Simulating the Goertzel Algorithm

Detection Results with 12 Tones, Randomized Noise, Frame Shifting, + AWGN.

29 October 2024

Configuration used: $F_s = 16000$, duration = 0.02 s, N = 320.

The 12 Tones

Detection using the Goertzel Algorithm

Before Normalization

After Normalization

Frequency	Scaling Factor
697 Hz	2.0084
770 Hz	2.6215
852 Hz	2.0077
941 Hz	2.11
1209 Hz	2.1172
1336 Hz	2.2914
1477 Hz	2.936

Detecting 12 DTMF (Pure) Tones

Detected Frequencies for 697 + 1209 Hz (1) (Normalized)

Detected Frequencies for 697 + 1336 Hz (2) (Normalized)

Detected Frequencies for 697 + 1477 Hz (3) (Normalized)

Detected Frequencies for 770 + 1209 Hz (4) (Normalized)

Detected Frequencies for 770 + 1336 Hz (5) (Normalized)

Detected Frequencies for 770 + 1477 Hz (6) (Normalized)

Detected Frequencies for 852 + 1209 Hz (7) (Normalized)

Detected Frequencies for 852 + 1336 Hz (8) (Normalized)

Detected Frequencies for 852 + 1477 Hz (9) (Normalized)

Detected Frequencies for 941 + 1209 Hz (*) (Normalized)

Detected Frequencies for 941 + 1336 Hz (0) (Normalized)

Detected Frequencies for 941 + 1477 Hz (#) (Normalized)

Summary of Resulting Detection Magnitudes for Pure Tone Inputs

Input Signal	g(697)	g(770)	g(852)	g(941)	g(1209)	g(1336)	g(1477)
697 + 1209	1	0.091	0.039	0.043	1	0.067	0.04
697 + 1336	0.99	0.065	0.026	0.033	0.095	1	0.11
697 + 1477	0.99	0.077	0.035	0.039	0.067	0.15	1
770 + 1209	0.23	1	0.17	0.06	0.97	0.096	0.071
770 + 1336	0.24	1	0.16	0.066	0.088	1	0.12
770 + 1477	0.25	1	0.16	0.052	0.042	0.13	1
852 + 1209	0.024	0.042	1	0.015	0.99	0.078	0.053
852 + 1336	0.024	0.035	0.99	0.05	0.1	1	0.1
852 + 1477	0.03	0.045	1	0.043	0.066	0.15	1
941 + 1209	0.036	0.058	0.09	1	1	0.06	0.035
941 + 1336	0.058	0.089	0.12	0.97	0.071	1	0.13
941 + 1477	0.059	0.089	0.12	0.98	0.059	0.14	1

Input Signals with Additive White Gaussian Noise (AWGN)

Configuration: awgn(pure tone, SNR in dB, measured)

Detected Frequencies for 697 + 1209 Hz (1) (Normalized)

Detected Frequencies for 697 + 1336 Hz (2) (Normalized)

Detected Frequencies for 697 + 1477 Hz (3) (Normalized)

Detected Frequencies for 770 + 1209 Hz (4) (Normalized)

Detected Frequencies for 770 + 1336 Hz (5) (Normalized)

Detected Frequencies for 770 + 1477 Hz (6) (Normalized)

Detected Frequencies for 852 + 1209 Hz (7) (Normalized)

Detected Frequencies for 852 + 1336 Hz (8) (Normalized)

Detected Frequencies for 852 + 1477 Hz (9) (Normalized)

Detected Frequencies for 941 + 1209 Hz (*) (Normalized)

Detected Frequencies for 941 + 1336 Hz (0) (Normalized)

Detected Frequencies for 941 + 1477 Hz (#) (Normalized)

Summary of Resulting Detection Magnitudes for Inputs with AWGN

Input Signal	g(697)	g(770)	g(852)	g(941)	g(1209)	g(1336)	g(1477)
697 + 1209, no AWGN	1	0.091	0.039	0.043	1	0.067	0.04
697 + 1209, +20 dB	1	0.098	0.036	0.033	1	0.057	0.036
697 + 1209, 0 dB	1.1	0.1	0.083	0.026	0.98	0.17	0.16
697 + 1209, -10 dB	0.95	0.7	0.52	0.59	1	0.071	0.26

Input Signal	g(697)	g(770)	g(852)	g(941)	g(1209)	g(1336)	g(1477)
697 + 1336, no AWGN	0.99	0.065	0.026	0.033	0.095	1	0.11
697 + 1336, +20 dB	0.99	0.069	0.02	0.044	0.092	1	0.11
697 + 1336, 0 dB	1.1	0.35	0.14	0.19	0.12	0.91	0.067
697 + 1336, -10 dB	1	1	0.075	0.48	0.39	0.9	0.56

Input Signal	g(697)	g(770)	g(852)	g(941)	g(1209)	g(1336)	g(1477)
697 + 1477, no AWGN	0.99	0.077	0.035	0.039	0.067	0.15	1
697 + 1477, +20 dB	0.98	0.069	0.031	0.043	0.059	0.16	1
697 + 1477, 0 dB	1	0.3	0.077	0.035	0.15	0.14	0.87
697 + 1477, -10 dB	1	0.41	0.43	0.12	0.5	0.18	1.1

Input Signal	g(697)	g(770)	g(852)	g(941)	g(1209)	g(1336)	g(1477)
770 + 1209, no AWGN	0.23	1	0.17	0.06	0.97	0.096	0.071
770 + 1209, +20 dB	0.23	1	0.16	0.065	0.97	0.11	0.045
770 + 1209, 0 dB	0.18	0.93	0.13	0.11	0.92	0.026	0.26
770 + 1209, -10 dB	0.25	1.2	0.24	0.43	0.86	0.37	0.18

Input Signal	g(697)	g(770)	g(852)	g(941)	g(1209)	g(1336)	g(1477)
770 + 1336, no AWGN	0.24	1	0.16	0.066	0.088	1	0.12

770 + 1336, +20 dB	0.25	1	0.17	0.057	0.085	1	0.13
770 + 1336, 0 dB	0.26	1.1	0.089	0.23	0.12	1.1	0.32
770 + 1336, -10 dB	0.7	0.93	0.29	0.3	0.37	0.63	0.41

Input Signal	g(697)	g(770)	g(852)	g(941)	g(1209)	g(1336)	g(1477)
770 + 1477, no AWGN	0.25	1	0.16	0.052	0.042	0.13	1
770 + 1477, +20 dB	0.25	1	0.16	0.046	0.042	0.15	1
770 + 1477, 0 dB	0.22	0.86	0.18	0.17	0.02	0.14	0.87
770 + 1477, -10 dB	0.34	1.5	0.44	0.16	0.15	0.18	1.2

Input Signal	g(697)	g(770)	g(852)	g(941)	g(1209)	g(1336)	g(1477)
852 + 1209, no AWGN	0.024	0.042	1	0.015	0.99	0.078	0.053
852 + 1209, +20 dB	0.016	0.05	1	0.0094	0.99	0.089	0.056
852 + 1209, 0 dB	0.068	0.18	1.1	0.15	1.1	0.058	0.27

852 + 1209, -10 dB	0.24	0.082	0.78	0.55	1	0.17	0.45
002 * 1203, 10 uB	0.2.	0.002	0.70	0.55	•	0.17	0.15

Input Signal	g(697)	g(770)	g(852)	g(941)	g(1209)	g(1336)	g(1477)
852 + 1336, no AWGN	0.024	0.035	0.99	0.05	0.1	1	0.1
852 + 1336, +20 dB	0.035	0.051	1	0.04	0.11	1	0.089
852 + 1336, 0 dB	0.099	0.15	1.1	0.058	0.038	1.1	0.18
852 + 1336, -10 dB	0.22	0.28	1.6	0.17	0.4	1	0.045

Input Signal	g(697)	g(770)	g(852)	g(941)	g(1209)	g(1336)	g(1477)
852 + 1477, no AWGN	0.03	0.045	1	0.043	0.066	0.15	1
852 + 1477, +20 dB	0.033	0.057	1	0.047	0.072	0.15	0.99
852 + 1477, 0 dB	0.051	0.2	1.1	0.092	0.19	0.26	1
852 + 1477, -10 dB	0.14	0.23	1.1	0.59	0.24	0.067	0.67

941 + 1209, no AWGN 0.							
> 11 · 120>, 110 11((G1 ()	0.036	0.058	0.09	1	1	0.06	0.035
941 + 1209, +20 dB 0.	0.043	0.08	0.092	1	1	0.064	0.022
941 + 1209, 0 dB 0.).14	0.062	0.054	0.99	1	0.12	0.19
941 + 1209, -10 dB 0.).28	0.16	0.38	1.2	1.2	0.43	1.1

Input Signal	g(697)	g(770)	g(852)	g(941)	g(1209)	g(1336)	g(1477)
941 + 1336, no AWGN	0.058	0.089	0.12	0.97	0.071	1	0.13
941 + 1336, +20 dB	0.053	0.093	0.12	0.98	0.08	1	0.13
941 + 1336, 0 dB	0.13	0.08	0.32	1	0.18	1	0.041
941 + 1336, -10 dB	0.54	0.32	0.27	1.4	0.41	0.65	0.42

Input Signal	g(697)	g(770)	g(852)	g(941)	g(1209)	g(1336)	g(1477)
941 + 1477, no AWGN	0.059	0.089	0.12	0.98	0.059	0.14	1
941 + 1477, +20 dB	0.064	0.097	0.13	0.99	0.056	0.14	1

941 + 1477, 0 dB	0.18	0.1	0.13	0.97	0.12	0.057	1.2
941 + 1477, -10 dB	0.2	0.29	0.37	0.6	0.22	0.036	0.59

Frame Shifting

Simulating what happens when frame synchronization is not perfect.

No AWGN, for now.

Left to right: Shifted -25 %, -18.75 %, -12.5 %, -6.25 %, 0 %, 6.25 %, 12.5 %, 18.75 %, 25%.

All magnitudes have been normalized.

Frame Shifting + AWGN

Combining both frame shifting and Additive White Gaussian Noise.

AWGN setting: 0 dB Signal-to-Noise ratio (SNR).

Left to right: Shifted -25 %, -18.75 %, -12.5 %, -6.25 %, 0 %, 6.25 %, 12.5 %, 18.75 %, 25%.

All magnitudes have been normalized using the scaling factors that were calculated using pure/ideal tone (no AWGN + shifting) inputs.

Input Signal	g(697)	g(770)	g(852)	g(941)	g(1209)	g(1336)	g(1477)
697 + 1209, shifted by -25%	0.83	0.17	0.18	0.057	0.82	0.033	0.2
697 + 1209, shifted by -18.75%	0.75	0.14	0.18	0.18	0.83	0.16	0.095
697 + 1209, shifted by -12.5%	0.91	0.081	0.051	0.054	0.83	0.07	0.11
697 + 1209, shifted by -6.25%	0.91	0.31	0.13	0.12	0.85	0.15	0.21
697 + 1209, shifted by 0%	0.96	0.23	0.15	0.073	0.77	0.2	0.21
697 + 1209, shifted by 6.25%	0.94	0.084	0.054	0.13	0.81	0.058	0.1
697 + 1209, shifted by 12.5%	0.77	0.15	0.16	0.023	0.84	0.22	0.24
697 + 1209, shifted by 18.75%	0.8	0.12	0.16	0.3	0.82	0.15	0.16

_		_	_	_	_	_	_
697 + 1209, shifted by 25%	0.78	0.073	0.035	0.11	0.71	0.21	0.091

Input Signal	g(697)	g(770)	g(852)	g(941)	g(1209)	g(1336)	g(1477)
697 + 1336, shifted by -25%	0.86	0.43	0.18	0.098	0.14	0.86	0.24
697 + 1336, shifted by -18.75%	0.73	0.58	0.073	0.063	0.055	1.1	0.091
697 + 1336, shifted by -12.5%	0.87	0.22	0.13	0.15	0.2	1.1	0.34
697 + 1336, shifted by -6.25%	0.98	0.28	0.059	0.043	0.24	1.1	0.096
697 + 1336, shifted by 0%	1	0.025	0.08	0.074	0.11	0.96	0.24
697 + 1336, shifted by 6.25%	0.94	0.13	0.098	0.18	0.24	0.92	0.16
697 + 1336, shifted by 12.5%	0.87	0.2	0.28	0.13	0.3	1.1	0.1

697 + 1336, shifted by 18.75%	0.8	0.31	0.23	0.062	0.11	0.85	0.077
697 + 1336, shifted by 25%	0.81	0.32	0.14	0.053	0.13	0.99	0.19

Input Signal	g(697)	g(770)	g(852)	g(941)	g(1209)	g(1336)	g(1477)
697 + 1477, shifted by -25%	0.74	0.21	0.054	0.2	0.23	0.2	0.93
697 + 1477, shifted by -18.75%	0.75	0.27	0.12	0.17	0.099	0.25	0.9
697 + 1477, shifted by -12.5%	1.1	0.22	0.1	0.15	0.13	0.15	0.96
697 + 1477, shifted by -6.25%	0.94	0.14	0.073	0.1	0.16	0.075	1
697 + 1477, shifted by 0%	0.97	0.3	0.084	0.12	0.082	0.049	0.95
697 + 1477, shifted by 6.25%	0.95	0.22	0.11	0.057	0.053	0.18	0.91

697 + 1477, shifted by 12.5%	0.96	0.13	0.099	0.16	0.1	0.18	0.98
697 + 1477, shifted by 18.75%	1	0.34	0.13	0.077	0.11	0.16	0.89
697 + 1477, shifted by 25%	0.6	0.2	0.087	0.22	0.083	0.087	0.86

Input Signal	g(697)	g(770)	g(852)	g(941)	g(1209)	g(1336)	g(1477)
770 + 1209, shifted by -25%	0.06	0.94	0.14	0.032	0.73	0.06	0.065
770 + 1209, shifted by -18.75%	0.16	0.84	0.28	0.033	0.77	0.12	0.1
770 + 1209, shifted by -12.5%	0.19	0.98	0.1	0.1	1	0.11	0.19
770 + 1209, shifted by -6.25%	0.17	0.73	0.25	0.15	0.89	0.15	0.19
770 + 1209, shifted by 0%	0.1	1.1	0.24	0.11	0.94	0.24	0.17

770 + 1209, shifted by 6.25%	0.25	0.92	0.085	0.13	0.98	0.14	0.28
770 + 1209, shifted by 12.5%	0.081	0.86	0.11	0.18	0.74	0.29	0.061
770 + 1209, shifted by 18.75%	0.15	0.92	0.09	0.11	0.83	0.13	0.22
770 + 1209, shifted by 25%	0.14	0.63	0.22	0.057	0.67	0.34	0.064

Input Signal	g(697)	g(770)	g(852)	g(941)	g(1209)	g(1336)	g(1477)
770 + 1336, shifted by -25%	0.17	0.78	0.3	0.22	0.29	0.72	0.16
770 + 1336, shifted by -18.75%	0.13	0.73	0.18	0.079	0.096	0.89	0.095
770 + 1336, shifted by -12.5%	0.15	0.8	0.19	0.042	0.048	0.67	0.1
770 + 1336, shifted by -6.25%	0.32	0.73	0.22	0.13	0.21	1.1	0.18

770 + 1336, shifted by 0%	0.19	1.1	0.33	0.18	0.061	1.1	0.18
770 + 1336, shifted by 6.25%	0.27	1.3	0.091	0.089	0.19	0.96	0.07
770 + 1336, shifted by 12.5%	0.2	0.99	0.09	0.061	0.23	1.1	0.054
770 + 1336, shifted by 18.75%	0.062	1	0.16	0.069	0.12	0.93	0.13
770 + 1336, shifted by 25%	0.14	0.88	0.062	0.12	0.14	0.88	0.21

Input Signal	g(697)	g(770)	g(852)	g(941)	g(1209)	g(1336)	g(1477)
770 + 1477, shifted by -25%	0.25	0.84	0.16	0.083	0.13	0.097	0.93
770 + 1477, shifted by -18.75%	0.16	0.89	0.1	0.075	0.22	0.22	0.79
770 + 1477, shifted by -12.5%	0.37	1.1	0.32	0.23	0.13	0.07	1.3

770 + 1477, shifted by -6.25%	0.18	1.1	0.22	0.12	0.1	0.14	0.89
770 + 1477, shifted by 0%	0.33	0.92	0.21	0.12	0.019	0.19	0.93
770 + 1477, shifted by 6.25%	0.18	1.1	0.17	0.14	0.073	0.022	0.93
770 + 1477, shifted by 12.5%	0.18	0.95	0.12	0.13	0.19	0.096	0.84
770 + 1477, shifted by 18.75%	0.07	1.1	0.18	0.19	0.11	0.15	1.1
770 + 1477, shifted by 25%	0.12	0.8	0.21	0.12	0.071	0.21	0.82

Input Signal	g(697)	g(770)	g(852)	g(941)	g(1209)	g(1336)	g(1477)
852 + 1209, shifted by -25%	0.077	0.3	0.76	0.1	0.76	0.1	0.18
852 + 1209, shifted by -18.75%	0.13	0.095	0.83	0.14	0.77	0.11	0.12

852 + 1209, shifted by -12.5%	0.083	0.12	0.96	0.17	0.82	0.06	0.12
852 + 1209, shifted by -6.25%	0.14	0.21	0.91	0.11	0.86	0.12	0.2
852 + 1209, shifted by 0%	0.04	0.072	1	0.089	0.95	0.27	0.15
852 + 1209, shifted by 6.25%	0.11	0.28	0.88	0.25	0.83	0.21	0.33
852 + 1209, shifted by 12.5%	0.11	0.37	0.84	0.15	0.81	0.15	0.038
852 + 1209, shifted by 18.75%	0.16	0.055	0.78	0.026	0.69	0.091	0.31
852 + 1209, shifted by 25%	0.28	0.39	0.92	0.059	0.65	0.21	0.17

Input Signal	g(697)	g(770)	g(852)	g(941)	g(1209)	g(1336)	g(1477)
852 + 1336, shifted by -25%	0.15	0.3	0.8	0.17	0.11	0.93	0.35

852 + 1336, shifted by -18.75%	0.1	0.46	0.88	0.08	0.15	1	0.23
852 + 1336, shifted by -12.5%	0.18	0.3	0.78	0.18	0.14	0.96	0.062
852 + 1336, shifted by -6.25%	0.073	0.056	0.98	0.16	0.068	1.1	0.11
852 + 1336, shifted by 0%	0.11	0.27	0.97	0.11	0.072	1	0.076
852 + 1336, shifted by 6.25%	0.064	0.049	0.8	0.27	0.29	1	0.17
852 + 1336, shifted by 12.5%	0.32	0.29	0.92	0.19	0.16	0.86	0.24
852 + 1336, shifted by 18.75%	0.15	0.15	0.77	0.17	0.044	0.84	0.36
852 + 1336, shifted by 25%	0.3	0.32	0.76	0.14	0.049	0.97	0.23

852 + 1477, shifted by -25%	0.26	0.18	0.77	0.28	0.19	0.13	1
852 + 1477, shifted by -18.75%	0.021	0.064	0.79	0.063	0.092	0.18	1.1
852 + 1477, shifted by -12.5%	0.22	0.15	0.94	0.18	0.078	0.2	1.1
852 + 1477, shifted by -6.25%	0.16	0.19	0.87	0.13	0.031	0.2	1.1
852 + 1477, shifted by 0%	0.17	0.027	0.97	0.14	0.074	0.23	1
852 + 1477, shifted by 6.25%	0.099	0.24	1.1	0.055	0.11	0.21	1.1
852 + 1477, shifted by 12.5%	0.17	0.053	0.79	0.18	0.24	0.042	1.2
852 + 1477, shifted by 18.75%	0.32	0.34	0.84	0.13	0.038	0.06	1.2
852 + 1477, shifted by 25%	0.1	0.12	0.73	0.19	0.13	0.13	0.63

Input Signal	g(697)	g(770)	g(852)	g(941)	g(1209)	g(1336)	g(1477)
941 + 1209, shifted by -25%	0.07	0.23	0.11	0.82	0.9	0.071	0.028
941 + 1209, shifted by -18.75%	0.028	0.32	0.28	0.86	0.81	0.19	0.42
941 + 1209, shifted by -12.5%	0.11	0.2	0.27	1	0.71	0.27	0.37
941 + 1209, shifted by -6.25%	0.13	0.17	0.084	0.98	0.95	0.064	0.11
941 + 1209, shifted by 0%	0.19	0.19	0.047	0.89	1.1	0.061	0.18
941 + 1209, shifted by 6.25%	0.2	0.092	0.058	0.91	0.76	0.21	0.25
941 + 1209, shifted by 12.5%	0.24	0.23	0.083	0.86	0.86	0.17	0.046
941 + 1209, shifted by 18.75%	0.2	0.098	0.33	0.84	1	0.32	0.079
941 + 1209, shifted by 25%	0.13	0.13	0.12	0.86	0.64	0.061	0.18

Input Signal	g(697)	g(770)	g(852)	g(941)	g(1209)	g(1336)	g(1477)
941 + 1336, shifted by -25%	0.16	0.12	0.26	0.69	0.054	0.84	0.23
941 + 1336, shifted by -18.75%	0.051	0.14	0.13	0.77	0.17	0.97	0.0085
941 + 1336, shifted by -12.5%	0.15	0.19	0.21	0.86	0.12	0.79	0.13
941 + 1336, shifted by -6.25%	0.16	0.19	0.065	0.82	0.1	0.99	0.064
941 + 1336, shifted by 0%	0.067	0.077	0.11	1.1	0.2	1	0.17
941 + 1336, shifted by 6.25%	0.15	0.28	0.31	0.8	0.074	0.78	0.063
941 + 1336, shifted by 12.5%	0.12	0.14	0.24	0.7	0.13	1	0.046
941 + 1336, shifted by 18.75%	0.14	0.12	0.13	0.76	0.1	0.72	0.21
941 + 1336, shifted by 25%	0.077	0.081	0.24	0.95	0.13	0.9	0.34

Т

Т

Input Signal	g(697)	g(770)	g(852)	g(941)	g(1209)	g(1336)	g(1477)
941 + 1477, shifted by -25%	0.13	0.099	0.2	0.7	0.1	0.18	0.81
941 + 1477, shifted by -18.75%	0.22	0.18	0.39	0.66	0.23	0.13	1
941 + 1477, shifted by -12.5%	0.099	0.18	0.18	0.84	0.15	0.31	1
941 + 1477, shifted by -6.25%	0.1	0.049	0.24	1.1	0.12	0.1	0.95
941 + 1477, shifted by 0%	0.14	0.21	0.13	1.1	0.05	0.21	1
941 + 1477, shifted by 6.25%	0.1	0.3	0.26	0.84	0.075	0.053	1.2
941 + 1477, shifted by 12.5%	0.075	0.22	0.3	0.79	0.15	0.14	1.1
941 + 1477, shifted by 18.75%	0.11	0.17	0.078	0.89	0.084	0.28	1.1
941 + 1477, shifted by 25%	0.29	0.39	0.081	0.85	0.075	0.1	0.91