Homework-1-R-Exercises

VISHAL BHASHYAAM

Table of contents

	0.1	Getting to know the Data with R
		0.1.1 Goal:
	0.2	Installing required packages
1	Cent	tral tendency: mean, median, mode
	1.1	Mean
	1.2	Median
	1.3	Mode
	1.4	DMwR centralValue() function:
	1.5	Statistics of spread (variation)
	1.6	Variance
	1.7	Standard deviation
	1.8	Range
	1.9	Maximum value
	1.10	Minimum value
	1.11	Interquartile range
	1.12	Quantiles
	1.13	Missing values
2	Sum	maries of a dataset 7
	2.1	Baser R's summary()
	2.2	Hmisc's describe()
	2.3	dlookr's describe()
	2.4	Summaries on a subset of data
	2.5	Use summarize() and group_by()
	2.6	Aggregating data
		2.6.1 List data types of the attributes in tidy dataset
		2.6.2 Check skewness in data distribution in attributes
	2.7	Correlation
	2.8	Examine number of missing values in dataset

0.1 Getting to know the Data with R

0.1.1 Goal:

Practice basic R commands/methods for descriptive data analysis.

0.2 Installing required packages

```
# run install.packages if package not downloaded
if(!require("pacman"))
  install.packages("pacman")
```

Loading required package: pacman

```
library(pacman)

p_load(dlookr,
    DMwR2,
    GGally,
    Hmisc,
    palmerpenguins,
    tidyverse
)
```

Loading data

The |> is the Base R pipe as opposed to the magrittr pipe %>%. The |> pipe can be utilized for most functions in R, while the %>% pipe is more restricted towards the tidyverse

```
data(algae, package ="DMwR2")
algae |> glimpse()

Rows: 200
Columns: 18
$ season <fct> winter, spring, autumn, spring, autumn, winter, summer, autumn,~
$ size <fct> small, medium, medium, medium, high, high, high, mediu~
```

```
$ mxPH
         <dbl> 8.00, 8.35, 8.10, 8.07, 8.06, 8.25, 8.15, 8.05, 8.70, 7.93, 7.7~
         <dbl> 9.8, 8.0, 11.4, 4.8, 9.0, 13.1, 10.3, 10.6, 3.4, 9.9, 10.2, 11.~
$ mn02
$ C1
         <dbl> 60.800, 57.750, 40.020, 77.364, 55.350, 65.750, 73.250, 59.067,~
$ NO3
         <dbl> 6.238, 1.288, 5.330, 2.302, 10.416, 9.248, 1.535, 4.990, 0.886,~
$ NH4
         <dbl> 578.000, 370.000, 346.667, 98.182, 233.700, 430.000, 110.000, 2~
         <dbl> 105.000, 428.750, 125.667, 61.182, 58.222, 18.250, 61.250, 44.6~
$ oP04
$ P04
         <dbl> 170.000, 558.750, 187.057, 138.700, 97.580, 56.667, 111.750, 77~
$ Chla
         <dbl> 50.000, 1.300, 15.600, 1.400, 10.500, 28.400, 3.200, 6.900, 5.5~
         <dbl> 0.0, 1.4, 3.3, 3.1, 9.2, 15.1, 2.4, 18.2, 25.4, 17.0, 16.6, 32.~
$ a1
$ a2
         <dbl> 0.0, 7.6, 53.6, 41.0, 2.9, 14.6, 1.2, 1.6, 5.4, 0.0, 0.0, 0.0, ~
         <dbl> 0.0, 4.8, 1.9, 18.9, 7.5, 1.4, 3.2, 0.0, 2.5, 0.0, 0.0, 0.0, 2.~
$ a3
         <dbl> 0.0, 1.9, 0.0, 0.0, 0.0, 0.0, 3.9, 0.0, 0.0, 2.9, 0.0, 0.0, 0.0~
$ a4
         <dbl> 34.2, 6.7, 0.0, 1.4, 7.5, 22.5, 5.8, 5.5, 0.0, 0.0, 1.2, 0.0, 1~
$ a5
$ a6
         <dbl> 8.3, 0.0, 0.0, 0.0, 4.1, 12.6, 6.8, 8.7, 0.0, 0.0, 0.0, 0.0, 0.~
         <dbl> 0.0, 2.1, 9.7, 1.4, 1.0, 2.9, 0.0, 0.0, 0.0, 1.7, 6.0, 1.5, 2.1~
$ a7
```

1 Central tendency: mean, median, mode

1.1 Mean

```
algae$a1 |>
mean()
```

[1] 16.9235

1.2 Median

```
algae$a1 |>
median()
```

[1] 6.95

1.3 Mode

Base R doesn't have a function for mode,

Creating a R function for mode, (works for unimodal, bimodal, multimodal data)

```
Mode <- function(x, na.rm=FALSE){
  if (na.rm) x<-x[!is.na(x)]
  ux <- unique(x)
  return(ux[which.max(tabulate(match(x,ux)))])
}
algae$mn02 |> Mode()
```

[1] 9.8

1.4 DMwR centralValue() function:

returns the median for numerical variable, or the mode for nominal variables.

```
# Numerical variable
algae$a1 |> centralValue()

[1] 6.95

# Nominal variable
algae$speed |> centralValue()

[1] "high"
```

1.5 Statistics of spread (variation)

1.6 Variance

```
algae$a3 |> var()
```

[1] 48.28217

1.7 Standard deviation

```
algae$a3 |> sd()
```

[1] 6.948537

1.8 Range

Note that this gives you both maximum and minimum values.

```
algae$a4 |> range()
```

[1] 0.0 44.6

1.9 Maximum value

```
algae$a1 |> max ()
```

1.10 Minimum value

```
algae$a1 |> min()
```

[1] 0

[1] 89.8

1.11 Interquartile range

```
3rd quartile (75%) - 1st quartile (25%)
algae$a1 |> IQR()
```

[1] 23.3

1.12 Quantiles

```
algae$a1 |> quantile()

0% 25% 50% 75% 100%

0.00 1.50 6.95 24.80 89.80

Specifying particular quantiles:

algae$a1 |> quantile(probs = c(0.2,0.8))

20% 80%

1.20 32.18
```

1.13 Missing values

```
library(purrr)
#compute the total number of NA values in the given dataset

na_value <- algae %>%
   purrr::map_dbl(~sum(is.na(.))) %>%
   sum()

cat("The dataset contains ", na_value, "NA values. \n")
```

The dataset contains 33 NA values.

```
# Compute the number of incomplete rows in the dataset
incomplete_rows <- algae %>%
summarise_all(~!complete.cases(.)) %>%
nrow()
```

Warning: Returning more (or less) than 1 row per `summarise()` group was deprecated in dplyr 1.1.0.

i Please use `reframe()` instead.

- i When switching from `summarise()` to `reframe()`, remember that `reframe()` always returns an ungrouped data frame and adjust accordingly.
- i The deprecated feature was likely used in the dplyr package.

 Please report the issue at https://github.com/tidyverse/dplyr/issues.

```
cat("The dataset contains ", incomplete_rows, "(out of ", nrow(algae),") incomplete rows.
```

The dataset contains 200 (out of 200) incomplete rows.

2 Summaries of a dataset

2.1 Baser R's summary()

```
algae |> summary()
```

		DII	00
	size speed		
autumn:40 larg	ge :45 high :84	Min. :5.600	Min. : 1.500
spring:53 medi	lum:84 low :33	1st Qu.:7.700	1st Qu.: 7.725
summer:45 smal	ll :71 medium:83	Median :8.060	Median : 9.800
winter:62		Mean :8.012	Mean : 9.118
		3rd Qu.:8.400	3rd Qu.:10.800
		Max. :9.700	Max. :13.400
		NA's :1	NA's :2
Cl	NO3	NH4	oPO4
Min. : 0.222	Min. : 0.050	Min. : 5.00	Min. : 1.00
1st Qu.: 10.981	1st Qu.: 1.296	1st Qu.: 38.33	1st Qu.: 15.70
Median : 32.730	Median : 2.675	Median: 103.17	Median : 40.15
Mean : 43.636	Mean : 3.282	Mean : 501.30	Mean : 73.59
3rd Qu.: 57.824	3rd Qu.: 4.446	3rd Qu.: 226.95	3rd Qu.: 99.33
Max. :391.500	Max. :45.650	Max. :24064.00	Max. :564.60
NA's :10	NA's :2	NA's :2	NA's :2
P04	Chla	a1	a2
Min. : 1.00	Min. : 0.200	Min. : 0.00	Min. : 0.000
1st Qu.: 41.38	1st Qu.: 2.000	1st Qu.: 1.50	1st Qu.: 0.000
Median :103.29	Median : 5.475	Median: 6.95	Median : 3.000
Mean :137.88	Mean : 13.971	Mean :16.92	Mean : 7.458
3rd Qu.:213.75	3rd Qu.: 18.308	3rd Qu.:24.80	3rd Qu.:11.375
Max. :771.60	Max. :110.456	Max. :89.80	Max. :72.600

NA's :2 NA's :12 a3 a4 a5 a6 Min. : 0.000 Min. : 0.000 Min. : 0.000 Min. : 0.000 1st Qu.: 0.000 1st Qu.: 0.000 1st Qu.: 0.000 1st Qu.: 0.000 Median: 1.550 Median: 0.000 Median: 1.900 Median: 0.000 Mean : 4.309 Mean : 1.992 Mean : 5.064 Mean : 5.964 3rd Qu.: 4.925 3rd Qu.: 2.400 3rd Qu.: 7.500 3rd Qu.: 6.925 Max. :44.600 Max. :44.400 Max. :77.600 Max. :42.800 a7 Min. : 0.000 1st Qu.: 0.000 Median : 1.000 Mean : 2.495 3rd Qu.: 2.400 Max. :31.600 2.2 Hmisc's describe() data("penguins") penguins |> Hmisc::describe() penguins 8 Variables 344 Observations n missing distinct 344 0 Value Adelie Chinstrap Gentoo Frequency 152 68 124 Proportion 0.442 0.198 0.360 island n missing distinct 344 0

52

Dream Torgersen

124

Value

Frequency

Biscoe

168

Proportion								
bill_length_mm								
_		distinct	Info	Mean	Gmd	.05	.10	
342	2	164	1	43.92	6.274	35.70	36.60	
		.75						
		48.50						
00.20	11.10	10.00	00.00	01.00				
		33.5 34		_			59.6	
bill_deptl								
-		distinct	Info	Mean	Gmd	.05	.10	
		80						
		.75						
		18.7						
10.0	11.0	10.7	10.0	20.0				
		13.3 13.4		_			21.5	
flipper_le								
n	missing	distinct	Info	Mean	Gmd	.05	.10	
		55						
		.75						
		213.0						
		76 178 179	_					
body_mass								
		distinct	Info	Mean	Gmd	.05	.10	
		94						
		.75						
		4750						
0000	1000	1700	0100	0000				
lowest : 2	2700 2850	2900 2925	2975, hi	ghest: 58	50 5950 6	000 6050	6300	
sex	missing	distinst						
n	_							
333	11	2						
Voluc	fomolo	mala						
Value	female	male						
Frequency		168						
Proportion	n 0.495	0.505						
year								

```
n missing distinct Info Mean Gmd
344 0 3 0.888 2008 0.8919
```

```
Value 2007 2008 2009
Frequency 110 114 120
Proportion 0.320 0.331 0.349
```

For the frequency table, variable is rounded to the nearest 0.02

GMD is the mean absolute difference between any pairs of observations. A robust dispersion measure, especially for non-normally distributed data.

2.3 dlookr's describe()

```
penguins |> dlookr::describe()
```

```
# A tibble: 5 x 26
 described variables
                                              sd se mean
                                                              IQR skewness
                          n
                               na
                                    mean
  <chr>>
                      <int> <int> <dbl>
                                           <dbl>
                                                    <dbl>
                                                            <dbl>
                                                                     <dbl>
                                2
                                                             9.27
1 bill_length_mm
                        342
                                    43.9
                                           5.46
                                                   0.295
                                                                    0.0531
2 bill_depth_mm
                        342
                                2
                                    17.2
                                           1.97
                                                   0.107
                                                             3.1
                                                                   -0.143
                                2 201.
                                          14.1
                                                   0.760
                                                            23
                                                                    0.346
3 flipper_length_mm
                        342
                                2 4202.
4 body_mass_g
                        342
                                         802.
                                                  43.4
                                                          1200
                                                                    0.470
                        344
                                0 2008.
                                           0.818 0.0441
                                                             2
                                                                   -0.0537
5 year
# i 18 more variables: kurtosis <dbl>, p00 <dbl>, p01 <dbl>, p05 <dbl>,
   p10 <dbl>, p20 <dbl>, p25 <dbl>, p30 <dbl>, p40 <dbl>, p50 <dbl>,
   p60 <dbl>, p70 <dbl>, p75 <dbl>, p80 <dbl>, p90 <dbl>, p95 <dbl>,
   p99 <dbl>, p100 <dbl>
```

2.4 Summaries on a subset of data

dplyr's summarise() and summarise_all() or use them with select() and group_by() to create summaries on subset of data. And,

```
summarise() = summarize()
```

```
algae |>
  summarize(avgNO3 = mean(NO3,na.rm=TRUE),
  medA1 = median(a1))
```

```
3.28 6.95
summarize_all() can be used to apply any function that produces a scalar value to any column
of a data
  algae |>
    select(mxPH:Cl) |>
    summarize_all(list(mean, median), na.rm=TRUE)
# A tibble: 1 x 6
  mxPH_fn1 mn02_fn1 Cl_fn1 mxPH_fn2 mn02_fn2 Cl_fn2
              <dbl> <dbl>
                               <dbl>
                                        <dbl> <dbl>
      8.01
                               8.06
1
               9.12
                     43.6
                                          9.8
                                                32.7
  algae |>
    select(a1:a7) |>
    summarize_all(funs(var))
Warning: `funs()` was deprecated in dplyr 0.8.0.
i Please use a list of either functions or lambdas:
# Simple named list: list(mean = mean, median = median)
# Auto named with `tibble::lst()`: tibble::lst(mean, median)
# Using lambdas list(~ mean(., trim = .2), ~ median(., na.rm = TRUE))
# A tibble: 1 x 7
     a1
           a2
                 a3
                                          a7
                       a4
                              a5
                                    a6
  <dbl> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl> <
1 456. 122. 48.3 19.5 56.1 136. 26.6
  algae |>
    select (a1:a7) |>
    summarise_all(c("min", "max"))
```

A tibble: 1 x 2
avgNO3 medA1
 <dbl> <dbl>

```
# A tibble: 1 x 14
     a1_min a2_min a3_min a4_min a5_min a6_min a7_min a1_max a2_max a3_max a4_max
         <dbl> 
                                                                                                                                                                                                                                   <dbl>
                                                                0
                                                                                      0
                                                                                                            0
                                                                                                                                  0
                                                                                                                                                        0
                                                                                                                                                                    89.8
                                                                                                                                                                                           72.6
                                                                                                                                                                                                                 42.8
                                                                                                                                                                                                                                       44.6
# i 3 more variables: a5_max <dbl>, a6_max <dbl>, a7_max <dbl>
2.5 Use summarize() and group_by()
       algae |>
             group_by(season, size) |>
             summarize(n0bs = n(), mA7=median(a7))
`summarise()` has grouped output by 'season'. You can override using the
`.groups` argument.
# A tibble: 12 x 4
# Groups:
                                    season [4]
                                                       n0bs
                                                                             mA7
         season size
         <fct> <fct> <int> <dbl>
  1 autumn large
                                                             11 0
  2 autumn medium
                                                             16 1.05
  3 autumn small
                                                             13 0
  4 spring large
                                                             12 1.95
  5 spring medium
                                                              21 1
  6 spring small
                                                              20 0
  7 summer large
                                                              10 0
  8 summer medium
                                                              21 1
  9 summer small
                                                             14 1.45
10 winter large
                                                             12 0
11 winter medium
                                                             26 1.4
12 winter small
                                                              24 0
      penguins |>
             group_by(species) |>
             summarize(var = var(bill_length_mm, na.rm = TRUE))
# A tibble: 3 x 2
      species
                                           var
      <fct>
                                    <dbl>
```

```
1 Adelie 7.09
2 Chinstrap 11.2
3 Gentoo 9.50
```

2.6 Aggregating data

Useful for summary function that don't return scalar values

```
penguins |>
    group_by(species) |>
    reframe(var = quantile(bill_length_mm, na.rm = TRUE))
# A tibble: 15 \times 2
   species
               var
   <fct>
             <dbl>
1 Adelie
              32.1
2 Adelie
              36.8
3 Adelie
              38.8
4 Adelie
              40.8
5 Adelie
              46
6 Chinstrap
              40.9
7 Chinstrap
              46.3
8 Chinstrap
              49.6
9 Chinstrap
              51.1
10 Chinstrap
              58
11 Gentoo
              40.9
12 Gentoo
              45.3
13 Gentoo
              47.3
14 Gentoo
              49.6
15 Gentoo
              59.6
```

 ${\tt reframe}$ () expectsd a scalar result returned by the function, but quantile returns a vector.

Aggregating data with summarize was depreciated in dplyr 1.1.0 , reframe() should be used instead.

```
penguins |>
  group_by(species) |>
  dlookr::describe(bill_length_mm)
```

```
# A tibble: 3 x 27
  described_variables species
                                                      sd se_mean
                                                                    IQR skewness
                                     n
                                          na
                                             mean
  <chr>
                      <fct>
                                 <int> <int> <dbl> <dbl>
                                                            <dbl> <dbl>
                                                                           <dbl>
1 bill_length_mm
                      Adelie
                                              38.8
                                                    2.66
                                                            0.217
                                                                   4
                                                                          0.162
                                   151
                                           1
2 bill length mm
                      Chinstrap
                                    68
                                           0
                                              48.8
                                                   3.34
                                                            0.405
                                                                   4.73
                                                                         -0.0906
                                                            0.278
3 bill_length_mm
                      Gentoo
                                   123
                                           1
                                              47.5 3.08
                                                                   4.25
                                                                          0.651
# i 18 more variables: kurtosis <dbl>, p00 <dbl>, p01 <dbl>, p05 <dbl>,
    p10 <dbl>, p20 <dbl>, p25 <dbl>, p30 <dbl>, p40 <dbl>, p50 <dbl>,
    p60 <dbl>, p70 <dbl>, p75 <dbl>, p80 <dbl>, p90 <dbl>, p95 <dbl>,
    p99 <dbl>, p100 <dbl>
```

2.6.1 List data types of the attributes in tidy dataset

```
str(algae)# display data types
```

```
tibble [200 x 18] (S3: tbl_df/tbl/data.frame)
$ season: Factor w/ 4 levels "autumn", "spring", ...: 4 2 1 2 1 4 3 1 4 4 ...
        : Factor w/ 3 levels "large", "medium", ...: 3 3 3 3 3 3 3 3 3 ...
$ speed : Factor w/ 3 levels "high", "low", "medium": 3 3 3 3 3 1 1 1 3 1 ...
        : num [1:200] 8 8.35 8.1 8.07 8.06 8.25 8.15 8.05 8.7 7.93 ...
$ mxPH
$ mnO2
        : num [1:200] 9.8 8 11.4 4.8 9 13.1 10.3 10.6 3.4 9.9 ...
$ C1
         : num [1:200] 60.8 57.8 40 77.4 55.4 ...
         : num [1:200] 6.24 1.29 5.33 2.3 10.42 ...
$ NO3
$ NH4
         : num [1:200] 578 370 346.7 98.2 233.7 ...
$ oPO4 : num [1:200] 105 428.8 125.7 61.2 58.2 ...
$ PO4
         : num [1:200] 170 558.8 187.1 138.7 97.6 ...
$ Chla : num [1:200] 50 1.3 15.6 1.4 10.5 ...
$ a1
         : num [1:200] 0 1.4 3.3 3.1 9.2 15.1 2.4 18.2 25.4 17 ...
$ a2
         : num [1:200] 0 7.6 53.6 41 2.9 14.6 1.2 1.6 5.4 0 ...
         : num [1:200] 0 4.8 1.9 18.9 7.5 1.4 3.2 0 2.5 0 ...
$ a3
         : num [1:200] 0 1.9 0 0 0 0 3.9 0 0 2.9 ...
$ a4
$ a5
         : num [1:200] 34.2 6.7 0 1.4 7.5 22.5 5.8 5.5 0 0 ...
         : num [1:200] 8.3 0 0 0 4.1 12.6 6.8 8.7 0 0 ...
$ a6
$ a7
         : num [1:200] 0 2.1 9.7 1.4 1 2.9 0 0 0 1.7 ...
```

Hmisc::describe(algae) # description of the values

algae

18	Variabl	es	200	Observ	rations					
seas	season									
		_	distin							
	200	0		4						
Valu	e a	utumn	spring	summer	winter	2				
	uency									
-	ortion									
size										
		_	distin							
	200	0		3						
Valu	e	large	medium	small	_					
	uency	_								
Prop	ortion	0.225	0.420	0.355	5					
	ـــــــــــــــــــــــــــــــــــــ									
spee		ssino	distin	c†						
	200	_								
	200	ŭ		J						
	е				1					
Freq	uency	84	33	83	3					
Prop	ortion	0.420	0.165	0.415	5					
mxPH										
	n mi	ssing	distin	ct	Info	Mean	Gmd	.05	.10	
	199	1		72 0	.998	8.012	0.6471	7.081	7.340	
	.25	.50		75	.90	.95				
7	.700	8.060	8.4	00 8	3.700	8.873				
7	a+ . E 6	F 7	6 1	6	6 his	mboat. O	0.06	9.1 9.5	0.7	
Towe		5. <i>1</i>	0.4	0.5 0. 	·	gnest: 9	9.06	9.1 9.5	9.1	
mn02										
	n mi	ssing	distin	ct	Info	Mean	${\tt Gmd}$.05	.10	
	198	2		88	1	9.118	2.629	4.485	5.770	
	.25			75	.90	. 95				
7	.725	9.800	10.8	00 11	700	11.815				
lowe					•			12.9 13.1	13.4	
 Cl										

```
n missing distinct Info Mean Gmd .05 .10
            10 178 1 43.64 43.78 3.061 4.970
.50 .75 .90 .95
    190 10 178
    . 25
  10.981 32.730 57.823 88.600 130.087
lowest: 0.222 0.8 1.17 1.45
highest: 173.75 187.183 194.75 208.364 391.5
     n missing distinct Info Mean Gmd .05 .10

    198
    2
    192
    1
    3.282
    2.884
    0.4023
    0.6912

    .25
    .50
    .75
    .90
    .95

 1.2960 2.6750 4.4463 6.1916 7.9369
lowest: 0.05  0.102  0.13  0.23  0.267, highest: 9.248  9.715  9.773  10.416  45.65
_____
NH4

    n missing distinct
    Info
    Mean
    Gmd
    .05
    .10

    198
    2
    179
    1
    501.3
    816.2
    10.00
    15.00

    .25
    .50
    .75
    .90
    .95

    198 2 179
    . 25
  38.33 103.17 226.95 805.33 1922.87
lowest: 5 5.8 8 10 10.5
highest: 4073.33 5738.33 6400 8777.6 24064
______
oP04

    n
    missing distinct
    Info
    Mean
    Gmd
    .05
    .10

    198
    2
    173
    1
    73.59
    85.46
    2.00
    3.94

    .25
    .50
    .75
    .90
    .95

  15.70 40.15 99.33 193.21 248.34
lowest: 1 1.25 1.333 1.625 1.8
highest: 346.167 412.333 428.75 467.5 564.6
P04
     n missing distinct Info Mean Gmd .05
                           1 137.9 133.9 6.455 11.350
    198 2 189
            .50 .75 .90
    . 25
                                   .95
 41.375 103.285 213.750 286.100 345.650
lowest: 1 2.5 3 4
highest: 558.75 586 607.167 624.733 771.6
```

```
Chla
    n missing distinct Info Mean Gmd .05 .10 188 12 131 1 13.97 17.93 0.500 0.800
   188
         .50 .75 .90 .95
    . 25
  2.000 5.475 18.308 31.817 61.733
lowest: 0.2 0.3 0.4 0.5 0.6
highest: 88.255 92.667 93.683 98.817 110.456
а1
    n missing distinct Info Mean Gmd .05 .10 200 0 121 0.994 16.92 21.52 0.00 0.00
          .50 .75 .90 .95
    . 25
   1.50 6.95 24.80 50.72 64.33
lowest: 0 1.1 1.2 1.4 1.5, highest: 75.8 81.9 82.7 86.6 89.8
   n missing distinct Info Mean Gmd .05 .10 200 0 89 0.951 7.458 10.19 0.00 0.00
          .50 .75 .90 .95
    . 25
   0.00 3.00 11.38 21.50 28.38
lowest: 0 1 1.2 1.4 1.5, highest: 40.7 40.9 41 53.6 72.6
    n missing distinct Info Mean Gmd .05
    200 0 79 0.949 4.309 6.131 0.000 0.000
    .25 .50 .75 .90 .95
  0.000 1.550 4.925 13.510
                              20.275
lowest: 0 1 1.1 1.2 1.4, highest: 24.8 25.3 25.9 35.1 42.8
    n missing distinct Info Mean Gmd .05 .10

    200
    0
    50
    0.838
    1.992

    .25
    .50
    .75
    .90
    .95

                        0.000 0.000 2.400 5.000 7.605
lowest: 0 1 1.1 1.2 1.3, highest: 11.5 12.7 13.4 28.8 44.6
a5
     n missing distinct Info Mean Gmd .05 .10
```

```
0.938
                          5.064 6.923 0.00 0.00
   200
        0
              81
   . 25
         .50
               .75
                    .90
                            . 95
  0.00
        1.90
               7.50 14.91
                          20.04
lowest: 0 1 1.1 1.2 1.4, highest: 28.8 34.2 34.3 35.6 44.4
    n missing distinct Info Mean Gmd
                                       .05
                                              .10
   200
        0 76
                    0.847 5.964
                                9.323
                                       0.000 0.000
   .25
         .50
              .75 .90
                          . 95
 0.000
        0.000 6.925 17.110 31.815
lowest: 0 1 1.2 1.4 1.5, highest: 42.7 49.4 52.5 64.6 77.6
______
a7
    n missing distinct
                    Info
                                 Gmd
                                       .05
                          Mean
                                              . 10
                                3.817 0.00 0.00
   200
         0
               51
                    0.882
                          2.496
        .50
   . 25
               .75
                    .90
                           .95
  0.00
        1.00
               2.40
                     6.10
                          10.88
lowest: 0 1 1.1 1.2 1.4 , highest: 22.1 25.6 30.1 31.2 31.6
```

2.6.2 Check skewness in data distribution in attributes

Use "skewness()" from e1071 package to find the skewness in data distribution.

```
if(!require("e1071"))
  install.packages("e1071")
```

Loading required package: e1071

Attaching package: 'e1071'

The following object is masked from 'package:Hmisc':

impute

The following objects are masked from 'package:dlookr':

kurtosis, skewness

```
library(e1071)
skewValue<- skewness(algae$a2)
cat("Skewness value is, ", skewValue)</pre>
```

Skewness value is, 2.395171

2.7 Correlation

```
# Calculate correlations for numeric columns in the dataset
correlation_value <- cor(algae$a1, algae$a2)

cat("correlation between a1 and a2 : ",correlation_value)</pre>
```

correlation between a1 and a2 : -0.2937678

2.8 Examine number of missing values in dataset

```
cat("missing values in algae dataset is : ", sum(is.na(algae)))
missing values in algae dataset is : 33
```

2.9 Ways to overcome missing values:

• Either the NA values can be omitted using "na.omit()"

```
algae_data<- na.omit(algae)
cat("missing values in algae dataset is : ", sum(is.na(algae_data)))</pre>
```

missing values in algae dataset is: 0

• Else we can take the average of the particular column to fill the NA values using mean()

```
is.na(algae$Cl)
```

```
[1] FALSE FALSE
  [13] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
  [25] FALSE FALSE
  [37] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
  [49] FALSE FALSE FALSE FALSE FALSE TRUE TRUE TRUE TRUE
  [61] TRUE TRUE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
  [73] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
  [85] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
  [97] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
[109] FALSE FALSE
[121] FALSE FALSE
[133] FALSE FALSE
[145] FALSE FALSE
[157] FALSE 
[169] FALSE FALSE
[181] FALSE FALSE
[193] FALSE FALSE FALSE FALSE FALSE TRUE FALSE
```

```
algae_1 <- algae
algae_1$Cl[is.na(algae_1$Cl)] <-mean(algae_1$Cl,na.rm=TRUE)
algae_1$Cl</pre>
```

```
[1]
       60.80000
                 57.75000 40.02000
                                      77.36400 55.35000
                                                            65.75000
                                                                      73.25000
  [8]
       59.06700
                 21.95000
                             8.00000
                                        8.00000
                                                             5.00000
                                                  8.69000
                                                                       6.30000
 [15]
        3.00000
                  4.70000
                             7.00000
                                        7.00000
                                                  7.00000
                                                            64.00000
                                                                      88.00000
 [22]
        0.80000
                 32.92000
                            11.86700
                                      10.97500
                                                 12.53600
                                                            10.50000
                                                                       9.00000
 [29]
       16.00000
                  9.00000
                            13.00000
                                      26.00000
                                                 20.08300
                                                            34.50000
                                                                      29.20000
 [36]
       30.52300
                  1.17000
                             1.45000
                                      20.62500
                                                 22.28600
                                                            77.00000
                                                                      54.19000
 [43]
                                                             9.00000
       50.00000
                 54.14300
                            69.75000
                                      87.00000
                                                 66.30000
                                                                      15.00000
 [50]
       17.75000
                 32.30000
                            27.23300
                                        6.16700
                                                  5.27300
                                                            43.63628
                                                                      43.63628
 [57]
       43.63628
                 43.63628
                            43.63628
                                       43.63628
                                                 43.63628
                                                            43.63628
                                                                       4.08300
 [64]
        4.57500
                  4.32600
                             2.93300
                                        3.27500
                                                  3.13600
                                                            32.40000
                                                                      29.77500
 [71]
       32.54000
                 38.12500
                            34.03700 136.00000 129.37500
                                                            35.75000
                                                                      29.50000
 [78]
       27.40000
                 26.76000
                                       11.00000
                                                            13.50000
                            11.00000
                                                 10.40000
                                                                      12.14600
 [85]
       31.00000
                 53.00000
                            36.24800
                                       48.66700
                                                 53.10200 125.60000 173.75000
 [92]
       94.40500
                 53.33300
                            70.00000
                                       63.51000
                                                 56.71700
                                                            61.05000
                                                                      57.75000
 [99] 101.87500
                 85.98200
                            63.62500
                                      82.11100
                                                 65.33300
                                                            58.33100
                                                                      49.62500
[106]
       47.77800
                 47.22900
                            41.50000
                                       40.16700
                                                 32.05600
                                                             5.88900
                                                                       7.25000
                 53.42500
                                        0.22200
[113]
        7.83800
                            57.84800
                                                  1.54900
                                                             5.83000
                                                                      74.66700
[120] 131.39999
                 45.27300
                            42.63600
                                      48.42900
                                                 11.81800
                                                            10.55600
                                                                      12.00000
```

```
[127] 31.09100 28.33300
                           30.12500
                                     10.93600
                                               10.07800
                                                         11.08800 194.75000
[134] 391.50000 130.67000
                                     35.66000
                                                          39.00000 49.90000
                           39.00000
                                               37.60000
[141]
      51.11300
                  8.30000
                           10.20700
                                     79.07700
                                               81.33300
                                                          64.09300 41.25000
[148]
      40.22600
                 46.16700
                           47.00000
                                     41.16300
                                               53.00000
                                                          44.20500 127.83300
                                                19.22000
[155] 100.83000
                 94.00000
                           69.00000
                                     50.00000
                                                          26.00000 43.63628
[162]
      44.00000
                 43.00000
                           43.09000
                                     16.00000
                                                22.35000
                                                          82.85700 63.29200
[169]
      43.97000
                 38.90200
                           95.36700 151.83299 104.81800
                                                          71.44400 208.36400
[176] 187.18300
                  4.54500
                            3.50000
                                      5.32600
                                                2.11100
                                                           2.20000
                                                                     2.75000
[183]
        3.86000
                  9.05500
                            7.61300
                                     39.10900
                                               22.45500
                                                          23.25000
                                                                    22.32000
[190]
      12.77800 15.54100
                           12.18200
                                      7.33300
                                               23.82500
                                                          12.44400
                                                                   17.37500
[197]
      14.32000 139.98900
                           43.63628
                                     82.85200
```