Biostat 202B Homework 1

Due April 11, 2024 @ 11:59PM

AUTHOR

Hanbei Xiong 605257780

Question 1

Let X_1, X_2, \ldots be a sequence of random variables that converges in probability to a constant a. Assume that $P(X_i > 0) = 1$ for all i.

- (a) Verify that the sequences defined by $Y_i = \sqrt{X_i}$ and $Y'_i = a/X_i$ converge in probability.
- (b) Use the results in part (a) to prove the fact used in Example 5.5.18, that σ/S_n converges in probability to 1.

(a) Answer:

Let $g(x) = \sqrt{x}$, g is continuous for $x \ge 0$.

Since $P(X_i > 0) = 1$ for all i, all X_i are greater than 0.

Since $X_n o a$ in probability,

$$Y_n = \sqrt{X_n} = g(X_n) o \sqrt{a}$$
 in probability by C.M.T

Let $q(x) = \frac{a}{x}$, q is continuous for x > 0.

Since $X_n o a$ in probability,

$$Y_n'=q(X_n)=rac{a}{X_n}
ightarrowrac{a}{a}=1$$
 in probability by C.M.T

(b) Answer:

Since $S_n^2 o \sigma^2$ in probability

$$S_n = \sqrt{S_n^2}$$

Hence, by part (a)

$$S_n
ightarrow \sqrt{\sigma^2} = \sigma$$
 in probability

$$\frac{\sigma}{S} o \frac{\sigma}{\sigma} = 1$$
 in probability

Question 2

Consider a sequence of random variables X_n for which $E(X_n) \to \mu$ for a fixed value $\mu \in \mathbb{R}$ and $Var(X_n) \to 0$ as $n \to \infty$. Show that this implies $X_n \to \mu$ in probability for $n \to \infty$.

(a) Answer:

Since $Var(X_n) o 0$ in probability

$$(X_n-E(X_n))^2 o 0$$
 in probability

$$X_n - E(X_n) o 0$$
 in probability

Since $E(X_n) o \mu$ in probability

 $X_n o \mu$ in probability for $n o \infty$

Question 3

A random sample X_1, \ldots, X_n is drawn from a population with pdf

$$f(x|\theta) = \frac{1}{2}(1+\theta x), -1 < x < 1, -1 < \theta < 1.$$

Find a consistent estimator of θ , show that it is consistent.

Answer:

$$\mu = E(X) = \int_{-1}^{1} x \frac{1}{2} (1 + \theta x) dx = \left(\frac{x^2}{4} + \frac{\theta x^3}{6} \right) \Big|_{-1}^{1} = \frac{2\theta}{6}$$

Then, $\theta=3\mu$

Since $ar{X}_n o \mu$ in probability by WLLN,

 $3ar{X}_n o 3\mu= heta$ in probability

Hence, $3\bar{X}_n$ is a consistent estimator of θ

Question 4

Let the random variable Y_n have a distribution that is Binomial(n, p).

- (a) Prove that Y_n/n converges in probability p. This result is one form of the weak law of large numbers.
- (b) Prove that $1 Y_n/n$ converges in probability to 1 p.
- (c) Prove that $(Y_n/n)(1-Y_n/n)$ converges in probability to p(1-p).

(a) Answer:

$$E(Y_n) = np$$
 and $Var(Y_n) = np(1-p)$

$$E(rac{Y_n}{n})=rac{np}{n}=p$$
 and $Var(rac{Y_n}{n})=rac{np(1-p)}{n^2}=rac{p(1-p)}{n}$

By Chebyshev inequality:

$$egin{split} P(|rac{Y_n}{n}-p|>\epsilon) &= P(|rac{Y_n}{n}-E(rac{Y_n}{n})|>\epsilon) \ &\leq rac{Var(rac{Y_n}{n})}{\epsilon^2} \ &= rac{p(1-p)}{n\epsilon^2}
ightarrow 0, ext{ as n goes large} \end{split}$$

Since
$$P(|rac{Y_n}{n}-p|>\epsilon)\geq 0$$
,

 $P(|rac{Y_n}{n}-p|>\epsilon) o 0$ in probability because it is squeezed on both sides of inequalities.

Hence, $rac{Y_n}{n} o p$ in probability.

(b) Answer:

$$Var(1-\frac{Y_n}{n})=\frac{p(1-p)}{n}$$

$$egin{split} P(|1-rac{Y_n}{n}-(1-p)|<\epsilon) &= P(|1-rac{Y_n}{n}-E(1-rac{Y_n}{n})|<\epsilon) \ &\geq rac{Var(1-rac{Y_n}{n})}{\epsilon^2} \ &=rac{p(1-p)}{n\epsilon^2}
ightarrow 0 ext{ in probability} \end{split}$$

Since
$$P(|1-rac{Y_n}{n}-(1-p)|<\epsilon)\geq 0$$
,

Then,
$$1-rac{Y_n}{n} o 1-p$$
 in probability.

(c) Answer:

Let
$$g(x)=x(1-x)$$
 be continuous for all ${\sf x}$

then,
$$rac{Y_n}{n}(1-rac{Y_n}{n})=g(rac{Y_n}{n})=g(p) o p(1-p)$$
 in probability by C.M.T

Question 5

Let W_n denote a random variable with mean μ and variance b/n^p , where $p > 0, \mu$, and b are constants (not functions of n). Prove that W_n converges in probability to μ .

Hint: Use Chebyshev's inequality.

Answer:

Since p>0,

$$P(|W_n-\mu|>\epsilon)=P(|W_n-E(W_n)|>\epsilon)\leq rac{Var(W_n)}{\epsilon^2}=rac{b}{n^p\epsilon^2} o 0$$
 in probability

Since
$$P(|W_n - \mu| > \epsilon) \ge 0$$

$$P(|W_n - \mu| > \epsilon) o 0$$
 in probability because it is squeezed on both sides

Hence, $W_n o \mu$ in probability

localhost:7530