Machine Learning

Exercise 2: Manual implementation of linear regression in python

Prof. Dr. Thomas Kopinski August 9, 2022

Abstract

This week's tasks focus on deepening your knowledge about linear regression by manually implementing the underlying algorithm in python.

Task 1: Understand the algorithm

- Additional information about implementing linear regression in python can again be found here.
- Make sure you understand how the algorithm works before you start implementing any python
 code.
- Try to structure your code in a clear way, e.g. by using functions and object oriented programming.

Task 2: Implement a general least squares optimizer

- consider an array of x-values with a variable length with corresponding y-values and statistical errors y_{err}
- x = [1.47, 1.50, 1.52, 1.55, 1.57, 1.60, 1.63, 1.65, 1.68, 1.70, 1.73, 1.75, 1.78, 1.80, 1.83]
- y = [52.21, 53.12, 54.48, 55.84, 57.20, 58.57, 59.93, 61.29, 63.11, 64.47, 66.28, 68.10, 69.92, 72.19, 74.46]
- y_{err} is one for each y
- define an empty matrix A of shape (len(x values), 2)
- fill the matrix with the values $A_{i,0} = 1$ and $A_{i,1} = x$
- define a diagonal matrix W from the y_{err} such that $W_{i,i} = \frac{1}{y_{err}^2}$
- reshape the array of y vectors into a column vector
- calculate the result of the function $p = (A^T W A)^{-1} A^T y$ and $cov = (A^T W A)^{-1}$ (Hint: use the Invert-Method for numpy matrices)
- display the coeffictients results and plot the data and fit function (Hint: for errorbars use plt.errorbar)

Task 3: Bayes Theorem

A newly developed machine can detect counterfeit bills. We define the event A: "The machine sounds an alarm", and event F: "The banknote is counterfeit". We would now like to find out how high the probability is that a banknote is actually a counterfeit, given the machine sounds the alarm. So what we are looking for is P(F|A). The machine was tested with many real and fake bills. It was found that the machine alarms on a counterfeit bill with 96% confidence, with 96% certainty. However, the machine also gives an alarm for 1% of the real bills, alarm. In addition, it is known that 0.01% of all banknotes in circulation are counterfeits, are counterfeits. This also means that 99.99% of the banknotes are not counterfeits.