Les vecteurs M03

Exercice 1

Compléter les pointillés afin de rendre chacune des phrases

- Si $AI = \dots$ alors le point I est le milieu du segment [AB].
- b. Si ABCD est un parallélogrammme alors $\overrightarrow{AB} = \overrightarrow{\dots}$
- c. Si K est le milieu du segment [XY] alors $\overrightarrow{...}K = \overrightarrow{...}$

d. Si $\overrightarrow{MN} = \overrightarrow{PQ}$ alors est un parallélogramme.

Correction 1

Voici les phrases complétés:

- a. Si $\overrightarrow{AI} = \overrightarrow{IB}$ alors le point I est le milieu du segment [AB].
- b. Si ABCD est un parallélogrammme alors $\overrightarrow{AB} = \overrightarrow{DC}$
- c. Si K est le milieu du segment [XY] alors $\overrightarrow{XK} = \overrightarrow{KY}$
- d. Si $\overrightarrow{MN} = \overrightarrow{PQ}$ alors MNQP est un parallélogramme.

Exercice 2

Pour chacune des propositions ci-dessous, préciser si celle-ci est vraie ou fausse. (aucune justification n'est demandée)

- Les vecteurs \overrightarrow{AB} et \overrightarrow{CD} sont égaux. Le quadrilatère ABCD est un parallélogramme.
- b. Les segments [AB] et [CD] ont pour milieu le même point I. Le quadrilatère CBDA et un parallélogramme
- c. Le quadrilatère MNPQ est un parallélogramme. Les vecteurs \overrightarrow{MN} et \overrightarrow{QP} sont égaux.
- d. Le quadrilatère WXYZ est un parallélogramme. Les diagonales [WX] et [YZ] ont même milieu.

Correction 2

a. Faux:

En supposant que ce soit les vecteurs \overrightarrow{AB} et \overrightarrow{CD} qui sont égaux alors ce sera le quadrilatère ABDC qui sera un parallélogramme.

En l'occurence, ici, le quadrilatère ABCD sera un quadrilatère croisé.

b. Vrai:

Les diagonales du quadrilatère CBDA sont les segments [CD] et [BA]. Ainsi, si les diagonales ont même milieu alors le quadrilatère CBDA est un parallélogramme.

Vrai:

D'après le cours, si le quadrilatère MNPQ est parallélogramme alors les vecteurs \overrightarrow{MN} et \overrightarrow{QP} sont égaux.

d. Faux:

Pour le quadrilatère WXYZ, les segments [WX] et [YZ]étant des côtés du quadrilatère WXYZ, ils ne peuvent pas avoir le même milieu.

Exercice 3

On considère le repère (O; I; J) quelconque représenté cidessous et les trois points A, B, C:

- Donner les coordonnées des points A, B, C.
- Placer les points D et E de coordonnées:

D(2;1) ; E(-1;-2)

Correction 3

1. Voici les coordonnées des points:

$$A(3;2)$$
 ; $B(2;-2)$; $C(-2;4)$

Voici les points D et E représentés:

Exercice 4

On considère, dans le repère (O; I; J) orthonormé et les trois vecteurs ci-dessous représentés ci-dessous:

Compléter le tableau suivant:

i	$(x_{A_i};y_{A_i})$	$(x_{B_i};y_{B_i})$	$x_{B_i} - x_{A_i}$	$y_{B_i} - y_{A_i}$
1				
2				
3				

- a. Que représentent les nombres 4 et 2 pour le premier vecteur?
 - (b.) Expliquer pourquoi le second vecteur n'est pas représenté par les deux nombres 3,5 et 2,5.

Correction 4

1. Compléter le tableau suivant:

i	$(x_{A_i};y_{A_i})$	$(x_{B_i};y_{B_i})$	$x_{B_i} - x_{A_i}$	$y_{B_i} - y_{A_i}$
1	(-3;1)	(1;3)	4	2
2	(-3;-1)	(0,5;-3,5)	3,5	-2,5
3	(3,5;3,5)	(0,5;-2)	-3	-5,5

- 2. a. 4 représente le déplacement sur les abscisses pour passer du point A_1 au point B_1 ; 2 représente le déplacement sur les ordonnées pour le même déplacement.
 - (b.) 2,5 ne représente pas le déplacement des ordonnées correspondant au second vecteur car ce déplacement s'effectuant dans le sens négatif de l'axe des ordonnées, la valeur associée est -2.5.

Exercice 5

- 1. Graphiquement, déterminer les coordonnées vecteurs \overrightarrow{AB} , \overrightarrow{CD} et \overrightarrow{EF} .
- (a.) Donner les coordonnées des points G, H, K, L, Met N.

(b.) En déduire, par le calcul, les coordonnées des vecteur \overrightarrow{GH} , \overrightarrow{KL} et \overrightarrow{MN} .

Correction 5

- 1. On a les coordonnées des vecteurs: $\overrightarrow{AB}(1;-5)$; $\overrightarrow{CD}(6;0,5)$; $\overrightarrow{EF}(2;2)$
- (a.) Voici les coordonnées des points: G(6;0,5) ; H(3;3) ; K(1,5;3)L(-3;2,5) ; M(-1,5;-1) ; N(3;-2)
 - (b.) On a les coordonnées de vecteurs :
 - $\bullet \overrightarrow{GH}(x_H x_G; y_H y_G)$ = (3-6; 3-0.5)(-3; 2.5)
 - $\bullet \overrightarrow{KL}(x_L x_K; y_L y_K)$ = (-3 - 1.5; 2.5 - 3) = (-4.5; -0.5)
 - $\bullet \overrightarrow{MN}(x_N x_M; y_N y_M)$ = (3 - (-1,5); -2 - (-1)) = (4,5; -1)

Exercice 6

On considère le plan muni d'un repère (O; I; J) et les points A et B de coordonnées: A(-4;-2); B(3;-4)

- 1. Montrer que le vecteur \overrightarrow{AB} a pour coordonnées $\overrightarrow{AB}(7;-2)$.
- 2. On considère les deux points C et D de coordonnées: C(1;1) ; D(8;-1)

- a. Déterminer les coordonnées du vecteur CD.
- (b.) Nommer le parallélogramme formé par les quatre points A, B, C et D.
- 3. Sans justification, donner les coordonnées du point E tel que le quadrilatère ABCE soit un parallélogramme.

Correction 6

1. Le vecteur \overrightarrow{AB} a pour coordonnées :

$$\overrightarrow{AB}(x_B - x_A; y_B - y_A) = (3 - (-4); -4 - (-2))$$

= $(3 + 4; -4 + 2) = (7; -2)$

2. (a.) Le vecteur \overrightarrow{CD} a pour coordonnées:

$$\overrightarrow{CD}(x_D - x_C; y_D - y_C) = (8-1; -1-1) = (7; -2)$$

- b. Les vecteurs \overrightarrow{AB} et \overrightarrow{CD} ayant les mêmes coordonnées, on en déduit que ces deux vecteurs sont égaux. Puisque $\overrightarrow{AB} = \overrightarrow{CD}$, on en déduit que le quadrilatère \overrightarrow{ABDC} est un parallélogramme.
- 3. Voici les points A, B, C, E placés dans le repère cidessous pour former un parallélogramme:

Les coordonnées du point E sont: (-6;3)

Exercice 7

Dans un repère orthonormé $(O\,;\,I\,;\,J)$, on considère les quatre points suivants caractérisés par leurs coordonnées:

$$A(2;2)$$
 ; $B(-0.5;-1)$; $C(-2;0.5)$; $D(0.5;3.5)$

Justifier que le quadrilatère ABCD est un parallélogramme.

Correction 7

Déterminons les coordonnées des vecteurs suivants:

•
$$\overrightarrow{AB}(x_B - x_A; y_B - y_A) = (-0.5 - 2; -1 - 2)$$

= $(-2.5; -3)$

•
$$\overrightarrow{DC}(x_C - x_D; y_C - y_D) = (-2 - 0.5; 0.5 - 3.5)$$

= $(-2.5; -3)$

En remarquant que les vecteurs \overrightarrow{AB} et \overrightarrow{DC} ont même coordonnées, on en déduit que ces deux vecteurs sont égaux.

Puisque $\overrightarrow{AB} = \overrightarrow{DC}$, on en déduit que le quadrilatère ABCD est un parallélogramme.

Exercice 8*

Dans un repère orthonormé $(O\,;I\,;J),$ on considère les quatre points suivants caractérisés par leurs coordonnées :

$$A\left(\frac{5}{3}\,;\frac{7}{4}\right) \quad ; \quad B\left(\,\frac{11}{3}\,;-\frac{5}{4}\,\right) \quad ; \quad C\left(\frac{16}{7}\,;\frac{12}{5}\right) \quad ; \quad D\left(\frac{2}{7}\,;\frac{27}{5}\right)$$

Justifier que le quadrilatère ABCD est un parallélogramme.

Correction 8

Déterminons les coordonnées des vecteurs suivants:

•
$$\overrightarrow{AB}(x_B - x_A; y_B - y_A) = \left(\frac{11}{3} - \frac{5}{3}; -\frac{5}{4} - \frac{7}{4}\right)$$

= $\left(\frac{11 - 5}{3}; \frac{-5 - 7}{4}\right) = \left(\frac{6}{3}; \frac{-12}{4}\right) = (2; -3)$

•
$$\overrightarrow{DC}(x_C - x_D; y_C - y_D) = \left(\frac{16}{7} - \frac{2}{7}; \frac{12}{5} - \frac{27}{5}\right)$$

= $\left(\frac{16 - 2}{7}; \frac{12 - 27}{5}\right) = \left(\frac{14}{7}; \frac{-15}{5}\right) = (2; -3)$

En remarquant que les vecteurs \overrightarrow{AB} et \overrightarrow{DC} ont même coordonnées, on en déduit que ces deux vecteurs sont égaux.

Puisque $\overrightarrow{AB} = \overrightarrow{DC}$, on en déduit que le quadrilatère ABCD est un parallélogramme.