Přírodovědecká fakulta Masarykovy univerzity

PRAKTIKUM Z FYZIKY PLAZMATU

Diagnostika plazmatu doutnavého výboje pomocí jednoduché sondy

Zpracovali: Radek Horňák, Lukáš Vrána Naměřeno: 1. 3. 2022

1 Teorie

1.1 Elektrostatická Langmuirova sonda

Langmuirova sonda je vodič malých rozměrů zavedený do plazmatu, pomocí nějž lze měřit nejdůležitější parametry plazmatu jako elektronovou hustotu $n_{\rm e}$, teplotu elektronů $T_{\rm e}$, rozdělovací funkci elektronů f(v) a prostorové rozdělení potenciálu a elektrického pole. Napětí sondy $V_{\rm S}$ určujeme vzhledem k referenční elektrodě. Potenciál plazmatu v místě sondy vůči stejné referenční elektrodě označme $V_{\rm p}$. Pokud je vůči ní plocha sondy velmi malá, můžeme sondu nazvat jednoduchou. Podle tvaru lze dále sondy dělit na válcové, kulové a rovinné. Závislost proudu protékajícího sondou $I_{\rm S}$ na napětí přiloženém na sondu $V_{\rm S}$ tvoří voltampérovou (VA) charakteristiku sondy. Napětí sondy vůči plazmovému potenciálu $U_{\rm S}$ získáme pomocí vztahu

$$U_{\rm S} = V_{\rm S} - V_{\rm p} \tag{1}$$

Pokud sonda není připojena k vnějšímu obvodu a proud elektronů i iontů na ni se ustálí, je výsledný proud nulový a sonda se ustálí na napětí $V_{\rm fl}$, tedy na plovoucím potenciálu.

VA charakteristiku jednoduché sondy můžeme rozdělit na tři části. Tou první je oblast saturovaného iontového proudu označená na obr. 1 jako A. Sonda je záporně nabita vzhledem k potenciálu plazmatu, elektrony jsou odpuzovány a ionty naopak přitahovány. Vizuálně se to projevuje temným prostorem obalujícím sondu.

Druhou část charakteristiky tvoří přechodová oblast, pro kterou lze $U_{\rm S}$ vymezit jako $-2(V_{\rm p}-V_{\rm fl}) \leq U_{\rm S} \leq 0$. Na obr. 1 se jedná o oblast B. Celkový proud sondou $I_{\rm S}$ můžeme vyjádřit jako

$$I_{\rm S} = I_{\rm i} + I_{\rm e} \tag{2}$$

kde $I_{\rm i}$ je i
ontový proud a $I_{\rm e}$ elektronový proud, který je dán vz
tahem

$$I_{\rm e} = Sen_{\rm e}\sqrt{\frac{kT_{\rm e}}{2\pi m_{\rm e}}}\exp\left(\frac{-eU_{\rm S}}{kT_{\rm e}}\right) \tag{3}$$

kde S je povrch sondy, e elementární náboj, $n_{\rm e}$ koncentrace elektronů, k Boltzmanova konstanta a $m_{\rm e}$ hmotnost elektronu.

Oblast saturovaného elektronového proudu je na obr. 1 označená jako C. Sonda je vzhledem k potenciálu plazmatu na kladném napětí a přitahuje tak elektrony. U válcové sondy nejeví tato oblast nasycení, nýbrž parabolicky narůstá.

Obrázek 1: VA charakteristika jednoduché rovinné sondy [1].

1.2 Rozdělovací funkce energie

V předchozí části předpokládáme Maxwellovo rozdělení energie elektronů. Zdali tento předpoklad platí lze dokázat Druyvesteynovým vztahem:

$$f(|U_s|) = \frac{1}{A} \sqrt{\left(\frac{8m_e}{e^3}\right)} \sqrt{|U_s|} \frac{\mathrm{d}^2 i_e}{\mathrm{d}U_s^2} \tag{4}$$

Existuje několik metod, jak získat ze sondové charakteristiky funkci $\frac{\mathrm{d}^2 i_{\mathrm{e}}}{\mathrm{d} U_{\mathrm{s}}^2}$, která udává rozdělovací funkci. Jednou z možností je přiložení slabého střídavého napětí $U = \varepsilon \sin(\omega t)$, přičemž musí platit $\varepsilon/U_{\mathrm{s}} \ll 1$. Složka stejnosměrného proudu sondy vzroste o hodnotu

$$\Delta i \approx \frac{\varepsilon^2}{4} \frac{\mathrm{d}^2 i_{\mathrm{e}}}{\mathrm{d} U_{\mathrm{s}}^2} \tag{5}$$

Rozdělovací funkce $f(|U_s|)$ je tedy úměrná $\sqrt{|U_s|}\Delta i$. Tuto závislost graficky zobrazíme a lze ji porovnat s obecnými předpisy Maxwellova a Druyvesteynova rozdělení

$$f(E) = A\sqrt{E} \exp\left[-\left(\frac{E}{B}\right)^K\right] \tag{6}$$

s parametry A,B,K. Pokud je K=1, jedná se o Maxwellovo rozdělení, v případě K=2 je rozdělení Druyvesteynovo.

2 Měření a výsledky

Měření provádíme na aparatuře, jejíž schéma je vidět na obr. 2. Výbojka je čerpaná rotační olejovou vývěvou. Tlak nastavujeme změnou průtoku argonu a měříme jej Piraniho manometrem. Do výbojky je zavedená jednoduchá válcová sonda, jejíž délku jsme odhadli na 8 mm a průměr 0,1 mm. Povrch podstavy válcové sondy je k povrchu jejího pláště S zanedbatelný, po zaokrouhlení dostáváme $S=2,5\cdot 10^{-6}$ m².

Při měření vždy nejprve nalezneme plovoucí potenciál, abychom měli jistotu, že naměříme oblast nalevo i napravo od něj. Napětí přiložené na sondu $V_{\rm S}$ se mění automaticky pomocí potenciometru, který je poháněn elektrickým motorkem, kde stačí zařadit rychlostní stupeň v jednom ze směrů chodu. Data jsou ukládána na počítač. Při vyhodnocování jsme je museli synchronizovat. VA charakteristiku jsme naměřili v obou směrech chodu potenciometru. Tato data se mezi sebou mírně lišila. Pro následné zpracování jsme použili vždy data pouze jednoho směru.

Obrázek 2: Schéma aparatury [1].

Provedli jsme měření za konstantního tlaku 160 Pa pro tři hodnoty výbojového proudu $I_{\rm v}$. Výsledné VA charakteristiky jsou v grafu na obr. 3. Z nich lze určit plovoucí potenciál, který se s rostoucím výbojovým proudem zvětšuje, viz tab. 1. Dále jsme provedli měření za konstantního výbojového proudu 40 mA pro pět hodnot tlaku. Odpovídající VA charakteristiky jsou v grafu na obr. 4. Pro tlak 320 Pa je plovoucí potenciál nejmenší, v oblasti 8–80 Pa však nevykazuje žádný trend, viz tab. 1.

Obrázek 3: Naměřené VA charakteristiky za konstantního tlaku 160 Pa.

Obrázek 4: Naměřené VA charakteristiky za konstantního výbojového proudu 40 mA.

Nyní je potřeba od charakteristik odečíst iontový proud, oblast, kde saturuje, jsme proložili přímkou. Názorné proložení pro VA charakteristku za podmínek p=160 Pa a $I_{\rm v}=40$ mA je na obr. 5. Ve zbylých případech jsme postupovali obdobně. VA charakteristiky s takto odečteným iontovým proudem jsou v grafech na obr. 6 a 7.

Obrázek 5: Rozdělení sondového proudu na i
ontový a elektronový pomocí lineárního fitu saturovaného i
ontového proudu, p=160 Pa a $I_{\rm v}=40$ mA.

Obrázek 6: VA charakteristiky s odečteným i
ontovým proudem pro měření s konstantním tlakem $p=160\ \mathrm{Pa}.$

Obrázek 7: VA charakteristiky s odečteným i
ontovým proudem pro měření s konstantním proudem $I_{\rm v}=40~{\rm mA}.$

Potenciál plazmatu $V_{\rm p}$ přibližně určíme ze zlomu VA charakteristik jako průsečík asymptot k lineárním částem zlogaritmovaných závislostí. Postup je vidět na obrázcích 8 až 15 vlevo a výsledné $V_{\rm p}$ jsou uvedeny v tab. 1. Pokud máme proměřený dostatečný počet bodů, tak můžeme potenciál plazmatu určit také pomocí provedení druhé derivace, protože sondová charakteristika má v potenciálu plazmatu inflexní bod. Druhé derivace získané proložením dat polynomem 9. řádu jsou vyneseny na obr. 16 až 23. Nepodařilo se nám najít nulové body, spokojili jsme se vždy s lokálním minimem. Takto určený potenciál plazmatu je v tab. 1 označen jako $V_{\rm p,d}$. Vždy platí, že $V_{\rm p}$ je větší než $V_{\rm fl}$. Stejně jako $V_{\rm fl}$, potenciál plazmatu s rostoucím výbojovým proudem roste, při změně tlaku nevykazuje žádný trend. Nyní můžeme ze vztahu (1) dopočítat $U_{\rm S}$. Pokud následně vyneseme do grafů závislosti ln $I_{\rm e}=-\frac{e}{kT_{\rm e}}U_{\rm S}+C$ pro oblasti $-2(V_p - V_f) \le U_S \le 0$, můžeme z elektronového proudu pro $U_S = 0$ dle vztahu (3) dopočítat koncentraci elektronů. Závislosti ln $I_{\rm e}=f(U_{\rm S})$ proložené přímkou jsou na obr. 8 až 23 vpravo. Výsledné elektronové teploty a koncentrace elektronů jsou v tab. 2, index d značí hodnoty získané z druhé derivace. S rostoucím výbojovým proudem roste i koncentrace elektronů. Metodou průsečíků asymptot teplota elektronů s výbojovým proudem klesá, ale metodou druhé derivace je konstantní. S rostoucím tlakem pozorujeme klesající teplotu a rostoucí koncentrace elektronů při použití obou metod. Rozdílem výsledků metod je hlavně nižší plazmový potenciál a koncentrace elektronů, jejichž závislost je výraznější při použití metody druhé derivace. V obou metodách jsme však ve stejném řádu 10¹⁴ m⁻³.

Tabulka 1: Plovoucí a plazmové potenciály

p = 160 Pa				$I_{\rm v} = 40 \; {\rm mA}$			
$I_{\rm v} [{ m mA}]$	$V_{\rm fl}$ [V]	$V_{\rm p}$ [V]	$V_{\rm p,d}$ [V]	p [Pa]	$V_{\rm fl}$ [V]	$V_{\rm p}$ [V]	$V_{\mathrm{p,d}}$
30	-48,0	-47,7	-43,4	8	-45,3	-44,8	-43,8
40	-43,8	-43,4	-39,7	16	-45,8	-45,2	-44,4
50	-42,2	-41,6	-37,5	32	-45,0	-44,6	-43,4
				80	-44,4	-43,9	-42,8
				320	-50,9	-49,9	-45,8

Tabulka 2: Teploty a koncentrace elektronů

p = 160 Pa			$I_{\rm v} = 40~{\rm mA}$			
$I_{\rm v} [{\rm mA}]$	T [eV]	$n_{\rm e}[10^{14}{\rm m}^{-3}]$	p [Pa]	T [eV]	$n_{\rm e}[10^{14}{\rm m}^{-3}]$	
30	3,3	1,0	8	4,6	0,8	
40	2,8	1,6	16	4,3	1,1	
50	2,6	2,3	32	4,0	1,2	
			80	3,7	1,4	
			320	2,2	1,7	
$I_{\rm v} [{ m mA}]$	$T_{\rm d} \; [{\rm eV}]$	$n_{\rm e,d}[10^{14}{\rm m}^{-3}]$	p [Pa]	$T_{\rm d} \; [{\rm eV}]$	$n_{\rm e,d}[10^{14}{\rm m}^{-3}]$	
30	2,4	4,0	8	4,4	1,1	
40	2,4	5,4	16	4,0	1,3	
50	2,5	7,7	32	3,8	1,6	
	·		80	3,5	2,0	
	·		320	2,0	6,0	

Obrázek 8: Stanovení potenciálu plazmatu a elektronové teploty pomocí průsečíku asymptot, $p=160~{\rm Pa}$ a $I_{\rm v}=30~{\rm mA}.$

Obrázek 9: Stanovení potenciálu plazmatu a elektronové teploty pomocí průsečíku asymptot, $p=160~{\rm Pa}$ a $I_{\rm v}=40~{\rm mA}.$

Obrázek 10: Stanovení potenciálu plazmatu a elektronové teploty pomocí průsečíku asymptot, $p=160~{\rm Pa}$ a $I_{\rm v}=50~{\rm mA}.$

Obrázek 11: Stanovení potenciálu plazmatu a elektronové teploty pomocí průsečíku asymptot, $p=320~{\rm Pa}$ a $I_{\rm v}=40~{\rm mA}.$

Obrázek 12: Stanovení potenciálu plazmatu a elektronové teploty pomocí průsečíku asymptot, p=80 Pa a $I_{\rm v}=40$ mA.

Obrázek 13: Stanovení potenciálu plazmatu a elektronové teploty pomocí průsečíku asymptot, p=32 Pa a $I_{\rm v}=40$ mA.

Obrázek 14: Stanovení potenciálu plazmatu a elektronové teploty pomocí průsečíku asymptot, p=16 Pa a $I_{\rm v}=40$ mA.

Obrázek 15: Stanovení potenciálu plazmatu a elektronové teploty pomocí průsečíku asymptot, $p=8\,\,\mathrm{Pa}\,$ a $I_{\mathrm{v}}=40\,\,\mathrm{mA}.$

Obrázek 16: Stanovení potenciálu plazmatu a elektronové teploty pomocí druhé derivace, p=160 Pa a $I_{\rm v}=30$ mA, $V_{p,d}=-43,4$ V.

Obrázek 17: Stanovení potenciálu plazmatu a elektronové teploty pomocí druhé derivace, p=160 Pa a $I_{\rm v}=40$ mA, $V_{p,d}=-39,7$ V.

Obrázek 18: Stanovení potenciálu plazmatu a elektronové teploty pomocí druhé derivace, p=160 Pa a $I_{\rm v}=50$ mA, $V_{p,d}=-37,5$ V.

Obrázek 19: Stanovení potenciálu plazmatu a elektronové teploty pomocí druhé derivace, p=320 Pa a $I_{\rm v}=40$ mA, $V_{p,d}=-45,8$ V.

Obrázek 20: Stanovení potenciálu plazmatu a elektronové teploty pomocí druhé derivace, p=80 Pa a $I_{\rm v}=40$ mA, $V_{p,d}=-42,8$ V.

Obrázek 21: Stanovení potenciálu plazmatu a elektronové teploty pomocí druhé derivace, p=32 Pa a $I_{\rm v}=40$ mA, $V_{p,d}=-43,4$ V.

Obrázek 22: Stanovení potenciálu plazmatu a elektronové teploty pomocí druhé derivace, p=16 Pa a $I_{\rm v}=40$ mA, $V_{p,d}=-44,4$ V.

Obrázek 23: Stanovení potenciálu plazmatu a elektronové teploty pomocí druhé derivace, p=8 Pa a $I_{\rm v}=40$ mA, $V_{p,d}=-43,8$ V.

2.1 Rozdělovací funkce energií

Voltampérovou charakteristiku bez a s poruchovým napětím měříme současně tak, že periodicky připojujeme a odpojujeme poruchové napětí, viz obr. 24, přičemž chybějící hodnoty získáme pomocí polynomického fitu. Z charakteristiky bez poruchového napětí určíme plovoucí a plazmový potenciál podobně jako v předchozí části metodou druhé derivace – tab. 3. Po odečtení iontového proudu jsou VA charakteristiky za dvou různých tlaků a výbojových proudů vyneseny do obr. 25. Proud Δi je určen z rozdílu dané dvojice křivek. Závislost $f(|U_s|) = \sqrt{|U_s|}\Delta i$ je vynesena do obr. 26–28. Dle rovnice (6) jsou naměřené hodnoty proloženy Maxwellovým, Druyvesteynovým a rozdělením s proměnným parametrem K. Pozorujeme, že Druyvesteynovo rozdělení odpovídá našim datům více než Maxwellovo. Parametr B v rovnici (6) je roven součinu kT. Lze z něj tedy určit teplotu elektronů $T \approx 7 \, \text{eV}$, což je v porovnání s teplotou určenou v předchozí části (tabulka 2) dvojnásobkem. Pro určení rozdělovací funkce jsme použili také metodu druhé derivace dle rovnice (5), viz obr. 29–31. Tato přímá metoda je nepřesná, a proto jsme ji k dalšímu vyhodnocení nepoužili.

Tabulka 3: Plovoucí a plazmové potenciály bez přiloženého poruchového napětí, parametry K a teplota T.

p [Pa]	$I_{\rm v} [{ m mA}]$	$V_{\rm fl}$ [V]	$V_{\rm p}$ [V]	K	T [eV]
80	55	-42,9	-39,9	3,38	6,83
80	30	-47,3	-43,4	2,47	7,34
16	55	-44,0	-42,8	2,71	6,54

Obrázek 24: VA charakteristika s poruchovým a bez poruchového napětí, $p=16\,\mathrm{Pa},\,I_v=55\,\mathrm{mA}.$

Obrázek 25: VA charakteristiky s odečteným iontovým proudem, s poruchovým a bez poruchového napětí.

Obrázek 26: Rozdělovací funkce určena metodou poruchového napětí, $p=80\,\mathrm{Pa},\,I_v=55\,\mathrm{mA}.$

Obrázek 27: Rozdělovací funkce určena metodou poruchového napětí, $p=80\,\mathrm{Pa},\,I_v=30\,\mathrm{mA}.$

Obrázek 28: Rozdělovací funkce určena metodou poruchového napětí, $p=16\,\mathrm{Pa},\,I_v=55\,\mathrm{mA}.$

Obrázek 29: Rozdělovací funkce určena metodou druhé derivace, $p=80\,\mathrm{Pa},\,I_v=55\,\mathrm{mA}.$

Obrázek 30: Rozdělovací funkce určena metodou druhé derivace, $p=80\,\mathrm{Pa},\,I_v=30\,\mathrm{mA}.$

Obrázek 31: Rozdělovací funkce určena metodou druhé derivace, $p=16\,\mathrm{Pa},\,I_v=55\,\mathrm{mA}.$

3 Závěr

V této úloze jsme se seznámili s měřením pomocí Langmuirovy jednoduché válcové sondy. Naměřili jsme osm VA charakteristik pro různé podmínky. Určili jsme plovoucí potenciál sondy, který se zvětšuje s rostoucím výbojovým proudem, při změnách tlaku za konstantního proudu nevykazoval žádný trend. Dále jsme určili potenciál plazmatu, ten je vždy větší než plovoucí potenciál a při změnách výbojového proudu a tlaku se chová obdobně jako plovoucí potenciál. Nakonec jsme získali elektronové teploty a spočítali elektronovou koncentraci. S rostoucím výbojovým proudem roste i koncentrace elektronů a jejich teplota klesá. S rostoucím tlakem jsme pozorovali stejnou závislost, tedy rostoucí koncentraci elektronů a klesající elektronovou teplotu. Při vyhodnocování jsme použili dvou metod určení potenciálu plazmatu, starší metody průsečíku asymptot a modernější metody druhé derivace. Jejich výsledky jsou blízké.

V druhé části jsme určovali rozdělovací funkci energií. Pro vyhodnocení jsme použili metody poruchového napětí. Zjistili jsme, že zjednodušený předpoklad Maxwellova není správný, funkce odpovídá více Druyvesteynovu rozdělení. To souhlasí s teorií plazmatu s elektrickým polem.

Reference

[1] Návod k praktiku: Diagnostika plazmatu doutnavého výboje pomocí elektrostatických sond: jednoduchá sonda.