PTR6000

2.4GHz 频段 2Mbps 高速嵌入式无线数传模块 内置自动重发、自动应答功能及链路层协议 内置多层 FIFO、地址匹配、CRC 效验

一、产品特性

- ☞ 2.4GHz 全球开放 ISM 频段,最大 0dBm 发射功率,免许可证使用
- 支持**六路通道**的数据接收
- ☞ *低工作电压*: 1.9~3.6V低电压工作
- ☞ **高速率**: 2Mbps,由于空中传输时间很短,极大的降低了无线传输中的碰撞现象
- ☞ <u>多频点:</u>125 频点,满足多点通信和跳频通信需要
- ☞ **超小型:** 内置 2.4GHz天线,体积小巧,15x34mm(包括天线)
- 《 <u>低功耗</u>: 当工作在应答模式通信时,快速的空中传输及启动时间,极大的降低了电流消耗。
- **低应用成本**: PTR6000 集成了所有与RF协议相关的高速信号处理部分,比如:自动重发丢失数据包和自动产生应答信号等, PTR6000 的SPI接口可以利用单片机的硬件SPI口连接或用单片机I/O口进行模拟,内部有FIFO可以与各种高低速微处理器接口,便于使用低成本单片机。
- *便于开发:*由于链路层完全集成在模块上,非常便于开发。
 - ◆ 自动重发功能,自动检测和重发丢失的数据包,重发时间及重发次数可软件控制
 - ◆ 自动存储未收到应答信号的数据包
 - ◆ 自动应答功能,在收到有效数据后,模块自动发送应答信号,无须另行编程
 - ◆ 载波检测—固定频率检测
 - ◆ 内置硬件 CRC 检错和点对多点通信地址控制
 - ◆ 数据包传输错误计数器及载波检测功能可用于跳频设置
 - ◆ 可同时设置六路接收通道地址,可有选择性的打开接收通道
 - ◆ 标准 DIP 间距接口,便于嵌入式应用
- PTR6000-Quick-DEV快速开发系统,含开发板、源代码、原理图等详细资料,即开即用,上手快,缩短您的开发时间

应用领域: 遥控、遥测、无线抄表、门禁系统、小区传呼、工业数据采集系统、无线标签、 身份识别、非接触RF智能卡、小型无线数据终端、安全防火系统、无线遥控系统、生物信 号采集、水文气象监控、机器人控制、信息家电、无线 232、无线 422/485 数据通信等

二、基本电气特性

参数	数值	单位
供电电压	1.9~3.6V	V
最大发射功率	0	dBm
最大数据传输率	2000	kbps
发射模式下,电流消耗(0dBm)	11.3	mA
接收模式下电流消耗(2000kbps)	12.3	mA
温度范围	-40~ +85	${\mathbb C}$
数据传输率为 1000kbps 下的灵敏度	-85	dBm
掉电模式下电流消耗	900	nA

表 2-1 基本电气特性

三、引脚说明(顶视图)

图 3-1 模块顶视图

管脚		功能	方向	备注
Pin1	GND	电源地		
Pin2	VCC	VCC,正电源 1.9~3.6V 输入		
Pin3	CE	工作模式选择,RX或TX模式选择	I	
Pin4	CSN	SPI 片选使能,低电平使能	I	
Pin5	SCK	SPI 时钟	I	
Pin6	MOSI	SPI 输入	I	
Pin7	MISO	SPI 输出	О	
Pin8	IRQAM	中断输出	О	

四、硬件接口:

图 4-1 硬件接口

图中给出 PTR6000 的用户接口,该接口由 6 个数字输入/输出 I/O 组成,按照工作可分为如下:

1、模式控制

工作模式由 CE 和寄存器内部 PWR_UP、PRIM_RX 共同控制,见下表 4-1:

模式	PWR_UP	PRIM_RX	CE	FIFO 寄存器状态
接收模式	1	1	1	-
发射模式	1	0	1	数据在 TX FIFO 寄存器中
发射模式	1	0	1→0	停留在发射模式,直至数据发送完
待机模式 II	1	0	1	TX FIFO 为空
待机模式 I	1	-	0	无正在传输的数据
掉电模式	0	-	-	-

表 4-1 工作模式

2、SPI 接口

SPI 接口由 SCK、MISO、MOSI 以及 CSN 组成:

- 1) 在待机或掉电模式下,单片机通过 SPI 接口配置 PTR6000 的工作参数;
- 2) 在发射/接收模式下,单片机 SPI 接口发送和接收数据;

3、中断输出接口 IRQAM

可提供如下几种中断输出(可选):数据发射结束 TX_DS、数据接收就绪 RX_DR、重发次数达到最大 MAX_RT。

五、PTR6000 的 SPI 配置

SPI 指令设置

用于 SPI 接口的常用命令见下表。当 CSN 为低时, SPI 接口开始等待一条指令,任何一条新指令均由 CSN 的由高到低的转换开始。

	SPI 接口指令							
指令名称	指令格式	操作						
R_REGISTER	000A AAAA	读配置寄存器。AAAAA 指出读操作的寄存器地址						
W_REGISTER	001A AAAA	写配置寄存器。AAAAA 指出写操作的寄存器地址						
		只能在掉电模式或待机模式下操作。						
R_RX_PAYLOAD	0110 0001	读 RX 有效数据: 1-32 字节。读操作全部从字节 0 开始。						
		当读 RX 有效数据完成后, FIFO 寄存器中有效数据被清除。						
		应用于接收模式下。						
W_RX_PAYLOAD	1010 0000	写 TX 有效数据: 1-32 字节。写操作从字节 0 开始。						
		应用于发射模式下						
FLUSH_TX	1110 0001	清除 TX FIFO 寄存器,应用于发射模式下。						
FLUSH_RX	1110 0010	清除 RX FIFO 寄存器,应用于接收模式下。						
		在传输应答信号过程中不应执行此指令。也就是说,若传						
		输应答信号过程中执行此指令的话将使得应答信号不能被						
		完整的传输。						
REUSE_TX_PL	1110 0011	应用于发射端						
		重新使用上一包发射的有效数据。当 CE=1 时,数据被不断						
		重新发射。						
		在发射数据包过程中必须禁止数据包重利用功能。						
NOP	1111 1111	空操作。可用来读状态寄存器。						

表 5-1 SPI 串行接口指令设置

寄存器内容及说明

地址	参数	位	复位值	类型	描述	
00	CONFIG				配置寄存器	
	reserved	7	0	R/W	默认为'0'	
	MASK_RX_DR	6	0	R/W	可屏蔽中断 RX_RD	
					1: IRQ 引脚不产生 RX_RD 中断	
					0: RX_RD 中断产生时 IRQ 引脚电平为低	
	MASK_TX_DS	5	0	R/W	可屏蔽中断 TX_DS	
					1: IRQ 引脚不产生 TX_DS 中断	
					0: TX_DS 中断产生时 IRQ 引脚电平为低	

	MASK_MAX_	4	0	R/W	可屏蔽中断 MAX_RT
	RT	4	U	IN/ W	1: IRQ 引脚不产生 TX_DS 中断
	KI				1: IKQ 引海バケ 至 IX_DS 平樹 0: MAX_RT 中断产生时 IRQ 引脚电平为低
	EN_CRC	3	1	R/W	CRC 使能。如果 EN_AA 中任意一位为高则
	EN_CRC	3	1	K/W	EN_CRC 强迫为高。
	CRCO	2	0	R/W	CRC 模式
	CKCO	2	U	IN/ W	'0'-8 位 CRC 校验
					'1'-16 位 CRC 校验
	PWR_UP	1	0	R/W	1:上电 0:掉电
	PRIM_RX	0	0	R/W	1:接收模式 0:发射模式
	T KIIVI_KX	0	<u> </u>	10/ 11	1. 汉代保入 0. 汉州保入
01	EN_AA				使能"自动应答"功能
	Enhanced				此功能禁止后可与 nRF2401 通讯
	ShockBurst ^{MT}				
	Reserved	7 : 6	00	R/W	默认为'0'
	ENAA_P5	5	1	R/W	数据通道 5 自动应答允许
	ENAA_P4	4	1	R/W	数据通道4自动应答允许
	ENAA_P3	3	1	R/W	数据通道3自动应答允许
	ENAA_P2	2	1	R/W	数据通道2自动应答允许
	ENAA_P1	1	1	R/W	数据通道1自动应答允许
	ENAA_P0	0	1	R/W	数据通道0自动应答允许
02	EN_RXADDR				接收地址允许
	Reserved	7 : 6	00	R/W	默认为'00'
	ERX_P5	5	0	R/W	接收数据通道 5 允许
	ERX_P4	4	0	R/W	接收数据通道 4 允许
	ERX_P3	3	0	R/W	接收数据通道 3 允许
	ERX_P2	2	0	R/W	接收数据通道 2 允许
	ERX_P1	1	1	R/W	接收数据通道 1 允许
	ERX_P0	0	1	R/W	接收数据通道 0 允许
03	SETUP_AW				设置地址宽度(所有数据通道)
	Reserved	7:2	00000	R/W	默认为 00000
	AW	1:0	11	R/W	接收/发射地址宽度
					'00'-无效
					'01'-3 字节宽度
					'10'-4 字节宽度
					'11'-5 字节宽度
04	SETUP_RETR				建立自动重发
<i>V</i> -7	ARD	7:4	0000	R/W	自动重发延时
		, •	0000	10/11	'0000'-等待 250+86us
					'0001'-等待 500+86us

	1				
					•••••
					'1111'-等待 4000+86us
					(延时时间是指一包数据发送完成到下一包数
					据开始发射之间的时间间隔)
	ARC	3 : 0	0011	R/W	自动重发计数
					'0000'-禁止自动重发
					'0000'-自动重发一次
					'0000'-自动重发 15 次
05	RF_CH				射频通道
	Reserved	7	0	R/W	默认为'0'
	RF_CH	6:0	0000010	R/W	设置工作通道频率
				1	J. C. C. M. I
06	RF_SETUP			R/W	射频寄存器
	Reserved	7:5	000	R/W	默认为 000
	PLL_LOCK	4	0	R/W	锁相环允许,仅应用于测试模式
	RF_DR	3	1	R/W	数据传输率:
	Kr_DK	3	1	IX/ VV	
	DE DIVID	2.1	11	D AV	'0'-1Mbps '1'-2 Mbps
	RF_PWR	2:1	11	R/W	发射功率:
					'00'—-18dBm
					'01'—-12dBm
					'10'—-6dBm
					'11'—0dBm
	LNA_HCURR	0	1	R/W	低噪声放大器增益,默认是'1'
<i>07</i>	STATUS				状态寄存器
	Reserved	7	0	R/W	默认为'0'
	RX_DR	6	0	R/W	接收数据中断。当收到有效数据包后置1。
					写'1'清除中断。
	TX_DS	5	0	R/W	数据发送完成中断。
					数据发送完成后产生中断,如果工作在自动应
					答模式下,只有当接收到应答信号后此位置 1。
					写'1'清除中断。
	MAX_RT	4	0	R/W	重发次数溢出中断。
	1,1,1,1,1		v	120	写'1'清除中断。
					如果 MAX_RT 中断产生则必须清除后系统才
					能进行通讯。
	DV D NO	2.1	111	P	- 11
	RX_P_NO	3:1	111	R	接收数据通道号:
					000-101:数据通道号
					110:未使用
					111:RX FIFO 寄存器为空
	TX_FULL	0	0	R	TX FIFO 寄存器满标志。
					1:TX FIFO 寄存器满
					0: TX FIFO 寄存器未满,有可用空间。

08	OBSERVE_TX				发送检测寄存器
00	PLOS_CNT	7:4	0	R	数据包丢失计数器。当写 RF_CH 寄存器时此寄
	LOS_CIVI	/•4			存器复位。当丢失15个数据包后此寄存器重启。
	ARC_CNT	3:0	0	R	重发计数器。发送新数据包时此寄存器复位
	ARC_CIVI	3.0	Ŭ	IX	至次计数据。及及研数相包时起刊和安区
09	CD				
0,7	Reserved	7:1	000000	R	
	CD	0	0	R	载波检测
				10	7404 [2.07]
<i>0A</i>	RX_ADDR_P0	39:0	0xE7E7E7E7E7	R/W	数据通道0 接收地址。最大长度:5 个字节(先
					写低字节,所写字节数量由 SETUP_AW 设定)
0B	RX_ADDR_P1	39:0	0xC2C2C2C2C2	R/W	数据通道1接收地址。最大长度:5个字节(先
					写低字节,所写字节数量由SETUP_AW 设定)
0C	RX_ADDR_P2	7:0	0xC3	R/W	数据通道 2 接收地址。最低字节可设置。高字
					节部分必须与RX_ADDR_P1[39:8]相等。
<i>0D</i>	RX_ADDR_P3	7:0	0xC4	R/W	数据通道 3 接收地址。最低字节可设置。高字
					节部分必须与RX_ADDR_P1[39:8]相等。
<i>0E</i>	RX_ADDR_P4	7:0	0xC5	R/W	数据通道 4 接收地址。最低字节可设置。高字
					节部分必须与RX_ADDR_P1[39:8]相等。
0F	RX_ADDR_P5	7:0	0xC6	R/W	数据通道 5 接收地址。最低字节可设置。高字
					节部分必须与RX_ADDR_P1[39:8]相等。
<i>10</i>	TX_ADDR	39:0	<i>0xE7E7E7E7E7</i>	R/W	发送地址 (先写低字节)
					在增强型ShockBurst™模式下,设置
					RX_ADDR_P0 与此地址相等来接收应答信号。
11	RX_PW_P0				
	Reserved	7:6	00	R/W	默认为 00
	RX_PW_P0	5:0	0	R/W	接收数据通道 0 有效数据宽度(1 到 32 字节)
					0: 设置不合法
					1: 1字节有效数据宽度
					32: 32 字节有效数据宽度
10	DV DW D1				
12	RX_PW_P1	7:6	00	D/W	默认为 00
	Reserved	+	00	R/W	接收数据通道 1 有效数据宽度(1 到 32 字节)
	RX_PW_P1	5:0	U	R/W	接收
					1: 1字节有效数据宽度
					1. 1 1 日 及 双 泊 见 /又
					32: 32 字节有效数据宽度
		1			22. 22.1 日历从外阳龙区
13	RX_PW_P2	1			
10		1	1		<u> </u>

	Reserved	7 : 6	00	R/W	默认为 00
	RX_PW_P2	5:0	0	R/W	接收数据通道 2 有效数据宽度(1 到 32 字节)
					0: 设置不合法
					1: 1字节有效数据宽度
					32: 32 字节有效数据宽度
14	RX_PW_P3				
	Reserved	7 : 6	00	R/W	默认为 00
	RX_PW_P3	5 : 0	0	R/W	接收数据通道 3 有效数据宽度(1 到 32 字节)
					0 设置不合法
					1: 1字节有效数据宽度
					32: 32 字节有效数据宽度
15	RX_PW_P4				
	Reserved	7:6	00	R/W	默认为 00
	RX_PW_P4	5:0	0	R/W	接收数据通道 4 有效数据宽度(1 到 32 字节)
					0: 设置不合法
					1: 1字节有效数据宽度
					•••••
					32: 32 字节有效数据宽度
16	RX_PW_P5				
	Reserved	7 : 6	00	R/W	默认为 00
	RX_PW_P5	5 : 0	0	R/W	接收数据通道 5 有效数据宽度(1 到 32 字节)
					0:设置不合法
					1: 1字节有效数据宽度
					•••••
					32: 32 字节有效数据宽度
<i>17</i>	FIFO_STATUS				FIFO 状态寄存器
	Reserved	7	0	R/W	默认为 0
	TX_REUSE	6	0	R	若 TX_REUSE=1 则当 CE 位高电平状态时不断
					发送上一数据包。TX_REUSE 通过 SPI 指令
					REUSE_TX_PL 设置,通过 W_TX_PALOAD
					或 FLUSH_TX 复位。
	TX_FULL	5	0	R	TX FIFO 寄存器满标志。
					1:TX FIFO 寄存器满
					0: TX FIFO 寄存器未满,有可用空间。
	TX_EMPTY	4	1	R	TX FIFO 寄存器空标志。
					1:TX FIFO 寄存器空
					0: TX FIFO 寄存器非空
	Reserved	3:2	00	R/W	墨认为 00

	RX_FULL	1	0	R	RX FIFO 寄存器满标志。	
					1:RX FIFO 寄存器满	
					0: RX FIFO 寄存器未满,有可用空间。	
	RX_EMPTY	0	1	R	RX FIFO 寄存器空标志。	
					1:RX FIFO 寄存器空	
					0: RX FIFO 寄存器非空	
N/A	TX_PLD	255:0		W		
N/A	RX_PLD	255:0		R		

表 5-1 寄存器内容及说明

SPI 指令格式:

<命令字:由高位到低位(每字节)>

<数据字节: 低字节到高字节,每一字节高位在前>参看图 8 及图 9

SPI 时序:

图 5-1、5-2 和表 5-2 给出了 SPI 操作及时序。在写寄存器之前一定要进入待机模式或掉电模式。在图 5-1、5-2 中用到了下面的符号:

图 5-2 SPI 写操作

PARAMETER	SYMBOL	MIN	MAX	UNITS
Data to SCK Setup	Tdc	2		ns
SCK to Data Hold	Tdh	2		ns
CSN to Data Valid	Tesd		42	ns
SCK to Data Valid	Ted		58	ns
SCK Low Time	Tcl	40		ns
SCK High Time	Tch	40		ns
SCK Frequency	Fsck	0	8	MHz
SCK Rise and Fall	Tr,Tf		100	ns
CSN to SCK Setup	Тсс	2		ns
SCK to CSN Hold	Tech	2		ns
CSN Inactive time	Tewh	50		ns
CSN to Output High Z	Tedz		42	ns

表 5-2 SPI 参考时序

六、PTR6000 的软件编程

模块内部集成了较强的与 RF 协议相关的高速信号处理部分,比如:无线数据发送/接收功能、自动 应答功能、自动重发功能、数据包识别功能、保存未发送成功数据包功能、CRC 校验功能、载波检测功能等。

由于与 RF 协议相关的高速信号处理部分已经嵌入在模块内部,PTR6000 可与各种低成本单片机配合使用,也可与 DSP 等高速处理器配合使用; PTR6000 提供一个 SPI 接口,接口速率为 0~8MHz。寄存器内容可根据实际应用需要进行选择性配置。

有关增强型发送及接收模式有如下描述:

1、配置编程

上电以后 MCU 通过 SPI 将配置数据移入 PTR6000 模块, 配置内容可根据实际应用需要进行选择性配置:

2、增强型ShockBurstTM发送模式:

- 1、配置寄存器位 PRIM RX 为低
- 2、当 MCU 有数据要发送时,接收节点地址(TX_ADDR)和有效数据(TX_PLD)通过 SPI 接口写入PTR6000。当 CSN 为低时发送数据被不断的写入。
- 3、设置 CE 为高, 启动发射。CE 高电平持续时间最小为 10 us。
- 4、PTR6000 ShockBurstTM模式:
 - ●无线系统上电
 - ●启动内部 16MHz 时钟
 - ●无线发送数据打包(见数据包描述)
 - ●高速发送数据(由 MCU 设定为 1Mbps 或 2Mbps)
- 5、若启用了自动应答模式,模块立即进入接收模式。
- 6、如果 CE 置低,则系统进入待机模式 I。如果不置 CE 低,则系统会发送 TX FIFO 寄存器中下一包数据。如果 TX FIFO 寄存器为空并且 CE 为高则系统进入待机模式 II.
- 7、 若系统在待机模式 II 下,则当 CE 置低后系统立即进入待机模式 I.

3、增强型ShockBurstTM接收模式:

- 1、配置寄存器位: PRIM_RX 为高。
- 2、打开所使用的接收数据通道(EN_RXADDR 寄存器),自动应答功能是由(EN_AA 寄存器)设置,有效数据宽度由 RX_PW_Px 寄存器设置。
- 3、设置 CE 为高启动接收模式。
- 4、130us 后 PTR6000 开始检测空中信息。
- 5、接收到有效的数据包后(地址匹配、CRC 检验正确),数据存储在 RX_FIFO 中,同时 RX_DR 位置高。
- 6、如果启用自动应答功能,则发送应答信号。
- 7、MCU设置CE脚为低,进入待机模式I(低功耗模式)。
- 8、MCU将数据以合适的速率通过SPI口将数据读出。
- 9、芯片准备好进入发送模式、接收模式或掉电模式。

图 11、增强型ShockBurstTM模式发送一包数据时序(2Mbps)

七、PTR6000 与单片机接口电路示例

八、典型应用

应用之一: 点对点无线通信或跳频应用

应用之二: 可完成点对点传输的数据采集,用于工业控制,数据采集,无线键盘,身份识别、无线标签等。

应用之三:构成点对多点双向数据传输通道,用于无线抄表、无线数传等。

绝对极限参数

工作电压

VSS-----0V

输入电压

 $V_{\rm I}$ $\,$ -0.3V to 5.25V $\,$

输出电压

Vo ······ VSS to VDD

总功耗

 $P_D (T_A=+85^{\circ}C)$ 60mW

温度

存储温度 ······ -40℃ to +125℃

注意: 强行超过一项或多项极限值使用将导致器件永久性损坏。

小心: 静电敏感器件。操作时遵守防护规则。

