UNIVERSIDADES DE CASTILLA-LEÓN/P.A.U.-LOGSE-SEPTIEMBRE 2020/ENUNCIADOS

CUESTIÓN 1.- Para los elementos del segundo periodo:

- a) ¿Cuáles consiguen configuración de gas noble al ganar o perder un solo electrón? Escribe las configuraciones electrónicas ordenadas de los iones resultantes.
- b) Ordena los elementos de los grupos 13 al 17 de acuerdo con el valor creciente de su radio atómico. Justifica la respuesta.
- c. Define energía de ionización. Entre el elemento del grupo 1 y el del grupo 2, ¿cuál tiene mayor energía de ionización? Justifica la respuesta.

PROBLEMA 1.- En un reactor de 2,5 L se introducen 72 g de SO₃ (g). A una temperatura de 200 °C, el 58,1 % de este gas se disocia para formar SO₂ (g) y O₂ (g), según el siguiente equilibrio:

- $2 SO_3(g) \leftrightarrow 2 SO_2(g) + O_2(g)$ Calcula:
- a) Las presiones parciales de los gases en el equilibrio.
- b) El valor de K_p.
- c) El valor de K_c.
- d) La presión total tras alcanzar el equilibrio.

Resultado: a) P_p (SO₃) = 5,85 atm; P_p (SO₂) = 8,11 atm; P_p (O₂) = 4,05 atm; b) K_p = 7,78; c) K_c = 0,2; c) P_t = 18 atm.

PROBLEMA 2.- Se tiene 10 mL de Pb(NO₃)₂ de concentración 0,022 M.

- a) Suponiendo que los volúmenes son aditivos, ¿se formará precipitado de PbI_2 si los mezclamos con 20 mL de KI 0,033 M?
- b) ¿Cuántos gramos de KI se podrían añadir a esos 10 mL sin que se forme precipitado? Supón que la adición de esos gramos no modifica el volumen final de la mezcla. DATO: $K_{ps}\left(PbI_{2}\right)=1,0\cdot10^{-8}$.

Resultado: a) Hay precipitado; b) 1,037 · 10⁻³ gramos de KI.

PROBLEMA 3.- Se preparan 100 mL de disolución de NiSO₄ disolviendo 3,01 g de dicha sal en agua y se someten a un proceso de electrolisis haciendo pasar durante 45 minutos una intensidad de corriente de 0,8 A.

- a) ¿Cuál es la reacción que tiene lugar en el cátodo?
- b) Enuncia la primera ley de Faraday.
- c) ¿Qué porcentaje del catión metálico presente en la disolución se deposita?
- d) ¿Cuánto tiempo se habría necesitado para depositar todo el metal?

Resultado: c) 57,4 %; d) t = 1 h 31 min.

CUESTIÓN 2.- a) Formula los siguientes compuestos: pentano; 1-butanol (butan-1-ol); etenilmetiléter (metil viniléter); 2-butanol (butan-2-ol); 2-propen-1-ol (prop-2-en-1-ol); Metilbutano.

b) Algunos de los compuestos anteriores son isómeros entre sí. Explica qué tipo de isomería estructural existe entre ellos.

CUESTIÓN 3.- Justifica si las siguientes afirmaciones son ciertas o falsas:

- a) El amoniaco (NH₃) es una sustancia apolar.
- b) El cloruro de sodio (NaCl) tiene mayor punto de fusión que el bromuro de potasio (KBr).
- c) Los metales apenas conducen la corriente eléctrica.
- d) En el etanol (CH₃CH₂OH) existen enlaces de hidrógeno.
- e) Los enlaces presentes en el agua y los presentes en el cloruro sódico (NaCl) hacen que ambos compuestos presenten la misma estructura.

CUESTIÓN 4.- Se ha medido la velocidad inicial de la reacción: a $A + b B \rightarrow c C$ a 25 °C para los tres experimentos que se muestran en la tabla siguiente.

Experimento	$[A]_{o}(M)$	$[B]_{o}(M)$	$V_o (M \cdot s^{-1})$	
1	0,20	0,20	$1,1 \cdot 10^{-6}$	
2	0,40	0,20	$4,4 \cdot 10^{-6}$	
3	0,20	0,60	$3.3 \cdot 10^{-6}$	

Calcula:

- a) El orden total de la reacción y los órdenes parciales.
- b) La constante de velocidad de la reacción y sus unidades.

c) La velocidad inicial de la reacción para una concentración inicial de ambos reactivos igual a 0.08 M.

PROBLEMA 3.- Se toman 5,5 g de ácido benzoico (C_6H_5 -COOH) para preparar una disolución en un matraz de 250 mL.

- a) Calcula el pH de la disolución resultante.
- b) ¿Qué volumen de NaOH de concentración 0,12 M se necesita para neutralizar 10 mL de la disolución preparada inicialmente?

DATO: $K_a(C_6H_5\text{-COOH}) = 6.5 \cdot 10^{-5}$.

Resultado: a) pH = 2,44; b) V = 17 mL.

PROBLEMA 4.- Se genera cloro por reacción de dicromato potásico (K₂Cr₂O₇) con ácido clorhídrico. En este proceso también se forma tricloruro de cromo (CrCl₃) además de otros compuestos.

- a) Ajusta la reacción molecular por el método del ion-electrón.
- b) Calcula el volumen de cloro (Cl_2), medido a 0 °C y 1 atm de presión, que se obtiene si reaccionan por completo 10 mL de disolución de ácido clorhídrico de densidad 1,18 g \cdot mL $^{-1}$ y una riqueza del 35 % en masa.

Resultado: b) V = 0.537 L.

CUESTIÓN 5- Escribe e indica de qué tipo son las siguientes reacciones:

- a) Obtención de etanol a partir de cloroetano.
- b) Obtención de 2-buteno (but-2-eno) a partir de 2-butanol (butan-2-ol).
- c) Obtención de ácido propanoico a partir del 1-propanol (propan-1-ol).