SRM Institute of Science and Technology Department of Mathematics

18MAB102T-Advanced Calculus and Complex Analysis 2020-2021 Even

Unit – III: Laplace Transforms Tutorial Sheet - I

S.No	Questions	Answers
•	D 4 A 5 2 M 1 1	
Part – A [3 Marks]		
1	Find the Laplace Transform of sinot	$\frac{\omega}{s^2 + \omega^2} (1 + e^{\frac{-\pi s}{\omega}})$
2	Find the Laplace Transform of $\sinh \frac{t}{2} \sin \frac{\sqrt{3}}{2} t$	$\frac{\sqrt{3}}{2} \frac{s}{s^4 + s^2 + 1}$
3	Find the Laplace Transform of $e^t \sin^3 2t$	$ \frac{\sqrt{3}}{2} \frac{s}{s^4 + s^2 + 1} $ $ \frac{3}{2} \left[\frac{s - 3}{s^2 - 6s + 10} - \frac{s - 3}{s^2 - 6s + 18} \right] $
4	Find the Laplace Transform of $te^{-4t} \sin 3t$	$\frac{6(s+4)}{((s+4)^2+9)^2}$
5	Find the Laplace Transform of $\frac{\sin 2t}{t}$	$\cot^{-1}\frac{s}{2}$
Part – B[6 Marks]		
6	Find the Laplace Transform of $\frac{\cos at - \cos bt}{t}$.	$\frac{1}{2}\log\left(\frac{s^2+b^2}{s^2+a^2}\right)$
7	Find the Laplace Transform of the periodic function	$\frac{k}{Ts^2} + \frac{ke^{-sT}}{s(1-e^{-sT})}$
	$f(t) = \frac{kt}{T}, \ 0 < t < T, \ f(t+T) = f(t).$	$\overline{Ts^2}^+ \overline{s(1-e^{-sT})}$
8	$f(t) = \frac{kt}{T}, \ 0 < t < T, f(t+T) = f(t).$ Evaluate $\int_{0}^{\infty} t^{3}e^{-t} \sin t dt.$	0
9	Find the Laplace Transform of the periodic function	ω
	$f(t) = \begin{cases} \sin \omega t, & 0 < t < \frac{\pi}{\omega}, \\ 0, & \frac{\pi}{\omega} < t < \frac{2\pi}{\omega}. \end{cases}$	$\frac{\omega}{(s^2+\omega^2)(1-e^{\frac{\pi s}{\omega}})}$
10	Find the Laplace Transform of $f(t) = \begin{cases} t-1, & 1 < t < 2, \\ 3-t, & 2 < t < 3. \end{cases}$	$\frac{1}{s^2} \Big[e^{-s} - 2e^{-2s} + e^{-3s} \Big]$