高等代数 (一) 期中试卷 2020-11-28

姓名:

学号:

班级:

任课教师:

_	 三	四	五.	六	七	八	总分

- 一、(20分)判断下列陈述是否正确,并说明理由(本题共5小题,每小题4分).
 - 1. 设 F 是数域, f(x), g(x), $h(x) \in F[x]$. 如果 f(x)|g(x)h(x) 并且 $f(x) \nmid g(x)$, 则 f(x)|h(x).
 - 2. 设 f(x) 是实数域上的不可约多项式,则 f(x) 无实根.
 - 3. 设 p 是素数, $f(x) = x^p + (p+1)x^2 + p 1$, $g(x) = x^2 + p$, 则 (f(x), g(x)) = 1.
 - 4. 设 F 是数域, $f_1(x)$, $f_2(x)$, $f_3(x)$, $g(x) \in F[x]$. 如果 $(f_1(x), f_2(x), f_3(x)) = 1$ 并且 $f_i(x)|g(x)$, i = 1, 2, 3, 则 $f_1(x)f_2(x)f_3(x)|g(x)$.
 - 5. 设 a_i, b_i, c_i, d_i 都是数域 F 中的数, i = 1, 2, 则

$$\begin{vmatrix} a_1 + a_2 & b_1 + b_2 \\ c_1 + c_2 & d_1 + d_2 \end{vmatrix} = \begin{vmatrix} a_1 & b_1 \\ c_1 & d_1 \end{vmatrix} + \begin{vmatrix} a_2 & b_2 \\ c_2 & d_2 \end{vmatrix}.$$

二、(30分)填空题(本题共5小题,每小题6分).

2. 设
$$f(x) = x^4 - x^3 - 4x^2 + 4x + 1$$
, $g(x) = x^2 - x - 1$, 则 $(f(x), g(x)) = _____$. 当 $u(x) = ______$, $v(x) = ______$, 时, $(f(x), g(x)) = _____$

3. 设
$$f(x) = x^3 + tx^2 + 3x + 1$$
, 则当 $t = _$ 时, $f(x)$ 恰好有二重根.

4. 设行列式
$$D = \begin{pmatrix} 2 & 0 & 2 & 0 \\ 1 & 1 & 2 & 3 \\ 4 & 8 & 12 & 16 \\ 1 & 3 & 5 & 7 \end{pmatrix}$$
 中第 i 行第 j 列的元素 a_{ij} 的代数余子式为

$$A_{ij}$$
 $(i, j = 1, 2, 3, 4)$, \mathbb{M} $A_{41} + A_{42} + 2A_{43} + 3A_{44} = \underline{\hspace{1cm}}$.

常数项等于_____

 Ξ 、(10分) 写出 $f(x) = x^4 + 1$ 在复数域、实数域及有理数域上的标准分解式,并说明理由.

四、(20分) 设整数 $n \ge 3$, 计算下列 n 级行列式 (本题共 2 小题, 每小题 10 分).

$$1. \ D_n = \begin{vmatrix} 7 & -4 & 0 & 0 & \cdots & 0 & 0 & 0 \\ -3 & 7 & -4 & 0 & \cdots & 0 & 0 & 0 \\ 0 & -3 & 7 & -4 & \ddots & & & \vdots \\ 0 & 0 & -3 & 7 & \ddots & \ddots & \ddots & \vdots \\ \vdots & \vdots & \ddots & \ddots & \ddots & \ddots & \ddots & \vdots \\ \vdots & \vdots & & \ddots & \ddots & \ddots & \ddots & \ddots & \vdots \\ \vdots & \vdots & & \ddots & \ddots & \ddots & \ddots & \ddots & \vdots \\ 0 & 0 & 0 & 0 & \cdots & 0 & -3 & 7 \end{vmatrix}$$

$$2. \ D_n = \begin{vmatrix} 1 & 1 & 1 & \cdots & 1 \\ a_1 & a_2 & a_3 & \cdots & a_n \\ a_1^2 & a_2^2 & a_3^2 & \cdots & a_n^2 \\ \vdots & \vdots & \vdots & & \vdots \\ a_1^{n-3} & a_2^{n-3} & a_3^{n-3} & \cdots & a_n^{n-3} \\ a_1^{n-1} & a_2^{n-1} & a_3^{n-1} & \cdots & a_n^{n-1} \\ a_1^n & a_2^n & a_3^n & \cdots & a_n^n \end{vmatrix}.$$

五、(10分) 试求满足 f(1)=1, f(2)=2, f(3)=3, f'(4)=4 的所有 $f(x)\in\mathbb{Q}[x],$ 这里 f'(x) 表示 f(x) 的导数.

六、(10分) 设 n 为正整数, $D = |a_{ij}|_n$, 其中 $a_{ij} = |i-j|$, i, j = 1, 2, ..., n, 试求 D.

七、(10分) 设整数 $n \ge 2$, $D = |a_{ij}|_n = 2$, $\Delta = |A_{ij}|_n$, 其中 A_{ij} 是 D 中 a_{ij} 的代数 余子式, $i, j = 1, 2, \ldots, n$. 已知 $a_{nn} = 4$, 求 A_{nn} 在 $\Delta = |A_{ij}|_n$ 中的代数余子式.

八、(10分) 设 F 是数域, $A,B \subseteq F[x]$ 是两个非空集合, 定义集合

$$A + B = \{g(x) + h(x) \in F[x] \mid g(x) \in A, h(x) \in B\}.$$

$$\Leftrightarrow M_k = \{ f(x) \in F[x] \mid f(k) = f(k+1) = 0 \}, \ k = 1, 2, 3.$$

证明: 存在 $d(x) \in F[x]$ 使得

$$(M_1 \cap M_2) + (M_2 \cap M_3) = \{d(x)g(x) \in F[x] \mid g(x) \in F[x]\}.$$