Лекция 3 Линейные методы регрессии.

Кантонистова Е.О.

> ЛИНЕЙНАЯ РЕГРЕССИЯ

Линейная регрессия:

$$a(x) = w_0 + \sum_{j=1}^{a} w_j x_j.$$

Обучение линейной регрессии (минимизация среднеквадратичной ошибки):

$$\frac{1}{\ell} \sum_{i=1}^{\ell} \left(\langle w, x_i \rangle - y_i \right)^2 \to \min_{w}$$

СРЕДНЕКВАДРАТИЧНОЕ ОТКЛОНЕНИЕ: MSE (MEAN SQUARED ERROR)

Среднеквадратичное отклонение (среднекв. ошибка):

$$MSE(a, X) = \frac{1}{l} \sum_{i=1}^{l} (a(x_i) - y_i)^2$$

Плюсы:

- Позволяет сравнивать модели
- Подходит для контроля качества во время обучения

Минусы:

 Плохо интерпретируется, т.к. не сохраняет единицы измерения (если целевая переменная – кг, то МЅЕ измеряется в кг в квадрате)

> RMSE (ROOT MEAN SQUARED ERROR)

Корень из среднеквадратичной ошибки:

$$RMSE(a, X) = \sqrt{\frac{1}{l} \sum_{i=1}^{l} (a(x_i) - y_i)^2}$$

Плюсы:

- Все плюсы MSE
- Сохраняет единицы измерения

Минусы:

• Не позволяет понять, насколько хорошо данная модель решает задачу (это минус и для MSE)

$^{\circ}$ КОЭФФИЦИЕНТ ДЕТЕРМИНАЦИИ (R^2)

Коэффициент детерминации:

$$R^{2}(a,X) = 1 - \frac{\sum_{i=1}^{l} (a(x_{i}) - y_{i})^{2}}{\sum_{i=1}^{l} (y_{i} - \overline{y})^{2}},$$

где
$$\overline{y} = \frac{1}{l} \sum_{i=1}^{l} y_i$$
.

Коэффициент детерминации <u>объясняет долю дисперсии,</u> <u>объясняемую целевой переменной</u>.

- ullet Чем ближе ${
 m R}^2$ к 1, тем лучше модель объясняет данные
- Чем ближе R^2 к 0, тем ближе модель к константному предсказанию

MAE (MEAN ABSOLUTE ERROR)

Средняя абсолютная ошибка:

$$MAE(a, X) = \frac{1}{l} \sum_{i=1}^{l} |a(x_i) - y_i|$$

Плюсы:

• Менее чувствителен к выбросам, чем MSE

Минусы:

• МАЕ - не дифференцируемый функционал

MSLE (MEAN SQUARED LOGARITHMIC ERROR)

Среднеквадратичная логарифмическая ошибка:

$$MSLE(a, X) = \frac{1}{l} \sum_{i=1}^{l} (\log(\mathbf{a}(\mathbf{x_i}) + \mathbf{1}) - \log(\mathbf{y} + \mathbf{1}))^2$$

- Подходит для задач с неотрицательной целевой переменной (у ≥ 0)
- Штрафует за отклонения в порядке величин
- Штрафует заниженные прогнозы сильнее, чем завышенные

MAPE, SMAPE

MAPE – mean absolute percentage error:

$$MAPE(a, X) = \frac{1}{l} \sum_{i=1}^{l} \frac{|\mathbf{y_i} - \mathbf{a}(\mathbf{x_i})|}{|\mathbf{y_i}|}$$

- Измеряет относительную ошибку
- Хорошо интерпретируема: например, МАРЕ=0.16 означает, что модель может ошибаться в среднем на 16%.

SMAPE – symmetric mean absolute percentage error (симметричный вариант MAPE):

$$SMAPE(a, X) = \frac{1}{l} \sum_{i=1}^{l} \frac{|y_i - a(x_i)|}{(|y_i| + |a(x_i)|)/2}$$

КВАНТИЛЬНАЯ РЕГРЕССИЯ

Квантильная функция потерь:

$$Q(a, X^{\ell}) = \sum_{i=1}^{\ell} \rho_{\tau}(y_i - a(x_i))$$

3десь

$$\rho_{\tau}(z) = (\tau - 1)[z < 0]z + \tau[z \geqslant 0]z = (\tau - \frac{1}{2})z + \frac{1}{2}|z|$$

Параметр $\tau \in [0; 1]$.

ullet Чем больше au, тем больше штрафуем за занижение прогноза.

МЕТОД БОРЬБЫ С ПЕРЕОБУЧЕНИЕМ: РЕГУЛЯРИЗАЦИЯ

Утверждение. Если в выборке есть линейно-зависимые признаки, то задача оптимизации $Q(w) \to min$ имеет бесконечное число решений.

Большие значения параметров (весов) модели w – признак переобучения.

МЕТОД БОРЬБЫ С ПЕРЕОБУЧЕНИЕМ: РЕГУЛЯРИЗАЦИЯ

Утверждение. Если в выборке есть линейно-зависимые признаки, то задача оптимизации $Q(w) \to min$ имеет бесконечное число решений.

 Большие значения параметров (весов) модели w – признак переобучения.

Решение проблемы – регуляризация.

Регуляризованный функционал ошибки:

$$Q_{alpha}(w) = Q(w) + \alpha \cdot R(w),$$

где R(w) - регуляризатор.

РЕГУЛЯРИЗАЦИЯ

Регуляризация штрафует за слишком большую норму весов

Наиболее используемые регуляризаторы:

•
$$L_2$$
-регуляризатор: $R(w) = ||w||_2 = \sum_{i=1}^d w_i^2$

•
$$L_1$$
-регуляризатор: $R(w) = \big||w|\big|_1 = \sum_{i=1}^d |w_i|$

Пример регуляризованного функционала:

$$Q(a(w),X) = \frac{1}{l} \sum_{i=1}^{l} ((w,x_i) - y_i)^2 + \alpha \sum_{i=1}^{d} w_i^2,$$

где α – коэффициент регуляризации.

АНАЛИТИЧЕСКОЕ РЕШЕНИЕ ЗАДАЧИ МНК С L_2 -РЕГУЛЯРИЗАТОРОМ

Задача оптимизации в матричном виде:

$$Q(w) = (y - Xw)^{T}(y - Xw) + \alpha w^{T}Iw \rightarrow min \quad (*)$$

где I — единичная матрица.

Эта задача имеет аналитическое решение:

$$w = \left(X^T X + \alpha I\right)^{-1} X^T y$$

РАЗРЕЖЕННЫЕ МОДЕЛИ

Разреженные модели – модели, в которых часть весов равна **0**.

Связь разреженных моделей с отбором признаков:

- Некоторые признаки могут не иметь отношения к задаче, т.е. они не нужны. Тогда при занулении весов при этих признаках происходит *отбор признаков*.
- Если есть ограничения на скорость получения предсказаний, то чем меньше признаков, тем быстрее
- Если признаков больше, чем объектов, то решение задачи будет неоднозначным. Поэтому надо делать *отбор признаков*.

$\sim L_1$ -РЕГУЛЯРИЗАЦИЯ

Утверждение. В результате обучения модели с L_1 регуляризатором происходит зануление некоторых весов,
т.е. отбор признаков.

Можно показать, что задачи

$$(1) \quad Q(w) + \alpha ||w||_1 \to \min_{w}$$

И

(2)
$$\begin{cases} Q(w) \to \min_{w} \\ ||w||_{1} \le C \end{cases}$$

эквивалентны.

ОТБОР ПРИЗНАКОВ ПО L1-РЕГУЛЯРИЗАЦИИ

Нарисуем линии уровня Q(w) и область $||w||_1 \le C$:

Если признак незначимый, то соответствующий вес близок к О. Отсюда получим, что в большинстве случаев решение нашей задачи попадает в вершину ромба, т.е. обнуляет незначимый признак.

ГИПЕРПАРАМЕТРЫ МОДЕЛИ

- Параметры модели величины, настраивающиеся по обучающей выборке (например, веса *w* в линейной регресии)
- Гиперпараметры модели величины, контролирующие процесс обучения. Поэтому они не могут быть настроены по обучающей выборке (например, коэффициент регуляризации α).

Проблема: если подбирать гиперпараметры по кроссвалидации, то мы будем использовать отложенную (валидационную) выборку для поиска наилучших значений гиперпараметров. Т.е. отложенная выборка становится обучающей.

СХЕМА РАЗБИЕНИЯ ДАННЫХ ДЛЯ ПОДБОРА ПАРАМЕТРОВ И ГИПЕРПАРАМЕТРОВ МОДЕЛИ

КОДИРОВАНИЕ КАТЕГОРИАЛЬНЫХ ПРИЗНАКОВ: ONE-HOT ENCODING

• Предположим, категориальный признак $f_j(x)$ принимает m различных значений: $\mathcal{C}_1,\mathcal{C}_2,\ldots,\mathcal{C}_m$.

Пример: еда может быть *горькой, сладкой, солёной или кислой* (4 возможных значения признака).

КОДИРОВАНИЕ КАТЕГОРИАЛЬНЫХ ПРИЗНАКОВ: ONE-HOT ENCODING

• Предположим, категориальный признак $f_j(x)$ принимает m различных значений: $\mathcal{C}_1,\mathcal{C}_2,\ldots,\mathcal{C}_m.$

Пример: еда может быть *горькой, сладкой, солёной или кислой* (4 возможных значения признака).

• Заменим категориальный признак на m бинарных признаков: $b_i(x) = [f_j(x) = C_i]$ (индикатор события).

Тогда One-Hot кодировка для нашего примера будет следующей:

горький =
$$(1,0,0,0)$$
, сладкий = $(0,1,0,0)$, солёный = $(0,0,1,0)$, кислый = $(0,0,0,1)$.

- Возьмем некоторую функцию (hash-функция), которая переводит значения категориального признака в числа от 1 до $B:h:U\to\{1,2,\ldots,B\}$.
- То есть для каждого объекта:

$$g_j(x) = [h(f(x)) = j], j = 1, ..., B$$

- Возьмем некоторую функцию (hash-функция), которая переводит значения категориального признака в числа от 1 до $B:h:U\to\{1,2,\ldots,B\}$.
- То есть для каждого объекта:

$$g_j(x) = [h(f(x)) = j], j = 1, ..., B$$

Идея: хэширование группирует значения признака. Так как часто встречающихся значений немного, они редко попадают в одну группу при группировке.

- Возьмем некоторую функцию (hash-функция), которая переводит значения категориального признака в числа от 1 до $B:h:U\to\{1,2,\dots,B\}$.
- То есть для каждого объекта:

$$g_j(x) = [h(f(x)) = j], j = 1, ..., B$$

+ позволяет закодировать любое значение категориального признака (в том числе, то, которого не было в тренировочной выборке)

ХЭШИРОВАНИЕ ДЛЯ ПОНИЖЕНИЯ РАЗМЕРНОСТИ

ХЭШИРОВАНИЕ

- Хороший способ работать с категориальными данными, принимающими множество различных значений
- Хорошие результаты на практике
- Позволяет понизить размерность пространства признаков с незначительным снижением качества

Статья про хэширование:

https://arxiv.org/abs/1509.05472

СЧЁТЧИКИ

- ullet Пусть целевая переменная y принимает значения от 1 до K.
- Закодируем категориальную переменную f(x) следующим способом:

$$counts(u, X) = \sum_{(x,y)\in X} [f(x) = u]$$

$$successes_k(u, X) = \sum_{(x,y) \in X} [f(x) = u][y = k], k = 1, ..., K$$

ъ СЧЁТЧИКИ: ПРИМЕР

city	target	0	1	2
Moscow	1	1/4	1/2	1/4
London	0	1/2	0	1/2
London	2	1/2	0	1/2
Kiev	1	1/2	1/2	0
Moscow	1	1/4	1/2	1/4
Moscow	0	1/4	1/2	1/4
Kiev	0	1/2	1/2	0
Moscow	2	1/4	1/2	1/4

СЧЁТЧИКИ

- Пусть целевая переменная y принимает значения от 1 до K.
- Закодируем категориальную переменную f(x) следующим способом:

$$counts(u, X) = \sum_{(x,y)\in X} [f(x) = u]$$

$$successes_k(u, X) = \sum_{(x,y) \in X} [f(x) = u][y = k], k = 1, ..., K$$

Тогда кодировка:

$$g_k(x,X) = \frac{successes_k(f(x),X) + c_k}{counts(f(x),X) + \sum_{i=1}^{K} c_i} \approx p(y = k|f(x)),$$

 c_i - чтобы не было деления на 0.

СЧЁТЧИКИ: ОПАСНОСТЬ ПЕРЕОБУЧЕНИЯ

Вычисляя счётчики, мы закладываем в признаки информацию о целевой переменной и, тем самым, переобучаемся!

ъ СЧЁТЧИКИ: КАК ВЫЧИСЛЯТЬ

• Можно вычислять счётчики так:

city	target		
Moscow	1		
London	0	Вычисляем счетчики по этой части	
London	2	Кодируем признак вычисленными счётчиками и обучаемся по этой части	
Kiev	1		
Moscow	1		
Moscow	0		
Kiev	0		
Moscow	2		

СЧЁТЧИКИ: КАК ВЫЧИСЛЯТЬ

Более продвинутый способ (по кросс-валидации):

1) Разбиваем выборку

на m частей X_1, \ldots, X_m

2) На каждой части X_i

значения признаков

вычисляются по

оставшимся частям:

$$x \in X_i \Rightarrow g_k(x) = g_k(x, X \setminus X_i)$$

