sconce v0.99

- Auto Sensitivity Scan for Pruning -> Finds Best Sparsity Ratio for Pruning [Least Performance Degradation and Max Performance]
- Supports CWP, GMP Pruning. Room for WANDA, GPTQ, etc...
- QAT
- Auto-Layer Fusion

sconce v1.1

Altruism is all you need !!! Don't just be self attentive

A SIMPLE AND EFFECTIVE PRUNING APPROACH FOR LARGE LANGUAGE MODELS

Mingjie Sun¹* Zhuang Liu²* Anna Bair¹ J. Zico Kolter^{1,3}

¹Carnegie Mellon University ²Meta AI Research ³Bosch Center for AI

AWQ: Activation-aware Weight Quantization for LLM Compression and Acceleration

https://github.com/mit-han-lab/llm-awq

(a) RTN quantization (PPL 43.2)

(b) Keep 1% salient weights in FP16 (PPL 13.0)

(c) Scale the weights before quantization (PPL 13.0)

Make Kernels Aware of the Future Kernel Spaces

Code: https://github.com/satabios/sconce/blob/main/tutorials/Pruning.ipynb

Citations:

EIE:

Multi-scale channel importance sorting and spatial attention mechanism for retinal vessels segmentation EACP: An effective automatic channel pruning for neural networks

Channel-Based Activation Aware Pruning

But Channel Wise!!

Method	Weight Update	Calibration Data	Pruning Metric S_{ij}	Complexity
Magnitude	X	X	$ \mathbf{W}_{ij} $	O(1)
SparseGPT	✓	✓	$\left[\mathbf{W} ^2 / \operatorname{diag} \left[(\mathbf{X} \dot{\mathbf{X}}^T + \lambda \mathbf{I})^{-1} \right] \right]_{ij}$	$O(d_{\tt hidden}^3)$
Wanda	X	✓	$\ \mathbf{W}_{ij}\ \cdot\ \mathbf{X}_j\ _2$	$O(d^2_{\mathtt{hidden}})$

			LLaMA			LLaMA-2			
Method	Weight Update	Sparsity	7B	13B	30B	65B	7B	13B	70B
Dense	-	0%	59.99	62.59	65.38	66.97	59.71	63.03	67.08
Magnitude	×	50%	46.94	47.61	53.83	62.74	51.14	52.85	60.93
SparseGPT	✓	50%	54.94	58.61	63.09	66.30	56.24	60.72	67.28
Wanda	×	50%	54.21	59.33	63.60	66.67	56.24	60.83	67.03
Magnitude	×	4:8	46.03	50.53	53.53	62.17	50.64	52.81	60.28
SparseGPT	✓	4:8	52.80	55.99	60.79	64.87	53.80	59.15	65.84
Wanda	X	4:8	52.76	56.09	61.00	64.97	52.49	58.75	66.06
Magnitude	Х	2:4	44.73	48.00	53.16	61.28	45.58	49.89	59.95
SparseGPT	✓	2:4	50.60	53.22	58.91	62.57	50.94	54.86	63.89
Wanda	X	2:4	48.53	52.30	59.21	62.84	48.75	55.03	64.14

- Register hooks to fetch O/P Feature Maps
- Run through a Calibration Dataset
- Prune Channels(Kernel Weights)
 Based on Activations

Activation Aware - QAT

$$\mathbf{s}^* = \arg\min_{\mathbf{s}} \mathcal{L}(\mathbf{s}), \quad \mathcal{L}(\mathbf{s}) = \|Q(\mathbf{W} \cdot \mathbf{s})(\mathbf{s}^{-1} \cdot \mathbf{X}) - \mathbf{W}\mathbf{X}\|$$
(3)

But Channel Wise!!

- Apply Scaling on Feature Maps based on Activation Saliency
- QAT

	\mathbf{W}					
	+1.2 -0.2 -2.4 -3.4	×1				
	$\begin{vmatrix} -2.5 & -3.5 & +1.9 & +1.4 \end{vmatrix}$	×2				
	-0.9 + 1.6 - 2.5 - 1.9	×1				
O(-3.5 + 1.5 + 0.5 - 0.1	$\times 1$				
V (+1.8 -1.6 -3.2 -3.4	×1 '				
	+2.4 -3.5 -2.8 -3.9	×1				
	+0.1 -3.8 +2.4 +3.4	×1				
	+0.9 +3.3 -1.9 -2.3	×1 fuse to previous op				
		€				
$\mathbf{W}\mathbf{X} \longrightarrow Q(\mathbf{W} \cdot \mathbf{s})(\mathbf{s}^{-1} \cdot \mathbf{X})$						

—————————————————————————————————————			Llama-2			LLaMA			
-		7B	13B	70B	7B	13B	30B	65B	
FP16	-	5.47	4.88	3.32	5.68	5.09	4.10	3.53	
INT3 g128	RTN GPTQ GPTQ-R AWQ	6.66 6.43 6.42 6.24	5.52 5.48 5.41 5.32	3.98 3.88 3.86 3.74	7.01 8.81 6.53 6.35	5.88 5.66 5.64 5.52	4.88 4.88 4.74 4.61	4.24 4.17 4.21 3.95	
INT4 g128	RTN GPTQ GPTQ-R AWQ	5.73 5.69 5.63 5.60	4.98 4.98 4.99 4.97	3.46 3.42 3.43 3.41	5.96 6.22 5.83 5.78	5.25 5.23 5.20 5.19	4.23 4.24 4.22 4.21	3.67 3.66 3.66 3.62	

Complete Flow

- Sort Channels Based on Successive Channels
- Activation Aware Pruning (WANDA- like)
- Activation Aware Quantization (AWQ- like)

Possible Additions

- Layer-Wise Neural Network Compression via Layer Fusion: https://proceedings.mlr.press/v157/o-neill21a/o-neill21a.pdf
- Layer-Selective Rank Reduction: https://github.com/pratyushasharma/laser