Serialized Interacting Mixed-Membership Stochastic Block Model

G.Poux-Médard, J. Velcin, S. Loudcher

Université de Lyon, France Lyon 2, ERIC UR 3083

30/11/2022

Introduction

Introduction

- Classic problem: how users rate movies?
 - → Assume regularities (clusters)
- Historically: Matrix Factorization in 2009 (Y. Koren)
- Works for linear ratings and triplets (user, movie, rating) only
- Recent developments: Mixed Membership Stochastic Block Models

Gaël Poux-Médard Université de Lyon

Labeled edges

- What if ratings do not scale linearly (△♥ 😉 🥸 🖏...)
 - → Consider labeled edges
- (Godoy-Lorite et al., 2016, PNAS)

State of the art

- Edges represent a distribution of labels (instead of a scalar weight)
- Group memberships instantiate a PDF over labels

Interactions

- What if the user watched several movies in a row?
 - → Consider information interaction
- (Poux-Médard et al., 2019, RecSys)
 - · Layers can share membership matrices
 - Symmetric interaction between items of the same type
 - → P(rating|movie1,movie2)=P(rating|movie2,movie1)

What if...

- What if ratings do not scale linearly (△♥②♥⑤...)
 - → Consider labeled edges (Godoy-Lorite et al. 2016)
- What if the user watched several movies in a row?
- → Consider information interaction (Poux-Médard et al. 2021)
- What if we want to consider additional information (time)?
 - → Consider additional layers of information
- What if we want all of this at once?
 - → Serialized interacting MMSBM (this presentation)

SIMSBM - Mathematically

$$\mathcal{L} = \prod_{(\mathbf{f}, o) \in R^{\circ}} \left(\sum_{\mathbf{k}} p_{\mathbf{k}}(o) \prod_{n} \theta_{f_{n}, k_{n}}^{(a(f_{n}))} \right)$$

- $\theta^{(a)}$: membership matrix for type x
- p: block-interaction tensor
- **k**: a permutation of index clusters
- **f**: collection of input items
- o: output item (or edge label)

- Generalises (PNAS 2016), (Phys.Rev.E, 2019) and (RecSys 2021)
 - → Any number of layers and interactions
 - → Unified framework for model selection

$$\mathcal{L} = \prod_{(\mathbf{f},o) \in R^{\circ}} \left(\sum_{\mathbf{k}} p_{\mathbf{k}}(o) \prod_{n} heta_{f_{n},k_{n}}^{(a(f_{n}))}
ight)$$

- EM algorithm \rightarrow Convergence to local optimum
- Scales **linearly** with the number of unique data entries (f, o)

Applications - Archaeology

- 2000 items
- 2 genders
- 26 000 n-plets

Applications - Pubmed and Spotify

- 322 symptoms
- 4442 diseases
- 2 000 000 n-plets

- 2028 artists
- 2028 artists
- 50 000 n-plets

Applications - Imdb

- 2502 users
- 809 actors
- 255 directors
- 10 ratings
- 1 000 000 n-plets

Applications - Quantitative results

			F1	P@1	AUCROC	AUCPR	RankAvgPrec	CovErrNorm
MrBanks	Ply, Sit (3), Gen, Age	SIMSBM(1,1,1,1)	0.7124(2)	0.6549(3)	0.7071(2)	0.7141(3)	0.8274(1)	0.1726(1)
		SIMSBM(1,2,1,1)	0.7107(2)	0.6696(5)	0.7120(4)	0.7158(5)	0.8348(3)	0.1652(3)
		SIMSBM(1,3,1,1)	0.7348(2)	0.7172(5)	0.7610(4)	0.7646(4)	0.8586(3)	0.1414(3)
		TF	0.6795	0.6037	0.4702	0.4967	0.8019	0.1981
		NMF	0.7178	0.6976	0.7232	0.7182	0.8409	0.1591
		KNN	0.7023	0.6648	0.6859	0.6623	0.8324	0.1676
		NB	0.6867	0.6382	0.6323	0.6250	0.8191	0.1809
Spotify	Artists (3)	SIMSBM(1)	0.1741(4)	0.2155(7)	0.7908(6)	0.1603(3)	0.3827(4)	0.0786(3)
		SIMSBM(2)	0.3156(5)	0.3348(4)	0.7661(5)	0.2545(3)	0.4528(3)	0.0938(6)
		SIMSBM(3)	0.3243(4)	0.3209(3)	0.7384(6)	0.2613(3)	0.4366(3)	0.1079(7)
		TF	0.0262	0.0042	0.4805	0.0159	0.0962	0.1550
		NMF	0.0371	0.0658	0.5650	0.0403	0.1762	0.2557
		KNN	0.3201	0.3009	0.7079	0.2400	0.3941	0.5212
		NB	0.0463	0.0846	0.7005	0.0576	0.2264	0.0763
PubMed	Symptoms (3)	SIMSBM(1)	0.2915(2)	0.5576(4)	0.7475(1)	0.2658(1)	0.4641(1)	0.2033(1)
		SIMSBM(2)	0.3127(1)	0.5704(1)	0.7613(1)	0.2840(1)	0.4838(1)	0.1991(1)
		SIMSBM(3)	0.3219(1)	0.5790(1)	0.7666(1)	0.2895(1)	0.4937(1)	0.1983(1)
		TF	0.1607	0.1003	0.5605	0.1777	0.1370	0.5118
		NMF	0.1606	0.0293	0.5368	0.2158	0.2321	0.2959
		KNN	0.2414	0.3251	0.6154	0.2324	0.2891	0.7730
		NB	0.2600	0.1618	0.7054	0.2389	0.2036	0.3058
qpmI	Dir, Cast	SIMSBM(1,1,1)	0.3896(1)	0.3437(2)	0.7593(1)	0.3293(2)	0.5705(1)	0.1654(1)
		TF	0.2547	0.2238	0.5039	0.1513	0.4549	0.2636
		NMF	0.1127	0.0483	0.5005	0.1529	0.1406	0.8319
		KNN	0.2596	0.1890	0.5501	0.1681	0.3268	0.5248
	Usr,	NB	0.2558	0.2373	0.5362	0.1617	0.4632	0.2571

Conclusion

- In summary:
 - Numerous real-world applications
 - Recommender systems (Spotify, Imdb, ...)
 - Social sciences (archaeology, behaviour analysis, ...)
 - Miscellaneous (medical diagnosis, retweet prediction, ...)
 - Easy model selection
 - Three original models summarized in one framework
 - Infinitely many ready-to-use models
 - Linear complexity

Thanks for your attention!

Webpage: https://gaelpouxmedard.github.io/ Code and data: https://github.com/GaelPouxMedard/SIMSBM/

