M1 - Statistiques bayésiennes

Mini-test 1, le 3/02/2017

Durée 30mn. Les documents ne sont pas autorisés.

I. On se place dans un cadre fréquentiste. On dispose de données X_1, \ldots, X_n supposées indépendantes identiquement distribuées de loi P_{θ} sur \mathbb{R} , avec θ inconnu fixé dans $\Theta \subset \mathbb{R}$. On note $\mathcal{P} = \{P_{\theta}, \ \theta \in \Theta\}$.

- 1. Définir les notions suivantes [1 ligne par réponse]
 - (a) identifiabilité du modèle \mathcal{P}
 - (b) estimateur
- 2. Rappeler l'inégalité de Tchébychev pour une variable aléatoire Y.
- 3. Dans le cas où $P_{\theta} = \mathcal{N}(\theta, 1)$, avec $\theta \in \Theta = \mathbb{R}$,
 - (a) Calculer le risque quadratique de l'estimateur $\overline{X} = \frac{1}{n} \sum_{i=1}^{n} X_i$ au point $\theta \in \Theta$.
 - (b) En déduire un intervalle de confiance pour θ de niveau de confiance (au moins) 1α . On pourra utiliser que $P[|\mathcal{N}(0,1)| > t] \leq e^{-t^2}$, pour tout $t \geq 0$.

II. On se place dans un cadre bayésien. On pose $\mathcal{P} = \{P_{\theta}, \ \theta \in \Theta = \mathbb{R}\}$ où les P_{θ} sont des lois sur \mathbb{R} . On se donne une loi a priori Π sur $\Theta = \mathbb{R}$. On suppose que P_{θ} ainsi que Π ont des densités $f_{\theta}(\cdot)$ et $\pi(\cdot)$ par rapport à la mesure de Lebesgue sur \mathbb{R} , soit

$$dP_{\theta}(x) = f_{\theta}(x)dx, \quad d\Pi(\theta) = \pi(\theta)d\theta.$$

- 1. On dispose d'une observation $X=X_1$. Donner dans le cadre bayésien
 - (a) la loi de θ
 - (b) la loi de $X \mid \theta$
 - (c) la loi a posteriori. On donnera pour cela l'expression de sa densité.
- 2. On dispose maintenant de n observations et on pose $X = (X_1, ..., X_n)$ et $\mathcal{P} = \{P_{\theta}^{\otimes n}, \ \theta \in \Theta = \mathbb{R}\}$. Répondre aux mêmes questions que pour 1.
- 3. Définir la notion d'intervalle de crédibilité de niveau $1-\alpha$ pour la loi a posteriori.
- 4. Dans le cadre de la question 2. avec n observations, on pose $P_{\theta} = \mathcal{N}(\theta, 1)$ et $\Pi = \mathcal{N}(0, \sigma^2)$, pour $\sigma^2 > 0$ fixé.
 - (a) Déterminer la loi a posteriori.
 - (b) En déduire l'expression de la moyenne a posteriori et en proposer une interprétation.
 - (c) Construire un intervalle de crédibilité au niveau $1-\alpha$ pour l'exemple considéré. Comment varie sa taille en fonction de n, α et σ^2 ? Commenter.