fGAN: General Framework of GAN

Flaw in Optimization?

$$KL = \int P_{data} \log \frac{P_{data}}{P_G} dx$$

Population Polarity Density P_G

Maximum likelihood (minimize $KL(P_{data}||P_G)$)

Reverse $KL = \int P_G \log \frac{P_G}{P_{data}} dx$

Minimize $KL(P_G||P_{data})$ (reverse KL)

f-divergence

P and Q are two distributions. p(x) and q(x)are the probability of sampling x.

$$D_f(P||Q) = \int_{\mathcal{X}} q(x) f\left(\frac{p(x)}{q(x)}\right) dx \quad \text{f is convex} \quad D_f(P||Q) \text{ evaluates the difference of P and Q}$$

$$D_f(P||Q) = \int_{x} q(x) f\left(\frac{p(x)}{q(x)}\right) dx$$

Because f is convex
$$\geq f\left(\int\limits_{x}q(x)\frac{p(x)}{q(x)}dx\right)$$
 distributions, $D_{f}(P||Q)$ has the smallest value, where $D_{f}(P||Q)$

$$= f(1) = 0$$

If P and Q are the same

smallest value, which is 0

f-divergence

$$\overline{D_f(P||Q)} = \int_{\mathcal{X}} q(x) f\left(\frac{p(x)}{q(x)}\right) dx \qquad \text{f is convex}$$

$$f(1) = 0$$

$$f(x) = x log x$$

$$D_{f}(P||Q) = \int_{x} q(x) \frac{p(x)}{q(x)} log \left(\frac{p(x)}{q(x)}\right) dx = \int_{x} p(x) log \left(\frac{p(x)}{q(x)}\right) dx$$

$$f(x) = -log x$$

$$P(P||Q) = \int_{x} q(x) \left(-log \left(\frac{p(x)}{q(x)}\right)\right) dx = \int_{x} q(x) log \left(\frac{q(x)}{p(x)}\right) dx$$

$$f(x) = (x-1)^{2}$$

$$Chi Square$$

$$D_{f}(P||Q) = \int_{x} q(x) \left(\frac{p(x)}{q(x)} - 1\right)^{2} dx = \int_{x} \frac{\left(p(x) - q(x)\right)^{2}}{q(x)} dx$$

$$D_f(P||Q) = \int_x q(x) f\left(\frac{p(x)}{q(x)}\right) dx$$
f is convex, f(1) = 0

$$f^{*}(t) = \max_{x \in dom(f)} \{xt - f(x)\}$$

$$f^{*}(t_{1}) = \max_{x \in dom(f)} \{xt_{1} - f(x)\}$$

$$x_{1}t_{1} - f(x_{1}) \bullet f^{*}(t_{1}) \qquad f^{*}(t_{2}) = \max_{x \in dom(f)} \{xt_{2} - f(x)\}$$

$$x_{2}t_{1} - f(x_{2}) \bullet \qquad \qquad x_{3}t_{2} - f(x_{3}) \bullet f^{*}(t_{2})$$

$$x_{2}t_{2} - f(x_{2}) \bullet \qquad \qquad x_{1}t_{2} - f(x_{1}) \bullet$$

$$t_{1} \qquad \qquad t_{2} \qquad t$$

$$D_f(P||Q) = \int_x q(x) f\left(\frac{p(x)}{q(x)}\right) dx$$
f is convex, f(1) = 0

$$f^*(t) = \max_{x \in dom(f)} \{xt - f(x)\}$$

$$f^*(t) = \max_{x \in dom(f)} \{xt - f(x)\}$$

• (f*)* = f
$$f^*(t) = \max_{x \in dom(f)} \{xt - f(x)\}$$

$$f(x) = xlogx \longleftrightarrow f^*(t) = exp(t-1)$$

$$f^*(t) = \max_{x \in dom(f)} \{xt - xlogx\}$$

$$g(x) = xt - xlogx \quad \text{Given t, find x maximizing } g(x)$$

$$t - logx - 1 = 0 \qquad x = exp(t-1)$$

$$f^*(t) = exp(t-1) \times t - exp(t-1) \times (t-1) = exp(t-1)$$

Connection with GAN

$$f^{*}(t) = \max_{x \in dom(f)} \{xt - f(x)\} \longleftrightarrow f(\underline{x}) = \max_{t \in dom(f^{*})} \{\underline{x}t - f^{*}(t)\}$$

$$D_{f}(P||Q) = \int_{x} q(x)f\left(\frac{p(x)}{q(x)}\right)dx \qquad \boxed{\frac{p(x)}{q(x)}}$$

$$= \int_{x} q(x)\left(\max_{t \in dom(f^{*})} \left\{\frac{p(x)}{q(x)}t - f^{*}(\underline{t})\right\}\right)dx$$

$$\approx \max_{D} \int_{x} p(x)D(x)dx - \int_{x} q(x)f^{*}(D(x))dx$$

D is a function
$$D_f(P||Q) \ge \int_x q(x) \left(\frac{p(x)}{q(x)}D(x) - f^*(D(x))\right) dx$$
 whose input is x, and output is t
$$= \int_x p(x)D(x) dx - \int_x q(x)f^*(D(x)) dx$$

Connection with GAN

$$D_f(P_{data}||P_G) = \max_{D} \left\{ E_{x \sim P_{data}}[D(x)] - E_{x \sim P_G}[f^*(D(x))] \right\}$$

Name	$D_f(P Q)$	Generator $f(u)$
Total variation	$\frac{1}{2} \int p(x) - q(x) \mathrm{d}x$	$\frac{1}{2} u-1 $
Kullback-Leibler	$\int p(x) \log \frac{p(x)}{q(x)} dx$	$u \log u$
Reverse Kullback-Leibler	$\int q(x) \log \frac{\hat{q}(x)}{p(x)} dx$	$-\log u$
Pearson χ^2	$\int \frac{(q(x)-p(x))^2}{p(x)} dx$	$(u-1)^2$
Neyman χ^2	$\int \frac{(p(x) - q(x))^2}{q(x)} \mathrm{d}x$	$\frac{(1-u)^2}{u}$
Squared Hellinger	$\int \left(\sqrt{p(x)} - \sqrt{q(x)}\right)^2 dx$	$\left(\sqrt{u}-1\right)^2$
Jeffrey	$\int (p(x) - q(x)) \log \left(\frac{p(x)}{q(x)}\right) dx$	$(u-1)\log u$
Jensen-Shannon	$ \frac{1}{2} \int p(x) \log \frac{2p(x)}{p(x)+q(x)} + q(x) \log \frac{2q(x)}{p(x)+q(x)} dx \int p(x) \pi \log \frac{p(x)}{\pi p(x)+(1-\pi)q(x)} + (1-\pi)q(x) \log \frac{q(x)}{\pi p(x)+(1-\pi)q(x)} dx \int p(x) \log \frac{2p(x)}{p(x)+q(x)} + q(x) \log \frac{2q(x)}{p(x)+q(x)} dx - \log(4) $	$-(u+1)\log\frac{1+u}{2} + u\log u$
Jensen-Shannon-weighted	$\int p(x)\pi \log \frac{p(x)}{\pi p(x) + (1-\pi)q(x)} + (1-\pi)q(x) \log \frac{q(x)}{\pi p(x) + (1-\pi)q(x)} dx$	$\pi u \log u - (1 - \pi + \pi u) \log(1 - \pi + \pi u)$
GAN	$\int p(x) \log \frac{2p(x)}{p(x) + q(x)} + q(x) \log \frac{2q(x)}{p(x) + q(x)} dx - \log(4)$	$u\log u - (u+1)\log(u+1)$

Using the f-divergence you like ©

https://arxiv.org/pdf/1606.00709.pdf

Name	Conjugate $f^*(t)$
Total variation	t
Kullback-Leibler (KL)	$\exp(t-1)$
Reverse KL	$-1 - \log(-t)$
Pearson χ^2	$\frac{1}{4}t^2 + t$
Neyman χ^2	$(2-2\sqrt{1-t})$
Squared Hellinger	$\frac{t}{1-t}$
Jeffrey	$W(e^{1-t}) + \frac{1}{W(e^{1-t})} + t - 2$ - $\log(2 - \exp(t))$
Jensen-Shannon	$-\log(2-\exp(t))$
Jensen-Shannon-weighted	$(1-\pi)\log\frac{1-\pi}{1-\pi e^{t/\pi}}$
GAN	$-\log(1-\exp(t))$