CUDA Architecture

CPU v/s GPU

Theoretical GB/s

GPU and CPU

- Typically GPU and CPU coexist in a heterogeneous setting
- "Less" computationally intensive part runs on CPU (coarse-grained parallelism), and more intensive parts run on GPU (fine-grained parallelism)
- NVIDIA's GPU architecture is called CUDA (Compute Unified Device Architecture) architecture, accompanied by CUDA programming model, and CUDA C language

Programming Model

Programming Model

- All threads in a grid run the same kernel code (SPMD)
- Each thread has indexes that it uses to compute memory addresses and make control decisions.
 - blockldx.x*blockDim.x+threadIdx.x
- Threads run in groups of 32 called warps
 - Threads in a warp execute in SIMD
- Every thread in a warp executes the same instruction at a time

Warp example

- If 3 blocks are assigned to an SM and each block has 256 threads, how many Warps are there in an SM?
 - Each Block is divided into 256/32 = 8 Warps
 - There are 8 * 3 = 24 Warps

Onde os blocos são executados

Warp Scheduler

Instruction Dispatch

Warp 3 instruction 7

Warp 9 instruction 11

Warp 21 instruction 2

•

Instruction Dispatch

Warp 3 instruction 8

Warp 9 instruction 12

Warp 21 instruction 3

Warp 9 instruction 13

Warp 21 instruction 4

Warp 3 instruction 9

Warp 9 instruction 14

Warp 21 instruction 5

Warp 3 instruction 10

Onde os blocos são executados

Transparent Scalability

- Each block can execute in any order relative to others.
 - Hardware is free to assign blocks to any processor at any time
 - A kernel scales to any number of parallel processors

Execution Model

Software

Hardware

Threads are executed by scalar CUDA Cores

Thread blocks are executed on multiprocessors

Thread blocks do not migrate

Several concurrent thread blocks can reside on one multiprocessor - limited by multiprocessor resources (shared memory and register file)

A kernel is launched as a grid of thread blocks

CUDA Memory Spaces

- Each thread can:
 - Read/write per-thread registers
 - Read/write per-thread local memory
 - Read/write per-block shared memory
 - Read/write per-grid global memory
 - Read only per-grid constant memory
 - Read only per-grid texture memory

The host can read/write global, constant, and texture memory (stored in DRAM)

Grid

Host

Thread Memory Access

NVIDIA Kepler K40

- 2880 streaming processors/cores (SPs) organized as 15 streaming multiprocessors (SMs)
- Each SM contains 192 cores
- Memory size of the GPU system: 12 GB
- Clock speed of a core: 745 MHz

Technical specifications	Compute capability (version)										
	1.0	1.1	1.2	1.3	2.x	3.0	3.5	3.7	5.0	5.2	
Maximum dimensionality of grid of thread blocks			2					3			
Maximum x-dimension of a grid of thread blocks	65535 2 ³¹ -1										
Maximum y-, or z-dimension of a grid of thread blocks	65535										
Maximum dimensionality of thread block	3										
Maximum x- or y-dimension of a block	512 1024										
Maximum z-dimension of a block	64										
Maximum number of threads per block	512 1024										
Warp size	32										
Maximum number of resident blocks per multiprocessor	8				16		32				
Maximum number of resident warps per multiprocessor	24	4		32	48	64					
Maximum number of resident threads per multiprocessor	76	8	10	024	1536 2048						
Number of 32-bit registers per multiprocessor	8	K	1	6 K	32 K	64	4 K	128 K	64 K		
Maximum number of 32-bit registers per thread	128 63 255				5						
Maximum amount of shared memory per multiprocessor	16 KB 48 KB 112 KB				64 KB	96 KB					
Number of shared memory banks	16 32										
Amount of local memory per thread	16 KB 512 KB										
Constant memory size	64 KB										
Cache working set per multiprocessor for constant memory	8 KB 10 KE						KB				
Cache working set per multiprocessor for texture memory	Device dependent, between 6 KB and 8 KB				12	KB Between 12 KB and 48 KB		24 KB			
Maximum width for 1D texture reference bound to a CUDA array	8192					65536					
Maximum width for 1D texture	2 ²⁷										
reference bound to linear memory											

Tesla Products	Tesla K40	Tesla M40	Tesla P100
GPU	GK110 (Kepler)	GM200 (Maxwell)	GP100 (Pascal)
SMs	15	24	56
TPCs	15	24	28
FP32 CUDA Cores / SM	192	128	64
FP32 CUDA Cores / GPU	2880	3072	3584
FP64 CUDA Cores / SM	64	4	32
FP64 CUDA Cores / GPU	960	96	1792
Base Clock	745 MHz	948 MHz	1328 MHz
GPU Boost Clock	810/875 MHz	1114 MHz	1480 MHz
Compute Performance - FP32	5.04 TFLOPS	6.82 TFLOPS	10.6 TFLOPS
Compute Performance - FP64	1.68 TFLOPS	0.21 TFLOPS	5.3 TFLOPS
Texture Units	240	192	224
Memory Interface	384-bit GDDR5	384-bit GDDR5	4096-bit HBM2
Memory Size	Up to 12 GB	Up to 24 GB	16 GB
L2 Cache Size	1536 KB	3072 KB	4096 KB
Register File Size / SM	256 KB	256 KB	256 KB
Register File Size / GPU	3840 KB	6144 KB	14336 KB
TDP	235 Watts	250 Watts	300 Watts
Transistors	7.1 billion	8 billion	15.3 billion
GPU Die Size	551 mm²	601 mm ²	610 mm²
Manufacturing Process	28-nm	28-nm	16-nm

P100

Tesla P100 accelerators have four 4-die HBM2 stacks, for a total of 16 GB of memory, and **720** GB/s peak bandwidth, which is 3 times higher than the Tesla M40 memory bandwidth