Ch1. Transfer learning

How transferable are features in deep neural networks?

A Baseline for Few-Shot Image Classification

Transfer learning

- Pre-trained model(사전 학습된 모델)을 가져다 사용 하는 것
- 다른 데이터 셋으로 잘 학습되어 있는 모델을 사용
 - → 학습을 빠르게 진행

Fine tuning

• Task에 따른 Fine tuning

Few/One shot learning

• Few shot learning의 문제

• One shot learning의 문제

Basic Idea

- Learn similarity function: sim(x, x')
- Ideally, sim(x1, x2) = 1, sim(x1, x3)=0, and sim(x2, x3)=0

Rabbit x1

Cosine Similarity

- x, w를 unit vector로 가정:
 - $||x||_2 = 1$ and $||w||_2 = 1$
- Cosine similarity :
 - $\cos \theta = x^T w$

Few-Shot Prediction Using Pretrained model

• Pretrained 모델(feature extractor for CNN)

Making Few-Shot Prediction

Making Few-Shot Prediction

Normalized mean feature vectors

$$M = \begin{bmatrix} \mu_1 \\ \mu_2 \\ \mu_3 \end{bmatrix}$$

Make prediction: P = Softmax(Mq)

Few-Shot Prediction

Fine-Tuning

Prediction made by Softmax classifier

• P = Softmax(W·f(x) + b) = Softmax
$$\begin{bmatrix} sim(w_1, q) + b_1 \\ sim(w_2, q) + b_2 \\ sim(w_3, q) + b_3 \end{bmatrix}$$

Initialization: W = M and b = 0

Summary

- Transfer learning
 - Fine-tuning
 - Few/one shot learning