graph theory notes*

Stiebitz's proof of Gallai's conjecture on the number of components in the high and low vertex subgraphs of critical graphs

Tibor Gallai conjectured the following in 1963 [1, 2] and Michael Stiebitz proved it in 1982 [3]. For a graph G, let $\mathcal{L}(G)$ be the subgraph of G induced on the vertices of degree $\delta(G)$ and let $\mathcal{H}(G)$ be the subgraph of G induced on the vertices of degree larger than $\delta(G)$.

Theorem (Stiebitz). If G is a color-critical graph with $\delta(G) = \chi(G) - 1$, then $\mathcal{H}(G)$ has at most as many components as $\mathcal{L}(G)$.

In fact, Stiebitz proved a stronger statement.

Lemma. If G is a connected graph, then for every nonempty $X \subseteq V(G)$, at least one of the following holds:

- 1. G-X has at most as many components as G[X]; or
- 2. X contains a vertex of degree at least $\chi(G)$; or
- 3. G[X] has a component C such that $\chi(G V(C)) = \chi(G)$.

Applying the Lemma with $X = V(\mathcal{L}(G))$ yields the Theorem since neither (2) nor (3) can occur in a color-critical graph.

Proof of Lemma. Suppose the Lemma is false and choose a counterexample G and $X \subseteq G$ minimizing |X|.

References

- [1] T. Gallai, Kritische graphen I., Math. Inst. Hungar. Acad. Sci 8 (1963), 165–192 (in German).
- [2] ______, Kritische graphen II., Math. Inst. Hungar. Acad. Sci $\bf 8$ (1963), 373–395 (in German).
- [3] M. Stiebitz, Proof of a conjecture of T. Gallai concerning connectivity properties of colour-critical graphs, Combinatorica 2 (1982), no. 3, 315–323.

^{*}clarifications, errors, simplifications ⇒ landon.rabern@gmail.com