Group 11 Final Presentation

Tom Tribe, Ken MacIver, Jundi Yang, Mei Huang

2022-10-11

Group 11: Diamonds Dataset

Group Members (photos)

Group Members (name, email, ORCID)

Tom Tribe

- tom.tribe2016@gmail.com
- **>** 0000-0002-5002-8066

Ken Maclver

- ken.maciver68@gmail.com
- 0000-0001-8999-4598

Jundi Yang

- ivyli112358@gmail.com
- 0000-0003-0888-9564

Mei Huang

- huangmei139@gmail.com
- 0000-0003-2401-0679

The Diamonds dataset

- ► This large dataset has 53940 rows (diamonds) of ten variables (approx 540,000 values)
- ► Slow to process!
- ► There are seven numeric variables and three categorical variables
- We selected diamonds because it was conceptually simple to understand what each variable was measuring, and to have the opportunity to use the analytical techniques taught in STAT394 with a large dataset

The Variables

red font = categorical variable

- carat: the diamond's weight
- cut: a measure of quality (4 levels)
- color: a measure of colour quality (7 levels)
- clarity: a measure of clearness (6 levels)
- x: length in mm
- y: width in mm
- z: depth in mm
- depth: total depth percentage
- table: width of top of diamond relative to widest point
- price: the price of the diamond in US dollars

(List adapted from list at kaggle.com).

Summary of Numeric Variables

	carat	depth	table	price	Х	у	Z
sample size	53940	53940	53940	53940	53940	53940	53940
minimum	0.20	43.00	43.00	326.00	0.00	0.00	0.00
first	0.40	61.00	56.00	950.00	4.71	4.72	2.91
quartile							
median	0.70	61.80	57.00	2401.00	5.70	5.71	3.53
mean	0.80	61.75	57.46	3932.80	5.73	5.73	3.54
third	1.04	62.50	59.00	5324.25	6.54	6.54	4.04
quartile							
maximum	5.01	79.00	95.00	18823.0	010.74	58.90	31.80
IQR	0.64	1.50	3.00	4374.25	5 1.83	1.82	1.13
standard	0.47	1.43	2.23	3989.44	1.12	1.14	0.71
deviation							
skewness	1.12	-0.08	0.80	1.62	0.38	2.43	1.52
kurtosis	4.26	8.74	5.80	5.18	2.38	94.21	50.08

Cateogrical Summary

	Cut	F	air	Goo	d V	ery G	ood	Pre	mium	I	deal	
Сог	ınt	16	10	496	0	12	082	1	L3791	21	l551	
Colo	r		J	1	F	1	G		F	Е	D	<u> </u>
Count	t	2808	} [5422	8304	1 11	292	954	2 97	97	6775	_
arity		11	SI	2	SI1	VS	2	VS1	VVS	2	VVS1	IF
unt	74	11	919	4 13	065	1225	8	8171	506	6	3655	1790
	Colo Coun	Count Color Count	Count 16 Color 2 Count 2808 arity 11	Count 1610 Color J Count 2808 !	Count 1610 496 Color J I Count 2808 5422 arity I1 SI2	Count 1610 4960 Color J I F Count 2808 5422 8304 arity I1 SI2 SI1	Count 1610 4960 12 Color J I H Count 2808 5422 8304 11 arity I1 SI2 SI1 VS	Count 1610 4960 12082 Color J I H G Count 2808 5422 8304 11292 arity I1 SI2 SI1 VS2	Count 1610 4960 12082 1 Color J I H G Count 2808 5422 8304 11292 954 arity I1 SI2 SI1 VS2 VS1	Count 1610 4960 12082 13791 Color J I H G F Count 2808 5422 8304 11292 9542 97 arity I1 SI2 SI1 VS2 VS1 VVS	Count 1610 4960 12082 13791 21 Color J I H G F E Count 2808 5422 8304 11292 9542 9797 arity I1 SI2 SI1 VS2 VS1 VVS2	Count 1610 4960 12082 13791 21551 Color J I H G F E D Count 2808 5422 8304 11292 9542 9797 6775 arity I1 SI2 SI1 VS2 VS1 VVS2 VVS1

Pairs Plot

Figure 1: Pairs plot

Correlation Plot

Figure 3: Correlation Plot

Normal QQ Plots

Figure 2: Normal QQ Plots

Price by Cateogrical

Figure 4: Price by Categorical

Leading Question 1

- How can we best predict diamond price using the other variables?
- ▶ We intend to use the following techniques to investigate this question:
- Stepwise Regression, Principal Components Analysis, Principal Components Regression

Multiple Regression

- Starting with the full model we used a stepwise regression procedure to find the best model for predicting diamond price.
- According to AIC the best model was:
- ▶ price ~ carat + cut + color + clarity + depth + table + x
- ► All variables excluding y and z are significant in the model
- ▶ The 'best' model had an Adjusted R² of 91.98%

Regression Assumptions

Figure 5: Regression Diagnostics

Principal Components Analysis: Screeplot

Figure 6: PCA Screeplot

Principal Components Analysis: Eigenvectors

Figure 7: Plot of EigenVectors

Biplot

Figure 8: PCA Biplot

Principal Components Regression

- We conducted a Principal Components Regression with diamond price as the response variable
- ▶ The PCA excluding price was almost identical to the original PCA
- ▶ We were able to explain over 80% of the variation in price using just the first two principal components as predictors
- A more parsimonious model!

Summary of Models Predicting Diamond Price

Model	No. of Predictors	Adjusted R ²
Full Model	9	0.9198
Best Model	7	0.9198
Numeric Model	7	0.8592
Two PC	2	0.8092
All PC	6	0.8695

Leading Question 2 . . . and the issues we encountered. . .

- ► The diamonds dataset includes 280 interactions between different levels of the categorical variables
- Our second leading question was to investigate if we could classify the diamonds data more simply using analytical techniques such as LDA and CA

Problems encountered

- ▶ Despite a correlation of 0.9216, 'carat' was not a great predictor of 'price'
- ► LDA did not work with the full dataset