Overview of Riemann Surfaces

Obj. of Thesis

Norio Kosaka

Department of Economics, Mathematics and Statistics Birkbeck, University of London

22 September 2023

1/3

Outline

- ► Objective of Thesis
- ► Riemann surfaces
- ► Uniformisation theorem
- ► Fuchsian groups
- ► Dessins d'Enfants

Outline

- Objective of Thesis
- ► Riemann surfaces
- ► Uniformisation theorem
- ► Fuchsian groups
- Dessins d'Enfants

Obj. of Thesis

Properly define Riemann Surfaces to;

- ▶ (i) State the Uniformisation Theorem to classify the surfaces
- (ii) Determine / Study their automorphism groups and their importance
- ▶ (iii) Study the geometric representation of critical points

- ▶ Objective of Thesis
- Riemann surfaces
- ► Uniformisation theorem
- ► Fuchsian groups
- Dessins d'Enfants

Start with reviewing a couple of concepts.

Recall: Atlas

Obj. of Thesis

A set of charts $\mathcal{A} := \{(U_i, \phi_i) \mid \phi_i : U_i \to D \subset \mathbb{C}\}$ is called an atlas on a surface **R** if the following hold: (i) $\bigcup_{(U_i, \phi_i) \in \mathcal{A}} U_i = R$, and (ii) transition among charts in the atlas is analytic.

When multiple atlases have analytic transition functions, then they are called **compatible**.

Norio Kosaka Overview of Riemann Surfaces 6/32

The compatibility of atlases forms an equivalence relation (Exercise 4F of [JS87]) that forms the complex structure on R as follows;

Def: Conformal Structure

Obj. of Thesis

A **conformal structure** on R is an atlas \mathcal{A} on \mathbf{R} which is maximal: if (ψ, V) is a chart on R such that, for any $(\phi, U) \in \mathcal{A}$, if it is compatible with (ψ, V) , then $(\psi, V) \in \mathcal{A}$.

We now have all the concepts we need to define Riemann surfaces.

Def: Riemann Surfaces

A Riemann surface is a pair (R, A), where A is a conformal structure on R.

Fuchsian groups

Example: Riemann Sphere

A surface $S = \Sigma := \mathbb{C} \cup \{\infty\}$ is homeomorphic to the sphere S^2 with stereographic projection.

Suppose two charts: **Identity map** $(\phi_1 : z \mapsto z \text{ on } \mathbb{C})$ and **Reciprocal map** $(\phi_2 : z \mapsto 1/z \text{ with } \phi_2(\infty) = 0 \text{ on } \Sigma \setminus \{0\}).$ We have $(\phi_2 \circ \phi_1^{-1})(z) = 1/z$ which is analytic on $\phi_1(U_1 \cap U_2) = \mathbb{C} \setminus \{0\}$ and similarly for $(\phi_1 \circ \phi_2^{-1})$. Thus, this is a Riemann surface, called **Riemann sphere**.

To the next...

Obj. of Thesis

Now, we will take a look at cases where Riemann surfaces are simply connected and the classification results of those surfaces.

- 1. Analytic continuation
- 2. Covering space

Obj. of Thesis

10/32

(1) Analytic continuation and Example

Analytic continuation extends the representation of a function in one region of the complex plane into another region.

Ex: For
$$z = re^{i\theta}$$
, let $f(z) = log(z) = ln r + i(\theta + 2n\pi)$ with $n \in \mathbb{Z}$.

Continuation on a simply connected region E is path-independent (w/h common start/end points) by **Monodromy theorem**. So we have a single-valued analytic function on E over different function elements

Norio Kosaka Overview of Riemann Surfaces 10/32

(2) Covering of a Riemann surface: Example

Let $f(z) = z^n$. We have f(0) = 0 with multiplicity n, and as $f'(z \neq 0) \neq 0$, there are no other branch-points in \mathbb{C} . Similarly for $\infty \in \Sigma$, it has the multiplicity of n and thus a branch-point.

Hence, *n*-sheets come together at branch-points of 0 and ∞ .

Figure: When n = 2.

11/3

Obj. of Thesis

Indeed, for connected surfaces, the covering spaces turn out to be simply connected as promised.

Thm: Regular covering space; ((10.19) of [Arm13])

Every connected surface S has a covering surface (\tilde{S}, p) where p is a covering map such that \tilde{S} is simply connected.

nann Surfaces 12/32

Outline

- ▶ Objective of Thesis
- ► Riemann surfaces
- Uniformisation theorem
- ► Fuchsian groups
- Dessins d'Enfants

Classify simple regions: Riemann Mapping Thm

Conformal equivalence

A **conformal equivalence** is an analytic bijection of Riemann surfaces $f: R \to S$ with any analytic inverse $f^{-1}: S \to R$.

Ex: Möbius transformations.

Riemann Mapping Theorem classifies all simply connected open subsets of $\mathbb C$ up to conformal equivalence.

Riemann Mapping Theorem (Corollary 16.15 of [Wil20])

If S is a simply connected open subset of $\mathbb C$, then either $S=\mathbb C$ or else $S\simeq \mathbb D$ (Unit disc).

Norio Kosaka Overview of Riemann Surfaces 14/32

Statement / Insight of Uniformisation theorem

Uniformisation Theorem (Theorem 4.17.2 of [JS87])

Every simply connected Riemann surface is conformally equivalent to one of $\Sigma = \mathbb{C} \cup \{\infty\}$ (Riemann sphere), \mathbb{C} (Complex plane), or \mathbb{D} (Disc).

Remark

The three Riemann surfaces are **not conformally equivalent** to each other;

- $ightharpoonup \Sigma$ is compact, so not even homeomorphic to the other two,
- $ightharpoonup \mathbb{D}$ is bounded as a disc and by Liouville's theorem any analytic map $\mathbb{C} \to \mathbb{D}$ is constant. Thus, not conformally equivalent as not bijection.

15/3: 15/32

References

16/32

Uniformisation and Coverings

Obj. of Thesis

Relationship between a Riemann surface and the covering space is indeed profound.

Corollary 16.5 of [Wil20] or Theorem 4.19.5 of [JS87].

Every Riemann surface R is conformally equivalent to a quotient $R \simeq \tilde{R}/G$ where \tilde{R} is one of Σ, \mathbb{C} or \mathbb{D} , and G is a (properly discontinuous) group of conformal equivalences (automorphisms) of \tilde{R} .

Thus, it is important to determine the automorphism groups of the Riemann surfaces to study Uniformisation theorem.

Norio Kosaka Overview of Riemann Surfaces 16/32

Automorphism groups

Following shows the classification of automorphism groups.

Thm 4.17.3 of [JS87]

- **1.** Aut(Σ) = PSL(2, \mathbb{C}) (Möbius transformations),
- **2.** Aut(\mathbb{C}) = { $z \mapsto az + b \mid a, b \in \mathbb{C}, a \neq 0$ } (Linear transf.),
- **3.** Aut(\mathbb{H}) = PSL(2, \mathbb{R}) where \mathbb{H} is the upper half-plane.

Remark

Obj. of Thesis

 \mathbb{D} (Disc) and \mathbb{H} are conformally equivalent via a Möbius transformation $T \in \mathsf{PSL}(2,\mathbb{C}) : \mathbb{H} \to \mathbb{C}$ such that $z \mapsto \frac{z-i}{z+i}$ (Example (1) of Sec4.17 of [JS87]).

Automorphism groups

Obj. of Thesis

In fact, we can find a stronger result helping us to study of classifications of Riemann surfaces.

Mutual Exclusivity: Prop. 16.10 of [Wil20]

A Riemann surface R is uniformised by at most one of Σ , \mathbb{C} and \mathbb{D} .

Now let us focus on the upper half-plane and the associated actions, i.e., the automorphisms group $PSL(2,\mathbb{R})$, namely Fuchsian groups.

> 18/32 18/32

References

- ▶ Objective of Thesis
- ► Riemann surfaces
- ► Uniformisation theorem
- ► Fuchsian groups
- Dessins d'Enfants

What's $PSL(2,\mathbb{R})$?

Intuitively, we can think of Möbius transformations in $PSL(2, \mathbb{C})$ with the Euclidean distance.

Möbius transformations

It is a complex rational function of the form; $f(z) = \frac{az+b}{cz+d}$ for $z, a, b, c, d \in \mathbb{C}$ such that $ad - bc \neq 0$.

Remark

Möbius transformations can take various forms:

- ► Translation: f(z) = b + z (a = 1, c = 0, d = 1),
- ▶ Rotation: f(z) = az (b = 0, c = 0, d = 1),
- ► Inversion: f(z) = 1/z (a = 0, b = 1, c = 1, d = 0),

Caution: $PSL(2,\mathbb{R})$ acts with the distance defined on a *Hyperbolic* space model (\mathbb{H}) .

Norio Kosaka Overview of Riemann Surfaces 20/32

Preliminary to Fuchsian groups

Obj. of Thesis

Def: Properly discontinuous actions

Let a group G act by homomorphism on a space X. The action is said to be **properly discontinuous** if, for every compact $K \subseteq X$, the set $\{g \in G \mid g(K) \cap K \neq \emptyset\}$ is finite.

For instance, if $\Omega = \Omega(\omega_1, \omega_2)$ is a lattice in $\mathbb C$ then the action of Ω on \mathbb{C} by **translation** is properly discontinuous. By **tessellation**, we can generate the torus (a quotient space of \mathbb{C}/Ω)

Obj. of Thesis

Fuchsian groups

Fuchsian groups

A subgroup of $PSL(2,\mathbb{R})$ that acts properly discontinuously on \mathbb{H} is called a **Fuchsian group**.

Examples of Fuchsian groups

- Integer translations $T(z) = \{z + n \mid n \in \mathbb{N}\}$ form a Fuchsian group.
- More generally, as $SL(2,\mathbb{Z}) \subset SL(2,\mathbb{R})$, $PSL(2,\mathbb{Z})$ (**Modular group**) is a subgroup of $PSL(2,\mathbb{R})$ and hence is a Fuchsian group.

22/32 Norio Kosaka Overview of Riemann Surfaces

Fuchsian groups and Uniformisation Theorem

Similar to the quotient space of the torus (\mathbb{C}/Ω) , we can define a quotient space \mathbb{H}/Γ with $\prod: \mathbb{H} \to \mathbb{H}/\Gamma$ s.t. $z \mapsto [z]_{\Gamma}$ and $[z]_{\Gamma}$ is the Γ -orbits.

The following result shows that the quotient-spaces of Fuchsian groups are Riemann surfaces.

Thm 5.9.1 of [JS87]

Obj. of Thesis

 \mathbb{H}/Γ is a connected Riemann surface with $\prod: \mathbb{H} \to \mathbb{H}/\Gamma$ being holomorphic.

In summary, the problem of classifying the Riemann surfaces uniformised by $\mathbb D$ involves first classifying Fuchsian groups, and then understanding their properly discontinuous actions.

Norio Kosaka Overview of Riemann Surfaces 23/32

Outline

- ► Objective of Thesis
- ► Riemann surfaces
- ► Uniformisation theorem
- ► Fuchsian groups
- Dessins d'Enfants

Introduction

Obj. of Thesis

Now, we turn our attention to interpreting the critical points of a Riemann surface to develop more intuition.

Recall: Critical points

A **critical point** is a point in the domain of the function where the function is either not differentiable or the derivative is equal to zero.

Norio Kosaka Overview of Riemann Surfaces 25/32

Obj. of Thesis

In the following, "a compact Riemann surface S is defined over $\overline{\mathbb{Q}}$ " (Algebraic closure of \mathbb{Q}) means the corresponding algebraic curve is defined over $\overline{\mathbb{Q}}$.

Belyi's theorem: Thm 5.1 of [Pos+14] and Sec.2 of [Pér18]

A compact Riemann surface S can be defined over $\bar{\mathbb{Q}}$ if and only if there exists a covering $\beta:S\to\Sigma$ unramified outside of $\{0,1,\infty\}$.

Belyi map

A rational function $\beta: S \to \Sigma$ which has at most three critical values $\{0,1,\infty\}$ is called a **Belyi map** where S is a compact Riemann surface. (S,β) is called a *Belyi pair*.

Example: $\beta(z) = f(z) = z^n$ from the slide.11.

Definition of Dessins

In the following, imagining a bipartite graph on a surface would be useful.

For a Belyi map $\beta: S \to \Sigma$, we define the preimages;

$$\beta^{-1}(\{0\}) \qquad \beta^{-1}(\{1\}) \qquad \beta^{-1}(\{[0,1]\})$$

$$\downarrow \qquad \qquad \downarrow$$

$$\{\text{black vertices}\} \qquad \{\text{white vertices}\} \qquad \{\text{edges}\}$$

The bipartite graph $\Delta_{\beta} = (V, E)$ with the coloured vertices and the edges (called *Hypermap*) is called a **Dessin d'Enfant**.

Intuitively, we embed the graph on the surface S in 3-dimension to visualise.

Norio Kosaka Overview of Riemann Surfaces 27/32

Example: Computing a Dessin

Task: Figure out the underlying Belyi map given the following figure with critical points and one unknown (Vertex a). Note that the black vertices correspond to the fibre $f^{-1}(\{0\})$.

Observe that:

Obj. of Thesis

- Vertex 1 has degree 3 and Vertex a has degree 1,
- ▶ Locations of Vertices $0, \infty$ imply the pole at x = 0 or $x = \infty$.

We can infer the form of the underlying Belyi map f as;

$$f(x) = K \frac{(x-1)^3(x-a)}{x}$$
 for a constant K .

28/32 Norio Kosaka Overview of Riemann Surfaces

Example: Computing a Dessin

Define the white vertices of f on this graph by observing;

- ▶ f 1 forms (a) roots on $f^{-1}(\{1\})$,
- ► As *bipartite*, two white vertices cannot be on the same edge!

Thus, the placements of white vertices are as follows;

And this implies the *double* roots, so we obtain:

$$f(x) - 1 = K \frac{(x^2 + bx + c)^2}{x} \text{ for } K, b, c \in \mathbb{R}.$$
 (1)

29/32

29/32

Example: Computing a Dessin

Substituting the definition of f(x) into (1) and working out the equation, we get a=9, b=-6, c=-3, and K=-1/64. Thus,

$$f(x) = -\frac{(x-1)^3(x-9)}{64x}, \quad f(x) - 1 = -\frac{(x^2 - 6x - 3)^2}{64x}$$

The white vertices are the roots of $x^2 - 6x - 3$, that is $3 \pm 2\sqrt{3}$.

Let us conclude the talk by introducing one result.

The following result states our intuition from the previous example;

Grothendieck correspondence (Thm 6.7 of [Pos+14])

There is a one-to-one correspondence between Dessins and Belyi pairs.

Obj. of Thesis

References

[JS87] Gareth A Jones and David Singerman. Complex functions: an algebraic and geometric viewpoint. Cambridge university press, 1987.

[Arm13] Mark Anthony Armstrong. Basic topology. Springer Science & Business Media, 2013.

[Pos+14] DPA van der Post et al. "Riemann surfaces and dessins d'enfants". B.S. thesis, 2014.

Javier Alcaide Pérez, "Riemann surfaces and dessin [Pér18] d'enfants". PhD thesis, 2018.

[Wil20] Henry Wilton. Lecture notes in Riemann Surfaces. 2020.

32/32 Norio Kosaka Overview of Riemann Surfaces