Use the following spaces to record any information about key topics that you find useful.

 \Rightarrow Prove the following propositional statements using strong induction.

Proposition. Every positive integer can be written as a sum of distinct powers of 2.

Proof. By strong mathematical induction on n.

(1) Base case. n = 1.

Solution: $2^0 = 1$.

(2) Inductive step.

Solution:

Assume for $k \geq 1$, k can be written as the sum of distinct powers of 2.

Show that k+1 can be written as the sum of distinct powers of 2.

$$\exists_j \ 2^j \le k+1 < 2^{j+1}.$$

If $2^j = k+1$, then k+1 can be written as sum of distinct powers of 2, namely 2^j , and we are done.

If
$$2^{j} \neq k+1$$
, then $2^{j} < k+1 < 2^{j+1}$, so

$$0 < k + 1 - 2^j < 2^{j+1} - 2^j = 2^j \le k.$$

Since $0 < k + 1 - 2^j < k$, the inductive hypothesis guarantees that $k + 1 - 2^j$ can be written as a sum of distinct powers of 2 and the powers are less than j. Thus, $k + 1 = 2^j + a$ sum of distinct powers of 2 where the powers of 2 are less than j.