Lecture 4. Iterative Optimisation & Logistic Regression

COMP90051 Statistical Machine Learning

Semester 1, 2021 Lecturer: Trevor Cohn

This lecture

- Iterative optimisation
 - * First-order method: Gradient descent
 - * Second-order: Newton-Raphson method
 - Later: Lagrangian duality
- Logistic regression: workhorse linear classifier
 - * Possibly familiar derivation: frequentist
 - Decision-theoretic derivation

Gradient Descent

Brief review of most basic optimisation approach in ML

Optimisation formulations in ML

- Training = Fitting = Parameter estimation
- Typical formulation

$$\widehat{\boldsymbol{\theta}} \in \operatorname*{argmin} L(data, \boldsymbol{\theta})$$
 $\boldsymbol{\theta} \in \Theta$

- argmin because we want a minimiser not the minimum
 - Note: argmin can return a set (minimiser not always unique!)
- ★ Θ denotes a model family (including constraints)
- * L denotes some objective function to be optimised
 - E.g. MLE: (conditional) likelihood
 - E.g. Decision theory: (regularised) empirical risk

One we've seen: Log trick

- Instead of optimising $L(\theta)$, try convenient $\log L(\theta)$
- Why are we allowed to do this?
- Strictly monotonic function: $a > b \implies f(a) > f(b)$
 - * Example: log function!
- **Lemma**: Consider any objective function $L(\theta)$ and any strictly monotonic f. θ^* is an optimiser of $L(\theta)$ if and only if it is an optimiser of $f(L(\theta))$.
 - Proof: Try it at home for fun!

Two solution approaches

- Analytic (aka closed form) solution
 - * Known only in limited number of cases
 - Use 1st-order necessary condition for optimality*:

$$\frac{\partial L}{\partial \theta_1} = \dots = \frac{\partial L}{\partial \theta_p} = 0$$

Assuming unconstrained, differentiable *L*

- Approximate iterative solution
 - 1. Initialisation: choose starting guess $\theta^{(1)}$, set i=1
 - 2. Update: $\boldsymbol{\theta}^{(i+1)} \leftarrow SomeRule[\boldsymbol{\theta}^{(i)}]$, set $i \leftarrow i+1$
 - 3. <u>Termination</u>: decide whether to Stop
 - 4. Go to Step 2
 - 5. Stop: return $\widehat{\boldsymbol{\theta}} \approx \boldsymbol{\theta}^{(i)}$

^{*} Note: to check for local minimum, need positive 2nd derivative (or Hessian positive definite); this assumes unconstrained – in general need to also check boundaries. See also Lagrangian techniques later in subject.

Reminder: The gradient

- Gradient at $\boldsymbol{\theta}$ defined as $\left[\frac{\partial L}{\partial \theta_1}, \dots, \frac{\partial L}{\partial \theta_p}\right]'$ evaluated at $\boldsymbol{\theta}$
- The gradient points to the direction of maximal change of $L(\theta)$ when departing from point θ
- Shorthand notation

*
$$\nabla L \stackrel{\text{def}}{=} \left[\frac{\partial L}{\partial \theta_1}, \dots, \frac{\partial L}{\partial \theta_p} \right]'$$
 computed at point $\boldsymbol{\theta}$

- * Here ∇ is the "nabla" symbol
- Hessian matrix at $\boldsymbol{\theta}$: $\nabla^2 L_{ij} = \frac{\partial^2 L}{\partial \theta_i \partial \theta_j}$

Gradient descent and SGD

- 1. Choose $\boldsymbol{\theta}^{(0)}$ and some T
- 2. For i from 1 to T^* 1. $\boldsymbol{\theta}^{(i)} = \boldsymbol{\theta}^{(i-1)} - \eta \nabla L(\boldsymbol{\theta}^{(i-1)})$
- 3. Return $\widehat{\boldsymbol{\theta}} \approx \boldsymbol{\theta}^{(T)}$
- Note: η dynamically updated per step
- Variants: Momentum, AdaGrad, ...
- Stochastic gradient descent: two loops
 - Outer for loop: each loop (called epoch) sweeps through all training data
 - * Within each epoch, randomly shuffle training data; then for loop: do gradient steps only on batches of data. Batch size might be 1 or few

Assuming *L* is differentiable

Wikimedia Commons. Authors: Olegalexandrov, Zerodamage

^{*}Other stopping criteria can be used

Convex objective functions

- 'Bowl shaped' functions
- Informally: if line segment between any two points on graph of function lies above or on graph
- Formally* $f: D \to \mathbf{R}$ is convex if $\forall \boldsymbol{a}, \boldsymbol{b} \in D, t \in [0,1]$: $f(t\boldsymbol{a} + (1-t)\boldsymbol{b}) \leq tf(\boldsymbol{a}) + (1-t)f(\boldsymbol{b})$ Strictly convex if inequality is strict (<)

^{*} Aside: Equivalently we can look to the second derivative. For f defined on scalars, it should be non-negative; for multivariate f, the Hessian matrix should be positive semi-definite (see linear algebra supplemental deck).

Newton-Raphson

A second-order method; Successive root finding in the objective's derivative.

Newton-Raphson: Derivation (1D)

- Critical points of $L(\theta) = \text{Zero-crossings of } L'(\theta)$
- Consider case of scalar θ . Starting at given/random θ_0 , iteratively:
 - 1. Fit tangent line to $L'(\theta)$ at θ_t
 - 2. Need to find $\theta_{t+1} = \theta_t + \Delta$ using linear approximation's zero crossing
 - 3. Tangent line given by derivative: rise/run = $-L''(\theta_t) = L'(\theta_t)/\Delta$
 - 4. Therefore iterate is $\theta_{t+1} = \theta_t L'(\theta_t)/L''(\theta_t)$

Newton-Raphson: General case

- Newton-Raphson summary
 - * Finds $L'(\theta)$ zero-crossings
 - * By successive linear approximations to $L'(\theta)$
 - * Linear approximations involve derivative of $L'(\theta)$, ie. $L''(\theta)$
- Vector-valued θ :

How to fix scalar $\theta_{t+1} = \theta_t - L'(\theta_t)/L''(\theta_t)$???

- * $L'(\theta)$ is $\nabla L(\theta)$
- * $L''(\theta)$ is $\nabla_2 L(\theta)$
- Matrix division is matrix inversion
- General case: $\theta_{t+1} = \theta_t (\nabla_2 L(\theta_t))^{-1} \nabla L(\theta_t)$

- public domain wikipedia
- Pro: May converge faster; fitting a quadratic with curvature information
- Con: Sometimes computationally expensive, unless approximating Hessian

...And much much more

- What if you have constraints?
 - See Lagrangian multipliers (let's you bring constraints into objective)
 - Or, projected gradient descent (you iterate between GD on objective, and GD on each constraints)
- What about speed of convergence?
- Do you really need differentiable objectives? (no, subgradients)
- Are there more tricks? (Hell yeah!
 But outside scope here)

Free at http://web.stanford.edu/~boyd/cvxbook/

Mini Summary

- Iterative optimisation for ML
 - First-order: Gradient Descent and Stochastic GD
 - Convex objectives: Convergence to global optima
 - Second-order: Newton-Raphson can be faster, can be expensive to build/invert full Hessian

Next: Logistic regression for binary classification

Logistic Regression Model

A workhorse linear, binary classifier; (A review for some of you; new to some.)

Binary classification: Example

- Example: given body mass index (BMI) does a patient have type 2 diabetes (T2D)?
- This is (supervised) binary classification
- One could use linear regression
 - Fit a line/hyperplane to data (find weights w)
 - * Denote $s \equiv x'w$
 - * Predict "Yes" if $s \ge 0.5$
 - * Predict "No" if s < 0.5

Why not linear regression

- Due to the square loss, points far from boundary have loss squared – even if they're confidently correct!
- Such "outliers" will "pull at" the linear regression
- Overall, the leastsquares criterion looks unnatural in this setting

Logistic regression model

- Probabilistic approach to classification
 - * P(Y = 1 | x) = f(x) = ?
 - * Use a linear function? E.g., s(x) = x'w
- Problem: the probability needs to be between 0 and 1.
- Logistic function $f(s) = \frac{1}{1 + \exp(-s)}$
- Logistic regression model

$$P(Y = 1|x) = \frac{1}{1 + \exp(-x'w)}$$

How is logistic regression *linear*?

Logistic regression model:

$$P(Y = 1|x) = \frac{1}{1 + \exp(-x'w)}$$

- Classification rule:
 - if $\left(P(Y=1|x) > \frac{1}{2}\right)$ then class "1", else class "0"
- Decision boundary is the set of x's such that:

$$\frac{1}{1 + \exp(-x'w)} = \frac{1}{2}$$

$$e_{X_{1}}\circ\left(-w'x\right)=1$$

$$w'x=0$$

19

Effect of parameter vector (2D problem)

- Decision boundary is the line where P(Y = 1 | x) = 0.5
 - In higher dimensional problems, the decision boundary is a plane or hyperplane
- Vector w is perpendicular to the decision boundary (see linear algebra review topic)
 - * That is, $oldsymbol{w}$ is a normal to the decision boundary
 - Note: in this illustration we assume $w_0 = 0$ for simplicity

Linear vs. logistic probabilistic models

- Linear regression assumes a Normal distribution with a fixed variance and mean given by linear model $p(y|\mathbf{x}) = Normal(\mathbf{x}'\mathbf{w}, \sigma^2)$
- Logistic regression assumes a <u>Bernoulli distribution</u> with parameter given by logistic transform of linear model $p(y|\mathbf{x}) = Bernoulli(\text{logistic}(\mathbf{x}'\mathbf{w}))$
- Recall that Bernoulli distribution is defined as

$$p(1) = \theta$$
 and $p(0) = 1 - \theta$ for $\theta \in [0,1]$

• Equivalently $p(y) = \theta^y (1 - \theta)^{(1-y)}$ for $y \in \{0,1\}$

Training as Max-Likelihood Estimation

Assuming independence, probability of data

$$p(y_1, ..., y_n | \mathbf{x}_1, ..., \mathbf{x}_n) = \prod_{i=1}^n p(y_i | \mathbf{x}_i)$$

Assuming Bernoulli distribution we have

$$p(y_i|\mathbf{x}_i) = (\theta(\mathbf{x}_i))^{y_i} (1 - \theta(\mathbf{x}_i))^{1-y_i}$$

where
$$\theta(x_i) = \frac{1}{1 + \exp(-x_i'w)}$$

Training: maximise this expression wrt weights w

Apply log trick, simplify

Instead of maximising likelihood, maximise its logarithm

$$\log\left(\prod_{i=1}^{n} p(y_i|\mathbf{x}_i)\right) = \sum_{i=1}^{n} \log p(y_i|\mathbf{x}_i)$$

$$= \sum_{i=1}^{n} \log\left(\left(\theta(\mathbf{x}_i)\right)^{y_i} \left(1 - \theta(\mathbf{x}_i)\right)^{1 - y_i}\right)$$

$$= \sum_{i=1}^{n} \left(y_i \log\left(\theta(\mathbf{x}_i)\right) + (1 - y_i) \log\left(1 - \theta(\mathbf{x}_i)\right)\right)$$

$$= \sum_{i=1}^{n} \left((y_i - 1)\mathbf{x}_i'\mathbf{w} - \log(1 + \exp(-\mathbf{x}_i'\mathbf{w}))\right)$$
Can't do this analytically

Training as Iterative Optimisation

- Training logistic regression: w maximising loglikelihood L(w) or cross-entropy loss
- Bad news: No closed form solution
- **Good news**: Problem is strictly convex, if no irrelevant features → convergence!

Look ahead: regularisation for irrelevant features

How does gradient descent work?

- simply take gradient of log-likelihood, i.e., $\nabla L(\mathbf{w}) = \sum_{i=1}^{n} (y_i \theta(\mathbf{x}_i)) \mathbf{x}_i$
- plug into favourite iterative optimiser
 GD/SGD/Adagrad/Adam/BFGS/...

Logistic Regression: Decision-Theoretic View

Via cross-entropy loss

Background: Cross entropy

- Cross entropy is an information-theoretic method for comparing two distributions
- Cross entropy is a measure of a divergence between reference distribution $g_{ref}(a)$ and estimated distribution $g_{est}(a)$. For discrete distributions:

$$H(g_{ref}, g_{est}) = -\sum_{a \in A} g_{ref}(a) \log g_{est}(a)$$

A is support of the distributions, e.g., $A = \{0,1\}$

Training as cross-entropy minimisation

- Consider log-likelihood for a single data point $\log p(y_i|x_i) = y_i \log(\theta(x_i)) + (1 y_i) \log(1 \theta(x_i))$
- Cross entropy $H(g_{ref}, g_{est}) = -\sum_{a} g_{ref}(a) \log g_{est}(a)$
 - * If reference (true) distribution is

$$g_{ref}(1) = y_i \text{ and } g_{ref}(0) = 1 - y_i$$

With logistic regression estimating this distribution as

$$g_{est}(1) = \theta(\mathbf{x}_i)$$
 and $g_{est}(0) = 1 - \theta(\mathbf{x}_i)$

It finds w that minimises sum of cross entropies per training point

Mini Summary

- Logistic regression formulation
 - * A workhorse linear binary classifier (but can use basis function to become non-linear)
 - * Frequentist: Bernoulli label with coin bias logistic-linear in x
 - Decision theory: Minimising cross entropy with labels

Next time: Regularised linear regression for avoiding overfitting and ill-posed optimisation