The physics of compact objects and experimental improvements on detectors in the gravitational-wave era

Hang Yu

Thesis proposal

April 26, 2017

INTRODUCTION

- Adv. LIGO's detection of GW heralds a new age of GW astrophysics.
- It requires both better understanding/modeling of the astrophysical sources,
- and more sensitive and robust GW detector.

I. OBSERVABLES IN COMPACT OBJECTS (NEUTRON STARS)

- I.1 GW signatures: tidal interactions in coalescing binary NSs
- I.2 Traditional E&M signatures: exposing burning ashes in Type-I X-ray bursts

TIDAL INTERACTIONS IN COALESCING BINARY NS'S

- BNS Sources for ground-based GW detectors
- Orbital energy to NS internal energy tidal phase shift
- Linear dynamic tides driven H.O.
 - NS g mode eigenfreq ~ orbital freq
- Normal fluid vs. superfluid
 - Single fluid vs. two-fluid
 - Different source of bouyancy

• The amplitude and frequency of the resonance probes the stratification, composition, and superfluid state of the core of NS.

Superfluid npe\mu NS

published: MNRAS, 464, 2622 (2017)

NS with Hyperons in the inner core

(submitted to MNRAS)

left pa o hype

Table 2. Eigenfrequencies $f_a^{(GR)}$ and gravitational waveform phase shift $\delta\phi_a$ for the three-lowest order $l_a=2$ g modes for each stellar model. The format is $\{f_a/100 \text{ Hz}, |\delta\phi_a|/\text{rad}\}$.

j	$n_a^{(j)}=1$	$n_a^{(j)}=2$	$n_a^{(j)}=3$
Λ1.6	{7.4, 5.5e-4}	{4.3, 3.4e-4}	{3.0, 3.6e-7}
μ 1.6	{4.1, 3.4e-3}	{2.0, 1.6e-5}	{1.3, 1.2e-5}
Λ1.5	{4.1, 1.1e-3}	{2.5, 1.6e-7}	{1.4, 6.6e-7}
$\mu 1.5$	$\{4.5, 5.4e-3\}$	{2.4, 6.6e-6}	{1.6, 2.1e-5}
μ 1.4	{4.6, 9.8e-3}	{2.4, 3.6e-7}	{1.6, 3.0e-5}

(AVLI INSTITUTE

Hang Yu, 04/26/2017 Page 6

NS with Hyperons in the inner core

(submitted to MNRAS)

Table 4. Measurement errors found by stacking events for different detectors and values of f_a and $\delta \phi_a$. We assume 5 years of observation, an SNR cutoff of 12, and $\mathcal{R} = 10^3 \text{ Gpc}^{-3} \text{ yr}^{-1}$, corresponding to expected number of events of 45, 3.3×10^6 , and 7.8×10^4 , for aLIGO, CE, and ET-D, respectively.

$f_a[Hz]$	$ \delta\phi_a $ [rad]	Detector	$\langle \Delta(f_a) \rangle$ [Hz]	$\langle \Delta(\delta\phi_a) \rangle$ [rad]
450	0.01	aLIGO CE ET-D	3.2e+3 2.9e+1 9.1e+1	1.3e-1 1.4e-3 4.2e-3
450	0.001	aLIGO CE ET-D	3.2e+4 2.9e+2 9.1e+2	1.3e-1 1.4e-3 4.2e-3
750	0.001	aLIGO CE ET-D	1.0e+5 1.1e+3 3.3e+3	4.0e-1 4.7e-3 1.4e-2

EXPOSING ASHES IN TYPE I X-RAY BURSTS

- Type I X-ray bursts: run-away thermonuclear burning of H and/or He on the surface of an NS.
- A small fraction exhibits strong photospheric expansion.
- The freshly synthesized heavy-element ashes can be ejected in radiative wind.
- Ashes -> source of opacity -> absorption edges in spectra.
- Measure surface gravity via redshift of the edge location.
- Constrain EoS.

model 6

age 5,469320 hrs

II. IMPROVING THE PERFORMANCE OF GW DETECTORS

- II.1 LIGO commissioning: alignment sensing and control (ASC)
- II.2 GWcleaning: feed-forward noise cancellation
- II.3 Enhanced chi-sq glitch vetoing
- (II.4 Coating thermal noise)

ALIGO ASC

Aligning the SRC

- SRC ASC signal problematic at LHO
- Related to IFO thermal state
- Extra absorption at ITMX found -> caused differential thermal lensing
- This can potentially explain why SRC ASC signal being bad.

New ASC Scheme for SRC

• Utilizing the Control Laser used for squeezed vacuum injection.

• Under development.

GWCLEANING: FEED-FORWARD NOISE CANCELLATION

- Different degrees of freedom are cross-coupled
- Local: angle to length; length to angle
- Global: seismic to length; length to angle
- Suppressing noise via feed-back challenging: high gain to suppress motion, but low bandwidth to avoid sensor noise injection
- Decouple via feed-forward

Local Feed-Forward

- Local coupling:
 - Spot mis-centering couples angular motion to length
 - Suspension system couples length actuation to angular motion
 - Can be canceled with singleinput-single-output system

Global Feed-Forward

• SEI to LSC

ENHANCED CHI-SQ GLITCH VETOING

GW150914 in L1 A Glitch

TIMELINE:

