Teoremas del límite: ley de los grandes números y teorema límite central

Jorge Antonio Gómez García Saud Antonio Morales González

15 de diciembre de 2022

Índice

1.	Introducción
2.	Ley de los grandes números
	2.1. Ley débil de los grandes números
	2.1.1. Ejemplo en Python
	2.2. Ley fuerte de los grandes números
3.	Teorema límite central

1. Introducción

TEXT

2. Ley de los grandes números

2.1. Ley débil de los grandes números

Sea X_i una secuencia de variables aleatorias independientes tales que $E[X_i] = \mu$ y $var(X_n) \leq M$ para todo $n \geq 1$. Entonces, la siguiente secuencia de variables aleatorias converge a μ en probabilidad:

$$\overline{X}_n := \frac{1}{n}(X_1 + \dots + X_n) = \frac{1}{n}\sum_{i=1}^n X_i \longrightarrow \mu$$
 en probabilidad.

De esta ecuación tenemos que:

$$\mathrm{E}[\overline{X}_n^2] \to \mu^2$$

2.1.1. Ejemplo en Python

Considere el siguiente ejemplo: Sean X_1, X_2, \ldots, X_n variables aleatorias independientes con distribución exponencial, tal que $X_i \sim \text{Exp}(\lambda)$. El segundo momento $\text{E}[\overline{X}_i^2]$ de X_i , con m diferentes valores de ω , puede ser simulado en Python de la siguiente manera:

```
import numpy as np
import matplotlib.pyplot as plt
# Parametros
media_exp = 2  # beta = 0.5
n = 10000  # Numero de variables aleatorias
               # Numero de w's
# Generamos m muestras de n variables aleatorias con
   distribucion exponencial:
x = np.random.exponential(media_exp, (m,n))
    # (m,n) es una matriz (filas, columnas)
# Obtenemos la media de cada una de las muestras:
x_barra = np.mean(x, axis=1)
    # axis=1: calcula la media de cada fila
   # (m, 1) es un vector
# Obtenemos el segundo momento de cada una de las
   muestras:
x_barra_cuadrado = np.mean(x_barra**2)
print(x_barra_cuadrado)
    # 4.0000000000000004
```

¿Qué describe el código anterior? Primero, determinamos los parámetros de la distribución exponencial. En este caso la media está definida como media_exp = 2. Luego,

2.2. Ley fuerte de los grandes números

3. Teorema límite central