Méréstechnika laboratórium $2/\mathrm{a}$ jegyzőkönyv

Koncz István Márton

Neptun: A2754O

Kurzus: TVN2L-D-06

Mérésvezető: Markella Zsolt

B csoport

2017. október 10.

1. 12. sz. laboratóriumi mérés

Mérés dátuma: 2017.09.18

1.1. A mérés célja

A teljesítmény összetevőinek, jellemzőinek méréssel történő meghatározása. A mérés hibáinak meghatározása, figyelembevétele.

1.2. Mérési feladatok

1.2.1. A mérőpanelen található izzó teljesítmény-feszültség karakterisztikájának meghatározása! A teljesítménymérő használatának megismerése. A teljesítmény számítása ill. mérése hibáinak meghatározása!

Cél: A mérőpanelen található 24V, 60W-os izzó a teljesítmény mérése teljesítménymérővel valamint teljesítmény-feszültség karakterisztikájának felvétele, váltakozó feszültségű táplálás esetén, 0-20V tartományban 2V-os lépésenként.

A mérendő objektum:

1. ábra.

Mérés határadatai: a megengedett áram és feszültség 2A, 20V.

 U_T : tápfeszültség

 U_M : izzón eső feszültség

 I_M : izzón folyó áram

 P_M : izzó teljesítménye

U_T	U_M	I_M	P_M	R_{SZ}
0 V	0,001 V	0,02 A	$0.04 \ { m W}$	0Ω
2 V	1,9 V	0,68 A	1,43 W	$2,79 \Omega$
4 V	3,7 V	0,93 A	3,79 W	$3,97~\Omega$
6 V	$5,65~\mathrm{V}$	1,13 A	7,08 W	5Ω
8 V	7,8 V	1,33 A	10,51 W	$5,86 \Omega$
10 V	9,78 V	1,47 A	15 W	$6,65 \Omega$
12 V	11,76 V	1,62 A	19,37 W	$7,25 \Omega$
14 V	13,71 V	1,76 A	24,36 W	$7,78 \Omega$
16 V	15,7 V	1,89 A	$30,4~\mathrm{W}$	8,3 Ω

18Vés 20Vesetén átlépnénk a 2A-es áramkorlátot, ezért a mérést ezekben a tartományokban nem végeztem el.

 $2.~{\rm ábra}.~{\rm Izzó}$ teljesítménye a feszültség függvényében

3. ábra. Izzó ellenállása a feszültség függvényében

Áramot MAXWELL MX-25 201 multiméterrel mértem, amelynek a bizonytalansági mutatói a következők 20 A méréshatáron (váltakozó áram esetén):

$$\pm h = \pm 3.0\% rdg + 10 digit$$

Számítás:

Feszültséget HAMEG HM8012 multiméterrel mértem, amelynek a bizonytalansági mutatói a következők 50V méréshatáron (váltakozó áram esetén):

$$\pm h = \pm 0.07\% fs + 0.4\% rdg$$

Számítás:

$$\pm h_{U1} = \pm \left(0.4 + \frac{50}{1.9} * 0.07\right) \% = \pm 2.2\%$$

$$\pm h_{U2} = \pm \left(0.4 + \frac{50}{3.7} * 0.07\right) \% = \pm 1.3\%$$

$$\pm h_{U3} = \pm \left(0.4 + \frac{50}{5.65} * 0.07\right) \% = \pm 1.01\%$$

$$\pm h_{U4} = \pm \left(0.4 + \frac{50}{7.8} * 0.07\right)\% = \pm 0.84\%$$

$$\pm h_{U5} = \pm \left(0.4 + \frac{50}{9.78} * 0.07\right)\% = \pm 0.75\%$$

$$\pm h_{U6} = \pm \left(0.4 + \frac{50}{11.76} * 0.07\right)\% = \pm 0.69\%$$

$$\pm h_{U7} = \pm \left(0.4 + \frac{50}{13.71} * 0.07\right)\% = \pm 0.65\%$$

$$\pm h_{U8} = \pm \left(0.4 + \frac{50}{15.7} * 0.07\right)\% = \pm 0.62\%$$

A teljesítmény hibája a mért feszültség, illetve áramértékek hibáinak összege, mivel P = U * I, (ahol P a teljesítmény, U a feszültség, és I az áramerősség)

$$\pm h_{P1} = \pm (h_{I1} + h_{U1}) \% = \pm (17.7 + 2.2) \% = \pm 19.9 \%$$

$$\pm h_{P2} = \pm (h_{I2} + h_{U2}) \% = \pm (13.7 + 1.3) \% = \pm 15 \%$$

$$\pm h_{P3} = \pm (h_{I3} + h_{U3}) \% = \pm (11.8 + 1.01) \% = \pm 12.81 \%$$

$$\pm h_{P4} = \pm (h_{I4} + h_{U4}) \% = \pm (10.5 + 0.84) \% = \pm 11.34 \%$$

$$\pm h_{P5} = \pm (h_{I5} + h_{U5}) \% = \pm (9.8 + 0.75) \% = \pm 10.55 \%$$

$$\pm h_{P6} = \pm (h_{I6} + h_{U6}) \% = \pm (9.1 + 0.69) \% = \pm 9.79 \%$$

$$\pm h_{P7} = \pm (h_{I7} + h_{U7}) \% = \pm (8.6 + 0.65) \% = \pm 9.25 \%$$

$$\pm h_{P8} = \pm (h_{I8} + h_{U8}) \% = \pm (8.3 + 0.62) \% = \pm 8.92 \%$$

1.2.2. Teljesítmény mérés ohmos-induktív terhelés esetén

A mérés során egy, az ohmos terheléssel (izzóval) sorosan kapcsolt tekercs hatását mérjük, úgy, hogy a vasmag kiszerelhetőségének segítségével változtatjuk a tekercs induktivitását. A teljesítménymérővel a hatásos teljesítményt mérünk.

A mérendő objektum:

4. ábra.

Mért eredmények:

Módszer	U_T	I_M	U_M	P_M	Q_M	S_M
Vasmag nélkül	5 V	1,03 A	5,11 V	$5,23~\mathrm{W}$	$0.18~\mathrm{VAr}$	5,23 VA
	10 V	1,46 A	10,19 V	14,85 W	$0.37~\mathrm{VAr}$	14,85 VA
Vasmaggal	5 V	0,53 A	5,09 V	$2,25~\mathrm{W}$	1,48 VAr	2,69 VA
	10 V	0,85 A	10,1 V	7,5 W	3,81 VAr	8,1 VA
Gumilappal a vasmag résében	5 V	1 A	5,19 V	4,93 W	1,14 VAr	5,06 VA
	10 V	1,44 A	10,23 V	14,31 W	$2,41~\mathrm{VAr}$	14,52 VA

Számítások:

1. Vasmag nélkül:

$$S = U * I$$

$$S_{sz} = 5,11V * 1,03A = 5,26VA$$

$$\frac{P}{|S|} = \cos^{-1} \phi = \frac{5,23W}{5,26VA} = 0,9942$$

$$\phi = 6,122$$

$$Q_{sz} = \sin \phi * |S| = 0,56VAr$$

-10V:

$$S = U * I$$

$$S_{sz} = 10,19V * 1,46A = 14,87VA$$

$$\frac{P}{|S|} = \cos^{-1}\phi = \frac{14,85W}{14,87VA} = 0,9986$$

$$\phi = 2,971$$

$$Q_{sz} = \sin\phi * |S| = 0,77VAr$$

- 2. Vasmaggal:
 - 5V:

$$S = U * I$$

$$S_{sz} = 5,09V * 0,53A = 2,69VA$$

$$\frac{P}{|S|} = \cos^{-1}\phi = \frac{2,25W}{2,69VA} = 0,8364$$

$$\phi = \frac{1}{2,69VA} = 0,8364$$

$$\phi = 33,23$$

$$Q_{sz} = \sin \phi * |S| = 1,47VAr$$

- 10V:

$$S = U * I$$

$$S_{sz} = 10, 1V * 0, 85A = 8, 585VA$$

$$\frac{P}{|S|} = \cos^{-1} \phi = \frac{7, 5W}{8, 585VA} = 0,8736$$

$$\phi = 29, 118$$

- $Q_{sz} = \sin \phi * |S| = 4,1775 VAr$
- 3. Gumilappal a vasmag résében:
 - 5V:

$$S = U * I$$

$$S_{sz} = 5,19V * 1A = 5,19VA$$

$$\frac{P}{|S|} = \cos^{-1} \phi = \frac{4,93W}{5,19VA} = 0,9499$$

$$\phi = 18,21$$

$$Q_{sz} = \sin \phi * |S| = 1,62VAr$$

- 10V:

$$S = U * I$$

$$S_{sz} = 10,23V * 1,44A = 14,73VA$$

$$\frac{P}{|S|} = \cos^{-1}\phi = \frac{14,31W}{14,73VA} = 0,9714$$

$$\phi = 13,715$$

$$Q_{sz} = \sin\phi * |S| = 3,49VAr$$

5. ábra. Vektorábra 10 V-os tápfeszültség esetén

1.2.3. Pákatranszformátor kimeneti jellegörbéjének felvétele

Számítsa ki a mérőhelyen található 20VA-s pákatranszformátor 24V-s kimenetére vonatkozó névleges terhető áram és terhelő ellenállás értékét. Mérje meg a pákatranszformátor 24V-s kimenetének üresjárási feszültségét! A mellékelt tolóellenállás felhasználásával állítsa be a névleges terhelő áramot és ismételje meg az előző mérést! A mért értékek alapján számítsa ki a feszültségesés illetve a teljesítmény veszteség értékét. A mérés eredményét ábrázolja U_{ki} , I_{Ki} koordinátarendszerben.

A mérés határadatai:

Névleges teljesítmény:

$$P_N = 20VA$$

Névleges áram:

$$I_N = \frac{P_N}{U} = \frac{20VA}{24V} = 0,83A$$

2. 13. sz. laboratóriumi mérés

Mérés dátuma: 2016.09.13

2.1. A mérés célja

A digitális oszcilloszkóp kezelésének többlet funkcióinak elsajátítása, a kapott mérési eredmények kiértékeléséhez szükséges szemlélet kialakítása.

2.2. Mérési feladatok

2.2.1. Az oszcilloszkóp csatorna-menük vizsgálata

- 1. Beállítások változtatásának eredményei CH1 csatornán:
 - Csatolás: nincs változás, akkor lenne, ha ténylegesen jelet kötnénk a bemenetre
 - Sávkorlátozás: V/DIV kijelzésnél megjelenik egy BW felirat, ha be van kapcsolva
 - V/DIV: pontosabb beállítás
- 2. Az 1V/DIV és a 10mV/DIV finom-beállítások közötti eltérések:

1 V/DIV	$10 \mathrm{mV/DIV}$
2V <x<5v: 40mv<="" th=""><th>10 mV < X < 11 mv: 0.2 mV</th></x<5v:>	10 mV < X < 11 mv: 0.2 mV
1V <x<2v: 20mv<="" td=""><td>5 mV < X < 10 mV : 0.1 mV</td></x<2v:>	5 mV < X < 10 mV : 0.1 mV
500 mV < X < 1 V: 10 mV	-

- 3. A függőleges pozíció állításához tartozó megfigyeléseim:
 - CH1 csatorna függőleges pozíciója 1 osztással feljebb került $+100\mathrm{mV}$ esetén
 - -150mV pozíció mellett a lépésköz $4\mathrm{mV}$

2.2.2. Horizontális menü vizsgálata

1. A Window megjelenítés hatása, rajzzal:

6. ábra. Ablaktartomány beállításakor

7. ábra. Ablak megjelenítésekor

- 2. Sec/DIV hatása: Belenagyítunk a képbe.
- 3. Autoset hatása, rajzzal: Autoset hatására az ábra értékelhetetlen. A megállításhoz szükséges holdoff idő: $6,950 \mu s$

8. ábra. Autoset

2.2.3. Az utótriggerelés, az előtriggerelés és a késleltetett utótriggerelés vizsgálata

- 1. A vízszintes pozíció állító működésének vizsgálata:
 - -1 osztással való trigger pozíció állítás 90 fokos fáziskését jelent. A +5 DIV-es eltolás egy előző egész periódust jelenít meg a képernyő közepétől. A nagy tartományban való állíthatóság jól használható a trigger pozíció előtti vagy utáni jelalak vizsgálatára.
- 2. Set to Zero vizsgálata: a gomb megnyomásával a képernyő közepére helyezhetjük a trigger pozíciót.
- 3. Az oszcilloszkóp jelalakjainak vizsgálata:

9. ábra. 1MHz négyszögjel

4. A jel a képernyőn kívüli részeinek vizsgálata: késleltetett utótriggerelési mód. A memória mérete korlátozza a feldolgozható adatmennyiséget.

10. ábra. QA

11. ábra. QB

12. ábra. QC

13. ábra. QD

2.2.4. A trigger menü vizsgálata

1. Nagy és kisfrekvenciás elnyomás határfrekvenciájának mérése.

Triggerforrás	CH1		
Trigger él	emelkedő		
Triggerelési üzemmód	Auto		
Triggerjel csatolása	HF: 55 kHz; LF: 13,52 kHz		

Lépések: A trigger jelet csatlakoztatjuk. A trigger menüben éltrigger módot választjuk ki, majd a csatolás típusát HF reject-re állítjuk. Ezzel leválasztjuk a nagyfrekvenciás komponenseket. Két lehetőségünk adódik:

- (a) Megvizsgáljuk a jel spektrumát FFT-vel.
- (b) A triggerjel frekvenciáját változtatjuk és vizsgáljuk a jel szintjét. Amikor a jel 3dB-el lecsökken a középfrekvenciához képest, akkor az lesz a határfrekvencia.
- 2. 1 kHz-es négyszögjel vizsgálata CH1 csatornán, kb. 500 μs impulzusszélesség mellett: alsó határ 481 μs , felső határ 532 μs

2.2.5. Kibővített matematikai funkciók vizsgálata

 ${\bf A}$ Math Menu gomb 3 funkciót kínál: összegzés, különbségképzés, FFT spektrum analízis.

2.2.6. Automatikus gyorsmérések elvégzése

Mennyiség	Szinuszjel	Négyszögjel
f	1kHz	10kHz
Т	1ms	$100\mu s$
Mean	23,7mV	134mV
Pk-Pk	3,92V	2,72V
Cyc RMS	1,37V	1,10V
Min	-1,92V	-1,04V
Max	2,0V	1,32V
Rise time	$296\mu s$	79,6ns
Fall time	$288\mu s$	78,57ns
Pos Width	$494\mu s$	$50,67 \mu s$
Neg Width	$506\mu s$	$49,40 \mu s$

Négyszögjel felfutási idejének mérése:

TIME/DIV	Négyszögjel felfutási ideje
$50\mu s$	157ns
$25\mu s$	$76,79 \mu s$
$10\mu s$	$33,85 \mu s$
$5\mu s$	$28,75\mu s$

3. 14. sz. laboratóriumi mérés

Mérés dátuma: 2016.10.04

3.1. A mérés célja

Az ellenállás mérésére használatos néhány módszer alkalmazásának elsajátítása. Igen kis ellenállások nagypontosságú mérése. A méréseknél előforduló mérési hibák meghatározása.

3.2. Mérési feladatok

3.2.1. Feszültség összehasonlító módszerrel határozza meg a 4. sz mérőpanelen található R7 = 10Ω és R4 = 82Ω névleges értékű ellenállások pontos értékét és bizonytalanságukat! A mért és a számított eredményeket foglalja össze táblázatba. A méréseknél az elérhető legnagyobb pontosságra törekedjék!

Mérendő objektum:

14. ábra. Feszültség összehasonlító módszer

Határadatok: mivel R_G a legnagyobb ellenállás, és mindegyiknek a megengedett maximálisan felvehető teljesítménye 0,25W, ezért célszerű $R1=R_G$ ellenállással a maximális tápfeszültséget meghatározni.

$$P=I_m^2*R$$

$$I_m=\sqrt{\frac{P}{R}}=\sqrt{\frac{0,25W}{1k\Omega}}=15,8mA$$

$$U_{Tmax}=\frac{I_m*R_G}{3}=\frac{15,8mA*1k\Omega}{3}=5V$$

Mért értékek:

R_x	R_4	R_7
U_N	$45,93~\mathrm{mV}$	43,57 mV
U_X	$47,97~\mathrm{mV}$	$368 \mathrm{\ mV}$
R_{valodi}	$10,44 \Omega$	$84,46 \Omega$

$$R_X = R_N * \frac{U_X}{U_N}$$

Hibaszámítás (HM8012):

$$\pm h_{u} = \pm \left(0.05\% + 0.004\% * \frac{U_{mh}}{U_{m}}\right)$$
1. R_{4} :
$$\pm h_{UR4} = \pm \left(0.05 + 0.004 * \frac{500mV}{47,97mV}\right)\% = \pm 0.091\%$$

$$\pm h_{URN} = \pm \left(0.05 + 0.004 * \frac{500mV}{45,93mV}\right)\% = \pm 0.093\%$$

$$\pm h_{RN} = \pm 0.02\%$$

$$\pm h_{RX} = \pm \left(h_{UR4} + h_{URN} + h_{RN}\right)\% = \pm 0.204\%$$
2. R_{7} :
$$\pm h_{UR7} = \pm \left(0.05 + 0.004 * \frac{500mV}{43,57mV}\right)\% = \pm 0.095\%$$

$$\pm h_{URN} = \pm \left(0.05 + 0.004 * \frac{500mV}{45,93mV}\right)\% = \pm 0.055\%$$

$$\pm h_{URN} = \pm 0.02\%$$

3.2.2. Áramösszehasonlító módszerrel határozza meg a 4. sz mérőpanelen található R15 = $100k\Omega$ névleges értékű, valamint az R11 ismeretlen értékű ellenállásokat és bizonytalanságukat! A mért és a számított eredményeket foglalja össze táblázatba. A méréseknél az elérhető legnagyobb pontosságra törekedjék!

 $\pm h_{RX} = \pm (h_{UR4} + h_{URN} + h_{RN}) \% = \pm 0,17\%$

Mérendő objektum:

15. ábra. Áram összehasonlító módszer

Határadatok: Áramkorlát I = 3mA, feszültségkorlát:

$$P = U * I$$

$$U_{max} = \sqrt{P * R} = \sqrt{0,25 * 100k\Omega} = 158V$$

$$U_T = \frac{U_{max}}{5} = 30V$$

Mért értékek:

R_x	R_{11}	R_{15}
I_N	$300\mu A$	$300\mu A$
I_X	$844\mu A$	$303, 6\mu A$
R_{valodi}	$35,54k\Omega$	$98,82k\Omega$

Hibaszámítás (Maxwell):

1.
$$R_{11}$$
:

$$R_X = R_N * \frac{I_N}{I_X}$$

$$\pm h = \pm \left(h_{rdg} + \frac{D}{N_K} * 100\right)\%$$

$$\pm h_{IN} = \pm \left(h_{rdg} + \frac{D}{N_K} * 100\right) = \pm 1,83\%$$

$$\pm h_{IR11} = \pm 1,61\%$$

$$\pm h_{IR15} = \pm 1,83\%$$

$$\pm h_{RX} = \pm \left(h_{RN} + h_{IN} + h_{IX}\right)$$

$$\pm h_{R11} = \pm 3,46\%$$

$$\pm h_{R15} = \pm 3,68\%$$

3.3. Két- ill. négyvezetékes módszer segítségével határozza meg a 4. sz mérőpanelen található $\mathbf{R3}=0,5\Omega$ névleges értékű ellenállást! A mért és a számított eredményeket foglalja össze táblázatba A méréseknél az elérhető legnagyobb pontosságra törekedjék!

Mérendő objektum:

 $\begin{array}{c} R_2 = 20\Omega, 20W \\ R_3 = 0.5\Omega, 5W \end{array}$

Rvez
2 vezetékes ellenállásmérés (V-A mérős módszer)

16. ábra. 4 vezetékes ellenállásmérés

Határadatok:

$$I = \sqrt{\frac{P_{R2}}{R_2}}I = \sqrt{\frac{20W}{20\Omega}} = 1A$$

$$U_T = I*(R2 + R3) = 1A*(20\Omega + 0, 5\Omega) = 20, 5V$$

Módszer	I	U	R
Kétvezetékes rövid	0.9 mA	504 mV	$0,561\Omega$
Kétvezetékes hosszú	0.9 mA	587 mV	$0,652\Omega$
Négyvezetékes rövid	0,9	472 mV	$0,524\Omega$
Négyvezetékes hosszú	0,9	491 mV	$0,545\Omega$

4. 15. sz. laboratóriumi mérés

Mérés dátuma: 2016.09.27

4.1. A mérés célja

Kapuzással és impulzusszámlálással dolgozó digitális frekvencia- és időmérő működési elvének és működésének modellen történő bemutatása az alapvető üzemmódokban. A kapcsolást alkotó áramkörök vizsgálata.

4.2. Mérési feladatok

4.2.1. Az Nx számláló számlálási bizonytalanságának mérése

Állítson be a függvénygenerátoron kb. 15Hz-es négyszög-jelet! Válasszon a mérőpanel frekvenciamérő üzemmódjában 10MHz-es méréshatárt és mérje meg a jel frekvenciáját!

17. ábra. Az impulzusszámlálás hibája

4.2.2. Közvetlen frekvenciamérés

Oszcilloszkóp segítségével állítson be a függvénygenerátor kimenetén négyszögjelet, a pozitív szint 3 V, a negatív szint 0 V legyen!

Mérendő objektum:

18. ábra.

f[Hz]	10	10^{2}	10^{3}	10^{4}	10^{5}	10^{6}
Nx	1	10	103	1040	10083	100325
h_{fx}	1	0,1	0,01	0,001	0,0001	0,00001

$$h_{fx} = h_{fR} + \frac{1}{Nx}; h_{fR} = 10^{-6}$$

$$Mode = FREQ; RANGE = 10000 \frac{kHz}{ms}$$

RANGE kapcsoló 3 állásának mérése:

RANGE	$100 \mathrm{\ kHz}$	1000 kHz	$10000~\mathrm{kHz}$
Nx	10029	10029	1003
h_{fX}	0,00010071	0,00010071	0,000998008

A RANGE kapcsoló legnagyobb állásában a hiba 10x-sére nőtt, mivel nem elég digit a kijelzéshez.

4.2.3. Periódusidőmérésen alapuló frekvenciamérés

Oszcilloszkóp segítségével állítson be a függvénygenerátor kimenetén négyszögjelet, a pozitív szint 3 V, a negatív szint 0 V legyen!

f[Hz]	1	10	100	10^{3}	10^{4}	10^{5}
Nx	994472	100780	10360	1000	99	8
h_{fx}	$2*10^{-6}$	$10,9*10^{-6}$	$47,56*10^{-6}$	$1,001*10^{-3}$	$10,2*10^{-3}$	0,125

$$h_{Tx} = h_{fR} + \frac{1}{Nx}; h_{fR} = 10^{-6}$$

$$Mode = FREQ; RANGE = 10000 \frac{kHz}{ms}$$

RANGE kapcsoló 3 állásának mérése:

RANGE	100 ms	1000 ms	10000 ms
Nx	999528	99970	9999
h_{fX}	1	0,1	0,01

A RANGE kapcsoló legnagyobb állásában a hiba 10x-sére nőtt, mivel nem elég digit a kijelzéshez.