

CS 422: Data Mining Vijay K. Gurbani, Ph.D., Illinois Institute of Technology

Lecture 1: Introduction

CS 422 vgurbani@iit.edu

Introduction: Back to data mining

Is Data Mining a new field?

Figure source: Mining of Massive Datasets, Leskovec et al., 2014.

Introduction: Back to data mining

- Data mining vs. machine learning vs. ...
 - Data mining: a cross-disciplinary field focused on discovering properties (patterns) of (large, very large) data sets.
 - How does it do this?
 - Machine learning is one approach.

Introduction: Back to data mining

- Machine learning is all around us.
 - Netflix
 - Google
 - Amazon, ...
- You've all heard the fantastic stories of selfdriving cars, mood-sensing environment, why diapers and beer go together, what Target knows about you, and so on?

Computer Science

Determinism rules.

Machine Learning

Generalization is key.

Computer Science

- Determinism rules.
- Errors not tolerated.

Machine Learning

- Generalization is key.
- Errors part of the landscape.

Computer Science

- Determinism rules.
- Errors not tolerated.
- Algorithms do not learn.

Machine Learning

- Generalization is key.
- Errors part of the landscape.
- Algorithms learn (backprop, genetic programming).

Computer Science

- Determinism rules.
- Errors not tolerated.
- Algorithms do not learn.
- Program(Data) => Output. Program most important artifact.

Machine Learning

- Generalization is key.
- Errors part of the landscape.
- Algorithms learn (backprop, genetic programming).
- Data(Program) => Model => Ouput.
 Data most important artifact.

- The Machine Learning Problem: Generalizing to cases we have not seen before.
- But, can't we simply see all or most of the data?

- The Machine Learning Problem: Generalizing to cases we have not seen before.
- But, can't we simply see all or most of the data?
- Suppose: You have data that consists of 1,000 Boolean fields, and you have 1,000,000,000,000 records in a database.
- How much insight do these 1 trillion records represent?

- The Machine Learning Problem: Generalizing to cases we have not seen before.
- But, can't we simply see all or most of the data?
- Suppose: You have data that consists of 1,000 Boolean fields, and you have 1,000,000,000,000 records in a database.
- How much insight do these 1 trillion records represent?
- Theoretically, you will need 2^1000 records to represent all of your data!!
- How big is 2^1000?
 - $-2^{1000} \approx 1.07^{301} \approx 10^{301}$.
 - 10^18 grains of sand in the world.
 - 10²² stars in the observable universe.
 - 10^78 atoms in the observable universe.

- The 1 trillions records are one "gazillionth*" of 1 percent of 2^1000!
 - * Gazillionth = 10e-285
- Morals:
 - Curse of dimensionality is real
 - Generalization is how we deal with comb-inatorial explosion!

Resources

- Conferences in data mining and machine learning (non-exhaustive)
 - ACM KDD (Knowledge Discovery and Data Mining), http://www.kdd.org
 - ICML (International Conference on Machine Learning)
 - ACM CIKM (International Conference on Information and Knowledge Management)
 - SDM (SIAM International Conference on Data Mining)
 - NeurIPS
- Journals (non-exhaustive)
 - IEEE Transactions on Pattern Analysis and Machine Intelligence
 - ACM Transactions on Knowledge Discovery from Data
 - IEEE Transactions on Knowledge and Data Engineering

Resources

- Useful general Internet resources on data mining and machine learning:
 - Kaggle (https://www.kaggle.com)
 - Kdnuggets (https://www.kdnuggets.com)
 - https://machinelearningmastery.com
 - https://towardsdatascience.com