Aymptotic (Large Sample) Theory

A random sequence A_n is:

(a)
$$o_p(1)$$
 if $A_n \stackrel{p}{\to} 0$ (1)

(b)
$$o_n(B_n)$$
 if $A_n/B_n \stackrel{p}{\to} 0$

(c)
$$O_p(1)$$
 if $\forall \epsilon > 0, \exists M : \lim_{n \to \infty} \mathbb{P}(|A_n| > M) < \epsilon$ (3)

(d)
$$O_p(B_n)$$
 if $A_n/B_n = O_p(1)$ (4)

If
$$Y_n \rightsquigarrow Y \Longrightarrow Y_n = O_p(1)$$

If $\sqrt{n}(Y_n - c) \rightsquigarrow Y \Longrightarrow Y_n = O_p(1/\sqrt{n})$

Distances Between Distributions

For distributions P and Q with pdfs p and q:

(a)
$$V(P,Q) = \sup_{A} |P(A) - Q(A)|$$
 total variation distance (5)

(b)
$$K(P,Q) = \int p\log(p/q)$$
 Kullback-Leibler divergence (6)

(c)
$$d_2(P,Q) = \int (p-q)^2 \mathbf{L_2}$$
 distance (7)

A model is **identifiable** if: $\theta_1 \neq \theta_2 \implies K(\theta_1, \theta_2) > 0$.

Consistency

$$\hat{\theta}_n = T(X^n)$$
 is **consistent** for θ if $\hat{\theta}_n \xrightarrow{p} \theta$ (ie if $\hat{\theta}_n - \theta = o_p(1)$).

To show consistency, can show: $\operatorname{Bias}^2(\hat{\theta}_n) + \operatorname{Var}(\hat{\theta}_n) \to 0$.

The MLE is consistent under regularity conditions.

MLE not consistent when number of params (or support?) grows.

Score and Fisher Information

The score function is $S(\theta) = \frac{\partial}{\partial \theta} l(\theta) = \frac{\partial}{\partial \theta} \sum_{i=1}^{n} \log p(x_i | \theta)$. The **Fisher information** is defined as

$$I_n(\theta) = \mathbb{E}_{\theta} \left[S(\theta)^2 \right] = \operatorname{Var}_{\theta} \left[S(\theta) \right] = -\mathbb{E}_{\theta} \left[\frac{\partial^2}{\partial \theta^2} l(\theta) \right]$$
 (8)

and
$$I_n(\theta) = -n\mathbb{E}\left[\frac{\partial^2}{\partial \theta^2}\log p(X_1;\theta)\right] = nI_1(\theta).$$

The observed information $\hat{I}_n(\theta) = -\sum_i \frac{\partial^2}{\partial \theta^2} \log p(X_i; \theta)$. Vector case: $S(\theta) = \left[\frac{\partial l(\theta)}{\partial \theta_i}\right]_{i=1,...,K} \quad I_{ij} = -\mathbb{E}_{\theta} \left[\frac{\partial^2 l(\theta)}{\partial \theta_i \partial \theta_j}\right]_{i,j=1,...,K}$

Efficiency and Robustness

For an estimator $\hat{\theta}_n(X^n)$ of θ , where $X^n \stackrel{\text{iid}}{\sim} p(x|\theta)$:

If $\sqrt{n}(\hat{\theta}_n - \theta) \rightsquigarrow \mathcal{N}(0, v^2)$, then v^2 is the **asymptotic-Var** $(\hat{\theta}_n)$. E.g. for $\hat{\theta}_n = \overline{X}_n$: $v^2 = \sigma^2 = \text{Var}(X_i) = \lim_{n \to \infty} n \text{Var}(\overline{X}_n)$.

In general, asymptotic- $\operatorname{Var}(\hat{\theta}_n)$ $v^2 \neq \lim_{n \to \infty} n \operatorname{Var}(\hat{\theta}_n)$.

We will use approx: $Var(\hat{\theta}_n) \approx v^2/n$.

For param $\tau(\theta)$, $v(\theta) = \frac{|\tau'(\theta)|^2}{I_1(\theta)}$ is the **Cramer-Rao lower bound**. since, for most estimators $\hat{\theta}_n$, the asymptotic-Var($\hat{\theta}_n$) $\geq v(\theta)$.

If $\sqrt{n}(\hat{\theta}_n - \tau(\theta)) \rightsquigarrow \mathcal{N}(0, v(\theta))$ (ie if $v^2 = v(\theta)$) $\Longrightarrow \hat{\theta}_n$ efficient. (usually) $\sqrt{n}(\tau(\hat{\theta}_{mle}) - \tau(\theta)) \rightarrow \mathcal{N}(0, v(\theta)) \implies \text{MLE efficient.}$

The standard error of efficient $\hat{\theta}_n$ is $se = \sqrt{\operatorname{Var}(\hat{\theta}_n)} \approx \sqrt{\frac{1}{I_n(\theta)}}$.

The estimated standard error of efficient $\hat{\theta}_n$ is $\hat{se} \approx \sqrt{\frac{1}{I_n(\hat{\theta}_n)}}$.

For efficient $\hat{\theta}_n$, $\hat{\tau} = \tau(\hat{\theta}_n)$, $se \approx \sqrt{\frac{|\tau'(\theta)|^2}{I_n(\theta)}}$, and $se \approx \sqrt{\frac{|\tau'(\hat{\theta}_n)|^2}{I_n(\hat{\theta}_n)}}$.

In general, **asymptotic normality** is when:

$$\frac{\hat{\theta}_n - \mathbb{E}(\hat{\theta}_n)}{\sqrt{\text{Var}(\hat{\theta}_n)}} \rightsquigarrow \mathcal{N}(0,1) \implies \hat{\theta}_n \rightsquigarrow \mathcal{N}(\mathbb{E}(\hat{\theta}_n), \text{Var}(\hat{\theta}_n)).$$

If $\sqrt{n}(W_n - \tau(\theta)) \rightsquigarrow \mathcal{N}(0, \sigma_W^2)$ and $\sqrt{n}(V_n - \tau(\theta)) \rightsquigarrow \mathcal{N}(0, \sigma_V^2)$ \implies asymptotic relative efficiency ARE $(V_n, W_n) = \sigma_W^2/\sigma_V^2$. Often there is a tradeoff between efficiency and robustness. (?)

Hypothesis Testing

Null hypothesis $H_0: \theta \in \Theta_0$, alternative $H_1: \theta \in \Theta_1$.

Type I error: If H_0 true but we reject H_0 .

To construct a test:

(2)

1. Choose a test statistic $W = W(X_1, \ldots, X_n)$

2. Choose a rejection region R(9)

3. If $W \in \mathbb{R}$, reject H_0 otherwise retain H_0

For rejection region R, the **power function** $\beta(\theta) = \mathbb{P}_{\theta}(X^n \in R)$. Want level- α test $(\sup_{\theta \in \Theta_0} \beta(\theta) \le \alpha)$ that maximizes $\beta(\theta_1)$.

A level- α test with power in β is uniformly most powerful if: $\beta(\theta) \ge \beta'(\theta) \ \forall \theta \in \Theta_1 \ \forall \beta' \ne \beta.$

Neyman-Pearson Test

For simple $H_0: \theta = \theta_0$ and $H_1: \theta = \theta_1$, reject $H_0: \frac{L(\theta_1)}{L(\theta_0)} > k$. where k chosen s.t. $\mathbb{P}(\frac{L(\theta_1)}{L(\theta_2)} > k) = \alpha$.

Wald Test

For $H_0: \theta = \theta_0$ and $H_1: \theta \neq \theta_0$, reject H_0 if $\left| \frac{\hat{\theta}_n - \theta_0}{se} \right| > z_{\alpha/2}$. where $z_{\alpha/2}$ is the inverse standard-normal CDF of $1-\frac{\alpha}{2}$. and $\hat{\theta}_n$ is an unbiased estimator for θ .

and $se = \sqrt{\operatorname{Var}(\hat{\theta}_n)}$. Can also use $\hat{se} =_{\operatorname{eg.}} \sqrt{S_n^2/n}$. and if $\hat{\theta}_n$ efficient, can approx: $se \approx \sqrt{\frac{1}{I_n(\theta)}}$ or $\hat{se} \approx \sqrt{\frac{1}{I_n(\theta)}}$

Likelihood Ratio Test

For $H_0: \theta \in \Theta_0$ and $H_1: \theta \notin \Theta_0$, reject H_0 if $\lambda(x^n) = \frac{L(\theta_0)}{L(\hat{\theta})} \leq c$.

where $L(\hat{\theta}_0) = \sup_{\theta \in \Theta_0} L(\theta)$ and $L(\hat{\theta}) = \sup_{\theta \in \Theta} L(\theta)$. and c chosen s.t. $\mathbb{P}(\lambda(x^n) \leq c) = \alpha$.

Thm: under $H_0: \theta = \theta_0 \implies W_n = -2\log\lambda(X^n) \rightsquigarrow \chi_1^2$

 $\Longrightarrow \lim_{n\to\infty} \mathbb{P}_{\theta_0}(W_n > \chi_{1,\alpha}^2) = \alpha.$

Also: for $\theta = (\theta_1, \dots, \theta_k)$, if H_0 fixes some of the parameters $\implies -2\log\lambda(X^n) \rightsquigarrow \chi^2_{\nu}$, where $\nu = \dim(\Theta) - \dim(\Theta_0)$.

P-Values

The **p-value** $p(x^n)$ is the smallest α -level s.t. we reject H_0 .

Thm: For a test of the form: reject H_0 when $W(x^n) > c$,

 $\implies p(x^n) = \sup \mathbb{P}_{\theta}(W(X^n) \ge W(x^n)) = \sup [1 - F(W(x^n)|\theta)].$

Thm: Under $H_0: \theta = \theta_0, \ p(x^n) \sim \text{Unif}(0,1).$

Permutation Test