Section 49: The Isomorphic Extension Theorem

Isomorphism Extension Theorem: Let E be an algebraic extension of a field F. Let σ be an isomorphism of F onto a field F'. Let \bar{F}' be an algebraic closure of F'. Then σ can be extended to an isomorphism τ of E onto a subfield of \bar{F}' such that $\tau(a) = \sigma(a)$ for all $a \in F$.

Note: This theorem allows us to relate extensions of isomorphic fields.

Corollary: If $E \leq \bar{F}$ is an algebraic extension of F and $\alpha, \beta \in E$ are conjugate over F, then the conjugation isomorphism $\psi_{\alpha,\beta} : F(\alpha) \to F(\beta)$, can be extended to an isomorphism of E onto a subfield of \bar{F} .

Corollary: Let \bar{F} and \bar{F}' be two algebraic closures of F. Then \bar{F} is isomorphic to \bar{F}' under an isomorphism leaving each element of F fixed.

Note: Algebraic closure of a field is unique up to isomorphism.

Thm. Let E be a finite extension of a field F. Let σ be an isomorphism of F onto a field F', and let \bar{F}' be an algebraic closure of F'. Then the number of extensions of σ to an isomorphism τ of E onto a subfield of \bar{F}' is finite, and independent of F', \bar{F}' , and σ . That is, the number of extensions is completely determined by the fields E and F.

Def: Let E be a finite extension of a field F. The number of isomorphisms of E onto a subfield of \bar{F} leaving F fixed is the $index\ \{E:F\}$ of E over F.

Corollary: If $F \leq E \leq K$, where K is a finite extension field of the field F, then $\{K : F\} = \{K : E\}\{E : F\}$.