

Digital Image Processing Functions - MATLAB

MECH-M-1-SEA-DBV-ILV

(Version September 2023)

© Kurt Niel University of Applied Sciences Upper Austria Faculty of Engineering and Environmental Sciences September 1st, 2023

Digital Image Processing

Literature

- (1) Gonzalez R.C., Woods R., Eddings S.L., Digital Image Processing using MATLAB, Pearson Prentice Hall, 2004, ISBN 978-0-13008-519-7
- (2) Demirkaya O., Asyali M.H., Sahoo P.K., Image Processing with MATLAB, Applications in Medicine and Biology, CRC Press, 2009, ISBN 978-0-8493-9246-7
- (3) MathWorks Documentation, Image Processing Toolbox https://de.mathworks.com/help/images
- (4) Kovesi P., MATLAB and Octave Functions for Computer Vision and Image Processing, The University of Western Australia, http://www.peterkovesi.com/matlabfns

Functions in MATLAB (R2017a / R2021a)

- Preparation
 - load, display, histogram
 - color/gray, resolution
- Metrology
 - edge detection
- Segmentation
 - convolution, denoising, binarization, BLOB analysis, morphology, e.g., watershed
- Identification
 - Hough transformation, projective geometry, image pyramid, Fourier transformation

Metrology – Edge Detection

I = edge(I, method); % 'canny', 'sobel', etc.

Highlighting edge features

Metrology – Corner

```
C = corner(I);
```

Finds and locates corners; result is list of corners

Segmentation – Convolution

```
h = fspecial( type ); % 'average', 'gaussian', 'prewitt', etc
I = imfilter( I, h);
```

Modify image properties for highlighting different features: blurring, edges, etc.

Segmentation – Denoising

```
D = medfilt2(I);
```

Removes local extremes, e.g. 'salt & pepper noise'

Segmentation – Binarization

BW = imbinarize(I, method); % 'global', 'adaptive'

Simple segmentation method

Segmentation – BLOB Analysis

```
Y = bwprofilt( I, type ); % 'Area', 'Perimeter', etc.
```

Analyze and filter BLOBs (binary large objects) by features

Segmentation – Morphology

Y = imerode(I, se);

% disk, rectangle, etc.

Removes small objects, separates objects

Segmentation – e.g., Watershed

```
CC = bwconncomp( I );
L = labelmatrix( CC );
RGB = label2rgb( L, map, zerocolor, order );
```

Label connected regions

Identification – Hough Transformation

[H, theta, radius] = hough(I);

- lines in polar coordinates → intersection at similar lines within the image
 - cartesian polar
- X, Y r, θ

$$x = r \cos\theta / y = r \sin\theta \qquad y = kx + d$$

$$r = \sqrt{x^2 + y^2} / \theta = a \tan \frac{y}{x} \qquad r = -\frac{p}{\cos(\theta - \theta_0)}$$

$$y = kx + d$$

$$r = -\frac{p}{\cos(\theta - \theta_0)}$$

Identification – Projective Geometry

$$I = ImTrans(I, H_{3x3});$$

• Euclidean, Affine, Projective transformation of images - rectification

Identification – Image Pyramid

Generating multiscale images for speeding up segmentation/identification

Identification – Fourier Transformation

$$F = fft2(I);$$

Analyze frequency domain

