题目来源: 【PR #11】作业

算法—
$$n=2$$
且 $a_i < 5$

先暴力求出每个长度时每个最小表示位置的概率,询问时枚举位置算答案。

期望得分5分。

算法二 $a_i \leq 5$

根据期望的线性性/可加性,执行n次询问求和。

注意 n=1 的情况要特判。

期望得分10分。

算法三 a_i 全为质数

问题可以一般化成求两个字符串的 f 值相等的概率。

一个字符串 s 的 f 值和它的循环节长度有关,设循环节长度为 d,则 $f(s) \in [1,d]$,且 $f(s) = i \in [1,d]$ 的概率都是相等的,因为每组循环同构的字符串在每个位置都有 1 的贡献。

 a_i 为质数,那么循环节长度只可能是 1 和 a_i ,概率分别为 $\dfrac{26}{26a_i}$ 和 $1-\dfrac{26}{26a_i}$

考虑两个长度分别为 x 和 y 的字符串如何计算概率。

$$f(s_x)=1$$
 的概率是 $rac{26}{26^x}+ig(1-rac{26}{26^x}ig) imesrac{1}{x}$, $f(s_x)=[2,x]$ 的概率分别是 $ig(1-rac{26}{26^x}ig) imesrac{1}{x}$; $f(s_y)$ 同理。

对 $f(s_x) = f(s_y) = 1$ 和 $f(s_x) = f(s_y) > 1$ 两种情况分类讨论即可。

注意 n=1 的情况要特判。

期望得分20分。

算法四 $\sum a_i \leq 10^5$

在算法三的基础上,枚举位置 f 和两个字符串的循环节长度 d_x 和 d_y ,则概率为

$$\Big(\sum_{d_x|x,d_x\geq f}rac{cnt(d_x)}{26^x} imesrac{1}{d_x}\Big) imes\Big(\sum_{d_y|y,d_y\geq f}rac{cnt(d_y)}{26^y} imesrac{1}{d_y}\Big)$$
, $d_x/d_y\geq f$ 的限制可以用后缀

和。

其中 cnt(d) 表示长度为 d 且循环节长度也为 d 的字符串个数;容斥可得, $cnt(d) = \sum_{c \mid d} \mu(c) \times 26^{d/c}$ 。

枚举 f 的复杂度是 $\mathcal{O}(\sum a_i)$ 的。

注意 n=1 的情况要特判。

期望得分25分。

算法五

在算法四的基础上,求解时只需要枚举 d_x 和 d_y ,此时符合条件的 f 的个数是 $\min(d_x,d_y)$ 。

 $\mathcal{O}(n\log V)$ 预处理出 cnt(d) 后,每次询问就能用 双指针+后缀和 做到 $\mathcal{O}(D)$ 回答,其中 V 是值域,D 是因数个数,显然有 $D\leq 2\sqrt{V}$ 。

最终的时间复杂度为 $\mathcal{O}(n \log V + n \sqrt{V})$ 。

注意 n=1 的情况要特判。

期望得分100分。