

# STD64N4F6AG

# Automotive-grade N-channel 40 V, 7 mΩ typ., 54 A STripFET™ F6 Power MOSFET in a DPAK package

Datasheet - production data



Figure 1: Internal schematic diagram



## **Features**

| Order code  | V <sub>DS</sub> | R <sub>DS(on)</sub> max. | I <sub>D</sub> | Ртот |
|-------------|-----------------|--------------------------|----------------|------|
| STD64N4F6AG | 40 V            | 8.2 mΩ                   | 54 A           | 60 W |

- Designed for automotive applications and AEC-Q101 qualified
- Very low on-resistance
- Very low gate charge
- High avalanche ruggedness
- Low gate drive power loss

## **Applications**

Switching applications

## **Description**

This device is an N-channel Power MOSFET developed using the STripFET<sup>TM</sup> F6 technology with a new trench gate structure. The resulting Power MOSFET exhibits very low  $R_{DS(on)}$  in all packages.

**Table 1: Device summary** 

| Order code  | Marking | Package | Packing       |
|-------------|---------|---------|---------------|
| STD64N4F6AG | 64N4F6  | DPAK    | Tape and reel |

Contents STD64N4F6AG

# Contents

| 1 | Electric | eal ratings                              | 3  |
|---|----------|------------------------------------------|----|
| 2 | Electric | eal characteristics                      | 4  |
|   | 2.1      | Electrical characteristics (curves)      | 6  |
| 3 | Test cir | cuits                                    | 8  |
| 4 | Packag   | e information                            | 9  |
|   | 4.1      | DPAK (TO-252) type A package information | 9  |
|   | 4.2      | DPAK (TO-252) packing information        | 12 |
| 5 | Revisio  | n history                                | 14 |

STD64N4F6AG Electrical ratings

# 1 Electrical ratings

Table 2: Absolute maximum ratings

| Symbol                         | Parameter                                                              | Value      | Unit |
|--------------------------------|------------------------------------------------------------------------|------------|------|
| V <sub>DS</sub>                | Drain-source voltage                                                   | 40         | V    |
| $V_{GS}$                       | Gate-source voltage                                                    | ±20        | V    |
|                                | Drain current (continuous) at T <sub>case</sub> = 25 °C <sup>(1)</sup> | 54         | ۸    |
| I <sub>D</sub>                 | Drain current (continuous) at T <sub>case</sub> = 100 °C               | 46         | A    |
| I <sub>DM</sub> <sup>(2)</sup> | Drain current (pulsed)                                                 | 216        | А    |
| P <sub>TOT</sub>               | Total dissipation at T <sub>case</sub> = 25 °C                         | 60         | W    |
| T <sub>stg</sub>               | Storage temperature                                                    | FF to 17F  | °C   |
| T <sub>j</sub>                 | Operating junction temperature                                         | -55 to 175 | °C   |

### Notes:

Table 3: Thermal data

| Symbol                              | Parameter                        | Value | Unit  |
|-------------------------------------|----------------------------------|-------|-------|
| R <sub>thj-case</sub>               | Thermal resistance junction-case | 2.5   | °C/W  |
| R <sub>thj-pcb</sub> <sup>(1)</sup> | Thermal resistance junction-pcb  | 35    | 3C/VV |

#### Notes:

**Table 4: Avalanche characteristics** 

| Symbol                         | Parameter                                       | Value | Unit |
|--------------------------------|-------------------------------------------------|-------|------|
| I <sub>AS</sub> <sup>(1)</sup> | Avalanche current, repetitive or not repetitive | 54    | Α    |
| E <sub>AS</sub> <sup>(2)</sup> | Single pulse avalanche energy                   | 180   | mJ   |

### Notes:

<sup>&</sup>lt;sup>(1)</sup> Current is limited by package.

 $<sup>^{\</sup>left(2\right)}$  Pulse width is limited by safe operating area.

 $<sup>^{(1)}</sup>$  When mounted on a 1-inch² FR-4, 2 Oz copper board.

<sup>&</sup>lt;sup>(1)</sup> Pulse width limited by T<sub>imax</sub>.

 $<sup>^{(2)}</sup>$  starting  $T_j$  = 25 °C,  $I_D$  =  $I_{AS},\,V_{DD}$  = 25 V.

Electrical characteristics STD64N4F6AG

## 2 Electrical characteristics

(T<sub>case</sub> = 25 °C unless otherwise specified)

Table 5: Static

| Symbol                             | Parameter                             | Test conditions                                                               | Min. | Тур. | Max. | Unit |
|------------------------------------|---------------------------------------|-------------------------------------------------------------------------------|------|------|------|------|
| V <sub>(BR)DSS</sub>               | Drain-source breakdown voltage        | $V_{GS} = 0 \text{ V}, I_D = 250 \mu\text{A}$                                 | 40   |      |      | V    |
| Zana mata waltana duain            |                                       | $V_{GS} = 0 \text{ V}, V_{DS} = 40 \text{ V}$                                 |      |      | 1    |      |
| I <sub>DSS</sub> Zero gate current | Zero gate voltage drain<br>current    | $V_{GS} = 0 \text{ V}, V_{DS} = 40 \text{ V},$<br>$T_{case} = 125 \text{ °C}$ |      |      | 10   | μΑ   |
| I <sub>GSS</sub>                   | Gate-body leakage current             | $V_{DS} = 0 \text{ V}, V_{GS} = \pm 20 \text{ V}$                             |      |      | ±100 | nA   |
| V <sub>GS(th)</sub>                | Gate threshold voltage                | $V_{DS} = V_{GS}, I_{D} = 250 \mu\text{A}$                                    | 2    |      | 4.5  | V    |
| R <sub>DS(on)</sub>                | Static drain-source on-<br>resistance | V <sub>GS</sub> = 10 V, I <sub>D</sub> = 27 A                                 |      | 7    | 8.2  | mΩ   |

Table 6: Dynamic

| Symbol           | Parameter                    | Test conditions                                | Min. | Тур. | Max. | Unit |
|------------------|------------------------------|------------------------------------------------|------|------|------|------|
| C <sub>iss</sub> | Input capacitance            |                                                | -    | 2415 | ı    |      |
| Coss             | Output capacitance           | $V_{DS} = 25 \text{ V}, f = 1 \text{ MHz},$    | -    | 232  |      | pF   |
| C <sub>rss</sub> | Reverse transfer capacitance | $V_{GS} = 0 V$                                 | -    | 170  | -    | Pi   |
| $Q_g$            | Total gate charge            | $V_{DD} = 20 \text{ V}, I_{D} = 54 \text{ A},$ | -    | 44   |      |      |
| $Q_{gs}$         | Gate-source charge           | V <sub>GS</sub> = 10 V (see <i>Figure 14</i> : | -    | 15   |      | nC   |
| $Q_{gd}$         | Gate-drain charge            | "Gate charge test circuit")                    | -    | 12   | -    |      |

## Table 7: Switching times

| Symbol             | Parameter           | Test conditions                                                       | Min. | Тур. | Max. | Unit |  |
|--------------------|---------------------|-----------------------------------------------------------------------|------|------|------|------|--|
| t <sub>d(on)</sub> | Turn-on delay time  | $V_{DD} = 20 \text{ V}, I_D = 27 \text{ A}$                           | ı    | 21.2 | -    |      |  |
| t <sub>r</sub>     | Rise time           | $R_G = 4.7 \Omega$ , $V_{GS} = 10 V$ (see Figure 13: "Switching times | ı    | 113  | -    |      |  |
| $t_{d(off)}$       | Turn-off delay time | test circuit for resistive load"                                      |      | 40.4 | -    | ns   |  |
| t <sub>f</sub>     | Fall time           | and Figure 18: "Switching time waveform")                             | -    | 25.2 | -    |      |  |

Table 8: Source-drain diode

| Symbol                          | Parameter                     | Test conditions                                                            | Min. | Тур. | Max. | Unit |
|---------------------------------|-------------------------------|----------------------------------------------------------------------------|------|------|------|------|
| I <sub>SD</sub>                 | Source-drain current          |                                                                            | -    |      | 54   | Α    |
| I <sub>SDM</sub> <sup>(1)</sup> | Source-drain current (pulsed) |                                                                            | -    |      | 216  | Α    |
| V <sub>SD</sub> <sup>(2)</sup>  | Forward on voltage            | V <sub>GS</sub> = 0 V, I <sub>SD</sub> = 27 A                              | -    |      | 1.3  | V    |
| t <sub>rr</sub>                 | Reverse recovery time         | $I_{SD} = 54 \text{ A}, \text{ di/dt} = 100 \text{ A/}\mu\text{s},$        | -    | 29.4 |      | ns   |
| Qrr                             | Reverse recovery charge       | V <sub>DD</sub> = 32 V (see Figure 15:<br>"Test circuit for inductive load | -    | 31.3 |      | nC   |
| I <sub>RRM</sub>                | Reverse recovery current      | switching and diode recovery times")                                       | -    | 2.1  |      | А    |

## Notes:

 $<sup>^{\</sup>left( 1\right) }$  Pulse width is limited by safe operating area.

<sup>&</sup>lt;sup>(2)</sup> Pulse test: pulse duration = 300  $\mu$ s, duty cycle 1.5%.

# 2.1 Electrical characteristics (curves)



Figure 3: Thermal impedance  $K = \frac{10^{-1}}{\delta = 0.5} = \frac{10^{-1}}{\delta = 0.05} = \frac{Z_{lh} = K^* R_{thj,c}}{\delta = 0.02} = \frac{Z_{lh} = K^* R_{thj,c}}{\delta = 0.01} = \frac{Z_{lh} = K^* R_{thj,c}}{\delta = 0.01} = \frac{10^{-2}}{10^{-5}} = \frac{10^{-4}}{10^{-3}} = \frac{10^{-2}}{10^{-2}} = \frac{t_p}{t_p} \text{ (s)}$ 









Figure 9: Normalized gate threshold voltage vs temperature V<sub>GS(th)</sub> (norm.) GIPG1205157D43DVTH 1.1 I<sub>D</sub> = 250 μA 1.0 0.9 0.8 0.7 0.6 0.5L -75 T<sub>j</sub> (°C) -25 25 75 125 175







**Test circuits** STD64N4F6AG

#### 3 **Test circuits**





Figure 15: Test circuit for inductive load switching and diode recovery times



Figure 16: Unclamped inductive load test circuit VD 0 2200 3.3 Vdd D.U.T. AM01471v1

Figure 17: Unclamped inductive waveform





# 4 Package information

In order to meet environmental requirements, ST offers these devices in different grades of ECOPACK® packages, depending on their level of environmental compliance. ECOPACK® specifications, grade definitions and product status are available at: **www.st.com**. ECOPACK® is an ST trademark.

## 4.1 DPAK (TO-252) type A package information



Figure 19: DPAK (TO-252) type A package outline

Table 9: DPAK (TO-252) type A mechanical data

|      |      | mm   |       |
|------|------|------|-------|
| Dim. | Min. | Тур. | Max.  |
| А    | 2.20 |      | 2.40  |
| A1   | 0.90 |      | 1.10  |
| A2   | 0.03 |      | 0.23  |
| b    | 0.64 |      | 0.90  |
| b4   | 5.20 |      | 5.40  |
| С    | 0.45 |      | 0.60  |
| c2   | 0.48 |      | 0.60  |
| D    | 6.00 |      | 6.20  |
| D1   | 4.95 | 5.10 | 5.25  |
| E    | 6.40 |      | 6.60  |
| E1   | 4.60 | 4.70 | 4.80  |
| е    | 2.16 | 2.28 | 2.40  |
| e1   | 4.40 |      | 4.60  |
| Н    | 9.35 |      | 10.10 |
| L    | 1.00 |      | 1.50  |
| (L1) | 2.60 | 2.80 | 3.00  |
| L2   | 0.65 | 0.80 | 0.95  |
| L4   | 0.60 |      | 1.00  |
| R    |      | 0.20 |       |
| V2   | 0°   |      | 8°    |

STD64N4F6AG Package information



Figure 20: DPAK (TO-252) recommended footprint (dimensions are in mm)

# 4.2 DPAK (TO-252) packing information

Figure 21: DPAK (TO-252) tape outline



A 40mm min. access hole at slot location

Tape slot in core for tape start 2.5mm min.width

AM06038v1

Figure 22: DPAK (TO-252) reel outline

Table 10: DPAK (TO-252) tape and reel mechanical data

| Таре |      |      |      | Reel   |      |  |
|------|------|------|------|--------|------|--|
| Dim  | n    | nm   | Dim  | mm     |      |  |
| Dim. | Min. | Max. | Dim. | Min.   | Max. |  |
| A0   | 6.8  | 7    | Α    |        | 330  |  |
| B0   | 10.4 | 10.6 | В    | 1.5    |      |  |
| B1   |      | 12.1 | С    | 12.8   | 13.2 |  |
| D    | 1.5  | 1.6  | D    | 20.2   |      |  |
| D1   | 1.5  |      | G    | 16.4   | 18.4 |  |
| Е    | 1.65 | 1.85 | N    | 50     |      |  |
| F    | 7.4  | 7.6  | Т    |        | 22.4 |  |
| K0   | 2.55 | 2.75 |      |        |      |  |
| P0   | 3.9  | 4.1  | Bas  | e qty. | 2500 |  |
| P1   | 7.9  | 8.1  | Bul  | k qty. | 2500 |  |
| P2   | 1.9  | 2.1  |      |        |      |  |
| R    | 40   |      |      |        |      |  |
| Т    | 0.25 | 0.35 |      |        |      |  |
| W    | 15.7 | 16.3 |      |        |      |  |

Revision history STD64N4F6AG

# 5 Revision history

**Table 11: Document revision history** 

| Date        | Revision | Changes        |
|-------------|----------|----------------|
| 10-Jun-2015 | 1        | First release. |

### **IMPORTANT NOTICE - PLEASE READ CAREFULLY**

STMicroelectronics NV and its subsidiaries ("ST") reserve the right to make changes, corrections, enhancements, modifications, and improvements to ST products and/or to this document at any time without notice. Purchasers should obtain the latest relevant information on ST products before placing orders. ST products are sold pursuant to ST's terms and conditions of sale in place at the time of order acknowledgement.

Purchasers are solely responsible for the choice, selection, and use of ST products and ST assumes no liability for application assistance or the design of Purchasers' products.

No license, express or implied, to any intellectual property right is granted by ST herein.

Resale of ST products with provisions different from the information set forth herein shall void any warranty granted by ST for such product.

ST and the ST logo are trademarks of ST. All other product or service names are the property of their respective owners.

Information in this document supersedes and replaces information previously supplied in any prior versions of this document.

© 2015 STMicroelectronics - All rights reserved

