Intro to Visualizations

Daniel Anderson

Week 2, Class 1

Agenda

Quick note on projects and here::here()

Discuss different visualizations

- Visualizing distributions
 - histograms
 - density plots
 - Empirical cumulative density plots
 - QQ plots
- Visualizing amounts
 - bar plots
 - dot plots
 - heatmaps

Learning Objectives

- Understand various ways the same underlying data can be displayed
- Think through pros/cons of each
- Understand the basic structure of the code to produce the various plots

What type of data do you have?

We'll focus primarily on standard continuous/categorical data

What is your purpose?

Exploratory? Communication?

continuous Variable

Histogram

Density plot

(Empirical) Cumulative Density

QQ Plot

Compare to theoretical quantiles (for normality)

Empirical examples

I'll move fast, but if you want to (try to) follow along, or recreate anything here later, first run

remotes::install_github("clauswilke/dviz.supp")

Titanic data

head(titanic)

```
##
                                            name class
                                                        age
                                                               sex survi
## 1
                     Allen, Miss Elisabeth Walton 1st 29.00 female
## 2
                     Allison, Miss Helen Loraine 1st 2.00 female
## 3
             Allison, Mr Hudson Joshua Creighton 1st 30.00
                                                            male
## 4 Allison, Mrs Hudson JC (Bessie Waldo Daniels) 1st 25.00 female
## 5
                    Allison, Master Hudson Trevor 1st 0.92
                                                             male
                              Anderson, Mr Harry 1st 47.00 male
## 6
```

Basic histogram

```
ggplot(titanic, aes(x = age)) +
  geom_histogram()
```

`stat_bin()` using `bins = 30`. Pick better value with `binwidth`.

Make it a little prettier

`stat_bin()` using `bins = 30`. Pick better value with `binwidth`.

Change the number of bins

Vary the number of bins

Denisty plot


```
ggplot(titanic, aes(age)) +
  geom_density()
```


Denisty plot

Change the fill 😌

```
ggplot(titanic, aes(age)) +
  geom_density(fill = "#56B4E9")
```


Density plot estimation

- Kernal density estimation
 - Different kernal shapes can be selected
 - Bandwidth matters most
 - Smaller bands = bend more to the data
- Approximation of the underlying continuous probability function
 - Integrates to 1.0 (y-axis is somewhat difficult to interpret)

Denisty plot

change the bandwidth

Quickly

How well does it approximate a normal distribution?

```
ggplot(titanic, aes(sample = age)) +
  stat_qq_line(color = "#56B4E9") +
  geom_qq(color = "gray40")
```


Grouped data

Distributions

How do we display more than one distribution at a time?

Boxplots

Violin plots

Jittered points

Sina plots

Stacked histograms

Overlapping densities

Ridgeline densities

empirical examples

Boxplots

```
ggplot(titanic, aes(sex, age)) +
  geom_boxplot(fill = "#A9E5C5")
```


Violin plots

```
ggplot(titanic, aes(sex, age)) +
  geom_violin(fill = "#A9E5C5")
```


Jittered point plots

```
ggplot(titanic, aes(sex, age)) +
  geom_jitter(width = 0.3, height = 0)
```


Sina plot

```
ggplot(titanic, aes(sex, age)) +
  ggforce::geom_sina()
```


Stacked histogram

```
ggplot(titanic, aes(age)) +
  geom_histogram(aes(fill = sex))
```


Dodged

Note position = "dodge" does not go into aes (not accessing a variable in your dataset)

Better

Overlapping densities

Note the default colors really don't work well in most of these

Ridgeline densities

Visualizing amounts

Bar plots

Flipped bars

Dotplot

Heatmap

Empirical examples

How much does college cost?

```
## # A tibble: 6 x 13
##
    State `2004-05` `2005-06` `2006-07` `2007-08` `2008-09` `2009-10`
## <chr>
                  <dbl>
                           <dbl>
                                    <dbl>
                                              <dbl>
                                                       <dbl>
                                                                <dbl>
## 1 Alabama 5682.838
                        5840.550
                                  5753.496 6008.169 6475.092
                                                             7188.954
## 2 Alaska 4328.281 4632.623 4918.501 5069.822 5075.482
                                                             5454.607
## 3 Arizona 5138.495 5415.516 5481.419
                                          5681.638 6058.464
                                                             7263.204
## 4 Arkansas 5772.302 6082.379 6231.977
                                          6414.900 6416.503
                                                             6627.092
## 5 California 5285.921
                        5527.881 5334.826
                                          5672.472
                                                    5897.888
                                                             7258.771
## 6 Colorado 4703.777 5406.967 5596.348
                                          6227.002
                                                    6284.137
                                                             6948.473
## # ... with 3 more variables: `2013-14` <dbl>, `2014-15` <dbl>, `2015-16` <
```

By state: 2015-16

```
ggplot(tuition, aes(State, `2015-16`)) +
  geom_col()
```


Two puke emoji version


```
ggplot(tuition, aes(State, `2015-16`)) +
  geom_col() +
  theme(axis.text.x = element_text(angle = 45, hjust = 1, size =
```


One puke emoji version


```
ggplot(tuition, aes(State, `2015-16`)) +
  geom_col() +
  coord_flip()
```


Kinda smiley version


```
ggplot(tuition, aes(fct_reorder(State, `2015-16`), `2015-16`)) +
  geom_col() +
  coord_flip()
```


Highlight Oregon

Not always good to sort

Much better

Averages tuition by year

How?

head(tuition)

```
## # A tibble: 6 x 13
##
    State `2004-05` `2005-06` `2006-07` `2007-08` `2008-09` `2009-10`
## <chr>
                  <dbl>
                           <dbl>
                                    <dbl>
                                              <dbl>
                                                       <dbl>
                                                                <dbl>
## 1 Alabama 5682.838
                        5840.550 5753.496 6008.169 6475.092
                                                             7188.954
## 2 Alaska 4328.281 4632.623 4918.501
                                          5069.822 5075.482
                                                             5454.607
## 3 Arizona 5138.495
                        5415.516 5481.419
                                          5681.638 6058.464
                                                             7263.204
## 4 Arkansas 5772.302
                       6082.379 6231.977
                                          6414.900 6416.503
                                                             6627.092
## 5 California 5285.921 5527.881 5334.826
                                          5672.472
                                                    5897.888
                                                             7258.771
## 6 Colorado
               4703.777 5406.967 5596.348
                                          6227.002
                                                    6284.137
                                                             6948.473
## # ... with 3 more variables: `2013-14` <dbl>, `2014-15` <dbl>, `2015-16` <
```

Rearrange

Compute summaries

Good

```
ggplot(annual_means, aes(year, mean_tuition)) +
  geom_col()
```


Better?

```
ggplot(annual_means, aes(year, mean_tuition)) +
  geom_col() +
  coord_flip()
```


Better still?

```
ggplot(annual_means, aes(year, mean_tuition)) +
  geom_point() +
  coord_flip()
```


Even better

```
annual_means %>%
  mutate(year = readr::parse_number(year)) %>%
  ggplot(aes(year, mean_tuition)) +
    geom_line(color = "cornflowerblue") +
    geom_point()
```


Treat time (year) as a continuous variable

Grouped points

Show change in tuition from 05-06 to 2015-16

```
ggplot(lt, aes(State, Tuition)) +
  geom_line(aes(group = State), color = "gray40") +
  geom_point(aes(color = Year)) +
  coord_flip()
```


Extensions

- I know we're probably running short on time, but we definitely would want to keep going here:
 - Order states according to something more meaningful (starting tuition, ending tuition, or difference in tuition)
 - Meaningful title, e.g., "Change in average tuition over a decade"
 - Consider better color scheme for points

Let's back up a bit

• Lets go back to our full data, but in a format that we can have a year variable.

Heatmap

```
ggplot(tuition_l, aes(year, State)) +
  geom_tile(aes(fill = avg_tuition))
```


Better heatmap

ggplot(tuition_l, aes(year, fct_reorder(State, avg_tuition))) +
 geom_tile(aes(fill = avg_tuition))

Even better heatmap

```
ggplot(tuition_l, aes(year, fct_reorder(State, avg_tuition))) +
  geom_tile(aes(fill = avg_tuition)) +
  scale_fill_viridis_c(option = "magma")
```


				Avei	rage Tuition C	vost						
							\$6,000		\$9,000		\$12,000	\$15,00
Vermont												
New Hampshire												
New Jersey												
Pennsylvania												
Illinois												
Michigan												
South Carolina												
Massachusetts												
Delaware												
Ohio												
Minnesota												
Rhode Island Connecticut												
Connecticut Maine												
Maine Virginia												
Virginia Indiana												
Washington												
Washington Maryland												
Texas												
Wisconsin												
Kentucky												
Arizona												
Missouri												
Oregon												
Hawaii												
California												
lowa												
Alabama												
Colorado												
Kansas												
North Dakota												
Nebraska												
Tennessee												
South Dakota												
Arkansas												
New York												
Oklahoma												
Montana												
Georgia												
Mississippi												
ldaho Wast Virginia												
West Virginia Alaska												
Alaska New Mexico												
North Carolina												
North Carolina Nevada												
Nevada Utah												
Utan Florida												
Fiorida Louisiana												
Wyoming												
vvyorning	2021	0000	0000			0000	00.11					
	2004-05	2005-06	2006-07	2007-08	2008-09	2009-10	2010-11	2011-12	2012-13	2013-14	2014-15	2015-16

Quick aside

- Think about the data you have
- Given that these are state—level data, they have a geographic component

```
#install.packages("maps")
state_data <- map_data("state") %>% # ggplot2::map_data
  rename(State = region)
```

Join it

Obviously we'll talk more about joins later

```
tuition <- tuition %>%
  mutate(State = tolower(State))
states <- left_join(state_data, tuition)</pre>
head(states)
     long lat group order State subregion 2004-05 2005-06 2006-07 2007-
##
## 1 -87.5 30.4
                                            5683
                                                   5841
                                                           5753
                       1 alabama
                                     <NA>
                                                                  60
## 2 -87.5 30.4
                                            5683
                  1 2 alabama
                                                   5841
                                                          5753
                                                                  60
                                     <NA>
## 3 -87.5 30.4
                  1 3 alabama
                                  <NA>
                                            5683
                                                   5841
                                                          5753
                                                                  60
## 4 -87.5 30.3 1 4 alabama
                                                                  60
                                 <NA>
                                            5683
                                                   5841
                                                          5753
## 5 -87.6 30.3
                                            5683
                                                   5841
                                                          5753
                                                                  60
                       5 alabama
                                  <NA>
## 6 -87.6 30.3 1
                                                           5753
                                                                  60
                       6 alabama
                                     <NA>
                                            5683
                                                   5841
##
    2011-12 2012-13 2013-14 2014-15 2015-16
## 1
       8452
              9098
                     9359
                             9496
                                    9751
## 2
    8452
           9098
                  9359 9496
                                    9751
## 3
    8452
                     9359 9496
                                    9751
           9098
## 4
                                    9751
     8452
           9098
                     9359
                           9496
## 5 8452
           9098
                     9359 9496
                                    9751
## 6
      8452
             9098
                     9359 9496
                                    9751
```

Rearrange

```
states <- states %>%
  gather(year, tuition, `2004-05`:`2015-16`)
head(states)
```

```
## long lat group order State subregion year tuition
## 1 -87.5 30.4 1 1 alabama <NA> 2004-05 5683
## 2 -87.5 30.4 1 2 alabama <NA> 2004-05 5683
## 3 -87.5 30.4 1 3 alabama <NA> 2004-05 5683
## 4 -87.5 30.3 1 4 alabama <NA> 2004-05 5683
## 5 -87.6 30.3 1 5 alabama <NA> 2004-05 5683
## 6 -87.6 30.3 1 6 alabama <NA> 2004-05 5683
```

Plot

```
ggplot(states) +
  geom_polygon(aes(long, lat, group = group, fill = tuition)) +
  coord_fixed(1.3) +
  scale_fill_viridis_c(option = "magma") +
  facet_wrap(~year)
```


Average Tuition Cost 2004-05

Wrapping up

- We've got a ways to go today was just an introduction
- The geographic part in particular was too fast, and we'll talk about better ways later (note that Alaska/Hawaii were not even included)
- We basically didn't talk about multivariate data (not even scatter plots)
- Other types of plots will be embedded within the topics later in the class

Next time

Lab 2

git/GitHub collaboration

It's already posted – feel free to start working on it whenever.

- Must be completed as a group
- Will use elements of what we talked about today, while also asking you to create branches, submit pull requests, etc.