Congratulations! You passed!

Grade received 100%

Latest Submission Grade 100%

To pass 80% or higher

Go to next item

1. For a variable $X\sim N(\mu,\sigma^2)$ where σ^2 is fixed and known, find the Jeffrey's prior. 1/1 point Is it proper?

A-
$$p(\mu) \propto \sqrt{rac{1}{\sigma^2} \propto 1}$$
 ; proper

B-
$$p(\mu) \propto \sqrt{rac{1}{\sigma^2} \propto 1}$$
 ; improper

C-
$$p(\mu) \propto \sqrt{rac{1}{\sigma^2} \propto rac{1}{\sigma^2}}$$
 ; proper

- A
- B
- \bigcirc c
 - **⊘** Correct

Correct. A constant over the real line does not integrate to 1.

- 2. We are studing a Bernoulli process for which we have no prior information. We decide to use a non-informative prior such as the beta(1,1). Because the prior is flat [0,1], this prior will have no effect on the posterior.
 - O true
 - false

✓ Correct Correct. Although, as you gather more data, the effect of the prior diminishes.	
The data we are modelling comes from a geometric distribution. A good choice of prior family is:	1/1 point
exponential; because there is only one parameter	
beta; because the form of the exponential matches the kernel of the beta	
O uniform; due to the parameter of the exponential being a proportion	
✓ CorrectCorrect! This is the benefit of choosing conjugate priors.	
Given a prior having mean 10 and data having mean 5, we should expect the posterior mean to lie	1/1 point
O the left of 5	
to the right of 10	
between 5 and 10	
⊘ Correct	
	Correct. Although, as you gather more data, the effect of the prior diminishes. The data we are modelling comes from a geometric distribution. A good choice of prior family is: exponential; because there is only one parameter beta; because the form of the exponential matches the kernel of the beta uniform; due to the parameter of the exponential being a proportion Correct Correct! This is the benefit of choosing conjugate priors. Given a prior having mean 10 and data having mean 5, we should expect the posterior mean to lie the left of 5 to the right of 10 between 5 and 10