Análisis Matemático para Inteligencia Artificial

Verónica Pastor (vpastor@fi.uba.ar), Martín Errázquin (merrazquin@fi.uba.ar)

Especialización en Inteligencia Artificial

23/6/2023

Presentación de la Materia

¿Por qué estudiar Análisis Matemático?

A medida que Machine Learning se vuelve más común, y los paquetes de software se vuelven más simples de usar, uno se abstrae cada vez más de los detalles técnicos que hay detrás.

Modelo de caja negra.

Esto trae el **peligro** de desconocer las decisiones de diseño y las limitaciones de cada algoritmo.

Bibliografía Recomendada: Mathematics for Machine Learning Marc Peter Deisenroth, A. Aldo Faisal, and Cheng Soon Ong. Published by Cambridge University Press (2020). Está disponible gratis en http://mml-book.github.io/

Motivación (I)

Operaciones vectorizadas y GPUs: Early colab!

Motivación (II)

- Regresión logística asume superposición entre clases
- K-Means asume clusters esféricos
- Arboles de decisión tienen fronteras de decisión en forma de hiperplanos
- ¿Por qué las Redes Neuronales se entrenan más rápido usando GPUs?
- ¿Por qué en las redes neuronales importa la escala y en los árboles de decisión no?
- En kNN ¿Es lo mismo maximizar producto interno que minimizar distancia euclidea?

Clase 1: Espacios Vectoriales

Empecemos considerando los vectores $u=(1,\frac{1}{2},\frac{1}{3})$ y v=(2,-1), ; podemos sumar los vectores? 4/= (1, 1)

$$u + v' = (1, \frac{1}{2}, \frac{1}{3}) + (2, -1, 0) =$$

$$v + v'' = (1, \frac{1}{2}, \frac{1}{3}) + (0, 2, -1) =$$
?

¿qué ocurre si tomamos $\tilde{v} = (-2, 1)$?

 \therefore Para definir correctamente u + v deben estar en el mismo conjunto, y es posible cambiar el sentido y tamaño del vector. Es decir, que si el espacio vectorial es \mathbb{R}^n podemos realizar estas operaciones:

- $x \in \mathbb{R}^n, y \in \mathbb{R}^n \to x + y \in \mathbb{R}^n$
- $x \in \mathbb{R}^n, k \in \mathbb{R} \to kx \in \mathbb{R}^n$

Algunas definiciones...

Sea $\mathbb{V} \neq \emptyset$, se define una operación (o suma) a una función $+: \mathbb{V} \times \mathbb{V} \to \mathbb{V}$.

Esta operación se espera que cumpla con las siguientes propiedades:

- **1** Asociativa: $(x + y) + z = x + (y + z), \forall x, y, z \in \mathbb{V}$.
- **2** Elemento Neutro: $\forall x \in \mathbb{V}, \exists e \in \mathbb{V}$ tal que x + e = e + x = x.
- **3** Opuesto: $\forall x \in \mathbb{V}, \exists \tilde{x} \in \mathbb{V} \text{ tal que } x + \tilde{x} = \tilde{x} + x = e.$
- **Onmutativa:** $\forall x, y \in \mathbb{V}, x + y = y + x$.

Sean $\mathbb{V} \neq \emptyset$, $\mathbb{K} \neq \emptyset$, se define una operación (o producto escalar) a una función $\bullet : \mathbb{K} \times \mathbb{V} \to \mathbb{V}$. Este conjunto \mathbb{K} es generalmente \mathbb{R} o \mathbb{C} es un cuerpo de escalares.

Comentario: Un cuerpo es un conjunto con algunas operaciones sobre los elementos de éste, que se comportan como la adición, sustracción, multiplicación y división que cumplen con las propiedades que conocemos. Para no especificar el cuerpo se usa la palabra escalar.

¿Estudiar espacios vectoriales sólo sirve para vectores?

Sean
$$p(x): 1 + \frac{1}{2}x + \frac{3}{4}x^2$$
 y $q(x): 2 - x$, ¿valen 1 y 2?

$$p(x) + q(x) = (p+q)(x) = (3) + (-\frac{1}{4}) \times -(\frac{3}{4}) + (\frac{1}{4} - 4) \times -(\frac{3}{4} + 6) \times \frac{3}{4}$$

$$p(x) + q(x) = (p+q)(x) = (3) + (7) \times -(7) \times -(7)$$

Repasemos el producto de polinomios:
$$p(x) \cdot q(x) = \begin{pmatrix} k \cdot 1 \end{pmatrix} \begin{pmatrix} k$$

Ly No & cernado

Sean
$$A, B \in \mathbb{R}^{n \times n}$$
, ¿valen 1 y 2?

At
$$P = \begin{pmatrix} e_{4a} + b_{4a} & \dots & e_{4a} + b_{2a} \\ \vdots & \ddots & \vdots \\ e_{n_1} + b_{n_2} & \dots & e_{4a} + b_{n_n} \end{pmatrix} \in \mathbb{R}^n$$

biyección

V.B = IS ...

Definición de Espacio Vectorial

Diremos que $\mathcal{V} = (\mathbb{V}, +, \mathbb{K}, \bullet)$ es un espacio vectorial si \mathbb{K} y \mathbb{V} son conjuntos no vacíos y la operación + en \mathbb{V} , y la acción \bullet de \mathbb{K} en \mathbb{V} cumplen:

- ♦ + es conmutativa → ∀

 <

 - tiene elemento neutro: $1 \bullet v = v, \forall v \in \mathbb{V}$
 - es asociativa:

va:
$$\alpha \bullet (\beta \bullet v) = (\alpha \beta) \bullet v, \ \forall \alpha, \beta \in \mathbb{K}, \forall v \in \mathbb{V}$$

Subespacios Vectoriales: definición

Sea $\mathcal{V}=(\mathbb{V},+,\mathbb{K},ullet)$ un espacio vectorial, un subconjunto $S\subseteq\mathbb{V},\ S\neq\emptyset$ se dice que es un subespacio de \mathbb{V} si la suma y el producto por escalares de \mathbb{V} son una operación y una acción en S que lo convierten en un \mathbb{K} -espacio vectorial.

Condiciones necesarias y suficientes para caracterizar subespacios S es un subespacio en un \mathbb{K} -espacio vectorial sii:

- $v, w \in S \rightarrow v + w \in S$

Subespacios triviales $0 \in S$?

• $\{0\} \subseteq \mathbb{V}$ • $\mathbb{V} \subseteq \mathbb{V}$ • $\mathbb{V} \subseteq \mathbb{V}$

Ejemplos de subespacios propios

Algunos ejemplos más ...

Sean S, T subespacios de $\mathcal{V} = (\mathbb{V}, +, \mathbb{K}, \bullet)$. Probar si también los son:

Demostremos el caso 2

Representación de subespacios

Sistemas generadores

Definición: Sea \mathcal{V} un espacio vectorial, y $G = \{v_1, ..., v_r\} \subseteq \mathbb{V}$. Una combinación lineal de G es un elemento $v \in \mathbb{V}$ tal que $v = \sum_{i=1}^r \alpha_i \bullet v_i$, donde $\alpha_i \in \mathbb{K}$, para i = 1, ..., r.

Definición: Sea \mathcal{V} un espacio vectorial, y $G \subseteq \mathbb{V}$. Se dice que G es un sistema de generadores de \mathcal{V} si todo elemento de \mathbb{V} es una combinación lineal de G.

Notación:
$$\langle G \rangle = \mathbb{V}$$
.

$$\mathbb{R}^{2} = \left\langle \begin{pmatrix} 1 \\ 0 \end{pmatrix}, \begin{pmatrix} 0 \\ 1 \end{pmatrix} \right\rangle = \left\langle \begin{pmatrix} 1 \\ 1 \end{pmatrix}, \begin{pmatrix} 1 \\ -1 \end{pmatrix}, \begin{pmatrix} 1 \\ 0 \end{pmatrix}, \begin{pmatrix} 1 \\ 1 \end{pmatrix} \right\rangle$$

Ejemplo

$$2\binom{4}{4} + 4 \cdot \binom{2}{6} = \binom{4}{3}$$

Sea
$$G = \left\{ \begin{pmatrix} 1 \\ 1 \\ 1 \end{pmatrix}, \begin{pmatrix} 2 \\ 1 \\ 0 \end{pmatrix}, \begin{pmatrix} 4 \\ 3 \\ 2 \end{pmatrix} \right\}$$
 dado un vector cualquiera $v \in \mathbb{R}^3$,

Independencia Lineal

Dentro de los conjuntos generadores, nos interesan aquellos que son mínimos (menor cantidad de elementos).

Sea $S \subseteq \mathcal{V}$ un subespacio vectorial, y sea:

- $\{v_1,...,v_n\} \subseteq \mathbb{V}$. Entonces $\langle v_1,...,v_n \rangle \subseteq S$ sii $v_i \in S, \ \forall 1 \leq i \leq n$.
- $\{v_1,...,v_n,v_{n+1}\}\subseteq \mathbb{V}$. Entonces $\langle v_1,...,v_n,v_{n+1}\rangle=\langle v_1,...,v_n\rangle$ sii $v_{n+1}\in \langle v_1,...,v_n,\rangle$

Definición: Sea \mathcal{V} un espacio vectorial, y sea $\{v_{\alpha}\}_{{\alpha}\in I}$ una familia de vectores en \mathbb{V} ; se dice que $\{v_{\alpha}\}_{{\alpha}\in I}$ es linealmente independiente (l.i.) sii

$$\sum_{\alpha \in I} k_{\alpha} \bullet v_{\alpha} = 0 \to k_{\alpha} = 0, \ \forall \alpha \in I$$

Observar:

- {0} es linealmente dependiente (l.d.)
- si $v \neq 0$, $\{v\}$ es l.i.
- si $v_1 \propto v_2$ (colineales), $\{v_1, v_2\}$ es l.d.
- si v_1, v_2 no nulos, ni proporcionales, $\{v_1, v_2\}$ es l.i.

Bases y dimensión

Definición: Sea $\mathcal V$ un espacio vectorial, un conjunto $\{v_\alpha\}_{\alpha\in I}$ se llama base de $\mathcal V$ si $\{v_\alpha\}_{\alpha\in I}$ es un conjunto linealmente independiente de $\mathbb V$ que satisface $\langle v_\alpha\rangle_{\alpha\in I}=\mathbb V$.

Definición: Sean \mathcal{V} un espacio vectorial, $B = \{v_1, ..., v_n\}$ una base de \mathcal{V} .

Diremos que n es la dimensión de \mathcal{V} , donde $n < \infty$.

Comentario: Tener en cuenta que existen espacios vectoriales con dimensión infinita.

dimensión infinita.

$$E = \left\{ \begin{pmatrix} 1 \\ 0 \end{pmatrix}, \begin{pmatrix} 1 \\ 1 \end{pmatrix} \right\}$$

$$B = \left\{ \begin{pmatrix} 1 \\ 1 \end{pmatrix}, \begin{pmatrix} 1 \\ 1 \end{pmatrix} \right\}$$

$$B = \left\{ \begin{pmatrix} 1 \\ 1 \end{pmatrix}, \begin{pmatrix} 1 \\ 1 \end{pmatrix} \right\}$$

$$B = \left\{ \begin{pmatrix} 1 \\ 1 \end{pmatrix}, \begin{pmatrix} 1 \\ 1 \end{pmatrix} \right\}$$

Variedad lineal

Sea $\mathcal V$ un espacio vectorial, M es una variedad lineal $M\subseteq \mathbb V$ es un conjunto de la forma $M=\{s+v,\ donde\ s\in S\}$, siendo S subespacio de $\mathcal V$, y $v\in \mathbb V$.

