Mathématiques pour l'informatique 1

Cours 7 - Arithmétique modulaire

Émilie Charlier

Université de Liège

Arithmétique modulaire

Definition

Pour tout naturel $m \ge 2$, nous notons $\mathbb{Z}_m = \{0, 1, \dots, m-1\}$. Nous définissons deux opérations binaires sur cet ensemble, appelée addition modulo m et multiplication modulo m:

$$+_m: \mathbb{Z}_m \times \mathbb{Z}_m \to \mathbb{Z}_m, (i,j) \mapsto \text{MOD}(i+j,m)$$

et

$$\cdot_m \colon \mathbb{Z}_m \times \mathbb{Z}_m \to \mathbb{Z}_m, (i,j) \mapsto \text{MOD}(i \cdot j, m).$$

Autrement dit, pour tous $i,j \in \mathbb{Z}_m$, on a

$$i +_m j = MOD(i + j, m)$$
 et $i \cdot_m j = MOD(ij, m)$.

Tables d'addition et de multiplication dans \mathbb{Z}_5 et \mathbb{Z}_6

$+_5$	0	1	2	3	4
0	0	1	2	3	4
1	1	2	3	4	0
2	2	3	4	0	1
3	3	4	0	1	2
+ ₅ 0 1 2 3 4	4	0	1	2	3

.5	0	1	2 0 2 4 1 3	3	4
0	0	0	0	0	0
1	0	1	2	3	4
2	0	2	4	1	3
3	0	3	1	4	2
4	0	4	3	2	1

$+_6$	0	1	2	3	4	5	
0	0	1	2	3	4	5	
1	1	2	3	4	5	0	
2	2	3	4	5	0	1	
3	3	4	5	0	1	2	
4	4	5	0	1	2	3	
+6 0 1 2 3 4 5	5	0	1	2	3	4	

.6	0 0 0 0 0 0	1	2	3	4	5
0	0	0	0	0	0	0
1	0	1	2	3	4	5
2	0	2	4	0	2	4
3	0	3	0	3	0	3
4	0	4	2	0	4	2
5	0	5	4	3	2	1

Dans la suite de cette section, m désigne toujours un entier ≥ 2 .

Faire des calculs dans \mathbb{Z}_m peut rapidement s'avérer fastidieux si l'on ne remarque pas qu'il revient au même d'effectuer les calculs dans \mathbb{Z} et de "réduire modulo m" à la fin (ou à n'importe quel moment qui nous arrange d'ailleurs). Ceci est l'objet du résultat pratique suivant.

Proposition

Soient $x, y, k \in \mathbb{Z}$. Alors

- 1. $MOD(x, m) = MOD(y, m) \iff x y$ est multiple de m.
- 2. MOD(x + km, m) = MOD(x, m).
- 3. MOD(x + y, m) = MOD(MOD(x, m) + y, m)
- **4.** $MOD(x \cdot y, m) = MOD(MOD(x, m) \cdot y, m)$

Démonstration

Supposons que

$$x = qm + r$$
 et $y = q'm + r'$,

avec $q, q' \in \mathbb{Z}$ et $r, r' \in \mathbb{Z}_m$. On a donc

$$r = MOD(x, m)$$
 et $r' = MOD(y, m)$.

1. $MOD(x, m) = MOD(y, m) \iff x - y \text{ est multiple de } m.$

On a
$$x - y = (q - q')m + r - r'$$
.

Comme $r-r'\in\{-m+1,\ldots,0,\ldots,m-1\}$, on obtient que

$$x-y$$
 est multiple de $m\iff r-r'$ est multiple de m

$$\iff r - r' = 0$$

$$\iff r = r'$$

$$\iff$$
 MOD $(x, m) = MOD(y, m)$.

$2. \ \mathrm{MOD}(x+km,m) = \mathrm{MOD}(x,m).$

Le point 2 découle directement du point 1.

3.
$$MOD(x + y, m) = MOD(MOD(x, m) + y, m)$$

4.
$$MOD(x \cdot y, m) = MOD(MOD(x, m) \cdot y, m)$$

On a

$$x + y = qm + r + y$$
 et $xy = qmy + ry$.

En utilisant le point 2, on obtient

$$MOD(x + y, m) = MOD(r + y, m)$$
 et $MOD(xy, m) = MOD(ry, m)$, comme souhaité.

Ce résultat implique que toute égalité dans $\mathbb Z$ est aussi vérifiée "modulo m".

Par exemple, l'égalité $27 = 2 \cdot 8 + 11$ donne

- Par exemple, regalite $2r = 2 \cdot 6 + 11$ donn
- ▶ $1 = 0 \cdot_2 0 +_2 1$ dans \mathbb{Z}_2 ▶ $0 = 2 \cdot_3 2 +_3 2$ dans \mathbb{Z}_3
- $\blacktriangleright \ 3 = 2 \cdot_4 0 +_4 3 \text{ dans } \mathbb{Z}_4$
- ▶ $2 = 2 \cdot_5 3 +_5 1$ dans \mathbb{Z}_5 etc.

Propriétés de l'addition et la multiplication modulaires

Proposition

Pour tout $i, j, k \in \mathbb{Z}_m$, nous avons

1.
$$(i +_m j) +_m k = i +_m (j +_m k)$$

2.
$$(i \cdot_m j) \cdot_m k = i \cdot_m (j \cdot_m k)$$

3.
$$i \cdot_m (j +_m k) = i \cdot_m j +_m i \cdot_m k$$

4.
$$i +_m i = i +_m i$$

5.
$$i \cdot_m j = j \cdot_m i$$

6.
$$0 +_m i = i +_m 0 = i$$

7.
$$1 \cdot_m i = i \cdot_m 1 = i$$

8.
$$i +_m (m - i) = 0$$
 si $i \neq 0$

associativité de $+_m$ associativité de \cdot_m

distributivité de \cdot_m sur $+_m$

commutativité de $+_m$

commutativité de ·_m

0 est neutre pour $+_m$

1 est neutre pour \cdot_m

l'opposé de $i \neq 0$ est m - i

Démonstration

Cela découle des mêmes propriétés sur les entiers et de la proposition précédente.

Remarques

L'associativité permet de donner du sens aux écritures

$$i +_m j +_m k$$
 et $i \cdot_m j \cdot_m k$

puisque l'ordre dans lequel on effectue ces opérations n'a pas d'importance.

L'addition par un élément de \mathbb{Z}_m est injective :

$$i +_m j = i +_m k \implies j = k$$
.

▶ On ne peut pas définir un ordre < de \mathbb{Z}_m tel que

$$x < y \implies \forall z, \ x + z < y + z.$$

Nous avons facilement identifié les opposés des éléments de \mathbb{Z}_m : l'opposé d'un élément i de \mathbb{Z}_m est simplement m-i si $i\neq 0$ et 0 sinon.

Déterminer les inverses est par contre plus délicat.

Lemme

Soient $i, j, j' \in \mathbb{Z}_m$. Alors $i \cdot_m j = i \cdot_m j' = 1 \implies j = j'$.

Démonstration.

Supposons que $i \cdot_m j = i \cdot_m j' = 1$.

En utilisant la proposition précédente, on en déduit que

$$j = j \cdot_m 1$$

$$= j \cdot_m (i \cdot_m j')$$

$$= (j \cdot_m i) \cdot_m j'$$

$$= (i \cdot_m j) \cdot_m j'$$

$$= 1 \cdot_m j'$$

$$= j'.$$

Le lemme précédent nous dit que si un élément possède un inverse, alors celui-ci est unique.

Definition

Un élément i de \mathbb{Z}_m est inversible modulo m s'il existe j dans \mathbb{Z}_m tel que $i \cdot_m j = 1$.

Au vu du lemme précédent, il ne peut exister qu'un seul tel élément j et lorsqu'il existe, celui-ci est appelé l'inverse de i modulo m.

On dit aussi que i est un élément inversible de \mathbb{Z}_m .

Exemples

▶ Dans le cas de \mathbb{Z}_6 , seuls 1 et 5 sont inversibles modulo 6.

On vérifie en effet que dans la table de multiplication, les lignes correspondants aux éléments 0, 2, 3 et 4 ne contiennent pas l'élément 1, mais que 1 apparaît bien dans les lignes correspondants à 1 et 5.

.6	0	1	2	3	4	5
0	0	0	0	0	0	0
1	0	1	2	3	4	5
2	0	2	4	0	2	4
3	0	3	0	3	0	3
4	0	4	2	0	4	2
5	0	5	2 0 2 4 0 2 4	3	2	1

▶ Dans le cas de \mathbb{Z}_5 , toutes les lignes de la table de multiplication, excepté celle de 0, contiennent 1.

.2	0	1	2	3	4
0	0	0	0	0	0
1	0	1	2	3	4
2	0	2	4	1	3
3	0	3	1	4	2
4	0 0 0 0 0	4	3	2	1

Ceci montre que tous les éléments non nuls de \mathbb{Z}_5 sont inversibles.

Caractérisation des éléments inversibles de \mathbb{Z}_m

Théorème

Un élément i de \mathbb{Z}_m est inversible modulo m si et seulement si i et m sont premiers entre eux.

Démonstration.

Soit i un élément inversible de \mathbb{Z}_m .

Alors il existe $j \in \mathbb{Z}_m$ tel que $i \cdot_m j = 1$, càd tel que MOD(ij, m) = 1.

Il existe donc $q \in \mathbb{N}$ tel que ij = qm + 1, et donc tel que ij - qm = 1.

Par le théorème de Bézout, *i* et *m* sont premiers entre eux.

Réciproquement, soit i un élément de \mathbb{Z}_m premier avec m.

Par le théorème de Bézout, il existe $a, b \in \mathbb{Z}$ tels que 1 = ai + bm.

On obtient que $1 = MOD(ai, m) = MOD(a, m) \cdot_m i$.

Donc *i* est inversible dans \mathbb{Z}_m et son inverse est MOD(a, m).

Exemples

- ▶ Dans le cas de \mathbb{Z}_6 , seuls 1 et 5 sont inversibles modulo 6.
 - En effet, les éléments de \mathbb{Z}_6 premiers avec 6 sont exactement 1 et 5.
- ▶ Dans le cas de \mathbb{Z}_5 , tous les éléments non nuls sont inversibles modulo 5.

En effet, tous les éléments non nuls de \mathbb{Z}_5 sont premiers avec 5.

Remarque importante

La preuve du théorème précédent montre que la recherche d'un inverse modulaire peut de faire à l'aide de l'algorithme d'Euclide.

Ceci sera très utile pour résoudre des équations dans \mathbb{Z}_m .

Ces exemples sont des cas particuliers du résultat général suivant.

Théorème

Tous les éléments non nuls de \mathbb{Z}_m sont inversibles si et seulement si m est un nombre premier.

Démonstration.

Ceci découle directement du théorème précédent et du fait que m est premier avec $1, 2, \ldots, m-1$ si et seulement si m est un nombre premier.

Remarque

La multiplication par un élément quelconque de \mathbb{Z}_m n'est pas toujours injective !

Par exemple, on a $2 \cdot_6 1 = 2 \cdot_6 4$ dans \mathbb{Z}_6 .

Néanmoins, il est vrai que la multiplication par un élément inversible de \mathbb{Z}_m est injective.

Proposition

Pour tout $i \in \mathbb{Z}_m$ inversible modulo m, la fonction

$$\mathbb{Z}_m \to \mathbb{Z}_m, j \mapsto i \cdot_m j$$

est injective.

Démonstration.

Soit k l'inverse de i dans \mathbb{Z}_m et soient $j, j' \in \mathbb{Z}_m$ tels que $i \cdot_m j = i \cdot_m j'$.

Alors
$$j = k \cdot_m i \cdot_m j = k \cdot_m i \cdot_m j' = j'$$
.

Consignes pour les exercices

- Vous n'avez pas le droit d'utiliser de calculatrice!
 Il faudra donc d'être efficace, et ne pas passer en revue toutes les valeurs possibles pour x.
- Lorsqu'on demande de résoudre une équation du type

$$ax + b = 0$$

dans \mathbb{Z}_m , les opérations de multiplication et d'addition doivent être interprétées comme étant réellement \cdot_m et $+_m$.

Exercices

1. Résoudre l'équation 10x + 8 = 0 dans \mathbb{Z}_{21} .

Comme $\operatorname{pgcd}(10,21)=1$, nous savons que 10 est inversible dans \mathbb{Z}_{21} .

Puisque $21-2\cdot 10=1$, on obtient que MOD(-2,21)=19 est l'inverse de 10 dans \mathbb{Z}_{21} .

Ainsi, en supposant que $x \in \mathbb{Z}_{21}$, on a les équivalences suivantes :

$$10 \cdot_{21} x +_{21} 8 = 0 \iff 10 \cdot_{21} x = 13$$

$$\iff x = 19 \cdot_{21} 13$$

$$\iff x = MOD(19 \cdot 13, 21)$$

$$\iff x = MOD((-2) \cdot (-8), 21)$$

$$\iff x = 16.$$

L'équation 10x + 8 = 0 a donc 16 comme unique solution dans \mathbb{Z}_{21} .

2. Résoudre l'équation 10x + 8 = 0 dans \mathbb{Z}_{12} .

Comme pgcd(10, 12) = 2, 10 n'est pas inversible dans \mathbb{Z}_{12} .

En supposant que
$$x \in \mathbb{Z}_{12}$$
, on a les équivalences suivantes :

 $10 \cdot_{12} x +_{12} 8 = 0 \iff 10 \cdot_{12} x = 4$

 \iff MOD(10x, 12) = 4

 $\iff \exists g \in \mathbb{Z}, \ 10x = 12g + 4$

 $\iff \exists a \in \mathbb{Z}, \ 5x = 6a + 2$

 \iff MOD(5x, 6) = 2

 \iff 5 · 6 MOD(x, 6) = 2.

Comme $\operatorname{pgcd}(5,6)=1$, nous savons que 5 est inversible dans $\mathbb{Z}_6.$

L'inverse de 5 dans \mathbb{Z}_6 est 5 puisque $5 \cdot_6 5 = 1$.

On obtient les équivalences suivantes :

$$5 \cdot_6 \text{MOD}(x, 6) = 2 \iff \text{MOD}(x, 6) = 5 \cdot_6 2$$

 $\iff \text{MOD}(x, 6) = 4$
 $\iff \exists q \in \mathbb{Z}, \ x = 6q + 4$
 $\iff x = 4 \text{ ou } x = 10.$

Les solutions de l'équation 10x + 8 = 0 dans \mathbb{Z}_{12} sont donc 4 et 10.

3. Résoudre l'équation 10x + 8 = 0 dans \mathbb{Z}_{15} .

Comme pgcd(10, 15) = 5, 10 n'est pas inversible dans \mathbb{Z}_{15} .

En supposant que $x \in \mathbb{Z}_{15}$, on a les équivalences suivantes :

$$10 \cdot_{15} x +_{15} 8 = 0 \iff 10 \cdot_{15} x = 7$$

$$\iff MOD(10x, 15) = 7$$

$$\iff \exists q \in \mathbb{Z}, \ 10x = 15q + 7$$

Mais si on a 7 = 10x - 15q avec $x, q \in \mathbb{Z}$, alors 7 doit nécessairement être un multiple de $\operatorname{pgcd}(10, 15) = 5$.

Comme ce n'est pas le cas (7 n'est pas multiple de 5), on obtient donc qu'il ne peut exister d'entiers x et q tels que 10x = 15q + 7.

Par conséquent, l'équation 10x+8=0 n'a pas de solution dans $\mathbb{Z}_{15}.$