Estudo de caso - Cyclistic

Análise por: Hiêgor Barreto Rodrigues

Data: 20/05/2021

Dados: https://divvy-tripdata.s3.amazonaws.com/index.html

Licença: https://www.divvybikes.com/data-license-agreement

Projeto

O projeto é solicitação da empresa fictícia Cyclistic, localizada em Chicago. A diretora de marketing acredita que o futuro sucesso da empresa depende da maximização do número de membros anuais. Para isso, será realizada uma análise para entender a diferença da utilização das bicicletas da Cyclistic por usuários casuais e os membros anuais.

A partir desses insights, o time de marketing irá desenvolver uma nova estratégia para converter os usuários casuais em membros anuais. Mas, para isso acontecer, os insights devem estar bem apoiados nos dados e visualizações.

Para dar contexto ao projeto, algumas informações se fazem necessárias. Os analistas financeiros da Cyclistic concluíram que os membros anuais são muito mais lucrativos para a empresa do que os usuários casuais, apesar da flexibilidade dos preços atraírem mais clientes. Com isso, a diretora de marketing, Lily Moreno, acredita que existe uma grande chande de converter os usuários casuais em membros, pois eles já conhecem o serviço da Cyclistic e já escolheram a empresa como solução de mobilidade.

Assim, a questão a ser respondida é: Qual a diferença da utilização das bicicletas da Cyclistic entre os membros anuais e usuários casuais?

A análise será dividida em 6 etapas:

- 1. Perguntar
- 2. Preparar
- 3. Processar
- 4. Analisar
- 5. Compartilhar
- 6. Agir

1. Perguntar

A Cyclistic necessita dos dados para embasar a decisão para a campanha. Os dados nos ajudarão a entender se é mais eficiente fazer uma campanha geral ou uma campanha direcionada aos usuários casuais, visando ajudar a aumentar a lucratividade da empresa através da maximização do número de membros anuais.

Por isso, buscaremos entender melhor como os membros anuais diferem dos usuários casuais e porque eles são mais lucrativos para a empresa.

Informaremos os resultados da análise à Lily Moreno (diretora de marketing), o time de analista de marketing e time executivo da Cyclistic. É esperado que a análise de dados e os insights gerados, sejam o apoio necessário para lançar a campanha da maneira mais eficiente, possibilitando a tomada de decisão inteligente e baseada em dados.

2. Preparar

Começamos o trabalho no RStudio importando 4 bibliotecas que serão muito úteis para a análise: tidyverse, ggplot, readr e lubridate.

```
library(tidyverse)
library(readr)
library(lubridate)
library(ggplot2)
```

Após isso, importamos os nossos dados para o R, para fazer a limpeza.

```
getwd()
## [1] "C:/Users/hieeg/Documents/Cursos/Google Data Analyst/Curso 8 - Estudos de caso/Estudo de caso 1 - Cyclisti
setwd("/Users/hieeg/Documents/Cursos/Google Data Analyst/Curso 8 - Estudos de caso/Estudo de caso 1 - Cyclistic/D
ados originais")
mai 2020 <- read.csv("cyclistic tripdata 052020.csv")
jun_2020 <- read.csv("cyclistic_tripdata_062020.csv")</pre>
jul_2020 <- read.csv("cyclistic_tripdata_072020.csv")</pre>
ago_2020 <- read.csv("cyclistic_tripdata_082020.csv")
set_2020 <- read.csv("cyclistic_tripdata_092020.csv")
out_2020 <- read.csv("cyclistic_tripdata_102020.csv")
nov 2020 <- read.csv("cyclistic_tripdata_112020.csv")</pre>
dez_2020 <- read.csv("cyclistic_tripdata_122020.csv")</pre>
jan_2021 <- read.csv("cyclistic_tripdata_012021.csv")</pre>
fev_2021 <- read.csv("cyclistic_tripdata_022021.csv")</pre>
mar_2021 <- read.csv("cyclistic_tripdata_032021.csv")</pre>
abr_2021 <- read.csv("cyclistic_tripdata_042021.csv")
```

Com os dados importados para o R, conferimos se todas as tabelas possuem os mesmos nomes nas colunas e os mesmos tipos de variável para não ter incompatibilidade na união.

```
colnames(jun_2020)
## [1] "ride_id"
                          "rideable_type"
                                            "started_at"
                          "start_station_name" "start_station_id"
## [4] "ended_at"
## [7] "end_station_name" "end_station_id" "start_lat"
## [10] "start_lng"
                          "end_lat"
                                            "end lng"
## [13] "member_casual"
colnames(jul_2020)
## [1] "ride_id"
                          "rideable_type"
                                             "started_at"
## [4] "ended_at"
                          "start_station_name" "start_station_id"
## [7] "end_station_name" "end_station_id" "start_lat"
## [10] "start_lng"
                         "end_lat"
                                            "end_lng"
## [13] "member_casual"
colnames(ago_2020)
## [1] "ride_id"
                        "rideable_type"
                                            "started_at"
## [4] "ended_at"
                          "start_station_name" "start_station_id"
## [7] "end_station_name" "end_station_id" "start_lat"
## [10] "start_lng"
                         "end_lat"
                                            "end_lng"
## [13] "member_casual"
colnames(set_2020)
## [1] "ride id"
                         "rideable_type"
                                            "started at"
## [4] "ended_at"
                         "start_station_name" "start_station_id"
## [7] "end_station_name" "end_station_id" "start_lat"
## [10] "start_lng"
                         "end_lat"
                                            "end_lng"
## [13] "member_casual"
colnames(out_2020)
## [1] "ride id"
                          "rideable type"
                                             "started at"
## [4] "ended at"
                          "start_station_name" "start_station_id"
## [13] "member casual"
colnames (nov_2020)
                          "rideable_type"
                                             "started_at"
## [1] "ride_id"
## [4] "ended_at"
                          "start_station_name" "start_station_id"
## [7] "end_station_name" "end_station_id" "start_lat"
## [10] "start lng"
                                             "end_lng"
                         "end_lat"
## [13] "member casual"
colnames (dez_2020)
## [1] "ride_id"
                          "rideable_type"
                                            "started_at"
## [4] "ended_at"
                          "start_station_name" "start_station_id"
## [7] "end_station_name" "end_station_id" "start_lat"
                                            "end_lng"
## [10] "start_lng"
                         "end lat"
## [13] "member_casual"
```

```
colnames(jan_2021)
## [1] "ride_id"
                           "rideable_type"
                                               "started at"
## [4] "ended_at"
                           "start_station_name" "start_station_id"
## [7] "end_station_name" "end_station_id" "start_lat"
## [10] "start_lng"
                           "end lat"
                                              "end lng"
## [13] "member casual"
colnames (fev_2021)
## [1] "ride_id"
                           "rideable_type"
                                              "started at"
                           "start_station_name" "start_station_id"
## [4] "ended_at"
## [7] "end_station_name" "end_station_id" "start_lat"
## [10] "start_lng"
                                              "end_lng"
                          "end_lat"
## [13] "member_casual"
```

colnames (mar_2021)

```
## [1] "ride_id" "rideable_type" "started_at"

## [4] "ende_dat" "start_station_name" "start_station_id"

## [7] "end_station_name" "end_station_id" "start_lat"

## [10] "start_lng" "end_lat" "end_lng"

## [13] "member_casual"
```

colnames (abr_2021)

str (mai 2020)

```
## $ ride_id : chr "02668AD35674B983" "7A50CCAF1EDDB28F" "2FFCDFDB91FE9A52" "58991CF1DB75BA84" ...
## $ rideable_type : chr "docked bike" "doc
                                                                 : chr "2020-05-27 10:03:52" "2020-05-25 10:47:11" "2020-05-02 14:11:03" "2020-05-02 16:2
## $ started_at
5:36" ...
## $ ended at
                                                                  : chr "2020-05-27 10:16:49" "2020-05-25 11:05:40" "2020-05-02 15:48:21" "2020-05-02 16:3
9:28" ...
## $ start_station_name: chr "Franklin St & Jackson Blvd" "Clark St & Wrightwood Ave" "Kedzie Ave & Milwaukee A
ve" "Clarendon Ave & Leland Ave" ...
## $ start_station_id : int 36 340 260 251 261 206 261 180 331 219 ...
## $ end_station_name : chr "Wabash Ave & Grand Ave" "Clark St & Leland Ave" "Kedzie Ave & Milwaukee Ave" "Lak
e Shore Dr & Wellington Ave" ...
## $ end_station_id : int 199 326 260 157 206 22 261 180 300 305 ...
                                                                : num 41.9 41.9 41.9 42 41.9 ...
: num -87.6 -87.6 -87.7 -87.7 -87.7 ...
## $ start_lat
## $ start lng
## $ end_lat : num 41.9 42 41.9 41.9 41.8 ...
## $ end_lng : num -87.6 -87.7 -87.7 -87.6 -8
                                                                  : num -87.6 -87.7 -87.7 -87.6 -87.6 ...
## $ member_casual : chr "member" "casual" "casual" "casual" ...
```

```
str(jun 2020)
```

```
## 'data.frame': 343005 obs. of 13 variables:
## $ ride id
                   : chr "8CD5DE2C2B6C4CFC" "9A191EB2C751D85D" "F37D14B0B5659BCF" "C41237B506E85FA1" ...
## $ rideable type
                      : chr "docked_bike" "docked_bike" "docked_bike" ..
                     : chr "2020-06-13 23:24:48" "2020-06-26 07:26:10" "2020-06-23 17:12:41" "2020-06-20 01:0
## $ started at
9:35" ...
## $ ended at
                      : chr "2020-06-13 23:36:55" "2020-06-26 07:31:58" "2020-06-23 17:21:14" "2020-06-20 01:2
8:24" ...
## $ start_station_name: chr "Wilton Ave & Belmont Ave" "Federal St & Polk St" "Daley Center Plaza" "Broadway &
Cornelia Ave" ...
## $ start_station_id : int 117 41 81 303 327 327 41 115 338 84 ...
## $ end_station_name : chr "Damen Ave & Clybourn Ave" "Daley Center Plaza" "State St & Harrison St" "Broadway
& Berwyn Ave" ...
## $ end station id
                     : int 163 81 5 294 117 117 81 303 164 53 ...
## $ start_lat
                      : num 41.9 41.9 41.9 41.9 41.9 ...
## $ start lng
                      : num -87.7 -87.6 -87.6 -87.6 -87.7 ...
                      : num 41.9 41.9 41.9 42 41.9 ...
## $ end lat
## $ end lng
                     : num -87.7 -87.6 -87.6 -87.7 -87.7 ...
## $ member casual : chr "casual" "member" "member" "casual" ...
```

str(jul_2020)

```
## $ ride_id : chr "762198876D69004D" "BEC9C9FBA0D4CF1B" "D2FD8EA432C77EC1" "54AE594E20B35881" ... ## $ rideable_type : chr "docked bike" "docked bike" "docked bike" "
## $ started_at
                         : chr "2020-07-09 15:22:02" "2020-07-24 23:56:30" "2020-07-08 19:49:07" "2020-07-17 19:0
6:42" ...
## $ ended_at
                         : chr "2020-07-09 15:25:52" "2020-07-25 00:20:17" "2020-07-08 19:56:22" "2020-07-17 19:2
7:38" ...
## $ start station name: chr "Ritchie Ct & Banks St" "Halsted St & Roscoe St" "Lake Shore Dr & Diversey Pkwy"
"LaSalle St & Illinois St" ...
## $ start_station_id : int 180 299 329 181 268 635 113 211 176 31 ...
## $ end_station_name : chr "Wells St & Evergreen Ave" "Broadway & Ridge Ave" "Clark St & Wellington Ave" "Cla
rk St & Armitage Ave" ...
## $ end_station_id : int 291 461 156 94 301 289 140 31 191 142 ...
## $ start_lat
                         : num 41.9 41.9 41.9 41.9 41.9 ...
## $ start_lng
                        : num -87.6 -87.6 -87.6 -87.6 -87.6 ...
## $ end lat
                        : num 41.9 42 41.9 41.9 41.9 ...
## $ end_lng : num -87.6 -87.7 -87.6 -87.6 -87.6 ...

## $ member_casual : chr "member" "casual" "casual" ...
```

str(ago_2020)

```
## 'data.frame': 622361 obs. of 13 variables:
## $ ride_id
                    : chr "322BD23D287743ED" "2A3AEF1AB9054D8B" "67DC1D133E8B5816" "C79FBBD412E578A7" ...
                      : chr "docked bike" "electric bike" "electric bike" "electric bike" ..
## $ rideable type
                      : chr "2020-08-20 18:08:14" "2020-08-27 18:46:04" "2020-08-26 19:44:14" "2020-08-27 12:0
## $ started_at
5:41" ...
## $ ended at
                      : chr "2020-08-20 18:17:51" "2020-08-27 19:54:51" "2020-08-26 21:53:07" "2020-08-27 12:5
3:45" ...
## $ start station name: chr "Lake Shore Dr & Diversey Pkwy" "Michigan Ave & 14th St" "Columbus Dr & Randolph S
t" "Daley Center Plaza" ...
## $ start station id : int 329 168 195 81 658 658 196 67 153 177 ...
## $ end_station_name : chr "Clark St & Lincoln Ave" "Michigan Ave & 14th St" "State St & Randolph St" "State
St & Kinzie St" ...
## $ end_station_id
                      : int 141 168 44 47 658 658 49 229 225 305 ...
## $ start_lat
                      : num 41.9 41.9 41.9 41.9 41.9 ...
## $ start lng
                      : num -87.6 -87.6 -87.6 -87.6 -87.7 ...
## $ end_lat
                      : num 41.9 41.9 41.9 41.9 41.9 ...
## $ end lng
                      : num -87.6 -87.6 -87.6 -87.6 -87.7 ...
## $ member_casual : chr "member" "casual" "casual" "casual" ...
```

```
str(set_2020)
```

```
## 'data.frame': 532958 obs. of 13 variables:
## $ ride_id
                    : chr "2B22BD5F95FB2629" "A7FB70B4AFC6CAF2" "86057FA01BAC778E" "57F6DC9A153DB98C" ...
                      : chr "electric bike" "electric bike" "electric bike" "electric bike" ...
## $ rideable type
                      : chr "2020-09-17 14:27:11" "2020-09-17 15:07:31" "2020-09-17 15:09:04" "2020-09-17 18:1
## $ started at
0:46" ...
## $ ended at
                      : chr "2020-09-17 14:44:24" "2020-09-17 15:07:45" "2020-09-17 15:09:35" "2020-09-17 18:3
5:49" ...
## $ start station name: chr "Michigan Ave & Lake St" "W Oakdale Ave & N Broadway" "W Oakdale Ave & N Broadway"
"Ashland Ave & Belle Plaine Ave" ..
## $ start_station_id : int 52 NA NA 246 24 94 291 NA NA NA ...
## $ end_station_name : chr "Green St & Randolph St" "W Oakdale Ave & N Broadway" "W Oakdale Ave & N Broadway"
"Montrose Harbor" ...
## $ end_station_id
                      : int 112 NA NA 249 24 NA 256 NA NA NA ...
## $ start lat
                      : num 41.9 41.9 41.9 42 41.9 ...
## S start lng
                      : num -87.6 -87.6 -87.6 -87.7 -87.6 ...
                      : num 41.9 41.9 41.9 42 41.9 ...
## S end lat
## $ end lng
                      : num -87.6 -87.6 -87.6 -87.6 -87.6 ...
## $ member_casual : chr "casual" "casual" "casual" "casual" ...
```

str (out 2020)

```
## $ ride_id : chr "ACB6B40CF5B9044C" "DF450C72FD109C01" "B6396B54A15AC0DF" "44A4AEE261B9E854" ...
## $ rideable_type : chr "electric bike" "e
## $ started_at
                                                                       : chr "2020-10-31 19:39:43" "2020-10-31 23:50:08" "2020-10-31 23:00:01" "2020-10-31 22:1
6:43" ...
                                                                        : chr "2020-10-31 19:57:12" "2020-11-01 00:04:16" "2020-10-31 23:08:22" "2020-10-31 22:1
## $ ended_at
9:35" ...
## $ start station name: chr "Lakeview Ave & Fullerton Pkwy" "Southport Ave & Waveland Ave" "Stony Island Ave &
67th St" "Clark St & Grace St" ...
## $ start_station_id : int 313 227 102 165 190 359 313 125 NA 174 ...
## $ end_station_name : chr "Rush St & Hubbard St" "Kedzie Ave & Milwaukee Ave" "University Ave & 57th St" "Br
oadway & Sheridan Rd" ...
## $ end_station_id : int 125 260 423 256 185 53 125 313 199 635 ...
## $ start lat
                                                                       : num 41.9 41.9 41.8 42 41.9 ...
                                                                       : num -87.6 -87.7 -87.6 -87.7 -87.7 ...
## $ start lng
## $ end_lat : num 41.9 41.9 41.8 42 41.9 ...

## $ end_lng : num -87.6 -87.7 -87.6 -87.7 -87.7 ...

## $ member_casual : chr "casual" "casual" "casual" ...
```

str (nov_2020)

```
## 'data.frame': 259716 obs. of 13 variables:
## $ ride_id
                    : chr "BD0A6FF6FFF9B921" "96A7A7A4BDE4F82D" "C61526D06582BDC5" "E533E89C32080B9E" ...
## $ rideable_type
                       : chr "electric_bike" "electric_bike" "electric_bike" "electric_bike" .
## $ started_at
                      : chr "2020-11-01 13:36:00" "2020-11-01 10:03:20" "2020-11-01 00:34:05" "2020-11-01 00:4
5:16" ...
## $ ended at
                      : chr "2020-11-01 13:45:40" "2020-11-01 10:14:45" "2020-11-01 01:03:06" "2020-11-01 00:5
4:31" ...
## $ start_station_name: chr "Dearborn St & Erie St" "Franklin St & Illinois St" "Lake Shore Dr & Monroe St" "L
eavitt St & Chicago Ave" ...
## $ start_station_id : int 110 672 76 659 2 72 76 NA 58 394 ...
## $ end_station_name : chr "St. Clair St & Erie St" "Noble St & Milwaukee Ave" "Federal St & Polk St" "Stave
St & Armitage Ave" ...
## $ end station id : int 211 29 41 185 2 76 72 NA 288 273 ...
## $ start_lat
                      : num 41.9 41.9 41.9 41.9 41.9 ...
## $ start_lng
                      : num -87.6 -87.6 -87.6 -87.7 -87.6 ...
## $ end lat
                      : num 41.9 41.9 41.9 41.9 41.9 ...
## $ end lng
                      : num -87.6 -87.7 -87.6 -87.7 -87.6 ...
## $ member_casual : chr "casual" "casual" "casual" "casual" ...
```

str(dez_2020)

```
## 'data.frame': 131573 obs. of 13 variables:
                   : chr "70B6A9A437D4C30D" "158A465D4E74C54A" "5262016E0F1F2F9A" "BE119628E44F871E" ...
## $ ride_id
                      : chr "classic bike" "electric bike" "electric bike" "electric bike" ...
## $ rideable type
## $ started_at
                     : chr "2020-12-27 12:44:29" "2020-12-18 17:37:15" "2020-12-15 15:04:33" "2020-12-15 15:5
4:18" ...
                      : chr "2020-12-27 12:55:06" "2020-12-18 17:44:19" "2020-12-15 15:11:28" "2020-12-15 16:0
## $ ended at
0:11" ...
## $ start_station_name: chr "Aberdeen St & Jackson Blvd" "" "" "...
## $ start station id : chr "13157" "" "" "" ...
## $ end_station_name : chr "Desplaines St & Kinzie St" "" "" "...
## $ end_station_id : chr "TA1306000003" "" "" "" ...
                     : num 41.9 41.9 41.9 41.9 41.8 ...
## $ start lat
                     : num -87.7 -87.7 -87.7 -87.7 -87.6 ...
## S start lng
## $ end_lat
                     : num 41.9 41.9 41.9 41.9 41.8 ...
## $ end lng
                     : num -87.6 -87.7 -87.7 -87.7 -87.6 ...
## $ member_casual : chr "member" "member" "member" "member" ...
```

str(jan_2021)

```
## 'data.frame': 96834 obs. of 13 variables:
                   : chr "E19E6F1B8D4C42ED" "DC88F20C2C55F27F" "EC45C94683FE3F27" "4FA453A75AE377DB" ...
## $ ride_id
                      : chr "electric_bike" "electric_bike" "electric_bike" "electric_bike" ...
## $ rideable_type
                     : chr "2021-01-23 16:14:19" "2021-01-27 18:43:08" "2021-01-21 22:35:54" "2021-01-07 13:3
## $ started_at
1:13" ...
## $ ended at
                      : chr "2021-01-23 16:24:44" "2021-01-27 18:47:12" "2021-01-21 22:37:14" "2021-01-07 13:4
2:55" ...
## $ start_station_name: chr "California Ave & Cortez St" "California Ave & Cortez St" "California Ave & Cortez
St" "California Ave & Cortez St" ...
## $ start_station_id : chr "17660" "17660" "17660" "17660" ...
## $ end station name : chr "" "" "" ...
## $ end_station_id : chr "" "" "" ...
## $ start lat
                      : num 41.9 41.9 41.9 41.9 41.9 ...
## $ start lng
                      : num -87.7 -87.7 -87.7 -87.7 -87.7 ...
## $ end lat
                     : num 41.9 41.9 41.9 41.9 41.9 ...
                     : num -87.7 -87.7 -87.7 -87.7 -87.7 ...
## $ end_lng
## $ member casual : chr "member" "member" "member" "member" ...
```

str(fev_2021)

```
## 'data.frame': 49622 obs. of 13 variables:
                   : chr "89E7AA6C29227EFF" "0FEFDE2603568365" "E6159D746B2DBB91" "B32D3199F1C2E75B" ...
## $ ride_id
## $ rideable type
                      : chr "classic_bike" "classic_bike" "electric_bike" "classic_bike" ...
## $ started_at
                     : chr "2021-02-12 16:14:56" "2021-02-14 17:52:38" "2021-02-09 19:10:18" "2021-02-02 17:4
9:41" ...
## $ ended_at
                      : chr "2021-02-12 16:21:43" "2021-02-14 18:12:09" "2021-02-09 19:19:10" "2021-02-02 17:5
4:06" ...
## $ start_station_name: chr "Glenwood Ave & Touhy Ave" "Glenwood Ave & Touhy Ave" "Clark St & Lake St" "Wood S
t & Chicago Ave" ...
## $ start station id : chr "525" "525" "KA1503000012" "637" ...
## $ end station name : chr "Sheridan Rd & Columbia Ave" "Bosworth Ave & Howard St" "State St & Randolph St"
"Honore St & Division St" ...
## $ end_station_id : chr "660" "16806" "TA1305000029" "TA1305000034" ...
                      : num 42 42 41.9 41.9 41.8 ...
## $ start_lat
                      : num -87.7 -87.7 -87.6 -87.7 -87.6 ...
## $ start lng
## $ end lat
                     : num 42 42 41.9 41.9 41.8 ...
                      : num -87.7 -87.7 -87.6 -87.7 -87.6 ...
## $ end lng
## $ member_casual : chr "member" "casual" "member" "member" ...
```

```
str(mar_2021)
```

```
str(abr_2021)
```

3. Processar

Na verificação foi notado que existiam 4 colunas que apresentavam tipos que não condiziam com os dados nas tabelas de maio até novembro de 2020. Assim, transformamos as colunas *start_station_id* e *end_station_id* em *character*, e as colunas *started_at* e *ended_at* em *datetime*. Nas tabelas de dezembro de 2020 até abril de 2021, apenas as colunas *started_at e ended_at foram alteradas para datetime, já que as outras estavam no tipo correto.

```
jun_2020 <- mutate(jun_2020,
                   start_station_id = as.character(start_station_id),
                   end_station_id = as.character(end_station_id),
                   started_at = as_datetime(started_at),
                   ended_at = as_datetime(ended_at))
jul_2020 <- mutate(jul_2020,
                   start_station_id = as.character(start_station_id),
                   end_station_id = as.character(end_station_id),
                   started_at = as_datetime(started_at),
                   ended_at = as_datetime(ended_at))
ago_2020 <- mutate(ago_2020,
                   start_station_id = as.character(start_station_id),
                   end station id = as.character(end_station_id),
                   started_at = as_datetime(started_at),
                   ended_at = as_datetime(ended_at))
set_2020 <- mutate(set_2020,
                   start_station_id = as.character(start_station_id),
                   end_station_id = as.character(end_station_id),
                   started_at = as_datetime(started_at),
                   ended_at = as_datetime(ended_at))
out_2020 <- mutate(out_2020,
                   start_station_id = as.character(start_station_id),
                   end_station_id = as.character(end_station_id),
                   started_at = as_datetime(started_at),
                   ended_at = as_datetime(ended_at))
nov_2020 <- mutate(nov_2020,
                   start_station_id = as.character(start_station_id),
                   end station id = as.character(end station id),
                   started_at = as_datetime(started_at),
                   ended_at = as_datetime(ended_at))
dez 2020 <- mutate(dez 2020,
                   started_at = as_datetime(started_at),
                   ended_at = as_datetime(ended_at))
jan 2021 <- mutate(jan 2021,
                   started_at = as_datetime(started_at),
                   ended_at = as_datetime(ended_at))
fev_2021 <- mutate(fev_2021,</pre>
                   started at = as datetime(started at),
                   ended_at = as_datetime(ended_at))
mar 2021 <- mutate(mar 2021,
                   started at = as datetime(started at),
                   ended_at = as_datetime(ended_at))
abr_2021 <- mutate(abr_2021,
                   started_at = as_datetime(started_at),
                   ended_at = as_datetime(ended_at))
```

Com a compatibilidade de todas as tabelas, unimos todos os dados em uma única tabela chamada *all_trips*.

Na tabela *all_trips*, retiramos as colunas que não contribuem para a análise desse projeto, que são as colunas *start_station_id*, *end_station_id*, *start_lat*, *start_lng*, *end_lat*, *end_lng*. Posto que estamos interessados em entender o comportamento dos usuários, os números de identificação das estações assim como a latitude e longitude iniciais e finais não são necessárias à nossa análise.

Após a retirada, adicionaremos colunas complementares para melhorar a nossa análise. A primeira coluna adicionada será a *ride_length*, que nos fornecerá o tempo de cada corrida, utilizando as colunas *started at* e *ended at*.

Adicionaremos também mais 5 colunas de datas, para que possamos fazer análises utilizando diferentes medidas de tempo, visando entender com profundidade o comportamento dos diferentes tipos de usuários. Adicionaremos as colunas date, day, day_of_week, month e year, que nos fornecem a data, o dia, o dia da semana, o mês e o ano, respectivamente.

A primeira coluna adicionada necessita de verificação. Na coluna *ride_length*, nós estamos lidando com uma unidade de tempo, portanto valores negativos não fazem sentido. Assim, retiraremos dos nossos dados todas as linhas em que a duração da corrida é negativa, que são 10506 linhas. Como estamos retirando dados, vamos criar outra tabela chamada *all_trips_v2*.

```
all_trips_v2 <- all_trips[!(all_trips$ride_length<0),]
```

4. Analisar

Na etapa de análise, faremos 8 análises para buscar entender a diferença de comportamento entre os usuários casuais e os membros anuais.

I. Quantidade de corridas dos tipos de usuário

Verificamos que os membros anuais possuem um número **42,3%** superior de corridas comparado aos usuários casuais.

II. Duração média da corrida dos tipos de usuário

Verificamos que a média de duração de corrida dos usuários casuais é **177**% maior que a média dos membros anuais.

III. Média de tempo de corrida x tipos de usuário + dias da semana

Ambos os usuários tem o domingo como o dia de maior média.

A variação das médias de durações durante a semana é semelhante para ambos os usuários: de segunda a sexta possuem uma média de duração inferior aos finais de semana.

```
all_trips_v2$member_casual all_trips_v2$day_of_week all_trips_v2$ride_length
                                                                           domingo 2987.7343 secs
domingo 1064.1544 secs
## 1
                                                     casual
                                                   member
## 2
                                                 member segunda-feira
member segunda-feira
casual terça-feira
member terça-feira
                                                                                                                                           2636.1478 secs
## 3
                                                                                                                                              910.8418 secs
## 4
                                                                                                                                           2362.4766 secs
## 5
## 6
                                                                                                                                        891.5500
2394.9069 secs
                                                                                                                                               891.9936 secs

        quarta-feira
        891.9936 secs

        quarta-feira
        2394.9069 secs

        quarta-feira
        908.7622 secs

        quinta-feira
        2476.0688 secs

        quinta-feira
        893.9189 secs

        sexta-feira
        2511.7763 secs

        sexta-feira
        934.8350 secs

        sábado
        2752.1568 secs

        sábado
        1048.9659 secs

                                                 casual
member
## 7
## 8
                                                casual
member
## 9
## 10
                                                  casual
member
casual
member
## 11
## 12
## 13
## 14
```

IV. Dia da semana x tipos de usuário (quantidade de corrida e média de duração)

Já na quantidade de corridas, notamos uma diferença significativa na variação entre os dias da semana.

Para ambos os tipos de usuários, sábado é o dia que tem mais corridas.

Nas corridas dos usuários casuais nota-se uma grande diferença dos dias de semana, que possuem uma média de 180079 corridas, e os finais de semana, que possuem uma média de 319875 corridas: média **77,6**% maior. Se comparamos isoladamente o dia com maior quantidade de corridas (sábado) com o dia de menor número (terça-feira), essa diferença é ainda mais significativa: **121,45**%.

Nas corridas dos membros anuais, a diferença é menos acentuada, com um detalhe. Apesar de sábado ser o dia com maior quantidade de corridas, os membros anuais possuem uma média de corridas superior nos dias da semana se comparado aos finais de semana, com uma diferença sutil de **1,40%**. Se compararmos isoladamente o dia com maior quantidade de corridas (sábado) com o dia de menor número (domingo), essa diferença é de **22,19%**.

```
## # A tibble: 14 x 4
## # Groups: member_casual [2]
## member_casual day_of_week number_of_rides avg_duration
                       ##
        <chr>
## 1 casual
                               segunda-feira
## 2 casual
                                                                     164524 2636.1478 secs

        segunda-feira
        164524 2636.1478 secs

        terça-feira
        161990 2362.4766 secs

        quarta-feira
        168598 2394.9069 secs

        quinta-feira
        176313 2476.0688 secs

        sexta-feira
        228972 2511.7763 secs

        sábado
        358721 2752.1568 secs

        domingo
        279022 1064.1544 secs

## 3 casual
## 4 casual
## 6 casual
## 7 casual
                             domingo 279022 1064.1544 secs segunda-feira 287008 910.8418 secs terça-feira 307072 891.9936 secs quarta-feira 323538 908.7622 secs
## 8 member
## 9 member
## 10 member
## 11 member
                              quarta-feira
sexta-feira
## 12 member
## 13 member
                                                                     319275 893.9189 secs
                                                                    334732 934.8350 secs
                               sábado
                                                                    340937 1048.9659 secs
## 14 member
```

V. Mês x tipos de usuário (quantidade de corrida e média de duração)

Analisando os usuários casuais, a quantidade de corridas nos meses de inverno em Chicago (dezembro, janeiro e fevereiro) é de **19415**. No verão, outono e primavera, porém, a quantidade de corridas cresce significativamente: **1122**%, **694**% e **428**% respectivamente. Já quando analisamos a média de duração das corridas, os meses do outono apresentam a menor média: **2005,88 segundos**. No verão, primavera e inverno, as durações aumentam em **56**%, **27**% e **2**%, respectivamente.

Os membros anuais apresentam a menor quantidade também nos meses de inverno, com **73116** corridas. Nos outros meses há um crescimento, porém menos acentuado que os usuários casuais, com aumentos de **265%**, **226%** e **109%** para os meses de verão, outono e primavera, respectivamente. Analisando a média de duração das corridas, os meses do outono apresentam a menor média: **863,56 segundos**. No verão, primavera e inverno, as durações aumentam em **24%**, **12%** e **1%**, respectivamente.

VI. Tipo de bicicleta x tipos de usuário (quantidade de corrida)

Analisando os dados foi notado que a grande maioria das bicicletas utilizadas são do tipo *docked_bike*, seguida do tipo *eletric_bike*, e depois a *classic_bike*, com a preferência de **67%**, **19%** e **14%**, respectivamente.

```
all_trips_v2 %>%
   group_by(rideable_type, member_casual) %>%
   summarize(number_of_rides = n()) %>%
  arrange(rideable_type, member_casual)
## # A tibble: 6 x 3
## # Groups: rideable_type [3]
## rideable_type member_casual number_of_rides
                                 141576
    <chr>
                    <chr>
## 1 classic bike casual
## 2 classic_bike member

## 3 docked_bike casual

## 4 docked_bike member

## 5 electric_bike dasual

## 6 electric_bike member
                                                392911
                                               1114512
                                              1373605
                                               284024
425068
```

VII. Estação de corrida (início) x tipos de usuário (quantidade de corrida)

As 3 estações com maiores números de saídas são Streeter Dr & Grand Ave, Lake Shore Dr & Monroe St e Millenium Park, todas por usuários casuais.

```
all trips v2 %>%
 group_by(start_station_name, member_casual) %>%
  summarize(number_of_rides = n()) %>%
  arrange(desc(number_of_rides), member_casual)
## # A tibble: 1,403 x 3
## # Groups: start_station_name [712]
## start_station_name member_casual number_of_rides
## 1 "" member
## 2 "" casual
## 3 "Streeter Dr & Grand Ave" casual
## 4 "Lake Shore Dr & Monroe St" casual
## 5 "Millennium Park" casual
## 6 "Clark St & Elm St" member
## 7 "Broadway & Barry Ave"
## 7 "Broadway & Barry Ave" member
## 8 "Wells St & Concord Ln" member
                                                                 16581
                                                                16283
## 9 "Dearborn St & Erie St" member
## 10 "Theater on the Lake" casual
                                                                 16267
## 10 "Theater on the Lake"
                                                                 16243
## # ... with 1,393 more rows
```

VIII. Estação de corrida (final) x tipos de usuário (quantidade de corrida)

As 3 estações com os maiores números de chegadas são Streeter Dr & Grand Ave, Lake Shore Dr & Monroe St e Millenium Park, todas por usuários casuais.

```
all_trips_v2 %>%
  group_by(end_station_name, member_casual) %>%
  summarize(number_of_rides = n()) %>%
  arrange(desc(number_of_rides), member_casual)
## `summarise()` has grouped output by 'end_station_name'. You can override using the `.groups` argument.
## # A tibble: 1,414 x 3
## # Groups: end_station_name [713]
## 1 ""
                                    member
                                                                 99902
## 2 ""
## 2 "" casual
## 3 "Streeter Dr & Grand Ave" casual
                                                                 71330
                                                                30718
## 4 "Lake Shore Dr & Monroe St" casual
                                                                22769
## 5 "Millennium Park" casual
## 6 "Clark St & Elm St" member
## 5 "Millennium Park"
                                                                22330
21835
## / "Theater on the Lake"

## 8 "St. Clair St & Erie St" member

## 9 "Dearborn St & Erie St" member

## 10 "Broadway & Barry Ave" member

## # ... with 1,404 more rows
## 7 "Theater on the Lake"
                                                                18212
17287
                                                                16850
                                                                 16777
```

5. Compartilhar

Com as análises feitas, criaremos as visualizações de dados para tornar a nossa análise mais intuitiva e acessível para os stakeholders.

I. Utilização por semana

```
options(scipen = 100) #comando para desativar a notação científica
all_trips_v2 %>%
  group_by(member_casual, day_of_week) %>%
  summarize(number_of_rides = n(),
           avg_duration = mean(ride_length)) %>%
  arrange(member_casual, day_of_week) %>%
  ggplot(aes(x = day_of_week, y = number_of_rides, fill = member_casual)) +
  geom_col(position = "dodge") +
  labs(title = "Quantidade de corridas por dia da semana",
      subtitle = "Comparação entre usuários casuais e membros anuais",
      x = "Dia da semana",
      y = "Quantidade de corridas") +
  theme_minimal() +
  scale_fill_discrete(name="",
                     labels=c("Usuário casual", "Membro anual")) +
  theme(legend.position="right")
```

Quantidade de corridas por dia da semana

Duração de uso por semana II.

```
all_trips_v2 %>%
  group_by(member_casual, day_of_week) %>%
  arrange(member_casual, day_of_week) %>%
  ggplot(aes(x = day_of_week, y = avg_duration, fill = member_casual)) +
geom_col(position = "dodge") +
  labs(title = "Média de duração das corridas por dia da semana",
      subtitle = "Comparação entre usuários casuais e membros anuais",
      x = "Dia da semana",
y = "Duração das corridas") +
  theme_minimal() +
  scale_fill_discrete(name="",
                     labels=c("Usuário casual", "Membro anual")) +
  theme(legend.position="right")
```

Média de duração das corridas por dia da semana

Dia da semana

III. Utilização por mês

Quantidade de corridas por mês

IV. Duração de uso por mês

Média de duração das corridas por mês

V. Tipo de bicicleta por usuário

Tipo de bicicleta utilizado por usuário

6. Agir

Com a análise dos dados disponibilizados, criamos perfis para cada tipo de usuário.

O usuário casual utiliza a bicicleta para corridas mais duradouras e com um foco maior nas corridas ao fim de semana, indicando o uso mais voltado ao lazer. Além do destaque para os finais de semana, os meses de verão são um grande sucesso para os usuários casuais, pois o tempo é favorável para o uso da bicicleta como meio de transporte e como lazer.

O membro anual, por sua vez, possuem um perfil de corridas mais rotineiros e repetitivos, pois apresentam variações leves tanto na quantidade quanto na duração ao longo da semana. Existe um destaque também para os meses de verão e outono, pois o clima favorece o uso da bicicleta.

Assim, temos de nos mostrar financeiramente viáveis para os usuários casuais através de planos mais flexíveis ou pacotes de corridas para criar um vínculo mais forte com a Cyclistic, aproximando-os de uma assinatura.

Além disso, considerar a criação de eventos para o público, como passeio por pontos turísticos marcantes da cidade, visando fomentar a utilização da bicicleta como mobilidade e divulgar a nossa solução, além de desenvolver um senso de comunidade entre os usuários da Cyclistic, aumentando a fidelidade dos clientes à marca e o marketing boca-a-boca.

Por fim, é recomendada uma análise mais aprofundada comparando os preços das corridas individuais, do ticket diário com o preço da assinatura anual, para entender como podemos nos tornar mais financeiramente viável para os usuários casuais. Outra informação que pode nos trazer insights é a distância percorrida por corrida, que pode nos ajudar a traçar ainda melhor o perfil dos clientes da Cyclistic.