Análisis Armónico: Taller 3

25 de julio de 2025

Universidad Nacional de Colombia

Ricardo Ariel Pastrán Ramirez

Andrés David Cadena Simons

acadenas@unal.edu.co

Problema 1:

Pruebe que el operador \mathcal{F} de la transformada de Fourier es un isomorfismo de $\mathcal{S}'(\mathbb{R}^n)$ en si mismo. Dada $\Psi \in \mathcal{S}'(\mathbb{R}^n)$ y $\alpha \in \mathbb{N}^n$ multi-índice, pruebe que:

- (I) $\widehat{\partial^{\alpha}\Psi} = (2\pi i)^{|\alpha|} \xi^{\alpha} \widehat{\Psi}$;
- (II) $(-2\pi i)^{|\alpha|} \widehat{x^{\alpha} \Psi} = \partial^{\alpha} \widehat{\Psi};$
- (III) $\check{\widehat{\Psi}} = \Psi = \hat{\widecheck{\Psi}};$
- (IV) $\mathcal{F}^4 = Id$.

Solución:

Veamos que el operador \mathcal{F} de la transformada de Fourier es un isomorfismo de $\mathcal{S}'(\mathbb{R}^n)$ en si mismo.

Para esto primero mostremos que es un operador inyectivo, esto ya que si suponemos que dados $\Psi_1, \Psi_2 \in \mathcal{S}'(\mathbb{R}^n)$ tales que $\widehat{\Psi_1} = \widehat{\Psi_2}$ se puede concluir que para toda $\phi \in \mathcal{S}(\mathbb{R}^n)$ se cumple que

$$\Psi_1(\widehat{\phi}) = \widehat{\Psi}_1(\phi),$$

$$= \widehat{\Psi}_2(\phi),$$

$$= \Psi_2(\widehat{\phi}).$$

De lo que se puede afirmar que $\Psi_1 = \Psi_2$, lo que demuestra que \mathcal{F} es un operador inyectivo. Ahora veamos que \mathcal{F} es un operador sobreyectivo, ya que si definimos $\mathcal{F}^{-1}: \mathcal{S}'(\mathbb{R}^n) \to \mathcal{S}'(\mathbb{R}^n)$ tal que si tomamos $\Psi \in \mathcal{S}'(\mathbb{R}^n)$, entonces $\check{\Psi}(\phi) = \Psi(\check{\phi})$, entonces de forma análoga a \mathcal{F} se puede demostrar que \mathcal{F}^{-1} es un operador inyectivo, luego dado $\Psi \in \mathcal{S}'(\mathbb{R}^n)$ se sabe que existe $\check{\Psi} \in \mathcal{S}'(\mathbb{R}^n)$ tal que $\hat{\Psi} = \Psi$, lo que demuestra que \mathcal{F} es un operador sobreyectivo y por ende biyectivo.

Ahora, veamos que es un operador continuo, sea $\{\psi_j\}\subset \mathcal{S}'(\mathbb{R}^n)$ tal que $\psi_j\to\psi$ cuando $j\to\infty$ en el sentido de $\mathcal{S}'(\mathbb{R}^n)$, veamos que $\widehat{\psi_j}\to\widehat{\psi}$ cuando $j\to\infty$ en el sentido de $\mathcal{S}'(\mathbb{R}^n)$ ya que

$$\lim_{j \to \infty} \widehat{\psi_j}(\phi) = \lim_{j \to \infty} \psi_j(\widehat{\phi}),$$

$$= \phi_{\widehat{\phi}},$$

$$= \widehat{\psi}(\phi).$$

Luego aplicando el mismo razonamiento con \mathcal{F}^{-1} nosotros podemos concluir que el operador \mathcal{F} de la transformada de Fourier es un isomorfismo de $\mathcal{S}'(\mathbb{R}^n)$ en si mismo.

1. Veamos que $\widehat{\partial^{\alpha}\Psi} = (2\pi i)^{|\alpha|} \xi^{\alpha} \widehat{\Psi}$, ya que

$$\begin{split} \widehat{\partial^{\alpha}\Psi}(\phi) &= \partial^{\alpha}\Psi(\widehat{\phi}), \\ &= (-1)^{|\alpha|}\Psi(\partial^{\alpha}\widehat{\phi}), \\ &= (-1)^{|\alpha|}\Psi((-2\pi i)^{|\alpha|}\widehat{x^{\alpha}\phi}), \\ &= (2\pi i)^{|\alpha|}\Psi(\widehat{x^{\alpha}\phi}), \\ &= (2\pi i)^{|\alpha|}\widehat{\Psi}(x^{\alpha}\phi), \\ &= (2\pi i)^{|\alpha|}\widehat{\Psi}(x^{\alpha}\phi), \\ &= (2\pi i)^{|\alpha|}\xi^{\alpha}\widehat{\Psi}(\phi), \end{split}$$

Lo que concluye el resultado.

2. Veamos que $(-2\pi i)^{|\alpha|} \widehat{x^{\alpha}\Psi} = \partial^{\alpha} \widehat{\Psi}$, ya que

$$\begin{split} (-2\pi i)\widehat{x^{\alpha}\Psi}(\phi) &= \widehat{x^{\alpha}\Psi}((-2\pi i)^{|\alpha|}\phi), \\ &= x^{\alpha}\Psi((-2\pi i)^{|\alpha|}\widehat{\phi}), \\ &= \Psi((-2\pi i)^{|\alpha|}\xi^{\alpha}\widehat{\phi}), \\ &= \Psi((-1)^{|\alpha|}\widehat{\partial^{\alpha}\phi}), \\ &= \widehat{\Psi}((-1)^{\alpha}\partial^{\alpha}\phi), \\ &= \partial^{\alpha}\Psi(\phi), \end{split}$$

lo que concluye el resultado.

3. Veamos que $\widecheck{\widehat{\Psi}} = \Psi = \widehat{\widecheck{\Psi}},$ ya que

$$\begin{split} \widecheck{\Psi}(\phi) &= \widehat{\Psi}(\widecheck{\phi}), \\ &= \Psi(hat\widecheck{\phi}), \\ &= \Psi(\phi), \\ &= \Psi(\overleftarrow{\phi}), \\ &= \widecheck{\Psi}(\widehat{\phi}), \\ &= \widecheck{\Psi}(\phi), \end{split}$$

lo que concluye el resultado.

4. Veamos que $\mathcal{F}^4 = Id$ ya que

$$\mathcal{F}^{4}\Psi(\phi) = \Psi(\mathcal{F}^{4}\phi),$$

= $\Psi(\phi),$

lo que concluye que $\mathcal{F}^4 = Id$.

Problema 2:

Pruebe la siguiente extensión en $\mathcal{S}'(\mathbb{R}^n)$ de la fórmula $(e^{-\lambda \pi |x|^2}) = \lambda^{-\frac{n}{2}} e^{\pi \frac{|\xi|^2}{\lambda}}$ probada en la primera lista de ejercicios:

$$\widehat{e^{-\lambda|x|^2}}(\xi) = \left(\frac{\pi}{\lambda}\right)^{\frac{n}{2}} e^{-\pi^2 \frac{|\xi|^2}{\lambda}}$$

donde $\sqrt{\lambda}$ es definida como la rama con $Re\lambda > 0$. Use un argumento de continuación analítica. Pruebe que la fórmula también vale en $\mathcal{S}'(\mathbb{R}^n)$ cuando $Re\lambda = 0$ y $\lambda \neq 0$.

Solución:

Usando la fórmula de la primera lista de ejercicios tenemos que

$$\begin{split} \widehat{e^{-\lambda|x|^2}}(\xi) &= \widehat{e^{-\pi\frac{\lambda}{\pi}|x|^2}}(\xi), \\ &= \left(\frac{\pi}{\lambda}\right)^{\frac{n}{2}} e^{-\pi\frac{|\xi|^2}{\lambda}}, \\ &= \left(\frac{\pi}{\lambda}\right)^{\frac{n}{2}} e^{-\pi^2\frac{|\xi|^2}{\lambda}}, \end{split}$$

para todo $\lambda > 0$.

Siendo así, sea $\phi \in \mathcal{S}(\mathbb{R}^n)$ definamos

$$\begin{split} F(\lambda) &= \widehat{e^{-\lambda|x|^2}}(\phi), \\ &= \int_{\mathbb{R}^n} e^{-\lambda|x|^2} \widehat{\phi}(x) \, dx, \end{split}$$

Note que si $Re\lambda>0$, esta integral converge absolutamente y define una función holomorfa en λ , además

$$F(\lambda) = \left(\frac{\pi}{\lambda}\right)^{\frac{n}{2}} \int_{\mathbb{D}^n} e^{-\pi^2 \frac{|\xi|^2}{\lambda}} \phi(\xi) \, d\xi,$$

muestra que $F(\lambda)$ tiene una continuación analítica meromorfa a $\lambda \in \mathbb{C} \setminus \{0\}$, por lo que podemos definir una familia de distribuciones temperadas que dependen de $\lambda \in \mathbb{C} \setminus \{0\}$, por lo que vía continuación analítica podemos definir

$$\Psi_{\lambda} = \widehat{e^{-\lambda|x|^2}} \in \mathcal{S}'(\mathbb{R}^n),$$

para todo $\lambda \in \mathbb{C} \setminus \{0\}$.

Veamos el caso en el que $Re\lambda > 0$ y $\lambda \neq 0$, en un principio, si bien la función $e^{-\lambda|x|^2} \notin L^1(\mathbb{R}^n)$, como $\Re \lambda = 0$ esto se puede ver como $e^{-i\lambda_2|x|^2}$ con $\lambda_2 \in \mathbb{R} \setminus \{0\}$, luego note que $e^{-i\lambda_2|x|^2} \in \mathcal{S}'(\mathbb{R}^n)$ ya que este es un funcional continuo, ya que si tomamos m tal que 2m > n entonces

tenemos que

$$|e^{-i\lambda_{2}|x|^{2}}(\phi)| = \left| \int_{\mathbb{R}^{n}} e^{-i\lambda_{2}|x|^{2}} \phi(x) dx \right|,$$

$$\leq \int_{\mathbb{R}^{n}} |e^{-i\lambda_{2}|x|^{2}} \phi(x)| dx$$

$$\leq \int_{\mathbb{R}^{n}} |\phi(x)| dx,$$

$$\leq C_{1} \|\phi\|_{0,0} + \int_{|x|>1} |\phi(x)| dx,$$

$$\leq C_{1} \|\phi\|_{0,0} + \int_{|x|>1} \frac{x^{2m} |\phi(x)|}{x^{2m}} dx,$$

$$\leq C_{1} \|\phi\|_{0,0} + \|\phi\|_{2m,0} \int_{|x|>1} \frac{1}{x^{2m}} dx,$$

$$\leq C(\|\phi_{0,0} + \|\phi\|_{2m,0}\|).$$

Lo que nos permite asegurar que Ψ_{λ} define una distribución temperada y por ende la extensión es válida cuando $Re\lambda>0$ y cuando $Re\lambda=0$ con $\lambda\neq0$.

Problema 3:

[Transformada de Fourier de $|x|^{-\alpha}$, $0 < \alpha < n$]

Pruebe la fórmula

$$\int_0^\infty e^{-\pi\delta|x|^2}\delta^{\beta-1}\,d\delta = \frac{c_\beta}{|x|^{2\beta}}, \text{ para todo } \beta>0.$$

Deduzca que existe una constante $c_{n,\alpha}$ tal que

$$\widehat{\frac{1}{|x|^{\alpha}}}(\xi) = c_{n,\alpha}|\xi|^{n-\alpha}, \text{ para todo } \alpha \in (0,n), \text{ en } \mathcal{S}'(\mathbb{R}^n).$$

Solución:

Sea $u = \pi \delta |x|^2$. Entonces:

$$\delta = \frac{u}{\pi |x|^2},$$

$$d\delta = \frac{1}{\pi |x|^2} du.$$

Sustituyendo tenemos que

$$\int_0^\infty e^{-\pi\delta|x|^2} \delta^{\beta-1} d\delta = \int_0^\infty e^{-u} \left(\frac{u}{\pi|x|^2}\right)^{\beta-1} \frac{1}{\pi|x|^2} du$$

$$= \left(\frac{1}{\pi|x|^2}\right)^{\beta} \int_0^\infty u^{\beta-1} e^{-u} du$$

$$= \left(\frac{1}{\pi|x|^2}\right)^{\beta} \Gamma(\beta)$$

$$= \frac{\Gamma(\beta)}{\pi^{\beta}|x|^{2\beta}}.$$

La identidad anterior sugiere que

$$\frac{1}{|x|^{2\beta}} = \frac{\pi^{\beta}}{\Gamma(\beta)} \int_0^{\infty} e^{-\pi \delta |x|^2} \delta^{\beta-1} d\delta.$$

Aplicamos la transformada de Fourier en $\mathcal{S}'(\mathbb{R}^n)$

$$\widehat{\frac{1}{|x|^{2\beta}}}(\xi) = \frac{\pi^{\beta}}{\Gamma(\beta)} \int_0^\infty \widehat{e^{-\pi\delta|x|^2}}(\xi) \, \delta^{\beta-1} d\delta.$$

Sabemos que

$$\widehat{e^{-\pi\delta|x|^2}}(\xi) = \delta^{-\frac{n}{2}} e^{-\pi\frac{|\xi|^2}{\delta}}.$$

Entonces

$$\widehat{\frac{1}{|x|^{2\beta}}}(\xi) = \frac{\pi^\beta}{\Gamma(\beta)} \int_0^\infty \delta^{\beta-1-\frac{n}{2}} e^{-\pi\frac{|\xi|^2}{\delta}} \, d\delta.$$

Sea $u = \frac{\pi |\xi|^2}{\delta}$. Entonces:

$$\delta = \frac{\pi |\xi|^2}{u},$$

$$d\delta = -\frac{\pi |\xi|^2}{u^2} du.$$

Sustituyendo en la integral (y ajustando el signo por el cambio de extremos):

$$\begin{split} \widehat{\frac{1}{|x|^{2\beta}}}(\xi) &= \frac{\pi^{\beta}}{\Gamma(\beta)} \int_{0}^{\infty} \left(\frac{\pi|\xi|^{2}}{u}\right)^{\beta-1-\frac{n}{2}} e^{-u} \frac{\pi|\xi|^{2}}{u^{2}} du \\ &= \frac{\pi^{\beta}}{\Gamma(\beta)} (\pi|\xi|^{2})^{\beta-\frac{n}{2}} \int_{0}^{\infty} u^{(-\beta+\frac{n}{2})-1} e^{-u} du \\ &= \frac{\pi^{\beta}}{\Gamma(\beta)} (\pi)^{\beta-\frac{n}{2}} \Gamma(-\beta+\frac{n}{2}) |\xi|^{2(\beta-\frac{n}{2})} \\ &= \pi^{\alpha-\frac{n}{2}} \frac{\Gamma(-\frac{\alpha}{2}+\frac{n}{2})}{\Gamma(\frac{\alpha}{2})} |\xi|^{\alpha-n}, \\ &= c_{n,\alpha} |\xi|^{\alpha-n}, \end{split}$$

donde tomamos $\alpha := 2\beta \in (0, n)$ y $c_{n,\alpha} = \pi^{\alpha - \frac{n}{2}} \frac{\Gamma(-\frac{\alpha}{2} + \frac{n}{2})}{\Gamma(\frac{\alpha}{2})}$ para todo $\alpha \in (0, n)$ en $\mathcal{S}'(\mathbb{R}^n)$.

Problema 4:

[Espacios de Lorentz]

Sea $f:\mathbb{R}^n\to\mathbb{C}$ una función medible. Para $\alpha\geq 0$, se define la función de distribución de f por

$$\lambda_f(\alpha) = m\left(\left\{x \in \mathbb{R}^n : |f(x)| > \alpha\right\}\right).$$

- (i) Pruebe que λ_f es una función no creciente y continua por la derecha.
- (ii) Definimos $f^*:(0,\infty)\to[0,\infty), t\mapsto\inf\{s>0:\lambda_f(s)\leq t\}$. Pruebe que f^* es una función no creciente y continua por la derecha.
- (iii) Pruebe que $\lambda_f = \lambda_{f^*}$.
- (iv) Para $1 \leq p, q \leq \infty$, se define el espacio de Lorentz $L^{p,q}(\mathbb{R}^n)$ como el conjunto de funciones medibles f tales que $||f||_{p,q} < \infty$, donde

$$||f||_{p,q} := \begin{cases} \left(\frac{q}{p} \int_0^\infty \left(t^{1/p} f^*(t)\right)^q \frac{dt}{t}\right)^{1/q}, & \text{si } 1 \le p, q < \infty, \\ \sup_{t>0} t^{1/p} f^*(t), & \text{si } 1 \le p \le \infty. \end{cases}$$

Pruebe que $||f||_{p,p} = ||f^*||_p = ||f||_p$, para todo $1 \le p \le \infty$.

Solución:

(i) Sea $0 \le \alpha < \beta$. Como $\{x : |f(x)| > \beta\} \subseteq \{x : |f(x)| > \alpha\}$, se tiene que

$$\lambda_f(\beta) \leq \lambda_f(\alpha),$$

lo cual prueba que λ_f es no creciente.

Ahora probemos que λ_f es continua por la derecha.

Sea $\alpha \geq 0$. Para todo h > 0, como

$${x : |f(x)| > \alpha + h} \subseteq {x : |f(x)| > \alpha},$$

se tiene que el límite por la derecha existe y

$$\lim_{h \to 0^+} \lambda_f(\alpha + h) \le \lambda_f(\alpha).$$

Por otro lado, note que

$${x:|f(x)| > \alpha} = \bigcup_{n=1}^{\infty} {x:|f(x)| > \alpha + \frac{1}{n}}.$$

Como las medidas exteriores son continuas respecto a uniones crecientes, se concluye que

$$\lambda_f(\alpha) = \lim_{n \to \infty} \lambda_f\left(\alpha + \frac{1}{n}\right).$$

Así que

$$\lambda_f(\alpha) = \lim_{h \to 0^+} \lambda_f(\alpha + h),$$

es decir, λ_f es continua por la derecha.

(ii) Sea $0 < t_1 < t_2$. Como $t_1 < t_2$, se tiene que

$${s > 0 : \lambda_f(s) \le t_2} \subseteq {s > 0 : \lambda_f(s) \le t_1}.$$

Por tanto, al tomar ínfimos se obtiene

$$f^*(t_2) = \inf\{s > 0 : \lambda_f(s) \le t_2\} \le \inf\{s > 0 : \lambda_f(s) \le t_1\} = f^*(t_1),$$

lo cual demuestra que f^* es no creciente.

Ahora, veamos que f^* es continua por la derecha. Sea t > 0, y sea (t_n) una sucesión decreciente tal que $t_n \to t$. Como f^* es no creciente, la sucesión $f^*(t_n)$ es creciente y acotada superiormente por $f^*(t_1)$. Definamos

$$L := \lim_{n \to \infty} f^*(t_n) = \sup_n f^*(t_n).$$

Por la definición de f^* , para todo n se tiene $\lambda_f(f^*(t_n)) \leq t_n$. Como $t_n \to t$ y λ_f es continua por la derecha, se tiene

$$\lambda_f(L) = \lim_{n \to \infty} \lambda_f(f^*(t_n)) \le \lim_{n \to \infty} t_n = t.$$

Por la definición del ínfimo, esto implica que

$$f^*(t) \le L = \lim_{n \to \infty} f^*(t_n).$$

Pero como f^* es no creciente,

$$f^*(t_n) \leq f^*(t)$$
 para todo n ,

y por tanto también

$$\lim_{n \to \infty} f^*(t_n) \le f^*(t).$$

Concluimos que

$$\lim_{n \to \infty} f^*(t_n) = f^*(t),$$

es decir, f^* es continua por la derecha.

(iii) Recordemos que $f^*:(0,\infty)\to[0,\infty)$ está definido por

$$f^*(t) := \inf\{s > 0 : \lambda_f(s) \le t\},\$$

y que la función de distribución de f^* está dada por

$$\lambda_{f^*}(\alpha) := m(\{t > 0 : f^*(t) > \alpha\}).$$

Veamos que $\lambda_{f^*}(\alpha) = \lambda_f(\alpha)$ para todo $\alpha > 0$. Sea $\alpha > 0$. Por definición de f^* , se tiene que

$$f^*(t) > \alpha \quad \Leftrightarrow \quad \text{para todo } s \leq \alpha, \ \lambda_f(s) > t.$$

Esto equivale a decir que

$$t < \lambda_f(s)$$
, para todo $s \le \alpha$.

En particular, si tomamos el ínfimo sobre todos esos $s \leq \alpha$, se obtiene

$$t < \inf_{s \le \alpha} \lambda_f(s) = \lambda_f(\alpha),$$

pues λ_f es no creciente.

Por tanto,

$$f^*(t) > \alpha \quad \Leftrightarrow \quad t < \lambda_f(\alpha),$$

lo que implica que

$$\lambda_{f^*}(\alpha) = m\left(\{t > 0 : f^*(t) > \alpha\}\right)$$
$$= m\left(\{t > 0 : t < \lambda_f(\alpha)\}\right)$$
$$= \lambda_f(\alpha).$$

Esto concluye que $\lambda_{f^*} = \lambda_f$.

(iv) Recordemos que la norma en $L^p(\mathbb{R}^n)$ se puede reescribir en términos de su función de distribución

$$\int_{\mathbb{R}^n} |f(x)|^p \, dx = \int_0^\infty p\alpha^{p-1} \lambda_f(\alpha) \, d\alpha.$$

Por otro lado, tenemos que

$$\int_0^\infty (f^*(t))^p dt = \int_0^\infty p\alpha^{p-1} \lambda_{f^*}(\alpha) d\alpha.$$

Pero del ítem anterior sabemos que $\lambda_{f^*} = \lambda_f$, así que:

$$\int_0^\infty (f^*(t))^p dt = \int_0^\infty p\alpha^{p-1} \lambda_f(\alpha) d\alpha$$
$$= \int_{\mathbb{R}^n} |f(x)|^p dx.$$

Por tanto:

$$||f^*||_p = ||f||_p$$
.

Ahora, veamos que esto coincide con la definición de la norma $\|f\|_{p,p}$. Cuando q=p, se tiene:

$$||f||_{p,p} = \left(\frac{p}{p} \int_0^\infty \left(t^{1/p} f^*(t)\right)^p \frac{dt}{t}\right)^{1/p}$$

$$= \left(\int_0^\infty f^*(t)^p dt\right)^{1/p}$$

$$= ||f^*||_p.$$

Por lo tanto:

$$||f||_{p,p} = ||f^*||_p = ||f||_p$$
.

Lo cual concluye la demostración.

Problema 5:

Considere la función $f_a(x) = \frac{x}{a - x^2}$.

(i) Si $a \ge 0$, pruebe que la función valor principal de $f_a(x)$,

v.p.
$$\frac{x}{a-x^2}(\phi) = \lim_{\epsilon \to 0} \int_{\epsilon < |a-x^2| < 1/\epsilon} \frac{x}{a-x^2} \phi(x) dx$$
,

con $\phi \in \mathcal{S}(\mathbb{R})$, define una distribución temperada. Más todavía, pruebe que si

$$\widehat{f}_a(\xi) := \lim_{\epsilon \to 0} \int_{\epsilon < |a-x^2| < 1/\epsilon} e^{-2\pi i x \cdot \xi} \frac{x}{a - x^2} \phi(x) \, dx,$$

entonces

$$\left\|\widehat{f}_a\right\|_{\infty} \leq M,$$

donde la constante M es independiente de a.

(ii) Muestre que (i.) también vale si a < 0.

Solución: `

(i) Sea $a \ge 0$. Observamos que la función $x \mapsto \frac{x}{a - x^2}$ tiene singularidades en los puntos $x = \pm \sqrt{a}$ (o solo en x = 0 si a = 0).

Sea $\chi \in C_c^{\infty}(\mathbb{R})$ una función suave tal que $\chi(x) = 1$ en un compacto de las singularidades $\pm \sqrt{a}$, entonces $(1 - \chi)$ se anula cerca de esas singularidades. Escribimos:

$$\phi(x) = \chi(x)\phi(x) + (1 - \chi(x))\phi(x).$$

Definimos:

$$T_1(\phi) = \lim_{\epsilon \to 0} \int_{\epsilon < |a-x^2| < 1/\epsilon} \frac{x}{a - x^2} (1 - \chi(x)) \phi(x) dx,$$
$$T_2(\phi) = \lim_{\epsilon \to 0} \int_{\epsilon < |a-x^2| < 1/\epsilon} \frac{x}{a - x^2} \chi(x) \phi(x) dx.$$

Note que en $T_1(\phi)$ aislamos las singularidades, por lo que podemos afirmar que existe $\delta > 0$ tal que $0 < \delta \le |a-x^2|$, por lo que es válido hacer el siguiente cálculo tomando

m = 2n

$$|T_{1}(\phi)| \leq \lim_{\epsilon \to 0} \int_{\epsilon < |a-x^{2}| < \frac{1}{\epsilon}} \left| \frac{x}{a-x^{2}} (1-\chi(x)) \phi(x) \right| dx,$$

$$\leq \lim_{\epsilon \to 0} \int_{\epsilon < |a-x^{2}| < \frac{1}{\epsilon}} \left| \frac{x}{\delta} (1-\chi(x)) \phi(x) \right| dx,$$

$$\leq \lim_{\epsilon \to 0} \int_{\epsilon < |a-x^{2}| < \frac{1}{\epsilon}} \left| \frac{x}{\delta} (1-\chi(x)) \frac{x^{m+1}}{x^{m+1}} \phi(x) \right| dx,$$

$$\leq \lim_{\epsilon \to 0} \frac{1}{\delta} \|\phi\|_{m+1,0} \int_{\epsilon < |a-x^{2}| < \frac{1}{\epsilon}} \left| \frac{1}{x^{m}} \right| dx,$$

$$\leq C \|\phi\|_{m+1,0}.$$

Ahora estudiemos lo que pasa con T_2 , note que como χ tiene soporte compacto, entonces se cumple que existe una constante C tal que

$$\left|\frac{x}{a-x^2}\right| \le \left|\frac{C}{|x-\sqrt{a}|} + \frac{C}{|x+\sqrt{a}|}\right|,$$

Luego tenemos que

$$\begin{split} |T_2(\phi)| &\leq \lim_{\epsilon \to 0} \int_{\epsilon < |a-x^2| < \frac{1}{\epsilon}} \left| \frac{C}{|x - \sqrt{a}|} + \frac{C}{|x + \sqrt{a}|} \chi(x) \phi(x) \right| dx, \\ &\leq \lim_{\epsilon \to 0} \int_{\epsilon < |a-x^2| < \frac{1}{\epsilon}} \left| \frac{C}{|x - \sqrt{a}|} \chi(x) \phi(x) \right| dx + \lim_{\epsilon \to 0} \int_{\epsilon < |a-x^2| < \frac{1}{\epsilon}} \left| \frac{C}{|x + \sqrt{a}|} \chi(x) \phi(x) \right| dx, \end{split}$$

Luego ambos sumandos se comportan como el valor principal de 1/x de lo que podemos concluir que existe una constante C y l tal que

$$|T_2(\phi)| \le C \sum_{i=1}^l \|\phi\|_{\alpha_i, \beta_i}$$

De lo que podemos concluir que para $a \ge 0$ el valor principal anterior define una distribución temperada.

Ahora estudiemos la transformada de Fourier de f_a definida por:

$$\widehat{f}_a(\xi) = \lim_{\epsilon \to 0} \int_{\epsilon < |a-x^2| < 1/\epsilon} e^{-2\pi i x \xi} \cdot \frac{x}{a - x^2} \cdot \phi(x) \, dx.$$

Nuevamente, usamos la descomposición $\phi(x) = \chi(x)\phi(x) + (1-\chi(x))\phi(x)$ y definimos:

$$T_1(\xi) = \lim_{\epsilon \to 0} \int_{\epsilon < |a-x^2| < 1/\epsilon} e^{-2\pi i x \xi} \cdot \frac{x}{a - x^2} (1 - \chi(x)) \phi(x) dx,$$

$$T_2(\xi) = \lim_{\epsilon \to 0} \int_{\epsilon < |a-x^2| < 1/\epsilon} e^{-2\pi i x \xi} \cdot \frac{x}{a - x^2} \chi(x) \phi(x) dx.$$

De nuevo, en T_1 se cumple que $|a-x^2| \ge \delta$ en el soporte de $(1-\chi)$, tenemos:

$$|T_1(\xi)| \le \lim_{\epsilon \to 0} \int_{\epsilon < |a-x^2| < 1/\epsilon} \left| e^{-2\pi i x \xi} \cdot \frac{x}{a - x^2} (1 - \chi(x)) \phi(x) \right| dx$$

$$\le \frac{1}{\delta} \lim_{\epsilon \to 0} \int_{\epsilon < |a-x^2| < 1/\epsilon} |x| \cdot |(1 - \chi(x)) \phi(x)| dx.$$

Como antes, usando $\phi(x) = \frac{x^{m+1}}{x^{m+1}}\phi(x)$:

$$|T_{1}(\xi)| \leq \frac{1}{\delta} \lim_{\epsilon \to 0} \int_{\epsilon < |a-x^{2}| < 1/\epsilon} \left| \frac{1}{x^{m}} \right| \cdot |(1 - \chi(x))x^{m+1}\phi(x)| \, dx$$

$$\leq \frac{1}{\delta} \|\phi\|_{m+1,0} \lim_{\epsilon \to 0} \int_{\epsilon < |a-x^{2}| < 1/\epsilon} \frac{1}{|x|^{m}} \, dx$$

$$\leq C \|\phi\|_{m+1,0}.$$

Por otro lado Como $\chi\phi$ tiene soporte compacto y razonando como lo hicimos anteriormente

$$|T_2(\xi)| \le \lim_{\epsilon \to 0} \int_{\epsilon < |a-x^2| < 1/\epsilon} \left| e^{-2\pi i x \xi} \frac{x}{a - x^2} \chi(x) \phi(x) \right| dx,$$

$$\le \lim_{\epsilon \to 0} \int_{\epsilon < |a-x^2| < 1/\epsilon} \left| \frac{x}{a - x^2} \chi(x) \phi(x) \right| dx,$$

$$\le C \sum_{i=1}^{l} \|\phi\|_{\alpha_i, \beta_i}.$$

Sumando ambas estimaciones:

$$|\widehat{f}_a(\xi)| \le |T_1(\xi)| + |T_2(\xi)| \le M,$$

donde M es independiente de ξ y a, por lo que:

$$\left\|\widehat{f}_a\right\|_{\infty} \leq M.$$

(ii) Supongamos ahora que a < 0. En este caso, la función $x \mapsto \frac{x}{a - x^2}$ es una función suave en todo \mathbb{R} , ya que la ecuación $a - x^2 = 0$ no tiene soluciones reales. Por tanto, no hay ninguna singularidad a lo largo del eje real.

Entonces, podemos definir directamente:

$$f_a(\phi) := \int_{\mathbb{R}} \frac{x}{a - x^2} \phi(x) dx,$$

y este funcional es perfectamente bien definido para toda $\phi \in \mathcal{S}(\mathbb{R})$. Veamos que define una distribución temperada.

Sea $\phi \in \mathcal{S}(\mathbb{R})$, entonces dado que $\frac{x}{a-x^2}$ es una función suave y de crecimiento a lo sumo lineal (pues $|a-x^2|$ crece como x^2 en el infinito), podemos estimar:

$$|f_a(\phi)| = \left| \int_{\mathbb{R}} \frac{x}{a - x^2} \phi(x) \, dx \right| \le \int_{\mathbb{R}} \left| \frac{x}{a - x^2} \phi(x) \right| \, dx.$$

Como ϕ decrece más rápido que cualquier potencia, existe una constante C>0 tal que

$$\left| \frac{x}{a - x^2} \phi(x) \right| \le \frac{|x|}{|a - x^2|} \cdot \frac{1}{(1 + |x|)^N} \le \frac{C}{(1 + |x|)^{N-1}},$$

para N suficientemente grande. Por tanto, la integral converge absolutamente, y se cumple que:

$$|f_a(\phi)| \le C \|\phi\|_{0,N},$$

lo cual implica que $f_a \in \mathcal{S}'(\mathbb{R})$. Finalmente, observemos su transformada de Fourier:

$$\widehat{f}_a(\xi) = \int_{\mathbb{R}} e^{-2\pi i x \xi} \cdot \frac{x}{a - x^2} \cdot \phi(x) dx.$$

Razonando como antes, ya que $\frac{x}{a-x^2}$ es suave y de crecimiento controlado, se tiene que:

$$|\widehat{f}_a(\xi)| \le C \|\phi\|_{0,N},$$

de donde se concluye que:

$$\left\|\widehat{f}_a\right\|_{\infty} \leq M,$$

con M independiente de a y de ξ , lo que nos permite concluir el ejercicio.