Tafelmitschriften zur Vorlesung "Beschreibungslogik" im Sommersemester 2019

Prof. Dr. Thomas Schneider AG Theorie der Künstlichen Intelligenz Fachbereich 3

Stand: 28. April 2019

Dieses Dokument ist noch unvollständig und wird regelmäßig aktualisiert.

Inhaltsverzeichnis

2	Grundlagen	3
3	Ausdrucksstärke und Modellkonstruktionen	11
4	Tableau-Algorithmen	14
5	Komplexität	15
6	Effiziente Beschreibungslogiken	16
7	ABoxen und Anfragebeantwortung	17

Teil 2 Grundlagen

T2.1 Beispiele für ALC-Konzepte

Mit den Konzeptnamen

Student, Naturwissenschaft, Professor, Emeritus, PflichtVL, VL, Einfach, Interessant, A,B

und den Rollennamen

```
studiert, hält, hat Übungsaufgabe, r
```

kann man z. B. folgende zusammengesetzte \mathcal{ALC} -Konzepte bilden:

- Student □ ∃studiert.Naturwissenschaft (beschreibt Studierende, die mindestens eine Naturwissenschaft studieren)
- Professor

 Emeritus

 ∀hält.¬PflichtVL

 (beschreibt Professor*innen im Ruhestand, die keine Pflichtvorlesungen halten)
- VL ¬ ¬PflichtVL ¬ ∀hatÜbungsaufgabe.(Einfach ⊔ Interessant) (beschreibt Wahlvorlesungen, bei denen alle Übungsaufgaben einfach oder interessant sind)
- $A \sqcap \exists r. (\neg B \sqcup \forall r. A)$

(Die Beschreibungen in Klammern werden eigentlich erst richtig klar, wenn die Semantik definiert ist.)

T2.2 Beispiele für Interpretationen und Extensionen

Wir betrachten die Interpretation $\mathcal{I} = (\Delta^{\mathcal{I}}, \cdot^{\mathcal{I}})$ mit

$$\begin{split} \Delta^{\mathcal{I}} &= \{s_1, s_2, s_3, v_1, v_2\} \\ &\text{Mensch}^{\mathcal{I}} = \{s_1, s_2, s_3\} \\ &\text{Student}^{\mathcal{I}} = \{s_1, s_2, s_3\} \\ &\text{Vorlesung}^{\mathcal{I}} = \{v_1, v_2\} \\ &\text{PflichtVL}^{\mathcal{I}} = \{v_1\} \\ &\text{WahlVL}^{\mathcal{I}} = \{v_2\} \\ &\text{h\"{o}rt}^{\mathcal{I}} = \{(s_1, v_1), (s_2, v_1), (s_2, v_2), (s_3, v_1)\} \\ &\text{bekanntMit}^{\mathcal{I}} = \{(s_1, s_2), (s_2, s_1), (s_1, s_1), (s_2, s_2), (s_3, s_3)\}. \end{split}$$

Jede Interpretation kann in offensichtlicher Weise als (knoten- und kantenbeschrifteter) gerichteter Graph aufgefasst werden; für unsere Beispielinterpretation \mathcal{I} :

Beispiele für die Extensionen einiger zusammengesetzter Konzepte in dieser Interpretation:

$$\begin{aligned} (\mathsf{VL} \sqcap \mathsf{PflichtVL})^{\mathcal{I}} &= \{v_1, v_2\} \cap \{v_1\} &= \{v_1\} \\ &(\neg \mathsf{VL})^{\mathcal{I}} &= \Delta^{\mathcal{I}} \setminus \{v_1, v_2\} &= \{s_1, s_2, s_3\} \\ &(\mathsf{Student} \sqcup \mathsf{VL})^{\mathcal{I}} &= \{s_1, s_2, s_3\} \cup \{v_1, v_2\} &= \Delta^{\mathcal{I}} \\ &(\exists \mathsf{bekanntMit.Student})^{\mathcal{I}} &= \{s_1, s_2, s_3\} \\ &(\exists \mathsf{bekanntMit.} \exists \mathsf{bekanntMit.Student})^{\mathcal{I}} &= \{s_1, s_2, s_3\} \\ &(\forall \mathsf{h\"{o}rt.PflichtVL})^{\mathcal{I}} &= \{s_1, s_3, v_1, v_2\} \end{aligned}$$

In der letzten Zeile beachte man die Besonderheit der Werterestriktion (\forall) , dass ein Domänenelement d, welches keine ausgehenden r-Kanten besitzt, immer eine Instanz von $\forall r.C$ ist, für jedes beliebige Konzept C.

T2.3 Semantik von \top und \bot

Dabei folgt die erste Gleichheit jeder Zeile aus der Definition von \top bzw. \bot auf Folie 2.9, die zweite Gleichheit aus der Semantik (Def. 2.2) und die dritte aus der Mengenlehre.

T2.4 Beispiele für "unerfüllbar" und "subsumiert"

(a) Das Konzept $C = \exists r.A \sqcap \forall r.\neg A$ is *nicht* erfüllbar:

Angenommen, C sei erfüllbar, d. h. es gibt eine Interpretation \mathcal{I} mit $C^{\mathcal{I}} \neq \emptyset$. Sei $d \in C^{\mathcal{I}}$. Wegen $d \in (\exists r.A)^{\mathcal{I}}$ gibt es ein Element $e \in A^{\mathcal{I}}$ mit $(d,e) \in r^{\mathcal{I}}$. Wegen $d \in (\forall r. \neg A)^{\mathcal{I}}$ gilt aber $e \in (\neg A)^{\mathcal{I}}$, also $e \notin A^{\mathcal{I}}$, was ein Widerspruch zu $e \in A^{\mathcal{I}}$ ist. Also ist die Annahme falsch.

(b) $\exists r.(A \sqcap B) \sqsubseteq \exists r.A \sqcap \exists r.B$:

Sei \mathcal{I} eine Interpretation und $d \in (\exists r.(A \sqcap B))^{\mathcal{I}}$. Dann gibt es ein Element $e \in (A \sqcap B)^{\mathcal{I}}$ mit $(d, e) \in r^{\mathcal{I}}$. Wegen $e \in A^{\mathcal{I}}$ gilt $d \in (\exists r.A)^{\mathcal{I}}$; wegen $e \in B^{\mathcal{I}}$ gilt $d \in (\exists r.B)^{\mathcal{I}}$. Also ist $d \in (\exists r.A \sqcap \exists r.B)^{\mathcal{I}}$.

Die Rückrichtung dieser Subsumtion gilt nicht – finde ein Gegenbeispiel, d. h. eine Interpretation \mathcal{I} mit $(\exists r.A \sqcap \exists r.B)^{\mathcal{I}} \nsubseteq (\exists r.(A \sqcap B))^{\mathcal{I}}$.

T2.5 Beispiele für TBoxen und deren Semantik

Wir betrachten folgende TBox.

$$\mathcal{T} = \{ & \mathsf{Student} \ \equiv \ \mathsf{Mensch} \ \sqcap \ \exists \mathsf{h\"{o}rt}. \mathsf{Vorlesung} \\ \mathsf{Vorlesung} \ \equiv \ \mathsf{PflichtVL} \ \sqcup \ \mathsf{WahlVL} \\ \mathsf{Student} \ \sqcap \ \exists \mathsf{h\"{o}rt}. \mathsf{Vorlesung} \ \sqsubseteq \ \exists \mathsf{bekanntMit}. \mathsf{Student} \\ \mathsf{PflichtVL} \ \sqcap \ \mathsf{WahlVL} \ \sqsubseteq \ \bot \qquad \ \}$$

Die Interpretation aus T2.2 ist Modell von \mathcal{T} . Sie erfüllt z. B. auch die folgende Konzeptinklusion.

$$\mathsf{Student} \sqsubseteq \exists \mathsf{bekanntMit.Mensch} \tag{1}$$

Ein weiteres Modell ist z.B. folgende Interpretation \mathcal{J} .

 $\mathcal J$ erfüllt ebenfalls die Konzeptinklusion (1) sowie z. B. $\mathsf{VL} \equiv \mathsf{PflichtVL}.$

T2.6 Beispiele für "erfüllbar" und "subsumiert" bzgl. TBoxen

Sei \mathcal{T} die TBox aus dem vorangehenden Beispiel.

(a) Das Konzept

$C = \mathsf{Student} \sqcap \forall \mathsf{h\"{o}rt}.\mathsf{PflichtVL}$

ist erfüllbar bezüglich \mathcal{T} , denn folgende Interpretation \mathcal{I}' ist ein Modell von \mathcal{T} mit $s_1 \in C^{\mathcal{I}'}$:

Ebenso ist die Interpretation \mathcal{I} aus T2.2 ein Modell von \mathcal{T} mit $s_1 \in C^{\mathcal{I}}$.

(b) Das Konzept

$C = \mathsf{Student} \sqcap \forall \mathsf{h\"{o}rt}.\mathsf{PflichtVL} \sqcap \exists \mathsf{h\"{o}rt}.\mathsf{WahlVL}$

ist unerfüllbar bezüglich \mathcal{T} : Angenommen, C sei erfüllbar bzgl. \mathcal{T} . Dann gibt es ein Modell \mathcal{I} von \mathcal{T} mit einer Instanz $d \in C^{\mathcal{I}}$. Nach der Semantik von " \sqcap " (Def. 2.2) gelten (i) $d \in (\forall \mathsf{h\"{o}rt}.\mathsf{PflichtVL})^{\mathcal{I}}$ und (ii) $d \in (\exists \mathsf{h\"{o}rt}.\mathsf{WahlVL})^{\mathcal{I}}$. Wegen (ii) gibt es ein Element $e \in \mathsf{WahlVL}^{\mathcal{I}}$ mit $(d,e) \in \mathsf{h\"{o}rt}^{\mathcal{I}}$. Wegen (i) ist dann auch $e \in \mathsf{PflichtVL}^{\mathcal{I}}$, also $e \in (\mathsf{PflichtVL} \sqcap \mathsf{WahlVL})^{\mathcal{I}}$. Weil \mathcal{I} jedoch ein Modell von \mathcal{T} ist, kann es wegen der Konzeptinklusion $\mathsf{PflichtVL} \sqcap \mathsf{WahlVL} \sqsubseteq \bot$ aus \mathcal{T} ein solches Element e nicht geben; ein Widerspruch. Also ist die Annahme falsch.

(c) Für die Konzepte

$$C = \mathsf{Student} \quad \text{und} \quad D = \exists \mathsf{bekanntMit.Student}$$

gilt $\mathcal{T} \models C \sqsubseteq D$: Sei \mathcal{I} ein Modell von \mathcal{T} und $d \in C^{\mathcal{I}}$, d. h. $d \in \mathsf{Student}^{\mathcal{I}}$. Zu zeigen ist $d \in D^{\mathcal{I}}$, d. h. $d \in (\exists \mathsf{bekanntMit.Student})^{\mathcal{I}}$.

Wegen der ersten Zeile von \mathcal{T} gilt $d \in (\exists \mathsf{h\"{o}rt.Vorlesung})^{\mathcal{I}}$, also auch $d \in (\mathsf{Student} \sqcap \exists \mathsf{h\"{o}rt.Vorlesung})^{\mathcal{I}}$. Mit Zeile 3 von \mathcal{T} folgt wie gewünscht $d \in (\exists \mathsf{bekanntMit.Student})^{\mathcal{I}}$.

Dies ist bereits Schlussfolgern, denn wir haben implizites Wissen aus \mathcal{T} abgeleitet:

- (a) Es kann Student*innen geben, die nur Pflichtvorlesungen hören.
- (b) Es kann *keine* Student*innen geben, die nur Pflichtvorlesungen, aber mindestens eine Wahlvorlesung hören.
- (c) Jede*r Student*in ist mit mindestens einer/m Student*in bekannt.

T2.7 Beweis der Monotonie von \mathcal{ALC} (Lemma 2.7)

Lemma 2.7 Seien \mathcal{T}_1 und \mathcal{T}_2 TBoxen mit $\mathcal{T}_1 \subseteq \mathcal{T}_2$. Dann gilt:

- (1) Wenn C erfüllbar bezüglich \mathcal{T}_2 ist, dann ist C erfüllbar bezüglich \mathcal{T}_1 .
- (2) Wenn $\mathcal{T}_1 \models C \sqsubseteq D$, dann $\mathcal{T}_2 \models C \sqsubseteq D$.

Beweis.

- (1) Sei C erfüllbar bezüglich \mathcal{T}_2 . Dann gibt es ein Modell \mathcal{I} von \mathcal{T}_2 mit $C^{\mathcal{I}} \neq \emptyset$. Da \mathcal{I} Modell von \mathcal{T}_2 ist, erfüllt \mathcal{I} alle Konzeptinklusionen in \mathcal{T}_2 , also wegen $\mathcal{T}_1 \subseteq \mathcal{T}_2$ auch alle Konzeptinklusionen in \mathcal{T}_1 , und somit ist \mathcal{I} auch Modell von \mathcal{T}_1 . Also gibt es ein Modell \mathcal{I} von \mathcal{T}_1 mit $C^{\mathcal{I}} \neq \emptyset$; d. h. C ist erfüllbar bezüglich \mathcal{T}_1 .
- (2) Wir beweisen die Kontraposition. Es gelte $\mathcal{T}_2 \not\models C \sqsubseteq D$. Dann gibt es ein Modell \mathcal{I} von \mathcal{T}_2 mit $C^{\mathcal{I}} \not\subseteq D^{\mathcal{I}}$. Wie in (1) ist \mathcal{I} auch Modell von \mathcal{T}_1 , also $\mathcal{T}_1 \not\models C \sqsubseteq D$. \square

Auf der Folie steht auch: "Die Umkehrungen von (1) und (2) sind im Allgemeinen *nicht* richtig." Davon kann man sich mittels einfacher Gegenbeispiele überzeugen: z. B. ist mit $\mathcal{T}_1 = \emptyset$ und $\mathcal{T}_2 = \{A \sqsubseteq B\}$ die Umkehrung von (2) widerlegt, denn $\mathcal{T}_2 \models A \sqsubseteq B$, aber $\mathcal{T}_1 \not\models A \sqsubseteq B$.

T2.8 Beispiel für Subsumtion als Ordnungsrelation

Wir betrachten folgende TBox.

$$\mathcal{T} = \{ \qquad \qquad \mathsf{PC} \ \sqsubseteq \ \mathsf{Ger\"{a}t} \ \sqcap \ \exists \mathsf{hatTeil}.\mathsf{CPU} \\ \mathsf{PC} \ \equiv \ \mathsf{Desktop} \ \sqcup \ \mathsf{Laptop} \\ \mathsf{Desktop} \ \sqsubseteq \ \neg \mathsf{Laptop} \\ \mathsf{MobilerPC} \ \equiv \ \mathsf{PC} \ \sqcap \ \neg \mathsf{Desktop} \ \}$$

Die dritte Zeile von \mathcal{T} ist äquivalent zu Desktop \sqcap Laptop $\sqsubseteq \bot$, wie man leicht zeigt (probiere es selbst aus).

Die Ordnung " \sqsubseteq bezüglich \mathcal{T} " kann man durch folgendes Hasse-Diagramm darstellen:

¹Das Zeichen $\not\models$ steht für "nicht \models ", also bedeutet $\mathcal{T} \not\models C \sqsubseteq D$, dass die Beziehung $\mathcal{T} \models C \sqsubseteq D$ nicht gilt (d. h. bezüglich \mathcal{T} wird C nicht von D subsumiert).

Dass die Relation " \sqsubseteq bezüglich \mathcal{T} " nicht antisymmetrisch ist, zeigt sich in diesem Beispiel dadurch, dass der Knoten unten rechts zwei Beschriftungen hat, also $\mathcal{T} \models \mathsf{Laptop} \equiv \mathsf{MobilerPC}$. Wäre die Relation antisymmetrisch, dann dürfte nicht gleichzeitig $\mathcal{T} \models \mathsf{Laptop} \sqsubseteq \mathsf{MobilerPC}$ und $\mathcal{T} \models \mathsf{MobilerPC} \sqsubseteq \mathsf{Laptop}$ gelten.

T2.9 Wechselseitige Reduktion der Schlussfolgerungsprobleme

Lemma 2.9

(1) Subsumtion ist polynomiell reduzierbar auf (Un)erfüllbarkeit:

$$\mathcal{T} \models C \sqsubseteq D$$
 gdw. $C \sqcap \neg D$ unerfüllbar bezüglich \mathcal{T}

- (2) Erfüllbarkeit ist polynomiell reduzierbar auf (Nicht-)Äquivalenz:
 - C erfüllbar bezüglich \mathcal{T} gdw. $\mathcal{T} \not\models C \equiv \bot$
- (3) Äquivalenz ist polynomiell reduzierbar auf Subsumtion:

$$\mathcal{T} \models C \equiv D \quad \text{gdw.} \quad \mathcal{T} \models \top \sqsubseteq (C \sqcap D) \sqcup (\neg C \sqcap \neg D)$$

Beweis. Wir beweisen exemplarisch Punkt (1). Die Beweise der anderen zwei Punkte sind analog.

$$\mathcal{T} \models C \sqsubseteq D \quad \text{gdw.} \quad \text{für alle Modelle } \mathcal{I} \text{ von } \mathcal{T} \text{ gilt } C^{\mathcal{I}} \subseteq D^{\mathcal{I}}$$

$$\text{gdw.} \quad \text{für alle Modelle } \mathcal{I} \text{ von } \mathcal{T} \text{ gilt } C^{\mathcal{I}} \cap (\Delta^{\mathcal{I}} \setminus D^{\mathcal{I}}) = \emptyset$$

$$\text{gdw.} \quad \text{für alle Modelle } \mathcal{I} \text{ von } \mathcal{T} \text{ gilt } (C \sqcap \neg D)^{\mathcal{I}} = \emptyset$$

$$\text{gdw.} \quad C \sqcap \neg D \text{ unerfüllbar bezüglich } \mathcal{T}$$

Hier gilt das erste "gdw." wegen der Definition von Subsumtion (Def. 2.6), und die zweite Zeile ist äquivalent zur ersten, weil für beliebige Mengen M_1, M_2 gilt, dass $M_1 \subseteq M_2$ gdw. $M_1 \cap \overline{M_2} = \emptyset$, wobei $\overline{M_2}$ das Komplement von M_2 ist. Man überzeuge sich davon anhand eines Venn-Diagramms. Die dritte Zeile ist schließlich äquivalent zur dritten wegen der Semantik von \sqcap und \lnot (Def. 2.2), und die vierte ist äquivalent dazu wegen der Definition von Unerfüllbarkeit (Def. 2.6).

T2.10 Beispiel für inverse Rollen

Betrachte folgende \mathcal{ALC} -TBox:

$$\mathcal{T} = \{ \text{ Professor } \sqsubseteq \text{ Verrückt } \sqcap \exists \text{gibt.Vorlesung } \\ \text{Vorlesung } \sqsubseteq \forall \text{wirdGegebenVon.} \neg \text{Verrückt } \}$$

Intuitiv sollte Professor unerfüllbar bezüglich \mathcal{T} sein; dies ist aber nicht der Fall, weil Professor in folgendem Modell von \mathcal{T} eine Instanz hat:

In \mathcal{ALCI} kann man die zweite Konzeptinklusion in $\mathcal T$ durch

$$Vorlesung \sqsubseteq \forall gibt^-. \neg Verrückt$$

ersetzen. Dann wird Professor unerfüllbar bezüglich \mathcal{T} (aber \mathcal{T} hat immer noch Modelle).

T2.11 Beispiele für Zahlenrestriktionen

Definition einer Hand als ein Organ mit genau fünf Fingern:

$$\mathsf{Hand} \, \equiv \, \mathsf{Organ} \, \sqcap \, (\geqslant 5 \, \mathsf{hatTeil.Finger}) \, \sqcap \, (\leqslant 5 \, \mathsf{hatTeil.Finger})$$

Forderung, dass in jedem Semester mindestens zwei Wahlpflichtmodule angeboten werden:

Semester $\sqsubseteq (\geqslant 2 \text{ angeboten.Wahlpflichtmodul})$

Teil 3

Ausdrucksstärke und Modellkonstruktionen

T3.1 Beispiele für Bisimulationen

1. Für die Interpretationen

ist $\rho = \Delta^{\mathcal{I}_1} \times \Delta^{\mathcal{I}_2}$ eine Bisimulation.

2. Für die Interpretationen

ist $\rho = \{(d, x), (e, y), (e, y')\}$ eine Bisimulation.

3. Für die Interpretationen

ist $\rho = \{(d, x), (d, y), (e, z)\}$ eine Bisimulation.

T3.2 Beweis des Bisimulationstheorems

Theorem 3.2 Seien $\mathcal{I}_1, \mathcal{I}_2$ Interpretationen, $d_1 \in \Delta^{\mathcal{I}_1}$ und $d_2 \in \Delta^{\mathcal{I}_2}$.

Wenn $(\mathcal{I}_1, d_1) \sim (\mathcal{I}_2, d_2)$, dann gilt für alle \mathcal{ALC} -Konzepte C:

$$d_1 \in C^{\mathcal{I}_1}$$
 gdw. $d_2 \in C^{\mathcal{I}_2}$

Beweis. Sei ρ eine Bisimulation zwischen \mathcal{I}_1 und \mathcal{I}_2 mit $d_1\rho d_2$. Wir beweisen die Behauptung per Induktion über die Struktur von C.

Induktionsanfang. Hier ist C=A für einen Konzeptnamen A. Nach Bedingung (1) für Bisimulationen (Definition 3.1) gilt wie gewünscht: $d_1 \in A^{\mathcal{I}_1}$ gdw. $d_2 \in A^{\mathcal{I}_2}$

Induktionsschritt. Wir müssen fünf Fälle gemäß des äußersten Konstruktors von C unterscheiden $(\neg, \neg, \sqcup, \exists, \forall)$. Wegen der (leicht nachzuweisenden) Äquivalenzen

$$C \sqcup D \equiv \neg(\neg C \sqcap \neg D)$$
 und $\forall r.C \equiv \neg \exists r. \neg C$

genügt es, wenn wir uns auf die drei Fälle \neg, \sqcap, \exists beschränken.

$$C = \neg D$$

$$d_1 \in C^{\mathcal{I}_1}$$
 gdw. $d_1 \notin D^{\mathcal{I}_1}$ (Semantik "¬")
gdw. $d_2 \notin D^{\mathcal{I}_2}$ (Induktionsvoraussetzung)
gdw. $d_2 \in C^{\mathcal{I}_2}$ (Semantik "¬")

$C = D \sqcap E$

$$d_1 \in C^{\mathcal{I}_1}$$
 gdw. $d_1 \in D^{\mathcal{I}_1}$ und $d_1 \in E^{\mathcal{I}_1}$ (Semantik " \sqcap ") gdw. $d_2 \in D^{\mathcal{I}_2}$ und $d_1 \in E^{\mathcal{I}_2}$ (Induktionsvoraussetzung) gdw. $d_2 \in C^{\mathcal{I}_2}$ (Semantik " \sqcap ")

$C = \exists r.D$

Für die Richtung "⇒" argumentieren wir so:

$$d_{1} \in C^{\mathcal{I}_{1}}$$

$$\Rightarrow \text{ es gibt } e_{1} \in \Delta^{\mathcal{I}_{1}} \text{ mit } (d_{1}, e_{1}) \in r^{\mathcal{I}_{1}} \text{ und } e_{1} \in D^{\mathcal{I}_{1}} \text{ (Semantik ,,}\exists\text{``})$$

$$\Rightarrow \text{ es gibt } e_{2} \in \Delta^{\mathcal{I}_{2}} \text{ mit } (d_{2}, e_{2}) \in r^{\mathcal{I}_{2}} \text{ und } e_{1}\rho e_{2} \text{ (Bedingung (2) Bisim.)}$$

$$\Rightarrow e_{2} \in D^{\mathcal{I}_{2}} \text{ (Induktionsvorauss.)}$$

$$\Rightarrow d_{2} \in (\exists r.D)^{\mathcal{I}_{2}} \text{ (Semantik ,,}\exists\text{``})$$

Das Argument für die Richtung " \Leftarrow " ist analog, unter Verwendung von Bedingung (3) für Bisimulationen. \Box

Teil 4 Tableau-Algorithmen

Teil 5 Komplexität

Teil 6 Effiziente Beschreibungslogiken

Teil 7 ABoxen und Anfragebeantwortung