Probability and Measure

1 Boolean Algebras and Finitely Additive Measures

- Boolean algebra ${\mathcal B}$
 - $\bullet \ \varnothing \in \mathcal{B}$
 - stable under finite union
 - stable under complementation

Example.

- (i) trivial Boolean algebra
- (ii) discrete Boolean algebra
- (iii) family of constructable sets
 - constructable sets —— finite union of locally closed sets from topological space
 - locally closed sets —— $O \cap C$ where O open, C closed
 - finitely additive measure, m
 - $m(\varnothing) = 0$
 - $m(E \sqcup F) = m(E) + m(F)$
 - sub-additive $m(E \cup F) \le m(E) + m(F)$
 - monotone $E \subset F \Rightarrow m(E) \leq m(F)$

Fact. finitely additive measure is sub-additive and monotone

- counting measure

2 Jordan Measure on \mathbb{R}^d

- $box B = I_1 \times \cdots \times I_d$
- elementary subset —— finite union of boxes
- volume of box, |B|
- $-\mathcal{E}(B)$ family of elementary subsets of box B

Proposition 2.1. Fixed B, then

- (i) $\mathcal{E}(B)$ Boolean algebra
- (ii) every $E \in \mathcal{E}(B)$ finite union of disjoint boxes
- (iii) volume well defined

$$-m(E) = \sum |B_i| \text{ for } E = \bigsqcup B_i$$

Fact. m finitely additively measure on $(B, \mathcal{E}(B))$

– Jordan measurable — For all $\epsilon > 0$, \exists elementary $E \subset A \subset F$ st $m(F \setminus E) < \epsilon$

Fact. Jordan measurable subsets bounded

-m(A) for Jordan measurable A ——

$$m(A) = \inf\{m(F) : A \subset F, F \text{ elementary}\} = \sup\{m(F) : A \supset E, E \text{ elementary}\}\$$

 $-\mathcal{J}(B)$ —— family of Jordan measurable subsets of box B

Proposition 2.2. Fixed B, then

- (i) $\mathcal{J}(B)$ Boolean algebra
- (ii) m finitely additive measure on $(B, \mathcal{J}(B))$

Fact. $E \subset finite interval [a, b] \subset \mathbb{R}$, then E Jordan measurable iff $\mathbb{1}_E(x)$ Riemann integrable

3 Lebesgue measurable sets

– Lebesgue outer-measure —— $E \subset \mathbb{R}^d$,

$$m^*(E) = \inf\{\sum |B_n| : E \subset \bigcup B_n \text{ boxes}\}$$

Fact. m^* translation invariant

– Lebesgue measurable – For $\epsilon > 0$, $\exists C = \bigcup B_n$, $E \subset C$ st

$$m^*(C \backslash E) < \epsilon$$

- Lebesgue measurable —
— ∃BBorel st $m^*(B \bigtriangleup E) < \epsilon$
- $-\mathcal{L}$ family of Lebesgue measurable sets

Fact. \mathcal{L} translation invariant, scales naturally

Fact. Jordan measurable \Rightarrow Lebesgue measurable

Proposition 3.1.

- (i) m^* extends m
- (ii) \mathcal{L} Boolean algebra, stable under countable unions

(iii) m^* countably additive on $(\mathbb{R}^d, \mathcal{L})$

Lemma 3.2. m^*

- (i) monotone —— $A \subset B \Rightarrow m^*(A) \leq m^*(B)$
- (ii) countably sub-additive $m^*(\bigcup A_n) \leq \sum m^*(A_n)$

Fact. Jordan measure countably additive on Jordan measurable set

- continuity property —— E_n non-increasing, empty intersection $\Rightarrow \lim m(E_n) = 0$

Lemma 3.3. Jordan measure has continuity property on elementary sets

Lemma 3.4. Elementary sets E_n decreasing, $A = \bigcap E_n$, then

- (i) A Lebesgue measurable
- (ii) $m(E_n) \to m^*(A)$

Fact. countable intersection of elementary sets Lebesgue measurable

Corollary 3.5. open and closed subsets Lebesgue measurable

$$- \text{ null set } --- m^*(E) = 0$$

Lemma 3.6. null set Lebesgue measurable

Proposition 3.7. E Lebesgue measurable, then \exists closed C, open O st

- (i) $C \subset E \subset O$
- (ii) $m^*(O \backslash C) < \epsilon$

Fact. E can be written as $(\bigcup C_n) \sqcup N$ or $(\bigcap O_n) \setminus N$

Example. Vitali's counter example —— E set of representatives $E = \{x + \mathbb{Q}\} \subset [0,1]$

- (i) m^* not additive on all subsets of \mathbb{R}^d
- (ii) E not Lebesgue measurable

4 Abstract Measure Theory

- $\sigma\text{-algebra}$ —— Boolean algebra, stable under countable unions
- measurable space, (X, A)
- measure μ
 - (i) $\mu(\varnothing) = 0$
 - (ii) countably additive
- measure space, (X, \mathcal{A}, μ)

Example.

- (i) $(\mathbb{R}^d, \mathcal{L}, m)$
- (ii) $m_0(E) = m(A_0 \cap E)$ for fixed $A_0 \in \mathcal{L}$
- (iii) $(X, 2^X, \#)$, # counting measure
- (iv) $(\mathbb{N}, 2^{\mathbb{N}}, \mu)$ where $\mu(I) = \sum_{i \in I} a_i$ for fixed $(a_n)_{n \geq 1}$

Proposition 4.1. (X, \mathcal{A}, μ) measure space

- (i) μ monotone
- (ii) μ countably sub-additive
- (iii) upward monotone convergence E_n increasing, then $\mu(\bigcup E_n) = \lim \mu(E_n) = \sup \mu(E_n)$
- (iv) downward monotone convergence $\mu(E_1) < \infty$, E_n decreasing, then $\mu(\bigcap E_n) = \lim \mu(E_n) = \inf \mu(E_n)$
 - finite —— $\mu(X) < \infty$
 - σ -finite $X = \bigcup E_n, \ \mu(E_n) < \infty$
 - probability space
 - probability measure
 - σ -algebra generated by \mathcal{F} , $\sigma(\mathcal{F})$ —— \mathcal{F} family of subsets

Example.

- (i) $X = \sqcup X_i$
- (ii) X countable, \mathcal{F} singletons
 - Borel σ -algebra, $\mathcal{B}(X)$ —— X topological space, generated by all open subsets
 - Borel sets

Fact. $\mathcal{B}(\mathbb{R}^d)\subset\mathcal{L}$

Fact. $\mathcal{B}(\mathbb{R}^d)$ strictly smaller than \mathcal{L} —— every subset of null sets is null

Fact. $\mathcal{B}(X)$ (σ -algebra) usually larger than family of constructable sets (Boolean algebra)

- Boolean algebra generated by \mathcal{F} , $\beta(\mathcal{F})$
- explicitly described —— elements of $\beta(\mathcal{F})$ are finite unions of $F_1 \cap \cdots \cap F_n$, F_i or \bar{F}_i in \mathcal{F}

Myth. Borel hierarchy

– Borel measure — measure on $\mathcal{B}(X)$

Setting 1. X set, \mathcal{B} Boolean algebra, μ finitely additive measure

- continuity property — under setting 1, non-increasing (E_n) , $\mu(E_1) < \infty$, empty intersection $\lim \mu(E_n) = 0$

Theorem 4.2 (Caratheodory extension theorem). Under setting 1, \mathcal{B} continuity property, μ σ -finite, then μ uniquely extends to μ^* on $\sigma(B)$

- outer-measure $\mu^* \mu^*(E) = \inf \{ \sum \mu(B_i) : E \subset \bigcup B_i, B_i \in \mathcal{B} \}$
- $-\mu^*$ measurable $\longrightarrow \exists \bigcup B_n := C \text{ st } \mu^*(C \backslash E) < \epsilon$
- completion of $\mathcal{B}, \mathcal{B}^*$ —— family of μ^* measurable subsets

Fact. completion contains all null sets

Proposition 4.3. Under setting 1,

- (i) \mathcal{B}^* σ -algebra containing \mathcal{B}
- (ii) μ^* countably additive on \mathcal{B}^*
- (iii) μ^* extends μ

Myth. X compact metric space, μ probability measure on Borel σ -algebra \mathcal{B} , no atom, then \exists measure preserving measurable isomorphism between (X, \mathcal{B}^*, μ) and $([0, 1], \mathcal{L}, m)$

5 Uniqueness of Measures

- $-\pi$ -system —— family \mathcal{F}
 - (i) contains Ø
 - (ii) stable under finite intersection

Proposition 5.1 (measure uniqueness). (X, A) measurable space, μ_1, μ_2 finite measures st

- (i) $\mu_1 = \mu_2 \text{ on } \mathcal{F} \bigcup \{X\}$
- (ii) \mathcal{F} π -system st $\sigma(\mathcal{F}) = \mathcal{A}$

then $\mu_1 = \mu_2$ on \mathcal{A}

Fact. For general measures, if $\exists F_n \subset \mathcal{F}$ st μ_1, μ_2 finite on F_n , $X = \bigcup F_n$, then uniqueness also holds

Lemma 5.2 (Dynkin's lemma).

- (i) $\mathcal{F} \pi$ -system
- (ii) $\mathcal{F} \subset \mathcal{C}$
- (iii) C stable under complementation, disjoint countable union

then $\sigma(\mathcal{F}) \subset \mathcal{C}$

- translation invariant — m(A + x) = m(A) for all A, x

Proposition 5.3. Lebesgue measure unique measure on $(\mathbb{R}^d, \mathcal{B}(\mathbb{R}^d))$ st

- (i) translation invariant
- (ii) $m([0,1]^d) = 1$

6 Measurable Functions

Setting 2. $(X, \mathcal{A}), (Y, \mathcal{B})$ measurable space

- $f: X \to \mathbb{R}$ measurable function
- $-\ f:X\to Y$ measurable map

Fact. can extend to $\{\infty\}$ or $\{-\infty\}$

Fact. continuous function measurable

Fact. $E \in A$ iff $\mathbb{1}_E$ measurable

- \mathbb{R} -algebra

Proposition 6.1. $(f_n)_{n\geq 1}$ measurable functions

- (i) f, g measurable $\Rightarrow g \circ f$ measurable
- (ii) Family of measurable functions form \mathbb{R} -algebra
- (iii) $\limsup f_n$, $\liminf f_n$, $\sup f_n$, $\inf f_n$ measurable functions

Proposition 6.2. $f = (f_1, f_2, \dots, f_d)^T$, then f measurable iff f_i measurable

- Borel measurable (or simply Borel)

Fact. f measurable

- (i) $f^{-1}(L)$ need not measurable for $L \in \mathcal{L}$
- (ii) f(X) need not measurable even for f continuous

Example. (i) f sends to trivial σ -algebra

7 Integration

– simple function —
$$\sum_{i=1}^{N} a_i \mathbb{1}_{A_i}$$
 with $a_i \geq 0$

Lemma 7.1. f simple, $f = \sum a_i \mathbb{1}_{A_i} = \sum b_j \mathbb{1}_{B_j}$, then $\sum a_i \mu(A_i) = \sum b_j \mu(B_j)$

- integral $\mu(f)$ for simple f —— $\mu(f) = \sum a_i \mu(A_i) = \int f d\mu$
- integral $\mu(f)$ for non-negative f —— $\mu(f) = \sup\{\mu(g) : g \leq f, g \text{ simple}\}$

Proposition 7.2 (positivity). f, g non-negative measurable, then

- $-f \ge g \Rightarrow \mu(f) \ge \mu(g)$
- $f \ge g$, $\mu(f) = \mu(g) \Rightarrow f = g$ a.e.
- f = g almost everywhere

Lemma 7.3. $f \geq 0$, then \exists increasing simple functions g_n st $g_n \rightarrow f$ pointwise

Proof. $g_n(x) = 2^{-n} \lfloor 2^n (f(x) \wedge n) \rfloor$

Theorem 7.4 (Monotone Convergence Theorem).

- (i) (f_n) non-negative, non-decresing
- (ii) let $f(x) = \lim_{n \to \infty} f_n(x)$, the pointwise limit

Then, $\mu(f) = \lim \mu(f_n)$

Lemma 7.5. Fixed g simple, then $m_g(E) := \mu(\mathbb{1}_E g)$ is a measure

Lemma 7.6 (Fatou). $f_n \geq 0$, then $\mu(\liminf f_n) \leq \liminf \mu(f_n)$

- f^+, f^-
- μ -integrable —— $\mu(|f|) < \infty$
- intergral $\mu(f)$ for integrable f —— $\mu(f) = \mu(f^+) \mu(f^-)$

Proposition 7.7 (Linearity of integral). f, g integrable

- (i) $\alpha f + \beta g$ integrable
- (ii) $\mu(\alpha f + \beta g) = \alpha \mu(f) + \beta \mu(g)$

Fact. Also holds for nonegative f, g, α, β

Theorem 7.8 (Dominated Convergence Theorem). f, f_n measurable, g integrable

- (*i*) $|f_n(x)| \le g(x)$
- (ii) $\lim f_n(x) = f(x)$

Then,

- (i) $\lim \mu(f_n) = \mu(f)$
- (ii) f integrable

Fact. condition for MCT, Fatou, DCT only need to hold μ -almost everywhere

Corollary 7.9 (Exchange of \int and \sum).

- (i) $f_n \ge 0$, then $\mu(\sum^{\infty} f_n) = \sum^{\infty} \mu(f_n)$
- (ii) $\sum |f_n|$ μ -integrable, then
 - $-\sum f_n integrable$
 - $-\mu\left(\sum f_n\right) = \sum \mu(f_n)$

Corollary 7.10 (Differentiation under \int sign). U open set, $f: U \times X \to \mathbb{R}$ st

- (i) $f(t,\cdot)$ μ -integrable
- (ii) $f(\cdot,x)$ differentiable
- $\textbf{(iii)} \ \, (domination) \, \, \exists \, \, integrable \, \, g \, \, st \, \sup_{t} |\frac{\partial f}{\partial t} \left(t,x \right)| \leq g(x)$

Then,

(i) $\frac{\partial f}{\partial t}(t,\cdot)$ μ -integrable

(ii) let
$$F(t) = \int_X f(t,x) d\mu(x)$$
, then

(a) F differentiable

(b)
$$F' = \int_X \frac{\partial f}{\partial t}(t, x) d\mu(x)$$

Fact. f bounded, then f Riemann integrable iff $\{x: f(x) \text{ not continuous}\}$ has Lebsegue measure θ

Fact (invariance under affine map). $g \in GL_d(\mathbb{R}), f$ integrable, then $m(f \circ g) = \frac{1}{|det g|} m(f)$

Fact.
$$\phi \in C^1$$
, then $\int f(\phi(x))J_{\phi}(x)dx = \int f(x)dx$

- Radon measure —— Borel measure, finite on every compact subset

Fact (Riesz Representation for locally compact spaces).

- (i) μ Radon measure, let $\Lambda(f) = \mu(f)$, then $\Lambda \in C_c(X)'$
- (ii) let $\Lambda \in C_c(X)'$, Λ non-negative, then \exists Radon measure μ st $\Lambda(f) = \mu(f)$

8 Product Measure

– product σ -algebra $\mathcal{A} \otimes \mathcal{B}$ —— σ -algebra generated by $A \times B$ where $A \in \mathcal{A}, B \in \mathcal{B}$

Fact.

- (i) $\{A \times B\}$ π -system
- (ii) smallest σ -algebra st projection map measurable

(iii)
$$\mathcal{B}(\mathbb{R}^{d_1}) \otimes \mathcal{B}(\mathbb{R}^{d_2}) = \mathcal{B}(\mathbb{R}^{d_1+d_2})$$
 (generally not true)

- slice,
$$E_x - E_x = y : (x, y) \in E$$

Lemma 8.1. $E \mathcal{A} \otimes \mathcal{B}$ -measurable, then $E_x \mathcal{B}$ -measurable

Proof. start with $A \times B$, then Dynkin's lemma

Setting 3. $(X, \mathcal{A}, \mu), (Y, \mathcal{B}, \nu)$ σ -finite

Lemma 8.2. Under setting 3, $f A \otimes \mathcal{B}$ -measurable, non-negative, then

- (i) $f(x,\cdot)$ \mathcal{B} -measurable for every x
- (ii) $g(x) := \int f(x,y) d\nu(y) A$ -measurable
 - product measure $\mu \otimes \nu$

Proposition 8.3. Under setting 3, then \exists unique measure σ on $A \otimes B$ st $\sigma(A \times B) = \mu(A)\nu(B)$

Theorem 8.4 (Fubini-Tonelli). Under setting 3,

- (i) $f \mathcal{A} \otimes \mathcal{B}$ measurable, non-negative, then $\int_{X \times Y} f d\mu \otimes \nu = \int_{X} \left(\int_{Y} f d\nu(y) \right) d\mu(x) = \int_{Y} \left(\int_{X} f d\mu(x) \right) d\nu(y)$
- (ii) $f \mu \otimes \nu$ -integrable, then
 - (a) $f(x,\cdot)$ ν -integrable for μ -almost every x
 - (b) $f(\cdot,y)$ μ -integrable for ν -almost every y
 - (c) above also holds

Fact. justify Fubini, just need $f(x,\cdot), f(\cdot,y)$ integrable (????)

9 Probability Theory

- universe Ω
- outcome ω
- events \mathcal{F}
- probability measure \mathbb{P}
- random variable X
- expectation \mathbb{E}
- probability space $(\Omega, \mathcal{F}, \mathbb{P})$
- law of X / distribution of X —— Borel measure $\mu_X(A) = \mathbb{P}(X \in A)$ on $(\mathbb{R}, \mathcal{B}(R))$
- image measure $f_*\mu$ ------ $f_*\mu(A) = \mu(f^{-1}(A))$
- distribution function of $X, F_X F_X(t) = \mathbb{P}(X \leq t)$

Proposition 9.1. F_X

- (i) non-decreasing
- (ii) right continuous
- (iii) F_X determines μ_X uniquely
 - Lebesgue-Stieltjes measure μ_F

Proposition 9.2. Given F non-decreasing, right continuous, $\lim_{\infty} F(t) = 0$, $\lim_{\infty} F(t) = 1$, then \exists unique Borel measure μ_F st $F(t) = \mu_F((-\infty, t])$

Proof. One approach using Caratheodory. Another shown as follow.

– "inverse function" $g \longrightarrow g(y) = \inf(t : F(t) \ge y)$

Lemma 9.3. g

- (i) non-decreasing
- (ii) left continuous

(iii)
$$g(y) \le t$$
 iff $y \le F(t)$

Fact. let m Lebesgue measure on (0,1), set $\mu(A) = g_*m(A) = m(g^{-1}(A))$, then $\mu = \mu_F$

Proposition 9.4. μ Borel probability measure, then $\exists (\Omega, \mathcal{F}, \mathbb{R}), r.v. X \text{ st } \mu = \mu_X$

Fact. Can take $\Omega, \mathcal{F}, \mu = (0, 1), \ \textit{Borel σ-algebra }, \mathbb{P}$

- density

Example.

- (i) uniform distribution
- (ii) exponential distribution
- (iii) gaussian distribution
- (iv) Dirac mass
 - mean
 - moment of order k
 - variance

10 Independence

– events (A_i) mutually independent —— every finite $F \subset \mathbb{N}$, $\mathbb{P}(\bigcap_F A_i) = \prod_F \mathbb{P}(A_i)$

Fact. (A_i) independent $\Rightarrow (B_i)$ independent where $B_i = A_i$ or A_i^c

– σ -subalgebras (A_i) mutually independent — $A_i \subset F$, every $A_i \in A_i$, (A_i) mutually independent

Fact. $\Pi_i \subset \mathcal{A}_i \text{ π-system, } \sigma(\Pi_i) = \mathcal{A}_i, \text{ then suffices just check } A_i \in \Pi_i$

- $-\sigma(X)$
- random variables (X_i) mutually independent $---- (\sigma(X_i))$ independent

Fact. Equivalence to every finite $F \subset \mathbb{N}$

$$- \mathbb{P}(\bigcap_F X_i \le t_i) = \prod_F \mathbb{P}(X_i \le t_i)$$

$$-\mu_{(X_{i_1},\ldots,X_{i_m})}=\mu_{X_{i_1}}\otimes\cdots\otimes\mu_{X_{i_m}}$$

Fact. (X_i) independent $\Rightarrow (f_i(X_i))$ independent

Proposition 10.1. X, Y independent, non-negative (or integrable), then $\mathbb{E}(XY) = \mathbb{E}(X)\mathbb{E}(Y)$

Setting 4. $\{(\Omega_i, \mathcal{F}_i, \nu_i)\}$

– cylinder set —— $A \times \prod_{i>n} \Omega_i$ where $A \subset \prod_n \Omega_i$, $A \in \mathcal{F}_1 \otimes \cdots \otimes \mathcal{F}_n$

- Boolean algebra of cylinder set \mathcal{C}
- infinite product measure

Proposition 10.2. $\Omega = \prod \Omega_i$, $\mathcal{F} = \sigma(\mathcal{C})$, then \exists unique probability measure ν on (Ω, \mathcal{F}) st

$$\nu(B) = \nu_1 \otimes \cdots \otimes \nu_n(A)$$

for every cylinder set B

Fact. more general theorem Kolmogorov extension theorem

- $\limsup A_n \longrightarrow \bigcap \bigcup A_n$ (infinitely offen)

Lemma 10.3 (1st Borel Cantelli). $\sum \mathbb{P}(A_n) < \infty$, then $\mathbb{P}(\limsup A_n) = 0$

Lemma 10.4 (2nd Borel Cantelli). $\sum \mathbb{P}(A_n) = \infty$, (A_n) mutually independent, then $\mathbb{P}(\limsup A_n) = 1$

Fact. independence condition in 2nd Cantelli can be relaxed

- pairwise independence
- small correlation between events
- $\diamond (\Omega, \mathcal{F}, \mathbb{P})$ probability space
- random process / stochastic process (X_n)
- n-th term of the associated filtration $\mathcal{F}_n = \sigma(X_1, \dots, X_n)$
- tail σ -algebra $\mathcal{T} = \bigcap \sigma(X_n, X_{n+1}, \dots)$

Theorem 10.5 (Kolmogorov 0-1 law). (X_n) mutually independent, then $\mathbb{P}(A) \in \{0,1\}$ for all $A \in \mathcal{T}$

- Cauchy-Schwarz $\mathbb{E}|XY| \leq \sqrt{\mathbb{E}(X^2)\mathbb{E}(Y^2)}$
- Markov's inequality —— $\lambda \mathbb{P}(X \geq \lambda) \leq \mathbb{E}(X)$ for $X \geq 0, \lambda \geq 0$
- Chebychev's inequality $\lambda^2 \mathbb{P}(|Y \mathbb{E}(Y)| \ge \lambda) \le Var(Y)$ for $\lambda \ge 0$

Theorem 10.6 (Strong law of large number). (X_n) i.i.d., $\mathbb{E}|X_1| < \infty$, then $\bar{X}_n \xrightarrow{a.s.} \mathbb{E}X_1$

Fact.
$$\mathbb{E}(X^4) < \infty \Rightarrow \mathbb{E}((X - \mathbb{E}X)^4) < \infty \ (Jensen \ on \ X^4)$$

Fact.
$$\mathbb{E}(|X|^n) < \infty \Rightarrow \mathbb{E}(|X|^k) < \infty \text{ for } k \leq n$$

11 Convergence of Random Variables

- probability measures μ_n converge weakly \forall bounded, continuous $f, \mu_n(f) \to \mu(f)$
- \diamond sequences (X_n)
- almost surely (a.s.) —— $X_n(\omega) \to X(\omega)$ for $\mathbb P$ almost every ω
- in probability (in measure) —— $\mathbb{P}(\|X_n X\| > \epsilon) \to 0$
- in law (in distribution) —— μ_{X_n} converge weakly to μ_X

Proposition 11.1. almost surely \Rightarrow in probability \Rightarrow in distribution

Fact. $X_n \to X$ in law iff $F_{X_n}(x) \to F_X(x)$

Fact. To prove μ_n converge weakly to μ , suffice to check $f \in C_c^{\infty}$

Counter Example.

- weakly \Rightarrow in prob —— i.i.d. X_n with same distribution
- in prob \Rightarrow a.s. —— moving bump $\mathbb{1}_{[k/n,(k+1)/n]}$

Proposition 11.2. $X_n \to X$ in prob, then \exists subsequence $X_{n_j} \to X$ a.s.

– converge in L^1 — integrable X_n , $\mathbb{E}||X_n - X|| \to 0$

Proposition 11.3. $L^1 \Rightarrow in \ probability$

Counter Example.

- in prob \Rightarrow in L^1 —— $X_n = n\mathbb{1}_{[0,1/n]}$
- bounded ——- $X_n \leq C$ for constant C independent of n

Fact. If (X_n) bounded, in $prob \Rightarrow in L^1$

Proof. Passing to subsequence, a.s. convergence. Then DCT

– uniformly integrable (U.I.) —— integrable (X_n) , $\lim_M \lim \sup_n \mathbb{E}(\|X_n\| \mathbb{1}_{\|X_n\| > M}) = 0$

– dominated — $X_n \leq Y$ for integrable Y, all n

Fact. $dominated \Rightarrow U.I.$

– bounded in L^p — $\sup_n \mathbb{E}||X_n||^p < \infty$

Fact. bounded in L^p for $p > 1 \Rightarrow U.I$.

Theorem 11.4. (X_n) integrable, then following equivalent:

- (i) $X_n \to X$ in L^1 , X integrable
- (ii) $X_n \to X$ in prob, X_n U.I.

Lemma 11.5. Y integrable, (X_n) U.I., then $(X_n + Y)$ U.I.

12 L^p spaces

Setting 5. $(\Omega, \mathcal{A}, \mathbb{P})$ probability space, I open interval, $X : \Omega \to I$, $\phi : I \to \mathbb{R}$

Proposition 12.1 (Jensen's inequality). Under setting 5, X integrable, ϕ convex, then $\mathbb{E}(\phi(X)) \geq \phi(\mathbb{E}(X))$

- convex

Lemma 12.2. convex iff $\phi = \sup_{\mathcal{F}} l$ where \mathcal{F} family of affine linear forms

Fact. $\phi(X)^-$ always integrable

- $-L^p \text{ norm } ||f||_p$
- L^{∞} norm essup |f|

Fact. let $g = f \mathbb{1}_{f \leq ||f||_{\infty}}$, then $\sup g = essup |g|$

Proposition 12.3 (Minkowski inequality). $p \in [1, \infty]$, then $||f + g||_p \le ||f||_p + ||g||_p$

Setting 6. $\frac{1}{p} + \frac{1}{q} = 1$

Proposition 12.4 (Holder's inequality). $\int |fg|d\mu \leq ||f||_p ||g||_q$ Equality holds for finite p, q when $\alpha |f|^p = \beta |g|^q$ for μ -a.e.

Lemma 12.5 (Young's inequality for product). $a, b \ge 0$, then $ab \le \frac{a^p}{p} + \frac{b^q}{q}$. Equality iff $a^p = b^q$

$$- L^p(X, \mathcal{A}, \mu) - - \left\{ \|f\|_p < \infty \right\}$$

–
$$f \equiv g$$
 — $f = g$ μ -a.e.

Lemma 12.6. \equiv equivalence relation, stable under addition and multiplication

-
$$L^p$$
 space —— $L^p(X, \mathcal{A}, \mu)/\equiv$

Proposition 12.7 (completeness of L^p spaces).

- (i) L^p space with $\|\cdot\|_p$ normed vector space
- (ii) complete (a.k.a. Banach space)

Proposition 12.8 (Approximation by simple functions). $p \in [1, \infty)$, V linear span of simple functions, then $V \cap L^p$ dense in L^p

Fact. linear span as we need $g^+ - g^-$

Fact. For $(\mathbb{R}^d, \mathcal{L}, m)$, $C_c^{\infty}(\mathbb{R}^d)$ dense in L^p

Fact. $\mu(X) < \infty$, then $L^{p\prime} \subset L^p$ for $p' \geq p$

Fact. X discrete, countable, then $L^{p\prime} \subset L^p$ for $p' \leq p$

13 Hilbert Spaces and L^2 methods

- Hermitian inner product —— \mathbb{C}
- sesquilinear form —— we pick linear in first argument
- Euclidean inner product —— \mathbb{R}
- bilinear symmetric form

Lemma 13.1. (i) $\|\alpha x\| = |\alpha| \|x\|$

- (ii) Cauchy-Schwarz inequality $|\langle x, y \rangle| \le ||x|| ||y||$
- (iii) triangle inequality $||x + y|| \le ||x|| + ||y||$
- (iv) Parallelogram identity $||x + y||^2 + ||x y||^2 = 2(||x||^2 + ||y||^2)$

Corollary 13.2. $(V, \|\cdot\|)$ normed vector space

- Hilbert space —— complete Hermitian/Euclidean vector space
- orthogonal projection unique $\pi_{\mathcal{C}}(x)$ st $||x \pi_{\mathcal{C}}(x)|| = \inf_{\mathcal{C}} ||x c||$

Proposition 13.3 (orthogonal projection on closed convex sets). \mathcal{H} Hilbert, \mathcal{C} closed convex, then \exists orthogonal projection

Corollary 13.4. V closed vector subspace, then $\mathcal{H} = V \oplus V^{\perp}$

Fact. V^{\perp} closed

- bounded linear form

Fact. bounded iff continuous

Theorem 13.5 (Riesz representation theorem for Hilbert spaces). \mathcal{H} Hilbert space, l bounded linear form, then \exists unique v_0 st $l(\cdot) = \langle \cdot, v_0 \rangle$

14 Conditional Expectation

Setting 7. $(\Omega, \mathcal{F}, \mathbb{P})$ probability space, $\mathcal{G} \subset \mathcal{F}$ σ -subalgebra, X integrable

- conditional expectation $\mathbb{E}(X|\mathcal{G})$

Proposition 14.1. \exists (a.s.) unique conditional expectation Y st

- (i) \mathcal{G} -measurable
- (ii) integrable
- (iii) $\mathbb{E}(\mathbb{1}_A X) = \mathbb{E}(\mathbb{1}_A Y)$

Proposition 14.2.

(i) linearity — $\mathbb{E}(\alpha X + \beta Y | \mathcal{G}) = \alpha \mathbb{E}(X | \mathcal{G}) + \beta \mathbb{E}(Y | \mathcal{G})$ a.s.

- (ii) positivity —— $X \geq 0$ a.s. , then $\mathbb{E}(X|\mathcal{G}) \geq 0$ a.s.
- $\textbf{(iii)} \ \ tower \ preperty \ ---- \ \mathcal{H} \subset \mathcal{G} \ \ \sigma\text{-subalgebra}, \ then \ \mathbb{E}(\mathbb{E}(X|\mathcal{G})|\mathcal{H}) = \mathbb{E}(X|\mathcal{H}) \ \ a.s.$
- $\label{eq:continuous} \textit{(iv)} \ \ \textit{independence} \ --- \ X \ \ \textit{independent} \ \ \textit{of} \ \mathcal{G}, \ \textit{then} \ \mathbb{E}(X|\mathcal{G}) = \mathbb{E}(X) \ \ \textit{a.s.}$
- (v) X \mathcal{G} -measurable, then $\mathbb{E}(X|\mathcal{G}) \leq 0$ a.s.
- (vi) Z \mathcal{G} -measurable, bounded, then $\mathbb{E}(XZ|\mathcal{G}) = Z\mathbb{E}(X|\mathcal{G})$
- (vii) MCT, Fatou, DCT holds for $\mathbb{E}(\cdot|\mathcal{G})$

15 Fourier Transform on \mathbb{R}^n

– Fourier transform $\widehat{f}(u)$ — $f \in L^1$, $\widehat{f}(u) = \int f(x)e^{i\langle u,x\rangle}dx$

Proposition 15.1.

- (i) $|\widehat{f}(u)| \le ||f||_1$
- (ii) $\widehat{f} \in C^0$
 - characteristic function of $\widehat{\mu}$ μ finite Borel measure, $\widehat{\mu}(u) = \int e^{i\langle u, x \rangle} d\mu(x)$

Proposition 15.2.

- (i) $|\widehat{\mu}(u)| \leq \mu(\mathbb{R}^d)$
- (ii) $\widehat{\mu} \in C^0$

Example. For Gaussian measure, let $g(x) = \frac{1}{\sqrt{2\pi}} \exp\left(-\frac{x^2}{2}\right)$, then $\widehat{g}(u) = \sqrt{2\pi}g(u)$

- self-dual
- character $\chi_u(x) = e^{-i\langle u, x \rangle}$

Theorem 15.3 (Fourier Inversion Formula).

- (i) μ finite Borel measure, $\widehat{\mu} \in L^1$, then
 - $\exists \ density \ \phi \in C^0 \ st \ d\mu = \phi(x) dx$
 - $\phi(x) = \frac{1}{(2\pi)^d} \widehat{\widehat{\mu}}(-x)$
- (ii) $f, \hat{f} \in L^1$, then $f(x) = \frac{1}{(2\pi)^d} \widehat{\hat{f}}(-x)$ a.e.

Fact. simple sufficient condition for $\widehat{f} \in L^1$: $f \in C^2$ and f, f', f'' integrable

- convolution $\mu * \nu \longrightarrow \Phi_*(\mu \otimes \nu)$ where $\Phi(x,y) = x + y$
- convolution $f * g \longrightarrow f, g \in L^1$, then $f * g = \int f(x-t)g(t)dt$

Fact. $\mu_X * \nu_Y$ equivalent to law of X + Y

Fact. $||f * g||_1 \le ||f||_1 ||g||_1$

- G_{σ} — density of $\mathcal{N}(0, \sigma^2 I_d)$

$$-\tau_t(f)(x)$$
 — $f(x+t)$

Proposition 15.4 (Gaussian approximation). $f \in L^p(\mathbb{R}^d)$, $p \in [1, \infty)$, then $\lim \|f * G_{\sigma} - f\|_p = 0$ **Lemma 15.5** (continuity of translation in L^p). $f \in L^p(\mathbb{R}^d)$, $p \in [1, \infty)$, then $\lim \|\tau_t(f) - f\|_p = 0$ **Proposition 15.6**.

(i) μ, ν Borel prob measures, then $\widehat{\mu * \nu} = \widehat{\mu}\widehat{\nu}$

(ii)
$$f, g \in L^1$$
, then $\widehat{f * g} = \widehat{f}\widehat{g}$

Theorem 15.7 (Levy's criterion). X_n r.v., then following are equivalent:

(i) $X_n \to X$ in law

(ii) $\lim_n \widehat{\mu_{X_n}}(u) = \widehat{\mu_X}(u)$ for all u

Fact. $\widehat{\mu_X} = \widehat{\mu_Y}$ iff $\mu_X = \mu_Y$

Example. $\mathcal{N}(m, \sigma^2) \to \delta_m$ weakly

Fact. $\widehat{\mu_X}(0) = 1$

– positive definite — $\forall u_1, \dots, u_N \in \mathbb{R}^d, \forall t_1, \dots, t_N \in \mathbb{C}, \sum t_i \bar{t_j} \widehat{\mu_X} (u_i - u_j)$ real and ≥ 0

- normalize ---- f(0) = 1

Fact (Boucher's theorem). f normalized continuous positive-definite, then \exists unique probability measure μ st $f = \widehat{\mu}$

- linear isometry

Theorem 15.8 (Plancherel formula). $f, g \in L^1 \cap L^2$, then

(i) $\widehat{f} \in L^2$

(ii)
$$\|\widehat{f}\|_2 = (2\pi)^{d/2} \|f\|_2$$

(iii)
$$\langle \widehat{f}, \widehat{g} \rangle_{L^2} = (2\pi)^d \langle f, g \rangle_{L^2}$$

(iv)
$$\mathcal{F}: L^1 \cap L^2 \to L^2$$
 where $\mathcal{F}(f) = \frac{1}{(2\pi)^{d/2}} \widehat{f}$

ullet extends uniquely to linear isometry of L^2

•
$$\mathcal{F} \circ \mathcal{F}(f)(x) = f(-x)$$

 ${\bf Fact.}\ smoothness/decay\ barter$

 ${\bf Fact.}\ uncertainty\ principle$

 ${\bf Fact.}\ Schwarz\ space$

16 Gaussian random variables

- gaussian (\mathbb{R}^d) —— can be degenerated
- mean
- covariance matrix
- correlation coefficients

Fact. $\mathcal{N}(m,0) := \delta_m$

Proposition 16.1. law of Gaussian determined by mean and cov

Proof. can assume 1-d Gaussian determined by mean and var

Fact. cov matrix positive semi-definite symmetric

Proposition 16.2. N_i i.i.d $\mathcal{N}(0,1)$, $A \in M_d(\mathbb{R})$, $b \in \mathbb{R}^d$, then

- (i) $AN + b \sim \mathcal{N}_d(b, AA^*)$
- (ii) every Gaussian X = AN + b for some A, b

Fact. $\mathcal{N}(0, \lambda I_d)$ only Borel probability law with

- invariant under rotation
- independent coordinates

Proposition 16.3. $X = (X_1, ..., X_n)$ Gaussian vector, then following equivalent:

- (i) X_i independent r.v.
- (ii) X_i pairwise independent
- (iii) Cov matrix diagonal

Theorem 16.4 (Central Limit Theorem). (X_n) i.i.d with common law μ , finite moment of order 2, then $\sqrt{n}(\bar{X}_n - \mathbb{E}(X_1)) \to \mathcal{N}(0, Cov(X_1))$ in law

Fact. $\widehat{\mu_Y}(tu) = \widehat{\mu_{\langle Y,u \rangle}}(t)$

17 Introduction to Ergodic Theory

Setting 8. measurable map $T: X \to X$

- measure preserving map —— $T_*\mu = \mu$
- measure preserving system measure space (X, \mathcal{A}, μ) with measure preseving map T
- T-invariant function measurable $f = f \circ T$
- T-invariant subset $--- T^{-1}A = A$
- invariant σ -algebra \mathcal{I} —— $\{A: T^{-1}A = A\}$

Lemma 17.1. *f measurable functoin, then following equivalent:*

- (i) f T-invariant
- (ii) f measurable wrt \mathcal{I}
 - egodic wrt T T measure preserving, $\forall A \in \mathcal{I}, \, \mu(A) = 0$ or $\mu(A^c) = 0$

Fact. eqodic kind of irreducibility condition

Lemma 17.2. (X, \mathcal{A}, μ, T) measure preserving system, then following equivalent:

- (i) T ergodic
- (ii) every \mathcal{I} -measurable f, $f(x) \equiv a \mu$ -a.e. for some a

Setting 9 (circle rotation). $X = \mathbb{R}/\mathbb{Z}, T(x) = x + a$

Proposition 17.3. T ergodic iff a irrational

Fact (Parseval's formula). $f(x) = \sum \widehat{f}(n)e^{-i2\pi nx}$

Setting 10 (times 2 map on the circle). $X = \mathbb{R}/\mathbb{Z}$, $T_2(x) = 2x \mod \mathbb{Z}$

Proposition 17.4. T_2 ergodic

18 Canonical Model for Stochastic Process

Setting 11. $(X_n) \mathbb{R}^d$ r.v. on $(\Omega, \mathcal{F}, \mathbb{P})$ probability space

- space of sequences $(\mathbb{R}^d)^{\mathbb{N}}$
- sample path map Φ —— $\Phi(\omega) = (X_n(\omega))$
- shift map $T \longrightarrow T((x_n)_n) = (x_{n+1})_n$
- shift space
- coordinate functions $x_k x_k((x_n)_n) = x_k$

Setting 12. $X = ((\mathbb{R}^d)\mathbb{N})$ endowed σ -algebra $\mathcal{A} = \sigma(x_k)$

- cylinder set
- $-\pi_F$ F finite set of indices
- law of the stochastic process $\mu \longrightarrow \mu = \Phi_* \mathbb{P}$ prob measure on (X, \mathcal{A})
- canonical model —— (X, \mathcal{A}, μ, T)

Proposition 18.1. (X_n) stochastic process, (X, \mathcal{A}, μ, T) canonical model, then following equivalent:

- (i) (X, A, μ, T) measure preserving
- (ii) joint law of $(X_n, X_{n+1}, \dots, X_{n+k})$ independent of n
 - stationary

Proposition 18.2. (X_n) i.i.d. process, then

- (i) stationary
- (ii) canonical model ergodic
 - Bernoulli shift $\mu = \nu^{\otimes \mathbb{N}} \nu$ law of X_1

19 Mean Ergodic Theorem

Setting 13. (X, \mathcal{A}, μ, T) prob measure preserving system

$$-S_n(f) = \frac{1}{n} \sum_{i=0}^{n-1} f \circ T^i$$

Theorem 19.1 (Mean ergodic theorem in L^2). $f \in L^2(X, \mathcal{A}, \mu)$, then $\exists T$ -invariant $\bar{f} = \mathbb{E}(f|\mathcal{I})$ st $S_n(f) \to \bar{f}$ in L^2

- adjoint A^* —— $\mathcal H$ Hilbert space, A bounded linear map, then by Riesz $\exists A^*$ st $\langle Ax,y\rangle=\langle x,A^*y\rangle$
- involutive —— $A^{**} = A$

Fact.

- (i) $||A^*|| = ||A||$
- (ii) $||AA^*|| = ||A||^2$
 - $-U(f)=f\circ T$
 - co-boundaries $W = \{\phi U\phi\}$

Fact. \bar{f} orthogonal projection onto $W^{\perp} = \{g = Ug\}$

Corollary 19.2 (Mean ergodic theorem in L^p). $p \in [1, \infty)$, $f \in L^p$, then $\exists T$ -invariant $\bar{f} = \mathbb{E}(f|\mathcal{I})$ st $S_n(f) \to \bar{f}$ in L^p

$$-E_t = \{x : \sup_n S_n f(x) > t\}$$

Theorem 19.3 (Maximal ergodic theorem). $f \in L^1$, then $\mu(E_t) \leq \frac{1}{t} ||f||_1$

Lemma 19.4 (the maximal inequality). $f \in L^1$, $f_n = nS_n f$, $f_0 = 0$, $P_N = \{x : \max_{0 \le x \le N} f_n(x) > 0\}$, then $\int_{P_N} f d\mu \ge 0$

Theorem 19.5 (Pointwise ergodic theorem). $f \in L^1$, then $S_n(f) \to \bar{f}$ μ -a.e.

Fact. $ergodic \Rightarrow \mathbb{E}(f|\mathcal{I}) = \mathbb{E}(f)$

Fact. $f = \mathbb{1}_A$, orbit $\{T^n x\}$, then time spent in almost every orbit equidistributed

Corollary 19.6 (Strong law of large number). (X_n) i.i.d., $\mathbb{E}(||X_1||) < \infty$, then $\frac{1}{n} \sum S_i \to \mathbb{E}(X_1)$ a.s.

- $-\mathcal{I}(X)$ family of all T-invariant probability measures
- extremal --- $\mu \in \mathcal{I}, \nexists \mu_1, \mu_2 \text{ st } \mu = t\mu_1 + (1-t)\mu_2$

Proposition 19.7. $\mu \in \mathcal{I}(X)$, then ergodic iff extremal

20 Fun fact

- G_{δ} -set —— countable intersection of open sets
- locus of continuity —— set of continuous point

Fact. locus of continuity is G_{δ} -set

- Cantor function (a.k.a Devil staircase)