

Министерство науки и высшего образования Российской

Федерации

Федеральное государственное бюджетное образовательное учреждение высшего образования «Московский государственный технический университет имени Н.Э. Баумана (национальный исследовательский

университет)» (МГТУ им. Н.Э. Баумана)

Лабораторная Работа №1 «Длинная арифметика»

Студент	Шахнович Дмі	итрий Сергеевич	
Группа	ИУ7-22Б		
Название	предприятия НУІ	СИУ МГТУ им. Н. Э. Баумана	
Студент		<u>Шахнович Д.С.</u>	
Опе	нка		

Описание условия задачи

Смоделировать операцию умножения действительного числа на действительное число в форме \pm m.n E \pm K, где суммарная длина мантиссы первого сомножителя (m+n) - до 35 значащих цифр, второго — до 40 значащих цифр, а величина порядка K - до 5 цифр. Результат выдать в форме \pm 0.m1 E \pm K1, где m1 — до 40 значащих цифр, а K1 - до 5 цифр.

Техническое задание

Исходные данные:

На вход программе подаются два действительных числа в формате [+-]?m.nE[+-]?k в отдельных строках, где в первом числе длина части до е не превышает 35 значащих цифр без учета точки и знаков + и -, а во втором случае – до 40 значащих цифр. В обоих случаях длина части после k не превышает 5 цифр без учета знаков + или -.

Выходные данные:

Программа выдает действительное число, полученное перемножением полученных на входе чисел в формате [+-]0.mE[+-]k, где длина m не превышает 40 цифр, а длина k - 5 цифр.

Описание задания:

Перемножение двух действительных чисел, превышающих размер стандартных типов данных в языке C.

Способы обращения к программе:

Запуск программы через терминал, затем по приглашению ввести первое число и второе.

Аварийные ситуации:

- 1) Недопустимые символы в числе или некорректный формат числа. Код ошибки 101;
- 2) Превышение размера мантиссы учисла(>35 значащих цифр для первого числа и >40 для второго). Код ошибки 102;
- 3) Превышение размера порядка у числа(>5 значащих цифр). Код ошибки 103;
- 4) Во введенном числе отсутствует мантисса. Код ошибки 104;
- 5) Ошибка ввода/вывода. Код ошибка 105;
- 6) Превышение размера вводимой строки. Код ошибки 106;
- 7) Ввод пустой строки. Код ошибки 107;
- 8) Переполнение размера порядка для результата умножения(>5 значащих цифр). Код ошибки 108;

Описание структур данных

```
struct long_float
{
    char mant_sign;
    int mantiss[MAX_MANTISS_SIZE];
    int order;
    size_t size;
};
```

Структура первого числа для умножения

- Mant_sign Знак мантиссы, если 1 то число положительное, иначе отрицательное;
- Mantiss Мантисса числа, хранится в виде массива целых, при этом в каждом из целых хранится одна цифра числа.

- Order Порядок числа.
- Size нынешний размер мантисс, то есть количество значащих цифр в норм. форме

Описание алгоритма

- 1. Считать строки с числами из аргументов командной строки;
- 2. Перевести строки в структуры длинного числа;
- 3. Занулить все значения в переменной результата;
- 4. Провести операцию умножения чисел по следующему алгоритму:
 - а. Создать зануленный массив целых двойного размера для сохранения результата умножения;
 - b. Поочередно перемножить цифры мантиссы двух чисел в столбик (Результат умножения i-й цифры 1-го числа на j-ю второго записывается в i+j-ю результирующего);
 - с. Если массив получился длиннее максимальной длины мантиссы, то округлить ее, сделав сдвиг значений массива влево, на разницу в размере;
 - d. Сложить порядки чисел и вычесть из суммы единицу, это порядок результат умножения;
 - е. Провести над знаками мантисс чисел НЕ-исключаещее-ИЛИ знак результата;
 - f. Записать все значения в переменную результата;
- 5. Проверить длину получившегося порядка;
- 6. Вывести получившееся число.

Тестовые данные

Позитивные тесты					
No	Описание	Вход	Выход		
1	Простое число без точки	1231 1	+0.1231E+4		
	ие				
2	Простое число без точки	1231E10 1	+0.1231E+14		
3	Простое число без е	1234.123 1	+0.1234123E+4		
4	Простое число	1234.123E-4 1	+0.1234123E+0		
5	Есть пустые нули до	12300E2 1	+0.123E+7		
	точки				
6	Есть пустые нули после	123120.13000E1 1	+0.12312013E+7		
	точки				
7	Есть пустые нули и до, и	12341000.000E2 1	+0.12341E+10		
	после точки				
8	Нули перед числом	000123.21E1 1	+0.12321E+4		
9	+ Перед числом	+123.21E21 1	+0.12321E+24		
10	- Перед числом	-123.21E21 1	-0.12321E+24		
11	Пустые нули перед	123.123E00123 1	+0.123123E+126		
	порядком				
12	- Перед порядком	1.2E-31 1	+0.12E-30		
13	Умножение на 2	1.2E1 2	+0.24E+2		
14	Умножение на 10	1.2E+1 10	+0.12E+3		
15	Умножение	1.2E3	+0.1228945632E+60		
	действительных чисел	102.412136E54			
16	Умножение чисел 35	11E1 112E1	+0.1234567901234567901		
	знаков на 40		234567901234567888889		
			E+51		

17	Умножение чисел разных	-123.123	-0.15170354199E+37
	знаков	123.213E32	
18	Умножение	-123.123	+0.15170354199E+37
	отрицательных чисел	-123.213E32	
19	Умножение на ноль	1	+0.0E+0
		0.	
20	Ноль на число	.0E123	+0.0E+0
		123.1213E2314	
21	Число << 1 на число	0.0000033	+0.99E-5
		3	
22	Умножение целых чисел	12	+0.48E+2
	с сохранением кол-ва	4	
	регистров		
23	Умножение целых чисел	12	+0.108E+3
	с увеличением кол-ва	9	
	регистров		
24	Число с большим	12000000.00000001	+0.10800000000000009E
	количеством нулей на	E0	+9
	целое	9	
Her	ативные тесты		
1	Пустой ввод		Введена пустая строка.
2	Превышение длины	11111111111111111	Слишком длинный
	мантиссы	11111111111111111	порядок.
		1111.1 1	
3	Превышение длины	1.2E111111 1	Слишком длинный
	порядка		порядок.
4	Буквы вместо числа	sqe 1	Некорректный формат
			числа.

5	Буквы в числе	1sa.21 1	Некорректный формат
			числа.
6	Две точки в числе	12.123.12E12 1	Некорректный формат
			числа.
7	Точка в порядке	12.2E12.2 1	Некорректный формат
			числа.
8	Нет мантиссы	E123 1	Нет мантиссы у числа.
9	Выход за диапазон рез.	1E9999 1E2	Слишком большой
	порядка		порядок у
			результирующего числа.
10	Число с большим	11111111111111111	Слишком большая
	количеством нулей на	1111111111111.1111	суммарная длина строки
	целое	11111111111111111	
		1111111111111E11	
		111	
		112	

Ответы на вопросы

- 1. Каков возможный диапазон чисел, представляемых в ПК? Диапазон чисел зависит от выбранного типа данных и разрядности процессора, например для 64-разрядного максимально возможное значение беззнакового числа равно 18 446 744 073 709 551 615.
- 2. Какова возможная точность представления чисел, чем она определяется?
 - Точность числа определяется количеством памяти, выделяемой под её мантиссу, например для типа double количество выделяемой памяти равно 52 бита, что позволяет хранить мантиссу до 4503599627370496.
- 3. Какие стандартные операции возможны над числами? Зависит от типа переменной, например над целым типом возможны операции сравнения, сложения, вычитания, деления, умножения, взятия остатка, бинарные сдвиги.
- 4. Какой тип данных может выбрать программист, если обрабатываемые числа превышают возможный диапазон представления чисел в ПК?
 - В большинстве языков не реализованы структуры для чисел превышающих диапазон представления в пк, поэтому для их обработки можно использовать либо массив символов, либо самописные конструкции, например структуры в СИ
- 5. Как можно осуществить операции над числами, выходящими за рамки машинного представления?
 - Так как нет стандартных структур для чисел превышающих представление в пк, то и стандартные операции над ними также отсутствуют, поэтому программисту вручную придется прописывать их, например методом деления или умножения столбиком.

Выводы

В ходе работы я научился методам работы с числами, выходящими за стандартный диапазон значений и реализовал свою вариацию длинной арифметики.