Math 74, Week 15

Tianshuang (Ethan) Qiu

December 1, 2021

1 Mon Lec, 2b

 $g_2 = \sqrt{a_1 a_2}$, so $(1 + g_2)^2 = 1 + a_1 a_2 + 2\sqrt{a_1 a_2}$

Our left hand side should be $(1+a_1)(1+a_2) = 1+a_1a_2+a_1+a_2$. By Am-GM, $LHS \ge RHS$

Now we consider 3 elements. $g_3 = \sqrt[3]{a_1 a_2 a_3}$, and $(1 + g_3)^3 = 1 + a_1 a_2 a_3 + 3\sqrt[3]{a_1 a_2 a_3} + 3(a_1 a_2 a_3)^{2/3}$.

Now LHS has $(1+a_1)(1+a_2)(1+a_3) = 1+a_1+a_2+a_3+a_1a_2+a_1a_3+a_2a_3+a_1a_2a_3$ Here we can cancel the 1 on both sides, and by AM-GM we have $a_1+a_2+a_3 \geq 3\sqrt[3]{a_1a_2a_3}$. Now let the three terms be a_1a_2 , a_1a_3 , and a_2a_3 . By AM-GM we have $a_1a_2+a_1a_3+a_2a_3 \geq 3\sqrt[3]{a_1^2a_2^2a_3^2}$.

Thus we have shown that $LHS \ge RHS$ term by term.

2 Mon Lec, 3c

Since our plane passes through the point (5, 9, 12), we know that the equation of a plane can be given by $\frac{x}{r} + \frac{y}{s} + \frac{z}{t} = 1$. Furthermore we have $\frac{5}{r} + \frac{9}{s} + \frac{12}{t} = 1$. Now we apply the Hamonic Mean-GM inequality:

$$\frac{3}{\frac{5}{r} + \frac{9}{s} + \frac{12}{t}} \le \sqrt[3]{\frac{rst}{420}}$$