1 Lecture Review

1.1 Lengths and Dot Products

1. Let $v = (v_1, \ldots, v_n)$ and $w = (w_1, \ldots, w_n)$. The dot product of v and w is

$$v \cdot w = \sum_{i=1}^{n} v_i w_i = v^T w = w^T v.$$

2. The length of a vector $v = (v_1, \ldots, v_n)$ is

$$||v|| = \sqrt{v_1^2 + \dots + v_n^2} = \sqrt{v \cdot v} = \sqrt{v^T v}.$$

1.2 QR Decomposition

- 1. If $m \ge n$, a real $m \times n$ square matrix A may be factored into the form A = QR where Q is $m \times n$ satisfying $Q^TQ = I$ and R is $n \times n$ upper triangular.
- 2. Given $b \in \mathbb{R}^n$, it is possible that Ax = b has no solution. However, $x = R^{-1}Q^Tb$ is the "closest" to a solution in the sense that it minimizes ||Ax b||.

$\mathbf{2}$ Problems

- 1. True or False. If false, give an example.
 - (a) If Q is square and orthogonal then Q^T is square and orthogonal.
 - (b) If Q is $m \times n$ with $Q^T Q = I$, then $QQ^T = I$.
 - (c) If $Q^TQ = I = QQ^T$, then Q is square.
 - (d) If $Ax_1 = y_1$ and $Ax_2 = y_2$, then $A(x_1 x_2) = (y_1 y_2)$ where $(x_1 x_2)$ is the matrix with column vectors x_1, x_2 and likewise for $(y_1 \ y_2)$.
- 2. Let Q be an orthogonal matrix with column vectors q_1, \ldots, q_n . Show that $||q_i|| = 1$ and $q_i \cdot q_j = 0$ if $i \neq j$. Then check that this the case for the rotation matrix

$$\begin{pmatrix} \cos \theta & -\sin \theta \\ \sin \theta & \cos \theta \end{pmatrix}.$$

3. Let

$$A = \begin{pmatrix} 0 & 3 \\ 2 & 4 \\ 0 & 4 \end{pmatrix}.$$

(a) Suppose we want the QR decomposition for A and we are given that

$$Q = \begin{pmatrix} 0 & 3/5 \\ 1 & 0 \\ 0 & 4/5 \end{pmatrix}.$$

What condition should we check that Q satisfies?

- (b) Solve for R so that A = QR.
- (c) Show that there is no solution to

$$Ax = \begin{pmatrix} 1 \\ 0 \\ 1 \end{pmatrix}$$

- (d) Find the best fit x which solves the equation above; i.e. the solution which minimizes $||Ax \begin{pmatrix} 1 \\ 0 \end{pmatrix}||$.
- 4. Let A be an $m \times n$ with m < n and $b \in \mathbb{R}^n$. Use QR decomposition to find $x \in \mathbb{R}^m$ which best fits the equation

$$x^T A = b^T$$
:

i.e. find x which minimizes $(x^TA - b^T)(x^TA - b^T)^T$. Hint: Which matrix should be QR factored?

3 Answers

1. (a) True, (b) False
$$Q = \begin{pmatrix} 1 \\ 0 \end{pmatrix}$$
, (c) True, (d) True 3. (a) $Q^T Q = I$, (b) $\begin{pmatrix} 2 & 4 \\ 0 & 5 \end{pmatrix}$, (c) -, (d) $\begin{pmatrix} -14/25 \\ 7/25 \end{pmatrix}$

2. -