

Bootloader 集成说明文档

恒润科技

文	11	L	٦L	D	+	
- X 1	-	۲.	4.	Λ	念	:

[] 草稿

[√] 正式发布

[]正在修改

所 有 权 声 明

该文档及其所含信息是恒润科技有限公司的财产。该文档及其所含信息的复制、使用及披露必须得到恒润科技有限公司的书面授权。

目 录

1	文档介绍]	1	
	1.1	目的		
	1.2	读者对象	1	
	1.3	参考文档		
	1.4	术语和缩写	1	
2	概述			
3	文件结构	J	1	
	3.1	Bootloader_User_Guide	1	
	3.2	Flash_Driver		
	3.3	Bootloader_Project		
	3.4	Application_Demo		
	3.5	Integration	2	
4	使用说明			
	4.1	Bootloader 嵌入式软件	2	
	4.2	应用程序 Demo	2	
5	用户应用]程序设计参考	2	
	5.1	应用程序地址范围规划		
	5.2	标识内容与地址分配	3	
	5.3	应用程序的重编程处理功能集成		
	5.4 标识符配置			

此行切勿删除, 目录结束标签

1 文档介绍

1.1 目的

本文档用于指导用户如何集成 Bootloader 软件模块。

1.2 读者对象

本文档预期读者对象为:

- 1) 项目组成员
- 2) 高层经理
- 3) 测试人员

1.3 参考文档

表 1 参考文档

标号	标题	版本/修改日期
1	Software Download Specification V2.0.pdf	V2.0
2	Bootloader_Questionary.xls	N/A

1.4 术语和缩写

表 2 术语与缩写

名称	解释
CAN	Controller Area Network,控制器局域网
HEX	一种目标文件格式
MCU	Micro Controller Unit,微型控制器单元

2 概述

Bootloader 为 MCU 的嵌入式软件部分,它是一个运行于 MCU 上的软件。 当应用程序发生丢失或者需要进行升级时,Bootloader 与下载工具进行通信,将 应用程序下载到 MCU 中。

3 文件结构

3.1 Bootloader_User_Guide

该文件夹存放 Bootloader 软件模块的集成使用说明书,它会指导用户如何集成 Bootloader 软件模块。

3.2 Flash Driver

该文件夹存放 Flash 驱动文件,该驱动提供对 RH850/F1L: R7F7010223AFP 芯片 code Flash 的擦、写功能,需将此文件添加到 Bootloader 上位机工具中。

3.3 Bootloader_Project

该文件夹存放 Bootloader 嵌入式软件, 它由基于 RH850/F1L:

R7F7010223AFP 芯片以及 Greenhills 6.1.4v2013.5.5 集成开发环境的 Bootloader 工程文件组成,用户进行编译、链接、下载后即可使用。

3.4 Application_Demo

该文件夹存放应用程序 Demo Hex,它是一个模拟应用程序运行的简易程序,用户可通过 Bootloader 将其下载到 MCU 中。下载成功后,Demo 会定时发送 CAN 报文,且支持重编程功能。

3.5 Integration

该文件夹存放 Bootloader 集成所需的程序文件,用户通过修改该文件下的程序能够快速完成应用程序与 Bootloader 的集成,具体应用详见第5章内容。

4 使用说明

4.1 Bootloader 嵌入式软件

用户通过编译 Bootloader 嵌入式软件生成可执行目标文件,然后通过烧写器 将该文件烧写到 MCU 中,具体流程如下。

- 1) 在编译环境下打开 Bootloader 文件夹中 Bootloader 工程。
- 2) 单击 Bootloader 工程工具栏中的编译按钮,编译 Bootloader。
- 3) 单击 Bootloader 工程工具栏中的调试按钮,下载 Bootloader 到 MCU。

4.2 应用程序 Demo

应用程序 Demo 用于验证 Bootloader 功能。当应用程序 Demo 通过 Bootloader 被正确下载到 MCU 后,MCU 会周期性地发送 CAN 报文,同时,此 Demo 支持重编程功能。

5 用户应用程序设计参考

应用程序和 Bootloader 存放在同一个 MCU 中,为了保证彼此正确使用,应用程序设计需要遵循如下规则:

5.1 应用程序地址范围规划

应用程序和 Bootloader 使用的存储器类型包括内部 Flash 和内部 RAM 区域。它们各自的地址范围如表 3 所示。

软件	存储器	范围	描述
Bootloader FLASH 0x000	0x0000 0000 ~ 0x0000 BFFF	Bootloader 软件使用的存储空间,属于被保护的存储器空间,不能通过Bootloader 或应用程序进行擦除或修改。	
	RAM	0xFEDF C000	这部分存储空间用于保存下载过程 中用到的 Flash 驱动程序,重编程操

表 3 系统存储器分配情况说明表

		0xFEDF E9FF	作执行完毕后,这部分空间即被释		
			放,不会对应用程序使用 RAM 空间		
			产生任何影响。		
		0xFEDF EA00	这部分存储空间用于保存 Bootloader		
	RAM	~	运行过程需要用到的堆栈、全局变量		
		0xFEDF FFFF	等。		
		0x0000 C200	应用程序存储空间,仅供应用程序使		
Application	FLASH	~	用,该存储空间可通过 Bootloader		
		0x0005 FFFF	的重编程流程进行擦除和更新。		
		0xFEDF C000	这部分存储空间用来保存应用程序		
	RAM	~	运行过程中使用的堆栈、全局变量		
		0xFEDF FFFF	等。		

5.2 标识内容与地址分配

表 4 标识内容和地址分配说明

标识	地址	长度	内容	备注
重编程请求	0xFEE0 7FF0	4	0xA5A5A5A5	
逻辑块有效	0x0000 C000	4	0xAAAAAAA	应用程序有效
DID 0xF198	0x0000 C100	16	内容根据需求定义	
DID 0xF199	0x0000 C110	4	内容根据需求定义	
DID 0x0200	0xFF20 7F80	1	内容根据需求定义	
DID 0x0201	0xFF20 7F40	1	内容根据需求定义	
DID 0xF180	0x0000 BFF0	16	内容根据需求定义	
DID 0xF187	0x0000 A110	8	内容根据需求定义	需要配置为实
				际地址
DID 0xF193	0x0000 A100	16	内容根据需求定义	需要配置为实
				际地址

5.3 应用程序的重编程处理功能集成

为了保证应用程序能够正确的进行重编程,它需包含重编程处理文件。该文件位于"Integration"文件夹中,具体文件说明如表 5 所示。

表 5 文件说明

文件名	作用
App_Boot.c	实现诊断协议栈回调函数,包括复位接口、重
	编程请求处理函数
App_Boot.h	声明重编程请求函数

用户使用上述文件需要进行如下处理:

- 1)在应用程序诊断协议栈的诊断模式切换服务(\$10\$02)回调函数中,调用 Boot_ReprogramCallBack 函数,该函数实现从应用程序到 Bootloader 的切换。
- 2) 确认 App_Boot.h 中重编程标志的地址和内容是否和 Bootloader 中的标志信息一致。
- 3) 确认 App_Boot.c 中 Boot_MemSet 函数中写重编程标志信息的方式和 Boot Reset 函数中复位方式是否符合要求。
- 4)应用程序在 Greenhills 6.1.4v2013.5.5 中的工程链接文件(.ld 文件)中进行 Memory 地址分配时,不能和 Bootloader 地址区域以及标志信息地址区域重合,应用程序 hex 从 0x0000C200 开始。

5.4 标识符配置

部分 DID 需要 Bootloader 读取,但存储位置由用户自定义,所以需要用户配置地址信息,请配置 Bl_data_cfg.h 文件:

/*ECU Hardware Number DID F193*/

#define DM_DATA_3_TYPE DM_DATA_TYPE_READ_ONLY

#define DM_DATA_3_MEMID (1)

#define DM_DATA_3_LOCAL_ADDR (0x0000A100UL)

#define DM_DATA_3_SIZE (16UL)

#define DM_DATA_3_DDP (BL_NULL_PTR)

/*GeelySparePartNumber DID F187*/

#define DM_DATA_5_MEMID (1)

#define DM_DATA_5_LOCAL_ADDR (0x0000A110UL)

#define DM_DATA_5_SIZE (8UL)

#define DM_DATA_5_DDP (BL_NULL_PTR)

其中需要用户配置的为

#define DM_DATA_x_MEMID 1: codeflash 2: dataflash

#define DM_DATA_x_LOCAL_ADDR 数据存储地址