LECTURE NOTES

MATHEMATICS FOR MACHINE LEARNING

This version: October 14, 2025

Latest version: github.com/felipe-tobar/Maths-for-ML

Felipe Tobar Department of Mathematics Imperial College London

f.tobar@imperial.ac.uk
www.ma.ic.ac.uk/~ft410

Contents

1	Introduction	9
	Optimisation 2.1 Terminology	4 5
3	Continuous unconstrained optimisation 3.1 Optimality Conditions	6
$\mathbf{R}_{\mathbf{c}}$	eferences	7

1 Introduction

MISSING

2 Optimisation

NB: in this chapter, we follow (Murphy, 2022).

Optimisation is central to ML, since models are *trained* by minimising a loss function (or optimising a reward function). In general, model design involves the definition of a training objective, that is, a function that denotes how good a model is. This training objective is a function of the training data and a model, the latter usually represented by its parameters. The best model is is the chosen by optimising this function.

Example: Linear regression (LR)

In the LR setting, we aim to determine the function

$$f: \mathbb{R}^M \to \mathbb{R}$$

 $x \mapsto f(x) = a^\top x + b, \quad a \in \mathbb{R}^M, b \in \mathbb{R}$ (2.1)

conditional to a set of observations

$$\mathcal{D} = \{(x_i, y_i)\}_{i=1}^N \subset \mathbb{R}^M \times \mathbb{R}. \tag{2.2}$$

Using least squares, the function f is chosen via minimisation of the sum of the square differences between observations $\{y_i\}_{i=1}^N$ and predictions $\{f(x_i)\}_{i=1}^N$. That is, we aim to minimise he loss:

$$J(\mathcal{D}, f) = \sum_{i=1}^{N} (y_i - f(x_i))^2 = \sum_{i=1}^{N} (y_i - a^{\top} x_i - b)^2.$$
 (2.3)

[FT: Camilo, por favor generar figura aqui. Mira la fig 1 del apunte del curso de AM]

Example: Logistic regression

Here, we aim to determine the function

$$f: \mathbb{R}^M \to \mathbb{R}$$
$$x \mapsto f(x) = \frac{1}{1 + e^{-\theta^\top x + b}}, \quad \theta \in \mathbb{R}^M, b \in \mathbb{R}$$
 (2.4)

conditional to the observations

$$\mathcal{D} = \{(x_i, c_i)\}_{i=1}^N \subset \mathbb{R}^M \times \{0, 1\}.$$
(2.5)

The standard loss function for the classification problem is the cross entropy, given by:

$$J(\mathcal{D}, f) = -\frac{1}{N} \sum_{i=1}^{N} \left(c_i \log f(x_i) + (1 - c_i) \log(1 - f(x_i)) \right)$$
 (2.6)

$$= \frac{1}{N} \sum_{i=1}^{N} \left(\log(1 + e^{-\theta^{\top} x + b}) - y_i(-\theta^{\top} x + b) \right)$$
 (2.7)

Example: Clustering (K-means)

Given a set of observations

$$\mathcal{D} = \{x_i\}_{i=1}^N \subset \mathbb{R}^M, \tag{2.8}$$

we aim to find cluster centres (or prototypes) $\mu_1, \mu_2, \dots, \mu_K$ and assignment variables $\{r_{ik}\}_{i,k=1}^{N,K}$, to minimise the following loss

$$J(\mathcal{D}, f) = \sum_{i=1}^{N} \sum_{k=1}^{K} r_{ik} ||x_i - \mu_k||^2$$
(2.9)

(2.10)

[FT: Camilo, por favor generar figura aqui]

2.1 Terminology

We denote an optimisation problem as follows:

$$\min_{x \in \mathcal{X}} f(x) \quad \text{s.t.} \quad g_i(x) \le 0, \ h_j(x) = 0, \ i = 1, \dots, I, \ j = 1, \dots, J.$$
 (2.11)

We describe the components of this statement in detail:

- Objective function: The function $f: \mathcal{X} \to \mathbb{R}$ is the quantity to be minimised, with respect to x.
- Optimisation variable: Minimising f requires fining the value of x such that f(x) is minimum. This is also written as

$$x_{\star} = \underset{x \in \mathcal{X}}{\arg \min} f(x) \text{ s.t. } g_i(x) \le 0, \ h_j(x) = 0.$$
 (2.12)

- Restrictions: These are denoted by the functions g_i and h_i above, which describe the requirements for the optimiser in the form of equalities and inequalities, respectively.
- Feasible region: This is the subset of the domain that complies with the restrictions, that is

$$C = \{x \in \mathcal{X}, \text{ s.t. } g_i(x) \le 0, h_i(x) = 0, i = 1, \dots, I, j = 1, \dots, J\}$$
 (2.13)

• Local / global optima. Values for the optimisation variable that solve the optimisation problem wither locally or globally. More formally:

$$x_{\star}$$
 is a local optima $\iff \exists \lambda > 0$ s.t. $x_{\star} = \underset{x \in \mathcal{X}}{\arg \min} f(x)$. (2.14)

$$x_{\star}$$
 is a global optima $\iff x_{\star} = \underset{x \in \mathcal{X}}{\operatorname{arg \, min}} f(x).$ (2.15)

Interplay between constrains and local/global optima

FT: Camilo, por favor una ilustración de como las differentes restriccines cambian la cantidad

y tipo de minimos]

Example: XXX

[FT: Camilo: Present a few parametric functions and indicate their (closed-form) minima]

3 Continuous unconstrained optimisation

We will ignore constrains in this section, and we will focus on problems of the form

$$\theta \in \operatorname*{arg\,min}_{\theta \in \Theta} L(\theta). \tag{3.1}$$

We emphasise that if θ_{\star} satisfies the above, then

$$\forall \theta \in \Theta, \ L(\theta_{\star}) \le L(\theta), \tag{3.2}$$

meaning that it is a **global** optimum. However, as this might be very hard to find, we are also interested in local optima, that is, θ_{\star} such that

$$\exists \delta > 0 \ \forall \theta \in \Theta \ \text{s.t.} \ \|\theta - \theta_{\star}\| < \delta \ \Rightarrow \ L(\theta_{\star}) \le L(\theta). \tag{3.3}$$

3.1 Optimality Conditions

Assumption 3.1. The loss function L is twice differentiable.

Denoting $g(\theta) = \nabla_{\theta} L(\theta)$ and $H(\theta) = \nabla_{\theta}^2 L(\theta)$, we can state the following optimality conditions.

References

Murphy, K. P. (2022). Probabilistic machine learning: An introduction. MIT Press. Retrieved from probml.ai