Nirma University

Institute of Technology
Semester End Examination (IR) / Supplementary Examination, May - 2022
B. Tech. in Computer Science and Engineering, Semester-V 2CS503 Design and Analysis of Algorithms

Roll / Exam No.			Supervisor's initial with date		
Time: 2 Hours Max. Marks: 50					
Instructions:	 Attempt all questions. Figures to right indicate full marks. Draw neat sketches wherever necessary. Assume suitable data wherever applicable and clearly mention them. CLO_ and BL_ have been mentioned against each question to map it as per Course Learning Objective and Bloom's taxonomy. 				
Q 1 Q 1 CLOI BL2	(a)	Answer the follow Order the follow N ² , N logN, N logN N ³ . In rate.	[16] [7]		
Q 1 CLO1 Bl.2	(a)	Find two functions $f(N)$ and $g(N)$ such that neither $f(N) = O(g(N))$ nor $g(N) = O(f(N))$. Justify your answer.			[7]
Q 1 CLO3 BL3,4	(b)	Show the result of inserting 10, 12, 1, 14, 6, 5, 8, 15, 3, 9, 7, 4, 11, 13, and 2, one at a time, into an initially empty binary heap. Show the result of performing three deleteMin operations on the heap after all insert operations. Show the process stepwise.			[9]
Q 2 Q 2 clo2,3 Bl2,3,4		(MST). Find MS	owing: lgorithm to find minimum ST using Prim's algorithm fo mputation for each step.		[18] [8]
		v ₃	$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	10	

Page 1 of 2

OR

Q 2 (a) Write Kruskal's algorithm to find MST. Find MST using [8] Kruskal's algorithm for the following graph. Show computation for each step.

Q 2 (b) What is the optimal way to compute A1*A2*A3*A4*A5*A6, [10] where the dimensions of the matrices are: A1: 10 × 20, A2: 20 × 1, A3: 1 × 40, A4: 40 × 5, A5: 5 × 30, A6: 30 × 15? The optimal way is the one that involves the least number of scalar multiplications. Report the optimal parenthesization and minimum number of scalar multiplications. Show computation for each step.

Q 3 Answer the following: [16]
Q 3 (a) Assume a 0/1 knapsack problem with four types of [12]

CLO2,3 objects whose weights are respectively 3, 4, 5 and 6 units.

BL3,4

Assume a 0/1 knapsack problem with four types of objects, whose weights are respectively 3, 4, 5 and 6 units, and whose values are 3, 5, 6, and 10. The knapsack can carry a maximum of 10 units of weight. Assume that an adequate number of objects of each type are available. Solve this problem using backtracking. Show computation in each step.

Q 3 (b) Discuss the general template of divide and conquer [4] algorithm