 $.2415$	. 2394 . 2460	.2437	.2480 .2548	. 2522 . 2591
20	.2243			.2385	.2432				.2614	2658
.0025	. 2508		.2614	. 2667		. 2770	.2822	.2872	. <b>2</b> 922	. 2972
30	2747		.2864	.2921	.2978	.3035	.3091		.3201	. 3256
35 <b>40</b>	.3172		.3093					.3398	.3458 .3696	.3517 .3759
45	.3364								.3921	.3987
.0050	. 3546	. 3622	. 3697		.3845			. 4062	.4133	. 4203
55	.3719	.3799		.3956	.4033	.4109	.4185		Ì	
60 65	.3885		. 4050	.4132		1	- 1	-	l	
<b>7</b> 0	.4043	.4100		İ	- 1		- 1	1	1	

### Table 81 (Concluded)

VALUES OF nv CORRESPONDING TO DIFFERENT VALUES OF r and s in Manning's Formula,  $v = \frac{1.486}{n} r^3 s^{1/2}$ To determine v, divide the tabulated values by n

			r	= hy	lraulic	radius	in fee	t		
slope	8.2	8.4	8.6	8.8	9.0	9.2	9.4	9.6	9.8	10.0
.00005	.0427	.0434	.0441	.0448	.0455	.0461	.0468	.0475	.0481	.0488
10	.0604	.0614		.0633	.0643	.0653	.0662	.0671	.0681	.0690
15	.0740	.0752	.0764	.0776	.0787	.0799	.0811	.0822	.0833	.0845
20	.0855	.0868		.0896	.0909	.0923	.0936	.0949	.0962	.0975
25	.0955	.0971	.0986	. 1002	. 1017	. 1032	. 1047	.1061	. 1076	. 1091
.00030	.1047	1064	. 1080	. 1097	.1114	.1130	.1146	.1163	.1179	.1195
35	.1131	.1149	.1167	.1185	.1203	. 1221		.1256	. 1273	.1290
40	. 1209		.1248	. 1267	.1286				. 1361	
45	.1282		. 1323		.1364	.1384		.1424		. 1463
50	. 1351	. 1373	.1395	.1416	. 1438	. 1459	.1480	. 1501	.1522	.1542
.00055	.1417	1440	.1463	. 1485	.1508	. 1530	.1552	.1574	.1596	.1618
60	1480	.1504	.1528	.1552	.1575	.1598	.1621	. 1644	.1667	
65	. 1541	. 1566	.1590	. 1615	.1639	.1664	.1687	.1711	.1735	.1759
70	. 1599		. 1650		. 1701	.1726	. 1751	.1776	. 1801	
75	. 1655	. 1682	.1708	.1735	.1761	.1787	.1813	. 1838	. 1864	. 1889
.00080	. 1709	.1737	.1764	.1792	. 1819	. 1845	.1872	.1899	. 1925	. 1951
85	. 1762						. 1930	. 1957	. 1984	.2011
90	. 1813	.1842	. 1871		. 1929	.1957			.2042	
95	. 1863			.1952	. 1982	. 2011	.2040	. 2069	. 2098	
100	.1911	. 1942	. 1973	. 2003	.2033	.2063	.2093	.2123	.2152	.2181
.0011	. 2004	. 2037		.2101	.2133	.2164	.2195	. 2226		. 2288
12	. 2093		.2161	.2194	.2227	. 2260	. 2293	.2325	. 2357	. 2389
13	.2179					.2352	.2386			.2487
14	. 2261				.2406	.2441	.2477	.2512	.2546	.2581
15	. 2340	.2378	.2416	.2453	.2490	.2527	. 2563	.2600	. 2636	.2671
.0016	.2417	.2456			.2572	.2610	.2648	.2685	. 2722	.2759
17	.2491			.2612	.2651	.2690	.2729	.2768	.2806	. 2844
18	.2564				.2728	.2768	. 2808	.2848	. 2887	.2926
19	. 2634	.2677	.2719	.2761	.2803	.2844	.2885	.2926	.2966	3007
20	. 2702	.2746	.2/90	.2833	.2875	.2918	. 2960	. 3002	. 3044	.3085
.0025	. 3021				.3215	.3262	. 3309		. 3403	.3449
30	.3310			.3469	. 3522	. 3574	. 3625		.3727	.3778
35	. 3575					.3860			.4026	.4081
40	.3822			.4006	.4066	.4127	.4186	.4245	- 1	
45	. 4054	.4119	.4184	ł	J	ļ	į	1	-	1
<u> </u>		1		1	1	i	1	!		

Table 82.—Values of  $\frac{1}{2.2082\,r^{\frac{1}{2}}}$  Corresponding to Different Values of r, for Determining the Slope of Open Channels by Manning's Formula

To determine s, multiply the tabulated value corresponding to r by  $(nv)^2$ 

							_				
r	.00	.01	.02	.03,	.04	.05	.06	.07	.08	.09	
.1	9.76	8.59	7.67	6.88	6.23	5.68	5.21	4.81	4.46	4.15	
.2	3.87	3.63	3.41	3.22	3.04	2.88	2.73	2.60	2.47	2.36	
.3	2.25	2.16	2.07	1.99	1.91	1.84	1.77	1.70	1.65	1.59	
.4	1.54	1.49	1.44	1.40	1.35	1.31	1.28	1.24	1.20	1.17	
.5	1.14	1.11	1.08	1.06	1.03	1.01	.981	.958	.936	.915	
.6 .7 .8 .9	.895 .729 .610 .521 .453	.875 .715 .600 .514 .447	.857 .702 .590 .506	.839 .689 .581 .499 .435	.821 .677 .571 .492 .430	.804 .665 .562 .485 .424	.788 .653 .554 .478 .419	.772 .642 .545 .472 .414	.757 .631 .537 .465 .409	.743 .620 .529 .459 .404	
1.1	.399	.394	.389	.385	.380	.376	.372	.367	.363	.359	
1.2	.355	.351	.347	.344	.340	.336	.333	.329	.326	.322	
1.3	.319	.316	.313	.310	.307	.304	.301	.298	.295	.292	
1.4	.289	.286	.284	.281	.279	.276	.273	.271	.269	.266	
1.5	.264	.261	.259	.257	.255	.253	.250	.248	.246	.244	
1.6	.242	.240	.238	.236	.234	.232	.230	.229	.227	.225	
1.7	.223	.221	.220	.218	.216	.215	.213	.212	.210	.208	
1.8	.207	.205	.204	.202	.201	.199	.198	.197	.195	.194	
1.9	.192	.191	.190	.189	.187	.186	.185	.183	.182	.181	
2.0	.180	.179	.177	.176	.175	.174	.173	.172	.171	.169	
2.1	.168	.167	.166	.165	.164	.163	.162	.161	.160	.159	
2.2	.158	.157	.156	.155	.155	.154	.153	.152	.151	.150	
2.3	.149	.148	.147	.147	.146	.145	.144	.143	.143	.142	
2.4	.141	.140	.139	.139	.138	.137	.136	.136	.135	.134	
2.5	.133	.133	.132	.131	.131	.130	.129	.129	.128	.127	
2.6 2.7 2.8 2.9 3.0	.127 .120 .115 .109 .105	.126 .120 .114 .109 .104	.125 .119 .114 .108 .104	.125 .119 .113 .108 .103	.124 .118 .113 .108 .103	.124 .118 .112 .107	.123 .117 .112 .107 .102	.122 .116 .111 .106 .101	.122 .116 .111 .106 .101	.121 .115 .110 .105 .101	
3.1 3.2 3.3 3.4 3.5	.1002 .0960 .0921 .0886 .0852	.0998 .0956 .0918 .0882 .0849	.0993 .0952 .0914 .0879	.0989 .0948 .0911 .0875 .0843	.0985 .0945 .0907 .0872 .0839	.0981 .0941 .0903 .0869	.0977 .0937 .0900 .0865 .0833	.0972 .0933 .0896 .0862 .0830	.0968 .0929 .0893 .0859 .0827	.0964 .0925 .0889 .0855 .0824	
3.6	.0821	.0818	.0815	.0812	.0809	.0806	.0803	.0800	.0797	.0794	
3.7	.0791	.0788	.0786	.0783	.0780	.0777	.0775	.0772	.0769	.0766	
3.8	.0764	.0761	.0758	.0756	.0753	.0750	.0748	.0745	.0743	.0740	
3.9	.0738	.0735	.0733	.0730	.0728	.0725	.0723	.0720	.0718	.0716	
4.0	.0713	.0711	.0708	.0706	.0704	.0701	.0699	.0697	.0695	.0692	
4.1 4.2 4.3 4.4 4.5	.0690 .0668 .0648 .0628 .0610	.0688 .0666 .0646 .0626	.0686 .0664 .0644 .0624 .0606	.0683 .0662 .0642 .0622 .0604	.0681 .0660 .0640 .0621 .0602	.0679 .0658 .0638 .0619 .0601	.0677 .0656 .0636 .0617 .0599	.0675 .0654 .0634 .0615 .0597	.0673 .0652 .0632 .0613 .0595	.0670 .0650 .0630 .0611 .0594	
4.6	.0592	.0590	.0589	.0587	.0585	.0583	.0582	.0580	.0578	.0577	
4.7	.0575	.0574	.0572	.0570	.0569	.0567	.0566	.0564	.0562	.0561	
4.8	.0559	.0558	.0556	.0555	.0553	.0552	.0550	.0549	.0547	.0546	
4.9	.0544	.0543	.0541	.0540	.0538	.0537	.0535	.0534	.0533	.0531	
5.0	.0530	.0528	.0527	.0525	.0524	.0523	.0521	.0520	.0519	.0517	

### Table 82 (Concluded)

# VALUES OF $\frac{1}{2.2082r\%}$ Corresponding to Different Values of r for Determining the Slope of Open Channels by Manning's Formula

To determine s, multiply the tabulated value corresponding to r by  $(nv)^2$ 

r	.0	.1	.2	.3	.4	.5	.6	.7	.8	.9
5	.0530	.0516	.0503	.0490	.0478	.0466	.0455	.0445	.0435	.0425
6	.0415	.0406	.0398	.0389	.0381	.0373	.0365	.0358	.0351	.0345
7	.0338	.0332	.0326	.0320	.0314	.0308	.0303	.0298	.0293	.0288
8	.0283	.0278	.0274	.0269	.0265	.0261	.0257	.0253	.0249	.0246
ğ	.0242	.0238	.0235	.0232	.0228	.0225	.0222	.0219	.0216	.0213
10	.0210	.0207	.0205	.0202	.0199	.0197	.0194	.0192	.0190	.0187
11	.0185	.0183	.0181	.0179	.0177	.0175	.0173	.0171	.0169	.0167
12	.0165	.0163	.0161	.0160	.0158	.0156	.0154	.0153	.0151	.0150
13	.0148	.0147	.0145	.0144	.0142	.0141	.0140	.0138	.0137	.0136
14	.0134	.0133	.0132	.0130	.0129	.0128	.0127	.0126	.0125	.0124
15	.01224	01213	.01203	01192	.01182	.01172	.01162	.01152	.01142	.01132
16			.01105					.01061	.01052	.01044
17	.01036		.01020						.00974	
18	.00960	.00953	.00946	.00939	.00932	.00925	.00919	.00912	.00906	.00900
19	.00893	.00887	.00881	.00875	.00869	.00863	.00857	.00851	.00845	.00840
20	.00834	.00829	.00823	.00818	.00812	.00807	.00802	.00797	.00792	.00787
21		.00777	.00772	.00767	.00762	.00758	.00753		.00744	.00739
22	.00735	.00730	.00726	.00722	.00717	.00758 .00713	.00709	.00705	.00700	.00696
· 23	.00692	.00688	.00684	.00680	.00677	.00673	.00669		.00661	
24	.00654	.00651	.00647	.00643	.00640	.00636	.00633	.00630	.00626	.00623
25	.00620	.00616	.00613	.00610	.00607	.00603	.00600	.00597	.00594	.00591
26	.00588	.00585	.00582				.00570	.00567		.00562
27	.00559			.00551		.00546				.00535
28	.00533	.00530	.00528	.00525	.00523	.00520				
29	.00508	.00506	.00504	.00501	.00499	.00497	.00495	.00493	.00490	.00488
30 .	.00486	.00484	.00482	.00479	.00477	.00475	.00473	.00471	.00469	.00467
31			.00461							
32			.00442							
33			.00424							
34	.00411	.00410	.00408	.00407	.00405	.00403	.00402	.00400	.00399	.00397
35	.00396	.00394		.00391	.00390	.00388	.00387	.00385	.00384	.00382
36	.00381	.00380	.00378	.00377	.00375	.00374	.00378	.00371	.00370	.00369
37		.00366	.00365	.00363	.00362	.00361	.00360	.00358	.00357	.00356
38	.00354		.00352	.00351	.00350	.00848	.00347	.00346	.00345	.00344
39 .	.00342	.00341	.00340	.00339	.00338	.00337	.00336	.00334	.00338	.00332
40	.00331			.00328	.00327	.00326	.00324	.00323	.00322	.00321
41			.00318							.00311
42	.00310	.00309	.00308	.00307	.00306	.00305	₁00304	.00303	.00302	
43	.00301	.00300	.00299	.00298	.00297	.00296	.00295	.00294	.00293	.00292
44	.00292	.00291	.00290	.00289	.00288	.00287	.00286	.00285	.00285	.00284
45	.00283	.00282	.00281	.00280	.00280	.00279	.00278	.00277	.00276	.00276
46	.00275	.00274	.00273	.00272	.00272	.00271	.00270		.00268	
47	.00267	.00266	.00265	.00265	.00264	.00263	.00263	.00262		.00260
48	.00260	.00259	.00258	.00257	.00257	.00256	.00255	.00255	.00254	.00253
49	.00253	.00252	.00251	.00251	.00250	.00249	.00248	.00248	.00247	.00247
. 50	.00246	.00245	.00245	.00244	.00243	.00243	.00242	.00241	.00241	.00240
51	.00239			.00238	.00237	.00236	.00236	.00235	.00235	.00234
52	.00233		.00232	.00232	.00231			.00229	.00229	.00228
53	.00227		.00226	.00226	.00225	.00225	.00224	.00224	.00223	.00222
54	.00222	.00221	.00221	.00220	.00220	.00219	.00219	.00218	.00218	.00217
									الـــــــــــــــــــــــــــــــــــــ	. '

TABLE 83.—SQUARE ROOTS OF DECIMAL NUMBERS

Num- ber	0	1	2	3	4	5	6	7	8	9
				<u> </u>	<u> </u>		<u> </u>	<u> </u>		<u> </u>
.00001	.003162	.003317	.003464	.003606	.003742	.003873	.004000	.004123	.004243	.00435
	.004472		.004690				.005099		.005292	
	.005477		.005657			.005916	.006000	.006083	.006164	.00624
	.006325		.006481			.006708	.006782	.006856	.006928	.00700
									.007616	
.00006	.007746	.007810	.007874	.007937	.008000	.008062	.008124	.008185	.008246	.00830
.00007	.008367		.008485						.008832	.00888
		.009000	.009055	.009110	.009165	.009220	.009274		.009381	.00943
	.009487	.009539	.009592	.009644	.009695	.009747		.009849	.009899	.00995
		.010050						.010344	.010392	.01044
.0001	.01000	,01049	.01095	.01140	.01183	.01225	.01265	.01304	.01342	.01378
.0002	.01414	.01449	.01483	.01517	.01549	.01581	.01612	.01643	.01673	.01703
.0003	.01732	.01761	.01789	.01817	.01844	.01871	.01897	.01924	.01949	.01975
.0004	.02000	.02025	.02049	.02074	.02098	.02121	.02145	.02168	.02191	.02214
.0005	.02236	.02258	.02280	.02302	.02324	.02345	.02366	.02387	.02408	.02429
.0006	.02449	.02470	.02490	.02510	.02530	.02550	.02569	.02588	.02608	.02627
.0007	.02646	.02665	.02683	.02702	.02720	.02739	.02757	.02775	.02793	.02811
.0008	.02828	.02846	.02864	.02881	.02898	.02915	.02933	.02950	.02966	.02983
.0009	.03000	.03017	.03033	.03050	.03066	.03082	.03098	.03114	.03130	.03146
.0010	.03162	.03178	.03194	.03209	.03225	.03240	.03256	.03271	.03286	.03302
.001	.03162	.03317	.03464	.03606	.03742	.03873	.04000	.04123	.04243	.04359
.002	.04472	.04583	.04690	.04796	.04899	.05000	.05099	.05196	.05292	.05385
.003	.05477	.05568	.05657	.05745	.05831	.05916	.06000	.06083	.06164	.06245
.004	.06325	.06403	.06481	.06557	.06633	.06708	.06782	.06856	.06928	.07000
.005	.07071	.07141	.07211	.07280	.07348	.07416	.07483	.07550	.07616	.07681
.006	.07746	.07810	.07874	.07937	.08000	.08062	.08124	.08185	.08246	.08307
.007	.08367	.08426	.08485	.08544	.08602	.08660	.08718	.08775	.08832	.08888
.008	.08944	.09000	.09055	.09110	.09165	.09220	.09274	.09327	.09381	.09434
.009	.09487	.09539	.09592	.09644	.09695	.09747	.09798	.09849	.09899	.09950
.010	.10000	.10050	.10100	.10149	.10198	.10247	.10296	.10344	.10392	.10440
.01	.1000	.1049	.1095	.1140	.1183	.1225	.1265	.1304	.1342	. 1378
	.1414	.1449	.1483	. 1517	.1549	.1581	.1612	.1643		.1703
	.1732	.1761	.1789	.1817	. 1844	.1871	.1897	.1924	.1949	. 1975
.04	.2000	. 2025	.2049	.2074	.2098	.2121	.2145	.2168	.2191	.2214
.05	.2236	.2258	.2280	.2302	.2324	.2345	.2366	.2387	.2408	.2429
.06	.2449	.2470	.2490	.2510	.2530	.2550	.2569	.2588	.2608	.2627
.07	.2646	. 2665	.2683	.2702	.2720	.2739	.2757	.2775	.2793	.2811
.08	.2828	.2846	.2864	.2881	.2898	.2915	.2933	.2950	.2966	.2983
			.3033	.3050	.3066	.3082	.3098	.3114	.3130	.3146
.09	.3000	.3017	.3194	. 50000	.3225	.3240	.3256	.3271	.3286	.0170

TABLE 84.—Two-THIRDS POWERS OF NUMBERS

Number	.00	.01	.02	.03	.04	.05	.06	.07	.08	.09
.0 .1 .2 .3	.000 .215 .342 .448 .543	.046 .229 .353 .458 .552	.074 .243 .364 .468 .561	.097 .256 .375 .477 .570	.117 .269 .386 487 . 578	.136 .282 .397 .497 .587		.170 .307 .418 .515	.186 .319 .428 .525 .613	.20 .33 .43 .53
.5 .6 .7 .8	.630 .711 .788 .862 .932	.638 .719 .796 .869 .939	.647 .727 .803 .876 .946	.655 .735 .811 .883 .953	.663 .743 .818 .890 .960	.671 .750 .825 .897 .966	.679 .758 .832 .904 .973	.687 .765 .840 .911 .980	.695 .773 .847 .918 .987	.70 .78 .85 .92 .99
1.0 1.1 1.2 1.3 1.4	1.065 1.129 1.191	1.072 1.136 1.197	1.078 1.142 1.203	1.085 1.148 1.209	1.091 1.154 1.215	1.097 1.160 1.221	1.040 1.104 1.167 1.227 1.287	1.110 1.173 1.233	1.117 1.179 1.239	1.12 1.18 1.24
1.5 1.6 1.7 1.8 1.9	1.368 1.424 1.480	1.374 1.430 1.485	1.379 1.436 1.491	1.385 1.441 1.496	1.391 1.447 1.502	1.396 1.452 1.507	1.345 1.402 1.458 1.513 1.566	1.408 1.463 1.518	1.413 1.469 1.523	1.411 1.474 1.521
2.0 2.1 2.2 2.3 2.4	1.639	1.645	1.650 1.702	1.655	$1.660 \\ 1.712$	$\frac{1.665}{1.717}$	1.619 1.671 1.722 1.772 1.822	1.676 1.727	1.681 1.732	1.680
2.5 2.6 2.7 2.8 2.9	1.891 1.939 1.987	1.896 1.944 1.992	1.900 1.949 1.996	1.905 1.953 2.001	1.910 1.958 2.006	1.915 1.963 2.010	1.871 1.920 1.968 2.015 2.062	1.925 1.972 2.020	1.929 1.977 2.024	1.934 1.982 2.024
3.0 3.1 3.2 3.3 3.4	2 126	2 131	2 135	2 140	2 144	2 140	2.108 2.153 2.199 2.243 2.288	2 158	2 163	2 16'
3.5 3.6 3.7 3.8 3.9	2.435	2.439	2.444	2.448	2.452	2.457	2.331 2.375 2.418 2.461 2.503	2.400	2.4HH	2.474
4.0 4.1 4.2 4.3 4.4	2.644	2.648	2.653	2.657	2.661	2.665	2.545 2.587 2.628 2.669 2.710	2.673	2.677	2.68
4.5 4.6 4.7 4.8 4.9	2.726 2.766 2.806 2.846 2.885	2.730 2.770 2.810 2.850 2.889	2.734 2.774 2.814 2.854 2.893	2.738 2.778 2.818 2.858 2.897	2.742 2.782 2.822 2.862 2.901	2.746 2.786 2.826 2.865 2.904	2.750 2.790 2.830 2.869 2.908	2.754 2.794 2.834 2.873 2.912	2.758 2.798 2.838 2.877 2.916	2.762 2.802 2.842 2.881 2.920

### TABLE 84 (Concluded)

### Two-thirds Powers of Numbers

Number	.00	.01	.02	.03	.04	.05	.06	.07	.08	.09
5.0 5.1 5.2 5.3 5.4	2.963 3.001 3.040	2.928 2.967 3.005 3.044 3.082	2.971 3.009 3.047	2.975 3.013 3.051	2.979 3.017 3.055	2.982 3.021 3.059	2.986 3.024 3.063	2.990 3.028 3.067	2.994 3.032 3.070	2.998 3.036 3.074
5.5 5.6 5.7 5.8 5.9	3.116 3.154 3.191 3.228 3.265	3.120 3.157 3.195 3.232 3.269	3.123 3.161 3.198 3.236 3.273	3.127 3.165 3.202 3.239 3.276	3.131 3.169 3.206 3.243 3.280	3.135 3.172 3.210 3.247 3.284	3.138 3.176 3.213 3.250 3.287	3.142 3.180 3.217 3.254 3.291	3.146 3.184 3.221 3.258 3.295	3.150 3.187 3.224 3.261 3.298
6.0 6.1 6.2 6.3 6.4	3.375 3.411 3.447	•	3.382 3.418 3.454	3.386 3.422 3.458	3.389 3.426 3.461	3.393 3.429 3.465	3.397 3.433 3.469	3.400 3.436 3.472	3.404 3.440 3.476	3.408 3.444 3.479
6.5 6.6 6.7 6.8 6.9	3.483 3.519 3.554 3.589 3.624	3.486 3.522 3.558 3.593 3.628	3.490 3.526 3.561 3.596 3.631	3.494 3.529 3.565 3.600 3.635	3.497 3.533 3.568 3.603 3.638	3.501 3.536 3.572 3.607 3.642	3.504 3.540 3.575 3.610 3.645	3.508 3.543 3.579 3.614 3.649	3.511 3.547 3.582 3.617 3.652	3.515 3.550 3.586 3.621 3.656
7.0 7.1 7.2 7.3 7.4	3.694 3.729 3.763	3.663 3.698 3.732 3.767 3.801	3.701 3.736 3.770	3.705 3.739 3.773	3.708 3.742 3.777	3.712 3.746 3.780	3.715 3.749 3.784	3.718 3.753 3.787	3.722 3.756 3.791	3.725 3.760 3.794
7.5 7.6 7.7 7.8 7.9	3.832 3.866 3.899 3.933 3.967	3.835 3.869 3.903 3.937 3.970	3.838 3.872 3.906 3.940 3.973	3.842 3.876 3.910 3.943 3.977	3.845 3.879 3.913 3.947 3.980	3.849 3.883 3.916 3.950 3.983	3.852 3.886 3.920 3.953 3.987	3.855 3.889 3.923 3.957 3.990	3.859 3.893 3.926 3.960 3.993	3.862 3.896 3.930 3.963 3.997
8.0 8.1 8.2 8.3 8.4	4.066	4.003 4.037 4.070 4.103 4.136	4.073	4.076	4.080	4.083	$\frac{4.086}{4.119}$	$\frac{4.090}{4.122}$	4.093 4.126	4.096 4.129
8.5 8.6 8.7 8.8 8.9	4.198 4.230 4.262	4.168 4.201 4.233 4.266 4.298	1.204 4.237 4.269	4.207 4.240 4.272	4.211 4.243 4.275	4.214 4.246 4.279	4.217 4.249 4.282	4.220 4.253 4.285	4.224 4.256 4.288	4.227 4.259 4.291
9.0 9.1 9.2 9.3 9.4	4.359 4.391 4.422	4.330 4.362 4.394 4.426 4.457	4.365 4.397 4.429	4.368 4.400 4.432	4.372 4.403 4.435	4.375 4.407 4.438	4.378 4.410 4.441	4.381 4.413 4.445	4.384 4.416 4.448	4.387 4.419 4.451
9.5 9.6 9.7 9.8 9.9	1.548	4.489 4.520 4.551 4.583 4.614	4.555	4.558	4.561	4.564	4.567	4.570	4.573	4.576
10.0	4.642		<u> </u>						l	

TABLE 85.—THREE-EIGHTHS POWERS OF NUMBERS

Number	.00	.01	.02	.03	.04	.05	.06	.07	.08	.09
.0 .1 .2 .3 .4	.00 .42 .55 .64 .71	.18 .44 .56 .65	.23 .45 .57 .65	.27 .47 .58 .66 .73	.30 .48 .59 .67	.33 .49 .59 .67	.35 .50 .60 .68 .75	.37 .51 .61 .69	.39 .53 .62 .70	.41 .54 .63 .70
.5 .6 .7 .8 .9	.77 .83 .87 .92 .96	.78 .83 .88 .92 .97	.78 .84 .88 .93 .97	.79 .84 .89 .93 .97	.79 .85 .89 .94 .98	.80 .85 .90 .94 .98	.80 .86 .90 .94 .98	.81 .86 .91 .95	.82 .87 .91 .95	.82 .87 .92 .96 1.00
1.0	1.00	1.00	1.01	1.01	1.01	1.02	1.02	1.03	1.03	1.03
1.1	1.04	1.04	1.04	1.05	1.05	1.05	1.06	1.06	1.06	1.07
1.2	1.07	1.07	1.08	1.08	1.08	1.09	1.09	1.09	1.10	1.10
1.3	1.10	1.11	1.11	1.11	1.12	1.12	1.12	1.13	1.13	1.13
1.4	1.13	1.14	1.14	1.14	1.15	1.15	1.15	1.16	1.16	1.16
1.5	1.16	1.17	1.17	1.17	1.18	1.18	1.18	1.18	1.19	1.19
1.6	1.19	1.20	1.20	1.20	1.20	1.21	1.21	1.21	1.21	1.22
1.7	1.22	1.22	1.23	1.23	1.23	1.23	1.24	1.24	1.24	1.24
1.8	1.25	1.25	1.25	1.25	1.26	1.26	1.26	1.26	1.27	1.27
1.9	1.27	1.27	1.28	1.28	1.28	1.28	1.29	1.29	1.29	1.29
2.0	1.30	1.30	1.30	1.30	1.31	1.31	1.31	1.31	1.32	1.32
2.1	1.32	1.32	1.33	1.33	1.33	1.33	1.33	1.34	1.34	1.34
2.2	1.34	1.35	1.35	1.35	1.35	1.36	1.36	1.36	1.36	1.36
2.3	1.37	1.37	1.37	1.37	1.38	1.38	1.38	1.38	1.38	1.39
2.4	1.39	1.39	1.39	1.40	1.40	1.40	1.40	1.40	1.41	1.41
2.5	1.41	1.41	1.41	1.42	1.42	1.42	1.42	1.42	1.43	1.43
2.6	1.43	1.43	1.44	1.44	1.44	1.44	1.44	1.45	1.45	1.45
2.7	1.45	1.45	1.46	1.46	1.46	1.46	1.46	1.47	1.47	1.47
2.8	1.47	1.47	1.48	1.48	1.48	1.48	1.48	1.48	1.49	1.49
2.9	1.49	1.49	1.49	1.50	1.50	1.50	1.50	1.50	1.51	1.51
3.0	1.51	1.51	1.51	1.52	1.52	1.52	1.52	1.52	1.52	1.53
3.1	1.53	1.53	1.53	1.53	1.54	1.54	1.54	1.54	1.54	1.54
3.2	1.55	1.55	1.55	1.55	1.55	1.56	1.56	1.56	1.56	1.56
3.3	1.56	1.57	1.57	1.57	1.57	1.57	1.58	1.58	1.58	1.58
3.4	1.58	1.58	1.59	1.59	1.59	1.59	1.59	1.59	1.60	1.60
3.5	1.60	1.60	1.60	1.61	1.61	1.61	1.61	1.61	1.61	1.62
3.6	1.62	1.62	1.62	1.62	1.62	1.63	1.63	1.63	1.63	1.63
3.7	1.63	1.63	1.64	1.64	1.64	1.64	1.64	1.64	1.65	1.65
3.8	1.65	1.65	1.65	1.65	1.66	1.66	1.66	1.66	1.66	1.66
3.9	1.67	1.67	1.67	1.67	1.67	1.67	1.68	1.68	1.68	1.68
4.0	1.68	1.68	1.68	1.69	1.69	1.69	1.69	1.69	1.69	1.70
4.1	1.70	1.70	1.70	1.70	1.70	1.71	1.71	1.71	1.71	1.71
4.2	1.71	1.71	1.72	1.72	1.72	1.72	1.72	1.72	1.73	1.73
4.3	1.73	1.73	1.73	1.73	1.73	1.74	1.74	1.74	1.74	1.74
4.4	1.74	1.74	1.75	1.75	1.75	1.75	1.75	1.75	1.75	1.76
4.5	1.76	1.76	1.76	1.76	1.76	1.77	1.77	1.77	1.77	1.77
4.6	1.77	1.77	1.78	1.78	1.78	1.78	1.78	1.78	1.78	1.79
4.7	1.79	1.79	1.79	1.79	1.79	1.79	1.80	1.80	1.80	1.80
4.8	1.80	1.80	1.80	1.81	1.81	1.81	1.81	1.81	1.81	1.81
4.9	1.81	1.82	1.82	1.82	1.82	1.82	1.82	1.82	1.83	1.83

Table 85 (Continued)

### THREE-EIGHTHS POWERS OF NUMBERS

Number	.0	.1	.2	.3	.4	.5	.6	.7	.8	.9
5. 6. 7. 8. 9.	1.96 1 2.07 2 2.18 2	1.84 1.97 2.09 2.19 2.29	1.86 1.98 2.10 2.20 2.30	1.87 1.99 2.11 2.21 2.31	1.88 2.01 2.12 2.22 2.32	1.89 2.02 2.13 2.23 2.33	1.91 2.03 2.14 2.24 2.34	1.92 2.04 2.15 2.25 2.34	1.93 2.05 2.16 2.26 2.35	1.94 2.06 2.17 2.27 2.36
10. 11. 12. 13. 14.	2.46 2 2.54 2 2.62 2	2.38 2.46 2.55 2.62 2.70	2.39 2.47 2.56 2.63 2.71	2.40 2.48 2.56 2.64 2.71	2.41 2.49 2.57 2.65 2.72	2.42 2.50 2.58 2.65 2.73	2.42 2.51 2.59 2.66 2.73	2.43 2.52 2.59 2.67 2.74	2.44 2.52 2.60 2.68 2.75	2.45 2.53 2.61 2.68 2.75
15. 16. 17. 18. 19.	2.83 2 2.89 2 2.96 2	2.77 2.84 2.90 2.96 3.02	2.77 2.84 2.91 2.97 3.03	2.78 2.85 2.91 2.97 3.03	2.79 2.86 2.92 2.98 3.04	2.79 2.86 2.93 2.99 3.05	2.80 2.87 2.93 2.99 3.05	2.81 2.87 2.94 3.00 3.06	2.81 2.88 2.94 3.00 3.06	2.82 2.89 2.95 3.01 3.07
20. 21. 22. 23. 24.	3.13 3 3.19 3 3.24 3	3.08 3.14 3.19 3.25 3.30	3.09 3.14 3.20 3.25 3.30	3.09 3.15 3.20 3.26 3.31	3.10 3.15 3.21 3.26 3.31	3.10 3.16 3.21 3.27 3.32	3.11 3.17 3.22 3.27 3.32	3.12 3.17 3.22 3.28 3.33	3.12 3.18 3.23 3.28 3.33	3.13 3.18 3.24 3.29 3.34
25. 26. 27. 28. 29.	3.39 3 3.44 3 3.49 3	3.45 3.49	3.35 3.40 3.45 3.50 3.54	3.36 3.41 3.46 3.50 3.55	3.36 3.41 3.46 3.51 3.55	3.37 3.42 3.47 3.51 3.56	3.37 3.42 3.47 3.52 3.56	3.38 3.43 3.47 3.52 3.57	3.38 3.43 3.48 3.53 3.57	3.39 3.44 3.48 3.53 3.58
30. 31. 32. 33. 34.	3.62 3	3.58 3.63 3.67 3.72 3.76	3.59 3.63 3.68 3.72 3.76	3.59 3.64 3.68 3.72 3.76	3.60 3.64 3.69 3.73 3.77	3.60 3.65 3.69 3.73 3.77	3.61 3.65 3.69 3.74 3.78	3.61 3.66 3.70 3.74 3.78	3.62 3.66 3.70 3.74 3.79	3.62 3.66 3.71 3.75 3.79
35. 36. 37. 38. 39.	3.83 3 3.87 3 3.91 3	3.80 3.84 3.88 3.92 3.95	3.84 3.88 3.92 3.96	3.81 3.85 3.89 3.92 3.96	3.81 3.85 3.89 3.93 3.97	3.81 3.85 3.89 3.93 3.97	3.82 3.86 3.90 3.94 3.97	3.82 3.86 3.90 3.94 3.98	3.83 3.87 3.91 3.94 3.98	3.83 3.87 3.91 3.95 3.98
40. 41. 42. 43. 44.	4.03 4 4.06 4 4.10 4	3.99 4.03 4.07 4.10 4.14	4.00 4.03 4.07 4.10 4.14	4.00 4.04 4.07 4.11 4.14	4.00 4.04 4.08 4.11 4.15	4.01 4.04 4.08 4.12 4.15	4.01 4.05 4.08 4.12 4.15	4.01 4.05 4.09 4.12 4.16	4.02 4.05 4.09 4.13 4.16	4.02 4.06 4.09 4.13 4.16
45. 46. 47. 48. 49	4.24	4.17 4.21 4.24 4.27 4.31	4.18 4.21 4.24 4.28 4.31	4.18 4.21 4.25 4.28 4.31	4.18 4.22 4.25 4.28 4.32	4.19 4.22 4.25 4.29 4.32	4.19 4.22 4.26 4.29 4.32	4.19 4.23 4.26 4.29 4.33	4.20 4.23 4.26 4.30 4.33	4.20 4.23 4.27 4.30 4.33
50. 51. 52. 53. 54.	4.37 4.40 4.43	4.34 4.37 4.40 4.44 4.47	4.34 4.37 4.41 4.44 4.47	4.35 4.38 4.41 4.44 4.47	4.35 4.38 4.41 4.44 4.48	4.35 4.38 4.42 4.45 4.45	4.36 4.39 4.42 4.45 4.48	4.36 4.39 4.42 4.45 4.48	4.36 4.39 4.43 4.46 1.49	4.37 4.40 4.13 4.46 4.49

Table 85 (Concluded)
Three-Eighths Powers of Numbers

Number	0	1	2	3	4	5	6	7	8	9
50.	4.34	4.37	4.40	4.43	4.46	4.49	4.52	4.55	4.58	4.61
60.	4.64	4.67	4.70	4.73	4.76	4.78	4.81	4.84	4.87	4.89
70.	4.92	4.95	4.97	5.00	5.02	5.05	5.07	5.10	5.12	5.15
80.	5.17	5.20	5.22	5.24	5.27	5.29	5.31	5.34	5.36	5.38
90.	5.41	5.43	5.45	5.47	5.49	5.52	5.54	5.56	5.58	5.60
100.	5.62	5.64	5.67	5.69	5.71	5.73	5.75	5.77	5.79	5.81
110.	5.83	5.85	5.87	5.89	5.91	5.93	5.95	5.96	5.98	6.00
120.	6.02	6.04	6.06	6.08	6.10	6.11	6.13	6.15	6.17	6.19
130.	6.20	6.22	6.24	6.26	6.28	6.29	6.31	6.33	6.35	6.36
140.	6.38	6.40	6.41	6.43	6.45	6.46	6.48	6.50	6.51	6.53
150.	6.55	6.56	6.58	6.60	6.61	6.63	6.64	6.66	6.68	6.69
160.	6.71	6.72	6.74	6.75	6.77	6.78	6.80	6.81	6.83	6.84
170.	6.86	6.87	6.89	6.90	6.92	6.93	6.95	6.96	6.98	6.99
180.	7.01	7.02	7.04	7.05	7.07	7.08	7.10	7.11	7.12	7.14
190.	7.15	7.17	7.18	7.20	7.21	7.22	7.24	7.25	7.27	7.28
200	7.29	7.31	7.32	7.34	7.35	7.36	7.37	7.39	7.40	7.42
210	7.43	7.44	7.46	7.47	7.48	7.50	7.51	7.52	7.54	7.55
220	7.56	7.57	7.58	7.60	7.61	7.62	7.63	7.65	7.66	7.67
230	7.69	7.70	7.71	7.72	7.73	7.75	7.76	7.77	7.78	7.80
240	7.81	7.82	7.83	7.85	7.86	7.87	7.88	7.89	7.91	7.92
250.	7.93	7.94	7.95	7.96	7.98	7.99	8.00	8.01	8.02	8.04
260.	8.05	8.06	8.07	8.08	8.09	8.10	8.12	8.13	8.14	8.15
270.	8.16	8.17	8.18	8.20	8.21	8.22	8.23	8.24	8.25	8.26
280.	8.27	8.28	8.30	8.31	8.32	8.33	8.34	8.35	8.36	8.37
290.	8.38	8.39	8.40	8.42	8.43	8.44	8.45	8.46	8.47	8.48
300.	8.49	8.50	8.51	8.52	8.53	8.54	8.55	8.56	8.57	8.58
310.	8.60	8.61	8.62	8.63	8.64	8.65	8.66	8.67	8.68	8.69
320.	8.70	8.71	8.72	8.73	8.74	8.75	8.76	8.77	8.78	8.79
330.	8.80	8.81	8.82	8.83	8.84	8.85	8.86	8.87	8.88	8.89
340.	8.90	8.91	8.92	8.93	8.94	8.95	8.96	8.97	8.98	8.99
350.	9.00	9.01	9.01	9.02	9.03	9.04	9.05	9.06	9.07	9.08
360.	9.09	9.10	9.11	9.12	9.13	9.14	9.15	9.16	9.17	9.18
370.	9.18	9.19	9.20	9.21	9.22	9.23	9.24	9.25	9.26	9.27
380.	9.28	9.29	9.30	9.30	9.31	9.32	9.33	9.34	9.35	9.36
390.	9.37	9.38	9.39	9.40	9.40	9.41	9.42	9.43	9.44	9.45
400.	9.46	9.47	9.48	9.48	9.49	9.50	9.51	9.52	9.53	9.54
410.	9.55	9.55	9.56	9.57	9.58	9.59	9.60	9.61	9.61	9.62
420.	9.63	9.64	9.65	9.66	9.67	9.67	9.68	9.69	9.70	9.71
430.	9.72	9.73	9.73	9.74	9.75	9.76	9.77	9.78	9.78	9.79
440.	9.80	9.81	9.82	9.83	9.83	9.84	9.85	9.86	9.87	9.88
450. 460. 470. 480. 490.	9.88 9.97 10.05 10.13 10.21	9.89 9.97 10.06 10.13 10.21	9.90 9.98 10.06 10.14 10.22	10.07	10.08	10.09	9.93 10.01 10.09 10.17 10.25	10.10	10.11	10.12
500. 510. 520. 530. 540.	10.36 10.44 10.51	10.29 10.37 10.44 10.52 10.59	10.37 10.45 10.52	10.38 10.46 10.53	10.39 10.47 10.54	10.40 10.47 10.55	10.41 10.48 10.55	10.41 10.49 10.56	10.42 10.50 10.57	10.43 10.50 10.58



(See note diagram 2.)

• . • 





# MANNING'S FORMULA $v = \frac{1.486}{2} r^{\frac{34}{2}} s^{\frac{14}{2}}$

Problem: Anythree quantities known, to find the unknown.

Writing the equation, vn = 1.486 r % s %, find the intersection of the two known quantities which occur on the same side of the equation, and follow the curved guide lines to the intersection with the third known quantity. The other co-ordinate of this intersection gives



.035

le mea

using In the lods ( e em l upo form **#**8. ( ished n peri leatu rapi uced ide the e wir ingring € 124 W] i lof s ··· † Inua con .estqui ii(h ac "("I leas 44 m( ∿εi ⁄bed oris **t**eed iting

1 2 1

#### CHAPTER VIII

#### MEASUREMENT OF FLOWING WATER

- measurement of flowing water is becoming a matter of sing importance to the engineer. Both in the laboratory n the field of practice the most accurate and effective ds of measurement are demanded. The determination empirical coefficients used in hydraulic formulas are all upon actual measurements of flow and the reliability of formulas is dependent upon the accuracy of such measure-Continuous stream-discharge records, similar to those shed by the United States Geological Survey, are based periodic measurements of flow, which records are an esseneature of the economic development of natural streams. rapid improvement in the design of water turbines has uced a keen rivalry among manufacturers, and accurate iods of measuring water have been demanded for determinthe efficiency of turbine installations. Municipalities are iring more economy in the use of water for domestic purs which is being accomplished through a more general of service meters. In irrigated districts where water is inually increasing in value the problem of waste prevention ecoming more important and there is a growing tendency equire a record of the amount of water used on each farm. In account of the many and varying demands in the matter neasuring flowing water, various methods of measurement, h more or less suited to the particular conditions have been ised. In general, all methods of measuring water may be ssed in one of two divisions, which with a list of methods ning under each, are as follows:
- (a) Velocity-area methods, velocity measured by:
  - 1. Current meter.
  - 2. Pitot tube.
  - 3. Floats.
  - 4. Traveling screen.
  - 5. Color method.

- (b) Direct-discharge methods;
  - 1. Gravimetric.
  - 2. Volumetric.
  - 3. Weirs.
  - 4. Orifices.
  - 5. Meters.
  - 6. Chemical gaging

Gravimetric and volumetric methods of measuring water, which require the determination of the weight or volume of water flowing in a given time, are adapted primarily to experimental work in laboratories or to the measurement of comparatively small quantities of water and will not be discussed. The methods of measuring water with orifices or weirs is explained in the chapters under these headings. The other methods listed above are explained in the following pages.

Velocity-area methods involve the determination of the mean velocity of the water, and with the cross-sectional area of the channel known the discharge equals the product of the two factors. The color and traveling screen methods provide for the determination of the mean velocity from a single observation. The current meter and Pitot tube give velocities in only one point in the cross-section at a time, and floats give the mean velocity in a limited area of the cross-section.

The current meter is generally preferred for measuring water in open channels, and is used almost exclusively for rivers. Before studying in detail the different methods of measurement a knowledge of the distribution of velocities in the cross-section of a channel is essential.

#### Distribution of Velocities

There is usually a noticeable lack of uniformity in the distribution of velocities in open channels and especially those of irregular section. The upper sketch in Fig. 66, reproduced from U. S. Geological Survey Water Supply Paper No. 305, is a typical example. The numbers in the cross-section indicate velocities in feet per second from which lines of equal velocity are drawn. In general, these lines follow quite well-defined laws which can be best understood from a study of vertical velocity gurves.

Vertical velocity curves are obtained by taking velocities in a

surface and continuing at intervals of about 6 inches or 1 foot, the last velocity being taken as close to the bed of the stream as practicable. The velocities thus taken are plotted on cross-section paper with depths as ordinates and velocities as abscissas, a smooth curve being drawn as nearly as may be



Fig. 66.—Distribution of velocities in open channel.

through these points. The velocity at any depth may then be scaled from this curve, the mean velocity being equal to the area included between the vertical axis and the curve and the horizontal lines at top and bottom of the curve, divided by the depth of water.

Fig. 66 shows examples of vertical velocity curves. Many such curves have been made by the United States Geological Survey for numerous streams, from a study of which the following fundamental principles have been deducted:

1. The maximum velocity occurs at a distance below the surface equal to about 5 to 25 per cent. of the depth of the stream, the per cent. increasing as the depth of the stream increases. For shallow streams with rough beds the thread of maximum velocity lies very near to the surface.



Fig. 67.—Distribution of velocities in ice-covered streams.

- 2. The vertical velocity curve approximates a parabola, whose axis is horizontal and passes through the point of maximum velocity.
- 3. The mean velocity in a vertical, within a maximum error of about 3 per cent. and an average error of 1 per cent., occurs at 0.6 depth.

- 4. The mean velocity in a vertical, within a maximum error of about 1 per cent. and an average error of zero, is given by the mean of the velocities at 0.2 depth and 0.8 depth.
- 5. The mean velocity in a vertical is from about 80 to 95 per cent. of the surface velocity, which percentage is slightly less for shallow streams than for deep streams.

The laws governing the distribution of velocities in open channels do not all hold for ice-covered streams. Fig. 67, reproduced from U. S. Geological Survey Water Supply Paper No. 337, is a typical example of a stream flowing under a complete covering of ice. The mean velocity does not occur at 0.6 depth for an ice-covered stream but it is given very accurately by the mean of the velocities at 0.2 depth and 0.8 depth.

## Instruments for Measuring Velocity

The current meter is quite generally used for measuring velocities in open channels. This instrument consists of a suitable frame on which is mounted a wheel that is moved by the current and actuates a device for determining the number of revolutions in a given time. The rate at which the wheel revolves varies with the velocity of the current. Ordinarily the current meter is provided with a mechanism which completes an electric circuit at each revolution or at a given number of revolutions of the wheel, and wires from the meter properly connected to batteries and buzzer or other indicating device, enables the observer to determine the rate at which the wheel revolves. The so-called acoustic meter has a drum attachment which strikes after a given number of revolutions of the wheel, the sound being conveyed to the observer through a hollow tube. by which the meter is held. Other meters are arranged with mechanical recording devices. Current meters may be suspended from a cable or attached to a rod; the former are generally provided with electrical contact and are better suited to the gaging of large streams. Meters attached to rods are very convenient for gaging small streams.

Two general types of wheels are used on current meters: those having a vertical axis with cups attached to the outer perimeter, and those with a horizontal axis and blades of the screw-propeller shape. Each type of wheel has its advocates and probably each type is better suited to particular conditions.

The propeller-shaped wheels are believed to be more accurate for measuring turbulent water since they are not affected to the same extent by eddies and cross-currents, while the cup meters are affected equally by currents from any direction. It is probable, however, that any of the standard makes of current meters when properly used, under conditions to which they are suited, will give results accurate enough for ordinary stream-gaging work.

There are three different makes of current meters that have been extensively used in the United States—the Price meter, the Ott meter and the Haskell meter. Of these, the Price meter has cups attached to a wheel with a vertical axis, and the other two have wheels of the screw-propeller type which revolve on a horizontal axis.

The Price meter¹ has been adopted by the Water Resources Branch of the U. S. Geological Survey for its stream-gaging work and is more extensively used for this purpose than any other meter. Both electric and acoustic Price meters are manufactured.

The Ott meter² has recently been used in making turbine tests with satisfactory results.

The Haskell meter³ has been used extensively by the U. S. Lake Survey for gaging the large rivers of the Great Lakes drainage system, and it appears to be particularly well adapted to this class of work.

Rating the Current Meter.—Before a current meter can be used, it is necessary to establish a relation between number of revolutions and velocity of water by moving the meter through still water at a known rate and determining the number of revolutions in a given time. This operation is called rating the meter. A meter may be rated from a boat moving at a uniform rate in still water but it is better to have this work done at a properly equipped rating station. A meter should be rated when new and at least once a year thereafter, and after any accident to the meter or alteration of parts that will be likely to change its rating.

The observations from a current meter rating give velocities in feet per second with corresponding revolutions per second.

¹ Manufactured and sold by W. & L. E. Gurley, Troy, N. Y.

² Sold in United States by Keuffel & Esser Co., New York.

³ Manufactured by E. S. Ritchie & Sons, Brookline, Mass.

These values are usually plotted on ordinary cross-section paper, and the smooth line or lines passing through their mean position is called the rating curve. A rating curve for a small Price electric meter is shown in Fig. 68. Rating curves for all makes of current meters plot as straight lines and it is characteristic of such curves that there is a break in the line at a point usually corresponding to a velocity of from 4 to 6 feet per second.



Fig. 68.—Typical rating curve for current meter.

From the rating curve a rating table is prepared, which gives velocities corresponding to different rates of revolution of the wheel. Table 86 is a rating table published by W. & L. E. Gurley. It is the mean of the ratings of ten small electric meters (Patterns Nos. 617 and 618) and is claimed by the makers to give values for any meter of similar pattern in good order, within an error of 1 per cent.

Table 86.—Approximate Rating Table for Price Meters Nos. 617, 618, 621, 623, and 624, Velocities in Feet per Second Corresponding to Different Times and Numbers of Revolutions.

Time		Number of Revolutions											
in sec.	5	10	20	30	40	50	60	70	80	90	100	150	200
41 42	0.30 0.30 0.29	0.57 0.56 0.54	1.10 1.07 1.05	1.64 1.60 1.56	2.18 $2.13$ $2.08$	$2.71 \\ 2.65 \\ 2.59$	3.26 3.18 3.11	3.81 3.72 3.63	4.34 4.24 4.14	4.89 4.77 4.66	5.43 5.30 5.18	8.14 7.95 7.77	11.12 10.85 10.59 10.34 10.10
45 46 47 48 49	0.28 0.27 0.26	0.52 0.51 0.50 0.49 0.48	0.99 0.97 0.95	1.47 1.44 1.41	1.95 1.91 1.87	2.43 2.38 2.33	$\frac{2.90}{2.84}$	3.39 3.32 3.25	3.87 3.79 3.71	4.35 4.26 4.17	4.84 4.74 4.64	7.26 7.11 6.96	9.65 9.45
51 52	$\begin{array}{c} 0.25 \\ 0.25 \\ 0.24 \end{array}$	0.47 0.46 0.46 0.45 0.43	0.90 0.88 0.86	$1.32 \\ 1.29 \\ 1.27$	1.75 1.72 1.69	2.19 $2.15$ $2.11$	$2.62 \\ 2.57 \\ 2.52$	$3.06 \\ 3.00 \\ 2.94$	3.49 3.42 3.36	3.93 3.85 3.78	4.36 4.28 4.20	6.54 6.42 6.30	8.72 8.56 8.40
56 57	$\begin{array}{c} 0.23 \\ 0.23 \\ 0.22 \end{array}$	0.43 0.43 0.42 0.41 0.41	0.82 0.80 0.79	$1.21 \\ 1.19 \\ 1.17$	1.60 1.57 1.54	1.99 1.96 1.93	2.39 $2.35$ $2.31$	2.78 2.73 2.68	3.18 3.12 3.07	3.58 3.52 3.46	3.98 3.91 3.84	5.96 5.86 5.76	7.95 7.81 7.68
61	$\begin{array}{c} 0.22 \\ 0.21 \\ 0.21 \end{array}$	0.40 0.39 0.39 0.38 0.38	0.75 0.74 0.73	1.11 1.09 1.07	1.46 1.44 1.42	1.84 1.81 1.78	2.19 $2.16$ $2.13$	$2.55 \\ 2.51 \\ 2.47$	2.92 2.87 2.82	$3.29 \\ 3.24 \\ 3.19$	3.65 3.59 3.53	5.47 5.38 5.30	7.30 7.18

Pitot tubes are especially adapted to the measurement of velocities in pipes, and may be used for measuring velocities, in



pipes and open channels, that are too high to be conveniently measured with current meters. In its simplest form the Pitot tube is a pipe bent to a right angle as shown in Fig. 69. When the shorter leg is pointed against the current, the water will rise a distance equal to the velocity head or  $h = \frac{v^2}{2g}$ . It has been shown by experiment that this relation holds rigidly.

There are practical difficulties in the way of using the Pitot tube its simplest form, since the distance which the water in the

tube rises above the water surface cannot be accurately determined.

To obviate this difficulty a second pipe, or static leg, is introduced, Fig. 70, the two pipes being clamped together and attached at the upper end to an air pump or provided with other means for exhausting the air. The static leg may be simply a straight pipe extending into the water or it may be bent at right



angles and pointed downstream or otherwise arranged to measure the static pressure of the water. When this instrument is placed in running water, the air may be exhausted an equal amount in each leg and the water drawn up to an elevation convenient to read. The upper ends of the pipes should be of glass so that the height of water columns may be observed. There is always a certain amount of suction in the static leg so that the difference in height of water columns will not equal the velocity head. however, be proportional to the velocity head.

If  $h_1 - h_2$  equals the difference in height of water columns, v the velocity of water being measured and c a coefficient that is constant for each instrument, the velocity is given by the formula

$$v = c\sqrt{2g(h_1 - h_2)} \tag{1}$$

To obtain c the instrument should be rated by moving it through still water at a known velocity the same as for a current meter.

Floats are sometimes used for the approximate measurement of velocities in open channels. These may be classified as surface floats, subsurface floats and rod floats. The principal involved is the determination of the time required for a floating object to pass from one cross-section of a channel to another, the velocity of the float being considered the same as the velocity of the filaments of the water through which it travels.

A surface float may be any object floating near the surface and to sufficient depth to partake of the motion of the upper filaments. The mean velocity in the vertical will vary from about 80 per cent. of the observed surface velocity for the shallowest streams to 95 per cent. for very deep streams. Surface floats should not be used when there is sufficient wind to affect their movement.

A subsurface float consists of a small surface float connected by a fine line to a larger float, which is weighted to remain submerged and keep the line taut without drawing down the surface float. The submerged float being large, the effect of the surface float is usually neglected. To get the mean velocity in the vertical directly from this combination the submerged float should be submerged to about 0.6 of the mean depth of the stream along the path followed by the float. This float has little value for stream-gaging purposes. It is sometimes used for determining the velocity and direction of subsurface currents in lakes, harbors, and other large bodies of water.

Rod floats are made from wooden poles or hollow tin cylinders weighted at one end so as to cause them to float in an upright position with the unweighted end above the water surface. They should be submerged as much as possible without coming in contact with the bottom of the channel. Rod floats are usually assumed to give directly the mean velocity in the vertical. They are used more satisfactorily in artificial channels, or natural streams of regular section.

As the result of an extensive experimental investigation in which the flow in a wooden flume, determined from rod float measurements, was compared with the discharge over a sharp crested weir, Francis¹ deduced the following relation between the mean velocity in the vertical section along the path of a rod float and the velocity of the float:

$$v = v_r(1.012 - 0.116\sqrt{d'/d})$$

in which v is the mean velocity in the vertical,  $v_r$  is the mean velocity of the rod float, d is the depth of water, and d' is the distance from the bottom of the float to the bed of the channel. The above relation probably applies more accurately for small values of d'/d and should not be used where d' is greater than 0.25d.

¹ J. B. Francis: Lowell Hydraulic Experiments, p. 195.

## Discharge Measurements by Current Meter

Current-meter measurements may be made from a bridge, a car suspended from a cableway, or a boat, or if the stream is small enough the gaging may be made by wading.

The first step is to assume a permanent initial reference point and mark off distances, usually 5 or 10 feet, along the bridge or cableway or a special line stretched across the channel. For small streams, where the gaging is made by wading, a cloth tape is sometimes stretched across the stream from the initial point. Soundings are then taken and current-meter measurements are made to determine the depths and mean velocities in vertical lines at different points along the cross-section of the channel. Points of measurement are so chosen that the mean of the velocities in two adjacent vertical lines will give approximately the mean velocity of the portion of the cross-section of the channel between them. The mean velocity in a vertical (see pages 232 to 235) may be obtained by one of the following methods:

- 1. By plotting vertical velocity curves.
- 2. By taking the velocity at 0.6 depth.
- 3. By the mean of velocities at 0.2 and 0.8 depth.
- 4. By integration; that is, moving the meter slowly and at a uniform rate from the surface of the water to the bottom of the channel and back again, noting the time and number of revolutions of the meter. This method is not recommended for inexperienced observers.
- 5. By taking a velocity near the surface of the stream and applying a corrective factor (from 0.80 to 0.95) to reduce to mean velocity. This approximate method must sometimes be resorted to when the current is so swift as to make measurements at the depths required by any of the above methods impracticable.
- If  $d_1$  and  $d_2$  represent the depths of water at two adjacent verticals where velocities have been observed,  $v_1$  and  $v_2$  the respective mean velocities and l the distance between the verticals, the discharge of the portion of the cross-section of the channel between the verticals is

$$l\left(\frac{v_1+v_2}{2}\right)\left(\frac{d_1+d_2}{2}\right) \tag{2}$$

and the total discharge of the stream is the sum of such terms for the entire cross-section of the stream. Points of measurement along the cross-section of the channel should be selected at abrupt changes in velocity or the profile of the bottom. Where conditions are fairly uniform it is customary to make measurements at equal distances apart. It is usually necessary to take one or two measurements close to both edges of the channel.

#### CURRENT METER NOTES

_				، مدمدند،			-						
Date 📆													
Observer C.O.W.Stor. Location, F.M. St. Bridge, Mill Orbot, Mich.  Meter Rich. 12. Cage height, beg. A. 7.4. end. A. 7.6. mean. 2.76.													
								2.7.4		mean	2.76		
Total are	2. L.T.	5.9		Mean	velocity	3.44	<u> </u>		Die	harge /	0295		
	0	BSERVATI	ONS		COMPUTATIONS								
Dist. from		Depth	Time	Rev-		Mean	Mean	Mean					
initial	Depth	of ob- servat.	in sec-	olu- ·	At	in ver-	in sec-	depth	Width	Area	Discharge		
point		$\vdash$	i		70.20	tical	tion	-					
0+35					ľ	0.79				.78			
	1			i	•			1.29	5	6.45	8.8		
+/00	1.90	0.38	12.4	40	2.18	1.95			<b> </b>		<b></b>		
		1.52	54.2	40	1:71.		251	2.67	10	267	66.7		
+200	3.11	0.69	54.4	90	9.80	3.07				·			
		2.72	54.4	60	2.34	,	3.29	372	10	37.2	122.2		
+900	3.99	0.80	51.2	90	4.03	3.51			. 1				
		1			2.99		9.67	9.86	10	386	141.6		
4400	979				4.18		F	W W	»	,			
	.517.7		59.2				9 74	374	5	187	700		
		ı			1		9.7.7.	S. (.7.		7.0.7	70,0		
	3.77	1	180										
ننسنن		2,77	54.2	70	2.99		٠./.	3,20	2	16.0	604		
				·····			,						
.+274	2.19	0,49	57.4	.90	4.09	9.53		·					
,	·	1.70	59.2	10	9.09		956	1.57.	<i>2</i>	3.14	11.2		
1+1.0	100	060	51.2	80	3.57	9.59			l	l			
								1.98	2	2.76	94		
1+30	1.75	0.35	50.0	80	3.67	9.25							
	,		i	•	2.82	1	2.65	1.15	5	5.75	15.2		
1+80	155				2.70			7.7.7 <b>4</b> 7.		A	.,. ( 27.7/2		
1.3.00	7.22.		1		1.41					ļ	• • • • • • • • • • • • • • • • • • • •		
••••	ļ	1:47.	7.7.7.	. بيجر	1:71.								
<u></u>	<u></u>	l		<u></u>	<u></u>	سبسا	Tot	415	سيسا	270.9	10235		
No 2	of	2	Sheets.	Comp. 1	n E.K.	7. Chk.	by	T.M.	м	ake note	on back.		

On page 242 is shown a typical sheet of current-meter notes where the mean velocities in the verticals are obtained by the 0.2, 0.8 depth method. Methods of observation and computations may be seen from these notes.

A method similar to the above is followed in measuring the discharge of ice-covered streams. Holes must be cut in the ice to admit the current meter and in addition to measuring the depth of water the depth to the bottom of the ice must be determined, the latter being subtracted from the former to obtain the depth of water to be used in computing the area of cross-section.

The mean velocities in the verticals for ice-covered streams may be obtained:

- 1. By plotting vertical velocity curves, or
- 2. By obtaining the means of velocities at 0.2 and 0.8 depth.

# Discharge Measurements by Pitot Tubes

In measuring discharges of open channels with Pitot tubes (page 238) the observations and computations will be similar to those described above for current-meter measurements. Pitot tubes are sometimes used for measuring velocities in pipes, in

which case the following method of determining discharges may be used.

Velocities should be taken at a number of points in a cross-section of the pipe and these points should be plotted in their proper position in a circle, drawn to suitable scale, which represents a section of the water flowing through the pipe. Such a section is illustrated in Fig. 71. Velocities (not shown in figure) should be written adjacent to each

of the mean velocities for the rings.



plotted point. A convenient number of concentric circles, preferably 5 or 10, should be so drawn that rings of equal area will be formed. If d equals the diameter of the pipe the proper radii for the concentric circles for 10 rings will be, 0.16d, 0.22d, 0.27d, 0.31d, 0.35d, 0.39d, 0.42d, 0.45d and 0.48d. For 5 rings use alternate values beginning with 0.22d. The mean velocity in each ring may then be obtained by observation, and the mean velocity for the pipe will be the average

## Discharge Measurements by Floats

Before beginning a discharge determination by means of floats (page 239) it is necessary to select a uniform reach of channel and lay out two cross-sections of the stream from, say, 100 to 300 feet apart which will mark the places of beginning and ending float observations.

Fig. 72 illustrates a graphical method described by Unwin¹ for taking observations and making computations. Two cross-sections are selected L distance apart. Lines marked with tags every 10 feet, or at some other convenient interval



may be stretched across the stream over these sections. Soundings to get data for plotting the cross-sections are then made. As many float measurements as desired may be obtained, observers taking the time required for the floats to pass between the cross-sections and noting the place where the floats pass over each section.

From these observations a diagram similar to Fig. 72 may be prepared. The cross-sections are plotted to suitable scale and the channel is divided into equal sections by dotted lines. The paths of the floats are shown by full lines. The straight line AB is halfway between the water-surface lines of the two cross-sections. From the point where the full lines, representing the

¹ W. C. Unwin: A Treatise on Hydraulies, p. 286.

paths of the floats, cut AB verticals are dropped on which the observed velocities for each float, corrected by the proper coefficient to reduce to mean velocity, are plotted to a convenient scale. The line ACB which connects the points thus obtained is the mean-velocity line. The mean velocities for Sections I, II, III, etc., are found by scaling the ordinates, in the middle of these sections, between lines AB and ACB. The discharge in any section is given by the product of the average end areas and mean velocities. The following table illustrates a method of keeping computations.

Section	End areas of section, square feet	Mean area of section, square feet	Mean velocity, feet per second	Discharge, cubic feet per second	
I	27.2 30.7	28.95	0.41	11.9	
II	41.1 45.1	43.1	0.98	42.2	
III	66.6 67.2	66.9	1.37	91.6	
IV	77.7 70.9	74.3	1.90	141.2	
<b>v</b> , ·	80.4 79.1	79.75	2.31	184.2	
VI	85.5 79.7	82.6	2.20	181.7	
VII	60.3 64.1	62.2	1.97	122.5	
VIII	55.5 51.2	53.35	1.75	93.4	
IX	50.2 46.2	48.2	1.37	66.0	
<b>x</b>	35.5 31.0	33.25	0.45	15.0	
Total	<u> </u>			949.7	

# Discharge Measurements by Traveling Screen

The traveling-screen method of measuring flowing water is idapted only to open channels of very regular cross-section.

This method requires quite elaborate preparations but when the apparatus is once installed it may be used for as many observations as desired.

A very light canvas screen, varnished to insure impermeability, is suspended by a stiff frame from a wheeled carriage mounted on tracks along the edges of the channel. The rate of movement of the screen must necessarily be the mean velocity of the water. A small crack, about 0.5 inch, should be provided between the screen and the sides and bottom of the channel to insure freedom of movement. The distance through which the screen moves is limited to the reach of uniform straight section. The velocity of the screen is usually determined electrically.

A similar method is sometimes employed in which the screen is suspended from floats, properly weighted to provide the right clearance between the screen and the bottom of the channel.

Theoretically a correction should be applied to provide for leakage around the screen. The error introduced by neglecting this correction is, however, very small. The area of the water cross-section should be carefully taken. The discharge will be the product of this area and the velocity of the screen.

# Discharge Measurements by Color Method

This method has been employed for measuring the velocity in pipes. The process consists of injecting a solution of coloring matter, commonly fluorescein, into the pipe and observing the time required for it to move through a known distance. The particles of coloring matter will usually remain within a prism having a length equal to 1 per cent. of the distance traveled. The explanation of this phenomenon lies in the fact that in turbulent water there is a continual crosswise as well as longitudinal movement of the particles. This indicates that in general all particles of water are moving through the pipe with the same longitudinal velocity.

The coloring matter may be introduced at the intake of the pipe or it can be injected by a force pump or gun¹ into the pipe at any point. The second point of observation which must be at the outlet of the pipe should be at a distance at least 200 times the mean velocity in feet per second from the place where

¹ A gun for injecting coloring matter into pipes is described in U. S. Department of Agriculture Bulletin No. 376 by Fred C. Scobet.

the coloring matter is introduced. Time observations should be made at the instant the coloring matter is introduced and at the first and last appearance of the coloring matter at the second point of observation. The mean velocity will be the distance between the two points of observation divided by the mean of these two time intervals. The discharge of the pipe is the product of this mean velocity and the area of the pipe. This method is limited to conditions where the outlet of the pipe is exposed in order that the coloring matter may be seen.

This method could be modified by substituting for the coloring matter a concentrated salt brine or some other chemical that is a good conductor of electricity. Then two poles of an electric circuit, properly connected to batteries and a galvanometer, could be inserted in the water at the second point of observation. The galvanometer should show a stronger current while the prism containing the chemical is passing the poles. This method has an advantage in that it does not necessitate seeing the water. The second point of observation can be at any part of the pipe line, as it will only be necessary to drill small holes in the pipe to insert the poles.

These methods have never been applied to open channels but they would probably be satisfactory for fairly high velocities in smooth channels.

# Discharge Measurements by Venturi Meter

There are a number of types of small service meters for measuring water for domestic purposes which automatically record the flow of water. These meters are adaptable only to conditions involving the measurement of flow through very small pipes. For measuring the flow through large pipes the Venturi meter has been quite generally adopted, and the principal which it involves may be applied under various conditions.

The principle of the Venturi meter was first stated in 1797 by J. B. Venturi an Italian, and was first applied by Herschel¹ to the measurement of flow in pipes in 1887. Fig. 73 shows a Venturi meter in horizontal position, with approximate dimensions as generally constructed. It resembles the frustrums of two cones having altitudes in the ratio of 1 to 3, with the top

¹ Trans. Amer. Soc. Civ. Eng., vol. 17, p. 228.

and bottom bases equal. The smaller bases are connected and form what is called the throat of the meter while the larger bases connect to the pipe. The direction of flow through the meter is from the shorter to the longer section. Two piezometer tubes are shown in the figure at the throat and entrance to the meter.



Fig. 73.—Venturi meter.

Let  $h_1$  and  $h_2$  represent the height above the axis of the meter to which the water rises in the piezometer tubes at the entrance and throat of the meter respectively, and let  $v_1$ ,  $d_1$  and  $a_1$  and  $v_2$ ,  $d_2$  and  $a_2$  be the corresponding velocities, diameters, and areas at the two places. Then from Bernoulli's theorem, neglecting friction

$$\frac{v_2^2-v_1^2}{2q}=h_1-h_2 \tag{3}$$

and since

$$Q = a_1v_1 = a_2v_2$$

the formula for discharge through a Venturi meter including the empirical coefficient c, becomes

$$Q = \frac{ca_1a_2}{\sqrt{a_1^2 - a_2^2}} \sqrt{2g(h_1 - h_2)}$$
 (4)

or expressed in terms of diameter

$$Q = \frac{c\pi d_1^2 d_2^2}{4\sqrt{d_1^4 - d_2^4}} \sqrt{2g(h_1 - h_2)}$$
 (5)

For meters having a definite ratio of inlet to throat diameter

$$R = \frac{d_1}{d_2} \tag{6}$$

and putting

$$K = \frac{\pi R^2}{4} \sqrt{\frac{2g}{R^4 - 1}} \tag{7}$$

formula (5) may be written

$$Q = cKd_2^2\sqrt{h_1 - h_2} \qquad (8)$$

The following table gives values of R with corresponding values of K.

R 2 2.1 2.2 2.3 2.4 2.5 2.6 2.7 2.8 2.9 3.0 K 6.50 6.47 6.44 6.41 6.40 6.38 6.37 6.36 6.35 6.34 6.34

The value of c will depend upon the roughness of the interior surface of the meter. For clean cast iron the value of c will usually range from 0.97 to 0.99.

Venturi meters are manufactured¹ for permanent installations with the piezometer tubes connected to an automatic recording instrument which registers on a "Chart Recorder Dial" a continuous graphic record of the rate of flow through the meter. A "Register Counter Dial" shows the total volume of flow through the meter in cubic feet, gallons, or pounds and an "Indicator Dial" shows the present rate of flow.

## Discharge Measurements by Chemical Gaging²

Chemi-hydrometry or chemical gaging consists of determining discharges by introducing a chemical at a known rate into flowing water, and determining the quantity of the chemical in the stream at a section far enough downstream to insure a thorough mixture of the chemical with the water to be measured. Common salt (NaCl) is the chemical usually employed, and chemical gaging is frequently referred to as the salt-solution method. For convenience the salt is dissolved in water to form a brine before being introduced into the stream.

Let Q represent the discharge of the stream in second-feet. If w pounds per second of salt are introduced, and after thorough mixture a sample taken from the stream shows that 1 pound of water contains n pounds of salt, then

$$\frac{w}{62.4Q} = \frac{n}{1} \text{ or } Q = \frac{w}{62.4n} \tag{9}$$

The above formula is not readily applicable, owing to the fact that several factors enter into the determination of n which complicate the problem. The waters of natural streams usually

Manufactured by the Builders Iron Foundry, Providence, R. I.

² For a full discussion of this subject see B. F. GROAT: Chemi-Hydrometry and Precise Turbine Testing. *Trans.* Amer. Soc. Civ. Eng., vol. 80, p. 951.

Also F. A. NAGLER: Verification of Bazin Weir Formula by Hydro-Chemical Gaging, *Proc.* Amer. Soc. Civ. Eng., Jan., 1918.

contain an initial quantity of salt in solution, which must be considered in making a correct gaging.

The method of "Special Dilutions" and "Balanced Evaporations" will be described. In this method a special dilution of the salt-solution sample, with the natural water of the stream is prepared. This special dilution should contain, as nearly as can be determined, the same quantity of salt per unit volume as the sample taken from the channel after salt has been introduced.

There are three sets of samples to be examined as follows:

- 1. The dosed stream water; that is, the water of the stream after salt has been introduced and the salt has become thoroughly mixed with the water of the stream.
- 2. The salt-solution sample; that is, the brine which is prepared to be introduced into the stream.
- 3. The special dilution; that is, the mixture of the salt solution with the natural stream water, prepared in the laboratory.

By this method it is not necessary to analyze the natural stream water, as the effect of the salt which it contains is eliminated in the computations.

A saturated solution of salt and water contains about 20 pounds of salt per cubic foot of water. It is usually desirable to have the brine which is to be introduced into the water as concentrated as possible in order to reduce the size of the mixing tank. A saturated solution is inadvisable owing to the tendency of the salt to crystallize at the edge of the tank, but a solution consisting of 16 pounds of salt per cubic foot of water will be satisfactory.

Salt solution should be added to the stream at such a rate as to increase its salt content by at least 0.003 pounds per cubic foot and under no circumstances should the initial salt content exceed 25 per cent. of the salt content of the dosed water. For example, a stream having an approximate discharge of 100 second-feet should have salt added at the rate of at least 0.3 pounds per second and if the natural stream water contained say 0.0009 pounds of salt per cubic foot the salt should be added at a minimum rate of 0.36 pounds per second.

For obtaining the maximum accuracy in making chemical tests the method of balanced evaporation should be used. This requires that the dosed stream water and the special dilution samples be evaporated and that the salt-solution sample be diluted until each contains, as nearly as can be estimated, the

same quantity of salt in the sample analyzed. From the dosed stream water and for the special dilution, samples of 500 cubic centimeters may conveniently be selected. These should then be evaporated until the volume is about 10 cubic centimeters. A 10-cubic centimeter sample of the salt solution which contains approximately the same amount of salt as these samples should then be obtained by dilution.

Preparing Special Dilutions.—Special dilutions should be prepared with great care. Assuming that a dilution of 1 in 2500 is desired it may be obtained in the following manner. The contents of two 10-cubic centimeter pipettes are discharged into a 500-cubic centimeter volumetric flask which has been previously washed with some of the natural stream water sample. The flask is then filled to the 500-cubic centimeter mark from the natural stream water sample, and inverted about 40 times to insure a thorough mixture, the temperature of the salt solution and natural stream water being recorded. This solution then has a ratio of dilution of 25 to 1. The volume of one 10-cubic centimeter pipette filled with this "stock" solution is then discharged into a 1000-cubic centimeter volumetric flask which has been previously washed with some of the natural stream water sample. The flask is then filled with natural stream water up to the 1000-cubic centimeter mark and thoroughly shaken to insure a good mixture of the two solutions, the temperature of each solution being recorded. The resulting mixture then has a ratio of dilution of 1 in 2500.

Dilutions of the salt solution sample with distilled water are made in a similar manner. If the special dilution is to be evaporated to one-fiftieth of its original volume, the ratio of dilution, being, say, 1 in 2500, the salt solution sample which is not evaporated should be diluted in the ratio of 50 to 2500 or 1 to 50.

Evaporation of Samples.—The samples may be conveniently evaporated in the following manner. A sample of say 500 cubic centimeters is first measured in a volumetric flask, the temperature being noted. This is then emptied into a separatory funnel, arranged to discharge into a casserole of about 100-cubic centimeters capacity which is heated by means of a gas jet under a water bath or by an electric heater. Small quantities of the sample are dropped into the casserole at intervals as required. The sample should be evaporated at a temperature slightly below the boiling point. An electric fan blowing over the sur-

face of the water will hasten evaporation. From 5 to 10 hours will be required to evaporate a 500-cubic centimeter sample, depending upon the humidity of the air and the success in producing artificial air currents. After the sample has entirely run out the separatory funnel should be washed with distilled water, which should also be evaporated. The evaporation should continue until about 10 cubic centimeters remain in the casserole.

Samples of both the dosed stream water and special dilutions are evaporated in this manner. The contents of a 10-cubic centimeter pipette of the dilutions of the salt-solution sample are emptied directly into a casserole. The three samples are now ready for the chemical test or titration.

Titrating Samples.—The reagent used in the salt analysis is silver nitrate, which is dissolved in distilled water in some standard proportions. It is essential that a sufficient quantity of this solution be prepared at one time, to make all of the tests required for one discharge measurement. The silver nitrate solution should be kept in a dark-colored bottle and be placed in a dark closet to prevent action by light. The strength of solution for conducting the test should not be less than about 1.5 grams of chemically pure silver nitrate to 1 liter of distilled water.

A potassium bichromate solution having a concentration of 50 grams per liter may be used to indicate the end point in the reactions of the silver nitrate upon the sodium chloride. About 6 or 7 drops of this solution will be sufficient for samples of the strength of those described above.

The titration of the above samples requires about 50 cubic centimeters of the silver nitrate solution. A 100-cubic centimeter burette containing more of the silver nitrate solution than will be required for a test is placed above the casserole containing the sample to be analyzed, and an initial reading of the burette is taken. One drop of potassium bichromate is added to the initial sample and silver nitrate solution is admitted from the burette at the rate of about 4 drops per second until the end of the reaction is nearly reached. The sample should be stirred continuously with a glass rod and 1 drop of potassium bichromate should be added for each 10 cubic centimeters of the silver nitrate solution. As the end of the reaction approaches, the rate of admitting silver nitrate should be reduced to about 1 drop in 2 seconds. The potassium bichromate gives the sample a yel-

low color, which is replaced by a permanent orange tinge when the end of the reaction is reached. This means that the point has been reached where the silver nitrate admitted has just neutralized all of the salt in the sample. A final reading of the burette should be made at this point. The amount of silver nitrate used is a measure of the quantity of salt contained in the sample. Some difficulty may be experienced at first in detecting the end of the reaction as the change in color is not very marked, but with a little experience this point may be determined with considerable accuracy. It is important that about the same amount of silver nitrate and the same amount of potassium bichromate should be used in making all of the tests for a single discharge measurement.

The following is a list of the principal laboratory apparatus

- 1 balance with weights, sensitive to 1 milligram.
- 1 rough scales for weighing salt.
- 1 four-unit evaporator.
- 4 1/2-liter separatory funnels.
- 1 100-cubic centimeter burette.
- 8 number 3 casseroles.
- 1 1-liter volumetric flask.
- 1 500-cubic centimeter volumetric flask.
- 1 100-cubic centimeter volumetric flask.
- 1 thermometer.
- 2 10-cubic centimeter pipettes.
- 3 1-liter flasks.
- 25 1-gallon bottles for samples.
  - 5 1-quart bottles.

The quantities of salt, silver nitrate and potassium bichromate that will be necessary will depend upon the flow of the stream, and the number of measurements to be made. A bottle of hydrochloric acid should be kept on hand for cleaning casseroles, but care should be taken to wash away all traces of the acid from the casseroles before using them for a new test.

**Determination of Discharge.**—The following nomenclature is used:

- Q = Discharge of the stream in second-feet.
- q =Discharge of salt solution in second-feet.
- r' = Ratio of volume of natural stream water to volume of salt solution in the special dilution.

- R' = Ratio of volume of total mixture to volume of salt solution in the special dilution.
  - t = Volume of silver nitrate solution required to titrate a unit volume of the salt-solution sample. In other words if the unit volume is 1 liter, t = the difference between initial and final readings of the burette for the silver nitrate solution multiplied by the ratio of dilution of the salt-solution sample multiplied by 1000 and divided by the volume in cubic centimeters of the sample discharged into the casserole.
- t₂ = Volume of silver nitrate solution required to titrate a unit volume of the dosed stream sample. Or, for unit of 1 liter, t = difference between initial and final readings of burette multiplied by 1000 and divided by the actual volume in cubic centimeters discharged into the separatory funnel for evaporation.
- t'₂ = Volume of silver nitrate solution required to titrate a unit volume of the special dilution. Or, similar to t₂,
   t'₂ = difference of burette readings multiplied by 1000 and divided by the actual volume in cubic centimeters discharged into the separatory funnel for evaporation.

The discharge of the stream is given by the following equation:

$$Q = q \frac{r'}{1 + R' \frac{t_2 - t'_2}{t - t_2}} \tag{10}$$

The above formula is accurate enough for ordinary work. Where great refinement is desired a shrinkage coefficient may be applied to correct for shrinkage of volume caused by mixing two salt solutions of different densities. Such corrections, however, will not ordinarily effect the final discharge more than a small fraction of 1 per cent. All flasks, pipettes, etc., used for measuring volumes should be calibrated with great care at different temperatures. Where great precision is required all volumetric measurements should be corrected for temperature by reducing all volumes to volumes at some particular temperature. Ordinarily, however, if care is taken to make all measurements at as nearly a uniform temperature as possible such corrections will not be necessary. If the variation in temperature during a test is not more than 20°F, the error introduced into the results by neglecting temperature corrections will not be

more than 0.5 per cent. A detailed discussion of the sources of error in the measurement of water by the method of chemi-hydrometry and the derivation of formula (10), together with correction factors to be applied for the more precise application of the method is given in Mr. Groat's valuable paper.¹

Operations for Obtaining Samples.—Various methods of introducing the salt solution and taking samples have been suggested. The one described below will be satisfactory for open channels. While the salt solution is being introduced samples should be taken as follows:

- (a) Sample of salt solution.
- (b) Sample of natural stream water.
- (c) Sample of dosed stream water after the salt solution has become thoroughly mixed with the water in the stream.

Before beginning the measurement an apparatus for introducing the salt solution at a uniform rate must be provided.

This may consist of a mixing tank and a discharge tank, preferably arranged at such elevations that the former may discharge into the latter by gravity. A satisfactory arrangement is shown in Fig. 74. The mixing tank ABCD should be large enough to contain solution for the entire measurement after the discharge tank EFGH has been filled from it. area of a horizontal section of the discharge tank need not be more than 1 or 2 square feet, and the height



of the tank should be at least 2 feet. A pipe P leads water from the discharge tank to the point where the solution is to be introduced into the stream.

The salt for one test is placed in the mixing tank and the water added. All of the salt should be dissolved by stirring before any of the solution leaves the tank. After all the salt

¹ Trans. Amer. Soc. Civ. Eng., vol. 80, p. 951.

is dissolved the solution passes through the valve A and a 40-mesh screen S to the discharge tank. The elevation of the surface in the discharge tank is maintained at the elevation of the fixed hook K by hand regulation of the valve A. The valve G is set by trial, to the proper rate of discharge by noting the time required to fill a carefully calibrated vessel. The valve as thus set is left unchanged until the end of the measurement. For a depth of 2 feet in the discharge tank the elevation of the surface of the solution may vary 0.04 feet without affecting the discharge at G by more than 1 per cent. There should be no difficulty in regulating this elevation within 0.02 feet.

A continuous sample of the salt solution may be taken from a small perforation in the side of either tank. The sample of natural stream water should be taken above the point where the salt solution is introduced and during the period that it is being introduced. The dosed stream sample should be taken far enough downstream and after sufficient lapse of time from the time of beginning dosing, to insure a thorough mixture of the maximum quantity of salt that the stream should carry. These samples should preferably be continuous samples requiring some little time to secure. An air-tight can containing a small perforation to permit the entrance of water when the can is immersed and another perforation connected by a small pipe or tube to the air would be satisfactory for the purpose. narily dosed stream samples should be taken at more than one point in the cross-section of the stream in order to determine whether the mixture of the salt with the stream is satisfactory.

It will usually be necessary to make preliminary investigations to determine the proper place for taking samples of dosed stream water and the necessary time interval between the time of beginning dosing and taking the sample. Parker¹ gives the following approximate rules.

Let v represent the mean velocity of the stream and b its width. Then for streams with depths between  $\cancel{1}_0b$  and  $\cancel{1}_0b$  complete mixture does not occur until a distance of at least the has been traversed, and the discharge of the solution has continued for a period of at least  $24 \ b/v$  seconds.

It is apparent that the chemical method of gaging is more suitable to turbulent waters, and it is doubtful whether it can be applied satisfactorily to sluggish streams.

¹ Philip A. Mobley Parker: Control of Water, p. 73.

## Continuous Stream-discharge Records

In order to properly understand the fluctuations in flow and to estimate the available discharge of a stream continuous daily discharge records extending over a period of several years are essential. Frequently erroneous and misleading results will be obtained by basing conclusions on a few scattering discharge measurements or even on continuous records for 1 or 2 years.

The best data on which to base an estimate of the future discharge of a stream are records of discharge for preceding years, but such records to be a trustworthy guide should over a period long enough to include a wide range of conditions of flow. Usually records for a period of 10 years will give a good idea of normal conditions of flow but they should not be depended upon to give extreme low water or flood conditions.

Appreciating the importance of this matter, the U. S. Geological Survey in 1888 began a systematic gaging of the more important streams in the United States. As a result continuous discharge records of many streams for long periods of years have been kept, and on other streams, owing largely to inadequate appropriations, the records are more or less fragmentary and intermittent. All of the stream-discharge records of the U. S. Geological Survey are published in its Water Supply and Irrigation Papers.¹

The general method of procedure to obtain data for continuous discharge records is indicated in the following outline:

- 1. Select a suitable location for a gaging station.
- 2. Install gage, build necessary structures and put station in permanent condition. Employ gage reader or otherwise provide for keeping a continuous record of stage.
- 3. Make discharge measurements at different stages of the stream through as wide a range in fluctuation as possible, keeping a record of gage height at the time each discharge measurement is made.
- 4. After sufficient discharge measurements have been obtained, prepare a discharge curve with discharges as abscissas and corresponding gage heights as ordinates.

1

¹ These papers may be obtained as published by applying to the Director of the U. S. Geological Survey or they may be purchased from the Superintendent of Documents, Washington, D. C. Most of the older issues are now out of print.

- 5. From the discharge curve prepare a table giving discharges corresponding to gage heights for each 0.01-foot interval.
- 6. From the discharge table and daily gage records prepare a table of daily discharges.
- 7. After the discharge curve has been completed discharge measurements should be made from time to time to check the curve. If these points indicate that the relation between gage height and discharge has changed, the curve should be corrected.

The above steps will be considered in detail in the following pages.

Selection of Site for Gaging Station.—The following discussion assumes that discharge measurements are to be made with a current meter. It applies, however, to other methods of measurement except as it refers to the actual determination of discharges. Below is given a list of the essential points to be considered in making a reconnaissance for determining the most suitable location for a gaging station.

- 1. General location of place at which records are desired.
- 2. Structure from which current-meter measurements are to be made.
- 3. Conditions favorable to a constant relation between gage height and discharge.
- 4. Uniform channel conditions at section where current-meter measurements are to be made.
  - 5. Accessibility of site.
  - 6. Availability of gage reader or attendant.
  - 7. Cost of construction and maintenance.

Before definitely selecting a site for a gaging station it is sometimes necessary to determine the general locality that will give the best records of discharge for a given portion of the drainage area of a stream. In special cases a definite section of the stream may be given where discharge records are required, but frequently the engineer is allowed considerable discretion in the matter. Usually the discharge will not vary greatly between the points where two tributaries enter a stream, and in cases where a general investigation only is being made the exact locality where records are obtained is not essential.

Whenever practicable, it is customary to so locate the gaging station that current-meter measurements may be made from existing bridge. If this is not feasible, a structure must usually be provided. For small streams a foot bridge may be constructed, and in streams not more than 3 feet deep current-meter measurements may be made by wading. Streams not over 800 feet wide are frequently spanned by a wire cable on which a car is operated by the observer. Current-meter measurements in large streams are sometimes made from boats anchored at various points along the cross-section, the position being obtained by transits on shore or by means of a sextant.

Probably the most important consideration in selecting the location for a gaging station is to chose a place for installing the gage, where the channel conditions are such that a constant relation between gage height and discharge may be maintained. This necessitates a good control; the control being that portion of the stream bed, usually below the gage, which controls the elevation of water surface at the gage. Streams are commonly made up of alternate reaches of slack water and ripples or rapids. The head of a rapids is necessarily of a more or less permanent character and usually it controls the elevation of the water surface for some distance upstream. The proper location for the gage is evidently in the slack water a short distance above the rapids. A similar condition may be obtained by a bar or large boulders which obstruct the flow of the stream and cause the water to back up behind them.

If the control is permanent the shifting of bars or other slight changes in channel conditions above it will have little or no effect on the elevation of water surface at the gage, but any change in the control will immediately effect this elevation. Sometimes the channel of a stream has such a permanent character that the stream bed itself provides a satisfactory control. On streams where a good natural control is not available an artificial control may be constructed. Such a control may be an obstruction, built of wood or concrete, usually in the form of a low weir extending across the channel. Some streams with shifting beds have no natural control and an artificial control cannot be maintained. In such cases there can be no permanent relation between gage height and discharge and special methods for obtaining discharge records are necessary (see page 273).

The river channel, at the place selected for making currentmeter measurements, should be free from large rocks and other obstructions; there should be a straight reach of channel above and below the cross-section to be gaged; there should be no eddies nor slack water; and velocities should be measurable, neither too high nor too low, for all ordinary stages of the river. As a matter of convenience the current-meter measurements should be made at a point close to the gage but this is not necessary, providing the gage is not so far away that the stream will change materially in stage during the time occupied by the observer in walking between the two places. Current-meter measurements during low stages of the stream are sometimes made by wading at some place more satisfactorily than the regular station.

A gaging station should be readily accessible from a railway station or highway. Since several discharge measurements must usually be made each year a location should be chosen which will entail the smallest expense possible for making trips

If a non-recording gage is installed at a gaging station the daily attendance of a gage reader is necessary. A recording gage should ordinarily be visited once a week to change sheets or to see that the gage is operating properly. These matter should therefore be given careful consideration in selecting site.

The cost of constructing and maintaining a gaging station should also be investigated. If records are wanted for a comparatively short time the first cost should be reduced as much as possible. On the other hand, if a permanent station is to be established the first cost may be comparatively unimportant. The relative accuracy of results to be obtained by the different types of installation should also be considered in this connection.

Installation and Description of Gages.—After selecting the site for a gaging station the gage should be installed and all work required to clean out and improve the channel should be completed as soon as practicable. A gage reader or attendant should then be employed and the taking of gage records should be begun without unnecessary delay.

Gages may be classified as recording and non-recording. The most common form of non-recording gage is the staff gage which may be erected in either a vertical or inclined position. A staff gage may be a strip of board or a thin sheet of metal attached to a board, which is graduated to tenths of a foot in elevation. Gages in 2 or 5 feet sections of sheet steel with enamelled faces and subdivisions, are accurate, convenient, and more durable than ordinary painted staff gages. In reading the gage hundredths of a foot should be estimated.

A vertical staff gage should be rigidly attached to a bridge

abutment, rock, or other permanent object in such a manner that there will be no danger of its becoming dislodged by ice, drift, or otherwise. It should be placed in quiet water and so faced that it may be easily read. The gage should extend deep enough into the water and be long enough to insure a reading for the lowest and highest stages of the stream.

Inclined staff gages should be made of 4 by 4-inch or heavier timber bolted to concrete supports. Marks should be placed with a level at 0.1 foot intervals of elevation. Inclined gages are not as trustworthy as vertical staff gages and should not be used when a suitable place for installing the latter can be found.

The elevation of water surface is sometimes obtained by suspending a plummet from the end of a tape or chain and measuring the distance to the water surface from some fixed point overhead as from a mark on a bridge or overhanging tree. This method may be resorted to when conditions are favorable and a satisfactory location for a staff gage cannot be found.

A gage should always be carefully referenced to two permanent bench marks, preferably located so that a comparison of some mark on the gage can be made with at least one of the bench marks from a single set up of the level. The gage should be checked from a bench mark at frequent intervals as the reliability of the records obtained depends upon the maintenance of the gage at an absolutely fixed elevation. In case the gage is accidentally moved or destroyed, it should be carefully replaced so as to give the same readings that it gave in its original position.

There are a number of different recording gages on the market which give a continuous record of stage. A common type of recording gage consists of drum which is revolved by a float as the stage changes and a pencil, actuated by a clock, which moves across the face of the drum parallel to its axis. A sheet of properly ruled cross-section paper is fastened to the drum and on this a graph is traced giving the height of water surface and corresponding time. Usually these gages are provided with an 8-day clock, and the sheet of paper is just large enough to last through this period. It is necessary therefore for an attendant to visit these gages once a week to replace the paper and wind the clock. A non-recording gage should always be erected close to a recording gage and the two gages should be adjusted to give the same reading. Whenever a new sheet of

paper is placed on the recording gage it should be set accurately as to time and gage reading as given by the non-recording gage and the date, time, and gage reading should be written on the sheet near the point where the record begins. When the sheet is removed the date and time and reading of the non-recording gage should be written near the point where the record ends. This provides for the adjustment of intervening records where such adjustment is necessary and insures against a possible error from using the wrong foot mark in taking records from the graph.¹

There are two types of recording gages, operated by weight-driven clocks, which are designed to run from 2 to 3 months without attention. These are the Stevens² gage and the intermittent Gurley³ gage. The Stevens gage gives a record in the form of a hydrograph similar to that described above but the method by which it is produced is reversed in that the clock revolves the drum and the float moves the pencil. The paper is fed from a large roll which contains about one year's supply. Records may be removed as desired, and if the gage is operating properly, it requires no attention oftener than is necessary to wind the clock.

The Gurley gage has three type wheels, one containing the time, which is operated by a clock and two which give the elevation of the water surface to feet and hundredths of a foot are controlled by a float. A record of the elevation of the water surface is printed every 15 minutes when a rubber-faced hammer strikes a strip of carbon backed paper which passes over the type wheels.

The Stevens gage and Gurley intermittent gage give satisfactory results when properly installed and they require less frequent attention than other gages. They are rather complicated, however, and considerable skill is necessary to properly install and operate them. If the expense of weekly attention is not too great, one of the simpler and less expensive gages will prove equally satisfactory.

Recording gages should be securely housed in order to protect them from storms and the possible ravages of lawless persons. Gage houses are usually built over wells connected to the stream

¹ Gages of this type are manufactured by Julian P. Friez, Baltimore, Md., and W. & L. E. Gurley, Troy, N. Y.

² Manufactured by Leupold & Voelpel, Portland, Ore.

^{*} Manufactured by W. & L. E. Gurley, Troy, N. Y.

through a pipe, which should lie below the lowest water-surface elevation. At permanent stations the gage house and well should preferably be constructed of concrete. In cold climates the well should be banked up by earth to protect against freezing and in some cases artificial heat within the well must be provided. Specific directions for setting up, operating, and protecting the different makes of gages are given by the manufacturers.¹

In deciding as to the advisability of installing a recording or non-recording gage several points must be considered. Those favorable to the installation of a non-recording gage are:

- 1. Cheaper first cost.
- 2. No mechanism to get out of order.

The recording gage possesses the following advantages:

- 1. Gives a continuous record.
- 2. Lower maintenance cost.
- 3. Does not require daily attendance, and therefore
- 4. May be installed in more remote places.
- 5. Reliability of record not subject to idiosyncrasies of gage reader.

On streams subject to a wide daily fluctuation in flow, due to artificial regulation by power plants or from other causes, a recording gage is essential. On streams having a fairly uniform flow, with a reliable gage reader, the records from a non-recording gage where readings are taken once or twice daily, may be entirely satisfactory.

Discharge Measurements.—Discharge measurements at a gaging station are usually made with a current meter, but other methods may sometimes be preferable. The different methods of measuring flowing water have already been described and of these the following are, under proper conditions, suitable for measuring discharges of natural streams:

- 1. Current meter (see pages 235 and 241)
- 2. Floats (see pages 239 and 244).
- 3. Weirs (see Chapters IV and V).
- 4. Chemical gaging (see page 249).

The current-meter method of determining discharges is satisfactory, provided the velocity is measurable and the flow

¹ For fuller discussion of this subject see John C. Hoyt and N. C. Groven: River Discharge, pp. 23-36.

is not too turbulent. Ordinarily floats should not be used if a current-meter measurement is practicable. If, however, a current meter is not available or if it is required to measure a stream at flood stage where a meter cannot be operated, the float method may be necessary.

A weir, if properly constructed, provides the most satisfactory means of obtaining continuous discharge records. crested weir is used the discharge corresponding to a given head may be obtained directly from formula (7), page 72. If a weir has a cross-section similar to any of the sections given on pages 132 to 138, the coefficients corresponding to the particular shape of crest may be taken from Tables 42 to 53 inclusive. pages 143 to 148, and applied to formula (1), page 128. weir having a cross-section for which no experimental coefficients have been obtained is to be used, the discharges corresponding to different gage heights should be measured. weir is properly constructed, the control for the gaging station is permanent. There is usually, however, a tendency for silt to deposit back of the weir and increase the velocity of approach. This condition should be carefully studied and from time to time measurements should be made to check the relation of gage height to discharge. For permanent stations sharpcrested weirs will not usually be as satisfactory as weirs of some other type as it will be found difficult to maintain a sharp crest,

Streams can ordinarily be measured, with a current meter, at low and medium stages with little difficulty, but to complete the discharge curve measurements at flood stages are required. These are often difficult to obtain, partly because of the short duration of such stages and also because of rapid changes of stage, swift currents, and obstruction of the stream surface by floating drift or ice. Under such conditions accurate current meter measurements become impossible (see page 266). Very often flood discharges may more readily be obtained by using an adjacent dam as a weir, after selecting a suitable coefficient. It is desirable that a profile and section of the dam shall have been obtained previously during low water stages. In general, the dam becomes increasingly more accurate and the current meter less so as the stage increases.

The method of chemical gaging is well adapted to small turbulent streams where a straight uniform reach of channel, suitable for current-meter measurements, cannot be found. Such streams are frequently encountered in rocky, mountainous districts, where the channels are rough but usually of a permanent character. There is, under such conditions, little difficulty in locating a gage above a permanent control, and a discharge curve once determined, may be used indefinitely. The comparatively high cost of measuring discharges may therefore be justified, if records for a long period are desired.

Discharge Curves.—A discharge curve may be obtained by plotting on ordinary cross-section paper, discharges as abscissas with corresponding gage heights as ordinates and drawing a smooth curve through the mean position of these points. If the gagings have been properly made the points should lie very close to the curve.



Fig. 75.—Discharge, mean velocity, and area curves.

An area curve is a graphical representation of the area of the cross-section of the channel for different gage heights. Data for the curve are obtained by taking areas, corresponding to proper intervals of gage height, from a plotted cross-section.

For each gaging of a stream a value of the mean velocity for the particular gage height may be obtained by dividing the discharge by the area. From the values thus obtained a meanvelocity curve may be plotted.

Fig. 75 shows typical discharge, mean-velocity and area curves. The same vertical coordinates are used for each curve. For corresponding gage heights the abscissa of the discharge curve is evidently the product of the abscissas of the other two curves. Area and mean-velocity curves when plotted in connection with discharge curves may assist in determining the accuracy of individual measurements by showing whether a discrepancy is due to erroneous measurement of area or velocity.

During a rising stage the flow of a stream is greater, for a given gage height, and during a falling stage less than when the flow is uniform. It is therefore important that gage readings at the beginning and end of a discharge measurement should be as nearly equal as practicable. Fig. 76 is a discharge curve for a rising and falling flood, the points 5 to 17 inclusive indicating the sequence of measurements during the flood. The



Fig. 76.—Typical discharge, curve for flood stages.

discharge curve for a rising flood is below and for a receding flood above the discharge curve for a constant stage, the amount of divergence increasing with the rate of change in stage.

Straight-line Methods of Plotting Discharge Curves.—It frequently happens that there are not sufficient measurements to determine a discharge curve accurately, when plotted by the method described above, or it may be desired to extend the curve above or below the range of plotted points. In some instances it may be necessary to plot the best curve possible from a very limited number of measurements or even from a single measurement. In such cases it is customary to select coördinates that are respectively functions of the gage height

and discharge, such that, when the values of these functions for given discharge measurements are plotted, they will lie on a straight line. Two methods of plotting discharge curves as straight lines will be described.

Logarithmic Discharge Curves.—From an investigation of many discharge curves it has been found that they may be approximately represented by an equation of the form

$$Q = p(G - e)^n \tag{11}$$

Q being the discharge in second-feet, G the gage reading in feet and p, e and n constants. If e is given a value such that G-e=0 when Q=0, and the logarithms of Q and G-e for given discharge measurements are plotted on ordinary cross-section paper, the points should lie very close to a straight line. If equation (11) held rigidly for all stages of a stream, e would be the gage height of zero discharge but for extremely small discharges, the actual curve departs somewhat from this form, as there is usually a small discharge for some distance below a gage reading of e. It will therefore be necessary to consider e as the value that must be used to make the corresponding logarithms of Q and G-e plot on a straight line. It is slightly greater than the gage height of zero discharge.

Equation (11) may be written

$$\log Q = n \log (G - e) + \log p \tag{12}$$

which is evidently the equation of a straight line referred to the axes  $\log Q$  and  $\log (G - e)$ , n being the tangent of the angle which the line makes with the  $\log (G - e)$  axis and p the intercept on the Q axis. After the line has been plotted the equation of the curve may be obtained by taking n and p from the diagram, and substituting their values in equation (12) which in turn may be transformed to the form of equation (11).

Fig. 77 shows a logarithmic and ordinary discharge curve (that is a discharge curve plotted on ordinary cross-section paper with gage heights and discharges for coördinates) of the Huron River at Fuller St. Bridge, Ann Arbor, Mich. A method of obtaining e graphically is also indicated. The ordinary discharge curve is first plotted as accurately as possible, and on this curve the points A, B, and C are so selected that the discharges to which they correspond are in geometric progression. In this case 200, 800, and 3200 second-feet were chosen though any other points in geometric progression such as 500, 1000, and

2000 second-feet might have been used. The main considerations are to select three points where the curve is accurately established and if possible to choose a ratio which will locate two of the points near the lower end and one quite well up on the curve. From the points A and B vertical lines are extended upward and from the points B and C horizontal lines are drawn which intersect the vertical lines at E and D. The lines DE and BA are then drawn to their intersection F, and the vertical



Fig. 77.—Logarithm discharge curve.

distance of F from the origin is e, the quantity sought. This method is theoretically correct¹ but may give a result slightly in error due to inaccuracy in plotting.

After e has been determined values of Q and G - e may be plotted on logarithmic paper or the logarithms of these quantities may be plotted on ordinary cross-section paper. The plotted points should lie close to a straight, but a difference of a few hundredths in e will greatly effect the positions of points for the smaller discharges and it may be that on first trial the lower

¹ For the proof of this method see Theodore R. Running: Empirical Formulas, p. 47.

points will not fall exactly in line with the upper ones. A slight correction to the value of e will then be necessary. The logarithm of the required correction will be given approximately by the vertical distance from the lowest plotted point to a straight line passed through the upper points.

After the logarithmic discharge curve has been satisfactorily plotted the equation of the curve may be written or any desired point may be transferred directly to the ordinary discharge curve. The equation of the curve shown in Fig. 77 is

$$Q = 351(G - 0.67)^{1.451} \tag{11a}$$

The ordinary discharge curve as plotted is a graph of this equation. It is evident that in this case a logarithmic discharge curve could have been drawn with practically the same result from a much smaller number of points.

Theoretically three measurements at different stages of a stream will determine the equation of the discharge curve. The three corresponding values of Q and G can be substituted in equation (11) and three simultaneous equations from which p, e and n may be determined will result. The equation of the curve may then be written by substituting these values in the original equation, or after e has been determined the logarithms of Q and G - e may be plotted.

With two discharge measurements given, e may be obtained from field observations and an approximate logarithmic discharge curve may be drawn through the two plotted positions of Q and G-e. Very approximately with a single discharge measurement, e, may be obtained as above and a line drawn through the one plotted point at an angle whose tangent is 1.5 with the  $\log (G-e)$  axis. Such a method should be used only when a rough estimate of discharge at some particular stage is desired.

The serious objection to plotting a discharge curve from a small number of observations is that it does not provide for the elimination of erroneous measurements. Where accurate records are required a number of observations, covering as wide a range of stage as practicable are essential.

The Area, Mean-depth Discharge Curve.—This method, devised by Stevens, is based upon the assumption that the mean

¹ J. C. STEVENS: A Method of Estimating Stream Discharge from a Limited Number of Gagings. Engineering News, July 18, 1907.

velocity at the gaging section is given by the Chezy formula and that

$$Q = ac\sqrt{r_8} \tag{13}$$

the nomenclature being the same as given on page 189. The mean depth d which is approximately equal to r for most natural streams may be substituted for r in the above equation. If w is the width of the stream

$$d = \frac{a}{m} \tag{14}$$

ŧ

and writing d for r in equation (13)

$$Q = c\sqrt{s} \times a\sqrt{d} \tag{15}$$

If Q be considered a function of  $a\sqrt{d}$  with  $c\sqrt{s}$  constant this expression is the equation of a straight line.

From investigations of a number of streams it has been found that when Q is plotted as a function of  $a\sqrt{d}$  the points lie very close to a straight line. The apparent errors in assuming c and s to be constants and the exponent of d to be  $\frac{1}{2}$  appear to very nearly balance each other.

Fig. 78 shows a discharge curve prepared by this method from the same data that were used for Fig. 77. To facilitate plotting, a curve of  $a\sqrt{d}$  is usually constructed, which will include the entire range of stage and after it has been completed points on the discharge curve may be determined directly from gage readings. Values of  $a\sqrt{d}$  may be computed for each foot or half-foot interval of gage height, dimensions used in the computations being scaled from a plotted cross-section of the channel. The dotted line indicates the method of locating a discharge measurement of 1757 second-feet, with corresponding gage reading of 3.65 feet, on the  $a\sqrt{d}$  discharge curve and transferring the point to the ordinary discharge curve.

The  $a\sqrt{d}$  discharge curve intersects the axis of zero discharge at a point where the value of  $a\sqrt{d}$  is about 60 corresponding to a gage reading of 0.75. This may be compared to the value of e=0.67 obtained from the logarithmic discharge curve, Fig. 77. The true gage reading of zero discharge is doubtless somewhat below either of these values. However, as two gagings of about 50 second-feet fall on the straight line in each case it is apparent that both the logarithmic and  $a\sqrt{d}$  discharge curves are accurate for all but the very smallest discharges. Results obtained from studies of other streams bear out this conclusion. Stevens states that the  $a\sqrt{d}$  discharge curve will intersect the zero dis-

charge ordinate at a point corresponding to a depth of flowing water of from 1 to 2 feet.

A discharge curve may be plotted approximately by this method from a limited number of gagings. Theoretically two discharge measurements will determine the position of the line instead of three which are required by the logarithmic method. With a single measurement the line may be roughly located by



Fig. 78.—Area, mean-depth discharge curve.

drawing it through the plotted point to intersect the ordinate of zero discharge at a value of  $a\sqrt{d}$  corresponding to a depth of water from 1 to 2 feet.

A careful comparison of Figs. 77 and 78, shows that the results obtained by the two methods of plotting are practically identical. Either method is believed to be trustworthy provided a few reliable discharge measurements are available. If a question should arise regarding the best method to use in a particular case it will probably be better to use each of them and let one check the other. The logarithmic method has the advantage of giving a simple equation for the discharge curve which may be used in computing the discharge table.

It should be understood that the above discussion refers only to streams having a reasonably uniform cross-section and it does not apply to channels with banks that have abruptly changing slopes. If the stream has a flood plain at a gaging section, the portion of the channel lying outside of the regular banks of the stream should be considered separately.

Discharge Table.—After a discharge curve has been satisfactorily plotted and checked, a discharge table should be prepared. The following is a portion of the discharge table for the Huron River at the Fuller St. station, which gives discharges for each 0.01-foot interval of gage height.

Gage height, feet	0.00	0.01	0.02	0.03	0.04	0.05	0.06	0.07	0.08	0.09
2.0	531	537	543	548	554	560	566	572	578	584
2.1	590	596	602	608	614	620	626	632	638	644
2.2	651	657	663	669	675	682	688	694	701	707
2.3	713	720	726	732	739	745	752	758	765	771
2.4	778	784	791	797	804	810	817	824	830	- 837
2.5	844	850	857	864	870	877	884	891	898	901
2.6	911	918	925	932	939	946	953	960	967	974
2.7	981	988	995	1,002	1,009	1,016	1,023	1,030	1,037	1,044
2.8	1,051	1,059	1,066	1,073	1,080	1,087	1,095	1,102	1,109	1,116
2.9	1,124	1,131	1,138	1,146	1,153	1,161	1,168	1,175	1,183	1,190

The completed table should cover the entire range in stage of the stream. Such a table may be used directly without interpolation, and materially reduces the labor of working up daily discharges from the gage records.

The most satisfactory method of computing a discharge table is from the equation of the discharge curve, similar to equation (11a), page 269. It will be found necessary to compute discharges by the formula only for each 0.1-foot interval of gage height, the remaining discharges being determined by the method of differences. The first differences will gradually increase while the second differences will decrease slightly with an increase of stage and become very nearly constant for the higher stages. In order to have the quantities in the table correct to the nearest second-foot the computations by differences should be carried out to one or two decimal places, and the results tabulated to the nearest whole number.

A discharge table may be made directly from the discharge

curve, by scaling values from the curve for each 0.1-foot interval of gage height, and interpolating intermediate values. The quantities thus obtained should then be adjusted till the first and second differences vary uniformly. This process will be found to be very tedious, and is not as satisfactory as the method of computing values from the equation of the curve.

Verification of Discharge Curve.—The accuracy of the discharge records obtained at any station depends in a large measure upon the maintenance of a known relation between gage height and discharge. Any conditions of flow which may have a tendency to effect the control should be carefully watched. It is therefore advisable to make occasional gagings of the stream, particularly after floods, to check the discharge curve. If it should be found at any time that a change of channel conditions has affected the relation of stage to discharge it will be necessary to make a new set of gagings and construct a new discharge curve. The time when the use of the new discharge curve should be substituted for the old will be the time at which, in the judgment of the engineer, the change in channel conditions occurred.

Streams with Shifting Beds.—There are certain streams, of which those in southwestern United States are typical, which have continually shifting beds and consequently a continually changing relation between gage height and discharge. To obtain continuous discharge records on such streams discharge measurements should be made every few days. If the stage of the stream does not change rapidly the discharge may be assumed to vary uniformly between successive gagings and intermediate discharges may be interpolated. This method, however, is not satisfactory and it fails entirely for varying rates of change in flow.

Several methods have been suggested for obtaining continuous discharge records from gage readings, but only one, the Stout method, will be described. An average discharge curve is first drawn from the discharge measurements. Then for each discharge measurement the correction, plus or minus, is obtained which must be applied to the gage reading to make it correspond to the approximate discharge curve. These corrections are then plotted for the proper date, as shown in Fig. 79, after which a curve is drawn through the points. The points may be connected simply with the idea of obtaining a smooth curve unless some condition such as a flood on a par-

ticular day might indicate that there had been only a slight change in the channel up to that time. After the curve has been completed, the gage readings for each day may be corrected and these in turn may be used to obtain discharges from the approximate curve or table of discharges.



Fig. 79.—Curve for correcting gage readings for changing channel conditions.

Discharge of Streams during Freezing Weather.\(^1\)—The freezing of a stream may or may not affect the relation of gage height to discharge. If the control (see page 259) is free from ice the stream at the gage may be entirely frozen over without changing this relation. As soon, however, as ice forms at the control the water will be backed up and cause a decreased discharge for a given gage height. Ice may collect above or below a control in sufficient quantity to temporarily form a new control. There are three distinct types of ice formation; surface ice, anchor ice, and frazil or slush ice. In any of these forms or in their combined influence ice may cause a backing up effect of the water of a stream.

Anchor ice forms in running water on cold nights when the temperature of the water is below 32°F., adhering to the bed of the river or to some other surface with which the water comes in contact. When the temperature of the water becomes a small fraction of a degree greater than 32°F. the anchor ice becomes loosened from the object to which it is attached, rises to the surface and floats down stream. Frazil or slush ice forms in running water, when the temperature of the water is below 32°F., in the shape of small needles or thin flakes which

¹ This subject is fully discussed in Water Supply Paper No. 337 of the U.S. Geological Survey.

may collect in large masses and float on the surface of the stream.

Ice jams may occur at a point in a stream where a swift current enters a body of slack water. The slack water may freeze over while the portion of the stream with the swift current will not freeze but presents a condition favorable for the formation of frazil ice. Two pieces of ice in contact will freeze together almost instantaneously providing the temperature of the thin layer of water between them is below 32°F. Hence the pieces of frazil ice upon coming in contact with the solid ice covering may immediately freeze to it and result in the formation of an ice jam. During protracted cold spells ice jams formed in this manner may cause serious damage from floods due to back water.

Anchor ice may adhere to the bed of the stream at the control and cause a temporary backing up of water. This ice, which forms always at night, will become loosened when the sun's rays strike the water even though the air remains several degrees below freezing temperature. The presence of anchor ice at the control is indicated by a drop in the gage reading during the morning hours and a rise at night.

It is evident that the effect of ice in a stream will always be to cause a greater gage reading for a given discharge than is given by the open-water condition. The gage reading may be affected for comparatively short or intermittent periods, as when anchor ice forms at the control, or for several days or weeks when the obstruction is caused by an ice jam or covering of ice. For the more permanent obstruction the problem of keeping continuous discharge records is quite similar to that described for streams with shifting channels. A careful study of ice conditions and frequent discharge measurements are necessary. Since it is evident that the stage of a stream will not fluctuate greatly during freezing weather the discharge may be considered to vary uniformly between successive gagings if they are not taken too far apart.

A method of correcting gagings, similar to the method for shifting channels illustrated in Fig. 79, may be used for applying a correction to gage readings to make them correspond to the proper discharges for the open-water curve. Such corrections will always be negative. A record of daily temperatures, for the period in question, preferably in the form of a graph

TABLE 87.

Daily Discharge, in Second-Feet, of Sevier River near Gunnison, Utah, for 1910

Day	Jan.	Feb.	Mar.	Apr.	May	June	July	Aug.	Sept.	Oct.	Nov.	Dec.
1	470			875	530	100	30	140	44	270	470	330
2 3	805 782	550 570	715 805	850 828	590 550	100 110	30 30	140 190	44 44	255 240	715 550	330 330
4	805	550	900	805	470	100	30	178	80	228	435	330
5	782	550	1,120		490	100	30	140	90	215	418	330
6	782	470	1.150	760	470	100	30	120	90	202	418	330
7	715	470	1,410	715	435	80	30	120	120	202	365	300
8	715	470	1,380	670	470	80	30	120	120	202	348	300
.9	692	470	1,350		400	70	30	100	152	202	330	300
10	670	480	1,300	650	435	.60	30	120	152	228	330	285
11	670	490	1,300	590	470	60	30	100	165	228	330	240
12	630	510	1,220	510	400	60	30	315	178	228	315	240
13 14	590 590	510 510	1,200 1,200	490 470	382 400	60 60	30 30	165 120	152 152	240 240	315 315	240 255
15	550	510	1,200	470	365	52	30	120	152	255	315	240
16	715	470	1,200	435	330	60	30	120	152	270	315	240
17	550	510	1,200	435	400	44	30	100	140	285	315	330
18	550	510	1,200	418	300	44	30	90	140	285	300	382
19	550	550	1,180	418	315	44	44	90	178	300	315	382
20	550	550	1,150	418	300	44	37	90	270	300	300	382
21	530	570	1,150	470	315	44	60	80	435	300	315	382
22	530	590	1,180	452	270	44	60	80	435	315	300	380
23	530	590	1,200	400	270	44	60	70	400	315	300	380
24 25	530 510	590 590	1,200	418 435	202 60	44 44	60 <b>60</b>	70 60	400 400	315 330	300 300	370
			1,200	- 1								370
26 27	510 470	610 630	1,250	435 452	100 190	37 30	110 110	60 60	400 365	330 382	300 315	360
2/	470	630	1,180 1,000	452 452	120	30	110	52	330	365	315	360 360
28 29	435	030	1,000	452	100	30	120	52	315	400	315	350
30	400	::::	950	470	100	30	120	52	285	400	330	350
30 31	510		950		100		120	44		400		350

Note.—Daily discharge determined from discharge rating curve fairly well defined. Discharge interpolated for days on which gage was not read. Discharge Dec. 22 to 31 estimated.

MONTHLY DISCHARGE OF SEVIER RIVER NEAR GUNNISON, UTAH, FOR 1910 [Drainage area, 3,990 square miles]

	Dia	charge	in second	Run			
Month	Maxi- mum	Mini- mum	Mean		Depth in inches on drainage area	Total in acre-feet	Accu- racy
January February March April May June July August September October November December	805 630 1,410 875 590 110 120 315 435 400 715 382	400 470 715 400 60 30 44 44 202 300 240	600 537 1,130 554 333 60.2 52 108 213 282 353 326	0.150 .135 .283 .139 .083 .015 .013 .027 .053 .071 .088 .082	0.17 .14 .33 .16 .10 .02 .01 .03 .06 .08 .10	36,900 29,800 69,500 33,000 20,500 3,580 3,200 6,640 12,700 21,000 20,000	B B B B B B A A A A B
The year	1,410	30	379	.095	1.29	274,000	

١.

Records of Discharge.—Daily discharge records should be tabulated and kept in a form convenient for reference. Table 87 indicates the form adopted by the U. S. Geological Survey.



Fig. 80.-Hydrograph.

Hydrographs, Fig. 80, are graphical representations of records of discharge, the ordinates expressing discharges and the abscissas time. They may be plotted continuously or on separate sheets, usually for yearly periods. Hydrographs convey a better mental picture of the discharge of a stream than is possible from tabulated values and, when drawn to a small scale, they are very valuable for reports and other purposes where general conditions only are to be expressed. Hydrographs plotted to a scale of from 1 to 2 inches to the month may be used to advantage in many problems pertaining to stream flow and in connection with the mass diagram, page 294, they may be helpful in storage calculations.

## CHAPTER IX

#### SPECIAL PROBLEMS

#### Backwater Curve

Backwater curve is the term applied to the profile of the surface of the water in a channel above a dam or other obstruction. The problem may be encountered in either canals or natural streams. When a dam is constructed across a natural stream it may be necessary to determine the flow line for flood discharges in the pond above the dam in order to estimate property damages or to calculate the effect of backwater on a power plant above the dam. The solution here given is general and applies to either natural or artificial channels. The problem as commonly stated gives the discharge and elevation of water surface at the obstruction causing backwater; it being desired to obtain the elevation of water surface at successive points upstream from the obstruction.

The first step in the solution consists of dividing the stream into reaches of such length that a mean cross-section of the reach may be obtained which, when used in the computations, will give results within the desired limits of accuracy. The computations usually start at the obstruction with a known or assumed discharge and corresponding elevation of water surface. The slope through the first reach is then calculated from which the elevation of water surface at the beginning of the second reach may be obtained. This elevation may then be used as a basis for computing the slope in the second reach, which in turn gives data for obtaining the elevation of water surface at the beginning of the third reach. In the same manner the slope of other reaches may be determined until the solution has been carried as far as is desired.

A plan of the channel and data for obtaining as many crosssections as are desired should be available. Fig. 81 shows a plan, longitudinal section and two typical cross-sections of a natural stream. The plan shows contours from which crosssections at any desired points may be obtained. In addition to such contours as many actual elevations as are available should be plotted on the map. This applies especially to elevations of the stream bed which should show clearly the main channel of the stream. The more accurate the data contained on the map the more reliable will be the slope computations. A map of this kind is not necessary for artificial channels of regular form as cross-sections may be readily obtained at any point.



Fig. 81.—Plan, profile. and cross-sections of stream for backwater computations.

The figure shows a dam MN constructed between contours gg. AB, BC, CD, etc., are successive reaches in which slopes are to be computed. The length of reach to be chosen will depend upon the uniformity of the channel and the rate of slope. In general, the more regular the channel and the smaller the slope the longer the reach that may be chosen. Ordinarily the longer reaches will be taken nearest to the obstruction and become shorter farther upstream. Where sudden changes in cross-

section occur it is generally advisable to take a short reach that extends from just below to just above the place where the change occurs.

The longitudinal section, Fig. 81, shows the general form of the backwater curve. The backwater curve gradually approaches the line of normal water surface and will ultimately become tangent to it. In practical problems it may be assumed that when the slope of the backwater curve becomes approximately parallel to the bed of the stream, the limit of the backwater has been reached.

The slope of each reach may be computed by any of the formulas for flow in open channels. To do this a mean cross-section for the reach must be obtained. For regular canals this cross-section may usually be taken as the section at the middle of the reach. For natural streams a mean of all cross-sections in the reach, as nearly as may be obtained by practicable means, should be used. This mean cross-section may be obtained by plotting a number of sections, having a common center line, over each other and drawing an average line through them. The elevation of water surface to be used in this case will be the elevation at the middle of the reach.

If backwater curves for several different discharges are to be determined, time may be saved by computing several areas and hydraulic radii for the mean cross-sections for each reach. using elevations of water surface chosen arbitrarily within the range of assumed conditions, and from these values drawing area curves and hydraulic radii curves by plotting on crosssection paper elevations for ordinates and areas and hydraulic radii respectively for abscissas. Any values then needed in the computations may be taken from these curves. The areas of plotted cross-sections may be conveniently obtained by means of a planimeter. Where several elevations of water surface are to be considered at any cross-section it will be found convenient to first compute the area for the highest water surface and then, for the next lower water surface, subtract the area between the elevations of the two water surfaces. This subtractive quantity will be equal to the difference in elevation of the two surfaces multiplied by their mean length. The length of wetted perimeter may be scaled from the cross-section. On ordinary river channels the wetted perimeter is equal approximately to the width of the stream plus the maximum depth of water, or more accurately for channels of nearly rectangular cross-section, it is equal to the width of stream plus 2 times the mean depth.

After obtaining mean cross-sections the first step in the computations is to assume a slope for the reach being considered in order that an elevation of water surface, at the middle of the reach, for the cross-section may be obtained. With this trial elevation decided upon the area and hydraulic radius for the section may be determined and  $v = \frac{Q}{a}$  found. The slope of water surface may then be computed by an open-channel formula. If the computed slope differs materially from the assumed slope a second computation may be made, using this computed slope for determining the trial elevation of water surface at the middle of the reach. Usually, however, the error in area introduced by using the assumed slope will be insignificant and a second computation will not be necessary. the slope of water surface for the first reach has been determined. the elevation of water surface at the beginning of the second reach may be obtained and the computations for the other reaches may be made in the same manner as described for the first reach.

Slope computations may be readily made by means of Manning's formula (page 190), which may be written in the form

$$s = \frac{n^2 v^2}{2.2082753} \tag{1}$$

Values of  $\frac{1}{2.2082r_{25}^{48}}$  for a range of r from 0.1 to 55 feet are given in Table 82, page 222, and by using this table the solution reduces to the simple operation of multiplying the tabulated value corresponding to the given r by  $(nv)^2$ . The computations may be still farther reduced by using Diagram 2, opposite page 230, for determining s. This diagram will be accurate enough for ordinary backwater calculations.

Engineers who are accustomed to use Kutter's formula for computations of this kind will find that the two formulas give results agreeing very closely. If, however, it has been decided to use a certain value of n with Kutter's formula the corresponding value of n for Manning's formula which will give identical results may be obtained from Table 75, page 204.

It will generally be found more convenient to mark off 100 feet stations on the center line of the channel, beginning with

station 0 at the downstream end of the curve. All elevations should be referred to the same datum, and tied to one or more permanent bench marks.

Preferably the results of computations should be kept in tabular form in order to systematize the work and provide a concise record for future reference. Table 88 is an example of a form which may be used for backwater computations.

It is sometimes desired to determine the height to which water in a stream at a given point may be raised by the construction of a dam or otherwise without backing up the water above a certain elevation at some point farther upstream. In this case the method to be followed in making computations is the same as described above except that they proceed downstream instead of upstream and slope corrections are subtracted instead of added.

In cases where the stream is divided between two channels as in passing around opposite sides of an island, the given discharge is divided by judgment between the two channels. The slope in each with its portion of the discharge is computed and if it is found that the computed slope for one channel gives a greater difference of elevation between the ends of the island than the computed slope for the other channel, the computation is repeated, reducing the proportion of the discharge assumed to pass through the channel which gave the greater difference in elevation and increasing the proportion of discharge for the channel which gave the smaller difference in elevation. has the effect of increasing the calculated slope in one channel and reducing it in the other. The operation is repeated until the flow is so divided between the two channels that starting with an assumed elevation at one end the calculated elevation at the other end of each channel is the same.

After two complete trial solutions have been made, the following graphical method may be employed to complete the computations. Let  $Q_1$  be one of the trial discharges for either channel and  $Q_2$  the other trial discharge for the same channel. Consider discharges as abscissas and elevations as ordinates. On the ordinate  $Q_1$  plot the elevations obtained for each channel for the trial solution in which  $Q_1$  was used and on the ordinate  $Q_2$  plot the elevations obtained by the other trial solution. The ordinate of the point of intersection of the straight lines connecting the points for each channel will be the approximate elevation required. The abscissa of the point gives the ap-

ELEVATION OF WATER Table 88.—Backwater Computations. Q = 20,000 Second-feet. Surface at Dam = 512.6.

Elevation at upper end of reach	513.40	513.44	513.51	513.60	513.78	514.59	514.92	515.57	516.53
Fall in reach	.795.	.045	.075	.081	.187	<b>9</b> 8.	.329	.650	980
Slope	41000.	.00015	.00015	.00027	.00017	.00031	.00047	.00050	.00032
Rough- ness n	.030	.030	.030	.030	.030	.030	.030	.035	.035
Mean velocity $v = \frac{Q}{a}$	3.09	3.37	3.47	3.51	3.57	4.02	4.43	4.15	3.86
Hydrau- lio radius,	11.9	13.1	12.8	8.9	13.1	8.6	8.3	9.1	11.4
Trial mean area,	6,461	5,934	5,607	5,697	5,595	4,980	4,520	4,815	5,175
Trial mean elevation	512.9	513.4	513.5	513.6	513.7	514.1	514.7	515.1	516.1
Elevation at lower end	512.6	513.40	513.44	513.51	513.60	513.78	514.59	514.92	515.57
Length of reach	5,300	300	200	300	1,100	2,600	200	1,300	3,000
Upper	53	26	61	2	75	101	108	121	151
Lower	0	22	26	61	\$	75	101	108	121
	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	Upper Length station reach end from teach station $\frac{1}{2}$ $\frac{1}{2}$ $\frac{1}{2}$ $\frac{1}{2}$ $\frac{1}{2}$ $\frac{1}{2}$ $\frac{1}{2}$ $\frac{1}{2}$ $\frac{1}{2}$ $\frac{1}{2}$ $\frac{1}{2}$ $\frac{1}{2}$ $\frac{1}{2}$ $\frac{1}{2}$ $\frac{1}{2}$ $\frac{1}{2}$ $\frac{1}{2}$ $\frac{1}{2}$ $\frac{1}{2}$ $\frac{1}{2}$ $\frac{1}{2}$ $\frac{1}{2}$ $\frac{1}{2}$ $\frac{1}{2}$ $\frac{1}{2}$ $\frac{1}{2}$ $\frac{1}{2}$ $\frac{1}{2}$ $\frac{1}{2}$ $\frac{1}{2}$ $\frac{1}{2}$ $\frac{1}{2}$ $\frac{1}{2}$ $\frac{1}{2}$ $\frac{1}{2}$ $\frac{1}{2}$ $\frac{1}{2}$ $\frac{1}{2}$ $\frac{1}{2}$ $\frac{1}{2}$ $\frac{1}{2}$ $\frac{1}{2}$ $\frac{1}{2}$ $\frac{1}{2}$ $\frac{1}{2}$ $\frac{1}{2}$ $\frac{1}{2}$ $\frac{1}{2}$ $\frac{1}{2}$ $\frac{1}{2}$ $\frac{1}{2}$ $\frac{1}{2}$ $\frac{1}{2}$ $\frac{1}{2}$ $\frac{1}{2}$ $\frac{1}{2}$ $\frac{1}{2}$ $\frac{1}{2}$ $\frac{1}{2}$ $\frac{1}{2}$ $\frac{1}{2}$ $\frac{1}{2}$ $\frac{1}{2}$ $\frac{1}{2}$ $\frac{1}{2}$ $\frac{1}{2}$ $\frac{1}{2}$ $\frac{1}{2}$ $\frac{1}{2}$ $\frac{1}{2}$ $\frac{1}{2}$ $\frac{1}{2}$ $\frac{1}{2}$ $\frac{1}{2}$ $\frac{1}{2}$ $\frac{1}{2}$ $\frac{1}{2}$ $\frac{1}{2}$ $\frac{1}{2}$ $\frac{1}{2}$ $\frac{1}{2}$ $\frac{1}{2}$ $\frac{1}{2}$ $\frac{1}{2}$ $\frac{1}{2}$ $\frac{1}{2}$ $\frac{1}{2}$ $\frac{1}{2}$ $\frac{1}{2}$ $\frac{1}{2}$ $\frac{1}{2}$ $\frac{1}{2}$ $\frac{1}{2}$ $\frac{1}{2}$ $\frac{1}{2}$ $\frac{1}{2}$ $\frac{1}{2}$ $\frac{1}{2}$ $\frac{1}{2}$ $\frac{1}{2}$ $\frac{1}{2}$ $\frac{1}{2}$ $\frac{1}{2}$ $\frac{1}{2}$ $\frac{1}{2}$ $\frac{1}{2}$ $\frac{1}{2}$ $\frac{1}{2}$ $\frac{1}{2}$ $\frac{1}{2}$ $\frac{1}{2}$ $\frac{1}{2}$ $\frac{1}{2}$ $\frac{1}{2}$ $\frac{1}{2}$ $\frac{1}{2}$ $\frac{1}{2}$ $\frac{1}{2}$ $\frac{1}{2}$ $\frac{1}{2}$ $\frac{1}{2}$ $\frac{1}{2}$ $\frac{1}{2}$ $\frac{1}{2}$ $\frac{1}{2}$ $\frac{1}{2}$ $\frac{1}{2}$ $\frac{1}{2}$ $\frac{1}{2}$ $\frac{1}{2}$ $\frac{1}{2}$ $\frac{1}{2}$ $\frac{1}{2}$ $\frac{1}{2}$ $\frac{1}{2}$ $\frac{1}{2}$ $\frac{1}{2}$ $\frac{1}{2}$ $\frac{1}{2}$ $\frac{1}{2}$ $\frac{1}{2}$ $\frac{1}{2}$ $\frac{1}{2}$ $\frac{1}{2}$ $\frac{1}{2}$ $\frac{1}{2}$ $\frac{1}{2}$ $\frac{1}{2}$ $\frac{1}{2}$ $\frac{1}{2}$ $\frac{1}{2}$ $\frac{1}{2}$ $\frac{1}{2}$ $\frac{1}{2}$ $\frac{1}{2}$ $\frac{1}{2}$ $\frac{1}{2}$ $\frac{1}{2}$ $\frac{1}{2}$ $\frac{1}{2}$ $\frac{1}{2}$ $\frac{1}{2}$ $\frac{1}{2}$ $\frac{1}{2}$ $\frac{1}{2}$ $\frac{1}{2}$ $\frac{1}{2}$ $\frac{1}{2}$ $\frac{1}{2}$ $\frac{1}{2}$ $\frac{1}{2}$ $\frac{1}{2}$ $\frac{1}{2}$ $\frac{1}{2}$ $\frac{1}{2}$ $\frac{1}{2}$ $\frac{1}{2}$ $\frac{1}{2}$ $\frac{1}{2}$ $\frac{1}{2}$ $\frac{1}{2}$ $\frac{1}{2}$ $\frac{1}{2}$ $\frac{1}{2}$ $\frac{1}{2}$ $\frac{1}{2}$ $\frac{1}{2}$ $\frac{1}{2}$ $\frac{1}{2}$ $\frac{1}{2}$ $\frac{1}{2}$ $\frac{1}{2}$ $\frac{1}{2}$ $\frac{1}{2}$ $\frac{1}{2}$ $\frac{1}{2}$ $\frac{1}{2}$ $\frac{1}{2}$ $\frac{1}{2}$ $\frac{1}$	Upper station         Length of station         Elevation at elevation         Trial mean station         Trial mean station         Trial mean elevation         Trial mean area, redius, of station at elevation         Trial mean station in elevation at elevation at elevation at elevation at elevation at elevation at elevation at elevation at elevation at elevation at elevation at elevation at elevation at elevation at elevation at elevation at elevation at elevation at elevation at elevation at elevation at elevation at elevation at elevation at elevation at elevation at elevation at elevation at elevation at elevation at elevation at elevation at elevation at elevation at elevation at elevation at elevation at elevation at elevation at elevation at elevation at elevation at elevation at elevation at elevation at elevation at elevation at elevation at elevation at elevation at elevation at elevation at elevation at elevation at elevation at elevation at elevation at elevation at elevation at elevation at elevation at elevation at elevation at elevation at elevation at elevation at elevation at elevation at elevation at elevation at elevation at elevation at elevation at elevation at elevation at elevation at elevation at elevation at elevation at elevation at elevation at elevation at elevation at elevation at elevation at elevation at elevation at elevation at elevation at elevation at elevation at elevation at elevation at elevation at elevation at elevation at elevation at elevation at elevation at elevation at elevation at elevation at elevation at elevation at elevation at elevation at elevation at elevation at elevation at elevation at elevation at elevation at elevation at elevation at elevation at elevation at elevation at elevation at elevation at elevation at elevation at elevation at elevation at elevation at elevation at elevation at elevation at elevation at elevation at elevation at elevation at elevation at ele	Upper station         Length station         Elevation elevation         Trial mean station         Trial mean station         Trial mean elevation         Trial mean in area         Trial mean in a carea         Trial in a carea         Trial in a carea         Trial in a carea         Trial in a carea         Trial in a carea         Trial in a carea         Trial in a carea         Trial in a carea         Trial in a carea         Trial in a carea         Trial in a carea         Trial in a carea         Trial in a carea         Trial in a carea         Trial in a carea         Trial in a carea         Trial in a carea         Trial in a carea         Trial in a carea         Trial in a carea         Trial in a carea         Trial in a carea         Trial in a carea         Trial in a carea         Trial in a carea         Trial in a carea         Trial in a carea         Trial in a carea         Trial in a carea         Trial in a carea         Trial in a carea         Trial in a carea         Trial in a carea         Trial in a carea         Trial in a carea         Trial in a carea         Trial in a carea         Trial in a carea         Trial in a carea         Trial in a carea         Trial in a carea         Trial in a carea         Trial in a carea         Trial i	Upper station         Length station reach         Elevation of sattle station of station station         Trial mean station station of station station of station station station station station station of station station station station station station station station station station station station station station station station station station station station station station station station station station station station station station station station station station station station station station station station station station station station station station station station station station station station station station station station station station station station station station station station station station station station station station station station station station station station station station station station station station station station station station station station station station station station station station station station station station station station station station station station station station station station station station station station station station station station station station station station station station station station station station station station station station station station station station station station station station station station station station station station station station station station station station station station station station station station station station station station station station station station station station station station station station station station station station station station station station station station station station station station station station station station station station station station station station station station station station station station station station station station station station station station station station station station station station station station station station station station station station station statio	$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$

proximate discharge of the channel for which  $Q_1$  and  $Q_2$  were trial discharges. The values obtained by this method may be checked by slope calculations.

In case a stream has a flood plain which is overflowed during higher stages it is better not to include this portion of the discharge in the computations for the main channel, but to subdivide the flow by judgment between the flood plain and main channel making the calculations in the same manner as for a channel divided by an island, as already described. Trial subdivisions should be repeated until a division of the flow has been found such that the fall on the flood plain in the given reach becomes the same as the fall in the main channel.

As a rule the generally accepted values of coefficients of roughness cannot be followed closely in applying the formulas for flow in open channels, especially in case of low water and in channels subject to backwater from dams. In such channels there is usually more or less slackwater in places along the bottom and sides of the channel, which cannot properly be included as an effective part of the channel. It is usually difficult to eliminate slackwater areas from measured crosssections and in order that slope computations may, in a measure. allow for this condition it is necessary to use a larger coefficient of roughness. Natural channels may require the use of a coefficient of roughness of 0.040 or 0.050 in cases where the bed and banks are such that the categorical coefficient of roughness would be 0.025 to 0.030. The presence of slackwater may often be detected by the growth of aquatic grass, in which case, even though there is a good current, the coefficient of roughness will be much larger than for a channel free from such obstruction.

It is frequently important to determine whether an existing or proposed dam has caused or will cause a rise in the surface elevation of a stream at some point upstream from the dam. In such cases a profile of the water surface when not influenced by backwater is essential. The best method of obtaining the necessary data is to keep a continuous daily record of stage and discharge at the point in question. If this information is secured before the dam is built it will furnish the best possible evidence as to the natural stage of the stream, and frequently such data cannot be secured after the dam has been built, even by drawing down the water, owing to changes in the channel by silting and the formation of bars at the head of the pond.

## Divided Flow in Pipes

An example of this problem is illustrated by Fig. 82. The pipe AB divides at B into the two branches BEC and BFC which reunite at C where they discharge into the pipe CD. Let l,  $l_1$ ,  $l_2$  and  $l_3$  represent respectively the lengths of pipes AB, BEC, BFC, and CD and d,  $d_1$ ,  $d_2$  and  $d_3$  and v,  $v_1$ ,  $v_2$  and  $v_3$  the corresponding diameters and velocities.  $K_1$ ,  $K'_1$ ,  $K''_1$ , and  $K'''_1$  are friction coefficients (see page 154 and Table 57, page



Fig. 82.—Pipe with divided flow.

172). The total head lost in friction from A to B is represented by  $h_1$  from B to C by  $h_2$ , from C to D by  $h_2$ , and from A to D the total head lost in the system is represented by H. It is apparent that

$$H = h_1 + h_2 + h_3 \tag{2}$$

also, see page 158,

$$H = K_1 \frac{l}{d^{1.25}} \cdot \frac{v^2}{2g} + K'_1 \frac{l_1}{d_1^{1.25}} \cdot \frac{v_1^2}{2g} + K'''_1 \frac{l_3}{d_3^{1.25}} \cdot \frac{v_3^2}{2g}$$
(3)

And since the lost head in the two branching pipes must be the same

$$K'_{1}\frac{l_{1}}{d_{1}^{1}\cdot 2^{5}}\cdot \frac{v_{1}^{2}}{2g} = K''_{1}\frac{l_{2}}{d_{2}^{1}\cdot 2^{5}}\cdot \frac{v_{2}^{2}}{2g}$$
(4)

and

$$v_1 \sqrt{\frac{K'_1 l_1}{d_1^{1.25}}} = v_2 \sqrt{\frac{K''_1 l_2}{d_2^{1.25}}}$$
 (5)

From the principle of continuity of flow the following relation may be obtained

$$vd^2 = v_1d_1^2 + v_2d_2^2 = v_3d_3^2 (6)$$

Also from equations (5) and (6)

$$v_{1} = \frac{vd^{2}\sqrt{\frac{K''_{1}l_{2}}{d_{2}^{1.25}}}}{d_{1}^{2}\sqrt{\frac{K''_{1}l_{2}}{d_{2}^{1.25}}} + d_{2}^{2}\sqrt{\frac{K'_{1}l_{1}}{d_{1}^{1.25}}}}$$
(7)

$$v_{2} = \frac{vd^{2}\sqrt{\frac{K'_{1}l_{1}}{d_{1}^{1.26}}}}{d_{1}^{2}\sqrt{\frac{K''_{1}l_{2}}{d_{2}^{1.26}}} + d_{2}^{2}\sqrt{\frac{K'_{1}l_{1}}{d_{1}^{1.26}}}}$$

$$v_{3} = \frac{vd^{2}}{d_{1}^{2}}$$
(9)

and from equations (3), (7), (8), and (9)

$$H = \frac{v^2}{2g} \left[ K_1 \frac{1}{d^{1.25}} + K'_1 \frac{l_1}{d_1^{1.25}} \left( \frac{d^2 \sqrt{\frac{K''_1 l_2}{d_2^{1.25}}}}{d_1^2 \sqrt{\frac{K''_1 l_2}{d_2^{1.25}}} + d_2^2 \sqrt{\frac{K'_1 l_1}{d_1^{1.25}}}} \right)^2 + K'''_1 \frac{l_3}{d_3^{1.25}} \frac{d^4}{d_3^4} \right]$$
(10)

From this equation v may be computed, and  $v_1$ ,  $v_2$  and  $v_3$  may be obtained from equations (7), (8) and (9). Also H may be calculated when the discharge and all dimensions of the pipe system are given. If H and the discharge and all dimensions except one are given the missing dimension may be computed from the above formulas.



Fig. 83.—Pipe with branches discharging at different elevations.

The use of Table 60 or 61, pages 175 and 178, which give values of  $\frac{1}{d^{1.25}}$  will simplify the computations. The values of  $K_1$ ,  $K'_1$ ,  $K''_1$  and  $K'''_1$  are to be taken from Table 57, page 172. These values will vary slightly with the velocity, and as they must be chosen from an assumed velocity it may be necessary to make a second solution of the problem after obtaining approximate velocities from the first solution.

Another problem sometimes encountered is illustrated in Fig. AB is a main pipe line which divides at B into the branches

BC and BD. y is the head lost in friction in the pipe AB and  $h_1$  and  $h_2$  represent the total head lost in friction to the outlets C and D respectively. l,  $l_1$  and  $l_2$  are the respective lengths of AB, BC, and BD, and d,  $d_1$  and  $d_2$  and v,  $v_1$  and  $v_2$  are corresponding diameters and velocities.  $K_1$ ,  $K'_1$ , and  $K''_1$  are friction coefficients (see page 154 and Table 57, page 172).

The loss of head due to friction in the two branch pipes is represented by the equations

$$h_1 - y = K'_1 \frac{l_1}{d_1^{1.25}} \cdot \frac{v_1^2}{2g}$$
 and  $h_2 - y = K''_1 \frac{l_2}{d_2^{1.25}} \cdot \frac{v_3^2}{2g}$  (11)

and for the main pipe AB

$$y = K_1 \frac{l}{d^{1.25}} \cdot \frac{v^2}{2g} \tag{12}$$

and from the principle of continuity of flow

$$d^2v = d_1^2v_1 + d_2^2v_2 (13)$$

From the relations expressed by the above equations the following formulas may be written

$$2gh_1 = K_1 \frac{l}{d^{1.25}} \left( \frac{d_1^2}{d^2} v_1 + \frac{d_2^2}{d^2} v_2 \right)^2 + K'_1 \frac{l_1}{d_1^{1.25}} v_1^2$$
 (14)

and

$$2g(h_1 - h_2) = K_1' \frac{l_1}{d_1^{1.25}} v_1^2 - K''_1 \frac{l_2}{d_2^{1.25}} v_2^2$$
 (15)

From equations (14) and (15) any two unknown quantities may be determined. If all dimensions of the pipe system and  $h_1$  and  $h_2$  are given  $v_1$  and  $v_2$  may be determined and also the discharges of each of the branch pipes. Similarly  $d_1$  and  $d_2$  may be computed when the other quantities are given. It will usually be found more convenient to solve equation (15) first in order to express one unknown in terms of the other for substituting in equation (14). The values of  $K_1$ ,  $K'_1$  and  $K''_1$  must first be chosen by trial as described on page 162 and a second solution may be necessary.

A trial method of determining the discharge for a system of pipes, similar to that shown in Fig. 82, is as follows. Assume a discharge and compute  $h_1$  and  $h_2$ . Find  $H - (h_1 + h_2)$  for a trial value of  $h_2$ . With this trial value compute the discharge through pipes E and F. Find the difference between the assumed discharge and the combined discharge of pipes E and F. The true discharge will lie between the assumed discharge and the combined discharge of pipes E and F as computed.

Assume another discharge and again in the same manner find the difference between the assumed discharge and the combined discharge through pipes E and F. Using rectangular coordinates, plot to suitable scale, the differences for each set of computations against the corresponding assumed discharges. Connect the plotted points with a straight line. The point of intersection of this line with the coördinate of zero difference gives approximately the true discharge. A slight error is introduced by assuming a straight line variation between the plotted To get a closer result, determine a new difference by the above method using this approximate value of the true discharge. Plot this difference as before and draw a curve through the three plotted points. The intersection of this curve with the coördinate of zero difference should be very close to the true discharge.

A method similar to the above may be employed for determining the discharge through the system of pipes shown in Fig. 83. Q is assumed and y computed after which the combined discharge of pipes BC and BD is obtained. Successive assumptions are then made and the assumed discharges and differences are plotted by the method described above to determine the true discharge.

## Short Canals with Free Discharge

A problem frequently encountered in engineering design deals with the flow of water through a short canal having its intake in a comparatively quiet body of water and discharging freely at its lower end. Practical examples of this problem are, a canal excavated around a dam to serve as a spillway for a reservoir or a chute constructed on a steep grade to carry the water in a canal to a lower level.

The problem presents two special cases which necessitate modifications in the method of solution. They are, however, both based upon the principle that there is a certain maximum discharge at the intake which cannot be exceeded. Which of the two methods is to be used depends upon whether the slope of the channel is sufficient to carry this maximum discharge.

The solution for each case is given below. A trapezoidal canal section is assumed in each case, and formulas are derived which are later given in a simplified form for rectangular ections.

Short Canal with Flat Slope.—Fig. 84 shows a longitudinal section and cross-section of the canal. The water enters the canal from a reservoir at the upper end and leaves with free discharge at the lower end. The following nomenclature is used:

D =Depth of water above canal bottom at entrance.

H =Depth of water in canal just above outlet.

 $h_0$  = Lost head at entrance plus velocity head.

 $v_0$  = Mean velocity in upper end of canal.

b =Width of canal bottom.

z =Slope of sides of canal; horizontal to vertical.

l =Length of canal.

s = Slope of water surface in canal.

 $s_1 =$ Slope of bottom of canal.

r = Hydraulic radius of cross-section of canal.

C =Coefficient of discharge.



Fig. 84.—Short canal with flat slope.

The value of C will vary from unity for perfect entrance conditions, with well-rounded corners to 0.82 where all corners at entrance to canal are sharp.

The velocity just below the entrance to the canal is given by the formula

$$v_0 = C\sqrt{2gh_0} \tag{16}$$

Also, letting a represent the area of water section in the upper end of canal

$$Q = av_0 = C\sqrt{2g}h_0^{1/2}(D - h_0)[b + z(D - h_0)]$$
 (17)

This equation equals zero when  $h_0 = 0$  and also when  $h_0 = D$ . The maximum value of Q, therefore, lies somewhere between these limits. The value of  $h_0$  which will give the maximum possible value of Q may be obtained by differentiating equation (17) with respect to  $h_0$  and equating to zero. This gives, after reduction, the equation

$$5zh_0^2 - 3(2zD + b)h_0 + (Db + zD^2) = 0 ag{18}$$

For a rectangular channel z equals zero and for maximum discharge

$$h_0 = \frac{1}{3}D \tag{19}$$

Substituting this value of  $h_0$  in formula (17) the resulting formula of discharge for a rectangular section is

$$Q(\text{Maximum}) = 3.087CbD^{34}$$
 (20)

From equation (18) the value of  $h_0$  which gives maximum discharge for a trapezoidal section is

$$h_0 = \frac{3(2zD+b) - \sqrt{16z^2D^2 + 16zDb + 9b^2}}{10z}$$
 (21)

Substituting this value of  $h_0$  in formula (17) the maximum value of Q for a trapezoidal section may be obtained.

The next step in the solution is to determine whether the slope of the canal is sufficient to carry this maximum discharge with a depth of water in the canal not greater than  $D - h_0$ . If it is, the discharge of the canal will be equal to the maximum discharge as given by formulas (17) and (21), but if the slope of the canal is not great enough it will cause a backing-up effect and result in a smaller value of  $h_0$  and consequently a smaller discharge.

The lower end of the canal becomes a fall, the discharge over which (see page 142) is given by the formula

$$Q = 5.21H^{1.47}(L + 0.8zH) \tag{22}$$

The last term of this formula disappears for a rectangular section.

To determine the depth of water in the lower end of the canal, assuming the maximum value of Q, substitute this value of Q in formula (22) and solve for H. Then determine

$$s_{l} = \frac{D - h_{0} - H}{l} + s_{1} \tag{23}$$

which may be called a trial value of the slope of the canal. For the next step determine the slope necessary to carry the maximum Q as given by formula (17) from one of the formulas

for flow in open channels. Manning's formula (see page 202, also Table 82, page 222) may be written in the form

$$s = \frac{v^2 n^2}{2.2082 r^{45}} \tag{24}$$

In this formula r and v may usually be taken as the hydraulic radius and velocity respectively midway between the entrance and outlet to the canal where the depth of water equals  $\frac{1}{2}(D - h_0 + H)$ . In the case of long canals where there is a material difference in the depths of water at the two ends of the canal it may be necessary to compute the slope of water surface in accordance with the method described for backwater curves (page 278), but usually the slope computed from a section midway between the ends of the canal will cause an inappreciable error in the result.

Considering formulas (23) and (24) if  $s_t > s$  the discharge through the canal will be the maximum Q given by formula (17). If  $s_t < s$  or negative a value of  $h_0$  less than the value for maximum discharge must be assumed when new trial values of Q, H,  $s_t$  and s may be computed by formulas (17), (22), (23) and (24) respectively. Additional trials may be made in the same manner and the process should be continued until  $s_t = s$  or until satisfied that the result is close enough for the purpose.

Canal with Steep Slope.—In this case, the discharge is the maximum Q as given by formula (17). The canal having a steep slope, the velocity of water in the canal will be continually accelerated until the slope of the canal is just sufficient to overcome the friction loss due to the velocity. As commonly encountered in practice, Q is given and the problem is to get the dimensions of channel at successive points along the canal required to carry the given quantity of water.

The first step is to determine  $h_0$  and the dimensions of the entrance to the canal. Assume Q, D, and z to be given, which is the common condition. By substituting these values in equations (17) and (21), b and  $h_0$  may be determined. If the channel is rectangular  $h_0$  is given by equation (19) and b, by equation (20). The depth of water in the upper end of the canal is  $D - h_0$ .

The next step in the solution is to determine dimensions of the channel at successive points along the canal. This problem is illustrated in Fig. 85. A, B, C, etc. are short reaches of the canal to be designed, and dimensions of cross-sections of channel

between reaches A and B, B and C, etc. are to be determined. Computations for each reach are made independently, the cross-section at the lower end of reach A being first determined. then the cross-section at the lower end of reach B and so on.

The following nomenclature will be used.

l =Length of reach considered.

 $s_1 =$ Slope of bottom of canal.

 $h_1$  = Fall of water surface in reach considered.

 $H_1 = \text{Loss of head in reach due to friction.}$ 

 $d_0$  = Depth of water in upper end of reach.

 $d_1$  = Depth of water in lower end of reach.

 $b_0$  = Width of canal bottom at upper end of reach.

 $b_1$  = Width of canal bottom at lower end of reach.

 $v_0$  = Mean velocity of water at upper end of reach.

 $v_1$  = Mean velocity of water at lower end of reach.

r = Hydraulic radius of section at middle of reach.

z =Slope of sides of canal.

n =Coefficient in Manning's formula.



Fig. 85.—Short canal with steep slope.

Referring to Fig. 85 the following equation is obtained directly from Bernoulli's theorem:

$$h_1 + \frac{{v_0}^2}{2g} = H_1 + \frac{{v_1}^2}{2g} \tag{25}$$

From Manning's formula (page 190)

$$v = \frac{1.486}{n} r^{35} s^{1/2} = \frac{1.486}{n} r^{35} \left(\frac{H_1}{l}\right)^{1/2}$$
 (26)

and approximately, putting  $v = \frac{1}{2}(v_0 + v_1)$   $H_1 = \frac{\ln^2(v_0 + v_1)^2}{8.83r^{56}}$ 

$$H_1 = \frac{\ln^2(v_0 + v_1)^2}{8.83r_2^{45}} \tag{27}$$

Substituting this value of  $H_1$ , equation (25) may be written

$$h_1 + \frac{v_0^2}{2g} - \frac{\ln^2(v_0 + v_1)^2}{8.83r^{\frac{1}{2}}} - \frac{v_1^2}{2g} = 0$$
 (28)

In equation (28)  $h_1$ ,  $v_0$ ,  $v_1$  and r may be expressed in terms of  $b_0$ ,  $b_1$ ,  $d_0$ ,  $d_1$  and Q and in this manner the following equation has been derived:

$$d_{0} + s_{1}l - d_{1} + \frac{Q^{2}}{2gd_{0}^{2}(b_{0} + zd_{0})^{2}} - \frac{Q^{2}}{2gd_{1}^{2}(b_{1} + zd_{1})^{2}} - \frac{ln^{2}Q^{2}}{8.83} \left(\frac{1}{d_{0}(b_{0} + zd_{0})} + \frac{1}{d_{1}(b_{1} + zd_{1})}\right)^{2} \times \left(\frac{2(b_{0} + b_{1}) + 4(d_{0} + d_{1})\sqrt{1 + z^{2}}}{(d_{0} + d_{1})[(b_{0} + b_{1}) + z(d_{0} + d_{1})]}\right)^{\frac{1}{2}} = 0 \quad (29)$$

In equation (29)  $b_1$  and  $d_1$  are the only unknown quantities. Assuming one of these quantities the other may be calculated. Probably a better way is to state  $b_1$  in terms of  $d_1$ , as for example  $b_1 = 2d_1$  or  $b_1 = 3d_1$  according to the general form of cross-section that is desired. If it is planned to have a channel of uniform width and determine the depth of water at different points  $b_1 = b_0$  becomes constant and only  $d_1$  is unknown. Likewise, the width of channel at different points may be determined for a constant depth of water. For a channel of rectangular cross-section z = 0 and formula (29) becomes simplified. In all cases formula (29) must be solved by substituting The last term, which is the correction for friction, is usually a comparatively small quantity for the upper reaches and may be neglected in the first trial solution. The value of  $b_1$  or  $d_1$  thus obtained will be slightly too small and a somewhat larger value should be used for substitution in the complete formula. After the section at the lower end of the first reach has been determined, because of the fact that the channel is becoming smaller, it should not be difficult to make a fairly close estimate of the dimension to substitute in the formula for the first trial solution for the next reach.

Probably the most valuable special application of formula (29) is to channels having a rectangular cross-section, and constant depth of water. In this case z = 0, and  $d_0 = d_1 = d$  (a constant) and  $b_1$ , the width at the lower end of successive reaches, is the only quantity to be determined. Under these conditions the formula reduces to

$$s_1 l d^2 + \frac{Q^2}{2gb_0^2} - \frac{Q^2}{2gb_1^2} - \frac{ln^2Q^2}{8.83} \left(\frac{1}{b_0} + \frac{1}{b_1}\right)^2 \left(\frac{1}{d} + \frac{4}{b_0 + b_1}\right)^{\frac{1}{2}} = 0 \quad (30)$$

The dimensions of a channel for any form of cross-section may be obtained approximately by first determining crosssections by formula (30), then for any form of section not rectangular determine a section of the required shape having approximately the same area as the rectangular section. For a trapezoidal section the area should be a little larger and for a semicircular section the area should be a little smaller than for the rectangular section.

A channel carrying water at an accelerating velocity will, if extended far enough, approach a condition of uniform velocity where the sectional area of the channel will be constant. In the case of comparatively long channels it may be advisable to compute this minimum section in order to know the limit to which the result is approaching. This limit will be reached when the velocity becomes great enough to cause a frictional resistance that will overcome the slope of the channel. The minimum section may be computed by any of the open-channel formulas. Using Manning's formula the following relation exists

$$Q = \frac{1.486s^{\frac{1}{2}}[d(b+zd)]^{\frac{5}{2}}}{n(b+2d\sqrt{1+z^2})^{\frac{5}{2}}}$$
(31)

or if z = 0

$$Q = \frac{1.486s^{\frac{1}{2}}(db)^{\frac{6}{2}}}{n(b+2d)^{\frac{2}{2}}}$$
 (32)

With either b (width) or d (depth) given in equation (31) or (32), the other may be determined. The equation must be solved by substituting trial values.

# The Mass Diagram for Storage Problems

The flow of natural streams is always subject to more or less daily as well as seasonal fluctuation. It is not an unusual condition for the maximum flow of streams to be as much as 100 times greater than the minimum flow. This condition, in many cases, retards the full economic development of rivers for purposes requiring a uniform rate of flow, or a varying use at certain specified rates.

It is possible to regulate the discharge of certain rivers by means of artificial storage, dependent upon the availability of sites where suitable reservoirs may be economically constructed. In connection with the investigation of storage possibilities of any stream two general types of problems may be encountered. It may be required to determine the storage necessary to provide for a use of water at a uniform rate or at certain speci-

fied rates, or the storage capacity being given, it may be required to determine the available supply of water based upon given requirements as to rate or rates of flow.

Storage problems may be readily solved by means of the mass diagram, a method first described by Rippl. The



Fig. 86.—Mass diagram.

method of applying the principle of the mass diagram is shown by the example given in the following pages. Fig. 86 shows a mass curve of discharge data for the Huron River near Geddes,

¹ Proc. Inst. Civ. Eng., vol. 71, p. 279.

TABLE 89.—DISCHARGE DATA OF HURON RIVER AT GEDDES

Year and month	Mean discharge, second-feet	Total discharge, acre-feet	Total discharge corrected, acre-feet	Mass discharge acre-feet
April 1904 May June July August September October November December	225 130 139 188	64,080 25,050 13,500 8,060 8,618 11,280 15,562 10,020 9,982	63,750 24,720 13,170 7,730 8,288 10,950 15,392 9,850 9,810	63,750 88,470 101,640 109,370 117,658 128,608 144,000 153,850 163,660
1905 January February March April May June July August September October November	204 170 750 668 606 1,083 399 297 260 361 454	12,660 9,520 46,500 30,100 37,600 64,980 24,750 18,400 15,600 22,400 27,240 30,250	12,490 9,350 46,330 29,770 37,270 64,650 24,420 18,070 15,270 22,230 27,070 30,080	176,150 185,500 231,830 271,600 308,870 373,520 397,940 416,010 431,280 453,510 480,580 510,660
1906 January. February March. April May June July August September October November December	322 148 156 84	42,490 23,860 31,940 37,200 28,200 19,320 9,180 9,680 5,040 8,620 16,320 27,700	42,320 23,690 31,770 36,870 27,870 18,990 8,850 9,350 4,710 8,450 16,150 27,530	552,980 576,670 608,440 645,310 673,180 692,170 701,020 710,370 715,080 723,530 739,680 767,210
1907 January. February March. April. May June July August September October. November December.	804 410 240 138 221 316 362	60,760 21,600 44,600 51,540 49,800 24,600 14,890 8,560 13,260 19,560 21,720 28,020	60,590 21,430 44,430 51,270 49,470 24,270 14,560 8,230 12,930 12,930 21,550 27,850	827,800 849,230 893,660 944,870 994,340 1,018,610 1,033,170 1,041,400 1,073,720 1,073,720 1,123,120

Mich., for the years 1904 to 1914 inclusive. Table 89 is an extract from the data and computations on which this mass diagram is based.

The second column of Table 89 gives the mean monthly discharges in second-feet. The third column contains monthly discharges in acre-feet obtained by multiplying the mean monthly discharge by two times the number of days in the month. The fourth column is obtained by deducting estimated seepage and evaporation losses from the quantities given in the third column. The amount of seepage loss depends upon the geological formation of the basin in which the reservoir is located, and this matter should be given the most careful consideration in each particular case. The evaporation loss will vary with the area of exposed water surface, the season of the year, the humidity of the atmosphere, the temperature, the velocity of the wind and other factors. Mean values of evaporation from free water surfaces in different localities are given in Table 90, page 298.

The last column of Table 89 gives the total discharges in acre-feet, corrected for evaporation and seepage losses, from April 1, 1904, up to the end of each month. The irregular line ACNDB, Fig. 86, is the curve plotted from these total discharges, and is called the mass curve. Any point on this mass curve represents the total flow in acre-feet, from the beginning of the period to the date given by the corresponding abscissa and the slope of a tangent to the line at this point indicates the rate of flow in second-feet. Straight lines on the diagram indicate a uniform flow, and the slope of such lines indicates the rate of flow. This rate of flow may be obtained by dividing the amount of rise in acre-feet for a given period by two times the number of days in the period. The sloping lines at the lower right-hand side of the diagram show the slopes for the different rates of flow indicated.

The straight line, CMDM', tangent to the two lowest points of the mass curve Fig. 86, gives the maximum uniform flow that may be provided by the stream on the assumption of adequate storage. The maximum ordinate MN between this line, hereinafter referred to as the use line, and the mass curve, gives the storage that will be necessary to provide for this maximum rate of flow. Scaling from the diagram it is found that a storage capacity of approximately 245,000 acre-

TABLE 90.-MONTHLY AND YEARLY EVAPORATIONS

		Evaporation in inches			Eva	oration	Evaporation in inches	8					
Location	Jan.	Feb.	Mar.	Apr.	May	June	July	Aug.	Sept.	Oet.	Nov.	Dec.	Year
Boston, Mass.	96.0	1.05	1.70	2.97	4.46	5.54	5.98	5.50	4.12	3.16	2.25	1.51	39.20
Rochester, N. Y.	0.52	0.54	1.33	2.62	3.93	4.94	5.47	5.30	4.15	3.16	1.45	1.13	34.54
Mt. Hope, N. Y.	1.27	1.26	32	2.97	3.64	4.40	5.11	4.73	3.63	2.65	1.70	1.56	35.27
Birmingnam, Ala	1.50	3.	2.22	4.45	5.91	7.28	7.36	7.34	9.8	8.9	2.22	1.50	51.34
Camorina, Ono	8.	1.50	2.20	4.12	2.07	6.21	7.20	7.26	5.63	3.8 8.8	1.50	1.00	45.99
Klamath, Ore	0.50	1.25	3.57	6.64	7.15	6.99	8.01	9.21	6.13	2.50	1.00	0.50	53.45
N. Yakima Wash	1.75	2.50	6.25		8.36	8.90	10.74	9.41	5.51	3.15	2.00	1.50	96.29
Minidoka, Idaho	2.25	2.50	8.4		11.21			13.50	11.00	8.50	5.76	3.50	96.52
Granite Reef, Aris	4.25	4.40	5.25		9.50	8		12.50	11.00	8.31	6.56	4.22	97.74
Salton Sea, Cal	3.61	5.01	6.75	8.6	11.00	13.50	14.77	12.53	12.40	9.20	6.21	4.67	108.65
Kingsbury, Cal	0.77	1.25	2.46	2.56	3.39	5.80	7.55	8.65	6.48	4.05	2.13	1.19	46.27
Independence, Cal	1.66	2.43	4.52	6.87	8.63	10.00	9.45	8.10	6.07	3.87	2.49	1.37	65.45
Emdrup, Denmark	0.20	0.50	0.9	2.00	3.70	5.40	5.20	4.40	2.60	1.30	0.70	0.50	27.90
Lee Bridge, England	0.75	9.0	1.07	2.10	2.75	3.14	3.44	2.82	1.61	1.06	0.67	0.57	20.61
Cape Colony, So. Africa	4.57	2.02	3.40	1.79	28.	1.81	1.77	1.94	2.68	4.11	6.09	5.65	<b>30.08</b>

feet will be required to provide a maximum uniform flow of 424 second-feet.

The foregoing results are based upon the assumption that the reservoir is empty on the date indicated by the point C. From this point water flows into the reservoir at the rates indicated by the mass curve and flows out of the reservoir at the uniform rate indicated by the use line CMDM'. of water remaining in the reservoir on any date is given by the length of the ordinate intercepted by the two lines. of the water has been drawn from the reservoir. From D the reservoir begins to fill again and (assuming MN = M'N' to be the capacity of the reservoir) on the date when the ordinate between the use line and mass curve becomes M'N' the reservoir is full. From this point until a tangent to the mass curve becomes parallel to the use line, water will be wasted from the reservoir and the discharge will be greater than that indicated by the use line.

To find the storage capacity required to provide for a minimum flow of say 300 second-feet, draw lines, with a slope corresponding to this rate of flow, tangent to the mass curve at the low points a, b, c, d, e, etc., extending them downward till they intersect the mass curve. Then the maximum ordinate between any of these use lines and the mass curve, mn, will give the required storage capacity. In this case the surplus water, during the high-water season, after the reservoir is full will be wasted and the available flow will be greater than 300 second-feet until the point is reached where the tangent to the mass curve becomes parallel to the use line.

The problem is similar when it is desired to find the rate of flow which can be secured with a storage reservoir of given capacity. Lines of different slopes may be tried at the low points of the mass curve until a slope is found which gives a maximum ordinate corresponding to the given capacity. It can usually be told from inspection about where the maximum ordinate will occur, and the problem may then be solved approximately by drawing in this ordinate as closely as possible to its correct position and from a point a distance below the mass curve equal to the given storage capacity extend upward a tangent to the mass curve. The slope of this line will be the approximate rate of flow required. This work should be carefully checked and lines should be drawn at the slope thus de-

termined tangent to other low points on the mass curve in order to make sure that no greater ordinate may be found.

Other types of storage problems may be encountered but in general they may be solved by an application of the above principles. In cases where the storage is limited and the problem becomes one of storing a portion of the flow that occurs during high stages to supplement the following low-water flows, it may be more convenient to plot separate mass curves to a larger scale for each year or two-year period. This provides for a more detailed study and results may be scaled with greater accuracy. In order to obtain a general conception of the problem, however, it will generally be found advantageous to first prepare a mass diagram of the entire discharge data.

In many cases water will not be used at a uniform rate. This is especially true of irrigation where water is required only throughout the growing season and during the remainder of the year it must be stored if the entire flow of the stream is to be conserved. The line RPS, Fig. 86, is the use line for the Huron River assuming that the total discharge for the period is to be used at the following rates:

May	10 per cent.
June	25 per cent.
July	30 per cent.
August	25 per cent.
September	10 per cent.

Assuming that the same quantity of water will be required each year, the available yearly supply will be equal approximately to that obtained for the maximum uniform flow, or from the data given for the Huron River it will be very nearly equal to a uniform flow of 424 second-feet or a total yearly flow of 310,000 acre-feet.

The use line, for a non-uniform rate of use must be drawn so as to be tangent to the mass curve at two points the same as for uniform use. In doing this care must be taken to see that each point of the use line comes directly over the time to which it pertains. A simple method of procedure is to first plot the mass curve and then on a piece of tracing paper, using the same scale, plot a trial use line. Then place the latter over the former and see if the use line can be so placed that each point will be

over the proper time and at the same time be tangent to the mass curve at two points. If this cannot be done, the correction can be determined and a new use line may be drawn and applied to the mass curve in the same manner. A second trial will usually give a use line which will fulfil the above requirements and thus give the maximum yearly supply of water available. The storage required will be the maximum ordinate between the mass curve and use line. For the problem given this storage is represented by the ordinate PQ and equals 390,000 acre-feet.

Other problems involving a non-uniform rate of use such as are presented by a limited storage capacity, or when a quantity of water less than the maximum discharge is required may be readily solved by an application of the above principles.



Fig. 87.—Reservoir with supply canal.

A special case where the mass diagram may be used to advantage is in the determination of the capacity of supply canal to feed a reservoir not tributary to the stream supplying the water. The conditions of this problem may be seen from Fig. 87. AB is a stream which supplies the water, to be stored in the reservoir CD. The canal AC carries water from the stream to the reservoir. The annual consumption of water from the reservoir and available discharge from the stream for a period

of years are given. The required capacities of canal and storage reservoir are to be determined.

In this case the quantities which determine the use line are given so that it may be plotted once for all, preferably on transparent paper. The seepage and evaporation losses in the canal and reservoir should be considered as additional water consumed and correction for same should be included in the use line. The next step is to assume a capacity for the canal, and plot a mass curve of water diverted into the canal, using the same scale as that chosen for the use line but on a separate sheet. When the available supply of water in the stream is equal to or greater than the capacity of the canal, the capacity of the canal will be the quantity diverted, otherwise this quantity will be the available flow of the stream.

After this mass curve has been plotted, a trial should be made by the method described above, to determine whether the use curve can be so moved as to be tangent to it at two points. If not, a new capacity of canal must be assumed and a new mass curve plotted and the above process repeated until the use line and the mass curve may be placed so as to be tangent to each other at two points. The last assumed capacity of the supply canal will be the required capacity and the maximum ordinate between the mass curve and use line will be the required storage capacity.

## Determination of Reservoir Spillway Capacity

In designing a dam for storage purposes, it is essential to provide a spillway of sufficient capacity to prevent the water surface in the reservoir, even under extreme flood conditions, from rising above a certain fixed safe elevation. In calculating the required spillway capacity for a reservoir, it is necessary to consider the worst possible flood conditions for the locality and assume such flood to discharge into the reservoir when full. Under these conditions water will begin to flow over the spillway as soon as the first flood waters enter the reservoir. The reservoir produces an equalizing effect upon the flood, so that the maximum discharge over the spillway will be something less than the maximum flood discharge. The extent of this equalizing effect increases with the size of the reservoir and for reservoirs that are small in comparison with the discharge, it may be inappreciable.

The solution here given, first suggested by Jacob, is general and may be applied to any data. Areas of water surface corresponding to different depths of water passing over the spillway are generally taken from topographic maps. Maximum flood discharges may be estimated from a study of records for the stream in question and other streams in the locality, or it may be investigated from the standpoint of run-off to be expected from the severest storms. It is characteristic of floods that they rise quite rapidly to a peak and then recede more slowly:

A concrete example involving the principles of the solution of this problem is given below. A similar method may be employed to solve any problems of this kind.

Statement of Problem.—A stream tributary to a reservoir has the following flood wave:

Date and time	Second-feet
May 10, 9-A.M	40 .
May 10, 12 Noon	400
May 10, 5 P.M	1,200
May 11, 12 Midnight	900
May 11, 12 Noon	650
May 12, 12 Midnight	450
May 12, 12 Noon	250
May 13, 12 Midnight	150
May 13, 12 Noon	100

At 9 A.M., May 10, the water in the reservoir was at the elevation of the crest of the spillway. The spillway is a weir of ogee section, 20 feet long, the discharge over which is given by the formula  $Q = 3.4LH^{3/2}$ . The area of the reservoir is 1000 acres at the spillway crest, which increases by 30 acres for each 1-foot rise in elevation. Determine the maximum depth of water that passes over the spillway.

Solution of Problem.—1. Prepare a table showing the discharge in second-feet for each time given in the problem and also the discharge in acre-feet for each period and the total flood discharge in acre-feet at the end of each period as follows:

¹C. C. Jacob; Computing the Size of a Reservoir Spillway. Engineering News, June 13, 1912.

	D	ste and time	Second- feet	Acre-feet	Acre-feet mass
May 10,	9	A.M	40	-	
May 10,	12	Noon	400	55	55
May 10,	5	P.M	1,200	333	388
May 11,	12	Midnight	900	612	1,000
May 11,	12	Noon	650	775	1,775
May 12,	12	Midnight	450	550	2,325
May 12,	12	Noon	250	350	2,675
May 13,	12	Midnight	150	200	2,875
May 13,	12	Noon	100	125	3,000

2. Prepare a table showing depth of water above spillway crest in the reservoir and the corresponding areas of flow line, volumes of water above crest of spillway and discharge over spillway.

Depth above spillway crest, feet	Area of flow line, acres	Volume above spillway crest, acre-feet	Discharge over spillway, second-feet
0.0	1,000	0	0.0
0.5	1,015	504	24.0
1.0	1,030	1,015	68.0
1.5	1,045	1,534	124.0
2.0	1,060	2,060	190.7
2.5	1,075	2,594	268.8
3.0	1,090	3,135	353.3

- 3. From the last two columns of the preceding table plot a curve to suitable scale, which will show the relation between volume of water above crest of spillway in acre-feet and discharge over spillway in second-feet, EF, Fig. 88.
- 4. From the data in the first table plot a mass curve, to suitable scale, PM, Fig. 88, with total flow of river in acre-feet for the ordinates and time in days for the abscissas. The vertical scale should be such that the total discharge in acre-feet may be plotted and the horizontal scale should provide for the entire flood period.

From the same origin P and with the same coördinates plot a mass curve PN representing the total discharge over the spillway. This must be done by a method of approximations, proceeding in the following manner: Assume that after some

reasonable short period from the beginning of the flood, say at 4 P.M. on May 10, the total discharge over the spillway has been 100 acre-feet. This is represented at A, and means that



Fig. 88.—Determination of reservoir spillway capacity.

the mass curve of discharge over the spillway should pass through this point, if the assumption is correct.

To find the correct position of the point from this assumed

position, determine the length of the ordinate AB, which gives as the assumed volume of water in the reservoir approximately 210 acre-feet. Then from the curve EF determine the discharge in second-feet over the spillway corresponding to a volume of 210 acre-feet in the reservoir. This is approximately 8 second-feet. Since 8 second-feet is the discharge at 4 P.M. and the discharge at 9 A.M. was 0 second-feet, the average for the period is approximately 4 second-feet and the total discharge for the 7-hour period is  $2\frac{1}{3}$  acre-feet.

It thus appears that the first assumption that 100 acre-feet had discharged over the weir was much too great and consequently the volume of water remaining in the reservoir and represented by AB was correspondingly too small and the resulting discharge over the weir (8 second-feet or a total of 2½ acre-feet) is too small. The correct total discharge over the weir for the period, therefore, lies somewhere between 2½ acre-feet and 100 acre-feet, but is obviously much closer to the former.

For the second assumption, therefore, we may assume 4 acre-feet for the total discharge over the weir, and in the same manner as above determine 3 acre-feet for the recomputed value, which is sufficiently close to the assumed discharge. Plotting 3 acre-feet for the total discharge over the spillway at 4 P.M., May 10, and connecting this point with zero discharge at 9 A.M., gives the first section of the mass curve. The following table, which gives only the final trial solution indicates the method of making computations.

Date and time	Assumed mass dis- charge over spillway, acre-feet	Volume in reser- voir above spill- way	Dis- charge over spill- way, second- feet	Dis- charge for period, acre- feet	Computed mass discharge over spillway, acre-feet
May 10, 9 A.M					
May 10, 4 P.M	4	306	11	3	3
May 10, 12 Midnight	40	960	62	24 ·	27
May 11, 12 Noon	120	1,660	140	101	128
May 11, 12 Midnight	280	2,050	187	161	289
May 12, 12 Noon	460	2,210	210	199	488
May 12, 12 Midnight	700	2,180	207	208	696
May 13, 12 Noon	900	2,100	195	201	897

The secon. point on the curve may be taken at 12 o'clock midnight between May 10 and 11. Since the general direction of the curve can now be seen the assumed position of this point C should ordinarily be made closely enough so that one trial will be sufficient. In the same manner as above the ordinate CD is found to represent a volume of about 960 acre-feet, for which the corresponding spillway discharge is 62 second-feet. Since the discharge at the last point of observation was 11 feet the average discharge for this period is 36.5 second-feet or a total for the period of 24 acre-feet. The grand total discharge over the weir since the beginning of the flood is found by adding the total for the period to the grand total obtained at the end of the last period, which gives, in this case, 3 acre-feet plus 24 acre-feet, or 27 acre-feet. This determines the location of a second point on the mass curve.

Similarly other points may be found and the curve extended as far as desired. The maximum vertical ordinate between the two mass curves evidently gives the maximum volume of water above the spillway crest, which equals 2160 acre-feet. From curve EF the corresponding discharge over the weir is found to be 208 second-feet and the head on the weir necessary to provide this discharge, determined from the weir formula, is 2.11 feet. The time of maximum discharge is 2 P.M., May 12.

It will be noted that the maximum discharge over the spill-way is only 17 per cent. of the maximum flood discharge. The reason for this small percentage is because of the short duration of the flood wave. With a longer flood period the discharge over the weir will continue to increase and gradually approach the discharge of the stream.

### Use of Logarithms

The common or Briggs logarithms are the only ones used in ordinary mathematical calculations. In this system the logarithm of a number is the power to which 10 must be raised to equal the number. Thus the logarithms of 1, 10, 100, 1000, 10,000, etc., are respectively 0, 1, 2, 3, 4, etc., and the logarithms of 0.1, 0.01, 0.001, . . . and 0 are respectively  $-1, -2, -3, \ldots$  and  $-\infty$ . It is apparent that all numbers greater than unity have positive logarithms and those less than unity have negative logarithms.

The logarithms of all numbers which are not integral powers of 10 are fractional and consist of an integer called the characteristic and a decimal fraction which is termed the mantissa. The logarithms of numbers greater than unity have characteristics one less than the number of places to the left of the decimal point, and for a given sequence of figures the mantissas are equal. The following examples will illustrate:

Logarithm of 4.45 = 0.64836 Logarithm of 44.5 = 1.64836 Logarithm of 445 = 2.64836 Logarithm of 4450 = 3.64836

Negative logarithms, that is, the logarithms of numbers less than unity, are generally expressed with negative characteristics and positive mantissas. This gives a common mantissa for a given sequence of figures regardless of whether the number is greater or less than unity. A minus sign over the characteristic indicates that the characteristic is negative and the mantissa positive. Frequently 10 is added to such logarithms to make the whole logarithm positive, it being understood that the logarithm is 10 less than indicated. The following examples illustrate different methods of expressing the logarithms of numbers less than unity:

If the logarithm of a number is subtracted from zero the difference is called the cologarithm of the number. The cologarithm of a number is thus the logarithm of its reciprocal. It is evident also that the cologarithm of a number less than unity is positive. The following table gives logarithms and corresponding cologarithms of various numbers, the mantissas in all cases being positive and the characteristics positive or negative as required.

an cu.		
Number	Logarithm	Cologarithm
4,450	3.64836	$\overline{4}.35164$
445	2.64836	$\bar{3}.35164$
44.5	1.64836	$\bar{2}.35164$
4.45	0.64836	$\overline{1}.35164$
0.445	$\bar{1}$ . $64836$	0.35164
0.0445	$\bar{2}$ . 64836	1.35164
0.00445	$\bar{3}.64836$	2.35164
0.000445	4.64836	3.35164

Tables of logarithms are of great value in simplifying the operations of multiplication, division, involution and evolution and in evaluating expressions containing fractional exponents, they are indispensable. Ordinarily logarithmic tables contain only the mantissas, as the value of the characteristic can be readily determined from the position of the decimal point. Table 91, page 311, contains logarithms of numbers from 1 to 10,000 to five places of decimals, and Table 92, page 329, gives corresponding cologarithms.

Below are indicated the processes to be followed in the solution of a few fundamental problems involving the use of logarithms. The words logarithm and cologarithm are abbreviated to log and colog respectively.

$$\log abc = \log a + \log b + \log c$$

$$\log \frac{ab}{a} = \log a + \log b - \log c = \log a + \log b + \operatorname{colog} c$$

$$\log b^{x} = x \log b = -x \operatorname{colog} b$$

$$\log \frac{1}{b^{x}} = -x \log b = x \operatorname{colog} b$$

$$\log ab^{x} = \log a + x \log b = \log a - x \operatorname{colog} b$$

$$\log \frac{a}{b^{x}} = \log a - x \log b = \log a + x \operatorname{colog} b$$

Owing to the fact that it is very confusing to multiply logarithms having a negative characteristic and positive mantissa, it will be found much simpler to use cologarithms as indicated above when a number less than unity is to be raised to any power. The following numerical examples indicate the simplest method of solving such problems.

```
Problem.—Given y = 3.127 \times 0.04156^{0.217}; to determine y.

\log y = \log 3.127 - 0.217 \operatorname{colog} 0.04156
\log y = 0.49513 - 0.217 \times 1.38132
= 0.19538
y = 1.568

Problem.—Given y = \frac{0.07658}{0.1917^{0.261}}; to determine y.

\log y = \log 0.07658 + 0.251 \operatorname{colog} 0.1917
= \overline{2}.88412 + 0.251 \times 0.71738
= \overline{1}.06418
y = 0.1159
```

### CHAPTER X

#### GENERAL REFERENCE TABLES

By familiarizing himself with the location and purpose of the various tables contained in this volume, the engineer will be able to simplify the processes involved in hydraulic calculations. Following each chapter in the preceding pages the tables pertaining to the subject matter treated in that chapter are given. Tables which will be found useful in general hydraulic computations are included in the following pages.

Many problems may be worked with sufficient accuracy with a slide rule. A log log slide rule will be found particularly convenient in evaluating hydraulic formulas. Where greater accuracy is required logarithms should be used. In order to save time and reduce the liability of error the engineer should use logarithms in the place of direct methods of calculation whenever possible. Table 91, page 311 contains five place logarithms of numbers up to 10,000 and Table 92, page 329 gives the corresponding cologarithms of numbers. The latter table will be found especially useful in problems involving mixed operations of multiplication and division and in raising to any powers numbers less than unity. The principle of logarithms and typical problems involving their use are given on pages 307 to 309.

Tables 93, 94, and 95, pages 347 to 352 inclusive, give the natural trigonometric functions to 5 decimal places for intervals of 10 minutes. Table 96, page 353, contains the squares, cubes, square roots, cube roots, and reciprocals of numbers from 1 to 1000. Table 97, page 373, gives the square roots of numbers from 1000 to 10,000, with an interval of 10, to 2 decimal places. Tables 98 and 99, pages 375 and 377 give respectively circumferences and areas of circles, with diameters up to 10, for intervals of .01 and Tables 100 and 101, pages 379 and 381, give circumferences and areas, for diameters of circles up to 100, for intervals of \( \frac{1}{26} \). Ordinarily Tables 60 and 61, pages 175 and 178 will be found more convenient for determining areas of circles in the solution of pipe problems than Tables 99 and 101.

TABLE 91.—LOGARITHMS OF NUMBERS

N.	L. 0	1	2	3	4	5	6	7	8	9	P. P.
(00	00 000	043	087	130	173	217	260	303	346	389	
101	432	475	518	561	604	647	689	732	775	817	44 43 42
102	860	903	945	988	*030	*072	*115	*157	*199	*242	1 4,4 4.3 4.9
103 104	01 284 708	826 745	368 787	410 828	452 870	494 912	536 953	578 995	620 *036	662 *078	2 8.8 8.6 8.4
105 106	02 119	160	202	243	284	825	366	407	449	490	8 18,2 12.9 12.6 4 17.6 17,2 16.8
106	531	572	612	658	694	735	776	816	857	898	5 22,0 21.5 21.0
107 108	938 03 842	979 388	*019	*060	*100	*141	*181	*222	*262	*302	6 26.4 25.8 25.2 7 30.8 30.1 29.4
109	05 542 743	782	423 822	463 862	503 902	543 941	583 981	623 *021	663 *060	703 *100	8 85,2 84,4 83.6 9 89.6 88.7 87.8
110	04 139	179	218	258	297	336	376	415	454	493	1
111	532	571	610	650	689	727	766	805	844	883	41 40 39
112	922	961	999	*088	*077	*115	*154	*192	*231	*269	1 4.1 4.0 8.9
118 114	05 308 690	346 729	385 767	423 805	461 843	500	538	576	614	652 *032	2 8.2 8.0 7.8
115	06 070	108	145	183	221	881 258	918 296	956 333	994 871	408	8 12.8 12.0 11.7 4 16.4 16.0 15.6
116	446	483	521	558	595	633	670	707	744	781	5 20.5 20.0 19.5
117	819	856	893	930	967	*004	*041	*078	*115	*151	6 24.6 24.0 23.4 7 28.7 28.0 27.8
118 119	07 188 555	225 591	262 628	298 664	335 700	372 737	408   773	809	482 846	518 882	7 28.7 28.0 27.8 8 32.8 32.0 31.2 9 36.9 36.0 35.1
120	918	954	990	*027	*063	*099	*135	*171	*207	*243	1 2 1 20 2 1 20 20 1 20 21
121	08 279	814	350	386	422	458	493	529	565	600	38   37   36
122	636	672	707	748	778	814	849	884	920	955	1 3.8 3.7 3.6
123 124	991	*026	*061	*096	*132	*167	*202	*237	*272	*307	2 7.6 7.4 7.2
125	09 342 691	377 726	412 760	447 795	482 830	517 864	552 899	587 934	621 968	<b>*</b> 003	8 11.4 11.1 10.8 4 15.2 14.8 14.4
125 126	10 037	072	106	140	175	209	243	278	812	346	5 19.0 18.5 18.0
127	380	415	449	483	517	551	585	619	653	687	6 22.8 22.2 21.6 7 26.6 25.9 25.2
128 129	721 11 059	755 093	789 126	823 160	857 193	890 227	924 261	958 294	992 327	*025 361	8 80,4 29 6 28.8 9 84.2 83.8 82,4
180	894	428	461	494	528	561	594	628	661	694	0,02.3  00.0  02.4
131	727	760	793	826	860	893	926	959	992	*024	35  84  38
132	12 057	090	123	156	189	222	254	287	820	352	1 8.5 8.4 8.8
133	385	418	450	483	516	548	581	613	646	678	2 7.0 6.8 6.6
134 135	710 13 033	743 066	775 098	808 180	840 162	872 194	905 226	937 258	969 290	*001 322	8 10.5 10.2 9.9 4 14.0 18.6 18.2
136	354	386	418	450	481	513	545	577	609	640	5 17.5 17.0 16.5
137	672	704	735	767	799	830	862	893	925	956	6 21.0 20.4 19.8 7 24.5 23.8 23.1
138 139	988 14 301	*019 833	*051 864	*082 895	*114 426	*145 457	*176 489	*208 520	*239 551	*270 582	8 28.0 27.2 26.4 9 31.5 30.6 29.7
140	613	644	675	706	737	768	799	829	860	891	9191.0100.0120.1
141	922	958	983	*014	*045	*076	*106	*137	*168	*198	32  31  30
142	15 229	259	290	320	851	381	412	442	473	503	
143	534	564	594	625	655	685	715	746	776	806	1 8.3 8.1 8.0 2 6.4 6.2 6.0
144	836	866	897	927	957	987	*017	*047	*077	*107	8 9.6 9.8 9.0
145 146	16 137 435	167 465	197 495	227 524	256 554	286 584	816 613	846 643	376 673	406 702	4 12.8 12.4 12.0 5 16.0 15.5 15.0
147	732	761	791	820	850	879	909	938	967	997	6 19.3 18.6 18.0
148	17 026	056	085	114	143	178	202	231	260	289	7 22.4 21.7 21.0 8 25.6 24.8 24.0
149	819	348	377	406	435	464	493	522	551	580	9 28.8 27.9 27.0
150	609	638	667	696	725	754	782	811	840	869	
N.	L. 0	1	2	3	4	5	6	7	8	9	P.P.

192 193 194 195 196	830 556 780 29 003 226 447	353 578 803 026 248 469	875 601 825 048 270 491 710	398 623 847 070 292 513 732	421 646 870 092 314 535 754	448 668 892 115 836 557 776	466 691 914 137 858 579 798	488 713 937 159 380 601 820	511 735 959 181 403 623 842	533 758 981 203 425 645 863	1 2.2 2.1 2 4.4 4.3 3 6.6 6.3 4 8.8 8.4 5 11.0 10.5 6 13.2 12.6 7 15.4 14.7 8 17.6 16.8
190 191	875 28 103	898 126	921 149	944 171	967 194	989 217	*012 240	*035 262	*058 285	*081 307	22   21
182 183 184 185 186 187 188 189	26 007 245 482 717 951 27 184 416 646	031 269 505 741 975 207 439 669	055 298 529 764 998 231 462 692	079 316 553 788 *021 254 485 715	102 340 576 811 *045 277 508 738	126 364 600 834 *068 800 531 761	150 887 623 858 *091 823 554 784	174 411 647 881 *114 846 577 807	198 435 670 905 *138 870 600 830	221 458 694 928 *161 393 623 852	1 2.4 2.8 2 4.8 4.6 3 7.2 6.9 4 9.6 9.2 5 12:0 11.5 6 14.4 13.8 7 16.8 16.1 8 19.2 18.4 9 21.6 20.7
180 181	527 768	551 792	575 816	600 840	624 864	648 888	672 912	696 935	720 959	744 983	24   -28
170 171 172 173 174 175 176 177 178 179	300 553 805 24 055 304 551 797 25 042 285	325 578 830 080 329 576 822 066 310	350 603 855 105 353 601 846 091 334	376 629 880 130 878 625 871 115 358	401 654 905 155 403 650 895 139 882	426 679 930 180 428 674 920 164 406	452 704 955 204 452 699 944 188 431	477 729 980 229 477 724 969 212 455	502 754 *005 254 502 748 993 237 479	528 779 *030 279 527 773 *018 261 503	25 1 2.5 2 5.0 3 7.5 4 10.0 5 12.5 6 15.0 7 17.5 8 20.0 9 22.5
160 161 162 163 164 165 166 167 168 169	412 683 952 21 219 484 748 22 011 272 531 789 23 045	710 978 245 511 775 037 298 557 814	737 *005 272 537 801 063 324 583 840	763 *032 299 564 827 089 350 608 866	790 *059 \$25 590 854 115 876 634 891	817 *085 352 617 880 141 401 660 917	844 *112 878 643 906 167 427 686 943 198	871 *139 405 669 932 194 453 712 968	898 *165 431 696 958 220 479 737 994	925 *192 458 722 985 246 505 763 *019	27 26 1 2.7 2.6 2 5.4 5.2 3 8.1 7.8 4 10.8 10.4 5 13.5 13.0 6 16.2 15.6 7 18.9 18.2 8 21.6 20.8 9 24.8 23.4
150 151 152 153 154 155 156 157 158 159	17 609 898 18 184 469 752 19 033 312 590 866 20 140	926 213 498 780 061 340 618 893 167	955 241 526 808 089 368 645 921 194	984 270 554 837 117 896 673 948 222	725 *013 298 583 865 145 424 700 976 249	754 *041 327 611 893 173 451 728 *003 276	782 *070 355 639 921 201 479 756 *030 303	811 *099 384 667 949 229 507 783 *058 330	*127 412 696 977 257 535 811 *085 358	*156 441 724 *005 285 562 838 *112 385	29 28 1 2.9 2.8 2 5.8 6.6 3 8.7 8.4 11.6 11.2 5 14.5 14.0 6 17.4 16.8 7 20.3 19.6 9 26.1 25.2

Table 91 (Continued) Logarithms of Numbers

N.	L. 0	1	2	3	4	5	6	7	8	9	P. P.
200	<b>30</b> 103	125	146	168	190	211	233	255	276	298	
201	320	341	363	384	406	428	449	471	492	514	22   21
202	535	557	578	600	621	643	664	685	707	728	1 2.2 2,1
203	750	771	792	814	835	856	878	899	920	942	
204 205	963 <b>31</b> 175	984 197	*006 218	*027 239	*048 260	*069 281	*091 302	*112 323	*133 845	*154 366	8 6.6 6.3 4 8.8 8.4
206	387	408	429	450	471	492	513	534	555	576	5   11.0   10.5
207	597	618	639	660	681	702	723	744	765	785	6 13.2 12.6 7 15.4 14.7
208	806	827	848	869	890	911	931	952	973	994	8 17.6 16.8
209	<b>32</b> 015	035	056	077	098	118	139	160	181	201	9   19.8   18.9
210		243	263	284	305	325	346	366	387	408	
211	428	449	469	490	510	531	552	572	593	613	20
212 213	634 838	654 858	675 879	695 899	715 919	736 940	756 960	777 980	*001	818 *021	1 2.0
214	33 041	062	082	102	122	143	163	183	203	224	2 4.0 8 6.0
215	244	264	284	304	325	345	365	385	405	425	4 8.0
216	445	465	486	506	526	546	566	586	606	626	5 10.0 6 12.0
217 218	646 846	666 866	686 885	706 905	726 925	746 945	766 965	786 985	*005	826 *025	7 14.0
	34 044	064	084	104	124	143	163	183	203	223	8 16.0 9 18.0
220	242	262	282	301	321	341	361	380	400	420	1 199
221	439	459	479	498	518	537	557	577	596	616	19
222 223	635 830	655 850	674 869	694 889	713 908	733 928	753 947	772 967	792 986	811 *005	1 1.9
224	35 025	044	064	083	102	122	141	160	180	199	2 3.8 3 5.7
225	218	238	257	276	295	315	334	353	372	392	4 7.6
226	411	430	449	468	488	507	526	545	564	583	5 9.5 6 11.4
227 228	603 793	622 813	641 832	660 851	679 870	698 889	908	736 927	755 946	774 965	7 13.3
229	984	*003	*021	*040	*059	<b>*</b> 078	*097	*116	*135	*154	8 15.2 9 17.1
230	36 173	192	211	229	248	267	286	305	324	342	
231	361	380	399	418	436	455	474	493	511	530	18
232 233	549 736	568 754	586 773	605 791	624 810	642 829	661 847	680 866	698 884	717	1 1.8
234	922	940	959	977	996	*014	*033	*051	*070	*088	2 3.6 3 5.4
235	37 107	125	144	162	181	199	218	236	254	273	4 7.2
236	291	310	328	346	365	383	401	420	438	457	5 9.0 6 10.8
237 238	475 658	493 676	511 694	530 712	548 731	566 749	585 767	603 785	621 803	639 822	7 12.6
239	840	858	876	894	912	931	949	967	985	*003	8 14.4 9 16.2
240	38 021	039	057	075	093	112	130	148	166	184	
241	202	220	238	256	274	292	310	328	346	364	17
242	382	399	417	435	453	471	489	507	525	543	1 1.7
243 244	561 739	578 757	596 775	614 792	632 810	650 828	668 846	686 863	703 881	721 899	2 3 4 3 5.1
245	917	934	952	970	987	*005	*023	*041	*058	*076	4 6.8
246	39 094	111	129	146	164	182	199	217	235	252	5 8.5 6 10.2
247	270	287	305	822	340	358	875	393	410	428	7 11.9
248 249	445 620	463 637	480 655	498 672	515 690	533 707	550 724	568 742	585 759	602 777	8 13.6 9 15.3
250	794	811	829	846	863	881	898	915	933	950	
N.	L. 0	1	2	3	4	5	6	7	8	9	P. P.

Table 91 (Continued) LOGARITHMS OF NUMBERS

N.	L. 0	1	2	3	4	5	6	7	8	9	P. P.
250	<b>39 794</b>	811	829	846	863	881	898	915	933	950	
251	967	985	*002	*019	*037	*054	*071	*088	*106	*123	, 18
252 258	40 140 312	157 <b>829</b>	175 846	192 864	209 381	226 898	243 415	261 432	278 449	295 466	1 1.8
254	483	500	518	535	552	569	586	603	620	637	2 3.6 3 5.4
255	654	671	688	705	722	739	756	778	790	807	4 7.2
256 257	824	841	858 *027	875	892 *061	909 *078	926 *095	943 *111	960 *128	976 *145	5 9.0 6 10.8
258	993 41 162	*010 179	196	*044 212	229	246	263	280	296	313	7 12.6 8 14.4
259	830	347	363	380	897	414	430	447	464	481	9 16.2
260	497	514	531	547	564	581	597	614	631	647	'
261 262	664	681	697	714	731	747	764	780	797	814	17
262	830 996	847 *012	863 *029	-880 *045	896 *062	913 *078	929 *095	946 *111	963 *127	979 *144	1 1.7
264	42 160	177	193	210	226	243	259	275	292	308	8 5.1
265	825	341	857	874	390	406	423	439	455	472	4 6.8 5 8.5
266 267	488 651	504 667	521 684	537 700	553 716	570 732	586 749	602 765	619 781	635 797	6 10.2
268	813	830	846	862	878	894	911	927	943	959	7 11.9 8 13.6
269	975	991	*008	*024	*040	*056	*072	*088	*104	*120	9 15.3
270	43 136	152	169	185	201	217	233	249	265	281	
271	297	813	829	345	361	877	898	409	425	441	16
272 273	457 616	473 632	489 648	505 664	521 680	537 696	553 712	569 727	584 743	600 759	1 1.6
274	775	791	807	823	838	854	870	886	902	917	2 8.3 8 4.8
275	933	949	965	981	996	*012	*028	*044	*059	*075	4 6.4
276	44 091	107	122	138	154	170	185	201	217	232	5 8.0 6 9.6
277 278	248 404	264 420	279 436	295 451	311 467	326 483	842 498	358 514	873 529	389 545	7 11.2
279	560	576	592	607	623	638	654	669	685	700	8 12.8 9 14.4
280	716	731	747	762	778	793	809	824	840	855	
281	871	886	902	917	932	948	963	979	994	*010	, 15
282	45 025	040	056	071	086	102	117	133	148	163	1 1.5
283 284	179 332	194 847	209 362	225 878	240 898	255 408	271 423	286 439	801 454	817 469	2 3.0 3 4.5
285	484	500	515	530	545	561	576	591	606	621	4 6.6
286	637	652	667	682	697	712	728	743	758	773	5 7.5 6 9.0
287 288	788 939	803 954	818 969	834 984	*000	864 *015	879 *030	894 *045	909 *060	924 *075	7   10.5
289	46 090	105	120	135	150	165	180	195	210	225	3   12.0 9   18.5
290	240	255	270	285	300	315	830	845	359	874	
291	389	404	419	434	449	464	479	494	509	523	, 14
292	538	553	568	583	598	618	627	642	657	672	1 1.4
293 294	687 835	702 850	716 864	731 879	746 894	761 909	776 923	790 938	805 953	820 967	2 28 8 4.2
295	982	997	*012	*026	*041	*056	*070	*085	*100	*114	4 5.6
296	47 129	144	159	178	188	202	217	232	246	261	5 7.0 6 8.4
297	276 422	290 436	805	819	834 480	349	363 509	378 524	392	407 553	7 9.8
298 299	567	582	451 596	465 611	625	494 640	654	669	538 683	698	8 11.3 9 12.6
800	712	727	741	756	770	784	799	813	828	842	
N.	L. 0	1	2	3	4	5	6	7	8	9	P. P.

Table 91 (Continued)
LOGARITHMS OF NUMBERS

N.	L. 0	1	2	3	4	5	6	7	8	9	P. P.
300	47 712	727	741	756	770	784	799	813	828	842	
801	857	871	885	900	914	929	948	958	972	986	
302 308	48 001 144	015 159	029 173	187	058 202	078	087 230	101	116	130	
804	287	802	816	830	344	216 859	873	244 887	259 401	278 416	
805	430	444	458	478	487	501	515	530	544	558	, 15
806 807	572	586 728	601	615	629	643	657	671	686	700	1 1.5
808	714 855	869	742 883	756 897	770 911	785 926	799 940	813 954	827 968	982	2 8.0 3 4.5
309	996	*010	*024	*038	*052	*066	*080	*094	*108	*122	4 6.0° 5 7.5
810	49 136	150	164	178	192	206	220	234	248	262	6 9.0 7 10.5
811	276	290	304	818	832	846	860	874	388	402	8 12.0 9 18.5
812 813	415 554	429 568	443 582	457	471	485	499	513	527	541	
814	693	707	721	596 734	610 748	624 762	638 776	651 790	665 803	679 817	
815	831	845	859	872	886	900	914	927	941	955	
816	969	982	996	*010	*024	*037	*051	*065	*079	*092	14
817 818	50 106 243	120 256	133 270	147 284	161	174	188	202	215	229	1 1.4
819	379	393	406	420	297 433	811 447	825 461	838 474	852 488	365 501	2 2.8 3 4.2
820	515	529	542	556	569	583	596	610	623	637	4 5.6 5 7.0 6 8.4
821	651	664	678	691	705	718	782	745	759	772	7 9.8
822	786	799	813	826	840	853	866	880	893	907	8 11.2 9 12.6
823 824	920 51- 955	934 068	947 081	961 095	974 108	987 121	*001	*014	*028	*041	0 , 1-10
825	188	202	215	228	242	255	135 268	148 282	162 295	175 308	
826	322	835	848	362	375	388	402	415	428	441	13
827 828	455	468	481	495	508	521	534	548	561	574	1 1
829	587 720	601 733	614 746	627 759	640 772	654 786	667 799	680 812	693 825	706 838	1 1.3 2 2.6
830	851	865	878	891	904	917	930	943	957	970	8 3.9 4 5.2
881	983	996	*009	*022	*035	*048	*061	*075	*088	*101	5 6.5 6 7.8
832	52 114	127	140	153	166	179	192	205	218	231	7 9.1 8 10.4
833	244	257	270	284	297	810	323	836	849	362	9 11.7
834	375 504	388 517	401 530	414 543	427 556	440 569	453 582	466 595	479 608	492 621	•
835 836 837	634	647	660	673	686	699	711	724	737	750	
837	763	776	789	802	815	827	840	853	866	879	12
838 839	892 53 020	905 033	917 046	930 058	943 071	956 084	969 097	982 110	994 122	*007 135	1 1.2
840	148	161	173	186	199	212	224	237	250	263	1 1.3 2 2.4 8 8.6
841	275	288	801	814	326	839	352	364	377	390	4 4.8 5 6.0
842	403	415	428	441	453	466	479	491	504	517	6 7.3
842 843	520	542	555	567	580	593	605	618	631	643	7 8.4 8 9.6
844	656 782	668 794	681 807	694 820	706 832	719 845	732 857	744 870	757 882	769 895	9 10.8
845 846	908	920	933	945	958	970	983	995	*008	*020	
847	54 083	045	058	070	083	095	108	120	133	145	
848	158	170	183	195	208	220	233	245	258	270	
349	288	295	307	820	332	845	857	870	382	394	
850	407	419	432	444	456	469	481	494	506	518	
N.	L. 0	1	2	3	4	5	6	7	8	9	P. P.

N.	L. 0	1	2	3	4	5	6	7	8	9	P. P.
850	54 407	419	432	444	456	469	481	494	506	518	
351	531	543	555	568	580	593	605	617	630	642	
852	654	667	679	691	704	716	728	741	753	765	
353	777	790	802	814	827	839	851	864	876	888	
354 355	900   55 023	913 035	925 047	937 060	949 072	962 084	974 096	986 108	998 121	*011 133	13
356	145	157	169	182	194	206	218	230	242	255	1 1.3
857	267	279	291	803	315	328	340	852	364	876	2 2.6
358	388	400	413	425	437	449	461	473	485	497	8 3.9
359	509	522	534	546	558	570	582	594	606	618	4 5.2 5 6.5
860	630	642	654	666	678	691	703	715	727	789	6 7.8 7 9.1
361	751	763	775	787	799	811	823	835	847	859	8 10.4 9 11.7
362	871	883	895	907	919	931	943	955	967	979	",""
363	991	*003	*015	*027	*038	*050	*062	*074	*086	*098	l
864	56 110	122	134	146	158	170	182	194	205	217	1
365	229	241	253	265	277	289	801	812	324	336	· 12
366 367	348 467	360 478	372 490	384 502	396 514	407 526	419 538	431 549	443 561	455 573	1 1.2
368	585	597	608	620	632	644	656	667	679	691	2 2.4
369	703	714	726	738	750	761	773	785	797	808	3 8.6 4 4.8
870	820	832	844	855	867	879	891	902	914	926	5 6.0 6 7,2
371	937	949	961	972	984	996	*008	*019	*031	*043	7 8.4 8 9.6
872	57 054	066	078	089	101	113	124	136	148	159	9 10.8
873	171	183	194	206	217	229	241	252	264	276	. ,
874	287 403	299 415	810	822 438	834 449	845	857	868	380 496	392 507	- 1
875 876	519	530	426 542	553	565	461 576	473 588	484 600	611	623	
877	634	646	657	669	680	692	703	715	726	738	''
878	749	761	772	784	795	807	818	830	841	852	1 11
379	864	875	887	898	910	921	933	944	955	967	2 2.2 3 3.3
880	978	990	*001	*013	*024	*035	*047	*058	*070	*081	4 4.4 5 5.5
381	58 092	104	115	127	138	149	161	172	184	195	6 6.6 7 7.7
382	206 820	218	229	240	252	263	274	286 399	297	309 422	8 8.8
383 384	433	331 444	343 456	854 467	865 478	877 490	388 501	512	410 524	535	9   9.9
385	546	557	569	580	591	602	614	625	636	647	
386	659	670	681	692	704	715	726	787	749	760	
887	771	782	794	805	816	827	838	850	861	872	10
388	883	894	906	917	928	939	950	961	973	984	1 1 1
889	995	*006	*017	*028	*040	*051	*062	*073	*084	*095	1 1.0 2 2.0
890	59 106	118	129	140	151	162	173	184	195	207	8 3.0 4 4.0
391 392	218 329	229 340	240 851	251 862	262 873	273	284	295	806 417	318 428	5 5.0 6 6.0
892 898	439	450	461	472	483	384 494	395 506	406 517	528	539	7 7.0
894	. 550	561	572	583	594	605	616	627	638	649	8 8.0 9 9.0
395	660	671	682	693	704	715	726	787	748	759	, ø, ø, v
896	770	780	791	802	813	824	835	846	857	868	
397	879	890	901	912	923	934	945	956	966	977	1
398	988	999	*010	*021	*032	*043	*054	*065	*076	*086	1
399	60 097	108	119	130	141	152	163	173	184	195	
400	206	217	228	239	249	260	271	282	293	304	
N.	L. 0	1	2	3	4	5	6	7	8	9	P. P.

Table 91 (Continued)
LOGARITHMS OF NUMBERS

N.	L. 0	1	2	3	4	5	6	7	8	9	P. P.
400	60 206	217	228	239	249	260	271	282	293	304	
401	814	325	336	347	358	369	879	390	401	412	
402	423	433	444	455 563	466	477	487	498	509	520	
403	531	541	552	563	574	584	595.	606	617	627	
404 405	638	649 756	660 767	670 778	681 788	692 799	703 810	713 821	724 831	735 842	
406	746 853	863	874	885	895	906	917	927	938	949	
407	959	970	981	991	*002	*013	*023	*034	*045	*055	. 11
408	61 066	077	087	098	109	119	130	140	151	162	1 1.1
409	172	183	194	204	215	225	236	247	257	268	2 2.3
410	278	289	300	310	821	831	342	352	363	374	8 8.3 4 4.4 5 5.5
411	384	395	405	416	426	437	448	458	469	479	6 6.6 7 7.7
412	490	500	511	521	532	542	553	563	574	584	7 7.7 8 8.8
413	595	606	616	627	637	648	658	669	679	690	9 9.9
414	700	711	721	731	742	752	763	773	784	794	- 1
415	805	815	826	836	847	857	868	878	888	899	
416 417	909 62 014	920 024	930 034	941 045	951 055	962 066	972 076	982 086	993 097	*003 107	
418	118	128	138	149	159	170	180	190	201	211	
419	221	232	242	252	263	273	284	294	304	315	
420	325	<b>3</b> 35	346	356	866	877	387	397	408	418	10
421	428	439	449	459	469	480	490	500	511	521	
422	531	542	552	562	572	583	593	603	613	624	1 1.0 2 2.0
423	634	644	655	665	675	685	696	706	716	726	8 8.0
424 425	737	747	757 859	767.	778 880	788	798 900	808	818 921	829 931	4 4.0
426	839 941	849 951	961	870 972	982	890 992	*002	910 *012	*022	*033	5 5.0 6 6.0
427	63 043	053	063	073	083	094	104	114	124	134	7 7.0
428	144	155	165	175	185	195	205	215	225	236	8 8.0 9 9.0
429	246	256	266	276	286	296	306	317	327	337	
430	347	<b>3</b> 57	367	377	387	397	407	417	428	438	
431	448	458	468	478	488	498	508	518	528	538	-
432	548	558	568	579	589	599	609	619	629	639	,
433 434	649 749	659 759	669 769	679 779	689 789	699 799	709 809	719 819	729 829	739 839	
435	849	859	869	879	889	899	909	919	929	939	ļ.
436	949	959	969	979	988	998	*008	*018	*028	*038	. 9
437	64 048	058	068	078	088	098	108	118	128	137	1 0.9
438	147	157	167	177	187	197	207	217	227	237	
439	246	256	266	276	286	296	306	316	326	335	2 1.8 3 2.7 4 8.6
440	. 345	355	865	375	385	395	404	414	424	434	5 4.5 6 5.4
441	444	454	464	473	488	493	503	513	523	532	7 6.3 8 7.2
442 443	542 640	552 650	562 660	572 670	582 680	591 689	601 699	709	621 719	631 729	9 8.1
444	738	748	758	768	777	787	797	807	816	826	
445	836	846	856	865	875	885	895	904	914	924	
446	933	943	953	963	972	982	992	*002	*011	*021	
447	65 031	040	050	060	070	079	089	099	108	118	
448	128	137	147	157	167	176	186	196	205	215	•
449	225	234	244	254	263	273	283	292	302	312	
450	321	831	341	850	360	369	379	389	398	408	
N.	L. 0	1	2	3	4	5	6	7	8	9	P. P.

Table 91 (Continued)
LOGARITHMS OF NUMBERS

								_			
N.	L. 0	1	2	3	4	5	6	7	8	9	P. P.
450	65 321	831	841	350	360	369	879	389	398	408	
451	418	427	437	447	456	466	475	485	495	504	İ
452	514	523	533 629	543	552	562	571	581	591	600	j
453 454	610 706	619 715	629 725	639 734	648 744	658 753	667 763	772	686 782	696 792	Ĭ
455	801	811	820	830	839	849	858	868	877	887	
456	896	906	916	925	935	944	954	963	973	982	10
457	992	*001	*011	*020	*030	*039	*049	*058	*068	*077	1 10
458 459	66 087	096	106	115	124	134	148	158	162	172	1   1.0
460	181 276	191 285	200	210 804	219 314	229 323	238 832	247 842	257 351	266 361	2 2.0 8 8.0 4 4.0
461	870	880	889	898	408	417	427	436	445	455	5 5.0
462	464	474	483	492	502	511	521	530	539	549	6 6.0 7 7.0 8 8.0
468	558	567	577	586	596	605	614	624	633	642	8 8.0 9 9.0
464 465	652	661 755	671	680	689	699 792	708	717	727 820	736	- '
466	745 839	755 848	764 857	773 867	783 876	792 885	801 894	811 904	913	829 922	[
467	932	941	950	960	969	978	987	997	*006	*015	
468	67 025	034	043	052	062	071	080	089	099	108	ļ 1
469	117	127	136	145	154	164	173	182	191	201	1
470	210	219	228	237	247	256	265	274	284	293	
471	802	811	821	330 422	839	348	857	867	876	885	ا قواد
472 473	894 486	403	413	422 514	431	440	449	459	468 560	477	1 2 1.8
474	578	495 587	504 596	605	523 614	532 624	541 633	550 642	651	569 660	8 2.7
475	669	679	688	697	706	715	724	733	742	752	4 3.6 5 4.5
476	761	770	779	788	797	806	815	825	834	843	6 5.4 7 6.3
477	852 943	861	870	879	888	897 988	906	916	925	934	8 7.3
478 479	68 034	952 043	961 052	970 061	979 070	079	997 088	*006 097	*015 106	*024 115	9 8.1
480	124	133	142	151	160	169	178	187	196	205	Ì
481	215	224	233	242	251	260	269	278	287	296	1
482	305	814	828	332 422	841	850	859	868	877	386	]
483 484	895 485	404 494	418	422 511	431	440 529	449 538	458 547	467	476 565	1
485	574	583	502 592	601	520 610	619	628	637	556 646	655	1
486	664	673	681	690	699	708	717	726	735	744	. 8
487	753	762	771	780	789	797	806	815	824	833	1 0.8
488 489	842 931	851 940	860 949	869 958	878 966	886 975	895 984	904 993	913 *002	922 *011	
490	69 020	028	037	046	055	064	073	082	090	099	2 1.6 3 2.4 4 3.2 5 4.0
491	108	117	126	135	144	152	161	170	179	188	6 4.8 7 5.6
492	197	205	214	223	232	241	249	258	267	276	8 6.4 9 7.2
493	285	294	802	811	320	329	838	846	855	364	9 7.3
494	878	381	890	399	408	417	425	434	443	452	i i
495 496	461 548	469 557	478 566	487 574	496 583	504 592	513 601	522 609	531 618	539 627	!
497	636 728	644	653	662	671	679	688	697	705	714	i
498	728	732	740	749	758	767	775	784	793	801	].
499	810	819	827	836	845	854	862	871	880	888	
500	897	906	914	923	932	940	949	958	966	975	.
N.	L. 0	1	2	3	4	5	6	7	8	9	P. P.
				L					L		

Table 91 (Continued) LOGARITHMS OF NUMBERS

N.	L. Ó	1	2	3	4	5	6	7	8	9	P. P.
500	69 897	906	914	923	932	940	949	958	966	975	
501	984	992	*001	*010	*018	*027	*036	*044	*053	*062	
502	70 070	079	088	096	105	114	122	131	140	148	
508 504	157 243	165 252	174 260	183 269	191 278	200 286	209 295	217 303	226 312	234 321	
505	329	338	346	355	364	372	381	389	398	406	
506	415	424	432	441	449	458	467	475	484	492	
507	501	509	518	526	535	544	552	561	569	578	1 .
508	586	595	603	612	621	629	638	646 731	655 740	663 749	1 0.9 2 1.8
509 ELO	757	680 766	774	783	706	800	723 808	817	825	834	8 2.7
510 511	842	851	859	868	876	885	893	902	910	919	6 5.4
512	927	935	944	952	961	969	978	986	995	*008	8 7.2
513	71 012	020	029	037	046	054	063	071	079	088	9 8.1
514	096 181	105 189	113	122 206	130 214	139	147 231	155 240	164 248	172 257	
515 516	265	273	282	290	299	307	315	324	332	341	
517	349	357	366	374	383	391	399	408	416	425	
518	433	441	450	458	466	475	483	492	500	508	
519	517	525	583	542	550	559	567	575	584	592	
520 520	600	609	617	625	634	642	734	742	750	759	. 8
521 522	684 767	692 775	700 784	709 792	717 800	725 809	734 817	825	834	842	1 0.8
523	850	858	867	875	883	892	900	908	917	925	3 2.4
524	933	941	950	958	966	975	983	991	999	*008	4 3.2
525	72 016	024	032	041	049	057	066	074	082	090	5 4.0
526 527	099 181	107 189	115 198	123 206	132 214	140 222	148 230	156 239	165 247	173 255	6 4.8 7 5.6
528	263	272	280	288	296	304	313	321	329	337	9 7.3
529	346	354	362	370	378	387	395	403	411	419	*11.4
530	428	436	444	452	460	469	477	485	493	501	
531	509	518	526	534	542	550	558	567	575	583	
532 533	591 673	599 681	607 689	616	624 705	632 713	640 722	648 730	656 738	665 746	
584	754	762	770	779	787	795	803	811	819	827	
585 586	835	843	852	860	868	876	884	892	900	908	7
536	916	925	933	941	949	957	965	973	981	989	1100
537 588	997 73 078	*006 086	*014	*022 102	*030 111	*038 119	*046 127	*054 135	*062 143	*070 151	1 0.7
539	159	167	175	183	191	199	207	215	223	231	2 1.4 3 2.1 4 2.8
540	239	247	255	263	272	280	288	296	304	312	5 8.5 6 4.2
541	320	328	836	344	352	360	368	376	384	392	7 4.9
542	400	408	416	424	432	440	448	456	464	472 552	9 6.3
548 544	480 560	488 568	496 576	504 584	512 592	520 600	528 608	536 616	544 624	632	3.1
545	640	648	656	664	672	679	687	695	703	711	
546	719	727	735	743	751	759	767	775	783	791	
547 548	799	807	815	823	830	838	846	854	862	870	
548 549	878 957	886 965	894 973	902 981	910 989	918 997	926 *005	933 *013	941 *020	949 *028	
<b>5</b> 50	74 036	044	052	060	068	076	084	092	099	107	
N.	L. 0	1	2	3	4	5	6	7	8	9	P. P.

Table 91 (Continued) LOGARITHMS OF NUMBERS

_											
N.	L. 0	1	2	3	4	5	6	7	8	9	P. <b>P.</b>
550	74 036	044	052	060	068	076	084	092	099	107	
551	115	123	131	139	147	155	162	170	178	186	
552	194	202	210	218	225	233	241	249	257	265	
553	278	280	288	296	804	812	320	327	335	343	
554 555	351 429	359 437	367 445	374 453	382 461	390 468	398 476	406 484	414 492	421 500	
556	507	515	523	531	539	547	554	562	570	578	i j
557	586	593	601	609	617	624	632	640	648	656	1
558	663	671	679	687	695	702	710	718	726	733	1
559	741	749	757	764	772	780	788	796	803	811	1
560	819	827	834	842	850	858	865	873	881	889	
561	896	904	912	920	927	935	943	950	958	966	ا ما ا
562	974	981	989	997	*005	*012	*020	*028	*035	*043	1 0.8
563 564	75 051 128	059 136	066 143	074 151	082 159	089 166	097 174	105	113 189	120 197	3 2.4
565	205	218	220	228	236	243	251	182 259	266	274	4 8.2 5 4.0
566	282	289	297	905	312	320	328	835	343	351	6 4.8
567	358	366	874	381	389	397	404	412	420	427	7 5.6 8 6.4
568 569	435	442	450	458	465	473	481	488	496	504	9 7.2
570	511 587	519 595	526 603	534 610	542 618	626	633	565 641	572 648	580 656	
								<u> </u>			
571 572	664 740	671 747	679 755	686 762	694 770	702 778	709 785	717 793	724 800	732 808	
573	815	823	831	838	846	853	861	868	876	884	
574	891	899	906	914	921	929	937	944	952	959	ļ
575	967	974	982	989	997	*005	*012	*020	*027	*035	
576	76 042	050	057	065	072	080	087	095	103	110	
577 578	118 193	125 200	133 208	140	148 223	155 230	163 238	170	178	185	l j
579	268	275	283	215 290	298	305	313	245 320	253 328	260 335	
580	343	350	358	365	373	380	888	395	403	410	7
581	418	425	433	440	448	455	462	470	477	485	1 0.7
582	492	500	507	515	522	530	537	545	552	559	2 1.4
583 584	567 641	574 649	582 656	589 664	597 671	604 678	612 686	619 698	626 701	634 708	3 2.1 4 2.8
585	716	723	730	738	745	753	760	768	775	782	1 5 3.5 1
586	790	797	805	812	819	827	834	842	849	856	6 4.3
587	864	871	879	886	893	901	908	916	923	930	8 5.6
588 589	938 77 012	945 019	953 026	960 034	967 041	975 048	982 056	989 063	997 070	*004 078	9 6.8
590	085	093	100	107	115	122	129	137	144	151	
591	159	166	173	181	188	195	203	210	217	225	
592	232	240	247	254	262	269	276	283	291	298	
593	305	313	320	327	335	342	849	357	364	371	1
594	379	386	393	401	408	415	422	430	437	444	į į
595 596	452 525	459 532	466 539	474 546	481 554	488 561	495 568	503 576	510 583	517 590	
-597	525 597	605	612	619	627	634	641	648	656	663	
598	670	677	685	692	699	706	714	721	728	735	1
599	743	750	757	764	772	779	786	793	801	808	
B00	815	822	830	837	844	851	859	866	873	880	
N.	L. 0	1	2	3	4	5	6	7	8	9	P. P.

Table 91 (Continued)
LOGARITHMS OF NUMBERS

N.	L. 0	1	2	3	4	5	6	7	8	9	P. P.
600	77 815	822	830	837	844	851	859	866	873	880	
601 602	887	895	902	909	916	924	931	938	945	952	
602	960	967	974	981	988	996	*003	*010	*017	*025	
603 604	78 032 104	039 111	046 118	053 125	061 132	068 140	075 147	082 154	089	097 168	
605	176	183	190	197	204	211	219	226	233	240	
605 606 607	247	254	262	269	276	283	290	297	161 233 805	812	8
608	319 390	326 398	333 405	340	347 419	855	362 433	869	876 447	383 455	1 1
609	462	469	476	412 483	490	426 497	504	440 512	519	526	1 0.8 2 1.6
610	533	540	547	554	561	569	576	583	590	597	3 2.4 . 4 3.2
611 612 613 614 615	604	611	618	625	633	640	647	654	661	668	5 4.0 6 4.8 7 5.6 8 6.4
612	675	611 682 753 824	689	696 767	633 704	711	718 789 859	654 725 796	661 732	668 739	7 5.6 8 6.4
613	746 817	753	760 831	767	774 845	781 852	789	796   866	803 873	I 810 I	9 7.2
615	888	895	902	838 909	916	923	930	937	944	880 951	
010	958	965	972	979	986	993	*000	*007	*014	*021	ĺ
617 618	79 029	036	043	050	057	064	071	078	085	092	
619	099 169	106 176	113 183	120 190	127 197	134 204	141 211	148 218	155 225	162 232	
620	239	246	253	260	267	274	281	288	295	302	_
	309	816	323	830	337	344	851	358	365	372	, 7
621 622	309 379	386 456	893	400	407	414	421	428	435	442	1 0.7
623 624 625 626 627 628	449	456	463	470	477	484	491	498	505 574	511	2 1.4 3 2.1 4 2.8
625	518 588	525 505	532 602	539	546 616	553 623	560	567 637	644	581	4 2.8
626	588 657 727 796	595 664 734	671	609 678 748	685	692	630 699	706	713	650 720 789	5 3.5 6 4.2
627	727	734	741	748	754	761	768	775	782	789	7 4.9 8 5.6
629	796 865	803 872	810 879	817 886	824 893	831 900	837 906	844 913	851 920	858 927	8 5.6 9 6.8
630	934	941	948	955	962	969	975	982	989	996	
	80 003	010	017	024	030	037	044	051	058	065	
631 632 633 634 635	072	079	085	092	099	106	113	120	1797	134	
633	140	147	154	161	168	106 175	182	188	195	202	
634	209 277	216	223 291	161 229 298	236	243	250	257 325	195 264 332	271 339	
636	346	284 353	359	366	305 373	312 380	318 387	893	400	407	8
637	414	421	428	434	441	448	455	462	468	475	1 0.6
638 639	482 550	489 557	496 564	502 570	509 577	516 584	523 591	530 598	536 604	543 611	2 1.2 3 1.8
640	618	625	632	638	645	652	659	665	672	679	4 2.4 5 3.0
	686	693	699	706	713	720	726	733	740	747	6 8.6 7 4.2
641 642 643 644 645	754	760	767	774	781	787	794	801	808	814	8 4.8 9 5.4
643	821	828	835	841	848	855 922	862	868	875	882	9   5.4
644	889	895	902	909	916	922	929	936	943	949	•
646	956 81 023	963 030	969 037	976	983 050	990 057	996 064	*003 070	*010 077	*017 084	
647	090	097	104	043 111	117	124	131	137	144	151	
647 648	158	164	171	178	184	191	198	204	211	218	
649	. 224	231	238	245	251	258	265	271	278	285	
650	291	298	305	311	818	325	331	338	845	351	
N.	L. 0	1	2	3	4	5	6	7	8	9	P. P.

N.	L. 0	1	2	3	4	5	6	7	8	9	P. P.
650	81 291	298	305	811	318	325	831	338	345	351	
651	858		871	378	385	891	398	405	411	418	
652	425		438	445	451	458	465	471	478	485	
658 654	491 558		505 571	511	518 584	525 591	531 598	538 604	544 611	551 617	1
655 656	624	631	637	644	651	657	664	671	677	684	1 ;
656	690		704	710	717	723	730	737	748	750	· ·
657 658	757 823	763 829	770 836	776 842	783 849	790 856	796 862	803	809 875	816 882	i .
659	889	895	902	908	915	921	928	935	941	948	
660	954	961	968	974	981	987	994	*000	*007	*014	, ,
661	82 020	027	033	040	046	053	060	066	078	079	l + ' '
662 663	086 151	092 158	099 164	105 171	112 178	119 184	125 191	132 197	138	145	2 1.4
664	217	223	280	236	243	249	256	263	204 269	210 276	8 2.1 4 2.8
665	282	223 289	280 295	236 302	808	815	256 821	828	334	341	5 3.5
666	847	854	860	867	878	880	887	893	400	406	5 8.5 6 4.2 7 4.9
667 668	413 478	419 484	426 491	432 497	439 504	445 510	452 517	458 523	465 530	471 536	8   5,6
669	543	549	556	562	569	575	582	588	595	601	9 6.8
670	607	614	620	627	633	640	646	653	659	666	
671	672	679	685	692	698	705	711	718	724	730	
672 673	737 802	743 808	750 814	756 821	763 827	769 884	776 840	782 847	789 853	795 860	
674	866	872	879	885	892	898	905	911	918	924	
675	930	937 *001	943	950	956	963	-969	975	982	988	
676 677	995 83 059	*001 065	*008 072	*014 078	*020 085	*027 091	*033 097	*040 104	*046 110	*052 117	
678	123	129	136	142	149	155	161	168	174	181	
679	187	193	200	206	213	219	225	232	238	245	-
680	251	257	264	270	276	283	289	296	302	308	, 6
681	815	821	327	334	840	847	853	359	366	372	1 0.6
682 683	878 442	385 448	891 455	398 461	404 467	410 474	417 480	423 487	429 493	436 499	2 1.2 8 1.8
684	506	512	518	525	581	537	544	550	556	563	4 2.4
685	569	575	582	588	594	601	607	613	620	626	5 8.0 6 8.6
686 687	632 696	639 702	645 708	651 715	658 721	664 727	670 734	677 740	683 746	689 753	7 4.2
688	759	765	771	778	784	790	797	803	809	816	8 4.8 9 5.4
689	822	828	835	778 841	847	853	860	866	872	879	•
690	885	891	897	904	910	916	923	929	935	942	
691	948	954	960	967	973	979	985	992	998	*004	
692 693	84 011 073	017 080	023 086	029 092	036 098	1042 105	048 111	055 117	061 123	067 130	
694	136	142	148	155	161	167	173	180	186	192	
695	198	205	211	217	223	230	236	242	248	255	
696 697	261 323	267 330	273 836	280 842	286 348	292 854	298 861	305 367	311 373	317 379	
698	886	392	398	404	410	417	423	429	435	442	
699	448	454	460	466	478	479	485	491	497	504	
700	<b>5</b> 10	516	522	528	535	541	547	553	559	566	
N.	L. 0	1	2	3	4	5	6	7	8	9	P. P.

Table 91 (Continued) LOGARITHMS OF NUMBERS

N.	L. 0	1	2	3	4	5	6	7	8	9	P. P.
700	84 510	516	522	528	535	541	547	553	559	566	
701 702 708 704 706 706 707 708 709	572 634 696 757 819 880 942 85 003 065	578 640 702 763 825 887 948 009 071	584 646 708 770 831 893 954 016 077	590 652 714 776 887 899 960 022 083	597 658 720 782 844 905 967 028 089	603 665 726 788 850 911 973 034 095	609 671 733 794 856 917 979 040 101	615 677 739 800 862 924 985 046 107	621 683 745 807 868 930 991 052 114	628 689 751 813 874 936 997 058 120	7 1 0.7 2 1.4 3 2.1
710	126	132	138	144	150	156	163	169	175	181	4 2.8 5 3.5
711 712 713 714 715 716 717 718 719	187 248 309 870 431 491 552 612 673	193 254 815 876 437 497 558 618 679	199 260 321 382 443 503 564 625 685	205 266 327 388 449 509 570 631 691	211 272 333 394 455 516 576 637 697	217 278 839 400 461 522 582 643 703	224 285 345 406 467 528 588 649 709	280 291 852 412 473 534 594 655 715	236 297 858 418 479 540 600 661 721	242 303 364 425 485 546 606 667 727	6 4.2 7 4.9 8 5.6 9 6.3
720	733	739	745	751	757	763	769	775	781	788	
721 722 728 724 725 726 727 728 729	794 854 914 974 86 034 094 153 213 273	800 860 920 980 040 100 159 219 279	806 866 926 986 046 106 165 225 285	812 872 932 992 052 112 171 231 291	818 878 938 998 058 118 177 237 297	824 884 944 *004 064 124 182 243 303	830 890 950 *010 070 130 189 249 308	836 896 956 *016 076 136 195 255 314	842 902 962 *022 082 141 201 261 320	848 908 968 *028 088 147 207 267 326	1 0.6 2 1.2 3 1.8 4 2.4 5 3.0 6 3.6 7 4.2 8 4.8 9 5.4
780	332	838	344	350	356	362	368	374	380	386	
781 782 783 784 785 786 737 788 739	392 451 510 570 629 688 747 806 864	898 457 516 576 635 694 753 812 870	404 463 522 581 641 700 759 817 876	410 469 528 587 646 705 764 823 882	415 475 534 593 652 711 770 829 888	421 481 540 599 658 717 776 835 894	427 487 546 605 664 723 782 841 900	433 493 552 611 670 729 788 847 906	439 499 558 617 676 735 794 853 911	445 504 564 623 682 741 800 859 917	5 1 0.5 2 1.0 8 1.5 4 2.0
740	923	929	935	941	947	953	958	964	970	976	5 2.5 6 3.0
741 742 743 744 745 746 747 748 749	982 87 040 099 157 216 274 332 390 448 506	988 046 105 163 221 280 338 896 454	994 052 111 169 227 286 344 402 460 518	999 058 116 175 233 291 349 408 466	*005 064 122 181 239 297 355 413 471	*011 070 128 186 245 303 361 419 477	*017 075 134 192 251 309 367 425 483	*023 081 140 198 256 315 373 431 489	*029 087 146 204 262 320 379 437 495	*035 093 151 210 268 326 384 442 500 558	7 3.5 8 4.0 9 4.5
,00				7	_		_			-	
N.	L. 0	1	2	3	4	5	6	7	8	9	P. P.

Table 91 (Continued)
LOGARITHMS OF NUMBERS

										_	
N.	L. 0	1	2	3	4	5	6	7	8	9	P. P.
750	87 506	512	518	523	529	535	541	547	552	558	
751	564	570	576	581	587	593	599	604	610	616	
752 758	622	628	633	639	645	651	656	662	668	674	
753	679	685	691	697	703	708	714	720	726	781	
754	737	743	749	754	760	766	772	777	783	789	
755	795	800	806	812	818	823	829	835	841	846	
756	852	858	864	869	875	881	887	892	898	904	
757 758	910 967	915 973	921 978	927 984	933	938 996	944 *001	950 *007	955 *013	961	
759	88 024	030	036	041	047	053	058	064	070	*018 076	l i
760	081	087	093	098	104	110	.116	121	127	133	
761	138	144	150	156	161	167	173	178	184	190	1 1
762	195	201	207	213	218	224	230	235	241	247	1 0.6
763	252	258	264	270	275	281	287	292	298	804	2 1.2 3 1.8
764	809	315	321	326	832	338	843	849	855	360	4 2.4
765	866	372	877	383	389	395	400	406	412	417	1 5   3.0
766	423 480	429 485	434 491	440	446	451	457	463	468	474	6 3.6 7 4.2
767 758	480 536	480 542	547	497 553	502 559	508 564	513 570	519 576	525 581	530 587	8 4.8
769	593	598	604	610	615	621	627	632	638	643	- 9 5.4
770	649	655	660	666	672	677	683	689	694	700	
771	705	711	717	722	728	734	739	745	750	756	Ì
772	762	767	773	779	784	790	795	801	807	812	
773	818	824	829	835	840	846	852	857	863	868	1
774	874	880	885	891	897	902	908	913	919	925	
775	930	936 992	941	947	953	958	964	969 *025	975 *031	981	
776 777	986 89 042	048	997 053	*003 059	*009 064	*014 070	*020 076	081	087	*037 092	
778	098	104	109	115	120	126	131	137	143	148	
779	154	159	165	170	176	182	187	193	198	204	
780	209	215	221	226	232	237	243	248	254	260	5
781	265	271	276	282	287	293	298	304	810	315	1 0.5
782	321	326	832	337	843	348	854	360	365	871	2 1.0
783	376	382	387	393	398	404	409	415	421	426	8 1.5
784	432 487	437 492	443 498	448 504	454 509	459 515	465 520	470 526	476 531	481 537	4 2.0 5 2.5
785 786	542	548	553	559	564	570	575	581	586	592	6 3.0
787	597	603	609	614	620	625	631	636	642	647	7 8.5
788	653	658	664	669	675	680	686	691	697	702	8 4.0 9 4.5
789	708	713	719	724	730	735	741	746	752	757	1
790	763	768	774	779	785	790	796	801	807	812	
791	818	823	829	834	840	845	851	856	862	867	
792	873 927	878 933	883	889 944	894 949	900	905 960	911 966	916 971	922 977	
793 794	927	988 988	938 993	998	*004	955 *009	*015	*020	*026	*031	
794	90 037	042	048	053	059	064	069	075	080	086	
796	091	097	102	108	113	119	124	129	135	140	
797	146	151	157	162	168	173	179	184	189	195	
• 798	200	206	211	217	222	227	233	238	244	249	
799	255	260	266	271	276	282	287	293	298	304	
800	309	314	820	325	831	336	842	347	352	358	
N.	L. 0	1	2	3	4	5	6	7	8	9	P. P.

Table 91 (Continued)
LOGARITHMS OF NUMBERS

							·	_			r
N.	L. 0	1	2	3	4	5	6	7	8	9	P. P.
800	90 309	814	820	325	831	836	842	347	852	358	
801	363	369	874	880	385	390	896	401	407	412	
802	417	423 477	428	434	439	445	450	455	461	466	
803 804	472 526	531	482 536	488 542	493 547	499 553	·504 558	509 563	515 569	520 574	
805	580	585	590	596	601	607	612	617	623	628	
806	634	639	644	650	655	660	666	671	677	682	Ï
807	687	693	698	703	709	714	720	725	730	736	
808 809	741 795	747 800	752 806	757 811	763	768 822	773	779	784	789	
	849	854	859	865	816 870	875	827 881	886	838	843	
810 811	902	907	913	918	924	929	934	940	945	950	`   6
812	056	961	966	972	977	982	988	993	998	*004	1 0.6
813	91 009	014	020	025	030	036	041	046	052	057	2 1.2 8 1.8
814	062	068	073	078	084	089	094	100	105	110	4 2.4
815 816	116 169	121 174	126 180	132 185	137 190	142 196	148 201	153 206	158 212	164 217	5 3.0 6 3.6
817	222	228	233	238	243	249	254	259	265	270	7 4.3
818	275	281	286	291	297	302	307	812	818	323	8 4.8 9 5.4
819	328	334	339	844	350	355	360	365	871	876	0,0.5
B20	381	387	892	897	403	408	413	418	424	429	
821	434	440	445	450	455	461	466	471	477	482	
822 823	487 540	492 545	498 551	503 556	508 561	514 566	519 572	524 577	529 582	535 587	
824	593	598	603	609	614	619	624	630	635	640	
825	645	651	656	661	666	672	677	682	687	693	
826	698	703	709	714	719	724	730	735	740	745	
827	751 803	756 808	761	766	772	777	782 834	787	793 845	798 850	
828 829	855	861	814 866	819 871	824 876	829 882	887	840 892	897	903	
330	908	913	918	924	929	934	939	944	950	955	. 5
831 832	960	965	971	976	981	986	991	997	*002	*007	1 0,5
832 833	92 012 065	018 070	023 075	028	033 085	038 091	044 096	049 101	054 106	059 111	2 1.0 8 1.5
224	117	122	127	080 132	137	143	148	153	158	163	4 2.0
835 836 837	169	174	179	184	189	195	200	205	210	215	5 2.5 6 8.0
836	221	226	231	236	241	247	252	257	262	267	7   8.5
838	273 324	278 330	283 335	288 340	293 345	298 850	304 355	309 361	814 866	319 371	8 4.0 9 4.5
839	376	381	387	392	897	402	407	412	418	423	1
140	428	433	438	443	449	454	459	464	469	474	
841	480	485	490	495	500	505	511	516	521	526	
842	531 583	536 588	542 593	547 598	552 603	557 609	562 614	567 619	572 624	578 629	
843	634	639	645	650	655	660	665	670	675	681	
744 I	686	691	696	701	706	711	716	722 773	727	732	1
844 845		742	747	752	758	763	768	773	778	783	
845 846	737				809	814	819	824	829	834	
845 846 847	737 788	793	799	804		I RAF				XXX	
845 846	737		799 850 901	855 906	860 911	865 916	870 921	875 927	881 932	886 937	,
845 846 847 848	737 788 840	793 845	850	855	860						•
845 846 847 848 849	737 788 840 891	793 845 896	850 901	855 906	860 911	916	921	927	932	937	Р. <b>Р.</b>

N.	L. 0	1	2	3	4	5	6	7	8	9	P. P.
850	92 942	947	952	957	962	967	973	978	983	988	
851	993	998	*003	*008	*013	<b>*</b> 018	*024	*029	*034	*039	,
852	93 044	049	054	059	064	069	075	080	085	090	ł
853	93 044 095	100	105	110	115	120	125	131	136	141	İ
854	146	151	156	161	166	171	176	181	186	192	
855	197	202	207	212	217	222	227	232	237	242	i .
856	247	252	258	263	268	273	278	283	288	293	
857 858	298 349	303 354	308 359	313 364	318 369	323 374	328 379	334 384	339	344 394	
859	899	404	409	414	420	425	430	435	440	445	1 0.6
880	450	455	460	465	470	475	480	485	490	495	8 1.8 4 2.4
861	500	505	510	515	520	526	531	536	541	546	5 3.0 6 3.6
862	551	556	561	566	571	576	581	586	591	596	7 4.2 8 4.8
863	601	606	611	616	621	626	631	636	641	646	9 5.4
864 865	651 702	656 707	661 712	666 717	671 722	676 727	682. 732	687	692 742	697 747	
866	702 752	757	762	767	772	777	782	787	792	797	
867	802	807	812	817	822	827	832	837	842	847	
868	852	857	862	867	872	877	882	887	892	897	1
869	902	907	912	917	922	927	932	937	942	947	
870	952	957	962	967	972	977	982	987	992	997	5
871	94 002	007	012	017	022	027	032	037	042	047	1
872	052	057	062	067	072	077	082	086	091	096	1 0.5 2 1.0
873	101	106	111	116	121	126	131	136	141	146	8 1.5
874 875	151 201	156 206	161 211	166 216	171 221	176 226	181 231	186 236	191 240	196 245	4 2.0
875 876	250	255	260	265	270	275	280	285	290	295	5 2.5 6 3.0
877	300	805	810	815	320	325	330	335	340	345	7 8.5
878	849	354	859	864	869	374	379	384	389	394	8 4.0
879	399	404	409	414	419	424	429	433	438	443	9   4.5
880	448	453	458	463	468	473	478	483	488	493	
881	498	503	507	512	517	522	527	532	537	542	
882	547	552	557	562	567	571	576	581	586	591	
883	596	601	606	611	616	621 670	626 675	630	635	640	
884 885	645 694	650 699	655 704	660 709	665 714	719	724	680 729	685 734	689 738	
886	743	748	753	758	763	768	773	778	783	787	4
887	792	797	802	807	812	817	822	827	832	836	ا باب
888	841	846	851	856	861	866	871	876	880	885	1 0.4 2 0.8
889	890	895	900	905	910	915	919	924	929	934	8 1.2 4 1.6
890	939	944	949	954	959	963	968	973	978	983	5 2.0 6 2.4
891	988	993	998	*002	*007	*012	*017	*022	*027	*032	7 2.8
892	95 036 085	041	046	051	056	061	066	071	075	080	8 3.2 9 8.6
893 894	184	090 139	095 143	100 148	105 153	109 158	114 163	119 168	124 173	129 177	
895	182	187	192	197	202	207	211	216	221	226	
896	231	236	240	245	250	255	260	265	270	274	
897	279	284	289	294	299	303	308	313	318	323	
898	328	332	337	342	347	352	357	861	366	371	
899	376	381	386	390	395	400	405	410	415	419	
900	424	429	434	439	444	448	453	458	463	468	
N.	Τ Λ	1	2	9	1	5	0	7		0	P. P.
I N.	L. 0	1	Z	3	. 4	5	6	1	8	9	r.r.

Table 91 (Continued) LOGARITHMS OF NUMBERS

N.	r o	1	2	3	4	5	6	7	8	9	P.P.
900	95 424	429	434	439	444	448	453	458	463	468	
901	472	477	482	487	492	497	501	506	511	516	
902 903	521 569	525 574	530 578	535 583	540 588	545 593	550 598	554 602	559 607	564 612	
904	617	622	626	631	636	641	646	650	655	660	
905	665	670	674	679	684	689	694	698	703	708	
906 907	713 761	718 766	722 770	727	732 780	737 785	742 789	746 794	751 799	756 804	
908	809	813	818	823	828	832	837	842	847	852	
909	856	861	866	871	875	880	885	890	895	899	
910	904	909	914	918	923	928	933	938	942	947	- 5
911 912	952 999	957 *004	961 *009	966 *014	971 *019	976 *023	980 *028	985 *033	990 *038	995 *042	1 0.5
913	96 047	052	057	061	066	071	076	080	085	090	2 1.0
914	095 142	099	104	109	114	118	123 171	128	133	137	4 2.0
915 916	190	147 194	152 199	156 204	161 209	166 213	218	175 223	180 227	185 232	5 2.5 6 3.0
917	237	242	246	251	256	261	265	270	275	280	6 3.0 7 3.5 8 4.0
918 919	284 332	289 336	294 841	298 346	303 350	308 355	313 360	317 365	322 369	327 374	9 4.5
920	379	384	388	393	398	402	407	412	417	421	
921	426	431	435	440	445	450	454	459	464	468	
922	473	478	483	487	492	497	501	506	511	515	
923 924	520 567	525 572	530 577	534 581	539 586	544 591	548 595	553 600	558 605	562 609	
925	614	619	624	628	633	638	642	647	652	656	
926	661	666	670	675	680	685	689	694	699	703	
927 928	708 755	713 759	717 764	722 769	727 774	731 778	736 783	741 788	745 792	750 797	
929	802	806	811	816	820	825	830	834	839	844	
30	848	853	858	862	867	872	876	881	886	890	4
931 932	895 942	900	904 951	909 956	914 960	918 965	923 970	928 974	932 979	937 984	1 0.4
933	942	946 993	997	+002	*007	*011	*016	*021	*025	*030	2 0.8 3 1.2
934	97 035	039	044	049	053	058	063	067	072	077	4 1.6
935 936	081 128	086 132	090 137	095 142	100 146	104 151	109 155	114 160	118	123 169	5 2.0 6 2.4
987	174	179	183	188	192	197	202	206	211	216	7 2.8 8 3.2
938 939	220 267	225 271	230 276	234 280	239 285	243 290	248 294	253 299	257 304	262 308	9 8.6
40	313	317	322	327	331	336	340	345	350	354	
941	859	364	868	373	377	382	387	391	396	400	
942	405	410	414	419	424	428	433	437	442	447	
948	451 497	456 502	460 506	465	470 516	474 520	479 525	483 529	488 534	493 539	
944 945	548	548	552	511 557	562	566	571	575	580	585	
946 L	589	594	598	603	607	612	617	621	626	630	
947 948	635 681	640 685	644 690	649	653	658 704	663 708	667 713	672 717	676 722	
949	727	731	736	740	745	749	754	759	763	768	)
50	772	777	782	786	791	795	800	804	809	813	
				-	-		-	-	-		
N. I	L.0	1	2	3	4	5	6	7	8	9	P. P.

Table 91 (Concluded) LOGARITHMS OF NUMBERS

N.	L. 0	1	2	3	4	5	6	7	8	9	P. P.
950	97 772	777	782	786	791	795	800	804	809	818	
951	818	823	827	832	836	841	845	850	855	859	
952 953	864 909	868 914	873 918	877 923	882 928	886 932	891 937	896 941	900 946	905 950	
954	955	959	964	968	978	978	982	987	991	996	
955	98 000	005	009	014	019	023	028	032	037	041	
956 957	046 091	050 096	055 100	059 105	064 109	068 114	073 118	078 123	082	087 132	
958 959	137	141	146	150	155	159	164	168	127 173	177	
959	182	186	191	195	200	204	209	214	218	223	
960	227	232	236	241	245	250	254	259	263	268	5
961 962	272 318	277 322	281 827	286 831	290 336	295	299	304	308	318	1 0.5
963	863	367	872	876	881	340 385	845 890	849 894	854 399	358 403	2   1.0
964	408	412	417	421	426	430	435	439	444	448	4   2.6
965	453 498	457	462	466	471	475	480	484	489	493	5 2.5 6 3.0
966 967	543	502 547	507 552	511 556	516 561	520 565	525 570	529 - 574	534 579	538 583	7   3.5
968	588	592	597	601	605	610	614	619	623	628	8 4.0 9 4.5
969	632	637	641	646	650	655	659	664	668	673	0   0.5
970	677	682	686	691	695	700	704	709	713	717	
971 972	722 767	726 771	731 776	735 . 780	740 784	744 789	749 793	753 798	758 802	762 807	
978	811	816	820	825	829	834	838	843	847	851	
974	856	860	865	869	874	878	883	887	892	896	
975	900	905	909	914	918	923	927	932	936	941	
976 977	945 989	949 994	954 998	958 *003	963 *007	967 *012	972 *016	976 *021	981 *025	985 *029	
978	99 034	038	043	047	052	056	061	065	069	074	
979	078	083	087	092	096	100	105	109	114	118	
980	123	127	131	136	140	145	149	154	158	162	, <b>4</b>
981	167	171	176	180	185	189	193 238	198	202 247	207	1 0.4
982 983	211 255	216 260	220 264	224 269	229 273	233 277	282	242 286	291	251 295	2 0.8 8 1.2
984	300	304	308	813	317	322	326	330	335	339	4   1.6
985	844	348	852	857	361	866	370	874	879	383	5 2.9 6 2.4
986 987	388 432	392 436	896 441	401 445	405 449	410 454	414 458	419 463	423 467	427 471	7 2.6 8 3.2
988	476	480	484	489	493	498	502	506	511	515	9 3.6
989	520	524	528	533	537	542	546	550	555	559	
990	564	568	572	577	581	585	590	594	599	603	
991 992	607 651	612	616	621 664	625 669	629	634 677	638 682	642 686	647 691	
993	695	656 699	660 704	708	712	673 717	721	726	730	734	
994	739	743	747	752	756	760	765	769	774	778	
995	782	787	791	795	800	804	808	813	817	822	-
996 997	826 870	830 874	835 878	839 883	843 887	848 891	852 896	856 900	861 904	865 909	
998 999	913	917	922	926	930	935	939	944	948	952	
	957	961	965	970	974	978	983	987	991	996	
1000	00 000	004	009	013	017	022	026	030	035	039	
N.	L. 0	1	2	3	4	5	6	7	8	9	P. P.

TABLE 92.—COLOGARITHMS OF NUMBERS

No.		0	1	2	3	4	5	6	7	8	9	P.:	P.
100 1 2 3	.00	000 568 140	*957 525 097	*913 482 055	*870 439 012	*827 396 *970	*783 353 *928	*740 311 *885	*697 268 *843	*654 225 *801	*611 183 *758	1 4 2 9	48 42 4 4 9 8
4	.98	716 297 881	674 255 840	632 213 798	590 172 757	548 130 716	506 088 675	454 047 634	422 005 593	380 *964 551	338 *922 510	3 13 4 18 5 22	13 13 17 17 22 21
5 6 7 8	.96	469 062 658 257	428 021 617 218	388 *981 577 178	347 *940 537 138	306 *900 497 098	265 *859 457 059	224 *819 417 019	184 •778 377 •979	143 *738 337 *940	102 *698 297 *900	7 31 8 35	26 25 30 29 34 34 39 38
110 1 2 3 4	.95 .94	861 468 078 692 310	821 429 039 654 271	782 390 001 615 233	742 350 *962 577 195	763 311 *923 539 157	664 273 *885 500 119	624 234 *846 462 082	585 195 *808 424 044	546 156 •769 386 006	507 117 *731 348 *968	1 4 2 8 3 12 4 16	40 39 4 4 8 8 12 12 16 16
5678	.93	930 554 181 812	892 517 144 775	855 479 107 738	817 442 070 702	779 405 033 665	742 367 *996 628	704 330 *959 592	667 293 *922 555	629 256 *885 518	592 219 *849 482	5 21 6 25 7 29 8 33	20 20 24 23 28 27 32 31
120 1 2 3	.91	082 721 364 009	409 046 686 328 *974	372 010 650 293 *939	336 *973 614 257 *904	300 *937 578 222 *868	901 542 186 *833	*865 507 151 *798	*829 471 116 *763	*793 435 080 *728	*757 400 045 *693	9 37 38 1 4 2 8 3 11	36 35 <b>37 36</b> 4 4 7 7 11 11
34 5678	.90	658 309 963 620	623 274 928 585	588 240 894 551	553 205 860 517	518 170 825 483	483 136 791 449	101 757 415	413 066 722 381	379 032 688 347	344 *997 654 313	4 15 5 19 6 23 7 27	15 14 19 18 22 22 26 25
8 9 130	.88	279 941 606	245 907 572	211 874 539	177 840 506	143 807 472	110 773 439	076 739 406	042 706 372	008 673 339	*975 639 306		30 29 33 32 84 88
2 3 4	. 87	273 943 615 290	240 910 582 257	207 877 550 225	174 844 517 192	140 811 484 160	107 778 452 128	074 746 419 095	041 713 387 063	008 680 354 031	*976 648 322 *999	1 4 2 7 3 11 4 14	3 3 7 7 10 10 14 13
56789	.86	967 646 328 012 699	934 614 296 *981 667	902 582 265 *949 636	870 550 233 *918 605	838 519 201 *886 574	806 487 170 *855 543	774 455 138 *824 511	742 423 107 •792 480	710 391 075 •761 449	678 360 044 •730 418	6 21 7 25 8 28	17 17 20 20 24 23 27 26 31 30
140 1 2 3 4	.84	387 078 771 466 164	356 047 741 436 134	325 017 710 406 103	294 *986 680 375 073	263 *955 649 345 043	232 *924 619 315 013	201 *894 588 285 *983	171 *863 558 254 *953	140 *832 527 224 *923	109 *802 497 194 *893	1 3 2 6 3 10	31 30 3 3 6 6 9 9 12 12
56789	.83 .82	863 565 268 974	833 535 239 944	803 505 209 915	773 476 180 886	744 446 150 857	714 416 121 827	684 387 091 798	654 357 062 769	624 327 033 740	594 298 003 711	6 19 7 22 8 26	16 15 19 18 22 21 25 24
9 150		<b>681</b> <b>391</b>	652 362	623 333	594 304	565 275	536 246	507 218	478 189	449 160	420 131	9 29	28 27

Table 92 (Continued)
Cologarithms of Numbers

No.		0	1	2	3	4	5	6	7	8	9	P.P.
150	.82	391	362	333	804	275	246	218	189	160	131	29 28
1		102	074	045	016	*987	*959	•930	•901	•873	*844	1 3 3
2		816	787	759	730	702	673	645	616	588	559	2 6 6
3		531	502	474	446	417	389	361	333	304	276	3 9 8
4		248	220	192	163	135	107	079	051	023	*995	4 12 11
5	. 80	967	939	911	883	855	827	799	771	743	715	5 · 15 14
6		688	660	632	604	576	549	521	493	465	438	6 17 17
7		410	382	355	327	800	272	244	217	189	162	7 20 20
8		134	107	079	052	024	*997	•970	•942	*915	*888	8 23 22
9		860	833	806	778	751	724	697	670	642	615	9 26 25
160	.78	588	561	534	507	480	452	425	398	371	344	27 26
1		317	290	263	237	210	183	156	129	102	075	1 3 3
2		048	022	*995	*968	*941	*915	*888	*861	*835	*808	2 5 5
3		781	755	728	701	675	648	622	595	569	542	3 8 8
4		516	489	463	436	410	383	357	331	304	278	4 11 10
5	. 77	252	225	199	173	146	120	094	068	042	015	5 14 13
6		989	963	937	911	885	859	833	806	780	754	6 16 16
7		728	702	676	650	624	599	573	547	521	495	7 19 18
- 8		469	443	417	392	366	340	314	288	263	237	8 22 21
9		211	186	160	134	109	083	057	032	006	*981	9 24 23
170	.76	955	930	904	879	853	828	802	777	751	726	25
1		700	675	650	624	599	574	548	523	498	472	1 3
2		447	422	397	371	346	321	296	271	246	221	2 5
3		195	170	145	120	095	070	045	020	*995	*970	3 8
4		945	920	895	870	845	820	796	771	746	721	4 10
5	.74	696	671	647	622	597	572	548	523	498	473	5 13
6		449	424	399	375	350	326	301	276	252	227	6 15
7		203	178	154	129	105	080	056	031	007	*982	7 18
8		958	934	909	885	861	836	812	788	763	739	8 20
9		715	690	666	642	618	594	569	545	521	497	9 23
180	. 73	473	449	425	400	376	352	328	304	280	256	24 28
1		232	208	184	160	136	112	088	065	041	017	1 2 2
2		993	969	945	921	898	874	850	826	802	779	2 5 5
3		755	731	707	684	660	636	613	589	565	542	3 7 7
4		518	495	471	447	424	400	377	353	330	306	4 10 9
5	.72	283	259	236	212	189	166	142	119	095	072	5 12 12
6		049	025	002	*979	*955	*932	*909	*886	*862	*839	6 14 14
7		816	793	769	746	723	700	677	654	630	607	7 17 16
8		584	561	538	515	492	469	446	423	400	377	8 19 18
9		354	331	308	285	262	239	216	193	170	148	9 22 21
190	.71	125	102	079	056	033	011	*988	*965	*942	*919	22 21
1		897	874	851	829	806	783	760	738	715	693	1 2 2
2		670	647	625	602	579	557	534	512	489	467	2 4 4
3		444	422	399	377	354	332	309	287	265	242	3 7 6
4		220	197	175	153	130	108	086	063	041	019	4 9 8
5	.70	997	974	952	930	908	885	863	841	819	797	5 11 11
6		774	752	730	708	686	664	642	620	597	575	6 13 13
7		553	531	509	487	465	443	421	399	377	355	7 15 15
8		333	312	290	268	246	224	202	180	158	137	8 18 17
9		115	093	071	049	027	006	*984	*962	*940	•919	9 20 19
200	. 69	897	875	854	832	810	789	767	745	724	702	

Table 92 (Continued)
Cologarithms of Numbers

No.		0	1	2	3	4	5	6	7	8	9		P.	P.
-10-					<u> </u>		<u> </u>	<u> </u>		<u> </u>	-	Ŀ		
200	. 69	897 680	875 659	854 637	832 616	810 594	789 572	767 551	745 529	724 508	702 486	1	<b>22</b>	<b>21</b> 2
2		465	443	422	400	379	357	336	315	293	272	2 3	4	4
3		250	229	208	186	165	144	122	101	080	058	3	7	6
4		037	016	*994	*973	*952	*931	*909	*888	*867	*846	4	9	8
5	. 68	825	803	782	761	740	719	698	677	655	634	5	11	11
6 7		613 403	592 382	571 361	550 340	529 319	508 298	487 277	466 256	445 235	424 215	6	13 15	13 15
8		194	173	152	131	110	089	069	048	027	006	8	18	17
9	. 67	985	965	944	923	902	882	861	840	819	799	9	20	19
210		778	757	737	716	695	675	654	634	613	592			20
1 1		572	551 346	531 325	510 305	490 285	469 264	448 244	428 223	407 203	387 182		1	2 4
3		366 162	142	121	101	081	060	040	020	•999	979		3	6
4	. <b>66</b>	959	938	918	898	878	857	837	817	797	776		4	8
5		756	736	716	696	675	655	635	615	595	575		5	10
6 7		555	535	514	494	474	454	434	414	394	374 174		6	12
8		354 154	334 134	314 115	294 095	274 075	254 055	234 035	214 015	194 •995	*975		7 8	14 16.
9	. 65	956	936	916	896	876	857	837	817	797	777		ğ	18
220		758	738	718	699	679	659	639	620	600	580			19
11		561	541	521	502	482	463	443	423	404	384		1	2
3		365 170	345 150	326 131	306 111	287 092	267 072	247 053	228 033	208 014	189 *995		2 3	4 6
4	. 64	975	956	936	917	898	878	859	840	820	801		4	š
5		782	762	743	724	705	685	666	647	628	608		5	10
6		589	570	551	532	512	493	474	455	436	417		6	11
6 7		397	378	359	340	321 130	302 111	283 092	264 073	245 054	226 035		7 8	13 15
8 9		207 016	187 *997	168 •979	149 •960	*941	*922	903	*884	*865	*846		9	17
230	. 63	827	808	789	771	752	733	714	695	676	658			18
230	. 03	639	620	601	582	564	545	526	507	489	470		1	ž
2		451	432	414	395	376	358	339	320 134	302 116	283 097		. 2	4
3 4		264 078	246 060	227 041	209 023	190 004	171 *986	153 •967	*949	*930	912		4	5 7
1							001	782	764	746	727		5	9
5	. 62	893 709	875 690	856 672	838 654	819 635	801 617	599	580	562	543		. 6	11
6 7		525	507 324	489	470	452	434	415	'397	379	361		7	13
8 9		342 160	324 142	306 124	288 106	269 088	251 069	233 051	215 033	197 015	178 •997		8	14 16
240 1	. 61	979 798	961 780	943 762	925 744	907 726	888 708	870 690	852 672	834 654	816 636		1	17 2
2		618	601	583	565	547	529	511	493	475	457		2 3	3
3		439	422	404	386	368	350	332	314 137	297	279 101		3	2 3 5 7
4		261	243	225	208	190	172	154		119			-	
5		083	066	048	030	013	*995	*977	*959 783	*942 765	*924 748		5 6	10
6 7	. 60	906 730	889 713	871 695	854 678	836 660	818 642	801 625	607	590	572		7	12
l 81		555	537	520	502	485	467	450	432	415	398		8	14
9		380	363	345	328	310	293	276	258	241	223		9	15
250		206	189	171	154	137	119	102	085	067	050			
			1	<u>'</u>	<u> </u>	1					<u> </u>	_		_

Table 92 (Continued)
Cologarithms of Numbers

No.		0	1	2	3	4	5	6	7	8	9	]	P.P.
250 1 2 3 4	. 60 . 59	206 033 860 688 517	189 015 843 671 500	171 *998 825 654 482	154 *981 808 636 465	137 *963 791 619 448	119 *946 774 602 431	102 *929 757 585 414	085 *912 739 568 397	067 *894 722 551 380	050 *877 705 534 363	1 2 3 4	18 2 4 5 7
5 6 7 8 9	. 58	346 176 007 838 670	329 159 •990 821 653	312 142 •973 804 637	295 125 •956 788 620	278 108 •939 771 603	261 091 *922 754 586	244 074 •905 737 570	227 057 *889 720 553	210 040 *872 704 536	193 024 *855 687 519	5 6 7 8 9	9 11 13 14 16
260 1 2 3 4	. 57	503 336 170 004 840	486 319 153 *988 823	469 303 137 *971 807	453 286 120 *955 790	436 269 104 *938 774	419 253 087 *922 757	403 236 071 *905 741	386 220 054 *889 725	369 203 037 *873 708	353 186 021 *856 692	1 2 3 4	17 2 3 5 7
5 6 7 8 - 9		675 512 349 187 025	659 496 333 170 009	643 479 316 154 *992	626 463 300 138 *976	610 447 284 122 *960	594 430 268 106 •944	577 414 251 089 •928	561 398 235 073 •912	545 381 219 057 *896	528 365 203 041 *880	5 6 7 8 9	9 10 12 14 15
270 1 2 3 4	. 56	864 703 543 384 225	848 687 527 368 209	831 671 511 352 193	815 655 495 336 177	799 639 479 320 162	783 623 463 304 146	767 607 447 288 130	751 591 431 273 114	735 575 416 257 098	719 559 400 241 083	2 2 3 4	16 2 3 5 6
5 6 7 8 9	. 55	067 909 752 596 440	051 893 736 580 424	035 878 721 564 408	019 862 705 549 393	004 846 689 533 377	988 830 674 517 362	*972 815 658 502 346	*956 799 642 486 331	*941 783 627 471 315	*925 768 611 455 300	5 6 7 8 9	8 10 11 13 14
280 1 2 3 4	. 54	284 129 975 821 668	269 114 960 806 653	253 098 944 791 638	238 083 929 775 622	222 068 914 760 607	207 052 898 745 592	191 037 883 729 577	176 021 867 714 561	160 006 852 699 546	145 *990 837 683 531	1 2 3 4	15 2 3 5 6
5 6 7 8 9	. 53	516 363 212 061 910	500 348 197 046 895	485 333 182 031 880	470 318 166 016 865	455 303 151 000 850	439 288 136 *985 835	424 272 121 *970 820	409 257 106 955 805	394 242 091 *940 790	379 227 076 *925 775	5 6 7 8 9	8 9 11 12 14
290 1 2 3 4		760 611 462 313 165	745 596 447 298 150	730 581 432 284 136	715 566 417 269 121	700 551 402 254 106	685 536 387 239 091	670 521 373 224 077	655 506 358 210 062	641 491 343 195 047	626 477 328 180 033	1 2 3 4	14 1 3 4 6
5 6 7 8 9	. 52	018 871 724 578 433	003 856 710 564 418	*988 841 695 549 404	*974 827 681 535 389	*959 812 666 520 375	*944 798 651 506 360	*930 783 637 491 346	*915 768 622 476 331	*900 754 608 462 317	*886 739 593 447 302	5 6 7 8 9	7 8 10 11 13
300		288	<b>27</b> 3	259	244	230	216	201	187	172	158		

Table 92 (Continued)
Cologarithms of Numbers

No.		0	1	2	3	4	5	6	7	8	9	P	. P.
300 1 2 3 4	. 52 . 51	288 143 999 856 713	273 129 985 841 698	259 115 971 827 684	244 100 956 813 670	230 086 942 798 656	216 071 927 784 641	201 057 913 770 627	187 042 899 756 613	172 028 884 741 599	158 014 870 727 584	1 2 3 4	15 2 3 5 6
5 6 7 8 9		570 428 286 145 004	556 414 272 131 •990	542 399 258 117 •976	527 385 244 103 •962	513 371 230 089 •948	499 357 215 074 •934	485 343 201 060 920	470 329 187 046 *906	456 314 173 032 •892	442 300 159 018 *878	5 6 7 8 9	8 9 11 12 14
310 1 2 3 4	. 50	864 724 585 446 307	850 710 571 432 293	836 696 557 418 279	822 682 543 404 266	808 668 529 390 252	794 654 515 376 238	780 640 501 362 224	766 626 487 349 210	752 612 473 335 197	738 598 459 321 183	1 2 3 4	14 1 3 4 6
5 6 7 8 9	.49	169 031 894 757 621	155 018 880 744 607	141 004 867 730 594	128 *990 853 716 580	114 *976 839 703 567	100 *963 826 689 553	086 *949 812 675 539	073 *935 798 662 526	059 *921 785 648 512	045 *908 771 635 499	5 6 7 8 9	7 8 10 11 13
320 1 2 3 4	.48	485 349 214 080 945	471 336 201 066 932	458 322 187 053 919	444 309 174 039 905	431 295 160 026 892	417 282 147 013 879	404 268 134 *999 865	390 255 120 *986 852	377 241 107 *972 838	363 228 093 *959 825	1 2 3 4	13 1 3 4 5
5 6 7 8 9		812 678 545 413 280	798 665 532 399 267	785 652 519 386 254	772 638 505 373 241	758 625 492 . 360 228	745 612 479 346 214	732 598 466 333 201	718 585 452 320 188	705 572 439 307 175	692 559 426 294 162	5 6 7 8 9	7 8 9 10 12
330 1 2 3 4	.47	149 017 886 756 625	135 004 873 743 612	122 *991 860 730 599	109 *978 847 716 586	096 *965 834 703 573	083 *952 821 690 560	070 *939 808 677 547	057 *925 795 664 534	043 *912 782 651 521	030 *899 769 638 508	1 2 3 4	12 1 2 4 5
5 6 7 8 9	.46	496 366 237 108 980	483 353 224 095 967	470 340 211 083 954	457 327 198 070 942	444 314 185 057 929	431 301 173 044 916	418 289 160 031 903	405 276 147 018 890	392 263 134 006 878	379 250 121 *993 865	5 6 7 8 9	6 7 8 10 11
340 1 2 3 4		852 725 597 471 344	839 712 585 458 332	827 699 572 445 319	814 686 559 433 306	801 674 547 420 294	788 661 534 407 231	776 648 521 395 268	763 636 509 382 256	750 623 496 369 243	737 610 483 357 231		
5 6 7 8 9	.45	218 092 967 842 717	206 080 955 830 705	193 067 942 817 693	180 055 930 805 680	168 042 917 792 668	155 030 905 780 655	143 017 892 767 643	130 005 880 755 630	.118 *992 867 742 618	105 *980 855 730 606		
350		593	581	568	556	544	531	519	506	494	482		

# TABLE 92 (Continued) COLOGARITHMS OF NUMBERS

No.		0	1	2	3	4	5	6	7	8	9	P	.P.
350 1 2 3 4	. 45	593 469 346 223 100	581 457 333 210 087	568 445 321 198 075	556 432 309 186 063	544 420 296 173 051	531 407 284 161 038	519 395 272 149 026	506 383 259 136 014	494 370 247 124 002	482 358 235 112 •989	1 2 3 4	18 1 3 4 5
5 6 7 8 9	.44	977 855 733 612 <b>4</b> 91	965 843 721 600 478	953 831 709 587 466	940 818 697 575 454	928 806 685 563 442	916 794 672 551 430	904 782 660 539 418	892 770 648 527 406	879 758 636 515 394	867 745 624 503 382	5 6 7 8 9	7 8 9 10 12
360 1 2 3 4	. 43	370 249 129 009 890	358 237 117 *997 878	346 225 105 *985 866	334 213 093 *973 854	322 201 081 *962 842	309 189 069 *950 830	297 177 057 *938 818	285 165 045 *926 806	273 153 033 •914 795	261 141 021 *902 783	1 2 3 4	12 1 2 4 5
5 6 7 8 9		771 652 533 415 297	759 640 522 403 286	747 628 510 392 274	735 616 498 380 262	723 604 486 368 250	711 593 474 356 239	699 581 462 344 227	688 569 451 333 <b>215</b>	676 557 439 821 203	664 545 427 309 192	5 6 7 8 9	6 7 8 10 11
370 1 2 3 4	.42	180 063 946 829 713	168 051 934 817 701	156 039 922 806 690	145 028 911 794 678	133 016 899 783 666	121 004 887 771 655	109 *992 876 759 643	098 *981 864 748 632	086 *969 852 736 620	*074 957 841 724 608	1 2 3 4	11 1 2 3 4
5 6 7 8 9		597 481 366 251 136	585 470 354 239 125	574 458 343 228 113	562 447 331 216 102	551 435 320 205 090	539 424 308 193 079	527 412 297 182 067	516 400 285 170 056	504 389 274 159 045	493 377 262 148 033	5 6 7 8 9	6 7 8 9
380 1 2 3 4	. 41	022 908 794 680 567	010 896 782 669 556	*999 885 771 657 544	*987 873 760 646 533	*976 862 748 635 522	*965 851 737 623 510	*953 839 726 612 499	*942 828 714 601 488	*930 816 703 590 476	*919 805 691 578 465	1 2 3 4	10 1 2 3 4
5 6 7 8 9		454 341 229 117 005	443 330 218 106 *994	431 319 206 094 *983	420 308 195 083 972	409 296 184 072 *960	398 285 173 061 *949	386 274 162 050 •938	375 263 150 039 *927	364 251 139 027 *916	353 240 128 016 *905	5 6 7 8 9	5 6 7 8 9
390 1 2 3 4	. <b>4</b> 0	894 782 671 561 450	882 771 660 550 439	871 760 649 539 428	860 749 638 528 417	849 738 627 517 406	838 727 616 506 395	827 716 605 494 384	816 705 594 483 373	805 694 583 472 362	793 682 572 461 351		
5 6 7 8 9	. 39	340 230 121 012 903	329 220 110 001 892	318 209 099 *990 881	307 198 088 *979 870	296 187 077 *968 859	285 176 066 *957 848	274 165 055 946 837	263 154 044 *935 827	252 143 034 *924 816	241 132 *023 914 805		
400		794	783	<b>7</b> 72	761	751	740	729	718	707	696		]

# Table 92 (Continued) Cologarithms of Numbers

No.	0	1	2	3	4	5	6	7	8	9	P	.Р.
400 1 2 3 4	.39 79 68 57 46 36	6 675 7 567 9 459	772 664 556 448 340	761 653 545 437 330	751 642 534 426 319	740 631 523 416 308	729 621 513 405 297	718 610 502 394 287	707 599 491 383 276	696 588 480 373 265		
5 6 7 8 9	25 14 04 .38 93 82	7 137 1 030 4 923	233 126 019 913 806	222 115 009 902 796	212 105 *998 891 785	201 094 *987 881 775	190 083 •977 870 764	179 073 *966 860 753	169 062 *955 849 · 743	158 051 *945 838 732	1 2 3 4	11 1 2 3 4
410 1 2 3 4	72 61 51 40 30	6 605 0 500 5 394	700 595 489 384 279	690 584 479 373 269	679 574 468 363 258	669 563 458 352 248	658 552 447 342 237	648 542 437 331 227	637 531 426 321 216	626 521 416 310 206	5 6 7 8 9	6 7 8 9 10
5 6 7 8 9	.37 98 .88 77	1 080 6 976 2 872	174 070 966 862 758	164 059 955 851 748	153 049 945 841 737	143 038 934 830 727	132 028 924 820 716	122 018 914 810 706	112 007 903 799 696	101 *997 893 789 685		
420 1 2 3 4	67 57 46 36 26	2 561 9 458 6 356	654 551 448 345 243	644 541 438 335 233	634 531 428 325 222	623 520 417 315 212	613 510 407 304 202	603 500 397 294 192	592 489 387 284 182	582 479 376 274 171	1 2 3 4	10 1 2 3 4
5 6 7 8 9	16 05 .36 95 85 75	9 049 7 947 6 845	141 039 937 835 734	130 028 927 825 724	120 018 917 815 714	110 008 906 805 704	100 *998 896 795 694	090 *988 886 785 683	079 *978 876 775 673	069 *967 866 764 663	5 6 7 8 9	5 6 7 8 9
430 1 2 3 4	65 55 45 35 25	2 542 2 442 1 341	633 532 432 331 231	623 522 421 321 221	613 512 411 311 211	603 502 401 301 201	593 492 391 291 191	583 482 381 281 181	572 472 371 271 171	562 462 361 261 161		
5 6 7 8 9	15 05 .35 95 85 75	1 041 2 942 3 843	131 031 932 833 734	121 021 922 823 724	111 012 912 813 714	101 002 902 803 704	091 *992 892 793 694	081 *982 882 783 684	071 *972 872 773 674	061 *962 863 763 665	1 2 3 4	9 1 2 3 4
440 1 2 3 4	68 58 48 36 26	6 546 8 448 0 350	635 536 438 340 242	625 527 428 330 232	615 517 418 320 223	605 507 409 311 213	596 497 399 301 203	586 487 389 291 193	576 477 379 281 184	566 468 369 271 174	5 6 7 8 9	5 6 7 8
5 6 7 8 9	.34 96 .37	7 057 9 960 2 863	144 047 950 853 756	135 037 940 843 746	125 028 930 833 737	115 018 921 824 727	105 008 911 814 717	096 *998 901 804 708	086 *989 892 795 698	076 *979 882 785 688		
450	67	9 669	659	650	640	631	621	611	602	592	<u> </u>	

# Table 92 (Continued) Cologarithms of Numbers

No.		0	1	2	3	4	5	6	7	8	9	P	.P.
450 1 2 3 4	.34	679 582 486 390 294	669 573 477 381 285	659 563 467 371 275	650 553 457 361 266	640 544 448 352 256	631 534 438 342 247	621 525 429 333 237	611 515 419 323 228	602 505 409 314 218	592 496 400 304 208		
5 6 7 8 9	. 33	199 104 008 913 819	189 094 *999 904 809	180 084 *989 894 800	170 075 *980 885 790	161 065 *970 876 781	151 056 •961 866 771	142 046 951 857 762	132 037 *942 847 753	123 027 *932 838 743	113 018 *923 828 734	1 2 3 4	10 1 2 3 4
460 1 2 3 4		724 630 536 442 348	715 620 526 433 339	705 611 517 423 329	696 602 508 414 320	686 592 498 404 311	677 583 489 395 301	668 573 479 386 292	658 564 470 376 283	649 555 461 367 273	639 545 451 358 264	5 6 7 8 9	5 6 7 8 9
5 6 7 8 9	.32	255 161 068 975 883	245 152 059 966 873	236 143 050 957 864	227 133 040 948 855	217 124 031 938 846	208 115 022 929 836	199 106 013 920 827	189 096 003 911 818	180 087 *994 901 809	171 078 *985 892 799		
470 1 2 3 4		790 698 606 514 422	781 689 597 505 413	772 679 587 496 404	763 670 578 486 395	753 661 569 477 386	744 652 560 468 376	735 643 551 459 367	726 633 541 450 358	716 624 532 440 349	707 615 523 431 340	1 2 3 4	9 1 2 3 4
- 6 7 8 9	.31	331 239 148 057 966	321 230 139 048 957	312 221 130 039 948	303 212 121 030 939	294 203 112 021 930	285 194 103 012 921	276 185 094 003 912	267 175 084 *994 903	258 166 075 *985 894	248 157 066 *976 885	5 7 8 9	5 6 7 8
480 1 2 3 4		876 785 695 605 515	867 776 686 596 506	858 767 677 587 498	849 758 668 578 489	840 749 659 569 480	831 740 650 560 471	822 731 641 551 462	813 722 632 542 453	804 713 623 533 444	795 704 614 524 435		
5 6 7 8 9		426 336 247 158 069	417 327 238 149 060	408 319 229 140 051	399 310 220 131 042	390 301 211 122 034	381 292 203 114 025	372 283 194 105 016	363 274 185 096 007	354 265 176 087 *998	345 256 167 078 •989	1 2 3 4	8 1 2 2 3
490 1 2 3 4	. 30	980 892 803 715 627	972 883 795 706 619	963 874 786 698 610	954 865 777 689 601	945 856 768 680 592	936 848 759 671 583	927 839 751 662 575	918 830 742 654 566	910 821 733 645 557	901 812 724 636 548	5 6 7 8 9	4 5 6 7
5 6 7 8 9		539 452 364 277 190	531 443 356 268 181	522 434 347 260 173	513 426 338 251 164	504 417 329 242 155	496 408 321 233 146	487 399 312 225 138	478 391 303 216 129	469 382 295 207 120	461 373 286 199 112		
500		103	094	086	077	068	060	051	042	034	025		

Table 92 (Continued)
Cologarithms of Numbers

No.		0	1	2	3	4	5	6	7	8	9	P	Р.
500 1 2 3 4	.30 .29	103 016 930 843 757	094 008 921 835 748	086 *999 912 826 740	077 *990 904 817 731	068 *982 895 809 722	060 *973 886 800 714	051 *964 878 791 705	042 *956 869 783 697	034 *947 860 774 688	025 *938 852 766 679		
5 6 7 8 9		671 585 499 414 328	662 576 491 405 320	654 568 482 397 311	645 559 474 388 303	636 551 465 379 294	628 542 456 371 286	619 533 448 362 277	611 525 439 354 269	602 516 431 345 260	594 508 422 337 251	1 2 3 4	9 1 2 3 4
510 1 2 3 4	. 28	243 158 073 988 904	234 149 065 980 895	226 141 056 971 887	217 132 048 963 878	209 124 039 954 870	200 115 031 946 861	192 107 022 937 853	183 098 014 929 845	175 090 005 921 836	166 081 *997 912 828	5 6 7 8 9	5 6 7 8
5 6 7 8 9	-	819 735 651 567 483	811 727 643 559 475	802 718 634 550 467	794 710 626 542 458	786 701 617 534 450	777 693 609 525 441	769 685 601 517 433	760 676 592 508 425	752 668 584 500 416	743 659 575 492 408		
520 1 2 3		400 316 233 150 067	391 308 225 142 059	383 300 216 133 050	375 291 208 125 042	366 283 200 117 034	358 275 191 108 025	350 266 183 100 017	341 258 175 092 009	333 250 166 083 001	325 241 158 075 •992	1 2 3 4	8 1 2 2 3
5 6 7 8 9	. 27	984 901 819 737 654	976 893 811 728 646	968 885 802 720 638	959 877 794 712 630	951 868 786 704 622	943 860 778 696 613	934 852 770 687 605	926 844 761 679 597	918 835 753 671 589	910 827 745 663 581	5 6 7 8 9	4 5 6 6 7
530 1 2 3 4		572 491 409 327 246	564 482 401 319 238	556 474 393 311 230	548 466 384 303 221	540 458 376 295 213	531 450 368 287 205	523 442 360 278 197	515 433 352 270 189	507 425 344 262 181	499 417 335 254 173		
5 6 7 8 9	. 26	165 084 003 922 841	157 075 •994 914 833	148 067 *986 906 825	140 059 *978 898 817	132 051 •970 889 809	124 043 •962 881 801	116 035 •954 873 793	108 027 •946 865 785	100 019 •938 857 777	092 011 *930 849 769	1 2 3 4	7 1 1 2 3
540 1 2 3 4		761 680 600 520 440	753 672 592 512 432	745 664 584 504 424	737 656 576 496 416	728 648 568 488 408	720 640 560 480 400	712 632 552 472 392	704 624 544 464 384	696 616 536 456 376	688 608 528 448 368	5 6 7 8 9	4 4 5 6 6
5 6 7 8 9		360 281 201 122 043	352 273 193 114 035	344 265 185 106 027	336 257 177 098 019	328 249 170 090 011	321 241 162 082 003	313 233 154 074 •995	305 225 146 067 •987	297 217 138 059 •980	289 209 130 051 •972		
550	.25	964	956	948	940	932	924	916	908	901	893		

### Table 92 (Continued) Cologarithms of Numbers

No.		0	1	2	3	4	5	6	7	8	9	P.	<b>P</b> .
550 1 2 3 4	.25	964 885 806 727 649	956 877 798 720 641	948 869 790 712 633	940 861 782 704 626	932 853 775 696 618	924 845 767 688 610	916 838 759 680 602	908 830 751 673 594	901 822 743 665 586	893 814 735 657 579		
5 6 7 8 9		571 493 414 337 259	563 485 497 329 251	555 477 399 321 243	547 469 391 313 236	539 461 383 305 228	532 453 376 298 220	524 446 368 290 212	516 438 360 282 204	508 430 352 274 197	500 422 344 267 189		8
560 1 2 3 4	. 24	181 104 026 949 872	173 096 019 941 864	166 088 011 934 857	158 080 003 926 849	150 073 995 918 841	142 065 988 911 834	135 057 *980 903 826	127 050 *972 895 818	119 042 *965 887 811	111 034 *957 880 803	1 2 3 4 5	1 2 2 3 4
5 6 7 8 9		795 718 642 565 489	787 711 634 558 481	780 703 626 550 474	772 695 619 542 466	764 688 611 535 458	757 680 603 527 451	749 672 596 519 443	741 665 588 512 435	734 657 580 504 428	726 649 573 496 420	6 7 8 9	5 6 6 7
570 1 2 3 4		413 336 260 185 109	405 329 253 177 101	397 321 245 169 094	390 314 238 162 086	382 306 230 154 079	374 298 222 147 071	367 291 215 139 063	359 283 207 132 056	352 276 200 124 048	344 268 192 116 041		
5 6 7 8 9	. 23	033 958 882 807 732	026 950 875 800 725	018 943 867 792 717	011 935 860 785 710	003 928 852 777 702	*995 920 845 770 695	*988 913 837 762 687	*980 905 830 755 680	*973 897 822 747 672	*965 890 815 740 665		7
580 1 2 3 4		657 582 508 433 359	650 575 500 426 351	642 567 493 418 344	635 560 485 411 336	627 552 478 403 <b>329</b>	620 545 470 396 322	612 538 463 388 314	605 530 455 381 307	597 523 448 374 299	590 515 441 366 292	1 2 3 4 5	1 1 2 3 4
5 6 7 8 9	.22	284 210 136 062 988	277 203 129 055 981	270 195 121 047 974	262 188 114 040 966	255 181 107 033 959	247 173 099 025 952	240 166 092 018 944	232 158 084 011 937	225 151 077 003 930	218 144 070 *996 922	6 7 8 9	4 5 6 6
590 1 2 3 4		915 841 768 695 621	907 834 760 687 614	900 827 753 680 607	893 819 746 673 599	885 812 738 665 592	878 805 731 658 585	871 797 724 651 578	863 790 717 643 570	856 783 709 636 563	849 775 702 629 556		
5 6 7 8 9		548 475 403 330 257	541 468 395 323 250	534 461 388 315 243	526 454 381 308 236	519 446 373 301 228	512 439 366 294 221	505 432 359 286 214	497 424 352 279 207	490 417 344 272 199	483 410 337 265 192		
600		185	178	170	163	156	149	141	134	127	120		

Table 92 (Continued)
Cologarithms of Numbers

No.		0	` 1	2	3	4	5	6	7	8	9	P.	Р.
600 1 2 3 4	.22	185 113 040 968 896	178 105 033 961 889	170 098 026 954 882	163 091 019 947 875	156 084 012 939 868	149 076 004 932 860	141 069 *997 925 853	134 062 *990 918 . 846	127 055 *983 911 839	120 048 *975 903 832		
5 6 7 8 9		824 753 681 610 538	817 746 674 602 531	810 738 667 595 524	803 731 660 588 517	796 724 653 581 510	789 717 645 574 503	781 710 638 567 496	774 703 631 560 488	767 695 624 553 481	760 688 617 545 474	1 2 3 4	8 1 2 2 3
610 1 2 3 4		467 396 325 254 183	460 389 318 247 176	453 382 311 240 169	446 375 304 233 162	439 367 296 226 155	431 360 289 219 148	424 353 282 211 141	417 346 275 204 134	410 339 268 197 127	403 332 261 190 120	5 6 7 8 9	4 5 6 7
5 6 7 8	. 20	112 042 971 901 831	105 035 964 894 824	098 028 957 887 817	091 021 950 880 810	084 014 943 873 803	077 007 936 866 796	070 000 929 859 789	063 *993 922 852 782	056 *986 915 845 775	049 *979 908 838 768		
620 1 2 3 4		761 691 621 551 482	754 684 614 544 475	747 677 607 537 468	740 670 600 530 461	733 663 593 523 454	726 656 586 516 447	719 649 579 509 440	712 642 572 502 433	705 635 565 495 426	698 628 558 489 419	1 2 3 4	7 1 1 2 3
5 6 7 8 9		412 343 278 204 135	405 336 266 197 128	398 329 259 190 121	391 322 252 183 114	384 315 246 176 107	377 308 239 169 100	370 301 232 163 094	363 294 225 156 087	356 287 218 149 080	350 280 211 142 073	5 6 7 8 9	4 4 5 6 6
630 1 2 3 4	. 19	066 997 928 860 791	059 990 921 853 784	052 983 915 846 777	045 976 908 839 771	038 970 901 832 764	031 963 894 825 757	025 956 887 818 750	018 949 880 812 743	011 942 873 805 736	004 935 866 798 729		
5 6 7 8		723 654 586 518 450	716 647 579 511 443	709 641 572 504 436	702 634 566 498 430	695 627 559 491 423	688 620 552 484 416	682 613 545 477 409	675 607 538 470 402	668 600 532 464 396	661 593 525 457 389	1 2 3 4	6 1 1 2 2
640 1 2 3 4		382 314 246 179 111	375 307 240 172 105	368 301 233 165 098	362 294 226 159 091	355 287 219 152 084	348 280 213 145 078	341 274 206 138 071	335 267 199 132 064	328 260 192 125 057	321 253 186 118 051	5 6 7 8 9	3 4 4 5 5
5 6 7 8	. 18	044 977 910 842 776	037 970 903 836 769	031 963 896 829 762	024 957 889 822 755	017 950 883 816 749	010 943 876 809 742	004 936 869 802 735	*997 930 863 796 729	*990 923 856 789 722	*983 916 849 782 715		
650		709	702	695	689	682	675	669	662	655	649	Ŀ	

Table 92 (Continued)
Cologarithms of Numbers

No.		0	1	2	3	4	5	в	7		9	P.	P
650 1 2 3 4	.18	709 642 575 509 442	702 635 569 502 436	695 629 562 495 429	689 622 555 489 422	682 615 549 482 416	675 609 542 475 409	669 602 535 469 402	662 595 529 462 396	655 589 522 456 389	649 582 515 449 383		
5 6 7 8 9		376 310 243 177 111	369 303 237 171 105	363 296 230 164 098	356 290 224 158 092	349 283 217 151 085	343 277 210 144 079	336 270 204 138 072	329 263 197 131 065	323 257 191 125 059	316 250 184 118 052		
660 1 2 3 4	.17	046 980 914 849 783	039 973 908 842 777	032 967 901 836 770	026 960 895 829 764	019 954 888 822 757	013 947 881 816 751	006 940 875 809 744	000 934 868 803 737	*993 927 862 796 731	*986 921 855 790 724	1 2 3 4	1 1 2 3
5 6 7 8 9		718 653 587 522 457	711 646 581 516 451	705 640 574 509 444	698 633 568 503 438	692 627 561 496 431	685 620 555 490 425	679 613 548 483 418	672 607 542 477 412	666 600 535 470 405	659 594 529 464 399	5 6 7 8 9	4 4 5 6 6
670 1 2 3 4		393 328 263 198 134	386 321 257 192 128	380 315 250 186 121	373 308 244 179 115	367 302 237 173 108	360 295 231 166 102	354 289 224 160 095	347 282 218 153 089	341 276 211 147 082	334 270 205 140 076		
5 6 7 8 9	.16	070 005 941 877 813	063 *999 935 871 807	057 *992 928 864 800	050 *986 922 858 794	044 *980 915 851 787	037 *973 909 845 781	031 *967 903 839 775	025 *960 896 932 768	018 *954 890 826 762	012 *948 883 819 755		
680 1 2 3 4		749 685 622 558 494	743 679 615 552 488	736 673 609 545 482	730 666 602 539 475	724 660 596 533 469	717 653 590 526 463	711 647 583 520 456	704 641 577 513 450	698 634 571 507 444	692 628 564 501 437	1 2 3 4	6 1 1 2 2
5 6 7 8 9		431 368 304 241 178	425 361 298 235 172	418 355 292 229 165	412 349 285 222 159	406 342 279 216 153	399 336 273 210 147	393 330 266 203 140	387 323 260 197 134	380 317 254 191 128	374 311 247 184 121	5 6 7 8 9	3 4 4 5 5
690 1 2 3 4	. 15	115 052 989 927 864	109 046 983 920 858	103 040 977 914 852	096 033 971 908 845	090 027 964 902 839	084 021 958 895 833	077 015 952 889 827	071 008 945 883 820	065 002 939 877 814	058 *996 933 870 808		
5 6 7 8 9		802 739 677 614 552	795 733 670 608 546	789 727 664 602 540	783 720 658 596 534	777 714 652 590 527	770 708 646 583 521	764 702 639 577 515	758 695 633 571 509	752 689 627 565 503	745 683 621 558 496		
700°		490	484	478	• 472	465	459	453	447	441	434		

TABLE 92 (Continued)
COLOGARITHMS OF NUMBERS

No.		0	1	2	3	4	5	6	7	8	9	P.P	
700 1 2 3 4	.15	490 428 366 304 243	484 422 360 298 237	478 416 354 292 230	472 410 348 286 224	465 403 342 280 218	459 397 335 274 212	453 391 329 267 206	447 385 323 261 200	441 379 317 255 193	434 372 311 249 187	la,	_
5 6 7 8 9	.14	181 120 058 997 935	175 113 052 991 929	169 107 046 984 923	163 101 040 978 917	156 095 033 972 911	150 089 027 966 905	144 083 021 960 899	138 076 015 954 893	132 070 009 948 886	126 064 003 942 880	1 2 3 4	1 1 2 3
710 1 2 3 4		874 813 752 691 630	868 807 746 685 624	862 801 740 679 618	856 795 734 673 612	850 789 728 667 606	844 783 722 661 600	837 776 715 655 594	831 770 709 648 588	825 764 703 642 582	819 758 697 636 575	5 6 7 8 9	4 4 5 6 6
5 6 7 8 9		569 509 448 388 327	563 503 442 382 321	557 497 436 375 315	551 491 430 369 309	545 484 424 363 303	539 478 418 357 297	533 472 412 351 291	527 466 406 345 285	521 460 400 339 279	515 454 394 333 273		
-720 1 2 3 4		267 206 146 086 026	261 200 140 080 020	255 194 134 074 014	249 188 128 068 008	243 182 122 062 002	237 176 116 056 *996	231 170 110 050 •990	225 164 104 044 •984	219 158 098 038 •978	212 152 092 032 *972	6 1 2 3 4	1 1 2 2
5 6 7 8 9	.13	966 906 847 787 727	960 900 841 781 721	954 894 835 775 715	948 888 829 769 709	942 882 823 763 703	936 876 817 757 697	930 870 811 751 692	924 864 805 745 686	918 859 799 739 680	912 853 793 733 674	5 6 7 8 9	3 4 4 5 5
730 1 2 3 4		668 608 549 490 430	662 602 543 484 424	656 596 537 478 419	650 590 531 472 413	644 585 525 466 407	638 579 519 460 401	632 578 513 454 395	626 567 507 448 389	620 561 501 442 383	614 555 496 436 377		
5 6 7 8 9		371 312 253 194 136	365 306 247 188 130	359 300 241 183 124	354 295 236 177 118	348 289 230 171 112	342 283 224 165 106	336 277 218 159 100	330 271 212 153 094	324 265 206 147 089	318 259 200 141 083	1 2 3 4	1 1 2 2
740 1 2 3 4	.12	077 018 960 901 843	071 012 954 895 837	065 006 948 889 831	059 001 942 884 825	053 *995 936 878 819	047 *989 930 872 814	042 *983 925 866 808	036 *977 919 860 802	030 *971 913 854 796	024 *965 907 849 790	5 6 7 8	3 4 4 5
5 6 7 8 9		784 726 668 610 552	779 720 662 604 546	773 714 656 598 540	767 709 651 592 534	761 703 645 587 529	755 697 639 581 523	749 691 633 575 517	744 685 627 569 511	738 680 621 563 505	732 674 616 558 500		
750		494	488	482	477	471	465	459	453	448	442		

Table 92 (Continued)
Cologarithms of Numbers

No.		0	1	2	3	4	5	6	7.	8	9	P.F	•
750 1 2 3 4	.12	494 436 378 321 263	488 430 372 315 257	482 424 367 309 251	477 419 361 303 246	471 413 355 297 240	465 407 349 292 234	459 401 344 286 228	453 396 338 280 223	448 390 332 274 217	442 384 326 269 211		
5 6 7 8 9	.11	205 148 090 033 976	200 142 085 027 970	194 136 079 022 964	188 131 073 016 959	182 125 067 010 953	177 119 062 004 947	171 113 056 •999 942	165 108 050 •993 936	159 102 045 *987 930	154 096 039 •982 924		
760 1 2 3 4		919 862 805 748 691	913 856 799 742 685	907 850 793 736 679	902 844 787 730 674	896 839 782 725 668	890 833 776 719 662	884 827 770 713 657	879 822 765 708 651	873 816 759 702 645	867 810 753 696 640	1 2 3 4	1 1 2 2
5 6 7 8 9		634 577 520 464 407	628 571 515 458 402	623 566 509 453 396	617 560 503 447 390	611 554 498 441 385	605 549 492 436 379	600 543 487 430 373	594 537 481 424 368	588 532 475 419 362	583 526 470 413 357	5 6 7 8 9	3 4 4 5 5
770 1 2 3 4	٠	351 295 238 182 126	345 289 233 176 120	340 283 227 171 115	334 278 221 165 109	328 272 216 160 103	323 266 210 154 098	317 261 205 148 092	311 255 199 143 087	306 250 193 137 081	300 244 188 132 075		
5 6 7 8 9	. 10	070 014 958 902 846	064 008 952 896 841	059 003 947 891 835	053 *997 941 885 830	047 *991 936 880 824	042 *986 930 874 818	036 *980 924 869 813	031 *975 919 863 807	025 *969 913 857 802	019 *963 908 852 796		
780 1 2 3 4		791 735 679 624 568	785 729 674 618 563	779 724 668 613 557	774 718 663 607 552	768 713 657 602 546	763 707 652 596 541	757 702 646 591 535	752 696 640 585 530	746 690 635 579 524	740 685 629 574 519	1 2 3 4	1 1 2 2
5 6 7 8 9		513 458 403 347 292	508 452 397 342 287	502 447 391 336 281	496 441 386 331 276	491 436 380 325 270	485 430 375 320 265	480 425 369 314 259	474 419 364 309 254	469 414 358 303 248	463 408 353 298 243	6 7 8	3 4 4 5
790 1 2 3 4		237 182 127 073 018	232 177 122 067 012	226 171 117 062 007	221 166 111 056 002	215 160 106 051 *996	210 155 100 045 •991	204 149 095 040 •985	199 144 089 034 •980	193 138 084 029 •974	188 133 078 023 *969		
5 6 7 8 9	.09	963 909 854 800 745	958 903 849 794 740	952 898 843 789 734	947 892 838 783 729	941 887 832 778 724	936 881 827 773 718	931 876 821 767 713	925 871 816 762 707	920 865 811 756 702	914 860 805 751 696		
800		691	686	680	675	669	664	658	653	648	642		

TABLE 92 (Continued)
COLOGARITHMS OF NUMBERS

No.		0	1	2	3	4	5	6	7	8	9	P.P.	
800 1 2 3 4	.09	691 637 583 528 474	686 631 577 523 469	680 626 572 518 464	675 620 566 512 458	669 615 561 507 453	664 610 555 501 447	658 604 550 496 442	653 599 545 491 437	648 593 539 485 431	642 588 534 480 426		
5 6 7 8 9		420 366 313 259 205	415 361 307 253 200	410 356 302 248 194	404 350 297 243 189	399 345 291 237 184	393 340 286 232 178	388 334 280 227 173	383 329 275 221 168	377 323 270 216 162	372 318 264 211 157		
810 1 2 3 4	.08	151 098 044 991 938	146 093 039 986 932	141 087 034 980 927	135 082 028 975 922	130 076 023 970 916	125 071 018 964 911	119 066 012 959 906	114 060 007 954 900	109 055 002 948 895	103 050 *996 943 890	1 1 2 1 3 2 4 2	ιl
5 6 7 8 9		884 831 778 725 672	879 826 772 719 666	874 820 767 714 661	868 815 762 709 656	863 810 757 703 650	858 804 751 698 645	852 799 746 693 640	847 794 741 688 635	842 788 735 682 629	836 783 730 677 624	5 8 6 4 7 4 8 8	5
820 1 2 3 4		619 566 513 460 407	613 560 508 455 402	608 555 502 449 397	603 550 497 444 391	597 545 492 439 386	592 539 486 434 381	587 534 481 428 376	582 529 476 423 370	576 523 471 418 365	571 518 465 413 360		
5 6 7 8 9		355 302 249 197 145	349 297 244 192 139	344 291 239 186 134	339 286 234 181 129	334 281 228 176 124	828 276 223 171 118	323 270 218 166 113	318 265 213 160 108	313 260 207 155 103	307 255 202 150 097		
830 1 2 3 4	. 07	092 040 988 935 883	087 035 982 930 878	082 029 977 925 873	076 024 972 920 868	071 019 967 915 863	066 014 962 909 857	061 009 956 904 852	056 003 951 899 847	050 *998 946 894 842	045 *993 941 889 837	1 1 2 1 3 2 4 2	L
5 6 7 8 9		831 779 727 676 624	826 774 722 670 619	821 769 717 665 613	816 764 712 660 608	811 759 707 655 603	805 753 702 650 598	800 748 696 645 593	795 743 691 639 588	790 738 686 634 582	785 733 681 629 577	5 3 6 3 7 4 8 4 9 5	
840 1 2 3 4		572 520 469 417 366	567 515 464 412 361	562 510 458 407 355	557 505 453 402 350	551 500 448 397 345	546 495 443 391 340	541 489 438 386 335	536 484 433 381 330	531 479 428 376 325	526 474 422 371 319		
5 6 7 8 9		314 263 212 160 109	309 258 207 155 104	304 253 201 150 099	299 248 196 145 094	294 242 191 140 089	289 237 186 135 084	284 232 181 130 079	278 227 176 125 073	273 222 171 119 068	268 217 166 114 063		
850		058	053	048	043	038	033	027	022	017	012		╝

Table 92 (Continued)
Cologarithms of Numbers

No.		0	1	2	3	4	5	6	7	8	9	P.I	P.
850 1 2 3 4	.07 .06	058 007 956 905 854	053 002 951 900 849	048 *997 946 895 844	043 *992 941 890 839	038 *987 936 885 834	033 *982 931 880 829	027 *976 925 875 824	022 *971 920 869 819	017 *966 915 864 814	012 *961 910 859 808		
5 6 7 8 9		803 753 702 651 601	798 748 697 646 596	793 742 692 641 591	788 737 687 636 586	783 732 682 631 580	778 727 677 626 575	773 722 672 621 570	768 717 666 616 565	763 712 661 611 560	758 707 656 606 555	1 2 3 4	1 1 2 2
860 1 2 3 4		550 500 449 399 349	545 495 444 394 344	540 490 439 389 339	535 485 434 384 334	530 480 429 379 329	525 474 424 374 324	520 469 419 369 318	515 464 414 364 313	510 459 409 359 308	505 454 404 354 303	5 6 7 8 9	3 4 4 5 5
5 6 7 8 9		298 248 198 148 098	293 243 193 143 093	288 238 188 138 088	283 233 183 133 083	278 228 178 128 078	273 223 173 123 073	268 218 168 118 068	263 213 163 113 063	258 298 158 108 058	253 203 153 103 053		
870 1 2 3 4	.05	048 998 948 949 849	043 993 943 894 844	038 988 938 889 839	033 983 933 884 834	028 978 928 879 829	023 973 923 874 824	018 968 918 869 819	013 963 914 864 814	008 958 909 859 809	003 953 904 954 804	3	1 1 2 2
5 6 7 8 9		799 750 700 651 601	794 745 695 646 596	789 740 690 641 591	784 735 685 636 586	779 730 680 631 581	774 725 675 626 576	769 720 670 621 571	764 715 665 616 567	760 710 660 611 562	755 705 655 606 557	7 8	3 3 4 4 5
880 1 2 3 4		552 502 453 404 355	547 497 448 399 350	542 493 443 394 345	537 488 438 389 340	532 483 433 384 335	527 478 429 379 330	522 473 424 374 325	517 468 419 370 320	512 463 414 365 315	507 458 409 360 311		
5 6 7 8 9		306 257 208 159 110	301 252 203 154 105	296 247 198 149 100	291 242 193 144 095	286 237 188 139 090	281 232 183 134 085	276 227 178 129 081	271 222 173 124 076	266 217 168 120 071	262 213 164 115 066	2	0 1 1 2
890 1 2 3 4	.04	061 012 964 915 866	056 007 959 910 861	051 002 954 905 857	046 *998 949 900 852	041 *993 944 895 847	037 *988 939 891 842	032 *983 934 886 837	027 *978 929 881 832	022 *973 925 876 827	017 *968 920 871 823	6 7 8	2 2 3 3 4
5 6 7 8 9		818 769 721 672 624	813 764 716 668 619	808 760 711 663 614	803 755 706 658 610	798 750 701 653 605	793 745 697 648 600	789 740 692 643 595	784 735 687 639 590	779 730 682 634 585	774 726 677 629 581		
900		576	571	566	561	556	552	547	542	537	532		┙

TABLE 92 (Continued)
COLOGARITHMS OF NUMBERS

No.	0	1	2	3	4	5	6	7	8	9	P	.P.
900	.04 576 528 479	571 523 475	566 518 470	561 513 465	556 508 460	552 503 455	547 499 450	542 494 446	537 489 441	532 484 436		
2 3 4	431 383	426 378	422 374	417 369	412 364	407 359	402 354	398 350	393 345	388 340		
5 6 7	335 287 239	330 282 234	326 278 230	321 273 225	316 268 220	311 263 215	306 258 211	302 254 206	297 249 201	292 244 196		
8 9	191 144	187 139	182 134	177 129	172 125	168 120	163 115	158 110	153 105	148 101		
910 1 2 3 4	096 048 001 .03 953 905	091 043 *996 948 901	086 039 *991 943 896	082 034 *986 939 891	077 029 981 934 886	072 024 *977 929 882	067 020 *972 924 877	062 015 *967 920 872	058 010 *962 915 867	053 005 *958 910 863	1 2 3 4	1 1 2 2
5 6 7 8 9	858 810 763 716 668	853 806 758 711 664	848 801 754 706 659	844 796 749 702 654	839 791 744 697 650	834 787 739 692 645	829 782 735 687 640	825 777 730 683 635	820 773 725 678 631	815 768 720 673 626	5 6 7 8 9	3 4 4 5
920 1 2 3 4	621 574 527 480 433	616 569 522 475 428	612 565 517 470 423	607 560 513 466 419	602 555 508 461 414	598 550 503 456 409	593 546 499 452 405	588 541 494 447 400	583 536 489 442 395	579 532 485 438 391		
5 6 7 8 9	386 339 292 245 198	381 334 287 241 194	376 330 283 236 189	372 825 278 231 184	367 320 273 226 180	362 315 269 222 175	358 311 264 217 170	853 806 259 212 166	348 301 255 208 161	344 297 250 203 156		
930 1 2 3 4	152 105 058 012 .02 965	147 100 054 007 961	142 096 049 003 956	138 091 044 *998 951	133 086 040 *993 947	128 082 035 *989 942	124 077 030 984 937	119 072 026 •979 933	114 068 021 *975 928	110 063 016 *970 923	1 2 3 4	0 1 1 2.
5 6 7 8 9	919 872 826 780 733	914 868 821 775 729	910 863 817 770 724	905 858 812 766 720	900 854 808 761 715	896 849 803 757 710	891 845 798 752 706	886 840 794 747 701	882 835 789 743 696	877 831 784 738 692	5 6 7 8 9	2 2 3 4
940 1 2 3 4	687 641 595 549 503	683 636 590 544 498	678 632 586 540 494	673 627 581 535 489	669 623 576 530 484	664 618 572 526 480	660 613 567 521 475	655 609 563 517 471	650 604 558 512 466	646 600 553 507 461		
5 6 7 8 9	457 411 365 319 273	452 406 360 315 269	448 402 356 310 264	443 397 351 805 260	438 393 347 301 255	434 388 342 296 251	429 383 337 292 246	425 379 333 287 241	420 374 328 283 237	415 370 324 278 232		
950	228	223	218	214	209	205	200	196	191	187		

Table 92 (Concluded)
Cologarithms of Numbers

No.		0	1	2	3	4	5	6	7	8	9	P	. <b>P</b> .
950 1 2 3 4	.02	228 182 136 091 045	223 177 132 086 041	218 173 127 082 036	214 168 123 077 032	209 164 118 072 027	159	200 155 109 063 018	196 150 104 059 013	191 145 100 054 009	187 141 095 050 004		
5 6 7 8	.01	000 954 909 863 818	*995 950 904 859 814	*991 945 900 854 809	*986 941 895 850 805	*981 936 891 845 800	*977 932 886 841 796	*972 927 882 836 791	*968 922 877 832 786	*963 918 873 827 782	*959 913 868 823 777		
960 1 2 3 4		773 728 682 637 592	768 723 678 633 588	764 719 673 628 583	759 714 669 624 579	755 710 664 619 574	750 705 660 615 570	746 701 655 610 565	741 696 651 606 561	737 692 646 601 556	732 687 642 597 552	1 2 3 4	1 1 2 2
5 6 7 8 9		547 502 457 412 368	543 498 453 408 363	538 493 448 403 359	534 489 444 399 354	529 484 439 395 350	525 480 435 390 345	520 475 430 386 341	516 471 426 381 336	511 466 421 377 332	507 462 417 372 327	5 6 7 8 9	3 4 4 5
970 1 2 3 4		323 278 233 189 144	318 274 229 184 140	314 269 224 180 135	309 265 220 175 131	305 260 216 171 126	300 256 211 166 122	296 251 207 162 117	291 247 202 157 113	287 242 198 153 108	283 238 193 149 104		
5 6 7 8 9	.00	100 055 011 966 922	095 051 006 962 917	091 046 002 957 913	086 042 *997 953 908	082 037 993 948 904	077 033 *988 944 900	073 028 *984 939 895	068 024	064 019 *975 931 886	059 015 *971 926 882		
980 1 2 3		877 833 789 745 700	873 829 784 740 696	869 824 780 736 692	864 820 776 731 687	860 815 771 727 683	855 811 767 723 678	851 807 762 718 674	846 802 758 714 670	842 798 753 709 665	838 793 749 705 661	1 2 3 4	0 1 1 2
5 6 7 8		656 612 568 524 480	652 608 564 520 476	648 604 559 516 472	643 599 555 511 467	639 595 551 507 463	634 590 546 502 458	630 586 542 498 454	626 581 537 494 450	621 577 533 489 445	617 573 529 485 441	5 6 7 8	2 2 3 3 4
990 1 2 3 4		436 393 349 305 261	432 388 344 301 257	428 384 340 296 253	423 379 336 292 248	419 375 331 288 244	415 371 327 283 240	410 366 323 279 235	406 362 318 274 231	401 358 314 270 226	397 353 309 266 222	•	
5 6 7 8 9		218 174 130 087 043	213 170 126 083 039	209 165 122 078 035	205 161 117 074 030	200 157 113 070 026	196 152 109 065 022	192 148 104 061 017	187 144 100 056 013	183 139 096 052 009	178 135 091 048 004		
1000		000											

TABLE 93.-NATURAL SINES AND COSINES

80				SINES				88	
Degrees	0′	10′	20′	30′	40′	50′	60′	Cosines	
0	0.00000	0.00291	0.00582	0.00873	0.01164	0.01454	0.01745	89	
1	0.01745	0.02036	0.02327	0.02618	0.02908	0.03199	0.03499	88	
2	0.03490	0.03781	0.04071	0.04362	0.04653	0.04943	0.05234	87	
3	0.05234	0.05524	0.05814	0.06105	0.06395	0.06685	0.06976	86	
4	0.06976	0.07266	0.07556	0.07846	0.08136	0.08426	0.08716	85	
5	0.08716	0.00005	0.09295	0.09585	0.09874	0.10164	0.10453	84	
6	0.10453	0.10742	0.11031	0.11320	0.11609	0.11898	0.12187	83	
7	0.12187	0.12476	0.12764	0.13053	0.13341	0.13629	0.13917	82	
8	0.13917	0.14205	0.14493	0.14781	0.15069	0.15356	0.15643	81	
9	0.15643	0.15931	0.16218	0.16505	0.16792	0.17078	0.17365	80	
10	0.17365	0.17651	0.17937	0.18224	0.18509	0.18795	0.19081	79	
11	0.19081	0.19366	0.19652	0.19937	0.20222	0.20507	0.20791	78	
12	0.20791	0.21076	0.21360	0.21644	0.21928	0.22212	0.22495	77	
13	0.22495	0.22778	0.23062	0.23345	0.23627	0.23910	0.24192	76	
14	0.24192	0.24474	0.24756	0.25038	0.25320	0.25601	0.25882	75	
15	0.25882	0.26163	0.26443	0.26724	0.27004	0.27284	0.27564	74	
16	0.27564	0.27843	0.28123	0.28402	0.28680	0.28959	0.29237	73	
17	0.29237	0.29515	0.29793	0.30071	0.30348	0.30625	0.30902	72	
18	0.30902	0.31178	0.31451	0.31730	0.32006	0.32282	0.32557	71	
19	0.32557	0.32832	0.33106	0.33381	0.33655	0.33929	0.34202	70	
20	0.34202	0.34475	0.34748	0.35021	0.35293	0.35565	0.35837	69	
21	0.35837	0.36108	0.36379	0.36650	0.36921	0.37191	0.37461	68	
22	0.37461	0.37730	0.37999	0.38268	0.38537	0.38805	0.39073	67	
23	0.39073	0.39341	0.39608	0.39875	0.40142	0.40408	0.40674	66	
24	0.40674	0.40939	0.41204	0.41469	0.41734	0.41998	0.42262	65	
25	0.42262	0.42525	0.42788	0.43051	0.43313	0.43575	0.43837	64	
26	0.43837	0.44098	0.44359	0.44620	0.44880	0.45140	0.45399	63	
27	0.45399	0.45658	0.45917	0.46175	0.46433	0.46690	0.46947	62	
28	0.46947	0.47204	0.47460	0.47716	0.47971	0.48226	0.48481	61	
29	0.48481	0.48735	0.48989	0.49242	0.49495	0.49748	0.50000	60	
30	0.50000	0.50252	0.50503	0.50754	0.51004	0.51254	0.51504	59	
31	0.51504	0.51753	0.52002	0.52250	0.52498	0.52745	0.52992	58	
32	0.52992	0.53238	0.53484	0.53730	0.53975	0.54220	0.54464	57	
33	0.54464	0.54708	0.54951	0.55194	0.55436	0.55678	0.55919	56	
34	0.55919	0.56160	0.56401	0.56641	0.56880	0.57119	0.57358	55	
35	0.57358	0.57596	0.57833	0.58070	0.58307	0.58543	0.58779	54	
36	0.58779	0.59014	0.59248	0.59482	0.59716	0.59949	0.60182	53	
37	0.60182	0.60414	0.60645	0.60876	0.61107	0.61337	0.61566	52	
38	0.61566	0.61795	0.62024	0.62251	0.62479	0.62706	0.62932	51	
39	0.62932	0.63158	0.63383	0.63608	0.63832	0.64056	0.64279	50	
40	0.64279	0.64501	0.64723	0.64945	0.65166	0.65386	0.65606	49	
41	0.65606	0.65825	0.66044	0.66262	0.66480	0.66697	0.66913	48	
42	0.66913	0.67129	0.67344	0.67559	0.67773	0.67987	0.68200	47	
43	0.68200	0.68412	0.68624	0.68835	0.69046	0.69256	0.69466	46	
44	0.69486	0.69675	0.69883	0.70091	0.70298	0.70505	0.70711	45	
Sines	60′	50′	40′	30′	20′	10′	0′	Degrees	
<b>0</b> 02	COSINES								

### TABLE 93 (Concluded) NATURAL SINES AND COSINES

898	COSINES								
Degrees	0′	10′	20′	30′	40′	50′	60′	Sines	
0	1.00000	1.00000	0.99998	0.99996	0.99993	0.99989	0.99985	89	
1	0.99985	0.99979	0.99973	0.99966	0.99958	0.99949	0.99939	88	
2	0.99939	0.99929	0.99917	0.99905	0.99892	0.99878	0.99863	87	
3	0.99863	0.99847	0.99831	0.99813	0.99795	0.99776	0.99756	86	
4	0.99756	0.99736	0.99714	0.99692	0.99668	0.99644	0.99619	85	
5	0.99619	0.99594	0.99567	0.99540	0.99511	0.99482	0.99452	84	
6	0.99452	0.99421	0.99390	0.99357	0.99324	0.99290	0.99255	83	
7	0.99255	0.99219	0.99182	0.99144	0.99106	0.99067	0.99027	82	
8	0.99027	0.98986	0.98944	0.98902	0.98858	0.98814	0.98769	81	
9	0.98769	0.98723	0.98676	0.98629	0.98580	0.98531	0.98481	80	
10	0.98481	0.98430	0.98378	0.98325	0.98272	0.98218	0.98163	79	
11	0.98163	0.98107	0.98050	0.97992	0.97934	0.97875	0.97815	78	
12	0.97815	0.97754	0.97692	0.97630	0.97566	0.97502	0.97437	77	
13	0.97437	0.97371	0.97304	0.97237	0.97169	0.97100	0.97030	76	
14	0.97030	0.96959	0.96887	0.96815	0.96742	0.96667	0.96593	75	
15	0.96593	0.96517	0.96440	0.96363	0.96285	0.96206	0.96126	74	
16	0.96126	0.96046	0.95964	0.95882	0.95799	0.95715	0.95630	73	
17	0.95630	0.95545	0.95459	0.95372	0.95284	0.95195	0.95106	72	
18	0.95106	0.95015	0.94924	0.94832	0.94740	0.94646	0.94552	71	
19	0.94552	0.94457	0.94361	0.94264	0.94167	0.94068	0.93969	70	
20	0.93969	0.93869	0.93769	0.93667	0.93565	0.93462	0.93358	69	
21	0.93358	0.93253	0.93148	0.93042	0.92935	0.92827	0.92718	68	
22	0.92718	0.92609	0.92499	0.92388	0.92276	0.92164	0.92050	67	
23	0.92050	0.91936	0.91822	0.91706	0.91590	0.91472	0.91355	66	
24	0.91355	0.91236	0.91116	0.90996	0.90875	0.90753	0.90631	65	
25	0.90631	0.90507	0.90383	0.90259	0.90133	0.90007	0.89879	64	
26	0.89879	0.89752	0.89623	0.89493	0.89363	0.89232	0.89101	63	
27	0.89101	0.88968	0.88835	0.88701	0.88566	0.88431	0.88295	62	
28	0.88295	0.88158	0.88020	0.87882	0.87743	0.87603	0.87462	61	
29	0.87462	0.87321	0.87178	0.87036	0.86892	0.86748	0.86603	60	
30	0.86603	0.86457	0.86310	0.86163	0.86015	0.85866	0.85717	59	
31	0.85717	0.85567	0.85416	0.85264	0.85112	0.84959	0.84805	58	
32	0.84805	0.84650	0.84495	0.84339	0.84182	0.84025	0.83867	57	
33	0.83867	0.83708	0.83549	0.83389	0.83228	0.83066	0.82904	56	
34	0.82904	0.82741	0.82577	0.82413	0.82248	0.82082	0.81915	55	
35	0.81915	0.81748	0.81580	0.81412	0.81242	0.81072	0.80902	54	
36	0.80902	0.80730	0.80558	0.80386	0.80212	0.80038	0.79864	53	
37	0.79864	0.79688	0.79512	0.79335	0.79158	0.78980	0.78801	52	
38	0.78801	0.78622	0.78442	0.78261	0.78079	0.77897	0.77715	51	
39	0.77715	0.77531	0.77347	0.77162	0.76977	0.76791	0.76604	50	
40	0.76604	0.76417	0.76229	0.76041	0.75851	0.75661	0.75471	49	
41	0.75471	0.75280	0.75088	0.74896	0.74703	0.74509	0.74314	48	
42	0.74314	0.74120	0.73924	0.73728	0.73531	0.73333	0.73135	47	
43	0.73135	0.72937	0.72737	0.72537	0.72337	0.72136	0.71934	46	
44	0.71934	0.71732	0.71529	0.71325	0.71121	0.70916	0.70711	45	
osines	60′	50′	40'	30′	20'	10′	0′	Degrees	
٠٠٩ _	SINES								

TABLE 94.—NATURAL TANGENTS AND COTANGENTS

8			Т	ANGEN	TS			ıţs.	
Degrees	. 0,	10′	20′	30′	40'	50′	60'	Co- tangents	
0	0.00000	0.00291	0.00582	0.00873	0.01164	0.01455	0.01746	89	
1	0.01746	0.02036	0.02328	0.02619	0.02910	0.03201	0.03492	88 87	
2	0.03492	0.03783	0.04075 0.05824	0.04366	0.04658 0.06408	0.04949	0.05241	86	
4	0.06993	0.07285	0.07578	0.07870	0.08163	0.08456	0.08749	85	
5	0.08749	0.09042	0.09335	0.09629	0.09923	0.10216	0.10510	84	
6 7	0.10510	0.10805	0.11099	0.11394	0.11688	0.11983	0.12278	83	
7	0.12278	0.12574	0.12869	0.13165	0.13461	0.13758	0.14054	82 81	
8 9	0.14054 0.15838	0.14351 0.16137	0.14648 0.16435	0.14945 0.16734	0.15243 0.17033	0.15540 0.17333	0.15838 0.17633	80	
10	0.17633	0.17933	0.18233	0.18534	0.18835	0.19136	0.19438	79	
iĭ	0.19438	0.19740	0.20042	0.20345	0.20648	0.20952	0.21256	78	
12	0.21256	0.21560	0.21864	0.22169	0.22475	0.22781	0.23087	77	
13	0.23087	0.23393	0.23700	0.24008	0.24316	0.24624	0.24933	76	
14	0.24933	0.25242	0.25552	0.25862	0.26172	0.26483	0.26795	75	
15	0.26795	0.27107	0.27419	0.27732	0.28046	0.28360	0.28675	74	
16	0.28675	0.28990	0.29305	0.29621	0.29938	0.30255	0.30573	73	
17	0.30573	0.30891	0.31210	0.31530	0.31850	0.32171	0.32492	72	
18	0.32492	0.32814	0.33136	0.33460	0.33783	0.34108	0.34433	71 70	
19	0.34433	0.34758	0.35085	0.35412	0.35740	0.36068	0.36397		
20	0.36397	0.36727	0.37057	0.37388	0.37720	0.38053	0.38386	69	
21	0.38386	0.38721	0.39055	0.39391	0.39727	0.40065	0.40403	68 67	
22	0.40403	0.40741	0.41081	0.41421	0.41763	0.42105 0.44175	0.42447	66	
23 24	0.42447 0.44523	0.42791 0.44872	0.43136 0.45222	0.43481 0.45573	0.43828 0.45924	0.44175	0.46631	65	
25	0.46631	0.46985	0.47341	0.47698	0.48055	0.48414	0.48773	64	
26	0.48773	0.49134	0.49495	0.49858	0.50222	0.50587	0.50953	63	
27	0.50953	0.51320	0.51688	0.52057	0.52427	0.52798	0.53171	62	
28	0.53171	0.53545	0.53920	0.54296	0.54674	0.55051	0.55431	61	
29	0.55431	0.55812	0.56194	0.56577	0.56962	0.57348	0.57735	60	
30	0.57735	0.58124	0.58513	0.58905	0.59297	0.59691	0.60086 0.62487	59	
31 32	0.60086 0.62487	0.60483 0.62892	0.60881 0.63299	0.61280 0.63707	0.61681	0.62083 0.64528	0.64941	58 57	
33	0.64941	0.65355	0.65771	0.66189	0.66608	0.67028	0.67451	56	
34	0.67451	0.67875	0.68301	0.68728	0.69157	0.69588	0.70021	55	
35	0.70021	0.70455	0.70891	0.71329	0.71769	.O.72211	0.72654	54	
36	0.72654	0.73100	0.73547	0.73996	0.74447	0.74900	0.75355	53	
37	0.75355	0.75812	0.76272	0.76733	0.77196	0.77661	0.78129	52 51	
38	0.78129	0.78598	0.79070	0.79544	0.80020	0.80498 0.83415	0.80978 0.83910	50	
39	0.80978	0.81461	0.81946	0.82434				1	
40	0.83910	0.84407	0.84906	0.85408	0.85912	0.86419	0.86929 0.90040	49 48	
41 42	0.86929	0.87441 0.90569	0.87955 0.91099	0.88473 0.91633	0.88992	0.89515	0.90040	47	
43	0.93252	0.93797	0.91099	0.94896	0.95451	0.96008	0.96569	46	
44	0.96569	0.97133	0.97700	0.98270	0.98843	0.99420	1.00000	45	
Tangents	60'	50′	40′	30′	20'	10'	0'	Degrees	
8ng	COTANGENTS							e	
Ĥ	1	COTANGENTS							

TABLE 94 (Concluded)
NATURAL TANGENTS AND COTANGENTS

8	COTANGENTS ·								
Degrees	0′	10′	20′	30′	40'	50′	60'	ප්	
0 1 2 3 4	57.28996 28.63625 19.08114 14.30067	343.77371 49.10388 26.43160 18.07498 13.72674	171.88540 42.96408 24.54176 17.16934 13.19688	22.90377 16.34986	85.93979 34.36777 21.47040 15.60478 12.25051	68.75009 31.24158 20.20555 14.92442 11.82617	57.28996 28.63625 19.08114 14.30067 11.43005	89 88 87 86 85	
5	11.43005	11.05943	10.71191	10.38540	10.07808	9.78817	9.51436	84	
6	9.51436	9.25530	9.00983	8.77689	8.55555	8.34496	8.14435	83	
7	8.14435	7.95302	7.77035	7.59575	7.42871	7.26873	7.11537	82	
8	7.11537	6.96823	6.82694	6.69116	6.56055	6.43484	6.31375	81	
9	6.31375	6.19703	6.08444	5.97576	5.87080	5.76937	5.67128	80	
10	5.67128	5.57638	5.48451	5.39552	5.30928	5.22566	5.14455	79	
11	5.14455	5.06584	4.98940	4.91516	4.84300	4.77286	4.70463	78	
12	4.70463	4.63825	4.57363	4.51071	4.44942	4.38969	4.33148	77	
13	4.33148	4.27471	4.21933	4.16530	4.11256	4.06107	4.01078	76	
14	4.01078	3.96165	3.91364	3.86671	3.82083	3.77595	3.73205	75	
15	3.73205	3.68909	3.64705	3.60588	3.56557	3.52609	3.48741	74	
16	3.48741	3.44951	3.41236	3.37594	3.34023	3.30521	3.27085	73	
17	3.27085	3.23714	3.20406	3.17159	3.13972	3.10842	3.07768	72	
18	3.07768	3.04749	3.01783	2.98869	2.96004	2.93189	2.90421	71	
19	2.90421	2.87700	2.85023	2.82391	2.79802	2.77254	2.74748	70	
20	2.74748	2.72281	2.69853	2.67462	2.65109	2.62791	2.60509	69	
21	2.60509	2.58261	2.56046	2.53865	2.51715	2.49597	2.47509	68	
22	2.47509	2.45451	2.43422	2.41421	2.39449	2.37504	2.35585	67	
23	2.35585	2.33693	2.31826	2.29984	2.28167	2.26374	2.24604	66	
24	2.24604	2.22857	2.21132	2.19430	2.17749	2.16090	2.14451	65	
25	2.14451	2.12832	2.11233	2.09654	2.08094	2.06553	2.05030	64	
26	2.05030	2.03526	2.02039	2.00569	1.99116	1.97680	1.96261	63	
27	1.96261	1.94858	1.93470	1.92098	1.90741	1.89400	1.88073	62	
28	1.83073	1.86760	1.85462	1.84177	1.82907	1.81649	1.80405	61	
29	1.80405	1.79174	1.77955	1.76749	1.75556	1.74375	1.73205	60	
30	1.73205	1.72047	1.70901	1.69766	1.68643	1.67530	1.66428	59	
31	1.66428	1.65337	1.64256	1.63185	1.62125	1.61074	1.60033	58	
32	1.60033	1.59002	1.57981	1.56969	1.55966	1.54972	1.53987	57	
33	1.53987	1.53010	1.52043	1.51084	1.50133	1.49190	1.48256	56	
34	1.48256	1.47330	1.46411	1.45501	1.44598	1.43703	1.42815	55	
35	1.42815	1.41934	1.41061	1.40195	1.39336	1.38484	1.37638	54	
36	1.37638	1.36800	1.35968	1.35142	1.34323	1.33511	1.32704	53	
37	1.32704	1.31904	1.31110	1.30323	1.29541	1.28764	1.27994	52	
38	1.27994	1.27230	1.26471	1.25717	1.24969	1.24227	1.23490	51	
39	1.23490	1.22758	1.22031	1.21310	1.20593	1.19882	1.19175	50	
40	1.19175	1.18474	1.17777	1.17085	1.16398	1.15715	1.15037	49	
41	1.15037	1.14363	1.13694	1.13029	1.12369	1.11713	1.11061	48	
42	1.11061	1.10414	1.09770	1.09131	1.08496	1.07864	1.07237	47	
43	1.07237	1.06613	1.05994	1.05378	1.04766	1.04158	1.03553	46	
44	1.03553	1.02952	1.02355	1.01761	1.01170	1.00583	1.00000	45	
Co- tangents	60′	50'	40′	30′	20'	10′	0′	Degrees	
ts g	TANGENTS C								

TABLE 95.—NATURAL SECANTS AND COSECANTS

88	•		8	ECANT	3		·	ants	
Degrees	0'	10′	20′	30′	40′	50′	60′	Cosecants	
0	1.00000	1.00000	1.00002	1.00004	1.00007	1.00011	1.00015	89	
1	1.00015	1.00021	1.00027	1.00034	1.00042	1.00051	1.00061	88	
2	1.00061	1.00072	1.00083	1.00095	1.00108	1.00122	1.00137	87	
3	1.00137	1.00153	1.00169	1.00187	1.00205	1.00224	1.00244	86	
4	1.00244	1.00265	1.00287	1.00309	1.00333	1.00357	1.00382	85	
5 6 7 8	1.00382 1.00551 1.00751 1.00983 1.01247	1.00408 1.00582 1.00787 1.01024 1.01294	1.00435 1.00614 1.00825 1.01067 1.01342	1.00463 1.00647 1.00863 1.01111 1.01391	1.00491 1.00681 1.00902 1.01155 1.01440	1.00521 1.00715 1.00942 1.01200 1.01491	1.00551 1.00751 1.00963 1.01247 1.01543	84 83 82 81 80	
10	1.01543	1.01595	1.01649	1.01703	1.01758	1.01815	1.01872	79	
11	1.01872	1.01930	1.01989	1.02049	1.02110	1.02171	1.02234	78	
12	1.02234	1.02298	1.02362	1.02428	1.02494	1.02562	1.02630	77	
13	1.02630	1.02700	1.02770	1.02842	1.02914	1.02987	1.03061	76	
14	1.03061	1.03137	1.03213	1.03290	1.03368	1.03447	1.03528	75	
15	1.03528	1.03609	1.03691	1.03774	1.03858	1.03944	1.04030	74	
16	1.04030	1.04117	1.04206	1.04295	1.04385	1.04477	1.04569	73	
17	1.04569	1.04663	1.04757	1.04853	1.04950	1.05047	1.05146	72	
18	1.05146	1.05246	1.05347	1.05449	1.05552	1.05657	1.05762	71	
19	1.06762	1.05869	1.05976	1.06085	1.06195	1.06306	1.06418	70	
20	1.06418	1.06531	1.06645	1.06761	1.06878	1.06995	1.07115	69	
21	1.07115	1.07235	1.07356	1.07479	1.07602	1.07727	1.07853	68	
22	1.07853	1.07981	1.08109	1.08239	1.08370	1.08503	1.08636	67	
23	1.08636	1.08771	1.08907	1.09044	1.09183	1.09323	1.09464	66	
24	1.09464	1.09606	1.09750	1.09895	1.10041	1.10189	1.10338	65	
25	1.10338	1.10488	1.10640	1.10793	1.10947	1.11103	1.11260	64	
26	1.11260	1.11419	1.11579	1.11740	1.11903	1.12067	1.12233	63	
27	1.12233	1.12400	1.12568	1.12738	1.12910	1.13083	1.13257	62	
28	1.13257	1.13433	1.13610	1.13789	1.13970	1.14152	1.14335	61	
29	1.14335	1.14521	1.14707	1.14896	1.15085	1.15277	1.15470	60	
30	1.15470	1.15665	1.15861	1.16059	1.16259	1.16460	1.16663	59	
31	1.16663	1.16868	1.17075	1.17283	1.17493	1.17704	1.17918	58	
32	1.17918	1.18133	1.18350	1.18569	1.18790	1.19012	1.19236	57	
33	1.19236	1.19463	1.19691	1.19920	1.20152	1.20386	1.20622	56	
34	1.20622	1.20859	1.21099	1.21341	1.21584	1.21830	1.22077	55	
35	1.22077	1.22327	1.22579	1.22833	1.23089	1.23347	1.23607	54	
36	1.23607	1.23869	1.24134	1.24400	1.24669	1.24940	1.25214	53	
37	1.25214	1.25489	1.25767	1.26047	1.26330	1.26615	1.26902	52	
38	1.26902	1.27191	1.27483	1.27778	1.28075	1.28374	1.28676	51	
39	1.28676	1.28980	1.29287	1.29597	1.29909	1.30223	1.30541	50	
40	1.30541	1.30861	1.31183	1.31509	1.31837	1.32168	1.32501	49	
41	1.32501	1.32838	1.33177	1.33519	1.33864	1.34212	1.34563	48	
42	1.34563	1.34917	1.35274	1.35634	1.35997	1.36363	1.36733	47	
43	1.36733	1.37105	1.37481	1.37860	1.38242	1.38628	1.39016	46	
44	1.39016	1.39409	1.39804	1.40203	1.40606	1.41012	1.41421	45	
Secants	60′	50′	40′	30′	20′	10′	0′	Degrees	
Se Se	COSECANTS								

Table 95 (Concluded)
Natural Secants and Cosecants

88			CO	SECANT	rs .			nts
Degrees	0′	10'	20′	30′	40′	50′	60′	Secants
0 1 2 3	57.29869 28.65371	343.77516 49.11406 26.45051	171.88831 42.97571 24.56212	114.59301 38.20155	85.94561 34.38232 21.49368	68.75736 31.25758 20.23028	57.29869 28.65371 19.10732	89 88 87
3 4	19.10732 14.33559	18.10262 13.76312		16.38041	15.63679 12.29125	14.95788 11.86837	14.33559 11.47371	86 85
5	11.47371	11.10455	10.75849	10.43343	10.12752	9.83912	9.56677	84,
6	9.56677	9.30917	9.06515	8.83367	8.61379	8.40466	8.20551	83
7	8.20551	8.01565	7.83443	7.66130	7.49571	7.33719	7.18530	82
8	7.18530	7.03962	6.89979	6.76547	6.63633	6.51208	6.39245	81
9	6.39245	6.27719	6.16607	6.05886	5.95536	5.85539	5.75877	80
10	5.75877	5.66533	5.57493	5.48740	5.40263	5.32049	5.24084	79
11	5.24084	5.16359	5.08863	5.01585	4.94517	4.87649	4.80973	78
12	4.80973	4.74482	4.68167	4.62023	4.56041	4.50216	4.44541	77
13	4.44541	4.39012	4.33622	4.28366	4.23239	4.18238	4.13357	76
14	4.13357	4.08591	4.03938	3.99393	3.94952	3.90613	3.86370	75
15	3.86370	3.82223	3.78166	3.74198	3.70315	3.66515	3.62796	74
16	3.62796	3.59154	3.55587	3.52094	3.48671	3.45317	3.42030	73
17	3.42030	- 3.38808	3.35649	3.32551	3.29512	3.26531	3.23607	72
18	3.23607	3.20737	3.17920	3.15155	3.12440	3.09774	3.07155	71
19	3.07155	3.04584	3.02057	2.99574	2.97135	2.94737	2.92380	70
20	2.92380	2.90063	2.87785	2.85545	2.83342	2.81175	2.79043	69
21	2.79043	2.76945	2.74881	2.72850	2.70851	2.68884	2.66947	68
22	2.66947	2.65040	2.63162	2.61313	2.59491	2.57698	2.55930	67
23	2.55930	2.54190	2.52474	2.50784	2.49119	2.47477	2.45859	66
24	2.45859	2.44264	2.42692	2.41142	2.39614	2.38107	2.36620	65
25	2.36620	2.35154	2.33708	2.32282	2.30875	2.29487	2.28117	64
26	2.28117	2.26766	2.25432	2.24116	2.22817	2.21535	2.20269	63
27	2.20269	2.19019	2.17786	2.16568	2.15366	2.14178	2.13005	62
28	2.13005	2.11847	2.10704	2.09574	2.08458	2.07356	2.06267	61
29	2.06267	2.05191	2.04128	2.03077	2.02039	2.01014	2.00000	60
30	2.00000	1.98998	1.98008	1.97029	1.96062	1.95106	1.94160	59
31	1.94160	1.93226	1.92302	1.91388	1.90485	1.89591	1.88708	58
32	1.88708	1.87834	1.86970	1.86116	1.85271	1.84435	1.83608	57
33	1.82608	1.82790	1.81981	1.81180	1.80388	1.79604	1.78829	56
34	1.78829	1.78062	1.77303	1.76552	1.75808	1.75073	1.74345	55
35	1.74345	1.73624	1.72911	1.72205	1.71506	1.70815	1.70130	54
36	1.70130	1.69452	1.68782	1.68117	1.67460	1.66809	1.66164	53
37	1.66164	1.65526	1.64894	1.64268	1.63648	1.63035	1.62427	52
38	1.62427	1.61825	1.61229	1.60639	1.60054	1.59475	1.58902	51
39	1.58902	1.58333	1.57771	1.57213	1.56661	1.56114	1.55572	50
40	1.55572	1.55036	1.54504	1.53977	1.53455	1.52938	1.52425	49
41	1.52425	1.51918	1.51415	1.50916	1.50422	1.49933	1.49448	48
42	1.49448	1.48967	1.48491	1.48019	1.47551	1.47087	1.46628	47
43 44	1.46628 1.43956	1.46173 1.43524	1.45721	1.45274	1.44831 1.42251	1.44391 1.41835	1.43956 1.41421	46 45
Cosecants	60'	50′	40′	30′	20′	10′	0′	Degrees
👸	SECANTS							

Table 96.—Squares, Cubes, Square Roots, Cube Roots, Reciprocals

Num.	8quare	Cube	Square root	Cube root	Reciprocal
1	1	1	1.0000000	1.0000000	1.00000000
2	4	8	1.4142136	1.2599210	0.50000000
3	9	27	1.7320508	1.4422496	.333333333
4	16	64	2.0000000	1.5874011	.25000000
5	25	125	2.2360680	1.7099759	.20000000
6 7 8 9	36 49 64 81 1 00	216 343 512 729 1 000	2.4494897 2.6457513 2.8284271 3.0000000 3.1622777	1.8171206 1.9129312 2.0000000 2.0800837 2.1544347	.166666667 .142857143 .125000000 .111111111 .1000000000
11	1 21	1 331	3.3166248	2.2239801	.090909091
12	1 44	1 728	3.4641016	2.2894286	.083333333
13	1 69	2 197	3.6055513	2.3513347	.076923077
14	1 96	2 744	3.7416574	2.4101422	.071428571
15	2 25	3 375	3.8729833	2.4662121	.066666667
16	2 56	4 096	4.0000000	2.5198421	.062500000
17	2 89	4 913	4.1231056	2.5712816	.058823529
18	3 24	5 832	4.2426407	2.6207414	.055555556
19	3 61	6 859	4.3588989	2.6684016	.052631579
20	4 00	8 000	4.4721360	2.7144177	.050000000
21	4 41	9 261	4.5825757	2.7589243	.047619048
22	4 84	10 648	4.6904158	2.8020393	.045454545
23	5 29	12 167	4.7958315	2.8438670	.043478261
24	5 76	13 824	4.8989795	2.8844991	.041666667
25	6 25	15 625	5.0000000	2.9240177	.040000000
26	6 76	17 576	5.0990195	2.9624960	.038461538
27	7 29	19 683	5.1961524	3.0000000	.037037037
28	7 84	21 952	5.2915026	3.0365889	.035714286
29	8 41	24 389	5.3851648	3.0723168	.034482759
30	9 00	27 000	5.4772256	3.1072325	.033333333
31	9 61	29 791	5.5677644	3.1413806	.032258065
32	10 24	32 768	5.6568542	3.1748021	.031250000
33	10 89	35 937	5.7445626	3.2075343	.030303030
34	11 56	39 304	5.8309519	3.2396118	.029411765
35	12 25	42 875	5.9160798	3.2710663	.028571429
36	12 96	46 656	6.0000000	3.3019272	.027777778
37	13 69	50 653	6.0827625	3.3322218	.027027027
38	14 44	54 872	6.1644140	3.3619754	.026315789
39	15 21	59 319	6.2449980	3.3912114	.025641026
40	16 00	64 000	6.3245553	3.4199519	.025000000
41	16 81	68 921	6.4031242	3.4482172	.024390244
42	17 64	74 088	6.4807407	3.4760266	.023809524
43	18 49	79 507	6.5574385	3.5033981	.023255814
44	19 36	85 184	6.6332496	3.5303483	.022727273
45	20 25	91 125	6.7082039	3.5568933	.022222222
46	21 16	97 336	6.7823300	3.5830479	.021739130
47	22 09	103 823	6.8556546	3.6088261	.021276596
48	23 04	110 592	6.9282032	3.6342411	.020833333
49	24 01	117 649	7.0000000	3.6593057	.020408163
50	25 90	125 000	7.0710678	3.6840314	.020000000

Table 96 (Continued)
Squares, Cubes, Square Roots, Cube Roots, Reciprocals

Num.	Square	Cube	Square root	Cube root	Reciprocal
51	26 01	132 651	7.1414284	3.7084298	.019607843
52	27 04	140 608 148 877	7.2111026	3.7325111	.019230769
53	28 09 .	148 877	7.2801099	3.7562858	.018867925
54	29 16	157 464	7.3484692	3.7797631	.018518519
55	30 25	166 375	7.4161985	3.8029525	.018181818
56	31 36	175 616	7.4833148	3.8258624	.017857143
57	32 49	185 193	7.5498344	3.8485011	.017543860
58 ·	33 64 34 81	195 112 205 379	7.6157731 7.6811457	3.8708766 3.8929965	.017241379 .016949153
60	36 00	216 000	7.7459667	3.9148676	.016666667
61	37 21	226 981	7.8102497	3.9364972	.016393443
62	38 44	238 328	7.8740079	3.9578915	.016129032
63	39 69	250 047	7.9372539	3.9790571	.015873016
64	40 96	262 144	8.0000000	4.0000000	.015625000
65	42 25	274 625	8.0622577	4.0207256	.015384615
66	43 56	287 496	8.1240384	4.0412401	.015151515
67	44 89	300 763	8.1853528	4.0615480	.014925373
68	46 24	314 432	8.2462113	4.0816551	.014705882
69	47 61	328 509	8.3066239	4.1015661	.014492754
70	49 00	343 000	8.3666003	4.1212853	.014285714
71 72	50 41	357 911	8.4261498	4.1408178	.014084507
72	51 84	373 248	8.4852814	4.1601676	.013888889
73	53 29	389 017	8.5440037	4.1793392	.013698630
74	54 76	405 224	8.6023253	4.1983364	.013513514
75	56 25	421 875	8.6602540	4.2171633	.013333333
76	57 76	438 976	8.7177979	4.2358236	.013157895
77	59 29	456 533	8.7749644	4.2543210	.012987013
78	60 84	474 552	8.8317609	4.2726586	.012820513
79	62 41	493 039	8.8881944	4.2908404	.012658228
80	64 00	512 000	8.9442719	4.3088695	.012500000
81	65 61	531 441	9.0000000	4.3267487	.012345679
82	67 24	551 368 571 787	9.0553851	4.3444815	.012195122
83	68 89	571 787	9.1104336	4.3620707	.012048193
84	70 56	592 704	9.1651514	4.3795191	.011904762
85	72 25 ·	614 125	9.2195445	4.3968296	.011764706
86	73 96	636 056	9.2736185	4.4140049	.011627907
87	75 69	658 503	9.3273791	4.4310476	.011494253
88	77 44	681 472	9.3808315	4.4479602	.011363636
89	79 21	704 969	9.4339811	4.4647451	.011235955
90	81 00	729 000	9.4868330	4.4814047	.011111111
91	82 81	753 571	9.5393920	4.4979414	.010989011
92	84 64	778 688	9.5916630	4.5143574	.010869565
93	86 49	804 357	9.6436508	4.5306549	.010752688
94	88 36	830 584	9.6953597	4.5468359	.010638298
95	90 25	857 375	9.7467943	4.5629026	.010526316
96	92 16	884 736	9.7979590	4.5788570	.010416667
97	94 09	912 673	9.8488578	4.5947009	.010309278
98	96 04	941 192	9.8994949	4.6104363	.010204082
99 100	98 01 1 00 00	970 299 1 000 000	9.9498744 10.0000000	4.6260650 4.6415888	.010101010 .010000000
100	10000	1 1000 0000	10.0000000	4.0410000	.010000000

Table 96 (Continued)
Squares, Cubes, Square Roots, Cube Roots, Reciprocals

Num.	Square	Cube	Square root	Cube root	Reciprocal
101	1 02 01	1 030 301	10.0498756	4.6570095	.009900990
102	1 04 04	1 061 208	10.0995049	4.6723287	.009803922
103	1 06 09	1 092 727	10.1488916	4.6875482	.009708738
104	1 08 16	1 124 864	10.1980390	4.7026694	.009615385
105	1 10 25	1 157 625 1 191 016	10.2469508	4.7176940	.009523810
106 107 108 109 110	1 12 36 1 14 49 1 16 64 1 18 81 1 21 00	1 225 043 1 259 712 1 295 029 1 331 000	10.3440804 10.3923048 10.4403065 10.4880885	4.7474594 4.7622032 4.7768562 4.7914199	.009345794 .009259259 .009174312 .009090909
111	1 23 21	1 367 631	10.5356538	4.8058955	.009009009
112	1 25 44	1 404 928	10.5830052	4.8202845	.008928571
113	1 27 69	1 442 897	10.6301458	4.8345881	.008849558
114	1 29 96	1 481 544	10.6770783	4.8488076	.008771930
115	1 32 25	1 520 875	10.7238053	4.8629442	.008695652
116	1 34 56	1 560 896	10.7703296	4.8769990	.008620690
117	1 36 89	1 601 613	10.8166538	4.8909732	.008547009
118	1 39 24	1 643 032	10.8627805	4.9048681	.008474576
119	1 41 61	1 685 159	10.9087121	4.9186847	.008403361
120	1 44 00	1 728 000	10.9544512	4.9324242	.008333333
121	1 46 41	1 771 561	11.0000000	4.9460874	.008264463
122	1 48 84	1 815 848	11.0453610	4.9596757	.008196721
123	1 51 29	1 860 867	11.0905365	4.9731898	.008130081
124	1 53 76	1 906 624	11.1355287	4.9866310	.008064516
125	1 56 25	1 953 125	11.1803399	5.0000000	.008000000
126	1 58 76	2 000 376	11.2249722	5.0132979	.007936508
127	1 61 29	2 048 383	11.2694277	5.0265257	.007874016
128	1 63 84	2 097 152	11.3137085	5.0396842	.007812500
129	1 66 41	2 146 689	11.3578167	5.0527743	.007751938
130	1 69 00	2 197 000	11.4017543	5.0657970	.007692308
131	1 71 61	2 248 091	11.4455231	5.0787531	.007633588
132	1 74 24	2 299 968	11.4891253	5.0916434	.007575758
133	1 76 89	- 2 352 637	11.5325626	5.1044687	.007518797
134	1 79 56	2 406 104	11.5758369	5.1172299	.007462687
135	1 82 25	2 460 375	11.6189500	5.1299278	.007407407
136	1 84 96	2 515 456	11.6619038	5.1425632	.007352941
137	1 87 69	2 571 353	11.7046999	5.1551367	.007299270
138	1 90 44	2 628 072	11.7473401	5.1676493	.007246377
139	1 93 21	2 685 619	11.7898261	5.1801015	.007194245
140	1 96 00	2 744 000	11.8321596	5.1924941	.007142857
141	1 98 81	2 803 221	11.8743422	5.2048279	.007092199
142	2 01 64	2 863 288	11.9163753	5.2171034	.007042254
143	2 04 49	2 924 207	11.9582607	5.2293215	.006993007
144	2 07 36	2 985 984	12.0000000	5.2414828	.006944444
145	2 10 25	3 048 625	12.0415946	5.2535879	.006896552
146	2 13 16	3 112 136	12.0830460	5.2656374	.006849315
147	2 16 09	3 176 523	12.1243557	5.2776321	.006802721
148	2 19 04	3 241 792	12.1655251	5.2895725	.006756757
149	2 22 01	3 307 949	12.2065556	5.3014592	.006711409
150	2 25 00	3 375 000	12.2474487	5.3132928	.006666667

Table 96 (Continued)
Squares, Cubes, Square Roots, Cube Roots, Reciprocals

Num.	Square	Cube	Square root	Cube root	Reciprocal
151	2 28 01	3 442 951	12.2882057	5.3250740	.006622517
152	2 31 04	3 511 808	12.3288280	5.3368033	.006578947
153	2 34 09	3 581 577	12.3693169	5.3484812	.006535948
154	2 37 16	3 652 264	12.4096736	5.3601084	.006493506
155 156 157 158 159	2 40 25 2 43 36 2 46 49 2 49 64 2 52 81	3 723 875 3 796 416 3 869 893 3 944 312 4 019 679 4 096 000	12.4498996 12.4899960 12.5299641 12.5698051 12.6095202 12.6491106	5.3716854 5.3832126 5.3946907 5.4061202 5.4175015 5.4288352	.006451613 .006410256 .006369427 .006329114 .006289308 .006250000
160 161 162 163 164 165	2 56 00 2 59 21 2 62 44 2 65 69 2 68 96 2 72 25	4 173 281 4 251 528 4 330 747 4 410 944 4 492 125	12.6885775 12.7279221 12.7671453 12.8062485 12.8452326	5.4401218 5.4513618 5.4625556 5.4737037 5.4848066	.006211180 .006172840 .006134969 .006097561
166	2 75 56	4 574 296	12.8840987	5.4958647	.006024096
167	2 78 89	4 657 463	12.9228480	5.5068784	.005988024
168	2 82 24	4 741 632	12.9614814	5.5178484	.005952381
169	2 85 61	4 826 809	13.0000000	5.5287748	.005917160
170	2 89 00	4 913 000	13.0384048	5.5396583	.005882353
171	2 92 41	5 000 211	13.0766968	5.5504991	.005847953
172	2 95 84	5 088 448	13.1148770	5.5612978	.005813953
173	2 99 29	5 177 717	13.1529464	5.5720546	.005780347
174	3 02 76	5 268 024	13.1909060	5.5827702	.005747126
175	3 06 25	5 359 375	13.2287566	5.5934447	.005714286
176	3 09 76	5 451 776	13.2664992	5.6040787	.005681818
177	3 13 29	5 545 233	13.3041347	5.6146724	.005649718
178	3 16 84	5 639 752	13.3416641	5.6252263	.005617978
179	3 20 41	5 735 339	13.3790882	5.6357408	.005586592
180	3 24 00	5 832 000	13.4164079	5.6462162	.005555566
181	3 27 61	5 929 741	13.4536240	5.6566528	.005524862
182	3 31 24	6 028 568	13.4907376	5.6670511	.005494505
183	3 34 89	6 128 487	13.5277493	5.6774114	.005464481
184	3 38 56	6 229 504	13.5646600	5.6877340	.005434783
185	3 42 25	6 331 625	13.6014705	5.6980192	.005405405
186	3 45 96	6 434 856	13.6381817	5.7082675	.005376344
187	3 49 69	6 539 203	13.6747943	5.7184791	.005347594
188	3 53 44	6 644 672	13.7113092	5.7286543	.005319149
189	3 57 21	6 751 269	13.7477271	5.7387936	.005291005
190	3 61 00	6 859 000	13.7840488	5.7488971	.005263158
191	3 64 81	6 967 871	13.8202750	5.7589652	.005235602
192	3 68 64	7 077 888	13.8564065	5.7689982	.005208333
193	3 72 49	7 189 057	13.8924440	5.7789966	.005181347
194	3 76 36	7 301 384	13.9283883	5.7889604	.005154639
195	3 80 25	7 414 875	13.9642400	5.7988900	.005128205
196	3 84 16	7 529 536	14.000000	5.8087857	.005102041
197	3 88 09	7 645 373	14.0356688	5.8186479	.005076142
198	3 92 04	7 762 392	14.0712473	5.8284767	.005050605
199	3 96 01	7 880 599	14.1067360	5.8382725	.005025126
200	4 00 00	8 000 000	14.1421356	5.8480355	.005000000

Table 96 (Continued)
Squares, Cubes, Square Roots, Cube Roots, Reciprocals

Num.  201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220	\$quare  4 04 01 4 08 04 4 12 09 4 16 16 4 20 25 4 24 36 4 28 49 4 32 64 4 36 81 4 41 00 4 45 21 4 49 44 5 7 96 4 62 25 4 66 56 4 70 89 4 75 24 4 79 61 4 84 00	Cube  8 120 601 8 242 408 8 365 427 8 489 664 8 615 125 8 741 816 8 869 743 8 998 912 9 129 329 9 261 000 9 393 931 9 528 128 9 663 597 9 800 344 9 938 375 10 077 696 10 218 313 10 360 232	8quare root  14.1774469 14.2126704 14.2478068 14.2828569 14.3178211 14.3527001 14.3874946 14.422203 14.4568323 14.4913767 14.5258390 14.5602198 14.5602198 14.66287388 14.66287388 14.6969385 14.6969385 14.7300199	Cube root  5.8577680 5.8674643 5.8771307 5.8867653 5.8963685 5.9058406 5.9154817 5.9249921 5.933418 5.9627320 5.9533418 5.9627320 5.953418 6.0000000	Reciprocal  .004975124 .004950495 .004926108 .004901961 .004878049 .004830918 .004807692 .004784689 .004734936 .004716981 .004629897 .004651163
202 203 204 205 206 207 208 209 210 211 212 213 214 215 217 218 219 220	4 08 04 4 12 09 4 16 16 4 20 25 4 24 36 4 28 49 4 32 64 4 36 81 4 41 00 4 45 21 4 49 44 4 53 69 4 57 96 4 62 25 4 66 56 4 70 89 4 77 61	\$ 242 408 8 365 427 8 489 664 8 615 125 8 741 816 8 869 743 8 998 912 9 129 129 329 9 261 000 9 393 931 9 528 128 9 663 597 9 800 344 9 938 375 10 077 696 10 218 313	14. 2126704 14. 2478968 14. 2828569 14. 3178211 14. 3527001 14. 3874946 14. 4222051 14. 4568323 14. 4913767 14. 5258390 14. 5945195 14. 628783 14. 6628783	5.8674643 5.8771307 5.8867653 5.8963685 5.9059406 5.9154817 5.9249921 5.9344721 5.9459220 5.9533418 5.9627320 5.9720926 5.9814240 5.9907264	004950495 004926108 004901961 004878049 004853699 004830918 00427692 004784689 004716981 004716981 00466472897
202 203 204 205 206 207 208 209 210 211 212 213 214 215 217 218 219 220	4 08 04 4 12 09 4 16 16 4 20 25 4 24 36 4 28 49 4 32 64 4 36 81 4 41 00 4 45 21 4 49 44 4 53 69 4 57 96 4 62 25 4 66 56 4 70 89 4 77 61	\$ 242 408 8 365 427 8 489 664 8 615 125 8 741 816 8 869 743 8 998 912 9 129 129 329 9 261 000 9 393 931 9 528 128 9 663 597 9 800 344 9 938 375 10 077 696 10 218 313	14. 2126704 14. 2478968 14. 2828569 14. 3178211 14. 3527001 14. 3874946 14. 4222051 14. 4568323 14. 4913767 14. 5258390 14. 5945195 14. 628783 14. 6628783	5.8674643 5.8771307 5.8867653 5.8963685 5.9059406 5.9154817 5.9249921 5.9344721 5.9459220 5.9533418 5.9627320 5.9720926 5.9814240 5.9907264	004950495 004926108 004901961 004878049 004853699 004830918 00427692 004784689 004716981 004716981 00466472897
203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 229 220	4 12 09 4 16 16 4 20 25 4 24 36 4 28 49 4 32 64 4 36 81 4 41 00 4 45 21 4 45 3 69 4 57 96 4 62 25 4 66 56 4 70 89 4 77 24 4 79 61	8 365 427 8 489 664 8 615 125 8 741 816 8 869 743 8 998 912 9 129 329 9 261 000 9 393 931 9 528 128 9 663 597 9 800 344 9 938 375 10 077 696 10 218 313	14. 2478068 14. 2828569 14. 3178211 14. 3527001 14. 3874946 14. 4222051 14. 4568223 14. 4913767 14. 5258390 14. 5602198 14. 5945195 14. 6287388 14. 6028783	5. 8771307 5. 8867653 5. 8963685 5. 9059406 5. 9154817 5. 9249921 5. 9439220 5. 9533418 5. 9627320 5. 9720926 5. 9814240 5. 9907264	.004926108 .004901961 .004878049 .004830918 .004830918 .004784689 .004784689 .004716981 .004694836 .004672897 .004651163
204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 220 220	4 16 16 4 20 25 4 24 36 4 28 49 4 32 64 4 36 81 4 41 00 4 45 21 4 49 44 4 57 96 4 62 25 4 66 56 4 70 89 4 77 61	8 489 664 8 615 125 8 741 816 8 869 743 8 998 912 9 129 329 9 261 000 9 393 931 9 528 128 9 663 597 9 800 344 9 938 375 10 077 696 10 218 313	14. 2828569 14. 3178211 14. 3527001 14. 3874946 14. 4222051 14. 4568323 14. 4913767 14. 5258390 14. 5902198 14. 5945195 14. 6628783 14. 6628783	5.8867653 5.8963685 5.9059406 5.9154817 5.9249921 5.934721 5.9439220 5.9533418 5.9627320 5.9720926 5.9720926 5.9814240 5.9907264	.004901961 .004878049 .004854369 .004830918 .004807692 .004784689 .004761905 .004716981 .004694836 .004672897 .004651163
205 206 207 208 209 210 211 212 213 214 215 216 217 218 229 220	4 20 25 4 24 36 4 28 49 4 32 64 4 36 81 4 41 00 4 45 21 4 49 44 4 53 69 4 57 96 4 62 25 4 66 56 4 70 89 4 79 61	8 615 125 8 741 816 8 869 743 8 998 912 9 129 329 9 261 000 9 393 931 9 528 128 9 663 597 9 800 344 9 938 375 10 077 696 10 218 313	14.3178211 14.3527001 14.3874946 14.422051 14.4568323 14.4913767 14.5258390 14.5945195 14.6287388 14.628783 14.6969385	5.8963685 5.9059406 5.9154817 5.9249921 5.9344721 5.9439220 5.9533418 5.9627320 5.9720926 5.9814240 5.9907264	.004878049 .004854369 .004830918 .004807692 .004784689 .004761905 .004739336 .004716981 .004694836 .004672897 .004651163
206 207 208 209 210 211 212 213 214 215 216 217 218 219 220	4 24 36 4 28 49 4 32 64 4 36 81 4 41 00 4 45 21 4 49 44 4 53 69 4 57 96 4 62 25 4 66 56 4 70 89 4 77 24 4 79 61	8 741 816 8 869 743 8 998 912 9 129 329 9 261 000 9 393 931 9 528 128 9 663 597 9 800 344 9 938 375 10 077 696 10 218 313	14.3527001 14.3874946 14.4222051 14.4568223 14.4913767 14.5258390 14.5945198 14.5945198 14.6287388 14.6628783 14.6969385	5.9059406 5.9154817 5.9249921 5.9344721 5.9439220 5.95233418 5.9627320 5.9720926 5.9814240 5.9907264	.004854369 .004830918 .004807692 .004784689 .004761905 .004739336 .004716981 .004694836 .004672897 .004651163
207 208 209 210 211 212 213 214 215 216 217 218 219 220	4 28 49 4 32 64 4 36 81 4 41 00 4 45 21 4 49 44 4 53 69 4 57 96 4 62 25 4 66 56 4 70 89 4 75 24 4 79 61	8 869 743 8 998 912 9 129 329 9 261 000 9 393 931 9 528 128 9 663 597 9 800 344 9 938 375 10 077 696 10 218 313	14. 3874946 14. 4222051 14. 4568323 14. 4913767 14. 5258390 14. 5945195 14. 5945195 14. 6628788 14. 6628783	5.9154817 5.9249921 5.934721 5.9439220 5.9533418 5.9627320 5.9720926 5.9814240 5.9907264	.004830918 .004807692 .004784689 .004761905 .004716981 .004694836 .004672897 .004651163
207 208 209 210 211 212 213 214 215 216 217 218 219 220	4 28 49 4 32 64 4 36 81 4 41 00 4 45 21 4 49 44 4 53 69 4 57 96 4 62 25 4 66 56 4 70 89 4 75 24 4 79 61	8 869 743 8 998 912 9 129 329 9 261 000 9 393 931 9 528 128 9 663 597 9 800 344 9 938 375 10 077 696 10 218 313	14. 3874946 14. 4222051 14. 4568323 14. 4913767 14. 5258390 14. 5945195 14. 5945195 14. 6628788 14. 6628783	5.9249921 5.9344721 5.9439220 5.9533418 5.9627320 5.9720926 5.9814240 5.9907264	.004807692 .004784689 .004761905 .004739336 .004716981 .004694836 .004672897 .004651163
208 209 210 211 212 213 214 215 216 217 218 219 220	4 32 64 4 36 81 4 41 00 4 45 21 4 49 44 4 53 69 4 57 96 4 62 25 4 66 56 4 70 89 4 75 24 4 79 61	8 998 912 9 129 329 9 261 000 9 393 931 9 528 128 9 663 597 9 800 344 9 938 375 10 077 696 10 218 313	14.4568323 14.4913767 14.5258390 14.5602198 14.5945195 14.6287388 14.6628783	5.9344721 5.9439220 5.9533418 5.9627320 5.9720926 5.9814240 5.9907264	.004784689 .004761905 .004739336 .004716981 .004694836 .004672897 .004651163
209 210 211 212 213 214 215 216 217 218 219 220	4 36 81 4 41 00 4 45 21 4 49 44 4 53 69 4 57 96 4 62 25 4 66 56 4 70 89 4 75 24 4 79 61	9 261 000 9 393 931 9 528 128 9 663 597 9 800 344 9 938 375 10 077 696 10 218 313	14.4913767 14.5258390 14.5602198 14.5945195 14.6287388 14.6628783 14.6969385	5.9439220 5.9533418 5.9627320 5.9720926 5.9814240 5.9907264	.004761905 .004739336 .004716981 .004694836 .004672897 .004651163
210 211 212 213 214 215 216 217 218 219 220	4 41 00 4 45 21 4 49 44 4 53 69 4 57 96 4 62 25 4 66 56 4 70 89 4 75 24 4 79 61	9 393 931 9 528 128 9 663 597 9 800 344 9 938 375 10 077 696 10 218 313	14.5258390 14.5602198 14.5945195 14.6287388 14.6628783	5.9533418 5.9627320 5.9720926 5.9814240 5.9907264	.004739336 .004716981 .004694836 .004672897 .004651163
212 213 214 215 216 217 218 219 220	4 49 44 4 53 69 4 57 96 4 62 25 4 66 56 4 70 89 4 75 24 4 79 61	9 528 128 9 663 597 9 800 344 9 938 375 10 077 696 10 218 313	14.5602198 14.5945195 14.6287388 14.6628783 14.6969385	5.9627320 5.9720926 5.9814240 5.9907264	.004716981 .004694836 .004672897 .004651163
212 213 214 215 216 217 218 219 220	4 49 44 4 53 69 4 57 96 4 62 25 4 66 56 4 70 89 4 75 24 4 79 61	9 528 128 9 663 597 9 800 344 9 938 375 10 077 696 10 218 313	14.5602198 14.5945195 14.6287388 14.6628783 14.6969385	5.9627320 5.9720926 5.9814240 5.9907264	.004716981 .004694836 .004672897 .004651163
213 214 215 216 217 218 219 220 221	4 53 69 4 57 96 4 62 25 4 66 56 4 70 89 4 75 24 4 79 61	9 663 597 9 800 344 9 938 375 10 077 696 10 218 313	14.5945195 14.6287388 14.6628783 14.6969385	5.9720926 5.9814240 5.9907264	.004694836 .004672897 .004651163
214 215 216 217 218 219 220 221	4 57 96 4 62 25 4 66 56 4 70 89 4 75 24 4 79 61	9 800 344 9 938 375 10 077 696 10 218 313	14.6287388 14.6628783 14.6969385	5.9814240 5.9907264	.004672897 .004651163
215 216 217 218 219 220 221	4 62 25 4 66 56 4 70 89 4 75 24 4 79 61	9 938 375 10 077 696 10 218 313	14.6628783 14.6969385	5.9907264	.004651163
216 217 218 219 220 221	4 66 56 4 70 89 4 75 24 4 79 61	10 077 696 10 218 313	14.6969385		
218 219 220 221	4 70 89 4 75 24 4 79 61	10 218 313		6.0000000	004650630
218 219 220 221	4 70 89 4 75 24 4 79 61	10 218 313		U.UUUUUUU	
218 219 220 221	4 75 24 4 79 61			6.0092450	.004608295
219 220 221	4 79 61		14.7648231	6.0184617	.004587156
220 221			14.7986486	6.0276502	.004568210
221	4 84 00	10 503 459	14.8323970	6.0368107	.004545455
		10 648 000	14.8323970	0.0000107	.002020300
	4 88 41	10 793 861	14.8660687	6.0459435	.004524887
000	4 92 84	10 941 048	14.8996644	6.0550489	.004504505
222 223	4 97 29	11 089 567	14.9331845	6.0641270	.004484305
224	5 01 76	11 239 424	14.9666295	6.0731779	.004464286
225	5 06 25	11 390 625	15.0000000	6.0822020	.004444444
220	0 00 -0	÷			
226	5 10 76	11 543 176	15.0332964	6.0911994	.004424779
227	5 15 29	11 697 083	15.0665192	6.1001702	.004405286
228	5 19 84	11 852 352	15.0996689	6.1091147	.004385965
229	5 24 41	12 008 989	15.1327460	6.1180332	.004366812
230	5 29 00	12 167 000	15.1657509	6.1269257	.004347826
			4 7 4000040	0 1055004	00400004
231	5 33 61	12 326 391	15.1986842	6.1357924	.004329004
232	5 38 24	12 487 168	15.2315462	6.1446337	.004310345
233	5 42 89	12 649 337	15.2643375	6.1534495	.004291845 .004273504
234	5 47 56	12 812 904	15.2970585	6.1622401 6.1710058	.004273304
235	5 52 25	12 977 875	15.3297097	0.1110000	.002200018
000	5 56 96	13 144 256	15.3622915	6.1797466	.004237288
236		13 312 053	15.3948043	6.1884628	.004219409
237	5 61 69 5 66 44	13 481 272	15.4272486	6.1971544	.004201681
238	5 71 21	13 651 919	15.4596248	6.2058218	.004184100
239	5 76 00	13 824 000	15.4919334	6.2144650	.004166667
240	3 10 00	10 024 000	13.1010001	J. 2111330	
241	5 80 81	13 997 521	15.5241747	6.2230843	.004149378
242	5 85 64	14 172 488	15.5563492	6.2316797	.004132231
243	5 90 49	14 348 907	15.5884573	6.2402515	.004115226
244	5 95 36	14 526 784	15.6204994	6.2487998	.004098361
245	6 00 25	14 706 125	15.6524758	6.2573248	.004081633
	-				00400 5044
246	6 05 16	14 886 936	15.6843871	6.2658266	.004065041
247	6 10 09	15 069 223	15.7162336	6.2743054	.004048583
248	6 15 04	15 252 992	15.7480157	6.2827613	.004032258
249	6 20 01	15 438 249	15.7797338	6.2911946	.004016064 .004000000
250	6 25 00	15 625 000	15.8113883	6.2996053	7001000000

Table 96 (Continued)
Squares, Cubes, Square Roots, Cube Roots, Reciprocals

251 6 3 252 6 3 252 6 3 253 6 4 255 6 5 257 6 6 258 6 6 259 6 7 260 6 7 261 6 8 262 6 8 263 6 9 264 6 9 265 7 0 266 7 0 268 7 1 268 7 1 268 7 1 268 7 1 268 7 1 268 7 1	5 04 16 0 09 16 5 16 16 0 25 16 15 36 16 0 49 16 15 64 17 0 81 17 16 44 17 16 44 17 16 49 18 17 18 18 18 18 18 18 18 18 18 18 18 18 18 18 18 18 18 18 18 18 1	Cube  8 13 251 6 003 008 1 194 277 3 387 064 5 581 375 3 777 216 3 974 593 1 173 512 7 373 979 7 76 000 7 779 581 9 84 728 3 191 44 6 009 625 8 821 096	15.8429795 15.8745079 16.9059737 15.9373775 15.9687194 16.000000 16.0312195 16.0623784 16.0934769 16.1245155 16.1554944 16.1864141 16.2172747 16.2480768 16.2788206	Cube root 6.3079935 6.3163596 6.3247035 6.3330266 6.3413257 6.3496042 6.3578611 6.3660968 6.3743111 6.3825043 6.3906765 6.3988279 6.4069585 6.4150687 6.4251583	.003984064 .003988254 .003952569 .003937008 .003921569 .003891051 .003875969 .003891051 .003816164 .003846154 .003816794 .003802281 .003787879
252 6 3 253 6 4 254 6 4 255 6 5 256 6 5 257 6 6 259 6 7 260 6 7 261 6 8 262 6 8 263 6 9 264 6 9 267 7 1 268 7 0 267 7 1 268 7 7 1 268 7 7 1 269 7 7 2	5 04 16 0 09 16 5 16 16 0 25 16 15 36 16 0 49 16 15 64 17 0 81 17 16 44 17 16 44 17 16 49 18 17 18 18 18 18 18 18 18 18 18 18 18 18 18 18 18 18 18 18 18 18 1	6 003 008 3 194 277 3 387 064 3 581 375 6 777 216 6 974 593 7 173 512 7 373 979 7 576 000 7 779 581 984 728 3 191 447 3 399 744 8 609 625	15. 8745079 15. 9059737 15. 9059737 15. 9687194 16. 0000000 16. 0312195 16. 0623784 16. 0934769 16. 1245155 16. 1554944 16. 1864141 16. 2172747 16. 2480768	6.3163596 6.3247035 6.3330256 6.3413257 6.3496042 6.3578611 6.3660968 6.3743111 6.3825043 6.3906765 6.3988279 6.4069585 6.4150687	.003968254 .003952569 .003937008 .003921569 .003906250 .003891051 .003875969 .003846154 .003816794 .003802281 .003787879
252 63. 253 64. 254 64. 255 65 256 65. 258 66. 259 67. 260 67. 261 68. 262 68. 263 69. 264 69. 265 70. 266 70. 268 71. 268 71. 268 71. 269 7. 270 7.2	5 04 16 0 09 16 5 16 16 0 25 16 15 36 16 0 49 16 15 64 17 0 81 17 16 44 17 16 44 17 16 49 18 17 18 18 18 18 18 18 18 18 18 18 18 18 18 18 18 18 18 18 18 18 1	6 003 008 3 194 277 3 387 064 3 581 375 6 777 216 6 974 593 7 173 512 7 373 979 7 576 000 7 779 581 984 728 3 191 447 3 399 744 8 609 625	15. 8745079 15. 9059737 15. 9059737 15. 9687194 16. 0000000 16. 0312195 16. 0623784 16. 0934769 16. 1245155 16. 1554944 16. 1864141 16. 2172747 16. 2480768	6.3163596 6.3247035 6.3330256 6.3413257 6.3496042 6.3578611 6.3660968 6.3743111 6.3825043 6.3906765 6.3988279 6.4069585 6.4150687	.003968254 .003952569 .003937008 .003921569 .003906250 .003891051 .003875969 .003846154 .003816794 .003802281 .003787879
253 6 4 254 6 5 256 6 5 257 6 6 258 6 6 259 6 7 260 6 7 261 6 8 262 6 8 262 6 8 263 6 9 264 7 0 267 7 1 268 7 1 269 7 7 270 7 2	0 09 16 5 16 16 16 0 25 16 0 49 16 0 81 17 6 00 17 11 21 17 16 44 17 16 96 18 16 96 18 12 25 18	3 194 277 3 387 084 5 581 375 3 777 216 5 974 593 1 173 512 7 373 979 7 576 000 7 779 581 984 728 3 191 447 3 399 744 8 609 625	15. 9059737 15. 9373775 15. 9687194 16. 0000000 16. 0312195 16. 0623784 16. 1245155 16. 1554944 16. 1864141 16. 2172747 16. 2480768	6.3247035 6.3330256 6.3413257 6.3496042 6.3578611 6.3660968 6.374311 6.3825043 6.3906765 6.3988279 6.4069585 6.4150687	.003952569 .003937008 .003921569 .003906250 .003891051 .003875969 .003861004 .003846154 .003816794 .003802281 .003787879
254 6 4 5 255 6 5 5 257 6 6 6 259 6 7 260 6 7 261 6 8 263 6 9 264 6 9 265 7 1 268 7 1 268 7 1 268 7 1 268 7 1 268 7 1 268 7 1 268 7 7 2 270 7 2	5 16 16 16 16 16 16 16 16 16 16 16 16 16	3 387 064 3 581 375 3 777 216 3 777 216 3 777 216 1 773 512 7 373 979 7 576 000 7 779 581 7 798 728 3 191 447 3 399 744 3 609 625	15. 9373775 15. 9687194 16. 0000000 16. 0312195 16. 0623784 16. 0934769 16. 1245155 16. 1554944 16. 1864141 16. 2172747 16. 2480768	6.3330256 6.3413257 6.3496042 6.3578611 6.3669968 6.3743111 6.3825043 6.3906765 6.3988279 6.4069585 6.4150687	.003937008 .003921569 .003906250 .003891051 .003875969 .003861004 .003846154 .003831418 .003816794 .003802281 .003787879
255 6 5 5 257 6 6 6 259 6 7 260 6 7 261 6 8 262 6 8 263 6 9 265 7 0 266 7 1 268 7 1 268 7 1 269 7 2 270 7 2	0 25   16 0 49   16 0 49   16 0 49   16 15 64   17 10 81   17 16 00   17 11 21   17 16 44   17 16 69   18 16 96   18 12 25   18 17 56   18	3 757 216 3 777 216 3 974 593 7 173 512 7 173 579 7 576 000 7 779 581 7 984 728 3 191 447 3 399 744 8 609 625	15.9687194 16.0000000 16.0312195 16.0623784 16.0934769 16.1245155 16.1554944 16.1864141 16.2172747 16.2480768	6.3413257 6.3496042 6.3578611 6.3660968 6.3743111 6.3825043 6.3906765 6.3988279 6.4069585 6.4150687	.003921569 .003906250 .003891051 .003875969 .003861004 .003846154 .003816794 .003802281 .003787879
256 6 5 259 6 6 7 260 6 7 0 268 7 1 268 7 1 268 7 1 268 7 1 268 7 1 268 7 1 268 7 7 2 270 7 2	5 36 16 0 49 16 15 64 17 0 81 17 66 00 17 11 21 17 16 44 17 11 69 18 16 96 18 12 22 5 18	3 777 216 3 974 593 7 173 512 7 373 979 7 576 000 7 779 581 7 984 728 3 191 447 3 399 744 3 609 625	16.000000 16.0312195 16.0623784 16.0934769 16.1245155 16.1554944 16.1864141 16.2172747 16.2480768	6.3496042 6.3578611 6.3660968 6.3743111 6.3825043 6.3906765 6.3988279 6.4069585 6.4150687	.003906250 .003891051 .003875969 .003861004 .003846154 .003831418 .003802281 .003787879
257 6 6 258 6 6 259 6 7 260 6 7 261 6 8 262 6 8 263 6 9 264 7 0 266 7 0 268 7 1 268 7 1 269 7 2 270 7 2	0 49   16 5 64   17 0 81   17 6 00   17 6 44   17 11 6 44   17 11 6 96   18 12 25   18	3 974 593 7 173 512 7 373 979 7 576 000 7 779 581 7 984 728 3 191 447 3 399 744 3 609 625	16.0312195 16.0623784 16.0934769 16.1245155 16.1554944 16.1864141 16.2172747 16.2480768	6.3578611 6.3660968 6.3743111 6.3825043 6.3906765 6.3988279 6.4069585 6.4150687	.003891051 .003875969 .003861004 .003846154 .003831418 .003816794 .003802281 .003787879
258 6 6 7 259 6 7 260 6 7 261 6 8 262 6 8 263 6 9 264 6 9 265 7 0 266 7 0 268 7 1 268 7 1 268 7 2 270 7 2	15 64 17 17 18 17 18 18 18 18 18 18 18 18 18 18 18 18 18	7 173 512 7 373 979 7 576 000 7 779 581 7 984 728 3 191 447 3 399 744 3 609 625	16.0623784 16.0934769 16.1245155 16.1554944 16.1864141 16.2172747 16.2480768	6.3660968 6.3743111 6.3825043 6.3906765 6.3988279 6.4069585 6.4150687	.003875969 .003861004 .003846154 .003831418 .003816794 .003802281 .003787879
259 6 7 261 6 8 262 6 8 263 6 9 264 7 7 266 7 7 268 7 1 269 7 270 7 2	70 81 17 17 16 00 17 17 18 18 18 18 18 18 18 18 18 18 18 18 18	7 373 979 7 576 000 7 779 581 7 984 728 8 191 447 8 399 744 8 609 625	16.0934769 16.1245155 16.1554944 16.1864141 16.2172747 16.2480768	6.3743111 6.3825043 6.3906765 6.3988279 6.4069585 6.4150687	.003861004 .003846154 .003831418 .003816794 .003802281 .003787879
260 6 7 261 6 8 262 6 8 263 6 9 264 6 9 265 7 0 266 7 0 267 7 1 269 7 2 270 7 2	6 00   17   12   17   16   44   17   16   18   18   19   18   19   19   19   19	7 576 000 7 779 581 7 984 728 3 191 447 3 399 744 8 609 625	16.1245155 16.1554944 16.1864141 16.2172747 16.2480768	6.3825043 6.3906765 6.3988279 6.4069585 6.4150687	.003846154 .003831418 .003816794 .003802281 .003787879
261 6 8 262 6 8 263 6 9 264 6 9 265 7 0 266 7 0 268 7 1 269 7 2 270 7 2	11 21 17 16 44 17 11 69 18 16 96 18 12 25 18 17 56 18 2 89 16	7 779 581 7 984 728 3 191 447 3 399 744 3 609 625	16.1554944 16.1864141 16.2172747 16.2480768	6.3906765 6.3988279 6.4069585 6.4150687	.003831418 .003816794 .003802281 .003787879
262 6 8 263 6 9 264 6 9 265 7 0 266 7 0 267 7 1 268 7 1 269 7 2 270 7 2	16 44 17 18 18 18 18 18 18 18 18 18 18 18 18 18	7 984 728 3 191 447 3 399 744 3 609 625	16.1864141 16.2172747 16.2480768	6.3988279 6.4069585 6.4150687	.003816794 .003802281 .003787879
262 6 8 263 6 9 264 6 9 265 7 0 266 7 0 267 7 1 268 7 1 269 7 2 270 7 2	16 44 17 18 18 18 18 18 18 18 18 18 18 18 18 18	7 984 728 3 191 447 3 399 744 3 609 625	16.1864141 16.2172747 16.2480768	6.3988279 6.4069585 6.4150687	.003816794 .003802281 .003787879
263 6 9 264 6 9 7 0 266 7 0 268 7 1 268 7 270 7 2	1 69   18 6 96   18 92 25   18 97 56   18 92 89   19	3 191 447 3 399 744 3 609 625	16.2172747 16.2480768	6.4069585 6.4150687	.003802281 .003787879
264 6 9 265 7 0 266 7 0 267 7 1 268 7 1 269 7 2 270 7 2	06 96   18 02 25   18 07 56   18 02 89   19	3 399 744 3 609 625	16.2480768	6.4150687	.003787879
265 7 0 266 7 0 267 7 1 268 7 1 269 7 2 270 7 2	2 25   18 7 56   18 2 89   19	609 625			
266 7 0 267 7 1 268 7 1 269 7 2 270 7 2	7 56 18 2 89 19		10.2700200		.003773585
267 7 1 268 7 1 269 7 2 270 7 2	.2 89   19	891 006	i	0.1231000	.000110001
267 7 1 268 7 1 269 7 2 270 7 2	.2 89   19		16.3095064	6.4312276	.003759398
268 7 1 269 7 2 270 7 2		034 163	16.3401346	6.4392767	.003745318
269 7 2 270 7 2	X 24   19	248 832	16.3707055	6.4473057	.003731343
270 7 2		465 109	16.4012195	6.4553148	.003717472
271 73		683 000	16.4316767	6.4633041	.003703704
271 73			10 4000770	0 4710770	00200027
000 0	4 41   18	902 511	16.4620776	6.4712736	.003690037 .003676471
		123 648	16.4924225	6.4792236	
273 7 4	5 29   20	346 417	16.5227116	6.4871541	.003663004
		570 824	16.5529454	6.4950653	.003636364
275 7 5	6 25 20	796 875	16.5831240	6.5029572	.003030304
276 76	1 76 21	024 576	16.6132477	6.5108300	.003623188
		253 933	16.6433170	6.5186839	.003610108
278 77		484 952	16.6733320	6.5265189	.003597122
279 77	8 41 21	717 639	16.7032931	6.5343351	.003584229
280 78	4 00 2	952 000	16.7332005	6.5421326	.003571429
281 78	9 61 2	188 041	16.7630546	6.5499116	.003558719
		425 768	16.7928556	6.5576722	.003546099
		665 187	16.8226038	6.5654144	.003533569
		906 304	16.8522995	6.5731385	.003521127
		149 125	16.8819430	6.5808443	.003508772
260 01	20   20	148 120	10.0010100	0.0000110	.000000112
286 81	7 96   23	393 656	16.9115345	6.5885323	. 003496503
287 8 2	3 69 2	639 903	16.9410743	6.5962023	.003484321
		887 872	16.9705627	6.6038545	.003472222
289 8 3	5 21. 24	137 569	17.0000000	6.6114890	.003460208
		1 389 000	17.0293864	6.6191060	.003448276
001 04		040 171	17 0507901	a anator4	002428498
	6 81 24 2 64 24	642 171 897 088	17.0587221	6.6267054 6.6342874	.003436426
	8 49 26	153 757	17.0880075 17.1172428	6.6418522	.003424658
		5 412 184	17.1464282	6.6493998	.003401361
295 87	0 25   28	672 375	17.1755640	6.6569302	.003389831
		934 336	17.2046505	6.6644437	.003378378
	2 09   26	198 073	17.2336879 17.2626765	6.6719403	.003367003
	8 04   26	463 592	17.2020/65	6.6794200	.003355705
		730 899	17.2916165	6.6868831	.003344482
300 9 0		000 000	17.3205081	6.6943295	.003333333

Table 96 (Continued)
Squares, Cubes, Square Roots, Cube Roots, Reciprocals

Num.	Square	Cube	Square root	Cube root	Reciprocal
301	9 06 01	27 270 901	17.3493516	6.7017593	.003322259
302	9 12 04	27 543 608	17.3781472	6.7091729	.003311258
303	9 18 09	27 818 127	17.4068952	6.7165700	.003300330
304	9 24 16	28 094 464	17.4355958	6.7239508	.003289474
305	9 30 25	28 372 625	17.4642492	6.7313155	.003278689
306	9 36 36	28 652 616	17.4928557	6.7386641	.003267974
307	9 42 49	28 934 443	17.5214155	6.7459967	.003257329
308	9 48 64	29 218 112	17.5499288	6.7533134	.003246753
309	9 54 81	29 503 629	17.5783958	6.7606143	.003236246
310	9 61 00	29 791 000	17.6068169	6.7678995	.003225806
"-"	0 02 00	20 102 000	20.000200	0	.000220000
311	9 67 21	30 080 231	17.6351921	6.7751690	.003215434
312	9 73 44	30 371 328	17.6635217	6.7824229	.003205128
313	9 79 69	30 664 297	17.6918060	6.7896613	.003194888
314	9 85 96	30 959 144	17.7200451	6.7968844	.003184713
315	9 92 25	31 255 875	17.7482393	6.8040921	.003174603
316	9 98 56	31 554 496	17.7763888	6.8112847	.003164557
317	10 04 89	31 855 013	17.8044938	6.8184620	.003154574
318	10 11 24	32 157 432	17.8325545	6.8256242	.003144654
319	10 17 61	32 461 759	17.8605711	6.8327714	.003134796
320	10 24 00	32 768 000	17.8885438	6.8399037	.003125000
l					
321	10 30 41	33 076 161	17.9164729	6.8470213	.003115265
322	10 36 84	33 386 248	17.9443584	6.8541240	.003105590
323	10 43 29	33 698 267	17.9722008	6.8612120	.003095975
324	10 49 76	34 012 224	18.0000000	6.8682855	.003086420
325	10 56 25	34 328 125	18.0277564	6.8753443	.003076923
	40.00 -0	04 047 070	10 0551501		
326	10 62 76	34 645 976	18.0554701	6.8823888	.003067485
327	10 69 29	34 965 783	18.0831413	6.8894188	.003058104
328	10 75 84	35 287 552	18.1107703	6.8964345	.003048780
329	10 82 41	35 611 289	18.1383571	6.9034359	.003039514
330	10 89 00	35 937 000	18.1659021	6.9104232	.003030303
331	10 95 61	36 264 691	18.1934054	6.9173964	.003021148
332	11 02 24	36 594 368	18.2208672	6.9243556	.003011148
333	11 08 89	36 926 037	18.2482876	6.9313008	.003003003
334	11 15 56	37 259 704	18.2756669	6.9382321	.002994012
335	11 22 25	37 595 375	18.3030052	6.9451496	.002985075
1 000	11 22 20	21 000 010	10.000000	0.0101100	
336	11 28 96	37 933 056	18.3303028	6.9520533	.002976190
337	11 35 69	38 272 753	18.3575598	6.9589434	.002967359
338	11 42 44	38 614 472	18.3847763	6.9658198	.002958580
339	11 49 21	38 958 219	18.4119526	6.9726826	.002949853
340	11 56 00	39 304 000	18.4390889	6.9795321	.002941176
1				<b>-</b>	
341	11 62 81	39 651 821	18.4661853	6.9863681	.002932551
342	11 69 64	40 001 688	18.4932420	6.9931906	.002923977
343	11 76 49	40 353 607	18.5202592	7.0000000	.002915452
344	11 83 36	40 707 584	18.5472370	7.0067962	.002906977
345	11 90 25	41 063 625	18.5741756	7.0135791	.002898551
1					
346	11 97 16	41 421 736	18.6010752	7.0203490	.002890173
347	12 04 09	41 781 923	18.6279360	7.0271058	.002881844
348	12 11 04	42 144 192	18.6547581	7.0338497	.002873563
349	12 18 01	42 508 549	18.6815417	7.0405806	.002865330
350	12 25 00	42 875 000	18.7082869	7.0472987	.002857143
	·		·	·	

Table 96 (Continued)
Squares, Cubes, Square Roots, Cube Roots, Reciprocals

Num.	Square	Cube	Square root	Cube root	Reciprocal
351	12 32 01	43 243 551	18.7349940	7.0540041	.002849003
352	12 32 01	43 614 208	18.7616630	7.0606967	.002840909
353	12 46 09	43 986 977	18.7882942	7.0673767	.002832861
354	12 53 16	44 361 864	18.8148877	7.0740440	.002824859
355	12 60 25	44 738 875	18.8414437	7.0806988	.002816901
356	12 67 36	45 118 016	18.8679623	7.0873411	.002808989
357	12 74 49	45 499 293	18.8944436	7.0939709	.002801120
358	12 81 64	45 882 712	18.9208879	7.1005885	.002793296
359	12 88 81	46 268 279	18.9472953	7.1071937	.002785515
360	12 96 00	46 656 000	18.9736660	7.1137866	.002777778
361	13 03 21	47 045 881	19.0000000	7.1203674	.002770083
362	13 10 44	47 437 928	19.0262976	7.1269360	.002762431
363	13 17 69	47 832 147	19.0525589	7.1334925	.002754821
364	13 24 96	48 228 544	19.0787840	7.1400370	.002747253
365	13 32 25	48 627 125	19.1049732	7.1465695	.002739726
366	13 39 56	49 027 896	19.1311265	7.1530901	.002732240
. 367	13 46 89	49 430 863	19.1572441	7.1595988	.002724796
368	13 54 24	49 836 032	19.1833261	7.1660957	.002717391
369	13 61 61	50 243 409	19.2093727	7.1725809	.002710027
370	13 69 00	50 653 000	19.2353841	7.1790544	.002702703
371	13 76 41	51 064 811	19.2613603	7.1855162	.002695418
372	13 83 84	51 478 848	19.2873015	7.1919663	.002688172
373	13 91 29	51 895 117	19.3132079	7.1984050	.002680965
374	13 98 76	52 313 624	19.3390796	7.2048322	.002673797
375	14 06 25	52 734 375	19.3649167	7.2112479	.002666667
376	14 13 76	53 157 376	19.3907194	7.2176522	.002659574
377	14 21 29	53 582 633	19.4164878	7.2240450	.002652520
378	14 28 84	54 010 152	19.4422221	7.2304268	.002645503
379	14 36 41	54 439 939	19.4679223	7.2367972	.002638522
380	14 44 00	54 872 000	19.4935887	7.2431565	.002631579
381	14 51 61	55 306 341	19.5192213	7.2495045	.002624672
382	14 59 24	55 742 968	19.5448203	7.2558415	.002617801
383	14 66 89	56 181 887	19.5703858	7.2621675	.002610966
384	14 74 56	. 56 623 104	19.5959179	7.2684824	.002604167
385	14 82 25	57 066 625	19.6214169	7.2747864	.002597403
386	14 89 96	57 512 456	19.6468827	7.2810794	.002590674
387	14 97 69	57 960 603	19.6723156	7.2873617	.002583979
388	15 05 44	58 411 072	19.6977156	7.2936330	.002577320
389	15 13 21	58 863 869	19.7230829	7.2998936	.002570694
390	15 21 00	59 319 000	19.7484177	7.3061436	.002564103
391	15 28 81	59 776 471	19.7737199	7.3123828	.002557545
392	15 36 64	60 236 288	19.7989899	7.3186114	.002551020
393	15 44 49	60 698 457	19.8242276	7.3248295	.02544529
394	15 52 36	61 162 984 . 61 629 875	19.8494332 19.8746069	7.3310369	.002538071
395	15 60 25	01 028 9/5	19.0140009	7.3372339	.002531646
396	15 68 16	62 099 136	19.8997487	7.3431205	.002525253
397	15 76 09	62 570 773	19.9248588	7.3495966	.002518892
398 399	15 84 04 15 92 01	63 044 792 63 521 199	19.9499373 19.9749844	7.3557624 7.3619178	.002512563
400	16 00 00	64 000 000	20.0000000	7.3680630	.002506266
±00	10 00 00	V 000 000	20.000000	1.0000000	.00200000

TABLE 96 (Continued) SQUARES, CUBES, SQUARE ROOTS, CUBE ROOTS, RECIPROCALS

Num.	Square	Cube	Square root	Cube root	Reciprocal
401 402	16 08 01 16 16 04	64 481 201 64 964 808	20.0249844 20.0499377	7.3741979 7.3803227	.002493766 .002487562
403	16 24 09	65 450 827	20.0748599	7.3864373	.002481390
404	16 32 16	65 939 264	20.0997512	7.3925418	.002475248
405	16 40 25	66 430 125	20.1246118	7.3986363	.002469136
	40 10 20	00 100 120	_		
406	16 48 36	66 923 416	20.1494417	7.4047206	.002463054
407	16 56 49	67 419 143	20.1742410	7.4107950	.002457002
408	16 64 64	67 917 312	20.1990099	7.4168595	.002450980
409	16 72 81	68 417 929	20.2237484	7.4229142	.002444988
410	16 81 00	68 921 000	20.2484567	7.4289589	.002439024
	10 01 00	00 022 000	,		
411	16 89 21	69 426 531	20.2731349	7.4349938	.002433090
412	16 97 44	69 934 528	20.2977831	7.4410189	.002427184
413	17 05 69	70 444 997	20.3224014	7.4470342	.002421308
414	17 13 96	70 957 944	20.3469899	7.4530399	.002415459
415	17 22 25	71 473 375	20.3715488	7.4590359	.002409639
416	17 30 56	71 991 296	20.3960781	7.4650223	.002403846
417	17 38 89	72 511 713	20.4205779	7.4709991	.002398082
418	17 47 24	73 034 632	20.4450483	7.4769664	.002392344
419	17 55 61	73 560 059	20.4694895	7.4829242	.002386635
420	17 64 00	74 088 000	20.4939015	7.4888724	.002380952
			•		
421	17 72 41	74 618 461	° 20.5182845	7.4948113	.002375297
422	17 80 84	75 151 448	20.5426386	7.5007406	.002369668
423	17 89 29	75 686 967	20.5669638	7.5066607	.002364066
424	17 97 76	76 225 024	20.5912603	7.5125715	.002358491
425	18 06 25	76 765 625	20.6155281	7.5184730	.002352941
426	18 14 76	77 308 776	20.6397674	7.5243652	.002347418
427	18 23 29	77 854 483	20.6639783	7.5302482	.002341920
428	18 31 84	78 402 752	20.6881609	7.5361221	.002336449
· 429	18 40 41	78 953 589	20.7123152	7.5419867	.002331002
430	18 49 00	79 507 000	20.7364414	7.5478423	.002325581
431	18 57 61	80 062 991	20.7605395	7.5536888	.002320186
432	18 66 24	80 621 568	20.7846097	7.5595263	.002314815
433	18 74 89	81 182 737	20.8086520	7.5653548	.002309469
434	18 83 56	81 746 504	20.8326667	7.5711743	.002304147
435	18 92 25	82 312 875	20.8566536	7.5769849	.002298851
			00 0000100	7 5007007	000002570
436	19 00 96	82 881 856	20.8806130	7.5827865	.002293578
437	19.09 69	83 453 453	20.9045450	7.5885793	.002288330
438	19 18 44	84 027 672	20.9284495	7.5943633	.002283105 .002277904
439	19 27 21	84 604 519	20.9523268	7.6001385	.002277904
440	19 36 00	85 184 000	20.9761770	7.6059049	.002212121
!	10 /4 65	07 700 101	91 0000000	7.6116626	.002267574
441	19 44 81	85 766 121	21.0000000 21.0237960	7.6174116	.002262443
442	19 53 64	86 350 888		7.6231519	.002257336
443	19 62 49	86 938 307	21.0475652	7.6288837	.002252252
444	19 71 36	87 528 384	21.0713075	7.6346067	.002232232
445	19 80 25	88 121 125	21.0950231	1.0040007	.002241181
440	100010	00 710 890	21.1187121	7.6403213	.002242152
446	19 89 16	88 716 536	21.1423745	7.6460272	.002237136
447	19 98 09	89 314 623	21.1423745	7.6517247	.002232143
448	20 07 04	89 915 392	21.1896201	7.6574138	.002227171
449	20 16 01	90 518 849	21.2132034	7.6630943	002222222
450	20 25 00	91 125 000	41.4104004	1.0000040	,0222222

Table 96 (Continued)

Square	s, Cubes	, Square R	oots, Cube	Roots, R	ECIPROCALS
Num.	Square	Cube	Square root	Cube root	Reciprocal
451	20 34 01	91 733 851	21.2367606	7.6687665	.002217295
452	20 43 04	92 345 408	21.2602916	7.6744303	.002212389
453	20 52 09	92 959 677	21.2837967	7.6800857	.002207506
454	20 61 16	93 576 664	21.3072758	7.6857328	.002202643
455	20 70 25	94 196 375	21.3307290	7.6913717	.002197802
456	20 79 36	94 818 816	21.3541565	7.6970023	.002192982
457	20 88 49	95 443 993	21.3775583	7.7026246	.002188184
458	20 97 64	96 071 912	21.4009346	7.7082388	.002183406
459	21 06 81	96 702 579	21.4242853	7.7138448	.002178649
460	21 16 00	97 336 000	21.4476106	7.7194426	.002173913
461	21 25 21	97 972 181	21.4709106	7.7250325	.002169197
462	21 34 44	98 611 128	21.4941853	7.7306141	.002164502
463	21 43 69	99 252 847	21.5174348	7.7361877	.002159827
464	21 52 96	99 897 344	21.5406592	7.7417532	.002155172
465	21 62 25	100 544 625	21.5638587	7.7473109	.002150538
466	21 71 56	101 194 696	21.5870331	7.7528606	.002145923
467	21 80 89	101 847 563	21.6101828	7.7584023	.002141328
468	21 90 24	102 503 232	21.6333077	7.7639361	.002136752
469	21 99 61	103 161 709	21.6564078	7.7694620	.002132196
470	22 09 00	103 823 000	21.6794834	7.7749801	.002127660
471	22 18 41	104 487 111	21.7025844	7.7804904	.002123142
472	22 27 84	105 154 048	21.7255610	7.7859928	.002118644
473	22 37 29	105 823 817	21.7485632	7.7914875	.002114165
474	22 46 76	106 496 424	21.7715411	7.7969745	.002109705
475	22 56 25	107 171 875	21.7944947	7.8024538	.002105263
476	22 65 76	107 850 176	21.8174242	7.8079254	.002100840
477	22 75 29	108 531 333	21.8403297	7.8133892	.002096436
478	22 84 84	109 215 352	21.8632111	7.8188456	.002092050
479	22 94 41	109 902 239	21.8860686	7.8242942	.002087683
480	23 04 00	110 592 000	21.9089023	7.8297353	.002083333
481	23 13 61	111 284 641	21.9317122	7.8351688	.002079002
482	23 23 24	111 980 168	21.9544984	7.8405949	.002074689
483	23 32 89	112 678 587	21.9772610	7.8460134	.002070393
484	23 42 56	113 379 904	22.0000000	7.8514244	.002066116
485	23 52 25	114 084 125	22.0227155	7.8568281	.002061856
486	23 61 96	114 791 256	22.0454077	7.8622242	.002057613
487	23 71 69	115 501 303	22.0680765	7.8676130	.002053388
488	23 81 44	116 214 272	22.0907220	7.8729944	.002049180
489	23 91 21	116 930 169	22.1133444	7.8783684	.002044990
490	24 01 00	117 649 000	22.1359436	7.8837352	.002040816
491	24 10 81	118 370 771	22.1585198	7.8890946	.002036660
492	24 20 64	119 095 488	22.1810730	7.8944468	.002032520
493	24 30 49	119 823 157	22.2036033	7.8997917	.002028398
494	24 40 36	120 553 784	22.2261108	7.9051294	.002024291
495	24 50 25	121 287 375	22.2485955	7.9104599	.002020202
496	24 60 16	122 023 936	22.2710575	7.9157832	.002016129
497	24 70 09	122 763 473	22.2934968	7.9210994.	.002012072
498	24 80 04	123 505 992	22.3159136	7.9264085	.002008032
499	24 90 01	124 251 499	22.3383079	7.9317104	.002004008
500	25 00 00	125 000 000	22.3606798	7.9370053	.002000000

Table 96 (Continued)
Squares, Cubes, Square Roots, Cube Roots, Reciprocals

Num.         Square         Cube         Square root         Cube root         Reciprocal           501         25 10 01         125 751 501         22 .3830293         7 .9422931         .001996008           502         25 20 04         126 506 008         22 .4053565         7 .9475739         .001992032           503         25 30 09         127 263 527         22 .4276615         7 .9528477         .001988072           504         25 40 16         128 024 064         22 .4494438         7 .9683743         .001980198           506         25 60 36         129 554 216         22 .4944438         7 .9683743         .001972887           507         25 70 49         130 323 843         22 .5166605         7 .9787331         .001972887           508         25 90 81         131 872 229         22 .5610283         7 .9843444         .001968504           501         26 10 00         132 651 000         22 .5831796         7 .9895697         .001960784           511         26 11 24         134 24 17 728         22 .6053091         7 .9443844         .001963125           512 .50 25         136 500 875         22 .693614         8 .014032         .001960784           512 26 25 25         136 500 875         22 .693614 </th <th></th> <th></th> <th></th> <th></th> <th></th> <th></th>						
502         25 20 04         126 506 008         22 4058365         7.9476739         001992032           504         25 40 16         128 024 064         22 4479413         7.958477         001980072           505         25 50 25         128 787 625         22 4479443         7.9583743         001980198           506         25 60 36         129 554 216         22 4949443         7.963673743         001980198           507         25 70 49         130 323 843         22.5166605         7.9738731         001972387           508         25 80 64         131 096 512         22.5388553         7.9791122         001986504           509         25 90 81         131 872 229         22.5610283         7.9843444         001984504           510         26 01 00         132 651 000         22.5831796         7.9895697         001960784           511         26 11 21         133 432 831         22.6053091         7.9947883         001956947           512         26 21 44         134 217 728         22.6495033         8.052049         0019493125           513         26 31 69 135 005 697         22.6936114         8.015032         0019493125           516         26 52 25         136 500 875         22.6936114	Num.	Square	Cube	Square root	Cube root	Reciprocal
502         25 20 04         126 506 008         22 4058365         7.9476739         001992032           504         25 40 16         128 024 064         22 4479413         7.958477         001980072           505         25 50 25         128 787 625         22 4479443         7.9583743         001980198           506         25 60 36         129 554 216         22 4949443         7.963673743         001980198           507         25 70 49         130 323 843         22.5166605         7.9738731         001972387           508         25 80 64         131 096 512         22.5388553         7.9791122         001986504           509         25 90 81         131 872 229         22.5610283         7.9843444         001984504           510         26 01 00         132 651 000         22.5831796         7.9895697         001960784           511         26 11 21         133 432 831         22.6053091         7.9947883         001956947           512         26 21 44         134 217 728         22.6495033         8.052049         0019493125           513         26 31 69 135 005 697         22.6936114         8.015032         0019493125           516         26 52 25         136 500 875         22.6936114	501	25 10 01	125 751 501	22 3830293	7 9422931	001006008
503         25 30 09         127 263 527         22 4276615         7.9528477         .001988072           504         25 40 16         128 024 064         22 4494438         7.9683743         .001980198           506         25 60 36         129 554 216         22 .4944438         7.9686271         .001972885           507         25 70 49         130 323 843         22 .5166605         7.9738731         .001972885           508         25 80 64         131 987 229         22 .5838553         7.9871122         .00198864           509         25 90 81         131 872 229         22 .56510283         7.9843444         .00194637           510         26 01 00         132 651 000         22 .5831796         7.9895697         .0019090           511         26 11 21         133 432 831         22 .6053091         7.9947883         .001956947           512         28 21 44         134 217 728         22 .3874170         8.0050049         .001949318           513         26 31 69         135 095 697         22 .4945033         8.0052049         .001945525           515         26 52 25         136 505 697         22 .6933611         8.0155946         .001945525           516         26 56         137 388 096 <th></th> <th></th> <th></th> <th></th> <th></th> <th></th>						
504         25 40 16         128 024 064         22 4499443         7.9581144         001984127           505         25 50 25         128 787 625         22 4722051         7.9633743         .001980198           506         25 60 36         129 554 216         22 4944438         7.9686271         .001976285           507         25 70 49         130 323 843         22 .5168605         7.9738731         .001972387           508         25 90 81         131 872 229         22.5610283         7.9791122         .001968647           501         26 01 00         132 651 000         22.5831796         7.9895697         .001960784           511         26 11 21         133 432 831         22 .6053091         7.9947883         .001956947           512         26 21 44         134 217 728         22 .6495033         8.0052049         .001943525           513         26 31 69         135 796 744         22 .6715681         8.016032         .001943525           515         26 52 25         138 690         22 .715634         8.0259574         .001937884           517         26 72 89         138 184 413         22 .7376340         8.0259574         .001943525           518         26 83 24         138 978 8359						
505         25 50 25         128 787 625         22 .4722061         7.9633743         .001980198           506         25 60 36         129 554 216         22 .4944438         7.9686271         .001976285           507         25 70 49         130 323 843         22 .5168605         7.9738731         .001972387           508         25 80 64         131 08612         22 .5888533         7.991122         .001968504           500         25 90 81         131 872 229         22 .5610283         7.9843444         .001960784           511         26 11 21         133 432 831         22 .6053091         7.9947883         .001960784           512         28 21 44         134 217 728         22 .6274170         8.000000         .001956947           513         26 31 69         135 005 697         22 .6936114         8.0155946         .001945525           516         26 52 25         136 590 875         22 .6936114         8.0155946         .00194525           517         28 72 89         138 188 413         22 .7376340         8.0259574         .001934236           518         26 33 61         139 798 379         22 .7815715         8.0362935         .00193436           520         27 40 00         140 608 000 </th <th></th> <th></th> <th></th> <th></th> <th></th> <th></th>						
506         25 60 36         129 554 216         22 4944438         7.9686271         .001976285           507         25 70 49         130 323 843         22 5166605         7.9738731         .001972387           508         25 90 81         131 872 229         22.56810283         7.9873444         .001964637           510         26 01 00         132 651 000         22.5831796         7.9895697         .001960784           511         26 11 21         133 432 831         22.6674170         8.000000         .001953125           513         28 31 69         135 796 744         22.67715681         8.0052049         .001949318           514         28 41 96         135 796 744         22.67715681         8.0104032         .001947748           516         26 62 56         137 388 096         22.7156314         8.0259574         .001937984           517         26 72 89         138 188 413         22.7376340         8.0259574         .001937984           517         26 72 89         138 188 413         22.7356134         8.031277         .00193072           519         26 36 1         139 798 359         22.7815715         8.0362935         .00194743           520         27 04 00         140 608 000						
507         25 70 49         130 323 843         22 .5166605         7 .9738731         .00197287           508         25 80 64         131 086 512         22 .5388553         7 .9791122         .001968504           509         25 90 81         131 872 229         22 .5810283         7 .9943444         .001964037           511         26 11 21         133 432 831         22 .6074170         8 .000000         .001956047           512         28 21 44         134 217 728         22 .6274170         8 .000000         .001956047           513         28 31 69         135 005 607         22 .6495033         8 .0052049         .001949218           514         28 41 96         135 796 744         22 .6715681         8 .0104032         .00194525           515         26 52 25         136 590 875         22 .6936114         8 .0155946         .001941748           516         26 62 56         137 388 096         22 .7156314         8 .0207794         .001937984           517         28 72 89         138 188 413         22 .7596134         8 .0311287         .001937984           518         26 83 61         139 798 359         22 .7596134         8 .0311287         .001937984           520         27 04 00						
508         25 80 64         131 096 512         22 538853         7.9791122         .001964637           510         26 01 00         132 651 000         22 5831796         7.9895697         .001964637           511         26 11 21         133 432 831         22 .6053091         7.9947883         .001956947           512         26 31 69         135 005 607         22 .6495033         8.0000000         .001953125           514         26 41 96         135 796 744         22 .6715681         8.0104032         .001949318           516         26 52 25         136 590 875         22 .6936114         8.0155946         .001941748           516         26 62 56         137 388 91 832         22 .7376340         8.027794         .001934236           518         26 83 24         138 188 413         22 .7376340         8.0259574         .001934236           519         26 93 61         139 798 359         22 .7586134         8.0311287         .001934236           520         27 04 00         140 608 000         22 .8935085         8.0414515         .001923077           521         27 14 41         141 20 761         22 .854244         8.0466030         .001918386           522         27 24 84         142 236 64						
509         25 90 81         131 872 229         22.5610283         7.9843444         .001960784           511         26 01 00         132 651 000         22.5831796         7.9895697         .001960784           511         28 11 21         133 432 831         22.6053091         7.9947883         .001956947           512         28 21 44         134 217 728         22.6495033         8.0052049         .001945215           513         26 31 69         135 005 697         22.6495033         8.0052049         .001945215           516         26 41 96         135 796 7744         22.6715681         8.0104032         .001945525           516         26 52 55         136 590 875         22.6936114         8.0155946         .00194748           517         26 72 89         138 188 413         22.7376340         8.0259574         .001937984           518         26 83 24         138 991 832         22.7596134         8.0311287         .00193072           519         26 93 61         139 798 359         22.7815715         8.0362935         .001923782           520         27 04 00         140 608 000         22.8935085         8.0414515         .00192377           521         27 14 41         141 20 761					7.9738731	
510         26 01 00         132 651 000         22.5831796         7.9895697         .001960784           511         28 11 21         133 432 831         22.6053091         7.9947883         .001956947           513         26 31 69         135 005 607         22.6495033         8.000000         .0019349318           514         26 41 96         135 796 744         22.6715681         8.0104032         .001944525           516         26 52 25         136 590 875         22.6936114         8.0155946         .001941748           517         28 72 89         138 188 413         22.7376340         8.027794         .001937984           518         26 83 24         138 188 413         22.7376340         8.0259574         .001937984           519         26 93 61         139 798 359         22.7815715         8.0362935         .001926782           520         27 04 00         140 608 000         22.805085         8.0414515         .001923077           521         27 14 41         141 420 761         22.854244         8.0466030         .001923077           521         27 14 47         141 877 824         22.8919433         8.058862         .001912046           522         27 24 84         142 236 648						
511         28 11 21         133 432 831         22 6053091         7.9947883         .001956947           512         28 21 44         134 217 728         22 .68274170         8.000000         .001953125           513         26 4 196         135 706 744         22 .6475033         8.0052049         .00194525           516         26 4 196         135 796 744         22 .6936114         8.0155946         .001941748           516         26 52 25         138 58 413         22 .7376340         8.0259574         .001937984           517         26 72 89         138 188 413         22 .7376340         8.0259574         .001937984           518         26 83 24         138 991 832         22 .7596134         8.031257         .001930602           519         26 93 61         139 798 359         22 .7815715         8.0362935         .001923077           521         27 14 41         414 20 761         22 .8554244         8.046030         .001913007           522         27 24 84         142 236 648         2.8473193         8.0517479         .001913709           523         27 35 29         143 055 667         22 .8691933         8.0568862         .00191014762           526         27 66 76         145 531 576 </th <th></th> <th></th> <th></th> <th></th> <th></th> <th></th>						
512         26 21 44         134 217 728         22 6274170         8 0000000         001953125           513         28 31 69         135 076 744         22 6715681         8 0052049         001949318           514         28 41 96         135 796 744         22 6715681         8 0104032         001945525           515         26 52 25         136 590 875         22 6936114         8 .0155946         .001941748           516         26 62 56         137 388 096         22 .7156334         8 .0207794         .001934236           518         26 83 24         138 188 413         22 .7376340         8 .0259574         .001934236           519         26 93 61         139 798 359         22 .7315715         8 .0341257         .00193692           520         27 04 00         140 608 000         22 .8035085         8 .0414515         .001923077           521         27 14 41         141 20 761         22 .8254244         8 .0466030         .001918386           522         27 24 84         142 236 648         22 .8473193         8 .0514851         .001912046           524         27 45 76         143 877 824         22 .8910463         8 .062180         .001904762           526         27 66 76         145 531 5	510	26 01 00	132 051 000	22.5831796	7.9895697	.001960784
512         26 21 44         134 217 728         22 6274170         8 0000000         001953125           513         28 31 69         135 076 744         22 6715681         8 0052049         001949318           514         28 41 96         135 796 744         22 6715681         8 0104032         001945525           515         26 52 25         136 590 875         22 6936114         8 .0155946         .001941748           516         26 62 56         137 388 096         22 .7156334         8 .0207794         .001934236           518         26 83 24         138 188 413         22 .7376340         8 .0259574         .001934236           519         26 93 61         139 798 359         22 .7315715         8 .0341257         .00193692           520         27 04 00         140 608 000         22 .8035085         8 .0414515         .001923077           521         27 14 41         141 20 761         22 .8254244         8 .0466030         .001918386           522         27 24 84         142 236 648         22 .8473193         8 .0514851         .001912046           524         27 45 76         143 877 824         22 .8910463         8 .062180         .001904762           526         27 66 76         145 531 5	511	98 11 91	133 432 831	22 6053001	7 0047883	001056047
513         26 31 69         125 005 697         22 6495033         8 0052049         001949218           514         26 41 96         135 796 744         22 6715681         8 0104032         001945525           515         28 52 25         136 590 875         22 .6936114         8 .0155946         .001941748           516         26 62 56         137 388 096         22 .7156334         8 .0207794         .001937984           517         26 72 89         138 188 413         22 .7376340         8 .0259574         .001934236           519         26 83 24         138 991 832         22 .7396134         8 .031227         .001930502           520         27 04 00         140 608 000         22 .8035085         8 .0414515         .001923077           521         27 14 41         141 207 61         22 .8254244         8 .0466030         .001919386           522         27 24 84         142 236 648         22 .8473193         8 .0517479         .001915709           523         27 35 29         143 055 667         22 .8910463         8 .0620180         .001905746           524         27 45 76         143 877 824         22 .912875         8 .0671432         .001904762           526         27 66 76         145 5						
514         26 41 96         135 796 744         22 .6715681         8 .0104032         .00194525           516         26 52 25         136 590 875         22 .6936114         8 .0155946         .001941748           516         26 62 56         137 38 98 98         22 .7156334         8 .0259574         .001937984           517         26 72 89         138 188 413         22 .7376340         8 .0259574         .001934236           518         26 83 24         138 991 832         22 .7596134         8 .0311287         .00193602           520         27 04 00         140 608 000         22 .8035085         8 .0414515         .001923077           521         27 14 41         141 420 701         22 .8254244         8 .046030         .00191386           522         27 35 29         143 055 667         22 .891933         8 .0517479         .00191836           522         27 45 76         143 877 824         22 .8910463         8 .0671432         .00190476           524         27 65 25         144 703 125         22 .9128785         8 .0671432         .00190476           526         27 66 76         145 531 576         22 .9346899         8 .072260         .00190476           527 77 29         146 363 183				22.6495033		
516         26 52 25         136 590 875         22.6936114         8.0155946         .001941748           516         26 62 56         137 388 096         22.7156334         8.0207794         .001937984           517         26 72 89         138 188 413         22.7376340         8.0259574         .001934236           518         26 83 24         138 991 832         22.7596134         8.031297         .001930602           519         26 93 61         139 798 359         22.7515715         8.0362935         .001923077           520         27 04 00         140 608 000         22.8035085         8.0414515         .001923077           521         27 14 41         141 420 761         22.8254244         8.0466030         .001918709           522         27 24 84         142 236 648         22.8473193         8.0517479         .001918709           523         27 35 29         143 055 667         22.8910463         8.062189         001908397           524         27 45 76         143 877 824         22.8910463         8.0671432         001904762           526         27 66 76         145 531 576         22.9346899         8.0722620         001901141           527         27 77 29         146 363 183						
516         26 62 56         137 388 096         22 7156334         8 .0207794         .001937984           517         28 72 89         138 188 413         22 .7376340         8 .0259574         .001934236           518         26 83 24         138 991 832         22 .7596134         8 .0311287         .001930502           520         27 04 00         140 608 000         22 .8035085         8 .0414515         .00192077           521         27 14 41         141 420 761         22 .825424         8 .056862         .001923077           521         27 24 84         142 236 648         22 .8473193         8 .0517479         .001915700           522         27 24 84         143 857 824         22 .8910463         8 .0568862         .001912046           524         27 56 25         144 70 3125         22 .9128785         8 .0671432         .001904762           526         27 66 76         145 531 576         22 .9346899         8 .0722620         .001901141           527         27 77 29         146 363 183         22 .9782506         8 .0824800         .00189335           529         27 98 41         147 197 952         22 .9782506         8 .0824800         .001890359           530         28 19 61         1						
517         28 72 89         138 188 413         22 .7366340         8 .0259574         .001934236           518         28 83 24         138 991 832         22 .7596134         8 .031297         .001930502           520         27 04 00         140 608 000         22 .8035085         8 .0414515         .001926782           520         27 04 00         140 608 000         22 .8035085         8 .0414515         .001928077           521         27 14 41         141 420 761         22 .824244         8 .0466030         .001919386           522         27 24 84         142 236 648         22 .8473193         8 .0517479         .001915709           523         27 35 29         143 055 667         22 .8910463         8 .0620180         .001908397           524         27 56 25         144 703 125         22 .9128785         8 .0671432         .001904762           526         27 66 76         145 531 576         22 .9348899         8 .0722620         .001904762           527         27 77 29         146 363 183         22 .9782506         8 .0824800         .001890393           529         27 88 41         147 197 1962         22 .9782506         8 .0824800         .001890359           530         28 19 61         <						
518         26 83 24         138 991 832         22.7596134         8.0311287         .001930602           520         27 04 00         140 608 000         22.8035085         8.03414515         .001923077           521         27 14 41         141 420 761         22.8254244         8.0466030         .001923077           521         27 14 41         141 420 761         22.8254244         8.0466030         .001913706           523         27 35 29         143 055 667         22.8473193         8.0568862         .001912046           524         27 45 76         143 877 824         22.8910463         8.0671432         .001904762           526         27 66 76         145 531 576         22.9346899         8.072260         .001904762           526         27 67 729         146 363 183         22.9584806         8.0723743         .001897533           528         27 87 84         147 197 952         22.9782506         8.0824800         .001897533           529         27 98 41         148 035 889         23.000000         8.0824800         .001897533           531         28 19 61         149 721 291         23.0434372         8.0926723         .001887535           532         28 30 24         150 568 768						
519         26 93 61         139 798 359         22.7815715         8.0362935         .001926782           520         27 04 00         140 608 000         22.8035085         8.0414515         .001923077           521         27 14 41         141 420 761         22.8254244         8.0466030         .001918709           522         27 24 84         142 236 648         22.8473193         8.0517479         .001915709           523         27 35 29         143 055 667         22.8910463         8.0620180         .001908397           525         27 45 76         143 877 824         22.8910463         8.0671432         .001904762           526         27 66 76         145 531 576         22.9346899         8.0722620         .001904762           527         27 77 29         146 363 183         22.9564806         8.0773743         .001897533           528         27 87 84         147 197 962         22.9782506         8.0824800         .001893939           529         27 98 41         148 035 889         23.0000000         8.0875794         .00189359           531         28 19 61         149 721 291         23.043737         8.0977589         .001883239           532         28 30 24         150 568 768						
520         27 04 00         140 608 000         22.8035085         8.0414515         .001923077           521         27 14 41         141 420 761         22.8254244         8.0466030         .001919386           522         27 24 84         142 236 648         22.8473193         8.0517479         .001912046           523         27 35 29         143 055 667         22.8919433         8.0568862         .001912046           524         27 45 76         143 877 824         22.8910463         8.0620180         .001904762           526         27 66 76         143 531 576         22.9128785         8.0671432         .001904762           527         27 77 29         146 363 183         22.9782506         8.0722620         .001901141           527         27 77 84         147 197 952         22.9782506         8.0824800         .001897533           529         27 98 41         148 035 889         23.000000         8.0824800         .001899359           530         28 09 00         148 877 000         23.0217289         8.0926723         .001886792           531         28 19 61         149 721 201         23.043472         8.0977589         .001876173           532         28 30 24         150 568 768				22.7596134		
521         27 14 41         141 420 761         22.8254244         8.0466030         .001919386           522         27 24 84         142 236 648         22.8473193         8.0517479         .001915709           523         27 35 29         143 055 667         22.8691933         8.0568862         .001912046           524         27 45 76         143 877 824         22.8910463         8.0620180         .001908397           525         27 56 25         144 703 125         22.9128785         8.0671432         .001904762           526         27 66 76         145 531 576         22.9346899         8.0722620         .001901141           527         27 77 29         146 363 183         22.958266         8.0824800         .001893939           529         27 87 84         147 197 962         22.9782506         8.0824800         .001893939           529         27 88 41         148 035 889         23.0000000         8.0875794         .001890359           531         28 19 61         149 721 291         23.0431728         8.0977589         .0018863239           532         28 30 24         150 568 768         23.0651252         8.1028390         .00187699           533         28 40 89         151 419 437						
522         27 24 84         142 236 648         22 .8473193         8 .0517479         .001915709           523         27 35 29         143 055 687         22 .8919433         8 .0620180         .001912046           524         27 45 76         143 877 824         22 .8910463         8 .0620180         .001902397           526         27 56 25         144 703 125         22 .9128785         8 .0671432         .001904762           526         27 66 76         145 531 576         22 .9346899         8 .0722620         .001901147           527         27 77 29         146 363 183         32 .9564806         8 .073743         .001897533           528         27 87 84         147 197 952         22 .9782506         8 .0824800         .001893939           529         27 98 41         148 8035 889         23 .0000000         8 .0875794         .001893939           530         28 09 00         148 877 000         23 .0217289         8 .0926723         .001880393           531         28 19 61         149 721 291         23 .0434372         8 .0977589         .001880393           532         28 30 24         150 568 768         23 .0651252         8 .1028390         .001876099           533         28 40 89	520	27 04 00	140 608 000	22.8030085	8.0414515	.001923077
522         27 24 84         142 236 648         22 .8473193         8 .0517479         .001915709           523         27 35 29         143 055 687         22 .8919433         8 .0620180         .001912046           524         27 45 76         143 877 824         22 .8910463         8 .0620180         .001902397           526         27 56 25         144 703 125         22 .9128785         8 .0671432         .001904762           526         27 66 76         145 531 576         22 .9346899         8 .0722620         .001901147           527         27 77 29         146 363 183         32 .9564806         8 .073743         .001897533           528         27 87 84         147 197 952         22 .9782506         8 .0824800         .001893939           529         27 98 41         148 8035 889         23 .0000000         8 .0875794         .001893939           530         28 09 00         148 877 000         23 .0217289         8 .0926723         .001880393           531         28 19 61         149 721 291         23 .0434372         8 .0977589         .001880393           532         28 30 24         150 568 768         23 .0651252         8 .1028390         .001876099           533         28 40 89	521	97 14 41	141 420 761	22 8254244	8 0488030	001010386
523         27 35 29         143 055 667         22 .8691933         8 .0568862         .001912046           524         27 45 76         143 877 824         22 .8910463         8 .0620180         .001906397           525         27 56 25         144 703 125         22 .9128785         8 .0671432         .001904762           526         27 66 76         145 531 576         22 .9346899         8 .0772620         .001901141           527         27 77 29         146 363 183         22 .9564806         8 .0773743         .001897533           528         27 87 84         147 197 992         22 .9782506         8 .0824800         .001893939           529         27 98 41         148 035 889         23 .0000000         8 .0875794         .00189359           530         28 09 00         148 877 000         23 .0217289         8 .0926723         .00188659           531         28 19 61         149 721 291         23 .0434372         8 .0977589         .001886792           532         28 40 89         151 419 437         23 .0867928         8 .1079128         .00187609           533         28 40 89         151 419 437         23 .0867928         8 .1023990         .001876253           535         28 62 25 <td< th=""><th>522</th><th></th><th></th><th></th><th></th><th></th></td<>	522					
524         27 45 76         143 877 824         22.8910463         8.0620180         .001908397           525         27 56 25         144 703 125         22.9128785         8.0671432         .001904762           526         27 66 76         145 531 576         22.9346899         8.0722602         .001901141           527         27 77 29         146 363 183         22.9584806         8.0824800         .001897533           528         27 87 84         147 197 952         22.9782506         8.0824800         .001897533           530         28 09 00         148 877 000         23.0217289         8.0926723         .001886792           531         28 19 61         149 721 291         23.0434372         8.0977589         .001887693           532         28 30 24         150 568 768         23.0867928         8.1079128         .001876173           534         28 51 56         152 273 304         23.1084400         8.1129803         .001876173           535         28 62 25         153 130 375         23.1300670         8.1180414         .001862159           537         28 33 69         154 854 153         23.1732605         8.1281447         .001862197           538         28 72 96         156 390 819	523					
525         27 56 25         144 703 125         22.9128785         8.0671432         .001904762           526         27 66 76         145 531 576         22.9346899         8.0722620         .001901141           527         27 77 29         146 363 183         22.9584806         8.0773743         .001897533           528         27 87 84         147 197 952         22.9782506         8.0824800         .001893939           529         27 98 41         148 035 889         23.0000000         8.0875794         .001890359           530         28 09 00         148 877 000         23.0217289         8.0926723         .001890359           531         28 19 61         149 721 291         23.0434372         8.0977589         .001883230           532         28 30 24         150 568 768         23.0651252         8.1028390         .001876099           533         28 40 89         151 419 437         23.0867928         8.1079128         .001876173           534         28 51 56         152 273 304         23.1084400         8.11280414         .001869159           536         28 72 96         153 990 656         23.1516738         8.1230962         .001865672           537         28 83 69         154 854 153			143 877 824			
527         27         72         29         146         363         183         22         9564806         8         0.0773743         001897533           528         27         84         147         197         962         22         9782566         8         0.924800         001890359           530         28         09         00         148         877         000         23         0.0217289         8         .0926723         001890359           531         28         19         61         149         721         291         23         0.434372         8         .0977589         001886792           531         28         19         61         149         721         291         23         0.434372         8         .0977589         001882399           532         28         30         4         150         568         788         23         .0851928         8         1029128         001879699           533         28         40         99         151         437         23         .0867928         8         1079128         001876999           535         28         62         25         153 <t< th=""><th>525</th><th></th><th></th><th>22.9128785</th><th></th><th></th></t<>	525			22.9128785		
527         27         72         29         146         363         183         22         9564806         8         0.0773743         001897533           528         27         84         147         197         962         22         9782566         8         0.924800         001890359           530         28         09         00         148         877         000         23         0.0217289         8         .0926723         001890359           531         28         19         61         149         721         291         23         0.434372         8         .0977589         001886792           531         28         19         61         149         721         291         23         0.434372         8         .0977589         001882399           532         28         30         4         150         568         788         23         .0851928         8         1029128         001879699           533         28         40         99         151         437         23         .0867928         8         1079128         001876999           535         28         62         25         153 <t< th=""><th></th><th></th><th></th><th></th><th></th><th></th></t<>						
528         27 87 84         147 197 952         22 .9782506         8 .0824800         .001893039           529         27 98 41         148 035 889         23 .0000000         8 .0926723         .001896359           530         28 09 00         148 877 000         23 .0217289         8 .0926723         .001886792           531         28 19 61         149 721 291         23 .0434372         8 .0977589         .001886239           532         28 30 24         150 568 768         23 .0651252         8 .1028390         .001878089           533         28 40 89         151 419 437         23 .0867928         8 .1079128         .001876173           534         28 51 56         152 273 304         23 .1304400         8 .1129803         .001872659           535         28 62 25         153 130 375         23 .1300670         8 .1180414         .001869159           536         28 72 96         154 854 153         23 .1732605         8 .1281447         .00186572           537         28 83 69         154 854 153         23 .1732605         8 .1281447         .00186573           538         29 40 521         166 590 819         23 .2163735         8 .1382230         .001855736           541         29 681 <td< th=""><th>526</th><th></th><th></th><th></th><th></th><th></th></td<>	526					
530         28 09 00         148 877 000         23.0217289         8.0926723         .001886792           531         28 19 61         149 721 291         23.0434372         8.0977589         .001879699           532         28 30 24         150 568 768         23.0857928         8.1079128         .001879699           533         28 40 89         151 419 427         23.1084400         8.1129803         .001876173           534         28 51 56         152 273 304         23.1300670         8.1129803         .001872659           535         28 62 25         153 130 375         23.1300670         8.1180414         .001869159           536         28 72 96         153 990 656         23.1516738         8.1230962         .001865672           537         28 83 69         154 854 183         23.1732805         8.1281447         .001862197           538         28 94 44         155 720 872         23.1948270         8.1331870         .001855288           540         29 16 00         157 464 000         23.2379001         8.1432529         .001855288           541         29 26 81         158 340 421         23.2594067         8.1532939         .001845018           542         29 37 64         159 20088	527					
530         28 09 00         148 877 000         23.0217289         8.0926723         .001886792           531         28 19 61         149 721 291         23.0434372         8.0977589         .001879699           532         28 30 24         150 568 768         23.0857928         8.1079128         .001879699           533         28 40 89         151 419 427         23.1084400         8.1129803         .001876173           534         28 51 56         152 273 304         23.1300670         8.1129803         .001872659           535         28 62 25         153 130 375         23.1300670         8.1180414         .001869159           536         28 72 96         153 990 656         23.1516738         8.1230962         .001865672           537         28 83 69         154 854 183         23.1732805         8.1281447         .001862197           538         28 94 44         155 720 872         23.1948270         8.1331870         .001855288           540         29 16 00         157 464 000         23.2379001         8.1432529         .001855288           541         29 26 81         158 340 421         23.2594067         8.1532939         .001845018           542         29 37 64         159 20088	928					
531         28 19 61         149 721 291         23 .0434372         8 .0977589         .001883239           532         28 30 24         150 568 768         23 .0651252         8 .1028390         .001879699           533         28 40 89         151 419 437         .23 .0867928         8 .1079128         .001876173           534         28 51 56         152 273 304         23 .1084400         8 .1129903         .001872659           535         28 62 25         153 130 375         23 .1300670         8 .1180414         .001869159           536         28 72 96         153 990 656         23 .1516738         8 .1230962         .001865672           537         28 83 69         154 854 153         23 .1732605         8 .1281447         .001862197           538         28 94 44         155 720 572         23 .1948270         8 .1381870         .001858736           539         29 05 21         156 590 819         23 .2163735         8 .1382230         .001858736           540         29 16 00         157 464 000         23 .2379001         8 .1482765         .0018548429           541         29 26 81         158 340 421         23 .2598035         8 .1523939         .001845018           542         29 37 64	520					
532         28 30 24         150 568 768         23 .0651252         8 .1028390         .001879699           533         28 40 89         151 419 437         23 .0867928         8 .1079128         .001876173           534         28 51 56         152 273 304         23 .1084400         8 .1129903         .001872659           535         28 62 25         153 130 375         23 .1300670         8 .1180414         .001869159           536         28 72 96         153 990 656         23 .1516738         8 .1230962         .001865672           537         28 83 69         154 854 153         23 .1732605         8 .1281447         .001862197           538         28 94 44         155 720 872         23 .1948270         8 .1381870         .001858736           539         29 05 21         166 590 819         23 .2163735         8 .1382230         .001858285           540         29 16 00         157 464 000         23 .2379001         8 .1482765         .001845285           541         29 26 81         158 340 421         23 .2594067         8 .1482765         .00184629           542         29 37 64         159 220 088         23 .2808935         8 .1532939         .001845018           543         29 48 49         <	000	28 09 00	140 011 000	20.0211200	0.0020120	.001000182
532         28 30 24         150 568 768         23 .0651252         8 .1028390         .001879699           533         28 40 89         151 419 437         23 .0867028         8 .1079128         .001876173           534         28 51 56         152 273 304         23 .1084400         8 .1129803         .001876173           535         28 62 25         153 130 375         23 .1300670         8 .1129803         .001872659           536         28 72 96         153 990 656         23 .1516738         8 .1230062         .001865672           537         28 83 69         154 854 153         23 .1732605         8 .1281447         .001862197           538         28 94 44         155 720 872         23 .1948270         8 .1381870         .001855736           589         29 05 21         156 590 819         23 .2163735         8 .1382230         .001855288           540         29 16 00         157 464 000         23 .2379001         8 .1482765         .001845298           541         29 26 81         158 340 421         23 .2594067         8 .1482765         .001846218           542         29 37 64         159 220 088         23 .2808935         8 .1532939         .001845018           543         29 48 49	531	28 19 61	149 721 291	23.0434372	8.0977589	.001883239
533         28 40 89         151 419 437         23 .0867928         8 .1079128         .001876173           534         28 51 56         152 273 304         23 .1084400         8 .1129903         .001872659           535         28 62 25         153 130 375         23 .1300670         8 .1189414         .001869159           536         28 72 96         153 990 656         23 .1516738         8 .1230962         .001865672           537         28 83 69         154 854 153         23 .1732605         8 .1281447         .001862197           538         28 94 44         155 720 872         23 .1948270         8 .1381200         .001858736           539         29 05 21         156 590 819         23 .2163735         8 .1382230         .001858736           540         29 16 00         157 464 000         23 .237901         8 .1432529         .001851852           541         29 26 81         158 340 421         23 .2594067         8 .1432529         .001845018           542         29 37 64         159 220 088         23 .2808035         8 .1532093         .001845018           543         29 48 49         160 103 007         23 .3023604         8 .1633102         .001834501           544         29 59 36         <	532		150 568 768	23.0651252		.001879699
534         28 51 56         152 273 304         23 .1084400         8 .1129803         .001872659           535         28 62 25         153 130 375         23 .1300670         8 .1180414         .001869159           536         28 72 96         153 990 656         23 .1516738         8 .1230962         .001865672           537         28 83 69         154 854 153         23 .1732605         8 .1231870         .001862197           538         29 90 52 11 156 590 819         23 .2163735         8 .1331870         .001855288           540         29 16 00         157 464 000         23 .2379001         8 .1432529         .001855288           541         29 26 81         158 340 421         23 .2594067         8 .1432529         .0018451852           541         29 26 81         158 220 088         23 .2808935         8 .1532939         .0018451852           542         29 37 04         159 220 088         23 .2328076         8 .1533051         .001841621           544         29 59 36         160 989 184         23 .3238076         8 .1633102         .00183235           545         29 70 25         161 878 625         23 .3466429         8 .1733020         .001831502           546         29 81 16         162 771 3	533			23.0867928	8.1079128	.001876173
536         28 72 96         153 990 656         23.1516738         8.1230962         001865672           537         28 83 69         154 854 153         23.1732905         8.1281447         001862197           589         29 95 21         155 720 872         23.1948270         8.1381870         001855288           540         29 16 00         157 464 000         23.2379001         8.1382230         001855288           541         29 26 81         158 340 421         23.2594067         8.1482765         001848429           542         29 37 64         159 220 088         23.2808035         8.1532039         001845018           543         29 48 49         160 103 007         23.302804         8.1633102         001834521           544         29 59 36         160 989 184         23.3238076         8.1633102         001834862           546         29 81 16         162 771 336         23.3664429         8.1733020         001831502           547         29 92 09         163 667 323         23.3890311         8.1782888         001828154           548         30 03 04         164 566 692         23.4903998         8.1832695         001824149           549         30 14 01         165 469 149         2	534	28 51 56	152 273 304	23.1084400	8.1129803	
537         28 83 69         154 854 153         23 .1732605         8 .1281447         001862197           538         28 94 44         155 720 872         23 .1948270         8 .1331270         001858736           540         29 16 00         157 464 000         23 .2163735         8 .1382230         .00185288           541         29 26 81         158 340 421         23 .2594067         8 .1432529         .00184528           542         29 37 64         159 220 088         23 .2508035         8 .1532039         .0018445018           543         29 48 49         160 103 007         23 .3023604         8 .1583051         .001844521           544         29 59 36         160 989 184         23 .238076         8 .1633102         .001834525           545         29 70 25         161 878 625         23 .3452351         8 .1633002         .001834562           546         29 81 16         162 771 336         23 .3666429         8 .1733020         .001831502           547         29 92 09         163 667 323         23 .3093998         8 .1832695         .001824154           548         30 03 04         164 566 592         23 .4907490         8 .1832695         .001824149           549         30 14 01	535	28 62 25	153 130 375	23.1300670	8.1180414	.001869159
537         28 83 69         154 854 153         23 .1732605         8 .1281447         001862197           538         28 94 44         155 720 872         23 .1948270         8 .1331270         001858736           540         29 16 00         157 464 000         23 .2163735         8 .1382230         .00185288           541         29 26 81         158 340 421         23 .2594067         8 .1432529         .00184528           542         29 37 64         159 220 088         23 .2508035         8 .1532039         .0018445018           543         29 48 49         160 103 007         23 .3023604         8 .1583051         .001844521           544         29 59 36         160 989 184         23 .238076         8 .1633102         .001834525           545         29 70 25         161 878 625         23 .3452351         8 .1633002         .001834562           546         29 81 16         162 771 336         23 .3666429         8 .1733020         .001831502           547         29 92 09         163 667 323         23 .3093998         8 .1832695         .001824154           548         30 03 04         164 566 592         23 .4907490         8 .1832695         .001824149           549         30 14 01		00.70.00	159 000 050	02 1516700	0 1020000	001005070
538         28 94 44         155 720 872         23 .1948270         8 .1331870         .001858736           539         29 05 21         156 590 819         23 .2163735         8 .1382230         .001855288           540         29 16 00         157 464 000         23 .2379001         8 .1432529         .001851852           541         29 26 81         158 340 421         23 .2594067         8 .1482765         .001846429           542         29 37 64         159 220 088         23 .2808935         8 .1532939         .001845018           543         29 48 49         160 103 007         23 .3028604         8 .1583051         .001841621           544         29 59 36         160 989 184         23 .3238076         8 .1683092         .001838235           545         29 70 25         161 878 625         23 .3452351         8 .1683092         .001834862           546         29 81 16         162 771 336         23 .3666429         8 .1733020         .001831502           547         29 92 09         163 667 323         23 .380311         8 .1782888         .001824818           548         30 03 04         164 566 592         23 .4093998         8 .1832695         .001824818           549         30 14 01         <						
540         29 16 00         157 464 000         23.2379001         8.1432529         .001851852           541         29 26 81         158 340 421         23.2594067         8.1482765         .001848429           542         29 37 64         159 220 088         23.2808935         8.1532939         .001845018           543         29 48 49         160 103 007         23.3028604         8.1583051         .001841621           544         29 59 36         160 989 184         23.3238076         8.1683102         .001834862           545         29 70 25         161 878 625         23.3452351         8.1683002         .001834562           546         29 81 16         162 771 336         23.3666429         8.1733020         .001831502           547         29 92 09         163 667 323         23.34903998         8.1832695         .001828154           548         30 03 04         164 566 692         23.4907490         8.1882441         .001824194           549         30 14 01         165 469 149         23.4307490         8.1882441         .001821494	820					
540         29 16 00         157 464 000         23.2379001         8.1432529         .001851852           541         29 26 81         158 340 421         23.2594067         8.1482765         .001848429           542         29 37 64         159 220 088         23.2808935         8.1532939         .001845018           543         29 48 49         160 103 007         23.3028604         8.1583051         .001841621           544         29 59 36         160 989 184         23.3238076         8.1683102         .001834862           545         29 70 25         161 878 625         23.3452351         8.1683002         .001834562           546         29 81 16         162 771 336         23.3666429         8.1733020         .001831502           547         29 92 09         163 667 323         23.34903998         8.1832695         .001828154           548         30 03 04         164 566 692         23.4907490         8.1882441         .001824194           549         30 14 01         165 469 149         23.4307490         8.1882441         .001821494	999					
541         29 26 81         158 340 421         23 .2594067         8 .1482765         .001848429           542         29 37 64         159 220 088         23 .2808935         8 .1532939         .001846018           543         29 48 49         160 103 007         23 .3023604         8 .1583051         .001841621           544         29 59 36         160 989 184         23 .2338076         8 .1683092         .001838235           545         29 70 25         161 878 625         23 .3452351         8 .1683092         .001834862           546         29 81 16         162 771 336         23 .3666429         8 .1733020         .001831502           547         29 92 09         163 667 323         23 .3890311         8 .1782888         .001828154           548         30 03 04         164 566 592         23 .4093998         8 .1832695         .001824818           549         30 14 01         165 469 149         23 .4307490         8 .1882441         .001821494	540					
542         29 37 64         159 220 088         23 .2808935         \$ 1532939         .001845018           543         29 48 49         160 103 007         23 .3023604         \$ .1583051         .001841621           544         29 59 36         160 989 184         23 .3238076         \$ .1633102         .001838235           545         29 70 25         161 878 625         23 .3452351         \$ .1683092         .001838265           546         29 81 16         162 771 336         23 .3666429         \$ .1733020         .001831502           547         29 92 09         163 667 323         23 .3880311         \$ .1782888         .001828154           548         30 03 04         164 566 592         23 .4093098         \$ .1832695         .001824818           549         30 14 01         165 469 149         23 .307490         \$ .182441         .001821494	0.0	-0.1000	-5. 202 000			
542     29 37 64     159 220 088     23 .2808935     8 .1532939     .001845018       543     29 48 49     160 103 007     23 .3023604     8 .1583051     .001841621       544     29 59 36     160 989 184     23 .3238076     8 .1633102     .001838235       545     29 70 25     161 878 625     23 .3452351     8 .1683092     .001834862       546     29 81 16     162 771 336     23 .3666429     8 .1733020     .001831502       547     29 92 09     163 667 323     23 .3880311     8 .1782888     .001828154       548     30 03 04     164 566 592     23 .4903998     8 .1832695     .001824818       549     30 14 01     165 469 149     23 .4307490     8 .1882441     .001821494	541	29 26 81				
544         29         59         36         160         989         184         23         3238076         8         1633102         .001838235           545         29         70         25         161         878         625         23         .3452351         8         1683092         .001834862           546         29         81         16         162         771         336         23         .3666429         8         .1733020         .001831502           547         29         92         09         163         667         232         23         .3880311         8         .1782888         .001828154           548         30         30         4         164         566         502         23         .4093098         8         1832695         .001824818           549         30         14         01         165         469         149         23         .4307490         8         .1882441         .001821494	542	29 37 64			8.1532939	
545         29 70 25         161 878 625         23.3452351         8.1683092         .001834862           546         29 81 16         162 771 336         23.3666429         8.1733020         .001831502           547         29 92 09         163 667 323         23.3880311         8.1782888         .001828154           548         30 03 04         164 566 592         23.4093998         8.1832695         .001824818           549         30 14 01         165 469 149         23.4307490         8.1882441         .001821494						
546     29 81 16     162 771 336     23.3666429     8.1733020     .001831502       547     29 92 09     163 667 323     23.3880311     8.1782888     .001828154       548     30 03 04     164 566 562     23.4093998     8.1832695     .001824818       549     30 14 01     165 469 149     23.4307490     8.1882441     .001821494		29 59 36				
547 29 92 09 163 667 323 23 3880311 8 1782888 001828154 548 30 03 04 164 566 592 23 4093998 8 1832695 001824818 549 30 14 01 165 469 149 23 4307490 8 1882441 001821494	545	29 70 25	161 878 625	23.3452351	8.1683092	.001834862
547 29 92 09 163 667 323 23 3880311 8 1782888 001828154 548 30 03 04 164 566 592 23 4093998 8 1832695 001824818 549 30 14 01 165 469 149 23 4307490 8 1882441 001821494	240		100 771 990	22 2444400	0 1722000	001921500
548         30 03 04         164 566 592         23.4093998         8.1832695         .001824818           549         30 14 01         165 469 149         23.4307490         8.1882441         .001821494			102 //1 536		0.1700020	
549   30 14 01   165 469 149   23.4307490   8.1882441   .001821494						
. 555   55 25 55   100 515 555   25125255   5125222   1001510152						
	. 000	30 20 00				

Table 96 (Continued)
Squares, Cubes, Square Roots, Cube Roots, Reciprocals

Num.	Square	Cube	Square root	Cube root	Reciprocal
551	30 36 01	167 284 151	23.4733892	8.1981753	.001814882
552	30 47 04	168 196 608	23.4946802	8.2031319	.001811594
553	30 58 09	169 112 377	23.5159520	8.2080825	.001808318
554	30 69 16	170 031 464	23.5372046	8.2130271	.001805054
555	30 80 25	170 953 875	23.5584380	8.2179657	.001801802
556	30 91 36	171 879 616	23.5796522	8.2228985	.001798561
557	31 02 49	172 808 693	23.6008474	8.2278254	.001795332
558	31 13 64	173 741 112	23.6220236	8.2327463	.001792115
559	31 24 81	174 676 879	23.6431808	8.2376614	.001788909
560	31 36 00	175 616 000	23.6643191	8.2425706	.001785714
561	31 47 21	176 558 481	23.6854386	8.2474740	.001782531
562	31 58 44	177 504 328	23.7065392	8.2523715	.001779359
563	31 69 69	178 453 547	23.7276210	8.2572633	.001776199
564	31 80 96	179 406 144	23.7486842	8.2621492	.001773050
565	31 92 25	180 362 125	23.7697286	8.2670294	.001769912
566	32 03 56	181 321 496	23.7907545	8.2719039	.001766784
567	32 14 89	182 284 263	23.8117618	8.2767726	.001763668
568	32 26 24	183 250 432	23.8327506	8.2816355	.001760563
569	32 37 61	184 220 009	23.8537209	8.2864928	.001757469
570	32 49 00	185 193 000	23.8746728	8.2913444	.001754386
571	32 60 41	186 169 411	23.8956063	8.2961903	.001751313
572	32 71 84	187 149 248	23.9165215	8.3010304	.001748252
573	32 83 29	188 132 517	23.9374184	8.3058651	.001745201
574	32 94 76	189 119 224	23.9582971	8.3106941	.001742160
575	33 06 25	190 109 375	23.9791576	8.3155175	.001739130
576	33 17 76	191 102 976	24.0000000	8.3203353	.001736111
577	33 29 29	192 100 033	24.0208243	8.3251475	.001733102
578	33 40 84	193 100 552	24.0416306	8.3299542	.001730104
579	33 52 41	194 104 539	24.0624188	8.3347553	.001727116
580	33 64 00	195 112 000	24.0831891	8.3395509	.001724138
581	33 75 61	196 122 941	24.1039416	8.3443410	.001721170
582	33 87 24	197 137 368	24.1246762	8.3491256	.001718213
583	33 98 89	198 155 287	24.1453929	8.3539047	.001715266
584	34 10 56	199 176 704	24.1660919	8.3586784	.001712329
585	34 22 25	200 201 625	24.1867732	8.3634466	.001709402
586	34 33 96	201 230 056	24.2074369	8.3682095	.001706485
587	34 45 69	202 262 003	24.2280829	8.3729668	.001703578
588	34 57 44	203 297 472	24.2487113	8.3777188	.001700680
589	34 69 21	204 336 469	24.2693222	8.3824653	.001697793
590	34 81 00	205 379 000	24.2899156	8.3872065	.001694915
591	34 92 81	206 425 071	24.3104916	8.3919423	.001692047
592	35 04 64	207 474 688	24.3310501	8.3966729	.001689189
593	35 16 49	208 527 857	24.3515913	8.4013981	.001686341
594	35 28 36	209 584 584	24.3721152	8.4061180	.001683502
595	35 40 25	210 644 875	24.3926218	8.4108326	.001680672
596	35 52 16	211 708 736	34.4131112	8.4155419	.001677852
597	35 64 09	212 776 173	24.4335834	8.4202460	.001675042
598	35 76 04	213 847 192	24.4540385	8.4249448	.001672241
599	35 88 01	214 921 799	24.4744765	8.4296383	.001669449
600	36 00 00	216 000 000	24.4948974	8.4343267	.001666667

Table 96 (Continued)
Squares, Cubes, Square Roots, Cube Roots, Reciprocals

Num.	Square	Cube	Square root	Cube root	Reciprocal
601	36 12 01	217 081 801	24.5153013	8.4390098	.001663894
602	36 24 04	218 167 208	24.5356883	8.4436877	.001661130
603	36 36 09	219 256 227	24.5560583	8.4483605	.001658375
604	36 48 16	220 348 864	24.5764115	8.4530281	.001655629
605	36 60 25	221 445 125	24.5967478	8.4576906	.001652893
606	36 72 36	222 545 016	24.6170673	8.4623479	.001650165
607	36 84 49	223 648 543	24.6373700	8.4670000	.001647446
608	36 96 64	224 755 712	24.6576560	8.4716471	.001644737
609	37 08 81	225 866 529	24.6779254	8.4762892	.001642036
610	37 21 00	226 981 000	24.6981781	8.4809261	.001639344
611	37 33 21	228 099 131	24.7184142	8.4855579	.001636661
612	37 45 44	229 220 928	24.7386338	8.4901848	.001633987
613	37 57 69	230 346 397	24.7588368	8.4948065	.001631321
614	37 69 96	231 475 544	24.7790234	8.4994233	.001628664
615	37 82 25	232 608 375	24.7991935	8.5040350	.001626016
616	37 94 56	233 744 896	24.8193473	8.5086417	.001623377
617	38 06 89	234 885 113	24.8394847	8.5132435	.001620746
618	38 19 24	236 029 032	24.8596058	8.5178403	.001618123
619	38 31 61	237 176 659	24.8797106	8.5224321	.001615509
620	38 44 00	238 328 000	24.8997992	8.5270189	.001612903
621	38 56 41	239 483 061	24.9198716	8.5316009	.001610306
622	38 68 84	240 641 848	24.9399278	8.5361780	.001607717
622 623	38 81 29	241 804 367	24.9599679	8.5407501	.001605136
624	38 93 76	242 970 624	24.9799920	8.5453173	.001602564
625	39 06 25	244 140 625	25.0000000	8.5498797	.001600000
626	39 18 76	245 314 376	25.0199920	8.5544372	.001597444
627	39 31 29	246 491 883	25,0399681	8.5589899	.001594896
628	39 43 84	247 673 152	25.0599282	8.5635377	.001592357
629	39 56 41	248 858 189	25.0798724	8.5680807	.001589825
630	39 69 00	250 047 000	25.0998008	8.5726189	.001587302
631	39 81 61	251 239 591	25.1197134	8.5771523	.001584786
632	39 94 24	252 435 968	25.1396102	8.5816809	.001582278
633	40 06 89	253 636 137	25.1594913	8.5862047	.001579779
634	40 19 56	254 840 104	25.1793566	8.5907238	.001577287
635	40 32 25	256 047 875	25.1992063	8.5952380	.001574803
636	40 44 96	257 259 456	25.2190404	8.5997476	.001572327
637.	40 57 69	258 474 853	25.2388589	8.6042525	.001569859
638	40 70 44	259 694 072	25.2586619	8.6087526	.001567398
639	40 83 21	260 917 119	25.2784493	8.6132480	.001564945
640	40 96 00	262 144 000	25.2982213	8.6177388	.001562500
641	41 08 81	263 374 721	25.3179778	8.6222248	.001560062
642	41 21 64	264 609 288	25.3377189	8.6267063	.001557632
643	41 34 49	265 847 707	25.3574447	8.6311830	.001555210
644	41 47 36	267 089 984	25.3771551	8.6356551	.001552795
645	41 60 25	268 336 125	25.3968502	8.6401226	.001550388
646	41 73 16	269 586 136	25.4165301	8.6445855	.001547988
647	41 86 09	270 840 023	25.4361947	8.6490437	.001545595
648	41 99 04	272 097 792	25.4558441	8.6534974	.001543210
649	42 12 01	273 359 449	25.4754784	8.6579465	.001540832
650	42 25 00	274 625 000	25.4950976	8.6623911	.001538462

Table 96 (Continued)

#### SQUARES, CUBES, SQUARE ROOTS, CUBE ROOTS, RECIPROCALS

Num.	Square	Cube	Square root	Cube root	Reciprocal
651	42 38 01	275 894 451	25.5147016	8.6668310	.001536098
652	42 51 04	277 167 808	25.5342907	8.6712665	.001533742
653	42 64 09	278 445 077	25.5538647	8.6756974	.001531394
654	42 77 16	279 726 264	25.5734237	8.6801237	.001529052
655	42 90 25	281 011 375	<b>25</b> .59 <b>29</b> 678	8.6845456	.0015 <b>267</b> 18
656	43 03 36	282 300 416	25.6124969	8.6889630	.001524390
657	43 16 49	283 593 393	25.6320112	8.6933759	.001522070
658	43 29 64	284 890 312	25.6515107	8.6977843	.001519757
659 660	43 42 81 43 56 00	286 191 179 287 496 000	25.6709953 25.6904652	8.7021882 8.7065877	.001517451 .001515152
661	43 69 21	288 804 781	25.7099203	8.7109827	.001512859
662	43 82 44	290 117 528	25.7293607	8.7153734	.001510574
663	43 95 69	291 434 247	25.7487864	8.7197596	.001508296
664	44 08 96	292 754 944	25.7681975	8.7241414	.001506024
665	44 22 25	294 079 625	25.7875939	8.7285187	.001503759
666	44 35 56	295 408 296	25.8069758	8.7328918	.001501502
667	44 48 89	296 740 963	25.8263431	8.7372604	.001499250
668	44 62 24	298 077 632	25.8456960	8.7416246	.001497006
669	44 75 61	299 418 309	25.8650343	8.7459846	.001494768
670	44 89 00	300 763 000	25.8843582	8.7503401	.001492537
671	45 02 41	302 111 711	25.9036677	8.7546913	.001490313
672	45 15 84	303 464 448	25.9229628	8.7590383	.001488095
673	45 29 29	304 821 217	25.9422435	8.7633809	.001485884
674 675	45 42 76 45 56 25	306 182 024 307 546 875	25.9615100 25.9807621	8.7677192 8.7720532	.001483680 .001481481
			26.0000000	8.7763830	.001479290
676	45 69 76	308 915 776 310 288 733	26.0000000	8.7807084	.001479290
677	45 83 29	311 665 752	26.0384331	8.7850296	.001477100
678 679	45 96 84 46 10 41	313 046 839	26.0576284	8.7893466	.001472754
680	46 24 00	314 432 000	26.0768096	8.7936593	.001470588
681	46 37 61	315 821 241	26.0959767	8.7979679	.001468429
682	46 51 24	317 214 568	26.1151297	8.8022721	.001466276
683	46 64 89	318 611 987	26.1342687	8.8065722	.001464129
684	46 78 56	320 013 504	26.1533937	8.8108681	.001461988
685	46 92 25	321 419 125	26.1725047	8.8151598	.001459854
686	47 05 96	322 828 856	26.1916017	8.8194474	.001457726
687	47 19 69	324 242 703	26.2106848	8.8237307	.001455604
688	47 33 44	325 660 672	26.2297541	8.8280099	.001453488
689	47 47 21	327 082 769	26.2488095	8.8322850	.001451379
690	47 61 00	328 509 000	26.2678511	8.8365559	.001449275
691	47 74 81	329 939 371	26.2868789	8.8408227	.001447178
692	47 88 64	331 373 888	26.3058929	8.8450854	.001445087
693 694	48 02 49 48 16 36	332 812 557 334 255 384	26.3248932 26.3438797	8.8493440 8.8535985	.001443001 .001440922
695	48 30 25	335 702 375	26.3628527	8.8578489	.001438849
696	48 44 16	337 153 536	26.3818119	8.8620952	.001436782
697	48 58 09	338 608 873	26.4007576	8.8663375	.001434720
698	48 72 04	340 068 392	26.4196896	8.8705757	.001432665
699	48 86 01	341 532 099	26.4386081	8.8748099	.001430615
			26.4575131	8.8790400	

Table 96 (Continued)
Squares, Cubes, Square Roots, Cube Roots, Reciprocals

			<del> </del>		
Num.	Square	Cube	Square root	Cube root	Reciprocal
701	49 14 01	344 472 101	26.4764046	8.8832661	.001426534
702	49 28 04	345 948 408	26.4952826	8.8874882	.001424501
	49 42 09	347 428 927	26.5141472	8.8917063	.001422475
703	49 56 16	348 913 664	26.5329983	8.8959204	.001422475
704	49 70 25			8.9001304	
705	49 /0 25	350 402 625	26.5518361	9.9001304	.001418440
700	49 84 36	351 895 816	26.5706605	8.9043366	.001416431
706	· 49 98 49	353 393 243	26.5894716	8.9085387	.001414427
707		354 894 912	26.6082694	8.9127369	.001412429
708	50 12 64		26.6270539	8.9169311	.001412429
709	50 26 81 50 41 00	356 400 829 357 911 000	26.6458252	8.9211214	.001410457
710	90 41 00	991 911 000	20.0408202	0.9211214	.001400401
M11	50 55 21	359 425 431	26.6645833	8.9253078	.001406470
711		360 944 128	26.6833281	8.9294902	.001404494
712	50 69 44 50 83 69	362 467 097		8.9336687	.001402525
713			26.7020598 26.7207784		
714	50 97 96	363 994 344		8.9378433 8.9420140	.001400560
715	51 12 25	365 525 875	26.7394839	8.9420140	100198601
F1.0		207 001 000	26.7581763	0 0481000	.001396648
716	51 26 56	367 061 696		8.9461809	
717	51 40 89	368 601 813	26.7768557 26.7955220	8.9503438 8.9545029	.001394700 .001392758
718	51 55 24	370 146 232			
719	51 69 61	371 694 959	26.8141754	8.9586581	.001390821
720	51 84 00	373 248 000	26.8328157	8.9628095	.001388889
		974 007 001	00 0514400	0.0000770	00120000
721	51 98 41	374 805 361	26.8514432	8.9669570	.001386963
722	52 12 84	376 367 048	26.8700577	8.9711007	.001385042
723	52 27 29	377 933 067	26.8886593	8.9752406	.001383126
724	52 41 76	379 503 424	26.9072481	8.9793766	.001381215
<b>72</b> 5	52 56 25	381 078 125	26.9258240	8.9835089	.001379310
	F0 70 70	200 657 170	26.9443872	8.9876373	.001377410
726	52 70 76	382 657 176		0.9010010	
727	52 85 29	384 240 583	26.9629375	8.9917620	.001375516
728	52 99 84	385 828 352	26.9814751	8.9958829	.001373626
729	53 14 41	387 420 489	27.0000000	9.0000000	.001371742
730	53 29 00	389 017 000	27.0185122	9.0041134	.001369863
	FO 40 01	200 415 001	27.0370117	9.0082229	.001367989
731	53 43 61	390 617 891			
732	53 58 24	392 223 168	27.0554985	9.0123288	.001366120
733	53 72 89	393 832 837	27.0739727	9.0164309	.001364256
734	53 87 56	395 446 904	27.0924344	9.0205293	.001362398
735	54 02 25	397 065 375	27.1108834	9.0246239	.001360544
700	E4 10 00	398 688 256	27.1293199	9.0287149	.001358696
736	54 16 96	400 315 553	27.1293199	9.0328021	.001356852
737	54 31 69	401 947 272	27.1477439	9.0368857	
738	54 46 44	401 947 272	27.1845544	9.0308857	.001355014
739	54 61 21	405 224 000	27.1845544	9.0450417	.001351351
740	54 76 00	100 441 UUU	20.4040110	0.U1UU11	1.001991991
	54 90 81	406 869 021	27.2213152	9.0491142	.001349528
741		408 518 488	27.2396769	9.0491142	.001349328
742	55 05 64	410 172 407	27.2580263	9.0572482	.001347709
743	55 20 49	411 830 784	27.2763634	9.0572482	.001344086
744	55 35 36 55 50 25	413 493 625	27.2946881	9.0653677	.001342282
745	00 00 20	410 489 029	21,201001	9.0000011	.001042202
740	EE 0E 10	415 160 936	27.3130006	9.0694220	.001340483
746	55 65 16 55 80 09	416 832 723	27.3313007	9.0734726	.001338688
747		418 508 992	27.3495887	9.0775197	.001336898
748	55 95 04 56 10 01	420 189 749	27.3678644	9.0815631	.001335113
749		421 875 000	27.3861279	9.0856030	.001333333
750	56 25 00	741 010 000	21.0001217	0.000000	.501000000
	<u> </u>				

Table 96 (Continued)
Squares, Cubes, Square Roots, Cube Roots, Reciprocals

Num.	Square	Cube	Square root	Cube root	Reciprocal
754	56 40 01	423 564 751	27.4043792	9.0896392	.001331558
752	56 55 04	425 259 008	27.4226184	9.0936719	.001329787
753	56 70 09	. 426 957 777	27.4408455	9.0977010	.001328021
754	56 85 16	428,661 064	27.4590604	9.1017265	.001326260
755	57 00 25	430 368 875	27.4772633	9.1057485	.001324503
756	57 15 36	432 081 216	27.4954542	9.1097669	.001322751
757	57 30 49	433 798 093	27.5136330	9.1137818	.001321004
758	57 45 64 57 60 81	435 519 512 437 245 479	27.5317998 27.5499546	9.1177931 9.1218010	.00131 <b>92</b> 61 .00131 <b>752</b> 3
759 760	57 76 00	438 976 000	27.5680975	9.1258053	.001315789
761	57 91 21	440 711 081	27.5862284	9.1298061	.001314060
762	58 06 44	442 450 728	27.6043475	9.1338034	.001312336
763	58 21 69	444 194 947	27.6224546	9.1377971	.001310616
764	58 36 96	445 943 744	27.6405499	9.1417874	.001308901
765	58 52 25	447 697 125	27.6586334	9.1457742	.001307190
766	58 67 56	449 455 096	27.6767050	9.1497576	.001305483
767	58 82 89	451 217 663	27.6947648	9.1537375	.001303781
768	58 98 24	452 984 832	27.7128129	9.1577139	.001302083
769	59 13 61	454 756 609	27.7308492	9.1616869	.001300390
770	59 29 00	456 533 000	27.7488739	9.1656565	.001298701
771	59 44 41	458 314 011	27.7668868	9.1696225	.001297017
772	59 59 84	460 099 648	27.7848880 27.8028775	9.1735852	.001295337
773	59 75 29	461 889 917	27.8028775	9.1775445	.001293661
774 775	59 90 76 60 06 25	463 684 824 465 484 375	27.8208555 27.8388218	9.1815003 9.1854527	.001291990 .001290323
	00 01 70	467 288 576	07 0507700	9.1894018	.001288660
776 777	60 21 76 60 37 29	469 097 433	27.8567766 27.8747197	9.1933474	.001287001
778	60 52 84	470 910 952	27.8926514	9.1972897	.001285347
779	60 68 41	472 729 139	27.9105715	9.2012286	.001283697
780	60 84 00	474 552 000	27.9284801	9.2051641	.001282051
781	60 99 61	476 379 541	27.9463772	9.2090962	.001280410
782	61 15 24	478 211 768	27.9642629	9.2130250	.001278772
783	61 30 89	480 048 687	27.9821372	9.2169505	.001277139
784	61 46 56	481 890 304	28.0000000	9.2208726	.001275510
785	61 62 25	483 736 625	28.0178515	9.2247914	.001273885
786	61 77 96	485 587 656	28.0356915	9.2287068	001272265
787	61 93 69	487 443 403	28.0535203	9.2326189	.001270648
788	62 09 44	489 303 872	28.0713377	9.2365277	.001269036
789	62 25 21	491 169 069	28.0891438	9.2404333	.001267427
790	62 41 00	493 039 000	28.1069386	9.2443355	.001265823
791	62 56 81	494 913 671	28.1247222	9.2482344	.001264223
. 792	62 72 64	496 793 088 498 677 257	28.1424946	9.2521300 9.2560224	.001262626 .001261034
793 794	62 88 49 63 04 36	500 566 184	28.1602557 28.1780056	9.2500224	001259446
795	63 20 25	502 459 875	28.1957444	9.2637973	.001257862
796	63 36 16	504 358 336	28.2134720	9.2676798	.001256281
797	63 52 09	506 261 573	28.2311884	9.2715592	.001254705
798	63 68 04	508 169 592	28.2488938	9.2754352	.001253133
799	63 84 01	510 082 399	28.2665881	9.2793081	.001251564

Table 96 (Continued) SQUARES, CUBES, SQUARE ROOTS, CUBE ROOTS, RECIPROCALS

Num.	Square	Cube	Square root	Cube root	Reciprocal
801	64 16 01	513 922 401	28.3019434	9.2870440	.001248439
802	64 32 04	515 849 608	28.3196045	9.2909072	.001246883
803	64 48 09	517 781 627	28.3372546	9.2947671	.001245330
804	64 64 16	519 718 464	28.3548938	9.2986239	.001243781
805	64 80 25	521 660 125	28.3725219	9.3024775	.001242236
806	64 96 36	523 606 616	28.3901391	9.3063278	
807	65 12 49	525 557 943	28.4077454	9.3101750	.001239157
808	65 28 64	527 514 112	28.4253408	9.3140190	.001237624
809	65 44 81	529 475 129	28.4429253	9.3178599	.001236094
810	65 61 00	531 441 000	28.4604989	9.3216975	.001234568
811	65 77 21	533 411 731	28.4780617	9.3255320	.001233046
812	65 93 44	535 387 328	28.4956137	9.3293634	.001231527
813	66 09 69	537 367 797	28.5131549	9.3331916	.001230012
814	66 25 96	539 353 144	28.5306852	9.3370167	.001228501
815	66 42 25	541 343 375	28.5482048	9.3408386	.001226994
816	66 58 56	543 338 496	28.5657137	9.3446575	.001225490
817	66 74 89	545 338 513	28.5832119	9.3484731	.001223990
818	66 91 24	547 343 432	28.6006993	9.3522857	.001222494
819	67 07 61	549 353 259	28.6181760	9.3560952	.001221001
820	67 24 00	551 368 000	28.6356421	9.3599016	.001219512
821	67 40 41	553 387 661	28.6530976	9.3637049	.001218027
822	67 56 84	555 412 248	28.6705424	9.3675051	.001216545
823	67 73 29	557 441 767	28.6879766	9.3713022	.001215067
824	67 89 76	559 476 224	28.7054002	9.3750963	.001213592
825	68 06 25	561 515 625	28.7228132	9.3788873	.001212121
826	68 22 76	563 559 976	28.7402157	9.3826752	.001210654
827	68 39 29	565 609 283	28.7576077	9.3864600	.001209190
828	68 55 84	567 663 552	28.7749891	9.3902419	.001207729
829	68 72 41	569 722 789	28.7923601	9.3940206	.001206273
830	68 89 00	571 787 000	28.8097206	9.3977964	.001204819
831	69 05 61	573 856 191	28.8270706	9.4015691	.001203369
832	69 22 24	575 930 368	28.8444102	9.4053387	.001201923
833	69 38 89	578 009 537	28.8617394	9.4091054	.001200480
834	69 55 56	580 093 704	28.8790582	9.4128690	.001199041
835	69 72 25	582 182 875	28.8963666	9.4166297	.001197605
836	69 88 96	584 277 056	28.9136646	9.4203873	.001196172
837	70 05 69	586 376 253	28.9309523	9.4241420	.001194743
838	70 22 44	588 480 472	28.9482297	9.4278936	.001193317
839	70 39 21	590 589 719	28.9654967	9.4316423	.001191895
840	70 56 00	592 704 000	28.9827535	9.4353880	.001190476
841	70 72 81	594 823 321	29.0000000	9.4391307	.001189061
842	70 89 64	596 947 688	29.0172363	9.4428704	.001187648
843	71 06 49	599 077 107	29.0344623	9.4466072	.001186240
844	71 23 36	601 211 584	29.0516781	9.4503410	.001184834
845	71 40 25	603 351 125	29.0688837	9.4540719	.001183482
846	71 57 16	605 495 736	29.0860791	9.4577999	.001182083
847	71 74 09	607 645 423	29.1032644	9.4615249	.001180638
848	71 91 04	609 800 192	29.1204396	9.4652470	.001179245
849	72 08 01	611 960 049	29.1376046	9.4689661	.001177856
850	72 25 00	614 125 000	29.1547595	9.4726824	.001176471

Table 96 (Continued)
Squares, Cubes, Square Roots, Cube Roots, Reciprocals

DUUL	and, cons	s, Decries it	,		
Num.	Square	Cube	Square root	Cube root	Reciprocal
851	72 42 01	616 295 051	29.1719043	9.4763957	.001175088
852	72 59 04	618 470 208	29.1890390	9.4801061	.001173709
853	72 76 09	620 650 477	29.2061637	9.4838136	.001172333
854	72 93 16	622 835 864	29.2232784	9.4875182	.001170960
855	73 10 25	625 026 375	29.2403830	9.4912200	.001169591
856	73 27 36	627 222 016	29.2574777	9.4949188	.001168224
857	73 44 49	629 422 793	29.2745623	9.4986147	.001166861
858	73 61 64	631 628 712	29.2916370	9.5023078	.001165501
859	73 78 81	633 839 779	29.3087018	9.5059980	.001164144
860	73 96 00	636 056 000	29.3257566	9.5096854	.001162791
861	74 13 21	638 277 381	29.3428015	9.5133699	.001161440
862	74 30 44	640 503 928	29.3598365	9.5170515	.001160093
863	74 47 69	642 735 647	29.3768616	9.5207303	.001158749
864	74 64 96	644 972 544	29.3938769	9.5244063	.001157407
865	74 82 25	647 214 625	29.4108823	9.5280794	.001156069
	74 99 56	649 461 896	29.4278779	9.5317497	.001154734
866	75 16 89	651 714 363	29.4448637	9.5354172	.001153403
867 868	75 34 24	653 972 032	29.4618397	9.5390818	.001152074
869	75 51 61	656 234 909	29.4788059	9.5427437	.001150748
870	75 69 00	658 503 000	29.4957624	9.5464027	.001149425
		000 550 011	00 5107001	9.5500589	.001148106
871	75 86 41	660 776 311 663 054 848	29.5127091 29.5296461	9.5537123	.001146789
872	76 03 84	665 338 617	29.5465734	9.5573630	.001145475
873	76 21 29 76 28 76	667 627 624	29.5634910	9.5610108	.001144165
874 875	76 56 25	669 921 875	29.5803989	9.5646559	.001142857
i			00 5070070	9.5682982	.001141553
876	76 73 76 76 91 29	672 221 376 674 526 133	29.5972972 29.6141858	9.5719377	.001141333
877	77 08 84	676 836 152	29.6310648	9.5755745	.001138952
878 879	77 26 41	679 151 439	29.6479342	9.5792085	.001137656
880	77 44 00	681 472 000	29.6647939	9.5828397	.001136364
1			00 0010440	0. 5004000	.001135074
881	77 61 61	683 797 841 686 128 968	29.6816442 29.6984848	9.5864682 9.5900939	.001133787
882	77 79 24	688 465 387	29.7153159	9.5937169	.001132503
883	77 96 89 78 14 56	690 807 104	29.7321375	9.5973373	.001131222
884 885	78 32 25	693 154 125	29.7489496	9.6009548	.001129944
1		205 500 450	00 7077701	0.0045000	00110000
886	78 49 96	695 506 456	29.7657521	9.6045696 9.6081817	.001128668
887	78 67 69	697 864 103 700 227 072	29.7825452 29.7993289	9.6117911	.001127396
888	78 85 44 79 03 21	702 595 369	29.7993289	9.6153977	.001124859
889 890	79 21 00	704 969 000	29.8328678	9.6190017	.001123596
				0.0000000	00110000
891	79 38 81	707 347 971	29.8496231 29.8663690	9.6226030 9.6262016	.001122334
892	79 56 64 79 74 49	709 732 288 712 121 957	29.8831056	9.6297975	.001119821
893	79 74 19 79 92 36	714 516 984	29.8998328	9.6333907	.001118568
894 895	80 10 25	716 917 375	29.9165506	9.6369812	.001117318
			00 0000505	0.0405000	0011100-
896	80 28 16 80 46 09	719 323 136 721 734 273	29.9332591 29.9499583	9.6405690 9.6441542	.001116071 .001114827
897	80 46 09	721 734 273	29.9666481	9.6477367	.001113586
898 899	80 82 01	726 572 699	29.9833287	9.6513166	.001112347
900	81 00 00	729 000 000	30.0000000	9.6548938	.001111111
_ ,,,,,	31 00 00	.20 000 000	33.000000		

Table 96 (Continued)

SQUARES, CUBES, SQUARE ROOTS, CUBE ROOTS, RECIPROCALS

	1		1		
Num.	Square	Cube	Square root	Cube root	Reciprocal
901	81 18 01	731 432 701	30.0166620	9.6584684	.001109878
902	81 36 04	733 870 808	30.0333148	9.6620403	.001108617
903	81 54 09	736 314 327	30.0499584	9.6656096	.001107420
904	81 72 16	738 763 264	30.0665928	9.6691762	.001106195
905	81 90 25	741 217 625	30.0832179	9.6727403	.001104972
	00.00.00	<b>7</b> 40.0 <b>77</b>		0.0500015	
906	82 08 36	743 677 416	30.0998339	9.6763017	.001103753
907 908	82 26 49 82 44 64	746 142 643 748 613 312	30.1164407 30.1330383	9.6798604 9.6834166	.001102536 .001101322
909	82 62 81	751 089 429	30.1496269	9.6869701	.001101322
910	82 81 00	753 571 000	30.1662063	9.6905211	.001098901
911	82 99 21	756 058 031	30.1827765	9.6940694	.001097695
912	83 17 44	758 550 528	30.1993377	9.6976151	.001096491
913	83 35 69 83 53 96	761 048 497 763 551 944	30.2158899 30.2324329	9.7011583 9.7046989	.001095290
914 915	83 72 25	766 060 875	30.2324329	9.7082369	.001094092 .001092896
819	00 12 20	100 000 813	30.2408008	9.1002009	.001092890
916	83 90 56	768 575 296 ·	30.2654919	9.7117723	.001091703
917	84 08 89	771 095 213	30.2820079	9.7153051	.001090513
918	84 27 24	773 620 632	30.2985148	9.7188354	.001089325
919	84 45 61	776 151 559	30.3150128	9.7223631	.001088139
920	84 64 00	778 688 000	30.3315018	9.7258883	.001086957
921	84-82 41	781 229 961	30.3479818	9.7294109	.001085776
922	85 00 84	783 777 448	30.3644529	9.7329309	.001084599
923	85 19 29	786 330 467	30.3809151	9.7364484	.001083424
924	85 37 76	788 889 024	30.3973683	9.7399634	.001082251
925	85 56 25	791 453 125	30.4138127	9.7434758	.001081081
926	85 74 76	794 022 776	30.4302481	9.7469857	.001079914
927	85 93 29	796 597 983	30.4466747	9.7504930	.001078749
928	86 11 84	799 178 752	30.4630924	9.7539979	.001077586
929	86 30 41	801 765 089	30.4795013	9.7575002	.001076426
930	86 49 00	804 357 000	30.4959014	9.7610001	.001075269
931	86 67 61	806 954 491	30.5122926	9.7644974	.001074114
932	86 86 24	809 557 568	30.5286750	9.7679922	.001074114
933	87 04 89	812 166 237	30.5450487	9.7714845	.001071811
934	87 23 56	814 780 504	30.5614136	9.7749743	.001070664
935	87 42 25	817 400 375	30.5777697	9.7784616	.001069519
000	07.00.00	000 005 050	00 5041171	0.7010466	001000070
936 937	87 60 96 87 79 69	820 025 856 822 656 953	30.5941171 30.6104557	9.7819466 9.7854288	.001068376
938	87 98 44	825 293 672	30.6267857	9.7889087	.001066098
939	88 17 21	827 936 019	30.6431069	9.7923861	.001064963
940	88 36 00	830 584 000	30.6594194	9.7958611	.001063830
1					
941	88 54 81	833 237 621	30.6757233	9.7993336	.001062699
942	88 73 64	835 896 888	30.6920185	9.8028036	.001061571
943 944	88 92 49 89 11 36	838 561 807 841 232 384	30.7083051	9.8062711 9.8097362	.001060445
945	89 30 25	843 908 625	30,7245830 30,7408523	9.8097302	.001058201
946	89 49 16	846 590 536	30.7571130	9.8166591	.001057082
947	89 68 09	849 278 123	30.7733651	9.8201169	.001055966
948 949	89 87 04	851 971 392	30.7896086	9.8235723 9.8270252	.001054852
950	90 06 01 90 25 00	854 670 349 857 375 000	30.8058436 30.8220700	9.8270202	.001053741
830	50 40 00	201 213 000	00.0220100	0.0001101	.001002002

TABLE 96 (Concluded)

Squares, Cubes, Square Roots, Cube Roots, Reciprocals

Num.	Square	Cube	Square root	Cube root	Reciprocal
951	90 44 01	860 085 351	30.8382879	9.8339238	.001051525
952	90 63 04	862 801 408	30.8544972	9.8373695	.001050420
953	90 82 09	865 523 177		9.8408127	
			30.8706981	9.8442536	.001049318
954	91 01 16	868 250 664	30.8868904		.001048218
.955	91 20 25	870 983 875	30.9030743	9.8476920	.001047120
956	91 39 36	873 722 816	30.9192497	9.8511280	.001046025
957	91 58 49 91 77 64	876 467 493	30.9354166	9.8545617	.001044932
958	91 77 64	879 217 912	30.9515751	9.8579929	.001043841
959	91 96 81	881 974 079	30.9677251	9.8614218	.001042753
960	92 16 00	884 736 000	30.9838668	9.8648483	.001041667
961	92 35 21	887 503 681	31.0000000	9.8682724	.001040583
962	92 54 44	890 277 128	31.0161248	9.8716941	.001039501
963	92 73 69	893 056 347	31.0322413	9.8751135	.001038422
964	92 92 96	895 841 344	31.0483494	9.8785305	.001037344
965	93 12 <b>2</b> 5	898 632 125	31.0644491	9.8819451	.001036269
966	93 31 56	901 428 696	31.0805405	9.8853574	.001035197
967	93 50 89	904 231 083	31.0966236	9.8887673	.001034126
968	93 70 24	907 039 232	31.1126984	9.8921749	.001033058
969	93 89 61	909 853 209	31.1287648	9.8955801	.001031992
970	94 09 00	912 673 000	31.1448230	9.8989830	.001030928
310	01 00 00		01.1110200		i
971.	94 28 41	915 498 611	31.1608729	9.9023835	.001029866
972	94 47 84 94 67 29	918 330 048	31.1769145	9.9057817	.001028807
973	94 67 29	921 167 317	31.1929479	9.9091776	.001027749
974	94 86 76	924 010 424	31.2089731	9.9125712	.001026694
975	95 06 25	926 859 375	31.2249900	9.9159624	.001025641
976	95 25 76	929 714 176	31.2409987	9.9193513	.001024590
977	95 45 29	932 574 833	31 2569992	9.9227379	.001023541
973	95 64 84	935 441 352	31.2729915	9.9261222	.001022495
979	95 84 41	938 313 739	31.2889757	9.9295042	.001021450
980	96 04 00	941 192 000	31.3049517	9.9328839	.001020408
981	96 23 61	944 076 141	31.3209195	9.9362613	.001019868
982	96 43 24	946 966 168	31.3368792	9.9396363	.001019308
983	96 62 89	949 862 087	31.3528308	9.9430092	.001017294
984	96 82 56	952 763 904	31.3687743	9.9463797	.001016260
985	97 02 25	955 671 625	31.3847097	9.9497479	.001015228
	•	050 505 050	01 4000000		20101110
986	97 21 96	958 585 256	31.4006369	9.9531138	.001014199
987	97 41 69	961 504 803	31.4165561	9.9564775	.001013171
988	97 61 44	964 430 272	31.4324673	9.9598389	.001012146
989	97 81 21	967 361 669	31.4483704	9.9631981	.001011122
990	98 01 00	970 299 000	21.4642654	9.9665549	.001010101
991	98 20 81	973 242 271	31.4801525	9.9699095	.001009082
992	98 40 64	976 191 488	31.4960315	9.9732619	.001008065
993	98 60 49	979 146 667	31.5119025	9.9766120	001007049
994	98 80 36	982 107/784	31.5277655	9.9799599	.001006036
995	99 00 25	982 107/784 985 074 875	31.5436206	9.9833055	.001005025
996	99 20 16	988 047 936	31.5594677	9.9866488	.001004016
997	99 40 09	961 026 973	31.5753068	9.9899900	.001003009
998	99 60 04	A994 011 992	31.5911380	9.9933289	.001003009
999	99 80 01	997 002 999	31.6069613	9.9966656	.001001001
1,000		1,000 000 000	31.6227766	10.0000000	.001000000
.,000	-,50 00 00	2,000 000 000	01.0221100	10.0000000	.0010000000

3

TABLE 97.—SQUARE ROOTS OF NUMBERS FROM 1000 TO 10000

Number	00	10	20	30	40	50	60	70	80	90
1,000 1,100 1,200 1,300 1,400	33.17 34.64 36.06	31.78 33.32 34.79 36.19 37.55	33.47 34.93 36.33	33.62 35.07 36.47	33.76 35.21 36.61	33.91 35.36 36.74	34.06 35.50 36.88	34.21 35.64 37.01	34.35 35.78 37.15	34.50 35.92 37.28
1,500 1,600 1,700 1,800 1,900	40.00 41.23 42.43	38.86 40.12 41.35 42.54 43.70	40.25 41.47 42.66	40.37 41.59 42.78	40.50 41.71 42.90	40.62 41.83 43.01	40.74 41.95 43.13	40.87 42.07 43.24	40.99 42.19 43.36	41.11 42.31 43.47
2,000 2,100 2,200 2,300 2,400	45.83 46.90 47.96	44.83 45.93 47.01 48.06 49.09	46.04 47.12 48.17	46.15 47.22 48.27	46.26 47.33 48.37	46.37 47.43 48.48	46.48 47.54 48,58	46.58 47.64 48.68	46.69 47.75 48.79	46.80 47.85 48.89
2,500 2,600 2,700 2,800 2,900	50.99 51.96 52.92	50.10 51.09 52.06 53.01 53.94	51.19 52.15 53.10	51.28 52.25 53.20	51.38 52.35 53.29	51.48 52.44 53.39	51.58 52.54 53.48	51.67 52.63 53.57	51.77 52.73 53.67	51.87 52.82 53.76
3,000 3,100 3,200 3,300 3,400	55.68 56.57 57.45	54.86 55.77 56.66 57.53 58.40	55.86 56.75 57.62	55.95 56.83 57.71	56.04 56.92 57.79	56.12 57.01 57.88	56.21 57.10 57.97	56.30 57.18 58.05	56.39 57.27 58.14	56.48 57.36 58.22
3,500 3,600 3,700 3,800 3,900	60.00 60.83 61.64	59.25 60.08 60.91 61.73 62.53	60.17 60.99 61.81	60.25 61.07 61.89	60.33 61.16 61.97	60.42 61.24 62.05	60.50 61.32 62.13	60.58 61.40 62.21	60.66 61.48 62.29	60.75 61.56 62.37
4,000 4,100 4,200 4,300 4,400	64.03 64.81 65.57	63.32 64.11 64.88 65.65 66.41	64.19 64.96 65.73	64.27 65.04 65.80	64.34 65.12 65.88	64.42 65.19 65.95	64.50 65.27 66.03	64.58 65.35 66.11	64.65 65.42 66.18	64.73 65.50 66.26
4,500 4,600 4,700 4,800 4,900	67.82 68.56 69.28	67.16 67.90 68.63 69.35 70.07	67.97 68.70 69.43	68.04 68.77 69.50	68.12 68.85 69.57	68.19 68.92 69.64	68.26 68.99 69.71	68.34 69.07 69.79	68.41 69.14 69.86	68.48 69.21 69.93
5,000 5,100 5,200 5,300 5,400	71.41 72.11 72.80	70.78 71.48 72.18 72.87 73.55	71.55 72.25 72.94	71.62 72.32 73.01	71.69 72.39 73.08	71.76 72.46 73.14	71.83 72.53 73.21	71.90 72.59 73.28	71.97 72.66 73.35	72.04 72.73 73.42

Table 97 (Concluded)
Square Roots of Numbers from 1000 to 10000

Number	00	10	20	30	40	50	60	70	80	90
5,500 5,600 5,700 5,800 5,900	74.83 75.50 76.16	74.90 75.56 76.22	74.97 75.63 76.29	75.03 75.70	75.10 75.76 76.42	75.17 75.83 76.49	75.23 75.89 76.55	75.30 75.96 76.62	75.37 76.03 76.68	74.77 75.43 76.09 76.75 77.40
6,000 6,100 6,200 6,300 6,400	78.10 78.74 79.37	78.17 78.80 79.44	78.23 78.87 79.50	77.65 78.29 78.93 79.56 80.19	78.36 78.99 79.62	78.42 79.06 79.69	78.49 79.12 79.75	78.55 79.18 79.81	78.61 79.25 79.87	78.04 78.68 79.31 79.94 80.56
6,500 6,600 6,700 6,800 6,900	81.24 81.85 82.46	81.30 81.91 82.52	81.36 81.98 82.58	81.42 82:04 82.64	81.49 82.10 82.70	81.55 82.16 82.76	81.61 82.22 82.83	81.67 82.28 82.89	81.73	81.18 81.79 82.40 83.01 83.61
7,000 7,100 7,200 7,300 7,400	84.26 84.85 85.44	84.32 84.91 85.50	84.38 84.97 85.56	84.44 85.03 85.62	84.50 85.09 85.67	84.56 85.15 85.73	84.62 85.21 85.79	84.68 85.26 85.85	84.14 84.73 85.32 85.91 86.49	84.79 85.38 85.97
7,500 7,600 7,700 7,800 7,900	87.18 87.75 88.32	87.24 87.81 88.37	87.29 87.86 88.43	87.35 87.92 88.49	87.41 87.98 88.54	87.46 88.03 88.60	87.52 88.09 88.66	87.58 88.15 88.71	87.06 87.64 88.20 88.77 89.33	87.69 88.26 88.83
8,000 8,100 8,200 8,300 8,400	90.00 90.55 91.10	90.06 90.61 91.16	90.11 $90.66$ $91.21$	90.17 90.72 91.27	90.22 90.77 91.32	90.28 90.83 91.38	90.33 90.88 91.43	90.39 90.94 91.49	89.89 90.44 90.99 91.54 92.09	90.50 91.05 91.60
8,500 8,600 8,700 8,800 8,900	92.74 93.27 93.81	92.79 93.33 93.86	92.84 93.38 93.91	92.90 93.43 93.97	92.95 93.49 94.02	93.01 93.54 94.07	93.06 93.59 94.13	93.11 93.65 94.18	92.63 93.17 93.70 94.23 94.76	93.22 93.75 94.29
9,000 9,100 9,200 9,300 9,400	95.39 95.92 96.44	95.45 95.97 96.49	95.50 96.02 96.54	95.55 96.07 96.59	95.60 96.12 96.64	95.66 96.18 96.70	95.71 96.23 96.75	95.76 96.28 96.80	95.29 95.81 96.33 96.85 97.37	95.86 96.38 96.90
9,500 9,600 9,700 9,800 9,900	97.98 98.49 98.99	98.03 98.54 99.05	98.08 98.59 99.10	98.13 98.64 99.15	98.18 98.69 99.20	98.23 98.74 99.25	98.29 98.79 99.30	98.34 98.84 99.35	97.88 98.39 98.89 99.40 99.90	98.44 98.94 99.45

TABLE 98.—CIRCUMFERENCES OF CIRCLES BY HUNDREDTES

Diam.	.00	.01	.02	.03	.04	.05	.06	.07	.08	.09
0.0 .1 .2 .8	0.628 0.942	0.660 0.974	0.691 1.005	0.094 0.408 0.723 1.037 1.351	0.754 1.068	0.785 1.100	0.817 1.131	0.848 1.162	0.880 1.194	0.283 0.597 0.911 1.225 1.539
0.5 .6 .7 .8	12.513	2.545	2.576	1.665 1.979 2.293 2.608 2.922	2.639	2.670	2.702	2.733	1.822 2.136 2.450 2.765 3.079	1.854 2.168 2.482 2.796 3.110
1.0 .1 .2 .8	3.456 3.770 4.084	3.487 3.801 4.115	3.519 3.833 4.147	3.236 3.550 3.864 4.178 4.492	3.581 3.896 4.210	3.613 3.927 4.241	3.644 3.958 4.273	3.676 3.990 4.304	3.707 4.021 4.335	3.424 3.738 4.053 4.367 4.681
1.5 .6 .7 .8	5.027 5.341 5.655 5.969	5.058 5.372 5.686 6.000	5.089 5.404 5.718 6.032	4.807 5.121 5.435 5.749 6.063	5.152 5.466 5.781 6.095	5.184 5.498 5.812 6.126	5.215 5.529 5.843 6.158	5.246 5.561 5.875 6.189	5.278 5.592 5.906 6. <b>22</b> 0	4.995 5.309 5.623 5.938 6.252
2.0 .1 .2 .8	6.283 6.597 6.912 7.226 7.540	6.315 6.629 6.943 7.257 7.571	6.346 6.660 6.974 7.288 7.603	6.377 6.692 7.006 7.320 7.634	6.409 6.723 7.037 7.351 7.665	6.440 6.754 7.069 7.383 7.697	6.472 6.786 7.100 7.414 7.728	6.503 6.817 7.131 7.446 7.760	6.535 6.849 7.163 7.477 7.791	6.566 6.880 7.194 7.508 7.823
2.5 .6 .7 .8	8.168 8.482 8.796	8.200 8.514 8.828	8.231 8.545 8.859	7.948 8.262 8.577 8.891 9.205	8.294 8.608 8.922	8.325 8.639 8.954	8.357 8.671 8.985	8.388 8.702 9.016	8.419 8.734 9.048	8.137 8.451 8.765 9.079 9.393
8.0 .1 .2 .8 .4	9.739 10.05 10.37	9.770 10.08 10.40	9.802 10.12 10.43	10.15 10.46	9.865 10.18 10.49	9.896 10.21 10.52	9.927 10.24 10.56	9.959 10.27 10.59		10.65
8.5 .6 .7 .8	11.62 11.94	11.66 11.97	11.69 12.00	$11.72 \\ 12.03$	$11.75 \\ 12.06$	11.78 12.10	$11.81 \\ 12.13$	11.84 12.16	11.25 11.56 11.88 12.19 12.50	11.91 12.22
4.0 .1 .2 .8	13.19 13.51	13.23 13.54	13.26 13.57	$13.29 \\ 13.60$	$13.32 \\ 13.63$	13.35 13.67	13.38 13.70	$13.41 \\ 13.73$	12.82 13.13 13.45 13.76 14.07	13.48 13.79
4.5 .6 .7 .8	14.45 14.77 15.08	14.48 14.80 15.11	14.51 14.83 15.14	14.55 14.86 15.17	14.58 14.89 15.21	14.61 14.92 15.24	14.64 14.95 15.27	14.67 14.99 15.30	14.39 14.70 15.02 15.33 15.65	14.73 15.05 15.36

Table 98 (Concluded)
CIRCUMFERENCES OF CIRCLES BY HUNDREDTHS

Diam.	0	1	2	8	4	5.	6	7	8	9
5.0 .1 .2 .8	16.02 16.34 16.65 16.96	16.05 16.37 16.68 17.00	16.08 16.40 16.71 17.03	16.12 16.43 16.74 17.06	16.15 16.46 16.78 17.09	16.18 16.49 16.81 17.12	16.21 16.52 16.84 17.15	16.24 16.56 16.87 17.18	16.27 16.59 16.90 17.22	15.99 16.30 16.62 16.93 17.25
5.5 .6 .7 .8	118 22	11X 25	11 X 2X	118.32	118.30	10.00	10.41	10.44	10.21	17.56 17.88 18.19 18.50 18.82
6.0 .1 .2 .8	19.16 19.48	19.20 19.51 19.82	19.23 19.54 19.85	19.26	19.29 19.60 19.92	19.32 19.63 19.95	19.35 19.67 19.98	19.38 19.70 20.01	19.42 19.73 20.04	19.13 19.45 19.76 20.07 20.39
6.5 .6 .7 .8	20.42 20.73 21.05 21.36 21.68	20.45 20.77 21.08 21.39 21.71	20.48 20.80 21.11 21.43 21.74	20.51 20.83 21.14 21.46 21.77	20.55 20.86 21.17 21.49 21.80	20.58 20.89 21.21 21.52 21.83	20.61 20.92 21.24 21.55 21.87	20.64 20.95 21.27 21.58 21.90	20.67 20.99 21.30 21.61 21.93	20.70 21.02 21.33 21.65 21.96
7.0 , .1 .2 .3 .4	21.99 22.31 22.62	22.02 22.34 22.65 22.97	22.05 22.37 22.68 23.00	22.09 22.40 22.71 23.03 23.34	22.12 22.43 22.75 23.06	22.15 22.46 22.78 23.09	22.18 22.49 22.81 23.12	22.21 22.53 22.84 23.15	22.24 22.56 22.87 23.18	22.27 22.59 22.90 23.22
7.5 .6 .7 .8	24.19	24.22 24.54	24.25 24.57	23.66 23.97 24.28 24.60 24.91	24.63	24.35 24.66	24.38 24.69	$24.41 \\ 24.72$	24.76	24.79
8.0 .1 .2 .8	25.13 25.45 25.76 26.08	25.16 25.48 25.79 26.11	25.20 25.51 25.82 26.14	25.23 25.54 25.86 26.17 26.48	25.26 25.57 25.89 26.20	25.29 25.60 25.92 26.23	25.32 25.64 25.95 26.26	25.35 25.67 25.98 26.30	25.38 25.70 26.01 26.33	25.42 25.73 26.04 26.36
8.5 .6 .7 .8	27.33	27.36 27.68	27.39 27.71	26.80 27.11 27.43 27.74 28.05	27.40	27.49	27.83	27.87	27.90	27.93
9.0 .1 .2 .8	28.27 28.59 28.90	28.31 28.62 28.93	28.34 28.65 28.97	28.37 28.68 29.00 29.31 29.63	28.40 28.71 29.03 29.34	28.43 28.75 29.06 29.37	28.46 28.78 29.09 29.41	28.49 28.81 29.12 29.44	28.53 28.84 29.15 29.47	28.56 28.87 29.19 29.50
9.5 .6 .7 .8	29.85 30.16 30.47	29.88	29.91 30.22 30.54	29.94 30.25 30.57	29.97 30.28 30.60	30.00 30.32 30.63 30.94	30.03 30.35 30.66 30.98	30.07 30.38 30.69 31.01	30.10 30.41 30.72 31.04	30.13 30.44 30.76 31.07

TABLE 99.—AREAS OF CIRCLES BY HUNDREDTHS

Diam.	.00	.01	.02	.03	.04	.05	.06	.07	.08	.09
0.0 0.1 0.2 0.3 0.4	0.008 0.031 0.071	0.010 0.035 0.075	0.011 0.038 0.080	0.013 0.042 0.086	0.015 0.045 0.091	0.002 0.018 0.049 0.096 0.159	0.020 0.053 0.102	0.023 0.057 0.108	0.025 0.062 0.113	0.006 0.028 0.066 0.119 0.189
0.5 0.6 0.7 0.8 0.9	0.196 0.283 0.385 0.503 0.636	0.292 0.396 0.515	0.302 0.407 0.528	0.312 0.419 0.541	0.322 0.430 0.554	0.332 0.442 0.567	0.342 0.454 0.581	0.353 0.466 0.594	0.363 0.478 0.608	0.273 0.374 0.490 0.622 0.770
1.1 1.2	0.785 0.950 1.131 1.327 1.539	0.968 1.150 1.348	0.985 1.169 1.368	1.003 1.188 1.389	1.021 1.208 1.410	1.039 1.227 1.431	1.057 1.247 1.453	1.075 1.267 1.474	1.094 1.287 1.496	0.933 1.112 1.307 1.517 1.744
1.6 · 1.7 1.8	1.767 2.011 2.270 2.545 2.835	2.036 2.297 2.573	2.061 2.324 2.602	2.087 2.351 2.630	2.112 2.378 2.659	2.138 2.405 2.688	2.164 2.433 2.717	2.190 2.461 2.746	2.217 2.488 2.776	1.986 2.243 2.516 2.806 3.110
2.1 2.2 2.3	3.142 3.464 3.801 4.155 4.524	3.497 3.836 4.191	3.530 3.871 4.227	3.563 3.906 4.264	3.597 3.941 4.301	3.631 3.976 4.337	3.664 4.011 4.374	3.698 4.047 4.412	3.733 4.083 4.449	3.431 3.767 4.119 4.486 4.870
2.6 2.7	4.909 5.309 5.726 6.158 6.605	5.350 5.768	5.391	5.433 5.853	5.474 5.896	5.515 $5.940$	5.557 5.983	5.599 6.026	5.641 6.070	5.269 5.683 6.114 6.560 7.022
3.3	7.069 7.548 8.042 8.553 9.079	8.605	8.657	8.709	8.762	8.814	8.867	3.920	8.973	7.499 7.992 8.501 9.026 9.566
3.7 3.8	9.62 10.18 10.75 11.34 11.95	10.24 10.81 11.40	10.29 10.87 11.46	10.35 10.93 11.52	10.41 10.99 11.58	10.46 11.04 11.64	10.52 11.10 11.70	10.58 11.16 11.76	[1.22]	10.69 11.28 11.88
4.1 4.2 4.3	12.57 13.20 13.85 14.52 15.21	13.27 13.92 14.59	13.33 13.99 14.66	13.40 14.05 14.73	13.46 14.12 14.79	13.53 14.19 14.86	13.59 1 14.25 1 14.93 1	3.66 4.32 5.00	3.72   1   4.39   1   5.07   1	3.79 4.45 5.14
4.6 4.7 4.8	15.90 16.62 17.35 18.10 18.86	16.69 17.42 18.17	16.76 17.50 18.25	16.84 17.57 18.32	16.91 17.65 18.40	16.98 17.72 18.47	17.06 1 17.80 1 18.55 1	7.13 7.87 8.63	17.20 1 17.95 1 18.70 1	7.28 8.02 8.78

# TABLE 99 (Concluded) AREAS OF CIRCLES BY HUNDREDTHS

Diam.	.0	.1	.2	.3	.4	.5	.6	.7	.8	.9
.1	20.43 21.24 22.06	20.51 21.32 22.15	20.59 21.40 22.23	20.67 21.48 22.31	20.75 21.57 22.40	20.83 21.65 22.48	$20.91 \\ 21.73 \\ 22.56$	20.99 $21.81$ $22.65$	21.07 21.90 22.73	20.35 21.16 21.98 22.82 23.67
ا م ا	94 49	23.84 24.72 25.61 26.51 27.43	94 91	94 90	24 00	25 07	25 14	25 25	25 24	24.54 25.43 26.33 27.25 28.18
6.0 .1 .2 .3 .4	28.27 29.22 30.19 31.17 32.17	28.37 29.32 30.29 31.27 32.27	28.46 29.42 30.39 31.37 32.37	28.56 29.51 30.48 31.47 32.47	28.65 29.61 30.58 31.57 32.57	28.75 29.71 30.68 31.67 32.67	28.84 29.80 30.78 31.77 32.78	28.94 29.90 30.88 31.87 32.88	29.03 30.00 30.97 31.97 32.98	29.13 30.09 31.07 32.07 33.08
.8 1	36.32	33.29 34.32 35.36 36.42 37.50	36.531	36.64	36.75	36.85	36.96	37.07	37.18	37.28 I
.1 .2 .3	39.59 40.72 41.85	38.59 39.70 40.83 41.97 43.12	39.82 40.94 42.08	39.93 41.06 42.20	40.04 41.17 42.31	40.15 41.28 42.43	40.26 41.40 42.54	40.38 41.51 42.66	40.49 41.62 42.78	40.60 41.74 42.89
.6 .7 .8	45.36 46.57 47.78	44.30 45.48 46.69 47.91 49.14	45.60 46.81 48.03	45.72 46.93 48.15	45.84 47.05 48.27	45.96 47.17 48.40	46.08 47.29 48.52	46.20 47.42 48.65	46.32 47.54 48.77	46.45 47.66 48.89
.1 .2 .3	51.53 52.81 54.11	50.39 51.66 52.94 54.24 55.55	51.78 53.07 54.37	51.91 53.20 54.50	52.04 53.33 54.63	52.17 53.46 54.76	52.30 53.59 54.89	52.42 53.72 55.02	52.55 53.85 55.15	52.68 53.98 55.29
.8	59.45 50.82	56.88 58.22 59.58 60.96 62.35	59.72 61.10	59.86 61.24	59.99 81.38	60.13 61.51	$60.27 6 \\ 61.65 6$	30.41 31.79	60.55 61.93	80.68 82.07
.1 .2 .3	35.04 36.48 37.93	63.76 65.18 66.62 68.08 69.55	65.33 66.77 68.22	65.47 66.91 68.37	65.61 67.06 68.51	65.76 67.20 68.66	85.90 87.35 88.81	36.04 37.49 38.96	66.19 67.64 69.10	66.33 67.78 69.25
.6 .7 .8	72.38 73.90 75.43	71.03 72.53 74.05 75.58 77.13	72.68 74.20 75.74	72 . 84 74 . 36 75 . 89	72.99 74.51 76.05	73.14 74.66 76.20	73 . 29 74 . 82 76 . 36	73.44 74.97 76.51	73.59 75.12 76.67	73.75 75.28 76.82

TABLE 100.—CIRCUMFERENCES OF CIRCLES BY EIGHTHS

Diam.	0	1/8	34	36	1/2	<del>5</del> 6	34	<b>7</b> 8
0	.0000	.3927	.7854	1.178	1.571	1.963	2.356	2.749
1	3.142	3.534	3.927	4.320	4.712	5.105	5.498	5.890
2	6.233	6.676	7.069	7.461	7.854	8.247	8.639	9.032
3	9.425	9.817	10.21	10.60	11.00	11.39	11.78	12.17
4	12.57	12.96	13.35	13.74	14.14	14.53	14.92	15.32
5	15.71	16.10	16.49	16.89	17.28	17.67	18.06	18.46
6	18.85	19.24	19.63	20.03	20.42	20.81	21.21	21.60
7	21.99	22.38	22.78	23.17	23.56	23.95	24.35	24.74
8	25.13	25.53	25.92	26.31	26.70	27.10	27.49	27.88
9	28.27	28.67	29.06	29.45	29.85	30.24	30.63	31.02
10	31.42	31.81	32.20	32.59	32.99	33.38	33.77	34.16
1	34.56	34.95	35.34	35.74	36.13	36.52	36.91	37.31
2	37.70	38.09	38.48	38.88	39.27	39.66	40.06	40.45
3	40.84	41.23	41.63	42.02	42.41	42.80	43.20	43.59
4	43.98	44.37	44.77	45.16	45.55	45.95	46.34	46.73
15 6 7 . 8	47.12 50.27 53.41 56.55 59.69	47.52 50.66 53.80 56.94 60.08	47.91 51.05 54.19 57.33 60.48	48.30 51.44 54.59 57.73 60.87	48.69 51.84 54.98 58.12 61.26	49.09 52.23 55.37 58.51 61.65	49.48 52.62 55.76 58.90 62.05	49.87 53.01 56.16 59.30 62.44
20	62.83	63.22	63.62	64.01	64.40	64.80	65.19	65.58
1	65.97	66.37	66.76	67.15	67.54	67.94	68.33	68.72
2	69.12	69.51	69.90	70.29	70.69	71.08	71.47	71.86
3	72.26	72.65	73.04	73.43	73.83	74.22	74.61	75.01
4	75.40	75.79	76.18	76.58	76.97	77.36	77.75	78.15
25	78.54	78.93	79.33	79.72	80.11	80.50	80.90	81.29
6	81.68	82.07	82.47	82.86	83.25	83.64	84.04	84.43
7	84.82	85.22	85.61	86.00	86.39	86.79	87.18	87.57
8	87.96	88.36	88.75	89.14	89.54	89.93	90.32	90.71
9	91.11	91.50	91.89	92.28	92.68	93.07	93.46	93.86
30	94.25	94.64	95.03	95.43	95.82	96.21	96.60	97.00
1	97.39	97.78	98.17	98.57	98.96	99.35	99.75	100.1
2	100.5	100.9	101.3	101.7	102.1	102.5	102.9	103.3
3	103.7	104.1	104.5	104.9	105.2	105.6	106.0	106.4
4	106.8	107.2	107.6	108.0	108.4	108.8	109.2	109.6
35	110.0	110.3	110.7	111.1	111.5	111.9	112.3	112.7
6	113.1	113.5	113.9	114.3	114.7	115.1	115.5	115.8
7	116.2	116.6	117.0	117.4	117.8	118.2	118.6	119.0
8	119.4	119.8	120.2	120.6	121.0	121.3	121.7	122.1
9	122.5	122.9	123.3	123.7	124.1	124.5	124.9	125.3
40	125.7	126.1	126.4	126.8	127.2	127.6	128.0	128.4
1	128.8	129.2	129.6	130.0	130.4	130.8	131.2	131.6
2	131.9	132.3	132.7	133.1	133.5	133.9	134.3	134.7
3	135.1	135.5	135.9	136.3	136.7	137.1	137.4	137.8
4	138.2	138.6	139.0	139.4	139.8	140.2	140.6	141.0
45	141.4	141.8	142.2	142.5	142.9	143.3	143.7	144.1
6	144.5	144.9	145.3	145.7	146.1	146.5	146.9	147.3
7	147.7	148.0	148.4	148.8	149.2	149.6	150.0	150.4
8	150.8	151.2	151.6	152.0	152.4	152.8	153.2	153.5
9	153.9	154.3	154.7	155.1	155.5	155.9	156.3	156.7

Table 100 (Concluded)
CIRCUMFERENCES OF CIRCLES BY EIGHTHS

Diam.	0	1/8	14	348	1/2	5/8	34	3/6
50	157.1	157.5	157.9	158.3	158.7	159.0	159.4	159.8
1	160.2	160.6	161.0	161.4	161.8	162.2	162.6	163.0
2	163.4	163.8	164.1	164.5	164.9	165.3	165.7	166.1
3	166.5	166.9	167.3	167.7	168.1	168.5	168.9	169.3
4	169.6	170.0	170.4	170.8	171.2	171.6	172.0	172.4
55	172.8	173.2	173.6	174.0	174.4	174.8	175.1	175.5
6	175.9	176.3	176.7	177.1	177.5	177.9	178.3	178.7
7	179.1	179.5	179.9	180.2	180.6	181.0	181.4	181.8
8	182.2	182.6	183.0	183.4	183.8	184.2	184.6	185.0
9	185.4	185.7	186.1	186.5	186.9	187.3	187.7	188.1
60 1 2 3	188.5 191.6 194.8 197.9 201.1	188.9 192.0 195.2 198.3 201.5	189.3 192.4 195.6 198.7 201.8	189.7 192.8 196.0 199.1 202.2	190.1 193.2 196.3 199.5 202.6	190.5 193.6 196.7 199.9 203.0	190.9 194.0 197.1 200.3 203.4	191.2 194.4 197.5 200.7 203.8
65	204.2	204.6	205.0	205.4	205.8	206.2	206.6	207.0
6	207.3	207.7	208.1	208.5	208.9	209.3	209.7	210.1
7	210.5	210.9	211.3	211.7	212.1	212.5	212.8	213.2
8	213.6	214.0	214.4	214.8	215.2	215.6	216.0	216.4
9	216.8	217.2	217.6	217.9	218.3	218.7	219.1	219.5
70 · 1 · 2 · 3 · 4	219.9	220.3	220.7	221.1	221.5	221.9	222.3	222.7
	223.1	223.4	223.8	224.2	224.6	225.0	225.4	225.8
	226.2	226.6	227.0	227.4	227.8	228.2	228.6	228.9
	229.3	229.7	230.1	230.5	230.9	231.3	231.7	232.1
	232.5	232.9	233.3	233.7	234.0	234.4	234.8	235.2
75	235.6	236.0	236.4	236.8	237.2	237.6	238.0	238.4
6	238.8	239.2	239.5	239.9	240.3	240.7	241.1	241.5
7	241.9	242.3	242.7	243.1	243.5	243.9	244.3	244.7
8	245.0	245.4	245.8	246.2	246.6	247.0	247.4	247.8
9	248.2	248.6	249.0	249.4	249.8	250.1	250.5	250.9
80	251.3	251.7	252.1	252.5	252.9	253.3	253.7	254.1
1	254.5	254.9	255.3	255.6	256.0	256.4	256.8	257.2
2	257.6	258.0	258.4	258.8	259.2	259.6	260.0	260.4
3	260.8	261.1	261.5	261.9	262.3	262.7	263.1	263.5
4	263.9	264.3	264.7	265.1	265.5	265.9	266.2	266.6
85	267.0	267.4	267.8	268.2	268.6	269.0	269.4	269.8
6	270.2	270.6	271.0	271.4	271.7	272.1	272.5	272.9
7	273.3	273.7	274.1	274.5	274.9	275.3	275.7	276.1
8	276.5	276.9	277.2	277.6	278.0	278.4	278.8	279.2
9	279.6	280.0	280.4	280.8	281.2	281.6	282.0	282.4
90	282.7	283.1	283.5	283.9	284.3	284.7	285.1	285.5
1	285.9	286.3	286.7	287.1	287.5	287.8	288.2	288.6
2	289.0	289.4	289.8	290.2	290.6	291.0	291.4	291.8
3	292.2	292.6	293.0	293.3	293.7	294.1	294.5	294.9
4	295.3	295.7	296.1	296.5	296.9	297.3	297.7	298.1
95	298.5	298.8	299.2	299.6	300.0	300.4	300.8	301.2
6	301.6	302.0	302.4	302.8	303.2	303.6	303.9	304.3
7	304.7	305.1	305.5	305.9	306.3	306.7	307.1	307.5
8	307.9	308.3	308.7	309.1	309.4	309.8	310.2	310.6
9	311.0	311.4	311.8	312.2	312.6	313.0	313.4	313.8

TABLE 101.—AREAS OF CIRCLES BY EIGHTHS

Diam.	0	1/8	1/4	3/8	1/2	56	34	₹6
0	.0000	.0123	.0491	.1104	.1963	.3068	4.418	.6013
1	.7854	.9940	1.227	1.485	1.767	2.074	2.405	2.761
2	3.142	3.547	3.976	4.430	4.909	5.412	5.940	6.492
3	7.069	7.670	8.296	8.946	9.621	10.32	11.04	11.79
4	12.57	13.36	14.19	15.03	15.90	16.80	17.72	18.67
5	19.63	20.63	21.65	22.69	23.76	24.85	25.97	27.11
6	28.27	29.47	30.68	31.92	33.18	34.47	35.78	37.12
7	38.48	39.87	41.28	42.72	44.18	45.66	47.17	48.71
8	50.27	51.85	53.46	55.09	56.75	58.43	60.13	61.86
9	63.62	65.40	67.20	69.03	70.88	72.76	74.66	76.59
10	•78.54	80.52	82.52	84.54	86.59	88.66	90.76	92.89
1	95.03	97.21	99.40	101.6	103.9	106.1	108.4	110.8
2	113.1	115.5	117.9	120.3	122.7	125.2	127.7	130.2
3	132.7	135.3	137.9	140.5	143.1	145.8	148.5	151.2
4	153.9	156.7	159.5	162.3	165.1	168.0	170.9	173.8
15	176.7	179.7	182.7	185.7	188.7	191.7	194.8	197.9
6	201.1	204.2	207.4	210.6	213.8	217.1	220.4	223.7
7	227.0	230.3	233.7	237.1	240.5	244.0	247.4	250.9
8	254.5	258.0	261.6	265.2	268.8	272.4	276.1	279.8
9	283.5	287.3	291.0	294.8	298.6	302.5	306.4	310.2
20	314.2	318.1	322.1	326.1	330.1	334.1	338.2	342.2
1	346.4	350.5	354.7	358.8	363.1	367.3	371.5	375.8
2	380.1	384.5	388.8	393.2	397.6	402.0	406.5	411.0
3	415.5	420.0	424.6	429.1	433.7	438.4	443.0	447.7
4	452.4	457.1	461.9	466.6	471.4	476.3	481.1	486.0
25	490.9	495.8	500.7	505.7	510.7	515.7	520.8	525.8
6	530.9	536.0	541.2	546.4	551.5	556.8	562.0	567.3
7	572.6	577.9	583.2	588.6	594.0	599.4	604.8	610.3
8	615.8	621.3	626.8	632.4	637.9	643.5	649.2	654.8
9	660.5	666.2	672.0	677.7	683.5	689.3	695.1	701.0
30	706.9	712.8	718.7	724.6	730.6	736.6	742.6	748.7
1	754.8	760.9	767.0	773.1	779.3	785.5	791.7	798.0
2	804.2	810.5	816.9	823.2	829.6	836.0	842.4	848.8
3	855.3	861.8	868.3	874.8	881.4	888.0	894.6	901.3
4	907.9	914.6	921.3	928.1	934.8	941.6	948.4	955.3
35	962.1	969.0	975.9	982.8	989.8	996.8	1004	1011
6	1018	1025	1032	1039	1046	1054	1061	1068
7	1075	1082	1090	1097	1104	1112	1119	1127
8	1134	1142	1149	1157	1164	1172	1179	1187
9	1195	1202	1210	1218	1225	1233	1241	1249
40	1257	1265	1272	1280	1288	1296	1304	1312
1	1320	1328	1336	1345	1353	1361	1369	1377
2	1385	1394	1402	1410	1419	1427	1435	1444
3	1452	1461	1469	1478	1486	1495	1503	1512
4	1521	1529	1538	1547	1555	1564	1573	1582
45	1590	1599	1608	1617	1626	1635	1644	1653
6	1662	1671	1680	1689	1698	1707	1717	1726
7	1735	1744	1753	1763	1772	1781	1791	1800
8	1810	1819	1828	1838	1847	1857	1867	1876
9	1886	1895	1905	1915	1924	1934	1944	1954

TABLE 101 (Concluded)
AREAS OF CIRCLES BY EIGHTHS

Diam.	0	1/8	1/4	38	3/2	58	34	7/8
50	1963	1973	1983	1993	2003	2013	2023	2033
1	2043	2053	2063	2073	2083	2093	2103	2114
2	2124	2134	2144	2154	2165	2175	2185	2196
3	2206	2217	2227	2238	2248	2259	2269	2280
55 6 7	2376 2463 2552 2642	2301 2387 2474 2563 2653	2311 2397 2485 2574 2665	2322 2408 2496 2585 2676	2333 2419 2507 2597 2688	2344 2430 2518 2608 2699	2354 2441 2529 2619 2711	2365 2452 2541 2631 2722
8 9 60 1	2827 2922 3019	2746 2839 2934 3031	2757 2851 2946 3043	2769 2863 2959 3056	2781 2875 2971 3068	2792 - 2887 2983 3080	2804 2899 2995 3093	2816 2911 3007 3105
2 3 4 65 6	3117 3217 3318 3421	3130 3230 3331 3434	3142 3242 3344 3447	3154 3255 3357 3460	3167 3267 3370 3473	3179 3280 3382 3486	3192 3293 3395 3499	3204 3306 3408 3513
7 8 9 70	3526 3632 3739 3848	3539 3645 3753 3862	3552 3658 3766 3876	3565 3672 3780 3890	3578 3685 3794 3904	3592 3699 3807	3605 3712 3821 3931	3618 3726 3835 3945
1	3959	3973	3987	4001	4015	4029	4043	4057
2	4072	4086	4100	4114	4128	4142	4157	4171
3	4185	4200	4214	4228	4243	4257	4272	4286
4	4301	4315	4330	4345	1359	4374	4388	4403
75	4418	4433	4447	4462	4477	4492	4507	4522
6	4536	4551	4566	4581	4596	4611	4626	4642
7	4657	4672	4687	4702	4717	4733	4748	4763
8	4778	4794	4809	4824	4840	4855	4871	4886
9	4902	4917	4933	4948	4964	4980	4995	5011
80	5027	5042	5058	5074	5090	5105	5121	5137
1	5153	5169	5185	5201	5217	5233	5249	5265
2	5281	5297	5313	5329	5346	5362	5378	5394
3	5411	5427	5443	5460	5476	5492	5509	5525
4	5542	5558	5575	5591	5608	5625	5641	5658
85	5675	5691	5708	5725	5741	5758	5775	5792
6	5809	5826	5843	5860	5877	5894	5911	5928
7	5945	5962	5979	5996	6013	6030	6048	6065
8	6082	6099	6117	6134	6151	6169	6186	6204
9	6221	6239	6256	6274	6291	6309	6326	6344
90	6362	6379	6397	6415	6433	6450	6468	6486
1	6504	6522	6540	6558	6576	6594	6612	6630
2	6648	6666	6684	6702	6720	6738	6756	6775
3	6793	6811	6829	6848	6866	6885	6903	6921
4	6940	6958	6977	6995	7014	7032	7051	7070
95	7088	7107	7126	7144	7163	7182	7201	7219
6	7238	7257	7276	7295	7314	7333	7352	7371
7	7390	7409	7428	7447	7466	7485	7505	7524
8	7543	7562	7581	7601	7620	7639	7659	7678
9	7698	7717	7737	7756	7776	7795	7815	7834

#### APPENDIX A

## COMPARISON OF WEIR FORMULAS WITH EXPERIMENTS

Inasmuch as the author is advocating a new weir formula for sharp-crested weirs with free overfall and also a new formula for submerged weirs it appears advisable to submit the data on which these formulas are based.

In the following pages the formulas and experiments of Francis, Fteley and Stearns, and Bazin are investigated. Tables and diagrams are given which show the extent to which these formulas and the author's formulas (formula (7) or (7a), page 72, for weirs with free overfall and formula (41), page 32, for submerged weirs, agree with the experiments. The following discussion should be read in connection with that given on pages 63 to 84.

### Application of Formula to Suppressed Weirs

The Bazin Experiments.—The most complete set of experiments on suppressed weirs are those of Bazin. Table 102 has been prepared to show how the author's formula for weirs with free overfall and some of the more commonly used weir formulas agree with Bazin's experiments. This table covers practically the entire range of these experiments, the heights of weir varying from 0.79 to 3.72 feet, with a range of head of from 0.2 to 1.4 feet.

In column 5 of this table are given Bazin's experimental discharges. These values were computed by using Bazin's diagram¹ of coefficients which gives the mean of his experimental results. Columns 6 and 7 give discharges by the Bazin formula and the author's formula respectively. Discharges obtained by other methods are also given as follows: In column 8 by the Lyman diagram, in column 9 by the Francis formula, in

¹ Plate 22, Annales des Ponts et Chaussees, October, 1888.

column 10 by the Fteley and Stearns formula and in column 11 by formula (2); the latter will be explained later (page 389).

It will be observed that in general the author's formula comes somewhat closer to the experimental values than any of the other formulas. Bazin's formula and Lyman's diagram also agree very well with the experimental values. The Lyman diagram was based upon measurements made 15 feet upstream from the weir by means of a plummet suspended by a tape, and a correction was made to the Bazin experiments to make them conform to this method of measurement. This doubtless accounts in a measure at least for the discrepancies in these results. The discharges by the Fteley and Stearns formula are in general less than the experimental results but they exceed them for the higher heads on the weir 0.79 feet high and approach them again for the weir 3.72 feet high. This indicates the need of a varying coefficient to be applied to a formula of The Francis formula shows a wide variance from these experimental results. It compares more favorably for the highest weir, however, which is what would be expected since the Francis formula is based upon experiments with higher weirs than the Bazin formula.

The author's formula agrees with the experimental results especially well for the lower heads. It is here that investigators have generally had difficulty in deriving a formula that would give discharges sufficiently great without departing too far from the experiments for higher heads.

Fig. 89 shows graphically the discrepancies resulting from Table 102. The experimental values are shown on the straight line which is used as a base. The discrepancies of the formulas from these values for different heads are indicated by the broken lines. The comparative results by the various formulas can be readily seen from this figure.

Table 103 has been prepared from Fig. 89 by determining the areas between each of the broken lines and the base line. Areas above the base are indicated as plus and those below minus. The figures are not definite quantities but represent the comparative discrepancies for each formula. The last four columns show a summary of the results, the last column giving the comparative total discrepancies both plus and minus. From these figures it will be seen that the author's formula agrees a little closer with the Bazin experiments than any of the her formulas.

Fig. 89.



Discrepancy between Measured Discharged and

Table 102.—Showing Comparative Values of Discharge over Suppressed Weirs as Determined from Bazin's Experiments and as Computed by Various Weir Formulas

Height of weir	Measured head	Area of channel of approach divided by length of weir	Velocity of approach	Experimental discharge	Discharge by Basin formula	Discharge by author's formula	Discharge by Lyman diagram	Discharge by Francis formula	Discharge by Fteley & Stearns formula	Discharge by formula (2)
P	H	d	V	Q	Q	Q	Q	Q	Q	Q
1	2	3	4	5	6	7	8	9	10	11
0.79	0.2 0.3 0.4	0.99 1.09 1.19	.33 .54 .76	.320 .585 .908	.333 .601 .926	.325 .593 .923	.314 .583	. 302 . 557 . 866	. 308 . 570 . 889	.315 .585
	0.6 0.8 1.0 1.3	1.39 1.59 1.79 2.09	2.17	1.710 2.701 3.876 5.977	1.732 2.728 3.900 5.949	1.741 2.747 3.924 5.976	3.881	1.620 2.533 3.590 5.410	1.682 2.679 3.878 6.033	
1.16	0.2 0.3 0.4	1.36 1.46 1.56	.23 .40 .57	.319 .579 .892	.330 .590 .903	.322 .582 .899	.313 .574 .887	. 299 . 553 . 856	.308 .561 .870	.312 .575
	0.6 0.8 1.0	1.76 1.96 2.16 2.46	.94 1:33 1.73	1.665 2.614	1.672 2.614 3.720 5.660	1.679 2.630 3.741	1.658 2.600 3.737 5.695	1.593 2.481 3.507 5.280	1.627	1.669 2.621 3.733
	1.3 1.5 2.0 3.0 4.0	2.66 3.16 4.16 5.16	2.68 3.59 5.27 6.57		7.126 11.350	7.141 11.329 21.694		6.603 10.361 20.226	7.138	5.075
1.64	0.2 0.3 0.4	1.84 1.94 2.04	.17	.319	.328 .585	.320 .577 .887		.299 .550	. 305	.310 .569 .878
	0.6 0.8 1.0	2.24 2.44 2.64	.73 1.04 1.37	1.633 2.542 3.601	1.633 2.537 3.590	1.640 2.551 3.609	1.619 2.536 3.616	1.575 2.446 3.449	1.592 2.487 3.539	1 . 630 2 . 543 3 . 604
	1.2 1.4 2.0 3.0	2.84 3.04 3.64 4.64	2.02 2.98 4.51		20.934	6.129 10.814 20.729		5.808 10.126 19.118	6.057 10.860 21.439	
	1.0	5.64	5.92		33.376	32.847		30.926	35.001	

## TABLE 102 (Concluded)

## SHOWING COMPARATIVE VALUES OF DISCHARGE OVER SUP-PRESSED WEIRS AS DETERMINED FROM BAZIN'S Ex-PERIMENTS AND AS COMPUTED BY VARIOUS

WEIR FORMULAS

				W E1		MULA	, 			
Height of weir	Meagured head	Area of channel of approach divided by length of weir	Velocity of approach	Experimental discharge	Discharge by Bazin formula	Discharge by author's formula	Discharge by Lyman diagram	Discharge by Francis formula	Discharge by Fteley & Stearns formula	Discharge by formula (2)
P	H	d	v	Q	Q	Q	Q	Q	Q	Q
1	2	3	4	5	6	7	8	9	10	11
2.47	0.2 0.3 0.4	2.67 2.77 2.87	.12 .21 .31	.575 .878	.327 .581 .881	.319 .573 .878	.565 .865	. 549 . 847	.554 .851	.309 .565 .868
	0.6 0.8 1.0 1.2 1.4	3.07 3.27 3.47 3.67 3.87	.76 1.01 1.27 1.53	1.611 2.495 3.510 4.650 5.908	1.604 2.474 3.479 4.613 5.869	2.486 3.495 4.628 5.879	1.592 2.470 3.498 4.640 5.905	1.563 2.418 3.399 4.493 5.695	5.810	2.478 3.492
-	2.0 3.0 4.0 5.0	4.47 5.47 6.47 7.47	2.30 3.59 4.81 5.95			10.289 19.618 31.113 44.509				•
3.72	0.2 0.3 0.4 0.6 0.8 1.0 1.2 1.4 2.0 3.0 4.0	3.92 4.02 4.12 4.32 4.52 4.72 4.92 5.12 5.72 6.72 7.72	.54 .72 .92 1.11 1.73 2.81 3.88	.318 .573 .874 1.591 2.444 3.423 4.511 5.706	.326 .579 .876 1.588 2.437 3.410 4.499 5.699 9.923 18.878 30.006	2.448 3.424 4.512 5.705 9.884 18.667 29.485	.309 .561 .856 1.569 2.418 3.411 4.502 5.702		30.041	.308 .562 .863 1.582 2.439 3.420 4.515 5.720
	5.0	8.72	4.94		43.088	42.133			43.500	

Table 103.—Showing Comparative Discrepancies between Bazin's Experimental Values of Discharge over Suppressed Weirs and Discharges as Computed by Various Formulas

				Heig	ht	of v	wei	г						
Name	0.	0.79   1.16   1.64   2.47   3.72									Total	Total	Sum of	Total
of formula		Discrepancy									+	-	ences	- "
	+	-	+	-	+	-	+	-	-					
Bazin	74	9	22	29	9	32	5	91	5	29	115	190	-75	305
Author's formula	123		40	2	28			50	6		197	52	+145	249
Lyman's diagram	1	45	9	21	58	21		68		76	68	231	- 163	299
Fteley & Stearns	34	59		185		237		173		180	34	844	-810	878
Francis'		524	• •	409		579		440		227		2,179	-2,179	2,179
Formula (2)	50	9	11	12	8	9		73	8	27	77	130	- 53	207

⁺ indicates area under curve above base line.

The Fteley and Stearns Experiments.—These experiments were made with two weirs 5 feet and 19 feet long and 3.17 feet and 6.55 feet high respectively. Table 104, Fig. 90, and Table 105 have been prepared to show the discrepancies between the Fteley and Stearns experiments and various formulas. The values given in column 6 of Table 104 were obtained graphically by plotting all of the Fteley and Stearns experiments with Q per linear foot and H as coördinates. The discharges for the heads given in the table were taken directly from the curve. The scale was so chosen that discharges could be read to thousandths of a cubic foot per second.

The Fteley and Stearns formula agrees closest with these experiments. The author's formula and the Bazin formula give results greater than the experimental values. The Bazin experiments are not consistent with those of Fteley and Stearns, as can be seen by comparing results of the former, interpolated between weirs 2.47 and 3.72 feet high, with results of the latter for the weir 3.17 feet high. It is therefore impossible to have any formula agree closely with both sets of experiments. The maximum divergence occurs with the weir 19 feet long where the author's formula gives some results about 0.04 cubic feet

⁻ indicates area under curve below base line.

per second too great. It will be observed from Fig. 90 that the curve of variance of the author's formula is nearly parallel to that of the Bazin formula. It is to be hoped that additional experiments will soon be available to clear up the apparent inconsistencies in the experiments of Bazin and Fteley and Stearns (see discussion, page 402).



Fig. 90.

#### Verification of Formula

In order to determine whether the author's formula will fit the experimental data as satisfactorily as any other formula of this type the general equation

$$Q = ALH^m \left[ 1 + B \left( \frac{H}{d} \right)^n \right] \tag{1}$$

was investigated and compared with the author's formula by the laborious process of least squares. The formula determined from the data in Table 102 as the one fulfilling the requirement that the sum of the squares of the residual errors shall be a minimum is

$$Q = 3.33LH^{1.48} \left[ 1 + 0.53 \left( \frac{H}{d} \right)^{1.92} \right]$$
 (2)

Table 104.—Showing Comparative Values of Discharge over Suppressed Weirs as Determined from Fteley and Stearns' Experiments and as Computed by Various Formulas

Length of weir	Height of weir	Measured head	Area of channel of approach divided by length of weir	Velocity of approach	Experimental dis- charge	By Basin's for- mula	By the author's formula	By Francis' for- mula	By Fteley and Stearns' formula
L	P	H	d	V	Q	Q	Q	Q	Q
1	2	3	4	5	6	7	8	9	10
5.0	3.17 6.55	0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.5 0.6 0.1 1.2	3.27 3.37 3.47 3.57 3.67 3.77 3.87 3.97 7.05 7.35 7.35 7.55 7.75 7.95 8.15	.04 .09 .16 .24 .33 .42 .52 .62 .17 .22 .32 .44 .57 .70	.113 .308 .557 .857 .857 .1.193 1.570 1.990 2.450 1.172 1.540 2.383 3.334 4.397 5.570 6.824	.128 .326 .579 .878 1.217 1.604 2.004 2.450 1.208 1.572 2.412 3.360 4.414 5.568 6.816	.114 .314 .571 .877 1.218 1.598 2.013 2.461 1.209 1.582 2.422 3.373 4.425 5.572 6.809	.105 .298 .548 .845 1.182 1.560 1.966 2.408 1.178 1.551 2.390 3.345 4.404 5.530 6.804	.113 .302 .551 .848 1.188 1.560 1.968 2.417 1.182 1.550 2.387 3.345 4.403 5.555 6.807

Table 105.—Showing Comparative Discrepancies between
FTELEY AND STEARNS' EXPERIMENTAL VALUES OF
DISCHARGE OVER SUPPRESSED WEIRS AND
DISCHARGES AS COMPUTED BY VARIOUS FORMULAS

Length Height	5.0 3.17	Length Height	19.0 6.55		T-4-1	Sum	Total
]	pancy	+		differ-	+ &		
+	-	+	<u> </u>			ences	
55		88	3	143	3	+140	146
48		117	5	165	5	+160	170
	41	27	36	27	77	- 50	104
	32	24	18	24	50	- 26	74
	Height:	Discrete   -	Height 3.17   Height	Height 3.17   Height 6.55   Discrepancy   +   -   +   -	Discrepancy   Total +	Height 3.17   Height 6.55   Total   +	Height 3.17   Height 6.55   Total   Total   Officeres

In other words, formula (2) fits the experimental data in Table 102 better than any other formula of the type of equation (1). This refers to actual numerical discrepancies and not to percentages of error.

Discharges as computed by this formula are shown in column 11 of Table 102. The comparative discrepancy for each height of weir is shown in Fig. 89 and in Table 103. It will be seen that in general formula (2) agrees closer with the experiments than results by the author's formula (column 7) for the low weirs, while the author's formula agrees better for the higher In all cases the author's formula agrees closer with the experimental discharges for the lower heads. It is evident from a study of the data contained in Table 102, that if a formula of the type of equation (1) is to give results agreeing closely with the experiments for low heads, the exponent m must be approximately 1.47, since the term within the brackets is affected very little by the height of the weir and a comparatively large change must be made in the coefficient A to greatly effect the value of Q. In the last column of Table 103 it is shown that the total relative discrepancies of the author's formula and formula (2) are 249 and 207 respectively, a difference which is insignificant when the comparative simplicity of the two formulas is considered. It is also evident that the percentage of error in using the author's formula is less than for formula (2) since the discrepancies of the former are in all cases less for the lower heads. It therefore appears that the author's formula will give, within a very small margin, results agreeing as closely with the Bazin experiments as any formula of the type represented by equation (1).

### Application of Formula to Contracted Weirs

Using the experiments of Francis and Fteley and Stearns as a basis the author has endeavored to adapt his formula to contracted weirs. In doing this the correction for end contraction has been taken as that determined by Francis, the effective length of the weir being

$$L = L' - 0.1NH$$

Undoubtedly some error is introduced in using this formula, and Francis states that it should not be used for weirs having a length less than three times the head.

In applying the author's formula to contracted weirs it should be borne in mind that the term d represents the cross-sectional area of the channel of approach per unit length of the weir, or

$$d = \frac{A}{L}$$

and for rectangular channels of approach

$$d = \frac{WG}{L}$$

In Table 106 the results obtained by the author's formula are compared with the experimental value of Francis and Fteley and Stearns. The results given cover practically the entire range of these experiments. The Francis experiments were performed on weirs 5.048 feet and 2.014 feet high and approximately 8 feet and 10 feet wide. The Fteley and Stearns experiments were conducted with a weir 3.56 feet high and from 2.3 to 4 feet wide.

The discharges over the Francis weirs were measured volumetrically. Fteley and Stearns determined the discharge over their contracted weirs by allowing the same quantity of water to pass over the same weir with contractions suppressed. The author recomputed the discharges in the Fteley and Stearns experiments by using the curve of discharge already referred to, page 388, from which the quantities in Table 104 for the suppressed weir 3.17 feet high were computed. The quantities taken from this curve were then corrected for velocity of approach to correspond to a weir 3.56 feet high. It is believed that this method gives results more in accord with the discharges measured volumetrically for the suppressed weir than the Fteley and Stearns method of using their formula to compute them.

Table 106 includes one experiment from each group of the Francis¹ experiments, the experiment chosen being the one in which the computed value of C came the nearest to the mean value of C for the group of experiments considered. Practically all of the Fteley and Stearns experiments on contracted weirs are included. Column 9 of this table gives the experimental or measured discharge over the weir. Columns 10, 11, and 12 show discharges as computed by the Francis formula, the Fteley and Stearns formula, and the author's formula respectively.

Fig. 91 shows graphically the discrepancies between experiJ. B. Francis: Lowell Hydraulic Experiments, pp. 122-125.



Fig. 91.—Discrepancies between experimental discharges over weirs with end contractions and discharges as computed by various formulas

# Table 106.—Showing Comparative Values of Discharge over Contracted Weirs as Determined by Experiments by Francis and by Fteley and Stearns and as Computed by Various Formulas

Height of weir	Measured head	ω α Area of channel α divided by length of weir	Number of end contractions	7 Measured length	9 7 Corrected length	✓ A Width of channel	ω ~ Velocity of ap- proach	o Measured dis-	O Q by Francis' for-	C by Fteley and Stearns' formula	5 Q by the author's formula
						xperin					
2.014 5.048 5.048 5.048 2.014 5.048 5.048	0.787 0.815 0.611 0.655	6.290 6.060 6.058 3.042 6.025 6.053 5.844 2.801 5.863	2 2 2 2 4 2 0 0 2 2 2 4 4 7 7 8 7	·	9.687 9.750 9.795 7.593 9.792 9.995 9.895 9.840 9.995 9.875 9.866 7.725	13.96 13.96 13.96 13.96 13.96 9.99 13.96 9.99 13.96 13.96 13.96	.781 .593 .452 .353 .950 .539 .557 .421 .228 .544 .446	4.648 3.402 3.423 3.558 3.246 3.373 2.366 2.365 2.469 1.592 1.780 1.878	4.631 3.402 3.387 3.519 3.236 3.378 2.370 2.347 2.462 1.593 1.778	6.519 4.650 3.407 3.386 3.603 3.284 3.395 2.377 2.384 2.470 1.599 1.797 1.880	4.642 3.425 3.405 3.588 3.275 3.416 3.400 3.400 2.499 1.624 1.823
3.56	.330 .394 .450 .582 .498 .568 .621 .748 .576 .600 .740 .955 .706 .871 .806 .932	3.736 3.775 3.829 3.890 3.904 4.044 4.010 4.128 4.128 4.136 4.181 4.308 4.181 4.300 4.246 4.450 4.450 4.451 4.451 4.451 4.451 4.451 4.451 4.451 4.451 4.503	1 2 1	3.310 4.006 3.007	3.965 3.979 3.967 2.911 3.966 2.197 3.956 3.254 2.883 2.162 3.252 3.252 3.253 2.162 3.253 2.122 3.253 3.241 3.253 3.253 3.253 3.253 3.253 3.253 3.253 3.253 3.253 3.253 3.253 3.253 3.253 3.253 3.253 3.253 3.253 3.253 3.253 3.253 3.253 3.253 3.253 3.253 3.253 3.253 3.253 3.253 3.253 3.253 3.253 3.253 3.253 3.253 3.253 3.253 3.253 3.253 3.253 3.253 3.253 3.253 3.253 3.253 3.253 3.253 3.253 3.253 3.253 3.253 3.253 3.253 3.253 3.253 3.253 3.253 3.253 3.253 3.253 3.253 3.253 3.253 3.253 3.253 3.253 3.253 3.253 3.253 3.253 3.253 3.253 3.253 3.253 3.253 3.253 3.253 3.253 3.253 3.253 3.253 3.253 3.253 3.253 3.253 3.253 3.253 3.253 3.253 3.253 3.253 3.253 3.253 3.253 3.253 3.253 3.253 3.253 3.253 3.253 3.253 3.253 3.253 3.253 3.253 3.253 3.253 3.253 3.253 3.253 3.253 3.253 3.253 3.253 3.253 3.253 3.253 3.253 3.253 3.253 3.253 3.253 3.253 3.253 3.253 3.253 3.253 3.253 3.253 3.253 3.253 3.253 3.253 3.253 3.253 3.253 3.253 3.253 3.253 3.253 3.253 3.253 3.253 3.253 3.253 3.253 3.253 3.253 3.253 3.253 3.253 3.253 3.253 3.253 3.253 3.253 3.253 3.253 3.253 3.253 3.253 3.253 3.253 3.253 3.253 3.253 3.253 3.253 3.253 3.253 3.253 3.253 3.253 3.253 3.253 3.253 3.253 3.253 3.253 3.253 3.253 3.253 3.253 3.253 3.253 3.253 3.253 3.253 3.253 3.253 3.253 3.253 3.253 3.253 3.253 3.253 3.253 3.253 3.253 3.253 3.253 3.253 3.253 3.253 3.253 3.253 3.253 3.253 3.253 3.253 3.253 3.253 3.253 3.253 3.253 3.253 3.253 3.253 3.253 3.253 3.253 3.253 3.253 3.253 3.253 3.253 3.253 3.253 3.253 3.253 3.253 3.253 3.253 3.253 3.253 3.253 3.253 3.253 3.253 3.253 3.253 3.253 3.253 3.253 3.253 3.253 3.253 3.253 3.253 3.253 3.253 3.253 3.253 3.253 3.253 3.253 3.253 3.253 3.253 3.253 3.253 3.253 3.253 3.253 3.253 3.253 3.253 3.253 3.253 3.253 3.253 3.253 3.253 3.253 3.253 3.253 3.253 3.253 3.253 3.253 3.253 3.253 3.253 3.253 3.253 3.253 3.253 3.253 3.253 3.253 3.253 3.253 3.253 3.253 3.253 3.253 3.253 3.253 3.253 3.253 3.253 3.253 3.253 3.253 3.253 3.253 3.253 3.253 3.253 3.253 3.253 3.253 3.253 3.253 3.253 3.253 3.253 3.253 3.253 3.253 3.253 3.253 3.253 3.253	555555555555555555555555555555555555555	.224 .226 .219 .229 .295 .285 .289 .275 .301 .336 .352 .357	1.013 1.505 1.184 1.438 1.653 2.204 465 1.562 2.156 1.902 2.888 3.222 2.000 2.438 2.438 3.030	2.801 3.114 1.984 2.715 2.418 3.005	1.464 1.559 2.128 1.900 2.800 3.115 1.986	1.461 1.664 2.187 1.491 1.588 2.158 1.931 2.827 3.136 2.021 2.745 2.745 2.36

mental and computed discharges as determined from Table 106. Considerable irregularity exists in these discrepancies for each set of experiments as shown by the broken character of the lines. This may be due either to experimental error or to improperly applying the same correction for end contractions to all of the weirs.

Table 107, prepared from Fig. 91, shows comparative discrepancies between computed and experimental values of discharge. From the last column it will be seen that the author's formula agrees as closely with the experiments as the Francis or Fteley and Stearns formula. The next to the last column shows that the author's formula and the Fteley and Stearns formula give an average result slightly greater than the experimental values while the results by the Francis formula are less than those obtained from the experiments.

Table 107.—Showing Comparative Discrepancies between Francis', and Fteley and Stearns' Experimental Values of Discharge over Contracted Weirs and Discharges as Computed by Various Formulas

Name of formula		ncis' iments	Ftele: Stea experi	rns	Total	Total	Sum	Total
Name of formula		Discre	pancy		+	-	differ- ences	
	+	_	+	_				
Author's formula	126	1	73	32	199	33	.+166	232
Francis' formula	7	91		140	7	231	-224	238
Fteley & Stearns	178	1		113	178	114	+64	292

Comparison of Author's Submerged-weir Formula with Experiments.—Table 108 has been prepared to show comparative values of discharge as obtained from Bazin's experiments, the author's submerged-weir formula (formula (41), page 82) and the Bazin general formula (formula (32), page 79). The experimental discharges, given in column 7, were obtained by computing values of  $\frac{m}{m'}$  by formulas (29) and (30), page 79, taking care to use each within the limits of its proper application and applying these values to Bazin's experimental dis-

charges over weirs of the same height with free overfall. These formulas were used only within the approximate range of the experimental data on which they were based. Since the curves of these formulas plot very precisely as a mean of the experimental points no appreciable error is introduced in using them instead of using the experimental results directly. It will be seen that the greatest divergence of results by the author's formula from Bazin's experimental results is approximately 2 per cent., while the total divergence is less than for the Bazin general formula (formula (32), page 79).

Table 109 shows a comparison of discharges over submerged. weirs as determined from the Francis experiments of 1883, the Francis submerged-weir formula (formula (26), page 77), and the author's submerged-weir formula. The experimental values were obtained by determining the quantity of water that would flow over the same weir with free overfall by means of the Francis formula. Francis appears to have neglected the velocity of approach correction in computing his discharges over the weir with free overfall. The discharges corrected for velocity of approach are given in column 7. Francis experimented on two weirs having a combined length of 22.2 feet. A complete description of the apparatus used is not given and information as to the width of the channel below the weir is entirely lacking. From an examination of the sketch submitted with Francis' paper an assumption of a channel width below the weir of 1.6 times the combined length of weirs appeared conservative and this width was used in the computations. The height of the weir above the bottom of the lower channel was determined by scaling and taken as 7.3 feet. Owing to the lack of data regarding channel conditions below the weir some uncertainty exists as to the results obtained by the author's formula. Since, however,  $d_1$  is sure to be a comparatively large quantity, considerable change in the area of the section of the lower channel will be necessary to greatly effect the computed discharges. It will be observed that the author's formula gives discharges from about 1 to 2 per cent. greater than the experimental values while the Francis formula gives results an equal amount less than the experiments. If a velocity-of-approach correction were applied to the Francis submerged-weir formula its agreement with the experiments would be closer but, in his discussion, Francis does not speak of the necessity for such a correction.

# Table 108.—Comparison of Discharges over Submerged Weirs as Determined by Bazin's Two Precise Submerged-weir Formulas, with Bazin's General Submerged-weir Formula and the Author's Submerged-weir Formula

Height of weir	Measured head	Area of channel of approach divided by length of weir	Depth of sub-	Difference in ele-	Area of channel below weir di- vided by length of weir	Experimental dis- charge by Bazin's formulas	Discharge by author's formula	Discharge by Ba- zin's general for- mula	7 - Q8	2 = 60
P	H	d	D	Z	$d_1$	Q7	Q8	Q•	6	6,
1	2	3	4	5	6	7	8	9	.10	11
1.0	0.2 0.5 1.0	1.555000005555222222223333333333333333333	0.1 0.2 0.4 0.1 0.3 0.5	0.1 0.4 0.3 0.1 0.9 0.7	1.1 1.1 1.2 1.4 1.1 1.3	.28 1.28 1.19 .86 3.96 3.79 3.53	.28 1.28 1.20 .86 3.93 3.80 3.52	.28 1.27 1.18 3.91 3.75 3.48 2.18 7.12 6.34 7.12 6.34 1.21 1.78 3.61 1.78 3.39 3.69 1.87 6.97 6.70	.00 01 03 01 +.01 +.02 +.01	.00 +.01 +.01 +.01 +.05 +.04 +.05
2.0	1.5 0.2	2.0 2.5 2.5 2.5 2.5 2.5	0.2 0.4 0.3 0.5 0.7 0.3 0.6 0.1 0.1 0.1 0.3 0.5 0.3 0.5 0.3 0.3 0.3 0.3 0.3 0.3 0.3 0.3 0.3 0.3	0.3 0.1 1.2 0.9 0.5 0.1	1.7 1.9 1.3 1.6 2.0 2.4 2.1	3.79 3.53 3.07 2.19 7.60 7.22 6.28 3.94	3.93 3.80 3.52 3.05 2.18 7.57 6.14 3.86 27 1.21 1.79 3.60 3.46 3.17 2.72 16.86 6.77	2.18 7.50 7.12 6.34 3.97	+.04 +.05 +.14 +.08 +.01	+.05 +.03 +.01 +.10 +.10 06 03
	0.2 0.5 1.0	2.5 2.5 2.5 3.0 3.0	0.1 0.2 0.4 0.1 0.3	0.4 0.3 0.1 0.9 0.7	2.1 2.2 2.4 2.1 2.3 2.5	3.94 .28 1.21 1.12 .80 3.62 3.46 3.12	1.21 1.13 .79 3.60 3.46 3.17	1.21 1.11 .78 3.61 3.39 3.09	.00 01 +.01 +.02 00	.00 .00 +.01 +.02 +.01 +.07 +.03 +.07
	1.5	3.0 3.5 3.5 3.5 3.5	0.7 0.9 0.1 0.3 0.6 1.0	0.3 0.1 1.4 1.2 .0.9 0.5	2.7 2.9 2.1 2.3 2.6 3.0	3.62 3.46 3.12 2.72 1.91 6.95 6.77 6.38 5.44	2.72 1.92 6.86 6.77 6.38 5.43	1.87 6.92 6.70 6.28 5.35	01 +.09 .00 .00 +.01 +.01	+.07 +.04 +.03 +.07 +.10 +.09 01
3.0	0.2 0.5 1.0	4.0	1.0 0.1 0.1 0.2 0.4 0.1 0.3 0.5 0.7 0.9 0.1 0.3 0.6	0.4 0.1 0.7 0.5 0.1 1.29 0.5 0.1 0.3 0.1 0.3 0.1 0.5 0.1 1.29 0.5 0.1 0.3 0.1 0.5 0.1 0.5 0.1 0.7 0.3 0.1 0.3 0.1 0.3 0.3 0.3 0.3 0.3 0.3 0.3 0.3	1.1.2.4 1.1.2.4 1.1.3.5.7.9.3.6.0 1.1.2.2.4 1.1.3.5.7.9.1.3.6.0 1.1.2.2.4.1.3.5.7.9.1.3.6.0 1.1.2.2.2.2.2.2.2.3.3.3.3.3.3.3.3.3.3.3.	3.25 2.98 2.59 1.82 6.65	6.38 5.43 .26 1.18 1.10 .75 3.49 3.32 3.04 2.59 1.80 6.55	6.28 5.35 .28 1.20 1.07 .77 3.51 3.27 2.97 2.53 1.78 6.64	02 02 +.04 00 07 06 00 +.02 +.10	04 +.01 +.02 02 02 +.01 +.06 +.04 +.01
		4.5 4.5 4.5 4.5	0.6	1.2 0.9 0.5	Total Total	+ discr - discr		6.40 5.93 5.00 cy cy epancy	01 + .03 00 + .72 27 99	+.03 +.11 +.11 +1.35 18 1.53

Table 109.—Comparison of Discharges over Submerged Weirs as Determined from Francis' Experiments of 1883, with the Francis Submerged-weir Formula and the Author's Submerged-weir Formula

Theight of weir	표   Measured head	Area of upper channel divided by length of weir	Depth of submer-	H-D	Experimental discharge by Francis formula	Experimental dis- charge corrected for vel of approach.	Discharge by Francis submerged-weir formula	Discharge by su- thor's submerged- weir formula	0,-0.	Q1 — Q0
l			!			!	<del>!</del>	!	<del>                                     </del>	
1	2	3	4	5	6	7	8	9	10	11
5.8	1.203 1.227 1.391 1.491 1.720 1.740 1.743 1.804 1.917 1.994 2.032 2.192 2.192 2.192 2.319 2.319 1.037 1.091 1.156 1.149	7.027 7.077 7.191 7.291 7.520 7.543 7.604 7.717 7.794 7.834 7.890 7.988 7.990 8.012 8.119 8.118 6.837 6.891 6.956 6.949	0.207 0.309 0.478 0.860 1.039 0.465 0.465 0.485 0.792 0.996 0.327 0.528 1.054 1.071 1.111 1.102 0.263 0.483 0.636 1.015	0.918 0.799 0.531 0.452 1.254 1.275 1.260 1.012 0.921 1.506 1.362 1.358 1.114 1.119 1.485 1.208 1.216 0.774 0.643 0.643 0.513	4.28 4.27 4.26 4.24 7.17 7.16 7.20 7.17 9.15 9.14 9.16 9.17 9.12 9.12 10.15 10.10 13.31 3.31 3.30 3.29 3.28		4.26 4.29 4.34 4.17 4.23 7.03 7.21 7.20 7.01 7.34 9.11 9.19 9.18 9.15 10.04 10.05 3.33 3.37 3.31 3.32 3.19		+.06 +.03 03 +.13 +.05 +.05 +.05 +.08 +.19 +.15 +.10 +.12 +.22 +.22 00 05 02 +.10 +.223	0409 + .021213 + .053209142017272509220509070707
	,						crepanc - discre		-0.18 2.41	-2.83 2.91

A comparison of the author's submerged-weir formula with the experiments of Fteley and Stearns is given in Table 110. The experimental results are used directly without any attempt to balance experimental errors. The volume of water passing over the submerged weir in each set of experiments was obtained by allowing the same quantity of water to flow over the weir with free overfall, and computing the discharge.

The accuracy of the determination of the quantity of water flowing over the submerged weir therefore depends upon the method employed in computing the discharge over the weir with free overfall. Fteley and Stearns using their own experiments with those of Francis computed this discharge by means of the Francis formula. The author recomputed the discharges for the Fteley and Stearns experiments by means of the curve used in preparing column 6 of Table 104 for the weir 3.17 feet high, as already described (pages 388 and 392). Since Fteley and Stearns used this same weir for their submerged-weir experiments, placing obstructions in the channel to back the water up above the crest of the weir, it seems evident that greater accuracy may be obtained by taking directly the experimental values of discharges rather than to depend upon results computed by any formula.

Table 110, column 7 gives the experimental discharges as computed by Fteley and Stearns by means of the Francis formula. Column 8 gives the author's recomputed values as above described. Column 9 contains discharges as computed by the Fteley and Stearns submerged-weir formula (formula (27), page 77) with variable coefficient, and column 10 gives the discharges as computed by the author's submerged-weir formula. It will be seen from this table that the author's formula, in all cases, gives results greater than the experimental discharges. The discrepancies are within 3 per cent. for the smaller values of D, but increase as D becomes larger. It is probable that the agreement of the formula with these experiments would have been closer if D had been measured farther downstream, since, at a distance of 6 feet below the weir, a portion of the high velocity possessed by the water passing over the weir still remained to be converted into static head. This condition it appears would be more noticeable for the larger values of D, for in this case the water would leave the weir in a more nearly horizontal direction causing a smaller loss of head due to change of direction and resulting turbulence.

Table 110.—Comparative Values of Discharge over Submerged Weirs as Determined from Experiments by Fteley and Stearns and as Computed by the Fteley and Stearns' Formula and by the Author's Submerged-weir Formula

Height of weir	Measured head	Area of upper channel divided by length of weir	Depth of submergence	H-D	Area of lower channel divided by length of weir	Experimental discharge by Francis' formula	Experimental discharge direct from Fteley & Stearns experiments	Q by F. & S. formula with variable coefficient	Q by author's submerged- weir formula	Qs-Q*	Q1-Q10
P	H	d	D	Z	d ₁	Q7	Q:	Q.	Q10	ö	5
1	2	3	4	5	6	7	8	9	10	11	12
3. 17	. 578	3.748	.010	. 568	5.217	1.46	1.49	1.46	1.52	.03	03
	.396	3.566	.016	.380	5.228	.83	.85	.83		.02	01
	.662	3.832	.033	.629	5.257	1.81	1.84	1.81		.03	02
	.574	3.744	.046	. 528	5.280		1.49		1.49	.03	.00
	. 508	3.678	.073	.435	5.327	1.20	1.22	1.20		.02	.00
	.592	3.769	.112	.480	5.395		1.49	1.48	1,52	.01	02
	.416	3.586	.118	.298	5.405	.83	.85	.84	.87	.01	02
7.1	.325	3.495	.096	.229	5.367	.56	.57	.57	.59	.00	02
1.0	.610	3.780	. 186	.424	5.524	1.47	1.49	1.47	1.53	.02	04
	.716	3,886	.266	. 450	5.663		1.84		1.90	.03	06
	.546	3.716	.209	.337	5.565		1.22		1.25	.02	03
	.633	3.803	.261	.372	5.654		1.49		1.54	.01	05
	.450	3.620	.219	.231	5.583	.83	.85	.84	.88	.01	03
	.486	3.656	.308	.178	5.736	.83	.85	.83	.88	.02	03
	.812	3.982	.516	.296	6.098		1.84		1.93	.04	09
	.742	3.912	.519	.223	6.103		1.49		1.57	.02	08
	.545	3.715	.419	.126	5.929	.83	.85	.84	.89	.01	04
	.428	3.598	.337	.091	5.786	.56	.57	. 56	.60	.01	03
	.719	3.889	.573	.146	6.197	1.20	1.22	1.20	1.30	.02	08
	.625	3.795	. 589	.036	6.223	.56	.57	.56	.66	.01	09
	.815	3.985	. 795	.020	6.583	.56	.57	.57	.77	.00	20
							discrepa			.37	.00
							discrepa			.00	98
					Tota	al +	& - di	screp	ancy	.37	.98

Since Francis measured the head of submergence "just below the weir" in his experiments of 1848 the author's formula cannot be applied to them. Table 111 shows a comparison of the results of these experiments with formula (42), page 83. The discrepancy in each case is less than 3 per cent. D was probably measured near the trough of the standing wave and the rather close agreement between the computed and experimental values is some evidence to substantiate the author's opinion that formula (42) will give approximate discharges over submerged weirs if the head of submergence is measured in the trough of the standing wave.

It is impossible to make a thoroughly consistent comparison of the four sets of experiments described above with the author's formula because of the different points chosen by the experimenters in measuring the head of submergence. It seems fair to conclude, however, from a study of the results given in Tables 108, 109 and 110 that if the head of submergence is measured at a point corresponding to that chosen by Bazin (36 feet below the weir), the author's submerged-weir formula should give results correct within from 1 to 3 per cent.

TABLE 111.—COMPARATIVE DISCHARGES OVER SUBMERGED
WEIR AS DETERMINED FROM FRANCIS' EXPERIMENTS
OF 1848 AND THE AUTHOR'S FORMULA

Height of weir	Measured head	Area of upper channel divided by length of weir	Depth of sub- mergence	H – D	Experimental discharge by Francis' formula	Discharge by F.& S. formula with variable coef.	Discharge by formula (42)	-0,	−Q∗
P	H	d	D	Z	Q6	· Q7	Q8	3	8
1	2	3	4	5	6	7	8	9	10
6.5	. 353	7.353	.020	.833	2.62	2.63	2.65	01	03
	.848	7.348	.065	.783	2.62	2.63	2.55	01	+.07
	.852	7.352	.085	.767	2.62	2.64	2.58	02	+.04
. [	.857	7.357	.105	.752	2.62	2.64	2.58	02	+.04
	.882	7.382	.220	.662	2.62	2.62	2.57	.00	+.05
	.970	7.470	.490	.480	2.62	2.62	2.55	.00	+.07
Total + discrepancy								.00	+ . 27
						liscrepane		06	03
						& - discr		.06	.30

#### Causes of Inconsistencies in Weir Experiments

A careful scrutiny of the foregoing experiments reveals many apparent inconsistencies in the results of the different investigators. It will be noted, however, that in every case each set of experiments is consistent in itself within the limits of experimental error. The conclusion must be that such inconsistencies are due to different conditions under which the experiments have been performed and failure to consider certain fundamental underlying principles.

Probably the most noticeable incongruity exists in the experimental results of Bazin and Fteley and Stearns. Each set of experiments is consistent in itself and apparently each was performed with great care and under equally favorable circumstances. It would therefore appear that some difference in conditions, which enters into the relation between head and discharge, existed which has not hitherto been considered in weir investigations, and for the more precise use of weirs, corrective factors to allow for such conditions should be included in weir formulas.

Explanation of the reasons for these conflicting experimental data has hardly passed the stage of conjecture. Apparently the inconsistencies in the Bazin and Fteley and Stearns experiments are not due to the different methods employed in measuring heads nor differences in the shape or degree of sharpness of weir crests. Barr, experimenting with V-notch weirs, (page 87) found that increasing the roughness of the upstream face of a weir, by reducing the vertical component of the velocity of approach and so reducing crest contraction, increased the discharge. A similar relation between degree of roughness of upstream face and discharge may exist for rectangular weirs. It is also probable that the discharge over weirs increases slightly with the temperature of the water due to a diminution of the coefficient of viscosity.

It is important that future experimenters should give complete data relative to temperature of the water and degree of roughness of the upstream face of the weir. All dimensions and a detailed description of the apparatus used in experiments should also be given. In general it may be stated that before materially greater precision in the measurement of flow over weirs may be expected, the fundamental laws affecting such flow must be more thoroughly investigated.

#### APPENDIX B

# Comparison of Kutter, Manning and Bazin Formulas with Scobey's Experiments

Table 112, as given in the following pages, is a reproduction of experiments and computations prepared by F. C. Scobey, and published in *Bulletin* 194 of the United States Department of Agriculture with the addition of the last three columns which give coefficients for Manning's and Bazin's formulas. A comparison of Kutter's n and Manning's n, as given respectively in columns 15 and 16, will be found especially enlightening. Column 18 gives values of Bazin's m for each experiment, except where m is negative.

As stated on page 198 the author has found that the Manning formula gives practically the same results as the Kutter formula, within the ordinary range of conditions encountered in practice, when the same value of n is used with each formula. Scobey's experiments show this to be true to a remarkable degree.

Table 112 may be used to advantage in connection with Table 73, page 191, or Table 74, page 193, in selecting coefficients for either the Kutter, Manning, or Bazin formulas. In designing canals, too much care and study can not be exercised in selecting the coefficient which will most accurately apply to the given conditions. It is still very doubtful whether any one of the above formulas conforms closely to the laws of flow in open channels and it is therefore desirable, in each case, to select a coefficient from experiments on a channel resembling as closely as may be the channel to be designed. This refers to channel dimensions and alignment as well as to the degree of roughness of the channel. Since the following table gives quite full data in these regards it should furnish valuable assistance in the intelligent selection of coefficients.

Name and description   Name and description   Name and description   Of read	_		
Name and description   Olasse   Olasse   Olasse   Olasse   Olasse   Olasse   Olasse   Olasse   Olasse   Olasse   Olasse   Olasse   Olasse   Olasse   Olasse   Olasse   Olasse   Olasse   Olasse   Olasse   Olasse   Olasse   Olasse   Olasse   Olasse   Olasse   Olasse   Olasse   Olasse   Olasse   Olasse   Olasse   Olasse   Olasse   Olasse   Olasse   Olasse   Olasse   Olasse   Olasse   Olasse   Olasse   Olasse   Olasse   Olasse   Olasse   Olasse   Olasse   Olasse   Olasse   Olasse   Olasse   Olasse   Olasse   Olasse   Olasse   Olasse   Olasse   Olasse   Olasse   Olasse   Olasse   Olasse   Olasse   Olasse   Olasse   Olasse   Olasse   Olasse   Olasse   Olasse   Olasse   Olasse   Olasse   Olasse   Olasse   Olasse   Olasse   Olasse   Olasse   Olasse   Olasse   Olasse   Olasse   Olasse   Olasse   Olasse   Olasse   Olasse   Olasse   Olasse   Olasse   Olasse   Olasse   Olasse   Olasse   Olasse   Olasse   Olasse   Olasse   Olasse   Olasse   Olasse   Olasse   Olasse   Olasse   Olasse   Olasse   Olasse   Olasse   Olasse   Olasse   Olasse   Olasse   Olasse   Olasse   Olasse   Olasse   Olasse   Olasse   Olasse   Olasse   Olasse   Olasse   Olasse   Olasse   Olasse   Olasse   Olasse   Olasse   Olasse   Olasse   Olasse   Olasse   Olasse   Olasse   Olasse   Olasse   Olasse   Olasse   Olasse   Olasse   Olasse   Olasse   Olasse   Olasse   Olasse   Olasse   Olasse   Olasse   Olasse   Olasse   Olasse   Olasse   Olasse   Olasse   Olasse   Olasse   Olasse   Olasse   Olasse   Olasse   Olasse   Olasse   Olasse   Olasse   Olasse   Olasse   Olasse   Olasse   Olasse   Olasse   Olasse   Olasse   Olasse   Olasse   Olasse   Olasse   Olasse   Olasse   Olasse   Olasse   Olasse   Olasse   Olasse   Olasse   Olasse   Olasse   Olasse   Olasse   Olasse   Olasse   Olasse   Olasse   Olasse   Olasse   Olasse   Olasse   Olasse   Olasse   Olasse   Olasse   Olasse   Olasse   Olasse   Olasse   Olasse   Olasse   Olasse   Olasse   Olasse   Olasse   Olasse   Olasse   Olasse   Olasse   Olasse   Olasse   Olasse   Olasse   Olasse   Olasse   Olasse   Olasse   Olass	tion	≅ Gazin, ≅	283 202 335 335 335 335 335 335 335 335 335 33
Name and description   Olasse   Olasse   Olasse   Olasse   Olasse   Olasse   Olasse   Olasse   Olasse   Olasse   Olasse   Olasse   Olasse   Olasse   Olasse   Olasse   Olasse   Olasse   Olasse   Olasse   Olasse   Olasse   Olasse   Olasse   Olasse   Olasse   Olasse   Olasse   Olasse   Olasse   Olasse   Olasse   Olasse   Olasse   Olasse   Olasse   Olasse   Olasse   Olasse   Olasse   Olasse   Olasse   Olasse   Olasse   Olasse   Olasse   Olasse   Olasse   Olasse   Olasse   Olasse   Olasse   Olasse   Olasse   Olasse   Olasse   Olasse   Olasse   Olasse   Olasse   Olasse   Olasse   Olasse   Olasse   Olasse   Olasse   Olasse   Olasse   Olasse   Olasse   Olasse   Olasse   Olasse   Olasse   Olasse   Olasse   Olasse   Olasse   Olasse   Olasse   Olasse   Olasse   Olasse   Olasse   Olasse   Olasse   Olasse   Olasse   Olasse   Olasse   Olasse   Olasse   Olasse   Olasse   Olasse   Olasse   Olasse   Olasse   Olasse   Olasse   Olasse   Olasse   Olasse   Olasse   Olasse   Olasse   Olasse   Olasse   Olasse   Olasse   Olasse   Olasse   Olasse   Olasse   Olasse   Olasse   Olasse   Olasse   Olasse   Olasse   Olasse   Olasse   Olasse   Olasse   Olasse   Olasse   Olasse   Olasse   Olasse   Olasse   Olasse   Olasse   Olasse   Olasse   Olasse   Olasse   Olasse   Olasse   Olasse   Olasse   Olasse   Olasse   Olasse   Olasse   Olasse   Olasse   Olasse   Olasse   Olasse   Olasse   Olasse   Olasse   Olasse   Olasse   Olasse   Olasse   Olasse   Olasse   Olasse   Olasse   Olasse   Olasse   Olasse   Olasse   Olasse   Olasse   Olasse   Olasse   Olasse   Olasse   Olasse   Olasse   Olasse   Olasse   Olasse   Olasse   Olasse   Olasse   Olasse   Olasse   Olasse   Olasse   Olasse   Olasse   Olasse   Olasse   Olasse   Olasse   Olasse   Olasse   Olasse   Olasse   Olasse   Olasse   Olasse   Olasse   Olasse   Olasse   Olasse   Olasse   Olasse   Olasse   Olasse   Olasse   Olasse   Olasse   Olasse   Olasse   Olasse   Olasse   Olasse   Olasse   Olasse   Olasse   Olasse   Olasse   Olasse   Olasse   Olasse   Olasse   Olasse   Olasse   Olasse   Olasse   Olass	arda	Z SninnsM 24 8	0400000040014 80000010104804
Name and description   Olasse   Olasse   Olasse   Olasse   Olasse   Olasse   Olasse   Olasse   Olasse   Olasse   Olasse   Olasse   Olasse   Olasse   Olasse   Olasse   Olasse   Olasse   Olasse   Olasse   Olasse   Olasse   Olasse   Olasse   Olasse   Olasse   Olasse   Olasse   Olasse   Olasse   Olasse   Olasse   Olasse   Olasse   Olasse   Olasse   Olasse   Olasse   Olasse   Olasse   Olasse   Olasse   Olasse   Olasse   Olasse   Olasse   Olasse   Olasse   Olasse   Olasse   Olasse   Olasse   Olasse   Olasse   Olasse   Olasse   Olasse   Olasse   Olasse   Olasse   Olasse   Olasse   Olasse   Olasse   Olasse   Olasse   Olasse   Olasse   Olasse   Olasse   Olasse   Olasse   Olasse   Olasse   Olasse   Olasse   Olasse   Olasse   Olasse   Olasse   Olasse   Olasse   Olasse   Olasse   Olasse   Olasse   Olasse   Olasse   Olasse   Olasse   Olasse   Olasse   Olasse   Olasse   Olasse   Olasse   Olasse   Olasse   Olasse   Olasse   Olasse   Olasse   Olasse   Olasse   Olasse   Olasse   Olasse   Olasse   Olasse   Olasse   Olasse   Olasse   Olasse   Olasse   Olasse   Olasse   Olasse   Olasse   Olasse   Olasse   Olasse   Olasse   Olasse   Olasse   Olasse   Olasse   Olasse   Olasse   Olasse   Olasse   Olasse   Olasse   Olasse   Olasse   Olasse   Olasse   Olasse   Olasse   Olasse   Olasse   Olasse   Olasse   Olasse   Olasse   Olasse   Olasse   Olasse   Olasse   Olasse   Olasse   Olasse   Olasse   Olasse   Olasse   Olasse   Olasse   Olasse   Olasse   Olasse   Olasse   Olasse   Olasse   Olasse   Olasse   Olasse   Olasse   Olasse   Olasse   Olasse   Olasse   Olasse   Olasse   Olasse   Olasse   Olasse   Olasse   Olasse   Olasse   Olasse   Olasse   Olasse   Olasse   Olasse   Olasse   Olasse   Olasse   Olasse   Olasse   Olasse   Olasse   Olasse   Olasse   Olasse   Olasse   Olasse   Olasse   Olasse   Olasse   Olasse   Olasse   Olasse   Olasse   Olasse   Olasse   Olasse   Olasse   Olasse   Olasse   Olasse   Olasse   Olasse   Olasse   Olasse   Olasse   Olasse   Olasse   Olasse   Olasse   Olasse   Olasse   Olasse   Olasse   Olasse   Olasse   Olass	ret		
Colored Age and description   Colored Age and description   Colored Age and description   Colored Age and description   Colored Age and description   Colored Age and description   Colored Age and description   Colored Age and description   Colored Age and description   Colored Age and description   Colored Age and description   Colored Age and description   Colored Age and description   Colored Age and description   Colored Age and description   Colored Age and description   Colored Age and description   Colored Age and description   Colored Age and description   Colored Age and description   Colored Age and description   Colored Age and description   Colored Age and description   Colored Age and description   Colored Age and description   Colored Age and description   Colored Age and description   Colored Age and description   Colored Age and description   Colored Age and description   Colored Age and description   Colored Age and description   Colored Age and description   Colored Age and description   Colored Age and description   Colored Age and description   Colored Age and description   Colored Age and description   Colored Age and description   Colored Age and description   Colored Age and description   Colored Age and description   Colored Age and description   Colored Age and description   Colored Age and description   Colored Age and description   Colored Age and description   Colored Age and description   Colored Age and description   Colored Age and description   Colored Age and description   Colored Age and description   Colored Age and description   Colored Age and description   Colored Age and description   Colored Age and description   Colored Age and description   Colored Age and description   Colored Age and description   Colored Age and description   Colored Age and description   Colored Age and description   Colored Age and description   Colored Age and description   Colored Age and description   Colored Age and description   Colored Age and description   Colored Age and description   Colo	10 8	a gainasM =	000000000000000000000000000000000000000
Colored Age and description   Colored Age and description   Colored Age and description   Colored Age and description   Colored Age and description   Colored Age and description   Colored Age and description   Colored Age and description   Colored Age and description   Colored Age and description   Colored Age and description   Colored Age and description   Colored Age and description   Colored Age and description   Colored Age and description   Colored Age and description   Colored Age and description   Colored Age and description   Colored Age and description   Colored Age and description   Colored Age and description   Colored Age and description   Colored Age and description   Colored Age and description   Colored Age and description   Colored Age and description   Colored Age and description   Colored Age and description   Colored Age and description   Colored Age and description   Colored Age and description   Colored Age and description   Colored Age and description   Colored Age and description   Colored Age and description   Colored Age and description   Colored Age and description   Colored Age and description   Colored Age and description   Colored Age and description   Colored Age and description   Colored Age and description   Colored Age and description   Colored Age and description   Colored Age and description   Colored Age and description   Colored Age and description   Colored Age and description   Colored Age and description   Colored Age and description   Colored Age and description   Colored Age and description   Colored Age and description   Colored Age and description   Colored Age and description   Colored Age and description   Colored Age and description   Colored Age and description   Colored Age and description   Colored Age and description   Colored Age and description   Colored Age and description   Colored Age and description   Colored Age and description   Colored Age and description   Colored Age and description   Colored Age and description   Colored Age and description   Colo	terent	z Kutter 5	0.0139 0.0139 0.0139 0.0139 0.0139 0.0139 0.0139 0.0139 0.0139 0.0139 0.0139 0.0139
Colored Control   Colored Color   Colored Color   Colored Color   Colored Color   Colored Color   Colored Color   Colored Color   Colored Color   Colored Color   Colored Color   Colored Color   Colored Color   Colored Color   Colored Color   Colored Color   Colored Color   Colored Color   Colored Color   Colored Color   Colored Color   Colored Color   Colored Color   Colored Color   Colored Color   Colored Color   Colored Color   Colored Color   Colored Color   Colored Color   Colored Color   Colored Color   Colored Color   Colored Color   Colored Color   Colored Color   Colored Color   Colored Color   Colored Color   Colored Color   Colored Color   Colored Color   Colored Color   Colored Color   Colored Color   Colored Color   Colored Color   Colored Color   Colored Color   Colored Color   Colored Color   Colored Color   Colored Color   Colored Color   Colored Color   Colored Color   Colored Color   Colored Color   Colored Color   Colored Color   Colored Color   Colored Color   Colored Color   Colored Color   Colored Color   Colored Color   Colored Color   Colored Color   Colored Color   Colored Color   Colored Color   Colored Colored Color   Colored Colored Color   Colored Colored Color   Colored Colored Colored Colored Colored Colored Colored Colored Colored Colored Colored Colored Colored Colored Colored Colored Colored Colored Colored Colored Colored Colored Colored Colored Colored Colored Colored Colored Colored Colored Colored Colored Colored Colored Colored Colored Colored Colored Colored Colored Colored Colored Colored Colored Colored Colored Colored Colored Colored Colored Colored Colored Colored Colored Colored Colored Colored Colored Colored Colored Colored Colored Colored Colored Colored Colored Colored Colored Colored Colored Colored Colored Colored Colored Colored Colored Colored Colored Colored Colored Colored Colored Colored Colored Colored Colored Colored Colored Colored Colored Colored Colored Colored Colored Colored Colored Colored Colored Colored Colored Colored Colored Colored Colored Co	Coen	c Cheay	1888.7 1114.1.5 1114.1.5 1114.1.5 1114.1.5 1114.1.5 1114.1.5 1114.1.5 1114.1.5 1114.1.5 1114.1.5 1114.1.5 1114.1.5 1114.1.5 1114.1.5 1114.1.5 1114.1.5 1114.1.5 1114.1.5 1114.1.5 1114.1.5 1114.1.5 1114.1.5 1114.1.5 1114.1.5 1114.1.5 1114.1.5 1114.1.5 1114.1.5 1114.1.5 1114.1.5 1114.1.5 1114.1.5 1114.1.5 1114.1.5 1114.1.5 1114.1.5 1114.1.5 1114.1.5 1114.1.5 1114.1.5 1114.1.5 1114.1.5 1114.1.5 1114.1.5 1114.1.5 1114.1.5 1114.1.5 1114.1.5 1114.1.5 1114.1.5 1114.1.5 1114.1.5 1114.1.5 1114.1.5 1114.1.5 1114.1.5 1114.1.5 1114.1.5 1114.1.5 1114.1.5 1114.1.5 1114.1.5 1114.1.5 1114.1.5 1114.1.5 1114.1.5 1114.1.5 1114.1.5 1114.1.5 1114.1.5 1114.1.5 1114.1.5 1114.1.5 1114.1.5 1114.1.5 1114.1.5 1114.1.5 1114.1.5 1114.1.5 1114.1.5 1114.1.5 1114.1.5 1114.1.5 1114.1.5 1114.1.5 1114.1.5 1114.1.5 1114.1.5 1114.1.5 1114.1.5 1114.1.5 1114.1.5 1114.1.5 1114.1.5 1114.1.5 1114.1.5 1114.1.5 1114.1.5 1114.1.5 1114.1.5 1114.1.5 1114.1.5 1114.1.5 1114.1.5 1114.1.5 1114.1.5 1114.1.5 1114.1.5 1114.1.5 1114.1.5 1114.1.5 1114.1.5 1114.1.5 1114.1.5 1114.1.5 1114.1.5 1114.1.5 1114.1.5 1114.1.5 1114.1.5 1114.1.5 1114.1.5 1114.1.5 1114.1.5 1114.1.5 1114.1.5 1114.1.5 1114.1.5 1114.1.5 1114.1.5 1114.1.5 1114.1.5 1114.1.5 1114.1.5 1114.1.5 1114.1.5 1114.1.5 1114.1.5 1114.1.5 1114.1.5 1114.1.5 1114.1.5 1114.1.5 1114.1.5 1114.1.5 1114.1.5 1114.1.5 1114.1.5 1114.1.5 1114.1.5 1114.1.5 1114.1.5 1114.1.5 1114.1.5 1114.1.5 1114.1.5 1114.1.5 1114.1.5 1114.1.5 1114.1.5 1114.1.5 1114.1.5 1114.1.5 1114.1.5 1114.1.5 1114.1.5 1114.1.5 1114.1.5 1114.1.5 1114.1.5 1114.1.5 1114.1.5 1114.1.5 1114.1.5 1114.1.5 1114.1.5 1114.1.5 1114.1.5 1114.1.5 1114.1.5 1114.1.5 1114.1.5 1114.1.5 1114.1.5 1114.1.5 1114.1.5 1114.1.5 1114.1.5 1114.1.5 1114.1.5 1114.1.5 1114.1.5 1114.1.5 1114.1.5 1114.1.5 1114.1.5 1114.1.5 1114.1.5 1114.1.5 1114.1.5 1114.1.5 1114.1.5 1114.1.5 1114.1.5 1114.1.5 1114.1.5 1114.1.5 1114.1.5 1114.1.5 1114.1.5 1114.1.5 1114.1.5 1114.1.5 1114.1.5 1114.1.5 1114.1.5 1114.1.5 1114.1.5 1114.1.5 1114.1.5 1114.1.5 1114.1.5 1114.1.5 1114.1.5 1114.1.5 1114.1.5 1114.
Colean and description   Concrete-lined	13	o Hydraulic grade	0.0001611 0.0003333 0.003333 0.00351 0.0051 0.0052 0.00230 0.00230 0.00230 0.00230 0.00230 0.00230 0.00230 0.00230 0.00230 0.00230 0.00230 0.00230 0.00230 0.00230 0.00230 0.00230 0.00230 0.00230 0.00230 0.00230 0.00230 0.00230 0.00230 0.00230 0.00230 0.00230 0.00230 0.00230 0.00230 0.00230 0.00230 0.00230 0.00230 0.00230 0.00230 0.00230 0.00230 0.00230 0.00230 0.00230 0.00230 0.00230 0.00230 0.00230 0.00230 0.00230 0.00230 0.00230 0.00230 0.00230 0.00230 0.00230 0.00230 0.00230 0.00230 0.00230 0.00230 0.00230 0.00230 0.00230 0.00230 0.00230 0.00230 0.00230 0.00230 0.00230 0.00230 0.00230 0.00230 0.00230 0.00230 0.00230 0.00230 0.00230 0.00230 0.00230 0.00230 0.00230 0.00230 0.00230 0.00230 0.00230 0.00230 0.00230 0.00230 0.00230 0.00230 0.00230 0.00230 0.00230 0.00230 0.00230 0.00230 0.00230 0.00230 0.00230 0.00230 0.00230 0.00230 0.00230 0.00230 0.00230 0.00230 0.00230 0.00230 0.00230 0.00230 0.00230 0.00230 0.00230 0.00230 0.00230 0.00230 0.00230 0.00230 0.00230 0.00230 0.00230 0.00230 0.00230 0.00230 0.00230 0.00230 0.00230 0.00230 0.00230 0.00230 0.00230 0.00230 0.00230 0.00230 0.00230 0.00230 0.00230 0.00230 0.00230 0.00230 0.00230 0.00230 0.00230 0.00230 0.00230 0.00230 0.00230 0.00230 0.00230 0.00230 0.00230 0.00230 0.00230 0.00230 0.00230 0.00230 0.00230 0.00230 0.00230 0.00230 0.00230 0.00230 0.00230 0.00230 0.00230 0.00230 0.00230 0.00230 0.00230 0.00230 0.00230 0.00230 0.00230 0.00230 0.00230 0.00230 0.00230 0.00230 0.00230 0.00230 0.00230 0.00230 0.00230 0.00230 0.00230 0.00230 0.00230 0.00230 0.00230 0.00230 0.00230 0.00230 0.00230 0.00230 0.00230 0.00230 0.00230 0.00230 0.00230 0.00230 0.00230 0.00230 0.00230 0.00230 0.00230 0.00230 0.00230 0.00230 0.00230 0.00230 0.00230 0.00230 0.00230 0.00230 0.00230 0.00230 0.00230 0.00230 0.00230 0.00230 0.00230 0.00230 0.00230 0.00230 0.00230 0.00230 0.00230 0.00230 0.00230 0.00230 0.00230 0.00200 0.00200 0.00200 0.00200 0.00200 0.00200 0.00200 0.00200 0.00200 0.00200 0.00200 0.00200 0.00200 0.00200 0.00200 0.00200 0.00200 0.00200 0.00200 0.00200 0.00200 0.0
Care   Care   Care   Care   Care   Care   Care   Care   Care   Care   Care   Care   Care   Care   Care   Care   Care   Care   Care   Care   Care   Care   Care   Care   Care   Care   Care   Care   Care   Care   Care   Care   Care   Care   Care   Care   Care   Care   Care   Care   Care   Care   Care   Care   Care   Care   Care   Care   Care   Care   Care   Care   Care   Care   Care   Care   Care   Care   Care   Care   Care   Care   Care   Care   Care   Care   Care   Care   Care   Care   Care   Care   Care   Care   Care   Care   Care   Care   Care   Care   Care   Care   Care   Care   Care   Care   Care   Care   Care   Care   Care   Care   Care   Care   Care   Care   Care   Care   Care   Care   Care   Care   Care   Care   Care   Care   Care   Care   Care   Care   Care   Care   Care   Care   Care   Care   Care   Care   Care   Care   Care   Care   Care   Care   Care   Care   Care   Care   Care   Care   Care   Care   Care   Care   Care   Care   Care   Care   Care   Care   Care   Care   Care   Care   Care   Care   Care   Care   Care   Care   Care   Care   Care   Care   Care   Care   Care   Care   Care   Care   Care   Care   Care   Care   Care   Care   Care   Care   Care   Care   Care   Care   Care   Care   Care   Care   Care   Care   Care   Care   Care   Care   Care   Care   Care   Care   Care   Care   Care   Care   Care   Care   Care   Care   Care   Care   Care   Care   Care   Care   Care   Care   Care   Care   Care   Care   Care   Care   Care   Care   Care   Care   Care   Care   Care   Care   Care   Care   Care   Care   Care   Care   Care   Care   Care   Care   Care   Care   Care   Care   Care   Care   Care   Care   Care   Care   Care   Care   Care   Care   Care   Care   Care   Care   Care   Care   Care   Care   Care   Care   Care   Care   Care   Care   Care   Care   Care   Care   Care   Care   Care   Care   Care   Care   Care   Care   Care   Care   Care   Care   Care   Care   Care   Care   Care   Care   Care   Care   Care   Care   Care   Care   Care   Care   Care   Care   Care   Care   Care   Care   Care   Care	7.7	Hydraulic mean radius, ft.	25 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2
Career   Name and description   Career   Career   Career   Career   Career   Career   Career   Career   Career   Career   Career   Career   Career   Career   Career   Career   Career   Career   Career   Career   Career   Career   Career   Career   Career   Career   Career   Career   Career   Career   Career   Career   Career   Career   Career   Career   Career   Career   Career   Career   Career   Career   Career   Career   Career   Career   Career   Career   Career   Career   Career   Career   Career   Career   Career   Career   Career   Career   Career   Career   Career   Career   Career   Career   Career   Career   Career   Career   Career   Career   Career   Career   Career   Career   Career   Career   Career   Career   Career   Career   Career   Career   Career   Career   Career   Career   Career   Career   Career   Career   Career   Career   Career   Career   Career   Career   Career   Career   Career   Career   Career   Career   Career   Career   Career   Career   Career   Career   Career   Career   Career   Career   Career   Career   Career   Career   Career   Career   Career   Career   Career   Career   Career   Career   Career   Career   Career   Career   Career   Career   Career   Career   Career   Career   Career   Career   Career   Career   Career   Career   Career   Career   Career   Career   Career   Career   Career   Career   Career   Career   Career   Career   Career   Career   Career   Career   Career   Career   Career   Career   Career   Career   Career   Career   Career   Career   Career   Career   Career   Career   Career   Career   Career   Career   Career   Career   Career   Career   Career   Career   Career   Career   Career   Career   Career   Career   Career   Career   Career   Career   Career   Career   Career   Career   Career   Career   Career   Career   Career   Career   Career   Career   Career   Career   Career   Career   Career   Career   Career   Career   Career   Career   Career   Career   Career   Career   Career   Career   Career   Career   Career   Career   Career   Caree	=	wetted peri-	200 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
C New York Canal.  Name and description of the contract of the contract of channel of channel of the contract of channel of channel of the contract of channel of channel of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of t	-		00000000000000000000000000000000000000
C New York Canal-lined  C New York Canal-lined  Main Canal, Boise project.  Name and description  of channel  Main Canal, Boise project.  Los Angeles conduit, curve.  Los Angeles conduit, curve.  Los Angeles conduit, curve.  Los Angeles conduit, curve.  Tono. 0 33.74.75  Note Main Canal, Boise project.  Los Angeles conduit, curve.  Los Angeles conduit, curve.  Tono. 0 32.74.75  Note Main Canal, Boise project.  Los Angeles conduit, curve.  Los Angeles conduit, curve.  Tono. 0 32.74.75  Note Main Canal Cabriel Plant.  Hidenbaugh, tangent and curves 1819.02.03.802.76  Nidenbaugh, tangent and curves 1819.02.03.802.76  Nidenbaugh, tangent and curves 1829.84.303.10  Inaard chute No. 1, samooth.  Isand chute, samooth.  Isan San Cabriel Plant.  Hogo. 0 22.03.802.76  Note Main project, tangent.  Inaard chute No. 1, samooth.  Isan San Cabriel Plant.  Hogo. 0 22.03.802.76  Note Main project, tangent.  Inaard chute, samooth.  Isan San Cabriel Plant.  Hogo. 0 22.03.802.76  Note Main project, tangent.  Inaard chute, samooth.  Isan San Cabriel Plant.  Hogo. 0 22.03.802.76  Note Main project, tangent.  Inaard chute, samooth.  Isan San Cabriel Plant.  Hogo. 0 22.03.802.76  Note Main project, tangent.  Inaard chute, samooth.  Isan San San San San San San San San San S	10	Discharge per	1,824,469,469,469,469,469,469,469,469,469,46
C New York Canal-lined  C New York Canal-lined  Main Canal, Boise project.  Name and description  of channel  Main Canal, Boise project.  Los Angeles conduit, curve.  Los Angeles conduit, curve.  Los Angeles conduit, curve.  Los Angeles conduit, curve.  Tono. 0 33.74.75  Note Main Canal, Boise project.  Los Angeles conduit, curve.  Los Angeles conduit, curve.  Tono. 0 32.74.75  Note Main Canal, Boise project.  Los Angeles conduit, curve.  Los Angeles conduit, curve.  Tono. 0 32.74.75  Note Main Canal Cabriel Plant.  Hidenbaugh, tangent and curves 1819.02.03.802.76  Nidenbaugh, tangent and curves 1819.02.03.802.76  Nidenbaugh, tangent and curves 1829.84.303.10  Inaard chute No. 1, samooth.  Isand chute, samooth.  Isan San Cabriel Plant.  Hogo. 0 22.03.802.76  Note Main project, tangent.  Inaard chute No. 1, samooth.  Isan San Cabriel Plant.  Hogo. 0 22.03.802.76  Note Main project, tangent.  Inaard chute, samooth.  Isan San Cabriel Plant.  Hogo. 0 22.03.802.76  Note Main project, tangent.  Inaard chute, samooth.  Isan San Cabriel Plant.  Hogo. 0 22.03.802.76  Note Main project, tangent.  Inaard chute, samooth.  Isan San Cabriel Plant.  Hogo. 0 22.03.802.76  Note Main project, tangent.  Inaard chute, samooth.  Isan San San San San San San San San San S	R	Mean velocity per second, it.	848.848.848.848.848.848.848.848.848.848
C New York Canal description of the case of channel of the case of channel of the case of channel of the case of channel of the case of channel of the case of channel of the case of the case of channel of the case of the case of the case of the case of the case of the case of the case of the case of the case of the case of the case of the case of the case of the case of the case of the case of the case of the case of the case of the case of the case of the case of the case of the case of the case of the case of the case of the case of the case of the case of the case of the case of the case of the case of the case of the case of the case of the case of the case of the case of the case of the case of the case of the case of the case of the case of the case of the case of the case of the case of the case of the case of the case of the case of the case of the case of the case of the case of the case of the case of the case of the case of the case of the case of the case of the case of the case of the case of the case of the case of the case of the case of the case of the case of the case of the case of the case of the case of the case of the case of the case of the case of the case of the case of the case of the case of the case of the case of the case of the case of the case of the case of the case of the case of the case of the case of the case of the case of the case of the case of the case of the case of the case of the case of the case of the case of the case of the case of the case of the case of the case of the case of the case of the case of the case of the case of the case of the case of the case of the case of the case of the case of the case of the case of the case of the case of the case of the case of the case of the case of the case of the case of the case of the case of the case of the case of the case of the case of the case of the case of the case of the case of the case of the case of the case of the case of the case of the case of the case of the case of the case of the case of the case of the c	ø	section, sq. ft.	0: 478787: : 48500000 : : 485000000000000000000000000000000000000
Convergence of channel of channel of channel of channel of channel of channel of channel of channel of channel of channel of channel of channel of channel of channel of channel of channel of channel of the channel of channel of channel of channel of channel of channel of channel of channel of channel of channel of channel of channel of channel of channel of channel of channel of channel of channel of channel of channel of channel of channel of channel of channel of channel of channel of channel of channel of channel of channel of channel of channel of channel of channel of channel of channel of channel of channel of channel of channel of channel of channel of channel of channel of channel of channel of channel of channel of channel of channel of channel of channel of channel of channel of channel of channel of channel of channel of channel of channel of channel of channel of channel of channel of channel of channel of channel of channel of channel of channel of channel of channel of channel of channel of channel of channel of channel of channel of channel of channel of channel of channel of channel of channel of channel of channel of channel of channel of channel of channel of channel of channel of channel of channel of channel of channel of channel of channel of channel of channel of channel of channel of channel of channel of channel of channel of channel of channel of channel of channel of channel of channel of channel of channel of channel of channel of channel of channel of channel of channel of channel of channel of channel of channel of channel of channel of channel of channel of channel of channel of channel of channel of channel of channel of channel of channel of channel of channel of channel of channel of channel of channel of channel of channel of channel of channel of channel of channel of channel of channel of channel of channel of channel of channel of channel of channel of channel of channel of channel of channel of channel of channel of channel of channel of channel of channel of channel of cha	,	Average depth,	
Name and description of channel of channel of channel of channel of channel of channel of channel of channel of channel of channel of channel of channel of channel of channel of channel chank bose project.  Nain Canal, Boise project.  Main Canal, Boise project.  Sulphur Creek wasteway. curve.  Sulphur Creek wasteway. curve.  Los Angeles conduit, curve.  Too 000  Los Angeles conduit, curve.  Too 01  Too 023  Ridenbaugh, san Gabriel Plant.  Ridenbaugh, tangent and curves.  Ridenbaugh, tangent and curves.  Ridenbaugh, tangent and curves.  Insard chute No. 1, same reach.  Long Pond chute, smooth.  Long Pond chute, smooth.  Long Pond chute, smooth.  Umatilla project, tangent.  Umatilla project, tangent.  Means achute, smooth.  Umatilla project, tangent.  Means achute, smooth.  Umatilla project, tangent.  Means achute, smooth.  Umatilla project, tangent.  Means achute, smooth.  Means achute, smooth.  Umatilla project, tangent.  Means achute, smooth.  Means achute, smooth.  Means achute, smooth.  Means achute, smooth.  Means achute, smooth.  Means achute, smooth.  Means achute, smooth.  Means achute, smooth.  Means achute, smooth.  Means achute, smooth.  Means achute, smooth.  Means achute, smooth.  Means achute, smooth.  Means achute, smooth.  Means achute, smooth.  Means achute, smooth.  Means achute, smooth.  Means achute, smooth.  Means achute, smooth.  Means achute, smooth.  Means achute, smooth.  Means achute, smooth.  Means achute, smooth.  Means achute, smooth.  Means achute, smooth.  Means achute, smooth.  Means achute.  Means achute.  Means achute.  Means achute.  Means achute.  Means achute.  Means achute.  Means achute.  Means achute.  Means achute.  Means achute.  Means achute.  Means achute.  Means achute.  Means achute.  Means achute.  Means achute.  Means achute.  Means achute.  Means achute.  Means achute.  Means achute.  Means achute.  Means achute.  Means achute.  Means achute.  Means achute.  Means achute.  Means achute.  Means achute.  Means achute.  Means achute.  Means achute.  Means achute.  Me	0	imum depth, ft.	255 25 25 25 25 25 25 25 25 25 25 25 25
Name and description of channel  Name and description of channel  Content Concrete-lined  Main Canal, Boise project.  Main Canal, Boise project.  Sulphur Creek wasteway.  Los Angeles conduit, curve.  Los Angeles conduit, curve.  Los Angeles conduit, curve.  Los Angeles conduit, curve.  Los Angeles conduit, curve.  Midenbaugh, very smooth.  Ridenbaugh, very smooth.  Ridenbaugh, tangent and curves  Ridenbaugh, tangent and curves  Ridenbaugh, tangent and curves  Ridenbaugh, tangent and curves  Ridenbaugh, tangent and curves  Ridenbaugh, tangent and curves  Ridenbaugh, tangent and curves  Ridenbaugh, tangent and curves  Ridenbaugh, tangent and curves  Ridenbaugh, tangent and curves  Ridenbaugh, tangent and curves  Ridenbaugh, tangent and curves  Ridenbaugh, tangent and curves  Ridenbaugh, tangent and curves  Ridenbaugh, tangent and curves  Ridenbaugh, tangent and curves  Ridenbaugh, tangent and curves  Ridenbaugh, tangent and curves  Ridenbaugh, tangent and curves  Ridenbaugh, tangent and curves  Ridenbaugh, tangent and curves  Ridenbaugh, tangent and curves  Ridenbaugh, tangent and curves  Ridenbaugh, tangent and curves  Ridenbaugh, tangent and curves  Ridenbaugh, tangent and curves  Ridenbaugh, tangent and curves  Ridenbaugh, tangent and curves  Ridenbaugh, tangent and curves  Ridenbaugh, tangent and curves  Ridenbaugh, tangent and curves  Ridenbaugh, tangent and curves  Ridenbaugh, tangent and curves  Ridenbaugh, tangent and curves  Ridenbaugh, tangent and curves  Ridenbaugh, tangent and curves  Ridenbaugh, tangent and curves  Ridenbaugh, tangent and curves  Ridenbaugh, tangent and curves  Ridenbaugh, tangent and curves  Ridenbaugh, tangent and curves  Ridenbaugh, tangent and curves  Ridenbaugh, tangent and curves  Ridenbaugh, tangent and curves  Ridenbaugh, tangent and curves  Ridenbaugh, tangent and curves  Ridenbaugh, tangent and curves  Ridenbaugh, tangent and curves  Ridenbaugh, tangent and curves  Ridenbaugh, tangent and curves  Ridenbaugh, tangent and curves  Ridenbaugh, tangent and curves  Ridenbaugh, ta	n	face width, ft.	65.55.00 11.55.00 11.55.00 11.55.00 11.55.00 11.55.00 11.55.00 11.55.00 11.55.00 11.55.00 11.55.00 11.55.00 11.55.00 11.55.00 11.55.00 11.55.00 11.55.00 11.55.00 11.55.00 11.55.00 11.55.00 11.55.00 11.55.00 11.55.00 11.55.00 11.55.00 11.55.00 11.55.00 11.55.00 11.55.00 11.55.00 11.55.00 11.55.00 11.55.00 11.55.00 11.55.00 11.55.00 11.55.00 11.55.00 11.55.00 11.55.00 11.55.00 11.55.00 11.55.00 11.55.00 11.55.00 11.55.00 11.55.00 11.55.00 11.55.00 11.55.00 11.55.00 11.55.00 11.55.00 11.55.00 11.55.00 11.55.00 11.55.00 11.55.00 11.55.00 11.55.00 11.55.00 11.55.00 11.55.00 11.55.00 11.55.00 11.55.00 11.55.00 11.55.00 11.55.00 11.55.00 11.55.00 11.55.00 11.55.00 11.55.00 11.55.00 11.55.00 11.55.00 11.55.00 11.55.00 11.55.00 11.55.00 11.55.00 11.55.00 11.55.00 11.55.00 11.55.00 11.55.00 11.55.00 11.55.00 11.55.00 11.55.00 11.55.00 11.55.00 11.55.00 11.55.00 11.55.00 11.55.00 11.55.00 11.55.00 11.55.00 11.55.00 11.55.00 11.55.00 11.55.00 11.55.00 11.55.00 11.55.00 11.55.00 11.55.00 11.55.00 11.55.00 11.55.00 11.55.00 11.55.00 11.55.00 11.55.00 11.55.00 11.55.00 11.55.00 11.55.00 11.55.00 11.55.00 11.55.00 11.55.00 11.55.00 11.55.00 11.55.00 11.55.00 11.55.00 11.55.00 11.55.00 11.55.00 11.55.00 11.55.00 11.55.00 11.55.00 11.55.00 11.55.00 11.55.00 11.55.00 11.55.00 11.55.00 11.55.00 11.55.00 11.55.00 11.55.00 11.55.00 11.55.00 11.55.00 11.55.00 11.55.00 11.55.00 11.55.00 11.55.00 11.55.00 11.55.00 11.55.00 11.55.00 11.55.00 11.55.00 11.55.00 11.55.00 11.55.00 11.55.00 11.55.00 11.55.00 11.55.00 11.55.00 11.55.00 11.55.00 11.55.00 11.55.00 11.55.00 11.55.00 11.55.00 11.55.00 11.55.00 11.55.00 11.55.00 11.55.00 11.55.00 11.55.00 11.55.00 11.55.00 11.55.00 11.55.00 11.55.00 11.55.00 11.55.00 11.55.00 11.55.00 11.55.00 11.55.00 11.55.00 11.55.00 11.55.00 11.55.00 11.55.00 11.55.00 11.55.00 11.55.00 11.55.00 11.55.00 11.55.
Name and description of channel  Name and description of channel  Content Concrete-lined  Main Canal, Boise project.  Main Canal, Boise project.  Sulphur Creek wasteway.  Los Angeles conduit, curve.  Los Angeles conduit, curve.  Los Angeles conduit, curve.  Los Angeles conduit, curve.  Los Angeles conduit, curve.  Midenbaugh, very smooth.  Ridenbaugh, very smooth.  Ridenbaugh, tangent and curves  Ridenbaugh, tangent and curves  Ridenbaugh, tangent and curves  Ridenbaugh, tangent and curves  Ridenbaugh, tangent and curves  Ridenbaugh, tangent and curves  Ridenbaugh, tangent and curves  Ridenbaugh, tangent and curves  Ridenbaugh, tangent and curves  Ridenbaugh, tangent and curves  Ridenbaugh, tangent and curves  Ridenbaugh, tangent and curves  Ridenbaugh, tangent and curves  Ridenbaugh, tangent and curves  Ridenbaugh, tangent and curves  Ridenbaugh, tangent and curves  Ridenbaugh, tangent and curves  Ridenbaugh, tangent and curves  Ridenbaugh, tangent and curves  Ridenbaugh, tangent and curves  Ridenbaugh, tangent and curves  Ridenbaugh, tangent and curves  Ridenbaugh, tangent and curves  Ridenbaugh, tangent and curves  Ridenbaugh, tangent and curves  Ridenbaugh, tangent and curves  Ridenbaugh, tangent and curves  Ridenbaugh, tangent and curves  Ridenbaugh, tangent and curves  Ridenbaugh, tangent and curves  Ridenbaugh, tangent and curves  Ridenbaugh, tangent and curves  Ridenbaugh, tangent and curves  Ridenbaugh, tangent and curves  Ridenbaugh, tangent and curves  Ridenbaugh, tangent and curves  Ridenbaugh, tangent and curves  Ridenbaugh, tangent and curves  Ridenbaugh, tangent and curves  Ridenbaugh, tangent and curves  Ridenbaugh, tangent and curves  Ridenbaugh, tangent and curves  Ridenbaugh, tangent and curves  Ridenbaugh, tangent and curves  Ridenbaugh, tangent and curves  Ridenbaugh, tangent and curves  Ridenbaugh, tangent and curves  Ridenbaugh, tangent and curves  Ridenbaugh, tangent and curves  Ridenbaugh, tangent and curves  Ridenbaugh, tangent and curves  Ridenbaugh, tangent and curves  Ridenbaugh, ta	4		2,400.0 1,000.0 1,000.0 1,000.0 1,000.0 1,000.0 1,000.0 1,000.0 1,000.0 1,000.0
(1140411008) 800[1]	9		New York Canal.  Main Canal. Boise project.  Sulphur Creek wasteway.  Sulphur Creek wasteway.  Sulphur Creek wasteway.  Los Angeles conduit, curve.  Los Angeles conduit, curve.  Los Angeles conduit, curve.  Los Angeles conduit, curve.  Los Angeles conduit, curve.  Ridenbaugh, san Gabriel Plant.  Ridenbaugh, very smooth.  Ridenbaugh, tangent and curves  Ridenbaugh, tangent and curves  Ridenbaugh, tangent and curves  Ridenbaugh, tangent and curves  Ridenbaugh, tangent and curves  Ridenbaugh, tangent and curves  Ridenbaugh, tangent and curves  Ridenbaugh, tangent and curves  Ridenbaugh, tangent and curves  Ridenbaugh, tangent and curves  Ridenbaugh, tangent and curves  Ridenbaugh, tangent and curves  Ridenbaugh, tangent and curves  Ridenbaugh, tangent and curves  Ridenbaugh, tangent and curves  Ridenbaugh, tangent and curves  Ridenbaugh, tangent and curves  Ridenbaugh, tangent and curves  Ridenbaugh, tangent and curves  Ridenbaugh, tangent and curves  Ridenbaugh, tangent and curves  Ridenbaugh, tangent and curves  Ridenbaugh, tangent and curves  Ridenbaugh, tangent and curves  Ridenbaugh, tangent and curves  Ridenbaugh, tangent and curves  Ridenbaugh, tangent and curves  Ridenbaugh, tangent and curves  Ridenbaugh, tangent and curves  Ridenbaugh, tangent and curves  Ridenbaugh, tangent and curves  Ridenbaugh, tangent and curves  Ridenbaugh, tangent and curves  Ridenbaugh, tangent and curves  Ridenbaugh, tangent and curves  Ridenbaugh, tangent and curves  Ridenbaugh, tangent and curves  Ridenbaugh, tangent and curves  Ridenbaugh, tangent and curves  Ridenbaugh, tangent and curves  Ridenbaugh, tangent and curves  Ridenbaugh, tangent and curves  Ridenbaugh, tangent and curves  Ridenbaugh, tangent and curves  Ridenbaugh, tangent and curves  Ridenbaugh, tangent and curves  Ridenbaugh, tangent and curves  Ridenbaugh, tangent and curves  Ridenbaugh, tangent and curves  Ridenbaugh, tangent and curves  Ridenbaugh, tangent and curves  Ridenbaugh, tangent and curves  Ridenbaugh, tangent and curves  Ridenbaugh, tangent and cur
	2	Class (accuracy)	0 4 0
22222001000000000000000000000000000000	1	Кеѓегевсе витрег	1198447999999999999999999999999999999999

Total to President to the teather

.554	.634	.570	.643	808	653		.718	_			951	_	_	976	4		-	-	1.43	1.44	1 48	1.84	2.41			.153	_
	103 4			80.08	04 9	92.6	89.2		80.08	85.1	-											50.6			134 2	131.8	137.9
0145		01150	.0155	0104			.0167	.0208	0110		0182		.0194	0180			.0202	.0209	.0219	.0242		•			1010	.0113	.0108
0144	.0154	.0149	.0155	.0158	0155	0157	80.2 .0160	.0192	.010.	0174	0176		.0188							.0218					0103	0115	.0112
110.0	109.7	111.4	102.1	80.8	000.4	89.5	80.2	65.2	1.18	80.7		76.8	76.2	92.5	800.8	83.0	72.5	67.1	74.3	58.0	200.1	64.4	52.9		169.0	139.2	149.7
.000626	.000629	00062	.00151	07180	00277	00108	66000	.001184	.0007	00000	0003208	.001444	.001449	.000525	669000	000000	000020	.001021	.000574	.00063	.000053	00000	0000		0003108	001288	000713
1.50	2.07	36	1.41	.51	. 38	80.0	.54	.58	98	288	1 22	. 98	.95	3.8	08.1	1.00	88	16	1.63	.70	70.0	1.02	1.49		2.28	35	1.66
23.95 24.07	6.00	14.38	6.82	1.28	5.92	0.00	5.67	5.74	6.88	66.50	13 25	6.81	68.9	17.20	17.10	10.15	13 87	13.90	22.75	9.89	4.52	12.50	20.74		4.60	850	6.60
133.30	212.00	107.60	111.30 1	89.80	59.68	18.71	5.71	5.71	15.34	114 80	97.16	19.36	18.54	98.30	98.30	74 86	95 74	25.74	84.32	8.50	3.05	23.04	60.52	20.00	251.80 2	88 99	139.50
3.802	3.94	3.86	4.71	15.52	11.32	3.14	1.86	1.71	2.27	1.35	1 67	2.89	2.83	2.94	3.02	2000	01.6	2.04	2.27	1.22	1.07	1.00	1.06		4.49	5.20	2.08
34.20	53.80	97.90	23.66	5.78	5.28	20.00	3.06	3.33	6.75	20.07	18 18	69.9	6.56	33,38	32.52	20.20	19 95	12.61	37.09	96.9	2.85	12.57	30.02	20.00	56.11	4 5	27
1.75	2.34	4 11	1.71	.56	.40	1.43		.62	:	200	1.02		1.60	2.58	2.58	2.07	2.00	1 02	1.77	:	1.04	1.14	7.00	:	5.61	2.51	2.28
8 2 89	60	:=	177	.57	45	8.5 1.80		5.4 .80		2.6 .90	1.01.55	4 4 9 15	4.11.90	2.78	12.92.78	27.75	10.22	1 10	2.20		2.7 1.70	-	12.9 2.20		9.6	1.1	12.0
552.027	1,000.0 23.0	2,000 0	730.01	210.01	142.01	743.3		755.8	1,000.0	350.0 2.6	1000 001	600.5	1.000.0	240.01	1,013.01	240.01	1,013.0	1 013 0 19 4	301.0 21.0 2.	0.009	575.4	699.01	829.6	900.0	800.0	500.0	
Weber, medium smooth	medium smooth	curves	riume, new				and motion	nd project.	moss	ood Ward, sand	rocks	Tan Miston deposit, sand	Arrovo Ditch, tangent, moss	Canal, rough, tangent	Canal, tangent and curve	ingent	Canal, tangent and curve		reland project	Riverside, two curves	nent wash	Riverside, rough, broken	Upper, Riverside, sandy bottom	pper, Kiverside, sand, grass Wooden Flames	surfaced, battened	Bitter Root Valley Irrigation Co.	Orchard Mesa Power, surfaced.
and Weber,	and Weber,	gno			Canal	Sanderfer, smooth tangent	Santa Ana, sand	al 19 Orla	Colton, tangent, moss	South Cottonwood Ward,	Modesto main, rocks	Ana main	Los Metos, deposit, sand	Canal, ro	Canal, tal	Canal, tangent	Canal, ta	Canal, ta	Orland project	r. Riversid	Small ditch, cement wash	r, Riversid	r, Riversid	r, Kiversid	, surfaced,	r Root Va	ard Mesa
Davis and V	Davis	King	South	South	South	Sande	Santa	Later	Colto	South				_	North	North	North	North	Main	Upper.	B Small	A Lower,		Oppe			Orchar
-	4		4		-	7	1	44	39a	₹,	_	-	40 4	_	7	₹,	4	4.	4	520		4		299	_	288	d

by M. J. Orbeck, C. N. Ward, W. O' B. Henderson.

					~~		~~~	- m		~-		000	_
18	E	.18	123	2.50	268	.87	2.4	98.5	620	.62	283	28.7	Ĕ.
17	N.s	124.2	129.5	105.7	1007	115.4	102.7			97.4	88.5	93.8	80.3
16	u s.K	01110	0.0115	0125	0126	0129		0129				0159	.0166
15	и в.у	0114	0117	0127	0122	0129	0138	0131	0150	0120	0125	0157	0110
14	c	136.2 138.9 137.6	139.0	131.0	132.5	129.0	88.3	115.5	100.2	106.0	97.5	93.8	<b>3</b>
13	90	.000710 .000965 .000858	.00210	00213	.00016	.000133	.000868	001044	.001035	000274	.001934	.001479	.0008015
12		1.11 2.12 2.12	1.90	1.23	8.85	1.96	1.66	26.0	1.08	.643	388	87.0	96
11	a	15.10 17.97 18.60	23.10	13.26	20.86	16.30	3.32	7.45	17.70	13.47	13.66	3.30	8.20
10	0	63.30 209.30 228.80	399.77 160.79	88.74	92.80	66.50	2.16	500	64.02	366	50.31	50.31	6.97
6	a	3.80 5.96 5.81	9.12	5.45	2.33	2.08	6.21	3.71	3.34	3.13	80.8	3.61	1.30
00	a	16.77 35.21 39.45	43.82 20.80	26.10	40.00	31.90	1.32	17.27	19.15	10.41	12.34	13.92	5.38
7	depth Av.	1.40 2.94 3.29	2.74	2.61	2.53	3.00	4.37	1.45	1.61	2.82	1.23	1.39	5
9	Max. depth			: : :	62 : :		11	:::	: :	1.42	::		
0	App. width	12.0 12.0 12.0	16.0	10.0	15.8	9.6	5.9	11.9				10.0	9.0
+	L		1,100.0 834.0 834.0	834.0	700.0	1,000.0	400.0	616.0	1,147.0	750.0	159.0	195.0	163.2
25	Name and description	Mesa Po Mesa Po Mesa Po	Central Oregon Irrigation Co., surfaced	Alkali Creek, waterworn, slime	Fargo drop, plank, tar-coated Bitter Root Valley Irrigation Co Bitter Root Valley Irrigation Co	Hedge, new, surfaced. Bitter Root Valley Irrigation Co.	Lateral No. 4.	Arnold, curves and tangent	Arnold, curve	Oxford, floor transverse	Swalley, tangent and curve	tangent	len Rock Lower, rough
53	Class		A Alkali		A Bitt	Bitt Bitt	-			A Hed	B Swa	B Swa	B Golden
1	Bef.	61a 62h 63a	65 64	689	69a 70	1333			80	822	32.5	86	8

.861 .830 .830 .1.25 .1.25 .1.55 .1.50 .1.50 .1.50 .1.50 .1.50 .1.50 .1.50 .1.50 .1.50 .1.50 .1.50 .1.50 .1.50 .1.50 .1.50 .1.50 .1.50 .1.50 .1.50 .1.50 .1.50 .1.50 .1.50 .1.50 .1.50 .1.50 .1.50 .1.50 .1.50 .1.50 .1.50 .1.50 .1.50 .1.50 .1.50 .1.50 .1.50 .1.50 .1.50 .1.50 .1.50 .1.50 .1.50 .1.50 .1.50 .1.50 .1.50 .1.50 .1.50 .1.50 .1.50 .1.50 .1.50 .1.50 .1.50 .1.50 .1.50 .1.50 .1.50 .1.50 .1.50 .1.50 .1.50 .1.50 .1.50 .1.50 .1.50 .1.50 .1.50 .1.50 .1.50 .1.50 .1.50 .1.50 .1.50 .1.50 .1.50 .1.50 .1.50 .1.50 .1.50 .1.50 .1.50 .1.50 .1.50 .1.50 .1.50 .1.50 .1.50 .1.50 .1.50 .1.50 .1.50 .1.50 .1.50 .1.50 .1.50 .1.50 .1.50 .1.50 .1.50 .1.50 .1.50 .1.50 .1.50 .1.50 .1.50 .1.50 .1.50 .1.50 .1.50 .1.50 .1.50 .1.50 .1.50 .1.50 .1.50 .1.50 .1.50 .1.50 .1.50 .1.50 .1.50 .1.50 .1.50 .1.50 .1.50 .1.50 .1.50 .1.50 .1.50 .1.50 .1.50 .1.50 .1.50 .1.50 .1.50 .1.50 .1.50 .1.50 .1.50 .1.50 .1.50 .1.50 .1.50 .1.50 .1.50 .1.50 .1.50 .1.50 .1.50 .1.50 .1.50 .1.50 .1.50 .1.50 .1.50 .1.50 .1.50 .1.50 .1.50 .1.50 .1.50 .1.50 .1.50 .1.50 .1.50 .1.50 .1.50 .1.50 .1.50 .1.50 .1.50 .1.50 .1.50 .1.50 .1.50 .1.50 .1.50 .1.50 .1.50 .1.50 .1.50 .1.50 .1.50 .1.50 .1.50 .1.50 .1.50 .1.50 .1.50 .1.50 .1.50 .1.50 .1.50 .1.50 .1.50 .1.50 .1.50 .1.50 .1.50 .1.50 .1.50 .1.50 .1.50 .1.50 .1.50 .1.50 .1.50 .1.50 .1.50 .1.50 .1.50 .1.50 .1.50 .1.50 .1.50 .1.50 .1.50 .1.50 .1.50 .1.50 .1.50 .1.50 .1.50 .1.50 .1.50 .1.50 .1.50 .1.50 .1.50 .1.50 .1.50 .1.50 .1.50 .1.50 .1.50 .1.50 .1.50 .1.50 .1.50 .1.50 .1.50 .1.50 .1.50 .1.50 .1.50 .1.50 .1.50 .1.50 .1.50 .1.50 .1.50 .1.50 .1.50 .1.50 .1.50 .1.50 .1.50 .1.50 .1.50 .1.50 .1.50 .1.50 .1.50 .1.50 .1.50 .1.50 .1.50 .1.50 .1.50 .1.50 .1.50 .1.50 .1.50 .1.50 .1.50 .1.50 .1.50 .1.50 .1.50 .1.50 .1.50 .1.50 .1.50 .1.50 .1.50 .1.50 .1.50 .1.50 .1.50 .1.50 .1.50 .1.50 .1.50 .1.50 .1.50 .1.50 .1.50 .1.50 .1.50 .1.50 .1.50 .1.50 .1.50 .1.50 .1.50 .1.50 .1.50 .1.50 .1.50 .1.50 .1.50 .1.50 .1.50 .1.50 .1.50 .1.50 .1.50 .1.50 .1.50 .1.50 .1.50 .1.50 .1.50 .1.50 .1.50 .1.50 .1.50 .1.50 .1.50 .1.50 .1.50 .1.50 .1.50 .1.	.381 1.707 1.89 1.89 2.68 8.28 8.28 8.33 3.33 5.28
886.3 886.3 886.3 886.3 771.5 68.1 887.2 887.2 887.2 887.2 888.1 888.1 888.1 888.1 888.1 888.1 888.1 888.1 888.1 888.1 888.1 888.1 888.1 888.1 888.1 888.1 888.1 888.1 888.1 888.1 888.1 888.1 888.1 888.1 888.1 888.1 888.1 888.1 888.1 888.1 888.1 888.1 888.1 888.1 888.1 888.1 888.1 888.1 888.1 888.1 888.1 888.1 888.1 888.1 888.1 888.1 888.1 888.1 888.1 888.1 888.1 888.1 888.1 888.1 888.1 888.1 888.1 888.1 888.1 888.1 888.1 888.1 888.1 888.1 888.1 888.1 888.1 888.1 888.1 888.1 888.1 888.1 888.1 888.1 888.1 888.1 888.1 888.1 888.1 888.1 888.1 888.1 888.1 888.1 888.1 888.1 888.1 888.1 888.1 888.1 888.1 888.1 888.1 888.1 888.1 888.1 888.1 888.1 888.1 888.1 888.1 888.1 888.1 888.1 888.1 888.1 888.1 888.1 888.1 888.1 888.1 888.1 888.1 888.1 888.1 888.1 888.1 888.1 888.1 888.1 888.1 888.1 888.1 888.1 888.1 888.1 888.1 888.1 888.1 888.1 888.1 888.1 888.1 888.1 888.1 888.1 888.1 888.1 888.1 888.1 888.1 888.1 888.1 888.1 888.1 888.1 888.1 888.1 888.1 888.1 888.1 888.1 888.1 888.1 888.1 888.1 888.1 888.1 888.1 888.1 888.1 888.1 888.1 888.1 888.1 888.1 888.1 888.1 888.1 888.1 888.1 888.1 888.1 888.1 888.1 888.1 888.1 888.1 888.1 888.1 888.1 888.1 888.1 888.1 888.1 888.1 888.1 888.1 888.1 888.1 888.1 888.1 888.1 888.1 888.1 888.1 888.1 888.1 888.1 888.1 888.1 888.1 888.1 888.1 888.1 888.1 888.1 888.1 888.1 888.1 888.1 888.1 888.1 888.1 888.1 888.1 888.1 888.1 888.1 888.1 888.1 888.1 888.1 888.1 888.1 888.1 888.1 888.1 888.1 888.1 888.1 888.1 888.1 888.1 888.1 888.1 888.1 888.1 888.1 888.1 888.1 888.1 888.1 888.1 888.1 888.1 888.1 888.1 888.1 888.1 888.1 888.1 888.1 888.1 888.1 888.1 888.1 888.1 888.1 888.1 888.1 888.1 888.1 888.1 888.1 888.1 888.1 888.1 888.1 888.1 888.1 888.1 888.1 888.1 888.1 888.1 888.1 888.1 888.1 888.1 888.1 888.1 888.1 888.1 888.1 888.1 888.1 888.1 888.1 888.1 888.1 888.1 888.1 888.1 888.1 888.1 888.1 888.1 888.1 888.1 888.1 888.1 888.1 888.1 888.1 888.1 888.1 888.1 888.1 888.1 888.1 888.1 888.1 888.1 888.1 888.1 888.1 888.1 888.1 888.1 888.1 888.1 888.1 888.1 888.1 888.1 888.1 888.1 888.1 888.1 888.1 8	114.3 91.6 55.8 55.1 47.5 114.6 114.6 111.5
0.0171 0.0171 0.0173 0.0203 0.0203 0.0203 0.0203 0.0203 0.0002 0.0002 0.0003 0.0003 0.0003 0.0003 0.0003 0.0003 0.0003 0.0003 0.0003 0.0003 0.0003 0.0003 0.0003 0.0003 0.0003 0.0003 0.0003 0.0003 0.0003 0.0003 0.0003 0.0003 0.0003 0.0003 0.0003 0.0003 0.0003 0.0003 0.0003 0.0003 0.0003 0.0003 0.0003 0.0003 0.0003 0.0003 0.0003 0.0003 0.0003 0.0003 0.0003 0.0003 0.0003 0.0003 0.0003 0.0003 0.0003 0.0003 0.0003 0.0003 0.0003 0.0003 0.0003 0.0003 0.0003 0.0003 0.0003 0.0003 0.0003 0.0003 0.0003 0.0003 0.0003 0.0003 0.0003 0.0003 0.0003 0.0003 0.0003 0.0003 0.0003 0.0003 0.0003 0.0003 0.0003 0.0003 0.0003 0.0003 0.0003 0.0003 0.0003 0.0003 0.0003 0.0003 0.0003 0.0003 0.0003 0.0003 0.0003 0.0003 0.0003 0.0003 0.0003 0.0003 0.0003 0.0003 0.0003 0.0003 0.0003 0.0003 0.0003 0.0003 0.0003 0.0003 0.0003 0.0003 0.0003 0.0003 0.0003 0.0003 0.0003 0.0003 0.0003 0.0003 0.0003 0.0003 0.0003 0.0003 0.0003 0.0003 0.0003 0.0003 0.0003 0.0003 0.0003 0.0003 0.0003 0.0003 0.0003 0.0003 0.0003 0.0003 0.0003 0.0003 0.0003 0.0003 0.0003 0.0003 0.0003 0.0003 0.0003 0.0003 0.0003 0.0003 0.0003 0.0003 0.0003 0.0003 0.0003 0.0003 0.0003 0.0003 0.0003 0.0003 0.0003 0.0003 0.0003 0.0003 0.0003 0.0003 0.0003 0.0003 0.0003 0.0003 0.0003 0.0003 0.0003 0.0003 0.0003 0.0003 0.0003 0.0003 0.0003 0.0003 0.0003 0.0003 0.0003 0.0003 0.0003 0.0003 0.0003 0.0003 0.0003 0.0003 0.0003 0.0003 0.0003 0.0003 0.0003 0.0003 0.0003 0.0003 0.0003 0.0003 0.0003 0.0003 0.0003 0.0003 0.0003 0.0003 0.0003 0.0003 0.0003 0.0003 0.0003 0.0003 0.0003 0.0003 0.0003 0.0003 0.0003 0.0003 0.0003 0.0003 0.0003 0.0003 0.0003 0.0003 0.0003 0.0003 0.0003 0.0003 0.0003 0.0003 0.0003 0.0003 0.0003 0.0003 0.0003 0.0003 0.0003 0.0003 0.0003 0.0003 0.0003 0.0003 0.0003 0.0003 0.0003 0.0003 0.0003 0.0003 0.0003 0.0003 0.0003 0.0003 0.0003 0.0003 0.0003 0.0003 0.0003 0.0003 0.0003 0.0003 0.0003 0.0003 0.0003 0.0003 0.0003 0.0003 0.0003 0.0003 0.0003 0.0003 0.0003 0.0003 0.0003 0.0003 0.0003 0.0003 0.0003 0.0003 0.0003 0.0003 0.0003 0.0003 0.0003 0.0003 0.0003 0.0003 0.0003 0.0003 0.	0510 0248 0271 0271 0314 1010 1010 1010 1010 1010 1010 101
01683 010173 010173 010173 010173 010173 010173 010173 010173 010173 010173 010173 010173 010173 010173 010173 010173	200000 0000000000000000000000000000000
97.40.00.00.00.00.00.00.00.00.00.00.00.00.	89.3.0 61.9.0 61.9.0 61.9.0 61.9.0 61.9.0 61.9.0 61.9.0 61.0 61.0 61.0 61.0 61.0 61.0 61.0 61
88 88 88 88 88 88 88 88 88 88 88 88 88	
00000000000000000000000000000000000000	001367 005575 0006471 001597 000636 00017 00017 00017
1 1 2 2 2 2 1 1 1 1 1 2 3 3 3 3 3 3 3 3	85 25 25 25 25 25 25 25 25 25 25 25 25 25
5.0114898118       5.0114898118       5.00168188       5.00168188       5.00168188       5.00168188       5.00168188       5.00168188       5.00168188       5.00168188       5.00168188       5.00168188       5.00168188       5.00168188       5.00168188       5.0016818       5.0016818       5.0016818       5.0016818       5.0016818       5.0016818       5.0016818       5.0016818       5.0016818       5.0016818       5.0016818       5.0016818       5.0016818       5.0016818       5.0016818       5.0016818       5.0016818       5.0016818       5.0016818       5.0016818       5.0016818       5.0016818       5.0016818       5.0016818       5.0016818       5.0016818       5.0016818       5.0016818       5.0016818       5.0016818       5.0016818       5.0016818       5.0016818       5.0016818       5.0016818       5.0016818       5.0016818       5.0016818	6.90 10.62 10.62 14.65 14.65 153.30 125.00 11.85
20.55.0 10.55.0 10.55.0 10.55.0 10.55.0 10.55.0 10.55.0 10.55.0 10.55.0 10.55.0 10.55.0 10.55.0 10.55.0 10.55.0 10.55.0 10.55.0 10.55.0 10.55.0 10.55.0 10.55.0 10.55.0 10.55.0 10.55.0 10.55.0 10.55.0 10.55.0 10.55.0 10.55.0 10.55.0 10.55.0 10.55.0 10.55.0 10.55.0 10.55.0 10.55.0 10.55.0 10.55.0 10.55.0 10.55.0 10.55.0 10.55.0 10.55.0 10.55.0 10.55.0 10.55.0 10.55.0 10.55.0 10.55.0 10.55.0 10.55.0 10.55.0 10.55.0 10.55.0 10.55.0 10.55.0 10.55.0 10.55.0 10.55.0 10.55.0 10.55.0 10.55.0 10.55.0 10.55.0 10.55.0 10.55.0 10.55.0 10.55.0 10.55.0 10.55.0 10.55.0 10.55.0 10.55.0 10.55.0 10.55.0 10.55.0 10.55.0 10.55.0 10.55.0 10.55.0 10.55.0 10.55.0 10.55.0 10.55.0 10.55.0 10.55.0 10.55.0 10.55.0 10.55.0 10.55.0 10.55.0 10.55.0 10.55.0 10.55.0 10.55.0 10.55.0 10.55.0 10.55.0 10.55.0 10.55.0 10.55.0 10.55.0 10.55.0 10.55.0 10.55.0 10.55.0 10.55.0 10.55.0 10.55.0 10.55.0 10.55.0 10.55.0 10.55.0 10.55.0 10.55.0 10.55.0 10.55.0 10.55.0 10.55.0 10.55.0 10.55.0 10.55.0 10.55.0 10.55.0 10.55.0 10.55.0 10.55.0 10.55.0 10.55.0 10.55.0 10.55.0 10.55.0 10.55.0 10.55.0 10.55.0 10.55.0 10.55.0 10.55.0 10.55.0 10.55.0 10.55.0 10.55.0 10.55.0 10.55.0 10.55.0 10.55.0 10.55.0 10.55.0 10.55.0 10.55.0 10.55.0 10.55.0 10.55.0 10.55.0 10.55.0 10.55.0 10.55.0 10.55.0 10.55.0 10.55.0 10.55.0 10.55.0 10.55.0 10.55.0 10.55.0 10.55.0 10.55.0 10.55.0 10.55.0 10.55.0 10.55.0 10.55.0 10.55.0 10.55.0 10.55.0 10.55.0 10.55.0 10.55.0 10.55.0 10.55.0 10.55.0 10.55.0 10.55.0 10.55.0 10.55.0 10.55.0 10.55.0 10.55.0 10.55.0 10.55.0 10.55.0 10.55.0 10.55.0 10.55.0 10.55.0 10.55.0 10.55.0 10.55.0 10.55.0 10.55.0 10.55.0 10.55.0 10.55.0 10.55.0 10.55.0 10.55.0 10.55.0 10.55.0 10.55.0 10.55.0 10.55.0 10.55.0 10.55.0 10.55.0 10.55.0 10.55.0 10.55.0 10.55.0 10.55.0 10.55.0 10.55.0 10.55.0 10.55.0 10.55.0 10.55.0 10.55.0 10.55.0 10.55.0 10.	<b>44448 88288</b>
	00 00 00 00
618888888 6888688688886698 8188888888 6888888669	3.82 1.26 1.76 1.76 1.76 1.76 1.76 1.76 1.76 1.7
39.91 12.11 12.11 12.11 13.12 13.12 14.05 16.08 16.08 16.08 16.08 16.08 17.13 17.13 17.13 17.13 17.13 17.13 17.13 17.13 17.13 17.13 17.13 17.13 17.13 17.13 17.13 17.13 17.13 17.13 17.13 17.13 17.13 17.13 17.13 17.13 17.13 17.13 17.13 17.13 17.13 17.13 17.13 17.13 17.13 17.13 17.13 17.13 17.13 17.13 17.13 17.13 17.13 17.13 17.13 17.13 17.13 17.13 17.13 17.13 17.13 17.13 17.13 17.13 17.13 17.13 17.13 17.13 17.13 17.13 17.13 17.13 17.13 17.13 17.13 17.13 17.13 17.13 17.13 17.13 17.13 17.13 17.13 17.13 17.13 17.13 17.13 17.13 17.13 17.13 17.13 17.13 17.13 17.13 17.13 17.13 17.13 17.13 17.13 17.13 17.13 17.13 17.13 17.13 17.13 17.13 17.13 17.13 17.13 17.13 17.13 17.13 17.13 17.13 17.13 17.13 17.13 17.13 17.13 17.13 17.13 17.13 17.13 17.13 17.13 17.13 17.13 17.13 17.13 17.13 17.13 17.13 17.13 17.13 17.13 17.13 17.13 17.13 17.13 17.13 17.13 17.13 17.13 17.13 17.13 17.13 17.13 17.13 17.13 17.13 17.13 17.13 17.13 17.13 17.13 17.13 17.13 17.13 17.13 17.13 17.13 17.13 17.13 17.13 17.13 17.13 17.13 17.13 17.13 17.13 17.13 17.13 17.13 17.13 17.13 17.13 17.13 17.13 17.13 17.13 17.13 17.13 17.13 17.13 17.13 17.13 17.13 17.13 17.13 17.13 17.13 17.13 17.13 17.13 17.13 17.13 17.13 17.13 17.13 17.13 17.13 17.13 17.13 17.13 17.13 17.13 17.13 17.13 17.13 17.13 17.13 17.13 17.13 17.13 17.13 17.13 17.13 17.13 17.13 17.13 17.13 17.13 17.13 17.13 17.13 17.13 17.13 17.13 17.13 17.13 17.13 17.13 17.13 17.13 17.13 17.13 17.13 17.13 17.13 17.13 17.13 17.13 17.13 17.13 17.13 17.13 17.13 17.13 17.13 17.13 17.13 17.13 17.13 17.13 17.13 17.13 17.13 17.13 17.13 17.13 17.13 17.13 17.13 17.13 17.13 17.13 17.13 17.13 17.13 17.13 17.13 17.13 17.13 17.13 17.13 17.13 17.13 17.13 17.13 17.13 17.13 17.13 17.13 17.13 17.13 17.13 17.13 17.13 17.13 17.13 17.13 17.13 17.13 17.13 17.13 17.13 17.13 17.13 17.13 17.13 17.13 17.13 17.13 17.13 17.13 17.13 17.13 17.13 17.13 17.13 17.13 17.13 17.13 17.13 17.13 17.13 17.13 17.13 17.13 17.13 17.13 17.13 17.13 17.13 17.13 17.13 17.13 17.13 17.13 17.13 17.13 17.13 17.13 17.13 17.13 17.13 17.13 17.13 17.13 17.13 17.13	207.50 26.02 26.02 207.50 129.06 139.81 62.30
· • · · · · · · · · ·	5 : 2 2 : 2 2 : 2 2 : 2 2 : 2 2 : 2 2 : 2 2 : 2 2 : 2 2 : 2 2 : 2 2 : 2 2 : 2 2 : 2 2 : 2 2 : 2 2 : 2 2 : 2 2 : 2 2 : 2 2 : 2 2 : 2 2 : 2 2 : 2 2 : 2 2 : 2 2 : 2 2 : 2 2 : 2 2 : 2 2 : 2 2 : 2 2 : 2 2 : 2 2 : 2 2 : 2 2 : 2 2 : 2 2 : 2 2 : 2 2 : 2 2 : 2 2 : 2 2 : 2 2 : 2 2 : 2 2 : 2 2 : 2 2 : 2 2 : 2 2 : 2 2 : 2 2 : 2 2 : 2 2 : 2 2 : 2 2 : 2 2 : 2 2 : 2 2 : 2 2 : 2 2 : 2 2 : 2 2 : 2 2 : 2 2 : 2 2 : 2 2 : 2 2 : 2 2 : 2 2 : 2 2 : 2 2 : 2 2 : 2 2 : 2 2 : 2 2 : 2 2 : 2 2 : 2 2 : 2 2 : 2 2 : 2 2 : 2 2 : 2 2 : 2 2 : 2 2 : 2 2 : 2 2 : 2 2 : 2 2 : 2 2 : 2 2 : 2 2 : 2 2 : 2 2 : 2 2 : 2 2 : 2 2 : 2 2 : 2 2 : 2 2 : 2 2 : 2 2 : 2 2 : 2 2 : 2 2 : 2 2 : 2 2 : 2 2 : 2 2 : 2 2 : 2 2 : 2 2 : 2 2 : 2 2 : 2 2 : 2 2 : 2 2 : 2 2 : 2 2 : 2 2 : 2 2 : 2 2 : 2 2 : 2 2 : 2 2 : 2 2 : 2 2 : 2 2 : 2 2 : 2 2 : 2 2 : 2 2 : 2 2 : 2 2 : 2 2 : 2 2 : 2 2 : 2 2 : 2 2 : 2 2 : 2 2 : 2 2 : 2 2 : 2 2 : 2 2 : 2 2 : 2 2 : 2 2 : 2 2 : 2 2 : 2 2 : 2 2 : 2 2 : 2 2 : 2 2 : 2 2 : 2 2 : 2 2 : 2 2 : 2 2 : 2 2 : 2 2 : 2 2 : 2 2 : 2 2 : 2 2 : 2 2 : 2 2 : 2 2 : 2 2 : 2 2 : 2 2 : 2 2 : 2 2 : 2 2 : 2 2 : 2 2 : 2 2 : 2 2 : 2 2 : 2 2 : 2 2 : 2 2 : 2 2 : 2 2 : 2 2 : 2 2 : 2 2 : 2 2 : 2 2 : 2 2 : 2 2 : 2 2 : 2 2 : 2 2 : 2 2 : 2 2 : 2 2 : 2 2 : 2 2 : 2 2 : 2 2 : 2 2 : 2 2 : 2 2 : 2 2 : 2 2 : 2 2 : 2 2 : 2 2 : 2 2 : 2 2 : 2 2 : 2 2 : 2 2 : 2 2 : 2 2 : 2 2 : 2 2 : 2 2 : 2 2 : 2 2 : 2 2 : 2 2 : 2 2 : 2 2 : 2 2 : 2 2 : 2 2 : 2 2 : 2 2 : 2 2 : 2 2 : 2 2 : 2 2 : 2 2 : 2 2 : 2 : 2 : 2 : 2 : 2 : 2 : 2 : 2 : 2 : 2 : 2 : 2 : 2 : 2 : 2 : 2 : 2 : 2 : 2 : 2 : 2 : 2 : 2 : 2 : 2 : 2 : 2 : 2 : 2 : 2 : 2 : 2 : 2 : 2 : 2 : 2 : 2 : 2 : 2 : 2 : 2 : 2 : 2 : 2 : 2 : 2 : 2 : 2 : 2 : 2 : 2 : 2 : 2 : 2 : 2 : 2 : 2 : 2 : 2 : 2 : 2 : 2 : 2 : 2 : 2 : 2 : 2 : 2 : 2 : 2 : 2 : 2 : 2 : 2 : 2 : 2 : 2 : 2 : 2 : 2 : 2 : 2 : 2 : 2 : 2 : 2 : 2 : 2 : 2 : 2 : 2 : 2 : 2 : 2 : 2 : 2 : 2 : 2 : 2 : 2 : 2 : 2 : 2 : 2 : 2 : 2 : 2 : 2 : 2 : 2 : 2 : 2 : 2 : 2 : 2 : 2 : 2 : 2 : 2 : 2 : 2 : 2 : 2 : 2 : 2 : 2 : 2 : 2 : 2 : 2 : 2 : 2 : 2 : 2 : 2 : 2 : 2 : 2 : 2 : 2 : 2 : 2 : 2 : 2 : 2 : 2 : 2 : 2 : 2 : 2 : 2 : 2 : 2 : 2
	22 25 25 26 27 27 28 28 28 28 28 28 28 28 28 28 28 28 28
0004 000000000000000000000000000000000	5.0 4.21.5 5.7.11.9 5.6.7.41.9 5.6.11.7 5.0.11.0 5.0.0 5.0.0 5.0.0 5.0.0 5.0.0 5.0.0 5.0.0 5.0.0 5.0.0 5.0.0 5.0.0 5.0.0 5.0.0 5.0.0 5.0.0 5.0.0 5.0.0 5.0.0 5.0.0 5.0.0 5.0.0 5.0.0 5.0.0 5.0.0 5.0.0 5.0.0 5.0.0 5.0.0 5.0.0 5.0.0 5.0.0 5.0.0 5.0.0 5.0.0 5.0.0 5.0.0 5.0.0 5.0.0 5.0.0 5.0.0 5.0.0 5.0.0 5.0.0 5.0.0 5.0.0 5.0.0 5.0.0 5.0.0 5.0.0 5.0.0 5.0.0 5.0.0 5.0.0 5.0.0 5.0.0 5.0.0 5.0.0 5.0.0 5.0.0 5.0.0 5.0.0 5.0.0 5.0.0 5.0.0 5.0.0 5.0.0 5.0.0 5.0.0 5.0.0 5.0.0 5.0.0 5.0.0 5.0.0 5.0.0 5.0.0 5.0.0 5.0.0 5.0.0 5.0.0 5.0.0 5.0.0 5.0.0 5.0.0 5.0.0 5.0.0 5.0.0 5.0.0 5.0.0 5.0.0 5.0.0 5.0.0 5.0.0 5.0.0 5.0.0 5.0.0 5.0.0 5.0.0 5.0.0 5.0.0 5.0.0 5.0.0 5.0.0 5.0.0 5.0.0 5.0.0 5.0.0 5.0.0 5.0.0 5.0.0 5.0.0 5.0.0 5.0.0 5.0.0 5.0.0 5.0.0 5.0.0 5.0.0 5.0.0 5.0.0 5.0.0 5.0.0 5.0.0 5.0.0 5.0.0 5.0.0 5.0.0 5.0.0 5.0.0 5.0.0 5.0.0 5.0.0 5.0.0 5.0.0 5.0.0 5.0.0 5.0.0 5.0.0 5.0.0 5.0.0 5.0.0 5.0.0 5.0.0 5.0.0 5.0.0 5.0.0 5.0.0 5.0.0 5.0.0 5.0.0 5.0.0 5.0.0 5.0.0 5.0.0 5.0.0 5.0.0 5.0.0 5.0.0 5.0.0 5.0.0 5.0.0 5.0.0 5.0.0 5.0.0 5.0.0 5.0.0 5.0.0 5.0.0 5.0.0 5.0.0 5.0.0 5.0.0 5.0.0 5.0.0 5.0.0 5.0.0 5.0.0 5.0.0 5.0.0 5.0.0 5.0.0 5.0.0 5.0.0 5.0.0 5.0.0 5.0.0 5.0.0 5.0.0 5.0.0 5.0.0 5.0.0 5.0.0 5.0.0 5.0.0 5.0.0 5.0.0 5.0.0 5.0.0 5.0.0 5.0.0 5.0.0 5.0.0 5.0.0 5.0.0 5.0.0 5.0.0 5.0.0 5.0.0 5.0.0 5.0.0 5.0.0 5.0.0 5.0.0 5.0.0 5.0.0 5.0.0 5.0.0 5.0.0 5.0.0 5.0.0 5.0.0 5.0.0 5.0.0 5.0.0 5.0.0 5.0.0 5.0.0 5.0.0 5.0.0 5.0.0 5.0.0 5.0.0 5.0.0 5.0.0 5.0.0 5.0.0 5.0.0 5.0.0 5.0.0 5.0.0 5.0.0 5.0.0 5.0.0 5.0.0 5.0.0 5.0.0 5.0.0 5.0.0 5.0.0 5.0.0 5.0.0 5.0.0 5.0.0 5.0.0 5.0.0 5.0.0 5.0.0 5.0.0 5.0.0 5.0.0 5.0.0 5.0.0 5.0.0 5.0.0 5.0.0 5.0.0 5.0.0 5.0.0 5.0.0 5.0.0 5.0.0 5.0.0 5.0.0 5.0.0 5.0.0 5.0.0 5.0.0 5.0.0 5.0.0 5.0.0 5.0.0 5.0.0 5.0.0 5.0.0 5.0.0 5.0.0 5.0.0 5.0.0 5.0.0 5.0.0 5.0.0 5.0.0 5.0.0 5.0.0 5.0.0 5.0.0 5.0.0 5.0.0 5.0.0 5.0.0 5.0.0 5.0.0 5.0.0 5.0.0 5.0.0 5.0.0 5.0.0 5.0.0 5.0.0 5.0.0 5.0.0 5.0.0 5.0.0 5.0.0 5.0.0 5.0.0 5.0.0 5.0.0 5.0.0 5.0.0 5.0.0 5.0.0 5.0.0 5.0.0 5.0.0 5.0.0 5.0.0 5.0.0 5.0.0 5.0.0 5.0.0 5.0.0 5.0.0 5.0.0
	2255.0 2280.0 2280.5 213.6 200.0 200.0 200.0 1222
H: :::: H	228 280 280 280 213 213 213 213
n n n n n n n n n n n n n n n n n n n	
d d lking lked. 100 to to to to to to to to to to to to to	y.
in, asphalted Lake City an Lake City an Jake City an Jalimed Rocks on bot mid and moss gravel gravel gravel gravel gravel gravel gravel gravel gravel gravel gravel gravel gravel gravel gravel gravel gravel gravel gravel gravel gravel gravel gravel gravel gravel gravel gravel gravel gravel gravel gravel gravel gravel gravel gravel gravel gravel gravel gravel gravel gravel gravel gravel gravel gravel gravel gravel gravel gravel gravel gravel gravel gravel gravel gravel gravel gravel gravel gravel gravel gravel gravel gravel gravel gravel gravel gravel gravel gravel gravel gravel gravel gravel gravel gravel gravel gravel gravel gravel gravel gravel gravel gravel gravel gravel gravel gravel gravel gravel gravel gravel gravel gravel gravel gravel gravel gravel gravel gravel gravel gravel gravel gravel gravel gravel gravel gravel gravel gravel gravel gravel gravel gravel gravel gravel gravel gravel gravel gravel gravel gravel gravel gravel gravel gravel gravel gravel gravel gravel gravel gravel gravel gravel gravel gravel gravel gravel gravel gravel gravel gravel gravel gravel gravel gravel gravel gravel gravel gravel gravel gravel gravel gravel gravel gravel gravel gravel gravel gravel gravel gravel gravel gravel gravel gravel gravel gravel gravel gravel gravel gravel gravel gravel gravel gravel gravel gravel gravel gravel gravel gravel gravel gravel gravel gravel gravel gravel gravel gravel gravel gravel gravel gravel gravel gravel gravel gravel gravel gravel gravel gravel gravel gravel gravel gravel gravel gravel gravel gravel gravel gravel gravel gravel gravel gravel gravel gravel gravel gravel gravel gravel gravel gravel gravel gravel gravel gravel gravel gravel gravel gravel gravel gravel gravel gravel gravel gravel gravel gravel gravel gravel gravel gravel gravel gravel gravel gravel gravel gravel gravel gravel gravel gravel gravel gravel gravel gravel gravel gravel gravel gravel gravel gravel gravel gravel gravel gravel gravel gravel gravel gravel gravel gravel gravel gravel gravel gravel gravel gravel gravel	fume, rubble, inches rubble, inches rubble, inches rubble.  Inches rubble rubble, inches rubble, inches rubble, inches rubble, inches rubble, inches rubble, inches rubble, inches rubble, inches rubble, inches rubble, rubble, rubble, rubble, rubble, rubble, rubble, rubble, rubble, rubble, rubble, rubble, rubble, rubble, rubble, rubble, rubble, rubble, rubble, rubble, rubble, rubble, rubble, rubble, rubble, rubble, rubble, rubble, rubble, rubble, rubble, rubble, rubble, rubble, rubble, rubble, rubble, rubble, rubble, rubble, rubble, rubble, rubble, rubble, rubble, rubble, rubble, rubble, rubble, rubble, rubble, rubble, rubble, rubble, rubble, rubble, rubble, rubble, rubble, rubble, rubble, rubble, rubble, rubble, rubble, rubble, rubble, rubble, rubble, rubble, rubble, rubble, rubble, rubble, rubble, rubble, rubble, rubble, rubble, rubble, rubble, rubble, rubble, rubble, rubble, rubble, rubble, rubble, rubble, rubble, rubble, rubble, rubble, rubble, rubble, rubble, rubble, rubble, rubble, rubble, rubble, rubble, rubble, rubble, rubble, rubble, rubble, rubble, rubble, rubble, rubble, rubble, rubble, rubble, rubble, rubble, rubble, rubble, rubble, rubble, rubble, rubble, rubble, rubble, rubble, rubble, rubble, rubble, rubble, rubble, rubble, rubble, rubble, rubble, rubble, rubble, rubble, rubble, rubble, rubble, rubble, rubble, rubble, rubble, rubble, rubble, rubble, rubble, rubble, rubble, rubble, rubble, rubble, rubble, rubble, rubble, rubble, rubble, rubble, rubble, rubble, rubble, rubble, rubble, rubble, rubble, rubble, rubble, rubble, rubble, rubble, rubble, rubble, rubble, rubble, rubble, rubble, rubble, rubble, rubble, rubble, rubble, rubble, rubble, rubble, rubble, rubble, rubble, rubble, rubble, rubble, rubble, rubble, rubble, rubble, rubble, rubble, rubble, rubble, rubble, rubble, rubble, rubble, rubble, rubble, rubble, rubble, rubble, rubble, rubble, rubble, rubble, rubble, rubble, rubble, rubble, rubble, rubble, rubble, rubble, rubble, rubble, rubble, rubble, rubble, rubble, rubble, rubble, rubble, rubbl
See See See See See See See See See See	on de side
20 H H H H H H H H H H H H H H H H H H H	2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2
main, asphalte alt Lake City a shatlake City a battens, worn, projecting ce me, slimed shad and mo ar Rocks on b ar Rocks on b ar Rocks on b ar Rocks on b ar Rocks on b ar Rocks on b ar Rocks on b ar Rocks on b ar Rocks on b ar Rocks on b ar Rocks on b ar Rocks on b ar Rock and mooth, tange is a smooth, tange is a smooth, tange amooth, tange interal, smooth, tange interal, smooth, tange interal, projecting arm, projecting ral, projecting ral, projecting ral, projecting ral, projecting ral, projecting ral, projecting ral, projecting ral, projecting ral, projecting ral, projecting ral, projecting ral, projecting ral, projecting ral, projecting ral, projecting ral, projecting ral, projecting ral, projecting ral, projecting ral, projecting ral, projecting ral, projecting ral, projecting ral, projecting ral, projecting ral, projecting ral, projecting ral, projecting ral, projecting ral, projecting ral, projecting ral, projecting ral, projecting ral, projecting ral, projecting ral, projecting ral, projecting ral, projecting ral, projecting ral, projecting ral, projecting ral, projecting ral, projecting ral, projecting ral, projecting ral, projecting ral, projecting ral, projecting ral, projecting ral, projecting ral, projecting ral, projecting ral, projecting ral, projecting ral, projecting ral, projecting ral, projecting ral, projecting ral, projecting ral, projecting ral, projecting ral, projecting ral, projecting ral, projecting ral, projecting ral, projecting ral, projecting ral, projecting ral, projecting ral, projecting ral, projecting ral, projecting ral, projecting ral, projecting ral, projecting ral, projecting ral, projecting ral, projecting ral, projecting ral, projecting ral, projecting ral, projecting ral, projecting ral, projecting ral, projecting ral, projecting ral, projecting ral, projecting ral, projecting ral, projecting ral, projecting ral, projecting ral, projecting ral, projecting ral, projecting ral, projecting ral, projecting ral, projecting ral, projecting ral, projecting ral, projecti	od flume, rubh nothinked sides. Instructed sides. Isr laid. Earth Channeil Somented classemented classemented classemented classemented classemented classes.
esto main, is said Lake lest, battone, shi tr fune, shi tra fune, shi tra fune, shi tra fune, sand River, gran Metal Metal Metal Metal Metal Metal Metal Metal Metal Metal Sproject, sa project, sa mail fecal, is mail fecal, shi mile fecal, pri lateral, pri lateral, pri lateral, pri lateral, pri lateral, pri lateral, pri lateral, pri lateral, pri lateral, pri lateral, pri lateral, pri lateral, pri lateral, pri lateral, pri lateral, pri lateral, pri lateral, pri lateral, pri lateral, pri lateral, pri lateral, pri lateral, pri lateral, pri lateral, pri lateral, pri lateral, pri lateral, pri lateral, pri lateral, pri lateral, pri lateral, pri lateral, pri lateral, pri lateral, pri lateral, pri lateral, pri lateral, pri lateral, pri lateral, pri lateral, pri lateral, pri lateral, pri lateral, pri lateral, pri lateral, pri lateral, pri lateral, pri lateral, pri lateral, pri lateral, pri lateral, pri lateral, pri lateral, pri lateral, pri lateral, pri lateral, pri lateral, pri lateral, pri lateral, pri lateral, pri lateral, pri lateral, pri lateral, pri lateral, pri lateral, pri lateral, pri lateral, pri lateral, pri lateral, pri lateral, pri lateral, pri lateral, pri lateral, pri lateral, pri lateral, pri lateral, pri lateral, pri lateral, pri lateral, pri lateral, pri lateral, pri lateral, pri lateral, pri lateral, pri lateral, pri lateral, pri lateral, pri lateral, pri lateral, pri lateral, pri lateral, pri lateral, pri lateral, pri lateral, pri lateral, pri lateral, pri lateral, pri lateral, pri lateral, pri lateral, pri lateral, pri lateral, pri lateral, pri lateral, pri lateral, pri lateral, pri lateral, pri lateral, pri lateral, pri lateral, pri lateral, pri lateral, pri lateral, pri lateral, pri lateral, pri lateral, pri lateral, pri lateral, pri lateral, pri lateral, pri lateral, pri lateral, pri lateral, pri lateral, pri lateral, pri lateral, pri lateral, pri lateral, pri lateral, pri lateral, pri lateral, pri late	bs, rubble is onwood flubs, unchink bs, plustere mortar laid.  Earth State, ceme ser's, cemei ser's, cemei ser's, cemei ser's, cemei ser's, cemei ser's, cemei ser's, cemei ser's, cemei ser's, cemei ser's, cemei ser's, cemei ser's, cemei ser's, cemei ser's, cemei ser's, cemei ser's, cemei ser's, cemei ser's, cemei ser's, cemei ser's, cemei ser's, cemei ser's, cemei ser's, cemei ser's, cemei ser's, cemei ser's, cemei ser's, cemei ser's, cemei ser's, cemei ser's, cemei ser's, cemei ser's, cemei ser's, cemei ser's, cemei ser's, cemei ser's, cemei ser's, cemei ser's, cemei ser's, cemei ser's, cemei ser's, cemei ser's, cemei ser's, cemei ser's, cemei ser's, cemei ser's, cemei ser's, cemei ser's, cemei ser's, cemei ser's, cemei ser's, cemei ser's, cemei ser's, cemei ser's, cemei ser's, cemei ser's, cemei ser's, cemei ser's, cemei ser's, cemei ser's, cemei ser's, cemei ser's, cemei ser's, cemei ser's, cemei ser's, cemei ser's, cemei ser's, cemei ser's, cemei ser's, cemei ser's, cemei ser's, cemei ser's, cemei ser's, cemei ser's, cemei ser's, cemei ser's, cemei ser's, cemei ser's, cemei ser's, cemei ser's, cemei ser's, cemei ser's, cemei ser's, cemei ser's, cemei ser's, cemei ser's, cemei ser's, cemei ser's, cemei ser's, cemei ser's, cemei ser's, cemei ser's, cemei ser's, cemei ser's, cemei ser's, cemei ser's, cemei ser's, cemei ser's, cemei ser's, cemei ser's, cemei ser's, cemei ser's, cemei ser's, cemei ser's, cemei ser's, cemei ser's, cemei ser's, cemei ser's, cemei ser's, cemei ser's, cemei ser's, cemei ser's, cemei ser's, cemei ser's, cemei ser's, cemei ser's, cemei ser's, cemei ser's, cemei ser's, cemei ser's, cemei ser's, cemei ser's, cemei ser's, cemei ser's, cemei ser's, cemei ser's, cemei ser's, cemei ser's, cemei ser's, cemei ser's, cemei ser's, cemei ser's, cemei ser's, cemei ser's, cemei ser's, cemei ser's, cemei ser's, cemei ser's, cemei ser's, cemei ser's, cemei ser's, cemei ser's, cemei ser's, cemei ser's, cemei ser's, cemei ser's, cemei ser's, cemei ser's, cemei ser's, cemei ser's, cemei ser's, cemei se
Modesto main, asphalted Lateral, Salt lake City and Jordan Wheeler, battens, worn, sand Elm farm, projecting calking. Lower, Riverside, asphalted Lower, Riverside, asphalted Lower, Riverside, asphalted Lower, River, Rocks on bottom. Fullerton, sand and moss. Bear River, Ravel. Minneed and moss. Minneed and moss. Minneed and most, targent Garland, smooth, tangent Boise project, smooth, No. 80 Moro Canal, smooth, No. 102 Garland, smooth, No. 102 Garland, smooth, Rangent Partridge lateral, smooth, No. 172 Garland, smooth, Projecting bands. Charmile feeder, projecting bands. King lateral, projecting bands. King lateral, projecting bands. King lateral, projecting bands. King lateral, projecting bands. King lateral, projecting bands. King lateral, projecting bands.	Jacobs, rubble sides.  Jacobs, pushtred sides.  Jacobs, plustered sides.  Jucobs, plustered sides.  Orr, mortar laid.  Barth Chamdel  Interstate, cemented clay  Farmer's, cemented clay  Farmer's, cemented clay  Farmer's, cemented clay  Farmer's, esemented clay  Bar River, Sidiment.  Bear River, City, sediment.
89 B Modesto main, asphalted. 90 B Lateral, Salt Lake City and Jord 91 A Wheeler, battens, worn, sand. 92 B Lateral, Salt Lake City and Jord 92 A Wheeler, battens, worn, sand. 93 A Roller flume, slimed early 95 B Bear River, Rocks on bottom. 97 B Bear River, Ravel. 97 B Bear River, gravel. 97 B Bear River, gravel. 98 B Minneson, smooth, tangent. 98 B Minneson, smooth, tangent. 99 B Moro Canal, smooth, No. 108 90 Boise project, smooth, No. 108 90 Boise project, smooth, No. 108 91 A Parall lateral, smooth, No. 108 92 B Arridge lateral, projecting band. 93 Parridge lateral, projecting bands. 94 Collen Gulch, projecting bands. 95 B A Projecting bands. 96 B A B A B B B B B B B B B B B B B B B	113 A Jacobs, rubble sides.  114 a Jacobs, unchinical sides.  115 A Jacobs, pustered sides.  116 A Jacobs, pustered sides.  117 B Orr, mortar laid

Table 112 (Continued)

_			
	82	E	. 796 . 796 . 810 . 810 . 896 . 896 . 896 . 928 . 928 . 928 . 928 . 1. 10 . 1. 12 . 1. 22 . 23 . 24 . 24 . 25 . 25 . 25 . 25 . 25 . 25 . 25 . 25
	17	W.s	6888.85 66.00 66.00 66.00 66.00 66.00 66.00 66.00 66.00 66.00 66.00 66.00 66.00 66.00 66.00 66.00 66.00 66.00 66.00 66.00 66.00 66.00 66.00 66.00 66.00 66.00 66.00 66.00 66.00 66.00 66.00 66.00 66.00 66.00 66.00 66.00 66.00 66.00 66.00 66.00 66.00 66.00 66.00 66.00 66.00 66.00 66.00 66.00 66.00 66.00 66.00 66.00 66.00 66.00 66.00 66.00 66.00 66.00 66.00 66.00 66.00 66.00 66.00 66.00 66.00 66.00 66.00 66.00 66.00 66.00 66.00 66.00 66.00 66.00 66.00 66.00 66.00 66.00 66.00 66.00 66.00 66.00 66.00 66.00 66.00 66.00 66.00 66.00 66.00 66.00 66.00 66.00 66.00 66.00 66.00 66.00 66.00 66.00 66.00 66.00 66.00 66.00 66.00 66.00 66.00 66.00 66.00 66.00 66.00 66.00 66.00 66.00 66.00 66.00 66.00 66.00 66.00 66.00 66.00 66.00 66.00 66.00 66.00 66.00 66.00 66.00 66.00 66.00 66.00 66.00 66.00 66.00 66.00 66.00 66.00 66.00 66.00 66.00 66.00 66.00 66.00 66.00 66.00 66.00 66.00 66.00 66.00 66.00 66.00 66.00 66.00 66.00 66.00 66.00 66.00 66.00 66.00 66.00 66.00 66.00 66.00 66.00 66.00 66.00 66.00 66.00 66.00 66.00 66.00 66.00 66.00 66.00 66.00 66.00 66.00 66.00 66.00 66.00 66.00 66.00 66.00 66.00 66.00 66.00 66.00 66.00 66.00 66.00 66.00 66.00 66.00 66.00 66.00 66.00 66.00 66.00 66.00 66.00 66.00 66.00 66.00 66.00 66.00 66.00 66.00 66.00 66.00 66.00 66.00 66.00 66.00 66.00 66.00 66.00 66.00 66.00 66.00 66.00 66.00 66.00 66.00 66.00 66.00 66.00 66.00 66.00 66.00 66.00 66.00 66.00 66.00 66.00 66.00 66.00 66.00 66.00 66.00 66.00 66.00 66.00 66.00 66.00 66.00 66.00 66.00 66.00 66.00 66.00 66.00 66.00 66.00 66.00 66.00 66.00 66.00 66.00 66.00 66.00 66.00 66.00 66.00 66.00 66.00 66.00 66.00 66.00 66.00 66.00 66.00 66.00 66.00 66.00 66.00 66.00 66.00 66.00 66.00 66.00 66.00 66.00 66.00 66.00 66.00 66.00 66.00 66.00 66.00 66.00 66.00 66.00 66.00 66.00 66.00 66.00 66.00 66.00 66.00 66.00 66.00 66.00 66.00 66.00 66.00 66.00 66.00 66.00 66.00 66.00 66.00 66.00 66.00 66.00 66.00 66.00 66.00 66.00 66.00 66.00 66.00 66.00 66.00 66.00 66.00 66.00 66.00 66.00 66.00 66.00 66.00 66.00 66.00 66.00 66.00 66.00 66.00 66.00 66.00 66.00 66.00 66.00 66.0
1	91	u *.N	50000000000000000000000000000000000000
-	15	u F,Y	01055 01056 01056 01056 01056 01056 01056 01056 01056 01056 01056
	*	·	5689898888 568884 5989 6 11 1 1 8 8 8 8 8 11 12 12 13 13 13 13 13 13 13 13 13 13 13 13 13
	5	•0	.000273 .000284 .000284 .000286 .00048 .00048 .00048 .00048 .00048 .000182 .000183 .00003 .00063 .00063 .00063 .00063 .00063 .00063 .00063
Γ	12	٠.	86 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2
	=	a	868888664 8688 888 8 4 6 8 48488
	2	o	100.56 24. 140.02 19. 140.02 19. 185.51 31. 175.50 41. 175.50 41. 175.50 41. 175.50 41. 175.50 14. 175.50 14. 175.50 14. 175.50 14. 175.50 14. 175.50 14. 175.50 14. 175.50 14. 175.50 14. 175.50 14. 175.50 14. 175.50 14. 175.50 14. 175.50 14. 175.50 14. 175.50 14. 175.50 175. 175.50 175. 175.50 175. 175.50 175. 175.50 175. 175.50 175. 175.50 175. 175.50 175. 175.50 175. 175.50 175. 175.50 175. 175.50 175. 175.50 175. 175.50 175. 175.50 175. 175.50 175. 175.50 175. 175.50 175. 175.50 175. 175.50 175. 175.50 175. 175.50 175. 175.50 175. 175.50 175. 175.50 175. 175.50 175. 175.50 175. 175.50 175. 175.50 175. 175.50 175. 175.50 175. 175.50 175. 175.50 175. 175.50 175. 175.50 175. 175.50 175. 175.50 175. 175.50 175. 175.50 175. 175.50 175. 175.50 175. 175.50 175. 175.50 175. 175.50 175. 175.50 175. 175.50 175. 175.50 175. 175.50 175. 175.50 175. 175.50 175. 175.50 175. 175.50 175. 175.50 175. 175.50 175. 175.50 175. 175.50 175. 175.50 175. 175.50 175. 175.50 175. 175.50 175. 175.50 175. 175.50 175. 175.50 175. 175.50 175. 175.50 175. 175.50 175. 175.50 175. 175.50 175. 175.50 175. 175.50 175. 175.50 175. 175.50 175. 175.50 175. 175.50 175. 175.50 175. 175.50 175. 175.50 175. 175.50 175. 175.50 175. 175.50 175. 175.50 175. 175.50 175. 175.50 175. 175.50 175. 175.50 175. 175.50 175. 175.50 175. 175.50 175. 175.50 175. 175.50 175. 175.50 175. 175.50 175. 175.50 175. 175.50 175. 175.50 175. 175.50 175. 175.50 175. 175.50 175. 175.50 175. 175.50 175. 175.50 175. 175.50 175. 175.50 175. 175.50 175. 175.50 175. 175.50 175. 175.50 175. 175.50 175. 175.50 175. 175.50 175. 175.50 175. 175.50 175. 175.50 175. 175.50 175. 175.50 175. 175.50 175. 175.50 175. 175.50 175. 175.50 175. 175.50 175. 175.50 175. 175.50 175. 175.50 175. 175.50 175. 175.50 175. 175.50 175. 175.50 175. 175.50 175. 175.50 175. 175.50 175. 175.50 175. 175.50 175. 175.50 175. 175.50 175. 175.50 175. 175.50 175. 175.50 175. 175.50 175. 175.50 175. 175.50 175. 175.50 175. 175.50 175. 175.50 175. 175.50 175. 175.50 175. 175.50 175. 175.50 175. 175.50 175. 175.50
(communa)	<b></b>	4	25. 1 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2
2	90	в	74. 24. 44. 44. 44. 44. 44. 44. 44. 44. 4
	~	Av.	11.12.2.2.2.2.2.2.2.2.2.2.2.2.2.2.2.2.2
. r	ø	Max. depth	23.92.286 23.02.286 23.02.286 23.02.286 23.02.286 23.02.286 23.02.286 24.02.286 25.02.286 26.02.286 27.03.286 27.03.286 27.03.286 27.03.286 27.03.286 27.03.286 27.03.286 27.03.286 27.03.286 27.03.286 27.03.286
3	10	App.	25.55 27.0 27.0 27.0 27.0 27.0 27.0 27.0 27.0
	4	L	100 0 23 9 2 80 1 94 2,600 0 68.0 11 94 800 0 129 1 107 113 800 0 129 1 107 113 800 0 129 1 107 113 800 0 128 6 1 107 1 12 800 0 128 6 1 107 1 12 800 0 128 6 1 107 1000 0 128 6 1 107 1000 0 29 0 12 80 12 1000 0 25 0 12 80 12 1000 0 25 0 12 80 12 1000 0 25 0 12 80 12 1000 0 25 0 12 80 12 1000 0 25 0 12 80 12 1000 0 25 0 12 80 12 1000 0 25 0 12 80 12 1000 0 27 0 3 80 3 03 1000 0 27 0 3 80 12 1000 0 27 0 3 80 12 1000 0 27 0 3 80 12 1000 0 27 0 3 80 12 1000 0 27 0 3 80 12 1000 0 27 0 3 80 12 1000 0 27 0 3 80 12 1000 0 27 0 3 80 12 1000 0 27 0 3 80 12 1000 0 27 0 3 80 12 1000 0 27 0 3 80 12 1000 0 27 0 3 80 12 1000 0 27 0 3 80 12 1000 0 27 0 3 80 12 1000 0 27 0 3 80 12 1000 0 27 0 3 80 12 1000 0 27 0 3 80 12 1000 0 27 0 3 80 12 1000 0 27 0 3 80 12 1000 0 27 0 3 80 12 1000 0 27 0 3 80 12 1000 0 27 0 3 80 12 1000 0 27 0 3 80 12 1000 0 27 0 3 80 12 1000 0 27 0 3 80 12 1000 0 27 0 3 80 12 1000 0 27 0 3 80 12 1000 0 27 0 3 80 12 1000 0 27 0 3 80 12 1000 0 27 0 3 80 12 1000 0 27 0 3 80 12 1000 0 27 0 3 80 12 1000 0 27 0 3 80 12 1000 0 27 0 3 80 12 1000 0 27 0 3 80 12 1000 0 27 0 3 80 12 1000 0 27 0 3 80 12 1000 0 27 0 3 80 12 1000 0 27 0 3 80 12 1000 0 27 0 3 80 12 1000 0 27 0 3 80 12 1000 0 27 0 3 80 12 1000 0 27 0 3 80 12 1000 0 27 0 3 80 12 1000 0 27 0 3 80 12 1000 0 27 0 3 80 12 1000 0 27 0 3 80 12 1000 0 27 0 3 80 12 1000 0 27 0 3 80 12 1000 0 27 0 3 80 12 1000 0 27 0 3 80 12 1000 0 27 0 3 80 12 1000 0 27 0 3 80 12 1000 0 27 0 3 80 12 1000 0 27 0 3 80 12 1000 0 27 0 3 80 12 1000 0 27 0 3 80 12 1000 0 27 0 3 80 12 1000 0 27 0 3 80 12 1000 0 27 0 3 80 12 1000 0 27 0 3 80 12 1000 0 27 0 3 80 12 1000 0 27 0 3 80 12 1000 0 27 0 3 80 12 1000 0 27 0 3 80 12 1000 0 27 0 3 80 12 1000 0 27 0 3 80 12 1000 0 27 0 20 100 110 1000 0 27 0 3 80 12 1000 0 27 0 3 80 12 1000 0 27 0 3 80 12 1000 0 27 0 3 80 12 1000 0 27 0 3 80 12 1000 0 27 0 3 80 12 1000 0 27 0 3 80 12 1000 0 27 0 3 80 12 1000 0 27 0 3 80 12 1000 0 27 0 3 80 12 1000 0 27 0 3 80 12 1000 0 27 0 3 80 12 1000 0 27 0 3 80 12 1000 0 27 0 3 80 12 1000 0 27 0 3 80 12 1000 0 27
	3	Name and description	Bear River, Corinne Branch, silt. Fort Lyons, silt, very smooth. Martotopa, hard bed. Martotopa, hard bed. Martotopa, hard bed. Martotopa, hard bed. Empire intake, smnd, gravel. Empire intake, smnd, gravel. Billings Land and Irrigation Co., silck loam. Cove, sandy loam, grass. Cove, sandy loam, grass. Billings Land and Irrigation Co., silted. Logan, Hyde Park and Smithfield Logan, Hyde Park and Smithfield Logan, Hyde Park and Smithfield Logan, Hyde Park and Smithfield Logan, Hyde Park and Irrigation Co., class of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control
[.	87	Class	M M4 4 MM 4 M 4 4 4 MOO4
Į	-	Ref. no.	1223 1224 1225 1226 1226 1226 1330 1331 134 135 136 136 137 141 141 141 141 141 141 141 141

282.1.1.39 282.1.1.39 1.1.39 1.1.4.1.1.39 1.1.4.1.1.4.1.1.4.1.1.4.1.1.4.1.1.4.1.1.4.1.1.4.1.1.4.1.1.4.1.1.4.1.1.4.1.1.4.1.1.4.1.1.4.1.1.4.1.1.4.1.1.4.1.1.4.1.1.4.1.1.4.1.1.4.1.1.4.1.1.4.1.4.1.4.1.4.1.4.1.4.1.4.1.4.1.4.1.4.1.4.1.4.1.4.1.4.1.4.1.4.1.4.1.4.1.4.1.4.1.4.1.4.1.4.1.4.1.4.1.4.1.4.1.4.1.4.1.4.1.4.1.4.1.4.1.4.1.4.1.4.1.4.1.4.1.4.1.4.1.4.1.4.1.4.1.4.1.4.1.4.1.4.1.4.1.4.1.4.1.4.1.4.1.4.1.4.1.4.1.4.1.4.1.4.1.4.1.4.1.4.1.4.1.4.1.4.1.4.1.4.1.4.1.4.1.4.1.4.1.4.1.4.1.4.1.4.1.4.1.4.1.4.1.4.1.4.1.4.1.4.1.4.1.4.1.4.1.4.1.4.1.4.1.4.1.4.1.4.1.4.1.4.1.4.1.4.1.4.1.4.1.4.1.4.1.4.1.4.1.4.1.4.1.4.1.4.1.4.1.4.1.4.1.4.1.4.1.4.1.4.1.4.1.4.1.4.1.4.1.4.1.4.1.4.1.4.1.4.1.4.1.4.1.4.1.4.1.4.1.4.1.4.1.4.1.4.1.4.1.4.1.4.1.4.1.4.1.4.1.4.1.4.1.4.1.4.1.4.1.4.1.4.1.4.1.4.1.4.1.4.1.4.1.4.1.4.1.4.1.4.1.4.1.4.1.4.1.4.1.4.1.4.1.4.1.4.1.4.1.4.1.4.1.4.1.4.1.4.1.4.1.4.1.4.1.4.1.4.1.4.1.4.1.4.1.4.1.4.1.4.1.4.1.4.1.4.1.4.1.4.1.4.1.4.1.4.1.4.1.4.1.4.1.4.1.4.1.4.1.4.1.4.1.4.1.4.1.4.1.4.1.4.1.4.1.4.1.4.1.4.1.4.1.4.1.4.1.4.1.4.1.4.1.4.1.4.1.4.1.4.1.4.1.4.1.4.1.4.1.4.1.4.1.4.1.4.1.4.1.4.1.4.1.4.1.4.1.4.1.4.1.4.1.4.1.4.1.4.1.4.1.4.1.4.1.4.1.4.1.4.1.4.1.4.1.4.1.4.1.4.1.4.1.4.1.4.1.4.1.4.1.4.1.4.1.4.1.4.1.4.1.4.1.4.1.4.1.4.1.4.1.4.1.4.1.4.1.4.1.4.1.4.1.4.1.4.1.4.1.4.1.4.1.4.1.4.1.4.1.4.1.4.1.4.1.4.1.4.1.4.1.4.1.4.1.4.1.4.1.4.1.4.1.4.1.4.1.4.1.4.1.4.1.4.1.4.1.4.1.4.1.4.1.4.1.4.1.4.1.4.1.4.1.4.1.4.1.4.1.4.1.4.1.4.1.4.1.4.1.4.1.4.1.4.1.4.1.4.1.4.1.4.1.4.1.4.1.4.1.4.1.4.1.4.1.4.1.4.1.4.1.4.1.4.1.4.1.4.1.4.1.4.1.4.1.4.1.4.1.4.1.4.1.4.1.4.1.4.1.4.1.4.1.4.1.4.1.4.1.4.1.4.1.4.1.4.1.4.1.4.1.4.1.4.1.4.1.4.1.4.1.4.1.4.1.4.1.4.1.4.1.4.1.4.1.4.1.4.1.4.1.4.1.4.1.4.1.4.1.4.1.4.1.4.1.4.1.4.1.4.1.4.1.4.1.4.1.4.1.4.1.4.1.4.1.4.1.4.1.4.1.4.1.4.1.4.1.4.1.4.1.4.1.4.1.4.1.4.1.4.1.4.1.4.1.4.1.4.1.4.1.4.1.4.1.4.1.4.1.4.1.4.1.4.1.4.1.4.1.4.1.4.1.4.1.4.1.4.1.4.1.4.1.4.1.4.1.4.1.4.1.4.1.4.1.4.1.4.1.4.1.4.1.4.1.4.1.4.1.4.1.4.1.4.1.4.1.4.1.4.1.4.1.4.1.4.1.4.1.4.1.4.1.4.1.4.1.4.1.4.1.4.1.4.1.4.1.4.1.4.1.4.1.4.1.4.1.4.1.4.1.4.1.4.1.4.1.4.1.4.1.4.1.4.1.4.1.4.1.4.1.4.1.4.1.4.1.4.1.4.	
71.7 66.1 66.2 66.3 66.9 67.6 68.9 68.9 68.9 68.9	665.99 665.99 665.99 665.99 665.99 665.99 665.99 665.99 665.99 665.99 665.99
0208 0208 0225 0225 0227 0220 0220 0221 0221 0221 0229	.0223 .0224 .0224 .0227 .0223 .0233 .0230 .0230 .0230 .0230 .0226 .0226 .0226 .0236
0197 0200 0200 0201 0201 0204 0206 0206 0206 0208 0211 0211	0216 0219 0219 02219 0220 0220 0220 0220 022
775 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7	
201140 201140 201140 201140 201140 201140 201140 201140 201140 201140 201140 201140 201140 201140 201140 201140 201140 201140 201140 201140 201140 201140 201140 201140 201140 201140 201140 201140 201140 201140 201140 201140 201140 201140 201140 201140 201140 201140 201140 201140 201140 201140 201140 201140 201140 201140 201140 201140 201140 201140 201140 201140 201140 201140 201140 201140 201140 201140 201140 201140 201140 201140 201140 201140 201140 201140 201140 201140 201140 201140 201140 201140 201140 201140 201140 201140 201140 201140 201140 201140 201140 201140 201140 201140 201140 201140 201140 201140 201140 201140 201140 201140 201140 201140 201140 201140 201140 201140 201140 201140 201140 201140 201140 201140 201140 201140 201140 201140 201140 201140 201140 201140 201140 201140 201140 201140 201140 201140 201140 201140 201140 201140 201140 201140 201140 201140 201140 201140 201140 201140 201140 201140 201140 201140 201140 201140 201140 201140 201140 201140 201140 201140 201140 201140 201140 201140 201140 201140 201140 201140 201140 201140 201140 201140 201140 201140 201140 201140 201140 201140 201140 201140 201140 201140 201140 201140 201140 201140 201140 201140 201140 201140 201140 201140 201140 201140 201140 201140 201140 201140 201140 201140 201140 201140 201140 201140 201140 201140 201140 201140 201140 201140 201140 201140 201140 201140 201140 201140 201140 201140 201140 201140 201140 201140 201140 201140 201140 201140 201140 201140 201140 201140 201140 201140 201140 201140 201140 201140 201140 201140 201140 201140 201140 201140 201140 201140 201140 201140 201140 201140 201140 201140 201140 201140 201140 201140 201140 201140 201140 201140 201140 201140 201140 201140 201140 201140 201140 201140 201140 201140 201140 201140 201140 201140 201140 201140 201140 201140 201140 201140 201140 201140 201140 201140 201140 201140 201140 201140 201140 201140 201140 201140 201140 201140 201140 201140 201140 201140 201140 201140 201140 201140 201140 201140 201140 201140 201140 201140 201140 201140 201140 201140 20	80 1777 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
116.50 116.521 22.10 27.73 27.40 26.30 26.30 26.30 27.23 27.23 27.23 27.23 27.23 27.23 27.23 27.23 27.23 27.23 27.23 27.23 27.23 27.23 27.23 27.23 27.23 27.23 27.23 27.23 27.23 27.23 27.23 27.23 27.23 27.23 27.23 27.23 27.23 27.23 27.23 27.23 27.23 27.23 27.23 27.23 27.23 27.23 27.23 27.23 27.23 27.23 27.23 27.23 27.23 27.23 27.23 27.23 27.23 27.23 27.23 27.23 27.23 27.23 27.23 27.23 27.23 27.23 27.23 27.23 27.23 27.23 27.23 27.23 27.23 27.23 27.23 27.23 27.23 27.23 27.23 27.23 27.23 27.23 27.23 27.23 27.23 27.23 27.23 27.23 27.23 27.23 27.23 27.23 27.23 27.23 27.23 27.23 27.23 27.23 27.23 27.23 27.23 27.23 27.23 27.23 27.23 27.23 27.23 27.23 27.23 27.23 27.23 27.23 27.23 27.23 27.23 27.23 27.23 27.23 27.23 27.23 27.23 27.23 27.23 27.23 27.23 27.23 27.23 27.23 27.23 27.23 27.23 27.23 27.23 27.23 27.23 27.23 27.23 27.23 27.23 27.23 27.23 27.23 27.23 27.23 27.23 27.23 27.23 27.23 27.23 27.23 27.23 27.23 27.23 27.23 27.23 27.23 27.23 27.23 27.23 27.23 27.23 27.23 27.23 27.23 27.23 27.23 27.23 27.23 27.23 27.23 27.23 27.23 27.23 27.23 27.23 27.23 27.23 27.23 27.23 27.23 27.23 27.23 27.23 27.23 27.23 27.23 27.23 27.23 27.23 27.23 27.23 27.23 27.23 27.23 27.23 27.23 27.23 27.23 27.23 27.23 27.23 27.23 27.23 27.23 27.23 27.23 27.23 27.23 27.23 27.23 27.23 27.23 27.23 27.23 27.23 27.23 27.23 27.23 27.23 27.23 27.23 27.23 27.23 27.23 27.23 27.23 27.23 27.23 27.23 27.23 27.23 27.23 27.23 27.23 27.23 27.23 27.23 27.23 27.23 27.23 27.23 27.23 27.23 27.23 27.23 27.23 27.23 27.23 27.23 27.23 27.23 27.23 27.23 27.23 27.23 27.23 27.23 27.23 27.23 27.23 27.23 27.23 27.23 27.23 27.23 27.23 27.23 27.23 27.23 27.23 27.23 27.23 27.23 27.23 27.23 27.23 27.23 27.23 27.23 27.23 27.23 27.23 27.23 27.23 27.23 27.23 27.23 27.23 27.23 27.23 27.23 27.23 27.23 27.23 27.23 27.23 27.23 27.23 27.23 27.23 27.23 27.23 27.23 27.23 27.23 27.23 27.23 27.23 27.23 27.23 27.23 27.23 27.23 27.23 27.23 27.23 27.23 27.23 27.23 27.23 27.23 27.23 27.23 27.23 27.23 27.23 27.23 27.23 27.23 27.23 27.23 27.23 27.23 27.23 27.23 27.23 27.23 27.23 27.23 27.23 27.	71.128.23.144.74.74.14.18.83.14.14.18.18.19.19.19.19.19.19.19.19.19.19.19.19.19.
2-04-20 E 2 2 2 2 2 E 2 2 2 2 2 2 2 2 2 2 2 2	88877332 9 16639028884 9
23 442 115 117 66 68 95 95 95 89	67. 17. 17. 17. 18. 19. 19. 19. 19. 19. 19. 19. 19
11.08 1.091 1.091 1.091 1.091 1.092 1.092 1.093 1.093 1.093 1.093 1.093 1.093 1.093 1.093 1.093 1.093 1.093 1.093 1.093 1.093 1.093 1.093 1.093 1.093 1.093 1.093 1.093 1.093 1.093 1.093 1.093 1.093 1.093 1.093 1.093 1.093 1.093 1.093 1.093 1.093 1.093 1.093 1.093 1.093 1.093 1.093 1.093 1.093 1.093 1.093 1.093 1.093 1.093 1.093 1.093 1.093 1.093 1.093 1.093 1.093 1.093 1.093 1.093 1.093 1.093 1.093 1.093 1.093 1.093 1.093 1.093 1.093 1.093 1.093 1.093 1.093 1.093 1.093 1.093 1.093 1.093 1.093 1.093 1.093 1.093 1.093 1.093 1.093 1.093 1.093 1.093 1.093 1.093 1.093 1.093 1.093 1.093 1.093 1.093 1.093 1.093 1.093 1.093 1.093 1.093 1.093 1.093 1.093 1.093 1.093 1.093 1.093 1.093 1.093 1.093 1.093 1.093 1.093 1.093 1.093 1.093 1.093 1.093 1.093 1.093 1.093 1.093 1.093 1.093 1.093 1.093 1.093 1.093 1.093 1.093 1.093 1.093 1.093 1.093 1.093 1.093 1.093 1.093 1.093 1.093 1.093 1.093 1.093 1.093 1.093 1.093 1.093 1.093 1.093 1.093 1.093 1.093 1.093 1.093 1.093 1.093 1.093 1.093 1.093 1.093 1.093 1.093 1.093 1.093 1.093 1.093 1.093 1.093 1.093 1.093 1.093 1.093 1.093 1.093 1.093 1.093 1.093 1.093 1.093 1.093 1.093 1.093 1.093 1.093 1.093 1.093 1.093 1.093 1.093 1.093 1.093 1.093 1.093 1.093 1.093 1.093 1.093 1.093 1.093 1.093 1.093 1.093 1.093 1.093 1.093 1.093 1.093 1.093 1.093 1.093 1.093 1.093 1.093 1.093 1.093 1.093 1.093 1.093 1.093 1.093 1.093 1.093 1.093 1.093 1.093 1.093 1.093 1.093 1.093 1.093 1.093 1.093 1.093 1.093 1.093 1.093 1.093 1.093 1.093 1.093 1.093 1.093 1.093 1.093 1.093 1.093 1.093 1.093 1.093 1.093 1.093 1.093 1.093 1.093 1.093 1.093 1.093 1.093 1.093 1.093 1.093 1.093 1.093 1.093 1.093 1.093 1.093 1.093 1.093 1.093 1.093 1.093 1.093 1.093 1.093 1.093 1.093 1.093 1.093 1.093 1.093 1.093 1.093 1.093 1.093 1.093 1.093 1.093 1.093 1.093 1.093 1.093 1.093 1.093 1.093 1.093 1.093 1.093 1.093 1.093 1.093 1.093 1.093 1.093 1.093 1.093 1.093 1.093 1.093 1.093 1.093 1.093 1.093 1.093 1.093 1.093 1.093 1.093 1.093 1.093 1.093 1.093 1.093 1.093 1.093 1.093 1.093 1.093 1.093 1.093 1.093 1.093 1.093 1.093 1.093	
27.178 4.001 22.96 22.96 22.96 8.78 8.78 8.78 8.50 59.80 8.20 59.80 8.20 59.80 8.20 8.20 8.20 8.20 8.20 8.20 8.20 8	32.00 32.00 32.00 32.00 32.00 32.00 32.00 32.00 32.00 32.00 32.00 32.00 32.00 32.00 32.00 32.00 32.00 32.00 32.00 32.00 32.00 32.00 32.00 32.00 32.00 32.00 32.00 32.00 32.00 32.00 32.00 32.00 32.00 32.00 32.00 32.00 32.00 32.00 32.00 32.00 32.00 32.00 32.00 32.00 32.00 32.00 32.00 32.00 32.00 32.00 32.00 32.00 32.00 32.00 32.00 32.00 32.00 32.00 32.00 32.00 32.00 32.00 32.00 32.00 32.00 32.00 32.00 32.00 32.00 32.00 32.00 32.00 32.00 32.00 32.00 32.00 32.00 32.00 32.00 32.00 32.00 32.00 32.00 32.00 32.00 32.00 32.00 32.00 32.00 32.00 32.00 32.00 32.00 32.00 32.00 32.00 32.00 32.00 32.00 32.00 32.00 32.00 32.00 32.00 32.00 32.00 32.00 32.00 32.00 32.00 32.00 32.00 32.00 32.00 32.00 32.00 32.00 32.00 32.00 32.00 32.00 32.00 32.00 32.00 32.00 32.00 32.00 32.00 32.00 32.00 32.00 32.00 32.00 32.00 32.00 32.00 32.00 32.00 32.00 32.00 32.00 32.00 32.00 32.00 32.00 32.00 32.00 32.00 32.00 32.00 32.00 32.00 32.00 32.00 32.00 32.00 32.00 32.00 32.00 32.00 32.00 32.00 32.00 32.00 32.00 32.00 32.00 32.00 32.00 32.00 32.00 32.00 32.00 32.00 32.00 32.00 32.00 32.00 32.00 32.00 32.00 32.00 32.00 32.00 32.00 32.00 32.00 32.00 32.00 32.00 32.00 32.00 32.00 32.00 32.00 32.00 32.00 32.00 32.00 32.00 32.00 32.00 32.00 32.00 32.00 32.00 32.00 32.00 32.00 32.00 32.00 32.00 32.00 32.00 32.00 32.00 32.00 32.00 32.00 32.00 32.00 32.00 32.00 32.00 32.00 32.00 32.00 32.00 32.00 32.00 32.00 32.00 32.00 32.00 32.00 32.00 32.00 32.00 32.00 32.00 32.00 32.00 32.00 32.00 32.00 32.00 32.00 32.00 32.00 32.00 32.00 32.00 32.00 32.00 32.00 32.00 32.00 32.00 32.00 32.00 32.00 32.00 32.00 32.00 32.00 32.00 32.00 32.00 32.00 32.00 32.00 32.00 32.00 32.00 32.00 32.00 32.00 32.00 32.00 32.00 32.00 32.00 32.00 32.00 32.00 32.00 32.00 32.00 32.00 32.00 32.00 32.00 32.00 32.00 32.00 32.00 32.00 32.00 32.00 32.00 32.00 32.00 32.00 32.00 32.00 32.00 32.00 32.00 32.00 32.00 32.00 32.00 32.00 32.00 32.00 32.00 32.00 32.00 32.00 32.00 32.00 32.00 32.00 32.00 32.00 32.00 32.00 32.00 32.00 32.00 32.00 32.00 32.00 32.00 32.00 30 30 30 30 30 30 30 30 30 30 30 30
272 208 88 88 33 59 59 59 50 50 50 50 50 50 50 50 50 50 50 50 50	38.53.53.53.53.53.53.53.53.53.53.53.53.53.
1.09 1.09 1.09 1.09 1.09 1.09 1.09 1.09	22.22.22.23.65.9 2.22.22.23.05.9 2.22.23.05.9 2.22.23.05.9 3.22.23.05.9 3.22.23.05.9 3.22.23.05.9 3.22.23.05.9 3.22.23.05.9 3.22.23.05.9 3.22.23.05.9 3.22.23.05.9 3.22.23.05.9 3.22.23.05.9 3.22.23.05.9 3.22.23.05.9 3.22.23.05.9 3.22.23.05.9 3.22.23.05.9 3.22.23.05.9 3.22.23.05.9 3.22.23.05.9 3.22.23.05.9 3.22.23.05.9 3.22.23.05.9 3.22.23.05.9 3.22.23.05.9 3.22.23.05.9 3.22.23.05.9 3.22.23.05.9 3.22.23.05.9 3.22.23.05.9 3.22.23.05.9 3.22.23.05.9 3.22.23.05.9 3.22.23.05.9 3.22.23.05.9 3.22.23.05.9 3.22.23.05.9 3.22.23.05.9 3.22.23.05.9 3.22.23.05.9 3.22.23.05.9 3.22.23.05.9 3.22.23.05.9 3.22.23.05.9 3.22.23.05.9 3.22.23.05.9 3.22.23.05.9 3.22.23.05.9 3.22.23.05.9 3.22.23.05.9 3.22.23.05.9 3.22.23.05.9 3.22.23.05.9 3.22.23.05.9 3.22.23.05.9 3.22.23.05.9 3.22.23.05.9 3.22.23.05.9 3.22.23.05.9 3.22.23.05.9 3.22.23.05.9 3.22.23.05.9 3.22.23.05.9 3.22.23.05.9 3.22.23.05.9 3.22.23.05.9 3.22.23.05.9 3.22.23.05.9 3.22.23.05.9 3.22.23.05.9 3.22.23.05.9 3.22.23.05.9 3.22.23.05.9 3.22.23.05.9 3.22.23.05.9 3.22.23.05.9 3.22.23.05.9 3.22.23.05.9 3.22.23.05.9 3.22.23.05.9 3.22.23.05.9 3.22.23.05.9 3.22.23.05.9 3.22.23.05.9 3.22.23.05.9 3.22.23.05.9 3.22.23.05.9 3.22.23.05.9 3.22.23.05.9 3.22.23.05.9 3.22.23.05.9 3.22.23.05.9 3.22.23.05.9 3.22.23.05.9 3.22.23.05.9 3.22.23.05.9 3.22.23.05.9 3.22.23.05.9 3.22.23.05.9 3.22.23.05.9 3.22.23.05.9 3.22.23.05.9 3.22.23.05.9 3.22.23.05.9 3.22.23.05.9 3.22.23.05.9 3.22.23.05.9 3.22.23.05.9 3.22.23.05.9 3.22.23.05.9 3.22.23.05.9 3.22.23.05.9 3.22.23.05.9 3.22.23.05.9 3.22.23.05.9 3.22.23.05.9 3.22.23.05.9 3.22.23.05.9 3.22.23.05.9 3.22.23.05.9 3.22.23.05.9 3.22.23.05.9 3.22.23.05.9 3.22.23.05.9 3.22.23.05.9 3.22.23.05.9 3.22.23.05.9 3.22.23.05.9 3.22.23.05.9 3.22.23.05.9 3.22.23.05.9 3.22.23.05.9 3.22.23.05.9 3.22.23.05.9 3.22.23.05.9 3.22.23.05.9 3.22.23.05.9 3.22.23.05.9 3.22.23.05.9 3.22.23.05.9 3.22.23.05.9 3.22.23.05.9 3.22.23.05.9 3.22.23.05.9 3.22.23.05.9 3.22.23.05.9 3.22.23.05.9 3.22.23.05.9 3.22.23.05.9 3.22.23.05.9 3.22.23.05.9 3.22.23.05.9 3.22.23.05.9 3.22.23.05.9 3.22.23.05.
888481000848848 4801	333748 0 8 80000000000000000000000000000000
80000000000000000000000000000000000000	16.75 16.75 16.75 16.75 16.75 16.75 16.75 16.75 16.75 16.75 16.75 16.75 16.75 16.75 16.75 16.75 16.75 16.75 16.75 16.75 16.75 16.75 16.75 16.75 16.75 16.75 16.75 16.75 16.75 16.75 16.75 16.75 16.75 16.75 16.75 16.75 16.75 16.75 16.75 16.75 16.75 16.75 16.75 16.75 16.75 16.75 16.75 16.75 16.75 16.75 16.75 16.75 16.75 16.75 16.75 16.75 16.75 16.75 16.75 16.75 16.75 16.75 16.75 16.75 16.75 16.75 16.75 16.75 16.75 16.75 16.75 16.75 16.75 16.75 16.75 16.75 16.75 16.75 16.75 16.75 16.75 16.75 16.75 16.75 16.75 16.75 16.75 16.75 16.75 16.75 16.75 16.75 16.75 16.75 16.75 16.75 16.75 16.75 16.75 16.75 16.75 16.75 16.75 16.75 16.75 16.75 16.75 16.75 16.75 16.75 16.75 16.75 16.75 16.75 16.75 16.75 16.75 16.75 16.75 16.75 16.75 16.75 16.75 16.75 16.75 16.75 16.75 16.75 16.75 16.75 16.75 16.75 16.75 16.75 16.75 16.75 16.75 16.75 16.75 16.75 16.75 16.75 16.75 16.75 16.75 16.75 16.75 16.75 16.75 16.75 16.75 16.75 16.75 16.75 16.75 16.75 16.75 16.75 16.75 16.75 16.75 16.75 16.75 16.75 16.75 16.75 16.75 16.75 16.75 16.75 16.75 16.75 16.75 16.75 16.75 16.75 16.75 16.75 16.75 16.75 16.75 16.75 16.75 16.75 16.75 16.75 16.75 16.75 16.75 16.75 16.75 16.75 16.75 16.75 16.75 16.75 16.75 16.75 16.75 16.75 16.75 16.75 16.75 16.75 16.75 16.75 16.75 16.75 16.75 16.75 16.75 16.75 16.75 16.75 16.75 16.75 16.75 16.75 16.75 16.75 16.75 16.75 16.75 16.75 16.75 16.75 16.75 16.75 16.75 16.75 16.75 16.75 16.75 16.75 16.75 16.75 16.75 16.75 16.75 16.75 16.75 16.75 16.75 16.75 16.75 16.75 16.75 16.75 16.75 16.75 16.75 16.75 16.75 16.75 16.75 16.75 16.75 16.75 16.75 16.75 16.75 16.75 16.75 16.75 16.75 16.75 16.75 16.75 16.75 16.75 16.75 16.75 16.75 16.75 16.75 16.75 16.75 16.75 16.75 16.75 16.75 16.75 16.75 16.75 16.75 16.75 16.75 16.75 16.75 16.75 16.75 16.75 16
447-17-42-0-19-14-15-0-15-15-15-15-15-15-15-15-15-15-15-15-15-	16 12 24 25 16 17 25 17 25 17 25 17 25 17 25 17 25 17 25 17 25 17 25 17 25 17 25 17 25 17 25 17 25 17 25 17 25 17 25 17 25 17 25 17 25 17 25 17 25 17 25 17 25 17 25 17 25 17 25 17 25 17 25 17 25 17 25 17 25 17 25 17 25 17 25 17 25 17 25 17 25 17 25 17 25 17 25 17 25 17 25 17 25 17 25 17 25 17 25 17 25 17 25 17 25 17 25 17 25 17 25 17 25 17 25 17 25 17 25 17 25 17 25 17 25 17 25 17 25 17 25 17 25 17 25 17 25 17 25 17 25 17 25 17 25 17 25 17 25 17 25 17 25 17 25 17 25 17 25 17 25 17 25 17 25 17 25 17 25 17 25 17 25 17 25 17 25 17 25 17 25 17 25 17 25 17 25 17 25 17 25 17 25 17 25 17 25 17 25 17 25 17 25 17 25 17 25 17 25 17 25 17 25 17 25 17 25 17 25 17 25 17 25 17 25 17 25 17 25 17 25 17 25 17 25 17 25 17 25 17 25 17 25 17 25 17 25 17 25 17 25 17 25 17 25 17 25 17 25 17 25 17 25 17 25 17 25 17 25 17 25 17 25 17 25 17 25 17 25 17 25 17 25 17 25 17 25 17 25 17 25 17 25 17 25 17 25 17 25 17 25 17 25 17 25 17 25 17 25 17 25 17 25 17 25 17 25 17 25 17 25 17 25 17 25 17 25 17 25 17 25 17 25 17 25 17 25 17 25 17 25 17 25 17 25 17 25 17 25 17 25 17 25 17 25 17 25 17 25 17 25 17 25 17 25 17 25 17 25 17 25 17 25 17 25 17 25 17 25 17 25 17 25 17 25 17 25 17 25 17 25 17 25 17 25 17 25 17 25 17 25 17 25 17 25 17 25 17 25 17 25 17 25 17 25 17 25 17 25 17 25 17 25 17 25 17 25 17 25 17 25 17 25 17 25 17 25 17 25 17 25 17 25 17 25 17 25 17 25 17 25 17 25 17 25 17 25 17 25 17 25 17 25 17 25 17 25 17 25 17 25 17 25 17 25 17 25 17 25 17 25 17 25 17 25 17 25 17 25 17 25 17 25 17 25 17 25 17 25 17 25 17 25 17 25 17 25 17 25 17 25 17 25 17 25 17 25 17 25 17 25 17 25 17 25 17 25 17 25 17 25 17 25 17 25 17 25 17 25 17 25 17 25 17 25 17 25 17 25 17 25 17 25 17 25 17 25 17 25 17 25 17 25 17 25 17 25 17 25 17 25 17 25 17 25 17 25 17 25 17 25 17 25 17 25 17 25 17 25 17 25 17 25 17 25 17 25 17 25 17 25 17 25 17 25 17 25 17 25 17 25 17 25 17 25 17 25 17 25 17 25 17 25 17 25 17 25 17 25 17 25 17 25 17 25 17 25 17 25 17 25 17 25 17 25 17 25 17 25 17 25 17 25 17 25 17 25 17 25 17 25 17 25 17 25 17 25 17 25 17 25 17 25 17 25 17 25 17 25 17 25 17
75.0 14.2 2.05 1.65 550.0 14.8 2.30 2.20 21.0 1.4 1.0 1.0 21.0 1.0 1.0 1.0 400.0 24.0 4.0 3.57 400.0 17.1 80 51 400.0 14.9 2.90 2.21 100.0 14.9 2.90 2.21 400.0 8.4 1.40 98 60.0 11.0 2.90 2.21 60.0 10.0 8.8 1.40 98	200.0 16.5 2.65 1.94 1,000.0 10.0 1.60 1.30 15.8 2.25 1.65 1,000.0 18.2 2.5 1.65 1,000.0 18.2 2.5 1.65 1,000.0 10.5 1.70 1.70 1,000.0 10.5 1.70 1.70 1,000.0 10.5 1.70 1.70 1,000.0 10.5 1.70 1.70 1,000.0 10.5 1.70 1.70 1,000.0 12.5 1.70 1.70 1,000.0 12.5 1.70 1.70 1,000.0 12.5 1.70 1.70 1,000.0 12.5 1.70 1.70 1,000.0 12.5 1.70 1,000.0 12.5 1.70 1,000.0 12.5 1.70 1,000.0 12.5 1.70 1,000.0 12.5 1.70 1,000.0 12.5 1.70 1,000.0 12.5 1.70 1,000.0 12.5 1.70 1,000.0 12.5 1.70 1,000.0 12.5 1.70 1,000.0 12.5 1.70 1,000.0 12.5 1.70 1,000.0 12.5 1.70 1,000.0 12.5 1.70 1,000.0 12.5 1.70 1,000.0 12.5 1.70 1,000.0 12.5 1.70 1,000.0 12.5 1.70 1,000.0 12.5 1.70 1,000.0 12.5 1.70 1,000.0 12.5 1.70 1,000.0 12.5 1.70 1,000.0 12.5 1.70 1,000.0 12.5 1.70 1,000.0 12.5 1.70 1,000.0 12.5 1.70 1,000.0 12.5 1.70 1,000.0 12.5 1.70 1,000.0 12.5 1.70 1,000.0 12.5 1.70 1,000.0 12.5 1.70 1,000.0 12.5 1.70 1,000.0 12.5 1.70 1,000.0 12.5 1.70 1,000.0 12.5 1.70 1,000.0 12.5 1.70 1,000.0 12.5 1.70 1,000.0 12.5 1.70 1,000.0 12.5 1.70 1,000.0 12.5 1.70 1,000.0 12.5 1.70 1,000.0 12.5 1.70 1,000.0 12.5 1.70 1,000.0 12.5 1.70 1,000.0 12.5 1.70 1,000.0 12.5 1.70 1,000.0 12.5 1.70 1,000.0 12.5 1.70 1,000.0 12.5 1.70 1,000.0 12.5 1.70 1,000.0 12.5 1.70 1,000.0 12.5 1.70 1,000.0 12.5 1.70 1,000.0 12.5 1.70 1,000.0 12.5 1.70 1,000.0 12.5 1.70 1,000.0 12.5 1.70 1,000.0 12.5 1.70 1,000.0 12.5 1.70 1,000.0 12.5 1.70 1,000.0 12.5 1.70 1,000.0 12.5 1.70 1,000.0 12.5 1.70 1,000.0 12.5 1.70 1,000.0 12.5 1.70 1,000.0 12.5 1.70 1,000.0 12.5 1.70 1,000.0 12.5 1.70 1,000.0 12.5 1.70 1,000.0 12.5 1.70 1,000.0 12.5 1.70 1,000.0 12.5 1.70 1,000.0 12.5 1.70 1,000.0 12.5 1.70 1,000.0 12.5 1.70 1,000.0 12.5 1.70 1,000.0 12.5 1.70 1,000.0 12.5 1.70 1,000.0 12.5 1.70 1,000.0 12.5 1.70 1,000.0 12.5 1.70 1,000.0 12.5 1.70 1,000.0 12.5 1.70 1,000.0 12.5 1.70 1,000.0 12.5 1.70 1,000.0 12.5 1.70 1,000.0 12.5 1.70 1,000.0 12.5 1.70 1,000.0 12.5 1.70 1,000.0 12.5 1.70 1,000.0 12.5 1.70 1,000.0 12.5 1.70 1,000.0 12.5 1.70 1,000.0 12.5 1.70 1,000.0 12.5 1.70 1,000.0 12.5 1.70 1,000.0
Logan and Hyde Park, sand  Solveson and Co., pebbles. Lateral 7, Turlock District, hard. Logan City, gravel bed. Billings Land and Irrigation Co. Rist and Goss, silted. Wilcox, pebbles and rocks. Old Barnes, silt coat. First and Gost, valley Irrigation Co. Logan and Richmond, clay. Bitter Root Valley Irrigation Co. Logan and Richmond, clay. Bitter Root Valley Irrigation Co. Logan and Richmond, clay. Logan and Aleby Park and Smithfield Moriss, bed houghed, grassy.	Hedge, Birch, hard Point I Crowle Bessem Bessem Bessem Mesa h Rio Gr. Rio Gr. Rio Gr. Rio Gr. Rio Gr. Rio Gr. Rio Gr. Rio Gr. Rio Gr. Rio Gr. Ranta h Santa h Califor Califor Califor Califor Califor Califor Califor Califor Califor Califor Califor Califor Califor Califor Califor Califor Califor Califor Califor Califor Califor Califor Califor Califor Califor Califor Califor Califor Califor Califor Califor Califor Califor Califor Califor Califor Califor Califor Califor Califor Califor Califor Califor Califor Califor Califor Califor Califor Califor Califor Califor Califor Califor Califor Califor Califor Califor Califor Califor Califor Califor Califor Califor Califor Califor Califor Califor Califor Califor Califor Califor Califor Califor Califor Califor Califor Califor Califor Califor Califor Califor Califor Califor Califor Califor Califor Califor Califor Califor Califor Califor Califor Califor Califor Califor Califor Califor Califor Califor Califor Califor Califor Califor Califor Califor Califor Califor Califor Califor Califor Califor Califor Califor Califor Califor Califor Califor Califor Califor Califor Califor Califor Califor Califor Califor Califor Califor Califor Califor Califor Califor Califor Califor Califor Califor Califor Califor Califor Califor Califor Califor Califor Califor Califor Califor Califor Califor Califor Califor Califor Califor Califor Califor Califor Califor Califor Califor Califor Califor Califor Califor Califor Califor Califor Califor Califor Califor Califor Califor Califor Califor Califor Califor Califor Califor Califor Califor Califor Califor Califor Califor Califor Califor Califor Califor Califor Califor Califor Califor Califor Califor Califor Califor Califor Califor Califor Califor Califor Califor Califor Califor Califor Califor Califor Califor Califor Califor Califor Califor Califor Califor Califor Califor Califor Califor Califor Califor Califor Califor Califor Califor Califor Califor Califor Califor Califor Califor Califor Califor Califor Califor Califor Califor Califor Califor Califor
446a B 448a A 449 A 449 A 449 A 449 A 449 A 555a B 555a A 555a A 555a A 557 A 559a B	1661 1623 1624 1634 1635 1730 1730 1730 1730 1730 1730 1730 1730 1730 1730 1730 1730 1730 1730 1730 1730 1730 1730 1730 1730 1730 1730 1730 1730 1730 1730 1730 1730 1730 1730 1730 1730 1730 1730 1730 1730 1730 1730 1730 1730 1730 1730 1730 1730 1730 1730 1730 1730 1730 1730 1730 1730 1730 1730 1730 1730 1730 1730 1730 1730 1730 1730 1730 1730 1730 1730 1730 1730 1730 1730 1730 1730 1730 1730 1730 1730 1730 1730 1730 1730 1730 1730 1730 1730 1730 1730 1730 1730 1730 1730 1730 1730 1730 1730 1730 1730 1730 1730 1730 1730 1730 1730 1730 1730 1730 1730 1730 1730 1730 1730 1730 1730 1730 1730 1730 1730 1730 1730 1730 1730 1730 1730 1730 1730 1730 1730 1730 1730 1730 1730 1730 1730 1730 1730 1730 1730 1730 1730 1730 1730 1730 1730 1730 1730 1730 1730 1730 1730 1730 1730 1730 1730 1730 1730 1730 1730 1730 1730 1730 1730 1730 1730 1730 1730 1730 1730 1730 1730 1730 1730 1730 1730 1730 1730 1730 1730 1730 1730 1730 1730 1730 1730 1730 1730 1730 1730 1730 1730 1730 1730 1730 1730 1730 1730 1730 1730 1730 1730 1730 1730 1730 1730 1730 1730 1730 1730 1730 1730 1730 1730 1730 1730 1730 1730 1730 1730 1730 1730 1730 1730 1730 1730 1730 1730 1730 1730 1730 1730 1730 1730 1730 1730 1730 1730 1730 1730 1730 1730 1730 1730 1730 1730 1730 1730 1730 1730 1730 1730 1730 1730 1730 1730 1730 1730 1730 1730 1730 1730 1730 1730 1730 1730 1730 1730 1730 1730 1730 1730 1730 1730 1730 1730 1730 1730 1730 1730 1730 1730 1730 1730 1730 1730 1730 1730 1730 1730 1730 1730 1730 1730 1730 1730 1730 1730 1730 1730 1730 1730 1730 1730 1730 1730 1730 1730 1730 1730 1730 1730 1730 1730 1730 1730 1730 1730 1730 1730 1730 1730 1730 1730 1730 1730 1730 1730 1730 1730 1730 1730 1730 1730 1730 1730 1730 1730 1730 1730
146a 147a 148a 148a 149a 150a 155a 155a 155 156a 157 158	1611643 1623 1640 1667 1673 1772 1773 1774 1775 1776 1776 1776 1776 1776 1776 1776

Table 112 (Continued)

82	£	<u>8188 44466666 00000000000000</u> 8188 48846448 448848489044
12	,D W.*	882788 882888892101 6284888828282828282828282828282828282828
5	u s.W	0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000
15	и 8,У	(1939) (1939) (1939) (1939) (1939) (1939) (1939) (1939) (1939) (1939) (1939) (1939) (1939) (1939) (1939) (1939) (1939) (1939) (1939) (1939) (1939) (1939) (1939) (1939) (1939) (1939) (1939) (1939) (1939) (1939) (1939) (1939) (1939) (1939) (1939) (1939) (1939) (1939) (1939) (1939) (1939) (1939) (1939) (1939) (1939) (1939) (1939) (1939) (1939) (1939) (1939) (1939) (1939) (1939) (1939) (1939) (1939) (1939) (1939) (1939) (1939) (1939) (1939) (1939) (1939) (1939) (1939) (1939) (1939) (1939) (1939) (1939) (1939) (1939) (1939) (1939) (1939) (1939) (1939) (1939) (1939) (1939) (1939) (1939) (1939) (1939) (1939) (1939) (1939) (1939) (1939) (1939) (1939) (1939) (1939) (1939) (1939) (1939) (1939) (1939) (1939) (1939) (1939) (1939) (1939) (1939) (1939) (1939) (1939) (1939) (1939) (1939) (1939) (1939) (1939) (1939) (1939) (1939) (1939) (1939) (1939) (1939) (1939) (1939) (1939) (1939) (1939) (1939) (1939) (1939) (1939) (1939) (1939) (1939) (1939) (1939) (1939) (1939) (1939) (1939) (1939) (1939) (1939) (1939) (1939) (1939) (1939) (1939) (1939) (1939) (1939) (1939) (1939) (1939) (1939) (1939) (1939) (1939) (1939) (1939) (1939) (1939) (1939) (1939) (1939) (1939) (1939) (1939) (1939) (1939) (1939) (1939) (1939) (1939) (1939) (1939) (1939) (1939) (1939) (1939) (1939) (1939) (1939) (1939) (1939) (1939) (1939) (1939) (1939) (1939) (1939) (1939) (1939) (1939) (1939) (1939) (1939) (1939) (1939) (1939) (1939) (1939) (1939) (1939) (1939) (1939) (1939) (1939) (1939) (1939) (1939) (1939) (1939) (1939) (1939) (1939) (1939) (1939) (1939) (1939) (1939) (1939) (1939) (1939) (1939) (1939) (1939) (1939) (1939) (1939) (1939) (1939) (1939) (1939) (1939) (1939) (1939) (1939) (1939) (1939) (1939) (1939) (1939) (1939) (1939) (1939) (1939) (1939) (1939) (1939) (1939) (1939) (1939) (1939) (1939) (1939) (1939) (1939) (1939) (1939) (1939) (1939) (1939) (1939) (1939) (1939) (1939) (1939) (1939) (1939) (1939) (1939) (1939) (1939) (1939) (1939) (1939) (1939) (1939) (1939) (1939) (1939) (1939) (1939) (1939) (1939) (1939) (1939) (1939) (1939) (1939) (1939) (1
7	v	28888 88888 4888 71 8888 8888 71 8888 71 8888 71 8888 71 8888 71 8888 71 8888 71 8888 71 8888 71 8888 71 8888 71 8888 71 8888 71 8888 71 8888 71 8888 71 8888 71 8888 71 8888 71 8888 71 8888 71 8888 71 8888 71 8888 71 8888 71 8888 71 8888 71 8888 71 8888 71 8888 71 8888 71 8888 71 8888 71 8888 71 8888 71 8888 71 8888 71 8888 71 8888 71 8888 71 8888 71 8888 71 8888 71 8888 71 8888 71 8888 71 8888 71 8888 71 8888 71 8888 71 8888 71 8888 71 8888 71 8888 71 8888 71 8888 71 8888 71 8888 71 8888 71 8888 71 8888 71 8888 71 8888 71 8888 71 8888 71 8888 71 8888 71 8888 71 8888 71 8888 71 8888 71 8888 71 8888 71 8888 71 8888 71 8888 71 8888 71 8888 71 8888 71 8888 71 8888 71 8888 71 8888 71 8888 71 8888 71 8888 71 8888 71 8888 71 8888 71 8888 71 8888 71 8888 71 8888 71 8888 71 8888 71 8888 71 8888 71 8888 71 8888 71 8888 71 8888 71 8888 71 8888 71 8888 71 8888 71 8888 71 8888 71 8888 71 8888 71 8888 71 8888 71 8888 71 8888 71 8888 71 8888 71 8888 71 8888 71 8888 71 8888 71 8888 71 8888 71 8888 71 8888 71 8888 71 8888 71 8888 71 8888 71 8888 71 8888 71 8888 71 8888 71 8888 71 8888 71 8888 71 8888 71 8888 71 8888 71 8888 71 8888 71 8888 71 8888 71 8888 71 8888 71 8888 71 8888 71 8888 71 8888 71 8888 71 8888 71 8888 71 8888 71 8888 71 8888 71 8888 71 8888 71 8888 71 8888 71 8888 71 8888 71 8888 71 8888 71 8888 71 8888 71 8888 71 8888 71 8888 71 8888 71 8888 71 8888 71 8888 71 8888 71 8888 71 8888 71 8888 71 8888 71 8888 71 8888 71 8888 71 8888 71 8888 71 8888 71 8888 71 8888 71 8888 71 8888 71 8888 71 8888 71 8888 71 8888 71 8888 71 8888 71 8888 71 8888 71 8888 71 8888 71 8888 71 8888 71 8888 71 8888 71 8888 71 8888 71 8888 71 8888 71 8888 71 8888 71 8888 71 8888 71 8888 71 8888 71 8888 71 8888 71 8888 71 8888 71 8888 71 8888 71 8888 71 8888 71 8888 71 8888 71 8888 71 8888 71 8888 71 8888 71 8888 71 8888 71 8888 71 8888 71 8888 71 8888 71 8888 71 8888 71 8888 71 8888 71 8888 71 8888 71 8888 71 8888 71 8888 71 8888 71 8888 71 8888 71 8888 71 8888 71 8888 71 8888 71 8888 71 8888 71 8888 71 8888 71 8888 71 8888 71 8888 71 8888
13	•	1,00023 1,00031 1,00031 1,00031 1,00031 1,00031 1,00031 1,00031 1,00031 1,00031 1,00031 1,00031 1,00031 1,00031 1,00031 1,00031 1,00031 1,00031 1,00031 1,00031 1,00031 1,00031 1,00031 1,00031 1,00031 1,00031 1,00031 1,00031 1,00031 1,00031 1,00031 1,00031 1,00031 1,00031 1,00031 1,00031 1,00031 1,00031 1,00031 1,00031 1,00031 1,00031 1,00031 1,00031 1,00031 1,00031 1,00031 1,00031 1,00031 1,00031 1,00031 1,00031 1,00031 1,00031 1,00031 1,00031 1,00031 1,00031 1,00031 1,00031 1,00031 1,00031 1,00031 1,00031 1,00031 1,00031 1,00031 1,00031 1,00031 1,00031 1,00031 1,00031 1,00031 1,00031 1,00031 1,00031 1,00031 1,00031 1,00031 1,00031 1,00031 1,00031 1,00031 1,00031 1,00031 1,00031 1,00031 1,00031 1,00031 1,00031 1,00031 1,00031 1,00031 1,00031 1,00031 1,00031 1,00031 1,00031 1,00031 1,00031 1,00031 1,00031 1,00031 1,00031 1,00031 1,00031 1,00031 1,00031 1,00031 1,00031 1,00031 1,00031 1,00031 1,00031 1,00031 1,00031 1,00031 1,00031 1,00031 1,00031 1,00031 1,00031 1,00031 1,00031 1,00031 1,00031 1,00031 1,00031 1,00031 1,00031 1,00031 1,00031 1,00031 1,00031 1,00031 1,00031 1,00031 1,00031 1,00031 1,00031 1,00031 1,00031 1,00031 1,00031 1,00031 1,00031 1,00031 1,00031 1,00031 1,00031 1,00031 1,00031 1,00031 1,00031 1,00031 1,00031 1,00031 1,00031 1,00031 1,00031 1,00031 1,00031 1,00031 1,00031 1,00031 1,00031 1,00031 1,00031 1,00031 1,00031 1,00031 1,00031 1,00031 1,00031 1,00031 1,00031 1,00031 1,00031 1,00031 1,00031 1,00031 1,00031 1,00031 1,00031 1,00031 1,00031 1,00031 1,00031 1,00031 1,00031 1,00031 1,00031 1,00031 1,00031 1,00031 1,00031 1,00031 1,00031 1,00031 1,00031 1,00031 1,00031 1,00031 1,00031 1,00031 1,00031 1,00031 1,00031 1,00031 1,00031 1,00031 1,00031 1,00031 1,00031 1,00031 1,00031 1,00031 1,00031 1,00031 1,00031 1,00031 1,00031 1,00031 1,00031 1,00031 1,00031 1,00031 1,00031 1,00031 1,00031 1,00031 1,00031 1,00031 1,00031 1,00031 1,00031 1,00031 1,00031 1,00031 1,00031 1,00031 1,00031 1,00031 1,00031 1,00031 1,00031 1,00031 1,00031 1,00031 1,00031 1,00031 1,00031 1,00031 1,00031 1,00031 1,0003
12	۱.	F
=	d	7.7.4.4. 5.6.5.0.0.0.0.0.0.0.0.0.0.0.0.0.0.0.0.0.
2	0	45.84 45.84 45.84 46.88 46.88 46.88 46.88 46.88 46.88 46.88 46.88 46.88 46.88 46.88 46.88 46.88 46.88 46.88 46.88 46.88 46.88 46.88 46.88 46.88 46.88 46.88 46.88 46.88 46.88 46.88 46.88 46.88 46.88 46.88 46.88 46.88 46.88 46.88 46.88 46.88 46.88 46.88 46.88 46.88 46.88 46.88 46.88 46.88 46.88 46.88 46.88 46.88 46.88 46.88 46.88 46.88 46.88 46.88 46.88 46.88 46.88 46.88 46.88 46.88 46.88 46.88 46.88 46.88 46.88 46.88 46.88 46.88 46.88 46.88 46.88 46.88 46.88 46.88 46.88 46.88 46.88 46.88 46.88 46.88 46.88 46.88 46.88 46.88 46.88 46.88 46.88 46.88 46.88 46.88 46.88 46.88 46.88 46.88 46.88 46.88 46.88 46.88 46.88 46.88 46.88 46.88 46.88 46.88 46.88 46.88 46.88 46.88 46.88 46.88 46.88 46.88 46.88 46.88 46.88 46.88 46.88 46.88 46.88 46.88 46.88 46.88 46.88 46.88 46.88 46.88 46.88 46.88 46.88 46.88 46.88 46.88 46.88 46.88 46.88 46.88 46.88 46.88 46.88 46.88 46.88 46.88 46.88 46.88 46.88 46.88 46.88 46.88 46.88 46.88 46.88 46.88 46.88 46.88 46.88 46.88 46.88 46.88 46.88 46.88 46.88 46.88 46.88 46.88 46.88 46.88 46.88 46.88 46.88 46.88 46.88 46.88 46.88 46.88 46.88 46.88 46.88 46.88 46.88 46.88 46.88 46.88 46.88 46.88 46.88 46.88 46.88 46.88 46.88 46.88 46.88 46.88 46.88 46.88 46.88 46.88 46.88 46.88 46.88 46.88 46.88 46.88 46.88 46.88 46.88 46.88 46.88 46.88 46.88 46.88 46.88 46.88 46.88 46.88 46.88 46.88 46.88 46.88 46.88 46.88 46.88 46.88 46.88 46.88 46.88 46.88 46.88 46.88 46.88 46.88 46.88 46.88 46.88 46.88 46.88 46.88 46.88 46.88 46.88 46.88 46.88 46.88 46.88 46.88 46.88 46.88 46.88 46.88 46.88 46.88 46.88 46.88 46.88 46.88 46.88 46.88 46.88 46.88 46.88 46.88 46.88 46.88 46.88 46.88 46.88 46.88 46.88 46.88 46.88 46.88 46.88 46.88 46.88 46.88 46.88 46.88 46.88 46.88 46.88 46.88 46.88 46.88 46.88 46.88 46.88 46.88 46.88 46.88 46
-	a	4448 554454ES 42577758888830
8	в	7. 1. 1. 2. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1.
1	Av. depth	<u> </u>
9	Max. depth	88.58 3.1.3.3.8.0.0.3.9.0.3.8.0.3.8.0.3.8.0.3.9.0.3.9.0.3.9.0.3.9.0.3.9.0.3.9.0.3.9.0.3.9.0.3.9.0.3.9.0.3.9.0.3.9.0.3.9.0.3.9.0.3.9.0.3.9.0.3.9.0.3.9.0.3.9.0.3.9.0.3.9.0.3.9.0.3.9.0.3.9.0.3.9.0.3.9.0.3.9.0.3.9.0.3.9.0.3.9.0.3.9.0.3.9.0.3.9.0.3.9.0.3.9.0.3.9.0.3.9.0.3.9.0.3.9.0.3.9.0.3.9.0.3.9.0.3.9.0.3.9.0.3.9.0.3.9.0.3.9.0.3.9.0.3.9.0.3.9.0.3.9.0.3.9.0.3.9.0.3.9.0.3.9.0.3.9.0.3.9.0.3.9.0.3.9.0.3.9.0.3.9.0.3.9.0.3.9.0.3.9.0.3.9.0.3.9.0.3.9.0.3.9.0.3.9.0.3.9.0.3.9.0.3.9.0.3.9.0.3.9.0.3.9.0.3.9.0.3.9.0.3.9.0.3.9.0.3.9.0.3.9.0.3.9.0.3.9.0.3.9.0.3.9.0.3.9.0.3.9.0.3.9.0.3.9.0.3.9.0.3.9.0.3.9.0.3.9.0.3.9.0.3.9.0.3.9.0.3.9.0.3.9.0.3.9.0.3.9.0.3.9.0.3.9.0.3.9.0.3.9.0.3.9.0.3.9.0.3.9.0.3.9.0.3.9.0.3.9.0.3.9.0.3.9.0.3.9.0.3.9.0.3.9.0.3.9.0.3.9.0.3.9.0.3.9.0.3.9.0.3.9.0.3.9.0.3.9.0.3.9.0.3.9.0.3.9.0.3.9.0.3.9.0.3.9.0.3.9.0.3.9.0.3.9.0.3.9.0.3.9.0.3.9.0.3.9.0.3.9.0.3.9.0.3.9.0.3.9.0.3.9.0.3.9.0.3.9.0.3.9.0.3.9.0.3.9.0.3.9.0.3.9.0.3.9.0.3.9.0.3.9.0.3.9.0.3.9.0.3.9.0.3.9.0.3.9.0.3.9.0.3.9.0.3.9.0.3.9.0.3.9.0.3.9.0.3.9.0.3.9.0.3.9.0.3.9.0.3.9.0.3.9.0.3.9.0.3.9.0.3.9.0.3.9.0.3.9.0.3.9.0.3.9.0.3.9.0.3.9.0.3.9.0.3.9.0.3.9.0.3.9.0.3.9.0.3.9.0.3.9.0.3.9.0.3.9.0.3.9.0.3.9.0.3.9.0.3.9.0.3.9.0.3.9.0.3.9.0.3.9.0.3.9.0.3.9.0.3.9.0.3.9.0.3.9.0.3.9.0.3.9.0.3.9.0.3.9.0.3.9.0.3.9.0.3.9.0.3.9.0.3.9.0.3.9.0.3.9.0.3.9.0.3.9.0.3.9.0.3.9.0.3.9.0.3.9.0.3.9.0.3.9.0.3.9.0.3.9.0.3.9.0.3.9.0.3.9.0.3.9.0.3.9.0.3.9.0.3.9.0.0.3.9.0.3.9.0.3.9.0.3.9.0.3.9.0.3.9.0.3.9.0.3.9.0.3.9.0.3.9.0.3.9.0.3.9.0.3.9.0.3.9.0.3.9.0.3.9.0.3.9.0.3.9.0.3.9.0.3.9.0.3.9.0.0.3.9.0.3.9.0.3.9.0.3.9.0.3.9.0.3.9.0.3.9.0.3.9.0.3.9.0.3.9.0.3.9.0.0.3.9.0.3.9.0.0.3.9.0.0.3.9.0.0.3.9.0.0.3.9.0.0.3.9.0.0.3.9.0.0.3.9.0.0.3.9.0.0.3.9.0.0.3.9.0.0.3.9.0.0.3.9.0.0.0.3.9.0.0.3.9.0.0.0.3.9.0.0.0.0
5	App. width	8.00 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
4	T	1426.0   6.6   1.20 300.0   3.2   9.00 300.0   3.2   9.00 300.0   3.2   9.00 300.0   10.7   9.00 10.00   10.7   9.00 10.00   10.7   9.00 10.00   10.00 10.00   10.00   10.00 10.00   10.00   10.00 10.00   10.00   10.00 10.00   10.00   10.00 10.00   10.00   10.00 10.00   10.00   10.00   10.00 10.00   10.00   10.00   10.00   10.00   10.00   10.00   10.00   10.00   10.00   10.00   10.00   10.00   10.00   10.00   10.00   10.00   10.00   10.00   10.00   10.00   10.00   10.00   10.00   10.00   10.00   10.00   10.00   10.00   10.00   10.00   10.00   10.00   10.00   10.00   10.00   10.00   10.00   10.00   10.00   10.00   10.00   10.00   10.00   10.00   10.00   10.00   10.00   10.00   10.00   10.00   10.00   10.00   10.00   10.00   10.00   10.00   10.00   10.00   10.00   10.00   10.00   10.00   10.00   10.00   10.00   10.00   10.00   10.00   10.00   10.00   10.00   10.00   10.00   10.00   10.00   10.00   10.00   10.00   10.00   10.00   10.00   10.00   10.00   10.00   10.00   10.00   10.00   10.00   10.00   10.00   10.00   10.00   10.00   10.00   10.00   10.00   10.00   10.00   10.00   10.00   10.00   10.00   10.00   10.00   10.00   10.00   10.00   10.00   10.00   10.00   10.00   10.00   10.00   10.00   10.00   10.00   10.00   10.00   10.00
8	Name and description	Hyrum lateral, rocks, moss.  A Orr, hard socured hed.  Small ditch, hard bed, débris.  Capurro, few cobbles.  B Righam Gity Electric Light Co., moss.  B New Rutner, gravel bed.  A Sullivan and Kelly, few cobbles.  It Roller, grass slopes.  Roller, grass slopes.  Inhatcher lateral, much vegetation.  Thatcher lateral, much vegetation.  Thatcher lateral, much vegetation.  Thatcher lateral, much vegetation.  Thatcher lateral, much vegetation.  Gobble-bottomed.  B Small ditch, grass-lined.  B Beasley.  Cobble-bottomed.  A Butter Root Valley Irrigation Co.  A Upper, from Big Cottonwood.  A Logan and Northern, grass.  A Reno, hand-laid riprap.  A Sullivan and Kelly, laid wall.  Logan and Hyde Park.  Hyrum lateral.  A Smathfield lateral, very uneven.
64	Class	चन्न धन ध धन्नन्त्र न
-	Ref. No.	25599 25599 25599 25599 25599 25599 25599 25599 25599 25599 25599 25599 25599 25599 25599 25599 25599 25599 25599 25599 25599 25599 25599 25599 25599 25599 25599 25599 25599 25599 25599 25599 25599 25599 25599 25599 25599 25599 25599 25599 25599 25599 25599 25599 25599 25599 25599 25599 25599 25599 25599 25599 25599 25599 25599 25599 25599 25599 25599 25599 25599 25599 25599 25599 25599 25599 25599 25599 25599 25599 25599 25599 25599 25599 25599 25599 25599 25599 25599 25599 25599 25599 25599 25599 25599 25599 25599 25599 25599 25599 25599 25599 25599 25599 25599 25599 25599 25599 25599 25599 25599 25599 25599 25599 25599 25599 25599 25599 25599 25599 25599 25599 25599 25599 25599 25599 25599 25599 25599 25599 25599 25599 25599 25599 25599 25599 25599 25599 25599 25599 25599 25599 25599 25599 25599 25599 25599 25599 25599 25599 25599 25599 25599 25599 25599 25599 25599 25599 25599 25599 25599 25599 25599 25599 25599 25599 25599 25599 25599 25599 25599 25599 25599 25599 25599 25599 25599 25599 25599 25599 25599 25599 25599 25599 25599 25599 25599 25599 25599 25599 25599 25599 25599 25599 25599 25599 25599 25599 25599 25599 25599 25599 25599 25599 25599 25599 25599 25599 25599 25599 25599 25599 25599 25599 25599 25599 25599 25599 25599 25599 25599 25599 25599 25599 25599 25599 25599 25599 25599 25599 25599 25599 25599 25599 25599 25599 25599 25599 25599 25599 25599 25599 25599 25599 25599 25599 25599 25599 25599 25599 25599 25599 25599 25599 25599 25599 25599 25599 25599 25599 25599 25599 25599 25599 25599 25599 25599 25599 25599 25599 25599 25599 25599 25599 25599 25599 25599 25599 25599 25599 25599 25599 25599 25599 25599 25599 25599 25599 25599 25599 25599 25599 25599 25599 25599 25599 25599 25599 25599 25599 25599 25599 25599 25599 25599 25599 25599 25599 25599 25599 25599 25599 25599 25599 25599 25599 25599 25599 25599 25599 25599 25599 25599 25599 25599 25599 25599 25599 25599 25599 25599 25599 25599 25599 25599 25599 25599 25599 25599 25599 25599 25599 25599 25599 25599 25599 25599 25599 25599 25599 25599

	Sidehill Cuts with Retaining														
261	Malls  Malls  A Hedge, plastered wall	250.01	4.03.4	53.08	43.10	1.58	88.00	18.50	3.31	000132	90.3	.0185	0610	8.5	1.13
262	A Hedge, earth and gravel bed	450.01	3.03	15 3.76	35.90	8:83	98.50	17.10	2:	0000	۵. ش	.0225	0228	 	 
263	A Cove, concrete floor	337.01	000	38	20.21	2. K	40.61 70.19	13.81	3 %	00080	20.0	59.7 0256 0267	0262	8 iS	3 P
265	A Hedge, concrete wall and floor	300.0	2.53.	5 2.88	36.00	.8	66.50	16.90	3.13	24000	8	0269	0580	62	2.3
266	B Logan, Hyde Park and Smithfield.	100.01	2.5 2.	50 1.78	22.22	3.16	70.19	15.50	1.44	00237	24.5	.0278	0293	8. 8.	8.5
267	Miscellaneous Sections	200.0 10.5 1.50 1.38 14.45 1.32	0.5	1 38	14.45	1.32	19.04	12.35	1.17	19.04 12.35 1.17 .00045 57	57.4	0249	0267	55.9	1.89
268	A Lower, Riverside Water Co	750.01	0.0	30 1.52	15.15	1.26	19.0	12.22	1.24	0005253	49.1	49.1 .0291 .0315 47.3 2.46	0315	47.3	2.46
269	B Logan, Hyde Park and Smithfield.	265.0	9.5 2.	50 2.15	20.40	3.44	70.19	13.42	1.52	88	20.9	.0298	.0314	47.4	2.58
		_	-	_		_		_	-						



A	Bazin open channel formula 192 Chezy coefficient from,
1	Chesy Commontain Hone,
Accelerated flow in channels 291–294	table
acceleration of gravity 35	coemcients of roughliess for,
Acre-foot	192, 193, 404-413
conversion factors 7	comparison with Kutter
core-inches	and Manning formulas, 197-200, 204-206
conversion factors	197-200, 204-206
'acres, conversion factors 6	comparison with Scobey's
verstion of nappe	experiments403-413
inchor ice	solution of 200
andres, gradual enlargement in	Bazin sharp-created weir for-
pipes 166	solution of
ingles, trigonometric functions	comparison with experi-
of, tables347-352	ments383-388
pproach, velocity of 40, 63-70, 103	Bazin submerged weir formula 79
rcher, sudden enlargement in	
	comparison with experi- ments395-398
pipes 165	Dall mankhad arifana 49 42
tres of circles, table 211	Bell-mouthed orifices42,43
trea, conversion factors 6	Bends in pipes
rea, mean-depth discharge	coefficient for loss of head,
vreas of circles, diameters by	table
treas of circles, diameters by	loss of head, table 185
eighths	Benton, coefficients for sub-
by hundredths 377	merged gates 61
pipes, diameters in feet 175	submerged gate formula 46
in inches 178	Bernoulli's theorem149, 292
usphalted pipes, Barnes for-	Biel, open channel formula 193
mulas 157	Bilton, experiments on orifices 38
mulas	Blackstone River dam 139, 148
coefficients for, tables 172, 173	Borda's mouthpiece 49
loss of head, pipe 1 foot	Blackwell, experiments on
in diameter, table 174	broad-crested weirs 133
solution of, table 175	Bornemann experiments on sub-
Lea formula 159	merged gates 46
Tutton formulas 155	Bossut, experiments on orifices 39
Unwin formula 155	Bovey, H. T., coefficients for
Atmosphere, value of	orifices, table 57
tmospheres, conversion fac-	experiments on orifices 39
tore to a	
tors	Branched pipes
tmospheric pressures, table 12	
	Brick, brickwork, weight of 10
iustin dam139, 148	Brightmore, enlargement in
<u> </u>	pipes
В	formula for contraction in
Do -1 070 004	pipes
Backwater curve278-284	Droad-created weirs. (See Weirs.)
Baer, pipe experiments 165	Drouse, weight of
Barnes, A. A., open channel for-	Bushels, conversion factors 7
mulas	
pipe formulas 156–158, 160, 161	C
Barnes and Coker, critical ve-	
locity	Canals (see also Open Channels),
oarr, v-notoned weirs85,86,87	188-236
Bazin, effect of nappe form on	short with free dis-
discharge 131	charge288-294
experiments, orifices 38	Scobey's experiments
sharp-crested weirs, 65, 67,	on403-413
68, 71-74, 383-388, 402	Castel, experiments on orifices. 39
submerged weirs, 76, 77, 80, 82, 83, 395–398	Castel, experiments on orifices. 39 Cast-iron pipes, discharge of, Barnes formulas 157
82, 83, 395–398	Barnes formulas 157
weirs not sharp-created	Chesy formula153.154
133, 134, 135, 140	Chesy formula153, 154 formula advocated158, 160

Cast-iron pipes, formula, coeffi- cients for, tables172, 173	Clay woight of
signer for tables 179 172	Clay, weight of
	Coefficient of contraction, ori-
Clenta IVI, CablosII2, IIV	Coemcient of contraction, Office
loss of head, pipe 1 foot	fices 35,
in diameter, table 174 solution of, table 175	C. C. and at malacitan anidan a
in diameter, table 174	Coefficient of velocity, orifices . 35,
solution of table 175	Coefficients for pipes 151,1 loss of head at entrance.151,1
T - 4	Coomorcia ioi piposi
Les formula	loss of head at entrance. 151, 1
Tutton formulas 155	table
Turoun tormunas 100	table
Unwin formula 155	loss of head due to bends 1
Williams and Hazen for-	
AAITHRIDA SUG LISSEN IOL-	table 1
mula 154	loss of head due to contrac-
Centers of gravity and radii of	
Centers of gravity and radii of	tions H
gyration of plane sur-	table 1
gjindion of plane bar	
faces 14 Centers of pressure on dams,	oss of head due to enlarge-
Contain of property on dame	monte ti
Centers of presente on dams,	ments
table	tables
Centimeters, conversion factors 6	loss of head due to friction,
Centimeters, conversion ractors	
Channels (see also Open Chan-	152-N
100 024	
nels)188-236 Channels, circular, hydraulic	tables171, 172, I
Channels, circular, hydraulic	oss of head due to valves or
oliginions, oliginiari, my armanic	
elements for part full,	other obstructions 1
table	table 1
table	table
trapezoidai, hydraulic	loss of head due to Y- I
radii, table 212	hranches 14
	branches 10
Chatterton, coefficients for sub-	Coefficients for submerged weir
merged gates 61	formulas
merged gates 61	iormuias
formula for submerged	formulas
	Commission of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of
gates	Coefficients of discharge, gates,
Chemical gaging or chemi-hy-	free discharge
Cuellicar Saging of cuelti-ny-	
drometry232, 249, 256	table
ommorphism 952	gates, submerged 4
apparatus	
application to stream gag-	table
062 064	
application to stream gag- ing263, 264	nossies
description	orifices
COUNTY OF THE COUNTY OF T	lauria full contraction
evaporation of samples Zol	circular, full contraction,
formula for discharge 254	table
TOTHICIA TOT GIBCHAIRC 201	J. M
nomenclature	comparative, dinerent
abtaining samples 955	shapes, table
Obtaining samples 200	
special dilutions 251 Chemi-hydrometry (see Chem-	miscellaneous submerged,
Chami hudaamatuu (aan Cham-	table
Chemi-nyurometry (see Chem-	Capie
ical (laging)249, 256	rectangular, full contrac- ]
ical Gaging)249, 256 Chesy formula, open channels. 189	tablerectangular, full contraction, table
Chezy formula, open channels. 189	tion, capie
coefficients, Bazin formula,	square, full contraction,
	A-bla
	table
	table
table	tablesuppressed contractions,
table	tablesuppressed contractions,
table	tablesuppressed contractions, table
table	tabletabletabletable
table	tabletabletabletable
table	tablesuppressed contractions, tableshort tubes41-submerged tubes41-
table	tablesuppressed contractions, tableshort tubes41-submerged tubes41-
table	tablesuppressed contractions, tableshort tubes41-submerged tubes41-
table	suppressed contractions, table
table	tableshort tubes41-submerged tubes41-stable24 Coefficients of roughness for
table	tableshort tubes41-submerged tubes41-stable24 Coefficients of roughness for
table	tableshort tubes41-submerged tubes41-stable24 Coefficients of roughness for
table	tableshort tubes41-submerged tubes41-stable24 Coefficients of roughness for
table	tableshort tubes41-submerged tubes41-stable24 Coefficients of roughness for
table	tableshort tubes41-submerged tubes41-stable24 Coefficients of roughness for
table	suppressed contractions, table
table	suppressed contractions, table
table	table
table	table
table	table
table	suppressed contractions, table
table	suppressed contractions, table
table	suppressed contractions, table
table	suppressed contractions, table
table	suppressed contractions, table
table	table
table	suppressed contractions, table
table	suppressed contractions, table
table	suppressed contractions, table
table	suppressed contractions, table
table	suppressed contractions, table
table	suppressed contractions, table
table	suppressed contractions, table
table	suppressed contractions, table
table	supressed contractions, table
table	suppressed contractions, table
table	suppressed contractions, table
table	suppressed contractions, table
table	suppressed contractions, table
table	suppressed contractions, table

Conduits. (See Open Channels.)	Curve, backwater278-284
Concrete pipes, discharge of 158-160	Cusecs
coefficients for, tables .172,173	Cylindrical surfaces, pressure
loss of head, pipe 1 foot in	on18, 19
diameter, table 174	<b>'</b> .
solution of formula, table 175	f •
Concrete, weight of 10	$\mathbf{D}$
Conical surfaces, pressure on 20	
Conical tubes	- ' ' ' ' ' ' ' ' ' ' ' ' ' ' ' ' ' ' '
Conical tubes	Dams, centers of pressure, table, 30
Weirs) 63-67, 72, 74, 88-90,	Croton dam, models of,
143	experiments 137
comparison of formulas with	coefficients for 147
experiments391–395 Contraction36, 37, 38, 39 coefficient of, for orifices36, 36	models of dams, experi-
Contraction	ments 138
coefficient of, for orifices35, 36	coefficients for, table 148
end. for fails of drops 142	pressure against, table 29
end, for rectangular weirs, 63, 65, 66, 72	submerged139-141
63, 65, 66, 72	upward pressure under 16
end, for trapesoidal weirs 88-90	vacuum on downstream
Contraction in pipes 150 166	face
Contraction in pipes 150 166 coefficients for loss of	Darcy pipe formula 104
head, table 183	Darcy and Basin, experiments
loss of head, table 182	on orifices 38
Contraction of jet	D'Aubison pipe formula 154
Contraction of jet	Depth of submergence, weirs,
table	80-93, 140, 141, 401
table	Density of water
comparison of formulas	Diameter corresponding to given
with experiments. 383-391 Control, definition, discussion. 259	area, pipes, tapies. 170, 170
Control, definition, discussion 259	Discharge coefficient. (See
effects of ice on 274	Coefficient of Discharge.
Conversion of units, tables for,	Discharge curves257, 265-275
feet to meters 4	direct method of plotting 265
flowing water 7, 8	gage reading of zero dis-
grades9	charge267, 270
prades	charge
prades 9 horsepower to kilowatts 5	ice-covered streams234, 274
horsepower to kilowatts 5 inches to feet and decimals, 4	ice-covered streams234, 274
grades	ice-covered streams234, 274 straight-line methods of plotting266-272 area, mean-depth method,
grades. 9 horsepower to kilowatts. 5 inches to feet and decimals, 4 kilograms to pounds. 4 kilowatts to horsepower 5	ice-covered streams 234, 274 straight-line methods of plotting 266-272 area, mean-depth method, 269-272
grades. 9 horsepower to kilowatts. 5 inches to feet and decimals, 4 kilograms to pounds. 4 kilowatts to horsepower 5	ice-covered streams 234, 274 straight-line methods of plotting
grades horsepower to kilowatts 5 inches to feet and decimals, kilograms to pounds 4 kilowatts to horsepower 5 length 6	ice-covered streams 234, 274 straight-line methods of plotting 266-272 area, mean-depth method, 269-272 logarithmic method. 267-269 streams with shifting beds. 273
grades 9 horsepower to kilowatts 5 inches to feet and decimals, 4 kilograms to pounds 4 kilowatts to horsepower 5 length 6 meters to feet 4 pounds to kilograms 4	ice-covered streams 234, 274 straight-line methods of plotting
grades 9 horsepower to kilowatts 5 inches to feet and decimals, 4 kilograms to pounds 4 kilowatts to horsepower 5 length 6 meters to feet 4 pounds to kilograms 4 power 9 pressure 9	ice-covered streams 234, 274
grades 9 horsepower to kilowatts 5 inches to feet and decimals, 4 kilograms to pounds 4 kilowatts to horsepower 5 length 6 meters to feet 4 pounds to kilograms 4 power 9 pressure 9 surface 6	ice-covered streams 234, 274 straight-line methods of plotting 266-272 ares, mean-depth method, 269-272 logarithmic method 267-269 streams with shifting beds 273 verification of
grades 9 horsepower to kilowatts 5 inches to feet and decimals, 4 kilograms to pounds 4 kilowatts to horsepower 5 length 6 meters to feet 4 pounds to kilograms 4 power 9 pressure 9	ice-covered streams 234, 274 straight-line methods of plotting 266-272 ares, mean-depth method, 269-272 logarithmic method 267-269 streams with shifting beds 273 verification of
grades 9 horsepower to kilowatts 5 inches to feet and decimals, 4 kilograms to pounds 4 kilowatts to horsepower 5 length 6 meters to feet 4 pounds to kilograms 4 power 9 pressure 9 surface 6 velocity 9 volume 6,7	ice-covered streams 234, 274 straight-line methods of plotting 266-272 ares, mean-depth method, 269-272 logarithmic method 267-269 streams with shifting beds 273 verification of
grades 9 horsepower to kilowatts 5 inches to feet and decimals, 4 kilograms to pounds 4 kilowatts to horsepower 5 length 6 meters to feet 4 pounds to kilograms 4 power 9 pressure 9 surface 6 velocity 9 volume 6,7	ice-covered streams 234, 274 straight-line methods of plotting 266-272 ares, mean-depth method, 269-272 logarithmic method 267-269 streams with shifting beds 273 verification of
grades 9 horsepower to kilowatts 5 inches to feet and decimals, 4 kilograms to pounds 4 kilowatts to horsepower 5 length 6 meters to feet 4 pounds to kilograms 4 power 9 pressure 9 surface 6 velocity 9 volume 6,7	ice-covered streams 234, 274 straight-line methods of plotting
grades	ice-covered streams 234, 274 straight-line methods of plotting
grades 9 horsepower to kilowatts 5 inches to feet and decimals, kilograms to pounds 4 kilowatts to horsepower 5 length 6 meters to feet 4 pounds to kilograms 4 power 9 pressure 9 surface 6 velocity 9 volume 6, 7 weight 6, 7 Copper, weight of 10 Coesceants, natural, table 351 Coesceants, natural, table 347	ice-covered streams 234, 274 straight-line methods of plotting 266-272 area, mean-depth method 269-272 logarithmic method 267-269 streams with shifting beds 273 verification of 273 Discharge measurements 231-277 Discharge measurements, methods of 231, 232 chemical gaging 249-256 color method 244 dams, for flood discharges 284 float method 244
grades	ice-covered streams 234, 274 straight-line methods of plotting
grades	ice-covered streams 234, 274 straight-line methods of plotting
grades	ice-covered streams 234, 274 straight-line methods of plotting
grades   9	ice-covered streams 234, 274 straight-line methods of plotting 266-272 ares, mean-depth method 269-272 logarithmic method 267-269 streams with shifting beds 273 Discharge measurements 231-277 Discharge measurements 231-277 Discharge measurements 231-277 Discharge measurements 249-256 color method 249-256 color method 246 float method
grades   9	ice-covered streams 234, 274 straight-line methods of plotting 266-272 ares, mean-depth method 269-272 logarithmic method 267-269 streams with shifting beds 273 Discharge measurements 231-277 Discharge measurements 231-277 Discharge measurements 231-277 Discharge measurements 249-256 color method 249-256 color method 246 float method
grades   9   horsepower to kilowatts   5   inches to feet and deoimals, kilograms to pounds   4   kilowatts to horsepower   5   length   6   meters to feet   4   pounds to kilograms   4   pounds to kilograms   4   pounds to kilograms   9   pressure   9   surface   6   velocity   9   volume   6, 7   weight   9   Copper, weight   10   Coeceants, natural, table   351   Cosines, natural, table   347   Co-tangents, natural, table   347   Cotangents, natural, table   349   Critical velocity   169   values of, table   187   Croton dam, old, sections of   137   Croton dam, old, sections of   137   Croton dam, old, sections of   137   Croton dam, old, sections of   137   Croton dam, old, sections of   137   Croton dam, old, sections of   137   Croton dam, old, sections of   137   Croton dam, old, sections of   137   Croton dam, old, sections of   137   Croton dam, old, sections of   137   Croton dam, old, sections of   137   Croton dam, old, sections of   137   Croton dam, old, sections of   137   Croton dam, old, sections of   137   Croton dam, old, sections of   137   Croton dam, old, sections of   137   Croton dam, old, sections of   137   Croton dam, old, sections of   137   Croton dam, old, sections of   137   Croton dam, old, sections of   137   Croton dam, old, sections of   137   Croton dam, old, sections of   137   Croton dam, old, sections of   137   Croton dam, old, sections of   137   Croton dam, old, sections of   137   Croton dam, old, sections of   137   Croton dam, old, sections of   137   Croton dam, old, sections of   137   Croton dam, old, sections of   137   Croton dam, old, sections of   137   Croton dam, old, sections of   137   Croton dam, old, sections of   137   Croton dam, old, sections of   137   Croton dam, old, sections of   137   Croton dam, old, sections of   137   Croton dam, old, sections of   137   Croton dam, old, sections of   137   Croton dam, old, sections of   137   Croton dam, old, sections of   137   Croton dam, old, sections of   137   Croton dam, old, sections of   137   Croton	ice-covered streams 234, 274 straight-line methods of plotting
grades   9   horsepower to kilowatts   5   inches to feet and decimals, kilograms to pounds   4   kilowatts to horsepower   5   length   6   meters to feet   4   pounds to kilograms   4   power   9   pressure   9   surface   6   velocity   9   volume   6, 7   weight   9   Copper, weight   10   Coescants, natural, table   347   Cotangents, natural, table   347   Cotangents, natural, table   347   Cotangents, natural, table   187   Croton dam, bid, sections of   137   codificients for   147   Cubes and cube roots, table   353   Cubic foot per second-day   2	ice-covered streams 234, 274 straight-line methods of plotting 266-272 ares, mean-depth method 269-272 logarithmic method 267-269 streams with shifting beds 273 Discharge measurements 231-277 Discharge measurements 231-277 Discharge measurements 231-277 Discharge measurements 232-276 color method 249-256 color method 249-256 dipont method 246 float method 244 orifices (See Orifices.) Pitot tube 243 traveling screen 243 traveling screen 247-249 weirs (See Weirs.) Discharge, records of 275, 276
grades   9   horsepower to kilowatts   5   inches to feet and decimals   4   kilograms to pounds   4   kilowatts to horsepower   5   length   6   meters to feet   4   pounds to kilograms   4   power   9   pressure   9   surface   6   velocity   9   volume   6, 7   weight   9   Copper, weight   10   Coesceants, natural, table   351   Coeines, natural, table   349   Critical velocity   169   values of, table   187   Croton dam, old, sections of   137   coefficients for   147   Cubes and cube roots, table   353   Cubic foot per second, equiva-	ice-covered streams 234, 274 straight-line methods of plotting
grades horsepower to kilowatts 5 inches to feet and deoimals, kilograms to pounds 4 kilowatts to horsepower 5 length 6 meters to feet 4 pounds to kilograms 4 power 9 pressure 9 surface 6 velocity 9 volume 6, 7 weight 10 Coeccants, natural, table 351 Cosines, natural, table 347 Co-tangents, natural, table 347 Co-tangents, natural, table 187 Coton dam, bld, sections of 137 coefficients for 147 Cubes and cube roots, table 353 Cubic foot per second, equivalent foot per second, equivalent bles 187 Line foot per second, equivalent bles 187 Line foot per second, equivalent bles 187 Line foot per second, equivalent foot per second, equivalent bles 187 Line foot per second, equivalent bles 187 Line foot per second, equivalent bles 187 Line foot per second, equivalent bles 187 Line foot per second, equivalent bles 187 Line foot per second, equivalent bles 187 Line foot per second, equivalent bles 187 Line foot per second, equivalent bles 187 Line foot per second, equivalent bles 187 Line foot per second, equivalent bles 187 Line foot per second, equivalent bles 187 Line foot per second, equivalent bles 187 Line foot per second, equivalent bles 187 Line foot per second, equivalent bles 187 Line foot per second, equivalent bles 187 Line foot per second, equivalent bles 187 Line foot per second, equivalent bles 187 Line foot per second, equivalent bles 187 Line foot per second per second per second per second per second per second per second per second per second per second per second per second per second per second per second per second per second per second per second per second per second per second per second per second per second per second per second per second per second per second per second per second per second per second per second per second per second per second per second per second per second per second per second per second per second per second per second per second per second per second per second per second per second per second per second per second per second per second per second per second per second	ice-covered streams 234, 274 straight-line methods of plotting
grades. horsepower to kilowatts. 5 inches to feet and decimals, kilograms to pounds. 4 kilowatts to horsepower. 5 length. 6 meters to feet. 4 pounds to kilograms. 4 power. 9 surface. 9 surface. 6 velocity. 9 volume. 6, 7 weight. 9 Copper, weight of. 10 Coescants, natural, table. 351 Cosines, natural, table. 351 Cosines, natural, table. 349 Critical velocity. 169 values of, table 187 Croton dam, old, sections of. 137 coefficients for . 147 Cubes and cube roots, table. 353 Cubic foot per second, equivalent horsepower, table. 81 Lilowatts, table. 331 kilowatts, table. 331 kilowatts, table. 331	ice-covered streams 234, 274 straight-line methods of plotting
grades. horsepower to kilowatts. 5 inches to feet and decimals, kilograms to pounds. 4 kilowatts to horsepower. 5 length. 6 meters to feet. 4 pounds to kilograms 4 power. 9 pressure. 9 surface. 6 velocity. 9 volume. 6, 7 weight. 9 Copper, weight of. 10 Coescants, natural, table. 347 Co-tangents, natural, table. 347 Co-tangents, natural, table. 187 Crotical velocity. 169 values of, table 187 confficients for 147 Cubea and cube voots, table. 353 Cubic foot per second-day. 2 Cubic foot per second-day. 2 Cubic foot per second-day. 31 kilowatts, table. 33 Current meter. 231, 232, 235–238	ice-covered streams 234, 274 straight-line methods of plotting
grades horsepower to kilowatts. 5 inches to feet and decimals, kilograms to pounds. 4 kilowatts to horsepower. 5 length. 6 meters to feet. 4 pounds to kilograms 4 power. 9 pressure. 9 surface. 6 velocity. 9 volume. 6, 7 weight. 10 Cosecants, natural, table. 351 Cosines, natural, table. 347 Cotangents, natural, table. 347 Cotangents, natural, table. 347 Cotangents, natural, table. 347 Coton dam, bld, sections of. 137 odefficients for. 147 Cubes and cube roots, table. 353 Cubic foot per second-day. 2 Cubic foot per second-day. 2 Cubic foot per second, equivalent horsepower, table. 31 kilowatts, table. 33 Current meter. 231, 232, 235–238 application to stream gag-	ice-covered streams 234, 274 straight-line methods of plotting
grades. horsepower to kilowatts. 5 inches to feet and decimals, kilograms to pounds. 4 kilowatts to horsepower. 5 length. 6 meters to feet. 4 pounds to kilograms 4 power. 9 pressure. 9 surface. 6 velocity. 9 volume. 6, 7 weight. 10 Cosecants, natural, table. 351 Cosines, natural, table. 347 Co-tangents, natural, table. 347 Co-tangents, natural, table. 187 Coton dam, old, sections of 137 confficients for 147 Cubes and cube roots, table. 353 Cubic foot per second-day. 2 Cubic foot per second-day. 2 Cubic foot per second, equivalent horsepower, table. 31 kilowatts, table. 33 Current meter. 231, 232, 235–238 application to stream gag-	ice-covered streams 234, 274 straight-line methods of plotting
grades. horsepower to kilowatts. 5 inches to feet and decimals, kilograms to pounds. 4 kilowatts to horsepower. 5 length. 6 meters to feet. 4 pounds to kilograms 4 power. 9 pressure. 9 surface. 6 velocity. 9 volume. 6, 7 weight. 10 Cosecants, natural, table. 351 Cosines, natural, table. 347 Co-tangents, natural, table. 347 Co-tangents, natural, table. 187 Coton dam, old, sections of 137 confficients for 147 Cubes and cube roots, table. 353 Cubic foot per second-day. 2 Cubic foot per second-day. 2 Cubic foot per second, equivalent horsepower, table. 31 kilowatts, table. 33 Current meter. 231, 232, 235–238 application to stream gag-	ice-covered streams 234, 274 straight-line methods of plotting
grades. horsepower to kilowatts. 5 inches to feet and decimals, kilograms to pounds. 4 kilowatts to horsepower. 5 length. 6 meters to feet. 4 pounds to kilograms. 4 power. 9 pressure. 9 surface. 6 velocity. 9 volume. 6, 7 weight. 10 Cosecants, natural, table. 351 Cosines, natural, table. 351 Cosines, natural, table. 347 Co-tangents, natural, table. 349 Critical velocity. 169 values of, table 187 Croton dam, bld, sections of 137 conficients for 147 Cubes and cube roots, table. 353 Cubic foot per second-day. 2 Cubic foot per second, equivalent horsepower, table. 31 kilowatts, table. 33 Current meter. 231, 232, 235-238 application to stream gag- ing. 263 description. 235 methods of use. 241-244	ice-covered streams 234, 274 straight-line methods of plotting
grades. horsepower to kilowatts. 5 inches to feet and decimals, kilograms to pounds. 4 kilowatts to horsepower. 5 length. 6 meters to feet. 4 pounds to kilograms 4 power. 9 pressure. 9 surface. 6 velocity. 9 volume. 6, 7 weight. 10 Cosecants, natural, table. 351 Cosines, natural, table. 347 Co-tangents, natural, table. 347 Co-tangents, natural, table. 187 Coton dam, bdd, sections of 137 coefficients for 147 Cubes and cube voots, table. 353 Cubic foot per second-day. 2 Cubic foot per second, 21 kilowatts, table. 33 Current meter. 231, 232, 235–238 application to stream gaging. 263 description. 235 methods of use. 241–244 rating. 236–238	ice-covered streams 234, 274 straight-line methods of plotting
grades   9   horsepower to kilowatts   5   inches to feet and decimals, kilograms to pounds   4   kilowatts to horsepower   5   length   6   meters to feet   4   pounds to kilograms   4   pounds to kilograms   4   power   9   pressure   9   surface   6   velocity   9   volume   6, 7   weight   9   volume   6, 7   weight   10   Cosecants, natural, table   351   Cosines, natural, table   351   Cosines, natural, table   347   Co-tangents, natural, table   347   Co-tangents, natural, table   348   Critical velocity   169   values of, table   187   Croton dam, bld, sections of   137   codeficients for   147   Cubes and cube roots, table   353   Cubic foot per second-day   2   Cubic foot per second   quivalent horsepower, table   31   kilowatts, table   32   32   238   application to stream gasing   263   description   235   methods of use   241   244   rating   236   238   Current meter notes   242   244   Current meter notes   242   244   Current meter notes   242   244   Current meter notes   242   244   Current meter notes   242   244   Current meter notes   242   244   Current meter notes   242   244   Current meter notes   242   244   Current meter notes   242   244   Current meter notes   242   244   Current meter notes   242   244   Current meter notes   242   244   Current meter notes   242   244   Current meter notes   242   244   Current meter notes   242   244   Current meter notes   242   244   Current meter notes   242   244   Current meter notes   242   244   Current meter notes   242   244   Current meter notes   242   244   Current meter notes   242   244   Current meter notes   242   244   Current meter notes   242   244   Current meter notes   242   244   Current meter notes   242   244   Current meter notes   242   244   Current meter notes   242   244   Current meter notes   242   244   Current meter notes   242   244   Current meter notes   242   244   Current meter notes   242   244   Current meter notes   242   244   Current meter notes   242   244   Current meter notes   242   244   Current m	ice-covered streams 234, 274 straight-line methods of plotting
grades. horsepower to kilowatts. 5 inches to feet and decimals, kilograms to pounds. 4 kilowatts to horsepower. 5 length. 6 meters to feet. 4 pounds to kilograms 4 power. 9 pressure. 9 surface. 6 velocity. 9 volume. 6, 7 weight. 10 Cosecants, natural, table. 351 Cosines, natural, table. 347 Co-tangents, natural, table. 347 Co-tangents, natural, table. 187 Coton dam, bdd, sections of 137 coefficients for 147 Cubes and cube voots, table. 353 Cubic foot per second-day. 2 Cubic foot per second, 21 kilowatts, table. 33 Current meter. 231, 232, 235–238 application to stream gaging. 263 description. 235 methods of use. 241–244 rating. 236–238	ice-covered streams 234, 274 straight-line methods of plotting

E	Frazil ice
Earth, weight of	irregular weirs 13 on nozzles
drops	irregular weirs. 13 on nozales. 43,4 Friction in pipes, loss of head (see also Pipes). 150, 152–15
63, 65, 66, 72 for trapezoidal weirs88-90	Frieze gage
Ellipse, center of gravity and radius of gyration of. 14	ments, sharp-crested
Ellis, T. G., experiments on orifices38, 39	weirs, 65, 67, 68, 71, 72, 74, 388-39, submerged weirs, 76, 77, 80, 82, 83, 399, 40
coefficients for submerged	82, 83, 399, 400 Fteley and Steams, sharp-
Enlargement in pipes, loss of	crested weir formula, 66-8
head	comparison with experi- ments388–3%
cients for, table 182 sudden enlargement, table. 181 coefficients for, table 181	Fteley and Stearns, submerged weir formula76, 77, 8
coefficients for, table 181 Entrance to pipes150, 151 , coefficients for loss of head,	coefficients for
coefficients for loss of head,	ments399, 40
table	G
reservoirs196, 297 from water surfaces, table, 298	Gages, installation and description260-26
F	Gaging station, selection of site, 258-26
Falls, formulas for discharge.141, 142 Fanning, J. T., friction losses in	Gallons, conversion factors6, 7,1
pipes	Gallons, U. S
rectangular orifices 39 coefficients for, table 56	coefficients for, tables . 172, 17 loss of head, pipe 1 foot in
Feet, conversion factors 6	diameter, table 17
Feet to inches and fractions, table 5	solution of formula, table, 17 Ganguillet and Kutter. (See
to meters, table 4 Floods, determination of spill-	Gates45-4
way capacity302–307 discharge curves for 266	<b>60.</b> 61
measurement of	submerged # with free discharge #
discharge measurements by, 244 surface, sub-surface, and	Gibson, pipe experiments, en- largement 16
rod floats 240 Flinn and Dyer, weir experi-	Glass pipes, discharge formula. 15 Gradual enlargement in pipes,
ments	150, 16 coefficients for loss of head,
tors9 Fortier, pipe experiments 156	table
Francis, J. B., experiments, ori-	Grams, conversion factors
fices	Gravity, acceleration of 3
submerged weirs, 76, 80, 82, 83, 396–401	Groat, chemical gaging 25 Gurley gage261, 26
Francis formula for rod floats 240	н
Francis sharp-crested weir for- mula	Haskel current meter 234 Head lost in pipes. (See Pipes.)
comparison with experi- ments391-395	Head of submergence, weirs,
correction for end contrac- tions	80-83, 140, 141, 40 Head on orifices
discharge by, table 117 Francis submerged weir formula,	Head on orifices
76, 77, 83 comparison with experi-	drostatic pressures.
ments 396-401	table

Heads with corresponding hy-	Kutter's formula189-192
LIGHTH AITH COLLESPONDING 12	Chesy coefficient from 207
GLORGETIC Disagnies in	
drostatic pressures in pounds per square	coefficients of roughness for,
foot, table	190, 191, 404-413 comparison with Manning
per square inch, table 22	comparison with Manning
	and Basin formula.
	and Basin formula, 197-200, 204-206
	167-200, 201-200
Herschel, Clemens, submerged-	comparison with Scobey's
weir coefficients 78	experiments 403-413
formula78, 83	solution of 200
Venturi meter 247	
ZZOIBCDO WCI, COM, CIZIOM PACTELL,	L
to kilowatts, table 5	ш
of one second-foot, table . 31	
Horton, R. E., effects of nappe form on discharge 130, 132	Lead pipes, discharge formula 157
form on discharge 130 132	Lea open channel formula 194 pipe formulas158, 260
ito an modele of	nine formulas 158 260
experiments on models of	Lebros, experiments on orifices, 38-40
dams	
formula for weirs not sharp-	Liters, conversion factors 7
crested128, 129	Lespinasse and Ellis, experi-
values of Kutter coefficient, 191	ments on orifices 39 Logarithmic discharge curve, 266-269
	Logarithmic discharge curve 266-269
Humphreys and Abbot, Missis-	Logarithms of numbers table 4 211
sippi River experi-	Logarithms of numbers, table 2. 311 use of
ments 199	use of307~309
Hydrographs 277	Loss of head in pipes. (See Pipes.) Lyman, weir diagram66, 71
Hydrostatics11-34	Lyman, weir diagram
Hydrostatic pressures 12	comparison with Basin ex-
	nazimanta 202_200
against dams 14	periments 383-388
against overflow dams,	
table 29	
centers of pressure, table 30	M
on conical surfaces 20	
. On contest surfaces 20	Manning open channel formula
on cylindrical surfaces18, 19	
on plane surfaces13, 14	backwater curve, ap-
on spherical surfaces18, 19	backwater curve, application to291-294
•	Chezy coefficient from 210
•	coefficients of roughness for, 190, 191, 403–413
I	190 101 403-413
	sommerican with Watter
Ice, anchor	comparison with Kutter
Ice-covered streams, 234, 235,	and Basin formulas,
243, 274	197-200, 204-206
Too fracil or alush 974 975	comparison with Scobey's
Ice, frazil or slush274, 275	experiments403-413
Inches, conversion factors 6	diagrams for solution of 230
depth on drainage basins 2	short corols application to
conversion factors 8	short canals, application to,
of mercury 9	291-294
per area 2	slopes by, table 222
	solution of
	velocities by, table 215
	Masonry, weight of 10
Iron, weight of 10	Mass diagram application to
Irregular weirs	Mass diagram, application to storage problems . 294-302
-	storage problems 294-302
	Measurement of flowing water
J	(see also Discharge
•=	Measurements)231, 277
Jacob, determination of spill-	Mercury column, conversion
	factors Conversion
way capacity 303	factors
Judd and King, experiments on	height of 12
orifices 38	weight of
	Merriman formula, contraction
	in pipes
<b>K</b>	in pipes
_	TATCORNE ONICE OFFICE ACTRIC OF IO
TZ!!	
Kilograms, conversion factors 9	Meters to leet, table 4
to pounds, table 4	Michelotti, experiments on ori-
	Michelotti, experiments on ori-
	Michelotti, experiments on ori- fices
Kilometers, conversion factors. 6	Michelotti, experiments on orifices
Kilometers, conversion factors. 6 Kilowatts, conversion factors. 9	Michelotti, experiments on orifices
Kilometers, conversion factors. 6 Kilowatts, conversion factors. 9	Michelotti, experiments on orifices.         39           Miles, conversion factors.         6           Miner's inch.         3           inches, conversion factors.         3
Kilometers, conversion factors. 6 Kilowatts, conversion factors. 9	Michelotti, experiments on orifices

Ņ	orifices
Nagler, weir experiments 73	circular full contraction
Nappe, definition of 63	table
Nappe, definition of	table 54
form on discharge. 130-132	shapes, table 57
Nelles, submerged weirs 140	miscellaneous submerged.
Notched falls	table 50
Notched falls	rectangular, full contrac-
Weirs).	tion, table
Nozsles	rectangular, full contrac- tion, table
•	Taidle
0	suppressed contractions, table
Obstructions in pipes150, 167	table 58 short tubes
coefficients for loss of head.	submerged tubes 47
table	table
loss of head, table 184	Ott current meter 236
Open channels	Ounces, fluid, conversion fac-
accelerated flow in291-294	tors 7
Dackwater curve210-204	
circular conduits 203	<b>P</b>
measurement of flow231, 277 short canals with free dis-	r
charge 288	Parker, Philip AM., chemical
charge	gaging 256
Open channels, coefficients of	gaging
roughness, comparison	pipes 166
of by Kutter, Manning	submerged gates 46
and Bazin formulas.	sudden contraction in pipes, 167
204-206, 404-413	Pascal's law
values for Bazin formula, 192, 193, 404-413	Pipes
values for Biel formula, 193, 194	deterioretion of 156-158 160
values for Manning or Kut-	discussion of formulas160—162
ter formula,	divided flow in 285-286
100 101 404-413	hydraulic elements of, table, 211 measurement of velocity in, 23 nomenolature for formulas, 15- solution of formulas 162-16
values for Williams and	measurement of velocity in, 23
Hasen formula 194	nomenclature for formulas, 154
Open channels, coefficients for	solution of formulas162-164
Chezy formula, by	table
Basin formula 210 by Kutter formula 207	table
by Kutter formula 207 by Manning formula 210	table
Open channel formulas, Barnes	table 186 loss of head, table 186 Pipes, contraction in 186 coefficients for loss of head,
formula 195	Pipes, contraction in 150-160
formula	coefficients for loss of head,
Biel formula 193	table
Biel formula	table
comparison of, 197-200, 403-413	Pipes, enlargement in150-100
discussion of	gradual enlargement, co- efficients for loss of
Les formule 194	head, table 182
Lea formula	sudden enlargement, coeffi-
nomenclature 189	sudden enlargement, coeffi- cients for loss of head,
nomenciature	table 181
Williams and Hazen for-	table
mula.       194         Orifices.       35, 62         bell mouthed.       42, 43	head, table
Ornices	coefficients for loss of head,
rectangular	
	table
submerged	Pipes, loss of head in friction,
with suppressed contrac-	150, 152-154
tion 39	coefficients for, Chesy 171
Orinces, coefficients of discharge	coefficients for, Chesy 171 coefficients for, Lea 172, 173 formulas for, Barnes for-
for gates, free dis-	formulas for, Barnes for-
charge	muia
table	Chesy formula 154 Lea formula 156-160
Races, BuntterRed 40	Les formuls150~100

ipes, loss of head in friction,	Retreat, velocity of
Morits formula 156	Reynolds, critical velocities 170
Scobey formula 156	Rippl, mass diagram
Tutton formula 155	Riveted pipes. (See Steel Riveted Pipes.)
Williams and Hasen for-	eted Pipes.)
mula 154	Rogers and Smith, experiments
Unwin formula 155	on submerged tubes. 47
for pipe 1 foot in diameter, 174	coefficients for submerged
Pipes, valves and obstructions,	Roots of numbers. (See Powers and Roots.)
150, 167	Roots of numbers. (See Powers
coefficients for loss of head,	and Moots.)
table	<b>a</b>
loss of head, table 184	S
Pipes, Y-branches in, loss of	0.11.0
head	Salt solution method (see also
Pitot tube, velocities by231, 238	Chemical Gaging) 249-256
discharge measurements by, 243	Sand, weight of
Plane surfaces, centers of grav-	Scopey, F. C., formulas for
ity and radii of gyra-	wood stave pipes 156
tion of 14	open channel experiments,
pressure on	403-413
Poncelet and Lebros, experiments on orifices 38	Secants, natural, table 351
	Second-feet
Porter, experiments on Black- stone River dam, 139, 148	conversion factors 7, 8
Stone River dam, 139, 148	Semicircle, center of gravity and
Pounds, conversion factors 9	radius of gyration of . 14
Pounds per square foot for dif-	Sharp-crested weirs. (See Weirs.)
ferent heads 21	Short canals with free discharge, 288-294
Pounds per square inch, conver- sion factors 9	
sion factors 9 for different heads 22	with flat slope 289-291
equivalent heads	with steep slope291-294
Pounds to kilograms, table 4	Short tubes, converging42, 43 diverging43
equivalent heads	diverging
cubes, table 353	Sines, natural, table 347
	Simon, marunar, table
cube roote table 353	
cube roots, table 353	Siphons
1.47 powers, table 93	Smith, experiments on obstruc-
1.47 powers, table 93 reciprocals, table 353	Smith, experiments on obstruc- tions in pipes 168
1.47 powers, table 93 reciprocals, table 353	Smith, experiments on obstruc- tions in pipes 168 Smith, Hamilton Jr., coeffi-
1.47 powers, table 93 reciprocals, table 353	Smith, experiments on obstruc- tions in pipes 168 Smith, Hamilton Jr., coeffi- cients for circular ori-
1.47 powers, table	Smith, experiments on obstruc- tions in pipes 168 Smith, Hamilton Jr., coeffi- cients for circular ori- fices 54
1.47 powers, table	Smith, experiments on obstructions in pipes 168 Smith, Hamilton Jr., coefficients for circular orifices
1.47 powers, table 93 reciprocals, table 353 squares, table 353 square roots, table, 224, 353, 373 three-eighths, table 227 three-halves, table 122 two-thirds, table 225	Smith, experiments on obstructions in pipes 168 Smith, Hamilton Jr., coefficients for circular orifices
1.47 powers, table 93 reciprocals, table 353 squares, table 353 square roots, table, 224, 353, 373 three-eighths, table 227 three-halves, table 122 two-thirds, table 225 Pressure, hydrostatic 12 against dams 14	Smith, experiments on obstructions in pipes
1.47 powers, table 93 reciprocals, table 353 squares, table 353 square roots, table, 224, 353, 373 three-eighths, table 227 three-halves, table 122 two-thirds, table 225 Pressure, hydrostatic 12 against dams 14 against overflow dams.	Smith, experiments on obstructions in pipes
1.47 powers, table	Smith, experiments on obstructions in pipes
1.47 powers, table	Smith, experiments on obstructions in pipes
1.47 powers, table	Smith, experiments on obstructions in pipes
1.47 powers, table 93 reciprocals, table 353 squares, table 353 square roots, table 224, 353, 373 three-eighths, table 227 three-halves, table 122 two-thirds, table 225 Pressure, hydrostatic 12 against dams 14 against overflow dams, table 29 centers of pressure, table, 30 on oonical surfaces 20 on oylindrical surfaces 18, 19	Smith, experiments on obstructions in pipes
1.47 powers, table	Smith, experiments on obstructions in pipes
1.47 powers, table	Smith, experiments on obstructions in pipes
1.47 powers, table	Smith, experiments on obstructions in pipes
1.47 powers, table	Smith, experiments on obstructions in pipes
1.47 powers, table	Smith, experiments on obstructions in pipes
1.47 powers, table	Smith, experiments on obstructions in pipes
1.47 powers, table	Smith, experiments on obstructions in pipes
1.47 powers, table	Smith, experiments on obstructions in pipes
1.47 powers, table	Smith, experiments on obstructions in pipes
1.47 powers, table	Smith, experiments on obstructions in pipes
1.47 powers, table	Smith, experiments on obstructions in pipes
1.47 powers, table	Smith, experiments on obstructions in pipes
1.47 powers, table	Smith, experiments on obstructions in pipes
1.47 powers, table	Smith, experiments on obstructions in pipes
1.47 powers, table	Smith, experiments on obstructions in pipes
1.47 powers, table 93 reciprocals, table 353 squares, table 353 squares table 353 square roots, table 224, 353, 373 three-eighths, table 227 three-halves, table 122 two-thirds, table 122 two-thirds, table 225 Pressure, hydrostatic 12 against dams 14 against overflow dams, table 29 centers of pressure, table, 30 on opilandissurfaces 18, 19 on plane surfaces 13, 14 on spherical surfaces 13, 14 on spherical surfaces 13, 12 rice current meter 236, 237, 238  Rafter, G. W., experiments on irregular weirs 136 Rating current meters 236–238 Reciprocals, table of 353 Records, stream-discharge measurements 257 Gectangle, center of gravity and radius of syration	Smith, experiments on obstructions in pipes
1.47 powers, table 93 reciprocals, table 353 squares, table 353 squares table 353 square roots, table 224, 353, 373 three-eighths, table 227 three-halves, table 122 two-thirds, table 122 two-thirds, table 225 Pressure, hydrostatic 12 against dams 14 against overflow dams, table 29 centers of pressure, table, 30 on opilandissurfaces 18, 19 on plane surfaces 13, 14 on spherical surfaces 13, 14 on spherical surfaces 13, 12 rice current meter 236, 237, 238  Rafter, G. W., experiments on irregular weirs 136 Rating current meters 236–238 Reciprocals, table of 353 Records, stream-discharge measurements 257 Gectangle, center of gravity and radius of syration	Smith, experiments on obstructions in pipes
1.47 powers, table	Smith, experiments on obstructions in pipes
1.47 powers, table 93 reciprocals, table 353 squares, table 353 squares table 353 square roots, table 224, 353, 373 three-eighths, table 227 three-halves, table 122 two-thirds, table 122 two-thirds, table 225 Pressure, hydrostatic 12 against dams 14 against overflow dams, table 29 centers of pressure, table, 30 on opilandissurfaces 18, 19 on plane surfaces 13, 14 on spherical surfaces 13, 14 on spherical surfaces 13, 12 rice current meter 236, 237, 238  Rafter, G. W., experiments on irregular weirs 136 Rating current meters 236–238 Reciprocals, table of 353 Records, stream-discharge measurements 257 Gectangle, center of gravity and radius of syration	Smith, experiments on obstructions in pipes

Steel, weight of	U. S. gallon, conversion factors, 6, 7,8 U. S. Geological Survey, experi-
Stevens gage	ments on broad-
submerged tubes59, 62	ments on broad-
experiments on submerged	crested weirs133, 183 sample of records, table 276
tubes	stream-discharge 257
Stone, weight of 10	Units, hydraulic (see also Unit
Storage problems, use of mass	in Question)1-4
diagram294-302	basic units 1
Stout method, shifting channels, 27	units of volume and flow . 1-3
Straight line discharge curves. 266	Units, conversion factors, table. 6-9
area, mean-depth method,	flowing water 7,8
2 <del>69</del> –272	grades9
logarithmic method267-269	length6
Stream-discharge records 257 Stream gaging. (See Discharge	power 9
Stream gaging. (See Discharge	pressures 9
M easurements.)	surface 6
Streams with shifting beds 273	velocities 9
Submerged gates	volume
coefficient of discharge,	weight9
	Units, tables for conversion of 4,5
Submerged orifices	feet to meters 4
Submerged orifices	feet to meters
coemcients of discharge,	inches and fractions to feet
table	and decimals 5
Submerged weirs. (See Weirs.)	kilograms to pounds 4 kilowatts to horsepower 5
Suction pipes for pumps 12	kilowatts to horsepower. 5
Sudden enlargement in pipes 150-165	meters to feet
coefficients for loss of head,	Unwin, W. C., broad-crested
table	Unwin, W. C., broad-crested weirs, theoretical for-
Suppressed contraction, orifices, 39	mula
Suppressed weirs. (See Weirs.)	mula
•••	short tubes 43
${f T}$	discharge measurements by
Tables. (See Subject in Question.)	floats 244
	experiments on orifices 38
Tangents, natural, table 349 Taylor, experiments on Austin	gates with free discharge 45
dam	coefficients for, table 60
Theoretical velocity 35	pipe formula 155
Incorculative County	
Thompson, experiments on V-	University of Michigan, V-
dam	University of Michigan, V- notched weir experi-
notched weirs55, 80, 87	notched weir experi-
Three-eighths powers, table 227	University of Michigan, V- notched weir experi- ments
Three-eighths powers, table 227 Three-halves powers, table 122	notched weir experi-
Three-eighths powers, table 227 Three-halves powers, table 122 Tin, weight of 10 Tons, conversion factors 9	notched weir experi- ments85, 86, 87
Three-eighths powers, table 227 Three-halves powers, table 122 Tin, weight of 10 Tons, conversion factors 9	notched weir experiments
Three-eighths powers, table 227 Three-halves powers, table 122 Tin, weight of 10 Tons, conversion factors 9	notehed weir experiments85, 86, 87  V  Vacuum under overfalling sheet, 17 Valves in pipes150, 167
Three-eighths powers, table 227 Three-halves powers, table 122 Tin, weight of 10 Tons, conversion factors 9	notohed weir experiments
noticed weirs	notched weir experiments
Three-eighths powers, table 227 Three-halves powers, table 227 Tin, weight of 10 Tons, conversion factors 9 Torricelli's theorem 35 Trapezoidal weirs. (See Weirs.) Trapezoid, center of gravity and radius of gyration of 14 Traveling screen method of	v Vacuum under overfalling sheet, 17 Valves in pipes
noticed weirs	notehed weir experiments
Three-eighths powers, table 227 Three-halves powers, table 227 Three-halves powers, table 122 Tin, weight of 10 Tons, conversion factors 9 Torricelli's theorem 35 Trapezoid, center of gravity and radius of gyration of. 14 Traveling screen method of measuring velocity, 231,245 Triangle, center of gravity and	notehed weir experiments
Three-eighths powers, table 227 Three-halves powers, table 227 Three-halves powers, table 122 Tin, weight of 10 Tons, conversion factors 9 Torricelli's theorem 35 Trapezoid, center of gravity and radius of gyration of. 14 Traveling screen method of measuring velocity, 231,245 Triangle, center of gravity and	Note
Three-eighths powers, table 227 Three-halves powers, table 227 Three-halves powers, table 122 Tin, weight of 10 Tons, conversion factors 9 Torricelli's theorem 35 Trapezoid, center of gravity and radius of gyration of 14 Traveling screen method of measuring velocity, 231,245 Triangle, center of gravity and radius of gyration of 14 Triangular weirs. (See Weirs.)	notched weir experiments
Three-eighths powers, table 227 Three-halves powers, table 227 Three-halves powers, table 122 Tin, weight of 10 Tons, conversion factors 9 Torricelli's theorem 35 Trapezoid, center of gravity and radius of gyration of 14 Traveling screen method of measuring velocity, 231,245 Triangle, center of gravity and radius of gyration of 14 Triangular weirs. (See Weirs.) Trigonometric functions, tables,	notched weir experiments
Three-eighths powers, table 227 Three-halves powers, table 227 Three-halves powers, table 122 Tin, weight of 10 Tons, conversion factors 9 Torricelli's theorem 35 Trapezoid, center of gravity and radius of gyration of. 14 Traveling screen method of measuring velocity, 231,245 Triangle, center of gravity and radius of gyration of 14 Triangular weirs. (See Weirs.) Trigonometric functions, tables, 347–352	notched weir experiments
Three-eighths powers, table 227 Three-halves powers, table 227 Three-halves powers, table 122 Tin, weight of 9 Torricelli's theorem 35 Trapezoidal weirs. (See Weirs.) Trapezoid, center of gravity and radius of gyration of. 14 Traveling screen method of measuring velocity, 231,245 Triangle, center of gravity and radius of gyration of . 14 Triangular weirs. (See Weirs.) Trigonometric functions, tables, 347-352 Tubes, short, converging 42, 43	notched weir experiments
noticed weirs55, 87. Three-eighths powers, table 227 Three-halves powers, table 122 Tin, weight of	notched weir experiments
Three-eighths powers, table 227 Three-halves powers, table 227 Three-halves powers, table 227 Three-halves powers, table 10 Tons, conversion factors 9 Torricelli's theorem 35 Trapezoid, center of gravity and radius of gyration of. 14 Traveling screen method of measuring velocity, 231,245 Triangle, center of gravity and radius of gyration of . 14 Triangular weirs. (See Weirs.) Trigonometric functions, tables, 347-352 Tubes, short, converging 42, 43 diverging 43 standard 41	notched weir experiments
Three-eighths powers, table 227 Three-halves powers, table 227 Three-halves powers, table 227 Three-halves powers, table 10 Tons, conversion factors 9 Torricelli's theorem 35 Trapezoid, center of gravity and radius of gyration of. 14 Traveling screen method of measuring velocity, 231,245 Triangle, center of gravity and radius of gyration of . 14 Triangular weirs. (See Weirs.) Trigonometric functions, tables, 347-352 Tubes, short, converging 42, 43 diverging 43 standard 41	notched weir experiments
Three-eighths powers, table. 227 Three-halves powers, table. 122 Three-halves powers, table. 122 Tin, weight of. 10 Tons, conversion factors. 9 Torricelli's theorem. 35 Trapezoid, center of gravity and radius of gyration of. 14 Traveling screen method of measuring velocity, 231,245 Triangle, center of gravity and radius of gyration of. 14 Triangular weirs. (See Weirs.) Trigonometric functions, tables, 347-352 Tubes, short, converging. 42, 43 diverging. 43 standard. 41 Tubes, submerged. 47 coefficients of discharge,	notched weir experiments
Three-eighths powers, table 227 Three-halves powers, table 227 Three-halves powers, table 122 Tin, weight of 10 Tons, conversion factors 9 Torricelli's theorem 35 Trapezoid, center of gravity and radius of gyration of. 14 Traveling screen method of measuring velocity, 231,245 Triangle, center of gravity and radius of gyration of . 14 Triangular weirs. (See Weirs.) Trigonometric functions, tables, 347-352 Tubes, short, converging 42, 43 diverging 42, 43 standard 41 Tubes, submerged 47 coefficients of discharge, table 62	notched weir experiments
Three-eighths powers, table. 227 Three-halves powers, table. 122 Three-halves powers, table. 122 Tin, weight of. 10 Tons, conversion factors. 9 Torricelli's theorem. 35 Trapezoid, center of gravity and radius of gyration of. 14 Traveling screen method of measuring velocity, 231,245 Triangle, center of gravity and radius of gyration of. 14 Triangular weirs. (See Weirs.) Trigonometric functions, tables, 347-352 Tubes, short, converging. 42, 43 diverging. 43 standard. 41 Tubes, submerged. 47 coefficients of discharge,	notched weir experiments
Three-eighths powers, table 227 Three-halves powers, table 227 Three-halves powers, table 122 Tin, weight of 10 Tons, conversion factors 9 Torricelli's theorem 35 Trapezoid, center of gravity and radius of gyration of. 14 Traveling screen method of measuring velocity, 231,245 Triangle, center of gravity and radius of gyration of . 14 Triangular weirs. (See Weirs.) Trigonometric functions, tables, 347-352 Tubes, short, converging 42, 43 diverging 42, 43 standard 41 Tubes, submerged 47 coefficients of discharge, table 62	notched weir experiments
Three-eighths powers, table. 227 Three-halves powers, table. 122 Tin, weight of. 10 Tons, conversion factors. 9 Torricelli's theorem. 35 Trapezoid, center of gravity and radius of gyration of. 1 Traveling screen method of measuring velocity, 231,245 Triangle, center of gravity and radius of gyration of . 1 Trianglar weirs. (See Weirs.) Trianglar weirs. (See Weirs.) Trianglar weirs. (See Weirs.) Trianglar weirs. (See Weirs.) Tubes, short, converging. 42, 43 diverging. 43 standard. 41 Tubes, submerged. 47 coefficients of discharge, table. 62 Tutton, pipe formulas. 155	notched weir experiments
Three-eighths powers, table. 227 Three-halves powers, table. 122 Three-halves powers, table. 122 Tin, weight of. 10 Tons, conversion factors. 9 Torricelli's theorem. 35 Trapezoid, center of gravity and radius of gyration of. 14 Traveling screen method of measuring velocity, 231,245 Triangle, center of gravity and radius of gyration of 14 Triangular weirs. (See Weirs.) Trigonometric functions, tables, 347–352 Tubes, short, converging. 42, 43 diverging. 42 diverging. 41 Tubes, submerged. 47 coefficients of discharge, table. 62 Tutton, pipe formulas. 155  U U U. S. Deep Waterways Board,	notched weir experiments
Three-eighths powers, table. 227 Three-halves powers, table. 122 Tin, weight of. 10 Tons, conversion factors. 9 Torricelli's theorem. 35 Trapezoid, center of gravity and radius of gyration of. 1 Traveling screen method of measuring velocity, 231,245 Triangle, center of gravity and radius of gyration of 14 Trianglar weirs. (See Weirs.) Trianglar weirs. (See Weirs.) Trianglar weirs. (See Weirs.) Trianglar weirs. (See Weirs.) Tubes, short, converging. 42, 43 diverging. 43 standard. 41 Tubes, submerged. 47 coefficients of discharge, table. 62 Tutton, pipe formulas. 155	notched weir experiments

Velocity, theoretical35, 36	Weirs, trapesoidal section . 135, 136
velocity of approach 40	coefficients of discharge,
velocity of approach 40 velocity, pipes. (See also Pipes.)	table
	triangular section 134, 135
formulas for	coefficients of discharge,
measurement of243, 246	table
velocity head	Weirs, rectangular sharp- crested 63-67, 93-127 comparison of formulas
elocity, weirs. (See also Weirs.)	created03-07, 93-127
theoretical mean velocity	with experiments 383-395
velocity of approach 63–70, 103	suppressed weirs383-391
velocity of retreat 63	verification of author's
Vena contracts	formula 389
Venturi experiments on tubes 43	formula
Venturi meter247-249	tions 391-395
Venturi meter	tions
√-notched weirs. (See Weirs.)	Bazin
,	Francis
•	Fteley and Stearns66, 08
w	Lyman's diagram66, 71 theoretical65
•••	theoretical 65 precautions for accurate
Ward, experiments on gates 45	1190 of 74-76
Ward, experiments on gates 45 Water, density of, table 11	tables 93–126
measurement of (see also	discharges by author's
Discharge Measurement),	formula 98
231, 277	tables 93-126 disoharges by author's formula 98 disoharges by author's
weight of, table 11	formula corrected for
Water column, height of 12	velocity of approach 104
Weight, conversion factors 9	discharge by Francis
conversion of kilograms to	formula
pounds	three-halves powers of
kilograms 4	numbers 122
of materials, table 10	numbers
of materials, table 10 Weirs, aeration of nappe 75	rection, author's for-
application to stream cac-	rection, author's formula
ing	velocity of approach 63, 67,
causes of inconsistencies in	69, 70 Waina and an and 70, 94
experiments 402 choice of for maximum ac-	Weirs, submerged76-84 channel below weir 83
curacy 92 127	comparison of formulas
curacy92, 127 crest not level90	with experiments395-401
definition of terms 63 end contractions, 63–67, 72, 74, 88–90, 143, 391–395	formulas, author's70-84
end contractions, 63-67, 72, 74,	Bazin 79
88-90, 143, 391-395	Francis 77
mean discharge for several	Fteley and Stearns 77 Herschel 78
observations 91	Herschel
modification of nappe form, 130–132	theoretical
nomenclature64, 65	mula 84
precautions for accurate	
use of	table
Weirs, not sharp-crested128, 148	weirs, trapezoidai
basic formula 128	application of author's for-
velocity of approach cor-	mula
rection	Cippoletti weirs 89 Cippoletti formula 89
tangular section132, 133	Cippoletti formula 89 discharge by Cippoletti
coefficients of discharge,	formula, table 113
tables143, 144	formulas
tables143, 144 dams, models of 138	formulas
coefficients of discharge,	accuracy of 127
table	experiments 86
irregular section 136	formulas for right angled
coefficients of discharge, table	notch
table	general formula 88
coefficients of discharge,	theoretical considerations. 84
table 147	velocity of approach 87

Weisbach, J., experiments on obstructions in pipes. 168 experiments on orifices 38 pipe formula	Wooden pipes, Morits formula. 156 Scobey formula
nel formula	of, Barnes formula 157 Unwin formula 155
Barnes formulas 157 formula advocated158-160	Y
coefficients for, tables,	Yards, conversion factors 6 Y-branches, loss of head in 169
loss of head for pipe 1 foot in diameter 174	${f z}$
solution of, table 175	Zinc, weight of10

SEP 1 2 1921

