Chapitre 7: Séries

1 Généralités

1.1 Rappels

Définition 1

Soit $(u_n)_{n\in\mathbb{N}}$ une suite numérique. On appelle **série numérique de terme général** u_n la suite $(S_n)_{n\in\mathbb{N}}$ définie par

$$\forall n \in \mathbb{N}, \quad \mathbf{S}_n = \sum_{k=0}^n u_k.$$

Cette série est notée $\sum_{n\geq 0} u_n$ et le terme S_n est appelé la **somme partielle** d'indice n de la série.

Définition 2 (Séries convergentes, séries divergentes)

Soit $(u_n)_{n\in\mathbb{N}}$ une suite.

- On dit que la série $\sum_{n\geqslant 0}u_n$ converge lorsque la suite des sommes partielles $(S_n)_{n\in\mathbb{N}}$ converge. Dans ce cas, la limite est appelée **somme** de la série et notée $\sum_{n=0}^{+\infty}u_n$.
- Lorsque la série $\sum_{n\geq 0} u_n$ ne converge pas, on dit qu'elle **diverge**.

Remarque 1

- 1. On peut étendre ces définitions aux suites $(u_n)_{n \geqslant n_0}$ définies à partir d'un certain rang n_0 . Dans ce cas, on note $\sum_{n \geqslant n_0} u_n$ la série de terme général u_n et $\sum_{n=n_0}^{+\infty} u_n$ la somme lorsqu'elle existe.
- 2. On note parfois $\sum u_n$ la série de terme général u_n quand il n'y pas d'ambiguïté.

Exemple 1

1. Étudions la nature de la série $\sum_{n\geqslant 0}\frac{1}{2^n}$ 2. Étudions la nature de la série dont le terme général est la suite constante égale à 1 $(\forall n\in \mathbb{N}, u_n=1)$

Remarque 2

- 1. Les séries étant des suites particulières, toutes les techniques d'étude de ces dernières peuvent s'appliquer aux séries.
- 2. On ne change pas la nature d'une série en commençant la somme à partir d'un certain rang (mais on change la somme lorsqu'il y a convergence).

Exemple 2

Proposition 1 (Télescopage)

Soit $(u_n)_{n\in\mathbb{N}}$ une suite de réels.

$$(u_n)_{n\in\mathbb{N}}$$
 converge $\iff \sum (u_{n+1}-u_n)$ converge.

Exemple 3

Montrons que la série $\sum_{n\geqslant 1} \frac{1}{n(n+1)}$ est convergente à l'aide d'un télescopage.

2

Test 1 (Voir solution.)

- 1. Montrer que : $\forall n > 1$, $\frac{1}{n^2} \leqslant \frac{1}{n-1} \frac{1}{n}$.
- 2. Montrer que la suite $\left(\sum_{k=1}^{n} \frac{1}{k^2}\right)_{n\geqslant 1}$ est majorée.
- 3. En déduire que la série $\sum_{n\geqslant 1}\frac{1}{n^2}$ converge.

Test 2 (Voir solution.)

Montrer, à l'aide d'un télescopage, que la série $\sum_{n \ge 1} \ln \left(1 + \frac{1}{n} \right)$ diverge.

Proposition 2

Soit $\sum_{n\geqslant n_0}u_n$ une série numérique.

Si la série est convergente alors la suite $(u_n)_{n \ge n_0}$ converge vers 0.

Remarque 3

- 1. On utilise souvent la contraposée de cette proposition pour montrer qu'une série diverge : « Si $(u_n)_{n \ge n_0}$ ne converge pas vers 0 alors la série $\sum_{n \ge n_0} u_n$ diverge. »
 - Dans ce cas, on dit que la série **diverge grossièrement**.

2. En revanche, la réciproque est fausse (voir le test 3).

Test 3 (Voir solution.)

Pour tout $n \in \mathbb{N}^*$, on pose

$$S_n = \sum_{k=1}^n \frac{1}{k}.$$

- 1. Montrer que, pour tout $n \in \mathbb{N}^*$, $S_{2n} S_n \geqslant \frac{1}{2}$.
- 2. En déduire que, pour tout $n \in \mathbb{N}^*$, $S_{2^n} \ge \frac{n}{2}$.
- 3. Montrer que $(S_n)_{n\geqslant 1}$ n'est pas majorée et en déduire la nature de la série $\sum_{n\geqslant 1}\frac{1}{n}$.

1.2 Séries usuelles

Proposition 3 (Séries géométriques)

Soit $q \in \mathbb{R}$. Les séries $\sum_{k \geqslant 0} q^k$, $\sum_{k \geqslant 1} kq^{k-1}$ et $\sum_{k \geqslant 2} k(k-1)q^{k-2}$ convergent si et seulement si |q| < 1. Dans ce

$$\bullet \sum_{k=0}^{+\infty} q^k = \frac{1}{1-q},$$

•
$$\sum_{k=1}^{+\infty} kq^{k-1} = \frac{1}{(1-q)^2}$$
,

•
$$\sum_{k=2}^{+\infty} k(k-1)q^{k-2} = \frac{2}{(1-q)^3}$$
.

Exemple 4

Étudions la nature de la série $\sum_{n\geqslant 0} \frac{n}{3^{2n+1}}$.

Test 4 (Voir solution.)

Déterminer la nature de la série $\sum_{n\geqslant 0} \frac{n^2}{2^n}$ et, le cas échéant, calculer sa somme.

Proposition 4 (Séries exponentielles)

Pour tout $x \in \mathbb{R}$, la série $\sum_{n \ge 0} \frac{x^n}{n!}$ est convergente de somme e^x .

Test 5 (Voir solution.)

Déterminer la nature de la série $\sum_{n\geqslant 0} \frac{n+7}{2^n n!}$ et, le cas échéant, calculer sa somme.

Proposition 5 (Séries de Riemann)

Soit $a \in \mathbb{R}$. La série $\sum_{n \geqslant 1} \frac{1}{n^a}$ converge si et seulement si a > 1.

Démonstration: Cette preuve illustre la technique dite de *comparaison série lintégrale* qui consiste à ramener l'étude de la série à l'étude d'une intégrale.

On note $(S_n)_{n \ge 1}$ la suite des sommes partielles.

Remarque 4

Les étapes clés de la démonstration.

- 1. On a une fonction f continue décroissante sur $]0, +\infty[$ et à valeurs positives.
- 2. On montre (en utilisant la décroissance) que

$$\forall k \geqslant 2, \quad f(k) \leqslant \int_{k-1}^{k} f(t)dt \leqslant f(k-1).$$

3. On en déduit par sommation

$$\forall n \ge 2$$
, $S_n - f(1) = \sum_{k=2}^n f(k) \le \int_1^n f(t) dt \le \sum_{k=2}^n f(k-1) = S_{n-1}$.

- 4. Comme f est à valeurs positives, la suite $(S_n)_{n\geqslant 1}$ est croissante. On utilise alors
 - soit la première inégalité pour montrer que (S_n)_{n≥1} est majorée et on conclut par le théorème de limite monotone;
 - soit la seconde inégalité pour montrer que $(S_n)_{n\geqslant 1}$ diverge.

Exemple 5

Déterminer si les séries suivantes sont convergentes ou non.

1. La série $\sum_{n\geqslant 1} \frac{1}{n^3}$.

2	T = = =</th <th>∇</th> <th>1</th>	∇	1
۷.	La série	2	$\overline{n\sqrt{n}}$
		$n \ge 1$	$n\sqrt{n}$

2	T	∇	1	
3.	La série		\sqrt{n}	•
		$n \ge 1$	\sqrt{n}	

Test 6 (Voir solution.)

On considère la série $\sum \frac{n^2}{3^n}$.

- 1. Montrer que le série est convergente et calculer sa somme.
- 2. Avec une boucle for, écrire une fonction Python qui prend un argument un entier naturel n et qui renvoie la somme partielle d'indice n de la série.
- 3. Avec une boucle while, écrire une fonction Python qui prend un argument un réel epsilon > 0 et qui renvoie l'indice à partir duquel la somme partielle atteint sa limite à epsilon près.

2 Séries à termes positifs

Tous les résultats de cette partie seront énoncés pour les séries $\sum_{n\geqslant 0}u_n$ à **termes positifs** c'est-à-dire que $u_k\geqslant 0$ pour tout $k\in\mathbb{N}$. Ils restent néanmoins valables pour les séries dont le terme général est positif à partir d'un certain rang.

Par ailleurs, les résultats s'adaptent aux séries à termes négatifs (à partir d'un certain rang) en considérant la série $\sum_{n\geq 0} -u_n$.

Proposition 6

Soit $\sum u_n$ une série à **termes positifs**. Alors la suite $(S_n)_{n\in\mathbb{N}}$ des sommes partielles est croissante. En particulier

• si $(S_n)_{n\in\mathbb{N}}$ est majorée, la série est convergente et

$$\forall n \in \mathbb{N}, \quad \sum_{k=0}^{n} u_k \leqslant \sum_{k=0}^{+\infty} u_k;$$

• si $(S_n)_{n\in\mathbb{N}}$ est non majorée, la série diverge vers $+\infty$.

Démonstration: Soit $\sum u_n$ une série à termes positifs et $(S_n)_{n\in\mathbb{N}}$ la suite de ses sommes partielles.

Exemple 6

Voir les tests 1 et 3.

Proposition 7 (Comparaison des séries à termes positifs et relation d'ordre)

Soient $\sum u_n$ et $\sum v_n$ deux séries à **termes positifs**. On suppose qu'il existe $n_0 \in \mathbb{N}$ tel que

$$\forall n \geqslant n_0, \quad u_n \leqslant v_n.$$

- 1. Si $\sum v_n$ est convergente, alors $\sum u_n$ est convergente.
- 2. Si $\sum u_n$ est divergente alors $\sum v_n$ est divergente.

Exemple 7

Déterminons la nature de la série $\sum_{k\geqslant 0} \frac{1}{k^2+1}$.

Exemple 8

Déterminons la nature de la série $\sum_{n\geqslant 1} \frac{\ln(n)}{n}$.

Test 7 (Voir solution.)

Déterminer la nature des séries suivantes.

$$1. \sum_{n\geqslant 1} \frac{\sqrt{n}}{n^2 + \sqrt{n}}.$$

$$2. \sum_{n \ge 2} \frac{\sqrt{n}}{\sqrt{n^3 - 1}}.$$

Proposition 8 (Comparaison des séries à termes positifs et relation de négligeabilité)

Soient $\sum u_n$ et $\sum v_n$ deux séries à **termes positifs**. On suppose que $u_n = \mathop{o}\limits_{n \to +\infty}(v_n)$.

- 1. Si $\sum v_n$ est convergente, alors $\sum u_n$ est convergente.
- 2. Si $\sum u_n$ est divergente alors $\sum v_n$ est divergente.

Démonstration: Soient $\sum u_n$ et $\sum v_n$ deux séries à termes positifs. On suppose que $u_n = \mathop{o}_{n \to +\infty}(v_n)$.

Méthode 1 (Comparaison avec les séries de Riemann)

En pratique, pour étudier une série à termes positifs, on cherche à la comparer avec une série usuelle et notamment avec une série de Riemann. Par exemple, si $\sum u_n$ est à termes positifs (raisonnement à refaire à chaque fois qu'on l'utilise) :

- 1. si $\lim_{n \to +\infty} n^a u_n = 0$ alors $u_n = \underset{n \to +\infty}{o} \left(\frac{1}{n^a}\right)$ donc $\sum u_n$ converge si a > 1 par comparaison avec une série de Riemann:
- 2. $si \lim_{n \to +\infty} n^a u_n = +\infty$ alors $\frac{1}{n^a} = \underset{n \to +\infty}{o} (u_n)$ donc $\sum u_n$ diverge $si \ a \le 1$ par comparaison avec une série de Riemann.

Exemple 9

Déte	erminons la nature de la série $\sum_{n\geqslant 1} ne^{-n}$.
	. On cherche le terme général d'une série usuelle devant lequel ne^{-n} est négligeable.
2	On vérifie que les deux séries que l'on compare sont à termes positifs :
3	. On conclut.
	_
xempl	
Déte	erminons la nature de la série $\sum_{n\geqslant 2} \frac{1}{\ln(n)}$.
ost 8 (
1	
Dét	erminer la nature de la série $\sum_{n\geqslant 0} (n^{27} + 2n^3)3^{-n}$.
P	roposition 9 (Comparaison des séries à termes positifs et relation d'équivalence)
Sc	sient $\sum u_n$ et $\sum v_n$ deux séries à termes positifs . Si $u_n \sim v_n$ alors $\sum v_n$ et $\sum u_n$ sont de même nature.
émons	tration: Soient $\sum u_n$ et $\sum v_n$ deux séries à termes positifs.
	On suppose que $u_n \sim v_n$. Cela signifie
•	La suite $(\epsilon_n)_{n\geqslant 0}$ converge vers 1 donc

D'après la propos	ition 7, si $\sum u_n$ converge alors $\sum v_n$ converge	erge aussi (en utilisant l'inégalité de gauche) et si $\sum u_n$
diverge alors $\sum v$	$_{n}$ diverge aussi (en utilisant l'inégalité de dro	oite).
thode 2		
1. En pratique, po	our déterminer la nature d'une série à to	ermes positifs $\sum u_n$, on peut chercher un équivalo
	on terme général puis étudier la série \sum	
2. $Si \sum u_n$ est à tensi $a > 1$ par con	rmes positifs et que $\lim_{n\to+\infty} n^a u_n = \ell > n$ n paraison avec une série de Riemann.	> 0 alors $u_n \sim \frac{\ell}{n^a}$ donc $\sum u_n$ converge si et seuleme
emple 11		
	re de la série $\sum \frac{2n^2+2n-12}{5n^3+6}$.	
	$5n^3+6$ in equivalent simple.	
2. Conclusion:		
st 9 (<i>Voir solution.</i>)		
	e des séries suivantes :	
$1. \sum \ln\left(1+\frac{1}{n^2}\right).$	2. $\sum \frac{2^n-3^n}{2^n-4^n}$.	3. $\sum \frac{n^2-4}{e^n-n-2\ln n}$.
		
	mple quand les suites ne sont pas à tern	
	les exemples qui montrent que les résu	ltats de cette partie ne s'appliquent pas aux séries
termes quelconques.		
Séries à terme	es quelconques	
Définition 3 (Conv	rergence absolue)	
Coit V una cária	numáriana On dit ana VIII sat abach	rement convengents (ou convenge checkument)
si la série $\sum u_n $ une serie si la série $\sum u_n $ co		ument convergente (ou converge absolument)
Si la serie Z an co	iiveige.	
emple 13		
1 1		
1. La série $\sum \frac{(-1)^n}{n^2}$		

2.	La série $\sum \frac{(-1)^n}{n}$
	position 10 $\sum u_n$ une série numérique. Si $\sum u_n$ est absolument convergente alors elle est convergente.
Exemple La sér	$\frac{14}{\text{rie}\sum \frac{(-1)^n}{n^2}}$
	n <mark>e 5</mark> ciproque de la proposition précédente est fausse! Il est donc faux de conclure qu'une série est divergente qu'elle n'est pas absolument convergente.
La séi	rie $\sum \frac{(-1)^n}{n}$ n'est pas absolument convergente et est convergente (voir TD).
$\sum \ln $	ons la nature de la série $\sum \ln \left(1 + \frac{(-1)^n}{n^2}\right)$. La série n'est pas à termes positifs donc on va étudier la série $\left(1 + \frac{(-1)^n}{n^2}\right)$. Recherche d'un équivalent :
2.	Comparaison :
3.	Conclusion:
	est faux de dire : « $\ln\left(1+\frac{(-1)^n}{n^2}\right) \sim \frac{(-1)^n}{n^2}$ et $\sum \frac{(-1)^n}{n^2}$ converge donc la série $\sum \ln\left(1+\frac{(-1)^n}{n^2}\right)$ converge » car le

Test 10 (Voir solution.)

Déterminer la nature de la série $\sum \frac{(-1)^n (n^5 + 2n^3 + 1)}{e^n + 2}$.

4 Bilan: méthode et erreurs à ne pas commettre

4.1 Plan d'étude d'une série

- 1. Le terme général tend-il vers 0?
 - → non : la série diverge grossièrement;
 - → oui : la série peut être divergente ou convergente, il faut poursuivre l'étude.
- 2. Le terme général est-il positif (à partir d'un certain rang)?
 - → oui : on peut alors essayer d'utiliser les théorèmes de comparaison, équivalence ou négligeabilité pour les séries à termes positifs; on essaie alors de comparer avec les séries usuelles (notamment les séries de Riemann);
 - → non : il faut poursuivre l'étude.
- 3. Si la série est à termes quelconques on peut essayer de
 - → montrer qu'elle est absolument convergente;
 - → calculer les sommes partielles si on reconnaît des séries usuelles ou une somme télescopique.

Remarque 6

Le point 2 s'applique aussi dans le cas où le terme général est négatif (il suffit d'appliquer les résultats à la série $\sum -u_n$).

4.2 Erreurs à ne pas commettre

- 1. Il ne faut pas confondre:
 - $\sum_{n\geqslant n_0} u_n$ (qui désigne la série de terme général $(u_n)_{n\geqslant n_0}$);
 - $\sum_{k=n_0}^{n} u_k$ (qui désigne la somme partielle d'indice n de la série);
 - $\sum_{n=n_0}^{+\infty} u_n$ (qui désigne la somme de la série **lorsqu'elle est convergente**).
- 2. Il ne faut jamais écrire $\sum_{n=n_0}^{+\infty} u_n$ avant d'avoir justifié la convergence de la série.
- 3. Il ne faut pas utiliser les théorèmes de comparaison, équivalence ou négligeabilité pour les séries à termes positifs sans avoir vérifié que les séries en question sont bien à termes positifs!

5 Objectifs

- 1. Savoir étudier la nature d'une série en utilisant les outils connus sur les suites, connaître les propriétés des opérations sur les séries, savoir reconnaître un télescopage, connaître les séries usuelles (programme d'ECE1).
- 2. Connaître la nature des séries de Riemann.
- 3. Connaître par coeur les critères de convergence des séries à termes positifs (comparaison, négligeabilité, équivalence).
- 4. Savoir déterminer la nature d'une série à termes positifs en utilisant les critères de comparaison, négligeabilité, équivalence.
- 5. Savoir montrer qu'une série à termes quelconques est convergente en utilisant la convergence absolue.
- 6. Savoir écrire un programme Python calculant un/les termes successifs d'une série.
- 7. Savoir écrire un programme Python renvoyant l'indice à partir duquel une suite ou une série atteint sa limite à une erreur fixée près.

12