

Tema 7. Otros algoritmos basados en Divide y Vencerás

Algorítmica y Complejidad

1

Problema de Selección												
	Enunciado del Problema											
Dade	o un arr	au.				un nún	noro k:	1				
Dauc	Dado un <i>array</i> : un número <i>k</i> : 1											
-2	-2 -21 3 4 12 8 10 5 -6 1											
Devo	Devolver el k-ésimo número mayor del array											
				-	40							
					12							
1. Problema	1. Problema de Selección											
1												

Problema de Selección **Enunciado del Problema** un número k: 3 Dado un array: -2 -21 3 4 12 8 10 5 -6 1 Devolver el k-ésimo número mayor del array 1. Problema de Selección

1

Problema de Selección												
	Enunciado del Problema											
Dado un <i>arrav</i> : un número k: 5												
Dauc	Dado un <i>array</i> : un número <i>k</i> : 5											
-2	-2 -21 3 4 12 8 10 5 -6 1											
Devo	Devolver el k-ésimo número mayor del array											
					4							
1. Problema de Selección												
1	2 3											

Problema de Selección Actividad 7.1. Diseña e implementa un algoritmo que resuelva especión problema de selección. un número k: 5 Dado un array: -2 -21 3 4 12 8 10 5 -6 1 Devolver el k-ésimo número mayor del array 1. Problema de Selección _2__

6

Problema de Selección Actividad 7.1. Diseña e implementa un algoritmo que resuelva especiár problema de selección. **k**: 5 **j**:0 -2 4 10 5 -21 3 12 -6 1 int k_esimoValor(int[] vector, int k){ int max = Integer.MIN VALUE; → for (int j=0; j<k; j++) {</pre> max = vector[j]; int j_max = j; for (int i=j; i<vector.length; i++)</pre> if (vector[i] > max) { j_max = i; max = vector[i]; } int aux = vector[j]; vector[j] = vector[j_max]; vector[j_max]= aux; return max: } 1. Problema de Selección -(2)-

Q

Problema de Selección Actividad 7.1. Diseña e implementa un algoritmo que resuelva especiés problema de selección. **k**: 5 **j**:0 j_max:4 -2 4 10 -21 3 12 -6 1 int k_esimoValor(int[] vector, int k){ int max = Integer.MIN VALUE; for (int j=0; j<k; j++) {</pre> max = vector[j]; int j_max = j; for (int i=j; i<vector.length; i++)</pre> Intercambiamos if (vector[i] > max) { los elementos j_max = i; max = vector[i]; del vector } int aux = vector[j]; vector[j] = vector[j_max]; vector[j_max]= aux; } return max; 1. Problema de Selección -(2)-

Τ/

Problema de Selección Actividad 7.1. Diseña e implementa un algoritmo que resuelva especiár problema de selección. **k**: 5 j:3 j_max:7 5 4 12 10 8 -2 3 -21 -6 1 int k_esimoValor(int[] vector, int k){ int max = Integer.MIN VALUE; → for (int j=0; j<k; j++) {</pre> max = vector[j]; int j_max = j; for (int i=j; i<vector.length; i++)</pre> if (vector[i] > max) { j_max = i; max = vector[i]; } int aux = vector[j]; vector[j] = vector[j_max]; vector[j_max]= aux; return max; } 1. Problema de Selección -(2)-

Problema de Selección **Algoritmo Simple** Actividad 7.2. Calcula la complejidad del algoritmo. j:5 5 3 -21 12 10 4 -2 -6 1 int k_esimoValor(int[] vector, int k){ int max = Integer.MIN VALUE; for (int j=0; j<k; j++) {</pre> Complejidad: max = vector[j]; int j_max = j; $\Theta(N \cdot k)$ for (int i=j; i<vector.length; i++)</pre> if (vector[i] > max) { j_max = i; max = vector[i]; } int aux = vector[j]; vector[j] = vector[j_max]; vector[j_max]= aux; return max; } 1. Problema de Selección -(2)-

Problema de Selección Algoritmo basado en Divide y Vencerás: Implementación Actividad 7.5. Calcula la complejidad en el peor caso. int k_esimoValorAux (int[] vector, int i0, int iN, int k){ if (i0 == iN) return vector[i0]; int m = ordenarPorPivote(vector, i0, iN); if (k<=iN-m)</pre> return k_esimoValorAux(vector, m+1, iN, k); else if (k==iN-m+1) return vector[m]; return k_esimoValorAux(vector, i0, m-1, k-(iN-m+1)); Ecuación de Recurrencia } Complejidad: $\Theta(1)$ N = 1 $\Theta(N^2)$ $T(N-1) + \Theta(N)$ N > 11. Problema de Selección

38

_(2)—

Multiplicar Matrices Algoritmo Natural Actividad 7.9. Diseña e implementa un algoritmo que multiplique dos matrices dos matrices int[][] multiplicar(int[][] A, int[][] B){ int[][] resul= new int[A.length][A[0].length]; for (int f=0; f<A.length; f++) for (int c=0; c<A[0].length; c++) {</pre> resul[f][c]=0; for (int i=0; i<A[0].length; i++)</pre> resul[f][c]+=Ā[f][i]*B[i][c]; return resul; 3. Multiplicar Matrices (2)-

Multiplicar Matrices															
Algoritmo inmediato basado en Divide y Vencerás															
	1	2	3	5]				1	1	0	4			
	3	7	5	7					5	2	8	2			
	2	3	3	5					3	3	3	1			
	1	0	3	3					2	6	2	3			
		-	Α								В				
									,						
					30	44		26	1						
				L	67	74	85	52	1						
					36	47	43	32	1						
				L	16	28	15	16]						
						C =	Α•В								
3. Multiplicar 2 3	Matr	ices													

Multiplicar	Matrices										
Algoritmo inmediato basado en Divide y Vencerás											
	1 2 3 5	1	1 0 4								
	3 7 5 7	5	2 8 2								
	2 3 3 5	3	3 3 1								
	1 0 3 3		6 2 3								
	Α		В								
3. Multiplica 1 2 3	r Matrices										

