PROBABILITY AND STATISTICS SCE

Analyzing Depression Levels in Students

Roll No	Name	PRN No.	Department
62	Purrva Bothra	22311722	CE(SE)
67	Khushi Shah	22420051	CE(SE)
71	Pranita Kute	22420110	CE(SE)

Subject Teacher Shweta Tiwaskar

1. Introduction

This mini-project explores statistical insights and probability distributions using a student depression dataset. The objective is to understand patterns and relationships between academic performance and mental health indicators through preprocessing, visualization, and probabilistic analysis.

The aim of this mini project is to:

- I. Preprocess the dataset for better analysis.
- II. Handle missing values appropriately.
- III. Apply fundamental concepts from probability and statistics.
- IV. Visualize relationships and patterns in the dataset.

2. Dataset Description

Source: student depression dataset.csv

Attributes: Includes features like Age, Gender, CGPA, Sleep Duration, Depression, Anxiety, and Panic Attack.

Objective: Analyze the depression prevalence among students and identify statistical relationships.

3. Data Preprocessing

Loading and Displaying Data: Used pandas to load the dataset and preview entries.

```
In [2]: import numpy as np
          import pandas as pd
          import matplotlib.pyplot as plt
         import seaborn as sne
         from scipy.stats import pearsonr
          df = pd.read_csv("D:/PAS/student_depression_dataset.csv")
          print(df.head())
          # numpy, pandas: Data manipulation.
          # matplotlib, seaborn: Visualization.
# scipy.stats.pearsonr: Used for correlation
          #df.head(): Shows the first 5 rows of the dataset
        id Gender Age City Profession Aca
0 2 Male 33.0 Visakhapatnam Student
1 8 Female 24.0 Bangalore Student
2 26 Male 31.0 Srinagar Student
3 30 Female 28.0 Varanasi Student
Trimm Student
                                         City Profession Academic Pressure
                                                                              2.0
          4 32 Female 25.0
                                         Jaipur Student
            Work Pressure CGPA Study Satisfaction Job Satisfaction \
                    0.0 8.97
0.0 5.90
0.0 7.03
0.0 5.59
                                                             0.0
                                                              0.0
                                              5.0
                                                              0.0
                     0.0 8.13
                                             3.0
                Sleep Duration Dietary Habits Degree \
                                      Healthy B.Pharm
                    '5-6 hours'
                                      Moderate BSc
Healthy BA
Moderate BCA
         1 '5-6 hours'
2 'Less than 5 hours'
                   '7-8 hours'
'5-6 hours'
                                     Moderate BCA
Moderate M.Tech
```

Handling Missing Values:

```
In [5]: # Handle Missing Values
         df.isnull().sum()
Out[5]: id
         Gender
                                     0
         Age
                                    0
         City
Profession
         Academic Pressure
         Work Pressure
         Study Satisfaction
Job Satisfaction
                                         0
                                        0
         Sleep Duration
         Dietary Habits
                                        0
                                     0
         Degree
         Have you ever had suicidal thoughts? 0
         Work/Study Hours
                                          0
                                        0
         Financial Stress
         Family History of Mental Illness
         Depression
dtype: int64
```

4. Methodology

Statistical Analysis and Visualization

Libraries: pandas, seaborn, matplotlib, scipy.stats

Techniques used:

Histogram & KDE to visualize CGPA and fit a normal distribution

5. Probability Concepts Implemented

a. Binomial Distribution

Scenario: Probability of students being depressed in a group of 10

b. Normal Distribution Fit

Applied to: CGPA values

Purpose: Check if CGPA follows a normal distribution

c. Descriptive Statistics

Included Measures:

Mean

```
In [32]: # Population vs Sample + Sample Mean
# Full data as population
population = df[CGPA].dropna()

# Draw random sample of size 30
sample = population.sample(30, random_state=42)

# Calculate means
population_mean = population.mean()
sample_mean = sample_mean()

print(f*Population Mean (CGPA): {population_mean:.2f}*")
print(f*Sample Mean (CGPA, n=30): {sample_mean:.2f}*")

Population Mean (CGPA): 7.66
Sample Mean (CGPA, n=30): 7.58
```

6. Input of Work

Tools Used: Jupyter Notebook, Python (NumPy, Pandas, Seaborn, SciPy)

Dataset Size: ~Around 28000 entries

Approach:

Preprocessing data \rightarrow visualize \rightarrow apply statistical models \rightarrow interpret results

7. Observations & Analysis:

Depression shows some correlation with:

Study Satisfaction (negative)

Academic Pressure (positive)

Job Satisfaction (negative)

Financial Stress (mild positive)

Hence, these could be important variables for prediction.

Observations:

Academic Pressure is mostly skewed to the lower range, but varies.

Study and Job Satisfaction tend to be clustered around mid-to-low values.

Financial Stress has a varied distribution, with some concentration at the lower end.

Depression shows class imbalance (more 0s than 1s).

Choosing the right features for model performance and interpretability. Based on:

- 1. Correlation analysis
- 2. Domain knowledge
- 3. Exploratory visualizations

Features to Train the Models

Psychological & Lifestyle Indicators:

- Academic Pressure → Correlated with depression (+ve)
- Study Satisfaction → Negatively correlated (lower satisfaction = more depression)
- **Job Satisfaction** → Same as above
- Financial Stress → Makes logical sense and had some signal
- Sleep Duration \rightarrow Sleep is a major mental health factor

Health and History:

- Have you ever had suicidal thoughts? → Strongly indicative
- Family History of Mental Illness → Known risk factor

Demographic Factors:

- **Gender** → Often shows differing depression patterns
- Age → Can impact life stressors and experiences
- **Degree** or **Profession** → May relate to academic/job pressure

Features to Drop

- City: Too high-cardinality, needs encoding or grouping
- id: Just an identifier, remove it
- **CGPA**: Could be useful, but not very correlated in the matrix
- Work/Study Hours: Might add noise if not normalized

Feature Set

Feature	Type
Gender	Categorical
Age	Numeric
Academic Pressure	Numeric
Study Satisfaction	Numeric
Job Satisfaction	Numeric
Financial Stress	Categorical
Sleep Duration	Categorical
Have you ever had suicidal thoughts?	Categorical
Family History of Mental Illness	Categorical
Depression (Target)	Binary

Key Metrics:

- Accuracy = $(TN + TP) / Total = (1752 + 2669) / 5581 \approx 0.79$
- **Precision (Depression)** = TP / (TP + FP) = $2669 / (2669 + 591) \approx 0.82$
- Recall (Depression) = TP / (TP + FN) = $2669 / (2669 + 569) \approx 0.82$
- F1 Score (Depression) = Harmonic mean of precision and recall ≈ 0.82

SVM and Logistic Regression perform similarly and better than Random Forest here.

Random Forest has slightly lower recall and ROC-AUC, meaning it misses more true depression cases.

All models are strong, but Logistic Regression is a good balance of interpretability + performance.

8. Conclusion

These insights help quantify the mental health landscape among students and encourage data-driven interventions.