ADAMAS UNIVERSITY

END-SEMESTER EXAMINATION: MAY 2021

UNIVERSITY PURSUE EXCELLENCE	(Academic Session: 2020 – 21)		
Name of the Program:	B.TECH [ECE]	Semester:	IV
Paper Title :	Communication System I	Paper Code:	EEC42104
Maximum Marks :	40	Time duration:	3 Hrs
Total No of questions:	08	Total No of Pages:	02
(Any other information for the student may be mentioned here)	 At top sheet, clearly mention Name, Univ. Roll No., Enrolment No., Paper Name & Code, Date of Exam. All parts of a Question should be answered consecutively. Each Answer should start from a fresh page. Assumptions made if any, should be stated clearly at the beginning of your answer. 		

Answer all the Groups Group A

Answer all the questions of the following

 $5 \times 1 = 5$

- 1. a) State Carson rule.
 - b) Define AM Vestigial sideband.
 - c) Write the properties of Autocorrelation function.
 - d) The carrier amplitude after AM varies between 4 volts and 2 volt. Calculate the depth of Modulation.
 - e) What are the advantages of single sideband transmission?

GROUP -B

Answer any three of the following

 $3 \times 5 = 15$

- 2. Discuss in detail about DSB-SC & explain the operation of DSB balanced modulator with neat diagram. [5]
- 3. Consider the following signals

$$x(t) = \begin{cases} \sin(t), & 0 \le x \le 2\pi \\ x, & \text{otherwise} \end{cases}$$

and

$$y(t) = \begin{cases} Asin(\omega t), & 0 \le x \le 2\pi \text{ and } \omega \in (N) \\ 0, & \text{otherwise} \end{cases}$$

If the energy of x(t) is E_1 , What will be the energy, E_2 of y(t)? Establish the relation between E_1 and E_2 . [5]

- 4. What do you mean by modulation index? A 400 watts carrier is modulated to a depth of 75 percent. Find the total power in the AM wave. Assume that the modulating is sinusoidal. [5]
- 5. Explain the operation of square law detector [5]

GROUP -C

Answer any two of the following

 $2 \times 10 = 20$

- 6. a) What is the maximum transmission efficiency of an amplitude modulated system for 100% modulation?
 - b) A carrier signal c(t)= $20\cos(2\pi \ 10^6 \ t)$ is modulated by a message signal m(t)= $5\cos(2\pi \ 10^6 \ t)$ $(2\pi \ 10^4 \ t)$ to generate a DSBSC signal. Calculate bandwidth and power?
 - c) Compare AM, DSBSC and SSBSC?

[3+3+4=10]

- 7. . a) Derive the expression for Narrow band frequency modulated signal.
 - b) Consider an FM signal s(t)=10 $\cos(2\pi \ 10^6 \ t+8 \sin 4\pi \ 10^3 \ t)$. Determine i)Modulation index ii) frequency deviation iii) power iv) bandwidth

[5+5=10]

What are the various pulse modulation schemes? Explain and compare these schemes. 8. [10]