Sum of Reverse Powers of 4

Saksham Sethi

1 Statement

 $n^4 + 4^n$ is composite for all n > 1.

1.1 Proof

Let $m = n^4 + 4^n$. We have to prove m isn't prime.

If n is even, then n^4 and 4^n are both even, making m even as well. An even number is divisible by 2, so it isn't prime.

If n is odd, then let n=2k+1 for some positive integer k. Now, $m=n^4+4^n=n^4+4^{2k+1}=n^4+(4\times 4^{2k})=n^4+4(2^k)^4$. That last expression $n^4+4(2^k)^4$ is of the form n^4+4b^4 . Since $n^4+4b^4=(n^2+2b+2b^2)(n^2-2b+2b^2)$ and n and b are both positive integers, m cannot be prime. \square