1.723 - Computational Methods for Flow in Porous Media Homework #7

Due on Thursday, April 30 2015

Problem 1 (3 points) Consider a one-dimensional finite difference grid with N points in the interval [0,1].

- (a) Use Taylor expansions to develop difference formulas for the first derivative at the points near the boundary, namely $i=\{1,2,N-1,N\}$. Use stencils with four points.
- (b) Combine your boundary formulas with the centered, fourth-order formula for interior points,

 $w_j = \frac{-u_{j+2} + 8u_{j+1} - 8u_{j-1} + u_{j-2}}{12h}. (1)$

Write a code that generates the differentiation matrix for a grid with N nodes, and approximates the derivative of the function $u(x) = e^{\sin(2\pi x)}$. Study the convergence as N increases, and discuss your results.

- **Problem 2 (3 points)** Consider a one-dimensional finite difference periodic grid with N points in the interval $[-\pi + h, \pi]$: $\{x_1, x_2, \ldots, x_N\} = \{-\pi + h, -\pi + 2h, \ldots, \pi\}$, where the grid spacing is $h = 2\pi/N$. Note that for a periodic grid $x_0 = x_N$. We are interested in approximating the second derivative, $u''(x_j)$, $j = 1, 2, \ldots, N$, of a function u(x) using a centered, fourth-order accurate, finite difference method.
 - (a) Construct the differentiation matrix $\boldsymbol{D}^{(2)}$ in the formula $\boldsymbol{u}^{(2)} = \boldsymbol{D}^{(2)} \boldsymbol{u}$.
 - (b) Let $u(x) = e^{\sin^2(x)}$. Study convergence of your finite difference approximation for this function. Plot the error of approximation vs. N for $N = \{2^3, 2^4, \dots, 2^{12}\}$. What rate of convergence do you observe? Comment.
 - (c) Repeat (b) for $u(x) = e^{\sin(x)|\sin(x)|}$. What rate of convergence do you observe? Comment.
- **Problem 3 (4 points)** Consider a one-dimensional finite difference grid with N=4 points, $x_j=\{x_1,x_2,x_3,x_4\}$ and non-uniform spacing $\{x_2-x_1,x_3-x_2,x_4-x_3\}=\{h_1,h_2,h_3\}$ in the interval [-1,1].
 - (a) Use polynomial interpolation to derive a finite difference approximation for $u''(x_2)$ that is as accurate as possible for smooth functions u(x), based on the four values $u_j = u(x_j)$. Give an expression for the dominant term in the error. Verify your expression for the error by testing your formula with a specific function and various values of h_1, h_2, h_3 .
 - (b) Let $h_1 = h_2 = h_3 = h = 2/(N-1)$ and $u(x) = \sin(x)$. Calculate the global polynomial interpolant $p(x) = \sum_{j=1}^{N} l_j(x)u_j$ using the Lagrange polynomials $l_j(x)$. Plot u(x) and p(x) vs. x on the same plot for $x_i = -1:0.1:1$. Does the global interpolant approximate the function well?

- (c) Repeat (b) with $u(x) = 1/(1 + 16x^2)$. Use two uniformly-spaced grids: N = 4 and N = 20. Use P=lagrangepoly(x_j, u_j) to generate the polynomial coefficients P and use the in-built function polyval(P, x_in) to generate the polynomial p(x). What is different from your observation in (b), and why?
- (d) Repeat (c) for a non-uniform grid $x_j = \{\cos \frac{\pi j}{N-1}\}, j = 0, 1, \dots, N-1$. Between (c) and (d), which interpolant is doing a better job in interpolating the underlying function u(x), and why?