Optimal Capital Account Liberalization in China¹

Zheng Liu¹ Mark M. Spiegel¹ Jingyi Zhang²

¹Federal Reserve Bank of San Francisco

²Shanghai University of Finance and Economics

April 15, 2024

¹The views expressed herein are those of the authors and do not necessarily reflect the views of the Federal Reserve Bank of San Francisco or the Federal Reserve System. 4□ → 4□ → 4 □ → 1 □ → 9 Q (~)

Domestic financial repression

- Government-favored firms (SOEs) can obtain directed lending at below-market rates (Brandt and Zhu, 2000; Lardy, 2014)
- Non-favored firms (POEs) can borrow only at higher market rates
- Preferential lending to SOEs impacts on bank profits
- Banks avoid loss by
 - raising market rates: hurt private firms
 - reducing deposit rates: hurt households

Strict capital account controls in China

- Domestic investors restricted from investing abroad (QDII very small)
- Foreign investors restricted from investing in China
 - FDI allowed, but share in total investment declined to < 2% since 2009
 - Financial investment more restrictive (B shares and QFII)
- Capital controls led to persistent deviations of domestic asset returns from (FX-adjusted) foreign returns: UIP wedge

What to liberalize first, capital account or financial repression?

- Literature: Benefits of capital account liberalization not clear under distorted domestic financial system
 - Opening capital account could increase leverage and prob of financial crisis (Eichengreen, et al. (2011); Enchengreen and Leblang (2003); Chinn and Ito (2006))
 - Countries with more developed financial system benefit more than those less developed (Ju and Wei, 2010)
 - Benefits work through "secondary improvements" or "discipline effects" for domestic financial institutions (Kose, et al., 2009; Wei and Tytell, 2004)

Abundant policy discussions, but few formal theories

- Plausible link: capital account liberalization can exacerbate misallocation under distorted domestic financial system
- However, "there is a lack of formal theories that articulate this link" (Wei, 2018)
- We present such a theory to study optimal capital account liberalization under financial repression in China

OLG model

- Households live for two periods: young and old
- The young consumes, works, and saves; and the old consumes accumulated assets
- Goods produced using labor and capital in two sectors: SOEs (monopolistic competition) and POEs (perfect competition)
- SOEs less productive than POEs
- All firms rely on external financing of working capital

Financial repression and capital controls

- Financial repression: domestic banks are required to lend minimum fraction γ of loans to SOEs at below-market rate
- Capital controls: capital inflows and outflows both taxed (two-way capital controls, τ_l and τ_d)

Financial repression raises tradeoffs in capital account liberalization

- Capital outflow liberalization
 - Access to foreign asset market raises returns to household savings → improved intertemporal allocations
 - Banks pass through higher deposit rate to market lending rates
 - \bullet POE funding costs higher \to more misallocation and lower aggregate TFP
- Capital inflow liberalization
 - Competition from foreign investors reduces domestic market loan rate, benefiting POEs → aggregate TFP ↑
 - ullet Banks cut deposit rate to remain solvent o reducing intertemporal allocation efficiency
- Tradeoff between intertemporal allocation and cross-sector allocation in both cases
 - Capital account and financial liberalization complementary

The Model

Households

• The utility function for household born in period *t*

$$\mathrm{E}\left\{\ln(C_t^{\mathbf{y}}) - \Psi_h \frac{H_t^{1+\eta}}{1+\eta} + \beta \ln(C_{t+1}^o)\right\}$$

Budget constraints

$$\begin{split} C_t^{y} + D_t + B_{ft}^{d} + q_t^{k} K_t^{o} + I_t + \frac{\Omega_k}{2} (\frac{I_t}{K_t^{o}} - \frac{\bar{I}}{\bar{K}^{o}})^2 K_t^{o} = w_t H_t + T_t + \Gamma_t \\ C_{t+1}^{o} = R_t D_t + (1 - \tau_d) R_t^* B_{ft}^{d} + d_{t+1} + [q_{t+1}^{k} (1 - \delta) + r_{t+1}^{k}] (K_t^{o} + I_t) - \Gamma_{t+1} \end{split}$$

where Γ_{t+1} denotes bequest

Capital stock law of motion

$$K_t = K_t^o + I_t = (1 - \delta)K_{t-1} + I_t$$

Capital outflow tax drives wedge b/n domestic deposit rate R
and world rate R*

$$R_t = (1- au_d)R_t^*$$

Firms

 Final goods production requires intermediate inputs from two sectors: SOE and POE

$$Y_t = [\phi_t Y_{st}^{\frac{\sigma_m - 1}{\sigma}} + (1 - \phi_t) Y_{pt}^{\frac{\sigma_m - 1}{\sigma}}]^{\frac{\sigma_m}{\sigma - 1}}$$

• Intermediate goods production requires labor and capital in each sector $j \in \{s, p\}$

$$Y_{jt} = A_{jt}(K_{jt})^{1-\alpha}(H_{jt})^{\alpha}$$

Firms face working capital constraints

$$B_{jt} \ge (w_t H_{jt} + r_t^k K_{jt})$$

Financial intermediaries (banks)

- Competitive banks take deposits from HHs and lend to firms
- Directed lending: a fraction γ of loans lent to SOEs at below-market rates (normalized to 0), $1-\gamma$ fraction lent at market rate $R_{lt}>1$

$$B_{gt} \geq \gamma (B_{gt} + B_t)$$

Bank's break-even condition

$$R_t = \gamma + (1 - \gamma)R_{lt}$$

• Financial repression creates interest rate wedges:

$$R_{lt} > R_t > 1$$

where interest on directed lending loans is 1.

Capital inflow wedges

- Two wedges on foreign inflows:
 - Capital inflow tax τ_{lt} : reduce returns for foreign investors
 - Risk premia $\Phi(\frac{B_{ft}'}{Y_t})$: upward-sloping supply of foreign funds
- No arbitrage for capital inflows

$$(1 - \tau_I)R_{It} = R_t^* \Phi\left(\frac{B_{ft}^I}{Y_t}\right)$$

• Risk premium \rightarrow spillover externality from foreign debt

Reallocation effect of market lending rate

- SOEs' and POEs' funding costs:
 - POEs' funding cost

$$R_{pt} = R_{lt}$$

SOEs' funding cost

$$R_{st} = \frac{B_{gt}}{B_{st}} \times 1 + \frac{B_{st} - B_{gt}}{B_{st}} R_{lt}$$

- SOEs' funding cost is less sensitive to changes in market lending rate than POEs'.
- An increase in market lending rate reallocates resources from POEs to SOEs.

Market clearing and equilibrium

Final goods market clearing

$$NX_t = Y_t - C_t^y - C_t^o - I_t - \frac{\Omega_k}{2} \left(\frac{I_t}{K_t^o} - \frac{\bar{I}}{\bar{K_t^o}}\right)^2 K_t^o$$

Labor market and capital market clearing

$$H_t = H_{st} + H_{pt}$$
 $K_{t-1} = K_{st} + K_{pt}$

Loanable funds market clearing

$$B_{st} + B_{pt} = B_{gt} + B_t + B_{ft}^I$$

Balance of payments condition

$$\begin{aligned} NX_t &+& (R_{t-1}^* - 1)B_{f,t-1}^d - \left[R_{t-1}^* \Phi \left(\frac{B_{f,t-1}^l}{Y_{t-1}} \right) - 1 \right] B_{f,t-1}^l \\ &=& (B_{ft}^d - B_{ft}^l) - (B_{f,t-1}^d - B_{f,t-1}^l) + \Delta_t \end{aligned}$$

Calibration

Calibrate to Chinese data where possible

- Productivity gap: $A_s = 1$ and $A_p = 1.42$ [Hsieh and Klenow (2009)]
- SOE share: ϕ declines from 0.5 to 0.3 (structural changes)
- Financial repression: $\gamma=0.5$ to match SOE share in bank loans in 2000
- Capital control taxes: $\tau_d=16.63\%$ and $\tau_l=5.08\%$, to match ratios of privately held foreign assets and liabilities to output

Other calibrated parameters

Parameter	Description	Value
β	Household discount rate	0.665
η	Inverse of labor supply elasticity	2
Ψ_h	Utility weight of labor	38
$\delta^{''}$	Capital depreciation rate	0.651
Ω_k	Capital adjustment cost	5
r*	Foreign interest rate	1.629
Γ	Transfer from old to young	0.75
α	Labor income share	0.5
Φ_b	Elasticity of risk preimum to external debt-to-GDP ratio	3

Steady State

Steady state analysis

- First consider capital account liberalization, holding financial repression constant
 - 1. One-way capital outflow liberalization
 - 2. One way capital inflow liberalization
 - 3. Two-way liberalization
- Then consider joint liberalization of both capital controls and financial repression

One-way liberalization of capital outflows (no inflows)

One-way liberalization of capital outflows (inflows allowed)

One-way outflow liberalization

- Sufficient reduction in τ_d leads to capital outflows
- No arbitrage raises deposit rate \rightarrow HH returns on savings increased
- ullet Financial repression o Banks \uparrow market rate, hurting POEs
- Reallocation to SOEs reduces aggregate TFP
- ullet Tradeoff between higher returns on HH savings and lower TFP ightarrow interior welfare optimum
- At very low capital outflow tax rates, further liberalization reverses the TFP decline.
 - Because high domestic rates make more foreign funds available to POEs, which mitigates the misallocation effect.

One-way liberalization of capital inflows (no outflows)

One-way liberalization of capital inflows (outflows allowed)

One-way liberalization of capital inflows

- Sufficient reduction in τ_I attracts foreign capital inflows
- Competition from foreign investors reduces market loan rate, benefiting POEs → ↑ aggregate TFP
- ullet Financial repression ullet banks lower deposit rate, reducing HH interest earnings
- ullet Risk premium o exacerbate over-borrowing externality
- Tradeoff between higher TFP, lower HH asset returns and over-borrowing externality → interior optimum of capital inflow controls

Analytic results supporting numerical results

- We solve for SOE input share $S(\tau_d, \tau_l, \gamma) = K_s/K_p = L_s/L_p$
- Then show that
 - $S(\tau_d, \tau_l, \gamma)$ is increasing in τ_l
 - There exists $\bar{\tau}_d$ such that $S(\tau_d, \tau_l, \gamma)$ decreases (increases) with τ_d when $\tau_d \geq (<)\bar{\tau}_d$
- TFP \downarrow with $S\left(\frac{\partial \tilde{A}}{\partial S} < 0\right)$

Optimal capital controls given financial repression (γ)

Liberalizations of capital controls and financial repression are complementary

- Higher γ implies higher optimal capital control taxes on both inflows and outflows
 - $\uparrow \gamma \rightarrow \uparrow$ market rate, \uparrow misallocation and \downarrow TFP
 - Planner $\uparrow \tau_d$ to lower deposit rate and to partly undo misallocation
 - $\uparrow \gamma$ raises market rate and attracts more capital inflows \to more external borrowing
 - † external borrowing excessive due to borrowing externality
 - To mitigate over-borrowing externality, planner raises capital inflow tax (τ_l)

Transition dynamics

- SOE share falls from initial steady state $\phi_0=0.5$ to new steady state $\phi_1=0.3$
- Examine optimal magnitude and speed of capital account liberalization along transition path
- Notation (Example for τ_d)
 - τ_{d0} initial SS value of τ_{d}
 - τ_{d1} final SS value of τ_{d}
 - $\alpha_d \in [0,1]$ pace of liberalization of au_d
 - $\tau_{dt} = \tau_{d0} + (\tau_{d1} \tau_{d0})[1 (1 \alpha_d)^t]$ if $t \ge 1$
 - Larger values of $\alpha_d \rightarrow$ faster pace of liberalization
- Similar for τ_l and γ

Transition welfare

• Welfare at new steady-state

$$V_f(\tau_{d1},\tau_{l1},\gamma_1) = \frac{1}{1-\beta} \left[\ln(\bar{C}^y) - \Psi_h \frac{\bar{H}^{1+\eta}}{1+\eta} + \ln(\bar{C}^o) \right]$$

• Welfare along transition path (starting in period 1)

$$V_1(\tau_{d1}, \alpha_d, \tau_{l1}, \alpha_l, \gamma_1, \alpha_\gamma) = \sum_{t=1}^{\infty} \beta^t \left(\ln(C_t^y) - \Psi_h \frac{H_t^{1+\eta}}{1+\eta} + \ln(C_t^o) \right)$$

Full reforms along transition paths

Benchmark	Inflow only	Outflow only	Full liberalization
0	1	2	3
16.63%	16.63%	-1.05%	-0.74%
-	-	46.42%	43.90%
5.08%	-5.32%	5.08%	3.37%
-	20.68%	-	100.00%
50.00%	0.82%	0.00%	0.78%
-	100.00%	98.20%	100.00%
0.00%	28.54%	31.27%	31.33%
	0 16.63% - 5.08% - 50.00%	0 1 16.63% 16.63% 5.08% -5.32% - 20.68% 50.00% 0.82% - 100.00%	0 1 2 16.63% 16.63% -1.05% - - 46.42% 5.08% -5.32% 5.08% - 20.68% - 50.00% 0.82% 0.00% - 100.00% 98.20%

Case 0: benchmark (initial SS); Case 1: optimal liberalization of inflow control and financial repression; Case 2: optimal liberalization of outflow control and financial repression; Case 3: optimal liberalization of both inflow control and outflow control, and financial repression.

- Liberalize financial repression at relatively fast pace
- Liberalize inflows faster than outflows to accelerate transition

Conclusion

- We present a OLG model to study implications of capital account liberalization under financial repression
- Liberalizing capital controls incurs tradeoff between production efficiency and intertemporal allocation efficiency
 - Easing capital inflows reduces funding costs for productive POEs and improves TFP, but lowers returns on HH savings
 - Easing capital outflows improves returns on HH savings, but raising funding costs for POEs and reduces TFP
- Along transition path, liberalizing financial repression and easing capital controls are complementary reforms
 - Second-best policy calls for gradual liberalization of both capital inflows and outflows ...
 - ... but fast liberalization of financial repression

