Package 'shapeR'

July 23, 2025

Type Package

Title Collection and Analysis of Otolith Shape Data

Version 1.0-1

Date 2022-11-21

Maintainer Lisa Anne Libungan < lisa.libungan@gmail.com>

Depends R (>= 3.0.2)

Imports plotrix, jpeg, pixmap, wavethresh, methods, vegan, MASS

Description Studies otolith shape variation among fish populations.

Otoliths are calcified structures found in the inner ear of teleost fish and their shape has been known to vary among several fish populations and stocks, making them very useful in taxonomy,

species identification and to study geographic variations. The package extends previously described

software used for otolith shape analysis by allowing the user to automatically extract closed contour outlines from a large number of images, perform smoothing to eliminate pixel noise described in Haines and Crampton (2000) <doi:10.1111/1475-4983.00148>,

choose from conducting either a Fourier or wavelet see Gençay et al (2001) <doi:10.1016/S0378-4371(00)00463-5> transform to the outlines and visualize

the mean shape. The output of the package are independent Fourier or wavelet coefficients which can be directly imported into a wide range of statistical packages in R. The package might prove useful in studies of any two dimensional objects.

License GPL (>= 2)

URL https://github.com/lisalibungan/shapeR,

https://journals.plos.org/plosone/article?id=10.1371/journal.pone.0121102

Author Lisa Anne Libungan [aut, cre],

Snaebjorn Palsson [aut, ths]

NeedsCompilation no

Repository CRAN

Date/Publication 2022-11-21 22:30:04 UTC

RoxygenNote 7.1.2

Encoding UTF-8

2 cluster.plot

Contents

v		30
W	ite.image.with.outline	28
	Coefs	
	oothout	
	ow.original.with.outline	
	ow,shapeR-method	
	npeR	
	pe	
se	Filter	
re	nove.outline	18
re	d.master.list	18
p]	tWaveletShape	17
p]	tWavelet	16
p]	tFourierShape	15
p]	tFourier	14
O	lline.reconstruction.plot	13
g	Wavelet	12
g	StdWavelet	12
g	StdMeasurements	11
g	StdFourier	11
g	Measurements	10
g	Masterlist	9
_	Fourier	
	nerateShapeCoefficients	
	SH	
	imate.outline.reconstruction	
	rich.master.list	
	ect.outline	
Cl	ster.plot	- 2

cluster.plot

Plot data clusters

Description

Plots data clusters

Usage

cluster.plot 3

Arguments

ddata	Matrix of points
classes	A factor including the cluster values
main	Title for the plot
col.stock	Colors for the plotted classes
plotCI	Plot means with confidence intervals
conf.level	The confidence interval for the standard error of the mean

Additional parameters to be passed to 'plot' or 'ldahist' if one dimension

Value

None

. . .

Author(s)

Lisa Anne Libungan

References

Oksanen, J., Blanchet, F.G., Kindt, R., Legendre, P., Minchin, P.R., O'Hara, R.B., Simpson, G.L., Solymos, P., Stevens, M.H.H. and Wagner, H. (2013). vegan: Community Ecology Package. R package version 2.0-10.

```
data(shape)
library(vegan)
cap.res = capscale(getStdWavelet(shape) ~ getMasterlist(shape)$pop)
eig=eigenvals(cap.res,constrained=TRUE)
eig.ratio = eig/sum(eig)

cluster.plot(scores(cap.res)$sites[,1:2],getMasterlist(shape)$pop
,plotCI=TRUE
,xlab=paste("CAP1 (",round(eig.ratio[1]*100,1),"%)",sep="")
,ylab=paste("CAP2 (",round(eig.ratio[2]*100,1),"%)",sep="")
,main="Canonical clustering"
)
```

4 detect,outline

Description

Determine the outline of otolith images in jpeg format which have been stored in the Fixed folder.

Usage

Arguments

object shapeR object

threshold Grayscale threshold. Value between 0 and 1.

mouse.click If TRUE, the user clicks where the starting point for the otolith contour extrac-

tion algorithm should start. Default is the center of the image. Could be good to

set as TRUE if the otolith detection produces an error.

display.images If TRUE, each image is displayed and the user can visualize how the outline is

captured

write.outline.w.org

If TRUE, the outline is written on top of the original image using the function write.image.with.outline, and can be seen in the Original_with_outline

folder

Details

Based on the Conte function (Claude 2008)

Value

A shapeR object with otolith outlines in the slot outline.list

Author(s)

Lisa Anne Libungan & Snaebjorn Palsson

References

```
Claude, J. (2008). Morphometrics with R. Springer. 316 p.
```

Urbanek, S. (2014). jpeg: Read and write JPEG images. R package version 0.1-8.

Bivand, R., Leisch, F. & Maechler, M. (2011) pixmap: Bitmap Images ("Pixel Maps"). R package version 0.4-11.

Libungan LA and Palsson S (2015) ShapeR: An R Package to Study Otolith Shape Variation among Fish Populations. PLoS ONE 10(3): e0121102. https://journals.plos.org/plosone/article?id=10.1371/journal.pone.0121102

enrich.master.list 5

Examples

```
## Not run:
#Use test data from Libungan and Palsson (2015):
shape = shapeR("ShapeAnalysis/","FISH.csv")
shape = detect.outline(shape, threshold=0.2,write.outline.w.org = TRUE)
## End(Not run)
```

enrich.master.list

Link information in the info.file to the coefficients obtained from the otolith images

Description

Link the original info file to the otolith coefficients

Usage

Arguments

object A shapeR object

folder_name Should contain the first letters of the area and the serie or station number of the

sample, for example: "IC"

pic_name Should contain the serie number of a given sample and fish number, for example

"403_2" (not including the .jpg extension)

calibration The name of the column where the pixels to measurement calibration is located

include.wavelet

If TRUE, the wavelet coefficient are included in the master.list

include.fourier

If TRUE then the Normalized Elliptic Fourier coefficients are included in the

master.list

n.wavelet.levels

Integer saying how many levels of wavelet levels should be included

n.fourier.freq Integer saying how many Fourier frequency levels should be included

. Additional parameter for read.csv for reading the info.file

Value

A shapeR object with values in slots:

- · wavelet.coef
- · fourier.coef
- shape
- filter
- · master.list

Author(s)

Lisa Anne Libungan

Examples

```
data(shape)
shape = generateShapeCoefficients(shape)
shape = enrich.master.list(shape)
```

estimate.outline.reconstruction

Estimate the outline reconstruction based on Fourier/wavelet compared to the outlines that have not been transformed

Description

Estimate outline reconstruction using a different number of coefficients of wavelet and Fourier compared to the original otolith

Usage

```
estimate.outline.reconstruction(object, ...)
```

Arguments

object shapeR object

... Additional parameters to be passed to 'plot' and 'points'

Value

A list containing values

- w.dev.m a list for number of coefficients for mean error of wavelet reconstruction
- w.dev.sd a list for number of coefficients for standard deviation of wavelet reconstruction
- f.power.total Fourier power for number of Fourier harmonics

Author(s)

Lisa Anne Libungan

References

Claude, J. (2008) Morphometrics with R. Springer. 316 p.

FISH 7

Examples

```
## Not run:
data(shape)
estimate.outline.reconstruction(shape)
## End(Not run)
```

FISH

An example data file

Description

The file's columns are:

- country
- station
- pop
- stockID
- day
- month
- year
- lat
- lon
- fishno
- length_cm
- weight_g
- age
- sex
- maturity
- folder
- picname
- cal

Usage

data(FISH)

Format

An example data file

Source

https://github.com/lisalibungan/shapeR

generateShapeCoefficients

Get wavelet/Fourier coefficients and basic shape variables

Description

Generates shape variables based on Fourier/wavelet reconstruction. Wavelet coefficients for wavelet. Basic shape parameters are also collected (area, length, width, perimeter).

Usage

```
generateShapeCoefficients(object,...)
```

Arguments

object shapeR object

... Additional parameters to be passed to the wd function of the wavethresh pack-

age for the wavelet decomposition of the otolith outlines

Value

A shapeR object with values in slots:

- · wavelet.coef.raw
- · fourier.coef.raw
- · shape.coef.raw

Author(s)

Lisa Anne Libungan & Snaebjorn Palsson

References

```
Nason, G. (2012). wavethresh: Wavelets statistics and transforms. R package, version 4.5. Claude, J. (2008). Morphometrics with R. Springer. 316 p.
```

See Also

wavethresh

```
data(shape)
shape = generateShapeCoefficients(shape)
```

getFourier 9

getFourier

Get Fourier coefficients, filtered according to filter

Description

Returns the Fourier coefficients determined in stdCoefs. Returns only values as set in setFilter

Usage

```
getFourier(object)
```

Arguments

object shapeR object

Value

The Fourier coefficients for all fish as determined by setFilter

Author(s)

Lisa Anne Libungan

getMasterlist

Get filtered master.list values

Description

Returns selected values from master.list

Usage

```
getMasterlist(object, useFilter = TRUE)
```

Arguments

object shapeR object

filtering.

Value

The master.list is filtered by the slot filter if the useFilter is TRUE, else no filtering is done.

Author(s)

Lisa Anne Libungan

10 getMeasurements

getMeasurements

Get simple shape variables, filtered according to filter

Description

Returns shape variables length, width, perimeter and area determined in <code>generateShapeCoefficients</code>. Returns only values as set in the slot filter. These variables can only be obtained if the calibration measurements in pixels have been registered in the csv data file in a column labelled 'cal' (see example data file). To get the calibration measurements, use a image manipulation program and measure 1mm on the calibration measurement stick (that was taken for that particular dataset) and register how many pixels 1mm is into the column 'cal'.

Usage

```
getMeasurements(object)
```

Arguments

object

shapeR object

Value

A data frame with all valid fish as determined by the slot filter and with columns:

- · otolith.area
- · otolith.length
- otolith.width
- otolith.perimeter

Author(s)

Lisa Anne Libungan

```
data(shape)
# Calculate the mean otolith area for each fish population
# The results are in square mm since the calibration ('cal') column
# in the data file is in pixels (1 mm/pixel).
tapply(getMeasurements(shape)$otolith.area, getMasterlist(shape)$pop,mean)
```

getStdFourier 11

getStdFourier

Get standardized Fourier coefficients, filtered according to filter

Description

Returns the standardized Fourier coefficients determined in stdCoefs. Returns only values as set in the slot filter

Usage

```
getStdFourier(object)
```

Arguments

object

shapeR object

Value

The standardized Fourier coefficients for all valid fish as determined by the slot filter

Author(s)

Lisa Anne Libungan

getStdMeasurements

Get simple shape variables after standardization, filtered according to filter

Description

Returns the simple shape variables determined in stdCoefs. Returns only values as set in the slot filter

Usage

```
getStdMeasurements(object)
```

Arguments

object

shapeR object

Value

A data frame with all valid fish as determined by the slot filter. Returns only variables that have not been removed after standardization.

12 getWavelet

Author(s)

Lisa Anne Libungan

Examples

```
data(shape)
#Calculate the mean standardized otolith length for each fish population
tapply(getStdMeasurements(shape)$otolith.length,
getMasterlist(shape)$pop,mean)
```

getStdWavelet

Get standardized wavelet coefficients, filtered according to filter

Description

Returns the standardized wavelet coefficients determined in stdCoefs. Returns only values as set in the slot filter

Usage

```
getStdWavelet(object)
```

Arguments

object

shapeR object

Value

The standardized wavelet coefficients for all valid fish as determined by the slot filter

Author(s)

Lisa Anne Libungan

getWavelet

Get wavelet coefficients, filtered according to filter

Description

Returns the wavelet coefficients determined in generateShapeCoefficients. Returns only values as set in the slot filter

Usage

```
getWavelet(object)
```

Arguments

```
object shapeR object
```

Value

The wavelet coefficients for all valid fish as determined by the slot filter

Author(s)

Lisa Anne Libungan

```
outline.reconstruction.plot

Plot outline reconstruction
```

Description

Show graphs of the reconstruction using different number of levels of wavelet reconstruction and Fourier power using different number of Fourier harmonics. Uses the output from estimate.outline.reconstruction

Usage

Arguments

outline.rec.list

The output from estimate.outline.reconstruction

ref.w.level Reference level for graphical purposes. The default is 5 as is the default of

shapeR.

ref.f.harmonics

Reference Fourier harmonize. The default is 12 as is the default in shapeR.

max.num.harmonics

Maxinum number of Fourier harmonics to be shown

... Additional parameters to be passed to 'plot'

Value

None

Author(s)

Lisa Anne Libungan

14 plotFourier

Examples

```
## Not run: data(shape)
est.list = estimate.outline.reconstruction(shape)
outline.reconstruction.plot(est.list,panel.first = grid())
## End(Not run)
```

plotFourier

Mean and standard deviation of the Fourier coefficients

Description

The mean and standard deviation of the Fourier coefficients

Usage

```
plotFourier(object, coef.index=NULL,class.name=NULL,useStdcoef=FALSE, ...)
```

Arguments

object shapeR object

An index vector for which fourier coefficents to be shown. Default is NULL and all coefficients are shown.

Class.name Column name in master list for partitioning the data into groups and showing the ratio of variance among to the sum of variance among and variance within.

Boolean saying if to use the standardized coefficients or not

Additional parameters to be passed to 'plot'

None

Author(s)

Value

Lisa Anne Libungan

```
data(shape)
shape = stdCoefs(shape,classes="pop","length_cm")
plotFourier(shape,class.name= "pop",useStdcoef=TRUE)
```

plotFourierShape 15

plotFourierShape Mean otolith shape based on Fourier reconstruction	plotFourierShape	Mean otolith shape based on Fourier reconstruction
---	------------------	--

Description

A function for showing the mean otolith shape based on Fourier reconstruction

Usage

```
plotFourierShape(object, class.name, show.angle = FALSE,lty=1:5,col=1:6, ...)
```

Arguments

object	A shapeR object
class.name	A string as the column name in the master list
show.angle	If TRUE angles are shown on the plot
lty, col	Vector of line types and colors. Values are used cyclically.
	Additional parameters to be passed to 'plot'

Value

None

Author(s)

Lisa Anne Libungan

References

Libungan LA and Palsson S (2015) ShapeR: An R Package to Study Otolith Shape Variation among Fish Populations. PLoS ONE 10(3): e0121102. https://journals.plos.org/plosone/article?id=10.1371/journal.pone.0121102

```
data(shape)
plotFourierShape(shape, "pop",show.angle = TRUE,lwd=2,lty=1)
```

16 plotWavelet

plotWavelet	Mean and standard deviation of the wavelet coefficients

Description

The mean and standard deviation of tdhe wavelet coefficients

Usage

```
plotWavelet(object, level, start.angle = 0, class.name=NULL,useStdcoef=FALSE,...)
```

Arguments

object	A shapeR object
level	The wavelet level to be shown
start.angle	The angle in degrees, the x-axis should start on
class.name	Column name in master list for partitioning the data into groups and showing the ratio of variation among groups.
useStdcoef	Choose "TRUE" or "FALSE" if coefficients should be standardized or not
	Additional parameters to be passed to 'plot'

Value

None

Author(s)

Lisa Anne Libungan

```
data(shape)
shape = stdCoefs(shape,classes="pop","length_cm")
plotWavelet(shape,level=5,class.name= "pop",useStdcoef=TRUE)
```

plotWaveletShape 17

plotWaveletShape	Mean otolith shape based on wavelet reconstruction	

Description

A function for showing the mean otolith shape based on wavelet reconstruction

Usage

```
plotWaveletShape(object, class.name,show.angle=FALSE,lty=1:5,col=1:6,...)
```

Arguments

object	A shapeR object
class.name	A string as the column name in the master list
show.angle	If TRUE angles are shown on the plot
lty, col	Vector of line types and colors. Values are used cyclically.
	Additional parameters to be passed to 'plot'

Value

None

Author(s)

Lisa Anne Libungan

References

```
Nason, G. (2012) wavethresh: Wavelets statistics and transforms, version 4.5. R package.
```

```
data(shape)
plotWaveletShape(shape, "pop", show. angle = TRUE, lwd=2, lty=1)
```

18 remove.outline

read.master.list

Read updated master list

Description

Reads an updated master list. This is important to run if you want to ensure that a updated master list is used in the analysis.

Usage

```
read.master.list(object, ...)
```

A shapeR object

Arguments

object

. Additional parameter for read.csv for reading the info.file

Value

shapeR object with values in slots:

· master.list.org

Author(s)

Lisa Anne Libungan

remove.outline

Remove otolith outline

Description

A function for removing an otolith outline from the file 'outline.list'. Typically done if the image is of bad quality and needs to be enhanced in a image processing software

Usage

```
remove.outline(object, folder = "", fname = "")
```

Arguments

object A shapeR object

folder The folder name where the outline that needs to be removed is stored

fname The file name of the outline to be removed

setFilter 19

Value

shapeR object

Author(s)

Lisa Anne Libungan

References

Libungan LA and Palsson S (2015) ShapeR: An R Package to Study Otolith Shape Variation among Fish Populations. PLoS ONE 10(3): e0121102. https://journals.plos.org/plosone/article?id=10.1371/journal.pone.0121102

Examples

```
## Not run:
#Use test data from example in Libungan and Palsson (2015):
shape = shapeR("ShapeAnalysis/","FISH.csv")
shape = detect.outline(shape)
#If otolith outline in folder IC named 403_1 needs to be removed
shape = remove.outline(shape, "IC", "403_1")
## End(Not run)
```

setFilter

Set a filter to analyze the shape data

Description

Sets a filter on master.list. Here it is possible to filter the master.list by specific ages, maturity stages, areas, etc. If no value is set, all data with shape parameters are used

Usage

```
setFilter(object, filter)
```

Arguments

object A shapeR object

filter A vector restricting the new filter value. Only otoliths having shape parameters

are selected.

Value

A shapeR object with the slot filter set.

Author(s)

Lisa Anne Libungan

20 shape

Examples

```
data(shape)
#Filter only Icelandic and Norwegian samples
shape = setFilter(shape,
getMasterlist(shape, useFilter = FALSE)$pop %in% c("NO","IC"))
table(getMasterlist(shape)$pop)
#Reset filter
shape = setFilter(shape)
table(getMasterlist(shape)$pop)
```

shape

An example shapeR instance including 160 images.

Description

The shape coefficients have been generated. The wavelet coefficients have been standardized using pop and length_cm.

Usage

data(shape)

Format

A shapeR class including 160 images

Details

The class slot's are as follows:

- project.path. A path as "ShapeAnalysis/"
- info.file. A file as FISH.csv. The information is stored in the data frame master.list
- outline.list. A list with three elements (IC, NO, SC) which give a list of the otolith outlines
- filter. A logical vector showing which elements of the master list have valid otoliths
- fourier.coef. A matrix of the Normalized Elliptic Fourier coefficients
- · wavelet.coef. A matrix of the wavelet coefficients
- shape. A matrix of shape variables after scaling according to calibration otolith.area, otolith.length, otolith.width, otolith.perimeter.
- fourier.coef.std. A matrix which will contain standardized Fourier coefficients
- · wavelet.coef.std. A matrix which will contain standardized wavelet coefficients
- shape.coef.raw. A matrix of shape variables before scaling according to calibration otolith.area, otolith.length, otolith.width, otolith.perimeter.
- master.list. The contents of the info.file

Source

https://github.com/lisalibungan/shapeR

shapeR 21

shapeR shapeR

Description

Collection and analysis of otolith shape data a shapeR class

Usage

```
shapeR(project.path, info.file, ...)
```

Arguments

project.path The base project path where the images are stored

info. file The information file which store the information on the fish and otoliths. This is

the base for the master.list

... Additional parameters to be passed to 'read.csv' for reading the info.file

Value

a shapeR object

Slots

project.path Path to the project where the images are stored

info.file Info file containing fish and otolith information

master.list.org The contents of the info.file

master.list The contents of the info.file with added shape parameters and descriptors

outline.list.org A list of all the original otolith outlines

outline.list A list of all the otolith outlines. It returns a list of smoothed if contour smoothing (usingsmoothout) has been conducted.

filter A logical vector selecting the otoliths used for analysis

wavelet.coef.raw The wavelet coefficients for all the otolith outlines

wavelet.coef The wavelet coefficients after aligning with the info.file. The data is generated when enrich.master.list is run

wavelet.coef.std The standardized wavelet coefficients. The data is generated when stdCoefs is run

wavelet.coef.std.removed The index of the removed wavelet coefficients after standardization. The data is generated when stdCoefs is run

fourier.coef.raw The Fourier coefficients for all the otolith outlines

fourier.coef The Fourier coefficients for after aligning with the info file. The data is generated when enrich.master.list is run

22 shapeR

fourier.coef.std The standardized Fourier coefficients. The data is generated when stdCoefs is run

fourier.coef.std.removed The index of the removed Fourier coefficents after standardization. The data is generated when stdCoefs is run

shape.coef.raw The uncalibrated shape measurements for all the otoliths. The shape parameters are: otolith.area, otolith.length, otolith.width, otolith.perimeter

shape.coef The shape measurements for after aligning with the info file. The shape parameters have been calibrated using the calibration parameter as registered in the datafile as the column 'cal'.

shape.std The standardized shape measurements. The data is generated when stdCoefs is run

shape.std.removed The index of the removed shape measurements after standardization. The data is generated when stdCoefs is run

Author(s)

Lisa Anne Libungan & Snaebjorn Palsson

References

Libungan LA and Palsson S (2015) ShapeR: An R Package to Study Otolith Shape Variation among Fish Populations. PLoS ONE 10(3): e0121102. https://journals.plos.org/plosone/article?id=10.1371/journal.pone.0121102

See Also

```
https://github.com/lisalibungan/shapeR
plotWavelet
plotFourier
plotWaveletShape
plotFourierShape
capscale
cluster.plot
setFilter
lda
detect.outline
generateShapeCoefficients
enrich.master.list
```

```
## Not run:

# This example has two sections: (1) Demonstration of how a shapeR object
# is analyzed and (2) How to create a shapeR object from an archive of
# image files.
```

shapeR 23

```
# Section 1: Analyzing a shapeR object
data(shape)
#Standardize coefficients
shape = stdCoefs(shape,"pop","length_cm")
#Visualize Wavelet and Fourier coefficients
plotWavelet(shape,level=5,class.name= "pop",useStdcoef=TRUE)
plotFourier(shape,class.name= "pop",useStdcoef=TRUE)
#Examine the mean shapes
plotWaveletShape(shape, "pop", show.angle = TRUE, lwd=2, lty=1)
plotFourierShape(shape, "pop", show.angle = TRUE, lwd=2, lty=1)
#Canonical analysis
library(vegan)
cap.res = capscale(getStdWavelet(shape) ~ getMasterlist(shape)$pop)
anova(cap.res)
#Visualize the canonical scores
eig=eigenvals(cap.res,constrained=TRUE)
eig.ratio = eig/sum(eig)
cluster.plot(scores(cap.res)$sites[,1:2],getMasterlist(shape)$pop
,plotCI=TRUE
,xlab=paste("CAP1 (",round(eig.ratio[1]*100,1),"%)",sep="")
,ylab=paste("CAP2 (",round(eig.ratio[2]*100,1),"%)",sep="")
,main="Canonical clustering"
)
#Only analyze Icelandic and Norwegian samples
shape = setFilter(shape, getMasterlist(shape, useFilter = FALSE)$pop %in% c("NO","IC"))
#Classifier on standardized wavelet
lda.res.w = lda(getStdWavelet(shape),getMasterlist(shape)$pop,CV=TRUE)
ct.w = table(getMasterlist(shape)$pop,lda.res.w$class)
diag(prop.table(ct.w, 1))
# Total percent correct
sum(diag(prop.table(ct.w)))
cap.res = capscale(getStdWavelet(shape) ~ getMasterlist(shape)$pop)
anova(cap.res)
#Classifier on canoncial values
lda.res.w = lda(scores(cap.res)$sites,getMasterlist(shape)$pop,CV=TRUE)
ct.w = table(getMasterlist(shape)$pop,lda.res.w$class)
diag(prop.table(ct.w, 1))
```

24 show,shapeR-method

```
# Total percent correct
sum(diag(prop.table(ct.w)))
#-----
# Section 2: Creating a shapeR object from image files
# The following example requires the user to download an archive of JPEG
# files from https://github.com/lisalibungan/shapeR/
# place the ShapeAnalysis directory inside the working directory.

shape = shapeR("~/ShapeAnalysis/","FISH.csv")
shape = detect.outline(shape,write.outline.w.org = TRUE)

shape = generateShapeCoefficients(shape)
shape = enrich.master.list(shape)
## End(Not run)
```

show, shapeR-method

Show a shapeR object

Description

Show the project.path and info.file, the number of outlines that have been read and which fundamental methods have been run.

Usage

```
## S4 method for signature 'shapeR'
show(object)
```

Arguments

object a shapeR oject

Value

None

```
show.original.with.outline
```

Show the extracted outline on top of the original image

Description

A function which displayes the outlines which were extracted from the image in the "Fixed" folder on top of the corresponding image in the "Original" folder.

Usage

```
show.original.with.outline(object, folder, fname)
```

Arguments

object A shapeR object

folder The folder name where the image is stored

fname Image file name. Not including the extension ".jpg"

Value

None

Author(s)

Lisa Anne Libungan

References

Libungan LA and Palsson S (2015) ShapeR: An R Package to Study Otolith Shape Variation among Fish Populations. PLoS ONE 10(3): e0121102. https://journals.plos.org/plosone/article?id=10.1371/journal.pone.0121102

```
## Not run:
#Follow the example in Libungan and Palsson (2015) and run the following lines:
show.original.with.outline(shape,"IC","403_2")
## End(Not run)
```

26 smoothout

smoothout

Contour smoothing

Description

Remove high frequency pixel noise around the otolith outline

Usage

```
smoothout(object, n)
```

Arguments

object A shapeR object

n The number of iterations. The default value is 100.

Value

A shapeR object with smoothed otolith outlines in the slot outline.list

Author(s)

Lisa Anne Libungan

References

Haines, A.J., Crampton, J.S. (2000). Improvements to the method of Fourier shape analysis as applied in morphometric studies. Palaeontology 43: 765-783.

Claude, J. (2008) Morphometrics with R. Springer. 316 p.

```
data(shape)
shape = smoothout(shape,n=100)

# Plot smoothed outline on top of original outline for comparison
outline.org=shape@outline.list.org[["IC"]][["403_2"]]
outline=shape@outline.list[["IC"]][["403_2"]]
plot(outline.org$X,outline.org$Y,type='1',xlab="",ylab="",lwd=2,axes=FALSE)
lines(outline$X,outline$Y,col="red",lwd=2)
legend("bottomleft",c('Original','Smoothed'),lty=1,col=c('black','red'),lwd=2)
```

stdCoefs 27

stdCoefs	Standardize coefficients	
----------	--------------------------	--

Description

Function to standardized the wavelet and Fourier coefficients for a specific parameter such as the fish length. For each country/population a regression coefficient is calculated as a function of fish length. If the slope is significantly different from zero, a correction is made according to Lleonart et al 2000. First ANCOVA is performed: variable ~ pop*length_cm, following a method by Longmore et al 2010. If there is a significant interaction between population and length_cm, then the coefficients are not used and automatically discarded. If there is no interaction, the coefficients are kept and standardized with regards to fish length.

Usage

```
stdCoefs(object, classes=NA, std.by, std.type = "mean", p.crit = 0.05,bonferroni= FALSE)
```

Arguments

object	A shapeR object
classes	The classes to be grouped for standardization. Should be the same as used for the statistical tests
std.by	The parameter to be used for standardization. Typically the length of the fish from the master.list.
std.type	The tuning of the standardization. The standardization can be sensitive to what value all the fishes are standardized to. Possible values are:
	• min Standardized as the minimum value of std.by
	mean Standardized as the mean value of std.by
	 max Standardized as the maximum value of std.by
p.crit	An argument used to select the threshold critera for omitting coefficients which show interaction with fish length. If p.crit = 0.05 , all coefficients which have p<0.05 are omitted. If p.crit = 0.01 , only coefficients with p<0.01 are omitted.
bonferroni	A logical parameter for performing Bonferroni for multiple testing

Value

A shapeR object with standardized shape coefficients in the slot shape.std

Author(s)

Lisa Anne Libungan

References

Lleonart, J., Salat, J. & Torres, G.J. (2000) Removing allometric effects of body size in morphological analysis. Journal of Theoretical Biology, 205, 85-93.

Longmore, C., Fogarty, K., Neat, F., Brophy, D., Trueman, C., Milton, A. & Mariani, S. (2010) A comparison of otolith microchemistry and otolith shape analysis for the study of spatial variation in a deep-sea teleost, *Coryphaenoides rupestris*. Environmental Biology of Fishes, 89, 591-605.

Reist, J.D. (1985) An Empirical-Evaluation of Several Univariate Methods That Adjust for Size Variation in Morphometric Data. Canadian Journal of Zoology-Revue Canadienne De Zoologie, 63, 1429-1439.

Examples

```
data(shape)
shape = stdCoefs(shape,classes="pop","length_cm")
```

write.image.with.outline

Write outlines on top of the original images for quality checking

Description

A function which writes the outlines which were extracted from the images in the folder "Fixed" on top of the corresponding images in the "Original" folder. Viewing the resulted images in the folder "Original_with_outlines" is a good quality check to ensure the correct outline has been extracted. If the outline is not correct, then the image can be fixed in an image software, such as GIMP (www.gimp.org), placed in the "Fixed" folder and then the detect.outline step is repeated. The function detect.outline calls this function if the parameter write.outline.w.org is set to TRUE.

Usage

```
write.image.with.outline(object, folder = NA, fname = NA, doProgress = TRUE)
```

Arguments

object A shapeR object

folder The folder name where the image is stored

fname Image file name. Not including the extension ".jpg"

doProgress If TRUE, a progressbar is shown

Value

None

Author(s)

Lisa Anne Libungan

References

Libungan LA and Palsson S (2015) ShapeR: An R Package to Study Otolith Shape Variation among Fish Populations. PLoS ONE 10(3): e0121102. https://journals.plos.org/plosone/article?id=10.1371/journal.pone.0121102

```
## Not run:
#Use test data from Libungan and Palsson (2015) and run the following lines:
shape = shapeR("ShapeAnalysis/","FISH.csv")
shape = detect.outline(shape,write.outline.w.org = FALSE)
write.image.with.outline(shape)
## End(Not run)
```

Index

```
* datasets
                                                  show, shapeR-method, 24
    FISH, 7
                                                  show.original.with.outline, 25
    shape, 20
                                                  smoothout, 26
                                                  stdCoefs, 9, 11, 21, 22, 27
capscale, 22
cluster.plot, 2, 22
                                                  vegan, 3
detect.outline, 4, 22, 28
                                                  wavethresh, 8, 17
                                                  wd, 8
enrich.master.list, 5, 21, 22
                                                  write.image.with.outline, 4, 28
estimate.outline.reconstruction, 6, 13
FISH, 7
generateShapeCoefficients, 8, 10, 12, 22
getFourier, 9
getMasterlist, 9
getMeasurements, 10
getStdFourier, 11
getStdMeasurements, 11
getStdWavelet, 12
getWavelet, 12
jpeg, 4
1da, 22
\verb"outline.reconstruction.plot", 13
pixmap, 4
plotFourier, 14, 22
plotFourierShape, 15, 22
plotWavelet, 16, 22
plotWaveletShape, 17, 22
read.master.list, 18
remove.outline, 18
setFilter, 9, 19, 22
shape, 20
shapeR, 4–6, 8–19, 21, 21, 25–28
shapeR-class (shapeR), 21
```