Aluno(a.)	•
1110110	\sim	

Primeira Avaliação (Valor: 10,0)

- 1. [Valor: 2,0] Dado um grafo G = (V, E), responda as seguintes questões sobre Árvores Geradoras Mínimas:
 - (a) [Valor: 1,0] Suponha que $T \subset E$ é uma árvore geradora tal que cada aresta $(u,v) \in T$ pertence a alguma árvore geradora de custo mínimo de G. Podemos concluir que T é uma árvore geradora de custo mínimo de G? Prove este resultado ou dê um contra-exemplo.
 - (b) [Valor: 1,0] Os algoritmos de DIJKSTRA e PRIM são muito parecidos estruturalmente. Como DIJKSTRA devolve uma árvore de caminhos mínimos a partir de um vértice s, muitos questionam se não seria correto afirmar que "aplicando DIJKSTRA a partir de cada um dos vértices do grafo, certamente alguma destas árvores geradas será uma árvore geradora mínima." Desmistifique esta sandice, isto é, mostre que existe um grafo G tal que, aplicando DIJKSTRA a partir de qualquer vértice, a árvore de caminhos mínimos é diferente da árvore geradora mínima de G.
- 2. [Valor: 2,0] Considerando o grafo da Figura 1a e o Problema do Carteiro Chinês (partir de um vértice inicial, percorrer todas as arestas do grafo ao menos uma vez e voltar ao vértice inicial com o menor custo possível), responda qual o custo total do percurso e a sequência usada. Explique como você chegou à resposta.
- 3. [Valor: 1,0] Sabe-se que um grafo G=(V,E) com |V| vértices ($|V| \ge 3$) é Hamiltoniano se, para cada par de vértice não adjacentes, a soma de seus graus é maior ou igual a |V| (Teorema de Ore, 1960). Este teorema fornece uma condição suficiente. No entanto, mostre que não é uma condição necessária.
- 4. [Valor: 3,0] Para a rede de fluxo da Figura 1b, responda:
 - (a) [Valor: 1,5] Qual fluxo máximo que podemos passar nesta rede? Desenhe o grafo residual da última iteração do algoritmo de FORD-FULKERSON.
 - (b) [Valor: 1,5] Informe quais vértices fazem parte de S, tal que o corte (S,T) é mínimo. Descreva um algoritmo para encontrá-los.
- 5. [Valor: 2,0] Assinale (V)erdadeiro ou (F)also.
 - (a) \square V \square F Em um grafo planar todas as arestas compartilham duas faces.
 - (b) \Box V \Box F Em um grafo planar, a remoção de uma aresta pertencente a um ciclo faz com que o número total de faces diminua uma unidade.
 - (c) \square V \square F Podemos mostrar que um grafo G é planar se aplicarmos operações de contração e remoção de arestas em G para se obter um grafo minor G'. Se este grafo minor G' for planar, então pelo teorema de Wagner sabemos que o grafo G também é planar.
 - (d) \square V \square F Se G é uma floresta, então duas cores são suficientes para colorir G.
 - (e) \Box V \Box F Se G contém ciclos, então pelo menos três cores são necessárias para se colorir G.

Figura 1: Grafos dos Exercícios 2 e 4.