	UOC	3 Studen	t ID				_ Cours	e Title			Lecturer
		···Within	·····tl	ne	answer·	····inva	alid·····	··sealing	·····line·····	·····	
			(Glasgo	ow Co	llege,	UEST	ГС			
			Physi	ics I –	–Sem	ester :	2, 201	7 - 20	18		
					Final	Exar	n				
				10:00-	-12:00,	10th Ju	ıly, 201	.8			
otice: Please make sure t	hat both yo	ur UE	ESTC	and U	Jo G S	tuden	t IDs	are w	ritten on	the top of	f every sheet. This
amination is closed-book	x. The use of	f a ca	lculat	or is a	allowe	d, but	t the u	ise of	a cell pho	one is not	permitted. All scratch
iper must be adequately	labeled. Un	less ir	ıdicat	ed otl	herwis	se, ans	swers	must	be deriv	ed or expl	ained clearly. Please write
ithin the space given belo	ow on the ar	ıswer	sheet	S.							
ll questions are compulso	orv. There a	re 7 d	nuesti	ons ai	nd a n	ıaxim	um of	f 100 ı	marks in	total.	
•	•		140501								
he following table is for g			_	2		_			77. ()		1
	Question	1	2	3	4	5	6	7	Total	grader	
	Score										
											•
Score			(2)4	c 10	•						
Question 1 Multi	-		•	-	Í	mont a	an an an	wan 4ha	. awaatiana		
Choose the <u>ONE</u>			_						-		cle, which has a mass <i>m</i> and
horizontal velocity v.		,	Ţ.	Ţ.						a og a pare	<i>O</i>
A) Keep moving in t					•		_				Ą
	ne moment.										//
B) Stop moving at the											'
B) Stop moving at th C) Rebound back to		directi	on.								// m, l
, 1	the opposite		on.								m, l $m \downarrow v$
C) Rebound back to D) Stick on the rod a	the opposite	n it.		nless. l	horizoi	ntal sur	rface v	vith an	nplitude o	f 6.0 cm has	m v
C) Rebound back to D) Stick on the rod a) 2. A block–spring sys	the opposite and move with	n it. g on a	frictio						-		
C) Rebound back to D) Stick on the rod a) 2. A block–spring sys	the opposite and move with stem vibrating	n it. g on a	frictio						-		energy of 12 J. If the block

B) They are sinusoidal in nature.

D) They require a medium through which to propagate.

B) 30dB;

E) The wave speed depends on the properties of the medium in which they travel.

C) 50dB;

) 4. Sound from a loudspeaker is measured to be 60dB at a distance of 3m. What is the sound level measured at a distance 6m?

E) 57dB.

D) 54dB;

C) They carry energy.

A) 15dB;

(

Page 1 Total 5

UESTC Student ID		UOG Student ID		Course Title	Lecturer
		·····Within·····	the·····answer······	invalid······l	ine······
() 5. What (combination of ont	ical nhenomena ca	uses the hright cal	ored natterns someti	mes seen on wet streets covered with a layer of
	ose the best answer	-	uses the bright con	ored patterns someti	mes seen on wet streets covered with a layer of
	action and polarize				
•	ference and diffrac				
,	rization and reflect				
,	action and diffract				
,	ection and interfere				
() 6. Two sp	oaceships move wit	h same speed 0.80c	relative to the Ea	rth, but in opposite d	irections. What is the speed of one ship relative
to the other?					
A) 0;	B) 0.80c;	C) 0.976c;	D) 0.994c;	E) 1.60c.	
Score Que	stion 2 Fill-in Ques	tions (4×5=20 poin	nts)		
1. A small ball (ma	ass m) connected b	y a rope is moving	on frictionless tal	ble circularly with u	niform ω and r . Then one pulls the rope slowly
through the center	. When the radius	of circular motion o	changes from r to	r/3, the work done on	the ball is
θ	m, l				r F
į					
į	•				
2. A uniform thin 1	rod can pivot abou	t its end. If we trea	the device as a pl	hysical pendulum, its	${\tt period}\ T\ {\tt equals}\underline{\hspace{1.5cm}}.$
3. A traveling wav	e is shown by y=0.1	$\cos(6x + 80t + \pi/3)$	(SI). Then its way	elength is	, wave velocity is
4. In an experimen	t of Doppler Effect	t, the detected frequ	iency is greater th	an the emitted frequ	ency.
(a) If the observer	stays at rest and so	ound source moves,	what is the movin	ng direction of sound	source?
(b) If the observer	moves and sound s	source stays at rest,	what is the movin	ng direction of observ	er?
←			41).	9	
-4(n)		· r —		K	
(a	n)		(b)	X	
5. List three metho	ods which can be us	sed to obtain linear	polarized light fro	om unpolarized natu	al light.
			-	_	
		,			
		•			
		-			
		•			

UESTC Student ID	UOG Student ID	Course Title	Lecturer
	······Within······the·····answer·····invali	d······sealing······line······	

Score

Question 3 (12 points)

A 50g mass is hanging on a spring of k=80N/m vertically. It moves with an initial velocity $v_0=1.6$ m/s and initial displacement $x_0=0.03$ m from the equilibrium position. (a) Determine the motional equation; (b) Consider the existence of air friction, the motion becomes a damped oscillation. What is the difference between damped oscillation and no damping oscillation (simple harmonic motion)?

Score

Question4 (16 points)

Suppose two linear waves of equal amplitude and frequency have a phase difference ϕ as they travel in the same medium.

They can be represented by $y_1 = A\cos(\omega t - kx)$, $y_2 = A\sin(\omega t - kx + \phi)$.

- (a) If y is the superposition of these two waves, write out the wave function y(x,t).
- (b) Does y(x,t) represent a standing wave? If not, find another wave y_3 which can make a standing wave with y_1 .
- (c) What is the minimum distance between two nodes of standing wave in case (b)?

UESTC Student ID	UOG Student ID	Course Title	Lecturer_			
			·			
······Within······the······answer·····invalid······sealing······line······						

Score

Question5 (12 points)

In the double-slit interference experiment, initially the distance between two slits is d, and the screen is L away from the slits. We can change the experiment condition to see what happens to the interference pattern. Describe the phenomena if: (a) two slits moves further apart; (b) the screen moves further apart; (c) a very thin piece of glass ($\sim 1 \mu m$) is placed in front of one slit.

Score Question

Question6 (10 points)

Monochromatic light (λ =450nm) falls on a slit, the fringes are shown on a screen 4.0m away. If the distance between the first bright fringes on either side of the central maximum is 15mm, determine (a) the width of slit; (b) the distance between the first dark fringes.

Score

Question7 (12 points)

A uniform thin rod has a mass m and length L when it is at rest. When it is moving with v=0.6c, Determine (a) the linear density (mass per unit length) if it moves along its direction; (b) linear density if it moves perpendicular to its direction; (c) its kinetic energy;

UESTC Student ID	UOG Student ID	Course Title	Lecturer
	Within the answer inval	idaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaa	
	·····Within·····the·····answer·····inval	id·····sealing······line·····	

