Universidade Federal Fluminense

Programa de Pós-Graduação em Computação Instituto de Computação IC-UFF

Escalonamento de Tarefas e Alocação de Arquivos de Dados de Workflows Científicos em Nuvens Computacionais

Luan Teylo Gouveia Lima

Orientadora: Lúcia M. A. Drummond Co-Orientador: Yuri Abitbol de Menezes Frota

> Dissertação de Mestrado Niterói, 17 de Março 2017

Agenda

- Introdução
- Trabalhos Relacionados
- 3 Descrição do Problema e Solução Proposta
- 4 Resultados
- 5 Conclusão e Trabalhos Futuros

O problema de escalonamento

Escalonamento é o processo de mapear a execução de aplicações em um ambiente computacional [Yu e Buyya, 2006]

O problema de escalonamento

Este trabalho propõe uma solução para o problema de escalonamento de tarefas e alocação de arquivos de *workflows* científicos (WfCs) executados em ambientes de nuvens computacionais.

Workflows Científicos

- Abstração que estrutura as etapas de um experimento como um grafo acíclico dirigido (DAG), no qual os nós correspondem às atividades de processamento e as arestas representam os fluxos de dados entre elas
- Experimentos científicos são comumente executados por uma cadeia de aplicações, nas quais a saída de um programa é a entrada para outro

Workflows Científicos

Diferente dos trabalhos encontrados na literatura, neste trabalho os arquivos não são representados como arcos do grafo e sim como parte do conjunto de vértices.

Nuvens Computacionais

- Vantagens técnicas e econômicas em relação as outras plataformas (como grids e clusters).
 - Recursos sob demanda e com fácil acesso
 - Recursos virtualmente infinitos
 - Pagamento baseado no modelo pay-per-use
 - Serviços integrados de processamento de dados e armazenamento escalável
- O uso da nuvem para o processamento de WfCs é feito através da alocação de máquinas virtuais (MV) que forma um cluster virtual

Principais Contribuições

As principais contribuições deste trabalho são:

- ► Modelo de representação para WfCs
- Formulação do problema de Escalonamento de Tarefas e Alocação de Arquivos de Dados (ETAA) como um problema de programação inteira.
- Algoritmo evolutivo híbrido para solução do problema
- Validação da solução proposta por meio de experimentos práticos e teóricos

O escalonamento de tarefas em sistemas distribuídos faz parte dos chamados problemas NP-Difícil
– [Ullman, 1973]

Por conta disso, heurísticas ou metaheurísticas são comumente utilizadas

Heurísticas

- Heterogeneous Earliest-Finish-Time HEFT [Topcuoglu et al., 2002].
 - Adaptative HEFT (AHEFT) [Yu e Shi, 2007]
 - Multi-Objective HEFT (MOHEFT) [Durillo, Fard e Prodan, 2012]
 - HEFT-Based [Chopra e Singh, 2013]
- Heurísticas de Particionamento
 - Partitioned Balanced Time Scheduling (PBTS) [Byun et al., 2011]
 - IaaS Cloud Partial Critical Paths (IC-PCP) [Abrishami et al., 2009]
- ▶ MinMin [Blythe et al., 2005]

Metaheurísticas

- ► Genetic Algorithm [Goldberg, 1989]
 - Genetic Algorithm para Escalonamento estático [Yu e Buyya, 2006]
- Particle Swarm Optimization (PSO) [Kennedy e Eberhart, 1995]
 - PSO como heurística dinâmica [Pandey et al., 2010]
 - PSO para escalonamento estático [Rodriguez e Buyya, 2014]
- ► Ant Colony Optimization (ACO) [Dorigo e Di Caro, 1999]
 - Multi-objetivo ACO [Chen e Zhang, 2009]
 - Knowledge-based ant colony optimization (KBACO) [Hu et al., 2010]

Metaheurísticas

- ► Genetic Algorithm [Goldberg, 1989]
 - Genetic Algorithm para Escalonamento estático [Yu e Buyya, 2006]
- Particle Swarm Optimization (PSO) [Kennedy e Eberhart, 1995]
 - PSO como heurística dinâmica [Pandey et al., 2010]
 - PSO para escalonamento estático [Rodriguez e Buyya, 2014]
- Ant Colony Optimization (ACO) [Dorigo e Di Caro, 1999]
 - Multi-objetivo ACO [Chen e Zhang, 2009]
 - Knowledge-based ant colony optimization (KBACO) [Hu et al., 2010]

Não consideram a localização dos arquivos na decisão de escalonamento.

data-aware scheduling

- ► Clusterização por Matriz de dependência [Yuan et al., 2010]
- ► Algoritmo de Particionamento [Çatalyürek et al., 2011]
- ▶ Algoritmo Evolutivo [Szabo et al., 2013]
- ► K-means [Wang et al., 2014]
- ▶ Heurística File Locality-Aware Scheduling [Bryk et al., 2015]

data-aware scheduling

- ► Clusterização por Matriz de dependência [Yuan et al., 2010]
- ▶ Algoritmo de Particionamento [Çatalyürek et al., 2011]
- ▶ Algoritmo Evolutivo [Szabo *et al.*, 2013]
- K-means [Wang et al., 2014]
- ► Heurística File Locality-Aware Scheduling [Bryk et al., 2015]

A alocação dos arquivos não é definida pelos algoritmos.

O Problema de Escalonamento de Tarefas e Alocação de Arquivos (ETAA)

O ETAA foi formulado como um problema de Programação Inteira

Modelo da Aplicação

Denotada por um DAG G, na forma:

$$G = (V, A, a, \omega)$$

$$V = N \cup D$$

- ▶ *V* : Vértices
- ► *A* : Arcos
- ▶ a_i : Tempo base associado à tarefa $i \in N$
- $\triangleright \ \omega_k$: Tempo base associado ao arco $k \in A$
- ▶ N : Tarefas
- $D = D_s \cup D_d$: Arquivos

Modelo do Ambiente

O conjunto M representa os recursos (MVs) utilizados na execução.

- ► cm : Capacidade de Armazenamento
- cs : Valor de slowdown (variação de desempenho)
- ► cdr_I: Latência do enlace / (leitura)
- ▶ cdw_I : Latência do enlace I (escrita)

O tempo de execução:

$$t_{ij} = a_i \times cs_j$$

Tempo base da tarefa i vezes o slowdown da MV_j

O tempo de comunicação:

$$\overrightarrow{t}_{djp} = \omega_{di} \times cdr_{l} \text{ (leitura)}$$

$$\overleftarrow{t}_{djp} = \omega_{id} \times cdw_{l} \text{ (escrita)}$$

Tempo base de transferência do arquivo d vezes a latência do enlace l

Função Objetivo

Minimiza o tempo total de execução (makespan):

 $\min z_T$

▶ z_T : Tempo total de execução do workflow

Restrições

- ▶ Definidas 14 restrições para garantir que:
 - As operações de execução, leitura e escrita sejam realizadas nos tempos corretos
 - Todas as tarefas sejam executadas
 - Todas as operações de leitura e escrita ocorram
 - As restrições de armazenamento sejam satisfeitas
 - As relações de dependências sejam respeitadas

Algoritmo Evolutivo

São métodos de otimização inspirados nos mecanismos de evolução biológica observados na natureza.

Algoritmo Evolutivo Híbrido para Escalonamento de Tarefas e Alocação de Arquivos (AEH-ETAA)

- População Inicial contém soluções geradas a partir das heurísticas HEFT e MinMin.
- Buscas Locais são efetuadas nas melhores soluções.

Representação

O cromossomo é composto por duas estruturas que representam:

- A alocação das tarefas e dos dados
- A ordem de distribuição das tarefas

Representação

A ordem de execução das tarefas é definida conforme as equações de altura apresentadas por Tsujimura e Gen (1997):

$$altura_inicial(tf_i) = \begin{cases} 0, & \text{se } pred(tf_i) = \emptyset \\ 1 + \max_{tf_j \in pred(tf_i)} altura_inicial(tf_j), & \text{caso contrário} \end{cases}$$

$$\textit{altura}(\textit{tf}_i) = \begin{cases} \textit{altura_inicial}(\textit{tf}_i), & \text{se } \textit{suc}(\textit{tf}_i) = \emptyset \\ \textit{rand} \in [\textit{altura_inicial}(\textit{tf}_i), \min_{\forall \textit{tf}_k \in \textit{suc}(\textit{tf}_j)} \{\textit{altura}(\textit{tf}_k)\} - 1], & \text{caso contrário} \end{cases}$$

$$\textit{altura_inicial(tf_i)} = \begin{cases} 0, & \text{se } \textit{pred(tf_i)} = \emptyset \\ 1 + \max_{\textit{tf_j} \in \textit{pred(tf_i)}} \textit{altura_inicial(tf_j)}, & \text{caso contrário} \end{cases}$$

$$\textit{altura_inicial(tf_i)} = \begin{cases} 0, & \text{se } \textit{pred(tf_i)} = \emptyset \\ 1 + \max_{\textit{tf_j} \in \textit{pred(tf_i)}} \textit{altura_inicial(tf_j)}, & \text{caso contrário} \end{cases}$$

$$\textit{altura}(\textit{tf}_i) = \begin{cases} \textit{altura_inicial}(\textit{tf}_i), & \text{se } \textit{suc}(\textit{tf}_i) = \emptyset \\ \textit{rand} \in [\textit{altura_inicial}(\textit{tf}_i), \min_{\substack{\forall \textit{tf}_k \in \textit{suc}(\textit{tf}_i) \\ \forall \textit{tf}_k \in \textit{suc}(\textit{tf}_i)}} \{\textit{altura}(\textit{tf}_k)\} - 1], & \text{caso } \textit{contrário} \end{cases}$$

$$\textit{altura}(\textit{tf}_i) = \begin{cases} \textit{altura_inicial}(\textit{tf}_i), & \text{se suc}(\textit{tf}_i) = \emptyset \\ \textit{rand} \in [\textit{altura_inicial}(\textit{tf}_i), \min_{\forall \textit{tf}_k \in \textit{suc}(\textit{tf}_i)} \{\textit{altura}(\textit{tf}_k)\} - 1], & \text{caso contrário} \end{cases}$$

$$\textit{altura}(\textit{tf}_i) = \begin{cases} \textit{altura_inicial}(\textit{tf}_i), & \text{se suc}(\textit{tf}_i) = \emptyset \\ \textit{rand} \in [\textit{altura_inicial}(\textit{tf}_i), \min_{\forall \textit{tf}_k \in \textit{suc}(\textit{tf}_i)} \{\textit{altura}(\textit{tf}_k)\} - 1], & \text{caso contrário} \end{cases}$$

Operador de Crossover

Lista de Execução:

Operador de Crossover

Lista de Execução:

Operador de Crossover

Vetor de Alocação:

Operador de Crossover

Vetor de Alocação:

Operador de Mutação

Executado apenas no vetor de alocação:

---- Máquina Virtual Alterada

Buscas Locais

Foram definidas três buscas locais e uma heurística de busca:

- ► Troca-MV
- ► Troca-Posição
- Move-Elemento
- Heurística Path Relinking

Todas as buscas locais são first-improvement.

Busca Local Troca-MV

Busca Local Troca-MV

Busca Local Troca-MV

Busca Local Troca-Posição

Busca Local Troca-Posição

Busca Local Troca-Posição

Path-Relinking

- ► As melhores soluções encontradas pela metaheurística são guardadas em um conjunto elite
- ► A estratégia explora soluções intermediárias ao longo da trajetória que conecta duas soluções pertencentes a esse conjunto

Path-Relinking

▶ O caminho é gerado selecionando movimentos que introduzem características da Solução Guia na Solução Inicial.

Função de Fitness

A qualidade de um indivíduo é estimada conforme o *makespan* de sua solução.

Para avaliar a abordagem proposta, foram conduzidos experimentos práticos e teóricos

- Processador Intel I7-3770, CPU 3,40GHZ com 12GB Memória RAM e Ubuntu 14.04. Algoritmos implementados em C++ e compilados com G++ 5.3.0
- Para a comparação teórica foram utilizadas instâncias sintéticas produzidas pelo workflow generator [Silva, 2014]
- A comparação prática foi feita no Amazon EC2

Avaliação Teórica

O AEH-ETAA foi comparado com:

- ▶ Modelo matemático IP-ETAA (CPLEX 12.5.1)
- Heurísticas MinMin e HEFT

Avaliação Teórica

AEH-ETAA vs IP-ETAA

Instâncias	AEH-	-ETAA	Form	ulação Matemática	Dif. Percentual
5A m3	10,0	0,83	10,0	4,2	0,0
5B_m3	11,0	0,79	11,0	14,0	0,0
5C_m3	13,0	0,71	13,0	2,8	0,0
7A_m3	21,0	0,96	21,0	140,8	0,0
7B m3	16,0	1,17	16,0	7,3	0,0
7C_m3	14,0	1,11	14,0	105,0	0,0
10A_m3	21,0	1,80	21,0	1644,6	0,0
10B m3	12,0	1,74	12,0	21,4	0,0
10C_m3	21,0	1,22	21,0	316,7	0,0
15A_m3	16,0	2,47	16,0	2606,6	0,0
15B_m3	11,4	3,01	11,0	600,9	3,6
15C_m3*	19,2	2,42	94,0	86395,5	-
5A_m5	10,0	0,90	10,0	14,4	0,0
5B_m5	9,0	0,50	9,0	462,6	0,0
5C_m5	10,0	0,75	10,0	9,0	0,0
7A_m5	27,0	0,97	27,0	1836,4	0,0
7B_m5	26,0	1,26	26,0	21,0	0,0
7C_m5	16,0	1,09	16,0	2426,9	0,0
10A_m5*	25,0	1,58	_	86489,2	-
10B_m5	14,0	1,75	13,0	103,0	7,6
10C_m5	47,6	1,88	47,0	7353,5	1,2
15A_m5	16,0	2,64	16,0	15783,9	0,0
15B_m5	11,0	2,97	10,0	10764,3	10,0
15C_m5*	20,0	2,49	-	86243,0	
Média	17,4	1,5	20,2	12640,3	1,1

Avaliação Teórica

AEH-ETAA vs IP-ETAA

Instâncias	AEH	-ETAA	Form	ulação Matemática	Dif. Percentual
5A m3	10,0	0,83	10,0	4,2	0,0
5B_m3	11,0	0,79	11,0	14,0	0,0
5C_m3	13,0	0,71	13,0	2,8	0,0
7A_m3	21,0	0,96	21,0	140,8	0,0
7B_m3	16,0	1,17	16,0	7,3	0,0
7C_m3	14,0	1,11	14,0	105,0	0,0
10A_m3	21,0	1,80	21,0	1644,6	0,0
10B_m3	12,0	1,74	12,0	21,4	0,0
10C_m3	21,0	1,22	21,0	316,7	0,0
15A_m3	16,0	2,47	16,0	2606,6	0,0
15B_m3	11,4	3,01	11,0	600,9	3,6
15C_m3*	19,2	2,42	94,0	86395,5	-
5A_m5	10,0	0,90	10,0	14,4	0,0
5B_m5	9,0	0,50	9,0	462,6	0,0
5C_m5	10,0	0,75	10,0	9,0	0,0
7A_m5	27,0	0,97	27,0	1836,4	0,0
7B_m5	26,0	1,26	26,0	21,0	0,0
7C_m5	16,0	1,09	16,0	2426,9	0,0
10A_m5*	25,0	1,58	_	86489,2	-
10B_m5	14,0	1,75	13,0	103,0	7,6
10C_m5	47,6	1,88	47,0	7353,5	1,2
15A_m5	16,0	2,64	16,0	15783,9	0,0
15B_m5	11,0	2,97	10,0	10764,3	10,0
15C_m5*	20,0	2,49	-	86243,0	-
Média	17,4	1,5	20,2	12640,3	1,1

Avaliação Teórica

Em relação a abordagem exata o AEH-ETAA obteve:

- ▶ Diferença percentual média de 1,1%
- ► Tempo de execução médio significativamente menor (1,5s contra 12.640,3s)

Avaliação Teórica

AEH-ETAA vs HEFT e MinMin

Inst.	MinMin HEFT		AEH-ETAA			
IIISt.	Makesp. (min)	Makesp. (min)	Makesp. (min)	RSD	Exec. (min)	
Cybershake30	11,98	11,28	10,25	0,0019	0,39	
Cybershake50	14,88	16,65	12,46	0,0264	2,19	
Cybershake100	26,93	28,08	14,52	0,0261	8,11	
Genome.3510	530,88	469,38	444,91	0,0109	4,05	
Genome.7020	923,46	865,45	833,98	0,0004	6,79	
Epigenomics24	67,36	57,30	55,80	0,0000	0,03	
Epigenomics46	119,95	104,07	99,27	0,0140	0,48	
Epigenomics100	1,004,23	916,73	889,65	0,0001	4,02	
Montage25	1,81	1,16	0,95	0,0242	0,05	
Montage50	3,06	2,08	1,88	0,0036	0,10	
Montage100	5,31	4,66	3,93	0,0038	3,33	
Inspiral30	18,26	14,61	13,95	0,0014	0,17	
Inspiral50	29,96	23,36	22,41	0,0005	0,79	
Inspiral100	44,65	41,80	40,76	0,0036	1,55	

Avaliação Teórica

AEH-ETAA vs HEFT e MinMin

Inst.	MinMin HEFT		AEH-ETAA			
IIISt.	Makesp. (min)	Makesp. (min)	Makesp. (min)	RSD	Exec. (min)	
Cybershake30	11,98	11,28	10,25	0,0019	0,39	
Cybershake50	14,88	16,65	12,46	0,0264	2,19	
Cybershake100	26,93	28,08	14,52	0,0261	8,11	
Genome.3510	530,88	469,38	444,91	0,0109	4,05	
Genome.7020	923,46	865,45	833,98	0,0004	6,79	
Epigenomics24	67,36	57,30	55,80	0,0000	0,03	
Epigenomics46	119,95	104,07	99,27	0,0140	0,48	
Epigenomics100	1,004,23	916,73	889,65	0,0001	4,02	
Montage25	1,81	1,16	0,95	0,0242	0,05	
Montage50	3,06	2,08	1,88	0,0036	0,10	
Montage100	5,31	4,66	3,93	0,0038	3,33	
Inspiral30	18,26	14,61	13,95	0,0014	0,17	
Inspiral50	29,96	23,36	22,41	0,0005	0,79	
Inspiral100	44,65	41,80	40,76	0,0036	1,55	

Avaliação Teórica

- Os resultados mais significativos estão presentes nos workflows com o maior número de arquivos.
- ▶ O AEH-ETAA apresentou uma melhora média de 22,72% em relação ao MinMin e de 11,15% em relação ao HEFT

Avaliação Prática

Avaliação prática com *Workflow* Sciphy [Ocaña *et al.*, 2011] utilizando o sistema de gerenciamento de WfCs SciCumulus [Oliveira *et al.*, 2011]

- Comparação entre AEH-ETAA, Algoritmo Guloso do Sciumulus (Greedy-SC) e as heurísticas MinMin e HEFT
- ▶ Foi utilizado o serviço de nuvem da Amazon EC2
- ▶ Ambiente definido pelo GRASPCC [Coutinho et al., 2015]
- ▶ 1 m3.small (1 vCPU e 4GB RAM) e 2 m3.2xlarge (8 VCPU e 30GB RAM)

Avaliação Prática

Diagrama de caixa comparando as execuções do SciPhy com Greedy-SC, AEH-ETAA, MinMin, HEFT.

Avaliação Prática

▶ Melhora de 27,4% em comparação com o Greedy-SC, 11,7% em comparação com o MinMin e 8,1% em comparação com o HEFT.

▶ O AEH-ETAA obteve soluções melhores em relação aos algoritmos avaliados com um tempo de execução aceitável.

- ▶ O AEH-ETAA obteve soluções melhores em relação aos algoritmos avaliados com um tempo de execução aceitável.
- ▶ A avaliação com a abordagem exata mostrou que para a maioria das instâncias avaliadas o AEH-ETAA foi capaz de encontrar a solução ótima com um tempo de execução significativamente menor (média de 1,5s).

- ▶ O AEH-ETAA obteve soluções melhores em relação aos algoritmos avaliados com um tempo de execução aceitável.
- A avaliação com a abordagem exata mostrou que para a maioria das instâncias avaliadas o AEH-ETAA foi capaz de encontrar a solução ótima com um tempo de execução significativamente menor (média de 1,5s).
- ► A metaheurística apresenta resultados mais significativas para instâncias com um maior número de transferências.

Sugestão de trabalhos futuros:

- Incluir técnicas de tolerância a falhas
- Redimensionamento dinâmico
- ▶ Incluir outros objetivos, como minimizar os custos financeiros juntamente com o *makespan* (multiobjetivo)

Obrigado!

Dados	Descrição		
	,		
D_s	Conjunto de arquivos estáticos.		
D_d	Conjunto de arquivos dinâmicos.		
$D = D_s \cup D_d$	Conjunto de arquivos.		
O(d)	Máquina de origem do arquivo estático $d \in D_s$.		
W(d)	Tamanho do arquivo $d \in D$.		
N	Conjunto de tarefas.		
aį	Quantidade de trabalho da tarefa $i \in N$.		
M	Conjunto de Mvs.		
tij	Tempo de processamento da tarefa $i \in N$ na Mv $j \in M$.		
\overrightarrow{t}_{djp}	Tempo gasto pela Mv $j \in M$ para ler o arquivo $d \in D$		
	armazenado na Mv $p \in M$		
[←] t _{djp}	Tempo gasto pela Mv $j \in M$ para escrever o arquivo		
-56	$d \in D_d$ na Mv $p \in M$.		
$\Delta_{in}(i) \subset D$	Conjunto de arquivos de entrada necessários para a		
(/ -	execução da tarefa $i \in N$.		
$\Delta_{out}(i) \subseteq D_d$	Conjnto de arquivos de saída gerados pela tarefa $i \in N$.		
cmj	Capacidade de armazenamento da Mv $j \in M$.		
Variáveis	Descrição		
Xijt	Variável binária que indica se a tarefa $i \in N$ iniciou sua		
-	execução na Mv $j \in M$ no período $t \in T$ ou não.		
→ idipt	Variável binária que indica se a tarefa $i \in N$ executando		
	na Mv $j \in M$ começou a ler o arquivo $d \in \Delta_{in}(i)$, que		
	está armazenado na Mv $p \in M$, no período $t \in T$ ou		
	não.		
∀ dipt	Variável binária que indica se o arquivo $d \in D_d$ começou		
	a ser escrito a partir da Mv $j \in M$ para a Mv $p \in M$ no		
	periodo $t \in T$ ou não.		
Ydjt	Variável binária que indica se o arquivo d ∈ D está		
1	armazenado na Mv $j \in M$ no período $t \in T$ ou não.		
ZT	Variável contínua que indica o tempo total de execução		
	(makespan) do workflow.		
	. ,		

A restrição 1 garante que cada tarefa seja executada. As restrições 2 e 3 certificam que todas as operações de leitura e escrita sejam realizadas, respectivamente.

Sujeito a
$$\sum_{j \in M} \sum_{t \in T} x_{ijt} = 1, \qquad \forall i \in N$$
(1)

$$\sum_{j,p\in\mathcal{M}}\sum_{t\in\mathcal{T}}\overrightarrow{x}_{idjpt}=1, \qquad \forall i\in\mathcal{N}, \forall d\in\Delta_{in}(i)$$
 (2)

$$\sum_{i,p \in M} \sum_{t \in T} \overleftarrow{\times}_{djpt} = 1, \qquad \forall d \in D_d$$
 (3)

A inequação (4) garante que o dado $d \in \Delta_{out}(i)$ seja escrito apenas se a tarefa i tenha sido executada no tempo correto.

$$\overleftarrow{x}_{djpt} \le x_{ij(t-t_{ij})}, \qquad \forall d \in D_d, \forall j, p \in M,$$

$$\forall t = (t_{ij} + 1) \cdots T_M \text{ tal que } d \in \Delta_{out}(i) \qquad (4)$$

As restrições definidas em (5) asseguram que o dado d não possa ser escrito antes do tempo de processamento da tarefa i (responsável pela sua escrita). Note que ambas as restrições (4 e 5) trabalham em conjunto para garantir um tempo de escrita factível.

$$\overleftarrow{x}_{djpt} = 0$$
 $\forall d \in D_d, \forall j, p \in M,$ $1 \le t \le t_{ij} \text{ tal que } d \in \Delta_{out}(i)$ (5)

A restrição definida em (6) assegura que uma tarefa só possa ser executada quando todas as operações de leitura estiverem concluídas.

$$egin{aligned} x_{ijt} & \leq \sum_{p \in M} \overrightarrow{x}_{idjp(t-\overrightarrow{t}_{djp})}, & \forall i \in N, orall d \in \Delta_{in}(i), orall j \in M, \ & \forall t \in T, ext{ tal que } (t-\overrightarrow{t}_{djp}) \geq 1 \end{aligned}$$

A desigualdade (7) garante que apenas uma ação (execução, leitura ou escrita) possa ser realizada em cada período de tempo em cada MV. Ou seja, a MV não pode executar uma tarefa e escrever, ou ler, um dado ao mesmo tempo.

$$\sum_{i \in N} \sum_{q=\max(1,t-t_{ij}+1)}^{t} x_{ijq} + \sum_{d \in D_d} \sum_{p \in M} \sum_{r=\max(1,t-\overleftarrow{t}_{djp}+1)}^{t} \overleftarrow{x}_{djpr} + \sum_{i \in N} \sum_{d \in \Delta_{in}(i)} \sum_{p \in M} \sum_{r=\max(1,t-\overrightarrow{t}_{djp}+1)}^{t} \overrightarrow{x}_{idjpr} \leq 1, \quad \forall j \in M, \forall t \in T \quad (7)$$

A restrição (8) estabelece que não há arquivos dinâmicos no tempo inicial. A a restrição (9) garante que todos os arquivos estáticos estejam prontamente armazenados em suas máquinas de origem.

$$y_{dj1} = 0, \qquad \forall d \in D_d, \forall j \in M$$
 (8)

$$y_{djt} = 1,$$
 $\forall d \in D_s \mid j \in O(d), \forall t \in T$ (9)

As restrições (10) e (11) relacionam a variável de armazenamento y com as variáveis de escrita \overleftarrow{x} e de leitura \overrightarrow{x} , garantindo um processo viável de escrita e leitura.

$$y_{dp(t+1)} \le y_{dpt} + \sum_{j \in M} \overleftarrow{x}_{djp(t - \overleftarrow{t}_{djp})}$$
, $\forall d \in D, \forall p \in M,$ $\forall t \in T,$ tal que $(t - \overrightarrow{t}_{djp}) \ge 1$ (10)

A restrição (11) garante que os arquivos serão lidos apenas se estes estiverem previamente armazenados em uma MV, e a restrição (10) assegura que um arquivo seja armazenado em MV apenas caso ele tenha sido produzido (escrito).

$$\sum_{j \in M} \overrightarrow{x}_{idjpt} \leq y_{dpt} \qquad , \forall i \in N, \forall d \in \Delta_{in}(i), \forall p \in M, \forall t \in T$$
 (11)

A capacidade de armazenamento das MVs é estabelecida pela restrição (12). A restrição (13) relaciona a última operação de escrita com o tempo total de execução da aplicação (*makespan*). Note que no modelo da aplicação, uma tarefa sempre escreve ao menos um arquivo.

$$\sum_{d \in D} y_{djt} W(d) \le cm_j \qquad , \forall j \in M, \forall t \in T$$
 (12)

$$\overleftarrow{x}_{djpt} \cdot (t + \overleftarrow{t}_{djp}) \le z_T \qquad , \forall d \in D_d, \forall j, p \in M, \forall t \in T$$
 (13)

A restrição operacional (14) deve ser satisfeita: uma tarefa i pode iniciar um processo de leitura se todos os arquivos $d \in \Delta_{in}(i)$ estiverem disponíveis (isto é, se todos os arquivos $d \in (\Delta_{in}(i) \cap D_d)$ forem escritos).

$$\overrightarrow{X}_{idjpt} \cdot |\Delta_{in}(i) \cap D_{d}| \leq \sum_{g \in \{\Delta_{in}(i) \cap D_{d}\}} \sum_{I,o \in M} \sum_{u=1}^{t-t} \overleftarrow{X}_{glou}, \quad \forall i \in N,$$

$$\forall d \in \Delta_{in}(i),$$

$$\forall j, p \in M,$$

$$\forall t \in T$$

$$(14)$$