

Outline

- Show how to test for indirect effects in latent variable models
- Discuss the interpretation of indirect effects
- Discuss effect size measures for indirect effects

Boring Model

So far, all of our models have been similar to:

But there is no reason that we need to restrict ourselves to mucking about with observed variables.

Better Model

We can (and should) test for indirect effects using *latent* variable models such as:

Measurement error can be a big problem for mediation analysis, so latent variable modeling is highly recommended.


```
chisq df pvalue cfi tli rmsea srmr
16.8695 8.0000 0.0315 0.9215 0.8529 0.1129 0.0653
```

```
summary(out1.1)
```


lavaan (0.5-	20) converged	normally	after 22	iterations
Number of	observations			87
Estimator				ML
Minimum Fu	nction Test St	atistic		16.869
Degrees of	freedom			8
P-value (C	hi-square)			0.031
Parameter Es	timates:			
Informatio	n			Expected
Standard E	rrors			Standard
Latent Varia	hlag.			
Latent varia		. 0.1	7	D(>1-1)
	Estimat	e Sta.Ei	r Z-value	P(> Z)
merit = \sim	0.00			0.000
meritP1	0.69		34 5.155	
meritP2			6.830	
meritP3	0.74	8 0.13	37 5.458	0.000
policy = \sim				
policyP1	0.85	1 0.18	36 4.570	0.000

policyP2	0.996	0.167	5.967	0.000	
policyP3	1.121	0.177	6.339	0.000	
Covariances:					
	Estimate	Std.Err	Z-value	P(> z)	
merit \sim					
policy	-0.336	0.131	-2.563	0.010	
Variances:					
	Estimate	Std.Err	Z-value	P(> z)	
meritP1	0.865	0.165	5.248	0.000	
meritP2	0.445	0.201	2.211	0.027	
meritP3	0.833	0.172	4.857	0.000	
policyP1	1.836	0.324	5.671	0.000	
policyP2	0.942	0.256	3.683	0.000	
policyP3	0.857	0.297	2.882	0.004	
merit	1.000				
policy	1.000				
policy					


```
## Specify the structural model:
mod1.2 ← "
merit =\sim meritP1 + meritP2 + meritP3
policy =~ policyP1 + policyP2 + policyP3
policy \sim b*merit + polAffil
merit \sim a*polAffil
ab := a*b
## Fit the structural model and test the indirect effect:
out1.2 \( \text{sem(mod1.2, data = dat1, std.lv = TRUE,} \)
               se = "boot", boot = 2500)
summary(out1.2)
```

 $\begin{array}{ll} \mathtt{merit} \ = \sim \\ & \mathtt{meritP1} \end{array}$

meritP2

meritP3

lavaan (0.5-20) converged normally after	24 iterations
Number of observations	87
Estimator	ML
Minimum Function Test Statistic	20.665
Degrees of freedom	12
P-value (Chi-square)	0.056
Parameter Estimates:	
Information	Observed
Standard Errors	Bootstrap
Number of requested bootstrap draws	2500
Number of successful bootstrap draws	2475
Latent Variables:	
Estimate Std.Err Z-v	alue P(> z)

0.545

0.609

0.858

0.125

0.150

0.116

4.374

5.251

5.737

0.000

0.000

0.000

policy = \sim policyP1		0.799	0.193	4.141	0.000	
policyP2		0.924	2.899	0.319	0.750	
policyP3		1.001	2.037	0.491	0.623	
•						
Regressions:						
		Estimate	Std.Err	Z-value	P(> z)	
policy \sim						
merit	(b)	-0.195	0.202	-0.962	0.336	
polAffil		0.169	0.139	1.217	0.224	
merit \sim						
polAffil	(a)	-0.411	0.100	-4.097	0.000	
Variances:						
		Estimate	Std.Err	Z-value	P(> z)	
meritP1		0.922	0.181	5.109	0.000	
meritP2		0.341				
meritP3		0.869			0.000	
policyP1		1.801	0.337	5.352	0.000	
policyP2		0.918	173.253	0.005	0.996	
policyP3		0.922	140.529	0.007	0.995	
merit		1.000				
policy		1.000				

Defined Parameters:

Estimate Std.Err Z-value P(>|z|)
ab 0.080 0.090 0.890 0.373

parameterEstimates(out1.2, boot = "bca.simple")[-c(1 : 3)]

	label	est	se	Z	pvalue	ci.lower	ci.upper	
1		0.545	0.125	4.374	0.000	0.337	0.831	
2		0.858	0.150	5.737	0.000	0.630	1.119	
3		0.609	0.116	5.251	0.000	0.383	0.833	
4		0.799	0.193	4.141	0.000	0.422	1.146	
5		0.924	2.899	0.319	0.750	0.662	1.424	
6		1.001	2.037	0.491	0.623	0.575	1.783	
7	b	-0.195	0.202	-0.962	0.336	-0.610	0.173	
8		0.169	0.139	1.217	0.224	-0.089	0.455	
9	a	-0.411	0.100	-4.097	0.000	-0.642	-0.235	
10		0.922	0.181	5.109	0.000	0.600	1.304	
11		0.341	0.460	0.740	0.459	-0.100	0.679	
12		0.869	0.185	4.700	0.000	0.562	1.308	
13		1.801	0.337	5.352	0.000	1.226	2.583	
14		0.918	173.253	0.005	0.996	0.342	1.507	

15	0.922	140.529	0.007	0.995	-0.038	1.614	
16	1.000	0.000	NA	NA	1.000	1.000	
17	1.000	0.000	NA	NA	1.000	1.000	
18	2.444	0.000	NA	NA	2.444	2.444	
19 a	ъ 0.080	0.090	0.890	0.373	-0.063	0.275	

Interpretation of Indirect Effects

Although indirect effects are composed parameters, they have direct interpretations, independent of the interpretations of their constituent paths:

- The $X \to M \to Y$ indirect effect ab is interpreted as:
 - The expected change in Y for a unit change in X that is transmitted indirectly through M, or...
 - For a unit change in X, Y is expected to change by ab units, indirectly through M, or...
 - Participants who differ by one unit on X are expect to differ by ab units on Y as a results of the effect of X on M which, in turn, affects Y.
- The interpretation/scaling of the indirect effect is entirely defined by the input X and outcome Y
 - The scaling of the intermediary variable M does not affect the interpretation of the indirect effect.

$$ab_{ps} = \frac{ab}{SD_Y}$$

$$c'_{ps} = \frac{c'}{SD_Y}$$

$$c_{ps} = \frac{c}{SD_Y} = ab_{ps} + c'_{ps}$$

- Simple
- Removes binding to the scale of Y
- Still scale-bound by X
- Not clear what constitutes a "large" effect

Completely Standardized Indirect Effect

$$ab_{cs} = \frac{SD_X ab}{SD_Y}$$

$$c'_{cs} = \frac{SD_X c'}{SD_Y}$$

$$c_{cs} = \frac{SD_X c}{SD_Y} = ab_{cs} + c'_{cs}$$

- Simple
- Removes all scale binding
- Not clear what constitutes a "large" effect

Ratio of the Indirect Effect to the Total Effect

$$P_M = \frac{ab}{c} = \frac{ab}{c' + ab}$$

- Very simple
- Not bounded by 0 and 1
- Explodes toward $\pm \infty$ as $c \to 0$
- Very unstable
 - High between-sample variability
 - Requires $N \ge 500$

Ratio of the Indirect Effect to the Direct Effect.

$$R_M = \frac{ab}{c'} = \frac{P_M}{1 - P_M}$$

- Very simple
- Not bounded by 0 and 1
- Explodes toward $\pm \infty$ as $c' \to 0$
- Very unstable
 - High between-sample variability
 - Requires $N \ge 2000$

Proportion of Variance in Y Explained by the

Developed by Fairchild, MacKinnon, Taborga, and Taylor (2009).

• Given a non-zero total effect, represents the proportion of variance in Y accounted for by the indirect effect.

$$R_{med}^2 = r_{MY}^2 - \left(R_{Y.MX}^2 - r_{XY}^2 \right)$$

- Mostly sensible interpretation
- Predicated on the assumption that $\beta_{YX} \neq 0$
- $|ab| > |c| \Rightarrow R_{med}^2 < 0$
 - Not a strict proportion

Kappa Squared

Developed by Preacher and Kelley (2011).

• Gives the proportion of the $maximum\ possible$ indirect effect represented by ab.

$$\kappa^2 = \frac{ab}{\max(ab)}$$

- Bounded by 0 and 1
- Values closer to 1.0 indicate a bigger effect
- A bit of a pain to calculate.

Computing $\max(ab)$

$$a \in \left\{ \frac{\sigma_{\mathit{YM}}\sigma_{\mathit{YX}} \pm \sqrt{\sigma_{\mathit{M}}^2\sigma_{\mathit{Y}}^2 - \sigma_{\mathit{YM}}^2} \sqrt{\sigma_{\mathit{X}}^2\sigma_{\mathit{Y}}^2 - \sigma_{\mathit{YX}}^2}}{\sigma_{\mathit{X}}^2\sigma_{\mathit{Y}}^2} \right\} = [a_{low}, a_{high}],$$

$$b \in \left\{ \pm \frac{\sqrt{\sigma_X^2 \sigma_Y^2 - \sigma_{YX}^2}}{\sqrt{\sigma_X^2 \sigma_M^2 - \sigma_{MX}^2}} \right\} = [b_{low}, b_{high}],$$

$$\max(a) = \begin{cases} a_{high}, & \text{if} & \hat{a} > 0 \\ a_{low}, & \text{if} & \hat{a} < 0 \end{cases}, \quad \max(b) = \begin{cases} b_{high}, & \text{if} & \hat{b} > 0 \\ b_{low}, & \text{if} & \hat{b} < 0 \end{cases},$$

$$\max(ab) = \max(a)\max(b)$$


```
## Specify the model:
mod2 
mod2 
policy ~ b*sysRac + cp*polAffil
sysRac ~ a*polAffil

ab := a*b

## Estimate the model:
out2 
sem(mod2, data = dat1)
##
## Extract/compute the necessary quantities:
ab 
prod(coef(out2)[c("a", "b")])
ab
```

[1] 0.1015958


```
cPrime 		 coef(out2)["cp"]

##

sdY 		 sd(dat1$policy)

sdX 		 sd(dat1$polAffil)

##

r2MY 		 with(dat1, cor(policy, sysRac))^2

r2XY 		 with(dat1, cor(policy, polAffil))^2

R2Y.MX 		 inspect(out2, "r2")["policy"]
```



```
## Partially Standardized: abPS \leftarrow ab / sdY abPS
```

```
[1] 0.08559454
```

```
cPrimePS ← cPrime / sdY
cPrimePS
```

```
cp
0.1138675
```

```
\begin{array}{lll} \texttt{cPS} & \leftarrow & \texttt{abPS} + \texttt{cPrimePS} \\ \texttt{cPS} & & \end{array}
```

```
cp
0.199462
```



```
## Completely Standardized:
abCS ← (sdX * ab) / sdY
abCS
```

[1] 0.1345859

```
cPrimeCS ← (sdX * cPrime) / sdY
cPrimeCS
```

```
cp
0.1790413
```

```
cCS ← abCS + cPrimeCS
cCS
```

```
cp
0.3136272
```



```
## Proportions:
pm ← ab / (cPrime + ab)
pm
```

```
cp
0.429127
```

```
\begin{array}{ll} \texttt{rm} \; \leftarrow \; \texttt{ab} \; / \; \texttt{cPrime} \\ \texttt{rm} \end{array}
```

```
cp
0.7517031
```

```
## R2:
R2med \leftarrow r2MY - (R2Y.MX - r2XY)
R2med
```

```
policy
0.06905689
```

Compute κ^2


```
## Subset the data:
tmpData ← dat1[, c("polAffil", "sysRac", "policy")]
colnames(tmpData) ← c("x", "m", "y")

##
## Extract pertinent variance/covariance elements:
cov1 ← cov(tmpData)
sYM ← cov1["x", "m"]
sYX ← cov1["y", "x"]
sMX ← cov1["m", "x"]
s2X ← cov1["x", "x"]
s2X ← cov1["x", "x"]
s2Y ← cov1["m", "m"]
```

Compute κ^2


```
## Possible range of a:

aMarg \( - \) sqrt(s2M * s2Y - sYM^2) * sqrt(s2X * s2Y - sYX^2)

aInt \( - \) c(

    (sYM * sYX - aMarg) / (s2X * s2Y),

    (sYM * sYX + aMarg) / (s2X * s2Y)

)

aInt
```

[1] -0.4378558 0.5793099

```
## ## Possible range of b: bMarg \leftarrow sqrt(s2X * s2Y - sYX^2) / sqrt(s2X * s2M - sMX^2) bInt \leftarrow c(-1 * bMarg, bMarg) bInt
```

```
[1] -1.289996 1.289996
```

Compute κ^2


```
a
0.5793099
```

```
b
1.289996
```

$\overline{\text{Compute}} \ \kappa^2$


```
##
## max(ab)
abMax ← aMax * bMax
abMax
```

```
a
0.7473075
```

```
##
## Kappa Squared:
k2 ← ab / abMax
k2
```

```
a
0.1359491
```

Practice

Suppose:

1. Σ is given by:

	x	m	у
X	1.5		
m	0.3	1.4	
У	0.6	0.45	1.55

- 2. The estimated paths are:
 - a = 0.2
 - b = 0.246
 - ab = 0.049

Compute κ^2 for the estimated ab.

References

- Fairchild, A. J., MacKinnon, D. P., Taborga, M. P., & Taylor, A. B. (2009). R-squared effect-size measures for mediation analysis. Behavior Research Methods, 41(2), 486–498.
- Preacher, K. J., & Kelley, K. (2011). Effect size measures for mediation models: Quantitative strategies for communicating indirect effects. *Psychological Methods*, 16(2), 93.