Final Exam (PY 413, Spring 2007)

- 1. (10pts) Electrolysis of NaCl is the reaction $NaCl \rightarrow Na + \frac{1}{2}Cl_2$. The reaction uses liquid NaCl and produces Cl_2 gas and liquid Na.
 - (a) How much electrical energy is required to split 1 mole of NaCl? How much of that energy leaves/enters as heat, and how much work is done by the atmosphere? Draw a diagram that shows the direction of energy flow for W_{el}, W_{mech}, Q .
 - (b) The reaction at the anode is $Cl^- \to e^- + \frac{1}{2}Cl_2$. What is the minimum voltage required to operate a NaCl electrolysis cell?

The enthalpy and Gibbs free energy of formation for one mole of sodium chloride are $\Delta H = -411.15$ kJ and $\Delta G = -384.14$ kJ. You can treat Cl_2 as an ideal gas.

- 2. (10pts) Consider a paramagnet composed of N elementary spins. Every spin has three possible orientations \uparrow , \rightarrow , \downarrow . The corresponding energies are $E_{\uparrow} = -\mu B$, $E_{\rightarrow} = 0$, $E_{\downarrow} = +\mu B$. Take $\mu B = 1/40$ eV and T = 293 K.
 - (a) What is the probability that a given spin is in the ↑ state?
 - (b) Compute the entropy of a paramagnet consisting of N_A (one mole) of spins.

3. (10pts) The figure shows the PV diagram for a hypothetical engine. In the following we shall assume that the working substance is an ideal diatomic (f = 5) gas and that the power and compression strokes are isothermal.

- (a) Compute Q and W for the four steps indicated in the figure. Express your result in terms of V_i and T_i .
- (b) Compute the efficiency of the engine. Show that it is smaller than the Carnot result. What is the efficiency for a compression ratio $V_1/V_2=10$ and $T_1=293$ K, $T_3=1500$ K?
- 4. (10pts) Water molecules vibrate at a characteristic frequency $f = 4.8 \cdot 10^{13}$ Hz. We shall assume that the vibrational energy levels are $E_n = hfn$, where h is Planck's constant and $n = 0, 1, 2, \ldots$
 - (a) Determine the vibrational partition function of one water molecule as a function of T. Also compute the free energy and entropy.
 - (b) What is the vibrational contribution to the entropy of one mole of water at 700° C?