Enzymatic Promiscuity

 $\label{eq:approx} \mbox{ A Thesis}$ $\mbox{ Presented to}$ $\mbox{ The Division of Mathematics and Natural Sciences}$ $\mbox{ Reed College}$

In Partial Fulfillment of the Requirements for the Degree Bachelor of Arts

Nelly Selem

May 2016

Approved for the Division (Mathematics)

Francisco Barona Gomez

Acknowledgements

I want to thank a few people.

Preface

This is an example of a thesis setup to use the reed thesis document class.

Table of Contents

Introd	uction	1
Chapt	er 1: EvoMining	3
1.1	Genome DB	3
1.2	Natural Products DB	4
1.3	Reproducibility on EvoMining code	4
1.4	Otras estrategias para los clusters Argon context Idea	4
1.5	Inline code	5
1.6	CORASoN	5
1.7	Loading and exploring data	6
1.8	Additional resources	9
Chapt	v	11
2.1	Math	11
2.2	Chemistry 101: Symbols	11
	2.2.1 Typesetting reactions	12
	2.2.2 Other examples of reactions	12
2.3	Physics	12
2.4	Biology	12
Chapt	er 3: Archaea EvoMining Results	13
3.1		13
	3.1.1 Expansions BoxPlot by metabolic family	15
3.2	Genome Size correlations	16
	3.2.1 Correlation between genome size and AntiSMASH products .	16
	3.2.2 Correlation between genome size and Central pathway expansions	18
3.3	Natural products	22
	3.3.1 Natural products recruitments from EvoMining heatplot	22
3.4	Archaeas AntiSMASH	24
	3.4.1 AntisSMASH vs Central Expansions	26
3.5	Selected trees from EvoMining	29
3.6	Footnotes and Endnotes	30
3.7	Bibliographies	30
3.8	Anything else?	31

Chapte	er 4: Actinobacteria EvoMining Results	33
4.1	Tables	33
4.2	Central pathway expansions	34
	4.2.1 Expansions BoxPlot by metabolic family	35
4.3	Genome Size correlations	36
	4.3.1 Correlation between genome size and AntiSMASH products .	36
4.4	Selected trees from EvoMining	36
Chapte	er 5: Cyanobacteria EvoMining Results	39
5.1	Tables	39
5.2	Central pathway expansions	40
	5.2.1 Expansions BoxPlot by metabolic family	41
5.3	Genome Size correlations	42
	5.3.1 Correlation between genome size and AntiSMASH products .	42
	5.3.2 Correlation between genome size and Central pathway expansion	s 44
5.4	Natural products	48
	5.4.1 Natural products recruitments from EvoMining heatplot	48
5.5	Cyanobacterias AntiSMASH	50
	5.5.1 AntisSMASH vs Central Expansions	52
5.6	Selected trees from EvoMining	55
Conclu	sion	57
Appen	dix A: The First Appendix	59
Appen	dix B: The Second Appendix, for Fun	61
Refere	nces	63

List of Tables

1.1	Maximum Delays by Airline	8
3.1	Families on Archaeabacteria	13
4.1	Correlation of Inheritance Factors for Parents and Child	33
5.1	Families on Cyanobacteria	39

List of Figures

2.1	Combustion of glucose
3.1	Archaeas Heatplot
3.2	Archeas expansions Boxplot
3.3	Correlation between Archaeas genome size and antismash Natural
	products detection colored by Order
3.4	Correlation between Archaeas genome size and antismash Natural products detection grided by Order
3.5	Correlation between Archaeas genome size and central pathway expan-
	sions
3.6	Correlation between Archaeas genome size and central pathway expan-
	sions grided by order
3.7	Correlation between Archaeas Genome size vs Total central pathway
	expansion coloured by metabolic Family
3.8	Archaeas Recruitmens on central families coloured by kingdom $ 2 $
3.9	Archaeas Recruitmens on central families coloured by taxonomy 2
3.10	Archaeas Diversity
3.11	Archaeas Smash Taxonomical Diversity
3.12	Correlation between Archaeas central pathway expansions and anti-
	smash Natural products detection
3.13	Correlation between Archaeas central pathway expnasions and anti-
	smash Natural products detection
	Archaeas Natural products by family
	Phosphoribosyl isomerase EvoMiningtree
3.16	Phosphoribosyl isomerase EvoMiningtree
4.1	Actinobacterial Heatplot
4.2	Expansions Boxplot
4.3	Enolase EvoMiningtree
4.4	Phosphoribosyl isomerase EvoMiningtree
4.5	Phosphoribosyl isomerase A EvoMiningtree
4.6	phosphoshikimate carboxyvinyltransferase Evo Miningtree
5.1	Cyanobacterial Heatplot
5.2	Expansions Boxplot

5.3	Correlation between genome size and antismash Natural products detection colored by Order
5.4	Correlation between genome size and antismash Natural products de-
	tection grided by Order
5.5	Correlation between genome size and central pathway expansions
5.6	Correlation between genome size and central pathway expansions grided
	by order
5.7	Correlation between Genome size vs Total central pathway expansion
	coloured by metabolic Family
5.8	Recruitmens on central families coloured by kingdom
5.9	Recruitmens on central families coloured by taxonomy
5.10	Diversity
5.11	Smash
5.12	Correlation between central pathway axpnasions and antismash Natural
	products detection
5.13	Correlation between central pathway axpnasions and antismash Natural
	products detection
5.14	Natural products by family
	Phosphoribosyl isomerase EvoMiningtree
	Phosphoribosyl isomerase EvoMiningtree

Abstract

The preface pretty much says it all. Second paragraph of abstract starts here.

Dedication

You can have a dedication here if you wish.

Introduction

Welcome to the *R Markdown* thesis template. This template is based on (and in many places copied directly from) the LATEX template, but hopefully it will provide a nicer interface for those that have never used TEX or LATEX before. Using *R Markdown* will also allow you to easily keep track of your analyses in **R** chunks of code, with the resulting plots and output included as well. The hope is this *R Markdown* template gets you in the habit of doing reproducible research, which benefits you long-term as a researcher, but also will greatly help anyone that is trying to reproduce or build onto your results down the road.

Hopefully, you won't have much of a learning period to go through and you will reap the benefits of a nicely formatted thesis. The use of LaTeX in combination with Markdown is more consistent than the output of a word processor, much less prone to corruption or crashing, and the resulting file is smaller than a Word file. While you may have never had problems using Word in the past, your thesis is likely going to be about twice as large and complex as anything you've written before, taxing Word's capabilities. After working with Markdown and $\mathbf R$ together for a few weeks, we are confident this will be your reporting style of choice going forward.

Why use it?

R Markdown creates a simple and straightforward way to interface with the beauty of PTEX. Packages have been written in R to work directly with PTEX to produce nicely formatting tables and paragraphs. In addition to creating a user friendly interface to PTEX, PTEX,

Who should use it?

Anyone who needs to use data analysis, math, tables, a lot of figures, complex cross-references, or who just cares about the final appearance of their document should use R Markdown. Of particular use should be anyone in the sciences, but the user-friendly nature of Markdown and its ability to keep track of and easily include figures, automatically generate a table of contents, index, references, table of figures, etc. should make it of great benefit to nearly anyone writing a thesis project.

Chapter 1

EvoMining

EvoMining needs. Functional genomics uses genomes in the study of gene and protein function[].

- 1. Genomes DB
- 2. Natural Products DB
- 3. Central Pathways DB

Archaea, Actinobacteria, Cyanobacteria were used as genome DB, MIBiG was used as Natural Product DB and different Central Pathways were used. http://rmarkdown.rstudio.com.

1.1 Genome DB

RAST annotation of genomes was done.

Phylogeny To capture differences on genomes we sort them phylogenetically. Phylogenies can be constructed using different paradigms as Parsimony, Maximum Likelihood, and Bayesian inference. Short descriptions of the main phylogeny methods are included below.

- Parsimony
- Maximum Likelihood
- Mr bayes

General Trees

Actinobacteria Tree, Archaea Tree, Cyanobacteria Tree.

It's easy to create a list. It can be unordered like

To create a sublist, just indent the values a bit (at least four spaces or a tab). (Here's one case where indentation is key!)

- 1. Item 1
- 2. Item 2
- 3. Item 3

- Item 3a
- Item 3b ## Central DB
- BBH Best Bidirectional Hits with studied enzymes from Central Actinobacterial pathways were selected.
- By abundance
- By expansions on genomes

1.2 Natural Products DB

Natural products was improved from previous version

1.3 Reproducibility on EvoMining code

EvoMining Code was packaged on Docker ## Archaeas Results Archaea is a kingdom of recent discovery were not many natural products has been known. On Actinobacteria, evoMining has proved its value to find new kinds of natural products. The clue to this discovery was that Actinobacteria has genomic expansions. Now Archaea has genomic expansions, even more has central pathways genomic expansions. Are this expansions derived from a genomic duplication?

Has Archaea natural products detected by antismash, and if not, where are this NP's or may Archaea doesn't have NP's.

applying EvoMining to Archaea

1.4 Otras estrategias para los clusters Argon context Idea

Argon When you click the **Knit** button above a document will be generated that includes both content as well as the output of any embedded \mathbf{R} code chunks within the document. You can embed an \mathbf{R} code chunk like this (cars is a built-in \mathbf{R} dataset):

summary(cars)

spe	eed	dist	
Min.	: 4.0	Min. : 2.0	0
1st Qu.	:12.0	1st Qu.: 26.0	0
Median	:15.0	Median : 36.0	0
Mean	:15.4	Mean : 42.9	8
3rd Qu.	:19.0	3rd Qu.: 56.0	0
Max.	:25.0	Max. :120.0	0

1.5. Inline code

1.5 Inline code

If you'd like to put the results of your analysis directly into your discussion, add inline code like this:

The cos of 2π is 1.

Another example would be the direct calculation of the standard deviation:

The standard deviation of speed in cars is 5.2876444.

One last neat feature is the use of the ifelse conditional statement which can be used to output text depending on the result of an R calculation:

The standard deviation is less than 6.

Note the use of > here, which signifies a quotation environment that will be indented.

As you see with \$2 \pi\$ above, mathematics can be added by surrounding the mathematical text with dollar signs. More examples of this are in [Mathematics and Science] if you uncomment the code in Math.

1.6 CORASoN

You can also embed plots. For example, here is a way to use the base **R** graphics package to produce a plot using the built-in **pressure** dataset:

Note that the echo = FALSE parameter was added to the code chunk to prevent printing of the R code that generated the plot. There are plenty of other ways to add chunk options. More information is available at http://yihui.name/knitr/options/.

Another useful chunk option is the setting of cache = TRUE as you see here. If document rendering becomes time consuming due to long computations or plots that are expensive to generate you can use knitr caching to improve performance. Later in this file, you'll see a way to reference plots created in \mathbf{R} or external figures.

1.7 Loading and exploring data

Included in this template is a file called flights.csv. This file includes a subset of the larger dataset of information about all flights that departed from Seattle and Portland in 2014. More information about this dataset and its R package is available at http://github.com/ismayc/pnwflights14. This subset includes only Portland flights and only rows that were complete with no missing values. Merges were also done with the airports and airlines data sets in the pnwflights14 package to get more descriptive airport and airline names.

We can load in this data set using the following command:

```
flights <- read.csv("data/flights.csv")</pre>
```

The data is now stored in the data frame called **flights** in **R**. To get a better feel for the variables included in this dataset we can use a variety of functions. Here we can see the dimensions (rows by columns) and also the names of the columns.

```
dim(flights)
[1] 52808    16
```

```
names(flights)
```

```
[1] "month"
                     "day"
                                      "dep_time"
                                                      "dep_delay"
                                      "carrier"
 [5] "arr_time"
                     "arr_delay"
                                                      "tailnum"
 [9] "flight"
                     "dest"
                                      "air time"
                                                      "distance"
                                      "carrier name"
[13] "hour"
                     "minute"
                                                      "dest name"
```

Another good idea is to take a look at the dataset in table form. With this dataset having more than 50,000 rows, we won't explicitly show the results of the command here. I recommend you enter the command into the Console **after** you have run the **R** chunks above to load the data into **R**.

View(flights)

While not required, it is highly recommended you use the dplyr package to manipulate and summarize your data set as needed. It uses a syntax that is easy to understand using chaining operations. Below I've created a few examples of using dplyr to get information about the Portland flights in 2014. You will also see the use of the ggplot2 package, which produces beautiful, high-quality academic visuals.

We begin by checking to ensure that needed packages are installed and then we load them into our current working environment:

```
# List of packages required for this analysis
pkg <- c("dplyr", "ggplot2", "knitr", "devtools")
# Check if packages are not installed and assign the
# names of the packages not installed to the variable new.pkg
new.pkg <- pkg[!(pkg %in% installed.packages())]
# If there are any packages in the list that aren't installed,
# install them
if (length(new.pkg))
   install.packages(new.pkg, repos = "http://cran.rstudio.com")
# Load packages
library(dplyr)
library(ggplot2)
library(knitr)</pre>
```

The example we show here does the following:

- Selects only the carrier_name and arr_delay from the flights dataset and then assigns this subset to a new variable called flights2.
- Using flights2, we determine the largest arrival delay for each of the carriers.

```
flights2 <- flights %>% dplyr::select(carrier_name, arr_delay)
max_delays <- flights2 %>% group_by(carrier_name) %>%
   summarize(max_arr_delay = max(arr_delay, na.rm = TRUE))
```

We next introduce a useful function in the knitr package for making nice tables in *R Markdown* called kable. It produces the LaTeX code required to make the table and is much easier to use than manually entering values into a table by copying and pasting values into Excel or LaTeX. This again goes to show how nice reproducible documents can be! There is no need to copy-and-paste values to create a table. (Note the use of results = "asis" here which will produce the table instead of the code to create the table. You'll learn more about the \\labellater.) The caption.short argument is used to include a shorter version of the title to appear in the List of Tables at the beginning of the document.

Table 1.1. Maximum Delays by An	le 1.1: Maximum Delays by	/ Airline
---------------------------------	---------------------------	-----------

Airline	Max Arrival Delay
Alaska Airlines Inc.	338
American Airlines Inc.	1539
Delta Air Lines Inc.	651
Frontier Airlines Inc.	575
Hawaiian Airlines Inc.	407
JetBlue Airways	273
SkyWest Airlines Inc.	421
Southwest Airlines Co.	694
United Air Lines Inc.	472
US Airways Inc.	347
Virgin America	366
_	

We can further look into the properties of the largest value here for American Airlines Inc. To do so, we can isolate the row corresponding to the arrival delay of 1539 minutes for American in our original flights dataset.

```
dep_time dep_delay arr_time tailnum flight dest air_time distance
1  1403  1553  1934  N595AA  1568  DFW  182  1616
```

We see that the flight occurred on March 3rd and departed a little after 2 PM on its way to Dallas/Fort Worth. Lastly, we show how we can visualize the arrival delay of all departing flights from Portland on March 3rd against time of departure.

```
flights %>% dplyr::filter(month == 3, day == 3) %>%
  ggplot(aes(x = dep_time, y = arr_delay)) +
  geom_point()
```


1.8 Additional resources

- Markdown Cheatsheet https://github.com/adam-p/markdown-here/wiki/Markdown-Cheatsheet
- R Markdown Reference Guide https://www.rstudio.com/wp-content/uploads/2015/03/rmarkdown-reference.pdf
- Introduction to dplyr https://cran.rstudio.com/web/packages/dplyr/vignettes/introduction.html
- ggplot2 Documentation http://docs.ggplot2.org/current/

Chapter 2

PriA Family

- Julian simulation
- Who has TrpF

2.1 Math

TEX is the best way to typeset mathematics. Donald Knuth designed TEX when he got frustrated at how long it was taking the typesetters to finish his book, which contained a lot of mathematics. One nice feature of R Markdown is its ability to read Lagrangian to the mathematics.

If you are doing a thesis that will involve lots of math, you will want to read the following section which has been commented out. If you're not going to use math, skip over or delete this next commented section.

2.2 Chemistry 101: Symbols

Chemical formulas will look best if they are not italicized. Get around math mode's automatic italicizing in LaTeX by using the argument \$\mathrm{formula here}\$, with your formula inside the curly brackets. (Notice the use of the backticks here which enclose text that acts as code.)

```
So, Fe_2^{2+}Cr_2O_4 is written \mathrm{Fe_2^{2+}Cr_2O_4}$.
```

Exponent or Superscript: O⁻

Subscript: CH₄

To stack numbers or letters as in Fe_2^{2+} , the subscript is defined first, and then the superscript is defined.

Angstrom: Å

Bullet: CuCl • 7H₂O Double Dagger: ‡

Delta: Δ

Reaction Arrows: \longrightarrow or $\xrightarrow{solution}$

Resonance Arrows: \leftrightarrow

Reversible Reaction Arrows: \rightleftharpoons or $\stackrel{solution}{\longleftarrow}$ (the latter requires the chemarr LaTeX package which is automatically loaded in this template)

2.2.1 Typesetting reactions

You may wish to put your reaction in a figure environment, which means that LATEX will place the reaction where it fits and you can have a figure caption. You'll see further description of this R label function in . (Note the use of the double backslash here as well as the echo = FALSE which hides the code from the output.)

$$C_6H_{12}O_6 + 6O_2 \longrightarrow 6CO_2 + 6H_2O$$

Figure 2.1: Combustion of glucose

2.2.2 Other examples of reactions

$$NH_4Cl_{(s)} \rightleftharpoons NH_{3(g)} + HCl_{(g)}$$
 $MeCH_2Br + Mg \xrightarrow{above} MeCH_2 \bullet Mg \bullet Br$

2.3 Physics

Many of the symbols you will need can be found on the math page http://web.reed.edu/cis/help/latex/math.html and the Comprehensive LATEX Symbol Guide (http://mirror.utexas.edu/ctan/info/symbols/comprehensive/symbols-letter.pdf).

2.4 Biology

You will probably find the resources at http://www.lecb.ncifcrf.gov/~toms/latex.html helpful, particularly the links to bsts for various journals. You may also be interested in TeXShade for nucleotide typesetting (http://homepages.unituebingen.de/beitz/txe.html). Be sure to read the proceeding chapter on graphics and tables.

Chapter 3

Archaea EvoMining Results

Archaea kingdom {Referencia}

3.1 Tables

Table 3.1: Families on Archaeabacteria

Factors	Correlation between Parents & Child
GenomeDB	876
Phylum	12
Order	23

Central pathway expansions Heat plot of central pathways expansions, Needs to be phylogenetically sorted.

Warning: Ignoring unknown aesthetics: width

Figure 3.1: Archaeas Heatplot

Here is a reference to the HeatPlot: Figure 3.1.

3.1. Tables 15

3.1.1 Expansions BoxPlot by metabolic family

Warning: Removed 876 rows containing non-finite values (stat_boxplot).

label(path = "chapter3/Archeasexpansion_plot.pdf", caption = "Archeas expansions E

Figure 3.2: Archeas expansions Boxplot

Here is a reference to the expansion boxplot: Figure 3.2.

3.2 Genome Size correlations

Genome size vs Total antismash cluster coloured by order

Figure 3.3: Correlation between Archaeas genome size and antismash Natural products detection colored by Order

Here is a reference to Genome size vs Total antismash cluster: Figure 3.3.

Genome size vs Total antismash cluster detected splitted by order

Figure 3.4: Correlation between Archaeas genome size and antismash Natural products detection grided by Order

Here is a reference to Correlation between genome size and antismash Natural products detection grided by Order plot: Figure 3.4.

3.2.2 Correlation between genome size and Central pathway expansions

Genome size vs Total central pathway expansion coloured by order

Figure 3.5: Correlation between Archaeas genome size and central pathway expansions

Here is a reference to the size vs Total central pathway expansion plot: Figure 3.5.

Genome size vs Total central pathway expansion grided by order

Figure 3.6: Correlation between Archaeas genome size and central pathway expansions grided by order

Here is a reference to the Genome size vs Total central pathway expansion grided by order plot: Figure 3.6. Correlation between genome size and each of the central pathway families. Data are coloured by metabolic family instead of coloured by taxonomical order. This treatment allows to answer how differente metabolic families grows when genome size grow.

Also I want to add form given by taxonomical order.

Warning: The shape palette can deal with a maximum of 6 discrete values because more than 6 becomes difficult to discriminate; you have 24. Consider specifying shapes manually if you must have them.

Warning: Removed 64823 rows containing missing values (geom point).

Genome size vs Total central pathway expansion coloured by metabolic Family

Figure 3.7: Correlation between Archaeas Genome size vs Total central pathway expansion coloured by metabolic Family

Here is a reference to the Genome size vs Total central pathway expansion coloured by metabolic Family plot: Figure 3.7.

Future Work: Genome size vs Total central pathway expansion grided by metabolic Family For clarity I need to also grid and group by Metabolic Pathway

Here is a reference to Genome size vs Total central pathway expansion grided by metabolic Family plot: ??.

3.3 Natural products

3.3.1 Natural products recruitments from EvoMining heatplot

We can see natural products recruitment after central pathways expansions colored by their kingdom.

Natural products recruited by metabolic family, colored by phylogenetic origin. Recruitments after central pathways expansions coloured by Kingdom

Figure 3.8: Archaeas Recruitmens on central families coloured by kingdom

Here is a reference to Recruitments after central pathways expansions colourd by Kingdom plot: Figure 3.8.

Recruitments after central pathways expansions colourd by taxonomy

Figure 3.9: Archaeas Recruitmens on central families coloured by taxonomy

Here is a reference to Recruitments after central pathways expansions colourd by taxa plot: Figure 3.9.

3.4 Archaeas AntiSMASH

Taxonomical diversity on Archaeasbacteria Data

Figure 3.10: Archaeas Diversity

Here is a reference to Recruitments after central pathways expansions colourd by taxa plot: Figure 3.10.

Smash diversity

Figure 3.11: Archaeas Smash Taxonomical Diversity

Here is a reference to Recruitments after central pathways expansions colourd by taxa plot: Figure 3.11.

3.4.1 AntisSMASH vs Central Expansions

Is it a correlation between pangenome grow and central pathways expansions?

Total central pathway expansions by genome vs Total antismash cluster detected coloured by order

Figure 3.12: Correlation between Archaeas central pathway expansions and antismash Natural products detection

Here is a reference to the expansions vs antismash NP's clusters plot: Figure 3.12.

Total central pathway expansions by genome vs Total antismash cluster detected splitted by order

Figure 3.13: Correlation between Archaeas central pathway expnasions and antismash Natural products detection

Here is a reference to the expansions vs antismash NP's clusters splitted by order plot Figure 3.13.

AntisMAsh vs Expansions by taxonomic Family Natural products colured by family

Figure 3.14: Archaeas Natural products by family

Here is a reference to the Natural products colured by family plot Figure 3.14.

3.5 Selected trees from EvoMining

Phosphoribosyl_isomerase_3 family Figure from EvoMining

Figure 3.15: Phosphoribosyl isomerase EvoMiningtree

Figure 3.16: Phosphoribosyl isomerase EvoMiningtree

3.6 Footnotes and Endnotes

You might want to footnote something.¹ The footnote will be in a smaller font and placed appropriately. Endnotes work in much the same way. More information can be found about both on the CUS site or feel free to reach out to data@reed.edu.

3.7 Bibliographies

Of course you will need to cite things, and you will probably accumulate an armful of sources. There are a variety of tools available for creating a bibliography database (stored with the .bib extension). In addition to BibTeX suggested below, you may want to consider using the free and easy-to-use tool called Zotero. The Reed librarians have created Zotero documentation at http://libguides.reed.edu/citation/zotero. In addition, a tutorial is available from Middlebury College at http://sites.middlebury.edu/zoteromiddlebury/.

R Markdown uses pandoc (http://pandoc.org/) to build its bibliographies. One nice caveat of this is that you won't have to do a second compile to load in references as standard LATEX requires. To cite references in your thesis (after creating your bibliography database), place the reference name inside square brackets and precede it by the "at" symbol. For example, here's a reference to a book about worrying: (Molina & Borkovec, 1994). This Molina1994 entry appears in a file called thesis.bib in the bib folder. This bibliography database file was created by a program called BibTeX. You can call this file something else if you like (look at the YAML header in the main .Rmd file) and, by default, is to placed in the bib folder.

For more information about BibTeX and bibliographies, see our CUS site (http://web.reed.edu/cis/help/latex/index.html)². There are three pages on this topic: bibtex (which talks about using BibTeX, at http://web.reed.edu/cis/help/latex/bibtex.html), bibtexstyles (about how to find and use the bibliography style that best suits your needs, at http://web.reed.edu/cis/help/latex/bibtexstyles.html) and bibman (which covers how to make and maintain a bibliography by hand, without BibTeX, at http://web.reed.edu/cis/help/latex/bibman.html). The last page will not be useful unless you have only a few sources.

If you look at the YAML header at the top of the main .Rmd file you can see that we can specify the style of the bibliography by referencing the appropriate csl file. You can download a variety of different style files at https://www.zotero.org/styles. Make sure to download the file into the csl folder.

Tips for Bibliographies

• Like with thesis formatting, the sooner you start compiling your bibliography for something as large as thesis, the better. Typing in source after source is mind-numbing enough; do you really want to do it for hours on end in late April? Think of it as procrastination.

¹footnote text

²Reed College (2007)

- The cite key (a citation's label) needs to be unique from the other entries.
- When you have more than one author or editor, you need to separate each author's name by the word "and" e.g. Author = {Noble, Sam and Youngberg, Jessica},.
- Bibliographies made using BibTeX (whether manually or using a manager) accept LATEX markup, so you can italicize and add symbols as necessary.
- To force capitalization in an article title or where all lowercase is generally used, bracket the capital letter in curly braces.
- You can add a Reed Thesis citation³ option. The best way to do this is to use the phdthesis type of citation, and use the optional "type" field to enter "Reed thesis" or "Undergraduate thesis."

3.8 Anything else?

If you'd like to see examples of other things in this template, please contact the Data @ Reed team (email data@reed.edu) with your suggestions. We love to see people using R Markdown for their theses, and are happy to help.

 $^{^{3}}$ Noble (2002)

Chapter 4

Actinobacteria EvoMining Results

Actinobacteria is an ancient phylum {Referencia de luis}

4.1 Tables

Table 4.1: Correlation of Inheritance Factors for Parents and Child

Factors	Correlation between Parents & Child
GenomeDB	1245
Families	65

4.2 Central pathway expansions

Heat plot of central pathways expansions, Needs to be phylogenetically sorted.

Figure 4.1: Actinobacterial Heatplot

Here is a reference to the HeatPlot: Figure 4.1.

4.2.1 Expansions BoxPlot by metabolic family

label(path = "chapter4/expansion_plotActinos.pdf", caption = "Expansions Boxplot",

/ totalloonload loaning variab

Figure 4.2: Expansions Boxplot

Here is a reference to the expansion boxplot: Figure 4.2.

4.3 Genome Size correlations

4.3.1 Correlation between genome size and AntiSMASH products

4.4 Selected trees from EvoMining

Figure 4.3: Enolase EvoMiningtree

Figure 4.4: Phosphoribosyl isomerase EvoMiningtree

Figure 4.5: Phosphoribosyl isomerase A Evo Miningtree

Figure 4.6: phosphoshikimate carboxyvinyltransferase EvoMiningtree

Chapter 5

Cyanobacteria EvoMining Results

Cyanobacteria phylum {Referencia}

5.1 Tables

Table 5.1: Families on Cyanobacteria

Factors	Correlation between Parents & Child
GenomeDB	1245
Families	65

5.2 Central pathway expansions

Heat plot of central pathways expansions, Needs to be phylogenetically sorted.

Figure 5.1: Cyanobacterial Heatplot

Here is a reference to the HeatPlot: Figure 5.1.

5.2.1 Expansions BoxPlot by metabolic family

label(path = "chapter5/expansion_plot.pdf", caption = "Expansions Boxplot", label =

Figure 5.2: Expansions Boxplot

Here is a reference to the expansion boxplot: Figure 5.2.

5.3 Genome Size correlations

Genome size vs Total antismash cluster coloured by order

Figure 5.3: Correlation between genome size and antismash Natural products detection colored by Order

Here is a reference to Genome size vs Total antismash cluster: Figure 5.3.

Genome size vs Total antismash cluster detected splitted by order

Figure 5.4: Correlation between genome size and antismash Natural products detection grided by Order

Here is a reference to Correlation between genome size and antismash Natural products detection grided by Order plot: Figure 5.4.

5.3.2 Correlation between genome size and Central pathway expansions

Genome size vs Total central pathway expansion coloured by order

Figure 5.5: Correlation between genome size and central pathway expansions

Here is a reference to the size vs Total central pathway expansion plot: Figure 5.5.

Genome size vs Total central pathway expansion grided by order

Figure 5.6: Correlation between genome size and central pathway expansions grided by order

Here is a reference to the Genome size vs Total central pathway expansion grided by order plot: Figure 5.6.

Correlation between genome size and each of the central pathway families. Data are coloured by metabolic family instead of coloured by taxonomical order. This treatment allows to answer how differente metabolic families grows when genome size grow.

Also I want to add form given by taxonomical order.

Warning: The shape palette can deal with a maximum of 6 discrete values because more than 6 becomes difficult to discriminate; you have 10. Consider specifying shapes manually if you must have them.

Warning: Removed 20418 rows containing missing values (geom point).

Genome size vs Total central pathway expansion coloured by metabolic Family

Figure 5.7: Correlation between Genome size vs Total central pathway expansion coloured by metabolic Family

Here is a reference to the Genome size vs Total central pathway expansion coloured by metabolic Family plot: Figure 5.7.

Future Work: Genome size vs Total central pathway expansion grided by metabolic Family For clarity I need to also grid and group by Metabolic Pathway

Here is a reference to Genome size vs Total central pathway expansion grided by metabolic Family plot: ??.

5.4 Natural products

5.4.1 Natural products recruitments from EvoMining heatplot

We can see natural products recruitment after central pathways expansions colored by their kingdom.

Natural products recruited by metabolic family, colored by phylogenetic origin. Recruitments after central pathways expansions coloured by Kingdom

Figure 5.8: Recruitmens on central families coloured by kingdom

Here is a reference to Recruitments after central pathways expansions colourd by Kingdom plot: Figure 5.8.

Recruitments after central pathways expansions colourd by taxonomy

Figure 5.9: Recruitmens on central families coloured by taxonomy

Here is a reference to Recruitments after central pathways expansions colourd by taxa plot: Figure 5.9.

5.5 Cyanobacterias AntiSMASH

Taxonomical diversity on Cyanobacteria Data

Figure 5.10: Diversity

Here is a reference to Recruitments after central pathways expansions colourd by taxa plot: Figure 5.10.

Smash diversity

Figure 5.11: Smash

Here is a reference to Recruitments after central pathways expansions colourd by taxa plot: ??.

5.5.1 AntisSMASH vs Central Expansions

Is it a correlation between pangenome grow and central pathways expansions?

Total central pathway expansions by genome vs Total antismash cluster detected coloured by order

Figure 5.12: Correlation between central pathway axpnasions and antismash Natural products detection

Here is a reference to the expansions vs antismash NP's clusters plot: Figure 5.12.

Total central pathway expansions by genome vs Total antismash cluster detected splitted by order

Figure 5.13: Correlation between central pathway axpnasions and antismash Natural products detection

Here is a reference to the expansions vs antismash NP's clusters splitted by order plot ??.

AntisMAsh vs Expansions by taxonomic Family Natural products colured by family

Figure 5.14: Natural products by family

Here is a reference to the Natural products colured by family plot Figure 5.14.

5.6 Selected trees from EvoMining

Phosphoribosyl_isomerase_3 family Figure from EvoMining

Figure 5.15: Phosphoribosyl isomerase Evo Miningtree

Figure 5.16: Phosphoribosyl isomerase EvoMiningtree

Conclusion

Idea de Rosario -ver dell cluster de saxitoxin cuantos pasos se necesitron para llegar ahi.

- -A donde se iria el resultado de abrir el GMP
- -Otra vez, que Actinos tienen FolE

If we don't want Conclusion to have a chapter number next to it, we can add the {.unnumbered} attribute. This has an unintended consequence of the sections being labeled as 3.6 for example though instead of 4.1. The LATEX commands immediately following the Conclusion declaration get things back on track.

More info

And here's some other random info: the first paragraph after a chapter title or section head *shouldn't be* indented, because indents are to tell the reader that you're starting a new paragraph. Since that's obvious after a chapter or section title, proper typesetting doesn't add an indent there.

Appendix A

The First Appendix

This first appendix includes all of the R chunks of code that were hidden throughout the document (using the include = FALSE chunk tag) to help with readibility and/or setup.

In the main Rmd file:

```
# This chunk ensures that the reedtemplates package is
# installed and loaded. This reedtemplates package includes
# the template files for the thesis and also two functions
# used for labeling and referencing
if(!require(devtools))
   install.packages("devtools", repos = "http://cran.rstudio.com")
if(!require(reedtemplates)){
   library(devtools)
   devtools::install_github("ismayc/reedtemplates")
}
library(reedtemplates)
```

In:

```
# This chunk ensures that the reedtemplates package is
# installed and loaded. This reedtemplates package includes
# the template files for the thesis and also two functions
# used for labeling and referencing
if(!require(devtools))
   install.packages("devtools", repos = "http://cran.rstudio.com")
if(!require(plyr))
   install.packages("plyr", repos = "http://cran.rstudio.com")
if(!require(dplyr))
   install.packages("dplyr", repos = "http://cran.rstudio.com")
```

```
if(!require(ggplot2))
    install.packages("ggplot2", repos = "http://cran.rstudio.com")
if(!require(reedtemplates)){
    library(devtools)
    devtools::install_github("ismayc/reedtemplates")
    }
library(reedtemplates)
flights <- read.csv("data/flights.csv")</pre>
```

Appendix B

The Second Appendix, for Fun

References

- Angel, E. (2000). Interactive computer graphics: A top-down approach with openGL. Boston, MA: Addison Wesley Longman.
- Angel, E. (2001a). Batch-file computer graphics: A bottom-up approach with quick-Time. Boston, MA: Wesley Addison Longman.
- Angel, E. (2001b). Test second book by angel. Boston, MA: Wesley Addison Longman.
- Molina, S. T., & Borkovec, T. D. (1994). The Penn State worry questionnaire: Psychometric properties and associated characteristics. In G. C. L. Davey & F. Tallis (Eds.), Worrying: Perspectives on theory, assessment and treatment (pp. 265–283). New York: Wiley.
- Noble, S. G. (2002). Turning images into simple line-art (Undergraduate thesis). Reed College.
- Reed College. (2007, March). LaTeX your document. Retrieved from http://web.reed.edu/cis/help/LaTeX/index.html