Package 'tensorTS'

February 26, 2021

Type Package

Fitle Factor Models and Autoregressive Models for Time Series
Version 0.1.0
Author@R person(``Zebang", ``Li", email = ``zebang.li@rutgers.edu", role = c(``aut", ``cre"))
Description Factor and Autoregressive Models for Tensor Time Series
License GPL (>= 2)
Encoding UTF-8
•
LazyData true
mports tensor, rTensor, MASS, abind, igraph
RoxygenNote 7.1.1
VignetteBuilder knitr
R topics documented:
dynamic_A
em
generate
generateA
get.hat
grouping.loading
iter.tensor.bic
iter.tensor.ratio
MAR 8
MAR.SE 8
MAR1.LS
MAR1.otimes
MAR1.projection
MAR1.RRCC.SE
WANTANEO.OL
MAR1.RRLSE

2 dynamic_A

K		39
	vts	38
	vector_factor	37
	var1	37
	up.init.tensor	36
	E	
	<u>r</u> · <u>r</u> ·	35
	tipup.init.tensor	35
	tensor.ratio	34
	tensor.bic	34
	TenAR	33
	TAR2.SE.MLE	33
	TAR2.SE.LSE	32
	TAR2.projection	32
	TAR2.MLE	31
	TAR2.LS	30
	TAR1.VAR	30
	TAR1.SE.MLE	29
	TAR1.SE.LSE	28
	TAR1.projection	28
	TAR1.MLE	27
	TAR1.LS	
	run.test	
	rearrange	26
	projection	25
	predict.tenar	24
	prin	
	PlotNetwork_AB	22 23
	mplot	22
	mfmda.nona.vec	21
	mfmda.nona.noniter	21
	mfmda.nona.iter	20
	mfmda.na.vec	20
	mfmda.na.iter	19
	mfmda.estqk	18
	mfmda	18
	matrix_factor	17
	MAR2.projection	16
	MAR2.otimes	16
	MAR2.LS	15

Description

Get the adjacency matrix for plotting

em 3

Usage

```
dynamic_A(x, factor_count, simple.flag, threshold)
```

Arguments

x input the original estimated loading matrix

factor_count The number of factors to use

simple.flag if True, only eliminate the entries below threshold and make all row sums to be

1; if False, the approach further eliminates the entries of the rows that are very

close to threshold value and only leaves the maximum entry of each row

threshold A parameter to eliminate very small entries of the loading matrix

Value

The new loading matrix with all rows sum to be 1

em

Permutation matrix em

Description

Permutation matrix em.

Usage

Arguments

```
m, n, i, j \operatorname{set} m \times n \operatorname{zero} \operatorname{matrix} \operatorname{with} A_{ij} = 1
```

Value

Permutation matrix em such that $A_{ij}=1$ and other entries equals 0.

See Also

trearrange

Examples

```
A = em(3,3,1,1)
```

4 generateA

generate

Generate an AR(1) tensor time series with given coefficient matrices

Description

For test only, with given coefficient matrices and time length t, generate an AR(1) tensor time series.

Usage

```
generate(A, t, setting = "iid")
```

Arguments

t length of time

setting the structure of random error, can be specified as "iid", "mle" and "svd", default

value is "iid".

dim an array of dimensions of matrices or tensors

Value

```
a list containing the following:
```

```
A matrices A_1, A_2, \cdots, A_k
```

X AR(1) tensor time series

See Also

```
run.test
```

Examples

```
A <- generateA(dim=c(2,2,2), R=1) 
xx <- generate(c(m1,m2,m3), T=100)
```

generateA

Generate coefficient matrices

Description

For test only, to generate coefficient matrices

Usage

```
generateA(dim, R)
```

Arguments

dim an array of dimensions of matrices or tensors

R number of terms

get.hat 5

Value

a list containing coefficient matrices

Examples

```
A <- generateA(dim=c(2,2,2), R=1) 
xx <- generate(c(m1,m2,m3), T=100)
```

get.hat

functions for algorithm

Description

functions for algorithm

Usage

```
get.hat(x, Q, d.seq)
```

Arguments

x tensor of any dimension, x: $d1 * d2 * d3 * \cdots * d_k * n$

Q list of k matrices

d.seq 1:k

Value

a tensor object x.hat

grouping.loading

Get the clustering of loading matrix

Description

Get the clustering of loading matrix

Usage

```
grouping.loading(loading, ncluster, rowname, plot = T)
```

Arguments

loading The estimated loading matrix

ncluster The number of clusters to use, usually the dimension of the factor matrix

rowname The name of the rows

plot plot the clustering graph, defacult True

Value

Loading matrix after grouping

6 iter.tensor.bic

iter.tensor.bic

iterative versions of all three methods for any Dim tensor time series

Description

iterative versions of all three methods for any Dim tensor time series

Usage

```
iter.tensor.bic()
```

Arguments

x tensor of any dimension, $x: d1*d2*d3*\cdots*d_K*n$

r initial guess of # of factors

h0 Pre-scribed parameter h

method the method chosen among UP,TIPUP,TOPUP

tol level of error tolerance niter number of iterations

tracetrue if TRUE, record the dis value for each iteration

Value

```
a list containing the following:
```

Q.

Qinit initial value of Q

Qfirst value of Q at first iteration

x.hat .

x.hat.init initial value of xhat

x.hat.first value of xhat at first iteration

factor.num number of factors

timer a timer

 $norm.percent \ x \ after \ standardization$

dis difference of fnorm.resid for each iteration

niter number of interations

fnorm.resid normalized residual

iter.tensor.ratio 7

iter.tensor.ratio

iterative versions of all three methods for any Dim tensor time series

Description

iterative versions of all three methods for any Dim tensor time series

Usage

```
iter.tensor.ratio()
```

Arguments

x tensor of any dimension , $d1*d2*d3*\cdots*d_K*n$

r initial guess of # of factors

h0 Pre-scribed parameter h

method the method chosen among UP,TIPUP,TOPUP

tol level of error tolerance niter number of interations

tracetrue if TRUE, record the dis value for each iteration

Value

```
a list containing the following:
```

Q.

Qinit initial value of Q

Qfirst value of Q at first iteration

x.hat .

x.hat.init initial value of xhat

x.hat.first value of xhat at first iteration

factor.num number of factors

timer a timer

norm.percent x after standardization

dis difference of fnorm.resid for each iteration

niter number of interations

fnorm.resid normalized residual

MAR.SE

MAR Matrix Method

Description

Estimation function for matrix-valued time series, including the projection method, the Iterated least squares method and MLE under a structured covariance tensor, as determined by the value of type.

Usage

```
MAR(xx, type = c("projection", "LS", "MLE", "ar"))
```

Arguments

T * p * q matrix-valued time series

type character string, specifying the type of the estimation method to be used.

"projection", Projection method.

"LS", Iterated least squares.

"MLE", MLE under a structured covariance tensor.

"ar", Stacked vector AR(1) Model.

Value

a list containing the following:

LL estimator of LL, a p by p matrix

RR estimator of RR, a q by q matrix

res residual of the MAR(1)

Sig covariance matrix cov(vec(E_t))

MAR.SE

Asymptotic Covariance Matrix of MAR1.otimes

Description

Asymptotic covariance Matrix of MAR1.otimes for given A, B and matrix-valued time series xx, see Theory 3 in paper.

Usage

```
MAR.SE(xx, B, A, Sigma)
```

Arguments

XX	T * p * q matrix-valued time series
В	q by q matrix in MAR(1) model
A	p by p matrix in MAR(1) model

Sig covariance matrix $cov(vec(E_t))$ in MAR(1) model

MAR1.LS 9

Value

asymptotic covariance matrix

Examples

```
# given T * p * q time series xx
out2=MAR1.LS(xx)
FnormLL=sqrt(sum(out2$LL))
xdim=p;ydim=q
out2Xi=MAR.SE(xx.nm,out2$RR*FnormLL,out2$LL/FnormLL,out2$Sig)
out2SE=sqrt(diag(out2Xi))
SE.A=matrix(out2SE[1:xdim^2],nrow=xdim)
SE.B=t(matrix(out2SE[-(1:xdim^2)],nrow=ydim))
```

MAR1.LS

Least Squares Iterative Estimation for Matrix Time Series

Description

Iterated least squares estimation in the model $X_t = LL * X_{t-1} * RR + E_t$.

Usage

```
MAR1.LS(xx, niter = 50, tol = 1e-06, print.true = FALSE)
```

Arguments

 $\begin{array}{ll} xx & T*p*q \text{ matrix-valued time series} \\ \text{niter} & \text{maximum number of iterations if error stays above tol} \\ \text{tol} & \text{relative Frobenius norm error tolerance} \\ \text{print.true} & \text{printe LL and RR} \end{array}$

Value

10 MAR1.otimes

MAR1.otimes

MLE under a structured covariance tensor

Description

MAR(1) iterative estimation with Kronecker covariance structure: $X_t = LL * X_{t-1} * RR + E_t$ such that $\Sigma = cov(vec(E_t)) = \Sigma_r \otimes \Sigma_l$.

Usage

```
MAR1.otimes(
    xx,
    LL.init = NULL,
    Sigl.init = NULL,
    Sigr.init = NULL,
    niter = 50,
    tol = 1e-06,
    print.true = FALSE
)
```

a list containing the following:

Arguments

Value

```
LL estimator of LL, a p by p matrix RR estimator of RR, a q by q matrix res residual of the MAR(1) Sig1 one part of structured covariance matrix \Sigma = \Sigma_r \otimes \Sigma_l Sigr one part of structured covariance matrix \Sigma = \Sigma_r \otimes \Sigma_l dis Frobenius norm difference of the final update step niter number of iterations
```

MAR1.projection 11

MAR1.projection

Projection Method

Description

MAR(1) one step projection estimation in the model $X_t = LL * X_{t-1} * RR + E_t$.

Usage

```
MAR1.projection(xx)
```

Arguments

XX

T * p * q matrix-valued time series

Value

```
a list containing the following: 
 LL estimator of LL, a p by p matrix 
 RR estimator of RR, a q by q matrix 
 res residual of the MAR(1) 
 Sig covariance matrix cov(vec(E_t))
```

MAR1.RRCC.SE

Asymptotic Covariance Matrix of Reduced rank MAR(1) with Kronecker covariance structure

Description

Asymptotic covariance Matrix of Reduced rank MAR(1) Kronecker covariance structure for given a matrix-valued time series xx, see related Theorems in our paper.

Usage

```
MAR1.RRCC.SE(
    A1,
    A2,
    k1,
    k2,
    Sigma1,
    Sigma2,
    RU1 = diag(k1),
    RV1 = diag(k2),
    RV2 = diag(k2),
    mpower = 100
)
```

12 MAR1.RRLS.SE

Arguments

```
A1 coefficient matrix

A2 coefficient matrix

k1 rank of A1

k2 rank of A2

Sigma1, Sigma2 Cov(vec(E_t)) = Sigma1 \setminus Sigma2

RU1, RV1, RU2, RV2:

rotation of U1,V1,U2,V2, e.g., new_U1=U1 RU1

mpower truncate vec(X_t) to mpower term, i.e. VMA(mpower). By default is 100.
```

Value

a list containing the following:

```
Sigma.CC asymptotic covariance matrix of (vec(\hat A1),vec(\hat A2^T)) Theta1.CC.u asymptotic covariance matrix of vec(\hat U1) Theta1.CC.v asymptotic covariance matrix of vec(\hat V1) Theta2.CC.u asymptotic covariance matrix of vec(\hat U2) Theta2.CC.v asymptotic covariance matrix of vec(\hat V2)
```

MAR1.RRLS.SE

Asymptotic Covariance Matrix of Reduced rank MAR(1)

Description

Asymptotic covariance Matrix of Reduced rank MAR(1) for given a matrix-valued time series xx, see related Theorems in our paper.

Usage

```
MAR1.RRLS.SE(
A1,
A2,
k1,
k2,
Sigma.e,
RU1 = diag(k1),
RV1 = diag(k1),
RU2 = diag(k2),
RV2 = diag(k2),
mpower = 100
```

MAR1.RRLSE

Arguments

```
A1 coefficient matrix  
A2 coefficient matrix  
k1 rank of A1  
k2 rank of A2  
Sigma.e  
Cov(vec(E_t)) = Sigma.e : of dimension d1d2\times d1d2  
RU1, RV1, RU2, RV2:  
rotation of U1,V1,U2,V2, e.g., new_U1=U1 RU1  
mpower  
truncate vec(X_t) to mpower term, i.e. VMA(mpower). By default is 100.
```

Value

a list containing the following:

```
Sigma.LS asymptotic covariance matrix of (vec(\hat A1),vec(\hat A2^T)) Theta1.LS.u asymptotic covariance matrix of vec(\hat U1) Theta1.LS.v asymptotic covariance matrix of vec(\hat V1) Theta2.LS.u asymptotic covariance matrix of vec(\hat U2) Theta2.LS.v asymptotic covariance matrix of vec(\hat V2)
```

MAR1.RRLSE

Reduced Rank MAR(1) iterative estimation

Description

LSE for the matrix reduced rank model.

Usage

```
MAR1.RR(
    xx,
    k1,
    k2,
    niter = 200,
    tol = 1e-04,
    print.true = FALSE,
    LL.init = NULL,
    RR.init = NULL
)
```

Arguments

```
matrix-valued time series
ΧХ
k1
                   rank of A1
k2
                   rank of A2
                   maximum number of iterations if error stays above tol
niter
                   relative Frobenius norm error tolerance
tol
print.true
                   print A_i
LL.init
                   initial values of A1 in iterations, by default is diagonal matrices
RR.init
                   initial values of A2 in iterations, by default is diagonal matrices
```

14 MAR1.RRMLE

Value

```
a list containing the following:  \begin{tabular}{ll} LL & estimator of coefficient matrices $A_1$ \\ RR & estimator of coefficient matrices $A_2$ \\ res & residual \\ Sig & covariance matrix $cov(vec(E_t))$ \\ BIC & value of information criteria \\ dis & Frobenius norm difference of last update \\ niter & number of iterations \\ \end{tabular}
```

MAR1.RRMLE

Reduced Rank MAR(1) iterative estimation with Kronecker covariance structure

Description

MLE for the matrix reduced rank model.

Usage

```
MAR1.CC(
    xx,
    k1,
    k2,
    LL.init = NULL,
    RR.init = LL,
    Sigl.init = NULL,
    Sigr.init = NULL,
    niter = 200,
    tol = 1e-04,
    print.true = FALSE
```

Arguments

XX	matrix-valued time series
k1	rank of A1
k2	rank of A2
LL.init	initial values of A1 in iterations, by default is diagonal matrices
RR.init	initial values of A2 in iterations, by default is diagonal matrices
Sigl.init	initial values of Sigma_1 in iterations, by default is diagonal matrices
Sigr.init	initial values of Sigma_2 in iterations, by default is diagonal matrices
niter	maximum number of iterations if error stays above to1, by default niter=200
tol	relative Frobenius norm error tolerance, by default tol=1e-4
print.true	print A_i

MAR2.LS

Value

```
a list containing the following:  \begin{tabular}{ll} LL & estimated $A_1$ \\ RR & estimated $A_2$ \\ Sigl & estimated Sigma\_1 \\ Sigr & estimated Sigma\_2 \\ res & residual \\ Sig & covariance matrix $cov(vec(E_t))$ \\ dis & Frobenius norm difference of last update \\ niter & number of iterations \\ \end{tabular}
```

MAR2.LS

Least Squares Iterative Estimation for Matrix Time Series with Multiple terms

Description

Iterated least squares estimation in the model $X_t = \sum_{r=1}^R LL_r * X_{t-1} * RR_r + E_t$.

Usage

```
MAR2.LS(xx, r, niter = 80, tol = 1e-06, print.true = FALSE)
```

Arguments

xx T * p * q matrix-valued time series

niter maximum number of iterations if error stays above tol

tol relative Frobenius norm error tolerance

print.true printe LL and RR

Value

```
a list containing the following:
```

LL estimator of LL, a p by p matrix

RR estimator of RR, a q by q matrix

res residual of the MAR(1)

Sig covariance matrix cov(vec(E_t))

dis Frobenius norm difference of last update

niter number of iterations

16 MAR2.projection

MAR2.otimes	MLE under a structured covariance tensor for Matrix Time Series with
	Multiple Terms

Description

```
MAR(1) iterative estimation with Kronecker covariance structure: X_t = \sum_{r=1}^R LL_r * X_{t-1} * RR_r + E_t such that \Sigma = cov(vec(E_t)) = \Sigma_r \otimes \Sigma_l.
```

Usage

```
MAR2.otimes(xx, r, niter = 200, tol = 1e-06, print.true = FALSE)
```

Arguments

xx	T * p * q matrix-valued time series
niter	maximum number of iterations if error stays above tol
tol	relative Frobenius norm error tolerance
print.true	print LL and RR
LL.init	initial value of LL
Sigl.init	initial value of Sigl
Sigr.init	initial value of Sigr

Value

```
a list containing the following:  
LL estimator of LL, a p by p matrix  
RR estimator of RR, a q by q matrix  
res residual of the MAR(1)  
SIGMA structured covariance matrix \Sigma = \Sigma_1, \cdots, \Sigma_R  
dis Frobenius norm difference of the final update step  
niter number of iterations
```

MAR2.projection

Projection Method for matrix time series with multiple terms

Description

MAR(1) one step projection estimation in the model $X_t = \sum_{r=1}^R LL_r * X_{t-1} * RR_r + E_t$.

Usage

```
MAR2.projection(xx, r)
```

matrix_factor 17

Arguments

T * p * q matrix-valued time series

Value

a list containing the estimated coefficient matrices

matrix_factor

The main estimation function

Description

The main estimation function

Usage

```
matrix_factor(Yt, inputk1, inputk2, iscentering = 1, hzero = 1)
```

Arguments

Yt Time Series data for a matrix

inputk1 The pre-determined row dimension of the factor matrix inputk2 The pre-determined column dimension of the factor matrix

iscentering The data is subtracted by its mean value

hzero Pre-determined parameter h_0

Value

a list containing the following:

eigval1 estimated row dimension of the factor matrix

eigval2 estimated column dimension of the factor matrix

loading1 estimated left loading matrix

loading2 estimated right loading matrix

Ft Estimated factor matrix with pre-determined number of dimensions

Ft.all Sum of Ft

Et The estimated residual, by subtracting estimated signal term from the data

Examples

```
A <- runif(2000)
dim(A) <- c(20,10,10)
out = matrix_factor(A,3,3)
eig1 = out$eigval1
loading1 = out$loading1
Ft = out$Ft.all</pre>
```

18 mfmda.estqk

	_		
m	f'n	nn	ı

This is a wrapper for all approaches

Description

This is a wrapper for all approaches

Usage

```
mfmda(Yt, approach = "3", hzero = 1, iscentering = 1)
```

Arguments

approach Select estimation approaches, 1 for noniterative approach with no NaNs, 2 for

iterative approach with NaNs, 3 for iterative approach allowing NaNs.

hzero Pre-determined parameter

iscentering The data is subtracted by its mean value

Yc Time Series data for a matrix

Value

The sample version of M matrix

See Also

```
matrix_factor
```

Examples

```
#Use iterative method with $h_0=1$
A <- runif(2000)
dim(A) <- c(20,10,10)
M <- mfmda(A,"3",1,0)</pre>
```

mfmda.estqk

Compute the estimated number of factors and the corresponding eigen-space

Description

Compute the estimated number of factors and the corresponding eigen-space

Usage

```
mfmda.estqk(Mhat, inputk = 1)
```

Arguments

Mhat The estimated value for matrix M

inputk The pre-determined number of dimension of factor matrix

mfmda.na.iter

Value

The estimated number of factors to use, the corresponding estimated Q matrix, the eigenvalue, the estimated Q matrix with requested number of factors

See Also

```
matrix_factor
```

Examples

```
#A 10*10 Matrix time series example with t=20 time points
A <- runif(2000)
dim(A) <- c(20,10,10)
M <- mfmda(A,"3",1,0)
inputk <- 3
eig.ans <- mfmda.estqk(M,inputk)
khat <- eig.ans$estk
Qhat <- eig.ans$Qhatestk
eigval <- eig.ans$eigval
Qhatinputk <- eig.ans$Qhatinputk</pre>
```

mfmda.na.iter

The input data could have NaNs. The estimation approach is iterative.

Description

The input data could have NaNs. The estimation approach is iterative.

Usage

```
mfmda.na.iter(Yc, hzero)
```

Arguments

Yc Time Series data for a matrix allowing NaNs

hzero Pre-determined parameter

Value

The sample version of M matrix

See Also

mfmda

20 mfmda.nona.iter

mfmda.na.vec

This approach is for the vector-valued estimation with NaNs.

Description

This approach is for the vector-valued estimation with NaNs.

Usage

```
mfmda.na.vec(Yc, hzero)
```

Arguments

Yc Time Series data for a matrix(dimensions n*p*q), allowing NA input

hzero Pre-scribed parameter h_0

Value

The sample version of M matrix

See Also

```
vector_factor
```

mfmda.nona.iter

The input data do not have zeros. The estimation approach is iterative.

Description

The input data do not have zeros. The estimation approach is iterative.

Usage

```
mfmda.nona.iter(Yc, hzero)
```

Arguments

Yc Time Series data for a matrix(dimensions n*p*q), no NA input allowed

hzero Pre-scribed parameter

Value

The sample version of M matrix

See Also

mfmda

mfmda.nona.noniter 21

mfmda.nona.noniter	The input data do not have zeros. The estimation approach is noniter-
	ative.

Description

The input data do not have zeros. The estimation approach is noniterative.

Usage

```
mfmda.nona.noniter(Yc, hzero)
```

Arguments

Yc Time Series data for a matrix(dimensions n*p*q), no NA input allowed

hzero Pre-scribed parameter h_0

Value

The sample version of M matrix

See Also

mfmda

mfmda.nona.vec

This approach is for the vector-valued estimation WITHOUT NaNs.

Description

This approach is for the vector-valued estimation WITHOUT NaNs.

Usage

```
mfmda.nona.vec(Yc, hzero)
```

Arguments

Yc Time Series data for a matrix(dimensions n*p*q), no NA input allowed

hzero Pre-scribed parameter h_0

Value

The sample version of M matrix

See Also

```
vector_factor
```

22 PlotNetwork_AB

Examples

```
A <- runif(2000)
dim(A) <- c(20,10,10)
M <- mfmda.nona.vec(A,2)
```

mplot

Plot Matrix-Valued Time Series

Description

Plot Matrix-Valued time series or Tensor-Valued time series by given mode.

Usage

```
mplot(x)
```

Arguments

ХΧ

 $T*m_1*m_2$ tensor-valued time series. Note that the number of mode is 3, where the first mode is time.

Examples

```
dim <- c(2,2,2,2)
A <- generateA(dim, R=1)
xx <- generate(dim, T=100)
mplot(xx[,,,1])</pre>
```

PlotNetwork_AB

Plot the network graph

Description

Plot the network graph

Usage

```
PlotNetwork_AB(Ft, iterated_A, iterated_B, labels)
```

Arguments

Ft The estimated factor matrix iterated_A The left loading matrix iterated_B The right loading matrix The row labels

Value

Plot the network graph

pm 23

Examples

```
A <- runif(2000)
dim(A) <- c(20,10,10)
out = matrix_factor(A,3,3)
eig1 = out$eigval1
loading1 = out$loading1
loading2 = out$loading2
Ft = out$Ft.all
iterated_A = dynamic_A(loading1,3,F,0.1)
iterated_B = dynamic_A(loading2,3,F,0.1)
labels = 1:10
PlotNetwork_AB(Ft,iterated_A,iterated_A,labels)</pre>
```

pm

Permutation matrix pm

Description

Permutation matrix pm.

Usage

```
pm(m, n)
```

Arguments

m an array of dimensions of matrices A_1,A_2,\cdots,A_k

n length of time

Value

Permutation matrix pm

See Also

trearrange

Examples

```
P = pm(3,3)
```

24 predict.tenar

pred	 7	7 :	

Model Predictions by rolling forecast

Description

predict.rolling is a function for predictions from the results of model fitting functions. The function invokes particular methods which depend on the class of the first argument.

Usage

```
## S3 method for class 'rolling'
predict(object, data, n.head, se.fit = TRUE, method = "LSE")
```

Arguments

object a fit from TenAR()
data data to which to apply the prediction.

n.head number of steps ahead at which to predict.

se.fit logical: return estimated standard errors of the prediction error. default is TRUE.

method used by rolling forecast

Value

predicted value

Our function is similar to the usage of classical 'predict.ar' in package "stats".

See Also

'predict.ar' or 'predict.arima'

Examples

```
dim <- c(2,2,2)
A <- generateA(dim, R=1)
xx <- generate(dim, T=100)
pred.xx <- predict.rolling(model, xx, n.head = 5)</pre>
```

predict.tenar

Model Predictions

Description

predict.tenar is a function for predictions from the results of model fitting functions. The function invokes particular methods which depend on the class of the first argument.

Usage

```
## S3 method for class 'tenar'
predict(object, data, n.head, se.fit = TRUE, method = "LSE")
```

projection 25

Arguments

object	a fit from TenAR()
data	data to which to apply the prediction.
n.head	number of steps ahead at which to predict.
se.fit	logical: return estimated standard errors of the prediction error. default is TRUE.
method	method used by rolling forecast

Value

predicted value

Our function is similar to the usage of classical 'predict.ar' in package "stats".

See Also

```
'predict.ar' or 'predict.arima'
```

Examples

```
dim <- c(2,2,2)
A <- generateA(dim, R=1)
xx <- generate(dim, T=100)
pred.xx <- predict.tenar(model, xx, n.head = 5)</pre>
```

projection

Kronecker Product Approximation

Description

Kronecker product approximation used in Projection Method of matrix-value time series.

Usage

```
projection(A, r, m1, m2, n1, n2)
```

Arguments

```
A m by n matrix such that m=m1*n1 and n=m2*n2 r number of terms m1 ncol of A m2 ncol of B n1 nrow of A n2 nrow of B
```

Value

a list contaning two estimator (matrix)

See Also

```
MAR1.projection
```

26 run.test

Examples

```
A <- matrix(runif(6),ncol=2),
projection(A,3,3,2,2)</pre>
```

rearrange

Rearrangement Operator

Description

Rearrangement Operator used for projection method.

Usage

```
rearrange(A, m1, m2, n1, n2)
```

Arguments

```
A m by n matrix such that m=m1*n1 and n=m2*n2 m1 ncol of A ncol of B nrow of A nrow of B
```

Value

rearengement matrix

See Also

```
MAR1.projection
```

Examples

```
A <- matrix(runif(6),ncol=2),
B <- matrix(runif(6),ncol=2),
M <- kronecker(B,A)
rearrange(M,3,3,2,2) == t(as.vector(A)) %*% as.vector(B)
'TRUE'</pre>
```

run.test

Test Function

Description

For test only

Usage

```
run.test(m1, m2, m3, n = 100, T)
```

TAR1.LS 27

TAR1.LS

Least Squares Iterative Estimation for Tensor-Valued Time Series

Description

Iterated least squares estimation in the model $X_t = X_{t-1} \times A_1 \times \cdots \times A_K + E_t$.

Usage

```
TAR1.LS(xx, r = 1, niter = 80, tol = 1e-06, print.true = FALSE)
```

Arguments

 $T*m_1*\cdots*m_K$ tensor-valued time series

niter maximum number of iterations if error stays above tol

tol relative Frobenius norm error tolerance

print.true printe A_i

Value

a list containing the following:

A estimator of coefficient matrices A_1, A_2, \cdots, A_K

res residual of the model

Sig covariance matrix cov(vec(E_t))

niter number of iterations

TAR1.MLE

MLE for Tensor-Valued Time Series with One Term Model Under a Structured Covariance Tensor

Description

MLE for the model
$$X_t = X_{t-1} \times A_1 \times \cdots \times A_K + E_t$$
.

Usage

Arguments

 $T * m_1 * \cdots * m_K$ tensor-valued time series

niter maximum number of iterations if error stays above tol

tol relative Frobenius norm error tolerance

print.true printe A_i

28 TAR1.SE.LSE

Value

```
a list containing the following: 
 A estimator of coeficient matrices A_1, A_2, \cdots, A_K res residual of the MAR(1) 
 Sig covariance matrix cov(vec(E_t)) 
 niter number of iterations
```

TAR1.projection

Projection Method for Tensor-Valued Time Series

Description

TenAR(1) one step projection estimation in the model $X_t = X_{t-1} \times A_1 \times \cdots \times A_K + E_t$.

Usage

```
TAR1.projection(xx)
```

Arguments

```
xx T*m_1*\cdots*m_K \text{ tensor-valued time series} m1 \dim(\mathbf{A1}) m2 \dim(\mathbf{A2}) m3 \dim(\mathbf{A3})
```

Value

a list containing the estimation of matrices A_1, A_2, \dots, A_K

TAR1.SE.LSE

Asymptotic Covariance Matrix of TAR1.LS

Description

Asymptotic covariance Matrix of TAR1.LS for given A tensor-valued time series xx, see related Theorems in our paper.

Usage

```
TAR1.SE.LSE(xx, A.true, Sigma)
```

Arguments

 $T * m_1 * \cdots * m_K$ tensor-valued time series

A. true coefficient matrices in TAR(1) model

Sigma covariance matrix $cov(vec(E_t))$ in TAR(1) model

TAR1.SE.MLE

Value

asymptotic covariance matrix

Examples

```
dim <- c(2,2,2)
A <- generateA(dim, R=1)
xx <- generate(dim, T=100)
SIGMA <- TAR1.SE.LSE(xx, A, Sigma=diag(prod(dim)))</pre>
```

TAR1.SE.MLE

Asymptotic Covariance Matrix of TAR1.MLE

Description

Asymptotic covariance Matrix of TAR1.MLE for given A tensor-valued time series xx, see related Theorems in our paper.

Usage

```
TAR1.SE.MLE(xx, A.true, Sigma)
```

Arguments

 $T*m_1*\cdots*m_K$ tensor-valued time series

 $\hbox{A.true} \qquad \qquad \hbox{coefficient matrices in $TAR(1)$ model} \\$

Sigma covariance matrix $cov(vec(E_t))$ in TAR(1) model

Value

asmptotic covariance matrix

Examples

```
dim <- c(2,2,2)
A <- generateA(dim, R=1)
xx <- generate(dim, T=100)
SIGMA <- TAR2.SE.MLE(xx, A, Sigma=diag(prod(dim)))</pre>
```

TAR2.LS

TAR1.VAR

Stacked vector AR(1) Model for Tensor-Valued Time Series

Description

```
vector AR(1) Model.
```

Usage

```
TAR1.VAR(xx)
```

Arguments

XX

 $T * m_1 * \cdots * m_K$ tensor-valued time series

Value

```
a list containing the following: coef coeficient of the fitted VAR(1) model res residual of the VAR(1) model
```

Examples

```
A <- generateA(dim=c(2,2,2), R=1)

xx <- generate(c(m1,m2,m3), T=100)

SIGMA <- TAR1.VAR(xx)
```

TAR2.LS

Least Squares Iterative Estimation for Tensor-Valued Time Series with Multiple Terms

Description

Iterated least squares estimation in the model $X_t = \sum_{r=1}^R X_{t-1} \times A_1^{(r)} \times \cdots \times A_K^{(r)} + E_t$.

Usage

```
TAR2.LS(xx, r, niter = 80, tol = 1e-06, print.true = FALSE)
```

Arguments

 $T*m_1*\cdots*m_K$ tensor-valued time series

niter maximum number of iterations if error stays above tol

tol relative Frobenius norm error tolerance

print.true print A_i

TAR2.MLE 31

Value

a list containing the following:

niter number of iterations

A estimator of coefficient matrices $A_1^{(1)},A_2^{(1)},\cdots,A_K^{(R)}$ res residual of the model Sig covariance matrix $\mathrm{cov}(\mathrm{vec}(\mathbf{E_t}))$

TAR2.MLE

MLE for Tensor-Valued Time Series with Multiple Terms Model Under a Structured Covariance Tensor

Description

MLE for the model
$$X_t = \sum_{r=1}^R X_{t-1} \times A_1^{(r)} \times \cdots \times A_K^{(r)} + E_t$$
.

Usage

Arguments

xx $T*m_1*\cdots*m_K$ tensor-valued time series niter maximum number of iterations if error stays above tol tol relative Frobenius norm error tolerance print.true print A_i

Value

a list containing the following:

A estimator of coefficient matrices A_1,A_2,\cdots,A_K res residual Sig covariance matrix $\operatorname{cov}(\operatorname{vec}(E_t))$ niter number of iterations

32 TAR2.SE.LSE

TAR2.projection

Projection Method for Tensor-Valued Time Series with Multiple Terms

Description

TenAR(1) one step projection estimation in the model $X_t = \sum_{r=1}^R X_{t-1} \times A_1^{(r)} \times \cdots \times A_K^{(r)} + E_t$.

Usage

```
TAR2.projection(xx, r)
```

Arguments

$$T*m_1*\cdots*m_K$$
 tensor-valued time series r number of terms

Value

a list containing the estimation of matrices $A_1^{(1)}, A_2^{(1)}, \cdots, A_K^{(R)}$

TAR2.SE.LSE

Asymptotic Covariance Matrix of TAR2.LSE

Description

Asymptotic covariance Matrix of TAR2.LSE for given A tensor-valued time series xx, see related Theorems in our paper.

Usage

```
TAR2.SE.LSE(xx, A.true, Sigma)
```

Arguments

 $T * m_1 * \cdots * m_K$ tensor-valued time series

A. true coefficient matrices in TAR(1) model

Sigma covariance matrix $cov(vec(E_t))$ in TAR(1) model

Value

asmptotic covariance matrix

Examples

```
dim <- c(2,2,2)
A <- generateA(dim, R=1)
xx <- generate(dim, T=100)
SIGMA <- TAR2.SE.LSE(xx, A, Sigma=diag(prod(dim)))</pre>
```

TAR2.SE.MLE 33

TAR2.SE.MLE

Asymptotic Covariance Matrix of TAR2.MLE

Description

Asymptotic covariance Matrix of TAR2.MLE for given A tensor-valued time series xx, see related Theorems in our paper.

Usage

```
TAR2.SE.MLE(xx, A.true, Sigma)
```

Arguments

 $T * m_1 * \cdots * m_K$ tensor-valued time series

A. true coefficient matrices in TAR(1) model

Sigma covariance matrix $cov(vec(E_t))$ in TAR(1) model

Value

asmptotic covariance matrix

Examples

```
dim <- c(2,2,2)
A <- generateA(dim, R=1)
xx <- generate(dim, T=100)
SIGMA <- TAR2.SE.MLE(xx, A, Sigma=diag(prod(dim)))</pre>
```

TenAR

Tensor Method

Description

Estimation function for tensor-valued time series. Projection method, the Iterated least squares method, MLE under a structured covariance tensor and stacked vector AR(1) model, as determined by the value of type.

Usage

```
TenAR(xx, type = c("projection", "LS", "MLE", "ar"))
```

Arguments

xx $T*m_1*\cdots*m_K$ tensor-valued time series character string, specifying the type of the estimation method to be used. "projection", Projection method. "lse", Iterated least squares. "mle", MLE under a structured covariance tensor. "ar", Stacked vector AR(1) Model.

dim dimension of coefficient matrices

34 tensor.ratio

Value

```
a list containing the following:  \label{eq:Anderson} \mbox{A estimator of coefficient matrices } A_1, A_2, \cdots, A_K \mbox{res residual of the model}   \mbox{Sig covariance matrix cov(vec(E_t))}   \mbox{niter number of iterations}
```

tensor.bic

BIC estimators for determing the numbers of factors

Description

BIC estimators for determing the numbers of factors

Usage

```
tensor.bic(reigen, h0 = 1, p1, p2, n)
```

Arguments

reigen	list of eigenvalues
h0	Pre-scribed parameter h
p1	p1
p2	p2
n	n

Value

factor.p1: Estimated number of factors

tensor.ratio

Eigenvalue ratio estimators for determining the numbers of factors

Description

Eigenvalue ratio estimators for determining the numbers of factors

Usage

```
tensor.ratio(reigen, h0 = 1, p1, p2, n)
```

Arguments

reigen	list of eigenvalues
h0	Pre-scribed parameter h
p1	p1
p2	p2
n	n

tipup.init.tensor 35

Value

factor.p1: Estimated number of factors

tipup.init.tensor

TIPUP one step for any Dim tensor time series

Description

TIPUP one step for any Dim tensor time series

Usage

```
tipup.init.tensor(x, r, h0 = 1, oneside.true = FALSE, norm.true = FALSE)
```

Arguments

tensor of any dimension $d1 * d2 * d3 * \cdots * d_d * n$

r initial guess of # of factors h0 Pre-scribed parameter h

oneside.true If oneside.true==TRUE, then only compute the one sided column space, not the

other sides, this option is useful for the iterative method

norm.true ==TRUE, normalize the tensor

Value

a list containing the following:

M Estimator

Q Orthonormal matrix Q

lambda singular values

norm.percent x after standardization

x.hat A tensor object x.hat

topup.init.tensor

TOPUP one step for any Dim tensor time series

Description

TOPUP one step for any Dim tensor time series

Usage

```
topup.init.tensor(x, r, h0 = 1, oneside.true = FALSE, norm.true = FALSE)
```

36 up.init.tensor

Arguments

x $d1*d2*d3*\cdots*d_d*n$ r initial guess of # of factors h0 Pre-scribed parameter h

oneside.true If oneside.true==TRUE, then only compute the one sided column space, not the

other sides, this option is useful for the iterative method

norm.true If norm.true==TRUE, calculate the normalized residual of the tensor

Value

a list containing the following:

M Estimator

Q Orthonormal matrix Q

lambda singular values

norm.percent normalized residual

x.hat A tensor object x.hat

trearrange

(alpha version) rearrangement operator for tensor.

Description

(alpha version) rearrangement operator for tensor.

Usage

```
trearrange(A, m1, m2, m3, n1, n2, n3)
```

up.init.tensor

UP one step for any Dim tensor time series

Description

UP one step for any Dim tensor time series

Usage

```
up.init.tensor(x, r, oneside.true = FALSE, norm.true = FALSE)
```

Arguments

x tensor of any dimension : $d1 * d2 * d3 * \cdots * d_k * n$

r initial guess of # of factors

oneside.true If oneside.true==TRUE, then only compute the one sided column space, not the

other sides, this option is useful for the iterative method

norm.true ==TRUE, normalize the tensor

var1 37

Value

```
a list containing the following:
Q Orthonormal matrix Q
lambda Singular values
norm.percent x after standardization
x.hat A tensor object x.hat
```

var1

Stacked vector AR(1) Model

Description

```
vector AR(1) Model.
```

Usage

```
var1(xx)
```

Arguments

хх

T * p * q matrix-valued time series

Value

```
a list containing the following:  \\  \mbox{coef coeficient of the fitted VAR}(1) \ \mbox{model} \\ \mbox{res residual of the VAR}(1) \ \mbox{model} \\
```

Examples

```
out.var1=var1(xx)
sum(out.var1$res**2)
```

vector_factor

The main estimation function, vector version

Description

The main estimation function, vector version

Usage

```
vector_factor(Yt, inputk.vec, iscentering = 1, hzero = 1)
```

38 vts

Arguments

Yt Time Series data for a matrix

inputk.vec The pre-determined dimensions of the factor matrix in vector

iscentering The data is subtracted by its mean value

hzero Pre-determined parameter h_0

Value

a list containing the following:

eigval1 estimated dimensions of the factor matrix

loading estimated loading matrices

Ft Estimated factor matrix with pre-determined number of dimensions

Ft.all Sum of Ft

Et The estimated random term, by subtracting estimated signal term from the data

vts *vector time series*

Description

vector time series

Usage

Arguments

x a n*d matrix

h0 Pre-scribed parameter h
r First r eigenvectors

Value

a list containing the following:

Μ.

 ${\tt Q}\,$ The eigenvectors of matrix M

Index

<pre>dynamic_A, 2 em, 3 generate, 4 generateA, 4 get.hat, 5 grouping.loading, 5</pre>	TAR1.LS, 27 TAR1.MLE, 27 TAR1.MLE (TAR2.MLE), 31 TAR1.projection, 28 TAR1.SE.LSE, 28 TAR1.SE.MLE, 29 TAR1.VAR, 30 TAR2.LS, 30
<pre>iter.tensor.bic, 6 iter.tensor.ratio, 7</pre> MAR, 8	TAR2.MLE, 31 TAR2.projection, 32 TAR2.SE.LSE, 32 TAR2.SE.MLE, 33
MAR.SE, 8 MAR1.CC (MAR1.RRMLE), 14 MAR1.LS, 9 MAR1.otimes, 10 MAR1.otimes (MAR2.otimes), 16	TenAR, 33 tensor.bic, 34 tensor.ratio, 34 tipup.init.tensor, 35 topup.init.tensor, 35
MAR1.projection, 11, 25, 26 MAR1.RR (MAR1.RRLSE), 13 MAR1.RRCC.SE, 11 MAR1.RRLS.SE, 12	trearrange, 3, 23, 36 up.init.tensor, 36 var1, 37
MAR1.RRLSE, 13 MAR1.RRMLE, 14 MAR2.LS, 15 MAR2.otimes, 16 MAR2.projection, 16	vector_factor, 20, 21, 37 vts, 38
matrix_factor, 17, 18, 19 mfmda, 18, 19-21 mfmda.estqk, 18 mfmda.na.iter, 19 mfmda.na.vec, 20	
mfmda.nona.iter, 20 mfmda.nona.noniter, 21 mfmda.nona.vec, 21 mplot, 22	
PlotNetwork_AB, 22 pm, 23 predict.rolling, 24 predict.tenar, 24 projection, 25	
rearrange, 26 run. test, 4, 26	