

L'Institut National des Sciences Appliquées et de Technologie

Filière: Informatique Industrielle et Automatique

Présentation du projet CAO

Self balancing robot

Realisé par : MSEIBI Souha

CHABAANI Elaa

JABRI Chaima

JLASSI Wejden

Professeur: Mme. BOUBAKR Olfa

Année universitaire : 2021-2022

Plan

Modélisation et équations mathématiques :

- on peut modéliser le robot en un sous-système mécanique qui se compose d corps du robot et de deux roues.
- Le corps peut être modélisé comme un pendule inversé avec la masse concentrée au centre de gravité et l'axe de rotation au-dessus de l'axe de roues.

Assignations des variables

X	position horizontale du centre de la roue par rapport à une origine définie		
Xc	position horizontale du point m de la partie du corps par rapport à une origin définie		
φ	angle de rotation de la roue dans le sens des aiguilles d'une montre par rapport l'axe horizontal à $t=0$		
Z _c	position verticale du corps de la partie du corps du sol		
θ	angle de rotation dans le sens des aiguilles d'une montre de la partie du corps partir de la position verticale		
M	masse de la partie du corps		
m _w	masse de la roue		
R	Rayon de la roue		
L	longueur entre le corps et le centre de la roue		
τ_0	couple appliqué		
I	l'inertie de la partie du corps		
I_{w}	inertie de la roue		

- Dans ce système, nous supposons que le robot se déplace horizontalement sans glisser entre le sol et les roue
- La principale différence entre ce système et le pendule inversé est l'inertie et la position du centre de masse de la partie du corps, car nous cherchons un modèle plus détaillé du système plutôt que de l'approcher comme une masse ponctuelle.

Les équations dynamique

$$x = R \phi$$

 $xc = R \phi + L \sin \theta$
 $zc = R + L \cos \theta$

Dérivation du lagrangien L=Ec-Ep

$$L=E_{c}-E_{p}$$

$$=\frac{1}{2} (I_{w}+m_{w}R^{2}+m_{R}^{2}) \dot{\varphi}^{2}+m_{R} L \cos \theta \dot{\varphi} \dot{\theta} + \frac{1}{2} (I+m_{e}^{2}) \dot{\theta}^{2} - m_{g} L (\cos \theta - 1)$$

Nous pouvons réécrire ces équations dynamiques non linéaires dans un style de matrice de second ordre comme suit :

$$\begin{pmatrix} \operatorname{Iw} + \operatorname{mw} R^2 + \operatorname{m} R^2 & \operatorname{m} R \operatorname{L} \cos \theta \\ \operatorname{m} R \operatorname{L} \cos \theta & \operatorname{I} + \operatorname{m} L^2 \end{pmatrix} \begin{pmatrix} \ddot{\boldsymbol{\varphi}} \\ \ddot{\boldsymbol{\theta}} \end{pmatrix} + \begin{pmatrix} 0 & -\operatorname{m} R \operatorname{L} \sin \theta \dot{\boldsymbol{\theta}} \\ 0 & 0 \end{pmatrix} \begin{pmatrix} \dot{\boldsymbol{\varphi}} \\ \dot{\boldsymbol{\theta}} \end{pmatrix} + \begin{pmatrix} 0 \\ -\operatorname{m} \operatorname{g} \operatorname{L} \sin \theta \end{pmatrix} = \begin{pmatrix} \mu \\ \chi \end{pmatrix}$$

Conception électrique :

Dimensionnement Matériels

composants électronique et dispositifs nécessaires pour la réalisation et la conception de notre projet

Schéma de câblage

comment relier les composants entre eux

Microcontrôleurs

- Moins couteuse
- Disponibilité matériel
- Possède beaucoup de modules permettant de simplifier le travail

- Un grand nombre d'entrée/sortie
- Puissance de calcul faible
- Encombrement

- Plus professionnel
- Plus puissante
- elle peut fonctionner
 en temps réel avec un
 OS embarqué
 STM32 F4

Arduino Uno

Arduino Mega

STM 32

Moteurs

- Cout faible
- Petite taille et installation facile
- La complexité de mettre en œuvre (asservissement ,réglage PID)

- contrôle de vitesse précis
- Plus de précision
- Garantir la stabilité suite a une perturbation externe
- Cout élevé

- Plus précis
- plus lourd,
- plus volumineux
- il consommera plus d'énergie

Moteur pas à pas

Moteur DC 6V

Carte de puissance

- Courant de commutation max. :10 A
- Tension de coupure250 V/AC, 30V/DC max.

Carte relais

- Cout faible
- Il peut délivrer jusqu'à 2A en pointe et 20W en continu.

Pont en H

Capteur

- un gyroscope 3 axeset un accéléromètre3 axes
- · Cout faible

• 9 axes qui combine un gyroscope à 3 axes, un accéléromètre à 3 axes, un magnétomètre à 3 axes,

MPU 6050

MPU 9250

Schéma de câblage

- Conception avec Fritizing
- Schéma synoptique

Conception Mécanique de la Version finale de robot :

Vue éclatée

1- Simulation MATLAB

- Determiner les parametres de PID
- Simuler le fonctionnement du robot

2- Code ARDUINO

- Organigramme de

fonctionnement du robot

3- Interface LABVIEW

 Afficher les valeurs des positions et de l'accélération par rapport aux 3 axes

Régulateur PID

Schéma bloc Régulateur PID:

1- Simulation MATLAB

2- Code ARDUINO: organigramme de fonctionnement de robot auto balance

3-Interface LABVIEW

Code :organigramme interface LABVIEW

Vidéo simulation de fonctionnement

Vidéo simulation de fonctionnement

Etude technico économique

Matériels	Référence	Cout
ARUIONO UNO	0	0
Moteurs+Roues	6VMOTEUR DC 3-	9 DT*2 =18 DT
Module Gyroscope accéléromètre	MPU6050 - GY521 ACCELEROMETRE ET GYROSCOPE 3 AXES	14.000 DT
Pont en H	L298N DC Motor Driver Module	12.800 DT
Batteries	Batterie alimentation moteurs	0
	1 PACK 4 PILES alimentation Arduino	4.500 DT
Coupleur-pile	COUPLEUR PILES 4*AA AVEC CONNECTEUR JACK 5.5	4.800 DT
Cout total	54100 DT	
Cout individuel	13.525 DT	

Conclusion

Nous avons commencé notre étude par une modélisation mathématique du système , par la suite nous avons travailler sur la conception électrique du robot : dimensionnement matériels et schéma de câblage .

nous avons étudié la conception mécanique : les dimensions ainsi que le positionnement du matériels afin de garantir la stabilité de robot et finalement nous avons développé le code nécessaire au fonctionnement et l'interface de controle avec Labview

Perspective

contrôle par application android

Durant la réalisation de ce projet , on n'a pas réussi à bien équilibré le robot et le réguler , à cause de mauvais fonctionnement de l'accéléromètre MPU , même avec la calibration de la sensitivité du capteur on n'a pas réussi à établir la connection entre la carte arduino et le capteur , du coup , des valeurs erronées étant rendu par le MPU . ça peut être expliqué par un défaut au pin de clock ou serial data .