BorisovNikS 18092024-150526

Задан двухполюсник на рисунке 1, причём R1 = 16.2 Om.

Рисунок 1 – Двухполюсник

Найти полуокружность (см. рисунок 2), описываемую коэффициентом отражения от этого двухполюсника в среде с волновым сопротивлением 50 Ом при изменении частоты от 0 до ∞ .

Рисунок 2 — Полуокружности Γ_i на s-плоскости

В качестве ОТВЕТА указать индекс выбранной полуокружности.

Даны значения s-параметров:

Freq	s_{11}		s_{21}		s_{12}		s_{22}	
GHz	MAG	ANG	MAG	ANG	MAG	ANG	MAG	ANG
1.0	0.319	-150.8	13.645	94.1	0.037	67.5	0.365	-57.1
1.5	0.332	-169.3	9.118	82.7	0.052	66.6	0.269	-66.6
2.0	0.345	179.6	6.714	75.0	0.067	65.1	0.214	-77.1
3.0	0.360	164.1	4.404	63.3	0.096	60.8	0.171	-96.0
5.5	0.389	138.8	2.403	38.7	0.168	45.7	0.123	-128.0
8.0	0.472	114.8	1.652	15.2	0.231	28.4	0.089	138.9

Найти точку (см. рисунок 3), соответствующую s_{22} на частоте 2.0 $\Gamma\Gamma$ ц.

Рисунок 3 – Кривые s_{11} и s_{22}

Варианты ОТВЕТА:

1) A 2) B 3) C 4) D

Даны значения s-параметров:

Freq	s_{11}		s_{21}		s_{12}		s_{22}	
GHz	MAG	ANG	MAG	ANG	MAG	ANG	MAG	ANG
6.3	0.515	149.1	4.354	37.7	0.090	43.5	0.190	-134.6
6.4	0.517	147.8	4.283	36.6	0.091	43.0	0.188	-136.5
6.5	0.519	146.6	4.214	35.5	0.092	42.5	0.186	-138.4
6.6	0.521	145.5	4.145	34.5	0.093	42.1	0.181	-139.9
6.8	0.526	143.2	4.011	32.5	0.096	41.3	0.173	-143.0
7.0	0.531	141.0	3.882	30.4	0.098	40.6	0.166	-146.5
7.2	0.536	139.1	3.761	28.6	0.101	39.9	0.155	-150.0
7.4	0.542	137.1	3.645	26.7	0.103	39.2	0.145	-153.9
7.6	0.550	135.4	3.539	24.8	0.106	38.3	0.137	-159.7
7.8	0.561	133.8	3.443	22.8	0.110	37.2	0.132	-167.3
8.0	0.573	132.2	3.352	20.7	0.113	36.2	0.129	-175.3

и частоты $f_{\mbox{\tiny H}}=7.0$ $\Gamma\Gamma\mbox{ц},\,f_{\mbox{\tiny B}}=7.4$ $\Gamma\Gamma\mbox{ц}.$

Найти модуль $s_{21}\,$ в дБ на частоте $f_{\scriptscriptstyle \mathrm{H}}\,$.

Варианты ОТВЕТА:

- 1) -5.5 дБ
- 2) -15.6 дБ
- 3) 11.8 дБ
- 4) -20.2 дБ

Найти точку (см. рисунок 4), соответствующую коэффициенту отражения от нормированного импеданса $z=2.33+1.57\mathrm{i}$.

Рисунок 4 — Точки s_i на s-плоскости

В качестве ОТВЕТА указать индекс выбранной точки.

Даны значения s-параметров:

Freq	s_{11}		s_{21}		s_{12}		s_{22}	
GHz	MAG	ANG	MAG	ANG	MAG	ANG	MAG	ANG
1.6	0.557	145.3	3.754	59.4	0.074	54.7	0.253	-50.7
1.7	0.567	142.5	3.523	56.9	0.079	54.1	0.250	-52.6
1.8	0.572	139.6	3.324	54.4	0.083	53.4	0.246	-54.4
1.9	0.575	136.6	3.146	52.1	0.087	52.6	0.244	-56.1
2.0	0.582	133.5	2.973	49.7	0.090	51.7	0.243	-58.1
2.1	0.588	131.0	2.836	47.5	0.094	50.9	0.239	-60.3
2.2	0.596	128.6	2.704	45.0	0.098	50.2	0.237	-62.5
2.3	0.601	125.8	2.587	42.9	0.102	49.3	0.234	-64.8
2.4	0.608	123.1	2.474	40.6	0.105	48.4	0.232	-67.2
2.5	0.617	120.7	2.370	38.5	0.109	47.5	0.229	-69.6
2.6	0.628	118.4	2.269	36.2	0.112	46.6	0.226	-72.1

и частоты $f_{\mbox{\tiny H}}=1.8$ $\Gamma\Gamma\mbox{\scriptsize II},$ $f_{\mbox{\tiny B}}=2.5$ $\Gamma\Gamma\mbox{\scriptsize II}.$

Найти неравномерность усиления в полосе $f_{\scriptscriptstyle \rm H}...f_{\scriptscriptstyle \rm B}$, используя рисунок 5.

Рисунок 5 – Частотная характеристика усиления

Варианты ОТВЕТА:

1) 1.1 дБ 2) 4.4 дБ 3) 1.5 дБ 4) 2.9 дБ

Даны значения ѕ-параметров:

Freq	s_{11}		s_{21}		s_{12}		s_{22}	
GHz	MAG	ANG	MAG	ANG	MAG	ANG	MAG	ANG
1.0	0.512	-108.7	25.561	111.9	0.025	52.0	0.545	-53.3
1.8	0.476	-144.1	15.511	90.9	0.033	50.8	0.362	-69.6
2.6	0.471	-164.0	10.854	77.7	0.041	51.7	0.288	-83.6
3.4	0.478	-177.4	8.281	68.1	0.050	52.1	0.261	-95.0
4.2	0.487	172.2	6.706	59.3	0.060	51.3	0.244	-102.7
5.0	0.503	163.5	5.568	50.6	0.070	49.4	0.224	-112.1
5.8	0.500	155.8	4.794	43.2	0.081	46.9	0.209	-118.5
6.6	0.515	146.1	4.212	34.9	0.091	43.0	0.186	-130.8
8.2	0.576	131.1	3.305	19.1	0.113	35.9	0.124	-172.4

и частоты $f_{\scriptscriptstyle \rm H}=1.8$ $\Gamma\Gamma\mathrm{t},\,f_{\scriptscriptstyle \rm B}=8.2$ $\Gamma\Gamma\mathrm{t}.$

Найти обратные потери по входу $\,$ на $f_{\scriptscriptstyle \rm H}$.

Варианты ОТВЕТА:

1) 3.2 дБ 2) 2.4 дБ 3) 6.4 дБ 4) 4.8 дБ