ELETTRONICA DIGITALE

Corso di Laurea in Ingegneria Informatica

Prova scritta del 28 giugno 2013

Esercizio A

$R_1=20\;k\Omega$	$R_{10} = 2.5 \text{ k }\Omega$	v
$R_2 = 10 \text{ k}\Omega$	$R_{11} = 4 k \Omega$	$V_{cc} \wedge V_{cc} \wedge V$
$R_3 = 20 \text{ k}\Omega$	$R_{12} = 16 \text{ k }\Omega$	C_{1} R_{2} R_{4} R_{7} R_{8} R_{10}
$R_4 = 1.8 \text{ k}\Omega$	$C_1 = 10 \text{ nF}$	Q_1 Q_2 Q_3
$R_5 = 100 \Omega$	$C_2 = 10 \ \mu F$	$\left \begin{array}{c c} R_1 & & \\ V_1 & + & R_2 \end{array}\right $
$R_6 = 900 \Omega$	$C_3 = 1 \text{ nF}$	R_{12}
$R_8 = 30 \text{ k }\Omega$	$V_{CC} = 18 \text{ V}$	$R_{\epsilon} \stackrel{=}{=} C_{2}$
$R_9 = 10 \text{ k}\Omega$		mm mm

 Q_1 è un transistore MOS a canale n resistivo, con la corrente di drain in saturazione data da $I_{DS} = k(V_{GS}-V_T)^2$ con k=0.25 mA/V 2 e $V_T=1$ V. Q_2 è un transistore BJT BC109B resistivo con $h_{re}=h_{oe}=0$. Con riferimento all'amplificatore in figura:

- 1) Calcolare il valore delle resistenze R_7 in modo che, in condizioni di riposo, la tensione sull'emettitore di Q_2 sia $V_E = 8$ V. Determinare, inoltre il punto di riposo dei due transistori e verificare la saturazione di Q_1 . (R: $R_7 = 1904.38 \Omega$)
- 2) Determinare il guadagno V_U/V_i alle frequenze per le quali C_1 , C_2 e C_3 possono essere considerati dei corto circuiti. (R: $V_U/V_i = -1.99$)
- 3) (Solo per 12 CFU) Determinare la funzione di trasferimento V_U/V_i e tracciarne il diagramma di Bode quotato asintotico del modulo. (R: $f_{z1} = 795.77$ Hz; $f_{p1} = 3183.01$ Hz; $f_{z2} = 17.68$ Hz; $f_{p2} = 44.21$ Hz; $f_{z3} = 0$ Hz; $f_{p3} = 9932.26$ Hz)

Esercizio B

Progettare una porta logica in tecnologia CMOS, utilizzando la tecnica della pull-up network e della pull-down network, che implementi la funzione logica:

$$Y = \left(\overline{A} + \overline{CD}\right)\left(\overline{B}\overline{C} + D\right) + \left(\overline{D + E}\right)\left(\overline{A}\overline{B} + C\right) + \overline{D}\left(\overline{E} + \overline{A}\right)$$

Determinare il numero dei transistori necessari e disegnarne lo schema completo. Dimensionare inoltre il rapporto (W/L) di tutti i transistori, assumendo, per l'inverter di base, W/L pari a 2 per il MOS a canale n e pari a 5 per quello a canale p. Si specifichino i dettagli della procedura di dimensionamento dei transistori.

Esercizio C

$R_1 = 1 k\Omega$	$R_5 = 5 \text{ k}\Omega$
$R_2 = 2 k\Omega$	C = 100 nF
$R_3 = 500 \Omega$	$V_{CC} = 5 \text{ V}$
$R_4 = 4.5 \text{ k}\Omega$	

Il circuito IC_1 è un NE555 alimentato a V_{CC} = 5V, Q_1 ha una R_{on} = 0 e V_T =1V, Q_2 ha una R_{on} = 0 e V_T = - 1V e gli inverter sono ideali. Determinare la frequenza del segnale di uscita del multivibratore in figura. (R: f = 3672.98 Hz)

$$= \bar{A} + \bar{C}(\bar{B} + D) + \bar{D}\bar{E}$$

) PON

$$Q_1: p = 5$$

 $Q_2 - Q_4 = 5$
 $Q_2 - Q_3 = 5$
 $Q_3 - Q_6 = 5$
 $Q_5 - Q_6 = 5$
 $Q_5 - Q_6 = 5$

·)
$$PDN$$
 $U_{7}-U_{8}-U_{10}-U_{12}=)$ $4n=8$
 $U_{7}-U_{8}-U_{10}$ $\frac{2}{x}+\frac{1}{4n}=\frac{1}{n}=)$ $\frac{2}{x}=\frac{3}{4n}=)$ $\frac{x}{2}=\frac{4n}{3}=x=\frac{16}{3}$

In olderation

$$Q_{2} Q_{3} Q_{10} = Q_{10}$$

$$8+4=12 > \frac{32}{3}$$

The she
$$4 \frac{1}{8} \frac{$$

Regions
$$R_{1} = \frac{3}{16}KR$$

$$R_{2} = \frac{3}{16}KR$$

$$R_{3} = 500R$$

$$R_{5}$$

$$R_{4} = \frac{9000}{16}4500R$$

$$C = 100 = 70$$

Di HI Us OFF
$$Q_{2}$$
 ON

$$\int_{R_{4}}^{R_{4}} \int_{V_{c}}^{V_{c}} \int_{S}^{V_{c}} \int_{S}^{R_{2}} \int_{V_{c}}^{V_{c}} \int_{S}^{R_{2}} \int_{V_{c}}^{R_{2}} \int_{V_{c}}^{R_{2}}$$

$$V_{i} = V_{con} \times V_{e}$$

$$V_{i} = 2.5V$$

$$V_{i} = \frac{V_{cc} R_{3}}{R_{4} + R_{3}} = 2.5V$$

$$V_{i} = 0.5V$$

$$V_{COT} = \frac{1}{3}V_{CC} = \frac{1}{3}.6$$

Q2 OFF

$$T = T_{1} + T_{2} = 0.2722 \text{ mb}$$
 $f = 1 = 3672,98 \text{ Hz}$