Teste statistice

Fie x_1, \ldots, x_n datele statistice pentru caracteristica cercetată X, fie $\alpha \in (0,1)$ nivelul de semnificație (probabilitatea de risc)

▶ valoarea mediei de selecție

$$\bar{x}_n = \frac{1}{n} \left(x_1 + \ldots + x_n \right)$$

▶ valoarea abaterii standard de selecție

$$\tilde{s}_n = \left(\frac{1}{n-1} \sum_{k=1}^n (x_k - \bar{x}_n)^2\right)^{\frac{1}{2}}$$

 $lackbox{ Cuantila de ordin } lpha$ pentru distribuția caracteristicii cercetate X este numărul $z_lpha \in \mathbb{R}$ pentru care

$$P(X < z_{\alpha}) \le \alpha \le P(X \le z_{\alpha}).$$

- Dacă X este v.a. continuă, atunci z_{α} cuantilă de ordin $\alpha \Longrightarrow P(X \le z_{\alpha}) = \alpha \Longrightarrow F_X(z_{\alpha}) = \alpha$
- $\alpha \cdot 100\%$ din valorile lui X sunt mai mici sau egale cu z_{α}

Test pentru media m=E(X) caracteristicii cercetate X, când dispersia $\sigma^2=V(X)$ este cunoscută

- lacktriangleq folosind datele statistice x_1,\ldots,x_n se calculează $z=\frac{\bar{x}_n-m_0}{\frac{\sigma}{\sqrt{x_n}}}$
- \blacktriangleright se determină cuantila de ordin α a legii normale N(0,1)test statistic $z_{\alpha} = norminv(\alpha,0,1)$

$H_0: m = m_0$	H_1 : $m \neq m_0$	$H_1: m > m_0$	H_1 : $m < m_0$
Se acceptă H_0 dacă	$ z < z_{1 - \frac{\alpha}{2}}$	$z < z_{1-\alpha}$	$z > z_{\alpha}$
Se respinge H_0 dacă	$ z \ge z_{1 - \frac{\alpha}{2}}$	$z \ge z_{1-\alpha}$	$z \le z_{\alpha}$

Test pentru media m=E(X) caracteristicii cercetate X, când dispersia $\sigma^2=V(X)$ este necunoscută

- ▶ folosind datele statistice x_1,\dots,x_n se calculează $t=\frac{\bar{x}_n-m_0}{\frac{\tilde{s}_n}{\sqrt{n}}}$
- lacktriangle se determină cuantila de ordin lpha a legii Student cu n-1 grade de libertate $t_{lpha}=tinv(lpha,n-1)$

$H_0: m = m_0$	H_1 : $m \neq m_0$	$H_1: m > m_0$	$H_1: m < m_0$
Se acceptă H_0 dacă	$ t < t_{1 - \frac{\alpha}{2}}$	$t < t_{1-\alpha}$	$t > t_{\alpha}$
Se respinge H_0 dacă	$ t \ge t_{1 - \frac{\alpha}{2}}$	$t \ge t_{1-\alpha}$	$t \le t_{\alpha}$

Test pentru abaterea standard $\sigma = \sqrt{V(X)}$ a caracteristicii cercetate X

- ▶ folosind datele statistice x_1, \ldots, x_n se calculează $q = \frac{n-1}{\sigma_0^2} \cdot \tilde{s}_n^2$
- \blacktriangleright se determină cuantila de ordin α a legii Chi-pătrat cu n-1 grade de libertate $q_{\alpha}=chi2inv(\alpha,n-1)$

H_0 : $\sigma = \sigma_0$	$H_1: \sigma \neq \sigma_0$	$H_1: \sigma > \sigma_0$	H_1 : $\sigma < \sigma_0$
Se acceptă H_0 , dacă	$q_{\frac{\alpha}{2}} < q < q_{1-\frac{\alpha}{2}}$	$q < q_{1-\alpha}$	$q > q_{\alpha}$
Se respinge H_0 în favoarea lui H_1 , dacă	$q \notin (q_{\frac{\alpha}{2}}, q_{1-\frac{\alpha}{2}})$	$q \ge q_{1-\alpha}$	$q \le q_{\alpha}$