L298 双全桥驱动器

译自 ST L298

Document revision history

Date	Revision	Changes
2015-06-26	1.0	第一次撰稿

isMain elec tech studio S & T follow the nature E-mail: ismain@126.com QQ: 2970904654 All right reserved

目录

描述	
逻辑框图	3
最大值	4
引脚描述	4
热参数	5
引脚功能介绍	5
电特性(Vs=42V;Vss=5V,Tj=25℃;有特殊说明除外)	6
应用介绍	10
封装尺寸	13
参考	
- ・ 声明与广告	

- 工作电压高至 46V
- 两通道工作电流高至 4A
- 低静态电压
- 过热保护
- 逻辑 0 电平高至 1.5V (高抗扰度)

Multiwatt15

PowerSO20

描述

L298 有 15 引脚 Multiwatt 直插封装和 PowerSO20 贴片封装。L298 兼容标准的 TTL 逻辑,是一款高电压、高电流双全桥驱动器,能够驱动感性负载,例如继电器、电磁阀、直流电机、步进电机等。两个独立的使能信号用于使能或禁能设备,每一个桥的下管射极相连,射极引脚可以连接相应的采样电阻,用以过流保护,芯片的逻辑供电与负载供电分离,以使芯片可以工作在更低的逻辑电压下。

逻辑框图

最大值

符号	参数	值	单位
Vs	负载供电电压	50	V
Vss	逻辑供电电压	7	V
Vı, Ven	输入和使能信号电压	-0.3 ~ 7	V
lo	每通道输出峰值电流:		
	◆ 非重复性电流(t = 100us)	3	Α
	◆ 重复性电流 (80%~20%; ton=10ms)	2.5	Α
	◆ 直流工作电流	2	Α
Vsens	采样电压	-1 ~ 2.3	V
Ptot	总功耗(Tcase = 75 ℃)	25	W
Тор	工作结温	-25 ~ 130	$^{\circ}$
Tstg, Tj	存储温度和结温	-40 ~ 150	$^{\circ}\mathbb{C}$

引脚描述

Multiwatt15 引脚描述

PowerSO20 引脚描述

热参数

符号	参数	PowerSO20	Multiwatt15	Unit	
Rth j-case	结到封装的热阻	(最大)	-	3	°C/W
Rth j-amb	结到外部环境的热阻	(最大)	13	35	°C/W

引脚功能介绍

MW.15	PowerSO	引脚名称	功能描述		
1;15	2;19	Sense A; Sense B	连接一采样电阻到地,以控制负载电流		
2;3	4;5	Out 1; Out 2	A 桥输出,通过此两脚到负载的电流由 pin1 监控		
4	6	VS	负载驱动供电引脚,该引脚和地之间必须连接一个		
			100nF 无感电容		
5;7	7;9	Input 1; Input 2	A 桥信号输入,兼容 TTL 逻辑电平		
6;11	8;14	Enable A; Enable	使能输入,兼容 TTL,低(L)禁能 A 桥或 B 桥,		
		В	高(H)使能 A 桥或 B 桥		
8	1;10;11;20	GND	地		
9	12	VSS	逻辑供电,该引脚到地必须连接一个 100nF 电容		
10;12	13;15	Input 3; Input 4	B 桥信号输入,兼容 TTL 逻辑电平		
13;14	16;17	Out 3; Out 4	B 桥输出,通过此两脚到负载的电流由 pin15 监控		
-	3;18	N.C.	无连接		

电特性(Vs=42V;Vss=5V,Tj=25℃;有特殊说明除外)

符号	参数	测试条件	最小值	典型值	最大值	单位
Vs	负载电源(4 脚)	正常工作	Vін+2.5		46	V
Vss	逻辑电源(9 脚)		4.5	5	7	V
Is	负载端静态电	Ven = H;IL = 0 Vi = L		13	22	mA
	源电流(4脚)	Vi = H		50	70	mA
		Ven = L Vi = X			4	mA
Iss	逻辑端静态电	Ven = H;IL = 0 Vi = L		24	36	mA
	流(9脚)	Vi = H		7	12	mA
		Ven = L Vi = X			6	mA
ViL	低电平输入	5,7,10,12 脚	-0.3		1.5	V
ViH	高电平输入	5,7,10,12 脚	2.3		Vss	V
liL	低电平输入电流	5,7,10,12 脚; Vi = L			-10	uA
liн	高电平输入电流	5,7,10,12 脚;Vi=H≤Vss -		30	100	uA
		0.6V				
Ven=L	使能(6,,11 脚)		-0.3		1.5	V
Ven=H	使能(6,,11 脚)		2.3		Vss	V
len=L	使能电流	6,,11 脚; Ven=L			-10	uA
len=H	使能电流	6,,11 脚; Ven=H≤VSS - 0.6V		30	100	uA
V _{CEsat} (H)	高边饱和电压	IL = 1A	0.95	1.35	1.7	V
		IL = 2A		2	2.7	V
VcEsat(H)	低边饱和电压	IL = 1A (5V)	0.85	1.2	1.6	V
		IL = 2A (5V)		1.7	2.3	V
VCEsat	高低边总压降	IL = 1A (5V)	1.8		3.2	V
		IL = 2A (5V)			4.9	V
Vsens	采样电压	1,15 脚	-1 (1)		2	V
T ₁ (Vi)	高边关断延时	0.5 Vi ~ 0.9 IL (2); (4)		1.5		us
T ₂ (Vi)	高边下降时间	0.9 l. ~ 0.1 l. (2); (4)		0.2		us
T ₃ (Vi)	高边开启延时	0.5 Vi ~ 0.1 IL (2); (4)		2		us
T ₄ (Vi)	高边上升时间	0.1 l. ~ 0.9 l. (2); (4)		0.7		us
T ₅ (Vi)	低边关断延时	0.5 Vi ~ 0.9 IL (3); (4)		0.7		us
T ₆ (Vi)	低边下降时间	0.9 l. ~ 0.1 l. (3); (4)		0.25		us
T ₇ (Vi)	低边开启延时	0.5 Vi ~ 0.9 I∟ (3); (4)		1.6		us
T ₈ (Vi)	低边上升时间	0.1 lr ~ 0.9 lr (3); (4)		0.2		us
fc (Vi)	转换频率	I _L = 2A		25	40	KHz
T ₁ (Ven)	高边关断延时	0.5 Vi ~ 0.9 IL (2); (4)		3		us
T ₂ (Ven)	高边下降时间	0.9 IL ~ 0.1 IL (2); (4)		1		us
T₃(Ven)	高边开启延时	0.5 Vi ~ 0.1 l. (2); (4)		0.3		us
T ₄ (Ven)	高边上升时间	0.1 IL ~ 0.9 IL (2); (4)		0.4		us
T₅(Ven)	低边关断延时	0.5 Vi ~ 0.9 IL (3); (4)		2.2		us
T ₆ (Ven)	低边下降时间	0.9 L ~ 0.1 L (3); (4)		0.35		us

符号	参数	测试条件	最小值	典型值	最大值	单位
T ₇ (Ven)	低边开启延时	0.5 Vi ~ 0.9 IL (3); (4)		0.25		us
T ₈ (Ven)	低边上升时间	0.1 l. ~ 0.9 l. (3); (4)		0.1		us

- 采样电压可能是-1V@t≤50μsec;稳态下 Vsens(min)≥ 0.5 V。 (1)
- (2) 见图 2。
- 见图 4。 (3)
- 负载必须为纯电阻负载。 (4)

图 1 电流和饱和电压

图 2 开关时间测试电路

Note :For INPUT Switching, set EN = H
For ENABLE Switching, set IN = L
图 4 开关时间测试电路

输入		功能
Ven=H	C=H;D=L	正转
	C=L;D=H	反转
	C=D	快停
Ven=L	C=X;D=X	自由

L=低; H=高; X=不关心

图 6 双向直流电机控制

图 7 并联扩流驱动电路(注意 1/4 并联; 2/3 并联)

应用介绍

1.1 功率输出级

L298 有两路功率输出级(A/B),功率输出级是一个桥形结构,它可以驱动(共模或差模)感性负载,驱动方式可以通过输入端来控制,正常工作时电流经过上桥/负载/下桥/下桥采样电阻形成通路,采样电阻(RSA/RSB)用于感知回路电流大小以便过流保护之用。

1.2 输入级

每个桥是由 6 个输入(in1,in2,EnA 和 in3,in4,EnB)信号来控制的,在 En 信号为高电平时,桥的通断是由 in 信号来控制的,当 En 为低电平时就禁能了桥的工作,桥的通断不再被 in 信号控制,这 6 个输入级信号都兼容 TTL 逻辑电平。

2 建议

Vs 和 Vss 到地间必须连接一个 100nF 无感电容,并且尽可能靠接 Vs 和 Vss (笔者注:官方文档说"尽可能靠近地引脚,个人认为不太正确");当电源级的大容量电容相对 L298 距离较远时,应当考虑增加其他电容,并且将其靠近 L298 电源引脚。

采样电阻不能选择线绕型电阻,采样电阻必须紧靠 Vs 的负极,并可靠接地。每个输入信号到芯片引脚的连接走线尽可能短,保证控制准确免受干扰。

开启与关闭:打开或关闭电源前,En 引脚必须设置成低。

3 应用

图 6 给出了一直流电机控制的原理图,当然这里只用了一个桥,桥上的二极管 D1 ~ D4 应当选用快恢复特性的二极管 (Trr≤200 nsec),并且 VF 电压在最大电流情况下也不能太高。采样电阻通过自身的压降判断输出电流幅度,实现过流保护。

制动功能(快速停车)要求 2A 的额定电流。

当重复性电流高于 2A 时,可以采用图 7 所示的电路解决方案。

当驱动感性负载或者输入信号使用斩波技术时,桥的输出需要接续流二极管,这里推荐选择 肖特基二极管。

图 7 解决方案可承受 3A 连续电流, 3.5A 重复性尖峰电流。

图 8 给出了两相双极步进电动机的驱动方案, L298 由 L297 驱动。

图 9 是图 8 的 PCB 设计方案。

图 10 是另一种两相双极步进电机的驱动方案, L298 由 L6506 控制。

 $R_{S1} = R_{S2} = 0.5 \Omega$

图 8 两相双极步进电机驱动电路图

图 9 图 8 电路图的 PCB 设计

 R_{R} and $R_{\text{sense}}\,\text{depend}$ from the load current

图 10 L6506 控制 L298, L298 驱动两相双极步进电机

封装尺寸

DIM.		mm			inch	
DIM.	MIN.	TYP.	MAX.	MIN.	TYP.	MAX.
Α			5			0.197
В			2.65			0.104
С			1.6			0.063
D		1			0.039	
Е	0.49		0.55	0.019		0.022
F	0.66		0.75	0.026		0.030
G	1.02	1.27	1.52	0.040	0.050	0.060
G1	17.53	17.78	18.03	0.690	0.700	0.710
H1	19.6			0.772		
H2			20.2			0.795
L	21.9	22.2	22.5	0.862	0.874	0.886
L1	21.7	22.1	22.5	0.854	0.870	0.886
L2	17.65		18.1	0.695		0.713
L3	17.25	17.5	17.75	0.679	0.689	0.699
L4	10.3	10.7	10.9	0.406	0.421	0.429
L7	2.65		2.9	0.104		0.114
М	4.25	4.55	4.85	0.167	0.179	0.191
M1	4.63	5.08	5.53	0.182	0.200	0.218
S	1.9	·	2.6	0.075		0.102
S1	1.9		2.6	0.075		0.102
Dia1	3.65		3.85	0.144		0.152

OUTLINE AND MECHANICAL DATA

DIM.		mm			inch	
Diw.	MIN.	TYP.	MAX.	MIN.	TYP.	MAX.
Α			5			0.197
В			2.65			0.104
С			1.6			0.063
E	0.49		0.55	0.019		0.022
F	0.66		0.75	0.026		0.030
G	1.14	1.27	1.4	0.045	0.050	0.055
G1	17.57	17.78	17.91	0.692	0.700	0.705
H1	19.6			0.772		
H2			20.2			0.795
L		20.57			0.810	
L1		18.03			0.710	
L2		2.54			0.100	
L3	17.25	17.5	17.75	0.679	0.689	0.699
L4	10.3	10.7	10.9	0.406	0.421	0.429
L5		5.28			0.208	
L6		2.38			0.094	
L7	2.65		2.9	0.104		0.114
S	1.9		2.6	0.075		0.102
S1	1.9		2.6	0.075		0.102
Dia1	3.65		3.85	0.144		0.152

OUTLINE AND MECHANICAL DATA

DIM.		mm			inch	
DIWI.	MIN.	TYP.	MAX.	MIN.	TYP.	MAX.
Α			3.6			0.142
a1	0.1		0.3	0.004		0.012
a2			3.3			0.130
a3	0		0.1	0.000		0.004
b	0.4		0.53	0.016		0.021
С	0.23		0.32	0.009		0.013
D (1)	15.8		16	0.622		0.630
D1	9.4		9.8	0.370		0.386
E	13.9		14.5	0.547		0.570
е		1.27			0.050	
e3		11.43			0.450	
E1 (1)	10.9		11.1	0.429		0.437
E2			2.9			0.114
E3	5.8		6.2	0.228		0.244
G	0		0.1	0.000		0.004
Η	15.5		15.9	0.610		0.626
h			1.1			0.043
L	0.8		1.1	0.031		0.043
Ν	10* (max.)					
S			8* (n	nax.)		
Т		10			0.394	

(1) "D and F" do not include mold flash or protrusions.

- Mold flash or protrusions shall not exceed 0.15 mm (0.006").

- Critical dimensions: "E", "G" and "a3"

OUTLINE AND MECHANICAL DATA

参考

意法半导体官方芯片手册 L298

声明与广告

上述文档出自 中为电子科技工作室 仅用于技术交流 isMain elec tech studio

淘宝小店: http://shop116413936.taobao.com/