Chapitre 5 : Algèbre relationnelle

Dr. Salim Kebir

Maître de conférences à l'ESTI Annaba s.kebir@esti-annaba.dz

Année universitaire 2018-2019

Modélisation Physique

Modélisation logique

Modélisation conceptuelle

SQL

Modèle relationnel Algèbre relationnelle

Modèle entité-association

Algèbre relationnelle

L'algèbre relationnelle

- Un ensemble d'opérations
- Agit sur une ou plusieurs relations pour produire de nouvelles relations
- Deux catégories :
 - Opérations ensemblistes : découlent de la théorie des ensembles
 - Opérations relationnelles : spécifiques au modèle relationnelle

L'algèbre relationnelle

- Un ensemble d'opérations
- Agit sur une ou plusieurs relations pour produire de nouvelles relations
- Deux catégories :
 - Opérations ensemblistes : découlent de la théorie des ensembles
 - Opérations relationnelles : spécifiques au modèle relationnelle

L'algèbre relationnelle est pour les relations ce que l'arithmétique est pour les nombres

Opérations ensemblistes

Union (∪)

Définition

Soit $R(A_1, \dots, A_n)$ et $S(A_1, \dots, A_n)$ deux relations ayant les mêmes attributs :

$$R \cup S = \{ t \mid t \in R \lor t \in S \}$$

Union (∪)

Définition

Soit $R(A_1, \dots, A_n)$ et $S(A_1, \dots, A_n)$ deux relations ayant les mêmes attributs :

$$R \cup S = \{ t \mid t \in R \lor t \in S \}$$

L'union $R \cup S$ crée une relation ayant les mêmes attributs que R et S et qui contient tous les tuples de R ainsi que tous les tuples de S (avec élimination des éventuels doublons).

Union (\cup) - Exemple

Pays1

Code	NomPays	Continent
DZA	Algérie	Afrique
GBR	Grande-Bretagne	Europe
CHE	Suisse	Europe
SEN	Sénégal	Afrique
JPN	Japon	Asie
MEX	Mexique	Amérique

Pays2

Paysz			
Code	NomPays	Continent	
FIN	Finlande	Europe	
CAN	Canada	Amérique	
GBR	Grande-Bretagne	Europe	
JPN	Japon	Asie	
CHN	Chine	Asie	
CHE	Suisse	Europe	
MEX	Mexique	Amérique	

$$R = Pays1 \cup Pays2 =$$

Union (\cup) - Exemple

Pays1

Code	NomPays	Continent
DZA	Algérie	Afrique
GBR	Grande-Bretagne	Europe
CHE	Suisse	Europe
SEN	Sénégal	Afrique
JPN	Japon	Asie
MEX	Mexique	Amérique

Pays2

1 dy32			
Code	NomPays	Continent	
FIN	Finlande	Europe	
CAN	Canada	Amérique	
GBR	Grande-Bretagne	Europe	
JPN	Japon	Asie	
CHN	Chine	Asie	
CHE	Suisse	Europe	
MEX	Mexique	Amérique	
JPN CHN CHE	Japon Chine Suisse	Asie Asie Europe	

 $R = Pays1 \cup Pays2 =$

	Code	NomPays	Continent
	DZA	Algérie	Afrique
	GBR	Grande-Bretagne	Europe
	CHE	Suisse	Europe
	SEN	Sénégal	Afrique
	JPN	Japon	Asie
	MEX	Mexique	Amérique
	FIN	Finlande	Europe
	CAN	Canada	Amérique
ĺ	CHN	Chine	Asie

Intersection (\cap)

Définition

Soit $R(A_1, \dots, A_n)$ et $S(A_1, \dots, A_n)$ deux relations ayant les mêmes attributs :

$$R \cap S = \{ t \mid t \in R \land t \in S \}$$

Intersection (\cap)

Définition

Soit $R(A_1, \dots, A_n)$ et $S(A_1, \dots, A_n)$ deux relations ayant les mêmes attributs :

$$R \cap S = \{ t \mid t \in R \land t \in S \}$$

L'intersection $R\cap S$ crée une relation ayant les mêmes attributs que R et S et qui contient tous les tuples de R qui apparaissent également dans S.

Intersection (\cap) - Exemple

Pays1

Code	NomPays	Continent
DZA	Algérie	Afrique
GBR	Grande-Bretagne	Europe
CHE	Suisse	Europe
SEN	Sénégal	Afrique
JPN	Japon	Asie
MEX	Mexique	Amérique

Pays2

Paysz		
Code	NomPays	Continent
FIN	Finlande	Europe
CAN	Canada	Amérique
GBR	Grande-Bretagne	Europe
JPN	Japon	Asie
CHN	Chine	Asie
CHE	Suisse	Europe
MEX	Mexique	Amérique

$$R = Pays1 \cap Pays2 =$$

Intersection (\cap) - Exemple

Pays1

Code **NomPays** Continent DZA Algérie Afrique **GBR** Grande-Bretagne Europe CHE Suisse Europe SEN Sénégal Afrique JPN Japon Asie MEX Mexique Amérique

Pays2

	ı aysz			
omPays	Continent			
nlande	Europe			
nada	Amérique			
ande-Bretagne	Europe			
pon	Asie			
ine	Asie			
isse	Europe			
exique	Amérique			
	omPays nlande nada ande-Bretagne pon ine isse exique			

$$R = Pays1 \cap Pays2 = \begin{bmatrix} \textbf{Code} & \textbf{NomPays} & \textbf{Continent} \\ \textbf{GBR} & \textbf{Grande-Bretagne} & \textbf{Europe} \\ \textbf{JPN} & \textbf{Japon} & \textbf{Asie} \\ \textbf{CHE} & \textbf{Suisse} & \textbf{Europe} \\ \textbf{MEX} & \textbf{Mexique} & \textbf{Amérique} \end{bmatrix}$$

Différence (-)

Définition

Soit $R(A_1, \dots, A_n)$ et $S(A_1, \dots, A_n)$ deux relations ayant les mêmes attributs :

$$R - S = \{ t \mid t \in R \land t \notin S \}$$

Différence (-)

Définition

Soit $R(A_1, \dots, A_n)$ et $S(A_1, \dots, A_n)$ deux relations ayant les mêmes attributs :

$$R - S = \{ t \mid t \in R \land t \notin S \}$$

La différence R-S crée une relation ayant les mêmes attributs que R et S et qui contient tous les tuples de R qui n'apparaissent pas dans S.

Différence (–) - Exemple

Pavs1

. aysı		
Code	NomPays	Continent
DZA	Algérie	Afrique
GBR	Grande-Bretagne	Europe
CHE	Suisse	Europe
SEN	Sénégal	Afrique
JPN	Japon	Asie
MEX	Mexique	Amérique

	Pays2		
	Code	NomPays	Continent
	FIN	Finlande	Europe
	CAN	Canada	Amérique
	GBR	Grande-Bretagne	Europe
	JPN	Japon	Asie
	CHN	Chine	Asie
İ	CHE	Suisse	Europe
	MEX	Mexique	Amérique

$$R_1 = Pays1 - Pays2 =$$

Différence (-) - Exemple

Pavs1

Code	NomPays	Continent
DZA	Algérie	Afrique
GBR	Grande-Bretagne	Europe
CHE	Suisse	Europe
SEN	Sénégal	Afrique
JPN	Japon	Asie
MEX	Mexique	Amérique

D----

Pays2			
Code	NomPays	Continent	
FIN	Finlande	Europe	
CAN	Canada	Amérique	
GBR	Grande-Bretagne	Europe	
JPN	Japon	Asie	
CHN	Chine	Asie	
CHE	Suisse	Europe	
MEX	Mexique	Amérique	

$$R_2 = Pays2 - Pays1 =$$

Différence (-) - Exemple

Pavs1

Code	NomPays	Continent
DZA	Algérie	Afrique
GBR	Grande-Bretagne	Europe
CHE	Suisse	Europe
SEN	Sénégal	Afrique
JPN	Japon	Asie
MEX	Mexique	Amérique

D----

Pays2			
Code	NomPays	Continent	
FIN	Finlande	Europe	
CAN	Canada	Amérique	
GBR	Grande-Bretagne	Europe	
JPN	Japon	Asie	
CHN	Chine	Asie	
CHE	Suisse	Europe	
MEX	Mexique	Amérique	

$$R_1 = Pays1 - Pays2 = egin{array}{c|c} { extstyle Code} & { extstyle NomPays} & { extstyle Continent} \\ { extstyle DZA} & { extstyle Algérie} & { extstyle Afrique} \\ { extstyle SEN} & { extstyle Sénégal} & { extstyle Afrique} \\ \end{array}$$

$$R_2 = \textit{Pays2} - \textit{Pays1} = \begin{bmatrix} \textbf{Code} & \textbf{NomPays} & \textbf{Continent} \\ \textbf{FIN} & \textbf{Finlande} & \textbf{Europe} \\ \textbf{CAN} & \textbf{Canada} & \textbf{Amérique} \\ \textbf{CHN} & \textbf{Chine} & \textbf{Asie} \end{bmatrix}$$

Produit cartésien (\times)

Définition

Soit
$$R(A_1, \dots, A_n)$$
 et $S(B_1, \dots, B_m)$ deux relations : $R \times S = \{ rs \mid r \in R \land s \in S \}$

Produit cartésien (\times)

Définition

Soit
$$R(A_1, \dots, A_n)$$
 et $S(B_1, \dots, B_m)$ deux relations : $R \times S = \{ rs \mid r \in R \land s \in S \}$

Le produit cartésien $R \times S$ crée une relation ayant comme attributs la concaténation des attributs de R et de S et qui contient l'ensemble de toutes les combinaisons des tuples de R avec ceux de S.

Produit cartésien (\times) - Exemple

Pays

Code NomPays Continent

DZA Algérie Afrique
GBR Grande-Bretagne Europe

Europe

V IIIC3		
NomVille	CodePays	
Helsinki	FIN	
Montréal	CAN	
Londres	GBR	

\/:IIoc

$$R = Pays \times Villes =$$

Finlande

FIN

Produit cartésien (\times) - Exemple

Pays

Code NomPays Continent

DZA Algérie Afrique
GBR Grande-Bretagne Europe

Villes		
NomVille	CodePays	
Helsinki	FIN	
Montréal	CAN	
Londres	GBR	

 $R = Pays \times Villes =$

Finlande

FIN

Code	NomPays	Continent	NomVille	CodePays
DZA	Algérie	Afrique	Helsinki	FIN
DZA	Algérie	Afrique	Montréal	CAN
DZA	Algérie	Afrique	Londres	GBR
GBR	Grande-Bretagne	Europe	Helsinki	FIN
GBR	Grande-Bretagne	Europe	Montréal	CAN
GBR	Grande-Bretagne	Europe	Londres	GBR
FIN	Finlande	Europe	Helsinki	FIN
FIN	Finlande	Europe	Montréal	CAN
FIN	Finlande	Europe	Londres	GBR

Europe

Opérations relationnelles

Projection (π)

Définition

 $\pi_P(R)$ qu'on lit la projection de R sur les attributs P, est une relation ayant comme attributs P et qui contient tous les tuples de R tronqués aux attributs P avec élimination des éventuels doublons.

Projection (π)

Définition

 $\pi_P(R)$ qu'on lit la projection de R sur les attributs P, est une relation ayant comme attributs P et qui contient tous les tuples de R tronqués aux attributs P avec élimination des éventuels doublons.

Concrètement la projection est une opération unaire (qui s'applique sur une seule relation) qui sélectionne certaines colonnes d'une relation donnée.

Pays

Code	NomPays	Continent
DZA	Algérie	Afrique
GBR	Grande-Bretagne	Europe
CHE	Suisse	Europe
SEN	Sénégal	Afrique
JPN	Japon	Asie

$$\pi_{\it Code}(\it Pays) =$$

Pays

Code	NomPays	Continent
DZA	Algérie	Afrique
GBR	Grande-Bretagne	Europe
CHE	Suisse	Europe
SEN	Sénégal	Afrique
JPN	Japon	Asie

$$\pi_{Code}(Pays) = \begin{cases} \textbf{Code} \\ \textbf{DZA} \\ \textbf{GBR} \\ \textbf{CHE} \\ \textbf{SEN} \\ \textbf{JPN} \end{cases}$$

$$\pi_{\mathit{Continent}}(\mathit{Pays}) =$$

Pays

Code	NomPays	Continent
DZA	Algérie	Afrique
GBR	Grande-Bretagne	Europe
CHE	Suisse	Europe
SEN	Sénégal	Afrique
JPN	Japon	Asie

$$\pi_{Code}(Pays) = \begin{cases} \textbf{Code} \\ \textbf{DZA} \\ \textbf{GBR} \\ \textbf{CHE} \\ \textbf{SEN} \\ \textbf{JPN} \end{cases}$$

$$\pi_{Continent}(Pays) = egin{array}{c} \textbf{Continent} \\ Afrique \\ Europe \\ Asie \\ \end{array}$$

$$\pi_{\mathit{Code},\mathit{Continent}}(\mathit{Pays}) =$$

Pays

Code	NomPays	Continent
DZA	Algérie	Afrique
GBR	Grande-Bretagne	Europe
CHE	Suisse	Europe
SEN	Sénégal	Afrique
JPN	Japon	Asie

$$\pi_{Code}(Pays) = \begin{bmatrix} \textbf{Code} \\ DZA \\ GBR \\ CHE \\ SEN \\ JPN \end{bmatrix}$$

$$\pi_{Continent}(Pays) = egin{array}{c} \textbf{Continent} \\ Afrique \\ Europe \\ Asie \\ \end{array}$$

$$\pi_{Code,Continent}(Pays) = \begin{bmatrix} \textbf{Code} & \textbf{Continent} \\ DZA & Afrique \\ GBR & Europe \\ CHE & Europe \\ SEN & Afrique \\ JPN & Asie \\ \end{bmatrix}$$

Restriction (σ)

Définition

 $\sigma_C(R)$ qu'on lit la restriction de R sur la condition C, est une relation ayant les mêmes attributs que R et qui contient tous les tuples de R qui vérifient la condition C.

Restriction (σ)

Définition

 $\sigma_C(R)$ qu'on lit la restriction de R sur la condition C, est une relation ayant les mêmes attributs que R et qui contient tous les tuples de R qui vérifient la condition C.

Concrètement la restriction est une opération unaire (qui s'applique sur une seule relation) qui sélectionne certaines lignes d'une relation donnée.

Pays

Code	NomPays	Continent
DZA	Algérie	Afrique
GBR	Grande-Bretagne	Europe
CHE	Suisse	Europe
SEN	Sénégal	Afrique
JPN	Japon	Asie

$$\sigma_{\textit{Continent}='\textit{Afrique'}}(\textit{Pays}) =$$

Pays

Code	NomPays	Continent
DZA	Algérie	Afrique
GBR	Grande-Bretagne	Europe
CHE	Suisse	Europe
SEN	Sénégal	Afrique
JPN	Japon	Asie

$$\sigma_{Continent='Afrique'}(Pays) = \begin{array}{|c|c|c|c|c|c|}\hline \textbf{Code} & \textbf{NomPays} & \textbf{Continent}\\\hline \textbf{DZA} & \textbf{Algérie} & \textbf{Afrique}\\ \textbf{SEN} & \textbf{Sénégal} & \textbf{Afrique}\\ \end{array}$$

$$\sigma_{\textit{Continent}='\textit{Europe}'}(\textit{Pays}) =$$

Pays

Code	NomPays	Continent
DZA	Algérie	Afrique
GBR	Grande-Bretagne	Europe
CHE	Suisse	Europe
SEN	Sénégal	Afrique
JPN	Japon	Asie

NomPays

Algérie

Sénégal

Continent

Afrique

Afrique

$$\sigma_{Continent='Afrique'}(Pays) = \begin{bmatrix} Code \\ DZA \\ SEN \end{bmatrix}$$

$$\sigma_{\textit{Continent}='\textit{Europe}'}(\textit{Pays}) = \begin{array}{|c|c|c|c|c|c|c|c|}\hline \textbf{Code} & \textbf{NomPays} & \textbf{Continent} \\ \hline \textbf{GBR} & \textbf{Grande-Bretagne} & \textbf{Europe} \\ \textbf{CHE} & \textbf{Suisse} & \textbf{Europe} \\ \hline \end{array}$$

$$\sigma_{\it Continent='Am\'erique'}(\it Pays)=$$

Pays

	Code	NomPays	Continent
	DZA	Algérie	Afrique
	GBR	Grande-Bretagne	Europe
	CHE	Suisse	Europe
	SEN	Sénégal	Afrique
	JPN	Japon	Asie

$$\sigma_{\textit{Continent}='\textit{Europe'}}(\textit{Pays}) = \begin{array}{|c|c|c|c|c|}\hline \textbf{Code} & \textbf{NomPays} & \textbf{Continent}\\\hline \textbf{GBR} & \textbf{Grande-Bretagne} & \textbf{Europe}\\ \textbf{CHE} & \textbf{Suisse} & \textbf{Europe}\\ \hline \end{array}$$

$$\sigma_{Continent='Am\acute{e}rique'}(Pays) = { {Code \ NomPays \ Continent} \over }$$

Jointure (⋈)

Définition

 $R \bowtie_C S$ qu'on lit la jointure de R et de S sur la condition C, est une relation ayant comme attributs la concaténation des attributs de R et de S et qui contient l'ensemble de toutes les combinaisons des tuples de R avec ceux de S mais ne garde que les combinaisons qui vérifient la condition C.

Jointure (⋈)

Définition

 $R \bowtie_C S$ qu'on lit la jointure de R et de S sur la condition C, est une relation ayant comme attributs la concaténation des attributs de R et de S et qui contient l'ensemble de toutes les combinaisons des tuples de R avec ceux de S mais ne garde que les combinaisons qui vérifient la condition C.

- Opération binaire qui ressemble à un produit cartésien
- Garde seulement les combinaisons de tuples compatibles
- Compatibles ⇔ Vérifie la condition de la jointure
- Utilisée lorsque les données sont éparpillées à travers plusieurs tables
- Généralement, la condition est une égalité entre une clé primaire et une clé étrangère

Jointure (\bowtie) - Exemple

Pays

Code	NomPays	Continent
DZA	Algérie	Afrique
GBR	Grande-Bretagne	Europe
FIN	Finlande	Europe
CHE	Suisse	Europe
JPN	Japon	Asie

Villes			
NomVille	CodePays		
Helsinki	FIN		
Alger	DZA		
Bejaia	DZA		
Tokyo	JPN		

$$\textit{Pays} \underset{\textit{Pays.Code}=\textit{Villes.CodePays}}{\bowtie} \textit{Villes}$$

Ш

Jointure (\bowtie) - Exemple

Pays Code NomPays Continent DZA Algérie Afrique GBR Grande-Bretagne Europe FIN Finlande Europe CHE Suisse Europe JPN Japon Asie

Villes			
NomVille	CodePays		
Helsinki	FIN		
Alger	DZA		
Bejaia	DZA		
Tokyo	JPN		

$$Pays \underset{Pays.Code=Villes.CodePays}{\bowtie} Villes$$

Code	NomPays	Continent	NomVille	CodePays
DZA	Algérie	Afrique	Alger	DZA
DZA	Algérie	Afrique	Bejaia	DZA
FIN	Finlande	Europe	Helsinki	FIN
JPN	Japon	Asie	Tokyo	JPN

Remarque : Lien entre jointure et produit cartésien

Une jointure peut être vue comme un produit cartésien suivi d'une restriction. En effet, l'égalité suivante est toujours vraie

$$R \underset{C}{\bowtie} S = \sigma_{C}(R \times S)$$

Remarque : Lien entre jointure et produit cartésien

$R_1 =$	Pays ×	Villes	=
---------	--------	--------	---

Code	NomPays	Continent	NomVille	CodePays
DZA	Algérie	Afrique	Helsinki	FIN
DZA	Algérie	Afrique	Alger	DZA
DZA	Algérie	Afrique	Bejaia	DZA
DZA	Algérie	Afrique	Tokyo	JPN
GBR	Grande-Bretagne	Europe	Helsinki	FIN
GBR	Grande-Bretagne	Europe	Alger	DZA
GBR	Grande-Bretagne	Europe	Bejaia	DZA
GBR	Grande-Bretagne	Europe	Tokyo	JPN
FIN	Finlande	Europe	Helsinki	FIN
FIN	Finlande	Europe	Alger	DZA
FIN	Finlande	Europe	Bejaia	DZA
FIN	Finlande	Europe	Tokyo	JPN
CHE	Suisse	Europe	Helsinki	FIN
CHE	Suisse	Europe	Alger	DZA
CHE	Suisse	Europe	Bejaia	DZA
CHE	Suisse	Europe	Tokyo	JPN
JPN	Japon	Asie	Helsinki	FIN
JPN	Japon	Asie	Alger	DZA
JPN	Japon	Asie	Bejaia	DZA
JPN	Japon	Asie	Tokyo	JPN

Remarque : Lien entre jointure et produit cartésien

 $R_1 = Pays \times Villes =$

	Code	NomPays	Continent	NomVille	CodePays]
	DZA	Algérie	Afrique	Helsinki	FIN	1
7	DZA	Algérie	Afrique	Alger	DZĀ	-
	DZA	Algérie	Afrique	Bejaia	DZA	
-	DZA	Algérie	Afrique	Tokyo	JPN	Ī -
	GBR	Grande-Bretagne	Europe	Helsinki	FIN	
	GBR	Grande-Bretagne	Europe	Alger	DZA	
	GBR	Grande-Bretagne	Europe	Bejaia	DZA	
	GBR_	Grande-Bretagne	Europe	_ Tokyo	_JPN	_
	FIN	Finlande	Europe	Helsinki	FIN	
	FIN	Finlande	Europe	Alger	DZA	Γ
	FIN	Finlande	Europe	Bejaia	DZA	
	FIN	Finlande	Europe	Tokyo	JPN	
	CHE	Suisse	Europe	Helsinki	FIN	
	CHE	Suisse	Europe	Alger	DZA	
	CHE	Suisse	Europe	Bejaia	DZA	
	CHE	Suisse	Europe	Tokyo	JPN	
	JPN	Japon	Asie	Helsinki	FIN	
	JPN	Japon	Asie	Alger	DZA	
	JPN	Japon	Asie	Bejaia	DZA	
	JPN	Japon	Asie	Tokyo	JPN	

Langage algébrique

Langage algébrique

- Langage d'interrogation de modèles relationnels
- Basé sur les opérations ensemblistes et relationnelles
- Sert à exprimer des requêtes sous la forme d'un programme

Syntaxe:

```
R_1 = operation_1

R_2 = operation_2

...

R_n = operation_n
```

Où:

- R_i est un résultat intermédiaire.
- R_n est le résultat final de la requête que l'on veut exprimer.
- *operation*; est une opération de l'algèbre relationnelle.

P	a	У	5

Code	NomPays	Continent
DZA	Algérie	Afrique
GBR	Grande-Bretagne	Europe
CHE	Suisse	Europe
SEN	Sénégal	Afrique
JPN	Japon	Asie
MEX	Mexique	Amérique
FIN	Finlande	Europe
CAN	Canada	Amérique
CHN	Chine	Asie

	Pays				
	Code	NomPays	Continent		
	DZA	Algérie	Afrique		
	GBR	Grande-Bretagne	Europe		
	CHE	Suisse	Europe		
	SEN	Sénégal	Afrique		
	JPN	Japon	Asie		
İ	MEX	Mexique	Amérique		
İ	FIN	Finlande	Europe		
İ	CAN	Canada	Amérique		
	CHN	Chine	Asie		

	Code	NomPays	Continent
	DZA	Algérie	Afrique
	GBR	Grande-Bretagne	Europe
	CHE	Suisse	Europe
ı	SEN	Sénégal	Afrique
	JPN	Japon	Asie
	MEX	Mexique	Amérique
j	FIN	Finlande	Europe
	CAN	Canada	Amérique
	CHN	Chine	Asie

$R_1 =$	$\sigma_{Continent='A}$	_{frique'} (Pays)
Code	NomPays	Continent
DZA	Algérie	Afrique
SEN	Sénégal	Afrique

	Code	NomPays	Continent
	DZA	Algérie	Afrique
	GBR	Grande-Bretagne	Europe
	CHE	Suisse	Europe
	SEN	Sénégal	Afrique
	JPN	Japon	Asie
	MEX	Mexique	Amérique
j	FIN	Finlande	Europe
	CAN	Canada	Amérique
	CHN	Chine	Asie

$R_1 = \sigma_{Continent='Afrique'}(Pays)$						
Code	NomPays	Continent				
DZA	Algérie	Afrique				
SEN	Sénégal	Afrique				

Pays				R1 =	$\sigma_{Continent='A}$	(Pays)
Code	NomPays	Continent		Code	NomPays	Continent
DZA	Algérie	Afrique			,	
GBR	Grande-Bretagne	Europe	\longrightarrow	DZA	Algérie	Afrique
CHE	Suisse	Europe		SEN	Sénégal	Afrique
SEN	Sénégal	Afrique			1	
JPN	Japon	Asie			.	(D)
MEX	Mexique	Amérique			$R_2 = \pi_{NomPa}$, ,
FIN	Finlande	Europe			NomPay	/S
CAN	Canada	Amérique	Algérie			
CHN	Chine	Asie			Sénégal	

Donner le nom de tous les pays d'afrique

	Pays				R ₁ =	$\sigma_{Continent='Af}$	· · (Pavs)
	Code	NomPays	Continent		Code	NomPays	Continent
	DZA	Algérie	Afrique				
	GBR	Grande-Bretagne	Europe	\longrightarrow	DZA	Algérie	Afrique
Ì	CHE	Suisse	Europe		SEN	Sénégal	Afrique
	SEN	Sénégal	Afrique			1	•
	JPN	Japon	Asie				(D)
	MEX	Mexique	Amérique			$R_2 = \pi_{NomPay}$	
	FIN	Finlande	Europe			NomPay	rs
	CAN	Canada	Amérique			Algérie	
	CHN	Chine	Asie			Sénégal	

Programme algébrique :

$$R_1 = \sigma_{Continent='Afrique'}(Pays)$$

 $R_2 = \pi_{NomPays}(R_1)$

Code	NomPays	Continent
DZA	Algérie	Afrique
GBR	Grande-Bretagne	Europe
CHE	Suisse	Europe
SEN	Sénégal	Afrique
JPN	Japon	Asie
MEX	Mexique	Amérique
FIN	Finlande	Europe
CAN	Canada	Amérique
CHN	Chine	Asie

P	a	v	

Code	NomPays	Continent
DZA	Algérie	Afrique
GBR	Grande-Bretagne	Europe
CHE	Suisse	Europe
SEN	Sénégal	Afrique
JPN	Japon	Asie
MEX	Mexique	Amérique
FIN	Finlande	Europe
CAN	Canada	Amérique
CHN	Chine	Asie

P	a	У	

NomPays	Continent
Algérie	Afrique
Grande-Bretagne	Europe
Suisse	Europe
Sénégal	Afrique
Japon	Asie
Mexique	Amérique
Finlande	Europe
Canada	Amérique
Chine	Asie
	Algérie Grande-Bretagne Suisse Sénégal Japon Mexique Finlande Canada

$R_1 = \sigma_{NomPays='Japon'}(Pays)$						
\rightarrow	Code	NomPays	Continent			
,	JPN	Japon	Asie			

Ρ	a	y	

	Code	NomPays	Continent
ſ	DZA	Algérie	Afrique
İ	GBR	Grande-Bretagne	Europe
	CHE	Suisse	Europe
	SEN	Sénégal	Afrique
	JPN	Japon	Asie
	MEX	Mexique	Amérique
	FIN	Finlande	Europe
İ	CAN	Canada	Amérique
ĺ	CHN	Chine	Asie

	$R_1 =$	= σ _{NomPays=} /	_{lapon'} (Pays)
\rightarrow	Code	NomPays	Continent
,	JPN	Japon	Asie

Р	a	У	•

NomPays	Continent
Algérie	Afrique
Grande-Bretagne	Europe
Suisse	Europe
Sénégal	Afrique
Japon	Asie
Mexique	Amérique
Finlande	Europe
Canada	Amérique
Chine	Asie
	Algérie Grande-Bretagne Suisse Sénégal Japon Mexique Finlande Canada

Dans quel continent se trouve le japon

Pays			
Code	NomPays	Continent	
DZA	Algérie	Afrique	
GBR	Grande-Bretagne	Europe	
CHE	Suisse	Europe	
SEN	Sénégal	Afrique	
JPN	Japon	Asie	
MEX	Mexique	Amérique	Г
FIN	Finlande	Europe	
CAN	Canada	Amérique	
CHN	Chine	Asie	

Dave

Programme algébrique :

$$R_1 = \sigma_{NomPays='Japon'}(Pays)$$

 $R_2 = \pi_{Continent}(R_1)$

Exercices pratiques

Modèle relationnel World

- Pays(Code, NomPays, Continent, Superficie, ChefEtat, #Capitale)
 - Capitale référence Ville.CodeVille
- Ville(CodeVille, NomVille, #CodePays)
 - CodePays référence Pays.Code
- Langues(#CodePays, Langue)
 - CodePays référence Pays.Code

Requêtes portant sur une seule relation

- Pays(Code, NomPays, Continent, Superficie, ChefEtat, #Capitale)
- Ville(CodeVille, NomVille, #CodePays)
- Langues(#CodePays, Langue)

Quelles sont toutes les langues parlées dans le monde?

- Pays(Code, NomPays, Continent, Superficie, ChefEtat, #Capitale)
- Ville(CodeVille, NomVille, #CodePays)
- Langues(#CodePays, Langue)

Quelles sont toutes les langues parlées dans le monde?

$$R_1 = \pi_{Langue}(Langues)$$

- Pays(Code, NomPays, Continent, Superficie, ChefEtat, #Capitale)
- Ville(CodeVille, NomVille, #CodePays)
- Langues(#CodePays, Langue)

Donner le nom de chaque pays et le nom de son chef d'état.

- Pays(Code, NomPays, Continent, Superficie, ChefEtat, #Capitale)
- Ville(CodeVille, NomVille, #CodePays)
- Langues(#CodePays, Langue)

Donner le nom de chaque pays et le nom de son chef d'état.

$$R_1 = \pi_{NomPays,ChefEtat}(Pays)$$

- Pays(Code, NomPays, Continent, Superficie, ChefEtat, #Capitale)
- Ville(<u>CodeVille</u>, NomVille, #CodePays)
- Langues(#CodePays, Langue)

Donner le nom des pays dont la superficie dépasse $1 000 000 \text{ m}^2$.

- Pays(Code, NomPays, Continent, Superficie, ChefEtat, #Capitale)
- Ville(<u>CodeVille</u>, NomVille, #CodePays)
- Langues(#CodePays, Langue)

Donner le nom des pays dont la superficie dépasse 1 000 000 m².

$$R_1 = \sigma_{Superficie > 1000000}(Pays)$$

 $R_2 = \pi_{NomPays}(R_1)$

- Pays(Code, NomPays, Continent, Superficie, ChefEtat, #Capitale)
- Ville(CodeVille, NomVille, #CodePays)
- Langues(#CodePays, Langue)

Donner le code et le nom de tous les pays d'Europe.

- Pays(Code, NomPays, Continent, Superficie, ChefEtat, #Capitale)
- Ville(CodeVille, NomVille, #CodePays)
- Langues(#CodePays, Langue)

Donner le code et le nom de tous les pays d'Europe.

$$R_1 = \sigma_{Continent='Europe'}(Pays)$$

 $R_2 = \pi_{Code,NomPays}(R_1)$

- Pays(Code, NomPays, Continent, Superficie, ChefEtat, #Capitale)
- Ville(CodeVille, NomVille, #CodePays)
- Langues(#CodePays, Langue)

Qui est le chef d'état du Zimbabwe?

- Pays(Code, NomPays, Continent, Superficie, ChefEtat, #Capitale)
- Ville(CodeVille, NomVille, #CodePays)
- Langues(#CodePays, Langue)

Qui est le chef d'état du Zimbabwe?

$$R_1 = \sigma_{NomPays='Zimbabwe'}(Pays)$$

 $R_2 = \pi_{ChefEtat}(R_1)$

- Pays(Code, NomPays, Continent, Superficie, ChefEtat, #Capitale)
- Ville(CodeVille, NomVille, #CodePays)
- Langues(#CodePays, Langue)

Quelle est la superficie de l'Algérie?

- Pays(Code, NomPays, Continent, Superficie, ChefEtat, #Capitale)
- Ville(CodeVille, NomVille, #CodePays)
- Langues(#CodePays, Langue)

Quelle est la superficie de l'Algérie?

$$R_1 = \sigma_{NomPays='Alg\'{e}rie'}(Pays)$$

 $R_2 = \pi_{Sup\'{e}rficie}(R_1)$

- Pays(Code, NomPays, Continent, Superficie, ChefEtat, #Capitale)
- Ville(CodeVille, NomVille, #CodePays)
- Langues(#CodePays, Langue)

Dans quel continent se trouve le Brésil?

- Pays(Code, NomPays, Continent, Superficie, ChefEtat, #Capitale)
- Ville(CodeVille, NomVille, #CodePays)
- Langues(#CodePays, Langue)

Dans quel continent se trouve le Brésil?

$$R_1 = \sigma_{NomPays='Br\acute{e}sil'}(Pays)$$

 $R_2 = \pi_{Continent}(R_1)$

- Pays(Code, NomPays, Continent, Superficie, ChefEtat, #Capitale)
- Ville(CodeVille, NomVille, #CodePays)
- Langues(#CodePays, Langue)

Quel est le code du pays dont la capitale a pour code 555?

- Pays(Code, NomPays, Continent, Superficie, ChefEtat, #Capitale)
- Ville(CodeVille, NomVille, #CodePays)
- Langues(#CodePays, Langue)

Quel est le code du pays dont la capitale a pour code 555?

$$R_1 = \sigma_{Capitale=555}(Pays)$$

 $R_2 = \pi_{Code}(R_1)$

- Pays(Code, NomPays, Continent, Superficie, ChefEtat, #Capitale)
- Ville(CodeVille, NomVille, #CodePays)
- Langues(#CodePays, Langue)

Donner le nom des villes qui se trouvent dans le pays ayant le code MEX.

- Pays(Code, NomPays, Continent, Superficie, ChefEtat, #Capitale)
- Ville(CodeVille, NomVille, #CodePays)
- Langues(#CodePays, Langue)

Donner le nom des villes qui se trouvent dans le pays ayant le code MEX.

$$R_1 = \sigma_{CodePays='MEX'}(Villes)$$

 $R_2 = \pi_{NomVille}(R_1)$

- Pays(Code, NomPays, Continent, Superficie, ChefEtat, #Capitale)
- Ville(<u>CodeVille</u>, NomVille, #CodePays)
- Langues(#CodePays, Langue)

Donner le nom de tous les pays d'Afrique et d'Asie.

- Pays(Code, NomPays, Continent, Superficie, ChefEtat, #Capitale)
- Ville(<u>CodeVille</u>, NomVille, #CodePays)
- Langues(#CodePays, Langue)

Donner le nom de tous les pays d'Afrique et d'Asie.

$$R_1 = \sigma_{Continent='Afrique'} \lor Continent='Asie'$$
 (Pays)
 $R_2 = \pi_{NomPays}(R_1)$

- Pays(Code, NomPays, Continent, Superficie, ChefEtat, #Capitale)
- Ville(<u>CodeVille</u>, NomVille, #CodePays)
- Langues (#CodePays, Langue)

Donner le nom de tous les pays d'Afrique et d'Asie.

$$R_1 = \sigma_{Continent='Afrique'} \lor Continent='Asie'(Pays)$$
 $R_2 = \pi_{NomPays}(R_1)$
Ou bien :
 $R_1 = \sigma_{Continent='Afrique'}(Pays)$
 $R_2 = \pi_{NomPays}(R_1)$
 $R_3 = \sigma_{Continent='Asie'}(Pays)$

$$R_4 = \pi_{NomPavs}(R_3)$$

$$R_5 = R_2 \cup R_4$$

- Pays(Code, NomPays, Continent, Superficie, ChefEtat, #Capitale)
- Ville(<u>CodeVille</u>, NomVille, #CodePays)
- Langues(#CodePays, Langue)

Donner le nom des pays d'Afrique dont la superficie est inférieur à 500000 m².

- Pays(Code, NomPays, Continent, Superficie, ChefEtat, #Capitale)
- Ville(<u>CodeVille</u>, NomVille, #CodePays)
- Langues(#CodePays, Langue)

Donner le nom des pays d'Afrique dont la superficie est inférieur à 500000 m².

$$R_1 = \sigma_{Continent='Afrique'} \land Superficie < 500000 (Pays)$$

 $R_2 = \pi_{NomPays}(R_1)$

- Pays(Code, NomPays, Continent, Superficie, ChefEtat, #Capitale)
- Ville(<u>CodeVille</u>, NomVille, #CodePays)
- Langues(#CodePays, Langue)

Donner le nom des pays d'Afrique dont la superficie est inférieur à 500000 m².

$$R_1 = \sigma_{Continent='Afrique' \land Superficie < 500000}(Pays)$$
 $R_2 = \pi_{NomPays}(R_1)$

Ou bien :

$$R_1 = \sigma_{Continent='Afrique'}(Pays)$$

 $R_2 = \sigma_{Superficie < 500000}(R_1)$
 $R_3 = \pi_{NomPays}(R_2)$

- Pays(Code, NomPays, Continent, Superficie, ChefEtat, #Capitale)
- Ville(<u>CodeVille</u>, NomVille, #CodePays)
- Langues(#CodePays, Langue)

Donner le nom des pays d'Afrique dont la superficie est inférieur à 500000 m².

$$R_1 = \sigma_{Continent} = 'Afrique' \wedge Superficie < 500000(Pays)$$
 $R_2 = \pi_{NomPays}(R_1)$

Ou bien :

 $R_1 = \sigma_{Continent} = 'Afrique' (Pays)$
 $R_2 = \sigma_{Superficie} < 500000(R_1)$
 $R_3 = \pi_{NomPays}(R_2)$
 $R_4 = \pi_{NomPays}(R_3)$

Ou bien :

 $R_1 = \sigma_{Continent} = 'Afrique' (Pays)$
 $R_2 = \sigma_{Superficie} < 500000(Pays)$
 $R_3 = R_1 \cap R_2$
 $R_4 = \pi_{NomPays}(R_3)$

- Pays(Code, NomPays, Continent, Superficie, ChefEtat, #Capitale)
- Ville(CodeVille, NomVille, #CodePays)
- Langues(#CodePays, Langue)

Quelles sont les langues parlées à la fois en Belgique et en Suisse sachant que ces deux pays portent respectivement les codes BEL et CHE?

- Pays(Code, NomPays, Continent, Superficie, ChefEtat, #Capitale)
- Ville(CodeVille, NomVille, #CodePays)
- Langues(#CodePays, Langue)

Quelles sont les langues parlées à la fois en Belgique et en Suisse sachant que ces deux pays portent respectivement les codes BEL et CHE?

$$R_1 = \sigma_{CodePays='BEL'}(Langues)$$

 $R_2 = \pi_{Langue}(R_1)$
 $R_3 = \sigma_{CodePays='CHE'}(Langues)$
 $R_4 = \pi_{Langue}(R_3)$
 $R_5 = R_2 \cap R_4$

- Pays(Code, NomPays, Continent, Superficie, ChefEtat, #Capitale)
- Ville(CodeVille, NomVille, #CodePays)
- Langues(#CodePays, Langue)

Quelles sont les langues parlées en Belgique mais pas en Suisse ?

- Pays(Code, NomPays, Continent, Superficie, ChefEtat, #Capitale)
- Ville(CodeVille, NomVille, #CodePays)
- Langues(#CodePays, Langue)

Quelles sont les langues parlées en Belgique mais pas en Suisse?

$$R_1 = \sigma_{CodePays='BEL'}(Langues)$$
 $R_2 = \pi_{Langue}(R_1)$
 $R_3 = \sigma_{CodePays='CHE'}(Langues)$
 $R_4 = \pi_{Langue}(R_3)$
 $R_5 = R_2 - R_4$

- Pays(Code, NomPays, Continent, Superficie, ChefEtat, #Capitale)
- Ville(CodeVille, NomVille, #CodePays)
- Langues(#CodePays, Langue)

Quelles sont les langues parlées en Afrique du Sud sachant que ce pays porte le code ZAF?

- Pays(Code, NomPays, Continent, Superficie, ChefEtat, #Capitale)
- Ville(CodeVille, NomVille, #CodePays)
- Langues(#CodePays, Langue)

Quelles sont les langues parlées en Afrique du Sud sachant que ce pays porte le code ZAF?

$$R_1 = \sigma_{CodePays='ZAF'}(Langues)$$

 $R_2 = \pi_{Langue}(R_1)$

- Pays(Code, NomPays, Continent, Superficie, ChefEtat, #Capitale)
- Ville(CodeVille, NomVille, #CodePays)
- Langues(#CodePays, Langue)

Quelles sont les langues parlées uniquement en Afrique du Sud?

- Pays(Code, NomPays, Continent, Superficie, ChefEtat, #Capitale)
- Ville(CodeVille, NomVille, #CodePays)
- Langues (#CodePays, Langue)

Quelles sont les langues parlées uniquement en Afrique du Sud?

$$\begin{split} R_1 &= \sigma_{CodePays='ZAF'}(Langues) \\ R_2 &= \pi_{Langue}(R_1) \\ R_3 &= \sigma_{CodePays \neq 'ZAF'}(Langues) \\ R_4 &= \pi_{Langue}(R_3) \\ R_5 &= R_2 - R_4 \end{split}$$

- Pays(Code, NomPays, Continent, Superficie, ChefEtat, #Capitale)
- Ville(CodeVille, NomVille, #CodePays)
- Langues(#CodePays, Langue)

Donner le code des pays qui parlent uniquement l'espagnol.

- Pays(Code, NomPays, Continent, Superficie, ChefEtat, #Capitale)
- Ville(CodeVille, NomVille, #CodePays)
- Langues(#CodePays, Langue)

Donner le code des pays qui parlent uniquement l'espagnol.

$$R_1 = \sigma_{Langue='Espagnol'}(Langues)$$

 $R_2 = \pi_{CodePays}(R_1)$
 $R_3 = \sigma_{Langue\neq'Espagnol'}(Langues)$
 $R_4 = \pi_{CodePays}(R_3)$
 $R_5 = R_2 - R_4$