mIPEA User Manual

(version 1.0)

- mIPEA is a user-friendly and multi-functionality platform specifically tailored to the needs of streamlined processing of m⁶A-Seq data in a reference genome-free manner. By taking advantage of machine learning (ML) algorithms, mIPEA enhanced the m⁶A-Seq data analysis by constructing robust computational models for identifying high-quality transcripts and high-confidence m⁶A-modified regions.
- mlPEA comprises four functional modules: Data Preprocessing, Transcriptome Construction, m⁶A
 Calling, and Functional Exploration.
- mlPEA was powered with an advanced packaging technology, which enables compatibility and portability.
- mlPEA project is hosted on http://github.com/cma2015/mlPEA
- mlPEA docker image is available at http://hub.docker.com/r/malab/mlpea

Transcriptome Construction Module

This module provides step-by-step functions required for transcriptome construction.

Transcriptome Assembly

Four assemblers that support strand-specific m⁶A-Seq data are wrapped to use. Currently, **Trinity**, **rnaSPAdes**, **TransABySS**, **TransLiG**.

Tools	Description	Input	Output	Time (test data)	Reference
Trinity	Trinity partitions the sequence data into many individual de Bruijn graphs, each representing the transcriptional complexity at a given gene or locus, and then processes each graph independently to extract full-length splicing isoforms and to tease apart transcripts derived from paralogous genes.	Sequencing reads in FASTQ format	Transcripts in FASTA format	~4 mins	(Grabherr et al., 2011)
rnaSPAdes	rnaSPAdes has been developed on top of the SPAdes genome assembler and explores computational parallels between assembly of transcriptomes and single-cell genomes.	Sequencing reads in FASTQ format	Transcripts in FASTA format	~3 mins	(Prjibelski et al., 2020)
TransABySS	A <i>de novo</i> short-read transcriptome assembly and analysis pipeline that addresses variation in local read densities by assembling read substrings with varying stringencies and then merging the resulting contigs before analysis.	Sequencing reads in FASTQ format	Transcripts in FASTA format	~5 mins	(Robertson et al., 2010)
TransLiG	TransLiG is shown to be significantly superior to all the salient <i>de novo</i> assemblers in both accuracy and computing resources when tested on artificial and real RNA-seq data.	Sequencing reads in FASTQ format	Transcripts in FASTA format	~4 mins	(Liu <i>et al.</i> , 2019)

Transcriptome Screening

Transcriptome screening implements three pipelines for transcripts deduplication, respectively.

Tools	Description	Input	Output	Time (test data)	Reference
Merge and Deduplication	A novel program CD-HIT for clustering biological sequences to reduce sequence redundancy and improve the performance of other sequence analyses.	Multiple Transcripts files in FASTA format	Transcripts in FASTA format	~5 mins	(Fu et al., 2012)
Reads Coverage- based Screening	An ultrafast and memory-efficient tool Bowtie 2 for aligning sequencing reads, reads coverage was measured by SAMtools and BEDTools.	Transcripts in FASTA format	Transcripts in FASTA format	~20 mins	(Langmead et al., 2009; Langmead et al., 2012) (Danecek et al., 2021) (Quinlan et al., 2010)
Machine Learning- based Screening	An ML-based classification model to distinguish high-quality transcripts from noisy ones using the random forest-based PSoL algorithm, which requires only a set of positive samples. The positive sample set is constructed by clustering analysis of assembled transcripts and already annotated mRNAs using a fast and sensitive sequence alignment method MMseqs2. It provides more than 670 features to encode each transcript sequence.	Transcripts in FASTA format	Transcripts in FASTA format	~10mins	(Steinegger et al., 2017) (Wang et al., 2023) (Wang et al., 2026)

Transcriptome Assembly

Currently, mIPEA wrapped four assemblers that support strand-specific m⁶A-Seq data to *de nove* assemble transcripts. Here, we take Trinity as an example to show how to use mIPEA to run transcriptome assembly, the other three assemblers are similar.

Input

• Input FASTQ files: cleaned m⁶A-Seq input reads in FASTQ format

Output

• De novo assembled transcripts by Trinity in FASTA format

How to use this function

• The following screenshot shows us how to use this function

Merge and Deduplication

In this function, a novel program **CD-HIT** for clustering biological sequences to reduce sequence redundancy and improve the performance of other sequence analyses.

Input

• Input FASTA files: assembled transcripts in FASTA format

Output

• Transcripts after deduplication in FASTA format

How to use this function

• The following screenshot shows us how to use this function

Reads Coverage-based Screening

In this function, we developed a pipline for screening transcripts based on reads coverage. **Bowtie2** for aligning sequencing reads, reads coverage was measured by **SAMtools** and **BEDTools**.

Input

• Input FASTQ files: cleaned m⁶A-Seq input reads in FASTQ format

Output

• De novo assembled transcripts in FASTA format

How to use this function

• The following screenshot shows us how to use this function

Machine Learning-based Screening

In this function, an ML-based classification model to distinguish high-quality transcripts from noisy ones using the random forest-based Positive Sample only Learning (PSoL) algorithm, which requires only a set of positive samples. The positive sample set is constructed by clustering analysis of assembled transcripts and already annotated mRNAs using a fast and sensitive sequence alignment method **MMseqs2**. It provides more than 670 features to encode each transcript sequence, including 177 sequence-intrinsic features, 399 physico-chemical features and 101 structure-based features.

Input

• Input FASTQ files: de novo assembled transcripts in FASTA format

Output

- High-quality transcripts in FASTA format
- PSoL Negative Increasement in PDF format
- RNA features based on corain package in CSV format

How to use this function

The following screenshot shows us how to use this function

