Math 835 Homework 1

Theo Koss

September 2024

1 Chapter 13

1.1 Chapter 2

1. Prove that if $\operatorname{ch} \mathbb{F} = p$, then $|\mathbb{F}| = p^n$.

Proof. Let \mathbb{F} be a field with $\operatorname{ch} \mathbb{F} = p$. Consider the prime subfield $K < \mathbb{F}$, generated by 1_F . From the book, $F \supset \langle 1_F \rangle \cong \mathbb{Z}_p$ if $\operatorname{ch} \mathbb{F} = p$. Consider the vector space over K, and since K has p elements, we have finitely many choices for the basis. WLOG, choose a basis b_1, b_2, \ldots, b_n . Then $[K : F] = \dim_F K = n$ and so $|\mathbb{F}| = p^n$.

14. Prove that if $[F(\alpha):F]$ is odd, then $F(\alpha)=F(\alpha^2)$

Proof. Let $[F(\alpha): F]$ be odd. Then the degree of the minimal polynomial of α is odd. By way of contradiction, assume $F(\alpha^2) \neq F(\alpha)$. In particular, $\alpha \notin F(\alpha^2)$ Then the extension of $F(\alpha)/F(\alpha^2)$ is quadratic, with minimal polynomial $x^2 - \alpha^2$. But this is a problem because by theorem 14,

$$[F(\alpha):F] = [F(\alpha):F(\alpha^2)] \cdot [F(\alpha^2):F]$$

But we assumed LHS is odd, and showed that $F(\alpha)/F(\alpha^2)$ is quadratic. Contradiction. Therefore, $\alpha \in F(\alpha^2)$. Which implies $F(\alpha) = F(\alpha^2)$

- 18. Let k be a field and let k(x) be the field of rational functions in x with coefficients from k. Let $t \in k(x)$ be the rational function $\frac{P(x)}{Q(x)}$ with relatively prime polynomials $P(x), Q(x) \in k[x]$, with $Q(x) \neq 0$. Then k(x) is an extension of k(t) and to compute its degree it is necessary to compute the minimal polynomial with coefficients in k(t) satisfied by x.
 - (a). Show that the polynomial P(X) tQ(X) in the variable X and coefficients in k(t) is irreducible over k(t) and has x as a root.

$$P(X) - tQ(X) = 0$$
 is linear in $(k[X])[t]$ so it is irreducible

It also (trivially) has x as a root. We also have that (k[X])[t] = (k[t])[X] so P(X) - tQ(X) is irreducible in (k(t))[X].

(b). Show that the degree of P(X) - tQ(X) as a polynomial in X with coefficients in k(t) is the maximum of the degrees of P(x) and Q(x).

Proof. Let $n \in \mathbb{N}$ be the maximum of the degrees of P(x) and Q(x). So we may now write them as:

$$P(x) = a_n x^n + \dots + a_1 x + a_0$$

$$Q(x) = b_n x^n + \dots + b_1 x + b_0$$

Where a_n and b_n are not both 0. Now we can analyse the leading term in P(X) - tQ(x), which is $a_n - tb_n$. We must show $a_n \neq tb_n$. This is true because $t \in k(x)$ but $t \notin k$, so t is some rational polynomial in x, not a constant, and a_n is just a constant. So $a_n - tb_n \neq 0$ and therefore deg(P(X) - tQ(X)) = n which we defined to be the maximum of the degrees.

(c). Show that

$$[k(x):k(t)] = \left[k(x):k\left(\frac{P(x)}{Q(x)}\right)\right] = \max(\deg P(x),\deg Q(x))$$

Proof. We have from part (a). that P(X)-tQ(X) is irreducible in (k(t))[X] and has x as a root, so we can mod out by the polynomial to get

$$k(x) \cong (k(t)[X])/\langle P(X) - tQ(X)\rangle$$

By part (b), we have that the degree of this extension is the maximum of the degrees of the polynomials. So

$$[k(x):k(t)] = \max(\deg P(x),\deg Q(x))$$

As required. \Box