Analiza numeryczna (L) - Lista 12

Magdalena Słonińska

18 stycznia 2022

Zadanie 2

Udowodnij, że kwadratura postaci $Q_n(f) := \sum_{k=0}^n A_k f(x_k)$ ma rząd $\geqslant n+1$ wtedy i tylko wtedy, gdy jest kwadraturą interpolacyjną.

Musimy pokazać dwie zależności:

1. Kwadratura Q_n (zadana powyższym wzorem) ma rząd $\geqslant n+1 \Rightarrow Q_n$ jest kwadraturą intepolacyjną.

Dowód: Załózmy, że Q_n jest rzędu co najmniej n+1. Rozważmy dowolną funkcję f(x) oraz wielomian interpolujący węzły jej kwadratury Q_n :

$$L_n(x) = \sum_{k=0}^n f(x_k) \lambda_k(x), \ \lambda_k(x) = \prod_{j=0 \land j \neq k}^n \frac{x - x_j}{x_k - x_j}$$

Łatwo zauważyć, że dla j=k mamy $\lambda_k(x_j)=1$, a w przeciwnym wypadku $\lambda_k(x_j)=0$. Stopień wielomianu λ_k jest wystarczająco niski, żeby kwadratura rzędu $\geqslant n+1$ była dokładna (bez reszty). Wobec tego możemy zapisać, że

$$Q_n(\lambda_k) = \int_a^b \lambda_k(x) dx = \sum_{i=0}^n A_i \lambda_k(x_i) =$$

$$= A_0 \cdot 0 + \dots + A_{k-1} \cdot 0 + A_k \cdot 1 + A_{k+1} \cdot 0 + \dots + A_n \cdot 0 = A_k$$

Wróćmy teraz do naszej funkcji f(x):

$$Q_n(f) = \int_a^b f(x)dx = \sum_{k=0}^n A_k f(x_k) = \sum_{k=0}^n \int_a^b \lambda_k(x)dx \cdot f(x_k)$$

czyli Q_n jest kwadraturą interpolacyjną.

2. Kwadratura Q_n jest interpolacyjna \Rightarrow kwadratura Q_n ma rząd $\geqslant n+1$. $Dow \acute{o}d$: Weźmy dowolny wielomian w stopnia n. Wtedy $I(w) = \int_a^b w(x) dx$, ale skoro kwadratura Q_n jest interpolacyjna, to zachodzi również

$$Q_n(f) = \sum_{k=0}^n A_k f(x_k) = \int_a^b L_n(x) dx$$

Z jednoznaczności interpolacji Lagrange'a wiemy, że jest dokładnie jeden wielomian stopnia n interpolujący te n+1 punktów, czyli $w(x)=L_n(x)$. Zatem

$$\int_{a}^{b} w(x)dx = \int_{a}^{b} L_{n}(x)dx$$

Z kolei błąd kwadratury Q_n wynosi wtedy

$$R_n(w) = I(w) - \int_a^b L_n(x)dx = 0$$

czyli kwadratura jest dokładna dla wielomianu n-tego stopnia, co znaczy, że ona sama jest rzędu $\geqslant n+1.$

Zadanie 7

Niech A_k $(k=0,1,\ldots,n)$ oznaczają współczynniki kwadratury Newtona-Cotesa. Udowodnij, że $A_k/(b-a)$ $(0 \le k \le n)$ są liczbami wymiernymi.

Najpierw zapiszmy to, co wiemy o współczynnikach

$$A_k = h \int_0^n \prod_{\substack{j=0 \ k \ j \neq k}}^n \frac{t-j}{k-j} dt, \ t = \frac{x-a}{h}, \ h = \frac{b-a}{n}$$

Wtedy

$$\frac{A_k}{b-a} = \frac{h}{b-a} \int_0^n \prod_{j=0 \land j \neq k}^n \frac{t-j}{k-j} dt = \frac{1}{n} \int_0^n \prod_{j=0 \land j \neq k}^n \frac{t-j}{k-j} dt$$

Od razu widzimy, że zarówno $\frac{1}{n}$ jak i $\prod_{j=0 \land j \neq k}^n \frac{1}{k-j}$ są liczbami wymiernymi (po przeliczeniu tego iloczynu otrzymamy coś postaci $\frac{1}{a}, a \in \mathbb{Z}$). Pozostaje nam sprawdzić czy całka $\int_0^n \prod_{j=0 \land j \neq k}^n (t-j) dt$ też jest liczbą wymierną. Zapiszmy to w rozwiniętej postaci:

$$\int_0^n (t(t-1)(t-2)\dots(t-k-1)(t-k+1)\dots(t-n))dt =$$

$$= \int_0^n (a_{n-1}t^{n-1} + a_{n-2}t^{n-2} + \dots + a_0)dt =$$

$$= \int_0^n a_{n-1}t^{n-1}dt + \dots + \int_0^n a_1t^1 + \int_0^n a_0 =$$

$$= -a_{n-1}\frac{n^n}{n} - a_{n-2}\frac{n^{n-1}}{n-1} - \dots - a_0\frac{n}{1} + C$$

Skoro każdy ze składników sumy jest wymierny (bo $n\in\mathbb{N}$ i dla dowolnego $i\in\mathbb{N}$ $a_i\in\mathbb{Z}$), to wyrażenie $\frac{A_k}{b-a}$ jest liczbą wymierną.