

CSGE602040 - Struktur Data dan Algoritma Semester Gasal - 2021/2022 Lab 07

Deadline: Selasa, 23 Nov 2021, 22.00 WIB

Pak Dengklek Mudik

Deskripsi

Pak Dengklek bersama teman-temannya berencana untuk mudik ke kampung halamannya masing-masing pada musim lebaran ini. Diketahui terdapat N kota, dan M buah jalan yang menghubungkan dua kota berbeda. Jalan bisa berupa jalan tol atau jalan biasa. Jalan biasa bebas dilalui, namun perlu membayar 1 tiket tol untuk melewati jalan tol. Jalan ke-i memiliki tiga atribut, $U_i V_i T_i$, yang berarti jalan ini menghubungkan kota U_i dengan kota V_i secara **dua arah** (ada lajur pergi dan lajur balik). $T_i = 0$ menyatakan jalan biasa, dan $T_i = 1$ menyatakan jalan tol.

Pak Dengklek dan teman-temannya mempunyai tiket yang jumlahnya terbatas. Diketahui terdapat Q orang yang ingin mengadakan mudik (termasuk Pak Dengklek sendiri). Orang ke-i rumahnya di kota X_i , kampung halamannya di kota Y_i , dan mempunyai tiket sebanyak K_i . Sebagai teman yang baik, bantulah Pak Dengklek dan teman-temannya untuk menentukan apakah setiap orang bisa mudik. Setiap orang **tidak perlu** menghabiskan semua tiket tolnya.

Format Masukan

Baris pertama berisi tiga buah bilangan N, M, Q M baris berikutnya berisi tiga buah bilangan, $U_i V_i T_i$ Q baris berikutnya berisi tiga buah bilangan $X_i Y_i K_i$

Format Keluaran

Untuk setiap orang, keluarkan "1" (tanpa tanda kutip) apabila ia bisa mudik, dan "0" (tanpa tanda kutip) apabila ia TIDAK BISA mudik.

Batasan (100 poin)

- $-1 \le N \le 100$
- $-1 \le M \le 200$
- $-1 \le Q \le 1.000$
- Tidak ada $duplicate\ edge$ pada graf, yakni setiap pasangan tak terurut (U_iV_i) hanya muncul maksimal sekali
- $1 \leq U_i, V_i, X_i, Y_i \leq N.$
- $U_i \neq V_i, X_i \neq Y_i$
- Dijamin graf kota yang diberikan connected jika memiliki tiket tol tak terbatas.
- $T_{i} \in \{0, 1\}$
- $\quad 0 \le K_i \le N$

Batasan Bonus (10 poin bonus)

Mengikuti batasan biasa, kecuali batasan pada N, M, dan Q, yakni:

- $1 \le N \le 1.000$
- $1 \le M \le 20.000$
- $1 \le Q \le 100.000$

Contoh Masukan

```
9 10 2
1 2 0
2 3 0
3 4 0
4 1 0
4 5 1
6 5 1
5 7 0
7 9 1
9 8 0
7 8 0
1 6 1
4 9 1
```

Contoh Keluaran

```
0
1
```

Penjelasan

Berikut graf kota dan jalan dari contoh masukan. Biru menyatakan jalan tol dan hitam menyatakan jalan biasa

Orang Pertama

Beberapa rute yang mungkin dari kota 1 ke kota 6:

- $1 \rightarrow 2 \rightarrow 3 \rightarrow 4 \rightarrow 5 \rightarrow 6$: memerlukan dua tiket tol
- 1 → 4 → 5 → 6: memerlukan dua tiket tol

Orang pertama hanya memiliki satu tiket tol, sehingga ia tidak bisa mudik

Orang Kedua

Beberapa rute yang mungkin dari kota 1 ke kota 9:

- $1 \rightarrow 4 \rightarrow 5 \rightarrow 7 \rightarrow 9$: memerlukan dua tiket tol
- $1 \rightarrow 4 \rightarrow 5 \rightarrow 7 \rightarrow 8 \rightarrow 9$: memerlukan satu tiket tol

Orang pertama hanya memiliki satu tiket tol, sehingga ia bisa menempuh rute kedua untuk mudik.

Keterangan Tambahan

Asumsikan tiket tol tidak dapat diberikan ke orang lain.

Lab ini, termasuk batasan bonus, dapat diselesaikan dengan hanya memanfaatkan DFS/BFS. Meski demikian, tidak ada larangan untuk menggunakan algoritma graf lebih tinggi yang diajarkan di SDA, seperti Dijkstra atau MST.

Informasi Tambahan Test-case

Berikut informasi test-case batasan biasa:

Nomor TC	Batasan
1 - 24	Untuk semua jalan, $T_i = 1$
25 - 30	Untuk semua teman Pak Dengklek, $K_{i}=0$
31 - 40	Tidak ada batasan tambahan

Berikut informasi test-case batasan bonus:

Nomor TC	Batasan
1 - 10	Tidak ada batasan tambahan