

Advanced Kernel Methods for Multi-Task Learning

Tesis dirigida por José Dorronsoro y Carlos Alaíz

Carlos Ruiz Pastor

20 de abril de 2023

Índice

- ► Introducción
- ▶ Formulación convexa para aprendizaje multitarea: máquinas de vectores soporte
- ► Formulación convexa para aprendizaje multitarea: redes neuronales
- ► Laplaciano adaptativo para aprendizaje multitarea
- ► Conclusiones y trabajo futuro

► Introducción

► Formulación convexa para aprendizaie multitarea: máquinas de vectores soporte

Formulación convexa para aprendizaie multitarea: redes neuronales

Laplaciano adaptativo para aprendizaje multitarea

Conclusiones y trabajo futuro

Aprendizaje automático

- En el aprendizaje supervisado tenemos
 - un espacio de entrada ${\mathcal X}$
 - $-\,\,$ un espacio de salida ${\cal Y}$
 - y una distribución P(x, y) (desconocida) sobre $\mathcal{X} \times \mathcal{Y}$
- Queremos estimar la relación entre x e y:

$$f: \mathcal{X} o \mathcal{Y}$$

- Consideramos funciones h un espacio de hipótesis H
- Dada una función $h: \mathcal{X} \to \mathcal{Y}$, definimos una función de pérdida como

$$\ell: \mathcal{Y} \times \mathcal{Y} \to [0, \infty)$$

 $(y, h(x)) \to \ell(y, h(x))$

Riesgo esperado

• Definimos el Riesgo Esperado como

$$R_P(h) = \int_{\mathcal{X} \times \mathcal{Y}} \ell(\mathbf{y}, h(\mathbf{x})) dP(\mathbf{x}, \mathbf{y}), \ h \in \mathcal{H}$$

• El objetivo es minimizar el Riesgo Esperado:

$$h^* = \arg\min_{h \in \mathcal{H}} \left\{ R_P(h) = \int_{\mathcal{X} imes \mathcal{Y}} \ell(y, h(x)) dP(x, y)
ight\}$$

• Pero la distribución P(x, y) es desconocida

Riesgo empírico

1. Introducción

• En su lugar tenemos n muestras de P(x, y):

$$D = \{(x_i, y_i) \sim P(x, y), i = 1, ..., n\}$$

Definimos el Riesgo Empírico como

$$\hat{R}_D(h) = \frac{1}{n} \sum_{i=1}^n \ell(y_i, h(x_i))$$

• Una estrategia común es minimizar el Riesgo Empírico Regularizado:

$$\arg\min_{h\in\mathcal{H}}\left\{\frac{1}{n}\sum_{i=1}^{n}\ell(y_i,h(x_i))+\Omega(h)\right\}$$

Aprendizaje multitarea

- En aprendizaje multitarea con T tareas tenemos
 - un espacio de entrada \mathcal{X} ,
 - un espacio de salida \mathcal{Y} ,
 - $-\,\,$ y T distribuciónes $extbf{ extit{P}} = (P_1, \ldots, P_T)$ (desconocidas) sobre $\mathcal{X} imes \mathcal{Y}$
- Tenemos que estimar T hipótesis $oldsymbol{h} = (h_1, \dots, h_T) \in \mathcal{H}^T$
- El Riesgo Esperado multitarea es

$$R_{P}(\boldsymbol{h}) = \sum_{r=1}^{T} \int_{\mathcal{X} \times \mathcal{Y}} \ell(\boldsymbol{y}, h_{r}(\boldsymbol{x})) dP_{r}(\boldsymbol{x}, \boldsymbol{y})$$

Riesgo empírico multitarea

1. Introducción

Tenemos una muestra multitarea

$$\mathbf{D} = \bigcup_{r=1}^{T} \{ (x_i^r, y_i^r) \sim P_r(x, y), i = 1, \dots, m_r \}$$

• El Riesgo Empírico multitarea es

$$\hat{R}_{m{D}}(m{h}) = \sum_{r=1}^T rac{1}{m_r} \sum_{i=1}^{m_r} \ell(m{y}_i^r, h_r(m{x}_i^r))$$

Minimizamos el Riesgo Empírico Regularizado multitarea

$$\arg\min_{\boldsymbol{h}\in\mathcal{H}^T}\left\{\sum_{r=1}^T \frac{1}{m_r}\sum_{i=1}^{m_r}\ell(\boldsymbol{y}_i^r,h_r(\boldsymbol{x}_i^r)) + \Omega(\boldsymbol{h})\right\}$$

CTL vs ITL vs MTL

1. Introducción

- Hay tres opciones para minimizar el Riesgo Regularizado multitarea
 - Aprendizaje común (CTL): se usa un modelo común para todas las tareas

$$\arg\min_{h\in\mathcal{H}}\left\{\sum_{r=1}^{T}\frac{1}{m_{r}}\sum_{i=1}^{m_{r}}\ell(\mathbf{y}_{i}^{r},h(\mathbf{x}_{i}^{r}))+\Omega(h)\right\}$$

Aprendizaje independiente (ITL): se usan modelos independientes en cada tarea

$$\arg\min_{\pmb{h}\in\mathcal{H}^T}\left\{\textstyle\sum_{r=1}^T\frac{1}{m_r}\textstyle\sum_{i=1}^{m_r}\ell(h_r(\pmb{x}_i^r),\pmb{y}_i^r)+\textstyle\sum_{r=1}^T\Omega_r(h_r)\right\}$$

Aprendizaje multitarea (MTL): se usan modelos específicos que comparten información

Aprendizaje estándar: una tarea

Aprendizaje estándar: una tarea

Aprendizaje estándar: varias tareas

Aprendizaje estándar: varias tareas

Aprendizaje multitarea 1. Introducción

1. Introducción

Aprendizaje multitarea: estrategias

• Modelos basados en características (más comunes en redes neuronales)

$$\sum_{r=1}^T rac{1}{m_r} \sum_{i=1}^{m_r} \ell(g_r \circ f(\mathbf{x}_i^r), \mathbf{y}_i^r) + \Omega(f) + \Omega(g_1, \dots, g_T)$$

Modelos basados en regularización (más comunes con modelos lineales)

$$\sum_{r=1}^{T} \frac{1}{m_r} \sum_{i=1}^{m_r} \ell(h_r(x_i^r), y_i^r) + \Omega(h_1, \dots, h_T), \ \Omega(h_1, \dots, h_T) \neq \sum_{r=1}^{T} \Omega_r(h_r)$$

Modelos basados en combinación (más comunes con SVMs)

$$\sum_{r=1}^{T} \frac{1}{m_r} \sum_{i=1}^{m_r} \ell(g(x_i^r) + g_r(x_i^r), y_i^r) + \Omega(g) + \Omega(g_1, \dots, g_T)$$

Máquinas de vectores soporte (SVM)

- Se definen usando problemas convexos
- Se puede aplicar el truco del kernel

- Tienen una limitación computacional
- Mejores para problemas pequeños

Redes Neuronales (NN)

- Son muy flexibles
- Escalan linealmente con el tamaño de los problemas que se usan
- Necesitan muchos datos.
- Mejores para problemas grandes

Objetivos y contribuciones

1. Introducción

Objetivos

- Formulación más interpretable para el aprendizaje MT con SVM
- Modelos neuronales MT alternativos basados en combinaciones
- Método para aprender la relación entre tareas

Contribuciones

- Revisión del estado del arte sobre aprendizaje multitarea
- Combinación convexa para SVM MT¹
- Combinación convexa para redes neuronales MT²
- Regularización laplaciana adaptativa para SVM MT

¹https://github.com/carlosruizp/mtlskl

²https://github.com/carlosruizp/convexMTLPyTorch

► Formulación convexa para aprendizaje multitarea: máquinas de vectores soporte

▶ Formulación convexa para aprendizaje multitarea: redes neuronales

Laplaciano adaptativo para aprendizaje multitarea

Conclusiones y trabajo futuro

SVM

2. Formulación convexa para aprendizaje multitarea: máquinas de vectores soporte

Problema Primal - SVM

$$\begin{split} & \min_{w,b,\boldsymbol{\xi}} \quad C \sum_{i=1}^n \xi_i + \frac{1}{2} \|w\|^2 \\ & \text{s.t.} \quad y_i(\langle w, \phi(x_i) \rangle + b) \geq p_i - \xi_i, \\ & \quad \xi_i \geq 0 \end{split}$$

- Se puede ver que esta formulación es equivalente a
 - Máquina de Vectores Soporte para Clasificación (SVC): $p_i=1$ para $i=1,\ldots n$ Máquina de Vectores Soporte para Regresión (SVR): se duplican los patrones

$$\circ \ \ y_i = 1, \ p_i = t_i - \epsilon$$
, en la primera mitad

$$\circ y_i = -1, \ p_i = -t_i - \epsilon$$
, en la segunda mitad

SVM

2. Formulación convexa para aprendizaje multitarea: máquinas de vectores soporte

Problema Dual - SVM

$$egin{array}{ll} \min_{oldsymbol{lpha}} & rac{1}{2} oldsymbol{lpha}^{\mathsf{T}} Q oldsymbol{lpha} - oldsymbol{lpha}^{\mathsf{T}} oldsymbol{p} \ & ext{s.t.} & \sum_{i=1}^n \gamma_i lpha_i = 0, \ & 0 < lpha_i < \mathcal{C} \ & \end{array}$$

- Aguí Q es la matriz de kernel (con etiqueta)
 - SVM lineal: $Q_{ij} = y_i y_i \langle x_i, x_i \rangle$
 - SVM no lineal: $Q_{ij} = \gamma_i \gamma_j k(x_i, x_j) = \gamma_i \gamma_j \langle \phi(x_i), \phi(x_j) \rangle$

Formulación aditiva con SVM

- 2. Formulación convexa para aprendizaje multitarea: máquinas de vectores soporte
- Una manera de implementar el MTL es combinar una parte común y otras específicas
- Fue propuesta³ incialmente para SVM lineales:

$$h_r(\cdot) = \langle w + v_r, \cdot \rangle + b_r$$

• Fue extendida al caso no lineal⁴:

$$h_r(\cdot) = \langle w, \phi(\cdot) \rangle + \langle v_r, \phi_r(\cdot) \rangle + b_r$$

³Theodoros Evgeniou y Massimiliano Pontil. "Regularized multi-task learning". En: Proceedings of the Tenth ACM SIGKDD International Conference on Knowledge Discovery and Data Mining. ACM, 2004, págs. 109-117.

⁴Feng Cai y Vladimir Cherkassky. "SVM+ regression and multi-task learning". En: International Joint Conference on Neural Networks. 2009, págs. 418-424.

Formulación aditiva para SVM MT

2. Formulación convexa para aprendizaje multitarea: máquinas de vectores soporte

Problema primal - SVM MT aditiva

$$\begin{split} \underset{w, \mathbf{v}, \mathbf{b}, \xi}{\arg\min} \quad & C \sum_{r=1}^T \sum_{i=1}^{m_r} \xi_i^r + \frac{1}{2} \sum_{r=1}^T \left\| \mathbf{v}_r \right\|^2 + \frac{\mu}{2} \| \mathbf{w} \|^2 \\ \text{s.t.} \quad & y_i^r (\langle \mathbf{w}, \phi(\mathbf{x}_i^r) \rangle + \langle \mathbf{v}_r, \phi_r(\mathbf{x}_i^r) \rangle + b_r) \geq p_i^r - \xi_i^r, \\ & \xi_i^r \geq 0; \ i = 1, \dots, m_r, \ r = 1, \dots, T \end{split}$$

- El parámetro μ (junto con C) regula la influencia de cada parte:
 - $-\mu \to \infty$: modelos independientes (ITL)
 - $C o 0, \; \mu o 0$: modelo común (CTL)
- Tenemos la transformación común ϕ y las específicas ϕ_r

Formulacion convexa con SVM

- 2. Formulación convexa para aprendizaje multitarea: máquinas de vectores soporte
- Proponemos⁵ la siguiente formulación convexa para el aprendizaje multitarea:

$$h_r(\cdot) = \lambda_r \left\{ \langle w, \phi(\cdot) \rangle + b \right\} + (1 - \lambda_r) \left\{ \langle v_r, \phi_r(\cdot) \rangle + d_r \right\}, \ \lambda_r \in [0, 1]$$

- Los hiperparámetros λ_r , en lugar de μ , regulan la influencia de cada parte
 - $-\lambda_1,\ldots,\lambda_T=0$: ITL
 - $-\lambda_1,\ldots,\lambda_T=1$: CTL
- Extendemos esta formulación⁶ y desarrollamos tres variantes de SVM

⁵Carlos Ruiz, Carlos M. Alaíz y José R. Dorronsoro. "A Convex Formulation of SVM-Based Multi-task Learning". En: HAIS Proceedings. Vol. 11734. Springer, 2019, págs. 404-415.

⁶Carlos Ruiz, Carlos M. Alaíz y José R. Dorronsoro. "Convex formulation for multi-task L1-, L2-, and LS-SVMs". En: *Neurocomputing* 456 (2021), págs. 599-608.

Formulación convexa para SVM MT

2. Formulación convexa para aprendizaje multitarea: máquinas de vectores soporte

Problema primal - SVM MT convexa

$$\begin{split} \min_{w, v, b, d, \xi} \quad & C \sum_{r=1}^{T} \sum_{i=1}^{m_r} \xi_i^r + \frac{1}{2} \sum_{r=1}^{T} \|v_r\|^2 + \frac{1}{2} \|w\|^2 \\ \text{s.t.} \quad & y_i^r \left(\lambda_r \left\{ \left\langle w, \phi(x_i^r) \right\rangle + b \right\} + (1 - \lambda_r) \left\{ \left\langle v_r, \phi_r(x_i^r) \right\rangle + d_r \right\} \right) \geq p_i^r - \xi_i^r, \\ & \xi_i^r \geq 0, \ i = 1, \dots, m_r, \ r = 1, \dots, T \end{split}$$

- Se sustituye μ por los hiperparámetros λ_r
- El hiperparámetro C no interviene en el grado de interdependencia de los modelos

Formulación convexa para SVM MT

2. Formulación convexa para aprendizaje multitarea: máquinas de vectores soporte

Problema dual - SVM MT convexa

$$\min_{\alpha} \quad \frac{1}{2} \alpha^{\mathsf{T}} \left(\Lambda Q \Lambda + (I_n - \Lambda) K (I_n - \Lambda) \right) \alpha - \boldsymbol{p} \alpha$$
 s.t.
$$0 \leq \alpha_i^r \leq \mathcal{C}; \ i = 1, \dots, m_r, \ r = 1, \dots, T,$$

$$\sum_{i=1}^{m_r} \alpha_i^r y_i^r = 0; \ r = 1, \dots, T$$

- Usamos la matriz $\Lambda = \operatorname{diag}(\overbrace{\lambda_1,\ldots,\lambda_1}^{m_1},\ldots,\overbrace{\lambda_T,\ldots,\lambda_T}^{m_T})$
- ullet La matriz Q es común entre todas las tareas usando el kernel k correspondiente a ϕ
- La matriz K es diagonal por bloques, con los kernel k_r correspondientes a ϕ_r
- La función de kernel es:

$$\widehat{k}(x_i^r, x_j^s) = \lambda_r \lambda_s k(x_i^r, x_j^s) + \delta_{rs} (1 - \lambda_r) (1 - \lambda_s) k_r(x_i^r, x_j^s)$$

Equivalencia entre formulaciones aditiva y convexa

2. Formulación convexa para aprendizaje multitarea: máquinas de vectores soporte

• En la tesis mostramos la equivalencia de forma teórica y la relación entre λ y μ

Alternativa: combinación de modelos preentrenados

- Como comprobación, consideramos⁷ la combinación convexa de modelos preentrenados
 - modelo común $g(\cdot)$ ya entrenado
 - modelos específicos $g_r(\cdot)$ ya entrenados
- Minimizamos el riesgo eligiendo los hiperparámetros $\lambda_1, \dots, \lambda_T$ óptimos

$$\hat{R}_D(\lambda_1,\ldots,\lambda_T) = \sum_{r=1}^T \sum_{i=1}^{m_r} \ell(\lambda_r g(x_i^r) + (1-\lambda_r)g_r(x_i^r), y_i^r),$$

- Consideramos las pérdidas:
 - Cuadrática y Absoluta (regresión)
 - Hinge y Hinge Cuadrática (clasificación)

⁷Carlos Ruiz, Carlos M. Alaíz y José R. Dorronsoro. "Convex formulation for multi-task L1-, L2-, and LS-SVMs". En: *Neurocomputing* 456 (2021), págs. 599-608.

Experimentos: modelos

- Common Task Learning SVM (CTL): Un único modelo SVM que es común para todas las tareas
- Independent Task Learning SVM (ITL): Un modelo SVM independiente para cada tarea
- Direct Convex Combination of SVMs (CMB): Una combinación convexa de los mejores CTL e ITL preentrenados
- Convex Multi-Task Learning SVM (MTL): Un modelo multitarea con la formulación convexa basado en la SVM

Experimentos: problemas

Problema	Tamaño	Dimensión	N° tareas	Tam. tarea medio	Tam. tarea mín.	Tam. tarea máx.
majorca	15 330	765	14	1095	1095	1095
tenerife	15 330	765	14	1095	1095	1095
california	19 269	9	5	3853	5	8468
boston	506	12	2	253	35	471
abalone	4177	8	3	1392	1307	1527
crime	1195	127	9	132	60	278
binding	32 302	184	47	687	59	3089
landmine	14820	10	28	511	445	690
adult_(G)	48 842	106	2	24 421	16 192	32 650
adult_(R)	48 842	103	5	9768	406	41762
adult_(G, R)	48 842	101	10	4884	155	28 735
compas_(G)	3987	11	2	1993	840	3147
compas_(R)	3987	9	4	997	255	1918
compas_(G, R)	3987	7	8	498	50	1525

Experimentos: hiperparametrización

- 2. Formulación convexa para aprendizaje multitarea: máquinas de vectores soporte
- Hacemos una búsqueda en rejilla con una validación cruzada
- Usamos tres particiones estratificadas por tareas
- Por limitaciones computacionales nos restringimos a la búsqueda de tres hiperparámetros para la búsqueda en rejilla

	Rejilla	CTL-L1,2	ITL-L1,2	MTL-L1,2	CTL-LS	ITL-LS	MTL-LS
С	$\left\{4^k:-2\leq k\leq 6\right\}$	CV	CV	CV	CV	CV	CV
ϵ	$\left\{\frac{\sigma}{4^k}: 1 \le k \le 6\right\}$	CV	CV	CV	-	-	-
γ_c	$\left\{ \frac{4^k}{d} : -2 \le k \le 3 \right\}$	CV	-	CTL-L1,2	CV	-	CTL-LS
γ_s^r	$\left\{ egin{array}{l} rac{4^k}{d}:-2\leq k\leq 3 \ rac{4^k}{d}:-2\leq k\leq 3 \ ight\} \end{array} ight.$	-	CV	ITL-L1,2	-	CV	ITL-LS
	$\{0,1k:0\leq k\leq 10\}$	-	-	CV	-	-	CV

Experimentos: resultados de regresión

	maj.	ten.	boston	california	abalone	crime
ITL-L1	5.087	5.743	2.341	36883.582	1.481	0.078
CTL-L1	5.175	5.891	2.192	41754.337	1.482	0.078
CMB-L1	5.047	5.340	2.239	36880.238	1.470	0.077
MTL-L1	5.050	5.535	2.206	36711.383	1.454	0.074
ITL-L2	4.952	5.629	2.356	37374.618	1.498	0.079
CTL-L2	5.193	6.107	2.083	42335.612	1.503	0.080
CMB-L2	4.869	5.963	2.089	37374.618	1.494	0.077
MTL-L2	4.854	5.784	2.089	37202.603	1.482	0.077
ITL-LS	4.937	5.649	2.204	37348.347	1.496	0.079
CTL-LS	5.193	6.005	2.072	42259.492	1.502	0.079
CMB-LS	4.977	5.593	2.081	37339.179	1.486	0.079
MTL-LS	4.824	5.754	2.077	37231.043	1.478	0.076

Experimentos: resultados de clasificación

	comp_(G)	comp_(R)	comp_(G,R)	ad_(G)	ad_(R)	ad_(G,R)	landmine	binding
ITL-L1	0.625	0.639	0.630	0.659	0.653	0.657	0.231	0.867
CTL-L1	0.623	0.638	0.638	0.657	0.650	0.653	0.255	0.901
CMB-L1	0.616	0.638	0.638	0.658	0.650	0.653	0.270	0.901
MTL-L1	0.627	0.636	0.640	0.659	0.655	0.659	0.242	0.907
ITL-L2	0.636	0.623	0.607	0.668	0.666	0.668	0.256	0.867
CTL-L2	0.640	0.647	0.651	0.665	0.661	0.659	0.270	0.903
CMB-L2	0.629	0.640	0.645	0.666	0.662	0.661	0.270	0.903
MTL-L2	0.634	0.651	0.650	0.668	0.666	0.668	0.263	0.909
ITL-LS	0.631	0.622	0.608	0.659	0.659	0.660	0.243	0.867
CTL-LS	0.628	0.644	0.649	0.650	0.653	0.647	0.230	0.853
CMB-LS	0.630	0.635	0.642	0.657	0.658	0.654	0.238	0.873
MTL-LS	0.630	0.641	0.648	0.659	0.659	0.659	0.257	0.906

Experimentos: predicción de energía renovable

- Aplicamos la SVM MT convexa a la predicción de energía renovable
- Para energía solar consideramos las definiciones de tareas:
 - season
 - hour
- Para energía eólica consideramos las definiciones de tareas:
 - velocity
 - angle
 - timeOfDay
- También probamos la combinación de tareas, e.g. (season, hour)

Experimentos: predicción de energía solar

		MA	E			MSE			λ^*
	MWh	%	rank	Wil.	MWh^2	‰	rank	Wil.	
					majorca				
CTL-L1	5.265	7.265	(6)	(4)	59.322	112.985	(6)	(4)	-
(season)_ITL-L1	5.305	7.384	(7)	(5)	59.591	113.498	(7)	(4)	-
(season)_MTL-L1	4.884	6.740	(1)	(1)	53.222	101.366	(2)	(3)	0.4
(hour)_ITL-L1	5.083	7.015	(4)	(2)	54.540	103.877	(3)	(3)	-
(hour)_MTL-L1	4.957	6.840	(2)	(1)	52.614	100.208	(1)	(1)	0.0
(hour, season)_ITL-L1	5.250	7.251	(5)	(3)	57.927	110.328	(5)	(4)	-
(hour, season)_MTL-L1	5.038	6.952	(3)	(2)	54.601	103.992	(4)	(3)	0.
					tenerife				
CTL-L1	5.786	5.373	(5)	(5)	88.323	76.174	(5)	(5)	-
(season)_ITL-L1	5.930	5.545	(6)	(5)	97.454	84.611	(6)	(6)	-
(season)_MTL-L1	5.579	5.181	(4)	(2)	86.227	74.366	(3)	(3)	0.8
(hour)_ITL-L1	5.403	5.018	(2)	(2)	86.686	74.762	(4)	(4)	-
(hour)_MTL-L1	5.376	4.993	(1)	(1)	84.207	72.624	(1)	(1)	0.7
(hour, season)_ITL-L1	6.025	5.554	(7)	(6)	104.536	90.297	(7)	(7)	-
(hour, season)_MTL-L1	5.494	5.102	(3)	(3)	85.440	73.687	(2)	(2)	0.

Experimentos: predicción de energía eólica

	MAE				MSE			
	MWh	rank	Wil.	MWh^2	rank	Wil.		
CTL-L1	6.132	(1)	(1)	90.228	(2)	(2)	-	
(velocity)_ITL-L1	6.211	(7)	(3)	93.363	(7)	(3)	-	
(velocity)_MTL-L1	6.208	(6)	(3)	93.199	(6)	(3)	0	
(timeOfDay)_ITL-L1	6.283	(9)	(4)	93.594	(9)	(4)	-	
(timeOfDay)_MTL-L1	6.132	(1)	(1)	90.228	(2)	(2)	1	
(timeOfDay, velocity)_ITL-L1	6.341	(11)	(4)	97.250	(11)	(5)	-	
(timeOfDay, velocity)_MTL-L1	6.312	(10)	(4)	94.774	(10)	(4)	0.	
(timeOfDay, angle)_ITL-L1	6.266	(8)	(4)	93.517	(8)	(4)	-	
(timeOfDay, angle)_MTL-L1	6.132	(1)	(1)	90.228	(2)	(2)	1	
(timeOfDay, angle, velocity)_ITL-L1	6.410	(12)	(4)	102.031	(12)	(6)	-	
(timeOfDay, angle, velocity)_MTL-L1	6.132	(1)	(1)	90.228	(2)	(2)	1	
(angle)_ITL-L1	6.170	(4)	(3)	91.586	(4)	(3)	-	
(angle)_MTL-L1	6.135	(2)	(2)	90.026	(1)	(1)	0.	
(angle, velocity)_ITL-L1	6.173	(5)	(3)	92.529	(5)	(3)	-	
(angle, velocity)_MTL-L1	6.168	(3)	(3)	90.990	(3)	(3)	0.	

- ▶ Introducciór
- ▶ Formulación convexa para aprendizaje multitarea: máquinas de vectores soporte
- ► Formulación convexa para aprendizaje multitarea: redes neuronales
- Laplaciano adaptativo para aprendizaje multitarea
- Conclusiones y trabajo futuro

Redes neuronales MT

- 3. Formulación convexa para aprendizaje multitarea: redes neuronales
- Los SVM ofrecen propiedades deseables como
 - convexidad
 - dualidad
 - truco del kernel

pero tienen una limitación computacional

- Las redes neuronales son mejores alternativas para problemas grandes
- Existen arquitecturas neuronales específicas para algunos tipos de datos
 - imágenes
 - texto
 - sonido

Redes neuronales MT: hard sharing

3. Formulación convexa para aprendizaje multitarea: redes neuronales

- La manera más común de adaptar las redes neuronales es el hard sharing⁸
 - capas compartidas
 - capas específicas
- El modelo simplificado se puede expresar como:

$$h_r(\cdot) = \langle w_r, f(\cdot; \Theta) \rangle + d_r$$

- $-w_r, d_r$ son los parámetros de las capas de salida específicas
- $-\Theta$ son los parámetros de las capas ocultas compartidas
- Se comparte la misma representación en todas las tareas

⁸Rich Caruana. "Multitask Learning". En: Mach. Learn. 28.1 (1997), págs. 41-75.

Ejemplo de hard sharing para dos tareas3. Formulación convexa para aprendizaje multitarea: redes neuronales

Formulación Convexa para redes neuronales MT

3. Formulación convexa para aprendizaje multitarea: redes neuronales

- Proponemos⁹ la formulación convexa para redes neuronales MT
- Los modelos son:

$$h_r(\cdot) = \lambda_r \{ \langle w, f(\cdot; \Theta) \rangle + b \} + (1 - \lambda_r) \{ \langle w_r, f_r(\cdot; \Theta_r) \rangle + d_r \}$$

- -w, Θ son los parámetros de la red común
- $-w_r, \Theta_r$ son los parámetros de las redes específicas
- No se comparte la representación; se combinan una parte común y partes específicas

⁹Carlos Ruiz, Carlos M. Alaíz y José R. Dorronsoro. "Convex Multi-Task Learning with Neural Networks". En: HAIS Proceedings. Vol. 13469. Springer, 2022, págs. 223-235.

Ejemplo de formulación convexa para dos tareas 3. Formulación convexa para aprendizaje multitarea: redes neuronales

Experimentos: conjuntos de datos

3. Formulación convexa para aprendizaje multitarea: redes neuronales

Experimentos: resultados

3. Formulación convexa para aprendizaje multitarea: redes neuronales

	var-MNIST	rot-MNIST	var-FMNIST	rot-FMNIST			
	accuracy						
ctlNN	0.964	0.973	0.784	0.834			
itlNN	0.968	0.981	0.795	0.873			
hsmtlNN	0.971	0.980	0.770	0.852			
cvxmtlNN	0.974	0.984	0.812	0.880			
	$(\lambda^* = extsf{o.6})$	$(\lambda^* = o.8)$	$(\lambda^* = o.6)$	$(\lambda^* = 0.6)$			
	categorical cross-entropy						
ctlNN	1.274 \pm 0.143	1.145 \pm 0.039	2.369 ± 0.183	1.757 \pm 0.075			
itlNN	1.072 \pm 0.029	$\textbf{0.873} \pm \textbf{0.058}$	2.356 \pm 0.130	1.598 \pm 0.042			
hsmtlNN	1.087 \pm 0.253	$\textbf{0.898} \pm \textbf{0.073}$	$\textbf{3.067} \pm \textbf{0.888}$	1.888 \pm 0.075			
cvxmtlNN	0.924 \pm 0.024	$\textbf{0.831} \pm \textbf{0.029}$	2.147 \pm 0.090	1.482 \pm 0.063			
	$(\lambda^* = o.6)$	$(\lambda^* = \text{o.8})$	$(\lambda^* = \text{o.6})$	$(\lambda^* = 0.6)$			

- Todos los modelos se entrenan con el algoritmo AdamW. CV para hiperparámetros:
 - $-\alpha$ (weight decay)
 - $-\lambda$ (en el modelo convexo)

Introducció

Formulación convexa para aprendizaje multitarea: máquinas de vectores soporte

► Formulación convexa para aprendizaje multitarea: redes neuronales

► Laplaciano adaptativo para aprendizaje multitarea

Conclusiones v trabajo future

Aprendizaje multitarea con regularización laplaciana

4. Laplaciano adaptativo para aprendizaje multitarea

La formulación convexa asume que hay una parte común a todas las tareas

- Por otra parte, la definición de tareas puede ser arbitraria
- Una alternativa para el aprendizaje MT es usar una regularización laplaciana
 - comprobar la definición de las tareas
 - medir relaciones entre tareas
 - mejorar modelos

Aprendizaje multitarea con regularización laplaciana

4. Laplaciano adaptativo para aprendizaje multitarea

- Consideramos un grafo donde
 - Los nodos representan tareas
 - Las aristas y sus pesos representan las relaciones entre las tareas
- La matriz de adyacencia A tiene los pesos de las aristas
- La matriz de grados D es una matriz diagonal donde

$$D_{rr} = \sum_{s=1}^{T} A_{rs}$$

• La matriz Laplaciana se define como L=D-A

Aprendizaje multitarea con regularización laplaciana

4. Laplaciano adaptativo para aprendizaje multitarea

Dados los modelos para cada tarea definidos como

$$h_r(\cdot) = \langle w_r, \cdot \rangle + b_r,$$

añadimos la regularización

$$\sum_{r=1}^{T} \sum_{s=1}^{T} A_{rs} \| w_r - w_s \|^2$$

Esta regularización se puede expresar como

$$\sum_{r=1}^{T} \sum_{s=1}^{T} A_{rs} \|w_r - w_s\|^2 = \sum_{r=1}^{T} \sum_{s=1}^{T} L_{rs} \langle w_r, w_s \rangle$$

Proponemos combinar la formulación convexa con la regularización Laplaciana

¹⁰Carlos Ruiz, Carlos M. Alaíz y José R. Dorronsoro. "Convex Graph Laplacian Multi-Task Learning SVM". En: *ICANN*. Vol. 12397. Springer, 2020, págs. 142-154.

Formulación convexa para SVM MT con laplaciano

4. Laplaciano adaptativo para aprendizaje multitarea

Problema primal - SVM convexa con laplaciano

$$\min_{\boldsymbol{v}, \boldsymbol{b}, \boldsymbol{\xi}, \boldsymbol{w}} \quad C \sum_{r=1}^{T} \sum_{i=1}^{m_r} \xi_i^r + \frac{\nu}{2} \sum_{r=1}^{T} \sum_{s=1}^{T} L_{rs} \left\langle v_r, v_s \right\rangle + \frac{1}{2} \sum_{r} \|v_r\|^2 + \frac{1}{2} \|w\|^2$$
 s.t.
$$y_i^r (\lambda_r(\langle w, \phi(x_i^r) \rangle) + (1 - \lambda_r)(\langle v_r, \psi(x_i^r \rangle)) + b_r) \ge p_i^r - \xi_i^r,$$

$$\xi_i^r \ge 0, \ i = 1, \dots, m_r, \ r = 1, \dots, T$$

- Los hiperparámetros λ_r regulan la influencia de cada parte:
 - $-\lambda_1,\ldots,\lambda_T=0$: modelos independientes (ITL)
 - $-\lambda_1,\ldots,\lambda_T=1$: modelo común (CTL)
- La matriz laplaciana L establece relaciones entre las partes específicas v_r

Formulación convexa para SVM MT con laplaciano

4. Laplaciano adaptativo para aprendizaje multitarea

Problema dual - SVM convexa con laplaciano

$$\begin{aligned} & \underset{\alpha}{\text{min}} & \Theta(\alpha) = \frac{1}{2}\alpha^t \left(\Lambda Q \Lambda + (I_n - \Lambda) \,\widetilde{Q} \, (I_n - \Lambda)\right) \alpha - \boldsymbol{p}\alpha \\ & \text{s.t.} & 0 \leq \alpha_i^r \leq \mathcal{C}, \ i = 1, \ldots, m_r, r = 1, \ldots, T, \\ & \sum_{i=1}^{n_r} \alpha_i^r y_i^r = 0, \ r = 1, \ldots, T \end{aligned}$$

• Usamos la matriz
$$\Lambda = \operatorname{diag}(\overbrace{\lambda_1,\ldots,\lambda_1}^{m_1},\ldots,\overbrace{\lambda_T,\ldots,\lambda_T}^{m_T})$$

- La matriz Q es común entre todas las tareas usando el kernel k_{ϕ} correspondiente a ϕ
- La matriz $ilde{Q}$ se define usando el kernel: $ilde{k}_{\psi}(x_i^r,x_j^s)=\left((
 u L+I_T)^{-1}
 ight)_{rs}k_{\psi}(x_i^r,x_j^s)$
- La función de kernel es: $\widehat{k}(x_i^r, x_j^s) = \lambda_r \lambda_s k_\phi(x_i^r, x_j^s) + (1 \lambda_r)(1 \lambda_s) \widetilde{k}_\psi(x_i^r, x_j^s)$

Algoritmo adaptativo para matriz de adyacencia

4. Laplaciano adaptativo para aprendizaje multitarea

- La selección de la matriz de adyacencia A (y la respectiva L) es determinante
- Proponemos¹¹ un método para la selección automática de A, iterando los pasos
 - Minizamos en $w, v_r \operatorname{con} A$ fija
 - Minimizamos en A con los parámetros w, v_r fijos

¹¹Carlos Ruiz, Carlos M. Alaíz y José R. Dorronsoro. "Adaptive Graph Laplacian for Convex Multi-Task Learning SVM". En: *HAIS Proceedings*. Vol. 12886. Springer, 2021, págs. 219-230, Carlos Ruiz, Carlos M. Alaíz y José R. Dorronsoro. "Adaptive Graph Laplacian MTL L1, L2 and LS-SVMs". En: *Logic Journal of the IGPL* (in press).

Experimentos: problemas sintéticos

4. Laplaciano adaptativo para aprendizaje multitarea

- Definimos problemas donde las tareas están agrupadas en clusters
 - Definimos au tareas subyacentes (clusters) usando las funciones $f_r, r=1,\ldots, au$
 - En cada una definimos T_r tareas virtuales, $r=1,\ldots, au$ (las que ven los modelos)

	τ	f_r	T_r	Total tareas virtuales
		$f_1(x) = x^2$	2	
regClusterso, clasClusterso	3	$f_2(x) = \sin(10x)$	3	7
		$f_3(x) = x^3$	2	
regClusters1, clasClusters1	_	$f_1(x) = x^2$ $f_2(x) = \sin(10x)$	5	7
regulasiers i, clasciasiers i	2	$f_2(x) = \sin(10x)$	2	/
regClusters2, clasClusters2	2	$f_1(x) = \sin(10x)$ $f_2(x) = x^3$	4	-
regciustersz, ciasciustersz		$f_2(x) = x^3$	1	5

Experimentos: regClustersO4. Laplaciano adaptativo para aprendizaje multitarea

Experimentos sintéticos: resultados regresión

4. Laplaciano adaptativo para aprendizaje multitarea

	regClustersO	regClusters1	regClusters2
		MAE	
CTL-L1	0.989	0.512	0.541
ITL-L1	0.221	0.212	0.159
MTL-L1	0.213	0.176	0.135
GLMTL-L1	0.212	0.173	0.138
AdapGLMTL-L1	0.152	0.116	0.107
CTL-L2	0.990	0.642	0.768
ITL-L2	0.213	0.201	0.154
MTL-L2	0.209	0.168	0.131
GLMTL-L2	0.204	0.169	0.131
AdapGLMTL-L2	0.141	0.115	0.103
CTL-LS	0.989	0.642	0.766
ITL-LS	0.212	0.209	0.149
MTL-LS	0.206	0.167	0.131
GLMTL-LS	0.207	0.169	0.132
AdapGLMTL-LS	0.136	0.115	0.106

Experimentos: matrices de adyacencia en regresión

4. Laplaciano adaptativo para aprendizaje multitarea

• Matrices de regClusterso para L1, L2 y LS-SVM MT de laplaciano adaptativo

Experimentos: problemas clasificación (clasClusterso)

4. Laplaciano adaptativo para aprendizaje multitarea

Experimentos: resultados clasificación

4. Laplaciano adaptativo para aprendizaje multitarea

	clasClustersO	clasClusters1	clasClusters2
		F1	
CTL-L1	0.901	0.912	0.904
ITL-L1	0.922	0.923	0.910
MTL-L1	0.924	0.925	0.914
GLMTL-L1	0.920	0.926	0.912
AdapGLMTL-L1	0.924	0.929	0.916
CTL-L2	0.904	0.912	0.906
ITL-L2	0.928	0.928	0.910
MTL-L2	0.925	0.927	0.913
GLMTL-L2	0.921	0.923	0.915
AdapGLMTL-L2	0.924	0.929	0.915
CTL-LS	0.895	0.908	0.894
ITL-LS	0.914	0.915	0.904
MTL-LS	0.917	0.917	0.905
GLMTL-LS	0.919	0.921	0.897
AdapGLMTL-LS	0.920	0.921	0.901

Experimentos: matrices de adyacencia en clasificación

4. Laplaciano adaptativo para aprendizaje multitarea

• Matrices de clasClusterso para L1, L2 y LS-SVM MT de laplaciano adaptativo

► Formulación convexa para aprendizaje multitarea: máguinas de vectores soporte

▶ Formulación convexa para aprendizaie multitarea: redes neuronales

Laplaciano adaptativo para aprendizaje multitarea

Conclusiones

- El Aprendizaje multitarea ofrece una serie de ventajas
- Es necesario desarrollar técnicas para crear un acoplamiento de los modelos
- Proponemos una formulación convexa para aprendizaje multitarea
 - SVM
 - Redes Neuronales
- Añadimos una regularización laplaciana para SVM
- Proponemos un método adaptativo para SVM con regularización laplaciana para aprender la relación entre tareas

Conclusiones: formulación convexa

- Formulación convexa con SVM:
 - Definimos SVM multitarea convexa
 - Analizamos la alternativa de combinación convexa de modelos preentrenados
 - Mostramos buenos resultados de las SVM MT convexas con varios problemas
 - Aplicamos estos modelos a predicción de energía solar y eólica
- Formulación convexa con redes neuronales:
 - Aplicamos esta formulación convexa también a redes neuronales
 - Mostramos mejores resultados que hard sharing en cuatro conjuntos de imágenes

Conclusiones: matriz de adyacencia adaptativa

- La formulación convexa asume que todas las tareas comparten una parte común
- Las tareas a veces están repetidas o no todas comparten la misma relación entre ellas
- Con la regularización laplaciana se pueden modelar distintas relaciones entre tareas definiendo una matriz de adyacencia adecuada
- Regularización laplaciana de grafo:
 - Definimos la SVM multitarea convexa con regularización laplaciana
 - Proponemos un algoritmo adaptativo para aprender la matriz de adyacencia
 - Obtenemos buenos resultados en problemas sintéticos y reales

Trabajo futuro5. Conclusiones y trabajo futuro

- Investigar métodos para la selección de hiperparámetros en los modelos MT
- Tratar los λ_r como parámetros de los modelos neuronales
- Aplicar la regularización laplaciana a modelos neuronales

Advanced Kernel Methods for Multi-Task Learning

Gracias por su atención.

Índice5. Conclusiones y trabajo futuro

- ► Introducción
- ▶ Formulación convexa para aprendizaje multitarea: máquinas de vectores soporte
- ► Formulación convexa para aprendizaje multitarea: redes neuronales
- ► Laplaciano adaptativo para aprendizaje multitarea
- ► Conclusiones y trabajo futuro

Referencias

- [1] Feng Cai y Vladimir Cherkassky. "SVM+ regression and multi-task learning". En: International Joint Conference on Neural Networks. 2009, págs. 418-424.
- [2] Rich Caruana. "Multitask Learning". En: Mach. Learn. 28.1 (1997), págs. 41-75.
- [3] Theodoros Evgeniou, Charles A. Micchelli y Massimiliano Pontil. "Learning Multiple Tasks with Kernel Methods". En: J. Mach. Learn. Res. 6 (2005), págs. 615-637.
- [4] Theodoros Evgeniou y Massimiliano Pontil. "Regularized multi-task learning". En: Proceedings of the Tenth ACM SIGKDD International Conference on Knowledge Discovery and Data Mining. ACM, 2004, págs. 109-117.
- [5] Carlos Ruiz, Carlos M. Alaíz y José R. Dorronsoro. "A Convex Formulation of SVM-Based Multi-task Learning". En: HAIS Proceedings. Vol. 11734. Springer, 2019, págs. 404-415.

Referencias

- [6] Carlos Ruiz, Carlos M. Alaíz y José R. Dorronsoro. "Adaptive Graph Laplacian for Convex Multi-Task Learning SVM". En: HAIS Proceedings. Vol. 12886. Springer, 2021, págs. 219-230.
- [7] Carlos Ruiz, Carlos M. Alaíz y José R. Dorronsoro. "Adaptive Graph Laplacian MTL L1, L2 and LS-SVMs". En: Logic Journal of the IGPL (in press).
- [8] Carlos Ruiz, Carlos M. Alaíz y José R. Dorronsoro. "Convex formulation for multi-task L1-, L2-, and LS-SVMs". En: *Neurocomputing* 456 (2021), págs. 599-608.
- [9] Carlos Ruiz, Carlos M. Alaíz y José R. Dorronsoro. "Convex Graph Laplacian Multi-Task Learning SVM". En: *ICANN*. Vol. 12397. Springer, 2020, págs. 142-154.
- [10] Carlos Ruiz, Carlos M. Alaíz y José R. Dorronsoro. "Convex Multi-Task Learning with Neural Networks". En: *HAIS Proceedings*. Vol. 13469. Springer, 2022, págs. 223-235.

- ► Apéndice A: Combinación Convexa de Modelos Preentrenados
- Apéndice B: Aprendizaje MT Convexo con Redes Neuronales
- ▶ Apéndice C: Laplaciano de Grafo con Métodos de Kerne
- ▶ Apéndice D: Algoritmo Adaptativo para Laplaciano de Grafo
- ► Apéndice E: Extensiones a L2 y LS-SVN

Formulación Unificada Clasificación

7. Apéndice A: Combinación Convexa de Modelos Preentrenados

Hinge loss (classification):

$$\hat{R}_D(\lambda_1, \dots, \lambda_T) = \sum_{r=1}^T \sum_{i=1}^{m_r} \left[1 - y_i^r \left\{ \lambda_r g(x_i^r) + (1 - \lambda_r) g_r(x_i^r) \right\} \right]_+$$

• Squared hinge loss (classification):

$$\hat{R}_D(\lambda_1, \dots, \lambda_T) = \sum_{r=1}^T \sum_{i=1}^{m_r} \left[1 - y_i^r \left\{ \lambda_r g(x_i^r) + (1 - \lambda_r) g_r(x_i^r) \right\} \right]_+^2$$

Ambas se pueden expresar como:

$$\sum_{r=1}^{T}\sum_{i=1}^{m_r}u(\lambda_rc_i^r+d_i^r), ext{ donde } c_i^r=\gamma_i^r(g_r(x_i^r)-g(x_i^r)), ext{ } d_i^r=1-\gamma_i^rg_r(x_i^r)$$

Formulación Unificada Regresión

7. Apéndice A: Combinación Convexa de Modelos Preentrenados

Absolute loss (regression):

$$\hat{R}_{D}(\lambda_{1},...,\lambda_{T}) = \sum_{r=1}^{T} \sum_{i=1}^{m_{r}} |\mathbf{y}_{i}^{r} - \{\lambda_{r}g(\mathbf{x}_{i}^{r}) + (1 - \lambda_{r})g_{r}(\mathbf{x}_{i}^{r})\}|.$$

Squared loss (regression):

$$\hat{R}_D(\lambda_1,\ldots,\lambda_T) = \sum_{r=1}^T \sum_{i=1}^{m_r} \left(y_i^r - \left\{ \lambda_r g(x_i^r) + (1-\lambda_r) g_r(x_i^r) \right\} \right)^2$$
.

Ambas se pueden expresar como:

$$\sum_{r=1}^{T} \sum_{i=1}^{m_r} u(\lambda_r c_i^r + d_i^r)$$
, donde $c_i^r = g(x_i^r) - g_r(x_i^r)$, $d_i^r = g_r(x_i^r) - y_i^r$

Formulación Unificada

7. Apéndice A: Combinación Convexa de Modelos Preentrenados

• En todos los casos el riesgo lo podemos expresar como

$$\hat{R}_D(\lambda_1,\ldots,\lambda_T) = \sum_{r=1}^T \sum_{i=1}^{m_r} u(\lambda_r c_i^r + d_i^r)$$

• Como $\hat{R}_D(\lambda_1,\ldots,\lambda_T)$ es separable, tenemos en cada tarea el problema

$$\arg\min_{\lambda_r \in [0,1]} \mathcal{J}(\lambda_r) = \sum_{i=1}^{m_r} u(\lambda_r c_i^r + d_i^r)$$

Usando el Teorema de Fermat

$$\lambda^* = \arg\min_{0 \leq \lambda \leq 1} \mathcal{J}(\lambda) \iff (0 \in \partial \mathcal{J}(\lambda^*) \text{ y } \lambda^* \in (0,1)) \text{ o } \lambda^* = 0 \text{ o } \lambda^* = 1$$

Combinación Convexa con Error Cuadrático

7. Apéndice A: Combinación Convexa de Modelos Preentrenados

• La función a minimizar es

$$\arg\min_{\lambda\in[0,1]}\mathcal{J}(\lambda) = \sum_{i=1}^{m} (\lambda c_i + d_i)^2$$

• La derivada es

$$\mathcal{J}'(\lambda) = \sum_{i=1}^{m} 2c_i(\lambda c_i + d_i)$$

• Como es derivable, resolviendo $\mathcal{J}'(\lambda) = 0$ obtenemos

$$\lambda' = -rac{\sum_{i=1}^{m} d_i c_i}{\sum_{i=1}^{m} (c_i)^2}$$

• La solución es entonces $\lambda^* = \max(\min(\lambda', 1), 0)$

Combinación Convexa con Error Absoluto

7. Apéndice A: Combinación Convexa de Modelos Preentrenados

Hay que resolver

$$\arg\min_{\lambda\in[0,1]}\mathcal{J}(\lambda) = \sum_{i=1}^{m} |\lambda c_i + d_i|$$

• El subgradiente de cada sumando es

$$\partial \left| \lambda c_i + d_i
ight| = egin{cases} - \left| c_i
ight|, & \lambda c_i + d_i < 0, \ \left[- \left| c_i
ight|, \left| c_i
ight|
ight], & \lambda c_i + d_i = 0, \ \left| c_i
ight|, & \lambda c_i + d_i > 0 \end{cases}$$

Combinación Convexa con Error Absoluto

7. Apéndice A: Combinación Convexa de Modelos Preentrenados

Proposicion (λ^* óptimo para el problema con valor absoluto)

- $\lambda^*=0$ es óptimo si y solo si: $-\sum_{i:\;0>\lambda_{(i)}}\left|c_{(i)}\right|+\sum_{i:\;0<\lambda_{(i)}}\left|c_{(i)}\right|\leq 0$
- $\lambda^* \in (0,1)$ es óptimo si y solo si $0<\lambda^*=\lambda_{(k)}<1$ para algún $k=1,\dots,m$, y

$$-\sum_{i:\;\lambda_{(k)}>\lambda_{(i)}}\left|c_{(i)}
ight|+\sum_{i:\;\lambda_{(k)}<\lambda_{(i)}}\left|c_{(i)}
ight|\in\left[-\left|c_{(k)}
ight|,\left|c_{(k)}
ight|
ight]$$

• $\lambda^* = 1$ es óptimo en otro caso

Combinación Convexa: Tabla

7. Apéndice A: Combinación Convexa de Modelos Preentrenados

	$\lambda^* \in (0,1)$
Cuadrática	$0<-rac{\sum_{i=1}^{m}d_{i}c_{i}}{\sum_{i=1}^{m}(c_{i})^{2}}<1$
Absoluta	$\left -\sum_{i:\;\lambda_{(k)}>\lambda_{(i)}}\left c_{(i)} ight +\sum_{i:\;\lambda_{(k)}<\lambda_{(i)}}\left c_{(i)} ight \in\left[-\left c_{(k)} ight ,\left c_{(k)} ight ight]$
Hinge	$ \Big - \textstyle \sum_{i: \; \lambda_{(k)} > \lambda_{(i)}} \max \left(0, c_{(i)} \right) - \textstyle \sum_{i: \; \lambda_{(k)} < \lambda_{(i)}} \min \left(0, c_{(i)} \right) \in \left[\min \left(0, c_{(k)} \right), \max \left(0, c_{(k)} \right) \right] $
Hinge Cuad.	$-\frac{\sum_{i:\;\lambda_{(k+1)}\geq\lambda_{(i)}}\max(0,c_{(i)})d_{(i)} + \sum_{i:\;\lambda_{(k)}\leq\lambda_{(i)}}\min(0,c_{(i)})d_{(i)}}{\sum_{i:\;\lambda_{(k+1)}\geq\lambda_{(i)}}\max(0,c_{(i)})^2 + \sum_{i:\;\lambda_{(k)}\leq\lambda_{(i)}}\min(0,c_{(i)})^2} \in [\lambda_{(k)},\lambda_{(k+1)}]$
$\lambda^*=0$	
Cuadrática	$-rac{\sum_{i=1}^{m}d_{i}c_{i}}{\sum_{i=1}^{m}(c_{i})^{2}}\leq0$
Absoluta	$\left -\sum_{i:\;0>\lambda_{(i)}}\left c_{(i)} ight +\sum_{i:\;0<\lambda_{(i)}}\left c_{(i)} ight \leq0$
Hinge	$-\sum_{i:\;0>\lambda_{(i)}}\max\left(0,c_{(i)} ight)-\sum_{0<\lambda_{(i)}}\min\left(0,c_{(i)} ight)\leq 0$
Hinge Cuad.	$-\sum_{i:\; 0>c_{(i)}, 0<\lambda_{(i)}} 2c_id_i - \sum_{i:\; 0< c_{(i)}, 0>\lambda_{(i)}} 2c_{(i)}d_{(i)} \leq 0$
$\lambda^*=1$ en otro caso	

► Apéndice A: Combinación Convexa de Modelos Preentrenados

► Apéndice B: Aprendizaje MT Convexo con Redes Neuronales

► Apéndice C: Laplaciano de Grafo con Métodos de Kerne

► Apéndice D: Algoritmo Adaptativo para Laplaciano de Grafo

► Apendice E: Extensiones a L2 y LS-SVM

Formulación Convexa para Redes Neuronales MT

8. Apéndice B: Aprendizaje MT Convexo con Redes Neuronales

- Proponemos¹² la formulación convexa para redes neuronales MT, combinando:
 - Una parte común $g(\cdot; w, b, \Theta)$
 - Una parte específica $g_r(\cdot; w_r, d_r, \Theta_r)$
- Los modelos son:

$$\begin{aligned} h_r(\cdot) &= \lambda_r g(\cdot; w, b, \Theta) + (1 - \lambda_r) g_r(\cdot; w_r, d_r, \Theta_r) \\ &= \lambda_r \{ \langle w, f(\cdot; \Theta) \rangle + b \} + (1 - \lambda_r) \{ \langle w_r, f_r(\cdot; \Theta_r) \rangle + d_r \} \end{aligned}$$

- -w, Θ son los parámetros de la red común
- $-w_r, \Theta_r$ son los parámetros de las redes específicas
- No se comparte la representación, se combinan una parte común y partes específicas

¹²Carlos Ruiz, Carlos M. Alaíz y José R. Dorronsoro. "Convex Multi-Task Learning with Neural Networks". En: HAIS Proceedings. Vol. 13469. Springer, 2022, págs. 223-235.

Formulación Convexa para Redes Neuronales MT

8. Apéndice B: Aprendizaje MT Convexo con Redes Neuronales

• El riesgo a minimizar en este caso es

$$\hat{R}_{D} = \sum_{r=1}^{T} \sum_{i=1}^{m_{r}} \ell(h_{r}(x_{i}^{r}), y_{i}^{r}) + \frac{\mu}{2} \left(\|w\|^{2} + \sum_{r=1}^{T} \|w_{r}\|^{2} + \Omega(\Theta) + \Omega(\Theta_{r}) \right)$$

• Se puede aplicar el descenso por gradiente con

$$\begin{split} &\nabla_{w}h_{t}(\boldsymbol{x}_{i}^{t}) = \lambda_{t}f(\boldsymbol{x}_{i}^{t},\boldsymbol{\Theta}), & \nabla_{\boldsymbol{\Theta}}h_{t}(\boldsymbol{x}_{i}^{t}) = \lambda_{t}\left\langle \boldsymbol{w}, \nabla_{\boldsymbol{\Theta}}f(\boldsymbol{x}_{i}^{t},\boldsymbol{\Theta})\right\rangle; \\ &\nabla_{w_{t}}h_{t}(\boldsymbol{x}_{i}^{t}) = (1-\lambda_{t})f_{t}(\boldsymbol{x}_{i}^{t},\boldsymbol{\Theta}), & \nabla_{\boldsymbol{\Theta}_{t}}h_{t}(\boldsymbol{x}_{i}^{t}) = (1-\lambda_{t})\left\langle \boldsymbol{w}, \nabla_{\boldsymbol{\Theta}_{t}}f_{t}(\boldsymbol{x}_{i}^{t},\boldsymbol{\Theta}_{t})\right\rangle; \\ &\nabla_{w_{r}}h_{t}(\boldsymbol{x}_{i}^{t}) = 0, & \nabla_{\boldsymbol{\Theta}_{r}}h_{t}(\boldsymbol{x}_{i}^{t}) = 0, \text{ for } r \neq t \end{split}$$

• Los gradientes se escalan adecuadamente con λ_t y $(1-\lambda_t)$

Experimentos: Modelos

8. Apéndice B: Aprendizaje MT Convexo con Redes Neuronales

- Comparamos cuatro modelos:
 - ctlNN_conv
 - itlNN_conv
 - cvxmtlNN_conv
 - hsmtlNN_conv
- Todos están basados en una red convolucional de Pytorch con
 - Conv. Layer (10 output channels)
 - Conv. Layer (20 output channels)
 - Dropout (p = 0.5) and Max. Pooling
 - Fully Connected Layer (320 neurons)
 - Fully Connected Layer (50 neurons)

► Apéndice A: Combinación Convexa de Modelos Preentrenados

▶ Apéndice B: Aprendizaje MT Convexo con Redes Neuronales

► Apéndice C: Laplaciano de Grafo con Métodos de Kernel

► Apéndice D: Algoritmo Adaptativo para Laplaciano de Grafo

▶ Apéndice E: Extensiones a L2 y LS-SVM

Aprendizaje Multitarea con Regularización Laplaciana

9. Apéndice C: Laplaciano de Grafo con Métodos de Kernel

Dados los modelos para cada tarea definidos como

$$h_r(\cdot) = \langle w_r, \cdot \rangle + b_r,$$

definimos la regularización

$$\sum_{r=1}^{T} \sum_{s=1}^{T} (A)_{rs} \| w_r - w_s \|^2$$

• Esta regularización se puede expresar como

$$\sum_{r=1}^{T} \sum_{s=1}^{T} (A)_{rs} \| w_r - w_s \|^2 = \sum_{r=1}^{T} \sum_{s=1}^{T} (L)_{rs} \langle w_r, w_s \rangle$$

Proponemos combinar la formulación convexa con la regularización Laplaciana¹³

¹³Carlos Ruiz, Carlos M. Alaíz y José R. Dorronsoro. "Convex Graph Laplacian Multi-Task Learning SVM". En: *ICANN*. Vol. 12397. Springer, 2020, págs. 142-154.

Laplaciano de Grafo con Métodos de Kernel

- 9. Apéndice C: Laplaciano de Grafo con Métodos de Kernel
- Inspirados por trabajos previos¹⁴ proponemos lo siguiente:
 - Consideramos el problema de minimización (con E una matriz def. pos.)

$$R(u_1,\ldots,u_T) = \sum_{r=1}^T \sum_{i=1}^{m_r} \ell(\mathbf{y}_i^r,\langle u_r,\phi(\mathbf{x}_i^r)
angle) + \mu \sum_r \sum_s \langle E\rangle_{rs} \langle u_r,u_s
angle$$
 (1)

 $-\;$ Si usamos el vector $oldsymbol{u}^{\scriptscriptstyle\mathsf{T}} = (u_1^{\scriptscriptstyle\mathsf{T}}, \dots, u_T^{\scriptscriptstyle\mathsf{T}})$ lo expresamos como

$$R(\boldsymbol{u}) = \sum_{r=1}^{T} \sum_{i=1}^{m_r} \ell(\boldsymbol{\gamma}_i^r, \langle \boldsymbol{u}, \boldsymbol{e}_r \otimes \phi(\boldsymbol{x}_i^r) \rangle) + \mu \left(\boldsymbol{u}^\mathsf{T}(E \otimes I) \boldsymbol{u} \right)$$
 (2)

donde \otimes indica el producto tensorial y $e_1, \dots e_T$ es la base canónica de \mathbb{R}^T

¹⁴Theodoros Evgeniou, Charles A. Micchelli y Massimiliano Pontil. "Learning Multiple Tasks with Kernel Methods". En: *J. Mach. Learn. Res.* 6 (2005), págs. 615-637.

Laplaciano de Grafo con Métodos de Kernel

9. Apéndice C: Laplaciano de Grafo con Métodos de Kernel

Lema

Las soluciones u_1^*, \ldots, u_T^* de (1), o equivalentemente la solución \mathbf{u}^* de (2), se pueden obtener minimizando

$$S(\boldsymbol{w}) = \sum_{r=1}^{T} \sum_{i=1}^{m_r} \ell(\boldsymbol{y}_i^r, \langle \boldsymbol{w}, (B_r \otimes \phi(\boldsymbol{x}_i^r)) \rangle) + \mu \boldsymbol{w}^{\mathsf{T}} \boldsymbol{w},$$

donde $\mathbf{w} \in \mathbb{R}^p \otimes \mathcal{H}$ con $p \geq T$ y B_r son las columnas de $B \in \mathbb{R}^{p \times T}$, una matriz de rango máximo tal que $E^{-1} = B^T B$.

El kernel reproductor correspondiente es:

$$\left\langle B_r \otimes \phi(\mathbf{x}_i^r), B_s \otimes \phi(\mathbf{x}_j^s) \right\rangle = \left(E^{-1}\right)_{rs} k(\mathbf{x}_i^r, \mathbf{x}_j^s)$$

► Apéndice A: Combinación Convexa de Modelos Preentrenados

➤ Apéndice B: Aprendizaje MT Convexo con Redes Neuronales

► Apéndice C: Laplaciano de Grafo con Métodos de Kernel

► Apéndice D: Algoritmo Adaptativo para Laplaciano de Grafo

► Apendice E: Extensiones a L2 y L5-5VN

10. Apéndice D: Algoritmo Adaptativo para Laplaciano de Grafo

- La selección de la matriz de adyacencia A (y la respectiva L) es determinante
- Proponemos¹⁵ un método para la selección automática de A
- Tiene que tener las siguientes restricciones:
 - A es simétrica
 - $(A)_{rs} \geq 0, r, s = 1, \ldots, T.$
 - $-\sum_{s=1}^{\infty} (A)_{rs} = 1$
- La entropía de cada fila \mathbf{a}^r es: $H(\mathbf{a}^r) = \sum_{s=1}^T (A)_{rs} \log((A)_{rs})$
- Interpretación:
 - $-\sum_{r=1}^T H(\boldsymbol{a}^r)$ es máxima si A es constante, $A=\frac{1}{T}\mathbf{1}_T\mathbf{1}_T^\intercal$
 - $-\sum_{r=1}^T H(\boldsymbol{a}^r)$ es mínima si A es la identidad, $A=I_T$

¹⁵Carlos Ruiz, Carlos M. Alaíz y José R. Dorronsoro. "Adaptive Graph Laplacian for Convex Multi-Task Learning SVM". En: HAIS Proceedings. Vol. 12886. Springer, 2021, págs. 219-230.

10. Apéndice D: Algoritmo Adaptativo para Laplaciano de Grafo

Problema para Algoritmo Adaptativo

$$\min_{\substack{\boldsymbol{W}, \boldsymbol{v}, \boldsymbol{b}; \\ A \in (\mathbb{R}_{\geq 0})^{T \times T}, \\ A \mathbf{1}_{T} = \mathbf{1}_{T}}} C \sum_{r=1}^{T} \sum_{i=1}^{m_{r}} \ell(\lambda_{r} \langle \boldsymbol{w}, \phi(\boldsymbol{x}_{i}^{r}) \rangle + (1 - \lambda_{r}) \langle \boldsymbol{v}_{r}, \psi(\boldsymbol{x}_{i}^{r}) \rangle + b_{r}, \boldsymbol{y}_{i}^{r}) \\
+ \frac{\nu}{2} \sum_{r=1}^{T} \sum_{s=1}^{T} (A)_{rs} \|\boldsymbol{v}_{r} - \boldsymbol{v}_{s}\|^{2} + \frac{1}{2} \sum_{r=1}^{T} \|\boldsymbol{v}_{r}\|^{2} + \frac{1}{2} \|\boldsymbol{w}\|^{2} \\
- \mu \sum_{r=1}^{T} H(\boldsymbol{a}^{r})$$

10. Apéndice D: Algoritmo Adaptativo para Laplaciano de Grafo

- Para minimizar este problema alternamos los siguientes pasos:
 - Fijamos A y minimizamos en w, v, b:

$$\begin{split} & \underset{w, \mathbf{v}, \mathbf{b}}{\min} & & & C \sum_{r=1}^{T} \sum_{i=1}^{m_{r}} \ell(\lambda_{r} \left< w, \phi(\mathbf{x}_{i}^{r}) \right> + (1 - \lambda_{r}) \left< v_{r}, \psi(\mathbf{x}_{i}^{r}) \right> + b_{r}, \mathbf{y}_{i}^{r}) \\ & & & + \frac{\nu}{2} \sum_{r=1}^{T} \sum_{s=1}^{T} (A)_{rs} \left\| \mathbf{v}_{r} - \mathbf{v}_{s} \right\|^{2} + \frac{1}{2} \sum_{r=1}^{T} \left\| \mathbf{v}_{r} \right\|^{2} + \frac{1}{2} \left\| \mathbf{w} \right\|^{2} \end{split}$$

— Fjamos w, v, b y minimizamos en A:

$$\min_{\substack{A \in (\mathbb{R}_{\geq 0})^{T \times T}, \\ A \mathbf{1}_T = \mathbf{1}_T}} J(A) = \frac{\nu}{2} \sum_{r=1}^{T} \sum_{s=1}^{T} (A)_{rs} \| \mathbf{v}_r - \mathbf{v}_s \|^2 - \mu \sum_{r=1}^{T} H(\boldsymbol{a}^r)$$

10. Apéndice D: Algoritmo Adaptativo para Laplaciano de Grafo

• Si sabemos las distancias $||v_r - v_s||^2$, la solución es

$$(A)_{rs} = rac{\exp{-rac{
u}{\mu}\|v_r - v_s\|^2}}{\sum_t \exp{-rac{
u}{\mu}\|v_r - v_t\|^2}}$$

- ¿Cómo calculamos estas distancias?
 - Con la matriz \widetilde{Q}^{rs} correspondiente a la función

$$\widetilde{k^{rs}}(x_i^t, x_j^ au) = (I_T +
u L)_{rt}^{-1} (I_T +
u L)_{s au}^{-1} k_\psi(x_i^t, x_j^ au)$$

Los productos interiores son

$$\langle v_r, v_s \rangle = \alpha^{\intercal} \left(I_n - \Lambda \right) \widetilde{Q^{rs}} \left(I_n - \Lambda \right) \alpha$$

Las distancias son entonces

$$\left\| \mathbf{v}_r - \mathbf{v}_s
ight\|^2 = oldsymbol{lpha}^\intercal \left(I_n - \Lambda
ight) \left(\widetilde{Q^{rr}} + \widetilde{Q^{ss}} - 2 \widetilde{Q^{rs}}
ight) \left(I_n - \Lambda
ight) oldsymbol{lpha}$$

Algoritmo 1: Algoritmo para laplaciano adaptativo.

```
Input: (X, y) = \{(x_i^r, y_i^r), i = 1, \dots, m_r; r = 1, \dots, T\}
                                                                                                                         // Data
A = A_0
                                                                                                         // Constant matrix
while True do
     L_{\text{inv}} \leftarrow \text{getInvLaplacian}(A)
                                                                                                                      // Step 0
     \alpha_{\text{opt}} \leftarrow \text{solveDualProblem}((X, y), L_{\text{inv}}, \text{params})
                                                                                                                      // Step 1
     o \leftarrow \text{computeObjectiveValue}((X, y), L_{\text{inv}}, \alpha_{\text{opt}})
                                                                                           // Objective function value
     if o^{old} - o < \delta_{tol} then
           break
                                                                                                          // Exit condition
     end
     D \leftarrow \text{computeDistances}((X, v), L_{\text{inv}}, \alpha_{\text{ont}})
                                                                                                                      // Step 2
     A \leftarrow \mathsf{updateAdiMatrix}(D, \mathsf{params})
                                                                                                                      // Step 3
end
return \alpha_{opt}, A
```

► Apéndice A: Combinación Convexa de Modelos Preentrenados

Apéndice B: Aprendizaje MT Convexo con Redes Neuronales

Apéndice C: Laplaciano de Grafo con Métodos de Kerne

Apéndice D: Algoritmo Adaptativo para Laplaciano de Grafo

► Apéndice E: Extensiones a L2 y LS-SVM

L2-SVM

11. Apéndice E: Extensiones a L2 y LS-SVM

Problema Primal - L2-SVM

$$\min_{w,b,\xi} \ \frac{C}{2} \sum_{i=1}^{m} (\xi_i)^2 + \frac{1}{2} \|w\|^2$$

s.t.
$$y_i(\langle w, \phi(x_i) \rangle + b) \geq p_i - \xi_i$$

Problema Dual - L2-SVM

$$\min_{\alpha} \quad \frac{1}{2} \alpha^{\mathsf{T}} \left(Q + \frac{1}{C} I_n \right) \alpha - \alpha^{\mathsf{T}} \boldsymbol{p}$$

s.t.
$$\sum_{i=1}^{n} y_i \alpha_i = 0, \ \alpha_i \ge 0$$

LS-SVM

11. Apéndice E: Extensiones a L2 y LS-SVM

Problema Primal - LS-SVM

$$\min_{w,b,\xi} \quad \frac{C}{2} \sum_{i=1}^{n} (\xi_i)^2 + \frac{1}{2} \|w\|^2$$

s.t.
$$y_i(\langle w, x_i \rangle + b) = p_i - \xi_i$$

Problema Dual - LS-SVM

$$\begin{bmatrix} 0 & \mathbf{\gamma}^{\mathsf{T}} \\ \hline \mathbf{\gamma} & Q + \frac{1}{\bar{c}} I_n \end{bmatrix} \begin{bmatrix} b \\ \alpha \end{bmatrix} = \begin{bmatrix} 0 \\ \mathbf{p} \end{bmatrix}$$

Formulación Convexa para L2-SVM MT

11. Apéndice E: Extensiones a L2 y LS-SVM

Problema Primal - L2-SVM MT Convexa

Problema Dual - L2-SVM MT Convexa

$$\min_{\alpha} \quad \frac{1}{2} \alpha^{\mathsf{T}} \left(\left\{ \Lambda Q \Lambda + (I_n - \Lambda) K (I_n - \Lambda) \right\} + \frac{1}{C} I \right) \alpha - \mathbf{p} \alpha$$
s.t. $0 \leq \alpha_i^r, \ i = 1, \dots, m_r, \ r = 1, \dots, T,$

$$\sum_{i=1}^{m_r} \alpha_i^r y_i^r = 0, \ r = 1, \dots, T$$

Formulación Convexa para LS-SVM MT

11. Apéndice E: Extensiones a L2 y LS-SVM

Problema Primal - LS-SVM MT Convexa

Problema Dual - LS-SVM MT Convexa

$$\begin{bmatrix} \mathbf{0} & \mathbf{0}_{T}^{\mathsf{T}} & \mathbf{y}^{\mathsf{T}}\Lambda \\ \mathbf{0}_{T} & \mathbf{0}_{T \times T} & A^{\mathsf{T}}Y(I_{n} - \Lambda) \\ \hline \mathbf{y} & YA & \{\Lambda Q\Lambda + (I_{n} - \Lambda)K(I_{n} - \Lambda)\} + \frac{1}{C}I \end{bmatrix} \begin{pmatrix} b \\ d_{1} \\ \vdots \\ d_{T} \\ \boldsymbol{\alpha} \end{pmatrix} = \begin{pmatrix} \mathbf{0} \\ \mathbf{0}_{T} \\ \boldsymbol{p} \end{pmatrix}$$

Formulación Convexa para L2-SVM MT con Laplaciano

11. Apéndice E: Extensiones a L2 y LS-SVM

Problema Primal - L2-SVM Convexa con Laplaciano

$$\min_{\substack{v_1, \dots, v_T; \\ b_1, \dots, b_T; \\ \boldsymbol{\xi}, w;}} C \sum_{r=1}^T \sum_{i=1}^{m_r} (\xi_i^r)^2 + \frac{\nu}{2} \sum_{r=1}^T \sum_{s=1}^T (A)_{rs} \|v_r - v_s\|^2 + \frac{1}{2} \sum_r \|v_r\|^2 + \frac{1}{2} \|w\|^2$$

$$\text{s.t.} \qquad \mathbf{y}_i^r(\lambda_r(\langle \mathbf{w}, \phi(\mathbf{x}_i^r) \rangle) + (1 - \lambda_r)(\langle \mathbf{v}_r, \psi(\mathbf{x}_i^r \rangle)) + b_r) \geq p_i^r - \xi_i^r$$

Problema Dual - L2-SVM Convexa con Laplaciano

$$\min_{\alpha} \ \Theta(\alpha) = \frac{1}{2}\alpha^{t} \left\{ \left(\Lambda Q \Lambda + \left(I_{n} - \Lambda \right) \widetilde{Q} \left(I_{n} - \Lambda \right) \right) + \frac{1}{C} I_{n} \right\} \alpha - p \alpha$$

s.t.
$$0 \le \alpha_i^r$$
, $i = 1, \ldots, m_r$, $r = 1, \ldots, T$, $\sum_{i=1}^{n_r} \alpha_i^r y_i^r = 0$, $r = 1, \ldots, T$

Formulación Convexa para LS-SVM MT con Laplaciano

11. Apéndice E: Extensiones a L2 y LS-SVM

Problema Primal - LS-SVM Convexa con Laplaciano

$$\min_{\substack{v_1, \dots, v_T; \\ b_1, \dots, b_T; \\ \boldsymbol{\varepsilon}, w;}} C \sum_{r=1}^T \sum_{i=1}^{m_r} (\xi_i^r)^2 + \frac{\nu}{2} \sum_{r=1}^T \sum_{s=1}^T (A)_{rs} \|v_r - v_s\|^2 + \frac{1}{2} \sum_r \|v_r\|^2 + \frac{1}{2} \|w\|^2$$

s.t.
$$y_i^r(\lambda_r(\langle w, \phi(x_i^r) \rangle) + (1 - \lambda_r)(\langle v_r, \psi(x_i^r \rangle)) + b_r) = p_i^r - \xi_i^r$$

Problema Dual - LS-SVM Convexa con Laplaciano

$$\left[\begin{array}{c|c}
\mathbf{0}_{T \times T} & A^{\mathsf{T}}Y \\
\hline
YA & \left(\Lambda Q \Lambda + (I_n - \Lambda) \widetilde{Q} (I_n - \Lambda)\right) + \frac{1}{C} I_n
\end{array}\right] \begin{vmatrix} b_1 \\ \vdots \\ b_T \\ \alpha \end{vmatrix} = \begin{bmatrix} \mathbf{0}_T \\ \mathbf{p} \end{bmatrix}$$