基于简化LDSGM模型的隐式篇章关系判别

1120200563 肖良寿*

December 22, 2022

摘要

隐式篇章关系判别(implicit discourse relation recognition, IDRR)是自然语言理解任务中篇章分析领域的重要理论。本实验借助Changxing Wu等2021年提出的LDSGM模型进行IDRR实验,在模型的Encoder中引入RoBERTa预训练模型进行Label Attentive,在Encoder之后接两个具有相同结构的基于GRU RNN模型的Decoder和辅助Decoder进行标签生成。在PDTB2.0数据集下,测试集上的macro F1值最好能够达到65.63%。

1 实验简介及实验环境

1.1 隐式篇章关系判别

隐式篇章关系判别(implicit discourse relation recognition, IDRR)即是判断两个文本段之间隐含存在的关系,属于自然语言理解任务中篇章分析领域的重要理论,对于提升机器阅读能力具有重要作用[1]。

根 据PDTB语 料 库 中 提 出 的 术 语, 个IDRR任务中通常都会涉及以下的几个部分:

- Argument: 语篇中的一个文本片段,包含至 少一个谓词,用于陈述一个问题、事件或观 点
- Sense: 一个语篇关系的类型,如Comparison、 Expansion、Temporal、Contingency等
- Connective: 表达两个Arg之间关系的连接词, 如"but"等

大多数情况下,两个Argument之间并不存在显示 的连接词,从而将这些不存在显式连接词的论元 间关系称为隐式篇章关系。

1.2 PDTB2.0 语料库

PDTB语料库被认为是篇章关系识别任务中最大的语料库,标注了来自《华尔街日报》的超过100万单词[2]。根据PDTB2.0 语料库的标注手册[3]显示,其标注分为了三层的level: $Class \rightarrow Type \rightarrow Subtype$,如图一所示。其中第一层共计有4中Class,细分第二层共有16类Type。在本实验中,主要关注的是模型在第一层:4类Class上的性能表现。

^{*}Email: xiaoliangshou.bit@gmail.com

图 1: PDTB层次结构

1.3 评测指标——MacroF1值简介

F1值,也称F-measure,是十分常用的用于评估分类模型性能的一种度量方式。

在较早的机器学习任务中,为评判二分类模型优劣,常用一个"混淆矩阵"(Confudion Matrix)来表示分类的结果,如下图所示:

从中可以定义出两个概念——查准率P与查全率R,各自的公示表示为:

$$P = \frac{TP}{TP + FP}, \quad R = \frac{TP}{TP + FN}$$

F1值便是基于查准率P和查全率R而引入的一种 更为全面、科学的度量方式,数学表达方式写为:

$$F1 = \frac{2 \times P \times R}{P + R} = \frac{2 \times TP}{N + TP - TN}$$

从原理上讲,F1值是基于P和R的调和平均,即

可以表示为:

$$\frac{1}{F1} = \frac{1}{2}(\frac{1}{P} + \frac{1}{R})$$

在多分类的情况下,则需要采用取平均的方式来计算F1值,由此也产生了多种平均F1值得计算方式,最常见的有三类: 宏观F1值(macro F1)、加权F1值(weighted F1)、微观F1(micro F1)值。宏观平均的方法是三者当中最直接的方式——假设共有N个类别,每个类别的F1值分别为F10,F11,F12,...,F1N-1,则求出所有F1值得算数平均即为宏观平均,即F10。F1F1。

不同于前者认为每个类别等权分配,加 权F1值则是考虑了每个类别的支持度(support)——即该类在数据集中实际出现的次数(观测值)。

1.4 预训练RoBERTa模型

RoBERTa[4]是对预训练模型BERT的延伸和改进。BERT的基本结构是Transformer,将两个片段(token序列), x_1, \ldots, x_N 和 y_1, \ldots, y_M 的连接作为输入,每个片段通常由一个以上的自然语言句子组成。在将这样的片段输入给BERT之前,还需要用一些特殊的符号来分隔它们,即[cls], x_1, \ldots, x_N ,[SEP], y_1, \ldots, y_M ,[EOS],其中M+N < T, T用于控制训练过程中最大的序列长度。在BERT预训练过程中最大的序列长度。在BERT预训练过程中,追求的目标有两个:遮掩语言模型(masked language model,MLM)和下一个句子的预测(next sentence prediction,NSP)。

BERT模型采用Adam作为优化器, 其参数配置为: $\beta_1 = 0.9, \beta_2 = 0.999, \epsilon = 1e - 6, L2 = 0.01,$ 学习率在前10000步迭代中先加热到峰

值1e-1,然后线性衰减,所有层的dropout设置为0.1,使用GELU激活函数,最小batch设置为B=256, T=512tokens。

Pre-training

图 2: BERT预训练模型

RoBERTa模型对BERT作出的改进主要体现在三方面: (1) 改进了优化函数,采用更大的batch, β_2 下调为0.98; (2) 训练策略上,采用动态掩码来训练模型,每次向模型提供输入时动态生成mask (3) 数据层面上,使用了更大的数据集,并且使用BPE(Byte-Pair Encoding)来处理文本数据。¹

1.5 实验环境

本次实验借助了华为弹性云服务器进行模型训练,服务器的硬件配置如下图所示。

2 模型结构与相关原理

实验所用的模型为Changxing Wu等于2021年

图 3: 华为云服务器硬件配置

提出的LDSGM模型[5]: 标签依赖感知序列生成模型(Label Dependence-aware Sequence Generation Model)²。

通 过 以 上 对PDTB语 料 库 的 简 介 可 知,PDTB语料库的标签分为了三级,模型的基本思想 是,给出M层由标签 $\mathbb{C}=(C^1,\ldots,C^m,\ldots,C^M)$ 定义的分层levels,其中 C^m 代表第m层上的标签的集合。将一个实例x=(arg1,arg2)作为输入,模型产生一组标签序列 $y=y_1,\ldots,y_m,\ldots,y_M$,其中 $y_m\in C_m$ 。总体上看,LDSGM模型由一个Label Attentive Encoder和一个Label Sequence Decoder组成,模型的结构如图三所示。

2.1 Encoder

在Encoder部 分, 包 括 几 个 堆 叠的Transformer层、一个图卷积神经网络(GCN)和特定levl的Label Attention机制。各部分的具体功能如下:

1. 模型使用Transformer层学习输入实例的局部和全局表示。对于给定的实例x = (arg1, arg2),首先堆叠K个Transformer层来

¹RoBERTa预 训 练 模 型 下 载 链接:https://huggingface.co/roberta-base/tree/main

²原论文源代码发布于https://github.com/nlpersECJTU/LDSGM.git

图 4: LDSGM模型结构

学习word-level的语义表示:

$$v_{cls}, v_1, \dots, v_{N_w} = Transformer(arg_1, arg_2)$$

其中实例需要以如下的特殊格式表述: $[CLS] + arg_1 + [SEP] + arg_2 + [SEP]$, v_{cls} 代表[CLS], $\{v_i\}_{i=1}^{N_w}$ 表示其他的token,Transformer的主要部分是多头Attention。在后续的预测任务中, v_{cls} 被认为是实例的全局表示,而 $\{v_i\}_{i=1}^{N_w}$ 则被认为是局部表示,从中提取到特定的上下文关系,用于不同level的预测。

- 2. 使用GCN通过集成层次结构化的标签之间的 依赖关系,来获得更好的标签嵌入(label embedding),最后使用标签注意机制从局部表示 中提取特定于级别的上下文。
- 3. 完成上述工作之后,模型将学习到的全局表示和特定于级别的上下文作为Decoder的输入,用于生成标签序列。

图 5: GCN结构

2.2 Decoder

Decoder是一个基于RNN的解码器,自顶向下依次生成预测标签,如此可以借助更容易预测的更高层次的标签(例如PDTB数据集中分为四类的第一层标签)。构建Decoder使用的是广泛用于文本生成和短长度标签序列的门循环单元GRU。据R-Net的提出者给出的观点[6],GRU与LSTM在实验效果上能达到相似的结果,但是GRU相较于LSTM更容易计算。在计算资源并不富裕的情况下,选择GRU更为合适。

2.3 互学习增强训练

互学习增强训练(Mutual Learning Enhanced Training)模块是紧接着Decoder的最后一个模块。Decoder以自顶向下的方式生成一个标签序列,然而其只能利用来自预测出的更high-level的依赖关系,而来自lower-level的依赖关系却不被利用。本部分采用自底向上的标签依赖关系来改进模型,可作为Decoder的这一点瑕疵的补充——跟据作者提供的实验结果来看,不加入互学习增强模块时模型已经能够取得很好的效果。

具体来说,本部分是一个辅助Decoder,与Decoder具有相同的结构,但是其顺序产生的标签序列为 $y = y_M, \dots, y_m, \dots, y_1$,与Decoder相

3 实验内容及结果

反。Decoder和辅助Decoder能够从两个不同的方向捕获标签依赖关系,因此认为二者是互补的,从而达到互学习增强的目的。

训练过程如算法1所示。为实现Decoder和辅助Decoder训练过程中的相互促进增强,除了交叉熵损失外,作者还额外引入了两个额外的损失,用以减少两个Decoder之间的分歧。具体来说,假设 θ_e , θ_d , θ_{ad} 分别代表Encoder、Decoder、辅助Decoder的参数集,在训练数据集D上定义如下的目标函数来更新这些参数:

$$L(D; \theta_e, \theta_d) = \sum_{(x,y) \in D} \sum_{m=1}^{M} \{-\mathbb{E}_{y_m}[log \vec{y_m}] + \lambda * KL(\overleftarrow{y_m}||\vec{y_m})\}$$

$$(1)$$

$$L(D; \theta_{ad}) = \sum_{(x,y)\in D} \sum_{m=1}^{M} \{-\mathbb{E}_{y_m}[log\overleftarrow{y_m}] + \lambda * KL(\overrightarrow{y_m}||\overleftarrow{y_m})\}$$
(2)

其中 $\mathbb{E}_{y_m}(*)$ 代表 y_m 的期望,KL(*||*)是KL散度公式, λ 用于控制不同损失项的影响系数。

3 实验内容及结果

在LDSGM模型的原文中,由于只有部分的PDTB实例标注了第三级的标签(Subtype),并且16个二级标签(Type)中有5个去掉了很少的训练实例,缺少验证实例和测试实例,因此遵循IDRR研究中的惯例,只将第一二级标签考虑在内,考虑11类Type分类,并将插入的连接词作为第三级标签。本次实验只需要评估模型在第一级(Class)上的表现,由此可带来一定的简化。参数设置如表1所示。

Algorithm 1 算法训练过程

Input:

Training set D, Test set D'

- 1: repeat
- 2: repeat
- 3: load a batch size of instances $B \in D$
- 4: Generate predicted label distributions $\vec{y_1}, \dots, \vec{y_m}, \dots, \vec{y_M}$ using the decoder for each instance in B

5

- 5: Generate predicted label distributions $\vec{y_M}, \dots, \vec{y_m}, \dots, \vec{y_1}$ using the auxiliary decoder for each instance in B
- 6: Update θ_e, θ_d by minimizing $L(B; \theta_e, \theta_d)$
- 7: Update θ_{ad} by minimizing $L(B; \theta_{ad})$
- 8: Save the best model according to the average performance at all levels on $D^{'}$
- 9: **until** no more batches
- 10: until convergence

在修改前训练总计15次epoch后的运行截 图6如图所示。同时,更改后的运行结果如表2所 示其中的f1值指macro F1。从中可以看出,训练完 成之后,测试集上的最好的F1值可达到65.63%。

更为详细的输出日志可参见 "Dataset/log/"目录下的输出日志。

训练得到的权重模型可从google硬盘下载,链接如下: Google Drive Adress。

参考文献 6

DONN: Tost Loss: 4.6, lest Acc: 48.12%, lest F1: 11.79%	TOP: Test Loss SEC: Test Loss				K, Test I			
Temporal 0.599								
Contingency								
Comparison 0.9242 0.7185 0.8645 145 Expansion 0.9742 0.9786 0.9795 0.9986 0.8728 0.9795 0.9986 0.9786 0.9786 0.9786 0.9786 0.9786 0.9786 0.9786 0.9786 0.9786 0.9786 0.9786 0.9786 0.9788 0.9788 0.9788 0.9788 0.9788 0.9788 0.9888 0.9888 0.88888 0.8888 0.8888 0.8888 0.8888 0.8888 0.8888 0.88888 0.88888 0.88888 0.8888 0.88888 0.8888 0.8888 0.8888 0.8888 0.8888 0	Temporal	0.5690	0.4783	0.	5197			
Expansion 8.7818 8.872 8.7975 599 accuracy 8.5768 8.8493 8.7268 1846 macro avg 8.5768 8.7268 8.7218 1846 reighted avg 8.7255 8.7268 8.7218 1846 Imagoral. Asynchronous 8.8862 8.8882 8.8888 1848 Contingency. Cause 8.7894 8.8988 8.8888 1848 Contingency. Pragmatic cause 8.7894 8.8985 8.6242 286 Contingency. Pragmatic cause 8.7894 8.8986 7.8985 8.8622 8.8888 1848 Comparison. Conjunction 8.8888 8.7244 8.855 127 Comparison. Concession 8.8888 8.7244 8.855 127 Comparison. Concession 8.8888 8.7244 8.855 127 Comparison. Concession 8.8888 8.7244 8.855 127 Expansion. Conjunction 8.8888 8.8988 1.898								
Accuracy			0.7103	0.1	5645	145		
macro avg	Expansion	0.7610	0.8372	0.	7973			
Precision Prec	accuracy							
Precision Prec						1046		
Temporal.Asynchronous	weighted avg	0.7265	0.7266		7218	1046		
Temporal.Synchrony 0.88888 0.88888 0.88888 0.88888 0.88888 0.8888 0.8888 0.			prec	ision	recal		ore suppo	rt
Contingency, Cause 0.7094 0.5955 0.5024 208	Temporal	. Asynchrono	us e	.5862	0.618	2 0.6	018	55
	Tempo	ral.Synchro	ny e	.0000	0.000	9.0	999	14
Comparison. Contrast 6.5318 8.7244 8.5155 17 Comparison. Concession 0.8080 8.0800 8.0800 17 Expansion. Conjunction 0.8208 0.5224 8.5445 28 Expansion. Instantiation 0.7898 8.7262 8.7424 18 Expansion. Restatement 0.5545 0.5897 8.5998 21 Expansion. Alternative 0.5599 0.6867 8.4615 9 Expansion.List 0.1429 0.6857 8.1805 12 accuracy macro avg 0.5766 8.4142 0.5981 1039 0.5983 0.8083 1.095 12 10.000 10.000 10.000								68
Comparison.concession 0.8888 0.8888 0.8888 0.8888 0.8562 0.8562 0.8562 0.8562 0.8562 0.8562 0.8562 0.86								
Expansion.Conjunction 8.5288 8.5622 8.5446 28.								
Expansion.Instantiation 0.7858 0.7265 0.7424 118 Expansion.Restatement 0.5859 0.8877 0.8598 211 Expansion.Alternative 0.5529 0.8867 0.4615 9 Expansion.List 0.1429 0.0853 0.1055 12 accuracy 0.5766 0.4142 0.5883 1059								
Expansion.Restatement 8.5545 8.5887 8.5998 211 Expansion.Alternative 8.5529 8.6867 8.4615 9 Expansion.List 8.1429 8.8853 8.1855 12 accuracy 8.5918 1839 macro avg 8.5765 8.4142 8.5883 1839								
Expansion.Alternative 8.5529 8.6867 8.4615 9 Expansion.List 0.1429 8.8853 8.1855 12 accuracy 8.5918 1839 macro avg 8.5765 8.4142 8.5883 1839								
Expansion.List 0.1429 0.0835 0.1055 12 accuracy 0.5910 1039 macro avg 0.3766 0.4142 0.3885 1039								
accuracy 8.5918 1839 macro avg 8.3765 8.4142 8.5885 1839								
macro avg 0.3766 0.4142 0.3883 1039		xpansion.Li	st 6	.1429	0.083	8 0.1	053	12
weighted avg 0.5791 0.5910 0.5811 1039								
		weighted a	vg e	.5791	0.591	0.5	811 10	39
	dev best acc si	ec: 56.05%,	dev be	st 11 :	sec: 35.9	37%,		
dev best acc sec: 56.05%, dev best f1 sec: 35.97%,	dev best acc co	onn: 32.12%	. dev b	est fl	conn: 9	9.13%		

图 6: 修改前运行截图

丰 :	۱.	实验参数设置	무
/V	1:	ル 加ツ% 数 W F	= 1

参数名	参数值	参数意义
n_top	4	Class的数量
pad_size	100	最大句子长度
num_epochs	15	迭代次数
$learning_rate$	1e-5	学习率
bert	Robert	Transformer预训练模型 ^[3]
$batch_size$	32	batch的大小
hidden_size	768	隐藏层的大小
x_{dim}	768	输入数据的维度 [4]
num_gcn_layer	2	GCN的层数
label_embedding	100	标签嵌入的维度
$attn_hidden_size$	768	Attention隐藏层的大小

表 2: 训练结果

epoch	3	6	9	12	15
train acc	57.14%	85.71%	100.00%	100.00%	85.71%
test f1	60.59%	62.91%	63.74%	65.18%	65.63%
val f1	58.00%	58.25%	60.03%	60.65%	62.24%

参考文献

- W. Xiang and B. Wang, "A survey of implicit discourse relation recognition," ACM Comput. Surv., dec 2022, just Accepted. [Online]. Available: https://doi.org/10.1145/3574134 1.1
- [2] R. Prasad, N. Dinesh, A. Lee, E. Miltsakaki, L. Robaldo, A. Joshi, and B. Webber, "The penn discourse treebank 2.0." in *Proceedings* of the Sixth International Conference on Language Resources and Evaluation (LREC'08), 2008. 1.2
 - B] P. R. Group *et al.*, "The penn discourse treebank 2.0 annotation manual," *December*, vol. 17, pp. 26–37, 2007. 1.2
- [4] Y. Liu, M. Ott, N. Goyal, J. Du, M. Joshi, D. Chen, O. Levy, M. Lewis, L. Zettlemoyer, and V. Stoyanov, "Roberta: A robustly optimized bert pretraining approach," arXiv preprint arXiv:1907.11692, 2019. 1.4
- [5] C. Wu, L. Cao, Y. Ge, Y. Liu, M. Zhang, and J. Su, "A label dependence-aware sequence

参考文献 7

generation model for multi-level implicit discourse relation recognition," in *Proceedings of the AAAI Conference on Artificial Intelligence*, vol. 36, no. 10, 2022, pp. 11486–11494. 2

[6] Y. Wang, H. Xie, Z. Zha, Y. Tian, Z. Fu, and Y. Zhang, "R-net: A relationship network for efficient and accurate scene text detection," *IEEE Transactions on Multimedia*, vol. 23, pp. 1316–1329, 2021. 2.2