CSE 125 Lab 1: Behavioral Verilog

Date: 04/12/2020

Name: Zhongming Liao, Chuanshi Zhu

Lab Group: 20

- 1. Linear Feedback Shift Register
 - a. Screenshot

b. Result

10 outputs:

data_out_struct[7:0]: a5, 57, ae, 41, 82, 19, 32, 64, c8, 8d; data out behav[7:0]: a5, 57, ae, 41, 82, 19, 32, 64, c8, 8d;

Ifsr_structural:

resource:

wns = -0.155ns, target clock period =20ns

Fmax:

Fmax = 1/(20 - (-0.155)) = 1/20.155 = 0.05Mhz

Ifsr_behavioural:

resource:

wns = -0.58ns, target clock period =20ns

Fmax:

Fmax = 1/(20 - (-0.58)) = 1/20.58 = 0.049Mhz

2. Build a Multiplier using an Accumulator

a. Screenshot

b. Result

Multiplier_1:

LUT and FF:

Resource	Utilization	Available	Utilization%
LUT	52	41000	0.13
FF	65	82000	0.08
10	68	300	22.67

Fmax:

wns = -0.466ns

target clock period: 11ns

Fmax = 1/(11+0.466) = 0.0872Mhz

For computing the result of "67*43", the runtime is

 $0.45 \times 10^{-6} s$

multiplier_4:

LUT and FF:

Resource	Utilization	Available	Utilization%
LUT	187	41000	0.46
FF	63	82000	0.08
10	68	300	22.67

Fmax:

wns = -3.823ns

target clock period: 11ns

Fmax = 1/(11+3.823) = 0.0675Mhz

For computing the result of "67*43", the runtime is

 $0.13 \times 10^{-6} s$