Serie storiche economiche

4. Numeri indici

Differenze assolute e relative

Evidenziare le differenze nel tempo o nello spazio dell'intensità o frequenza di un fenomeno X. Detto $t+1,\ldots,T$ l'indice temporale e x_t le osservazioni su X,

• Variazione (differenza) assoluta:

$$d_a = x_t - x_{(t-1)}$$

Variazione relativa:

$$d_r = \frac{x_t - x_{(t-1)}}{x_{(t-1)}} = \frac{x_t}{x_{t-1}} - 1$$

La variazione assoluta è espressa in un'unità di misura mentre la variazione relativa è un numero puro.

Numeri indici

I *numeri indici* sono un rapporto statistico che serve a misurare le variazioni relative nel tempo.

Dato un fenomeno X e due osservazioni x_0 e x_1 in due istanti successivi:

- 0 è la situazione base
- 1 la situazione corrente

chiamiamo numero indice il rapporto:

$$_0I_1=\frac{x_1}{x_0}$$

Il numero indice $_0I_1$ esprime di quanto è variata l'intensità del fenomeno tra 0 e 1. Con riferimento alla variazione relativa, è

$$\frac{x_1 - x_0}{x_0} = {}_0I_1 - 1$$

Base fissa e base mobile

Consideriamo una sequenza di osservazioni:

$$x_0, x_1, x_2, \ldots, x_n$$

rapportando tutte ad una di esse, per esempio x_0 , si ottiene la serie dei numeri indici a base fissa

$$_{0}I_{0} = \frac{x_{0}}{x_{0}}, _{0}I_{1} = \frac{x_{1}}{x_{0}}, _{0}I_{2} = \frac{x_{2}}{x_{0}}, \dots, _{0}I_{n} = \frac{x_{n}}{x_{0}}$$

altrimenti, rapportando ciascuna alla precedente, si ottiene la serie *a base mobile*:

$$_{0}I_{1} = \frac{x_{1}}{x_{0}}, _{1}I_{2} = \frac{x_{2}}{x_{1}}, \dots, _{n-1}I_{n} = \frac{x_{n}}{x_{n-1}}$$

Di solito si pone $_0I_0=100$; in questo caso $_{t-1}I_t-100$ può essere letta direttamente come variazione percentuale.

Proprietà dei numeri indici

Proprietà dei N.I. elementari:

- a) Identità: $_tI_t=1$
- b) Reversibilità delle basi: ${}_tI_s=\frac{1}{{}_sI_t}$
- c) Transitività delle basi (circolarità): ${}_tI_r={}_tI_q\cdot{}_qI_r$
- d) Commensurabilità: i N.I. sono insensibili all'unità di misura
- e) Scomposizione delle cause: se un fenomeno può essere ottenuto come prodotto di due "cause", il relativo N.I. è anch'esso rappresentabile come il prodotto dei N.I. delle cause. Es. $v_t = q_t \cdot p_t$ allora: ${}_0I_t^{\nu} = {}_0I_t^{q} \cdot {}_0I_t^{p}$

Le proprietà b) e c) permettono il cambio di base (per i N.I. a base fissa) e il passaggio da base fissa a base mobile.

I tassi di incremento sono invarianti all'anno base del calcolo

Cambiamento di base

Il cambio di base (per esempio da h a k) per un indice in base fissa avviene dividendo ogni termine ${}_hI_t$ della serie per l'indice del periodo "nuova base": ${}_hI_k$. E' infatti:

$$_kI_t = \frac{x_t}{x_k} = \frac{x_t}{x_h} \cdot \frac{x_h}{x_k} = {_hI_t} \cdot \frac{1}{{_hI_k}} = {_kI_h} \cdot {_hI_t}$$

Esempio: da base 0 a base 2 per il quarto periodo

$$_{2}I_{4} = _{0}I_{4} \cdot \frac{1}{_{0}I_{2}} = _{2}I_{0} \cdot _{0}I_{4}$$

Tale operazione è valida per tutti i termini della serie, pertanto risulta immediato operare in modo vettoriale dividendo tutta la serie originaria per lo scalare $_kI_h$, che è detto coefficiente di conversione.

Da base fissa a base mobile e viceversa

Il passaggio da una base fissa (per esempio k) alla base mobile avviene dividendo ogni termine (tranne il primo, che non è definito) per l'indice in base fissa relativo al periodo precedente:

$$l_{t-1}I_t = {}_kI_t \cdot \frac{1}{{}_kI_{t-1}} = {}_{t-1}I_k \cdot {}_kI_t$$

Nel caso particolare k = 0 per t = 2, $_1I_2 = _1I_0 \cdot _0I_2$.

Il passaggio dalla base mobile a una base fissa k per un qualsiasi indice t-1 avviene moltiplicando l'indice per tutti i precedenti indici a base mobile da k a t-1 (o dividendo, se k>t). Più semplicemente, si può calcolare in base 0,

$$_{0}I_{t}=_{0}I_{1}\cdot _{1}I_{2}\ldots _{t-1}I_{t}$$

e successivamente basta cambiare di base dividendo per $_0I_k$.

Tassi medi di variazione - 1

Confrontando le misurazioni di un fenomeno x nel tempo su più periodi $0, 1, \ldots, t, \ldots, T$ può essere interessante e utile misurare:

- la variazione complessiva da 0 a T
- la variazione media

La variazione complessiva da 0 a T è ovviamente $_0I_T-1=\frac{x_T-x_0}{x_0}$. La corrispondente variazione media può essere definita in vari modi a seconda del modo in cui x si evolve tra 0 e T:

Def. "media" secondo Chisini

è il valore \bar{x} che sostituito a ciascuna osservazione mantiene inalterato il risultato della *funzione di circostanza* f:

$$f(x_0, x_1, \ldots, x_T) = f(\bar{x}, \bar{x}, \ldots, \bar{x})$$

Esempio: tassi medi di rendimento - 1

Nel caso – ad esempio – di una operazione finanziaria, la *funzione di circostanza* può assumere forme diverse:

• Tasso medio semplice:

$$x_T = x_0 + rx_0 + rx_0 + \ldots + rx_0$$

per esempio, per un'operazione finanziaria con cedole che *non* vengono reinvestite $(x_T = x_0 + r_1x_0 + r_2x_0 + \ldots + r_Tx_0)$

• Tasso medio composto (CAGR):

$$x_T = x_0(1+r')^T$$

per esempio per un'operazione finanziaria dove le cedole vengono reinvestite allo stesso tasso $(x_T = x_0(1 + r_1) \cdot (1 + r_2) \dots (1 + r_T))$

Esempio: tassi medi di rendimento - 2

Tasso medio semplice: viene calcolato come differenza relativa tra 0 e
T divisa per il numero dei periodi

$$r = \frac{1}{T} \frac{x_T - x_0}{x_0} = \frac{1}{T} \left(\frac{x_1 - x_0}{x_0} + \frac{x_2 - x_1}{x_0} + \ldots + \frac{x_T - x_{T-1}}{x_0} \right)$$

ovvero: $r=\frac{1}{T}_0I_T-1=\frac{1}{T}\sum_{t}{}_0I_t-1$ è la media *aritmetica* degli indici in base fissa meno 1

Tasso medio composto (CAGR):

$$r' = (\frac{x_1}{x_0} \cdot \frac{x_2}{x_1} \cdots \frac{x_T}{x_{T-1}})^{\frac{1}{T}} - 1 = (\frac{x_T}{x_0})^{\frac{1}{T}} - 1$$

cosicché $r'=({}_0I_T)^{\frac{1}{T}}-1$ è la media geometrica degli indici in base mobile meno 1.

Numeri indici sintetici

Un indice sintetico sintetizza (sic) la variazione di un aggregato anziché di un valore elementare.

Nel caso, importante, degli *indici dei prezzi* l'aggregato in questione è un paniere di consumo (oppure l'intero Prodotto Interno Lordo, il che formalmente non cambia nulla) di cui vogliamo valutare la variazione di prezzo – non di valore totale – mantenendo fisse le quantità.

Si calcola pertanto il rapporto tra il valore del paniere ai prezzi in t e quello dello stesso paniere ai prezzi in 0:

$$\frac{v_t}{v_0} = \frac{\sum_i p_{it} q_i}{\sum_i p_{i0} q_i}$$

Quali quantità q_i considerare? q_{i0} o q_{it} ?

Indici dei prezzi di Paasche e di Laspeyres

A seconda della scelta del sistema di pesi (le quantità) si ottengono:

- Indice di Laspeyres: ${}_{0}^{p}I_{T}^{L}=\frac{\sum_{i}p_{it}q_{i0}}{\sum_{i}p_{i0}q_{i0}}$ se le quantità vengono fissate al tempo base
- Indice di Paasche: ${}_0^P I_T^P = \frac{\sum_i p_{it} q_{it}}{\sum_i p_{i0} q_{it}}$ se le quantità vengono fissate al tempo corrente

Gli indici sintetici come medie pesate

Gli indici di Paasche e Laspeyres possono essere ottenuti come medie degli indici semplici dei prezzi di ogni bene pesati per l'importanza della spesa dedicata al bene nella spesa complessiva:

- Indice di Laspeyres: ${}_0^pI_T^L=\frac{\sum_i\frac{p_{it}}{p_{i0}}p_{i0}q_{i0}}{\sum_ip_{i0}q_{i0}}$ la spesa è considerata in 0
- Indice di Paasche: ${}_{0}^{p}I_{T}^{P}=\frac{\sum_{i}\frac{P_{it}}{p_{i0}}p_{i0}q_{it}}{\sum_{i}p_{i0}q_{it}}$ la spesa è considerata al tempo corrente

Si noti come la costruzione dell'indice tipo Paasche richieda il ricalcolo dei pesi ad ogni periodo, mentre questi sono determinati *una tantum* in 0 per l'indice tipo Laspeyres.

Proprietà degli indici sintetici

Sono proprietà desiderabili degli indici sintetici:

- a)-e) quelle degli indici elementari
 - f) Proporzionalità: se i prezzi dei *k* prodotti variano di un fattore *a* anche l'indice deve variare in proporzione
 - g) Determinatezza: l'indice sintetico non deve annullarsi o divergere se lo fa un termine della formula

Gli indici di Paasche e Laspeyres non soddisfano c) (transitività) ed e) (scomposizione delle cause). L'indice sintetico di Fisher, media geometrica degli indici Paasche e Laspeyres

$${}_0^p I_T^F = \sqrt{{}_0^p I_T^L \cdot {}_0^p I_T^P}$$

soddisfa tali proprietà ed è pertanto detto numero indice ideale.

Numeri indici sintetici - valore

Un indice sintetico mostra la variazione di un aggregato anziché di un valore elementare. Generalizziamo quanto visto riguardo agli indici sintetici dei prezzi:

L'aggregato può rappresentare un *valore*: è quindi un'aggregazione di fenomeni elementari del tipo $v_i = q_i \cdot p_i$. Si calcola allora il rapporto tra il valore del paniere in t e quello in 0:

$${}_{0}^{v}I_{t} = \frac{v_{t}}{v_{0}} = \frac{\sum_{i} p_{it}q_{it}}{\sum_{i} p_{i0}q_{i0}}$$

dove prezzi e quantità sono contemporanei.

Numeri indici sintetici - prezzi o quantità

Altrimenti, se si è interessati alla variazione dei *prezzi*, si calcola il rapporto tra il valore del paniere ai prezzi in t e quello dello *stesso* paniere ai prezzi in 0:

$${}_{0}^{p}I_{T} = \frac{\sum_{i} p_{it}q_{ih}}{\sum_{i} p_{i0}q_{ih}}$$

ponderando con le quantità fissate a un certo istante h

Nel caso degli indici di *quantità*, analogamente, si utilizza una ponderazione fissata *ai prezzi* di un certo periodo *h*:

$${}_{0}^{q}I_{T} = \frac{\sum_{i} p_{ih}q_{it}}{\sum_{i} p_{ih}q_{i0}}$$

Alcuni numeri indici notevoli

L'Istat pubblica numerosi indici:

- Indici di valore
 - ► Fatturato e ordinativi dell'industria
 - ► Fatturato dei servizi
 - ► Valore delle vendite del commercio
- Indici dei prezzi
 - Prezzi al consumo (NIC, FOI, IPCA)
 - Prezzi alla produzione
- Indici delle quantità
 - Produzione industriale
 - Volume dell'export e dell'import

con cadenza mensile o trimestrale.

Variazioni tendenziali e congiunturali

Preso un fenomeno misurato a cadenza infra-annuale, tale per cui nell'anno ci sono k periodi (e.g., per i dati trimestrali k=4, mensili k=12, giornalieri k=365), si parla di variazione

- congiunturale quando si rapporta il dato corrente x_t al dato precedente x_{t-1}
- tendenziale quando si rapporta il dato corrente x_t al dato corrispondente dell'anno precedente x_{t-4}

Per esempio, presi i dati mensili relativi alla produzione auto di dicembre 2018, la variazione

- congiunturale sarà misurata rispetto al novembre 2018
- tendenziale rispetto al dicembre 2017

Le variazioni congiunturali, a differenza delle tendenziali, risentono della stagionalità.

Numeri indici sintetici: scomposizione

Può essere utile scomporre gli indici sintetici in *subindici*. L'indice generale può essere ottenuto anche come media ponderata dei subindici.

Formalmente, considerando tre livelli:

- elementare
- gruppo: $1, \ldots, g, \ldots, G$
- e totale,

per il generico gruppo g contenente i prodotti $1,\ldots,i,\ldots,S$ è

$${}_{0}I_{t}^{g} = \frac{\sum_{i=1}^{S} \frac{p_{it}}{p_{i0}} v_{i0}}{\sum_{i=1}^{S} v_{i0}} = \sum_{i=1}^{S} \frac{p_{it}}{p_{i0}} w_{i0}$$

con $w_{i0} = \frac{v_{i0}}{\sum_{i=1}^{S} v_{i0}}$ e l'indice generale: ${}_{0}I_{t}^{G} = \sum_{g=1}^{G} {}_{0}I_{t}^{g} \cdot w_{i0}$ è la somma pesata delle variazioni dovute a ogni singolo gruppo.

Contributo delle singole componenti

Il calcolo dell'indice per gruppo misura la dinamica dei prezzi per singolo gruppo:

$${}_{0}I_{t}^{g} = \sum_{i=1}^{S} \frac{p_{it}}{p_{i0}} \frac{v_{i0}}{\sum_{i=1}^{S} v_{i0}}$$

Il contributo del singolo gruppo g alla dinamica dell'indice generale (*livello generale dei prezzi*) è dato dall'indice di gruppo volte il suo peso sul totale:

$$C_g = {}_0I_t^g \cdot w_{g0}$$

Esso permette di valutare l'incidenza delle varazioni di prezzo delle singole componenti sulle variazioni dell'indice aggregato.

Variazioni nominali e reali

Un aggregato monetario (misurato in *valore*) può variare sia per effetto di variazioni nel *volume* di beni e servizi sottostanti, che per effetto di una variazione nei prezzi. Dato un generico aggregato $A_t = \sum_i q_{it} \cdot p_{it}$, si indica con *variazione nominale*, o *variazione a prezzi correnti*, la crescita in valore di A nel tempo:

$$\frac{A_t}{A_0} = \frac{\sum_i q_{it} \cdot p_{it}}{\sum_i q_{i0} \cdot p_{i0}}$$

Si indica invece come *variazione reale* o *in volume* o *a prezzi costanti* la variazione in quantità dell'aggregato:

$$\frac{A_{t_{(0)}}}{A_0} = \frac{\sum_{i} q_{it} \cdot p_{i0}}{\sum_{i} q_{i0} \cdot p_{i0}}$$

Da prezzi correnti a costanti: il deflazionamento

L'aggregato $A_{t_{(0)}}$ può essere calcolato direttamente moltiplicando le quantità al tempo t per i prezzi al tempo 0, oppure indirettamente ricorrendo a numeri indici di prezzo e quantità:

$$A_{t_{(0)}} = \sum p_0 q_t = \sum p_t q_t \cdot \frac{\sum p_0 q_t}{\sum p_t q_t} = \frac{A_t}{{}_0^P I_t^P}$$

dicvidendo l'aggregato a valori correnti per un indice dei prezzi di Paasche. In questo caso si parla di *deflazionamento*. Oppure si può procedere per *estrapolazione*:

$$A_{t_{(0)}} = \sum p_0 q_t = \sum p_0 q_0 \cdot \frac{\sum p_0 q_t}{\sum p_0 q_0} = A_{00}^q I_t^L$$

moltiplicando il valore corrente dell'aggregato in 0 per un indice di quantità di tipo Laspeyres.

