Spotify Documento de Arquitetura de Software

Gustavo Hammerschmidt

PUCPR - Pontíficia Universidade Católica Paraná Ciência da Computação Email: g.hammerschmidt@pucpr.edu.br

Karlos Eduardo de Oliveira Silva

PUCPR - Pontíficia Universidade Católica Paraná Engenharia de Software Email: karlos.silva@pucpr.edu.br

Data	Versão	Descrição	Autor
18/11/2020	1.0	Versão Final	Gustavo Hammerschmidt

Conteúdo

1	Introdução		
	1.1 Finalidade	. 2	
	1.2 Escopo		
	1.3 Definição de termos	. 2	
	1.3.1 Referências	. 2	
2	Representação da Arquitetura	2	
3	Objetivos e Restrições da Arquitetura	2	
4	Visão de Casos de Uso	3	
	4.1 Casos de uso	. 3	
	4.2 Casos de uso críticos	. 4	
	4.2.1 Caso crítico 1: Logar	. 4	
	4.2.2 Caso crítico 2: Reproduzir Shuffle	. 6	
	4.2.3 Caso crítico 3: Baixar Música	. 8	

5	Padrões Arquiteturais Selecionados5.1 Acesso do usuário à aplicação	9 9 10
6	Arquitetura Proposta	11
7	Cenários descritos e analisados - Análise Arquitetural	12
8	Visão de Processo	14
9	Visão de Implantação	
10	0 Visão de Implementação	
11	Tamanho e Desempenho	16
12	Qualidade	17

1 Introdução

Este documento de arquitetura de Software visa a apresentar a arquitetura da aplicação Spotify, diagramas de classe e componentes e seus casos de uso.

1.1 Finalidade

Este documento fornece uma visão arquitetural abrangente do sistema, usando diversas visões de arquitetura para representar diferentes aspectos do sistema. O objetivo deste documento é capturar e comunicar as decisões arquiteturais significativas que foram tomadas em relação ao sistema.

1.2 Escopo

Este Documento de Arquitetura de Software se aplica ao Sistema de Streaming de Músicas do Spotify.

1.3 Definição de termos

A definição de termos utilizados pode ser encontrada nas referências mencionadas abaixo.

1.3.1 Referências

As referências[1][2][3][4][5][6][7] estão anexadas ao fim deste documento.

2 Representação da Arquitetura

Este documento apresenta a arquitetura como uma série de visões: visão de casos de uso, visão de processos, visão de implantação e visão de implementação. Essas visões são apresentadas como Modelos do ASTAH e utilizam a Linguagem Unificada de Modelagem (UML).

3 Objetivos e Restrições da Arquitetura

É objetivo deste documento definir a estruturação dos comportamentos da aplicação Spotify e sua arquitetura de software; são restrições da arquitetura o conhecimento do funcionamento da aplicação por completo como contratos e pagamentos, e a qualidade mínima dos produtos exibidos e a limitação

das informações obtidas aos anos em que foram publicadas - o que pode infligir em uma desatualização deste documento em relação ao estado atual da aplicação. A aplicação também pode ser restringida por motivos de negócios e/ou sociopolíticos e geográficos.

4 Visão de Casos de Uso

Uma descrição da visão de casos de uso da arquitetura de software. A Visão de Casos de Uso é uma entrada importante para a seleção do conjunto de cenários e/ou casos de uso que são o foco de uma iteração. Ela descreve o conjunto de cenários e/ou os casos de uso que representam alguma funcionalidade central e significativa. Também descreve o conjunto de cenários e/ou casos de uso que possuem cobertura arquitetural substancial (que experimenta vários elementos de arquitetura) ou que enfatizam ou ilustram um determinado ponto complexo da arquitetura.

Os casos de uso deste sistema estão listados a seguir.

- * Buscar.
- * Adicionar Música à lista de músicas favoritas.
- * Remover Música da lista de músicas favoritas.
- * Escutar Rádio da música.
- * Baixar Podcast.
- * Baixar Playlist.
- * Baixar Música.
- * Escolher Qual Música Reproduzir.
- * Logar.
- * Fazer Playlist.
 - ** Tornar Pública.
 - ** Tornar Privada.
 - ** Adicionar Música.
 - ** Remover Música.

4.1 Casos de uso

Figura 1. Casos de uso.

A imagem acima demonstra todos os casos de uso listados e suas interações.

4.2 Casos de uso críticos

Abaixo, encontra-se três casos de uso críticos para aplicação e suas descrições.

4.2.1 Caso crítico 1: Logar

Ator: User

Resumo: O usuário pode se logar informando o número de telefone e senha, ou pela conta do google, facebook ou apple.

Mockup:

Figura 2. Login spotify.

Diagrama de classe:

Figura 3. Diagrama de Classes 1.

Diagrama de Sequência:

Figura 4. Diagrama de Sequência 1.

4.2.2 Caso crítico 2: Reproduzir Shuffle

Ator: User

Resumo: O usuário pode reproduzir músicas da sua playlist de forma aleatória.

Mockup:

Figura 5. Mockup Shuffle

Diagrama de classe:

Figura 6. Diagrama de Classes 2.

Diagrama de Sequência:

Figura 7. Diagrama de Sequência 2.

4.2.3 Caso crítico 3: Baixar Música

Ator: User_premium

Resumo: O usuário premium pode fazer o dowload da música desejada.

Mockup:

Figura 8. Mockup Baixar Música.

Diagrama de classe:

Figura 9. Diagrama de Classes 3.

Diagrama de Sequência:

Figura 10. Diagrama de Sequência 3.

5 Padrões Arquiteturais Selecionados

As arquiteturas escolhidas para o projeto Spotify foram a de microserviços e arquitetura em Layers, pois a arquitetura está distribuída geograficamente e, constantemente, é atualizada, bem como seus serviços são demandados de muitos lugares – ademais, a arquitetura em layers divide a aplicação em camadas para então estruturá-la da melhor forma hierárquica possível, de modo a prover uma estrutura de microserviços geograficamente distribuída.

5.1 Acesso do usuário à aplicação

O diagrama abaixo demonstra como o usuário se comunica com a aplicação.

Figura 11. Interação do usuário com a plataforma.

5.2 Localização de arquivos pela aplicação

A figura abaixo demonstra como os arquivos da aplicação são salvos.

Figura 12. Salvamento de arquivos.

A figura abaixo demonstra como arquivos são requisitados e. no caso das playlists, até modificados.

Figura 13. Requisito de arquivo.

6 Arquitetura Proposta

Esta é a arquitetura proposta para a aplicação: uma arquitetura de microserviços em conjunto com a estruturação de seus componentes em layers - que estão distribuídos geograficamente. Veja a figura abaixo para compreender a estruturação da aplicação.

Figura 14. Arquitetura Proposta.

7 Cenários descritos e analisados - Análise Arquitetural

Abaixo, esta uma lista dos cenários descritos e suas análises.

Atributo de Qualidade	Descrição	o do Cenário
Cenário 1:	Fonte	Aplicação
Manutenibilidade	Estímulo	Tornar a aplicação de fácil acesso e manutenção
	Artefato	Access Point.
	Ambiente	Controle do comportamento da aplicação
	Resposta	Cobertura de teste e acompanhamento da equipe
	Medida	Time analista observando comportamentos.
Cenário 2: Desempenho	Fonte	Aplicação
	Estímulo	Tempo de Resposta Efetivo
	Artefato	Browser, Search e Access Point
	Ambiente	Funcionamento ideal em servidor
	Resposta	Desenvolvimento procedural
	Medida	Processamento com base na performance e tempo tomado.
Cenário 3: Disponibilidade	Fonte	Usuário
	Estímulo	Acessibilidade em diferentes plataformas.
	Artefato	Access Point.
	Ambiente	Ser Responsivo em diferentes sistemas
	Resposta	Desenvolvimento de soluções multiplataforma.
	Medida	Implementar as funcionalidades da aplicação em diferentes
		plataformas.
Cenário 4: Segurança	Fonte	Aplicação.
	Estímulo	Segurança dos dados sensíveis do Usuário
	Artefato	User e Access Point.
	Ambiente	Proteção de recursos da aplicação
	Resposta	Seguir os padrões da LGPD
	Medida	Manter os dados tratados e em um local Seguro.
Cenário 5: Performance	Fonte	Aplicação
	Estímulo	Funcionar em tempo de execução com eficiência.
	Artefato	Storage, Browse e Access Point.
	Ambiente	Desempenho da aplicação no servidor.
	Resposta	Desenvolvimento de Clean Code e técnicas de programação
		funcional.
	Medida	Manter o versionamento de Código em repositório.

Figura 15. Cenários descritos.

Análise do Cenário 1		
Sumário	Manutenção no código da aplicação	
Objetivo de	Facilitar a manutenção da aplicação pelas equipes.	
Negócio		
Atributo de	Manutenibilidade	
Qualidade		
Abordagem	Análise do comportamento da aplicação pelas equipes de QA.	
Riscos	Qualidade da análise	
Tradeoffs	Melhorias na aplicação e uso de uma equipe de análise.	

Figura 16. Análise Cenário 1.

Análise do Cenário 2		
Sumário	Tempo que o servidor leva para resolver os problemas de um usuário.	
Objetivo de	Prover desempenho para a aplicação no servidor.	
Negócio		
Atributo de	Desempenho.	
Qualidade		
Abordagem	Desenvolvimento procedural da aplicação.	
Riscos	Nenhum.	
Tradeoffs	Tempo de eficiência na aplicação no servidor com o tempo da rede.	

Figura 17. Análise Cenário 2.

Análise do Cenário 3		
Sumário	O sistema deve estar disponível em diferentes plataformas.	
Objetivo de	Ofertar a aplicação a um público maior.	
Negócio		
Atributo de	Disponibilidade	
Qualidade		
Abordagem	Implementação de soluções gerais e multiplataforma.	
Riscos	Eficiência da aplicação em diferentes plataformas.	
Tradeoffs	Amplitude da distribuição contra a eficiência.	

Figura 18. Análise Cenário 3.

Análise do Cenário 4		
Sumário	A aplicação deve garantir a segurança dos dados do usuário.	
Objetivo de	Ser uma aplicação confiável.	
Negócio		
Atributo de	Segurança	
Qualidade		
Abordagem	Uso de validação dos dados e aplicação da LGPD.	
Riscos	Vulnerabilidade a ataques não sofridos	
Tradeoffs	Complexidade da aplicação em prol da segurança dos dados.	

Figura 19. Análise Cenário 4.

Análise do Cenário 5		
Sumário	O sistema deve performar de forma que tenha o melhor desempenho possível no servidor.	
Objetivo de	Garantir que a aplicação resolva os pedidos do usuário.	
Negócio		
Atributo de	Performance	
Qualidade		
Abordagem	Desenvolvimento com base em técnicas de programação procedural e funcional e testes da	
	aplicação.	
Riscos	O Desenvolvimento de uma aplicação eficiente pode consumir muito tempo.	
Tradeoffs	Custo de desenvolvimento com base em melhor performance da aplicação.	

Figura 20. Análise Cenário 5.

8 Visão de Processo

Esta seção descreve a decomposição do sistema em processos. Neste momento, é possível decompor as rotinas da aplicação em subprocessos como demonstrado abaixo.

Figura 21. Visão dos processos da arquitetura.

9 Visão de Implantação

A aplicação será implantada em 4 níveis. No primeiro, o cliente, quem solicita serviços à aplicação. No segundo o Resolver local da aplicação que comunica o pedido ao nó authenticate da região. No terceiro, o no authenticate responde ao serviço ou o encaminha para o nível 4. No quarto, a aplicação responde aos pedidos que não estão em âmbito regional, atualizando o cache dos nós pedintes de forma a manter o serviço requisitado para demandas a posteriori. As comunicações entre níveis são feitas por meio da internet e cada nível é um componente da aplicação implementado em um servidor de forma geográfica e lógica. Veja a figura abaixo para compreender a implantação, a figura 13 serve de referência a essa estrutura.

Figura 22. Implementação da arquitetura.

10 Visão de Implementação

O software do servidor reside em 3 camadas distribuídas de forma geográfica e hierárquica. O cliente fornece uma camada de acesso secundária.

11 Tamanho e Desempenho

O software suportará, em escala global, a propagação de serviços a múltiplos usuários em rede simultaneamente.

12 Qualidade

O software administrará serviços distribuídos geograficamente e indexará novos conteúdos conforme forem adicionados; também, promoverá o uso fácil desta arquitetura pelo usuário com interfaces de uso fácil e autodescritiva.

Referências

- [1] L. Root. "Spotify's Love/Hate Relationship with DNS". Em: LYNN ROOT WORDS (). DOI: https://www.roguelynn.com/words/spotifys-love-hate-relationship-with-dns/.
- [2] A. Martin. "Big Data Spotify Data Architecture". Em: *KindPNG* (). DOI: https://www.kindpng.com/imgv/JTxbbm_big-data-spotify-data-architecture-hd-png-download/.
- [3] JetBrains. "What is Spotify's architecture?" Em: Quora (). DOI: https://www.quora.com/What-is-Spotifys-architecture?share=1.
- [4] Kevin Goldsmith. "GOTO 2015 Microservices at Spotify Kevin Goldsmith". Em: *Youtube* (). DOI: https://www.youtube.com/watch?v=7LGPeBgNFuU&feature=emb_logo.
- [5] Gonzalo P. "Microservices Architecture at Spotify". Em: *CODEBASE* (). DOI: https://medium.com/codebase/microservices-architecture-at-spotify-beac905e9622.
- [6] Spotify Engineering. "Spotify Modernizes Client-Side Architecture to Accelerate Service on All Devices". Em: Spotify R&D Engineering (). DOI: https://engineering.atspotify.com/2020/05/28/spotify-modernizes-client-side-architecture-to-accelerate-service-on-all-devices/.
- [7] Spotify Engineering. "When Should I Write an Architecture Decision Record". Em: Spotify R&D Engineering (). DOI: https://engineering.atspotify.com/2020/04/14/when-should-i-write-an-architecture-decision-record/.