

 4 CONTENTS

1. Conditional Expectation

■ Example 1.1 — Running example 1 (Inspired by Gordan Zitkovic lecture notes). Throughout this chapter the probability space $(\Omega, \mathcal{F}, \mathbb{P})$ where $\Omega = \{a, b, c, d, e, f\}$, $\mathbb{F} = \mathcal{P}(\Omega)$, and \mathbb{P} uniform will be running example to demonstrate different notions in a tangible way. The following random variables defined as

$$X:(\Omega,\mathcal{F})\to (I,\mathcal{I}), \qquad Y:(\Omega,\mathcal{F})\to (I,\mathcal{I}), \qquad Z:(\Omega,\mathcal{F})\to (I,\mathcal{I}),$$

where $I = \{1, ..., 10\}$ and $\mathcal{I} = \mathcal{P}(I)$. will be in particular useful:

$$X = \begin{pmatrix} a & b & c & d & e & f \\ 1 & 3 & 3 & 5 & 5 & 7 \end{pmatrix}, \quad Y = \begin{pmatrix} a & b & c & d & e & f \\ 2 & 2 & 1 & 1 & 7 & 7 \end{pmatrix}, \quad Z = \begin{pmatrix} a & b & c & d & e & f \\ 3 & 3 & 3 & 3 & 2 & 2 \end{pmatrix}.$$

It is also important to describe $\sigma(X), \sigma(Y)$, and $\sigma(Z)$ explicitly. The atoms of $\sigma(X)$ will be the $X^{-1}(1) = \{a\}, X^{-1}(2) = \{b\}, X^{-1}(3) = \{c\}, X^{-1}(5) = \{d\}, X^{-1}(7) = \{e\}, X^{-1}(11) = \{f\}$. Thus $\sigma(X) = \mathcal{P}(\Omega)$. With a similar argument the atoms of $\sigma(Y)$ is $Y^{-1}(4) = \{a,b\}, Y^{-1}(4) = \{c,d\}, Y^{-1}(6) = \{e,f\}$. And finally, the atoms of Z will be $Z^{-1}(8) = \{a,b,c,d\}$, and $Z^{-1}(9) = \{e,f\}$. In summary

$$\begin{split} & \operatorname{Atom}(\sigma(X)) = \{\{a\}, \{b\}, \{c\}, \{d\}, \{e\}, \{f\}\}, \\ & \operatorname{Atom}(\sigma(Y)) = \{\{a, b\}, \{c, d\}, \{e, f\}\}, \\ & \operatorname{Atom}(\sigma(Z)) = \{\{a, b, c, d\}, \{e, f\}\}. \end{split}$$

- Example 1.2 Running example 2 (inspired from Nima Moshayedi's lecture notes). $N \sim \operatorname{Poisson}(\lambda)$. Consider a game, where we say that when N=n we do n independent tossing of a coin where each time one obtains 1 with probability $p \in [0,1]$ and 0 with probability 1-p. Define also S to be the random variable giving the total number of 1 obtained in the game. Therefore, if N=n is given, we get that S has binomial distribution with parameters (p,n).
- Example 1.3 Running example 3. I will add some suitable random variable with density function $f_{X,Y}(x,y)$. The goal is to later calculate $f_{X|Y}(x,y)$ and $\mathbb{E}\big[X|Y\big]$, etc. TODO: Will be designed and added later.

We will be using the simple lemma below to demonstrate the main ideas of the conditional expectation.

Lemma 1.1 — Projection Lemma. Let $(\Omega, \mathcal{F}, \mathbb{P})$ be a probability space and X a non-negative random variable. Then $\mathbb{E}[X] \in \mathbb{R}$ is the unique number that minimizes

$$\mathbb{E}\big[|X-n|^2\big]$$

over all choices for $n \in \mathbb{R}$.

Proof. By differentiating and setting equal to zero we will have

$$0 = \frac{d}{dn} \mathbb{E}\left[\frac{d}{dn}|X - n|^2\right] = \mathbb{E}\left[|X|\right] - \mathbb{E}\left[|n|\right].$$

So

$$\mathbb{E}\big[X\big] = n.$$

1.1 Conditional Probability (Discrete Case)

Summary 1.1 Let $(\Omega, \mathcal{F}, \mathbb{P})$ be a probability space, and $X, Y : \Omega \to I$ discrete random variables. Then the conditional expectation $\mathbb{E}[X|Y] : \Omega \to \mathbb{R}$:

- (i) (Projective definition) is the unique $\sigma(Y)$ measurable random variable that minimizes $\mathbb{E}\big[|X'-X|^2\big]$ among all $\sigma(Y)$ measurable random variables X'. So $\mathbb{E}\big[X|Y\big]$ can be thought as the orthogonal projection of $X\in L^2(\Omega,\mathcal{F},\mathbb{P})$ to the subspace $L^2(\Omega,\sigma(Y),\mathbb{P})$.
- (ii) (Alternative definition) is a random variable whose values are given as

$$\mathbb{E} \big[X | Y \big] (\omega) = \sum_{n \in I} n \mathbb{P} (X = n | Y = Y(\omega)).$$

The nice thing about considering the conditional probability in the discrete case is the ability to do some explicit calculations.

Proposition 1.1 — Properties of conditional expectation. 1. Tower property: If $\sigma(Z) \subseteq^{\sigma} \sigma(Y)$ then

$$\mathbb{E} \big[\mathbb{E} \big[X | Y \big] | Z \big] = \mathbb{E} \big[X | Y \big].$$

2. Pulling out what is known: Let Z be $\sigma(Y)$ measurable. Then

$$\mathbb{E}\big[XZ|Y\big] = Z\mathbb{E}\big[X|Y\big].$$

■ Example 1.4 In the running example in Example 1.1 calculate $\mathbb{E}[X|Y]$, $\mathbb{E}[X|Z]$, and explicitly verify if these random variables are $\sigma(Y)$ and $\sigma(Z)$ measurable (respectively). Then check the properties in Proposition 1.1.

Solution Recall that we had

$$X = \begin{pmatrix} a & b & c & d & e & f \\ 1 & 3 & 3 & 5 & 5 & 7 \end{pmatrix}, \quad Y = \begin{pmatrix} a & b & c & d & e & f \\ 2 & 2 & 1 & 1 & 7 & 7 \end{pmatrix}, \quad Z = \begin{pmatrix} a & b & c & d & e & f \\ 3 & 3 & 3 & 3 & 2 & 2 \end{pmatrix}.$$

Calculating $\mathbb{E}[X|Y]$: So we want to calculate $\mathbb{E}[X|Y]$. Let $\omega \in \Omega$. Then

$$\mathbb{E}[X|Y](\omega) = \sum_{n=0}^{\infty} n\mathbb{P}(X = n|Y = Y(\omega)).$$

When $\omega = a$ we have

$$\mathbb{E}[X|Y](a) = 1 \cdot \frac{\mathbb{P}(X=1, Y=2)}{\mathbb{P}(Y=2)} + 3 \cdot \frac{\mathbb{P}(X=3, Y=2)}{\mathbb{P}(Y=2)} = (1+3)/2 = 2.$$

With a similar argument we can calculate $\mathbb{E}[X|Y](b) = 2$. Let $\omega = c$. Then

$$\mathbb{E}\left[X|Y\right](c) = 3 \cdot \frac{\mathbb{P}(X=3,Y=1)}{\mathbb{P}(Y=1)} + 5 \cdot \frac{\mathbb{P}(X=5,Y=1)}{\mathbb{P}(Y=1)} = (3+5)/2 = 8.$$

With similar calculations we can see that

$$\mathbb{E}\big[X|Y\big] = \begin{pmatrix} a & b & c & d & e & f \\ 2 & 2 & 4 & 4 & 6 & 6 \end{pmatrix}.$$

Calculating $\mathbb{E}[X|Z]$: Similar to above, let $\omega = a$. Then

$$\mathbb{E} \big[X | Z \big] (a) = 1 \cdot \frac{\mathbb{P}(X = 1, Z = 3)}{\mathbb{P}(Z = 3)} + 3 \cdot \frac{\mathbb{P}(X = 3, Z = 3)}{\mathbb{P}(Z = 3)} + 3 \cdot \frac{\mathbb{P}(X = 3, Z = 3)}{\mathbb{P}(Z = 3)} + 5 \cdot \frac{\mathbb{P}(X = 5, Z = 3)}{\mathbb{P}(Z = 3)} = (1 + 3 + 3 + 5)/4 = 3.$$

And with a similar computation we will get $\mathbb{E}[X|Y](e) = 6$. So we can write

$$\mathbb{E}\big[X|Z\big] = \begin{pmatrix} a & b & c & d & e & f \\ 3 & 3 & 3 & 3 & 6 & 6 \end{pmatrix}.$$

Measurability of $\mathbb{E}[X|Y]$, $\mathbb{E}[X|Z]$: Recall the atoms of the σ -algebra generated by X, Y, Z as

$$\begin{split} & \text{Atom}(\sigma(X)) = \{\{a\}, \{b\}, \{c\}, \{d\}, \{e\}, \{f\}\}\}, \\ & \text{Atom}(\sigma(Y)) = \{\{a, b\}, \{c, d\}, \{e, f\}\}, \\ & \text{Atom}(\sigma(Z)) = \{\{a, b, c, d\}, \{e, f\}\}. \end{split}$$

So it is clear that $\mathbb{E}\big[X|Y\big]$ is $\sigma(Y)$ -measurable, while $\mathbb{E}\big[X|Z\big]$ is $\sigma(Z)$ -measurable.

Verification of the projection interpretation. Recall Lemma 1.1. Then it immediately follows that the only function that assumes constant values on the atoms of $\sigma(Y)$ (or $\sigma(Z)$), hence $\sigma(Y)$ -measurable (or $\sigma(Z)$ -measurable) is the function that assumes the average value of Y (or Z) on the atoms of $\sigma(Y)$ (or $\sigma(Z)$) with the law $\mathcal{L}(|A|)$ (or $\mathcal{L}(|B|)$) where A is an atom of $\sigma(X)$ (or where B is an atom of $\sigma(Y)$).

Checking the Tower property. For an easier notation we will write $\tilde{X}_Y = \mathbb{E}[X|Y]$, and $\tilde{X}_Z = \mathbb{E}[X|Z]$. Then

$$\mathbb{E}[\mathbb{E}[X|Y]|Z](a) = \mathbb{E}[\tilde{X}_Y|Z] = (2+2+4+4)/4 = 3,$$

and similarly we can compute

$$\mathbb{E}\big[\mathbb{E}\big[X|Y\big]|Z\big] = \begin{pmatrix} a & b & c & d & e & f \\ 3 & 3 & 3 & 3 & 6 & 6 \end{pmatrix}.$$

And similarly we can compute

$$\mathbb{E}\big[X|Z\big] = \begin{pmatrix} a & b & c & d & e & f \\ 3 & 3 & 3 & 3 & 6 & 6 \end{pmatrix}.$$

In this case that the sample space and the random variables are finite, this property exactly translates to the fact that in order to compute the average of say n numbers, it is the same if we compute the average for the some disjoint sub-collections and then average those average values. Checking the pull out property. Let W be a random variable that is $\sigma(Y)$ measurable, say given as

$$W = \begin{pmatrix} a & b & c & d & e & f \\ 5 & 5 & 6 & 6 & 7 & 7 \end{pmatrix}$$

Then

$$WX = \begin{pmatrix} a & b & c & d & e & f \\ 5 & 15 & 18 & 30 & 35 & 49 \end{pmatrix}$$

So we can compute

$$\mathbb{E}\big[WX|Y\big] = \begin{pmatrix} a & b & c & d & e & f \\ 10 & 10 & 24 & 24 & 42 & 42 \end{pmatrix}.$$