Table S2: Base parameter values

Table 52. Base parameter values				
Elementary Reaction	Parameter	Definition	Value	Reference
$* \rightarrow A_i$	$k_{\scriptscriptstyle A}$	Internal AHL production rate constant	842 molecules min ⁻¹	Varied depending on diffusion rate to keep the steady state level constant (10 nM). 10 nM is a concentration that elicits half-maximal activation of LuxR/I system [1].
$* \rightarrow R$	k_{R}	R protein production rate constant	20 molecules min ⁻¹	Set to provide a saturating level of R protein.
$R + A_i \rightarrow C$	k_{C1}	Complex association rate constant	0.1 molecules ⁻¹ min ⁻¹	Estimated to favor complex association because R proteins tend to form a stable complex [2].
$C \to R + A_i$	k_{C2}	Complex dissociation rate constant	1 min ⁻¹	Estimated to favor complex association because R proteins tend to form a stable complex [2].
$A_i \rightarrow *$	${\cal Y}_{A_i}$	Internal AHL decay rate constant	0.023 min ⁻¹	Dominated by dilution due to cell growth.
$A_e \to *$	${\gamma}_{A_e}$	External AHL decay rate constant	0.0018 min ⁻¹	Measured hydrolysis rate of 3-Oxo-C ₆ -AHL is 3.07×10^{-5} s ⁻¹ [3].
$R \rightarrow *$	$\gamma_{\scriptscriptstyle R}$	R protein decay rate constant	0.2 min ⁻¹	Measured TraR half life is 3.5 min [2].
$C \rightarrow *$	γ_{c}	Complex decay rate constant	0.02 min ⁻¹	Stable and dominated by dilution due to cell growth.
$A_i \longleftrightarrow A_e$	P	AHL diffusion rate constant	2×10 ⁻¹² L min ⁻¹	Estimated from diffusion rates of sugar group [4].
	$V_{_i}$	Cell volume	1.6×10 ⁻¹⁵ L	Typical cell volume of <i>E. coli</i> [5].
	V_e	Microenvironment volume (average extracellular volume per cell)	7.99×10 ⁻⁹ L	
	β	Effective magnitude of extrinsic noise source	49	Set so that extrinsic noise dominates total noise.
$C+C \to D$	k_{D1}	Dimer association rate constant	0.1 molecules ⁻¹ min ⁻¹	
$D \to C + C$	k_{D2}	Dimer dissociation rate constant	1 min ⁻¹	

References

- 1. Collins CH, Arnold FH, Leadbetter JR (2005) Directed evolution of Vibrio fischeri LuxR for increased sensitivity to a broad spectrum of acyl-homoserine lactones. Molecular Microbiology 55: 712--723.
- 2. Zhu J, Winans SC (2001) The quorum-sensing transcriptional regulator TraR requires its cognate signaling ligand for protein folding, protease resistance, and dimerization. Proc Natl Acad Sci U S A 98: 1507--1512.
- 3. Kaufmann GF, Sartorio R, Lee S-H, Rogers CJ, Meijler MM, et al. (2005) Revisiting quorum sensing: Discovery of additional chemical and biological functions for 3-oxo-N-acylhomoserine lactones. Proc Natl Acad Sci U S A 102: 309--314.
- 4. Nikaido H, Rosenberg EY (1981) Effect on solute size on diffusion rates through the transmembrane pores of the outer membrane of Escherichia coli. J Gen Physiol 77: 121-135.
- 5. Prescott LM, Harley JP, Klein DA (1996) Microbiology. Dubuque, IA: Wm. C. Brown Publishers.