CS 330: Network Applications & Protocols

Introduction to Computer Networks & the Internet

Galin Zhelezov
Department of Physical Sciences
York College of Pennsylvania

Introduction

- What is the Internet?
- Network edge
 - End systems, access networks, links
- Network core
 - Packet switching, circuit switching, network structure
- Delay, loss, throughput in networks
- Protocol layers, service models
- Networks under attack: security
- History

The Network Core

- Mesh of interconnected routers
- Packet-switching: hosts break application-layer messages into packets
 - Forward packets from one router to the next, across links on path from source to destination
 - Each packet transmitted at full link capacity

Packet-switching: store-and-forward

- takes *LIR* seconds to transmit (push out) *L*-bit packet into link at *R* bps
- store and forward: entire packet must arrive at router before it can be transmitted on next link
 - end-end delay = 2L/R (assuming zero propagation delay)

one-hop numerical example:

- L = 7.5 Mbits
- R = 1.5 Mbps
- one-hop transmission delay = 5 sec

more on delay shortly ...

Packet Switching: queueing delay, loss

queuing and loss:

- if arrival rate (in bits) to link exceeds transmission rate of link for a period of time:
 - packets will queue, wait to be transmitted on link
 - packets can be dropped (lost) if memory (buffer) fills up

Two Key Functions of the Network-Core

Routing

- Determines source-destination route taken by packets
- Utilizes routing algorithms

Forwarding

- Move packets from router's input to appropriate router output

Alternative Core: Circuit Switching

- End-to-end resources allocated to, reserved for "call" between source & dest:
 - In diagram, each link has four circuits
 - Call gets 2nd circuit in top link and 1st circuit in right link
 - Dedicated resources (i.e. no sharing)
 - Circuit-like (guaranteed) performance
 - Circuit segment idle if not used by a call (no sharing)
 - Commonly used in traditional telephone networks

Circuit switching: FDM versus TDM

Packet switching versus circuit switching

packet switching allows more users to use network! example:

- 1 Mb/s link
- each user:
 - 100 kb/s when "active"
 - active 10% of time

- 10 users
- packet switching:
 - with 35 users, probability > 10 active at same time is less than .0004 *

- Q: how did we get value 0.0004?
- Q: what happens if > 35 users?

Packet switching versus circuit switching

is packet switching a "slam dunk winner?"

- great for bursty data
 - resource sharing
 - simpler, no call setup
- excessive congestion possible: packet delay and loss
 - protocols needed for reliable data transfer, congestion control
- Q: How to provide circuit-like behavior?
 - bandwidth guarantees needed for audio/video apps
 - still an unsolved problem (chapter 7)
- Q: Human analogies of reserved resources (circuit switching) versus on-demand allocation (packet-switching)?

- End systems connect to Internet via access ISPs (Internet Service Providers)
 - residential, company and university ISPs
- Access ISPs in turn must be interconnected.
 - · so that any two hosts can send packets to each other
- Resulting network of networks is very complex
 - evolution was driven by economics and national policies
- Let's take a stepwise approach to describe current Internet structure

 Question: Given millions of access ISPs, how should they be connected?

 Question: Given millions of access ISPs, how should they be connected?

 Option: Connect each access ISP to a global transit ISP? Customer and provider ISPs have economic agreement.

• But if one global ISP is viable business, there will be competitors ...

But if one global ISP is viable business, there will be competitors ...
 which must be interconnected

• ... and regional networks may arise to connect access ISPs to ISPs

 ... and content provider networks (e.g. Google, Microsoft, Akamai) may run their own network, to bring services and content close to end users

- Center: small # of well-connected large networks
 - "tier-1" commercial ISPs (e.g., Level 3, Sprint, AT&T, NTT), national & international coverage
 - content provider network (e.g., Google): private network that connects it data centers to Internet, often bypassing tier-1, regional ISPs

Introduction

- What is the Internet?
- Network edge
 - End systems, access networks, links
- Network core
 - Packet switching, circuit switching, network structure
- Delay, loss, throughput in networks
- Protocol layers, service models
- Networks under attack: security
- History

How Does Packet Delay Occur?

Packets queue in router buffers

- Packet arrival rate to link (temporarily) exceeds output link capacity
- Packets queue, wait for turn (i.e. they are delayed)

Four Sources of Packet Delay

- dproc: Nodal processing delay Check for bit errors, determine output link
- d_{queue}: Queueing delay Time waiting for output link
- d_{trans}: Transmission delay (packet length) / (link bandwidth)
- d_{prop}: Propagation delay (length of physical link) / (propagation speed)

Caravan analogy

- cars "propagate" at 100 km/hr
- toll booth takes 12 sec to service car (bit transmission time)
- car ~ bit; caravan ~ packet
- Q: How long until caravan is lined up before 2nd toll booth?

- time to "push" entire caravan through toll booth onto highway = 12 * 10 = 120 sec
- time for last car to propagate from 1st to 2nd toll both: 100km / (100km/hr) = 1 hr
- A: 62 minutes

"Real" Internet Delays and Routes

- What do "real" Internet delay & loss look like?
- Use traceroute program
 - Provides delay measurement from source to router along end-to-end Internet path towards destination
 - For all i:
 - Sends 3 packets that will reach router i on path towards destination
 - Router i will return packets to sender
 - Sender times interval between transmission and reply

How Does Packet Loss Occur?

- Packet queue preceding link has finite capacity
- Packets arriving to a full queue are dropped
- Lost packets may be retransmitted by previous node, by original source, or not at all

Throughput

- Throughput: the rate (bits/time unit) at which bits can be transferred between sender/receiver
 - Instantaneous throughput: rate at given point in time
 - Average throughput: rate over longer period of time

Throughput (Cont.)

R_s < R_c: What is average end-to-end throughput?

• $R_s > R_c$: What is average end-to-end throughput?

Bottleneck Link: A link on an end-to-end path that constrains the end-end throughput

Throughput: Internet Scenario

- Per-connection end-to-end throughput
 - min(R_c, R_s, R/10)
- In practice, R_c or R_s is often bottleneck

10 connections (fairly) share backbone bottleneck link R bits/sec

Introduction

- What is the Internet?
- Network edge
 - End systems, access networks, links
- Network core
 - Packet switching, circuit switching, network structure
- Delay, loss, throughput in networks
- Protocol layers, service models
- Networks under attack: security
- History

Protocol "Layers"

- Networks are complex, with many components:
 - Hosts
 - Routers
 - Links of various media
 - Applications
 - Protocols
 - Hardware, software
- Need some way to organize everything

Example: Organization of Air Travel

ticket (purchase) ticket (complain) baggage (check) baggage (claim)

gates (load) gates (unload)

runway takeoff runway landing

airplane routing airplane routing

airplane routing

Each layer implements a service

- Uses its own internal-layer actions
- Relies on services provided by layer below

Example: Organization of Air Travel

Each layer implements a service

- Uses its own internal-layer actions
- Relies on services provided by layer below

Why Layering?

- Systems can be complex
- Explicit structure allows clear identification and relationship of complex system components
 - Layered reference model for discussion
- Modularization eases maintenance, updating of system
- Changing implementation of a single layer's service is transparent to rest of system
 - e.g. change in gate procedure doesn't affect rest of system

Five-Layer Internet Protocol Stack (TCP/IP Model)

- Application: supporting network applications
 - FTP, SMTP, HTTP
- Transport: process-to-process data transfer
 - TCP, UDP
- Network: routing of datagrams from source to destination
 - IP, routing protocols
- Link: data transfer between neighboring network elements
 - Ethernet, 802.11 (WiFi), PPP
- Physical: bits on the wire

Layer 5: Application

Layer 4: Transport

Layer 3: Network

Layer 2: Data Link

Layer 1: Physical

Seven-Layer ISO/OSI Network Model

- Presentation: allows applications to interpret meaning of data
 - e.g. encryption, compression, machinespecific conventions
- Session: synchronization, checkpointing, recovery of data exchange

- Internet stack is missing these layers
- These services, if needed, must be implemented in the Application Layer

Layer 7: Application

Layer 6: Presentation

Layer 5: Session

Layer 4: Transport

Layer 3: Network

Layer 2: Data Link

Encapsulation

Introduction

- What is the Internet?
- Network edge
 - End systems, access networks, links
- Network core
 - Packet switching, circuit switching, network structure
- Delay, loss, throughput in networks
- Protocol layers, service models
- Networks under attack: security
- History

Network security

Field of network security:

- how bad guys can attack computer networks
- how we can defend networks against attacks
- how to design architectures that are immune to attacks

Internet not originally designed with (much) security in mind

- original vision: "a group of mutually trusting users attached to a transparent network" ©
- Internet protocol designers playing "catch-up"
- security considerations in all layers!

Bad guys: put malware into hosts via Internet

- malware can get in host from:
 - virus: self-replicating infection by receiving/executing object (e.g., e-mail attachment)
 - worm: self-replicating infection by passively receiving object that gets itself executed
- spyware malware can record keystrokes, web sites visited, upload info to collection site
- infected host can be enrolled in botnet, used for spam. DDoS attacks

Bad guys: attack server, network infrastructure

Denial of Service (DoS): attackers make resources (server, bandwidth) unavailable to legitimate traffic by overwhelming resource with bogus traffic

- I. select target
- 2. break into hosts around the network (see botnet)
- 3. send packets to target from compromised hosts

Bad guys can sniff packets

packet "sniffing":

- broadcast media (shared Ethernet, wireless)
- promiscuous network interface reads/records all packets (e.g., including passwords!) passing by

wireshark software used for end-of-chapter labs is a (free) packet-sniffer

Bad guys can use fake addresses

IP spoofing: send packet with false source address

... lots more on security (throughout, Chapter 8)

Introduction: summary

covered a "ton" of material!

- Internet overview
- what's a protocol?
- network edge, core, access network
 - packet-switching versus circuit-switching
 - Internet structure
- performance: loss, delay, throughput
- · layering, service models
- security
- history

you now have:

- context, overview, "feel" of networking
- more depth, detail to follow!

