1. Transistor en commutation

On considère le schéma ci dessous :

- i. Relever, dans la datasheet du transistor 2N2222, la valeur du β_{min} (appelé aussi h_{FEmin}).
- ii. Déterminer la valeur de R_B pour que le transistor soit saturé lorsqu'il est commandé par une tension $E_B = 5 \text{ V}$.
- iii. Vérifier l'état du transistor à l'aide de la simulation [sch1.asc].

2. Commande d'un relais

On considère le circuit suivant :

La bobine du relais est caractérisée par $r = 275 \Omega$, L = 0.1H

- i. Régler R_B à la valeur précédente. Simuler le fichier [sch2.asc] et visualiser les tensions E_B , V_{CE} et le courant dans la résistance R_1 . Vérifier et justifier qu'en utilisant la même résistance pour R_B que précédemment, le transistor est saturé pour $E_B = 5$ V et que le contact du relais est fermé (il y a un courant dans R_1).
- ii. Visualiser les courants i_C, i_L et i_D. A chaque commutation, il y a une phase transitoire pendant laquelle, le courant dans la bobine évolue progressivement (pas de variation brutale du courant dans une bobine). Indiquer pour chaque demi-période du signal de commande du transistor, la valeur du courant qui circule dans la diode quand le circuit a atteint son régime permanent. En déduire alors l'état de la diode.
- iii. Etude de l'établissement du courant dans la bobine du relais
 Lors d'un front positif sur la tension de commande E_B, le transistor est saturé et se comporte comme un

Commande d'un relais

interrupteur fermé. Le circuit est alors :

On a donc $v_D = -E \Rightarrow$ la diode D_{RL} est bloquée et $i_C = i_L$

$$L\frac{di_L}{dt} + r i_L(t) = E \Rightarrow \frac{L}{r}\frac{di_L}{dt} + i_L(t) = \frac{E}{r}$$

$$i_L(t) = \frac{E}{r} + Ke^{-\frac{t}{\tau}} \text{ avec } \tau = \frac{L}{r}$$

Condition initiale :
$$i_L(0) = 0 = \frac{E}{r} + K \Rightarrow i_L(t) = \frac{E}{r} \left(1 - e^{-\frac{t}{\tau}} \right)$$

- Au bout de combien de temps le courant atteint-il sa valeur finale à 1% près.
- Vérifier la durée de l'établissement du courant i_L dans la bobine ainsi que la valeur du courant i_L en régime établi.

iv. Etude de l'extinction du courant dans la bobine du relais

Lors d'un front négatif (instant t_0) sur la tension de commande E_B , le transistor est bloqué et se comporte comme un interrupteur ouvert. Le circuit est alors :

Juste après l'ouverture de l'interrupteur (transistor bloqué), on a $i_L(t_0^+) = \frac{E}{r}$ (pas de variation brutale du courant dans une bobine)

Par ailleurs, on a $i_L(t_0^+) = i_D(t_0^+) + i_C(t_0^+) = i_D(t_0^+) \Rightarrow$ la diode D_{RL} devient passante et,

$$L\frac{di_L}{dt} + ri_L(t) = -V_D \Rightarrow \frac{L}{r}\frac{di_L}{dt} + i_L(t) = -\frac{V_D}{r} \Rightarrow I_L(t) = -\frac{V_D}{r} + \frac{E + V_D}{r}e^{-\frac{t - t_0}{\tau}}$$

- Quelle est la valeur finale théorique du courant i_L ?
- Que se passe-til lorsque le courant i_L s'annule ? Calculer le temps mis par le courant i_L pour s'annuler. Vérifier au niveau de la simulation.
- Petite expérience (à ne surtout pas faire sur un relais réel) : enlever la diode de roue libre et simuler. Visualiser la tension $v_{ce}(t)$ du transistor. Justifier qualitativement votre observation. Commentaire quant à l'espérance de vie du transistor ...
- v. Diminution de la durée de démagnétisation de la bobine

On ajoute une diode zener caractérisée par sa tension $V_Z = 4.7 \text{ V}$.

Reprendre l'étude pour le front négatif de la tension de commande et vérifier par simulation [sch3.asc].

DISCRETE SEMICONDUCTORS

DATA SHEET

2N2222; 2N2222A NPN switching transistors

Product specification Supersedes data of September 1994 File under Discrete Semiconductors, SC04 1997 May 29

NPN switching transistors

2N2222; 2N2222A

FEATURES

- High current (max. 800 mA)
- Low voltage (max. 40 V).

APPLICATIONS

• Linear amplification and switching.

DESCRIPTION

NPN switching transistor in a TO-18 metal package. PNP complement: 2N2907A.

PINNING

PIN	DESCRIPTION		
1	emitter		
2	base		
3	collector, connected to case		

QUICK REFERENCE DATA

SYMBOL	PARAMETER	CONDITIONS	MIN.	MAX.	UNIT
V _{CBO}	collector-base voltage	open emitter			
	2N2222		-	60	V
	2N2222A		_	75	V
V _{CEO}	collector-emitter voltage	open base			
	2N2222		-	30	V
	2N2222A		-	40	V
lc	collector current (DC)		_	800	mA
P _{tot}	total power dissipation	T _{amb} ≤ 25 °C	_	500	mW
h _{FE}	DC current gain	I _C = 10 mA; V _{CE} = 10 V	75	_	
f _T	transition frequency	I _C = 20 mA; V _{CE} = 20 V; f = 100 MHz			
	2N2222		250	-	MHz
	2N2222A		300	-	MHz
t _{off}	turn-off time	I _{Con} = 150 mA; I _{Bon} = 15 mA; I _{Boff} = -15 mA	_	250	ns

1997 May 29 2

Philips Semiconductors Product specification

NPN switching transistors

2N2222; 2N2222A

LIMITING VALUES

In accordance with the Absolute Maximum Rating System (IEC 134).

SYMBOL	PARAMETER	CONDITIONS	MIN.	MAX.	UNIT
V _{CBO}	collector-base voltage	open emitter			
	2N2222		_	60	V
	2N2222A		_	75	V
V _{CEO}	collector-emitter voltage	open base			
	2N2222		_	30	V
	2N2222A		_	40	V
V _{EBO}	emitter-base voltage	open collector			
	2N2222		_	5	V
	2N2222A		_	6	V
lc	collector current (DC)		_	800	mA
I _{CM}	peak collector current		_	800	mA
I _{BM}	peak base current		_	200	mA
P _{tot}	total power dissipation	T _{amb} ≤ 25 °C	_	500	mW
		T _{case} ≤ 25 °C	_	1.2	W
T _{stg}	storage temperature		-65	+150	°C
Tj	junction temperature		_	200	°C
T _{amb}	operating ambient temperature		-65	+150	°C

THERMAL CHARACTERISTICS

SYMBOL	PARAMETER	CONDITIONS	VALUE	UNIT
R _{th j-a}	thermal resistance from junction to ambient	in free air	350	K/W
R _{th j-c}	thermal resistance from junction to case		146	K/W

1997 May 29 3

Philips Semiconductors Product specification

NPN switching transistors

2N2222; 2N2222A

CHARACTERISTICS

 $T_i = 25$ °C unless otherwise specified.

SYMBOL	PARAMETER	CONDITIONS	MIN.	MAX.	UNIT
I _{CBO}	collector cut-off current				
	2N2222	I _E = 0; V _{CB} = 50 V	-	10	nA
		I _E = 0; V _{CB} = 50 V; T _{amb} = 150 °C	_	10	μΑ
I _{CBO}	collector cut-off current				
	2N2222A	I _E = 0; V _{CB} = 60 V	-	10	nA
		I _E = 0; V _{CB} = 60 V; T _{amb} = 150 °C	_	10	μА
I _{EBO}	emitter cut-off current	I _C = 0; V _{EB} = 3 V	_	10	nA
h _{FE}	DC current gain	$I_C = 0.1 \text{ mA}; V_{CE} = 10 \text{ V}$	35	_	
		$I_C = 1 \text{ mA}; V_{CE} = 10 \text{ V}$	50	-	
		$I_C = 10 \text{ mA}; V_{CE} = 10 \text{ V}$	75	-	
		I _C = 150 mA; V _{CE} = 1 V; note 1	50	_	
		I _C = 150 mA; V _{CE} = 10 V; note 1	100	300	
h _{FE}	DC current gain	$I_C = 10 \text{ mA}; V_{CE} = 10 \text{ V}; T_{amb} = -55 ^{\circ}\text{C}$			
	2N2222A		35	-	
h _{FE}	DC current gain	I _C = 500 mA; V _{CE} = 10 V; note 1			
	2N2222		30	-	
	2N2222A		40	-	
V _{CEsat}	collector-emitter saturation voltage				
	2N2222	$I_C = 150 \text{ mA}; I_B = 15 \text{ mA}; \text{ note 1}$	-	400	mV
		$I_C = 500 \text{ mA}; I_B = 50 \text{ mA}; \text{ note 1}$	_	1.6	V
V _{CEsat}	collector-emitter saturation voltage				
	2N2222A	$I_C = 150 \text{ mA}; I_B = 15 \text{ mA}; \text{ note 1}$	-	300	mV
		$I_C = 500 \text{ mA}; I_B = 50 \text{ mA}; \text{ note 1}$	_	1	V
V _{BEsat}	base-emitter saturation voltage				
	2N2222	$I_C = 150 \text{ mA}; I_B = 15 \text{ mA}; \text{ note 1}$	-	1.3	V
		$I_C = 500 \text{ mA}; I_B = 50 \text{ mA}; \text{ note 1}$	-	2.6	V
V _{BEsat}	base-emitter saturation voltage				
	2N2222A	$I_C = 150 \text{ mA}; I_B = 15 \text{ mA}; \text{ note 1}$	0.6	1.2	V
		$I_C = 500 \text{ mA}; I_B = 50 \text{ mA}; \text{ note 1}$	_	2	V
C _c	collector capacitance	I _E = i _e = 0; V _{CB} = 10 V; f = 1 MHz	_	8	pF
C _e	emitter capacitance	$I_C = i_C = 0$; $V_{EB} = 500 \text{ mV}$; $f = 1 \text{ MHz}$			
	2N2222A		-	25	рF
f _T	transition frequency	I _C = 20 mA; V _{CE} = 20 V; f = 100 MHz			
	2N2222		250	_	MHz
	2N2222A		300	_	MHz
F	noise figure	I_C = 200 μA; V_{CE} = 5 V; R_S = 2 kΩ;			
	2N2222A	f = 1 kHz; B = 200 Hz	_	4	dB

1997 May 29 4

Philips Semiconductors Product specification

NPN switching transistors

2N2222; 2N2222A

SYMBOL	PARAMETER	CONDITIONS	MIN.	MAX.	UNIT		
Switching times (between 10% and 90% levels); see Fig.2							
t _{on}	turn-on time	$I_{Con} = 150 \text{ mA}$; $I_{Bon} = 15 \text{ mA}$; $I_{Boff} = -15 \text{ mA}$	_	35	ns		
t _d	delay time		_	10	ns		
t _r	rise time		_	25	ns		
t _{off}	turn-off time		_	250	ns		
t _s	storage time		_	200	ns		
t _f	fall time		_	60	ns		

Note

1. Pulse test: $t_p \le 300 \ \mu s$; $\delta \le 0.02$.

5

1997 May 29