Teoría de números algebraicos Tarea 1

Alexey Beshenov (alexey.beshenov@cimat.mx)

19 de agosto de 2020

Fecha límite: viernes, 28 de agosto.

Ejercicio 1.1. Para $d \ge 3$ libre de cuadrados demuestre que 2 es irreducible, pero no es primo en los anillos

- a) $\mathbb{Z}[\sqrt{-d}]$,
- b) $\mathbb{Z}[\sqrt{d}]$ para $d \equiv 1 \pmod{4}$.

Concluya que estos no son dominios de factorización única.

Solución. Primero, para la irreducibilidad de 2, la norma sobre $\mathbb{Z}[\sqrt{-d}]$ viene dada por a^2+db^2 . Tenemos N(2)=4, y se ve que para $d\geq 2$ no hay elementos de norma 2. Esto implica que 2 es irreducible.

En el anillo $\mathbb{Z}[\sqrt{d}]$ con $d \equiv 1 \pmod{4}$ la norma viene dada por

$$a^2 - db^2 \equiv a^2 - b^2 \pmod{4}.$$

Los cuadrados módulo 4 son 0 y 1, y de allí se ve que $a^2 - b^2 \not\equiv 2 \pmod{4}$. Esto demuestra la irreducibilidad de 2 en el caso b).

Si d es par, notamos que $2 \mid \sqrt{-d} \sqrt{-d}$, pero $2 \nmid \sqrt{-d}$ (aquí usamos que $4 \nmid d$). Si d es impar, entonces $2 \mid (1+\sqrt{-d})(1-\sqrt{-d})$, pero $2 \nmid 1 \pm \sqrt{-d}$. Esto demuestra que 2 no es primo en los anillos $\mathbb{Z}[\sqrt{-d}]$.

De la misma manera, para d impar se tiene $2 \mid (1 + \sqrt{d})(1 - \sqrt{d})$, pero $2 \nmid (1 \pm \sqrt{d})$. Esto demuestra que 2 no es primo en $\mathbb{Z}[\sqrt{d}]$ con d impar.

Recordemos que en un dominio de factorización única todo irreducible debe ser primo, así que acabamos de probar que los anillos en cuestión no tienen factorización única. $\hfill \Box$

Ejercicio 1.2. Sea $p \equiv 1 \pmod{3}$ un primo racional. Usando la factorización única en $\mathbb{Z}[\zeta_3]$, demuestre que los números $u,v\in\mathbb{Z}$ en la expresión $4p=u^2+27v^2$ están bien definidos salvo el signo.

Solución. Supongamos que se tiene

$$4p = u^2 + 3v^2 = u'^2 + 3v'^2$$
.

donde

$$v \equiv v' \equiv 0 \pmod{3}$$
.

Notamos que necesariamente

$$u \equiv v \pmod{2}, \quad u' \equiv v' \pmod{2},$$

y además, $3 \nmid u$, $3 \nmid u'$. Un pequeño cálculo demuestra que

$$p = \pi \, \overline{\pi} = \pi' \, \overline{\pi'},$$

donde

$$\pi = \frac{u+v}{2} + v\zeta_3, \quad \pi' = \frac{u'+v'}{2} + v'\zeta_3$$

son primos, ya que tienen norma p. La factorización única implica que

$$\pi \sim \pi'$$
 o $\pi \sim \overline{\pi'}$.

Calculamos que

$$\overline{\pi} = \frac{u - v}{2} - v\zeta_3.$$

Entonces, cambiando el signo de v, podemos asegurarnos de que $\pi \sim \pi'$; es decir, $\pi = \epsilon \pi'$ con $\epsilon \in \{\pm 1, \pm \zeta_3, \pm \zeta_3^2\}$. Consideremos una por una las seis posibilidades.

• Si $\epsilon = +1$, entonces

$$\frac{u+v}{2} + v\zeta_3 = \frac{u+v}{2} + v'\zeta_3,$$

así que v' = v y u' = u.

• Si $\epsilon = -1$, entonces

$$\frac{u+v}{2} + v\zeta_3 = -\frac{u+v}{2} - v'\zeta_3,$$

de donde v' = -v y u = -u.

• Si $\epsilon = \zeta_3$, se obtiene

$$\frac{u+v}{2} + v\zeta_3 = -v' + \frac{u'-v'}{2}\zeta_3.$$

Esto implicaría que u = -2v' - v, pero luego $3 \mid u$, y no es el caso.

- El caso de $\epsilon = -\zeta_3$ se descarta de manera similar.
- En fin, si $\epsilon = \pm \zeta_3^2$, entonces $\pi = \pm \zeta_3^2 \pi'$ implica que $\pi' = \pm \zeta_3 \pi$, y este caso ya fue considerado.

Podemos concluir que $\epsilon = \pm 1$, lo que implica que $u = \pm u'$ y $v = \pm v'$. \square

Ejercicio 1.3. Verifique sin computadora si la congruencia

$$x^3 \equiv 2 + 3\zeta_3 \pmod{23}$$

tiene solución en $\mathbb{Z}[\zeta_3]$.

Sugerencia: en total en $(\mathbb{Z}[\zeta_3]/(23))^{\times}$ habrá $\frac{23^2-1}{3}=176$ cubos y no es una buena idea enumerarlos uno por uno...

En general, dado un primo racional $p\equiv 2\pmod 3$, ¿cuándo $2+3\zeta_3$ es un cubo módulo p?

Solución. Notamos que $N(2+3\zeta_3)=7$ es un primo racional, así que $2+3\zeta_3$ es un primo en $\mathbb{Z}[\zeta_3]$. Además, $2+3\zeta_3\equiv 23\equiv 2\pmod 3$; se trata de primos primarios y se aplica la reciprocidad cúbica

$$\left(\frac{2+3\zeta_3}{23}\right)_3 = \left(\frac{23}{2+3\zeta_3}\right)_3.$$

Recordemos que $\mathbb{Z}[\zeta_3]/(2+3\zeta_3)\cong \mathbb{F}_7$, y por lo tanto la pregunta se reduce a ver si 23 es un cubo módulo 7. Hay solo (7-1)/3=2 cubos módulo 7, y estos son claramente ± 1 . Tenemos $23\equiv 2\pmod{7}$. Entonces, la respuesta es negativa.

En general, para un primo racional $p \equiv 2 \pmod{3}$ el número $2 + 3\zeta_3$ es un cubo módulo p si y solamente si $p \equiv \pm 1 \pmod{7}$.

Ejercicio 1.4. Encuentre las soluciones enteras de $y^2 = x^3 - 4$.

Sugerencia: $y^2 + 4 = (y + 2i)(y - 2i)$.

Solución. Primero un spoiler: una búsqueda indica que hay cuatro soluciones

$$(x,y) = (2,\pm 2), (5,\pm 11),$$

pero hay que verificar que no hay otras. Para esto factorizamos en $\mathbb{Z}[i]$

$$x^3 = (y+2i)(y-2i).$$

Primero, supongamos que y es impar. Si un primo de Gauss π divide a y+2i e y-2i, entonces $\pi\mid 4i$, y por lo tanto $\pi\sim 1+i$. Pero y es impar, así que $y\pm 2i\equiv 1\pmod{1+i}$. Esto implica que

$$mcd(y+2i, y-2i) = 1.$$

La factorización única en $\mathbb{Z}[i]$ nos permite concluir que

$$y + 2i = u (a + bi)^3,$$

donde $u\in\mathbb{Z}[i]^{\times}$. Todas las unidades en $\mathbb{Z}[i]$ son cubos, así que podemos asumir que u=+1. Escribamos

$$y + 2i = (a + bi)^3 = a^3 - 3ab^2 + (3a^2b - b^3)i = a(a^2 - 3b^2) + b(3a^2 - b^2)i$$
.

De la ecuación $2 = b(3a^2 - b^2)$ se ve que las soluciones enteras son $(a,b) = (\pm 1,1)$ y $(\pm 1,-2)$. Estas corresponden a $y = \pm 2$ (pero y es impar, así que este caso se puede descartar por el momento) y $y = \pm 11$.

Ahora bien, supongamos que y es par. Analizando la ecuación $y^2=x^3-4$, se ve que la máxima potencia de 2 que puede dividir a y^2 es 4, así que y=2y', donde $2 \nmid y'$. Se obtiene

$$x^{3} = 4(y' + i)(y' - i).$$

Aquí

$$mcd(y'+i, y'-i) = 1+i.$$

Entonces, podemos escribir

$$x^{3} = 2^{3} \cdot \frac{y'+i}{1+i} \cdot \frac{y'-i}{1-i},$$

donde los factores son coprimos. Esto implica que

$$\frac{y'+i}{1+i}$$

es un cubo. Escribamos

$$y' + i = (1+i)(a+bi)^3 = (a-b)(a^2+4ab+b^2) + (a+b)(a^2-4ab+b^2)i.$$

Se sigue que

$$a + b = \pm 1$$
, $a^2 - 4ab + b^2 = \pm 1$.

Las soluciones enteras son (a,b)=(0,-1),(-1,0), y estas nos dan $y'=\pm 1$, así que $y=\pm 2$.

Ejercicio 1.5. Consideremos la ecuación $x^2 - 7y^2 = n$, donde

$$n = 2, 3, 4, 5, 6, 7, 8, 9, 10.$$

¿Para cuáles de estos n existen soluciones enteras? Demuestre que en este caso hay un número infinito de ellas.

Solución. Primero consideremos la ecuación

$$x^2 - 7y^2 = 1.$$

Una solución no trivial es (8,3). Esta corresponde a la unidad

$$u = 8 + 3\sqrt{7} \in \mathbb{Z}[\sqrt{7}]^{\times}.$$

Luego, $\pm u^k$ para todo $k \in \mathbb{Z}$ son también unidades, y son diferentes: $u^k = u^\ell$ para $k \neq \ell$ sucede solamente cuando $u = \pm 1$.

En realidad, se puede verificar que u es la unidad fundamental y

$$\mathbb{Z}[\sqrt{7}]^{\times} = \{\pm 1\} \times \langle u \rangle,$$

pero esto no es necesario para el ejercicio.

De la misma manera, una solución de $x^2-7y^2=n$ corresponde a un elemento $\alpha=x+y\sqrt{7}$ con $N(\alpha)=n$, y luego $N(u^k\alpha)=N(\alpha)=n$, así que los números

$$x' + y'\sqrt{7} = u^k \alpha$$

para diferentes k nos dan diferentes soluciones. Esto demuestra que si hay una solución de $x^2-7y^2=n$, entonces habrá un número infinito de ellas.

Reduciendo módulo 7 se obtiene $x^2\equiv n\pmod 7$. Los cuadrados módulo 7 son 1, $2\equiv 3^2$ y 4. Esto demuestra que para n=3,5,6,10 no hay soluciones. Por otra parte, reduciendo módulo 4, notamos que $x^2-7y^2\equiv x^2+y^2\pmod 4$, así que $n\not\equiv 3\pmod 4$. De esta manera descartamos n=3 y 7.

Nos quedan n=2,4,8,9, y para estos valores es fácil encontrar una solución. Notamos que si n es un cuadrado, entonces existe una solución obvia $(x,y)=(\sqrt{n},0)$, así que para n=4,9 habrá soluciones.

Para n=2 se encuentra la solución (3,1) que corresponde a $N(3+\sqrt{7})=2$. Luego

$$N((3+\sqrt{7})^3) = N(3+\sqrt{7})^3 = 8.$$

Calculamos que

$$(3+\sqrt{7})^3 = 90 + 34\sqrt{7},$$

así que (90,34) es una solución para n=8. También se puede notar que (6,2) es una solución. $\hfill\Box$