Compte rendu TP3 - Interpolation polynomiale : Base de Newton

```
0. Définition de la base de Newton
```

$$\begin{cases} N_0(x) = 1 \\ N_{k+1}(x) = N_k(x) * (x - x_k) \end{cases}$$

et donc:

$$\begin{cases}
N_0(x) = 1 \\
N_1(x) = x - x_0 \\
N_2(x) = (x - x_0)(x - x_1) \\
\vdots \\
N_n(x) = (x - x_0)(x - x_1) + \dots + (x - x_n)
\end{cases}$$

1. Traduction de yi=f(xi) pour i allant de 0 à n :

 $P(x_0) = y_0$ $a_0 = y_0$

 $P(x_1) = y_1$

 $a_0 + a_1(x_1 - x_0) = y_0$

 $a_1 = \frac{y_1 - y_0}{x_1 - x_0} \cdot P(x_2) = y_2$

 $a_{0} + a_{1}(x_{1} - x_{0}) + a_{2}(x_{2} - x_{0})(x_{2} - x_{1}) + 0 = y_{2}$ $a_{2} = \frac{y_{2} - a_{0} - a_{1}(x_{2} - x_{0})}{(x_{2} - x_{0})(x_{2} - x_{1})}$ $a_{2} = \frac{y_{2} - a_{0}}{(x_{2} - x_{0})(x_{2} - x_{1})} - \frac{a_{1}(x_{2} - x_{0})}{(x_{2} - x_{0})(x_{2} - x_{1})}$ $a_{2} = \frac{\frac{y_{2} - a_{0}}{(x_{2} - x_{0})} - \frac{\frac{y_{1} - y_{0}}{x_{1} - x_{0}}}{x_{1} - x_{0}}}{x_{2} - x_{1}}$ $a_{2} = \frac{D(2, 0) - D(1, 0)}{x_{2} - x_{1}} = D(2, 1)$

2. Rappel de la résolution par différences divisées

Х	у			
-1	-12			
1	0	$\frac{0 - (-12)}{1 - (-1)} = 6$		
3	-20	$\frac{-20 - (-12)}{3 - (-1)} = -2$	$\frac{-2-6}{3-1} = -4$	
7	2724	$\frac{2724 - (-12)}{7 - (-1)} = 342$	$\frac{342-6}{7-1} = 56$	$\frac{56 - (-4)}{7 - 3} = 15$

3. Ajoutons le point de coordonnées (10, 10053)

Х	у				
-1	-12				
1	0	$\frac{0 - (-12)}{1 - (-1)} = 6$			
3	-20	$\frac{-20 - (-12)}{3 - (-1)} = -2$	$\frac{-2-6}{3-1} = -4$		
7	2724	$\frac{2724 - (-12)}{7 - (-1)} = 342$	$\frac{342-6}{7-1} = 56$	$\frac{56 - (-4)}{7 - 3} = 15$	
10	10053	$\frac{10053 - (-12)}{10 - (-1)} = 915$	$\frac{915-6}{10-1} = 101$	$\frac{101 - (-4)}{10 - 3} = 15$	$\frac{15-15}{10-7} = 0$

4. Tracer sur un même graphique une fonction f ainsi que son polynôme d'interpolation associé

Soit:

• $f(x) = \sin(x)$

 \bullet n = 4

• a = 0 et b = 2*pi

5. Après rajout du point (1, sin(1)) :

Comparaison des deux graphiques

voila.