Maxent Models and Discriminative Estimation

Generative vs. Discriminative models

Introduction

- So far we've looked at "generative models"
 - Language models, Naive Bayes
- But there is now much use of conditional or discriminative probabilistic models in NLP, Speech, IR (and ML generally)
- Because:
 - They give high accuracy performance
 - They make it easy to incorporate lots of linguistically important features

Joint vs. Conditional Models

- We have some data {(d, c)} of paired observations d and hidden classes c.
- Joint (generative) models place probabilities over both observed data and the hidden stuff (gene-rate the observed data from hidden stuff):

P(c,d)

- All the classic StatNLP models:
 - n-gram models, Naive Bayes classifiers, hidden Markov models, probabilistic context-free grammars, IBM machine translation alignment models

Joint vs. Conditional Models

 Discriminative (conditional) models take the data as given, and put a probability over hidden structure given the data:

P(c|d)

- Logistic regression, conditional loglinear or maximum entropy models, conditional random fields
- Also, SVMs, (averaged) perceptron, etc. are discriminative classifiers (but not directly probabilistic)

Bayes Net/Graphical Models

- Bayes net diagrams draw circles for random variables, and lines for direct dependencies
- Some variables are observed; some are hidden

Each node is a little classifier (conditional probability table) based on incoming

arcs

Logistic Regression

Generative

Naive Bayes

Discriminative

Conditional vs. Joint Likelihood

- A *joint* model gives probabilities P(d,c) and tries to maximize this joint likelihood.
 - usually, it's trivial to choose weights: just relative frequencies.
- A *conditional* model gives probabilities $P(c \mid d)$. It takes the data as given and models only the conditional probability of the class.
 - We seek to maximize conditional likelihood.
 - Harder to do (as we'll see...)
 - More closely related to classification error.

Conditional models work well: Word Sense Disambiguation

Training Set	
Objective	Accuracy
Joint Like.	86.8
Cond. Like.	98.5

Test Set	
Objective	Accuracy
Joint Like.	73.6
Cond. Like.	76.1

- Even with exactly the same features, changing from joint to conditional estimation increases performance
- That is, we use the same smoothing, and the same word-class features, we just change the numbers (parameters)

(Klein and Manning 2002, using Senseval-1 Data)

Maxent Models and Discriminative Estimation

Generative vs. Discriminative models

Discriminative Model Features

Making features from text for discriminative NLP models

Features

- In these slides and most maxent work: features f are elementary pieces of evidence that link aspects of what we observe d with a category c that we want to predict
- A feature is a function with a bounded real value

Example features

- $f_1(c, d) = [c = \text{LOCATION} \land w_{-1} = \text{"in"} \land \text{isCapitalized}(w)]$
- $f_2(c, d) = [c = \text{LOCATION} \land \text{hasAccentedLatinChar}(w)]$
- $f_3(c, d) = [c = DRUG \land ends(w, "c")]$

PERSON saw Sue

- Models will assign to each feature a weight:
 - A positive weight votes that this configuration is likely correct
 - A negative weight votes that this configuration is likely incorrect

Feature Expectations

- We will crucially make use of two *expectations*
 - actual or predicted counts of a feature firing:
 - Empirical count (expectation) of a feature:

empirical
$$E(f_i) = \sum_{(c,d) \in \text{observed}(C,D)} f_i(c,d)$$

Model expectation of a feature:

$$E(f_i) = \sum_{(c,d) \in (C,D)} P(c,d) f_i(c,d)$$

Features

- In NLP uses, usually a feature specifies
 - an indicator function a yes/no boolean matching function of properties of the input and
 - 2. a particular class

$$f_i(c, d) \equiv [\Phi(d) \land c = c_i]$$
 [Value is 0 or 1]

Each feature picks out a data subset and suggests a label for it

Feature-Based Models

 The decision about a data point is based only on the features active at that point.

Data BUSINESS: Stocks hit a yearly low ...

Label: BUSINESS
Features
{..., stocks, hit, a, yearly, low, ...}

Text Categorization

Data ... to restructure bank:MONEY debt.

Label: MONEY
Features $\{..., w_{-1} = \text{restructure}, w_{+1} = \text{debt}, ...\}$

Word-Sense Disambiguation

```
Data
DT JJ NN ...
The previous fall ...
```

Label: NN
Features $\{w=\text{fall}, t_{-1}=\text{JJ} \\ w_{-1}=\text{previous}\}$

POS Tagging

Example: Text Categorization

(Zhang and Oles 2001)

- Features are presence of each word in a document and the document class (they do feature selection to use reliable indicator words)
- Tests on classic Reuters data set (and others)
 - Naïve Bayes: 77.0% F₁
 - Linear regression: 86.0%
 - Logistic regression: 86.4%
 - Support vector machine: 86.5%
- Paper emphasizes the importance of regularization (smoothing) for successful use of discriminative methods (not used in much early NLP/IR work)

Other Maxent Classifier Examples

- You can use a maxent classifier whenever you want to assign data points to one of a number of classes:
 - Sentence boundary detection (Mikheev 2000)
 - Is a period end of sentence or abbreviation?
 - Sentiment analysis (Pang and Lee 2002)
 - Word unigrams, bigrams, POS counts, ...
 - PP attachment (Ratnaparkhi 1998)
 - Attach to verb or noun? Features of head noun, preposition, etc.
 - Parsing decisions in general (Ratnaparkhi 1997; Johnson et al. 1999, etc.)

Discriminative Model Features

Making features from text for discriminative NLP models

How to put features into a classifier

- Linear classifiers at classification time:
 - Linear function from feature sets $\{f_i\}$ to classes $\{c\}$.
 - Assign a weight λ_i to each feature f_i .
 - We consider each class for an observed datum d
 - For a pair (*c*,*d*), features vote with their weights:

• vote(c) =
$$\sum \lambda f_i(c,d)$$

PERSON in Québec

LOCATION in Québec

DRUG in Québec

• Choose the class c which maximizes $\sum \lambda f_i(c,d)$

- Linear classifiers at classification time:
 - Linear function from feature sets $\{f_i\}$ to classes $\{c\}$.
 - Assign a weight λ_i to each feature f_i .
 - We consider each class for an observed datum d
 - For a pair (*c*,*d*), features vote with their weights:
 - vote(c) = $\sum \lambda f_i(c,d)$

• Choose the class c which maximizes $\Sigma \lambda f_i(c,d) = \text{LOCATION}$

There are many ways to chose weights for features

 Perceptron: find a currently misclassified example, and nudge weights in the direction of its correct classification

Margin-based methods (Support Vector Machines)

- Exponential (log-linear, maxent, logistic, Gibbs) models:
 - Make a probabilistic model from the linear combination $\sum \lambda_i f_i(c,d)$

$$P(c|d,\lambda) = \frac{\exp \sum_{i} \lambda_{i} f_{i}(c,d)}{\sum_{i} \exp \sum_{i} \lambda_{i} f_{i}(c,d)} \underbrace{-\frac{\text{Makes votes positive}}{\text{Normalizes votes}}}$$

- $P(LOCATION|in\ Qu\'ebec) = e^{1.8}e^{-0.6}/(e^{1.8}e^{-0.6} + e^{0.3} + e^0) = 0.586$
- $P(DRUG|in\ Qu\'ebec) = e^{0.3}/(e^{1.8}e^{-0.6} + e^{0.3} + e^{0}) = 0.238$
- $P(PERSON|in Québec) = e^0/(e^{1.8}e^{-0.6} + e^{0.3} + e^0) = 0.176$
- The weights are the parameters of the probability model, combined via a "soft max" function

- Exponential (log-linear, maxent, logistic, Gibbs) models:
 - Given this model form, we will choose parameters $\{\lambda_i\}$ that maximize the conditional likelihood of the data according to this model.
 - We construct not only classifications, but probability distributions over classifications.
 - There are other (good!) ways of discriminating classes SVMs, boosting, even perceptrons but these methods are not as trivial to interpret as distributions over classes.

Aside: logistic regression

- Maxent models in NLP are essentially the same as multiclass logistic regression models in statistics (or machine learning)
 - If you haven't seen these before, don't worry, this presentation is self-contained!
 - If you have seen these before you might think about:
 - The parameterization is slightly different in a way that is advantageous for NLP-style models with tons of sparse features (but statistically inelegant)
 - The key role of feature functions in NLP and in this presentation
 - The features are more general, with f also being a function of the class

Quiz Question

- Assuming exactly the same set up (3 class decision: LOCATION, PERSON, or DRUG; 3 features as before, maxent), what are:
 - P(PERSON | by Goéric) =
 - P(LOCATION | by Goéric) =
 - P(DRUG | by Goéric) =
 - 1.8 $f_1(c, d) = [c = LOCATION \land w_1 = \text{"in"} \land isCapitalized(w)]$
 - -0.6 $f_2(c, d) = [c = LOCATION \land hasAccentedLatinChar(w)]$

• 0.3
$$f_3(c, d) = [c = DRUG \land ends(w, "c")]$$

PERSON

by Goéric

DRUG

by Goéric

by Goéric

$$P(c|d,\lambda) = \frac{\exp \sum_{i} \lambda_{i} f_{i}(c,d)}{\sum_{i} \exp \sum_{i} \lambda_{i} f_{i}(c,d)}$$

How to put features into a classifier

The nuts and bolts

- We define features (indicator functions) over data points
 - Features represent sets of data points which are distinctive enough to deserve model parameters.
 - Words, but also "word contains number", "word ends with ing", etc.
- We will simply encode each Φ feature as a unique String
 - A datum will give rise to a set of Strings: the active Φ features
 - Each feature $f_i(c, d) = [\Phi(d) \land c = c_i]$ gets a real number weight
- We concentrate on Φ features but the math uses i indices of f_i

- Features are often added during model development to target errors
 - Often, the easiest thing to think of are features that mark bad combinations
- Then, for any given feature weights, we want to be able to calculate:
 - Data conditional likelihood
 - Derivative of the likelihood wrt each feature weight
 - Uses expectations of each feature according to the model
- We can then find the optimum feature weights (discussed later).

The nuts and bolts

Naive Bayes vs. Maxent models

Generative vs. Discriminative models: The problem of overcounting evidence

Text classification: Asia or Europe

NB FACTORS:

- P(A) = P(E) =
- P(M|A) =
- P(M|E) =

PREDICTIONS:

- P(A,M) =
- P(E,M) =
- P(A|M) =
- P(E|M) =

Text classification: Asia or Europe

NB FACTORS:

- P(A) = P(E) =
- P(H|A) = P(K|A) =
- P(H|E) = PK|E) =

PREDICTIONS:

- P(A,H,K) =
- P(E,H,K) =
- P(A|H,K) =
- P(E|H,K) =

Text classification: Asia or Europe

NB FACTORS:

- P(A) = P(E) =
- P(M|A) =
- P(M|E) =
- P(H|A) = P(K|A) =
- P(H|E) = PK|E) =

PREDICTIONS:

- P(A,H,K,M) =
- P(E,H,K,M) =
- P(A|H,K,M) =
- P(E|H,K,M) =

Naive Bayes vs. Maxent Models

- Naive Bayes models multi-count correlated evidence
 - Each feature is multiplied in, even when you have multiple features telling you the same thing
- Maximum Entropy models (pretty much) solve this problem
 - As we will see, this is done by weighting features so that model expectations match the observed (empirical) expectations

Naive Bayes vs. Maxent models

Generative vs. Discriminative models: The problem of overcounting evidence

Maxent Models and Discriminative Estimation

Maximizing the likelihood

Exponential Model Likelihood

- Maximum (Conditional) Likelihood Models :
 - Given a model form, choose values of parameters to maximize the (conditional) likelihood of the data.

$$\log P(C \mid D, \lambda) = \sum_{(c,d) \in (C,D)} \log P(c \mid d, \lambda) = \sum_{(c,d) \in (C,D)} \log \frac{\exp \sum_{i} \lambda_{i} f_{i}(c,d)}{\sum_{c'} \exp \sum_{i} \lambda_{i} f_{i}(c',d)}$$

The Likelihood Value

• The (log) conditional likelihood of iid data (C,D) according to maxent model is a function of the data and the parameters λ :

$$\log P(C|D,\lambda) = \log \prod_{(c,d) \in (C,D)} P(c|d,\lambda) = \sum_{(c,d) \in (C,D)} \log P(c|d,\lambda)$$

• If there aren't many values of c, it's easy to calculate:

te:

$$\log P(C \mid D, \lambda) = \sum_{(c,d) \in (C,D)} \log \frac{\exp \sum_{i} \lambda_{i} f_{i}(c,d)}{\sum_{c'} \exp \sum_{i} \lambda_{i} f_{i}(c',d)}$$

The Likelihood Value

• We can separate this into two components:

$$\log P(C \mid D, \lambda) = \sum_{(c,d) \in (C,D)} \log \exp \sum_{i} \lambda_{i} f_{i}(c,d) - \sum_{(c,d) \in (C,D)} \log \sum_{c} \exp \sum_{i} \lambda_{i} f_{i}(c,d)$$

$$\log P(C \mid D, \lambda) = N(\lambda) - M(\lambda)$$

The derivative is the difference between the derivatives of each component

The Derivative I: Numerator

$$\frac{\partial N(\lambda)}{\partial \lambda_{i}} = \frac{\partial \sum_{(c,d) \in (C,D)} \log \exp \sum_{i} \lambda_{ci} f_{i}(c,d)}{\partial \lambda_{i}} = \frac{\partial \sum_{(c,d) \in (C,D)} \sum_{i} \lambda_{i} f_{i}(c,d)}{\partial \lambda_{i}}$$

$$= \sum_{(c,d) \in (C,D)} \frac{\partial \sum_{i} \lambda_{i} f_{i}(c,d)}{\partial \lambda_{i}}$$

$$= \sum_{(c,d) \in (C,D)} f_{i}(c,d)$$

$$= \sum_{(c,d) \in (C,D)} f_{i}(c,d)$$

Derivative of the numerator is: the empirical count(f_{ν} , c)

The Derivative II: Denominator

$$\begin{split} \frac{\partial M(\lambda)}{\partial \lambda_{i}} &= \frac{\partial \sum_{(c,d) \in (C,D)} \log \sum_{c'} \exp \sum_{i} \lambda_{i} f_{i}(c',d)}{\partial \lambda_{i}} \\ &= \sum_{(c,d) \in (C,D)} \frac{1}{\sum_{c'} \exp \sum_{i} \lambda_{i} f_{i}(c',d)} \frac{\partial \sum_{c} \exp \sum_{i} \lambda_{i} f_{i}(c',d)}{\partial \lambda_{i}} \\ &= \sum_{(c,d) \in (C,D)} \frac{1}{\sum_{c'} \exp \sum_{i} \lambda_{i} f_{i}(c',d)} \sum_{c'} \frac{\exp \sum_{i} \lambda_{i} f_{i}(c',d)}{1} \frac{\partial \sum_{i} \lambda_{i} f_{i}(c',d)}{\partial \lambda_{i}} \\ &= \sum_{(c,d) \in (C,D)} \sum_{c'} \frac{\exp \sum_{i} \lambda_{i} f_{i}(c',d)}{\sum_{c'} \exp \sum_{i} \lambda_{i} f_{i}(c',d)} \frac{\partial \sum_{i} \lambda_{i} f_{i}(c',d)}{\partial \lambda_{i}} \\ &= \sum_{(c,d) \in (C,D)} \sum_{c'} \frac{\exp \sum_{i} \lambda_{i} f_{i}(c',d)}{\sum_{c'} \exp \sum_{i} \lambda_{i} f_{i}(c',d)} \frac{\partial \sum_{i} \lambda_{i} f_{i}(c',d)}{\partial \lambda_{i}} \\ &= \sum_{(c,d) \in (C,D)} \sum_{c'} P(c'|c',d) f_{i}(c',d) = \text{predicted count}(f_{i'},\lambda) \end{split}$$

The Derivative III

$$\frac{\partial \log P(C \mid D, \lambda)}{\partial \lambda_i} = \text{actual count}(f_i, C) - \text{predicted count}(f_i, \lambda)$$

- The optimum parameters are the ones for which each feature's predicted expectation equals its empirical expectation. The optimum distribution is:
 - Always unique (but parameters may not be unique)
 - Always exists (if feature counts are from actual data).

Finding the optimal parameters

• We want to choose parameters λ_1 , λ_2 , λ_3 , ... that maximize the conditional log-likelihood of the training data

$$CLogLik(D) = \sum_{i=1}^{n} \log P(c_i \mid d_i)$$

 To be able to do that, we've worked out how to calculate the function value and its partial derivatives (its gradient)

A likelihood surface

Finding the optimal parameters

- Use your favorite numerical optimization package....
 - Commonly, you **minimize** the negative of *CLogLik*
 - 1. Gradient descent (GD); Stochastic gradient descent (SGD)
 - 2. Iterative proportional fitting methods: Generalized Iterative Scaling (GIS) and Improved Iterative Scaling (IIS)
 - 3. Conjugate gradient (CG), perhaps with preconditioning
 - Quasi-Newton methods limited memory variable metric (LMVM) methods, in particular, L-BFGS

Maxent Models and Discriminative Estimation

Maximizing the likelihood