7.41

(a) 若
$$\sum_{i=1}^{n} a_i = 1$$
 则 $E \sum_{i=1}^{n} a_i X_i = \sum_{i=1}^{n} a_i E X_i = \mu(\sum_{i=1}^{n} a_i) = \mu$

因此 a_iX_i 为无偏估计量

(b)
$$Var \sum_{i=1}^{n} a_i X_i = \sum_{i=1}^{n} a_i^2 Var X_i = \sigma^2 (\sum_{i=1}^{n} a_i^2)$$
 由均值不等式:

$$\frac{\sum_{i=1}^{n} a_i^2}{n} \ge (\frac{\sum_{i=1}^{n} a_i}{n})^2 = \frac{1}{n}$$

当且仅当 $a_i = \frac{1}{n}$ 时等号成立, 因此

当
$$a_i = \frac{1}{n}$$
 时, $\sum_{i=1}^n \frac{1}{n} X_i$ 的方差最小,为 $\frac{\sigma^2}{n}$

7.42
$$:: Cov(W_i, W_j) = 0$$
, $W_1, \dots W_n$ 互相独立

记
$$W = a_i W_i$$

$$E_{\theta}W = E_{\theta}(\sum_{i=1}^{n} a_i W_i) = \theta \Rightarrow \sum_{i=1}^{n} a_i = 1$$

$$\overrightarrow{\text{m}} \ VarW = \sum_{i=1}^{n} a_i^2 VarW_i = \sum_{i=1}^{n} a_i^2 \sigma_i^2$$

由柯西不等式:

$$(\sum_{i=1}^{n} a_i^2 \sigma_i^2) (\sum_{i=1}^{n} \frac{1}{\sigma_i^2}) \ge (\sum_{i=1}^{n} \frac{a_i}{\sigma_i} \sigma_i)^2 = (\sum_{i=1}^{n} a_i)^2 = 1$$

$$\mathbb{F}\sum_{i=1}^n a_i^2 \sigma_i^2 \geq \frac{1}{\sum_{i=1}^n \frac{1}{\sigma_i^2}}$$

当且仅当所有 $\frac{a_i}{\sigma_i}/\sigma_i = \frac{a_i}{\sigma_i^2}$ 相同时,等号成立。

即
$$a_i = \frac{\sigma_i^2}{\sum_{i=1}^n \sigma_i^2}$$
 时, $VarW^* = \frac{1}{\sum_{i=1}^n \frac{1}{\sigma_i^2}}$ 取得最小,

且此时
$$W^* = \sum_{i=1}^n a_i W_i = \frac{\sum_{i=1}^n \sigma_i^2 W_i}{\sum_{i=1}^n \frac{1}{\sigma_i^2}}$$