

Rudki 27.09.2022 Jakub Piotrowicz

Języki automaty i obliczenia

Definicje

- 1. Przez **alfabet** rozumiemy dowolny zbiór, którego elementy nazywane są **literami** bądź **symbolami**, podczas tego wykładu dodatkowo zakładamy, że zbiór ten musi być *skończony*.
- 2. **Słowo** nad alfabetem \mathcal{A} jest to skończony ciąg liter z alfabetu \mathcal{A} . Przykładowo: 0101011 jest słowem nad alfabetem $\{0,1\}$, ababa jest słowem nad alfabetem $\{a,b,c\}$.
- 3. Jeśli słowo w ma długość n, to piszemy |w|=n, mówimy też, że słowo w ma n pozycji, liczonych od 1. Jeśli $1 \le i \le |w|$, to przez w[i] oznaczamy i-tą literę słowa w. Jest tylko jedno słowo długości 0, nazywane słowem pustym i oznaczone symbolem ε .
- 4. Konkatenacja słów $u = a_1 \dots a_k$ oraz $v = b_1 \dots b_l$ to słowo $a_1 \dots a_k b_1 \dots b_l$, oznaczane $u \cdot v$ lub uv. Przez \mathcal{A}^* oznaczamy zbiór wszystkich słów (skończonych) nad alfabetem \mathcal{A} .
- 5. **Językiem** nad alfabetem \mathcal{A} nazywamy dowolny podzbiór $L \subseteq \mathcal{A}^*$.
- 6. Dla języków L i K definiujemy następujące operacje:
 - (a) $L + K := L \cup K$
 - (b) $LK := \{v \cdot w \mid v \in K, w \in L\}$
 - (c) $L^* := \bigcup_{n \ge 0} L^n$, gdzie $L^n = L \dots L$ oraz $L^0 = \varepsilon$
- 7. Język **regularny** to język który możemy uzyskać za pomocą skończonego napisu składającego się z elementów: Ø (język pusty), języków singletonowych (jedno słowo będące jedną literą) oraz wyżej wymienionych operacji.

Od tego momentu trochę na szybko ..., wleci potem dokładniejszy skrypt.

8. **Automat** to taki graf skierowany, z literkami nad krawędziami, jego wierzchołki nazywamy stanami. Ma Stany początkowe, stany akceptujące i reprezentuje język wszystkich słów które możemy utworzyć w tzw. biegu akceptującym tj. przechodząc jakąś ścieżką od jakiegoś stanu początkowego do jakiegoś stanu akceptującego.

Twierdzenia

- 1. Automaty deterministyczne, automaty niedeterministyczne i wyrażenia regularne rozpoznają / opisują tę samą klasę języków są to właśnie języki regularne.
 - Szkic dowodu: z wyrażenia regularnego dosyć łatwo budujemy automat postępując zgodnie z drzewem wyrażenia (drzewo parsowania).
 - Z automatów aby uzyskać wyrażenie "skracamy" krawędzi dając wyrażenia regularne nad krawędziami.
- 2. Lemat o pompowaniu: jeśli L jest regularny, to istanieje stała N taka, że dla każdego słowa $w \in L$ dłuższego niż N, istnieje podział $w = w_1 w_2 w_3$ taki, że $w_2 \neq \varepsilon$, $|w_1 w_2| \leqslant N$ oraz $w_1 w_2^k w_3 \in L$ dla każdego $k \geqslant 0$.
- 3. Relacja Myhill-Nerode'go: możemy połączyć stany z których dojść możemy tylko po tych samych słowach do stanów akceptujących stworzymy tak automat minimalny deterministyczny danego języka, jeśli klas abstrakcji jest nieskonczenie wiele to język nie jest regularny.