Independent Component Analysis (ICA)

2021. 11. 09.

Hyunsoo, Yu

PROGRESS

- Overview
 - What is ICA
 - Compare with PCA
- Implementation
 - Central Limit Theorem
 - Densities and Linear transformation
 - ICA algorithm
 - Bell-Sejnowski algorithm
 - Natural gradient algorithm

WHAT IS ICA (INDEPENDENT COMPONENT ANALYSIS) - PROBLEM

- Cocktail party problem
 - Two sources are mixed and observed from sensors
 - => Sensors can't identify original signals.

BIO COMPUTING & MACHINE LEARNING LAB (BCML)

WHAT IS ICA (INDEPENDENT COMPONENT ANALYSIS)

- SOLUTION : ICA

- Independent Component Analysis
 - Transforms a set of vectors into a maximally independent set. (Convert to unmixed set.)
- Number of inputs and outputs are the same.
- Outputs are mutually independent.
- Assumption
 - Independent components are statistically independent
 - Independent components are non-Gaussian

COMPARE WITH PCA

- PCA
 - Compress information (dimensionality reduction)
- ICA
 - Separate information
 - Transforming the input space into a maximally independent basis
- Commonality
 - Input data should be auto scaled $z = \frac{x \mu}{\sigma}$

IMPLEMENTATION

 Goal : Get W by updating with gradient ascent after computing likelihood based on assumption of independence

$$s=A^{-1}x=Wx$$
 Source Observation

$$W \coloneqq W + \alpha \frac{\partial l}{\partial W}$$

BIO COMPUTING & MACHINE LEARNING LAB (BCML)

IMPLEMENTATION

- CENTRAL LIMIT THEOREM

- CLT
 - Linear combination of independent random variables
 - => represent Gaussian
- ICA
 - Inverse calculation of CLT
 - Find original independent 's' by multiplying 'W' to 'x'
 - Goal : Find proper 'W'

Find s from the combination of each x

IMPLEMENTATION

- DENSITIES AND LINEAR TRANSFORMATION

- Probability Density Function of linear-transformed random variables
 - After linear transformation, the random variable should be adjusted with an inverse matrix.
 - Because the area of PDF is always 1.

About x (Observation)
$$p_x(x) = p_s(A^{-1}x)) \cdot |A^{-1}|$$

$$=p_s(s)\cdot |A^{-1}|=p_s(Wx)\cdot |W|$$
 About s (Original source)

$$s \longrightarrow A \longrightarrow x$$

Ex)
$$A = 2$$

$$s:[0,1]$$

 $p_s(s) = 1\{0 \le s \le 1\}$

$$x: [0, 2]$$

$$p_x(x) = (0.5)1\{0 \le x \le 2\}$$

- MAXIMUM LIKELIHOOD ESTIMATION

• p_s = probability density function of source ' s_i '

$$p(x) = \prod_{j=1}^{n} p_s(w_j^T x) \cdot |W|$$

- Apply Maximum Likelihood Estimation
 - Compute Log likelihood about W
 - Find proper W which makes Likelihood maximum
 - Compute $\frac{\partial l(W)}{\partial W}$ (I(w) : log likelihood)

$$l(W) = \sum_{i=1}^m \left(\sum_{j=1}^n \log p_s(w_j^T x^{(i)}) + log|W|
ight)$$

n:# of source

m:# of training sample

- BELL-SEJNOWSKI ALGORITHM

$$l(W) = \sum_{i=1}^m \left(\sum_{j=1}^n \log p_s(w_j^T x^{(i)}) + log|W|
ight)$$

$$l(W) = \sum_{i=m}^m \left(\sum_{j=1}^n \log g'(w_j^T x^{(i)}) + log|W|
ight)$$

PDF -3 -2 -1 0 1 2 3 0.4 0.5

0.2

-2

-1

- When it comes to p_s , specified CDF(Cumulative Density Function) is required.
 - p_s shouldn't be gaussian distribution (because of CLT)
 - Sigmoid function is chosen as a cdf.
 - If you have prior knowledge about the cdf of p_s , you can use that.

$$g(s) = \frac{1}{1 + e^{-s}}$$

- BELL-SEJNOWSKI ALGORITHM

$$egin{aligned} l(W) &= \sum_{i=m}^m \left(\sum_{j=1}^n \log g'(w_j^T x^{(i)}) + log|W|
ight) \ & \left[w_j^T x^{(i)} = s_j
ight] \ & rac{\partial l}{\partial W} = \sum_{i=1}^m \left(\sum_{j=1}^n rac{1}{g'(s_j)} \cdot g''(s_j) \cdot x^{(i)^T} + rac{1}{|W|} |W|(W^{-1})^T
ight) \ & \left[g'(x) = g(x)(1-g(x))
ight] \ & rac{\partial l}{\partial W} := \sum_{i=1}^m \left(\sum_{j=1}^n rac{1}{g(s_j)(1-g(s_j))} \cdot g(s_j)(1-g(s_j))(1-2g(s_j)) \cdot x^{(i)^T} + (W^{-1})^T
ight) \end{aligned}$$

 $rac{\partial l}{\partial W} = \sum_{i=1}^m \left(\sum_{j=1}^n (1-2g(s_j)) \cdot x^{(i)^T} + (W^{-1})^T
ight) \cdot s$

Gradient Ascent

$$W:=W+lpharac{\partial l}{\partial W}$$

- BELL-SEJNOWSKI ALGORITHM

We can update W step by step

$$W := W + lpha \left(egin{bmatrix} 1 - 2g(w_1^T x^{(i)}) \ 1 - 2g(w_2^T x^{(i)}) \ dots \ 1 - 2g(w_n^T x^{(i)}) \end{bmatrix} x^{(i)^T} + (W^T)^{-1} \ dots \ 1 - 2g(w_n^T x^{(i)}) \end{bmatrix}$$

BIO COMPUTING & MACHINE LEARNING LAB (BCML)

- NATURAL GRADIENT ALGORITHM

$$egin{aligned} ext{ALGORITHM} \ W := W + lpha \left[egin{bmatrix} 1 - 2g(w_1^T x^{(i)}) \ 1 - 2g(w_2^T x^{(i)}) \ dots \ 1 - 2g(w_n^T x^{(i)}) \end{bmatrix} x^{(i)^T} + egin{bmatrix} W^T)^{-1} \ 1 - 2g(w_n^T x^{(i)}) \end{bmatrix} \end{aligned}$$

- Computing an inverse matrix takes a lot of time
 - lacktriangledown Multiply $oldsymbol{W}^T oldsymbol{W}$

$$W := W + lpha \left(egin{bmatrix} 1 - 2g(w_1^Tx^{(i)}) \ 1 - 2g(w_2^Tx^{(i)}) \ dots \ 1 - 2g(w_n^Tx^{(i)}) \end{bmatrix} x^{(i)^T}W^T + I
ight) W$$