Convolutional Neural Networks and Data Augmentation

June course: Deep Learning in Computer Vision

Morten Hannemose, <u>mohan@dtu.dk</u>

June 6th, 2019

Outline – What you're going to see

- Convolutions recap
- CNN
 - Convolutions
 - Max pooling
 - Stride/padding
 - Backprop
- Combatting overfitting:
 - Dropout
 - Data augmentation

- Convolutional Neural Network
 - Uses convolutions
- Local connectivity
- Weight sharing

Before: (Fully connected)

Input Hidden layer Output

- Convolutions and cross correlation are related operations, but convolution involves rotating the filter 180 degrees.
 - We will refer to cross correlation as "convolution" in this course, as is common in deep learning

9	1	2	2	7									
10	3	10	5	1		1	0	-1		-1	-9	?	
2	6	10	10	9	*	2	0	-2	=	-11	-8	6	
10	10	5	8	10		1	0	-1		0	0	-7	
7	10	9	10	7									

• This filter detects vertical edges

1	0	-1	
2	0	-2	=
1	0	-1	

• What do we do when images have multiple channels?

e.g. color images

What do we do when images have multiple channels?

- Exploit 2d layout of images
- Images are volumes
- Color image → three channels
 - Represented in computer as $3 \times 64 \times 64$

features/channels

- Let's look at a single neuron
- Input is 3 channels, 64×64
- 7×7 convolution

- Each neuron looks at a $3 \times 7 \times 7$ volume in the input layer
 - Requires as many weights + one bias

- Spatially: locally connected
- Depthwise: Fully connected

- Multiple neurons:
- 6 channels (features) output
- Each layer in the output has its own weights
- $6 \times 3 \times 7 \times 7$ weights for this layer

Mathematical definitions

Forward pass:

$$\begin{aligned} z_{i,j}^{\ell,f} &= \sum_{c=1}^{C} \sum_{m=-M}^{M} \sum_{m=-N}^{N} w_{m,n}^{\ell,f,c} \cdot a_{i+m,j+n}^{\ell-1,c} \\ a_{i,j}^{\ell,f} &= \sigma \left(z_{i,j}^{\ell,f} \right) \\ \delta_{i,j}^{\ell,f} &= \frac{\partial \mathcal{L}}{\partial z_{i,j}^{\ell,f}} \end{aligned}$$

$\sigma \left(z_{i,j}^{\ell,c} \right) = a_{i,j}^{\ell,c}$

Backward pass:

$$\begin{split} \delta_{i,j}^{\ell,c} &= \frac{\partial L}{\partial z_{i,j}^{\ell,f}} = \sigma' \left(z_{i,j}^{l,c} \right) \sum_{f=1}^{F} \sum_{m=-M}^{M} \sum_{m=-N}^{N} w_{m,n}^{\ell+1,f,c} \cdot \delta_{i-m,j-n}^{\ell+1,c} \\ \frac{\partial \mathcal{L}}{\partial w_{m,n}^{\ell,f,c}} &= \sum_{i} \sum_{j} \delta_{i,j}^{l,f} \cdot a_{i+m,j+n}^{l-1,c} \end{split}$$

Wow such image!

- Local connectivity
- Weight sharing
- Usually followed by a fully connected network to output a classification

Minibatches revisited

- How do we store a minibatch of images in the computer?
 - 4d tensor with size
 - NCHW (minibatch dimension, channels, height, width)
 - Tensorflow has default (which is slower)
 - NHWC
- Minibatches should be made of data sampled without replacement from your full dataset
 - Once all data has been show to the network once it is called an EPOCH
 - After an epoch you start sampling all your data over again.

Intuition

First Layer Representation

Second Layer Representation

Third Layer Representation

From: (2013) Zeiler and Fergus, Visualizing and Understanding Convolutional Networks https://arxiv.org/pdf/1311.2901.pdf

Intuition

Max Pooling

- Reducing the spatial size of the feature map
- Example:
 - 2x2 max pooling with stride 2
 - For each 2x2 pixels in each channel, retain only the largest number
 - This type of pooling is extremely common in CNNs.

1	1	3	2			
5	6	4	1	2x2 max pooling	6	4
0	3	7	1	with stride 2	3	7
2	1	3	2			

Max Pooling

- Pooling reduces the spatial dimension of the features
 - Not the number of channels
- Number of features is reduced by 2 · 2
 - Makes computation easier
 - A pooling layer is often followed convolution that doubles the number of features.
 - More higher level features, but lower resolution of them: good for classification

Types of pooling

- Max pooling
 - Max of the values
- Average pooling
 - Mean of the values
- Stochastic pooling
 - A random of the values
- Max pooling is the most common for classification

Max pooling – most used

- Max pooling is the most common for networks doing classification
 - For classification is does not matter much where exactly a feature is present
 - Taking the largest value helps make the model invariant to small translations
- Almost all poolings are 2x2 with stride=2.
 - Larger generate worse results.

Strided convolutions

• 3x3 convolution Stride = 1

Input size: 9x9

Ouput size: 7x7

Strided convolutions

• 3x3 convolution Stride = 2

Input size: 9x9

Ouput size: 4x4

Strided convolutions

- Can reduce the size of the image without using pooling
 - Computationally faster than pooling
 - At the risk of being less accurate
 - Perferred in some GANs due to consistent flow of gradients

Padding

- The image size is reduced even for stride=1.
- Artificially increase the size of the image before convolution.
- Padding=1 will increase the size by one at the top, bottom, left and right.
- Usually zeros are used as the padding value in CNNs.

Padding

- Padding with zeros makes sense when the network contains feature maps
 - Positive values indicate the feature is present
 - Zero means this neuron was not activated (the activation was negative and ReLU made it zero)
- If the size needs to be kept constant, you need to pad with:

$$\frac{n-1}{2}$$

- Visualize the convolution kernel and see how much it has on each side
 - $5x5 \rightarrow padding=2$

Question

- DISCUSS WITH YOUR NEIGHBOUR 2 MINUTES
- Input has 8 channels, and spatial dimensions 32x32
- We perform a 7x7 convolution that produces a new volume with 16 channels and still 32x32 spatially.
- What is the stride?
- What is the padding?
- How many weights (learnable parameters) does the convolution have?

Question

- What is the stride?
 - Stride=1
- What is the padding?
 - Padding=3
- How many weights (learnable parameters) does the convolution have?
 - 16x8x7x7 + 16 bias

Dropout

- Background
 - Nerual networks have many weights and can easily overfit to your data
- Concept: Model ensembles (averages of many) are always good
 - How can we do this in a single model?
- How it works
 - Each forward pass, we randomly omit each feature with a probability of 0.5
 - This means we are actually sampling from 2^n different architectures
 - Efficient way of performing model averaging with neural networks

Dropout

- Imagine if you each day only had either your right or left arm.
 - You would be forced to become good at using both arms, because you don't know which arm you will have tomorrow.

• Intuition:

- Specialized neuron might be good enough to classify correctly
 - Other neurons become lazy
- Randomly removing neurons forces all neurons to do their best

Dropout

- Technical details:
 - The dropped neurons during training means expectation of layer output is smaller than during training
 - This is problematic
 - It is common to scale the activations up by the dropout factor during training
 - For example if we drop p=50% of neurons, during training we multiply the activations by 1/p=2
- This is often handled by the high-level framework you are using
 - As long as you tell the model whether it's training or testing right now.
- Dropout is a well known regularization technique, but BatchNormalization is an often used alternative.

- Neural networks are very data-hungry
- How to satisfy their hunger?

- Neural networks are very data-hungry
- How to satisfy their hunger?

- "just have enough data"
 - ImageNet has 14 million images
 - not big enough
 - Google has JFT-300M with 300 million images
 - not big enough
 - also not public

From: https://ai.googleblog.com/2017/07/revisiting-unreasonable-effectiveness.html

We need to fully utilize the data we do have.

- What is this?
- Any ideas on how we can create more images?

- Create more data by exploiting things that the label is invariant towards
- Always keep in mind what the images are of
 - Flipping an image of text means that the text is no longer readable
- Types of augmentation:
 - Flips
 - Translation
 - Scale (non-uniform?)
 - Rotation
 - Elastic deformation
 - Lens distortion?
 - Noise
 - Blur
 - Small color changes

What you have learned

- Convolutions recap
- CNN
 - Convolutions
 - Max pooling
 - Stride/padding
 - Backprop
- Combatting overfitting:
 - Dropout
 - Data augmentation