

ANSWER KEY	S						
. (2)	2. (1)	3. (4)	4. (1)	5. (3)	6. (2)	7. (1)	8. (1)
. (4)nathongo	10. (1) athongo	/11. (3) thongo	/12. (4) thongo	// 13. (2) hongo	// 14. (1) ongo	/// 15.(1) ongo	//. 16.(1)ongo ///.
7. (1)	18. (3)	19. (2)	20. (1)	21. (1)	22. (1)	23. (2)	24. (1)
5. (3) mathongo	26. (1) athongo	27. (2) athongo	28. (1)	29. (4)	30. (4)		
. (2)	\sqrt{a}						
$y^2 = a (x + \cdots)$ $\Rightarrow 2yy' = a$	$\left(\frac{\sqrt{a}}{2}\right) = ax + \frac{a}{2} \cdots$.(1) mathongo					
Put in equation $y^2 = (2yy')x$	(1) we get, + $\frac{(2yy')^{3/2}}{2}$						
$\left(y^2-2xyy' ight)$	$=\frac{(2yy')^{3/2}}{2}$						
$\left(y^2-2xyy' ight)$							
•	$\operatorname{er} = 3 - 1 = 2$						
$rac{dy}{dx} = y + 7$ I.F. $= e^{-x}$	$\Rightarrow rac{dy}{dx} - y = 7$						
$ye^{-x} = \int 7e^{-x}$	-x dx mothongo						
$\Rightarrow ye^{-x} = -7$ $\Rightarrow y = -7 + 7e^{x} = 7 + 7$							
(4)	$2^{x-y}(2^y-1) = 0$ x	// mathongo					
Care	2^{x-1} = 0 w , y ing and integrating b		and the second s				
$\Rightarrow\intrac{2^{y}}{2^{y}-1}dy=$	$=-\intrac{2^{x}}{2^{x}-1}dx$ ngo						
$\Rightarrow rac{1}{\ln 2} {\ln 2^y }$ —	$\frac{d^2}{dy} = -\frac{1}{\ln^2} \int \frac{2^x \ln 2}{2^x - 1} dx$ $\frac{d^2}{dx} = \frac{-1}{\ln 2} \ln 2^x - 1 + \frac{1}{\ln 2} \ln 2^x - 1 $						
Putting this v	alues in above equati	on we get $C = 0$					
$\mathrm{So,ln} 2^y-1 \ \Rightarrow (2^x-1)(2^y)$	$+\ln 2^x - 1 = 0$ (-1) = 1						
$\Rightarrow 2^y - 1 = -$	1						
	$1 = rac{4}{3} \ \log_2 4 - \log_2 3 = 2 + 3$						
_							

nswer Keys and Solutions			JEE Main Crash Course
4.' (1) thongo /// mathongo /// mathongo			
Given, $\frac{dy}{dx} = \frac{x+y-2}{x-y} = \frac{(x-1)+(y-1)}{(x-1)-(y-1)}$			
Now let $x - 1 = X, y - 1 = Y$			
So, $\frac{dy}{dx} = \frac{X+Y}{X-Y} \dots (1)$ Now let $Y = VX \frac{dY}{dX} = V + X \frac{dV}{dX}$			
Putting the value in equation (1) we get, $V + X \frac{dV}{dX} = \frac{1+V}{1-V}$			
$A \Rightarrow X \frac{dV}{dX} = \frac{V^2 + 1}{1 - V} \text{mathongo} \text{mathongo}$ $\Rightarrow \int \frac{1 - V}{1 + V^2} dV = \int \frac{dX}{Y}$			
$\Rightarrow \int \frac{1+V}{1+V^2} - \frac{1}{2} \int \frac{2VdV}{1+V^2} = \int \frac{dX}{X} \\ \Rightarrow \tan^{-1} V - \frac{1}{2} \ln(1+V^2) = \ln X + c$			
$\Rightarrow an^{-1} \left(rac{Y}{X} ight) - rac{1}{2} \ln \left(1 + rac{Y^2}{X^2} ight) = \ln(X) + c$			
$\Rightarrow \tan^{-1}\left(\frac{y-1}{x-1}\right) - \frac{1}{2}\ln\left(1 + \frac{(y-1)^2}{(x-1)^2}\right) = \ln(x-1) + c$ Now given curve passes through $(2,1)$			
So, $\tan^{-1} \left(\frac{1}{k} \right) - \frac{1}{2} \ln \left(1 + \frac{1}{k^2} \right) = \ln k$			
$\Rightarrow 2 \tan^{-1} \left(\frac{1}{k}\right) = \ln \left(\frac{1+k^2}{k^2}\right) + 2 \ln k$ $\Rightarrow 2 \tan^{-1} \left(\frac{1}{k}\right) = \ln (1+k^2)$			
(3) uthongo /// mathongo /// mathongo			
Given, $(1+e^{2x})rac{dy}{dx}+2(1+y^2)e^x=0$			
$\Rightarrow \frac{dy}{1+y^2} + \frac{2e^x}{1+e^{2x}} dx = 0 \dots (i)$ Now integrating both side we get,			
$egin{aligned} \Rightarrow \int rac{dy}{1+y^2} + \int rac{2e^x}{1+e^{2x}} dx &= \int 0 \ \Rightarrow an^{-1}y + 2 an^{-1}e^x &= c \end{aligned}$			
$y(0) = 0$ so, $C = \frac{\pi}{2} \Rightarrow \tan^{-1} y + 2 \tan^{-1} e^x = \frac{\pi}{2}$ (ii)			
Now from equation (i), we get $\left(\frac{dy}{dx}\right)_{x=0} = -1$			
From equation (ii) we get, $y(\ln \sqrt{3}) = -\frac{1}{\sqrt{3}}$ So, $6[y'(0) + (y \ln \sqrt{3})^2] = 6[-1 + \frac{1}{3}] = -4$.			

Answer Keys and Solutions		JEE Main Crash Course
6. (2) thongo /// mathongo /// mathongo We have,		
$\cos(\frac{1}{2}\cos^{-1}(e^{-x}))dx = (\sqrt{e^{2x}-1})dy \dots (i)$		
2θ $1-x$		
Hence, by (i) , we have $\cos\left(\frac{\theta}{2}\right)dx = \left(\sqrt{e^{2x}-1}\right)dy$ much once		
$\Rightarrow \sqrt{\frac{e^x+1}{2e^x}}dx = \sqrt{e^{2x}-1}dy$ $\Rightarrow \left(\sqrt{\frac{e^x+1}{2e^x}}\right)dx = \left(\sqrt{e^x-1}\right)\left(\sqrt{e^x+1}\right)dy$		
$rac{1}{\sqrt{2}}\intrac{dt}{e^{x}\sqrt{e^{x}}\sqrt{e^{x}-1}}=\int dy$		
$\int rac{dt}{t\sqrt{t^2-t}} = \sqrt{2} \int dy$ Put $t=rac{1}{z} \Rightarrow rac{dt}{dz} = -rac{1}{z^2}$ mathongo		
$\int \frac{-\frac{dz}{z^2}}{\frac{1}{z}\sqrt{\frac{1}{z^2} - \frac{1}{z}}} = \sqrt{2} \int dy$ $\Rightarrow -\int \frac{dz}{\sqrt{1-z}} = \sqrt{2} \int dy$		
$\Rightarrow rac{-2\left(1-z ight)^{1/2}}{1-1} = \sqrt{2}y + c_{ ext{nongo}}$ mathongo $\Rightarrow 2\left(1-rac{1}{t} ight)^{1/2} = \sqrt{2}y + c$		
$\Rightarrow 2(1-e^{-x})^{1/2}=\sqrt{2}y+c$ Now, it meets $y-$ axis at $(0,-1)$, hence $0=-\sqrt{2}+c\Rightarrow c=\sqrt{2}$		
Hence, $2(1-e^{-x})^{1/2}=\sqrt{2}(y+1)$		
It passes through $(\alpha, 0)$ $2(1-e^{-\alpha})^{1/2} = \sqrt{2}$ mathong $\Rightarrow \sqrt{1-e^{-\alpha}} = \frac{1}{\sqrt{2}}$		
$\Rightarrow 1 - e^{-\alpha} = \frac{1}{2}$ $\Rightarrow e^{-\alpha} = \frac{1}{2} \Rightarrow e^{\alpha} = 2 \text{ thongo}$ /// mathongo		

swer Keys and Solutions				JEE Main Crash Cours
. (3)athongo /// mathongo //				
Given equation is:				
$\left(\mathrm{x}^{2}-\ 3\mathrm{y}^{2}\right)\mathrm{dx}+3\mathrm{xydy}=0$				
1				
$\frac{\mathrm{dy}}{\mathrm{dx}} = -\frac{(\mathrm{x}^2 - 3\mathrm{y}^2)}{3\mathrm{xy}}$				
$\Rightarrow \frac{\mathrm{dy}}{\mathrm{dx}} \equiv \frac{\mathrm{y}}{\mathrm{x}} - \frac{1}{3} \frac{\mathrm{x}}{\mathrm{y}} \dots (1)$				
Put $y = vx$				
$\frac{\mathrm{dy}}{\mathrm{dx}} = \mathrm{v} + \mathrm{x} \frac{\mathrm{dv}}{\mathrm{dx}}$				
Equation (1) can be written as				
$v + x \frac{dv}{dx} = v - \frac{1}{3} \frac{1}{v}$				
ux s				
$\Rightarrow v dv = -\frac{1}{3x}$ Integrating both sides, we get				
$\frac{v^2}{2} = -\frac{1}{3}\ln(x) + c$				
- , ·				
$\Rightarrow \frac{y^2}{2x^2} = \frac{-1}{3} \ln(x) + c \dots (2)$				
y(1) = 1 (given)				
$\therefore c = \frac{1}{2} $ (from equation 2) Equation (2) can be written as				
$\frac{y^2}{2x^2} = \frac{-1}{3}\ln(x) + \frac{1}{2}$				
$\Rightarrow y^{2} = \frac{-2}{3}x^{2}\ln(x) + x^{2}$ Now $y^{2}(e) = \frac{-2}{3}e^{2}\ln(e) + e^{2} = \frac{-2}{3}e^{2}$	/a mathango			
Now $y^2(e) = \frac{-2}{3}e^2 \ln(e) + e^2 = \frac{-2}{3}e^2$	$e^2 + e^2 = \frac{e^2}{3}$			
$ ightarrow 6 \mathrm{y}^2 \mathrm{(e)} = 2 \mathrm{e}^2$				
(4)athongo /// mathongo //				
$\phi\left(\frac{y^2}{x^2}\right)$				
Given: $\frac{y}{x} \frac{dy}{dx} = \left[\frac{y^2}{x^2} + \frac{\phi\left(\frac{y^2}{x^2}\right)}{\phi'\left(\frac{y^2}{x^2}\right)} \right] \dots ($	1)			
Let $\frac{y}{x} = t$				
-				
$\Rightarrow y = xt$ $\Rightarrow dy = t + x = dt$				
$\Rightarrow \frac{dy}{dx} = t + x \cdot \frac{dt}{dx}$ mothodox				
$\therefore t\left(t+x\frac{dt}{dx}\right) = \left(t^2 + \frac{\phi\left(t^2\right)}{\phi'\left(t^2\right)}\right)$				
$\Rightarrow xt rac{dt}{dx} = rac{\phi\left(t^2 ight)}{\phi'\left(t^2 ight)}$ mathongo Z				
$\Rightarrow rac{t\cdot\phi'(t^2)}{\phi(t^2)}dt = rac{1}{x}dx$				
Integrating both sides $t \cdot \phi'(t^2)$				
$\int rac{t \cdot \phi'\left(t^{2} ight)}{\phi\left(t^{2} ight)} dt = \int rac{1}{x} dx$				
Let $\phi(t^2) = p$				
$\det \phi(t^2) = p$ $\Rightarrow \phi'(t^2) \cdot 2t = dp$				
$\Rightarrow rac{1}{2} \int rac{1}{p} dp = \int rac{1}{x} dx$				
$\Rightarrow rac{1}{2} \ln p = \ln x + C$ $\Rightarrow rac{1}{2} \ln \phi(t^2) = \ln x + C$				
$\Rightarrow rac{1}{2} {\ln \phi ig(t^2ig)} {=} {\ln x} + C$				
$\Rightarrow rac{1}{2} \mathrm{ln} \Big(\phi \Big(rac{y^2}{x^2} \Big) \Big) = \mathrm{ln} x + C \ldots (2)$				
If $x = 1$, $y = -1$ then $C = \frac{1}{2} \ln(\phi(1))$)) mathongo			
Substituting value of C in (2)				
$\frac{1}{2}\ln\left(\phi\left(\frac{y^2}{x}\right)\right) = \ln x + \frac{1}{2}\ln(\phi(1))$				
$\Rightarrow \ln\!\left(\phi\!\left(rac{y^2}{x^2} ight) ight) = \ln x^2 + \ln(\phi(1))$				
If $x = 2$ then				
$\ln\Bigl(\phi\Bigl(rac{y^2}{4}\Bigr)\Bigr) = \ln 4 + \ln(\phi(1))$				
SO, $\phi\left(\frac{y^2}{4}\right) = 4\phi(1)$				
` '				

iswer Reys and Solutions			JEE Main Crash Cours
3. (2)athongo ///. mathongo ///. mathongo			
Given, $\frac{dy}{dx} \propto \frac{-y}{x}$			
$\Rightarrow \frac{dy}{dx} = \frac{-Ky}{x}$ (where K is proportionality constant)			
$\Rightarrow \frac{dy}{dx} = \frac{-Ky}{x} \text{ (where } K \text{ is proportionality constant)}$ Now integrating both side,			
$\Rightarrow \int \frac{dy}{y} = -K \int \frac{dx}{x}$			
$\Rightarrow \ln y = -K \ln x + C$ mathongo			
If the above equation satisfy $(1,2)$			
$\Rightarrow \ln 2 = -K imes 0 + C \Rightarrow C = \ln 2$			
So, $\ln y = -K \ln x + \ln 2$ mathong			
Now it also passes through (8,1)			
$\Rightarrow \ln 1 = -K \ln 8 + \ln 2 \Rightarrow K = rac{1}{3}$			
So, equation becomes $\ln y = -\frac{1}{3}\ln x + \ln 2$			
So, at $x = \frac{1}{8}$			
$\Rightarrow \ln \lvert y \lvert = -rac{1}{3} \ln \Bigl(rac{1}{8}\Bigr) + \ln 2 = 2 \ln 2$			
mathongo $y = 4$ mathongo /// mathongo			
. (1)			
. ,			
Given: mathong mathong mathong $\frac{dy}{dx} + y \tan x = x \sec x$			
This is a linear differential equation.			
I.F. = $e^{\int \tan x dx} = \sec x$ thongo /// mathongo			
Then solution of differential equation is			
$y(\sec x) = \int x \sec^2 x dx$			
$\Rightarrow y(\sec x) = x \tan x - \int \tan x dx$ mothongo			
$\Rightarrow y(\sec x) {=} \ x \tan x - \ln(\sec x) {+} C$			
Given:			
$y(0) = 1 \Rightarrow c = 1$ mathongo /// mathongo			
$\therefore y(\sec x) = x \tan x - \ln(\sec x) + 1$			
At $x = \frac{\pi}{6}$, we get			
At $x = \frac{\pi}{6}$, we get $y\left(\sec\left(\frac{\pi}{6}\right)\right) = \left(\frac{\pi}{6}\right)\tan\left(\frac{\pi}{6}\right) - \ln\left(\sec\left(\frac{\pi}{6}\right)\right) + 1$			
$\Rightarrow y\left(\frac{2}{\sqrt{3}}\right) = \left(\frac{\pi}{6}\right)\left(\frac{1}{\sqrt{3}}\right) - \ln\left(\frac{2}{\sqrt{3}}\right) + 1$			
$\Rightarrow y = \frac{\pi}{12} - \frac{\sqrt{3}}{2} \ln\left(\frac{2}{\sqrt{3}}\right) + \frac{\sqrt{3}}{2} $ mathongo			
(
$\Rightarrow y = rac{\pi}{12} - rac{\sqrt{3}}{2} \left[\ln \left(rac{2}{\sqrt{3}} ight) - \ln e ight]$			
$\Rightarrow y = rac{\pi}{12} - rac{\sqrt{3}}{2} \log_e \left(rac{2}{e\sqrt{3}} ight)$ mgc $\stackrel{ ext{}_{ ext{}}}{ ext{}}$ mgthongo			
. (1)			
(1) mathongo /// mathongo /// mathongo			
$y(x+1)dx - x^2dy = 0$			
$\Rightarrow rac{x+1}{x^2}dx = rac{dy}{y}$			
$\Rightarrow \left(rac{1}{x} + rac{1}{x^2} ight)dx = rac{dy}{y}$			
Now integrating both side we get,			
$\log_e x - \frac{1}{x} = \log_e y + c$ thongo			
Now on using $y(1) = e$ we get, $c = -2$			
So, the equation of curve becomes $\log_e x - \frac{1}{x} = \log_e x$ $\Rightarrow y = e^{\ln x} - \frac{1}{x} + 2$	$_{z}y-2$		
$y = e^{\ln x} - rac{1}{x} + 2$ mathongo			
Hence, $\lim_{x\to 0^+} e^{\ln x - 1} - \frac{1}{x} + 2 = e^{-\infty} = 0.$			
mathongo /// mathongo /// mathongo			

Answer Keys and Solutions			JEE Main Crash Course
16. (1) athongo /// mathongo /// mathongo $\frac{dy}{dx} = \frac{x^2 - 2y}{x}$			
$\Rightarrow \frac{dy}{dx} + \frac{2}{x}y = x. \text{ It is in linear form.}$ $1.F. = e^{\int \frac{2}{x} dx} = e^{2lnx} = x^2$			
$\therefore y.x^2 = \int x.x^2\ dx = \frac{x^4}{4} + c$			
$\therefore \text{At } x = 1, \ y = -2, \text{mathongo}$ $\therefore -2 \times 1^2 = \frac{(1)^4}{4} + c$ $\Rightarrow c = -2 - \frac{1}{4} = -\frac{9}{4}$			
$\Rightarrow c = -2 - \frac{1}{4} = -\frac{1}{4}$ $\therefore \text{curve is } y \cdot x^2 = \frac{x^4}{4} - \frac{9}{4}$ $\therefore \text{It passes through } \left(\sqrt{3}, 0\right).$			
17. (1) mathong $(1+x^2)$ $dy = y(x-y)dx$ mathong			
$y(0) = 1 \cdot y(2\sqrt{2}) = \beta$ $\frac{dy}{dx} = \frac{yx - y^2}{1 + x^2}$ mathongo mathongo			
$\frac{dy}{dx} + y\left(\frac{-x}{1+x^2}\right) = \left(\frac{-1}{1+x^2}\right)y^2$ $\frac{1}{y^2}\frac{dy}{dx} + \frac{1}{y}\left(\frac{-x}{1+x^2}\right) = \frac{-1}{1+x^2}$			
$\operatorname{put} \frac{1}{y} = t \operatorname{then} \frac{-1}{y^2} \frac{dy}{dx} = \frac{dt}{dx}$ $\frac{dt}{dx} + t \frac{x}{1+x^2} = \frac{1}{1+x^2}$			
dx $1+x^2$ $1+x^2$ $1+x^2$ $I.F = e^{\int \frac{x}{1+x^2} dx} = e^{\frac{1}{2}\ln(1+x^2)} = \sqrt{1+x^2}$ athonom $t\sqrt{1+x^2} = \int \frac{1}{\sqrt{1+x^2}} dx$			
$rac{\sqrt{1+x^2}}{y} = \ln\Bigl(x+\sqrt{x^2+1}\Bigr) + c$			
$y(0) = 1 \Rightarrow c = 1$ $\Rightarrow \sqrt{1 + x^2} = y \ln\left(e\left(x + \sqrt{x^2 + 1}\right)\right)$ 3 3 1. $(2 + 2 \sqrt{2})$			
$eta=rac{3}{\ln(e(3+2\sqrt{2}))}\Rightarrowrac{3}{eta}=\ln(e(3+2\sqrt{2}))$ $e^{rac{3}{eta}}=e(3+2\sqrt{2})$ mathongo mathongo			
18. (3) Given, $\frac{dy}{dx} - y = 2 - e^{-x}$ mathongo			
$\frac{dx}{dx}$ $y = 2$. Linear differential equation,			
So, $I.F. = e^{-\int dx} = e^{-x}$ Now solution of differential equation is given by			
$egin{align} y imes IF &= \int (2-e^{-x}) imes IF dx \ \Rightarrow ye^{-x} &= \int (2-e^{-x})e^{-x} dx \ \Rightarrow ye^{-x} &= \int (2e^{-x}-e^{-2x}) dx \ \end{pmatrix}$			
$\Rightarrow ye^{-x} = -2e^{-x} + rac{e^{-2x}}{2} + C$ $\Rightarrow y = -2 + rac{e^{-x}}{2} + Ce^{x}$ hongo we mathongo			
Given $\lim_{x\to\infty} y$ is finite So, $\lim_{x\to\infty} \left(-2+\frac{e^{-x}}{2}+C\cdot e^x\right)$ \to finite This is possible only when $C=0$			
Hence $y = y(x) = -2 + \frac{e^{-x}}{2}$ Now finding the slope $\frac{dy}{dx} = -\frac{1}{2}e^{-x}$			
$\frac{dy}{dx}\Big _{x=0} = -\frac{1}{2} = m, y(0) = -2 + \frac{1}{2} = \frac{-3}{2}$ Now equation of tangent will be, $y + \frac{3}{2} = -\frac{1}{2}(x-0)$			
$\Rightarrow x + 2y = -3$ x-intercept $a = -3$, y-intercept $b = \frac{-3}{2}$ So, $a - 4b = -3 + 6 = 3$			

Answer Keys and Solutions		JEE Main Crash Course
23. (2) Differentiate the given equation $\Rightarrow 2xf(x) + x^2f'(x) - 1 = 4xy$		
$\Rightarrow x^2 \frac{dy}{dx} - 2xy = 1$ $\Rightarrow \frac{dy}{dx} + \left(-\frac{2}{x}\right)y = \frac{1}{x^2}$		
$I. F. = e^{\int -\frac{2}{2}L_{nx}} = \frac{1}{x^2} $		
$\therefore y\left(\frac{1}{x^2}\right) = \int \frac{1}{x^4} dx$ $\Rightarrow \frac{y}{x^2} = \frac{-1}{3x^3} + c$		
$\Rightarrow y = -rac{1}{3x^3} + c$ $\Rightarrow y = -rac{1}{3x} + cx^2$		
3x	1 /// mathongo /// mathong	
18f(3) = 160 mathongo // mathongo 24. (1)		
Let $\int_0^2 f(t)dt = k$ we though $y = f(x)$		
Now, we have $f(x)+f'(x)=\int_0^2 f(t)dt$ $\Rightarrow \frac{dy}{dx}+y=k$		
This is a linear differential equation $I. F. = e^{\int dx} = e^x$		
$\Rightarrow ye^x = ke^x + C$		
Hence,		
$ye^x = ke^x + (e^{-2} - k)$ $\Rightarrow y = f(x) = k + (e^{-2} - k)e^{-x}$ Now,	(i) nathongo /// mathong	
$k = \int_0^2 f(t)dt \ \Rightarrow k = \int_0^2 \left[k + (e^{-2} - k)e^{-t}\right]dt \ \Rightarrow k = \left[kt - (e^{-2} - k)e^{-t}\right]_0^2$		
1 01 (-2 1)(-2 1)		
· · ·		
$f(0) = e^{-2}$ So,		
2f(0)-f(2)=1 /// mathongo /// mathongo		

