Bài 2: Giải bất phương trình bậc hai một ẩn

C. BÀI TẬP

Bài 1 trang 13 SBT Toán 7 tập 1: x = 2 là một nghiệm của bất phương trình nào sau đây?

a)
$$x^2 - 3x + 1 > 0$$
;

b)
$$-4x^2 - 3x + 5 \le 0$$
;

c)
$$2x^2 - 5x + 2 \le 0$$
.

Lời giải

a) Thay x = 2 vào bất phương trình ta được: $2^2 - 3.2 + 1 = -1 < 0$.

Vì vậy x = 2 không là nghiệm của bất phương trình $x^2 - 3x + 1 > 0$.

b) Thay x = 2 vào bất phương trình ta được: $-4.2^2 - 3.2 + 5 = -17 < 0$.

Vì vậy x = 2 là nghiệm của bất phương trình $-4x^2 - 3x + 5 \le 0$.

c) Thay x = 2 vào bất phương trình ta được: $2 \cdot 2^2 - 5 \cdot 2 + 2 = 0 \le 0$

Vì vậy x = 2 là nghiệm của bất phương trình $2x^2 - 5x + 2 \le 0$.

Bài 2 trang 13 SBT Toán 7 tập 1: Dựa vào đồ thị của hàm số bậc hai đã cho, hãy nêu tập nghiệm của các bất phương trình bậc hai tương ứng.

a)
$$f(x) \ge 0$$

b)
$$f(x) < 0$$

c)
$$f(x) > 0$$

d) f(x) < 0

e)
$$f(x) \le 0$$

g)
$$f(x) \ge 0$$

a)
$$\left[-\frac{5}{2};1\right]$$

Đồ thị hàm số bậc hai nằm phía trên trục hoành với $x \in \left(-\frac{5}{2};1\right)$;

Đồ thị hàm số bậc hai cắt trục hoành tại hai điểm $x=-\frac{5}{2}$ và x=1.

Do đó
$$f(x) \ge 0$$
 khi $x \in \left[-\frac{5}{2}; 1\right]$.

Vậy tập nghiệm của bất phương trình $f(x) \ge 0$ là $S = \left[-\frac{5}{2}; 1 \right]$.

b) Đồ thị hàm số bậc hai nằm phía trên trục hoành với mọi $x \in \mathbb{R}$ hay f(x) > 0 với mọi $x \in \mathbb{R}$.

Do đó $f(x) \le 0$ vô nghiệm.

Vậy tập nghiệm của bất phương trình f(x) < 0 là $S = \emptyset$.

c) Đồ thị hàm số bậc hai nằm phía trên trục hoành với x < 3 hoặc x > 4.

Do đó f(x) > 0 khi x < 3 hoặc x > 4.

Vậy tập nghiệm của bất phương trình f(x) > 0 là $S = (-\infty; 3) \cup (4; +\infty)$

d) Đồ thị hàm số bậc hai nằm phía dưới trục hoành với mọi $x \neq -1$.

Do đó $f(x) \le 0$ khi $x \ne -1$.

Vậy tập nghiệm của bất phương trình f(x) < 0 là $S = \square \setminus \{-1\}$

e) Đồ thị hàm số bậc hai nằm trên trục hoành với mọi $x \neq \frac{5}{2}$.

Đồ thị hàm số bậc hai cắt trục hoành tại điểm $x=\frac{5}{2}$.

Do đó
$$f(x) \le 0$$
 khi $x = \frac{5}{2}$.

Vậy tập nghiệm của bất phương trình $f(x) \le 0$ là $S = \left\{ \frac{5}{2} \right\}$.

g) Đồ thị hàm số bậc hai nằm phía trên trục hoành với $x < \frac{3}{2}$ và $x > \frac{7}{2}$;

Đồ thị hàm số bậc hai cắt trục hoành tại hai điểm $x = \frac{3}{2}$ và $x = \frac{7}{2}$.

Do đó
$$f(x) \ge 0$$
khi $x \le \frac{3}{2}$ và $x \ge \frac{7}{2}$.

Vậy tập nghiệm của bất phương trình $f(x) \ge 0$ là $S = \left(-\infty; \frac{3}{2}\right] \cup \left[\frac{7}{2}; +\infty\right)$.

Bài 3 trang 14 SBT Toán 7 tập 1: Giải các bất phương trình bậc hai sau:

a)
$$-9x^2 + 16x + 4 \le 0$$
;

b)
$$6x^2 - 13x - 33 < 0$$
;

c)
$$7x^2 - 36x + 5 \le 0$$
;

d)
$$-9x^2 + 6x - 1 \ge 0$$
;

e)
$$49x^2 + 56x + 16 > 0$$

g)
$$-2x^2 + 3x - 2 \le 0$$

a) Tam thức bậc hai f (x) = $-9x^2 + 16x + 4$ có a = -9 < 0 và $\Delta = 16^2 - 4$.(-9).4 =

112 > 0. Do đó f(x) có hai nghiệm phân biệt là
$$x_1 = 2$$
 và $x_2 = \frac{-2}{9}$

Áp dụng định lí về dấu tam thức bậc hai ta có:

$$-9x^2 + 16x + 4 \le 0$$
 khi $x \le \frac{-2}{9}$ hoặc $x \ge 2$.

Vậy tập nghiệm của bất phương trình là $S = \left(-\infty; \frac{-2}{9}\right) \cup \left(2; +\infty\right)$.

b) Tam thức bậc hai f (x) = $6x^2 - 13x - 33$ có a = 6 > 0 và $\Delta = (-13)^2 - 4.6.(-33)$

= 961 > 0. Do đó f(x) có hai nghiệm phân biệt là
$$x_1 = \frac{11}{3}$$
 và $x_2 = \frac{-3}{2}$

Áp dụng định lí về dấu tam thức bậc hai ta có:

$$6x^2 - 13x - 33 < 0$$
 khi $\frac{-3}{2} < x < \frac{11}{3}$

Vậy tập nghiệm của bất phương trình là $S = \left(\frac{-3}{2}; \frac{11}{3}\right)$.

c) Tam thức bậc hai f (x) = $7x^2 - 36x + 5$ có a = 7 > 0 và $\Delta = (-36)^2 - 4.7.5 =$

1156 > 0. Do đó
$$f(x)$$
 có hai nghiệm phân biệt là $x_1 = \frac{1}{7}$ và $x_2 = 5$

Áp dụng định lí về dấu tam thức bậc hai ta có:

$$7x^2 - 36x + 5 \le 0$$
 khi $\frac{1}{7} \le x \le 5$

Vậy tập nghiệm của bất phương trình là $S = \begin{bmatrix} \frac{1}{7};5 \end{bmatrix}$.

d) Tam thức bậc hai f (x) = $-9x^2 + 6x - 1$ có a = -9 < 0 và $\Delta = 6^2 - 4$.(-9).(-1) =

0. Do đó
$$f(x)$$
 có nghiệm $x = \frac{1}{3}$

Áp dụng định lí về dấu tam thức bậc hai ta có:

$$-9x^2 + 6x - 1 \ge 0 \text{ khi } x = \frac{1}{3}$$

Vậy tập nghiệm của bất phương trình là $S = \left\{\frac{1}{3}\right\}$.

e) Tam thức bậc hai f (x) = $49x^2 + 56x + 16 = (7x + 4)^2$

Tam thức bậc hai có nghiệm $x = \frac{-4}{7}$

Áp dụng định lí về dấu tam thức bậc hai ta có:

$$49x^2 + 56x + 16 > 0$$
 khi $x \neq \frac{-4}{7}$

Vậy tập nghiệm của bất phương trình là $S = \Box \setminus \left\{ \frac{-4}{7} \right\}$

g)

Tam thức bậc hai f (x) = $-2x^2 + 3x - 2$ có $\Delta = 3^2 - 4$. (-2). (-2) = -7 < 0 nên f(x) vô nghiệm.

Áp dụng định lí về dấu tam thức bậc hai ta có a = -2 < 0 nên

$$-2x^2 + 3x - 2 \le 0$$
 với mọi $x \in \mathbb{R}$.

Vậy
$$-2x^2 + 3x - 2 \le 0$$
 với mọi $x \in \mathbb{R}$.

Bài 4 trang 14 SBT Toán 7 tập 1: Giải các bất phương trình bậc hai sau:

a)
$$x^2 - 3x < 4$$
;

b)
$$0 < 2x^2 - 11x - 6$$
;

c)
$$-2(2x+3)^2+4x+30 \le 0$$

d)
$$-3(x^2-4x-1) \le x^2-8x+28$$
;

e)
$$2(x-1)^2 \ge 3x^2 + 6x + 27$$
;

g)
$$2(x+1)^2+9(-x+2)<0$$
.

a) Ta có:
$$x^2 - 3x < 4 \iff x^2 - 3x - 4 < 0$$

Xét tam thức bậc hai $f(x) = x^2 - 3x - 4$ có $\Delta = (-3)^2 - 4.1$.(-4) = 25 > 0 nên f(x) có hai nghiệm phân biệt $x_1 = 4$ và $x_2 = -1$.

Ta có: a = 1 > 0 nên f (x) < 0 với -1 < x < 4.

Suy ra
$$x^2 - 3x - 4 < 0$$
 hay $x^2 - 3x < 4$ với $-1 < x < 4$.

Vậy bất phương trình đã cho có tập nghiệm khi S = (-1; 4).

b) Ta có:
$$0 < 2x^2 - 11x - 6 \Leftrightarrow 2x^2 - 11x - 6 > 0$$

Tam thức bậc hai f(x) = $2x^2 - 11x - 6$ có $\Delta = (-11)^2 - 4.2.(-6) = 169 > 0$ nên f(x)

có hai nghiệm phân biệt $x_1 = 6$ và $x_2 = -\frac{1}{2}$,

Ta lại có: a = 2 > 0 nên f (x) > 0 khi x < $-\frac{1}{2}$ hoặc x > 6.

Vậy tập nghiệm của bất phương trình là: $S = (-\infty; -\frac{1}{2}) \cup (6; +\infty)$.

c)
$$-2(2x+3)^2 + 4x + 30 \le 0$$

$$\Leftrightarrow$$
 -2.(4x² + 12x + 9) + 4x + 30 < 0

$$\Leftrightarrow$$
 $-8x^2 - 24x - 18 + 4x + 30 < 0$

$$\Leftrightarrow -8x^2 - 20x + 12 \le 0$$

$$\Leftrightarrow$$
 $-2x^2 - 5x + 3 < 0$

Tam thức bậc hai f (x) = $-2x^2 - 5x + 3$ có $\Delta = (-5)^2 - 4$.(-2).3 = 49 nên f(x) có hai nghiệm phân biệt $x_1 = -3$ và $x_2 = \frac{1}{2}$,

Ta lại có a = -2 < 0 nên $f(x) \le 0$ khi $x \le -3$ hoặc $x \ge \frac{1}{2}$

Vậy bất phương trình đã cho có tập nghiệm là $S = (-\infty; -3] \cup [\frac{1}{2}; +\infty)$.

d)
$$-3(x^2-4x-1) \le x^2-8x+28$$

$$\Leftrightarrow -4x^2 + 20x - 25 \le 0$$

Tam thức bậc hai f (x) = $-4x^2 + 20x - 25$ có $\Delta = 20^2 - 4$. (-4) . (-25) = 0 ,

a = -4 < 0 nên f (x) ≤ 0 với mọi x $\in \mathbb{R}$.

Suy ra $-4x^2 + 20x - 25 \le 0$ với mọi $x \in \mathbb{R}$.

Vậy $-3(x^2 - 4x - 1) \le x^2 - 8x + 28$ với mọi $x \in \mathbb{R}$.

e)
$$2(x-1)^2 \ge 3x^2 + 6x + 27$$

$$\Leftrightarrow 2x^2 - 4x + 2 \ge 3x^2 + 6x + 27$$

$$\Leftrightarrow$$
 $-x^2 - 10x - 25 > 0$

$$\Leftrightarrow$$
 $-(x+5)^2 \ge 0$

$$\Leftrightarrow$$
 x = -5 (do -(x + 5)² \leq 0 với mọi x \in \mathbb{R})

Vậy
$$2(x-1)^2 \ge 3x^2 + 6x + 27$$
 khi $x = -5$

g)
$$2(x+1)^2+9(-x+2)<0$$

$$\Leftrightarrow 2(x^2 + 2x + 1) - 9x + 18 < 0$$

$$\Leftrightarrow 2x^2 - 5x + 20 < 0$$

Tam thức bậc hai f (x) = $2x^2 - 5x + 20$ có $\Delta = (-5)^2 - 4$. 2. 20 = -135 < 0,

Ta lại có a = 2 > 0 nên f (x) > 0 với mọi $x \in \mathbb{R}$.

Suy ra $2x^2 - 5x + 20 > 0$ với mọi $x \in \mathbb{R}$.

Vậy không tồn tại x thỏa mãn $2(x+1)^2 + 9(-x+2) < 0$.

Bài 5 trang 14 SBT Toán 7 tập 1: Tìm tập xác định của các hàm số sau:

a)
$$y = \sqrt{15x^2 + 8x - 12}$$
;

b)
$$y = \frac{x-1}{\sqrt{-11x^2 + 30x - 16}}$$
;

c)
$$y = \frac{1}{x-2} - \sqrt{-x^2 + 5x - 6}$$
;

d)
$$y = \frac{1}{\sqrt{2x+1}} - \sqrt{6x^2 - 5x - 21}$$

Lời giải

a) Hàm số xác định khi và chỉ khi $15x^2 + 8x - 12 \ge 0$

Tam thức bậc hai f (x) = $15x^2 + 8x - 12$ có $\Delta = 8^2 - 4.15$. (-12) = 784 > 0 suy ra

$$f(x)$$
 có hai nghiệm phân biệt $x_1 = \frac{2}{3}$ và $x_2 = \frac{-6}{5}$.

Ta có: a = 15 > 0 nên f $(x) \ge 0$ khi và chỉ khi $x \le \frac{-6}{5}$ hoặc $x \ge \frac{2}{3}$.

Vậy tập xác định của hàm số là
$$D = \left(-\infty; \frac{-6}{5}\right] \cup \left[\frac{2}{3}; +\infty\right)$$
.

b) Hàm số xác định khi và chỉ khi $-11x^2 + 30x - 16 > 0$

Tam thức bậc hai f (x) = $-11x^2 + 30x - 16$ có $\Delta = 30^2 - 4.(-11).(-16) = 196 > 0$

suy ra f(x) có hai nghiệm phân biệt $x_1 = 2$ và $x_2 = \frac{8}{11}$.

Ta có: a = -11 < 0 nên f (x) > 0 khi và chỉ khi $\frac{8}{11} < x < 2$.

Vậy tập xác định của hàm số là $D = \left(\frac{8}{11}; 2\right)$.

- c) Hàm số xác định khi và chỉ khi $x 2 \neq 0$ và $-x^2 + 5x 6 \geq 0$.
- +) Xét $x 2 \neq 0$ khi và chỉ khi $x \neq 2$.
- +) Xét tam thức bậc hai f (x) = $-x^2 + 5x 6$ có $\Delta = 5^2 4$.(-1).(-6) = 1 > 0 suy ra f(x) hai nghiệm phân biệt $x_1 = 3$ và $x_2 = 2$,

Ta có: a = -1 < 0 nên f $(x) \ge 0$ khi và chỉ khi $2 \le x \le 3$.

Suy ra hàm số xác định khi $2 < x \le 3$.

Vậy tập xác định của hàm số là D = (2;3].

- d) Hàm số xác định khi và chỉ khi 2x+1>0 và $6x^2-5x-21\geq 0$
- +) Xét 2x + 1 > 0 khi và chỉ khi $x > \frac{-1}{2}$
- +) Xét tam thức bậc hai f (x) = $6x^2 5x 21$ có $\Delta = (-5)^2 4.6.(-21) = 529 > 0$ suy ra f(x) hai nghiệm phân biệt $x_1 = \frac{7}{3}$ và $x_2 = \frac{-3}{2}$,

Ta có a = 6 > 0 nên f (x) \geq 0 khi và chỉ khi x $\leq \frac{-3}{2}$ hoặc x $\geq \frac{7}{3}$ mà x > $\frac{-1}{2}$ nên x $\geq \frac{7}{3}$.

Vậy tập xác định của hàm số là $D = \left[\frac{7}{3}; +\infty\right]$.

Bài 6 trang 14 SBT Toán 7 tập 1: Tìm giá trị của tham số m để:

- a) x = 3 là một nghiệm của bất phương trình $(m^2 1)x^2 + 2mx 15 \le 0$;
- b) x = -1 là một nghiệm của bất phương trình $mx^2 2x + 1 > 0$;
- c) $x = \frac{5}{2}$ là một nghiệm của bất phương trình $4x^2 + 2mx 5m \le 0$;
- d) x = -2 là một nghiệm của bất phương trình $(2m-3)x^2 (m^2+1)x \ge 0$;
- e) x = m + 1 là một nghiệm của bất phương trình $2x^2 + 2mx m^2 2 < 0$.

a) x=3 là một nghiệm của bất phương trình $(m^2-1)x^2+2mx-15\leq 0$ khi và chỉ khi $(m^2-1).3^2+2m.3-15\leq 0$ hay $9m^2+6m-24\leq 0$

Tam thức bậc hai f (m) = $9m^2 + 6m - 24$ có $\Delta = 6^2 - 4.9$. (-24) = 900 suy ra hai nghiệm phân biệt $m_1 = \frac{4}{3}$ và $m_2 = -2$ và a = 9 > 0 nên f (m) ≤ 0 khi và chỉ khi -2

$$\leq m \leq \frac{4}{3}$$
.

Vậy $-2 \le m \le \frac{4}{3}$ thỏa mãn yêu cầu đề bài.

b) x=-1 là một nghiệm của bất phương trình $mx^2-2x+1>0$ khi và chỉ khi $m.(-1)^2-2.(-1)+1>0$ hay m+3>0 hay m>-3.

Vậy m > -3 thỏa mãn yêu cầu đề bài.

c) $x = \frac{5}{2}$ là một nghiệm của bất phương trình $4x^2 + 2mx - 5m \le 0$ khi và chỉ khi

$$4.\left(\frac{5}{2}\right)^2 + 2.m.\frac{5}{2} - 5m \le 0 \text{ hay } 25 \le 0 \text{ (vô lí)}.$$

Vậy không có giá trị m thỏa mãn yêu cầu đề bài.

d) x=-2 là một nghiệm của bất phương trình $\left(2m-3\right)x^2-\left(m^2+1\right)x\geq 0$ khi và chỉ

khi (
$$2m-3$$
).
 ($-2)^2-(m^2+1$).($-2)\geq 0$ hay $2m^2+8m-10\geq 0$

Tam thức bậc hai f (m) = $2m^2 + 8m - 10$ có $\Delta = 8^2 - 4.2$.(-10) = 144 suy ra f(m) có hai nghiệm phân biệt $m_1 = -5$ và $m_2 = 1$ và a = 2 > 0 nên f (m) ≥ 0 khi và chỉ khi

 $m \le -5$ hoặc $m \ge 1$.

Vậy m ≤ -5 hoặc m ≥ 1 thỏa mãn yêu cầu đề bài.

e) x=m+1 là một nghiệm của bất phương trình $2x^2+2mx-m^2-2<0\,$ khi và chỉ khi $2.(m+1)^2+2m.(m+1)-m^2-2<0\,$ hay $3m^2+6m<0\,$

Tam thức bậc hai f (m) = $3m^2 + 6m$ có $\Delta = 6^2 - 4.3.0 = 36$ suy ra hai nghiệm phân biệt $m_1 = -2$ và $m_2 = 0$ và a = 2 > 0 nên f (m) < 0 khi và chỉ khi -2 < m < 0. Vậy -2 < m < 0 thỏa mãn yêu cầu đề bài.

Bài 7 trang 14 SBT Toán 7 tập 1: Với giả trị nào của tham số m thì:

- a) Phương trình $4x^2 + 2(m-2)x + m^2 = 0$ có nghiệm;
- b) Phương trình $(m+1)x^2 + 2mx 4 = 0$ có hai nghiệm phân biệt;
- c) Phương trình $mx^2 + (m+1)x + 3m + 10 = 0$ vô nghiệm,
- d) Bất phương trình $2x^2 + (m+2)x + (2m-4) \ge 0$ có tập nghiệm là \square ;
- e) Bất phương trình $-3x^2 + 2mx + m^2 \ge 0$ có tập nghiệm là \square .

Lời giải

a) Phương trình $4x^2 + 2(m-2)x + m^2 = 0$ có nghiệm khi và chỉ khi:

$$\Delta = [2.(m-2)]^2 - 4.4.m^2 \ge 0$$

$$\Leftrightarrow m^2 - 4m + 4 - 4m^2 \ge 0$$

$$\Leftrightarrow -3m^2 - 4m + 4 \ge 0$$

Tam thức bậc hai f (m) = $-3m^2 - 4m + 4$ có $\Delta_m = (-4)^2 - 4$.(-3).4 = 64 > 0 suy ra

 $f(m) \text{ c\'o hai nghiệm phân biệt } m_1 = \frac{2}{3} \text{ và } m_2 = -2, \ a = -3 < 0 \text{ nên } f(m) \ge 0 \text{ khi và}$

$$chi khi - 2 \le m \le \frac{2}{3}.$$

Vậy $-2 \le m \le \frac{2}{3}$ thỏa mãn yêu cầu đề bài.

b) Phương trình $(m+1)x^2 + 2mx - 4 = 0$ có hai nghiệm phân biệt khi và chỉ khi $m+1 \neq 0$ và $\Delta = (2m)^2 - 4$.(m+1).(-4) > 0

+) Ta có: $m + 1 \neq 0$ khi và chỉ khi $m \neq -1$.

+)
$$X \text{ \'et } \Delta = (2m)^2 - 4.(m+1).(-4) > 0$$

$$\iff 4m^2 + 16m + 16 > 0$$

$$\iff$$
 m² + 4m + 4 > 0

$$\Leftrightarrow$$
 $(m+2)^2 > 0$

$$\Leftrightarrow$$
 m \neq -2 (vì (m + 2)² \geq 0 với mọi x \in \mathbb{R})

Vậy m $\neq -1$ và m $\neq -2$ thỏa mãn yêu cầu bài toán.

- c) +) Nếu m = 0 thì phương trình trở thành x+10=0, có nghiệm x=-10. Do đó m=0 không thỏa mãn yêu cầu.
- +) Nếu m \neq 0 thì phương trình vô nghiệm khi và chỉ khi:

$$\Delta = (m+1)^2 - 4.m.(3m+10) < 0$$

$$\Leftrightarrow$$
 m² + 2m + 1 - 12m² - 40m < 0

$$\Leftrightarrow$$
 -11m² - 38m +1 < 0

Tam thức bậc hai f (m) = $-11\text{m}^2 - 38\text{m} + 1$ có $\Delta_\text{m} = (-38)2 - 4.(-11).1 = 1488$ suy ra f(m) có hai nghiệm phân biệt:

$$m_1 = \frac{-19 + 2\sqrt{93}}{11} \text{ và } m_2 = \frac{-19 - 2\sqrt{93}}{11}, \text{ } a = -11 < 0 \text{ nên f (m)} < 0 \text{ khi và chỉ khi }$$

$$m < \frac{-19 - 2\sqrt{93}}{11} \text{ hoặc } m > \frac{-19 + 2\sqrt{93}}{11}$$

Vậy m <
$$\frac{-19-2\sqrt{93}}{11}$$
 và m > $\frac{-19+2\sqrt{93}}{11}$ thoả mãn yêu cầu đề bài.

d) Bất phương trình $2x^2 + (m+2)x + (2m-4) \ge 0$ có a = 2 > 0 nên tập nghiệm là

$$\Box$$
 khi và chỉ khi Δ = (m + 2)^2 - 4.2.(2m - 4) \leq 0

$$\Leftrightarrow$$
 m² + 4m + 4 - 16m + 32 < 0

$$\Leftrightarrow$$
 m² - 12m + 36 \leq 0

$$\Leftrightarrow$$
 $(m-6)^2 \le 0$

 \Leftrightarrow m = 6 (vì (m - 6)² \geq 0 với mọi m \in \mathbb{R})

Vậy m = 6 thỏa mãn yêu cầu đề bài.

e) Bất phương trình $-3x^2 + 2mx + m^2 \ge 0$ có tập nghiệm là \square khi và chỉ khi a > 0 và $\Delta \le 0$ mà a = -3 < 0 nên không tồn tại m thỏa mãn yêu cầu.

Vậy không tồn tại m thỏa mãn yêu cầu.

Bài 8 trang 14 SBT Toán 7 tập 1: Lợi nhuận thu được từ việc sản xuất và bán x sản phẩm thủ công của một cửa hàng là:

$$I(x) = -0.1x^2 + 235x - 70000,$$

với I được tính bằng nghìn đồng. Với số lượng sản phẩm bán ra là bao nhiều thì cửa hàng có lãi?

Lời giải

Cửa hàng có lãi khi và chỉ khi I (x) > 0 hay $-0.1x^2 + 235x - 70000 > 0$

Tam thức bậc hai $I(x) = -0.1x^2 + 235x - 70000$ có $\Delta = 235^2 - 4.(-0.1).(-70000)$

= 27 225 > 0 nên I(x) có hai nghiệm phân biệt x_1 = 2000 và x_2 = 350, a = -0,1 < 0 nên I (x) > 0 khi 350 < x < 2000.

Vậy cửa hàng bán ra từ 351 đến 1999 sản phẩm thì cửa hàng có lãi.

Bài 9 trang 15 SBT Toán 7 tập 1: Một quả bóng được ném thẳng lên từ độ cao $h_0(m)$ với vận tốc v_0 (m/s). Độ cao của bóng so với mặt đất (tính bằng mét) sau t (s) được cho bởi hàm số

$$h(t) = -\frac{1}{2}gt^2 + v_0t + h_0 với g = 10 \text{ m/s}^2 là gia tốc trọng trường.}$$

- a) Tỉnh h_0 và v_0 biết độ cao của quả bóng sau 0,5 giây và 1 giây lần lượt là 4,75 m và 5m.
- b) Quả bóng có thể đạt được độ cao trên 4 m không? Nếu có thì trong thời gian bao lâu?

c) Cũng ném từ độ cao h_0 như trên, nếu muốn độ cao của bóng sau l giây trong khoảng từ 2 m đến 3 m thì vận tốc ném bóng v_0 cần là bao nhiều? Lưu ý: Đáp số làm tròn đến hàng phần trăm.

Lời giải

a) Với $g = 10 \text{ m/s}^2$ là gia tốc trọng trường thì $h(t) = -\frac{1}{2}gt^2 + v_0t + h_0 \Leftrightarrow h(t) = -5t^2 + v_0t + h_0$.

Độ cao của quả bóng sau 0,5 giây là 4,75 m, ta có: $4,75 = -5(0,5)^2 + v_0.(0,5) + h_0$ hay $0,5v_0 + h_0 = 6$. (1)

Độ cao của quả bóng sau 1 giây là 5 m, ta có: $5 = -5.1^2 + v_0.1 + h_0$ hay $v_0 + h_0 = 10.$ (2)

Từ (1) và (2) ta được:

$$\begin{cases} 0.5v_0 + h_0 = 6 \\ v_0 + h_0 = 10 \end{cases} \text{ tức là } \begin{cases} v_0 = 8 \\ h_0 = 2 \end{cases}$$

Vây h (t) =
$$-5t^2 + 8t + 2$$
.

b) Bóng cao trên 4m khi và chỉ khi h (t) = $-5t^2 + 8t + 2 > 4$ hay $-5t^2 + 8t - 2 > 0$ Tam thức bậc hai f (t) = $-5t^2 + 8t - 2$ có $\Delta = 8^2 - 4$.(-5).(-2) = 24 > 0 nên f(t) có hai nghiệm phân biệt $t_1 = \frac{4 + \sqrt{6}}{5}$ và $t_2 = \frac{4 - \sqrt{6}}{5}$, a = -5 < 0 nên f (t) > 0 khi và

chỉ khi
$$\frac{4-\sqrt{6}}{5} < t < \frac{4+\sqrt{6}}{5}$$
 .

Quả bóng có thể đạt được độ cao trên 4m trong:

$$\frac{4+\sqrt{6}}{5} - \frac{4-\sqrt{6}}{5} \approx 0.98$$
 (s).

Vây quả bóng có thể đạt được độ cao trên 4m trong khoảng ít hơn 0,98 giây.

c) Độ cao của bóng sau l giây trong khoảng từ 2 m đến 3 m khi và chỉ khi:

$$2 < h$$
 (1) = $-5 + v_0 + 2 < 3$ tức là $5 < v_0 < 6$ (m/s).

Vậy vận tốc ném cần nằm trong khoảng từ 5 m/s đến 6 m/s.

Bài 10 trang 15 SBT Toán 7 tập 1: Từ độ cao y_0 mét, một quả bóng được ném lên xiên một góc α so với phương ngang với vận tốc đầu v_0 có phương trình chuyển động

$$y = \frac{-g}{2v_0^2 \cos^2 \alpha} x^2 + (\tan \alpha) x + y_0 v \acute{o} i g = 10 \text{ m/s}^2$$

- a) Viết phương trình chuyển động của quả bóng nếu $\alpha = 30^{\circ}$, $y_0 = 2 \,\text{m}$ và $v_0 = 7 \,\text{m/s}$.
- b) Để ném được quả bóng qua bức tường cao 2,5 m thì người ném phải đứng cách tường bao xa?

Lưu ý: Đáp số làm tròn đến hàng phần trăm.

Lời giải

a) Thay $\alpha = 30^{\circ}$, $y_0 = 2$ và $v_0 = 7$ vào phương trình chuyển động ta được:

$$y = \frac{-10}{2.7^2 \cdot \cos^2 30^\circ} x^2 + \tan 30^\circ \cdot x + 2$$

$$y = -0.14x^2 + 0.58x + 2$$

Vậy phương trình chuyển động là $y = -0.14x^2 + 0.58x + 2$.

b) Với x là khoảng cách từ người ném đến tường thì bóng được ném qua tường khi và chỉ khi y (x) > 2,5 hay $-0.14x^2 + 0.58x - 0.5 > 0$.

Xét tam thức bậc hai f (x) = $-0.14x^2 + 0.58x - 0.5$ có $\Delta = 0.58^2 - 4.(-0.14).(-0.5) = 0.0564 > 0$ nên f(x) có hai nghiệm phân biệt $x_1 = 2.92$ và $x_2 = 1.22$, a = -0.14 < 0 nên f (x) > 0 khi 1.22 < x < 2.92.

Vậy người ném bóng cần phải đứng cách tường một khoảng từ trên 1,22 m đến dưới 2,92 m.

Bài 11 trang 15 SBT Toán 7 tập 1: Một hình chữ nhật có chu vi bằng 20 cm. Để điện tích hình chữ nhật lớn hơn hoặc bằng 15 cm² thì chiều rộng của hình chữ nhật nằm trong khoảng bao nhiều?

Gọi x (cm) là chiều rộng hình chữ nhật.

Khi đó chiều dài hình chữ nhật là $\frac{20}{2}$ – x hay 10 – x (cm)

Chiều dài và chiều rộng của hình chữ nhật đều lớn hơn 0 và chiều rộng nhỏ hơn hoặc bằng chiều dài, ta có: $0 < x \le 10 - x$ hay $0 < x \le 5$ (cm) (1)

Diện tích của hình chữ nhật là S = x. (10 - x)

Ta có x.(10 - x) ≥ 15 khi và chỉ khi $x^2 + 10x - 15 \ge 0$.

Tam thức bậc hai f (x) = $x^2 + 10x - 15$ có $\Delta = 10^2 - 4.1$.(- 15) = 160 > 0 hai nghiệm phân biệt $x_1 = -5 + 2\sqrt{10}$ và $x_2 = -5 - 2\sqrt{10}$, a = 1 > 0 nên f (x) ≥ 0 khi và chỉ khi $x \leq -5 - 2\sqrt{10}$ hoặc $x \geq -5 + 2\sqrt{10}$.

Kết hợp với điều kiện (1) ta được $-5 + 2\sqrt{10} \le x \le 5$ hay $1,33 \le x \le 5$.

Vậy chiều rộng của hình chữ nhật nằm trong khoảng từ 1,33 cm đến 5 cm thì thỏa mãn yêu cầu bài toán.

Bài 11 trang 15 SBT Toán 7 tập 1: Thiết kế của một chiếc cổng có hình parabol với chiều cao 5 m và khoảng cách giữa hai chân cổng là 4 m.

- a) Chọn trục hoành là đường thẳng nối hai chân cổng, gốc toạ độ tại một chân cổng, chân cổng còn lại có hoành độ dương, đơn vị là 1 m. Hãy viết phương trình của vòm cổng.
- b) Người ta cần chuyển một thùng hàng hình hộp chữ nhật với chiều cao 3 m.
 Chiều rộng của thùng hàng tối đa là bao nhiêu để thùng có thể chuyển lọt qua được cổng?

Lưu ý: Đáp số làm tròn đến hàng phần trăm.

Lời giải

a) Đặt gốc tọa độ tại một chân cổng như hình vẽ trên.

Vì chiếc cổng có dạng parabol nên phương trình $y = ax^2 + bx + c$ của đường viền cổng.

Do một chân cổng có tọa độ (0;0) nên ta có c=0 (1).

Khoảng cách giữa hai chân cổng là 4 m nên chân cổng còn lại có tọa độ (4;0), ta có 16a + 4b + c = 0 (2)

Cổng có chiều cao 5 m nên tọa độ đỉnh cổng là (2; 5), ta có: 4a + 2b + c = 5 (3)

Thay (1) vào (2) và (3) ta được hệ phương trình:

$$\begin{cases} 16a + 4b = 0 \\ 4a + 2b = 5 \end{cases}$$

Từ đó suy ra a = -1,25; b = 5 và c = 0.

Vậy phương trình của vòm cổng là $y = -1.25x^2 + 5x$

b) Ta xác định các hoành độ x mà tại đó vòm cổng cao hơn thùng hàng bằng cách giải bất phương trình $y = -1,25x^2 + 5x \ge 3$ hay $-1,25x^2 + 5x - 3 \ge 0$.

Tam thức bậc hai f (x) = $-1,25x^2 + 5x - 3$ có $\Delta = 5^2 - 4.(-1,25).(-3) = 10 > 0$ nên f(x) có hai nghiệm phân biệt $x_1 = 0,74$ và $x_2 = 3,26$, a = -1,25 < 0 nên f (x) ≥ 0 khi và chỉ khi $0,74 \leq x \leq 3,26$.

Vậy chiều rộng tối đa của thùng hàng là 3,26 - 0,74 = 2,52 m.