非完美最近点对算法时间复杂度的证明

Shuxin Chen, 2015013229

2017年3月3日

1. 已知 $T(n) = 2T(n/2) + \Theta(n \log n)$,求 T(n)。 我们用递归的方法求解。

$$T(n) = 2T(\frac{n}{2}) + O(n \log n)$$

$$= \sum_{i=1}^{\lfloor \log n \rfloor} (2^{i-1} * \frac{n}{2^{i-1}} \log \frac{n}{2^{i-1}})$$

$$= \sum_{i=1}^{\lfloor \log n \rfloor} (n \log \frac{n}{2^{i-1}})$$

$$= n \sum_{i=1}^{\lfloor \log n \rfloor} (\log \frac{n}{2^{i-1}})$$

令 $m = \lfloor \log n \rfloor, u_i = \log \frac{n}{2^{i-1}}$,我们有

$$T(n) = n \sum_{i=1}^{m} u_i$$

我们发现, $u_i - u_{i-1} = -\log 2$, 因此 $\{u_n\}$ 为等差数列, 我们可以用求和公式

$$S_n = nu_n - \frac{n(n-1)}{2}d$$

来计算数列的和,其中d为公差。

设 $u(m) = \Theta(1)$, 我们有

$$T(n) = n \sum_{i=1}^{m} u_i$$

=
$$n(mu_m - \frac{m(m-1)}{2} * (-\log 2))$$

= $n(m\Theta(1) + \frac{m(m-1)}{2} * (\log 2))$
= $\Theta(nm^2)$
= $\Theta(n\log^2 n)$

因此,
$$T(n) = \Theta(n \log^2 n)$$
。