This Page Is Inserted by IFW Operations and is not a part of the Official Record

BEST AVAILABLE IMAGES

Defective images within this document are accurate representations of the original documents submitted by the applicant.

Defects in the images may include (but are not limited to):

- BLACK BORDERS
- TEXT CUT OFF AT TOP, BOTTOM OR SIDES
- FADED TEXT
- ILLEGIBLE TEXT
- SKEWED/SLANTED IMAGES
- COLORED PHOTOS
- BLACK OR VERY BLACK AND WHITE DARK PHOTOS
- GRAY SCALE DOCUMENTS

IMAGES ARE BEST AVAILABLE COPY.

As rescanning documents will not correct images, please do not report the images to the Image Problem Mailbox.

PATENT-ABSTRACTS OF JAPAN

(11) Publication number: 10223736 A

(43) Date of publication of application: 21 . 08 . 98

(51) Int. CI

H01L 21/68 H01L 21/3065

(21) Application number: 09025202

(22) Date of filing: 07 . 02 . 97

(71) Applicant:

TOSHIBA CORP

(72) Inventor:

YAMAZAKI OSAMU SAITO SHUICHI

(54) TABLE DEVICE AND PLASMA PROCESSOR USING THE SAME

(57) Abstract:

PROBLEM TO BE SOLVED: To provide a table device and plasma processor using the same capable of controlling temperature excellently without destructing a processed body even under low pressure.

SOLUTION: A table device 17 for temperature-controlling a processed body to be processed inside a chamber 11 is to be equipped with a table main body 19 wherein the shape of a mounting surface 20 is formed in a recessed and curved shape, a temperature control means 21 provided inside the table main body 19 for controlling the temperature of the mounting surface 20, as well as a clamping means 26 provided on the mounting surface 20 side of the table main body 19 tightly pressing the processed body 18 against the mounting surface 20.

COPYRIGHT: (C)1998,JPO

(19)日本国特許庁(JP)

(12) 公開特許公報(A)

(11)特許出願公開番号

特開平10-223736

(43)公開日 平成10年(1998)8月21日

(51) Int.Cl.⁶

HO1L 21/68

21/3065

識別記号

FΙ

H01L 21/68

N

21/302

В

審査請求 未請求 請求項の数9 OL (全 8 頁)

(21)出願番号

特願平9-25202

(71)出顧人 000003078

株式会社東芝

(22)出願日

平成9年(1997)2月7日

神奈川県川崎市幸区堀川町72番地

(72)発明者 山崎 修

神奈川県横浜市磯子区新磯子町33番地 株

式会社東芝生産技術研究所内

(72)発明者 齋藤 秀一

神奈川県横浜市磯子区新磯子町33番地 株

式会社東芝生産技術研究所内

(74)代理人 弁理士 鈴江 武彦 (外6名)

(54) 【発明の名称】 テーブル装置およびこれを用いたプラズマ処理装置

(57)【要約】

【課題】 低圧中においても被処理体を破壊させること なく良好に温度調節可能なテーブル装置およびこれを用いたプラズマ処理装置を提供すること。

【解決手段】 チャンバ11内部で処理される被処理体 18を温度調節するためのテーブル装置17において、 載置面20の形状が凹曲面状に形成されているテーブル本体19と、上記テーブル本体19内部に設けられ、上記載置面20の温度を調節する温度調節手段21と、このテーブル本体19の載置面20側に設けられ、上記被 処理体18の端部を介して上記載置面20に上記被処理体18を密着させるように力を加えるクランプ手段26と、を具備したことを特徴としている。

2

【特許請求の範囲】

【請求項1】 処理室内部で処理される被処理体を載置 し温度調節するテーブル装置において、

上記被処理体を載置する面の形状が凹曲面状に形成され たテーブル本体と、

上記テーブル本体内部に設けられ、上記載置面の温度を 調節する温度調節手段と、

上記被処理体を密着させるように上記載置面に保持する クランプ手段と、

を具備したことを特徴とするテーブル装置。

【請求項2】 上記テーブル本体には、上記載置面と被処理体との間に熱伝導用ガスを供給するガス供給路が設けられたことを特徴とする請求項1記載のテーブル装置。

【請求項3】 上記テーブル本体には、上記載置面と被処理体との間に供給される熱伝導用ガスが漏れるのを防止する密閉部材が設けられたことを特徴とする請求項2 記載のテーブル装置。

【請求項4】 上記載置面には、上記ガス供給路から供給された熱伝導用ガスを上記載置面と上記被処理体の間に導入分散させる導入溝が形成されたことを特徴とする請求項2または請求項3記載のテーブル装置。

【請求項5】 上記載置面に弾性部材を設けたことを特 徴とする請求項1記載のテーブル装置。

【請求項6】 上記クランプ手段は、上記被処理体の対向する端部に当接するクランプ対と、このクランプ対を 夫々近接させ上記被処理体を上記載置面に密着させるクランプ駆動機構を有することを特徴とする請求項1記載のテーブル装置。

【請求項7】 上記クランプ手段は、上記載置面に載置された上記被処理体縁部近傍を上方から押圧して上記載置面に密着させるクランプ手段であることを特徴とする請求項1記載のテーブル装置。

【請求項8】 上記テーブル本体に突没可能に設けられ、上記被処理体の縁部近傍を上記テーブル本体側から支持する支持手段を有することを特徴とする請求項1記載のテーブル装置。

【請求項9】 上記請求項1乃至請求項8のいずれかに 記載のテーブル装置を用いたことを特徴とするプラズマ 処理装置。

【発明の詳細な説明】

[0001]

【発明の属する技術分野】本発明は液晶基板や半導体ウエハなど被処理体の温度調節を行う機能を有するテーブル装置およびそのテーブル装置が用いられるプラズマ処理装置に関する。

[0002]

【従来の技術】液晶基板や半導体ウエハなど被処理体の 処理を行うために、プラズマ処理装置が用いられてい る。このプラズマ処理装置は内部に媒質ガスを供給し、 この媒質ガスを励起してプラズマ化し、このプラズマ化 によって発生するラジカルやイオンなどを利用して被処 理体に対してアッシングやエッチングなどの処理を行う ように構成されている。

【0003】すなわち、上記プラズマ処理装置は媒質ガスを数Pa~数十Pa程度の低圧状態となるようにチャンバ内部に導入されるようになっており、このチャンバ内部の媒質ガスをマイクロ波で励起することで媒質ガスがプラズマ化されて活性種が生成される。このマイクロ波は、マイクロ波発生源から導波管によって伝達され、他端部側へ伝達されたマイクロ波は、石英ガラスなどで形成された導入窓を透過して上記チャンバ内へ入射し、このチャンバ内の媒質ガスを励起する。

【0004】上記チャンバ内部には図12に示すテーブル装置1が設けられている。このテーブル装置1はテーブル本体3を有し、このテーブル本体3上には半導体ウエハや液晶基板などの被処理体2が載置される。この被処理体2はテーブル本体3の内部に設けられたヒータなどの温度調節装置4によって温度調節されるようになっている。そして、このように温度調節された被処理体2に対して上記ラジカルやイオンなどの活性種がエッチングやアッシングなどの処理を行っている。

[0005]

【発明が解決しようとする課題】ところで、最近は半導体ウエハの大口径化や液晶基板の大面積化が著しい。このような被処理体の大型化に伴って、上記テーブル装置も大型化してきている。しかしながら上記チャンバの内部は真空に近い低圧状態となっているため、熱を伝導しにくくなっている。このためテーブル本体の表面に直接被処理体を接触させてこの被処理体の温度調節を行うようにしている。

【0006】しかし、上記のような大型化した被処理体においては裏面全体をもれなくテーブル本体の表面に密着させることは難しい。このため、被処理体を上記テーブル本体上に載置しただけのものでは接触部分と非接触部分とで被処理体に温度差が生じてしまい、よって被処理体を処理する際、その表面の反応速度にむらが生じてしまう。

【0007】また、被処理体を単に上記テーブル本体上に載置しただけで温度調節する場合、上記被処理体が反ってしまうことがある。被処理体に反りが生じると、テーブル本体の表面に対する接触面積がさらに減少してしまうから、その部分では熱の伝導効率の低下による温度差がより一層顕著になる。

【0008】本発明は上記の事情にもとづき成されたもので、その目的とするところは、被処理体を破壊させることなく良好に温度調節可能なテーブル装置およびこれを用いたプラズマ処理装置を提供することにある。

[0009]

50

【課題を解決するための手段】請求項1の発明は、処理

10

20

30

処理を均一に行うことができる。

ブル装置において、上記被処理体を載置する面の形状が 凹曲面状に形成されたテーブル本体と、上記テーブル本

体内部に設けられ、上記載置面の温度を調節する温度調 節手段と、上記被処理体を密着させるように上記載置面 に保持するクランプ手段と、を具備したことを特徴とし ている。

室内部で処理される被処理体を載置し温度調節するテー

【0010】請求項2の発明は、上記テーブル本体に は、上記載置面と被処理体との間に熱伝導用ガスを供給 するガス供給路が設けられたことを特徴とする請求項1 記載のテーブル装置である。

【0011】請求項3の発明は、上記テーブル本体に は、上記載置面と被処理体との間に供給される熱伝導用 ガスが漏れるのを防止する密閉部材が設けられたことを 特徴とする請求項2記載のテーブル装置である。

【0012】請求項4の発明は、上記載置面には、上記 ガス供給路から供給された熱伝導用ガスを上記載置面と 上記被処理体の間に導入分散させる導入溝が形成された ことを特徴とする請求項2または請求項3記載のテーブ ル装置である。

【0013】請求項5の発明は、上記載置面に弾性部材 を設けたことを特徴とする請求項1記載のテーブル装置 である。請求項6の発明は、上記クランプ手段は、上記 被処理体の対向する端部に当接するクランプ対と、この クランプ対を夫々近接させ上記被処理体を上記載置面に 密着させるクランプ駆動機構を有することを特徴とする 請求項1記載のテーブル装置である。

【0014】請求項7の発明は、上記クランプ手段は、 上記載置面に載置された上記被処理体縁部近傍を上方か ら押圧して上記載置面に密着させるクランプ手段である ことを特徴とする請求項1記載のテーブル装置である。

【0015】請求項8の発明は、上記テーブル本体に突 没可能に設けられ、上記被処理体の縁部近傍を上記テー ブル本体側から支持する支持手段を有することを特徴と する請求項1記載のテーブル装置である。

【0016】請求項9の発明は、上記請求項1乃至請求 項8記載のテーブル装置を用いたことを特徴とするプラ ズマ処理装置である。請求項1、5乃至7の発明による と、被処理体をテーブル本体の載置面に密着させて保持 することが可能となるので、温度調節時に被処理体に生 じる温度差を抑えることができる。

【0017】請求項2乃至4の発明によると、被処理体 と差一面との間に熱伝導用のガスを介在させることで、 被処理体に対する熱伝導率を高めることが可能となり、 被処理体の温度差をさらに抑えることができる。

【0018】請求項8の発明によると、被処理体が載置 面に載置される前に被処理体を湾曲させることが可能と なるので、被処理体と載置面との擦れを極力抑えること ができる。請求項9の発明によると、被処理体の温度む らを極力抑えることが可能となるので、被処理体の表面 50 [0019]

【発明の実施の形態】以下、本発明の第1の実施の形態 について、図1ないし図3にもとづいて説明する。図1 はテーブル装置の構成を示す断面図、図2はプラズマ処 理装置の構成を示す断面図、図3はテーブル装置の被処 理体載置面の形状を示す斜視図である。

【0020】図2において、プラズマ処理装置10はチ ャンバ11を有しており、このチャンバ11にはガス供 給配管12が接続されており、このチャンバ11の内部 に媒質ガスを供給可能となっている。このガス供給配管 12の他端部側は図示されない媒質ガスの供給源に連結 されていて上記ガス供給配管12を介してエッチング 用、CVD用あるいはアッシング用の媒質ガスを供給す るようになっている。

【0021】また上記チャンバ11の底部にはガス吸引 配管13の一端が接続されている。このガス吸引配管1 3の他端部は図示しない吸引ポンプに連結され、チャン バ11の内部を減圧するようになっている。

【0022】上記チャンバ11にはマイクロ波が導入さ れるようになっている。上記マイクロ波はマイクロ波発 生源14で発生し、このマイクロ波発生源14から導波 管15へと伝達される。導波管15の一端部側15aは マイクロ波発生源14と連結され、また他端部側15b は上記チャンバ11を気密に構成する石英などの誘電体 よりなる導入窓16と対向して設けられている。上記マ イクロ波発生源14で発生したマイクロ波は導波管15 を介してこの導入窓16まで伝達されるようになってお り、この導入窓16を透過してチャンバ11の内部へと 伝達されるようになっている。

【0023】このチャンバ11の内部には、上記導入窓 16の下方にテーブル装置17が設けられている。図1 にこの構成を示す。このテーブル装置17は液晶基板や 半導体ウエハなどの被処理体18を載置するためのテー ブル本体19を有し、このテーブル本体19の上記導入 窓16と対向する上面は、図3に示すように中央部が最 も低く形成された凹曲面状(円筒面状)の被処理体の載 置面20である。

【0024】上記載置面20は、上記被処理体18をこ の載置面20に密着させた場合に、この被処理体18を 破壊したり次のプロセスへの悪影響が生じたりしない程 度のゆるやかな曲率を有し、かつこの被処理体18が上 記載置面20に対して密着して折れ曲がることが可能と なっている。例えば一辺500㎜、厚さ1㎜の液晶用ガ ラス基板では周辺部と中央部との高低の差を100mm以 下にする必要があり、好ましくは5~30m程度の曲面 状に形成すると良い。

【0025】また、上記テーブル本体19の内部には、 温度調節手段として電熱線21が設けられており、この 電熱線21によって上記テーブル本体19はその載置面 10

20

40

20が均一温度になるように加熱される。

【0026】上記テーブル本体19の中央部には一端を上記載置面20に開口させ、他端をテーブル本体19の下面に開口させた通孔22が形成されている。この通孔22の他端には、ガス導入配管23が接続されている。このガス導入配管23の他端は図示せぬ媒質ガスの供給源に接続されている。したがって、上記ガス導入配管23により上記チャンバ11の外部からこのテーブル本体19の表面に熱伝導用ガスを供給可能としている。さらに、図3に示すように、テーブル本体19の載置面20にはこの載置面20に沿って熱伝導用ガスを導入分散させる複数の導入溝24が一端を上記通孔22の一端に連通させて放射状に形成されている。

【0027】さらに、上記載置面20の周辺部には、載置面20に液晶基板や半導体ウエハなどの被処理体18 を載置した場合に、この被処理体18の裏面周辺部に沿って周状に密着するOリング25が設けられており、このOリング25によって被処理体18の裏面とテーブル本体19の載置面20との間が密閉封止される。

【0028】このようなテーブル本体19の載置面20の湾曲方向両端側には、クランプ手段として基板保持機構26がそれぞれ設けられている。この基板保持機構26は被処理体18の端部と係合して上記テーブル本体19の載置面20にこの被処理体18を密着するように押し付けるものである。本実施の形態ではこの基板保持機構26はチャンバ11に取り付けられた基部27を有する。この基部27には第1のアーム28の一端が枢着され、この第1のアーム28の他端部には第2のアーム29の一端が枢着されている。第2のアーム29の中途部には一端が上記基部27に枢着されたシリンダ30の中域には一端が上記基部27に枢着されたシリンダ30が作動することでこれらアーム28,29は屈伸可能となっている

【0029】上記第2のアーム29の他端部にはクランプ31が回動自在に設けられており、このクランプ31の端部には被処理体18の上方および側方に係合する係合部31aが形成されている。上記油圧シリング30を作動させて一対のアーム28,29を伸長させると、上記クランプ31が載置面20の湾曲方向端部に沿ってスライドし、係合部31aが被処理体18の端部上面および端面を押圧する。一対のクランプ31によって被処理体18の両端部が押圧されると、この被処理体18は上記載置面20に沿って湾曲変形する。それによって、この被処理体18はテーブル本体19の載置面20に密着される。

【0030】上記基板保持機構26は本実施の形態では チャンバ11に取付けられているが、この基板保持機構 26はテーブル装置17等、他の部分に取り付けて形成 されているものでも構わない。

【0031】以上のような構成を有するテーブル装置1

7の作用について、以下に説明する。まず被処理体18を上記テーブル本体19の載置面20上に載置し、この後に上記基板保持機構26を作動させてクランプ31の係合部31aを被処理体18の側方および上方に当接させる。そして上記油圧シリンダ30を伸長作動させると、このクランプ31は第2のアーム29への取り付け部分を中心として下方側へ回転しながら、被処理体18に圧縮力を加える。

【0032】それによって、この被処理体18は上記載 置面20に沿って湾曲変形し、この載置面20に密着す る。被処理体18が湾曲変形することで、載置面20に 設けられたOリング25にこの被処理体18の裏面が圧 着するから、この被処理体18とテーブル本体19の載 置面20の間とは密閉封止された状態となる。

【0033】このようにして上記被処理体18をテーブ ル本体19の載置面20に密着させた後、ガス導入配管 23から通孔22を介して上記載置面20と上記被処理 体18との間に熱伝導用ガスを供給する。通孔22から 載置面20へと供給された熱伝導用ガスはこの載置面2 0上に形成された導入溝24に沿ってこの載置面20に 沿って放射状に導入分散される。この場合、熱伝導用ガ スはチャンバ11の内部へなるべく漏れないよう、また 被処理体18を上方へ変形させて載置面20との密着状 態が損なわれていない適宜の圧力に調整され、それによ って、電熱線21により温度調節されたテーブル本体1 9によって上記被処理体18の温度調節が開始される。 【0034】このようなテーブル装置17においては、 このテーブル本体19の表面を載置面20に形成してお り、これに加えてテーブル本体19の表面に基板保持機 構26を設けている。このため、上記基板保持機構26 にて被処理体18を湾曲板状に変形させ載置面20に対 して密着させることが可能となる。

【0035】また、このようにクランプ31で被処理体18を押さえ付けることは、温度調節時に被処理体18が反るのを防止することができ、よって被処理体18の密着性が高まって温度調節の効率が良好となり、かつこの被処理体18に温度分布にむらが生じることが少なくなる。そのため、被処理体18の表面の処理も良好なものとなる。

【0036】そして、本実施の形態ではテーブル本体19に設けられた通孔22の下端部にガス導入配管23が接続されており、上記載置面20に熱伝導用ガスを供給可能となっている。このために熱伝導用ガスをこの被処理体18の裏面と載置面20の間に介在させることができるので、この被処理体18への熱伝導の効率がより一層良好なものとなる。

【0037】さらにこの載置面20には被処理体18を 載置した場合に、この被処理体18の裏面周囲に密着す るOリング25が設けられているので、熱伝導ガスが上 50 記通孔22から供給されても、このOリング25で囲ま

(5)

20

30

Я

れた部分からチャンバ11の内部へと漏れることは少な くなる。

【0038】しかもこのOリング25で囲まれた載置面20には通孔22の吐出口から上記Oリング25が形成されている付近まで導入溝24が側方に向かい放射状に形成されている。このために熱伝導用ガスをこの載置面20に沿って偏りなく供給することが可能となっている。

【0039】このような載置面20と被処理体18の裏面との間に熱伝導ガスが介在する構成により、被処理体18の温度分布にむらが生じることが一層なくなり、よって被処理体18の表面温度もより一層均一に保つことが可能となる。このため被処理体18の処理がさらに良好なものとなる。

【0040】次に、本発明の第2の実施の形態につき、 図4乃至図6を参照しながら説明する。本実施の形態に おいて上記第1の実施の形態と同一の構成要件には、同 様の符号を付して説明は省略する。

【0041】図4はテーブル装置の拡大斜視図である。 テーブル本体19の載置面20上には、熱伝導性の良い 弾性部材42、例えばシリコーンゴムやテフロンゴム、 バイトン等が接着などにより設けられている。このよう な弾性部材を設けると、被処理体18と載置面20との 間を密着させることができ、被処理体18の温度むらを 極力抑えることが可能となる。

【0042】図中43aはクランプ機構であり、下部が 載置面20の凹曲面形状とほぼ同じ曲面をなして形成さ れている。そして、テーブル本体19上に載置された被 処理体18の屈曲する2辺の端部を、上方より載置面2 0に対して押圧し密着させるように構成されている。こ のようなクランプ機構43aを設けることで、被処理体 18の反りなどを防止することができるとともに、被処 理体18をより載置面20に密着させることが可能となる

【0043】図5はクランプ機構の変形例であり、クランプ機構43aと異なる点は、クランプ機構43aの場合は被処理体18の2辺を押圧する形態であったが、クランプ機構43bは被処理体18の4辺を押圧できるように構成されている。

【0044】図6はクランプ機構の変形例であり、クランプ機構43cは、複数のピンから構成されており、被処理体18の少なくとも屈曲する2辺を上方から載置面20へ押圧するように構成している。

【0045】このように、第2の実施の形態では、クランプ機構を上方から載置面20に密着させるようにクランプすることで、被処理体18の反りや熱伝導用ガスによる被処理体18の浮きを防止することができる。

【0046】次に、本発明第3の実施の形態につき図7 乃至図11を参照しながら説明する。本実施の形態は、 被処理体18を載置面20上に載置する前に、載置面2 50 0の凹曲面に合わせようとするものである。図7 (a) に示すものは、被処理体18が自重で屈曲しその屈曲が 載置面20の凹曲面とほぼ同等の場合である。図中44 はテーブル本体であり、テーブル本体44には、図7

(b) に示すように4本の支持ピン45が被処理体18の四隅に位置するように設けられ、或いは図7(c)に示すように2枚の板状支持体45aが被処理体18の被屈曲側2辺に対応して設けられ、ともにテーブル本体44を貫通して載置面20に対して突没可能に構成されている。そして、被処理体18が載置される際に突出して支持すると、被処理体18が自重により屈曲し、支持ピン45或いは板状支持体45aを加工させることで被処理体18を載置面20上に載置する。

【0047】図8および図9に示すものは、被処理体18が自重で屈曲すると載置面20の凹曲面より屈曲してしまう場合の支持体である。図8(a)においてテーブル本体46には、複数の支持ピン47が図8(b)に示すように被処理体18の屈曲する2辺を支えるように複数本設けられており、載置面20に対して突没可能に構成されている。そして、被処理体18を載置する際は、載置面20の凹曲面に沿うように支持ピン47を突出させて被処理体18を支持し、下降して載置面20上に載置する。

【0048】図9(a)においてテーブル本体48には、図9(b)に示すように被処理体18の屈曲側2辺を支える位置に板状支持体49が設けられ、載置面20に対して突没可能に構成され、上記支持ピン47と同様に突出した状態で被処理体18を支持し、下降して載置面20上に載置する。

【0049】また、図10においては、被処理体18が自重ではあまり屈曲せず上方より押圧する必要がある場合で、上述した支持体45,45a,47,49により支持した状態で、上述したクランプ43a,43b,43cにより上方より押圧している。このようにして保持すると、載置面20と被処理体18の裏面とが擦れるようなことを防止することができる。

【0050】上述したクランプ43a, 43b, 43c 及び支持体45, 45a, 47, 49の被処理体18と の接触部に図11に示すような車輪やボールを設け、被 処理体18との擦れを極力防止する構成とするとさらに 効果的である。

【0051】以上、本発明の一実施の形態にもとづいて 説明したが、本発明はその構成を種々変形可能である。 以下に説明する。上記実施の形態では、テーブル本体1 9の表面を円筒面状としたが、これ以外にも、例えば楕 円面状や球面状など様々な形状に形成可能である。

【0052】また、温度調節のためにテーブル本体19の内部に電熱線21を用いた構成であるが、この電熱線21の代わりに他の加熱用のヒータや、冷却用のチラーを用いた構成でも良い。

【0053】そして、上記ガス導入用配管23は必ずしもテーブル本体19の下方からこの表面に向かうように形成しなくても良く、例えばテーブル本体19の側方からこの表面に向かってガス導入配管23が設けられる構成であっても良い。

【0054】さらに上記導入溝24は通孔22の吐出口から放射状に形成されていなくても良く、載置面20に沿って偏りなく熱伝導ガスを供給するものであれば、例えば網目状などであろうがどのように形成されていても良い。

【0055】そして本実施の形態では密閉部材としてO リング25を用いた構成であるが、密閉部材であればO リング25以外のどのようなものであっても良い。な お、上記テーブル本体19の載置面20と被処理体18 の裏面との間に供給される熱伝導用ガスの圧力によっ て、上記被処理体18が浮き上がってしまうのを防ぐた めに、上記テーブル本体19にガス抜き配管を形成して も良い。この場合、ガス抜き配管にさらに弁等を形成し て、この隙間に供給される熱伝導用ガスの圧力を適宜に 保つことが可能となる。このようにすると、この隙間に 20 供給される熱伝導用ガスによる浮き上がりがさらに防ぐ ことが可能となるとともに、適宜の圧力に調整すること でこの隙間からチャンバ11への熱伝導用ガスの漏れを 極力抑えることが可能となる。この場合、ガス抜き配管 に必要に応じて圧力弁を形成しても良い。また、この発 明はCVDにも適用することができる。

[0056]

【発明の効果】以上説明したように、請求項1、5乃至7の発明によれば、被処理体をテーブル本体の載置面に密着させて保持することが可能となるので、温度調節時に被処理体に生じる温度差を抑えることができる。

【0057】請求項2乃至4の発明によれば、被処理体と差一面との間に熱伝導用のガスを介在させることで、被処理体に対する熱伝導率を高めることが可能となり、被処理体の温度差をさらに抑えることができる。

【0058】請求項8の発明によれば、被処理体が載置面に載置される前に被処理体を湾曲させることが可能となるので、被処理体と載置面との擦れを極力抑えることができる。請求項9の発明によれば、被処理体の温度むらを極力抑えることが可能となるので、被処理体の表面 40 処理を均一に行うことができる。

【図面の簡単な説明】

【図1】本発明の第1の実施の形態に係わるテーブル装*

* 置の構成を示す断面図。

【図2】同実施の形態に係わるプラズマ処理装置の構成 を示す側面図。

10

【図3】同実施の形態を示すテーブル装置のテーブル本 体の表面を示す斜視図。

【図4】本発明の第2の実施の形態に係わるテーブル装置の斜視図。

【図 5 】同実施の形態に係わるクランプ機構の構成を示 す斜視図。

10 【図6】同実施の形態に係わるクランプ機構の構成を示す斜視図。

【図7】(a)は本発明の第3の実施の形態に係わるテーブル装置の断面図、(b)は被処理体と支持体との関係を示す平面図、(c)は変形例を示す平面図。

【図8】(a)は同実施の形態に係わるテーブル装置の 変形例断面図、(b)は被処理体と支持体との関係を示 す平面図。

【図9】(a)は同実施の形態に係わるテーブル装置の 変形例断面図、(b)は被処理体と支持体との関係を示 す平面図。

【図10】同実施の形態に係わるテーブル装置の変形例 断面図。

【図11】クランプ機構、或いは支持体の被処理体との接触部の拡大図。

【図12】従来のテーブル装置の構成を示す断面図。

【符号の説明】

- 10…プラズマ処理装置
- 11…チャンバ
- 14…マイクロ波発生源
- 30 15…導波管
 - 1 6 …導入窓
 - 17…テーブル装置
 - 18…被処理体
 - 19…テーブル本体
 - 20…載置面
 - 21…温度調節装置
 - 23…ガス導入配管
 - 2 4 …導入溝
 - 2 5…Oリング
 - 26…基板保持機構
 - 31…クランプ
 - 43…クランプ機構

【図7】

【図9】

【図12】

【図8】

【図10】

