MAPPING

Aligning sequencing reads to a reference

Where are we?

Why do we map reads?

- Identify Variants
 - substitutions (fixed difference)
 - polymorphisms (SNPs)
 - structural
- Quantification (RNA-seq expression levels)
- Remove sequences of specific origins
 - Contamination
 - Parasites
 - organellar DNA)

Structural Variants

Tattini et al. (2015) Front. Bioeng. Biotechnol

DIY time!

Map the Reads!

- Reference in gray:
- "It was the best of times, it was the worst of times, it was the age of wisdom, it was the age of foolishness, it was the epoch of belief..."
- Reads are in blue, differences are shown in red. Spaces count!
- http://lyorn.idyll.org/~t/assembly-exercise/index.cgi

Things to Consider:

- Coverage?
- Error rate?
- How many variants (SNPs) can you find?
- Extra Credit: Book title and Author?
 - No Googling!

DIY time!

Map the Reads!

- Reference in gray:
- "It was the best of times, it was the worst of times, it was the age of wisdom, it was the age of foolishness, it was the epoch of belief..."
- Reads are in blue, differences are shown in red. Spaces count!
- http://lyorn.idyll.org/~t/assembly-exercise/index.cgi

Things to Consider:

- Coverage?
 - 7X
- Error rate?
 - 10%
- How many variants (SNPs) can you find?
 - 2? 3? tim[i/e]s wa[s/k] ep[o/r]ch
- Extra Credit: Book title and Author?
 - No Googling!

Just a pairwise alignment, right?

Yes. x 400 million (or more)

Mapping

Challenges

- Large numbers
- Short length
- Sequencing errors
- Repeats
- Indels
- Variants

What is mapping?

Which Software?

- >70 published programs
- Input data type
- Reference
- Speed vs sensitivity
- Memory

What is mapping?

- Which software
 - >70 published programs
 - Input data type
 - Reference
 - Speed vs sensitivity
 - Memory

The phylogeny of pairwise alignment

Chaisson & Tesler 2012, BMC Bioinformatics

Comparison (10 million human reads, 40 bp)

Software	Algorithm	Mismatches	Memory (GB)	Time (min)
BWA	BWT	yes	2.2	73
Bowtie	BWT	yes	7.4	166
BFAST	Spaced seeds	yes	9.7	902
MPScan	Suffix tree	no	2.7	80
PerM	Spaced seeds	yes	13.8	785

Schbath et al. 2012 J Comput Biol

STORING READ ALIGNMENTS

Sequence Alignment (SAM/BAM) Format

- Universal Standard
- SAM (readable)
- BAM (binary, compressed form)
- Specifications:
 - https://samtools.github.io/hts-specs/SAMv1.pdf
- Structure
 - Header: programs, version, reference info, sort order, sample info, etc.
 - Read alignment records
 - One record per line

15

SAM: Header

X =bowtie2-align-s --wrapper basic-0 -q --phred33 --very-sensitive -t -p 1 -x NC_012059.1 -1 ERR1938563_1.fq -2 ERR1938563_2.fq

16

SAM: Alignment Records

ref	AGCATGTTAGATAA * * GATAGCTGTGCTAGTAGGCAGTCAGCGCCAT
+r001/1	TTAGATAAAGGATA * CTG
+r002	aaaAGATAA* GGATA
+r003	gcctaAGCTAA
+r004	ATAGCT TCAGC
-r003	ttagctTAGGC
-r001/2	CAGCGGCAT

The corresponding SAM format is:

```
@HD VN:1.5 SO:coordinate
@SQ SN:ref LN:45
r001 99 ref 7 30 8M2I4M1D3M = 37 39 TTAGATAAAGGATACTG *
r002 0 ref 9 30 3S6M1P1I4M * 0 0 AAAAGATAAGGATA *
r003 0 ref 9 30 5S6M * 0 0 GCCTAAGCTAA * SA:Z:ref,29,-,6H5M,17,0;
r004 0 ref 16 30 6M14N5M * 0 0 ATAGCTTCAGC *
r003 2064 ref 29 17 6H5M * 0 0 TAGGC * SA:Z:ref,9,+,5S6M,30,1;
r001 147 ref 37 30 9M = 7 -39 CAGCGGCAT * NM:i:1
```

The corresponding SAM format is:

Read name

The corresponding SAM format is:

Flag: pair information, orientation, mapped, etc.

The corresponding SAM format is:

```
@HD VN:1.5 SO:coordinate
@SQ SN:ref LN:45
r001 99 ref 7 30 8M2I4M1D3M = 37 39 TTAGATAAAGGATACTG *
r002 0 ref 9 30 3S6M1P1I4M * 0 0 AAAAGATAAGGATA *
r003 0 ref 9 30 5S6M * 0 0 GCCTAAGCTAA * SA:Z:ref,29,-,6H5M,17,0;
r004 0 ref 16 30 6M14N5M * 0 0 ATAGCTTCAGC *
r003 2064 ref 29 17 6H5M * 0 0 TAGGC * SA:Z:ref,9,+,5S6M,30,1;
r001 147 ref 37 30 9M = 7 -39 CAGCGGCAT * NM:i:1
```

Bob Fitak: GDW 2019

Reference sequence name & position

The corresponding SAM format is:

```
@HD VN:1.5 SO:coordinate
@SQ SN:ref LN:45
r001 99 ref 7 30 8M2I4M1D3M = 37 39 TTAGATAAAGGATACTG *
r002 0 ref 9 30 3S6M1P1I4M * 0 0 AAAAGATAAGGATA *
r003 0 ref 9 30 5S6M * 0 0 GCCTAAGCTAA * SA:Z:ref,29,-,6H5M,17,0;
r004 0 ref 16 30 6M14N5M * 0 0 ATAGCTTCAGC *
r003 2064 ref 29 17 6H5M * 0 0 TAGGC * SA:Z:ref,9,+,5S6M,30,1;
r001 147 ref 37 30 9M = 7 -39 CAGCGGCAT * NM:i:1
```

Mapping Quality (MQ): -10 * log₁₀(pr[wrongly mapped])

The corresponding SAM format is:

```
@HD VN:1.5 SO:coordinate
@SQ SN:ref LN:45
      99 ref 7 30 8M2I4M1D3M = 37 39 TTAGATAAAGGATACTG *
r001
r002
    0 ref 9 30 3S6M1P1I4M * 0 0 AAAAGATAAGGATA *
r003 0 ref 9 30
                        5S6M * 0 0 GCCTAAGCTAA * SA:Z:ref,29,-,6H5M,17,0;
r004
      0 ref 16 30
                  6M14N5M * 0 0 ATAGCTTCAGC *
r003 2064 ref 29 17
                       6H5M * 0 0 TAGGC * SA:Z:ref,9,+,5S6M,30,1;
     147 ref 37 30
                          9M = 7 -39 CAGCGGCAT * NM:i:1
r001
```

CIGAR string

REF ACGATACATAC READ ACGA-ACATAC

GACA-AACC REF READ atGTCATAACC

CIGAR: 4M1D6M

CIGAR: 2S4M1I4M

REF ACGATACATAC READ ACGA-ACATAC

GACA-AACC REF READ atGTCATAACC

CIGAR: 4M1D6M

CIGAR: 2S4M1I4M

REF ACGATACATAC READ ACGA-ACATAC

GACA-AACC REF READ atGTCATAACC

CIGAR: 4M1D6M

CIGAR: 2S4M1I4M

REF ACGATACATAC READ ACGA-ACATAC

GACA-AACC REF READ atGTCATAACC

CIGAR: 4M1D6M

CIGAR: 2S4M1I4M

REF ACGATACATAC
READ ACGA-ACATAC

REF GACA-AACC READ at GTCATAACC

CIGAR: 4M1D6M

[4 Matches + 1 Deletion + 6 Matches]

CIGAR: 2S4M1I4M

[2 <u>Skipped</u> + 4 <u>Matches</u> + 1 <u>Insertion</u> + 4 <u>Matches</u>]

REF ACGATACATAC READ ACGA-ACATAC

GACA-AACC REF READ at GTCATAACC

CIGAR: 4M1D6M

CIGAR: 2S4M1I4M

REF ACGATACATAC READ ACGA-ACATAC

GACA-AACC REF READ atGTCATAACC

CIGAR: 4M1D6M

CIGAR: 2S4M1I4M

REF ACGATACATAC READ ACGA-ACATAC REF GACA-AACC READ atGTCATAACC

CIGAR: 4M1D6M

CIGAR: 2S4M1I4M

The corresponding SAM format is:

Mate sequence, location, insert size

The corresponding SAM format is:

```
@HD VN:1.5 SO:coordinate
@SQ SN:ref LN:45
     99 ref 7 30 8M2I4M1D3M = 37 39 TTAGATAAAGGATACTG
r001
    0 ref 9 30 3S6M1P1I4M * 0 0 AAAAGATAAGGATA *
r002
r003
    0 ref 9 30
                       5S6M * 0 0 GCCTAAGCTAA * SA:Z:ref,29,-,6H5M,17,0;
r004
      0 ref 16 30 6M14N5M * 0 0 ATAGCTTCAGC *
r003 2064 ref 29 17 6H5M * 0 0 TAGGC * SA:Z:ref,9,+,5S6M,30,1;
                                    CAGCGGCAT * NM:i:1
r001
    147 ref 37 30
                         9M = 7 - 39
```

Read sequence & quality (* = no quality stored)

NOW WHEN YOU DON'T HAVE A REFERENCE...

Mark Stenglein

