Électromagnétisme S18 Force électromotrice

Iannis Aliferis

Université Nice Sophia Antipolis

Force électromotrice (fem)	2
Définition	3
Fem dans un circuit simple	4
Circuit simple	5
Fem dans un circuit en mouvement	6
Circuit en mouvement dans un champ magnétique	7
En dehors du champ magnétique	
Phase d'entrée	ç
Entièrement dans un champ magnétique	10
Phase de sortie	11
Récapitulatif	
Flux magnétique dans un circuit en mouvement	13
En dehors du champ magnétique	14
Phase d'entrée	
Entièrement dans un champ magnétique	16
Phase de sortie	
Récapitulatif	
Fem due au mouvement et flux magnétique	19
Récapitulatif	20

Force électromotrice (fem)

2

Définition

lacktriangledown fem ou $\mathcal E$: « force » électromotrice

$$\mathsf{fem} riangleq \oint_{\Gamma} ec{m{f}} \cdot \hat{m{t}} \, \mathrm{d}l$$

- lacktriangle Γ une courbe fermée [circulation] : le « circuit »
- $lacktriangledown \vec{f}$ force par charge : provoque et maintient le mouvement

$$ec{m{f}} riangleq rac{ec{m{F}}}{q}$$
 (1)

- 1. fem *n'est pas* une force : unités Volt
- 2. L'intégrale est calculée à l'instant t

$$fem(t) \triangleq \oint_{\Gamma(t)} \vec{f}(\vec{r}, t) \cdot \hat{t} \, dl$$
 (2)

[fem circuit simple]
[fem circuit en mouvement]

Fem dans un circuit simple

Circuit simple

lacktriangledown Pas en état d'équilibre : $v \neq 0$

▼ Mais en état *stationnaire* : v(t) constant

▼ Courant *I* constant le long du circuit

$$I = \int_{S} \vec{J} \cdot \hat{n} \, dS = JA = nqvA = \sigma EA = \frac{E}{R'}$$

[loi d'Ohm électronique] $R=\frac{1}{\sigma}\frac{L}{A} \quad R' \triangleq \frac{R}{L} \; (\Omega \, \mathrm{m}^{-1})$

Pile idéale (sans résistance interne) : $\Sigma \vec{F} = q \vec{E} + \vec{F_s} = \vec{0}$ donc $\vec{f_s} = -\vec{E}$

$$[\mathsf{fem}] \quad \mathsf{fem} = \oint_{\Gamma} \vec{\boldsymbol{f}} \cdot \hat{\boldsymbol{t}} \, \mathrm{d}l \stackrel{\vec{\boldsymbol{f}} = \frac{q\vec{\boldsymbol{E}} + \vec{\boldsymbol{F}}_{\boldsymbol{s}}}{q}}{=} \oint_{\Gamma} (\vec{\boldsymbol{E}} + \vec{\boldsymbol{f}}_{\boldsymbol{s}}) \cdot \hat{\boldsymbol{t}} \, \mathrm{d}l = \int_{-\rightarrow +} \vec{\boldsymbol{f}}_{\boldsymbol{s}} \cdot \hat{\boldsymbol{t}} \, \mathrm{d}l$$

$$\mathsf{fem} = -\int |ec{m{E}} \cdot \hat{m{t}} \, \mathrm{d}l$$
 la ddp aux bornes de la pile!

Polarité de la pile : selon \hat{t} (si $\hat{t}'=-\hat{t}$ alors fem'=-fem placée à l'envers)

À chaque tour : gains $|\text{fem}| (JC^{-1})$, pertes $RI(JC^{-1})$, $v(\vec{r}, t + T) = v(\vec{r}, t)$

Conservation d'énergie |fem| = RI

5

Fem dans un circuit en mouvement

Circuit en mouvement dans un champ magnétique

- lacktriangledown Champ magnétique homogène et constant $ec{m{B}} = B \hat{m{e}}_{m{z}}$
- lacktriangledown Circuit sans pile, déplacement à vitesse constante $ec{m{v}} = v \hat{m{e}}_{m{x}}$

6

En dehors du champ magnétique

- $\begin{tabular}{l} \blacktriangledown $\vec{f} = \vec{0}$ \\ \blacktriangledown $\mathsf{fem} = \oint_{\Gamma} \vec{f} \cdot \hat{t} \, \mathrm{d}l = 0$ \\ \end{tabular}$

Phase d'entrée

- lacksquare AB : $ec{m{f}} = ec{m{v}}_{ ext{tot}} \wedge ec{m{B}} = (ec{m{v}} + ec{m{v}}_{m{e}}) \wedge ec{m{B}} = -vB\hat{m{e}}_{m{y}} + v_eB\hat{m{e}}_{m{x}}$
- $lackbox{ BC et FA}: ec{m{f}} = ec{m{v}} \wedge ec{m{B}} = -vB\hat{m{e}}_{m{y}}$
- lacklash fem $(t) = \oint_{\Gamma} \vec{f}(t) \cdot \hat{t} \, \mathrm{d}l = \int_{A o B} (-v B \hat{e}_{y}) \cdot \hat{e}_{y} \, \mathrm{d}l = -v B l$

9

Entièrement dans un champ magnétique

- lacklash AB et DE : $ec{m{f}}=ec{m{v}}_{ ext{tot}}\wedgeec{m{B}}=(ec{m{v}}+ec{m{v}}_{m{e}})\wedgeec{m{B}}=-vB\hat{m{e}}_{m{y}}+v_{e}B\hat{m{e}}_{m{x}}$
- $lackbox{ }$ BD et EA : $ec{m{f}}=ec{m{v}}\wedgeec{m{B}}=-vB\hat{m{e}}_{m{y}}$
- $\begin{aligned} \blacktriangledown \text{ fem}(t) &= \oint_{\Gamma} \vec{\boldsymbol{f}}(t) \cdot \hat{\boldsymbol{t}} \, \mathrm{d}l = \int_{A \to B} \left(-vB\hat{\boldsymbol{e}}_{\boldsymbol{y}} \right) \cdot \hat{\boldsymbol{e}}_{\boldsymbol{y}} \, \mathrm{d}l \\ &+ \int_{D \to E} \left(-vB\hat{\boldsymbol{e}}_{\boldsymbol{y}} \right) \cdot \left(-\hat{\boldsymbol{e}}_{\boldsymbol{y}} \right) \, \mathrm{d}l \\ &= -vBl + vBl \\ &= 0 \end{aligned}$

- $\begin{array}{l} \blacktriangledown \ \ \mathsf{DE}: \ \vec{\boldsymbol{f}} = \vec{\boldsymbol{v}}_\mathsf{tot} \wedge \vec{\boldsymbol{B}} = (\vec{\boldsymbol{v}} + \vec{\boldsymbol{v}}_{\boldsymbol{e}}) \wedge \vec{\boldsymbol{B}} = -vB\hat{\boldsymbol{e}}_{\boldsymbol{y}} + v_eB\hat{\boldsymbol{e}}_{\boldsymbol{x}} \\ \blacktriangledown \ \ \mathsf{CD} \ \mathsf{et} \ \mathsf{EF}: \ \vec{\boldsymbol{f}} = \vec{\boldsymbol{v}} \wedge \vec{\boldsymbol{B}} = -vB\hat{\boldsymbol{e}}_{\boldsymbol{y}} \\ \blacktriangledown \ \ \mathsf{fem}(t) = \oint_{\Gamma} \vec{\boldsymbol{f}}(t) \cdot \hat{\boldsymbol{t}} \ \mathrm{d}l = \int_{D \to E} (-vB\hat{\boldsymbol{e}}_{\boldsymbol{y}}) \cdot (-\hat{\boldsymbol{e}}_{\boldsymbol{y}}) \ \mathrm{d}l = +vBl \end{array}$

Position	fem
En dehors du champ magnétique	0
Phase d'entrée	-vBl
Entièrement dans le champ magnétique	0
Phase de sortie	+vBl

Flux magnétique dans un circuit en mouvement

Fem due au mouvement et flux magnétique

19

