1 Волновое уравнение

1 Классификация уравнений второго порядка

Выглядят так

$$\mathcal{L}[u] = \sum_{i,j} A^{ij} \partial_{ij}^2 u + \sum_i B^i \partial_i u + Cu = 0$$

В зависимости от собственных чисел A классифицируются

эллиптический
$$\Rightarrow$$
 $\forall i:: \Lambda_i>0$ параболический \Rightarrow $\exists j: \Lambda_j=0, \quad \forall i\neq j:: \Lambda_i>0$ гиперболический \Rightarrow $\exists j: \Lambda_i<0, \quad \forall i\neq j:: \Lambda_i>0$

И их канонические формы

$$\square u = 0 \quad \Rrightarrow \quad$$
 волновое уравнение

$$\Delta u = 0 \implies$$
 уравнение Лапласа

$$(-\partial_t + a^2 \Delta) u = 0 \quad \Rightarrow \quad$$
уравнение теплопроводности

2 Характеристические поверхности

Здесь непросто, потому что обычно характеристики определяют для уравнений первого порядка. А тут нужно как-то факторизовать.

Впрочем, можно сказать, что характеристическая поверхность — $(w_x,Aw_x)=0$ Здесь $\xi=w(x,y)$, и для тех типов уравнений, что мы рассматриваем, верно

$$\triangleright \omega \equiv \text{const}$$

 $\,\vartriangleright\,$ при замене переменных $\xi=\omega(x,y)$ член при $u_{\xi\xi}$ зануляется 1

3 Волновое уравнение

Уравнение и начальные условия:

$$u_{tt} - a^2 u_{xx} = 0$$

$$u(x,0) = \varphi_0(x)$$

$$u_t(x,0) = \varphi_1(x)$$

Решение Даламбера

$$u(x,t) = \frac{1}{2} \left(\varphi_0(x - at) + \varphi_0(x + at) + \frac{1}{a} \int_{x-at}^{x+at} \varphi_1(\xi) d\xi \right)$$

4 Принцип Дюамеля

Основная мысль в том, чтобы научиться получать из решения однородного уравнения решение неоднородного неочевидным способом.

1.
$$\square P = 0, P(x,t,t) = 0, P_t(x,t,t) = f(x,t)$$
 (если существует)

2.
$$w = \int_0^t P(x, t, t') dt'$$

3.
$$\Box w = f(x,t)$$

Для волнового уравнения $P=rac{1}{2a}\int\limits_{x-a(t-t')}^{x+a(t-t')}f(\xi,t')\,\mathrm{d}\xi$

5 Энергетическое неравенство

<+картиночка+>

1. Ω_t — срез конуса причинности (характеристическая поверхность волнового уравнения).

2.
$$E[u] = u_t^2 + a^2 u_x^2$$

Само энергетическое неравенство

$$\int_{\Omega_0} E[u] \, \mathrm{d}x \geqslant \int_{\Omega_t} E[u] \, \mathrm{d}x$$

Отсюда можно заполучить единственность решения волнового уравнения.

$\mathbf{6}$ Формула Кирхгофа (\mathbb{R}^3)

$$u(x,t) = t \int_{\mathcal{B}_{at}(x)} \varphi_1(y) \, dS + \frac{\partial}{\partial t} \left(t \int_{\mathcal{B}_{at}(x)} \varphi_0(y) \, dS \right)$$

Здесь видно, что что возмущения (начальные) влияют на решение только будучи на границе конуса прчинности. Получается, что волна не «запоминает» своё прошлое. То есть, возмущение приходит с волновым фронтом и уходит с ним.

Это не принцип Гюйгенса-Френеля (тот про функцию Грина), но тоже принцип Гюйгенса.

7 Формула Пуассона (\mathbb{R}^2)

$$u(x,t) = \frac{t^2}{2} \oint_{\mathcal{B}_{at}(x)} \frac{\varphi_1(y)}{\sqrt{(at)^2 - |x - y|^2}} \, \mathrm{d}y + \frac{\partial}{\partial t} \left(\frac{t^2}{2} \oint_{\mathcal{B}_{at}(x)} \frac{\varphi_0(y)}{\sqrt{(at)^2 - |x - y|^2}} \, \mathrm{d}y \right)$$

Здесь возмущение «чувствуется» даже после прохождения фронта. В каком-то смысле оно «размывается». Видимо, это и есть упомянутая диффузия?

2 Теплопроводность

1 Вывод уравнения

- 1. Уравение неразрывности: $u_t = -\operatorname{div} \mathbf{F}$
- 2. Связь потока с текущим веществом $F \propto -\operatorname{grad} u$

$$u_t + a^2 \Delta u = 0$$

Характерные множества

параболический цилиндр $(Q_T) \Rightarrow \Omega \times (0,T), \ \Omega \subset \mathbb{R}^n$ параболическая граница $(\partial' Q_T) \Rightarrow (\Omega \times \{0\}) \cup \partial \Omega \times [0;T]$

Для удобства $R_T := Q_T(\Omega = \mathbb{R}^n)$.

Разные задачи:

$$u \in C^{2}(\mathbb{R}^{n}) \cap C^{1}(0;T) \cap C(\partial'R_{T}), \quad u(x,0) = \varphi \quad (1)$$

$$u \in C^{2}(\Omega) \cap C^{1}(0;T) \cap C(\partial'Q_{T}), \quad u|_{\partial'\Omega_{T}} = \varphi \quad (2)$$

2 Закон сохранения

При довольно мутных условиях (что-то вроде в меру быстрого убывания u к бесконечности)

$$\mathcal{U}(t,R) := \int_{\mathcal{B}_R(0)} u(x,t) \, \mathrm{d}x = \mathrm{const}$$

3 Ограниченный принцип максимума

$$\inf_{\partial' Q_T} u(x,t) \leqslant u(x,t) \leqslant \sup_{\partial' Q_T} u(x,t) \quad (\mathbf{B} \ Q_T)$$

4 Принцип максимума в полупространстве

Пусть u ограничена сверху²

$$\inf_{\mathbb{R}^n} u(x,t) \leqslant u(x,t) \leqslant \sup_{\mathbb{R}^n} u(x,t)$$

5 Единственность

кажется, это очевидно следует из 3, 4.

6 Автомодельные решения

$$\triangleright \xi = \frac{x}{\sqrt{t}}$$

$$v(\xi) = c \int_0^{\xi} e^{-\xi^2/4a^2} d\xi$$

7 Функция источника (одномерье)

$$u(x,t) = \frac{1}{2a\sqrt{\pi t}} e^{-\frac{x^2}{4a^2t}}$$

8 Функция источника (многомерье)

$$G(x,t) = \frac{1}{(2a\sqrt{\pi t})^n} e^{-\frac{|x|^2}{4a^2t}}$$

9 Свойства функции источника

Заметки

- У нас было всё наоборот, но так ещё непонятней что происходит
- 2 в Эвансе $\leq Ae^{a|x|^2}$, например