## UCS1502 - MICROPROCESSORS AND INTERFACING

#### 8051 Architecture

S. Angel Deborah Assistant Professor, Dept. of CSE



## **Learning Objective**

- To understand the architecture of 8051
- To understand usage of each component



#### **Overview**

- 8051 Features
- Block Diagram of 8051
- 8051 Oscillator and Clock
- Program counter and Data Pointer
- Flags and Program Status Word [PSW]



#### 8051 Features

- 8 bit CPU with registers A and B
- 16 bit program counter (PC) and data pointer (DPTR)
- 8 bit program status word (PSW)
- 8 bit stack pointer
- Internal ROM of 0(8031) to 4K(8051)
- Internal RAM of 128 Bytes
  - 4 register banks 00-1f
  - 16bytes(bit addressable) 20-2f
  - 80 bytes of general purpose data memory 30-7f
- 32 I/O pins arranged as four8 bit ports (P0± P3)
- 2 16-bit timer/counters: T0 and T1
- Full duplex serial data receiver/transmitter: SBUF
- Control registers: TCON, TMOD, SCON, PCON, IP and IE
- 2 external and 3 internal interrupt sources
- Oscillator and clock circuits



## **Block Diagram of 8051**



#### 8051 Oscillator and Clock

- The oscillator is formed by the crystal, capacitors and an on-chip inverter.
- Circuitry that generates the clock pulses by which all internal operations are synchronized.
- Frequency- 1mHz to 16 mHz
- Minimum frequencies imply that some internal memories are dynamic and must always operate above a minimum frequency or data will be lost.
- The time to execute an instruction is found by
  - Tinst = ( C x 12d ) / Crystal Frequency
  - − Where C − number of machine cycles



# Program counter and Data Pointer

- PC does not have an internal address.
- Program instruction bytes are fetched from locations in memory that are addressed by the PC.
- DPTR register is made up of two 8 bit registers, named DPH and DPL, which are used to furnish memory addresses for internal and external code access and external data access.
- DPTR does not have a single internal address; DPH and DPL are each assigned an address.



## A and B CPU register

- 8051 contains 34 general purpose or working registers.
- Two of these registers A and B, hold results of many instructions, particularly math and logical operations, of the CPU.
- Other 32 register are arranged as part of internal RAM in four banks.
- 'A' register:
  - Is most versatile of the two registers.
  - It is used for many operations (arithmetical, logical and bit manipulations).
  - Used for all data transfers between the 8051 and any external memory.
- 'B' register:
  - Used with A register for multiplication and division operations
  - No other function other than as a location where data may be stored.



#### Flags and Program Status Word [PSW]





## **Internal Memory**

- Internal ROM
- Internal RAM



#### 128 Byte RAM

- There are 128 bytes of RAM in the 8051.
  - Assigned addresses 00 to 7FH
- The 128 bytes are divided into 3 different groups as follows:
  - 1. A total of **32 bytes** from locations 00 to 1F hex are set aside for *register banks*.
  - 2. A total of **16 bytes** from locations 20H to 2FH are set aside for *bit-addressable* read/write memory.
  - 3. A total of **80 bytes** from locations 30H to 7FH are used for read and write storage, called *scratch pad*.





#### 8051 RAM with addresses



## Register Bank Structure

| Bank 3 | RO | R1 | R2 | R3 | R4 | R5 | R6 | R7 |
|--------|----|----|----|----|----|----|----|----|
| Bank 2 | RO | R1 | R2 | R3 | R4 | R5 | R6 | R7 |
| Bank 1 | RO | R1 | R2 | R3 | R4 | R5 | R6 | R7 |
| Bank 0 | RO | R1 | R2 | R3 | R4 | R5 | R6 | R7 |



## 8051 Register Banks with address

|    | Register<br>bank 0 |    | Register<br>bank 1 |    | Register<br>bank 2 | Register<br>bank 3 |    |  |
|----|--------------------|----|--------------------|----|--------------------|--------------------|----|--|
| 00 | R0                 | 80 | R0                 | 10 | R0                 | 18                 | R0 |  |
| 01 | R1                 | 09 | R1                 | 11 | R1                 | 19                 | R1 |  |
| 02 | R2                 | 0A | R2                 | 12 | R2                 | 1A                 | R2 |  |
| 03 | R3                 | 0B | R3                 | 13 | R3                 | 1B                 | R3 |  |
| 04 | R4                 | 0C | R4                 | 14 | R4                 | 1C                 | R4 |  |
| 05 | R5                 | 0D | R5                 | 15 | R5                 | 1D                 | R5 |  |
| 06 | R6                 | 0E | R6                 | 16 | R6                 | 1E                 | R6 |  |
| 07 | R7                 | 0F | R7                 | 17 | R7                 | 1F                 | R7 |  |

Figure 3.1b 8051 Programming Model





Figure C.3 80C51 programming model

#### 8051 Stack and Stack pointer

- The stack is a section of RAM used by the CPU to store information temporarily.
  - This information could be data or an address

- The register used to access the stack is called the SP (stack pointer) register
  - The stack pointer in the 8051 is only 8 bit wide, which means that it can take value of 00 to FFH
  - When the 8051 is powered up (i.e.,) reset, the SP register contains value 07
  - RAM location 08 is the first location begin used for the stack by the 8051

#### 8051 Stack and Stack pointer

- The storing of a CPU register in the stack is called a PUSH
  - SP is pointing to the last used location of the stack
  - As we push data onto the stack, the SP is incremented by one
  - This is different from many microprocessors

- Loading the contents of the stack back into a CPU register is called a POP
  - With every pop, the top byte of the stack is copied to the register specified by the instruction and the stack pointer is decremented once



#### **Special Function Registers**

- 80h to FFh are used for SFRs
- PC is not part of SFR.



| Name | Function                 | Name | Function                 |
|------|--------------------------|------|--------------------------|
| A    | Accumulator              | SBUF | Serial Port data buffer  |
| В    | Arithmetic               | SP   | Stack Pointer            |
| DPH  | Addressing Ext<br>Memory | TMOD | Timer/Counter mode cntrl |
| DPL  | Addressing Ext<br>Memory | TCON | Timer/Counter cntrl      |
| IE   | Interrupt enable         | TL0  | Timer0 lower byte        |
| IP   | Interrupt Priority       | TH0  | Timer0 higher byte       |
| P0   | I/O Port Latch           | TL1  | Timer1 lower byte        |
| P1   | I/O Port Latch           | TH1  | Timer1 higher byte       |
| P2   | I/O Port Latch           |      |                          |
| P3   | I/O Port Latch           |      |                          |
| PCON | Power Control            |      |                          |
| PSW  | Pgm Status Word          |      |                          |
| SCON | Serial PortCntrl         |      | CSN                      |



## **Special Function Registers [SFR]**







## Summary

- 8051 Features
- Block Diagram of 8051
- 8051 Oscillator and Clock
- Program counter and Data Pointer
- Flags and Program Status Word [PSW]



## Check your understanding

• How does 8051 differ from 8086?



#### Reference

 Mohamed Ali Mazidi, Janice Gillispie Mazidi, Rolin McKinlay, "The 8051Microcontroller and Embedded Systems: Using Assembly and C", 2nd Edition, Pearson education, 2011.



## Thank you

