Содержание

1	Матричная запись квадратичной формы. Изменение матрицы при линейном преобразовании	1
2	Теорема Лагранжа	3
3	Закон инерции квадратичных форм	5
4	Положително определённые квадратичные формы: критерии	7
5	Векторное пространство. Определение, примеры, простешие свойства	8
6	Линейные комбиинации, линейная зависимость	9
7	Конечномерное пространство. Порождающие и линейно независимые системы	11
8	Равносильные определения базиса. Координаты	12
9	Дополнение до базиса. "Спуск" к базису. Количество элементов в разных базисах. Размерность	12
10	Подспространство. Пересечение и сумма подпространтв. Формула Грассмана	13
11	Равносильные определения прямой суммы подпространств	14
12	Матрица перехода между базисами. Связь координат вектора в разных базисах	15
13	Приведение матрицы к трапецевидной	16
14	Ранг матрицы и элементарные преобразования	17
15	Ранг как размерность	18
16	Теорема Кронекера-Капелли	19
17	Матричная запись линейного отображения. Изменение матрицы при замене базиса	19
18	Свойства изоморфизма	2 1
19	Лемма о выделении ядра прямым слагаемым. Размерности ядра и образа линейного отображения	22
20	Каноническая форма матрицы отображения. Образ линейного отображения и ранг матрицы	23
21	Действия над линейными отображениями, матрицы полученных линейных отображений	24
22	Пространство линейных отображений	25

1. Матричная запись квадратичной формы. Изменение матрицы при линейном преобразовании

Определение 1. Квадратичной формой называется однородный многочлен $f = f(x_1, x_2, ..., x_n)$ второй степени от n переменных

Обозначение. Считая, что в форме $f=f(x_1,x_2,...,x_n)$ уже выполнено приведение подобных членов, обозначим коэффициент при x_i^2 через a_{ii} , а коэффициент при $x_ix_j=x_jx_i$ через $2a_{ij}=a_{ij}+a_{ji}=2a_{ji}$, так $(i\neq j)$

ОТР

$$a_{ij} = a_{ji} \tag{1}$$

Обозначение. Для члена, содержащего $x_i x_j$, мы получим следующую симметричную форму записи:

$$2a_{ij}x_ix_j = a_{ij}x_ix_j + a_{ji}x_jx_i$$

Обозначение. Вся квадратичная форма f может быть записана теперь в виде

$$f(x_1, x_2, ..., x_n) = a_{11}x_1^2 + a_{12}x_1x_2 + ... + a_{1n}x_1x_n + a_{21}x_2x_1 + a_{22}x_2^2 + ... + a_{2n}x_2x_n +$$

Определение 2. Составленная из коэффициентов матрица

$$A = \begin{vmatrix} a_{11} & a_{12} & \dots & a_{1n} \\ a_{21} & a_{22} & \dots & a_{2n} \\ \vdots & \vdots & \ddots & \vdots \\ a_{n1} & a_{n2} & \dots & a_{nn} \end{vmatrix}$$

называется матрицей квадратичной формы $f(x_1, x_2, ..., x_n)$

Ввиду условия (1) элементы матрицы A, расположенные симметрично относительно главной диагонали, равны между собой. Следовательно, A' = A

Очевидно, что для любой симметричной матрицы A всегда можно указать такую квадратичную форму, что её матрица совпадает с A. Если две квадратичные формы имеют одну и ту же матрицу, то они могут отличаться друг от друга только обозначениями переменных, и мы можем считать их одинаковыми. Таким образом, квадратичные формы определятся своими матрицами

Замечание. Для квадратичной формы может быть дана компактная матричная запись, а именно, мы можем выражение (2) записать в виде:

Таким образом,

$$f(x_1, x_2, ..., x_n) = X'AX \tag{3}$$

Возьмём квадратичную форму $f(x_1, x_2, ..., x_n)$ и преобразование:

$$x_{1} = c_{11}y_{1} + c_{12}y_{2} + \dots + c_{1n}y_{n}$$

$$x_{2} = c_{21}y_{1} + c_{22}y_{2} + \dots + c_{2n}y_{n}$$

$$\dots$$

$$x_{n} = c_{n1}y_{1} + c_{n2}y_{2} + \dots + c_{nn}y_{n}$$

$$(4)$$

Обозначим через C матрицу преобразования (4), а через X и Y – столбцы из старых и новых переменных соответственно. Преобразование (4) принимает следующую матричную форму:

$$X = CY \tag{5}$$

Будем рассматривать только неособенные линейные преобразования (т. е. будем предполагать, что $|C| \neq 0$). В этом случае для преобразования (5) существует обратное преоразование

$$Y = C^{-1}X \tag{6}$$

Подставив выражения для $x_1, x_2, ..., x_n$ из преобразования (4) в квадратичную форму $f(x_1, x_2, ..., x_n)$, получаем

$$f(x_1, x_2, ..., x_n) = f\left(\sum_{j=1}^n c_{1j}u_j, \sum_{j=1}^n c_{2j}y_j, ..., \sum_{j=1}^n c_{nj}y_j\right)$$

После выполнения всех необходимых действий правая часть превратится, очевидно, в квадратичную форму $g(y_1, y_2, ..., y_n)$ от новых переменных $y_1, y_2, ..., y_n$

Определение 3. Будем говорить в этом случае, что форма $g(y_1, y_2, ..., y_n)$ получена из $f(x_1, x_2, ..., x_n)$ в результате линейного преобразования переменных (4)

Очевидно, если полученную форму $g(y_1, y_2, ..., y_n)$ подвергнуть обратному линейному преобразованию переменных (6), то мы вернёмся к исходной форме $f(x_1, x_2, ..., x_n)$

Теорема 1. Если в квадратичной форме с матрицей A сделано линейное преобразовавние переменных с матрицей C, то полученная квадратичная форма будет иметь матрицу C'AC

Доказательство. Подвергнем форму (3) преобразованию (5). Так как X' = (CY)' = Y'C', то мы получим

$$f = X'AX = Y'C'ACY = g(y_1, y_2, ..., y_n)$$

Рассмотрим квадратную матрицу B := C'AC. Так как B' = (C'AC)' = C'A'C'' = C'AC = B, то матрица B симметрична, а значит, она и является матрицей квадратичной формы g = Y'BY

2. Теорема Лагранжа

Лемма 1. Произведение двух (или нескольких) последовательно выполненных неособенных линейных преобразований переменных является также неособенным преобразованием

Доказательство. Неособенность преобразований X = CY и Y = DZ означает, что матрицы C и D неособенные. Но тогда матрица CD, т. е. матрица линейного преобразования X = C(DZ) = (CD)Z также неособенная

Лемма 2. Если у квадратичной формы $f(y_1,...,y_n)$ имеется хотя бы один ненулевой коэффициент, то надлежацим неособенным линейным преобразованием переменных она может быть преобразована в форму, у которой коэффициент при y_1^2 отличен от нуля

Доказательство.

- Пусть $a_{11} \neq 0$ В этом случае сама форма f обладает требуемым свойством
- Пусть $a_{11}=0$, но при некотором $i\geq 2$ отличен от нуля коэффициент при x_i^2 , т. е. $a_{ii}\neq 0$ В этом случае достаточно изменить нумерацию переменных, т. е. сделать преобразование вида

$$x_1 \coloneqq y_i, \qquad x_i \coloneqq y_1, \qquad x_k \coloneqq y_k \quad \text{при } \begin{cases} k \neq 1 \\ k \neq i \end{cases}$$

Это преобразвание, очевидно, неособенное, и после его выполнения получим $f = ... + a_{ii}x_i^2 + ...$ Выписанный член $a_{ii}y_1^2$ не имеет себе подобных, а потому он сократиться не может.

• Пусть $a_{11} = a_{22} = ... = a_{nn} = 0$, то есть равны нулю все диагональные коэффициенты По условию, форма имеет хоть один ненулевой коэффициент. Пусть $a_{ij} \neq 0$ $(i \neq j)$ Чтобы свести рассматривемый случай к предыдущему, нам достаточно сделать какое-нибудь неособенное преобразование, только бы появился квадрат одной из переменных с ненулевым коэффициентом.

Сделаем, например, преобразование

$$x_j \coloneqq y_j + y_i, \qquad x_k \coloneqq y_k \quad \text{при } k \neq j \qquad ($$
в частности, $x_i = y_i)$

Преобразование, как легко видеть, неособенное. После выполнения преобразования получим

$$f = \dots + 2a_{ij}x_ix_j + \dots = \dots + 2a_{ij}y_i(y_j + y_i) + \dots = \dots + 2a_{ij}y_iy_j + 2a_{ij}y_i^2 + \dots$$

Член $2a_{ij}y_i^2$ является здесь единственным членом с y_i^2 , поэтому после приведения подобных членов он не сократится

Полученная нами форма содержит, таким образом, квадрат переменной с ненулевым коэффициентом $(2a_{ij} \neq 0)$, и, значит, к ней применимо рассуждение предыдущего пункта

Для завершения доказательства остаётся сослаться на лемму 1

Теорема 2 (Лагранжа). Всякая квадратичная форма при помощи неособенного линейного преобразования переменных может быть приведена к диагональному виду

Доказательство. Индукция по числу переменных n

• База. n = 1

Устверждение теоремы тривиально: всякая квадратичная форма от одной переменной имеет вид ax_1^2 и является, следовательно, диагональной (всякая матрица первого порядка диагональна)

- **Переход.** Предположим, что $n \ge 2$ и для форм от n-1 переменных теорема уже доказана Пусть $f(x_1, x_2, ..., x_n)$ квадратичная форма от n переменных
 - Если все коэффициенты формы f нули, то доказывать нечего
 - Пусть не все её коэффициенты нули

Если $a_{11} = 0$ (в обозначениях (2)), то, согласно лемме 2, можно совершить неособенное линейное преобразование переменных так, чтобы после преобразования формы коэффициент при квадрате первой переменной был отличен от нуля

Поэтому можно считать, что $a_{11} \neq 0$

Выделим в форме (2) все члены, содержащие x_1 :

$$f = a_{11}x_1^2 + 2a_{12}x_1x_2 + \dots + 2a_{1n}x_1x_n + g(x_2, \dots, x_n)$$

Здесь g является, очевидно, формой от n-1 переменных $x_2,...,x_n$. Преобразуем теперь выписанную сумму так, чтобы все члены с x_1 вошли в квадрат линейного выражения:

$$\begin{split} f &= a_{11} \bigg(x_1^2 + 2 x_1 \big(\frac{a_{12}}{a_{11}} x_2 + \ldots + \frac{a_{1n}}{a_{11}} x_n \big) \bigg) + g(x_2, \ldots, x_n) = \\ &= a_{11} \bigg(x_1 + \frac{a_{12}}{a_{11}} x_2 + \ldots + \frac{a_{1n}}{a_{11}} x_n \bigg)^2 - a_{11} \bigg(\frac{a_{12}}{a_{11}} x_2 + \ldots + \frac{a_{1n}}{a_{11}} x_n \bigg)^2 + g(x_2, \ldots, x_n) = \\ &= a_{11} \bigg(x_1 + \frac{a_{12}}{a_{11}} x_2 + \ldots + \frac{a_{1n}}{a_{11}} x_n \bigg)^2 + f_1(x_2, \ldots, x_n) \end{split}$$

Здесь f_1 , как и g, является квадратичной формой от n-1 переменных $x_2,...,x_n$ Сделаем преобразование переменных

$$y_{1} = x_{1} + \frac{a_{12}}{a_{11}}x_{2} + \dots + \frac{a_{1n}}{a_{11}}x_{n}$$

$$y_{2} = x_{2}$$

$$\vdots$$

$$y_{n} = x_{n}$$

$$(7)$$

Преобразование (7), очевидно, неособенное. Найдём для него обратное преобразование:

После выполнения преобразования (8) (или (7)) форма примет вид $f = a_{11}y_1^2 + f_1(y_2, ..., y_n)$ По индукционному предположению, существует неособенное линейное преобразование

$$\begin{cases} y_2 = c_{21}z_2 + \dots + c_{2n}z_n \\ \dots \\ y_n = c_{n1}z_2 + \dots + c_{nn}z_n \end{cases}$$

при котором форма f_1 приводится к диагональному виду $f_1(y_2,...,y_n) = a_2 z_2^2 + ... + a_n z_n^2$ Для исходной формы f вслед за пробразованием (8) выполним следующее преобразование переменных:

$$y_1 = z_1
 y_2 = c_{22}z_2 + \dots + c_{2n}z_n
 y_n = c_{n2}z_2 + \dots + c_{nn}z_n$$
(9)

Определитель этого преобразования:

$$\begin{vmatrix} 1 & 0 & \dots & 0 \\ 0 & c_{22} & \dots & c_{n2} \\ \vdots & \vdots & \ddots & \vdots \\ 0 & c_{n2} & \dots & c_{nn} \end{vmatrix} = \begin{vmatrix} c_{22} & \dots & c_{2n} \\ \vdots & \ddots & \vdots \\ c_{n2} & \dots & c_{nn} \end{vmatrix} \neq 0$$

Следовательно, преобразование (9) неособенное. После его выполнения вслед за преобразованием (8) форма f приобретает вид $f(x_1,x_2,...,x_n)=a_{11}z_1^2+a_2z_2^2+...+a_nz_n^2$

3. Закон инерции квадратичных форм

Определение 4. Если в квадратичной форме $f(x_1, x_2, ..., x_n)$ вместо переменных подставить какиенибудь числовые значения $x_1^*, x_2^*, ..., x_n^*$ и произвести все необходимые вычисления, то в результате получим некоторое число. Это число называется значением квадратичной формы f при заданных значениях переменных

Обозначение. $f(x_1^*, x_2^*, ..., x_n^*)$

Замечание. Пусть для формы $f(x_1, x_2, ..., x_n)$ выполнено неособенное линейное преобразование переменных

$$x_i = \sum_{j=1}^{n} c_{ij} y_j$$
 $i = 1, 2, ..., n$ (10)

с матрицей C, в результате которого форма f перешла в форму $g(y_1, y_2, ..., y_n)$

В силу неособенности матрицы C для произвольных значений $x_1^*, x_2^*, ..., x_n^*$ существует единственный набор значений $y_1^*, y_2^*, ..., y_n^*$ такой, что

$$x_i^* = \sum_{j=1}^n c_{ij} y_j^*$$
 $i = 1, 2, ..., n$

Значения $y_1^*, y_2^*, ..., y_n^*$ мы будем называть значениями, соответствующими значениям $x_1^*, x_2^*, ..., x_n^*$ при преобразовании (10)

Утверждается, что

$$f(x_1^*, x_2^*, ..., x_n^*) = g(y_1^*, y_2^*, ..., y_n^*)$$
(11)

В самом деле, форма g определяется равенством

$$g(y_1,...,y_n) = f(\sum c_{1j}y_j,...,\sum c_{nj}y_j)$$

Поэтому

$$g(y_1^*,...,y_n^*) = f(\sum c_{1j}y_j^*,...,\sum c_{nj}y_j^*) = f(x_1^*,...,x_n^*)$$

Ясно, что значения $x_1^*, ..., x_n^*$ и $y_1^*, ..., y_n^*$ однозначно определяются друг через друга не только преобразованием (10), но и обратным ему

Теорема 3 (Закон инерции квадратичных форм). Если вещественная квадратичная форма вещественными неособенными линейными преобразованиями переменных приедена двумя способами к диагональному виду, то в обоих случаях число положительных коэффициентов, число отрицательных коэффициентов и число нулевых коэффициентов при квадратах новых переменных одно и то же

Доказательство. Пусть вещественная квадратичная форма $f(x_1, x_2, ..., x_n)$ при помощи вещественных неособенных линейных преобразований переменных приведена к диагональному виду:

$$f(x_1, x_2, ..., x_n) = \alpha_1 y_1^2 + ... + \alpha_p y_p^2 - \beta_1 y_{p+1}^2 - ... - \beta_q y_{p+q}^2$$
(12)

$$f(x_1, x_2, ..., x_n) = \gamma_1 z_1^2 + ... + \gamma_r z_r^2 - \delta_1 z_{r+1}^2 - ... - \delta_s z_{r+s}^2$$
(13)

Мы считаем, что здесь все α_i , β_j , γ_k , δ_l строго положительны, так что форма (12) при квадратах новых переменных имеет p положительных коэффициентов, q отрицательных и n-p-q нулевых, а форма (13) – r положительных, s отрицательных и n-r-s нулевых Мы должны показать, что

$$p = r, \qquad q = s, \qquad n - p - q = n - r - s \tag{14}$$

Выпишем соответствующие линейные преобразования переменных (вещественные и неособенные), выразив при этом новые переменные через старые:

$$y_i = \sum_{j=1}^n c_{ij} x_j \qquad i = 1, 2, ..., n$$
(15)

$$z_i = \sum_{j=1}^n d_{ij} x_j \qquad i = 1, 2, ..., n$$
(16)

План доказательства. Предположим, вопреки утверждению теоремы, что $p \neq r$

Для определённости можно, конечно, считать, что p < r

Мы покажем, что тогда для старых пременных можно найти такие вещественные значения $x_1^*, x_2^*, ..., x_n^*$, не равные одновременно нулю, что соответствующие им значения новых переменных $y_1^*, y_2^*, ..., y_n^*$ и $z_1^*, z_2^*, ..., z_n^*$ будут удовлетворять условиям

$$y_1^* = 0, \dots, y_p^* = 0$$
 (17)

$$z_{r+1}^* = 0, \quad \dots, \quad z_n^* = 0$$
 (18)

Предположим, что $p \neq r$. Рассмотрим случай, когда p < r: Рассмотрим следующую систему линейных однородных уравнений:

$$c_{11}x_{1} + c_{12}x_{2} + \dots + c_{1n}x_{n} = 0$$

$$\vdots$$

$$c_{p1}x_{1} + c_{p2}x_{2} + \dots + c_{pn}x_{n} = 0$$

$$d_{r+1,1}x_{1} + d_{r+1,2}x_{2} + \dots + d_{r+1,n}x_{n} = 0$$

$$\vdots$$

$$d_{n1}x_{1} + d_{n2}x_{2} + \dots + d_{nn}x_{n} = 0$$

$$(19)$$

Система эта получена приравниваем к нулю первых p линейных выражений справа в преобразовании (15) и последних n-r линейных выражений в преобразовании (16)

Число уравнений в системе (19) равно p + (n - r) = n - (r - p), что строго меньше n (поскольку r > p) Но раз число уравнений в однородной системе меньше числа неизвестных, то она имеет ненулевое решение

Ввиду вещественности преобразований (15) и (16) коэффициенты системы (19) также вещественны, а значит, ненулевое решение этой системы мы можем выбрать вещественным

Пусть это будет $x_1^*, x_2^*, ..., x_n^*$

Этим мы и нашли искомые значения для старых переменных

Если теперь в соответствии с преобразованиями (15) и (15) мы найдём соответствующие значения для новых переменных $y_1^*, y_2^*, ..., y_n^*$ и $z_1^*, z_2^*, ..., z_n^*$, то для этих переменных будут выполнены, очевидно, условия (17) и (18)

Согласно равенствам (12), (13) и формуле (11) мы имеем

$$f(x_1^*, ..., x_n^*) = -\beta_1 y_{p+1}^{*2} - ... - \beta_q y_{p+q}^{*2}$$
(20)

$$f(x_1^*, ..., x_n^*) = \gamma_1 z_1^{*2} + ... + \gamma_r z_r^{*2}$$
(21)

Квадрат вещественного числа неотрицателен, поэтому из (20) следует, что

$$f(x_1^*, ..., x_n^*) \le 0 \tag{22}$$

Примечание. Знак равенства здесь возможен ввиду того, что в случае p+q < n ненулевые значения y_i^* могут оказаться только среди значений $y_{n+q+1}^*,...,y_n^*$

С другой стороны, в силу неособенности преобразования (16) не все z_i^* равны нулю (в противном случае все x_i были бы равны нулю); поэтому, учитывая (18), мы заключаем, что хоть одно из значений $z_1^*, ..., z_r^*$ отлично от нуля, а значит, из (21) вытекает неравенство

$$f(x_1^*, ..., x_n^*) > 0 (23)$$

Таким образом, предположение о том, что $p \neq r$, привело нас противоречащим друг другу неравенствам (22) и (23)

Следовательно, p=r, т. е. число положительных коэффициентов в обеих диагональных формах (12) и (13) одно и то же

Второе из неравенств (14) может быть доказано аналогично

Третье из неравенств (14) является очевидным следствием первых двух

4. Положително определённые квадратичные формы: критерии

Определение 5. Вещественная квадратичная форма называется положительно определённой, если положительны все её значения при вещественных значениях переменных, не равных нулю одновременно

Теорема 4. Для того чтобы вещественная квадратичная форма была положительно определённой, необходимо и достаточно, чтобы при приведении её к диагональному виду вещественным неособенным линейным преобразованием переменных все коэффициенты при квадратах новых переменных были положительны

Доказательство. Рассмотрим вещественное неособенное преобразование

$$x_i = \sum_{j=1}^{n} c_{ij} y_j$$
 $i = 1, 2, ..., n$ (24)

Пусть вещественная форма $f(x_1,...,x_n)$ преобразованием (24) приведена к диагональному виду $a_1y_1^2 + a_2y_2^2$

Если $x_1^*, x_2^*, ..., x_n^*$ – соответствующие им значения новых переменных, то, согласно формуле (11), мы имеем

$$f(x_1^*, ..., x_n^*) = \alpha_1 y_1^{*2} + \alpha_2 y_2^{*2} + ... + \alpha_n y_n^{*2}$$
(25)

- Пусть все коэффициенты $\alpha_1, \alpha_2, ..., \alpha_n$ положительны Тогда, если вещественные же значения $y_1^*, ..., y_n^*$ также не все нули (в силу неособенности преобразования (24)), и поэтому правая часть равенства (25) (а значит, и его левая часть) положительны Таким образом, при положительных α_i форма f положительно определённая
- Наоборот, пусть форма f положительно определённая

Положим

$$y_1^* := 0, ..., y_{i-1}^* := 0, \quad y_i^* = 1, \quad y_{i+1}^* = 0, ..., y_n^* = 0$$
 (26)

Соответствующие значения $x_1^*,...,x_n^*$ старых переменных, очевидно, вещественны и не равны нулю одновременно, так что $f(x_1^*,...,x_n^*) > 0$

Но, согласно (25) и (26), $f(x_1^*,...,x_n^*)=\alpha_i$, следовательно, $\forall i=1,2,...,n\quad \alpha_i>0$

Определение 6. Квадратичную форму $x_1^2 + x_2^2 + ... + x_n^2$ мы будем называть чистой суммой квадратов

Замечание. Чистая сумма квадратов в качестве своей матрицы имеет, очевидно, единичную матрицу

Теорема 5. Вещественная квадратичная форма является положительно определённой тогда и только тогда, когда она вещественным неособенным линейным преобразованием переменных может быть приведена к чистой сумме квадратов

Доказательство.

- Если форма приводится к чистой сумме квадратов, то, согласно теореме 4, она положительно определённая
- Наоборот, пусть $f(x_1,...,x_n)$ положительно определённая квадратичная форма Приведём её вещественным неособенным преобразованием (24) к диагональному виду

$$f = \alpha_1 y_1^2 + \alpha_2 y_2^2 + \dots + \alpha_n y_n^2 \tag{27}$$

По теореме 4 все коэффициенты α_i здесь положительны

Сделаем вслед за преобразованием (24) следующее преобразвание переменных:

$$y_{1} = \frac{1}{\sqrt{\alpha_{i}}} z_{1}$$

$$y_{2} = \frac{1}{\sqrt{\alpha_{2}}} z_{2}$$

$$y_{n} = \frac{1}{\sqrt{\alpha_{n}}} z_{n}$$

$$(28)$$

При выполнении этого вещественного и неособенного преобразования форма (27) приобретает вид $z_1^2 + z_2^2 + ... + z_n^2$, т. е. переходит в чистую сумму квадратов

Для завершения доказательства остаётся только заметить, что последовательное выделение преобразований (24) и (28) равносильно одному вещественному неособенному преобразованию

5. Векторное пространство. Определение, примеры, простешие свойства

Определение 7. K – поле, V – множество. Заданы операции сложения на V ($V \times V \to V$) и умножения на скаляр $(V \times K \to V)$

Множество V называется векторным пространством над K, если выполнены следующие свойства:

- 1. V абелева группа по сложению
- 2. Дистрибутивность: $a(u+v)=au+av, \forall a \in K, u,v \in V$
- 3. Дистрибутивность: (a+b)u = au + bu, $\forall a,b \in K$, $u \in V$
- 4. Ассоциативность: $a(bu) = (ab)u, \quad \forall a, b \in K, \quad u \in U$
- 5. $1 \cdot u = u$, $1 \in K$, $\forall u \in U$

Элементы V называют векторами, элементы K – скалярами

Примеры.

- 1. Геометрические векторы на плоскости векторное пространство над $\mathbb R$
- 2. \mathbb{R}^n векторное пространство над \mathbb{R}
- 3. K^n векторное пространство над K, где K поле
- 4. $M_{m \times n}$ векторное пространство над $\mathbb R$
- 5. \mathbb{C} векторное пространство над \mathbb{R}
- 6. K[x] векторное пространство над K
- 7. Множество многочленов степени $\leq n$ векторное пространство над K

Свойства.

1. $0 \cdot u = \overrightarrow{0}, \quad \forall u \in V$

Доказательство. $0 \cdot u = (0+0)u = 0 \cdot u + 0 \cdot u$ $0 = 0 \cdot u = 0 \cdot u + 0 \cdot u$ $0 = 0 \cdot u$

 $2. \ a \cdot \overrightarrow{0} = \overrightarrow{0}, \qquad \forall a \in K$

3. $a \cdot u = 0 \implies a = 0$ или $u = \overrightarrow{0}$

6. Линейные комбиинации, линейная зависимость

Определение 8. Линейной комбинацией векторов $u_1, ..., u_k \in V$ называется вектор

$$a_1u_1 + \ldots + a_ku_k, \quad a_i \in K$$

 a_i – коэффициенты

Определение 9. Линейная комбинация называется тривиальной, если все коэффициенты равны нулю

Определение 10. Векторы u_i называются линейно зависимыми, если существует их нетривиальная линейная комбинация, равная нулю

Иначе – линейно независимые

Свойства.

1. (а) Векторы линейно зависимы 👄 один из векторов является ЛК остальных

Доказательство.

- \longleftarrow Пусть u_1 ЛК, то есть $u_1=a_2u_2+...+a_nu_n$ $(-1)u_1+a_2u_2+...+a_nu_n=0$ нетривиальная ЛК
- ullet \Longrightarrow Пусть $a_1u_1+...+a_nu_n=0$ нетривиальная ЛК Пусть $a_1 \neq 0$ $a_1=-\frac{a_2}{u_1}u_2-...-\frac{a_n}{u_1}u_n$
- (b) Если $u_1, ..., u_n$ ЛНЗ, а $u_1, ..., u_n, v$ ЛЗ, то v является ЛК остальных

Доказательство. $u_1,...,u_n,v$ ЛЗ \iff $\exists\,a_1,...,a_n$ (не все нули) : $a_1u_1+...+a_nu_n+a_{n+1}v=0$

- Если $a_{n+1} \neq 0$, то можно выразить v
- Если $a_{n+1}=0$, то: Не все a_i равны $0,\ a_1u_1+...+a_nu_n=0$ – нетривиальная. Противоречие
- 2. (а) Если к ЛЗ добавить несколько векторов, то она останется ЛЗ
 - (b) Если из ЛНЗ убрать несколько векторов, то она останется ЛНЗ
- 3. (a) $c \neq 0 \in K$. $u_1,...,u_n \text{ ЛЗ } \iff cu_1,...,u_n \text{ ЛЗ}$
 - (b) $c \in K$ $u_1, ..., u_n \text{ JI3} \iff u_1 + cu_2, u_2, ..., u_n \text{ JI3}$

Доказательство.

$$u_1' := \begin{cases} cu_1 & (3a) \\ u_1 + cu_2 & (3b) \end{cases}$$

$$u_1 = \begin{cases} \frac{1}{c} u_1' & (3a) \\ u_1' + (-c)u_2 & (3b) \end{cases}$$

Набор $u_1,...,u_n$ получается из $u_1',u_2,...,u_n$ преобразованием того же типа Достаточно доказать \Longrightarrow

(a) Пусть $a_1u_1 + ... + a_nu_n = 0$, не все a_i равны 0

$$\frac{a}{c}u_1' + a_2u_2 + ... + a_nu_n = 0$$
, не все коэфф. равны 0

(b) $a_1u_1 + a_2u_2 + ... + a_nu_n = 0$, не все a_i равны 0

$$a_1u_1' + (a_2 - ca_1)u_2 + \dots + a_nu_n = 0$$

$$a_1(u_1 + cu_2) + ...$$

Пусть $a_1 = a_2 - ca_1 = a_3 = \dots = a_n = 0$

Теорема 6 (линейная зависимость линейных комбинаций). Пусть k>m и векторы $v_1,...,v_k$ являются ЛК векторов $u_1,...,u_m$ Тогда $v_1,...,v_k$ ЛЗ

Доказательство. Индукция по m

• База. m = 1Есть вектор u_1 . Все остальные – его ЛК:

$$v_1 = a_1 u_1, \qquad v_2 = a_2 u_2, \dots$$

$$-a_1 = 0 \implies v_1 = 0, \qquad 1 \cdot v_1 + 0 \cdot v_2 + 0 \cdot v_3 + \dots = 0$$

$$-a_1 \neq 0$$

$$v_2 = a_2 u_1 = a_2 \cdot \frac{v_1}{a_1}$$

$$\frac{a_2}{a_1}v_1 + (-1)\cdot v_2 + 0\cdot v_3 + \dots = 0$$

• Переход. $m-1 \rightarrow m$

$$v_1 = a_{11}u_1 + a_{12}u_2 + \dots + a_{1m}u_m$$

 $v_k = a_{k1}u_! + a_{k2}u_2 + \ldots + a_{km}u_m$ Исключим u_1 из всех векторов, кроме первого:

 $- a_{11} = a_{21} = \dots = a_{k1} = 0$

Применяем индукционное предположение к $v_1,...,v_k$ и $u_2,...,u_m$

— Пусть не все a_{i1} равны нулю. НУО считаем, что $a_{i1} \neq 0$

При i > 1 положим $v_i' = v_i - \frac{a_{i1}}{a_{11}}v_1$

Векторы $v_2', v_3', ..., v_k'$ являются ЛК $u_2, u_3, ..., u_m$

k - 1 > m - 1

По индукционному предположению, $v'_2, ..., v'_k$ ЛЗ

Добавим к этому набору v_1 (пользуемся свойством 2a)

Воспользуемся свойством 3b:

 $v_1, v_2, ..., v_k$ ЛЗ

7. Конечномерное пространство. Порождающие и линейно независимые системы

Определение 11. Пусть V – векторное пространство

Множество векторов $\{v_i\}$ называется порождающим для V, если любой вектор $v \in V$ является ЛК некоторого конечного подмножества $\{v_i\}$

Определение 12. Если у V есть конечная порождаящая система, то V называется конечномерным Иначе – бесконечномерным

Свойство. Пусть V – конечномерное

Тогда в V не существует сколь угодно больших ЛНЗ систем

Другая формулировка. $\exists N : \forall k > N \quad \forall v_1, ..., v_k \in V \quad v_1, ..., v_k \ ЛЗ$

Доказательство. Пусть $u_1,...,u_N$ — конечная порождающая система. По теореме о линейной зависимости линейных комбинаций $v_1,...,v_k$ ЛЗ

Теорема 7 (порождающие и ЛНЗ системы). Пусть V – конечномерное пространство

1. Пусть $u_1, ..., u_n$ — минимальная по включению порождающая система. Тогда она ЛНЗ

Доказательство. Пусть $u_1,...,u_n$ – ЛЗ

Тогда некоторый вектор – ЛК остальных. Пусть это u_n

$$u_n = c_1 u_1 + c_2 u_2 + \dots + c_{n-1} u_{n-1}$$

Докажем, что $u_1,...,u_{n-1},u_n$ — не минимальная, то есть, что $u_1,...,u_{n-1}$ — тоже порождающая Пусть $v\in V,$ $v=a_1u_1+...+a_{n-1}u_{n-1}+a_nu_n$

$$v = a_1 u_1 + \dots + a_n \left(c_1 u_1 + \dots \right) = (a_1 - a_n c_1) u_1 + \dots + (a_{n-1} + a_n c_{n-1}) u_{n-1}$$

2. Пусть $u_1, ..., u_n$ – максимальная по включению ЛНЗ. Тогда она порождающая

Доказательство. Пусть $v \in V$ $u_1,...,u_n$ – ЛНЗ, $u_1,...,u_n,v$ – ЛЗ (т. к. u_i – минимальная) Применяем свойство 1b

 $^{^{1}}$ Если из неё убрать вектор, она перестанет быть порождающей. Не обязательно минимальная по количеству векторов

8. Равносильные определения базиса. Координаты

Определение 13. Пусть V – конечномерное векторное пространство Система векторов называется базисом V, если она ЛНЗ и порождающая

Теорема 8 (равносильные определения базиса). Следующие утверждения равносильны:

- 1. $u_1, ..., u_n$ базис V
- 2. $u_1, ..., u_n$ максимальная по включению ЛНЗ
- 3. $u_1, ..., u_n$ минимальная по включению порождающая система
- 4. Любой вектор можно единственным образом представить в виде ЛК u_i

Доказательство. Уже доказаны: $2 \implies 1, 3 \implies 1$

- \bullet 1 \Longrightarrow 2
 - u_i ЛНЗ

Докажем, что $u_1, ..., u_n, v - ЛЗ$ для $\forall v$

 u_i – порождающая $\implies \exists \, a_i : v = a_1 u_1 + \ldots + a_n u_n$

Оказалось, что v – ЛК $u_i \implies u_1, ..., u_n, v$ – ЛЗ

 \bullet 1 \Longrightarrow 3

 u_i – порождающая

Пусть u_i не минимальная. Пусть $u_1,...,u_{n-1}$ тоже порождающая $\implies \exists \, a_i : un = a_n u_1 + ... + a_{n-1} u_{n-1} \implies u_i$ – ЛЗ

• 4 \iff 1

Система порождающая и в 1, и в 4

Нужно доказать, что представление единственно 👄 ЛНЗ

$$-4 \implies 1$$

$$0 = 0 \cdot u_1 + \dots + 0 \cdot u_n$$

Представление нуля единственно. Значит, система ЛНЗ

$$-4 \implies 1$$

$$v = a_1u_1 + \dots + a_nu_n, \quad v = b_1u_1 + \dots + b_nu_n$$

$$0 = v - v = (a_1 - b_1)u_1 + \dots + (a_n - b_n)u_n$$

П

ЛНЗ
$$\implies a_i - b_i = 0$$

Определение 14. Координатами вектора v в базисе $u_1,...,u_n$ называется такой набор $a_i,...,a_n \in K$: $v=a_1u_1+...+a_nu_n$

9. Дополнение до базиса. "Спуск" к базису. Количество элементов в разных базисах. Размерность

Свойства (базиса). V – конечномерное векторное пространство

1. Дополнение до базиса

Любую ЛНЗ систему можно дополнить до базиса

Доказательство. $u_1, ..., u_k$ – ЛНЗ Если это не базис, можно добавить вектор так, что система останется ЛНЗ²

Докажем, что процесс когда-нибудь закончится:

Пусть есть порождающая система из n векторов \implies в любой ЛНЗ системе не более n векторов

2. "Спуск" к базису

Из любой порождающей системы можно выбрать базис

Доказательство. Если система не минимальна, будем убирать векторы по одному

3. Количество векторов

В любых двух базисах поровну элементов

Доказательство. Пусть $u_1,...,u_k$ и $w_1,...,w_m$ – базисы

Тогда, u_i – порождающая, и w_i – ЛНЗ

По теореме о линейной зависимости линейной комбинации, $m \leq k$

Аналогично, $m \geq k$

Определение 15. Пусть V конечномерно

Размерностью V называется количество элементов в базисе

Обозначение. $\dim V$, $\dim_K V$

Если $V = \{0\}$, то dim V = 0

10. Подспространство. Пересечение и сумма подпространтв. Формула Грассмана

Определение 16. Пусть V – векторное пространство над $K,\,U\subset V$

U называется подпространством, если U – векторное пространство над K с теми же опреациями

Определение 17. U, W — подпространства V

Их суммой называется множество $\{u+w \mid u \in U, w \in W\}$

Обозначение. U+W

Определение 18. $U_1, ..., U_n$ – подпространства V

$$U_1 + ... U_n = \{ u_1 + ... + u_n \mid u_i \in U_i \}$$

Замечание. $U_1 + U_2 + U_3 = (U_1 + U_2) + U_3$

Свойства.

- 1. Сумма подпространств является подпространством
- 2. Пересечение подпространств является подпространством

Теорема 9 (формула Грассмана). Пусть U, W — конечномерные подпространства векторного пространства V

Тогда $\dim(U+W) + \dim(U\cap W) = \dim U + \dim W$

Доказательство. Пусть $l_1,...,l_k$ – базис $U\cap W\implies l_i$ – ЛНЗ

Дополним их до базиса $U: l_1, ..., l_k, u_1, ..., u_m$ – базис U

Аналогично, $l_1, ..., l_k, w_1, ..., w_n$ – базис W

Достаточно доказать, что $l_1,...,l_k,u_1,...,u_m,w_1,...,w_n$ – базис U+W, так как тогда (k+m+n)+k=(k+m)+(k+n)

• Докажем, что это порождающая система:

Пусть $v \in U + W$, v = u + w

Разложим по базису:

$$u = \sum a_i l_i + \sum b_i u_i, \quad w = \sum a_i l_i + \sum d_i w_i$$

²Если ничего нельзя добавить, то она максимальная, и это базис

Сложим:

$$v = \sum (a_i + b_i)l_i + \sum b_i u_i + \sum d_i w_i$$

• Докажем ЛНЗ:

Пусть $\sum a_i l_i + \sum b_i u_i + \sum c_i w_i = 0$

$$\left. \begin{array}{l} \sum b_i u_i \in U \\ \sum b_i u_i = -\sum a_i b_i - \sum d_i w_i \in W \end{array} \right\} \implies \sum b_i u_i \in U \cap W$$

 $l_1,...,l_k$ – базис $U\cap W$

$$\exists c_i : \sum b_i u_i = \sum c_i l_i \implies (-c1)l_1 + \dots + (-c_k)l_k + b_1 u_1 + \dots + b_m u_m = 0 \implies c_i = 0, l_i = 0$$

$$\exists a_i b_i + 0 + \sum d_i w_i = 0 \implies a_i = 0, d_i = 0$$

11. Равносильные определения прямой суммы подпространств

Определение 19. V – векторное пространство, U,W – подпространства Сумма U+W называется прямой, если $\forall v \in V$ представляется в виде $u+w, \quad u \in U, w \in W$ единственным образом

Обозначение. $U \oplus W$

Замечание. Прямая сумма $U_1,...,U_k$ определяется так же Если $V=U_1\oplus...\oplus U_k$, то говорят, что V раскладывается в прямую сумму U_i

Теорема 10. Равносильны определения прямой суммы в случае 2 подпространств U и W конечномерного просранства V:

- 1. Сумма U + W прямая (по определению 19)
- 2. Если u + w = 0, $u \in U, w \in W$, то u = 0, w = 0
- 3. $U \cap W = \{0\}$
- 4. Объединение базисов U и W является базисом U+W

Доказательство.

- $1 \implies 2$ очевидно
- $2 \implies 1$ $\Pi_{\text{VCTb}} u + w = u' + w' \implies (u - u') + (w - w') = 0 \implies u = u', w = w'$
- 2 \Longrightarrow 3 Пусть $v \in U \cap W \implies -v \in U \cap W$

$$v + (-v) = 0 \implies v = 0$$

 \bullet 3 \iff 4

$$\dim U + \dim W = \dim(U + W) + \dim(U \cap W)$$

$$4 \iff \dim U + \dim W = \dim(U + W) \iff \dim(U \cap W) = 0 \iff U \cap W = 0$$

```
Теорема 11. Пусть V — конечномерное пространство, U_1,...,U_k — подпространства Тогда следующие условия равносильны:
```

- 1. Сумма $U_1 + ... + U_k$ прямая
- 2. Если $u_1 + ... u_k$, $u_i \in U$, то $u_i = 0$
- 3. $\forall i \ U_i \cap (U_1 + ... + U_{i-1} + U_{i+1} + ... + U_k) = \{0\}$
- 4. $U_1 \cap U_2 = \{0\}, \quad (U_1 + U_2) \cap U_3 = \{0\}, \dots$
- 5. Объединение любых базисов u_i является базисом $u_1 + ... + u_k$

Доказательство.

- 1 ⇒ 2 очевидно
- \bullet 2 \Longrightarrow 1

Пусть $v = u_1 + ... + u_k = u'_1 + ... + u'_k$

$$v - v = (u_1 - u_1') + \dots + (u_k - u_k') = 0 \implies u_i = u_i'$$

 \bullet 2 \Longrightarrow 3

Пусть $v \in U_1 \cap (U_2 + ... + U_k)$

$$v=u_1+\ldots+u_k,\quad u_i\in U_i$$

$$v\in i\implies -v\in U_i$$

$$0=(-v)+u_2+\ldots+u_k\implies v=0,\quad u_2=\ldots=u_k=0$$

 \bullet 3 \Longrightarrow 4

Докажем, что $(U_1 + ... + U_{i-1}) \cap U_i = 0$

Заметим, что $U_1+\ldots+U_{i-1}\subset U_1+\ldots+U_{i-1}+U_{i+1}+\ldots+U_k\implies (U_1+\ldots+U_{i-1})\cap U_i\subset (U_1+\ldots+U_{i-1}+U_{i+1}+\ldots+U_k)\cap U_i=\{\,0\,\}$

 \bullet 4 \Longrightarrow 2

Пусть $u_1 + ... + u_k = 0$, $u_i \in U_i$

Пусть не все $u_1, ..., u_k$ равны 0

Положим $i := \max\{s \mid u_s \neq 0\}$

$$u_1 + \ldots + u_{i-1} + u_i = 0 \implies u_i = -u_1 - \ldots - u_{i-1} \in U_1 + \ldots + U_{i-1} \implies u_i \in (U_1 + \ldots + U_{i-1}) \cap U_i = \{0\}$$

 \bullet 4 \iff 5

Пусть $n_i = \dim U_i$

Пусть B – объединение базисов U_i

Тогда B – порождающая система $U_1 + ... + U_k$

B – базис $\iff B$ – минимальная порождающая система $\iff |B| = \dim(U_1 + ... + U_k)$

Положим $W_i = (U_i + ... + U_{i-1}) \cap U_i \qquad \forall i = 2, ..., k$

$$\dim(U_1 + \dots + U_{k-1} + U_k) = \dim(U_1 + \dots + U_{k-1}) + \dim U_k - \dim W_k =$$

$$= \dim(U_1 + \dots + U_{k-2}) + \dim U_{k-1} - \dim W_{k-1} + \dim U_k - \dim W_k = \dots =$$

$$= (\dim U_1 + \dots + \dim U_k) - (\dim W_2 + \dots + \dim W_k)$$

$$\dim(U_1 + \dots + U_k) = \dim U_1 + \dots + \dim U_k \iff \forall i \quad \dim W_i = 0 \iff W_i = 0$$

Следствие. Если V раскладывается в прямую сумму $U_1,...,U_k$, то dim $V=\dim U_1+...+\dim U_k$

12. Матрица перехода между базисами. Связь координат вектора в разных базисах

Определение 20. Пусть $e_1, ..., e_n$ и $e'_1, ..., e'_n$ – базисы векторного пространства V Матрицей перехода от e_i к e'_i называется матрица, у которой в i-м столбце записаны координаты e'_i в базисе $e_1, ..., e_k$

Обозначение. C_{e_i,e'_i} , $C_{e_i\rightarrow e'_i}$

Свойства. e_i, e_i' – базисы векторного пространства V

1. Если X и X' – столбцы одного и того же вектора в базисах e_i и e_i' , то $X = C_{e_i \to e_i'} X'$

Доказательство. Пусть
$$X\coloneqq\begin{pmatrix}x_1\\\cdot\\\cdot\\x_n\end{pmatrix},\quad X'\coloneqq\begin{pmatrix}x_1'\\\cdot\\\cdot\\\cdot\\x_n'\end{pmatrix}$$

$$x_1e_1 + \dots + x_ne_n = x_1'e_1' + \dots + x_n'e_n' =$$

$$= x_1'(c_{11}e_1 + \dots + c_{n1}e_1) + \dots + x_i'(c_{1i}e_1 + \dots + c_{ni}e_n) + \dots + x_n'(c_{1n}e_1 + \dots + c_{nn}e_n) =$$

$$= (c_{11}x_1' + \dots + c_{1i}x_i' + \dots + c_{1n}x_n')e_1 + \dots + (c_{n1}x_1' + \dots + c_{ni}x_i' + \dots + c_{nn}x_n')e_n$$

$$\begin{cases} x_1 = c_{11}x'_1 + \dots + c_{nn}x'_n \\ \dots \\ x_n = c_{n1}x'_1 + \dots + c_{nn}x'_n \end{cases}$$

2. Если для любого вектора выполнено X = CX', то C – матрица перехода

Доказательство. Пусть $v \coloneqq e_i'$ – базис, X, X' – координаты в базисах e_i, e_i'

 $e_i' = v = c_{1i}e_1 + ... + c_{ni}e_n \implies c_{n1}, ..., c_{ni}$ – координаты e_i' в базисе $e_1, ..., e_n$

3. Матрица перехода обратима. Обратная к ней – матрица перехода в другую сторону

Доказательство. Нужно доказать, что $C_{e_i \to e'_i} \cdot C_{e'_i \to e_i} = E$ Пусть $v \in V$, X, X' – столбцы координат

$$C_{e_i \to e'_i} \cdot C_{e'_i \to e_i} \cdot X = C_{e_i \to e'_i} \cdot X' = X$$

13. Приведение матрицы к трапецевидной

Определение 21. Трапецевидная матрица:

$$\begin{pmatrix} a_{11} & a_{12} & a_{13} & \dots & a_{1n} \\ 0 & a_{22} & a_{23} & \dots & a_{2n} \\ \vdots & \vdots & \ddots & \vdots & \vdots \\ 0 & \dots & a_{rr} & \dots & a_{rn} \\ 0 & \vdots & \vdots & \ddots & \vdots \\ 0 & \vdots & \vdots & \ddots & \vdots \\ 0 & \vdots & \vdots & \ddots & \vdots \\ 0 & \vdots & \vdots & \ddots & \vdots \\ 0 & \vdots & \vdots & \ddots & \vdots \\ 0 & \vdots & \vdots & \ddots & \vdots \\ 0 & \vdots & \vdots & \ddots & \vdots \\ 0 & \vdots & \vdots & \ddots & \vdots \\ 0 & \vdots & \vdots & \ddots & \vdots \\ 0 & \vdots & \vdots & \ddots & \vdots \\ 0 & \vdots & \vdots & \ddots & \vdots \\ 0 & \vdots & \vdots & \vdots & \ddots & \vdots \\ 0 & \vdots & \vdots & \vdots & \vdots \\ 0 & \vdots & \vdots & \vdots & \vdots \\ 0 & \vdots & \vdots & \vdots & \vdots \\ 0 & \vdots & \vdots & \vdots & \vdots \\ 0 & \vdots & \vdots & \vdots & \vdots \\ 0 & \vdots & \vdots & \vdots & \vdots \\ 0 & \vdots & \vdots & \vdots & \vdots \\ 0 & \vdots & \vdots & \vdots & \vdots \\ 0 & \vdots & \vdots & \vdots & \vdots \\ 0 & \vdots & \vdots & \vdots & \vdots \\ 0 & \vdots & \vdots & \vdots & \vdots \\ 0 & \vdots & \vdots & \vdots & \vdots \\ 0 & \vdots & \vdots & \vdots & \vdots \\ 0 & \vdots & \vdots & \vdots \\ 0 & \vdots & \vdots & \vdots & \vdots \\ 0 & \vdots & \vdots & \vdots & \vdots \\ 0 & \vdots & \vdots & \vdots & \vdots \\ 0 & \vdots & \vdots & \vdots & \vdots \\ 0 & \vdots & \vdots & \vdots & \vdots \\ 0 & \vdots & \vdots & \vdots & \vdots \\ 0 & \vdots & \vdots & \vdots & \vdots \\ 0 & \vdots &$$

Теорема 12 (приведение матрицы к трапецевидной). Любую матрицу можно превратить в трапецевидную элементарными преобразованиями строк и перестановками столбцов

Доказательство. Пусть A – матрица $m \times n$ Индукция по m

• **База.** m = 1

$$A = (a_{11} \dots a_{1n})$$

- Если $a_{11} = ... = a_{1n} = 0$, то матрица трапецевидная
- Если нет, то переставим столбцы так, что $a_{11} \neq 0$. Получится трапецевидная матрица
- Переход. $m-1 \rightarrow m$
 - Если матрица нулевая, то она трапецевидная
 - Иначе переставляем столбцы так, что $a_{11} \neq 0$

$$\begin{pmatrix} a_{11} & a_{12} & \dots \\ a_{21} & \dots & \dots \\ \vdots & \vdots & \ddots & \vdots \\ a_{n1} & \dots & \dots \end{pmatrix}$$

Вычтем из i-й строки первую, умноженную на $\frac{a_{i1}}{a_{11}}$. Получим нули в первом столбце:

$$A = \begin{pmatrix} a_{11} & a_{12} & \dots & a_{1n} \\ 0 & & & \\ \vdots & & A' & \\ 0 & & & \end{pmatrix}$$

Применяем индукционное предположение к A^\prime

При этом в первой строчке A элементы могут поменяться местами, а в первом столбце остаются нули

14. Ранг матрицы и элементарные преобразования

Определение 22. Ранг матрицы – размер наибольшего ненулевого минора

Обозначение. r_A , rk A, rank A

Теорема 13 (ранг и элементарные преобразования). При элементарных преобразованиях строк и столбцов ранг матрицы не меняется

Доказательство. Пусть мы получили B из A одним преобразованием

Достаточно доказать, что $\operatorname{rk} B \leq \operatorname{rk} A$ (т. к. $B \to A$ аналогично)

Достаточно рассматривать преобразования строк

Пусть $k > \operatorname{rk} A$, то есть все миноры A поряка k равны нулю

Докажем, что минор B порядка k равен нулю (из этого будет следовать, что $k > \operatorname{rk} B$):

• Перестановки строк:

Миноры B – миноры A с точностью до перестановки строк При перестановке строк определитель не меняется

• Умножение строки на число:

$$A = \begin{pmatrix} \dots \\ a_i \\ \dots \end{pmatrix} \to B = \begin{pmatrix} \dots \\ ta_i \\ \dots \end{pmatrix}$$

— Если минор не содержит i-ю строку, он не изменится

- Если содержит, он умножится на $k (0 \cdot k = 0)$
- Прибавление строки, умноженной на число:

$$A = \begin{pmatrix} \dots \\ s_i \\ \dots \\ s_j \\ \dots \end{pmatrix} \to B = \begin{pmatrix} \dots \\ s_i + s_j \\ \dots \\ s_j \end{pmatrix}$$

- Если минор **не** содержит i-ю строку он не изменится
- Если минор содержит *i*-ю и *j*-ю строки он не изменится
- Если минор содержит i-ю строку и **не** содержит j-ю:

$$\begin{vmatrix} . & . & . \\ ... & x_i + tx_j & ... \\ . & . & . \end{vmatrix} = \begin{vmatrix} . & . & . \\ ... & x_i & ... \\ . & . & . \end{vmatrix} + t \cdot \begin{vmatrix} . & . & . \\ ... & x_j & ... \\ . & . & . \end{vmatrix}$$
 Минор A с переставленными строками

Все миноры A равны нулю, значит их сумма равна нулю

15. Ранг как размерность

Теорема 14 (ранг как размерность). Пусть A – матрица $m \times n$ с коэффициентами из поля K Тогда

- 1. Размерность подпространства пространства K^n , порождённого строками A, равна $\mathrm{rk}\,A$
- 2. Размерность подпространства пространства K^m , порождённого столбцами A, равна $\operatorname{rk} A$

Доказательство. Достаточно доказать для строк (т. к. ранг при транспонировании не меняется) Приведём A к трапецевидной форме элементарными преобразованиями строк и перестановками столбнов

Пусть $A \to A'$

По теореме о ранге и элем. преобр., $\operatorname{rk} A = \operatorname{rk} A'$

Пусть U – пространство строк A, U' – пространство строк A'

Докажем, что $\dim U = \dim U'$:

- Если строки ЛНЗ, то при элементарных преобразованиях получаются ЛНЗ
- Если строки ЛЗ, то они остаются ЛЗ

Значит, при элементарных преобразованиях строк размерность не меняется

Пусть $u_i\coloneqq (x_1^{(i)},...,x_n^{(n)}),\quad u_i'=(x_{\sigma(1)}^{(i)},...,x_{\sigma(n)}^{(i)}),$ где σ – перестановка

Рассмотрим ЛК $\sum c_i u_i$ и $\sum c_i u'_i$

$$c_1u_1 + c_2u_2 + \dots = (\dots, c_1x_k^{(1)} + c_1x_k^{(2)}, \dots)$$

$$c_1u_1' + c_2u_2' + \dots = (\dots, c_1x_{\sigma(k)}^{(1)} + c_1x_{\sigma(k)}^{(2)}, \dots)$$

 $\sum c_i u_i$ и $\sum c_i u_i'$ отличаются перестановкой координат, значит, ЛЗ и ЛНЗ наборы соотвестсвуют другу и размерность не меняется

Достаточно доказать теорему для трапецевидной матрицы A'

 $\operatorname{rk} A = r$ из определения трапецевидной матрицы (т. к. во всех бо́льших минорах будет нулевая строка)

Нужно доказать, что $\dim U = r$

Для этого нужно найти r ЛНЗ строк

Очевидно, что это будут первые r строк. Докажем, что они ЛНЗ:

Пусть u_i – i-я строка

$$(0,0,...,0) = c_1u_1 + c_2u_2 + ... + c_nu_n = (c_1a_{11},c_1a_{12} + c_2a_{22},...,c_1a_{1r} + c_2a_{2r} + ... + c_ra_{rr},...)$$

$$\begin{vmatrix} c_1 a_{11} = 0 \\ a_{11} \neq 0 \end{vmatrix} \implies c_1 = 0, \qquad \begin{vmatrix} c_1 a_{12} + c_2 a_{22} = 0 \\ c_2 a_{22} = 0 \end{vmatrix} \implies c_2 = 0, \qquad \begin{vmatrix} c_1 a_{1r} + \dots + c_r a_{rr} = 0 \\ c_r = 0 \end{vmatrix} \implies c_r = 0$$

16. Теорема Кронекера-Капелли

Теорема 15 (Кронекера-Капелли). Система линейных уравнений совместна тогда и только тогда, когда ранг матрицы системы равен рангу расширенной матрицы системы

Доказательство. Приведём матрицу системы к трапецевидной элементарными преобразованиями строк и перестановками столбцов. Очевидно, что система перейдёт в равносильную

$$\begin{pmatrix} a_{11} & a_{12} & \dots & a_{1n} & | & b_1 \\ 0 & \cdot & \cdot & \cdot & | & \cdot \\ \cdot & a_{rr} & \dots & a_{rn} & | & b_r \\ 0 & \cdot & \cdot & 0 & | & b_{r+1} \\ \cdot & \cdot & \cdot & \cdot & | & \cdot \end{pmatrix}$$

Система совместна $\iff \forall i > r \quad b_i = 0$

Пусть A – матрица системы, A' – расширенная матрица системы

$$\operatorname{rk} A = r$$

- ullet Если $\forall i>r$ $b_i=0$, то A' трапецевидная, и $\operatorname{rk} A'=r$
- Если $b_s \neq 0$ при некотором s > r: Возьмём минор:
 - строки: 1, 2, ..., r, s
 - столбцы: 1, 2, ..., r, n+1

Его определитель не равен 0, значит $\operatorname{rk} A' > r$

17. Матричная запись линейного отображения. Изменение матрицы при замене базиса

Определение 23. Пусть U, V – векторные пространства над K. Отображение $f: U \to V$ называется линейным, если:

- 1. $\forall u_1, u_2 \in U \quad f(u_1 + u_2) = f(u_1) + f(u_2)$
- 2. $\forall u \in U, k \in K \quad f(ku) = kf(u)$

Замечание. Линейное отображение $f:U\to U$ иногда называют линейным преобразованием

Определение 24. Пусть U, V – конечномерные, $e_1, ..., e_n$ – базис $U, g_1, ..., g_m$ – базис V f – линейное отображение $U \to V$

Матрицей f в данных базисах называется матрица, в i-м столбце которой записаны координаты $f(e_i)$ в базисе $g_1, ..., g_m$, то есть

$$\begin{pmatrix} a_{11} & \dots & a_{1m} \\ \cdot & \cdot & \cdot \\ a_{m1} & \dots & a_{mn} \end{pmatrix}$$

$$f(e_i) = \sum_{k=1}^{m} a_{ki} g_k$$

Лемма 3 (матричная запись линейного оторажения). U,V – конечномерные, $e_1,...,e_n$ – базис U $g_1,...,g_m$ – базис V, $f:U\to V$ – линейное

1. Пусть A – матрица f в данных базисах, $u\in U, v\in V$, такие, что f(u)=v, X – столбец координат u в базисе $g_1,...,g_m$ Y – столбец координат v в базисе $g_1,...,g_m$ Тогда Y=AX

Доказательство. Пусть
$$X=\begin{pmatrix}x_1\\ \cdot\\ \cdot\\ x_n\end{pmatrix}, \qquad Y=\begin{pmatrix}y_1\\ \cdot\\ \cdot\\ \cdot\\ y_m\end{pmatrix}$$

$$v = f(u) = f(x_1e_1 + \ldots + x_ne_n) \underset{\text{линейность}}{=} x_1f(e_1) + \ldots + x_nf(e_n) \underset{\text{по опр. матрицы отображения}}{=} = x_1(a_{11}g_1 + \ldots + a_{m1}g_m) + \ldots + x_i(a_{1i}g_1 + \ldots + a_{mi}g_m) + \ldots + x_n(a_{1n}g_1 + \ldots + a_{mn}g_m) \underset{\text{перегруппируем}}{=} = (a_{11}x_1 + \ldots + a_{i1}x_i + \ldots + a_{1m}x_n)g_1 + \ldots + (a_{mn}x_1 + \ldots + a_{mi}x_i + \ldots + a_{mn}x_n)g_m$$

С другой стороны, $v = y_1g_1 + ... + y_ng_n$

$$y_1 = a_{11}x_1 + \dots + a_{1n}x_n + \dots + a_{1n}x_m, \qquad y_m = a_{m1}x_1 + \dots + a_{mn}x_n$$

2. Пусть A – такая матрица, что $\forall u,v:f(u)=v,$ и их столбцов координат X,Y выполнено Y=AX, то A – матрица f в этих базисах

Доказательство. Будем рассматривать вместо u базисные векторы:

$$u := e_i, \qquad X = \begin{pmatrix} 0 \\ \cdot \\ 1 \\ \cdot \\ 0 \end{pmatrix}$$

$$Y = AX = \begin{pmatrix} \dots & a_{i1} & \dots \\ & \cdot & \cdot & \cdot \\ \dots & a_{in} & \dots \end{pmatrix} \cdot \begin{pmatrix} 0 \\ \cdot \\ 1 \\ \cdot \\ 0 \end{pmatrix} = \begin{pmatrix} a_{i1} \\ \cdot \\ \cdot \\ \cdot \\ a_{in} \end{pmatrix}$$

Получили, чтоY-i-й столбец A

С другой стороны, Y – столбец координат $f(u) = f(e_i)$ в базисе $g_1, ..., g_m$

Теорема 16 (Изменение матрицы при замене базисов). U,V – конечномерные $f:U\to V$ – линейное, e_i,e_i' – базисы U, g_i,g_i' – базисы V A – матрица f в базисах $e_i,g_i,$ A' – матрица f в базисах e_i',g_i' Тогда $A'=C_{g_i\to g_i'}^{-1}\cdot A\cdot C_{e_i\to e_i'}$

Доказательство. Пусть $u \in U, \quad v \in V, \qquad f(u) = v$

X, X' – столбцы координат u в e_i, e'_i Y, Y' – столбцы координат v в g_i, g'_i

$$X = C_{e_i \to e'_i} X' \tag{29}$$

$$Y' = C_{g'_i \to g_i} Y = C_{q_i \to q'_i}^{-1} Y \tag{30}$$

По первому утверждению леммы:

$$Y = AX (31)$$

Проверим, что $Y' = \left(C_{g_i \to g_i'}^{-1} \cdot A \cdot C_{e_i \to e_i'}\right) X'$. Из этого, по второму утверждению леммы, будет следовать утверждение теоремы

$$C_{g_i \to g_i'}^{-1} \cdot A \cdot C_{e_i \to e_i'} \cdot X' \underset{(29)}{=} C_{g_i \to g_i'}^{-1} \cdot A \cdot X \underset{(31)}{=} C_{g_i \to g_i'}^{-1} \cdot Y \underset{(30)}{=} Y'$$

18. Свойства изоморфизма

Определение 25. $f: U \to V$ называется изоморфизмом, если

- 1. f линейно
- 2. f биекция

Если существует изоморфизм $f:U\to V$, то пространства называются изоморфными

Обозначение. $U \cong V \; (U \simeq V, U \sim V)$

Свойства.

1. Если f – изоморфизм, то $\exists f^{-1}$ и f^{-1} – изоморфизм

Доказательство. f^{-1} существует, так как f^{-1} – биекция

Докажем линейность:

Возьмём $u_1,u_2\in U,\quad v_1\coloneqq f(u_1),\quad v_2\coloneqq f(u_2)$

$$v_1 + v_2 = f(u_1) + f(u_2) = f(u_1 + u_2)$$

$$f^{-1}(v_1 + v_2) = f^{-1}(f(u_1) + f(u_2)) = f^{-1}(f(u_1 + u_2)) = u_1 + u_2 = f^{-1}(v_1) + f^{-1}(v_2)$$

Умножение на число – аналогично

2. Если $f:U \to V$ и $g:V \to W$ – изоморфизмы, то $g \circ f:U \to W$ – изоморфизм

Доказательство. Композиция биекций – биекция

Композиция линейных – линейное

Свойства. $f: U \to V$ – линейное отображение. Тогда:

1. f – инъекция \iff $\ker f = \{0\}$

Доказательство.

$$\left. egin{aligned} f(0) = 0 \\ f - \mbox{инъекция} \end{aligned}
ight. \implies \forall u
eq 0 \quad f(u)
eq 0$$

- \Leftarrow Пусть $f(u_1) = f(u_2) \implies f(u_1 u_2) = f(u_1) f(u_2) = 0 \implies u_1 u_2 \in \ker f = \{0\} \implies u_1 u_2 = 0 \implies u_1 = u_2$
- 2. $\ker f = \{0\} \implies f$ изоморфизм $U \to \operatorname{Im} f$

Доказательство. f – инъекция (по пункту 1)

f – сюръекция (по определению $\mathrm{Im}\, f)$ Значит, f – биекция

f линейно. Значит, f – изоморфизм

Свойства. Пусть $f: U \to V$ — изоморфизм. Тогда:

1. $e_1, ..., e_k$ — ЛНЗ $\iff f(e_1), ..., f(e_k)$ — ЛНЗ

Доказательство. f^{-1} — изоморфизм. Значит, дсотаточно доказать \iff То есть, что, если $e_1, ..., e_k$ ЛЗ, то $f(e_1), ..., f(e_k)$ ЛЗ

Пусть $a_1e_1 + ... + a_ke_k = 0$ и не все a_i равны нулю

Тогда $a_1f(e_1) + ... + a_kf(e_k) = f(0) = 0 \implies f(e_i)$ — ЛЗ

2. $e_1, ..., e_k$ — базис $U \implies f(e_1), ..., f(e_k)$ — базис VДоказательство. Базис — максимальный ЛНЗ

По пункту 1, $f(e_1), ..., f(e_k)$ тоже ЛНЗ

По пункту 1, любой больший набор будет ЛЗ

19. Лемма о выделении ядра прямым слагаемым. Размерности ядра и образа линейного отображения

Лемма 4 (выделение ядра прямым сложением). Пусть U, V – конечномерны, $f: U \to V$ линейно Тогда $\exists \, W$ – подпространство U, такое что:

1.
$$W\cong \operatorname{Im} f, \qquad f\bigg|_W o \operatorname{Im} f$$
 — изоморфизм

2.
$$\ker f \oplus W = U$$

Доказательство. Пусть $g_1,...,g_k \in V, \quad g_1,...,g_k$ – базис ${\rm Im}\, f$

$$g_i \in \operatorname{Im} f \implies \exists e_i : f(e_i) = g_i, \quad e_i \in U$$

Положим $W=\langle e_1,...,e_k\rangle$ Докажем, что W подходит:

- 1. Пусть $f_1:W \to \operatorname{Im} f, \quad f_1=figg|_W$. Докажем, что f_1 изоморфизм:
 - Проверим сюръективность: Пусть $v \in \text{Im } f \implies \exists a_i : v = a_1g_1 + ... + a_kg_k \implies v = a_1f(e_1) + ... + a_kf(e_k) = f_1(a_1e_1 + ... + a_ke_k)$
 - Проверим инъективность: Достаточно проверить, что в 0 переходит только 0 Пусть $w \in W$, $f_1(w) = 0$

$$w = a_1 e_1 + \dots + a_k e_k$$

$$f_1(w) = a_1 f(e_1) + \ldots + a_k f(e_k) = a_1 g_1 + \ldots + a_k g_k \xrightarrow[g_i \text{ JIH3}]{} \forall i \quad a_i = 0 \implies w = 0 \cdot e_1 + \ldots + 0 \cdot e_k = 0$$

2. Проверим, что $\ker f + W = U$:

Пусть $u \in U$

Пусть $f(u) = v \in \text{Im } f$

Пусть $x \in W: f(x) = v$ (такой x существует, так как $f\Big|_{W}$ — изоморфизм)

Положим y = u - x

Тогда $f(y) = f(u) - f(x) = v - v = 0 \implies y \in \ker f$

3. Докажем, что
$$U=\ker f\oplus W$$
: Достаточно доказать, что $x+y=0 \Longrightarrow x=y=0$
$$x\in\ker f \atop y\in W$$

$$x\in\ker f \Longrightarrow f(y)=f(-x)=-f(x)=0$$

$$f\bigg|_{W} -\text{инъекция} \atop W$$

$$f(y)=0$$

$$\Rightarrow y=0 \Longrightarrow x=0$$

Теорема 17 (размерность ядра и образа). Пусть U конечномерно, $f:U\to V$ линейно Тогда $\dim\ker f+\dim\operatorname{Im} f=\dim U$

Доказательство. Положим $W:W\cong {\rm Im}\, f,\quad U=\ker f\oplus W$ По свойству прямой суммы, $\dim U=\dim\ker f+\dim W\implies \dim U=\dim\ker f+\dim\operatorname{Im} f$

20. Каноническая форма матрицы отображения. Образ линейного отображения и ранг матрицы

Теорема 18 (каноническая форма матрицы линейного отображения). Пусть U,V конечномерны, $f:U\to V$ линейно

Тогда существуют базисы u, v, в которых матрица f имеет вид

$$\begin{pmatrix} E & 0 \\ 0 & 0 \end{pmatrix} = \begin{pmatrix} 1 & 0 & 0 & \dots & 0 \\ 0 & 1 & 0 & \dots & 0 \\ \vdots & \vdots & \ddots & \vdots & 0 \\ 0 & 0 & 0 & 0 & 0 \end{pmatrix}$$

Доказательство. $U=\ker f\oplus W, \qquad f\bigg|_{W}$ – изоморфизм из W в $\operatorname{Im} f$

Пусть $e_1, ..., e_k$ – базис $W, e_{k+1}, ..., e_n$ – базис $\ker f$

Тогда $e_1,...,e_n$ – базис U (по свойству прямой суммы) $f(e_1),...,f(e_k)$ – базис $\operatorname{Im} f$ (по свойству изоморфизма)

 $f(e_1), ..., f(e_k)$ ЛНЗ

Положим $g_1 = f(e_1), ..., g_k = f(e_k)$

Дополним $g_1,...,g_k$ до базиса V

Пусть $g_1,...,g_m$ – базис V

Докажем, что базисы $e_1,...,e_n$ и $g_1,...,g_m$ подходят

• Пусть $i \leq k$

$$f(e_1) = g_i = 0 \cdot g_1 + \dots + 1 \cdot g_i + \dots + 0 \cdot g_k + \dots$$

• Пусть i > k

$$e_i \in \ker f \implies f(e_i) = 0 = 0 \cdot q_1 + \dots + 0 \cdot q_m$$

Следствие. Пусть A – матрица $n \times n$ с коэффициентами из поля K Тогда $\exists \, C, D$ – обратимые матрицы $n \times n$, такие, что

$$C^{-1}AD = \begin{pmatrix} E & 0 \\ 0 & 0 \end{pmatrix}$$

Доказательство. Пусть $U=K^n, \qquad e_1,...,e_n$ – базис $U, \qquad f:A$ – матрица f в $e_1,...,e_n$

Пусть $e'_1,...,e'_n, e''_1,...,e''_n$ – базисы U, в которых f имеет матрицу

$$\begin{pmatrix} E & 0 \\ 0 & 0 \end{pmatrix} \implies C^{-1}AD = \begin{pmatrix} E & 0 \\ 0 & 0 \end{pmatrix}$$

где C, D — матрицы перехода

Теорема 19 (линейное отображение и ранг матрицы). Пусть U,V конечномерны, $f:U\to V$ линейно, A — матрица f в некоторых базисах

Тогда $\dim \operatorname{Im} f = \operatorname{rk} A$

Доказательство. Пусть $e_1,...,e_n$ – базис $U,\,g_1,...,g_m$ – базис V

Пусть $w_i = f(e_i)$

Тогда Im $f = \langle w_1, ..., w_n \rangle$, т. к.

$$\forall v \in \text{Im } f \ \exists \ u \in U : f(u) = v \\ \exists \ a_i : u = a_1 e_1 + \dots + a_k e_k$$
 $\Longrightarrow v = a_1 f(e_1) + \dots + a_k f(e_k) = a_1 w_1 + \dots + a_k w_k$

Пусть
$$X_j = \begin{pmatrix} a_{1j} \\ \cdot \\ \cdot \\ \cdot \\ a_{mj} \end{pmatrix}$$
 — j -й столбец матрицы f

Тогда $w_j = a_{1j}g_1 + ... + a_{mj}g_m$

$$\operatorname{rk} A = \dim \langle X_1, ..., X_n \rangle, \qquad \dim f = \dim \langle w_1, ..., w_n \rangle$$

Из любой порождающей системы можно выбрать базис $\implies \dim \langle w_1,...,w_n \rangle$ равна максимальному количеству ЛНЗ векторов из $w_1,...,w_n$

Аналогично для $X_1, ..., X_n$

Пусть $v = c_1 w_1 + ... + c_n w_n$, X – столбец координат базиса

Тогда $X = c_1 X_1 + ... + c_n X_n$

$$v = c_1 w_1 + \dots + c_n w_n = c_1 (a_{11} g_1 + \dots + a_{i1} g_1 + \dots + a_{m1} g_m) + \dots + c_n (a_{1n} g_1 + \dots + a_{in} g_i + \dots + a_{mn} g_m) = (c_1 a_{11} + \dots + c_n a_{1n} g_1 + \dots + (c_1 a_{i1} + \dots + c_n a_{1n}) g_i + \dots$$

$$v = 0 \iff x = 0$$

 $c_1 w_1 = \dots + c_n w_n = 0 \iff c_1 x_1 + \dots + c_n x_n = 0$

21. Действия над линейными отображениями, матрицы полученных линейных отображений

Определение 26. Пусть $f,g:U\to V,\quad k$ – скаляр

Отображением f+g называется такое отображение, что (f+g)(u)=f(u)+g(u)

Отображением kf называется такое отображение, что $(kf)(u) = k \cdot f(u)$

Замечание. f+g, kf линейны

Определение 27. Произведением $f:V\to W$ и $g:U\to V$ называется $fg=f\circ g:U\to V$ В частности, $f^n=\underbrace{f\circ f\circ ...\circ f}_n:U\to U$

Замечание. fg, f^n линейны

Лемма 5 (действия над отображением и матрицей).

1. Пусть U,V конечномерны, e_i,e_i' – их базисы, $f,g:U\to V$ линейны, A,B – матрицы f и g,a,b – скаляры

Тогда aA + bB – матрица af + bg

Доказательство. Пусть
$$u \in U$$
, X – столбец координат u в e_i , Y_1, Y_2 – столбцы координат $f(u), g(u)$ в $e_i \implies Y_1 = AX$, $Y_2 = BX \implies aY_1 + bY_2 = aAX + bBX = (aA + bB)X$ $(af + bg)(u) = af(u) + bg(u) \implies$ столбец координат $(af + bg)(u) = aY_1 + bY_2 = (aA + bB)X$

2. Пусть U,V,W конечномерны, e_i,e_i',e_i'' – их базисы, $f:V\to W,g:U\to V$ линейны, A,B – матрицы f,g

 \Box Тогда AB — матрица fg

```
Доказательство. u\in U, w\in W: (fg)(u)=w X,Z – столбцы координат Пусть v=g(u), \quad Y – столбец координат V\implies Y=BX, \ Z=AY\implies Z=A(BX)=(AB)X
```

22. Пространство линейных отображений

Теорема 20 (пространство линейных отображений). U, V – векторные пространства над полем K. Тогда:

- 1. Множество линейных отображений образует векторное пространство над K
- 2. Если $\dim U = m$, $\dim V = n$, то пространство линейных отображений изоморфна пространству матриц размера $m \times n$, его размерность равна mn