ECE408/CS483/CSE408 Spring 2020

Applied Parallel Programming

Lecture 10: Tiled Convolution Analysis

© David Kirk/NVIDIA and Wen-mei W. Hwu ECE408/CS483/ECE498al University of Illinois, 2007-2018

1

A Small 1D Example

10 11 12 13 14 15

6 7 8 9 10 11 12 13 14 15 16 17

MASK_WIDTH is 5

TILE_WIDTH is 8

- output and input tiles for block 1
- For MASK_WIDTH of 5, each block loads
 8 + (5 1) = 12 elements (12 memory loads)

© David Kirk/NVIDIA and Wen-mei W. Hwu ECE408/CS483/ECE498al University of Illinois, 2007-2018 Objective

To learn more about the analysis of tiled convolution/stencil algorithms

© David Kirk/NVIDIA and Wen-mei W. Hwu ECE408/CS483/ECE498al University of Illinois, 2007-2018

2

Each Output Uses MASK_WIDTH Inputs

tile
6 7 8 9 10 11 12 13 14 15 16 17

MASK_WIDTH is 5

9 10 11 12 13 14 15

TILE_WIDTH is 8

- P[8] uses N[6], N[7], N[8], N[9], N[10]
- P[9] uses N[7], N[8], N[9], N[10], N[11]
- ..
- P[15] uses N[13], N[14], N[15], N[16], N[17]

Total of 8 * 5 values from tile used for the output.

© David Kirk/NVIDIA and Wen-mei W. Hwu ECE408/CS483/ECE498al University of Illinois, 2007-2018

A simple way to calculate tiling benefit

- (8+5-1)=12 elements loaded
- 8*5 global memory accesses replaced by shared memory accesses
- Bandwidth reduction of 40/12=3.3

© David Kirk/NVIDIA and Wen-mei W. Hwu ECE408/CS483/ECE498al University of Illinois, 2007-2018

Another Way to Look at Reuse

- tile[6] is used by P[8] (1x)
- tile[7] is used by P[8], P[9] (2×)
- tile[8] is used by P[8], P[9], P[10] (3x)
- tile[9] is used by P[8], P[9], P[10], P[11] (4x)
- tile[10] is used by P[8], P[9], P[10], P[11], P[12] (5×)
- ... (5×)
- tile[14] is uses by P[12], P[13], P[14], P[15] (4×)
- tile[15] is used by P[13], P[14], P[15] (3x)
- tile[16] is used by P[14], P[15] (2x)
- tile[17] is used by P[15] (1x)

© David Kirk/NVIDIA and Wen-mei W. Hwu ECE408/CS483/ECE498al University of Illinois, 2007-2018 In General, for 1D

- Load TILE WIDTH + MASK WIDTH 1 elements.
- Replace TILE_WIDTH * MASK_WIDTH global memory accesses with shared memory.
- · Bandwidth reduction of

(TILE_SIZE*MASK_WIDTH)/(TILE_SIZE+MASK_WIDTH-1)

© David Kirk/NVIDIA and Wen-mei W. Hwu ECE408/CS483/ECE498al University of Illinois, 2007-2018

6

Another Way to Look at Reuse

- Each access tile replaces an access to N.
- The total number of global memory accesses (to the (8+5-1)=12 N elements) replaced by shared memory accesses is

$$= 10 + 20 + 10$$

= 40

There are 12 N elements, so the average reduction is 40/12 = 3.3

© David Kirk/NVIDIA and Wen-mei W. Hwu ECF408/CS483/ECF498al University of Illinois, 2007-2018

8

Ghost elements change ratios

· For a boundary tile, we load

TILE WIDTH + (MASK WIDTH-1)/2 elements

- 10 in our example of TILE_WIDTH of 8 and MASK WIDTH of 5
- Computing boundary elements do not access global memory for ghost cells
 - Total accesses is 6*5 + 4 + 3 = 37 accesses (when computing the P elements)

The reduction is 37/10 = 3.7

© David Kirk/NVIDIA and Wen-mei W. Hwu ECE408/CS483/ECE498al University of Illinois, 2007-2018

9

Bandwidth Reduction for 1D

· The reduction is

(TILE_SIZE*MASK_WIDTH)/(TILE_SIZE+MASK_WIDTH-1)

ı	TILE_WIDTH	16	32	64	128	256	
	Reduction Mask_Width = 5	4.0	4.4	4.7	4.9	4.9	
	Reduction Mask_Width = 9	6.0	7.2	8.0	8.5	8.7	
© David Kirk/NVIDIA and Wen-mei W. Hwu ECE408/CS483/ECE498al University of Illinois, 2007-2018							10

10

8×8 Output Tile, MASK_WIDTH of 5

- Loading input tile requires (8+5-1)² = 144 reads.
- Calculation of each output requires $5^2 = 25$ input elements.
- 8×8×25 = 1,600 global memory accesses for computing output tile converted to shared memory accesses.
- Bandwidth reduction of 1,600/144 = 11.1×

© David Kirk/NVIDIA and Wen-mei W. Hwu ECE408/CS483/ECE498al University of Illinois. 2007-2018 12

11

In General

- (TILE_WIDTH+MASK_WIDTH-1)² elements need to be loaded from N into shared memory
- The calculation of each P element needs to access MASK WIDTH² elements of N
- TILE_WIDTH² * MASK_WIDTH² global memory accesses converted into shared memory accesses
- Bandwidth reduction of

TILE_WIDTH2*MASK_WIDTH2/(TILE_WIDTH+MASK_WIDTH-1)2

© David Kirk/NVIDIA and Wen-mei W. Hwu ECE408/CS483/ECE498al University of Illinois, 2007-2018 13

13

2B/FLOP for Untiled Convolution

How much global memory per FLOP in untiled convolution?

In untiled convolution,

- each value from N (4B from global memory)
- is multiplied by a value from M
 (4B from constant cache, 1 FLOP),
- then added to a running sum (1 FLOP).
 That gives 2B / FLOP.

© Steven S. Lumetta ECE408/CS483/ECE498al University of Illinois, 2020 15

Bandwidth Reduction for 2D

The reduction is

TILE WIDTH2*MASK WIDTH2/(TILE WIDTH+MASK WIDTH-1)2

11.1	40		
	16	19.7	22.1
20.3	36	51.8	64
	20.3	20.3 36	20.3 36 51.8

- --, -- --,

14

Full Use of Compute Requires 13.3× Reuse

Recall our reuse discussion from matrix multiply:

- 1,000 GFLOP/s for GPU from ~2010, and
- 150 GB/s memory bandwidth.

Dividing memory bandwidth by 2B/FLOP,

$$\frac{150 \text{ GB/s}}{2 \text{ B/FLOP}} = 75 \text{ GFLOP/s} = 7.50\% \text{ of peak}.$$

Need at least 100/7.50 = 13.3× reuse to make full use of compute resources.

© Steven S. Lumetta ECE408/CS483/ECE498al University of Illinois, 2020 10

In 2020, Need 52.1× Reuse

That was 2010.

In 2020, the GRID K520 (remember MP0?) offers

- nearly 5,000 GFLOP/s, but only
- 192 GB/s memory bandwidth.

Dividing memory bandwidth by 2B/FLOP,

 $\frac{192 \text{ GB/s}}{2 \text{ B/FLOP}} = 96 \text{ GFLOP/s} = 1.92\% \text{ of peak}.$

Need at least 100/1.92 = 52.1× reuse to make full use of compute resources.

© Steven S. Lumetta ECE408/CS483/ECE498al University of Illinois, 2020 17

17

Need Really Big Mask to Balance Resources

And one more: % of peak compute

- for 2D tiled convolution,
- with TILE WIDTH 32×32.

MASK_WIDTH	2010	2020
3	60%	15%
5	100%	37%
7	100%	67%
9	100%	almost 100%

© Steven S. Lumetta ECE408/CS483/ECE498al University of Illinois, 2020 19

Need Really Big Mask to Balance Resources

Let's make another table: % of peak compute

- for 1D tiled convolution,
- with TILE_WIDTH 1024.

MASK_WIDTH	2010	2020
5	37%	9.6%
9	67%	17%
15	100%	28%
55	100%	100%

© Steven S. Lumetta ECE408/CS483/ECE498al University of Illinois, 2020

18

Food for Thought

- Ratios are different for tiles on boundaries.
- · More importantly,
 - Each thread loads 4B to shared memory.
 - 2,048 threads load only 8kB.
 - Shared memory is usually 64kB or larger.
 - What can one do with the rest?

Improved approach left as homework.

(For example, can raise MW=7 from 67% to 81%.)

© Steven S. Lumetta ECE408/CS483/ECE498al University of Illinois, 2020 20

ANY MORE QUESTIONS? READ CHAPTER 7

© David Kirk/NVIDIA and Wen-mei W. Hwu ECE408/CS483/ECE498al University of Illinois, 2007-2018