3. 홈/정보기전

Digital Holography 기술 동향 및 전망

□ Holography 특징 및 현황

- 실사 기반의 입체상을 재현하여 관찰자에게 자연스러운 입체감을 제공 함으로써, 기존 스테레오 방식의 입체영상 표현 한계를 근원적으로 해결할 수 있는 궁극적인 입체영상 기술
- 현재 일반화된 양안시차의 원리를 이용한 3D와 달리 눈의 조절(수정체의 초점 맞춤)에도 모순이 없는 입체감 구현 가능
- 홀로그래피 시장은 '15~'20년 연간(CAGR) 104.7% 성장할 것으로 예측
- 일본, 독일, 미국이 기술을 선도하고, 한국은 선도국가들을 추격하는 단계

□ 국내외 연구개발 동향

- 일본 : 3D TV시장 이후의 홀로그램 산업을 선점하려는 전략 추진
 - '16년까지 홀로그램 장비 개발에 45억\$ 투자(NHK)
 - '22년 월드컵 유치 위한 Holo-TV 방송계획을 발표하고 기본 원리 테스트 완료
- 유럽 : FP프로그램에서 개발된 기술을 부분별로 상용화 추진
 - '04년부터 FP6의 3D TV 프로젝트에서 홀로그래피 기술개발 시작
 - FP7의 Real 3D 프로젝트에서는 디지털 홀로그래피의 전 분야에 대한 핵심 기술개발 추진 중
- 미국 : 홀로그램 융합산업의 기초원천기술 확보 추진(대학·민간 중심)
- 국내 : 홀로그램 정보획득·프로세싱 기술 및 디스플레이·소자 등 관련 기초연구 추진

□ 정부지원 전략 및 향후계획

- '15년까지 무안경 3D TV 시대 개막을 위해 R&D에 집중, 미래 3D 핵심기술인 홀로그램 경쟁력 확보를 위한 투자도 병행
- 지경부, 문화부, 방통위 등 관계 부처가 소관분야 기술 개발을 추진,
 R&D의 유기적 연계를 강화함으로써 시너지 효과 극대화
 - 지경부·문체부 : 향후 10년 뒤에 디지털 홀로그래픽 기술의 상용화를 목표로 1단계('11~'13) 사업 추진 예정

I. Holography 개요

1. 개념 및 정의

• Hologram = Holos(전체) + Gramma(메시지)

• Hologram : 간섭파 형태로 물체의 영상이 기록된 사진 필름

• Holography : 간섭파 형태로 기록된 데이터를 복원하여

입체영상으로 재생하는 기술

- 실사 기반의 입체상을 재현하여 관찰자에게 자연스러운 입체감을 제공함으로써, 기존 스테레오 방식의 입체영상 표현 한계를 근원적으로 해결할 수 있는 궁극적인 입체영상 기술
- 홀로그래피는 실사로부터 반사 또는 회절(diffraction)되어 전파되는 빛의 분포를 기록 및 재현하는 기술로, 1947년 Denis Garbor에 의해 발명 (1971년 노벨상 수상)

[그림 1 : 홀로그래피에 의한 3D 영상의 기록 및 재생]

2. 홀로그래피 특징

[그림 2 : 디지털 홀로그래픽 3D 시스템 개념도]

- 현재 일반화된 양안시차의 원리를 이용한 3D와 달리 눈의 조절 (수정체의 초점 맞춤)에도 모순이 없는 입체감 구현 가능
- 디지털 홀로그래피는 광전자기기와 컴퓨터를 이용하여 홀로그램을 생성/재생하는 방식으로 홀로그래픽 입체영상 기술을 구현하는 핵심 기반 기술임

[표 1 : 홀로그래픽 핵심기술]

디지털 홀로그래픽 획득, 생성 및 복원 기술	 다중 디지털 홀로그램 획득 기술 다시점/초다시점/집적영상 기반 생성기술 디지털 홀로그램 화질 향상 기술 디지털 홀로그램 3차원 공간 복원 기술
디지털 홀로그램 신호처리 기술	 홀로그래픽 기술 기반 외곡 보정 기술 디지털 홀로그램 트랜스코딩 기술 3차원 공간정보 정의 및 정보 최소화 기술 홀로그래픽 토모그래피 기술
디지털 홀로그래픽 디스플레이, 기록 기술	 디지털 홀로그램 공간광변조 기술 자연색 홀로그램 광원 및 광학계 기술 디지털 홀로그래픽 광학 엔진 기술 고속/고휘도 디지털 홀로그램 기록 기술

- 디지털 홀로그래픽 3D 영상 시스템을 구현하기 위한 핵심기술은 크게 획득, 생성 및 복원 기술, 신호처리 기술, 디스플레이, 기록 기술로 구분
- 실시간 홀로그래픽 디스플레이를 구현하기 위해서는 고밀도, 고속 응답의 광변조소자와 같은 재료/소자 분야에서의 해결책이 요구됨. 또한 제작 현장에서 레이저를 사용하기 곤란하므로, CGH (Computer Generated Hologram) 기술, 동영상 촬영 기술의 확립이 요구됨

3. 홀로그래피 응용분야

- 홀로그래피 기술은 완벽한 입체영상을 제공하지만, 아직까지 실용화 및 상용화를 위한 모델이 제시되지 못하고 있음
- 홀로그래픽 기술은 현실과 가상의 구분이 어려울 정도로 현실감이 뛰어나며, 2D 영상산업과 스테레오 3D 영상산업에 비하여 광범위한 응용이 가능함
 - 방송/통신 : 홀로그래픽 TV/DMB/Phone
 - 엔터테인먼트 : 홀로그래픽 게임/가상세계/쇼핑
 - 광고/전시 : 박물관 유물전시, 디지털 사이니지, 문화예술공연
 - 정보가전기기 : 전자액자, 전자책, 전자테이블, Telepresence, 홈씨어터
 - 오피스 : 화상회의, CAD, 건축설계
 - 교육훈련 : 비행 시뮬레이션, 군사작전 훈련
 - 의료 : 원격수술, 수술 시뮬레이션

[그림 3 : 홀로그래피 응용 분야]

○ 미래 3D 영상기술은 스마트TV, 양안식 3DTV, UDTV 등을 거쳐서 최종적으로 홀로그래픽 TV로 진화할 것으로 예측되며, 향후 10년 이후에 도입 전망

[그림 4 : 디스플레이 기술의 발전 방향]

○ 홀로그래픽 카메라, 홀로그래픽 현미경, 홀로그래픽 프린터, 홀로그래픽 디스플레이 등의 3D 영상시스템은 향후 5년 이후에 도입 전망

II. 시장 및 특허동향

1. 시장 경쟁력

- 홀로그래피는 완벽한 입체영상을 제공하지만, 아직까지 실용화 및 상용화를 위한 모델이 제시되지 못하고 있음
- 특히, 디지털 홀로그래픽 기술은 이론적인 면에서는 비약적인 발전을 거듭하고 있음에도 불구하고, 물리적인 측면에서 상용화 수준의 전자식 홀로그래픽 디스플레이 실현에는 아직 큰 한계가 존재함
- 2010년 11월 <네이처>지에 발표한 나세르 페이검바리언 교수 연구팀에 의하면, 10년 내로 안방의 3D 비디오 스크린에 완전한 홀로그램을 구현할 수 있을 것으로 예측하고 있으며, 홀로그램 관련 시장 규모도 2022년 경에는 홀로그래픽 콘텐츠, CAD 시스템, TV, 부품까지 포함하여 약 40억 달러 이상의 규모로 성장할 것 으로 전망되는 등 장기적인 성장성은 밝다고 할 수 있음
- 홀로그래픽 디스플레이 실현 기준으로 본격적인 상용화 시기는 2020년으로 예상되나, 디지털 홀로그래픽 응용 기술 및 유사 홀로그램 기술을 활용한 상용화는 2015년부터 가능할 것으로 전망

2. 시장규모 및 성장률 예측

○ 디지털 홀로그래픽 3D 원천기술이 적용되어 생산하는 제품군으로 정보가전을 선정하였으며, 구체적으로 디지털 홀로그래픽 3D 기술이 적용되는 분야는 3D 디스플레이, 3D 콘텐츠, 홀로그램 기술 등이 포함된 3D 서비스 플랫폼 시장을 참조

- 세계 정보가전 시장은 2009년 2조 2,678억 달러로 홈네트워크 분야에서 홈플랫폼 장비에 이어 두 번째로 큰 비중을 차지하고 있으며, 연평균 25.6%의 높은 성장률과 함께 2014년에는 7조 951억 달러로 성장하여 홈네트워크 시장에서 가장 큰 비중을 차지할 것으로 전망
- 세계 시장과 동일한 추세로 국내 시장의 경우에도 홈네트워크 분야에서 홈플랫폼 장비 시장과 더불어 정보가전 시장이 가장 큰 규모의 시장을 형성할 것으로 보여, 2009년 2조 2,678억원에서 연평균 25.6%의 성장률을 보이며 2014년 7조 951억원으로 지속적 으로 크게 성장할 것으로 전망

(단위: 억원, 원/\$: 1.100)

구분	<u>4</u>	2009	2010	2011	2012	2013	2014	CAGR
정보기전	국내	22,678	28,213	37,864	52,328	61,856	70,951	25.6%
で土/他 	국외	717,013	941,292	1,297,604	1,801,250	1,953,798	2,060,751	23.5%

※ 출처 : IT R&D 발전전략, 2010.10, KEIT

3. 시장점유율 및 총매출액 예측

○ 예상시장 점유율 (3D 시스템 시장에서의 홀로그래픽 3D 시스템 점유율 추정)

구분	2015	2016	2017	2018	2019	2020
홀로그래픽 3D 시스템 점유율	2.4%	3.1%	4.6%	6.9%	10.6%	15.6%

* 3D 디스플레이 사용화 시점 기준으로 평판 디스플레이 시장에서의 3D 디스플레이의 점유율 변화 추이를 기준으로 정보가전 시장에서의 홀로그래픽 3D 시스템 시장 점유율을 추정 (홀로그래픽 상용화 시점인 2015년부터 연차별 적용)

○ 평판 디스플레이 시장에서의 3D 디스플레이의 점유율 추이

(단위: 억달러)

구분	2010	2011	2012	2013	2014	2015
평판 디스플레이	1,000	1,120	1,180	1,210	1,250	1,300
3D 디스플레이	24	35	54	84	132	202
3D 점유율	2.4%	3.1%	4.6%	6.9%	10.6%	15.6%

* 출처 : Insigth Media (2009.12), 산업연구원 (2007.05)

ㅇ 예상시장 총매출액

(단위: 억달러)

구분	2015	2016	2017	2018	2019	2020	CAGR
정보가전 시장규모*	2,393	2,956	3,650	4,508	5,568	6,876	23.5%
3D 시스템 점유율**	15.6%	17.8%	20.3%	23.1%	26.3%	30%	-
3D 시스템 시장규모	373	526	740	1,042	1,467	2,065	40.8%
홀로그래픽 3D 시스템 점유율 (3D시스템 기준)	2.4%	3.1%	4.6%	6.9%	10.6%	15.6%	-
홀로그래픽 3D 시스템 시장규모	9	16	34	72	155	322	104.7%
현가계수*** (할인율 10% 적용)	68.3%	62.1%	56.5%	51.3%	46.7%	42.4%	-
현가 매출액(현재가치)	6	10	19	37	73	137	86.1%

출처: 디지털 홀로그래피 기획위원회 기획보고서

4. 특허 동향

- 디지털 홀로그램 3D 시스템 원천기술개발 분야의 출원인별 핵심 특허수는 일본이 37건으로 가장 많은 비율을 차지하고 있고, 다음 으로는 독일과 미국이 각 18건의 특허 출원
- 한국의 경우 10건의 핵심특허를 출원하였고, 영국은 3건, 캐나다 2건, 유럽연합 2건의 특허 출원

^{*} 정보가전 시장 CAGR ('09~'14)을 '2015~'2020년까지 적용하여 추정

^{**} 정보가전 시장에서 3D 시스템 점유율을 2020년 30%로 가정 후 연단위 환산

^{***} 할인율을 10%로 가정하여 미래가치를 2011년 기준의 가치로 환산하기 위한 계수

○ 디지털 홀로그램 3D 시스템 기술 분야의 경우 일본, 독일, 미국이 기술을 선도하는 것을 알 수 있으며, 한국의 경우 선도국가들을 추격하는 단계인 것으로 판단됨

[그림 5 : 출원인 국가별 핵심특허 건수]

 국내기업과 해외기업의 출원을 비교하면, 해외기업이 전체 핵심 특허 95건 중에서 85건을 출원하였고, 한국기업이 10건의 특허를 출원하였음

[그림 6 : 디지털 홀로그래픽 3D시스템 분야 출원인 TOP 10]

○ 디지털 홀로그래픽 3D 시스템 분야의 경우 Metrologic Instruments가 95건으로 가장 많은 출원을 보이고 있고, 다음으로는 SONY가 83건의 출원을 보이고 있으며, 독일의 Seereal Technologies와 일본의 FUSI가 각 48건과 46건의 특허를 출원하였고, 한국의 삼성전자가 30건의 특허 출원

III. 국내외 연구개발 동향

• 일본 : 3D TV시장 이후의 홀로그램 산업을 선점하려는 전략

• 유럽: FP프로그램에서 개발된 기술을 부분별로 상용화 추진

• 미국 : 홀로그램 융합산업의 기초원천기술 확보 추진

1. 일본

- 3DTV 시장 이후의 홀로그램 산업을 앞당기고 선점하려는 전략 추진
 - 일본은 3DTV 시장 장악을 선포하였으나, 한국이 주도하는 추세
 - 이에 따라 Hologram TV로 시장을 개척하고 세계시장 주도를 예고
- NHK는 Integral 3DTV 기반으로 2016년까지 홀로그램 장비 개발에 45억\$ 투자계획 발표(2010. 5)
 - 2022년 월드컵 유치를 위해 Table 형태의 Holo-TV 방송계획을 발표하고 현재 기본 워리 테스트를 마침

[그림 7: NHK의 Integral 3DTV]

- 일본 총무성 산하 NICT에서는 RGB 8K×4K급 SLM을 이용한 고해상도 full-color 홀로그래픽 디스플레이 시스템 개발
 - NAB 2009에서 실시간 홀로그램 비디오 시연

[그림 8 : NICT의 Digital Holography 시연영상]

- 스쿠바대는 회절근사치를 이용하여 512×256 크기의 구면 홀로그램 제작
- 니혼대는 컬러 홀로그래픽 디스플레이 기술, 원통형 홀로그래픽 기술 및 프린지 프린팅 기술과 AOM과 LCD 방식을 이용한 홀로그램 동영상 재생시스템 구축
- 치바대학은 간략화된 알고리즘을 FPGA 기반 플렛폼에 구현하여 HD급 디지털 홀로그램을 실시간으로 생성할 수 있는 시스템 개발

[그림 9 : 치바대학 HORN-6 시스템 및 홀로그램 영상]

2. 유럽

 2004년부터 FP6의 3D TV 프로젝트에서 홀로그래피 기술개발을 시작하였으며, FP7의 Real 3D 프로젝트에서는 디지털 홀로그래피의 전 분야에 대한 핵심 기술개발 추진 중

[표 2: FP7 Real 3D 프로젝트별 예산]

Project	Budget (Euro)
20-20 3D Media: Spatial sound and vision	15.2M
REAL 3D : Digital holography for 3D and 4D real-world objects' capture, processing, and display	5.8M
HOLOMOBILE: Digital holographic applications for mobile devices	0.15M
HOLOVISION: Holographic 3D visualization, development of the next generation holo-display based on emerging optical and opto-electronic technologies	3.0M
HELIUM3D: High efficiency laser-based multi-user multi-modal 3D display	4.2M
HOLONICS: Holographic and action capture techniques	4.0M
COHERENT: Collaborative holographic environments for networked tasks collaborating from a distance in virtual 3-D	3.8M

○ 터키의 빌켄트(Bilkent) 대학은 SLM 기반의 홀로그램픽 디스플레이 시스템과 원형 스크린을 이용한 체적형(volumetric) 홀로그래픽 디스 플레이 시스템을 개발하였음

[그림 10 : 터키 빌켄트대학의 LED 칼라 홀로그래픽 3D 영상]

○ 독일의 SeeReal사는 2007년 세계 최초로 20인치 홀로그래픽 프로토타입 디스플레이 장치인 'VISIO20'을 개발

[그림 11 : SeeReal VISIO20 홀로그래픽 디스플레이 시스템]

- 헝가리의 Holografika사는 다수의 프로젝터를 동시에 홀로그래픽 스크린에 투사하여 연속적인 3차원 영상을 재생할 수 있는 시스템 개발
- 영국의 QinetiQ는 홀로그램을 순차적으로 OASLM에 축소 기록하는 방식으로 고해상도 홀로그램 입체영상을 재생할 수 있는 Active Tiling형 디스플레이 시스템 개발

[그림 12 : QinetiQ의 Active Tiling 기반 홀로그래피 디스플레이 시스템]

○ 스위스의 Lyncee Tec.는 세포에 대한 디지틸 홀로그램으로부터 3차원 정보 추출 및 컴퓨터 그래픽 모델을 만들 수 있는 홀로그래픽 현미경 개발

[그림 13 : Lyncee Tec.의 Holographic Microscope]

3. 미국

○ MIT 미디어랩은 AOM(Acouto-Optic Modulator) 방식을 이용하여 홀로그램 동영상 재생 시스템인 'HoloVideo' 개발했으며, 홀로그래픽 스테레오그램, 햅틱 홀로그램 등 홀로그래피 응용분야 연구

[그림 14: MIT의 HoloVideo]

- 버지니아 공대는 광테헤로다인을 통해 레이저들이 만드는 간섭 무늬를 Mhz 대의 전기신호로 바꾸어 저장하여 고해상도 CCD 없이도 효과적으로 홀로그램 저장할 수 있는 '광스캔 홀로그래피' 기술 개발
- 애리조나 대학교는 2010년에 기록/재생 반복이 가능한 포토폴리머 (Photo-Polymer)를 이용하여 홀로그래픽 동영상을 초당 2회 구현하는 기술을 개발

[그림 15 : 애리조나대학의 포토폴리머 기반 홀로그래피 동영상]

○ 남가주대학교(USC)에서는 홀로그램 분산기가 붙어 있는 거울이 회전하면서 입체영상을 만들어내는 "Interactive 360 light field display" 시스템을 개발

[표 3 : 국외 홀로그래피 기술 개발 현황]

국가	기관	내용
	MIT 미디어랩	다채널 AOM 광학변조기와 LCD를 이용한 5인치급 디지털 홀로그램 동영상 재생시스템인 'HoloVideo'를 개발했으며, 홀로그램 데이터 처리 방법론, 햅틱을 이용한홀로그램 인터랙션 등 디지털 홀로그램 관련 기초 연구를 수행 중
미국	NSIC	DARPA 지원 하에 홀로그램을 이용한 차세대 대용량 저장장치를 개발하기 위해 광굴절 저장물질을 개발하는 산학연 컨소시엄 형태의 대형 국책 프로젝트인 PRISM(Photorefractive Information Storage Materials)과 시스템 및 관련 부품을 개발하기 위한 HDSS(Holographic Data Storage System)를 수행 중
	버지니아 공대	레이저빔이 생성하는 간섭무늬를 전기신호로 변환 및 저장해, 고해상도의 CCD 카메라 없이 효율적으로 홀로그램 데이터를 획득할 수 있는 광주사 홀로그래피 (Optical Scanning Holography) 기술을 개발
	게이오대학	레이저 집광과 공기 중의 플라즈마 생성을 통해 점(flashpoint) 단위공간 영상의 실험적인 생성에 성공
	NTT	홀로그램 대용량 저장장치에 대하여 연구가 진행 중임
일본	동경대	2009년 Touchable 홀로그램 초기 연구결과물을 시연하여, 사용자와 인터랙션이 가능한 홀로그램의 개발 가능성을 시사
	지바대	LED 광원을 이용하여 실시간으로 컬러 홀로그램 영상 복원이 가능하도록 FPGA 기반의 컬러 홀로그래픽 디스플레이 장치를 개발
	NHK	HD급 공간광변조기(SLM)를 이용해 고해상도 홀로그래픽 디스플레이를 개발
유럽	빌켄트대학 (터키)	유럽 7개국이 참여하는 FP7의 'Real3D'프로그램을 통하여, 디지털 홀로그래피의 신호처리 및 디스플레이 기술 개발을 주도
	(프랑스 · 영국 · 이탈리아 · 스위스)	항공용의 자동 물체인식장치·자동 물체추적 장치·공장 자동화용 형상인식 장치에 응용이 가능한 초고속 홀로그래픽 디지털 광상관기 및 대용량 저장장치 개발을 위하여 BRITE-EuRAM 프로젝트를 수행중

4. 국내

- 홀로그램 관련 학문적인 연구수행을 위주로 실험실 수준의 연구가 진행됨
 - 고전적인 아날로그 방식의 홀로그램은 위변조 방지용과 포장지 등의 용도로 기술이 확보되어 있음
- 홀로그램 정보획득·프로세싱 기술 및 디스플레이·소자 관련 기초연구 수행
 - (KIST) 현미경을 이용한 실제 영상 및 디지털 홀로그램 영상 결합 및 표현기술 개발 중
 - (광운대) 다시점 카메라를 이용한 홀로그래픽 비디오 기술 및 GPU를 이용한 고속 CGH 생성 연구 진행 중
 - (충북대) 홀로그래픽 데이터 압축 기술 연구 진행 중
 - (서울대) 렌즈 어레이를 이용한 집적영상기술 기반 디스플레이 연구 수행
 - (ETRI) 실사영상의 컬러 디지털 홀로그래픽 영상 구현 연구 수행
 - (KETI) Floating 홀로그램 기반의 인터랙티브 시스템 기술개발 진행 중

[표 4 : 국내 홀로그래피 기술 개발 현황]

기관	내용
서울대	공간 광변조기를 원통형 구조의 어레이로 배열하여 홀로그램 복원시 시야각을 넓히는 연 구를 진행 중
광운대	동영상 표준 코덱을 이용한 디지털 홀로그램의 압축방식, 고속 CGH 생성기술, 디지털 홀로그램의 보호 및 보안 기술, 컬러 홀로그래픽 디스플레이 기술 등의 전반적인 기술개발을 진행 중
세종대	광 주사 홀로그래피를 이용해 실제 물체의 복소수 홀로그램을 추출하는 홀로그램 정보 추출 기술, 추출한 복소수 홀로그램을 변환해 데이터 랑을 줄이는 디지털 변환 처리 기 술, 쌍영상 잡음 없이 원하는 복원 기술을 진행 중
충북대	직접 광학계를 이용해 촬영한 객체의 요소영상을 합성하여 객체의 홀로그램 생성하는 연구를 진행 중
KIST	홀로그래픽 스크린 시스템 및 홀로그램 데이터 입출력 시스템을 개발
ETRI	3D 방송과 홀로그래픽 시스템 연구

IV. 정부지원 전략 및 향후계획

- ◆ 2015년까지 무안경 3D TV 시대 개막을 위해 R&D에 집중, 미래 3D핵심기술인 홀로그램 경쟁력 확보를 위한 투자도 병행
- ◆ 지경부, 문화부, 방통위 등 관계 부처가 소관분야 기술 개발을 추진,R&D의 유기적 연계를 강화함으로써 시너지 효과 극대화
- □ 산·학·연 전문가와 관계부처가 공동으로 참여하여 "3D산업 통합기술 로드맵" 마련('10.12)
 - 산업적 파급효과가 크고 국가적 차원의 지원이 필요한 3D제품을 Top Brand로 선정하고, 이에 대한 핵심 기술을 도출

구분	분야	핵심기술
7171/	3D 카메라	다안식 일체형 3D 카메라 기술 등
기기/ 장비	무안경 2D/3D 겸용 단말기	2D/3D 겸용 필터 기술 등
0-1	홀로그래피 시스템	디지털 홀로그래피 처리 기술 등
	3D 원격의료 통합서비스	의료용 고해상도 입체 카메라 기술 등
O÷l	무안경 방식 대형 3D 옥외광고 시스템	다시점 무안경식 3D옥외영상광고기술 등
융합 서비스	전장모사 기반 3D 군사훈련 시스템	3D 모의 군사 훈련 기술 등
\	원격 실감각 전송기반 3D훈련시뮬레이터	다중실감 공간인지 3D시뮬레이션 시용자 인터랙션 기술 등
	3D City 통합설계 시스템	3D City 모델링 기술, 건물 소방/방재 등
코테ㅊ	3D 영상 제작	고속 입체 렌더링 기술 등
콘텐츠	오감 체험형 4D	오감 체험형 감각 인터페이스 기술 등
방송	안경식 3D 서비스	스테레오 3D 영상 부호화 기술 등
서비스	무안경식 3D 서비스	무안경 3D 방송품질평가 및 인증기술 등

- □ 지경부는 2011년 산업융합원천기술개발 사업에서 신규사업(3차원 공간 정보 획득 및 재현을 위한 디지털 홀로그래픽 3D 영상 시스템용 원천기술 개발) 추진예정
 - 향후 10년 뒤에 디지털 홀로그래픽 기술의 상용화를 목표로 1단계 사업 추진
- □ 문화부는 2011년 콘텐츠산업기술지원 사업으로 "디지털 홀로그래픽 (DH) 콘텐츠 기반 기술 개발"(3년, '11년 20억) 사업 추진예정