= UFC =

- Universidade Federal do Ceará
 - ENGENHARIA DA COMPUTAÇÃO -
 - CAMPUS DA UFC SOBRAL -

DISCIPLINA: PROGRAMAÇÃO COMPUTACIONAL	
PROFESSOR: Fernando Rodrigues de Almeida Júnior	
ALLING	

MATRÍCULA: ______ DATA: ___/__/2023

LISTA DE EXERCÍCIOS 01

- 1. Cite alguns problemas que o uso de válvulas provocava nos computadores de 1ª geração.
- 2. O que diferencia os computadores de 1ª geração dos da 2ª geração?
- 3. Quais eram as unidades de entrada e saída existentes na 1ª e 2ª geração de computadores?
- 4. Em relação a ordem cronológica, marque a alternativa correta:
 - a) Ábaco, Eniac, Chip, Transistor e Microprocessador
 - b) Eniac, Ábaco, Chip, Transistor e Microprocessador
 - c) Ábaco, Eniac, Chip, Microprocessador e Transistor
 - d) Ábaco, Eniac, Transistor, Chip e Microprocessador
- 5. Porque os computadores da 2º geração conseguiram ser vendidos em escala comercial?
- 6. Cite características que marcaram a evolução dos computadores.
- 7. O que contribui para que os computadores, na sua evolução, sejam significativamente menores que seus antecessores?
- 8. Cite as principais diferenças entre os computadores da 3ª e da 4ª geração.
- 9. Como você imagina que será a próxima geração de computadores?
- 10. É possível construir computadores que pensem? Porque sim ou porque não??
- 11. Realize as seguintes conversões entre sistemas em diferentes bases numéricas, mostrando como é feito o processo de conversão, passo a passo:
 - a) Converta os seguintes números binários para decimal:
 - i. 10110₂
 - ii. 1111011₂
 - iii. 10001101₂
 - b) Converta os seguintes números decimais para binário:
 - i. 25₁₀
 - ii. 375_{10}
 - iii. 791₁₀
 - c) Converta os seguintes números em octal para decimal:
 - i. 10₈
 - ii. 511_8
 - iii. 630₈

- d) Converta os seguintes números em decimal para octal:
 - i. 11_{10}
 - ii. 252₁₀
 - iii. 353₁₀
- e) Converta os seguintes números em hexadecimal para decimal:
 - i. 32₁₆
 - ii. $A30_{16}$
 - iii. 7E2F₁₆
- f) Converta os seguintes números em decimal para hexadecimal:
 - i. 28₁₀
 - ii. 512₁₀
 - iii. 2354₁₀
- 12. Realize as seguintes conversões de números fracionários entre os sistemas decimal e binário:
 - a) $(1001,1101)_2 = (?)_{10}$
 - b) $(11111,001)_2 = (?)_{10}$
 - c) $(176,25)_{10} = (?)_2$
 - d) $(7,4)_{10} = (?)_2$
 - e) $(8,7)_{10} = (?)_2$
- 13. Converta os seguintes números dados no sistema decimal para o sistema binário na representação de complemento a 2, usando 1 bit de sinal e 5 bits de magnitude e realize as operações binárias de adição:
 - a) (+25) + (+5)
 - b) (+12) + (-7)
 - c) (+10) + (-25)
 - d) (-15) + (-10)
 - e) (-8) (+7)
- 14. Realize as seguintes operações binárias:
 - a) 0011 0000 0101₂ + 0111 0011 0001₂
 - b) 0100 1000 0111 1001₂ 0001 1000 1000 1001₂
 - c) 1111₂ x 1110₂ x
 - d) $10011_2 / 1010_2$