Thyroid Cancer Risk Prediction Project Report

Project Objective:

To build a machine learning model that predicts the risk of thyroid cancer based on various health and demographic features. The goal is to support early screening and risk assessment.

1. Data Understanding & Preprocessing

Dataset:

- Dataset Used: thyroid cancer risk data.csv
- Rows & Columns: $\sim 212691 \text{ rows} \times 15 \text{ columns}$
- Features:
 - o Age
 - o Gender
 - o Country
 - o Ethnicity
 - o Family History
 - o Radiation Exposure
 - o Iodine Deficiency
 - o Smoking
 - Obesity
 - o Diabetes
 - o TSH Level
 - o T3 Level
 - o T4_Level
 - o Nodule Size
- Target Variable: Diagnosis

Preprocessing Steps:

- Removed ID and target leakage columns
- Handled missing and duplicate values
- Encoded:
 - o Binary categorical features using LabelEncoder
 - o Multiclass categorical features like Country, Ethnicity using OneHotEncoder

2. Exploratory Data Analysis (EDA)

- Value counts and distributions were inspected for each feature
- Highlighted imbalance in target labels
- Diagnosis class was found to be skewed, prompting sampling strategies

3. Handling Class Imbalance

- Applied:
 - o Undersampling: To balance the dataset by reducing majority class
 - o **Oversampling (SMOTE)**: To synthetically increase minority class samples

4. Feature Scaling

- Applied MinMaxScaler to normalize all numerical features to the [0, 1] range.
- Essential for SVM, KNN models to perform fairly across features.

5. Model Training & Evaluation

Algorithms Used:

- Logistic Regression
- Decision Tree
- Random Forest
- XGBoost

Evaluation Metrics:

- Accuracy
- Precision
- Recall
- F1-score
- Confusion Matrix

Findings:

• XGBoost and Random Forest consistently showed better performance

Model	Accuracy	Precision	Recall	F1-score
Logistic Regression	76.2%	80%	68%	73.6%
Decision Tree	78.1%	83%	70%	76.0%
Random Forest	80.0%	88%	69%	77.4%
XGBoost	80.4%	91%	67%	77.0%

6. Final Model

Model Selected: XGBoostClassifier

- Trained on balanced data (after applying under/oversampling)
- Parameters used:
 - o n estimators=200
 - o learning rate=0.1
 - o max depth=10
 - o gamma=1
 - o subsample=0.8
 - o colsample bytree=0.8
 - o use label encoder=False
 - o eval metric='logloss'
- Delivered strong performance on both train and test datasets
- Chosen for its robustness, scalability, and interpretability

7. Model Deployment

Final Model:

- XGBoostClassifier with customized parameters
- Model and preprocessors saved together using pickle as model_and_encoders.pkl
- Includes:
 - The trained model
 - LabelEncoders for binary features
 - OneHotEncoders for multiclass features
 - o MinMaxScaler for feature scaling

Streamlit App (thyroid app.py):

- Interactive web interface for thyroid cancer risk prediction
- Inputs taken via sliders and dropdowns:
 - Age, Gender, Country, Ethnicity, Family History, Radiation Exposure, Iodine Deficiency, Smoking, Obesity, Diabetes, TSH, T3, T4, Nodule Size

- Uses pre-loaded encoders and scaler for consistent preprocessing
- Predicts: High Risk or Low Risk of Thyroid Cancer