

وزارة التربية الوطنية

ثانوية الإمام مالك بن أنس سيدي عيسى

<u>التمرين (1)</u>

لدراسة تطور حركية التحول بين شوارد البيكرومات $Cr_2O_{7(aq)}^{2-}$ و محلول حمض الأكساليك $Cr_2O_{7(aq)}^{2-}$ عند درجة الحرارة $Cr_2O_{7(aq)}^{2-}$ بنمزج في اللحظة $Cr_2O_{7(aq)}^{2-}$ من محلول بيكرومات البوتاسيوم $Cr_2O_{7(aq)}^{2-}$ المولي $Cr_2O_{7(aq)}^{2-}$ مع حجم $Cr_2O_{7(aq)}^{2-}$ من محلول حمض الأكساليك تركيزه المولي $Cr_2O_{7(aq)}^{2-}$ عند الضغط المولي $Cr_2O_{7(aq)}^{2-}$ عند الضغط المولي $Cr_2O_{7(aq)}^{2-}$ عند الضغط المولي $Cr_2O_{7(aq)}^{2-}$ عند المحصل عليها مكنتنا من رسم المنحني البياني الشكل $Cr_2O_{7(aq)}^{2-}$.

نعتبر أنه يمكن اعتبار غاز ثنائي أكسيد الكربون في الشروط التجريبية كغاز مثالي ينطبق عليه القانون التالي: m^3 . V ، $T=(273+\theta)^\circ K$ ، R=8,31 J.mol $^{-1}$.K $^{-1}$. P.V=n.R.T . $Cr_2O_{7(aq)}^{2-}/Cr_{(aq)}^{3+}$ ، $CO_{2(g)}/C_2H_2O_{4(aq)}$.

- 1) أكتب المعادلة المعبرة عن التفاعل أكسدة- إرجاع المنمذج للتحول الكيميائي الحادث.
 - 2) أنشئ جدولا لتقدم التفاعل.
 - 3) أوجد من البيان:
 - t=1 في اللحظة $Cr^{3+}_{(aq)}$ في اللحظة 1. . 20min
 - ب- استنتج السرعة الحجمية للتفاعل في اللحظة t=20min
 - χ_m ج- التقدم الأعظمي
 - د- زمن نصف التفاعل $t_{1/2}$.
 - . C_2 اوجد التركيز المولي لمحلول حمض الاكساليك C_2
 - t = 10min أوجد التركيب المولي للمزيج في اللحظة

<u>التمرين (2)</u>

نضع في كاس بيشر حجما V=100من محلول حمض الازوت $(H_3O_{(aq)}^+ + NO_{3(aq)}^-)$ تركيزه المولي m=19,2g ، نضيف له كتلة قدر ها m=19,2g ، نضيف له كتلة ورها m=19,2g .

الداخلتان في التفاعل هما $OX/_{Red}$ الداخلتان في التفاعل هما (1

$$NO_{3(aq)}^{-}/NO_{(g)}$$
 $\int_{9}^{c} Cu_{(aq)}^{2+}/Cu_{(s)}$

أ- بين ان معادلة التقاعل المنمذج للتحول السابق هي : $3Cu_{(s)}+2NO_{3(aq)}^-+8H_3O_{(aq)}^+ \to 3Cu_{(aq)}^{2+}+2NO_{(g)}+12H_2O_{(l)}$

- ج- انشىء جدول التقدم للتفاعل المنمذج للتحول السابق.
 - د- حدد المتفاعل المحد .
 - 2) علما ان التجربة اجرية في درجة الحرارة $P = 10^5 Pa$. $P = 10^5 Pa$
 - أ- بين ان الحجم المولي للغازات في شروط التجربة هو $V_{M}=24L/mol$.
 - V_{NO} ب- اوجد العلاقة بين حجم غاز اكسيد الأزوت و التقدم \mathbf{X} .
 - نيعطى في الشكل تغير حجم غاز اكسيد الازوت V_{NO} بدلالة الزمن .
 - أ- عرف سرعة التفاعل واحسب قيمتها في اللحظة t=20s
 - ب- استنتج التركيب المولي للمزيج في اللحظة t=20s
 - 4) اعط عبارة الناقلية النوعية $\sigma(t)$ للمحلول بدلالة (x) يعطى:

،
$$R=8,31SI$$
 ، $PV=nRT$ قانون الغازات $M_{Cu}=64g/mol$

$$\lambda_{NO_3^-} = \langle \lambda_{H_3O^+} = 35msm^2/mol \rangle$$

. $\lambda_{Cu^{2+}} = 10.4 \text{ msm}^2/\text{mol}$ · 7,14 msm²/mol

<u>التمرين(3)</u>

لدراسة تطور حركية التحول بين شوارد البيكرومات $Cr_2O_{7(aq)}^{2-}$ و محلول حمض الأكساليك $Cr_2O_{4(aq)}^{2-}$ عند درجة الحرارة $Cr_2O_{7(aq)}^{2-}$ نمزج في اللحظة $Cr_2O_{7(aq)}^{2-}$ عند $Cr_2O_{7(aq)}^{2-}$ المولي $Cr_2O_{7(aq)}^{2-}$ عند الضغط $Cr_2O_{7(aq)}^{2-}$ تركيزه المولي $Cr_2O_{7(aq)}^{2-}$ مع حجم $Cr_2O_{7(aq)}^{2-}$ من محلول حمض الأكساليك تركيزه المولي $Cr_2O_{7(aq)}^{2-}$ عند الضغط المولي $Cr_2O_{7(aq)}^{2-}$ مكننا تجهيز تجريبي مناسب من جمع و قياس حجم غاز ثنائي أكسيد الكربون المنطلق $Cr_2O_{7(aq)}^{2-}$ عند الضغط الحوي $Cr_2O_{7(aq)}^{2-}$. النتائج المحصل عليها مكنتنا من رسم المنحني البياني الشكل $Cr_2O_{7(aq)}^{2-}$

نعتبر أنه يمكن اعتبار غاز ثنائي أكسيد الكربون في الشروط التجريبية كغاز مثالي ينطبق عليه القانون التالي:

:حيث . P.V = n.R.T

$$T = (273 + {}^{\circ}R = 8,31 \text{ J.} mol^{-1}.K^{-1}$$

. m^3 ججم الغاز مقدرا ب $V \cdot \theta$ ° K

الثنائيتان المشاركتان في التفاعل هما:

.
$$Cr_2O_{7(aq)}^{2-}/Cr_{(aq)}^{3+}$$
 · $CO_{2(g)}/C_2H_2O_{4(aq)}$

- 6) أكتب المعادلة المعبرة عن التفاعل أكسدة-إرجاع المنمذج للتحول الكيميائي الحادث.
 - 7) أنشئ جدو لا لتقدم التفاعل.
 - 8) أوجد من البيان:
- ه- سرعة تشكل شوارد $Cr_{(aq)}^{3+}$ في اللحظة

 $[\dots](mmol/L)$

20

. t = 20min

- t=20min استنتج السرعة الحجمية للتفاعل في اللحظة
 - ر- التقدم الأعظمي x_m .
 - . $t_{1/2}$ رمن نصف التفاعل ح-
 - . C_2 التركيز المولي لمحلول حمض الاكساليك C_2
- . t = 10min أوجد التركيب المولي للمزيج في اللحظة

التمرين (4)

ندرس تطور التفاعل التام الحاصل بين محلول يود البوتاسيوم

،
$$C_1$$
 وترکیزه $V_1=~100~ml$ حجمه $\left(K_{(aq)}^+,I_{(aq)}^-
ight)$

ومحلول بيروكسودي كبريتات البوتاسيوم

ونرکیزه
$$V_2 = 100 \ ml$$
 حجمه $(2K_{(aq)}^+, S_2 O_{8(aq)}^{2-})$

بشوارد $C_2 \left(S_2 O_{8(aq)}^{2-} \right)$ تكتب معادلة التفاعل المنمدج للتحول الحاصل:

$$S_2 O_{8(aq)}^{2-} + 2I_{(aq)}^{-} = I_{2(aq)} + 2SO_{4(aq)}^{2-}$$

تمكنا عن طريق معايرة ثنائي اليود المتشكل من تمثيل البيانات (T) و $[I^-]$ و $[I^-]$ و $[I^-]$

- 1) انجز جدول تقدم التفاعل.
- . x_m احسب قيمة التقدم الأعظمي (2
- (1) احسب كمية المادة الابتدائية للمتفاعل الموافق للبيان (1) وللمتفاعل الموافق للبيان (3).
 - . $S_2O_8^{2-}$ بين أن البيان (3) يوافق المتفاعل (4
 - . C_2 و C_1 احسب قيمة كل من
- . عرف زمن نصف التفاعل $t_{1/2}$ واستنتج قيمته من أحد البيانات (6
- . t=0 عند اللحظة عند اللحظة ، $v_{vol}=-rac{1}{2}rac{d[I^-]}{dt}$ بين أن السرعة الحجمية للتفاعل تكتب بالشكل بالشكل (7

t(min)

التمرين (5)

نمز ج عند اللحظة t=0 حجم $V_1=500m$ من محلول برمنغنات البوتاسيوم $K_{(aq)}^++MnO_{4(aq)}^-$ تركيزه المولي $V_1=500m$ مع حجم $V_2=500m$ من محلول حمض الأكساليك $H_2C_2O_{4(aq)}$ تركيزه المولي

 $.C_2 = 0.1 mol/L$

الأستاذ: بلعمري براهيم

(3)

نكتب معادلة التفاعل المنمذج للتحول الكيميائي بالشكل:

$$5 H_2 C_2 O_{4(aq)} + 2 M n O_{4(aq)}^- + 6 H_{(aq)}^+ = 2 M n_{(aq)}^{2+} + 10 C O_{2(g)} + 8 H_2 O_{(l)}$$

- 2) أكتب جدول تقدم التفاعل .
- 3) هل المزيج الابتدائي ستكيومتري ؟
- $[CO_2] = 0.15 5[MnO_4^-]$: t بين أنه في أي لحظة (4

لمتابعة التفاعل نأخذ خلال أزمنة مختلفة t حجما $V_0=10m$ من المزيج ، ثم نعاير كمية مادة شوارد البرمنغنات C=10m بواسطة محلول لكبريتات الحديد الثنائي $V_0=10m$ ني التركيز $V_0=10m$ بواسطة محلول لكبريتات الحديد الثنائي $V_0=10m$ ذي التركيز $V_0=10m$ برامنغنات الحديد الثنائي $V_0=10m$ برامنغنات الحديد الثنائي $V_0=10m$ برامنغنات الحديد الثنائي $V_0=10m$ برامنغنات الحديد الثنائي التركيز $V_0=10m$ برامنغنات الحديد الثنائي التركيز $V_0=10m$ برامنغنات الحديد الثنائي التركيز $V_0=10m$ برامنغنات التركيز $V_0=10m$ برامنغنات الحديد الثنائي التركيز $V_0=10m$ برامنغنات التركيز $V_0=10m$ برامنغنات التركيز التركيز برامنغنات التركيز التركيز التركيز التركيز التركيز برامنغنات التركيز التركيز

. $\left(Fe^{3+}_{(aq)}/Fe^{2+}_{(aq)}
ight)$. نعطى الثنائية . 0,25mol/L

- 5) أكتب معادلة تفاعل المعايرة.
- V_0 و V_E عرف التكافؤ ، ثم استنتج عبارة حجم محلول كبريتات الحديد الثنائي المضاف عند التكافؤ ، ثم استنتج عبارة حجم محلول كبريتات الحديد الثنائي المضاف عند التكافؤ V_E بدلالة V_E و $[MnO_4^-]$.
 - 3-الشكل $V_E=f(t)$ قسناً حجم التكافؤ خلال أزمنة مختلفة t ثم تم رسم المنحنى (7
 - . t=90s عند اللحظة الحجمية لتشكل مند اللحظة المرعة الحجمية المناس
 - . t=90s عند اللحظة $Mn^{2+}_{(aq)}$ عند اللحظة باسرعة الحجمية لتشكل
 - ج- عرف زمن نصف التفاعل $t_{1/2}$ ثم حدد قيمته .

التمرين (6)

في محلول مائي، و عند درجة الحرارة $T=20^{\circ}C$ ، يتفاعل الماء الأوكسيجيني مع شوارد اليود $I^{-}_{(aq)}$ وفق المعادلة الكيميائية التالية: $H_2O_2\left(aq\right)+2I^{-}(aq)+2H_3O^{+}(aq)=I_2(aq)+4H_2O(\ell)$

المحلول المائى لثنائى اليود $I_{2}(aq)$ يتميز بلون بنى فى حين المحلول المائى ليود الهيدروجين

عند اللحظة t=0 نحضر مزيجا تفاعليا و ذلك بمزج:

- . ${\it C}_1 = \, 56 \, mo\ell/m^3$ حجم ${\it V}_1 = 5, 0. \, 10^{-5} \, m^3$ حجم ${\it V}_1 = 5, 0. \, 10^{-5} \, m^3$
- حجم $K^+(aq)+I^-(aq)$ من محلول يود البوتاسيوم ($K^+(aq)+I^-(aq)$) تركيزه المولي $V_2=5,0.\,10^{-5}\,m^3$ حجم . $C_2=2\times 10^2\,mo\ell/m^3$
- حجم $V_3=1,0.10^{-6}~m^3$ من محلول حمض الكبريت ($2H_3O^+(aq)+SO_4^{2-}(aq)$) تركيزه المولي . $C_3=6 imes10^3~mo\ell/m^3$

، $\lambda_{SO_4^{2-}}=8 imes10^{-3}{
m S.}\,m^2/mo\ell$: يعطى $\lambda_{K^+}=7.35 imes10^{-3}{
m S.}\,m^2/mo\ell$

 $\begin{array}{l} \ifmmode \lambda_{I^-} = 7,\!68 \times 10^{-3} \mathrm{S.} \, m^2/mo\ell \\ \ifmmode \lambda_{H_3O^+} = 35 \times 10^{-3} \mathrm{S.} \, m^2/mo\ell \end{array}$

- 1) كيف يمكن التأكد تجريبيا بأن التفاعل بطيء ؟
- 2) من خلال معادلة التفاعل، تعرف على الثنائيتين Ox/Red المتدخلتين في هذا التفاعل.
- $n_0(H_2O_2)=2.8\times 10^{-3}mo\ell$ تحقق أن (3 $n_0(I^-)=1.0\times 10^{-2}mo\ell$ و $n_0(H_3O^+)=1.2\times 10^{-2}mo\ell$

. x_{max} انجز جدو لا لتقدم التفاعل الكيميائي ثم حدد التقدم الأعظمي (4

5) باستغلال جدول التقدم بين أن الناقلية النوعية في المزيج عند اللحظة t تحقق العلاقة $\sigma = 6.1 - 845x$. (S/m) نقدم التفاعل بالمول ($mo\ell$) الناقلية النوعية χ تقدم

. استنتج σ_f الناقلية النوعية في نهاية التحول (6

. $\sigma = f(t)$ يمثل المنحنى (الشكل-1) تغيرات الناقلية النوعية بدلالة الزمن (7

. $t_{1/2}$ حدد زمن نصف التفاعل عدد زمن

. $v_{vol}=-rac{1}{845V_T}rac{d\sigma}{dt}$ بين أن عبارة السرعة الحجمية للتفاعل تكتب على الشكل عبارة السرعة الحجمية التفاعل بين أن عبارة السرعة الحجمية التفاعل أ

. t=0 عند الحجمية عند $mo\ell.m^{-3}$. min^{-1} عند (t=0

التمرين (7)

. $I_{2(aq)}$ مادة مطهرة تباع عند الصيدليات مكونها الأساسي هو ثنائي اليود Lugol

نغمر صفيحة من الزنك $Zn_{(s)}$ كتاتها m_0 في كأس يحتوي على حجم V من الليكول حيث التركيز الابتدائي لثنائي اليود التحول الكيميائي بين الليكول و الزنك بطيء و تام. C_0

1) كيف يمكن التّأكد تجريبيا من أنّ التفاعل بطيء؟.

 I_2/I^- اكتب معادلة تفاعل الأكسدة و الا رجاع الحادث ثم ضع جدو لا لتقدم التفاعل تعطى الثنائيتان I_2/I^- و Zn^{2+}/Zn

. $n_{Zn} = V[I_2] + \frac{m_0}{M_{Zn}} - C_0 V$: اعتمادا على جدول التقدم بيّن أنّ (3

4) بواسطة تقنية خاصة تمكّنا من رسم المنحنيين البيانيين التاليين:

اعتمادا على الشكلين (1) و (2) اجب على الأسئلة التالية:

- أ) استنتج المتفاعل المحدّ.
- . $n_{Zn}=f(I_2)$ ب) اكتب معادلة البيان (ب
- . C_0 عV ، x_{max} عن کلاً من جرک حدّد قیم کلاً

 $n_{I^-}(mmol)$

- د) زمن نصف التفاعل $t_{1/2}$
- . $v_{vol}=-rac{1}{V.M_{Zn}} imesrac{dm_{Zn}}{dt}$ بيّن أن السرعة الحجمية للتفاعل تعطى بالعبارة التالية (5

. t = 0 عند اللحظة الحجمية التفاعل عند اللحظة

. $M_{Zn}=65g/mol$: نعطی

التمرين(8)

نمزج عند اللحظة t=0 حجما V_1 من محلول مائي لبيروكسوديكبريتات البوتاسيوم V_1 من محلول مائي لبيروكسوديكبريتات البوتاسيوم V_2 عند V_2 عجم V_2 عند المولي V_2 من محلول يود البوتاسيوم V_2 من محلول يود البوتاسيوم V_2 من محلول يود البوتاسيوم V_3 من محلول يود الب

1) إذا علمت أن الثنائيتين الداخلتين في التحول الكيميائي الحاصل هما:

 $(I_{2(aq)}/I_{(aq)}^{-}) \mathcal{I}(S_2 O_{8(aq)}^{2-}/S O_{4(aq)}^{2-})$

- أ) أُكتب معادلة تفاعل الأكسدة الإرجاعية المنمذج للتحول الكيميائي الحاصل .
 - ب)أنجز جدول تقدم التفاعل.
 - 2) اعتمادا على البيان:
 - أ) استنتج التركيز المولي C_2 لمحلول يود البوتاسيوم .
 - ب)حدد المتفاعل المحد علما أن التفاعل تام.
 - . x_{max} استنتج قيمة التقدم الأعظمي
 - 3) من البيان
- أ) استنتج قيمة سرعة اختفاء شوارد اليود $\left(I_{(aq)}^{-}
 ight)$ عند اللحظة t=1min .

t(min)

- . C_1 لمحلول بيروكسوديكبريتات البوتاسيوم و تركيزه المولي V_1
 - . $t_{1/2}$ عرف زمن نصف التفاعل (4
- . $n_{I^-}(t_{1/2}) = \frac{n_0(I^-) + n_f(I^-)}{2}$: بين أن كمية مادة شوار د اليود عند اللحظة $t_{1/2}$ تعطى بالعلاقة (5
 - . $t_{1/2}$ استنتج قیمهٔ (6

<u>التمرين (9)</u>

لغرض المتابعة الزمنية للتحول الكيميائي المنمذج بالمعادلة:

$$2Al_{(s)} + 6H_3O_{(aq)}^+ = 2Al_{(aq)}^{3+} + 3H_{2(g)} + 6H_2O_{(l)}$$

عن طريق قياس الناقلية ، عند درجة حرارة 25^0c نضع في بيشر كتلة m=27mg من الألمنيوم ونضيف V=20ml ونضيف اليها عند اللحظة t=0 حجما V=20ml من محلول حمض كلور الماء C=0.012mol / C=0.012mol

 $\sigma(S/m)$

0,1

t ونتابع تغيرات الناقلية النوعية σ بدلالة الزمن فتحصانا على البيان الموضح الشكل .

- 1) مثل جدو لا لتقدم التفاعل.
- . للمزيج $\sigma(t)$ للمزيج الناقلية النوعية $\sigma(t)$
- . $\sigma(t) = -1.01 \times 10^4 x + 0.511$: بين أن (3
 - $Al_{(aq)}^{3+}$ و $H_3O_{(aq)}^+$: فرحد كمية المادة لكل من t=6min عند اللحظة
- 5) بين أن سرعة التفاعل في هذه الحالة تعطى بالعلاقة:

$$v = -\frac{1}{1.01 \times 10^4} \times \frac{d\sigma}{dt}$$

t=6min أوجد قيمة سرعة التفاعل عند اللحظة) أوجد قيمة سرعة التفاعل

 $: 25^0c$ عند درجة حرارة

$$\lambda (Al_{(aq)}^{3+}) = 4 \times 10^{-3} sm^2/mol$$
 $\lambda (H_3 O_{(aq)}^+) = 35 \times 10^{-3} sm^2/mol$ $M(Al) = 27g/mol$ $\lambda (Cl_{(aq)}^-) = 7.6 \times 10^{-3} sm^2/mol$

<u>التمرين (10)</u>

نضع قطعة من المغنيزيوم كتلتها m=0.12g في محلول حمض كلور الهيدروجين (H_3O^+,Cl^-) تركيزه المولي .i V=40mL وحجمه C=0.5mol/L

t(min)

t(s)

. H_3O^+/H_2 و Mg^{2+}/Mg و Mg^{2+}/Mg اكتب معادلة التفاعل باستعمال الثنائيتين

2) أنشيء جدول التقدّم واحسب قيمة التقدّم الأعظمي.

3) نمثّل بيانيا في الشكل 1 - حجم غاز الهيدروجين المنطلق بدلالة الزمن

 $v_{H_2}^{*} = f(t)$

أ) بيّن أن هذا التفاعل تام.

ب) بيّن أن السرعة الحجمية للتفاعل تُكتب بالشكل:

t=0 عند عند السرعة عند $v_{
m vol}=rac{1}{{
m V_M} imes {
m V}} imes rac{{
m d} {
m V_{H_2}}}{{
m dt}}$

ii. في تجربة أخرى ، أخذنا من محلول حمض كلور الهيدروجين السابق حجما $V_0=10 \, \mathrm{mL}$ من الماء المقطّر ووضعنا في المحلول الذي حصلنا عليه نفس قطعة المغنيزيوم السابقة $(0,12 \, g)$ استعملنا جهاز قياس الناقلية لمتابعة تطور التفاعل.

1) باستعمال جدول التقدم ، بيّن أن الناقلية النوعية في اللحظة . $\sigma=1{,}06-297~{\rm x}$ لَ تُكتب بدلالة التقدم بالشكل t

2) احسب قيمة الناقلية النوعية للمزيج في نهاية التفاعل.

 $V_M=24$ L/mole الحجم المولية المولية للمغنيزيوم: M=24g / mol ، الحجم المولي للغازات $\lambda \left(Cl_{(aq)}^-\right)=7.6 \times 10^{-3} sm^2/mol$ ، $\lambda \left(H_3O_{(aq)}^+\right)=35 \times 10^{-3} sm^2/mol$. $\lambda \left(Mg_{(aq)}^{2+}\right)=10.6 \times 10^{-3} sm^2/mol$

<u>التمرين (11)</u>

لدراسة سرعة تشكيل شاردة المغنيزيوم $Mg^{2+}(aq)$ نجري تفاعل لمحلول حمض كلور الماء مع معدن المغنيزيوم فينتج غاز ثنائي الهيدروجين وتتشكل شوارد Mg^{2+} وفق المعادلة :

$$Mg(s) + 2 H_3 O^+(aq) = Mg^{2+}(aq) + H_2(g) + 2H_2 O(l)$$

عند اللحظة t=0 نضع g من المغنيزيوم الصلب في حجم V=30m من محلول حمض كلور الماء تركيزه . C=0.10mol/L

- 1) أ حدد الثنائيتين ($Ox \ / Red$) الداخلتين في التفاعل مع كتابة المعادلتين النصفيتين .
 - ب هل التفاعل الحادث ستيكيومتري؟.
 - ج أنجز جدول تقدم التفاعل ، وأستنتج المتفاعل المحد .
 - د أستنتج تركيز شاردة Mg^{2+} عند نهاية التفاعل .
- 2) بمتابعة تطور تركيز شاردة $H_3O^+_{(aq)}$ خلال الزمن واستنتاج التركيز المولي لشاردة Mg^{2+} نحصل على البيان الذي يمثل تغيرات $[Mg^{2+}]$ بدلالة الزمن t والموضح في (الشكل 1) أ هل ينتهى التفاعل عند $t=12\ min$.
 - ب عرف زمن نصف التفاعل وأحسب قيمته .
 - $t=2\ min$ عند للوسط التفاعلي عند . $t=2\ min$
- . t=0 عند اللحظة ${
 m Mg}^{2+}$ عند اللحظة المجمية لتشكل
- ه ارسم الشكل التقريبي للمنحني إذا وضعنا في البداية g من المغنزيوم الصلب في حجم $V=30~\mathrm{mL}$ محمض كلور الماء تركيزه $C=0.30~\mathrm{mol/L}$.
 - -ماهو العامل الحركي الذي أثر على سرعة التفاعل في هذه الحالة ؟ .
 - و- ماهو العامل الحركي الأخر الذي يمكن أن يؤثر على سرعة التفاعل ؟ .

 $M_{Mg} = 24g/mol$

التمرين(12)

ننمذج تفاعل كيميائي بالمعادلة التالية:

$$aA + bB + 6H^{+} = 2Mn^{2+} + 5C_3H_6O + 8H_2O$$

- 1) مثّلنا في الشكل -1 كميتي مادة المتفاعلين A و B بدلالة التقدّم x
 - أ) عيّن المتفاعل المحد .
 - ب) أنشئ جدول التقدّم ، ثمّ احسب قيمتي a و b ـ
- $t=t_{1/2}$ احسب كمية مادة شوار د المنغنيز عند اللحظة $t=t_{1/2}$
- 2) المتفاعلان A و B هما على التوالي : البروبان 2 أول ، صيغته المجملة (C_3H_8O) وهو سائل كتلته المجمية $\rho=0.78kg/L$ يتشكل

المزيج المتفاعل من حجم V_1 من البروبان 2 – أول و حجم $V_2=100m$ من محلول برمنغنات البوتاسيوم تركيزه المولي C مثّلنا في الشكل -2 تغيرات التركيز المولي لشاردة البرمنغنات بدلالة الزمن.

- اً) احسب قيمتي V_1 و V_1
- ب) اعتمادا على جدول التقدم بيّن أن

$$: [MnO_4^-]_0 + [MnO_4^-]_\infty = 2[MnO_4^-]_{t_{1/2}}$$

ثم حدّد زمن نصف التفاعل.

ج) بيّن أن السرعة الحجمية للتفاعل تكتب بالشكل:

.
$$v_{vol}=-rac{1}{2}rac{d[\mathit{MnO}_4^-]}{dt}$$

t=60mn احسب قيمتها عند اللحظة

$$M(H) = 1g/mol \cdot M(O) = 16g/mol$$

 $mol \cdot M(C) = 12g/mol$

الحلول

التمرين(1)

1) كتابة المعادلة المعبرة عن التفاعل أكسدة- إرجاع المنمذج للتحول الكيميائي الحادث.

$$C_2H_2O_{4(aq)} = 2CO_{2(q)} + 2H^+ + 2e^-$$

$$Cr_2O_{7(aq)}^{2-} + 14H^+ + 6e^- = 2Cr_{(aq)}^{3+} + 7H_2O$$

$$Cr_2O_{7(aq)}^{2-} + 3C_2H_2O_{4(aq)} + 8H^+ = 2Cr_{(aq)}^{3+} + 6CO_{2(g)} + 7H_2O$$

2) جدول تقدم التفاعل.

	$Cr_2O_{7(aq)}^{2-} + 3C_2H_2O_{4(aq)} + 8H^+ = 2Cr_{(aq)}^{3+} + 6CO_{2(g)} + 7H_2O$						
t = 0	C_1V_1	C_2V_2	بوفرة	0	0	بوفرة	
t	C_1V_1-x	C_2V_2-3x	بوفرة	2 <i>x</i>	6 <i>x</i>	بوفرة	
t_f	$C_1V_1-x_m$	$C_2V_2-3x_m$	بوفرة	$2x_m$	$6x_m$	بوفرة	

3) أوجد من البيان:

. t=20min في اللحظة $Cr^{3+}_{(aq)}$ في اللحظة أ

من جدول التقدم
$$n(Cr_{(aq)}^{3+})=2x$$
 من جدول

. $P.V_{CO_2} = n_{CO_2}.R.T$ من قانون الغاز المثالي

.
$$n_{CO_2}=6x$$
 ومن جدول التقدم . $n_{CO_2}=rac{P.V_{CO_2}}{R.T}$

.
$$x = \frac{P.V_{CO_2}}{6R.T}$$
 ومنه $6x = \frac{P.V_{CO_2}}{R.T}$

.
$$v_{Cr^{3+}_{(aq)}}=rac{dn\left(cr^{3+}_{(aq)}
ight)}{dt}$$
لدينا

$$v_{Cr_{(aq)}^{3+}} = \frac{dn(Cr_{(aq)}^{3+})}{dt} = \frac{d2x}{dt} = 2\frac{dx}{dt}$$

$$v_{Cr_{(aq)}^{3+}} = 2\frac{dx}{dt} = 2\frac{d(\frac{P.V_{CO_2}}{6R.T})}{dt} = \frac{P}{3RT}\frac{dV_{CO_2}}{dt}$$

$$v_{Cr_{(aq)}^{3+}} = \frac{P}{3RT} \frac{dV_{CO_2}}{dt}$$

$$v_{Cr_{(aq)}^{3+}}(20min) = \frac{P}{3RT} \left(\frac{dV_{CO_2}}{dt}\right)_{t=20min} = \frac{1,013\times10^5}{3\times8,31\times293} \left(\frac{(500-340)\times10^{-6}}{20}\right)$$

.
$$v_{Cr_{(aq)}^{3+}}(20min) = \frac{1,013\times10^5}{7304,49} \left(\frac{160\times10^{-6}}{20}\right) = 1,1\times10^{-3} mol/min.$$

t=20min استنتاج السرعة الحجمية للتفاعل في اللحظة

$$n(Cr_{(aq)}^{3+})=2x$$
 ولدينا $v_{vol}=rac{1}{V_T}rac{dx}{dt}$

.
$$v_{vol}=rac{1}{2V_T}rac{dn\left(cr_{(aq)}^{3+}
ight)}{dt}$$
 . ومنه $\chi=rac{n\left(cr_{(aq)}^{3+}
ight)}{2}$

$$v_{vol} = \frac{1}{2V_T} v_{Cr_{(aq)}^{3+}} = \frac{1}{2 \times 100 \times 10^{-3}} \times 1.1 \times 10^{-3} = 5.5 \times 10^{-3} mol.min^{-1}.L^{-1}$$

. x_m التقدم الأعظمي (ج

.
$$x_m = \frac{P.V_f(CO_2)}{6R.T}$$
لدينا $x = \frac{P.V_{CO_2}}{6R.T}$

$$x_m = \frac{1,013 \times 10^5 \times 576 \times 10^{-6}}{6 \times 8,31 \times 293} = 4 \times 10^{-3} mol$$

د) زمن نصف التفاعل $t_{1/2}$ (د

.
$$V_{CO_2}=rac{6R.T.x}{P}$$
 وبالنالي $\chi=rac{P.V_{CO_2}}{6R.T}$

$$V_{CO_2}(t_{1/2}) = \frac{6R.T.(\frac{x_m}{2})}{P} = \frac{3R.T.x_m}{P}$$

$$V_{CO_2}(t_{1/2}) = \frac{3 \times 8,31 \times 293 \times 4 \times 10^{-3}}{1,013 \times 10^5} = 288,43 \times 10^{-6} m^3$$

.
$$t_{1/2}$$
 تقابلها منن البيان $rac{V_{CO_2}(t_{1/2})}{V_{CO_2}(t_{1/2})}=288,43mL$

 $t_{1/2} = 7min$

. C_2 أوجد التركيز المولى لمحلول حمض الاكساليك C_2

 $n_f(Cr_2O_{7(aq)}^{2-}) = C_1V_1 - x_m = 0.2 \times 40 \times 10^{-3} - 4 \times 10^{-3} = 4 \times 10^{-3} mol$

معناه $C_2V_2-3x_m=0$ هو المتفاعل المحد وبالتالي $C_2H_2O_{4(aq)}$

$$C_2 = \frac{3x_m}{V_2} = \frac{12 \times 10^{-3}}{60 \times 10^{-3}} = 0.2 mol/L$$

. t = 10min التركيب المولي للمزيج في اللحظة

. $V_{CO_2}=360 \mathrm{mL}$ يكون عند اللحظة عند اللحظة عند اللحظة

$$x = \frac{P.V_{CO_2}}{6R.T} = \frac{1,013 \times 10^5 \times 360 \times 10^{-6}}{6 \times 8,31 \times 293} = 2,5 \times 10^{-3} mol$$

$n(Cr_2O_{7(aq)}^{2-})$	$n(C_2H_2O_{4(aq)})$	$n(Cr_{(aq)}^{3+})$	$n(CO_2)$
$6.5 \times 10^{-3} mol$	$4,5 \times 10^{-3} mol$	$5 \times 10^{-3} mol$	$15 \times 10^{-3} mol$

التمرين(2)

ا- أ- التأكد من المعادلة -

$$3(Cu_{(s)} = Cu_{(aq)}^{2+} + 2e^{-})$$

$$(.1) \qquad \qquad 2(NO_{3(aq)}^{-} + 3e^{-} + 4H_{3}O_{(aq)}^{+} = NO_{(g)} + 6H_{2}O_{(L)})$$

$$3Cu_{(s)} + 2NO_{3(aq)}^{-} + 8H_{3}O_{(aq)}^{+} \rightarrow 3Cu_{(aq)}^{2+} + 2NO_{(g)} + 12H_{2}O_{(L)}$$

ب/- حساب كمية المادة الابتدائية للمتفاعلات

$$n(Cu) = \frac{m}{M} \rightarrow \boxed{n(Cu) = 0.3mol}$$

$$n(NO_3^-) = CV \rightarrow n(NO_3^-) = 0.1mol$$

جـ/- جدول التقدم

المعادلة	3Cu _(s)	$+2NO_{3(aq)}^{-}+$	$8H_3O_{(aq)}^+$	$\rightarrow 3Cu^{2+}_{(aq)}$	$+2NO_{(g)}$	$+12H_2O_{(L)}$
t = 0	0.3	0.1		0	0	بزيادة
t	0.3 – 3X	0.1 – 2X		3X	2X	بزيادة
t_f	0.3 – 3 X _f	0.1 – 2X _f		3X _f	2X _f	بزيادة

د/المتفاعل المحد:

$$.0.3 - 3x_1 = 0 \rightarrow x_1 = 0.1 mol$$

...... $0.1 - 2x_2 = 0 \rightarrow x_2 = 0.05 mol \rightarrow \boxed{x_{\text{max}} = 0.05 mol}$

. عليه فان (NO_3^-) هو المتفاعل المحد

2-أ/حساب الحجم المولي للغازات في شروط التجربة:

$$.PV = nRT \rightarrow V = 0.024m^3 \rightarrow V = 24L/mol$$

ب/ العلاقة بين التقدم (x)وحجم الغاز (VNO)

n = 2x من الجدول لدينا

.
$$n = \frac{V_{NO}}{V_M}$$
 ولدينا

$$x = \frac{V_{NO}}{2V_M} \rightarrow \left[x = 0.02V_{NO} \right]$$

3-أ/ سرعة التفاعل:

$$(0.25 \quad \upsilon = \frac{dx}{dt}$$

$$\upsilon = 0.02 \frac{dV}{dt}$$
 ومنه

$$\upsilon = 0.02 \left(\frac{2,1-1.5}{20-0} \right)$$

 $..v = 6 \times 10^{-4} mol/s$ ومنه

ب/التركيب المولي للمزيج:

x = 0.02V : لدينا

ومن المنحنى نجد أن V=2.1L .

و عليه فان x = 0.042mol

وبالتعويض في جدول التقدم في الحالة الوسطية نجد

0.25x4

ح الانتقالية	0.3 – 3x	0.1 – 2x	2x	3x
t = 20s	0.174moL	0.016moL	0.084moL	0,126mol

ج/ عبارة الناقلية:

ومنه σ =C. $\lambda H_3 O^+ + (3x)/V \lambda_{Cu}^{+2} + (0.1-2x)/V \lambda_{NO3}^-$ ومنه σ =[H $^+$] $\lambda_{H_+} + [NO_3-]\lambda_{NO3-} + [Cu^{+2}]\lambda_{Cu+2}$ σ =42.14+169.2x

<u>التمرين(3)</u>

6) كتابة المعادلة المعبرة عن التفاعل أكسدة- إرجاع المنمذج للتحول الكيميائي الحادث.

$$C_2H_2O_{4(aq)} = 2CO_{2(g)} + 2H^+ + 2e^-$$

$$Cr_2O_{7(aq)}^{2-} + 14H^+ + 6e^- = 2Cr_{(aq)}^{3+} + 7H_2O$$

$$Cr_2O_{7(aq)}^{2-} + 3C_2H_2O_{4(aq)} + 8H^+ = 2Cr_{(aq)}^{3+} + 6CO_{2(g)} + 7H_2O_{2(g)}^{3+} + 6CO_{2(g)} + 7H_2O_{2(g)}^{3+} + 6CO_{2(g)}^{3+} + 6CO_$$

7) جدول تقدم التفاعل.

	$Cr_2O_{7(aq)}^{2-} + 3C_2H_2O_{4(aq)} + 8H^+ = 2Cr_{(aq)}^{3+} + 6CO_{2(g)} + 7H_2O$						
t = 0	C_1V_1	C_2V_2	بوفرة	0	0	بوفرة	
t	C_1V_1-x	C_2V_2-3x	بوفرة	2 <i>x</i>	6 <i>x</i>	بوفرة	
t_f	$C_1V_1-x_m$	$C_2V_2-3x_m$	بوفرة	$2x_m$	$6x_m$	بوفرة	

8) أوجد من البيان:

، t=20min في اللحظة $Cr^{3+}_{(aq)}$ في اللحظة شوارد

من جدول التقدم
$$n(Cr_{(aq)}^{3+})=2x$$
 من جدول

.
$$P.V_{CO_2} = n_{CO_2}.R.T$$
 من قانون الغاز المثالي

.
$$n_{CO_2}=6x$$
 ومن جدول التقدم . $n_{CO_2}=rac{P.V_{CO_2}}{R.T}$

$$x = \frac{P.V_{CO_2}}{6R.T}$$
 ومنه $6x = \frac{P.V_{CO_2}}{R.T}$

.
$$v_{\mathit{Cr}^{3+}_{(aq)}} = \frac{\mathit{dn}\left(\mathit{Cr}^{3+}_{(aq)}\right)}{\mathit{dt}}$$
لينا

$$v_{Cr_{(aq)}^{3+}} = \frac{dn(Cr_{(aq)}^{3+})}{dt} = \frac{d2x}{dt} = 2\frac{dx}{dt}$$

$$v_{Cr_{(aq)}^{3+}} = 2\frac{dx}{dt} = 2\frac{d(\frac{P.V_{CO_2}}{6R.T})}{dt} = \frac{P}{3RT}\frac{dV_{CO_2}}{dt}$$

$$v_{Cr_{(aa)}^{3+}} = \frac{P}{3RT} \frac{dV_{CO_2}}{dt}$$

$$v_{Cr_{(aq)}^{3+}}(20min) = \frac{P}{3RT} \left(\frac{dV_{CO_2}}{dt}\right)_{t=20min} = \frac{1,013\times10^5}{3\times8,31\times293} \left(\frac{(500-340)\times10^{-6}}{20}\right)$$

.
$$v_{Cr_{(aq)}^{3+}}(20min) = \frac{1,013 \times 10^5}{7304,49} \left(\frac{160 \times 10^{-6}}{20}\right) = 1,1 \times 10^{-3} mol/min.$$

t=20min استنتاج السرعة الحجمية للتفاعل في اللحظة

$$n(Cr_{(aq)}^{3+})=2x$$
 ولدينا $v_{vol}=rac{1}{V_T}rac{dx}{dt}$

.
$$v_{vol}=rac{1}{2V_T}rac{dnig(Cr_{(aq)}^{3+}ig)}{dt}$$
 . ومنه $\chi=rac{nig(Cr_{(aq)}^{3+}ig)}{2}$

$v_{vol} = \frac{1}{2V_T} v_{Cr_{(aq)}^{3+}} = \frac{1}{2 \times 100 \times 10^{-3}} \times 1.1 \times 10^{-3} = 5.5 \times 10^{-3} mol. min^{-1}. L^{-1}$

ر) التقدم الأعظمي x_m

.
$$x_m = \frac{P.V_f(CO_2)}{6R.T}$$
لدينا $x = \frac{P.V_{CO_2}}{6R.T}$

$$x_m = \frac{1,013 \times 10^5 \times 576 \times 10^{-6}}{6 \times 8.31 \times 293} = 4 \times 10^{-3} \text{mol}$$

. $t_{1/2}$ زمن نصف التفاعل ج

.
$$V_{CO_2}=rac{6R.T.x}{P}$$
 وبالتالي $x=rac{P.V_{CO_2}}{6R.T}$

$$V_{CO_2}(t_{1/2}) = \frac{6R.T.(\frac{x_m}{2})}{P} = \frac{3R.T.x_m}{P}$$

$$V_{CO_2}(t_{1/2}) = \frac{3 \times 8,31 \times 293 \times 4 \times 10^{-3}}{1.013 \times 10^5} = 288,43 \times 10^{-6} m^3$$

.
$$t_{1/2}$$
 تقابلها منن البيان $rac{V_{CO_2}(t_{1/2})}{V_{CO_2}(t_{1/2})}=288,43mL$

 $t_{1/2} = 7min$

. C_2 التركيز المولى لمحلول حمض الاكساليك C_2

$$n_f(Cr_2O_{7(aq)}^{2-}) = C_1V_1 - x_m = 0.2 \times 40 \times 10^{-3} - 4 \times 10^{-3} = 4 \times 10^{-3} mol$$

معناه
$$\mathcal{C}_2V_2-3x_m=0$$
 هو المتفاعل المحد وبالتالي $\mathcal{C}_2H_2O_{4(aq)}$

$$C_2 = \frac{3x_m}{V_2} = \frac{12 \times 10^{-3}}{60 \times 10^{-3}} = 0.2 mol/L$$

التركيب المولى للمزيج في اللحظة 10
$$min$$
 التركيب المولى المزيج في اللحظة (10

. $V_{CO_2}=360 \mathrm{mL}$ يكون عند اللحظة يغد اللحظة عند اللحظة

$$x = \frac{P.V_{CO_2}}{6R.T} = \frac{1,013 \times 10^5 \times 360 \times 10^{-6}}{6 \times 8,31 \times 293} = 2,5 \times 10^{-3} mol$$

$n(Cr_2O_{7(aq)}^{2-})$	$n(C_2H_2O_{4(aq)})$	$n(Cr_{(aq)}^{3+})$	$n(CO_2)$
$6.5 \times 10^{-3} mol$	$4,5 \times 10^{-3} mol$	$5 \times 10^{-3} mol$	$15 \times 10^{-3} mol$

<u>التمرين(4)</u>

1) جدول تقدم التفاعل.

	$S_2 O_{8(aq)}^{2-}$	$+ 2I_{(aq)}^{-} =$	$I_{2(aq)}$ +	$2SO_{4(aq)}^{2-}$
t = 0	C_2V_2	C_1V_1	0	0
t	C_2V_2-x	C_1V_1-2x	х	2 <i>x</i>
t_f	$C_2V_2-x_m$	$C_1V_1-2x_m$	x_m	$2x_m$

. x_m حساب قيمة التقدم الأعظمي (2

.
$$[I_2]_f=rac{x_m}{V_1+V_2}$$
 من جدول التقدم نلاحظ أن

.
$$[I_2]_f=50 imes10^{-3} mol/L$$
 من البيان

$$x_m = [I_2]_f (V_1 + V_2)$$

$$x_m = 50 \times 10^{-3} \times 200 \times 10^{-3} = 10^{-2} mol$$

$$x_m = 10^{-2} mol$$

$$n_1 = 150 \times 10^{-3} \times 200 \times 10^{-3} = \frac{3 \times 10^{-2} mol}{10^{-2}}$$

$$n_3 = 50 \times 10^{-3} \times 200 \times 10^{-3} = 10^{-2} mol$$

$$S_2O_8^{2-}$$
بين أن البيان (3) بين أن البيان (4) بين أن البيان (5)

البيان (3) يوافق المتفاعل المحد .

$$n(S_2 O_8^{2-}) = C_2 V_2 - x_m = 10^{-2} - 10^{-2} = 0$$

. $S_2 O_8^{2-}$ ومنه البيان (3) يوافق المتفاعل

.
$$C_2$$
 و C_1 من عيمة كل من (5

$$C_1V_1 - 2x_m = 10^{-2}$$

.
$$C_1 = \frac{3 \times 10^{-2}}{0.1} = 0.3 mol/L$$
 ومنه $C_1 \times 0.1 - 2 \times 10^{-2} = 10^{-2}$

.
$$rac{\mathcal{C}_2 = 0,1mol/L}{\mathcal{C}_2 = \frac{\mathcal{X}_m}{\mathcal{V}_2}}$$
 ومنه $\mathcal{C}_2 = \frac{\mathcal{X}_m}{\mathcal{V}_2}$ ومنه ومنه ومنه ومنه $\mathcal{C}_2 = 0$

.
$$t=0$$
 عند اللحظة عند المرعة المناعل بين أن السرعة الحجمية للتفاعل تكتب بالشكل بالشكل $v_{vol}=-rac{1}{2}rac{d[I^-]}{dt}$ و بين أن السرعة الحجمية التفاعل تكتب بالشكل

$$v_{vol} = \frac{1}{V_m} \frac{dx}{dt}$$

$$rac{dx}{dt}=-rac{V_T}{2}rac{d[I^-]}{dt}$$
 ومنه $rac{d[I^-]}{dt}=-rac{2}{V_T}rac{dx}{dt}$ ومنه $I^-=rac{C_1V_1-2x}{V_T}$

$$v_{vol} = \frac{1}{V_T} \frac{dx}{dt} = \frac{1}{V_T} \left(-\frac{V_T}{2} \frac{d[I^-]}{dt} \right) = -\frac{1}{2} \frac{d[I^-]}{dt}$$

.
$$rac{v_{vol}=-rac{1}{2}rac{d[I^-]}{dt}}$$
ومنه

$$v_{vol}(0) = -\frac{1}{2} \left(\frac{d[I^-]}{dt}\right)_{t=0} = -\frac{1}{2} \left(\frac{80-150}{8}\right) = 4,37 mmol. L^{-1}. min^{-1}$$

$$v_{vol}(0) = 4.37 \times 10^{-3} mol. L^{-1}. min^{-1}$$

التمرين (5)

$$.5 H_2 C_2 O_{4(aq)} + 2Mn O_{4(aq)}^- + 6H_{(aq)}^+ = 2Mn_{(aq)}^{2+} + 10CO_{2(g)} + 8H_2 O_{(l)}$$

. الثنائيتان Ox/Red الداخلتان في التفاعل (1

2) جدول تقدم التفاعل.

$$n_0(H_2C_2O_{4(aq)}) = C_2V_2 = 0.1 \times 0.5 = \frac{0.05mol}{0.05mol}$$

 $n_0(MnO_{4(aq)}^-) = C_1V_1 = 0.06 \times 0.5 = \frac{0.03mol}{0.03mol}$

$5 H_2 C_2 O_{4(aq)}$	$(1) + 2MnO_{4(aq)}^{-}$	+ 6 <i>H</i> _{(a}	$_{q)} = 2Mn_{(a}^{2+}$	$\frac{1}{(q)} + 10CO_{2(q)}$	$(g) + 8H_2O_{(l)}$
0,05	0,03	بوفرة	0	0	بوفرة
0.05 - 5x	0.03 - 2x	بوفرة	2x	10 <i>x</i>	بوفرة
$0.05 - 5x_m$	$0.03 - 2x_m$	بوفرة	$2x_m$	$10x_m$	بو فر ة

3) هل المزيج الابتدائي ستكيومتري ؟

$$\frac{n_0(H_2C_2O_{4(aq)})}{5} = \frac{0.05}{5} = 0.01$$

$$\frac{n_0(MnO_{4(aq)}^-)}{2} = \frac{0.03}{2} = 0.015$$

$$\frac{n_0(H_2C_2O_{4(aq)})}{5} \neq \frac{n_0(MnO_{4(aq)}^-)}{2}$$

ومنه المزيج الابتدائي ليس ستكيومتري _.

$$[CO_2] = 0.15 - 5[MnO_4^-]$$
 : t بين أنه في أي لحظة (4

من جدول النقدم .
(1)......
$$[MnO_4^-] = \frac{0.03 - 2x}{1} = 0.03 - 2x$$

$$(2)..... [CO_2] = \frac{10x}{1} = 10x$$

. (2) نجد
$$x = \frac{0.03 - [MnO_4^-]}{2}$$
 نعوض في (1) نجد

$$[CO_2] = 10x = 10\left(\frac{0.03 - [MnO_4^-]}{2}\right)$$

 $[CO_2] = 0.15 - 5[MnO_4^-]$ ومنه

5) معادلة تفاعل المعابرة

$$MnO_{4(aq)}^{-} + 8H_{(aq)}^{+} + 5e^{-} = Mn_{(aq)}^{2+} + 4H_{2}O_{(l)}$$

 $Fe_{(aq)}^{2+} = Fe_{(aq)}^{3+} + e^{-}$

$$Fe_{(aq)}^{2+} = Fe_{(aq)}^{3+} + e^{-}$$

$$MnO_{4(aq)}^{-} + 5Fe_{(aq)}^{2+} + 8H_{(aq)}^{+} + 5e^{-} = Mn_{(aq)}^{2+} + 5Fe_{(aq)}^{3+} + 4H_{2}O_{(l)}$$

 V_0 و C بدلالة V_E بدلالة عند التكافؤ ، ثم استنتج عبارة حجم محلول كبريتات الحديد الثنائي المضاف عند التكافؤ ، ثم استنتج عبارة حجم محلول C $[MnO_4^-]$

عند التكافؤ يكون المزيج ستكويومتري .

$$n\left(MnO_{4(aq)}^{-}\right) = \frac{n_E\left(Fe_{(aq)}^{2+}\right)}{5}$$

$$\left[MnO_{-}^{-}\right]V_{0} = \frac{CV_E}{5}$$

الأستاذ: بلعمري براهيم الصفحة 16 من 31

الشكل-3 $V_E=f(t)$ الشكل ازمنة مختلفة t ثم تم رسم المنحنى التكافؤ خلال أزمنة مختلفة t

t=90ة عند اللحظة cO_2 عند اللحظة t=90

.
$$[CO_2]=0,15-5[MnO_4^-]$$
 لدين العلاقة $\frac{d[CO_2]}{dt}=-5\frac{d[MnO_4^-]}{dt}$ بالاشتقاق $V_E=\frac{5[MnO_4^-]V_0}{c}$ ولدينا العلاقة $\frac{dV_E}{dt}=\frac{5V_0}{c}\frac{d[MnO_4^-]}{dt}=\frac{c}{5V_0}\frac{dV_E}{dt}$ ومنه $\frac{dV_E}{dt}=\frac{5V_0}{c}\frac{d[MnO_4^-]}{dt}$ بالاشتقاق $v_{vol}=\frac{d[CO_2]}{dt}=-5\frac{d[MnO_4^-]}{dt}=-5\frac{C}{5V_0}\frac{dV_E}{dt}$

$$v_{vol} = \frac{d[CO_2]}{dt} = -\frac{C}{V_0} \frac{dV_E}{dt}$$

$$v_{vol} = \frac{d[CO_2]}{dt} = -\frac{C}{V_0} \frac{dV_E}{dt}$$

$$v_{vol} = -\frac{0.25}{0.01} \left(\frac{-2.1 \times 10^{-3}}{90}\right) = \frac{5.83 \times 10^{-4} mol/s.L}{10^{-4} mol/s.L}$$

ب) السرعة الحجمية لتشكل $Mn_{(qq)}^{2+}$ عند اللحظة و $Mn_{(qq)}^{2+}$

.
$$v_{vol}(Mn_{(aq)}^{2+}) = \frac{v_{vol}(CO_2)}{5}$$
 ومنه $\frac{v_{vol}(CO_2)}{10} = \frac{v_{vol}(Mn_{(aq)}^{2+})}{2}$

$$v_{vol}(Mn_{(aq)}^{2+}) = \frac{5,83 \times 10^{-4}}{5} = \frac{1,16 \times 10^{-4} mol/s.L}{5}$$

ج) عرف زمن نصف التفاعل $t_{1/2}$ ثم حدد قيمته .

زمن نصف التفاعل $t_{1/2}$ هو الزمن اللازم لبلوغ تقدم التفاعل نصف تقدمه النهائي .

.
$$xig(t_{1/2}ig)=rac{x_m}{2}$$

. $x_m=0.01$ mol ومنه $0.05-5x_m=0$
 $[MnO_4^-]_{t_{1/2}}=0.03-2rac{x_m}{2}=0.02$ mol/L

.
$$V_Eig(t_{1/2}ig)=rac{5[MnO_4^-]_{t_{1/2}}V_0}{C}=rac{5 imes 0,02 imes 10}{0,25}=rac{4mL}{0}$$
من البيان

$t_{1/2} = 54s$

<u>التمرين(6)</u>

1) كيف يمكن التأكد تجربيبا بأن التفاعل بطيء ؟

وذلك ظهور اللون البنى ل I_2 تدريجيا أو نضيف قطرات من محلول التيودان .

الثنائيتين Ox/Red المتدخلتين في هذا التفاعل.

 (I_2/I^-) (H_2O_2/H_2O)

 $n_0(I^-) = 1.0 \times 10^{-2} mo\ell$ و $n_0(H_2O_2) = 2.8 \times 10^{-3} mo\ell$ تحقق أن $n_0(I^-) = 1.0 \times 10^{-2} mo\ell$ و $n_0(H_2O^+) = 6 \times 10^{-3} mo\ell$

 $n_0(H_2O_2) = C_1V_1 = 56 \times 5, 0.10^{-5} = 2,8 \times 10^{-3} \text{mol}$

 $n_0(I^-) = C_2V_2 = 2 \times 10^2 \times 5, 0.10^{-5} = \frac{1.0 \times 10^{-2} mo\ell}{1.0 \times 10^{-2} mo\ell}$

$$H_2SO_4 + H_2O = 2H_3O^+(aq) + SO_4^{2-}(aq)$$

$$C_3V_3 2C_3V_3 C_3V_3$$

$$n_0(H_3O^+) = 2C_3V_3 = 12 \times 10^3 \times 1,0.10^{-6} = 1,2 \times 10^{-2} \text{mol}$$

. x_{max} حدول تقدم التفاعل الكيميائي ثم تحديد التقدم الأعظمي (4

	H_2O_2 (aq)	$+ 2I^{-}(aq) -$	$+ 2H_3O^+(aq)$	$I_{2}(aq)$	$+ 4H_2O(\ell)$
t = 0	C_1V_1	C_2V_2	$2C_3V_3$	0	بزيادة
t	C_1V_1-x	C_2V_2-2x	$2C_3V_3-2x$	x	بزيادة
t_f	$C_1V_1-x_m$	$C_2V_2-2x_m$	$2C_3V_3-2x_m$	x_m	بزيادة

. $x_m = 2.8 imes 10^{-3} mo\ell$ ومنه $C_1 V_1 - x_m = 0$ وبالتالي ($H_2 O_2$) التفاعل المحد هو

 $\sigma = 4.02 - 845 \chi$ باستغلال جدول التقدم بين أن الناقلية النوعية في المزيج عند اللحظة t تحقق العلاقة t الناقلية النوعية $\sigma = (mo\ell)$. τ تقدم التفاعل بالمول τ الناقلية النوعية τ الناقلية النوعية τ تقدم التفاعل بالمول τ .

$$V_T = V_1 + V_2 + V_3 = 5,0.10^{-5} + 5,0.10^{-5} + 1,0.10^{-6} = 10,1 \times 10^{-5} m^3$$

$$\sigma = \lambda_{I^{-}}[I^{-}] + \lambda_{H_{3}O^{+}}[H_{3}O^{+}] + \lambda_{K^{+}}[K^{+}] + \lambda_{SO_{4}^{2-}}[SO_{4}^{2-}]$$

$$\sigma = 7,68 \times 10^{-3} \left(\frac{10^{-2} - 2x}{10,1 \times 10^{-5}} \right) + 35 \times 10^{-3} \left(\frac{1,2 \times 10^{-2} - 2x}{10,1 \times 10^{-5}} \right) + 7,35 \times 10^{-3} \left(\frac{10^{-2}}{10,1 \times 10^{-5}} \right) + 8 \times 10^{-3} \left(\frac{6 \times 10^{-3}}{10,1 \times 10^{-5}} \right)$$

. $\sigma = 6.1 - 845x$ نجد

. المتنتاج σ_f الناقلية النوعية في نهاية التحول (6

$$\sigma_f = 4.02 - 845x_m$$

. $\sigma_f = 6.1 - 845 \times 2.8 \times 10^{-3} = \frac{3.734 \, S/m}{1.00}$

. $\sigma = f(t)$ يمثل المنحنى (الشكل-1) تغيرات الناقلية النوعية بدلالة الزمن (7

اً) تحدید زمن نصف التفاعل $t_{1/2}$

$$\sigma_{t_{1/2}} = 6.1 - 845 \frac{x_m}{2}$$

$$\sigma_{t_{1/2}} = 6.1 - 845 \times \frac{2.8 \times 10^{-3}}{2}$$

$$\sigma_{t_{1/2}} = 4,917 \, S/m$$

الصفحة 18 من 31 الأستاذ: بلعمري براهيم

من البيان $\frac{t_{1/2} = 3min}{}$

.
$$v_{vol}=-rac{1}{845 V_T}rac{d\sigma}{dt}$$
 بين أن عبارة السرعة الحجمية للتفاعل تكتب على الشكل عبارة السرعة الحجمية التفاعل بين أن عبارة السرعة الحجمية التفاعل المتعام

$$v_{vol} = \frac{1}{V_T} \frac{dx}{dt}$$

.
$$\sigma = 6.1 - 845x$$
 لدينا

$$rac{dx}{dt}=-rac{1}{845V_T}rac{d\sigma}{dt}$$
 . ومنه $rac{d\sigma}{dt}=-845rac{dx}{dt}$ بالاشتقاق

$$v_{vol} = rac{1}{V_T} rac{dx}{dt} = rac{1}{V_T} \left(-rac{1}{845V_T} rac{d\sigma}{dt}
ight)$$

$$v_{vol} = -rac{1}{845V_T} rac{d\sigma}{dt}$$
 ومنه

.
$$t=0$$
 عند الحجمية عند $mo\ell.m^{-3}.min^{-1}$

$$v_{vol} = -\frac{1}{845 \times 10.1 \times 10^{-5}} \left(\frac{-6.1}{13}\right) = \frac{5,49 mol. m^{-3}. min^{-1}}{13}$$

التمرين (7)

1) التّأكد تجريبيا من أنّ التفاعل بطيء.

اللون البنى ل I_2 يزول تدريجيا .

 I_2/I^- اكتب معادلة تفاعل الأكسدة و الا رجاع الحادث ثم ضع جدولا لتقدم التفاعل . تعطى الثنائيتان I_2/I^- و Zn^{2+}/Zn .

. $Zn_{(s)} = Zn_{(aa)}^{2+} + 2e^-$: المعادلة النصفية للأكسدة

. $I_{2(aq)} + 2e^- = 2I_{(aq)}^-$ المعادلة النصفية للارجاع

. $I_{2(aq)} + Zn_{(s)} = 2I_{(aq)}^- + Zn_{(aq)}^{2+}$: معادلة تفاعل الأكسدة و الا رجاع

. $n_{Zn} = V[I_2] + \frac{m_0}{M_{Zn}} - C_0 V$: اعتمادا على جدول التقدم بيّن أنّ (3

	$I_{2(aq)} + Zn_{(s)} = 2I_{(aq)}^{-} + Zn_{(aq)}^{2+}$				
t = 0	C_0V	$\frac{m_0}{M_{Zn}}$	0	0	
t	C_0V-x	$\frac{m_0}{M_{Zn}} - x$	2 <i>x</i>	х	
t_f	C_0V-x_m	$\frac{m_0}{M_{Zn}} - x_m$	$2x_m$	x_m	

.
$$n_{Zn}=rac{m_0}{M_{Zn}}-x$$
 (1) من جدول التقدم نجد

.
$$[I_2] = \frac{c_0 V - x}{V} \dots (2)$$
 وكذلك

. (1) نعوض في $x = C_0 V - V[I_2]$ من

.
$$n_{Zn} = \frac{m_0}{M_{Zn}} - (C_0 V - V[I_2])$$

.
$$n_{Zn} = V[I_2] + \frac{m_0}{M_{Zn}} - C_0 V$$
 نجد

4) اعتمادا على الشكلين (1) و (2) اجب على الأسئلة التالية:

أ) استنتاج المتفاعل المحدّ.

من البيان (1) نلاحظ أن $Zn_{(s)}$ متفاعل بزيادة وبالتالي المتفاعل المحد هو

 $n_{Zn}=f(I_2)$ ب) كتابة معادلة البيان (ب

بيان الشكل (2) هو عبارة عن خط مستقيم لا يمر من المبدأ معادلته من الشكل

$$. n_{Zn} = a[I_2] + b$$

ميل البيان . ميل البيان

.
$$b = 0.02$$
 حيث . $a = \frac{0.05 - 0.02}{0.15} = 0.2$

 $n_{Zn} = 0.2[I_2] + 0.02$

$$C_0$$
 جدّد قیم کلاّ من v ، v ، v من v ، v ، v . v .

 $m_0 = 4 \times 0.645 = 2.58g$

$$x_m = \frac{m_0}{M_{Z_D}} - \frac{1,29}{M_{Z_D}} = \frac{2,58}{65} - \frac{1,29}{65} = 1,98 \times 10^{-2} \text{mol}$$

 $x_m = 1.98 \times 10^{-2} mol$

$$n_{Zn} = V[I_2] + \frac{m_0}{M_{Zn}} - C_0 V \dots (1)$$

$$n_{Zn} = 0.2[I_2] + 0.02....(2)$$

بالمطابقة بين (1) و (2).

V = 0.2L

$$.\frac{m_0}{M_{Zn}} - C_0 V = 0.02$$

$$1.3,97 \times 10^{-2} - C_0 V = 0.02$$

$$C_0 = \frac{3,97 \times 10^{-2} - 0.02}{0.2} = 9,85 \times 10^{-2} \text{mol/L}$$

د) زمن نصف التفاعل $t_{1/2}$

.
$$t_{1/2}$$
 تقابلها $\frac{2,58+1,29}{2}=1,935g$

$$t_{1/2} = 22s$$

.
$$v_{vol}=-rac{1}{V.M_{Zn}} imesrac{dm_{Zn}}{dt}$$
 بيّن أن السرعة الحجمية للتفاعل تعطى بالعبارة التالية $(5$

.
$$v_{vol} = \frac{1}{V} \frac{dx}{dt}$$

$$. n_{Zn} = \frac{m_0}{M_{Zn}} - x$$

$$.\frac{m_{Zn}}{M_{Zn}} = \frac{m_0}{M_{Zn}} - \chi$$

باشتقاق العبارة الأخيرة بالنسبة للزمن.

$$\frac{1}{M_{Zn}}\frac{dm_{Zn}}{dt} = 0 - \frac{dx}{dt}$$

$$.\frac{dx}{dt} = -\frac{1}{M_{Zn}}\frac{dm_{Zn}}{dt}$$

.
$$v_{vol} = \frac{1}{V} \frac{dx}{dt} = \frac{1}{V} \left(-\frac{1}{M_{Zn}} \frac{dm_{Zn}}{dt} \right)$$

.
$$v_{vol} = -\frac{1}{V.M_{Zn}} \times \frac{dm_{Zn}}{dt}$$

t=0 عند اللحظة الحجمية التفاعل عند اللحظة

$$v_{vol} = -\frac{1}{V.M_{Zn}} \times \left(\frac{dm_{Zn}}{dt}\right)_{t=0} = -\frac{1}{0.2 \times 65} \left(\frac{-2.58}{64}\right)$$

$$v_{vol} = 3.1 \times 10^{-3} mol/L. s$$

التمرين(8)

1) إذا علمت أن الثنائيتين الداخلتين في التحول الكيميائي الحاصل هما:

$$(I_{2(aq)}/I_{(aq)}^{-})_{\mathcal{I}}(S_2O_{8(aq)}^{2-}/SO_{4(aq)}^{2-})$$

أ) أكتب معادلة تفاعل الأكسدة الإرجاعية المنمذج للتحول الكيميائي الحاصل .

.
$$2I^-_{(aq)} = I_{2(aq)} + 2e^-$$
 : المعادلة النصفية للأكسدة

.
$$S_2 O_{8(aq)}^{2-} + 2e^- = 2SO_{4(aq)}^{2-}$$
 : المعادلة النصفية للارجاع

$$. S_2 O_{8(aq)}^{2-} + 2I_{(aq)}^{-} = 2SO_{4(aq)}^{2-} + I_{2(aq)}$$

	$S_2 O_{8(aq)}^{2-}$	$+ 2I_{(aq)}^- = 2$	$2SO_{4(aq)}^{2-}$ -	$I_{2(aq)}$
t = 0	C_1V_1	C_2V_2	0	0
t	C_1V_1-x	C_2V_2-2x	2 <i>x</i>	x
$\overline{t_f}$	$C_1V_1-x_m$	$C_2V_2-2x_m$	$2x_m$	x_m

2) اعتمادا على البيان:

أ) استنتج التركيز المولي C_2 لمحلول يود البوتاسيوم .

. $n_0(I^-) = 2 \times 10^{-2} mol$ من البيان نجد

.
$$C_2 = rac{n_0(I^-)}{V_2}$$
 وبالنالي $n_0(I^-) = C_2 V_2$

$$C_2 = \frac{2 \times 10^{-2}}{0.2} = 0.1 mol/L$$

ب) حدد المتفاعل المحد علما أن التفاعل تام .

من البيان يظهر أن المتفاعل I^- هو متفاعل بزيادة وبالتالي المتفاعل المحد هو I^- .

. x_{max} استنتج قيمة التقدم الأعظمي

$$. C_2 V_2 - 2x_m = 4 \times 10^{-3}$$

$$x_m = \frac{C_2V_2 - 4 \times 10^{-3}}{2} = \frac{2 \times 10^{-2} - 4 \times 10^{-3}}{2}$$

$$x_m = 8 \times 10^{-3} mol$$

- 3) من البيان .
- . t=1min عند اللحظة أي استنتج قيمة سرعة اختفاء شوارد اليود اليود المارد اليود

$$v_{I^-} = -\frac{dn_{I^-}}{dt}$$

$$v_{I^{-}}(1min) = -\left(\frac{dn_{I^{-}}}{dt}\right)_{t=1min} = -\left(\frac{-16\times10^{-3}}{2.8}\right)$$

. $v_{I^{-}}(1min) = 5.71 \times 10^{-3} mol. min^{-1}$

: $v_{vol}=1$ للوسط التفاعلي علما أن قيمة السرعة الحجمية للتفاعل عند اللحظة V_T للوسط التفاعلي علما أن قيمة السرعة الحجمية للتفاعل عند اللحظة $v_{vol}=9.1 \times 10^{-3} mol. \, L^{-1}. \, min^{-1}$

.
$$v_{vol} = \frac{1}{V_T} \frac{dx}{dt}$$

$$n_{I^{-}} = C_2 V_2 - 2x$$

$$\frac{dn_{I}}{dt} = -2\frac{dx}{dt}$$

$$v_{I^{-}} = -\frac{dn_{I^{-}}}{dt} = 2\frac{dx}{dt}$$

$$\frac{dx}{dt} = \frac{v_I^-}{2}$$

.
$$v_{vol} = \frac{1}{V_T} \frac{dx}{dt} = \frac{1}{V_T} \frac{v_{I^-}}{2} = \frac{v_{I^-}}{2V_T}$$

$$V_T = \frac{v_{I^-}}{2v_{vol}} = \frac{5.71 \times 10^{-3}}{2 \times 9.1 \times 10^{-3}} = 0.3L$$

$$V_T = 300 mL$$

. C_1 استنتج قيمة الحجم V_1 لمحلول بيروكسوديكبريتات البوتاسيوم و تركيزه المولى V_1

$$V_1 = V_T - V_2 = 100mL$$

. $S_2 O_{8(aq)}^{2-}$ المتفاعل المحد هو

.
$$C_1=rac{x_m}{V_1}$$
 وبالتالي $C_1V_1-x_m=0$

$$C_1 = \frac{8 \times 10^{-3}}{0.1} = 8 \times 10^{-2} mol/L$$

. $t_{1/2}$ عرف زمن نصف التفاعل (4

زمن نصف التفاعل $t_{1/2}$ هو الزمن اللازم لبلوغ تقدم التفاعل نصف تقدمه النهائي .

$$x(t_{1/2}) = \frac{x_m}{2}$$

. $n_{I^-}(t_{1/2}) = \frac{n_0(I^-) + n_f(I^-)}{2}$: بين أن كمية مادة شوار د اليود عند اللحظة $t_{1/2}$ تعطى بالعلاقة (5

$$n_{I^{-}}(t) = C_2 V_2 - 2x(t)$$

$$n_{I^{-}}(t_{1/2}) = C_2 V_2 - 2x(t_{1/2})$$

$$n_{I^{-}}(t_{1/2}) = C_2 V_2 - 2 \frac{x_m}{2}$$

.
$$n_{I^-}(t_{1/2}) = \frac{2C_2V_2 - 2x_m}{2} = \frac{C_2V_2 + C_2V_2 - 2x_m}{2}$$

$$n_{I^{-}}(t_{1/2}) = \frac{n_0(I^{-}) + n_f(I^{-})}{2}$$

. $t_{1/2}$ استنتج قیمهٔ (6

.
$$n_{I^{-}}(t_{1/2}) = \frac{4+20}{2} = 12mmol$$

 $t_{1/2} = 0.75min$

$$2Al_{(s)} + 6H_3O_{(aq)}^+ = 2Al_{(aq)}^{3+} + 3H_{2(g)} + 6H_2O_{(l)}$$

1) تمثيل جدول تقدم التفاعل .

$$n_0(Al) = \frac{m}{M} = \frac{27 \times 10^{-3}}{27} = 10^{-3} mol$$

$$n_0(H_3O_{(aq)}^+) = CV = 0.012 \times 20 \times 10^{-3} = 2.4 \times 10^{-4} mol$$

	$2Al_{(s)} + 6H_3O_{(aq)}^+ = 2Al_{(aq)}^{3+} + 3H_{2(g)} + 6H_2O_{(l)}$						
t = 0	10^{-3}	$2,4.10^{-4}$	0	0	بزيادة		
t	$10^{-3} - 2x$	$2,4.10^{-4}-6x$	2 <i>x</i>	3 <i>x</i>	بزيادة		
t_f	$10^{-3} - 2x_f$	$2,4.10^{-4}-6x_f$	$2x_f$	$3x_f$	بزيادة		

. عبارة الناقلية النوعية $\sigma(t)$ للمزيج (2

$$\sigma(t) = \lambda_{H_3O^+}[H_3O^+] + \lambda_{Al^{3+}}[Al^{3+}] + \lambda_{Cl^-}[Cl^-]$$

.
$$\sigma(t) = -1.01 \times 10^4 x + 0.511$$
 : بين أن (3

$$\sigma(t) = 35 \times 10^{-3} \left(\frac{2,4.10^{-4} - 6x}{2 \times 10^{-5}} \right) + 4 \times 10^{-3} \left(\frac{2x}{2 \times 10^{-5}} \right) + 7,6 \times 10^{-3} \times 12$$

$$\sigma(t) = -1.01 \times 10^4 x + 0.511$$

.
$$t=6min$$
 عند اللحظة $Al^{3+}_{(aq)}$ و $H_3O^+_{(aq)}$ عند الكطة (4

$$\sigma(6min) = 0.29S/m$$
 من البيان عند $t = 6min$ من البيان

$$1.01 \times 10^4 x + 0.511 = 0.29$$

.
$$x = 2.2 \times 10^{-5} mol$$
 ومنه

$$n(Al_{(aq)}^{3+}) = 2x = 2 \times 2,2 \times 10^{-5} = 4,4 \times 10^{-5} mol$$

$$n(H_3O_{(aq)}^+) = 2,4.10^{-4} - 6 \times 2,2 \times 10^{-5} = 2,4.10^{-4} - 6x = \frac{1,08 \times 10^{-4} mol}{10^{-4}}$$

$$v=-rac{1}{1.01 imes10^4} imesrac{d\sigma}{dt}$$
 : بين أن سرعة التفاعل في هذه الحالة تعطى بالعلاقة : (5

$$v = \frac{dx}{dt}$$

. $\sigma(t) = -1.01 \times 10^4 x + 0.511$ نشتق العبارة

.
$$\frac{dx}{dt} = -\frac{1}{1.01 \times 10^4} \times \frac{d\sigma}{dt}$$
 و بالتالي $\frac{d\sigma}{dt} = -1.01 \times 10^4 \frac{dx}{dt}$

.
$$v = -\frac{1}{1.01 \times 10^4} \times \frac{d\sigma}{dt}$$
ومنه

t = 6min قيمة سرعة التفاعل عند اللحظة

$$v = -\frac{1}{1,01 \times 10^4} \times \left(\frac{d\sigma}{dt}\right)_{t=6min} = -\frac{1}{1,01 \times 10^4} \times \left(-\frac{0,43}{18}\right)$$

 $v = 2.36 \times 10^{-6} mol/min$

<u>التمرين (10)</u>

. (H_3O^+, Cl^-) في محلول حمض كلور الهيدروجين m=0.12g في محلول خمض كلور المغنيزيوم كتلتها

. H_3O^+/H_2 و Mg^{2+}/Mg و Mg^{2+}/Mg و 1

المعادلة النصفية للأكسدة.

$$Mg = Mg^{2+} + 2e^-$$

المعادلة النصفية للارجاع.

$$2H_3O^+ + 2e^- = H_2 + 2H_2O$$

$$Mg + 2H_3O^+ = Mg^{2+} + H_2 + 2H_2O$$
 معادلة التفاعل

2) جدول التقدّم وحساب قيمة التقدّم الأعظمي.

$$n_0(Mg) = \frac{m}{M} = \frac{0.12}{24} = \frac{5 \times 10^{-3} mol}{24}$$

$$n_0(H_3O^+) = CV = 0.5 \times 40 \times 10^{-3} = 2 \times 10^{-2} mol$$

	$Mg + 2H_3O^+ = Mg^{2+} + H_2 + 2H_2O$				
t = 0	5.10^{-3}	2.10^{-2}	0	0	بزيادة
t	$5.10^{-3} - x$	$2.10^{-2} - 2x$	х	х	بزيادة
t_f	$5.10^{-3} - x_f$	$2.10^{-2} - 2x_f$	x_f	x_f	بزيادة

. $x_m = 5 imes 10^{-3} mol$ ومنه Mg وبالتالي Mg وبالتالي (5. $10^{-3} - x_m = 0$) المتفاعل المحد هو

. $v_{H_2} = f(t)$ نمثّل بيانيا في الشكل 1 – حجم غاز الهيدروجين المنطلق بدلالة الزمن (3) نمثّل بين أن هذا التفاعل تام.

. $n(H_2)=rac{V_{H_2}}{V_M}$ ولدينا $n(H_2)=x$ من جدول التقدم نلاحظ أن

.
$$x_f = \frac{V_f(H_2)}{V_M}$$
 وبالتالي $x = \frac{V_{H_2}}{V_M}$

 $V_f(H_2) = 120$ mL من البيان

$$x_f = \frac{120 \times 10^{-3}}{24} = 5 \times 10^{-3} mol$$

. نلاحظ أن $x_f = x_m$ وبالتالي التفاعل تام

ملاحظة : χ_f قيمة تجريبية نستنتجها من البيان الذي حصلنا عليه من القيم الناتجة عن التجربة .

. قيمة نظرية نتحصل عليها من جدول التقدم والتي توافق استهلاك المتفاعل المحد x_m

t=0 عند هذه السرعة الحجمية للتفاعل تُكتب بالشكل $v_{
m vol}=rac{1}{{
m V_M} imes {
m V}} imes rac{{
m d}{
m V_{H_2}}}{{
m d}{
m t}}$ حسب تعریف السرعة الحجمیة للتفاعل

.
$$\frac{dx}{dt} = \frac{1}{V_M} \frac{dV_{H_2}}{dt}$$
 ولدينا $v_{
m vol} = \frac{1}{V} \frac{dx}{dt}$ ولدينا $v_{
m vol} = \frac{1}{V} \frac{dx}{dt}$

.
$$v_{\text{vol}} = \frac{1}{V} \frac{dx}{dt} = \frac{1}{V} \left(\frac{1}{V_M} \frac{dV_{H_2}}{dt} \right)$$

.
$$v_{\text{vol}} = \frac{1}{V_{\text{M}} \times \text{V}} \times \frac{\text{dV}_{\text{H}_2}}{\text{dt}}$$
 ومنه

$$v_{\text{vol}}(0) = \frac{1}{V_{\text{M}} \times V} \times \left(\frac{\text{dV}_{\text{H}_2}}{\text{dt}}\right)_{t=0} = \frac{1}{24 \times 40} \left(\frac{68}{50}\right) = \frac{1,41 \times 10^{-3} mol/s. L}{10^{-3} mol/s}$$

في تجربة أخرى ، أخذنا من محلول حمض كلور الهيدروجين السابق حجما $V_0=10 \, \mathrm{mL}$ وأضفنا له $190 \, \mathrm{mL}$ من الماء المقطّر ووضعنا في المحلول الذي حصلنا عليه نفس قطعة المغنيزيوم السابقة $(0.12 \, g)$ استعملنا جهاز قياس الناقلية لمتابعة تطور التفاعل.

1) باستعمال جدول التقدم ، بيّن أن الناقلية النوعية في اللحظة t تُكتب بدلالة التقدم بالشكل

$$\sigma = 1.06 - 297 x$$

جدول التقدم

$$n_0(Mg) = \frac{m}{M} = \frac{0.12}{2.4} = \frac{5 \times 10^{-3} mol}{10^{-3} mol}$$

$$n_0(H_3O^+) = CV = 0.5 \times 10 \times 10^{-3} = \frac{5 \times 10^{-3} mol}{10^{-3}}$$

	$Mg + 2H_3O^+ = Mg^{2+} + H_2 + 2H_2O$				
t = 0	5.10^{-3}	5. 10 ⁻³	0	0	بزيادة
t	$5.10^{-3} - x$	$5.10^{-3} - 2x$	х	х	بزيادة
t_f	$5.10^{-3} - x_f$	$5.10^{-3}-2x_f$	x_f	x_f	بزيادة

. $\sigma = \lambda_{H_3O^+}[H_3O^+] + \lambda_{Mg^{2+}}[Mg^{2+}] + \lambda_{Cl^-}[Cl^-]$

. $x_m = 2.5 \times 10^{-3} mol$ دون أن ننسى أن $V_T = 200 \times 10^{-6} m^3$

$$\sigma = 35 \times 10^{-3} \left(\frac{5.10^{-3} - 2x}{2 \times 10^{-4}} \right) + 10.6 \times 10^{-3} \left(\frac{x}{2 \times 10^{-4}} \right) + 7.6 \times 10^{-3} \left(\frac{5.10^{-3}}{2 \times 10^{-4}} \right)$$

$$\sigma = 0.875 - 350x + 53x + 0.19$$

$$\sigma = 1.065 - 297x$$

2) حساب قيمة الناقلية النوعية للمزيج في نهاية التفاعل.

$$\sigma_f = 1,065 - 297x_f$$

.
$$\sigma_f = 1,065 - 297 \times 2,5 \times 10^{-3} = \frac{0,32S/m}{10^{-3}}$$

<u>التمرين (11)</u>

 $Mg^{2+}(aq)$ دراسة سرعة تشكيل شاردة المغنيزيوم (1

$$Mg(s) + 2 H_3 O^+(aq) = Mg^{2+}(aq) + H_2(g) + 2H_2 O(l)$$

أ) تحديد الثنائيتين (Ox/Red) الداخلتين في التفاعل مع كتابة المعادلتين النصفيتين .

.
$$(H_3O^+/H_2)$$
 $\circ (Mg^{2+}/Mg)$

المعادلة النصفية للأكسدة

$$Mg \rightarrow Mg^{2+} + 2e^{-}$$

المعادلة النصفية للإرجاع

$$2 H_3 O^+ + 2e^- = H_2 + 2H_2 O$$

ب) هل التفاعل الحادث ستيكيومتري.

$$n_0(Mg) = \frac{m}{M} = \frac{1}{24} = 4,16 \times 10^{-2} mol$$

$$n_0(H_3O^+) = CV = 0.1 \times 30 \times 10^{-3} = 3 \times 10^{-3} mol$$

 $\frac{n_0(Mg)}{1} = \frac{n_0(ext{H}_30^+)}{2}$ حتى يكون المزيج ستيكيومتري يجب ان تتحقق العلاقة

$$\frac{n_0(H_30^+)}{2} = \frac{3 \times 10^{-3}}{2} = 1.5 \times 10^{-3} mol$$

ومنه التفاعل الحادث ليس ستيكيومتري. $\frac{n_0(Mg)}{1} \neq \frac{n_0(H_30^+)}{2}$

ج) أنجز جدول تقدم التفاعل ، وأستنتج المتفاعل المحد .

	Mg(s) +	2 H ₃ O ⁺ (aq)	$= Mg^{2+}(aq)$	$H_2(g)$	+ 2H ₂ O(l
t = 0	$4,16.10^{-2}$	3.10^{-3}	0	0	بزيادة
t	$4,16.10^{-2} - x$	$3.10^{-3} - 2x$	x	x	بزيادة
t_f	$4,16.10^{-2}-x_m$	$3.10^{-3} - 2x_m$	x_m	x_m	بزيادة

. $x_m = 1.5 \times 10^{-3} mol$ ومنه $3.10^{-3} - 2x_m = 0$ ومنه ${\rm H_3O^+}$ ومنه

بمتابعة تطور تركيز شاردة $H_3O^+_{(aq)}$ خلال الزمن واستنتاج التركيز المولي لشاردة Mg^{2+} نحصل على البيان الذي يمثل تغيرات Mg^{2+} بدلالة الزمن t والموضح في (الشكل - 1) .

د) أستنتج تركيز شاردة Mg^{2+} عند نهاية التفاعل .

$$[Mg^{2+}]_f = \frac{x_m}{V} = \frac{1.5 \times 10^{-3}}{30 \times 10^{-3}} = \frac{5 \times 10^{-2} mol/L}{10^{-2}}$$

. $t=12\,min$ عند التفاعل منتهى التفاعل عند

. 5 × $10^{-2}mol/L$ من البيان $t=12\,min$ عند $[Mg^{2+}]$ من البيان

. $t=12\,min$ لا ينتهى التفاعل عند

عرف زمن نصف التفاعل وأحسب قيمته.

. $x(t_{1/2}) = \frac{x_m}{2}$. هو الزمن اللازم لبلوغ التقدم x نصف تقدمه النهائي . $t_{1/2}$

$$[Mg^{2+}] = \frac{x}{V}$$

.
$$[Mg^{2+}]_{t_{1/2}} = \frac{x_m}{2V} = \frac{[Mg^{2+}]_f}{2}$$

. $t_{1/2} = 1,7min$ من البيان

. $t=2\,min$ عند للوسط التفاعلي عند المولي المولي المولي

. من البيان. $[Mg^{2+}] = 2.8 imes 10^{-2} mol/L$ عند $t=2 \, min$

.
$$x=\left[Mg^{2+}
ight]V$$
 ومنه $\left[Mg^{2+}
ight]=rac{x}{V}$

 $x = 2.8 \times 10^{-2} \times 30 \times 10^{-3} = 8.4 \times 10^{-4} \text{mol}$

Mg H_3O^+ Mg^{2+} H_2	
-------------------------------	--

 $4,07.10^{-2}mol$ $1,32.10^{-3}mol$ $8,4 \times 10^{-4}mol$ $8,4 \times 10^{-4}mol$

. t=0 عند اللحظة ${
m Mg}^2+$

$$v_{vol} = \frac{d[Mg^{2+}]}{dt}$$

$$v_{vol}(0) = \left(\frac{d[Mg^{2+}]}{dt}\right)_{t=0} = \frac{4 \times 10^{-2}}{2} = 2 \times 10^{-2} \frac{mol}{min.L}$$

ارسم الشكل التقريبي للمنحني إذا وضعنا في البداية g من المغنزيوم الصلب في حجم $V=30~\mathrm{mL}$ من محلول حمض كلور الماء تركيزه $C=0.30~\mathrm{mol/L}$.

ماهو العامل الحركي الذي أثر على سرعة التفاعل في هذه الحالة ؟ .

العامل الحركي الذي أثر على سرعة التفاعل في هذه الحالة هو زيادة تركيز أخد المتفاعلات.

ماهو العامل الحركي الأخر الذي يمكن أن يؤثر على سرعة التفاعل ؟ .

العامل الحركي الأخر الذي يمكن أن يؤثر على سرعة التفاعل هو درجة الحرارة.

التمرين (12)

 χ مثّلنا في الشكل -1 كميتي مادة المتفاعلين χ و χ بدلالة التقدّم χ المتفاعل المحد هو المتفاعل χ لأنه من خلال البيان نلاحظ أنه هو من ينتهي أو لا

جدول التقدم .

 $n_0(A) = 200 \ mmol$

 $n_0(B) = 100 \ mmol$

	аА +	- bB +	$6H^{+} = 2$	Mn ²⁺ +	5C ₃ H ₆ O +	8H ₂ O
t = 0	0,2	0,1	بزيادة	0	0	بزيادة
t	0,2 - a x	0.1 - bx	بزيادة	2 <i>x</i>	5 <i>x</i>	بزيادة
t_f	$0.2 - a x_m$	$0.1 - bx_m$	بزيادة	$2x_m$	$5x_m$	بزيادة

حساب قيمتي a و d .

. (0,2 - a $x_m = 0$) ومنه من البيان $x_m = 0.04$ mol المتفاعل المحد هو المتفاعل (A)

$$a = \frac{0.2}{0.04} = 5$$

الصفحة 29 من 31 الصفحة 29 من 31

 $n_f(B)=20\ mmol$ هي (B) ومن البيان كمية المادة المتبقية من

. $0.1 - bx_m = 0.02$ ومنه

$$b = \frac{0,1-0,02}{0,04} = 2$$

 $5C_3H_8O + 2MnO_4^- + 6H^+ = 2Mn^{2+} + 5C_3H_6O + 8H_2O$: تصبح المعادلة

 $t=t_{1/2}$ كمية مادة شوار د المنغنيز عند اللحظة

.
$$x(t_{1/2}) = \frac{x_m}{2}$$
يكون

$$n_{t_{1/2}}(Mn^{2+}) = 2\frac{x_m}{2} = 0.04$$
mol

المتفاعلان A و B هما على التوالي : البروبان C_3 - أول ، صيغته المجملة (C_3H_8O) وهو سائل كتلته المجمية $\rho=0.78kg/L$ ، و شاردة البرمنغنات (MnO_4^-) يتشكل المزيج المتفاعل من حجم V_1 من البروبان C_2 - أول و حجم C_3 من محلول برمنغنات البوتاسيوم تركيزه المولي C_3 مثلنا في الشكل C_3 تغيرات التركيز المولي لشاردة البرمنغنات بدلالة الزمن.

. C و V_1 حساب قيمتي حساب

$$n_0(\mathsf{C}_3\mathsf{H}_8\mathsf{O}) = 0.2mol$$

.
$$m = n_0 M$$
 ومنه $n_0(C_3 H_8 O) = \frac{m}{M}$

$$M = 36 + 8 + 16 = 60g/mol$$

$$m = 0.2 \times 60 = 12g$$

.
$$V_1 = \frac{m}{
ho} = \frac{12 imes 10^{-3}}{0.78} = 15,4 mL$$
 ومنه $ho = \frac{m}{V_1}$

ومنه $n_0(MnO_4^-) = CV_2$

$$C = \frac{n_0(MnO_4^-)}{V_2} = \frac{0.1}{0.1} = 1mol/L$$

اعتمادا على جدول التقدم بيّن أن $[MnO_4^-]_{t_{1/2}}$ ، ثم حدّد زمن نصف التفاعل.

$$n(MnO_4^-) = 0.1 - bx$$

$$n_{t_{1/2}}(MnO_4^-) = 0.1 - b\frac{x_m}{2}$$

$$n_{t_{1/2}}(MnO_4^-) = 0.1 - b\frac{x_m}{2} = \frac{2 \times 0.1 - bx_m}{2}$$

$$2n_{t_{1/2}}(MnO_4^-) = 2 \times 0.1 - bx_m = 0.1 + (0.1 - bx_m)$$

$$2n_{t_1/2}(MnO_4^-) = n_0(MnO_4^-) + n_\infty(MnO_4^-)$$

$$\frac{2n_{t_{1/2}}(MnO_4^-)}{V_1 + V_2} = \frac{n_0(MnO_4^-)}{V_1 + V_2} + \frac{n_{\infty}(MnO_4^-)}{V_1 + V_2}$$

$$[MnO_4^-]_0 + [MnO_4^-]_\infty = 2[MnO_4^-]_{t_{1/2}}$$
 ومنه

تحدّبد ز من نصف التفاعل.

. $t_{1/2} = 11$ min من البيان

.
$$v_{vol}=-rac{1}{2}rac{d[MnO_4^-]}{dt}$$
: بيّن أن السرعة الحجمية للتفاعل تكتب بالشكل

$$v_{vol} = \frac{1}{V} \frac{dx}{dt}$$

$$[MnO_4^-] = \frac{0,1-2x}{V}$$
 ومن جدول التقدم

$$\frac{d[MnO_4^-]}{dt} = -\frac{2}{V}\frac{dx}{dt}$$
 بالاشتقاق

$$\frac{dx}{dt} = -\frac{V}{2} \frac{d[MnO_4^-]}{dt}$$
 ومنه

$$v_{vol} = \frac{1}{V} \frac{dx}{dt} = \frac{1}{V} \left(-\frac{V}{2} \frac{d[MnO_4^-]}{dt} \right) = = -\frac{1}{2} \frac{d[MnO_4^-]}{dt}$$

t = 60mn قيمتها عند اللحظة

 $v_{vol}(60mn) = 0$ عند t = 60mn عند

