

Hochschule für angewandte Wissenschaften Würzburg - Schweinfurt

ATP Schnittkraftmessung

erstellt von:

B. Eng. Max Pfennig Bernd Hennig

nur zum internen Gebrauch an der FHWS

Werkzeugmaschinenlabor 4.E.44, Fakultät Maschinenbau 26.01.2023

Inhaltsverzeichnis

Inł	ıaltsv	verzeichnis				
Ab	kürzı	ungs- und Fachwortverzeichnis				
1	Zielsetzung des Versuchs Technische Grundlagen					
3						
	3.1	Drehmaschine				
	3.2	Messaufbau	6			
4	Versuchsdurchführung					
	4.1	Spanungsdicke beim Drehen				
	4.2	Berechnung der Drehzahl	7			
	4.3	Werkstück				
5	Hinweise zur Ausarbeitung					
	5.1	Versuchs Mitschrift	g			
	5.2	Spanformen	10			
Ab	bildu	ungsverzeichnis	11			
Lit	eratu	ırverzeichnis	11			

Abkürzungs- und Fachwortverzeichnis

Symbol	Einheit	Beschreibung
a_p	mm	Schnitttiefe
Α	mm²	Spanungsquerschnitt
b	mm	Spanungsbreite
d	mm	Durchmesser des Werkstücks
f	mm	Vorschub
F_{c}	Ν	Schnittkraft
h	mm	Spanungsdicke
k_c	N/mm²	Spezifische Schnittkraft
$k_{c1.1}$	N/mm²	Spezifische Schnittkraft für 1mm²
k_f	N/mm²	Spezifische Vorschubkraft
$k_{f1.1}$	N/mm²	Spezifische Vorschubkraft für 1mm²
k_p	N/mm²	Spezifische Passivkraft
$k_{p1.1}$	N/mm²	Spezifische Passivkraft für 1mm²
m_c	-	Steigung (Werkstoffkonstante)
m_f	-	Steigung (Werkstoffkonstante)
m_p	-	Steigung (Werkstoffkonstante)
n_{erf}	min^{-1}	Erforderliche Drehzahl
n_{tats}	min^{-1}	Tatsächliche Drehzahl
v_c	m/min	Schnittgeschwindigkeit
κ	o	Einstellwinkel

1 Zielsetzung des Versuchs

Ziel dieses Versuchs ist es, die spezifische Schnittkraft k_{c1.1} und die Werkstoffkonstante m_c zu ermitteln. Hierfür werden die Kräfte während der Zerspanung in X-, Y-, und Z- Richtung gemessen.

2 Technische Grundlagen

Die Zerspankraft F_z setzt sich aus der Vorschubkraft F_f , der Passivkraft F_p und der Schnittkraft F_c zusammen. Die Schnittkraft liefert hierbei den größten Wert. Die Zerspankraft F_z erhält man, indem die Teilkräfte F_f , F_p und F_c durch Vektoraddition miteinander verrechnet werden (siehe Abbildung 1).

Abbildung 1: Kräfte beim Längsrunddrehen

Es besteht folgende Beziehung zwischen der Schnittkraft Fc und der spezifischen Schnittkraft kc:

$$F_c = A * k_c$$

Somit ergibt sich:

$$k_c = \frac{F_c}{A}$$

Die spezifische Schnittkraft

Werden die k_c - Werte in einem doppellogarithmischen Diagramm über der Spanungsdicke h aufgetragen, so ergibt sich näherungsweise eine Gerade (siehe Abbildung 3). Der sogenannten $k_{c1.1}$ ergibt sich bei einer Spanungsdicke h = 1mm und einem Spanungsquerschnitt A = 1mm². [BIE10]

Abbildung 2: kc aufgetragen über der Spanungsdicke h

Abbildung 3: k_c aufgetragen über der Spanungsdicke h im doppellogarithmischen Diagramm

Unter Berücksichtigung von Abbildung 3 ergeben sich die Kienzle-Formeln:

Schnittkraft: $F_c = b \cdot h^{1-m_c} \cdot k_{c1.1} = b \cdot h \cdot k_c \cdots$

 $\text{Vorschubkraft:} \qquad \qquad \textit{F}_{f} = \textit{b} \cdot \textit{h}^{1-m_{f}} \cdot \textit{k}_{f1.1} = \textit{b} \cdot \textit{h} \cdot \textit{k}_{f}$

Passivkraft : $F_p = b \cdot h^{1-m_p} \cdot k_{p1.1} = b \cdot h \cdot k_p$

3 Versuchsaufbau

3.1 Drehmaschine

Dieser Versuch wird an einer Drehmaschine der Firma Graziano aus dem Baujahr 1982 durchgeführt (siehe Abbildung 4).

Abbildung 4: Drehmaschine Graziano sag210

Durch ihr hohes Eigengewicht von 2450 kg ist diese Maschine gut geeignet, um Schnittkraftmessungen durchzuführen.

Da diese Drehmaschine ein mechanisches Getriebe besitzt, können die berechneten Drehzahlen nicht eingestellt werden. Es muss somit die nächstmögliche zur Verfügung stehende Drehzahl eingestellt werden.

Versuchsaufbau 5

3.2 Messaufbau

Nachfolgend soll der in Abbildung 5 ersichtliche schematische Messaufbau beschrieben werden. Der Kraftaufnehmer, der sogenannte Dynamometer, ist unter dem Werkzeughalter auf dem Oberschlitten der Drehmaschine aufgeschraubt ist. Dieser Dynamometer enthält drei piezokeramische Sensoren, einen für jede Bewegungsachse (X, Y und Z). Durch die Kraftaufbringung auf die Piezoelemente entsteht eine Ladung, die proportional zur wirkenden Kraft ist. In der Blackbox werden die Ladungen separiert. Die Ladungsverstärker wandeln die eingehenden Ladungen in elektrische Spannung um. Über die PC-Messkarte und LabVIEW werden diese Spannungen in die wirkende Kraft umgerechnet. Diese Messwerte werden graphisch dargestellt und außerdem in einer *.txt-Datei abgespeichert.

Abbildung 5: Schematischer Messaufbau / Messkette

Versuchsaufbau 6

4 Versuchsdurchführung

4.1 Spanungsdicke beim Drehen

In Abbildung 6 sind folgende Spangrößen beim Längsrunddrehen dargestellt:

Einstellwinkel

• Spanungsdicke $h = f * \sin(\kappa)$

• Spanungsbreite $b = \frac{a_p}{\sin(\kappa)}$

• Spanungsquerschnitt $A = b * h = a_p * f$

Abbildung 6: Spangrößen beim Längsrunddrehen

Bei diesem Versuch beträgt der Winkel $\kappa = 90^{\circ}$. Daraus folgt:

- $b = a_p$
- f = h

4.2 Berechnung der Drehzahl

Die Drehzahlberechnung erfolgt durch Umstellen der Formel für die Schnittgeschwindigkeit.

$$v_c = \frac{\pi * d * n}{1000 \frac{mm}{m}}$$

Die Soll-Schnittgeschwindigkeit v_{c_soll} soll den Wert $150~\frac{m}{min}$ betragen. Somit ergibt sich für die erforderliche Drehzahl:

$$n_{erf} = \frac{v_c * 1000}{d * \pi}$$

Wie in Abschnitt 3.1 beschrieben, kann das Getriebe der Versuchsmaschine nicht stufenlos geregelt werden. Deshalb wird an der Maschine der nächstgelegene Drehzahlwert n_{tats} eingestellt. Daraus ergibt sich die tatsächliche Schnittgeschwindigkeit zu:

Versuchsdurchführung 7

$$v_{c_tats} = \frac{d * \pi * n_{tats}}{1000 \frac{mm}{m}}$$

Folgende Versuchsparameter müssen außerdem an der Maschine eingestellt werden:

• Vorschübe $f_1 bis f_7 \neq konstant$

• Spanungstiefe $a_p = konstant$

• Einstellwinkel $\kappa = 90^{\circ} = konstant$

4.3 Werkstück

Das Werkstück (siehe Abbildung 7) besteht aus einer Aluminiumlegierung und ist durch axiale Einstiche ich sieben Teilsegmente unterteilt. Da die Vorschübe von f_1 bis f_7 immer weiter erhöht werden, wurden die Teilsegmente fortlaufend breiter gefertigt, um eine gleichbleibende Messdauer zu erhalten.

Abbildung 7: Werkstück als Teilausschnitt einer Zeichnung

Der genaue Versuchsablauf wird im Video "MP_Schnittkraftmessung.mp4" erläutert.

Versuchsdurchführung 8

5 Hinweise zur Ausarbeitung

5.1 Versuchs Mitschrift

Folgende Parameter sind für die	e Ausarbeitung notwendig:
Verfahren:	
Maschine:	
Werkstoff:	
Schneidplatte:	
Schneidstoff:	
Einstellwinkel:	
Keilwinkel:	
Verschleiß der Schneide:	
Kühlschmiermittel: o Emulsion o Schneidöl o Trocken	
Schnitttiefe:	
Durchmesser:	
Schnittgeschwindigkeit:	
Drehzahl:	
Tats. Drehzahl:	
Tats. Schnittgeschwindigkeit:	

5.2 Spanformen

Es sollen außerdem Aussagen über die Spanformen, welche bei den Drehversuchen mit den Vorschüben f_1 bis f_7 entstanden sind, getroffen und begründet werden. Hierfür können Sie die nachfolgende Abbildung 8 zu Hilfe nehmen.

Band- späne	zylin. Wendel- späne	Spiral- späne	Schrau- ben Späne	konische Wendel- späne	Bogen- späne	Bruch- späne	Nadel- späne	
lang	lang WWW.WWW.WWW.WWW.	flach	lang WWWWW	lang	zusammen- hängend	10 AS AS	VALOA	brauchbar
kurz	kurz	konisch	kurz	kurz	einzeln			
	Mildeling Mildeling Westerman		EMA MA	A THE CONTRACT OF THE PARTY OF				gut
wirr	wirr EV		wirr	wirr				ungünstig

Abbildung 8: Spanformen [BIE10]

Abbildungsverzeichnis

Abbildung 1: Kräfte beim Längsrunddrehen	3
Abbildung 2: k _c aufgetragen über der Spanungsdicke h	
Abbildung 3: k _c aufgetragen über der Spanungsdicke h im doppellogarithmischen Diagramm	
Abbildung 4: Drehmaschine Graziano sag210	5
Abbildung 5: Schematischer Messaufbau / Messkette	6
Abbildung 6: Spangrößen beim Längsrunddrehen	7
Abbildung 7: Werkstück als Teilausschnitt einer Zeichnung	8
Abbildung 8: Spanformen [BIE10]	. 10

Literaturverzeichnis

[BIE10] Biermann, Dirk: Analysen und Kräftemessung im Zerspanprozess. [18.10.2010] http://www.wirt-ing.de/content/documents/education/wing_lab/pm/kraftmessung_isf.pdf

Abbildungsverzeichnis 11