Turing Machines

Introduction

Turing machines:

- The simplest model of general-purpose computation
- Mathematically define what we can compute, Prove we cannot compute

Outline

- The Turing Machine
 - Operation
 - Examples
 - Languages
- Variants of Turing Machines
 - Multi-Tape Turing Machines
 - Nondeterministic Turing Machines
 - RAM Machine
 - Two-Stack Pushdown Automata
 - Chomsky Hierarchy

Turing Machine

Finite automata	Turing machine
Read-only input tape	Read-Write (memory) tape
Left-to-right scan of input	Read head can move left and right
Accept/Reject at end of string	Special states to immediately accept/reject

Turing Machine: A Turing machine is a 7-tuple $T = (Q, \Sigma, \Gamma, \delta, q_0, q_{acc}, q_{rej})$, where

- Q is the finite set of states
- Σ is the input alphabet not containing the **blank symbol** $\sqcup \notin \Sigma$
- Γ is the tape alphabet, where $\sqcup \in \Gamma$ and $\Sigma \subset \Gamma$
- δ : Q × Γ \mapsto Q × Γ × {L,R} is the transition function
- $q_0 \in Q$ is the start state
- $q_{acc} \in Q$ is the accept state
- $q_{rej} \in Q$ is the reject state, where $q_{rej} \neq q_{acc}$

Turing Machine Execution

LINK¹: EXAMPLE OF TURING MACHINE CONSTRUCTION

LINK²: EXAMPLE OF TURING MACHINE CONSTRUCTION

Note: Deterministic means every state has an edge for every single symbol in Σ

Turing Machine Configurations

The configuration of a Turing machine si given be $\alpha q \beta$, where

- $q \in Q$ is the current control state
- $\alpha \in \Gamma^*$ is the tape contents up to the location before current head position
- $\beta \in \Gamma^*$ is the tape contents from the current head position to the last non-blank character (the head is on the first element of β)

Under the assumption that Q and Γ are disjoint: $Q \cap \Gamma = \emptyset$

Special Configurations

Start Configuration

$$C^{[0]} = q_0 \sigma,$$

where $q_0 \in Q$ is the start state and $\sigma \in \Sigma^*$ is the input string

Accepting Configuration

$$C_{acc} = \{ \alpha q_{acc} \beta \mid \alpha \in \Gamma^* \land \beta \in \Gamma^* \},$$

where $q_{acc} \in Q$ is the accept state

Rejecting Configuration

$$C_{rej} = \{ \alpha q_{rej} \beta \mid \alpha \in \Gamma^* \land \beta \in \Gamma^* \},$$

where $q_{rei} \in Q$ is the reject state

Execution

TM Execution: given string ω , TM T tracks configurations $C_{[0]}, C_{[1]}, \ldots, C_{[n]}$, where

- 1. $C^{[0]}$ is the start configuration
- 2. Each transition goes from $C_{[i]}$ to $C^{[i+1]}$
- 3. $C^{[n]} \in C_{acc} \cup C_{rej}$ is an accepting or rejecting configuration

TM Behaviours:

- 1. Enter accept state
- 2. Enter a reject state
- 3. Loop forever

Turing Machine Languages

The language recognized by Turing machine T is the set of strings which T will enter an accepting configuration.

The language **rejected** by Turing machine T is the set of strings on which T will enter a rejecting configuration.

Recognizer and Decider

Recognizer: Turing machine T is a recognizer for language L if it enters an accept state for every string in L and does not enter an accept state for every string not in L

$$L_{\rm acc}(T) = L$$

Decider: Turing machine T is a decider for language L if it always enter an accept or reject state, i.e., never loops forever. T decides its language. i

T decides L if
$$L_{\rm acc}(T) = L$$
 and $L_{\rm rej} = \bar{L}$

For each $\alpha \in L$ and $\beta \notin L$:

Recognizer for L	Decider for L
Accepts α Does not accept β Can loop forever	Accepts α Rejects β Always halts

Turing-Recognizable and Turing-Decidable Languages

Language L is **Turing-recognizable** if there exists some Turing machine T that recognizes L.

That is,
$$\exists T, L_{acc}(T) = L$$

Language L is Turing-recognizable if there exists some Turing machine T that recognizes L.

That is,
$$\exists T$$
, $((L_{acc}(T) =) \land (L_{rej}(T) = \bar{L}))$

Variants of Turing Machines

Multi-Tape Turing Machines

- ► To simulate a multi-tape move:
 - 1. Scan single-tape to determine symbols under each virtual head (finite permutations)
 - 2. Re-scan single-tape to update symbols and virtual head positions
- ▶ If a virtual head moves onto tape separator (#)
 - 1. Write a blank symbol (\sqcup) over the #.
 - 2. Shift tape contents right by one space.
 - 3. Resume simulation.

Nondeterministic Turing Machines

$$\delta: Q \times \Gamma \mapsto \underbrace{\mathcal{P}(Q \times \Gamma \times \{L, R\})}_{\text{set of successor configurations}}$$

Deterministic Simulation: Iterative Deepening Search

Deterministic Simulation Steps:

- 1. Initially, input tape contains input string σ (Simulation and Address tapes are empty)
- 2. Copy Input tape to Simulation tape
- 3. Use simulation tape to follow one branch of the nondeterminism
 - 3.1. Before each step, consult the address tape to determine which nondeterminism branch to follow
 - 3.2. If choice is invalid, no more address symbol remain (at current depth limit), or we reach a rejecting configuration, go to step 4
- 4. Increment the address (lexicographically next string). Go to step 2 to simulate the next branch or depth level.

RAM Machine

Two-Stack Pushdown Automata

Theorem: Two stack pushdown automata are Turing complete

Proof outline:

1. Can construct Turing machine to simulate any two-stack PDA

8

2. Can construct two-stack PDA to simulate any Turing machine

Chomsky Hierarchy

$$\mathcal{R} \subset \mathcal{C} \subset \mathcal{T}_D \subset \mathcal{T}_R \subset \mathcal{L}_{all}$$
 All languages \mathcal{L}_{all}
$$\mathsf{Turing\text{-}recognizable} \ \mathcal{T}_R$$

$$\mathsf{Turing\text{-}decidable} \ \mathcal{T}_D$$

$$\mathsf{Context\text{-}Free} \ \mathcal{C}$$

$$\mathsf{Regular} \ \mathcal{R}$$

Links

- $1. \ https://www.youtube.com/watch?v=D9eF_B8URnw$
- 2. https://www.youtube.com/watch?v=cR4Re0YfoOo