(25)

Quantum Computing LaTeX Quick Reference

Quick Command Sheet for Quantum Computing Lecture Notes

1 Basic Quantum State Notation 4 Quantum Channels and Noise

(6)

State Vectors 1.1

General channel: $\mathcal{E}(\rho)$ (22)

 $\mathcal{D}_p(\rho)$ Depolarizing: (23)

Ket: $|\psi\rangle$ or $|\psi\rangle$ (1)Bit flip: $\mathcal{B}_p(\rho)$ (24)Bra: $\langle \psi |$ (2)

Braket: $\langle \psi | \phi \rangle$ (3)

Outer product: $|\psi\rangle\langle\phi|$ (4)Quantum Information Mea-

Expectation: $\langle A \rangle = \langle \psi \rangle A | \psi$ (5)sures

1.2 **Common States**

Computational basis:

Superposition:

Von Neumann entropy: $S(\rho)$ (26)

Conditional entropy: H(A|B)(27)

Phase flip: $\mathcal{P}_p(\rho)$

Mutual information: I(A:B)(28)

> Fidelity: $F(\rho, \sigma)$ (29)

Trace distance: $D(\rho, \sigma)$ (30)

$|-\rangle = \frac{1}{\sqrt{2}}(|0\rangle - |1\rangle)$

 $|+\rangle = \frac{1}{\sqrt{2}}(|0\rangle + |1\rangle)$

Quantum Algorithms

Fourier Transform

 $|\Phi^{+}\rangle, |\Phi^{-}\rangle, |\Psi^{+}\rangle, |\Psi^{-}\rangle$ Bell states:

 $|\mathrm{GHZ}\rangle$, $|\mathrm{W}\rangle$ Multi-qubit: (10) QFT: QFT $|x\rangle = \frac{1}{\sqrt{N}} \sum_{k=0}^{N-1} e^{2\pi i x k/N} |k\rangle$

(31)

2 Quantum Gates and Operations

Inverse QFT: QFT^{-1} (32)

Single-Qubit Gates

6.2 Oracles

7

Pauli matrices: (11) $\sigma_X, \sigma_Y, \sigma_Z$

Boolean oracle: $O_f |x\rangle |y\rangle = |x\rangle |y \oplus f(x)\rangle$

Hadamard: (12)

(33)Phase oracle: $O_f |x\rangle = (-1)^{f(x)} |x\rangle$ (34)

Phase gates: $S, T, P(\theta)$ (13)Rotations: $R_x(\theta), R_y(\theta), R_z(\theta)$ (14)

2.2Multi-Qubit Gates

Error Correction

CNOT: CNOT (15) Stabilizer group: $S = \langle g_1, g_2, \dots, g_k \rangle$ (35)Syndrome: $s = (s_1, s_2, \dots, s_k)$ (36)

Toffoli: Toffoli or CCNOT (16) Code space: (37)

Fredkin: Fredkin (17) (38)

SWAP: SAWP

Logical codeword:

(18)

Mathematical Utilities 8

Quantum Measurements 3

Complex Numbers

(19)Measurement operator: \mathcal{M}

Imaginary unit: i (39)

Projectors: $|0\rangle\langle 0|, |1\rangle\langle 1|, \P_i$ (20)

Real part: $\Re(z)$ (40)

Probability: $Pr[i] = \langle \psi \rangle |i\rangle \langle i| |\psi|$

Imaginary part: $\operatorname{Im}(z)$ (41)

(21)

Complex conjugate: z^* (42)

8.2 Linear Algebra

8.3 Probability

Tensor product: $A \otimes B$ (43)

Trace: tr(A) (44) Probability: Pr[event] (47)

Partial trace: $\operatorname{Tr}_B(\rho_{AB})$ (45) Expectation: $\mathbb{E}[X]$

Rank: rank(A) (46) Variance: δX (49)

9 Circuit Notation (with quantikz)

Basic circuit elements:

\begin{quantikz}
\lstick{\$\ket{0}\$} & \gate{H} & \ctrl{1} & \meter{} \\
\lstick{\$\ket{0}\$} & \qw & \targ{} & \qw
\end{quantikz}

10 Complexity Classes

Bounded-error quantum polynomial: BQP (50)

Quantum Merlin-Arthur: QMA (51)

Quantum polynomial space: QPSPACE (52)

11 Usage Examples

11.1 Quantum Teleportation Protocol

The quantum teleportation protocol transfers the state $|\psi\rangle = \alpha |0\rangle + \beta |1\rangle$ using the following steps:

Protocol 11.1. 1. Alice and Bob share the Bell state $|\Phi^{+}\rangle = \frac{1}{\sqrt{2}}(|00\rangle + |11\rangle)$

- 2. Alice performs a Bell measurement on her qubit and the qubit to be teleported
- 3. Alice sends the classical result to Bob
- 4. Bob applies the appropriate correction based on Alice's measurement

11.2 Grover's Algorithm

Grover's algorithm amplifies the amplitude of marked states:

Algorithm 11.1. 1. Initialize: $|\psi_0\rangle = \frac{1}{\sqrt{N}} \sum_{x=0}^{N-1} |x\rangle$

- 2. Apply $G = -H^{\otimes n} |0\rangle\langle 0|^{\otimes n} H^{\otimes n} O_f$ for $O(\sqrt{N})$ iterations
- 3. Measure to obtain the marked state with high probability

11.3 Quantum Error Correction Example

The 3-qubit bit flip code protects against single bit flip errors:

Circuit 11.1. Encoding: $|0\rangle \rightarrow |000\rangle$, $|1\rangle \rightarrow |111\rangle$ Syndrome measurement: $s_1 = Z_1 Z_2$, $s_2 = Z_2 Z_3$

12 Common Quantum Gates

Figure 1: Quantum circuit for preparing and measuring a Bell state

		Gate	Matrix
Gate	Matrix 1 [1 1]	CNOT (CX)	
Hadamard (H)	$\frac{1}{\sqrt{2}}\begin{bmatrix} 1 & -1 \end{bmatrix}$		$\begin{bmatrix} 0 & 0 & 1 & 0 \\ 1 & 0 & 0 & 0 \end{bmatrix}$
Identity (I)	$\begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix}$	Controlled-Z (CZ)	$\begin{bmatrix} 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & 0 \end{bmatrix}$
Phase (S)	$\begin{bmatrix} 1 & 0 \\ 0 & i \end{bmatrix}$		$\begin{bmatrix} 0 & 0 & 0 & -1 \\ 1 & 0 & 0 & 0 \end{bmatrix}$
T-gate (T)	$\begin{bmatrix} 1 & 0 \\ 0 & e^{i\pi/4} \end{bmatrix}$	Controlled- U (CU)	$\begin{bmatrix} 0 & 1 & 0 & 0 \\ 0 & 0 & U_{00} & U_{01} \end{bmatrix}$
NOT (X)	$\begin{bmatrix} 0 & 1 \\ 1 & 0 \end{bmatrix}$		$\begin{bmatrix} 0 & 0 & U_{10} & U_{11} \end{bmatrix} \begin{bmatrix} 1 & 0 & 0 & 0 \end{bmatrix}$
Y-gate (Y)	$\begin{bmatrix} 0 & -i \\ i & 0 \end{bmatrix}$	SWAP	$\begin{bmatrix} 0 & 0 & 1 & 0 \\ 0 & 1 & 0 & 0 \end{bmatrix}$
Z-gate (Z)	$\begin{bmatrix} 1 & 0 \\ 0 & -1 \end{bmatrix}$		$\begin{bmatrix} 0 & 0 & 0 & 1 \\ 1 & 0 & 0 & 0 & 0 & 0 & 0 \end{bmatrix}$
Rotation $R(\theta)$ / Phase $P(\theta)$	$\begin{bmatrix} 1 & 0 \\ 0 & e^{i\theta} \end{bmatrix}$	Toffoli (CCNOT)	0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
			$\begin{bmatrix} 0 & 0 & 0 & 0 & 1 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & 1 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & 0 & 0 & 1 \\ 0 & 0 & 0 & 0 & 0 & 0 & 1 & 0 \end{bmatrix}$