1 Wstęp i cel pracy

1.1 Wstęp

Potrzeba pomiaru czasu jest obecna od początku istnienia ludzkiej cywilizacji. Najprostsze i najstarsze metody pomiaru czasu to obserwacja zjawisk astronomicznych. Metody te, czyli np. obserwacja ruchu słońca, księżyca czy gwiazd, były stosowane przez tysiące lat. Takie pomiary były metodą mało precyzyjną, która popchneła wynalazców do szukania innowacji w tej dziedzinie.

Pierwszym zegarem stworzonym przez człowieka był zegar słoneczny, który wskazywał czas, bazując na cieniu rzucanym przez słońce na tarczę zegara. Jednak metoda była zależna od długości dnia, pory roku i nie pozwalała na pomiar czasu nocą. Jako rozwiązanie zaczęto stosować urządzenia, w których upływający czas wyznaczał stały i ciągły przepływ substancji ciekłej lub sypkiej, takich jak klepsydra.

Wraz z postępem technologicznym zaczęto stosować zegary mechaniczne, oparte na mechanicznych oscylatorach, takich jak wahadło czy sprężyna. Jednak ich precyzja była ograniczona do skali sekundowej, a do tego pojawił się problem stabilności oscylatorów, które były podatne na zmiany temperatury i wilgotności. Pod koniec XIX wieku stabilność zegarów wahadłowych (ok. 0,01–0,001 sekundy na dobę) zaczynała graniczyć z tą, dla której wpływ zmian g związanych z kształtem Ziemi miał już znaczenie [1]. Było to impulsem do poszukiwania metod opartych o rozwiązania elektroniczne.

Powstały zegary kwarcowe, które miały własności niezależne od temperatury, były stabilne mechanicznie i chemicznie. Mimo poprawy, stabilność dalej nie była idealna, zegar po miesiącu mógł się spóźniać o kilka sekund. Z powodu szybkiego rozwoju potrzebny był bardziej precyzyjny zegar o większej stabilności.

Rozwiązaniem okazał się zegar atomowy, który bazuje na zjawisku przejścia pomiędzy dwoma poziomami energetycznymi w atomie. Odmierzanie czasu w przypadku tych urządzeń osiąga precyzję sekundy na miliony lat. Wraz z pojawieniem się komputerów pojawiła się potrzeba ich synchronizacji, co doprowadziło do powstania serwerów czasu, które pozwalają na dokładną synchronizację czasu na całym świecie. Ich działanie opiera się na zegarach atomowych, które są ich źródłem czasu dla serwerów. Powstała również możliwość bezprzewodowej synchronizacji czasu. Mimo zawansowania technologicznego cały czas występuje potrzeba opracowywania nowych rozwiązań.

1.2 Cel pracy

Celem pracy jest zaprojektowanie i wykonanie budzika opartego o lampy Nixie, który będzie synchronizowany z serwerem czasu. Mechanizm ten będzie wspierany modułem zegara czasu rzeczywistego wbudowanym w mikrokontroler. Czas pobrany z serwera będzie wyświetlany na lampach Nixie. Odtwarzanie alarmu będzie realizowane za pomocą źródła dźwięku umieszczonego na urządzeniu. Powinna być też możliwość wyłączenia alarmu za pomocą przycisku.

Urządzenie będzie wykorzystywać aplikację realizującą interfejs użytkownika, przy zachowaniu części ustawień bezpośrednio na urządzeniu. Aplikacja interfejsu użytkownika będzie umożliwiała ustawienie godziny alarmu. Projekt zakłada stałe połączenie z siecią Wi-Fi.