Quiz #1: Optimization in Neural Networks

Question 1

Given the Single Layer Perceptron described in the lectures:

What should be replaced in the question mark?

a):-
$$w_1w_2 + a_1a_2 + b$$

b):-
$$w_1x_2 + w_1x_2 + b_1 + b_2$$

c):-
$$w_1x_1 + w_2x_2 + b$$

d):-
$$w_1x_2 + w_2x_1 + b$$

Answer:- c

Question 2

For a Regression using a Single Layer Perceptron, select all that apply:

a):-

The Loss Function used is
$$L(y,\hat{y}) = -y \ln(\hat{y})$$
– $(1-y) \ln(1-\hat{y})$.

b):-

The Loss Function used is
$$L(y,\hat{y})=rac{1}{2}(y-\hat{y})^2$$
 .

c):-

To minimize the Loss Function, we consider $L(y,\hat{y})$ as a function of w_1 , w_2 and b .

d):-

To minimize the Loss Function, we consider $L(y,\hat{y})$ as a function of x_1 and x_2

Answer:- b and c

Question 3

Consider the problem of Classification using a Single Layer Perceptron as discussed in the lectures.

In the figure above, z and $\sigma(z)$ are, respectively:

a):-

$$z=w_1x_1+w_2x_2+b$$
 and $\sigma(z)=rac{1}{2}(z-\hat{z})^2$

b):-

$$z=rac{1}{1+e^{-z}}$$
 and $\sigma(z)=w_1x_1+w_2x_2+b_1$

c):-

$$z=x_1+x_2+b$$
 and $\sigma(z)=rac{1}{2}(z-\hat{z})^2$

d):-

$$z=w_1x_1+w_2x_2+b$$
 and $\sigma(z)=rac{1}{1+e^{-z}}$

Answer:- d

Question 4

In the 2,2,1 Neural Network described below

How many parameters must be tuned to minimize the Loss Function?

- a):- 2
- b):- 3
- c):- 6
- d):- 9

Answer:- d

Question 5

About Backpropagation, check all that apply:

- a):- It is a way to obtain the input values for a given output of a neural network.
- b):- It is a method to update the parameters of a neural network.
- c):- It is the same as gradient descent.
- d):- It is a method that starts in the output layer and finishes in the input layer.

Answer:- b,d