```
In [42]: import pandas as pd
import statsmodels.api as sm
import warnings
warnings.filterwarnings('ignore')
```

1.) Import Data from FRED

```
In [2]: data = pd.read_csv("TaylorRuleData.csv", index_col = 0)
In [3]: data.index = pd.to_datetime(data.index)
In [28]: data = data.dropna()
data
```

Out[28]:

	FedFunds	Unemployment	HousingStarts	Inflation
1959-01-01	2.48	6.0	1657.0	29.010
1959-02-01	2.43	5.9	1667.0	29.000
1959-03-01	2.80	5.6	1620.0	28.970
1959-04-01	2.96	5.2	1590.0	28.980
1959-05-01	2.90	5.1	1498.0	29.040
2023-07-01	5.12	3.5	1451.0	304.348
2023-08-01	5.33	3.8	1305.0	306.269
2023-09-01	5.33	3.8	1356.0	307.481
2023-10-01	5.33	3.8	1359.0	307.619
2023-11-01	5.33	3.7	1560.0	307.917

779 rows × 4 columns

2.) Do Not Randomize, split your data into Train, Test Holdout

```
In [21]: split_1 = int(len(data)*.6)
    split_2 = int(len(data)*.9)
    data_in = data[:split_1]
    data_out = data[split_1:split_2]
    data_hold = data[split_2:]
```

```
In [22]: X_in = data_in.iloc[:,1:]
    y_in = data_in.iloc[:,:1]
    X_out = data_out.iloc[:,1:]
    y_out = data_out.iloc[:,:1]
    X_hold = data_hold.iloc[:,1:]
    y_hold = data_hold.iloc[:,:1]
```

```
In [23]: # Add Constants
X_in = sm. add_constant(X_in)
X_out = sm. add_constant(X_out)
X_hold = sm. add_constant(X_hold)
```

3.) Build a model that regresses FF~Unemp, HousingStarts, Inflation

```
In [24]: model1 = sm.OLS(y_in, X_in).fit()
```

In [26]: print(model1.summary())

0IS	Regre	ssion	Resu	lts

=======================================			
Dep. Variable:	FedFunds	R-squared:	0.088
Model:	OLS	Adj. R-squared:	0.082
Method:	Least Squares	F-statistic:	14.83
Date:	Wed, 10 Jan 2024	Prob (F-statistic):	3.09e-09
Time:	16:18:21	Log-Likelihood:	-1202.0
No. Observations:	467	AIC:	2412.
Df Residuals:	463	BIC:	2429.
Df Model:	3		

Df Model: 3 Covariance Type: nonrobust

=======================================	coef	std err	t	P> t	[0. 025	0. 975]
const	3. 4750	0.985	3. 529	0.000	1.540	5. 410
Unemployment	0.5307	0.106	5.009	0.000	0.323	0.739
HousingStarts	-0.0005	0.000	-1.046	0.296	-0.001	0.000
Inflation	0.0077	0.004	2. 173	0.030	0.001	0.015
Omnibus:		77 750	 Durbin_Ws	======================================		0.043

Omnibus:	77.750	Durbin-Watson:	0.043
Prob(Omnibus):	0.000	Jarque-Bera (JB):	122.849
Skew:	1.039	Prob(JB):	2.11e-27
Kurtosis:	4.413	Cond. No.	1.03e+04

Notes:

- [1] Standard Errors assume that the covariance matrix of the errors is correctly specified.
- [2] The condition number is large, 1.03e+04. This might indicate that there are strong multicollinearity or other numerical problems.

```
In [ ]:
```

4.) Recreate the graph fro your model

```
[30]:
           import matplotlib.pyplot as plt
    [37]: plt. figure (figsize = (12, 5))
In
           ###
           plt.plot(y_in)
           plt.plot(y_out)
           plt.plot(model1.predict(X_in))
           plt.plot(model1.predict(X_out))
           plt.ylabel("Fed Funds")
           plt. xlabel ("Time")
           plt.title("Visualizing Model Accuracy")
           plt.legend([])
           plt.grid()
           plt.show()
                                               Visualizing Model Accuracy
              20.0
```


"All Models are wrong but some are useful" - 1976 George Box

5.) What are the in/out of sample MSEs

```
In [40]: from sklearn.metrics import mean_squared_error
In [43]: in_mse_1 = mean_squared_error(y_in, model1.predict(X_in))
out_mse_1 = mean_squared_error(y_out, model1.predict(X_out))
```

```
In [44]: print("Insample MSE : ", in_mse_1)
print("Outsample MSE : ", out_mse_1)
```

Insample MSE: 10.071422013168643 Outsample MSE: 40.36082783566727

6.) Using a for loop. Repeat 3,4,5 for polynomial degrees 1,2,3

```
In [47]: from sklearn.preprocessing import PolynomialFeatures
In [ ]: poly = PolynomialFeatures(degree = degrees)
    X_in_poly = poly.fit_transform(X_in)
    X_out_poly = poly.transform(X_out)
```

```
for degrees in range (1, 4):
In [59]:
               poly = PolynomialFeatures(degree = degrees)
               X_in_poly = poly.fit_transform(X_in)
               X_out_poly = poly.transform(X_out)
               model = sm. OLS(y in, X in poly).fit()
               plt.figure(figsize = (12,5))
               in_preds = model.predict(X_in_poly)
               in_preds=pd. DataFrame(in_preds, index = y_in. index)
               out preds = model.predict(X out poly)
               out_preds=pd. DataFrame (out_preds, index = y_out. index)
               plt.plot(y in)
               plt.plot(y_out)
               plt.plot(in_preds)
               plt.plot(out_preds)
               plt.ylabel("Fed Funds")
               plt. xlabel ("Time")
               plt.title("Visualizing Model Accuracy")
               plt.legend(["In sample actual", "Out of sample actual", "In sample prediction", "O
               plt.grid()
               plt. show()
               in_mse_1 = mean_squared_error(y_in, model.predict(X_in_poly))
               out_mse_1 = mean_squared_error(y_out, model.predict(X_out_poly))
               print("Insample MSE : ", in_mse_1)
print("Outsample MSE : ", out_mse_1)
```


Insample MSE: 10.07142201316864 Outsample MSE: 40.36082783566782

Insample MSE: 3.8634771392760685 Outsample MSE: 481.4465099294859

Insample MSE: 1.8723636266506438 Outsample MSE: 371.7680409381023

7.) State your observations:

Type $\it Markdown$ and LaTeX: $\it \alpha^2$

The more the complexity, the model is getting over fit and Outsample MSE is increasing.

In []: