Sheet 17: More About Metric Spaces

Theorem 1 Let (X,d) be a metric space and let (a_n) be a sequence in X. Then $\lim_{n\to\infty} a_n = a$ if and only if $\lim_{n\to\infty} d(a_n,a) = 0$.

Proof. Let $\lim_{n\to\infty} a_n = a$. Then for every open set $A \subseteq X$ with $a \in A$ there are finitely many n with $a_n \notin A$. But then for $r \in \mathbb{R}$, there are finitely many n with $a_n \notin B(a,r)$. Then there are finitely many n such that $d(a_n,a) < r$ which means there are finitely many n such that $d(a_n,a) \notin (-r,r)$. Thus, $\lim_{n\to\infty} d(a_n,a) = 0$.

Conversely, let $\lim_{n\to\infty} d(a_n,a)=0$. Then for all $r\in\mathbb{R}$ there are finitely many n such that $d(a_n,a)\notin(-r,r)$ which means there are finitely many n such that $d(a_n,a)>r$. But then there are finitely many n such that $a_n\notin B(a,r)$. If we consider some open set $A\subseteq X$ such that $a\in A$, there there exists some ball $B(a,r)\subseteq A$. But since there are finitely many n with $a_n\notin B(a,r)$, there are only finitely n with $a_n\notin A$. Thus, $\lim_{n\to\infty} a_n=a$.

Definition 2 Let $\mathbb{R}^n = \{(a_1, a_2, \dots, a_n) \mid a_i \in \mathbb{R}\}$ denote the set of real n-tuples.

Definition 3 For $\mathbf{a} = (a_1, a_2, \dots, a_n) \in \mathbb{R}^n$ and $\mathbf{b} = (b_1, b_2, \dots b_n) \in \mathbb{R}^n$ let

$$d_0(\mathbf{a}, \mathbf{b}) = \max_{1 \le i \le n} |a_i - b_i|,$$

$$d_1(\mathbf{a}, \mathbf{b}) = \sum_{i=1}^n |a_i - b_i|$$

and

$$d_2(\mathbf{a}, \mathbf{b}) = \sqrt{\sum_{i=1}^{n} (a_i - b_i)^2}.$$

Theorem 4 The functions d_0 , d_1 and d_2 are all metrics on \mathbb{R}^n .

Proof. Let $\mathbf{a}, \mathbf{b}, \mathbf{c} \in \mathbb{R}^n$. It's clear that $d_0(\mathbf{a}, \mathbf{b})$, $d_1(\mathbf{a}, \mathbf{b})$ and $d_2(\mathbf{a}, \mathbf{b})$ are all greater than or equal to 0. Let $d_0(\mathbf{a}, \mathbf{b}) = 0$. Then $\max_{1 \le i \le n} |a_i - b_i| = 0$ and so $a_i = b_i$. Since the maximum positive difference between two coordinates is 0, all the distances must be 0 as well. Now let $\mathbf{a} = \mathbf{b}$. Then $a_i = b_i$ for $1 \le i \le n$. Thus $\max_{1 \le i \le n} |a_i - b_i| = 0$ and $d_0(\mathbf{a}, \mathbf{b}) = 0$.

Let $d_1(\mathbf{a}, \mathbf{b}) = 0$. Then $\sum_{i=1}^n |a_i - b_i| = 0$. But since $|a_i - b_i| \ge 0$ for $1 \le i \le n$ we have $|a_i - b_i| = 0$ for $1 \le i \le n$. Thus $a_i = b_i$ and $\mathbf{a} = \mathbf{b}$. Now suppose that $\mathbf{a} = \mathbf{b}$. Then we have $a_i = b_i$ for $1 \le i \le n$ and so $|a_i - b_i| = 0$. But then $\sum_{i=1}^n |a_i - b_i| = 0$ and so $d_1(\mathbf{a}, \mathbf{b}) = 0$.

Let $d_2(\mathbf{a}, \mathbf{b}) = 0$. Then $\sqrt{\sum_{i=1}^n (a_i - b_i)^2} = 0$ which means $\sum_{i=1}^n (a_i - b_i)^2 = 0$. From here the proof follows similarly to that of $d_1(\mathbf{a}, \mathbf{b})$.

Since |a-b|=|b-a| and $(a-b)^2=(b-a)^2$ for all $a,b\in\mathbb{R}$, we have $d_i(\mathbf{a},\mathbf{b})=d_i(\mathbf{b},\mathbf{a})$ for $0\leq i\leq 2$. Finally, note that using the triangle inequality we have

 $\max_{1 \leq i \leq n} |a_i - b_i| + \max_{1 \leq i \leq n} |b_i - c_i| \geq |a_i - b_i| + |b_i - c_i|$ for arbitrary $1 \leq i \leq n$ which is in turn greater than $\max_{1 \leq i \leq n} |a_i - c_i|$. Note also that by the triangle inequality we have $|a_i - b_i| + |b_i - c_i| \geq |a_i - c_i|$ for

 $1 \le i \le n$. But then if we sum this inequality n times we have $\sum_{i=1}^{n} |a_i - b_i| + \sum_{i=1}^{n} |b_i - c_i| \ge \sum_{i=1}^{n} |a_i - c_i|$. Lastly note that

$$\sqrt{\sum_{i=1}^{n} (a_i - b_i)^2} + \sqrt{\sum_{i=1}^{n} (b_i - c_i)^2} \ge \sqrt{\sum_{i=1}^{n} ((a_i - b_i)^2 + (b_i - c_i)^2)} \ge \sqrt{\sum_{i=1}^{n} (a_i - c_i)^2}.$$

Thus all three distance functions satisfy the triangle inequality. Therefore all three are metrics.

Theorem 5 For all $0 \le i \le 2$, $0 \le j \le 2$ and for all $\mathbf{x} \in \mathbb{R}^n$ and r > 0 there exists r' > 0 such that

$$B_{d_i}(x,r') \subseteq B_{d_i}(x,r).$$

Proof. Let $\mathbf{x} \in \mathbb{R}^n$ and let r > 0. Consider $B_{d_0}(\mathbf{x}, r)$, let r = r' and let $\mathbf{y} \in B_{d_1}(\mathbf{x}, r')$. Then $\sum_{i=1}^n |x_i - y_i| < r'$ and so $d_0(\mathbf{x}, \mathbf{y}) = \max_{1 \le i \le n} |x_i - y_i| < r' = r$. Thus $\mathbf{y} \in B_{d_0}(\mathbf{x}, r)$ and $B_{d_1}(\mathbf{x}, r') \subseteq B_{d_0}(\mathbf{x}, r)$. Now let r = r' again and let $\mathbf{y} \in B_{d_2}(\mathbf{x}, r')$. Then

$$\sqrt{\sum_{i=1}^{n} (x_i - y_i)^2} < r'$$

so $\max_{1 \le i \le n} (x_i - y_i)^2 < \sum_{i=1}^n (x_i - y_i)^2 < r'^2$ and $d_0(\mathbf{x}, \mathbf{y}) = \max_{1 \le i \le n} |x_i - y_i| < r' = r$. Thus $\mathbf{y} \in B_{d_0}(\mathbf{x}, r)$ and $B_{d_2}(\mathbf{x}, r') \subseteq B_{d_0}(\mathbf{x}, r)$.

Next consider $B_{d_1}(\mathbf{x}, r)$, let r' = r/n and let $\mathbf{y} \in B_{d_0}(\mathbf{x}, r')$. Then $\max_{1 \le i \le n} |x_i - y_i| < r/n$ which means $d_1(\mathbf{x}, \mathbf{y}) = \sum_{i=1}^n |x_i - y_i| < r$ and $\mathbf{y} \in B_{d_1}(\mathbf{x}, r)$. Thus $B_{d_0}(\mathbf{x}, r') \subseteq B_{d_1}(\mathbf{x}, r)$. Now let $r' = r/\sqrt{n}$ and let $\mathbf{y} \in B_{d_2}(\mathbf{x}, r')$. Then

$$\sqrt{\sum_{i=1}^{n} (x_i - y_i)^2} < \frac{r}{\sqrt{n}}$$

so $\sum_{i=1}^{n} (x_i - y_i)^2 < r^2/n$ and $(x_i - y_i)^2 < r^2/n^2$ for $1 \le i \le n$. Thus $|x_i - y_i| < r/n$ for $1 \le i \le n$ and so $d_1(\mathbf{x}, \mathbf{y}) = \sum_{i=1}^{n} |x_i - y_i| < r$. Thus $B_{d_2}(\mathbf{x}, r') \subseteq B_{d_1}(\mathbf{x}, r)$.

Finally, consider $B_{d_2}(\mathbf{x}, r)$, let $r' = r/\sqrt{n}$ and let $\mathbf{y} \in B_{d_0}(\mathbf{x}, r')$. Then $\max_{1 \le i \le n} |x_i - y_i| < r/\sqrt{n}$ which means $\max_{1 \le i \le n} (x_i - y_i)^2 < r^2/n$ and

$$d_2(\mathbf{x}, \mathbf{y}) = \sqrt{\sum_{i=1}^n (x_i - y_i)^2} < r.$$

Thus $\mathbf{y} \in B_{d_2}(\mathbf{x}, r)$ and $B_{d_0}(\mathbf{x}, r') \subseteq B_{d_2}(\mathbf{x}, r)$. Now let $r' = r/n\sqrt{n}$ and let $\mathbf{y} \in B_{d_1}(\mathbf{x}, r')$. Then $\sum_{i=1}^n |x_i - y_i| < r/n\sqrt{n}$ so $|x_i - y_i| < r/\sqrt{n}$ and $(x_i - y_i)^2 < r^2/n$ for $1 \le i \le n$. Then $\sum_{i=1}^n (x_i - y_i)^2 < r^2$ and

$$d_2(\mathbf{x}, \mathbf{y}) = \sqrt{\sum_{i=1}^n (x_i - y_i)^2} < r.$$

Thus $\mathbf{y} \in B_{d_2}(\mathbf{x}, r)$ and $B_{d_1}(\mathbf{x}, r') \subseteq B_{d_2}(\mathbf{x}, r)$.

Corollary 6 The metrics d_0 , d_1 and d_2 generate the same topology on \mathbb{R}^n , namely, a subset $A \subseteq \mathbb{R}^n$ is open in (\mathbb{R}^n, d_i) if it is open in (\mathbb{R}^n, d_j) $(0 \le i \le 2, 0 \le j \le 2)$.

Proof. Let $A \subseteq \mathbb{R}^n$ be an open set in (\mathbb{R}^n, d_j) . Then for all $a \in A$ there exists $r \in \mathbb{R}$ such that $B_{d_j}(a, r) \subseteq A$. But from Theorem 5 we know that there exists $r' \in \mathbb{R}$ such that $B_{d_i}(a, r') \subseteq B_{d_j}(a, r) \subseteq A$ (17.5). Thus A is open for (\mathbb{R}, d_i) . This is true for arbitrary $0 \le i \le 2$, $0 \le j \le 2$.

Definition 7 Let (X,d) be a metric space. A sequence (a_n) on X has the Cauchy property if for all $\varepsilon > 0$ there exists N such that for all n, m > N we have $d(a_n, a_m) < \varepsilon$.

Definition 8 A metric space (X, d) is complete if every Cauchy sequence on X is convergent.

Theorem 9 \mathbb{R}^n is complete.

Proof. Let (\mathbf{a}_n) be a Cauchy sequence on \mathbb{R}^d and let $\varepsilon' > 0$. Then there exists N such that for all n, m > N we have

$$d_2(\mathbf{a}_n, \mathbf{a}_m) = \sqrt{\sum_{i=1}^d (a_{ni} - a_{mi})^2} < \varepsilon'$$

so $(a_{ni}-a_{mi})^2 \leq \sum_{i=1}^d (a_{ni}-a_{mi})^2 < \varepsilon'^2$ and $|a_{ni}-a_{mi}| < \varepsilon'$. Thus the *i*th coordinate of the terms of (\mathbf{a}_n) forms a Cauchy sequence which converges to some b_i (14.5). Then let $\mathbf{b} = (b_1,b_2,\ldots,b_d)$, let $\varepsilon > 0$ and consider ε/\sqrt{d} . For all $i \leq d$ there exists some N_i such that for $n > N_i$ we have $|a_{ni}-b_i| < \varepsilon/\sqrt{d}$ by convergence (13.3). Let N be the largest of all such N_i so that for all n > N we have $|a_{ni}-b_i| < \varepsilon/\sqrt{d}$. Then $(a_{ni}-b_i)^2 < \varepsilon^2/d$ and $\sum_{i=1}^d (a_{ni}-b_i)^2 < \varepsilon^2$. Then $d_2(\mathbf{a}_n,\mathbf{b}) < \varepsilon$ for all n > N and $|d(\mathbf{a}_n,\mathbf{b})| < \varepsilon$ for all n > N. Thus $\lim_{n\to\infty} \mathbf{a}_n = \mathbf{b}$ because $\lim_{n\to\infty} d(\mathbf{a}_n,\mathbf{b}) = 0$ (13.3, 17.1).

Theorem 10 Every compact metric space is complete.

Proof. Let (X,d) be a compact metric space and suppose that (X,d) is not complete. Then there exists some Cauchy sequence $(a_n) \in X$ such that (a_n) does not converge. Therefore for all $x \in X$ there exists some ball $B(x,\varepsilon)$ such that there are infinitely many n with $a_n \notin B(x,\varepsilon)$. Let \mathcal{A} be the set of all such balls and let $\mathcal{A}' = \{B(x,\varepsilon/2) \mid B(x,\varepsilon) \in \mathcal{A}\}$. Then \mathcal{A}' is an open cover for X and X is compact so let \mathcal{B} be a finite subcover for \mathcal{A}' . Let $B(x,\varepsilon/2) \in \mathcal{B}$. Note that there are infinitely many n such that $a_n \notin B(x,\varepsilon)$ so there are infinitely many n such that $a_n \notin B(x,\varepsilon/2)$. We have (a_n) is Cauchy so there exists N such that for all n, m > N we have $d(a_n, a_m) < \varepsilon/2$. Suppose that there are infinitely many n with $a_n \in B(x,\varepsilon/2)$. Since there are infinitely many n with $a_n \in B(x,\varepsilon/2)$ and $a_n \notin B(x,\varepsilon/2)$ choose n, m > N with $a_n \in B(x,\varepsilon/2)$ and $a_m \notin B(x,\varepsilon/2)$. But then $d(x,a_m) \leq d(x,a_n) + d(a_n,a_m) < \varepsilon$. Thus there are infinitely many n with $a_n \in B(x,\varepsilon/2)$ which is a contradiction. Therefore there are finitely many n with $n \in B(x,\varepsilon/2)$. But this is true for all $n \in B(x,\varepsilon/2) \in \mathcal{B}$ and there are finitely many elements of $n \in B(x,\varepsilon/2)$. But this is an open cover for $n \in B(x,\varepsilon/2)$. So we have finitely many $n \in B(x,\varepsilon/2)$ which is a contradiction. Therefore $n \in B(x,\varepsilon/2)$ is complete.

Theorem 11 Let (\mathbf{a}_n) be a bounded sequence in \mathbb{R}^d . Show that (\mathbf{a}_n) has a convergent subsequence.

Proof. Consider the sequence (a_{1n}) where a_{1n} is the 1st coordinate in the nth term of (\mathbf{a}_n) . Since (\mathbf{a}_n) is bounded, there exists r such that for all i, j we have

$$a_{1i} - a_{1j} \le (a_{1i} - a_{1j})^2 \le d_2(\mathbf{a}_i, \mathbf{a}_j) < r$$

and similarly

$$a_{1j} - a_{1i} \le (a_{1j} - a_{1i})^2 \le d_2(\mathbf{a}_j, \mathbf{a}_i) < r$$

Thus for all i we have $-r + a_{1j} < a_{1i} < r + a_{1j}$ for some j. Then we have (a_{1n}) is a bounded sequence so there exists some convergent subsequence (b_{1k}) .

Use induction on n. We have shown the base case for n = 1. Now assume that a bounded sequence $(\mathbf{a}_n) \in \mathbb{R}^d$ has a convergent subsequence for $d \in \mathbb{N}$. Consider a bounded sequence $(\mathbf{a}_n) \in \mathbb{R}^{d+1}$. Using similar logic as for (a_{1n}) we know that the first d coordinates of terms in (\mathbf{a}_n) form a bounded sequence in

 \mathbb{R}^d . Then by our Inductive Hypothesis there exists a convergent subsequence. Let the corresponding terms in (\mathbf{a}_n) be the sequence $(\mathbf{b}_k = \mathbf{a}_{n_k})$ Form a subsequence $(\mathbf{c}_k = \mathbf{a}_{n_k})$ of (\mathbf{a}_n) where the kth term has the coordinates of \mathbf{b}_k as the first d coordinates and the d+1th coordinate of \mathbf{a}_{n_k} as the d+1th coordinate. Now take the sequence in \mathbb{R} where the kth term is the d+1th coordinate of \mathbf{c}_k . Then this sequence is bounded so there exists a convergent subsequence $(e_i = c_{k_i(d+1)})$.

Finally form a subsequence of (\mathbf{a}_n) where the *i*th term is c_{k_i} . Now every coordinate in (\mathbf{c}_{k_i}) forms a convergent sequence in \mathbb{R} so (\mathbf{c}_{k_i}) converges to some $\mathbf{f} \in \mathbb{R}^{d+1}$ using a similar proof as in Theorem 9.

Theorem 12 Show that a set $A \subseteq \mathbb{R}^d$ is open if and only if for all $\mathbf{x} \in A$ there is a rational ball O such that $\mathbf{x} \in O$ and $O \subseteq A$.

Proof. Suppose that for all $\mathbf{x} \in A$ there is a rational ball $B(\mathbf{a}, r) \subseteq A$ such that $\mathbf{x} \in B(\mathbf{a}, r)$. Then consider the ball $B(\mathbf{x}, r - d(\mathbf{a}, \mathbf{x}))$. For $\mathbf{y} \in B(\mathbf{x}, r - d(\mathbf{a}, \mathbf{x}))$ we have $d(\mathbf{x}, \mathbf{y}) < r - d(\mathbf{a}, \mathbf{x})$ which means $d(\mathbf{a}, \mathbf{y}) \le d(\mathbf{a}, \mathbf{x}) + d(\mathbf{x}, \mathbf{y}) < r$ and so $\mathbf{y} \in B(\mathbf{a}, r)$. Thus $B(\mathbf{x}, r - d(\mathbf{a}, \mathbf{x})) \subseteq B(\mathbf{a}, r) \subseteq A$. Then for all $\mathbf{x} \in A$ there exists a ball $B(\mathbf{x}, r') \subseteq A$ so A is open.

Conversely let $A \subseteq \mathbb{R}^d$ be open. Let $\mathbf{x} \in A$. There exists a ball $B(\mathbf{x}, r) \subseteq A$ where r may be rational or not. If $r \notin \mathbb{Q}$ then consider some $r' \in \mathbb{Q}$ such that 0 < r' < r and then $B(\mathbf{x}, r') \subseteq B(\mathbf{x}, r) \subseteq A$ (9.12). We have $B(\mathbf{x}, r'/2) \subseteq B(\mathbf{x}, r') \subseteq A$. Let $\mathbf{y} = (y_1, y_2, \dots, y_d)$ where $y_i \in \mathbb{Q}$ and $0 < y_i < r'/(2\sqrt{d}) + x_i$ (9.12). Then $y_i - x_i < r'/(2\sqrt{d})$. Also $(x_i - y_i)^2 < r'^2/(4d)$ so $\sum_{i=1}^d (x_i - y_i)^2 < r'^2/4$ and $d(\mathbf{x}, \mathbf{y}) < r'/2$. Finally consider $\mathbf{z} \in B(\mathbf{y}, r'/2)$. Then $d(\mathbf{y}, \mathbf{z}) < r'/2$. But also $d(\mathbf{x}, \mathbf{y}) < r'/2$ so we have $d(\mathbf{x}, \mathbf{z}) \le d(\mathbf{x}, \mathbf{y}) + d(\mathbf{y}, \mathbf{z}) < r'/2 + r'/2 = r'$. Thus $B(\mathbf{y}, r'/2) \subseteq B(\mathbf{x}, r') \subseteq A$. Also $d(\mathbf{y}, \mathbf{x}) < r'/2 < r'$ so $\mathbf{x} \in B(\mathbf{y}, r'/2)$. Note that $r'/2 \in \mathbb{Q}$ and $\mathbf{y} \in \mathbb{Q}^d$.

Theorem 13 Let C be a closed, bounded subset of \mathbb{R}^d and let A be an open cover for C. Then A has a countable subcover.

Proof. Let $\mathbf{x} \in C$. Then there exists $A \in \mathcal{A}$ such that $\mathbf{x} \in A$. We have A is open, so there exists some rational ball $O \subseteq A$ such that $\mathbf{x} \in O$ (17.12). Let \mathcal{B} be the set of all such rational balls for all $\mathbf{x} \in C$. Each of these balls has a center in \mathbb{Q}^d which is countable, so there are countably many of them. Then let $\mathcal{C} \subseteq \mathcal{A}$ be the set of elements of \mathcal{A} which are supersets to elements in \mathcal{B} . Since every element of \mathcal{B} is a subset of some element of \mathcal{A} , there are countable many elements of \mathcal{C} . But \mathcal{C} covers C.

Theorem 14 Closed bounded subsets of \mathbb{R}^d are compact.

Proof. Assume C is a closed bounded subset of \mathbb{R}^d which is not compact. Let \mathcal{A} be an open cover for C which does not have a finite subcover. Let $\mathcal{B} = \{B_i \mid i \in \mathbb{N}\} \subseteq \mathcal{A}$ be a countably infinite subcover for C (17.13). Since \mathcal{B} is countable we can create a sequence $(\mathbf{a}_n) \in C$ such that $\mathbf{a}_1 \in B_1$ and for n > 1

$$\mathbf{a}_n \in C \setminus (B_1 \cup B_2 \cup \dots B_{n-1}).$$

Then for all j > i, $\mathbf{a}_j \notin B_i$. Thus for all $B_i \in \mathcal{B}$, there are infinitely many n with $\mathbf{a}_n \notin B_i$. Note that (\mathbf{a}_n) is bounded since C is bounded, so there exists a subsequence $(\mathbf{b}_n) \in C$ such that $\lim_{n \to \infty} \mathbf{b}_n = \mathbf{b}$. Note that C is closed, so if $\mathbf{b} \notin C$ then there exists some ball $B(\mathbf{b}, r) \subseteq \mathbb{R}^d \setminus C$ because $\mathbb{R}^d \setminus C$ is open. But $(\mathbf{b}_n) \in C$ so there are infinitely many n such that $\mathbf{b}_n \notin \mathbb{R}^d \setminus C$. Thus $\mathbf{b} \in C$. Then $\mathbf{b} \in B_i$ for some $B_i \in \mathcal{B}$. But there are infinitely many n such that $\mathbf{a}_n \notin B_i$ and so $\lim_{n \to \infty} \mathbf{b}_n \notin B_i$. Thus, (\mathbf{b}_n) does not converge which is a contradiction. Therefore C is compact.