紧空间

定义 1 (开覆盖). 设 X 为拓扑空间,若存在一族开集组成的集族 \mathcal{F} ,使得 $\bigcup_{i \in I} O_i = X$, $O_i \in \mathcal{F}$,则称 \mathcal{F} 为 X 的一个开覆盖.

定义 2 (子覆盖). 设 \mathcal{F} 是 \mathcal{X} 的一个开覆盖,若存在 $\mathcal{F}' \subset \mathcal{F}$,且 \mathcal{F}' 也是 \mathcal{X} 的一个开覆盖,则称 \mathcal{F}' 是 \mathcal{F} 的子覆盖.

定义 3 (紧性). 若拓扑空间 X 的任一开覆盖都包含有限子覆盖,则称 X 为紧的.

下面给出紧空间的若干性质.

定理 1. 紧空间在连续映射下的像仍是紧的.

证明. 不妨设连续映射 $f: X \to Y$ 是满射. 设 \mathcal{F} 是 Y 的一族开覆盖,由连续映射的定义, $\{f^{-1}(O): O \in \mathcal{F}\}$ 是开集, $f^{-1}(O_i)_{i \in I}$ 给出了 X 的一个开覆盖,又 X 是紧的,故开覆盖存在有限子覆盖,记为 $\{f^{-1}(O_i), 1 \leq i \leq k\}$,有 $\bigcup_{i=1}^k f^{-1}(O_i) = X$, $f(X) = \bigcup_{i=1}^k O_i = Y$,于是存在 \mathcal{F} 的有限子覆盖,故 Y 是紧的.

定理 2. 紧空间的任一闭子集仍是紧的.

证明. 设 X 为紧空间, $C \subset X$ 为闭集,则 $X \setminus C$ 为开集,存在 C 的一族开覆盖 $\mathcal{F} = \{O_i : i \in I\}$, $C \subset \bigcup_{i \in I} O_i$,于是 $\bigcup_{i \in I} O_i \cup (X \setminus C)$ 是 X 的一个开覆盖,而 X 是紧的,故存在有限子覆盖 $\{O_i \ (1 \leq i \leq k), \ X \setminus C\}$,于是 $O_i \ (1 \leq i \leq k)$ 是 C 的一族开覆盖,为 \mathcal{F} 的有限子覆盖,故 C 是紧的.

紧空间的任一紧子集却不一定是闭的,有以下结论.

定理 3. Hausdorff 空间的紧子集是闭的.

证明. 设紧集 A 是 Hausdorff 空间 X 的子集,即证 $X \setminus A$ 为开集. 设 $x \notin A$, $z_i \in A$,则对 任意开集 $V_i \ni z_i$,有 $U_i \ni x_i$ 使得 $U_i \cap V_i = \varnothing$,由于 A 为紧集,故存在正整数 k,使得 $A \subset \bigcup_{i=1}^k V_i$,令 $V = \bigcup_{i=1}^k V_i$, $U = \bigcap_{i=1}^k U_i$,则 $U \cap V = \varnothing$,故 $U \cap A = \varnothing$, $U \subset X \setminus A$,于 是 $X \setminus A$ 为开集,A 为闭集.

同胚映射需要保证双射、连续以及逆映射连续,连续双射未必是同胚映射,在从紧空间到 Hausdorff 空间的映射却是成立的.

定理 4. 从紧空间到 Hausdorff 空间的连续双射是同胚映射.

证明. 设 $f: X \to Y$,闭集 $C \subset X$,则由定理2,C 为紧集. 由定理1,f(C) 为紧的,由定理3,f(C) 是闭的,由连续映射等价命题, f^{-1} 连续,故 f 为同胚映射.

定理 5 (Bolzano-Weierstrass). 紧空间的任一无限子集必有至少一个极限点.

证明. 设 X 为紧空间, $S \subset X$ 没有极限点, 下证 S 为有限集.

对任意 $x \in X$, 存在开集 O(x), 满足

$$O(x) \cap S = \begin{cases} \varnothing, & x \notin S, \\ \{x\}, & x \in S, \end{cases}$$

否则 S 有极限点. 取遍 x,可以得到一族 O(x) 构成 X 的开覆盖. 由于 X 是紧的,故开覆盖存在有限子覆盖,有 x_1, \dots, x_k ,使得 $X \subset \bigcup_{i=1}^k O(x_i)$,而 $O(x_i)$ 至多包含 S 中的一个点,于是 S 为有限集.

定理 6 (Heine-Borel). 实数轴上任一闭区间是紧集.

证明. 对任意 $[a,b] \in \mathbb{R}$, 定义它的一族开覆盖 \mathcal{F} . 设 $A \subset [a,b]$, 以如下方式定义.

$$X = \{x \in [a,b] : 存在\mathcal{F}$$
的有限子覆盖包含 $[a,x]\}$.

于是 X 非空 $(a \in X)$ 且有界 $x \le b$,由确界原理,X 有上确界. 设 $s = \sup X$,下证 $s \in X$ 且 s = b.

设 $s \in O \in \mathcal{F}$,由于 O 是开集,故存在 $\varepsilon > 0$, $(s - \varepsilon, s] \subset O$,若 s < b,则有 $(s - \varepsilon, s + \varepsilon) \subset O$. 对任意 $\varepsilon > 0$,有 $s - \varepsilon \in X$,于是 $[a, s - \varepsilon] \subset X$,故 $[a, s - \varepsilon]$ 可被 \mathcal{F} 的有限子覆盖 $\bigcup_{i=1}^k U_i$ 包含,又 $(s - \varepsilon, s] \subset O$,于是 [a, s] 可被 $O \cup \bigcup_{i=1}^k U_i$ 包含,故 $s \in X$.

若 s < b,则 $s + \varepsilon/2 \in (s - \varepsilon, s + \varepsilon) \subset O$,有 $s + \varepsilon/2 \in X$,这与 s 是 X 的上确界矛盾! 于是 s = b.

推论 1. Euclidean 空间上的有界闭集是紧集.

证明. 由两个紧空间的积空间仍为紧空间即得.

定理 7. Euclidean 空间上的紧集是有界闭集.

证明. 设 $A \subset \mathbb{R}^n$,Euclidean 空间显然是 Hausdorff 空间,由定理3,A 是闭集. 构造一列开球 $\{B(0,r_i), r_k = k, k \in \mathbb{Z}^+\}$,是 \mathbb{R}^n 的一个开覆盖,自然是 A 的一个开覆盖. 又 A 是紧集,故该开覆盖存在有限子覆盖,于是 r_i 有限,A 有界.

于是,在 Euclidean 空间中,有界闭集和紧集是等价的.

定理 8. 定义在紧空间上的连续实值函数有界且能达到边界.

证明. 设 $f: X \to \mathbb{R}$,由定理1, $f(X) \subset \mathbb{R}$ 是紧的,由定理7,f(X) 是有界闭集. 又闭集的性质,存在 $x_1, x_2 \in X$, $f(x_1) = \inf f(X)$, $f(x_2) = \sup f(X)$,于是函数有界且能达到边界. \square

定理 9 (Lebesgue 数引理). 设 X 为紧度量空间, \mathcal{F} 为 X 的一个开覆盖,则存在 $\delta > 0$ (称为 Lebesgue 数),使得对任意 $x \in X$,存在 $U \in \mathcal{F}$, $B(x, \delta) \subset U$.

证明. 反证法,设序列 $\{A_n\}$ 是 X 的一列子集,每一项都不包含于 \mathcal{F} 的任一开集中,且序列的直径趋于 0. 对每个 $n \in \mathbb{Z}^+$,存在 $x_n \in A_n$. 对于序列 $\{x_n\}$,要么包含有限个离散的点,存在某点无限重复出现,要么包含无限个点,由于 X 是紧的,故存在极限点.

记无限重复出现的点或极限点为 p,设 $U \in \mathcal{F}$ 是包含 p 的开集,则存在 $\varepsilon > 0$, $B(p,\varepsilon) \subset U$,存在足够大的正整数 N,使得 A_N 的直径小于 $\varepsilon/2$ 且 $x_N \in B(p,\varepsilon/2)$,于是对 $x \in A_N$,有 $d(x_N,p) < \varepsilon/2$, $d(x,x_N) < \varepsilon/2$,于是

$$d(x,p) < d(x,x_N) + d(x_N,p) < \varepsilon.$$

即 $A_N \subset U$, 这与 A_n 的构造假设矛盾!

定义 5 (单点紧化).

定义 4 (局部紧). 若拓扑空间 X 中每一点都有紧的邻域,则称 X 是**局部紧的**.