Vectors, Vector Equations and Span Part II

Vectors: Linear Combinations (12)

If \vec{u} is a vector in R^n , then \vec{u} is said to be a **linear combination** of vectors $\vec{v_1}$, $\vec{v_2}$, $\vec{v_3}$, ... $\vec{v_r}$ in R^n if it can be expressed in the form

$$\vec{u} = k_1 \overrightarrow{v_1} + k_2 \overrightarrow{v_2} + k_3 \overrightarrow{v_3} + \dots + k_r \overrightarrow{v_r}$$

where $k_1, k_2, k_3, ..., k_r$ are scalars.

The scalars $k_1, k_2, k_3, ..., k_r$ are called the **coefficients** of the linear combination.

For example, the vector $\vec{u} = \begin{pmatrix} -4 \\ 7 \\ -5 \end{pmatrix}$ is a linear combination of the vectors $\vec{v_1} = \begin{pmatrix} 1 \\ 2 \\ -4 \end{pmatrix}$ and

$$\overrightarrow{v_2} = \begin{pmatrix} -2\\1\\1 \end{pmatrix}$$
 because $\overrightarrow{u} = 2\overrightarrow{v_1} + 3\overrightarrow{v_2}$.

$$2\overrightarrow{v_1} + 3\overrightarrow{v_2} = 2\begin{pmatrix} 1\\2\\-4 \end{pmatrix} + 3\begin{pmatrix} -2\\1\\1 \end{pmatrix} = \begin{pmatrix} 2\\4\\-8 \end{pmatrix} + \begin{pmatrix} -6\\3\\3 \end{pmatrix} = \begin{pmatrix} 2-6\\4+3\\-8+3 \end{pmatrix} = \begin{pmatrix} -4\\7\\-5 \end{pmatrix} = \overrightarrow{u}$$

Vectors: Linear Combinations (13)

Geometrically, a linear combination is obtained by stretching / shrinking the vectors $\overrightarrow{v_1}$, $\overrightarrow{v_2}$, $\overrightarrow{v_3}$... $\overrightarrow{v_n}$ according to the coefficients, then adding them together using the parallelogram law (or the triangle law)

Note that given two distinct nonparallel (noncollinear) nonzero vectors in \mathbb{R}^2 , say $\overrightarrow{v_1}$ and $\overrightarrow{v_2}$, any vector in the plane can be obtained as a linear combination of $\overrightarrow{v_1}$ and $\overrightarrow{v_2}$ with suitable coefficients.

Vectors: Linear Combinations (14)

A linear combination of a <u>single vector</u>, say, $\vec{v} = \begin{pmatrix} 2 \\ 3 \end{pmatrix}$ is just a scalar multiple of \vec{v} .

For example,
$$\frac{1}{2}\vec{v} = \begin{pmatrix} 1\\ \frac{3}{2} \end{pmatrix}$$
, $-2\vec{v} = \begin{pmatrix} -4\\ -6 \end{pmatrix}$, ...

The set of all linear combinations of a single vector creates a *line* that contains \vec{v} . Unless $\vec{v} = \vec{0}$.

The set of all linear combinations of two collinear vectors is also line. Let $\overrightarrow{u_1} = \begin{pmatrix} 1 \\ 1 \end{pmatrix}$ and $\overrightarrow{u_2} = \begin{pmatrix} -2 \\ -2 \end{pmatrix}$. Then the set of all linear combinations of $\overrightarrow{u_2}$ and $\overrightarrow{u_2}$ creates a line that contains both of these vectors.

Vectors Equations (15)

An equation involving vectors with n coordinates is the same as n equations involving only numbers (not vectors).

For example,

$$x \begin{pmatrix} 1 \\ 4 \\ 2 \end{pmatrix} + y \begin{pmatrix} 2 \\ 1 \\ -1 \end{pmatrix} = \begin{pmatrix} -5 \\ 1 \\ 5 \end{pmatrix} \implies \begin{pmatrix} x \\ 4x \\ 2x \end{pmatrix} + \begin{pmatrix} 2y \\ y \\ -y \end{pmatrix} = \begin{pmatrix} -5 \\ 1 \\ 5 \end{pmatrix} \implies \begin{pmatrix} x + 2y \\ 4x + y \\ 2x - y \end{pmatrix} = \begin{pmatrix} -5 \\ 1 \\ 5 \end{pmatrix} \implies \begin{pmatrix} x + 2y \\ 4x + y \\ 2x - y = 5 \end{pmatrix}$$

Definition. A **vector equation** is an equation involving a linear combination of vectors with possibly unknown coefficients.

Solving a vector equation is the same as asking if a given vector is a linear combination of the other given vectors which is, in turn, equivalent to solving the corresponding linear system. Let's solve the system:

Vectors Equations (16)

We should verify that the two numbers we found are indeed the correct coefficient solutions to our original vector equation

$$x\begin{pmatrix} 1\\4\\2 \end{pmatrix} + y\begin{pmatrix} 2\\1\\-1 \end{pmatrix} = \begin{pmatrix} -5\\1\\5 \end{pmatrix}$$

$$1\begin{pmatrix} 1\\4\\2 \end{pmatrix} - 3\begin{pmatrix} 2\\1\\-1 \end{pmatrix} = \begin{pmatrix} -5\\1\\5 \end{pmatrix}$$

$$2\begin{pmatrix} 1\\4\\2 \end{pmatrix} - \begin{pmatrix} 6\\3\\-3 \end{pmatrix} = \begin{pmatrix} -5\\1\\5 \end{pmatrix}$$

Recipe: Solving a vector equation. In general, the vector equation

$$x_1\nu_1 + x_2\nu_2 + \dots + x_k\nu_k = b$$

where $v_1, v_2, ..., v_k$, b are vectors in \mathbb{R}^n and $x_1, x_2, ..., x_k$ are unknown scalars, has the same solution set as the linear system with augmented matrix

$$\begin{pmatrix} | & | & & | & | \\ v_1 & v_2 & \cdots & v_k & | & b \\ | & | & & | & | & | \end{pmatrix}$$

whose columns are the v_i 's and the b's.

Vectors Equations (17)

Now we have three equivalent ways of thinking about a linear system:

1. As a system of equations:

$$\begin{cases} 2x_1 + 3x_2 - 2x_3 = 7 \\ x_1 - x_2 - 3x_3 = 5 \end{cases}$$

2. As an augmented matrix:

$$\begin{pmatrix}
2 & 3 & -2 & 7 \\
1 & -1 & -3 & 5
\end{pmatrix}$$

3. As a vector equation $(x_1v_1 + x_2v_2 + \cdots + x_nv_n = b)$:

$$x_1 \begin{pmatrix} 2 \\ 1 \end{pmatrix} + x_2 \begin{pmatrix} 3 \\ -1 \end{pmatrix} + x_3 \begin{pmatrix} -2 \\ -3 \end{pmatrix} = \begin{pmatrix} 7 \\ 5 \end{pmatrix}$$

Spans (18)

Definition. Let $v_1, v_2 \dots v_k$ be vectors in \mathbb{R}^n . The **span** of $v_1, v_2 \dots v_k$ is the collection of all linear combinations of $v_1, v_2 \dots v_k$ and is denoted Span $\{v_1, v_2 \dots v_k\}$. That is,

$$Span\{v_1, v_2 \dots v_k\} = \{x_1v_1 + x_2v_2 + \dots + x_kv_k | x_1, x_2, \dots x_k \text{ in } \mathbb{R}\}$$

Three characterizations of consistency. Now we have three equivalent ways of making the same statement:

- 1. A vector b is in the span of v_1, v_2, \dots, v_k .
- 2. The vector equation

$$x_1v_1 + x_2v_2 + \cdots + x_kv_k = b$$

has a solution.

3. The linear system with augmented matrix

$$\begin{pmatrix}
| & | & & | & | \\ v_1 & v_2 & \cdots & v_k & | & b \\ | & | & & & | & | & |
\end{pmatrix}$$

is consistent.

Equivalent means that, for any given list of vectors $v_1, v_2, ..., v_k$, b, either all three statements are true, or all three statements are false.

Spans (19)

Picturing Spans

If v is a nonzero vector in \mathbb{R}^3 in standard position, then span $\{v\}$ is just the line through the origin determined by v.

Let v_1 and v_2 be two nonzero noncollinear vectors in \mathbb{R}^3 in standard position. The span $\{v_1, v_2\}$ is the plane through the origin determined by these two vectors

Spans (20)

An Exercise on Linear Combinations

Consider the vectors
$$u = \begin{pmatrix} 1 \\ 2 \\ -1 \end{pmatrix}$$
 and $v = \begin{pmatrix} 6 \\ 4 \\ 2 \end{pmatrix}$ in \mathbb{R}^3 . Show that $w = \begin{pmatrix} 9 \\ 2 \\ 7 \end{pmatrix}$ is a linear combination of u and v and that $z = \begin{pmatrix} 4 \\ -1 \\ 8 \end{pmatrix}$ is not a linear combination of u and v .

$$\begin{pmatrix} 1 & 6 & 9 \\ 2 & 4 & 2 \\ -1 & 2 & 7 \end{pmatrix} \xrightarrow{R_2 - 2R_1} \begin{bmatrix} 1 & 6 & 9 \\ 0 & -8 & -16 \\ 0 & 8 & 16 \end{bmatrix} \xrightarrow{R_3 - 3R_2} \begin{bmatrix} 1 & 6 & 9 \\ 0 & 1 & 2 \\ 0 & 1 & 2 \end{bmatrix} \xrightarrow{R_3 - 3R_2} \begin{bmatrix} 1 & 6 & 9 \\ 0 & 1 & 2 \\ 0 & 1 & 2 \end{bmatrix} \xrightarrow{R_3 - 3R_2} \begin{bmatrix} 1 & 6 & 9 \\ 0 & 1 & 2 \\ 0 & 1 & 2 \end{bmatrix} \xrightarrow{R_3 - 3R_2} \begin{bmatrix} 1 & 6 & 9 \\ 0 & 1 & 2 \\ 0 & 1 & 2 \end{bmatrix} \xrightarrow{R_3 - 3R_2} \begin{bmatrix} 1 & 6 & 9 \\ 0 & 1 & 2 \\ 0 & 1 & 2 \end{bmatrix} \xrightarrow{R_3 - 3R_2} \begin{bmatrix} 1 & 6 & 9 \\ 0 & 1 & 2 \\ 0 & 1 & 2 \end{bmatrix} \xrightarrow{R_3 - 3R_2} \begin{bmatrix} 1 & 6 & 9 \\ 0 & 1 & 2 \\ 0 & 1 & 2 \end{bmatrix} \xrightarrow{R_3 - 3R_2} \begin{bmatrix} 1 & 6 & 9 \\ 0 & 1 & 2 \\ 0 & 1 & 2 \end{bmatrix} \xrightarrow{R_3 - 3R_2} \begin{bmatrix} 1 & 6 & 9 \\ 0 & 1 & 2 \\ 0 & 1 & 2 \end{bmatrix} \xrightarrow{R_3 - 3R_2} \begin{bmatrix} 1 & 6 & 9 \\ 0 & 1 & 2 \\ 0 & 1 & 2 \end{bmatrix} \xrightarrow{R_3 - 3R_2} \begin{bmatrix} 1 & 6 & 9 \\ 0 & 1 & 2 \\ 0 & 1 & 2 \end{bmatrix} \xrightarrow{R_3 - 3R_2} \begin{bmatrix} 1 & 6 & 9 \\ 0 & 1 & 2 \\ 0 & 1 & 2 \end{bmatrix} \xrightarrow{R_3 - 3R_2} \begin{bmatrix} 1 & 6 & 9 \\ 0 & 1 & 2 \\ 0 & 1 & 2 \end{bmatrix} \xrightarrow{R_3 - 3R_2} \begin{bmatrix} 1 & 6 & 9 \\ 0 & 1 & 2 \\ 0 & 1 & 2 \end{bmatrix} \xrightarrow{R_3 - 3R_2} \begin{bmatrix} 1 & 6 & 9 \\ 0 & 1 & 2 \\ 0 & 1 & 2 \end{bmatrix} \xrightarrow{R_3 - 3R_2} \begin{bmatrix} 1 & 6 & 9 \\ 0 & 1 & 2 \\ 0 & 1 & 2 \end{bmatrix} \xrightarrow{R_3 - 3R_2} \begin{bmatrix} 1 & 6 & 9 \\ 0 & 1 & 2 \\ 0 & 1 & 2 \end{bmatrix}$$