4.1 Pricing Analysis for Cars - Week 4 - DSC680 - Binay Jena (contd. from Week3)

STEP 1 - Get Libraries & Read CSV

#1.1: - import the required python libraries

```
import warnings
warnings.filterwarnings('ignore')

import numpy as np
import pandas as pd
import matplotlib.pyplot as plt
import seaborn as sns
```

#1.2: - read the datatset using pandas - understand the startcure/ layout of the data

Out[591]:		car_ID	symboling	CarName	fueltype	aspiration	doornumber	carbody	drivewheel
	0	1	3	alfa-romero giulia	gas	std	two	convertible	rwd
	1	2	3	alfa-romero stelvio	gas	std	two	convertible	rwd
	2	3	1	alfa-romero Quadrifoglio	gas	std	two	hatchback	rwd
	3	4	2	audi 100 ls	gas	std	four	sedan	fwd
	4	5	2	audi 100ls	gas	std	four	sedan	4wd

5 rows × 26 columns

In [592... cars.shape

Out[592]: (205, 26)

#1.3 : - get basic statistics of the dataset & columns

In [593... cars.describe()

Out[593]:

	car_ID	symboling	wheelbase	carlength	carwidth	carheight	curbweiç
count	205.000000	205.000000	205.000000	205.000000	205.000000	205.000000	205.0000
mean	103.000000	0.834146	98.756585	174.049268	65.907805	53.724878	2555.5658
std	59.322565	1.245307	6.021776	12.337289	2.145204	2.443522	520.6802
min	1.000000	-2.000000	86.600000	141.100000	60.300000	47.800000	1488.0000
25%	52.000000	0.000000	94.500000	166.300000	64.100000	52.000000	2145.0000
50%	103.000000	1.000000	97.000000	173.200000	65.500000	54.100000	2414.0000
75%	154.000000	2.000000	102.400000	183.100000	66.900000	55.500000	2935.0000
max	205.000000	3.000000	120.900000	208.100000	72.300000	59.800000	4066.0000

#1.4 : - data structure details (schema)

In [594... cars.info()

<class 'pandas.core.frame.DataFrame'> RangeIndex: 205 entries, 0 to 204 Data columns (total 26 columns):

#	Column	Non-Null Count	Dtype
0	car_ID	205 non-null	 int64
1	symboling	205 non-null	int64
2	CarName	205 non-null	object
3	fueltype	205 non-null	object
4	aspiration	205 non-null	object
5	doornumber	205 non-null	object
6	carbody	205 non-null	object
7	drivewheel	205 non-null	object
8	enginelocation	205 non-null	object
9	wheelbase	205 non-null	float64
10	carlength	205 non-null	float64
11	carwidth	205 non-null	float64
12	carheight	205 non-null	float64
13	curbweight	205 non-null	int64
14	enginetype	205 non-null	object
15	cylindernumber	205 non-null	object
16	enginesize	205 non-null	int64
17	fuelsystem	205 non-null	object
18	boreratio	205 non-null	float64
19	stroke	205 non-null	float64
20	compressionratio	205 non-null	float64
21	horsepower	205 non-null	int64
22	peakrpm	205 non-null	int64
23	citympg	205 non-null	int64
24	highwaympg	205 non-null	int64
25	price	205 non-null	float64
dtype	es: float64(8), in	t64(8) , object(10	ð)

memory usage: 41.8+ KB

STEP 2 - Prep & Cleanse

#2.1: - make CarName column more relevant - remove variant details, use manufacturer and model

```
In [595... CompanyName = cars['CarName'].apply(lambda x : x.split(' ')[0])
```

```
cars.insert(3,"CompanyName", CompanyName)
cars.drop(['CarName'],axis=1,inplace=True)
cars.head()
```

```
car ID symboling CompanyName fueltype aspiration doornumber
Out [595]:
                                                                                         carbody drivewher
                     1
                                        alfa-romero
                                                                     std
                                                                                  two convertible
                                                         gas
                                                                                                           rw
             1
                     2
                                        alfa-romero
                                                         gas
                                                                     std
                                                                                  two convertible
                                                                                                           rw
             2
                     3
                                 1
                                        alfa-romero
                                                         gas
                                                                     std
                                                                                  two
                                                                                        hatchback
                                                                                                           rw
                     4
                                               audi
                                                                     std
                                                                                  four
                                                                                            sedan
                                                                                                           fω
                                                         gas
                                 2
             4
                     5
                                               audi
                                                         gas
                                                                     std
                                                                                  four
                                                                                            sedan
                                                                                                          4w
```

5 rows × 26 columns

#2.2 : - cars/ automakers in scope

```
In [596... cars.CompanyName.unique()
 Out[596]: array(['alfa-romero', 'audi', 'bmw', 'chevrolet', 'dodge', 'honda',
                    'isuzu', 'jaguar', 'maxda', 'mazda', 'buick', 'mercury',
                    'mitsubishi', 'Nissan', 'nissan', 'peugeot', 'plymouth', 'porsche',
                    'porcshce', 'renault', 'saab', 'subaru', 'toyota', 'toyouta',
                    'vokswagen', 'volkswagen', 'vw', 'volvo'], dtype=object)
#2.3 : - fix spelling errors in CompanyName
 In [597... cars.CompanyName = cars.CompanyName.str.lower()
            def replace name(a,b):
                cars.CompanyName.replace(a,b,inplace=True)
            replace_name('maxda','mazda')
            replace name('porcshce','porsche')
            replace_name('toyouta','toyota')
            replace name('vokswagen','volkswagen')
            replace_name('vw','volkswagen')
            cars.CompanyName.unique()
 Out[597]: array(['alfa-romero', 'audi', 'bmw', 'chevrolet', 'dodge', 'honda',
                    'isuzu', 'jaguar', 'mazda', 'buick', 'mercury', 'mitsubishi', 'nissan', 'peugeot', 'plymouth', 'porsche', 'renault', 'saab',
                    'subaru', 'toyota', 'volkswagen', 'volvo'], dtype=object)
 In [598... #2.4 : Checking for duplicates & NULLs
            #2.4.1
            cars.loc[cars.duplicated()]
              car_ID symboling CompanyName fueltype aspiration doornumber carbody drivewheel
 Out[598]:
            0 rows × 26 columns
 In [599... #2.4.2 duplicate check2
            sum(cars.duplicated(subset = 'car ID')) == 0
```

```
Out[599]: True
```

```
In [600... #2.4.3 Null value check
           cars.isnull().sum()*100/cars.shape[0]
Out[600]: car_ID
                                    0.0
            symboling
                                    0.0
            CompanyName
                                    0.0
            fueltype
                                    0.0
            aspiration
                                    0.0
            doornumber
                                    0.0
            carbody
                                    0.0
            drivewheel
                                    0.0
            enginelocation
                                    0.0
            wheelbase
                                    0.0
            carlength
                                    0.0
            carwidth
                                    0.0
            carheight
                                    0.0
            curbweight
                                    0.0
            enginetype
                                    0.0
            cylindernumber
                                    0.0
            enginesize
                                    0.0
            fuelsystem
                                    0.0
            boreratio
                                    0.0
            stroke
                                    0.0
            compressionratio
                                    0.0
            horsepower
                                    0.0
                                    0.0
            peakrpm
                                    0.0
            citympg
            highwaympg
                                    0.0
                                    0.0
            price
            dtype: float64
In [601... # 2.4.1 & 2.4.2 No duplicate values
           # 2.4.3 There are no NULL values in the dataset, hence dataset seems clean
In [602... cars.columns
Out[602]: Index(['car_ID', 'symboling', 'CompanyName', 'fueltype', 'aspiration',
                     'doornumber', 'carbody', 'drivewheel', 'enginelocation', 'wheelbase', 'carlength', 'carwidth', 'carheight', 'curbweight', 'enginetype',
                     'cylindernumber', 'enginesize', 'fuelsystem', 'boreratio', 'stroke', 'compressionratio', 'horsepower', 'peakrpm', 'citympg', 'highwaympg',
                     'price'],
                    dtype='object')
```

STEP3: Data Visualization / Exploratory Analysis

#3.1: price spread - price distribution plot


```
In [604... plt.figure(figsize=(20,8))

plt.subplot(1,2,1)
plt.title('Car Price Distribution Plot')
sns.distplot(cars.price)

plt.subplot(1,2,2)
plt.title('Car Price Spread')
sns.boxplot(y=cars.price)

plt.show()
```


In [605... print(cars.price.describe(percentiles = [0.25,0.50,0.75,0.85,0.90,1]))

```
count
           205.000000
         13276.710571
mean
          7988.852332
std
          5118.000000
min
25%
          7788.000000
50%
         10295.000000
75%
         16503.000000
         18500.000000
85%
90%
         22563.000000
100%
         45400.000000
         45400.000000
max
Name: price, dtype: float64
```

#3.2 : visualize categorical data

```
In [606... plt.figure(figsize=(25, 6))

plt.subplot(1,3,1)
plt1 = cars.CompanyName.value_counts().plot(kind='bar')
plt.title('Companies Histogram')
plt1.set(xlabel = 'Car company', ylabel='Frequency of company')

plt.subplot(1,3,2)
plt1 = cars.fueltype.value_counts().plot(kind='bar')
plt.title('Fuel Type Histogram')
plt1.set(xlabel = 'Fuel Type', ylabel='Frequency of fuel type')

plt.subplot(1,3,3)
plt1 = cars.carbody.value_counts().plot(kind='bar')
plt.title('Car Type Histogram')
plt1.set(xlabel = 'Car Type', ylabel='Frequency of Car type')

plt.show()
```


lets symbol the categories

symboling: Its assigned insurance risk rating A value of +3 indicates that the auto is risky, -3 that it is probably pretty safe. (Categorical)

```
In [607... cars.symboling
```

```
Out[607]:
                   3
           1
                   3
           2
                   1
           3
                   2
                   2
           4
           200
                  -1
           201
                  -1
           202
                  -1
           203
                  -1
           204
                  -1
           Name: symboling, Length: 205, dtype: int64
```

```
In [608... # count of automobile in each category and percent share of each category.
   plt.figure(figsize=(20,8))

plt.subplot(1,2,1)
   plt.title('Symboling Histogram')
   sns.countplot(x=cars.symboling, palette=("hls"))

plt.subplot(1,2,2)
   plt.title('Symboling vs Price')
   sns.boxplot(x=cars.symboling, y=cars.price, palette=("hls"))

plt.show()
```



```
In [609...
car_sym = pd.DataFrame(cars['symboling'].value_counts())
car_sym.plot.pie(subplots=True,labels = car_sym.index.values, autopct='%1.1f%%
# Unsquish the pie.
plt.gca().set_aspect('equal')
plt.show()
plt.tight_layout()
```


<Figure size 640x480 with 0 Axes>

```
In [610... # Let's see average price of cars in each symbol category.
   plt1 = cars[['symboling','price']].groupby("symboling").mean().plot(kind='bar',
        plt1.set_xlabel("Symbol")
        plt1.set_ylabel("Avg Price (Dollars)")
        #xticks(rotation = 0)
        plt.show()
```



```
In [611... #engine type vs price
plt.figure(figsize=(20,8))

plt.subplot(1,2,1)
plt.title('Engine Type Histogram')
sns.countplot(x=cars.enginetype, palette=("hls"))

plt.subplot(1,2,2)
plt.title('Engine Type vs Price')
sns.boxplot(x=cars.enginetype, y=cars.price, palette=("hls"))

plt.show()

df = pd.DataFrame(cars.groupby(['enginetype'])['price'].mean().sort_values(ascedf.plot.bar(figsize=(8,6))
plt.title('Engine Type vs Average Price')
plt.show()
```



```
In [612... #features to price
plt.figure(figsize=(25, 6))

df = pd.DataFrame(cars.groupby(['CompanyName'])['price'].mean().sort_values(asc
df.plot.bar()
plt.title('Company Name vs Average Price')
plt.show()

df = pd.DataFrame(cars.groupby(['fueltype'])['price'].mean().sort_values(ascence
df.plot.bar()
```

```
plt.title('Fuel Type vs Average Price')
plt.show()

df = pd.DataFrame(cars.groupby(['carbody'])['price'].mean().sort_values(ascend:
    df.plot.bar()
    plt.title('Car Type vs Average Price')
    plt.show()
```

<Figure size 2500x600 with 0 Axes>

Car Type vs Average Price


```
In [613... #features to price
         plt.figure(figsize=(15,5))
         plt.subplot(1,2,1)
         plt.title('Door Number Histogram')
         sns.countplot(x=cars.doornumber, palette=("hls"))
         plt.subplot(1,2,2)
         plt.title('Door Number vs Price')
         sns.boxplot(x=cars.doornumber, y=cars.price, palette=("hls"))
         plt.show()
         plt.figure(figsize=(15,5))
         plt.subplot(1,2,1)
         plt.title('Aspiration Histogram')
         sns.countplot(x=cars.aspiration, palette=("hls"))
         plt.subplot(1,2,2)
         plt.title('Aspiration vs Price')
         sns.boxplot(x=cars.aspiration, y=cars.price, palette=("hls"))
         plt.show()
```



```
In [614... #features to price
    def plot_count(xyz,fig):
        plt.subplot(4,2,fig)
        plt.title(xyz+' Histogram')
        sns.countplot(x=cars[xyz],palette=("hls"))
        plt.subplot(4,2,(fig+1))
        plt.title(xyz+' vs Price')
        sns.boxplot(x=cars[xyz], y=cars.price, palette=("hls"))

plt.figure(figsize=(15,20))

plot_count('enginelocation', 1)
    plot_count('cylindernumber', 3)
    plot_count('fuelsystem', 5)
    plot_count('drivewheel', 7)

plt.tight_layout()
```



```
In [615... #features to price - correlation scatterplots

def scatter(x,fig):
    plt.subplot(5,2,fig)
    plt.scatter(cars[x],cars['price'])
    plt.title(x+' vs Price')
    plt.ylabel('Price')
    plt.xlabel(x)
```

```
plt.figure(figsize=(10,20))
scatter('carlength', 1)
scatter('carwidth', 2)
scatter('carheight', 3)
scatter('curbweight', 4)
plt.tight_layout()
```



```
In [616... #features to price - correlation scatterplots
    def pp(x,y,z):
        sns.pairplot(cars, x_vars=[x,y,z], y_vars='price',size=4, aspect=1, kind='s
        plt.show()

    pp('enginesize', 'boreratio', 'stroke')
    pp('compressionratio', 'horsepower', 'peakrpm')
    pp('wheelbase', 'citympg', 'highwaympg')
```


In [617... np.corrcoef(cars['carlength'], cars['carwidth'])[0, 1]

Out[617]: 0.841118268481845

STEP 4: Feature Engineering

```
In [618... #Fuel economy
    cars['fueleconomy'] = (0.55 * cars['citympg']) + (0.45 * cars['highwaympg'])

In [619... #Binning the Car Companies based on avg prices of each Company.
    cars['price'] = cars['price'].astype('int')
    temp = cars.copy()
    table = temp.groupby(['CompanyName'])['price'].mean()
    temp = temp.merge(table.reset_index(), how='left',on='CompanyName')
    bins = [0,10000,20000,40000]
    cars_bin=['Budget','Medium','Highend']
    cars['carsrange'] = pd.cut(temp['price_y'],bins,right=False,labels=cars_bin)
    cars.head()
```

Out[619]:		car_ID	symboling	CompanyName	fueltype	aspiration	doornumber	carbody	drivewhe
	0	1	3	alfa-romero	gas	std	two	convertible	rw
	1	2	3	alfa-romero	gas	std	two	convertible	rw
	2	3	1	alfa-romero	gas	std	two	hatchback	rw
	3	4	2	audi	gas	std	four	sedan	fw
	4	5	2	audi	gas	std	four	sedan	4w

5 rows × 28 columns

STEP 5 : Variable Analysis

```
In [620... plt.figure(figsize=(8,6))

plt.title('Fuel economy vs Price')
    sns.scatterplot(x=cars['fueleconomy'],y=cars['price'],hue=cars['drivewheel'])
    plt.xlabel('Fuel Economy')
    plt.ylabel('Price')

plt.show()
    plt.tight_layout()
```


In [621... plt.figure(figsize=(25, 6))

```
df = pd.DataFrame(cars.groupby(['fuelsystem','drivewheel','carsrange'])['price'
df.plot.bar()
plt.title('Brand Category Range vs Average Price')
plt.show()
```

<Figure size 2500x600 with 0 Axes>


```
In [622... # HorsePower vs Price per Brand Catgeory
    plt1 = sns.scatterplot(x = 'horsepower', y = 'price', hue = 'carsrange', data =
    plt1.set_xlabel('Horsepower')
    plt1.set_ylabel('Price of Car (Dollars)')
    plt.show()
```



```
In [623... # Mileage vs Fuel Type
  plt1 = sns.scatterplot(x = 'fueleconomy', y = 'price', hue = 'fueltype', data =
    plt1.set_xlabel('Mileage')
    plt1.set_ylabel('Price of Car (Dollars)')
    plt.show()
```



```
In [624... # Horesepower vs Fuel Type
  plt1 = sns.scatterplot(x = 'horsepower', y = 'price', hue = 'fueltype', data =
    plt1.set_xlabel('Horsepower')
    plt1.set_ylabel('Price of Car (Dollars)')
    plt.show()
```


List of significant variables based on visual analysis. We can filter out variables, based on univariate and bivariate analysis, that dont impact price much. The most important drivers for price are: - Car Range - Engine Type - Fuel type - Car Body - Aspiration - Cylinder Number - Drivewheel - Curbweight - Car Length - Car width - Engine Size - Boreratio - Horse Power - Wheel base - Fuel Economy

Logistic Regression

Out[625]:		price	fueltype	aspiration	carbody	drivewheel	wheelbase	curbweight	enginetype	C!
	0	13495	gas	std	convertible	rwd	88.6	2548	dohc	
	1	16500	gas	std	convertible	rwd	88.6	2548	dohc	
	2	16500	gas	std	hatchback	rwd	94.5	2823	ohcv	
	3	13950	gas	std	sedan	fwd	99.8	2337	ohc	
	4	17450	gas	std	sedan	4wd	99.4	2824	ohc	

```
In [626... cars_lr.shape
Out[626]: (205, 16)
In [627... sns.pairplot(cars_lr)
plt.show()
```


In [628... plt.figure(figsize=(15,10))
 sns.heatmap(cars.corr() , cmap="Blues", annot=True)

Out[628]: <AxesSubplot: >

In [629... car_data = pd.get_dummies(cars, drop_first =True)
 car_data.head()

Out[629]:		car_ID	symboling	wheelbase	carlength	carwidth	carheight	curbweight	enginesize	nod
	0	1	3	88.6	168.8	64.1	48.8	2548	130	
	1	2	3	88.6	168.8	64.1	48.8	2548	130	
	2	3	1	94.5	171.2	65.5	52.4	2823	152	
	3	4	2	99.8	176.6	66.2	54.3	2337	109	
	4	5	2	99.4	176.6	66.4	54.3	2824	136	

5 rows × 69 columns

In [630... car_data.corr()

Out [630]

:		car_ID	symboling	wheelbase	carlength	carwidth	carheight	curb
	car_ID	1.000000	-0.151621	0.129729	0.170636	0.052387	0.255960	0.0
	symboling	-0.151621	1.000000	-0.531954	-0.357612	-0.232919	-0.541038	-0.2
	wheelbase	0.129729	-0.531954	1.000000	0.874587	0.795144	0.589435	0.7
	carlength	0.170636	-0.357612	0.874587	1.000000	0.841118	0.491029	3.0
	carwidth	0.052387	-0.232919	0.795144	0.841118	1.000000	0.279210	3.0
	•••	•••					•••	
	fuelsystem_mpfi	0.186275	0.012532	0.348891	0.511374	0.461896	0.108685	0.5
	fuelsystem_spdi	-0.037015	0.181939	-0.117359	-0.079790	-0.046399	-0.278615	-0.0
	fuelsystem_spfi	-0.066254	0.065707	-0.032129	-0.008245	-0.023158	-0.066778	0.0
	carsrange_Medium	0.094711	0.025968	0.195713	0.286389	0.219547	0.342107	0
	carsrange_Highend	-0.255618	-0.049092	0.333254	0.373687	0.453143	0.024294	0.!

69 rows × 69 columns

STEP 6: Feature Scaling

```
In []:
In [631... from sklearn.model_selection import train_test_split
          np.random.seed(0)
          df_train, df_test = train_test_split(cars_lr, train_size = 0.7, test_size = 0.3
In [632... from sklearn.preprocessing import MinMaxScaler
          scaler = MinMaxScaler()
          num_vars = ['wheelbase', 'curbweight', 'enginesize', 'boreratio', 'horsepower'
          df_train[num_vars] = scaler.fit_transform(df_train[num_vars])
In [633... df_train.head()
Out[633]:
                    price fueltype aspiration
                                               carbody
                                                        drivewheel wheelbase curbweight enginety
            122 0.068818
                                                                    0.244828
                                                                               0.272692
                              gas
                                         std
                                                 sedan
                                                              fwd
           125 0.466890
                              gas
                                         std
                                             hatchback
                                                              rwd
                                                                    0.272414
                                                                               0.500388
                                                                                               0
           166
                0.122110
                                         std
                                             hatchback
                                                              rwd
                                                                    0.272414
                                                                                0.314973
                                                                                              do
                              gas
              1 0.314446
                                             convertible
                                                                    0.068966
                                                                                0.411171
                              gas
                                         std
                                                              rwd
                                                                                              do
           199
                0.382131
                                       turbo
                                                                    0.610345
                                                                                0.647401
                              gas
                                                 wagon
                                                              rwd
                                                                                               0
In [634... df_train.describe()
```

Out[634]:

	price	wheelbase	curbweight	enginesize	boreratio	horsepower	fueleconom
count	143.000000	143.000000	143.000000	143.000000	143.000000	143.000000	143.00000
mean	0.219309	0.411141	0.407878	0.241351	0.497946	0.227302	0.35826
std	0.215682	0.205581	0.211269	0.154619	0.207140	0.165511	0.18598
min	0.000000	0.000000	0.000000	0.000000	0.000000	0.000000	0.00000
25%	0.067298	0.272414	0.245539	0.135849	0.305556	0.091667	0.19890
50%	0.140343	0.341379	0.355702	0.184906	0.500000	0.191667	0.34430
75%	0.313479	0.503448	0.559542	0.301887	0.682540	0.283333	0.51234
max	1.000000	1.000000	1.000000	1.000000	1.000000	1.000000	1.00000

```
In [635... # Correlation using heatmap
  plt.figure(figsize = (30, 25))
  sns.heatmap(df_train.corr(), annot = True, cmap="BuPu")
  plt.show()
```


Highly correlated variables to price are - curbweight, enginesize, horsepower, carwidth and highend

In [636... #Dividing data into X and y variables

```
y_train = df_train.pop('price')
X_train = df_train
```

STEP 7: Model Development

Data Preparation

```
In [637... # Categorical Variables are converted into Numerical Variables with the help of
           cyl_no = pd.get_dummies(cars['cylindernumber'], drop_first = True)
 In [638... cars = pd.concat([cars, cyl_no], axis = 1)
 In [639... brand_cat = pd.get_dummies(cars['carsrange'], drop_first = True)
 In [640... cars = pd.concat([cars, brand_cat], axis = 1)
 In [641... eng_typ = pd.get_dummies(cars['enginetype'], drop_first = True)
 In [642... cars = pd.concat([cars, eng_typ], axis = 1)
 In [643... drwh = pd.get_dummies(cars['drivewheel'], drop_first = True)
 In [644... cars = pd.concat([cars, drwh], axis = 1)
 In [645... | carb = pd.get_dummies(cars['carbody'], drop_first = True)
 In [646... cars = pd.concat([cars, carb], axis = 1)
 In [647... asp = pd.get_dummies(cars['aspiration'], drop_first = True)
 In [648... cars = pd.concat([cars, asp], axis = 1)
 In [649... | fuelt = pd.get_dummies(cars['fueltype'], drop_first = True)
 In [650... cars = pd.concat([cars, fuelt], axis = 1)
 In [651... cars.drop(['fueltype', 'aspiration', 'carbody', 'drivewheel', 'enginetype', 'cy
splitting data into training and test sets
 In [652... from sklearn.model_selection import train_test_split
           # We specify this so that the train and test data set always have the same rows
           np.random.seed(0)
           df_train, df_test = train_test_split(cars, train_size = 0.7, test_size = 0.3, )
re-scaling the features
 In [653... # min-max scaling
           from sklearn.preprocessing import MinMaxScaler
 In [654... scaler = MinMaxScaler()
 In [655... # Apply scaler() to all the columns except the 'dummy' variables
```

```
num_vars = ['wheelbase', 'carlength', 'carwidth', 'curbweight', 'enginesize','k

df_train[num_vars] = scaler.fit_transform(df_train[num_vars])
```

In [656... df_train.drop(columns=['CompanyName', 'doornumber', 'enginelocation', 'fuelsystem')

In [657... df_train.head()

Out[657]:

:		car_ID	symboling	wheelbase	carlength	carwidth	carheight	curbweight	enginesize	-
	122	123	1	0.244828	0.426016	0.291667	50.8	0.272692	0.139623	
	125	126	3	0.272414	0.452033	0.666667	50.2	0.500388	0.339623	
	166	167	1	0.272414	0.448780	0.308333	52.6	0.314973	0.139623	(
	1	2	3	0.068966	0.450407	0.316667	48.8	0.411171	0.260377	1
	199	200	-1	0.610345	0.775610	0.575000	57.5	0.647401	0.260377	

5 rows × 39 columns

In [658... df_train.describe()

Out[658]:

	car_ID	symboling	wheelbase	carlength	carwidth	carheight	curbweight
count	143.000000	143.000000	143.000000	143.000000	143.000000	143.000000	143.000000
mean	98.524476	0.797203	0.411141	0.525476	0.461655	53.551748	0.407878
std	58.977655	1.195999	0.205581	0.204848	0.184517	2.433766	0.211269
min	1.000000	-2.000000	0.000000	0.000000	0.000000	47.800000	0.000000
25%	48.500000	0.000000	0.272414	0.399187	0.304167	51.800000	0.245539
50%	97.000000	1.000000	0.341379	0.502439	0.425000	53.700000	0.355702
75%	147.500000	1.000000	0.503448	0.669919	0.550000	55.350000	0.559542
max	205.000000	3.000000	1.000000	1.000000	1.000000	59.100000	1.000000

8 rows × 39 columns

```
In [659... # correlation coefficients to see which variables are highly correlated

plt.figure(figsize = (16, 10))
    sns.heatmap(df_train.corr(), annot = True, cmap="BuPu")
    plt.show()
```



```
In [660... # Dividing into X and Y sets for the model building
y_train = df_train.pop('price')
X_train = df_train
```

```
In [661... # RFE Recursive Feature Elimination
    from sklearn.feature_selection import RFE
    from sklearn.linear_model import LinearRegression
```

```
In [662... # Running RFE with the output number of the variable equal to 10
lm = LinearRegression()
lm.fit(X_train, y_train)

rfe = RFE(lm, step = 10)  # running RFE
rfe = rfe.fit(X_train, y_train)
```

```
In [663... list(zip(X_train.columns,rfe.support_,rfe.ranking_))
```

```
Out[663]: [('car_ID', False, 3),
           ('symboling', False, 3),
            ('wheelbase', True, 1),
            ('carlength', True, 1),
            ('carwidth', True, 1),
            ('carheight', False, 3),
            ('curbweight', True, 1),
            ('enginesize', True, 1),
            ('boreratio', True, 1),
            ('stroke', True, 1),
            ('compressionratio', False, 3),
            ('horsepower', True, 1),
            ('peakrpm', False, 3),
            ('citympg', False, 3),
            ('highwaympg', False, 3),
            ('fueleconomy', False, 3),
            ('five', False, 2),
            ('four', True, 1),
            ('six', False, 3),
            ('three', True, 1),
            ('twelve', True, 1),
            ('two', True, 1),
            ('Medium', False, 2),
            ('Highend', True, 1),
            ('dohcv', True, 1),
            ('l', False, 2),
            ('ohc', True, 1),
            ('ohcf', True, 1),
            ('ohcv', True, 1),
            ('rotor', True, 1),
            ('fwd', False, 2),
            ('rwd', False, 3),
            ('hardtop', False, 2),
            ('hatchback', True, 1),
            ('sedan', False, 2),
            ('wagon', False, 2),
            ('turbo', False, 2),
            ('gas', False, 2)]
In [664... col = X train.columns[rfe.support]
          col
Out[664]: Index(['wheelbase', 'carlength', 'carwidth', 'curbweight', 'enginesize',
                  'boreratio', 'stroke', 'horsepower', 'four', 'three', 'twelve', 'two',
                  'Highend', 'dohcv', 'ohc', 'ohcf', 'ohcv', 'rotor', 'hatchback'],
                 dtype='object')
In [665... # Building model using statsmodel, for the detailed statistics
          # Creating X test dataframe with RFE selected variables
         X_train_rfe = X_train[col]
In [666... # Adding a constant variable
          import statsmodels.api as sm
          X train rfe = sm.add constant(X train rfe)
In [667... lm = sm.OLS(y_train,X_train_rfe).fit()
                                                    # Running the linear model
```

In [668... #summary of linear model
print(lm.summary())

OLS Regression Results

=======================================			==========
Dep. Variable:	price	R-squared:	0.940
Model:	0LS	Adj. R-squared:	0.932
Method:	Least Squares	F-statistic:	108.3
Date:	Fri, 30 Sep 2022	<pre>Prob (F-statistic):</pre>	8.15e-67
Time:	15:03:38	Log-Likelihood:	218.37
No. Observations:	143	AIC:	-398.7
Df Residuals:	124	BIC:	-342.4
Df Model:	18		
Covariance Type:	nonrobust		

coef std err t P>|t| [0.025 0.975] const 0.2302 0.082 2.818 0.006 0.069 0.392 wheelbase 0.0071 0.062 0.114 0.910 -0.1160.130 carlength 0.081 -1.6960.092 -0.2970.023 -0.1372carwidth 0.3523 0.070 5.012 0.000 0.213 0.491 curbweight 0.2317 0.086 2.686 0.008 0.061 0.402 0.414 0.7560 4.370 enginesize 0.173 0.000 1.098 boreratio -0.17900.062 -2.879 0.005 -0.302-0.056 stroke -0.1429 0.030 -4.821 0.000 -0.202 -0.084 0.3833 0.076 5.043 0.000 0.233 0.534 horsepower four 0.0484 0.030 1.591 0.114 -0.0120.109 three 0.2765 0.080 3.435 0.001 0.117 0.436 twelve -0.45380.099 -4.6050.000 -0.649-0.2590.070 two 0.1369 0.034 4.072 0.000 0.203 Highend 0.1680 0.029 5.893 0.000 0.112 0.224 dohcv -0.24340.077 -3.1460.002 -0.396-0.090ohc 0.0643 0.021 2.993 0.003 0.022 0.107 ohcf -0.00120.031 -0.037 0.970 -0.0630.060 -0.148-0.026ohcv -0.08690.031 -2.8120.006 rotor 0.1369 0.034 4.072 0.000 0.070 0.203 hatchback -0.04040.013 -3.1040.002 -0.066 -0.015Omnibus: 39.991 Durbin-Watson: 2.015 Prob(Omnibus): Jarque-Bera (JB): 92.151 0.000 Skew: Prob(JB): 1.159 9.76e-21 Kurtosis: 6.176 Cond. No. 2.73e+17

Notes:

- [1] Standard Errors assume that the covariance matrix of the errors is correct ly specified.
- [2] The smallest eigenvalue is 2.69e-32. This might indicate that there are strong multicollinearity problems or that the design matrix is singular.

```
In [669... # Calculate the VIFs variance inflation factor for the new model
    from statsmodels.stats.outliers_influence import variance_inflation_factor

    vif = pd.DataFrame()
    X = X_train_rfe
    vif['Features'] = X.columns
    vif['VIF'] = [variance_inflation_factor(X.values, i) for i in range(X.shape[1])
```

```
vif['VIF'] = round(vif['VIF'], 2)
vif = vif.sort_values(by = "VIF", ascending = False)
vif
```

Out[669]:

	Features	VIF
18	rotor	inf
12	two	inf
0	const	299.78
5	enginesize	31.91
4	curbweight	14.81
2	carlength	12.24
9	four	7.98
3	carwidth	7.50
6	boreratio	7.40
1	wheelbase	7.29
8	horsepower	7.06
15	ohc	4.47
7	stroke	3.83
13	Highend	3.82
16	ohcf	3.32
11	twelve	3.03
17	ohcv	2.53
10	three	2.02
14	dohcv	1.87
19	hatchback	1.72

```
In [670... # Dropping curbweight as p-value is high.
X_train_new1 = X_train_rfe.drop(["curbweight"], axis = 1)

# Adding a constant variable
import statsmodels.api as sm
X_train_lm = sm.add_constant(X_train_new1)

lm = sm.OLS(y_train,X_train_lm).fit() # Running the linear model
#again summary of linear model
print(lm.summary())
```

OLS Regression Results

===========			=======================================
Dep. Variable:	price	R-squared:	0.937
Model:	0LS	Adj. R-squared:	0.928
Method:	Least Squares	F-statistic:	108.9
Date:	Fri, 30 Sep 2022	<pre>Prob (F-statistic):</pre>	2.48e-66
Time:	15:03:38	Log-Likelihood:	214.33
No. Observations:	143	AIC:	-392.7
Df Residuals:	125	BIC:	-339.3
Df Model:	17		
Covariance Type:	nonrobust		

	, i -					
	coef	std err	t	P> t	[0.025	0.975]
const	0.2348	0.084	2.806	0.006	0.069	0.400
wheelbase	0.0451	0.062	0.727	0.469	-0.078	0.168
carlength	-0.0803	0.080	-1.004	0.317	-0.239	0.078
carwidth	0.3891	0.071	5.510	0.000	0.249	0.529
enginesize	0.8710	0.172	5.071	0.000	0.531	1.211
boreratio	-0.1731	0.064	-2.718	0.007	-0.299	-0.047
stroke	-0.1449	0.030	-4.770	0.000	-0.205	-0.085
horsepower	0.4309	0.076	5.690	0.000	0.281	0.581
four	0.0506	0.031	1.623	0.107	-0.011	0.112
three	0.2748	0.082	3.333	0.001	0.112	0.438
twelve	-0.4908	0.100	-4.909	0.000	-0.689	-0.293
two	0.1424	0.034	4.144	0.000	0.074	0.210
Highend	0.1708	0.029	5.850	0.000	0.113	0.229
dohcv	-0.2748	0.078	-3.508	0.001	-0.430	-0.120
ohc	0.0526	0.022	2.442	0.016	0.010	0.095
ohcf	-0.0151	0.031	-0.483	0.630	-0.077	0.047
ohcv	-0.0907	0.032	-2.869	0.005	-0.153	-0.028
rotor	0.1424	0.034	4.144	0.000	0.074	0.210
hatchback	-0.0409	0.013	-3.068	0.003	-0.067	-0.015
Omnibus:	=======	31.	======= 386 Durbi	======= in-Watson:		2.081
Prob(Omnibus):	0.0	000 Jarqu	ue-Bera (JB)	:	60.463
Skew:		0.9	980 Prob(7.43e-14
Kurtosis:			511 Cond.			9.42e+16

Notes:

- [1] Standard Errors assume that the covariance matrix of the errors is correct ly specified.
- [2] The smallest eigenvalue is 2.23e-31. This might indicate that there are strong multicollinearity problems or that the design matrix is singular.

So mileage is insignificant now

```
In [671... # Dropping ohcf as p value is high.
    X_train_new2 = X_train_new1.drop(["ohcf"], axis = 1)

# Adding a constant variable
import statsmodels.api as sm
    X_train_lm = sm.add_constant(X_train_new2)

lm = sm.OLS(y_train,X_train_lm).fit() # Running the linear model
```

```
#again summary of linear model
print(lm.summary())
```

OLS Regression Results

Dep. Variable:	price	R-squared:	0.937
Model:	0LS	Adj. R-squared:	0.929
Method:	Least Squares	F-statistic:	116.4
Date:	Fri, 30 Sep 2022	<pre>Prob (F-statistic):</pre>	2.54e-67
Time:	15:03:38	Log-Likelihood:	214.19
No. Observations:	143	AIC:	-394.4
Df Residuals:	126	BIC:	-344.0
Df Model:	16		

Dt Model: 16 Covariance Type: nonrobust

	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,					
========	coef	std err	t	P> t	[0.025	0.975]
const	0.2181	0.076	2 . 872	0.005	0.068	0.368
wheelbase	0.0494	0.061	0.806	0.421	-0.072	0.171
carlength	-0.0717	0.078	-0.923	0.358	-0.226	0.082
carwidth	0.3855	0.070	5.506	0.000	0.247	0.524
enginesize	0.8929	0.165	5.409	0.000	0.566	1.220
boreratio	-0.1888	0.054	-3 . 466	0.001	-0.297	-0.081
stroke	-0.1438	0.030	-4.762	0.000	-0.204	-0.084
horsepower	0.4368	0.075	5.862	0.000	0.289	0.584
four	0.0565	0.029	1.982	0.050	8.07e-05	0.113
three	0.2902	0.076	3.831	0.000	0.140	0.440
twelve	-0.5010	0.097	-5.145	0.000	-0.694	-0.308
two	0.1498	0.031	4.878	0.000	0.089	0.211
Highend	0.1690	0.029	5.853	0.000	0.112	0.226
dohcv	-0.2652	0.076	-3.512	0.001	-0.415	-0.116
ohc	0.0577	0.019	3.073	0.003	0.021	0.095
ohcv	-0.0876	0.031	-2.839	0.005	-0.149	-0.027
rotor	0.1498	0.031	4.878	0.000	0.089	0.211
hatchback	-0.0403	0.013	-3 . 043	0.003	-0 . 066	-0.014
Omnibus:		30.	======= 812 Durbi	====== .n-Watson:		2.066
Prob(Omnibus	s):	0.	000 Jarqu	e-Bera (JB)	:	57.102
Skew:			981 Prob(3.98e-13
Kurtosis:			395 Cond.			9.11e+16

Notes:

- [1] Standard Errors assume that the covariance matrix of the errors is correct ly specified.
- [2] The smallest eigenvalue is 2.39e-31. This might indicate that there are strong multicollinearity problems or that the design matrix is singular.

```
In [672... # Calculate the VIFs for the new model
    from statsmodels.stats.outliers_influence import variance_inflation_factor

vif = pd.DataFrame()
X = X_train_new2
vif['Features'] = X.columns
vif['VIF'] = [variance_inflation_factor(X.values, i) for i in range(X.shape[1])
vif['VIF'] = round(vif['VIF'], 2)
vif = vif.sort_values(by = "VIF", ascending = False)
vif
```

Out[672]:

Features

VIF

	11	two	inf
	16	rotor	inf
	0	const	248.11
	4	enginesize	27.85
	2	carlength	10.84
	3	carwidth	7.13
	1	wheelbase	6.78
	8	four	6.72
	7	horsepower	6.50
	5	boreratio	5.44
	6	stroke	3.81
	12	Highend	3.76
	14	ohc	3.27
	10	twelve	2.83
	15	ohcv	2.42
	9	three	1.72
	13	dohcv	1.70
	17	hatchback	1.70
[673 7	# ma	king predi	ctions
[674 r	num_	vars = ['w	heelba
(df t	est[num_va	rsl =
		st = df_te st = df_te	
		J	
n [676 #	# No	w let's us	e our
		reating X_t st_new = X	_
		ding a con st_new = s	
		<i>king predi</i> ed = lm.pr	
	<i>-</i> —·	•	

```
ValueError
                                                   Traceback (most recent call last)
        Cell In [678], line 2
              1 # Making predictions
           --> 2 y_pred = lm.predict(X_test_new)
        File /opt/homebrew/lib/python3.10/site-packages/statsmodels/base/model.py:1159
        , in Results.predict(self, exog, transform, *args, **kwargs)
           1156
                        exog = exog[:, None]
                    exog = np.atleast_2d(exog) # needed in count model shape[1]
           1157
        -> 1159 predict_results = self.model.predict(self.params, exog, *args,
                                                      **kwarqs)
           1160
           1162 if exog_index is not None and not hasattr(predict_results,
           1163
                                                           'predicted_values'):
           1164
                    if predict_results.ndim == 1:
        File /opt/homebrew/lib/python3.10/site-packages/statsmodels/regression/linear_
        model.py:381, in RegressionModel.predict(self, params, exog)
            378 if exog is None:
            379
                    exog = self.exog
        --> 381 return np.dot(exog, params)
        File <__array_function__ internals>:180, in dot(*args, **kwargs)
        ValueError: shapes (62,5) and (18,) not aligned: 5 (dim 1) != 18 (dim 0)
In [ ]:
In [ ]:
```