Indian Institute of Information Technology Allahabad Probability and Statistics (PAS)

C2 Review Test Tentative Marking Scheme

1. Let X_1 and X_2 have the joint probability density function

[11]

$$f_{X_1, X_2}(x_1, x_2) = \begin{cases} 10x_1x_2^2, & 0 < x_1 < x_2 < 1 \\ 0, & \text{otherwise.} \end{cases}$$

- (a) Find the probability density function of $Y = \frac{X_1}{X_2}$ by using transformation of variables technique.
- (b) Find $Cov(X_1, X_2)$.
- (c) Are Y and X_2 uncorrelated? Justify your answer.

Solution:

(a) Let $Z = X_2$. Then $x_1 = yz$ and $x_2 = z$. [1/2]

Hence

$$J = \begin{vmatrix} \frac{\partial x_1}{\partial y} & \frac{\partial x_1}{\partial z} \\ \frac{\partial x_2}{\partial y} & \frac{\partial x_2}{\partial z} \end{vmatrix} = \begin{vmatrix} z & y \\ 0 & 1 \end{vmatrix} = z$$
 [1/2]

Hence, the joint pdf of Y and Z is

$$\begin{split} f_{Y,Z}(y,z) &= f_{X_1,X_2}(yz,z)|J| \\ &= \begin{cases} 10yz^4, & 0 < yz < z < 1\\ 0, & \text{otherwise} \end{cases} \\ &= \begin{cases} 10yz^4, & 0 < y < 1, 0 < z < 1\\ 0, & \text{otherwise} \end{cases} \end{split}$$
 [1+1]

Hence the pdf of Y is

$$f_Y(y) = \int_{-\infty}^{\infty} f_{Y,Z}(y,z)dz$$

$$= \begin{cases} \int_{0}^{1} 10yz^4dz, & 0 < y < 1\\ 0, & \text{otherwise} \end{cases}$$

$$= \begin{cases} 2y, & 0 < y < 1\\ 0, & \text{otherwise} \end{cases}$$
[1+1]

(b)
$$E(X_1X_2) = \int_{-\infty}^{\infty} \int_{-\infty}^{\infty} x_1 x_2 f_{X_1,X_2}(x_1, x_2) dx_1 dx_2 = \int_{0}^{1} \int_{0}^{x_2} 10 x_1^2 x_2^3 dx_1 dx_2 = \frac{10}{21}$$
 [1]

$$E(X_1) = \int_{-\infty}^{\infty} \int_{-\infty}^{\infty} x_1 f_{X_1, X_2}(x_1, x_2) dx_1 dx_2 = \int_{0}^{1} \int_{0}^{x_2} 10 x_1^2 x_2^2 dx_1 dx_2 = \frac{5}{9}$$
 [1]

$$E(X_2) = \int_{-\infty}^{\infty} \int_{-\infty}^{\infty} x_2 f_{X_1, X_2}(x_1, x_2) dx_1 dx_2 = \int_{0}^{1} \int_{0}^{x_2} 10 x_1 x_2^3 dx_1 dx_2 = \frac{5}{6}$$
 [1]

$$Cov(X_1, X_2) = E(X_1 X_2) - E(X_1)E(X_2) = \frac{10}{21} - \frac{25}{54} = \frac{5}{378}$$
 [1]

(c)
$$E(Y) = \int_{-\infty}^{\infty} y f_Y(y) dy = \int_{0}^{1} 2y^2 dy = \frac{2}{3}$$
 [1]

Now,
$$Cov(Y, X_2) = E(YX_2) - E(Y)E(X_2) = E(X_1) - E(Y)E(X_2) = \frac{5}{9} - \frac{10}{18} = 0$$
.
Thus Y and X_2 are uncorrelated. [1]

2. Let $(X_n)_{n\geq 1}$ be a sequence of random variables with corresponding distribution functions given by [7]

$$F_n(x) = \begin{cases} 0, & x < -n \\ \frac{x+n}{2n}, & -n \le x < n \\ 1, & x \ge n. \end{cases}$$

Does F_n converge to a distribution function. Justify your answer.

Solution:For $x \in \mathbb{R}$ with x < 0, we have a $N \in \mathbb{N}$ such that $-N \le x < -(N-1)$. Then

$$F_n(x) = \begin{cases} 0, n < N \\ \frac{x+n}{2n}, n \ge N \end{cases}$$
 [2]

Similarly, for $x \in \mathbb{R}$ with x > 0, we have a $M \in \mathbb{N}$ such that $M - 1 \le x < M$. Then

$$F_n(x) = \begin{cases} 1, n < M \\ \frac{x+n}{2n}, n \ge M \end{cases}$$
 [2]

Also
$$F_n(0) = \frac{1}{2}$$
, for all $n \in \mathbb{N}$. [1]

Hence $\lim_{n\to\infty} F_n(x) = \frac{1}{2}$, for all $x\in\mathbb{R}$. That is. F_n converges to the function $f(x)=\frac{1}{2}$, for all $x\in\mathbb{R}$, which is not a distrinution function. [1+1]

3. Let $(X_n)_{n\geq 1}$ be a sequence of identically and independently distributed random variables with common probability density function [7]

$$f(x) = \begin{cases} e^{-x+\theta}, & x \ge \theta \\ 0, & x < \theta. \end{cases}$$

Let $\overline{X}_n = \frac{1}{n} \sum_{i=1}^n X_i$. Show that \overline{X}_n converges to $1 + \theta$ in probability.

Solution:
$$E(X_i) = \int_{-\infty}^{\infty} x f(x) dx = \int_{\theta}^{\infty} x e^{-x+\theta} dx = 1 + \theta, \forall i \in \mathbb{N}$$
 [1]

$$E(X_i^2) = \int_{-\infty}^{\infty} x^2 f(x) dx = \int_{\theta}^{\infty} x^2 e^{-x+\theta} dx = \theta^2 + 2\theta + 2, \forall i \in \mathbb{N}$$
 [1]

$$Var(X_i) = E(X_i^2) - (E(X_i))^2 = 1, \forall i \in \mathbb{N}.$$
 [1]

$$E(\overline{X}_n) = \frac{1}{n} \sum_{i=1}^n E(X_i) = 1 + \theta$$
 [1]

$$Var(\overline{X}_n) = \frac{1}{n^2} \sum_{i=1}^n Var(X_i) = \frac{1}{n}$$
 [1]

By Chebyshev's Ineuality, for every $\epsilon > 0$, we have $P(\{|\overline{X}_n - (1+\theta)| \ge \epsilon\}) \le \frac{1}{n\epsilon^2}$ [1]

Since
$$\lim_{n \to \infty} \frac{1}{n\epsilon} = 0$$
, $\lim_{n \to \infty} P(\{|\overline{X}_n - (1+\theta)| \ge \epsilon\}) = 0$. [1]