

Mathematik I

Vorlesung 6 - Algebraische Strukturen

Prof. Dr. Sandra Eisenreich

09. November 2023

Hochschule Landshut

Motivation Gruppen und Ringe

Wir haben schon viele Zahlenräume kennen gelernt, und viele von diesen haben ähnliche Strukturen:

- Z:
 - addieren (Verknüpfung),
 - 0 addieren lässt jede Zahl unverändert (neutrales Element),
 - für jede ganze Zahl gibt es eine Negative, so dass die Summe 0 ergibt (inverses Element)
 - Es gilt das Assoziativgesetz.

Eine Menge mit solchen Eigenschaften nennt man \mathbf{Gruppe} . (ist $\mathbb N$ mit der Addition eine Gruppe?

- Nein! Kein Inverses.) Da a + b = b + a nennt man \mathbb{Z} kommutative Gruppe.
- Z: Man kann ganze Zahlen aber zusätzlich zu obigem auch multiplizieren und bekommt wieder eine ganze Zahl. Eine solche Gruppe nennt man **Ring**.
- $\mathbb Q$ ist offensichtlich wie $\mathbb Z$ mit der Verknüpfung + eine kommutative Gruppe, und man kann in $\mathbb Q$ multiplizieren \Rightarrow Ring.

1

Motivation Körper

- zusätzliche Struktur auf Q\{0}:
 - multiplizieren
 - 1 multiplizieren lässt jede Zahl unverändert (neutrales Element)
 - für jede rationale Zahl außer 0 gibt es einen Kehrbruch, so dass das Produkt 1 ergibt (inverses Element)
 - Es gilt das Assoziativgesetz.

 $\mathbb{Q}\setminus\{0\}$ mit der Mulitplikation ist eine Gruppe, und kommutativ $(a \cdot b = b \cdot a)$.

- Q:
 - Q mit Addition ist eine kommutative Gruppe
 - ℚ\{0} mit Multiplikation auch.
 - + und · erfüllen das Distributivgesetz.

Eine solche Struktur nennt man Körper.

ullet R ist ein Körper. (Überlegen Sie sich das selbst!)

Mengen mit solchen Eigenschaften wie oben beschrieben, also Gruppen, Ringe, Körper, heißen algebraische Strukturen. Warum interessiert man sich für so etwas?

Anwendungen in der Informatik

 Verschlüsselungsverfahren (Kryptographie) mit sogenannten elliptischen Kurven: dies sind Kurven im zweidimensionalen Raum mit einer Gruppen-Struktur (darauf basiert das Verfahren), das heißt man kann ihre Punkte addieren und subtrahieren wie in Z. Sie sehen so aus:

- **Restklassen** haben Gruppen-/Ring- und manchmal sogar Körper-Struktur (Anwendungen in der Informatik: siehe Restklassen)
- die sogenannten **komplexen Zahlen** (siehe nächstes Kapitel) sind ein Körper. Man braucht sie z.B. für Spiele-3D-Engines (und überall in der Physik).

6.1 Gruppen

Verknüpfungen

Definition

Sei M eine Menge. Eine **Verknüpfung auf** M ist eine Abbildung

$$v: M \times M \longrightarrow M, (m_1, m_2) \longmapsto v(m_1, m_2) = m_1 v m_2$$

Bezeichnung für v ist meist $+, \cdot, *, \oplus, \cdot, \odot$.

Beispiel:

- Addition auf \mathbb{Z} : a+b, bzw. formal: $+: \mathbb{Z} \times \mathbb{Z} \to \mathbb{Z}, (a,b) \longmapsto a+b$
- Multiplikation auf \mathbb{Z} : $a \cdot b$, bzw. formal: $: \mathbb{Z} \times \mathbb{Z} \to \mathbb{Z}, (a, b) \longmapsto a \cdot b$
- Addition auf $\mathbb{Z}/7\mathbb{Z}$: $\overline{a} \oplus \overline{b}$, bzw. formal: \oplus : $\mathbb{Z}/7\mathbb{Z} \times \mathbb{Z}/7\mathbb{Z} \to \mathbb{Z}/7\mathbb{Z}$, $(\overline{a}, \overline{b}) \longmapsto \overline{a+b}$
- Verknüpfung von Abbildungen: g ∘ f

4

Gruppen

Definition (Gruppe)

Eine **Gruppe** (G,*) besteht aus einer Menge G und einer Verknüpfung * mit den Eigenschaften:

- (G1) **neutrales Element**: Es gibt ein $e \in G$ mit a * e = e * a = a für alle $a \in G$ (e = neutrales Element)
- (G2) **inverses Element**: für alle $a \in G$ existiert ein eindeutiges Element $b \in G$ mit a * b = b * a = e (b = inverses Element). Man schreibt auch a^{-1} für dieses b.
- (G3) **Assoziativgesetz:** für alle $a, b, c \in G$ gilt: (a * b) * c = a * (b * c).

Die Gruppe (G, *) heißt **kommutativ**, wenn zusätzlich gilt:

(G4) **inverses Element**: für alle $a, b \in G$ gilt: a * b = b * a

Bemerkung: Verwendet man für die Verknüpfung das Symbol + oder \oplus (wie in \mathbb{Z} oder $\mathbb{Z}/n\mathbb{Z}$), dann wird häufig e mit 0 bezeichnet, und a^{-1} mit -a. In diesen Fall spricht man von einer **additiven Gruppe**. Andernfalls spricht man von einer **multiplikativen Gruppe**.

Beispiele

- $(\mathbb{Z}, +)$ ist eine kommutative additive Gruppe:
 - + ist eine Verknüpfung.
 - (G1) neutrales Element: $e = 0 \in \mathbb{Z}$, da $0 + a = a \forall a \in \mathbb{Z}$.
 - (G2) inverses Element: $a^{-1} = -a \in \mathbb{Z}$, da $-a + a = 0 \forall a \in \mathbb{Z}$.
 - (G3) Assoziativgesetz: klar (Schule)
 - (G4) $\forall a, b \in \mathbb{Z} : a + b = b + a$.
- $(\mathbb{R}\setminus\{0\},\cdot)$ ist eine kommutative multiplikative Gruppe:
 - · ist eine Verknüpfung.
 - (G1) neutrales Element: $e = 1 \in \mathbb{R} \setminus \{0\}$, da
 - (G2) inverses Element: $a^{-1} = \frac{1}{a} \in \mathbb{R} \setminus \{0\}$, da $a \cdot \frac{1}{a} = 1$
 - (G3) Assoziativgesetz: klar (Schule)
 - (G4) $\forall a, b \in \mathbb{Z} : a \cdot b = b \cdot a$.

- $(\mathbb{Z}/n\mathbb{Z}, \oplus)$ ist eine kommutative additive Gruppe:
 - ⊕ ist eine Verknüpfung.
 - (G1) neutrales Element: $e = \overline{0} \in \mathbb{Z}/n\mathbb{Z}$
 - (G2) inverses Element: $\overline{a}^{-1} = \overline{-a} = \overline{b-a} \in \mathbb{Z}/n\mathbb{Z}$ (z.B. in $\mathbb{Z}/7 : \overline{2} \oplus \overline{7-2} = 0$)
 - (G3) Assoziativgesetz: $(\overline{a} \oplus \overline{b}) \oplus \overline{c} = \overline{a+b} \oplus \overline{c} = \overline{(a+b)+c} = \overline{a+(b+c)} = \overline{a} \oplus (\overline{b} \oplus \overline{c})$
 - (G4) $\forall a, b \in \mathbb{Z}/n\mathbb{Z} : \overline{a} \oplus \overline{b} = \overline{a+b} = \overline{b+a} = \overline{b} \oplus \overline{a}.$
- $(\mathbb{Z}\setminus\{0\},\cdot)$ ist keine Gruppe, da für alle $m\in\mathbb{Z}\setminus\{0,1,-1\}$ kein Inverses existiert. (G2 nicht erfüllt).
- $(\mathbb{N},+)$ ist keine Gruppe, da für kein $m \in \mathbb{N}$ ein Inverses bezüglich Addition existiert (G2 nicht erfüllt): z.B. wäre das Inverse zu 2 bezüglich Addition -2, aber $-2 \notin \mathbb{N}$.

Untergruppe

Satz

Sei (G,*) eine Gruppe und $U \subset G$ eine Teilmenge von G, so dass folgende Bedingungen erfüllt sind:

- Abgeschlossenheit bzg. *: $a * b \in U$ für alle $a, b \in U$, und
- Abgeschlossenheit bzgl. Inversenbildung: $a^{-1} \in U$ für alle $a \in U$.

Dann ist (U,*) auch eine Gruppe. U heißt **Untergruppe** von G.

Beispiel

Wir definieren $m\mathbb{Z} \coloneqq \{m \cdot z | z \in \mathbb{Z}\}$ für festes m. z.B. $7 \cdot \mathbb{Z} = \{0, 7, -7, 14, -14, \ldots\}$

Behauptung: $(m\mathbb{Z}, +)$ ist eine Gruppe.

Beweis. Es gilt $U := m\mathbb{Z} \subset \mathbb{Z}$ und somit ist $(m\mathbb{Z}, +)$ eine Untergruppe von $(\mathbb{Z}, +)$, falls:

- Abgeschlossenheit bzgl. +, also zu zeigen: $a, b \in m\mathbb{Z} \Rightarrow a+b \in m\mathbb{Z}$. Hierzu: $a = m \cdot z_1$ und $b = m \cdot z_2 \Rightarrow a+b = m \cdot (z_1 + z_2) \in m\mathbb{Z}$
- Abgeschlossenheit bzgl. Inversenbildung, also zu zeigen: $a^{-1} \in m\mathbb{Z}$ für alle $a \in m\mathbb{Z}$. Hierzu: $a^{-1} = -a = -z \cdot m$ falls $a = z \cdot m$

9

Elliptische Kurve

Definition

Seien $a, b \in \mathbb{R}$. Dann ist eine Elliptische Kurve definiert als der Punkt ∞ bei $y = \pm \infty$, zusammen mit allen Punkten x, y, die die Gleichung $y^2 = x^3 + ax + b$ erfüllen:

$$E := \{(x,y) \in \mathbb{R}^2 : y^2 = x^3 + ax + b\} \cup \{\infty\} = \left\{ (x,y) \in \mathbb{R}^2 : \begin{array}{l} y = \sqrt{x^3 + ax + b} \\ y = -\sqrt{x^3 + ax + b} \end{array} \right\} \cup \{\infty\}$$

Wir machen die elliptische Kurve E zu einer Gruppe:

- 1. Das **neutrale Element** 0 sei der Punkt ∞.
- 2. Für $P, Q \in E$ sei die **Verknüpfung** $P \oplus Q$ wie folgt definiert:

- 1. Fall: P ≠ Q: Verbinde P und Q mit einer Geraden und schneide diese mit E (falls P und Q übereinander liegen, schneidet sie E bei ∞). Man erhält einen Punkt R. Der Spiegelpunkt von R an der x-Achse wird definiert als P ⊕ Q. Sind P und Q senkrecht übereinander, ist P ⊕ Q = ∞ = 0.
- 2. Fall P = Q: In diesen Fall ist die Gerade durch P und Q die Tangente ("lasse einfach Q nahe an P sein"). Die Tangente schneidet E in einem weiteren Punkt. Das Spiegelbild dieses Punktes an der x-Achse ist dann P ⊕ P = 2P.
- 3. Für $P \in E$ ist das **Inverse** -P der Punkt, wenn man P an der x-Achse spiegelt.

Beachte: Obige Definition funktioniert nur, wenn eine Gerade durch zwei Punkte von E genau durch einen weiteren Punkt von E geht. (kann man zeigen). Man kann sogar zeigen:

Satz

Für eine elliptische Kurve und die Verknüpfung \oplus wie oben definiert ist (E, \oplus) eine kommutative Gruppe.

Verschlüsselung mit elliptischen Kurven

Methode: Man kann Vielfache von P über die definierte Addition berechnen:

- Methode 1: 2P = P + P, 3P = 2P + P, 4P = 3P + P. Dauert lange (N 1 Schritte)
- Methode 2 (Abkürzung!): schreibe N als Summe von 2-er Potenzen (in Binärzahl umwandeln) und berechne NP als Summe der Terme: $2 \cdot P = P + P$, $4 \cdot P = 2 \cdot P + 2 \cdot P$, $8 \cdot P = 4 \cdot P + 4 \cdot P$, ... (viel schneller!)

Beispiel: Berechnen von $135 \cdot P$...

- Methode 1: 134 Additionen.
- Methode 2: Schreibe $134 = 128 + 4 + 2 + 1 = 2^6 + 2^2 + 2^1 + 2^0$, berechne $2 \cdot P = P \cdot P$ (1 Addition), $4 \cdot P = 2 \cdot P + 2 \cdot P$ (1 Addition), $8 \cdot P = 4 \cdot P + 4 \cdot P$ (1 Addition), $16 \cdot P, 32 \cdot P, 64 \cdot P, 128 \cdot P$ (4 Additionen) und damit: $135 \cdot P = 128 \cdot P + 4 \cdot P + 2 \cdot P + P$ (3 Additionen) \Rightarrow insgesamt 10 Additionen.

Der Unterschied zwischen Methode 1 und 2 wird größer, je größer die Zahl N ist!

Alice und Bob wollen geheime Nachrichten übermitteln.

- Alice und Bob tauschen aus: eine Elliptische Kurve, einen Punkt $P \in E$.
- Jeder überlegt sich einen geheimen Schlüssel $A \in \mathbb{N}$ bzw. $B \in \mathbb{N}$
- jeder berechnet seinen öffentlichen Schlüssel $A \cdot P$ bzw. $B \cdot P$ mit Methode 2 (schnell). Diese werden ausgetauscht.
- Alice hat: A und $B \cdot P$, berechnet $A \cdot B \cdot P$ (mit Methode 2, schnell);
- Bob hat: B und $A \cdot P$, berechnet auch $B \cdot A \cdot P = A \cdot B \cdot P$ (mit Methode 2, schnell);
- Die x-Koordinate von ABP ist der Schlüssel in einem symmetrischen Verfahren.

Gemeinsamer Schlüssel: x-Komponente von ABP

Was wenn jemand den Code knacken will?

Sogar wenn Außenstehende E und P kennen und die öffentlichen Schlüssel $A \cdot P$, $B \cdot P$, müssten sie auf A, B und P kommen. Dazu müssten sie P, $2 \cdot P$, $3 \cdot P$ usw berechnen bis sie z.B. zu $A \cdot P$ oder $B \cdot P$ kommen (was lange dauert mit Methode 1!), um auf A, B zu kommen und damit dann auf $A \cdot B \cdot P$.

Abbildungsgruppen

Satz

Sei M eine Menge, F sei die Menge aller bijektiven Abbildung von M nach M. (F, \circ) ist eine (i.a. nicht kommutative) Gruppe, wobei \circ die Komposition von Abbildungen ist.

Beweis.

- o ist eine Verknüpfung $F \times F \to F$, denn: Seien $f : M \longrightarrow M$ und $g : M \longrightarrow M$ Elemente aus F. Dann ist auch die Komposition $g \circ f : M \longrightarrow M$ bijektiv und somit in F.
- (G1) neutrales Element: die identische Abbildung id: M → M ist in F und es gilt für alle f ∈ F: f ∘ id = id ∘ f = f.
- (G2) Inverses Element: Ist $f \in F$, dann ist auch die Umkehrabbildung $f^{-1} \in M$.
- (G3) Assoziativgesetz: (F, ∘) ist assoziativ.
- (G4) gilt im Allgemeinen nicht! Im Allgemeinen ist \circ nicht kommutativ, d.h. $f \circ g \neq g \circ f$.

Permutationen

Sei nun $M = \{1, ..., n\}$ dann gibt es n! viele bijektive Abbildungen von M nach M. Wir schreiben jede solche Abbildung σ als

$$\sigma = \left(\begin{array}{cccc} 1 & 2 & 3 & 4 & \dots & n \\ \sigma(1) & \sigma(2) & \sigma(3) & \sigma(4) & \dots & \sigma(n) \end{array}\right)$$

z.B. ist $\sigma = \begin{pmatrix} 1 & 2 & 3 \\ 3 & 1 & 2 \end{pmatrix}$ die Abbildung von $\{1,2,3\}$ nach $\{1,2,3\}$, die 1 auf 3,2 auf 1, und 3 auf 2 abbildet.

Definition

Die Menge aller bijektiven Abbildungen $\sigma: \{1, 2, ..., n\} \longrightarrow \{1, 2, ..., n\}$ nennen wir **Permutationsgruppe** S_n .

Beispiele

• Permutationen von drei Elementen: (wie wenn man drei Kugeln in drei durchnummerierten Fächern (1-3) tauscht). Zur Verbildlichung: rot, grün, blau.

$$f = \begin{pmatrix} 1 & 2 & 3 \\ 2 & 3 & 1 \end{pmatrix}$$
: hier wird die Kugel von Fach 1 in Fach 2 gelegt, die Kugel von Fach 2 in Fach 3 und die Kugel von Fach 3 in Fach 1. Als Abbildung:

$$g = \begin{pmatrix} 1 & 2 & 3 \\ 3 & 1 & 2 \end{pmatrix} : \begin{cases} 1,2,3 \\ \vdots \end{cases} : \begin{cases} 1,2,3 \\ \vdots$$

$$f:\{1,2,3\} \longrightarrow \{1,2,3\}; 1 \longmapsto 3; 2 \longmapsto 1; 3 \longmapsto 2$$

Die Komposition der beiden Abbildungen $g \circ f$ (zuerst f anwenden, und dann g) ist gegeben durch:

$$g \circ f = \begin{pmatrix} 1 & 2 & 3 \\ 3 & 1 & 2 \end{pmatrix} \circ \begin{pmatrix} 1 & 2 & 3 \\ 2 & 3 & 1 \end{pmatrix} = \begin{pmatrix} 1 & 2 & 3 \\ 1 & 2 & 3 \end{pmatrix} = id,$$

denn: f legt die Kugel von 1 auf 2, und g danach die Kugel von 2 zurück auf 1. f schickt 2 auf 3, und g danach wieder 3 auf 2...

•
$$f = \begin{pmatrix} 1 & 2 & 3 & 4 \\ 3 & 4 & 2 & 1 \end{pmatrix}$$
 und $g = \begin{pmatrix} 1 & 2 & 3 & 4 \\ 3 & 1 & 2 & 4 \end{pmatrix}$
 $f \circ f = \begin{pmatrix} 1 & 2 & 3 & 4 \\ 2 & 1 & 4 & 3 \end{pmatrix}$ $g \circ g = \begin{pmatrix} 1 & 2 & 3 & 4 \\ 2 & 3 & 1 & 4 \end{pmatrix}$
 $g \circ f = \begin{pmatrix} 1 & 2 & 3 & 4 \\ 2 & 4 & 1 & 3 \end{pmatrix}$ $f \circ g = \begin{pmatrix} 1 & 2 & 3 & 4 \\ 2 & 3 & 4 & 1 \end{pmatrix}$.

Also gilt $g \circ f \neq f \circ g \Rightarrow (S_n, 0)$ ist eine **nicht kommutative** Gruppe.

•
$$f = \begin{pmatrix} 1 & 2 & 3 & 4 & 5 \\ 5 & 3 & 1 & 2 & 4 \end{pmatrix}$$
 und $g = \begin{pmatrix} 1 & 2 & 3 & 4 & 5 \\ 1 & 5 & 4 & 2 & 3 \end{pmatrix}$
 $g \circ f = \begin{pmatrix} 1 & 2 & 3 & 4 & 5 \\ 3 & 4 & 1 & 5 & 2 \end{pmatrix}$ $f \circ g = \begin{pmatrix} 1 & 2 & 3 & 4 & 5 \\ 5 & 4 & 2 & 3 & 1 \end{pmatrix}$
 $f \circ f = \begin{pmatrix} 1 & 2 & 3 & 4 & 5 \\ 4 & 1 & 5 & 3 & 2 \end{pmatrix}$ $g \circ g = \begin{pmatrix} 1 & 2 & 3 & 4 & 5 \\ 1 & 3 & 2 & 5 & 4 \end{pmatrix}$

6.2 Ringe

Definition

Ein **kommutativer Ring** (R, \oplus, \odot) besteht aus einer Menge R mit 2 Verknüpfungen \oplus und \odot , so dass

- (R1) (R,\oplus) ist eine kommutative Gruppe
- (R2) Assoziativgesetz: $(a \odot b) \odot c = a \odot (b \odot c)$ fur alle $a, b, c \in R$
- (R3) Distributivgesetz: $a \odot (b \oplus c) = (a \odot b) \oplus (a \odot c)$
- (R4) Kommutativität von \odot : $a \odot b = b \odot a$

Satz

Sei S eine Teilmenge von R, und (R, \oplus, \odot) ein Ring. Dann ist (S, \oplus, \odot) ein Ring (genannt: **Unterring** von (R, \oplus, \odot)), falls

- a) (S, \oplus) ist Untergruppe von (R, \oplus)
- b) Abgeschlossenheit bzgl. \odot : $a, b \in S \Rightarrow a \odot b \in S$

Beispiel:

- 1. $(\mathbb{Z}, +, \cdot)$ ist ein Ring (hier sieht man: (\mathbb{Z}, \cdot) muss keine Gruppe sein! kein Inverses...)
- 2. für alle $m \in \mathbb{Z}$ ist $(m\mathbb{Z}, +, \cdot)$ ist ein Unterring von $(\mathbb{Z}, +, \cdot)$. Beachte: $m\mathbb{Z}$ hat keine 1 (kein neutrales Element) bzgl \cdot .
- 3. $(\mathbb{Z}/m, \oplus, \odot)$ ist ein Ring. Dies folgt im Wesentlichen aus der Tatsache, dass $(\mathbb{Z}, +, \cdot)$ ein Ring ist, und dass beim Rechnen modulo m Restebildung und Rechenoperationen vertauscht werden dürfen. (\longrightarrow freiwillige übungsaufgabe) \mathbb{Z}/m ist kein Unterrring von \mathbb{Z} da $\oplus \neq +$ und $\odot \neq \cdot$.
- 4. $(\mathbb{Q}, +, \cdot), (\mathbb{R}, +, \cdot)$ sind Ringe.

Beispiel: Polynomringe

Beispiel von Polynomen:

$$f(x) = x^5 - x + 1, g(x) = \frac{1}{2}x^2, h(x) = 7$$

Obige Polynome haben reelle Koeffizienten, bzw Koeffizienten in \mathbb{Q} . Man kann nun zwei solche Polynome addieren bzw. multiplizieren. Der Typ der Koeffizienten ändert sich dabei nicht.

Definition

Sei R ein Ring. Dann definieren wir

$$R[x]$$
 = Menge aller Polynome mit Koeffizienten aus R
= $\{a_0 + a_1x + ... + a_n \cdot x^n \mid n \in \mathbb{N}_0 \text{ und } a_0, ..., a_n \in R\}$

Satz

Ist R ein Ring, so ist auch R[x] ein Ring.

Kein Beweis. Hier nur ein Beispiel für $R = \mathbb{Z}/5$ (bzw. $R = \mathbb{Z}$):

$$f(x) = 1 + 2x + x^3 \in \mathbb{Z}/5[x]$$

$$g(x) = 4 + 3x \in \mathbb{Z}/5[x]$$

Abgeschlossenheit bzgl. Multiplikation:

$$f(x) \cdot g(x) = (1 + 2x + x^{3}) \cdot (4 + 3x)$$

$$= (1 \cdot 4) + (1 \cdot 3 + 2 \cdot 4)x + 2 \cdot 3x^{2} + 4 \cdot x^{3} + 3x^{4}$$

$$= 4 + 1 \cdot x + 1 \cdot x^{2} + 4x^{3} + 3x^{4}.$$

(Fasst man f und g als Polynome in $\mathbb{Z}[x]$ auf, dann gilt $f \cdot g = 4 + 11x + 6x^2 + 4x^3 + 3x^4$)

• Abgeschlossenheit bzgl. Addition: Analog in $\mathbb{Z}/5$: $f + g = 0 + 0 \cdot x + x^3 = x^3$ in \mathbb{Z} : $f + g = 5 + 5x + x^3$

Gruppen-Homomorphismen

Definition

• Seien (G,*) und (H,\cdot) Gruppen. Eine Abbildung $f:G\longrightarrow H$ mit

$$f(a*b) = f(a) \cdot f(b)$$

für alle $a, b \in G$ heißt f (Gruppen-)Homomorphismus.

• Sind $(R, +, \cdot)$ und (S, \oplus, \odot) Ringe und gilt für eine Abbildung $f: R \longrightarrow S$, dass

$$f(a+b) = f(a) \oplus f(b)$$
 und
 $f(a \cdot b) = f(a) \odot f(b)$

für alle $a, b \in R$, dann heißt f (Ring-) Homomorphismus.

• Ein bijektiver Homomorphismus heißt **Isomorphismus**. Gibt es einen Isomorphismus $f \cdot R \longrightarrow S$, dann nennt man R und S **isomorph**.

Beispiel:

• $f: \mathbb{Z} \longrightarrow \mathbb{Z}/m\mathbb{Z}$, $a \longmapsto \overline{a}$, ist ein Ringhomomorphismus, da

$$f(a) \oplus f(b) = \overline{a} \oplus \overline{b} = \overline{(a+b)} = f(a+b)$$

 $f(a) \odot f(b) = \overline{a} \odot \overline{b} = \overline{a \cdot b} = f(a \odot b).$

• $f:(\mathbb{Z},+)\longrightarrow (n\mathbb{Z},+), \quad a\longmapsto n\cdot a$ ist ein Gruppenhomomorphismus:

$$f(a+b) = n \cdot (a+b) = n \cdot a + n \cdot b = f(a) + f(b),$$

aber die Abbildung $f\cdot(\mathbb{Z},+,\cdot)\longrightarrow (n\mathbb{Z},+,\cdot)$ ist kein Ringhomomorphismus für $n\neq 1$, da

$$f(a \cdot b) = n \cdot a \cdot b$$
, aber $f(a) \cdot f(b) = (n \cdot a) \cdot (n \cdot b) = n^2 \cdot a \cdot b$

- Sei $f: \mathbb{Z}[x] \longrightarrow \mathbb{Z}[x]$, $p \longmapsto p'$, die Abbildung, die eine Funktion p auf ihre Ableitung abbildet (z.B. $x^3 + 2x + 1 \longmapsto 3x^2 + 2$)
 - f ist ein Gruppenhomomorphismus zwischen $(\mathbb{Z}[x],+)$ und $(\mathbb{Z}[x],+)$, da:

$$f(p+q) = (p+q)' = p'+q' = f(p)+f(q).$$

• f ist aber kein Ringhomomorphismus, da beispielsweise für p = 1 + x und q = 1 - x gilt:

$$f((1+x)(1-x)) = f(1+x^{2}) = -2x, \text{ aber}$$

$$f(1+x) \cdot f(1-x) = 1 \cdot (-1) = -1$$

$$\Rightarrow f((1+x)(1-x)) \neq f(1+x) \cdot f(1-x)$$

6.3 Körper

Definition

Sei K eine Menge mit zwei Verknüpfungen \oplus , \odot , so dass gilt:

- (K1) (K, \oplus, \odot) ist ein kommutativer Ring.
- (K2) $(K\setminus\{0\},\oplus)$ ist eine Gruppe.

Dann nennt man K mit diesen zwei Verknüpfungen einen Körper. In einem Körper schreibt man auch

$$a \odot b^{-1} =: \frac{a}{b}$$

Beispiele

- $(\mathbb{Q}, +, \cdot)$ und $(\mathbb{R}, +, \cdot)$ sind Körper.
- "Der kleinste Körper" = $(\mathbb{Z}/2\mathbb{Z}, \oplus, \odot)$

Wir wissen bereits, dass $\mathbb{Z}/m\mathbb{Z}$ für alle m ein Ring ist, also ist $\mathbb{Z}/2\mathbb{Z}$ ein Ring. Damit es auch ein Körper ist, muss $(\mathbb{Z}/2\mathbb{Z}\{\overline{0}\}=\{\overline{1}\},\odot)$ eine Gruppe sein. $\overline{1}$ ist neutrales Element und gleichzeitig sein eigenens Inverses $\overline{1}^{-1}=\overline{1}$, also eine Gruppe.