数理強化学習入門

yataka

目次

第Ⅰ部	数学的知識	5
第1章 1.1 1.2 1.3 1.4	集合論 様々な集合 集合と写像 上限・下限と最大値・最小値 集合系と集合族	7 7 8 8 8
第2章	位相空間論	9
第3章	力学系	11
第 4 章 4.1 4.2	測度論 測度空間	13 13 15
第5章	関数解析	17
第 6 章 6.1	確率論 確率測度・確率空間	19 19
第Ⅱ部	数理強化学習	21
第7章	マルコフ決定過程	23
参考文献		25

第Ⅰ部

数学的知識

第1章

集合論

ここでは集合を、ある条件を満たすものを集めたものとして定義する.

1.1 様々な集合

Definition 1.1.1. (部分集合)

X,Y を集合とする.X が Y の部分集合であるとは

$$\forall x \in X, x \in Y$$

が成り立つことであり、X が Y の部分集合であることを

$$X \subset Y$$
 または $Y \supset X$

と表す.

Definition 1.1.2. (差集合)

X,Y を集合とする. X の元ではあるが Y の元ではないものを集めた集合を差集合といい X-Y と表す. すなわち

$$X - Y = \{x \in X | x \in X \text{ to } x \notin Y\}$$

Definition 1.1.3. (全体集合) その状況における一番大きい集合となる集合を全体集合という.

Definition 1.1.4. (補集合)

X を全体集合とする. $A \subset X$ とし差集合 X - A を A の補集合といい A^c で表す. すなわち

$$A^c = \{x \in X | x \in X \text{ in } x \notin A\}$$

Definition 1.1.5. (和集合) A, B を集合とする. A の元または B の元を集めた集合を A と B の和集合といい $A \cup B$ と表す. すなわち

$$A \cup B = \{x \in X | x \in A$$
または $x \in B\}$

第1章 集合論

Definition 1.1.6. (共通集合)

A,B を集合とする. A の元かつ B の元であるものを集めた集合を A と B の共通集合と いい $A\cap B$ と表す. すなわち

$$A \cap B = \{x \in X | x \in A \ \sharp \not \vdash k \ x \in B\}$$

1.2 集合と写像

Definition 1.2.1. (写像)

X,Y を集合とする. f が X の任意の要素を Y の元にただ一つ対応させる操作のことを写像といい, X から Y への写像であるということを

$$f: X \to Y$$

と表す.

Definition 1.2.2. (単射)

f は X から Y への写像であるとする.f が

$$\forall x_1, x_2 \in X, f(x_1) = f(x_2) \Longrightarrow x_1 = x_2$$

を満たすとき f は単射であるという.

Definition 1.2.3. (全射)

f は X から Y への写像であるとする.f が

$$\forall y \in Y, \exists x \in X \ s.t. \ y = f(x)$$

を満たすとき f は全射であるという.

Definition 1.2.4. (全単射)

f は X から Y への写像であるとする. f が単射かつ全射であるとき f は全単射であるという.

1.3 上限・下限と最大値・最小値

1.4 集合系と集合族

第2章

位相空間論

第3章

力学系

第4章

測度論

まず初めに測度論に関しての事項をのべる.

測度空間 4.1

まず、面積を測れる集合である σ -algebra を定義する.

Definition 4.1.1. (σ -algebra)

X を集合とする. X の部分集合族 \mathcal{F} が

- 1. $X \in \mathcal{F}$
- 2. $A \in \mathcal{F} \Longrightarrow A^c \in \mathcal{F}$
- 3.

$$A_i \in \mathcal{F}(i \in \mathbb{N}) \Longrightarrow \bigcup_{i=1}^{\infty} A_i \in \mathcal{F}$$

を満たす時 \mathcal{F} を σ -algebra という.

Example 4.1.2. 集合 X の冪集合 $\mathcal{P}(X)$ は σ -algebra となる.

Proof. $1.X \in \mathcal{P}(X)$ は $X \subset X$ より言える.

 $2.A \in \mathcal{P}(X) \Longrightarrow A^c \in \mathcal{P}(X)$ を示す.

任意に
$$A \in \mathcal{P}(X)$$
 をとる. $X - A \subset X$ より, $A^c \in \mathcal{P}(X)$.
3. $A_i \in \mathcal{P}(X)(i \in \mathbb{N}) \Longrightarrow \bigcup_{i=1}^{\infty} A_i \in \mathcal{P}(X)$ を示す.
任意に $A_i \in \mathcal{P}(X)(i \in \mathbb{N})$ をとる.

$$\bigcup_{i=1}^{\infty} A_i \subset X$$

であるので,
$$\bigcup_{i=1}^{\infty} A_i \in \mathcal{P}(X)$$
.

1. 2. 3. より $\mathcal{P}(X)$ は σ -algebra である.

14 第 4 章 測度論

Theorem 4.1.3. \mathcal{F} を σ -algebra する. この時

1. $\phi \in \mathcal{F}$

2.

$$A_1, A_2, \cdots, A_n \in \mathcal{F} \Longrightarrow \bigcup_{i=1}^n A_i \in \mathcal{F}$$

3.

$$A_1, A_2, \cdots, A_n \in \mathcal{F} \Longrightarrow \bigcap_{i=1}^n A_i \in \mathcal{F}$$

が成立する.

Proof. 1. $X \in \mathcal{F} \ \ \ \ \ \ \phi = X^c \in \mathcal{F}$.

2. 任意に \mathcal{F} の元 A_1,A_2,\cdots,A_n をとる.この時

$$B_i = \begin{cases} A_i & (1 \le i \le n) \\ \phi & (i > n) \end{cases}$$

として $B_i \in \mathcal{F}$ $(i \in \mathbb{N})$ を定義すれば, $\phi \in \mathcal{F}$ より,

$$\bigcup_{i=1}^{n} A_i = \bigcup_{i=1}^{\infty} B_i \in \mathcal{F}$$

3. 任意に $\mathcal F$ の元 A_1,A_2,\cdots,A_n をとる. この時定義より $A_1^c,A_2^c,\cdots,A_n^c\in\mathcal F$ であり,

$$\bigcap_{i=1}^{n} A_i = \left(\bigcup_{i=1}^{n} A_i^c\right)^c \in \mathcal{F}$$

Definition 4.1.4. (可測空間)

集合 X と X 上の σ -algebra の組 (X, \mathcal{F}) を可測空間と呼ぶ.

次に面積を測る写像である測度 m を定義する.

Definition 4.1.5. (測度)

F を σ アルジェブラとする. F 上の写像 m が.

- 1. $\forall A \in \mathcal{F}, 0 \leq m(A) \leq \infty$, 特に $m(\phi) = 0$
- 2. $A_i \in \mathcal{F}(i \in \mathbb{N})$ が互いに排反 $(\forall i, k \in \mathbb{N}, i \neq k \Rightarrow A_i \cap A_k = \phi)$ であるならば

$$m\left(\bigcup_{i=1}^{\infty} A_i\right) = \sum_{i=1}^{\infty} m\left(A_i\right)$$

を満たす時mをF上の測度という.

Theorem 4.1.6. m を \mathcal{F} 上の測度とする. この時

1. $A_1, A_2, \dots, A_n \in \mathcal{F}$ が互いに排反である時

$$m\left(\bigcup_{i=1}^{n} A_i\right) = \sum_{i=1}^{n} m(A_i)$$

2. $A, B \in \mathcal{F}$ で $A \subset B$ の時

$$m(A) \le m(B)$$

が成立し、特に $m(A) < \infty$ の時は

$$m(B - A) = m(B) - m(A)$$

が成立する.

Proof. 1. 任意に互いに排反な \mathcal{F} の元 A_1, A_2, \cdots, A_n をとる. この時

$$B_i = \begin{cases} A_i & (1 \le i \le n) \\ \phi & (i > n) \end{cases}$$

として $B_i \in \mathcal{F}$ $(i \in \mathbb{N})$ を定義すれば, $m(\phi) = 0$ より,

$$m\left(\bigcup_{i=1}^{n} A_i\right) = m\left(\bigcup_{i=1}^{\infty} B_i\right) = \sum_{i=1}^{\infty} m(B_i) = \sum_{i=1}^{n} m(A_i)$$

2. 任意に $A, B \in \mathcal{F}$ をとり $A \subset B$ と仮定する. C = B - A とすれば

$$m(B) = m(A \cup C) = m(A) + m(C)$$

$$= m(A) + m(B - A)$$

$$\leq m(A)$$

$$(4.1)$$

ここで $m(A) < \infty$ とすれば、上記の式より

$$m(B - A) = m(B) - m(A)$$

Definition 4.1.7. (測度空間)

 (X,\mathcal{F}) を可測空間とし \mathcal{F} 上の測度を m とする. この時組 (X,\mathcal{F},m) を測度空間と呼ぶ.

4.2 測度空間と位相空間

ここでは、位相空間から生成される σ -algebra について述べる.

Theorem 4.2.1. X の部分集合からなる任意の集合族 \mathscr{U} に対して、 \mathscr{U} を含む最小の σ -algebra が存在する. またこの σ -algebra のことを $\sigma(\mathscr{U})$ と表す.

16 第 4 章 測度論

Definition 4.2.2. (ボレル集合族)

 (X,\mathscr{O}) を位相空間とする. この時 \mathscr{O} を含む最小の σ -algebra のことをボレル集合族といい $\mathcal{B}(\mathscr{O})$ で表す. 特に, 位相空間が $(\mathbb{R},\mathscr{O}_{\mathbb{R}})$ の時は $\mathcal{B}(\mathbb{R})$ と表す.

第5章

関数解析

第6章

確率論

6.1 確率測度·確率空間

いよいよ今まで書いてきた測度論に基づいて確率空間を定義する.

Definition 6.1.1. (確率測度)

 (Ω, \mathcal{F}) を可測空間とする. \mathcal{F} から [0,1] への写像 P が

- 1. $P(\Omega) = 1$
- 2. $A_i \in \mathcal{F}(i \in \mathbb{N})$ が互いに排反であるならば

$$P\left(\bigcup_{i=1}^{\infty} A_i\right) = \sum_{i=1}^{\infty} P(A_i)$$

を満たす時, Pを確率測度と呼ぶ.

Definition 6.1.2. (確率空間)

 (Ω,\mathcal{F}) を可測空間とし P を確率測度とする. この時, 組 (Ω,\mathcal{F},P) を確率空間と呼ぶ. また, Ω を標本空間といい \mathcal{F} の元を事象と呼ぶ.

測度論の節では σ アルジェブラを「面積が図れる集合の集まり」, 測度を「集合の面積」を測る写像と言うようなモチヴェーションで定義したが, 確率空間では σ アルジェブラを「確率が測れる集合の集まり」確率測度を「確率を測れる」写像としてそれぞれに対する解釈を変える.

Theorem 6.1.3. (Ω, \mathcal{F}, P) を確率空間とする. この時

$$\forall A \in \mathcal{F}, P(A^c) = 1 - P(A)$$

が成立する.

Proof. 任意に $A \in \mathcal{F}$ をとり $X = \Omega - A$ とする. $A \cap X = \phi$, $\Omega = A \cup X$ であるので.

$$P(\Omega) = P(A \cup X)$$
$$= P(A) + P(X)$$

 $P(A) < \infty \$ \$ 9

$$P(X) = P(\Omega) - P(A)$$
$$= 1 - P(A)$$

したがって, $X = \Omega - A = A^c$ で A は任意だったから,

$$\forall A \in \mathcal{F}, P(A^c) = 1 - P(A)$$

が成立する.

第Ⅱ部

数理強化学習

第7章

マルコフ決定過程

参考文献

- [1] 内田 伏一(著)「集合と位相」
- [2] 参考文献の名前・著者 2
- [3] 参考文献の名前・著者 N