Documentation and screenshots

Screenshots:

- EDA performed on the datasets

- Random Forest Classification metrics and overall metric, ROC curve

- Accuracy model comparison

- Metrics for each model side by side

os D	Metrics	for Each	Model:								
		True Posit	ives (TP)			ue Negativ					
∃	- 1.		GRU	KNN F	RFC		gru kn	N RFC			
	Fold		10	0	^		22 2	2 20			
	0 1 1 2		10 11	8 11	9 9		33 3 32 3	2 29 2 31			
	2 3		14	14	9		29 2				
	3 4		12	11	13			7 29			
	4 5		6	4	15			1 29			
	5 6		16	11	9		27 2				
	6 7		4	7	12			4 30			
	7 8		10	6	12			2 25			
	8 9		10	6	8		32 2				
	9 10		13	11	8		27 2	4 35			
		False Posi	tives (FP)		F	alse Nemat	ives (FN)		ErrorR	2ta \	
		14136 1031		KNN		acse Negat	GRU			RFC	
	Fold										
	0 1		5		8		6		0.296	296	
	1 2		5		8		6		0.259	259	
	2 3		3	3	7		8		0.314		
	3 4		9	9	2		6		0.222		
	4 5 5 6		5 6		4		11		0.185		
	67		1		1 5		5 14		0.148 0.222		
	7 8		4		4		4		0.301		
	8 9		3		7		8		0.320		
	9 10		1		3		12		0.188		
		BACC				TSS				HSS	\
	5.14	GRU	KNN		RFC	GRU	KNN		RFC	GRU	
	Fold 0 1	0 746711	0.671053	0 6	56598	0.493421	0.342105	A 21	3196	0.001687	
	1 2		0.755962		97436					0.001684	
	2 3		0.771307		36842					0.001725	
	3 4		0.680556		50351	0.416667				0.001723	
	4 5		0.536566		96537					0.000921	
	5 6		0.655844		58092	0.580087			6184	0.001648	
	6 7	0.597222	0.666667		14361	0.194444		0.48		0.001587	
	7 8					0.611722				0.002241	
	8 9				22222		-0.009524			0.001807	
	9 10	0.742143	0.648571	0.72	27193	0.484286	0.297143	0.45	4386	0.001774	

0

Steps to run the program

- Installation Instructions
 - Python is required
 - Required Python packages: pandas, numpy, matplotlib, seaborn, scikit-learn, keras, tensorflow
- Installation steps
 - On terminal download Python packages: pandas, numpy, matplotlib, seaborn, scikit-learn, keras, tensorflow
 - They can be installed using pip
 - Ex: pip install pandas numpy matplotlib seaborn scikit-learn keras tensorflow
- Running the program
 - Navigate to where the program files are
 - Execute the main Python script FinalProject_Python.py.py
- Data requirements
 - The program requires a dataset in CSV format. To download the dataset used for this program use the following link:
 - https://www.kaggle.com/datasets/akshaydattatraykhare/diabetes-dataset
 - o Ensure the dataset is stored in the directory within the project folder.
- Expected output
 - After running the program, the program will generate predictions for the diabetes dataset using three different machine learning models. These models are: Random forest, KNN, and GRU.
 - Output includes performance metrics such as accuracy, precision, recall, F1score, and ROC curves for each model.

Experimental results

- Accuracy comparison between the three models

- Random Forest

o Classification performance

	Fold	True Positives (TP)	True Negatives (TN)	False Positives (FP)	False Negatives (FN)	True Positive Rate (TPR)	True Negative Rate (TNR)	False Positive Rate (FPR)	False Negative Rate (FNR)	Precision	FlMeasure	Accuracy	Recall	ErrorRate	BACC	TSS	HSS
0			29			0.529412	0.783784	0.216216	0.470588	0.529412	0.529412	0.703704	0.529412	0.296296	0.656598	0.313196	0.000996
1			31			0.600000	0.794872	0.205128	0.400000	0.529412	0.562500	0.740741	0.600000	0.259259	0.697436	0.394872	0.001256
2			28			0.473684	0.800000	0.200000	0.526316	0.562500	0.514286	0.685185	0.473684	0.314815	0.636842	0.273684	0.000900
3			29			0.565217	0.935484	0.064516	0.434783	0.866667	0.684211	0.777778	0.565217	0.222222	0.750351	0.500701	0.001712
4			29			0.714286	0.878788	0.121212	0.285714	0.789474	0.750000	0.814815	0.714286	0.185185	0.796537	0.593074	0.001784
5						0.562500	0.973684	0.026316	0.437500	0.900000	0.692308	0.851852	0.562500	0.148148	0.768092	0.536184	0.002437
6			30			0.631579	0.857143	0.142857	0.368421	0.705882	0.666667	0.777778	0.631579	0.222222	0.744361	0.488722	0.001554
7			25			0.500000	0.862069	0.137931	0.500000	0.750000	0.600000	0.698113	0.500000	0.301887	0.681034	0.362069	0.001223
8			28			0.444444	0.800000	0.200000	0.555556	0.533333	0.484848	0.679245	0.444444	0.320755	0.622222	0.244444	0.000858
9	10	8	35	3	7	0.533333	0.921053	0.078947	0.466667	0.727273	0.615385	0.811321	0.533333	0.188679	0.727193	0.454386	0.001967

o Overall classification performance

	overall_tp	overall_tn	overall_fp	overall_fn	overall_tpr	overall_tnr	overall_fpr	overall_fnr	overall_precision	overall_f1_measure	overall_accuracy
0	10.4	30.1	4.9	8.3	0.555446	0.860688	0.139312	0.444554	0.689395	0.609962	0.754053

- KNN

o Classification performance

Fold	True Positives (TP)	True Negatives (TN)	False Positives (FP)	False Negatives (FN)	True Positive Rate (TPR)	True Negative Rate (TNR)	False Positive Rate (FPR)	False Negative Rate (FNR)	Precision	FlMeasure	Accuracy	Recall	ErrorRate	BACC	TSS	HSS
1					0.500000	0.842105	0.157895	0.500000	0.571429	0.533333	0.740741	0.500000	0.259259	0.671053	0.342105	0.001222
2		32			0.647059	0.864865	0.135135	0.352941	0.687500	0.666667	0.796296	0.647059	0.203704	0.755962	0.511924	0.001684
3		29			0.636364	0.906250	0.093750	0.363636	0.823529	0.717949	0.796296	0.636364	0.203704	0.771307	0.542614	0.001725
4		27			0.611111	0.750000	0.250000	0.388889	0.550000	0.578947	0.703704	0.611111	0.296296	0.680556	0.361111	0.001062
5					0.235294	0.837838	0.162162	0.764706	0.400000	0.296296	0.648148	0.235294	0.351852	0.536566	0.073132	0.000332
6		26			0.523810	0.787879	0.212121	0.476190	0.611111	0.564103	0.685185	0.523810	0.314815	0.655844	0.311688	0.000962
7		34			0.388889	0.944444	0.055556	0.611111	0.777778	0.518519	0.759259	0.388889	0.240741	0.666667	0.333333	0.001646
8		32			0.428571	0.820513	0.179487	0.571429	0.461538	0.44444	0.716981	0.428571	0.283019	0.624542	0.249084	0.000958
9					0.333333	0.657143	0.342857	0.666667	0.333333	0.333333	0.547170	0.333333	0.452830	0.495238	-0.009524	-0.000030
10		24		14	0.440000	0.857143	0.142857	0.560000	0.733333	0.550000	0.660377	0.440000	0.339623	0.648571	0.297143	0.001043

o Overall Classification performance

overall_tp	overall_tn	overall_fp	overall_fn	overall_tpr	overall_tnr	overall_fpr	overall_fnr	overall_precision	overall_f1_measure	overall_accuracy
8.9	29.0	6.1	9.7	0.474443	0.826818	0.173182	0.525557	0.594955	0.520359	0.705416

- GRU

Classification performance

Fold	True Positives (TP)	True Negatives (TN)	False Positives (FP)	False Negatives (FN)	True Positive Rate (TPR)	True Negative Rate (TNR)	False Positive Rate (FPR)	False Negative Rate (FNR)	Precision	FlMeasure	Accuracy	Recall	ErrorRate	BACC	TSS	HSS
1		33			0.625000	0.868421	0.131579	0.375000	0.666667	0.645161	0.796296	0.625000	0.203704	0.746711	0.493421	0.001687
2		32			0.647059	0.864865	0.135135	0.352941	0.687500	0.666667	0.796296	0.647059	0.203704	0.755962	0.511924	0.001684
3		29			0.636364	0.906250	0.093750	0.363636	0.823529	0.717949	0.796296	0.636364	0.203704	0.771307	0.542614	0.001725
4		27			0.666667	0.750000	0.250000	0.333333	0.571429	0.615385	0.722222	0.666667	0.277778	0.708333	0.416667	0.001203
5		32			0.352941	0.864865	0.135135	0.647059	0.545455	0.428571	0.703704	0.352941	0.296296	0.608903	0.217806	0.000921
6					0.761905	0.818182	0.181818	0.238095	0.727273	0.744186	0.796296	0.761905	0.203704	0.790043	0.580087	0.001648
7		35		14	0.222222	0.972222	0.027778	0.777778	0.800000	0.347826	0.722222	0.222222	0.277778	0.597222	0.194444	0.001587
8		35			0.714286	0.897436	0.102564	0.285714	0.714286	0.714286	0.849057	0.714286	0.150943	0.805861	0.611722	0.002241
9		32			0.555556	0.914286	0.085714	0.444444	0.769231	0.645161	0.792453	0.555556	0.207547	0.734921	0.469841	0.001807
10	13	27	1	12	0.520000	0.964286	0.035714	0.480000	0.928571	0.666667	0.754717	0.520000	0.245283	0.742143	0.484286	0.001774

Overall classification performance

overall_tp	overall_tn	overall_fp	overall_fn	overall_tpr	overall_tnr	overall_fpr	overall_fnr	overall_precision	overall_f1_measure	overall_accuracy
10.6	30.9	4.2	8.0	0.5702	0.882081	0.117919	0.4298	0.723394	0.619186	0.772956

Conclusion

Based on the classification performances, it can be seen that the algorithm GRU had the best performance with an overall accuracy of 77.29%, followed by Random Forest with an overall accuracy of 75.40%, and finally KNN with an accuracy of 70.54%.

GITHUB Link:

https://github.com/BSantiagoP/Data-Mining-Final-Project/blob/main/Final_Project_Data_Mining.ipynb