Intuition for Matrix/Vector from Scalar

MATRIX (X)	SCALAR (X)
$X=Q\Lambda Q^{T-1}$	$x=\sqrt{x}\sqrt{x}$
$X \succ 0$ (positive definite)	x>0
$X\succcurlyeq 0$ (positive semi-definite)	$x \geq 0$
Jaccobian Matrix 2	first derivative
Hessian Matrix 3	second derivative

- 2. Given $f:\mathbb{R}^m o\mathbb{R}^n$, Jaccobian Matrix $\mathcal J$ is definited as $f_{i,j}=rac{\partial}{\partial x_j}f(x)_i$
- 3. Given $f:\mathbb{R}^n o\mathbb{R}$, Hessian Matrix $\mathcal H$ is definited as $f_{i,j}=rac{\partial}{\partial x_i\partial x_j}f(x)$

^{1.} Every real symmetric matrix can be decomposed into an expression using only real-valued eigenvectors and eigenvalues. Analogy in the scalar world: Every real number can be decomposed into the square root of itself multiply the square root of itself. \leftarrow