Zusammenfassung Topologie

© M Tim Baumann, http://timbaumann.info/uni-spicker

Def. Ein metrischer Raum (X, d) besteht aus einer Menge X und einer Abbildung $d: X \times X \to \mathbb{R}_{>0}$, sodass f. a. $x, y, z \in X$ gilt:

- $d(x,y) = 0 \iff x = y$ d(x,y) = d(y,x) (Symmetrie) • $d(x,z) \le d(x,y) + d(y,z)$ (\triangle -Ungleichung)
- **Def.** Für einen metrischen Raum (X,d) und eine Teilmenge $A \subset X$ ist $(A,d|_A)$ ein metrischer Raum und $d|_A$ heißt induzierte Metrik.

Def. Seien (X, d_X) und (Y, d_Y) metrische Räume. Eine Abbildung $f: X \to Y$ heißt **stetig**, falls für alle $x \in X$ gilt:

$$\forall \epsilon > 0 : \exists \delta > 0 : \forall x' \in X : d_X(x, x') < \delta \implies d_X(f(x), f(x')) < \epsilon.$$

Def. Die offene Kugel von Radius ϵ um $x \in X$ ist

$$B_{\epsilon}(x) := \{ p \in X \mid d(p, x) < \epsilon \}.$$

Def. Eine Teilmenge $U \subset X$ eines metrischen Raumes heißt **offen**, falls für alle $u \in U$ ein $\epsilon > 0$ existiert mit $B_{\epsilon}(u) \subset U$.

Prop. Eine Abbildung $f: X \to Y$ zwischen metrischen Räumen ist genau dann offen, wenn für alle offenen Teilmengen $U \subset Y$ das Urbild $f^{-1}(U) \subset X$ offen ist.

Def. Ein topologischer Raum (X,\mathcal{T}) besteht aus einer Menge X und einer Menge $\tau\subset\mathcal{P}(X)$ mit den Eigenschaften

$$\bullet \ \emptyset \in \mathcal{T}, \quad \bullet \ \forall U, V \in \mathcal{T} : U \cap V \in \mathcal{T}, \quad \bullet \ \forall S \subset \mathcal{T} : \bigcap_{U \in S} U \in \mathcal{T}$$

Die Elemente von $\mathcal T$ werden offene Teilmengen von X genannt. Eine Teilmenge $A\subset X$ heißt abgeschlossen, falls $X\setminus A$ offen ist.

Bsp. Die diskrete Topologie auf einer Menge X ist $\mathcal{T} = \mathcal{P}(X)$.

Bsp. Die Klumpentopologie auf einer Menge X ist $\mathcal{T} = \{\emptyset, X\}$.

Def. Die Menge der offenen Teilmengen eines metrischen Raumes heißt von der Metrik induzierte Topologie.

Def. Sei (X, \mathcal{T}) ein topologischer Raum und $A \subset X$. Dann heißt

$$\mathcal{T}|_A := \{U \cap A \mid U \in \mathcal{T}\}$$

Unterraumtopologie oder von \mathcal{T} induzierte Topologie.

Def. Ein topologischer Raum (X, \mathcal{T}) heißt **metrisierbar**, falls eine Metrik auf X existiert, sodass die von der Metrik induzierte Topologie mit \mathcal{T} übereinstimmt.

Def. Ein topologischer Raum (X, \mathcal{T}) heißt **Hausdorffsch**, falls gilt:

$$\forall x, y \in X : x \neq y \implies \exists U, V \in \mathcal{T} : x \in U \land y \in V \land U \cap V = \emptyset.$$

Prop. Metrisierbare topologische Räume sind Hausdorffsch.

Def. Eine Abbildung $f: X \to Y$ zwischen topologischen Räumen (X, \mathcal{T}_X) und (Y, \mathcal{T}_Y) heißt **stetig**, falls gilt

$$\forall U \in \mathcal{T}_V : f^{-1}(U) \in \mathcal{T}_X.$$

Notation. $C(X,Y) := \{f : X \to Y \mid f \text{ stetig}\}\$

Bem. Ist $f: X \to Y$ stetig und $A \subset X$, so ist $f|_A: A \to Y$ stetig.

Def. Falls $f: X \to Y$ bijektiv ist und sowohl f als auch f^{-1} stetig sind, so heißt f ein **Homöomorphismus**.

Def. Zwei topologische Räume X und Y heißen homöomorph, wenn ein Homöomorphismus zwischen X und Y existiert.

Notation. $X \approx Y : \iff X \text{ und } Y \text{ sind homöomorph}$

Satz. $\mathbb{R}^n \approx \mathbb{R}^m \iff n = m$

Def. Sei X eine Menge und $\mathcal{T}, \mathcal{T}'$ Topologien auf X. Dann sagen wir \mathcal{T} ist **gröber** als \mathcal{T}' : $\iff \mathcal{T}'$ ist **feiner** als \mathcal{T} : $\iff \mathcal{T} \subset \mathcal{T}'$.

Def. Eine Menge $\mathcal{B} \subset \mathcal{T}$ offener Teilmengen eines Raumes heißt

- Basis der Topologie, falls jede offene Menge $U \in \mathcal{T}$ Vereinigung von Mengen aus \mathcal{B} ist.
- Subbasis der Topologie, falls jede offene Menge $U \in \mathcal{T}$ Vereinigung von endlichen Schnitten von Mengen aus \mathcal{B} ist.

Bspe. • Sei (X, d) ein metrischer Raum. Dann ist $\mathcal{B} := \{B_{\epsilon}(x) \mid x \in X, \epsilon > 0\}$ eine Basis der induz. Topologie auf X.

• $\mathcal{B} := \{B_{\epsilon}(x) \mid x \in \mathbb{Q}^n, \epsilon \in \mathbb{Q}_+\}$ ist eine abz. Basis von $(\mathbb{R}^n, d_{\text{eukl}})$.

Prop. Jedes $\mathcal{B} \subset \mathcal{P}(X)$ ist Subbasis genau einer Topologie \mathcal{T} auf X.

Def. Die Topologie heißt die von \mathcal{B} erzeugte Topologie.

Def. Sind (X, \mathcal{T}_X) und (Y, \mathcal{T}_Y) topologische Räume, so ist auch $(X \times Y, \mathcal{T}_X \otimes \mathcal{T}_Y)$ ein topologischer Raum mit der **Produkttopologie** $(\mathcal{T}_X \otimes \mathcal{T}_Y)$, die von

$$\mathcal{B} := \{U \times Y \mid U \in \mathcal{T}_X\} \cup \{X \times V \mid V \in \mathcal{T}_Y\} \quad \text{erzeugt wird.}$$

Prop. • Die Projektionen $\pi_X: X \times Y \to X$ und $\pi_Y: X \times Y \to Y$ sind stetig bzgl. der Produkttopologie.

• Ist \mathcal{T} eine echt gröbere Topologie auf $X \times Y$ als die Produkttopologie, so sind die Projektionen π_X und π_Y nicht beide stetig.

Def. Seien (X, \mathcal{T}_X) und (Y, \mathcal{T}_Y) topologische Räume. Dann erzeugt $\mathcal{T}_X \cup \mathcal{T}_Y$ die **Summentopologie** auf $X \cup Y$.

Bem. Sie ist die feinste Topologie auf $X \cup Y$, sodass die beiden Inklusionen $i_X : X \hookrightarrow X \cup Y$ und $i_Y : Y \hookrightarrow X \cup Y$ stetig sind.

Prop. Seien X, Y, Z topologische Räume.

- Falls $X \cap Y = \emptyset$, so ist eine Abbildung $f: X \cup Y \to Z$ genau dann stetig, falls die beiden Kompositionen $f \circ i_X: X \to Z$ und $f \circ i_Y: Y \to Z$ stetig sind.
- Eine Abb. $g:Z\to X\cup Y$ ist genau dann stetig, wenn die beiden Kompositionen $\pi_X\circ g:Z\to X$ und $\pi_Y\circ g:Z\to Y$ stetig sind.

Def. Sei X ein topol. Raum. Das Innere $\operatorname{int}(A)$ von $A \subset X$ ist die Vereinigung aller offenen Mengen in X, die in A enthaltenen sind.

Bem. Als Vereinigung offener Mengen ist das Innere offen.

Def. Der Abschluss \overline{A} einer Menge $A \subset X$ ist der Durchschnitt aller abgeschlossenen Mengen von X, die A enthalten.

Bem. Es gilt $\overline{A} = X \setminus (\operatorname{int}(X \setminus A))$.

Def. Es sei X ein topologischer Raum, $x \in X$ und $V \subset X$. Wir nennen V eine **Umgebung** von x, falls es eine offene Teilmenge $U \subset X$ gibt mit $x \in U$ und $U \subset V$.

Prop. Ein Punkt $x \in X$ liegt genau dann in \overline{A} , falls jede Umgebung von x einen Punkt aus A enthält.

Def. Der Rand einer Menge $A \subset X$ ist $\partial A := \overline{A} \setminus \operatorname{int}(A)$.

Prop. Ein Punkt $x \in X$ liegt genau dann in ∂X , wenn jede Umgebung von x einen Punkt aus A wie auch aus $X \setminus A$ enthält.

(Weg-)Zusammenhang

Def. Ein topol. Raum X heißt wegweise zusammenhängend, falls $\forall x, y \in X : \exists \gamma : [0, 1] \to X$ stetig : $\gamma(0) = x \land \gamma(1) = y$.

Bspe. Wegzusammenhängend: \bullet \mathbb{R}^n \bullet $(\{p,q\},\{\emptyset,\{p\},\{p,q\}\})$ Nicht wegzusammenhängend: \bullet $(-\infty,0) \cup (0,\infty) \subset \mathbb{R}$

Def. Wegzshgskomponenten sind die Äq'klassen von

 $x \sim y : \iff x, y \text{ lassen sich durch einen Weg verbinden.}$

Prop. Sei $f:X\to Y$ stetig und X wegzusammenhängend. Dann ist auch f(X) bzgl. der Unterraumtopologie wegzusammenhängend.

 $\bf Def.$ Ein topologischer Raum Xheißt zusammenhängend, falls Xnicht disjunkte Vereinigung zweier nichtleerer offener Teilmengen ist.

Bspe. $\mathbb{Q} \subset \mathbb{R}$ und $\mathbb{R} \setminus \{0\}$ sind nicht zusammenhängend.

Prop. Sei X ein topologischer Raum. Es sind äquivalent:

- X ist zshgd. Jede stetige Abb. $f: X \to \{0,1\}$ ist konstant.
- Für jede offene und abgeschlossene Menge $A\subset X$ gilt: $A\in \{X,\emptyset\}.$

Prop. • Ist $f: X \to Y$ stetig und X zshgd, dann auch f(X).

• Sind A,B zusammenhängende Teilmengen eines topologischen Raumes X und gilt $A\cap B\neq\emptyset$, dann ist auch $A\cup B$ zshgd.

Def. Komponenten von X sind die Äq'klassen von

 $x \sim y :\iff x$ und y liegen beide in einem zusammenhängenden Unterraum von X.

Bsp. Die Komponenten von $\mathbb{Q} \subset \mathbb{R}$ sind genau die Ein-Punkt-Mengen, Trotzdem ist \mathbb{O} nicht diskret!

Prop. Die Menge [0,1] ist zusammenhängend.

Korollar. Wegzusammenhängende Räume sind zusammenhängend

Prop (ZWS). Sei $f:[0,1] \to \mathbb{R}$ stetig. Gilt f(0) < 0 und f(1) > 0, so existiert ein $t \in (0,1)$ mit f(t) = 0.

Konvergenz

Def. Sei $(x_n)_{n\in\mathbb{N}}$ eine Folge in X. Die Folge (x_n) konvergiert gegen $x\in X$, falls für jede Umgebung $U\subset X$ von x ein $N\in\mathbb{N}$ existiert mit $\forall\, n>N\,:\, x_n\in U$.

Notation. $x_n \xrightarrow{n \to \infty} x$

Bem. Die Notation $\lim_{n\to\infty} x_n = x$ ist nur in Hausdorffräumen zulässig!

 $\mathbf{Def.}\,$ Sei $f:X{\rightarrow}Y$ eine Abb. zw. topol. Räumen X,Y. Dann heißt f

- stetig in $x \in X$, falls für jede Umgebung $V \subset Y$ von f(x) das Urbild $f^{-1}(V) \subset X$ eine Umgebung von x ist.
- folgenstetig in $x \in X$, falls für jede Folge $(x_n)_{n \in \mathbb{N}}$ in X mit $x_n \to x$ für $n \to \infty$ die Bildfolge $(f(x_n))$ in Y gegen f(x) konv.

Prop. Ist f stetig in x, so ist f auch folgenstetig in x.

Def. Eine **Umgebungsbasis** von $x \in X$ ist eine Menge $\mathcal{B} \subset \mathcal{P}(X)$ bestehend aus Umgebungen von x, sodass jede Umgebung von x eine der Umgebungen in \mathcal{B} enthält.

Def. Der Raum X erfüllt das erste Abzählbarkeitsaxiom, falls jeder Punkt $x \in X$ eine abzählbare Umgebungsbasis besitzt.

Bem. Jeder metrische Raum X erfüllt das erste Abzählbarkeitsaxiom, da für jeden Punkt $x \in X$ die Menge $\mathcal{B}_x \coloneqq \{B_{1/n}(x) \mid n \in \mathbb{N}\}$ eine abzählbare Umgebungsbasis ist.

Prop. Sei $x \in X$ ein Punkt mit abzählbarer Umgebungsbasis. Dann ist jede in x folgenstetige Abbildung $f: X \to Y$ auch stetig in x.

Def. Eine **gerichtete Menge** ist eine Menge D mit einer partiellen Ordnung $(\leq) \subset D \times D$, sodass $\forall \alpha, \beta \in D : \exists \gamma \in D : \gamma \geq \alpha \land \gamma \geq \beta$.

Def. Ein Netz in X ist eine Abbildung $\phi: D \to X$, wobei D eine gerichtete Menge ist.

Def. Sei $x \in X$ und $(x_{\alpha})_{\alpha \in D}$ ein Netz in X. Das Netz (x_{α}) konvergiert gegen x, falls es für jede Umgebung $U \subset X$ von x ein $\beta \in D$ gibt mit $x_{\alpha} \in U$ für alle $\alpha \geq \beta$.

Notation. $\lim_{\alpha \in D} x_{\alpha} = x$

Def. Eine Abb. $f: X \to Y$ heißt **netzstetig** in $x \in X$, falls für jedes Netz $(x_{\alpha})_{\alpha \in D}$ in X mit $\lim_{\alpha \in D} x_{\alpha} = x$ das Bildnetz $(f(x_{\alpha}))_{\alpha \in D}$ gegen f(x) konvergiert.

Prop. Eine Abbildung $f: X \to Y$ ist genau dann stetig in $x \in X$, wenn sie netzstetig in x ist.

Prop. Ist $A \subset X$ eine Teilmenge eines topologischen Raumes, so besteht \overline{A} genau aus den Limiten von Netzen in A, die in X konvergieren.

Def. Ein **Häufungspunkt** eines Netzes $(x_{\alpha})_{\alpha \in D}$ in X ist ein Punkt $x \in X$, sodass für jede Umgebung $U \subset X$ von x das Netz **häufig** in U ist, d. h. für alle $\alpha \in D$ existiert ein $\beta > \alpha$ mit $x_{\beta} \in U$.

Def. Sind D und E gerichtete Mengen, so nennen wir eine Abb. $h: E \to D$ final, falls $\forall \delta \in D: \exists \eta \in E: \forall \gamma \geq \eta: h(\gamma) \geq \delta$.

Def. Ein **Unternetz** eines Netzes $\phi: D \to X$ ist eine Komposition $\phi \circ h: E \to X$ wobei $h: E \to D$ eine finale Funktion ist. Wir schreiben auch $(x_{h(\gamma)})_{\gamma \in E}$

Prop. Sei $(x_{\alpha})_{\alpha \in D}$ ein Netz in X. Ein Punkt $x \in X$ ist genau dann Häufungspunkt von (x_{α}) , falls ein Unternetz von (x_{α}) gegen x konv.

Def. Eine Folge $(x_n)_{n\in\mathbb{N}}$ in einem metrischen Raum (X,d) heißt Cauchy-Folge, falls $\forall \epsilon > 0 : \exists N \in \mathbb{N} : \forall n,m \geq N : d(x_n,x_m) < \epsilon$.

 $\bf Def.$ Der metrische Raum (X,d)heißt vollständig, wenn jede Cauchy-Folge in Xkonvergiert.

Achtung. Vollständigkeit ist keine Homöomorphieinvariante!

Def. Sei X eine Menge. Dann ist die Menge

$$\mathcal{B}(X) := \{ f : X \to \mathbb{R} \mid \sup_{x \in X} |f(x)| < \infty \}$$

der beschränkten Funktionen $X \to \mathbb{R}$ ein metrischer Raum mit

$$d(f,g) \coloneqq \sup_{x \in X} |f(x) - g(x)|.$$

Prop. Dieser Raum $(\mathcal{B}(X), d)$ ist vollständig.

Def. Eine Abb. $f:(X,d)\to (X',d')$ zw. metr. Räumen heißt ...

• ... isometrische Einbettung, falls für alle $x, y \in X$ gilt:

$$d'(f(x), f(y)) = d(x, y)$$

 ... Isometrie, falls f zusätzlich bijektiv ist. In diesem Fall ist auch f⁻¹ eine Isometrie und f ein Homöomorphismus.

Prop. Sei X ein metrischer Raum. Dann gibt es eine isometrische Einbettung von X in einen vollständigen metrischen Raum.

Def. Eine **Vervollständigung** eines metrischen Raumes X ist ein vollständiger metrischer Raum Y mit einer isometrischen Einbettung $f: X \to Y$, sodass f(X) dicht in Y liegt, d. h. $\overline{f(X)} = Y$.

Satz. Für jeden metrischen Raum existiert eine Vervollständigung.

Prop. Sei X ein metrischer Raum und $f_{1,2}: X \to Y_{1,2}$ Vervollständigungen von X. Dann existiert genau eine Isometrie $\phi_{21}: Y_1 \to Y_2$ mit $\phi_{21}|_{f_1(X)} = f_2 \circ f_1^{-1}$.

Bsp. Die kanonische Inklusion $C_c^{\infty}(U) \hookrightarrow L^p(U)$ ist eine Vervollständigung von (C_c^{∞}, d_p) mit

$$d_p(f,g) \coloneqq \left(\int_U |f(x) - g(x)|^p dx \right)^{1/p}.$$

Kompaktheit

Def. Es sei X ein topologischer Raum. Eine **offene Überdeckung** von X ist eine Familie $(U_i)_{i \in I}$ offener Teilmengen mit $\bigcup_{i \in I} U_i = X$.

Def. Der Raum X heißt **kompakt**, falls jede offene Überdeckung von X eine endliche Teilüberdeckung besitzt, also eine endliche Teilmenge $I_0 \subset I$ mit $\bigcup_{i \in I_0} U_i = X$.

Def. Eine Familie \mathcal{C} von Teilmengen von X hat die **endliche Schnitteigenschaft**, falls der Schnitt je endlich vieler Mengen aus \mathcal{C} nichtleer ist.

Prop. Ein Raum X ist genau dann kompakt, falls jede Familie $(C_i)_{i\in I}$ von abgeschlossenen Teilmengen von X, die die endliche Schnitteigenschaft besitzt, einen nichtleeren Schnitt hat.

Bem. Kompaktheit ist eine Homöomorphieinvariante.

Prop. Jede kompakte Teilmenge eines Hausdorffraumes ist abg.

Prop. Ist X kompakt und $f: X \to Y$ stetig, so ist f(X) kompakt.

Prop. Ein abg. Teilraum eines kompakten Raumes ist kompakt.

Prop. Sei $f: X \to Y$ eine bij. stetige Abb. von einem kompakten Raum in einen Hausdorffraum. Dann ist f ein Homöomorphismus.

Prop. Das Einheitsintervall $[0,1] \subset \mathbb{R}$ ist kompakt.

Prop. Seien X, Y kompakt. Dann ist auch $(X \times Y)$ kompakt.

Satz (Heine-Borel). Eine Teilmenge von \mathbb{R}^n ist genau dann kompakt, wenn sie beschränkt und abgeschlossen ist.

Satz. Sei $(X_i)_{i\in I}$ eine Familie kompakter Räume. Dann ist das topologische Produkt $\prod_{i\in I}X_i$ ebenfalls kompakt.

Def. Ein topologischer Raum X heißt **folgenkompakt**, wenn jede Folge $(x_n)_{n\in\mathbb{N}}$ in X eine konvergente Teilfolge besitzt.

Prop. Ein metrischer Raum ist genau dann kompakt, wenn er folgenkompakt ist.

Def. Sei $(x_{\alpha})_{\alpha \in D}$ ein Netz in einem topol. Raum X und $A \subset X$. Dann ist $(x_{\alpha})_{\alpha \in D}$ schließlich in A, falls es ein $\beta \in D$ gibt mit $x_{\alpha} \in A$ für alle $\alpha \geq \beta$.

Def. Ein Netz $(x_{\alpha})_{\alpha \in D}$ heißt universell, falls für jede Teilmenge $A \subset X$ das Netz entweder schließlich in A oder in $X \setminus A$ ist.

Prop. Jedes nichtleere Netz in X besitzt ein universelles Unternetz.

Bem. Der Beweis der Prop. verwendet das Lemma von Zorn.

Def. Ein topol. Raum X heißt **netzkompakt**, falls jedes nichtleere Netz $(x_{\alpha})_{\alpha \in D}$ in X ein konvergentes Unternetz besitzt.

Satz. Sei X ein topologischer Raum. Dann sind äquivalent:

- \bullet X ist kompakt. \bullet X ist netzkompakt.
- Jedes nichtleere Netz in X hat ein konvergentes Unternetz.

Satz (Tychonoff). Sei $(X_i)_{i\in I}$ eine Familie kompakter Räume. Dann ist das topologische Produkt $\prod X_i$ ebenfalls kompakt.

Def. Eine Kompaktifizierung eines topol. Raumes X ist ein kompakter topologischer Raum Y zusammen mit einer topologischen Einbettung $f: X \to Y$, sodass f(X) dicht in Y liegt, d. h. $\overline{f(X)} = Y$.

Def. Ein topologischer Raum X heißt lokalkompakt, falls jeder Punkt $x \in X$ eine kompakte Umgebung besitzt.

Bspe. • Jeder diskrete topologische Raum ist lokalkompakt.

 Ein normierter Vektorraum ist genau dann lokalkompakt, wenn er endlichdimensional ist.

Def. Sei X ein Hausdorffraum. Setze $X^+ := X \sqcup \{\infty\}$. Eine Menge $U \subset X^+$ heißt offen, wenn

- $U \subset X$ und U ist offen in X oder
- $\infty \in U$ und $X \setminus U \subset X$ kompakt ist.

Dies definiert eine Topologie auf X^+ , der sogenannten Einpunktkompaktifizierung von X.

Bem. • Ist X lokalkompakt, dann ist X^+ Hausdorffsch.

• Ist X selbst kompakt, so trägt $X^+ = X \cup \{\infty\}$ die Summentopol.

Prop. Sei X ein lokalkompakter Hausdorffraum, Y ein kompakter Hausdorffraum, $p \in Y$ und $X \approx Y \setminus \{p\}$. Dann gilt $X^+ \approx Y$.

Korollar. $S^n \approx (\mathbb{R}^n)^+$

Notation. Ist $f: X \to Y$ stetig, so definieren wir

$$f^+: X^+ \to Y^+, \quad f^+|_X \coloneqq f, \quad f^+(\infty) \coloneqq \infty.$$

Bem. f^+ ist i. A. nicht stetig, z. B. nicht für $f = i : [0,1) \to [0,1]$.

Def. Eine Abbildung $f: X \to Y$ heißt **eigentlich**, falls das Urbild ieder kompakten Menge in Y unter f kompakt in X ist.

Prop. Ist $f: X \to Y$ eine stetige Abbildung, so ist die induz. Abb. $f^+: X^+ \to Y^+$ genau dann stetig, wenn f eigentlich ist.

Def. Sei X ein normaler Hausdorffraum. Dann ist

$$f: X \to \prod_{\phi \in \mathcal{C}} [0, 1], \quad x \mapsto (\phi(x))_{\phi \in \mathcal{C}} \quad \text{mit } \mathcal{C} \coloneqq \mathcal{C}(X, [0, 1])$$

eine topologische Einbettung. Dann ist $\beta X\coloneqq \overline{f(X)}$ kompakt. Die Abb. $\beta:X\to\beta X$ heißt Stone-Čech-Kompaktifizierung von X.

Prop. Sei X ein normaler Hausdorffraum und K ein kompakter Hausdorffraum. Dann faktorisiert jede stetige Abbildung $\phi: X \to K$ in eindeutiger Weise über die Stone-Čech-Kompaktifizierung von X, d. h. es gibt eine eindeutige Abb. $\pi: \beta X \to K$ mit $\pi \circ \beta = \phi$.

Miscellanea

Lemma. Alle Normen auf \mathbb{R}^n sind äquivalent, d. h. für je zwei Normen $\|-\|_1$ und $\|-\|_2$ existieren Zahlen $\lambda, \Lambda \in \mathbb{R}_{>0}$ mit

$$\forall v \in \mathbb{R}^n : \lambda \|v\|_1 \le \|v\|_2 \le \Lambda \|v\|_1.$$

Lemma (Riesz). Sei $(V, \|-\|)$ ein normierter reeller VR und $C \subset V$ ein echter Untervektorraum, der abgeschlossen bzgl. $\|-\|$ ist. Sei $0 < \delta < 1$. Dann existiert ein $v \in V \setminus C$ mit $\|v\| = 1$ und

$$d(v, C) := \inf_{c \in C} ||v - c|| > 1 - \delta.$$

Lemma. Sei (V, ||-||) ein normierter VR und $C \subset V$ ein endlichdim. UVR. Dann ist C abgeschlossen bzgl. ||-||.

Prop. Sei $(V, \|-\|)$ ein normierter Vektorraum über \mathbb{R} . Die abgeschlossene Einheitskugel $B := \{v \in V \mid \|v\| \le 1\}$ ist genau dann kompakt, wenn $\dim(V) < \infty$.

Def. Sei $(V, \|-\|)$ ein normierter VR über \mathbb{R} . Der VR der beschränkten Funktionale ist der normierte VR

$$V^* \coloneqq \{f: V \to \mathbb{R} \,|\, f \text{ ist linear und stetig}\}$$

versehen mit der Norm $||f|| := \sup_{\|v\| \le 1} |f(v)|$.

Def. Die Schwach-*-Topologie auf V^* ist die gröbste Topologie, sodass alle Abbildungen $\phi_v: V^* \to \mathbb{R}, \ f \mapsto f(v)$ stetig sind.

Satz. $B_1(0) \subset (V^*, ||-||)$ ist kompakt bzgl. der Schwach-*-Topologie.

Def. Ein topol. Raum X heißt **normal**, falls gilt: Für alle disjunkte abgeschlossene Mengen $A, B \subset X$ gibt es offene Teilmengen $U_A, U_B \subset X$ mit $A \subset U_A, B \subset U_B$ und $U_A \cap U_B = \emptyset$.

Bspe. • Metrische Räume • Kompakte Hausdorffräume

Lemma (Urysohn). Sei X ein normaler topologischer Raum, $F, G \subset X$ disjunkte abgeschlossene Teilmengen. Dann gibt es eine stetige Funktion $f: X \to [0,1]$ mit $f|_F \equiv 0$ und $f|_G \equiv 1$.

Def. Ein topol. Raum erfüllt das **zweite Abzählbarkeitsaxiom**, falls er eine abzählbare Basis besitzt.

Satz (Metrisierbarkeitssatz von Urysohn).

Erfülle X das zweite Abzählbarkeitsaxiom. Dann gilt:

X metrisierbar $\iff X$ normal und Hausdorffsch

Satz (Fortsetzungssatz von Tietze).

Sei X normal, $F \subset X$ abgeschlossen. Ist $f: F \to \mathbb{R}$ stetig, so ex. eine stetige Fortsetzung $q: X \to \mathbb{R}$ von f (d. h. $q|_F = f$), für die gilt:

$$\sup_{x \in F} f(x) = \sup_{x \in X} g(x) \quad \text{und} \quad \inf_{x \in F} f(x) = \inf_{x \in X} g(x).$$

Satz (Jordanscher Kurvensatz). Sei $f: S^1 \to \mathbb{R}^2$ stetig und injektiv und $C := f(S^1) \subset \mathbb{R}^2$. Dann besteht $\mathbb{R}^2 \setminus C$ aus zwei Zshgskomponenten, einer beschränkten und einer unbeschränkten. Der Rand beider Zusammenhangkomponenten ist jeweils C.

Satz (Borsuk-Ulam). Sei $f: S^n \to \mathbb{R}^n$ stetig. Dann gibt es antipodale Punkte x, -x mit f(x) = f(-x).

Satz (Ham-Sandwich-Theorem). Seien $A_1, A_2, A_3 \in \mathbb{R}^3$ offen, beschränkt. Dann gibt es eine Ebene $E \subset \mathbb{R}^3$, die alle drei Teilmengen simultan halbiert.

Quotientenräume

Def. Sei X ein topologischer Raum, Y eine Menge und $f:X\to Y$ surjektiv. Dann ist die **Finaltopologie** auf Y bzgl. f die feinste Topologie, bezüglich der f stetig ist, also

$$U \subset Y$$
 offen : $\iff f^{-1}(U) \subset X$ offen.

Def. Eine surj. Abb. $f: X \to Y$ zw. topologischen Räumen heißt **Identifizierung**, falls Y die Finaltopologie bzgl. f trägt.

Prop. • Die Verkettung von Identifizierungen ist wieder eine Identifizierung.

• Eine surjektive Abbildung $f: X \to Y$ ist genau dann eine Identifizierung, falls gilt: Für alle topol. Räume Z und Abb. $g: Y \to Z$ ist g genau dann stetig, wenn $g \circ f: X \to Z$ stetig ist.

Def. Sei \sim eine Äquivalenzrelation auf einem topol. Raum X. Dann heißt die Menge X/\sim versehen mit der Finaltopologie bzgl. der Abb.

$$p: X \to X/\sim, \quad x \mapsto [x].$$

Quotientenraum (mit Quotientopologie).

Bem. Bei der Quotientenbildung bleiben erhalten:

 \bullet Kompaktheit, \bullet Zusammenhang, \bullet Wegzusammenhang.

Achtung. Der Quotientenraum von Hausdorffräumen ist nicht unbedingt Hausdorffsch!

Notation. Für $\emptyset \neq A \subset X$ ist $X/A := X/\sim$ mit

$$x \sim y \quad :\iff \quad (x = y) \lor (\{x, y\} \subset A)$$

Prop. Ist X ein normaler Hausdorffraum und $A\subset X$ abgeschlossen, so ist X/A ebenfalls normal und Hausdorffsch.

Def. Die reellen projektiven Räume sind definiert als

$$\mathbb{R}P^n := S^n/\sim \quad \text{mit } x \sim y : \iff x = \pm y.$$

Prop. $\mathbb{R}P^n$ ist kompakt und Hausdorffsch.

Bem. Mit $D^n := \overline{B_1(0)} \subset \mathbb{R}^n$ gilt

$$D^n/\sim = \mathbb{R}P^n$$
 mit $x \sim y$: $\iff (\{x,y\} \subset \partial D) \land (x = \pm y).$

Bsp. Möbiusband: $M := [0,1] \times [-1,1] / (0,t) \sim (1,-t)$

Def. Seien X,Y topologische Räume, $A\subset X$ und $f:A\to Y$ stetig. Sei \sim die kleinste Äquivalenzrelation auf $X\sqcup Y$, für die $a\sim f(a)$ für alle $a\in A$ gilt. Dann heißt

$$Y \cup_f X := (X \sqcup Y)/\sim$$
 Anheftung von X entlang f.

Prop. Ist $Y \cup_f X$ ein Anhefungsraum und $A \subset X$ abgeschlossen, so ist $Y \hookrightarrow Y \cup_f X, y \mapsto [y]$ ein Homöomorphismus auf einen abgeschlossenen Teilraum und $X \setminus A \hookrightarrow Y \cup_f X, x \mapsto [x]$ ist ein Homöomorphismus auf einen offenen Teilraum.

Def. Für $f: X \to Y$ stetig und $f_0: X \times \{0\} \to Y, (x, 1) \mapsto f(x)$ heißt

$$Z_f = Y \cup_{f_0} (X \times [0,1])$$
 Abbildungszylinder Z_f von f .

Man identifiziert X mit $X \times \{1\} \subset Z_f$.

Def. $C_f := Z_f/(X \times \{1\})$ heißt **Abbildungskegel**.

Simplizialkomplexe

Def. Ein abstrakter Simplizialkomplex ist ein Paar (X, Σ) bestehend aus einer total geordneten Menge X und einer Teilmengen $\Sigma \subset \mathcal{P}(X)$ (genannt Menge der abstrakten Simplizes), sodass gilt:

- Jedes Simplex $\sigma \in \Sigma$ ist nichtleer und endlich.
- Für jede nichtleere Teilmenge $\tilde{\sigma} \subset \sigma \in \Sigma$ gilt $\tilde{\sigma} \in \Sigma$.
- Jedes $x \in X$ ist in mind. einem Simplex enthalten, also $\bigcup_{\sigma \in \Sigma} \sigma = X$.

Def. • Für $\sigma \in \Sigma$ heißt $\dim(\sigma) := |\sigma| - 1$ die **Dimension** von σ .

- Teilmengen von σ heißen Seiten von σ .
- Nulldim. Simplizes heißen Ecken, eindim. Simplizes Kanten.
- Der Simplizialkomplex (X, Σ) heißt endlich, wenn X endlich ist.

Notation. $[n] := \{0, 1, \dots, n\}$ für $n \in \mathbb{N}$

Def. $\Delta_{abstr}^n := ([n], \mathcal{P}([n]))$ heißt volles *n*-dim. Simplex

Def. Für $v_0, \ldots, v_k \in \mathbb{R}^n$ heißt

$$\langle v_0, \dots, v_n \rangle \coloneqq \{t_0 v_0 + \dots + t_n v_n \mid 0 \le t_0, \dots, t_n \text{ und } t_0 + \dots + t_n = 1\}$$

von den Vektoren $v_0, \ldots v_k$ aufgespanntes k-Simplex. Falls v_0, \ldots, v_k nicht affin unabhängig, so ist der k-Simplex degeneriert. Ist dies nicht der Fall, so ist jeder Punkt eindeutig durch die baryzentrischen Koordinaten t_0, \ldots, t_n identifiziert.

Def. $\Delta^n := \langle e_0, \dots, e_n \rangle \subset \mathbb{R}^{n+1}$ heißt **Standard-***n***-Simplex**, wobei e_0, \dots, e_n die Einheitsvektoren in \mathbb{R}^{n+1} bezeichnen.

Bem. Für $k \le n$ induziert jede ordnungserhaltende Abbildung $\phi: [k] \to [n]$ eine Einbettung durch

$$i_{\phi}: \Delta^k \to \Delta^n, \quad \sum_{i=0}^k t_i e_i \mapsto \sum_{i=0}^k t_{\phi(i)} e_{\phi(i)}.$$

Def. Für einen abstrakten Simplizialkomplex (X, Σ) heißt

$$|\Sigma| \coloneqq T/\sim \coloneqq \left(\coprod_{\sigma \in \Sigma} \Delta_{\sigma}\right)/\sim$$

mit $\Delta_{\sigma} \coloneqq \Delta^{\dim \sigma} = \Delta^{|\sigma|-1}$ und der Äq'relation \sim , die für alle Simplizes $\tau \subseteq \sigma \in \Sigma$ und der durch die Totalordnung auf X ind. ordnungserhaltenden Abb. $\phi : [\dim \tau] \to [\dim \sigma]$ alle Punkte $x \in \Delta_{\tau}$ mit $i_{\phi}(x) \in \Delta_{\sigma}$ identifiziert, **geom. Realisierung** von Σ .

Bem. Offensichtlich ist $|\Sigma|$ immer normal und kompakt genau dann, wenn der abstrakte Komplex Σ endlich ist.

Prop. $|\Delta_{\text{abstr}}^n| = \Delta^n$.

Def.
$$\partial \Delta^n := \{\sum_{i=0}^n t_i e_i \mid 0 \le t_i, \sum_{i=0}^n t_i = 1, t_j = 0 \text{ für ein } j\} \subset \mathbb{R}^{n+1}$$

Prop. $|([n], \mathcal{P}([n]) \setminus \{[n]\})| \approx \partial \Delta^n$.

Def. Ein topologischer Raum heißt **triangulierbar**, wenn er homöomorph zu einem geometrischen Simplizialkomplex ist. Den Homöomorphismus bezeichnet man als **Triangulierung**.

Bsp. $S^n \approx \partial \Delta^{n+1}$

Def. Eine Teilmenge $K \subset \mathbb{R}^n$ heißt konvex, falls mit je zwei Punkten $x,y \in K$ auch die Verbindungsstrecke $\{tx + (1-t)y \mid 0 \le t \le 1\}$ in K liegt. Ist K außerdem abgeschlossen, so heißt K konvexer Körper im \mathbb{R}^n .

Def. Für $A \subset \mathbb{R}^n$ ist die konvexe Hülle von A definiert durch

$$\operatorname{conv} A := \bigcap \{ X \subset \mathbb{R}^n \mid X \text{ konvex und } A \subset X \}.$$

Prop. Sei $K \subset \mathbb{R}^n$ ein konvexer Körper und $0 \in \operatorname{int}(K)$. Dann schneidet jeder Strahl im \mathbb{R}^n mit Anfangspunkt 0 den Rand von K in höchstens einem Punkt. Ist K zusätzlich beschränkt (also kompakt und ein konvexer Körper), dann schneidet jeder Strahl den Rand von K in genau einem Punkt.

Prop. Jeder beschränkte konvexe Körper $K \subset \mathbb{R}^n$ mit $0 \in \operatorname{int}(K)$ ist homöomorph zu S^{n-1} vermöge $f : \partial K \to S^{n-1}, \ x \mapsto x/\|x\|$.

Notation. $D^n := \overline{B_1(0)} \subset \mathbb{R}^n$.

Prop. Sei $K \subset \mathbb{R}^n$ ein kompakter konvexer Körper mit $\operatorname{int}(K) \neq \emptyset$. Dann gilt $\partial K \approx \partial D^n$ und $K \approx D^n$.

Korollar. $\Delta^n \approx D^n$ und $\partial \Delta^n \approx S^{n-1}$.

Prop. Sei $S = (X, \Sigma)$ ein endlicher abstrakter Simplizialkomplex, also $X = \{1, 2, 3, ..., n\}$ und seien $x_1, ..., x_n \in \mathbb{R}^n$ affin unabhängig. Dann ist die Vereinigung all jener affinen Simplizes

$$\langle x_{i_1}, \dots, x_{i_k} \rangle \subset \mathbb{R}^n \quad \text{mit } \{i_1, \dots, i_k\} \in \Sigma \quad \text{hom\"oomorph zu } |S|.$$

Def. Eine Teilmenge $T \subset \mathbb{R}^n$ heißt (geom.) Simplizialkomplex, falls T Vereinigung von affinen Simplizes $\sigma_i \subset \mathbb{R}^n$, $i \in I$ mit der folgenden Eigenschaft ist: Der Schnitt $\sigma_i \cap \sigma_j$ zweier dieser Simplizes ist entweder leer oder eine gemeinsame Seite von σ_i und σ_j .

Bem. In diesem Fall ist T homö
omorph zur geometrischen Realisierung eines abstrakten Simplizialkomplexes.

Homotopie und Fundamentalgruppe

Def. Zwei stetige Abbildungen $f,g:X\to Y$ heißen zueinander homotop (geschrieben $f\simeq g$), falls es eine stetige Abbildung

$$H: X \times [0,1] \to Y$$

mit H(-,0) = f und H(-,1) = g gibt.

Lemma. Sei X ein topologischer Raum, $X = C_1 \cup ... \cup C_n$ wobei $C_i \subset X$ abgeschlossen, seien $f_i : C_i \to Y$ stetig mit

$$\forall i, j \in \{1, \dots, n\} : f_i|_{C_i \cap C_j} = f_j|_{C_i \cap C_j}.$$

Dann ist $F: X \to Y, x \mapsto f_i(x), x \in C_i$ stetig.

Prop. • Homotopie ist eine Äquivalenzrelation.

• Seien $f,g:X\to Y,\ h:X'\to X,\ k:Y\to Y'$ stetige Abbildungen. Gilt $f\simeq g$, so auch $k\circ f\circ h\simeq k\circ g\circ h$.

Bsp. • Für $Y \subset \mathbb{R}^n$ konvex sind je zwei Abbildungen $f, g: X \to Y$ zueinander homotop mittels der linearen Homotopie

$$H: X \times [0,1] \to Y, \quad (x,t) \mapsto tg(x) + (1-t)f(x).$$

• Für $X = \{p\}$ einpunktig sind Homtopien $H: X \times [0,1] \to Y$ nichts anderes als Wege in Y.

Def. Eine stetige Abbildung $f: X \to Y$ ist eine **Homotopie-** äquivalenz, falls ein stetiges $g: Y \to X$ existiert mit $g \circ f \simeq \operatorname{id}_X$ und $f \circ g \simeq \operatorname{id}_Y$. Dieses g heißt **Homotopieinverses** zu f.

Def. Existiert eine Homotopieäquivalenz $f: X \to Y$, so heißen X und Y homotopieäquivalent, geschrieben $X \simeq Y$.

Bem. Dies definiert eine Äquivalenzrelation auf der Klasse der topol. Räume. Ihre Äquivalenzklassen heißen Homotopietypen.

Def. Ein topol. Raum heißt kontrahierbar (zusammenziehbar), wenn er homotopieäquivalent zum einpunktigen Raum ist.

Lemma. Seien X,Y topologische Räume und Y kontrahierbar. Dann sind alle stetigen Abbildungen $X \to Y$ homotop.

Korollar. Kontrahierbare Räume sind wegzusammenhängend.

Prop. Die Sphären $S^n \subset \mathbb{R}^{n+1}$ sind nicht kontrahierbar.

Def. Sei X ein topologischer Raum und $A \subset X$. Dann heißt A

- Retrakt von X, falls es eine Retraktion $r: X \to A$ gibt, d. h. r ist stetig und $r|_A = \mathrm{id}_A$.
- Deformationsretrakt von X, falls es eine Retraktion $r: X \to A$ gibt, sodass $i \circ r \simeq \mathrm{id}_X$. Dabei ist $i: A \to X$ die Inklusion.
- starken Deformationsretrakt von X, falls es eine Retraktion $r: X \to A$ gibt, sodass $i \circ r \simeq \operatorname{id}_X$ mittels einer Homotopie, die die Punkte in A nicht bewegt.

Bem. Ist $A \subset X$ ein Deformationsretrakt, so sind A und X homotopieäquivalent.

Bsp. Sei $f: X \to Y$ stetig. Dann ist Y ein starker Deformationsretrakt des Abbildungszylinders Z_f

Def. Zwei stetige Abbildungen $f,g:X\to Y$ heißen homotop relativ zu $A\subset X$ (geschrieben $f\simeq g$ rel A), falls es eine Homotopie $H:X\times [0,1]\to Y$ von f nach g gibt mit

$$H(a,t) = H(a,0)$$
 für alle $a \in A$ und $t \in [0,1]$.

Bem. $A \subset X$ ist genau dann starker Deformationsretrakt, wenn id_X homotop rel. A zu einer st. Abb. $f: X \to X$ mit f(X) = A ist.

Lemma (Reparametrisierungslemma).

Seien $\phi_1, \phi_2 : [0,1] \to [0,1]$ stetig und auf $\{0,1\}$ gleich. Sei $F: P \times [0,1] \to Y$ eine Homotopie, $G_i(p,t) \coloneqq F(p,\phi_i(t))$ für i=1,2. Dann sind $G_1, G_2: P \times [0,1] \to Y$ homotop relativ zu $P \times \{0,1\}$.

Def. Sei X ein topologischer Raum und $x_0 \in X$ fest. Dann wird (X, x_0) ein **punktierter Raum** mit Basispunkt x_0 genannt.

Def. Sei (X, x_0) ein punktierter Raum. Definiere

$$\pi_1(X, x_0) := \{ \gamma : [0, 1] \to X \mid \text{geschl. Weg mit } \gamma(0) = \gamma(1) = x_0 \} / \sim$$

mit $\gamma_1 \sim \gamma_2 :\iff \gamma_1 \simeq \gamma_2 \text{ rel } \{0, 1\}.$

Prop. Die Verknüfung $(\gamma_1, \gamma_2) \mapsto \gamma_1 \cdot \gamma_2$ induziert eine Gruppenstruktur auf $\pi_1(X, x_0)$.

Notation. $\eta^{-1}(t) := \eta(1-t)$ für jeden Weg $\eta: [0,1] \to X$.

Def. $\pi_1(X, x_0)$ heißt **Fundamentalgruppe** von (X, x_0) .

Bem. $\pi_1(X, x_0)$ hängt nur von der Wegkomponente von x_0 ab.

Prop. Seien $x_0, x_1 \in X$. Jeder Weg $\eta: [0,1] \to X$ von x_0 nach x_1 induziert einen Isomorphismus

$$\Psi_{\eta}: \pi_1(X, x_0) \cong \pi_1(X, x_1), \quad [\gamma] \mapsto [\eta^{-1} \cdot \gamma \cdot \eta].$$

Falls $\eta \simeq \eta'$, dann gilt $\Psi_{\eta} = \Psi_{\eta'}$.

Ist η' ein zweiter Weg von x_0 nach x_1 , so ist

$$\kappa \coloneqq [(\eta')^{-1} \cdot \eta] \in \pi_1(X, x_1)$$

und für alle $g \in \pi_1(X, x_0)$ gilt

$$\Psi_{\eta'}(g) = \kappa \cdot \Psi_{\eta}(g) \cdot \kappa^{-1} \in \pi(X, x_1)$$

und somit i. A. $\Psi_{\eta} \neq \Psi_{\eta'}$, falls $\pi_1(X, x_1)$ nicht abelsch ist.

Bspe. • $\pi_1(S^1,1) \cong \mathbb{Z}$

- $\pi_1(\mathbb{R}P^2, x_0) \cong \mathbb{Z} \sim 2\mathbb{Z}$ (mit $x_0 \in \mathbb{R}P^2$ beliebig)
- Sei G eine beliebige Gruppe. Es gibt einen Simplizialkomplex X mit Basispunkt $x_0 \in X$, sodass $\pi_1(X, x_0) \cong G$.

Def. Seien (X, x_0) und (Y, y_0) punktierte Räume. Eine stetige Abbildung $f: X \to Y$ heißt **basispunkterhaltend** oder **punktiert**, falls $f(x_0) = y_0$.

 $\textbf{Def.}\,$ Eine punktierte Abbildung $f:(X,x_0)\to (Y,y_0)$ induziert einen Morphismen der Fundamentalgruppen vermöge

$$f_*: \pi_1(X, x_0) \to \pi_1(Y, y_0), \quad [\gamma] \mapsto [f \circ \gamma].$$

Prop. • (−)* besitzt die Funktor-Eigenschaften, d. h.

$$(g \circ f)_* = g_* \circ f_*$$
 und $(id_X)_* = id_{\pi_1(X,x_0)}$

• Sind $f,g:X\to Y$ punktierte stetige Abbildungen und $f\simeq g,$ so gilt $f_*=g_*.$

Def. Ein topol. Raum X heißt einfach zusammenhängend, falls X wegzshgd ist und $\pi_1(X, x_0) = 1$ für ein (und damit alle) $x_0 \in X$.

Bsp. S^1 ist nicht einfach zusammenhängend.

Prop. Zusammenziehbare Räume sind einfach zusammenhängend.

Prop. Seien X und Y wegzusammenhängend und $x_0 \in X$. Ist $f: X \to Y$ eine Homotopieäquivalenz, dann ist $f_*: \pi_1(X, x_0) \to \pi_1(Y, f(x_0))$ ein Isomorphismus.

Bsp. \mathbb{R}^n ist zusammenziehbar, also einfach zusammenhängend.

Prop. Für $n \geq 2$ ist S^n einfach zusammenhängend.

Def. Für einen punktierten Raum (X, x_0) heißt

$$\pi_n(X, x_0) := \{ \gamma : (S^n, s_0) \to (X, x_0) \mid \gamma \text{ stetig} \} / \sim$$

$$\text{mit} \quad \gamma_1 \sim \gamma_2 : \iff \gamma_1 \simeq \gamma_2 \text{ rel } \{s_0\}.$$

n-te Homotopiegruppe. Dabei ist $s_0 \in S^n$ fest.

Kategorientheorie

Def. Eine Kategorie \mathcal{C} besteht aus

- einer Klasse Ob(C) von **Objekten**,
- für je zwei Objekte A, B ∈ Ob(C) eine Menge Hom(A, B) von Morphismen von A nach B. Für f ∈ Hom(A, B) schreibt man auch f: A → B oder A → B. Dabei heißt dom(f) := A Quelle (Domain), codom f := B Ziel (Codomain) von f. Die Klasse aller Morphismen wird mit Mor(C) bezeichnet.
- einer assoziativen Kompositionsoperation, d. h. einer Abbildung

$$\prod_{A,B,C\in \mathrm{Ob}(\mathcal{C})}\mathrm{Hom}(B,C)\times \mathrm{Hom}(A,B)\to \mathrm{Hom}(A,C),\quad (f,g)\mapsto f\circ g,$$

mit
$$(h \circ g) \circ f = h \circ (g \circ f)$$
 für alle $A \xrightarrow{f} B \xrightarrow{g} C \xrightarrow{h} D \in \mathcal{D}$.

• für jedes $A \in \text{Ob}(\mathcal{C})$ einem Identitätsmorphismus $\text{id}_A : A \to A$ mit $\text{id}_A \circ f = f$ und $g \circ \text{id}_A = g$ für alle $f : B \to A$ und $g : A \to B$.

Bem. Die Identitätsmorphismen sind eindeutig bestimmt.

Def. Ein Morphismus $A \xrightarrow{f} B \in \mathcal{C}$ heißt **Isomorphismus**, falls es einen Morphismus $B \xrightarrow{g} A \in \mathcal{C}$ gibt mit $f \circ g = \mathrm{id}_B$ und $g \circ f = \mathrm{id}_A$. Dieses g heißt dann **Inverses** von f, geschrieben $f^{-1} := g$.

Bspe. Es gibt die Kategorien

- Set der Mengen und Abbildungen,
- Grp (AbGrp) der (abelschen) Gruppen, Rng der Ringe, Mod_R der R-Moduln, Vect_k der k-VRe mit den jeweils strukturerhaltenden Abbildungen,
- Top der topologischen Räume, Met der metrischen Räumen KompHaus der kompakten Hausdorffräume, Top* der punktierten topologischen Räume mit den jeweils stetigen (und basispunkterhaltenden) Abbildungen,
- Jede Partialordnung \leq auf einer Menge X definiert eine Kategorie $\mathcal E$ mit $\mathrm{Ob}(\mathcal E) \coloneqq X$ und $\mathrm{Hom}(a,b) \coloneqq \{\leq_{a,b} \,|\, a \leq b\}.$
- der Relationen Rel mit Mengen als Objekten, $\operatorname{Hom}(A,B) \coloneqq \mathcal{P}(A \times B) \text{ und, für } S \subseteq B \times C \text{ und } R \subseteq A \times B,$

$$S \circ R := \{(a, c) \in A \times C \mid \exists b \in B : aRb \wedge bSc\}.$$

Bem. Eine Kategorie mit nur einem Objekt ist eine Gruppe.

Def. Ein **Gruppoid** ist eine Kategorie, in der alle Morphismen Isomorphismen sind.

Def. Das Fundamentalgruppoid $\pi(X)$ eines topologischen Raumes X ist die Kategorie

$$\begin{aligned} \operatorname{Ob}(\pi(X)) &:= X, \\ \operatorname{Hom}(a,b) &:= \{ \gamma : [0,1] \to X \text{ stetig} \, | \, \gamma(0) = a, \gamma(1) = b \} / \sim \\ & \quad \operatorname{mit} \, \gamma_0 \sim \gamma_1 \; : \iff \gamma_0 \simeq \gamma_1 \text{ rel } \{0,1\}. \end{aligned}$$

Bem. Sei \mathcal{C} eine Kategorie, \sim eine Äg'relation auf Mor(\mathcal{C}), sodass:

- Falls $f, g \in \text{Mor}(\mathcal{C})$ mit $f \sim g$, so ist dom(f) = dom(g) und codom(f) = codom(g).
- Ist $f \sim g \in \text{Hom}(A, B)$ und $h \sim k \in \text{Hom}(B, C)$, so gilt auch $h \circ f \sim k \circ g \in \text{Hom}(A, C)$.

Dann gibt es eine Kategorie \mathcal{C}/\sim mit $\mathrm{Ob}(\mathcal{C}/\sim):=\mathrm{Ob}(\mathcal{C}),$ $\mathrm{Mor}(\mathcal{C}/\sim):=\mathrm{Mor}(\mathcal{C})/\sim$ und $[f]\circ[g]=[f\circ g].$

Def. Die **Produktkategorie** $\mathcal{C} \times \mathcal{D}$ von Kat. \mathcal{C} und \mathcal{D} ist def. durch $\mathrm{Ob}(\mathcal{C} \times \mathcal{D}) := \mathrm{Ob}(\mathcal{C}) \times \mathrm{Ob}(\mathcal{D})$,

$$\text{Hom}_{\mathcal{C} \times \mathcal{D}}((A_1, A_2), (B_1, B_2)) := \text{Hom}_{\mathcal{C}}(A_1, B_1) \times \text{Hom}_{\mathcal{D}}(A_2, B_2).$$

Def. Die **Homotopiekategorie** ist **HTop** := Top/\simeq . Die Kategorie **HTop*** besteht aus basispunkterhaltenden Homotopieklassen von basispunkterhaltenden Abbildungen zwischen punktierten topologischen Räumen.

Def. Ein (kovarianter) **Funktor** $F:\mathcal{C}\to\mathcal{D}$ zw. Kategorien \mathcal{C} und \mathcal{D} besteht aus einer Abb. von Objekten $F:\mathrm{Ob}(\mathcal{C})\to\mathrm{Ob}(\mathcal{D})$ und einem Morphismus $F(f)\in\mathrm{Hom}_{\mathcal{D}}(F(A),F(B))$ für jeden Morphismus $f\in\mathrm{Hom}_{\mathcal{C}}(A,B)$, sodass gilt:

- $F(\mathrm{id}_A) = \mathrm{id}_{F(A)}$ für alle $A \in \mathrm{Ob}(\mathcal{C})$,
- $F(q \circ f) = F(q) \circ F(f)$ für alle $f: A \to B$ und $q: B \to C$ aus C.

Def. Die Kategorie **Gpd** ist die Kategorie der Gruppoide mit Funktoren als Morphismen.

Bspe. • Für $C = \mathbf{Grp}, \mathbf{AbGrp}, \mathbf{Rng}, \mathbf{Top}, \dots$ gibt es den **Vergissfunktor** $U : C \to \mathbf{Set}$.

- Besitzen $\mathcal C$ und $\mathcal D$ nur je ein Objekt (sind also Gruppen), so ist ein Funktor $F:\mathcal C\to\mathcal D$ nichts anderes als ein Gruppenhomo.
- Der Potenzmengenfunktor $P : \mathbf{Set} \to \mathbf{Set}$ ist definiert durch $P(A) := \mathcal{P}(A), \quad P(f : A \to B)(X \subseteq A) := f(X) \subseteq B.$
- Sind P und Q partiell geordnete Mengen, so ist ein Funktor $P \to Q$ nichts anderes als eine ordnungserhaltende Abbildung

Bem. • π definiert einen Funktor **Top** \rightarrow **Gpd**.

- π_0 definiert Funktoren **Top** \rightarrow **Set** und **HTop** \rightarrow **Set**.
- π_1 definiert Funktoren $\mathbf{Top}^* \to \mathbf{Grp}$ und $\mathbf{HTop}^* \to \mathbf{Grp}$.

Def. Die duale Kategorie einer gegebenen Kategorie \mathcal{C} ist die Kategorie $\mathcal{D} \coloneqq \mathcal{C}^{\text{op}}$ gegeben durch

$$\mathrm{Ob}(\mathcal{D}) := \mathrm{Ob}(\mathcal{C}), \quad \mathrm{Hom}_{\mathcal{D}}(A, B) := \mathrm{Hom}_{\mathcal{C}}(B, A), \quad f \circ_{\mathcal{D}} g := g \circ_{\mathcal{C}} f.$$

Def. Ein kontravarianter Funktor zwischen Kategorien \mathcal{C} und \mathcal{D} ist ein kovarianter Funktor $F: \mathcal{C}^{\mathrm{op}} \to \mathcal{D}$.

Bspe. • Der kontravariante Potenzmengenfunktor

$$P^* : \mathbf{Set}^{\mathrm{op}} \to \mathbf{Set}, \quad P(A) := \mathcal{P}(A), \quad P(f : A \to B)(Y) := f^{-1}(Y)$$

• Sei k ein Körper, dann ist der Dualisierungsfunktor

*:
$$\mathbf{Vect}_k^{\mathrm{op}} \to \mathbf{Vect}_k$$
, *(V) := $\mathrm{Hom}_{\mathbf{Vect}_k}(V, k)$,
(f: V \to W) := (f: W* \to V*) := $\phi \mapsto \phi \circ f$

Def. Seien $F,G:\mathcal{C}\to\mathcal{D}$ Funktoren. Eine **natürliche Transformation** $\alpha:F\to G$ ordnet jedem $X\in \mathrm{Ob}(\mathcal{C})$ einen Morphismus $\alpha_X\in \mathrm{Hom}_{\mathcal{D}}(F(X),G(X))$ zu, sodass für jeden Morphismus $f:A\to B$ in \mathcal{C} folgendes Diagramm kommutiert:

$$F(A) \xrightarrow{F(f)} G(B)$$

$$\alpha_A \downarrow \qquad \qquad \downarrow \alpha_B$$

$$G(A) \xrightarrow{G(f)} G(B)$$

Bem. Ist $H:\mathcal{C}\to\mathcal{D}$ ein weiterer Funktor und $\beta:G\to H$ eine weitere natürliche Transformation, so ist $\beta\alpha:F\to H$ definiert durch

$$(\beta \alpha)_X := \beta_X \circ \alpha_X : F(X) \to H(X)$$

eine natürliche Transformation zwischen F und H.

Bem. Für Kategorien $\mathcal C$ und $\mathcal D$ gibt es die Funktorkat. $[\mathcal C, \mathcal D]$ der Funktoren von $\mathcal C$ nach $\mathcal D$ mit nat. Transformationen als Morphismen.

Def. Die Isomorphismen der Funktorkategorie $[\mathcal{C}, \mathcal{D}]$ heißen natürliche Isomorphismen.

Notation. $F \simeq G : \iff \exists \text{ nat. Isomorphismus zwischen } F \text{ und } G$

Lemma. Eine natürliche Transformation $\eta: F \to G$ ist genau dann ein natürlicher Isomorphismus, wenn alle Komponenten $(\eta_X: F(X) \to G(X))_{X \in \mathrm{Ob}\, G}$ Isomorphismen sind.

Bsp. Sei $**:=*\circ *: \mathbf{Vect}_k \to \mathbf{Vect}_k$ der Bidualisierungsfunktor. Es gibt eine nat. Transformation $\eta: \mathrm{Id}_{\mathbf{Vect}_k} \to **$ gegeben durch

$$\eta_V(v \in V) := (\phi \mapsto \phi(v)).$$

Für endlichdimensionale VR V ist η_V ein Isomorphismus, also ist $\eta|\mathbf{FinVect}_k: \mathrm{Id}_{\mathbf{FinVect}_k} \to **$ ein natürlicher Isomorphismus.

Überlagerungen

Def. Seien X, Y topologische Räume.

• Eine Teilmenge $Y \subset Y$ wird durch eine stetige Abbildung $p: X \to Y$ gleichmäßig überlagert, falls es einen diskreten Raum D und einen Homöomorphismus

$$\phi: p^{-1}(U) \xrightarrow{\approx} U \times D \quad \text{mit} \quad p = \pi_1 \circ \phi$$

gibt, wobei $\pi_1: X \times D \to X$ die Projektion ist.

 Die Abbildung p heißt Überlagerung, falls jeder Punkt in Y eine durch p gleichmäßig überlagerte Umgebung besitzt.

Bsp. $\mathbb{R} \to S^1$, $t \mapsto e^{2\pi i t}$ ist eine Überlagerung.

 $Bem. \ {\rm Sei} \ p: X \rightarrow Y$ eine Überlagerung, Yzsh
gd. Dann ist

$$Y \to \mathbb{N}_{\geq 1} \cup \{\infty\}, \quad y \mapsto \#(p^{-1}(y))$$

konstant, da lokalkonstant. Falls $d = \#(p^{-1}(y))$ endlich ist, heißt p eine d-blättrige Überlagerung. Ansonsten heißt p eine unendliche Überlagerung. Eine Überlagerung mit mehr als einem Blatt heißt nichttriviale Überlagerung.

Def. Eine stetige Abbildung $p: X \to Y$ heißt **lokaler Homöomorphismus**, falls für alle $x \in X$ eine offene Umgebung U_x von x existiert, sodass $p|_{U_x}: U_x \to p(U_x)$ ein Homöomorphismus ist.

Lemma. Jede Überlagerung ist ein lokaler Homöomorphismus.

Prop. Sei $p: X \to Y$ eine Überlagerung, $\gamma: [0,1] \to Y$ ein Weg und $x \in X$ mit $p(x) = \gamma(0)$. Dann gibt es einen eindeutig bestimmten Weg $\tilde{\gamma}: [0,1] \to X$ mit $\tilde{\gamma}(0) = x$ und $p \circ \tilde{\gamma} = \gamma$.

Satz (Homotopie-Liftungsthm). Sei $p: X \to Y$ eine Überlagerung und $F: W \times [0,1] \to Y$ eine Homotopie. Sei $\tilde{f}: W \to X$ eine Liftung von F(-,0), d. h. $p \circ \tilde{f} = F(-,0)$. Dann existiert eine Homotopie $\tilde{F}: W \times [0,1] \to X$ mit $\tilde{F}(-,0) = \tilde{f}$ und $p \circ \tilde{F} = F$.

Korollar. Seien γ_0, γ_1 Wege in Y mit $\gamma_0 \simeq \gamma_1$ rel $\{0, 1\}$ und $\widetilde{\gamma_0}, \widetilde{\gamma_1} : [0, 1] \to X$ Liftungen von γ_0 und γ_1 mit dem gleichen Anfangspunkt $\widetilde{\gamma_0}(0) = \widetilde{\gamma_1}(0) = x_0 \in X$. Dann gilt $\widetilde{\gamma_0}(1) = \widetilde{\gamma_1}(1)$ und $\widetilde{\gamma_0} \simeq \widetilde{\gamma_1}$ rel $\{0, 1\}$.

Korollar. Sei $\gamma:[0,1]\to Y$ ein geschl. Weg homotop zu einem konstanten Weg rel $\{0,1\}$. Dann ist jeder Lift $\tilde{\gamma}:[0,1]\to X$ auch ein geschl. Weg und homotop zu einem konstanten Weg rel $\{0,1\}$.

Korollar. Sei Y ein wegzshgder Raum, $p: X \to Y$ eine wegzshgde nichttriviale Überlagerung. Ist $y_0 \in Y$, so gilt $\pi_1(Y, y_0) \neq 1$.

Korollar. $\mathbb{R}P^2 \not\approx S^2$, da die Quotientenabb. $S^2 \to S^2/\sim = \mathbb{R}P^2$ eine nichttriviale Überlagerung und S^2 einfach zshgd ist.

Prop. Die Abbildung $p: \mathbb{R} \to S^1, t \mapsto e^{2\pi i t}$ ist eine Überlagerung von S^1 . Bezeichne für geschl. Wege $f: [0,1] \to S^1$ mit $f(0) = f(1) = e^0$ mit \tilde{f} die Liftung von f mit $\tilde{f}(0) = 0$. Dann ist $\deg: \pi_1(S^1,0) \to \mathbb{Z}, \quad [f] \mapsto \tilde{f}(1) \in \mathbb{Z}$

ein Gruppenisomorphismus.

Def. Jede stetige Abbildung $f: S^1 \to S^1$ ist homotop zu einer Abbildung $\hat{f}: S^1 \to S^1$ mit $f(e^0) = e^0$. Diese kann als geschl. Weg in S^1 aufgefasst werden. Der **Abbildungsgrad** von f ist deg $\hat{f} \in \mathbb{Z}$.

Prop. $\deg(z \mapsto z^n : S^1 \to S^1) = n$ für alle $n \in \mathbb{Z}$.

Korollar (Fundamentalsatz der Algebra). Jedes nicht-konstante Polynom mit komplexen Koeffizienten besitzt eine Nullstelle in \mathbb{C} .

Def. Ein topol. Raum X heißt lokal wegzusammenhängend, falls für alle $x \in X$ und Umgebungen $U_x \subseteq X$ von x eine wegzshgde Umgebung $V_x \subseteq U_x$ von x existiert.

Satz (Liftungstheorem). Sei $p: X \to Y$ eine Überlagerung, W wegzshgd und lokal wegzshgd, $f: W \to Y$ stetig, $x_0 \in X$, $w_0 \in W$ mit $y_0 := p(x_0) = f(w_0)$. Dann existiert eine stetige Abbildung $\tilde{f}: W \to X$ mit $p \circ \tilde{f} = f$ und $\tilde{f}(w_0) = x_0$ genau dann, wenn

$$f_*(\pi_1(W, w_0)) \subseteq \operatorname{im}(p_* : \pi_1(X, x_0) \to \pi_1(Y, y_0)).$$

In diesem Fall ist die Liftung \hat{f} eindeutig.

Def. Eine **Decktransformation** einer Überlagerung $p: X \to Y$ ist ein Homöomorphismus $\phi: X \to X$ mit $p \circ \phi = p$. Ihre Menge bildet mit der Abbildungs-Komposition eine Gruppe Deck(p).

Korollar. Seien $p: X \to Y$ eine Überlagerung, $x_0, x_1 \in X$ mit $p(x_0) = p(x_1)$. Ist X einfach zshgd und lokal wegzshgd, so gibt es genau eine Decktransformation $\phi: X \to X$ mit $\phi(x_0) = x_1$.

Def. Eine Überlagerung $p:X\to Y$ heißt universell, falls p surjektiv, X einfach zshgd und lokal wegzshgd ist.

Prop. Seien $p: X \to Y$ und $p': X' \to Y$ univ. Überlagerungen. Dann gibt es einen Homöomorphismus $\phi: X \to X'$ mit $p' \circ \phi = p$.

Für $p:(X,x_0) \to (Y,y_0)$ eine universelle Überlagerung und $g = [\gamma] \in \pi_1(Y,y_0)$ sei $\tilde{\gamma}$ der Lift von γ mit $\gamma(0) = x_0$. Sei $\psi_q \in \text{Deck}(p)$ die eindeutige Decktransformation mit $\psi_q(x_0) = \tilde{\gamma}(1)$.

Prop. $\Psi: \pi_1(Y, y_0) \to \operatorname{Deck}(p), g \mapsto \psi_q$ ist ein Gruppeniso.

Prop. Sei $p: X \to Y$ eine Überlagerung, X wegzshgd und lokal wegzshgd und $G < \operatorname{Deck}(p)$ eine Untergruppe. Angenommen, für alle $y \in Y$ und $x_0, x_1 \in p^{-1}(y)$ existiert $g \in G$ mit $g(x_0) = x_1$. Dann gilt $G = \operatorname{Deck}(p)$.

Def. Eine Wirkung oder Operation einer Gruppe G auf einem Raum X ist ein Gruppenhomomorphismus $\phi: G \to \operatorname{Aut}_{\mathbf{TOD}} X$.

Notation. Statt $\phi(q)$ schreibt man auch ϕ_q oder q.

 $\mathbf{Def.}\;\;\mathrm{Der}\;\;\mathbf{Orbitraum}\;\;\mathrm{der}\;\;\mathrm{Gruppenwirkung}\;\mathrm{von}\;\;G\;\mathrm{auf}\;X\;\mathrm{ist}$

$$X/G := X/\sim \quad \text{mit} \quad x \sim y : \iff \exists g \in G : g(x) = y.$$

Def. Eine Gruppenwirkung $\phi: G \to \operatorname{Aut}(X)$ heißt **eigentlich diskontinuierlich**, falls jeder Punkt $x \in X$ eine Umgebung U besitzt, so dass gilt: $\forall q \in G: \phi_q(U) \cap U \neq \emptyset \Longrightarrow q = e$.

Prop. Sei X zshgd, lokal wegzshgd, $G \to \operatorname{Aut}(X)$ eine eigentlich diskontinuierliche Wirkung. Dann ist $p: X \to X/G$ eine Überlagerung mit Decktransformationsgruppe G.

Satz. Sei X einfach zshgd und lokal wegzshgd. Die Gruppe G wirke eigentlich diskontinuierlich auf X. Dann gilt für jeden Basispunkt $y_0 \in Y := X/G$: $\pi_1(Y, y_0) \cong G$.

Bspe. • $\pi_1(S^1) = \pi_1(\mathbb{R}/\mathbb{Z}) \cong \mathbb{Z}$, • $\pi_1(S^1 \times S^1) = \pi_1(\mathbb{R}^2/\mathbb{Z}^2) \cong \mathbb{Z} \oplus \mathbb{Z}$, • $\pi_1(\mathbb{R}P^2) = \pi_1(S^2/(\mathbb{Z}/2)) \cong \mathbb{Z}/2$

Def. Ein topologischer Raum X heißt **semilokal einfach zshgd**, falls jedes $x \in X$ eine Umgebung $U_x \subset X$ besitzt, sodass $i_*: \pi_1(U_x, x) \to \pi_1(X, x)$ (wobei $i: U_x \hookrightarrow X$ die Inklusion bezeichnet) trivial ist.

Bspe. Semilokal einfach zshgd: • Simplizialkomplexe, • Mften Nicht semilokal einfach zshgd: • Hawaiianischen Ohrringe

Satz. Sei Y wegzshgd und lokal wegzshgd. Dann besitzt Y genau dann eine univ. Überlagerung, wenn Y semilokal einfach zshgd ist.