

Alternative Data in Investment and Tading Julian Kaljuvee / DataScrum.co.uk LondonAI Meetup September 2019

+

DataScrum - Overview

DataScrum – an alternative data focused meetup (every 4-6 weeks) bringing together a community of:

- Alternative data providers looking to educate the audience about their products
- Alternative data users such as investment managers and insurance companies looking to gain an edge and to improve investment performance based on alternative data
- Data Scientists looking to learn more about leveraging alternative data in financial models and beyond
- Data Science consultancies and specialists recruiters looking to provider alternative data solutions and resources

Focus is on information sharing via high quality speakers and content and we will also aim to organise informal mixers and hackathons

Growth of Alternative Data

■ Growth is been exponential over past decade, primarily in the US but recently also growing in Europe and Asia

Alternative data stack

■ Large number (400+) data providers globally

ALTERNATIVE DATA STACK

alternativedata.org

DATA OWNERS

What is Alternative Data in Financial Markets?

- **Definition** all **non-financial data**, not generated by the trading activity in the markets, and / or not directly reported by companies
- Individuals social/sentiment, web traffic, app usage, survey
- Business Processes credit/debit card, web data, public Data, email/consumer Receipts
- **Sensors** geo-location, satellite, weather
- Data cost typically Business Processes > Sensors > Individuals

Preferences by buyers

- Data source with the greatest number of providers social and sentiment
- Highest grossing data source credit and debit card
- Most utilized datasets web data, credit and debit card
- Most insightful datasets credit and debit card, web data
- Least insightful datasets geo-location and satellite

+ So what? Show me the trade!

+ Overview – Sample Trading Strategy

A sample strategy could look as follows:

- Model inputs historical realised quarterly sales (dependent variable / label) vs web traffic
- Objective predict / forecast sales from the web traffic data (potentially augmented with app usage, social and card transaction data)
- **Model form** start with OLS but try more complex models, eg GLM, random forrest etc. It can also become multi class problem (eg also predict earnings per share, not only sales)
- Market consensus compare your prediction against earnings / sales estimates
- Strategy if our estimate >> consensus, go long, else if our estimate << consensus, go short (the analysts are wrong)

+

Consensus estimates

REUTERS	Business	Markets	World	Politics	Tech	Breakingview	rs Wealt	h Life	o	- (Q
Mean Rating		2.5	54	2.50		2.32	2.32	UPDATE U.S. wa			on retailer i	ASOS hits
								» More AS	SOS.L N	ews		
CONSENSUS ESTIMATES AI	NALYSIS											
Sales and Profit Figures in British Po Earnings and Dividend Figures in Bri	und (GBP) tish Pound (GBP)										
	# o	f Estimates	Me	an	High	Low	1 Year Ago					
SALES (in millions)												
Year Ending Aug-19		25	2,783.	15 2,8	308.43	2,752.40	3,051.22					
Year Ending Aug-20		25	3,247.	88 3,3	358.10	3,176.26	3,721.94					
Earnings (per share)												
Quarter Ending Feb-19		1	34.	40	34.40	34.40						
Quarter Ending Aug-19		1	83.	10	83.10	83.10						
Year Ending Aug-19		23	51.	94	59.40	32.43	118.57					
Year Ending Aug-20		23	82.	11 '	105.78	57.12	147.41					
LT Growth Rate (%)		2	7.	18	7.26	7.10	24.84					

How do they estimate web traffic?

DailyMail.co.uk has 1200+ companies collecting visitor traffic on their web site. Similar to most other ecommerce web sites

Get Data – Actual Realised Sales

We get quarterly sales (revenues) via eodhistoricaldata.com API

Use EODHistorical API provided to source revenue / sales data for Booking.com (BKNG.US) under the Financial -> Income_Statement -> Quarterly data dictionary keys

The API supports fields filtering with the parameter 'filter='. With ability to specify a block, field or Code required within the json data. Also different layers can be divided with "::" and it's possible to have any number of layers. In our case, we want the quarterly Income_Statement and hence have configured API accordingly.

```
In [2]: # Specify API url link to for quarterly income statement retrival
        eodhist url = 'http://eodhistoricaldata.com/api/fundamentals/BKNG.US?api token=5cc0ea63d1cda3.37070012&filter=Financials::Income
In [3]: #Use a combination of pandas json reader to read json data as series
        #And normalise with json normaliser and finally retrive the required column fields
        fund df = json normalize(pd.read json(eodhist url,typ='series'))[['date','totalRevenue','costOfRevenue']]
In [4]:
        #Explore the data
        print(fund df.head())
        print()
        print(fund df.info())
                 date totalRevenue costOfRevenue
        0 2019-03-31 2837000000.00 501000000.00
        1 2018-12-31 3212615000.00 242000000.00
        2 2018-09-30 4849090000.00
                                              0.00
        3 2018-06-30 3537094000.00
                                              0.00
        4 2018-03-31 2928201000.00
                                              0.00
```


Get Features Data – Tweets

We get Twitter data for Booking.com via an open-source Twitter wrapper API and process the Tweets with a basic sentiment analysis library (TextBlob)

Load tweet data extracted from DataScrum database for BKNG.US into a dataframe and process data for senitments

```
In [6]: #Load tweet data from filesystem
tweet_df = pd.read_csv('C:\\dev\\datascrum\\data\\tweets-bkng.csv', parse_dates = ['date'])
```

```
In [7]: # define function to be used for tweet senitments analysis
        def clean get twt sentiment(tweet):
                Utility function to clean tweet text by removing links, special characters
                using simple regex statements and to classify sentiment of passed tweet
                using textblob's sentiment method
                #clean tweet
                clean tweet = ' '.join(re.sub("(\alpha[A-Za-z0-9]+)|([^0-9A-Za-z \t])|(\w+:\/\\S+)", " ", tweet).split())
                # create TextBlob object of passed tweet text
                analysis = TextBlob(clean tweet)
                # set sentiment
                if analysis.sentiment.polarity > 0:
                    return 'positive'
                elif analysis.sentiment.polarity == 0:
                    return 'neutral'
                else:
                    return 'negative'
```


Get Data – Get Tweets

We get Twitter data for Booking.com via an open-source Twitter wrapper API and process the Tweets with a basic sentiment analysis library (TextBlob)

Load tweet data extracted from DataScrum database for BKNG.US into a dataframe and process data for senitments

```
In [6]: #Load tweet data from filesystem
tweet_df = pd.read_csv('C:\\dev\\datascrum\\data\\tweets-bkng.csv', parse_dates = ['date'])
```

```
In [7]: # define function to be used for tweet senitments analysis
        def clean get twt sentiment(tweet):
                Utility function to clean tweet text by removing links, special characters
                using simple regex statements and to classify sentiment of passed tweet
                using textblob's sentiment method
                #clean tweet
                clean tweet = ' '.join(re.sub("(\Omega[A-Za-z0-9]+)|([^0-9A-Za-z \t])|(\w+:\\\\S+)", " ", tweet).split())
                # create TextBlob object of passed tweet text
                analysis = TextBlob(clean tweet)
                # set sentiment
                if analysis.sentiment.polarity > 0:
                    return 'positive'
                elif analysis.sentiment.polarity == 0:
                    return 'neutral'
                else:
                    return 'negative'
```


Explore Data – Tweets and Sentiment

Raw data comes in at relatively high-frequency (n minute intervals)

Out[8]:		date	text	likes	retweet	count_comments	ticker	
	0	2015-04-09 08:45:00	Q5. What activity organised by an accommodatio	0	0	0	BKNG.O	
	1	2015-04-09 08:45:00	Q5. What activity organised by an accommodatio	0	0	0	BKNG.O	
	2	2015-04-09 08:51:00	Q6 #BookingsBest lists are based on reviews wi	3	1	5	BKNG.O	
	3	2015-04-09 08:52:00	#BookingsBest lists are based on reviews with	1	1	0	BKNG.0	
	4	2015-04-09 08:52:00	#BookingsBest lists are based on reviews with	0	0	0	BKNG.O	
		nacace the tweet	text for senitment indicator					
In [9]:			= tweet_df['text'].apply(clean_get_t	wt_se	ntiment)		
In [9]: n [10]:	#E	eet_df['senti']	-	wt_se	ntiment)		
	#E	eet_df['senti'] xplore tweet data	<pre>= tweet_df['text'].apply(clean_get_t</pre>			count_comments	ticker	senti
n [10]:	#E	eet_df['senti'] xplore tweet data eet_df.head()	<pre>= tweet_df['text'].apply(clean_get_t a for senitment indicator</pre>			count_comments	ticker BKNG.O	
n [10]:	#EX	eet_df['senti'] xplore tweet date eet_df.head() date	<pre>= tweet_df['text'].apply(clean_get_t a for senitment indicator text</pre>	likes	retweet	count_comments		neutra
n [10]:	#E2 two	eet_df['senti'] xplore tweet date eet_df.head() date 2015-04-09 08:45:00	= tweet_df['text'].apply(clean_get_t a for senitment indicator text Q5. What activity organised by an accommodatio	likes 0	retweet 0	count_comments 0 0	BKNG.0	neutra neutra
n [10]:	#E2 two	eet_df['senti'] xplore tweet data eet_df.head() date 2015-04-09 08:45:00 2015-04-09 08:45:00	= tweet_df['text'].apply(clean_get_t a for senitment indicator text Q5. What activity organised by an accommodatio Q5. What activity organised by an accommodatio	likes 0 0	retweet 0 0	count_comments 0 0	BKNG.O BKNG.O	

Explore Data – Tweets and Sentiment

Raw data comes in at relatively high-frequency (n minute intervals)

Out[8]:		date	text	likes	retweet	count_comments	ticker	
	0	2015-04-09 08:45:00	Q5. What activity organised by an accommodatio	0	0	0	BKNG.0	
	1	2015-04-09 08:45:00	Q5. What activity organised by an accommodatio	0	0	0	BKNG.O	
	2	2015-04-09 08:51:00	Q6 #BookingsBest lists are based on reviews wi	3	1	5	BKNG.O	
	3	2015-04-09 08:52:00	#BookingsBest lists are based on reviews with	1	1	0	BKNG.O	
	4	2015-04-09 08:52:00	#BookingsBest lists are based on reviews with	0	0	0	BKNG.O	
In [9]:	#P		text for senitment indicator					
	tw	eet_df['senti']	<pre>= tweet_df['text'].apply(clean_get_t</pre>	wt_se	ntiment,)		
n [10]:	#E		= tweet_df['text'].apply(clean_get_t for senitment indicator	wt_se	ntiment)		
n [10]: out[10]:	#E	xplore tweet date				count_comments	ticker	sent
	#E	xplore tweet data eet_df.head()	a for senitment indicator				ticker BKNG.O	
	#E:	xplore tweet data eet_df.head() date	for senitment indicator	likes	retweet	count_comments		neutra
	#E: two	xplore tweet data eet_df.head() date 2015-04-09 08:45:00	text Q5. What activity organised by an accommodatio	likes 0	retweet 0	count_comments 0 0	BKNG.0	neutra neutra
	#E: two	xplore tweet data eet_df.head() date 2015-04-09 08:45:00 2015-04-09 08:45:00	text Q5. What activity organised by an accommodatio Q5. What activity organised by an accommodatio	likes 0	retweet 0	count_comments 0 0	BKNG.O BKNG.O	•

Aggregate Data – Tweets and Sentiment

Aggregate the minute-by-minute data to quarterly buckets

In [18]: #Explore the resampling by Quarterly and aggregation.. this should be similar to cumsun function
tweet_sum_df.resample('Q', label='right').sum()

Out[18]:

		count_comments	senu_negauve	senu_neudal	senti_positive
2015-06-30 896	348	152	4	39	48
2015-09-30 263	190	139	0	10	17
2015-12-31 154	57	35	1	9	9
2016-03-31 171	85	15	0	3	3
2016-06-30 585	141	64	3	6	12
2016-09-30 1051	327	278	3	16	27
2016-12-31 556	120	45	2	7	14
2017-03-31 494	130	64	4	7	20
2017-06-30 742	183	313	2	13	47
2017-09-30 1160	250	679	9	32	82
2017-12-31 1492	303	500	8	34	105
2018-03-31 1199	159	222	9	27	62
2018-06-30 897	112	217	5	5	50
2018-09-30 344	68	385	0	2	8
2018-12-31 246	66	260	0	2	8
2019-03-31 302	53	285	2	0	11
2019-06-30 202	28	205	1	1	9

Join Revenues with Tweets and Sentiment Data

Join our revenue (labels) with Tweet count and sentiment data (features)

```
In [22]: #Join tweet and revenue dataframe by quarterly date
    tweet_fund_df = fund_df[['totalRevenue','costOfRevenue']].join(tweet_sum_quarterly_df, how='inner')
    tweet_fund_df
```

Out[22]:

	totalRevenue	costOfRevenue	likes	retweet	count_comments	senti_negative	senti_neutral	senti_positive
2019-03-31	2837000000.00	501000000.00	302	53	285	2	0	11
2018-12-31	3212615000.00	242000000.00	246	66	260	0	2	8
2018-09-30	4849090000.00	0.00	344	68	385	0	2	8
2018-06-30	3537094000.00	0.00	897	112	217	5	5	50
2018-03-31	2928201000.00	0.00	1199	159	222	9	27	62
2017-12-31	2803093000.00	45150000.00	1492	303	500	8	34	105
2017-09-30	4434029000.00	54181000.00	1160	250	679	9	32	82
2017-06-30	3024556000.00	67425000.00	742	183	313	2	13	47
2017-03-31	2419404000.00	80401000.00	494	130	64	4	7	20
2016-12-31	2348433000.00	72072000.00	556	120	45	2	7	14
2016-09-30	3690552000.00	101489000.00	1051	327	278	3	16	27
2016-06-30	2555902000.00	126084000.00	585	141	64	3	6	12
2016-03-31	2148119000.00	128669000.00	171	85	15	0	3	3
2015-12-31	1999995000.00	120612000.00	154	57	35	1	9	9
2015-09-30	3102901000.00	169274000.00	263	190	139	0	10	17
2015-06-30	2280397000.00	187491000.00	896	348	152	4	39	48

Normalise All Data

Normalise data with *sklearn.preprocessing.MinMaxScaler* or *sklearn.preprocessing.MinMaxScaler*

The transformation is calculated as:

The standard score of a sample x is calculated as:

$$z = (x - u) / s$$

\cap		۰	г	2		п	
U	u	u	Ι.	Z	5	1	1
						-	

	totalRevenue	likes	retweet	count_comments	senti_negative	senti_neutral	senti_positive
2019-03-31	-0.224631	-0.886782	-1.151780	0.320742	-0.415227	-1.081182	-0.743672
2018-12-31	0.261087	-1.025690	-1.014412	0.179290	-1.079591	-0.917985	-0.846543
2018-09-30	2.377258	-0.782600	-0.993278	0.886550	-1.079591	-0.917985	-0.846543
2018-06-30	0.680680	0.589121	-0.528339	-0.064007	0.581318	-0.673189	0.593652
2018-03-31	-0.106696	1.338234	-0.031700	-0.035717	1.910046	1.121982	1.005136
2017-12-31	-0.268477	2.065023	1.489917	1.537230	1.577864	1.693173	2.479620
2017-09-30	1.840531	1.241495	0.929877	2.550026	1.910046	1.529975	1.690942
2017-06-30	0.017903	0.204642	0.221903	0.479169	-0.415227	-0.020400	0.490781
2017-03-31	-0.764636	-0.410524	-0.338137	-0.929693	0.249136	-0.509992	-0.435059
2016-12-31	-0.856410	-0.256733	-0.443805	-1.037197	-0.415227	-0.509992	-0.640801
2016-09-30	0.879121	0.971119	1.743520	0.281136	-0.083045	0.224396	-0.195026
2016-06-30	-0.588126	-0.184798	-0.221903	-0.929693	-0.083045	-0.591590	-0.709381
2016-03-31	-1.115442	-1.211728	-0.813643	-1.206939	-1.079591	-0.836386	-1.017995
2015-12-31	-1.306985	-1.253897	-1.109513	-1.093778	-0.747409	-0.346794	-0.812252
2015-09-30	0.119213	-0.983522	0.295870	-0.505337	-1.079591	-0.265196	-0.537930
2015-06-30	-0.944389	0.586640	1.965422	-0.431782	0.249136	2.101166	0.525071

Explore Correlations

Revenues are positively correlated with comment counts (75%), likes (25%) and positive sentiment (21%)

Out[26]:		to	talRev	enue	like	es	retweet	cour	nt_comments	senti_negative	senti_neutral	senti_positive
	totalReven	nue	1.00	0000	0.24242	25	0.089407		0.740516	0.154957	0.021636	0.215627
	lik	ces	0.24	2425	1.00000	00	0.749258		0.585070	0.884749	0.795292	0.911202
	retw	eet	0.08	9407	0.7492	58	1.000000		0.377470	0.510280	0.836692	0.652346
	count_comme	nts	0.74	0516	0.58507	70	0.377470		1.000000	0.532460	0.462752	0.686259
	senti_negat	ive	0.15	4957	0.88474	49	0.510280		0.532460	1.000000	0.742016	0.874409
	senti_neut	tral	0.02	1636	0.79529	92	0.836692		0.462752	0.742016	1.000000	0.822844
	senti_posit	ive	0.21	5627	0.91120	02	0.652346		0.686259	0.874409	0.822844	1.000000
Out[27]:	<matplotlib.< th=""><th>axes.</th><th>_subp</th><th>olots</th><th>.AxesS</th><th>ubp.</th><th>lot at</th><th>0x17l</th><th>91f85160></th><th></th><th></th><th></th></matplotlib.<>	axes.	_subp	olots	.AxesS	ubp.	lot at	0x17l	91f85160>			
							_		1.0			
	totalRevenue	1	0.24	0.089	0.74	0.15	0.022	0.22				
	likes	0.24	1	0.75	0.59	0.88	0.8	0.91	0.8			
	retweet	0.089	0.75	1	0.38	0.51	0.84		0.6			
	count_comments	0.74	0.59	0.38	1	0.53	0.46					
	senti_negative	0.15	0.88	0.51	0.53	1	0.74	0.87	0.4			
	senti_neutral	0.022	0.8	0.84	0.46	0.74	1	0.82	0.2			
	senti_positive	0.22	0.91	0.65	0.69	0.87	0.82	1				
		totalRevenue	likes	retweet	count_comments	senti_negative	senti_neutral	senti_positive	-			

Explore Correlations – Time Series

Exploring correlations over time, the correlations appear to be tradeable

Model Definition - OLS

Model definition – pick targets (labels, or dependent variables) and features (independent variables)

```
In [30]: # Select target(dependent/label) and feature(independent) variables
         targets = tweet fund df nom['totalRevenue']
         features = tweet fund df nom.drop(['totalRevenue'], axis=1)
         feature names = features.columns
         feature names = features.columns
         features.shape, targets.shape
Out[30]: ((16, 6), (16,))
In [31]: # Using a linear OLS model here
         import statsmodels.api as sm
In [32]: # Add a constant to the features
         linear_features = sm.add constant(features)
In [33]: #Explore features columns
         linear features.columns
Out[33]: Index(['const', 'likes', 'retweet', 'count_comments', 'senti_negative',
                 'senti neutral', 'senti positive'],
               dtype='object')
In [34]: # Create a size for the training set that is 85% of the total number of samples
         train size = int(0.85 * targets.shape[0])
         train features = linear features[:train size]
         train targets = targets[:train size]
         test_features = linear_features[train_size:]
         test_targets = targets[train_size:]
         print(linear features.shape, train features.shape, test features.shape)
```


Model Run - OLS

Ordinary-least squares (OLS) has high R-squared on low p-values for tweet counts

```
In [34]: # Create a size for the training set that is 85% of the total number of samples
         train size = int(0.85 * targets.shape[0])
         train features = linear features[:train size]
         train_targets = targets[:train_size]
         test features = linear features[train size:]
         test targets = targets[train size:]
         print(linear features.shape, train features.shape, test features.shape)
         (16, 7) (13, 7) (3, 7)
In [35]: # Create the linear model and complete the least squares fit
         model = sm.OLS(train targets, train features)
         results = model.fit() # fit the model
         print(results.summary())
                                    OLS Regression Results
         Dep. Variable:
                                 totalRevenue
                                                R-squared:
                                                                                0.825
         Model:
                                          OLS Adj. R-squared:
                                                                                0.649
                                Least Squares F-statistic:
         Method:
                                                                               4.701
         Date:
                             Mon, 17 Jun 2019
                                               Prob (F-statistic):
                                                                              0.0408
         Time:
                                               Log-Likelihood:
                                     00:40:04
                                                                              -7.1495
         No. Observations:
                                               AIC:
                                                                                28.30
                                           13
         Df Residuals:
                                            6
                                                BIC:
                                                                                32.25
         Df Model:
         Covariance Type:
                                     std err
                                                            P>|t|
                                                                       [0.025
                                                                                   0.975]
         const
                          -0.2129
                                       0.217
                                               -0.979
                                                            0.365
                                                                       -0.745
                                                                                   0.319
         likes
                          1.4794
                                       0.794
                                              1.862
                                                            0.112
                                                                     -0.464
                                                                                   3.423
                                       0.531 -0.938
         retweet
                          -0.4985
                                                            0.384 -1.798
                                                                                   0.801
         count comments
                          1.2680
                                       0.250 5.069
                                                            0.002
                                                                     0.656
                                                                                   1.880
         senti negative
                          -0.0727
                                       0.511
                                                 -0.142
                                                            0.892
                                                                       -1.324
                                                                                   1.178
```


Feature Evaluation – Random Forest

Random forest model indicates again tweet counts most important

```
In [34]: # Create a size for the training set that is 85% of the total number of samples
         train size = int(0.85 * targets.shape[0])
         train features = linear features[:train size]
         train_targets = targets[:train size]
         test features = linear features[train size:]
         test targets = targets[train size:]
         print(linear features.shape, train features.shape, test features.shape)
         (16, 7) (13, 7) (3, 7)
In [35]: # Create the linear model and complete the least squares fit
         model = sm.OLS(train targets, train features)
         results = model.fit() # fit the model
         print(results.summary())
                                    OLS Regression Results
         Dep. Variable:
                                 totalRevenue
                                               R-squared:
                                                                               0.825
         Model:
                                         OLS Adj. R-squared:
                                                                               0.649
                                Least Squares F-statistic:
         Method:
                                                                               4.701
         Date:
                           Mon, 17 Jun 2019
                                              Prob (F-statistic):
                                                                              0.0408
         Time:
                                              Log-Likelihood:
                                    00:40:04
                                                                             -7.1495
         No. Observations:
                                               AIC:
                                                                               28.30
                                          13
         Df Residuals:
                                                                               32.25
                                           6
                                               BIC:
         Df Model:
         Covariance Type:
                                    std err
                                                           P>|t|
                                                                      [0.025
                                                                                  0.975]
         const
                          -0.2129
                                      0.217
                                              -0.979
                                                           0.365
                                                                      -0.745
                                                                                  0.319
                                                                  -0.464
         likes
                          1.4794
                                      0.794 1.862
                                                           0.112
                                                                                  3.423
                         -0.4985
                                      0.531 -0.938 0.384 -1.798
         retweet
                                                                                  0.801
                         1.2680
                                      0.250 5.069
                                                                    0.656
         count comments
                                                           0.002
                                                                                  1.880
         senti negative
                          -0.0727
                                      0.511
                                                -0.142
                                                           0.892
                                                                      -1.324
                                                                                  1.178
```


Feature Evaluation – Random Forest

Random forest model indicates again tweet count feature most important

```
In [39]: # Try with Random Forest
    from sklearn.ensemble import RandomForestRegressor

# Create the random forest model and fit to the training data
    rfr = RandomForestRegressor(n_estimators=200)
    rfr.fit(train_features, train_targets)

# Look at the R^2 scores on train and test
    print(rfr.score(train_features, train_targets))
    print(rfr.score(test_features, test_targets))
0.8223484970574497
```

```
0.8223484970574497
-1.615363389914215
```

```
In [40]: # Get feature importances from our random forest model
    importances = rfr.feature_importances_

#importances = importances[1:]

# Get the index of importances from greatest importance to least
    sorted_index = np.argsort(importances)[::-1]
    x = range(len(importances))

# Create tick labels
    labels = np.array(tweet_fund_df_nom.columns.values)[sorted_index]
    plt.bar(x, importances[sorted_index], tick_label=labels)

# Rotate tick labels to vertical
    plt.xticks(rotation=90)
    plt.show()
```


DataScrum

Upcoming events:

- Implications of Alternative Data for Cryptocurrencies on 15th Oct.
 - Apply Discount Code **CRYPTODATA** for 10% off on tickets
- Alternative Data Bootcamp: Workshop in November (Date TBD)
- https://www.meetup.com/Datascrum/
- Website: http://www.datascrum.co.uk
- Medium.com/@datascrum
- Email: team@datascrum.co.uk
- Twitter: @dataScrum

Resources

- Hackathon on September 14th at Microsoft Reactor London
- Quandl (now Nasdaq) www.quandl.com
- Open FactSet open.factset.com
- AlternativeData.org www.alternartivedata.org
- BattleFin BattleFin.com
- NeuData Alt Data London 2019 Summit NeuData.co