

CPO: Change Robust Panorama to Point Cloud Localization

Junho Kim, Hojun Jang, Changwoon Choi and Young Min Kim Dept. of Electrical and Computer Engineering, Seoul National University, Korea.

1. Scene Changes in Visual Localization

- CPO is a localization algorithm that can robustly handle large amo unts of scene changes.
- ✓ CPO finds the camera pose from a panorama and point cloud
- CPO does not involve learning and is thus usable off-the-shelf
- While panoramas provide a large field of view, drastic scene chan ges can make localization challenging.

2. Overview of CPO Input: Query Panorama Image & Colored Point Cloud 2D, 3D Score Maps for attenuating scene changes Candidate pose selection guided by 2D score maps Pose Refinement with 3D score maps & gradient descent

✓ CPO creates 2D, 3D score maps to attenuate regions with changes.

Output: 6DoF Camera Pose

Using the score maps, CPO selects candidate poses and refines the poses using gradient descent optimization.

Candidate Pose

Pose Refinement

3. 2D and 3D Score Maps

- **2D score maps** are built from histogram intersections with synthetic views.
- **3D score maps** are created by back-projecting the histogram intersections. ■

4. Localization using Score Maps

- Candidate pose selection uses the 2D score map to weigh patch-wise histogram intersections during ranking.
- Pose refinement uses the 3D score map to weigh 3D points while minimizing sampling loss for each selected pose.

5. Experimental Results

