COL341 Spring 2023 Homework 1 (To be done Individually)

Due Date: 3rd February 2023, Friday, 11:55 PM (No extensions)

Instructions

Type the solutions in LATEX(you may use Overleaf for ease of use). Submit the.tex source and the compiled pdf in a single .zip file in Moodle. Name the file as <your-entry-number>.zip, e.g. 2019CSZ8406.zip. The homework is to be done individually. Plagiarism and academic dishonesty will be penalized as per the course policy. No deadline extension will be provided.

Question 1 $[1 \times 4 = 4 \text{ marks}]$

Consider the hat matrix $H = X(X^TX)^{-1}X^T$, where X is an N by d+1 matrix, and X^TX is invertible.

- (a) Show that H is symmetric.
- (b) Show that $H^K = H$ for any positive integer K.
- (c) If I is the identity matrix of size N, show that $(I H)^K = I H$ for any positive integer K.
- (d) Show that trace(H) = d + 1, where the trace is the sum of diagonal elements. [Hint: trace(AB) = trace(BA)]

Question 2 [1+1+1+2+2=7 marks]

Consider a noisy target $y = \mathbf{w}^{*T}\mathbf{x} + \epsilon$ for generating the data, where ϵ is a noise term with zero mean and σ^2 variance, independently generated for every example (\mathbf{x}, y) . The expected error of the best possible linear fit to this target is thus σ^2 . For the data $\mathcal{D} = \{(\mathbf{x}_1, y_1), ..., (\mathbf{x}_N, y_N)\}$, denote the noise in y_n as ϵ_n and let $\epsilon = [\epsilon_1, \epsilon_2, ..., \epsilon_N]^T$; assume that $X^T X$ is invertible. By following the

steps below, show that the expected in sample error of linear regression with respect to \mathcal{D} is given by

$$\mathbb{E}_{\mathcal{D}}\left[E_{\text{in}}(\mathbf{w}_{\text{lin}})\right] = \sigma^2 \left(1 - \frac{d+1}{N}\right) \tag{1}$$

- (a) Show that the in sample estimate of **y** is given by $\hat{\mathbf{y}} = X\mathbf{w}^* + H\epsilon$
- (b) Show that the in sample error vector $\hat{\mathbf{y}} \mathbf{y}$ can be expressed by a matrix times ϵ . What is the matrix?
- (c) Express $E_{\rm in}(\mathbf{w}_{\rm lin})$ in terms of ϵ using (b), and simplify the expression using Question 1(c).
- (d) Prove Eq. (1) using (c) and the independence of $\epsilon_1, \ldots, \epsilon_N$. [Hint: the sum of the diagonal elements of a matrix (the trace) will play a role.]

For the expected out of sample error, we take a special case which is easy to analyze. Consider a test data set $\mathcal{D}_{\text{test}} = \{(\mathbf{x}_1, y_1'), ..., (\mathbf{x}_N, y_N')\}$, which shares the same input vectors \mathbf{x}_n with \mathcal{D} but with a different realization of the noise terms. Denote the noise in y_n' as ϵ_n' and let $\epsilon' = [\epsilon_1', \epsilon_2', ..., \epsilon_N']^T$. Define $E_{\text{test}}(\mathbf{w}_{\text{lin}})$ o be the average squared error on $\mathcal{D}_{\text{test}}$.

(e) Prove that $\mathbb{E}_{\mathcal{D},\epsilon'}[E_{\text{test}}(\mathbf{w}_{\text{lin}})] = \sigma^2(1 + \frac{d+1}{N}).$

The special test error E_{test} is a very restricted case of the general out of sample error.

Question 3 [1+2+2+2+2=9 marks]

Consider the linear regression problem setup in Question2, where the data comes from a genuine linear relationship with added noise. The noise for the different data points is assumed to be iid with zero mean and variance σ^2 . Assume the second moment matrix $\Sigma = \mathbb{E}_{\mathbf{x}}[\mathbf{x}\mathbf{x}^T]$ is non-singular. Follow the steps below to show that, with high probability, the out-of-sample error on average is

$$E_{\text{out}(\mathbf{w}_{lin})} = \sigma^2 \left(1 + \frac{d+1}{N} + o(\frac{1}{N}) \right)$$

(a) For a test point **x**, show that the error $y - g(\mathbf{x})$ is

$$\epsilon - x^T (X^T X)^{-1} X^T \epsilon$$

where ϵ is the noise realization for the test point and ϵ is the vector of noise realizations on the data.

(b) Take the expectation with respect to the test point, i.e., ${\bf x}$ and ϵ , to obtain an expression for $E_{\rm out}$. Show that

$$E_{\text{out}} = \sigma^2 + \text{trace}\left(\Sigma(X^T X)^{-1} X^T \epsilon \epsilon^T X^T (X^T X)^{-1}\right)$$
 (2)

[Hints: a = trace(a) for any scalar a; trace(AB) = trace(BA); expectation and trace commute.]

- (c) What is $\mathbb{E}_{\epsilon}[\epsilon \epsilon^T]$?
- (d) Take the expectation with respect to ϵ to show that, on average,

$$E_{\text{out}} = \sigma^2 + \frac{\sigma^2}{N} \text{trace} \left(\Sigma \left(\frac{1}{N} X^T X \right)^{-1} \right). \tag{3}$$

Note that $\frac{1}{N}X^TX = \frac{1}{N}\sum_{n=1}^{N}\mathbf{x}_n\mathbf{x}_n^T$ is an N sample estimate of Σ . So, $\frac{1}{N}X^TX \approx \Sigma$. If $\frac{1}{N}X^TX = \Sigma$, then what is E_{out} on average?

(e) Show that (after taking the expectation over the data noise) with high probability,

$$E_{\text{out}} = \sigma^2 \left(1 + \frac{d+1}{N} + o(\frac{1}{N}) \right)$$

[Hint: By the law of large numbers $\frac{1}{N}X^TX$ converges in probability to Σ , and so by continuity of the inverse at Σ , $(\frac{1}{N}X^TX^{-1})$ converges in probability to Σ^{-1} .]