Управляемая генерация текста с использованием механизма внимания

Беляев Станислав Научный руководитель: Николенко Сергей Игоревич

Санкт-Петербургский Академический Университет

18 июня 2018

Введение

Задача генерации

Нейронным сетям удается эффективно обобщать зависимости для данных, имеющих **непрерывное** представление в \mathbb{R}^n (картинки, видео). В **дискретном** же пространстве операции теряют свойство дифференцируемости, что ведет к трудностям при оптимизации.

Задача генерации (порождения)

По подвыборке $X_{\text{train}} \subset X$ генеральной совокупности X, распределенной по p_{data} , построить (явно или неявно) распределение p_{model} , приближающее реальное.

Возьмем в качестве X текстовые данные (последовательность символов из конечного алфавита). Недостатки существующих порождающих моделей для текста:

- Низкая связность или вариативность при генерации длинных примеров
- Невозможность эффективно использовать неразмеченные данные при генерации с условием
- Отсутствие интерпретируемости

Введение

Цель

<u>Целью</u> данной работы является разработка генеративной модели, позволяющей производить эффективную, управляемую и интерпретируемую генерацию текстовых данных с увеличенной длиной в условиях данных с частичной разметкой, поддерживая *связность*, *правдоподобие* и *разнообразие* генерируемых примеров. Решение будет основываться на применении идей механизма **внимания** (attention) из глубокого обучения. Задачи:

- Проанализировать предметную область и существующие модели.
- Выбрать и предобработать данные для обучения и тестирования.
- Выбрать метрики для оценки результата.
- Придумать и реализовать способы, позволяющие эффективно справляться существующими проблемами.
- Произвести сравнение подходов и анализ результатов.

Данные

Каждый $x \in X$ - цельный законченный отрывок длиной в пару предложений с частично размеченным свойством.

Для размеченной части мы возьмем Стэнфордский датасет (**SST**), основанный на базе данных отзывов о фильмах. Неразмеченная часть взята из той же области, но из другого набора данных (**IMDB**).

- Разметка бинарное категориальное свойство эмоциональной окраски
- Ограничение на длину предложения 30 слов
- 30000 сэмплов для обучения, по 3000 для валидации и тестирования
- BPE encoding для токенизации, позволяет абстрагироваться от языка.
- Ограничение на размер словаря 15000
- 4 служебных слова $\langle bos \rangle$, $\langle eos \rangle$, $\langle unk \rangle$ и $\langle pad \rangle$ символы начала, конца, пустоты и отступа. Используются для обрамления начала/конца и объединения примеров в батч для обучения.

Введение Данные Метрики Генерация Решение Результаты Заключение Ссылки

Метрики

Описание

Автоматические метрики для $W \in X_{\mathrm{test}}$ и новых сэмлов $W \in X_{\mathrm{gen}}$

Perplexity (связность, правдоподобие)

$$PP(W) = P(w_1 w_2 w_3 \dots w_{|W|})^{-\frac{1}{|W|}} = \left[\prod_{i=1}^{|W|} \frac{1}{P(w_i | w_1 \dots w_{i-1})} \right]^{\overline{|W|}}$$

BLEU (правдоподобие)

 $\textit{BLEU}(W_1, W_2) \in [0, 1], \text{ N-gram'as схожесть, усредненная по примерам}$

Self-BLEU (разнообразие)

$$\textit{Self-BLEU}(S) = \frac{1}{|S|} \sum_{i=1}^{|S|} \textit{BLEU}(\{S_i\}, S \setminus \{S_i\})$$

Таксономия генеративных моделей

Ian Goodfellow "NIPS 2016 Tutorial: Generative Adversarial Networks", 2017

Рекуррентные нейронные сети (RNN)

Преимущества:

- Эффективное и простое обучение
- Расширяемая и простая реализация
- Эффективное сэмплирование и оценивание совместной вероятности

Недостатки (Bengio, 2017):

- Небольшое правдоподобие и связность
- Работает только в условиях полной разметки данных
- Неудачные механизмы управляемой генерации
 - Расширение данных (in-band)
 - Расширение архитектуры (out-of-band)

Генеративные состязательные сети (GAN)

$$\min_{G} \max_{D} V(D,G) = \mathbb{E}_{q(\mathbf{x})}[\log(D(\mathbf{x}))] + \mathbb{E}_{p(\mathbf{z})}[\log(1 - D(G(\mathbf{z})))]$$

Для дискретных значений (Goodfellow, 2017):

- REINFORCE (SeqGAN, LeakGAN)
- GumbelSoftmax (GSGAN)
- Embeddings ($\mathbb{N} \Rightarrow \mathbb{R}^n$)

Вариационный автоэнкодер (VAE)

$$E_{\mathbf{x} \sim p_d(\mathbf{x})}[-\log p(\mathbf{x})] < E_{\mathbf{x}}[E_{q(\mathbf{z}|\mathbf{x})}[-\log(p(\mathbf{x}|\mathbf{z}))] + E_{\mathbf{x}}[KL(q(\mathbf{z}|\mathbf{x})||p(\mathbf{z}))]$$

VAE - вариационное продолжение автоэнкодера для генерации. Чтобы правильно обучить VAE для текста (Bowman et al., 2014), нужно:

- Постепенно плавно увеличивать вес ошибки kl-терма.
- Реализовать дропаут для декодера, чтобы тот не обучался быстрее энкодера.

Введение Данные Метрики Генерация Решение Результаты Заключение Ссылки

Решение

Conditional VAE

Реализация, основанная на CVAE (Hu et al., 2018):

- В качестве дискриминатора взят CNNEncoder (Zhange et al., 2016)
- ullet Вектора слов GLoVE размерностью 100 без заморозки
- WordDropout и плавное увеличение веса kl-терма по tanh
- 3-layers SRU в качестве энкодера и стохастический beam search с векторными операциями на графическом процессоре ($\sim 6x$ скорость)
- SGDR на Adam с 3 рестартами для оптимизации
- PyTorch 0.4

Решение

Self-Attention

Расширение механизма внимания из seq2seq моделей для задач генерации:

- Используем информацию о корреляции с предыдущими представлениями на очередном шаге декодера.
- Линейный слой до и после (general), SELU активация после
- Зависимости можно визуализировать в виде heatmap
- PyTorch 0.4

Решение

Attention penalty

Decoded It's no use going back to vesterday. (eos)

Expected It's no use going back to yesterday, because I was a different person then. (eos)

sent: 'the colorful masseur wastes the real mood , its small-joke , the rest of the film is charming .'

Вывод может повторяться или быть недостаточно длинным, решение:

- Каждый кандидат beam search имеет вероятность и матрицу внимания
- Регуляризация по весам матрицы:

$$cp(A) = \sum_{j=1}^{|x|} \log \left\lceil \min(\sum_{i=1}^{|x|} a_{ij}, 1) \right\rceil$$

 сp(A) - аддитивная добавка к log-правдоподобию

Результаты

Сравнение моделей и подходов

Metrics	SeqGAN	MaliGAN	RankGAN	LeakGAN	TextGAN	MLE
BLEU Self-BLEU		15.9 43.7	15.6 61.8	23.0 78.0	20.7 74.6	8.1 10.6

Таблица: BLEU5 * 100 для 500 сгенерированных сэмплов

- D_{ACC} точность классификации после генерации
- $CVAE_{++}$ улучшенная реализация CVAE
- SA Self-Attention, CP штраф на матрице внимания

Metrics	VAE	CVAE	$CVAE_{++} + SA$	$CVAE_{++} + SA + CP$
D_{ACC}	-	83.483	84.263	84.263
Perplexity	150	104	84	83
BLEU	8.5	9.3	18.2	20.5
Self-BLEU	9.0	8.7	45.8	44.2

Таблица: Метрики для расширений VAE

Введение Данные Метрики Генерация Решение Результаты Заключение Ссылки

Заключение

Результаты и будущая работа

Результаты:

- Изучены принципы и особенности работы генеративных моделей с дискретными значениями, намечены основные сложности, проблемы и границы применимости разных подходов.
- Придуманы и описаны метрики для комплексной оценки качества
- Придуманы и реализованы способы, позволяющие справляться с существующими проблемами и потерей качества при увеличении длины генерации (до 30 слов).
- Эффективная, интерпретируемая и гибкая модель, основанная на CVAE.

Будущая работа:

- Преодоление ограничения на выбор априорного и апостериорного распределения в моделях, основанных на VAE (AAE, α -GAN).
- Запустить предложенную модель на дискретных не строковых данных.

Ссылки

Статьи, код и контакты

Спасибо за внимание!

- https://github.com/stasbel/text-gen (Генерация)
- https://github.com/stasbel/bachelor-thesis (Презентация)
- stasbelyaev96@gmail.com
- 4 https://t.me/stasbel