

Maschinelles Lernen – Einführung

Anton Winschel

MASCHINELLES LERNEN

- > Libraries, Frameworks, Cloud-Services
 - > Apple Core ML, Google TensorFlow, Amazon ML, Azure ML, ...
- > Hardwaremodule
 - Apple iPhone X: Neural Engine Chip
 - > CPU, GPU, TPU (Tensor Processing Unit)
- > Anwendungen
 - > Recommendersysteme (Web-Suche, Netflix, Amazon, ...)
 - > Intelligente Bots
 - > Intelligente Features (Schrittzähler, Fortschrittsanzeige, ...)

WAS IST MASCHINELLES LERNEN?

- > Generierung von Wissen aus Erfahrung
 - > Erfahrung: Lernen aus Beispieldaten
 - > Wissen: Erkennen von Mustern und Gesetzmäßigkeiten in Daten
- > Ursprung: Stochastische Optimierung

MASCHINELLES LERNEN – FORMALE DEFINITION

$$f(x,o)+e=y$$

f Abbildung

 $x \in X$ Eingabedaten

 $y \in Y$ Ausgabedaten

 $o \in \Omega$ Parameter der Abbildung

e Fehler der Abbildung

Ziel:

- 1. Finde o_i , sodass e_i minimal ist (Optimierungsproblem)
- 2. f soll auf realistische unbekannte Daten generalisieren

GRUNDBEGRIFFE

f(x,o)+e=y

Feature

- \rightarrow Eigenschaft von x, die sich mathematisch ausdrücken lässt
- > Beispiel: Objekterkennung

Original

Kanten

Frequenzen

Keypoints

Segmentierung

Farbverteilung

Featureraum und Entscheidungsgrenzen

- > Hochdimensionaler Raum
- Maschinelles Lernen: aus Stichproben die Struktur eines hochdimensionalen Raums erkennen

MASCHINELLES LERNEN - KOMPLEXITÄT

$$f(x,o)+e=y$$

 \geq Zusammenhang zwischen x und y (linear, nichtlinear)

 \rightarrow Dimension von x und y

ALGORITHMEN - SUPPORT VEKTOR MASCHINEN

$$f(x,o)+e=y$$

- Xlassifikation
- Regression

ALGORITHMEN - NEURONALE NETZE

Universales Approximationstheorem:

Ein neuronales Netz mit nur einer Zwischenschicht kann jede Funktion beliebig genau approximieren

ALGORITHMEN - NEURONALE FALTUNGSNETZE

Rohdaten

Feature Berechnung

Klassifikation/Regression

ALGORITHMEN – REKURRENTE NEURONALE NETZE

$$f(x,o)+e=y$$

- Zeitliche Vorhersage
 - > Autovervollständigung von Texteingaben

ALGORITHMEN - AUTOENCODER

$$f(x,o)+e=y$$

> Filter

- > Kompression
- > Graustufenbilder → Farbbilder
- > niedrige Auflösung → höhere Auflösung

AKTUELLE SCHWIERIGKEITEN UND PROBLEME

- > Algorithmische Schwächen
 - > Abhängigkeit vom Trainingsdatensatz (realistisch, Ausreißer)
 - > Trainingsdauer
 - > Lokale Minima
 - Viele Parameter, die Erfahrung benötigen (oder langes Fine-Tuning)

> Geometrische Schwächen

ALGORITHMISCHE SCHWÄCHEN

Viola Jones Detektor

GEOMETRISCHE SCHWÄCHEN

Orthogonale Projektion auf Entscheidungsgrenzen

 $\boldsymbol{\chi}$

$$x + r$$

$$f(x) = "Wal"$$

$$f(x+r) = "Schildkr"$$

GEOMETRISCHE SCHWÄCHEN

Daten jenseits von Entscheidungsgrenzen

GOOGLE DEEP DREAM

AKTUELLE TRENDS

- > Trainingsdaten sammeln
 - > Synthetische Daten
 - > Crowdsourcing
 - > Pre-Training
- > Features nicht selbst bestimmen, sondern lernen
 - > SVM → Faltungsnetze
- > CPU → GPU → TPU + Entwicklertools
 - Training auf Rechnercluster/Cloud
 - > Test in Echtzeit → Mobile
 - > Berechnung im Frequenzraum

DEEP LEARNING → **DEEPER LEARNING**

> AlexNet (2012) 8 Schichten

> VGGNet (2013) 19 Schichten

> GoogLeNet (2014) 22 Schichten

> Microsoft ResNet (2015) 152 Schichten

> Stochastic ResNet (2016) 1200 Schichten

