Machine Learning on Retail Bank Marketing Data

Connie Zhang

Introduction

Retail banking is the provision of services by a bank to individual consumers. Such services offered include savings and transactional accounts, mortgages, personal loans and credit/debit cards.

One of big challenges of the business is how to identify consumer who are more likely to do business with it and to target those with suitable needs to sign up its services. In this study, we applied Classification algorithms to the historical marketing data from a European bank to:

Understand important factors for deposit account sign-up.

Make prediction on the sign-up.

Evaluate multiple algorithms based on prediction sensitivity

The goal: help bank to improve its focus on marketing campaign.

The Data

The marketing data contains:

Consumer information: age, sex, marital and job status, etc.

Campaign activity: when and how to contact, times to contact

Social and economic environment data: short-term in nature

Campaign outcome: sign up or not on deposit account

Characteristic of the data: highly unbalanced

Data Pre-processing

Encoding 12 categorical variables and response variable into numerical levels Imputing missing data on column pdays through four approaches:

- 1. Leave it as it is (999)
- 2. Imputing missing data to the mean of the column
- 3. Imputing missing data as 0
- 4. Remove the variable from data set

Logistic Regression is used to evaluate the approaches above.

The outcome shows best result to the first approach.

Implementation of Classification Algorithms

The goal:

Find the most suitable classification algorithm based on sensitivity and score

The approach:

Rebalance data: Oversampling/Undersampling on training dataset

Multiple Algorithms: Logistic Regression, RandomForest, Gradient Boosting, Support Vector Classifier, Neural Network

Model Evaluations: gridsearchCV to generate best parameters

Validation Curve used to evaluate overfitting

Classification Report to evaluate sensitivity

The Results

1. Logistic Regression: baseline

On train set:

precis	sion	recall f1-	score	support
class 0	0.91	0.99	0.95	29235
class 1	0.68	0.21	0.32	3715
avg / total	0.88	0.90	0.88	32950
	On	test set:		
precision	rec	all f1-sco	re sup	port
class 0	0.91	0.99	0.95	7313
class 1	0.68	0.23	0.34	925
avg / total	0.88	0.90	0.88	8238

2. Random Forest Model

The parameter setting to give the highest sensitivity: n_estimators=1000, max_depth=4,max_features='log2',class_weight={1:6}

n_estimators=1000,	max_depth	n=4,max ₋	_features:	='log2',cla	SS
Train set:	precision	recall	f1-score	support	
class	0 0.95	0.87	0.91	29224	
class	1 0.37	0.62	0.47	3726	
avg / tota	al 0.88	0.84	0.86	32950	

Test set:	precision	recall	f1-score	support
class	0 0.95	0.87	0.91	7324
class	1 0.37	0.61	0.46	914
avg / tota	al 0.88	0.84	0.86	8238

Relative Importance of Features:

3. Gradient Boosting model

The parameter setting: max_depth = 4, n_estimators= 60,learning_rate= 0.1,

Sample_weight is 1:7 in which 1 corresponds to class 0

	San	npie_we	eignt is 1	:7 in whic	on 1 corre	spo
Train set:	pre	cision	recall f	1-score	support	
	class 0	0.95	0.88	0.91	29224	
	class 1	0.40	0.63	0.49	3726	
	avg / total	0.89	0.85	0.87	32950	
Test set:	pr	ecision	recall	f1-score	support	
	class 0	0.95	0.88	0.91	7324	
	class 1	0.39	0.63	0.48	914	
	avg / total	0.89	0.85	0.86	8238	

The important features are:

4 Support Vector Classifier

8238

Parameter setting: Kernel = "rbf', class_weight= 1:8				
Train set:	precision	recall	f1-score	support
class	0 0.93	1.00	0.96	29224
ologo	1 004	0.27	0.52	2726

	class 0	0.93	1.00	0.96	29224
	class 1	0.94	0.37	0.53	3726
	avg / total	0.93	0.93	0.91	32950
Test set:	pre	ecision	recall f	1-score	support
	class 0	0.91	0.98	0.94	7324
	class 1	0.57	0.18	0.27	914

avg / total 0.87 0.89 0.87

5. Neural Network

Params: solver=adam, hidden_layer_sizes=100, activation = logistic random_state=None, learning_rate=invscaling

Train: precision recall f1-score support class 0 0.95 0.73 0.82 29175 class 1 0.25 0.71 0.37 3775 avg / total 0.87 0.73 0.77 32950

Test:	p	recision	recall	f1-score	support
	class 0	0.95	0.72	0.82	7373
	class 1	0.23	0.70	0.35	865
	avg / total	0.88	0.72	0.77	8238

On test set:

Baseline:

TValue False True
Predict
False 7224 694
True 124 196

GBT:

TValue	False	True
Predict		
False	6350	370
True	943	575

Neural network:

TValue	False	True	
Predict	100		
False	5338	259	
True	2035	606	

Conclusion

- 1. Multiple Algorithms have been evaluated
- 2. Oversampling/undersampling for unbalanced data
- 3. Cross Validation used for parameter selection
- 4. Gradient Boosting is the best model for the sensitivity and interpretation on feature importance
- 5. Neural Network has the best ability to predict sign-up but give no insight on feature influence.
- 6. Both Gradient Boosting and Neural Network can add value to further marketing campaign.