Universidade Federal do Ceará Campus Sobral

Engenharia da Computação e Engenharia Elétrica

Sistemas Lineares (SBL0091)

Prof. C. Alexandre Rolim Fernandes

Nome:	Matrícula:
INOITIC.	Matricura.

Avaliação Parcial 3 (AP3) - 11/07/23

- 1) Encontre as Transformadas de Laplace dos sinais abaixo e as respectivas regiões de convergência. É permitido usar os resultados das tabelas em anexo.
 - a) $x(t) = e^{-3t}u(t-4)$

b)
$$x(t) = e^{3t} \frac{d}{dt} (te^{-2t}u(t))$$

Solução:

a)

$$X(s) = \int_{-\infty}^{\infty} e^{-3t} u(t-4)e^{-st} dt = \int_{4}^{\infty} e^{-(s+3)t} dt = -\frac{1}{s+3} e^{-(s+3)t} \Big|_{4}^{\infty}$$

Se
$$\operatorname{Re}\{s\} < -3 \implies \operatorname{Re}\{s+3\} < 0 \implies X(s)$$
 não existe

Se
$$Re\{s\} > -3 \implies Re\{s+3\} > 0$$
:

$$X(s) = \frac{1}{s+3}e^{-(s+3)4}$$
, RDC: $\sigma > -3$

SOLUÇÃO ALTERNATIVA:

Da tabela:

$$e^{-3t}u(t) \stackrel{\mathcal{L}}{\longleftrightarrow} \frac{1}{s+3}, \quad \sigma > -3$$

Usando a propriedade do deslocamento no tempo (olhar Tabela):

$$e^{-3(t-4)}u(t-4) \stackrel{\mathcal{L}}{\longleftrightarrow} \frac{e^{-4s}}{s+3}, \quad \sigma > -3$$

Multiplicando dos dois lados por e^{-12} :

$$x(t) = e^{-3t}u(t-4) \longleftrightarrow \frac{e^{-4s-12}}{s+3} = \frac{1}{s+3}e^{-(s+3)4}, \quad \sigma > -3$$

b)

Da tabela:

$$te^{-2t}u(t) \stackrel{\mathcal{L}}{\longleftrightarrow} \frac{1}{(s+2)^2}, \quad \sigma > -2$$

Usando a propriedade da diferenciação no tempo (olhar Tabela):

$$\frac{d}{dt}(te^{-2t}u(t)) \stackrel{\mathcal{L}}{\longleftrightarrow} \frac{s}{(s+2)^2}, \quad \sigma > -2$$

Usando a propriedade do deslocamento no domínio s (olhar Tabela):

$$x(t) = e^{3t} \frac{d}{dt} (te^{-2t}u(t)) \stackrel{\mathcal{L}}{\longleftrightarrow} \frac{s-3}{(s-1)^2}, \quad \sigma > 1$$

2) Um sistema tem entrada e resposta ao impulso dadas respectivamente por: $x(t) = -e^{4t}u(-t)$ e $h(t) = e^{2t}u(t)$. Usando Tranformada de Laplace, determine a saída y(t) no domínio do tempo. É permitido usar os resultados das tabelas em anexo.

Solução:

Da tabela:

$$x(t) = -e^{4t}u(-t) \stackrel{\mathcal{L}}{\longleftrightarrow} \frac{1}{s-4}, \quad \sigma < 4$$

$$h(t) = e^{2t}u(t) \stackrel{\mathcal{L}}{\longleftrightarrow} \frac{1}{s-2}, \quad \sigma > 2$$

Usando a propriedade da Convolução (olhar Tabela)

$$y(t) = x(t) * h(t) \stackrel{\mathcal{L}}{\longleftrightarrow} Y(s) = X(s)H(s)$$

$$Y(s) = \frac{1}{(s-4)(s-2)}, \quad \sigma < 4 \quad \cap \quad \sigma > 2 \quad = \quad 2 < \sigma < 4$$

Usando expansão em frações parciais:

$$Y(s) = \frac{A_1}{s - 4} + \frac{A_2}{s - 2}$$

$$A_1 = Y(s)(s-4)|_{s=4} = \frac{1}{2}$$

$$A_2 = Y(s)(s-2)|_{s=2} = -\frac{1}{2}$$

$$Y(s) = \frac{1/2}{s-4} - \frac{1/2}{s-2}, \quad 2 < \sigma < 4$$

Da tabela:

$$y(t) = -1/2e^{4t}u(-t) - 1/2e^{2t}u(t)$$

3) Um sistema linear e invariante no tempo é representado pela seguinte equação diferencial:

$$2\frac{d}{dt}y(t) - \frac{1}{2}y(t) = \frac{d}{dt}x(t) + 5x(t).$$

 $\acute{\rm E}$ permitido usar os resultados das tabelas em anexo.

- a) Determine a Função de Transferência deste sistema.
- b) Determine a resposta ao impulso deste sistema sabendo que ele é causal.

Solução:

a) Usando os resultados estudados em sala de aula:

$$H(s) = \frac{s+5}{2s-\frac{1}{2}} = \frac{1}{2} \frac{s+5}{s-\frac{1}{4}}$$

b)

$$H(s) = \frac{1}{2} \frac{s}{s - \frac{1}{4}} + \frac{5}{2} \frac{1}{s - \frac{1}{4}}$$

Polo: $s = \frac{1}{4}$

Dado que o sistema é causal, a RDC deve do polo para a direita, ou seja, a RDC é $\sigma > \frac{1}{4}$. Da tabela:

$$\frac{1}{s - \frac{1}{4}} \stackrel{\mathcal{L}}{\longleftrightarrow} e^{\frac{1}{4}t} u(t)$$

Propriedade da diferenciação no tempo (olhar Tabela):

$$\frac{s}{s - \frac{1}{4}} \overset{\mathcal{L}}{\longleftrightarrow} \frac{d}{dt} (e^{\frac{1}{4}t} u(t))$$

Logo:

$$h(t) = \frac{1}{2} \frac{d}{dt} (e^{\frac{1}{4}t} u(t)) + \frac{5}{2} e^{\frac{1}{4}t} u(t)$$
 (Podia parar aqui)

$$h(t) = \frac{1}{8}e^{\frac{1}{4}t}u(t) + \frac{1}{2}e^{\frac{1}{4}t}\delta(t) + \frac{5}{2}e^{\frac{1}{4}t}u(t)$$
 (Opcional)

$$h(t) = \frac{21}{8}e^{\frac{1}{4}t}u(t) + \frac{1}{2}\delta(t) \qquad \text{(Optional)}$$

4) Um sistema linear e invariante no tempo possui a seguinte Função de Transferência:

$$H(s) = \frac{s-1}{(s-2)(s+3)}.$$

É permitido usar os resultados das tabelas em anexo.

- a) Determine uma equação diferencial que respresente este sistema.
- b) Trace o diagrama de polos e zeros deste sistema.
- c) Determine a região de convergência deste sistema supondo que ele que ele é estável.
- d) Determine a região de convergência deste sistema supondo que ele que ele é causal.
- e) Este sistema pode ser estável e causal? Justifique sua resposta.

Solução:

a) Usando os resultados estudados em sala de aula:

$$H(s) = \frac{s-1}{(s-2)(s+3)} = \frac{s-1}{s^2+s-6}$$

$$\frac{d^2}{dt^2}y(t) + \frac{d}{dt}y(t) - 6y(t) = \frac{d}{dt}x(t) - x(t).$$

b)

Zeros: s = 1

Polos: s = 2 e s = -3

Não vou desenhar, mas você deveria desenhar o diagrama de polos e zeros de acordo com os polos e zeros acima indicados.

- c) Se o sistema é estável, então a RDC deve conter a circunferência de raio unitário, ou seja, $-3 < \sigma < 2$.
- d) Se o sistema é causal, então a RDC deve ser do polo de maior parte real para a direita, ou seja, $\sigma > 2$.
- e) O sistema não pode ser estável e causal ao mesmo tempo pois possui um polo no semiplano direito (polo com parte real positiva).
- 5) Um sistema causal linear e invariante no tempo é representado pela seguinte equação diferencial:

 $\frac{d}{dt}y(t) + y(t) = \frac{d}{dt}x(t) + 2x(t).$

Sabendo que a entrada deste sistema é dada por: $x(t) = e^{-2t}u(t)$, responda às questões abaixo. É permitido usar os resultados das tabelas em anexo.

- a) Determine a Função de Transferência H(s) deste sistema e sua RDC.
- b) Determine a Transformda de Laplace X(s) da entrada e sua RDC.
- c) Determine a Transform
da de Laplace Y(s) da saída e sua RDC.
- d) Determine o sinal de saída y(t).

Solução:

a) Usando os resultados estudados em sala de aula (sistema causal):

$$H(s) = \frac{s+2}{s+1}, \quad \sigma > -1$$

b) Da tabela:

$$X(s) = \frac{1}{s+2}, \quad \sigma > -2$$

c) Usando a propriedade da convolução:

$$Y(s) = H(s)X(s) = \frac{s+2}{s+1}\frac{1}{s+2} = \frac{1}{s+1}$$

A RDC de Y(s) seria igual à interceção das RDC de X(s) e H(s) caso não tivesse havido cancelamento de polos. No entanto o polo em s=-2 de X(s) foi cancelado com o zero em s=-2 de H(s).

Se não tivesse ocorrido o cancelamento do polo de X(s), a RDC de Y(s) seria $RDC_Y = RDC_X \cap RDC_H = \{\sigma > -2\} \cap \{\sigma > -1\} = \{\sigma > -1\}.$

Entretanto, como houve o cancelamento de polos em s=-1, nós devemos desconsiderar este polo para o cálculo da RDC. Assim, temos: $RDC_y = {\sigma > -1}$.

d) Da tabela:

$$y(t) = e^{-t}u(t)$$

Tabelas auxiliares

$$A_k e^{d_k t} u(t) \longleftrightarrow \frac{A_k}{s - d_k}$$
 com RDC Re(s) $> d_k$

$$-A_k e^{d_k t} u(-t) \longleftrightarrow \frac{A_k}{s - d_k} \quad \text{com RDC Re}(s) < d_k$$

Sinal	Transformada	RDC		
u(t)	$\frac{1}{s}$	$Re\{s\} > 0$		
tu(t)	$\frac{1}{s^2}$	$Re\{s\} > 0$		
$\delta(t-\tau), \tau > 0$	$e^{-s\tau}$	para todos s		
$e^{-at}u(t)$	$\frac{1}{s+a}$	$Re\{s\} > -a$		
$te^{-at}u(t)$	$\frac{1}{(s+a)^2}$	$Re\{s\} > -a$		
$[\cos(\omega_1 t)]u(t)$	$\frac{s}{s^2 + \omega_1^2}$	$Re\{s\} > 0$		
$[\operatorname{sen}(\omega_1 t)]u(t)$	$\frac{\omega_1}{s^3 + \omega_1^2}$	$Re\{s\} > 0$		
$[e^{-at}\cos(\omega_1 t)]u(t)$	$\frac{s+a}{(s+a)^2+\omega_1^2}$	$Re\{s\} > -a$		
$[e^{-at} \operatorname{sen}(\omega_1 t)] u(t)$	$\frac{\omega_1}{(s+a)^2 + \omega_1^2}$	$Re\{s\} > -\alpha$		

$\int_{1}^{\infty} x(\tau) d\tau$	$\frac{d}{dt}x(t)$	-tx(t)	x(t) * y(t)	x(at)	- \$\psi e^{s_0!} x(t)	$x(t-\tau)$	ax(t) + by(t)	y(t)	x(t)	Sinal		D.2 Propried	1
$\frac{1}{s} \int_{-\infty}^{\infty} x(\tau) \ d\tau + \frac{x(s)}{s}$	$sX(s)-x(0^+)$	$\frac{d}{ds}X(s)$	X(s)Y(s)	$\frac{1}{ a } X \left(\frac{s}{a} \right)$	$X(s-s_o)$	Se $x(t-\tau)u(t) = x(t-\tau)u(t-\tau)$	aX(s)+bY(s)	Y(5)	X(S)	Transformada Unitation	[David: 11	Propriedades da Transformada de Laplace	
$\frac{X(s)}{s}$	sX(s)	$\frac{d}{ds}X(s)$	X(s)Y(s)	$\frac{1}{ a } X \left(\frac{s}{a}\right)$	$X(s-s_o)$	e ⁻³ · X(S)	- VT V (-)	aX(s)+bY(s)	Y(s)	X(s)	Transformada Bilateral	e Laplace	
No mínimo $R_x \cap \{\text{Re}\{s\} > 0\}$	No mínimo R _x	R_x	No mínimo $R_x \cap R_y$		R	R - Re(c)	R	No mínimo $R_x \cap R_y$	R_y	R_x	RDC		