ECE260B Winter 22 Synthesis

Prof. Mingu Kang

UCSD Computer Engineering

Announcement

- Resuming In-person lecture next week.
 - All the lecture will be recorded and will be posted right after class
 - Office hours will be still in remote

- Discussion tab etiquette
 - Describe the title in detail, e.g., good: "missing nmos / pmos in hspice sim", vs. bad: "HW1 Q2"
 - Before posting a question
 - 1. Please see previous discussion thread first
 - 2. Please watch demonstration video + homework explanation video during class

Synthesis

```
aes_rcon.v (~/cs241data/design/aes_cipher_top/rtl) - G
File Edit Tools Syntax Buffers Window Help
timescale 1ns / 10ps
module aes rcon(clk, kld, out);
input
                clk;
input
                kld:
output [31:0] out;
        [31:0] out;
reg
reg
        [3:0]
               rcnt;
wire
        [3:0]
               rcnt next;
always @(posedge clk)
        if(kld)
                        out <= #1 32'h01 00 00 00;
        else
                        out <= #1 frcon(rcnt next);
assign rcnt next = rcnt + 4'h1;
always @(posedge clk)
        if(kld)
                        rcnt <= #1 4'h0;
        else
                        rcnt <= #1 rcnt next;
function [31:0] frcon;
input [3:0] i;
case(i) // synopsys parallel case
  4'h0: frcon=32'h01 00 00 00;
4'h1: frcon=32'h02 00 00 00;
```


synthesis

```
aes_cipher_top.out.v (~/lab2/run0) - GVIM4
File Edit Tools Syntax Buffers Window Help
// Created by: Synopsys DC Ultra(TM) in wire load mode
// Version : K-2015.06-SP2
// Date
           : Wed Dec 15 12:51:16 2021
module aes rcon ( clk, kld, out );
 output [31:0] out;
 input clk, kld:
 wire n Logic0 , N71, N72, N73, N74, N75, N78, n1, n2, n3, n5, n15, n18,
        n19, n4, n6, n7, n8, n9, n10, n11, n12, n13, n14;
 wire [3:0] rcnt;
 DFQD1 out reg 23 (
                   .D(n Logic0 ), .CP(clk), .Q(out[23]) );
 DFQD1 out reg 22 (
                   .D(n Logic0 ), .CP(clk), .Q(out[22]) );
                   .D(n Logic0), .CP(clk), .Q(out[21]));
 DFQD1 out reg 21 (
 DFQD1 out reg 20 (
                   .D(n Logic0), .CP(clk), .Q(out[20]));
 DFQD1 out reg 19 (
                   .D(n Logic0), .CP(clk), .Q(out[19]));
 DFQD1 out reg 18 (
                   .D(n Logic0 ), .CP(clk), .Q(out[18]) );
 DFQD1 out reg 17
                    .D(n Logic0), .CP(clk), .Q(out[17]));
 DFQD1 out reg 16 (
                   .D(n Logic0), .CP(clk), .Q(out[16]));
 DEOD1 out red 15 ( D(n \text{ Logica}) CP(clk) O(out[15])
```

gate-level netlist

behavioral code (RTL description)

Synthesis: generating gate-level netlist by using STD cells

Commercial Synthesis Tools

- Synopsys Design Compiler (DC): will be used in this class
- Cadence Genus
- TCL script: provides the RTL code and libs for synthesis tool

Example of run_dc.tcl

```
run_dc.tcl (~/lab2/run0) - GVIM
                                                                                                 set top module aes cipher top
set rtlPath "/home/linux/ieng6/ee260bwi22/ee260bwi22/cs241data/design/aes cipher top/rtl"
# Target library
set target library /home/linux/ieng6/ee260bwi22/ee260bwi22/cs241data/libraries/db/tcbn65gpluswc.db
set link library $target library
set symbol library {}
set wire load mode enclosed
set timing use enhanced capacitance modeling true
set search path [concat $rtlPath $search path]
set link library [concat * $link library ]
set synthetic library {}
set link path [concat $link library $synthetic library]
set dont use cells 1
set dont use cell list ""
remove design -all
```

- 1) top module name for RTL
- 2) RTL path
- 3) Technology library (db file, this is the same contents with lib file)

Example of Library Files

- tcbn65gpluswc.lib (or .db): worst corner (0.9V 125°C)
- tcbn65gplustc.lib (or .db): typical corner (1V 25°C)
- tcbn65gplusbc.lib (or .db): best corner (1.1V 0°C)

- Can combine both for setup (w/ worst case lib) and hold time (w/ best case lib) analysis together
 - set_operating_conditions -max my_WORST_lib -max_library tcbn65gpluswc.lib

-min my_BEST_lib -min_library tcbn65gplusbc.lib

Example of run_dc.tcl

```
run_dc.tcl (~/lab2/run0) (2 of 2) - GVIM
   Edit Tools Syntax Buffers Window Help
       # read RTL
analyze -format verilog -lib WORK aes cipher top.v
analyze -format verilog -lib WORK aes key expand 128.v
analyze -format verilog -lib WORK aes rcon.v
analyze -format verilog -lib WORK aes sbox.v
analyze -format verilog -lib WORK timescale.v
elaborate $top module -lib WORK -update
current design $top module
```

- 4) RTL list
- 5) estimated output capacitance (unit: pF)

```
le Edit Tools Syntax Buffers Window Help

| Set_load 0.050 $p
```

Example of run_dc.tcl

```
# Write Reports up to three characters can be included, each word is separated by "/"

7) redirect [format "%s%s%s" log/ $top_module _area.rep] { report_area }

8) redirect -append [format "%s%s%s" log/ $top_module _area.rep] { report_reference }

9) redirect [format "%s%s%s" log/ $top_module _power.rep] { report_power }

10) redirect [format "%s%s%s" log/ $top_module _timing.rep] \
```

- 6) output gate netlist
- 7) area report
- 8) type of STD cells used (-append: add on the previous report)
- 9) power report
- 10) timing report

Other Options in run_dc.tcl

- "set_driving_cell -lib cell BUFFD8 -pin Z [all inputs]"
 - Assume that all of your inputs are driven by BUFFD8 cell
- "ungroup -flatten -all
 - RTL will be fully flattened for optimization
 - In a big system design, it can be slow compared to hierarchical synthesis
- "compile_ultra -no_autoungroup"
 - RTL hierarchy is maintained
 - Might be less optimized than flattened design
- set_false_path -from [get_ports "reset"]
 - Exclude reset path from the timing calculation

sdc file

```
aes_cipher_top.sdc (~/lab2/run0) - GVIM1
File Edit Tools Syntax Buffers Window Help
       set clock cycle 1.2
                  period in ns
set io delay 0.2
                  input delay, i.e., delay from clock rising edge to the delivered moment at the input pin
set clock port clk
create clock -name clk -period $clock cycle [get ports $clock port]
set_input_delay -clock [get_clocks clk] -add delay -max $io delay [get_ports {key[52]}]
set input delay -clock [get clocks clk] -add delay -max $io delay [get ports {key[45]}]
set input delay -clock [get clocks clk] -add delay -max $io delay [get ports {key[38]}]
```

- This file can be included inside the run_dc.tcl file
- create_clock: clock from external source through a port
- create_generated_clock: clock generated internally
 - e.g., create_generated_clock -name my_clk_div2 -source \$clk_port -divide_by 4 [get_pins CLK_SLOW_reg/Q]

Alternative Option for Input / Output Delay

```
set_input_delay $io_delay -clock $clock_port [all_inputs]
set_output_delay $io_delay -clock $clock_port [all_outputs]
```

set up all the inputs' and outputs' delay together as shown above

Cases of Delay Paths

- Startpoint
 - Input port (except a clock port)
- Clock pin of flip-flop

- Endpoint
 - Output port

- Any input pin (D) of a flip-flop

Cases of Delay Paths

- Path 1: Starts from an input port and ends in an input pin of flip-flop.
- Path 2: Starts from a clock pin of flip-flop and ends in an input pin of flip-flop.
- Path 3: Starts from a clock pin of flip-flop and ends in an output port.
- Path 4: Starts from an input port and ends in an output port.

set_input_delay

https://vlsitutorials.com/constraining-timing-paths-in-synthesis-part-1/

- set_input_delay -max 1.5 -clock CLK [get_ports Input1]
- This time is reserved for the input signal delivered to the input of current block
- Thus, "clock_period input_delay" is assigned for the for combo logic-1

set_output_delay

https://vlsitutorials.com/constraining-timing-paths-in-synthesis-part-1/

- set_output_delay -max 1.5 -clock CLK [get_ports Output1]
- This time is reserved for the output signal delivered to the next block's input of flip flop
- Thus, the last logic part has only "clock_period output_delay"

Design with Only Combinational Logics

virtual clock

- create_clock -name VCLK -period 5
- set_input_delay -max 2 -clock VCLK [get_ports Input2]
- set_output_delay -max 2.5 -clock VCLK [get_ports Output2]

Clock Uncertainty

https://vlsi.pro/clock-jitter/

Clock skew

http://electronicsgurukulam.blogspot.com/2012/11/clock-skew-and-jitter-in-digital.html?m=1

- set_clock_uncertainty T_{uncertain} [get_clocks <clock>]
 - To consider clock slew and jitter

Excuting run_dc.tcl

- type "dc_shell"
- <command> –help in the dc_shell to see manual for each <command>
- type "source run_dc.tcl"
- or "source run_dc.tcl > out.log" to save your output messages
- type "exit" to close dc_shell

Tip: Grep Errors

- grep "ERROR|Error|error" log_filename > error.log
- grep "WARN|Warn|warn" log_filename > warning.log
- Type "[command] –help" to get some manual

aes_cipher_top.out.v

```
aes_cipher_top.out.v (~/lab2/run_bc) - GVIM4
Edit Tools Syntax Buffers Window Help
              ( .A1(n328), .A2(n327), .A3(n326), .A4(n325), .ZN(n329) );
  NR4D0 U361 ( .A1(n340), .A2(n339), .A3(n338), .A4(n337), .ZN(n343) );
endmodule
module aes cipher top ( clk, rst, ld, done, key, text in, text out, SE, SI, SO
  input [127:0] key;
  input [127:0] text in;
  output [127:0] text out;
  input clk, rst, ld, SE, SI;
  output done, SO;
  wire N14, N15, N16, N17, N18, N23, ld r, N34, N35, N36, N37, N38, N39, N40,
         N41, N50, N51, N52, N53, N54, N55, N56, N57, N66, N67, N68, N69, N70,
         N71, N72, N73, N82, N83, N84, N85, N86, N87, N88, N89, N98, N99, N100,
         N101, N102, N103, N104, N105, N114, N115, N116, N117, N118, N119,
         N120, N121, N130, N131, N132, N133, N134, N135, N136, N137, N146,
```

Unflattened out v file

- many other modules are included

flattened out v file

- only top module is included

Power Report

- Internal power:
 - dynamic power inside cells (gates)
- Switching power:
 - dynamic power from outside cells,e.g., wire load

Power Group	Internal Power	Switching Power	Leakage Power	Total Power (%)	Attrs
io_pad memory black_box clock_network register sequential combinational	0.0000 0.0000 0.0000 0.0000 3.8463 0.0000 1.8390	0.0000 0.0000 0.0000 0.0000 1.1770 0.0000 1.2540	0.0000 0.0000 0.0000 0.0000 3.6722e+04 0.0000 1.5051e+05	0.0000 (0.0000 (0.0000 (0.0000 (5.0600 (0.0000 (3.2434 (0. 0. 0. 60.	00%) 00%) 00%) 00%) 94%) 00%)	
Total	5.6852 mW	2.4309 mW	1.8723e+05 nW	8.3034 mW	ı		

Area Report

```
Number of ports:
                                        391
Number of nets:
                                       1673
Number of cells:
                                       1175
Number of combinational cells:
                                        768
Number of sequential cells:
                                        390
Number of macros/black boxes:
Number of buf/inv:
                                         79
Number of references:
                                         68
Combinational area:
                               20989.440305
Buf/Inv area:
                               1814.400064
Noncombinational area:
                                4443.479995
Macro/Black Box area:
                                   0.000000
Net Interconnect area:
                          undefined (Wire lo
Total cell area:
                               25432.920300
Total area:
                          undefined
************
Report : reference
Design : aes cipher top
Version: I-2013.12-SP1
     : Thu Dec 16 18:57:29 2021
```

Reference	Library	Unit Area	Count	Total Area	Attributes
A0I21D0	tcbn65gpluswc				
AUIZIDO	cebnosgpeaswe	2.160000	1	2.160000	
A0I21D1	tcbn65gpluswc	2 150000		17 200001	
A0I22D0	tcbn65gpluswc	2.160000	8	17.280001	
		2.520000	12	30.240000	
A0I22D1	tcbn65gpluswc	2 520000	20	E0 400000	
A0I221D0	tcbn65gpluswc	2.520000	20	50.400000	
	51	•			
		•			
aes sbox 9		865.440016	1	865.440016	h
aes_sbox_10		394.240017	1	894.240017	h
aes_sbox_11		371.200016	1	871.200016	h
aes_sbox_12		891.000017		891.000017	h
aes_sbox_13		860.400017	1	860.400017	h
aes_sbox_14		861.480017	1	861.480017	h
aes_sbox_15		842.760016	1	842.760016	h
aes_sbox_16		855.360017	1	855.360017	h
aes_sbox_17		856.440016	1	856.440016	h
aes_sbox_18		854.640016	1		h
aes_sbox_19	8	868.320017	1	868.320017	h
Total 68 referenc	es		:	25432.920300	

un-flattened case reports including sub-modules' area

Timing Report (Setup Time)

Startpoint: u0/w reg 3 10

(rising edge-triggered flip-flop clocked by clk) Endpoint: u0/w reg 3 18 (rising edge-triggered flip-flop clocked by clk) Path Group: clk Path Type: max Point Path Fanout Cap Trans Incr clock clk (rise edge) 0.000 0.000 clock network delay (ideal) 0.000 0.000 u0/w reg 3 10 /CP (DFD1) 0.000 0.000 0.000 r u0/w reg 3 10 /Q (DFD1) 0.130 0.130 r 0.164 u0/wo 3 10 (net) 0.130 r 40 0.036 0.000 u0/u1/a 2 (aes sbox 3) 0.000 0.130 r u0/u1/a 2 (net) 0.036 0.000 0.130 r u0/u1/U243/ZN (INVD1) 0.194 f 0.087 0.065 u0/u1/n23 (net) 0.023 26 0.000 0.194 f U1734/Z (CKBD1) 0.677 r 0.010 0.015 0.000 0.677 r n1392 (net) 0.001 sal2 reg 5 /D (DFQD1) 0.010 0.000 0.677 r data arrival time 0.677 clock clk (rise edge) 1.200 1.200 clock network delay (ideal) 0.000 1.200 clock uncertainty -0.120 1.080 sal2 reg 5 /CP (DFQD1) 0.000 1.080 r library setup time -0.012 1.068 data required time 1.068 data required time 1.068 -0.677 data arrival time slack (MET) 0.392

slow path is listed first

delay in your path

Time budget you have

Time slack: should be positive value or 0

Timing Report (Hold Time)

Pin	Edge 	Net 	Cell	Delay	Arrival Time	Required Time
clk	^	clk			0.000	-0.081
CTS ccl a buf 00003/I	^	clk	CKBD16	0.011	0.011	-0.071
CTS ccl a buf 00003/Z	^	CTS 1	CKBD16	0.042	0.053	-0.028
u0/w reg 2 6 /CP	^	CTS 1	DFQD1	0.001	0.054	-0.028
u0/w reg 2 6 /Q	V	w2[6]	DFQD1	0.068	0.122	0.041
U822/A1	V	w2[6]	X0R2D0	0.000	0.122	0.041
U822/Z	V	N489	X0R2D0	0.026	0.148	0.067
text out reg 38 /D	V	N489	DFQD1	0.000	0.148	0.067

Data path: Arrival time should be higher than required time

Clock Rise Edge = Beginpoint Arrival Time Other End Path:	e 	100	900 900			
Pin	Edge 	Net 	Cell	Delay	Arrival Time	Required Time
clk CTS_ccl_a_buf_00003/I CTS_ccl_a_buf_00003/Z	^ ^ ^	clk clk clk CTS_1	CKBD16	 0.011 0.042	0.000 0.011 0.053	0.081 0.092 0.135

CLK path: Arrival time should be smaller than required time

text out reg 38 /CP | ^ | CTS 1 | DFQD1 | 0.001 |

Note: for this sim, clock uncertainty was not included. But, should be included like below

```
Path 1: MET Hold Check with Pin col num[(
Endpoint: col num[0].output fifo instar
leading edge of 'my clk'
Beginpoint: ofifo rd
leading edge of 'my clk'
Path Groups: {my clk}
Analysis View: fastView
Other End Arrival Time
                                 0.124
+ Hold
                                0.003
+ Phase Shift
                                 0.000

    CPPR Adjustment

                                 0.000
+ Uncertainty
                                 0.019
= Required Time
                                 0.146
  Arrival Time
                                0.203
  Slack Time
                                 0.057
```

FYI) Setup Timing Check with Multi-Frequency

- Summary: Tool considers always the worst-case setup scenario as default

HW3

Prob1 (Script given)

- part 1: synthesize aes_cipher_top with typ. Report timing/area/power
- part 2: synthesize with bst corner. Compare timing/area/power
- part 3: change clock period from 1.2 to 1.6ns. Compare timing/area/power

Prob2 (unflatten Script given)

- synthesize mpeg2 with unflatten and flatten options. Compare timing/area/power

Prob3 (Script given)

- Placement aware synthesize for aes_cipher_top. Compare timing/area/power against Prob1's part1

Prob4 (Script not given)

- Synthesize W1/example2 (3-term carry save adder) to maximize the frequency with wc. input & output delay is the same as part1

Q&A

- typo corrected in "set_input_delay" page
- hold time clock uncertainty issue
 Uncertainty is also included in hold time analysis
- how switching power computed ?wiring cap + all TR caps on the output nodes
- async interface timing checked ?
 set_clock_groups -async -group my_clk -group my_WCLK_ML

HW3

Prob1 (Script given)

- part 1: synthesize aes_cipher_top with typ. Report timing/area/power
- part 2: synthesize with bst corner. Compare timing/area/power
- part 3: change clock period from 1.2 to 1.6ns. Compare timing/area/power

Prob2 (unflatten Script given)

- synthesize mpeg2 with unflatten and flatten options. Compare timing/area/power

Prob3 (Script given)

- Placement aware synthesize for aes_cipher_top. Compare timing/area/power against Prob1's part1

Prob4 (Script not given)

- Synthesize W1/example2 (3-term carry save adder) to maximize the frequency with wc. input & output delay is the same as part1