Professor: Anderson José de Oliveira

Período: 2025/1 Data: 22/05/2025

6

ATENÇÃO: Respostas sem justificativa serão desconsideradas; todas as folhas entregues devem ser devolvidas; não será permitido o uso de celular, calculadora ou qualquer aparelho eletrônico.

PROVA 2 - MATEMÁTICA DISCRETA

Questão 1.

- \bigcirc (a) (1,0) Sabe-se que o produto cartesiano entre dois conjuntos A e B é definido como $A \times B = \{(a,b) | a \in A \}$ $\land b \in B$ }. Mostre que, para quaisquer conjuntos $A, B \in C$, tem-se $A \times (B \cup C) = (A \times B) \cup (A \times C)$.
- (b) (1,0) Seja o conjunto $A = \{a,b,c\}$ e a relação sobre $A, R = \{(a,a),(a,b),(b,b),(b,c),(c,b),(c,c)\}$. Obtenha o domínio, a imagem, a relação inversa e as representações cartesiana e sagital dessa relação.
- (c) (1,0) Prove que sendo R uma relação em um conjunto A, R é transitiva se, e somente se, R-1 é transitiva. ordon QAT

Questão 2.

- \circ (a) (1,25) Seja R a relação em $\mathbb{N} \times \mathbb{N}$ que é definida por: (a,b) está relacionado a (c,d) que escrevemos da seguinte forma: $(a,b)\simeq (c,d)$ se, e somente se, a+d=b+c. Prove que R é uma relação de equivalência.
- (b) (1,25) Seja o conjunto Z^{*} e a relação | (divide). Ela é uma relação de ordem? É uma ordem total? Explique.

Questão 3.

(a) (1,5) Prove, usando indução, que $11^{n+2} + 12^{2n+1}$ é divisível por 133, para todo $n \in \mathbb{N}^*$.

(b) (1,5) Prove por indução que: $\frac{1}{1\cdot 3} + \frac{1}{3\cdot 5} + \cdots + \frac{1}{(2n-1)(2n+1)} = \frac{n}{2n+1}, \quad \forall n \geq 1.$

(c) (1,5) Seja a sequência $a_1, a_2, a_3, ...$ definida como: $a_1 = 1, \quad a_2 = 3, \quad a_k = a_{k-2} + 2a_{k-1}, \quad \forall k \geq 3.$ Prove por indução que a_n é impar, $\forall n \geq 1$.

Boa Avaliação! "Ninguém gosta de pedir muito da vida porque tem medo da derrota. Mas quem deseja realizar um sonho, tem que olhar o mundo como se fosse um tesouro imenso, que está ali a espera que seja descoberto e conquistado." (Paulo Coelho)

A33