Matgeo Presentation - Problem 12.797

ee25btech11056 - Suraj.N

October 9, 2025

Problem Statement

Let **A** be an $n \times n$ real matrix. Consider the following statements:

- (I) If **A** is symmetric, then there exists $c \ge 0$ such that $\mathbf{A} + c\mathbf{I}_n$ is symmetric and positive definite, where \mathbf{I}_n is the $n \times n$ identity matrix.
- (II) If **A** is symmetric and positive definite, then there exists a symmetric and positive definite **B** such that $\mathbf{A} = \mathbf{B}^2$.

Which of the above statements is/are true?

- (a) Only (I)
- (b) Only (II)
- (c) Both (I) and (II)
- (d) Neither (I) nor (II)

Data

Name	Description
Α	Matrix

Table : Matrix

Solution

Checking statement (I)

If **A** is symmetric, its eigenvalues are real. Let the minimum eigenvalue of **A** be λ_{\min} . Then choose $c > -\lambda_{\min}$.

The Eigen values of A are given as:

$$\left|\mathbf{A} - \lambda_i \mathbf{I}\right| = 0 \tag{0.1}$$

The Eigen values of $\mathbf{A} + c\mathbf{I}_n$ are given as :

$$\left|\mathbf{A} - (\lambda_k - c)\mathbf{I}\right| = 0 \tag{0.2}$$

$$\lambda_k = \lambda_i + c \tag{0.3}$$

$$\lambda_i + c > 0 \tag{0.4}$$

Since $\lambda_i + c > 0$ for all i, $\mathbf{A} + c\mathbf{I}_n$ is positive definite and symmetric. Hence, statement (I) is **true**.

Solution

Checking statement (II)

If ${f A}$ is symmetric and positive definite, then it can be diagonalized as:

$$\mathbf{A} = \mathbf{P} \mathbf{D} \mathbf{P}^{\top} \tag{0.5}$$

where ${\bf P}$ is orthogonal and ${\bf D}$ is a diagonal matrix with positive entries (since ${\bf A}$ is positive definite). Define

$$\mathbf{B} = \mathbf{P} \mathbf{D}^{1/2} \mathbf{P}^{\top} \tag{0.6}$$

Then,

$$\mathbf{B}^2 = \mathbf{P}\mathbf{D}^{1/2}\mathbf{P}^{\mathsf{T}}\mathbf{P}\mathbf{D}^{1/2}\mathbf{P}^{\mathsf{T}} = \mathbf{P}\mathbf{D}\mathbf{P}^{\mathsf{T}} = \mathbf{A}$$
 (0.7)

Hence, ${\bf B}$ is symmetric and positive definite. Therefore, statement (II) is also ${\bf true}.$

Final Answer: (c) Both (I) and (II)