2019-2020 学年线性代数 I (H) 期末

任课老师: 统一命卷 考试时长: 120 分钟

一、
$$(10 \, \text{分})$$
 设 $D = |a_{ij}| = \begin{vmatrix} 3 & 6 & 9 & 12 \\ 2 & 4 & 6 & 8 \\ 1 & 2 & 0 & 3 \\ 5 & 6 & 4 & 3 \end{vmatrix}$, 求 $A_{41} + 2A_{42} + 3A_{44}$, 这里 A_{ij} 是元素 a_{ij}

的代数余子式.

- 二、 (10 分) 设 $A \in M_{m \times s}(\mathbf{R})$, 且 r(A) = r, 证明: 存在矩阵 $B \in M_{s \times n}(\mathbf{R})$, 且 $r(B) = \min\{s r, n\}$, 使得 AB = 0.
- 三、 $(10 \, \text{分})$ 设 α 为 \mathbf{R}^3 中的非零向量, $\sigma(x) = (x, \alpha)\alpha$, 这里 (\cdot, \cdot) 是 \mathbf{R}^3 的标准内积.
 - (1) 证明: σ 为 \mathbb{R}^3 上的线性变换, 并求其像空间;
 - (2) 设 $\alpha = (1, 0, -2)$, 分别求 σ 在基 $\mathbf{B}_1 = \{(1, 0, 0), (0, 1, 0), (0, 0, 1)\}$ 和 $\mathbf{B}_2 = \{(1, 1, 1), (1, 1, 0), (1, 0, 0)\}$ 下的矩阵.

四、(10分)

- (1) 设 A 为 n 阶矩阵且 E A 可逆, 证明: A 与 $(E A)^{-1}$ 相乘可交换;
- (2) 设 A 为 n 阶实反对称矩阵且 E + A 可逆,证明: $(E A)(E + A)^{-1}$ 为正交矩阵,且 -1 不为其特征值.
- 五、(10 分)已知 $\alpha_1, \alpha_2, \dots, \alpha_s$ 是齐次线性方程组 $AX = \mathbf{0}$ 的一组基础解系,向量组 $\beta_1 = t_1\alpha_1 + t_2\alpha_2, \ \beta_2 = t_1\alpha_2 + t_2\alpha_3, \ \dots, \ \beta_{s-1} = t_1\alpha_{s-1} + t_2\alpha_s$

试问当实数 t_1, t_2 满足何条件时, $AX = \mathbf{0}$ 有基础解系包含向量 $\beta_1, \beta_2, \ldots, \beta_{s-1}$,并写出该基础解系中的其余向量.

- 六、 (15 分) 已知二次型 $X^{\mathrm{T}}AX=ax_1^2+ax_2^2+ax_3^2+2x_1x_2+2x_1x_3-2x_2x_3$ 的秩为 2.
 - (1) 求实数 a 的值;
 - (2) 用正交变换 X = QY 将 $X^{T}AX$ 化为标准形,给出 Q,并求二次型的正、负惯性指数.

七、
$$(15 \, \, \, \, \, \, \, \, \,)$$
 记 $X = \left\{ \begin{pmatrix} a_{11} & a_{12} & a_{13} \\ a_{21} & a_{22} & a_{23} \\ a_{31} & a_{32} & a_{33} \end{pmatrix} \in M_{3\times 3}(\mathbf{R}) \middle| \sum_{j=1}^3 a_{1j} = \sum_{j=1}^3 a_{2j} = \sum_{j=1}^3 a_{3j} = \sum_{j=1}^3 a_{2j} = \sum_$

- (1) X 是 $M_{3\times3}(R)$ 的一个子空间,并求该子空间的维数;
- (2) 对任意可逆矩阵 $A \in X$, $(1, 1, 1)^T$ 是 A 和 A^{-1} 的特征向量;
- (3) 对任意可逆矩阵 $A \in X$, $A^{-1} \in X$.
- 八、(20分)判断下列命题的真伪, 若它是真命题, 请给出简单的证明; 若它是伪命题, 给出理由或举反例将它否定.
 - (1) 设 A_1 , A_2 , ..., A_{n+1} 是任意 n+1 个 n 阶矩阵, 必存在不全为 0 的实数 λ_1 , λ_2 , ..., λ_{n+1} , 使得矩阵 $\lambda_1 A_1 + \lambda_2 A_2 + \cdots + \lambda_{n+1} A_{n+1}$ 不可逆;
 - (2) 复数集 C 关于复数的加法与复数的乘法构成的复数域上的线性空间与 C^2 同构;
 - (3) 设 $x \in \mathbf{R}^n$, 对任意 $\lambda \in \mathbf{R}$, $E + \lambda xx^{\mathrm{T}}$ 为正定矩阵;
 - (4) 若 A, B 为 n 阶上三角矩阵,且对角线上元素都相同,则 A 与 B 相似.