Holographic strange correlator

Xiangdong Zeng

May 13, 2021 @ Futian International Quantum Institute, Shenzhen

Basic ideas

- String-net wavefunction + certain boundary conditions → partition function
- Application layer:
 - Coarse-graining procedure → holographic tensor network
 - Calculate the bulk-boundary propagator
- Theoretical layer:
 - MPO symmetries / pulling-through conditions → boundary conditions

Backgrounds

Fusion categories (1)

- Simple objects and their fusion:
 - $\circ \ a \otimes b = \bigoplus_{c} N_{ab}^{c} c$
 - \circ Fusion coefficients N^c_{ab} : non-negative integers
 - Simple objects
 - Different species of anyon
 - Trivial object: $\mathbf{1} \otimes a = a$
 - Fusion: can't be distinguished at long distance
 - Examples
 - Decomposition of direct product of group representations
 - Operator product expansion (OPE) in CFT

Fusion categories (2)

- Fusion diagrams
 - Notations:
 - Terminals: (simple) objects
 - Lines: identity operators
 - Vertices: fusion
 - \circ Building blocks: $\bigvee_{c}^{a} \in V_{c}^{ab}$, $\bigvee_{a}^{b} \in V_{ab}^{c}$, $\bigvee_{a}^{c} \in V_{ab}^{c}$,
 - Bra, ket and operator contract to a number:

$$\frac{\alpha}{\alpha} \frac{\beta}{\beta} \frac{\gamma}{\gamma} = \left\langle \alpha \frac{\gamma}{\nu} \right\rangle \left| \alpha \frac{\nu}{\beta} \frac{\delta}{\mu} \frac{\delta}{\gamma} \right\rangle \left| \alpha \frac{\gamma}{\delta} \right\rangle.$$

Isotopic moves can be performed arbitrarily

Fusion categories (3)

- F-symbols F_d^{abc}
 - Basis changes for the vector space:

• Transformation coefficients:
$$\underbrace{ \left(\begin{array}{c} a & b & c \\ x & d \end{array} \right) = \sum_{y} \left[F_{d}^{abc} \right]_{xy} \underbrace{ \left(\begin{array}{c} a & b & c \\ d & d \end{array} \right) }_{d} .$$

Pentagon equations:

Fusion categories (4)

- Quantum dimensions d_a
 - \circ Maximal eigenvalue of matrix $[N_a]$
 - Bubble removal: $\bigcirc^a = d_a$, $b \stackrel{c}{ } b' = \delta_{ac} \sqrt{\frac{d_b d_{b'}}{d_a}} \stackrel{a}{ } .$
- With *F*-symbols and quantum dimensions we can evaluate an arbitrary diagram:

$$\alpha \left(\beta \right)_{\rho}^{\gamma} \delta = \delta_{\nu\rho} \sqrt{\frac{d_{\beta}d_{\gamma}}{d_{\rho}}} \alpha \left(\rho \right) \delta = \delta_{\nu\rho} \sqrt{\frac{d_{\beta}d_{\gamma}}{d_{\rho}}} \sqrt{\frac{d_{\alpha}d_{\rho}}{d_{\delta}}} d_{\delta}$$

Example:

$$\Longrightarrow \qquad \stackrel{\alpha \qquad \beta \qquad }{ \qquad \qquad } \delta \; = \; \left[F_{\delta}^{lphaeta\gamma} \right]_{\mu
u} \sqrt{d_{lpha}d_{eta}d_{\gamma}d_{\delta}}$$

Fusion categories (5)

• Fibonacci:

- \circ Anyon types: 1, τ
- \circ Fusion rules: $\tau \otimes \tau = \mathbf{1} \oplus \tau$
- \circ Quantum dimensions: $d_{f 1}=1,\, d_{ au}=\phi=rac{1+\sqrt{5}}{2}$
- \circ F-symbols: $F_{ au}^{ au au au}=\left[egin{smallmatrix} \phi^{-1} & \phi^{-1/2} \ \phi^{-1/2} & -\phi^{-1} \end{matrix}
 ight]$

• Ising:

- \circ Anyon types: $\mathbf{1}, \, \sigma, \, \psi$
- \circ Fusion rules: $\psi \otimes \psi = \mathbf{1}, \, \sigma \otimes \sigma = \mathbf{1} \oplus \psi, \, \psi \otimes \sigma = \sigma$
- \circ Quantum dimensions: $d_{f 1}=d_{\psi}=1,\,d_{\sigma}=\sqrt{2}$
- \circ F-symbols: $F_{\sigma}^{\sigma\sigma\sigma}=rac{1}{\sqrt{2}}\left[egin{smallmatrix}1&1\1&-1\end{bmatrix},\,F_{\sigma}^{\psi\sigma\psi}=F_{\psi}^{\sigma\psi\sigma}=-1$

String-net models (1)

- Defined on a trivalent lattice (e.g. honeycomb)
- ullet Edge labels: simple objects in a fusion category ${\mathcal C}$
- ullet Vertex labels: morphism space $V_{ij}^k = \operatorname{Hom}_{\mathcal{C}}(i \otimes j, k)$
- ullet Hilbert space: $\mathcal{H}=igotimes_v\mathcal{H}_v$ where $\mathcal{H}_v=igoplus_{i,j,k}V_{ij}^k$

String-net models (2)

$$ullet$$
 Hamiltonian: $H = -\sum_{v \in \mathrm{vertices}} A_v - \sum_{p \in \mathrm{plaquattes}} B_p$

$$\circ$$
 A_v (charge operators:) $Q_I \left| \stackrel{\diamondsuit}{\sim} \stackrel{\mathsf{k}}{\circ} \right\rangle = \delta_{ijk} \left| \stackrel{\diamondsuit}{\sim} \stackrel{\mathsf{k}}{\circ} \right\rangle$

$$B_{p}^{s} \begin{vmatrix} b & h < c \\ g & i \\ a < j & j > d \\ f > k < e \end{vmatrix}$$

 \circ B_p (magnetic flux operators):

$$= \sum_{m,\dots,r} B^{s,g'h'i'j'k'l'}_{\boldsymbol{p},ghijkl}(abcdef) \begin{vmatrix} \mathbf{b} & \mathbf{h}' \cdot \mathbf{c} \\ \mathbf{g}' & \mathbf{i}' \\ \mathbf{a} \cdot \mathbf{c} \\ \mathbf{j}' & \mathbf{j} \cdot \mathbf{d} \\ \mathbf{f} \cdot \mathbf{k}' \cdot \mathbf{c} \\ \mathbf{g}' & \mathbf{i}' \\ \mathbf{f} \cdot \mathbf{k}' \cdot \mathbf{c} \end{vmatrix}$$

• B... is a product of F-symbols

String-net models (3)

- Ground state:
 - Vertices: fusion rules
 - \circ For a quantum state $|\varPsi
 angle = \sum_X \varPsi(X) |X
 angle$
 - ullet $|X\rangle$: basis

Tensor network for string-net

Ref: 1306.2164 (TN review), 0809.2393 (TN for string-net)

Tensor networks (1)

- A "network" constructed with tensors
- Notations:
 - Solid shapes: tensors
 - Bonds or "legs": indices
 - Connected bonds: contraction

• Example:
$$i - \underbrace{\sum_{j} M_{ij} N_{jk}}_{N} = \sum_{j} M_{ij} N_{jk}$$

- Most of the data are irrelevant and can be truncated (most interactions are local)
 - \circ Area-law: $S \sim \partial A$
 - \circ Time/space complexity $\sim \exp L$ (i.e. Hilbert space is too large)

Tensor networks (2)

• Matrix product state (MPS):

• Projected entangled pair states (PEPS):

- MPO and PEPO: state → operator
- Terminologies:
 - Physical legs: the original indices of the state
 - Virtual legs: the indices between the tensor units

PEPS for string-net (1)

PEPS for string-net (2)

- Virtual bonds (black): summed over
- Physical bonds (red): left uncontracted, therefore build up a PEPS structure

PEPS for string-net (3)

Notes on the conventions:

$$\circ$$
 Triangle to tetrahedron: β α $= (d_i d_j d_k)^{-\frac{1}{4}} (d_\alpha d_\beta d_\gamma)^{-\frac{1}{3}}$ β β β

 \circ Tetrahedron to F-symbol: $[F_l^{ijk}]_{mn}=rac{1}{\sqrt{d_id_jd_kd_l}}$ $\stackrel{k}{\swarrow_l}$ $\stackrel{i}{\searrow_n}$ $=[F_{jk}^{il}]_{mn}$

Strange correlators

Ref: 1801.05959

Strange correlators (1)

- Original definition: $C(r,r')=\langle arOmega |\phi(r)\phi(r')|arPsi
 angle /\langle arOmega |arPsi
 angle$
 - $\circ |\Psi\rangle$: a non-trivial short-range entangled state
 - \circ $|\Omega\rangle$: a direct product state
- In the string-net case:
 - $\circ |\Psi_{\rm SN}\rangle$: PEPS wave function for string-net (the tensor network above)
 - $\circ \hspace{0.1cm} |arOmega
 angle$: some specific product state $|\omega
 angle^{\otimes N}$
 - $\circ~$ Strange correlator: **inner product / overlap** between $\ket{\varPsi_{
 m SN}}$ and $\ket{\varOmega}$, or $ra{@\Psi_{
 m SN}}$
 - Equivalent to fix all the physical legs to some certain values (labels)
 - After contraction the tensor network will have no free bonds, or simply become a number
 - The result gives the partition function

Strange correlators (2)

- Example: Fibonacci string-net
 - \circ Strange correlator: project all physical degree of freedom to au-label (i.e. $|arOmega
 angle=| au
 angle^{\otimes N}$)
- Example: critical Ising
 - $\circ~$ The product state is given by $|arOmega
 angle = \left[\sqrt{2}ig(\cosheta|\mathbf{1}
 angle + \sinheta|\psi
 angleig)\otimes|\sigma
 angle
 ight]^{\otimes N}$
 - \circ The same procedure leads to the classical 2D Ising tensor $e^{\beta(\sigma_i\sigma_j+\sigma_j\sigma_k+\sigma_k\sigma_l+\sigma_l\sigma_i)}$
 - Building blocks:
 - lacksquare Black: f 1 or ψ , gray: σ , red: $\cosheta|f 1
 angle + \sinheta|\psi
 angle$

Tensor networks & CFT data

Ref: 0711.3960 (iTEBD), cond-mat/0611687 (TRG), 1412.0732 (TNR), 1512.03846 (spectra/defect)

Verify SC gives the correct CFT partition function

- Transfer matrix → CFT spectra
- Partition function → entanglement entropy, correlation length, central charge, etc

CFT spectra

- ullet CFT partition function on torus: $Z=\sum_lpha \exp\left[2\pirac{m}{n}\left(rac{c}{12}-arDelta_lpha
 ight)+mnf+\cdots
 ight]$
- ullet Eigenvalues of transfer matrix M ($Z={
 m Tr}\,M^{m/l}$): $\lambda_lphapprox \exp\left[2\pirac{l}{n}\left(rac{c}{12}-arDelta_lpha
 ight)
 ight]$
- ullet Add translation operator $T=\exp\left(rac{2\pi \mathrm{i}}{n}P
 ight)$ where $P=L_0-ar{L}_0$
- ullet Eigenvalues of $ilde{M}=T\cdot M$: $ilde{\lambda}_lpha=\exp\left[2\pirac{l}{n}\left(rac{c}{12}-arDelta_lpha
 ight)+rac{2\pi\mathrm{i}}{n}s_lpha
 ight]$
 - \circ Real part: scaling dimension $arDelta_{lpha}$
 - \circ Imaginary part: conformal spin s_{lpha}

Data from the partition function

- Algorithms:
 - iTEBD: row-by-row
 - TRG/TNR: coarse-graining
- Central charge:
 - \circ Entanglement entropy vs correlation length: $S_A = rac{c}{6}\log \xi$
 - From fitting with different bond dimensions
- Two-point functions:
 - Inserting operators in the tensor network
 - \circ e.g. $\mathrm{e}^{eta(\sigma_i\sigma_j+\cdots)} o\sigma_i\mathrm{e}^{eta(\sigma_i\sigma_j+\cdots)}$

Strange correlator TRG

Coarse-graining procedure

- Strange correlator: $\langle \Omega | \Psi_{\rm SN} \rangle \to {\sf partition}$ function
- Reinterpret the TRG/TNR (for partition functions) at the level of quantum states
 - String-net is at RG fixed point
- General picture:
 - \circ Keep the value of $\langle arOmega | arPsi_{
 m SN}
 angle$ unchanged
 - \circ Apply a PEPO operator U on $|arPsi_{
 m SN}
 angle$, then put the entanglement into |arOmega part

$$0 \circ \langle arOmega^{(i)} | arPsi_{
m SN}^{(i)}
angle = \langle arOmega^{(i)} | U^\dagger U | arPsi_{
m SN}^{(i)}
angle = \langle arOmega^{(i)} | U^\dagger | arPsi_{
m SN}^{(i+1)}
angle pprox \langle arOmega^{(i+1)} | arPsi_{
m SN}^{(i+1)}
angle$$

Bulk-boundary propagator

- To check that the coarse-graining procedure builds up a holographic network
- ullet Bulk field: $\phi(x,z)=\int \mathrm{d}^d y\, K(x,z|y) O(y)$
 - $\circ~O(y)$ Is the boundary operator: $\lim_{z o 0}\phi(x,z)=z^{-\Delta}O(x)$
 - \circ Δ : conformal dimension
- ullet Bulk-boundary propagator: $K(x,z|y) = \left[rac{z}{z^2-(x-y)^2}
 ight]^{d-\Delta} \varTheta\left(z^2-(x-y)^2
 ight)$

Open problems

- How to choose the boundary conditions?
 - MPO symmetries and pulling-through conditions
 - From integrable models
- What's the correct bulk operator?
 - Use some state to "represent" the operator