بسم الله الرحمن الرحيم جلسه شانزدهم درس تحقیق در عملیات

کاربرد جبرخطی در فران مان بندی

زمانبندى: مثال

	Single B&W	Duplex B&W	Duplex Color
Master's thesis, 90 pages two-sided, 10 B&W copies		45 min	60 min
All the Best Deals flyer, 1 page one-sided, 10,000 B&W copies	2h 45 min	4h 10 min	5h 30 min
Buyer's Paradise flyer, 1 page one-sided, 10,000 B&W copies	2h 45 min	4h 10 min	5h 30 min
Obituary, 2 pages two-sided, 100 B&W copies		2 min	3 min
Party platform, 10 pages two-sided, 5,000 color copies			3h 30 mir

چون جواب بهتر از ۵:۳۰ داریم، اینها در جواب بهینه نیستند!

ماشینها
$$M:=\{1,\ldots,m\}$$

کارها
$$J:=\{m+1,\ldots,m+n\}$$

 $egin{aligned} egin{aligned} & \mathbf{a} & \mathbf{c} \\ \mathbf{j} & \mathbf{c} & \mathbf{i} \end{aligned}$ ماشین \mathbf{i} کار \mathbf{d}_{ij}

 $d_{ij} > 0$

Minimize

subject to $\sum_{i \in M} x_{ij} = 1$ $\sum_{j \in J} d_{ij} x_{ij} \leq t$ $x_{ij} \geq 0$ $x_{ij} \in \mathbb{Z}$

for all $j \in J$ for all $i \in M$ for all $i \in M, j \in J$ for all $i \in M, j \in J$.

هزینه ماتریس ماشین i کار j

كارها

ماشينها

Minimize

subject to
$$\sum_{i \in M} x_{ij} = 1 \quad \text{for all } j \in J$$
$$\sum_{j \in J} d_{ij} x_{ij} \leq t \quad \text{for all } i \in M$$

 $x_{ij} \geq 0$ for all $i \in M, j \in J$ كارها

ماشينها

 $x_{ij} \in \mathbb{Z}$ for all $i \in M, j \in J$.

هزینه ماتریس i ماشین i

$$x \in \{0,1\}$$
 لازم نیست

آرامسازي

```
\begin{array}{ll} \text{Minimize} & t \\ \text{subject to} & \sum_{i \in M} x_{ij} \ = \ 1 & \text{ for all } j \in J \\ & \sum_{j \in J} d_{ij} x_{ij} \ \leq \ t & \text{ for all } i \in M \\ & x_{ij} \ \geq \ 0 & \text{ for all } i \in M, j \in J \end{array}
```

آرامسازى

```
Minimize subject to
```

$$\sum_{i \in M} x_{ij} = 1 \quad \text{for all } j \in J$$

$$\sum_{j \in J} d_{ij} x_{ij} \leq t \quad \text{for all } i \in M$$

$$x_{ij} \geq 0 \quad \text{for all } i \in M, j \in J$$

$$x_{ij} = 0 \quad ext{ for all } i \in M, j \in J ext{ with } d_{ij} > T <$$
 اضافه کنیم T

ارامسازی شده + قیود اضافه

Minimize

Minimize
$$t$$
 subject to $\sum_{i \in M} x_{ij} = 1$ for all $j \in J$ $\sum_{j \in J} d_{ij} x_{ij} \leq t$ for all $i \in M$ $x_{ij} \geq 0$ for all $i \in M, j \in J$ with $d_{ij} > T$.

آرامسازی شده + قیود اضافه

Minimize subject to

$$\sum_{i \in M} x_{ij} = 1$$
 for all $j \in J$
 $\sum_{j \in J} d_{ij} x_{ij} \leq t$ for all $i \in M$
 $x_{ij} \geq 0$ for all $i \in M, j \in J$
 $x_{ij} = 0$ for all $i \in M, j \in J$ with $d_{ij} > T$.

الگوريتم نهايي:

۱_ محاسبه T مناسب،

۲_ حل نسخه آرامسازی شده

۳_ جواب خوب براساس برنامهریزی خطی

8.3.2 Lemma. In any subgraph of G (obtained by deleting edges, or vertices with their incident edges), the number of edges is at most the number of vertices.

bfs

M J

bfs

bfs

bfs

bfs

$$\sum_{j \in S_i} d_{ij} = \sum_{j \in S_i} d_{ij}$$
 کارهای ماشین \mathbf{i} در این مرحله \mathbf{M} $\mathbf{x}^*_{ij}=1$ \mathbf{G}

bfs

مرحله ۱: کارهای با درجه ۱

$$x^*_{ij}=1$$

$$\sum_{j \in S_i} d_{ij} = \sum_{j \in S_i} d_{ij} x_{ij}^*$$
: برای هر ماشین

کارهای ماشین i در این مرحله

bfs

$$\mathbf{x}^*_{ij}=1$$
 اورجه المعنى با درجه $\mathbf{x}^*_{ij}=1$ اورجه المعنى با درجه المعنى با درجه $\mathbf{x}^*_{ij}=1$ المعنى المعنى

bfs

bfs

مرحله ۲: بقیه کارها

bfs

یک تطابق پوشاننده کارها دارد

مرحله ۲: بقیه کارها

bfs

یک تطابق پوشاننده کارها دارد

مرحله ۲: بقیه کارها

قضيه هال:

به ازای هر $J' \in J'$ داریم $J'' \in J''$ داریم $J'' \in J''$ تطابق پوشاننده $J'' \in J''$

bfs

یک تطابق پوشاننده کارها دارد

مرحله ۲: بقیه کارها

قضيه هال:

به ازای هر $J' \in J'$ داریم $J'' \in J''$ داریم $J'' \in J''$ داریم به ازای هر $J'' \in J''$

$$|J'' \cup N(J'')| \ge e \ge 2|J''|$$

bfs

یک تطابق پوشاننده کارها دارد

مرحله ۲: بقیه کارها

قضيه هال:

به ازای هر $J' \in J'$ داریم $J'' \in J''$ داریم $J'' \in J''$ داریم

$$|J'' \cup N(J'')| \ge e \ge 2|J''|$$

 $J^{"}$ یالهای خارج شونده از $G^{'}$

M

τ/

bfs

یک تطابق پوشاننده کارها دارد

مرحله ۲: بقیه کارها

قضيه هال:

به ازای هر $J' \in J'$ داریم $J'' \in J''$ داریم $J'' \in J''$ داریم

$$|J'' \cup N(J'')| \ge e \ge 2|J''|$$

درجه هر راس >= ۲

یالهای خارج شونده از "J

bfs

یک تطابق پوشاننده کارها دارد

مرحله ۲: بقیه کارها

قضيه هال:

به ازای هر $J' \in J'$ داریم $J'' \in J''$ داریم $J'' \in J''$ داریم

$$|J'' \cup N(J'')| \geq e \geq 2|J''|$$

قضيه قبل

درجه هر راس >= ۲

یالهای خارج شونده از "J

M

bfs

مرحله ۱: کارهای با درجه ۱

$$\sum_{j \in S_i} d_{ij} = \sum_{j \in S_i} d_{ij} x_{ij}^* \leq \sum_{j \in J} d_{ij} x_{ij}^* \leq t^*$$
برای هر ماشین:

یک تطابق یوشاننده کارها دارد

م, حله ۲: بقیه کارها

bfs

مرحله ۱: کارهای با درجه ۱

$$\sum_{j \in S_i} d_{ij} = \sum_{j \in S_i} d_{ij} x_{ij}^* \leq \sum_{j \in J} d_{ij} x_{ij}^* \leq t^*$$
برای هر ماشین:

یک تطابق پوشاننده کارها دارد

مرحله ۲: بقیه کارها

i زمان مرحله 1 + j زمان مرحله 2 + j زمان اتمام کار ماشین

bfs

مرحله ۱: کارهای با درجه ۱

$$\sum_{j \in S_i} d_{ij} = \sum_{j \in S_i} d_{ij} x_{ij}^* \leq \sum_{j \in J} d_{ij} x_{ij}^* \leq t^*$$
برای هر ماشین:

یک تطابق پوشاننده کارها دارد

مرحله ۲: بقیه کارها

i زمان مرحله 1 + j زمان مرحله 2 + j زمان اتمام کار ماشین

bfs

مرحله ۱: کارهای با درجه ۱

$$\sum_{j\in S_i}d_{ij}=\sum_{j\in S_i}d_{ij}x_{ij}^*\leq \sum_{j\in J}d_{ij}x_{ij}^*\leq t^*$$
برای هر ماشین:

یک تطابق پوشاننده کارها دارد

مرحله ۲: بقیه کارها

i زمان مرحله + زمان مرحله + انتمام کار ماشین

یک کار، هر کار <= T

bfs

مرحله ۱: کارهای با درجه ۱

$$\sum_{j \in S_i} d_{ij} = \sum_{j \in S_i} d_{ij} x_{ij}^* \leq \sum_{j \in J} d_{ij} x_{ij}^* \leq t^*$$
برای هر ماشین:

یک تطابق پوشاننده کارها دارد

مرحله ۲: بقیه کارها

$$i$$
 زمان مرحله $+$ زمان مرحله $+$ ازمان مرحل

یک کار،

هر کار <= T

حداکثر T

bfs

مرحله ۱: کارهای با درجه ۱

$$\sum_{j\in S_i}d_{ij}=\sum_{j\in S_i}d_{ij}x_{ij}^*\leq \sum_{j\in J}d_{ij}x_{ij}^*\leq t^*$$
برای هر ماشین:

یک تطابق پوشاننده کارها دارد

مرحله ۲: بقیه کارها

$$i$$
 زمان مرحله t^*+T (مان مرحله t^*+T) زمان مرحله t^*+T

یککار،

هر کار <= T

حداكثر T

تا ابنجا:

$$t^* + T =>$$

تا اینجا

الگوريتم نهايي:

۱_ محاسبه T مناسب،

۲_ حل نسخه آرامسازی شده

۳_ جواب خوب براساس برنامهریزی خطی .

 $t^* + T =>$

الگوريتم نهايي:

۱_ محاسبه T مناسب،

۲_ حل نسخه آرامسازی شده

۳_ جواب خوب براساس برنامهریزی خطی .

 $t^* + T =>$

انتخاب T

الگوريتم نهايي:

۱_ محاسبه T مناسب،

۲_ حل نسخه آرامسازی شده

۳_ جواب خوب براساس برنامهریزی خطی

 $t^* + T =>$

براي اينكه

 $(t^* \le IP^*)$

الگوريتم نهايي:

1_ محاسبه T مناسب،

۲_ حل نسخه آرامسازی شده

۳_ جواب خوب براساس برنامهریزی خطی ا

 $t^* + T =>$

 $T >= IP^*$

برای اینکه

 $(t^* \le IP^*)$

باید بگذاریم:

 $T = IP^*$

الگوريتم نهايي:

1_ محاسبه T مناسب،

۲_ حل نسخه آرامسازی شده

۳_ جواب خوب براساس برنامهریزی خطی

 $t^* + T =>$

 $T >= IP^*$

برای اینکه

 $(t^* \leftarrow IP^*)$

چطوری؟!

باید بگذاریم:

 $T = IP^*$

الگوريتم نهايي:

۱_ محاسبه T مناسب،

Y_ حل نسخه آرامسازی شده

 $\mathbf{t}^* + \mathbf{T} = >$ حواب خوب براساس برنامه ریزی خطی

 $T >= IP^*$

برای اینکه

 $(t^* \le IP^*)$

چطوری؟!

باید بگذاریم:

$$T = IP^*$$

الگوريتم نهايي:

۱_ محاسبه T مناسب،

۲_ حل نسخه آرامسازی شده

 $\mathbf{t}^* + \mathbf{T} = >$ حواب خوب براساس برنامه ریزی خطی

$$T >= IP^*$$

برای اینکه

 $(t^* \le IP^*)$

چطوری؟!

باید بگذاریم:

$$T = IP^*$$

الگوريتم نهايي:

1_ محاسبه T مناسب،

۲_ حل نسخه آرامسازی شده

۳_ جواب خوب براساس برنامهریزی خطی

 $t^* + T =>$

 $T >= IP^*$

برای اینکه

 $(t^* \le IP^*)$

 $t^*+T=>$ به هر حال جوابی داریم که

چطوری؟!

باید بگذاریم:

$$T = IP^*$$

الگوريتم نهايي:

۱_ محاسبه T مناسب،

۲_ حل نسخه آرامسازی شده

۳_ جواب خوب براساس برنامهریزی خطی

 $T >= IP^*$

برای اینکه

 $(t^* \le IP^*)$

 $t^*+T=>$ به هر حال جوابی داریم که

بهترین T: که t^* +T را کمینه کند

 $t^* + T =>$

چگونگی پیدا کردن بهترین T:

بهترین T: که t^* +T را کمینه کند

${f T}$ انتخاب پارامتر

انتخاب پارامتر T

$$t^*(T^*) + T^* = \min_T \Big(t^*(T) + T \Big)$$

انتخاب پارامتر T

$$t^*(T^*) + T^* = \min_T \Big(t^*(T) + T\Big)$$
 $\leq t^*(t_{
m opt}) + t_{
m opt}$ کمینه کننده

انتخاب پارامتر T

$$t^*(T^*) + T^* = \min_T \left(t^*(T) + T\right)$$
 $\leq t^*(t_{
m opt}) + t_{
m opt}$ $\leq 2t_{
m opt}.$ برای ${
m IP}^*$ برای ${
m LP}$ آرامسازی است