Problem 3

Suppose $c_0, c_1, c_2, ...$ is a sequence defined as follows:

$$c_0 = 2, c_1 = 2, c_2 = 6$$

 $c_k = 3c_{k-3}, \text{ for every integer } k \ge 3$

Prove c_n is even for each integer $n \geq 0$.

Proof:

Suppose the property P(n) is the sentence " c_n is even." We must prove P(n) is true for each integer $k \geq 3$.

1. Base Cases: First, we must show P(0), P(1), and P(2) are true.

 $P(0) = c_0 = 2$, by substitution

 $P(1) = c_1 = 2$, by substitution

 $P(2) = c_2 = 6$, by substitution

Integers 2 and 6 are even, so P(0), P(1), and P(2) are true.

2. Inductive Hypothesis:

Let k be any integer where $k \geq 1$. Suppose c_i is even for each integer i with $0 \leq i \leq k$.

We must show c_{k+1} is even, where $c_{k+1} = 3c_{k-2}$.

3. Inductive Step:

 $\overline{\text{Now}, k-2 \text{ is even}}$ because k-2 < k.

$$c_{k-2} = 2p$$
, by the definition of even $c_{k+1} = 3(2p)$

As c_{k+1} will always be a product of 3 and an even integer, c_{k+1} is an even integer by the definition of even integers and the closure property of integers.

Problem 8a

Suppose $h_0, h_1, h_2, ...$ is a sequence defined as follows:

$$h_0 = 1, h_1 = 2, h_2 = 3$$

 $h_k = h_{k-1} + h_{k-2} + h_{k-3}, \text{ for each integer } k \ge 3$

Statement:

(a) Prove $h_n \leq 3^n$, for every integer $n \geq 0$

Proof:

Suppose the property P(n) is the sentence " $h_n \leq 3^n$." We must prove P(n) is true for each integer $k \geq 3$.

<u>1.Base Cases:</u> First, we must show P(0), P(1), and P(2) are true.

$$P(0) = h_n \le 3^n = h_0 \le 3^0$$
, by substitution

 $P(0) = 1 \le 1$, by substitution and exponentiation

$$P(1) = h_n \le 3^n = h_1 \le 3^1$$
, by substitution

 $P(1) = 2 \le 3$, by substitution and exponentiation

$$P(2) = h_n \le 3^n = h_2 \le 3^2$$
, by substitution

 $P(3) = 3 \le 9$, by substitution and exponentiation

So, P(0), P(1), and P(2) are true.

2. Inductive Hypothesis: Let k be any integer where $k \geq 2$. Suppose $P(i) = h_i \leq 3^i$ for all i with $0 \leq i \leq k$.

We must show P(k+1) is true, where $h_{k+1} \leq 3^{k+1}$.

Problem 8a (Continued)

3. Inductive Step:

We know the following.

$$\begin{split} h_{k+1} &= h_k + h_{k-1} + h_{k-2} \\ h_k + h_{k-1} + h_{k-2} &\leq 3^k + 3^{k-1} + 3^{k-2} \\ 3^k + 3^{k-1} + 3^{k-2} &= \frac{3^{k+1}}{3^1} + \frac{3^{k+1}}{3^2} + \frac{3^{k+1}}{3^3}, \text{ by the exponent quotient rule} \\ &= \frac{3^{k+1}}{3} + \frac{3^{k+1}}{9} + \frac{3^{k+1}}{27}, \text{ by exponentiation} \\ &= 3^{k+1} (\frac{1}{3} + \frac{1}{9} + \frac{1}{27}), \text{ by factoring } 3^{k+1} \\ &= 3^{k+1} (\frac{1 \cdot 9 \cdot 27}{3 \cdot 9 \cdot 27} + \frac{1 \cdot 3 \cdot 27}{9 \cdot 3 \cdot 27} + \frac{1 \cdot 3 \cdot 9}{27 \cdot 3 \cdot 9}), \text{ by products of denominators} \\ &= 3^{k+1} (\frac{9+3+1}{27}), \text{ by canceling, combining like terms} \\ &3^{k+1} (\frac{13}{27}), \text{ by addition} \end{split}$$

Now, $3^{k+1}(\frac{13}{27}) \le 3^{k+1}$. So, P(k+1) is true, and the statement is true for every integer $n \ge 0$.

Problem 9

Define a sequence $a_1, a_2, a_3, ...$ as:

$$a_1 = 1, a_2 = 3$$

 $a_k = a_{k-1} + a_{k-2}$, for each integer $k \ge 3$

Prove $a_n \leq (\frac{7}{4}^n)$ for every integer $n \geq 1$.

Proof:

Suppose the property P(n) is $a_n \leq (\frac{7}{4}^n)$. We must prove P(n) is true for each integer $n \geq 1$

1. Base Cases: First, we must how P(1) and P(2) are true.

$$P(1)=a_n\leq (\frac{7}{4}^n)=a_1\leq (\frac{7}{4}^1)=1\leq (\frac{7}{4}),$$
 by substitution and exponentiation $P(2)=a_n\leq (\frac{7}{4}^n)=a_2\leq (\frac{7}{4}^2)=3\leq (\frac{49}{16}),$ by substitution and exponentiation

So, P(1) and P(2) are true.

<u>2. Inductive Hypothesis:</u> Let k be any integer where $k \geq 2$. Suppose $P(i) = a_i \leq (\frac{7}{4}^i)$ for all i with $1 \leq i \leq k$.

We must show P(k+1) is true, where $a_{k+1} \leq (\frac{7}{4}^{k+1})$

Problem 9 (Continued)

3. Inductive Step:

We know the following.

$$a_{k+1} = a_k + a_{k-1}$$

$$a_k + a_{k-1} \le \frac{7}{4}^k + \frac{7}{4}^{k-1}$$

$$\frac{7}{4}^k + \frac{7}{4}^{k-1} = \frac{7}{4}^{k+1} + \frac{7}{4}^{k+1}, \text{ by inductive hypothesis substitution}$$

$$= \frac{\frac{7}{4}^{k+1}}{\frac{7}{4}} + \frac{\frac{7}{4}^{k+1}}{\frac{7}{4}^2}, \text{ by the exponent quotient rule}$$

$$= \frac{\frac{7}{4}^{k+1}}{\frac{7}{4}} + \frac{\frac{7}{4}^{k+1}}{\frac{49}{16}}, \text{ by exponentiation}$$

$$= \frac{7}{4}^{k+1} \left(\frac{1}{\frac{7}{4}} + \frac{1}{\frac{49}{16}}\right), \text{ by factoring } \frac{7}{4}^{k+1}$$

$$= \frac{7}{4}^{k+1} \left(\frac{1 \cdot \frac{49}{16}}{\frac{7}{4} \cdot \frac{49}{16}} + \frac{1 \cdot \frac{7}{4}}{\frac{49}{16} \cdot \frac{7}{4}}\right), \text{ by product of common denominator}$$

$$= \frac{7}{4}^{k+1} \left(\frac{7}{4} + \frac{1}{1 \cdot 4}\right), \text{ by canceling, combining like terms}$$

$$= \frac{7}{4}^{k+1} \left(\frac{7}{4} + \frac{1}{1 \cdot 4}\right), \text{ by product of denominator}$$

$$= \frac{7}{4}^{k+1} \left(\frac{7+4}{\frac{49}{16}}\right) = \frac{7}{4}^{k+1} \left(\frac{11}{\frac{49}{16}}\right), \text{ by canceling, combining like terms, then addition}$$

$$= \frac{7}{4}^{k+1} \left(\frac{7+4}{\frac{49}{16}}\right) = \frac{7}{4}^{k+1} \left(\frac{11}{49}\right), \text{ by canceling, combining like terms, then addition}$$

$$= \frac{7}{4}^{k+1} \left(\frac{11}{4} \cdot \frac{16}{49}\right) = \frac{7}{4}^{k+1} \left(\frac{176}{196}\right) = \frac{7}{4}^{k+1} \left(\frac{44}{49}\right), \text{ by division, simplification of fractions}$$

Now, $\frac{7}{4}^{k+1}(\frac{44}{49}) < \frac{7}{4}^{k+1}$. So, P(k+1) is true, and the statement is true for every integer $n \ge 1$.

Canvas Problem

Use strong induction to prove the statement without using Proposition 5.3.1.

Statement:

A postage of n cents can be formed using just five- and seven-cent stamps, for $n \geq 24$.

Proof:

The property P(n) is the sentence "A postage of n cents can be formed using just five- and seven-cent stamps."

We must prove P(n) is true for each integer $n \geq 24$.

1. Base Cases: First, we must prove P(24), P(25), P(26), P(27), and P(28) are true.

$$P(24) = 5p + 7q = 5(2) + 7(2) = 10 + 14 = 24$$

$$P(25) = 5p + 7q = 5(5) + 7(0) = 25 + 0 = 25$$

$$P(26) = 5p + 7q = 5(1) + 7(3) = 5 + 21 = 26$$

$$P(27) = 5p + 7q = 5(4) + 7(1) = 20 + 7 = 27$$

$$P(28) = 5p + 7q = 5(0) + 7(4) = 0 + 28 = 28$$

So, P(24), P(25), P(26), P(27), and P(28) are true.

2. Inductive Hypothesis:

Let k be any integer where $k \geq 28$. Suppose P(i) is true for $24 \leq i \leq k$.

$$k = 5p + 5q$$

We must prove P(k+1) is true, where k+1 cents can be formed using five- and seven-cent stamps.

3. Inductive Step:

Removing one five-cent stamp for k+1 cents is (k+1)-5 cents.

We know (k+1) - 5 is true from our inductive hypothesis of k, since (k+1) - 5 = k - 4, and k - 4 < k.