TD 1

Exercice 1. Les tomates c'est fini!

Donner des automates finis qui reconnaissent les langages suivants

- 1. $L = \emptyset$
- 2. $L = \{\epsilon\}$
- 3. $L = \{0^n 1^m | n, m \ge 0\}$
- **4.** $L = \{x \in \{0, 1\}^* | x \text{ se termine par } 101\}$
- 5. $L = \{x \in \{0,1\}^* | |x|_0 \text{ pair et } |x|_1 \text{ impair } \}$
- 6. L'est l'ensemble des entiers écrits en base 2 qui sont congrus à 0 modulo 3
- 7. k fixé, L est l'ensemble des mots sur $\{a, b\}$ dont la k^{ime} lettre en partant de la fin est un a.
- **8.** $L = \{0^{n_1}1^{m_1}0^{n_2}1^{m_2}\dots 0^{n_k}1^{m_k}| \ k \ge 0 \text{ et } \forall i, \ 1 \le i \le k, \ n_i, m_i > 0\}$
- **9.** $L = \{\omega \in \{0,1\}^* \mid \text{ chaque bloc de trois lettres consécutives contient au moins deux zéros}\}.$
- **10.** $L = (00+1)^*(11+0)^*$
- 11. Montrer que le langage suivant est rationnel :

 $L = \{a^i \mid \text{Le chiffre 7 apparaît } i \text{ fois consécutives dans le développement de } \pi \text{ en base } 10\}$

Exercice 2.

Montrer que les langages suivants ne sont pas rationnels

- 1. $L = \{a^n b^n | n \ge 0\}$
- **2.** $L = \{a^{n^2} | n \ge 0\}$

Exercice 3. Petite parenthèse

Soit $L \subset \{a, b\}^*$ le plus petit langage tel que

- $-\varepsilon \in L$
- Si $w \in L$, $awb \in L$;
- Si $w_1, w_2 \in L$, leur concaténation w_1w_2 est dans L.
- Montrer que *L* n'est pas régulier.

Exercice 4. C'est la taille qui compte

Un ensemble d'entiers est linéaire s'il est de la forme $\{c+ip, i \in \mathbb{N}\}$. Un ensemble est semi-linéaire s'il est réunion finie d'ensembles linéaires. Soit $L \subseteq a^*$ un langage rationnel, montrer que $\{i, a^i \in L\}$ est semi-linéaire.

En déduire que pour tout langage L rationnel, l'ensemble $\lambda(L) = \{|w|, w \in L\}$ est semilinéaire.

Exercice 5.

- 1. Écrire un algorithme décidant si le langage d'un automate est infini.
- 2. Écrire un algorithme décidant si le langage d'un automate est vide.