

In this example, target transmits more data to the host than from host to target. The host displays the received data at a slower rate.

0. Objective

target model

target transmits at 20 kHz / 50e-6 s; host receives at 0.03s, i.e. 600 times slower than target's TX.

1. configuration

from the diagram, the target's TX rate is determined by the ADC Interrupt, which should be set to 50e-6 s. then, let's the scheduling

2. function blocks setting

generate an event at a condition to enable ADC start of conversion (SOC). So ADC also converts at 50e-6s. At the end of conversion (EOC), ADC should generate an interrupt which is exactly the trigger of the function-call system to close the loop. Therefore, the function-call subsystem will be executed at 50e-6s. **ISR (Interrupt Service Routine)**

In the function-call subsystem, the PWM generator can be set to generate pulses with period of 50e-6s and

◆ Hardware Mapping: target_sci_frame_tx

lim

which means to inherit from the rate of the caller. constant can be set as inf too.

2500 :

C28x

function-call systme: ADC

needs to be divided by 2 because the counting mode is up-down

SOC Trigger

Input Channels

Timer period units: Clock cycles 🗸 Specify timer period via: Specify via dialog Timer period:

floor((100e6*50e-6)/2) EPWMCLK*Ts/2

'SS' Additional package terminator: 'EE'

host model

Frame size: 600

Output status

Wait until previous data transmitted

<u>0</u>K <u>C</u>ancel <u>H</u>elp <u>Apply</u>

Baud rate: 5e6

Host Serial Setup

► Data

SCI XMT

SCI Transmit

÷

ŧ

ŧ

1. configuration

3. Build, Deploy & Start target model

