Cap. 4 – Números reais

06/05/2022

Dados um segmento AB qualquer e um segmento u padrão (segmento unitário)

se u cabe n vezes em AB, diremos que a medida de \overline{AB} é n. Denotaremos o comprimento do segmento \overline{AB} por $\overline{\overline{AB}}$.

Quando não for possível, podemos procurar um segmento w que caiba n vezes em u e m vezes em AB. Se existir tal segmento w, dizemos que AB é comensurável e $\overline{w} = \frac{1}{n}$ e $\overline{AB} = \frac{m}{n}$.

Exemplo:

Se w cabe n vezes em AB e m vezes em AC e AB é a unidade de comprimento, então $\overline{AB}=1$ e $AC=\frac{m}{n}$.

Se w cabe n vezes em AB e m vezes em AC e AB é a unidade de comprimento, então $\overline{AB}=1$ e $AC=\frac{m}{n}$. Logo,

$$\left(\frac{m}{n}\right)^2 = 1^2 + 1^2 \Rightarrow m^2 = 2n^2$$

O segmento AC é incomensurável.

Dado X na reta, se OA cabe n vezes em OX, dizemos que a abcissa de X é n se X está a direita de O ou -n se está a esquerda de O. Se X = O, sua abcissa é zero.

 $\mathbb{Z}=$ conjunto das abcissas de X tais que OA cabe um número exato de vezes em OX mais o zero.

 $\mathbb{Q}=$ conjunto das abcissas de X tais que OX é comensurável em OA.

Se OX é incomensurável com OA, dizemos que o número (irracional) x é a abcissa de X e x é positivo ou negativo conforme está a direita ou a esquerda de O. x é a medida do segmento OX (por definição).

 $\mathbb{R}=$ conjunto dos números racionais e irrecionais. Existe uma correspondência biunívoca entre as abcissas dos pontos X de OA e o conjunto $\mathbb{R}.$

Relação de ordem:

 $x < y \Leftrightarrow X$ está a esquerda de Y

Soma:

x + y é a abcissa de Y' se XY' tem o mesmo comprimento e sentido de OY

Produto:

Construa os triângulos de modo que AY//XY' e por semelhança de triânguos:

$$\frac{y}{1} = \frac{\overline{OY'}}{x} \Rightarrow \overline{OY'} = xy$$

\mathbb{R} é um

- corpo: as quatro operações e suas propriedades estão definidas
- ordenado: relação de ordem e sua ligação com as operações
- completo: sequências convergentes de números reais convergem para números reais

 $\mathbb Q$ é um corpo ordenado, mas não é completo. Ex.: 3, 3,1, 3,14, 3,141, 3,1415, . . . converge para $\pi\notin\mathbb Q$

Todo número real α tem uma expressão decimal (não única)¹

$$\alpha = \overbrace{a_0}^{\text{pate inteira}}, \overbrace{a_1 a_2 a_3 \dots}^{\text{dígitos}}$$

onde $a_0 \in \mathbb{Z}$ e $a_1, a_2, a_3, \ldots \in \{0, 1, 2, \ldots, 9\}.$

$$\alpha = a_0 + \frac{a_1}{10} + \frac{a_2}{10^2} + \frac{a_3}{10^3} + \dots + \frac{a_n}{10^n} + \dots$$

Se

$$\alpha_n = a_0 + \frac{a_1}{10} + \frac{a_2}{10^2} + \frac{a_3}{10^3} + \dots + \frac{a_n}{10^n},$$

então α_n aproxima α e o erro da aproximação é no máximo $\frac{1}{10^n}$. De fato,

$$\alpha - \alpha_n = \frac{a_{n+1}}{10^{n+1}} + \frac{a_{n+2}}{10^{n+2}} + \cdots$$

$$= 0, \underbrace{0 \dots 0}_{n} a_{n+1} a_{n+2} \dots$$

$$\leq 0, \underbrace{0 \dots 0}_{n-1} 1 = \frac{1}{10^n}$$

$$\left(0,9999999999\dots = 1 \xrightarrow{(\div 10^n)} 0, \overbrace{0\dots 0}^n 99999\dots = 0, \overbrace{0\dots 0}^{n-1} 1\right)$$

Além disso, $a_0 \text{ \'e o maior inteiro tal que } a_0 \leq \alpha$ $a_1 \text{ \'e o maior d\'igito tal que } a_0 + \frac{a_1}{10} \leq \alpha$ $a_2 \text{ \'e o maior d\'igito tal que } a_0 + \frac{a_1}{10} + \frac{a_2}{10^2} \leq \alpha$ \vdots $a_n \text{ \'e o maior d\'igito tal que } a_0 + \frac{a_1}{10} + \frac{a_2}{10^2} + \cdots + \frac{a_n}{10^n} \leq \alpha$

Dessa forma, $\alpha_1 \leq \alpha_2 \leq \cdots \leq \alpha_n$ é uma sequência crescente de valores que se aproximam de α .

$$\lim_{n\to\infty}\alpha_n=\alpha$$

Casos interessantes:

- $a_0, a_1 a_2 a_3 \dots a_n 000 \dots = a_0 + \frac{a_1}{10} + \frac{a_2}{10^2} + \dots + \frac{a_n}{10^n}$ é racional e uma fração decimal.
- ▶ 0,999...=1. De fato, $\alpha_1=0,9\Rightarrow 1-\alpha_1=0,1=\frac{1}{10}$ $\alpha_2=0,99\Rightarrow 1-\alpha_2=0,01=\frac{1}{10^2}$ \vdots $\alpha_n=0,99...9\Rightarrow 1-\alpha_n=0,0...01=\frac{1}{10^n}$ Mas, $\frac{1}{10^n}$ pode ser tão pequeno quando se queira. Logo, só pode ser 0,999...=1.

Casos interessantes:

$$1 = 0,999... = \frac{9}{10} + \frac{9}{10^2} + \cdots$$

$$\xrightarrow{(\div 9)} \frac{1}{9} = \frac{1}{10} + \frac{1}{10^2} + \cdots = 0,111...$$

$$\xrightarrow{(\times a)} 0, aaa... = \frac{a}{9}$$

Ex.:
$$0,555... = \frac{5}{9}$$

Casos interessantes:

▶ Observe que $\frac{9}{10^n} + \frac{9}{10^{n+1}} = \frac{90+9}{10^{n+1}} = \frac{99}{10^{n+1}}$. Logo,

$$1 = \left(\frac{9}{10} + \frac{9}{10^2}\right) + \left(\frac{9}{10^3} + \frac{9}{10^4}\right) + \left(\frac{9}{10^5} + \frac{9}{10^6}\right) + \dots$$

$$= \frac{99}{10^2} + \frac{99}{10^4} + \frac{99}{10^6} + \dots + \frac{99}{10^{2n}} + \dots$$

$$= \frac{99}{100} + \frac{99}{100^2} + \frac{99}{100^3} + \dots + \frac{99}{100^n} + \dots$$

$$= 99\left(\frac{1}{100} + \frac{1}{100^2} + \dots + \frac{1}{100^n} + \dots\right)$$

$$\Rightarrow \frac{1}{99} = \frac{1}{100} + \frac{1}{100^2} + \dots + \frac{1}{100^n} + \dots$$

Dízimas periódicas

A (fração) geratriz de uma dízima periódica simples é uma fração cujo numerador é o período e cujo denominador é o número formado por tantos noves quantos são os algarismos do período.

Ex.:
$$\frac{42}{99} = \frac{42}{100} + \frac{42}{100^2} + \dots + \frac{42}{100^n} + \dots = 0,424242\dots$$

Dízimas periódicas

Para dízimas periódicas compostas, fazemos como no exemplo:

$$\alpha = 0, \underbrace{042}_{3 \text{ díg.}} 123123...$$

$$\xrightarrow{(\times 10^3)} 1000\alpha = 42, 123123... = 42 + 0, \underbrace{123123123...}_{\text{dízima simples}}$$

$$\Rightarrow 1000\alpha = 42 + \underbrace{\frac{123}{999}}_{999} = \underbrace{\frac{42 \cdot 999 + 123}{999}}_{999} = \underbrace{\frac{42081}{999}}_{999}$$

$$\Rightarrow \alpha = \underbrace{\frac{42081}{999000}}_{999000}$$

De modo geral, representações decimais periódicas representam números racionais. Reciprocamente, números racionais têm representação decimal periódica.

"Divisão continuada":

$$\begin{array}{c|c}
\underline{6} \\
11 \\
\hline
-55 \\
\underline{50} \\
-44 \\
\hline
60
\end{array}$$

Como na divisão por q só pode ocorrer restos $0,1,2,\ldots,q-1$, após no máximo q divisões um resto vai se repetir (princípio da casa dos pombos) e a partir daí os dígitos do quociente se repetirão.

A correspondência entre a representação decimal e os números reais é sobrejetiva. Dado $\alpha \in \mathbb{R}$, tomando sucessivamente a_0 o maior inteiro tal que $a_0 \leq \alpha$ a_1 o maior dígito tal que $a_0 + \frac{a_1}{10} \leq \alpha$ \vdots a_n o maior dígito tal que $a_0 + \frac{a_1}{10} + \frac{a_2}{10^2} + \cdots + \frac{a_n}{10^n} \leq \alpha$ $\Rightarrow \alpha = a_0, a_1 a_2 \ldots a_n \ldots$

Ex.:
$$\pi = 3,1415965...$$
, pois

$$3<\pi<4$$
 $3,1<\pi<3,2$ $3,14<\pi<3,15$ $3,141<\pi<3,142$

Por outro lado, 0,99999...=1 e 3,27599999...=3,276, por exemplo.

Descartando as expressões decimais que terminam por uma sequência de noves, temos uma correspondência biunívoca entre as representações decimais e os números reais.

Opreções com expressões decimais

Não é possível operar utilizando as representações decimais diretamente, pois as operações funcionam da direita para a esquerda. Para isso, dados $\alpha = a_0, a_1 a_2 \dots$ e $\beta = b_0, b_1 b_2 \dots$, tomamos as aproximações α_n e β_n e temos que:

$$\alpha_{n} + \beta_{n} \to \alpha + \beta$$

$$\alpha_{n} - \beta_{n} \to \alpha - \beta$$

$$\alpha_{n} \cdot \beta_{n} \to \alpha \cdot \beta$$

$$\frac{\alpha_{n}}{\beta_{n}} \to \frac{\alpha}{\beta}$$

Não enumerabilidade dos reais

Não pode existir $f: \mathbb{N} \to \mathbb{R}$ sobrejetiva.

$$f(1) = a_0^1, a_1^1 a_2^1 a_3^1 \dots$$

$$f(2) = a_0^2, a_1^2 a_2^2 a_3^2 \dots$$

$$f(3) = a_0^3, a_1^3 a_2^3 a_3^3 \dots$$

Tomando y cuja representação decimal é

$$0, \underline{\neq a_1^1} \ \underline{\neq a_2^2} \ \underline{\neq a_3^3} \ \ldots,$$

temos que $y \neq f(n), \forall n \in \mathbb{N}$ (diagonal de Cantor).

Portanto, o conjunto dos números reais é não enumerável, ou seja, a cardinalidade de $\mathbb R$ é maior que a de $\mathbb N$.

Desigualdades: reais positivos

$$\mathbb{R}^+ = \{ x \in \mathbb{R} \mid x > 0 \}$$

Propriedades básicas dos números reais positivos:

- P1) Dado $x \in \mathbb{R}$: ou x > 0 ou x = 0 ou -x > 0;
- P2) Soma e produto de dois reais positivos resulta num real positivo.

Dizer que x < y é equivalente a dizer que y - x > 0.

Desigualdades: propriedades

▶ Tricotomia: ou x < y ou x = y ou $y < x, \forall x, y \in \mathbb{R}$.

Basta observar y - x. Por P1: ou $y - x > 0 \Leftrightarrow x < y$ ou $y - x = 0 \Leftrightarrow x = y$ ou $-(y - x) > 0 \Leftrightarrow x - y > 0 \Leftrightarrow x < y$

► Transitividade: se x < y e y < z, então $x < z, \forall x, y, z \in \mathbb{R}$.

$$y - x > 0$$
 e $z - y > 0$, logo $z - x = (z - y) + (y - x) > 0$

Monotonicidade da adição: se x < y, então $x + z < y + z, \forall x, y, z \in \mathbb{R}$.

$$y - x > 0$$
, logo $y + z - (x + z) = y - x > 0$
(se $x < y$ e $x' < y'$, então $x + x' < y + y', \forall x, y, x', y' \in \mathbb{R}$)

Desigualdades: propriedades

- Monotonicidade da multiplicação: se x < y e z > 0, então xz < yz. Se z < 0, então yz < xz.
 - z > 0 e y x > 0, por P2, $z(y - x) > 0 \Leftrightarrow yz - xz > 0 \Leftrightarrow xz < yz$
- $ightharpoonup x^2 \ge 0, \forall x \in \mathbb{R}.$

Por P1:
ou
$$x > 0 \xrightarrow{P2} x^2 > 0$$

ou $x = 0 \Rightarrow x^2 = 0$
ou $-x > 0 \xrightarrow{P2} x^2 = (-x)(-x) > 0$

Desigualdades: propriedades

► Se 0 < x < y, então $0 < \frac{1}{y} < \frac{1}{x}$.

Dado x > 0, $\frac{1}{x} > 0$, pois $\frac{1}{x} = x \cdot \left(\frac{1}{x}\right)^2 > 0$. $x < y \xrightarrow{\left(\frac{x}{x}\right)} 1 < \frac{y}{x} \xrightarrow{\left(\frac{x}{y}\right)} \frac{1}{y} < \frac{1}{x}$, pois $\frac{1}{x}, \frac{1}{y} > 0$

Intervalos

$$[a, b] = \{x \in \mathbb{R} \mid a \le x \le b\}, (-\infty, b] = \{x \in \mathbb{R} \mid x \le b\}$$

$$(a, b) = \{x \in \mathbb{R} \mid a < x < b\}, (-\infty, b) = \{x \in \mathbb{R} \mid x < b\}$$

$$[a, b) = \{x \in \mathbb{R} \mid a \le x < b\}, [a, +\infty) = \{x \in \mathbb{R} \mid a \le x\}$$

$$(a, b] = \{x \in \mathbb{R} \mid a < x \le b\}, (a, +\infty) = \{x \in \mathbb{R} \mid a < x\}$$

$$(-\infty, +\infty) = \mathbb{R}$$

Intervalos

Todo intervalo não-degenerado contém números racionais e irracionais.

De fato, observe o intervalo (a,b) com a < b. Tome c = b - a > 0 e $n \in \mathbb{N}$ tal que $n > \frac{1}{c} \Rightarrow c > \frac{1}{n}$. Assim, como os racionais $\ldots, -\frac{2}{n}, -\frac{1}{n}, 0, \frac{1}{n}, \frac{2}{n}, \ldots$ estão por toda reta real e a distância entre dois consecutivos é $\frac{1}{n} < c$, devemos ter algum desses racionais em (a,b).

Intervalos

Analogamente, tomando $n \in \mathbb{N}$ tal que $n > \frac{\sqrt{2}}{c} \Rightarrow \frac{\sqrt{2}}{n} < c$, tem-se algum dos irracionais $\pm \frac{\sqrt{2}}{2n}, \pm \frac{2\sqrt{2}}{2n}, \pm \frac{3\sqrt{2}}{2n}, \ldots$ no intervalo (a, b).

$$\left(\frac{(k+1)\sqrt{2}}{2n} - \frac{k\sqrt{2}}{2n} = \frac{\sqrt{2}}{2n} < \frac{\sqrt{2}}{n} < c\right)$$

Valor absoluto

$$|x| = \begin{cases} x, & \text{se } x \ge 0 \\ -x, & \text{se } x < 0 \end{cases}$$
ou
$$|x| = \max\{x, -x\}$$
ou
$$|x| = \sqrt{x^2}$$
ou

|x-y|

Valor absoluto

Observe que
$$|x| \ge 0$$
, sendo $|x| = 0 \Leftrightarrow x = 0$

Exemplo:

$$|x-3| = 2 \Leftrightarrow x = 2 \text{ ou } x = 5$$

$$|x-a| \le \varepsilon \Leftrightarrow x \in (a-\varepsilon, a+\varepsilon)$$

$$\begin{vmatrix} + & + \\ -a-\varepsilon & a \end{vmatrix}$$

Valor absoluto

Propriedades:

$$|x+y| \le |x| + |y|, \forall x, y \in \mathbb{R}$$

Temos $x \le |x|$ e $y \le |y|$. Logo, $x + y \le |x| + |y|$. Além disso,

$$\begin{array}{l} -x \leq |x| \Rightarrow x \geq -|x| \\ -y \leq |y| \Rightarrow y \geq -|y| \end{array} \right\} \Rightarrow -(|x|+|y|) \leq x+y$$

$$\therefore -(|x|+|y|) \leq x+y \leq |x|+|y| \Leftrightarrow |x+y| \leq |x|+|y|$$

►
$$|xy| = |x||y|, \forall x, y \in \mathbb{R}$$

 $|xy|^2 = (xy)^2 = x^2y^2 = |x|^2|y|^2 \Rightarrow |xy| = |x||y|$

Sequências e profressões

$$x: \mathbb{N} \to \mathbb{R}$$

$$n \mapsto x(n) = x_n$$

$$(x_1, x_2, x_3, \dots, x_n, \dots) = (x_n)_{n \in \mathbb{N}} = (x_n)$$

Sequências e progressões

Exemplo:

Uma PA é uma sequência tal que $x_{n+1} = x_n + r$, logo $r = x_{n+1} - x_n$.

$$x_1, \underbrace{x_1+r}_{x_2}, (x_1+r)+r = \underbrace{x_1+2r}_{x_3}, \ldots, \underbrace{x_1+(n-1)r}_{x_n}, \ldots$$

é crescente se $x_n < x_{n+1}$, logo $x_n < x_n + r \Leftrightarrow 0 < r$ é decrescente se $x_n > x_{n+1}$, logo $x_n > x_n + r \Leftrightarrow r < 0$

▶ Uma PG é uma sequência tal que $x_{n+1} = x_n \cdot r$, logo $r = \frac{x_{n+1}}{x_n}$

$$x_1, \underbrace{x_1 \cdot r}_{x_2}, (x_1 \cdot r) \cdot r = \underbrace{x_1 \cdot r^2}_{x_3}, \dots, \underbrace{x_1 \cdot r^{n-1}}_{x_n}, \dots$$

Uma sequência é dita

- rescente quando $x_n < x_{n+1}$;
- ▶ não-crescente quando $x_n \le x_{n+1}$;
- ▶ decrescente quando $x_n > x_{n+1}$;
- ▶ não-decrescente quando $x_n \ge x_{n+1}$;
- monótona quando é (não)crescente ou (não)decrestente;
- ▶ limitada superiormente quando existe $M \in \mathbb{R}$ tal que $x_n \leq M, \forall n \in \mathbb{N};$
- ▶ limitada inferiormente quando existe $m \in \mathbb{R}$ tal que $x_n \geq m, \forall n \in \mathbb{N};$
- limitada quando é limitada inferiormente e superiormente.

Exemplo:

 $ightharpoonup x_n = \frac{n}{n+1}$ é crescente e limitada.

$$\frac{x_n}{x_{n+1}} = \frac{\frac{n}{n+1}}{\frac{n+1}{n+2}} = \frac{n(n+2)}{(n+1)^2} = \frac{n^2 + 2n}{n^2 + 2n + 1} < 1 \Rightarrow x_n < x_{n+1}$$
e $n < n+1 \Rightarrow \frac{n}{n+1} < 1 \Rightarrow x_n < 1$

 $> x_n = n$ é crescente e ilimitada.

$$n < n+1, \forall n \in \mathbb{N}$$
 dado $M \in \mathbb{R}, \ \lfloor M \rfloor + 1 \in \mathbb{N} \ e \ x_{\lfloor M \rfloor + 1} > M$

Se $n_1 \leq n_2 \leq \cdots \leq n_k \leq \cdots$ é uma sequência limitada não-decrescente de números naturais, então a partir de algum k_0 a sequência será constante.

X é um conjunto de valores aproximados por falta de α se:

- $\triangleright x \leq \alpha, \forall x \in X;$
- ▶ dado ε > 0, existe $x \in X$ tal que $0 \le \alpha x < \varepsilon$.

Teorema: Toda sequência (x_n) monótona limitada forma um conjunto de valores aproximados por falta de um número real α .

Tratando o caso onde $x_n>0$ e $x_1\leq x_2\leq\ldots\leq x_n\ldots$ com representações decimais

$$x_{1} = a_{0}^{1}, a_{1}^{1} a_{2}^{1} a_{3}^{1} \dots$$

$$x_{2} = a_{0}^{2}, a_{1}^{2} a_{2}^{2} a_{3}^{2} \dots$$

$$\vdots$$

$$x_{n} = a_{0}^{n}, a_{1}^{n} a_{2}^{n} a_{3}^{n} \dots$$

$$\vdots$$

 (a_k^n) (seq. vertical) é uma sequência limitada não-decrescente de naturais, logo deve ser constante a partir de um n_k . Tome $n_k < n_{k+1}$.

Tomando $\alpha=a_0, a_1a_2a_3\dots a_n\dots$, onde $a_k=a_{n_k}^k$, temos: $x_n\leq \alpha$, pois $a_k^n\leq a_k^{n_k}$ e se $n>n_k$, então $0\leq \alpha-x_n<\frac{1}{10^k}$, pois os k primeiros dígitos de α e x_n são iguais. Dado $\varepsilon>0$, basta tomar k suficientemente grande de modo que $\frac{1}{10^k}<\varepsilon$ e temos $0\leq \alpha-x_n<\varepsilon, \forall n\leq n_k$.