

CCOCCUD OPTIMIZED GEOTIFF

Enabling Efficient Cloud Workflows

○ ○ ○								DOOM	M Emacs	
	87654321	0011	2233	4455	6677	8899	aabb	ccdd	eeff	01234567 <mark>8</mark> 9abcdef
	00000000:	4949	2a00	0800	0000	0f00	0001	0300	0100	II*
	00000010:	0000	9702	0000	0101	0300	0100	0000	1b05	
	00000020:	0000	0201	0300	0100	0000	4000	0000	0301	
	00000030:	0300	0100	0000	0100	0000	0601	0300	0100	
	00000040:	0000	0100	0000	1101	0400	1b05	0000	2e15	
	00000050:	0000	1501	0300	0100	0000	0100	0000	1601	
	00000060:	0300	0100	0000	0100	0000	1701	0400	1b05	
	00000070:	0000	c200	0000	1c01	0300	0100	0000	0100	
	00000080:	0000	5301	0300	0100	0000	0300	0000	d885	S
	00000090:	0c00	1000	0000	9a29	0000	af87	0300	2000)
	000000a0:	0000	1a2a	0000	b187	0200	1e00	0000	5a2a	*Z*
	000000b0:	0000	81a4	0200	0400	0000	6e61	6e00	0000	nan
	000000c0:	0000	b814	0000	b814	0000	b814	0000	b814	
	000000d0:	0000	b814	0000	b814	0000	b814	0000	b814	
	000000e0:	0000	b814	0000	b814	0000	b814	0000	b814	
	000000f0:	0000	b814	0000	b814	0000	b814	0000	b814	
	00000100:	0000	b814	0000	b814	0000	b814	0000	b814	
	00000110:	0000	b814	0000	b814	0000	b814	0000	b814	
	00000120:	0000	b814	0000	b814	0000	b814	0000	b814	
	00000130:	0000	b814	0000	b814	0000	b814	0000	b814	
	00000140:	0000	b814	0000	b814	0000	b814	0000	b814	
	00000150:	0000	b814	0000	b814	0000	b814	0000	b814	
	00000160:	0000	b814	0000	b814	0000	b814	0000	b814	
	00000170:	0000	b814	0000	b814		b814	0000	b814	
	00000180:	0000	b814		b814	0000	b814	0000	b814	
	00000190:	0000	b814		b814		b814	0000	b814	
	000001a0:	0000	b814	0000	b814	0000	b814	0000	b814	
	000001b0:	0000	b814	0000	b814	0000	b814	0000	b814	
	000001c0:	0000	b814	0000	b814	0000	b814	0000	b814	
	PCA2_5418	8401.	tiff							

Eugene Cheipesh

echeipesh@azavea.com GitHub: @echeipesh www.azavea.com

Cloud Native Workflows

"Hey, let's not download the whole file every time."

Cloud Native

- Network is between storage and computation
- Storage is chunked and probably Key/Value
- Computation must scale
- Coordination is limited and risky

CCOUD OPTIMIZED GEOTIFF

Cloud Optimized GeoTiff

- Defines an internal structure of GeoTiffs that is optimized for streaming reading from blob storage like S3 or Google Cloud Storage.
- That is, it's best utilized for requests that use
 HTTP GET Range Requests

wiki: CloudOptimizedGeoTIFF

Wiki

Cloud optimized GeoTIFF ¶

Definition

A cloud optimized GeoTIFF is a regular GeoTIFF file, aimed at being hosted on a HTTP file server, whose internal organization is friendly for consumption by clients issuing HTTP GET range request ("bytes: start offset-end offset" HTTP header).

It contains at its beginning the metadata of the full resolution imagery, followed by the optional presence of overview metadata, and finally the imagery itself. To make it friendly with streaming and progressive rendering, we recommand starting with the imagery of the smallest overview and finishing with the imagery of the full resolution level.

More formally, the structure of such a file is:

- TIFF / BigTIFF signature
- IFD (⇒ Image File Directory) of full resolution image
- · Values of TIFF tags that don't fit inline in the IFD directory, such as TileOffsets?, TileByteCounts? and GeoTIFF keys
- Optional: IFD (Image File Directory) of first overview (typically subsampled by a factor of 2), followed by the values of its tags that don't fit inline
- Optional: IFD (Image File Directory) of second overview (typically subsampled by a factor of 4), followed by the values of its tags that don't fit inline
- ..
- Optional: IFD (Image File Directory) of last overview (typically subsampled by a factor of 2^N), followed by the values of its tags that don't fit inline
- Optional: tile content of last overview level
- ...
- · Optional: tile content of first overview level
- Tile content of full resolution image.

Unspecified points

- · size of tile: 256 or 512 pixels are typical however
- compression methods allowed. typically, no compression, DEFLATE or LZW can be used for lossless, or JPEG for lossy. (note that DEFLATE while more efficient than LZW can

How to generate it with GDAL

Cloud Optimized GeoTIFF

An imagery format for cloud-native geospatial processing

Introduction

Why COG?

How it works

Get Started

Implementations

About

A Cloud Optimized GeoTIFF (COG) is a regular GeoTIFF file, aimed at being hosted on a HTTP file server, with an internal organization that enables more efficient workflows on the cloud. It does this by leveraging the ability of clients issuing HTTP GET range requests to ask for just the parts of a file they need.

Learn More

http://www.cogeo.org/

GeoTiff

"A GeoTIFF file is a TIFF 6.0 file, and inherits the file structure as described in the corresponding portion of the TIFF spec. All GeoTIFF specific information is encoded in several additional reserved TIFF tags, and contains no private Image File Directories (IFD's), binary structures or other private information invisible to standard TIFF readers."

TM

Revision 6.0

Final — June 3, 1992

TIFE

- Tagged Image File Format
- Binary image is separated out into "segments"
- Contains metadata in a sequence of "tags"
- Can contain metadata for multiple images in different "image file directories" (IDFs)

GeoTiff Custom Tags

- GeoTiff adds custom tag GeoKeys
 - o non-TIFF keys for CRS map space etc.
- This is how we know where the pixels are on the surface of the earth (the geospatial bit).

GeoTiff Streaming Read

- Step 1: Fetch the header
- Step 2: Decide what segments you want
- Step 3: Read the segments

Internet Engineering Task Force (IETF)

Request for Comments: 7233

Obsoletes: 2616

Category: Standards Track

ISSN: 2070-1721

R. Fielding, Ed. Adobe Y. Lafon, Ed.

W3C J. Reschke, Ed.

greenbytes
June 2014

Hypertext Transfer Protocol (HTTP/1.1): Range Requests

Abstract

The Hypertext Transfer Protocol (HTTP) is a stateless applicationlevel protocol for distributed, collaborative, hypertext information systems. This document defines range requests and the rules for constructing and combining responses to those requests.

Status of This Memo

This is an Internet Standards Track document.

This document is a product of the Internet Engineering Task Force (IETF). It represents the consensus of the IETF community. It has received public review and has been approved for publication by the Internet Engineering Steering Group (IESG). Further information on Internet Standards is available in Section 2 of RFC 5741.

Information about the current status of this document, any errata, and how to provide feedback on it may be obtained at http://www.rfc-editor.org/info/rfc7233.

Request: BBOX Mean

GeoTIFF: All of the above

Header

IFD 0

IFD 1

IFD n

Image 0

Image 1

Header
IFD 0
Image 0
IFD 1
Image 1
IFD 2
Image 2

Header
Image 0
Image 1
Image 2
IFD 0
IFD 1

IFD Image File Directory

COG: IFDs First - Rule #1

TIFF Segments

- Chunks of an image are stored at different locations. This allows for parts of the image to be decompressed and loaded separately.
- There are two methods for segment layout:
 Striped and Tiled

TIFF: Strip Segments

COG: Strip Segments - Bad

TIFF: Tile Segments

COG: Use Tiled Segments - Rule #2

Request: BBOX Mean at 60m

Request: BBOX Mean at 60m

GeoTIFF: Has Overviews

COG: Provide Overviews - Rule #3

COG Rules

- Put IFDs first
- Sort IFDs by resolution
- Use Tiled segments
- Include overviews (in file)

COG Rules Continued?

- Provenance Metadata
- Include Summary Statistics
- File naming convention
- Catalog suggestion

COG "Profiles": Slippy Map

- Restrict CRS as EPSG:3857
- Align GeoTiff segments with slippy tile grid
- Align GeoTiff files with tile boundaries
- Serve tile endpoints directly from COG

COG World Coverage?

"You're going to need more than one GeoTIFF."

EXECUTE: README.md

STAC SpatioTemporal Asset Catalog

GeoTrellis & COGs

COG: Tile Request

COG Tiler

- Application specific catalog
- Reprojection on read
- Memache gives responsiveness
- Raster metadata pushed into files

GeoTrellis Layers

GeoTrellis: Avro Layers

GeoTrellis Avro Layers

- Many small files, one per tile
 - PUT requests get expensive
- Data duplication hazzard
 - Probably not authoritative
- Limited access
 - Requires GeoTrellis code to read

GeoTrellis: COG Layers

GeoTrellis Strucuted COG

- Base zoom tiles are in base GeoTiff layer
- Introduces "DATE_TIME" tag
- Includes VRT for layer files
- GeoTiff segments match tile size and layout
- Additional zoom levels stored in overviews
- Pyramid up when overviews "run out"

GeoTrellis: COG Pyramid

Unstructured COGs

Cloud Native thinking

GeoTrellis Unstructured COG

- Lots of good raster sources are already COG
- They don't have a strict layout though
- Lets "inline" ingest process into the batch job
- Slower but reduces data duplication

COG: Tile Request (Again)

GeoTrellis Unstructured COG

- Requires mechanism to query for raster names
 - WFS, STAC, PostgreSQL, Scan
- COG provies "gradual" wins over GeoTiff
- Reproject on read to match workflow

Coregistration Workflow

- Working with multiple raster layers with differing:
 - CRS, Resolution, Extent
- Must pick the working/target layout
- We can "push-down" this process into IO

Coregisteration Workflow

COGs for GeoTrellis

- Treating GeoTiff as a Key/Value tile store
 - With built in notion level of detail
- Turns an ingest workflow into query workflow
 - Use the metadata to plan the read
- Opens up the results
 - QGIS, GeoServer, GDAL

COGs in General

- GeoJSON of raster formats
- Gradated spec
- Set of best practices
- Driven by implementations

Q: Is this a good idea?

Q: So is this a standard?

