UNIVERSIDADE DE SÃO PAULO ESCOLA DE ARTES, CIÊNCIAS E HUMANIDADES PROGRAMA DE GRADUAÇÃO EM SISTEMAS DE INFORMAÇÃO

BRENO DA SILVA NOGUEIRA

Problema da Seleção

IAA - Introdução a Análise de Algoritmos

INTRODUÇÃO

Na procura de algoritmos cada vez mais eficientes, procuramos sempre novos métodos para diminuir tempo e recursos na esperança de sempre chegarmos no famigerado O(log n). Uma das técnicas desenvolvidas nessa jornada é o conceito de Divisão e Conquista, que como o nome pode sugerir, divide o problema em problemas menores na esperança de poder resolvê-lo com mais eficiência. Nesta atividade trabalharemos com esse conceito de duas maneiras diferentes, a fim de determinar o quão eficiente as duas implementações são em resolver o problema da seleção.

Antes de qualquer coisa, o problema em si.

O problema da seleção se dá pelo seguinte enunciado: Dada uma sequência de inteiros $a_1...a_n$ e um inteiro i tal que $1 \le i \le n$, o programa deve retornar o i-ésimo menor número da sequência.

As aplicações desse problema são muitas, além do já citado uso para encontrar medianas, pode ser usado para algoritmos de busca de menor preço, por exemplo, existem seus usos em estáticas, catalogação, entre outros.

O problema em si é simples o bastante, até mesmo uma solução simples com um loop *for*, e uma sentinela seria o suficiente para resolver, contudo, buscamos uma forma eficiente e rápida de fazê-lo, e neste momento é onde o conceito de Divisão e Conquista entra.

Para testar a eficiência do método de DeC, como chamaremos daqui para frente, iremos testar a seleção por meio de partições, e colocar contra um algoritmo de ordenação, que, após ordenar, retorna o *i*-ésimo menor número. Sendo a única limitação usarmos um algoritmo de ordenação com o caso médio de O(n log n).

Apesar de não especificar o uso de um algoritmo de ordenação que use DeC, para a minha iteração do teste achei interessante usar QuickSort, que se utiliza desse método, para comparar a performance de partições em dois âmbitos diferentes. Então, iremos usar DeC para ordenar e para efetuar uma busca, e tiramos nossas conclusões ao final.

(Os algoritmos usados, os testes e os resultados retirados estão em anexo deste documento)

Esboço da correção e tempo de processamento

```
def particao(a, esq, dir):
    pivo = a[dir - 1]
    for i in range(esq, dir):
       if a[i] > pivo:
           dir += 1
           dir += 1
           esq += 1
            a[i], a[esq - 1] = a[esq - 1], a[i]
    return esq
def quick_sort(a, esq, dir):
    dir = dir if dir is not None else len(a)
    if esq < dir:
       q = particao(a, esq, dir)
       quick_sort(a, esq, (q - 1))
       quick_sort(a, q, dir)
    a = quick_sort(a, esq, dir)
```

Figura 1: Algoritmo de Quick Selection (Quick Sort + Seleção de *i*-ésimo menor elemento)

O Quick Selection, como o próprio nome pode sugerir, se utiliza do algoritmo de ordenação Quick Sort, que por si só utiliza DeC. Seu funcionamento é bem simples, o array é particionado de acordo com um "pivô", então é iterado para que todos os elementos a sua esquerda sejam menores do que ele, e que todos os elementos a sua esquerda sejam maiores do que ele, ou seja, estará ordenado. Retornando para a função principal, o array será dividido em dois: um será da posição inicial até uma posição antes do pivô no array, e outro uma posição depois do pivô no array até o final, ambos neste momento estão desordenados. Esse processo é repetido recursivamente, até que todos os pivôs estejam ordenados, em outras palavras, o array inteiro esteja ordenado.

Aqui podemos ver o DeC em ação, diminuindo o tamanho do array exponencialmente e organizando um elemento por vez, criando uma boa estratégia para um algoritmo de ordenação.

O tempo de processamento deste algoritmo, como já visto em aula, no seu tempo médio, é de $(n \log n)$.

```
def particao(a, esq, dir):
    pivo = a[dir - 1]
    for i in range(esq, dir):
       if a[i] > pivo:
           dir += 1
           esa += 1
           a[i], a[esq - 1] = a[esq - 1], a[i]
def selecao_particionada(a, i):
   n = len(a)
   q = particao(a, 0, n)
   if(n == 1):
       return a[0]
    if(i < q):
       return selecao_particionada(a[0 : q -1], i)
    elif i > q:
      return selecao_particionada(a[q: n], i - (q))
       return a[q - 1]
```

Figura 2: Algoritmo de Seleção Particionada

A Seleção Particionada, assim como o Quick Sort usa o particionamento como seu método de procura, contudo, mesmo se utilizando de particionamento e recursão, esses recursos são utilizados de uma maneira um pouco diferente. A primeira parte do algoritmo, é idêntica ao do Quick Sort, um pivô é eleito, todos menores para esquerda, maiores para a direita, pivô é ordenado. A diferença é no que é feito com o índice do pivô, caso o índice dele seja maior do o *i* que procuramos, iremos procurar o i-ésimo menor do lado direito, onde todos os números menores do que eles estão, e vice versa. Caso seja igual, achamos o *i*-ésimo menor, e assim devolvemos ele, alternativamente, se chegar ao ponto em que o array só tem um elemento, ele tem que ser o menor do array, e o retornamos (este caso só é possível ao procurar o primeiro menor número do array).

Para o tempo de processamento, no caso médio, temos que as partições são feitas mais ou menos na metade, então temos que o for de comparação será rodado (n + n/2 + n/4 + ...) e que será menor que 2n, portanto temos a grandeza de O(n).

OBJETIVO

Para a análise dos dois códigos, após sua implementação, foram criados uma série de testes para verificar o tempo de execução de ambos os códigos de acordo com a mesma entrada. Para que não houvesse nenhum desvio muito grande de resultados, os testes foram repetidos cinco vezes e iremos analisar somente a média dos tempos de execução.

Para o algoritmo de Quick Selection, temos a seguinte tabela de tempo por entrada:

Quick Select									
	Tempo de processamento (em segundos)								
Entrada (em milhões)	Rodada 1	Rodada 2	Rodada 3	Rodada 4	Rodada 5	Média			
1	4,680	4,236	4,207	4,189	4,240	4,310			
5	26,825	25,183	25,098	25,340	25,301	25,549			
10	56,767	55,556	55,563	55,948	55,850	55,937			
15	86,472	86,186	85,945	85,729	86,390	86,144			
20	120,214	120,511	119,638	119,615	120,238	120,043			
25	157,944	151,043	149,315	149,488	150,579	151,674			
30	188,490	185,102	185,197	185,350	185,289	185,886			
35	222,743	221,127	221,091	221,253	220,741	221,391			
40	255,236	256,073	253,990	256,128	255,822	255,450			
45	285,406	284,712	283,397	285,484	283,445	284,489			
50	340,220	338,799	337,016	339,129	339,740	338,981			
55	365,860	363,943	361,947	363,296	362,190	363,447			
60	404,900	399,775	396,972	398,752	397,034	399,487			
65	436,143	433,722	434,005	435,638	435,417	434,985			
70	474,528	475,561	472,244	475,162	475,530	474,605			
75	534,327	532,511	529,663	529,330	531,795	531,525			
80	548,519	547,888	547,646	546,048	549,742	547,969			
85	590,173	592,458	591,971	589,120	592,976	591,339			
90	614,233	615,990	612,919	615,252	616,149	614,909			
95	666,478	666,539	663,546	669,230	665,150	666,189			
100	714,501	715,284	712,944	713,527	713,563	713,964			

Tabela 1: Algoritmo de Quick Selection

Como podemos perceber, os tempos não se desviam muito entre si, e como um algoritmo de (n log n) o aumento gradativo de tempo de execução em razão do aumento da entrada não saiu muito do esperado. Podemos perceber que é um algoritmo ainda custoso, se perceber que com cem milhões de entradas ele pode demorar mais de dez minutos em tempo de execução.

Para o algoritmo da Seleção Particionada, temos a seguinte tabela:

 Seleção Particionada									
	Tempo de processamento (em segundos)								
Entrada (em milhões)	Rodada 1	Rodada 2	Rodada 3	Rodada 4	Rodada 5	Média			
1	0,102	0,111	0,095	0,098	0,098	0,101			
5	2,187	2,185	2,192	2,204	2,197	2,193			
10	12,315	12,220	12,224	12,164	12,374	12,260			
15	51,527	51,482	51,342	51,313	51,768	51,486			
20	39,884	39,824	39,807	39,707	40,036	39,852			
25	49,536	49,425	49,336	49,253	49,579	49,426			
30	38,018	37,969	37,935	37,915	38,325	38,032			
35	69,695	69,764	69,663	69,565	70,306	69,799			
40	64,528	64,447	64,323	64,098	64,797	64,438			
45	33,213	33,386	33,331	33,219	33,562	33,342			
50	50,061	50,199	49,772	50,069	50,555	50,131			
55	46,577	46,668	46,710	46,572	46,892	46,684			
60	68,113	68,389	68,298	68,206	68,727	68,347			
65	66,128	66,299	66,241	66,329	66,784	66,356			
70	77,850	77,538	77,628	77,518	78,206	77,748			
75	60,874	60,683	60,694	60,512	61,232	60,799			
80	75,692	75,332	75,621	75,857	76,122	75,725			
85	65,477	65,223	65,467	65,361	65,831	65,472			
90	122,115	122,202	122,182	122,057	123,054	122,322			
95	75,019	75,055	75,169	75,534	75,549	75,265			
100	60,588	60,333	60,369	60,919	60,779	60,598			

Tabela 2: Algoritmo de Seleção Particionada

Com a Seleção Particionada, podemos perceber uma generosa diminuição no tempo de execução, onde a iteração que mais demorou (122 segundos) se aproxima de um sétimo da iteração mais custosa do Quick Selection (713 segundos).

Podemos também perceber que os tempos parecem dar "pulos" indo de tempos maiores para menores, mesmo com o aumento da entrada. É fácil entender como algum erro do código, ou até mesmo de medida, contudo, analisando o algoritmo é compreensível que haja essas discrepâncias de tempo entre números maiores de entradas, já que a escolha de um pivô para a busca é importante para que o resultado seja encontrado mais facilmente. Como na nossa implementação o pivô foi escolhido de uma maneira estática (sempre o último elemento do array), ele está sujeito a acelerar ou retardar o processo de encontrar o *i*-ésimo menor elemento, dependendo do quão próximo ele está do número desejado, já que é o pivô que termina o número de recursões que o algoritmo irá executar.

RESULTADOS

Com todos os dados das médias apresentados na parte anterior, podemos montar o seguinte gráfico:

Comparação entre Quick Selection e Seleção Particionada Comparação de tempo de execução entre os dois algoritmos mostrados

Figura 3: Gráfico de tempo por amostragem dos dois algoritmos.

Visando essa representação gráfica, podemos perceber o quão grandiosa é a discrepância entre os dois algoritmos, onde a Seleção Particionada é claramente mais eficiente em retornar a saída esperada. Conseguimos perceber também a instabilidade da Seleção Particionada, onde

Podemos culpar essa discrepância de eficiência principalmente no fato de que a ordenação do Quick Selection é uma operação custosa, e apesar de ser a mais segura e mais estável para resolver o problema, o preço é pago pelo alto consumo de tempo.

Mas é interessante perceber que mesmo ambos os algoritmos se utilizando de DeC e de particionamento, eles possuem eficiências bem diferentes. Portanto, serve de lição que mesmo um método sendo eficiente em uma aplicação, não necessariamente a mesma aplicação pode resolver outros problemas. Nesse caso, se utilizar de um método eficiente de ordenação, não necessariamente quer dizer que ele será eficiente em encontrar um certo número n.

CONCLUSÃO

Após as análises feitas, chegamos à parte em que teremos que escolher entre as duas soluções apresentadas. A decisão aqui é óbvia, o algoritmo mais eficiente entre os dois é claramente a Seleção Particionada.

Apesar de seu caráter instável, um tanto randômico até podemos dizer, este algoritmo ainda é mais eficiente do que o Quick Selection, isso é, mesmo variando o tempo de execução com um mesmo número de entradas (pode ser até a mesma entrada, mas com a disposição dos elementos diferente), é improvável que a Seleção Particionada demore tanto quanto o Quick Selection. Claro, já que o outro deve ordenar o array, ele percorre por muito mais do array do que o SP.

Mesmo sendo o mais eficiente entre os dois, não necessariamente é a solução perfeita. Se algum algoritmo conseguir estabilizar ou achar um "pivô perfeito" para uma dada sequência para que a seleção fosse mais confiável em seu tempo de execução, com certeza seria um algoritmo mais indicado, não excluindo também o uso de outros métodos para chegar a um resultado melhor.