Supplementary Information for:

Chapter 2 | Genome-wide local ancestry and direct evidence for mitonuclear coadaptation in African hybrid cattle populations (*Bos taurus/indicus*)

This PDF file includes:

Figure S2.1

Figure S2.2

Table S2.3

Table S2.4

Table S2.5

Table S2.6

Figure S2.1: Unsupervised genetic structure plot for Asian zebu, East and West African admixed cattle, and West African and European taurine breeds. Results for an inferred number of ancestry clusters of *K* = 3 is shown, which corresponds to Asian *Bos indicus* (red), European *Bos taurus* (green), and African *B. taurus* (blue) ancestral components, respectively.

Figure S2.2: Coancestry curve plots generated using MOSAIC for 10 East and West African admixed cattle populations. These curves show the exponential decay of the ratio of probabilities of pairs of local ancestries (y-axis) as a function of genetic distance (x-axis). The pair of ancestries used for each curve is shown on the top of each plot with the estimated number of generations since the start of admixture in brackets. For each plot, the green line represents the fitted curve, the black line shows the across targets ratio, and the grey lines indicate the per target ratio (further information in Salter-Townshend and Myers, 2019).

Table S2.3: Ancestry components estimated using fastSTRUCTURE with estimated times for the start of the admixture process in African admixed cattle populations generated using MOSAIC.

Code	Type/morphology	Country of origin	African taurine ancestry	European taurine ancestry	Asian zebu ancestry	Generations since start of admixture	Start of admixture
MUTU	West African taurine	Nigeria	0.990 ± 0.019	0.010 ± 0.018	0.000 ± 0.003		
NDAG	West African taurine	Guinea	1.000 ± 0.000	0.000 ± 0.000	0.000 ± 0.000		
HOLS	European taurine	Netherlands	0.010 ± 0.025	0.990 ± 0.025	0.000 ± 0.000		
JRSY	European taurine	United Kingdom	0.010 ± 0.022	0.990 ± 0.022	0.000 ± 0.000		
ANKO	East African admixed	Uganda	0.420 ± 0.010	0.020 ± 0.016	0.550 ± 0.013	54.1	1641 – 1804 CE
EASZ	East African admixed	Kenya	0.250 ± 0.015	0.020 ± 0.065	0.730 ± 0.055	46.2	1697 – 1835 CE
KARA	East African admixed	Uganda	0.260 ± 0.008	0.000 ± 0.001	0.740 ± 0.008	65.1	1564 – 1760 CE
NGAN	East African admixed	Uganda	0.310 ± 0.024	0.100 ± 0.052	0.590 ± 0.039	15.9	1909 – 1956 CE
ADAG	West African admixed	Nigeria	0.320 ± 0.010	0.000 ± 0.001	0.680 ± 0.010	79.6	1463 – 1702 CE
BORG	West African admixed	Benin	0.610 ± 0.047	0.010 ± 0.027	0.370 ± 0.055	20.5	1877 – 1938 CE

BUNA	West African admixed	Nigeria	0.340 ± 0.076	0.000 ± 0.007	0.660 ± 0.083	87.9	1405 – 1668 CE
KETE	West African admixed	Nigeria	0.400 ± 0.093	0.000 ± 0.001	0.600 ± 0.093	26.6	1834 – 1914 CE
REDB	West African admixed	Nigeria	0.320 ± 0.009	0.000 ± 0.001	0.680 ± 0.009	70	1530 – 1740 CE
SOKG	West African admixed	Nigeria	0.320 ± 0.008	0.000 ± 0.000	0.680 ± 0.008	95.9	1349 – 1636 CE
GIR	Asian zebu	India	0.000 ± 0.000	0.000 ± 0.000	1.000 ± 0.000		
HARI	Asian zebu	India	0.000 ± 0.000	0.000 ± 0.000	1.000 ± 0.000		
NELO	Asian zebu	Brazil	0.000 ± 0.000	0.000 ± 0.001	1.000 ± 0.001		
SAHI	Asian zebu	India	0.000 ± 0.000	0.000 ± 0.000	1.000 ± 0.000		

Note. For each admixed population, the generations since admixture started were obtained from the NDAG:GIR coancestry plots (Fig. S2). A generation interval range of 4–7 years for managed domestic cattle was used. CE = Common Era.

Table S2.4: Fixed nucleotide substitutions determined from alignments of the protein-coding sequences of 13 mitochondrial OXPHOS protein genes for three groups of Bovinae species/subspecies. The taxa examined included African *Bos taurus*, Asian *Bos indicus* and a range of *Bos* species (*Bos gaurus*, *Bos grunniens*, *Bos javanicus*, *Bos mutus*, *Bos frontalis*, and *Bos primigenius*).

Gene name	Gene	Length in bp	African <i>B. taurus vs.</i> Asian <i>B. indicus</i>		African <i>B. taurus vs. Bos</i> species		Asian <i>B. indicus vs. Bos</i> species	
	symbol	(aligned)	Single	Multiple	Single	Multiple	Single	Multiple
ATP synthase 6	ATP6	692	8	4	30	8	23	14
ATP synthase 8	ATP8	204	5	2	13	4	12	4
Cytochrome b	СҮВ	1158	14	4	45	15	38	19
Cytochrome c oxidase I	COX1	1570	3	0	29	0	28	0
Cytochrome c oxidase II	COX2	695	2	2	13	2	14	0
Cytochrome c oxidase III	СОХЗ	798	4	4	14	12	13	14
NADH dehydrogenase subunit 1	ND1	972	8	2	24	6	26	6
NADH dehydrogenase subunit 2	ND2	1061	6	2	52	11	51	11
NADH dehydrogenase subunit 3	ND3	353	1	2	6	0	4	2
NADH dehydrogenase subunit 4	ND4	1400	10	6	52	19	53	22
NADH dehydrogenase subunit 4L	ND4L	301	0	2	11	0	10	2
NADH dehydrogenase subunit 5	ND5	1891	7	17	114	46	72	56
NADH dehydrogenase subunit 6	ND6	536	8	2	22	4	22	3

Table S2.5: Results for the branch-site test of positive selection (BSPS) for 13 mitochondrial OXPHOS protein gene sequences in three different *Bos* groups. Significant *P* values (< 0.05) indicating positive selection for individual genes are shown in bold underline.

Bos taurus mitochondrial genome sequences								
Gene symbol	No. param. H _A	No. param. <i>H</i> ₀	df	LnL H _A	LnL H₀	LRT(2ΔLnL)	P (χ²)	
ATP6	381	380	1	-2101.88	-2101.79	-0.18280	1.00000	
ATP8	381	380	1	-527.49	-526.98	-1.01728	1.00000	
СҮВ	381	380	1	-3334.59	-3334.59	0.00004	0.00479	
COX1	381	380	1	-3955.67	-3955.67	-0.00081	1.00000	
COX2	381	380	1	-1696.07	-1696.06	-0.01870	1.00000	
COX3	381	380	1	-1774.40	-1774.40	0.00000	0.00160	
ND1	381	380	1	-2475.83	-2475.83	-0.00070	1.00000	
ND2	381	380	1	-3748.60	-3748.60	0.00054	0.01857	
ND3	381	380	1	-867.15	-867.15	0.00014	0.00937	
ND4	381	380	1	-3826.87	-3826.87	-0.00067	1.00000	
ND4L	381	380	1	-781.98	-781.98	0.00000	0.00113	
ND5	381	380	1	-5019.63	-5019.63	0.00173	0.03318	
ND6	381	380	1	-1931.80	-1931.80	-0.00013	1.00000	

Bos indicus mitochondrial genome sequences								
Gene symbol	No. param. H _A	No. param. <i>H</i> ₀	df	LnL H _A	LnL H₀	LRT(2ΔLnL)	P (χ²)	
ATP6	381	380	1	-1894.03	-1894.03	0.00019	0.01090	
ATP8	381	380	1	-526.98	-526.98	0.00013	0.00900	
СҮВ	381	380	1	-3334.59	-3334.59	0.00193	0.03510	
COX1	381	380	1	-3955.67	-3955.67	0.00021	0.01170	
COX2	381	380	1	-1696.06	-1696.06	-0.00057	1.00000	
COX3	381	380	1	-1774.40	-1774.40	0.00104	0.02570	
ND1	381	380	1	-2475.83	-2475.84	0.00159	0.03190	
ND2	381	380	1	-3747.84	-3747.84	-0.00085	1.00000	
ND3	381	380	1	-866.65	-866.65	-0.00031	1.00000	
ND4	381	380	1	-3826.87	-3826.87	-0.00053	1.00000	
ND4L	381	380	1	-781.98	-781.98	-0.00041	1.00000	
ND5	381	380	1	-5019.63	-5019.63	-0.00374	1.00000	
ND6	381	380	1	-1931.80	-1931.80	-0.00007	1.00000	

Table S2.6: HMG and LMG functional subset genes detected in multiple studies (≥ 2) of general selective sweeps in African cattle populations

genomic selective sweeps in African cattle populations. **Functional** Chromosomal Gene Gene name Citations symbol subset location (Bahbahani et al., 2018a; ACO2 Aconitase 2 gene LMG BTA5 Taye et al., 2018) (Taye et al., 2018; Taye et BCL2L13 BCL2 like 13 gene **LMG** BTA5 al., 2017) Carbonic (Kim et al., 2017; Taye et CA5A **LMG** BTA18 anhydrase 5A gene al., 2018; Taye et al., 2017) C-X9-C motif (Bahbahani et al., 2018a; CMC1 LMG BTA22 Kim *et al.*, 2017) containing 1 gene Cytochrome P450, family 24, (Bahbahani et al., 2017; CYP24A1 **LMG** BTA13 subfamily A, Tijjani et al., 2019) polypeptide 1 gene Aspartyl-tRNA synthetase 2, (Bahbahani et al., 2017; DARS2 HMG BTA16 mitochondrial Taye et al., 2018) gene DnaJ heat shock (Bahbahani et al., 2017; protein family DNAJC11 **LMG** BTA16 Taye et al., 2018; Taye et (Hsp40) member al., 2017) C11 gene Haloacid dehalogenase like (Kim et al., 2017; Taye et HDHD3 BTA8 **LMG** al., 2017) hydrolase domain containing 3 gene hydroxyisobutyrate (Kim et al., 2017; Taye et **HIBADH** BTA4 LMG dehydrogenase al., 2018; Taye et al., 2017) gene HIG1 hypoxia (Bahbahani et al., 2018a; inducible domain BTA22 Jang et al., 2021; Tijjani et HIGD1A **LMG** family member 1A al., 2019) gene Mitochondrial (Kim et al., 2017; Taye et MRPS33 ribosomal protein HMG BTA4 al., 2017) S33 gene Methionine (Bahbahani et al., 2017; MSRB3 sulfoxide **LMG** BTA4 Kim et al., 2017; Taye et

reductase B3 gene

al., 2018; Taye et al., 2017)

NGRN	Neugrin, neurite outgrowth associated gene	LMG	BTA21	(Taye <i>et al.</i> , 2018; Taye <i>et al.</i> , 2017)
PDE12	Phosphodiesterase 12 gene	LMG	BTA22	(Bahbahani <i>et al.,</i> 2017; Taye <i>et al.,</i> 2018)
PUSL1	Pseudouridine synthase like 1 gene	LMG	BTA16	(Taye <i>et al.</i> , 2018; Taye <i>et al.</i> , 2017)
SARDH	Sarcosine dehydrogenase gene	LMG	BTA11	(Bahbahani <i>et al.,</i> 2018a; Tijjani <i>et al.,</i> 2019)
SLC25A11	Solute carrier family 25 member 11 gene	LMG	BTA19	(Bahbahani <i>et al.</i> , 2017; Kim <i>et al.</i> , 2017; Taye <i>et al.</i> , 2018)
SLC25A21	Solute carrier family 25 member 21 gene	LMG	BTA21	(Bahbahani et al., 2018b; Tijjani <i>et al.,</i> 2019)
SOD1	Superoxide dismutase 1 gene	LMG	BTA1	(Kim <i>et al.,</i> 2017; Taye <i>et al.,</i> 2018; Taye <i>et al.,</i> 2017)
SUCLG2	Succinate-CoA ligase GDP-forming subunit beta gene	LMG	BTA22	(Jang <i>et al.</i> , 2021; Kim et al., 2020)
TIMM21	Translocase of inner mitochondrial membrane 21 gene	LMG	BTA24	(Bahbahani <i>et al.</i> , 2018a; Tijjani <i>et al.</i> , 2019)
TOMM22	Translocase of outer mitochondrial membrane 22 gene	LMG	BTA5	(Kim et al., 2017; Taye et al., 2017)
YME1L1	YME1 like 1 ATPase gene	LMG	BTA13	(Taye <i>et al.</i> , 2018; Taye <i>et al.</i> , 2017)

Supplementary References

Bahbahani, H., Afana, A., and Wragg, D. (2018a). Genomic signatures of adaptive introgression and environmental adaptation in the Sheko cattle of southwest Ethiopia. PLoS ONE *13*, e0202479. 10.1371/journal.pone.0202479.

Bahbahani, H., Salim, B., Almathen, F., Al Enezi, F., Mwacharo, J.M., and Hanotte, O. (2018b). Signatures of positive selection in African Butana and Kenana dairy zebu cattle. PLoS ONE *13*, e0190446. 10.1371/journal.pone.0190446.

Bahbahani, H., Tijjani, A., Mukasa, C., Wragg, D., Almathen, F., Nash, O., Akpa, G.N., Mbole-Kariuki, M., Malla, S., Woolhouse, M., et al. (2017). Signatures of selection for environmental adaptation and zebu × taurine hybrid fitness in East African Shorthorn Zebu. Front. Genet. 8. 10.3389/fgene.2017.00068.

Jang, J., Kim, K., Lee, Y.H., and Kim, H. (2021). Population differentiated copy number variation of *Bos taurus*, *Bos indicus* and their African hybrids. BMC Genomics 22, 531. 10.1186/s12864-021-07808-7.

Kim, J., Hanotte, O., Mwai, O.A., Dessie, T., Bashir, S., Diallo, B., Agaba, M., Kim, K., Kwak, W., Sung, S., et al. (2017). The genome landscape of indigenous African cattle. Genome Biol. *18*, 34. 10.1186/s13059-017-1153-y.

Kim, K., Kwon, T., Dessie, T., Yoo, D., Mwai, O.A., Jang, J., Sung, S., Lee, S., Salim, B., Jung, J., et al. (2020). The mosaic genome of indigenous African cattle as a unique genetic resource for African pastoralism. Nat. Genet. *52*, 1099-1110. 10.1038/s41588-020-0694-2.

Salter-Townshend, M., and Myers, S. (2019). Fine-scale inference of ancestry segments without prior knowledge of admixing groups. Genetics 212, 869-889. 10.1534/genetics.119.302139.

Taye, M., Lee, W., Caetano-Anolles, K., Dessie, T., Cho, S., Jong Oh, S., Lee, H.-K., and Kim, H. (2018). Exploring the genomes of East African Indicine cattle breeds reveals signature of selection for tropical environmental adaptation traits. Cogent Food. Agric. 4, 1552552. 10.1080/23311932.2018.1552552.

Taye, M., Lee, W., Caetano-Anolles, K., Dessie, T., Hanotte, O., Mwai, O.A., Kemp, S., Cho, S., Oh, S.J., Lee, H.K., and Kim, H. (2017). Whole genome detection of signature of positive selection in African cattle reveals selection for thermotolerance. Anim. Sci. J. 88, 1889-1901. 10.1111/asj.12851.

Tijjani, A., Utsunomiya, Y.T., Ezekwe, A.G., Nashiru, O., and Hanotte, O. (2019). Genome sequence analysis reveals selection signatures in endangered trypanotolerant West African Muturu cattle. Front. Genet. *10*, 442. 10.3389/fgene.2019.00442.