- 1) Let $\langle \mathbf{x}^T = (f_1, f_2), t \rangle$ represent the data point \mathbf{x} located at feature coordinates (f_1, f_2) with the corresponding label $t \in \{-1, 1\}$. Assume the following data is available $\langle \mathbf{x}_1^T = (0, 0), -1 \rangle, \langle \mathbf{x}_2^T = (0, 1), 1 \rangle, \langle \mathbf{x}_3^T = (1, 0), 1 \rangle$. We want to use a linear (non-kernel) Support Vector Machine classifier to specify the discriminant function in the form of $y(\mathbf{x}) = \mathbf{w}^T \mathbf{x} + b$, where $\mathbf{w} = (w_1, w_2)^T$. Let the a_1, a_2, a_3 denote Lagrangian multipliers for slackness constraints of $\mathbf{x}_1, \mathbf{x}_2, \mathbf{x}_3$, respectively.
 - 1. Plot the data points and derive the decision boundary by inspecting the data. What can be said about the Lagrange multipliers?
 - 2. Write up the primal Lagrangian, apply the optimality condition and express the **w** in terms of data points. Now substitute **w** in the discriminant function and derive its kernel statement. Explain why these models are said to be 'sparse'?
- 2) Suppose that \mathbf{x} and \mathbf{y} are 2 dimensional feature vectors, and $k_1(\mathbf{x}, \mathbf{y})$ and $k_2(\mathbf{x}, \mathbf{y})$ are both valid kernels. Show that the following kernels are valid:
 - 1. $k_1(\mathbf{x}, \mathbf{y}) + k_2(\mathbf{x}, \mathbf{y})$
 - 2. $\mathbf{x}^T (\lambda_i \mathbf{e}_i \mathbf{e}_i^T) \mathbf{y}$, where $\mathbf{e}_i = (e_{i1}, e_{i2})^T$ and $\lambda_i \geq 0$.
 - 3. $\mathbf{x}^T \mathbf{A} \mathbf{y}$, where $\mathbf{A} = \sum_i \lambda_i \mathbf{e}_i \mathbf{e}_i^T$ and $\lambda_i \geq 0$ (symmetric semi-positive definite matrix).
 - 4. $(\mathbf{x}^T\mathbf{y})^n$, where n is a positive integer.
 - 5. $a_1(\mathbf{x}^T\mathbf{y}) + \cdots + a_n(\mathbf{x}^T\mathbf{y})^n$, where a_n 's are positive real number.
 - 6. $e^{\mathbf{x}^T\mathbf{y}}$